# **Accepted Manuscript**

A randomized controlled trial comparing guided internet-based multi-component treatment and internet-based guided sleep restriction treatment to care as usual in insomnia

Tobias Krieger, Antoine Urech, Simone B. Duss, Larissa Blättler, Wolfgang Schmitt, Heidemarie Gast, Claudio Bassetti, Thomas Berger

PII: \$1389-9457(18)30779-2

DOI: https://doi.org/10.1016/j.sleep.2019.01.045

Reference: SLEEP 4006

To appear in: Sleep Medicine

Received Date: 2 October 2018

Revised Date: 19 November 2018

Accepted Date: 8 January 2019

Please cite this article as: Krieger T, Urech A, Duss SB, Blättler L, Schmitt W, Gast H, Bassetti C, Berger T, A randomized controlled trial comparing guided internet-based multi-component treatment and internet-based guided sleep restriction treatment to care as usual in insomnia, *Sleep Medicine*, https://doi.org/10.1016/j.sleep.2019.01.045.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



A randomized controlled trial comparing guided internet-based multi-component treatment and internet-based guided sleep restriction treatment to care as usual in insomnia Tobias Krieger<sup>1±\*</sup>, Antoine Urech<sup>1,2±</sup>, Simone B. Duss<sup>3</sup>, Larissa Blättler<sup>1</sup>, Wolfgang Schmitt<sup>3</sup>, Heidemarie Gast<sup>3</sup>, Claudio Bassetti<sup>3+</sup>, Thomas Berger<sup>1+</sup> <sup>1</sup> Institute for Psychology, University of Bern, Bern, Switzerland <sup>2</sup> Neurorehabilitation Dept. of Neurology, Hospital, and University of Bern, Riggisberg, Switzerland <sup>3</sup> Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland <sup>±</sup> These authors share first authorship <sup>+</sup>These authors share senior authorship Declarations of conflict of interest: none FINANCIAL STATEMENT This study was partly funded by the Swiss National Science Foundation (personal grant TB: PP00P1 144824/1). \*Address for correspondence Dr. phil. Tobias Krieger Department of Clinical Psychology and Psychotherapy University of Bern Fabrikstrasse 8

36 3012 Bern, Switzerland

37 E-mail: tobias.krieger@psy.unibe.ch

38



| 39         | Abstract                                                                                            |
|------------|-----------------------------------------------------------------------------------------------------|
| 40         | Background: Internet-based cognitive behavioral treatment (iCBT-I) for insomnia                     |
| 41         | comprising different sleep-related cognitive and behavioral interventional components has           |
| 42         | shown some promise. However, it is not known which components are necessary for a good              |
| 43         | treatment outcome.                                                                                  |
| 44         | <b>Method</b> : People suffering from insomnia ( $N = 104$ ) without any other comorbid psychiatric |
| 45         | disorders were randomized (2:2:1) to two guided internet-based self-help interventions for          |
| 46         | insomnia (multi-component cognitive behavioral self-help intervention [MCT]; sleep                  |
| 47         | restriction intervention for insomnia [SRT]), and care as usual [CAU]. In all three conditions,     |
| 48         | additional care or treatment was allowed. The primary outcome was insomnia severity                 |
| 49         | measured with the insomnia severity index (ISI) at eight weeks. Furthermore, the two active         |
| 50         | conditions were compared regarding sleep efficacy from daily diary data over the eight              |
| 51         | weeks, and other measures from the daily protocols. Secondary outcomes included sleep               |
| 52         | quality, depressive symptoms, dysfunctional beliefs, and quality of life at post-treatment          |
| 53         | (eight weeks) and follow-up (six months after randomization).                                       |
|            |                                                                                                     |
| 54         | <b>Results</b> : Both conditions were more effective than CAU at post-treatment, with medium to     |
| 55         | large between-group effect sizes on the primary outcome (ISI; MCT: Cohen's $d = -1.15$ ; SRT        |
| 56         | d = -0.68) and small to medium between-group effect sizes for secondary outcomes.                   |
| 57         | Treatment gains were maintained at 6-month follow-up. Active conditions did not differ from         |
| 58         | each other on all measures from pre to post, except for dysfunctional beliefs about sleep, and      |
| 59         | sleep protocol data throughout the intervention. Participants in MCT were significantly more        |
| 60         | satisfied with the intervention than participants in SRT.                                           |
| <i>c</i> 1 |                                                                                                     |
| 61         | <b>Conclusions:</b> Results of the present study indicate that CAU + MCT and CAU + SRT are          |
| 62         | both effective compared to CAU. There were no statistical differences regarding efficacy            |
| 63         | between the two active conditions, but participants in MCT reported to be more satisfied with       |
| 64         | the intervention.                                                                                   |
| 65         |                                                                                                     |
| 66         | Keywords: insomnia, online intervention, internet-based intervention, cognitive                     |
| 67         | behavioral treatment, sleep restriction                                                             |
| 68         |                                                                                                     |

# 1. INTRODUCTION

69

100

| 70 | Insomnia is a significant public health problem, with one-third of the adult population           |
|----|---------------------------------------------------------------------------------------------------|
| 71 | reporting symptoms of insomnia, and approximately 10% meeting diagnostic criteria for an          |
| 72 | insomnia disorder (Ohayon, 2002, Simon and VonKorff, 1997, Morin and Jarrin, 2013).               |
| 73 | Problems related to sleep, affect daily cognitive performance as well as mood, which in turn      |
| 74 | affect quality of life as well as work productivity (Walsh, 2004). Insomnia has been proposed     |
| 75 | to be a contributory causal factor in the occurrence of many mental health disorders (Harvey      |
| 76 | et al., 2011). As a consequence, insomnia is responsible for high social costs and the            |
| 77 | economic burden of insomnia is very high, with the largest proportion of all expenses             |
| 78 | attributable to insomnia-related work absences and reduced productivity (Daley et al., 2009).     |
| 79 | Cognitive-behavioral therapy for insomnia (CBT-I) is a psychological treatment that targets       |
| 80 | the maladaptive behaviors and dysfunctional thoughts that perpetuate sleep problems. CBT-I        |
| 81 | is one of the most effective treatments for insomnia (Trauer et al., 2015, van der Zweerde et     |
| 82 | al., 2018). A so-called multi-component therapy consisting of several aspects is recommended      |
| 83 | by the current guidelines of both the American and European sleep societies (Riemann et al.,      |
| 84 | 2017, Schutte-Rodin et al., 2008). Typically, CBT-I consists of several components such as        |
| 85 | stimulus control, sleep restriction, sleep hygiene, relaxation techniques, and cognitive          |
| 86 | restructuring (Perlis et al., 2010, Morin et al., 2006, Okajima et al., 2011). Of note, CBT-I has |
| 87 | also shown to have considerable treatment effects for depression comorbid with insomnia           |
| 88 | (Cunningham and Shapiro, 2018, Wu et al., 2015).                                                  |
| 89 | Although a multicomponent cognitive-behavioral therapy has shown to be effective, it is not       |
| 90 | clear which components of a multi-component therapy are most helpful to treat insomnia            |
| 91 | successfully. For example, there is empirical evidence that psychoeducation and sleep             |
| 92 | hygiene are not likely to be effective components of a successful insomnia treatment (Morin       |
| 93 | et al., 1994).                                                                                    |
| 94 | Several studies have investigated which components specifically contribute to treatment           |
| 95 | outcome. In dismantling studies in a face-to-face setting, sleep restriction has shown to be one  |
| 96 | of the most effective of these components (Spielman et al., 1987, Youngstedt and Kripke,          |
| 97 | 2004, Morin et al., 2006, Harvey et al., 2002, Miller et al., 2014). A recent review concluded    |
| 98 | that sleep restriction is an effective single behavioral intervention for the treatment of        |
| 99 | insomnia for sleep diary variables (Miller et al., 2014). Epstein and colleagues (Epstein et al., |
|    |                                                                                                   |

2012) conducted a dismantling study in older adults suffering from insomnia to compare

| 101 | multi-component therapy, sleep restriction alone, and stimulus control alone, to a waitlist       |
|-----|---------------------------------------------------------------------------------------------------|
| 102 | control group. They found initial evidence that stimulus control, sleep restriction, and multi-   |
| 103 | component therapy are equally efficacious. However, multicomponent therapy showed higher          |
| 104 | remission rates and should, therefore, be recommended. Similarly, a study by Harvey et al.        |
| 105 | (Harvey et al., 2014) compared cognitive behavioral therapy (CBT) with cognitive therapy          |
| 106 | (CT) and behavior therapy (BT) in chronic insomnia and showed significant improvements            |
| 107 | across all three treatment conditions. The authors found the greatest improvement for             |
| 108 | insomniacs in the CBT group, while improvements in the BT group were faster but less              |
| 109 | enduring and in the CT group improvements were delayed in action but more sustained.              |
| 110 | Unfortunately, the availability of CBT-I is severely limited for many reasons, including lack     |
| 111 | of trained clinicians, poor geographical distribution of knowledgeable professionals, expense,    |
| 112 | and inaccessibility to treatment and clinicians (e.g., van Straten and Cuijpers, 2009). Online    |
| 113 | interventions represent a potential solution to overcome several of the barriers to treatment     |
| 114 | access (Andersson and Titov, 2014). Several randomized controlled studies of internet-based       |
| 115 | self-help treatments for insomnia (iCBT-I) have shown its efficacy (e.g., van Straten et al.,     |
| 116 | 2014, Jernelöv et al., 2012, Ritterband et al., 2009), and recent meta-analyses (Seyffert et al., |
| 117 | 2016, Zachariae et al., 2016, Ye et al., 2016) show good results with large effects on insomnia   |
| 118 | severity, and medium effects for sleep efficiency and sleep quality. There is evidence that       |
| 119 | guided self-help interventions show better results compared to unguided interventions,            |
| 120 | irrespective of whether it is internet-based or not (Jernelöv et al., 2012, Ho et al., 2014).     |
| 121 | Regarding dismantling studies in online interventions, Kaldo and colleagues (Kaldo et al.,        |
| 122 | 2015) compared eight weeks of a guided multi-component iCBT-I with an active internet-            |
| 123 | based control treatment consisting of components with less empirical support for the              |
| 124 | treatment of insomnia such as sleep hygiene, relaxation, mindfulness, and general stress          |
| 125 | management. Notably, these components were only presented in an abbreviated form, and             |
| 126 | there was no guidance. Multi-component ICBT was significantly more effective after eight          |
| 127 | weeks. However, the two conditions did not differ anymore after 12 months due to a                |
| 128 | continuous decrease in ISI among controls. A very recent study showed that a multi-               |
| 129 | component therapy is more efficacious than online sleep education across a range of               |
| 130 | demographic groups (Cheng et al., 2018).                                                          |
| 131 | In summary, even though a considerable number of studies show positive effects for guided         |
| 132 | internet interventions for insomnia, there is still a lack of knowledge about which components    |
| 133 | of a multicomponent treatment are essential for the positive effects, and whether all             |

components are necessary for an effective treatment. The current study aims to compare sleep restriction, which is one crucial behavioral component of CBT-I, and a multi-component cognitive behavioral treatment with an active waiting list control group. Furthermore, it aims to compare the two active conditions. To our knowledge, this is one of the first studies that compare two different forms of guided iCBT-I and the first study that investigates guided internet-based sleep restriction.

