Series

Paolo Bettelini

\mathbf{C}							
	റ	n	т	Ω	n	т	c
\sim	v	11	U	v	11	U	D

	0.1	Divergence and convergence	4
1	Pro	perties	2
	1.1	Covergence theorem	6

0.1 Divergence and convergence

An infinite series converges if the limit of its partial sum sequence also converges, otherwise it diverges.

1 Properties

$$\left(\sum_{n=0}^{\infty} a_n\right) \left(\sum_{n=0}^{\infty} b_n\right) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k}$$

1.1 Covergence theorem

If $\sum a_n$ converges then $\lim_{n\to\infty} a_n = 0$