Applied Biostatistics I

Axioms of Kolmogorov: $A(probability\ measure) \subset \Omega(sample\ space): P[A] \in [0,1]:$

- $0 \le P[A] \le 1$ for every event $A \subset \Omega$
- $P[\Omega] = 1$
- $P[A \cup B] = P[A] + P[B]$ for disjoint event A and B.

De Morgan's laws Let A and B be events. Then, $(A \cap B)^c = A^c \cup B^c$ and $(A \cup B)^c = A^c \cap B^c$

Probability of unions Let A and B be events. Then, $P[A \cup B] = P[A] + P[B] - P[A \cap B]$ More general: let A_1, A_2, \ldots, A_n be events. Then, $P[A_1 \cup A_2 \cup \ldots \cup A_n] = \sum_{i_1=1}^n P[A_{i_1}] - \sum_{i_1=1}^{n-1} \sum_{i_2=i_1+1}^n P[A_{i_1} \cap A_{i_2}] + \sum_{i_1=1}^{n-2} \sum_{i_2=i_1+1}^n \sum_{i_3=i_2+1}^n P[A_{i_1} \cap A_{i_2} \cap A_{i_3}] - \ldots$

Independence Two events A and B are called independent if $P[A \cap B] = P[A] \cdot P[B]$

Conditional probability Let A and B be events (with P[B] > 0). The conditional probability of A given B is defined as $P[A|B] = \frac{P[A \cap B]}{P[B]}$

Law of total probability Assume B_1, B_2, \ldots, B_k are disjoint events with $B_1, B_2, \ldots, B_k = \Omega$. Then we can calculate the probability of any event A as $P[A] = \sum_{i=1}^k P[A \cap B_i] = \sum_{i=1}^k P[A|B_i]P[B_i]$

Bayes' theorem Let A and B be events with P[A] > 0 and P[B] > 0. Then we have: $P[B|A] = \frac{P[A \cap B]}{P[A]} = \frac{P[A|B]P[B]}{P[A]}$ In the setting of the law of total probability, we have $P[B_i|A] = \frac{P[A \cap B_i]}{P[A]} = \frac{P[A|B_i]P[B_i]}{\sum_{i=1}^k P[A|B_j]P[B_j]}$

Cumulative distribution function The cumulative distribution function (CDF) of a random variable Xis defined as $F_X(x) := P[X \le x]$ continuous $F(x) = \int_{-\infty}^x f(u) du$

Discrete random variables $X: \Omega \to \{x_1, x_2, \ldots\}$; probability mass function $p(x_k) := P[X = x_k]$; $A \subset \{x_1, x_2, \dots\}$:

- $\begin{array}{l} \bullet \quad P[X \in A] = \sum_{k: x_{\epsilon} \in A} p\left(x_{k}\right) \\ \bullet \quad \sum_{k} p\left(x_{k}\right) = 1 \\ \bullet \quad \mathrm{CDF}: F_{X}(x) = P[X \leq x] = \sum_{k: x_{k} \leq x} p\left(x_{k}\right) \end{array}$

Expectation value $E[X] := \sum_{k} x_{k} p(x_{k})$ continuous $E[X] = \int_{-\infty}^{\infty} x f(x) dx$

Variance $\operatorname{Var}(X) := \sum_{k} (x_k - E[X])^2 p(x_k)$ continuous $\operatorname{Var}(X) = \int_{-\infty}^{\infty} (x - E[X])^2 f(x) dx$

Bernoulli distribution $X \in \{0,1\}$ $X \sim$ Bernoulli(π)

• $\pi := P[X = 1]$

Binomial distribution $X \in \{0, 1, \dots, n\}$ $X \sim \text{Bin}(n, \pi), n \in \mathbb{N}, \pi \in (0, 1)$ norm.approx. $\sim \text{N}(n\pi, n\pi(1 - 1))$ $\pi))$

•
$$p(x) = P[X = x] = \binom{n}{x} \pi^x (1 - \pi)^{n-x}$$

•
$$E[X] = n\pi, Var(X) = n\pi(1 - \pi)$$

Poisson distribution $X \in \mathbb{N}$ $X \sim \text{Pois}(\lambda), \lambda > 0$

