

BR 2004 000107

REC'D 27 JUL 2004
WIPO PCT

REPÚBLICA FEDERATIVA DO BRASIL
Ministério do Desenvolvimento, da Indústria e Comércio Exterior.
Instituto Nacional da Propriedade Industrial
Diretoria de Patentes

CÓPIA OFICIAL

PARA EFEITO DE REIVINDICAÇÃO DE PRIORIDADE

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

O documento anexo é a cópia fiel de um
Pedido de Patente de Invenção.
Regularmente depositado no Instituto
Nacional da Propriedade Industrial, sob
Número PI 0302553-5 de 01/07/2003.

Rio de Janeiro, 08 de Julho de 2004.

GLORIA REGINA COSTA
Chefe do NUCAD
Mat. 00449119

ANEXO - CERTIFICADO

- IN 501 000797

Protocolo

DEPÓSITOS E PESQUISAS
DE PATENTES

Número (21)

DEPÓSITO

Pedido de Patente ou de
Certificado de Adição

PI0302553-5

depósito / /

Espaço reservado para etiqueta (número e data de depósito)

Ao Instituto Nacional da Propriedade Industrial:

O requerente solicita a concessão de uma patente na natureza e nas condições abaixo indicadas:

1. Depositante (71):

1.1 Nome: INTELBRAS S/A IND DE TELECOMUNICAÇÃO ELETRONICA BRASILEIRA.

1.2 Qualificação: SOCIEDADE BRASILEIRA 1.3 CNPJ/CPF: 82.901.000/0001-27

1.4 Endereço completo: LOC BR 101 - S/Nº - KM 212 ÁREA INDUSTRIAL SÃO JOSÉ SC 88104
-800 BRASIL

1.5 Telefone: 48 281-9600 / 281-9508
FAX : 48 281-9505

continua em folha anexa

2. Natureza:

2.1 Invenção 2.1.1 Certificado de Adição 2.2 Modelo de Utilidade

Escreva, obrigatoriamente e por extenso, a Natureza desejada: INVENÇÃO

3. Título da Invenção, do Modelo de Utilidade ou do Certificado de Adição (54):

EQUIPAMENTO TELEFÔNICO SEM FIO COM ESPALHAMENTO ESPECTRAL EM VOZ AMOSTRADA

continua em folha anexa

4. Pedido de Divisão do pedido nº.

, de / /

5. Prioridade Interna - O depositante reivindica a seguinte prioridade:

Nº de depósito Data de Depósito / / (66)

6. Prioridade - O depositante reivindica a(s) seguinte(s) prioridade(s):

País ou organização de origem	Número do depósito	Data do depósito
		/ /
		/ /
		/ /

continua em folha anexa

7. Inventor (72):

() Assinale aqui se o(s) mesmo(s) requer(em) a não divulgação de seu(s) nome(s)
(art. 6º § 4º da LPI e item 1.1 do Ato Normativo nº 127/97)

7.1 Nome: JOÃO MARTINHO COSTA

7.2 Qualificação: BRAS, CAS, ENGº ELETRÔNICO

7.3 Endereço: LOC. BR 101, S/Nº, km 212 ÁREA INDUSTRIAL SÃO JOSÉ SC BRASIL

7.4 CEP: 88104-800

7.5 Telefone 48 281-9600

continua em folha anexa

8. Declaração na forma do item 3.2 do Ato Normativo nº 127/97:

em anexo

9. Declaração de divulgação anterior não prejudicial (Período de graça):

(art. 12 da LPI e item 2 do ato Normativo nº 127/97)

em anexo

10. Procurador (74):

10.1 Nome e CPF/CGC/MARCOS AURÉLIO DE JESUS

059.647.418-00

10.2 Endereço Av Senador Souza Naves, 143 - 2º Andar Curitiba PR

10.3 CEP: 80050-040

10.4 Telefone 041 362-3700

11. Documentos anexados (assinale e indique também o número de folhas):
(Deverá ser indicado o nº total de somente uma das vias de cada documento)

<input checked="" type="checkbox"/>	11.1 Guia de recolhimento	1 fls	<input checked="" type="checkbox"/>	11.5 Relatório descritivo	12 fls.
<input checked="" type="checkbox"/>	11.2 Procuração	1 fls.	<input checked="" type="checkbox"/>	11.6 Reivindicações	5 fls.
	11.3 Documentos de prioridade	0 fls.	<input checked="" type="checkbox"/>	11.7 Desenhos	4 fls.
	11.4 Doc. de contrato de trabalho	0 fls.	<input checked="" type="checkbox"/>	11.8 Resumo	1 fls.
<input checked="" type="checkbox"/>	11.9 Outros (especificar):	AUTORIZAÇÃO DE INVENTOR			1 fls.
	11.10 Total de folhas anexadas:				25 fls.