#### 2. METHODS

#### 2.1 Study design

This study was a three-arm randomized controlled trial (RCT) comparing two immediate treatment groups to an active waiting list control group. All groups had access to CAU and the waiting list control group was enrolled in the iCBT-I program after the active treatment groups had completed the programme (after eight weeks). The immediate treatment group was followed up for six months after randomization. We wanted to be able to detect a standardized between-group effect size (Cohen's d) of 0.35. Smaller effect sizes were considered to be irrelevant from a clinical point of view. A power analysis based on an anticipated drop-out rate of 25% revealed that approximately 90 participants were needed per active treatment group to show such an effect with a power (1- $\beta$ ) of .80 compared to the control condition. Furthermore, 40 participants were estimated to be sufficient for the control condition because effect sizes between the control condition and treatment groups were assumed to be largely based on the previous trials, resulting in a sample size of 225 participants. For practicality reasons, we had to finish the recruitment procedure when 104 participants were randomized, therefore limiting our ability to detect small to medium between-group effect sizes.

#### 2.2 Participants and Procedure

Participants were recruited from June 2016 to July 2017 through newspaper advertisements, online postings, flyers, and physician referrals. Inclusion criteria were a) age of 18 years or older, b) meeting criteria for acute or chronic insomnia according to the International Classification of Sleep Disorders (ICSD-3) (American Academy of Sleep Medicine, 2014), c) having access to the internet, d) good knowledge of the German language. Exclusion criteria were a) known organic insomnia (e.g., due to restless legs syndrome, breathing-related sleep disorder, circadian rhythm sleep-wake disorder), b) psychiatric comorbidities according to the

| 165                                    | MINI interview (Ackenheil et al., 1999), and c) acute suicidality. After consenting to study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 166                                    | participation and meeting the inclusion and none of the exclusion criteria (assessed via the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 167                                    | baseline online questionnaire and an interview via telephone), participants were randomly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 168                                    | assigned to one of the three conditions (2:2:1). The allocation list was made using a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 169                                    | computerized random number generator and was concealed from the investigators and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 170                                    | participants. After the randomization, the participants received an email regarding their                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 171                                    | allocation. All participants in the active conditions were advised to work through one session                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 172                                    | per week and to start a new session after receiving weekly feedback by their guide. After                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 173                                    | eight weeks, all participants were asked to fill out the post-assessment questionnaires online                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 174                                    | and to participate in a second telephone interview to re-evaluate their diagnostic status. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 175                                    | assessors could not be kept blind regarding group allocation because some participants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 176                                    | revealed information about the treatment during the interview. Six months after the beginning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 177                                    | of treatment, participants were contacted via email and asked to fill out the questionnaires                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 178                                    | again and to take part in another interview. The trial was registered with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 179                                    | www.clinicaltrials.gov (NCT03110263) and was approved by the Ethics Committee of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 180                                    | Canton of Bern, Switzerland (2016-00295).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 181                                    | 2.3 Primary outcome measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 182                                    | The primary outcome of the present study was the Insomnia Severity Index (ISI) for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 183                                    | comparisons between the three conditions. Also, we used sleep efficacy (SE) reported by the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 184                                    | participants during the intervention in the morning protocol for the comparison between the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 185                                    | participants during the intervention in the morning protocor for the comparison between the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 105                                    | two active conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 186                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                        | two active conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 186                                    | two active conditions.  **Insomnia Severity Index (ISI).** Insomnia severity was assessed with the Insomnia Severity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 186<br>187                             | two active conditions.  *Insomnia Severity Index (ISI).* Insomnia severity was assessed with the Insomnia Severity Index (ISI) (Bastien et al., 2001). Participants indicate the severity of sleep onset difficulties,                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 186<br>187<br>188                      | two active conditions.  *Insomnia Severity Index (ISI).* Insomnia severity was assessed with the Insomnia Severity Index (ISI) (Bastien et al., 2001). Participants indicate the severity of sleep onset difficulties, sleep maintenance difficulties, early morning awakening, satisfaction with current sleep,                                                                                                                                                                                                                                                                                                                                              |
| 186<br>187<br>188<br>189               | Insomnia Severity Index (ISI). Insomnia severity was assessed with the Insomnia Severity Index (ISI) (Bastien et al., 2001). Participants indicate the severity of sleep onset difficulties, sleep maintenance difficulties, early morning awakening, satisfaction with current sleep, interference with daytime functioning, noticeability of impairment attributed to sleep                                                                                                                                                                                                                                                                                 |
| 186<br>187<br>188<br>189<br>190        | Insomnia Severity Index (ISI). Insomnia severity was assessed with the Insomnia Severity Index (ISI) (Bastien et al., 2001). Participants indicate the severity of sleep onset difficulties, sleep maintenance difficulties, early morning awakening, satisfaction with current sleep, interference with daytime functioning, noticeability of impairment attributed to sleep problems, and degree of distress or concern caused by the sleep problem for the previous                                                                                                                                                                                        |
| 186<br>187<br>188<br>189<br>190<br>191 | Insomnia Severity Index (ISI). Insomnia severity was assessed with the Insomnia Severity Index (ISI) (Bastien et al., 2001). Participants indicate the severity of sleep onset difficulties, sleep maintenance difficulties, early morning awakening, satisfaction with current sleep, interference with daytime functioning, noticeability of impairment attributed to sleep problems, and degree of distress or concern caused by the sleep problem for the previous week. The German version of the ISI has shown acceptable psychometric properties (Gerber                                                                                               |
| 186<br>187<br>188<br>189<br>190<br>191 | Insomnia Severity Index (ISI). Insomnia severity was assessed with the Insomnia Severity Index (ISI) (Bastien et al., 2001). Participants indicate the severity of sleep onset difficulties, sleep maintenance difficulties, early morning awakening, satisfaction with current sleep, interference with daytime functioning, noticeability of impairment attributed to sleep problems, and degree of distress or concern caused by the sleep problem for the previous week. The German version of the ISI has shown acceptable psychometric properties (Gerber et al., 2016). Higher scores indicate more severe insomnia. Cronbach's alpha at post was .83. |

| 196   | Association for Sleep Research and Sleep medicine (DGSM). We assessed SE with data from         |
|-------|-------------------------------------------------------------------------------------------------|
| 197   | the morning protocol for every night during the treatment period.                               |
| 198   | 2.4 Secondary outcome measures                                                                  |
| 199   | Secondary outcomes included the following measures: Overall sleep quality was measured          |
| 200   | with the Pittsburgh Sleep Quality Index (PSQI) (Buysse et al., 1989, Riemann and Backhaus,      |
| 201   | 1996). To assess maladaptive beliefs in insomnia, we used the 16-item version of the            |
| 202   | Dysfunctional Beliefs and Attitudes about Sleep (DBAS) scale (Morin et al., 2007, Weingartz     |
| 203   | and Pillmann, 2009). Depressive symptoms were assessed by the German short version of the       |
| 204   | Center for Epidemiological Studies Depression Scale (CES-D) (Radloff, 1977), the                |
| 205   | "Allgemeine Depressions-Skala – Kurzform" (ADS-K) (Hautzinger and Bailer, 1993). To             |
| 206   | assess the quality of life participants were asked how good or bad their health is on a visual  |
| 207   | analog scale (QoL-VAS) from 0 (the worst health you can imagine) to 100 (the best health        |
| 208   | you can imagine) (EQ-5D-5L; Herdman et al., 2011). At post-treatment, we assessed an            |
| 209   | adapted version of a patient satisfaction questionnaire, the ZUF-8 (Schmidt et al., 1989). This |
| 210   | brief and reliable instrument was originally developed as a translation of the Client           |
| 211   | Satisfaction Questionnaire (CSQ-8; Attkisson and Greenfield, 2004). As well, user               |
| 212   | satisfaction was measured via the System Usability Scale (SUS) (Brooke, 1996).                  |
| • • • |                                                                                                 |
| 213   | Sleep protocol. As described above, we assessed different variables with 1-item Likert-scale    |
| 214   | questions in both active conditions using daily morning and evening protocols by the German     |
| 215   | Association for Sleep Research and Sleep medicine (DGSM) within each of the internet-based      |
| 216   | programs. Sleep quality (1 "very good" – 5 "very bad"), recovery (1 "very recovered" – 5        |
| 217   | "very unrecovered") and tiredness before going to bed (1 "not tired at all" – 5 "very tired")   |
| 218   | were assessed in the morning protocol. Daytime tiredness (1 "no daytime tiredness" – 8          |
| 219   | "strong daytime tiredness"), concentration (1 "very unconcentrated" – 8 "very concentrated"),   |
| 220   | mood (1 "very bad mood" - 8 "very good mood"), and relaxation (1 "unrelaxed" - 8 "very          |
| 221   | relaxed") were assessed in the evening protocol.                                                |
| 222   | Diagnostic measures. Assessors interviewed participants via telephone at baseline (M.I.N.I      |
| 223   | and ICSD-3). The German Version of the M.I.N.I. (Ackenheil et al., 1999) screened for           |
| 224   | possible psychiatric comorbidities. The ICSD-3 (American Academy of Sleep Medicine,             |
| 225   | 2014) provides specific coding information for an insomnia diagnosis (Mayer et al., 2015).      |
| 226   | Participants were interviewed at post-intervention to check whether they still fulfilled the    |
| 227   | criteria for insomnia. Fight advanced master students in clinical psychology and the second     |

