ИНГИБИТОРНАЯ СЕТЬ ПЕТРИ, ИСПОЛНЯЮЩАЯ ПРОИЗВОЛЬНУЮ ЗАДАННУЮ МАШИНУ ТЬЮРИНГА

Д.А. ЗАЙЦЕВ

Построена ингибиторная сеть Петри с фиксированной структурой, исполняющая произвольную заданную машину Тьюринга. Лента машины Тьюринга, ее программа и состояния зашифрованы маркировкой 10-ти выделенных позиций сети Петри. Правила работы машины Тьюринга закодированы одиночным потоком управления в сети Петри, скомпонованной из операторов последовательности, ветвления, цикла. Использованы подсети, реализующие операции арифметики, сравнения, копирования.

ВВЕДЕНИЕ

Известно, что ингибиторная сеть Петри представляет собой универсальную алгоритмическую систему [1, 2]. Доказательство было получено на основе моделирования счетчиковой машины Минского ингибиторной сетью Петри [2] и предполагает индивидуальное кодирование программы каждой заданной машины Минского графом ингибиторной сети Петри.

Цель работы — построение ингибиторной сети с фиксированной структурой (графом), исполняющая произвольную заданную машину Тьюринга [3, 4] на основе шифрования машины Тьюринга маркировкой фиксированного числа позиций сети Петри.

Помимо указанной цели, при наличии обоих: IPNTM (Inhibitor Petri Net Turing Machine — ингибиторная сеть Петри, исполняющая машину Тьюринга) и TMIPN (Turing Machine Inhibitor Petri Net — машина Тьюринга, исполняющая ингибиторную сеть Петри) — их композиция дает новый способ построения универсальной ингибиторной сети Петри [5], а также универсальной машины Тьюринга [6]. Действительно, IPNTM (TMIPN) является универсальной ингибиторной сетью Петри: она принимает на вход шифр заданной ингибиторной сети Петри для машины Тьюринга TMIPN и затем исполняет машину Тьюринга TMIPN, зашифрованную для IPNTM. И наоборот, TMIPN (IPNTM) является универсальной машиной Тьюринга: она принимает на вход шифр заданной машины Тьюринга для ингибиторной сети Петри IPNTM и затем исполняет ингибиторную сеть Петри IPNTM, зашифрованную для TMIPN.

ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

Ингибиторная сеть Петри

Граф ингибиторной сети Петри [1, 2] является взвешенным двудольным ориентированным графом, представленным четверкой G=(P,T,B,D), где $P=\{p_1,...,p_m\}$ — конечное число вершин именуемых позициями; $T=\{t_1,...,t_n\}$ — конечное число вершин именуемых переходами, а отобра-

[©] Д.А. Зайцев, 2012

жения $B: P \times T \to \mathbb{N} \cup \{-1\}$ и $D: T \times P \to \mathbb{N}$ задают входные и выходные дуги переходов вместе с их кратностью; \mathbb{N} — множество целых неотрицательных чисел; нулевое значение отображений — B, D — обозначает отсутствие дуги; ненулевое — кратность дуги, специальное значение -1 задает ингибиторную дугу. Отображения могут быть представлены соответствующими матрицами: $B = \left\|b_{i,j}\right\|, b_{i,j} = B(p_j, t_i)$ и $D = \left\|d_{i,j}\right\|, d_{i,j} = D(t_i, p_j)$.

Состояние сети именуется маркировкой и представлено отображением $Q:P\to \mathbb{N}$, которое задает количество динамических элементов — фишек внутри позиций сети. Ингибиторная сеть Петри (ИСП) [1, 2] — это пара $N=(G,Q_0)$, где G — граф сети, а Q_0 — ее начальная маркировка. Маркировка может быть представлена соответствующим вектором: $Q=\|q_j\|$, $q_j=Q(p_j)$. Таким образом, ингибиторная сеть Петри задана парой чисел, парой матриц и вектором $N=(m,n,B,D,Q_0)$. Динамика ингибиторной сети представляет собой пошаговый процесс изменения ее маркировки в результате срабатывания переходов и может быть описана уравнением состояний [5].