12. Declaro, sob penas da Lei, que todas as informações acima prestadas são completas e verdadeiras

Curitiba, 30 JUN. 2003

Local e Data

Marcos Aurélio de Jesus
Procurador - CPF 059.647.418-00
Agen. Pessoal Patenteada Car. Industrial
nº 00264

Formulário 1.01 - Depósito de Pedido de Patente ou de Certificado de Adição (folha 2/2)

27
MAY, 2003
HHA

"EQUIPAMENTO TELEFONICO SEM FIO COM ESPALHAMENTO ESPECTRAL EM VOZ AMOSTRADA"

Refere-se a presente patente de invenção a inovações introduzidas preferencialmente em telefones, mais especificamente a um telefone sem fio com espalhamento espectral em voz amostrada que, de acordo com as suas características gerais, possui como princípio básico possibilitar a formação de telefones sem fio, PABX sem fio e similares sem fio, através do espalhamento espectral em voz amostrada, com vistas a permitir alcances maiores que os telefones analógicos, digitais e de espalhamento espectral conhecidos, aliado a uma redução de custos.

A presente patente consiste no emprego de um moderno, eficiente, seguro e funcional telefone sem fio com espalhamento espectral em voz amostrada formado por um conjunto de soluções elétricas e eletrônicas corretamente incorporadas, compondo um telefone sem fio completo e diferenciado, que incorpora uma concepção construtiva diferenciada introduzida diretamente no seu transmissor e no seu receptor, conferindo ao mesmo, um alcance de transmissão bem superior.

Com relação ao conhecido pelo atual estado da técnica pode-se afirmar que existem basicamente quatro tipos de telefones sem fio atualmente: telefone analógico convencional, telefone digital convencional, telefone digital com espalhamento espectral e telefone analógico com espalhamento espectral.

As leis nos diversos países onde é permitido o uso do telefone analógico convencional e do telefone digital convencional limitam a máxima potência de transmissão destes num valor bem menor que a permitida para o telefone de espalhamento espectral (análogo ou digital), sendo este o caso do Brasil, onde a máxima EIRP (effective isotropic radiated power) para o telefone analógico convencional e o telefone digital convencional é de -1.25dBm, enquanto que para sistemas que utilizam

espalhamento espectral a máxima EIRP pode ser de até 36dBm. O telefone sem fio, objeto da presente patente, ainda que de forma diferente, usará a técnica de espalhamento espectral e portanto, poderá transmitir os mesmos níveis de potência permitidos para telefones com espalhamento espectral.

5 Como a sensibilidade do receptor do telefone sem fio proposto é bem próxima à do telefone analógico convencional, que já é melhor que a do telefone digital convencional, o telefone proposto permitirá um alcance maior do que os telefones analógico convencional e digital convencional.

10 Nos telefones digitais com espalhamento espectral, o sinal de voz é digitalizado antes de ser espalhado espectralmente. Esta digitalização provoca atrasos entre o sinal transmitido e recebido gerando a necessidade de um circuito cancelador de eco na base do telefone. Além disso, esses telefones, geralmente tem sensibilidade de recepção inferior a dos telefones analógicos. Já o telefone sem fio desta patente, não necessita de circuito 15 cancelador de eco, o que permite uma considerável redução de custos. Também possui uma melhor sensibilidade de recepção (próxima a dos telefones analógicos), o que permite maior alcance na comunicação.

20 O telefone analógico com espalhamento espectral existente no mercado permite um alcance próximo do telefone sem fio, objeto da presente patente, entretanto como a transmissão é feita em cem por cento do tempo, há um alto consumo de bateria, fazendo se necessário o uso de baterias maiores e ou mais caras. Além disso, a transmissão e a recepção 25 são feitas em freqüências diferentes exigindo o uso de duplexadores, o que implica em maiores custos ou utilização de bandas de freqüências muito distintas como 900MHz e 2,4GHz simultaneamente ou aumentando o alcance, o que não economiza o espectro de freqüências. No telefone sem fio, objeto da presente patente, o sinal de áudio a ser transmitido é amostrado, e cada amostra é transmitida em um intervalo de tempo bem curto, o que permite transmissões menores que vinte e cinco por cento do

tempo, aumentando a duração da bateria, ou permitindo que se transmita potências maiores, resultando em maior alcance. Outra vantagem do telefone sem fio, objeto da presente patente é que não há necessidade de duplexadores, nem de se transmitir em bandas distintas, pois o sistema é half-duplex e a freqüência de transmissão é a mesma da recepção.

Os objetivos, vantagens e demais características importantes da patente de invenção em apreço poderão ser mais facilmente compreendidas quando lidas em conjunto com as figuras em anexo, nas quais:

10 A figura 1 representa um diagrama em blocos do portátil do telefone sem fio com espalhamento espectral em voz amostrada.

A figura 2 representa um diagrama em blocos da base do telefone sem fio com espalhamento espectral em voz amostrada.