228 author conducted the interviews. All of the assessors had been trained in using the interviews 229 in a workshop including test interviews and feedback and were supervised by the second 230 author. 231 2.5 Description of conditions 232 Multicomponent internet-based guided treatment (MCT). The self-help program consists of 233 eight text-based sessions and tasks (see Table 1) and is based on interventions by Perlis et al. 234 (Perlis et al., 2006). The psychoeducational component covers information about the 235 processes of sleep, sleep hygiene and general information on stress management. The 236 behavioral techniques include sleep restriction (i.e., reducing the sleep window to enhance 237 sleep consolidation), stimulus control (e.g., getting out of bed after a certain time of 238 wakefulness), and relaxation (e.g., progressive muscle relaxation). The cognitive techniques 239 included belief restructuring (e.g., targeting unrealistic beliefs about sleep). Comparable 240 MCTs have already been successfully evaluated in other studies (Holmqvist et al., 2014, 241 Blom et al., 2015, van Straten et al., 2014). All participants received guidance during 8-weeks 242 of treatment. Guidance consisted of weekly messages in an integrated secured environment of 243 guides who monitored the participant's progress in the program and provided feedback and 244 structure. The participants could also use the integrated message function to contact their 245 guide whenever they felt the need to and were informed that the guide would answer within 246 three working days. The main aim of the guides' messages was to reinforce the independent 247 program use and maintain the participant's motivation. When a participant was inactive for a week, the guide offered support with the respective module. 248 249 Internet-based guided sleep restriction treatment (SRT). The 8-week treatment program 250 mainly consists of sleep restriction instructions that are embedded in an introductory and 251 psychoeducational module (see Table 1). Sleep restriction induces mild sleep deprivation to 252 enhance the endogenous sleep drive. A sleep window was proposed depending on the time a 253 participant wanted to get up. Every week, a new sleep window was calculated based on the 254 participants' sleep diary data together with the participant to select the timing of the window 255 (e.g., earlier versus later in the night). A more lenient sleep window was suggested for 256 moderate-to-severe tiredness. The sleep window was regularly reviewed at each module after 257 it had been introduced. If the sleep diary data indicate a sleep efficiency of 90% or higher, the 258 participant was advised to add 30 min to the sleep window (Morin et al., 2006, Perlis et al., 259 2010, Riemann and Spiegelhalder, 2015). The minimum sleep window for this intervention

| 260 | was set at six hours (Müller and Paterok, 2010). Guidance was the same as in the                                |
|-----|-----------------------------------------------------------------------------------------------------------------|
| 261 | multicomponent internet-based treatment (see also below).                                                       |
| 262 | Care as usual (CAU). Participants in the control group received access to the MCT program                       |
| 263 | after a waiting period of 8 weeks, at post-treatment of the active treatment conditions.                        |
| 264 | Because participants were allowed to use other resources from the healthcare system during                      |
| 265 | the study, we labeled this group as care-as-usual (CAU).                                                        |
| 266 | 2.6 Guidance                                                                                                    |
| 267 | The guides were one psychologist with a Master's degree in clinical psychology in his first                     |
| 268 | year of a post-graduate CBT training program and eight Master students who were in their                        |
| 269 | last term of a graduate program in clinical psychology. All guides had an introduction to both                  |
| 270 | online interventions and training of the principals of iCBT. Furthermore, they were supervised                  |
| 271 | by the second and the last author and received support regarding email correspondence when                      |
| 272 | needed. For this, the guides contacted the second and the last author when needed. In the case                  |
| 273 | of uncertainties, the co-authors from the Sleep-Wake-Epilepsy-Center were asked for                             |
| 274 | additional advice. To ensure adherence, the second author regularly screened the content of                     |
| 275 | all messages sent. Participants were consecutively allocated to guides without randomization                    |
| 276 | to minimize waiting times. All guides provided guidance in both conditions.                                     |
| 277 | 2.7 Statistical analyses                                                                                        |
| 278 | All statistical analyses were performed with SPSS or R (R Core Team, 2018) and the                              |
| 279 | packages <i>nlme</i> (Pinheiro et al., 2018). ANOVAs and ?? <sup>2</sup> -tests were used to detect differences |
| 280 | in baseline data. To compare the two active treatments with the waiting list, we analyzed all                   |
| 281 | primary and secondary outcome measures with mixed-effect models using unstructured                              |
| 282 | covariance matrices and restricted maximum likelihood estimation (REML) with time-points                        |
| 283 | nested within subjects. This approach uses all available data of each subject without                           |
| 284 | substituting missing values and allows the inclusion of all participants in the analyses,                       |
| 285 | following the intention-to-treat (ITT) principle. The models were further examined using                        |
| 286 | contrast analyses. Within- and between-group effect sizes (Cohen's $d$ ) were calculated based                  |
| 287 | on estimated means and the pooled standard deviation from the observed means. We                                |
| 288 | compared the two active treatments on the basis of daily diary entries (max. 56) in the                         |
| 289 | program during the eight weeks (scaled from 0 to 1). Within-group effect sizes (Cohen's d)                      |
| 290 | were calculated based on the estimated means at the beginning and after eight weeks and the                     |

| 291 | pooled SD throughout the 56 days. Within-group changes in outcome scores from post-              |
|-----|--------------------------------------------------------------------------------------------------|
| 292 | treatment to follow-up were analyzed with mixed-effect models and REML for the active            |
| 293 | conditions only, as the CAU group was offered the online intervention after eight weeks.         |
| 294 | Participants were considered responders if their ISI change score compared with baseline was     |
| 295 | greater than seven at post, and treatment remitters if their absolute ISI score at post was less |
| 296 | than eight, following previous recommendations (Morin et al., 2009). Applying a                  |
| 297 | conservative approach, we defined all missing data for response, remission and diagnostic        |
| 298 | status as unchanged from baseline, i.e., first observation carried forward.                      |
| 299 | 3. RESULTS                                                                                       |
| 300 | 3.1 Baseline differences                                                                         |
| 301 | Participants did not differ in primary and secondary outcomes or any demographic or              |
| 302 | diagnostic variables (see Table 2) between the three conditions.                                 |
| 303 | 3.2 Study dropout analysis                                                                       |
| 304 | In total, 16 of 104 participants (15.4%) did not complete the post-assessment questionnaires,    |
| 305 | although they had been invited three times at weekly intervals via email. Non-completion         |
| 306 | rates did not differ with respect to experimental group, $??^2(2, n=104) = 2.34, p = .31, V =$   |
| 307 | 0.15, nor demographic data, nor baseline symptomatology (all $p$ 's $>$ .40).                    |
| 308 | 3.3 Overall effects and pairwise comparisons at post-treatment                                   |
| 309 | Observed and estimated means for all self-report measures assessed at baseline and post are      |
| 310 | presented in Table 3. Linear mixed models with group as a fixed factor and time as a repeated    |
| 311 | factor (prepost) were fitted separately for each of the dependent measures. Significant group    |
| 312 | x time interaction effects were found for all primary and secondary outcomes, except for         |
| 313 | quality of life assessed with the QoL-VAS. Bonferroni-corrected consecutive contrast             |
| 314 | analyses for models with a significant interaction effect, showed that both active treatments    |
| 315 | were significantly superior to CAU on all involved measures except depressive symptoms and       |
| 316 | quality of life. Regarding depressive symptoms assessed with the ADS-K, only the MCT             |
| 317 | condition proved to be significantly superior to CAU ( $p = .012$ ) while the SRT was not        |
| 318 | significantly different from CAU ( $p = .168$ ). Regarding quality of life, the MCT group        |
| 319 | significantly differed from CAU ( $p = .020$ ) while the SRT group did not differ from CAU ( $p$ |
| 320 | = 207) Furthermore, there was no significant difference between the active conditions on         |

- 321 primary and secondary outcomes, except for dysfunctional beliefs about sleep assessed with
- 322 the DBAS-16. Here, the MCT group showed significantly lower scores indicating less
- 323 dysfunctional beliefs compared to the SRT group (p = .045).

### 324 3.4 Effect sizes at post-treatment

- 325 Effect sizes (Cohen's d) are presented in Table 3. For the ISI, the between-group effect sizes
- at post-treatment were d = -0.46 for MCT vs. SRT (in favor of MCT), d = 1.15 for MCT vs.
- 327 CAU (in favor of MCT), and d = -.68 for SRT vs. CAU (in favor of SRT). For the ISI, within-
- group comparisons revealed large effect sizes in MCT (d = 1.62) and SRT (d = 1.41), and a
- medium effect size for CAU (d = 0.64).

### 330 3.5 Response, remission, and deterioration

- Regarding response (change in ISI > 7), 9.5% of the participants in the CAU (n = 2), 31.7% in
- the SRT (n = 13), and 40.5% (n = 17) in the MCT condition were considered responders at
- post-treatment. Significantly more cases in the MCT showed response compared to CAU,
- $??^{2}(1, n=63) = 6.37, p = .012, V = 0.32$ . This was not the case for the SRT group compared to
- 335 CAU,  $??^2(1, n=62) = 3.73$ , p = .054, V = 0.25. However, the two active conditions did not
- significantly differ between each other  $??^{2}(1, n=83) = 0.69, p = .41, V = 0.09.$
- Regarding remission (ISI post score < 8), 4.8% of the participants in the CAU (n = 1), 24.4%
- 338 in the SRT (n = 10), and 38.1% (n = 16) in the MCT condition were considered remitted at
- post-treatment. Significantly more cases in the MCT remitted compared to the CAU, ??<sup>2</sup>(1,
- n=63 = 7.90, p = .005, V = 0.35. This was not the case for the SRT group compared to the
- 341 CAU,  $??^2(1, n=62) = 3.67$ , p = .056, V = 0.24. Again, the two active groups did not differ
- 342 from each other  $??^2(1, n=83) = 1.81, p = .178, V = 0.15.$
- No participant in any condition showed a reliable deterioration on the ISI (difference of 8 or
- more) at post compared to the baseline score.

