

The Art of Entertainment

ORDER NO. ARP2471

COMPACT DISC PLAYER

PD-5501

PD-S501 HAS THE FOLLOWING:

Туре	Power Requirement	Remarks
KU	AC120V only	
KC	AC120V only	
KUXJS	AC120V only	
KCXJS	AC120V only	

- This manual is applicable to PD-S501/KU, KC, KUXJS and KCXJS types.
- For KC, KUXJS and KCXJS types, refer to page 42.

CONTENTS

1.	SAFETY INFORMATION2
2.	DISASSEMBLY3
3.	EXPLODED VIEWS, PACKING
	AND PARTS LIST4
4.	SCHEMATIC DIAGRAM11
5.	PCB CONNECTIONS DIAGRAM17
6.	PCB PARTS LIST25
7.	ADJUSTMENTS27
8.	FOR PD-S501/KC, KUXJS AND
	KCXJS TYPES42
9.	PANEL FACILITIES 43
10.	SPECIFICATIONS43

PIONEER ELECTRONIC CORPORATION 4-1, Meguro 1-Chome, Meguro-ku, Tokyo 153, Japan
PIONEER ELECTRONICS SERVICE INC. P.O. Box 1760, Long Beach, California 90801 U.S.A.
PIONEER ELECTRONICS OF CANADA, INC. 300 Allstate Parkway Markham, Ontario L3R 0P2 Canada
PIONEER ELECTRONIC [EUROPE] N.V. Haven 1087 Keetberglaan 1, 9120 Melsele, Belgium
PIONEER ELECTRONICS AUSTRALIA PTY, LTD. 178-184 Boundary Road, Braeside, Victoria 3195, Australia TEL: [03] 580-9911

© PIONEER ELECTRONIC CORPORATION 1992

SJ MAR. 1992 Printed in Japan

This service manual is intended for qualified service technicians; it is not meant for the casual do-it-yourselfer. Qualified technicians have the necessary test equipment and tools, and have been trained to properly and safely repair complex products such as those covered by this manual.

Improperly performed repairs can adversely affect the safety and reliability of the product and may void the warranty. If you are not qualified to perform the repair of this product properly and safely, you should not risk trying to do so and refer the repair to a qualified service technician.

WARNING

Lead in solder used in this product is listed by the California Health and Welfare agency as a known reproductive toxicant which may cause birth defects or other reproductive harm (California Health & Safety Code, Section 25249.5).

When servicing or handling circuit boards and other components which contain lead in solder, avoid unprotected skin contact with the solder. Also, when soldering do not inhale any smoke or fumes produced.

1. SAFETY INFORMATION

-(FOR USA MODEL ONLY)-

1. SAFETY PRECAUTIONS

The following check should be performed for the continued protection of the customer and service technician.

LEAKAGE CURRENT CHECK

Measure leakage current to a known earth ground (water pipe, conduit, etc.) by connecting a leakage current tester such as Simpson Model 229-2 or equivalent between the earth ground and all exposed metal parts of the appliance (input/output terminals, screwheads, metal overlays, control shaft, etc.). Plug the AC line cord of the appliance directly into a 120V AC 60Hz outlet and turn the AC power switch on. Any current measured must not exceed 0.5mA.

ANY MEASUREMENTS NOT WITHIN THE LIMITS OUTLINED ABOVE ARE INDICATIVE OF A POTENTIAL SHOCK HAZARD AND MUST BE CORRECTED BEFORE RETURNING THE APPLIANCE TO THE CUSTOMER.

2. PRODUCT SAFETY NOTICE

Many electrical and mechanical parts in the appliance have special safety related characteristics. These are often not evident from visual inspection nor the protection afforded by them necessarily can be obtained by using replacement components rated for voltage, wattage, etc. Replacement parts which have these special safety characteristics are identified in this Service Manual.

Electrical components having such features are identified by marking with a Δ on the schematics and on the parts list in this Service Manual.

The use of a substitute replacement component which dose not have the same safety characteristics as the PIONEER recommended replacement one, shown in the parts list in this Service Manual, may create shock, fire, or other hazards.

Product Safety is continuously under review and new instructions are issued from time to time. For the latest information, always consult the current PIONEER Service Manual. A subscription to, or additional copies of, PIONEER Service Manual may be obtained at a nominal charge from PIONEER.

DISASSEMBLY 2.

REMOVE THE TRAY PANEL AND THE TRAY LENS

Hold the tray panel with your hands as the figure shown right, and grasp the tray with your thumbs and then lift the tray panel up while pulling it toward you with the other fingers.(Figs . 1 and 2)

INSTALL THE TRAY PANEL AND THE TRAY LENS

Align the tray panel with the grooves located at both edges of the tray while holding the tray lens with you fingers, and then press it down till it stops. (Fig. 3)

Hold the tray panel and the tray as shown in Fig. 4 and slide them down till you hear a click sound while pressing strongly with your thumbs. (Figs. 4 and 5)

3. EXPLODED VIEWS, PACKING AND PARTS LIST

NOTES:

- The parts with an encircled number are generally unavailable because they are not in our Master Spare Parts List.
- The \triangle mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.
- Parts marked by "O" are not always kept in stock. Their delivery time may be longer than usual or they may be unavailable.

