## Design Procedure Using Sequential Circuit:

- O Problem Description on State Diagnam
- O State Table.
- O State Reduction
- O Assign Binary values to each state in state table
- O Determine Number of flip-flops and assign a letter symbol to each
- O Choose type of flip-flop to used
- From state table, derive Excitation table and output table.

Design with Unused States:

circuit with m-flip flops has 2" states. When simplifying Input functions to flip-flops, the unused states can be treated as Don't Care Conditions.

State Reduction:

If 2 states have same input and output, they's are equivalent states.

of the equivalent states can be reduced.

pdf [pg-224] Example

[pg-228] Example

Is If goes to unused state, needs to be sent to used state

Ly Loop earnot be allowed to occur

Flip-Flop: S-RX
D-FlipFlopV
T-FlipFlopV

Part State

Part S

3-bit Geray Code Counters

Ostate Diagram

| 2  | State | 2  | Table |    |     |     |    |
|----|-------|----|-------|----|-----|-----|----|
| Pr | seser | nt | State | Ne | ext | Sta | te |
|    | C     | B  | A     | C  | B   | A   |    |
|    | 0     | 0  | 0     | 0  | 0   | 1   |    |
|    | 0     | 0  | 1     | 0  | .1  | 1   |    |
|    | 0     | 1  | 1     | 0  | 1   | 0   |    |
|    | 0     | 1  | 0     | 1  | 1   | 0   |    |
|    | 1     | 1  | 0     | 1  | 1   | 1   |    |
|    | 1     | 1  | 1     | 1. | 0   | 1   |    |
|    | - 1   | 0  | 1     | 1  | 0   | 0   |    |
|    | 1     | 0  | 0     | 0  | 0   | 0   |    |

EA BA BA BĀ DOO

CB+CB

| (3) | Flip-Flop | Transition | Table | Excitation Table |
|-----|-----------|------------|-------|------------------|
|     |           |            |       |                  |

| Prese | ent S | state | Ne    | ×t | State | 2 | D   | FIP     | -Flop | , |
|-------|-------|-------|-------|----|-------|---|-----|---------|-------|---|
| C     | В     | A     | C     | В  | A     |   | Ec  | $E_{B}$ | E     |   |
| 0     | 0     | 0     | 0     | 0  | 1     |   | 0   | 0       | 1     |   |
| 0     | 0     | 1     | 0     | 1  | 1     |   | 0   | 1       | 1     |   |
| 0     | 1     | 1     | 0     | 1  | 0     |   | 0   | 1       | 0     |   |
| .0    | 1     | 0     | 1     | 1  | 0     |   | 1   | 1       | 0     |   |
| 7     |       | 0     | atoba | 1  | qmI.  |   | Hus | 0 (0)   | 1     |   |
|       |       | 4     |       | 0  | 1     |   | 1   | 0       | 1     |   |
| 1     | 1     | 1     |       |    |       |   | 1   | 0       | 6     |   |
| 1     | 0     | 1 .   | 1     | 0  | 0     |   |     |         | 0     |   |
| 1     | 0     | 0     | 0     | 0  | 0     |   | 0   | 0       | 0     |   |

| @ K-Maps                   | EB                                      |               |
|----------------------------|-----------------------------------------|---------------|
| BABABABA<br>COOODI         | BA BA BA  TO O O O O                    | BA            |
| $E_c = B\overline{A} + CA$ | $E_{R} = \overline{C}A + B\overline{A}$ | $C O$ $E_A =$ |

## 5 Logic Expressions for Inputs Passent State Mext State 1 Frethere C B M C I B A E E E 0 0 0 0 0 0 1 0 1 1 0 1 0 0 100101 @ Counter Implementation T o T o T A 11- Mains RABABABABA A HO HO THE DA BA BA BA 0 1 115 1110000 E= CA+BA E = BA+CA 0+05=3

IT FIREFER THE

## State Diagnam



State Table:

| Present Sto                                                    | rte Next State |
|----------------------------------------------------------------|----------------|
| $\begin{array}{c c} C & B & A \\ \hline O & O & O \end{array}$ | CBA            |
| 0 0 0 0                                                        | 4 1 0 0        |
| 1 0 0 1                                                        | 5 1 0 1        |
| 2 0 1 0                                                        | 6 1 1 0        |
| 3 0 1 1                                                        | 7 1 1 1        |
| 4 1 0 0                                                        | 2010           |
| 5 1 0 1                                                        | 3 0 1 1        |
| 6 1 1 0                                                        | 1 0 0 1        |
| 7 1 1 1                                                        | 0000           |

3 Flip Flop Transition Table / Excitation Table Present State Next State T-Flip Flop CBACBATCTBTA 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 1 1 1 1 0 0 10001010 10101110 1 10 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1

(4) K-Maps;

| CBA        |           | 0    | CB | A |       |   | 0 | CB         | ABA | ₹A | .BA        | BÃ  |
|------------|-----------|------|----|---|-------|---|---|------------|-----|----|------------|-----|
| <u>c</u> . |           | -To- | c  | 0 | 0     | 0 | 0 | č          | 0   | 0  | 0          | 0   |
| c          |           |      | c  | P |       | 1 | 1 | C          | 0   | 0  | 1          | 1   |
|            | $T_c = 1$ | 11   | 0  |   | - = 1 | C |   | 0 T<br>T 0 |     | TA | <u>-</u> ( | 2 B |

6 Logic Expressions for Inputs:

6 Counter Implementation:

