UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma D - 2018/1Prova da área I

1-6	7	8	Total

Nome:	Cartão:	

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas

- $\bullet~$ Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Tabela do operador $\vec{\nabla}$:

f = f(x,y,z) e g = g(x,y,z) são funções escalares; $\vec{F} = \vec{F}(x,y,z)$ e $\vec{G} = \vec{G}(x,y,z)$ são funções vetoriais.

1.	$\vec{\nabla}\left(f+g\right) = \vec{\nabla}f + \vec{\nabla}g$
2.	$\vec{\nabla} \cdot \left(\vec{F} + \vec{G} \right) = \vec{\nabla} \cdot \vec{F} + \vec{\nabla} \cdot \vec{G}$
3.	$\vec{\nabla} \times \left(\vec{F} + \vec{G} \right) = \vec{\nabla} \times \vec{F} + \vec{\nabla} \times \vec{G}$
4.	$\vec{\nabla}\left(fg\right) = f\vec{\nabla}g + g\vec{\nabla}f$
5.	$\vec{\nabla} \cdot \left(f \vec{F} \right) = \left(\vec{\nabla} f \right) \cdot \vec{F} + f \left(\vec{\nabla} \cdot \vec{F} \right)$
6.	$ec{ abla} imes\left(fec{F} ight)=ec{ abla}f imesec{F}+fec{ abla} imesec{F}$
7.	$\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$
	onde $\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o operador laplaciano
8.	$ec{ abla} imes\left(ec{ abla}f ight)=0$
9.	$\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{F} \right) = 0$
10.	$ec{ abla} imes\left(ec{ abla} imesec{F} ight)=ec{ abla}\left(ec{ abla}\cdotec{F} ight)-ec{ abla}^2ec{F}$
11.	$\vec{\nabla} \cdot \left(\vec{F} \times \vec{G} \right) = G \cdot \left(\vec{\nabla} \times \vec{F} \right) - F \cdot \left(\vec{\nabla} \times \vec{G} \right)$
12.	$\vec{\nabla} \times \left(\vec{F} \times \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} - \vec{G} \left(\vec{\nabla} \cdot \vec{F} \right) - \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \left(\vec{\nabla} \cdot \vec{G} \right)$
13.	$\vec{\nabla} \left(\vec{F} \cdot \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} + \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + + \vec{F} \times \left(\vec{\nabla} \times \vec{G} \right) + \vec{G} \times \left(\vec{\nabla} \times \vec{F} \right)$

Curvatura, torção e aceleração:				
Nome	Definição			
Curvatura	$\kappa = \left\ \frac{d\vec{T}}{ds} \right\ = \left\ \frac{\frac{d\vec{T}}{dt}}{\frac{ds}{dt}} \right\ = \frac{\ \vec{r}'(t) \times \vec{r}''(t)\ }{\ \vec{r}''(t)\ ^3}$			
Torção	$\tau = -\frac{d\vec{B}}{ds} \cdot \vec{N} = \frac{(\vec{r}'(t) \times \vec{r}''(t)) \cdot \vec{r}'''(t)}{\ \vec{r}'(t) \times \vec{r}''(t)\ ^2}$			
Módulo da Torção	$ au = \left\ \frac{d\vec{B}}{ds} \right\ = \left\ \frac{\frac{d\vec{B}}{dt}}{\frac{ds}{dt}} \right\ $			
Aceleração normal	$a_N = \frac{\ \vec{a} \times \vec{v}\ }{v} = \frac{v^2}{\rho} = \kappa v^2$			
Aceleração tangencial	$a_T = \frac{\vec{a} \cdot \vec{v}}{v} = \frac{dv}{dt}$			

Equações de Frenet-Serret:

$\frac{d\vec{T}}{ds}$	=		$\kappa ec{N}$	
$\frac{d\vec{N}}{ds}$	=	$-\kappa \vec{T}$		$+\tau\vec{B}$
$\frac{d\vec{B}}{ds}$	=		$-\tau \vec{N}$	

• Questão 1 (1.0 ponto) Considere as curvas C_1 , C_2 , C_3 e C_4 , com curvaturas κ_1 , $\kappa_2,\,\kappa_3$ e $\kappa_4,$ respectivamente. Sabe-se que a curva C_2 e C_4 possuem o mesmo raio de curvatura no ponto (0,0). Na primeira coluna, marque o item que apresenta todas as curvas com curvatura constante e, na segunda, a magnitude das curvaturas no ponto de encontro entre todas as curvas.

