

521,234

(2)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局

(43) 国際公開日
2004年1月22日 (22.01.2004)

PCT

(10) 国際公開番号
WO 2004/007760 A1

(51) 国際特許分類: C12Q 1/37, 1/26, G01N 33/50, 33/14

(74) 代理人: 特許業務法人池内・佐藤アンドパートナーズ (IKEUCHI SATO & PARTNER PATENT ATTORNEYS); 〒530-6026 大阪府 大阪市 北区天満橋1丁目8番30号OAPタワー26階 Osaka (JP).

(21) 国際出願番号: PCT/JP2003/005487

(81) 指定国(国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(22) 国際出願日: 2003年4月28日 (28.04.2003)

(84) 指定国(広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:
特願2002-208305 2002年7月17日 (17.07.2002) JP

(71) 出願人(米国を除く全ての指定国について): アークレイ株式会社 (ARKRAY, INC.) [JP/JP]; 〒601-8045 京都府 京都市 南区東九条西明田町57番地 Kyoto (JP).

(72) 発明者; および

(75) 発明者/出願人(米国についてのみ): 米原聰 (YONEHARA,Satoshi) [JP/JP]; 〒601-8045 京都府 京都市南区 東九条西明田町57番地 アークレイ株式会社内 Kyoto (JP). 石丸香 (ISHIMARU,Kaori) [JP/JP]; 〒601-8045 京都府 京都市 南区東九条西明田町57番地 アークレイ株式会社内 Kyoto (JP). 平井香 (HIRAI,Kaoru) [JP/JP]; 〒601-8045 京都府 京都市 南区東九条西明田町57番地 アークレイ株式会社内 Kyoto (JP).

添付公開書類:
— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイドスノート」を参照。

(54) Title: METHOD OF DECOMPOSING PROTEIN WITH SULFONIC ACID COMPOUND

(54) 発明の名称: スルホン酸化合物を用いたタンパク質の分解方法

WO 2004/007760 A1

(57) Abstract: A method of assaying a saccharified protein in a sample with the use of oxidation-reduction reaction, in which highly reliable measurements can be obtained. A sample containing a saccharified protein is treated with protease in the presence of a sulfonic acid compound, so that the saccharified protein is decomposed. Saccharified portion of the resultant saccharified protein decomposition product is reacted with fructosylamino acid oxidase, and this oxidation-reduction reaction is measured, thereby determining the amount of saccharified protein. Sodium laurylsulfate can be used as the sulfonic acid compound.

(57) 要約: 試料中の糖化タンパク質を酸化還元反応を用いて測定する方法であって、信頼性に優れる測定値が得られる測定方法を提供する。糖化タンパク質を含む試料をスルホン酸化合物の存在下においてプロテアーゼ処理することによって、前記糖化タンパク質を分解し、得られた糖化タンパク質分解物の糖化部分とフルクトシルアミノ酸オキシダーゼとを反応させ、この酸化還元反応を測定することによって、前記糖化タンパク質の量を測定する。スルホン酸化合物としては、ラウリル硫酸ナトリウムが使用できる。

明細書

スルホン酸化合物を用いたタンパク質の分解方法

技術分野

本発明は、タンパク質を分解する方法、および試料中の糖化タンパク質をプロテアーゼで処理し、前記糖化タンパク質の量を酸化還元反応を用いて測定する方法に関する。

背景技術

従来から、試料中の目的のタンパク質（ペプチドを含む）を検出したり、測定に影響を与えるタンパク質の機能を失活させるために、前記タンパク質をプロテアーゼで分解する方法が、各種測定方法等において適用されている。

例えば、糖尿病診断や治療等における重要な指標となる血球中の糖化タンパク質、特に生体血糖値の過去の履歴を反映している赤血球中の糖化ヘモグロビンを、酵素法により測定することが現在試みられており、その際にも糖化タンパク質をプロテアーゼ分解する方法が適用されている。前記酵素法では、溶血試料中の糖化タンパク質の糖化部分にフルクトシルアミノ酸オキシダーゼ（以下、「FAOD」という）を作用させ、過酸化水素を発生させる。この過酸化水素量は、前記糖化タンパク質量に対応する。そして、このFAOD処理後の前記試料に、ペルオキシダーゼ（以下、「POD」という）および酸化により発色する基質を添加し、前記PODを触媒として前記過酸化水素と前記基質との間で酸化還元反応させる。この時、前記基質が、酸化によって発色するため、その発色の測定により前記過酸化水素量を測定でき、この結果、試料中の