#### 345 3.6 Diagnostic status at post-treatment

- In total, 86 participants could be reached for a second clinical interview after the treatment
- 347 (MCT: n = 35 [83.3%]; SRT: n = 31 [75.6%]; and CAU: n = 20 [95.2%]). Results in the
- intention-to-treat sample indicated that 81% (n = 17) in CAU, 52.4% (n = 22) in MCT, and
- 48.8% (n = 20) in SRT still fulfilled the criteria for an insomnia according to the ICSD-3
- 350 criteria at post-assessment. The groups differed significantly regarding the diagnostic status at

| 351 | post, $??^2(2, N=104) = 6.40$ , $p = .04$ , $V = 0.25$ . Both active groups showed fewer people still |
|-----|-------------------------------------------------------------------------------------------------------|
| 352 | suffering from insomnia than in the control condition, $p$ 's < .028. The two treatments did not      |
| 353 | significantly differ from each other at post-assessment, $??^2(1, n=83) = 0.11, p = .74, V = -0.04$ . |
| 354 | 3.7 Comparing the two active treatments based on daily protocols                                      |
| 355 | Participants in both active conditions were instructed to complete a daily protocol. Based on         |
| 356 | these daily assessments we ran separate mixed models analyses with group and days (0-55),             |
| 357 | recoded as Time from 0 to 1, and its interaction from baseline to post-assessment (eight              |
| 358 | weeks) assuming a linear change for all protocol items. Results are presented in Table 4. All         |
| 359 | interactions regarding the primary (sleep efficacy) and most secondary outcomes (sleep                |
| 360 | quality, feeling unrecovered, daytime tiredness, concentration, mood, and relaxation) were            |
| 361 | non-significant (all $p$ 's > .10). An exception was tiredness when going to bed ( $p = .003$ ),      |
| 362 | which remained stable in MCT but increased significantly in SRT. Within- and between-                 |
| 363 | group effect sizes were mostly in the small to medium range and can be seen in Table 4.               |
| 364 | 3.8 Maintenance of treatment effects at 6-month follow-up                                             |
| 365 | All analyses in this section only include the two active conditions, as the CAU group had             |
| 366 | already received access to the treatment after eight weeks. Mixed models analyses including           |
| 367 | pre, post and follow-up scores (see Table 3) showed significant time effects for all scales           |
| 368 | assessed at follow-up (ISI, PSQI, ADS-K, EQ_VAS), all $ps < .027$ . Contrast analyses indicate        |
| 369 | that follow-up scores improved from baseline, and post hoc tests using Bonferroni-correction          |
| 370 | indicate stability from post-treatment to follow-up, as no significant differences were               |
| 371 | detected. All $Time\ X\ Group$ interactions were non-significant, $F(2, 54.56-68.00) = 0.15-1.00$ ,   |
| 372 | all $ps \ge .35$ , therefore through all time points, neither of the conditions proved to be          |
| 373 | significantly superior.                                                                               |
| 374 | 3.9 Diagnostic status at follow-up                                                                    |
| 375 | Regarding insomnia diagnostic status at follow-up, 30 of 42 (71.4%) in the MCT and 24 of              |
| 376 | 41(58.5%) in the SRT condition could be reached for a diagnostic interview. Again using a             |
| 377 | conservative approach defining missings as unchanged from baseline, 20 participants of 42             |
| 378 | (47.6%) in the MCT condition and 25 of 41 participants (61.0%) in the SRT condition                   |
| 379 | fulfilled the criteria for insomnia at follow-up. This difference, however, was not statistically     |
| 380 | significant $27^2(1, n=83) = 1.49, n = .22, V = 0.13$                                                 |

#### 381 3.10 Patient Satisfaction

- Regarding the ZUF-8 assessed after eight weeks, participants in the MCT (M = 3.42, SD =
- 383 0.55) condition showed significantly higher levels of satisfaction than participants in the SRT
- 384 (M = 2.99, SD = 0.57), t(65.92) = 3.23, p = .002. Regarding usability assessed with the SUS,
- 385 the two interventions were rated equally, MCT: M = 4.39, SD = 0.60; SRT: M = 4.18, SD =
- 386 0.64; t(66)=1.43, p=.16.

### 387 3.11 Program usage

- The average of completed modules in MCT was 6.66 (SD = 2.12) out of eight, mean
- completed modules in SRT was 4.61 (SD = 0.80) out of five, over the eight weeks. For time
- spent in the program, the median was 7.57 h in MCT, and 5.32 h in SRT. Using a non-
- parametric *U*-test, this difference was statistically significant p = .008.
- Regarding the usage of the sleep restriction module, the median for time spent in this module
- was 14.7 min in MCT and 13.0 min in SRT for all participants. Using a *U*-Test, this
- 394 difference was not significant, p = .45. Relatedly, for the number of adjustments of the sleep
- window, the median was three in the MCT and two in the SRT. This difference was also not
- 396 significant, p = .57.

#### 397 *3.12 Guidance*

- On average, therapists wrote 9.66 messages (SD = 3.19, Md = 10) in MCT and 10.05
- messages (SD = 3.38, Md = 10) in SRT. This difference was not significant, U = 757.5, p =
- 400 .44. Participants wrote on average 5.44 messages (SD = 4.10, Md = 5) in MCT and 6.12 in
- SRT (SD = 5.81, Md = 5). This difference was not statistically significant, U = 836.0, p = .97.
- The two groups furthermore did not differ regarding the number of words written by
- 403 participants (MCT: Md = 508; SRT: Md = 427; U = 755.0, p = .43) nor by therapists (MCT:
- 404 Md = 1484; SRT: Md = 1494; U = 820.0, p = .85).

#### **4. DISCUSSION**

- The current study set out to compare two guided internet-based interventions to a waiting-list
- 407 control group for people suffering from insomnia. Both active groups showed significant
- 408 differences compared to the control group regarding the primary outcome. As such, the
- present study adds to the growing literature of the efficacy of internet-based interventions for
- 410 insomnia also in people not suffering from other psychiatric conditions. Quality of life did not

| 411 | increase compared to the waiting-list control condition in both active conditions. One reason    |
|-----|--------------------------------------------------------------------------------------------------|
| 412 | could be that potential participants with comorbid psychological disorders were excluded.        |
| 413 | However, this finding has been reported in a previous study on iCBT-I with or without phone      |
| 414 | support in which comorbid psychological disorders were not excluded and not assessed (Ho et      |
| 415 | al., 2014).                                                                                      |
| 116 |                                                                                                  |
| 416 | Concerning the comparison of the two active conditions, the results of the present study         |
| 417 | provide preliminary evidence that a multicomponent treatment (MCT condition) is not              |
| 418 | superior with regard to insomnia severity to an intervention that focuses on sleep restriction   |
| 419 | and omits working on dysfunctional cognitions (SRT condition). This was the case for             |
| 420 | comparisons of insomnia severity at post as well as at follow-up assessment. However, results    |
| 421 | indicate that the MCT group benefited significantly more regarding dysfunctional sleep-          |
| 422 | related beliefs. The additional module on cognitive restructuring could have caused this         |
| 423 | difference. Additionally, on a descriptive level but not at a statistical level more people in   |
| 424 | MCT compared to the SRT condition no longer fulfilled the criteria for insomnia at six           |
| 425 | months. This is in line with results found in traditional CBT-I (Epstein et al., 2012, Harvey et |
| 426 | al., 2014).                                                                                      |
| 427 | Regarding depressive symptoms, only MCT proved to be superior to the control condition;          |
| 428 | this was not the case for SRT. This might also be due to the extra module on cognitive           |
| 429 | restructuring. However, the results of the present study on comorbid depressive symptoms         |
|     | may be underestimated, if comorbid major depression had been permitted in the present            |
| 430 |                                                                                                  |
| 431 | study. Nevertheless, the result that MCT may have a stronger effect on depressive symptoms       |
| 432 | seems important because a recent RCT in people suffering from symptoms of depression and         |
| 433 | insomnia revealed that ICBT-I is effective in the reduction of depressive symptoms (van der      |
| 434 | Zweerde et al., 2018). This result is also consistent with another study showing that patients   |
| 435 | who suffer from insomnia and depression profit highly from insomnia treatment (Blom et al.,      |
| 436 | 2017). The result of the present study suggests that cognitive restructuring may play an         |
| 437 | important role.                                                                                  |
| 438 | A sleep restriction module was part of both active interventions. A review of treatment studies  |
| 439 | for insomnia showed that the absolute minimal sleep window – also called "minimal time in        |
| 440 | bed" – can vary considerably (Kyle et al., 2015). This is important since sleep restriction      |
| 441 | treatment can be associated with reduced objective total sleep time, increased daytime           |
| 442 | tiredness, and objective performance impairment (Kyle et al., 2014). In the present study, we    |
| 443 | set the minimum sleep window at six hours. It cannot be ruled out that a shorter sleep window    |

| 444 | <ul> <li>although bearing more "pain" - would have led to more "gain" regarding treatment response</li> </ul> |
|-----|---------------------------------------------------------------------------------------------------------------|
| 445 | (Kyle et al., 2011). However, to minimize the risk of negative effects, we decided to use a                   |
| 446 | comparably long minimal time in bed. Future studies should systematically test the                            |
| 447 | association of different minimal time windows and treatment response.                                         |
| 448 | All comparisons of different variables of sleep diary data, such as sleep efficacy, revealed no               |
| 449 | significant differences between the two active conditions (all $p$ -values $> .10$ ). However, it is          |
| 450 | striking that - on a descriptive level - daytime tiredness decreased in MCT while it increased                |
| 451 | in SRT throughout the interventions. Therefore, it can be assumed that more statistical power                 |
| 452 | would have led to a statistically significant difference between the two conditions regarding                 |
| 453 | daytime tiredness. More daytime tiredness should be considered a negative side effect of the                  |
| 454 | SRT condition. Of note, although participants had the same module on sleep restriction with                   |
| 455 | the same instructions and although usage of the sleep restriction module in both conditions                   |
| 456 | was similar, in MCT daytime tiredness decreased. One explanation for this finding could be                    |
| 457 | that if participants in a sleep intervention can choose from different interventions, they apply              |
| 458 | the ones that work best for them or have fewer side effects. More research on which specific                  |
| 459 | interventions of internet-based treatments participants do apply and maintain in daily life is                |
| 460 | needed.                                                                                                       |
| 461 | Note that from a user perspective, participants in MCT were significantly more satisfied with                 |
| 462 | the intervention than participants in SRT. Also, more participants reported that they have a                  |
| 463 | specific preference for MCT (32.7%) than for SRT (5.8%) before the intervention started.                      |
| 464 | Considering that the amount of guidance and therefore the use of resources did not differ                     |
| 465 | between the two conditions, in sum, results from a patient perspective are in favor of MCT.                   |
| 466 | However, treatment preferences that may be associated with treatment outcome expectancies                     |
| 467 | could have influenced the results of the present study (Constantino et al., 2007).                            |
|     |                                                                                                               |
| 468 | There are some important limitations of the present study that have to be considered. First,                  |
| 469 | due to clinical considerations, we excluded participants if they met the criteria for a                       |
| 470 | psychiatric disorder. On the one hand, this limits the generalizability of our results, on the                |
| 471 | other hand, the results of the present study have a higher internal validity for people suffering             |
| 472 | from insomnia. Second, apart from a diagnostic interview, all measures were based on mere                     |
| 473 | self-report. Third, the power of the present study was not sufficient to yield significant small              |
| 474 | to medium effects between the two active conditions. A future study to find significant                       |
| 475 | differences between these active conditions should be powered adequately. We assume that                      |
| 476 | small significant effects could be expected in a replication of the present study with more                   |

