

Unsupervised Learning

Introduction + Dimensionality Reduction

Hafizh **Adi Prasetya**

Education Background

2011-2015 **Bachelor Degree** Informatics

2017-2019 **Master Degree** Artificial Intelligence

Hafizh Adi Prasetya

https://id.linkedin.com/in/hafizhadi

Unsupervised Learning

- Sesi I: Intro + Dimensionality Reduction
- Sesi II: Clustering

Objektif: Introduction + Dimensionality Reduction

Mendapatkan pemahaman dasar mengenai unsupervised learning, jenis, posisinya dalam machine learning, serta kegunaannya dalam kasus-kasus di dunia nyata.

Mendapatkan **pemahaman mengenai Dimensionality Reduction** dan kemampuan untuk

mengimplementasikannya menggunakan Python.

Expected Output

- 1. Memahami konsep unsupervised learning dan perbedaannya dengan supervised learning
- 2. Memahami dua tipe unsupervised learning dan kegunaannya di dunia nyata
- 3. Memahami konsep dan alasan diperlukannya dimensionality reduction untuk data skala besar
- 4. Memahami Principal Component Analysis (PCA) secara umum dan contoh-contoh penggunaannya
- 5. Memahami cara menggunakan Python untuk melakukan PCA pada data
- Memiliki pemahaman intuitif mengenai step-bystep algoritma PCA dan hubungannya dengan dimensionality reduction

Outline Pembelajaran

Topik Unsupervised Learning

	Sesi I: Intro + Dimensionality Reduction		Sesi II : Clustering
P	Definisi dan Jenis-jenis Unsupervised Learning	Ġ	Intuisi dan Motivasi Clustering
ψ.	Contoh Kasus Unsupervised Learning	ė.	Clustering dan Segmentasi dalam Bisnis
†	Dimensionality Reduction dan Penggunaannya	-	Intermezzo: Pengukuran Jarak
4	Intuisi dan Motivasi Principal Component Analysis (PCA)	ļ	Algoritma Agglomerative Clustering dan Praktik
中	PCA (Praktik)	į.	Algoritma K-means Clustering dan Praktik
山	Algoritma PCA Langkah-demi-langkah		Evaluasi Clustering

Apa itu Unsupervised Learning?

Outline Pembelajaran

Topik Unsupervised Learning

	Sesi I: Intro + Dimensionality Reduction		Sesi II : Clustering
	Definisi dan Jenis-jenis Unsupervised Learning	j	Intuisi dan Motivasi Clustering
-	Contoh Kasus Unsupervised Learning		Clustering dan Segmentasi dalam Bisnis
†	Dimensionality Reduction dan Penggunaannya	-	Intermezzo: Pengukuran Jarak
†	Intuisi dan Motivasi Principal Component Analysis (PCA)		Algoritma Agglomerative Clustering dan Praktik
P	PCA (Praktik)	į.	Algoritma K-means Clustering dan Praktik
占	Algoritma PCA Langkah-demi-langkah		Evaluasi Clustering

Kunci membedakan berbagai jenis Machine Learning:

Jenis dan kuantitas data yang tersedia untuk dipelajari

Berbagai Tipe Machine Learning

Supervised Learning

- Pembelajaran dari data DENGAN LABEL
- Klasifikasi & regresi

Unsupervised Learning

- Pembelajaran dari data TANPA LABEL
- Dimensionality reduction, clustering & representation learning

Lainnya

- Semi-supervised Learning -> BERLABEL SEBAGIAN
- Reinforcement Learning -> DATA DIHASILKAN DARI SIMULASI

Alur pemodelan Supervised Learning

Feature + Label

	В	_		-	- 1	9		
is_diabetes	num_pregnant	glucose_concentration	blood_pressure	triceps_thickness	two_hour_insulin	bmi	pedigree_function	age
1	6	148	72	35		33.6	0.627	50
0	1	85	66	29	0	26.6	0.351	3
1	8	183	64	0	0	23.3	0.672	3
0	1	89	66	23	94	28.1	0.167	2
1	0	137	40	35	168	43.1	2.288	3
0	5	116	74	0	0	25.6	0.201	3
1	3	78	50	32	88	31	0.248	2
0	10	115	0	0	0	35.3	0.134	2
1	2	197	70	45	543	30.5	0.158	5
1	8	125	96	0	0	0	0.232	5
0	4	110	92	0	0	37.6	0.191	3
1	10	168	74	0	0	38	0.537	3
0	10	139	80	0	0	27.1	1.441	5
1	1	189	60	23	846	30.1	0.398	5

LABEL

LABEL

LABEL

LABEL

LABEL

LABEL

LABEL

PREDIKSI LABEL

Unsupervised Learning?

