1Gb NAND + 256Mb mDDR Specification

PALA384AB

Deutron Electronics Corp.

8F, 68, Sec. 3, NanKing E. RD., Taipei 104, Taiwan, R.O.C.

TEL: (886)-2-2517-7768 FAX: (886)-2-2517-4575

1.8V NAND Flash + 1.8V Mobile DDR SDRAM Multi-Chip Package

Product Features

- Multi-Chip Package
 - NAND Flash Density: 1-Gbits
 - Mobile DDR SDRAM Density: 256-Mbit
- Device Packaging
 - 107 balls BGA
 - Area: 10.5x13 mm; Height: 1.2 mm

- Operating Voltage
 - NAND : 1.7V to 1.95V
 - Mobile DDR SDRAM : 1.7V to 1.95V
- Operating Temperature :-25 °C to +85 °C

NAND FLASH

- Voltage Supply: 1.8V (1.7V ~ 1.95V)
- Organization
 - Memory Cell Array: (128M + 4M) x 8bit
 - Multiplexed address/ data
 - Data Register: (2K + 64) x 8bits
- Automatic Program and Erase
 - Page Program: (2K + 64) bytes
 - Block Erase: (128K + 4K) byte
- Page Read Operation
 - Page Size: (2K + 64) bytes
 - Random Read: 25us (Max.)
 - Serial Access: 45ns (Min.)
- Memory Cell: 1bit/Memory Cell
- Fast Write Cycle Time
 - Program time: 250us (Typ.)
 - Block Erase time: 2ms (Typ.)
- Command/Address/Data Multiplexed I/O Port
- Hardware Data Protection
 - Program/Erase Lockout During Power Transitions
- Reliable CMOS Floating Gate Technology
- Endurance:
 - 100K Program/Erase Cycles (with 1 bit/528 bytes ECC)
 - Data Retention: 10 Years
- Command Register Operation
- Automatic Page 0 Read at Power-Up Option
 - Boot from NAND support
 - Automatic Memory Download
- NOP: 4 cycles
- Cache Program Operation for High Performance Operation
- Copy-Back Operation
- EDO mode
- OTP Operation
- No Bad-Block-Erasing-Protect function (user should manage bad blocks before erasing)

Mobile DDR SDRAM

- Density: 256M bits
- Organization: 4M words x16 bits x 4 banks
- Power supply: $V_{DD}/V_{DDQ} = 1.70 \sim 1.95 V$
- Speed: 400Mbps (max.) for data rate
- Internal pipelined double-data-rate architecture, two data access per clock cycle
- Bi-directional data strobe (DQS)
- No DLL; CLK to DQS is not synchronized.
- Differential clock inputs (CLK and CLK)
- Four bank operation
- CAS Latency: 3
- Burst Type : Sequential and Interleave
- Burst Length : 2, 4, 8, 16
- Special function support
 - PASR (Partial Array Self Refresh)
 - Internal TCSR (Temperature Compensated Self Refresh)
 - DS (Drive Strength)
 - All inputs except data & DM are sampled at the rising edge of the system clock(CLK)
 - DQS is edge-aligned with data for READ; center-aligned with data for WRITE
 - Data mask (DM) for write masking only
 - Auto & Self refresh
 - 7.8us refresh interval (64ms refresh period, 8K cycle)
 - LVCMOS-compatible inputs

Publication Date: Mar. 2014
Revision: 1.1 1/84

Ordering Information

Product ID	NAND Flash		Mobile DDR SDRAM		Package	Operation Temperature	
Product ib	Configuration	Speed	Configuration	Speed	1 ackage	Range	
ÚCEŠCEHÌ I CEÓ -ÕT CEÉ	1Gb (128M X 8 bits)	45ns	256Mb (4 Banks X 4M X 16 bits)	200MHz	107 ball BGA	Extended	

MCP Block Diagram

Publication Date: Mar. 2014

Revision: 1.1 2/84

Ball Configuration (Top View)

(BGA 107, 10.5mmx13mmx1.2mm Boby, 0.8mm Ball Pitch)

Publication Date: Mar. 2014 Revision: 1.1 3/84

Ball Descriptions

	_	
Pin Name	Туре	Function
NAND		
VCC	Supply	Supply Voltage
VSS	Supply	Ground
1/00-7	Input/output	Data input/outputs, address inputs, or command inputs
ALE	Input	Address Latch Enable
CLE	Input	Command Latch Enable
CE	Input	Chip Enable
RE	Input	Read Enable
WE	Input	Write Enable
WP	Input	Write Protect
R/B	Output	Ready/Busy (open-drain output)
Mobile DDR S	DRAM	
VDD	Supply	Power Supply
VSSD	Supply	Ground
VDDQ	Supply	DQ's Power Supply: Isolated on the die for improved noise immunity.
VSSQ	Supply	Ground
CLK, CLK	Input	CLK and CLK are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CLK and negative edge of CLK. Input and output data is referenced to the crossing of CLK and CLK (both directions of crossing). Internal clock signals are derived from CLK, CLK
CKE	Input	CKE HIGH activates, and CKE LOW deactivates internal clock signals, and device input buffers and output drivers. Taking CKE LOW provides PRECHARGE POWER-DOWN and SELF REFRESH operation (all banks idle), or ACTIVE POWERDOWN (row ACTIVE in any bank). CKE is synchronous for all functions except for SELF REFRESH EXIT, which is achieved asynchronously. Input buffers, excluding CLK, CLK and CKE, are disabled during power-down and self refresh mode which are contrived for low standby power consumption.
CS	Input	CS enables (registered LOW) and disables (registered HIGH) the command decoder. All commands are masked when CS is registered HIGH. CS provides for external bank selection on systems with multiple banks. CS is considered part of the command code.
\overline{RAS} , \overline{CAS} , \overline{WE}_D	Input	$\overline{\text{CAS}}$, $\overline{\text{RAS}}$, and $\overline{\text{WE}}_{\text{D}}$ (along with $\overline{\text{CS}}$) define the command being entered.
A0-A12	Input	Provide the row address for ACTIVE commands, and the column address and AUTO PRECHARGE bit for READ / WRITE commands, to select one location out of the memory array in the respective bank. The address inputs also provide the opcode during a MODE REGISTER SET command.
BA0, BA1	Input	BA0 and BA1 define to which bank an ACTIVE, READ, WRITE or PRECHARGE command is being applied.
DQ0-15	Input / Output	Data Input/Output pins operate in the same manner as on conventional DRAMs.
LDQS, UDQS	Input / Output	Output with read data, input with write data. Edge-aligned with read data, centered with write data. Used to capture write data. LDQS corresponds to the data on DQ0-DQ7, UDQS corresponds to the data on DQ8-DQ15.
LDM, UDM	Input	DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH along with that input data during a WRITE access. DM is sampled on both edges of DQS. Although DM pins are input-only, the DM loading matches the DQ and DQS loading. LDM corresponds to the data on DQ0-DQ7, UDM corresponds to the data on DQ8-DQ15

Publication Date: Mar. 2014 Revision: 1.1 4/84

PACKING DIMENSIONS

107-BALL (10.5x13 mm)

		Dimension in mm	1	I	Dimension in inch	1
Symbol	Min	Norm	Max	Min	Norm	Max
Α	1.07	1.14	1.21	0.042	0.045	0.048
A ₁	0.35	0.40	0.45	0.014	0.016	0.018
ФЬ	0.45	0.50	0.55	0.018	0.020	0.022
D	12.90	13.00	13.10	0.508	0.512	0.516
E	10.40	10.50	10.60	0.409	0.413	0.417
D ₁	10.40 BSC 7.20 BSC 0.80 BSC			0.409 BSC 0.283 BSC 0.031 BSC		
E ₁						
е						
ССС			0.10			0.004

Controlling dimension : Millimeter.

Publication Date: Mar. 2014 Revision: 1.1 5/84

NAND Flash Memory Operations

Publication Date: Mar. 2014 Revision: 1.1 6/84

GENERAL DESCRIPTION

The NAND Flash is a 128Mx8bit with spare 4Mx8bit capacity. The NAND Flash is offered in 1.8V $V_{\rm CC}$ Power Supply. Its NAND cell provides the most cost-effective solution for the solid state mass storage market. The memory is divided into blocks that can be erased independently so it is possible to preserve valid data while old data is erased.

The NAND Flash contains 1024 blocks, composed by 64 pages consisting in two NAND structures of 32 series connected Flash cells. A program operation allows to write the 1056-Word page in typical 250us and an erase operation can be performed in typical 2ms on a 128K-Byte for device block.

Data in the page mode can be read out at 45ns cycle time per

Byte. The I/O pins serve as the ports for address and command inputs as well as data input/output. The copy back function allows the optimization of defective blocks management: when a page program operation fails the data can be directly programmed in another page inside the same array section without the time consuming serial data insertion phase. The cache program feature allows the data insertion in the cache register while the data register is copied into the Flash array. This pipelined program operation improves the program throughput when long files are written inside the memory. A cache read feature is also implemented. This feature allows to dramatically improving the read throughput when consecutive pages have to be streamed out. This NAND Flash includes extra feature: Automatic Read at Power Up.

PIN DESCRIPTION

Symbol	Pin Name	Functions
1/00~1/07	Data Inputs / Outputs	The I/O pins are used to input command, address and data, and to output data during read operations. The I/O pins float to Hi-Z when the chip is deselected or when the outputs are disabled.
CLE	Command Latch Enable	The CLE input controls the activating path for commands sent to the command register. When active high, commands are latched into the command register through the I/O ports on the rising edge of the WE signal.
ALE	Address Latch Enable	The ALE input controls the activating path for address to the internal address registers. Addresses are latched on the rising edge of WE with ALE high.
CE	Chip Enable	The $\overline{\text{CE}}$ input is the device selection control. When the device is in the Busy state, $\overline{\text{CE}}$ high is ignored, and the device does not return to standby mode.
RE	Read Enable	The \overline{RE} input is the serial data-out control, and when active drives the data onto the I/O bus. Data is valid t_{REA} after the falling edge of \overline{RE} which also increments the internal column address counter by one.
WE	Write Enable	The $\overline{\text{WE}}$ input controls writes to the I/O port. Commands, address and data are latched on the rising edge of the $\overline{\text{WE}}$ pulse.
WP	Write Protect	The $\overline{\text{WP}}$ pin provides inadvertent program/erase protection during power transitions. The internal high voltage generator is reset when the $\overline{\text{WP}}$ pin is active low.
R/B	Ready / Busy Output	The R/ $\overline{\rm B}$ output indicates the status of the device operation. When low, it indicates that a program, erase or random read operation is in process and returns to high state upon completion. It is an open drain output and does not float to Hi-Z condition when the chip is deselected or when outputs are disabled.
V _{CC}	Power	V _{CC} is the power supply for device.
V _{SS}	Ground	

Note: Connect all V_{CC} and V_{SS} pins of each device to common power supply outputs. Do not leave V_{CC} or V_{SS} disconnected.

Publication Date: Mar. 2014 Revision: 1.1 7/84

BLOCK DIAGRAM

Address Cycle Map

	y							
	1/00	I/O1	I/O2	I/O3	1/04	I/O5	1/06	1/07
1st cycle	A0	A1	A2	A3	A4	A5	A6	A7
2nd cycle	A8	A9	A10	A11	L*	L*	L*	L*
3rd cycle	A12	A13	A14	A15	A16	A17	A18	A19
4th cycle	A20	A21	A22	A23	A24	A25	A26	A27

Column Address
Column Address
Row Address

Row Address

Note:

Column Address: Starting Address of the Register.

Publication Date: Mar. 2014 Revision: 1.1 8/84

^{*}L must be set to "Low".

^{*}The device ignores any additional input of address cycles than required.

Product Introduction

The NAND Flash is a 1,056Mbit memory organized as 64K rows (pages) by 2,112x8 columns. Spare 64x8 columns are located from column address of 2,048~2,111. A 2,112-byte data register is connected to memory cell arrays accommodating data transfer between the I/O buffers and memory during page read and page program operations. The program and read operations are executed on a page basis, while the erase operation is executed on a block basis. The memory array consists of 1,024 separately erasable 128K-byte blocks. It indicates that the bit-by-bit erase operation is prohibited on the NAND Flash.

The NAND Flash has addresses multiplexed into 8 I/Os. This scheme dramatically reduces pin counts and allows system upgrades to future densities by maintaining consistency in system board design. Command, address and data are all written through I/O's by bringing $\overline{\text{WE}}$ to low while $\overline{\text{CE}}$ is low. Those are latched on the rising edge of $\overline{\text{WE}}$. Command Latch Enable (CLE) and Address Latch Enable (ALE) are used to multiplex command and address respectively, via the I/O pins. Some commands require one bus cycle. For example, Reset Command, Status Read Command, etc require just one cycle bus. Some other commands, like page read and block erase and page program, require two cycles: one cycle for setup and the other cycle for execution.

In addition to the enhanced architecture and interface, the NAND Flash incorporates copy-back program feature from one page to another page without need for transporting the data to and from the external buffer memory.

