Diogenes: Lightweight Scalable RSA Modulus Generation with a Dishonest Majority

Carmit Hazay

Ligero & Bar-Ilan University

Megan Chen, Yuval Ishai, Yuriy Kashnikov, Daniele Micciancio, Tarik Riviere, abhi shelat, Muthu Venkitasubramaniam, Ruihan Wang

What is an RSA Modulus?

$$N = p \cdot q$$

Biprime - product of exactly two primes

Why? RSA History

- 1977 RSA Public-Key Encryption
- 1999 Paillier Public-Key Encryption
- 2001 CRS for UC setting
- 2018 Verifiable Delay Functions (VDF)

Ethereum 2.0 = Proof of Stake!

Why? VDF Construction

• 1996 - Rivest-Shamir-Wagner timelock puzzle

$$y = g^{2^{T}} mod N$$

 2018 - VDF constructions by Pietrzak, Wesolowski

Goal

Parties interact to jointly sample a bi-prime modulus N

Goal

Parties interact to jointly sample a bi-prime modulus N

Goal

1024 parties + (n-1) active security

Need just 1 honest participant....

Secure Multi-Party Computation (MPC)

Passive vs. Active
Honest majority vs. Dishonest majority

- Auctions with private bids
- Privacy-preserving data mining
- Private health records
- Cryptographic key protection
- Secure statistical analyses
- Smart city research gender inequity
- Private blockchains
- ...

Previous Works: Overview

				Corruption
Milestone	Work	Adversary	Parties	Threshold
First Work	[BF97]	Passive	n >= 3	t < n/2
	[FMY98]	Active	n	t < n/2
	[PS98]	Active	2	t = 1
Based on OT	[Gil99]	Passive	2	t = 1
	[ACS02]	Passive	n	t < n/2
	[DM10]	Active	3	t = 1
	[HMRT12]	Active	n	t < n
	[FLOP18]	Active	2	t = 1
	[CCD+20]	Active	n	t < n

Previous Works: Overview

				Corruption
Milestone	Work	Adversary	Parties	Threshold
First Work	[BF97]	Passive	n >= 3	t < n/2
	[FMY98]	Active	n	t < n/2
	[PS98]	Active	2	t = 1
Based on OT	[Gil99]	Passive	2	t = 1
	[ACS02]	Passive	n	t < n/2
	[DM10]	Active	3	t = 1
	[HMRTN12]	Active	n	t < n
	[FLOP18]	Active	2	t = 1
	[CCD+20]	Active	n	t < n

Previous Works: Implementations

				Corruption
Milestone	Work	Adversary	Parties	Threshold
First Work	[BF97]	Passive	n >= 3	t < n/2
	[FMY98]	Active	n	t < n/2
	[PS98]	Active	2	t = 1
Based on OT	[Gil99]	Passive	2	t = 1
	[ACS02]	Passive	n	t < n/2
	[DM10]	Active	3	t = 1
Passive impl. only	[HMRTN12]	Active	n	t < n
Passive impl. only	[FLOP18]	Active	2	t = 1
	[CCD+20]	Active	n	t < n

State-of-the-Art

	[FLOP18]
RSA Modulus Size	2048 bits
Implementation	Passive
Num Parties	2
Party Spec	8 GB RAM 8 cores CPU
Bandwidth	40 Gbps
Comm. (Per-Party)	>1.9 GB
Time	35 sec (8 threads)

	[FLOP18]	Our Challenge
RSA Modulus Size	2048 bits	
Implementation	Passive	
Num Parties	2	
Party Spec	8 GB RAM 8 cores CPU	
Bandwidth	40 Gbps	
Comm. (Per-Party)	>1.9 GB	
Time	35 sec (8 threads))

	[FLOP18]	Our Challenge
RSA Modulus Size	2048 bits	2048 bits
Implementation	Passive	
Num Parties	2	
Party Spec	8 GB RAM 8 cores CPU	
Bandwidth	40 Gbps	
Comm. (Per-Party)	>1.9 GB	
Time	35 sec (8 threads)	