Hanya feature

P	ERVIS	ucose_concentration	blood_pressure	1000	two_hour_insulin	bmi 33.6	pedigree_function 0.627	Academy	
Alle	1	85	66		-	26.6		-	
	8	183			0	23.3			
	1	89			94	28.1			
	0	137	40						
	5	116	74	0	0	25.6	0.201		
4	3	78	50	32	88	31	0.248		
	10	115	0	100		35.3	0.134	1 29	
	2	197	70		543	30.5	10,000,000,000		
	8	125	96	0	0	0	0.232		
	4	110			0	37.6			
	10	168			0	38		-	
	10	139				27.1	A CONTRACTOR OF THE CONTRACTOR		
	1	189	60	23	846	30.1	0.398	59	

Tanpa label, kegunaan apa yang bisa kita dapatkan dari data?

Unsupervised Learning #1: Mengambil 'intisari' dari dataset (atau subset dari dataset) yang kita miliki

Dari sebuah dataset yang memiliki N feature, kita ingin mendapatkan dataset baru dengan jumlah feature < N namun dengan menghilangkan sesedikit mungkin 'informasi'

Unsupervised Learning #2: Kita tidak tahu apa-apa tentang 'kelas' dari setiap baris di data kita tapi kita ingin tahu apakah mereka dapat dipisahkan menjadi beberapa 'kelas'

Sebaik-baiknya hal yang dapat kita lakukan adalah:

- Kelompokkan data-data yang 'mirip'
- Kita lihat setiap kelompok yang dihasilkan secara kontekstual

Outline Pembelajaran

Topik Unsupervised Learning

	Sesi I: Intro + Dimensionality Reduction		Sesi II : Clustering
	Definisi dan Jenis-jenis Unsupervised Learning	-	Intuisi dan Motivasi Clustering
ψ.	Contoh Kasus Unsupervised Learning	Ċ	Clustering dan Segmentasi dalam Bisnis
†	Dimensionality Reduction dan Penggunaannya	-	Intermezzo: Pengukuran Jarak
d	Intuisi dan Motivasi Principal Component Analysis (PCA)		Algoritma Agglomerative Clustering dan Praktik
P	PCA (Praktik)	†	Algoritma K-means Clustering dan Praktik
占	Algoritma PCA Langkah-demi-langkah		Evaluasi Clustering

Contoh Kasus Unsupervised Learning

Outline Pembelajaran

Topik Unsupervised Learning

	Sesi I: Intro + Dimensionality Reduction		Sesi II : Clustering
	Definisi dan Jenis-jenis Unsupervised Learning	_	Intuisi dan Motivasi Clustering
	Contoh Kasus Unsupervised Learning		Clustering dan Segmentasi dalam Bisnis
P	Dimensionality Reduction dan Penggunaannya	- i	Intermezzo: Pengukuran Jarak
	Intuisi dan Motivasi Principal Component Analysis (PCA)		Algoritma Agglomerative Clustering dan Praktik
Image: Control of the	PCA (Praktik)	į.	Algoritma K-means Clustering dan Praktik
	Algoritma PCA Langkah-demi-langkah	-	Evaluasi Clustering

Contoh Kasus #1 N****x

Perusahaan streaming video N*tf*i* memiliki data rating video dari setiap pengguna aplikasinya. Data ini memiliki dimensi [jumlah pengguna x jumlah film].

Bagaimana caranya kita bisa mendapatkan dataset yang lebih ringkas tapi masih berisi informasi tentang selera pengguna?

User	KKN di Desa P	PLN di Desa P	Dilan 1990	 Dilan 2077
Α	5	5	NULL	1
В	NULL	NULL	4	2
С	NULL	NULL	NULL	6
D	3	NULL	NULL	2
•••				
ZZZ	0	1	NULL	NULL

2 masalah utama data review video

- Ukuran data terlalu besar, mahal disimpan dan diproses
- Dataset bersifat sparse -> banyak nilai NULL pada dataset sehingga penyimpanan tidak efisien