Curvas com curvatura constante Curvatura no ponto de encontro de todas as curvas

- () Somente C_2 .
- () $\kappa_1 > \kappa_2 > \kappa_3 > \kappa_4$.
- () Somente C_2 e C_3 .
- () $\kappa_1 < \kappa_2 < \kappa_3 < \kappa_4$.
- () Somente C_2 e C_1 .
- () $\kappa_4 < \kappa_1 < \kappa_2 < \kappa_3$.
- (X) Somente C_2 , C_3 e C_1 . (X) $\kappa_1 < \kappa_2 = \kappa_4 < \kappa_3$.
- () Somente C_4 , C_2 e C_1 .
- () $\kappa_3 < \kappa_2 = \kappa_4 < \kappa_1$.
- () C_4 , C_3 , C_2 e C_1 .
- () $\kappa_1 = \kappa_2 = \kappa_3 = \kappa_4$.

• Questão 2 (1.0 ponto) Considere três pontos sobre a curva ao lado, nomeados de P_1 , P_2 e P_3 , dispostos respectivamente no sentido positivo da curva, e em cada ponto o esboço do triedro de Frenet-Serret. Considere um partícula se deslocando sobre a curva no sentido positivo com velocidade escalar estritamente decrescente. Marque na primeira coluna o correto item sobre a aceleração da partícula e, na segunda, a correta afirmação sobre o sinal da torção em cada pedaço da

Aceleração

- () A componente normal da aceleração é negativa.
- (X) A componente tangencial da aceleração é negativa.
- () A componente tangencial da aceleração é positiva.
- () A norma do vetor aceleração é constante em todos os pon-
- () A norma do vetor aceleração tem derivada zero em todos () A torção é zero nos pontos P_1 , P_2 e P_3 . os pontos.
- - () A torção é sempre positiva.
 - (X) A torção é sempre negativa.
 - () A torção é positiva entre P_1 e P_2 e negativa entre P_2 e P_3 .
 - () A torção é negativa entre P_1 e P_2 e positiva entre P_2 e P_3 .

• Questão 3 (1.0 ponto) Seja $\vec{F} = (x^2 + y^2 + z^2)(x\vec{i} + y\vec{j} + z\vec{k})$ um campo vetorial e $f = x^2 + y^2 + z^2$ um campo escalar. Considere

Marque na primeira coluna uma expressão para $\iint_S \vec{G} \cdot \vec{\eta} dS$ e, na segunda, o valor de $\int_C \vec{F} \cdot \vec{dr}$, onde S é a esfera unitária centrada na origem orientada para fora e C é a circunferência unitária no plano xy centrada na origem orientada no sentido horário.

() 0

(X)0

() 2π

() 1

() 4π

() -1

 $(X) 8\pi$

() 2

() 16π

 $(\)\ -2$

• Questão 4 (1.0 ponto) Considere a superfície S aberta dada na figura ao lado, limitada pelo curva C. A superfície S é dada por uma função z=f(x,y), tem simetria axial em relação ao eixo z e o domínio de f é $[-1,2]\times[-1,2]$. A superfície S está orientada no sentido de \vec{k} e a curva C está positivamente orientada com respeito a S. Considere o campo $\vec{F}=(x+1)\vec{j}-10\vec{k}$ e as seguintes integrais:

$$A = \int_C \vec{F} \cdot d\vec{r}$$

е

$$B = \iint_{S} \vec{F} \cdot \vec{n} dS.$$

Marque na primeira coluna o correto sinal de A e, na segunda, o correto sinal de B.

Sinal de A

- (X) A > 0.
 - () A = 0.
 - () A < 0.
 - () Embora $A \neq 0$, não é possível saber seu sinal.
 - () Não há informações suficientes para estimar ${\cal A}.$

Sinal de B

- () B > 0.
- () B = 0.
- (X) B < 0.
 - () Embora $B \neq 0$, não é possível saber seu sinal.
 - () Não há informações suficientes para estimar B.

• Questão 5 (1.0 ponto) Dado o campo conservativo $\vec{F} = (y^2z^3 + 3y^2x^2z)\vec{i} + (2xyz^3 + 2x^3yz)\vec{j} + (3y^2xz^2 + x^3y^2)\vec{k}$, marque na primeira coluna o pontecial $\phi(x,y,z)$ e, na segunda, o valor $\int_C \vec{F} \cdot d\vec{r}$, onde C é a curva $\vec{r} = t\vec{i} + \vec{j} + t^2\vec{k}$, $0 \le t \le 1$.

(X)
$$xy^2z^3 + x^3y^2z$$
.

()
$$x^2y^2z^2$$
.

()
$$x^3y^3z^3$$
.

()
$$3x^2y^2z^2$$
.

()
$$2xy^2z^3 + 2x^3y^2z$$
.

() 4.

