Math 115A Assign6

Vincent

2023-02-21

from Section 2.2: exercises 1; 2; 5(c); 8; 14.

from Section 2.3: exercises 1(a),(b),(c),(h); 2; 3; 9; 11; 13.

2.2

- 1. Label the following statements as true or false. Assume that V and W are finite-dimensional vector spaces with ordered bases β and γ , respectively, and $T,U:V\to W$ are linear transformations
 - a) TRUE
 - b) TRUE
 - c) FALSE
 - d) TRUE
 - e) TRUE
 - f) FALSE
- 2. Let β and γ be the standard order bases for R^n and R^m , respectively for each linear transformation $T: R^n \to R^m$, compute $[T]^{\gamma}_{\beta}$

a)
$$[T]^{\gamma}_{\beta} = \begin{pmatrix} 2 & -1 \\ 3 & 4 \\ 1 & 0 \end{pmatrix}$$

b)
$$[T]_{\beta}^{\gamma} = \begin{pmatrix} 2 & 3 & -1 \\ 1 & 0 & 1 \end{pmatrix}$$

c)
$$[T]^{\gamma}_{\beta} = (2 \ 1 \ -3)$$

d)
$$[T]_{\beta}^{\gamma} = \begin{pmatrix} 0 & 2 & 1 \\ -1 & 4 & 5 \\ 1 & 0 & 1 \end{pmatrix}$$

e)
$$[T]_{\beta}^{\gamma} = \begin{pmatrix} 1 & 0 & \dots & 0_{nth} \\ 1 & 0 & \dots & 0_{nth} \\ | & & | \\ 1_{nth} & 0 & \dots & 0_{nth} \end{pmatrix}$$

$$\text{f) } [T]_{\beta}^{\gamma} = \begin{pmatrix} 0 & 0 & \dots & 1 \\ 0 & 0 & 1 & 0 \\ | & & & | \\ 1 & 0 & \dots & 0 \end{pmatrix}$$

g)
$$[T]^{\gamma}_{\beta} = \begin{pmatrix} 1 & 0 & \dots & 0 & 1_{nth} \end{pmatrix}$$

$$\begin{aligned} &\mathbf{5(c).} \ \, \mathbf{Let} \ \, \alpha = & \{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \}, \ \, \beta = & \{1, x, x^2\}. \ \, \mathbf{Define} \ \, T : M_{2 \times 2}(F) \rightarrow \\ &R \ \, \mathbf{by} \ \, T(A) = tr(A). \ \, \mathbf{Compute} \ \, [T]^{\gamma}_{\alpha} \end{aligned}$$

Answer:

$$tr(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}) = (1, 0, 0, 1) \ [T]_{\alpha}^{\gamma} = \{1, 0, 0, 1\}$$

8. Let V be an n-dimensional vector space with an ordered basis β . Define $T: V \to F^n$ by $T(x) = [x]_{\beta}$. Prove that T is linear.

Proof:

$$T(cx) = [cx]_{\beta} = c[x]_{\beta} = cT(x)$$

 $T(x+y) = [x+y]_{\beta} = [x]_{\beta} + [y]_{\beta} = T(x) + T(y)$
T is linear

14. Let V and W be vector spaces, and let T and U be nonzero linear transformations from V into W. if $R(T) \cap R(U) = \{0\}$, Prove that $\{T, U\}$ is a linearly independent subset of L(V, W)

Proof:

Let aT(v) + bU(v) = 0, (because (aT + bU)v = 0(v)) then we will have T(av) + U(bv) = 0 and T(av) = U(-bv). Since $R(T) \cap R(U) = \{0\}$, we can consider that a = b = 0, also conclude that T and U are linearly independent

2.3

1

- a) FALSE
- b) TRUE
- c) FALSE
- d) FALSE

2.

a) Let
$$A = \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 & -3 \\ 4 & 1 & 2 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 1 & 4 \\ -1 & -2 & 0 \end{pmatrix}$, $D = \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix}$. Compute $A(2B+3C)$, $(AB)D$ and $A(BD)$

$$A(2B + 3C) = \begin{pmatrix} 20 & -9 & 18 \\ 5 & 10 & 8 \end{pmatrix}$$
$$(AB)D = A(BD) = \begin{pmatrix} 29 \\ -26 \end{pmatrix}$$

b) Let
$$A = \begin{pmatrix} 2 & 5 \\ -3 & 1 \\ 4 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 & 2 & 0 \\ 1 & -1 & 4 \\ 5 & 5 & 3 \end{pmatrix}$, $C = \begin{pmatrix} 4 & 0 & 3 \end{pmatrix}$. Compute A^t, A^tB, BC^t, CB and CA

$$A^{t} = \begin{pmatrix} 2 & -3 & 4 \\ 5 & 1 & 2 \end{pmatrix}$$

$$A^{t}B = \begin{pmatrix} 23 & 19 & 0 \\ 26 & -1 & 10 \end{pmatrix}$$

$$BC^{t} = \begin{pmatrix} 12 \\ 16 \\ 29 \end{pmatrix}$$

$$CB = \begin{pmatrix} 27 & 7 & 9 \end{pmatrix}$$

$$CA = \begin{pmatrix} 20 & 26 \end{pmatrix}$$

- **3.** Let g(x) = 3 + x. Let $T: P_2(R) \to P_2(R)$ and $U: P_2(R) \to R^3$ be the linear transformations respectively defined by T(f(x)) = f'(x)q(x) + 2f(x) and $U(a+bx+cx^2)=(a+b,c,a-b)$. Let β and γ be the standard ordered bases of $P_2(R)$ and R^3 , respectively
- a) Compute $[U]^{\gamma}_{\beta}$, $[T]_{\beta}$ and $[UT]^{\gamma}_{\beta}$ directly. Then use Theorem 2.11 to verify your result

