

	NAME OF STUDENT
•	
***	****************
	CLASS
•••	
***	*******************
	STREAM
•••••	
****	***************
	TEACHER'S NAME
•••••	
****	****************

MUDUKU IVAN

Mak.academia.edu/mudukuivan

Profmvanivan.muk@gmail.com

NAME OF STUDENT
••••••

CLASS

STREAM

TEACHER'S NAME

DECLARATION

Appreciation goes Mr. Nagaya Henry, Mr. muhama Geofrey, Ms Naume Mr. Buyi Dick, Ms Akello, Mr. mukatabala alloycius, Mr. issat Ignatius, Mr. okitoi, Ms Abinyo Racheal, Mr Napokooli Isaac, Mr. mulegi john, Ms amole, Mr. wozemba, for the tremendous, endless effort in shaping and guiding me academic pursuit

Appreciation to my colleagues, woniala ivan, muzaki Judith, komakech, osbert, Nambozo Racheal, Abraham, Christopher woyeya for their company and guidance

Thanks to the family of Mr. massa John, my sisters suzan, junicate, joan, veron, my brothers, keney, victor, Andrew, timothy for financial and spiritual assistance.

And lastly to the lectures in chemistry department Makerere university, prof J Mbabazi, prof S Nyanzi, prof M Ntale, Dr. zubaili, Dr Namukoole, prof Bwamukama

Contents

DECLARATION	3
1.0 VOLUMETRIC ANALYSIS	6
1.1 CLASSIFICATION OF REACTIONS IN VOLUMETRIC ANALYSIS	7
1.2 STANDARD SOLUTIONS	7
1.2.1 PRIMARY STANDARD	8
PREPARATION OF A STANDARD SOLUTION OF SODIUM CARBONATE	8
PREPARATION OF APPROXIMATELY 0.1M SULPHURIC ACID AND STANDARDISE IT AGAINST STANDARD SODIUM CARBONATE SOLUTION	9
2.0 PH AND CHOICE FOR INDICATOR	11
2.1 CHOICE OF INDICATORS	11
2.2 ACID-BASE INDICATORS	12
2.3 TITRATION CURVES	13
2.4 REDOX INDICATORS	14
3.0 ACID-BASE TITRATION	14
3.1 STANDARDISATION OF SODIUM HYDROXIDE WITH 0.1M HYDROCHLORIC ACID	15
3.2 TITRATION OF STANDARD ANHYDROUS SODIUM CARBONATE SOLUTION WITH HYDROCHLO	
Requirements	17
3.3 TITRATION OF STANDARD SODIUM TETRABORATE WITH HYDROCHLORIC ACID	19
3.4 ANALYSIS OF A MIXTURE OF SODIUM HYDROXIDE AND SODIUM CARBONATE	21
3.5 ANALYSIS OF A MIXTURE OF SODIUM CARBONATE AND SODIUM HYDROXIDE	23
3.6 DETERMINATION OF A MIXTURE OF SODIUM CARBONATE AND SODIUM HYDROGEN CARBO	NATE25
3.7 DETERMINATION OF A MIXTURE OF SODIUM HYDROXIDE AND SODIUM HYDROGEN CARBON	NATE 27
4.0 DETERMINATION OF RELATIVE MOLECULAR MASS OF AN ORGANIC ACID	29
5.1 DETERMINATION OF WATER OF CRYSTALLISATION IN A HYDRATED COMPOUND	30
5.2 DETERMINATION OF THE PERCENTAGE OF AMMONIUM CHLORIDE IN THE IMPURE SAMPLE.	32
5.3 DETERMINATION OF PERCENTAGE PURITY	33
6.0 PHYSICAL CHEMISTRY EXPERIMENTS	35
6.1 DETERMINATION OF MOLECULAR MASS BY FREEZING POINT DEPRESSION	35
6.2 DETERMINATION OF SOLUBILITY PRODUCT CONSTANT	36
6.3 DETERMINATION OF SOLUBULITY PRODUCT CONSTANT	38
6.4 DETERMINATION OF THE DISTRIBUTION CONSTANT K_D OF BUTANEDIOC ACID BETWEEN WATAND ETHER	
7.0 REDOX TITRATIONS	42

	7.1 Principle oxidising agents include	43
	7.2 STANDARDISATION OF MANGANATE (VII) SOLUTIONS USING AQEUEOUS ETHANEDIOATE	44
	7.3 DETERMINATION OF THE PROPORTION OF Fe ²⁺ IN THE SALT	46
	7.4 DETERMINATION OF WATER OF CRYSTALLISATION IN A HYDRATED SALT	48
	7.5 DETERMINATION OF THE STOICHIOMETRY OF THE REACTIONS	50
	7.6 STANDARDISATION OF HYDROGEN PEROXIDE BY POTASSIUM PERMANGANATE (VII)	52
	7.7 ANALYSIS OF HYDROGEN PEROXIDE	54
	7.8 DETERMINATION OF THE COMPOSITION OF A MIXTURE OF ETHANEDIOIC ACID AND SODIUM ETHANEDIOATE	56
	7.9 STANDARDISATION OF SODIUM THIOSULPHATE	59
	7.10 STANDARDISATION OF SODIUM THIOSULPHATE SOLUTION	61
	7.11 DETERMINATION OF COPPER IN CRYSTALLISED COPPER	62
	7.12 DETERMINATION OF AVAILABLE CHLORINE IN HYPOCHLORITES (COMMERCIAL BLEACHING POWDER)	64
	7.13 DETERMINATION OF SODIUM CHLORATE (I) CONTENT IN JIK	66
	7.14 DETERMINATION OF RELATIVE ATOMIC MASS OF X IN THE XO ⁻ ANION	68
8	.0 QUALITATIVE ANALYSIS PRACTICALS (INORGANIC PRACTICALS)	70
	8.1 QUANTITIES OF SUBSTANCES FOE TESTS	70
	8.2 PRELIMINARY TESTS	71
	8.3 CONFIRMATORY TESTS FOR CATIONS	74
	8.4 CONFIRMATORY TESTS FOR ANIONS	75
	8.5 SUMMARY OF TESTS FOR CATIONS	77
	8.6TESTING FOR GASES	86
	9.0 QUALITITATIVE ANALYSIS OF ORGANIC COMPOUNDS (ORGANIC PRACTICALS)	87
	9.1 TESTING FOR A CERTAIN CLASS OF ORGANIC COMPOUNDS	90

1.0 VOLUMETRIC ANALYSIS

The term volumetric analysis refers to quantitative chemical analysis carried out by determining the volume of a solution of accurately known concentration (standard solution) which is required to react quantitatively with a measured volume of the solution of a substance to be determined. With this information, various calculations can be made

In volumetric analysis, the reagent of known concentration is called titrant and the substance being titrated is the titrand. In this analysis, a series of titrations are carried out, where by the standard solution is usually added from the burette in small measured quantities to a fixed volume of a solution measured with a pipette. The process of adding a standard solution until the reaction is just complete is termed as titration. The point at which the reaction is just complete is referred to as equivalence point or theoretical end-point

The completion of a titration is detected by some physical change produced by the standard solution itself (e.g faint pink colour formed by potassium permanganate) or more usually by addition of an auxiliary reagent known as indicator which should give a clear visual change (either of colour change or formation of a turbidity) in the liquid titrated. The point at which this occurs is called the end-point. In ideal titration, the visible end-point will coincide with the stoichiometric end-point or theoretical end-point. In practise however, a very small difference usually occurs, this represents a titration error. The indicator and the experimental condition should be selected such that the difference between the visible end-point and the equivalence point is as small as possible.

TITRIMETRIC MTHODS

Titrimetric methods are widely used in chemistry to determine oxidants, reductants, acids, bases, metal ions, etc. Titration is based on a reaction between the analyte (unknown sample) and the regent of known concentration and reaction stoichiometry. The volume or mass of the reagent needed to react completely with a fixed quantity of the analyte is obtained from which the amount of analyte is determined. Titrimetric methods include powerful group of quantitative procedures that are based on measuring the amount of reagent consumed by the analyte. These methods include,

i. **Volumetric titrimetry**. This involves measuring volume of solution of known concentration that is needed to react completely with the sample.

The reagent of exactly known concentration is refered to as standard reagent. **Titration** is the process in which the standard reagent is added to a solution of the sample until the reaction is judged to be complete. **Back titration** is the process by which the excess of the standard solution used to consume the sample is determined by titration with a second standard solution. Equivalence point and endpoint are confused to mean the same but they are totally different. **Equivalence point** is a point in titration when the amount of standard solution added is exactly equal to the amount of the sample whereas **end-point** is the point in titration when a physical change occurs that is associated with a condition of chemical equivalence. The two values are usually different and the difference gives the

titration error. Indicators are added to the solution mixtures to produce an observable physical change at the end-point or near equivalence point

- ii. **Gravimetric titrimetry**. This involves measuring mass of reagent that reacts completely with the sample.
- iii. **Coulometric titrimetry**. Here the reagent is a constant direct electrical current of known magnitude that consumes the sample. Here the time is required, and the total charge to complete the electrochemical reaction

1.1 CLASSIFICATION OF REACTIONS IN VOLUMETRIC ANALYSIS

a) Neutralisation reactions or acidemetry and alkalimetry.

These includes neutralisation of free base or those formed from the salts of weak acids by hydrolysis with standard acid (acidimetry) and titration of free acids or those formed by hydrolysis of salts of weak bases with standard base (alkalimetry). The reaction involves the combination of hydrogen and hydroxide ions to form water

b) Oxidation-reduction reactions

These include all reactions involving changes of oxidation numbers or transfer of electrons among the reacting substances. The standard substances are either reducing or oxidising reagents

c) Precipitation reactions

These depend upon the combination of ions to form a simple precipitate as in the titration of silver ion with a chloride. There is no change in the oxidation state

$$Ag^{+}_{(aq)} + Cl^{-}_{(aq)} \longrightarrow AgCl_{(s)}$$

d) Complex formation reactions

These depend upon the combination of ions, other than hydrogen or hydroxyl ions to form a soluble, slightly dissociated ion or compound as in titration of a solution of cyanide with silver nitrate

$$2CN_{(aq)}^{-} + Ag_{(aq)}^{+} \longrightarrow AgCN_{(s)}$$

1.2 STANDARD SOLUTIONS

A standard solution is one whose concentration is accurately known. Standard solutions are expressed in terms of molar concentration or molarity; such standard solutions are specified in terms of moles of solute dissolve in 1 litre of solution.

$$Molarity = \frac{\text{moles of solute}}{\text{volume of solution in litres}}$$

The relative molecular mass for sulphuric acid, H₂SO₄ is calculated from the relative atomic masses as follows

$$RMM = (2 X 1) + (32 X 1) + (16 X 4) = 98$$

It follows that a molar solution of sulphuric acid will contain 98g of H₂SO₄ in 1 litre of solution. So the concentration of any solution can be expressed in terms of molar concentration so long as the mass of a substance in a specified volume is known.

1.2.1 PRIMARY STANDARD

A primary standard is a compound of sufficient purity from which standard solution can be prepared by direct weighing a quantity of it, followed by dilution to give a defined volume of solution. A primary standard should satisfy the following requirements

- a) It must have high degree of analytical purity, easy to obtain, easy to dry, and preserve in a pure state.
- b) The substance should be unaltered in air during weighing. It should not be hygroscopic, oxidised by air, ore affected by carbon dioxide
- c) It should have high relative molecular mass to minimise gravimetric errors (errors due to weighing)
- d) The substance should be readily soluble under the condition in which it is employed
- e) It should have no interfering products during titration

The reaction with the standard solution should be stoichiometric and practically instantaneous. In practise an ideal standard is difficult to obtain. The substances commonly employed as primary standards include,

- i) Acid-base reactions. Sodium carbonate (Na₂CO₃), sodium tetra borate (Na₂B₄O₇) and constant point boiling hydrochloric acid.
- ii) Precipitation reactions. Silver nitrate, sodium chloride, potassium chloride, and potassium bromide.
- iii) Oxidation-reduction reaction. Potassium dichromate ($K_2Cr_2O_7$), potassium iodate (KIO_3), sodium ethanediote ($Na_2C_2O_4$) and arsenic (II) oxide (A_2O_3)

PREPARATION OF A STANDARD SOLUTION OF SODIUM CARBONATE

Apparatus

• Weighing bottle, 250ml beaker, Spatula, Stirring rod, Filter funnel, Balance sensitive to 0.01g, Distilled water

The anhydrous sodium carbonate is best made from sodium hydrogen carbonate

NaHCO_{3(s)}
$$\longrightarrow$$
 Na₂CO_{3(s)} + H₂O_(l) + CO_{2(g)}

The anhydrous sodium carbonate formed is very pure and can be used in the ordinary weighing with no appreciable change in composition

Procedure

i) Work out the mass of sodium carbonate needed to make up the solution e.g the mass of sodium carbonate dissolved in 250m to make 0.1M solution is calculated as
 1M of sodium carbonate weighs 106g

0.1M of sodium carbonate will weigh $0.1 \times 106 = 10.6g$ This implies that $1000cm^3$ of solution dissolves 10.6g

Therefore 250cm³ of solution will dissolve $\frac{10.6 \times 250}{1000} = 2.65g$

- ii) Note the mass of the empty weighing bottle, M_1 . Weigh accurately, an approximate mass of sodium carbonate as calculated, M_2 into the weighing bottle. Tap off the sodium carbonate into a 400ml capacity beaker and then weigh the bottle again, M_3 . The actual mass is obtained by difference to minimise gravimetric errors, $M_2 M_3$
- iii) Dissolve the sample carefully in about 125ml of distilled water swirl for homogeneity and transfer using a funnel to a clean volumetric flask.
- iv) Remove the funnel and carefully add distilled water to the mark. All the solution to mix well by shaking the flask. The sample has been dissolved in 250ml of the solution, the actual concentration of the solution is $\frac{(M2-M3)\ X\ 1000}{106\ X\ 250}$ M

PREPARATION OF APPROXIMATELY 0.1M SULPHURIC ACID AND STANDARDISE IT AGAINST STANDARD SODIUM CARBONATE SOLUTION

- a) Diluting the acid. Pure concentrated sulphuric acid contains 98% by mass of sulphuric acid.
- i) Take $5.5 6.0 \text{ cm}^3$ (care) of concentrated sulphuric acid in a small measuring cylinder, pour it, with stirring into about 100cm^3 of cold distilled water in a beaker
- ii) Pour this solution into 700ml 0f of cold distilled water in a measuring cylinder of capacity 1000ml
- iii) Wash out the beaker with cold distilled water twice and add to washing to the measuring cylinder, then add distilled water approximately to the mark, stir well. This should give you sulphuric acid of concentration a little more than 0.1M

b) Filling the burette with the diluted acid.

- i) Wash the burette with water, test the burette of the glass tap to check whether it allows water to run easily
- ii) Wash out the burette twice with few ml of approximately 0.1M sulphuric acid. Allow the acid to run through the tap and pour out the rest of the liquid from the top of burette. This leaves the burette wet with the acid and nothing is left to contaminate it.
- iii) Fill the burette with the acid to a level above the zero mark. Open the tap to ensure that the jet is filled with acid and not a bubble. Level of the acid need not to be zero, but must be above it
- iv) Place your eye level with bottom of the meniscus and note the reading of the burette to 0.05cm^3 at least

c) Filling the 23cm³ pipette with the 0.1M sodium carbonate solution

- i) Wash out the pipette (25cm³) with a little of exactly 0.1M sodium carbonate solution
- ii) Draw this solution into the pipette above the mark, and with the mark at the eye level, allow the solution to run out very easily till the lowest level of the meniscus is on the mark.
- iii) Allow the liquid to run from the pipette into the conical flask which has been washed out with cold distilled water only

d) Titration of sodium carbonate with the acid

i) Add 2-3 drops of methyl orange indicator in the conical flask. The solution turns yellow

- ii) Run the acid into the conical flask 2-3cm³ at a time with shaking until the liquid in the flask turns pink, and then add drop by drop until the colour of the liquid is orange. This is the end-point of the titration
- iii) Repeat the titration to obtain consistent results with minimal errors

Sample reading

Titration number	1	2	3
Final burette reading			33.80
(cm^3)	24.10	36.10	
Initial burette reading			10.00
(cm^3)	0.00	12.20	
Volume of acid used	24.10	23.90	23.80
(cm^3)			

Average volume
$$\frac{23.90+23.80}{2} = 23.85 \text{cm}^3$$

Since the first titration may be regarded as trial run, it is usual in such experiments to neglect this reading and the average of the subsequent closest results is taken

Calculations

Sodium carbonate reacts with sulphuric acid according the following equation

$$Na_2CO_{3(aq)} + H_2SO_{4(aq)} \longrightarrow Na_2SO_{4(aq)} + CO_{2(g)} + H_2O_{(l)}$$

1000cm³ of solution contains 0.1 moles of sodium carbonate

$$25 \text{cm}^3$$
 of solution will contain $\frac{25 \text{ X } 0.1}{1000} = 2.5 \text{ X } 10^{-3} \text{ moles}$

Since the mole ratio of Na_2CO_3 : $H_2SO_4 = 1:1$

Therefore 23.85cm^3 of solution contains 2.5×10^{-3} moles of sulphuric acid

$$1000 \text{cm}^3 \text{ of solution will contain } \frac{2.5 \text{ X } 10-3 \text{ X } 1000}{23.85} = 1.05 \text{M}$$

The molarity of sulphuric acid = 1.05M

To make the acid exactly 1M, the volume of 1.05M sulphuric acid required to make 1 litre of 0.1 M H_2SO_4 is given by $V_1 = \frac{0.1 \text{ X } 1000}{0.1058} = 945 \text{cm}^3$

Therefore 55cm^3 of distilled water should be added to 945cm^3 of $1.058M~H_2SO_4$ to make 0.1M

2.0 PH AND CHOICE FOR INDICATOR

PH scale is used for the purpose of comparison of acidity of solutions. PH stands for the power of hydrogen ions. PH is defined as the negative logarithm to the base ten of the molar concentration of hydrogen ions. H_3O^+

$$PH = -log [H_3O^{+}_{aq}] \text{ or } log[\frac{1}{H_3O_{+}}]$$

Therefore, acidic solutions will have PH values, which are low. A 0.001M solution of hydrochloric acid has hydrogen ion concentration of 10⁻³

Hence PH =
$$\log[\frac{1}{H30+}] = \log[\frac{1}{10-3}] = 3$$

Pure water is neutral and has a PH value of 7

The self-ionisation of water can be written as an acid base equilibrium

$$H_2O_{(l)} + H_2O_{(l)} \longrightarrow H_3O^+_{(aq)} + OH^-_{(aq)}$$
For this equilibrium $\frac{[H_3O+aq] [OH(aq]}{[H_2O(l)]}$

The water concentration is so high compared to those of H_3O^+ and OH^- that can be regarded as constant and the dissociation constant for water is defined as $K_w = [H_3O^+_{aq}] [OH_{(aq)}]$, the value of K_w at 25°C is 10^{-14}

$$K_w = [H_3O^+_{aq}] [OH_{(aq)}] = 10^{-14}$$

Hence $[H_3O^+_{aq}] = 10^{-7}$

And the PH of water is 7. The PH of 7 is defined as neutrality. K_w enables the relationship between $[H_3O^+_{aq}]$ and $[OH_{(aq)}]$ to be worked out simply for any aqueous equilibrium. For instance a 0.01M solution of sodium hydroxide has hydroxyl ion concentration of 10^{-2} moles per litre.