3.1 EXTERIOR

Parts List

Mark	No.	Description	otion Part No.		
	1	Screw	IBZ30P080FCC		
	2	Screw	BBZ30P060FCC		
	3	Screw	IBZ30P150FCC		
	4	Screw	BSZ30P070FMC		
	5	Screw	BBZ30P080FCC		
	6	Screw	IBZ30P060FCC		
	7	Screw	FBT40P080FZK		
	8	Bonnet	PYY1162		
$\stackrel{oldsymbol{\Lambda}}{oldsymbol{\Lambda}}$		AC power cord	PDG1015		
$\mathbf{\Lambda}$	10	Strain relief	CM-22C		
Δ	11	Power transformer	PTT1237		
	12	Insulator	PNW1912		
	13	Headphone knob	PAC1600		
	14		PNW2135		
	15	Function panel assembly	PEA1194		
⊙	16	Mother board assembly			
	17		PAM1544		
	18	Cord holder	RNH-184		
	19	LED lens	PNW2019		
	20	Power button	PAC1540		
	21		PAC1653		
	22	•••••			
	23		PAC1634		
	24	Screw	PPZ30P100FMC		
	25	32P F.F.C/30V	PDD1109		
	26	Tray lens	PNW1950		
	27	Screw	PDZ30P050FMC		
	51	Headphone PCB assembly			
	52	Under base	PNA1733		
	53				
	54	PCB spacer	PNY-404		
	55	Rear base	PNA1727		
	56		PWZ2278		
	57	PIONNER badge	PAM1407		
	58	Function board assembly	PWZ2277		
	59	Function panel A	PNW2130		

3.2 MECHANISM SECTION

Parts List of Mechanism section

Mark	No.	Description	Parts No.	Mark No. Description	Parts No.
	1	Lever switch (S601)	DSK1003	101	
	2	Screw(steel)	PBA1027	102 Loading base	PNW1995
	3	Rubber belt	PEB1186	103 Table bearing assembly	PXA1383
	4	Motor pulley	PNW1634	104 Servo mechanism	PXA1384
		Drive gear	PNW1996	assembly	17211004
				105 Earth lead unit (300V)	PDF1104
	6	Synchro lever	PNW2168	100 Darin lead ann (0007)	1211104
	7	Gear pulley	PNW1998	106 Motor base	DNTD1211
	8	SW head	PNW1999	107 Mechanism base	PNB1211
	9	Float base	PNW2000		PXA1385
	10	Left cam	PNW2001	assembly	737771004
				108 Mechanism chassis	PNW1604
	11	Right cam	PNW2002	109 Binder	PEC-107
	12	Compression spring	PBH1120	110 Connector assembly	PDE1130
		Tention spring	PBH1121		
		Float(rubber)	PEB1014	111 Turn table (AL)	PNR1044
		Table rubber sheet	PEB1181		
	16 '	Tray	PNW2003		
		Table guide	PNW2004		
		Lock plate	PNW2005		
		DC motor(0.75W)	PXM1010		
		Rubber bush	PEB1031		
	21	Rubber bush	PEB1170		
	22 :	Screw	BMZ26P040FMC		
	23	Screw	BPZ26P060FMC		
	24 5	Screw	BPZ26P060FMC		
	25	Screw	IPZ20P080FMC		
	26 5	Stop ring	YE20S		
	27	Turn table assembly	PEA1199	How to install the disc ta	ble
	29	Push switch	DSG1014	- How to mistain the disc ta	bie
	30 5	Spring	PBH1009	1 Use nippers or other tool to c	ut the two sections
	31 5	Spring	PBH1084		
				marked (a) in figure 1. Then	remove the spacer.
	32	Plate spring	PBK1057	2 37/1-11	
	33	Belt(square)	PEB1072	2 While supporting the spindle	
	34	Screw	PLA1003	the stopper, put spacer on top	
	35	Guide bar	PLA1071	(angled so it doesn't touch se	ction (B), and stick
	36	Pulley	PNW1066	the disc table on top (takes ab	out 9kg pressure)
				Take off the spacer.	am y ng prosomo).
	37	Half nut	PNW1605	Take our one spacer.	i
	38	Motor pulley	PNW1634	Spindle motor	
	39 5	Screw	PBZ30P080FMC		
	40]	DC motor(1.7W)	PXM1013	St	pacer
	41 5	Screw	BPZ20P080FZK	Sharris / Spirit	essure of
				01105515	oout 9kg)
	42 5	Screw	JFZ20P025FMC		◆ Disc table
	43 5	Screw	PBZ30P060FMC	55/21	
	44 5	Screw	PMZ20P030FMC		15-2 (B) 7.3mm
	45	Pick up assembly	PEA1030		3.5
	46]	DC motor assembly (With oil)	PEA1156	Spacer setting position	Motor ±0.05mm
	47	Semi-fixed VR(3.3K)	PCP1008	Spacer Spindle	
		Caution label	PRW1244	motor T	Stopper
		Disc table	PNW1067	1	
		Shaft holder			
	50	Shart Holder	PNB1382		

3.3 PACKING

Parts List

Fait	S LIS	.						
Mark	No.	Description	Part No.	_				
	1 2	Cord with plug	PDE-319					
	3	Cord with pin plug	PDE1109					
	4	Operating instructions (English)	PRB1160		es.	86.5		
	5	Remote control unit (CU-PD046)	PWW1061					
	6	Battery lid	PZN1010		l	İ		
	7	Styrol protector F	PHA1192		2	3	5	
	8	Styrol protector R	PHA1193					
	9	CD packing case	PHG1751					
	10							
	11	Sheet	Z23-007			4		
	101	Mangan battery (R03, AAA)	VEM-022					>
			8				"	7 (00)
							>	

4. SCHEMATIC DIAGRAM

4.1 WAVE FORMS

Note:The encircled numbers denote measuring points in the schematic diagram.

- *1 50T-JUMP: After switching to the pause mode, press the manual search key.
- *2 FOCUS-IN:Press the key without loading a disc.

SS VAIA

24 RESET

rs Taime)

LATCH

1C401:PI

1. RESISTORS:

Indicated in Ω , 1/4W, 1/6W, 1/8W, \pm 5% tolerance u otherwise noted k; k Ω , M; M Ω , (F); \pm 1%, (G); \pm 2%, (K); \pm (M); \pm 20% tolerance.

