LEPTONS

e

$$J=\frac{1}{2}$$

Mass $m=(548.579909065\pm0.000000016)\times 10^{-6}$ u Mass $m=0.51099895000\pm0.00000000015$ MeV $\begin{aligned} |m_{e^+}-m_{e^-}|/m < &8\times 10^{-9}, \text{ CL}=90\%\\ |q_{e^+}+q_{e^-}|/e < &4\times 10^{-8} \end{aligned}$ Magnetic moment anomaly $(g-2)/2=(1159.65218076\pm0.00000028)\times 10^{-6}$ ($g_{e^+}-g_{e^-}$) / $g_{\text{average}}=(-0.5\pm2.1)\times 10^{-12}$ Electric dipole moment $d<0.11\times 10^{-28}$ e cm, CL =90% Mean life $\tau>6.6\times 10^{28}$ yr, CL =90% [a]

 μ

$$J = \frac{1}{2}$$

Mass $m=0.1134289259\pm0.0000000025$ u Mass $m=105.6583755\pm0.0000023$ MeV Mean life $\tau=(2.1969811\pm0.0000022)\times10^{-6}$ s $\tau_{\mu^+}/\tau_{\mu^-}=1.00002\pm0.00008$ $c\tau=658.6384$ m Magnetic moment anomaly $(g-2)/2=(11659206\pm4)\times10^{-10}$ ($g_{\mu^+}-g_{\mu^-}$) / $g_{\rm average}=(-0.11\pm0.12)\times10^{-8}$ Electric dipole moment $|{\rm d}|<1.8\times10^{-19}$ ecm, CL = 95%

Decay parameters [b]

$$\begin{split} \rho &= 0.74979 \pm 0.00026 \\ \eta &= 0.057 \pm 0.034 \\ \delta &= 0.75047 \pm 0.00034 \\ \xi P_{\mu} &= 1.0009^{+0.0016}_{-0.0007} \ [c] \\ \xi P_{\mu} \delta/\rho &= 1.0018^{+0.0016}_{-0.0007} \ [c] \\ \xi' &= 1.00 \pm 0.04 \\ \xi'' &= 0.98 \pm 0.04 \\ \alpha/A &= (0 \pm 4) \times 10^{-3} \\ \alpha'/A &= (-10 \pm 20) \times 10^{-3} \\ \beta/A &= (4 \pm 6) \times 10^{-3} \\ \beta'/A &= (2 \pm 7) \times 10^{-3} \\ \overline{\eta} &= 0.02 \pm 0.08 \end{split}$$

 μ^+ modes are charge conjugates of the modes below.

μ^- DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$e^-\overline{ u}_e u_\mu$	pprox 100%		53
$e^-\overline{ u}_e u_\mu\gamma$	[d] $(6.0\pm0.5)\times10$	- 8	53
$e^-\overline{ u}_e u_\mu\dot{e}^+e^-$	[e] $(3.4\pm0.4)\times10$	- 5	53
Lepton Family nu	umber (LF) violatin	g modes	
$e^- u_e\overline{ u}_\mu$ LF	[f] < 1.2 %	90%	53
$e^-\gamma$ LF	< 4.2 × 10	-13 90%	53
$e^-e^+e^-$ LF	< 1.0 × 10	-12 90%	53
$e^-2\gamma$ LF	< 7.2 × 10	-11 90%	53

au

$$J=\frac{1}{2}$$

Mass
$$m=1776.86\pm0.12$$
 MeV $(m_{\tau^+}-m_{\tau^-})/m_{\rm average} < 2.8\times10^{-4},$ CL $=90\%$ Mean life $\tau=(290.3\pm0.5)\times10^{-15}$ s $c\tau=87.03~\mu{\rm m}$ Magnetic moment anomaly >-0.052 and $<0.013,$ CL $=95\%$ Re $(d_{\tau})=-0.220$ to 0.45×10^{-16} e cm, CL $=95\%$ Im $(d_{\tau})=-0.250$ to 0.0080×10^{-16} e cm, CL $=95\%$

