Государственное образовательное учреждение высшего профессионального образования

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ЛАБОРАТОРНАЯ РАБОТА №2

на тему:

«Распараллеливание алгоритмов умножения матриц»

Студент ИУ7-54: Морозов И. А Преподаватель: Погорелов. Д. А.

Введение

Целью данной лабораторной работы является изучение и сравнение двух подходов к реализации алгоритмов умножения матриц(классический алгоритм умножения матриц и алгоритм Винограда): с использование параллельных вычислений в нескольких потоках и с использованием одного потока.

1. Аналитическая часть

1.1. Описание алгоритмов

1.1.1. Алгоритм перемножения матриц

Описание алгоритма:

Пусть даны две прямоугольные матрицы A и B размерности $l \times m$ и $m \times n$ соответственно:

$$A = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \ a_{21} & a_{22} & \cdots & a_{2m} \ dots & dots & \ddots & dots \ a_{l1} & a_{l2} & \cdots & a_{lm} \end{bmatrix}, \quad B = egin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \ b_{21} & b_{22} & \cdots & b_{2n} \ dots & dots & \ddots & dots \ b_{m1} & b_{m2} & \cdots & b_{mn} \end{bmatrix}.$$

Тогда матрица C размерностью $l \times n$:

$$C = egin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \ c_{21} & c_{22} & \cdots & c_{2n} \ dots & dots & \ddots & dots \ c_{l1} & c_{l2} & \cdots & c_{ln} \ \end{bmatrix},$$

В которой:

$$c_{ij} = \sum_{r=1}^m a_{ir} b_{rj} \quad (i=1,2,\dots l;\; j=1,2,\dots n)\,.$$

Называется их произведением

1.1.2. Алгоритм Винограда

Описание алгоритма:

Усовершенствованный алгоритм умножения матриц таким образом, что если посмотреть на результат умножения двух матриц, то видно, что каждый элемент в нем представляет собой произведение соответствующих строки и столбца исходных матриц. Можно заметить также, что такое умножение допускает предварительную обработку, позволяющую часть работы выполнить заранее. Рассмотрим два вектора:

$$V = (v1, v2, v3, v4)$$
 и $W = (w1, w2, w3, w4)$

Их скалярное произведение равно:

$$V \cdot W = v1w1 + v2w2 + v3w3 + v4w4$$

Это равенство можно переписать в виде:

$$V \cdot W = (v1 + w2)(v2 + w1) + (v3 + w1)(v4 + w3) - v1v2 - v3v4 - w1w2 - w3w4$$

1.2. Параллельные вычисления

Множественные нити исполнения в одном процессе называют потоками и это базовая единица загрузки ЦПУ, состоящая из идентификатора потока, счетчика, регистров и стека. Потоки внутри одного процесса делят секции кода, данных, а также различные ресурсы: описатели открытых файлов, учетные данные процесса сигналы, значения umask, nice, таймеры и прочее.

У всех исполняемых процессов есть как минимум один поток исполнения. Некоторые процессы этим и ограничиваются в тех случаях, когда дополнительные нити исполнения не дают прироста производительности, но только усложняют программу. Однако таких программ с каждым днем становится относительно меньше.

Существует закономерность между количеством параллельных нитей исполнения процесса, алгоритмом программы и ростом производительности. Это зависимость называется «Законом Амдаля»:

$$Acceleration = \frac{1}{F + \frac{(1 - F)}{N}}$$

Используя уравнение, показанное на рисунке, можно вычислить максимальное улучшение производительности системы, использующей N процессоров и фактор F, который указывает, какая часть системы не может быть распараллелена. Например 75% кода запускается параллельно, а 25% — последовательно. В таком случае на двухядерном процессоре будет достигнуто 1.6 кратное ускорение программы, на четырехядерном процессоре — 2.28571 кратное, а предельное значение ускорения при N стремящемся к бесконечности равно 4.

2. Конструкторская часть

Для исследований будут реализованы: классический алгоритм умножения матриц, алгоритм Винограда, далее будет произведено распараллеливание данных алгоритмов.

2.1 Разработка алгоритмов

2.1.1. Схема алгоритма перемножения матриц

Входные данные:

matrix1 - первая матрица

т - количество строк первой матрицы

n1 - количество столбцолв первой матрицы

Matrix2 - вторая матрица

n2 - количество срок второй матрицы

q - количество столбцов второй матрицы

Рисунок 1. Схема алгоритма классического умножения матриц.

2.1.2. Схема алгоритма Винограда

Входные данные:

matrix1 - первая матрица

т - количество строк первой матрицы

n1 - количество столбцолв первой матрицы

Matrix2 - вторая матрица

n2 - количество срок второй матрицы

q - количество столбцов второй матрицы

Рисунок 2. Схема алгоритма Винограда

2.1.3. Распаралеленный классический алгоритм умножения матриц

Предлагается разбить первую матрицу на две части по строкам и вторую матрицу по столбцам, далее в одном потоке выполнить умножение первой половины, а во втором второй половины матрицы. В данной ситуации можно распараллелить около 20% алгоритма на двух потоках, следовательно по закону Амдаля прирост должен составить 1.5 раза.

