

Forelesning nr.10 INF 1411 Elektroniske systemer

Felteffekt-transistorer

Dagens temaer

- Bipolare transistorer som brytere
- Felteffekttransistorer (FET)
- FET-baserte forsterkere
- Dagens temaer er hentet fra kapittel 16.4-16.7

BJT som bryter

- Når en BJT brukes som forsterker opererer den i det lineære området
- Hvis man lar en BJT enten være i cutoff eller i metning, kan den brukes som en strøm(spenning)-styrt bryter
- Strøm- eller spenningsstyrte brytere brukes i digitale kretser, bla for å lage AND-, OR- og NOT-porter
- Selv om en BJT kan brukes som elektronisk bryter, er den ikke god egnet for bruk på integrerte kretser pga relativt høyt strømforbruk

BJT som bryter

- Når base-emitter ikke er forward-biased (V_B=0), er transistoren i cutoff, dvs at V_{CE} ≈V_{CC}
- Når base-emitter er forward-biased, vil det gå en maksimal kollektorstrøm gitt av $\frac{V_{cc}}{\sqrt{c}}$

 $+V_{CC} +V_{CC} +V_{CC} +V_{CC} +V_{CC}$ $R_{C} \downarrow I_{C} = 0 \qquad R_{C} \downarrow I_{C(sat)} \qquad R_{C} \downarrow I_{C(sat)}$ $+V_{BB} \downarrow I_{C} \qquad +V_{BB} \downarrow I_{C(sat)} \qquad R_{C} \downarrow I_{C(sat)} \qquad R_{C} \downarrow I_{C(sat)}$

(a) Cutoff - open switch

(b) Saturation — closed switch

Felteffekttransistorer (FET)

- En FET er en spenningsstyrt strømbryter
- De tre terminalene heter hhv Drain (tilsv. Collector), Gate (tilsv. Base) og Source (tilsv. Emitter)
- Av FET finnes to hovedgrupper:
 - Junction FET (JFET)
 - Metal-Oxide Semiconductor FET (MOSFET)
- MOSFET-varianter er de vanligste transistorene i digitale integrerte kretser

JFET

- JFET har en ledende kanal med source og drain-tilkobling i hver ende av kanalen
- Strømmen i kanalen kontrolleres av spenningen på gaten
- Som for en BJT finnes to typer JFET, kalt hhv n-type eller ptype, avhengig av hva som er majoritetsbærer i kanalen
- Gatespenningen regulererer motstanden i kanalen under

(b) p channel

JFET (forts)

Avhengig av om kanalen er p- eller n-type, er symbolene

 For n-type må gate-spenningen være høyere enn sourcespenningen for at JFET skal lede, mens gate-spenningen må være lavere enn drain-spenningen for at en p-type skal lede

MOSFET

- En MOSFET har ingen pn-overganger som JFET, BJT og dioder
- Gaten på en MOSFET er elektrisk isolert fra drain-source vha et tynt lag med silisiumdioksyd
- MOSFET kommer i to hovedkategorier
 - Depletion-mode
 - Enhancement-mode
- MOSFET er den aller vanligste transistorer i digitale kretser; den kan også brukes som spenningskontrollert motstand eller som kondensator, i f.eks hukommelsesceller (RAM)

Depletion(D)-MOSFET

- En D-MOSFET har en fysisk kanal under gaten
- Avhengig av gate-spenningen vil majoritetsbærerne enten blokkeres (depletion mode) eller kunne passere regionen (enhancement mode) under gaten

Enhancement(E) MOSFET

- En E-MOSFET har ingen fysisk kanal med majoritetsbærere under gaten
- Avhengig av gatespenningen vil det dannes en n-kanal gjennom p-substratet
- Gate-spenningen må over et visst nivå i forhold til sourcespenningen for at det skal kunne dannes en kanal

Enhancement(E) MOSFET (forts)

 En av de største fordelene med E-MOSFET er at det går svært lite strøm når den er i cutoff og at det går nesten ingen strøm gjennom gaten uansett operasjonsområde (~pA)

- Hva er forskjellen mellom en JFET og en BJT?
- Hva er forskjellen mellom en D-MOSFET og en E-MOSFET
- I hvilke to modi opererer en BJT når den brukes som en bryter?
- Hva er hovedanvendelsesområdet til en MOSFET?
- Hvilke andre kretselementer kan en E-MOSFET brukes til?
- Hvor mye strøm går inn gjennom gaten på en E-MOSFET?

JFET biasing

- En JFET kan enklest gis bias via en liten motstand R_S i serie med source og en stor motstand R_G fra gate til jord
- Spenningsfallet over sourcemotstanden gjør at gatesource overgangen er reverse-biased

13

D-MOSFET biasing

- En D-MOSFET kan fungere både i depletion og enhanced mode, dvs at gatesource kan være både forover og reversbiased
- Enkleste bias-metode kalles zero-bias:
 Source kobles direkte til jord, mens gate kobles til jord via en stor motstand

E-MOSFET biasing

- En E-MOSFET må ha V_{GS} større enn en terskelspenning V_{GS(th)}
- E-MOSFET kan forsynes med bias på samme måte som en BJT, dvs via en spennings-deler, eller via drain feedback

(b) Voltage-divider bias

CMOS

- CMOS er en spesiell type
 MOSFET hvor man produserer
 både p- og n-kanaltype på
 samme krets
- CMOS er svært utbredt i digitale kretser bla fordi man får høy transistortetthet kombinert med lavt effektforbruk, og fordi man kan lage noe nær ideelle svitsjer

Digitale porter: inverter

 En inverter tar som input et signal som enten er lavt (0v) eller høyt (5v) og produserer et utsignal som er det inverterte av innsignalet