Weak dipole moment

$${\rm Re}(d_{\tau}^{w}) <~0.50 \times 10^{-17}~{\rm e\,cm,~CL} = 95\% \\ {\rm Im}(d_{\tau}^{w}) <~1.1 \times 10^{-17}~{\rm e\,cm,~CL} = 95\% \\$$

Weak anomalous magnetic dipole moment

$$\begin{array}{l} {\rm Re}(\alpha_{\tau}^{\it w}) < \ 1.1 \times 10^{-3}, \ {\rm CL} = 95\% \\ {\rm Im}(\alpha_{\tau}^{\it w}) < \ 2.7 \times 10^{-3}, \ {\rm CL} = 95\% \\ \tau^{\pm} \rightarrow \ \pi^{\pm} \, {\it K}_{\it S}^{\it 0} \, \nu_{\tau} \ ({\rm RATE \ DIFFERENCE}) \ / \ ({\rm RATE \ SUM}) = \\ (-0.36 \pm 0.25)\% \end{array}$$

Decay parameters

See the au Particle Listings for a note concerning au-decay parameters.

$$ho(e ext{ or } \mu) = 0.745 \pm 0.008$$
 $ho(e) = 0.747 \pm 0.010$
 $ho(\mu) = 0.763 \pm 0.020$
 $ho(e ext{ or } \mu) = 0.985 \pm 0.030$
 $ho(e) = 0.994 \pm 0.040$
 $ho(\mu) = 1.030 \pm 0.059$

$$\eta(e \text{ or } \mu) = 0.013 \pm 0.020$$
 $\eta(\mu) = 0.094 \pm 0.073$
 $(\delta \xi)(e \text{ or } \mu) = 0.746 \pm 0.021$
 $(\delta \xi)(e) = 0.734 \pm 0.028$
 $(\delta \xi)(\mu) = 0.778 \pm 0.037$
 $\xi(\pi) = 0.993 \pm 0.022$
 $\xi(\rho) = 0.994 \pm 0.008$
 $\xi(a_1) = 1.001 \pm 0.027$
 $\xi(\text{all hadronic modes}) = 0.995 \pm 0.007$
 $\overline{\eta}(\mu) = -1.3 \pm 1.7$
 $(\xi \kappa)(e \text{ or } \mu) \text{ PARAMETER} = 0.5 \pm 0.4$
 $(\xi \kappa)(e) = -0.4 \pm 1.2$
 $(\xi \kappa)(\mu) = 0.8 \pm 0.6$

 au^+ modes are charge conjugates of the modes below. " h^\pm " stands for π^\pm or K^\pm . " ℓ " stands for e or μ . "Neutrals" stands for γ 's and/or π^0 's.

au^- DECAY MODES

Fraction (Γ_i/Γ)

Scale factor/ p Confidence level (MeV/c)

Created: 8/11/2022 09:36

Modes with one charged particle

INIOGE2 MILI	ı Oll	e charged particle	
particle ⁻ ≥ 0 neutrals $\geq 0K^0\nu_{\tau}$ ("1-prong")		(85.24 ± 0.06) %	_
particle ≥ 0 neutrals $\geq 0K_L^0\nu_{\tau}$		(84.58 ± 0.06) %	_
$\mu^-\overline{ u}_\mu u_ au$	[g]	(17.39 \pm 0.04) %	885
$\mu^- \overline{ u}_\mu u_ au \gamma$	[e]	$(3.67 \pm 0.08) \times 10^{-3}$	885
$e^-\overline{ u}_e u_ au$	[g]	$(17.82 \pm 0.04)\%$	888
$\mathrm{e}^-\overline{ u}_\mathrm{e} u_ au\gamma$	[e]	(1.83 ± 0.05) %	888
$h^- \geq 0 K_L^0 \; u_ au$		$(12.03 \pm 0.05)\%$	883
$\mathit{h}^- u_ au$		$(11.51 \pm 0.05)\%$	883
$\pi^- u_{ au}$	[g]	(10.82 \pm 0.05) %	883
${\sf K}^- u_ au$	[g]	$(6.96 \pm 0.10) \times 10^{-3}$	820
$\mathit{h}^- \geq 1$ neutrals $ u_ au$		$(37.01 \pm 0.09)\%$	_
$h^- \geq 1\pi^0 u_ au(ext{ex}. extit{K}^0)$		$(36.51 \pm 0.09)\%$	_
$\mathit{h}^-\pi^0 u_{_{\overline{T}}}$		$(25.93 \pm 0.09)\%$	878
$\pi^-\pi^0_{} u_{ au}$	[g]	$(25.49 \pm 0.09)\%$	878
$\pi^-\pi^0$ non- $ ho$ (770) $ u_ au$		$(3.0 \pm 3.2) \times 10^{-3}$	878
$K^-\pi^0 u_ au$	[g]	$(4.33 \pm 0.15) \times 10^{-3}$	814
$h^- \geq 2\pi^0 \nu_{ au}$		(10.81 \pm 0.09) %	_
$h^- 2\pi^0 u_{_{\overline{I}}}$		(9.48 \pm 0.10) %	862
$h^{-}2\pi^{0}\nu_{\tau}({\rm ex}.K^{0})$		(9.32 ± 0.10) %	862
$\pi^{-}2\pi^{0}\nu_{\tau}(\text{ex}.K^{0})$	[g]	$(9.26 \pm 0.10)\%$	862
$\pi^- 2\pi^0 u_{ au}$ (ex. \mathcal{K}^0),		$< 9 \times 10^{-3} \text{CL} = 95\%$	862
scalar			