| 477 | power. The recruitment for the present study had to be discontinued since recruitment was       |
|-----|-------------------------------------------------------------------------------------------------|
| 478 | slower than expected. A reason for this slow recruitment could be that most people only seek    |
| 479 | support to cope with insomnia when additional problems such as depression or anxiety arise.     |
| 480 | Since we advertised that people with comorbid psychological disorders could not be included     |
| 481 | in the present study, these people did not contact us. Fourth, we did not systematically assess |
| 482 | the negative effects associated with the two interventions apart from reliable deterioration.   |
| 483 | Taken together, both active conditions, MCT and SRT, proved to be efficacious compared to       |
| 484 | CAU alone. Also, there is preliminary evidence that MCT might be more efficient regarding       |
| 485 | dysfunctional beliefs about sleep, probably due to the additional cognitive module included in  |
| 486 | MCT. Furthermore, participants in MCT were more satisfied with the treatment compared to        |
| 487 | participants in SRT. Considering the equally-used resources (e.g., messages sent, number of     |
| 488 | words used in the messages) in both conditions, one could argue that MCT should be the          |
| 489 | internet-based treatment of choice for people suffering from insomnia.                          |
| 490 | Highlighting the high potential health-economic benefit of providing low-threshold internet-    |
| 491 | based interventions for insomnia, two recent RCTs showed that improvements in insomnia          |
| 492 | symptoms mediate improvements in functional health, psychological well-being, and sleep-        |
| 493 | related quality of life (Espie et al., 2018) and psychotic experiences and other psychological  |
| 494 | symptoms (Freeman et al., 2017). Despite these encouraging results of internet-based            |
| 495 | interventions for insomnia one has to bear in mind that not all people suffering from insomnia  |
| 496 | can profit from internet-based interventions. In the current study, in the MCT condition,       |
| 497 | around 60% did not fulfill the self-report-based criterion for remission regarding insomnia     |
| 498 | severity and around 50 % still fulfilled the criteria for insomnia in a diagnostic interview at |
| 499 | post-treatment. As a consequence, research that improves existing interventions seems           |
| 500 | necessary, or people who do not profit from internet-based interventions should be offered      |
| 501 | complementary or other interventions in different settings. Related to the latter point, more   |
| 502 | research on stepped care approaches in insomnia seems necessary. Likewise, generally more       |
| 503 | research is needed in routine practice settings, such as in primary care or sleep clinics, to   |
| 504 | generalize the encouraging results of internet-based treatments for insomnia.                   |

| 506 | Acknowledgments                                                                              |
|-----|----------------------------------------------------------------------------------------------|
| 507 | The authors would like to thank the participants in this trial for their cooperation.        |
| 508 | Furthermore, the authors would like to thank Kristina Ettemeyer, Sandra Farha, Lena Häberli, |
| 509 | Salome Kälin, David Meier, Lina Anaid Müller, Noëmi Schlupp, and Christina Schmid for        |
| 510 | their valuable help in data collection.                                                      |
| 511 |                                                                                              |
| 512 | CONFLICT OF INTEREST                                                                         |
| 513 | None.                                                                                        |
| 514 |                                                                                              |
| 515 | ETHICAL STANDARDS                                                                            |
| 516 | The authors assert that all procedures contributing to this work comply with the ethical     |
| 517 | standards of the relevant national and institutional committees on human experimentation and |
| 518 | with the Helsinki Declaration of 1975, as revised in 2008.                                   |
| 519 |                                                                                              |

520 **REFERENCES** 

538

539

540

541

542

- ACKENHEIL, M., STOTZ, G., DIETZ-BAUER, R. & VOSSEN, A. 1999. *Mini*International Neuropsychiatric Interview. German version 5.0.0., München,
- 523 Psychiatrische Universitätsklinik München.
- 524 AMERICAN ACADEMY OF SLEEP MEDICINE 2014. International classification of sleep 525 disorders—third edition (ICSD-3). *Darien, IL: American Academy of Sleep Medicine*.
- 526 ANDERSSON, G. & TITOV, N. 2014. Advantages and limitations of internet-based interventions for common mental disorders. *World Psychiatry*, 13, 4-11.
- 528 ATTKISSON, C. C. & GREENFIELD, T. K. 2004. The UCSF Client Satisfaction Scales: I.
  529 The Client Satisfaction Questionnaire-8. *In:* MARUISH, M. E. (ed.) *The use of*530 *psychological testing for treatment planning and outcomes assessment.* 3rd ed.
  531 Mahwah, NJ: Lawrence Erlbaum Associates.
- BASTIEN, C. H., VALLIÈRES, A. & MORIN, C. M. 2001. Validation of the Insomnia Severity Index as an outcome measure for insomnia research. *Sleep medicine*, 2, 297-307.
- 535 BLOM, K., JERNELÖV, S., RÜCK, C., LINDEFORS, N. & KALDO, V. 2017. Three-year 536 follow-up comparing cognitive behavioral therapy for depression to cognitive 537 behavioral therapy for insomnia, for patients with both diagnoses. *Sleep*, 40.
  - BLOM, K., TILLGREN, H. T., WIKLUND, T., DANLYCKE, E., FORSSÉN, M., SÖDERSTRÖM, A., JOHANSSON, R., HESSER, H., JERNELÖV, S. & LINDEFORS, N. 2015. Internet-vs. group-delivered cognitive behavior therapy for insomnia: a randomized controlled non-inferiority trial. *Behaviour Research and Therapy*.
- 543 BROOKE, J. 1996. SUS-A quick and dirty usability scale. *Usability evaluation in industry*, 544 189, 4-7.
- BUYSSE, D. J., REYNOLDS, C. F., MONK, T. H., BERMAN, S. R. & KUPFER, D. J.
   1989. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice
   and research. *Psychiatry research*, 28, 193-213.
- CHENG, P., LUIK, A. I., FELLMAN-COUTURE, C., PETERSON, E., JOSEPH, C. L.,
   TALLENT, G., TRAN, K. M., AHMEDANI, B. K., ROEHRS, T. & ROTH, T. 2018.
   Efficacy of digital CBT for insomnia to reduce depression across demographic groups:
   a randomized trial. *Psychological medicine*, 1-10.
- CONSTANTINO, M. J., MANBER, R., ONG, J., KUO, T. F., HUANG, J. S. & ARNOW, B.
   A. 2007. Patient expectations and therapeutic alliance as predictors of outcome in
   group cognitive-behavioral therapy for insomnia. *Behavioral Sleep Medicine*, 5, 210 228.
- CUNNINGHAM, J. E. & SHAPIRO, C. M. 2018. Cognitive Behavioural Therapy for
   Insomnia (CBT-I) to treat depression: A systematic review. *Journal of Psychosomatic Research*, 106, 1-12.
- 559 DALEY, M., MORIN, C. M., LEBLANC, M., GRÉGOIRE, J.-P. & SAVARD, J. 2009. The 560 economic burden of insomnia: direct and indirect costs for individuals with insomnia 561 syndrome, insomnia symptoms, and good sleepers. *Sleep*, 32, 55-64.
- 562 EPSTEIN, D. R., SIDANI, S., BOOTZIN, R. R. & BELYEA, M. J. 2012. Dismantling 563 multicomponent behavioral treatment for insomnia in older adults: a randomized 564 controlled trial. *Sleep*, 35, 797-805.
- GERBER, M., LANG, C., LEMOLA, S., COLLEDGE, F., KALAK, N., HOLSBOER TRACHSLER, E., PÜHSE, U. & BRAND, S. 2016. Validation of the German version
   of the insomnia severity index in adolescents, young adults and adult workers: results
   from three cross-sectional studies. *BMC Psychiatry*, 16, 174.
- 569 HARVEY, A. G., BÉLANGER, L., TALBOT, L., EIDELMAN, P., BEAULIEU-570 BONNEAU, S., FORTIER-BROCHU, É., IVERS, H., LAMY, M., HEIN, K. &

- 571 SOEHNER, A. M. 2014. Comparative efficacy of behavior therapy, cognitive therapy, 572 and cognitive behavior therapy for chronic insomnia: a randomized controlled trial.
  573 *Journal of consulting and clinical psychology*, 82, 670.
- 574 HARVEY, A. G., MURRAY, G., CHANDLER, R. A. & SOEHNER, A. 2011. Sleep 575 disturbance as transdiagnostic: consideration of neurobiological mechanisms. *Clinical* 576 *psychology review*, 31, 225-235.
- 577 HARVEY, L., INGLIS, S. J. & ESPIE, C. A. 2002. Insomniacs' reported use of CBT
  578 components and relationship to long-term clinical outcome. *Behaviour research and*579 *therapy*, 40, 75-83.
- 580 HAUTZINGER, M. & BAILER, M. 1993. *Allgemeine Depressions-Skala*, Weinheim, Beltz-581 Verlag.
- HERDMAN, M., GUDEX, C., LLOYD, A., JANSSEN, M., KIND, P., PARKIN, D.,
   BONSEL, G. & BADIA, X. 2011. Development and preliminary testing of the new
   five-level version of EQ-5D (EQ-5D-5L). *Quality of life research*, 20, 1727-1736.

585

586 587

588

589

590

591

600

601

602

603

- HO, F. Y.-Y., CHUNG, K.-F., YEUNG, W.-F., NG, T. H.-Y. & CHENG, S. K.-W. 2014. Weekly brief phone support in self-help cognitive behavioral therapy for insomnia disorder: Relevance to adherence and efficacy. *Behaviour research and therapy*, 63, 147-156.
- HOLMQVIST, M., VINCENT, N. & WALSH, K. 2014. Web-vs telehealth-based delivery of cognitive behavioral therapy for insomnia: a randomized controlled trial. *Sleep* medicine, 15, 187-195.
- JERNELÖV, S., LEKANDER, M., BLOM, K., RYDH, S., LJÓTSSON, B., AXELSSON, J. & KALDO, V. 2012. Efficacy of a behavioral self-help treatment with or without therapist guidance for co-morbid and primary insomnia-a randomized controlled trial. *BMC Psychiatry*, 12, 5.
- KALDO, V., JERNELÖV, S., BLOM, K., LJÓTSSON, B., BRODIN, M., JÖRGENSEN, M.,
   KRAEPELIEN, M., RÜCK, C. & LINDEFORS, N. 2015. Guided internet cognitive
   behavioral therapy for insomnia compared to a control treatment—a randomized trial.
   *Behaviour research and therapy*, 71, 90-100.
  - KYLE, S. D., AQUINO, M. R. J., MILLER, C. B., HENRY, A. L., CRAWFORD, M. R., ESPIE, C. A. & SPIELMAN, A. J. 2015. Towards standardisation and improved understanding of sleep restriction therapy for insomnia disorder: a systematic examination of CBT-I trial content. *Sleep medicine reviews*, 23, 83-88.
- KYLE, S. D., MILLER, C. B., ROGERS, Z., SIRIWARDENA, A. N., MACMAHON, K. M. & ESPIE, C. A. 2014. Sleep restriction therapy for insomnia is associated with reduced objective total sleep time, increased daytime somnolence, and objectively impaired vigilance: implications for the clinical management of insomnia disorder. *Sleep*, 37, 229-237.
- KYLE, S. D., MORGAN, K., SPIEGELHALDER, K. & ESPIE, C. A. 2011. No pain, no
   gain: an exploratory within-subjects mixed-methods evaluation of the patient
   experience of sleep restriction therapy (SRT) for insomnia. *Sleep medicine*, 12, 735 747.
- MAYER, G., RODENBECK, A., GEISLER, P. & SCHULZ, H. 2015. Internationale
   Klassifikation der Schlafstörungen: Übersicht über die Änderungen in der ICSD-3.
   Somnologie Schlafforschung und Schlafmedizin, 19, 116-125.
- MILLER, C. B., ESPIE, C. A., EPSTEIN, D. R., FRIEDMAN, L., MORIN, C. M., PIGEON,
   W. R., SPIELMAN, A. J. & KYLE, S. D. 2014. The evidence base of sleep restriction
   therapy for treating insomnia disorder. *Sleep medicine reviews*, 18, 415-424.
- MORIN, C. M., BOOTZIN, R. R., BUYSSE, D. J., EDINGER, J. D., ESPIE, C. A. & LICHSTEIN, K. L. 2006. Psychological and behavioral treatment of insomnia: update