15 A figura 3A representa um diagrama em blocos do transmissor do telefone sem fio com espalhamento espectral em voz amostrada.

A figura 3B representa um diagrama de sinais do transmissor do telefone sem fio com espalhamento espectral em voz amostrada.

A figura 4A representa um diagrama em blocos do receptor do telefone sem fio com espalhamento espectral em voz amostrada.

20 A figura 4B representa um diagrama de sinais do receptor do telefone sem fio com espalhamento espectral em voz amostrada.

A figura 5 representa um gráfico da autocorrelação de um código de seqüência máxima de comprimento igual a N chips.

25 A figura 6 representa em (a) um gráfico de um PN de sete chips com $T_{pn}=7\mu s$ transmitido a cada $112\mu s$; (b) espectro de freqüência do sinal de (a); (c) dois PNs de sete chips com $T_{pn}=7\mu s$ transmitidos a cada $112\mu s$; e (d) espectro de freqüência de sinal (c).

Como se infere das figuras em anexo que ilustram e integram o presente relatório descritivo da patente de invenção de "Equipamento

telefônico sem Fio com Espalhamento Espectral em Voz Amostrada", nas figuras (1) e (2) é apresentado o mesmo de um modo geral, compreendido por aperfeiçoamentos introduzidos diretamente nos blocos transmissor e receptor, tanto da base como do portátil, de modo a gerar uma concepção 5 diferencial.

A concepção geral do transmissor do telefone sem fio com espalhamento espectral em voz amostrada pode ser amplamente compreendida através do digrama em blocos do transmissor, como demonstra a figura (3A), e através do diagrama de sinais do transmissor, 10 como demonstra a figura (3B), que mostra as formas de onda obtidas em cada ponto indicado no digrama em blocos do transmissor da figura (3A).

Desta forma, vê-se que o sinal de áudio, a ser transmitido, é amostrado por um circuito sample-and-hold (S/H). A taxa de amostragem utilizada é em torno de oito quilohertz. Em sincronismo com o sinal de amostragem, o gerador de pulsos gera um pulso quadrado cujo "duty cycle" 15 representa a relação entre o tempo de transmissão e o tempo disponível para a recepção. O sinal da saída do S/H é então multiplicado pelos pulsos do gerador de pulsos, de forma que na saída do multiplicador (A) só existirá sinal de áudio amostrado durante a duração do pulso. O sinal de 20 saída do multiplicador (A) é então injetado na entrada de sintonia do VCO (voltage controlled oscillator), fazendo com que se tenha na saída deste uma portadora modulada em freqüência. O gerador de PN gera uma seqüência de pulsos (chips), cuja amplitude pode assumir dois níveis, mais um ou menos um. Esta PN é multiplicada pelo sinal do gerador de pulsos e, 25 portanto na saída do multiplicador (B) temos uma PN intermitente, isto é, só existente durante o tempo de transmissão. Este sinal é filtrado pelo filtro passa baixas e multiplicado pela portadora modulada em FM, gerando um sinal BPSK durante o tempo de duração do pulso (fora do tempo do pulso não há transmissão de portadora), cuja largura de banda será determinada

pela duração de cada chip, uma vez que a duração de cada chip é bem menor que a duração do pulso de transmissão. A função do filtro é limitar a PN em banda, ou seja, filtrar as componentes de freqüências altas de modo a manter o sinal espalhado na saída do transmissor dentro de $\pm 1/T_c$, onde 5 T_c é a duração de cada chip de PN. O sinal de saída será então transmitido.

A concepção geral do receptor do telefone sem fio com espalhamento espectral em voz amostrada pode ser amplamente compreendida através do digrama em blocos do receptor, como demonstra a figura (4A), e através do diagrama de sinais do receptor, como demonstra 10 a figura (4B), que mostra as formas de onda obtidas em simulação nos diversos pontos indicados no digrama em blocos do receptor da figura (4A).

Desta forma, o receptor, possui um gerador de PN interno que gera três seqüências, PNE, PNL e PNi. Esta última sincronizada com a PN 15 contida dentro do sinal recebido, que denomina-se de PNrx. Esse sincronismo é feito pelo circuito chamado DLL (delay locked loop). A PNE (E de "early") e a PNL (L de "late") são réplicas exatas de PNi, porém PNE está adiantada meio chip em relação a PNi e PNL está atrasada meio chip em relação a PNi.

20 O funcionamento do DLL está baseado no comportamento da função de autocorrelação das PNs. Sendo a PN um código de seqüência máxima cuja autocorrelação apresenta comportamento mostrado na figura (5). A autocorrelação da PN, quando $|\tau| > 1$ chip (diferença de fase maior que um chip), é sempre constante com valor igual a menos um. Quando $\tau = 0$ 25 (sinais em fase), o valor da autocorrelação é máximo e igual ao número total de chips do PN. Quando $-1 < \tau < 1$, isto é, quando a diferença de fase entre os sinais está dentro da faixa de mais ou menos um chip, o valor da autocorrelação varia linearmente em função de τ .

