1. Introduction

2. On-Policy Monte-Carlo Control

- 2-1. Generalized Policy Iteration (Policy Evaluation 측면)
- 2-2. Exploration (Policy Improvement 측면)
- 2-3. GLIE and Monte-Carlo Control
- 2-4. Blackjack Example

3. On-Policy Temporal-Difference Learning Control

3-1. Introduction

3-2. Sarsa

- 3-2-1. Sarsa
- 3-2-2. Convergence
- 3-2-3. Windy World Example

3-3. Sarsa(λ)

- 3-3-1. n Step Sarsa
- 3-3-2. Forward View Sarsa(λ)
- 3-3-3. Backward View Sarsa(λ)
- 3-3-4. Grid-World Example

4. Off-Policy Learning

4-1. Introduction

- 4-1-1. Backgrounds
- 4-1-2. Off-Policy Learning의 의미와 특징

4-2. Importance Sampling in MC and TD

- 4-2-1. 의미
- 4-2-2. Importance Sampling for Off-Policy Monte-Carlo
- 4-2-3. Importance Sampling for TD

4-3. Q-Learning

- 4-3-1. General Q-Learning
- 4-3-2. Q-Learning

5. Summary

5-1. Relationship Between DP and TD서강대학교 머신러닝 연구실 서강현

- #. Model-Free(unknown MDP)인 상황에서 Control 문제를 풀 것이다. 즉 State Transition Probability와 Reward를 모르는 상태에서 최적의 Policy를 찾는 문제인데, Policy에는 Agent가 직접 Update하는 Target Policy(π)와 Agent의 Behavior를 Generate하는 Behavior Policy(μ)가 있다. 이 두 종류의 Policy가 같으면 On-policy, 다르면 Off-policy이다. 전자의 경우 Agent가 하나의 Policy를 이용하여 Action을 Selection하고, 이를 바탕으로 Policy를 최적화하는 방식이라면, 후자의 경우 별도로 존재하는 Behavior Policy에 따라 Action을 정하고 이에 따른 결과를 이용하여 Target Policy를 Update하는 방식이다. 이 때, 학습이 진행될 수록 Behavior Policy에 따른 Action Selection의 빈도는 감소해야 한다.
- a. Model-Free Control은 MDP가 Unknown이거나, Known일 때도 Sampling(직접 Env.를 경험하는 방법)으로만 접근할 수 있을 때 사용한다.
- b. 5장까지 유지할 방식은 'Tabular Method¹)' 방식이다. 즉 Value Function을 표현할 때 Table을 사용하여 이를 Update하는 방법이다. 하지만 이 방식은 State의 수가 늘어나면 더 이상 쓸모가 없어지기 때문에 이후에는 Function Approximator방법으로 Value Function을 표현한다. 즉 Env.의 특징에 따라 (Action / State) Value Function을 표현하는 방법이 Tabular or Function Approximation으로 나뉜다.

서강대학교 머신러닝 연구실

- 2-1. Generalized Policy Iteration (Policy Evaluation 측면)
- #. 일반적인 상황인 Model-Free(Unknown MDP)에서는 Policy Iteration을 사용할 때, Policy Evaluation에서 MC를 사용하여 State Value대신 Action Value를 구하고 Policy Improvement 단계에서 Action-Value를 바탕으로 Greedy하게 Action을 선택한다. 하지만 이렇게 되면 모든 State를 방문하지 못하여 Exploration이 충분하지 않게 되는 문제점이 발생한다.

기존 Policy Iteration	Generalized Policy Iteration
$\pi'(s) = \mathrm{arg} \max_{a \in A} \! \left(R_s^a \! + P_{ss'}^a V(s') \right)$	Policy evaluation Monte-Carlo policy evaluation, $Q=q_\pi$
	Policy improvement Greedy policy improvement?