2.1.4. Распараллеленный алгоритм Винограда

Предлагается вычисление сумм столбцов и строк выполнять в отдельных потоках и так же как и в распараллеливании классического алгоритма поделить матрицы на две части. В данной ситуации нельзя распараллелить около 30% кода, значит по закону Амдаля на двух процессах прирост составит ~1.33

3. Технологическая часть

В данном разделе будет представленно описание используемого языка программирования, а так же будет показан листинг кода функций, работающих согласно указанным выше алгоритмам.

3.1. Требования к программному обеспечению

Данная программа была реализована на языке C++ компилятор для которого поддерживается многими операционными системами. Для управлениями потоками используется встроенная библиотека pthread

Компилятор: g++

3.2. Средства реализации

Программа была реализована на операционной система MacOS в среде разработки Xcode

3.3 Листинги кода

Здесь я приведу листинги кода параллельных программ, так как листинги кода однопоточных программ были рассмотрены в лабораторной работе №2.

3.3.1. Листинг распаралеленного алгоритма

умножения матриц

mult - структура содержащая размеры введенных матриц и матрицы для вычисления

thread - массив потоков

```
void *first_half(void *args)
{
    mult_matrix *mult = (mult_matrix*) args;
```

```
int half m = (mult->M)/2;
    for( int i = 0; i < half m; ++i )</pre>
    {
        for( int j = 0; j < mult->0; ++j )
            for( int k = 0; k < mult->N1; ++k )
                mult->result[i][j] = mult->result[i][j] +
mult->matrix1[i][k] * mult->matrix2[k][j];
        }
    return args;
}
void *second half(void *args)
    mult matrix *mult = (mult matrix*) args;
    int half m = (mult->M)/2;
    for( int i = half m; i < mult->M; ++i )
        for( int j = 0; j < mult->0; ++j )
            for( int k = 0; k < mult->N1; ++k )
                mult->result[i][j] = mult->result[i][j] +
mult->matrix1[i][k] * mult->matrix2[k][j];
        }
    return args;
}
int multiply matrix(mult matrix *mult)
    pthread t thread[2];
    int errflag;
    errflag = pthread_create(&thread[0], NULL,
first half, &mult);
    if(errflag != 0) std::cout << "First thread drop" <<</pre>
std::endl;
    errflag = pthread_create(&thread[1], NULL,
second half, &mult);
    if(errflag != 0) std::cout << "Second thread drop" <<</pre>
std::endl;
    errflag = pthread_join(thread[0], NULL);
    if(errflag != 0) std::cout << "First thread can't</pre>
stop" << std::endl;</pre>
```

```
errflag = pthread_join(thread[1], NULL);
   if(errflag != 0) std::cout << "Second thread can't
stop" << std::endl;
   return errflag;
}</pre>
```