•
$$p(x) = P[X = x] = \frac{e^{-\lambda}\lambda^x}{x!}$$

• $E[X] = \lambda, \operatorname{Var}(X) = \lambda$

•
$$E[X] = \lambda$$
, $Var(X) = \lambda$

• CDF:
$$F(x; \lambda) = \sum_{i=0}^{x} \frac{e^{-\lambda} \lambda^{i}}{i!}$$

Uniform distribution $X \sim \mathcal{U}([a,b])$

•
$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & \text{otherwise} \end{cases}$$

• $E[X] = \frac{b+a}{2}, \operatorname{Var}(X) = \frac{(b-a)^2}{12}$

•
$$E[X] = \frac{b+a}{2}, Var(X) = \frac{(b-a)^2}{12}$$

Normal distribution $X \sim \mathcal{N}(\mu, \sigma^2)$, $\mu \in \mathbb{R}$, $\sigma^2 > 0$

•
$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right\}, x \in \mathbb{R}$$

Standard normal distribution $Z \sim \mathcal{N}(0,1)$

•
$$\varphi(z) = \frac{1}{\sqrt{2\pi}}e^{-z^2/2}$$
, $\Phi(z) = \int_{-\infty}^{z} \varphi(t)dt$
• $Z = aX + b \sim \mathcal{N}\left(a\mu + b, a^2\sigma^2\right)$

•
$$Z = aX + b \sim \mathcal{N} (a\mu + b, a^2\sigma^2)$$

•
$$Z = \frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1)$$

Exponential distribution $X \sim \text{Exp}(\lambda), \lambda > 0$

•
$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

• $E[X] = \frac{1}{\lambda}, Var(X) = \frac{1}{\lambda^2}$

•
$$E[X] = \frac{1}{\lambda}, Var(X) = \frac{1}{\lambda^2}$$

discrete	continuous
$E[X] = \sum_{k>1} x_k p(x_k)$	$E[X] = \int_{-\infty}^{\infty} x f(x) dx$
$Var(X) = \sum_{k>1}^{\infty} (x_k - E[X])^2 p(x_k) = E[X^2] - (E[X])^2$	$Var(X) = \int_{-\infty}^{\infty} (x - E[X])^2 f(x) dx$

R function naming

- p or "probability", the cumulative distribution function (c. d. f.)
- q for "quantile", the inverse c. d. f.
- d for "density", the density function (p. f. or p. d. f.)
- r for "random", a random variable having the specified distribution

Discrete multivariate distributions Let $X: \Omega \to W_x$ and $Y: \Omega \to W_Y$ be discrete random variables Joint Cumulative Distribution Function: $F_{X,Y}(x,y) := P[X \le x, Y \le y]$

Joint Probability Mass Function: $p_{X,Y}(x,y) := P[X=x,Y=y], x \in W_X, y \in W_Y$ Marginal Probability Mass Function: $p_X(x) = P[X=x] = \sum_{y \in W_Y} p_{X,Y}(x,y)$

Independence IF: $p_{X,Y}(x,y) = p_X(x)p_Y(y)$

Conditional Probability Mass function: $p_{X|Y=y}(x) = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$

Continuous multivariate distributions Let $X \to \mathbb{R}$ and $Y \to \mathbb{R}$ be continuous random variables

Joint cumulative distribution function: $F_{X,Y}(x,y) := P[X \le x, Y \le y]$

Joint probability density: $f_{X,Y}(x,y) := \frac{\partial}{\partial x} \frac{\partial}{\partial y} F_{X,Y}(x,y)$

 $P[a \leq X \leq b, c \leq Y \leq d] = \int_a^b \int_c^d f_{X,Y}(x,y) dy dx \ (a < b, c < d)$ Marginal probability density: $f_X(x) := \int_{-\infty}^\infty f_{X,Y}(x,y) dy$

Independence IF: $f_{X,Y}(x,y) = f_X(x)f_Y(y)$

Conditional probability density: $f_{X|Y=y}(x) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$

Covariance	Correlation
$\overline{\operatorname{Cov}(X,Y) := E[(X - E[X])(Y - E[Y])]}$	$\rho_{XY} := \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$

