CS 225: Switching Theory

S. Tripathy IIT Patna

Previous Class

- Number Systems
 - Different Number systems (positional)
 - Conversion
 - Representation (complement)
 - Binary Arithmetic
- Codes
 - BCD, cyclic code etc.
 - Gray code
 - Parity and Error correcting code

This Class

• Switching Algebra

Switching Algebra

Basic postulate:

Existence of two-valued switching variable that takes two distinct values 0 and 1

Switching Algebra:

Algebraic system of set {0, 1}, binary operations OR and AND, and unary operation NOT

OR operation	AND operation	NOT operation
0 + 0 = 0	0.0=0	0' = 1
0 + 1 = 1	0 . 1 = 0	
1 + 0 = 1	1.0=0	1' = O
1 + 1 = 1	1 . 1 = 1	

OR: called logical sum

AND: called logical product

NOT called complementation:

Basic Properties

Perfect induction: Proving a theorem by verifying every combination of values that the variables may assume

If
$$x$$
 is a switching variable, then:

$$x + 1 = 1$$

$$x.0=0$$

$$x + 0 = x$$

$$x.1 = x$$

Idempotency:
$$x + x = x$$

$$X.X = X$$

Proof of
$$x + x = x$$
: $1 + 1 = 1$ and $0 + 0 = 0$

Commutativity:
$$x + y = y + x$$

 $x \cdot y = y \cdot x$

Basic Properties (Contd.)

Associativity:
$$(x + y) + z = x + (y + z)$$

 $(x \cdot y) \cdot z = x \cdot (y \cdot z)$

Complementation:
$$x + x' = 1$$

 $x \cdot x' = 0$

Distributive:
$$x \cdot (y + z) = x \cdot y + x \cdot z$$

 $x + y \cdot z = (x + y) \cdot (x + z)$

Proof by perfect induction using a **truth table**:

x	у	z	хy	ΧZ	y+z	x(y+z)	xy+xz
0	0	0	0	0	0	0	0
0	0	1	0	0	1	0	0
0	1	0	0	0	1	0	0
0	1	1	0	0	1	0	0
1	0	0	0	0	0	0	0
1	0	1	0	1	1	1	1
1	1	0	1	0	1	1	1
1	1	1	1	1	1	1	1

Basic Properties (Contd.)

Principle of Duality:

- Preceding properties grouped in pairs
 - One statement can be obtained from the other by interchanging operations OR and AND and constants 0 and 1
 - The two statements are said to be **dual** of each other
- This principle stems from the symmetry of the postulates and definitions of switching algebra w.r.t. the two operations and constants
- Implication: necessary to prove only one of each pair of statements

Switching Expressions and Their Manipulation

Switching expression:

- combination of finite number of switching variables and constants via switching operations (AND, OR, NOT)
 - Any constant or switching variable is a switching expression
 - If T1 and T2 are switching expressions, so are T1', T2', T1+T2 and T1T2
 - No other combination of constants and variables is a switching expression

Absorption law:
$$x + xy = x$$

 $x(x + y) = x$

Proof 1:

Laws of Switching Algebra

Another important law 2: x + x'y = x + yx(x' + y) = xy

Consensus theorem :
$$xy + x'z + yz = xy + x'z$$

 $(x + y)(x' + z)(y + z) = (x + y)(x' + z)$

Proof 3:

Switching Expression Simplification

Literal: variable or its complement

Redundant literal: if value of switching expression is independent of literal x_i , then x_i is said to be redundant

Example: Simplify
$$T(x,y,z) = x'y'z + yz + xz$$

 $x'y'z + yz + xz = z(x'y' + y + x)$
 $= z(x' + y + x)$
 $= z(y + 1)$
 $= z1 = z$

Thus, literals x and y are redundant in T(x,y,z)

Important note: No inverse operations are defined in Switching Algebra, So cancellations are not allowed

- A + B = A + C does not imply B = CCounterexample: A = B = 1 and C = 0
- Similarly, AB = AC does not imply B = C

De Morgan's Theorems

Involution: (x')' = x

De Morgan's theorem for two variables:

$$(x + y)' = x' \cdot y'$$

 $(x \cdot y)' = x' + y'$

Proof by perfect induction:

×	У	x'	y'	х+у	(x+y)'	x'y'
0	0	1	1	0	1	1
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	1	0	0	1	0	0

De Morgan's theorems for n variables:

$$[f(x_1, x_2, ..., x_n, 0, 1, +, .)]' = f(x_1', x_2', ..., x_n', 1, 0, ., +)$$

Simplification Examples

Example 4: Simplify T(x,y,z) = (x + y)[x'(y' + z')]' + x'y' + x'z'

Thus, T(x,y,z) = 1, independently of the values of the variables

Example 5: Prove xy + x'y' + yz = xy + x'y' + x'z

Switching Functions

Let $T(x_1, x_2, ..., x_n)$ be a switching expression:

• Since each variable can assume 0 or 1, \rightarrow 2ⁿ combinations are possible

Determining the value of an expression for an input combination:

Example:
$$T(x,y,z) = x'z + xz' + x'y'$$

$$T(0,0,1) = 0'1 + 01' + 0'0' = 1$$

Truth table for T

×	у	Z	Т
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1

×	y	Z	T
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Switching Functions (Contd.)

Switching function $f(x_1, x_2, ..., x_n)$: values assumed by an expression for all combinations of variables $x_1, x_2, ..., x_n$

Complement function: $f'(x_1, x_2, ..., x_n)$ assumes value 0 (1) whenever $f(x_1, x_2, ..., x_n)$ assumes value 1 (0)

Logical sum of two functions:

 $f(x_1, x_2, ..., x_n) + g(x_1, x_2, ..., x_n) = 1$ for every combination in which either f or g or both equal 1

Logical product of two functions:

 $f(x_1, x_2, ..., x_n)$. $g(x_1, x_2, ..., x_n) = 1$ for every combination for which both f and g equal 1

Switching Functions (Contd.)

sum, product and complementation of functions:

×	у	Z	f	g	f'	f+g	fg
0	0	0	1	0	0	1	0
0	0	1	0	1	1	1	0
0	1	0	1	0	0	1	0
0	1	1	1	1	0	1	1
1	0	0	0	1	1	1	0
1	0	1	0	0	1	0	0
1	1	0	1	1	0	1	1
1	1	1	1	0	0	1	0

Simplification of Expressions

Example 1: Simplify T(A,B,C) = A'C' + ABD + BC'D + AB'D' + ABCD'

- Apply consensus theorem to first three terms -> BC'D is redundant
- Apply distributive law to last two terms -> AD'(B' + BC) -> AD'(B' + C)
- Thus, T = A'C' + A[BD + D'(B' + C)]

Example 2: Simplify T(A,B,C,D) = A'B + ABD + AB'CD' + BC

 \bullet T = A'B + BD + ACD'

