

Attaques cryptographiques

- Attaques sur l'implémentation souvent causées par la présence d'une des fautes mortelles en crypto :
 - Cryptographie propriétaire ou « maison »
 - Mauvais codage
 - Mauvaise gestion des clés en mémoire ou persistance des clés en mémoire (ex. attaque « cold boot »)
 - Mauvais génération de clé (ex. Debian OpenSSL)
 - Mauvaise source d'entropie dans le système
 - Fl-Gamal
 - Vecteur d'initialisation pour les algorithmes de flux
 - Challenge-response (à voir dans la section d'authentification)

Principe de gestion de clés

Générations de clés

- Nécessité de source de bit parfaitement aléatoire
- Méthode matériel vs. logiciel vs. "manuel"
- "Souveraineté" et contrôle sur la génération des clés
- Difficulté technique pour certains algorithmes
 - RSA: p et q premier, etc.
 - El-Gamal : p t.q. p-1a un grand facteur, etc.
- Gestion des clés et réduction de risque
 - Possibilité de révocation
 - Distribution au préalable
 - Contrôle positif (détection de perte ou vol)

- Mécanisme de protection
 - Contrôle d'accès
 - Chiffrement des clés par mot de passe ou phrase de passe
- Principe de segmentation
 - Clés de réseaux vs. clés point-àpoint
 - Durée de vie limitée des clés
- Distribution de clés
 - Nécessite de canaux privés dédiés
 - Distribution physique
 - Utilisation de KEK (key-encryption keys) ou équivalent

Réductions de risque et principes de bases (« cheatsheet »)

- Souveraineté de clé
 - Entropie
 - Contrôle d'accès
- Principe de Kerchoff
 - Pas de « sécurité par obscurité »
- Professionalisme
 - Algorithmes
 - Protocoles
 - Implémentations

- Gestion de clés
 - Segmentation
 - Temps,
 - Systèmes/réseaux,
 - Niveau de classification
 - compartiment "verticaux"
 - Mécanismes de confiance (PKI)
 - · Hiérarchique
 - Décentralisé
 - Révocation

INF4420: Éléments de Sécurité Informatique

Autorisation, contrôle d'accès

Contenu du cours

- Introduction au contrôle d'accès
- Contrôle d'accès sous LINUX
- Modèles DAC et MAC
- Modèle RBAC
- Modèle ABAC
- Introduction à l'IAM

Contrôle d'accès

- Contrôle d'accès
 - Définition : Fonction permettant de limiter l'accès à des ressources aux individus/machines/entités qui ont le droit d'accéder à ces ressources
 - S'applique autant à des objets physiques qu'à des ressources informatiques

4 Aspects

- Identification : Déterminer l'identité du demandeur
- Authentification : Validation de l'identité du demandeur
- Autorisation : Validation du droit d'accès au ressources
- Audit/(« Accounting ») : Attribution d'actions à une identité
 - → AAA (Authentication, Authorization and Accounting) ou IAAA
- Dans un système d'exploitation
 - Identification : nom d'usager, identificateur de processus (PID)
 - Authentification : commande d'authentification
 - Autorisation: matrice d'accès, contrôleur de référence
 - Audit : journaux (« logs »)

- Contrôleur de référence (« Reference Monitor »)
 - Composant qui s'interpose entre tous les accès de sujets à objets
 - Vérifie chaque demande d'entrée selon une procédure stricte
 - Maintient la sécurité au niveau voulu
 - S'implémente dans la noyau du système d'exploitation (OS)
 - Sujet = Utilisateur ou processus
 - Objet = Processus ou ressource (fichier)
 - Modes d'accès = { R-Read, W-Write, X-Execute }
 - Input: requête d'accès (sujet, objet, mode d'accès)
 - Output: Réponse (oui ou non) selon que l'accès est permis ou pas

Matrice d'accès

 Matrice qui liste les sujets (lignes) et objets (colonnes) dans un système, et les modes d'accès pour chaque (sujet, objet) (case de la matrice)

Sujet\Objet	File 1	File 2	Process 1	Process 2
Process 1	-	R	R,W,X	-
Process 2	-	Χ	R	R,W,X
User 1	R,X	W	-	R,X

 Pour un ordinateur avec A sujets et B objets, la matrice d'access aura une taille de AxB. La majorité de cellules seront vides!

