Data Science & Artificial Intelligence

Python For Data Science

Basics Of Python

Recap of Previous Lecture

- Logical operators: and, ox, not

- Bitwise operators: 2, 1, 1, ~

- Shift operators: <<,>>

Topics to be Covered

- H/W Q's solving
- Arithmetic operators

- Operator Precedence and Associativity
- Control statements in Python

as True

b= False

C= False

d= True

X= as and of ox i

$$\frac{\partial}{\partial x} = \frac{1}{2} \times 10$$

H/W Question-2 ou=13 = 000 1/01 6=27 = 0011011 C=34 = 0100010 4=71 = 1000111 z= an Nb &d y= b / c / a Print (x, y, z) # 14 63 39

$$-bfd = 001011
1000111
0000011
10001101
0001110
=14

$$-c = 0100010
0101111
1b = 0011011
0111111
=63

$$-d = 1000111
1c = 0100010
1c = 0100010
0100111 = 39$$$$$$

and 11

Azithmetic operators

operators	Meaning
+	addition
_	Subtraction
*	Multiplication
/	Claume Division
//	True Division (or) floor Division
/	Modulus
**	Exponentiaution

```
=> Performs division among enputy and seturn Quotient as regult
     1 => Roduce result always in tractional down.
   '// => Result type depends upon inputs type.
              a/b> 3)14(4.666 a)1/b=>
3)14(4.666 a)1/b=>
18
20
18
20
18
20
EX:1
    \omega = 14
```

divisor

$$0 = 14$$
 $b = 3$
 $c = a/b$
 $d = a/b$
 $f(c,d)$
 $f(c,d)$

Ex: 4 3=-29 11 29 2-636	3
$j = 11$ $K = 2 j\# -2.63637$ $\frac{70}{66}$ $\frac{40}{40}$	
Prat(k, 2)	

Ex! 5

Print (i, i)

3 4.0 > sounded off to Greatest Integer Function >> 6.0

/. (modulus) operator

- When both input Signs are Same, It Perform division and return remainder with divisor Sign as regult.

Ex:
$$\omega = 17$$

$$b = 3$$

$$c = \omega \cdot / \cdot b$$

If a is tree, keep adding b until regult is -ve or Zero If a 2s -ve, keep adding b' until regult is tree or Zero $ex = 17 \cdot (-3) \Rightarrow 17 + (-3) + (-3) + (-3) + (-3) + (-3) + (-3) + (-3) = -1$ $-17 \cdot (-3) \Rightarrow -17 + 3 + 3 + 3 + 3 + 3 + 3 = 1$

$$c = |7 \cdot | -3 \Rightarrow -3 - (17 \cdot | -3)$$

$$\Rightarrow -3 - (-2) \Rightarrow -3 + 2 = -1$$

$$C = -17 \cdot / 3 \Rightarrow 3 - (17 \cdot / 3)$$

$$\Rightarrow 3 - (+2)$$

$$\Rightarrow 3 - (+2)$$

$$\Rightarrow 3 - 2$$

** (Exponentiation): Right to Left Associative C=0** C=0* C=0** C=0**

Ex:2.
$$\omega = a$$

$$C = 4$$

$$d = a \times *b \times *C$$

$$Potint(d)$$

$$option = (a \times *b) \times *c$$

$$(a)$$

compares as and b values and seturn True if same

False-Not Same

as = b Assign (or) copies b'value into 'au'.

Short-hand (or) Compound Ashignment

X op = Y => X = X op(Y)

Ex: $\omega + = b \Rightarrow \omega = \omega + b$ $2/=2 \Rightarrow \lambda = \lambda/2$ $2/=2 \Rightarrow \lambda = \lambda/2$ $1/=2 \Rightarrow \lambda = \lambda/2$

b-c-a= 3-2-5=-4 d-=-4=7d=d-(-4) =7+4=11 7 d= d - c - a d=d-(b-c-a) =d-b+c+a 37-3+2+5=11

Precedence and Associativity

Operators	Associativity
() Highest precedence	Left - Right
**	Right - Left
+x , -x, ~x	Left - Right
*, 1, 11, %	Left - Right
+, -	Left - Right
<<, >>	Left - Right
&	Left - Right
^	Left - Right
	Left - Right
Is, is not, in, not in,	Left - Right
<, <=, >, >=, ==, !=	
Not x	Left - Right
And	Left - Right
Or	Left - Right
If else	Left - Right
Lambda	Left - Right
=, +=, -=, *=, /= Lowest Precedence	Right - Left

Topic: Control Statements in Python - 1

#Q. What is the output of below Python Code?

$$17 * 2 = 34$$
 $34 | 14 = 8$
 $3 - 1 = 2$
 $15 < 2 = 15 * 2^{2} = 60$
 $13 > 72 = 13 | 2 = 3$

$$8 \pm 60$$
 $8 = 00 \mid 000$
 $60 = 11 \mid 00$
 $00 \mid 000$
 $= 8$

$$8 \mid 3 = \frac{1000}{1011}$$

Topic: Control Statements in Python - 1

Control Statement ?

- The Statement that can change (control), the order of execution of statements in a Program is called Control statement
- -3 Types of Control Statements en Python:
 - 1) Selection statements: if, if-else, if-elif if-elif-else, motth-case
 - 2) Iterative statements: while, for
 - 3) Jumping statements: break, continue Pars return

To be contrad ... (i)

2 mins Summary

-> Arithmetic glerators

- -> Compound Assignment
- > Precedence & Associativity
 - -> Control Stmtg.

THANK - YOU