Meringkas Data dengan Dimensionality Reduction

171751 11							ı	
KKN di		Dilan		Dilan 2077		User	f1	f2
Desa P		1990				Α	8.43	1.12
5	5	NULL		1		В	1.23	6.32
NULL	NULL	4		2			0.34	4.43
NULL	NULL	NULL		6				
3	NULL	NULL		2		D	2.45	1.23
						ZZ	1.12	0.76
0	1	NULL		NULL				
	Desa P 5 NULL NULL 3	Desa P 5 NULL NULL NULL NULL 3 NULL	Desa PDesa P199055NULLNULLNULL4NULLNULLNULL3NULLNULL	Desa PDesa P1990""55NULLNULLNULL4NULLNULLNULL3NULLNULL	Desa P Desa P 1990 Dilan 2077 5 5 NULL 1 NULL NULL 4 2 NULL NULL NULL 6 3 NULL NULL 2	Desa P Desa P 1990 Dillan 2077 5 5 NULL 1 NULL NULL 4 2 NULL NULL 6 3 NULL NULL 2	Desa P 1990 Dilan 2077 5 5 NULL 1 NULL NULL 4 2 NULL NULL 6 D 3 NULL NULL 2 ZZ	Desa P Desa P 1990 Dilan 2077 5 5 NULL 1 NULL NULL 4 2 NULL NULL 6 D 2.45 3 NULL NULL 2 ZZ 1.12

Mengurangi dimensi dataset sedemikian rupa tanpa menghilangkan informasi penting

- f1: Menggambarkan selera terhadap film horor
- f2: Menggambarkan selera terhadap film romansa

Contoh Kasus #2 U**q*o

Perusahaan pakaian Uni*** akan mengeluarkan line pakaian baru untuk musim depan. Untuk mengurangi kerugian dari pakaian sisa, mereka ingin mengetahui berapa banyak mereka harus menyiapkan stok untuk setiap size dan variasi pakaian untuk line baru mereka.

Bagaimana kira-kira caranya?

Memahami Pelanggan dengan Unsupervised Learning

Lingkar pinggang

Memahami Pelanggan dengan Unsupervised Learning

Secara otomatis menemukan segmen!

Rencanakan desain dan stok per desain/ukuran berdasarkan segmen yang dihasilkan

Segmentasi dapat dilakukan secara manual namun **penggunaan teknik machine learning akan menghasilkan segmen yang lebih baik!**

Kelebihan Unsupervised Learning # 1

Kita dapat menggunakan lebih dari 2 feature untuk menghasilkan cluster secara otomatis dalam dimensi yang tidak dapat kita amati secara visual.

Contoh Kasus #3 Department Store Mataha*i

Department Store M***h*t* ingin meluncurkan sebuah campaign voucher diskon untuk semua pemilik kartu membernya.

Dengan harapan lebih banyak voucher diskon akan digunakan, Mat****i ingin membuat lebih dari satu jenis voucher diskon untuk memenuhi kebutuhan jenis member yang pola belanjanya berbeda.

Kira-kira bagaimana cara mulai mendesain jenis-jenis dan nominal voucher diskon untuk campaign ini?

Segmentasi Bisnis dengan Unsupervised Learning

RFM adalah salah satu metode segmentasi customer yang cukup sering digunakan di industri!

- Recency Kebaruan: Kapan terakhir kali sang pemegang kartu Matahati berbelanja? Misal : user X terakhir transaksi 2 minggu yang lalu, maka nilai Recency adalah 14
- Frequency Frekuensi: Berapa kali sang pemegang kartu Matahati belanja sebulan terakhir? Misal: user X melakukan 5x transaksi pada bulan terakhir, maka nilai Frequency adalah 5
- Monetary Nilai Moneter: Berapa banyak uang yang sudah dihabiskan sang pemegang kartu Matahati?

Misal: user X menghabiskan Rp 1 juta untuk membeli produk di Matahati, nilai Monetary adalah 1 juta

Menentukan segmen dengan batas manual (average).

Menentukan segmen dengan unsupervised learning

Segmentasi dapat dilakukan secara manual namun **penggunaan teknik machine learning akan menghasilkan segmen yang lebih baik!**

Kelebihan Unsupervised Learning # 2

Segmen yang dihasilkan akan relatif lebih homogen apabila dibandingkan dengan segmen manual. Alasannya adalah karena batasan segmen bisa bersifat tidak linear.