Command Set

Function	1st Cycle	2nd Cycle	Acceptable Command during Busy
Read	00h	30h	
Read for Copy Back	00h	35h	
Read ID	90h	-	
Reset	FFh	-	0
Page Program	80h	10h	
Copy-Back Program	85h	10h	
Block Erase	60h	D0h	
Random Data Input ⁽¹⁾	85h	-	
Random Data Output ⁽¹⁾	05h	E0h	
Read Status	70h	-	0
Cache Program	80h	15h	
Cache Read	31h		
Read Start for Last Page Cache Read	3Fh		

Note:

Random Data Input / Output can be executed in a page.

Publication Date: Mar. 2014 Revision: 1.1 9/84

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit
	V _{CC}	-0.6 to +2.45	
Voltage on any pin relative to V _{SS}	V _{IN}	-0.6 to +2.45	V
	V _{I/O}	-0.6 to V _{CC} + 0.3 (<2.45)	
Temperature Under Bias	T _{BIAS}	-40 to +125	$^{\circ}\!\mathbb{C}$
Storage Temperature	T _{STG}	-65 to +150	$^{\circ}\!\mathbb{C}$
Short Circuit Current	los	5	mA

Note:

1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED OPERATING CONDITIONS

(Voltage reference to GND, T_A = -25 to 85°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage	V _{CC}	1.7	1.8	1.95	V
Supply Voltage	V _{SS}	0	0	0	V

DC AND OPERATION CHARACTERISTICS

(Recommended operating conditions otherwise noted)

Parameter Symbol		Test Conditions	Min.	Тур.	Max.	Unit	
Operating	Page Read with Serial Access	I _{CC1}	t_{RC} =45ns, $\overline{CE} = V_{IL}$, I_{OUT} =0mA		15	20	^
Current	Program	I _{CC2}	-		15	30	mA
	Erase	I _{CC3}		-	15		
Stand-by Cur	rent (TTL)	I _{SB1}	CE =V _{IH} , WP =0V/V _{CC}	-	-	1	mA
Stand-by Cur	rent (CMOS)	\overline{I}_{SB2} $\overline{CE} = V_{CC} - 0.2, \overline{WP} = 0V/V_{CC}$		-	10	50	uA
Input Leakage	e Current	I _{LI} ⁽¹⁾	V_{IN} =0 to V_{CC} (max)	-	-	±10	uA
Output Leaka	ge Current	I _{LO} ⁽¹⁾	V _{OUT} =0 to V _{CC} (max)	-	-	±10	uA
Input High Vo	ltage	V _{IH}	-	0.8 x V _{CC}	-	V _{CC} +0.3	V
Input Low Vol	out Low Voltage, All inputs V _{IL} -		-	-0.3	-	0.2 x V _{CC}	V
Output High Voltage Level V _{OH}		V _{OH}	I _{OH} =-100uA	V _{CC} -0.1	-	-	V
Output Low V	oltage Level	V_{OL}	I _{OL} =+100uA	-	-	0.1	V
Output Low C	urrent (R/B)	I _{OL} (R/B)	V _{OL} =0.1V	3	4	-	mA

Note:

- 1. V_{IL} can undershoot to -0.4V and V_{IH} can overshoot to V_{CC} +0.4V for durations of 20ns or less.
- 2. Typical value are measured at V_{CC} =1.8V, T_A =25 $^{\circ}$ C. And not 100% tested.

VALID BLOCK

	Symbol	Min.	Тур.	Max.	Unit
ľ	N _{VB}	1,004	-	1,024	Blocks

Note:

- 1. The device may include initial invalid blocks when first shipped. The number of valid blocks is presented as first shipped. Do not erase or program factory-marked bad blocks. Refer to the attached technical notes for appropriate management of initial invalid blocks.
- 2. The 1st block, which is placed on 00h block address, is guaranteed to be a valid block at the time of shipment and is guaranteed to be a valid block up to 1K program/erase cycles with 1bit/528Byte ECC.

Publication Date: Mar. 2014 Revision: 1.1 10/84

AC TEST CONDITION

(T_A= -25 to 85 $^{\circ}$ C , V_{CC}=1.7V~1.95V)

Parameter	Condition
Input Pulse Levels	0V to V _{CC}
Input Rise and Fall Times	5 ns
Input and Output Timing Levels	V _{CC} /2
Output Load*	1 TTL Gate and C _L =30pF

Note: * Refer to Ready / $\overline{\text{Busy}}$ section, R/ $\overline{\text{B}}$ output's Busy to Ready time is decided by the pull-up resistor (R_P) tied to R/ $\overline{\text{B}}$ pin.

CAPACITANCE

 $(T_A=25^{\circ}C, V_{CC}=1.8V, f=1.0MHz)$

Item	Symbol	Test Condition	Min.	Max.	Unit
Input / Output Capacitance	C _{I/O}	V _{IL} = 0V	-	10	pF
Input Capacitance	C _{IN}	$V_{IN} = 0V$	-	10	pF

Note: Capacitance is periodically sampled and not 100% tested.

MODE SELECTION

CLE	ALE	CE	WE	RE	WP		Mode	
Н	L	L	-	Н	Х	Read Mode	Command Input	
L	Н	L		Η	Х	Read Mode	Address Input (4 clock)	
Н	L	L		H	H	Write Mode	Command Input	
L	Н	L		Н	H	Write Wode	Address Input (4 clock)	
L	L	L		Н	Н	Data Input		
L	L	L	Н	_₽_	Х	Data Output		
Х	Х	Х	Х	Н	Х	During Read (Bu	isy)	
Х	Х	Х	Х	Х	Н	During Program	(Busy)	
Х	Х	Х	Х	Х	Н	During Erase (Busy)		
Χ	X ⁽¹⁾	Χ	Х	Χ	L	Write Protect		
Х	Х	Н	Х	Х	0V/V _{CC} ⁽²⁾	Stand-by		

Note:

- 1. X can be V_{IL} or V_{IH} .
- 2. WP should be biased to CMOS high or CMOS low for stand-by.

Publication Date: Mar. 2014 Revision: 1.1 11/84

Program / Erase Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit
Program Time	t _{PROG}	-	250	700	us
Dummy Busy Time for Cache Program	t _{CBSY}	-	3	700	us
Number of Partial Program Cycles in the Same Page	N _{OP}	-	-	4	Cycle
Block Erase Time	t _{BERS}	-	2	10	ms

Note:

- Typical program time is defined as the time within which more than 50% of the whole pages are programmed at 1.8V V_{CC} and 25°C temperature.
- 2. t_{PROG} is the average program time of all pages. Users should be noted that the program time variation from page to page is possible.
- 3. t_{CBSY} max. time depends on timing between internal program completion and data in.

AC Timing Characteristics for Command / Address / Data Input

Parameter	Symbol	Min.	Max.	Unit
CLE Setup Time	t _{CLS} ⁽¹⁾	25	-	ns
CLE Hold Time	t _{CLH}	10	-	ns
CE Setup Time	t _{CS} ⁽¹⁾	35	-	ns
CE Hold Time	t _{CH}	10	-	ns
WE Pulse Width	t _{WP}	25	-	ns
ALE Setup Time	t _{ALS} ⁽¹⁾	25		ns
ALE Hold Time	t _{ALH}	10		ns
Data Setup Time	t _{DS} ⁽¹⁾	20	-	ns
Data Hold Time	t _{DH}	10	-	ns
Write Cycle Time	t _{WC}	45	-	ns
WE High Hold Time	t _{wH}	15	-	ns
ALE to Data Loading Time	t _{ADL} ⁽²⁾	100	-	ns

Note:

- 1. The transition of the corresponding control pins must occur only once while \overline{WE} is held low.
- 2. t_{ADL} is the time from the \overline{WE} rising edge of final address cycle to the \overline{WE} rising edge of first data cycle.

Publication Date: Mar. 2014

Revision: 1.1 12/84

AC Characteristics for Operation

Parameter	Symbol	Min.	Max.	Unit	
Data Transfer from Cell to Reg	gister	t _R	-	25	us
ALE to RE Delay	t _{AR}	10	-	ns	
CLE to RE Delay		t _{CLR}	10	-	ns
Ready to RE Low		t _{RR}	20	-	ns
RE Pulse Width		t _{RP}	25	-	ns
WE High to Busy		t _{WB}	-	100	ns
WP Low to WE Low (disab	ole mode)		100		20
WP High to WE Low (enal	ole mode)	t _{ww}	100	_	ns
Read Cycle Time		t _{RC}	45	-	ns
RE Access Time		t _{REA}	-	30	ns
CE Access Time		t _{CEA}	-	45	ns
RE High to Output Hi-Z		t _{RHZ}	-	100	ns
CE High to Output Hi-Z		t _{CHZ}	-	30	ns
CE High to ALE or CLE Don'	t care	t _{CSD}	0	-	ns
RE High to Output Hold		t _{RHOH}	15	-	ns
RE Low to Output Hold		t _{RLOH}	5	-	ns
CE High to Output Hold		t _{COH}	15	-	ns
RE High Hold Time		t _{REH}	15		ns
Output Hi-Z to RE Low		t _{IR}	0		ns
RE High to WE Low		t _{RHW}	100		ns
WE High to RE Low	t_{WHR}	60	-	ns	
	Read		-	5	us
Device Resetting Program		t _{RST}	=	10	us
Time during Erase		41.01	-	500	us
		-	5 ⁽¹⁾	us	
Cache Busy in Read Cache (following 31h and 3Fh)		t _{DCBSYR}	-	30	us

Note:

Publication Date: Mar. 2014 Revision: 1.1 13/84

^{1.} If reset command (FFh) is written at Ready state, the device goes into Busy for maximum 5us.

NAND Flash Technical Notes

Mask Out Initial Invalid Block(s)

Initial invalid blocks are defined as blocks that contain one or more initial invalid bits whose reliability is not guaranteed by MIRA. The information regarding the initial invalid block(s) is called as the initial invalid block information. Devices with initial invalid block(s) have the same quality level as devices with all valid blocks and have the same AC and DC characteristics. An initial invalid block(s) does not affect the performance of valid block(s) because it is isolated from the bit line and the common source line by a select transistor. The system design must be able to mask out the initial invalid block(s) via address mapping.

The 1st block, which is placed on 00h block address, is guaranteed to be a valid block up to 1K program/erase cycles with 1 bit/528 bytes ECC.

Identifying Initial Invalid Block(s) and Block Replacement Management

Unpredictable behavior may result from programming or erasing the defective blocks. The under figure illustrates an algorithm for searching factory-mapped defects, and the algorithm needs to be executed prior to any erase or program operations.

A host controller has to scan blocks from block 0 to the last block using page read command and check the data at the column address of 0 or 2,047. If the read data is not FFh, the block is interpreted as an invalid block. The initial invalid block information is erasable, and which is impossible to be recovered once it has been erased. Therefore, the host controller must be able to recognize the initial invalid block information and to create a corresponding table to manage block replacement upon erase or program error when additional invalid blocks develop with Flash memory usage.

Algorithm for Bad Block Scanning


```
For (i=0; i<Num of LUs; i++)
     For (j=0; j<Blocks Per LU; j++)
          Defect_Block_Found=False;
          Read Page(lu=i, block=j, page=0);
          If (Data[coloumn=0]!=FFh)
                                       Defect Block Found=True;
          If (Data[coloumn=First_Byte_of_Spare_Area]!=FFh)
                                                              Defect Block_Found=True;
          Read_Page(lu=i, block=j, page=Page_Per_Block-1);
          If (Data[coloumn=0]!=FFh)
                                       Defect_Block_Found=True;
          If (Data[coloumn=First_Byte_of_Spare_Area]!=FFh)
                                                              Defect_Block_Found=True;
          If (Defect Block Found)
                                       Mark Block as Defective(lu=i, block=j);
     }
}
```

Publication Date: Mar. 2014 Revision: 1.1 14/84

Error in Write or Read operation

Within its lifetime, additional invalid blocks may develop with NAND Flash memory. Refer to the qualification report for the actual data. The following possible failure modes should be considered to implement a highly reliable system. In the case of status read failure after erase or program, block replacement should be done. Because program status fail during a page program does not affect the data of the other pages in the same block, block replacement can be executed with a page-sized buffer by finding an erased empty block and reprogramming the current target data and copying the rest of the replaced block. In case of Read, ECC must be employed. To improve the efficiency of memory space, it is recommended that the read or verification failure due to single bit error be reclaimed by ECC without any block replacement. The additional block failure rate does not include those reclaimed blocks.

	Failure Mode	Detection and Countermeasure sequence
Write	Erase failure	Read Status after Erase → Block Replacement
vviile	Program failure	Read Status after Program → Block Replacement
Read	Single bits failure	Verify ECC → ECC Correction

Note: Error Correcting Code --> Hamming Code etc.

Example: 1bit correction / 528 Byte

Program Flow Chart

Publication Date: Mar. 2014 Revision: 1.1 15/84

Deutron Electronics Corp.

Erase Flow Chart

Publication Date: Mar. 2014 Revision: 1.1 16/84

Block Replacement

Addressing for Program Operation

Within a block, the pages must be programmed consecutively from the LSB (least significant bit) page of the block to MSB (most significant bit) pages of the block. Random page address programming is prohibited. In this case, the definition of LSB page is the LSB among the pages to be programmed. Therefore, LSB page doesn't need to be page 0.