- a. 기존에 살펴본 Policy Iteration은 MDP를 안다는 가정이므로 다음 State가 무엇인지 확률적으로 알고 있었다. 이 때문에 Policy Evaluation을 통해 State Value를 구하고, 이를 이용하여 Improvement 단계에서 Greedy하게 State Value에 따라 Action을 선택할 수 있었다.
- b. 하지만 Model-Free인 상황에서는 Agent가 직접 Action을 취하기 전까진 다음 State에 대한 정보가 가려져 있기 때문에 MC를 사용해서 State Value를 구하더라도 이를 이용하여 Improvement가 불가능하다. 따라서 이 대신 Action Value를 MC방법으로 구한 후 Greedy하게 Improvement한다.

2-2. Exploration (Policy Improvement 측면)

- #. Policy Improvement에서 Action-Value를 바탕으로 Greedy로만 Action을 선택하게 되면, Exploration이 부족해지는 문제가 발생한다. 이를 해결하기 위해 아래와 같은 식으로 ϵ 의 확률로 Random하게, $1-\epsilon$ 의 확률로 Greedy하게 Action을 선택하도록 한다. 더 나아가 MC는 하나의 Episode만 있어도 Update가 가능하기에 좀 더 효율적인 Iteration을 위해 한 Episode가 끝나는 대로 Policy Evaluation을 진행한다. 즉 Asynchronous Backup으로 모든 State-Action Pair를 경험하지 않고 Update가 가능하다는 것이다.
 - 그러면 위의 방법이 Monte-Carlo Control²⁾이 된다.

- a. ϵ -Greedy Exploration에서 Action의 개수는 m개다.
- b. Policy Improvement에서 ϵ Greedy를 해도 Improve가 되는지에 대한 증명은 아래와 같다. 이 증명은 3장에서 Greedy로 하여도 Improve가 되는지에 대한 증명과 동일하게 이루어진다. 그리고 'Policy Improvement Theorem'에 의해 한 Step에서 Improvement를 보이면 그 이후 여러 단계에서도 Improvement가 가능하다.

Theorem

• For any ϵ – greedy policy π' with respect to q_{π} is an improvement, $v_{\pi'}(s) \geq v_{\pi}(s)$

$$egin{aligned} q_{\pi}(s,\pi'(s)) &= \sum_{a \in \mathcal{A}} \pi'(a|s) q_{\pi}(s,a) \ &= \epsilon/m \sum_{a \in \mathcal{A}} q_{\pi}(s,a) + (1-\epsilon) \max_{a \in \mathcal{A}} q_{\pi}(s,a) \ &\geq \epsilon/m \sum_{a \in \mathcal{A}} q_{\pi}(s,a) + (1-\epsilon) \sum_{a \in \mathcal{A}} rac{\pi(a|s) - \epsilon/m}{1-\epsilon} q_{\pi}(s,a) \ &= \sum_{a \in \mathcal{A}} \pi(a|s) q_{\pi}(s,a) = v_{\pi}(s) \end{aligned}$$

- \therefore Therefore from policy improvement theorem, $v_{\pi'}(s) \geq v_{\pi}(s)$
- c. 위의 증명에서, $q_\pi(s,\pi'(s))$ 는 현재의 선택은 π' 로 하고, 그 다음 부터는 π 을 사용한다는 의미이다. 그리고 부등호가 생기는 이유는 가중치의 합보다 \max 값이 항상 크기 때문이다. 서강대학교 머신러닝 연구실

²⁾ 아직 완전한 것은 아니지만, 곧 다음에 나올 GLIE의 2가지 속성을 만족해야 한다.

#. 2-2에서 언급한 MC Control이 잘 수렴하기 위해서는 Greedy in the Limit with Infinite Exploration³⁾의 2 가지 속성이 만족되어야 한다. 그 속성은 아래와 같으며, 이를 만족시키는 GLIE Monte-Carlo Control을 식으로 표현하면 아래와 같다.