Concentration of OH⁻ ions =
$$0.01 \text{mol } 1^{-1}$$

Since $[OH_{(aq)}] = [H_3O^+_{aq}] = 10^{-7} \text{mol } 1^{-1}$
 $[OH_{(aq)}] [H_3O^+_{aq}] = 10^{-14} \text{mol}^2 1^{-2}$
 $[H_3O^+_{aq}] [10^{-2}] = 10^{-14}$
 $[H_3O^+_{aq}] = 10^{-12}$
Hence PH = 12

2.1 CHOICE OF INDICATORS

In titration, indicators are chemical substances which functions to show visibly the equivalence point of a reaction has been reached. Usually the colour of the indicator changes sharply with

the reagent employed in titration so that the presence of an excess of that reagent may be detected, the stage in titration when the colour change occurs is called the end-point of the titration.

2.2 ACID-BASE INDICATORS

An acid base indicator is a substance that changes colour according to the hydrogen ion concentration of a liquid in which they are placed. They are either weak bases or weak acids and are therefore slightly dissociated when dissolved in water. The colour of the indicator depends on the colour of the un dissociated molecules and the colour of the ions produced. The process is best described in terms of a particular indicator. Phenolphthalein is an indicator which behaves as a weak acid. The formula of phenolphthalein and the products is into which it partially dissociated in water.

$$HIn_{(aq)} + H_2O_{(l)}$$
 \longrightarrow $H_3O^+_{(aq)} + In^-_{(aq)}$

In this case, the un dissociated (HIn) are colourless and the anion In is pink. The dissociation represents reaction in equilibrium and we can therefore say, that the equilibrium constant for a reaction is given by

$$K_a = \frac{[\text{H3O+(aq)}][\text{In-(aq)}]}{\text{HIn(aq)}}$$

$$Log \ K_a = log \ \frac{[\text{H3O+(aq)}][\text{In-(aq)}]}{[\text{HIn(aq)}]}$$

$$Log \ K_a = log \ \text{H3O+}] \ + \ log \ [\text{In-}] \ - \ log[\ \text{HIn}]$$
 We notice that -log [H3O+] is a definition of PH
$$Log \ K_a = -PH \ + \ log \ [\text{In-}] \ - \ log[\ \text{HIn}]$$

$$PH = -Log \ K_a \ + \ log \ \frac{[\text{In-(aq)}]}{[\text{HIn(aq)}]}$$

Thus can be seen that the hydrogen in concentration will affect the equilibrium position of the indicator, if the hydrogen concentration is high, the equilibrium position will be shifted to the right and the solution becomes pink. The equilibrium will be in its neutral position when the HIn concentration is equal to In⁻ concentration. At this point, the colour will be mixture of colourless and pink, it appears as pink.

If
$$[In^-] = [HIn]$$

Then $\frac{[In-]}{[HIn]} = 1$
 $Log \frac{[In-]}{[HIn]} = 0$

Thus at the balance point, $PH = \text{-log } k_a \text{ or } P^{ka}$

Below is a list of some of the common indicators in use, with the range of the values over which the colour range takes place.

Indicator	Pka	Transition	Colour in	Colour in
		interval	acid	base
Methyl orange	3.4	3.2-4.4	Red	Yellow
Methyl red	5.0	4.2-6.2	Red	Yellow
Bromothymol blue	7.3	6.0-7.6	Yellow	Blue
Phenolphthalein	9.7	8.2-10.0	colourless	Pink

2.3 TITRATION CURVES

One of the remarkable things about the acid-base titration performed with indicators is the fact that the colour of the indicator changes sharply where only one drop of the acid or base is added at the equivalence point. This is particularly marked in the case of the case of the strong acid and a strong base. Titration curves illustrate this phenomenon. It shows variation of PH with of the mixtures during the course of titration. A typical result for a strong acid and strong base is given by the titration curve for 0.1M by hydrochloric acid titrated with 0.1M sodium hydroxide. A very large change in PH takes place for a small addition of sodium hydroxide near the equivalence point. This accounts for a sharp change in colour of an indicator.

Diagram

Fig (2.1b) shows the results of the similar experiment performed with hydrochloric acid and ammonia solution. The result is typical for a strong acid and weak base. In this case, the first part of the curve is shorter and the equivalence point is at about the PH of 5. Therefore the suitable indicator is methyl orange or methyl red.

Diagram

Fig (2.1c) shows the change in PH when a strong base is titrated against a weak acid. The base is sodium hydroxide and the acid is ethanoic acid. The flat point of the curve is shorter than in the fig (2.1a). But in this case, the equivalence point is on the alkali acid at about PH 9

f ig (2.1d) shows results of titration of a weak acid against a weak base, the acid is ethanoic acid and the base is ammonia solution. It is noticed in this case that there is no straight part of the curve, only a point of inflection. This implies that there is no sudden change in the PH when a small amount of the acid or base is added near the equivalence point. Therefore there is no satisfactory indicator used for this titration.

2.4 REDOX INDICATORS

Redox indicator should mark the sudden change in the oxidation potential in the equivalence point in a redox titration. The ideal redox indicator will be one with an oxidation potential immediate between that of the solution titrated and that of the titrant and should exhibit sharp readily detectable colour change. A redox indicator is a compound which exhibits different colours in the oxidised and reduced forms

Some of the oxidation-reduction indicators include

Indicator	Colou	ır change
	Oxidised form	Reduced form
Dinhamilhamidina		
Diphenyl benzidine	Violet	Colourless
Diphenylamine	Violet	Colourless
Starch, I ₃ -, KI	Blue	Colourless
Diphenylamminosulphonic acid	Red-violet	Colourless
Methylene blue	Blue	Colourless

Note. Potassium permanganate acts as its own indicator, end-point being the first permanganate pink colour. During titration, the smallest possible quantity of the suitable indicator possible should be used as some are acids and base themselves

3.0 ACID-BASE TITRATION

An acid is compound with a tendency to donate a proton to water molecule.

$$HX_{(aq)} + H_2O_{(l)}$$
 \longrightarrow $X^{-}_{(aq)} + H_3O^{+}_{(aq)}$

Whereas the base has a tendency to gain a proton from a water molecule

$$B_{(aq)} + H_2O_{(1)} \longrightarrow BH^+_{(aq)} + OH^-_{(aq)}$$

In aqueous alkali, the H_3O^+ ions in the acid combine with the OH^- ions in the alkali to form water

$$H_3O^+_{(aq)} + OH^-_{(aq)} \longrightarrow H_2O_{(l)}$$

In some acid-base reactions, the end-point shown by one indicator denotes different reactions from that shown another. In the case of sodium carbonate titration, phenolphthalein turns colourless on addition of an acid when all the sodium carbonate is converted to sodium hydrogen carbonate.

$$CO_3^{2-}(aq) + H^+(aq) \rightarrow HCO_3^-(aq)$$

But the carbonate ion has to be converted completely to carbondioxide and water before mthyl orange changes from yellow to red

$$CO_3^{2-}(aq) + 2H^+(aq)$$
 \longrightarrow $CO_2(aq) + H_2O_{(1)}$

3.1 STANDARDISATION OF SODIUM HYDROXIDE WITH 0.1M HYDROCHLORIC ACID **Requirements**

• 1 Burette (50cm³), 2 Conical flask (250cm³), 1 Pipette (25cm³), 1 Stand, 1 White tile, Phenolphthalein indicator, 100cm³ of 0.1M hydrochloric acid, Weighing scale sensitive to 0.1g, Weighing bottle, 1.0g sodium hydroxide

Procedure,

- a) Weighing accurately 1.0g of pure sodium hydroxide in a weighing bottle or beaker
- b) Transfer the content into volumetric flask, add about 100cm³ of distilled water, shake well to dissolve and then make it to the mark with more distilled water.
- c) Shake the flask well, then pipette 25cm³ of the solution into a conical flask, add 3 drops of phenolphthalein indicator
- d) Place the standard hydrochloric acid in the burette, titrate a portion of alkali solution with acid from the burette until the indicator change colour. Repeat the titration until you get a consistent titre. Individual titration should not differ by more than 0.1cm³. Record your results in the table below.

Results

Titration number	1	2	3
Final burette reading (cm ³)			
Initial burette reading (cm ³)			
Volume of hydrochloric acid used (cm ³)			

Titre values used to calculate average volume of acid.....

	erage volume of a
	d
•••••	
a)	Write the equation for the reaction
••••	
•••••	
ŕ	Calculate the number of moles of acid used
••••	
	Calculate the number of moles of sodium hydroxide that reacted
•••••	
d)	Calculate the concentration of sodium hydroxide solution in mol dm ⁻³
••••	
•••••	
••••	
••••	
e)	Calculate the mass of sodium hydroxide dissolved in 1 litre of solution
•••••	

Titration number Final burette reading (cm ³) Initial burette reading (cm ³) Volume of hydrochloric acid used (cm ³)	1			
Final burette reading (cm ³) Initial burette reading (cm ³)	1			
Final burette reading (cm ³)	1			
	1			ı
		2	3	4
Results Mass of the weighing bottle + sodium carbo Mass of the weighing bottle Mass of sodium carbonate Capacity of the pipette used				
Procedure a) Weigh out accurately about 1.5g of pure b) Transfer it into 250 cm³ volumetric flas well to dissolve, and then make to the mark c) Shake the flask well, then pipette 25 cm drops of methyl orange indicator d) Titrate the portion with the acid from the the titration to obtain consistent results and t	k, add abou with more v m ³ of the so	nt 150 cm ³ of water. Solution into a til the indicate	distilled was	ater and sl sk, then a
 1 Burette (50cm³), 2 conical flasks (250 25 cm³), white tile, 100 cm³ of hydrochloric a methyl orange indicator,1 weighing bottle, 1 	acid solution	n, 2.0g of anh	ydrous sodi	
DROCHLORIC ACID				
TITRATION OF STANDARD ANHYDRO	US SODIUI	M CARBON <i>I</i>	ATE SOLU	TION WI
			•••••	
			• • • • • • • • • • • • • • • • • • • •	
	•••••			

i)	Write the equation for the reaction
ii)	Calculate the number of moles of sodium carbonate used
	Calculate the number of moles of acid used
1V) 	Calculate the concentration acid solution in mol dm ⁻³
v)	Calculate the mass of hydrochloric acid dissolved in 1 litre of solution

	•••••	•••••••	•••••	
TITE ATION OF CTANDARD CORNING TO		TE MITTE	INDDOCI	II ODIC A
TITRATION OF STANDARD SODIUM TE Equation of reaction,	ETRABUKA	IE WIIH I	TYDRUCE	ILUKIC A
$B_4O_7^{2-}(aq) + 2H^+(aq) + 5I$	$H_2O_{(l)}$ —	→ 4H ₃ B	O ₃ - (aq)	
Requirements				
• 1 Burette (50cm ³), 2 conical flasks (250 25 cm ³), white tile, 100 cm ³ of hydrochlor methyl orange indicator,1 weighing bottle, 1	ic acid solut	tion, 5.0g of	borax (ar	alyticalgra
Procedure				
 b) Transfer it into 250 cm³ volumetric flash well to dissolve, and then make to the mac. c) Shake the flask well, then pipette 25 cm 	ark with moi	e water.		
drops of methyl orange indicator d) Titrate the portion with the acid from the the titration to obtain consistent results and t Results Mass of the weighing bottle + borax	abulate your	results,		
d) Titrate the portion with the acid from the the titration to obtain consistent results and t Results Mass of the weighing bottle + borax	abulate your	results,		
d) Titrate the portion with the acid from the the titration to obtain consistent results and t Results Mass of the weighing bottle + borax	abulate your	results,		
d) Titrate the portion with the acid from the the titration to obtain consistent results and t Results Mass of the weighing bottle + borax	abulate your	results,		
d) Titrate the portion with the acid from the the titration to obtain consistent results and to the titration to obtain consistent results and to the titration to obtain consistent results and to the titration bottle + borax	abulate your	results,		
d) Titrate the portion with the acid from the the titration to obtain consistent results and to the titration to obtain consistent results and to the titration to obtain consistent results and to the titration bottle + borax	abulate your	results,		
d) Titrate the portion with the acid from the the titration to obtain consistent results and to the titration to obtain consistent results and to the titration to obtain consistent results and to the titration bottle + borax	abulate your	results,		
d) Titrate the portion with the acid from the the titration to obtain consistent results and to the titration bottle + borax	abulate your	results,	3	4
d) Titrate the portion with the acid from the the titration to obtain consistent results and to the titration to obtain consistent results and to the titration to obtain consistent results and to the titration bottle + borax	abulate your	results,	3	4

a) 	write the equation for the reaction
 Cal	culate the concentration of borax in mol dm ⁻³
•••••	
 b)	Calculate the number of moles of hydrochloric acid that reacted with borax
•••••	
•••••	
c)	Calculate the concentration acid solution in mol dm ⁻³
•••••	
d) 	Calculate the concentration of hydrochloric acid in grams per litre
•••••	
••••	

	••••••	•••••	•••••	••••••
	•••••	•••••	•••••	••••••
	••••••	•••••	•••••	
ANALYSIS OF A MIXTURE OF SODIUM	HYDROXID	E AND SOL	DIUM CAF	RBONATI
Method 1 (continuous neutralisation)				
Requirements				
• 1 Burette (50cm ³), 2 conical flasks (250 cm ³)	cm ³), pipette	(25 0r 25 cm	n ³), white ti	ile. BA1 w
is a mixture of sodium carbonate and so				
hydrochloric acid, methyl orange indicator, j	=			
Procedure				
D 25 3 CD 11.	1 110 1	C 1 1	1.1 1	1
a) Pipette 25cm ³ of BA1 into a conical flas			-	
b) Titrate BA1 with BA2 until the indicate	or just chang	ges colour. K	ecord you	r results 11
table A	CI 1 110	. 1		
c) Without pouring away the solution in the		-		
continue with the titration with BA2 until the	ie colour of	methyl orang	ge indicato	r just char
Record your results in table B				
Volume of the pipette used Table A			cm	
Titration number	1	2	3	4
Final burette reading (cm ³)				
Initial burette reading (cm ³)				
Volume of BA2 used (cm ³)				
Titre values used to calculate average volume Average volume of a BA2 (V_1)				
				•••••
	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
	•••••	•••••	•••••	
Table B				
Table B Titration number	1	2	3	4
	1	2	3	4
Titration number Final burette reading (cm ³) Initial burette reading (cm ³)	1	2	3	4
Titration number Final burette reading (cm ³)	1	2	3	4

	ditional average volume of BA2(V_2)
	Write the equations of reactions corresponding to the indicators used
	Calculate the volume of BA2 required to react with sodium carbonate in BA1
	Calculate the concentration of sodium carbonate in gl ⁻¹ contained in BA1
d)	Calculate the volume of acid that reacted with sodium hydroxide in BA1
	Calculate the mass of sodium hydroxide dissolved in 1000cm ³ of solution

				•••••
		•••••	•••••	
ANALYSIS OF A MIXTURE OF SODIUM	CARBONAT	ΓE AND SOI	DIUM HY	DROXIDI
Method 2 (step wise neutralisation)				
Requirements			_	
• 1 Burette (50cm ³), 2 conical flasks (250		,	* *	
is a mixture of sodium carbonate and so	•			which is (
bridge ablamic said mothyl agange indicator	phenolphthal	ein indicator		
nydrochione acid, metnyi orange indicator,	phonorphina	ciii ilidicatoi		
nydrochioric acid, metnyi orange indicator,	phonorphina	em maicator		
	prienorphina.	em marcutor		
Procedure a) Pipette 25cm ³ of BA1 into a conical fla	sk, add 2 dro	ps of phenol	ohthalein i	
Procedure a) Pipette 25cm³ of BA1 into a conical fla Titrate BA1 with BA2 until the indicator just consistent results, Record your results in the	sk, add 2 dro st changes co	ps of phenol	ohthalein i	
Procedure a) Pipette 25cm ³ of BA1 into a conical fla Titrate BA1 with BA2 until the indicator just consistent results, Record your results in the	sk, add 2 dro st changes co	ps of phenol	ohthalein i	
Procedure a) Pipette 25cm³ of BA1 into a conical fla Titrate BA1 with BA2 until the indicator just consistent results, Record your results in the Results	sk, add 2 dro st changes co e table A	ps of phenoly lour. Repeat	ohthalein i	obtain
Procedure a) Pipette 25cm ³ of BA1 into a conical fla Titrate BA1 with BA2 until the indicator just	sk, add 2 dro st changes co e table A	ps of phenoly lour. Repeat	ohthalein i	obtain
Procedure a) Pipette 25cm³ of BA1 into a conical fla Titrate BA1 with BA2 until the indicator just consistent results, Record your results in the Results	sk, add 2 dro st changes co e table A	ps of phenoly lour. Repeat	ohthalein i	obtain
Procedure a) Pipette 25cm ³ of BA1 into a conical fla Titrate BA1 with BA2 until the indicator just consistent results, Record your results in the Results Volume of pipette used	sk, add 2 dro st changes co e table A	ps of phenoly lour. Repeat	ohthalein i	obtain
Procedure a) Pipette 25cm³ of BA1 into a conical fla Titrate BA1 with BA2 until the indicator just consistent results, Record your results in the Results Volume of pipette used	sk, add 2 dro st changes co e table A	ps of phenoly lour. Repeat	ohthalein i	o obtain
Procedure a) Pipette 25cm³ of BA1 into a conical fla Titrate BA1 with BA2 until the indicator just consistent results, Record your results in the Results Volume of pipette used	sk, add 2 dro st changes co e table A	ps of phenoly lour. Repeat	ohthalein i	o obtain

d) Pipette another fresh 25 or 20cm^3 of BA1 into a clean conical flask and titrate with BA2 using methyl orange indicator. Repeat the titration to obtain consistent titres and record in table B