Outline Pembelajaran

Topik Unsupervised Learning

۰	Sesi I: Intro + Dimensionality Reduction	Sesi II : Clustering
	Definisi dan Jenis-jenis Unsupervised Learning	Intuisi dan Motivasi Clustering
	Contoh Kasus Unsupervised Learning	Clustering dan Segmentasi dalam Bisnis
þ	Dimensionality Reduction dan Penggunaannya	Intermezzo: Pengukuran Jarak
4	Intuisi dan Motivasi Principal Component Analysis (PCA)	Algoritma Agglomerative Clustering dan Praktik
P	PCA (Praktik)	Algoritma K-means Clustering dan Praktik
	Algoritma PCA Langkah-demi-langkah	Evaluasi Clustering

Apa itu **Dimensionality Reduction?**

Outline Pembelajaran

Topik Unsupervised Learning

	Sesi I: Intro + Dimensionality Reduction		Sesi II : Clustering
	Definisi dan Jenis-jenis Unsupervised Learning	Ė	Intuisi dan Motivasi Clustering
	Contoh Kasus Unsupervised Learning	_ 亡	Clustering dan Segmentasi dalam Bisnis
	Dimensionality Reduction dan Penggunaannya	<u></u>	Intermezzo: Pengukuran Jarak
+	Intuisi dan Motivasi Principal Component Analysis (PCA)		Algoritma Agglomerative Clustering dan Praktik
Image: Control of the	PCA (Praktik)	į.	Algoritma K-means Clustering dan Praktik
	Algoritma PCA Langkah-demi-langkah	-	Evaluasi Clustering

Interpretability

Data lebih mudah divisualisasikan/model lebih mudah dimengerti

Curse of Dimensionality

Menghindari kutukan dimensi

Cost-efficiency

Model lebih mudah dan murah untuk dilatih

Remove noise

Mengurangi informasi yang sebenarnya tidak penting/mengganggu

Tapi feature lebih sedikit = informasi lebih sedikit kan?

Dimensionality Reduction

Teknik pengurangan dimensi dengan jaminan bahwa informasi berguna yang terbuang akan minimal.

Dimensionality Reduction != Feature Selection

Feature selection serta merta mengurangi jumlah dimensi dengan membuang fitur mentah-mentah.

Dimensionality reduction melakukan pemrosesan pada fitur untuk menghasilkan kumpulan fitur baru dengan dalam dimensi lebih kecil.

Feature Selection

User	KKN di Desa P	PLN di Desa P	Dilan 1990		Dilan 2077	User	KKN di Desa P	Dilan 1990
Α	5	5	NULL	TELLARINE HELE	1	Α	5	NULL
В	NULL	NULL	4		2	В	NULL	4
С	NULL	NULL	NULL		6	С	NULL	NULL
D	3	NULL	NULL		2	D	3	NULL
ZZZ	0	1	NULL		NULL	ZZZ	0	NULL

Feature selection: buang semua feature kecuali KKN di Desa P dan Dilan 1990 sebagai film perwakilan

Dimensionality Reduction

User	KKN di Desa P	PLN di Desa P	Dilan 1990	 Dilan 2077
Α	5	5	NULL	1
В	NULL	NULL	4	2
С	NULL	NULL	NULL	6
D	3	NULL	NULL	2
ZZZ	0	1	NULL	NULL

User	f1	f2			
Α	8.43	1.12			
В	1.23	6.32			
С	0.34	4.43			
D	2.45	1.23			
ZZ	1.12	0.76			

Dimensionality reduction: proses seluruh fitur untuk menghasilkan 2 fitur baru yang merepresentasikan seluruh fitur lama

N dimensi -> N/3 dimensi tanpa menghilangkan 'informasi'

2 dimensi -> 1 dimensi tanpa menghilangkan 'informasi'

Informasi tersisa bahkan di ruang 1 dimensi:

- Terdapat 2 kelompok data
- 1 beranggotakan 3 titik dan 1 lagi 2 titik
- Jarak antara 2 kelompok tersebut kurang lebih sama

Outline Pembelajaran

Topik Unsupervised Learning

	Sesi I: Intro + Dimensionality Reduction		Sesi II : Clustering
	Definisi dan Jenis-jenis Unsupervised Learning	j	Intuisi dan Motivasi Clustering
	Contoh Kasus Unsupervised Learning	Ė	Clustering dan Segmentasi dalam Bisnis
	Dimensionality Reduction dan Penggunaannya	+	Intermezzo: Pengukuran Jarak
†	Intuisi dan Motivasi Principal Component Analysis (PCA)		Algoritma Agglomerative Clustering dan Praktik
P	PCA (Praktik)	į.	Algoritma K-means Clustering dan Praktik
\Box	Algoritma PCA Langkah-demi-langkah		Evaluasi Clustering

Apa itu Principal Component Analysis?