Observa-se ainda na figura (5) que o valor da autocorrelação é

o mesmo para $\tau = \frac{1}{2}$ chip e para $\tau = -\frac{1}{2}$ chip. Por essa razão é que o gerador de PNi gera também os sinais PNE e PNL. Quando a PNrx está em fase com PNi, PNrx está atrasado meio chip ($\tau = -\frac{1}{2}$ chip) em relação a PNE e adiantado meio chip ($\tau = \frac{1}{2}$ chip) em relação a PNL. Esta é a única condição 5 (considerando a faixa $-1 < \tau < 1$) em que os níveis de saída dos dois filtros passa faixa do DLL apresentam o mesmo nível de saída. Também é a condição de estabilização do DLL, ou seja, a condição que o DLL deve estar quando o receptor estiver apto para a recepção. Esta condição é comumente conhecida como condição de "lock" em analogia aos circuitos 10 de PLL (phase locked loop).

Quando a PNrx não está em fase com a PNi mas a diferença de fase está dentro de mais ou menos um chip, isto significa que PNrx ou está menos defasada de PNE e mais defasada de PNL ou o contrário. Isto, portanto, significa que os níveis de saída dos filtros passa faixa do DLL 15 serão diferentes e na saída do somador existirá um sinal de erro que aumentará ou diminuirá a freqüência do VCO de clock, adiantando ou atrasando PNi, PNE e PNL em relação a PNrx, de modo a forçar que a correlação entre PNrx e PNL seja igual a correlação entre PNrx e PNE (PNE adiantado meio chip e PNL atrasado meio chip, ambos em relação a 20 PNrx) e quando isto acontece o estado de lock foi atingido. Quando a diferença de fase entre PNrx e PNi é maior que um chip, os níveis de saída dos filtros passa faixa do DLL terão o mesmo valor, gerando um sinal de erro igual a zero. O DLL agirá como se tivesse em lock e não tentará 25 colocar a PNrx em fase com PNi. Neste caso diz-se que ocorreu um falso lock no DLL. Para saber se o lock é verdadeiro ou falso, basta verificar a correlação entre PNrx e PNi. Quando o lock é verdadeiro, a correlação é máxima, e o nível de saída do filtro passa faixa do despreader é máximo. Quando o lock é falso, a correlação é mínima e o nível de saída do filtro 30 passa faixa é mínimo.

112

Assim que o receptor é ligado, na saída do despreader aparece um nível de tensão que varia de acordo com o grau de correlação entre PNrx e PNi. Como o canal de comunicação a princípio introduz um atraso desconhecido na PNrx, não é possível à princípio determinar a diferença de fase entre PNrx e PNi. Quando a defasagem entre esses dois sinais excede a faixa de mais ou menos um chip, a correlação entre os dois sinais é mínima e o nível na saída do despreader é mínimo. Quando a defasagem é zero, a correlação entre esses sinais é máxima e o nível de saída é máximo. Se a diferença de fase entre os sinais é de mais ou menos um meio chip, o valor da correlação entre os sinais é cinqüenta por cento da diferença entre a mínima e a máxima correlação. Isto significa que o nível na saída do despreader será também a metade da diferença entre o maior e o menor nível de saída. Chama-se esse nível de tensão de limiar (V_{lim}), e aplica-se uma tensão exatamente igual a essa na entrada de referência do comparador de tensão. A outra entrada do comparador receberá o sinal de saída do despreader. Dessa forma, quando a defasagem entre PNrx e PNi excede a faixa de mais ou menos meio chip o nível na entrada do comparador é menor do que V_{lim} e a tensão de saída do comparador fica no nível baixo. Quando a defasagem entre PNrx e PNi está dentro da faixa de mais ou menos meio chip, o nível na entrada do comparador é maior ou igual a V_{lim} e a tensão de saída do comparador vai para nível alto (um). A grande questão agora é, como forçar o sistema para que a defasagem entre PNrx e PNi fique dentro da faixa de mais ou menos meio chip para que o DLL possa atingir o estado de lock. A saída utilizada nesse sistema foi gerar um atraso de um chip em PNi, PNL e PNE a cada período de amostragem, enquanto a saída do comparador de tensão for zero. Dessa forma, quando a defasagem entre PNrx e PNi é de vários chips, o gerador de PN estará reduzindo essa defasagem de um em um chip a cada período de amostragem, até chegar numa defasagem dentro da faixa de mais ou menos

meio chip. Quando isso ocorrer, o nível de saída do comparador de tensão vai para nível alto e o gerador de PN para de gerar os atrasos de um chip. Neste momento o DLL começa a atuar na freqüência do VCO até que o estado de "lock" seja alcançado, ou seja, até que a diferença de fase entre 5 PN_{Rx} e PN_I seja mantida muito próximo a zero.

