Formale Grundlagen der Informatik II 5. Übungsblatt

Fachbereich Mathematik
Prof. Dr. Ulrich Kohlenbach
Davorin Lešnik, Daniel Günzel, Daniel Körnlein

SoSe 2014 9. Juli 2014

Gruppenübung

Aufgabe G13

Seien P,Q und S einstellige Relationssymbole, R ein zweistelliges Relationssymbol und Φ die Formelmenge:

- (1) $\forall x \forall y ((Q(x) \land R(x, y)) \rightarrow S(y)).$
- (2) $\forall x \forall y ((S(x) \land R(x, y)) \rightarrow \neg Q(y)).$
- (3) $\forall x \exists y (R(x,y) \land Q(y)).$
- (a) Wandeln Sie die Formeln aus Φ in Skolemnormalform um.
- (b) Begründen Sie intuitiv, warum diese Formelmenge nicht erfüllbar ist. Hinweis: Betrachten Sie R als die Kantenrelation eines Graphen und P, Q und S als Farben, wobei P(x) bedeutet, dass der Knoten x die Farbe P hat.
- (c) Zeigen Sie mit Hilfe der Resolutionsmethode, dass Φ unerfüllbar ist.

Lösung:

- (a) Die erste beide Formeln sind schon in Skolemnormalform. Eine Skolemnormalform für die letzte Formel ist: (3') $\forall x (R(x, f(x)) \land Q(f(x))).$
- (b) Sei x ein Element eines Modells. Die Formel (3') sagt, dass es immer eine Kante von einem Knoten $f^n x$ nach $f^{n+1} x$ gibt und dass alle Knoten von der Gestalt $f^{n+1} x$ die Farbe Q haben. (1) impliziert dann, dass Knoten von der Gestalt $f^{n+2} x$ die Farbe S haben und (2), dass Knoten von der Gestalt $f^{n+3} x$ die Farbe Q nicht haben. Also hat $f^3 x$ sowohl die Farbe Q als auch nicht die Farbe Q. Widerspruch! Also kann es kein Modell geben und ist die Formelmenge (1-3) unerfüllbar.
- (c) Wir schreiben erst die Aussagen in Klauselform um:

$$\{\neg Q(x), \neg R(x, y), S(y)\}\$$

 $\{\neg S(x), \neg R(x, y), \neg Q(y)\}\$
 $\{R(x, f(x))\}, \{Q(f(x))\}\$

Mit Grundinstanzen-Resolution leitet man dann ab:

Aufgabe G14

Leiten Sie die folgenden Sequenzen her:

- (a) $\forall x R(x, f(x)) \vdash \exists x R(f(x), f(f(x)))$.
- (b) $\forall x f(x, x) = x \vdash \forall x (P(x) \lor \neg P(f(x, x))).$
- (c) $\exists y \forall x R(x, y) \vdash \forall x \exists y R(x, y)$.
- (d) $\forall x(\varphi \lor \psi) \vdash \forall x \varphi \lor \psi$, vorausgesetzt, dass $x \notin \text{frei}(\psi)$.

Lösung:

(a)

$$\frac{\frac{\forall xRxfx,Rfxffx \vdash Rfxffx,\exists xRfxffx}{\forall xRxfx \vdash Rfxffx,\exists xRfxffx}}{\forall xRxfx \vdash \exists xRfxffx}$$

(b)

(c)

$$\frac{\forall xRxy,Rxy \vdash Rxy,\exists yRxy}{\forall xRxy \vdash Rxy,\exists yRxy}$$

$$\frac{\forall xRxy \vdash \exists yRxy}{\exists y\forall xRxy \vdash \exists yRxy}$$

$$\exists y\forall xRxy \vdash \forall x\exists yRxy$$

(d) Beachte, dass $\psi(c/x) = \psi$ ist, da $x \notin \text{frei}(\psi)$.

$\forall x(\varphi \lor \psi), \varphi(c/x) \vdash \varphi(c/x), \psi$	$\forall x (\varphi \lor \psi), \psi \vdash \varphi(c/x), \psi$
$\forall x (\varphi \lor \psi), \varphi(c/x) \lor \psi \vdash \varphi(c/x), \psi$	
$\forall x(\varphi \lor \psi) \vdash \varphi(c/x), \psi$	
$\forall x(\varphi \lor \psi) \vdash \forall x \varphi, \psi$	
$\forall x(\varphi \lor \psi) \vdash \forall x \varphi \lor \psi$	

Aufgabe G15 (Statman, Orevkov, Pudlak, Zhang)

Gegeben sei die folgende Theorie \mathcal{T} :

 $\mathcal{L}(\mathcal{T})$ enthält Konstanten 0, 1, Funktionssymbole +, $2^{(\cdot)}$ und ein einstelliges Predikat $I(\cdot)$. Betrachte die Konjunktion der Sätze

i)
$$\forall x, y, z(x + (y + z) = (x + y) + z)$$
,

- ii) $\forall y(y+0=y)$,
- iii) $2^0 = 1$,
- iv) $\forall x(2^x + 2^x = 2^{1+x}),$
- v) I(0),
- vi) $\forall x(I(x) \rightarrow I(1+x)).$

Diese kann pränexiert werden zu einer Aussage der Form $\varphi :\equiv \forall x_1, \dots, x_n \varphi_0(x_1, \dots, x_n)$, wobei φ_0 keinen Quantor enthält.

