Twogrid Method:

$$R_h^{2h} \downarrow \begin{array}{c} \text{Fine:} \quad A_h \cdot u = b_h \\ \\ Coarse: \quad A_{2h} \cdot v = b_{2h} \end{array} \uparrow I_{2h}^h$$

- (1) Iterate $A_h \cdot u = b_h \ (\nu_1 \times GS) \leadsto u_h$
- (2) Restrict residual $r_h = b_h A_h u_h$ by $r_{2h} = R_h^{2h} \cdot r_h$
- (3) Solve for coarse error: $A_{2h} \cdot e_{2h} = r_{2h}$
- (4) Interpolate error: $e_h = I_{2h}^h \cdot e_{2h}$ Update $\tilde{u}_h = u_h + e_h$
- (5) Iterate $A_h \cdot u = b_h \ (\nu_2 \times GS)$ starting with \tilde{u}_h

v-cycle:

Multigrid:

Image by MIT OpenCourseWare.

• Use twogrid recursively in (3)

V-Cycle:

Image by MIT OpenCourseWare.

W-Cycle: Apply (3) twice

<u>FMG</u> (full multigrid):

Image by MIT OpenCourseWare.

Optimal: Cost = O(n). Image by MIT OpenCourseWare.

Krylov Methods

Consider $A \cdot x = b$ already preconditioned.

Iterative scheme: $x^{(k+1)} = x^{(k)} + (b - Ax^{(k)})$

$$x^{(0)} = 0$$

$$x^{(1)} = b$$

$$x^{(2)} = 2b - Ab$$

$$x^{(3)} = 3b - 3Ab + A^2b$$

Observe: $x^{(k)} \in K_k$ where $K_k = \text{span}\{b, Ab, \dots, A^{k-1}b\}$ Krylov subspace

Find sequence $x^{(k)} \in K_k$ which converges fast to $x = A^{-1} \cdot b$.

 \oplus Only requirement: Apply A (can be blackbox).

Examples of Krylov Methods:

Choose $x^{(k)} \in K_k$, such that

- (1) $r_k = b Ax_k \perp K_k \rightarrow \text{conjugate gradients (CG)}$
- (2) $||r_k||_2$ minimal \rightarrow GRMES & MINRES
- (3) $r_k \perp K_k(A^T) \rightarrow \text{BiCG}$
- (4) $||e_k||_2$ minimal \rightarrow SYMMLQ

Conjugate Gradient Method

A symmetric positive definite

Enforce orthogonal residuals: $r_k \perp K_k$

Know $x_k \in K_k \Rightarrow r_k = b - Ax_k \in K_{k+1} \Rightarrow r_k = \gamma_k q_{k+1} \quad (\gamma_k \in \mathbb{R})$

where q_1, q_2, q_3, \ldots orthonormal, and $q_k \in K_k$.

$$\Rightarrow r_i^T \cdot r_k = 0 \ \forall i < k.$$

Also:
$$\Delta r_k = (b - Ax_k) - (b - Ax_{k-1}) = -A \cdot \Delta x_k$$

$$\Rightarrow \boxed{\Delta x_i^T \cdot A \cdot \Delta x_k = 0 \ \forall i < k}$$

Updates (= directions) are "A-orthogonal" or "conjugate";

Scalar product $(\Delta x_i, \Delta x_k)_A := \Delta x_i^T \cdot A \cdot \Delta x_k$.

Search direction: d_{k-1}

Update solution: $x_k = x_{k-1} + \alpha_k d_{k-1}$

New direction: $d_k = r_k + \beta_k d_{k-1}$

$$\alpha_k = \frac{||r_{k-1}||_2^2}{d_{k-1}^T \cdot A \cdot d_{k-1}}$$
 , so that error in direction d_{k-1} minimal

$$\beta_k = \frac{||r_k||_2^2}{||r_{k-1}||_2^2}$$
, so that $(d_k, d_{k-1})_A = 0$

CG finds unique minimizer of $E(x) = \frac{1}{2}x^T \cdot A \cdot x - x^T \cdot b$ $(x_{\min} = A^{-1} \cdot b)$ using conjugate directions after at most n steps.

Image by MIT OpenCourseWare.

In practice much faster than n steps.

18.336 Numerical Methods for Partial Differential Equations Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.