Tutorial13

1. Develop the transposed form structure of a length-8 Type IV linear phase FIR filter making use of the coefficient symmetry.

A: Anti-symmetrical impulse response:

$$h[n] = -h[7-n], 0 \le n \le 7$$

- 2. Analyze the digital structure of Figure 1, and determine its transfer function H(z) = Y(z)/X(z).
- (a) Is this a canonic structure?
- (b) What should be the value of the multiplier coefficient K so that H(z) has a unity gain at $\omega=0$?
- (c) What should be the value of the multiplier coefficient K so that H(z) has a unity gain at $\omega=\pi$?

(d) Is there a difference between these two values of K? If not, why not?

A: (a) From the structure, we have: $U(z) = KX(z) + d_2V(z)z^{-2}$

$$V(z) = -d_1 V(z) z^{-1} + U(z)$$

$$Y(z) = d_1 V(z) z^{-1} + V(z) z^{-2} - d_2 V(z)$$

Thus, we have

$$V(z) = \frac{KX(z)}{1 + d_1 z^{-1} - d_2 z^{-2}} \Longrightarrow Y(z)$$

$$= \frac{KX(z)(-d_2 + d_1 z^{-1} + z^{-2})}{1 + d_1 z^{-1} - d_2 z^{-2}}$$

Therefore, the transfer function is given by

$$H(z) = \frac{Y(z)}{X(z)} = \frac{K(-d_2 + d_1 z^{-1} + z^{-2})}{1 + d_1 z^{-1} - d_2 z^{-2}}$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{K(-d_2 + d_1 z^{-1} + z^{-2})}{1 + d_1 z^{-1} - d_2 z^{-2}}$$

The structure is a 2nd-order filter, but using 4 delays (>2). Therefore the structure is not a canonic structure.

- (b)(c) K should be equal to 1 to have a unity gain at $\omega = 0$ and $\omega = \pi$.
- (d) There is no difference for the value of K, because the structure has a constant magnitude for all ω , as

$$\left|H(e^{j\omega})\right|^2 = H(z)H(z^{-1})\Big|_{z=e^{j\omega}} = K^2$$

when K = 1, the filter is an allpass filter

3. Develop a canonic direct-form realization of the transfer function

$$H(z) = \frac{3 + 4.5z^{-2} - 2.9z^{-3}}{1 + 2.2z^{-1} - 0.81z^{-3} + 5.1z^{-4}},$$

and then determine its transposed configuration.

The transposed structure is given by

- 5. (a) Determine the peak ripple values δ_p and δ_s for the peak passband ripple $\alpha_p = 0.24 \mathrm{dB}$ and minimum stopband attenuation $\alpha_s = 49 \mathrm{dB}$.
- (b) Determine the peak passband ripple α_p and minimum stopband attenuation α_s in dB for the peak ripple value $\delta_p=0.015$, and $\delta_s=0.04$.

A: (a):
$$\delta_p = 1 - 10^{-\frac{\alpha_p}{20}} = 1 - 10^{-0.012} = 0.0273$$

$$\delta_s = 10^{-\frac{\alpha_s}{20}} = 10^{-2.45} = 0.0035$$
(b) $\alpha_p = -20 \log_{10} (1 - \delta_p) = -20 \log_{10} 0.985 = 0.131 dB$

$$\alpha_s = -20 \log_{10} (\delta_s) = -20 \log_{10} 0.04 = 27.959 dB$$

6. Let G(z) be the transfer function of a lowpass digital filter with a passband edge at ω_p , stopband edge at ω_s , passband ripple of δ_p , and stopband ripple of δ_s , as indicated in figure on Slide 3 of Lecture Notes 10. Consider a cascade of two <u>identical</u> filters with a transfer function G(z). What are the <u>passband and stopband ripples</u> of the cascade at passband and stopband, respectively? Generalize the results for a cascade of M identical sections.

A:
$$H(z)=G^2(z)$$
, or equivalently $H(e^{j\omega})=G^2(e^{j\omega})$.
Thus, $|H(e^{j\omega})|=|G^2(e^{j\omega})|=|G(e^{j\omega})|^2$

Let δ_p and δ_s be the passband and stopband ripples of $G(e^{j\omega})$, respectively. Also, let $\delta_{p,2}$ and $\delta_{s,2}$ be the passband and stopband ripples of $H(e^{j\omega})$, respectively.

Thus, the maximum and minimum values in passband of $H(e^{j\omega})$ are $(1+\delta_p)^2$ and $(1-\delta_p)^2$, respectively. So the maximum ripple in the passband is

$$\delta_{p,2} = \max((1+\delta_p)^2 - 1, 1 - (1-\delta_p)^2) = \delta_p^2 + 2\delta_p$$

The maximum ripple in the stopband is $\delta_{s,2} = \delta_s^2$.

For a cascade of
$$M$$
 sections, $\delta_{p,M} = \left(1 + \delta_p\right)^M - 1$, $\delta_{s,M} = \delta_s^M$

7. The causal IIR digital transfer function

$$G_a(z) = \frac{4(z^2 + z - 2)}{10z^2 + 4z + 6}$$

was designed using bilinear transformation with k=5. Determine its prototype causal analog transfer function.