2. CAPACITORS:

Indicated in capacity (μ F) /voltage (V) unless otherwise rp; pF. Indication without voltage is 50V except electrocapacitor.

3. VOLTAGE CURRENT:

; DC voltage (V) at play state.

←mA; DC current at play state.

; Value in () is DC current at stop state.

4. OTHERS:

⇒; Signal route.

∅; Adjusting point.

The <u>M</u> mark found on some component parts indicates importance of the safety factor of the part. Therefore, vereplacing, be sure to use parts of identical designation. ** marked capacitors and resistors have parts numbers.

This is the basic schematic diagram, but the actual circuit vary due to improvements in design.

● IC BLOCK DIAGRAMS

1. RESISTORS:

Indicated in Ω , 1/4W, 1/6W, 1/8W, \pm 5% tolerance unless otherwise noted k; k Ω , M; M Ω , (F); \pm 1%, (G); \pm 2%, (K); \pm 10%, (M); \pm 20% tolerance.

2. CAPACITORS:

Indicated in capacity (μ F) /voltage (V) unless otherwise noted p; pF. Indication without voltage is 50V except electrolytic capacitor.

3. VOLTAGE CURRENT:

; DC voltage (V) at play state.

; Value in () is DC current at stop state.

4. OTHERS:

⇒ ; Signal route.

②; Adjusting point.

The \triangle mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.

* marked capacitors and resistors have parts numbers.

This is the basic schematic diagram, but the actual circuit may vary due to improvements in design.

В

F

5. PCB CONNECTIONS DIAGRAM

• View from component side

	•		
ζ)	
5	•	١	

С

P.C.B. pattern diagram indication	Corresponding part symbol	Pert name	P.C.B. pattern diagram indication	Corresponding part symbol	Part name
		Transistor	(>		Ceramic capacitor
	A. A.	FET	$\subset \supset$		Mylar capacitor
OKI			s()		Styrol capacitor
<u></u>	←	Diode		<u>~</u> ₩~	Electrolytic capacitor (Non polarized)
					Electrolytic capacitor (Noiseless)
q í	. (4) .	Zenner diode	€	<u></u> → ₩ → ○	Electrolytic capacitor (Polarized)
=		Zenner Gode			Electrolytic capacitor (Polarized)
-14-	<u>⊶}€</u> ⊸	LED		o—↓—○	Power capacitor
	○─ ◀ ─○	Varactor	D	·	Semi-fixed resistor
10	~ 7 ~	Tact switch	\times		Resistor array
	<u>~</u>	rage avvices			
~		inductor	~	~ ₩ ~ °	Resistor
	J V V	ingação	-		
		Coil	HOF	○ ——○	Resonator
		Transformer	0	~~~~	Thermistor
		Filter			

- This RCB, connection diagram is viewed from the parts mounted side.
 The parts which have been mounted on the board can be replaced with those shown with the corresponding wiring symbols listed in the above Table.
- adove lable.

 3. The capacitor terminal marked with _____ shows negative terminal.

 4. The diode marked with O shows cathode side.

 5. The transistor terminal marked with _____ shows emitter.

5

View from soldering side

.....

0

n

ı

3. PCB PARTS LIST

NOTES:

- Parts without part number cannot be supplied.
- Parts marked by "O" are not always kept in stock. Their delivery time may be longer than usual or they may be unavailable.
- The \triangle mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.
- When ordering resistors, first convert resistance values into code form as shown in the following examples.

Ex.1 When there are 2 effective digits (any digit apart from 0), such as 560 ohm and 47k ohm (tolerance is shown by J=5%, and K=10%)

 $560 \ \Omega$ $\rightarrow 56 \times 10^{\circ} \rightarrow 561$ RD1/4PS $\boxed{5} \ \boxed{6} \ \boxed{1} \ \boxed{J}$
 $47k \ \Omega$ $\rightarrow 47 \times 10^{\circ} \rightarrow 473$ RD1/4PS $\boxed{4} \ \boxed{7} \ \boxed{3} \ \boxed{J}$
 $0.5 \ \Omega$ $\rightarrow 0R5$ RN2H $\boxed{0} \ \boxed{R} \ \boxed{S} \ \boxed{K}$
 $1 \ \Omega$ $\rightarrow 010$ RS1P $\boxed{0} \ \boxed{1} \ \boxed{0} \ \boxed{K}$

Ex.2 When there are 3 effective digits (such as in high precision metal film resistors).

