Sample Set 2 SEMESTER TEST

Section A

A1. Using *z*-transform, determine the impulse response of the digital system shown in Figure A1. Comment on the stability of the system.

Figure A1

- A2 Using z-transform and long-division method, find the input x(n) given $y(n)=\{2, 3, 1, 6\}$ and $h(n)=\{1,2\}$.
- A3 Evaluate the N = 4-point DFT for X(0) and X(2) if $x(n) = \{0, 2, 0, -2\}$.
- A4 Find the z-transform of $x_1(n) = e^{-2n}\sin(3n)u(n)$ and $x_2(n)=n$ $5^{n-1}u(n)$.
- A5 The block diagram of a digital system is given as:

- a) Find the overall impulse response of the system, $h_T(n)$ in terms of $h_1(n)$, $h_2(n)$, $h_3(n)$ and $h_4(n)$. Find the z-transform of $h_T(n)$, $H_T(z)$.
- b) If $h_1(n) = h_2(n) = h_3(n) = h_4(n) = \{1,1\}$ respectively, find $h_T(n)$.

A6 The system function of a digital system is given as:

$$X(z) = \frac{z}{3z^2 - 4z + 1}$$

Using partial fraction, find x(n).

SECTION B

B1 A source is producing sequences of independent symbols A, B, C and D with the following probabilities: A=0.51, B=0.26, C=0.12 and D =0.11.

Compute:

- (a) Source entropy;
- (b) Design a binary Huffman code such that binary one is sent as often as possible;
- (c) The average bit length for the code-word set.
- B2 The following Figure B2 shows a 10×10 image with 3 different grey levels (black, grey, white). The image is scanned row by row and the values are put together to form a 1 dimensional data stream. The intensity value of the white, the black and the gray colour is 255, 0, 100 respectively. Each value is encoded by 8 bits before or after coding.

- (i) Express its code pairs using run-length coding (RLC);
- (ii) Calculate the total number of bits of the bit stream.
- (iii) Compute the compression ratio.

Appendix

The z-transform is defined as $X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$

	, , , , , , , , , , , , , , , , , , ,
Sequence	Transform
$\delta[n]$	1
u[n]	1
	$\frac{1-z^{-1}}{1-z}$
$\delta[n - m]$	Z ^{-m}
a ⁿ u[n]	1
	$1-az^{-1}$
na ⁿ u[n]	az^{-1}
	$\left(\frac{az}{(1-az^{-1})^2}\right)$
$[\cos \omega_0^n]u[n]$	$1 - [\cos \omega_0] z^{-1}$
	$\frac{1 - [2\cos\omega_0]z^{-1} + z^{-2}}{1 - [2\cos\omega_0]z^{-1} + z^{-2}}$
$[\sin \omega_0^n]u[n]$	$[\sin \omega_0]z^{-1}$
	$\frac{3}{1 - [2\cos\omega_0]z^{-1} + z^{-2}}$
$[r^n \cos \omega_0 n] u[n]$	$1 - [r\cos\omega_0]z^{-1}$
	$\frac{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$
$[r^n \sin \omega_0 n] u[n]$	$[r\sin\omega_0]z^{-1}$
	$\frac{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$

Some z-transform properties:		
Sequence	Transform	
x[n]	X(z)	
$x_1[n]$	$X_1(z)$	
$x_2[n]$	$X_2(z)$	
$ax_1[n]$ +	$aX_1(z)$ +	
$bx_2[n]$	$bX_2(z)$	
x[n - m]	$z^{-m}X(z)$	

Source entropy:

$$H = \sum_{i=1}^{m} P_i \log_2 \left(\frac{1}{P_i}\right)$$

Average code length:

$$\bar{n} = \sum_{i=1}^{m} n_i P(X_i)$$

Information content per symbol:

$$I(S_i) = \log_2\left(\frac{1}{P_i}\right)$$

Discrete Fourier Transform, DFT:

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi}{N}kn}$$

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j\frac{2\pi}{N}kn}$$