조건 1	$\lim N_k(s,a) = \infty$	학습이 진행될수록 모든 State-Action Pair가 무		
	$k \rightarrow \infty$	한히 반복되어야 한다> Exploration		
조건 2	$\lim_{k\to\infty} \pi_k(a s) = 1(a = \operatorname{arg} \max_{a'\in A} Q_k(s, a'))$	학습이 충분히 진행되었다면, ϵ 값은 감소 4)하고,		
		최종적으로는 Greedy Policy가 되어야 한다.		
		-> Exploitation		

Theorem

GLIE Monte-Carlo control converges to the optimal action-value function, $Q(s,a) \rightarrow q_*(s,a)$

k-th Episode는 $\pi:S_1,A_1,R_2,...,S_T\sim\pi$ 에서 Sampling할 수 있다.

한 Episode 단위로, 아래와 같은 Evaluation, Improvement과정을 수행한다.

Policy Evaluation

$$N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)} (G_t - Q(S_t, A_t))$$

Policy Improvement

$$\epsilon \leftarrow 1/k$$
 $\pi \leftarrow \epsilon$ -greedy(Q)

³⁾ 무한한 Exploration에 제한을 걸고 Greedy를 해야 한다는 의미이다.

⁴⁾ $\epsilon_k = \frac{1}{k}$ 로 설정한다.

2-4. Blackjack Example

a. 4장에서 보았던 Blackjack Example은 Prediction이었으므로 Optimal Value Function을 구했지만, 여기에서 는 Optimal Policy를 도출할 것이다. 그 결과는 아래와 같다.

3-1. Introduction

#. MC와 TD를 비교했을 때처럼, TD는 MC보다 Variance가 낮으며, Online-Learning이 가능하므로, Terminal State가 없는 Episode에서도 학습이 가능하다는 장점이 있었다. 따라서 Model-Free Policy Iteration 과정에서 Policy Evaluation(=Prediction)할 때, MC 대신 TD5)로 대체할 수 있는데, 이것이 Sarsa Model이다.

3-2. Sarsa

3-2-1. Sarsa

#. Model-Free Policy Iteration 중 Policy Evaluation(=Prediction)에서 아래와 같이 TD-Learning을 사용하는 방법을 Sarsa라고 한다. 따라서 Monte-Carlo Control에서 한 Episode마다 Policy Evaluation을 했다면, 이 제는 한 Step마다 Policy Evaluation을 진행하며 Q-table⁶⁾ 또는 Function Approximator의 Weight 값을 Update하는 것이다.

Every time-step:

Policy evaluation Sarsa, $Q \approx q_{\pi}$

Policy improvement ϵ -greedy policy improvement

Sarsa Algorithm

Initialize $Q(s, a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$, arbitrarily, and $Q(terminal\text{-}state, \cdot) = 0$ Repeat (for each episode):

Initialize S

Choose A from S using policy derived from Q (e.g., ε -greedy)

Repeat (for each step of episode):

Take action A, observe R, S' policy Improvement

Choose A' from S' using policy derived from Q (e.g., ε -greedy)

 $Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]$ policy. Evaluation.

 $S \leftarrow S'$; $A \leftarrow A'$;

until S is terminal

⁵⁾ MC와 TD는 Model-Free Prediction(=Evaluation)의 대표적한 대한다. 머신러닝 연구실

⁶⁾ Look up Table이며 (# of state × # of actions per state) size이다. 서강현

#. Action Value인 Q-Value가 Sarsa를 통해 Optimal Action Value Function($q_*(s,a)$)로 수렴하기 위해서, 이론적으로는 아래의 2가지 조건이 필요하지만, 실제적으로는 두 조건들을 신경 쓰지 않아도 수렴함이 보장된다.

조건 1	GLIE		결국엔 모든 State-Action Pair를 방문해야 한다. 결국엔 ϵ 값이 줄어들어서 Policy가 Greedy Policy로 되어야 한다.
スカっ	Robbins Monro Convence	•	$\sum_{t=1}^{\infty} \alpha_t = \infty$: Step-Size가 Q값을 먼 곳으로 이끌 수 있도록 설정.
포인 2	조건 2 Robbins-Monro Sequence	•	$\displaystyle \sum_{t=1}^{\infty} lpha_t^2 < \infty$: Q값을 수정하는 것이 점점 작아진다. 즉 수렴한다.