Table B

Titration number	1	2	3	4
Final burette reading (cm ³)				
Initial burette reading (cm ³)				
Volume of hydrochloric acid used				
(cm ³)				

Tit	re values used to calculate average volume of BA2
	erage volume of BA2(V ₂)
a)	Calculate the volume of BA2 required for complete neutralisation of sodium carbonate
••••	
b)	Calculate the concentration of sodium carbonate in gl ⁻¹
 c)	Calculate the volume of BA2 required to neutralise sodium hydroxide completely
	Calculate the mass of sodium hydroxide dissolved in 1dm ³ of solution
•••••	

	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
	•••••	•••••	•••••	
	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
	•••••	••••••	•••••	
DETERMINATION OF A MIXTURE OF S	SODIUM CA	RBONATE A	AND SOD	IUM
DROGEN CARBONATE				
Requirements				
• 1 Burette (50cm³), 2 conical flasks (250 is a mixture of sodium carbonate and sodium hydrochloric acid, phenolphthalein indicator	hydrogen ca	rbonate solut	tions, FA2	
Procedure				
 a) Pipette 25cm³ of FA1 into a conical flat b) Titrate FA1 with BA2 until the indicate consistent results, Record your results in the 	or just change			
Results				
11054115				
Volume of pipette used				cm ³
Volume of pipette used Table A				cm ³
Table A Titration number	1	2	3	cm ³
Table A Titration number Final burette reading (cm ³)				
Table A Titration number Final burette reading (cm³) Initial burette reading (cm³)				
Table A Titration number Final burette reading (cm ³)				
Table A Titration number Final burette reading (cm³) Initial burette reading (cm³)	ne of FA2	2	3	4
Titration number Final burette reading (cm³) Initial burette reading (cm³) Volume of FA2 used (cm³) Titre values used to calculate average volum Average volume of a FA2	ne of FA2	2	3	4
Table A Titration number Final burette reading (cm³) Initial burette reading (cm³) Volume of FA2 used (cm³) Titre values used to calculate average volum Average volume of a FA2 (V1)	ne of FA2	2	3	4
Table A Titration number Final burette reading (cm³) Initial burette reading (cm³) Volume of FA2 used (cm³) Titre values used to calculate average volum Average volume of a FA2 (V1)	ne of FA2	2 n conical flas	3 	4
Titration number Final burette reading (cm³) Initial burette reading (cm³) Volume of FA2 used (cm³) Titre values used to calculate average volum Average volume of a FA2 (V1)	ne of FA2	2 n conical flas	3 	4

Final burette reading (cm ³)		
Initial burette reading (cm ³)		
Volume of hydrochloric acid used (cm ³)		

Titre values used to calculate average volume of FA2
average volume of $FA2(V_2)$
a) Calculate the volume of FA2 required for complete neutralisation of sodium carbonate
b) Calculate the concentration of sodium carbonate in gl ⁻¹
c) Calculate the volume of FA2 required to neutralise sodium hydrogen carbonate completely
d) Calculate the mass of sodium hydrogen carbonate dissolved in 1dm ³ of solution

•••				
DETERMINATION OF A MIXTURE OF S	ODIUM HY	'DROXIDE	AND SOD	IUM
DROGEN CARBONATE				
Requirements				
• 1 Burette (50cm ³), 2 conical flasks (250	· · · · ·	`		
is a mixture of sodium hydrogen carbonate ar	•			which is 0.
hydrochloric acid, methyl orange indicator, p	phenolphtha	lein indicato	r	
Procedure				
e) Pipette 25cm³ of A1 into a conical flask	add 3 drop	s of phenolp	hthalein in	dicator.
f) Titrate A1 with A2 until the indicator ju	-			
A	6-2		J = 20	
g) Without pouring away the solution in the	e flask, add i	3 drops of me	ethyl orang	ge indicato
continue with the titration with A2 until the		-		
Record your results in table B		J		<i>3</i>
•				
Results				
Results Volume of the pinette used			cm ³	
Volume of the pipette used			.cm ³	
			.cm ³	
Volume of the pipette used Table A Titration number	1	2	.cm ³	4
Volume of the pipette used Table A Titration number Final burette reading (cm³)				4
Volume of the pipette used Table A Titration number Final burette reading (cm³) Initial burette reading (cm³)				4
Volume of the pipette used Table A Titration number Final burette reading (cm³)				4
Volume of the pipette used Table A Titration number Final burette reading (cm³) Initial burette reading (cm³)				4
Table A Titration number Final burette reading (cm³) Initial burette reading (cm³) Volume of A2 used (cm³)	1	2	3	
Volume of the pipette used Table A Titration number Final burette reading (cm³) Initial burette reading (cm³)	1	2	3	
Table A Titration number Final burette reading (cm³) Initial burette reading (cm³) Volume of A2 used (cm³)	1	2	3	
Table A Titration number Final burette reading (cm³) Initial burette reading (cm³) Volume of A2 used (cm³) Titre values used to calculate average volume	e of A2	2	3	
Volume of the pipette used Table A Titration number Final burette reading (cm³) Initial burette reading (cm³) Volume of A2 used (cm³) Titre values used to calculate average volum Average volume of a A2	e of A2	2	3	
Volume of the pipette used Table A Titration number Final burette reading (cm³) Initial burette reading (cm³) Volume of A2 used (cm³) Titre values used to calculate average volum Average volume of a A2 (V1)	e of A2	2	3	
Volume of the pipette used Table A Titration number Final burette reading (cm³) Initial burette reading (cm³) Volume of A2 used (cm³) Titre values used to calculate average volum Average volume of a A2 (V1)	e of A2	2	3	
Volume of the pipette used	e of A2	2	3	
Volume of the pipette used	e of A2	2	3	
Volume of the pipette used	e of A2	2	3	
Volume of the pipette used	e of A2	2	3	
Table A Titration number Final burette reading (cm³) Initial burette reading (cm³) Volume of A2 used (cm³) Titre values used to calculate average volum Average volume of a A2 (V₁) Table B Titration number Final burette reading (cm³) Initial burette reading (cm³) Initial burette reading (cm³)	e of A2	2	3	
Table A Titration number Final burette reading (cm³) Initial burette reading (cm³) Volume of A2 used (cm³) Titre values used to calculate average volum Average volume of a A2 (V₁)	e of A2	2	3	

	ditional average volume of A2(V ₂)
a)	Write the equations of reactions corresponding to the indicators used
••••	
	Calculate the volume of A2 required to react with sodium hydroxide in A1
	Calculate the concentration of sodium hydroxide in gl ⁻¹ contained in A1
 d)	Calculate the volume of acid that reacted with sodium hydrogen carbonate in A1
e) 	Calculate the mass of sodium hydrogen carbonate dissolved in 1000cm ³ of solution

DETERMINATION OF RELATIVE	E MOLE	CULAR M	ASS OF	AN
RGANIC ACID				
Requirements				
• 1 burette (50cm³), conical flask (250cm molecular formula RCOOH, 50cm³ of 0.2M 0.1g, volumetric flask (250cm³), phenolphtha	sodium hy	droxide solu		_
Procedure				
 b) Transfer the solution to 250cm³ volumetr homogenous and make up to the mark. c) Pipette 25cm³ aliquot into the conical flast d) Titrate with standard 0.2M sodium hydrofaint pink, repeat with further 25cm³ volume 	sk, add 3 da xide until t	rops of pheno	olphthalein the solution	indicator n becomes
Results				
Results Mass of weighing bottle + acid RCOOH				
Mass of weighing bottle + acid RCOOH				
Mass of weighing bottle + acid RCOOH Mass of weighing bottle				
Mass of weighing bottle + acid RCOOH Mass of weighing bottle Mass of acid RCOOH Volume of pipette used Titration number				
Mass of weighing bottle + acid RCOOH Mass of weighing bottle Mass of acid RCOOH Volume of pipette used Titration number Final burette reading (cm³)				
Mass of weighing bottle + acid RCOOH Mass of weighing bottle Mass of acid RCOOH Volume of pipette used Titration number Final burette reading (cm³) Initial burette reading (cm³)				
Mass of weighing bottle + acid RCOOH Mass of weighing bottle Mass of acid RCOOH Volume of pipette used Titration number Final burette reading (cm³)				
Mass of weighing bottle + acid RCOOH Mass of weighing bottle Mass of acid RCOOH Volume of pipette used Titration number Final burette reading (cm³) Initial burette reading (cm³) Volume of sodium hydroxide used (cm³)	1	2	3	4
Mass of weighing bottle + acid RCOOH Mass of weighing bottle Mass of acid RCOOH Volume of pipette used Titration number Final burette reading (cm³) Initial burette reading (cm³) Volume of sodium hydroxide used	1	2	3	4
Mass of weighing bottle + acid RCOOH Mass of weighing bottle Mass of acid RCOOH Volume of pipette used Titration number Final burette reading (cm³) Initial burette reading (cm³) Volume of sodium hydroxide used (cm³)	1	2	3	4

۵)	White the counties for the spection
a)	Write the equation for the reaction
b)	Calculate the relative molecular mass of the acid, RCOOH
••••	
••••	
••••	
c)	Calculate the value of R in RCOOH
••••	
••••	
••••	

5.1 DETERMINATION OF WATER OF CRYSTALLISATION IN A HYDRATED COMPOUND

Requirements

1 burette (50cm³), 2 conical flasks (250cm³), pipette (25 0r 20cm³), volumetric flask (250cm³), phenolphthalein indicator, 2.0g of R which is an acid of formula H₂A.nH₂O where n is the number of molecules of water of crystallisation, 100cm³ of BA1 which is 0.1M sodium hydroxide solution, weighing balance sensitive to 0.1g

Procedure

- a) Weigh accurately 1.6g of X and transfer the solution to 250cm³ volumetric flask, dissolve in water shake well to ensure that the solution is homogenous and make up to the mark, label the solution BA2.
- b) Pipette 25cm³ BA1aliquot into the conical flask, add 3 drops of phenolphthalein indicator

c) Titrate with BA2 until the end-point. Rep	peat the titra	ation for cons	sistency		
Results					
Mass of weighing bottle + X		•••••			
Mass of weighing bottle					
Mass of acid X					
Volume of pipette used					
Titration number Final burette reading (cm ³) Initial burette reading (cm ³) Volume of BA2 (cm ³)	1	2	3	4	
Titre values used to calculate average volume	e	•••••			
Average volume of BA2					
a) Write the equation for the reaction					
				•••••	· • • • •
b) Calculate the molarity of BA2					
					· · · · · · ·
					· • • • • • • • • • • • • • • • • • • •
		•••••	•••••	•••••	
					•••••
					,
c) Determine the value of n (formula mass					
					•••••

			• • • • • • • • • • • • • • • • • • • •
	•••••		• • • • • • • • • • • • • • • • • • • •
	•••••		• • • • • • • • • • • • • • • • • • • •
	•••••	••••••	•••••
	•••••	•••••	•••••
		•••••	• • • • • • • • • • • • • • • • • • • •
	•••••	••••••	•••••
		••••	
ETERMINATION OF THE PERCENTAGE OF	AMMONIUN	1 CHLORID	E IN THE
JRE SAMPLE			
Requirements			
1 Burette (50cm ³), 2 conical flasks (250 cm ³), 25 cm ³), 100 cm ³ of 2M sodium hydroxide solution, purner, 1 weighing bottle, 1 weighing balance sensitive.	100cm ³ of 0.5	•	
Procedure			
Transfer it into 250cm³ conical flask. Add 100 nixture until ammonia has ceased to evolve (test w) Cool and transfer into 250cm³ volumetric flask and label it BA2 Pipette 25 or 20cm³ of this solution into a conicated using phenolphthalein indicator. Repeat the titreour values in the table below Results Mass of weighing bottle + sample	ith litmus paper, make the so	per) clution to the rate it with 0. a consistent r	mark with v
Titration number	1	2	3
Final burette reading (cm ³)			
Initial burette reading (cm ³)			
Volume of hydrochloric acid used			
(cm ³)			
Citre values used to calculate average volume Average volume of hydrochloric acid			

	Calculate the number of moles of excess sodium hydroxide solution
chlo	Calculate the number of moles of sodium hydroxide that reacted with ammonium ride solution.
c) 	Calculate the percentage of ammonia in ammonium chloride salt

5.3 DETERMINATION OF PERCENTAGE PURITY

Requirements

• 1 Burette (50cm³), 2 conical flasks (250 cm³), 1 volumetric flask (250 cm³), pipette (25 0r 25 cm³), 250 cm³ of BA2 which is 0.1M sodium hydroxide solution, 100cm³ of BA3 which is 0.05M sulphuric acid, 1 weighing bottle, 1 weighing balance sensitive to 0.1g, phenolphthalein indicator, 2.0g of solid BA1 which is an impure sample containing an organic compound R, heat source.

Procedure

a) Weigh accurately 1.0g of BA1 in a weighing bottle, transfer it into a conical flask. Add 200cm³ of BA2 and boil the mixture for 15 minutes

- b) Cool and transfer it into 250cm^3 volumetric flask and make the solution to the mark with BA2
- c) Pipette 50cm³ of the resultant solution into the conical flask. Titrate with BA3 using phenolphthalein indicator. Repeat the titration to obtain consistent titres and record in table below.

Res	sults				
Ma	ss of weighing bottle + BA1				
Ma	ss of weighing bottle				
Ma	ss of acid BA1				
Vo	lume of pipette used				
	Titration number	1	2	3	
	Final burette reading (cm ³) Initial burette reading (cm ³) Volume of BA3 used (cm ³)				
Ave	re values used to calculate average volume erage volume of BA3				••••
	Calculate; The number of moles of excess sodium hyd				
					••••
••••		•••••			••••
••••		•••••	•••••	•••••	••••
•••••		••••••	•••••	•••••	••••
 II)	The number of moles of sodium hydroxide	that reacted	with R		••••

.....

III) The mass of R that reacted with sodium hydroxide (mole ratio of R : NaOH = $1:2$ and RFM of R = 180)
IV) The percentage of R in BA1

6.0 PHYSICAL CHEMISTRY EXPERIMENTS

6.1 DETERMINATION OF MOLECULAR MASS BY FREEZING POINT DEPRESSION

Requirements

• 10.0g of naphthalene, 1.0g of camphor, thermometer sensitive to 0.1°C, weighing scale sensitive to 0.1g

Procedure

Results

- a) Weigh accurately 9.0g of naphthalene into a boiling tube
- b) Insert the thermometer in the tube in the beaker of boiling water; stir the naphthalene to ensure complete melting.
- c) Put off the flame; allow the boiling tube to cooling the beaker of water. When crystals start to appear, note the steady temperature, T_1
- d) Now weigh accurately 0.8g of camphor and put it into the boiling tube containing naphthalene and note the steady temperature, T_2 when crystals start to form
- e) Record your results in the below

Mass of naphthalene
Mass of camphor
Temperature, T ₁
Temperature, T ₂
$\Delta T = T_1$ - T_2
a) Calculate the molecular mass of camphor from first principles (the cryoscopic constant, K_f for 1g of naphthalene is 6.9°C per mole of the solute)

6.2 DETERMINATION OF SOLUBILITY PRODUCT CONSTANT

Requirements

• 1 burette (50cm³), 2 conical flasks (250cm³), 1pipette (25 or 20cm³), 150 0f BA1 which is 0.05M hydrochloric acid, 2g of sparingly soluble hydroxide, M(OH)₂ of molecular mass 74, phenolphthalein indicator.

.....

Procedure

- a) Put into the beaker or flask all the 2g of $M(OH)_2$ supplied and add $150cm^3$ of distilled water
- b) Stopper the flask and shake the mixture vigorously for 15 minutes and then filter using a dry filter paper.
- c) Pipette 25 or 20cm³ of the filtrate into the conical flask
- d) Titrate the solution with BA1 using phenolphthalein indicator. Repeat titration to ensure consistency. Report the results in the table below.

Volume of pipette used.....

Titration number	1	2	3
Final burette reading (cm ³)			
Initial burette reading (cm ³)			
Volume of BA1 used (cm ³)			

Titre values used to calculate average volume
Average volume of BA1
a) Calculate the concentration of M(OH) ₂ in gl ⁻¹
b) Calculate the solubility product of M(OH) ₂

	•	••••••	•••••	•••••
	• • • • • • • • • • • • • • • • • • • •	•••••••	••••••	•••••
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
		•••••	•••••	•••••
			•••••	•••••
	• • • • • • • • • • • • • • • • • • • •		•••••	•••••
			•••••	•••••
3 DETERMINATION OF SOLUBULITY PRO Requirements	ODUCT CON	NSTANT		
• 1 burette (50cm ³), 2 conical flasks (250cm ²). 1M sodium hydroxide solution, BA2 which hydroxide, phenolphthalein indicator.				
Procedure				
rrocedure				
d) Titrate the solution with BA2 using pher	olphthalein i	indicator. R	epeat the ti	tration
consistency and tabulate your results. Results				
consistency and tabulate your results. Results Volume of pipette used				
consistency and tabulate your results. Results Volume of pipette used				
Consistency and tabulate your results. Results Volume of pipette used				
Consistency and tabulate your results. Results Volume of pipette used				
Consistency and tabulate your results. Results Volume of pipette used				
Consistency and tabulate your results. Results Volume of pipette used	1	2	3	
Consistency and tabulate your results. Results Volume of pipette used	1	2	3	
Consistency and tabulate your results. Results Volume of pipette used	1	2	3	
Consistency and tabulate your results. Results Volume of pipette used	1	2	3	
Consistency and tabulate your results. Results Volume of pipette used	1	2	3	
Consistency and tabulate your results. Results Volume of pipette used	1	2	3	
Consistency and tabulate your results. Results Volume of pipette used	1	2	3	
Consistency and tabulate your results. Results Volume of pipette used	1	2	3	
Consistency and tabulate your results. Results Volume of pipette used	1	2	3	

MUDUKU IVAN (Bsci.ED, MUK)

c)	Calculate the concentration of Ca(OH) ₂ in gl ⁻¹
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
d)	Calculate the solubility product of Ca(OH) ₂
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	

6.4 DETERMINATION OF THE DISTRIBUTION CONSTANT $K_{\text{\scriptsize D}}$ OF BUTANEDIOC ACID BETWEEN WATER AND ETHER

Requirements

Titration apparatus, FA1 which is a solution containing 10g of butanedioc acid per litre, FA2 which is a solution containing 1.3g of hydroxide ions per litre, W which is ether immiscible with water.

Procedure

- a) Using separate cylinders transfer 40cm³ of FA1 and 40cm³ of W into a clean conical flask. Stopper the flask and shake vigorously for 5 minutes
- b) Repeat the procedure using other flasks with the volumes of 30cm³ of FA1 and 50cm³ of W, 50cm³ of FA1 and 30cm³ of W
- c) Leave the flasks to stand for after shaking for some time to allow the layers to separate out and note the temperature in each case
- d) Pipette 10cm³ of the lower aqueous layer and titrate it with FA2 using phenolphthalein indicator
- e) Pipette another 10cm³ of the upper layer (organic layer) and titrate it with FA2 using phenolphthalein indicator
- f) Repeat the procedure with the other remaining two flasks and tabulate your results

Results

Mixture	Temperature	Layer	Final	Initial	Volume of
			reading	reading	FA2 used
40cm ³ of FA1		lower			
and 40cm ³ of		upper			
W					
30cm ³ of FA1		lower			
and 50cm ³ of		upper			
W					
50cm ³ of FA1		lower			
and 30cm ³ of		upper			
W					

	Calculate the concentration of FA2 in mol dm
••••	
••••	
••••	
••••	
b)	Calculate the number of moles of butanedioc acid in the aqueous layer in mol dm ⁻³
••••	
••••	

••••	• • • • • • • • • • • • • • • • • • • •	
••••		
```		concentration of butanedioc acid in aqeueos layer
c)	The ratio,	concentration of butanedioc acid in the solvent layer
••••	••••••	
••••	•••••	
••••		
••••	••••••	
••••	•••••	
••••		
1\		1 14' 16 1
d)	Get the ratio for	or second and third flasks
••••		
••••	• • • • • • • • • • • • • • • • • • • •	
••••		
••••	• • • • • • • • • • • • • • • • • • • •	
••••	•••••	
•••••		
e)	Comment on y	our results
,	J	
••••	••••••	
••••	•••••	
••••		
••••	• • • • • • • • • • • • • • • • • • • •	
•••••	•••••	
••••		
••••		

# 7.0 REDOX TITRATIONS

The formal concept of oxidation number is useful in the balancing of the redox equations especially those containing oxo-anions

#### 1.1. Rules for finding the oxidation number

- I) Atoms of elements are given oxidation number zero. Oxygen has oxidation number of -2 except in peroxides where it is -1
- II) F, Cl, Br, I when present in halides have an oxidation number of -1
- III) Hydrogen always has the oxidation number of +1 except in ionic hydrides
- IV) Sodium and potassium have +1, Mg and Ca +2, Al +3
- V) In any compound, the sum of the oxidation number is zero
- VI) In a compound of metal and non-metal, the metal is given a positive oxidation number and non-metal given a negative oxidation number. In other cases, (I-IV) must be applied eg in SO₂, oxygen always has O.N of -2, therefore the total for oxygen is -4, sulphur is X

$$X - 4 = 0$$
$$X = 4$$

Therefore sulphur has +4

For MnO₄-, O.N for manganese can be calculated as below

$$X - 8 = -1$$
  
 $X = +7$ 

Therefore O.N for Mn = +7

Oxidation number is used in balancing of redox equations. This can be illustrated by the reduction of chlorate to chloride ion. In the  $\text{ClO}_3^-$ , chlorine has oxidation number of +5 whereas  $\text{Cl}^-$  has -1 thus electrons are required for the reduction of  $\text{ClO}_3^-$  to  $\text{Cl}^-$ 

In acid solution, the half equation is

$$ClO_{3(aq)} + 6e + 6H^{+}(\overline{aq)} \longrightarrow Cl^{-}(aq) + 3H_{2}O_{(1)}$$

In half equation, for the reduction of the oxo-anion in the acid solution, it is usually necessary to balance the charge on the two sides by adding  $H^+$  ion at one side and water molecule on the other side. In this case,  $6H^+$  ions on the left and  $3H_2O$  molecules on the right are necessary to ensure that the total charge and stoichiometry are both balanced.

As the equation of Fe²⁺ to Fe³⁺ releases only one electron

$$Fe^{2+}_{(aq)} \longrightarrow Fe^{3+}_{(aq)} + e$$

6 Fe²⁺ ions are necessary to reduce one ClO₃⁻ to Cl⁻. The complete redox equations obtained by adding six times the second equation and add to the first one.

$$ClO_3^-(aq) + 6Fe^{2+}(aq) + 6H^+(aq)$$
  $Cl^-(aq) + 3H_2O_{(1)} + 6Fe^{3+}(aq)$ 

Note. The electrons cancel out

Oxidation-reduction reaction includes reactions involving change in oxidation number or transfer of electrons among the reacting substances. The standard solutions are either reducing or oxidising agents.

# 7.1 Principle oxidising agents include

#### a) Potassium manganate (VII) titration

Potassium permanganate (VII) is a useful oxidising agent in acidic medium. On reduction, the purple colour of  $MnO_4^-$  in turned to colourless  $Mn^{2+}$  ions; as a result no indicator is needed.

Manganate (VII) is a strong oxidising agent, it is usually acidified with sulphuric acid

$$2MnO_{4^{-}(aq)} + 10Cl_{-}(aq) + 16Cl_{-}(aq) \longrightarrow 2Mn^{2+}(aq) + 5Cl_{2}(g) + 8H_{2}O_{(1)}$$

The manganate (VII) solution in acidic medium is used mainly in redox titration with

i. Iron (II) salts

$$MnO_{4~(aq)} + 5Fe^{2+}_{(aq)} + 8H^{+}_{(\overline{aq})} \longrightarrow 5Fe^{3+}_{(aq)} + Mn^{2+}_{(aq)} + 4H_{2}O_{(1)}$$

ii. Ethanedioate

$$5C_2O_4^{2^-}_{(aq)} + 2MnO_4^-_{(aq)} 16H^{\pm}_{(aq)} \longrightarrow 10CO_{2(g)} + 2Mn^{2^+}_{(aq)} + 4H_2O_{(1)}$$

iii. Hydrogen peroxide

### b) Dichromate (VI) titration

Dichromate is majorly used in the oxidation of iron (II) salts

$$Fe^{2+}_{(aq)}$$
  $\longrightarrow$   $Fe^{3+}_{(aq)} + e$ 

In acidic medium, potassium dichromate (VI) acts a powerful oxidising agent and it is normally acidified by hydrochloric acid. The half equation for oxidation is,

$$Cr_2O_7^{2-}(aq) + 14H^+(aq) 6e \longrightarrow 2Cr^{3+}(aq) + 7H_2O_{(1)}$$

$$Cr_2O_7^{2-}$$
_(aq) is orange,  $Cr^{3+}$ _(aq) is green,  $Cr_2O_4^{2-}$ _(aq) is yellow

The chromate (VI) ion in the presence of acid is converted to dichromate (VI) ions

$$2Cr_2O_4^{2-}(aq) + 2H^{+}(aq) \longrightarrow Cr_2O_7^{2-}(aq) + H_2O_{(aq)}$$

#### c) Iodine titration

The direct iodimetric titration, iodimetry refers to titration with standard solution of iodine. Iodine dissolves in potassium iodide solution to give intense yellow brown colour containing the  $I_3$  ion.

$$I_{2(aq)} + I_{(aq)} \longrightarrow I_{3(aq)}$$

The strength of the solution can be determined with standard solution of sodium thiosulphate penta hydrate, Na₂S₂O₃.5H₂O, the reaction is represented by the following equation

$$I_{2(aq)} \ + \ 2S_2O_3^{2\text{-}}{}_{(aq)} \ \ \longrightarrow \ \ 2I\text{-}{}_{(aq)} \ + \ S_4O^{2\text{-}}{}_{6(aq)}$$

The colour of the iodine is weakened as standard thiosulphate is added to it. Near the end-point when the solution has a pale straw colour, a little starch is added. A deep blue colour appears which is discharged at the end-point. When the standard thiosulphate ions are added to convert the last of iodine to iodide

The indirect iodometric titration, iodometry deals with the titration of iodine liberated in a chemical reaction. If a strong oxidising agent is treated with a large excess of iodide ions in a neutral or more usually acid solution, the iodide ion reacts with the reducing



agent and the oxidant will quantitatively be reduced. In such cases, an equivalent amount of iodine liberated and is then titrated with a standard solution of a reducing agent which is usually sodium thiosulphate e.g

Weakly acidic conditions are necessary in all these reactions, but too low PH causes the sodium thiosulphate,  $Na_2S_2O_3$  to decompose.

# 7.2 STANDARDISATION OF MANGANATE (VII) SOLUTIONS USING AQEUEOUS ETHANEDIOATE

# Requirements

Burette (50ml), pipette (10, 20, 25ml), 2 conical flasks (250ml), weighing scale sensitive to 0.1g, 100ml of FA1 which is a solution of potassium permanganate (VII), 1.7g of P which is sodium oxalate, weighing bottle, 1M sulphuric acid solution, 1 volumetric flask (250ml)

#### **Procedure**

- a) Weigh accurately 1.7g of sodium oxalate in a weighing bottle and dissolve in 100ml of distilled water
- b) Transfer it quantitatively into 250ml volumetric flask and make up to the mark with distilled water, shake well.
- c) Pipette 25ml of this solution into the clean conical flask and add equal volume of 1M sulphuric acid. Heat up to about 65°C as rapidly as possible. Titrate the hot mixture with manganate (VII) solution until the permanent faint pink colour is obtained
- d) Repeat the titration for consistency and tabulate your results.

# Results Mass of the weighing bottle + P..... Mass of the weighing bottle....

Mass of P.....

Volume of the pipette used.....

Titration number	1	2	3
Final burette reading (cm ³ )			
Initial burette reading (cm ³ )			
Volume of FA1 used (cm ³ )			

Titre values used to calculate average volume	
Average volume of BA1	

••••	
a)	Write the overall equation for the reaction
<b>h</b> )	
U)	Calculate the humber of moles of soulum oxalate used
c)	Calculate the number of moles of potassium permanganate (VII)
۹)	Calculate Molarity of notaccium permanganate (VII)
u <i>)</i>	Calculate Molarity of potassium permanganate (VII)



	<b></b>
e)	Calculate the mass of the permanganate dissolved in 1 litre of solution

### 7.3 DETERMINATION OF THE PROPORTION OF Fe²⁺ IN THE SALT

#### **Requirements**

Burette (50ml), pipette (10, 20, 25ml), 2 conical flasks (250ml), weighing scale sensitive to 0.1g, 150ml of 0.02M solution of potassium permanganate (VII), 12g of X which is ammonium iron (II) sulphate 12-water [NH₄Fe(SO₄)₂.12H₂O], zinc powder/granules, weighing bottle, 1M copper (II) sulphate solution, 1 volumetric flask (250ml),1M sulphuric acid

#### **Procedure**

- a) Weigh accurately 12g of ammonium iron (II) sulphate 12-water [NH₄Fe(SO₄)₂.12H₂O in a weighing bottle and dissolve in the 75ml of 1M sulphuric acid and transfer it quantitatively into 250ml volumetric flask and make to the mark with distilled water
- b) Pipette 25ml portions of the solution into three conical flasks, add equal volume of 1Msulphuric acid and 1ml of 1M copper (II) sulphate and then about 2g of zinc dust/granules. Wait for the solution to turn colourless or a very pale green
- c) Filter each solution of iron solution and rinse the remaining zinc adding the rinsing to the filtrate. Titrate each batch with standard permanganate solution until the permanent pale pink tinge is seen.



Moss of the w	voiching hottle   V						
	reighing bottle + X						
	reighing bottle						
Volume of the	olume of the pipette used						
Titrati	ion number	1	2	3			
Final b	ourette reading (cm ³ )						
	burette reading (cm ³ )						
	manganate (VII) used (cm ³ )						
m. i							
Titre values used	l to calculate average volume		•••••				
Average volume	of permanganate (VII)						
11, erage (eramic	01 p 1111111111111111111111111111111111						
••••••							
			•••••	••••••	•••••		
a) Write the ove	rall equation for the reaction						
	run equation for the reaction						
•••••							
•••••		••••••	•••••	•••••	•••••		
•••••				•••••	•••••		
			•••••	•••••	•••••		
					•••••		
b) Calculate the	number of moles of potassium p	oermanganat	e (VII) used				
••••••		••••••••	•••••	••••••	••••••		
••••••		•••••••	•••••	••••••	•••••		
•••••		••••••	•••••	•••••	•••••		
•••••		••••••	•••••	•••••	•••••		
				•••••	•••••		
					•••••		
					•••••		

c) Calculate the concentration of  $Fe^{2+}$  in moles per litre in X

	•••••	••••••	••••••	••••••
		•••••	••••••	•••••
	•••••	•••••	•••••	•••••
7.4 DETERMINATION OF WATER OF CRYS	STALLISATIO	N IN A HYD	RATED SA	ALT
Requirements				
Burette (50ml), pipette (10 or 20 or 25ml)	, 2 conical flask	as (250ml), wo	eighing sca	le sensitive
to 0.1g, BA1 which is a solution containing				
weighing bottle, 1 volumetric flask (250r		-	•	
salt[FeSO ₄ .nH ₂ O], X	,,	<b>r</b>	., . 8	<i>j</i>
3.1.1.1.2.2.3,4.1.				
Procedure				
a) Weigh accurately about 6.4g of the hy	vdrated salt and	transfer it in	to a 250ml	volumetric
flask, dissolve in 50ml of 1M sulphuri				
label it BA2	ic acid and mak	e it to the mai	K With this	med water,
	a alaam aaniaal	float and tite	anto it vyith	DA1 from
b) Pipette 25ml or 20ml of BA2 into the				DAI HOIII
the burette. Repeat the titration for co	insistency and t	abulate your	resuits	
Results				
Mass of the weighing bottle + X	•••••	•••••	•••	
Mass of the weighing bottle				
Mass of X				
Volume of the pipette used		•••••	•••	
Titration number	1	2	3	
Final burette reading (cm ³ )	-			
Initial burette reading (cm ³ )				
Volume of BA1 used (cm ³ )				
	I			
Titre values used to calculate average volum	ne			•
1 CD 11				
Average volume of BA1				
			•••••	•••••
			•••••	

a)	Write the overall equation for the reaction
	<b></b>
b)	Calculate the molarity of BA1 used
- \	
c)	Calculate the concentration of BA2 used in moles per litre
d)	Calculate the relative formula mass of the hydrated salt (Fe = $56$ , O = $16$ , H = $1$ )
u)	Calculate the relative formula mass of the flydrated saft ( $Fe = 50$ , $O = 10$ , $H = 1$ )



e)	Determine the value of n in the salt, FeSO ₄ .nH ₂ O
	••••
7.5 D	Requirements  Burette (50ml), pipette (10 or 20 or 25ml), 2 conical flasks (250ml), weighing scale sensitive to 0.1g, FA1 which is a solution containing 2.41g of potassium permanganate (VII) per litre, FA3 which is a solution containing 2.5g of Fe ²⁺ in 250ml ,M which is a metal weighing bottle, 1 volumetric flask (250ml)  You are required to determine the stiochiometry of the reaction between Fe ²⁺ and metal M
	Procedure
	a) Weigh accurately about 0.2g of M and transfer the whole mass into a conical flask, add
	100ml of FA3 and boil gently until the whole of M is dissolved, cool and label FA4
	b) Pipette 25ml of FA4 into a conical flask and add 25ml of dilute sulphuric acid. Titrate
	the resulting solution with FA1 and tabulate results
	Results
	Mass of the weighing bottle + M
	Mass of the weighing bottle
	Mass of M



Volume of the pipette used.....

Titration number	1	2	3
Final burette reading (cm ³ )			
Initial burette reading (cm ³ )			
Volume of FA1 used (cm ³ )			

11	tre values used to calculate average volume
A	verage volume of FA1
•••	
•••	
•••	
•••	
a)	Write the overall equation for the reaction
	••••
b)	Calculate the molarity of FA1 used
c)	Calculate the number of moles of Fe ²⁺ ions that was produced when M reacts with
	FA3concentration of BA2 used in moles per litre



d)	Calculate the number of moles of M used
	(M=128)
e)	Determine the stoichiometry of the reaction between M and Fe ²⁺ ions

# 7.6 STANDARDISATION OF HYDROGEN PEROXIDE BY POTASSIUM PERMANGANATE (VII)

# Requirements

Burette (50ml), pipette (10 or 20 or 25ml), 2 conical flasks (250ml), BA1 which is a solution containing 2.41g of  $MnO_4$  per litre, BA2 which is a solution of hydrogen peroxide, 50ml of 2M sulphuric acid

# **Procedure**

a) Pipette 10ml of BA2 into a clean conical flask, add 10ml of 2M sulphuric acid and titrate the mixture with BA1. Repeat the titration for consistency and tabulate the results

# **Results**

Volume of the pipette used.....

Titration number	1	2	3
Final burette reading (cm ³ )			
Initial burette reading (cm ³ )			
Volume of BA1 used (cm ³ )			

Ti	tre values used to calculate average volume
В	verage volume of A1
a)	Write the all equations for the reactions and overall equation
b)	Calculate the concentration of BA2 in mol dm ⁻³



)	Calculate the concentration of BA2 in grams per litre

#### 7.7 ANALYSIS OF HYDROGEN PEROXIDE

Hydrogen peroxide is usually encountered in aqueous solution and frequently referred to as 20-volume, 40-volume and 100-volume hydrogen peroxide. These volumes contain 6%, 12%, 30% of hydrogen peroxide respectively. The term volume is based up on the volume of oxygen liberated on decomposition of the peroxide. Thus 1cm³ of 100-volume hydrogen peroxide will yield 100cm³ of oxygen measures at s.t.p.

The following reaction occurs when potassium permanganate (VII) is added to hydrogen peroxide solution acidified with dilute sulphuric acid

$$2MnO_4^-{}_{(aq)} \ + \ 5H_2O_{(aq)} \ + \ 6H^+{}_{(aq)} \quad \longrightarrow \quad 2Mn^{2+}{}_{(aq)} \ + \ 5O_{2(g)} \ + \ 8H_2O_{(l)}$$

It is reasonably good to fairly use high concentration of acid and low rate of addition in order to reduce the danger of forming manganese dioxide which is an active catalyst for decomposition of hydrogen peroxide

# Requirements

Burette (50ml), pipette (10 or 20 or 25ml), 2 conical flasks (250ml), solution of hydrogen peroxide, BA1 which is 0.02M potassium permanganate (VII) solution, 150ml of 1M sulphuric acid

#### **Procedure**

#### Results

- a) Transfer carefully 25ml of hydrogen peroxide solution into 250ml volumetric flask, dilute to the mark with water, shake thoroughly
- b) Pipette 25ml of this solution into the clean conical flask, dilute with 10ml of distilled water, and then add 10ml of 1M sulphuric acid. Titrate the resultant mixture with



standard 0.02M potassium permanganate (VII) to the first permanent faint pink colour. Repeat the titration for consistency and tabulate the titres

Volume of the pipette used.....

Titration number	1	2	3
Final burette reading (cm ³ )			
Initial burette reading (cm ³ )			
Volume of BA1 used (cm ³ )			

Ti	tre values used to calculate average volume
	verage volume of
•••	
•••	
a)	Write the all equations for the reactions and overall equation
b)	Calculate the weight of hydrogen peroxide per litre of the original solution

				••••••
		• • • • • • • • • • • • • • • • • • • •		
	•••••	•••••	••••••	•••••
	•••••			•••••
				•••••
			••••••	•••••
····				
8 DETERMINATION OF THE COMPOSITION ND SODIUM ETHANEDIOATE	OF A MIX	ΓURE OF E	THANEI	DIOIC ACI
Requirements				
Requirements				
mixture,150ml of 0.02M potassium permar hydroxide (BA1), weighing balance sensitiv	_	solution, 1	SOMI OI (	J. IM SOUIL
Procedure				
a) Pipette 25ml of the solution mixture into phenolphthalein indicator. Titrate with 0.1M				-
phonorphinalem materials. Thrace with 0.11	A sodium hy	dioxide soit	ition unti	l the soluti
just turns pink	•		ition unti	l the solution
	•		uion unu	l the solution
just turns pink b) Repeat the titration to get consistent values,	•		ition unti	l the solution
just turns pink b) Repeat the titration to get consistent values,  Results	tabulate the	results.		l the solution
just turns pink b) Repeat the titration to get consistent values,  Results Volume of the pipette used	tabulate the	results.		l the solution
just turns pink b) Repeat the titration to get consistent values,  Results Volume of the pipette used	tabulate the	results.		l the solution
just turns pink b) Repeat the titration to get consistent values,  Results Volume of the pipette used	tabulate the	results.		l the solution

Pipette another 25ml portion of the solution into a conical flask, add an equal volume of 2M sulphuric acid, heat the solution to about 57°C and immediately titrate with 0.02M c)



potassium permanganate (VII), the end-point is reached when the pink coloration that persist is obtained. Repeat the titration for consistency and tabulate the results

# **Results**

Volume of the pipette used.....

Titration number	1	2	3
Final burette reading (cm ³ )			
Initial burette reading (cm ³ )			
Volume of MnO ₄ used (cm ³ )			

	tre values used to calculate average volume
••••	
••••	
••••	
 a)	Calculate the molarity of ethanedioic acid in the mixture
• • • • •	
• • • • •	
••••	
••••	
b)	Calculate the molarity of sodium ethanedioate

C)	Calculate the concentration of ethanedioic acid in grams per litre in the original mixture
d)	Calculate the concentration of sodium ethanedioate in grams per litre in the original mixture
e)	Calculate the percentage of ethanedioic acid in the original mixture

f) Calculate the percentage of sodium ethanedioate in the original mixture



7 9 57	FANDARDISATION OF SODIUM THIOSULPHATE
7.70	Requirements
	• Burette (50ml), pipette (10 or 20 or 25ml), 2 conical flasks (250ml), M which is 1.5g
	of potassium dichromate (VI), sodium thiosulphate (Na ₂ S ₂ O ₃ .5H ₂ O), weighing
	balance sensitive to 0.1g, starch indicator, 1M HCl
	Procedure
a)	Weigh out accurately 1.2g of potassium dichromate (VI) salt and dissolve it in the minimum
	quantity of distilled water in volumetric flask (250ml), make to the mark.
b)	Pipette 25ml of this solution and add 25ml 1M HCl then 10ml of 10% solution of KI. Titrate
	the liberated I ₂ with sodium thiosulphate solution with constant shaking, when the colour of
	the liquid becomes pale yellow, add 2ml of starch solution and continue the titration until