- of the recent evidence (1998-2004). *SLEEP-NEW YORK THEN WESTCHESTER-*, 29, 1398.
- MORIN, C. M., CULBERT, J. P. & SCHWARTZ, S. M. 1994. Nonpharmacological interventions for insomnia. *Am J Psychiatry*, 151, 1172.
- MORIN, C. M. & JARRIN, D. C. 2013. Epidemiology of insomnia: prevalence, course, risk factors, and public health burden. *Sleep Medicine Clinics*, 8, 281-297.
- MORIN, C. M., VALLIÈRES, A., GUAY, B., IVERS, H., SAVARD, J., MÉRETTE, C., BASTIEN, C. & BAILLARGEON, L. 2009. Cognitive behavioral therapy, singly and combined with medication, for persistent insomnia: a randomized controlled trial. *Jama*, 301, 2005-2015.
- MORIN, C. M., VALLIÈRES, A. & IVERS, H. 2007. Dysfunctional beliefs and attitudes about sleep (DBAS): validation of a brief version (DBAS-16). *Sleep*, 30, 1547-1554.
- 633 MÜLLER, T. & PATEROK, B. 2010. Schlaf erfolgreich trainieren: ein Ratgeber zur 634 Selbsthilfe, Hogrefe Verlag.
- 635 OHAYON, M. M. 2002. Epidemiology of insomnia: what we know and what we still need to learn. *Sleep medicine reviews*, 6, 97-111.
- 637 OKAJIMA, I., KOMADA, Y. & INOUE, Y. 2011. A meta-analysis on the treatment 638 effectiveness of cognitive behavioral therapy for primary insomnia. *Sleep and* 639 *Biological Rhythms*, 9, 24-34.
- PERLIS, M. L., ALOIA, M. & KUHN, B. 2010. Behavioral Treatments for Sleep Disorders,
   Academic press.
- 642 PERLIS, M. L., JUNGQUIST, C., SMITH, M. T. & POSNER, D. 2006. *Cognitive behavioral*643 *treatment of insomnia: A session-by-session guide*, Springer Science & Business
  644 Media.
- 645 PINHEIRO, J., BATES, D., DEBROY, S., SARKAR, D. & R CORE TEAM 2018. nlme: 646 Linear and Nonlinear Mixed Effects Models.
- R CORE TEAM 2018. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
- RADLOFF, L. 1977. The CES-D scale: A self report depression scale for research in the general population. *Applied Psychological Measurement*, 1, 385-401.
- RIEMANN, D. & BACKHAUS, J. 1996. Behandlung von Schlafstörungen. Psychologie
   Verlags Union. Weinheim.
- RIEMANN, D., BAGLIONI, C., BASSETTI, C., BJORVATN, B., DOLENC GROSELJ, L., ELLIS, J. G., ESPIE, C. A., GARCIA-BORREGUERO, D., GJERSTAD, M. & GONÇALVES, M. 2017. European guideline for the diagnosis and treatment of insomnia. *Journal of sleep research*, 26, 675-700.
- RIEMANN, D. & SPIEGELHALDER, K. 2015. Schlafstörungen. Verhaltenstherapiemanual.
   Springer.
- RITTERBAND, L. M., THORNDIKE, F. P., GONDER-FREDERICK, L. A., MAGEE, J. C., BAILEY, E. T., SAYLOR, D. K. & MORIN, C. M. 2009. Efficacy of an Internetbased behavioral intervention for adults with insomnia. *Archives of general psychiatry*, 66, 692-698.
- SCHMIDT, J., LAMPRECHT, F. & WITTMANN, W. 1989. Zufriedenheit mit der
   stationären Versorgung. Entwicklung eines Fragebogens und erste
   Validitätsuntersuchungen. Psychotherapie, Psychosomatik, Medizinische Psychologie,
   39, 248-255.
- SCHUTTE-RODIN, S., BROCH, L., BUYSSE, D., DORSEY, C. & SATEIA, M. 2008.
   Clinical guideline for the evaluation and management of chronic insomnia in adults.
   Journal of Clinical Sleep Medicine, 4, 487-504.
- 670 SEYFFERT, M., LAGISETTY, P., LANDGRAF, J., CHOPRA, V., PFEIFFER, P. N., 671 CONTE, M. L. & ROGERS, M. A. 2016. Internet-delivered cognitive behavioral

therapy to treat insomnia: a systematic review and meta-analysis. *PLoS One*, 11, e0149139.

678

679

680

695

696

697

707

- 674 SIMON, G. E. & VONKORFF, M. 1997. Prevalence, burden, and treatment of insomnia in primary care. *The American journal of psychiatry*, 154, 1417.
- 676 SPIELMAN, A. J., SASKIN, P. & THORPY, M. J. 1987. Treatment of chronic insomnia by 677 restriction of time in bed. *Sleep: Journal of Sleep Research & Sleep Medicine*.
  - TRAUER, J. M., QIAN, M. Y., DOYLE, J. S., RAJARATNAM, S. M. & CUNNINGTON, D. 2015. Cognitive behavioral therapy for chronic insomnia: a systematic review and meta-analysis. *Annals of internal medicine*, 163, 191-204.
- VAN DER ZWEERDE, T., VAN STRATEN, A., EFFTING, M., KYLE, S. & LANCEE, J. 2018. Does online insomnia treatment reduce depressive symptoms? A randomized controlled trial in individuals with both insomnia and depressive symptoms. *Psychological medicine*, 1-9.
- VAN STRATEN, A. & CUIJPERS, P. 2009. Self-help therapy for insomnia: a meta-analysis. Sleep Medicine Reviews, 13, 61-71.
- VAN STRATEN, A., EMMELKAMP, J., DE WIT, J., LANCEE, J., ANDERSSON, G., VAN SOMEREN, E. & CUIJPERS, P. 2014. Guided Internet-delivered cognitive behavioural treatment for insomnia: a randomized trial. *Psychological medicine*, 44, 1521-1532.
- WALSH, J. K. 2004. Clinical and socioeconomic correlates of insomnia. *The Journal of clinical psychiatry*.
- WEINGARTZ, S. & PILLMANN, F. 2009. Meinungen-zum-Schlaf-Fragebogen.
   Somnologie-Schlafforschung und Schlafmedizin, 13, 29-36.
  - WU, J. Q., APPLEMAN, E. R., SALAZAR, R. D. & ONG, J. C. 2015. Cognitive behavioral therapy for insomnia comorbid with psychiatric and medical conditions: a meta-analysis. *JAMA internal medicine*, 175, 1461-1472.
- YE, Y.-Y., CHEN, N.-K., CHEN, J., LIU, J., LIN, L., LIU, Y.-Z., LANG, Y., LI, X.-J.,
   YANG, X.-J. & JIANG, X.-J. 2016. Internet-based cognitive-behavioural therapy for
   insomnia (ICBT-i): a meta-analysis of randomised controlled trials. *BMJ Open*, 6,
   e010707.
- YOUNGSTEDT, S. D. & KRIPKE, D. F. 2004. Long sleep and mortality: rationale for sleep restriction. *Sleep medicine reviews*, 8, 159-174.
- ZACHARIAE, R., LYBY, M. S., RITTERBAND, L. M. & O'TOOLE, M. S. 2016. Efficacy
   of internet-delivered cognitive-behavioral therapy for insomnia—a systematic review
   and meta-analysis of randomized controlled trials. Sleep medicine reviews, 30, 1-10.

22

Table 1

Content of the two online interventions

|            | MCT                        | SRT                                |
|------------|----------------------------|------------------------------------|
| Session 1: | Introduction               | Introduction                       |
| Session 2: | Psychoeducation            | Psychoeducation                    |
| Session 3: | Sleep restriction          | Sleep restriction                  |
| Session 4: | Progressive Muscle         | Continuation instruction for sleep |
|            | Relaxation (PMR)           | restriction                        |
| Session 5: | Cognitive restructuring    | -                                  |
| Session 6: | Sleep hygiene              | - Q                                |
| Session 7: | Relapse prevention         | -                                  |
| Session 8: | Repetition and Termination | Repetition and Termination         |

*Note*. MCT = Multicomponent treatment; SRT = Sleep restriction treatment

ACCEPTED MANUSCRIPT Table 2

Baseline demographics and sample characteristics for both intervention groups and the control group.