Pode-se definir três estados distintos do receptor: aquisição, "tracking" e "lock". Na seqüência de funcionamento do receptor, o primeiro estado a acontecer é o de aquisição, sendo este o estado do inicio da recepção, quando a defasagem entre PN_{RX} e PN_I excede a faixa de mais ou menos meio chip, o gerador de PN está gerando atrasos de um chip a cada período de amostragem e a tensão de saída do comparador está em zero. O estado de tracking ocorre logo em seguida, quando a defasagem entre PN_{RX} e PN_I está dentro da faixa de mais ou menos meio chip, a saída do comparador de tensão vai para nível alto e o gerador de PN não mais gera os atrasos de um chip. O estado de "lock" ocorre logo em seguida, então PN_I vai acompanhar, dentro de certas limitações, as variações de fase de PN_{RX}, de forma a manter a defasagem entre esses sinais bem próxima de zero. Neste último estado o receptor está pronto para receber informação válida. Tão logo que o receptor entra em "lock", na saída do despreader tem-se a portadora recebida apenas modulada em FM, pois a modulação BPSK que era responsável pelo espalhamento espectral foi retirada na multiplicação com PN_I. Na saída do despreader têm-se uma portadora pulsada, sendo que cada pulso contém uma freqüência diferente proporcional ao sinal de áudio transmitido. Aplicando-se então esse sinal ao demodulador de FM, teremos na saída deste, pulsos cuja amplitude varia com a freqüência da portadora de entrada, como demonstra o sinal dois da figura (4A). Este sinal é então amostrado por um sinal de sincronismo retirado a partir da informação de defasagem zero entre PN_{RX} e PN_I, informação esta que está presente na saída do detector de envoltória da

saída do despreader. O sinal de saída do Sample and Hold é então filtrado com filtro passa baixas e tem-se então o áudio recuperado.

O funcionamento do telefone sem fio com espalhamento espectral em voz amostrada, como demonstra as figuras (1) e (2), é baseado na perfeita integração entre o portátil e a base.

No portátil, como demonstra a figura (1), a voz do usuário é convertida em sinal elétrico pelo microfone. O processador de áudio Tx 10 recebe este sinal e faz todo processamento que um telefone analógico comum faz, ou seja: amplifica, adiciona pré-ênfase, por causa da modulação FM, limita a banda de freqüência, através de filtragem passa baixa, e realiza a compressão, a parte do compander que atua na transmissão para redução de ruído, e envia o sinal para o transmissor aperfeiçoadado. O sinal de saída do transmissor vai para o amplificador de potência que simplesmente amplifica o sinal de RF para o nível adequado 15 de transmissão e envia o sinal amplificado para a chave Tx/Rx que durante a transmissão liga a antena à saída do transmissor e durante a recepção, liga a antena à entrada do "down converter".

O sinal de RF transmitido pela base, chega à antena do portátil que através da chave Tx/Rx, direciona o mesmo para entrada do "down converter". O "down converter" neste caso amplifica esse sinal com um amplificador de baixo ruído, converte através de batimento de freqüências, a freqüência recebida para uma freqüência mais baixa conhecida como freqüência intermediária ou simplesmente freqüência de FI e limita a amplitude deste sinal de forma a manter o nível de saída constante. Este sinal é então entregue ao receptor aperfeiçoadão. O receptor por sua vez entrega o sinal de voz recuperado ao processador de áudio Rx que amplifica, adiciona Deenfase (por causa da modulação FM) e realiza a expansão (a parte do compander que atua na recepção para redução de ruído). Então o sinal é entregue ao alto-falante para ser escutado pelo

usuário.

Na base, como demonstra a figura (2), o sinal de voz proveniente da linha telefônica entra na híbrida, circuito que transforma a comunicação de duas vias em uma única via e vice versa, esta por sua vez direciona o sinal para entrada do processador de áudio Tx que entrega o sinal processado à entrada do transmissor aperfeiçoadão. O sinal de RF proveniente do transmissor, será enviado ao amplificador de potência que simplesmente o amplificará para o nível adequado e o entregará à chave Tx/Rx que neste instante deverá estar na posição Tx. Finalmente, através da chave Tx/Rx, o sinal de RF chega à antena que o transmitirá para o portátil.

O sinal de RF transmitido pelo portátil, chega à antena da base, e através da chave Tx/Rx, é direcionado para entrada do "down converter". O sinal de saída do "down converter" é entregue ao receptor aperfeiçoadão. O receptor por sua vez entrega o sinal de voz recuperado ao processador de áudio Rx. O processador de áudio Rx envia então o sinal de áudio processado para a híbrida, que direciona a maior parte do sinal para a linha telefônica e uma pequena parte do mesmo sinal para o processador Tx. Este sinal é enviado para o portátil, juntamente com o sinal proveniente da linha, para permitir que o usuário do portátil possa escutar em volume mais baixo sua própria voz.