Bilinear Transformation
$$s = k \left(\frac{1-z^{-1}}{1+z^{-1}}\right), k > 0, \quad \text{or } z = \frac{k+s}{k-s}$$

A: Substitute $z = \frac{k+s}{k-s} = \frac{5+s}{5-s}$ into $G_a(z)$, we have

$$H_a(s) = \frac{4\left(\left(\frac{5+s}{5-s}\right)^2 + \frac{5+s}{5-s} - 2\right)}{10\left(\frac{5+s}{5-s}\right)^2 + 4\left(\frac{5+s}{5-s}\right) + 6} = \frac{-2s^2 + 30s}{3s^2 + 10s + 125}$$

- 8. A first-order analog Butterworth highpass filter has an s-Transform transfer function $H_a(s) = s/(s+10)$.
- (a) Determine the 3-dB cutoff frequency of the analog filter.
- (b) Use bilinear transformation to transform the analog filter into a highpass digital filter transfer function with 250 Hz sampling frequency and 80 Hz 3-dB cutoff frequency.

A: (a)
$$H_a(j\Omega) = \frac{j\Omega}{j\Omega + 10} \Longrightarrow |H_a(j\Omega)|^2$$

$$=\frac{\Omega^2}{\Omega^2+100} \xrightarrow{\Omega\to\infty} |H_\alpha(j\Omega)|^2 = 1$$
, i.e., the passband gain is 1.

3-dB cutoff frequency is the frequency where $|H_a(j\Omega)|^2 = \frac{1}{2}$. Therefore, $\Omega_c = 10$ rad/s.

(b) Since the analog filter has a response $H_a(j0) = 0$, and $H_a(j\infty) = 1$, it's a highpass filter.

The cutoff frequency of the digital filter is $\omega_c = \frac{80}{250} \times 2\pi = 0.64\pi$, mapping $\Omega_c = 10$ rad/s to $\omega_c = 0.64\pi$ Therefore (page 512),

$$10 = k \tan\left(\frac{0.64\pi}{2}\right)$$

Then we have k = 6.3462 and

$$H(z) = \frac{6.3462 \frac{1 - z^{-1}}{1 + z^{-1}}}{6.3462 \frac{1 - z^{-1}}{1 + z^{-1}} + 10} = \frac{0.3882(1 - z^{-1})}{1 + 0.2235z^{-1}}$$

9. Another bilinear transformation that can be used to design digital filters from an analog filter is given by

$$s = k \left(\frac{1 + z^{-1}}{1 - z^{-1}} \right)$$
Bilinear Transformation
$$s = k \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right), k > 0, \quad \text{or } z = \frac{k + s}{k - s}$$

- (a) Develop the mapping of a point $s=\sigma_0+j\Omega_0$ in the s-plane to a point z in the z-plane.
- (b) Does this mapping have all the desirable properties indicated on Slide 14 of lecture notes 10?
- (c) What is the relation of the above linear transformation to the bilinear transformation given on slide 16 of the lecture notes 10?
- (d) Express the normalized digital angular frequency ω as a function of the normalized analog angular frequency Ω .
- (e) If $H_a(s)$ is a causal analog lowpass transfer function, what is the type of the digital transfer function G(z) that is obtained by the above bilinear transformation?

A: (a)
$$s = k \left(\frac{1+z^{-1}}{1-z^{-1}} \right) \Longrightarrow z = \frac{s+k}{s-k}$$
. For $s = \sigma_0 + j\Omega_0$, $z = \frac{(k+\sigma_0) + j\Omega_0}{(-k+\sigma_0) + j\Omega_0}$

(b) $|z|^2 = \frac{(k+\sigma_0)^2 + \Omega_0^2}{(-k+\sigma_0)^2 + \Omega_0^2}$. For point on imaginary axis of s-plane, i.e., $\sigma_0 = 0$, we have $|z|^2 = \frac{(k)^2 + \Omega_0^2}{(-k)^2 + \Omega_0^2} = 1$, i.e., on unit circle of z-plane.

For point on left half s-plane, i.e., $\sigma_0 < 0$, we have $|z|^2 = \frac{(k+\sigma_0)^2 + \Omega_0^2}{(-k+\sigma_0)^2 + \Omega_0^2} < 1$, i.e., inside the unit circle of z-plane.

Therefore, this mapping has all the desirable properties on Slide 14 of lecture notes 10.

(c) Let $s=f_1(z)=k\left(\frac{1-z^{-1}}{1+z^{-1}}\right)$ be the bilinear transformation given on Slide 16, and $s=f_2(z)=k\left(\frac{1+z^{-1}}{1-z^{-1}}\right)$ the transformation above. $f_1(z)=f_2(-z)$.

(d) When
$$j\Omega=k\frac{1+e^{-j\omega}}{1-e^{-j\omega}}=k\frac{e^{\frac{j\omega}{2}}+e^{-\frac{j\omega}{2}}}{e^{\frac{j\omega}{2}}-e^{-\frac{j\omega}{2}}}=-jk\cot\frac{\omega}{2},$$
 Therefore, $\omega=-2\cot^{-1}\frac{\Omega}{k}$, or $\Omega=-k\cot\frac{\omega}{2}$ (e) When $\Omega=0\to\omega=\pm\pi$, and when $\Omega=\pm\infty\to\omega=0$. So, a lowpass analog filter is mapped to a highpass digital filter.