6.1

1

In each of (b)–(d), answer the following questions: Is $A \subseteq B$? Is $B \subseteq A$? Is either A or B a proper subset of the other?

b

$$A = \{3, \sqrt{5^2 - 4^2}, 24 \mod 7\}$$

$$B = \{8 \mod 5\}$$

✓ Answer ∨

$$A = \{3\}$$

$$B = \{3\}$$

$$A\subseteq B$$

$$B \subseteq A$$

$$A \equiv B$$

$$A \not\subset B$$

$$B\not\subset A$$

d

$$A = \{a,b,c\}$$

$$B = \{\{a\},\{b\},\{c\}\}$$

✓ Answer

$$A \nsubseteq B$$

$$B \nsubseteq A$$

4

$$A=\{n\in {f Z}|n=5r,r\in {f Z}\}$$

$$B=\{m\in {f Z}|m=20s, s\in {f Z}\}$$

Prove or disprove each of the following statements.

```
a
```

 $A\subseteq B$

✓ Answer

False, $5 \in A$, but $5 \notin B$

b

 $B\subseteq A$

✓ Answer

$$egin{aligned} B &= \{m \in \mathbf{Z} | m = 20s, s \in \mathbf{Z} \} \ B &= \{m \in \mathbf{Z} | m = 5(4s), s \in \mathbf{Z} \} \ ext{Let } r &= 4s \in \mathbf{Z} \ B &= \{m \in \mathbf{Z} | m = 5r, r = 4s, s \in \mathbf{Z} \} \end{aligned}$$

$$A=\{m\in \mathbf{Z}|m=5r,r\in \mathbf{Z}\}$$

$$B\subseteq A$$

12

Let the universal set be \mathbf{R} , the set of all real numbers, and let

$$A=\{x\in\mathbf{R}|-3\leq x\leq 0\}$$

$$B = \{ x \in \mathbf{R} | -1 < x < 2 \}$$

$$C = \{x \in \mathbf{R} | 6 < x \leq 8\}$$

Find each of the following:

a

 $A \cup B$

✓ Answer

$$A\cup B=\{x\in \mathbf{R}|-3\leq x<2\}$$

b

 $A \cap B$

✓ Answer

$$A\cap B = \{x\in \mathbf{R}| -1 < x \leq 0\}$$

g

$$A^C\cap B^C$$

✓ Answer

$$\begin{split} &A^C = \{x \in \mathbf{R}| - 3 > x \text{ or } x > 0\} \\ &B^C = \{x \in \mathbf{R}| - 1 \geq x \text{ or } x \geq 2\} \\ &A^C \cap B^C = \{x \in \mathbf{R}| - 3 > x \text{ or } x \geq 2\} \end{split}$$

$$(A \cup B)^C$$

✓ Answer

$$A \cup B = \{x \in \mathbf{R} | -3 \le x < 2\}$$

 $(A \cup B)^C = \{x \in \mathbf{R} | -3 > x \text{ or } x \ge 2\}$

25

$$R_i = \left\{x \in \mathbf{R} | 1 \leq x \leq 1 + rac{1}{i}
ight\} = \left[1, 1 + rac{1}{i}
ight] \qquad : i \in \mathbf{Z}$$

a

$$igcup_{i=1}^4 R_i = ?$$

✓ Answer

[1, 2]

C

Are R_1, R_2, R_3, \ldots mutually disjoint? Explain.

✓ Answer

No

 $R_1 = [1, 2]$

$$R_2=[1,1.5]$$

$$R_3 = \left[1, \frac{4}{3}\right]$$

All three of these sets have $\left[1,\frac{4}{3}\right]$ within them, therefore they are not disjoint

d

$$igcup_{i=1}^n R_i = ?$$

✓ Answer

[1, 2]

f

$$igcup_{i=1}^{\infty} R_i = ?$$

✓ Answer

[1, 2]

29

Let ${f R}$ be the set of all real numbers. Is $\{{f R}^+,{f R}^-,\{0\}\}$ a partition of ${f R}$? Explain your answer.

✓ Answer

Yes, because all numbers within ${f R}$ are within one of the elements of that partition. In other words, all elements are mutually disjoint, and the sum of all the elements are equal to ${f R}$

6.2

Use an element argument to prove each statement in 17-18. Assume that all sets are subsets of a universal set U.

17

For all sets A, B, C, if $A \subseteq B$ then $A \cup C \subseteq B \cup C$.

```
 A ⊆ B 
 x ∈ A → x ∈ B 
 B ⊆ B ∪ C 
 x ∈ A → x ∈ B → x ∈ B ∪ C 
 C ⊆ B ∪ C 
 x ∈ C → x ∈ B ∪ C 
 x ∉ B ∪ C → x ∉ C \land x ∉ A 
 x ∈ C \lor x ∈ A → x ∈ B ∪ C 
 x ∈ C ∪ A → x ∈ B ∪ C 
 A ⊆ B → A ∪ C ⊆ B ∪ C
```

18

For all sets A and B, if $A\subseteq B$ then $B^C\subseteq A^C$

25

Find the mistake in the following "proof" that for all sets A and B, $(A-B)\cup(A\cap B)\subseteq A$