Publication Date: Mar. 2014 Revision: 1.1 17/84

System Interface Using CE Don't Care

For an easier system interface, $\overline{\text{CE}}$ may be inactive during the data-loading or serial access as shown below. The internal 2,112byte data registers are utilized as separate buffers for this operation and the system design gets more flexible. In addition, for voice or audio applications that use slow cycle time on the order of µ-seconds, de-activating \overline{CE} during the data-loading and serial access would provide significant savings in power consumption.

Program / Read Operation with " CE not-care"

Address Information

Data	I/O	Address							
Data In/Out	I/Ox	Col. Add1 Col. Add2 Row Add1 Row Add2							
2,112 Byte	I/O 0 ~ I/O 7	A0 ~ A7	A8 ~ A11	A12 ~ A19	A20 ~ A27				

Publication Date: Mar. 2014

Revision: 1.1 18/84

Timing Diagrams

Command Latch Cycle

Address Latch Cycle

Input Data Latch Cycle

Publication Date: Mar. 2014 Revision: 1.1 19/84

Serial Access Cycle after Read (CLE = L, \overline{WE} = H, ALE = L)

NOTE:

- 1. Dout transition is measured at ±200mV from steady state voltage at I/O with load.
- t_{RHOH} starts to be valid when frequency is lower than 20MHz.

Serial Access Cycle after Read (EDO Type CLE = L, WE = H, ALE = L)

NOTE:

- 1. Transition is measured at +/-200mV from steady state voltage with load. This parameter is sample and not 100% tested. (t_{CHZ} , t_{RHZ})
- t_{RLOH} is valid when frequency is higher than 33MHZ. t_{RHOH} starts to be valid when frequency is lower than 33MHZ.

Status Read Cycle

Publication Date: Mar. 2014 Revision: 1.1 20/84

Read Operation

Read Operation (Intercepted by \overline{CE})

Publication Date: Mar. 2014
Revision: 1.1 21/84

Random Data Output In a Page

NOTE: t_{ADL} is the time from the \overline{WE} rising edge of final address cycle to the \overline{WE} rising edge of the first data cycle.

Publication Date: Mar. 2014 Revision: 1.1 22/84

Page Program Operation with Random Data Input

NOTE: t_{ADL} is the time from the \overline{WE} rising edge of final address cycle to the \overline{WE} rising edge of the first data cycle.

Publication Date: Mar. 2014 Revision: 1.1 23/84

Cache Program Operation

Publication Date: Mar. 2014 Revision: 1.1 24/84

Block Erase Operation

Read ID Operation

Publication Date: Mar. 2014 Revision: 1.1 25/84

ID Definition Table

ID Access command = 90h

1 st Cycle (Maker Code)	2 nd Cycle (Device Code)	3 rd Cycle	4 th Cycle	5 th Cycle
C8h	A1h	80h	15h	40h

	Description
1 st Byte	Maker Code
2 nd Byte	Device Code
3 rd Byte	Internal Chip Number, Cell Type, Number of Simultaneously Programmed Pages, Etc.
4 th Byte	Page Size, Block Size, Redundant Area Size, Organization, Serial Access Minimum
5 th Byte	Plane Number, Plane Size

3rd ID Data

	Description	1/07	I/O6	I/O5	1/04	I/O3	I/O2	I/O1	I/O0
	1							0	0
Internal Chip Number	2							0	1
Internal Chip Number	4							1	0
	8							1	1
Cell Type	2 Level Cell 4 Level Cell 8 Level Cell 16 Level Cell			M		0 0 1 1	0 1 0 1		
Number of Simultaneously Programmed Page	1 2 4 8			0 0 1 1	0 1 0 1				
Interleave Program Between multiple chips	Not Support Support		0 1						
Cache Program	Not Support Support	0 1							

Publication Date: Mar. 2014 Revision: 1.1 26/84

4th ID Data

	Description	1/07	1/06	I/O5	1/04	I/O3	1/02	I/O1	I/O0
	1KB							0	0
Page Size	2KB							0	1
(w/o redundant area)	4KB							1	0
	8KB							1	1
Redundant Area Size	8						0		
(byte/512byte)	16						1		
	64KB			0	0				
Block Size	128KB			0	1				
(w/o redundant area)	256KB			1	0				
	512KB			1	1				
Organization	x8		0						
Organization	x16		1						
	45ns	0				0			
Serial Access Minimum	Reserved	0				1			
20.12.7.100030 14.11.11.11.11	Reserved	1				0			
	Reserved	1				1			

5th ID Data

	Description	1/07	I/O6	I/O5	I/O4	I/O3	1/02	I/O1	I/O0
	1bit ECC/512Bytes							0	0
ECC Level	2bit ECC/512Bytes							0	1
LOO LCVCI	4bit ECC/512Bytes							1	0
	Reserved							1	1
	1					0	0		
Plane Number	2					0	1		
Tidile Number	4					1	0		
	8					1	1		
	64Mb		0	0	0				
	128Mb		0	0	1				
	256Mb		0	1	0				
Plane Size	512Mb		0	1	1				
(w/o redundant area)	1Gb		1	0	0				
	2Gb		1	0	1				
	4Gb		1	1	0				
	8Gb		1	1	1				
Reserved	Reserved	0							

Publication Date: Mar. 2014 Revision: 1.1 27/84

Device Operation

Page Read

Upon initial device power up, the device defaults to Read mode. This operation is also initiated by writing 00h command, four-cycle address, and 30h command. After initial power up, the 00h command can be skipped because it has been latched in the command register. The 2,112Byte of data on a page are transferred to cache registers via data registers within 25us (t_R). Host controller can detect the completion of this data transfer by checking the R/\bar{B} output. Once data in the selected page have been loaded into cache registers, each Byte can be read out in 45ns cycle time by continuously pulsing $R\bar{E}$. The repetitive high-to-low transitions of $R\bar{E}$ clock signal make the device output data starting from the designated column address to the last column address.

The device can output data at a random column address instead of sequential column address by using the Random Data Output command. Random Data Output command can be executed multiple times in a page.

After power up, device is in read mode so 00h command cycle is not necessary to start a read operation.

A page read sequence is illustrated in under figure, where column address, page address are placed in between commands 00h and 30h. After t_R read time, the R/\overline{B} de-asserts to ready state. Host controller can toggle \overline{RE} to access data starting with the designated column address and their successive bytes.

Read Operation

Publication Date: Mar. 2014

Revision: 1.1 28/84

Random Data Output In a Page

Publication Date: Mar. 2014 Revision: 1.1 29/84

Page Program

The device is programmed basically on a page basis, but it does allow multiple partial page programming of a word or consecutive bytes up to 2,112(x8), in a single page program cycle. The number of consecutive partial page programming operation within the same page without an intervening erase operation must not exceed 4 times for a single page. Addressing of page program operations within a block should be in sequential order. A complete page program cycle consists of a serial data input cycle in which up to 2,112byte of data can be loaded into data register via cache register, followed by a programming period during which the loaded data are programmed into the designated memory cells.

The serial data input cycle begins with the Serial Data Input command (80h), followed by a four-cycle address input and then serial data loading. The bytes not to be programmed on the page do not need to be loaded. The column address for the next data can be changed to the address follows Random Data Input command (85h). Random Data Input command may be repeated multiple times in a page. The Page Program Confirm command (10h) starts the programming process. Writing 10h alone without entering data will not initiate the programming process. The internal write engine automatically executes the corresponding algorithm and controls timing for programming and verification, thereby freeing the host controller for other tasks. Once the program process starts, the host controller can detect the completion of a program cycle by monitoring the R/\overline{B} output or reading the Status bit (I/O6) using the Read Status command. Only Read Status and Reset commands are valid during programming. When the Page Program operation is completed, the host controller can check the Status bit (I/O0) to see if the Page Program operation is successfully done. The command register remains the Read Status mode unless another valid command is written to it.

A page program sequence is illustrated in under figure, where column address, page address, and data input are placed in between 80h and 10h. After t_{PROG} program time, the R/ \overline{B} de-asserts to ready state. Read Status command (70h) can be issued right after 10h.

Program & Read Status Operation

Random Data Input In a Page

Publication Date: Mar. 2014 Revision: 1.1 30/84

Cache Program

Cache Program is an extension of Page Program, which is executed with 2,112 bytedata registers, and is available only within a block. Since the device has 1 page of cache memory, serial data input may be executed while data stored in data register are programmed into memory cell.

After writing the first set of data up to 2,112 bytes into the selected cache registers, Cache Program command (15h) instead of actual Page Program (10h) is inputted to make cache registers free and to start internal program operation. To transfer data from cache registers to data registers, the device remains in Busy state for a short period of time (t_{CBSY}) and has its cache registers ready for the next data-input while the internal programming gets started with the data loaded into data registers. Read Status command (70h) may be issued to find out when cache registers become ready by polling the Cache-Busy status bit (I/O6). Pass/fail status of only the previous page is available upon the return to Ready state. When the next set of data is inputted with the Cache Program command, t_{CBSY} is affected by the progress of pending internal programming. The programming of the cache registers is initiated only when the pending program cycle is finished and the data registers are available for the transfer of data from cache registers. The status bit (I/O5) for internal Ready/Busy may be polled to identity the completion of internal programming. If the system monitors the progress of programming only with R/ \overline{B} , the last page of the target programming sequence must be programmed with actual Page Program command (10h).

Cache Program (available only within a block)

Note:

- 1. Since programming the last page does not employ caching, the program time has to be that of Page Program. However, if the previous program cycle with the cache data has not finished, the actual program cycle of the last page is initiated only after completion of the previous cycle, which can be expressed as the following formula.
- 2. t_{PROG} = Program time for the last page + Program time for the (last-1)th page (Program command cycle time + Last page data loading time)

Publication Date: Mar. 2014 Revision: 1.1 31/84

Copy-Back Program

Copy-Back Program is designed to efficiently copy data stored in memory cells without time-consuming data reloading when there is no bit error detected in the stored data. The benefit is particularly obvious when a portion of a block is updated and the rest of the block needs to be copied to a newly assigned empty block. Copy-Back operation is a sequential execution of Read for Copy-Back and of Copy-Back Program with Destination address. A Read for Copy-Back operation with "35h" command and the Source address moves the whole 2.112byte data into the internal buffer. The host controller can detect bit errors by sequentially reading the data output. Copy-Back Program is initiated by issuing Page-Copy Data-Input command (85h) with Destination address. If data modification is necessary to correct bit errors and to avoid error propagation, data can be reloaded after the Destination address. Data modification can be repeated multiple times as shown in under figure. Actual programming operation begins when Program Confirm command (10h) is issued. Once the program process starts, the Read Status command (70h) may be entered to read the status register. The host controller can detect the completion of a program cycle by monitoring the R/B output, or the Status bit (I/O6) of the Status Register. When the Copy-Back Program is complete, the Status Bit (I/O0) may be checked. The command register remains Read Status mode until another valid command is written to it.

Page Copy-Back Program Operation

Page Copy-Back Program Operation with Random Data Input

Publication Date: Mar. 2014 Revision: 1.1

Deutron Electronics Corp.

32/84

Block Erase

The block-based Erase operation is initiated by an Erase Setup command (60h), followed by a two-cycle row address, in which only Plane address and Block address are valid while Page address is ignored. The Erase Confirm command (D0h) following the row address starts the internal erasing process. The two-step command sequence is designed to prevent memory content from being inadvertently changed by external noise. At the rising edge of WE after the Erase Confirm command input, the internal control logic handles erase and erase-verify. When the erase operation is completed, the host controller can check Status bit (I/O0) to see if the erase operation is successfully done. The under figure illustrates a block erase sequence, and the address input (the first page address of the selected block) is placed in between commands 60h and D0h. After t_{BERS} erase time, the R/B de-asserts to ready state. Read Status command (70h) can be issued right after D0h to check the execution status of erase operation.

Block Erase Operation

Read Status

A status register on the device is used to check whether program or erase operation is completed and whether the operation is completed successfully. After writing 70h command to the command register, a read cycle outputs the content of the status register to I/O pins on the falling edge of \overline{CE} or \overline{RE} whichever occurs last. The command allows the system to poll the progress of each device in multiple memory connections even when R/B pins are common-wired. RE or CE does not need to toggle for status change.

Read Status command 70h is used to retrieve operating status of commands like page read, page program and block erase.

The command register remains in Read Status mode unless other commands are issued to it. Therefore, if the status register is read during a random read cycle, a read command (00h) is needed to start read cycles.

Status Register Definition for 70h Command

I/O	Page Program	Block Erase	Read	Cache Read	Definition
1/00	Pass / Fail	Pass / Fail	NA	NA	Pass: 0 Fail: 1
I/O1	NA	NA	NA	NA	Don't cared
I/O2	Pass/Fail (for OTP)	NA	NA	NA	Don't cared
I/O3	NA	NA	NA	NA	Don't cared
I/O4	NA	NA	NA	NA	Don't cared
I/O5	NA	NA	NA	True Ready / Busy	Busy: 0 Ready: 1
I/O6	Ready / Busy	Ready / Busy	Ready / Busy	Ready / Busy	Busy: 0 Ready: 1
1/07	Write Protect	Write Protect	Write Protect	Write Protect	Protected: 0 Not Protected: 1

Note: I/Os defined 'NA' are recommended to be masked out when Read Status is being executed.