- if X, Y independent $=> \operatorname{Cov}(X,Y) = 0$, $\rho_{XY} = 0$, $E[XY] = E[X] \cdot E[Y]$ and $\operatorname{Cov}(X,Y) = 0$ (the other direction is not true!)
- $-1 \le \rho_{XY} \le 1$
- $\rho_{XY} = 1$ if Y = a + bX for some b > 0
- $\rho xy = -1$ if Y = a + bX for some b < 0
- E[X + Y] = E[X] + E[Y]
- E[aX] = aE[X]
- Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)
- $Var(aX) = a^2 Var(X)$

Descriptive Statistics Sample Mean: $\overline{x} = \frac{x_1 + \ldots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i \to \mu = E[X]$ if $n \to \infty$ (consistent of the following property). tent/unbiased estimator for the true mean)

Sample Variance: $s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$ (s_x : sample standard deviation) $s_x^2 \to \sigma^2 = \text{Var}(X)$ if $n \to \infty$ $E\left[s_x^2\right] = \sigma^2$ (consistent/unbiased estimator for the true variance)

Median
$$(x_{(1)} \le x_{(2)} \le \dots \le x_{(n)})$$
: $m = \begin{cases} x_{(n+1)/2}, & n \text{ is odd,} \\ \frac{1}{2} (x_{(n/2)} + x_{(n/2+1)}), & otherwise \end{cases}$

Median $(x_{(1)} \le x_{(2)} \le \cdots \le x_{(n)})$: $m = \begin{cases} x_{((n+1)/2)}, & n \text{ is odd,} \\ \frac{1}{2}(x_{(n/2)} + x_{(n/2+1)}), & otherwise \end{cases}$ Empirical α quantile: $q_{\alpha} = x_{(\alpha(n-1)+1)}$ if $\alpha \cdot (n-1)$ is an integer; otherwise $(x_{(\lfloor \alpha(n-1)\rfloor+1)} + x_{(\lceil \alpha(n-1)\rceil+1)})/2$ random variable X : value m such that $P[X \leq m] \geq \alpha$ and $P[X \geq m] \geq 1 - \alpha$

Kernel density estimation Given a set of points x_1, x_2, \ldots, x_n , the kernel density estimator for the generating distribution is

 $\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x-x_i}{h}\right)$ (kernel function:arbitrary positive symmetric, h: bandwidth)

- * Uniform/rectangular kernel: $K \sim \mathcal{U}\left(\left[-\frac{1}{2}, \frac{1}{2}\right]\right)$ (same weight for all points)
- * Gaussian kernel: $K \sim \mathcal{N}(0,1)$ (less weight to far apart points)

Empirical cumulative distribution function (ECDF): $\hat{F}(x) = \frac{\#\{k|x_k \le x\}}{n}$ Empirical correlation: $r = \frac{s_{xy}}{s_x s_y} \in [-1,1]$, $s_{xy} = \frac{1}{n-1} \sum_{i=1}^n \left(x_i - \overline{x}\right) \left(y_i - \overline{y}\right)$ Linear dependence between 2 samples $\{x_i\}$ and $\{y_i\}$ * r = +1 if $y_i = a + bx_i$ for some b > 0 * r = -1 if $y_i = a + bx_i$ for some b < 0

Central Limit Theorem Let X be random variable with expectation value μ and variance σ^2 , and X_1, X_2, \ldots, X_n i.i.d. copies of X.

Then
$$\overline{X}_n \approx \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$
 for large n : $E\left[\overline{X}_n\right] = \mu, \sigma\left(\overline{X}_n\right) = \frac{\sigma}{\sqrt{n}} \to 0$ as $n \to \infty$ $\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \approx \mathcal{N}(0, 1)$ for large n

Standard error of the mean (SEM) Natural estimator for $\sigma(\overline{X}_n)$: $\operatorname{se}_{\overline{x}} = \frac{s_x}{\sqrt{n}}$; s_x is the empirical standard deviation

Law of large numbers Let X be random variable with expectation value μ , and X_1, X_2, \ldots, X_n i.i.d. copies of X. Then, $\overline{X}_n \to \mu$ as $n \to \infty$

Confidence interval with confidence level $1-\alpha, \frac{1}{2} < \alpha < 1$ $\left[\overline{X}_n - \Phi^{-1}(1-\alpha/2) \cdot \frac{s_x}{\sqrt{n}}, \overline{X}_n + \Phi^{-1}(1-\alpha/2) \cdot \frac{s_x}{\sqrt{n}} \right]$