Позиции изображают окружностями с фишками в виде точек, размещенными внутри них, переходы — прямоугольниками. Для графического представления ингибиторной дуги используют полую окружность на конце дуги. Дуга с заполненной окружностью на конце обозначает пару дуг противоположного направления и равной кратности, она используется для проверки маркировки позиции (без ее изменения).

Машина Тьюринга

Машина Тьюринга (МТ) [3] — это шестерка $M = (X,Q,V,P,q_s,q_f)$,, где X — конечный алфавит символов ленты, содержащий пустой символ λ ; Q — конечный алфавит внутренних состояний; q_s — начальное состояние; q_f — конечное (заключительное) состояние; $V = \{l,s,r\}$ — алфавит перемещений соответственно (влево, стоять, вправо); P — функция переходов (программа), представленная как:

• отображение для детерминированной машины Тьюринга

$$P: X \times O \rightarrow X \times O \times V$$
;

• отношение для недетерминированной машины Тьюринга

$$P \subset (X \times Q) \times (X \times Q \times V)$$
.

Конструкция машины Тьюринга следующая:

1) бесконечная в обоих направлениях лента разделена на ячейки, содержащие символ алфавита X. Изначально все ячейки заполнены пустым символом λ ;

- 2) управляющая головка движется вдоль ленты, на текущем шаге обозревает одну текущую ячейку и находится во внутреннем состоянии q;
- 3) программа (функция переходов) P задает переход машины Тьюринга на следующий шаг.

Правила перехода на следующий шаг:

- а) останавливается, если $q = q_i$,.
- б) управляющая головка считывает символ x из текущей ячейки,
- в) находит соответствующую команду $(q, x) \rightarrow (q', x', v)$ в P,
- Γ) записывает символ x' в текущую ячейку,
- д) перемещается на одну ячейку влево, вправо, либо остается на месте в зависимости от значения v,
- е) переключается в следующее состояние q := q' и продолжает по правилу (a).

Выбор команды в соответствии с правилом (в) уникален для детерминированной машины Тьюринга и множественен для недетерминированной машины Тьюринга [4]. Без ограничения общности рассмотрено только одно заключительное состояние. Определение машины Тьюринга с множеством заключительных состояний может быть преобразовано путем добавления команд перехода в единственное заключительное состояние без изменения текущего символа и перемещения головки.

Минимальную часть ленты, заполненную не пустыми символами, называют рабочей зоной. Обычно предполагают, что машина начинает (и завершает) свою работу в положении головки над крайней левой ячейкой рабочей зоны. В качестве начальной рабочей зоны слово α в алфавите X записано на ленте. После останова машины слово β , полученное в рабочей зоне, рассматривается как результат.

ШИФРОВАНИЕ МАШИНЫ ТЬЮРИНГА

В настоящем разделе представлено шифрование машины Тьюринга, включая ленту с позицией управляющей головки, текущее и заключительное состояния, программу, в форме маркировок десяти выделенных позиций сети IPNTM: sL, x, sR, rX, q, qf, rQ, sP, rP, rV. Шесть дополнительных позиций использованы для хранения текущей команды и ее компонентов: sI, Iq, Ix, Jq, Jx, Iv. Пример шифрования машины описан далее в подразделе «Пример шифрования машины Тьюринга».

Шифрование алфавитов и выделенных состояний МТ

Зашифруем символы алфавитов X,Q,V целыми неотрицательными числами диапазона от нуля до |X|-1,|Q|-1,|V|-1 соответственно. При шифровании алфавита X будем предполагать, что пустой символ зашифрован нулем. Шифрование алфавита V следующее: $l \leftrightarrow 1, s \leftrightarrow 0, r \to 2$. Остальное шифрование произвольное.

Для работы с шифрами алфавитов использованы три позиции TPNTM с именами rX, rQ, rV содержащие следующие значения: rX = |X|, rQ = |Q|, rV = |V|.

Определение МТ содержит два выделенных состояния q_s,q_f , и во время работы МТ рассматривается текущее состояние q, совпадающее с начальным состоянием при запуске машины $q=q_s$. Выделенные состояния представлены двумя позициями IPNTM с именами q,qf, которые содержат шифры текущего и заключительного состояния соответственно; предполагается, что шифр q_s изначально загружен в позицию q.