3.3.2 Листинг распаралеленного алгоритма Винограда

mult - структура содержащая размеры введенных матриц и матрицы для вычисления

thread - массив потоков

```
void* rows(void *args)
    vinograd *mult = (vinograd *) args;
    mult->MulH = std::vector<int> (mult->M, 0);
    for( int i = 0; i < mult->M; ++i )
        for( int k = 0; k < mult->half n; ++k )
            mult->MulH[i] += mult->matrix1[i][(k<<1)] *</pre>
mult->matrix1[i][(k<<1)+1];
    return args;
}
void* cols(void *args)
    vinograd *mult = (vinograd *) args;
    mult->MulV = std::vector<int> (mult->0, 0);
    for( int i = 0; i < mult->0; ++i )
    {
        for( int k = 0; k < mult->half_n; ++k )
            mult->MulV[i] += mult->matrix2[k<<1][i] *</pre>
mult->matrix2[(k<<1)+1][i];
    }
```

```
return args;
}
void *first_half_res(void *args)
    vinograd *mult = (vinograd *) args;
    int half m = mult->M/2;
    for( int i = 0; i < half_m; ++i )</pre>
        for( int j = 0; j < mult->0; ++j )
        {
            mult->result[i][j] = -mult->MulH[i] - mult-
>MulV[j];
            for( int k = 0; k < mult->half_n; ++k )
                 mult->result[i][j] += ( mult->matrix1[i]
[k<<1] + mult->matrix2[(k<<1)+1][j] ) *
                 ( mult->matrix1[i][(k<<1)+1] + mult-</pre>
>matrix2[k<<1][j] );
        }
    }
    return args;
}
void *second half res(void *args)
    vinograd *mult = (vinograd *) args;
    int half m = mult->M/2;
    for( int i = half m; i < mult->M; ++i )
        for( int j = 0; j < mult->0; ++j )
        {
            mult->result[i][j] = -mult->MulH[i] - mult-
>MulV[j];
            for( int k = 0; k < mult->half n; ++k )
                 mult->result[i][j] += ( mult->matrix1[i]
[k << 1] + mult->matrix2[(k << 1)+1][i]) *
                 ( mult->matrix1[i][(k<<1)+1] + mult-</pre>
>matrix2[k<<1][j] );
    }
    return args;
}
void *first_half(void *args)
```

```
{
    vinograd *mult = (vinograd *) args;
    int half m = mult->M/2;
    for( int i = 0; i < half m; ++i )</pre>
        for( int j = 0; j < mult->0; ++j )
            mult->result[i][j] += mult->matrix1[i][mult-
>N1 - 1] * mult->matrix2[mult->N1 - 1][j];
    }
    return args;
}
void *second half(void *args)
    vinograd *mult = (vinograd *) args;
    int half m = mult->M/2;
    for( int i = half m; i < mult->M; ++i )
        for( int j = 0; j < mult->0; ++j )
            mult->result[i][j] += mult->matrix1[i][mult-
>N1-1] * mult->matrix2[mult->N1-1][j];
    }
    return args;
}
int vinograd_mult(vinograd *mult)
    // Объявляем потоки
    pthread_t thread[NumThreads];
    int errflag;
    // Распараллеливание вычисления сумм колонок и
столбцов
    errflag = pthread create(&thread[0], NULL, rows,
mult);
    if(errflag != 0) std::cout << "First thread drop" <<</pre>
std::endl;
    errflag = pthread_create(&thread[1], NULL, cols,
mult);
    if(errflag != 0) std::cout << "Second thread drop" <<</pre>
std::endl:
    // "Сливание" двух созданных потоков с потоком main
    errflag = pthread_join(thread[0], NULL);
```

```
if(errflag != 0) std::cout << "First thread can't</pre>
stop" << std::endl;</pre>
    errflag = pthread_join(thread[1], NULL);
    if(errflag != 0) std::cout << "Second thread can't</pre>
stop" << std::endl;</pre>
    // Распараллеливание вычисления результата
    errflag = pthread create(&thread[2], NULL,
first half res, mult);
    if(errflag != 0) std::cout << "Third thread drop" <<</pre>
std::endl:
    errflag = pthread create(&thread[3], NULL,
second_half_res, mult);
    if(errflag != 0) std::cout << "Fourth thread drop" <<</pre>
std::endl:
    // "Сливание" двух созданных потоков с потоком main
    errflag = pthread join(thread[2], NULL);
    if(errflag != 0) std::cout << "Third thread can't</pre>
stop" << std::endl;</pre>
    errflag = pthread_join(thread[3], NULL);
    if(errflag != 0) std::cout << "Fourth thread can't</pre>
stop" << std::endl;</pre>
    // Если размеры были нечетные
    if( mult->N1 % 2 == 1 )
        // Распараллеливание вычислений результата при
нечетных размерах
        errflag = pthread_create(&thread[4], NULL,
first half, mult);
        if(errflag != 0) std::cout << "Third thread drop"</pre>
<< std::endl:
        errflag = pthread_create(&thread[5], NULL,
second_half, mult);
        if(errflag != 0) std::cout << "Fourth thread</pre>
drop" << std::endl;</pre>
        // "Сливание" двух созданных потоков с потоком
main
        errflag = pthread_join(thread[4], NULL);
        if(errflag != 0) std::cout << "Third thread can't</pre>
stop" << std::endl;</pre>
        errflag = pthread_join(thread[5], NULL);
        if(errflag != 0) std::cout << "Fourth thread</pre>
can't stop" << std::endl;</pre>
    }
    return errflag;
```

4. Экспериментальная часть

В данном разделе будет представлено сравнение временных характеристик алгоритмов.

4.1. Постановка эксперимента

Первый эксперимент производится для лучшего случая на

Алгоритм умножения матриц
 Распараллеленный алгоритм умножения матриц
 Алгоритм Винограда
 Распараллеленный алгоритм Винограда
 1,8
 1,35
 0,9
 0,45
 0
 0
 200
 300
 400
 500

матрицах с размерами от 100×100 до 500×500 с шагом 100 так как уже на размере 500 для однопоточных алгоритмов приходилось ожидать около минуты. Каждый эксперимент тем не менее был повторен 100 раз для усреднения значений.

Теоретические предположения подтвердились, в случае классического умножения прирост составляет ~1.15, в случае алгоритма Винограда, прирост составит 1.33.

Второй эксперимент производится для худшего случая, когда поданы матрицы с нечетными размерами от 101×101 до 501×501 с шагом 100.

Заключение

В ходе лабораторной работы были изучены и реализованы распараллеленные алгоритмы умножения матриц, а именно: распараллелен классический алгоритм умножения матриц, распараллелен алгоритм Винограда.

Был проведен анализ данных алгоритмов. Распараллеленный алгоритм Винограда показал себя как наиболее эффективный для большинства случаев, что сходится с ожидаемым результатом