HOMEWORK 6 - MATH402B

DUE: WEDNESDAY NOVEMBER 29TH

(1) Goodman 2.7.9

(2) Goodman 2.7.10

(3) Goodman 2.7.12

(4) Let G be a group. Define

$$[G,G] := \langle \{[a,b] : a,b \in G\} \rangle$$

called the *commutator of G*: is the subgroup of G generated by the commutators. Recall that the commutator of two elements $a, b \in G$ is the element $[a, b] = a^{-1}b^{-1}ab$. Compute $[D_4, D_4]$.

(5) Let G be the following set

$$G = \{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} : a, b, d \in \mathbb{R} \text{ and } ad \neq 0 \}$$

Then G is a group under matrix multiplication. Verify that G is a non abelian group and that

$$N = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} : b \in R \right\}$$

is a normal subgroup of G. Prove that G/N is abelian. Is G/N cyclic?

(6) Discuss whether $\mathbb{Z} \times \mathbb{Z}$ is a cyclic group.

(7) Let \mathbb{T} be the unit circle in \mathbb{C} , i.e. $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$. Recall that \mathbb{T} is a group under multiplication, and there is a surjective homomorphism $f : \mathbb{R} \to \mathbb{T}$ given by $f(t) = e^{2\pi i t}$ such that $\ker f = \mathbb{Z}$. Define $U_n = \{z \in \mathbb{C} : z^n = 1\}$ the group of n-th roots of unity.

• Show that U_n is a finite cyclic subgroup of \mathbb{T} of order n for every $n \geq 1$.

- By the correspondence theorem U_n corresponds to a subgroup of \mathbb{R} containing \mathbb{Z} ; describe the subgroup explicitly when n=3;
- Let $U = \bigcup_{n \geq 1} U_n$. Prove that U is an infinite subgroup of \mathbb{T} in which every element has finite order;
- What subgroup of \mathbb{R} corresponds to U under the correspondence Theorem?
- (8) Let G be a group and let $\Delta = \{(g,g) : g \in G\}$ be the diagonal subgroup of $G \times G$. Prove that Δ is normal in $G \times G$ if and only if G is abelian.