3-2-3. Windy world Example

a. 아래의 MDP에서 Sarsa를 사용한 예시와 그 결과이다. State에서는 바람이 불어서 숫자가 적힌 해당 열에 위치하면, 그 값만큼 위로 올라간다.

- b. 위의 결과는 King's Moves를 사용한 결과⁷⁾이며, 처음 성공하기 까지 2000번의 Time steps가 필요하다. 하지만 성공 이후에는 기울기가 급격하게 증가하여 성공하는 Episode가 기하급수적으로 늘어난다.
- c. 성공하게 되면 Goal인 지점에서부터 주변 State로 역으로 정보가 전파되기 시작하여 이전보다 적은 Time-step으로도 Goal에 도착할 수 있기 때문에 이렇듯 기하급수적으로 증가하는 것이다.
- d. 구체적으로 한번 성공하였을 때, 70×8 크기의 Q-table에서 Goal State에 도달 직전의 State의 각 Column 값(Q-value)이 Update되고, 다음 Time-Step에서는 그 State의 직전 State의 Q-Value 값이 Update되는 방식이다.

서강대학교 머신러닝 연구실

3-3. Sarsa(λ)

3-3-1. n-step Sarsa

#. n-Step TD와 동일한 방식으로 Bootstrapping을 진행하는데, n-step까지는 직접 가서 Reward를 얻고 그 이후부터는 Bootstrapping을 진행하는 Sarsa이다.

$$q_t^{(n)} = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{n-1} R_{t+n} + \gamma^n Q(S_{t+n})$$
 $q_t^{(n)} = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{n-1} R_{t+n} + \gamma^n Q(S_{t+n})$
 $q_t^{(n)} = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{n-1} R_{t+n} + \gamma^n Q(S_{t+n})$
 $q_t^{(n)} = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{n-1} R_{t+n} + \gamma^n Q(S_{t+n})$
 $q_t^{(n)} = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{n-1} R_{t+n} + \gamma^n Q(S_{t+n})$

3-3-2. Forward View Sarsa(λ)8)

#. MC와 동일하게 한 Episode내에서, Terminal State까지 가면서 모든 Step에 대한 Q-Return에 Weighted-Sum을 하여 이를 TD-Target으로 설정한 $TD(\lambda)$ 와 동일한 Sarsa이다. 하지만 Terminal State가 존재해야하고, 이에 도달해야 Update가 가능한 단점이 있었다.

TD-Target	Forward-view Sarsa(λ)
$q_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} q_t^{(n)}$	$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha (q_t^{\lambda} - Q(S_t, A_t))$
	Sarsa(λ)
1-λ	s_{r} , a $(1-\lambda)\lambda$
	$(1-\lambda) \lambda^2$
	$\sum = 1 \qquad \qquad s_T$

서강대학교 머신러닝 연구실

#. Forward View의 TD-Error 부분에 각 State-Action Pair마다 책임을 묻는 Eligibility trace값⁹⁾을 곱하여 책임 사유와 비례하여 Update되도록 하는 Backward View TD(λ)와 비슷하지만 State뿐만 아니라 State-Action Pair를 고려한다는 점에서 차이가 있다. Forward View와는 다르게 Terminal State가 없어도 Update가 가능하며, 한 Step마다 모든 칸을 Update하여 계산양은 많지만, 정보의 전파는 빠르다.