Inverter circuit using IGFETs

Digitale porter: NAND-port

 En NAND-port utfører en logisk NAND-operasjon mellom to binære inputsignal (dvs signal som har kun to diskrete signalnivåer)

CMOS NAND gate

Digitale porter: NOR-port

 En NOR-port utfører en logisk NOR-operasjon mellom to binære inputsignal (dvs signal som har kun to diskrete signalnivåer)

CMOS NOR gate

Digitale porter: AND-port

 En AND-port konstrueres vha en NAND-port og en inverter

Digitale porter: OR-port

 En OR-port konstrueres vha en NOR-port og en inverter

CMOS OR gate

UiO: Institutt for informatikk Det matematisk-naturvitenskapelige fakultet

JFET-basert common-source forsterker

- FET-baserte forsterkere er spenningsstyrte og har verken så stor forsterkning eller er så lineære som BJT-forsterkere
- Den største fordelen med FET-forsterkere er høy inngangsimpedans
- Input-resistansen er avhenger av biasmotstanden(e)
- R_G er høyere enn for BJTforsterkere siden det nesten ikke går strøm inn gjennom gaten

24.03.2015 INF 1411 22

Transkonduktans

En viktig parameter for en FET er transkonduktans

$$g_m = \frac{I_d}{V_{as}}$$

- Forstavelsen «trans» betegner åt man ikke måler ledningsevne på samme sted i kretsen (siden gaten er isolert fra source-drain)
- For en common-source forsterker er drain-strømmen multiplisert med drain-motstanden lik output-spenningen:

$$A_{v} = \frac{V_{out}}{V_{in}} = \frac{I_{d}R_{d}}{V_{gs}} = g_{m}R_{d}$$

Common-drain forsterker

 Hvis man ikke trenger høy spenningsforsterkning men høy input-motstand, kan man bruke en common-drain forsterker

Nøtt til neste gang

- Hvordan fungerer denne kretsen?
- Hva gjør kan den brukes til?
- Hva er begrensningen?

Forelesning nr.10 INF 1411 Oppsummeringsspørsmål

Transistorer

En transistor

- a) Kan brukes som en avhengig spenningskilde
- b) Kan ikke brukes som en avhengig strømkilde
- c) Tåler ikke strømmer over 1mA
- d) Må ha en fast forspenning

Gateoksydets hovedfuksjon er

- a) Å lede strøm
- b) Å redusere motstand
- c) Å isolere
- d) Å øke forsterkningen

En koblingskondensator brukes for å

- a) Øke strømforsterkningen
- b) Øke spenningsforsterkningen
- c) Fjerne DC-komponenter
- d) Fjerne AC-komponenter

En bypasskondensator brukes for å

- a) Øke strømforsterkningen
- b) Øke spenningsforsterkningen
- c) Redusere inngangsimpedansen
- d) Øke inngangsimpedansen

En felles kollektor-forsterker

- a) Har en spenningsforsterking større enn 1
- b) Har inngangsimpedans som er lineær i forhold til frekvensen
- c) Har strømforsterkning lik spenningsforsterkningen
- d) Har en strømforsterkning som er proporsjonal med emittermotstanden R_F

«Crossover» forvrengning i en push-pull fortserker skyldes

- a) Ikke-lineær sammenheng mellom I_B og V_{CE}
- b) At begge transistorene er i cut-off
- c) At begge transistorene er i metning
- d) At begge transistorene er i det lineære området

En felteffekttransistor (FET) er en

- a) Strømstyrt strømkilde
- b) Strømstyrt spenningskilde
- c) Spenningsstyrt spenningskilde
- d) Spenningsstyrt strømkilde

I en E-MOSFET

- a) Er det en fysisk kanal undet gaten
- b) Øker konduktanen mellom drain og source når gatespenningen synker ned mot source-spenningen
- c) Går det ingen strøm gjennom gaten når transistoren er i cut-off
- d) Går det ingen strøm mellom drain og source når transistoren er i cut-off

En D-MOSFET

- a) Kan ikke brukes som en spenningsdeler
- b) Kan brukes som en strømkilde
- c) Trenger ikke koblingskondensator på inngangen
- d) Har 0Ω inngangsimpedans

En CMOS-transistor

- a) Har lav motstand på gaten
- b) Trekker mer strøm enn en BJT
- c) Finnes ikke i komplementære utgaver
- d) Har lavt effektforbruk

For å lage en NAND-port trenger man

- a) 2 CMOS transistorer
- b) 3 CMOS transistorer
- c) 4 CMOS transistorer
- d) 5 CMOS transistorer

I en CMOS-basert NAND-port er

- a) Både P- og N-transistorene i cut-off
- b) Både P- og N-transistorene i metning
- c) Både P- og N-transistorene i det lineære området
- d) P-transistorene i cut-off når N-transistorene er i metning

JFET-baserte forsterkere

- a) Har lavere inngangskapasitans enn BJT-forsterkere
- b) Har større lineært område enn BJT-forsterkere
- c) Har høyere inngangsadmittans enn BJT-forsterkere
- d) Har høyere inngangsimpedans enn BJT-forsterkere

Transkonduktansen i en FET er et mål på

- a) Forholdet drain-strømmen og gate-source spenningen
- b) Forholdet mellom drain-strømmen og drain-source spenningen
- c) Forholdet mellom inngangsimpedans og utgangsimpedans
- d) Forholdet mellom inngangsadmittans og utgangsadmittans

INF 1411 40

Det matematisk-naturvitenskapelige fakultet

Spørsmål 15

En ideel bryter har

- a) Lav høy motstand for lede strøm godt
- b) Høy konduktans for å trekke lite strøm
- c) Så kort svitsjetid som mulig
- d) Høy kapasitans