	[FLOP18]	Our Challenge
RSA Modulus Size	2048 bits	2048 bits
Implementation	Passive	Active (Id-A)
Num Parties	2	
Party Spec	8 GB RAM 8 cores CPU	
Bandwidth	40 Gbps	
Comm. (Per-Party)	>1.9 GB	
Time	35 sec (8 threads)	

	[FLOP18]	Our Challenge
RSA Modulus Size	2048 bits	2048 bits
Implementation	Passive	Active (Id-A)
Num Parties	2	1024
Party Spec	8 GB RAM 8 cores CPU	
Bandwidth	40 Gbps	
Comm. (Per-Party)	>1.9 GB	
Time	35 sec (8 threads))

	[FLOP18]	Our Challenge
RSA Modulus Size	2048 bits	2048 bits
Implementation	Passive	Active (Id-A)
Num Parties	2	1024
Party Spec	8 GB RAM 8 cores CPU	2 GB RAM single-core CPU
Bandwidth	40 Gbps	
Comm. (Per-Party)	>1.9 GB	
Time	35 sec (8 threads)	

	[FLOP18]	Our Challenge
RSA Modulus Size	2048 bits	2048 bits
Implementation	Passive	Active (Id-A)
Num Parties	2	1024
Party Spec	8 GB RAM 8 cores CPU	2 GB RAM single-core CPU
Bandwidth	40 Gbps	1 Mbps 100 ms latency
Comm. (Per-Party)	>1.9 GB	
Time	35 sec (8 threads)	

	[FLOP18]	Our Challenge
RSA Modulus Size	2048 bits	2048 bits
Implementation	Passive	Active (Id-A)
Num Parties	2	1024
Party Spec	8 GB RAM 8 cores CPU	2 GB RAM single-core CPU
Bandwidth	40 Gbps	1 Mbps 100 ms latency
Comm. (Per-Party)	>1.9 GB	< 100 MB
Time	35 sec (8 threads)	

	[FLOP18]	Our Challenge
RSA Modulus Size	2048 bits	2048 bits
Implementation	Passive	Active (Id-A)
Num Parties	2	1024
Party Spec	8 GB RAM 8 cores CPU	2 GB RAM single-core CPU
Bandwidth	40 Gbps	1 Mbps 100 ms latency
Comm. (Per-Party)	>1.9 GB	< 100 MB
Time	35 sec (8 threads)	< 20 mins

Protoco Blueprint

Step 1: Design protocol secure against passive adversary

Step 2: Compile to security against active adversary

Step 1: Scalable Passive Protocol

Parties choose p_i, q_i randomly

Start with Sieving Trick

Candidate Naïve Sampling

A = randomly sampling a 1024-bit prime

B = number is odd

$$Pr[A|B] \approx \left(\frac{1}{500}\right)$$

Pr[sample biprime|B]
$$\approx \left(\frac{1}{500}\right)^2$$

Need 250k samples in expectation

Candidate Trial Division [Bru50]

A = randomly sampling a 1024-bit prime

B = sieve up to 863, the 150th prime

$$Pr[A|B] \approx \left(\frac{1}{60}\right)$$

Pr[sample biprime|B]
$$\approx \left(\frac{1}{60}\right)^2$$

Need 3600 samples in expectation

Candidate Trial Division: Prior Works

- 1. Construct p and q
- 2. Distributed sieving
- 3. If both pass, multiply

HMRTN12 → El Gamal

FLOP18 → 1-out-of-k OT

Pairwise communication channels

Our Approach

Sieve first,

construct later_[CCD+20]

Secure Multiplication

Secure Multiplication

Our Approach: Threshold AHE

Distributed key generation

Public key:
$$PK$$
 Secret keys: $sk_1, ..., sk_n$

Encryption

$$Enc_{PK}(m)$$

Distributed decryption

$$m = Dec_{sk_1}(c) + \cdots + Dec_{sk_n}(c)$$

Our Approach: Threshold AHE

Addition under encryption

$$Enc_{PK}(m_1) + Enc_{PK}(m_2) = Enc_{PK}(m_1 + m_2)$$

 Scalar multiplication under encryption

$$a \cdot Enc_{PK}(m) = Enc_{PK}(a \cdot m)$$

Our Approach: Untrusted Coordinator

Performs only public operations

Pi

C

Key Generation	sk _i	
Parties' secret shares	p_i , q_i	
Encrypt pi	$Enc_{PK}(p_i)$	
Coord. adds		$\sum Enc_{PK}(p_i)$
Receive Enc(p) from Coord.	$Enc_{PK}(p)$	
Multiply by qi	$q_i \cdot Enc_{PK}(p)$	
Coord. adds		$\sum q_i \cdot Enc_{PK}(p)$
Receive Enc(pq) from Coord.	$Enc_{PK}(p \cdot q)$	
Decrypted product	$\mathbf{p} \cdot \mathbf{q}$	

