SC223 - Linear Algebra

Aditya Tatu

Lecture 36

November 7, 2023

Summary of Lecture 35

- Projection Operator: $T \in \mathcal{L}(V)$ where $V = U \oplus W$, is a projection on subspace U if $\forall v \in V, v = u + w, u \in U, w \in W, T(v) = u$.
- A projection operator:
- ▶ is Idempotent,
- ▶ is Diagonalizable,
- ▶ has eigenvalues 0 and 1.
- ullet Any operator $T \in \mathcal{L}(V)$ such that $T^2 = T$ is a projection operator.

• How do we measure length and angles between vectors in a Vector space?

- How do we measure length and angles between vectors in a Vector space?
- Typically, length of a vector in \mathbb{R}^2 is defined as $||(x,y)|| = \sqrt{x^2 + y^2}$.

- How do we measure length and angles between vectors in a Vector space?
- Typically, length of a vector in \mathbb{R}^2 is defined as $||(x,y)|| = \sqrt{x^2 + y^2}$.
- This is called the *Euclidean length* or *Euclidean norm* of the vector (x, y).

- How do we measure length and angles between vectors in a Vector space?
- Typically, length of a vector in \mathbb{R}^2 is defined as $||(x,y)|| = \sqrt{x^2 + y^2}$.
- This is called the *Euclidean length* or *Euclidean norm* of the vector (x, y).
- Is this the only way to define length?

- How do we measure length and angles between vectors in a Vector space?
- Typically, length of a vector in \mathbb{R}^2 is defined as $||(x,y)|| = \sqrt{x^2 + y^2}$.
- This is called the *Euclidean length* or *Euclidean norm* of the vector (x, y).
- Is this the only way to define length?
- What are the necessary conditions for a function on vector space for it be called *length*?

● Definition: (Normed Vector Space) A normed vector space (NVS) is a vector space $(V,+,\cdot)$ over either $\mathbb R$ or $\mathbb C$ with a **norm**, a function $||\cdot||:V\to\mathbb R$ which satisfies the following properties:

- **Definition:** (Normed Vector Space) A normed vector space (NVS) is a vector space $(V,+,\cdot)$ over either $\mathbb R$ or $\mathbb C$ with a **norm**, a function $||\cdot||:V\to\mathbb R$ which satisfies the following properties:
 - 1. Positive definiteness: $||x|| \ge 0, \forall x \in V$ and $||x|| = 0 \Leftrightarrow x = \theta$.

- **Definition:** (Normed Vector Space) A normed vector space (NVS) is a vector space $(V,+,\cdot)$ over either $\mathbb R$ or $\mathbb C$ with a **norm**, a function $||\cdot||:V\to\mathbb R$ which satisfies the following properties:
 - 1. Positive definiteness: $||x|| \ge 0, \forall x \in V \text{ and } ||x|| = 0 \Leftrightarrow x = \theta.$
 - 2. Absolute homogeneity: $\forall x \in V, \forall a \in \mathbb{F}, ||a \cdot x|| = |a| ||x|| ||$

- **Definition:** (Normed Vector Space) A normed vector space (NVS) is a vector space $(V,+,\cdot)$ over either $\mathbb R$ or $\mathbb C$ with a **norm**, a function $||\cdot||:V\to\mathbb R$ which satisfies the following properties:
 - 1. Positive definiteness: $||x|| \ge 0, \forall x \in V$ and $||x|| = 0 \Leftrightarrow x = \theta$.
 - 2. Absolute homogeneity: $\forall x \in V, \forall a \in \mathbb{F}, ||a \cdot x|| = |a| ||x||$.
 - 3. Triangular inequality: $\forall x, y \in V, ||x + y|| \le ||x|| + ||y||$.