Publication Date: Mar. 2014

Deutron Electronics Corp. Revision: 1.1 33/84

Read ID

The device contains a product identification mode, initiated by writing 90h to the command register, followed by an address input of 00h. Four read cycles sequentially output the manufacturer code (C8h), and the device code and 3rd, 4th, 5th cycle ID respectively. The command register remains in Read ID mode until further commands are issued to it.

Read ID Operation

ID Definition Table

1 st Cycle (Maker Code)	2 nd Cycle (Device Code)	3 rd Cycle	4 th Cycle	5 th Cycle
C8h	A1h	80h	15h	40h

Reset

The device offers a reset feature, executed by writing FFh to the command register. When the device is in Busy state during random read, program or erase mode, the reset operation will abort these operations. The contents of memory cells being altered are no longer valid, as the data will be partially programmed or erased. The command register is cleared to wait for the next command, and the Status Register is cleared to value C0h when \overline{WP} is high. If the device is already in reset state a new reset command will be accepted by the command register. The R/ \overline{B} pin changes to low for t_{RST} after the Reset command is written. Refer to the figure below.

Reset Operation

Device Status Table

	After Power-up	After Reset
Operation Mode	00h Command is latched	Waiting for next command

Publication Date: Mar. 2014
Revision: 1.1 34/84

Cache Read

Cache Read is an extension of Page Read, and is available only within a block. The normal Page Read command (00h-30h) is always issued before invoking Cache Read. After issuing the Cache Read command (31h), read data of the designated page (page N) are transferred from data registers to cache registers in a short time period of t_{DCBSYR}, and then data of the next page (page N+1) is transferred to data registers while the data in the cache registers are being read out. Host controller can retrieve continuous data and achieve fast read performance by iterating Cache Read operation. The Read Start for Last Page Cache Read command (3Fh) is used to complete data transfer from memory cells to data registers.

Read Operation with Cache Read

Publication Date: Mar. 2014

Revision: 1.1 35/84

Ready / Busy

The device has a R/\overline{B} output that provides a hardware method of indicating the completion of a page program, erase and random read completion. The R/\overline{B} pin is normally high but transition to low after program or erase command is written to the command register or random read is started after address loading. It returns to high when the internal controller has finished the operation. The pin is an open-drain driver thereby allowing two or more R/\overline{B} outputs to be Or-tied. Because pull-up resistor value is related to tr (R/\overline{B}) and current drain during busy (ibusy), an appropriate value can be obtained with the following reference chart. Its value can be determined by the following guidance.

Ready/ Busy Pin Electrical Specifications

Rp value guidence

$$Rp (min) = \frac{Vcc (Max.) - Vol (Max.)}{Iol + \sum IL} = \frac{1.85 \text{ V}}{3 \text{ mA} + \sum IL}$$

where IL is the sum of the iput currents of all devices tied to the R/\overline{B} pin. Rp(max) is determined by maximum permissible limit of tr

Publication Date: Mar. 2014 Revision: 1.1 36/84

Data Protection & Power Up Sequence

The timing sequence shown in the figure below is necessary for the power-on/off sequence.

The device internal initialization starts after the power supply reaches an appropriate level in the power on sequence. During the initialization the device R/\bar{B} signal indicates the Busy state as shown in the figure below. In this time period, the acceptable commands are 70h.

The WP signal is useful for protecting against data corruption at power on/off.

AC Waveforms for Power Transition

Write Protect Operation

Enabling WP during erase and program busy is prohibited. The erase and program operations are enabled and disabled as follows:

Enable Programming

NOTE: WP keeps "High" until programming finish.

Publication Date: Mar. 2014 Revision: 1.1 37/84

Disable Programming

Enable Erasing

NOTE: WP keeps "High" until erasing finish.

Disable Erasing

Publication Date: Mar. 2014 Revision: 1.1 38/84

Deutron Electronics Corp.

One-Time Programmable (OTP) Operations

This flash device offers one-time programmable memory area. Thirty full pages of OTP data are available on the device, and the entire range is guaranteed to be good. The OTP area is accessible only through OTP commands.

The OTP area leaves the factory in an unwritten state. The OTP area cannot be erased, whether it is protected or not. Protecting the OTP area prevents further programming of that area.

The OTP area is only accessible while in OTP operation mode. To set the device to OTP operation mode, issue the Set Feature (EFh-90h-01h) command. When the device is in OTP operation mode, subsequent Read and/or Page Program are applied to the OTP area. When you want to come back to normal operation, you need to use EFh-90h-00h for OTP mode release. Otherwise, device will stay in OTP mode.

To program an OTP page, issue the Serial Data Input (80h) command followed by 4 address cycles. The first two address cycles are column address that must be set as 00h. For the third cycle, select a page in the range of 01h through 1Eh. The fourth cycle is fixed at 00h. Next, up to 2,112 bytes of data can be loaded into data register. The bytes other than those to be programmed do not need to be loaded. Random Data Input (85h) command in this device is prohibited. The Page Program confirm (10h) command initiates the programming process. The internal control logic automatically executes the programming algorithm, timing and verification. Please note that no partial-page program is allowed in the OTP area. In addition, the OTP pages must be programmed in the ascending order. A programmed OTP page will be automatically protected.

Similarly, to read data from an OTP page, set the device to OTP operation mode and then issue the Read (00h-30h) command. The device may output random data (not in sequential order) in a page by writing Random Data Output (05h-E0h) command, which can be operated multiple times in a page. The column address for the next data to be output may be changed to the address follows the Random Data Output command.

All pages in the OTP area will be protected simultaneously by issuing the Set Feature (EFh-90h-03h) command to set the device to OTP protection mode. After the OTP area is protected, no page in the area is programmable and the whole area cannot be unprotected.

The Read Status (70h) command is the only valid command for reading status in OTP operation mode.

OTP Modes and Commands

	Set fe	Command	
OTP Operation mode	Read	EFh-90h ¹ -01h ²	00h-30h
orr operation mode	Page Program	EFh-90h-01h	80h-10h
OTP Protection mode	Program Protect	EFh-90h-03h	80h-10h
OTP Release mode	Leave OTP mode	EFh-90h-00h	

NOTE:

- 1. 90h is OTP status register address.
- 2. 00h, 01h and 03h are OTP status register data values.

OTP Area Details

Description	Value
Number of OTP pages	30
OTP page address	01h – 1Eh
Number of partial page programs for each page in the OTP area	1

Deutron Electronics Corp. Publication Date: Mar. 2014

Revision: 1.1 39/84

Mobile DDR SDRAM Memory Operation

Publication Date: Mar. 2014 Revision: 1.1 40/84

Absolute Maximum Rating

Parameter	Symbol	Value	Unit
Voltage on any pin relative to V _{SS}	V_{IN}, V_{OUT}	-0.5 ~ 2.7	V
Voltage on V _{DD} supply relative to V _{SS}	V_{DD}	-0.5 ~ 2.7	V
Voltage on V_{DDQ} supply relative to V_{SS}	V_{DDQ}	-0.5 ~ 2.7	V
Operating ambient temperature	T _A	-25 ~ +85	°C
Storage temperature	T _{STG}	-55 ~ + 150	°C
Power dissipation	P _D	1.0	W
Short circuit current	los	50	mA

Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.

Functional operation should be restricted to recommend operation condition.

Exposure to higher than recommended voltage for extended periods of time could affect device reliability.

DC Operation Condition & Specifications

DC Operation Condition

Recommended operating conditions (Voltage reference to V_{SS} = 0V)

Symbol Min Parameter Max Unit Note 1.95 V Supply voltage 1.7 V_{DD} 1.7 1.95 V I/O Supply voltage V_{DDQ} ٧ Input logic high voltage (for Address and Command) V_{IH} (DC) $0.8 \times V_{DDQ}$ $V_{DDQ} + 0.3$ V_{IL} (DC) V Input logic low voltage (for Address and Command) -0.3 $0.2 \times V_{DDQ}$ Input logic high voltage (for DQ, DM, DQS) V_{IHD} (DC) $0.7 \times V_{DDQ}$ $V_{DDQ} + 0.3$ ٧ V_{ILD} (DC) V Input logic low voltage (for DQ, DM, DQS) -0.3 $0.3 \times V_{DDQ}$ ٧ Output logic high voltage V_{OH} (DC) $0.9 \times V_{DDQ}$ $I_{OH} = -0.1 \text{mA}$ V Output logic low voltage V_{OL} (DC) $0.1 \times V_{DDQ}$ $I_{OL} = 0.1 \text{mA}$ V_{IN} (DC) -0.3 $V_{DDQ} + 0.3$ V Input Voltage Level, CLK and CLK inputs $V_{ID}(DC)$ $0.4 \times V_{DDO}$ $V_{DDQ} + 0.6$ 1 Input Differential Voltage, CLK and CLK inputs Input leakage current I_{\parallel} -2 2 μA Output leakage current I_{OZ} -5 5 μA

Note:

Deutron Electronics Corp.

Publication Date: Mar. 2014

Revision: 1.1 41/84

^{1.} V_{ID} is the magnitude of the difference between the input level on CLK and the input level on $\overline{\text{CLK}}$.

DC Characteristics Recommended operating condition (Voltage reference to V_{SS} = 0V)

Parameter	Symbol	Test Condition		Version -5	Unit
Operating Current (One Bank Active)	I _{DD0}	t_{RC} = t_{RC} (min); t_{CK} = t_{CK} (min); CKE = H \overline{CS} = HIGH between valid commands; are SWITCHING; data input signals are	address inputs	35	mA
Precharge Standby	I _{DD2P}	All banks idle, CKE = LOW; CS = HIG (min); address & control inputs are SW input signals are STABLE		300	μ Α
power-down mode	I _{DD2PS}	All banks idle, CKE = LOW; \overline{CS} = HIG \overline{CLK} = HIGH; address & control inputs SWITCHING; data input signals are ST	are	300	μ A
	I _{DD2N}	All banks idle, CKE = HIGH; CS = HIG (min); address & control inputs are SWI input signals are STABLE		9	mA
Precharge Standby Current in non power-down mode	Precharge Standby Current in non All banks idle, CKE = HIGH; CS = HIGH, CLK = LOV				mA
Active Standby	I _{DD3P}	One bank active, CKE = LOW; $\overline{\text{CS}}$ = H t_{CK} = t_{CK} (min); address & control inputs SWITCHING; data input signals are ST	s are	4	mA
Current in power-down mode	I _{DD3PS}	One bank active, CKE = LOW; \overline{CS} = FCLK = LOW, \overline{CLK} = HIGH; address & are SWITCHING; data input signals are	4	mA	
Active Standby Current	I _{DD3N}	One bank active, CKE = HIGH, \overline{CS} = t_{CK} = t_{CK} (min); address & control inputs SWITCHING; data input signals are ST	s are	25	mA
in non power-down mode (One Bank Active)	I _{DD3NS}	One bank active, CKE = HIGH; $\overline{\text{CS}}$ = CLK= LOW, $\overline{\text{CLK}}$ = HIGH; address & are SWITCHING; data input signals are	control inputs	4	mA
Operating Current	I _{DD4R}	One bank active; BL=4; CL=3; t_{CK} = t_{CK} continuous read bursts; l_{OUT} = 0 mA; ad SWITCHING; 50% data changing each	dress inputs are	100	mA
Operating Current (Burst Mode)	I _{DD4W}	One bank active; BL=4; t_{CK} = t_{CK} (min); write bursts; l_{OUT} = 0 mA; address inpu SWITCHING; 50% data changing each	100	mA	
Auto Refresh	$I_{DD5} \qquad \text{Burst refresh; } t_{CK} = t_{CK} \text{ (min);} \qquad t_{RFC} = t_{RFC} \text{(min)}$ Auto Refresh $CKE = HIGH; \text{ address inputs are}$		60	mA	
Current	I _{DD5A}	SWITCHING; data input signals are STABLE	t _{RFC} = t _{REFI}	9	mA

Publication Date: Mar. 2014 Deutron Electronics Corp. Revision: 1.1 42/84

			TCSR range	45	75	°C
	CKE = LOW, CLK = LOW, CLK = HIGH; EMRS set to all	Full array	280	350	μ A	
Self Refresh Current		·	1/2 array	250	300	μ A
Sell Reliesh Current	I _{DD6}	0's; address & control & data bus inputs are STABLE	1/4 array	230	270	μ A
	inputs are STABLE		1/8 array	200	250	μ A
		1/16 array	180	240	μ A	
Deep Power Down Current	I _{DD8}	address & control & data inputs an	1	0	μ A	

Note: 1. Input slew rate is 1V/ns.

- 2. IDD specifications are tested after the device is properly initialized.
- 3. Definitions for IDD: LOW is defined as V $_{IN} \le 0.1 * V _{DDQ}$;

HIGH is defined as V_{IN} ≥ 0.9 * V_{DDQ};

STABLE is defined as inputs stable at a HIGH or LOW level;

SWITCHING is defined as: - address and command: inputs changing between HIGH and LOW once per two clock cycles;

> - data bus inputs: DQ changing between HIGH and LOW once per clock cycle; DM and DQS are STABLE.

