Capítulo 5.

Teorema 5.3.1 (Universalidade da Uniforme): Seja F uma CDF, uma função contínua e estritramente crescente no suporte da distribuição. Isto garante que a função inversa F^{-1} existe e é única, onde $F^{-1}:(0,1)\to\mathbb{R}$. Os seguintes resultados valem:

- 1. Seja $U \sim \text{Unif}(0,1)$ e $X = F^{-1}(U)$. Então, X é uma v.a. com CDF F.
- 2. Seja X uma v.a. com CDF F. Então, $F(X) \sim \text{Unif}(0,1)$.

Prova:

1. Tomando $X = F^{-1}(U)$, temos que

$$P(X \leq x) = P\big(F^{-1}(U) \leq x\big) = P(U \leq F(x)) = F(x).$$

2. Seja U = F(X), então

$$P(U \le u) = P(F(X) \le u) = P(X \le F^{-1}(u)) = F(F^{-1}(u)) = u.$$

Teorema (Propriedades da Normal): Seja $Z \sim N(0,1)$ com PDF $\varphi(z)$ e CDF $\Phi(z)$. Então, as seguintes propriedades valem:

- Simetria: $\varphi(z) = \varphi(-z)$
- Simetria das caudas: $\Phi(z) = 1 \Phi(-z)$
- Simetria entre Z e -Z: $\Phi_{-Z}(z) = \Phi_{Z}(z)$

Prova:

- A simetria é trivial, pois $\varphi(z)=\left(\frac{1}{\sqrt{2\pi}}\right)e^{-\frac{z^2}{2}}=\left(\frac{1}{\sqrt{2\pi}}\right)e^{-\frac{(-z)^2}{2}}=\varphi(-z).$
- A simetria das caudas é dada por $\Phi(z)=\int_{-\infty}^z \varphi(t)dt=\int_{-\infty}^z \varphi(-t)dt=-\int_{-\infty}^{-z} \varphi(u)du=1-\int_{-\infty}^{-z} \varphi(u)du=1-\Phi(-z).$
- A simetria entre Z e -Z é dada por $\Phi_{-Z}(z)=P(-Z\leq z)=P(Z\geq -z)=1-P(Z\leq -z)=1-\Phi(-z)=\Phi(z).$

Definição 5.5.2 (Propriedade da não memória): Dizemos que uma v.a. X tem a propriedade da não memória se, para todo s,t>0, vale

$$P(X > s + t \mid X > s) = P(X > t)$$

Note que se $X \sim \operatorname{Expo}(\lambda)$, então X tem a propriedade da não memória. Pois

$$P(X > s + t \mid X > s) = \frac{P((X > s + t) \cap (X > s))}{P(X > s)} = \frac{P(X > s + t)}{P(X > s)} = \frac{e^{-\lambda(s + t)}}{e^{-\lambda s}} = e^{-\lambda t} = P(X > t)$$

1

Teorema 5.5.3: Se X é uma v.a. contínua com a propriedade da não memória, então X é uma v.a. exponencial.

Prova 1: Seja F a CDF de X e G(x)=P(X>x)=1-F(x). Pela propriedade da não memória, temos

$$G(s+t) = G(s)G(t)$$

pois $G(s+t)=P(X>s+t)=P(X>s+t\mid X>s)P(X>s)=P(X>t)P(X>s)=G(t)G(s)$, a segunda igualdade decorre da lei da probabilidade total e de que $P(X>s+t\mid X\leq s)=0$. Diferenciando em relação a s, temos

$$G'(s+t) = G'(s)G(t)$$

e quando s=0

$$G'(t) = G'(0)G(t)$$

resolvendo a equação diferencial, temos

$$G(t) = Ke^{-\lambda t}$$

onde $\lambda = G'(0)$, e K = G(0) = 1. Portanto, $X \sim \text{Expo}(\lambda)$.