Eligibility Trace	Backward View Sarsa(λ)
$E_0(s,a)=0$	$\delta_t = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)$
$E_t(s,a) = \gamma \lambda E_{t-1}(s,a) + 1(S_t = s, A_t = a)$	$Q(s,a) \leftarrow Q(s,a) + \alpha \delta_t E_t(s,a)$

```
Initialize Q(s,a) arbitrarily, for all s \in \mathcal{S}, a \in \mathcal{A}(s)

Repeat (for each episode): E(s,a) = 0, for all s \in \mathcal{S}, a \in \mathcal{A}(s)

Initialize S, A

Repeat (for each step of episode): Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy) \delta \leftarrow R + \gamma Q(S', A') - Q(S, A)

E(S,A) \leftarrow E(S,A) + 1

For all s \in \mathcal{S}, a \in \mathcal{A}(s): Q(s,a) \leftarrow Q(s,a) + \alpha \delta E(s,a)

E(s,a) \leftarrow \gamma \lambda E(s,a)

S \leftarrow S'; A \leftarrow A'

until S is terminal
```

- a. Sarsa Algorithm과는 다르게 한 Step 이후에 지나온 모든 State, Action에 대해 Eligibility Trace값을 구해 준 후 Update해준다. 따라서 위와 같이 Loop가 존재하며, 계산양은 많지만 정보 전파는 기존 Sarsa보다 빠르다.
- b. 빨간 박스 부분의 구현 방법은 Tabular Method를 사용하여 한 번에 해당 연산을 적용해주면 된다.

a. Episode가 끝났을 때, One-Step Sarsa와 Sarsa(λ)의 Action-Value가 Update되는 방식의 차이를 살펴보면, 아래와 같다. 즉 One-Step Sarsa는 Goal직전의 State만 Update되는 반면, Sarsa(λ)는 Agent가 지나왔던 모든 경로에 대해 Eligibility Trace의 값에 따라 Update가 진행된다.

b. Sarsa(λ)의 Action Value가 Update되는 것을 보면, 지나온 경로에서 Eligibility Trace에 따라 Frequency는 모두 동일하지만, Recency가 다르기 때문에 화살표의 굵기에 차이가 있다.

4-1. Introduction

4-1-1. Backgrounds

- a. 확률분포의 의미 : x축은 발생 가능한 사건들, y축은 각 사건이 발생할 확률로 설정하고 이를 함수로 표현한 것이다. 따라서 어떤 확률분포에서 어떤 사건을 Sampling을 한다는 것은 그 사건의 발생 확률과 비례하여 그 사건을 택한다는 것이다.
- b. Policy의 의미 : Policy는 State가 주어졌을 때의 Action에 대한 확률분포 $(\pi(a|s))$ 이므로, 각 State마다 따로 존재하며, x축에는 Actions, y축에는 각 Action을 취할 확률로 표기된다.
- c. Behaviour $Policy(\mu)$ 와 Target $Policy(\pi)$:

Target Policy(π)	Optimal Policy를 찾기 위해 Evaluation and Improvement가 되는 Policy이다.
Behaviour Policy(μ)	Exploration을 위한 Policy이며 Behavior를 Generation하는 Policy이다.

4-1-2. Off-Policy Learning의 의미와 특징

- #. Off-Policy Learning은 On-policy와 다르게 $\pi \neq \mu$ 인 상황이며 μ^{10} 는 누군가 이미 했던 것(Data-Set)인데 이를 따라 Action Selection을 하고 Data를 생성한 후 State Value(v(s))나 Action Value(q(s,a))를 구하는 것이 목적이다. 하지만 π 가 학습될수록 μ 에 의한 Action Selection의 빈도가 줄어들도록 해야 한다.
- a. 하지만 Supervised Learning과는 다르게 타산지석을 통해 더 나은 것을 학습하는 것이다.
- b. Simulation이 불가능하지만 기존의 수집된 Data-Set이 있으며 이를 기반으로 학습해야 할 때 사용할 수 있다.
- c. On-policy는 한 번 경험 후에 그 경험을 버렸다. 왜냐하면 같은 Policy를 Update하기 때문이다. 하지만 Off-Policy는 π,μ 을 재사용할 수 있다.
- d. 하나의 $Policy(\mu)$ 를 따르면서 Multiple policy를 학습할 수 있으므로, Optimal Policy를 학습하면서 Exploration이 가능하다. 이는 Exploration과 Trade-off 관계에 있는 Exploitation을 고려했을 때 중요한 특징이기도 하다.
- e. Off-Policy는 두 Policy가 서로 관련이 없으므로 Target Policy는 Deterministic(=Greedy)하지만, Behavior Policy는 Uniform Random Policy와 같이 모든 가능한 Action을 Selection하는 Policy가 될 수 있다.
- f. Off-Policy Methods는 Variance가 높고 수렴속도가 늦지만 일반적으로 강력한 성능을 발휘하므로 다양한 활용 가능성이 있다.
- g. 이러한 Off-Policy Learning이 가능한 방법론은 크게 Importance Sampling과 Q-learning이 있으며 각각 MC와 TD의 방법론을 구체적으로 배운다.