- **Definition:** (Normed Vector Space) A normed vector space (NVS) is a vector space $(V, +, \cdot)$ over either $\mathbb R$ or $\mathbb C$ with a **norm**, a function $||\cdot||: V \to \mathbb R$ which satisfies the following properties: ______
 - 1. Positive definiteness: $||x|| \ge 0, \forall x \in V$ and $||x|| = 0 \Leftrightarrow x = \theta$.
 - 2. Absolute homogeneity: $\forall x \in V, \forall a \in \mathbb{F}, ||a \cdot x|| = |a| ||x||$.
 - 3. Triangular inequality: $\forall x, y \in V, ||x + y|| \le ||x|| + ||y||$.
- A vector space V with a valid norm $||\cdot||$ is called a **Normed vector space** and is denoted by $(V,||\cdot||)$.

- **Definition:** (Normed Vector Space) A normed vector space (NVS) is a vector space $(V, +, \cdot)$ over either $\mathbb R$ or $\mathbb C$ with a **norm**, a function $||\cdot||: V \to \mathbb R$ which satisfies the following properties:
 - 1. Positive definiteness: $||x|| \ge 0, \forall x \in V \text{ and } ||x|| = 0 \Leftrightarrow x = \theta.$
 - 2. Absolute homogeneity: $\forall x \in V, \forall a \in \mathbb{F}, ||a \cdot x|| = |a| ||x||$.
 - 3. Triangular inequality: $\forall x, y \in V, ||x + y|| \le ||x|| + ||y||$.
- A vector space V with a valid norm $||\cdot||$ is called a **Normed vector** space and is denoted by $(V, ||\cdot||)$.
- Also note that given a NVS $(V, ||\cdot||)$, we can define distance between two vectors x and y as d(x, y) := ||x y||. Such a distance or metric is called the **induced metric**.

Examples of NVS

• 1-norm on \mathbb{R}^n : $||x|| = \sum_{i=1}^n |x_i|$. This is denoted by $||x||_1$.

- Let
$$x=0=(0,--,0)$$
 $||o||=20=0$.
Let $x\in\mathbb{R}^n$ st $||x||=2|x|=0$

O Triangular Inequality

(et $x, y \in \mathbb{R}^n$ $||x+y|| = \sum_{i=1}^n |x_i^* + y_i^*| \leq \sum_{i=1}^n ||x_i|| + ||y_i||$ $\leq \sum_{i=1}^n |x_i| + \sum_{i=1}^n |y_i^*| = ||x_i|| + ||y||.$

Examples of NVS

- 1-norm on \mathbb{R}^n : $||x|| = \sum_{i=1}^n |x_i|$. This is denoted by $||x||_1$.
- $lackbox{ max or the sup norm on } \mathbb{R}^n$: $||x|| = \max_{i=1}^n \{|x_i|\}$. This is denoted by $||x||_{\sup}$ or $||x||_{\max}$.

Triangular Ineq.

$$max \{|x_i|\} + max \{|x_i|\} + max \{|y_i|\}$$
 $|x_i| \neq |x_i| \leq |x_i| + |y_i|$
 $max |x_i| \neq |x_i| \leq max \{|x_i| + |y_i|\}$
 $\leq max \{|x_i|\} + max \{|y_i|\}$

Examples of NVS

- 1-norm on \mathbb{R}^n : $||x|| = \sum_{i=1}^n |x_i|$. This is denoted by $||x||_1$.
- max or the sup norm on \mathbb{R}^n : $||x|| = \max_{i=1}^n \{|x_i|\}$. This is denoted by $||x||_{\sup}$ or $||x||_{\max}$.
- L_2 norm on $\mathcal{P}_n([-1,1])$: $||x||_{L_2} = \sqrt{\int_{-1}^1 (x(t))^2 dt}$.

$$||f||_{1} = \int |f(u)| du$$

$$-1$$

$$||f||_{\infty} = \sup_{x \in [-1, 1]} \{|f(u)|\}$$

— END OF CLASS

- **Definition:** (Inner Product) Given a vector space $(V, +, \cdot)$ over \mathbb{F} (either \mathbb{R} or \mathbb{C}), an **inner product** is any mapping $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$ such that it satisfies the following properties:
 - 1. Positive definite: $\forall x \in V, \langle x, x \rangle \ge 0, = 0 \Leftrightarrow x = \theta$.

