- 17. (12 分) 已知 a, b, c 分别为 $\triangle ABC$ 的内角 A, B, C 的对边, $\sin^2 B = 2\sin A\sin C$.
 - (I) 若 a = b, 求 $\cos B$:
 - (II) 设 $B = 90^{\circ}$, 且 $a = \sqrt{2}$, 求 $\triangle ABC$ 的面积.
- 18. (12分)

如图, 四边形 ABCD 为菱形, G 为 AC 与 BD 的 交点, $BE \perp \text{ $ \Psi $ a $ BCD $ }.$

- (I)证明: 平面 AEC ⊥ 平面 BED:
- (II) 若 $\angle ABC = 120^\circ$, $AE \perp EC$, 三棱锥 E-ACD 的体积为 $\frac{\sqrt{6}}{3}$, 求该三棱锥的侧面积.

19. (12 分) 某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费 x (单位:千元) 对年销售量 y (单位: t) 和年利润 z (单位:千元) 的影响,对近 8 年的年宣传费 x_i 和年销售量 y_i ($i=1,2,\cdots,8$) 数据作了初步处理,得到下面的散点图及一些统计量的值:

			8	8	8	n
\overline{x}	\overline{y}	\overline{w}	$\sum (x_i - \overline{x})^2$	$\sum (w_i - \overline{w})^2$	$\sum (x_i - \overline{x})(y_i - \overline{y})$	$\sum (w_i - \overline{w})(y_i - \overline{y})$
			i=1	i=1	i=1	i=1
46.6	563	6.8	289.8	1.6	1469	108.8

表中 $w_i = \sqrt{x_i}$, $\overline{w} = \frac{1}{8} \sum_{i=1}^8 w_i$.

- (I) 根据散点图判断 y = a + bx 和 $y = c + d\sqrt{x}$ 哪一个适宜作为年销售量 y 关于年宣传费 x 的回归方程类型(给出判断即可,不必说明理由);
- (II) 根据(I)的判断结果及表中数据,建立y关于x的回归方程;
- (III) 已知这种产品的年利润 z 与 x、y 的关系为 z=0.2y-x,根据(II)的结果回答下列问题:
 - (i) 年宣传费 x = 49 时,年销售量及年利润的预报值是多少?
 - (ii) 年宣传费 x 为何值时, 年利润的预报值最大?

附: 对于一组数据 $(u_1, v_1), (u_2, v_2), \cdots, (u_n, v_n)$, 其回归直线 $v = \alpha + \beta u$ 的斜率和截距的最小二乘估计公式为:

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (u_i - \bar{u})(v_i - \bar{v})}{\sum_{i=1}^{n} (u_i - \bar{u})^2}, \ \hat{\alpha} = \bar{v} - \hat{\beta}\bar{u}.$$

20. (12分)

已知过点 A(0,1) 且斜率为 k 的直线 l 与圆 $C: (x-2)^2 + (y-3)^2 = 1$ 交于 M ,N 两点.

- (I) 求 *k* 的取值范围;
- (II) 若 $\overrightarrow{OM} \cdot \overrightarrow{ON} = 12$, 其中 O 为坐标原点,求 |MN|.
- 21. (12分)

设函数 $f(x) = e^{2x} - a \ln x$.

- (I) 讨论 f(x) 的导函数 f'(x) 零点的个数;
- (II) 证明: 当 a > 0 时, $f(x) \ge 2a + a \ln \frac{2}{a}$.
- (二)选考题: 共 10 分。请考生在第 $22 \times 23 \times 24$ 三题中任选一题作答,如果多做,则按所做的第一题计分。
- 22. (10 分) 选修 4-1: 几何证明选讲

如图, AB 是 $\odot O$ 的直径, AC 是 $\odot O$ 的切线, BC 交 $\odot O$ 于点 E.

- (I) 若 D 为 AC 的中点,证明: DE 是 $\odot O$ 的切线;
- (II) 若 $OA = \sqrt{3}CE$,求 $\angle ACB$ 的大小.

23. (10 分) 选修 4-4: 坐标系与参数方程

在直角坐标系 xOy 中,直线 $C_1: x=-2$,圆 $C_2: (x-1)^2+(y-2)^2=1$,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.

- (I) 求 C_1 , C_2 的极坐标方程;
- (II) 若直线 C_3 的极坐标方程为 $\theta = \frac{\pi}{4} (\rho \in \mathbf{R})$,设 C_2 与 C_3 的交点为 M, N,求 $\triangle C_2 M N$ 的面积.
- 24. (10 分) 选修 4-5: 不等式选讲

己知 f(x) = |x+1| - 2|x-a|, a > 0.

- (I) 当 a = 1 时,求不等式 f(x) > 1 的解集;
- (II) 若 f(x) 的图像与 x 轴围成的三角形面积大于 6,求 a 的取值范围.