4.2 Impotance Sampling in MC and TD

4-2-1. Importance Sampling

#. 어떤 확률분포(P(X))의 기댓값을 구하고 싶지만 직접적으로 구할 수 없을 때, 하지만 해당 분포의 각 사건의 발생 확률 값을 알 수 있을 때, 이와 비슷한 다른 확률 분포(Q(X))를 사용하여 Sampling하고 Importance Sampling Ratio를 이용하여 아래와 같은 방법으로 P(X)의 기댓값으로 변환하는 방법이다.

$$\mathbb{E}_{X \sim P}[f(X)] = \sum_{X \sim P} P(X)f(X)$$

$$= \sum_{X \sim Q} Q(X) \frac{P(X)}{Q(X)} f(X)$$

$$= \mathbb{E}_{X \sim Q} \left[\frac{P(X)}{Q(X)} f(X) \right]$$

a. 이해의 편의를 위해 아래와 같이 특정 State s가 주어진 상황에서의 Table이 있다고 하자. 즉 s에서 얻을 수 있는 Return의 가짓수는 5가지이다.

$G_t(=X)$ 11)	3	21	10	14	11
Probability of the Subsequent State-Action(= $P(X)$) by Target Policy($\pi(a s)$)	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$
Probability of the Subsequent State-Action(= $Q(X)$) by Behavior Policy($b(a s)$)	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$
Importance Sampling Ratio(= $\frac{P(X)}{Q(X)}$)	$\frac{3}{5}$	$\frac{6}{5}$	$\frac{6}{5}$	$\frac{6}{5}$	$\frac{6}{5}$
Arbitrary Function		j	f(x) = x	c	

Probability of the Subsequent State-Action¹²⁾

$$\begin{split} \Pr\{A_t, S_{t+1}, A_{t+1}, \dots, S_T \mid S_t, A_{t:T-1} \sim \pi\} \\ &= \pi(A_t | S_t) p(S_{t+1} | S_t, A_t) \underline{\pi(A_{t+1} | S_{t+1})} \cdots \underline{p(S_T | S_{T-1}, A_{T-1})} \\ &= \prod_{k=t}^{T-1} \frac{\text{by Policy}}{\pi(A_k | S_k)} p(S_{k+1} | S_k, A_k), \end{split}$$

Importance Sampling Ratio

$$\rho_{t:T-1} \doteq \frac{\prod_{k=t}^{T-1} \pi(A_k|S_k) p(S_{k+1}|S_k, A_k)}{\prod_{k=t}^{T-1} b(A_k|S_k) p(S_{k+1}|S_k, A_k)} = \prod_{k=t}^{T-1} \frac{\pi(A_k|S_k)}{b(A_k|S_k)}.$$

¹¹⁾ Monte-Carlo의 경우엔 G이므로 \prod 연산이 필요하지만 하게 형후엔 된 S나 때문에 해당 연산은 필요 없다.

¹²⁾ 위의 Table에서 확률 값 하나가 Policy와 State Transition Probability값을 연속적으로 곱하여 나온 결과이다.

b. 위의 Table에서 Sampling하여 State Value Function $(v(s) = E[G_t|S_t = s])$ 을 구해보자. 즉 Behavior Policy(b(a|s))를 사용하여 Sampling을 하고 State Value Function을 구한 후 이를 Target Policy $(\pi(a|s))$ 를 이용해 구한 것으로 변환해보자.

3번의 Episode후 얻은 Returns = $(21,3,10)$		
Target Policy $v_\pi(s)$	$21 \times \frac{1}{5} + 3 \times \frac{1}{5} + 10 \times \frac{1}{5} = \frac{34}{5}$	
Prediction via Importance Sampling	$\frac{1}{3} \times \frac{3}{5} \times 21 + \frac{1}{6} \times \frac{6}{5} \times 3 + \frac{1}{6} \times \frac{6}{5} \times 10 = \frac{34}{5}$	
$E[\rho_{t:T-1}G_t S_t=s]$	$\frac{3}{3} \times \frac{5}{5} \times 21 + \frac{6}{6} \times \frac{5}{5} \times 3 + \frac{6}{6} \times \frac{5}{5} \times 10 = \frac{5}{5}$	
$\therefore E[\rho_{t:T-1}G_t S_t=s]=v_{\pi}(s)$		

- c. 위의 결과에서 알 수 있듯이 Importance Sampling Ratio가 Behavior Policy를 통해 구한 Return G_t 을 Target Policy를 통해 구한 Return으로 변환해준다.
- 4-2-2. Importance Sampling for Off-Policy MC
- #. MC에 따라서, Behavior Policy μ 을 따라 한 Episode를 마쳤을 때, 얻은 Return G_t 에 $\frac{\pi(A_T|S_T)}{\mu(A_T|S_T)}, P(a|s) = \pi(a|s), \ Q(a|s) = \mu(a|s)$ 을 G_t 을 얻을 때 까지 Selection한 Action의 개수만큼 곱해주고(=Importance Sampling Ratio) 아래와 같이 Update해주면 Target Policy $\pi(a|s)$ 을 따랐을 때의 Return을 도출할 수 있다.

$$G_t^{\pi/\mu} = \frac{\pi(A_t|S_t)}{\mu(A_t|S_t)} \frac{\pi(A_{t+1}|S_{t+1})}{\mu(A_{t+1}|S_{t+1})} \dots \frac{\pi(A_T|S_T)}{\mu(A_T|S_T)} G_t$$
$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{\pi/\mu} - V(S_t)\right)$$

- a. Off-Policy Method에선 거의 대부분 Importance Sampling을 사용한다.
- b. 하지만 Importance Sampling Correction Term의 Variance가 매우 크고 수렴이 느린 문제점이 있다. 왜냐하면 $0 \le \frac{\pi(a|s)}{\mu(a|s)} \le 1$ 인 상황에서 한 Episode의 Action이 많아지면 0으로 $G_t^{\pi/\mu}$ 의 값이 0으로 수렴하기 때문이다. 또한 $\pi(a|s) = 0$ 이면 $G_t^{\pi/\mu} = 0$ 인 문제 또한 발생하기 때문이다.

#. 위의 방법에서 MC대신 TD를 사용하는 방법이다. 즉 한 Step인 하나의 Action에 대해서만 Behavior Policy μ 을 따랐을 때의 TD-target에 Importance Sampling Ratio을 곱해주면 된다. MC와 다른 점은 Probability of the Subsequent State-Action의 길이가 1이므로 $\frac{\pi(a|s)}{\mu(a|s)}$ 을 TD-Target에 한 번만 곱해주면 된다.

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\frac{\pi(A_t|S_t)}{\mu(A_t|S_t)} (R_{t+1} + \gamma V(S_{t+1})) - V(S_t) \right)$$

4-3. Q-Learning

4-3-1. General Q-Learning

#. TD-Learning¹³⁾에서 State Value 대신 Action Value를 Bootstrapping하는데, 먼저 현 시점(t)에서는 Behavior Policy (μ) 를 따라 실제 Action을 취하고, 다음 시점(t+1)에서의 Action Value는 우리가 학습하고자 하는 Target Policy (π) 로 추측하는 방식이다. 즉 S_t 에서 μ 에 따라 A_t 을 했을 때의 Action Value는 A_t 을 따라 S_{t+1} 로 갔을 때의 π 을 따른 A'의 Action Value를 이용하여 구한다는 것이다.