Шифрование программы

Использовано рекуррентное шифрование и дешифрование векторов неотрицательных целых [5]:

$$s_j = s_{j-1}r + a_{m-1-j}, \ s_0 = a_{m-1}, \ j = \overline{1, m-1},$$
 (1)

$$a_{i} = s_{m-1-i} \mod r$$
, $s_{m-1-(i+1)} = s_{m-1-i} \operatorname{div} r$, $s_{m-1} = s$, $j = \overline{0, m-1}$, (2)

где шифр вектора A длины m равен $s=s_{m-1}$, а основание шифрования $r=\max_i a_j+1$.

Для шифрования программа (функция переходов) P рассматривается как множество команд (инструкций) $P = \{I\}$ в форме I = (q, x, q', x', v), компонентами которых являются шифры состояний, символов текущей ячейки, движения головки. Заметим, что недетерминированная МТ может содержать несколько команд с одинаковой парой (q, x).

Команда зашифрована как вектор (1) с переменной величиной основания r:(rV,rQ,rX,rQ,rX). Заметим, что rV реально не используется, так как вычисляется ее нулевая степень. Выраженное в явной форме шифрование имеет вид:

$$sI = q + xrQ + q'(rQrX) + x'(rQrXrQ) + v(rQrXrQrX).$$
 (3)

Выполненные построения дают неоднозначную интерпретацию нуля как шифра инструкции $(q_0, x_0, q_0, x_0, v_0)$, что может быть неудобным при неизвестной длине программы. Либо указанная фиктивная команда должна быть исключена из рассмотрения, либо некоторые шифры (например V) должны начинаться с единицы.

Множество команд занумеровано в произвольном порядке, начиная с нуля до k=|P|-1, для использования простого алгоритма последовательного поиска. Таким образом, программа представлена как вектор $P=(I_0,I_1,...,I_{k-1})$. Для ее шифрования как вектора (1) следует выбрать значение требуемого основания. Максимальный возможный шифр команды следующий:

$$sI_{\text{max}} = (rQ - 1) + (rX - 1)rQ + (rQ - 1)(rQrX) + (rX - 1)(rQrXrQ) +$$
$$+ (rV - 1)(rQrXrQrX).$$

Таким образом, основание для шифрования программы имеет значение

$$rP = sI_{\text{max}} + 1. (4)$$

Итак, программа МТ представлена двумя позициями IPNTM с именами sP, rP, которые содержат значения sP, rP соответственно. Дополнительные позиции использованы для хранения текущей команды I = (q, x, q', x', v) и ее компонентов sI, Iq, Ix, Jq, Jx, Iv соответственно (для последовательного поиска подходящей команды).

Шифрование ленты

Шифрование рабочей зоны ленты может быть выполнено также, как и шифрование программы, но в этом случае необходима дополнительная информация о текущей позиции управляющей головки.

Заметим, что рекуррентное шифрование (1) и дешифрование (2) задают дисциплину стека (LIFO). Начнем с нулевого значения s=0, тогда оперании

$$push(x,s) = MUL_ADD(s,r,x) :: s := s \cdot r + x,$$

$$pop(s) = MOD \quad DIV(s,r,x) :: x := s \mod r, s := s \operatorname{div} r$$

обеспечивают дисциплину стека, и достижение дна стека распознается как условие s=0. Неоднозначность шифрования в случае, когда нулевой шифр представляет пустой символ λ , является полезной. Последовательное дешифрование нуля дает неограниченное количество символов λ на дне стека. «Бездонное дно» дает возможность представить две части ленты по обеим сторонам текущей ячейки как два стека.

Символы рабочей зоны ленты занумерованы следующим образом:

...,
$$\lambda$$
, L_{m-1} , L_{m-2} , ..., L_0 , x , R_0 , R_1 , ..., R_{n-1} , λ , ...,

где L_i — символы левой части, а R_j — символы правой части ленты относительно символа текущей ячейки x. Обе части ленты зашифрованы как векторы L,R в соответствии с (1). Полученные шифры обозначены как sL,sR соответственно.

