解题报告

杭州第二中学 屠学畅

1 Codeforces 587 D. Duff in Mafia

1.1 题目大意

有一张 n 个点 m 条边的无自环的无向图,每条边有颜色和边权。现在要把边集分成一个匹配和一个染色,要求最小化匹配中的边权最大值,输出任意一种方案。

- 一个匹配是一个边集,满足不存在两条边有公共顶点。
- 一个染色是一个边集,满足不存在两条同色边有公共顶点。

1.2 数据范围

 $2 \le n \le 5 \times 10^4$

 $1 < m < 5 \times 10^4$

 $1 \le$ 颜色, 边权 $\le 10^9$

1.3 解题过程

考虑到一条边必须属于匹配或染色,两条边不能同时属于匹配当且仅当两条边有公共顶点,两条边不能同时属于染色当且仅当两条边颜色相同且有公共顶点。

- 一个自然的想法是构建 2-SAT 模型。具体来说,对于一条边 e,构造两个点 a_e, b_e ,分别表示 e 属于匹配和染色。现在问题转化为对于每条边 e 选择 a_e 和 b_e 中的一者。
 - 若 e_1 和 e_2 不能同时属于匹配,即:若选择 a_{e_1} ,必须选择 b_{e_2} (不能选择 a_{e_2});若选择 a_{e_2} ,必须选择 b_{e_1} (不能选择 a_{e_1})。
 - 若 e_1 和 e_2 不能同时属于染色,即: 若选择 b_{e_1} ,必须选择 a_{e_2} (不能选择 b_{e_2}); 若选择 b_{e_2} ,必须选择 a_{e_1} (不能选择 b_{e_1})。

然后考虑最小化边权,二分一个边权之后,所有边权更大的边必须属于染色,即对于一条边 e,必须选择 b_e ,这也可以表示为若选择 a_e ,必须选择 b_e (不能选择 a_e)。我们用连有向边来表示这种形式的限制。

由于上述限制可以达到 $\mathcal{O}(m^2)$ 级别,因此直接实现是无法通过的。我们枚举一个公共端点 u,设与其相连的所有边为 e_1, e_2, \ldots, e_k ,对于其中一条边 e_i ,我们需要将 a_{e_i} 与所有 b_{e_j} ($j \neq i$) 连边,对 j < i 和 j > i 分开讨论,可以用 $\mathcal{O}(m)$ 的点数和边数完成建图。

利用 2-SAT 的经典做法,可以在 $\mathcal{O}(n+m)$ 的时间复杂度内检验是否有解和求出一组解,总时间复杂度 $\mathcal{O}((n+m)\log m)$ 。

2 Codeforces 674 F. Bears and Juice

2.1 题目大意

有 n 只熊和若干桶果汁和**恰好一桶酒**,每一天每只熊会选择一些桶(可能不选)并各喝一杯,喝到酒的熊会去睡觉并不再回来,通过这个信息,熊们想知道哪个桶里是酒。只有 p 个睡觉的位置,当睡觉的熊超过了 p 只或者所有熊都在睡觉时熊们就失败了。令 R_i 表示在 i 天内桶的数量最多为多少,使得熊可以成功知道酒的位置。令 $X_i = (i \cdot R_i) \bmod 2^{32}$,你需要求出 $X_1 \oplus X_2 \oplus \cdots \oplus X_q$,其中 \oplus 表示按位异或。

2.2 数据范围

 $1 < n < 10^9$

 $1 \le p \le 130$

 $1 \le q \le 2 \times 10^6$

2.3 解题过程

我们可以知道的**全部信息**是:对于 $1 \le i \le n$,第 i 只熊有没有睡觉,如果有,可以知道他是在第几天后去睡觉的。设它是在第 a_i 天之后去睡觉的。

