Topic 8: Multiple Sequence Alignment

First 90 aa of a protein multiple sequence alignment of the acidic ribosomal protein P0 (L10E) from several organisms – ClustalX. (*Wikipedia*)

The pair-wise sequence alignment problem:

- we have 2 strings (sequences)
- find the "best match" between the two
- Usually local alignment but can do global

Multiple (3+) Sequence Alignment:

- → usually related by evolution
- → what is common between the sequences is usually conserved protein function
- almost always global alignment whole genes

Example:

Selectivity for ions is a critical function preserved over a long evolutionary period

Nucleotide Example:

```
TACGG_G
TAC_GTG
AA_GGTG
AACAG_A
```

Protein MSA vs. Nucleotide MSA

If you want to compare a number of genes, concentrate on the protein sequences rather than nucleotide sequences

Protein MSAs are more informative

More likely to be accurate (20 aa vs. 4 nucs)

Can translate back to multiple nucleotide sequences after doing protein MSA.

The "best" pair-wise sequence alignment is easy: with a <u>scoring matrix</u> and <u>gap penalties</u> → find the **highest scoring** alignment.

Multiple Sequence Alignment: no simple criteria.

How do we score an alignment of N sequences?

- Sum of pairwise alignments? Depends on N
- Average?

Both are used

Multiple Sequence Alignment – How?

We looked at Dynamic Programming for Pairwise Sequence Alignment

Can we do DP for 3 sequences?

Multiple Sequence Alignment – How?

DP Pairwise Sequence Alignment

What about DP for 3 sequences?

Multiple Sequence Alignment – How?

A **Fully** Dynamic Programming approach to multiple sequence alignment will work.

But: very expensive to compute

For M sequences of length N, time complexity is $N^{\rm M}$

→ for protein sequences of length 500, programs that use a fully DP approach are limited to ~10 sequences on a fast computer

We may want to do MANY sequences, each 1000s of nucleotides or amino acids long!

Progressive Multiple Sequence Alignment

Most MSA algorithms use the **Progressive**Alignment approach

First, do M(M-1)/2 pair-wise alignments (using DP)

→ scored using protein scoring matrices, gaps

- Get the two most related sequences highest scoring pair
- Then progressively add next highest pair, etc. to build up the MSA
- → MSA depends on the best pairwise alignments

Progressive MSA

To build up the MSA progressively, we use a Tree:

Progressive MSA

An MSA gives us M(M-1)/2 induced pairwise alignments

Neighbors in the tree

(e.g. GY - - F and GYKKF) should have optimal "induced" pairwise alignments.

Non-neighbors (e.g. GY - - F and

GY_F GYKKF G_KKF G_K_F G_KF

G-K-F) can have less than optimal alignments.

Advantages, Disadvantages

Advantages:

Progressive MSAs are usually fast (there is a range)
Alignments are generally of high quality

Disadvantages:

Most progressive MSA methods "fix" early alignments and do not "reconsider" later

If initial alignments of MSA are made on distantly related sequences, there may be errors

Compare: Clustal Omega allows guide tree iterations.

Center Tree Progressive MSA

The Center Tree approach starts with the sequence that has the minimum total "distance" from all other sequences – this goes in the center of a tree.

Create a pair-wise alignment of closest sequences Add sequences to alignment in order of distance from center.

Clustal MSA

1) Compute all pairwise alignments

Sort the alignments in order of scores

```
Sequence 2: gi | 6680530 | ref | NP 032451.1
                                           428 aa
Sequence 3: gi 8393652 ref NP 058992.1
                                           427 aa
 comparing
paramArg[setSeqNoRange] = off
 comparing
Start of Pairwise alignments
Aligning...
Sequences (1:2) Aligned. Score: 98
Sequences (1:3) Aligned. Score: 98
Sequences (2:3) Aligned. Score: 99
Guide tree file created: [/ebi/extserv/clustalw-work
                  file created:
                                   [/ebi/extserv/clusta
There are 2 groups
Start of Multiple Alignment
Aligning...
Group 1: Sequences:
                              Score: 9272
                              Score: 9258
Group 2: Sequences:
Alignment Score 92
```

- 3) Create a "guide tree" from sorted pairwise alignments: add sequences as long as no cycles → minimum spanning tree (also used in computer network routing, statistical clustering)
- 4) Brings in sequences in order of scores.

Clustal Omega output

1) Pairwise alignment scores

2) The MSA

Trees that estimate phylogeny:

- 3) Cladogram branches of equal length (no information on evolutionary time)
- 4) Phylogram branches of unequal length (length proportional to evolutionary change)

MSAs based on k-mers

An approach similar to the way Blast works

- 1) List all k-letter words in each sequence
- 2) Find best matches
- 3) Extend matches

How good is an MSA?

Not easy to tell – ultimately, we have to look at biological implications of an MSA

One way to check MSA algorithms is to use a "benchmark" of accepted MSAs:

BaliBASE - this is BaliBASE 4

BaliBASE 2

OXBench

These use knowledge of protein structure and other information.

Purpose of MSAs

1. Identify conserved regions of proteins, find patterns and protein domains

2. MSAs help with predicting protein secondary structure and performing phylogenetic analysis (Lecture 9) → evolutionary relationship.

3. MSAs can be used to generate Position-Specific Scoring Matrix for sequence search (e.g. PSI-Blast)

Uses of MSAs – motifs, profiles

- 1. Sequence similarity usually implies a similarity in biological function
- 2. Similar biological function is less likely to imply sequence similarity

One use of MSAs is to find protein families or motifs – see Prosite, Pfam, PSI-Blast

The idea is to find patterns in the sequences of proteins with similar function. #2 makes this hard.

Pairwise vs. Multiple Sequences

Pairwise

Multiple

Compares two sequences

Compares three+ sequences

DNA, RNA, or Protein

Protein usually but DNA and RNA possible too

Can use local or global alignment

Usually uses many global pairwise alignments

Goals: find similar subsequences

Goals: find similar protein structure, phylogenetic or evolutionary relationship