Лента и текущая позиция управляющей головки зашифрованы как три неотрицательных целых числа sT=(sL,x,sR), где sL — шифр левой части рабочей зоны, sR — шифр правой части рабочей зоны, sR — шифр правой части рабочей зоны, sR — шифр символа текущей ячейки. Основание для шифрования соответствует алфавиту ленты sR — sR

Описанное шифрование обеспечивает следующую реализацию перемещений управляющей головки:

$$left(sL, x, sR) :: push(x, sR), x := pop(sL),$$

$$\operatorname{stay}(sL, x, sR) ::< \operatorname{без} \$$
изменений $>$, $\operatorname{right}(sL, x, sR) :: \operatorname{push}(x, sL), x := \operatorname{pop}(sR)$. (5)

Итак, лента и позиция управляющей головки представлены тремя позициями IPNTM с именами sL,x,sR, которые содержат значения sL,x,sR соответственно.

Пример шифрования машины Тьюринга

Построим машину Тьюринга MTI, которая переводит числа из унарной в бинарную систему счисления: $X=\{\lambda,a,0,1\}$, $Q=\{q_0,q_1,q_2,q_3,q_4,q_5\}$, $q_s=q_0$, $q_f=q_5$; в унарной системе счисления символ a использован для представления числа.

Шифры алфавитов, программы и процесса работы *МТ1* представлены в табл. 1, 2, 3 соответственно; программа не является полностью определенной: для краткости опущены команды для некорректных конфигураций.

Таблица 1. Шифрование алфавитов МТ1

Алфавит X						Алфаі	$_{\nu}Y$		D			
λ	а	0	1	q_0	q_1	q_2	q_3	q_4	$q_{\scriptscriptstyle 5}$	rx	rų	rP
0	1	2	3	0	1	2	3	4	5	4	6	1728

Таблица 2. Шифрование программы МТ1

№	Команда	sI	sP
0	01012	1302	1302
1	02022	1452	2251308
2	0 3 0 3 2	1602	3890261826
3	00101	600	6722372435928
4	1 1 2 0 1	631	11616259569284215
5	1 2 4 2 1	973	20072896535723124493
6	1 3 4 3 1	1123	34685965213729559125027
7	2 1 2 1 1	776	59937347889324678168047432
8	2 2 0 3 2	1598	103571737152753043874385964094
9	20032	1586	178971961799957259814938945956018
10	2 3 3 2 1	956	309263549990326144960214498612000060
11	3 3 3 2 1	957	534407414383283578491250653601536104637
12	3 2 0 3 2	1599	923456012054314023632881129423454388814335
13	3 0 0 3 2	1587	1595731988829854632837618591643729183871172467
14	42421	976	2757424876697988805543404926360364029729386023952
15	4 3 4 3 1	1126	4764830186934124655979003712750709043372379049390182
16	40502	1276	8233626563022167405531718415633225226947470997346235772

Таблица 3. Шифрование процесса работы МТ1

Шаг	Лента	Шифр ленты			Сост.	№	***		Шифр ленты			Сост.	№
		sL	х	sR	q	ком.	шаг	Лента	sL	х	sR	q	ком.
0	aaaa ^	0	1	21	0	0	20	10 <i>aa</i> ^	sL	X	sR	0	0
1	aaaa ^	1	1	5	0	0	21	10 <i>aa</i> ^	57	1	0	0	0
2	aaaa ^	5	1	1	0	0	22	10aaλ ^	229	0	0	0	3
3	aaaa ^	21	1	0	0	0	23	10 <i>aa</i> ^	57	1	0	1	4
4	aaaaλ ^	85	0	0	0	3	24	10aλ ^	14	1	0	2	7
5	aaaa ^	21	1	0	1	4	25	10 <i>a</i> ^	3	2	1	2	8
6	aaaλ ^	5	1	0	2	7	26	11a ^	15	1	0	0	0
7	aaa ^	1	1	1	2	7	27	11aλ ^	61	0	0	0	3
8	aaa ^	0	1	5	2	7	28	11a ^	15	1	0	1	4
9	λaaa ^	0	0	21	2	9	29	11λ ^	3	3	0	2	10
10	1 <i>aaa</i> ^	3	1	5	0	0	30	10	0	3	2	3	11
11	1aaa ^	13	1	1	0	0	31	λ00 ^	0	0	10	3	13
12	1aaa ^	53	1	0	0	0	32	100	3	2	2	0	1
13	laaaλ ^	213	0	0	0	3	33	100	14	2	0	0	1
14	1 <i>aaa</i> ^	53	1	0	1	4	34	100λ	58	0	0	0	3
15	1aaλ ^	13	1	0	2	7	35	100	14	2	0	1	5
16	1 <i>aa</i> ^	3	1	1	2	7	36	100	3	2	2	4	14
17	1 <i>aa</i> ^	0	3	5	2	10	37	100	0	3	10	4	15
18	λ0aa ^	0	0	22	3	13	38	λ100 ^	0	0	43	4	16
19	10 <i>aa</i> ^	3	2	5	0	1	39	100	0	3	10	5	