设总天数为 d, 以上信息不同情况数是

$$\sum_{i=0}^{p} d^{i} \binom{n}{i}$$

即枚举有多少熊去睡觉了,以及去睡觉的熊是在第几天去睡觉的。这显然是酒桶数量的一个上界(否则不可能区分所有酒桶的位置)。

现在我们证明这是可以达到的: 把所有情况按一定顺序排列,令在第x 种情况中没有睡觉的熊,一直不选择第x 桶; 在第 a_i 天后睡觉的熊,仅在第 a_i 天选择第x 桶。这样分配,若酒是第x 桶,那么得到的信息恰好和这种情况一样(别的桶没有酒,不会产生影响),因此我们区分了所有的情况。

考虑如何计算上面的组合数,方法有很多,这里提供一种:由 $\binom{n}{i} = [x^i](x+1)^n$,利用多项式快速幂可以达到 $\mathcal{O}(p^2 \log n)$ 的复杂度。

最后暴力计算,总复杂度为 $\mathcal{O}(p^2 \log n + p \cdot q)$

3 ARC 091 F - Strange Nim

3.1 题目大意

两个人玩取石子游戏,有n堆石子,第i堆石子有属性 k_i ,初始有 a_i 个。

双方轮流操作,每次轮到的人需要选择一堆石子 i,从中取走至多 $\left\lfloor \frac{x}{k_i} \right\rfloor$ 个,其中 x 是第 i 堆石子当前的个数,不能不取,无法操作的人输。

求先手是否必胜。

3.2 数据范围

 $1 \le n \le 200$

 $1 < a_i, k_i < 10^9$

3.3 解题过程

观察到双方是平等的,且每堆石子独立,可以联想到利用 <u>Sprague-Grundy</u> 定理,问题转化为求出每堆石子的 Grundy number.

设这堆石子的属性 k,令 g(n) 表示石子数量为 n 时的 Grundy number.

引理. $g(n-\left|\frac{n}{k}\right|), g(n-\left|\frac{n}{k}\right|+1), \ldots, g(n)$ 构成集合 $\{0,1,\ldots,\left|\frac{n}{k}\right|\}$.

证明. 考虑数学归纳法. 显然 n=0 时上述引理成立,假设已经证明对于 $n=0,1,\ldots,m-1$ 上述命题成立.

- $\not\exists k \nmid m$, $\not\sqsubseteq g(m) = \max(\{0, 1, \dots, \left| \frac{m}{k} \right| \} \setminus \{g(m \left| \frac{m}{k} \right| 1)\}) = g(m \left| \frac{m}{k} \right| 1).$

其中 $\max(S)$ (minimum exclusion) 表示最小的不在集合 S 中的自然数. 综上,命题对于 n=m 成立.

从证明过程中可以得到

定理.

$$g(n) = \begin{cases} \frac{n}{k}, & k \mid n \\ g(n - \lfloor \frac{n}{k} \rfloor - 1), & k \nmid n \end{cases}$$

考虑计算一个 g(n), 设 $N = \max_{i=1}^{n} a_i$.

- 若 $\left\lfloor \frac{n}{k} \right\rfloor \geq \sqrt{N}$,则转化为求 $g(n \left\lfloor \frac{n}{k} \right\rfloor 1)$. 每次 n 减少至少 \sqrt{N} ,至多执行 $\frac{n}{\sqrt{N}} = \mathcal{O}(\sqrt{N})$ 次.
- 若 $\left\lfloor \frac{n}{k} \right\rfloor < \sqrt{N}$,则不断减去 $\left\lfloor \frac{n}{k} \right\rfloor + 1$ 直到 k|n 或 $\left\lfloor \frac{n}{k} \right\rfloor$ 值发生改变. 每次 $\left\lfloor \frac{n}{k} \right\rfloor$ 严格递减,至多执行 $\mathcal{O}(\sqrt{N})$ 次.

综上,求出每个 $g(a_i)$ 的复杂度为 $\mathcal{O}(n\sqrt{N})$ 根据 Sprague-Grundy 定理,若 $g(a_i)$ 的异或和非 0 则先手必胜,否则先手必败。