| control group.          | MCT       | SRT           | CAU          | Statistic                             |
|-------------------------|-----------|---------------|--------------|---------------------------------------|
|                         | (n = 42)  | (n = 41)      | (n = 21)     |                                       |
| Mean age, years         | 42.17     | 46.59 (17.52) | 45.24        | F(2,101) = 0.98; p = .38              |
| (standard deviation)    | (12.40)   |               | (12.40)      | · · · · · · · · · · · · · · · · · · · |
| Gender, $n$ (%)         |           |               |              |                                       |
| Male                    | 16        | 13 (31.7%)    | 4 (19.0%)    | $??^{2}(2) = 2.35; p = .31$           |
|                         | (38.1%)   |               |              |                                       |
| Female                  | 26        | 28 (68.3%)    | 17 (81.0 %)  |                                       |
|                         | (61.9%)   |               |              |                                       |
| Marital status, $n$ (%) |           |               |              | $??^{2}(6) = 7.02; p = .32$           |
| Single/living alone     | 11        | 9 (22.0%)     | 4 (19.0%)    |                                       |
|                         | (26.2%)   |               |              |                                       |
| Living together         | 9 (21.4%) | 13 (31.7%)    | 2 (9.5%)     |                                       |
| Married                 | 20        | 14 (34.1%)    | 12 (57.1%)   |                                       |
|                         | (47.6%)   |               |              |                                       |
| Divorced                | 2 (4.8%)  | 5 (12.2%)     | 3 (14.3%)    |                                       |
| Widowed                 | 0 (0.0%)  | 0 (0.0%)      | 0 (0.0%)     |                                       |
| Highest education, n    | , ,       | , ,           |              | $??^{2}(6) = 4.20; p = .68$           |
| (%)                     |           |               |              | , ,                                   |
| Compulsory school       | 0 (0.0%)  | 2 (4.9%)      | 0 (0.0%)     |                                       |
| Apprenticeship          | 11        | 12 (29.3%)    | 6 (28.6%)    |                                       |
|                         | (26.2%)   |               |              |                                       |
| College                 | 4 (9.5%)  | 3 (7.3%)      | 3 (14.3%)    |                                       |
| University              | 27        | 24 (58.5%)    | 12 (57.1%)   |                                       |
| •                       | (64.3%)   | Y             | ` ,          |                                       |
| Employment, $n$ (%)     | ,         |               |              | $??^{2}(8) = 5.13; p = .74$           |
| Full-time paid work     | 24        | 17 (41.5%)    | 12 (57.1%)   |                                       |
| 1                       | (57.1%)   |               | ,            |                                       |
| Part-time paid work     | 12        | 13 (31.7%)    | 6 (28.6%)    |                                       |
| •                       | (28.6%)   |               | , ,          |                                       |
| Student                 | 5 (11.9%) | 6 (14.6%)     | 2 (9.5%)     |                                       |
| unemployed              | 0(0.0%)   | 0 (0.0%)      | 0(0.0%)      |                                       |
| At-home parent          | 0 (0.0%)  | 0(0.0%)       | 0(0.0%)      |                                       |
| Retired                 | 1 (2.4%)  | 4 (9.8%)      | 1 (4.8%)     |                                       |
| Body Mass Index         | 23.60     | 24.23 (5.20)  | 23.62 (3.79) | F(2,101) = 0.26; p = .78              |
| (standard deviation)    | (3.64)    | ` ,           | , ,          |                                       |
| Sleep medication within | ,         |               |              | $??^{2}(2) = 0.44; p = .80$           |
| the last three months   |           |               |              | , , , , , , , , , , , , , , , , , , , |
| Yes                     | 16        | 13 (31.7%)    | 8 (38.1%)    |                                       |
|                         | (38.1%)   | ,             | ,            |                                       |
| No                      | 26        | 28 (68.3%)    | 13 (31.7%)   |                                       |
|                         | (61.9%)   | - (,          | (            |                                       |
| Current treatment for   | ,         |               |              |                                       |
| sleep problems          |           |               |              |                                       |
| (multiple answers       |           |               |              |                                       |
| possible)               |           |               |              |                                       |
| General practitioner    | 7 (16.7%) | 7 (17.1%)     | 1 (4.8%)     | $??^{2}(2) = 1.99; p = .37$           |
| Psychotherapy           | 2 (4.8%)  | 0 (0.0%)      | 0 (0.0%)     | $??^{2}(2) = 3.01; p = .22$           |

|                        | V C C E   | PTED MANIII | SCRIPT     |                                       |
|------------------------|-----------|-------------|------------|---------------------------------------|
| Specialist             | 2 (4.8%)  | 3 (7.3%)    | 0 (0.0%)   | $??^{2}(2) = 1.63; p = .44$           |
| Medication             | 8 (19.0%) | 4 (9.8%)    | 2 (9.5%)   | $??^{2}(2) = 1.89; p = .39$           |
| Other                  | 16        | 14 (34.1%)  | 6 (28.6%)  | $??^{2}(2) = 0.57; p = .75$           |
|                        | (38.1%)   |             |            | •                                     |
| None                   | 32        | 36 (87.8%)  | 15 (71.4%) | $??^{2}(2) = 2.88; p = .24$           |
|                        | (76.2%)   |             |            | · · · · · · · · · · · · · · · · · · · |
| Chronicity of insomnia |           |             |            |                                       |
| 3-12 months            | 5 (11.9%) | 10 (24.4%)  | 1 (4.8%)   | $??^{2}(2) = 4.77; p = .09$           |
| More than 12 months    | 37        | 31 (75.6%)  | 20 (95.2%) |                                       |
|                        | (88.1%)   |             |            |                                       |
| Preference             |           |             |            | $??^{2}(4) = 4.66; p = .32$           |
| MCT                    | 20        | 18 (43.9%)  | 6 (28.6%)  |                                       |
|                        | (47.6%)   |             |            |                                       |
| SRT                    | 4 (9.5%)  | 1 (2.4%)    | 1 (4.8%)   |                                       |
| no preference          | 18        | 22 (53.7%)  | 14 (66.7%) |                                       |
| •                      | (42.9%)   | ,           |            |                                       |
|                        | *         |             |            |                                       |

*Note*. MCT = Multicomponent treatment; SRT = Sleep restriction treatment; CAU = Care as usual.

Table 3
Observed and estimated means for primary and secondary outcome measures, overall effects, within-group effects, and post-treatment between-group comparisons.

| <u> </u> | Baseli          | ine | Post<br>(observe |    | Post<br>(estimat |    | FU<br>(observ  | ed) | FU<br>(estimate | ed <sup>b</sup> ) | Pre-post<br>group eff<br>(estin<br>mea | ect sizes<br>nated | Overall effects at post- treatment (group x time interaction) <sup>c</sup> | Pairwise comparisons at post-treatment (Bonferronicorrected)                   | Between-<br>group<br>effect sizes<br>at post-<br>treatment<br>(estimated<br>means) |
|----------|-----------------|-----|------------------|----|------------------|----|----------------|-----|-----------------|-------------------|----------------------------------------|--------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Measure  | M<br>(SD)       | n   | M(SD)            | n  | M (SE)           | n  | M(SD)          | n   | M (SE)          | n                 | Cohen's d                              | 95%<br>CI          | F and $df$                                                                 |                                                                                | Cohen's d [95% CI]                                                                 |
| ISI      |                 |     |                  |    |                  |    |                |     |                 |                   |                                        |                    |                                                                            |                                                                                |                                                                                    |
| MCT      | 16.20<br>(3.75) | 41  | 8.88<br>(4.94)   | 34 | 9.08<br>(0.82)   | 41 | 7.50<br>(3.82) | 32  | 8.11<br>(0.72)  | 41                | 1.62                                   | [1.11;<br>2.11]    |                                                                            |                                                                                | MCT vs.<br>SRT:                                                                    |
| SRT      | 17.37<br>(3.44) | 41  | 11.29<br>(4.99)  | 34 | 11.34<br>(0.82)  | 41 | 9.46<br>(4.37) | 26  | 10.20<br>(0.77) | 41                | 1.41                                   | [0.91;<br>1.88]    |                                                                            | MCT vs.                                                                        | -0.46<br>[-0.89; -                                                                 |
| CAU      | 17.43<br>(3.83) | 21  | 14.75<br>(4.73)  | 20 | 14.67<br>(1.08)  | 21 |                |     |                 |                   | 0.64                                   | [0.01;<br>1.25]    | $F_{(2, 86.735)} = 6.56$ $p = .002$                                        | SRT:<br>p = .159<br>MCT vs.<br>CAU:<br>p < .001<br>SRT vs.<br>CAU:<br>p = .049 | 0.01] MCT vs. CAU: -1.15 [-1.70; - 0.57] SRT vs. CAU: -0.68 [-1.21; - 0.13]        |
| PSQI     | 10.12           |     | c 11             |    | 6.42             | >  | 5 11           |     | 5 50            |                   |                                        | [0.66:             | E                                                                          | MCT                                                                            | MCT                                                                                |
| MCT      | 10.12 (3.13)    | 42  | 6.41 (3.41)      | 34 | 6.43<br>(0.56)   | 42 | 5.44<br>(2.26) | 32  | 5.52<br>(0.46)  | 42                | 1.13                                   | [0.66;<br>1.58]    | $F_{(2, 91.012)} = 6.63$                                                   | MCT vs.<br>SRT:                                                                | MCT vs.<br>SRT:                                                                    |
| SRT      | 11.05           | 41  | 7.38             | 34 | 7.32             | 41 | 7.04           | 26  | 7.18            | 41                | 1.18                                   | [0.71;             | p = .002                                                                   | p = .793                                                                       | -0.27                                                                              |

| CAU         | (3.14)             | (3.13)          |    | (0.56)          |    | (3.22)         |    | (0.49)           |      | 1.65]            |                                     | MCT vs.<br>CAU:                                                                           | [-0.70;<br>0.16]                                                          |
|-------------|--------------------|-----------------|----|-----------------|----|----------------|----|------------------|------|------------------|-------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|             |                    |                 |    |                 |    |                |    |                  |      | <u> </u>         |                                     | p < .001 SRT vs.                                                                          | MCT vs.<br>CAU:                                                           |
|             | 10.95<br>(2.52) 21 | 10.20<br>(3.67) | 20 | 10.23<br>(0.74) | 21 |                |    |                  | 0.23 | [-0.38;<br>0.83] |                                     | CAU: <i>p</i> = .007                                                                      | -1.09<br>[-1.63; -<br>0.52]<br>SRT vs.<br>CAU:<br>-0.88<br>[-1.41; -      |
| ADS-K       |                    |                 |    |                 |    |                |    |                  |      |                  |                                     |                                                                                           | 0.32]                                                                     |
| MCT         | 12.83<br>(6.33) 41 | 7.29<br>(5.26)  | 34 | 7.17<br>(1.02)  | 41 | 7.16<br>(4.68) | 31 | 6.73 (0.88)      | 0.97 | [0.51;<br>1.42]  |                                     |                                                                                           | MCT vs.<br>SRT:                                                           |
| SRT         | 13.05<br>(5.42) 41 | 8.79<br>(5.49)  | 34 | 8.92<br>(1.02)  | 41 | 6.96<br>(5.26) | 26 | 7.48<br>(0.94) 4 | 0.75 | [0.30;<br>1.20]  |                                     | MCT                                                                                       | -0.33<br>[-0.76;                                                          |
| CAU         | 13.67<br>(6.69) 21 | 11.90<br>(8.00) | 20 | 12.21<br>(1.36) | 21 |                |    |                  | 0.20 | [-0.41;<br>0.80] | $F_{(2, 87.488)} = 3.32$ $p = .041$ | MCT vs.<br>SRT:<br>p = .690<br>MCT vs.<br>CAU:<br>p = .012<br>SRT vs.<br>CAU:<br>p = .168 | 0.11] MCT vs. CAU: -0.80 [-1.33; - 0.25] SRT vs. CAU: -0.51 [-1.04; 0.03] |
| DBAS<br>MCT | 70.63              | 41.65           | 34 | 43.03           | 41 | _d             | _  |                  | 1.20 | [0.72;           | $F_{(2, 87.896)} =$                 | MCT vs.                                                                                   | MCT vs.                                                                   |
|             | (21.83)            | (24.04)         |    | (4.19)          |    |                |    |                  |      | 1.66]            | 15.19                               | SRT:                                                                                      | SRT:                                                                      |