5.62k Q→562 × 10'→5621 ······ RN1/4SR [5] [6] [2] 1 F

Mark	No.	Description	Part No.	Mark	No.	Description	Part No
_IS1	OF AS	SEMBLIES		CAPA	CITORS		
)	MOTHER BO	ARD ASSEMBLY	PWM1660		C11 CERAM	IC CAPACITOR	CKCYF103Z50
					C13 CERAM	IC CAPACITOR	CKCYF103Z50
	SUB BOARD	ASSEMBLY	PWX1210			RAMIC CAPACITOR	CKCYF103Z50
		ON BOARD ASSEMBLY				R. CAPACITOR	CEAS332M16
	-SW PCB	ASSEMBLY DNE PCB ASSEMBLY				R. CAPACITOR	CEAS222M16
	ILIMPITIC	NID TOD NOOLANDET			C27 FLECTI	R. CAPACITOR	CEAS471M6R3
M	OTHER	ROARD ASSE	MBLY (PWM1660)			R. CAPACITOR	CEASIOIMIO
	O	DOAILD AGGE	MBLI (I WIN 1000)			R. CAPACITOR	CEAS471M6R3
281	CONDUCT	TORS				R. CAPACITOR	
:IAII			T40010D				CEASIOIM35
	IC20 REGUI		TA2019P		COU ELECT	R. CAPACITOR	CEAS010M50
	IC21 REGUI		NJM2930L05		0101 Pr = 0	TO CLOUDING	OD 1 0 1 1 1 1 1 2 2 2
	IC101 PRE		CXA1471S			IR. CAPACITOR	CEAS471M6R3
	IC151 SER		CXA1372S			TR. CAPACITOR	CEAS101M10
	IC201 POW	ER OP-AMP, IC	LA6520			MIC CAPACITOR	CCCCH200J50
						TR. CAPACITOR	CEAS101M10
		ER OP-AMP, IC	LA6517		C110 CERAL	MIC CAPACITOR	CKCYF103Z50
	IC301 EFM	DEMODULATION IC	CXD2500AQ				
	IC351 MIC	ROCOMPUTER, IC	PD4394A		C153 ELEC	TR. CAPACITOR	CEAS101M10
	IC401 D/A	CONVERTER, IC	PD2026A			MIC CAPACITOR	CKCYB182K50
	IC405 OP-	AMP IC	NJM4558D-D		C156 CERA	MIC CAPACITOR	CGCYX333K25
						MIC CAPACITOR	CGCYX103K25
	IC406 OP-	AMP IC	BA15218		C158, 159 (CERAMIC CAPACITOR	CGCYX104K25
	Q101 TRAN	SISTOR	2SA854S				***************************************
	Q322 TRAN	SISTOR	DTC124ES		C160 ELEC	TR. CAPACITOR	CEAS4R7M50
	Q391 TRAN		2SC1740S			MIC CAPACITOR	CGCYX104K25
		TRANSISTOR	2SD2144S			IR. CAPACITOR	CEASO10M50
	4100, 101		50521110			MIC CAPACITOR	CGCYX104K25
	Q405 TRAN	SISTOR	DTC124ES			MIC CAPACITOR	CGCYX103K25
	•	TRANSISTOR	DTA124ES		CIUT CERTIE	are on action	COCIAIOSRES
		TRANSISTOR	2SB1296		C167 CERAL	MIC CAPACITOR	CKCYF103250
	D11-14 DI		11ES2			MIC CAPACITOR	CGCYX333K25
	D52 DIODE		11ES2			MIC CAPACITOR	
	D32 DIODE		11632		C130 CERM	MIC CAPACITOR	CGCYX103K25
	D54 ZENNE	D DIODE	MTZJ18B				CKCYB332K50
					C111, 112 (CERAMIC CAPACITOR	CKCYB472K50
	D218 DIODI		1SS254		000F 0004	47.0 ALDIATOR	
	D351 DIOD		1SS254			MIC CAPACITOR	CKCYF103Z50
	D391-397 I	DIODE	1SS254			MIC CAPACITOR	CGCYX103K25
						ELECTR. CAPACITOR	CEAS330M16
IL		ORMERS				MIC CAPACITOR	CKCYB272K50
		L INDUCTOR	LAU010K		C230 CERAN	MIC CAPACITOR	CGCYX104K25
	L351 AXIA	L INDUCTOR	LAU010K				
	L391 AXIA	L INDUCTOR	LAU010K		C301 CERAN	AIC CAPACITOR	CGCYX104K25
	L395, 396	AXIAL INDUCTOR	LAU010K			TR. CAPACITOR	CEAS471M6R3