AC Operation Conditions & Timing Specification AC Operation Conditions

Parameter	Symbol	Min	Max	Unit	Note
Input High (Logic 1) Voltage, DQ, DQS and DM signals	V _{IHD} (AC)	0.8 x V _{DDQ}	V _{DDQ} +0.3	V	
Input Low (Logic 0) Voltage, DQ, DQS and DM signals	V _{ILD} (AC)	-0.3	$0.2 \times V_{DDQ}$	V	
Input Differential Voltage, CLK and CLK inputs	V _{ID} (AC)	0.6 x V _{DDQ}	V _{DDQ} +0.6	V	1
Input Crossing Point Voltage, CLK and CLK inputs	V _{IX} (AC)	0.4 x V _{DDQ}	$0.6 \times V_{DDQ}$	V	2

Note: 1. V_{ID} is the magnitude of the difference between the input level on CLK and the input on $\overline{\text{CLK}}$.

Input / Output Capacitance

 $(V_{DD} = 1.8V, V_{DDQ} = 1.8V, T_A = 25 \,^{\circ}C, f = 1MHz)$

Parameter	Symbol	Min	Max	Unit
Input capacitance (A0~A12, BA0~BA1, CKE, \overline{CS} , \overline{RAS} , \overline{CAS} , \overline{WE}_D)	C _{IN1}	2	5	pF
Input capacitance (CLK, CLK)	C _{IN2}	4	7	pF
Data & DQS input/output capacitance	Соит	2	7	pF
Input capacitance (DM)	C _{IN3}	2	6	pF

Publication Date: Mar. 2014 Deutron Electronics Corp. Revision: 1.1 43/84

^{2.} The value of VIX is expected to equal 0.5*VDDQ of the transmitting device and must track variations in the DC level of the same.

AC Operating Test Conditions (V_{DD} = 1.7V~ 1.95V)

Parameter	Value	Unit
Input signal minimum slew rate	1.0	V/ns
Input levels (V _{IH} /V _{IL})	$0.8 \times V_{DDQ} / 0.2 \times V_{DDQ}$	V
Input timing measurement reference level	0.5 x V _{DDQ}	V
Output timing measurement reference level	0.5 x V _{DDQ}	V

AC Timing Parameter & Specifications $(V_{DD} = 1.7V \sim 1.95V, V_{DDQ} = 1.7V \sim 1.95V)$

(V _{DD} = 1.7V~1.95V, V _{DDQ} =1.7V~1.95V) Parameter	Symbol	-	Unit	Note	
Parameter	Syllibol	min	max	Ullit	Note
Clock Period	tск	5	100	ns	12
Access time from CLK/ CLK	t _{AC}	2	5	ns	
CLK high-level width	t _{CH}	0.45	0.55	t _{CK}	
CLK low-level width	t _{CL}	0.45	0.55	t _{CK}	
Data strobe edge to clock edge	t _{DQSCK}	2	5	ns	
Clock to first rising edge of DQS delay	t _{DQSS}	0.75	1.25	t _{CK}	
Data-in and DM setup time (to DQS) (fast slew rate)	t _{DS}	0.48		ns	13,14, 15
Data-in and DM hold time (to DQS) (fast slew rate)	t _{DH}	0.48	IIR.	ns	13,14, 15
Data-in and DM setup time (to DQS) (slow slew rate)	t _{DS}	0.58		ns	13,14, 16
Data-in and DM hold time (to DQS) (slow slew rate)	t _{DH}	0.58		ns	13,14, 16
DQ and DM input pulse width (for each input)	t _{DIPW}	1.8		ns	17
Input setup time (fast slew rate)	t _{IS}	0.9		ns	15,18
Input hold time (fast slew rate)	t _{IH}	0.9		ns	15,18
Input setup time (slow slew rate)	t _{IS}	1.1		ns	16,18
Input hold time (slow slew rate)	t _{IH}	1.1		ns	16,18
Control and Address input pulse width	t _{IPW}	2.3		ns	17
DQS input high pulse width	t _{DQSH}	0.4		tcĸ	
DQS input low pulse width	t _{DQSL}	0.4		tcĸ	
DQS falling edge to CLK rising-setup time	t _{DSS}	0.2		t _{CK}	
DQS falling edge from CLK rising-hold time	t _{DSH}	0.2		t _{CK}	

Publication Date: Mar. 2014

Revision: 1.1 44/84 **AC Timing Parameter & Specifications-continued**

Parameter	Symbol		5	Unit	Note	
Farameter	Symbol	min	max	Oilit	Note	
Data strobe edge to output data edge	t _{DQSQ}		0.4	ns	20	
Data-out high-impedance window from CLK/ CLK	t _{HZ}		5	ns	19	
Data-out low-impedance window from CLK/ $\overline{\text{CLK}}$	t _{LZ}	1.0		ns	19	
Half Clock Period	t _{HP}	t _{CL} min or t _{CH} min		ns	10,11	
DQ-DQS output hold time	t _{QH}	t _{HP} - t _{QHS}		ns	11	
Data hold skew factor	t _{QHS}		0.5	ns	11	
ACTIVE to PRECHARGE command	t _{RAS}	40	70K	ns		
Row Cycle Time	t _{RC}	55		ns		
AUTO REFRESH Row Cycle Time	t _{RFC}	72		ns		
ACTIVE to READ,WRITE delay	t _{RCD}	15		ns		
PRECHARGE command period	t _{RP}	15		ns		
Minimum t _{CKE} High/Low time	t _{CKE}	1		t _{CK}		
ACTIVE bank A to ACTIVE bank B command	t _{RRD}	10		ns		
WRITE recovery time	t _{WR}	15		ns		
Write data in to READ command delay	t _{WTR}	2		t _{CK}		
Col. Address to Col. Address delay	t _{CCD}	1		t _{CK}		
Refresh period	t _{REF}		64	ms		
Average periodic refresh interval	t _{REFI}		7.8	μS	9	
Write preamble	t _{WPRE}	0.25		tcĸ		
Write postamble	t _{WPST}	0.4	0.6	tcĸ	22	
DQS read preamble	t _{RPRE}	0.9	1.1	tcĸ	23	
DQS read postamble	t _{RPST}	0.4	0.6	t _{CK}		
Clock to DQS write preamble setup time	t _{WPRES}	0		ns	21	
Load Mode Register / Extended Mode register cycle time	t _{MRD}	2		t _{CK}		
Exit self refresh to first valid command	t _{XSR}	80		ns	24	
Exit power-down mode to first valid command	t _{XP}	25		ns	25	
Auto precharge write recovery + Precharge time	t _{DAL}	(t _{WR} /t _{CK}) + (t _{RP} /t _{CK})		ns	26	

Notes:

- 1. All voltages referenced to V_{SS}.
- 2. All parameters assume proper device initialization.
- 3. Tests for AC timing may be conducted at nominal supply voltage levels, but the related specifications and device operation are guaranteed for the full voltage and temperature range specified.
- 4. The circuit shown below represents the timing reference load used in defining the relevant timing parameters of the part. It is not intended to be either a precise representation of the typical system environment nor a depiction of the actual load presented by a

Publication Date: Mar. 2014 Revision: 1.1 45/84 production tester. System designers will use IBIS or other simulation tools to correlate the timing reference load to system environment. Manufacturers will correlate to their production test conditions (generally a coaxial transmission line terminated at the tester electronics). For the half strength driver with a nominal 10 pF load parameters t_{AC} and t_{QH} are expected to be in the same range. However, these parameters are not subject to production test but are estimated by design / characterization. Use of IBIS or other simulation tools for system design validation is suggested.

- 5. The CLK/ CLK input reference voltage level (for timing referenced to CLK/ CLK) is the point at which CLK and CLK cross; the input reference voltage level for signals other than CLK/ CLK is V_{DDQ}/2.
- 6. The timing reference voltage level is $V_{DDO}/2$.
- 7. AC and DC input and output voltage levels are defined in AC/DC operation conditions.
- 8. A CLK/ CLK differential slew rate of 2.0 V/ns is assumed for all parameters.
- 9. A maximum of eight consecutive AUTO REFRESH commands (with t_{RFC}(min)) can be posted to any given Mobile DDR, meaning that the maximum absolute interval between any AUTO REFRESH command and the next AUTO REFRESH command is 8 x t_{RFFI}.
- 10. Refer to the smaller of the actual clock low time and the actual clock high time as provided to the device.
- 11. t_{QH} = t_{HP} t_{QHS}, where t_{HP} = minimum half clock period for any given cycle and is defined by clock high or clock low (t_{CL}, t_{CH}). t_{QHS} accounts for 1) the pulse duration distortion of on-chip clock circuits; and 2) the worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are, separately, due to data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers.
- 12. The only time that the clock frequency is allowed to change is during power-down or self-refresh modes.
- 13. The transition time for DQ, DM and DQS inputs is measured between $V_{IL}(DC)$ to $V_{IH}(AC)$ for rising input signals, and $V_{IH}(DC)$ to $V_{IL}(AC)$ for falling input signals.
- 14. DQS, DM and DQ input slew rate is specified to prevent double clocking of data and preserve setup and hold times. Signal transitions through the DC region must be monotonic.
- 15. Input slew rate ≥ 1.0 V/ns.
- 16. Input slew rate ≥ 0.5 V/ns and < 1.0 V/ns.
- 17. These parameters guarantee device timing but they are not necessarily tested on each device.
- 18. The transition time for address and command inputs is measured between V_{IH} and V_{IL} .
- 19. t_{HZ} and t_{LZ} transitions occur in the same access time windows as valid data transitions. These parameters are not referred to a specific voltage level, but specify when the device is no longer driving (HZ), or begins driving (LZ).
- 20. t_{DQSQ} consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers for any given cycle.
- 21. The specific requirement is that DQS be valid (HIGH, LOW, or some point on a valid transition) on or before the corresponding CK edge. A valid transition is defined as monotonic and meeting the input slew rate specifications of the device. When no writes were previously in progress on the bus, DQS will be transitioning from Hi-Z to logic LOW. If a previous write was in progress, DQS could be HIGH, LOW, or transitioning from HIGH to LOW at this time, depending on t_{DQSS}.
- 22. The maximum limit for this parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) will degrade accordingly.
- 23. A low level on DQS may be maintained during High-Z states (DQS drivers disabled) by adding a weak pull-down element in the system. It is recommended to turn off the weak pull-down element during read and write bursts (DQS drivers enabled).
- 24. There must be at least two clock pulses during the t_{XSR} period.
- 25. There must be at least one clock pulse during the t_{XP} period.
- 26. Minimum 3 clocks of t_{DAL} (= t_{WR} + t_{RP}) is required because it need minimum 2 clocks for t_{WR} and minimum 1 clock for t_{RP}. t_{DAL} = (t_{WR}/t_{CK}) + (t_{RP}/t_{CK}): for each of the terms above, if not already an integer, round to the next higher integer.

Publication Date: Mar. 2014 Revision: 1.1 46/84

Command Truth Table

COMMAND			CKEn-1	CKEn	cs	RAS	CAS	WED	DM	BA0,1	A10/AP	A12~A11, A9~A0	Note
Register	Extende	ed MRS	Н	Х	L	L	L	L	Х	OP CODE		E	1,2
Register	Mode Re	gister Set	Н	Χ	L	L	L	L	Х		OP COE	E	1,2
	Auto R	efresh	Н	Н	L	L	L	Н	X		Х		3
Refresh		Entry	П	L	L	_	_	П			^		3
rtellesii	Self Refresh	Exit	L	Н	L	Н	Ι	Н	Х		Х		3
		LXII	_	'''	Η	Χ	Χ	Χ	^		Λ		3
Bank	Active & Row	Addr.	Н	Х	L	L	Н	Н	Х	V	Row	Address	
Read & Column	Auto Precha	arge Disable	Н	×	L	Н	L	Н	X	V	L	Column Address	4
Address	Auto Precha	arge Enable	П	^	L	П	L	П	^	V	Н	(A0~A8)	4
Write &	Auto Precha	arge Disable	1.1			- 11			W	٧	L	Column	4,8
Column Address	Auto Precha	arge Enable	Н	Х	L	Н	L	L	V	V	Н	Address (A0~A8)	4,6,8
		Entry	Н	L	L	Н	Н	L	Х				
Deep Power	Deep Power Down Mode				Н	Х	Х	Х			Χ		
		Exit	L	Н	L	Н	Н	Н	X				
Е	Burst Terminate	9	Н	Х	L	Н	Н	L	Х		Х		7
Drackerse	Bank S	election	4				Н		Х	V	L	V	
Precharge	All B	anks	H	Х	L	L	H	L	Χ	X	Н	X	5
		Entry	Н		Н	X	X	X	X				
Active Power	r Down Mode	Lind y			L	H	H	Н		H	Х		
	20111111000	Exit		Н	Н	X	Х	Х	Х		, , ,		
					L	Н	Н	Н					
	Entry		Н	L	Н	Х	Х	Х	X				
_	Power Down	- ,			L	Н	Н	Н			X		
Mc	ode	Exit	L	Н	Н	Х	Х	Х	Х				
					L	Н	Н	Н					
	Deselect (NOP	<u> </u>	Н	Х	H	X	X	X	Х		Х		
No	Operation (NO	OP)			L	Н	Н	Н					

(V = Valid, X = Don't Care, H = Logic High, L = Logic Low)

Notes:

- 1. OP Code: Operand Code. A0~ A12 & BA0~BA1: Program keys. (@EMRS/MRS)
- 2. EMRS/MRS can be issued only at all banks precharge state.
 - A new command can be issued 2 clock cycles after EMRS or MRS.
- 3. Auto refresh functions are same as the CBR refresh of DRAM.
 - The automatical precharge without row precharge command is meant by "Auto".
 - Auto/self refresh can be issued only at all banks precharge state.
- 4. BA0~BA1: Bank select addresses.
 - If both BA0 and BA1 are "Low" at read, write, row active and precharge, bank A is selected.
 - If BA0 is "High" and BA1 is "Low" at read, write, row active and precharge, bank B is selected.
 - If BA0 is "Low" and BA1 is "High" at read, write, row active and precharge, bank C is selected.
- If both BA0 and BA1 are "High" at read, write, row active and precharge, bank D is selected.