	the colour of the solution changes from blue to green. Repeat the titration to obtain consistent
	results and tabulate results.
	Results
	Mass of the weighing bottle + M
	Mass of the weighing bottle
	Mass of M
	Volume of the pipette used
	г г

Titration number	1	2	3
Final burette reading (cm ³ )			
Initial burette reading (cm ³ )			
Volume of thiosulphate used (cm ³ )			

Titre values used to calculate average volume.....



Average volume of thiosulphate		
a)	Write the equation for the reaction that leads to liberation of iodine	
h)		
0)	calculate the molarity of potassium dicinomate (*1)	
c)	Calculate the number of moles of iodine liberated by potassium dichromate (VI)	
d)	Calculate the concentration of sodium thiosulphate in mol dm ⁻³	



7.	.10 STANDARDISATION OF SODIU	M THIOSU	ILPHATE S	OLUTION		
	Requirements			02011011		
•	Burette (50ml), pipette (10 or 20 or potassium iodate, BA1 which is 0.1M starch indicator, 1M sulphuric acid					•
	Procedure					
	c) Weigh out accurately 1.0g of potas flask (250ml), make to the mark.	ssium iodate	e and dissolv	e it in distill	ed water ir	n volumetric
	d) Pipette 25ml of this solution and sulphuric acid. Titrate the libera shaking, when the colour of the li continue the titration until the colo the titration to obtain consistent re-	ted $I_2$ with quid become our of the so	sodium thes pale yelled	iosulphate s ow, add 2ml ges from blu	solution was	ith constant solution and
	Results  Mass of the weighing bottle + 7					
	Mass of the weighing bottle + Z  Mass of the weighing bottle					
	Mass of Z					
	Volume of the pipette used					
			T	T		
	Titration number		1	2	3	
	Final burette reading (cm ³ )					
	Initial burette reading (cm					
	Volume of thiosulphate us	sed (cm²)				
	Titre values used to calculate average  Average volume of thiosulphate	e volume				
		••••••	•••••	•••••	•••••	••••••
		••••••••••	••••••	••••••	•••••••	•••••••••••
			•••••		••••••	
		••••••••	•••••	•••••	••••••	••••••••••••
	a) Write the equation for the reaction	n that leads	to liberation	of iodine		
			•••••	•••••	•••••	

	<b></b>
b)	Calculate the molarity of potassium iodate ( $I = 127, K = 39, O = 16$ )
c)	Calculate the number of moles of iodine
d)	Calculate the concentration of sodium thiosulphate in mol dm ⁻³

# 7.11 DETERMINATION OF COPPER IN CRYSTALLISED COPPER

Requirements



• Burette (50ml), pipette (10 or 20 or 25ml), 2 conical flasks (250ml), Y which copper (II) sulphate crystals, BA1 which is 0.1M sodium thiosulphate, weighing balance sensitive to 0.1g, starch indicator, ethanoic acid solution, sodium carbonate solution

#### **Procedure**

- a) Weigh out accurately 6.0g of copper (II) sulphate and place in volumetric flask (250ml), add 100ml of distilled water to dissolve followed by sodium carbonate solution until the slight ppt forms and dilute ethanoic acid drop wise until the ppt just dissolves. Top up the copper (II) sulphate solution to the mark with distilled water, shake the mixture
- b) Pipette 25ml of this solution and add 10ml of 10% solution of KI. Titrate the liberated I₂ with standard 0.1M sodium thiosulphate solution with constant shaking until the brown colour of iodine fades, then add 2ml of starch solution and continue the titration until the colour of the solution changes from blue to colourless. Repeat the titration to obtain consistent results and tabulate results.

Results		
Mass of the weighing bottle + Y		 
Mass of the weighing bottle		 
Mass of Y		 
Volume of the pipette used		 ••••
T'44'	1	

Titration number	1	2	3
Final burette reading (cm ³ )			
Initial burette reading (cm ³ )			
Volume of thiosulphate used (cm ³ )			

Titre values used to calculate average volume
Average volume of thiosulphate
Copper (II) sulphate reacts with potassium iodide according to the following equation $CuSO_{4(aq)} + 4KI_{(aq)} \longrightarrow 2CuI_{(s)} + I_{2(aq)} + 2K_2SO_{4(aq)}$
a) Calculate the amount of copper in the crystallised copper sulphate

b)	Calculate the percentage of copper in the crystallised copper (II) sulphate

# 7.12 DETERMINATION OF AVAILABLE CHLORINE IN HYPOCHLORITES (COMMERCIAL BLEACHING POWDER)

Commercial bleaching powder essentially contains a mixture of calcium hypochlorite, Ca(OCl)₂ and basic chloride, CaCl₂.Ca(OH)₂.N₂O and some free slaked lime is usually present. The active constituent is the hypochlorite which is responsible for the bleaching action. The available chlorine refers to the chlorine liberated by action of dilute acids on hypochlorite and is expressed as a percentage in the case of bleaching powder.

$$OC1^{\text{-}}_{(aq)} + C1^{\text{-}}_{(aq)} \ + \ 2H^{\text{+}}_{(aq)} \ \longrightarrow \quad Cl_{2(g)} \ + \ H_2O_{(l)}$$

### Requirements

• Burette (50ml), pipette (10 or 20 or 25ml), 2 conical flasks (250ml), 10% KI, BA1 which is 0.1M sodium thiosulphate, weighing balance sensitive to 0.1g, starch indicator, Glacial ethanoic acid solution, bleaching powder(M)

#### **Procedure**

a) Weigh accurately 2.5g of bleaching powder into a clean mortar, add a little of water and grind the mixture to a smooth paste, add a little of more water and pour the milky liquid into a 250ml volumetric flask. Grind the residue with little more water and repeat the process until the whole sample has been transferred to the flask, either in form of solution or state of very fine suspension and the mortar washed quite clean. The flask is then filled to the mark with distilled water and properly shaken



b) Pipette 25ml of the liquid in the conical flask and immediately add 20ml of 10% KI solution followed by 10ml of glacial ethanoic acid. Titrate the liberated iodine with standard solution of thiosulphate solution with constant shaking .when the colour of the liquid becomes pale yellow, add 2ml of starch solution, and continue titration until the colour of solution turns from blue to colourless. Repeat the titration to obtain consistent results and tabulate them. Equations of reaction are,

Results				
Mass of the weighing bottle + M				
Mass of the weighing bottle				
Mass of M				
Volume of the pipette used				
Titration number	1	2	3	
Final burette reading (cm ³ )				
Initial burette reading (cm ³ )				
Volume of thiosulphate used (cm ³ )				
Titre values used to calculate average voluments	me			
_		•••••	•••••	•••••
Average volume of thiosulphate				
	•••••	•••••	•••••	••••••
	•••••	•••••	•••••	•••••
	•••••	•••••	••••••	•••••
	•••••	•••••	•••••	•••••
a) Determine the number of moles of iodi	ne liberated			
				•••••
				•••••
	•••••		•••••	•••••
		•••••		
b) Calculate the number of moles of OCl-	dissolved in 1	litre in bleach	ning pow	der
,			<i>O</i> F - · · ·	

	c) The mass of Ca(OH) ₂ in the sample of bleaching powder
	c) The mass of ea(off) ₂ in the sample of bleaching powder
7.13 E	DETERMINATION OF SODIUM CHLORATE (I) CONTENT IN JIK
	quirements
	rette (50ml), pipette (10 or 20 or 25ml), 2 conical flasks (250ml), BA2 which is 10% KI
	ution, BA3 which is 0.1M sodium thiosulphate, BA1 which is JIK, BA4 which is 2M
sul	phuric acid, starch indicator.
Proced	lure
a)	Transfer 15ml of BA1 into 250ml volumetric flask, add distilled water to the mark. Transfer
/	25ml of this solution into a clean conical flask, add 10ml of BA4 solution. Titrate the
	liberated iodine with BA3 using starch indicator up to near end-point. Repeat the titration
	for consistency and tabulate your results
Τ.	<b></b>
Re	sults
	Volume of the pipette used



Titration number	1	2	3
Final burette reading (cm ³ )			
Initial burette reading (cm ³ )			
Volume of thiosulphate used (cm ³ )			

	Titre values used to calculate average volume
	Average volume of thiosulphate
a)	Determine the number of moles of iodine liberated
b)	Calculate the number of moles of OCl ⁻ dissolved in 1 litre in the original BA1 solution
۵)	The concentration of NeOCl in the original DA1 in al-1
C)	The concentration of NaOCl in the original BA1 in gl ⁻¹



		•••••	•••••		•••••
		•••••	• • • • • • • • • • • • • • • • • • • •		•••••
		•••••	•••••		•••••
		•••••	•••••		•••••
		•••••	•••••		•••••
			• • • • • • • • • • • • • • • • • • • •		•••••
			•••••		
			•••••		
			••••		
	TERMINATION OF RELATIVE ATOMIC pirements	C MASS OF	X IN THE X	(O-ANIC	)N
sodiu 2.69g	tte (50ml), pipette (10 or 20 or 25ml), 2 community in thiosulphate, 1M HCl, starch indicator, so as in 1 litre tion of reaction is, $XO_{(aq)}^{-} + 6I_{(aq)}^{-} + 6H_{(aq)}^{+} - \cdots$	olution os po	otassium ioda	te made t	
Procedu	re				
				_	
	ipette 25ml of the iodate solution into a clea	n conical fla	isk, add equal	volume (	of dilute HC
	cid then add 10% KI solution.				
	itrate the iodine liberated with sodium thios	-			
	haking, when the colour of the mixture bec	-	-		
a	nd continue titration until the colour turns f	rom blue to	colourless. R	epeat the	titration fo
c	onsistency and record the titres in the table	below.			
F	Results				
V	olume of the pipette used				
	T'44'	1	1 2	2	
	Titration number	1	2	3	
	Final burette reading (cm ³ )				
	Initial burette reading (cm ³ )				
	Volume of thiosulphate used (cm ³ )				
77					
	itre values used to calculate average volume	e	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
A	verage volume of thiosulphate				
••		•••••			•••••
		•••••	•••••		•••••
			•••••		



Calculate the concentration of the iodate, XO ₃ ⁻ in moles per litre
Calculate the molar mass of iodate, XO ₃
Determine the relative atomic mass of X

# 8.0 QUALITATIVE ANALYSIS PRACTICALS (INORGANIC PRACTICALS)

Safety is the most important aspect for students of chemistry in the laboratory; therefore students should take caution and responsibility. Students should revise all rules and regulations of the laboratory (O level chemistry) before performing practical.

Qualitative analysis requires a student to carry out a number of sample tests on one or more substances mixed the observation a recorded from which deduction about the substance is made. The common apparatus used in this case include,

• Test tube rack, test tubes, boiling tubes, spatula, Bunsen burner, test tube holder, glass rod, filter paper, filter funnel, wash bottle, a set of reagent bottles

Students at this level are required to make use of preliminary test and few specific tests. They are expected to know the reactions of the following ions and therefore are able to identify them

#### ANIONS

Carbonate (CO₃²-), chloride (Cl⁻), bromide (Br⁻), chlorite (ClO⁻), thiosulphate (S₂O₃²-), iodide (I⁻), nitrate (NO₃⁻), sulphate (SO₄²-), sulphite (SO₃²-), oxalate (C₂O₄²-), chromate (CrO₄²-), dichromate (Cr₂O₇²-), hydrogen carbonate (HCO₃-), manganate (MnO₄-), ethanoate (CH₃COO⁻), phosphate (PO₄³-)

### • CATIONS

Aluminium (Al³⁺), ammonium (NH₄⁺), calcium (Ca²⁺), iron (II) (Fe²⁺), iron (III) (Fe³⁺), lead (Pb²⁺), zinc (Zn²⁺), Copper (Cu²⁺), Nickel (Ni²⁺), Magnessium (Mg²⁺), chromium (Cr³⁺), vanadium (V⁵⁺), cobalt (Co²⁺), manganese (Mn²⁺), barium (Ba²⁺)

# 8.1 QUANTITIES OF SUBSTANCES FOE TESTS

### a) Volumes of liquids

Volumes of liquids may be measured accurately using the following apparatus

- i. Measuring cylinders (100, 50,25, 10, 5cm³)
- ii. Beakers (500, 250, 150, 100cm³)
- iii. Teat pipettes etc

Accurate volumes are rare in qualitative analysis but if required a measuring cylinder is used. Place the cylinder on the flat bench and pour the liquid. Care should be taken when approaching the specified quantity, put your eyes on the same level with the meniscus of the liquid. Take the reading from the bottom of the meniscus except for mercury. Volume of liquids can also be estimated if it is small less 10ml, using a test tube of 1cm diameter. The volume of liquid can be done drop wise, a teat pipette works for this case, though reagent bottles can also be used. Hold the test tube containing the test substance in left hand, using your right hand, get the reagent bottle and tip off the liquid from the reagent bottle in small bits. Make sure the level on the bottle is against your palm. This is to avoid damage to the label by some run-off from the bottle. Shake the test tube; take observations as the number of drops increase. Add more of the liquid until it is five times as the original volume (then you have added in excess)

### b) Making solutions

### i. Dissolving in water.

At this level, water and dilute acids will be used as solvents, normally you are provided with unknown substances in a solid form and you are required to make an aqueous solution of it before you carry out any tests. Put a spatula end-full of the solid into a test tube and about 5ml of water and shake vigorously, if it does not dissolve easily warm gently. Note whether it dissolves completely or partially, if it dissolves completely note the colour of the solution. If it is partially soluble, filter and note the colour of both filtrate and residue, Heat change is sometimes observed and recorded. Usually, dissolving of solids in water does not evolve gases.

# ii. Dissolving in acids

Put a spatula end-full of the solid in the test tube. Add cold dilute acid (0.5ml) to start with, the acid is usually dilute nitric acid, however sometimes dilute or concentrated hydrochloric acid is used instead. If there is effervescence, try to smell the gas if any, use litmus paper and other tests like glowing splint and lime water. While you are getting ready, put your thumb across the mouth of the test tube. Add more and slowly in as the instruction require, note the colours, gases, heat changes and record them. You should be able to make up this solution correctly as required for it is the stock you will use for experiments.

# iii. To acidify

This is to add a little of the acid to the liquid, there is visible reaction normally with concentrated acids, be careful and use a dropper always if possible. If asked to divide the solution into parts or several portions. The portions should be 1-2cm³ and leave some of the solution for emergency.

#### c) weighing

Accurate weighing is not quite necessary; the mass of the solid can be estimated using a spatula. For example small tip of the spatula (0.1g), spatula end full (0.5g), a heaped spatula head (1.0g)

#### 8.2 PRELIMINARY TESTS

# a) Appearance of substances

Note the colour of the solid and its aqueous solution whether asked for or not. Colour can be a good guide to what metallic ions may be present because most compounds of the particular metallic ion have the same general colour in solution. But never identify the compound on the basis of colour alone. The colour of the solids can be very deceptive at times e.g anhydrous copper (II) oxalate is a yellow powder.

#### Note

- i. If the compound is white and its solution in water is colourless, this indicates that the transition metal ions are probably absent. The most likely metallic ions are present are Ca²⁺, Mg²⁺, Ba²⁺, Al³⁺, Pb²⁺, Zn²⁺, NH₄⁺, Sn²⁺.NH₄⁺ has a smell of ammonia.
- ii. If the compound is black solid or powder, it is probably oxide or sulphide of carbon



iii. If the solid compound and its solution is coloured, this indicates that the transition metal ion is probably present. These include

Cu²⁺ (blue), Fe²⁺ (green), F³⁺ (brown), Ni²⁺ (green), Co²⁺ (pink), Cr³⁺ (green), Cr⁶⁺ (yellow/orange), Mn²⁺(very pale pink, not visible in solution), Mn⁷⁺ (very dark purple, pink in dilute acid)

#### b) Flame test.

These tests are rarely asked for your examination, the flame test rod must be thoroughly cleaned with concentrated hydrochloric acid .chlorides are preferred because they are volatile than other salts, drops of the solution are heated in the flame and then colour of the flame observed. Flame tests are common in organic chemistry practical.

### c) Action of heat on solids

Heating a solid may result into decomposition of the compound. This may result into formation of the sublimate and evolution of gases or formation of the residue which is left behind. If the solid sublimes then it is possibly covalent compound like NH₄⁺

#### i.Residue

The residue is usually the oxide of the metal, the colour of the oxide gives a clue about the metal as below

Observations	Deductions
Yellow when hot and white when cold	Zinc oxide, ZnO
Brown when hot and yellow when cold	Lead oxide, PbO
Black when hot and brown when cold	Iron (III) oxide, F ₂ O ₃
Green	Chromium (III) oxide,
	Cr ₂ O ₃
Black	MnO, CuO, FeO, NiO
White	MgO, Al ₂ O ₃

# ii. Gases

Observations	Deductions		
Water vapour	Hydrated salt present		
$CO_2$	CO ₃ ²⁻ , C ₂ O ₄ ²⁻ , HCO ₃ ⁻ probably present		
NO ₂ and O ₂	NO ₃ other than those of Na ⁺ , K ⁺ , NH ₄ ⁺		
$SO_2$	$SO_4^{2-}, S_2O_3^{2-}$		
NH ₃ /sublimate	NH ₄ ⁺		
HCl gas	Certain hydrated chlorides except those of		
	group 1		
Cl ₂ gas	Unstable chlorides eg CoCl ₂ , CuCl ₂ present		
SO ₃	Sulphite apart from those of gp 1,Ca ²⁺ , Ba ²⁺		

### d) Reactions of cations

These cations are categorised into coloured and non-coloured. They are identified by use of sodium hydroxide and ammonium solutions. The reactions involve precipitation of the insoluble metal hydroxides, certain hydroxides dissolve in excess alkali due to formation of soluble complexes.

### Reactions of cations with sodium hydroxide solution

Reagent	Observation	Deduction	
	White ppt insoluble in excess	Mg ²⁺ , Ca ^{2+,} Ba ²⁺ probably present	
Addition of 2M	White ppt soluble in excess	Al ³⁺ , Zn ²⁺ , Pb ²⁺ probably present	
NaOH solution	Solution remains colourless with	Gas is NH ₃	
drop wise until	evolution of a colourless chocking	White dense fumes is NH ₄ Cl	
excess	smell gas, gas turns moist red	Therefore NH ₄ ⁺ probably present	
	litmus paper blue and forms dense		
	white fumes with conc. HCl		
	White ppt which rapidly turns	Mn ²⁺ probably present	
	brown		
**		Cu ²⁺ probably present	
	Blue ppt insoluble in excess, turns	Co ²⁺ probably present	
	pink and brown on standing		
	Green ppt insoluble in excess	Ni ²⁺ . Cu ⁺ probably present	
	Green ppt insoluble in excess, turns	Fe ³⁺ probably present	
	brown on standing		
	Green ppt soluble in excess	Cr ³⁺ present	
	Brown ppt insoluble in excess	Fe ³⁺ probably present	

### Reactions of cations with ammonia solution

Reagent	Observations	Deductions
	White ppt insoluble in excess	Al ³⁺ , Pb ²⁺ probably
		present
add 2m	White ppt soluble in excess	$Zn^{2+}$ present, $[Zn(OH)_4]^{2-}$
ammonia		formed
solution	White ppt insoluble in excess, though because	Mg ²⁺ probably present
drop wise	of the weak basic character of ammonia, the	
unil excess	ppt may not show	
	Blue ppt soluble in excess forming a deep	Cu ²⁺ , Co ²⁺ probably
	blue solution	present
	White ppt which rapidly turns brown	Mn ²⁺ probably present
	Green ppt soluble in excess	Cr ³⁺ , Ni ²⁺ probably
	Note. Light blue solution is formed for Ni ²⁺	present
	Green ppt insoluble in excess	Fe ²⁺ probably present
	Brown ppt insoluble in excess	Fe ³⁺ probably present

## 8.3 CONFIRMATORY TESTS FOR CATIONS

TEST	OBSERVATION	DEDUCTION
1. To the solution, add aqueous	Pink colouration formed	Al ³⁺ confirmed
ammonia drop wise until the solution		present
is alkaline, then 2 drops of alizarin		
solution		
2. To the aqueous solution of the	Yellow or brown ppt	$\mathrm{NH_4}^+$