- **Definition:** (Inner Product) Given a vector space $(V, +, \cdot)$ over \mathbb{F} (either \mathbb{R} or \mathbb{C}), an **inner product** is any mapping $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$ such that it satisfies the following properties:
 - 1. Positive definite: $\forall x \in V, \langle x, x \rangle \ge 0, = 0 \Leftrightarrow x = \theta$.
 - 2. Linear in first argument:

$$\forall x, y, z \in V, \forall a, b \in \mathbb{F}, \langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$$

- **Definition:** (Inner Product) Given a vector space $(V, +, \cdot)$ over \mathbb{F} (either \mathbb{R} or \mathbb{C}), an **inner product** is any mapping $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$ such that it satisfies the following properties:
 - 1. Positive definite: $\forall x \in V, \langle x, x \rangle \ge 0, = 0 \Leftrightarrow x = \theta$.
 - 2. Linear in first argument: $\forall x, y, z \in V, \forall a, b \in \mathbb{F}, \langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$
 - 3. Conjugate symmetry: $\langle y, x \rangle = \overline{\langle x, y \rangle}$

- **Definition:** (Inner Product) Given a vector space $(V, +, \cdot)$ over \mathbb{F} (either \mathbb{R} or \mathbb{C}), an **inner product** is any mapping $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$ such that it satisfies the following properties:
 - 1. Positive definite: $\forall x \in V, \langle x, x \rangle \ge 0, = 0 \Leftrightarrow x = \theta$.
 - 2. Linear in first argument: $\forall x, y, z \in V, \forall a, b \in \mathbb{F}, \langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$
 - 3. Conjugate symmetry: $\langle y, x \rangle = \overline{\langle x, y \rangle}$
- ullet **Definition:** (Inner Product Space) A vector space V with an inner product is called an **Inner Product space**(IPS) and is denoted by $(V,\langle\cdot,\cdot\rangle)$.

• \mathbb{R}^n : Euclidean inner product - $x, y \in \mathbb{R}^n$, $\langle x, y \rangle = \sum_{i=1}^n x_i y_i = x^T y$, where x and y are written as column vectors.

- \mathbb{R}^n : Euclidean inner product $x, y \in \mathbb{R}^n$, $\langle x, y \rangle = \sum_{i=1}^n x_i y_i = x^T y$, where x and y are written as column vectors.
- \mathbb{C}^n : Euclidean inner product $x, y \in \mathbb{C}^n$, $\langle x, y \rangle = \sum_{i=1}^n x_i \overline{y_i} = y^* x$, where x and y are written as column vectors, and y^* denotes the conjugate transpose of y.

- \mathbb{R}^n : Euclidean inner product $x, y \in \mathbb{R}^n$, $\langle x, y \rangle = \sum_{i=1}^n x_i y_i = x^T y$, where x and y are written as column vectors.
- \mathbb{C}^n : Euclidean inner product $x, y \in \mathbb{C}^n$, $\langle x, y \rangle = \sum_{i=1}^n x_i \overline{y_i} = y^* x$, where x and y are written as column vectors, and y^* denotes the conjugate transpose of y.
- $\mathcal{P}_n([0,1])$: L_2 inner product $\forall p, q \in \mathcal{P}_n([0,1]), \langle p, q \rangle = \int_0^1 p(t)q(t) dt$.

- \mathbb{R}^n : Euclidean inner product $x, y \in \mathbb{R}^n$, $\langle x, y \rangle = \sum_{i=1}^n x_i y_i = x^T y$, where x and y are written as column vectors.
- \mathbb{C}^n : Euclidean inner product $x, y \in \mathbb{C}^n$, $\langle x, y \rangle = \sum_{i=1}^n x_i \overline{y_i} = y^* x$, where x and y are written as column vectors, and y^* denotes the conjugate transpose of y.
- $\mathcal{P}_n([0,1])$: L_2 inner product -

 $\forall p, q \in \mathcal{P}_n([0,1]), \langle p, q \rangle = \int_0^1 p(t)q(t) dt.$