Existe uma relação entre o tempo de transmissão (T_p) e a duração total da PN (T_{pn}), para que a distribuição de potência do sinal transmitido seja mantida na forma de $(\operatorname{seno}(x)/x)^2$. Essa relação deverá ser $T_p \geq 2T_{pn}$. Se essa relação não for mantida, haverá maior concentração de potência em algumas freqüências específicas. Isto vai contra uma das grandes vantagens dos sistemas com espalhamento espectral que é reduzir a densidade espectral de potência. A figura (6) mostra os espectros de freqüência de dois sinais sendo que em um deles $T_p = T_{pn}$, o que foge a regra acima citada, como demonstra o item (a) da figura (6). Observa-se que

o espectro correspondente a este sinal, apesar de aparentemente apresentar uma forma do tipo $(\operatorname{seno}(x)/x)^2$, vê-se que há uma maior concentração de potência em determinadas freqüências, fugindo da forma $(\operatorname{seno}(x)/x)^2$, como demonstra o item (b) da figura (6). No outro sinal, como demonstra o item (c) da figura (6), $T_p=2T_{pn}$, o que obedece a regra acima citada. Vê-se que o espectro correspondente, como demonstra o item (d) da figura (6), apresenta a forma $(\operatorname{seno}(x)/x)^2$, e tem densidade espectral máxima menor que o item (b) da figura (6).

A norma brasileira que regulamenta o uso de sistemas com espalhamento espectral é o anexo à resolução no trezentos e cinco, de vinte e seis de julho de dois mil e dois. Segundo esse regulamento, a máxima potência de transmissão deve ser vista sob três aspectos: a máxima potência de pico do transmissor não deve exceder um watt (30dBm); a máxima EIRP não deve exceder quatro watt (36dBm); e o pico da densidade de potência, em qualquer faixa de 3KHz durante qualquer intervalo de tempo de transmissão contínua, não deve ser superior a 8dBm.

Como demonstrativo do potencial do sistema proposto, considera-se que este tenha os seguintes parâmetros: $T_c=1\mu s$ (duração de cada chip de PN); $T_s=112\mu s$ (freqüência de amostragem de oito mil novecentos e vinte e nove hertz); $T_p=28\mu s$ (duração do tempo de transmissão); $T_{pn}=7\mu s$ (duração de cada PN); $N=7$ (comprimento da PN = número de chips do PN); e $G_a=3\text{dBi}$ (Ganho da antena).

Para este sistema, a máxima potência de pico P_p , que é a potência transmitida durante o tempo de transmissão T_p será 640mW, a máxima EIRP será 1.28W (31dBm), o que representa uma potência média de 160mW; a máxima densidade espectral será 8dBm. Observa-se que para este exemplo, o sistema atende completamente os requisitos de potência exigidos pela norma brasileira, estando limitado pela máxima densidade espectral: 8dBm.

88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88

Para um telefone sem fio convencional analógico de novecentos megahertz, a máxima EIRP permitida é -1,25dBm, enquanto que o sistema proposto com os parâmetros mostrados acima, permite uma EIRP de 31dBm, ou seja trinta e dois ponto vinte e cinco decibel a mais de potência de transmissão. Se considerar-se que os dois sistemas tenham receptores com a mesma sensibilidade e também considerando o modelo de propagação no espaço livre, o sistema proposto exemplificado aqui possui um alcance quarenta e uma vezes maior.

87

1/5

100 100 100 100 100 100 100 100

REIVINDICAÇÕES

1 - "EQUIPAMENTO TELEFÔNICO SEM FIO COM ESPALHAMENTO ESPECTRAL EM VOZ AMOSTRADA", caracterizado por ser compreendido por aperfeiçoamentos introduzidos diretamente nos blocos transmissor e receptor, tanto da base como do portátil, de modo a gerar um concepção diferencial.

2 - "EQUIPAMENTO TELEFÔNICO SEM FIO COM ESPALHAMENTO ESPECTRAL EM VOZ AMOSTRADA", de acordo com a reivindicação 1 e caracterizado por transmissor emitir sinal de áudio através de um circuito Sample-and-Hold (S/H) com taxa de amostragem utilizada em torno de oito quilohertz; em sincronismo com o sinal de amostragem, o gerador de pulsos gera um pulso quadrado cujo "duty cycle" representa a relação entre o tempo de transmissão e o tempo disponível para a recepção; o sinal da saída do S/H é então multiplicado pelos pulsos do gerador de pulsos, de forma que na saída do multiplicador (A) só existirá sinal de áudio amostrado durante a duração do pulso; o sinal de saída do multiplicador (A) é então injetado na entrada de sintonia do VCO (voltage controlled oscillator), fazendo com que se tenha na saída deste uma portadora modulada em freqüência; o gerador de PN gera um trem de pulsos (chips), cuja amplitude pode assumir dois níveis, mais um ou menos um; esta PN é multiplicada pelo sinal do gerador de pulsos e, portanto na saída do multiplicador (B) temos uma PN intermitente, isto é, só existente durante o tempo de transmissão; este sinal é filtrado pelo filtro passa baixas e multiplicado pela portadora modulada em FM, gerando um sinal BPSK durante o tempo de duração do pulso, cuja largura de banda será determinada pela duração de cada chip, uma vez que a duração de cada chip é bem menor que a duração do pulso de transmissão; o filtro limita a PN em banda, ou seja, filtra as componentes de freqüências altas de modo a manter o sinal espalhado na saída do transmissor dentro de $\pm 1/T_c$, onde T_c