unknown, add few drops of	or solution is formed	confirmed
mercury (II) chloride solution		present
followed by potassium iodide		
solution until the red ppt of		
mercury (II) iodide just dissolves		
due to formation of the complex,		
now add NaOH until excess		
3. To the solution of the unknown,	Yellow solution	Cr ³⁺ confimed
add dilute NaOH until the	which turns into a	present
solution is alkaline and then H ₂ O ₂	yellow ppt on	
solution to the mixture followed	addition of lead (II)	
by lead (II) ethanoate	ethanoate	2:
4. To the unknown solution, add 3	Blue solution	Co ²⁺
drops of fairly conc. Potassium or	formed	confirmed
ammonium thiocynate solution	N7 11 (11)	present
<b>OR.</b> Add ethanoic acid to the	Yellow crystalline	
unknown until the solution is acidic,	ppt formed	
then add 3 drops of KNO ₃ solution		
and shake	D 4: 6 1	
5. Add 3 drops of aqueous	Brown ppt is formed	$Cu^{2+}$
potassium hexacynaferare (II) to the solution of un known	Brown colour and an	confirmed
<b>OR.</b> To the solution of the un known	off white ppt	
add few drops of potassium iodide	on white ppt	present
6. To the solution of the un known,	A violet (purple)	Mn ²⁺
add drops of conc. Nitric acid	A violet (purple) colouration formed	confirmed
followed by a small quantity of	colouration formed	present
solid sodium bismuthate and boil		present
7. To the solution of the un known,	White crystalline ppt	$\mathrm{Mg}^{2+}$
add solid NH ₄ Cl followed by 3-4	insoluble in excess	confirmed
drops of di-sodium	ammonia	present
monohydrogen phosphate, then	ammoma	present
add aqueous ammonia until		
excess		
8. To the solution of the un known,	White ppt soluble in	Zn ²⁺ confirmed
add solid NH ₄ Cl followed by 3-4	excess ammonia	present
drops of di-sodium		Prosont
monohydrogen monophosphate,		
then aqueous ammonia until		
excess		
	<del>                                     </del>	21
9. Add aqueous ammonia to the	A red ppt is formed	Ni ²⁺ confirmed

is alkaline, add 3 drops of dimethylglycoxime		
10. Add potassium iodide solution drop wise to the u known	Yellow ppt is formed	PbI ₂ formed Pb ²⁺ confirmed
OR. add 2-3drops of aqueous potassium chromate to the un known OR. add 3-4 drops of dilute HCl or aqueous NaCl to the un known and heat	Yellow ppt is formed  White ppt soluble on warming and	present PbCrO ₄ formed Pb ²⁺ confirmed present PbCl ₂ formed Pb ²⁺ confirmed present
11. Add potassium hexacynoferate	reappears on cooling  Dark blue ppt is	
(III) solution to the un known <b>OR.</b> add conc. Nitric acid to the	formed	Fe ²⁺ confirmed
solution of un known and boil the mixture	Yellow or brown solution with evolution of a brown gas (NO ₂ )	present
12. Add potassium hexacynoferate (II) solution to the un known	Dark blue ppt formed	Fe ³⁺ confirmed
<b>OR</b> . add 2-3 drops of potassium thiocynate solution to the solution of the un known	Red colour observed	present
13. Add 3-4 drops of sulphuric acid or sodium sulphate solution to the un known	White ppt formed	BaSO ₄ formed Ba ²⁺ confirmed present
OR. add 2-3 drops of aqueous potassium chromate followed by ethanoic acid	Yellow ppt insoluble in ethanoic acid	BaCrO ₄ formed Ba ²⁺ confirmed present
14. To the solution of the un known, add aqueous ammonia until the solution is alkaline, then add a few drops of ammonia ethanedioate to the the mixture	White ppt formed	CaC ₂ O ₄ formed Ca ²⁺ confirmed present

# 8.4 CONFIRMATORY TESTS FOR ANIONS

TEST	OBSERVATION	DEDUCTION	
1. (a) To the solution of the	i) White ppt formed	i) Cl ⁻ confirmed present	
un known, add 2-3 drops of	ii) Pale yellow ppt formed	ii)	Br ⁻
aqueous silver nitrate	iii)Yellow ppt formed	confirmed present	
followed by excess nitric	N.B. AgCl and AgBr dissolve		
acid	in excess ammonia	iii) I ⁻ confirmed present	

		I a .
(b)To the solution of the un	i) yellow ppt formed	i. I confirmed present
known add aqueous solution of	ii) white ppt soluble on	. ii. Cl ⁻ confirmed present
lead (II) ions	warming and reappears on	
	cooling	
(c) To solution of the un	Brown ppt is formed	CuI formed
known, add aqueous solution of		I- confirmed present
copper (II) sulphate		
2. (a) To the un known	White ppt insoluble in	
solution, add aqueous	acid	BaSO ₄ formed
barium nitrate followed		
by excess dilute nitric		SO ₄ ²⁻ confirmed present
acid		
<b>OR.</b> To the un known		
solution, add aqueous		
barium chloride followed		
by dilute HCl acid		
(b) To the un known	White ppt insoluble in	
solution, add lead (II)	the acid	PbSO ₄ formed
ethanoate solution	the dela	1 05 04 Torrice
OR. lead (II) nitrate		SO ₄ ²⁻ confirmed present
followed by dilute nitric		504 commied present
acid		
3. (a) to the un known	Brown fumes evolved	NO ₃ -confirmed present
` '	which condense into an	NO ₃ commined present
solid, add conc. H ₂ SO ₄		
and warm if necessary	oily liquid at the sides of	
	test tube	
(b) to the solution of un	Brown ring formed	No - C 1
known, add aqueous		NO ₃ confirmed
solution of freshly		present
prepared iron (II) sulphate		
followed by few drops of		
conc. H ₂ SO ₄ acid		
(c) To the un known	Brown fumes evolved	
solution, add few pieces of		NO ₃ ⁻ confirmed present
copper turnings followed		
by about 5ml of conc.		
H ₂ SO ₄ and heat		
(d) To the solution of un	colourless gas with	Gas is NH ₃
known or solid and add	chocking smell evolved,	NO ₃ confirmed present
NaOH solution followed	gas turns moist red	
by Zinc or Aluminium	litmus paper blue and	
powder and heat	forms dense white fumes	
	with Conc. HCl acid	
4. (a) To the unknown	Colourless gas evolved,	CO ₂ gas evolved
solution, add dilute HCl	gas turns moist blue	$CO_3^{2-}$ confirmed present
acid or nitric acid	litmus paper red, and	
	turns lime water milky	
(b) Add a few drops of	White ppt formed	MgCO ₃ formed
MgSO ₄ solution to the un	,, me ppt formed	CO ₃ ²⁻ confirmed present
known		CO3 commined present
I known		

5. (a) To the solution of the un known, add freshly prepared aqueous iron (II) sulphate followed by dilute ethanoic acid	Brown solution formed	Fe(NO) ⁻ .5H ₂ O formed NO ₂ ⁻ confirmed present
6. (a) add oxidising agent like H ₂ O ₂ to un known solution. Test for a sulphate in the resultant mixture	Positive result for SO ₄ ²⁻ observed	SO ₃ ²⁻ confirmed present
(b) To the un known solution. Add aqueous silver nitrate drop wise until excess	White ppt soluble in excess AgNO ₃	SO ₃ ²⁻ confirmed present
7. (a) To the solution of the un known, add 2-3 drops of silver nitrate solution followed by excess aqueous ammonia	White ppt soluble in excess ammonia	C ₂ O ₄ confirmed present
(b) To un known solution, add dilute H ₂ SO ₄ drop wise until the solution is acidic, heat till uncomfortable to touch, then add drops of KMnO ₄ solution to the hot solution	Colour of permanganate turns from purple to colourless. Colourless gas evolved, gas turns damp blue litmus paper red and lime water milky	MnO ₄ reduced to Mn ²⁺ Gas is CO ₂ C ₂ O ₄ confirmed present

## 8.5 SUMMARY OF TESTS FOR CATIONS

CATION	TEST	OBSERVATION
	i. Heat a little of the solid on a spatula	Green flame
	ii. Addition of NH ₃ and NaOH solutions	white ppt insoluble in excess
$Ba^{2+}$	iii. Addition of CO ₃ ²⁻	White ppt soluble in the acid
	iv. Addition of $C_2O_4^{2-}$	White ppt, insoluble in H ₂ O but soluble in hot ethanoic acid, acetic acid, mineral acids
	v. Addition of CrO ₄ ² -	Yellow ppt insoluble in ethanoic acid but soluble in mineral acids to form red solution
	vi. Addition of SO ₄ ²⁻	White ppt formed
	<ul><li>i. Addition of NaOH solution</li></ul>	White ppt soluble in excess
Al ²⁺	ii. Addition of NH ₃ solution	White ppt insoluble in excess
	iii. Addition of (NH4) ₂ S	White ppt, evolution of H ₂ S due to hydrolysis
	iv. Addition of OH ⁻ , separate the ppt Al(OH) ₃ from the liquid. Dissolve	A red ppt formed/pink colouration

	the ppt in dilute HCl, add	
	little ammonium	
	ethanoate solution on	
	aluminon reagent and	
	excess(NH ₄ ) ₂ CO ₃ solid	
	v. Addition of CO ₃ ² -	White ppt, Colourless gas evolved, gas turns moist
		blue litmus paper red, and turns lime water milky
		(CO ₂ ) [due to hydrolysis of Al ₂ (CO ₃ ) ₃
	i. Addition of NaOH	White ppt soluble in excess
2.	solution	
$Zn^{2+}$	ii. Addition of NH ₃	White ppt soluble in excess
	solution	
	iii. Addition of CO ₃ ² -	White ppt
	iv. Filter off its ppt, heat	Residue is yellow hot, white cold.
	strongly until no further	
	change, allow to cool	
	v. Addition of solid	White ppt, soluble in ammonia solution
	NH ₄ Cl followed by di-	
	sodium	
	monohydrogenphospate	
	solution and then	
	ammonia solution	
	vi. Addition of H ₂ S in	Yellowish partial ppt (ZnS)
	neutral solution	
	vii.Addition of H ₂ S in	No ppt
	acidic solution	
	viii. Addition of H ₂ S in	Complete yellowish ppt of ZnS
	alkaline solution	
	ix. Addition of (NH ₄ ) ₂ S	Yellowish ppt of ZnS soluble in acid
	x. Addition of acid	Violet colouration
	(acidify) + 0.5ml of very	
	dilute CuSO ₄ + 2ml of	
	ammonium mercuric	
	thiocynate	D1 ( C 1
	xi. Repeat the above test	Blue ppt is formed
	with dilute CuSO ₄ or any cobalt salt	
	i. Addition of NaOH	White ppt soluble in excess
	solution	White ppt soluble in excess
Pb ²⁺	A 11'4' C	White ppt insoluble in excess
	NH ₃ NH ₃	white ppt insoluble in excess
	iii. Addition of dilute	White ppt soluble on warming and reappears on
	HCl or NaCl solution	cooling
	iv. Decant as much as of	Ppt dissolves due to formation of a complex
	the supernatant liquid as	PbCl _{2(s)} + 2HCl _(aq) $H_2$ PbCl _{4(aq)}
	possible from the above	1121 0C14(aq)
	ppt, add conc.HCl	
	v. Addition of CrO ₄ ²⁻	Yellow ppt formed, insoluble in ethanoic acid and
		NH ₃ solution
	l .	1111 001411011

	vi. Addition of (NH ₄ ) ₂ S	Black ppt of PbS
	or $H_2S$	Prof. 1 oc
	vii.Addition of I⁻	Yellow ppt, dissolves in excess
	viii. Addition of SO ₄ ²⁻	White ppt
	ix. To the ppt above, add	Ppt dissolves
	conc. Ammonium acetate	
	solution	
	i. Addition of NaOH	Green ppt soluble in excess forming pink/violet
Cr ³⁺	solution of as NII.	Solution  Cross and soluble in excess forming, gross solution
Ci	ii. Addition of aq NH ₃ iii. To solution or ppt	Green ppt soluble in excess forming green solution Yellow solution of chromate formed
	above (ii), add H ₂ O ₂	Tenow solution of enformate formed
	iv. To the solution in (iii)	Red ppt of Ag ₂ Cr ₂ O ₄
	add AgNO ₃	1100 ppt 01 118201204
	v. Addition of CO ₃ ² -	Green ppt of Cr ₂ (CO ₃ ) ₃ with evolution Colourless
		gas, gas turns moist blue litmus paper red, and turns
		lime water milky (CO ₂ ) due to hydrolysis of
		$Cr_2(CO_3)_3$
	vi. Addition of 1ml of	Organic layer is coloured blue due to formation of
	butan-1-ol + dilute $H_2SO_4 + 0.5ml$ of $H_2O_2$	chromium peroxide
	(heating may be	
	necessary)	
	iii. vAddition of (NH ₄ ) ₂ S	Green ppt withevolution of H ₂ S gas
	i. Addition of	White ppt which rapidly turns brown
2	NaOH/NH ₃ solution	
Mn ²⁺	ii. Addition of (NH ₄ ) ₂ S	Pink ppt, darkens on standing dissolves in acid or
		alkali to form faint yellowish solution
	iii. Addition of cold	Violet solution due to formation of permanganic
	solution + HNO ₃ + solid sodium bismuthate and	acid, HMnO ₄
	shake	
	iv. Addition of conc.	Violet solution results
	$HNO_3 + PbO \text{ or } Pb_3O_4$	
	boil the mixture and	
	allow to cool	
	t Addition C	Constructional black and the second
Fe ²⁺	i. Addition of NaOH/NH ₃ solution	Green ppt insoluble in excess, turns brown on standing
1.6	ii. Addition of CO ₃ ²⁻	Green ppt, with evolution Colourless gas, gas turns
	Audition of CO3	moist blue litmus paper red, and turns lime water
		milky (CO ₂ ) due to hydrolysis of Fe(CO ₃ )
	iii. Addition of potassium	Dark blue ppt
	hexacynoferate (III) or	
	potassium ferricynide	
	iv. Addition of NH ₃	Ppt formed (not formed by Fe ³⁺ but Ni ²⁺ , Co ²⁺ , Cu ²⁺
	solution followed by	may interfere
	dimethylglycoxime	

		T
	v. Addition of H ₂ S	
	a) Acid	i. No observable change
	b) Alkali	ii. Black ppt of FeS
	c) In acid in which [H ⁺ ]	iii. Black ppt of FeS
	has been reduced by	
	adding sodium ethanoate	
	d) Acidify then add	KMnO ₄ turns from purple to colourless
	KMnO ₄ solution	
	e) Addition of (NH ₄ ) ₂ S	Black ppt/ pale green ppt
	a) Addition of	Brown ppt insoluble in excess
Fe ³⁺	NaOH/NH ₃ solutions	
	b) Addition of (NH ₄ ) ₂ S	Black mixture of Fe ₂ S ₃ and S dissolves in acid
	, ,,-	leaving yellow sulphur
	c) Addition of potassium	Dark/intense blue ppt
	hexacynoferate	2 and mondo of the ppo
	(II)/ferrocyanide	
	d) Addition of sodium	Red/brown ppt of iron (III) ethanoate
	ethanoate	Real brown ppt of from (111) emandate
	e) Addition of	Deep red solution
	,	Fe ³⁺ _(aq) + 3SCN ^{-(aq)} $\rightarrow$ Fe(SCN) _{3(aq)}
	thiocyanate/potassium	$Fe(aq) + 3SCIN^{-1}$ $Fe(SCIN)3(aq)$
	thiocyanate	Croon ant insoluble in every
	a) Addition of NaOH	Green ppt insoluble in excess
NT:2+	solution	
Ni ²⁺	b) Addition of NH ₃	Green ppt soluble in excess forming light blue
	solution	solution
	c) Addition of H ₂ S in	
	i. In neutral media	Light ppt (partial precipitation of black NiS
	ii. In acid	Dense ppt
	iii. In alkali	No ppt formed
	d) Addition of (NH ₄ ) ₂ S	Black ppt soluble in acid
	e) Addition of CO ₃ ²⁻	Green ppt
	f) Addition of NH ₃	Red ppt is formed
	solution followed by	
	dimethylglycoxime	
	g) Addition of dilute	No observable change unlike Fe ²⁺
	H ₂ SO ₄ and then KMnO ₄	
	solution	
	i. Flame test	Green flame
	ii. Addition of NaOH	Blue ppt insoluble in excess
$Cu^{2+}$	solution	
	iii. Boil the above ppt	Black ppt results
	iv. Addition of NH ₃	Blue ppt soluble in excess forming deep blue
	solution	solution
	v. Addition of CO ₃ ²⁻	Blue/green ppt of CUCO ₃
	vi. Addition of H ₂ S in	Black ppt of CuS soluble in hot dilute HNO ₃ acid
	acid/neutral solution or	Black ppt of Cub soluble in not unute throg actu
	(NH ₄ ) ₂ S	
	vii. Addition of KI	Cule formed which decomposes to Cul and free I
		CuI ₂ formed which decomposes to CuI and free I ₂
	solution	that dissolves in KI and turns solution brown
		Addition of Na ₂ S ₂ O ₃ removes the I ₂



	iii. Addition of potassium	Duoren mat in calculate in avenue
	1	Brown ppt insoluble in excess
	hexacynoferate (II)	
	solution	
	i. Addition of NaOH	Brown ppt of AgO insoluble in excess
	solution	
$Ag^+$	ii. Addition of NH ₃	Brown ppt soluble in excess due formation of
	solution	Ag(NH3) ₂ ⁺ complex
	iii. Addition of Cl ⁻	White ppt, darkens on standing due to
		decomposition into Ag and Cl
	iv. To ppt in (iii) above	Ppt dissolves
	add NH ₃ solution	
	v. To solution in (iv),	White ppt reappears
	add dilute HNO ₃ acid	
	vi. Addition of K ₂ CrO ₄	Red ppt of Ag ₂ CrO ₄ soluble in dilute nitric acid/NH ₃
	in neutral solution	solution
	ii. Addition of KI	Yellow ppt insoluble in conc. NH ₃ solution.
	solution	11
	i. Addition of NaOH	Blue ppt insoluble in excess, turns pink and brown
$\mathrm{Co}^{2+}$	solution	on standing
	ii. Addition of NH ₃	Blue ppt turns pink and brown
	solution	
	iii. Mt _{3(aq)}	Blue ppt darkens in conc. NH ₃ to form yellow brown
	(aq)	solution
	iv. Addition of Conc.	Pink solution turns deep blue
	HCl	1
	v. Addition of conc. HCl	Blue colour appears in pentanol layer. This confirms
	$+ \text{Co}^{2+} + \text{pentanol} + \text{solid}$	$Co^{2+}$
	NH ₄ SCN and shake	
	100 0 0 0 0 0 0	

### 1.2. SUMMARY OF TESTS FOR ANIONS

ANION	TEST	OBSERVATION
	solubility	Insoluble except carbonates of K ⁺ , Na ⁺ , NH ₄ ⁺
	If soluble add	
$CO_3^{2-}$	i. Phenolphthalein	Pink colouration
	indicator	
	ii. Add $Ca^{2+}$ , $Mg^{2+}$	White ppt formed
	Add dilute acid and test	Dissolves with effervescence and Colourless gas
	gas with lime water	evolved, gas turns damp blue litmus paper red and lime
		water milky
	Heat the solid strongly	Colourless gas evolved, gas turns damp blue litmus
	and test gas with lime	paper red and lime water milky (most carbonates
	water	decompose on heating to give the oxide and CO ₂ except
		those of K ⁺ , Na ⁺ . (NH ₄ ) ₂ CO ₃ decomposes to H ₂ O, NH ₃ ,
		CO ₂ . HgCO ₃ and Ag ₂ CO ₃ decomposes to CO ₂ and O ₂



	solubility	Solid dissolves
HCO ₃ -	Heat (observe the sides of boiling tube, test gas with lime water	Colourless gas evolved, gas turns damp blue litmus paper red and lime water milky. Colourless neutral liquid condenses on sides of boiling tube, liquid turns white anhydrous copper (II) sulphate blue
	Addition of acid, test gas with lime water	Dissolves with effervescence and Colourless gas evolved, gas turns damp blue litmus paper red and lime water milky
	Add Ca ²⁺ /Mg ²⁺ and boil	No ppt forms in the cold, ppt formed on boiling
C ₂ O ₄ ² -	Addition of dilute H ₂ SO ₄ + KMnO ₄ and warm	Purple colour turns colourless unlike $CO_3^{2^-}$ $2MnO_4^ (aq) + 16H^+$ $(aq) + 5H_2O_{2(aq)}$ $10H^+$ $(aq) + 5O_{2(g)}$ $+2Mn^{2^+}$ $+$
		$8H_2O_{(1)}$
	Addition of Ca ²⁺ or Ba ²⁺ or Pb ²⁺ in the presence of NH ₃ solution	White ppt formed
	Addition of conc. H ₂ SO ₄ acid, test gas with lime water	Colourless gas evolved, gas turns damp blue litmus paper red and lime water milky.
	Add Ag ⁺ then NH ₃ or HNO ₃ solution	White ppt dissolves in NH ₃ or HNO ₃ solution. some oxalates decompose in presence of acid and CO ₂ is given off
CH ₃ CO O	Add Na ₂ CO ₃ solution boil and filter, neutralise with HNO ₃ and NH ₃ solution then add FeCl ₃ solution	Red ppt formed dissolves in dilute HCl acid
	Dissolve in little ethanol, warm then pour the mixture in 10ml of H ₂ O. Detect the smell	Sweet /fruity smell of ethyl ethanoate detected
NO ₃ -	Add freshly prepared FeSO ₄ then a little dilute H ₂ SO ₄ then carefully conc. H ₂ SO ₄ down the sides of the tube so that there are two separate layers	Brown ring formed  Conc. $H_2SO_4$ reacts with nitrate to form $HNO_3$ $NO_3^-(aq) + H_2SO_4(aq) \longrightarrow HSO_4^-(aq) + HNO_3(aq)$ $HNO_3$ is reduced by $FeSO_4$ in presence of $H_2SO_4$ to $NO_4$ $FeSO_4(aq) + 2HNO_3(aq) + 3H_2SO_4(aq) \longrightarrow 3Fe(SO_4)_3(aq) + 3H_2O_{(1)} + 2NO_4(aq) + 2NO_4(aq) \longrightarrow 3FeSO_4$ The NO reacts with the remaining $FeSO_4$ brown complex which appears as brown ring. $FeSO_4(aq) + NO \longrightarrow FeSO_4.NO_4$
	Add NaOH + devada's alloy and warm (test gas with moist red litmus paper or open bottle of conc. HCl acid	Moist red litmus paper turns blue, white fumes are formed with conc.HCl (NH ₃ given off) devada's alloy is composed of 50% Cu, 45% Al, 5% Zn
	Heat strongly	Brown fumes which turns moist blue litmus paper red and darkens FeSO ₄ solution (NO ₂ gas)

		Most NO ₃ ⁻ decompose to NO ₂ , metal oxide and O ₂ except those of K ⁺ , Na ⁺ , which decompose to metal nitrite and O ₂ . But those of Hg and Ag give metal, NO ₂ and O ₂
NO ₂ -	Addition of dilute acid	Brown fumes which turns moist blue litmus paper red and darkens FeSO ₄ solution (NO ₂ )
	Addition of FeSO ₄ and then dilute H ₂ SO ₄ acid	Brown coloration, due to formation of brown complex [Fe(NO)] ²⁺
	Addition of dilute H ₂ SO ₄ + KMnO ₄	Purple colour turns colourless, $NO_2^-$ is a reducing agent unlike $NO_3^-$ $2MnO_4^-(aq) + 5NO_2^-(aq) + 6H^+(aq) \longrightarrow 2Mn^{2+}(aq)$ +5HNO _{3(aq)}
		+ 3H ₂ O _(aq) +
	Add NaOH + Zn (test gas with conc. HCl	Colourless chocking gas evolved, gas turns moist red litmus paper blue, forms dense white fumes with conc.HCl
		$NO_2^-(aq) + 3Zn_{(s)} + 5NaO_{H(\overline{aq})}$ $NH_{3(g)} + 2Na(ZnO_2)$ +
		$H_2O_{(1)}$
