Independent Voltage Source

Figure 1: Independent Voltage Source Element.

```
Form:
VnameN_{+}N_{-}[[DC] \ [DCvalue] \ [AC[ACmagnitude[ACphase]]] \ [DIST0F1[F1magnitude[F1phase]]]
[DISTOF2[F2magnitude[F2phase]]]]
            N_{+}
                 is the positive voltage source node.
                  is the negative voltage source node.
                  is the optional keyword for the dc value of the source.
      DCvalue
                  is the dc voltage value of the source. (Units: V; Optional; Default: 0; Symbol: V_{DC})
             AC
                  is the keyword for the ac value of the source.
 AC magnitude
                  is the ac magnitude of the source used during ac analysis. That is, it is the peak
                  ac voltage so that the ac signal is ACmagnitude \sin(\omega t + ACphase). ACmagnitude is
                  ignored for other types of analyses. (Units: V; Optional; Default: 1; Symbol:V_{AC})
      ACphase
                  is the ac phase of the source. It is used only in ac analysis.
                  (Units: Degrees; Optional; Default: 0; Symbol:\phi_{AC})
      DISTOF1
                  is the distortion keyword for distortion component 1 which has frequency F1.
  F1 magnitude
                  is the magnitude of the distortion component at F1. See .DISTOF1 keyword above.
                  (Units: V; Optional; Default: 1; Symbol: V_{F1})
       F1phase
                  is the phase of the distortion component at F1. See .DISTOF1 keyword above.
                  (Units: Degrees; Optional; Default: 0; Symbol: \phi_{F1})
      DISTOF2
                  is the distortion keyword for distortion component 2 which has frequency F2.
  F2magnitude
                  is the magnitude of the distortion component at F2. See .DISTOF2 keyword above.
                  (Units: V; Optional; Default: 1; Symbol: V_{F2})
                  is the phase of the distortion component at F2. See .DISTOF2 keyword above.
                  (Units: Degrees; Optional; Default: 0; Symbol: \phi_{F2})
Exponential:
\mathsf{EXP}(V_1 \ V_2
             [T_{D1} \mid \tau_1 \mid T_{D2} \mid \tau_2 \mid T_2]
```

Parameters:

Example:

VSIGNAL 2 0 EXP(0.1 0.8 1 0.35 2 1)

Description:

The exponential transient is a single-shot event specifying two exponentials. The voltage is

Name	Description	Units	Default
V_1	initial voltage	V	REQUIRED
V_2	pulsed voltage	V	REQUIRED
T_{D1}	rise delay time	s	0.0
$ au_1$	rise time constant	s	TSTEP
T_{D2}	fall delay time	s	TSTEP
$ au_2$	fall time constant	s	TSTEP

 V_1 for the first T_{D1} seconds at which it begins increasing exponentially towards V_2 with a time constant of τ_1 seconds. At time T_{D2} the voltage exponentially decays towards V_1 with a time constant of τ_2 . That is,

$$v = \begin{cases} V_1 & t \leq T_{D1} \\ V_1 + (V_2 - V_1)(1 - e^{(-(t - T_{D1})/\tau_1)}) & T_{D1} < t \leq T_{D2} \\ V_1 + (V_2 - V_1)(1 - e^{(-(t - T_{D1})/\tau_1)}) + (V_1 - V_2)(1 - e^{(-(t - T_{D2})/\tau_2)}) & t > T_{D2} \end{cases}$$

$$\tag{1}$$

Figure 2: Voltage source exponential (EXP) waveform]Voltage source exponential (EXP) waveform for EXP(0.1 0.8 1 0.35 2 1)

Notes:

The actual element in TRANSIM is the vexp element. See TRANSIM element vexp for full documentation.

Credits:

Name Affiliation Date Logo

Satish Uppathil NC State University Sept 2000 NC STATE UNIVERSITY