$\pi^{-} 2\pi^{0} \nu_{ au} (\mathrm{ex}. K^{0})$,		$< 7 \times 10^{-3} CL = 95\%$	862
$\overset{vector}{K^-} 2\pi^0 u_{ au}(ex.K^0)$	[~]	$(6.5 \pm 2.2) \times 10^{-4}$	706
$h^- \geq 3\pi^0 \nu_{\tau} (ex.K^-)$	[g]	$(0.5 \pm 2.2) \times 10$ $(1.34 \pm 0.07) \%$	796 —
$h^- \geq 3\pi^0 \nu_{\tau} (\text{ex. } K^0)$		$(1.25 \pm 0.07)\%$	_
$h^{-}3\pi^{0}\nu_{\tau}$		(1.18 ± 0.07) %	836
$\pi^{-}3\pi^{0}\nu_{ au}({\sf ex}.K^{0})$	[g]	·	836
$K^{-}3\pi^{0}\nu_{\tau}$ (ex. K^{0} ,	[g]	4	765
η)			
$h^{-}4\pi^{0}\nu_{\tau}(\text{ex.}K^{0})$		$(1.6 \pm 0.4) \times 10^{-3}$	800
$h^{-} 4\pi^{0} \nu_{\tau} (\text{ex}.K^{0}, \eta)$	[g]	$(1.1 \pm 0.4) \times 10^{-3}$	800
$a_1(1260)\nu_{\tau} \rightarrow \pi^- \gamma \nu_{\tau}$		$(3.8 \pm 1.5) \times 10^{-4}$	_
$K^- \ge 0\pi^0 \ge 0K^0 \ge 0\gamma \nu_{\tau}$		$(1.552 \pm 0.029) \%$	820
$\mathcal{K}^- \geq 1 \; (\pi^0 \; ext{or} \; \mathcal{K}^0 \; ext{or} \; \gamma) \; u_ au$		$(8.59 \pm 0.28) \times 10^{-3}$	_
	des	with K^0 's	
K_S^0 (particles) ν_{τ}		$(9.43 \pm 0.28) \times 10^{-3}$	_
$h^{-}\overline{K}^{0}\nu_{\tau}$		$(9.87 \pm 0.14) \times 10^{-3}$	812
$\pi^-\overline{K}^0_{\overline{U}^0}$	[g]		812
$\pi^{-}\overline{K}^{0}$		$(5.4 \pm 2.1) \times 10^{-4}$	812
$(\text{non-}K^*(892)^-)\nu_{\tau}$		(1 405 0 004) 10=3	707
$\mathcal{K}^-\mathcal{K}^0 u_{ au} \ \mathcal{K}^-\mathcal{K}^0 \geq 0\pi^0 u_{ au}$	[g]	$(1.486 \pm 0.034) \times 10^{-3}$	737
$h^{-}\frac{K}{K^0}\frac{2}{\pi^0}v_{\tau}$		$(2.99 \pm 0.07) \times 10^{-3}$ $(5.32 \pm 0.13) \times 10^{-3}$	737 794
$\pi^{-} \frac{\kappa}{K^0} \frac{\kappa}{\pi^0} \nu_{\tau}$	[4]	$(3.82 \pm 0.13) \times 10^{-3}$	794 794
