Министерство образования Республики Беларусь

Учреждение образования "Белорусский государственный университет информатики и радиоэлектроники"

Факультет информационных технологий и управления Кафедра интеллектуальных информационных технологий

ЛАБОРАТОРНАЯ РАБОТА №1

по дисциплине «Логические основы интеллектуальных систем»

на тему

«Представление и синтаксическая проверка формул языка логики высказываний»

Вариант F

Выполнили студенты гр. 121702 Заломов Р.А.

Готин И.А.

Проверил Ивашенко В. П.

Цель: приобрести навыки алгоритмизации синтаксического разбора формул языка логики высказываний.

Задача: проверить, является ли данная формула ДНФ.

Описание лабораторной работы

По ходу лабораторной работы необходимо проверить, является ли введённая формула ДНФ. Для этого необходимо:

- 1. Проверить, принадлежат ли все символы формулы алфавиту языка логики высказываний.
- 2. Проверить, соответствует ли данная формула правилам синтаксиса языка логики высказываний.
- 3. Проверить, соответствует ли формула правилам формул, имеющих вид ДНФ.

Для этих задач были синтезированы следующие подзадачи

- 1. Анализ символов, входящих в строку, содержащую формулу
- 2. Проверка правильности расстановки скобок в формуле
- 3. Проверка формулы на соответствия правилам формул в дизъюнктивной нормальной форме:
 - 3.1. Проверить формулу на наличие отрицания только атомарных формул (без констант)
 - 3.2. Проверить последовательность логических операций в формуле на правильность. Под правильностью понимается соответствие характера последовательности таковой для формул языка логики высказываний в ДНФ.

Теоретические сведения

Алфавит языка логики высказываний — алфавит, включающий символы логических констант и логических связок, символы для обозначения высказываний, скобки для указания приоритета операций (45 символов: 2 логических константы, десятичные цифры, заглавные буквы латинского алфавита для обозначения высказываний, 5 логических связок).

Алфавит – конечное или счетное множество символов.

Множество — абстрактная сущность, непосредственно связывающая одну или несколько сущностей в целое.

Абстрактный — существующий во внутренней памяти субъекта.

Субъект — носитель действия.

Действие — явление, которое имеет событие, предшествующее всем остальным событиям.

Целое — отнесенное к себе или к своим частям.

Отношение — множество связок.

Связка — абстрактная связь, множество не менее чем из одного элемента.

Формальный язык — множество текстов формального языка над некоторым алфавитом.

Грамматика формального языка состоит из правил вида п::=ф.

Грамматика языка логики высказываний:

<эквиваленция>

```
<логическая константа> ::= 1|0
<латинская заглавная буква> ::=
A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z
<формула> ::= <логическая константа> | < латинская заглавная буква > |
<унарная сложная формула> | <бинарная сложная формула>
<унарная сложная формула> ::= <открывающая скобка><отрицание>
<открывающая скобка> ::= (
<отрицание> ::= !
<закрывающая скобка> ::= )
<бинарная сложная формула> ::= <открывающая скобка><формула>
<бинарная сложная формула> ::= <открывающая скобка><формула>
<бинарная связка><формула>
<закрывающая скобка>
```

<бинарная связка> ::= <конъюнкция> | <дизъюнкция> | <импликация> |

```
<конъюнкция> ::= ∧
<дизъюнкция> ::= ∨
<импликация> :: = ->
<эквиваленция> ::= ~
Подформула языка логики высказываний —
высказываний, которая является подстрокой
высказываний.
Литерал – атомарная формула (без констант) или её логическое отрицание.
Дизъюнктивная нормальная форма (ДНФ) – нормальная форма, в которой
формула языка логики высказываний имеет вид дизъюнкции конъюнкций
литералов.
Примеры формул в ДНФ:
(A \lor B)
(A \land B)
((A\backslash B)\backslash (!A))
((C\backslash B)\backslash (D\backslash E))
(((A \backslash B) \backslash (F \backslash E)) \backslash ((C \backslash B) \backslash (D \backslash E)))
Примеры формул не в ДНФ
(!(A \land B))
(A \setminus (B \setminus (C \setminus D)))
((!(A \land B)) \land (C \land D))
```

 $((C\backslash B)\backslash (A\backslash D))$

формула

формулы

языка

языка

логики

логики

Описание программы и алгоритма

Программа включает в себя класс DNFQualifier, включающий в себя следующие методы: is_dnf(), initial_check(), check_parenthesis(), only_atomic_negations(), replace_special_syms(), apply_ranks_to_operations(), check_operations_order(), is_variable(), check_formula_syntax(), find_index_of_deepest_operation().