Mark No.	Description	Part No.	Mark No. Description	n Part N
C306 CERAI	MIC CAPACITOR	CKCYB152K50	Vers em	
C307 CERAI	MIC CAPACITOR	CGCYX473K25	X351 CERAMIC RESONATOR	VSS1014
C308 CERA	MIC CAPACITOR	CGCYX103K25	X401 XTAL RES (OSC) (16. 93	344MHz) PSS1008
	are canaciton	CGCIAIU3K25		
CSUO ELECT	TR. CAPACITOR	201.00	FUNCTION BOARD AS	SEMBLY
COUR ELECT	IR. CAPACITOR	CEASR47M50		CLINDLY
COST ELECT	R. CAPACITOR	CEAS471M6R3	SEMICONDUCTORS	
C353 CERAN	IIC CAPACITOR	CKCYF103Z50	DZOL ZOO DZODO	
C361 CERAM	IIC CAPACITOR	CKCYF103Z50	D701-708 DIODE	1SS254
C393 CERAM	IC CAPACITOR	CCCSL101J50	614 (1977)	
		CCC5L101350	SWITCHES	
CADS CERAM	IC CAPACITOR		S701-727 SWITCH	PSG1006
CADA CERMI	IC CAPACITOR	CCCCH120J50	S730 SWITCH	
C404 CERAM	IC CAPACITOR	CCCCH220J50		PSG1006
C413-416 F	ILM CAPACITOR	PCL1032	CAPACITORS	
C417 CERAM	IC CAPACITOR	CKCYF103Z50		
C421 FILM	CAPACITOR	PCL1032	C701-712 CERAMIC CAPACITOR	CKPUYB181K50
		1001032		
C429 430 C	ERAMIC CAPACITOR	00000000	RESISTORS	
C421 420 C	FOTO CAPACITUR	CCCCH390J50	R701 CARBONFILM RESISTOR	PR1 (07-1-
C431, 432 EI	ECTR. CAPACITOR	CEAS330M16	omeon in his his ion	RD1/6PM
C433, 434 EI	ECTR. CAPACITOR	CEAS220M25	OTHERS	
C435-438 CE	RAMIC CAPACITOR	CCCCH390J50		
C441, 442 FI	LM CAPACITOR	PCL1030	REMOTE SENSOR	SBX1610-51
,	- ordinerron	PCL1030	CN701 CONNECTOR	
C4E1 4E0 Pt	POTE CARACTEC		V701 FL INDICATOR TUBE	9603S-32F
C451, 452 EL	ECTR. CAPACITOR	CEAS4R7M50	TO THE INDICATOR TOBE	PEL1065
C461 CERAMI	C CAPACITOR	CKCYF103Z50	SW PCB ASSEMBLY	
			ON TOD ASSEMBLY	
RESISTORS			CEMICONDUCTOR	
R51-54 CARB	ONFILM RESISTOR	RD1/6PM	SEMICONDUCTORS	
R101-110 CA	RBONFILM RESISTOR	NDI/OFMJ	D751 LED	PCX1019
R153-159 CA	RBONFILM RESISTOR	RD1/6PM		CATOIS
PICO CAPPON	RESISTOR	RD1/6PM	SWITCHES	
KIOU CARBON	FILM RESISTOR	RD1/6PM	S751 SWITCH	
K185, 186 CA	RBONFILM RESISTOR	RD1/6PM	2131 2#IICH	PSG1006
			HEADBUONE DOD	
R201 CARBONE	FILM RESISTOR	PD1 /CDMCTCT	HEADPHONE PCB ASSI	EMBLY
R205, 206 CAR	BONFILM RESISTOR	RD1/6PM		
R215 216 CAE	BONFILM RESISTOR	RD1/6PM J	COILS/TRANSFORMERS	
DOIO, 210 CAN	DONLITH KE2121OK	RD1/6PM	L501-503 AXIAL INDUCTOR	
MATO CARBONE	ILM RESISTOR	RD1/6PM J	2001 000 MATAL INDUCTOR	LAU010K
R226-230 CAR	BONFILM RESISTOR	RD1/6PM	CAPACITORS	
R301-312 CAR	BONFILM RESISTOR	RD1/6PM	C501, 502 CERAMIC CAPACITOR	CKCYF103Z50
R319 CARBONF	IIM RESISTOR		C503 CERAMIC CAPACITOR	CKCYF473Z50
R355-361 CAP	BONFILM RESISTOR	RD1/6PM		CACIF473230
Page age Can	DON'T ILM KESISION	RD1/6PM	RESISTORS	
N304, 305 CAR	BONFILM RESISTOR	RD1/6PM	VR501 VARIABLE RESISTOR	
R367 CARBONF	LLM RESISTOR	RD1/6PM	THOUSE VANIABLE RESISTOR	PCS1003
		السالية ساد الم	OTHERS	
R391-397 CAR	BONFILM RESISTOR	RD1/6PM	OTHERS	
R401 CARBONF	LM RESISTOR		JA501 JACK	RKN1002
R405 CARBONF	IN RECISTOR	RD1/6PM		·*************************************
P427_420_CADE	NESISION	RD1/6PM		
N421-430 CARE	CONFILM RESISTOR	RD1/6PM		
K435-448 CARE	CONFILM RESISTOR	RD1/6PM		
R451-462 CARE	ONFILM RESISTOR	RD1/6PM□□□J		
R470, 471 CARR	ONFILM RESISTOR			
R495-498 CARR	ONFILM RESISTOR	RD1/6PM		
VR102 VR	MICIOIN MEDISION	RD1/6PM		
		RCP1046		
VR103 VR		RCP1044		
VR151, 152 VR		RCP1046		
HERS				
CN101 CONNECTO	OR .	E204F 1610		
CN351 CONNECTO	מר	52045-1610		
CHOOL CONNECT	M	HLEM32S-1		
14201 000	7 E 74TF	Thereas a a .		
JA391, 392 JAC	1/124	PKN1004		
JA391, 392 JACK JA393 JACK JA401 JACK	1/124	PKN1004 PKN1005		

7. ADJUSTMENTS

9.1. Adjustment Methods

If a disc player is adjusted incorrectly or inadequately, it may malfunction or not work at all even though there is nothing at all wrong with the pickup or the circuitry. Adjust correctly following the adjustment procedure.

Adjustment items/verification items and order

Step	Item	Test point	Adjustment location
1	Focus offset adjustment	TP1, Pin 6 (FCS. ERR)	VR103 (FCS. OFS)
2	Grating adjustment	TP1, Pin 2(TRK. ERR)	Grating adjustment slit
3	Tracking error balance adjustment	TP1, Pin 2(TRK. ERR)	VR102(TRK. BAL)
Pickup radial/tangential direction tilt adjustment		TP1, Pin 1 (RF)	Radial tilt adjustment screw, Tangential tilt adjustment screw
.5	RF level adjustment	TP1, Pin 1 (RF)	VR1 (RF level)
6	Focus servo loop gain adjustment	TP1, Pin 5 (FCS. IN) TP1, Pin 6 (FCS. ERR)	VR152(FCS. GAN)
7	7 Tracking servo loop gain adjustment TP1, Pin 3(TRK. IN) TP1, Pin 2(TRK. ERR) VR151 (TRK. GAN)		VR151 (TRK. GAN)
8	Focus error signal verification	TP1, Pin 6 (FCS. ERR)	

Abbreviation table

FCS. ERR :Focus Error
FCS. OFS :Focus Offset
TRK. ERR :Tracking Error
TRK. BAL :Tracking Balance
FCS. GAN :Focus Gain
TRK. GAN :Tracking Gain
FCS. IN :Focus In
TRK. IN :Tracking In

Measuring instruments and tools

- 1. Dual trace oscilloscope (10:1 probe)
- 2. Low-frequency oscillator
- 3. Test disc (YEDS-7)
- 4. 12-cm disc (with at least about 70 minutes recording)
- 5. Low-pass filter (39 k Ω + 0.001 μ F)
- 6. Resistor (100 k Ω)
- 7. Standard tools

• Test point and adjustment variable resistor positions

Figure 1 Adjustment Locations

Notes

- 1. Use a 10:1 probe for the oscilloscope.
- 2. All the knob positions (settings) for the oscilloscope in the adjustment procedures are for when a 10:1 probe is used.