Proof:

$$T(f(x)) = (b+2cx)(3+x) + 2(a+bx+cx^2) = (2a+3b) + (3b+6c)x + (4c)x^2$$

 $UT(1) = (2,0,2)$

$$UT(x) = (6,0,0)$$

$$UT(x^2) = (6, 4, -6)$$

$$UT(x^{2}) = (6, 4, -6)$$

$$[UT]_{\beta}^{\gamma} = \begin{pmatrix} 2 & 6 & 6 \\ 0 & 0 & 4 \\ 2 & 0 & -6 \end{pmatrix}$$

$$[U]_{\gamma}^{\beta} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$
$$[T]_{\beta} = \begin{pmatrix} 2 & 3 & 0 \\ 0 & 3 & 6 \\ 0 & 6 & 4 \end{pmatrix}$$

$$[U]^{\beta}_{\gamma}[T]_{\beta} = \begin{pmatrix} 2 & 6 & 6 \\ 0 & 0 & 4 \\ 2 & 0 & -6 \end{pmatrix} = [UT]^{\gamma}_{\beta}$$

b) Let $h(x) = 3 - 2x + x^2$. Compute $[h(x)]_{\beta}$ and $[U(h(x))]_{\gamma}$. Then use $[U]_{\beta}^{\gamma}$ from (a) and Theorem 2.14 to verify your result.

$$[U(h(x))]_{\gamma} = \begin{pmatrix} 1\\1\\5 \end{pmatrix}$$
$$[h(x)]_{\beta} = \begin{pmatrix} 3\\-2\\1 \end{pmatrix}$$
$$[U]_{\beta}^{\gamma}[h]_{\beta} = \begin{pmatrix} 1\\1\\5 \end{pmatrix} = [U(h)]_{\gamma}$$

9. Find linear transformations $U,T:F^2\to F^2$ such that $UT=T_0$ (the zero transformation) but $TU\neq T_0$. Use your answer to find matrices A and B such that AB=O but $BA\neq O$

Proof:

T(x,y) = (0,0)

$$U(x,y) = (y,0)$$

Then, we have UT(x,y) = T(U(x,y)) = T(y,0) = (0,0) = T0, and TU(x,y) = U(T(x,y)) = U(0,0) = (0,0) = T0, as required.

To find matrices A and B such that AB = 0 but $BA \neq 0$, we can represent T and U as matrices as follows:

$$T = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$U = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Then, we have $AB = TU = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, and $BA = UT = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

$$T = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, U = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, AB = TU = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, BA = UT = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

11. Let V be a vector space, and let $T:V\to V$ be linear. Prove that $T^2=T_0$ if and only if $R(T)\subseteq N(T)$.

Proof:

To prove that $T^2 = T_0$ if and only if $R(T) \subseteq N(T)$, we need to show two implications:

First, assume that $T^2 = T_0$. We want to show that $R(T) \subseteq N(T)$.

Let y be any element in R(T). Then there exists an x in V such that T(x) = y. We want to show that $T(y) = T(T(x)) = T^2(x) = T_0(x) = 0$, which means that y is in N(T).

Therefore, we have shown that $R(T) \subseteq N(T)$.

Second, assume that $R(T) \subseteq N(T)$. We want to show that $T^2 = T_0$.

Let x be any element in V. Then we have $T(T(x)) = T^2(x)$ and T(x) is in R(T). Since $R(T) \subseteq N(T)$, we know that $T(T(x)) = T^2(x) = 0$, which means that $T^2 = T_0$. Therefore, we have shown that $T^2 = T_0$.

13. Let A and B be $n \times n$ matrices. Recall that the trace of A is defined by $tr(A) = \sum_{i=1}^{n} A_{ii}$. Prove that tr(AB) = tr(BA) and $tr(A) = tr(A^{t})$

Proof:

To prove that tr(AB) = tr(BA), we can expand both traces using the definition of matrix multiplication and the trace operator:

$$tr(AB) = \sum_{i=1}^{n} (AB)ii = \sum_{i=1}^{n} i = 1^{n} \sum_{j=1}^{n} A_{ij}B_{ji}$$

$$tr(BA) = \sum_{i=1}^{n} (BA)ii = \sum_{i=1}^{n} i = 1^{n} \sum_{j=1}^{n} B_{ij}A_{ji}$$

We can then swap the order of summation in the second expression by renaming the indices:

$$tr(BA) = \sum_{j=1}^{n} \sum_{i=1}^{n} B_{ji} A_{ij}$$

Now, we can see that the two expressions are identical, so we have proven that tr(AB) = tr(BA).

To prove that $tr(A) = tr(A^T)$, we can expand both traces using the definition of the trace operator:

$$tr(A) = \sum_{i=1}^{n} A_{ii}$$

$$tr(A^T) = \sum_{i=1}^n (A^T)ii = \sum_i i = 1^n A_{ii}$$

Since the diagonal entries of A are the same as the diagonal entries of A^T , the two expressions are identical, so we have proven that $tr(A) = tr(A^T)$.