| SRT | 80.63<br>(21.40) | 41 | 57.97<br>(23.94) | 34 | 57.71<br>(4.19) | 41 | -       | -    | -      | -  | 1.01  | [0.54;<br>1.46] | p < .001            | p = .045 MCT vs.     | -0.61<br>[-1.05; - |
|-----|------------------|----|------------------|----|-----------------|----|---------|------|--------|----|-------|-----------------|---------------------|----------------------|--------------------|
| CAU | (21.10)          |    | (23.71)          |    | (1.17)          |    |         |      |        |    |       | 1.10]           |                     | CAU:                 | 0.16]              |
|     |                  |    |                  |    |                 |    |         |      |        |    |       |                 |                     | p < .001             | MCT vs.            |
|     |                  |    |                  |    |                 |    |         |      |        |    |       |                 |                     | SRT vs.              | CAU:               |
|     |                  |    |                  |    |                 |    |         |      |        |    |       |                 |                     | CAU:                 | -1.73              |
|     | 84.05            | 21 | 87.00            | 20 | 88.06           | 21 |         |      |        |    | -0.13 | [-0.74;         |                     | p < .001             | [-2.31; -<br>1.10] |
|     | (30.48)          | 21 | (29.70)          | 20 | (5.60)          | 21 |         |      |        |    | 0.15  | 0.47]           |                     |                      | SRT vs.            |
|     |                  |    |                  |    |                 |    |         |      |        |    |       |                 |                     |                      | CAU:               |
|     |                  |    |                  |    |                 |    |         |      |        |    | 47    |                 |                     |                      | -1.17              |
|     |                  |    |                  |    |                 |    |         |      |        |    |       |                 |                     |                      | [-1.72; -          |
| QoL |                  |    |                  |    |                 |    |         |      |        |    |       |                 |                     |                      | 0.59]              |
| VAS |                  |    |                  |    |                 |    |         |      | `      |    |       |                 |                     |                      |                    |
| MCT | 74.27            | 41 | 82.82            | 34 | 82.49           | 41 | 79.74   | 31   | 79.85  | 41 | -0.54 | [-0.98;         |                     |                      | MCT vs.            |
|     | (17.62)          | 41 | (12.12)          | 34 | (2.24)          | 41 | (15.90) | 31   | (2.70) | 41 | -0.54 | -0.10]          |                     |                      | SRT:               |
| SRT | 73.00            | 41 | 78.91            | 34 | 79.04           | 41 | 77.69   | 26 < | 76.38  | 41 | -0.41 | [-0.84;         |                     | MCT vs.              | 0.26               |
| CAU | (15.25)          |    | (14.55)          |    | (2.24)          |    | (13.56) | ()   | (2.90) |    |       | 0.04]           |                     | SRT: $p = .836$      | [-0.18;<br>0.69]   |
| CHO |                  |    |                  |    |                 |    |         |      |        |    |       |                 | $F_{(2, 90.306)} =$ | p = .030 MCT vs.     | MCT vs.            |
|     |                  |    |                  |    |                 |    |         |      |        |    |       |                 | 2.10                | CAU: $p =$           | CAU: 0.85          |
|     | 73.62            |    | 72.30            |    | 72.25           |    |         |      |        |    |       | [-0.50;         | p = .128            | .020                 | [0.29; 1.38]       |
|     | (14.38)          | 21 | (12.03)          | 20 | (2.93)          | 21 |         |      |        |    | 0.10  | 0.71]           |                     | SRT vs.              | SRT vs.            |
|     | ` ,              |    | , ,              |    | ,               |    |         |      |        |    |       | -               |                     | CAU: <i>p</i> = .207 | CAU:<br>0.49       |
|     |                  |    |                  |    |                 |    |         |      |        |    |       |                 |                     | .207                 | [-0.05;            |
|     |                  |    |                  |    |                 |    | 7       |      |        |    |       |                 |                     |                      | 1.02]              |

Note. MCT = Multicomponent treatment; SRT = Sleep restriction treatment; CAU = Care as usual; ISI = Insomnia severity index; PSQI = Pittsburgh Sleep Quality Index; DBAS = Dysfunctional Beliefs and Attitudes about Sleep Scale; ADS-K = Center for Epidemiological Studies-Depression – German short version; QoL VAS = Quality of Life - visual analogue scale. <sup>a</sup> Based on models including all conditions and pre and

post-assessments; <sup>b</sup> based on models including the two active conditions and baseline, post and FU-assessments. <sup>c</sup> Intention-to-treat (ITT) analyses; <sup>d</sup> DBAS was not assessed at follow-up.

Table 4

Estimated means and overall effects for continuous sleep diary data during the intervention period.

|                    | 33    | 3                                     | 1 2                                 | O                                                      | 1                                            |                                                                                 |                                                                                                           |
|--------------------|-------|---------------------------------------|-------------------------------------|--------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|                    |       | Start of the intervention (estimated) | After eight<br>weeks<br>(estimated) | Overall effect (group x time interaction) <sup>c</sup> | Pooled standard<br>deviation over<br>56 days | Pre-post within-<br>group<br>effect sizes<br>(estimated<br>means;<br>pooled SD) | Between-group<br>effect sizes<br>(within-group<br>ES <sub>MCT</sub> – within-<br>group ES <sub>SR</sub> ) |
|                    | $n^a$ | M (SE)                                | M (SE)                              | F and df                                               | $SD_{pooled}$                                | Cohen's d                                                                       | Cohen's d                                                                                                 |
| Morning protocol   |       |                                       |                                     |                                                        |                                              |                                                                                 |                                                                                                           |
| Sleep efficacy (%) |       |                                       |                                     |                                                        |                                              |                                                                                 |                                                                                                           |
| MCT                | 40    | 79.43 (1.89)                          | 84.91 (2.18)                        | F(1,2823) = 0.71                                       | 13.96                                        | -0.42                                                                           | 0.04                                                                                                      |
| SRT                | 39    | 74.09 (1.90)                          | 81.81 (2.26)                        | p = .40                                                | 16.76                                        | -0.46                                                                           |                                                                                                           |
| Tiredness when     |       |                                       |                                     |                                                        |                                              |                                                                                 |                                                                                                           |
| going to bed       |       |                                       |                                     |                                                        |                                              |                                                                                 |                                                                                                           |
| MCT                | 40    | 4.03 (0.08)                           | 4.02 (0.09)                         | F(1,2830) = 9.08                                       | 0.84                                         | 0.01                                                                            | 0.51                                                                                                      |
| SRT                | 39    | 3.82 (0.08)                           | 4.24 (0.09)                         | p = .003                                               | 0.86                                         | -0.50                                                                           |                                                                                                           |
| Sleep quality      |       |                                       |                                     |                                                        |                                              |                                                                                 |                                                                                                           |
| MCT                | 40    | 2.80 (0.07)                           | 2.43 (0.10)                         | F(1,2834) = 0.03                                       | 1.04                                         | 0.36                                                                            | 0.00                                                                                                      |
| SRT                | 39    | 2.83 (0.07)                           | 2.48 (0.10)                         | p = .86                                                | 0.96                                         | 0.36                                                                            |                                                                                                           |
| Feeling            |       |                                       |                                     | *                                                      |                                              |                                                                                 |                                                                                                           |
| unrecovered        |       |                                       |                                     |                                                        |                                              |                                                                                 |                                                                                                           |
| MCT                | 40    | 3.02 (0.08)                           | 2.63 (0.10)                         | F(1,2834) = 0.20                                       | 0.96                                         | 0.41                                                                            | 0.07                                                                                                      |
| SRT                | 39    | 3.04 (0.08)                           | 2.72 (0.10)                         | p = .65                                                | 0.94                                         | 0.34                                                                            |                                                                                                           |
| Evening protocol   |       |                                       |                                     |                                                        |                                              |                                                                                 |                                                                                                           |
| Daytime tiredness  |       |                                       |                                     |                                                        |                                              |                                                                                 |                                                                                                           |
| MCT                | 39    | 3.99 (0.18)                           | 3.48 (0.24)                         | F(1,2537) = 2.61                                       | 1.85                                         | 0.28                                                                            | 0.35                                                                                                      |
| SRT                | 39    | 4.01 (0.18)                           | 4.15 (0.24)                         | p = .11                                                | 1.87                                         | -0.07                                                                           |                                                                                                           |
| Concentration      |       |                                       |                                     | -                                                      |                                              |                                                                                 |                                                                                                           |
| MCT                | 39    | 4.59 (0.16)                           | 5.48 (0.21)                         | F(1,2537) = 0.91                                       | 1.72                                         | -0.52                                                                           | 0.18                                                                                                      |
| SRT                | 39    | 4.56 (0.15)                           | 5.11 (0.21)                         | p = .34                                                | 1.61                                         | -0.34                                                                           |                                                                                                           |

| Mood       |    |             |             |                  |      |       |       |
|------------|----|-------------|-------------|------------------|------|-------|-------|
| MCT        | 39 | 5.31 (0.16) | 5.73 (0.23) | F(1,2537) = 1.05 | 1.53 | -0.27 | 0.21  |
| SRT        | 39 | 5.24 (0.16) | 5.34 (0.23) | p = .30          | 1.54 | -0.06 |       |
| Relaxation |    |             |             | _                |      |       |       |
| MCT        | 39 | 3.39 (0.15) | 3.05 (0.18) | F(1,2537) < 0.01 | 1.56 | 0.22  | -0.03 |
| SRT        | 39 | 3.44 (0.15) | 3.09 (0.18) | p = .98          | 1.40 | 0.25  |       |

*Note.* MCT = Multicomponent treatment; SRT = Sleep restriction treatment; <sup>a</sup> Number of participants with a least one value. Time was coded over the 56 days with values from 0-1.



Figure 1. Flow chart (MCT = Multicomponent treatment; SRT = Sleep restriction treatment; CAU = Care as usual)

### Highlights

- Internet-based cognitive behavioral treatment (iCBT-I) is effective in insomnia
- An abridged iCBT-I focusing on sleep restriction is effective in insomnia
- The treatment gains remained stable up to 6-month follow-up
- The effects of the two versions of iCBT-I did not differ from each other
- Patients were more satisfied with the full version of iCBT-I