Student Name R.Sai Nishit Student Roll Number 2116190701179

Data Visualization and Pre-processing

1. Download the dataset

2. Load Data

```
df=pd.read_csv("Churn_Modelling.csv")
df.head()
| Real-mode | Telephone | Tele
```

3. Perform BelowVisualizations. • Univariate Analysis • Bi - Variate Analysis • Multi - Variate Analysis

Univariate Analysis

df.hist(column="Age",grid=False,edgecolor='black')
}]: array([{-AxesSubplot:title={'center':'Age'}>}], dtype=object) Age

Multi - Variate Analysis

sns.countplot(x="Tenure",data=df)

4. Perform descriptive statistics on the dataset

	mean	5000.50000 1.569094e+07	650.528800	38.921800	5.012800 7648	35.889288	1.530200	0.70550	0.515100	100090.239881	0.203700	
	std	2886.89568 7.1936194+04	96.653299	10.487806	2.892174 6239	97.405202	0.581654	0.45584	0.499797	57510.492818	0.402769	
	min	1.00000 1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000	0.000000	
	25%	2500.75000 1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	0.000000	
	50%	5000.50000 1.569074e+07	652.000000	37.000000	5.000000 9719	88.540000	1.000000	1.00000	1.000000	100193.915000	0.000000	
	75%	7500.25000 1.575323e+07	718.000000	44.000000	7.000000 1276	44.240000	2.000000	1.00000	1.000000	149388.247500	0.000000	
	max	10000.00000 1.581569e+07	850.000000	92.000000	10.000000 2508	98.090000	4.000000	1.00000	1.000000	199992.480000	1.000000	
	5. Handle the Missing values											

1]: df.isnull().sum()

1]: Rowbumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard TaActivMomber EstimatedSalar Exited dtype: int64 6. Find the outliers and replace the outliers

<AxesSubplot:xlabel='CreditScore'>

From Stream.natesets import ion_content

ol = mp.percentic(df("cestificores"), 25, interpolation = "midpoint")

ol = mp.percentic(df("cestificores"), 25, interpolation = "midpoint")

ol = mp.percentic(df("cestificores"), 27, interpolation = "midpoint")

old = mp. where (df("cestificores") >= (0.01.5*(OM))

old = mp.where(df("cestificores") >= (0.01.5*(OM))

off.drop(upper(0), implace = Trues)

print("flew Shapes", 3fd.hapes)

sms.boxplot(ims"(restificores", data-df)

old Shapes (1984, 14) Old Shape: (9984,14) New Shape: (9984,14) <AxesSubplot:xlabel='CreditScore'>

7. Check for Categorical columns and perform encoding

3 4 15701554 Bool 690 France Female 99 1 0.00 2 0 0 93826 63 0 4 5 15779888 Mitchnill 850 Spain Female 43 2 125510 22 1 1 1 79084 10 0

 $\$. \ \mbox{Split}$ the data into dependent and independent variables 1]: A = df.iloc[:, :-1].values
 print(A)

[[1 15634602 'Hargrave' ... 1 1 101348.88] [2 15647311 'Hill' ... 0 1112542.58] [3 15619304 'Onio' ... 1 0113931.57]

... [9998 15584532 'Liu' ... 0 1 42085.58] [9999 15682355 'Sabbatini' ... 1 0 92888.52] [10000 15628319 'Walker' ... 1 0 38190.78]]

[1 0 1 ... 1 1 0] 9. Scale the independent variables

from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() df[["CustomerId"]] = scaler.fit_transform(df[["CustomerId"]])

Wimbber Customerid Surname CreditScore Geograp
1 0.175616 Hargrave 615
2 0.124644 Hill 608
3 0.040645 Boni 699
5 0.688778 Mitchell 850
9996 0.162119 Obijiaku 771
9997 0.018763 Obinatena 516
9999 0.466437 Sabbatini 772

96270.64 0 101699.77 0 42085.58 1 92888.52 1

9998	9999 0.466	637 S	abbatini	772	Germany Male 42
9999	10000 0.250	483	Walker	792	France Female 28
	Tenure Balance		ucts HasCrCa:	d IsActiveN	ember \
0	2 0.	.00	1	1	1
1	1 83807.	.86	1	0	1
2	8 159660.8	0	3	1	0
3	1 0.	.00	2	0	0
4	2 125510.8	2	1	1	1
9995	5 0.	nn	2	1	0
	10 57369.		1	1	
	7 0.		î	n	i
	3 75075		-		
				-	
9999	4 130142.7	9	1	1	0
	EstimatedSalary				
0	101348.88				
1	112542.58				
2	113931.57	1			
3	93826.63				
	70004 10				

10. Split the data into training and testing $\,$

form silearn.model selection import train test split training.data.testing.data etcain_test_split(df, test_size=0,2, random_state=25) print(fflo. of training examples: (training_data.ahaps(0))*) print(fflo. of testing examples: (testing_data.ahaps(0))*)
No. of training examples: 797
No. of testing examples: 1997