P_i

Key Generation

sk_i

Parties' secret shares p_i, q_i

Encrypt p_i $Enc_{PK}(p_i)$

Coord. adds

 $\sum Enc_{PK}(p_i)$

Receive Enc(p) from Coord. $Enc_{PK}(p)$

Multiply by q_i $q_i \cdot Enc_{PK}(p)$

Coord. adds

 $\sum q_i \cdot Enc_{PK}(p)$

Receive Enc(pq) from Coord. $Enc_{PK}(p \cdot q)$

Decrypted product $p \cdot q$

PK sk_i Key Generation Parties' secret shares p_i, q_i Encrypt pi $Enc_{PK}(p_i)$ $\sum Enc_{PK}(p_i)$ Coord. adds Receive Enc(p) from Coord. $Enc_{PK}(p)$ Multiply by qi $q_i \cdot Enc_{PK}(p)$ $\sum q_i \cdot Enc_{PK}(p)$ Coord. adds Receive Enc(pq) from Coord. $Enc_{PK}(p \cdot q)$ Decrypted product $\mathbf{p} \cdot \mathbf{q}$

P_i

PK

C

Key Generation

sk_i

Parties' secret shares

 p_i, q_i

Encrypt pi

 $Enc_{PK}(p_i)$

Coord. adds

 $\sum Enc_{PK}(p_i)$

Receive Enc(p) from Coord.

 $Enc_{PK}(p)$

Multiply by qi

 $q_i \cdot Enc_{PK}(p)$

Coord. adds

 $\sum q_i \cdot Enc_{PK}(p)$

Receive Enc(pq) from Coord.

 $Enc_{PK}(p \cdot q)$

Decrypted product

PK sk_i Key Generation Parties' secret shares p_i, q_i Encrypt pi $Enc_{PK}(p_i)$ $\sum Enc_{PK}(p_i)$ Coord. adds Receive Enc(p) from Coord. $Enc_{PK}(p)$ Multiply by qi $q_i \cdot Enc_{PK}(p)$ $\sum q_i \cdot Enc_{PK}(p)$ Coord. adds Receive Enc(pq) from Coord. $Enc_{PK}(p \cdot q)$ Decrypted product $\mathbf{p} \cdot \mathbf{q}$

P_i

PK

C

Key Generation

sk_i

Parties' secret shares

 p_i, q_i

Encrypt pi

 $Enc_{PK}(p_i)$

Coord. adds

 $\sum Enc_{PK}(p_i)$

Receive Enc(p) from Coord.

 $Enc_{PK}(p)$

Multiply by qi

 $q_i \cdot Enc_{PK}(p)$

Coord. adds

 $\sum q_i \cdot Enc_{PK}(p)$

Receive Enc(pq) from Coord.

 $Enc_{PK}(p \cdot q)$

Decrypted product

P_i

PK

C

Key Generation

 sk_i

Parties' secret shares

 p_i, q_i

Encrypt pi

 $Enc_{PK}(p_i)$

Coord. adds

 $\sum Enc_{PK}(p_i)$

Receive Enc(p) from Coord.

 $Enc_{PK}(p)$

Multiply by qi

 $q_i \cdot Enc_{PK}(p)$

Coord. adds

 $\sum q_i \cdot Enc_{PK}(p)$

Receive Enc(pq) from Coord.

 $Enc_{PK}(p \cdot q)$

Decrypted product

P_i

PK

C

Key Generation

 sk_i

Parties' secret shares

 p_i, q_i

Encrypt pi

 $Enc_{PK}(p_i)$

Coord. adds

 $\sum Enc_{PK}(p_i)$

Receive Enc(p) from Coord.