• Questão 6 (1.0 ponto) Considere o campo vetorial $\vec{F} = \vec{i} + y\vec{j} - \vec{k}$ e a superfície S formada pelas seis faces do cubo de lado 2 $(x = \pm 1, y = \pm 1 \text{ e } z = \pm 1)$, orientada para fora. Chamamos de S_1 apenas a face z = -1 do cubo, orientado no sentido de $-\vec{k}$. Na primeira coluna marque o item que corresponde $\iint_{S_1} \vec{F} \cdot \vec{n} dS$ e, na segunda, $\oiint_{S} \vec{F} \cdot \vec{n} dS$.

$$(\)\ -4$$

- Questão 7 (2.0 ponto) Considere a função $f(x) = 2x^3 + 3x^2 12x$.
 - a) Calcule o ponto onde a curvatura é zero.
 - b) Discuta a existência dos vetores \vec{T} , \vec{N} , \vec{B} no ponto do item a).
 - c) Encontre o círculo de curvatura referente ao ponto (1, -7) (indique o centro e o raio).

Resp

a) Primeiro observamos que:

$$k(x) = \frac{|f''(x)|}{1 + f'(x)^2} = \frac{12x + 6}{(1 + (6x^2 + 6x - 12)^2)}.$$

Assim k(x) = 0 implica 12x + 6 = 0, isto é $x = -\frac{1}{2}$.

b) Aqui vale a pena trabalhar com a forma paramétrica:

$$\vec{r}(t) = t\vec{i} + (2t^3 + 3t^2 - 12t)\vec{j}$$

 $\vec{r}'(t) = \vec{i} + (6t^2 + 6t - 12)\vec{j}$

Assim $\vec{T} = \frac{\vec{r}'(t)}{\|\vec{r}''(t)\|}$. Como $\|\vec{r}'(t)\| = \sqrt{1 + (6t^2 + 6t - 12)^2} > 1 > 0$, o vetor \vec{T} está sempre bem definido. No entanto, neste ponto de curatura nula, isto é $\left\| \frac{d\vec{T}}{ds} \right\| = 0$, o vetor normal dado por:

$$\vec{N} = \frac{\frac{d\vec{T}}{ds}}{\|\frac{d\vec{T}}{ds}\|}$$

não está definido, e portanto, \vec{B} tampouco está.

c) Primeiro calculamos a curatura e o raio de curatura no ponto x = 1:

e o raio de curatura no ponto
$$x=1$$
:
$$k(x) = \frac{12x+6}{(1+(6x^2+6x-12)^2)} = \frac{12+6}{(1+(6+6-12)^2)} = 18,$$

$$\rho(x) = \frac{1}{k(x)} = \frac{1}{18}.$$

É fácil ver que a curva é plana com vetor binormal $\vec{B}=\vec{k},$ além disso:

$$\vec{r}'(t) = \vec{i} + (6t^2 + 6t - 12) \vec{j} = \vec{i} + (6 + 6 - 12) \vec{j} = \vec{i}$$

portanto $\vec{N}=\vec{T}\times\vec{B}=\vec{j}$. Assim o raio do círculo de curvatura é 1/18 e seu centro é dado por:

$$(1,-7) + \rho \vec{N} = (1,-125/18)$$

 \bullet Questão 8 (2.0 ponto) Considere a superfície Saberta dada na figura ao lado, orientada no sentido de \vec{k} . Seja Ca curva no plano z=0 que limita S. A equação da superfície é dada por

$$z^2 + 3z^3 + e^{-7z} = 4 - x^2 - y^2.$$

Considere o campo $\vec{F} = -(y+z^2)\vec{i} + x\vec{j} + z^2yx\vec{k}$. Calcule

$$\iint_{S} \vec{\nabla} \times \vec{F} \cdot \vec{n} dS.$$

Dica: Use o teorema de Stokes.

Resp:

Pelo Teorema de Stokes, temos:

$$\iint_{S} \vec{\nabla} \times \vec{F} \cdot \vec{n} dS = \oint_{C} \vec{F} \cdot d\vec{r}$$

Onde C é a fronteira da superfície S orientada pela regra da mão direita, isto é seguinte circunferência:

$$\vec{r}(t) = \sqrt{3}\cos(t)\vec{i} + \sqrt{3}\sin(t)\vec{j}, \quad 0 \le t \le 2\pi, \quad z = 0.$$

(REVISAR)

$$\begin{split} I &= \oint_C \vec{F} \cdot d\vec{r} = \int_0^{2\pi} \vec{F} \cdot \vec{r}(t) dt \\ &= \int_0^{2\pi} \left[-(y+z^2)(-\sqrt{3}\sin(t)) + x(\sqrt{3}\cos(t)) \right] dt \\ &= \int_0^{2\pi} \left[3\sin^2(t) + 3\cos^2(t) \right] dt = 6\pi \end{split}$$