Outline Pembelajaran

Topik Unsupervised Learning

Sesi I: Intro + Dimensionality Reduction		Sesi II : Clustering
Definisi dan Jenis-jenis Unsupervised Learning	į.	Intuisi dan Motivasi Clustering
Contoh Kasus Unsupervised Learning	i i	Clustering dan Segmentasi dalam Bisnis
Dimensionality Reduction dan Penggunaannya	<u></u>	Intermezzo: Pengukuran Jarak
Intuisi dan Motivasi Principal Component Analysis (PCA)		Algoritma Agglomerative Clustering dan Praktik
PCA (Praktik)		Algoritma K-means Clustering dan Praktik
Algoritma PCA Langkah-demi-langkah		Evaluasi Clustering
	Definisi dan Jenis-jenis Unsupervised Learning Contoh Kasus Unsupervised Learning Dimensionality Reduction dan Penggunaannya Intuisi dan Motivasi Principal Component Analysis (PCA) PCA (Praktik)	Definisi dan Jenis-jenis Unsupervised Learning Contoh Kasus Unsupervised Learning Dimensionality Reduction dan Penggunaannya Intuisi dan Motivasi Principal Component Analysis (PCA)

Berbagai Teknik Dimensionality Reduction

Principal Component Analysis (PCA)

Non-negative Matrix Factorization (NMF)

Lainnya

- Latent Discriminant Analysis (LDA)
- Autoencoders

Teknik berbeda:

- Memiliki kompleksitas berbeda
- Mengawetkan 'informasi' yang berbeda

Principal Component Analysis

- Dari dataset dengan N fitur/dimensi/sumbu
- Hasilkan dataset baru dengan N fitur/dimensi/sumbu
 - Dengan kandungan 'informasi' yang berurut
- Sehingga membuat fitur/dimensi/sumbu paling ujung menjamin informasi yang hilang akan minimal

PCA: Menemukan sumbu baru dengan level informasi yang berurut

Data awal:

- 2 fitur/dimensi/sumbu: X dan Y
- Proyeksi data di sumbu X dan Y sama-sama memiliki sebaran yang signifikan

PCA: Menemukan sumbu baru dengan level informasi yang berurut

PCA: Menemukan sumbu baru dengan level informasi yang berurut

Data setelah PCA:

- 2 fitur/dimensi/sumbu: pc1 dan pc2
- Proyeksi data di sumbu pc1 memiliki sebaran
- Proyeksi data di sumbu pc2 hampir tidak memiliki sebaran

Kapan Principal Component Analysis digunakan?

2: Clustering -> PCA -> Visualize

	ID_Customers	Fresh	Milk	Grocery	Frozen	Detergents_Paper	Delicassen
0	0	12669	9656	7561	214	2674	1338
1	1	7057	9810	9568	1762	3293	1776
2	2	6353	8808	7684	2405	3516	7844
3	3	13265	1196	4221	6404	507	1788
4	4	22615	5410	7198	3915	1777	5185
5	5	9413	8259	5126	666	1795	1451
6	6	12126	3199	6975	480	3140	545
7	7	7579	4956	9426	1669	3321	2566
8	8	5963	3648	6192	425	1716	750
9	9	6006	11093	18881	1159	7425	2098

	CustomerID	Age	Annual Spending (k\$)	Spending Score (1-100)	Transaction
0	1	19	15	39	585
1	2	21	15	81	1215
2	3	20	16	6	96
3	4	23	16	77	1232
4	5	31	17	40	680

4: PCA for Data Understanding

Outline Pembelajaran

Topik Unsupervised Learning

	Sesi I: Intro + Dimensionality Reduction	Sesi II : Clustering
	Definisi dan Jenis-jenis Unsupervised Learning	Intuisi dan Motivasi Clustering
	Contoh Kasus Unsupervised Learning	Clustering dan Segmentasi dalam Bisnis
	Dimensionality Reduction dan Penggunaannya	Intermezzo: Pengukuran Jarak
	Intuisi dan Motivasi Principal Component Analysis (PCA)	Algoritma Agglomerative Clustering dan Praktik
†	PCA (Praktik)	Algoritma K-means Clustering dan Praktik
ф	Algoritma PCA Langkah-demi-langkah	Evaluasi Clustering

Implementasi PCA

menggunakan Python (contoh kode)