- 1. Метод is_dnf() проверяет, является ли данная формула ДНФ. Метод проверяет строку на содержание в ней только определённых символов, затем заменяет некоторые для последующей обработки и проводит остальные проверки. Метод сразу определит формулу как ДНФ, если формула атомарная, но не константа. Метод сразу определит формулу как не ДНФ, если она равна какой-либо из констант. Иначе, проводятся дополнительные проверки.
- 2. Метод initial_check() проводит первоначальную проверку формулы проверка правильности расстановки скобок, соответствие количества скобок количеству логических операторов в формуле, проверяет формулу на соответствие синтаксису формул языка логики высказываний.
- 3. Метод check_parenthesis() проводит проверку последовательности из скобок на правильность.
- 4. Метод only_atomic_negations() проверяет формулу на наличие в ней отрицаний только атомарных формул.
- 5. Метод replace_special_syms() замещает некоторые из символов в формуле для упрощения машинной обработки.
- 6. Meтод apply_ranks_to_operations() соотносит каждую логическую операцию в формуле с уровнем подформулы, в которой она находится.
- 7. Meтод check_operations_order() проверяет последовательность логических операций в формуле на соответствие таковой в ДНФ.
- 8. Метод is_variable() проверяет строку на соответствие её синтаксису переменной в языке логики высказываний.
- 9. Метод check_formula_syntax() проверяет формулу на соответствие её синтаксису формулы языка логики высказываний.
- 10. Метод find_index_of_deepest_operation() возвращает позицию символа, означающего логическую операцию, которая находится в подформуле самого высокого уровня.

Рис. 1. Алгоритм метода is_dnf

Рис 2. Алгоритм метода initial_check

Рис. 3. Алгоритм метода check_parenthesis

Рис. 4. Алгоритм метода replace_special_syms

Рис. 5. Алгоритм метода is_variable

Рис. 6. Алгоритм метода check_formula_syntax

Рис. 7. Алгоритм метода only_atomic_negations

Рис. 8. Алгоритм метода find_index_of_deepest_operation

Рис. 9. Алгоритм метода apply_ranks_to_operations

Рис. 10. Алгоритм метода check_operations_order

Тесты программы

Enter formula: (A\/B)

 $(A\/B)$: True

Рис. 11. Тест 1

Enter formula: A

A : True

Рис. 12. Тест 2

Enter formula: $((C/\B)\/(D/\E))$

((C/\B)\/(D/\E)) : True

Рис. 13. Тест 3

Enter formula: $((C/\B)\/((D/\E)\/G))$

 $((C/\B)\/((D/\E)\/G))$: True

Рис. 14. Тест 4

Enter formula: (((A/\B)\/(F/\(E/\D)))\/((C/\B)\/(D/\E)))
(((A/\B)\/(F/\(E/\D)))\/((C/\B)\/(D/\E))) : True

Рис. 15. Тест 5

Enter formula: ((A/\B)

Error: Incorrect placement of parenthesis

Рис. 16. Тест 6

Enter formula: A/\B

 A/\B : False

Рис 17. Тест 7

Enter formula: (!!A) (!!A) : False

Рис 18. Тест 8

Enter formula: !(A)
!(A) : False

Рис 19. Тест 9

Enter formula: (A/\B/\C)
(A/\B/\C) : False

Рис 20. Тест 10

Вывод

В процессе выполнения лабораторной работы были приобретены навыки синтаксического анализа формул языка логики высказываний. Это было достигнуто через создание и реализацию алгоритмов, описанных ранее. Были разработаны блок-схемы для каждого из использованных алгоритмов, проведена отладка программы и осуществлено ручное тестирование окончательного результата.

Список использованных источников:

1. Логические основы интеллектуальных систем. Практикум : учеб.-метод. пособие / В. В. Голенков [и др.]. – Минск : БГУИР, 2011.-70 с. : ил. ISBN 978-985-488-487-5.