"Proof: Suppose A and B are any sets, and suppose $x \in (A-B) \cup (A \cap B)$. If $x \in A$ then $x \in A - B$ and so, by definition of difference, $x \in A$ and $x \notin B$ In particular, $x \in A$, and, therefore $(A - B) \cup (A \cap B) \subseteq A$ by definition of subset."

```
\checkmark Answer x \in A 	othe x \in A - B
```

42

For every positive integer n, if A_1, A_2, A_3, \ldots and B are any sets, then

$$igcap_{i=1}^n (A_i-B) = \left(igcap_{i=1}^n A_i
ight) - B$$

✓ Answer

$$igcap_{i=1}^n (A_i-B) = igcap_{i=1}^n (A_i\cap B^C) = igcap_{i=1}^n (A_i) \cap igcap_{i=1}^n (B^C)$$
 $= igcap_{i=1}^n (A_i) \cap B^C$
 $igcap_{i=1}^n (A_i-B) = igl(igcap_{i=1}^n A_iigr) - B$

9.2

11

C

How many bit strings of length 8 begin and end with a 1?

✓ Answer

 $2^6 = 64$

17

C

How many integers from 1000 through 9999 have distinct digits?

✓ Answer

10P4 - 9P3 = 4536

e

What is the probability that a randomly chosen four-digit integer has distinct digits? has distinct digits and is odd?

✓ Answer

 $\frac{4536}{9000}$

21

Suppose A is a set with m elements and B is a set with n elements.

a

How many relations are there from A to B? Explain.

✓ Answer

The Cardinality of the power set of the full relation of A and B, As this gives us the length of the number of sets of any combination of all possible mappings from A to B.

$$|P(A \times B)|$$

b

How many functions are there from A to B? Explain.

✓ Answer

Each element is A must be mapped to one of the elements of B |A||B|

C

What fraction of the relations from *A* to *B* are functions?

✓ Answer

$$|P(A imes B)| = |P(|A||B|)| = 2^{|A||B|}$$
 $|A||B|$ $rac{|A||B|}{2^{|A||B|}}$

31

d

If p_1, p_2, \ldots, p_m are distinct prime numbers and a_1, a_2, \ldots, a_m are positive integers, how many distinct positive divisors does $p_1^{a_1} p_2^{a_2} \ldots p_m^{a_m}$ have?

✓ Answer

Each prime can have $[0,a_n]$ multiples, so for m primes, there are $\prod_{n=1}^m (a_n+1)$ positive divisiors

e

What is the smallest positive integer with exactly 12 divisors?

✓ Answer

12 must be the product of $n\in {\bf Z}$ integers, where each integer $m\geq 1$ must satisfy the restriction $\prod\limits_{o=1}^n(m_o+1)$

12 may be factorized as

$$\{\{1,12\},\{2,6\},\{3,4\}\}$$

Therefore m may be

$$\{\{1,5\},\{2,3\}\}$$

The smallest number with m as exponents for prime numbers would be

$$2^53 = 96 \text{ or } 2^33^2 = 72$$

72 has $\{1, 2, 4, 8, 3, 6, 12, 24, 9, 18, 36, 72\}$ as positive divisors

Therefore 72 is the smallest positive integer with 12 divisors

39

b

How many ways can six of the letters of the word ALGORITHM be selected and written in a row?

✓ Answer

There are 9 letters

$$9P6 = 60480$$

How many ways can six of the letters of the word ALGORITHM be selected and written in a row if the first two letters must be OR?

✓ Answer

7 letters left, choosing 4 7P4 = 840

9.3

2

b

How many strings of hexadecimal digits consist of from two through five digits?

✓ Answer

 $16^5 - 16 = 1048560$

7

At a certain company, passwords must be from 3–5 symbols long and composed from the 26 uppercase letters of the Roman alphabet, the ten digits 0–9, and the 14 symbols !, @, #, \$, %, $^$, &, $^$, (,), -, +, {, and }.

C

How many passwords have at least one repeated symbol?

✓ Answer

50 possible characters

 $50^3 + 50^4 + 50^5 = 318875000$ possible passwords 50P3 + 50P4 + 50P5 = 259896000 passwords with repeated symbols

d

What is the probability that a password chosen at random has at least one repeated symbol?

17

a

How many strings of four hexadecimal digits do not have any repeated digits?

```
\checkmark Answer 16P4 = 43680
```

b

How many strings of four hexadecimal digits have at least one repeated digit?

```
\checkmark Answer 16^4 - 16P4 = 21856
```

C

What is the probability that a randomly chosen string of four hexadecimal digits has at least one repeated digit?

23

b

Suppose an integer from 1 through 1000 is chosen at random. Find the probability that the integer is a multiple of 4 or a multiple of 7.

```
There are 250 multiples of 4
There are 142 multiples of 7
There are 35 multiples of both at the same time
There is a probability of \frac{357}{1000} to get a multiple of 4 or 7
```

C

How many integers from 1 through 1000 are neither multiples of 4 nor multiples of 7?