КОДИРОВАНИЕ АЛГОРИТМОВ ИНГИБИТОРНОЙ СЕТЬЮ ПЕТРИ

Сети Петри известны как форма представления параллельных (concurrent) алгоритмов и вычислений, управляемых потоками данных (data flow) [2, 7, 8]. В большинстве случаев, алгоритмы моделируются сетями Петри, что означает определенный акт абстрагирования, приводящий к утрате некоторых особенностей. Такое абстрагирование обычно оправдано общей целью исследования, например, поиском взаимных блокировок (тупиков), верификацией протокола и т.п.

В настоящей работе внимание сконцентрировано на точной спецификации одного потока управления, который описывает правила работы МТ. Для этих целей конструкции, рассмотренные в [1, 2], специфицированы более строго с точным разделением элементов сети Петри на две категории: для описания переменных и для описания одного потока управления. Указанное разделение выполнено до определенных границ: выбраны подсети, которые представляют множество базисных операций, необходимых для выполнения МТ. Для этих подсетей представлено доказательство их корректности в явном виде.

Каждый оператор (операция, процедура) представлен подсетью вида, изображенного на рис. 1. Для передачи параметров использованы контактные позиции, которые разделены на входные и выходные. Две выделенные позиции start (s) и finish (f) представляют поток управления. Для обеспечения повторного прохождения потока управления через операторы, примем следующие соглашения: все внутренние позиции имеют нулевую маркировку; перед запуском оператора все входные переменные копируются во входные позиции оператора; работа оператора запускается попаданием фишки в позицию s; оператор завершает свою работу при попадании фишки в позицию f; при завершении работы оператора все его позиции пусты за исключением выходных позиций, которые содержат результат.

Рис. 1. Представление оператора

Рассматривается два вида переменных: глобальные статические и параметры операторов. Композиция статических переменных и параметров выполняется как совмещение (объединение) соответствующих позиций. Композиция (синхронизация [1]) потока управления и переменных обеспечивается парой выделенных позиций s и f, которые совмещаются при суперпозиции операторов — f предыдущего совмещается с s следующего.

Рис. 2. Представление алгоритма

Каждая статическая глобальная переменная представлена соответствующей позицией сети Петри (рис. 2). Поток управления моделируется

трассой прохождения одной фишки из начальной позиции start(s) в завершающую позицию finish(f).

Введены пунктирные дуги [5], обозначающие следующие дополнительные правила формирования значений входных и выходных позиций: при запуске содержимое переменной копируется во входную переменную оператора; после завершения переменная очищается, и в нее перемещается значение выходной позиции оператора. В случае нескольких переменных строятся цепочки *COPY* для последовательного копирования входных переменных и цепочки *CLEAN*, *MOVE* для перемещения значений выходных переменных. Последовательность *CLEAN*, *MOVE* обозначена как *ASSIGN*.

Лемма 1. Алгоритмические управляющие структуры могут быть закодированы ингибиторной сетью Петри в форме, представленной на рис. 3.

Рис. 3. Кодирование алгоритмических управляющих структур, где a — последовательность, δ — ветвление, ϵ — цикл (while)

Доказательство. Представим доказательство для структуры ветвления (рис. 3, δ). В начальной маркировке p_1 = 1 разрешен только переход t_1 , который срабатывает и помещает значение условия в позицию p_3 и фишку потока управления в позицию p_4 . Допустим, что истинное значение представлено единичной маркировкой, а ложное — нулевой маркировкой. Поэтому только один из переходов t_2 , t_3 разрешен, а именно: t_2 в единичной маркировке p_3 и t_3 в нулевой маркировке. При срабатывании t_2 фишка потока управления перемещается в позицию p_5 , что запускает переход t_4 , а при срабатывании t_3 фишка потока управления перемещается в позицию p_6 , что запускает переход t_5 . В итоге фишка потока управления попадает в позицию p_2 , а все другие позиции пусты. Следовательно, разрешены