 $Enc_{PK}(p)$

Multiply by qi

 $q_i \cdot Enc_{PK}(p)$

Coord. adds

 $\sum q_i \cdot Enc_{PK}(p)$

Receive Enc(pq) from Coord.

 $Enc_{PK}(p \cdot q)$

Decrypted product

 P_i

C

PK

 sk_i

Key Generation

 p_i, q_i

Parties' secret shares

 $Enc_{PK}(p_i)$

Encrypt pi

Coord. adds

 $\sum Enc_{PK}(p_i)$

Receive Enc(p) from Coord.

 $Enc_{PK}(p)$

Multiply by qi

 $q_i \cdot Enc_{PK}(p)$

Coord. adds

 $\sum q_i \cdot Enc_{PK}(p)$

Receive Enc(pq) from Coord.

 $Enc_{PK}(p \cdot q)$

Decrypted product

State-of-the-Art TAHE

Paillier?

Circular choice

El Gamal?

Inefficient decryption (discrete log)

LWE?

Does not support all AHE operations

Ring-LWE — more efficient, flexible

Supports AHE, better parameters, packing

[BF97]'s Distributed Biprimality Test

- Test whether N is the product of two primes
- Don't leak p or q
- Extension of Miller-Rabin primality test [Rabin80]
- Probabilistic need to repeat s times

Step 2: Security against Active Adversaries

GIVIV Paradigm

aka Zero-Knowledge Proofs aka "I will prove I did everything honestly!"

GMW Paradigm: Passive Protocol

GMW Paradigm: Active Protocol

GMW Paradigm: Our Compiler

What ZK Protocol to Use?

Need:

- Fast prover
- Prover runs on a 1 CPU 2 GB RAM machine
- Prove operations over

Lattice Operations over Ring $Z_Q[x]/x^n+1$ where

$$Z_Q = Z_{p1} \times ... \times Z_{p21}$$

Modulus generation - operations in

$$F_2, F_3, F_5, ..., F_{823}$$

Jacobi test – Exponentiation operations over Z_N^* (2048-bit number)

What ZK Protocol to Use?

Need:

- Fast prover
- Prover runs on a 1 CPU 2 GB RAM machine
- Prove operations over

Lattice Operations over Ring $Z_Q[x]/x^n+1$ where

$$Z_Q = Z_{p1} \times ... \times Z_{p21}$$

Modulus generation - operations in

LIGERO

Jacobi test – Exponentiation operations over Z_N^* (2048-bit number)

Tailor-made Sigma Protocol

What ZK Protocol to Use?

Need:

- Fast prover
- Prover runs on a 1 CPU 2 GB RAM machine
- Prove operations over

Lattice Operations over Ring $Z_Q[x]/x^n+1$ where

$$Z_Q = Z_{p1} \times ... \times Z_{p21}$$

Modulus generation - operations in

$$F_2, F_3, F_5, ..., F_{823}$$

LIGERO

Jacobi test – Exponentiation operations over Z_N^* (2048-bit number)

Tailor-made Sigma Protocol

Summary: Our Protocol

Key Setup Generate threshold keys

Generate Candidates Sample pre-approved primes

Compute Products Use TAHE to compute candidates

Biprimality test BF biprimality test

Certification Ligero ZK + Sigma

Performance Metrics: 10,000 Parties (Passive)

Parties	Coordinator	Total time (s)
64	m5.metal	61.8
128	**	74.3
256	**	104.8
512	**	137.6
1024	**	205.8
1500	r5.24xlarge	266.8
2000	**	416.5
4500	**	1282.6
10000	**	2111.8

Performance Metrics: 1024 Parties (Active)

Conclusion

	[FLOP18]	Our Goal
Modulus size	2048 bits	2048 bits
Implementation	Passive	Active
Num Parties	2	1024
Party Spec	8 GB RAM 8 cores CPU	2 GB RAM single-core CPU
Network speed	40 Gbps	1 Mbps 100 ms latency
Comm. (Per-Party)	>1.9 GB	< 100 MB 200 MB
Time	35 sec (8 thread)	< 20 mins

https://github.com/li geroinc/LigeroRSA

Thank You