• Let $G \in \mathbb{R}^{n \times n}$ be such that $G = G^T$, and $x^T G x > 0, \forall x \in \mathbb{R}^n, \neq \mathbf{0_n}$. Such a matrix G is said to be *Symmetric Positive-Definite* (SPD). Then, on \mathbb{R}^n , $\forall x, y \in \mathbb{R}^n, \langle x, y \rangle = x^T G y$ is a valid inner product.

ullet Given an IPS $(V,\langle\cdot,\cdot\rangle), \forall x\in V, ||x||=\sqrt{\langle x,x\rangle}$ is a valid norm, called the **induced norm**.

- Given an IPS $(V, \langle \cdot, \cdot \rangle)$, $\forall x \in V, ||x|| = \sqrt{\langle x, x \rangle}$ is a valid norm, called the **induced norm**.
- Given an IPS $(V, \langle \cdot, \cdot \rangle)$, two vectors $x, y \in V$ are said to be **orthogonal** if $\langle x, y \rangle = 0$

- Given an IPS $(V, \langle \cdot, \cdot \rangle), \forall x \in V, ||x|| = \sqrt{\langle x, x \rangle}$ is a valid norm, called the **induced norm**.
- Given an IPS $(V, \langle \cdot, \cdot \rangle)$, two vectors $x, y \in V$ are said to be **orthogonal** if $\langle x, y \rangle = 0$, and are said to be **orthonormal** if $\langle x, y \rangle = 0, ||x|| = ||y|| = 1$.

- Given an IPS $(V, \langle \cdot, \cdot \rangle), \forall x \in V, ||x|| = \sqrt{\langle x, x \rangle}$ is a valid norm, called the **induced norm**.
- Given an IPS $(V, \langle \cdot, \cdot \rangle)$, two vectors $x, y \in V$ are said to be **orthogonal** if $\langle x, y \rangle = 0$, and are said to be **orthonormal** if $\langle x, y \rangle = 0, ||x|| = ||y|| = 1$.
- A set of vectors $\{v_1, \ldots, v_n\}$ is said to be **orthogonal** if $\langle v_i, v_j \rangle = 0, \forall i \neq j$

- Given an IPS $(V, \langle \cdot, \cdot \rangle), \forall x \in V, ||x|| = \sqrt{\langle x, x \rangle}$ is a valid norm, called the **induced norm**.
- Given an IPS $(V, \langle \cdot, \cdot \rangle)$, two vectors $x, y \in V$ are said to be **orthogonal** if $\langle x, y \rangle = 0$, and are said to be **orthonormal** if $\langle x, y \rangle = 0, ||x|| = ||y|| = 1$.
- A set of vectors $\{v_1, \ldots, v_n\}$ is said to be **orthogonal** if $\langle v_i, v_j \rangle = 0, \forall i \neq j$, and is said to be **orthonormal** if $\langle v_i, v_j \rangle = 0, \forall i \neq j$, $||v_i|| = 1, \forall i$.

- Given an IPS $(V, \langle \cdot, \cdot \rangle), \forall x \in V, ||x|| = \sqrt{\langle x, x \rangle}$ is a valid norm, called the **induced norm**.
- Given an IPS $(V, \langle \cdot, \cdot \rangle)$, two vectors $x, y \in V$ are said to be **orthogonal** if $\langle x, y \rangle = 0$, and are said to be **orthonormal** if $\langle x, y \rangle = 0, ||x|| = ||y|| = 1$.
- A set of vectors $\{v_1, \ldots, v_n\}$ is said to be **orthogonal** if $\langle v_i, v_j \rangle = 0, \forall i \neq j$, and is said to be **orthonormal** if $\langle v_i, v_j \rangle = 0, \forall i \neq j$, $||v_i|| = 1, \forall i$.
- A set of orthonormal vectors that also forms a basis of the given vector space is called an **Orthonormal basis**.