 5. If A10/AP is "High" at row precharge, BA0 and BA1 are ignored and all banks are selected.
- 6. New row active of the associated bank can be issued at t_{RP} after end of burst.
- 7. Burst Terminate command is valid at every burst length.
- 8. DM and Data-in are sampled at the rising and falling edges of the DQS. Data-in byte are masked if the corresponding and coincident DM is "High". (Write DM latency is 0).

Publication Date: Mar. 2014 Revision: 1.1 47/84

Basic Functionality

Power-Up and Initialization Sequence

The following sequence is required for POWER UP and Initialization.

- 1. Apply power and attempt to maintain CKE at a high state (all other inputs may be undefined.)
- Apply V_{DD} before or at the same time as V_{DDQ}.
- 2. Start clock and maintain stable condition for a minimum.
- 3. The minimum of 200us after stable power and clock (CLK, $\overline{\text{CLK}}$), apply NOP.
- 4. Issue precharge commands for all banks of the device.
- 5. Issue 2 or more auto-refresh commands.
- 6. Issue mode register set command to initialize the mode register.
- 7. Issue extended mode register set command to set PASR and DS.

Publication Date: Mar. 2014 Revision: 1.1 48/84

Mode Register Definition

Mode Register Set (MRS)

The mode register stores the data for controlling the various operating modes of Mobile DDR SDRAM. It programs \overline{CAS} latency, addressing mode, burst length and various vendor specific options to make Mobile DDR SDRAM useful for variety of different applications. The default value of the register is not defined, therefore the mode register must be written in the power up sequence of Mobile DDR SDRAM. The mode register is written by asserting low on \overline{CS} , \overline{RAS} , \overline{CAS} , \overline{WED} and BA0~BA1 (The Mobile DDR SDRAM should be in all bank precharge with CKE already high prior to writing into the mode register). The state of address pins A0~A12 in the same cycle as \overline{CS} , \overline{RAS} , \overline{CAS} , \overline{WED} and BA0~BA1 going low is written in the mode register. Two clock cycles are requested to complete the write operation in the mode register. The mode register contents can be changed using the same command and clock cycle requirements during operation as long as all banks are in the idle state. The mode register is divided into various fields depending on functionality. The burst length uses A0~A2, addressing mode uses A3, \overline{CAS} latency (read latency from column address) uses A4~A6. A7~A12 is used for test mode. A7~A12 must be set to low for normal MRS operation. Refer to the table for specific codes for various burst length, addressing modes and \overline{CAS} latencies.

^{*} BA0~BA1 and A12~A7 should stay "0" during MRS cycle

Publication Date: Mar. 2014 Revision: 1.1 49/84 **Burst Address Ordering for Burst Length**

Burst	St	_	Colur	nn	Burst Address Ordering for Burst	
Length	A3	Add A2	ress A1	Α0	Sequential Mode	Interleave Mode
	Α3	72	Α.	0	0, 1	0, 1
2				1	1, 0	1, 0
			0	0	0, 1, 2, 3	0, 1, 2, 3
			0	1	1, 2, 3, 0	1, 0, 3, 2
4			1	0	2, 3, 0, 1	2, 3, 0, 1
			1	1	3, 0, 1, 2	3, 2, 1, 0
		0	0	0	0, 1, 2, 3, 4, 5, 6, 7	0, 1, 2, 3, 4, 5, 6, 7
		0	0	1	1, 2, 3, 4, 5, 6, 7, 0	1, 0, 3, 2, 5, 4, 7, 6
		0	1	0	2, 3, 4, 5, 6, 7, 0, 1	2, 3, 0, 1, 6, 7, 4, 5
8		0	1	1	3, 4, 5, 6, 7, 0, 1, 2	3, 2, 1, 0, 7, 6, 5, 4
U		1	0	0	4, 5, 6, 7, 0, 1, 2, 3	4, 5, 6, 7, 0, 1, 2, 3
		1	0	1	5, 6, 7, 0, 1, 2, 3, 4	5, 4, 7, 6, 1, 0, 3, 2
		1	1	0	6, 7, 0, 1, 2, 3, 4, 5	6, 7, 4, 5, 2, 3, 0, 1
		1	1	1	7, 0, 1, 2, 3, 4, 5, 6	7, 6, 5, 4, 3, 2, 1, 0
	0	0	0	0	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
	0	0	0	1	1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 0	1, 0, 3, 2, 5, 4, 7, 6, 9, 8, B, A, D, C, F, E
	0	0	1	0	2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 0, 1	2, 3, 0, 1, 6, 7, 4, 5, A, B, 8, 9, E, F, C, D
	0	0	1	1	3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 0, 1, 2	3, 2, 1, 0, 7, 6, 5, 4, B, A, 9, 8, F, E, D, C
	0	1	0	0	4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 0, 1, 2, 3	4, 5, 6, 7, 0, 1, 2, 3, C, D, E, F, 8, 9, A, B
	0	1	0	1	5, 6, 7, 8, 9, A, B, C, D, E, F, 0, 1, 2, 3, 4	5, 4, 7, 6, 1, 0, 3, 2, D, C, F, E, 9, 8, B, A
	0	1	1	0	6, 7, 8, 9, A, B, C, D, E, F, 0, 1, 2, 3, 4, 5	6, 7, 4, 5, 2, 3, 0, 1, E, F, C, D, A, B, 8, 9
16	0	1	1	1	7, 8, 9, A, B, C, D, E, F, 0, 1, 2, 3, 4, 5, 6	7, 6, 5, 4, 3, 2, 1, 0, F, E, D, C, B, A, 9, 8
10	1	0	0	0	8, 9, A, B, C, D, E, F, 0, 1, 2, 3, 4, 5, 6, 7	8, 9, A, B, C, D, E, F, 0, 1, 2, 3, 4, 5, 6, 7
	1	0	0	1	9, A, B, C, D, E, F, 0, 1, 2, 3, 4, 5, 6, 7, 8	9, 8, B, A, D, C, F, E, 1, 0, 3, 2, 5, 4, 7, 6
	1	0	1	0	A, B, C, D, E, F, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9	A, B, 8, 9, E, F, C, D, 2, 3, 0, 1, 6, 7, 4, 5
	1	0	1	1	B, C, D, E, F, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A	B, A, 9, 8, F, E, D, C, 3, 2, 1, 0, 7, 6, 5, 4
	1	1	0	0	C, D, E, F, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B	C, D, E, F, 8, 9, A, B, 4, 5, 6, 7, 0, 1, 2, 3
	1	1	0	1	D, E, F, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C	D, C, F, E, 9, 8, B, A, 5, 4, 7, 6, 1, 0, 3, 2
	1	1	1	0	E, F, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D	E, F, C, D, A, B, 8, 9, 6, 7, 4, 5, 2, 3, 0, 1
	1	1	1	1	F, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E	F, E, D, C, B, A, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0

Publication Date: Mar. 2014 Revision: 1.1 50/84

Extended Mode Register Set (EMRS)

The extended mode register stores for selecting PASR and DS. The extended mode register set must be done before any active command after the power up sequence. The extended mode register is written by asserting low on \overline{CS} , \overline{RAS} , \overline{CAS} , \overline{WED} , BA0 and high on BA1 (The Mobile DDR SDRAM should be in all bank precharge with CKE already high prior to writing into the extended more register). The state of address pins A0~An in the same cycle as \overline{CS} , \overline{RAS} , \overline{CAS} , \overline{WED} going low is written in the extended mode register. Refer to the table for specific codes.

The extended mode register can be changed by using the same command and clock cycle requirements during operations as long as all banks are in the idle state.

Internal Temperature Compensated Self Refresh (TCSR)

- 1. In order to save power consumption, Mobile DDR SDRAM includes the internal temperature sensor and control units to control the self refresh cycle automatically according to the device temperature.
- 2. If the EMRS for external TCSR is issued by the controller, this EMRS code for TCSR is ignored.

^{*} BA0 and A12~ A8 should stay "0" during EMRS cycle.

Publication Date: Mar. 2014 Revision: 1.1 51/84

^{**} MSB: most significant bit

Precharge

The precharge command is used to precharge or close a bank that has activated. The precharge command is issued when \overline{CS} ,

 $\overline{\text{RAS}}$ and $\overline{\text{WE}}_{\text{D}}$ are low and $\overline{\text{CAS}}$ is high at the rising edge of the clock. The precharge command can be used to precharge each bank respectively or all banks simultaneously. The bank select addresses (BA0, BA1) are used to define which bank is precharged when the command is initiated. For write cycle, $t_{\text{WR}}(\text{min.})$ must be satisfied until the precharge command can be issued. After t_{RP} from the precharge, an active command to the same bank can be initiated.

Burst Selection for Precharge by Bank address bits

A10/AP	BA1	BA0	Precharge
0	0	0	Bank A Only
0	0	1	Bank B Only
0	1	0	Bank C Only
0	1	1	Bank D Only
1	Х	Х	All Banks

NOP & Device Deselect

The device should be deselected by deactivating the \overline{CS} signal. In this mode, Mobile DDR SDRAM should ignore all the control inputs. The Mobile DDR SDRAM is put in NOP mode when \overline{CS} is actived and by deactivating \overline{RAS} , \overline{CAS} and \overline{WE}_D . For both Deselect and NOP, the device should finish the current operation when this command is issued.

Publication Date: Mar. 2014 Revision: 1.1 52/84

Row Active

The Bank Activation command is issued by holding \overline{CAS} and \overline{WED} high with \overline{CS} and \overline{RAS} low at the rising edge of the clock (CLK). The Mobile DDR SDRAM has four independent banks, so Bank Select addresses (BAO, BA1) are required. The Bank Activation command to the first read or write command must meet or exceed the minimum of \overline{RAS} to \overline{CAS} delay time (t_{RCD} min). Once a bank has been activated, it must be precharged before another Bank Activation command can be applied to the same bank. The minimum time interval between interleaved Bank Activation command (Bank A to Bank B and vice versa) is the Bank to Bank delay time (t_{RRD} min).

Read Bank

This command is used after the row activate command to initiate the burst read of data. The read command is initiated by activating $\overline{\text{CS}}$, $\overline{\text{RAS}}$, $\overline{\text{CAS}}$, and deasserting $\overline{\text{WE}}$ at the same clock sampling (rising) edge as described in the command truth table. The length of the burst and the CAS latency time will be determined by the values programmed during the MRS command.

Write Bank

This command is used after the row activate command to initiate the burst write of data. The write command is initiated by activating $\overline{\text{CS}}$, $\overline{\text{RAS}}$, $\overline{\text{CAS}}$, and $\overline{\text{WE}}_{\text{D}}$ at the same clock sampling (rising) edge as describe in the command truth table. The length of the burst will be determined by the values programmed during the MRS command.

Publication Date: Mar. 2014 Revision: 1.1 53/84

Essential Functionality for Mobile DDR SDRAM Burst Read Operation

Burst Read operation in Mobile DDR SDRAM is in the same manner as the current Mobile DDR SDRAM such that the Burst read command is issued by asserting \overline{CS} and \overline{CAS} low while holding \overline{RAS} and \overline{WE}_D high at the rising edge of the clock (CLK) after t_{RCD} from the bank activation. The address inputs determine the starting address for the Burst, The Mode Register sets type of burst and burst length. The first output data is available after the \overline{CAS} Latency from the READ command, and the consecutive data are presented on the falling and rising edge of Data Strobe (DQS) adopted by Mobile DDR SDRAM until the burst length is completed.

<Burst Length = 4, CAS Latency = 3>

Burst Write Operation

The Burst Write command is issued by having $\overline{\text{CS}}$, $\overline{\text{CAS}}$ and $\overline{\text{WED}}$ low while holding $\overline{\text{RAS}}$ high at the rising edge of the clock (CLK). The address inputs determine the starting column address. There is no write latency relative to DQS required for burst write cycle. The first data of a burst write cycle must be applied on the DQ pins t_{DS} (Data-in setup time) prior to data strobe edge enabled after t_{DQSS} from the rising edge of the clock (CLK) that the write command is issued. The remaining data inputs must be supplied on each subsequent falling and rising edge of Data Strobe until the burst length is completed. When the burst has been finished, any additional data supplied to the DQ pins will be ignored.

Publication Date: Mar. 2014 Revision: 1.1 54/84

Read Interrupted by a Read

A Burst Read can be interrupted before completion of the burst by new Read command of any bank. When the previous burst is interrupted, the remaining addresses are overridden by the new address with the full burst length. The data from the first Read command continues to appear on the outputs until the $\overline{\text{CAS}}$ latency from the interrupting Read command is satisfied. At this point the data from the interrupting Read command appears. Read to Read interval is minimum 1 clock.