Wir benutzen die Notation $2_0 := 0$, $2_{k+1} := 2^{2_k}$. Zeigen Sie $\models \varphi \to I(2_k)$, indem Sie einen Beweis im Sequenzenkalkül $\varphi \vdash I(2_k)$ angeben, dessen Tiefe *linear in k* ist. Es reicht, diesen informell zu beschreiben. Sie dürfen (und müssen sogar) hierbei die Schnittregel (CUT) benutzen. Betrachten Sie hierfür die Relationen

$$R_0(x) := I(x), \quad R_{n+1}(x) := \forall y (R_n(y) \to R_n(2^x + y))$$

und zeigen Sie zuerst mittels Induktion über i dass $\varphi \vdash R_i(0) \land \forall x (R_i(x) \to R_i(1+x))$ einen Beweis linearer Länge in i besitzt.

Lösung: Wir zeigen zuerst den Hinweis. Der Beweis des Induktionsstarts i=0 ist eine Instanz von (Ax). Sei nun ein Beweis entsprechender Komplexität für $\varphi \vdash R_i(0) \land \forall x (R_i(x) \to R_i(1+x))$ gegeben. Da $\varphi \vdash 2^0 = 1$ (Ax), benötigen wir nur noch eine Anwendung von (Sub), um $\varphi \vdash R_{i+1}(0)$ zu schließen, da

$$R_{i+1}(0) = \forall y (R_i(y) \to R_i(2^0 + y)).$$

Zudem gilt $R_{i+1}(x) = \forall y (R_i(y) \to R_i(2^x + y))$, somit kann man mithilfe des Kontraktionslemmas $R_{i+1}(x) \vdash \forall y ((R_i(y) \to R_i(2^x + y)) \land (R_i(2^x + y) \to R_i(2^x + y)))$ schließen, ohne die Länge des Beweises bis auf einer von i unabhängigen Konstante zu verlängern. Mithilfe der Schnittregel (CUT) erhalten wir somit einen Beweis für $R_{i+1}(x) \vdash \forall x (R_i(y) \to R_i(2^{1+x} + y))$, wobei der Antezedent gleich $R_{i+1}(1+x)$ ist. Somit erhalten wir einen Beweis linearer Länge für

$$\varphi \vdash R_i(0), \quad \varphi, R_i(x) \vdash R_i(1+x).$$
 (1)

Nun folgt erneut mit der Schnittregel (CUT), $\varphi \vdash R_{k-1}(2^0)$, wobei der Antezedent gleich $R_{k-1}(y) \to R_{k-1}(2^0 + y)$ ist. Wenden wir (CUT) erneut an, erhalten wir $\varphi \vdash R_{k-2}(2^{2^0})$. Wenden wir (CUT) insgesamt k-mal an, erhalten wir $R_0(2_k) = I(2_k)$.

Hausübung

Aufgabe H13

Beweisen Sie mit Hilfe der Resolutionsmethode, dass die folgende Formelmenge unerfüllbar ist:

- (a) $\forall x \forall y (Rxy \rightarrow (Px \land \neg Py))$
- (b) $\forall x \forall y (Rxy \rightarrow \exists z (Rxz \land Rzy))$
- (c) $\forall xRxfx$

Lösung: Klauseln: $\{\neg Rxy, Px\}, \{\neg Rxy, \neg Py\}, \{\neg Rxy, Rxgxy\}, \{\neg Rxy, Rgxyy\}, \{Rxfx\}$

Aufgabe H14

- (a) Leiten Sie die Sequenz $\forall x \forall y (Rxy \lor Py), \exists x \neg Px \vdash \exists x \forall y Ryx \text{ her.}$
- (b) Beweisen Sie die Korrektheit der folgenden Regel:

$$\frac{\Gamma \vdash \Delta, \forall x R x f x}{\Gamma \vdash \Delta, \forall x \exists y R x y}$$

Beachten Sie, dass sich diese Regel nicht in \mathscr{SK}^{\neq} (auch nicht in \mathscr{SK}) herleiten lässt (warum?).