	Addition of KI + dilute	Deep red colouration
	HCl then ethanoic acid	$\begin{array}{c} HCl_{(aq)} + NO_2^- \underset{(aq)}{\overset{\frown}{}} & HNO_{2(aq)} + Cl^- \underset{(aq)}{\overset{\frown}{}} \\ 2KI_{(aq)} + 2NO_2^- \underset{(aq)}{\overset{\frown}{}} + CH_3COOH_{(aq)} & 2CH_3COOK_{(aq)} \\ + I_{2(aq)} & \end{array}$
		$2NO_{(g)} + 2H_2O_{(1)}$
SO ₄ ²⁻	Addition of Ba ²⁺	White ppt formed
504	Heat strongly	Evolution of acidic gases which turns purple MnO ₄ ⁻ colourless/ turns orange Cr ₂ O ₇ ²⁻ green and darkens Ba ²⁺ ions ie SO ₂ and SO ₃
SO ₃ ² -	Add dilute acid (test gas by passing it through MnO ₄ - or Cr ₂ O ₇ ²⁻ )	Evolution of acidic gas which turns purple $MnO_4^-$ colourless/ turns orange $Cr_2O_7^{2^-}$ green $5SO_{2(g)} + 2MnO_4^-$ (aq) $+ 4H^+$ $O_4^ O_4^ O_$
		$\begin{array}{c} 2H_2O_{(l)} \\ 3SO_{2(g)} + Cr_2O_7{}^{2\text{-}}{}_{(aq)} + 2H^{+}_{\overline{(aq)}} \\ + \end{array} \qquad 2Cr^{3+}{}_{(aq)} + SO_4{}^{2\text{-}}{}_{(aq)}$
	A 11 D 2+ 11 111	$H_2O_{(1)}$
	Add Ba ²⁺ then dilute acid	White ppt soluble in acid with Evolution of acidic gas which turns purple MnO ₄ ⁻ colourless/ turns orange Cr ₂ O ₇ ²⁻ green (SO ₂ gas)
	Heat in a test tube	Evolution of acidic gas which turns purple MnO ₄ ⁻ colourless/ turns orange Cr ₂ O ₇ ²⁻ green (SO ₂ gas), colour of the oxide when hot and cold required

G O ?-	A 11 191 / 2 1 // /	X 11
$S_2O_3^{2-}$	Add dilute acid (test gas	Yellow ppt of Sulphur formed with Evolution of acidic
	by passing it through	gas which turns purple MnO ₄ colourless/ turns orange
	$MnO_4$ or $Cr_2O_7^{2-}$ )	Cr ₂ O ₇ ²⁻ green (SO ₂ gas)
	Heat the solid	Evolution of acidic gas which turns purple MnO ₄
		colourless/ turns orange Cr ₂ O ₇ ²⁻ green (SO ₂ gas), there
		may be some traces of H ₂ S
	Addition of I ₂ in KI	Solution turns from brown to colourless
	Addition of Ba ²⁺	No observable change, solution remains colourless
	solution	unlike SO ₄ ²⁻ and SO ₃ ²⁻ which form white ppt
	Addition of AgNO ₃	White ppt which rapidly turns brown and dissolves in
	solution slowly	excess reagent
		$S_2O_3^{2-}(aq) + Ag^{+}(aq)$ Ag ₂ S ₂ O _{3(s)} dissolves in
		excess to form Ag ⁺ [ Ag ₂ S ₂ O ₃ ] ⁻ (aq)
PO ₄ ³⁻	Addition of Ag	Yellow ppt of Ag ₃ PO ₄ soluble in dilute HNO ₃ /NH ₃
1 0 4	1144111011 01118	solution
	If insoluble solid, add	Yellow ppt soluble in hot or alkaline solution
	conc.HNO ₃ + excess	Tenow ppt solution in not of analine solution
	ammonium molybdate	
	and warm	
	To solution + solution	White ppt formed (H ₄ NMgPO ₄ )
	containing MgCl ₂ ,	write ppt formed (1141 vivigi 04)
	NH ₄ Cl and ammonia	
CrO ₄ ²⁻	Addition of Ag ⁺	Red ppt soluble in dilute HCl acid/NH ₃ solution
C1O ₄		
	Addition of an acid	Solution turns from yellow to orange due to formation
		of the dichromate
		$2CrO_4^{2-}(aq) + 2H^+(aq)$ $2Cr_2O_7^{2-}(aq) + H_2O_{(1)}$
	Addition of a reducing	Solution turns from yellow to green due to formation of
	agent like SO ₂ or H ₂ S	Cr ³⁺
	Addition of acid + ether	Blue colour appears in the ether layer
	+ H ₂ O ₂ (shake but not	
	near a flame)	
	Solid + ethanol + dilute	Mixture turns green (formation of Cr ³⁺ ), fruity smell
	H ₂ SO ₄ warm and detect	detected
	the smell	
	Add oxidising agent like	Brown colouration which turns deep blue on addition of
	$H_2O_2$ , $MnO_4$ , $PbO_2$ ,	starch
	$MnO_2$ , $Cl_2$ , $Cr_2O_7^{2-}$ ,	
	HNO ₃ , NO ₃ -, Br ₂ , Fe ²⁺	
	then dilute H ₂ SO ₄ + KI	
	and starch	
	Add reducing agents like	Purple colour of solution turns colourless
	$Cr^{2+}$ , $Sn^{2+}$ , $HCOO^{-}$ ,	
	$C_2O_2^{2-}$ , $S_2O_3^{2-}$ , $S^{2-}$ , $SO_3^{2-}$ ,	
	NO ₂ ⁻ then dilute H ₂ SO ₄	
	+ KMnO ₄ solution drop	
	wise	
Cl ⁻	Addition of AgNO ₃ in	White ppt soluble in excess NH ₃ /HNO ₃ solutions
-	dilute HNO ₃ acid/NH ₃	1 1
	solution	

	Solid + conc. H ₂ SO ₄ acid (test the gas with conc.	Colourless gas with chocking smell, gas turns moist red litmus paper blue and forms dense white fumes with		
	NH ₃ ) Addition of K ₂ Cr ₂ O ₇ followed by conc. H ₂ SO ₄	NH ₃ Red brown gas evolved, soluble in H ₂ O forming yellow solution		
	and warm  Solid +MnO ₂ +conc.	Yellowish-green gas liberated, gas gives deep brown		
	H ₂ SO ₄ (test gas with KI or KBr solutions )	colouration with KI or deep red colouration with KBr (MnO ₄ ⁻ may be an oxidising agent)		
ClO-	Add acid and detect smell	Smell of chlorine		
	Add Co ²⁺ solution	Black ppt of Co ₃ O ₄ formed with evolution of a colourless neutral gas that relights a glowing split. evolution of O ₂ becomes rapid due catalytic action of Co ²⁺ and Co ³⁺ which are (contained in Co ₃ O ₄ ) on decomposition		
	Addition of Pb ²⁺ and boil	Ppt of PbO ₂ formed gradually turns brown $ClO_{(aq)}^{-} + Pb^{2+}_{(aq)} + 2OH_{(aq)}^{-}$ $PbO_{2(s)} + Cl_{(aq)}^{-} + H_2O_{(l)}$		
Br⁻	Addition of AgNO ₃ in dilute HNO ₃	Pale yellow ppt formed insoluble in acid but dissolves in NH ₃ solution		
	Addition of chlorine water or bleaching powder + BrO ₃	The solution slowly becomes dark brown due to displaced Br ₂		
	To solid add conc. H ₂ SO ₄ (pass the gas through KI)	Brown chocking fumes of gas evolved which turns KI solution deep red.		
I ⁻	Addition of AgNO ₃ in dilute HNO ₃	Yellow ppt insoluble in the acid		
	Solid + MnO ₂ + conc. H ₂ SO ₄ ( warm)	Violet fumes of I ₂ soluble in sodium thiosulphate		
	Solid + bleaching powder + dilute HNO ₃ + CCl ₄	Purple colour in CCl ₄ layer		
Cl ⁻ , Br ⁻ , I ⁻	To distinguish between Cl ⁻ , Br ⁻ , I ⁻ . Carry out the following tests Solid + CCl ₄ + MnO ₂ + conc. H ₂ SO ₄ and shake	<ul> <li>i. CCl₄- layer is colourless, Cl⁻</li> <li>ii. CCl₄-layer is red brown, Br⁻</li> <li>iii. CCl₄-layer is violet, I⁻</li> </ul>		
S ²⁻	Add excess MnO ₂ and heat (test gas by passing it through acidified KMnO ₄ or K ₂ Cr ₂ O ₇ solution	Gas evolved that turns purple MnO ₄ ⁻ colourless/turns orange Cr ₂ O ₇ ²⁻ green (SO ₂ )		
	If soluble, add PbO ₂ To solution, add	Black ppt of PbS Gas with smell of rotten eggs evolved, turns lead acetate		
	dervada's alloy + dilute HCl and warm (test gas	paper black, turns purple MnO ₄ ⁻ colourless/turns orange Cr ₂ O ₇ ²⁻ green leaving yellow deposit of sulphur		



with acidified KMnO ₄ or	$Cr_2O_7^{2-}(aq) + 8H^+(\overline{aq}) \rightarrow 3H_2S_{(g)} + Cr^{3+}(aq) + 3SO_4^{2-}$
K ₂ Cr ₂ O ₇ solution)	$_{(aq)}+7H_{2}O_{(1)}+S$
Add Na ₂ Fe(CN) ₂ NO or	Purple colouration appears
sodium nitroprusside)	
Addition of AgNO ₃	Ppt of Ag ₂ S insoluble in cold dilute HNO ₃ acid
solution	

#### 8.6TESTING FOR GASES

First observe the gas then smell it (do not put your nose on the mouth of the test tube where the gas is coming from), put the test tube at a distance from your nose then turn the gas towards your nose with your hand. Then test the gas chemically. Tests which involve change in colour are best done using a strip of litmus paper dipped in testing reagent. If you suspect the gas to be poisonous, carry out the test in the fume cupboard. Never allow poisonous gases to spread in the lab and do not smell a gas you suspect to be poisonous. Some gases irritate the reparatory system although they are not poisonous, therefore do not allow evolution of a gas to continue after you have identified it, stop the reaction by pouring away the reagents and washing with plenty of water.

Gas	Appearance	smell	action on moist	confirmatory test
Gus	rippearance	Silien	litmus paper	commutaty test
Br ₂	Deep brown fumes, turns to liquid	Pungent (poisonous)	Bleaches	<ul><li>i. Forms deep red/brown solution with CCl₄</li><li>ii. Turns fluorescent paper pink</li></ul>
CH ₄				Burns with a bluish flame
C ₂ H 4		sweet		i. Burns with a yellow flame ii. Turns brown Br ₂ water colourless
C ₂ H ₂		None when pure		i. Burns with a yellow sooty flame ii. Gives dirty white ppt with ammoniac
СО		poisonous		Burns with a blue flame to form CO ₂
CO ₂			Turns moist blue litmus paper red (weakly acidic)	Turns lime water milky
Cl ₂	Pale green/yellow green	Pungent (poisonous)	Turns moist blue litmus paper red and bleaches (acidic)	
$H_2$				Burns with soft pop sound
HCl	Steamy fumes	Pungent (poisonous)	Turns moist blue litmus paper red (strongly acidic)	i. Turns AgNO ₃ solution milky like HBr, HI ii. Forms dense white fumes with NH ₃ iii. Forms white ppt with Pb(NO ₃ ) ₂ insoluble in hot water
H ₂ S		Rotten eggs	Turns moist blue litmus paper red (weakly acidic)	i. Gives black ppt with Pb(NO ₃ ) ₂ /lead acetate

				ii. Generally forms black insoluble sulphides with many metals
$N_2$				Very un reactive, form Mg ₃ N ₂ with burning Mg which dissolves in water to form NH ₃ (use tests for NH ₃ )
I ₂	Purple (black solid)	Pungent (poisonous)	Slowly bleaches	i. Turns blue with starch ii. Forms purple colour in CC ₄
NH ₃		Pungent	Turns moist red litmus paper blue	<ul> <li>I. Forms dense white fumes with conc. HCl</li> <li>II. Turns blue CuSO₄ solution deep blue (refer to tests for Cu²⁺)</li> </ul>
NO ₂	Brown	Strong and un pleasant (poisonous)	Turns moist blue litmus paper red	Darkens FeSO ₄ solution
N ₂ O		Sweetish (sticky smell)		Rekindles a glowing splint and soluble in water unlike O ₂ which is practically insoluble in water
NO	Colourless but readily turns brown in air	No smell but that of NO ₂ usually detected	Neutral though NO ₂ is detected	Darkens FeSO ₄ solution
PH ₃		Rotten fish		Very inflammable, sometimes without ignition forms white fumes
$O_2$				Rekindles a glowing splint (practically insoluble in water)
SO ₂		Sharp chocking (poisonous)	Turns moist blue litmus paper red	<ul> <li>i. Turns purple acidified MnO₄⁻ colourless</li> <li>ii. Turns orange acidified Cr₂O₇²- green</li> </ul>
SO ₃	Smoky white fumes	Chocking (poisonous)	Turns moist blue litmus paper red	Forms white ppt with Ba ²⁺ soluble in the acid

# 9.0 QUALITITATIVE ANALYSIS OF ORGANIC COMPOUNDS (ORGANIC PRACTICALS)

### 1.3. Flame test

Aliphatic compounds burn with non-sooty flame Aromatic compounds burn with sooty flame

## 1.4. Solubility tests

Solvent	Observation	Deduction	
Distilled water insoluble		Higher carboxylic acid and amine	
		probably present	
	Soluble giving a solution that	Simple carboxylic acid, salt of amine	
	turns blue litmus paper red	acylhalide, acid anhydride probably	
	(acidic)	present	

	Soluble giving a solution that turns red litmus paper blue	Lower amine, salt of carboxylic acid with strong bases
	Soluble giving a solution	Alcohol, alkanal, alkanone probably
	neutral to litmus paper	present
Dilute sodium	soluble	Carboxylic acid, phenol probably
hydroxide		present
solution		
Dilute HCl acid	soluble	Amine probably present
Sodium	soluble	Phenol, carboxylic acid probably
hydrogen		present
carbonate		

# 1.5. Functional groups

Functional	reagent	Observation	Deduction
group Alcohols (R-OH) and	Sodium metal	Vigorous effervescence with evolution of colourless neutral gas which burns with soft pop sound	Gas is H ₂ Alcohol present (R-OH)
phenols (Ar-OH)	Acidified K ₂ Cr ₂ O ₇ solution and boil gently	i. Rapid colour change from orange to green ii. slow colour change from orange to green iii. No apparent colour change, solution remains orange	i. Primary alcohol present ii. Secondary alcohol present iii. Tertiary alcohol present
	Luca's regent	<ul> <li>i. Clear solution, though some darkening may occur</li> <li>ii. Clear solution turns cloudy after 5mins</li> <li>iii. Clear solution turns cloudy immediately</li> </ul>	<ul><li>i. Primary alcohol</li><li>ii. Secondary alcohol</li><li>iii. Tertiary alcohol</li></ul>
	Carboxylic acid/acid chloride in presence of conc. H ₂ SO ₄	Sweet smell produced	Alcohol present
	Iodine solution with dilute NaOH	Yellow ppt formed	CH ₃ CH ₂ OH and CH ₃ CHOHCH ₃ present
	Conc. H ₂ SO ₄	Evolution of acidic chocking gas that decolourises bromine water/KMnO ₄ solution (SO ₂ )	Alcohol present
	Iron (III) chloride	Violet colour formed	Phenol confirmed present
Carbonyl compound RC=O	KI and NaOH (iodoform)	Yellow ppt formed	Methyl carbonyl compound (RCOCH ₃ ) present

	Brady's reagent (2,4	Yellow/orange ppt formed	Carbonyl
	dinitrophenylhydrazine)		compound present
	Fehling's solution	Yellow/red/brown ppt	Aldehyde
			confirmed present
	Tollen's reagent	Silver mirror formed on sides of test	Aldehyde
	(ammoniacal silver nitrate)	tube	confirmed present
Carboxylic	Soda lime (NaOH)	A gas that burns with yellow flame	Carboxylic acid
acids		evolved	confirmed present
	Ethanol/conc. H ₂ SO ₄	Sweet smell produced	Carboxylic acid or
			acid dichloride
			present
	Fehling's solution	Yellow ppt formed	Methanoic acid
			(HCOOH) present
	Tollen's reagent	Silver mirror	HCOOH present
amines		i. Clear solution with evolution of	i.Primary
		acidic brown fumes of gas that	aliphatic amine
		darkens FeSO ₄ solution (NO ₂ )	
		ii. Clear solution with no evolution	ii. Primary
		of gas	aromatic, tertiary
			amine
		iii. Yellow oil	
			iii. Secondary
			amine present
	Conc. HCl /NaNO ₂ /2-	Formation of bright red dye	Primary aromatic
	naphthol in NaOH		amine confirmed
	solution		present

## 1.6. GENERAL REACTIONS AND PROPERTIES OF ORGANIC COMPOUNDS

	Test	Possibilities
Physical state	Solid	Salts, aromatic carboxylic acid, phenols, alkanedioic acids
	Liquid	Alkanols, alkanals, alkanoic acid, ethers and aromatic hydrocarbon
	Smell	Most organic compounds have characteristic smell, however smell should not be relied on in identifying compounds because most of them have similar smell
Solubility (use small amounts)	Soluble in water (test resultant solution with litmus paper)	<ul> <li>C₁-C₃ compounds are soluble</li> <li>Alkanols, alkanals, alkanones, amide(urea) form neutral solutions</li> <li>Carboxylic acids, salts of amines or acid chlorides, phenols form acidic solutions</li> <li>Amines or salt of carboxylic acid and strong base form alkaline solutions</li> </ul>
	Soluble in dilute HCl	Basic substances, most amines
	Solule in dilute NaOH	Acidic, most alkanoic acids and phenols

Soluble in dilute NaHCO ₃ with effervescence	Strongly acidic, most alkanoic acids
Insoluble in acid and alkali, neutral to litmus paper	Hydrocarbon, nitrohydrocarbon, high RFM alkanols, alkanals, alkanone, ether, ester
Ignite on a spatula end	a) Luminous sooty flame for aromatic, unsaturated aliphatic compounds, high molecular weight aliphatic compounds b) Clean non-luminous flame for aliphatic compound of low % Carbon c) Doesnot burn- certain high proportion of non-combustible material like halogens, nitrogen, metal d) Charr rapidly – carbohydrates, hydroxacid e) Residue ash (not carbon)- metal present f) Violet vapour – contain high % of iodine

# 9.1 TESTING FOR A CERTAIN CLASS OF ORGANIC COMPOUNDS

Compound	Class	Test	Observation
Alcohols	Primary alcohol (RCH ₂ OH)	Add glacial ethanoic acid followed by conc.H ₂ SO ₄ and warm (detect the smell)	A pleasant (sweet) fruity smell of an ester detected
	Secondary alcohol (R ₂ CHOH)	Add cariammonium nitrite reagent	Intense colouration/ppt formed. Phenols also give same observation, so carry out the test below
	Tertiary alcohol (R ₁ R ₂ COHR ₃ )	Add FeCl ₃ solution	No observable change. Solution develops brown colouration due to Fe ³⁺ . Violet colouration forms with phenol
	Where R ₁ , R ₂ , R ₃ are alkyl groups not H	Add K ₂ Cr ₂ O ₇ + dilute H ₂ SO ₄ boil gently	Solution turns from orange to green
		Add Na metal (care)	Colourless neutral gas which burns with soft pop sound liberated. Gas is H ₂
		Add CrO ₃ in dilute H ₂ SO ₄	Solution turns from blue to green, given by primary alcohols only
		Add conc.HCl + anhydrous ZnCl ₂ shake vigorously and allow to stand(luca's	<ul><li>i. Clear solution (although a little darkening may occur) – primary alcohol</li><li>ii. Clear solution turns cloudy –</li></ul>
		test)	secondary alcohol iii. Clear solution turns cloudy immediately – tertiary alcohol

	T	A 11T ' 77T ST 077	X7 11
		Add I ₂ in KI + NaOH	Yellow ppt formed. This tests alcohols
		until brown colour	of the structure CH ₃ CHOR
		discharged, boil for	
		1min (iodoform test)	
		Add brady's reagent	Yellow ppt
		Add schif's reagent	Red colour of the dye restored
Aldehydes			immediately
		Add NaOH and	A brownish oily strong smelling resin
(RCHO)		warm on water bath	formed. Given by only lower aliphatic
			aldehydes)
		Add cold dilute	Brown ppt of MnO ₂ formed
		KMnO ₄	
		Add CrO ₃ in dilute	Solution turns blue-green and becomes
		H ₂ SO ₄ (see ketones)	opaque
Aromatic		In addition to the	Small white crystals as the mixture
aldehydes		general tests for	cools
(ArCHO)		aldehydes above,	
		Add NaOH warm	
		while shaking, allow	
		the mixture to settle	
		and pour off some of	
		it in the test tube, add	
		conc.HCl and allow	
		to cool	
		Carry out brady's	As in aldehydes
Ketones		reagent test,	[
$(R_1COR_2)$		iodoform test	
		Add Br ₂ in CCl ₄	Reddish brown solution turns to
		2	colourless with evolution of HBr (only
			given by carbonyl compounds with
			alpha hydrogen)
		Add	White ppt formed
		saturatedNaHSO ₃	PP Total
		Add tollen's reagent	No observable change for ketones
		riad torion broagont	Black colouration occurs and silver
			mirror for aldehydes
		Add fehling's	No observable change for ketone
		solution	Reddish brown ppt formed for
		SOIUUOII	aldehydes
Carboxylic		Add ethanol +	Pleasant/sweet/fruity smell of an ester
acids		conc.H ₂ SO ₄ and	(benzoic acid gives a negative result)
(RCOOH)		warm (detect the	(benzoic acid gives a negative result)
(KCOOII)		smell)	
		Add solid NaOH	Compound dissolves and
			Compound dissolves and,
		(soda lime) and heat,	a) Burns with a clean non-
		test the gas by	luminous flame- aliphatic
		igniting it	carboxylic acid
			b) Burns with luminous sooty
			flame- aromatic carboxylic acid

	T	•	
		Add Na ₂ CO ₃ or	Colourless acidic gas which turns lime
		NaHCO ₃ and test gas	water milky evolved (not given by
		with lime water	phenols)
		Add acidified MnO ₄	Turns purple MnO ₄ colourless
		and warm	If Oxalic acid CO ₂ is evolved unlike
			other carboxylic acids
		Detect smell (take	Characteristic carbolic smell and very
		care)	corrosive to skin and textiles
		Add ceriammonium	Intense coloration/ppt formed
		nitrite	intense coloration, ppt formed
		Add FeCl ₃ solution	Intense violet/purple colouration
		Add NaOH solution	
			Compound dissolves
		Bromine water	White ppt formed
Esters (R ₁ COOR ₂ )		i. Detect smell	i. Generally have strong pleasant fruity smell
, , , , , , , , , , , , , , , , , , ,		ii. Add equal	ii. Pink colour of phenolphthalein
		volume of water + a	disappears due to formation of the
		drop of NaOH + 2	parent acid and alcohol
		drops of	
		phenolphthalein	
		shake vigorously and	
		allow to stand	
		Add conc. H ₂ SO ₄	Solid dissolves unlike hydrocarbons
		Detect smell (care)	Ammonia like fishy smell for aliphatic
Ammines		Detect sinch (care)	ammines. Primary amines smell more
$(R_1NHR_2)$			like ammonia
(==1= \====2)	Add dilute HCl		The difficult
	Add dilute Hel		
Amides			
Urea		Heat part of the solid	Solid melts with evolution of
(H ₂ NCONH ₂ )		greatly (test gas with	colourless alkaline gas with chocking
		moist litmus paper or	smell that forms dense white fumes
		conc. HCl), continue	with conc.HCl
		heating, cool to	
		solidified product	
		then add NaOH and a	
		drop of	
		CuSO ₄ (biurette test)	
		- 33 - 4(32 - 600 - 600)	
	]	I	