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma Q(S_{t+1}, A') - Q(S_t, A_t) \right)$$

- a. 예를 들어 현 시점에서 오른쪽으로 이동하는 Action Value를 구하려면, 실제 오른쪽으로 가고 난 후 다음 State에서 μ 가 위로 가는 것, π 가 아래로 가는 것이라 한다면, 아래로 가는 방향으로 오른쪽으로 가는 Action Value를 Update하는 것이다.
- b. 아직까진 Tabular Method를 사용하고 있으므로 Q(s,a)는 (# of States \times # of Actions Per State) 크기의 Q-Table로 표현된다. 하지만 State Space가 Continuous이거나 많아지면 Function Approximation을 사용하여 Q(s,a)을 나타낸다. 예를 들어 Linear Function Approximation은 $\hat{Q}(s,a) = \theta^T \phi_{s,a}$, Neural Network은 $\hat{Q}(s,a) = f_n(\phi_{s,a})$ 이 되고 $\phi_{s,a}$ 은 Action-State Feature Vector이다.

#. Behavior, Target Policy(μ , π) 모두 Improve 시키기 위한 방법으로 General Q-Learning에서 Target Policy π 는 Greedy하게 정하여 Update하는 방식이고, Behavior Policy μ 는 ϵ -greedy하게 정하여 학습초반에는 Action을 Selection을 주로 하여 Exploration을 도모하고 Target Policy가 어느정도 학습이 되었으면 Behavior Policy에 의한 Action Selection을 줄여나가도록 하는 방법이다. (아래 그림에서 호는 \max 연산을 의미)

Theorem:

Q-Learning control converges to the optimal action-value function, $Q(s, a) \rightarrow q_*(s, a)$

Initialize $Q(s, a), \forall s \in S, a \in A(s)$, arbitrarily, and $Q(terminal-state, \cdot) = 0$ Repeat (for each episode):

Initialize S

Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S'

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$$

 $S \leftarrow S';$

until S is terminal

5-1. Relationship Between DP and TD

	Full Backup (DP)		Sample Backup (TD)	
Bellman Expectation	$v_{\pi}(s) \leftrightarrow s$ $v_{\pi}(s') \leftrightarrow s'$			
Equation for $v_{\pi}(s)$	Iterative Policy Evaluation		TD Learning	
Bellman Expectation Equation for $q_{\pi}(s,a)$	$q_{\pi}(s,a) \leftrightarrow s,a$ $q_{\pi}(s',a') \leftrightarrow a'$ Q-Policy Itera	Sarsa		
Bellman Optimality Equation for $q_*(s, a)$	$q_*(s,a) \leftrightarrow s,a$ $q_*(s',a') \leftrightarrow a'$ Q-Value Iteration		Q-Learning	
Full Backup (DP)		Sample	Backup (TD)	
Iterative Policy Evalua	tion	TD Lea	rning	
$V(s) \leftarrow \mathbb{E}\left[R + \gamma V(S') \mid s\right]$		$V(S) \stackrel{\alpha}{\leftarrow} R + \gamma V(S')$		
Q-Policy Iteration		Sarsa		
$Q(s, a) \leftarrow \mathbb{E}\left[R + \gamma Q(S', A') \mid s, a\right]$		$Q(S,A) \stackrel{\alpha}{\leftarrow} R + \gamma Q(S',A')$		
Q-Value Iteration		Q-Learning		
$Q(s,a) \leftarrow \mathbb{E}\left[R + \gamma \mathop{m}_{a'}\right]$	$\max_{e \in A} Q(S', a') \mid s, a$	Q(S,A)	$) \overset{lpha}{\leftarrow} R + \gamma \max_{a' \in \mathcal{A}} Q(S', a')$	