Test mode

These models have a test mode so that the adjustments and checks required for service can be carried out easily. When these models are in test mode, the keys on the front panel work differently from normal. Adjustments and checks can be carried out by operating these keys with the correct procedure. For these models, all adjustments are carried out in test mode.

[Setting these models to test mode]

How to set this model into test mode.

- 1. Unplug the power cord from the AC socket.
- 2. Short the test mode jumper wires. (See Figure 1.)
- 3. Plug the power cord back into the AC socket.

When the test mode is set correctly, the display is different from what it usually is when the power is turned on. If the display is still the same as usual, test mode has not been set correctly, so repeat Steps 1 - 3.

[Release from test mode]

Here is the procedure for releasing the test mode:

- 1. Press the STOP key and stop all operations.
- 2. Unplug the power cord from the AC socket.

[Operations of the keys in test mode]

Code	Key name	Function in test mode	Explanation
	PROGRAM	Focus servo close	The laser diode is lit up and the focus actuator is lowered, then raised slowly and the focus servo is closed at the point where the objective lens is focused on the disc. With the player in this state, if you lightly rotate the stopped disc by hand, you can hear the sound the focus servo. If you can hear this sound, the focus servo is operating correctly. If you press this key with no disc mounted, the laser diode lights up, the focus actuator is pulled down, then the actuator is raised and lowered twice and returned to its original position.
Δ	PLAY	Spindle servo ON	Starts the spindle motor in the clockwise direction and when the disc rotation reaches the prescribed speed (about 500 rpm at the inner periphery), sets the spindle servo in a closed loop. Be careful. Pressing this key when there is no disc mounted makes the spindle motor run at the maximum speed. If the focus servo does not go correctly into a closed loop or 'the laser light shines on the mirror section at the outermost periphery of the disc, the same symptom is occurred.
00	PAUSE	Tracking servo close/open	Pressing this key when the focus servo and spindle servo are operating correctly in closed loops puts the tracking servo into a closed loop, displays the track number being played back and the elapsed time on the front panel, and outputs the playback signal. If the elapsed time is not displayed or not counted correctly or the audio is not played back correctly, it may be that the laser is shining on the section with no sound recorded at the outer edge of the disc, that something is out of adjustment, or that there is some other problem. This key is a toggle key and open/close the tracking servo alternately. This key has no effect if no disc is mounted.

Code	Key name	Function in test mode	Explanation
₩	MANUAL SEARCH REV	Carriage reverse (inwards)	Moves the pickup position toward the inner diameter of the disc. When this key is pressed with the tracking servo in a closed loop, the tracking servo automatically goes into an open loop. Since the motor does not automatically stop at the mechanical end point in test mode, be careful with this operation.
	MANUAL SEARCH FWD	Carriage forward (outwards)	Moves the pickup position toward the outer diameter of the disc. When this key is pressed with the tracking servo in a closed loop, the tracking servo automatically goes into an open loop. Since the motor does not automatically stop at the mechanical end point in test mode, be careful with this operation.
	STOP	Stop	Switches off all the servos and initialized. The pickup remains where it was when this key was pressed.
<u></u>	OPEN/CLOSE	Disc tray open/close	Open/close the disc tray. This key is a toggle key and open/close tray altenately. Pressing this key when the disc is turning stops the disc, then opens the tray. This key operation does not affect the position of the pickup.

[How to play back a disc in test mode]

PAUSE []

In test mode, since the servos operate independently, playing back a disc requires that you operate the keys in the correct order to close the servos.

Here is the key operation sequence for playing back a disc in test mode.

PROGRAM

Lights up the laser diode and closes the focus servo.

PLAY D

Starts the spindle motor and closes the spindle servo.

Closes the tracking servo.

Wait at least 2-3 seconds between each of these operations.

1. Focus Offset Adjustment

● Objective	Sets the De	Sets the DC offset for the focus error amp.				
 Symptom when out of adjustment 	The model does not focus in and the RF signal is dirty.					
Measurement instru- ment connections	Connect the oscilloscope to TP1, Pin 6 (FCS. ERR)		Player state	Test mode, stopped (just the Power switch on)		
	[Settings]	5 mV/division 10 ms/division	● Adjustment location	VR103 (FCS. OFS)		
		DC mode	• Disc	None needed		

[Procedure]

Adjust VR103 (FCS. OFS) so that the DC voltage at TP1, Pin 6 (FCS. ERR) is – 150 \pm 50 mV.

2. Grating Adjustment

● Objective	To align the tracking error ger	To align the tracking error generation laser beam spots to the optimum angle on the track.					
Symptom when out of adjustment	Play does not start, track search is impossible, tracks are skipped.						
Measurement instru- ment connections	Connect the oscilloscope to TP1, Pin 2 (TRK. ERR)via a low pass filter. (See Figure 2)	Player state Adjustment location	Test mode, focus and spindle servos closed and tracking servo open Pickup grating adjustment slit				
	[Settings] 50 mV/division 5 ms/division DC mode	● Disc	12-cm disc. (YEDS-7 can not be used.)				

[Procedure]

- 1. Move the pickup to the outer edge of the disc with the MANUAL SEARCH FWD ▷ or REV ⊲ key.
- 2. Press the PROGRAM key, then the PLAY > key in that order to close the focus servo then the spindle servo.
- Insert an ordinary screwdriver into the grating adjustment slit and adjust the grating to find the null point. For more details, see the next page.
- 4. If you slowly turn the screwdriver counterclockwise from the null point, the amplitude of the wave gradually increases, then if you continue turning the screwdriver, the amplitude of the wave becomes smaller again. Turn the screwdriver counterclockwise from the null point and set the grating to the first point where the wave amplitude reaches its maximum.

Reference: Figure 3 shows the relation between the angle of the tracking beam with the track and the waveform.