Approximation of a Binomial distribution $X \sim \text{Bin}(n,\pi)$ (if $n\pi > 5$ and $n(1-\pi) > 5$)=> $X \approx$ $\mathcal{N}(n\pi, n\pi(1-\pi))$

Maximum likelihood estimation (MLE) for discrete distributions with measurements $X_1, X_2, \ldots, X_n : \mathbf{i.i.ds}$ probability mass function $p(x; \theta)$: parameterized by θ

Likelihood $L(\theta) := \prod_{i=1}^{n} p(x_i; \theta)$

Log-likelihood $\ell(\theta) := \log(L(\theta)) = \sum_{i=1}^{n} \log(p(x_i; \theta))$

Maxiumum likelihood estimator (MLE) for $\theta: \hat{\theta} = \text{value of } \theta$ for which ℓ attains its maximum

MLE for continuous distributions with probability density $f(x;\theta)$: parameterized by θ $L(\theta)$:=

 $\prod_{i=1}^{n} f(x_i; \theta)$ $\ell(\theta) := \log(L(\theta)) = \sum_{i=1}^{n} \log(f(x_i; \theta))$

MLE for Poisson distribution $L(\lambda) = \prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^{x_i}}{x_i!}$

 $\ell(\lambda) = \sum_{i=1}^{n} \left[x_i \log(\lambda) - \lambda - \log(x_i!) \right]$ $\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$

confidence intervals: $\left[\hat{\lambda} - \Phi^{-1}(0.975) \frac{s_x}{\sqrt{n}}, \hat{\lambda} + \Phi^{-1}(0.975) \frac{s_x}{\sqrt{n}}\right]$

MLE for Normal distribution $\mathcal{N}(\mu, \sigma^2)$ $\hat{\mu} = \overline{X}$, $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$

MLE for Exponential distribution $E \times p(\lambda)$ $\hat{\lambda} = \frac{1}{\bar{x}}$ confidence interval: $\left[\hat{\lambda}\left(1 - \frac{\Phi^{-1}(0.975)}{\sqrt{n}}\right), \hat{\lambda}\left(1 + \frac{\Phi^{-1}(0.975)}{\sqrt{n}}\right)\right]$

Bayesian estimation approach: parameter θ as random Likelihood as conditional probability:

 $L(\theta) = p_{X|\Theta=\theta}(x) = P[X = x|\Theta = \theta]$

 $P[\Theta = \theta | X = x] = \frac{P[X = x | \Theta = \theta] \cdot P[\Theta = \theta]}{P[X = x]} : posterior = \frac{likelihood \cdot prior}{evidence}$

Maximum a posteriori (MAP) estimator: $\hat{\theta}$ that maximizes the posterior $P[\Theta = \theta | X = x]$

Bayesian estimation of continuous parameter with density $f_{\Theta}(\theta)$ $f_{\Theta|X=x}(\theta) = \frac{f_{X|\Theta=\theta}(x) \cdot f_{\Theta}(\theta)}{f_{X}(x)}$

In large sample limit, $n \to \infty$: MAP estimate converges to ML estimate

Statistical Hypothesis Testing

- 1) Model: choose distribution describing your data. Formulate claim you want to prove.
- 2) Null hypothesis: choose the $H_0(null\ hypothesis)$, $H_A(alternative\ hypothesis)$ and their distribution parameters
- 3) Test statistic: based on your sample data
- 4) Choose significance level: e.g. $\alpha = 5\%$
- 5) Range of rejection K such that $P[X \in K] \leq \alpha$ under H_0 reject H_0 if $X \in K$

6) Test decision: reject H_0 if $X \in K$ otherwise keep it.

		Decision	
Truth	H_0 H_A	H_0 true negative type II error (FN)	H_A type I error (FP) true positive

- Significance level α : probability of type I error given that H_0 is true
- Power $1 \beta : \beta$ is probability of type II error given that H_1 is true

P-value (Def.) The *p-value* is the smallest significance level α for which we reject a null hypothesis for the given data set.

(Alt.) The *p-value* is the probability under the null hypothesis to find the actual outcome or a more extreme one.