Read Interrupted by a Write & Burst Terminate

To interrupt a burst read with a write command, Burst Terminate command must be asserted to avoid data contention on the I/O bus by placing the DQ's (Output drivers) in a high impedance state. To insure the DQ's are tri-stated one cycle before the beginning the write operation, Burt Terminate command must be applied at least RU(CL) clocks [RU means round up to the nearest integer] before the Write command.

The following functionality establishes how a Write command may interrupt a Read burst.

- 1. For Write commands interrupting a Read burst, a Burst Terminate command is required to stop the read burst and tristate the DQ bus prior to valid input write data. Once the Burst Terminate command has been issued, the minimum delay to a Write command = RU (CL) [CL is the CAS Latency and RU means round up to the nearest integer].
- 2. It is illegal for a Write and Burst Terminate command to interrupt a Read with auto precharge command.

Publication Date: Mar. 2014 Revision: 1.1 55/84

Read Interrupted by a Precharge

A Burst Read operation can be interrupted by precharge of the same bank. The minimum 1 clock is required for the read to precharge intervals. A precharge command to output disable latency is equivalent to the $\overline{\text{CAS}}$ latency.

When a burst Read command is issued to a Mobile DDR SDRAM, a Precharge command may be issued to the same bank before the Read burst is complete. The following functionality determines when a Precharge command may be given during a Read burst and when a new Bank Activate command may be issued to the same bank.

- 1. For the earliest possible Precharge command without interrupting a Read burst, the Precharge command may be given on the rising clock edge which is CL clock cycles before the end of the Read burst where CL is the CAS Latency. A new Bank Activate command may be issued to the same bank after t_{RP} (RAS precharge time).
- 2. When a Precharge command interrupts a Read burst operation, the Precharge command may be given on the rising clock edge which is CL clock cycles before the last data from the interrupted Read burst where CL is the CAS Latency. Once the last data word has been output, the output buffers are tristated. A new Bank Activate command may be issued to the same bank after t_{RP}.
- 3. For a Read with auto precharge command, a new Bank Activate command may be issued to the same bank after t_{RP} where t_{RP} begins on the rising clock edge which is CL clock cycles before the end of the Read burst where CL is the $\overline{\text{CAS}}$ Latency. During Read with auto precharge, the initiation of the internal precharge occurs at the same time as the earliest possible external Precharge command would initiate a precharge operation without interrupting the Read burst as described in 1 above.
- 4. For all cases above, t_{RP} is an analog delay that needs to be converted into clock cycles. The number of clock cycles between a Precharge command and a new Bank Activate command to the same bank equals t_{RP} / t_{CK} (where t_{CK} is the clock cycle time) with the result rounded up to the nearest integer number of clock cycles.
 In all cases, a Precharge operation cannot be initiated unless t_{RAS}(min) [minimum Bank Activate to Precharge time] has been satisfied. This includes Read with auto precharge commands where t_{RAS}(min) must still be satisfied such that a Read with auto

precharge command has the same timing as a Read command followed by the earliest possible Precharge command which does not interrupt the burst.

Publication Date: Mar. 2014 Revision: 1.1 56/84

Write Interrupted by a Write

A Burst Write can be interrupted before completion of the burst by a new Write command, with the only restriction that the interval that separates the commands must be at least one clock cycle. When the previous burst is interrupted, the remaining addresses are overridden by the new address and data will be written into the device until the programmed burst length is satisfied.

Publication Date: Mar. 2014

Revision: 1.1 57/84

Write Interrupted by a Read & DM

A burst write can be interrupted by a read command of any bank. The DQ's must be in the high impedance state at least one clock cycle before the interrupting read data appear on the outputs to avoid data contention. When the read command is registered, any residual data from the burst write cycle must be masked by DM. The delay from the last data to read command (twtr) is required to avoid the data contention Mobile DDR SDRAM inside. Data that are presented on the DQ pins before the read command is initiated will actually be written to the memory. Read command interrupting write can not be issued at the next clock edge of that of write command.

The following functionality established how a Read command may interrupt a Write burst and which input data is not written into the memory.

- 1. For Read commands interrupting a Write burst, the minimum Write to Read command delay is 2 clock cycles. The case where the Write to Read delay is 1 clock cycle is disallowed.
- 2. For read commands interrupting a Write burst, the DM pin must be used to mask the input data words which immediately precede the interrupting Read operation and the input data word which immediately follows the interrupting Read operation.
- 3. For all cases of a Read interrupting a Write, the DQ and DQS buses must be released by the driving chip (i.e., the memory controller) in time to allow the buses to turn around before the Mobile DDR SDRAM drives them during a read operation.
- 4. If input Write data is masked by the Read command, the DQS inputs are ignored by the Mobile DDR SDRAM.
- 5. It is illegal for a Read command interrupt a Write with auto precharge command.

Publication Date: Mar. 2014 Revision: 1.1 58/84

Write Interrupted by a Precharge & DM

A burst write operation can be interrupted before completion of the burst by a precharge of the same bank. Random column access is allowed. A write recovery time (t_{WR}) is required from the last data to precharge command. When precharge command is asserted, any residual data from the burst write cycle must be masked by DM.

Precharge timing for Write operations in Mobile DDR SDRAM requires enough time to allow "Write recovery" which is the time required by a Mobile DDR SDRAM core to properly store a full "0" or "1" level before a Precharge operation. For Mobile DDR SDRAM, a timing parameter, t_{WR} , is used to indicate the required of time between the last valid write operation and a Precharge command to the same bank.

 t_{WR} starts on the rising clock edge after the last possible DQS edge that strobed in the last valid and ends on the rising clock edge that strobes in the precharge command.

- 1. For the earliest possible Precharge command following a Write burst without interrupting the burst, the minimum time for write recovery is defined by twR.
- 2. When a precharge command interrupts a Write burst operation, the data mask pin, DM, is used to mask input data during the time between the last valid write data and the rising clock edge in which the Precharge command is given. During this time, the DQS input is still required to strobe in the state of DM. The minimum time for write recovery is defined by twg.
- 3. For a Write with auto precharge command, a new Bank Activate command may be issued to the same bank after t_{WR} + t_{RP} where t_{WR} + t_{RP} starts on the falling DQS edge that strobed in the last valid data and ends on the rising clock edge that strobes in the Bank Activate commands. During write with auto precharge, the initiation of the internal precharge occurs at the same time as the earliest possible external Precharge command without interrupting the Write burst as described in 1 above.
- 4. In all cases, a Precharge operation cannot be initiated unless t_{RAS}(min) [minimum Bank Activate to Precharge time] has been satisfied. This includes Write with auto precharge commands where t_{RAS}(min) must still be satisfied such that a Write with auto precharge command has the same timing as a Write command followed by the earliest possible Precharge command which does not interrupt the burst.

Publication Date: Mar. 2014 Revision: 1.1 59/84

Burst Terminate

The Burst Terminate command is initiated by having \overline{RAS} and \overline{CAS} high with \overline{CS} and \overline{WE}_D low at the rising edge of the clock (CLK). The Burst Terminate command has the fewest restriction making it the easiest method to use when terminating a burst read operation before it has been completed. When the Burst Terminate command is issued during a burst read cycle, the pair of data and DQS (Data Strobe) go to a high impedance state after a delay which is equal to the CAS latency set in the mode register. The Burst Terminate command, however, is not supported during a write burst operation.

The Burst Terminate command is a mandatory feature for Mobile DDR SDRAM. The following functionality is required.

- 1. The BST command may only be issued on the rising edge of the input clock, CLK.
- 2. BST is only a valid command during Read burst.
- 3. BST during a Write burst is undefined and shall not be used.
- 4. BST applies to all burst lengths.
- 5. BST is an undefined command during Read with auto precharge and shall not be used.
- 6. When terminating a burst Read command, the BST command must be issued L_{BST} ("BST Latency") clock cycles before the clock edge at which the output buffers are tristated, where L_{BST} equals the CAS latency for read operations.
- 7. When the burst terminates, the DQ and DQS pins are tristated.

The BST command is not byte controllable and applies to all bits in the DQ data word and the (all) DQS pin(s).

Publication Date: Mar. 2014 Revision: 1.1 60/84

DM masking

The Mobile DDR SDRAM has a data mask function that can be used in conjunction with data write cycle. Not read cycle. When the data mask is activated (DM high) during write operation, Mobile DDR SDRAM does not accept the corresponding data. (DM to data-mask latency is zero) DM must be issued at the rising or falling edge of data strobe.

Publication Date: Mar. 2014 Revision: 1.1 61/84

Read with Auto Precharge

If a read with auto precharge command is initiated, the Mobile DDR SDRAM automatically enters the precharge operation BL/2 clock later from a read with auto precharge command when t_{RAS}(min) is satisfied. If not, the start point of precharge operation will be delayed until t_{RAS}(min) is satisfied. Once the precharge operation has started the bank cannot be reactivated and the new command can not be asserted until the precharge time (t_{RP}) has been satisfied

Note: The row active command of the precharge bank can be issued after t_{RP} from this point.

Asserted		For Same Bank	For Different Bank				
Command	5	6	7	5	6	7	
READ	READ + No AP	Illegal	Illegal	Legal	Legal	Legal	
READ + AP1	READ + AP	Illegal	Illegal	Legal	Legal	Legal	
Active	Illegal	Illegal	Illegal	Legal	Legal Legal		
Precharge	Legal	Legal	Illegal	Legal	Legal	Legal	

Note: 1. AP = Auto Precharge

Publication Date: Mar. 2014

Revision: 1.1 62/84

Write with Auto Precharge

If A10 is high when write command is issued, the write with auto precharge function is performed. Any new command to the same bank should not be issued until the internal precharge is completed. The internal precharge begins at the rising edge of the CLK with the twR delay after the last data-in.

Note: The row active command of the precharge bank can be issued after t_{RP} from this point.

Asserted			For Same Bank			For Different Bank					
Command	5	6	7	8	9	10	5	6	7	8	9
WRITE	WRITE + NO AP	WRITE + NO AP	Illegal	Illegal	Illegal	Illegal	Legal	Legal	Legal	Legal	Legal
WRITE + AP ¹	WRITE + AP	WRITE + AP	Illegal	Illegal	Illegal	Illegal	Legal	Legal	Legal	Legal	Legal
READ	Illegal	READ + No AP + DM ²	READ + No AP+ DM	READ + No AP	Illegal	Illegal	Illegal	Illegal	Illegal	Legal	Legal
READ + AP	Illegal	READ + AP+ DM	READ + AP+ DM	READ + AP	Illegal	Illegal	Illegal	Illegal	Illegal	Legal	Legal
Active	Illegal	Illegal	Illegal	Illegal	Illegal	Illegal	Legal	Legal	Legal	Legal	Legal
Precharge	Illegal	Illegal	Illegal	Illegal	Illegal	Illegal	Legal	Legal	Legal	Legal	Legal

Note: 1. AP = Auto Precharge

2. DM: Refer to "Write Interrupted by Precharge & DM"

Publication Date: Mar. 2014 Revision: 1.1 63/84

Auto Refresh & Self Refresh

Auto Refresh

An auto refresh command is issued by having $\overline{\text{CS}}$, $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ held low with CKE and $\overline{\text{WE}}_{\text{D}}$ high at the rising edge of the clock(CLK). All banks must be precharged and idle for t_{RP}(min) before the auto refresh command is applied. No control of the external address pins is requires once this cycle has started because of the internal address counter. When the refresh cycle has completed, all banks will be in the idle state. A delay between the auto refresh command and the next activate command or subsequent auto refresh command must be greater than or equal to the t_{RFC}(min).

A maximum of eight consecutive AUTO REFRESH commands (with t_{RFC}(min)) can be posted to any given Mobile DDR, meaning that the maximum absolute interval between any AUTO REFRESH command and the next AUTO REFRESH command is 8 x t_{REFI}.

Self Refresh A self refresh command is defines by having CS, RAS, CAS and CKE held low with WED high at the rising edge of the clock

(CLK). Once the self refresh command is initiated, CKE must be held low to keep the device in self refresh mode. During the self refresh operation, all inputs except CKE are ignored. The clock is internally disabled during self refresh operation to reduce power consumption. The self refresh is exited by supplying stable clock input before returning CKE high, asserting deselect or NOP command and then asserting CKE high for longer than t_{XSR}.

Note: After self refresh exit, input an auto refresh command immediately.

Publication Date: Mar. 2014

Revision: 1.1 64/84

Power Down

Power down is entered when CKE is registered Low (no accesses can be in progress). If power down occurs when all banks are idle, this mode is referred to as precharge power-down; if power down occurs when there is a row active in any bank, this mode is referred to as active power-down.

Entering power down deactivates the input and output buffers, excluding CLK, $\overline{\text{CLK}}$ and CKE. In power down mode, CKE Low must be maintained, and all other input signals are "Don't Care". The minimum power down duration is specified by t_{CKE} . However, power down duration is limited by the refresh requirements of the device.

The power down state is synchronously exited when CKE is registered High (along with a NOP or DESELECT command). A valid command may be applied t_{XP} after exit from power down.