Outline Pembelajaran

Topik Unsupervised Learning

Sesi I: Intro + Dimensionality Reduction		Sesi II : Clustering
Definisi dan Jenis-jenis Unsupervised Learning	<u></u>	Intuisi dan Motivasi Clustering
Contoh Kasus Unsupervised Learning	Ċ	Clustering dan Segmentasi dalam Bisnis
Dimensionality Reduction dan Penggunaannya	<u></u>	Intermezzo: Pengukuran Jarak
Intuisi dan Motivasi Principal Component Analysis (PCA)		Algoritma Agglomerative Clustering dan Praktik
PCA (Praktik)	†	Algoritma K-means Clustering dan Praktik
Algoritma PCA Langkah-demi-langkah		Evaluasi Clustering

PCA di SKLearn

SKLearn memiliki implementasi PCA siap pakai:

- Di bawah modul pca.decomposition
- Cara pemakaian sangat mirip dengan standarisasi/normalisasi
- Beberapa alternatif dimensionality reduction di modul yang sama

Dataset

Iris

- Deskripsi:

Memprediksi spesies bunga Iris berdasarkan pengukuran kelopak.

- Data:

Setiap baris mewakili satu sampel, setiap kolom mewakili salah satu ukuran yang dimiliki sampel.

- Link Kaggle: https://www.kaggle.com/uciml/iris


```
1 url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
[7]
      2 df = pd.read csv(url, names=['sepal length','sepal width','petal length','petal width','target'])
      3 df.sample(5)
D.
          sepal length sepal width petal length petal width
                                                                        target
                    6.2
                                                              1.5 Iris-versicolor
     68
                                  2.2
                                                 4.5
     65
                    6.7
                                  3.1
                                                 4.4
                                                              1.4 Iris-versicolor
     15
                    5.7
                                  4.4
                                                 1.5
                                                                      Iris-setosa
                                                              0.4
                    4.7
                                                 1.6
     29
                                  3.2
                                                              0.2
                                                                      Iris-setosa
                    4.8
                                  3.1
                                                 1.6
                                                              0.2
                                                                      Iris-setosa
     30
```

Kita sebenarnya bisa membaca data langsung melalui URL apabila data tersedia online!


```
1 feats = ['sepal length','sepal width','petal length','petal width']
2 X = df[feats].values
3 y = df['target'].values
```

- 1 from sklearn.preprocessing import StandardScaler
- 2 X_std = StandardScaler().fit_transform(X)
- 3 new_df = pd.DataFrame(data = X_std, columns = feats).head()
- 4 new_df.describe()

	sepal length	sepal width	petal length	petal width
count	1.500000e+02	1.500000e+02	1.500000e+02	1.500000e+02
mean	-4.736952e-16	-6.631732e-16	3.315866e-16	-2.842171e-16
std	1.003350e+00	1.003350e+00	1.003350e+00	1.003350e+00

Untuk menggunakan PCA, kita wajib menstandarkan feature!


```
1 from sklearn.decomposition import PCA
2 pcs = PCA(n_components=4).fit_transform(X_std)
3 pdf = pd.DataFrame(data = pcs, columns = ['pc1', 'pc2', 'pc3', 'pc4'])
4 pdf['target'] = y
5 pdf.describe()
```

Library scikit-learn menyediakan PCA di modul sklearn.decomposition. Penggunaannya mirip dengan Scaler.

Parameter n_components digunakan untuk memilih banyak principal component yang ingin diambil.

	pc1	pc2	рс3	pc4
count	1.500000e+02	1.500000e+02	1.500000e+02	1.500000e+02
mean	3.049413e-16	7.126244e-17	3.700743e-17	-7.105427e-17
std	1.711828e+00	9.630180e-01	3.851522e-01	1.440348e-01

Membandingkan Academy hasil! Pairplot (sebelum PCA)

Perhatikan bahwa

petal_width dan

petal_length

memiliki informasi yang

cukup mirip

Membandingkan hasil! Pairplot (setelah PCA)

- Perhatikan bahwa hampir semua 'informasi' yang diperlukan tersimpan di principal component pertama
- Target menjadi tidak dapat dibedakan mulai dari principal component kedua dan seterusnya

	Sesi I: Intro + Dimensionality Reduction		Sesi II : Clustering
	Definisi dan Jenis-jenis Unsupervised Learning		Intuisi dan Motivasi Clustering
	Contoh Kasus Unsupervised Learning		Clustering dan Segmentasi
	Dimensionality Reduction dan		dalam Bisnis
Y	Penggunaannya		Intermezzo: Pengukuran Jarak
	Intuisi dan Motivasi Principal Component Analysis (PCA)		Algoritma Agglomerative Clustering dan Praktik
			Algoritma K-means Clustering dan
4	PCA (Praktik)		Praktik
占	Algoritma PCA Langkah-demi-langkah		Evaluasi Clustering
		_	