только две последовательности срабатывания $t_1t_2t_4$ или $t_1t_3t_5$, что означает выбор операторов *operator1* или *operator2* после вычисления условия *condition*; *operator1* выбран, когда значение условия истинно, а *operator2* — когда ложно, что соответствует семантике структуры ветвления. \Box

Заметим, что в соответствии с рис. 3, a, суперпозиция операторов при кодировании алгоритма осуществляется совмещением выходной позиции f первого оператора с входной позицией s второго оператора.

Известны примеры представления основных алгебраических и логических операций сетями Петри [2, 9, 10]. В некоторых случаях удобно непосредственное представление наиболее часто выполняемых действий, таких как, например, MOD_DIV и MUL_ADD для дешифрования и шифрования МТ. В построениях IPNTM использованы вспомогательные сети, изученные в [5].

КОМПОЗИЦИЯ ІР ТМ

Закодируем правила работы МТ рассмотренные в подразделе «Машина Тьюринга» ингибиторной сетью Петри в соответствии с принципами, описанными в разделе «Кодирование алгоритмов ингибиторной сетью Петри» и шифрованием МТ, описанным в разделе «Шифрование машины Тьюринга». Заметим, что леммы 1, 2 перечисляют все требуемые управляющие структуры и операции. Получена сеть IPNTM, представленная на рис. 4.

При построении IPNTM выполнено последовательное соединение подсетей, реализующих правила (а)—(е) работы МТ, и организован основной цикл повторения шага. Подсеть EQ проверяет достижение заключительного состояния (правило (а)); подсеть FIND_I выполняет поиск подходящей команды (правила (б)—(в)); подсеть EXEC_I реализует выполнение найденной команды (г)—(е); ветвление после FIND_I реализует аварийный останов в случае отсутствия подходящей команды, подсеть FIND_I представляет собой суперпозицию цикла, двух ветвлений и последовательностей; подсеть EXEC_I представляет собой суперпозицию двух ветвлений и последовательностей для выбора одного из трех вариантов перемещения головки.

Для представления переменных использованы совмещенные позиции: все позиции с одинаковыми именами логически являются одной и той же позицией; совмещенные позиции облегчают графическое представление сети. Предполагаем, что перед запуском сети IPNTM шифр целевой (исполняемой) МТ загружен в выделенные позиции, а после останова сети IPNTM шифр полученной МТ (ее ленты) считан из соответствующих позиций.

Пунктирные линии обозначают рассмотренные в разделе «Кодирование алгоритмов ингибиторной сетью Петри» соглашения по копированию входных и выходных переменных. Двунаправленные дуги использованы для работы с переменными, которые являются как входными, так и выходными. В этом случае копирование может быть оптимизировано двукратным применением MOVE без очистки. В некоторых случаях для копирования входной переменной вместе с ее очисткой целесообразно использовать MOVE вместо COPY. В качестве соответствующего обозначения использована линия с точечным пунктиром. Подстановка перехода подразумевает копиро-

вание соответствующей подсети с совмещением контактных позиций. В общем случае подстановка перехода требует указание отображения входных и выходных позиций. В приведенных сетях отображение задано неявно контекстом использованных операций и не указано дополнительно.

Теорема 1. Сеть IPNTM исполняет произвольную заданную детерминированную машину Тьюринга.

Доказательство. Докажем, что работа IPNTM полностью соответствует правилам работы МТ, описанным в подразделе «Машина Тьюринга» относительно шифрования МТ, описанного в разделе «Шифрование машины Тьюринга». Сеть IPNTM использует три подсети $FIND_I$, DA_I , $EXEC_I$ для нахождения подходящей команды, разбора (дизассемблирования) команды, исполнения команды соответственно, а также операции, представленные в [5] сетями Петри.