(c) Zeigen Sie, dass wenn T_1 und T_2 zwei Theorien sind, so dass $T_1 \cup T_2$ keine Modelle hat, es ein Satz σ gibt, so dass $T_1 \models \sigma$ und $T_2 \models \neg \sigma$.

Lösung:

(a) Sei $\Gamma := \{ \forall x \forall y (Rxy \lor Py), \forall y (Rxy \lor Py) \}$ und $\Delta := \{ \exists x \forall y Ryx, Ryx \}.$

$$\frac{ \begin{array}{c} \Gamma, Py \vdash \Delta, Py \\ \hline \Gamma, Rxy, \neg Py \vdash \Delta \end{array} & \begin{array}{c} \Gamma, Py \vdash \Delta, Py \\ \hline \Gamma, Py, \neg Py \vdash \Delta \end{array} \\ \hline \begin{array}{c} \Gamma, Rxy \lor Py, \neg Py \vdash \Delta \end{array} \\ \hline \begin{array}{c} \Gamma, Py \vdash \Delta \\ \hline \hline \\ Vx \forall y (Rxy \lor Py), \neg Py \vdash \Delta \end{array} \\ \hline \hline \\ \forall x \forall y (Rxy \lor Py), \neg Py \vdash \exists x \forall y Ryx, \forall y Ryx \\ \hline \\ \forall x \forall y (Rxy \lor Py), \neg Py \vdash \exists x \forall y Ryx \end{array} \\ \hline \\ \forall x \forall y (Rxy \lor Py), \exists x \neg Px \vdash \exists x \forall y Ryx \end{array}$$

- (b) Angenommen, $\Gamma \vdash \Delta$, $\forall x Rx f x$ ist allgemeingültig. Um zu zeigen, dass dann auch die Sequenz $\Gamma \vdash \Delta$, $\forall x \exists y Rx y$ allgemeingültig ist, betrachten wir ein Modell $\mathscr{J} \models \Gamma$. Nach Voraussetzung gibt es dann eine Formel $\delta \in \Delta \cup \{\forall x Rx f x\}$ mit $\mathscr{J} \models \delta$. Falls $\delta \in \Delta$, so sind wir fertig. Falls $\mathscr{J} \models \forall x Rx f x$, dann gilt auch $\mathscr{J} \models \forall x \exists y Rx y$ und wir sind ebenfalls fertig.
- (c) Wenn $T_1 \cup T_2$ keine Modelle hat, gibt es, nach dem Kompaktheitssatz, schon eine endliche Teilmenge $\Gamma \subseteq T_1 \cup T_2$ die keine Modelle hat. Sei $\Gamma_1 = \{ \gamma \in \Gamma : \gamma \in T_1 \}$, $\Gamma_2 = \{ \gamma \in \Gamma : \gamma \in T_2 \}$ und $\sigma = \bigwedge \Gamma_1$. Klar ist, dass $T_1 \models \sigma$, also haben wir nur noch zu beweisen, dass $T_2 \models \neg \sigma$.

Nehmen wir an, dass $T_2 \not\models \neg \sigma$, also dass es ein Modell M gibt, so dass $M \models T_2$ und $M \models \sigma$. Dann $M \models \Gamma_2$, weil $\Gamma_2 \subseteq T_2$ und $M \models T_2$, und $M \models \Gamma_1$, weil $M \models \sigma$ und $\sigma = \bigwedge \Gamma_1$. Das widerspricht, dass $\Gamma = \Gamma_1 \cup \Gamma_2$ keine Modelle hat. Also $T_2 \models \neg \sigma$.

Aufgabe H15

Zeigen sie, dass jede Herbrand-Disjunktion des Satzes $\varphi \to I(2_k)$ aus Aufgabe G15 mindestens der Länge 2_k ist.

Lösung: Wir zeigen, dass jede Herbrand-Disjunktion für jedes $n < 2_k$ eine Instanz $I(t) \to I(1+t)$ von $\forall x (I(x) \to I(1+x))$ enthalten muss, wobei $t^{\mathbb{N}} = n$. Angenommen das wäre nicht der Fall, d.h. es gilt einerseits

$$\models \bigwedge_{i=1}^{l} \varphi_0(t_1^i, \dots, t_n^i) \to I(2_k), \tag{1}$$

aber für ein $n < 2_k$ gibt es kein t mit $t^{\mathbb{N}} = n$ in einer Formel $I(t) \to I(1+t)$. Interpretiere $I^{\mathbb{N}}(k) : \iff k \le n$ in \mathbb{N} , und $0, 1, +, 2^{(\cdot)}$ wie üblich. Dann gilt zwar die Hypothese von (1), aber $I(2_k)$ gilt nicht in diesem Modell.