Software Testing and Verification

Problem Set 6: Predicate Transforms – Solution Notes

- 1. a. Would. $[wp(s, y=z) = z>-5] => [\{t=5 \land -5 < z < 0\} \ s \ \{y=z\} \ strongly] => [\{t=5 \land z < 0\} \ s \ \{y=z+1 \land t=z\} \ is FALSE] since we know s will halt for at least four initial (integer) values of <math>z < 0$ with post-condition $(y=z+1 \land t=z)$ being false.
 - b. Would not. $[wlp(s, y=z) = z>-5] => [\{t=5 \land z>-5\} s \{y=z\}]$ weakly. But this does **not** imply that $\{t=5 \land z<0\}$ s $\{y=z+1 \land t=z\}$ is FALSE since s may not terminate for -5< z<0.
 - c. Would. In order for $\{t=5 \land z<0\}$ s $\{y=z+1 \land t=z\}$ to hold weakly, it is necessary that $(t=5 \land z<0) => \text{wlp}(s, y=z+1 \land t=z)$. But if $(t=5 \land z<0) \neq> \text{wlp}(s, y=z+1 \lor t=z)$, then it would also be the case that $(t=5 \land z<0) \neq> \text{wlp}(s, y=z+1 \land t=z)$, which is an even stronger condition.
 - d. Would not. ["sp(s, t=5 Λ z>-5) is undefined"] implies that s does not terminate when t=5 Λ z>-5 initially, which is consistent with the given assertion of **weak** correctness for -5<z₀<0. [sp(s, t=5 Λ z≤-5) => (y=z+1 Λ t=z)] implies that the specified post-condition, (y=z+1 Λ t=z), will hold on termination for z₀≤-5, which is also consistent with the given assertion.
- 2. For program S:

we need to determine:

$$wp(S, x \le y < z) = wp(S1; S2, x \le y < z)$$

$$= wp(S1, wp(S2, x \le y < z))$$

$$= wp(S1, wp(if temp>z then S2.1; S2.2, x \le y < z))$$

$$= wp(S1, (temp>z \land wp(S2.1; S2.2, x \le y < z)) \lor$$

$$(temp \le z \land x \le y < z))$$

- 3. ({P} s {Q}) does not imply (P=>wp(s,Q)) because weak correctness (which does NOT require that s terminate) does not imply strong correctness (which DOES require that s terminate).
- 4. a. wlp rule for while-do statements:

$wlp(while b do S, Q) \equiv wp(while b do S, Q) V \neg wp(while b do S, true)$

i. determining wp(while b do S, Q):

H₀:
$$J=Y \land Z=XY$$

H₁: $J<>Y \land wp(s, J=Y \land Z=XY)$
 $= J=Y-1 \land Z=X(Y-1)$

H₂: $J<>y \land wp(s, J=Y-1 \land Z=X(Y-1))$
 $= J=Y-2 \land Z=X(Y-2)$

H_k: $J=Y-k \land Z=X(Y-k)$

Therefore, H₀ V H₁ V H₂ V ... V H_k V ... simplifies to:

$$(J=Y \land Z=XY) \lor (J$$

ii. determining wp(while b do S, true):

H_k: J=Y-k

Therefore, $H_0 V H_1 V H_2 V ... V H_k V ...$ simplifies to: **J** \leq **Y**

Thus, wlp(while b do S, Q) \equiv (J \leq Y \wedge Z=XJ) V J>Y = **Z=XJ V J>Y**

b. Obviously, the wlp is weaker than the given invariant, i.e.,

$$(Z=XJ) => (Z=XJ V J>Y)$$

This makes sense since the wlp is the **weakest** condition on the initial state of program S ensuring state Q on termination *if* S *terminates*. If J>Y initially, the program will obviously not terminate, implying weak correctness *whether* Z=XJ *holds initially or not*.

5. We wish to prove: $(wlp(while b do s, Q) \land \sim b) => Q$. The left hand side of the implication, $(wp(while b do s, Q) \land \sim b)$, is:

6. a.
$$H_1 = wp(s, c \land Q)$$

 $H_2 = wp(s, \sim c \land H_1)$
 $H_3 = wp(s, \sim c \land H_2)$
 $H_k = wp(s, \sim c \land H_{k-1})$

b.
$$H_1 = wp(s, c \land Q) = wp(s, y=0 \land x=17)$$

 $= y-1=0 \land x+1=17$
 $= y=1 \land x=16$
 $H_2 = wp(s, \sim c \land H_1) = wp(s, y<>0 \land y=1 \land x=16)$
 $= y=2 \land x=15$
 $H_3 = y=3 \land x=14$
 $H_k = y=k \land x=(17-k)$
 $wp \text{ (in closed form)} = y>0 \land x=17-y$