Functional Truth Table

Truth Table - CKE INGLE - CKE	able - CKE [Note 1~10]
-------------------------------	------------------------

CKE n-1	CKE n	Current State	COMMAND n	ACTION n	NOTE
L	L	Power Down	X	Maintain Power Down	
L	L	Self Refresh	X	Maintain Self Refresh	
L	L	Deep Power Down	X	Maintain Deep Power Down	
L	Н	Power Down	NOP or DESELECT	Exit Power Down	5,6,9
L	Н	Self Refresh	NOP or DESELECT	Exit Self Refresh	5,7,10
L	Н	Deep Power Down	NOP or DESELECT	Exit Deep Power Down	5,8
Н	L	All Banks Idle	NOP or DESELECT	Precharge Power Down Entry	5
Н	L	Bank(s) Active	NOP or DESELECT	Active Power Down Entry	5
Н	L	All Banks Idle	AUTO REFRESH	Self Refresh Entry	
Н	Ĺ	All Banks Idle	BURST TERMINATE	Enter Deep Power Down	
Н	Н		See the other T	ruth Tables	

Notes:

- 1. CKE n is the logic state of CKE at clock edge n; CKE n-1 was the state of CKE at the previous clock edge.
- 2. Current state is the state of Mobile DDR immediately prior to clock edge n.
- 3. COMMAND n is the command registered at clock edge n, and ACTION n is the result of COMMAND n.
- 4. All states and sequences not shown are illegal or reserved.
- 5. DESELECT and NOP are functionally interchangeable.
- Power Down exit time (txp) should elapse before a command other than NOP or DESELECT is issued.
- 7. SELF REFRESH exit time (txsR) should elapse before a command other than NOP or DESELECT is issued.
- 8. The Deep Power Down exit procedure must be followed the figure of Deep Power Down Mode Entry & Exit Cycle.
- 9. The clock must toggle at least once during the t_{XP} period.
- The clock must toggle at least once during the t_{XSR} time.

Publication Date: Mar. 2014 Revision: 1.1 65/84

Truth Table - Current State Bank n

Current State	cs	RAS	CAS	WE _D	COMMAND / ACTION	NOTE
Command to Ban	k n ^{[Note}	1~12]				
Any	Н	Х	Χ	Х	DESELECT (NOP / continue previous operation)	
Ally	L	Н	Н	Н	No Operation (NOP / continue previous operation)	
	L	L	Н	Н	ACTIVE (select and activate row)	
Idle	L	L	L	Н	AUTO REFRESH	9
	L	L	L	L	MODE REGISTER SET	9
	L	Н	L	Н	READ (select column & start read burst)	
Row Active	L	Н	L	L	WRITE (select column & start write burst)	
	L	L	Н	L	PRECHARGE (deactivate row in bank or banks)	4
	L	Н	L	Н	READ (select column & start new read burst)	5
Read (Auto Precharge	L	Н	L	L	WRITE (select column & start write burst)	5, 12
Disabled)	L	L	Н	L	PRECHARGE (truncate read burst, start precharge)	
,	L	Н	Н	L	BURST TERMINATE	10
Write	L	Н	L	Н	READ (select column & start read burst)	5,11
(Auto Precharge	L	Н	L	L	WRITE (select column & start new write burst)	5
Disabled)	L	L	Н	L	PRECHARGE (truncate write burst, start precharge)	11
Command to Ban	k m ^{[Note}	1~3,6, 11~16	6]			
Any	Н	Х	Χ	X	DESELECT (NOP / continue previous operation)	
Any	L	Н	Н	Н	No Operation (NOP / continue previous operation)	
Idle	Х	X	Х	Х	Any command allowed to bank m	
5 4 " "	L	L	Н	Н	ACTIVE (select and activate row)	
Row Activating, Active, or	L	Н	L	Н	READ (select column & start read burst)	16
Precharging	L	Н	L	L	WRITE (select column & start write burst)	16
	L	L	Н	L	PRECHARGE	
	L	L	Н	Н	ACTIVE (select and activate row)	
Read (Auto Precharge	L	Н	L	Н	READ (select column & start new read burst)	16
disabled)	L	Н	L	L	WRITE (select column & start write burst)	12,16
·	L	L	Н	L	PRECHARGE	
	L	L	Н	Н	ACTIVE (select and activate row)	
Write (Auto Precharge	L	Н	L	Н	READ (select column & start read burst)	11,16
disabled)	L	Н	L	L	WRITE (select column & start new write burst)	16
·	L	L	Н	L	PRECHARGE	
	L	L	Н	Н	ACTIVE (select and activate row)	
Read with	L	Н	L	Н	READ (select column & start new read burst)	13,16
Auto Precharge	L	Н	L	L	WRITE (select column & start write burst)	12,13,16
	L	L	Н	L	PRECHARGE	
	L	L	Н	Н	ACTIVE (select and activate row)	
Write with Auto Precharge	L	Н	L	Н	READ (select column & start read burst)	13,16
Auto Frecharge	L	Н	L	L	WRITE (select column & start new write burst)	13,16
	L	L	Н	L	PRECHARGE	

Notes:

Publication Date: Mar. 2014 Revision: 1.1 66/84

The table applies when both CKE n-1 and CKE n are HIGH, and after t_{XSR} or t_{XP} has been met if the previous state was Self Refresh or Power Down.

- 2. DESELECT and NOP are functionally interchangeable.
- 3. All states and sequences not shown are illegal or reserved.
- 4. This command may or may not be bank specific. If all banks are being precharged, they must be in a valid state for precharging.
- 5. The new Read or Write command could be Auto Precharge enabled or Auto Precharge disabled.
- 6. Current State Definitions:
 - Idle: The bank has been precharged, and t_{RP} has been met.
 - Row Active: A row in the bank has been activated, and t_{RCD} has been met. No data bursts / accesses and no register accesses are in progress.
 - Read: A READ burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated.
 - Write: a WRITE burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated.
- 7. The following states must not be interrupted by a command issued to the same bank. DESELECT or NOP commands or allowable commands to the other bank should be issued on any clock edge occurring during these states. Allowable commands to the other bank are determined by its current state and the part of Command to Bank n, according to the part of Command to Bank m
 - Precharging: starts with the registration of a PRECHARGE command and ends when t_{RP} is met. Once t_{RP} is met, the bank will be in the idle state.
 - Row Activating: starts with registration of an ACTIVE command and ends when t_{RCD} is met. Once t_{RCD} is met, the bank will be in the 'row active' state.
 - Read with AP Enabled: starts with the registration of the READ command with Auto Precharge enabled and ends when t_{RP} has been met. Once t_{RP} has been met, the bank will be in the idle state.
 - Write with AP Enabled: starts with registration of a WRITE command with Auto Precharge enabled and ends when t_{RP} has been met. Once t_{RP} is met, the bank will be in the idle state.
- 8. The following states must not be interrupted by any executable command; DESELECT or NOP commands must be applied to each positive clock edge during these states.
 - Refreshing: starts with registration of an AUTO REFRESH command and ends when t_{RFC} is met. Once t_{RFC} is met, the device will be in an 'all banks idle' state.
 - Accessing Mode Register: starts with registration of a MODE REGISTER SET command and ends when t_{MRD} has been met. Once t_{MRD} is met, the device will be in an 'all banks idle' state.
 - Precharging All: starts with registration of a PRECHARGE ALL command and ends when t_{RP} is met. Once t_{RP} is met, the bank will be in the idle state.
- 9. Not bank-specific; requires that all banks are idle and no bursts are in progress.
- 10. Not bank-specific. BURST TERMINATE affects the most recent read burst, regardless of bank.
- 11. Requires appropriate DM masking.
- 12. A WRITE command may be applied after the completion of data output, otherwise a BURST TERMINATE command must be issued to end the READ prior to asserting a WRITE command.
- 13. Read with AP enabled and Write with AP enabled: the Read with Auto Precharge enabled or Write with Auto Precharge enabled states can be broken into two parts: the access period and the precharge period. For Read with AP, the precharge period is defined as if the same burst was executed with Auto Precharge disabled and then followed with the earliest possible PRECHARGE command that still accesses all the data in the burst. For Write with AP, the precharge period begins when twee ends, with twee measured as if Auto Precharge was disabled. The access period starts with registration of the command and ends where the precharge period (or tree) begins. During the precharge period of the Read with AP enabled or Write with AP enabled states, ACTIVE, PRECHARGE, READ, and WRITE commands to the other bank may be applied; during the access period, only ACTIVE and PRECHARGE commands to the other banks may be applied. In either case, all other related limitations apply (e.g. contention between READ data and WRITE data must be avoided).
- 14. AUTO REFRESH, SELF REFRESH, and MODE REGISTER SET commands may only be issued when all bank are idle.
- 15. A BURST TERMINATE command cannot be issued to another bank; it applies to the bank represented by the current state only.
- 16. READs or WRITEs listed in the Command column include READs and WRITEs with Auto Precharge enabled and READs and WRITEs with Auto Precharge disabled.

Publication Date: Mar. 2014 Revision: 1.1 67/84

Basic Timing (Setup, Hold and Access Time @ BL=4, CL=3)

Note: the is lesser of toll or toh clock transition collectively when a bank is active.

Publication Date: Mar. 2014 Revision: 1.1 68/84

Multi Bank Interleaving READ (@BL=4, CL=3)

Publication Date: Mar. 2014

Revision: 1.1 69/84

Multi Bank Interleaving WRITE (@BL=4)

Publication Date: Mar. 2014

Revision: 1.1 70/84

Read with Auto Precharge (@BL=8)

Note: The row active command of the precharge bank can be issued after $t_{\mbox{\scriptsize RP}}$ from this point.

Publication Date: Mar. 2014 Revision: 1.1 71/84

Write with Auto Precharge (@BL=8)

Note: The row active command of the precharge bank can be issued after t_{RP} from this point.

Publication Date: Mar. 2014 Revision: 1.1 72/84

Read Interrupted by Precharge (@BL=8)

10122B32R.B

Publication Date: Mar. 2014 Revision: 1.1 73/84

Read Interrupted by a Read (@BL=8, CL=3)

Publication Date: Mar. 2014

Revision: 1.1 74/84

Read Interrupted by a Write & Burst Terminate (@BL=8, CL=3)

Publication Date: Mar. 2014 Revision: 1.1 75/84

Write followed by Precharge (@BL=4)

Publication Date: Mar. 2014 Revision: 1.1 76/84

Write Interrupted by Precharge & DM (@BL=8)

Publication Date: Mar. 2014

Revision: 1.1 77/84

Write Interrupted by a Read (@BL=8, CL=3)

Publication Date: Mar. 2014 Revision: 1.1 78/84

DM Function (@BL=8) only for write

10122B32R.B

Publication Date: Mar. 2014 Revision: 1.1 79/84

Deep Power Down Mode Entry & Exit Cycle

Note:

DEFINITION OF DEEP POWER MODE FOR Mobile DDR SDRAM:

Deep Power Down Mode is an operating mode to achieve maximum power reduction by cutting the power of the whole memory of the device. Once the device enters in Deep Power Down Mode, data will not be retained. Full initialization is required when the device exits from Deep Power Down Mode.

TO ENTER DEEP POWER DOWN MODE

- The deep power down mode is entered by having \overline{CS} and \overline{WE}_D held low with \overline{RAS} and \overline{CAS} high at the rising edge of the clock. While CKE is low.
- Clock must be stable before exited deep power down mode.
- Device must be in the all banks idle state prior to entering Deep Power Down mode.

TO EXIT DEEP POWER DOWN MODE

- The deep power down mode is exited by asserting CKE high.
- 200 μ s wait time is required to exit from Deep Power Down.
- 6) Upon exiting deep power down an all bank precharge command must be issued followed by two auto refresh commands and a load mode register sequence.

Publication Date: Mar. 2014

Revision: 1.1 80/84

Mode Register Set

Publication Date: Mar. 2014 vision: 1.1 81/84

Deutron Electronics Corp.

Publication Revision: 1.1

Simplified State Diagram

PREALL = Precharge All Banks
MRS = Mode Register Set
EMRS = Extended Mode Register Set
REFS = Enter Self Refresh
REFSX = Exit Self Refresh
REFA = Auto Refresh
CKEL = Enter Power Down
CKEH = Exit Power Down

ACT = Active

Write = Write w/o Auto Precharge Write A = Write with Auto Precharge Read = Read w/o Auto Precharge Read A = Read with Auto Precharge PRE = Precharge BST = Burst Terminate DPDS = Enter Deep Power-Down DPDSX = Exit Deep Power-Down

> Publication Date: Mar. 2014 Revision: 1.1 82/84

Revision History

Revision	Date	Description
0.1	2012.01.18	Original
0.2	2012.07.04	Delete CAS Latency: 2 Modify the specification of I _{DD4R} , I _{DD4W} and I _{DD5}
1.0	2012.11.28	Delete "Preliminary"
1.1	2013.05.21	Correct the description of Page Program Add "No Bad-Block-Erasing-Protect function"
1.2	2013.07.23	Modify the description of read status and OTP operations
1.3	2014.02.25	Modify the specification of I _{DD2NS} , I _{DD3PS} , I _{DD3PS} , I _{DD3NS}

Deutron Electronics Corp.

Publication Date: Mar. 2014
Revision: 1.1 83/84

Important Notice

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of MIRA.

The contents contained in this document are believed to be accurate at the time of publication. MIRA assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by MIRA for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of MIRA or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

MIRA's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.

Deutron Electronics Corp. Publication Date: Mar. 2014

Revision: 1.1 84/84