Во-первых, сеть IPNTM (рис. 4, a) реализует требуемую последовательность правил (а)—(е): в цикле (начинающемся с p_3) она сравнивает (EQ) текущее состояние q с заключительным состоянием qf и выходит из цикла (t_7) в случае совпадения в соответствии с правилом (а); чтение текущего символа по правилу (б) не требуется, поскольку символ текущей ячейки ленты (его шифр) выделен в позиции x в соответствии с шифрованием МТ. Затем она находит подходящую команду ($FIND_I$) и исполняет ее ($EXEC_I$). Для проверки возможных ошибок добавлены дополнительные позиции, названные found и noi. В случае отсутствия подходящей команды подсеть $FIND_I$ не помещает фишку в позицию found и IPNTM выходит из цикла с фишкой в позиции noi (нет команды).

Требуется доказать, что сеть $FIND_I$ находит подходящую команду в оответствии с правилом (в), и сеть $EXEC_I$ исполняет найденную команду в соответствии с правилами (г)—(е).

Сеть $FIND_I$ копирует шифр программы во вспомогательную позицию sPI и обрабатывает sPI в цикле (начинающемся с p_3). Имеется два возможных выхода из цикла: позитивный (t_{11}) — найдена подходящая команда, негативный (t_2) — все команды были проанализированы и подходящая команда не найдена (sP1==0). В цикле, операция MOD_DIV извлекает текущую команду из шифра программы sP1, разбирает текущую команду, используя подсеть DA_I , и сравнивает последовательно текущее состояние и текущий символ команды с текущим состоянием головки q и текущим символом ленты x. В случае любого несовпадения (Iq!=q) или Ix!=x0 она возвращается к началу цикла (t_1) 0 или t_1 1. Когда и состояние, и символ команды совпадают с текущими значениями в соответствии с правилом to1, она выходит из цикла to1, с размещением фишки в позиции to1, заметим, что разобранные компоненты найденной команды сохраняются в позициях to1, to2, to3, to4, to7.

Сеть DA_I разбирает команду в соответствии с принципами, описанными в подразделе «Шифрование ленты»: она применяет четыре последовательных операции MOD_DIV с различными значениями основания r. Заметим, что в соответствии с (4) не требуется применять MOD_DIV пять раз, так как четвертое деление дает Iv, а остаток — Jx.

Puc. 4. Ингибиторная сеть Петри IPNTM, исполняющая машину Тьюринга, где a — IPNTM, δ — FIND_I

Рис. 4. Ингибиторная сеть Петри IPNTM, исполняющая машину Тьюринга, где в — DA_I, г — EXEC_I (Продолжение рис. 4)

Сеть $EXEC_I$ реализует последовательно правила (г)—(е): она присваивает новое значение текущему символу ленты x=Jx; осуществляет перемещение Iv головки в соответствии с принципами шифрования ленты (5) посредством операций MUL_ADD и MOD_DIV в требуемой последовательности и не изменяет значения в случае Iv=0. Затем она переключается в следующее состояние q=Jq.

Итак, работа IPNTM полностью соответствует правилам работы МТ и способу кодирования МТ ингибиторной сетью Петри. Когда IPNTM останавливается корректно (noi=0), шифр результата (рабочей зоны ленты) содержится в позициях sL, x, sR. В соответствии с обычными соглашениями машина останавливается в позиции управляющей головки над крайним левым символом рабочей зоны, следовательно, sL=0 и результат считывается из позиций x, sR. \square

В описанном способе шифрования МТ имеется лишь незначительное отличие между детерминированной и недетерминированной МТ, которое состоит в том, что недетерминированная МТ может содержать несколько команд с совпадающей парой (q,x). При нахождении подходящей команды следует применить недетерминированный выбор команды из множества команд с совпадающей парой (q,x). Для этой цели сеть $FIND_I$ преобразована в сеть $FIND_I_ND$. Сеть IPNTMND получена из сети IPNTM подстановкой подсети $FIND_I_ND$ вместо $FIND_I$ (рис. 5).

Теорема 2. Сеть IPNTMND исполняет произвольную заданную недетерминированную машину Тьюринга.

Доказательство. Так как различие между детерминированной и недетерминированной МТ состоит в выборе подходящей команды, который реализован подсетью $FIND_I$ и вследствие теоремы 1, следует доказать, что использование подсети $FIND_I_ND$ в сети IPNTMND вместо подсети $FIND_I$ обеспечивает недетерминированный выбор подходящей команды.