38

é a duração de cada chip de PN; o sinal de saída será então transmitido.

3 - "EQUIPAMENTO TELEFÔNICO SEM FIO COM ESPALHAMENTO ESPECTRAL EM VOZ AMOSTRADA", de acordo com a reivindicação 1 e caracterizado por o receptor, possui um gerador de PN interno que gera três seqüências, PNE, PNL e Pni; esta última sincronizada com a PN contida dentro do sinal recebido, que denomina-se de PNrx; esse sincronismo é feito pelo circuito chamado DLL (delay locked loop); a PNE (E de "early") e a PNL (L de "late") são réplicas exatas de PNi, porém PNE está adiantada meio chip em relação a PNi e PNL está atrasada meio chip em relação a Pni; o funcionamento do DLL está baseado no comportamento da função de autocorrelação das PNs; sendo a PN um código de seqüência máxima; a autocorrelação da PN, quando $|\tau| > 1\text{chip}$ (diferença de fase maior que um chip), é sempre constante com valor igual a menos um; quando $\tau=0$ (sinais em fase), o valor da autocorrelação é máximo e igual ao número total de chips do PN; quando $-1 < \tau < 1$, isto é, quando a diferença de fase entre os sinais é está dentro da faixa de maio ou menos um chip, o valor da autocorrelação varia linearmente em função de τ ; observa-se que o valor da autocorrelação é o mesmo para $\tau = \text{meio chip}$ e para $\tau = \text{menos meio chip}$; por essa razão é que o gerador de PNi gera também os sinais PNE e PNL; quando a PNrx está em fase com PNi, PNrx está atrasado meio chip ($\tau = -1/2\text{chip}$) em relação a PNE e adiantado meio chip ($\tau = 1/2\text{chip}$) em relação a PNL; esta é a única condição (considerando a faixa $-1 < \tau < 1$) em que os níveis de saída dos dois filtros passa faixa do DLL apresentam o mesmo nível de saída; também é a condição de estabilização do DLL, ou seja, a condição que o DLL deve estar quando o receptor estiver apto para a recepção; esta condição é comumente conhecida como condição de "lock" em analogia aos circuitos de PLL (phase locked loop); quando a PNrx não está em fase com a PNi mas a diferença de fase está dentro de mais ou menos um chip,

isto significa que PN_{rx} ou está menos defasada de PNE e mais defasada de PNL ou o contrário; isto, portanto, significa que os níveis de saída dos filtros passa faixa do DLL serão diferentes e na saída do somador existirá um sinal de erro que aumentará ou diminuirá a freqüência do VCO de 5 clock, adiantando ou atrasando PN_i, PNE e PNL em relação a PN_{rx}, de modo a forçar que a correlação entre PN_{rx} e PNL seja igual a correlação entre PN_{rx} e PNE (PNE adiantado meio chip e PNL atrasado meio chip, ambos em relação a PN_{rx}) e quando isto acontece o estado de lock foi atingido; quando a diferença de fase entre PN_{rx} e PN_i é maior que um chip, 10 os níveis de saída dos filtros passa faixa do DLL terão o mesmo valor, gerando um sinal de erro igual a zero; o DLL agirá como se tivesse em lock e não tentará colocar a PN_{rx} em fase com PN_i; neste caso diz-se que ocorreu um falso lock no DLL; para saber se o lock é verdadeiro ou falso, basta verificar a correlação entre PN_{rx} e PN_i; quando o lock é verdadeiro, a 15 correlação é máxima, e o nível de saída do filtro passa faixa do despreader é máximo; quando o lock é falso, a correlação é mínima e o nível de saída do filtro passa faixa é mínimo; assim que o receptor é ligado, na saída do despreader aparece um nível de tensão que varia de acordo com o grau de correlação entre PN_{rx} e PN_i; como o canal de comunicação a princípio 20 introduz um atraso desconhecido na PN_{rx}, não é possível à princípio determinar a diferença de fase entre PN_{rx} e PN_i; quando a defasagem entre esses dois sinais excede a faixa de mais ou menos um chip, a correlação entre os dois sinais é mínima e o nível na saída do despreader é mínimo; quando a defasagem é zero, a correlação entre esses sinais é máxima e o 25 nível de saída é máximo; se a diferença de fase entre os sinais é de mais ou menos meio chip, o valor da correlação entre os sinais é cinqüenta por cento da diferença entre a mínima e a máxima correlação; isto significa que o nível na saída do despreader será também a metade da diferença entre o maior e o menor nível de saída; chama-se esse nível de tensão de limiar