- Given an IPS $(V, \langle \cdot, \cdot \rangle), \forall x \in V, ||x|| = \sqrt{\langle x, x \rangle}$ is a valid norm, called the **induced norm**.
- Given an IPS $(V, \langle \cdot, \cdot \rangle)$, two vectors $x, y \in V$ are said to be **orthogonal** if $\langle x, y \rangle = 0$, and are said to be **orthonormal** if $\langle x, y \rangle = 0, ||x|| = ||y|| = 1$.
- A set of vectors $\{v_1, \ldots, v_n\}$ is said to be **orthogonal** if $\langle v_i, v_j \rangle = 0, \forall i \neq j$, and is said to be **orthonormal** if $\langle v_i, v_j \rangle = 0, \forall i \neq j$, $||v_i|| = 1, \forall i$.
- A set of orthonormal vectors that also forms a basis of the given vector space is called an **Orthonormal basis**.
- A matrix $A \in \mathbb{R}^{n \times n}$ or $\mathbb{C}^{n \times n}$ is said to be an **orthogonal matrix** if all its n columns are orthonormal, i.e., $A^*A = I$, where A^* denotes the conjugate transpose of A. In this case, $A^{-1} = A^*$.

Proposition 22 (Pythagoras Theorem): In an IPS $(V, \langle \cdot, \cdot \rangle)$, if $\langle x, y \rangle = 0$, $||x + y||^2 = ||x||^2 + ||y||^2$.

- **Proposition 22** (Pythagoras Theorem): In an IPS $(V, \langle \cdot, \cdot \rangle)$, if $\langle x, y \rangle = 0$, $||x + y||^2 = ||x||^2 + ||y||^2$.
- **Orthogonal Decomposition:** Let $x, y \neq \theta \in V$. Find $w \in V$ such that $x = a \cdot y + w$, with $a \in \mathbb{F}, \langle w, y \rangle = 0$.

- **Proposition 22** (Pythagoras Theorem): In an IPS $(V, \langle \cdot, \cdot \rangle)$, if $\langle x, y \rangle = 0$, $||x + y||^2 = ||x||^2 + ||y||^2$.
- **Orthogonal Decomposition:** Let $x,y \neq \theta \in V$. Find $w \in V$ such that $x = a \cdot y + w$, with $a \in \mathbb{F}, \langle w, y \rangle = 0$.

$$\begin{split} \langle w,y \rangle &= 0 \\ \langle x - a \cdot y, y \rangle &= \langle x,y \rangle - a \langle y,y \rangle = 0 \\ a &= \frac{\langle x,y \rangle}{\langle y,y \rangle} \\ \text{Thus, } x &= \frac{\langle x,y \rangle}{\langle y,y \rangle} \cdot y + \left(x - \frac{\langle x,y \rangle}{\langle y,y \rangle} \cdot y \right) \end{split}$$

 \bullet **Proposition 23** (Cauchy-Schwartz inequality): In an IPS $(V,\langle\cdot,\cdot\rangle)$, $|\langle x,y\rangle|\leq ||x||\ ||y||.$

Properties

- **Proposition 23** (Cauchy-Schwartz inequality): In an IPS $(V, \langle \cdot, \cdot \rangle)$, $|\langle x, y \rangle| \leq ||x|| \ ||y||$.
- Proof: If $x = \theta$, or $y = \theta$, both sides are equal to zero. So let us assume $x, y \neq \theta$.

Properties

- Proposition 23 (Cauchy-Schwartz inequality): In an IPS $(V, \langle \cdot, \cdot \rangle)$, $|\langle x, y \rangle| \leq ||x|| \ ||y||$.
- ullet Proof: If $x=\theta$, or $y=\theta$, both sides are equal to zero. So let us assume $x,y\neq\theta$.
- From previous proposition,

$$x = \frac{\langle x, y \rangle}{\langle y, y \rangle} \cdot y + \left(x - \frac{\langle x, y \rangle}{\langle y, y \rangle} \cdot y \right) = \frac{\langle x, y \rangle}{\langle y, y \rangle} \cdot y + w, \text{ with } w \perp y.$$