Listes de contrôle d'accès (ACL)

- Prendre chaque colonne de la matrice d'accès pour chaque sujet non-vide
- Stocker la liste d'accès avec l'objet
- Pour chaque accès à l'objet, le contrôleur de référence vérifie si le sujet a les droit requis

Sujet\Objet	File 1	File 2	Process 1	Process 2
Process 1	-	R	R,W,X	-
Process 2	-	Χ	R	R,W,X
User 1	R,X	W	-	R,X

Modèle de sécurité Linux

- Toutes les ressources sont des objets (fichier, répertoire, mémoire, IO)
- Chaque objet a un propriétaire
- L'administrateur peut ajouter de nouveaux utilisateurs, lire et changer tous les objets, et changer les droit d'accès de tous les objets.
- Les utilisateurs peuvent seulement accéder aux objets pour lesquels ils ont la permission, et peuvent seulement changer les droits d'accès des objets dont ils sont propriétaires
- Les logiciels s'exécutent avec les droits de l'utilisateur qui a lancé le programme

Utilisateurs

- User ID (UID) pour chaque utilisateur
- UID 0 est réservé pour l'administrateur (root)
- Les fichiers ont l'ID de l'utilisateur qui a créé le fichier

Groupes

- Group ID (GID)
- Les utilisateurs ont un groupe principal
- Les utilisateurs peuvent joindre d'autres groupes
- Les fichiers ont le groupe principal de l'utilisateur qui a créé le fichier
- Utilisateurs et groupes ne sont pas des objets

- Chaque fichier a un UID et GID assigné
- Chaque programme a un UID et GID assigné
- Avant d'exécuter un appel de fonction du système (« system call »), le contrôleur de référence vérifie :
 - Si UID = 0, permettre l'accès
 - Sinon, lire la liste de contrôle d'accès de l'objet et vérifier si l'accès est permis

- Permissions de fichiers
 - R (lire)
 - W (écrire/changer)
 - X (Exécuter)
- Pour
 - U (Propriétaire)
 - G (Groupe)
 - O (Autres utilisateurs)

```
-rw-r---- 1 Emilie profs 7627 Oct 1 12:50 exam
-rw-rw-rw- 1 root root 12987 Sep 7 19:34 /etc/passwd
```


- Changement du propriétaire d'un objet
 - Commande chown
 - Exemple : chown patrick exam
 - Patrick devient le nouveau propriétaire du fichier exam
 - Seul l'administrateur root pour exécuter un chown

- Changement des droits sur un objet
 - Commande chmod
 - Seul le propriétaire et l'administrateur peuvent changer les droits
 - Exemple : chmod u=rwx, g=rx, o=r myfile
 - Commande équivalente à : chmod 754 myfile
 - read = 4
 - write = 2
 - execute = 1
 - pas de permission = 0
 - Ajout de droit : chmod g+w myfile
 - Retrait de droit : chmod o-r myfile

- Sticky bit
 - Pas d'effaçage du fichier
- setuid
 - Le programme s'exécute avec les permissions du propriétaire
- setgid
 - Le programme s'exécute avec les permissions d'un utilisateur dans le groupe du propriétaire

- Les mots de passe sur Linux se changent en utilisant la commande /usr/bin/passwd
- Les utilisateurs peuvent changer leur mot de passe
- Root peut changer le mot de passe de tous les utilisateurs

 Comment est-ce qu'un utilisateur peut changer son mot de passe sans permission d'écriture à /etc/shadow ?

Exemple setuid

Limites de DAC

- Linux utilise le Contrôle d'accès discrétionnaire (DAC)
 - Les utilisateurs peuvent changer les permissions de leur fichiers chmod 655 /home/david/declaration_impot_16
- DAC représente les droits sous forme de matrice

	Jean	Paul	Marie
File1	rw	r	w
File2	r	-	rw
File3	r	w	-

- DAC fonctionne correctement sous 2 conditions
 - Si les usagers ne font pas d'erreurs
 - Si on peut faire confiance à tous les programmes
 - → Impossible !!!

Limites du modèle DAC

Exemple de matrice

	Dossier médical	Ordonnance
Médecin	RW	RW
Patient (Attaquant)	-	R