$\frac{\kappa}{K^0} \frac{\kappa}{\rho^-} \frac{\kappa}{\nu_{\tau}}$	[6]	$(2.2 \pm 0.15) \times 10^{-3}$	612
$\overline{K}{}^0 ho^- u_ au^- onumber \ K^-K^0\pi^0 u_ au^-$	[g]	$(1.50 \pm 0.07) \times 10^{-3}$	685
$\pi^-\overline{K}{}^0 \geq 1\pi^{0'} u_{ au}$	[0]	$(4.08 \pm 0.25) \times 10^{-3}$	_
$\pi^{-}\overline{K}{}^{0}\pi^{\overline{0}}\pi^{0}\nu_{\tau}$ (ex. K^{0})	[g]	$(2.6 \pm 2.3) \times 10^{-4}$	763
$\mathcal{K}^-\mathcal{K}^0\pi^0\pi^0 u_ au$		$< 1.6 \times 10^{-4} \text{CL} = 95\%$	619
$\pi^- K^0 \overline{K}{}^0 u_{ au}$		$(1.55 \pm 0.24) \times 10^{-3}$	682
π^- K 0_S K 0_S $ u_ au$	[g]	$(2.35 \pm 0.06) \times 10^{-4}$	682
π^- K 0_S K 1_L $ u_ au$	[g]		682
$\pi^{-} K_{S}^{0} K_{L}^{0} \nu_{ au}$ $\pi^{-} K_{L}^{0} K_{L}^{0} \nu_{ au}$ $\pi^{-} K^{0} \overline{K}^{0} \pi^{0} \nu_{ au}$		$(2.35 \pm 0.06) \times 10^{-4}$	682
$\pi^- K^0 K^0 \pi^0 \nu_{ au}$		$(3.6 \pm 1.2) \times 10^{-4}$	614
$\pi^- K^0_S K^0_S \pi^0_{ 2} u_ au$	[g]	$(1.82 \pm 0.21) \times 10^{-5}$	614
$K^{*-}K^{0}\pi^{0}\nu_{\tau} \rightarrow$		$(1.08 \pm 0.21) \times 10^{-5}$	_
$\pi^{-}K_{S}^{0}K_{S}^{0}\pi^{0}\nu_{\tau}$		c	
$f_1(1285)\pi^-\nu_{\tau} \to 0.0000000000000000000000000000000000$		$(6.8 \pm 1.5) \times 10^{-6}$	_
$\pi^{-}K_{S}^{0}K_{S}^{0}\pi^{0}\nu_{\tau}$		6	
$f_1(1420)\pi^-\nu_{\tau} \to 0$		$(2.4 \pm 0.8) \times 10^{-6}$	-
$\pi^{-}K_{S}^{0}K_{S}^{0}\pi^{0}\nu_{ au}$		4.00	6 3 :
$\pi^- K^0_S K^0_L \pi^0 u_ au$ $\pi^- K^0_L K^0_L \pi^0 u_ au$	[g]	$(3.2 \pm 1.2) \times 10^{-4}$	614
$π$ Κμκμ $π$ ν $_{ au}$		$(1.82 \pm 0.21) \times 10^{-5}$	614