Properties

- Proposition 23 (Cauchy-Schwartz inequality): In an IPS $(V, \langle \cdot, \cdot \rangle)$, $|\langle x, y \rangle| \leq ||x|| \ ||y||$.
- ullet Proof: If $x=\theta$, or $y=\theta$, both sides are equal to zero. So let us assume $x,y\neq\theta$.
- From previous proposition,

$$x = \frac{\langle x, y \rangle}{\langle y, y \rangle} \cdot y + \left(x - \frac{\langle x, y \rangle}{\langle y, y \rangle} \cdot y \right) = \frac{\langle x, y \rangle}{\langle y, y \rangle} \cdot y + w, \text{ with } w \perp y.$$

Proposition 24 (Gram-Schmidt Procedure): Let $\{v_1,\ldots,v_m\}$ be a list of linearly independent vectors. Then there exists a list of orthonormal vectors $\{e_1,\ldots,e_m\}$ such that $span(\{v_1,\ldots,v_j\})=span(\{e_1,\ldots,e_j\}), \forall j=1,\ldots,m$.

- **Proposition 24** (Gram-Schmidt Procedure): Let $\{v_1,\ldots,v_m\}$ be a list of linearly independent vectors. Then there exists a list of orthonormal vectors $\{e_1,\ldots,e_m\}$ such that $span(\{v_1,\ldots,v_j\})=span(\{e_1,\ldots,e_j\}), \forall j=1,\ldots,m.$
- Let $e_1 = \frac{v_1}{||v_1||}$. Define $e_2 = \frac{v_2 \langle v_2, e_1 \rangle e_1}{||v_2 \langle v_2, e_1 \rangle e_1||}$.

- **Proposition 24** (Gram-Schmidt Procedure): Let $\{v_1, \ldots, v_m\}$ be a list of linearly independent vectors. Then there exists a list of orthonormal vectors $\{e_1, \ldots, e_m\}$ such that $span(\{v_1, \ldots, v_j\}) = span(\{e_1, \ldots, e_j\}), \forall j = 1, \ldots, m$.
- Let $e_1 = \frac{v_1}{||v_1||}$. Define $e_2 = \frac{v_2 \langle v_2, e_1 \rangle e_1}{||v_2 \langle v_2, e_1 \rangle e_1||}$.
- Similarly, $e_3 = \frac{v_3 (\langle v_3, e_1 \rangle e_1 + \langle v_3, e_2 \rangle e_2)}{||v_3 (\langle v_3, e_1 \rangle e_1 + \langle v_3, e_2 \rangle e_2)||}$, and $e_k = \frac{v_k \sum_{i=1}^{k-1} \langle v_k, e_i \rangle e_i}{||v_k \sum_{i=1}^{k-1} \langle v_k, e_i \rangle e_i||}$.

- **Proposition 24** (Gram-Schmidt Procedure): Let $\{v_1, \ldots, v_m\}$ be a list of linearly independent vectors. Then there exists a list of orthonormal vectors $\{e_1, \ldots, e_m\}$ such that $span(\{v_1, \ldots, v_j\}) = span(\{e_1, \ldots, e_j\}), \forall j = 1, \ldots, m$.
- Let $e_1 = \frac{v_1}{||v_1||}$. Define $e_2 = \frac{v_2 \langle v_2, e_1 \rangle e_1}{||v_2 \langle v_2, e_1 \rangle e_1||}$.
- Similarly, $e_3 = \frac{v_3 (\langle v_3, e_1 \rangle e_1 + \langle v_3, e_2 \rangle e_2)}{||v_3 (\langle v_3, e_1 \rangle e_1 + \langle v_3, e_2 \rangle e_2)||}$, and $e_k = \frac{v_k \sum_{i=1}^{k-1} \langle v_k, e_i \rangle e_i}{||v_k \sum_{i=1}^{k-1} \langle v_k, e_i \rangle e_i|}$.
- Observe that $span(\{v_1, \ldots, v_j\}) = span(\{e_1, \ldots, e_j\})$.