Implementasi PCA menggunakan Python (live code)

	Sesi I: Intro + Dimensionality Reduction		Sesi II : Clustering
	Definisi dan Jenis-jenis Unsupervised Learning	j	Intuisi dan Motivasi Clustering
	Contoh Kasus Unsupervised Learning	Ġ	Clustering dan Segmentasi dalam Bisnis
	Dimensionality Reduction dan Penggunaannya	<u></u>	Intermezzo: Pengukuran Jarak
	Intuisi dan Motivasi Principal Component Analysis (PCA)	-	Algoritma Agglomerative Clustering dan Praktik
	PCA (Praktik)	†	Algoritma K-means Clustering dan Praktik
· i	Algoritma PCA Langkah-demi-langkah		Evaluasi Clustering

F	Sesi I: Intro + Dimensionality Reduction		Sesi II : Clustering
	Definisi dan Jenis-jenis Unsupervised Learning	j.	Intuisi dan Motivasi Clustering
	Contoh Kasus Unsupervised Learning	Ė.	Clustering dan Segmentasi dalam Bisnis
	Dimensionality Reduction dan Penggunaannya	<u></u>	Intermezzo: Pengukuran Jarak
	Intuisi dan Motivasi Principal Component Analysis (PCA)	-	Algoritma Agglomerative Clustering dan Praktik
	PCA (Praktik)		Algoritma K-means Clustering dan Praktik
	Algoritma PCA Langkah-demi-langkah	i	Evaluasi Clustering

Algoritma PCA step-by-step

Sesi I: Intro + Dimensionality Reduction	Sesi II : Clustering
Definisi dan Jenis-jenis Unsupervised Learning	Intuisi dan Motivasi Clustering
Contoh Kasus Unsupervised Learning	Clustering dan Segmentasi dalam Bisnis
Dimensionality Reduction dan Penggunaannya	Intermezzo: Pengukuran Jarak
Intuisi dan Motivasi Principal Component Analysis (PCA)	Algoritma Agglomerative Clustering dan Praktik
PCA (Praktik)	Algoritma K-means Clustering dan Praktik
Algoritma PCA Langkah-demi-langkah	Evaluasi Clustering

PCA Step-by-Step: Kondisi awal

	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Gene 1	10	11	8	3	2	1
Gene 2	6	4	5	3	2.8	1

Contoh prosedur PCA untuk sebuah dataset 2 dimensi mengenai gene tikus.

- 1 baris = informasi 1 tikus
- Kolom: Informasi gen tertentu tikus tsb

Step 1: Cari rata-rata untuk setiap sumbu dari dataset.

PCA Step-by-Step: Memposisikan data

Step 2: 'Geser' data sehingga posisi rata-rata ada di titik asal (0, 0)

PCA Step-by-Step: Mencari PC1 - Line fitting

Step 3: Kita cari sebuah garis yang melewati titik asal (0, 0) dan paling pas dengan data (semacam regresi)

Untuk apa sih kita mencari garis yang paling pas?

Ingat bahwa kita pada dasarnya mencari sumbu yang paling menjelaskan data.

PCA Step-by-Step: Mencari PC1 - Fit terbaik

Garis mana yang paling pas dengan data? Yang sum of squared distancenya paling besar.

Proyeksikan setiap titik ke kandidat garis kita dan hitung sum of squared distancenya.

Sum of squared distance adalah jumlah dari kuadrat setiap titik ke (0, 0)

PCA Step-by-Step: Mencari PC1 - Fit terbaik (2)

Mengapa yang paling pas adalah yang SSnya paling besar?

Lihat segitiga yang dihasilkan proyeksi titik ke kandidat garis (garis titik-titik merah)

Garis paling pas adalah ketika b paling kecil. b paling kecil adalah ketika c paling besar.

PCA Step-by-Step: PC1 GET!

Ketika kita mendapat garis paling pas, itulah PC1!

PC 1 adalah sumbu yang paling mendeskripsikan data.

PCA Step-by-Step: PC 2?

Sumbu selanjutnya (PC 2) adalah garis yang tegak lurus dengan PC 1

Dalam kasus 2 dimensi, hanya ada satu kemungkinan garis tegak lurus dengan PC 1.

Dalam kasus +2 dimensi, kita mencari lagi dengan memaksimalkan SS seperti tadi.

PCA Step-by-Step: PC 3?