Note

: The amplitude of the tracking error signal is about 3 Vp-p (when a 39 k Ω + 0.001 μ F low pass filter is used). If this amplitude is extremely small (2 Vp-p or less), the objective lens or the pickup malfunction may be the cause. If the difference between the amplitude of the error signal at the innermost edge and outermost edge of the disc is more than 10%, the grating is not adjusted to the optimum point, so adjust it again.

5. Return the pickup to more or less midway across the disc with the MANUAL SEARCH REV << key, press the PAUSE key and double check that the track number and elapsed time are displayed on the front panel. If they are not displayed at this time or the elapsed time changes irregularly, double check the null point and adjust the grating again.

[How to find the null point]

When you insert the regular screwdriver into the slit for the grating adjustment and change the grating angle, the amplitude of the tracking error signal at TP1, Pin 2 changes. Within the range for the grating, there are five or six locations where the amplitude of the wave reaches a minimum. Of these five or six locations, there is only one at which the envelope of the waveform is smooth. This location is where the three laser beams divided by the grating are all right above the same track. (See Figure 3.)

This point is called the null point. When adjusting the grating, this null point is found and used as the reference position.

Waveform of TP1, Pin 2

Figure 3

Null point waveform

Maximum amplitude waveform

Waveform other than the null point

3. Tracking Error Balance Adjustment

Objective	To correct for the variation in the sensitivity of the tracking photodiode.					
 Symptom when out of adjustment 	Play does not start or track search is impossible.					
Measurement instru- ment connections	Connect the oscilloscope to TP1, Pin 2 (TRK. ERR). This connection may be via a low	Player state	Test mode, focus and spindle servos closed and tracking servo open			
	pass filter.	Adjustment location	VR102 (TRK. BAL)			
	[Settings] 50 mV/division 5 ms/division DC mode	a Disc	YEDS-7			
	DC mode	• Disc	TEDS-/			

- 1. Move the pickup to midway across the disc (R=35 mm) with the MANUAL SEARCH FWD $\triangleright \triangleright$ or REV $\triangleleft \triangleleft$ key.
- 2. Press the PROGRAM key, then the PLAY \triangleright key in that order to close the focus servo then the spindle servo.
- 3. Line up the bright line (ground) at the center of the oscilloscope screen and put the oscilloscope into DC mode.
- 4. Adjust VR102 (TRK. BAL) so that the positive amplitude and negative amplitude of the tracking error signal at TP1, Pin 2 (TRK. ERR) are the same (in other words, so that there is no DC component).

4. Pickup Radial/Tangential Tilt Adjustment

ObjectiveSymptom when out of adjustment	To adjust the angle of the pickup relative to the disc so that the laser beams are shone straight down into the disc for the best read out of the RF signals. Sound broken; some discs can be played but not others.				
Measurement instru- ment connections	Connect the oscilloscope to TP1, Pin 1 (RF).		Player state	Test mode, play	
	[Settings]	20 mV/division 200 ns/division AC mode	● Adjustment location	Pickup radial tilt adjustment screw and tangential tilt adjustment screw	
			● Disc	12- cm disc. (YEDS-7 can not be used.)	

[Procedure]

- 1. Press the MANUAL SEARCH FWD DD or REV deep so that the radial/tangential tilt screws can be adjusted. Press the PROGRAM key, the PLAY Deep, then the PAUSE 10 key in that order to close the focus servo then the spindle servo and put the player into play mode.
- 2. First, adjust the radial tilt adjustment screw with an Philips screwdriver so that the eye pattern (the diamond shape at the center of the RF signal) can be seen the most clearly.
- 3. Next, adjust the tangential tilt adjustment screw with an Philips screwdriver wrench so that the eye pattern (the diamond shape at the center of the RF signal) can be seen the most clearly (Figure 5).
- 4. Adjust the radial tilt adjustment screw and the tangential tilt adjustment screw again so that the eye pattern can be seen the most clearly. As necessary, adjust the two screws alternately so that the eye pattern can be seen the most clearly.

Note: Radial and tangential mean the directions relative to the disc shown in Figure 4.

Figure 5 Eye pattern

5. RF Level Adjustment

● Objective	To optimiz	To optimize the playback RF signal amplitude				
 Symptom when out of adjustment 	No play or	no search				
Measurement instru- ment connections	Connect th	e oscilloscope to (RF).	Player state	Test mode, play		
	[Settings]	50 mV/division 10 ms/division	● Adjustment location	VRI(laser power)		
		AC mode	Disc	YEDS-7		

- 1. Move the pickup to midway across the disc (R=35 mm) with the MANUAL SEARCH FWD ▷▷ or REV ⊲⊲ key, then press the PROGRAM key, then the PLAY ▷ key in that order to close the respective servos and put the player into play mode.
- 2. Adjust VR1 (laser power) so that the RF signal amplitude is 1.2 Vp-p \pm 0.1 V.

6. Focus Servo Loop Gain Adjustment

ObjectiveSymptom when out of	To optimize the focus servo loop gain. Playback does not start or focus actuator noisy.					
adjustment						
Measurement instru- ment connections	See figure 6. [Settings]	Player state	Test mode, play			
	CH1 CH2 20 mV/division 5 mV/division	● Adjustment location	VR152 (FCS. GAN)			
	X-Y mode	• Disc	YEDS-7			

- 1. Set the AF generator output to 1.2 kHz and 1 Vp-p.
- 2. Press the MANUAL SEARCH FWD ▷▷ or REV ▷ key to move the pickup to halfway across the disc (R=35 mm), then press the PROGRAM key, the PLAY ▷ key, then the PAUSE □ key in that order to close the corresponding servos and put the player into play mode.
- 3. Adjust VR152 (FCS. GAN) so that the Lissajous waveform is symmetrical about the X axis and the Y axis.