(Vlim), e aplica-se uma tensão exatamente igual a essa na entrada de referência do comparador de tensão; a outra entrada do comparador receberá o sinal de saída do despreader; dessa forma, quando a defasagem entre PNrx e PNi exceder a faixa de mais ou menos meio chip o nível na 5 entrada do comparador é menor do que Vlim e a tensão de saída do comparador fica no nível baixo; quando a defasagem entre PNrx e PNi está dentro da faixa de mais ou menos meio chip, o nível na entrada do comparador é maior ou igual a Vlim e a tensão de saída do comparador vai para nível alto (um); gera-se um atraso de um chip em PNi, PNL e PNE a 10 cada período de amostragem, enquanto a saída do comparador de tensão for "zero", pois deve-se forçar o sistema para que a defasagem entre PNrx e PNi fique dentro da faixa de mais ou menos meio chip para que o DLL possa atingir o estado de lock; dessa forma, quando a defasagem entre PNrx e PNi é de vários chips, o gerador de PN estará reduzindo essa 15 defasagem de um em um chip a cada período de amostragem, até chegar numa defasagem dentro da faixa de mais ou menos meio chip; quando isso ocorrer, o nível de saída do comparador de tensão vai para nível alto e o gerador de PN para de gerar os atrasos de um chip; neste momento o DLL 20 começa a atuar na freqüência do VCO até que o estado de "lock" seja alcançado, ou seja, até que a diferença de fase entre PNrx e PNi seja mantida muito próximo a zero; pode-se definir três estados distintos do receptor: aquisição, "tracking" e "lock"; na seqüência de funcionamento do receptor, o primeiro estado a acontecer é o de aquisição, sendo este o estado do inicio da recepção, quando a defasagem entre PNrx e PNi excede 25 a faixa de mais ou menos meio chip, o gerador de PN está gerando atrasos de um chip a cada período de amostragem e a tensão de saída do comparador está em zero; o estado de tracking ocorre logo em seguida, quando a defasagem entre PNrx e PNi está dentro da faixa de mais ou menos meio chip, a saída do comparador de tensão vai para nível alto e o

gerador de PN não mais gera os atrasos de um chip; o estado de "lock" ocorre logo em seguida, então PN_i vai acompanhar, dentro de certas limitações, as variações de fase de PN_{RX}, de forma a manter a defasagem entre esses sinais bem próxima de zero; neste último estado o receptor está

5 pronto para receber informação válida; tão logo que o receptor entra em "lock", na saída do despreader tem-se a portadora recebida apenas modulada em FM, pois a modulação BPSK que era responsável pelo espalhamento espectral foi retirada na multiplicação com P_{ni}; na saída do despreader tem-se uma portadora pulsada, sendo que cada pulso contém

10 uma freqüência diferente proporcional ao sinal de áudio transmitido; aplicando-se então esse sinal ao demodulador de FM, teremos na saída deste, pulsos cuja amplitude varia com a freqüência da portadora de entrada; este sinal é então amostrado por um sinal de sincronismo retirado a partir da informação de defasagem zero entre PN_{RX} e PN_i, informação esta

15 que está presente na saída do detector de envoltória da saída do despreader; o sinal de saída do sample and hold é então filtrado com filtro passa baixas e tem-se então o áudio recuperado.

FIG. 1

FIG. 2

FIG. 3A

FIG. 3B

FIG. 4A

FIG. 4B

FIG. 5

FIG. 6

26

R E S U M O

"EQUIPAMENTO TELEFÔNICO SEM FIO COM ESPALHAMENTO ESPECTRAL EM VOZ AMOSTRADA", descreve-se a presente patente como um telefone sem fio com espalhamento espectral em voz amostrada que, de acordo com as suas características, possui como princípio possibilitar a formação de telefones sem fio, PABX sem fio e similares sem fio de longo alcance, através do espalhamento espectral em voz amostrada, compondo um telefone sem fio que incorpora uma concepção construtiva diferenciada introduzida diretamente no seu transmissor e no seu receptor, conferindo ao mesmo um alcance de transmissão superior em relação aos telefones analógicos, digitais e de espalhamento espectral conhecidos, aliado a uma redução de custo de matéria prima e otimização da banda espectral sendo facilmente adaptável a qualquer sistema de comunicação de sinais analógicos via ondas de rádio.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.