$K^-K^0_SK^0_S u_ au \ K^-K^0_SK^0_S\pi^0 u_ au$		< 6.3				⁷ CL=90%	466
		< 4.0				⁻⁷ CL=90%	337
$K^0 h^+ h^- h^- \geq 0$ neutrals $ u_{ au}$		< 1.7				⁻³ CL=95%	760
$K^0h^+h^-h^- u_ au$	[g]	(2.5	\pm 2	2.0)	× 10 ⁻	-4	760
Modes with	thre	e charge	d p	artic	les		
$h^- h^- h^+ \geq 0$ neutrals $\geq 0 K_I^0 u_ au$		(15.20	\pm C	0.06)	%		861
$h^-h^-h^+ \geq 0$ neutrals $ u_{ au}$		(14.55	\pm C	0.06)	%		861
(ex. $K_S^0 o \pi^+\pi^-$)		`		ĺ			
("3-prong")							
$h^- h^- h^+ u_{\tau}$		(9.80	± C	0.05)	%		861
$h^- h^- h^+ u_{\tau} (\text{ex.} K^0)$		(9.46	± C	0.05)	%		861
$h^- h^- h^+ \nu_{\tau} (ex. K^0, \omega)$		(9.43					861
$\pi^-\pi^+\pi^- u_ au$		(9.31	± C	0.05)	%		861
$\pi^-\pi^+\pi^- u_{ au}({ m ex}.K^0)$		(9.02	± C).05)	%		861
$\pi^{-}\pi^{+}\pi^{-}\nu_{\tau}$ (ex. K^{0}),		< 2.4			%	CL=95%	861
non-axial vector							
$\pi^-\pi^+\pi^- u_ au(\mathrm{ex}.K^0,\omega)$	[g]	(8.99	\pm C).05)	%		861
$h^-h^-h^+ \geq 1$ neutrals $ u_{ au}$		(5.29	\pm C).05)	%		_
$h^- h^- h^+ \ge 1 \pi^0 \nu_{\tau} (\text{ex. } K^0)$		(5.09	\pm C).05)	%		_
$h^-h^-h^+\pi^0 u_ au$		(4.76	\pm C).05)	%		834
$h^- h^- h^+ \pi^0 \nu_{\tau} (\text{ex.} K^0)$		(4.57	\pm C).05)	%		834
$h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau}$ (ex. K^{0} , ω)		(2.79	± C	0.07)	%		834
$\pi^-\pi^+\pi^-\pi^0 u_{ au}$		(4.62	\pm C).05)	%		834
$\pi^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau}(\text{ex}.K^{0})$		(4.49		,			834
$\pi^-\pi^+\pi^-\pi^0\nu_{ au}(\mathrm{ex}.K^0,\omega)$	[g]	(2.74				•	834
$h^-h^-h^+\ \geq\ 2\pi^0 u_{ au}$ (ex. $\mathcal{K}^0)$		(5.17	± C).31)	× 10 ⁻	-3	_
$h^-h^-h^+2\pi^0 u_ au$		(5.05	± C	0.31)	× 10 ⁻	-3	797
${\it h^- h^- h^+ 2 \pi^0 u_ au} ({ m ex.} {\it K}^0)$		(4.95	\pm C	0.31)	× 10 ⁻	-3	797
$h^- h^- h^+ 2\pi^0 \nu_{\tau} (\text{ex.} K^0, \omega, \eta)$	[g]	(10	± 4	1)	× 10 ⁻	-4	797
$\mathit{h^-h^-h^+3\pi^0 u_ au}$		(2.13					749
$2\pi^-\pi^+3\pi^0 u_{ au}({ m ex}.K^0)$		(1.95					749
$2\pi^{-}\pi^{+}3\pi^{0}\nu_{ au}$ (ex. K^{0} , η ,		(1.7	\pm C).4)	× 10 ⁻	-4	_
$f_1(1285))$							
$2\pi^{-}\pi^{+}3\pi^{0}\nu_{\tau}$ (ex. K^{0} , η , ω , $f_{1}(1285)$)	[g]	(1.4	± 2	2.7)	× 10 ⁻	-5	-
$K^-h^+h^-\geq 0$ neutrals $ u_{ au}$		(6.29	± 0	0.14)	× 10 ⁻	-3	794
$K^- h^+ \pi^- \nu_{ au} ({\rm ex}.K^0)$		(4.37					794
$K^- h^+ \pi^- \pi^0 \nu_{\tau} (\text{ex.} K^0)$		(8.6					763
$\mathcal{K}^-\pi^+\pi^- \geq 0$ neutrals $ u_{ au}$		(4.77					794
$K^-\pi^+\pi^- \geq 0\pi^0 u_ au(ext{ex.}K^0)$		(3.73					794
$K^-\pi^+\pi^-\nu_{ au}$		(3.45	± 0	0.07)	× 10 ⁻	-3	794