Test using the normal approximation $X \approx \mathcal{N}(n\pi_0, n\pi_0(1-\pi_0))$ Test statistic: $Z = \frac{X-n\pi_0}{\sqrt{n\pi_0(1-\pi_0)}}$ Distribution of Z under $H_0: Z \approx \mathcal{N}(0,1)$

Paired-samples (or one-sample) t test with model $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$ Test statistic: $T = \frac{\sqrt{n}(\overline{X} - \mu_0)}{s_-}$

Student's t distribution $T \sim t_m$ with m "degrees of freedom", symetry $t_{m,\alpha} = -t_{m,1-\alpha}$ Range of rejection: $K = \left(-\infty, -t_{n-1,1-\frac{\alpha}{2}}\right] \cup \left[t_{n-1,1-\frac{\alpha}{2}},\infty\right)$

Confidence Interval for μ with confidence level $1-\alpha$ $I=\{\mu_0| \text{ null hypothesis } H_0: \mu=\mu_0 \text{ is not rejected } \}$

$$H_{A}: \mu \neq \mu_{0} \Rightarrow I = \left[\overline{x} - t_{n-1,1-\alpha/2} \frac{s_{x}}{\sqrt{n}}, \overline{x} + t_{n-1,1-\alpha/2} \frac{s_{x}}{\sqrt{n}} \right]$$

$$H_{A}: \mu < \mu_{0} \Rightarrow I = \left(-\infty, \overline{x} + t_{n-1,1-\alpha} \frac{s_{x}}{\sqrt{n}} \right]$$

$$H_{A}: \mu > \mu_{0} \Rightarrow I = \left[\overline{x} - t_{n-1,1-\alpha} \frac{s_{x}}{\sqrt{n}}, \infty \right)$$

Sign Test: consider differences $X_i = Z_i - Y_i$ i. i. d. with median m $H_0: m = m_0 = 0$, $H_A: m \neq m_0$ Test statistic: $V = \#\{i | X_i > m_0\}$, V under $H_0: V \sim \text{Bin}(n, 0.5)$

Range of rejection: $K = [0, c] \cup [n - c, n]$ such that $P_{H_0}[V \in K] \le \alpha$ (significance level) c determined by binomial distribution: $P_{H_0}[V \in K] = 2P_{H_0}[V \le c]$

Wilcoxon Signed-Rank Test (wilcox.test): concider differences $X_i = Z_i - Y_i$ i. i. d. with median m $H_0: m = 0$, $H_A: m \neq 0$

Test statistic: $W = \sum_{i=1}^{n} \operatorname{sign}(X_i) R_i$, where R_i : rank of X_i order by absolute value $|X_i|$ Range of rejection: $K = (-\infty, 0.5 - c] \cup [0.5 + c, \infty)$ such that $P_{H_0}[W \in K] \leq \alpha$

Permutation Test: nonparametric test $X_1,\ldots,X_n\stackrel{\mathrm{i.d.d}}{\sim} F_X(\cdot)$, $Y_1,\ldots,Y_m\stackrel{\mathrm{i.i.d.}}{\sim} F_Y(\cdot)$

 $H_0: F_X = F_Y \ , \ H_{\text{A}}: F_x \neq F_Y$ Test statistic: $D = \overline{X} - \overline{Y}$

Resampling: choose number of repetitions N > 1000

Randomly assign n values of $\{X_i\} \cup \{Y_i\}$ to "type I" and the rest m values to "type II"

Repeat N times

Range of rejection: $K = (-\infty, c_l] \cup [c_u, \infty), c_l$: empirical $\alpha/2$ -quantile of resampling distribution, c_u : empirical $1 - \alpha/2$ -quantile of resampling distribution

Effect size Two samples: experimental group $\{X_i\}_i$, control group $\{Y_i\}_i$, effect size $=\frac{\overline{X}-\overline{Y}}{s_{\text{pool}}}$

False Positive Rate: $FPR = E\left[\frac{FP}{FP+TN}\right] = E\left[\frac{V}{m_0}\right]$ controlled by significance level $\alpha = FPR$

		Decision		Total
Truth	H_0 H_A	H_0 true negative U type II error (FN)	H_A type I error (FP): V true positive: S	$m_0 \\ m - m_0$
Total		m-R	R	m

Family-Wise Error Rate: FWER = $P[1 \text{ or more type } | \text{ errors }] = P[V \ge 1]$: n:20-50, errors are **critical** FWER controlled by experiment-wise type I error rate $\overline{\alpha}$

Test procedure that guarantees a FWER of (at most) $\overline{\alpha}$:

- 1. for each test case (e.g. gene), calculate p-value
- 2. adjust p-value
- 3. reject null hypotheses whose adjusted p-value is smaller than $\overline{\alpha}$; accept others

Controlling FWER order p-values: $P_{(1)} \le P_{(2)} \le P_{(3)} \le \ldots \le P_{(m)}$

	Bonferroni method	Holm method
adjust p-values	$P_{\mathrm{adj},i} = \min\left\{m \cdot P_i, 1\right\}$	$\begin{aligned} P_{\mathrm{adj},(i)} &= \\ \max \left\{ \min \left\{ (m-i+1) \cdot P_{(i)}, 1 \right\}, P_{\mathrm{adj},(i-1)} \right\} \end{aligned}$

reject null hypotheses whose adjusted p-value is smaller than $\overline{\alpha}$; accept others: guaranteed FWER $\leq \overline{\alpha}$

Adjusted p-value The adjusted p-value of a certain null hypothesis is the smallest experiment-wise type I error rate $\overline{\alpha}$ for which we reject this hypothesis for the given data set.

False discovery rate: $FDR = E\left[\frac{FP}{FP+TP}\right] = E\left[\frac{V}{R}\right]$: n > 500; looking for discovery

- 1. for each test case, calculate p-value
- 2. adjust p-values to get corresponding q-values
- 3. reject null hypotheses whose q-value is smaller than \bar{q} ; accept others

Controlling FDR: Benjamini-Hochberg method order p-values: $P_{(1)} \leq P_{(2)} \leq P_{(3)} \leq \ldots \leq P_{(m)}$ adjust p-values to get q-values: $Q_{(i)} = \max \left\{ \min \left\{ \frac{m}{i} \cdot P_{(i)}, 1 \right\}, Q_{(i-1)} \right\}$ reject null hypotheses whose q-value is smaller than \overline{q} ; accept others Procedure quarantees $FDR < \overline{q}$

Simple linear regression: $Y_i = \beta_0 + \beta_1 x_i + E_i$, $E_1, \dots, E_n \stackrel{\text{i.i.d}}{\sim} \mathcal{N}\left(0, \sigma^2\right)$, $i = 1, \dots, n$ Y_i : response variable; x_i : explanatory variable; E_i : error or noise variables

Residuals: $R_i = Y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$

Residual Sum of Squares: RSS = $\sum_{i=1}^{n} R_i^2$

Minimizers $\hat{\beta}_0$ and $\hat{\beta}_1$ of RSS: unbiased estimators for the true β_0 and β_1 Estimate $\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n R_i^2$

Significance of explanatory variable: t-test $H_0: \beta_1 = 0; H_A: \beta_1 \neq 0$

$$T = \frac{\hat{\beta}_1 - 0}{\widehat{\operatorname{se}}(\hat{\beta}_1)} ; H_0 : T \sim t_{n-2}$$

$$K = \left(-\infty, -t_{n-2,1-\frac{\alpha}{2}}\right] \cup \left[t_{n-2,1-\frac{\alpha}{2}}, \infty\right) , |T| > t_{n-2,1-\frac{\alpha}{2}} : reject$$

Coefficient of determination
$$R^2 = \left(\frac{s_{\bar{y}y}}{s_{\bar{y}}^2 s_y}\right)^2 \quad \hat{\beta}_1 = \frac{s_{xy}}{s_x^2} = \frac{\operatorname{Cov}(X,Y)}{\operatorname{Var}(Y)} = \operatorname{Cor}(Y,X) \frac{\operatorname{Sd}(Y)}{\operatorname{Sd}(X)} , \ s_{xy} = \frac{1}{n-1} \sum_{i=1}^n \left(x_i - \overline{x}\right) \left(y_i - \overline{y}\right) \\ \hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$$

Fitting linear model to transformed data $\log{(Y_i)} = \hat{\beta}_0 + \hat{\beta}_1 \log{(X_i)} + E_i$