Algorítimos e Estrutura de Dados III Primeiro Trabalho Prático - Hipercampos

Pablo Cecilio Oliveira Alexander Cristian

1 Introdução

Na Ciência da Computação, o estudo de algorítimos para resolução de problemas geométricos é conhecido como Geometria Computacional. De forma geral, o objetivo deste ramo é resolver de maneira eficiente utilizando o menor número possível de operações sobre os elementos geométricos elementares.[5]

Dentre os problemas geométricos, temos um conhecido como "Hipercampos", o qual pode ser visto como desafio em maratonas de programação[2]. Neste trabalho, é apresentado a solução para esse problema por meio de um algorítimo contido em um programa desenvolvido na linguagem em C.

1.1 Hipercampos, especificação do problema

No problema de Hipercampos, um plano cartesiano em \mathbb{R}^2 possui duas "âncoras", dois pontos A e B, onde o eixo Y das duas âncoras são iguais a zero, ou seja $A = (X_A, 0)$ e $B = (X_B, 0)$. Os valores do eixo X das âncoras variam de X_A até X_B , formando assim um segmento de reta horizontal, tal que $0 < X_A < X_B \le 10^4$. (Fig. 1)

Figura 1: Exemplo de entrada para o problema.

Ao plano cartesiano também somam-se um conjunto P de N pontos (X_i, Y_i) , sendo que $N(1 \le N \le 100)$. Os pontos do conjunto P podem ter suas coordenadas variando entre 0 até 10^4 , ou seja, $0 < X_i, Y_i \le 10^4$.

O objetivo do problema de Hipercampos é ligar os pontos contidos em P às âncoras X_A e X_B , formando assim o máximo número de triângulos sem que esses se interceptem (Fig. 2). E para esse proposito é apresentado um algorítimo contido no programa apresentado neste trabalho.

Figura 2: Hipercampos, solucionando.

1.2 Visão geral sobre o funcionamento do programa

O programa desenvolvido recebe por parâmetro a entrada de um arquivo contendo em sua primeira linha um número N de pontos no plano \mathbb{R}^2 e as coordenadas do eixo X das âncoras A e B, respectivamente. As linhas subsequentes a primeira correspondem às coordenadas dos N pontos do conjunto P a ser solucionado.

O algorítimo então processa esses dados retornando uma solução que pode ser verificada por meio de dois arquivos também gerados por um parâmetro: um contendo o número de triângulos possíveis e o outro em forma de uma imagem renderizada como "gráfico vetorial escalável" (Scalable Vector Graphics, ou ".svg")¹. Um terceiro arquivo em ".svg" é gerado contendo a entrada original dos dados para referência.

O programa é executado no prompt de comando e recebe as passagens de parâmetro dos arquivos de entrada e saída:

A entrada e solução renderizada pode ser vista no exemplo da Figura 3.

 $^{^1}$ Trata-se de uma linguagem XML para descrever de forma vetorial desenhos e gráficos bidimensionais.

Figura 3: Entrada e saída renderizadas.

Fonte: gnuplot

2 Implementação

Inicialmente os dados contidos no arquivo de entrada são verificados e transferidos para uma lista simplesmente encadeada, está limitada ao tamanho da memoria principal disponível.

Após os dados estarem disponíveis na memoria, a função que contem um algorítimo recursivo determina entre todos os pontos do plano, qual possui o maior numero de coordenadas dentro da área formada pelo ponto testado e suas duas âncoras. Este teste a principio tem como premissa o argumento em que o ponto com o maior número de coordenadas em sua área será aquele que terá o maior número de possibilidades de formações triangulares subsequentes.

O teste recursivo então se repete sucessivamente para cada ponto interno em relação ao ponto inicialmente encontrado como sendo o de maior número de coordenadas (pontos X_i, Y_i), determinando o maior conjunto de elementos em relação ao conjunto anteriormente encontrado. O processo finaliza quando não existem mais coordenadas a serem encontradas.

A função que determina se uma coordenada está ou não dentro de uma área formada pelo ponto e suas ancoras é derivada do método do produto vetorial entre duas retas.[3] Este consiste em calcular a orientação do segmento de reta formado entre as âncoras e o a ser ponto testado, em relação a orientação do segmento de reta formado com um ponto determinado como aquele a formar o triangulo.

A equação que determina essa orientação é dada por:

$$(y2-y1)*(x3-x2)-(y3-y2)*(x2-x1)$$

Como o eixo Y das âncoras são iguais a zero, a equação pode ser simplificada como:

$$y2 * (x3 - x2) - (y3 - y2) * (x2 - x1)$$

Aplicando a equação entre os segmento de reta \overline{PQ} , sendo P a âncora e Q o ponto que forma o triângulo), com \overline{PR} (R, ponto sendo testado), resulta no valor que determina a orientação da reta \overline{PR} em relação a \overline{PQ} . No caso do resultado for maior que zero, a reta \overline{PR} está no sentido horário a reta \overline{PQ} , caso seja menor do que zero, está está em sentido anti-horário à \overline{PQ} .