Modes with five charged particles

Miscellaneous other allowed modes

iviisceiianeoi	12 0						_	
$(5\pi)^-\nu_{\tau}$		(7.8	\pm	0.5		$\times 10^{-3}$	800
$4h^-3h^+ \geq 0$ neutrals $ u_ au$		<	3.0				$\times 10^{-7}$ CL=90%	682
("7-prong")								
$4h^-3h^+ u_{ au}$		<	4.3				$\times 10^{-7}$ CL=90%	682
$4h^-3h^+\pi^0 u_ au$		<	2.5				$\times 10^{-7}$ CL=90%	612
$X^{-}(S=-1)\nu_{ au}$		(2.92	\pm	0.04)	%	_
$K^*(892)^- \geq 0$ neutrals \geq		(1.42	\pm	0.18)	% S=1.4	665
$0K_I^0 u_{ au}$								
$K^*(892)^- \nu_{\tau}$		(1.20	\pm	0.07)	% S=1.8	665
$K^*(892)^- \nu_{\tau} \rightarrow \pi^- \overline{K}{}^0 \nu_{\tau}$		•				•	$\times 10^{-3}$	_
$K^*(892)^0 K^- \geq 0$ neutrals $\nu_{ au}$							$\times 10^{-3}$	542
$K^*(892)^0 K^- \nu_{\tau}$							× 10 ⁻³	542
$\overline{K}^*(892)^0\pi^- \geq 0$ neutrals ν_{τ}							\times 10 ⁻³	655
$\frac{(692)^{6}\pi^{-}}{K^{*}(892)^{0}\pi^{-}\nu_{\tau}}$							\times 10 ⁻³	655
$(\overline{K}^*(892)\pi)^-\nu_{\tau} \rightarrow$							× 10 ⁻³	-
$\pi^{-}\overline{K}^{0}\pi^{0}\nu_{\tau}$		(1.0	_	0.4	,	× 10	
$K_1(1270)^- \nu_{\tau}$		(4.7	\pm	1.1)	$\times 10^{-3}$	447
$K_1(1400)^- \nu_{\tau}$							$\times 10^{-3}$ S=1.7	335
$K^*(1410)^- \nu_{\tau}$		(1.5	+	1.4 1.0)	× 10 ⁻³	326
$K_0^*(1430)^- \nu_{ au}$		<	5				$\times 10^{-4}$ CL=95%	317
$K_2^0(1430)^- \nu_{\tau}$			3				$\times 10^{-3}$ CL=95%	315
$\eta \pi^- u_{ au}$			9.9				$\times 10^{-5}$ CL=95%	797
$\eta \pi^- \pi^0 \nu_{ au}$	[ø]						\times 10 ⁻³	778
$\eta \pi^{-} \pi^{0} \pi^{0} \nu_{\tau}$							\times 10 ⁻⁴	746
$\eta K^- \nu_{ au}$							\times 10 ⁻⁴	719
$\eta K^* (892)^- \nu_{\tau}$	[8]						\times 10 ⁻⁴	511
$\eta K = \pi^0 \nu_{\tau}$	[4]						\times 10 ⁻⁵	665
$\eta K^- \pi^0 (non\text{-}K^*(892)) \nu_{\tau}$	[8]	•	3.5				\times 10 \times 10 ⁻⁵ CL=90%	005
$\eta \overline{K}^0 \pi^- \nu_{\tau}$	[]							661
$\eta \overline{K}^0 \pi^- \pi^0 \nu_{\tau}$	[g]						$\times 10^{-5}$	661
$\eta K^- K^0 \nu_{\tau}$							$ imes 10^{-5}$ CL=90% $ imes 10^{-6}$ CL=90%	590
$\eta \pi^+ \pi^- \pi^- \geq 0$ neutrals $\nu_{ au}$			9.0				$\times 10^{-3}$ CL=90% $\times 10^{-3}$ CL=90%	430
$\eta \pi^- \pi^+ \pi^- \nu_{\tau} (\text{ex.} K^0)$					0.10			744
· · · · · · · · · · · · · · · · · · ·							$ imes 10^{-4} \ imes 10^{-5}$	744
$\eta \pi^- \pi^+ \pi^- \nu_{\tau} (\text{ex.} K^0, f_1(1285))$	9))	`		土	1.0	,		_
$\eta a_1(1260)^- \nu_{ au} \to \eta \pi^- \rho^0 \nu_{ au}$			3.9				$\times 10^{-4}$ CL=90%	_
$\eta \eta \pi^- \nu_{\tau}$			7.4				$\times 10^{-6}$ CL=90%	637
$\eta\eta\pi^-\pi^0\nu_{\tau}$			2.0				$\times 10^{-4}$ CL=95%	559
$\eta \eta K^- \nu_{\tau}$			3.0				$\times 10^{-6}$ CL=90%	382
$\eta'(958)\pi^-\nu_{\tau}$			4.0				$\times 10^{-6}$ CL=90%	620
$\eta'(958)\pi^-\pi^0\nu_{\tau}$			1.2				$\times 10^{-5}$ CL=90%	591
$\eta'(958) K^- \nu_{ au}$			2.4				$\times 10^{-6}$ CL=90%	495
$\phi \pi^- \nu_{ au}$		(3.4	\pm	0.6)	\times 10 ⁻⁵	585