Focus Gain Adjustment

Optimum gain

Lower gain

7. Tracking Serve Loop Gain Adjustment

Objective	To optimize the tracking servo loop gain.					
Symptom when out of adjustment	Playback does not start, during searches the actuator is noisy, or tracks are skipped.					
Measurement instru- ment connections	See Figure 7. [Settings] CH1 CH2 50 mV/division 5 mV/division	Player state Adjustment location	Test mode, play VR151 (TRK. GAN)			
	X-Y mode	● Disc	YEDS-7			

- 1. Set the AF generator output to 1.2 kHz and 2 Vp-p.
- 2. Press the MANUAL SEARCH FWD DD or REV A key to move the pickup to halfway across the disc (R=35 mm), then press the PROGRAM key, the PLAY DD key, then the PAUSE key in that order to close the corresponding servos and put the player into play mode.
- 3. Adjust VR151 (TRK. GAN) so that the Lissajous waveform is symmetrical about the X axis and the Y axis.

Tracking Gain Adjustment

Optimum gain

Lower gain

8. Focus Error Signal (Focus S Curve) Verification

● Objective	judged from	To judge whether the pickup is ok or not by observing the focus error signal. The pickup is judged from the amplitude of the tracking error signal (as discussed in the section on adjusting the tracking error balance) and the waveform for the focus error signal.					
Symptom when out of adjustment							
Measurement instru- ment connections		e oscilloscope to (FCS. ERR).	Player state	Test mode, stop			
	[Settings]	100 mV/division	Adjustment location	None			
	5 ms/divis		● Disc	YEDS-7			

[Procedure]

- 1. Connect TP1 Pin 5 to ground.
- 2. Mount the disc.
- 3. While watching the oscilloscope screen, press the PROGRAM key and observe the waveform in Figure 8 for a moment. Verify that the amplitude is at least 2.5 Vp p and that the positive and negative amplitude are about equal. Since the waveform is only output for a moment when the PROGRAM key is pressed, press this key over and over until you have checked the waveform.

[Judging the pickup]

Do not judge the pickup until all the adjustments have been made correctly. In the following cases, there may be something wrong with the pickup.

- 1. The tracking error signal amplitude is extremely small (less than 2 Vp-p).
- 2. The focus error signal amplitude is extremely small (less than 2.5 Vp-p).
- 3. The positive and negative amplitudes of the focus error signal are extremely asymmetrical (2:1 ratio or more).
- 4. The RF signal is too small (less than 0.8 Vp-p) and even if VR1 (laser power) is adjusted, the RF signal can not be brought up to the standard level.

8. FOR PS-S501/KC, KUXJS AND KCXJS TYPES

NOTES:

- Parts without part number cannot be supplied.
- The \triangle mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.
- Parts marked by " @ " are not always kept in stock. Their delivery time may be longer than usual or they may be unavailable.

PD-S501/KC, KUXJS, KCXJS and PD-S501/KU have the same construction except for the following:

Mark	Symbol & Description	Part No.				
		PD-S501/ KU type	PD-S501/ KC type	PD-S501/ KUXJS type	PD-S501/ KCXJS type	Remarks
	CD packing case Operating instructions (English) Operating instructions (English/German)	PHG1751 PRB1160	PHG1823 PRE1154	PHG1766 PRB1160	PHG1826 PRE1154	

9. PANEL FACILITIES

FRONT PANEL

- 1 POWER STANDBY/ON switch and STANDBY indicator
- Remote sensor
 Receives the signal from the remote control unit.
- ③ Disc tray
- **4** RANDOM PLAY button
- **⑤ HI-LITE SCAN button**
- **© PEAK SEARCH button**
- **7** TIME button
- **® PROGRAM button**
- CHECK button
- **(10)** CLEAR button
- 1 Track number/Digit buttons (1 10, >10)
- 12 REPEAT button
- **(3) COMPU/AUTO EDIT button**
- (4) OPEN/CLOSE button (△)
- (15) Manual search buttons (◄◄/▶►)
- ® Stop button (■)
- 17 Pause button (II)
- (®) Play button (►)
- (19) Track search buttons (1←4/▶►)
- (PHONES)
- (PHONES LEVEL)

10. SPECIFICATIONS

1. General	
Туре	Compact disc digital audio system
Power requirements	
European model	AC 220 - 240 V, 50/60 Hz
U.K. and Australian models .	AC 220 - 240 V, 60 Hz
U.S. and Canadian models	AC 120 V, 60Hz
	110 - 127/220 - 240 V (Switchable),
	50/60 Hz
Power consumption	
U.S. and Canadian models	14 W
Other models	16 W
	+5°C - +35°C
	+41°F - +95°F
Weight	3.8 kg (8 lb, 6 oz)
External dimensions	420(W) X 276(D) X 110(H) mm
	6-9/16(W) X 10-7/8(D) X 4-5/16(H) in

2. Audio section

Frequency response	2 Hz - 20 kHz
	104 dB or more (EIAJ)
Dynamic range	96 dB or more (EIAJ)
Harmonic distortion	0.003% or less (EIAJ)
Output voltage	2.0 V
	Limit of measurement
	(±0.001% W.PEAK) or less (EIAJ)
Channels	2-channel (stereo)

3. Output terminal

Audio line output jacks

Control input/output jacks (available with U.S. and Canadian models: Not available with models for military zones (multi-voltage types)) CD-DECK SYNCHRO jack

Headphone jack (with volume control)

4. Accessories

4. Accessories	
Remote control unit	1
Size AAA/R03/dry batteries	2
 Control cord (provided with U.S. and Canadian models: 	
Not available with models for military zones	
(multi-voltage types))	1
Output cable	
Operating instructions	1

NOTE

Specifications and design subject to possible modification without notice, due to improvements.