В соответствии со способом шифрования программы (подраздел «Шифрование ленты») отношение P рассматривается как множество команд, представленное для шифрования как вектор в произвольном порядке. Таким образом, следует найти все команды, содержащие одинаковую пару (q,x) и выполнить из них недетерминированный выбор.

Дальнейший процесс доказательства аналогичен доказательству теоремы 1. \square

Заметим, что сеть IPNTMND является более общей, так как она может исполнять как недетерминированную, так и детерминированную МТ, что зависит от уникальности пар (q,x) множества команд программы. Построенные сети IPNTM и IPNTMND представлены покомпонентно в соответствии с использованными операциями и принципами работы с переменными. Определенный интерес представляет компоновка этих сетей в виде единой ИСП и ее исполнение в среде некоторой моделирующей системы, которая имитирует динамику срабатывания переходов.

Puc. 5. Недетерминированный выбор подходящей команды FIND_I_ND

выводы

В настоящей работе построена ингибиторная сеть Петри с фиксированной структурой, которая исполняет произвольную заданную машину Тьюринга как детерминированную, так и недетерминированную.

Композиция ингибиторной сети, исполняющей машину Тьюринга, и машины Тьюринга, исполняющей ингибиторную сеть Петри, дает новый способ представления универсальной ингибиторной сети [5], которая исполняет произвольную заданную ингибиторную сеть Петри.

Возможны построения аналогичных сетей в других классах сетей Петри, которые являются универсальной алгоритмической системой [2]: приоритетных, синхронных, временных сетях Петри.

Известны примеры построения универсальной машины Тьюринга с минимальным числом использованных символов/состояний [11, 12]. В этой связи определенный интерес представляет построение сети с минимальным количеством позиций (переходов), минимальным значением маркировки.

ЛИТЕРАТУРА

- 1. *Agerwala T.A.* Complete Model for Representing the Coordination of Asynchronous Processes. Baltimore: John Hopkins University, Hopkins Computer Science Program, Res. Rep., July № 32. 1974. 87 p.
- 2. Котов В.Е. Сети Петри. М.: Наука, 1984. 160 с.
- 3. *Turing A.M.* On Computable Numbers with an Application to the Entscheidung-sproblem // Proceedings of the London Mathematical Society. 1936. 42. P. 230–265.
- 4. *Hopcroft J.E., Motwani R., Ullman J.D.* Introduction to automata theory, languages, and computation, second edition. NY: Addison-Wesley, 2001. 498 p.
- 5. Zaitsev D.A. Universal Inhibitor Petri Net // Proceedings of the 17-th German Workshop on Algorithms and Tools for Petri Nets, 7–8 October. Cottbus, Germany. 2010. P. 1–15. http://ceur-ws.org/Vol-643/.
- 6. *The Universal* Turing Machine. A Half-Century Survey / Rolf Herken (ed.). Springer-Verlag, Wien New York. 1994. 609 p.
- 7. Best E., Devillers R., Koutny Petri Nets M. Process Algebra and Concurrent Programming Languages // Lecture Notes in Computer Science. **1492**: Lectures on Petri Nets II: Applications / Reisig W.; Rozenberg G. (eds.). 1998. P. 157–198.
- 8. *Goltz U.* On Representing CCS Programs by Finite Petri Nets // Lecture Notes in Computer Science: Proc. MFCS. 1988. **324**. P. 339–350.
- 9. Слепцов А.И. Уравнения состояний и эквивалентные преобразования нагруженных сетей Петри (алгебраический подход) // Формальные модели параллельных вычислений: докл. и сообщ. Всесоюзн. конф. Новосибирск. 1988. С. 151–158.
- 10. Слепцов А.И., Юрасов А.А. Автоматизация проектирования управляющих систем гибких автоматизированных производств / Под ред. Б.Н. Малиновского. К.: Техніка, 1986. 160 с.
- 11. *Minsky M.* Size and structure of universal Turing machines using tag systems // Recursive Function Theory, Symposium in Pure Mathematics, AMS. 1962. 5. P. 229–238.
- 12. Rogozhin Y. Small universal Turing machines // Theoretical Computer Science. 1996. 168, № 2. P. 215–240.

Поступила 29.07.2010