Lepton Family number (LF), Lepton number (L), or Baryon number (B) violating modes

L means lepton number violation (e.g. $\tau^- \to e^+ \pi^- \pi^-$). Following common usage, LF means lepton family violation and not lepton number violation (e.g. $\tau^- \to e^- \pi^+ \pi^-$). B means baryon number violation.

LF	< 3.3	\times 10 ⁻⁸ CL=90%	888
	< 2.5	\times 10 ⁻⁴ CL=90%	888
LF	< 4.2		885
	< 5.8		885
LF	< 8.0	$\times 10^{-8}$ CL=90%	883
LF	< 1.1	$\times 10^{-7} CL = 90\%$	880
LF	< 2.6	$\times 10^{-8}$ CL=90%	819
LF	< 2.3	$\times 10^{-8}$ CL=90%	815
LF	< 9.2	$\times 10^{-8}$ CL=90%	804
LF	< 6.5	$\times 10^{-8}$ CL=90%	800
LF	< 1.8	$\times 10^{-8}$ CL=90%	719
LF	< 1.2		715
LF	< 4.8		716
LF	< 4.7		711
LF	< 3.2		665
LF	< 5.9	$\times 10^{-8}$ CL=90%	659
LF	< 3.4	$\times 10^{-8}$ CL=90%	665
	LF LF LF LF LF LF LF LF	<pre></pre>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

LF	< 7.0	$\times10^{-8}$ CL=90%	659
LF	< 1.6	$\times 10^{-7}$ CL=90%	630
LF	< 1.3	$\times 10^{-7}$ CL=90%	625
LF	< 3.2	\times 10 ⁻⁸ CL=90%	_
LF	< 3.4	$\times 10^{-8}$ CL=90%	_
LF	< 3.1	\times 10 ⁻⁸ CL=90%	596
LF	< 8.4		590
LF	< 2.7		888
LF	< 2.7		882
LF	< 1.7		882
LF	< 1.8		885
	< 1.5		885
			873
LF			877
L			877
			866
			866
			813
LF			813
L			813
LF			736
LF	< 3.4		738
L	< 3.3		738
LF	< 8.6		800
LF	< 4.5		800
	< 4.8		800
LF	< 8.0		696
LF	< 4.4		699
L	< 4.7		699
LF	< 6.5		878
LF	< 1.4		867
LF	< 3.5		699
			653
LF	< 2.4		798
	< 2.2		784
L,B			641
			641
			635
			635
			618
			618
L,B	< 3.5		641
			632
L,B	< 3.3	$\times 10^{-3}$ CL=90%	604
	LF LF LF LF LF LF LF LF LF LF LF LF LF L	LF < 1.6	LF < 1.6