Prova 2: Usando o resultado da **prova 1**: G(s+t)=G(s)G(t), podemos mostrar que G é uma função exponencial. Note que G(0)=1, pois

$$G(0) = G(0+0) = G(0)G(0) = G(0)^{2}$$

E se G(0)=0, então G(t)=0 para todo t, o que é absurdo, pois G(t)=P(X>t). Portanto, G(0)=1. Podemos encontrar G(2) da seguinte forma

$$G(2) = G(1+1) = G(1)G(1) = G(1)^{2}$$

De forma similar G(3) é

$$G(3) = G(1+2) = G(1)G(2) = G(1)G(1)^{2} = G(1)^{3}$$

podemos provar por indução que $G(n) = G(1)^n$, para n inteiro positivo da seguinte forma

$$G(n) = G(1)^n$$

$$G(n+1) = G(n)G(1) = G(1)^n G(1) = G(1)^{n+1}$$
.

Queremos estender essa propriedade para n racional, para isso observe que

$$G(1) = G\left(\frac{1}{n} + \dots + \frac{1}{n}\right)$$

com n termos, então

$$G(1) = G\left(\frac{1}{n}\right)G\left(\frac{1}{n}\right)...G\left(\frac{1}{n}\right) = G\left(\frac{1}{n}\right)^n$$

e portanto

$$G\left(\frac{1}{n}\right) = G(1)^{\frac{1}{n}}$$

e para m inteiro positivo, temos

$$G\left(\frac{m}{n}\right) = G\left(\frac{1}{n} + \ldots + \frac{1}{n}\right) = G\left(\frac{1}{n}\right)G\left(\frac{1}{n}\right)\ldots G\left(\frac{1}{n}\right) = G\left(\frac{1}{n}\right)^m = G(1)^{\frac{m}{n}}$$

A extensão para x real positivo vem com a pré requesito de um entendimento de análise real, portanto não será feito aqui. Portanto, $G(x) = G(1)^x$. Por fim, observe que

$$G(x) = G(1)^x = e^{\ln(G(1)^x)} = e^{x\ln(G(1))}$$

Chamando $\lambda = -\ln(G(1))$, temos que $G(x) = e^{-\lambda x}$, ou seja, $X \sim \text{Expo}(\lambda)$.

Capítulo 6.

Teorema 6.1.4 (Caiu no testo uma parte):

Capítulo 7.

Teorema 7.1.20: Seja f_{xy} a PDF conjunta de X e Y tal que

$$f_{xy}(x,y) = g(x)h(y)$$

para todo x e y, onde g(x) e h(y) são funções não negativas. Então X e Y são independentes. Se g ou h for uma PDF válida, então a outra também é, e a PDF conjunta é o produto das marginais.

Prova: defina

$$c = \int_{-\infty}^{\infty} h(y) dy > 0$$

podemos reescrever a PDF conjunta como

$$f_{xy}(x,y) = g(x)h(y) = cg(x)\frac{h(y)}{c}$$

então a PDF marginal de X é

$$f_X = \int_{-\infty}^{\infty} f_{xy}(x,y) dy = \int_{-\infty}^{\infty} cg(x) \frac{h(y)}{c} dy = cg(x) \int_{-\infty}^{\infty} \frac{h(y)}{c} dy = cg(x).$$

Segue que $\int_{-\infty}^{\infty}g(x)dx=1$ já que f_X é uma PDF válida. Analogamente, $\frac{h(y)}{c}$ é a PDf marginal de Y. Portanto, cg(x) e $\frac{h(y)}{c}$ são PDFs válidas, o que conclui que X e Y são independentes. \Box

Teorema 7.3.2 (independente implica corr = 0): Sejam X e Y v.a. independentes. Então, corr(X,Y)=0.

Prova: Como a fórmula da correlação é

$$corr(X, Y) = \frac{cov(X, Y)}{\sqrt{var(X)var(Y)}}$$

Basta mostrar que a covariância é zero. Como X e Y são independentes, temos que

$$\mathrm{cov}(X,Y) = E(XY) - E(X)E(Y) = E(X)E(Y) - E(X)E(Y) = 0$$

e a prova de que E(XY) = E(X)E(Y) é, no caso contínuo,

$$\begin{split} E(XY) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{xy}(x,y) dx dy \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{X(x)} f_{Y(y)} dx dy \\ &= \int_{-\infty}^{\infty} x f_{X(x)} dx \int_{-\infty}^{\infty} y f_{Y(y)} dy = E(X) E(Y) \end{split}$$

E no caso discreto

$$\begin{split} E(XY) &= \sum_x \sum_y xy f_{xy}(x,y) \\ &= \sum_x \sum_y xy f_{X(x)} f_{Y(y)} \\ &= \sum_x x f_{X(x)} \sum_y y f_{Y(y)} = E(X) E(Y) \end{split}$$

Observação: A recíproca não é verdadeira, ou seja, corr(X,Y)=0 não implica independência.

