Homework 1: Credit Approval Classification with SVM & kNN

Georgia Institute of Technology, Business Analytics

Introduction to Analytics Modeling

Professor Joel Sokol

August 28, 2025

Files submitted: homework1_answers.pdf (this doc), homework1.Rmd

Question 2.1 - Classification Model Scenario

Situation Overview

Predicting whether a patient will show up (1) or miss (0) a scheduled medical appointment. The task is framed as a binary classification problem, where the model uses relevant predictors to classify the outcome.

Selected Predictors

To build a predictive model, the following five predictors are considered:

- Days of Delay Between Booking and Appointment Date: Longer waiting periods between scheduling and the appointment may increase the chance of no-shows due to forgetfulness or changing priorities.
- 2. **Reminder Received** (Binary: Yes/No): Patients who receive reminders by text or email are more likely to attend.
- 3. **Past Attendance History:** The number of previously missed appointments is often a strong predictor of future attendance.
- 4. **Age of Patient**: Different age groups may exhibit different attendance patterns (e.g., younger patients with unpredictable schedules vs. older patients prioritizing healthcare visits).
- 5. **Distance from Clinic** (in kilometers or miles): Patients living farther away may be more likely to cancel or miss visits, especially in poor weather or without transportation.

Discussion of Results

This scenario demonstrates how everyday healthcare operations can benefit from machine learning. By identifying factors linked to no-shows, clinics could reduce missed appointments through targeted interventions, such as sending reminders, offering telehealth options, or prioritizing same-day scheduling. The predictors chosen are

measurable, practical, and directly connected to patient behavior, making this an appropriate use case for classification modeling.

Question 2.2 - Classification on Credit Approval Data

Data. 654 observations; 10 predictors (A1, A2, A3, A8, A9, A10, A11, A12, A14, A15) and binary response R1 (0/1). No missing values. Features were standardized where noted.

A) Support Vector Machine (SVM)

Methodology

- Algorithm: kernlab::ksvm
- Settings: type = "C-svc", linear kernel (vanilladot), scaled = TRUE
- Hyperparameter search: $C \in \{10^{-3}, 10^{-2}, 10^{-1}, 1, 10, 100, 1000\}$
- Evaluation: training accuracy on full dataset (per instructions)
- Coefficient extraction:

a= $\sum i \alpha_i y_i x_i$ via colSums(model@xmatrix[[1]] * model@coef[[1]]); intercept a_0 =-model@b

(Coefficients correspond to the **scaled features** because scaled=TRUE.)

Results

- Best value: **C** = **1** (several C's tied at the top; 1 chosen as mid-range)
- Training accuracy: 0.8639
- Confusion matrix (train):
 - o Actual 0 → Pred 0: **286**, Pred 1: **72**
 - o Actual 1 → Pred 0: 17, Pred 1: 279
- Class-1 metrics: Precision 0.795, Recall 0.943, F1 0.862
- Classifier (on scaled features):

 $f(z)=a_0+\sum_j a_jz_j$ with $a_0\approx 0.081484$ and weights (order A1,A2,A3,A8,A9,A10,A11,A12,A14,A15)

a≈[-0.001103,-0.000898,-0.001607,0.002904,1.004736,-0.002985,-0.000204,-0.000 555,-0.001252,0.106444]

Most influential (by |weight|): A9 (positive, strongest) and A15 (positive).

Discussion

- Linear SVM performs strongly in-sample and emphasizes **recall** for class 1 (very few false negatives: 17) at the cost of more false positives (72).
- Because features are scaled, coefficients reflect each variable's contribution in standardized units.
- Beyond requirements (optional work I performed): I briefly tested nonlinear kernels
 (RBF and polynomial). These increased training accuracy (e.g., polynomial degree 3,
 C=10 ≈ 0.97–0.98), suggesting a tighter fit but a risk of overfitting without crossvalidation.

B) k-Nearest Neighbors (kNN)

Methodology

- Algorithm: kknn::kknn, with scale = TRUE
- Evaluation: leave-one-out with self-exclusion (for each row i, trained on the remaining n-1 rows and predicted i)
- Hyperparameter search: odd k∈{1,3,5,7,9,11,15}

Results

Accuracies by k:

 $k=\{1,3,5,7,9,11,15\}\Rightarrow\{0.8150,0.8150,0.8517,0.8471,0.8471,0.8517,0.8532\}$

- Chosen k=15 (highest LOOCV accuracy)
- Confusion matrix (LOOCV, k=15):
 - Actual 0 → Pred 0: 308, Pred 1: 50

o Actual 1 → Pred 0: 46, Pred 1: 250

Class-1 metrics: Precision 0.833, Recall 0.845, F1 0.839

Discussion

Accuracy improves as k increases (variance reduction), peaking at k=15.

 kNN yields a more balanced precision/recall trade-off than the linear SVM: fewer false positives but more false negatives.

- **Evaluation note**. My SVM accuracy is training (in-sample) per the prompt; my kNN accuracy is LOOCV. These aren't directly comparable—SVM would likely score lower under the same validation scheme.
- Fairness & data quality. Real credit datasets can contain historical or representation bias. If certain groups are under-represented, a model may generalize poorly for them, leading to unfair outcomes. Before deployment, I would (i) audit performance across demographic slices, (ii) consider re-balancing or re-weighting, and (iii) document system behavior and limitations.

Brief Comparison & Notes

- Validation schemes differ: SVM was reported with training accuracy, while kNN used LOOCV. They're not directly comparable; SVM accuracy would typically drop under cross-validation.
- Optional exploration: Nonlinear SVMs (RBF/polynomial) produced higher training accuracy in a quick check (e.g., poly d=3,C=10≈0.979), which may reflect overfitting without cross-validation.

REFERENCES

https://web.archive.org/web/20200121091131/http://www.statsoft.com/Textbook/k-Nearest-Neighbors.