- **Proposition 24** (Gram-Schmidt Procedure): Let $\{v_1, \ldots, v_m\}$ be a list of linearly independent vectors. Then there exists a list of orthonormal vectors $\{e_1, \ldots, e_m\}$ such that $span(\{v_1, \ldots, v_j\}) = span(\{e_1, \ldots, e_j\}), \forall j = 1, \ldots, m$.
- Let $e_1 = \frac{v_1}{||v_1||}$. Define $e_2 = \frac{v_2 \langle v_2, e_1 \rangle e_1}{||v_2 \langle v_2, e_1 \rangle e_1||}$.
- Similarly, $e_3 = \frac{v_3 (\langle v_3, e_1 \rangle e_1 + \langle v_3, e_2 \rangle e_2)}{||v_3 (\langle v_3, e_1 \rangle e_1 + \langle v_3, e_2 \rangle e_2)||}$, and $e_k = \frac{v_k \sum_{i=1}^{k-1} \langle v_k, e_i \rangle e_i}{||v_k \sum_{i=1}^{k-1} \langle v_k, e_i \rangle e_i||}$.
- Observe that $span(\{v_1,\ldots,v_j\}) = span(\{e_1,\ldots,e_j\})$.
- ullet It is easy to see that $e_1 \perp e_2$. Assume that $\{e_1,\ldots,e_j\}$ are orthonormal.

- **Proposition 24** (Gram-Schmidt Procedure): Let $\{v_1, \ldots, v_m\}$ be a list of linearly independent vectors. Then there exists a list of orthonormal vectors $\{e_1, \ldots, e_m\}$ such that $span(\{v_1, \ldots, v_j\}) = span(\{e_1, \ldots, e_j\}), \forall j = 1, \ldots, m$.
- Let $e_1 = \frac{v_1}{||v_1||}$. Define $e_2 = \frac{v_2 \langle v_2, e_1 \rangle e_1}{||v_2 \langle v_2, e_1 \rangle e_1||}$.
- Similarly, $e_3 = \frac{v_3 (\langle v_3, e_1 \rangle e_1 + \langle v_3, e_2 \rangle e_2)}{||v_3 (\langle v_3, e_1 \rangle e_1 + \langle v_3, e_2 \rangle e_2)||}$, and $e_k = \frac{v_k \sum_{i=1}^{k-1} \langle v_k, e_i \rangle e_i}{||v_k \sum_{i=1}^{k-1} \langle v_k, e_i \rangle e_i||}$.
- Observe that $span(\{v_1, \ldots, v_j\}) = span(\{e_1, \ldots, e_j\})$.
- ullet It is easy to see that $e_1 \perp e_2$. Assume that $\{e_1,\ldots,e_j\}$ are orthonormal.
- ullet Then $\forall I=1,\ldots j$, with $e_{j+1}^{\boldsymbol{\cdot}}=v_{j+1}-\sum_{i=1}^{j}\langle v_{j+1},e_i\rangle e_i$

$$egin{aligned} \langle e_{j+1}, e_{l}
angle &= rac{1}{||e_{j+1}^{\sim}||} \left(\langle v_{j+1}, e_{l}
angle - \sum_{i=1}^{j} \langle v_{j+1}, e_{i}
angle \langle e_{i}, e_{l}
angle
ight) \ &= rac{1}{||e_{j+1}^{\sim}||} \left(\langle v_{j+1}, e_{l}
angle - \langle v_{j+1}, e_{l}
angle
ight) = 0 \end{aligned}$$

Orthogonal Complement

ullet Let V be a FD IPS and let U be a subset of V. The **Orthogonal Complement** of U is defined as

$$U^{\perp} = \{ v \in V \mid \langle v, u \rangle = 0, \forall u \in U \}$$

ullet Proposition 25: Irrespective of whether U is a subspace of V or not, U^\perp is a subspace.

ullet Let U be a subspace of FD IPS V, and $V = U \oplus U^{\perp}$.

- ullet Let U be a subspace of FD IPS V, and $V = U \oplus U^{\perp}$.
- Define $P_U \in \mathcal{L}(V)$ as $\forall v \in V$, if $v = u + w, u \in U, w \in U^{\perp}$, $P_U(v) = u$.

- ullet Let U be a subspace of FD IPS V, and $V=U\oplus U^{\perp}$.
- Define $P_U \in \mathcal{L}(V)$ as $\forall v \in V$, if $v = u + w, u \in U, w \in U^{\perp}$, $P_U(v) = u$.
- ullet P_U is said to be the *Orthogonal Projection Operator on U*.

- ullet Let U be a subspace of FD IPS V, and $V = U \oplus U^{\perp}$.
- Define $P_U \in \mathcal{L}(V)$ as $\forall v \in V$, if $v = u + w, u \in U, w \in U^{\perp}$, $P_U(v) = u$.
- ullet P_U is said to be the Orthogonal Projection Operator on U.
- It has the following properties:
 - 1. Range(P_U) =

- ullet Let U be a subspace of FD IPS V, and $V = U \oplus U^{\perp}$.
- Define $P_U \in \mathcal{L}(V)$ as $\forall v \in V$, if $v = u + w, u \in U, w \in U^{\perp}$, $P_U(v) = u$.
- ullet P_U is said to be the Orthogonal Projection Operator on U.
- It has the following properties:
 - 1. Range(P_U) = U
 - 2. $Null(P_U) =$

- ullet Let U be a subspace of FD IPS V, and $V = U \oplus U^{\perp}$.
- Define $P_U \in \mathcal{L}(V)$ as $\forall v \in V$, if $v = u + w, u \in U, w \in U^{\perp}$, $P_U(v) = u$.
- ullet P_U is said to be the Orthogonal Projection Operator on U.
- It has the following properties:
 - 1. Range(P_U) = U
 - 2. $Null(P_U) = U^{\perp}$
 - 3. Idempotent: $(P_U)^2 =$

- ullet Let U be a subspace of FD IPS V, and $V=U\oplus U^{\perp}$.
- Define $P_U \in \mathcal{L}(V)$ as $\forall v \in V$, if $v = u + w, u \in U, w \in U^{\perp}$, $P_U(v) = u$.
- ullet P_U is said to be the Orthogonal Projection Operator on U.
- It has the following properties:
 - 1. Range(P_U) = U
 - 2. Null $(P_U) = U^{\perp}$
 - 3. Idempotent: $(P_U)^2 = P_U$
 - 4. (Conjugate) Symmetric: If $U = \mathbb{R}^n$ (or \mathbb{C}^n), $P_U^T =$

- ullet Let U be a subspace of FD IPS V, and $V = U \oplus U^{\perp}$.
- Define $P_U \in \mathcal{L}(V)$ as $\forall v \in V$, if $v = u + w, u \in U, w \in U^{\perp}$, $P_U(v) = u$.
- ullet P_U is said to be the Orthogonal Projection Operator on U.
- It has the following properties:
 - 1. Range $(P_U) = U$
 - 2. Null $(P_U) = U^{\perp}$
 - 3. Idempotent: $(P_U)^2 = P_U$
 - 4. (Conjugate) Symmetric: If $U = \mathbb{R}^n$ (or \mathbb{C}^n), $P_U^T = P_U$ ($P_U^* = P_U$).

- Let U be a subspace of FD IPS V, and $V = U \oplus U^{\perp}$.
- Define $P_U \in \mathcal{L}(V)$ as $\forall v \in V$, if $v = u + w, u \in U, w \in U^{\perp}$, $P_U(v) = u$.
- ullet P_U is said to be the Orthogonal Projection Operator on U.
- It has the following properties:
 - 1. Range(P_U) = U
 - 2. Null $(P_U) = U^{\perp}$
 - 3. Idempotent: $(P_U)^2 = P_U$
 - 4. (Conjugate) Symmetric: If $U = \mathbb{R}^n$ (or \mathbb{C}^n), $P_U^T = P_U$ ($P_U^* = P_U$).
 - 5. $\forall v \in V, P_U(v) = \arg\min_{u \in U} ||u v||^2$.