8. Desigualdades

Teorema 8.1 (Desigualdade de Markov): Seja X uma variável aleatória não negativa. Então, para todo a>0,

$$P(|X| \ge a) \le \frac{E(|X|)}{a}$$

 $\textbf{Prova} : \text{Seja } Y = \frac{|X|}{a} \text{ e } I_{Y \geq 1} \text{ a função indicadora de } Y \geq 1. \text{ Temos que } I_{Y \geq 1} = 1 \Leftrightarrow Y \geq 1 \text{ e } I_{Y \geq 1} = 0 \Leftrightarrow Y < 1. \text{ Isso implica que } I_{Y \geq 1} \leq Y. \text{ Logo, aplicando a esperança em ambos os lados, temos }$

$$E\big(I_{Y\geq 1}\big) \leq E(Y) \Rightarrow P(Y\geq 1) \leq E(Y) \Rightarrow P\bigg(\frac{|X|}{a} \geq 1\bigg) \leq E\bigg(\frac{|X|}{a}\bigg) \Rightarrow P(X\geq a) \leq \frac{E(|X|)}{a}$$

Teorema 8.2 (Desigualdade de Chebyshev): Seja X uma variável aleatória com média μ e variância σ^2 . Então, para todo a>0,

$$P(|X - \mu| \ge a) \le \frac{\sigma^2}{a^2}$$

Prova: Seja $Y = |X - \mu|^2$, com isso temos

$$P(|X - \mu| > a) = P(|X - \mu|^2 > a^2) = P(Y > a^2)$$

Aplicando a desigualdade de Markov, temos

$$P(Y \ge a^2) \le \frac{E(Y)}{a^2} = \frac{E(|X - \mu|^2)}{a^2} = \frac{\sigma^2}{a^2}$$

Portanto

$$P(|X - \mu| \ge a) \le \frac{\sigma^2}{a^2}$$

Teorema 8.3 (Desigualdade de Chernoff): Seja X uma variável aleatória com média μ . Então, para todo a>0,

$$P(X \geq \mu + a) \leq e^{-ta} M_{X(t)} = \frac{E\big(e^{tX}\big)}{e^{ta}}$$

onde $M_{X(t)}$ é a função geradora de momentos de X.

Prova: Seja $Y = e^{tX}$, com isso temos

$$P(X > a) = P(e^{tX} > e^{ta}) = P(Y > e^{ta})$$

Aplicando a desigualdade de Markov, temos

$$P(Y \ge e^{ta}) \le \frac{E(Y)}{e^{ta}} = \frac{E(e^{tX})}{e^{ta}}$$

Portanto

$$P(X \geq a) \leq e^{-ta} M_{X(t)} = \frac{E(e^{tX})}{e^{ta}}$$

Definição 8.1 (convexidade e concavidade): Seja g uma função duas vezes diferenciável. Dizemos que g é convexa se $g''(x) \ge 0$ para todo x e concava se $g''(x) \le 0$ para todo x.

Teorema 8.4 (Desigualdade de Jensen): Seja X uma variável aleatória e g uma função convexa, então

$$g(E(X)) \le E(g(X))$$

Se g é concava, a desigualdade é invertida, ou seja,

$$g(E(X)) \ge E(g(X))$$

onde a igualdade vale se, e somente se, g(X) = a + bX com probabilidade 1.

Prova: Se g é convexa, então $g''(x) \ge 0$ para todo x. E seja a+bX a reta tangente a g em E(X), então temos

$$g(X) \ge a + bX$$

aplicando a esperança em ambos os lados, temos

$$E(g(X)) \ge a + bE(X) = g(E(X))$$

Onde a igualdade vale pois a reta é tangente em E(X).

Usando a mesma g, temos que h=-g é concava, usando a desigualdade encontrada acima, temos

$$E(-h(X)) > -h(E(X)) \Longrightarrow -E(h(X)) > -h(E(X))$$

multiplicando por -1 em ambos os lados, temos

$$E(h(X)) \le h(E(X))$$