A relação entre os segmentos de reta \overline{PQ} e \overline{PR} com as coordenadas respectivas às âncoras em P, resultam que se um ponto estiver no sentido horário à $\overline{PQ_A}$ e anti-horário à $\overline{PQ_B}$, este está dentro da área do triangulo formado entre as duas âncoras e o ponto Q.

A Figura 4 demonstra esse o conceito.

Figura 4: Determinando o ponto interno ao triângulo

Tabela 1: Funções do programa

Funções	Finalidade	Complexidade*
debug()	Função que verifica a condição para retorno de possíveis bugs no programa.	O(1)
create()	Inicializa a Lista encadeada.	O(1)
insere()	Insere os dados em uma lista encadeada.	O(1)
printCJT()	Imprime uma Lista encadeada.	O(n)
sizeCJT()	Retorna o tamanho da lista encadeada.	O(n)
dump()	Libera a memoria alocada pela lista.	O(n)
is Empty()	Verifica se uma lista encadeada está vazia.	O(1)
openFILE()	Abre o arquivo solicitado e transfere os dados para uma lista encadeada.	O(n)
saveFILE()	Salva a solução do problema em um arquivo.	O(1)
chkFILE()	Verifica por possíveis erros de entrada em um arquivo.	O(1)
showerro()	Retorna possíveis erros no arquivo de entrada.	O(1)
ask()	Solicita a confirmação do usuário caso erros de entrada sejam encontrados.	O(1)
cpyCJT()	Copia os dados de uma lista encadeada para outra lista encadeada.	O(1)
PQR()	Algorítimo de orientação do ponto em relação a reta da ancora.	O(1)
find MAX()	Função recursiva que determina o maior conjunto de pontos que se encontram dentro do triângulo formado pelas ancoras e um ponto (x, y) .	O(n)
$soluciona() \ solucao()$	Funções de chamada e retorno para a execução do algorítimo	O(1)
plotGraph()	PIPE para o gnuplot com a finalidade de renderizar os arquivos .svg contendo respectivamente, a entrada e saída da solução do problema.	O(n)

Fonte: autores

3 Análise de Complexidade

$$f(n) = 11 + (n+1) * \frac{n}{n-1} + \frac{n}{2} * \frac{1}{2n} + n + \frac{n}{2} + 4n$$

$$f(n) = 11 + \frac{n^2 + n}{n-1} + \frac{n}{4n} + \frac{n}{2} + 5n$$

$$f(n) = \frac{26n^2 + 27n - 45}{4(n-1)}$$

$$T(n) = aT(\frac{n}{b}) + f(n)$$

Figura 5: Tempo de execução do algoritimo

Fonte: autores

4 Considerações finais

O Trabalho computacional 1 da disciplina foi uma grande oportunidade para aprender sobre grafos e LCS, que rodeiam o algoritmo ótimo para a solução desse problema, o que é a introdução para programação dinâmica e acreditamos ser o intuito desse trabalho, também proporcionou um contato maior com a analise de complexidade do algoritmo.

Um dos maiores problemas no desenvolvimento foi encontrar um algoritmo que possuísse um comportamento adequado quando a entrada de valores é muito grande. Apesar da forte base matemática de nossos métodos, em alguns casos eles podem levar a uma falta de precisão, porque o sistema de números de ponto flutuante tem tamanho limitado e na maioria das vezes lida com aproximações. O problema ocorre às vezes quando um ponto p deve estar exatamente na borda de um triângulo, as aproximações levam a falhar no teste.

Para a construção de gráficos que auxiliam em uma melhor visualização do trabalho foi necessário o gnuplot.

Referências

- [1] et al. Elin, Kisielewicz. How to determine if a point is in a 2d triangle? https://stackoverflow.com/questions/2049582/how-to-determine-if-a-point-is-in-a-2d-triangle. [Acesso em: 23-Agosto-2018].
- [2] URI Online Judge. Hipercampo. https://www.urionlinejudge.com.br/judge/en/problems/view/2665. [Acesso em: 3-Setembro-2018].
- [3] Cédric Jules. Accurate point in triangle test. http://totologic.blogspot.com/2014/01/accurate-point-in-triangle-test.html. [Acesso em: 23-Agosto-2018].
- [4] Patrick Prosser. Geometric algorithms. http://www.dcs.gla.ac.uk/~pat/52233/slides/Geometry1x1.pdf. [Acesso em: 23-Agosto-2018].
- [5] Wikipedia contributors. Computational geometry Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Computational_geometry&oldid=841504892, 2018. [Acesso em: 3-Setembro-2018].