Sumbu selanjutnya (PC 3) adalah garis yang tegak lurus dengan PC 1 DAN PC 2

Dan seterusnya, dan seterusnya, dan seterusnya hingga PC ke-N

PCA Step-by-Step: Menghitung faedah masing-masing PC

$$S^2 = \frac{\sum (x_i - \bar{x})^2}{n - 1}$$

Faedah/jumlah informasi yang tersimpan dalam tiap PC adalah SS.

Kalau rumus SS terlihat familiar, itu karena memang dia sama dengan rumus untuk *variance* (bagian pembilang).

Intinya dia mendeskripsikan variasi data yang tertangkap oleh PC tertentu.

PCA Step-by-Step: Scree plot

Scree plot (kiri) menggambarkan kontribusi setiap PC dalam menjelaskan variasi dalam data.

Scree plot bisa berupa persentase, bisa berupa SSnya langsung.

Menghitung persentasenya gampang, hitung SS untuk PC itu / total SS untuk semua PC.

	Sesi I: Intro + Dimensionality Reduction		Sesi II : Clustering
	Definisi dan Jenis-jenis Unsupervised Learning	į.	Intuisi dan Motivasi Clustering
	Contoh Kasus Unsupervised Learning	Ċ	Clustering dan Segmentasi dalam Bisnis
	Dimensionality Reduction dan		Galatti Bisitis
~	Penggunaannya		Intermezzo: Pengukuran Jarak
	Intuisi dan Motivasi Principal Component Analysis (PCA)	-	Algoritma Agglomerative Clustering dan Praktik
	PCA (Praktik)		Algoritma K-means Clustering dan Praktik
	Algoritma PCA Langkah-demi-langkah		Evaluasi Clustering

Tips/Trick + Review

Preprocessing Wajib untuk PCA

DATA CLEANING

Data tidak boleh **bolong** ataupun memiliki nilai NULL. Hal ini karena kita harus menghitung jarak untuk setiap baris data dan apabila ada data yang kosong jarak tidak bisa dihitung.

STANDARDISASI DATA

data harus distandarisasi, jika data tidak distandarisasi maka bisa ada yang mendominasi perhitungan PCA


```
1 print('Explained variance:', pca.explained_variance_)
2 print('Explained variance ratio:', pca.explained_variance_ratio_)

1 plt.bar(['PC1', 'PC2', 'PC3', 'PC4'], pca.explained_variance_)

1 plt.bar(['PC1', 'PC2', 'PC3', 'PC4'], pca.explained_variance_ratio_ * 100)
```

3.0 2.5 2.0 1.5 1.0 0.5 0.0 PC1 PC2 PC3 PC4

Gunakan Scree Plot untuk menentukan berapa PC yang harus diambil

Ambil PC hingga sekitar 90% variasi tercover.

Atau ambil PC yang SSnya masih di atas 1.

PAKAI PCA KALAU

- Perlu lebih sedikit feature dari yang dimiliki sekarang karena satu dan lain alasan namun tidak bisa membuang langsung kolom
- Fitur-fitur dari data memiliki korelasi satu sama lain, kira-kira di atas 0.3

JANGAN PAKAI PCA KALAU

- Tidak ingin data jadi lebih sulit untuk dimengerti/artikan
- Fitur-fitur dari data tidak memiliki korelasi satu sama lain, di bawah 0.3.
 Kalau dipakai, PCA hanya akan mengeluarkan komponen yang sama persis dengan sumbu awal.
- Dalam kasus klasifikasi, variasi data di dalam kelas lebih besar daripada variasi data antar kelas - PCA bisa malah membuang variasi antar kelas

	Sesi I: Intro + Dimensionality Reduction		Sesi II : Clustering
	Definisi dan Jenis-jenis Unsupervised Learning	į.	Intuisi dan Motivasi Clustering
	Contoh Kasus Unsupervised Learning	Ċ	Clustering dan Segmentasi dalam Bisnis
	Dimensionality Reduction dan		Galatti Bisitis
7	Penggunaannya		Intermezzo: Pengukuran Jarak
	Intuisi dan Motivasi Principal Component Analysis (PCA)	-	Algoritma Agglomerative Clustering dan Praktik
	PCA (Praktik)		Algoritma K-means Clustering dan Praktik
	Algoritma PCA Langkah-demi-langkah		Evaluasi Clustering

Hafizh Adi Prasetya https://id.linkedin.com/in/hafizhadi

Hafizh Adi Prasetya

Data Scientist

Bukalapak