L,B	< 8.9	$ imes$ 10 $^{-6}$ CL $=$ 90%	475
L,B	< 2.7	\times 10 ⁻⁵ CL=90%	360
L,B	< 7.2	$\times 10^{-8} CL = 90\%$	525
L,B	< 1.4	$\times 10^{-7} \text{CL} = 90\%$	525
LF	< 2.7	$\times 10^{-3}$ CL=95%	_
LF	< 5	\times 10 ⁻³ CL=95%	_
	L,B L,B L,B LF	L,B < 2.7 L,B < 7.2 L,B < 1.4 LF < 2.7	L,B < 2.7

Heavy Charged Lepton Searches

L^{\pm} – charged lepton

Mass m > 100.8 GeV, CL = 95% [h] Decay to νW .

L^{\pm} – stable charged heavy lepton

Mass m > 102.6 GeV, CL = 95%

Neutrino Properties

See the note on "Neutrino properties listings" in the Particle Listings.

Mass m < 1.1 eV, CL = 90% (tritium decay)

Mean life/mass, $\tau/m > 300$ s/eV, CL = 90% (reactor)

Mean life/mass, $\tau/m > 7 \times 10^9$ s/eV (solar)

Mean life/mass, $\tau/m > 15.4$ s/eV, CL = 90% (accelerator)

Magnetic moment $\mu < 0.28 \times 10^{-10}~\mu_B$, CL = 90% (solar + radiochemical)

Number of Neutrino Types

Number $\textit{N} = 2.996 \pm 0.007$ (Standard Model fits to LEP-SLC data)

Number $N=2.92\pm0.05$ (S = 1.2) (Direct measurement of invisible Z width)

Neutrino Mixing

The following values are obtained through data analyses based on the 3-neutrino mixing scheme described in the review "Neutrino Masses, Mixing, and Oscillations."

$$\begin{array}{l} \sin^2(\theta_{12}) = 0.307 \pm 0.013 \\ \Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2 \\ \sin^2(\theta_{23}) = 0.539 \pm 0.022 \quad (\text{S} = 1.1) \quad (\text{Inverted order}) \\ \sin^2(\theta_{23}) = 0.546 \pm 0.021 \quad (\text{Normal order}) \\ \Delta m_{32}^2 = (-2.536 \pm 0.034) \times 10^{-3} \text{ eV}^2 \quad (\text{Inverted order}) \\ \Delta m_{32}^2 = (2.453 \pm 0.033) \times 10^{-3} \text{ eV}^2 \quad (\text{Normal order}) \\ \sin^2(\theta_{13}) = (2.20 \pm 0.07) \times 10^{-2} \\ \delta, \ \textit{CP} \ \text{violating phase} = 1.36^{+0.20}_{-0.16} \ \pi \ \text{rad} \\ \left\langle \Delta m_{21}^2 - \Delta \overline{m}_{21}^2 \right\rangle < 1.1 \times 10^{-4} \text{ eV}^2, \ \text{CL} = 99.7\% \\ \left\langle \Delta m_{32}^2 - \Delta \overline{m}_{32}^2 \right\rangle = (-0.12 \pm 0.25) \times 10^{-3} \text{ eV}^2 \end{array}$$

NOTES

- [a] This is the best limit for the mode $e^- \to \nu \gamma$. The best limit for Nuclear de-excitation experiments is 6.4 \times 10²⁴ yr.
- [b] See the review on "Muon Decay Parameters" for definitions and details.
- [c] P_{μ} is the longitudinal polarization of the muon from pion decay. For V-A coupling, $P_{\mu}=1$ and $\rho=\delta=3/4$.
- [d] This only includes events with energy of e>45 MeV and energy of $\gamma>40$ MeV. Since the $e^-\overline{\nu}_e\nu_\mu$ and $e^-\overline{\nu}_e\nu_\mu\gamma$ modes cannot be clearly separated, we regard the latter mode as a subset of the former.
- [e] See the relevant Particle Listings for the energy limits used in this measurement.
- [f] A test of additive vs. multiplicative lepton family number conservation.
- [g] Basis mode for the τ .
- [h] L^{\pm} mass limit depends on decay assumptions; see the Full Listings.