糖化タンパク質量を知ることができる。

しかし、前記糖化部分に作用させる F A O D は、糖化タンパク質や糖化ペプチドよりも、糖化アミノ酸や、より短いペプチド断片に作用し易い。そこで、予め、糖化タンパク質や糖化ペプチドをプロテアーゼで分解し、F A O D を糖化部分に作用し易くすることによって、測定精度の向上を図っている。

しかしながら、プロテアーゼは基質特異性を有し、処理する基質によって分解活性が異なるため、目的のタンパク質の種類によっては、分解に長時間を要し、測定を迅速に行うことができないという問題がある。

さらに、前記糖化タンパク質のように、目的のタンパク質が糖化されている場合は、その立体障害等が原因となり分解し難い場合もある。このような理由から、例えば、前述のような糖化タンパク質の測定においても、予め行うプロテアーゼ処理のために、測定全体に時間がかかるてしまう。このため、臨床検査等の分野における利用の点からも、前記糖化タンパク質の測定をより迅速に行える方法が求められている。

発明の開示

そこで、本発明の目的は、迅速かつ優れた効率で、タンパク質を分解するタンパク質分解物の製造方法、さらに試料中の糖化タンパク質を分解し、前記糖化タンパク質量を測定する方法の提供である。

前記目的を達成するために、本発明のタンパク質分解物の製造方法は、タンパク質をスルホン酸化合物の存在下においてプロテアーゼ処理することを特徴とする。なお、本発明において「タンパク質」とは、ペプチドも含み、また、「タンパク質分解物」とは、前記ペプチドの分解物を含む。

このように、プロテアーゼ処理をスルホン酸化合物の存在下で行えば、試料中のタンパク質の分解を迅速に行うことができる。

つぎに、本発明の本発明の糖化タンパク質の測定方法は、糖化タンパク質を含む試料をプロテアーゼ処理することによって、前記糖化タンパク質を分解し、得られた糖化タンパク質分解物の糖化部分と F A O D を反応させ、この酸化還元反応を測定することによって、前記糖化タンパク質の量を測定する糖化タンパク質の測定方法であって、スルホン酸化合物の存在下で前記プロテアーゼ処理を行うことを特徴とする。なお 10 、本発明において、「糖化タンパク質」とは、糖化ペプチドも含む。

従来のスルホン酸化合物の非存在下での方法においては、プロテアーゼによって糖化タンパク質を十分に分解し、F A O D を糖化部分に作用し易くするためには、例えば、約 6 ~ 40 時間もの間、プロテアーゼ処理する必要があった。このため、前記酵素法により糖化タンパク質を測定するには、長時間を要し、有用な方法とは言い難かった。しかし、本発明の測定方法によれば、短時間で糖化タンパク質等を分解できるため、迅速に糖化タンパク質等の測定を行うことが可能である。本発明の測定方法によれば、例えば、スルホン酸化合物を添加する以外は同じ条件で測定を行った場合、前記スルホン酸化合物の非存在下の場合に比べて 20 、約 10 ~ 2000 倍の範囲で測定時間を短縮できる。このため、本発明の測定方法は、よりいっそう迅速であり、かつ高精度な測定を実現できるため、前述のような臨床医療等における各種検査に有用である。

発明を実施するための最良の形態

25 本発明のタンパク質分解物の製造方法および糖化タンパク質の測定方法において、前記スルホン酸化合物としては、例えば、

一般式 $R - SO_3 X$

で表わされる化合物が使用できる。前記式において、Xは、例えば、N
a、K、Li、H等であり、Rは、疎水基であることが好ましく、例え
ば、 $CH_3(CH_2)_n-$ 、 $CH_3(CH_2)_n-C_6H_4-$ 、 C_6H_5- 、 $C_6H_5-N=N-C_6H_4-$ 、 $C_6H_5-CH=C$
5 $H-C_6H_4-$ 等があげられる。前記Rにおけるnは、例えば、1～20の範
囲である。なお、前記Rにおいて、「H」は、アシル基、ニトロ基、ニト
ロソ基、フェニル基、アルキル基、アルキルエーテル基等で置換されて
もよい。

前記スルホン酸化合物の具体例としては、例えば、ラウリル硫酸ナト
10 リウム（以下、「SLS」という）、ドデシルベンゼンスルホン酸ナトリウム
（以下、「SDBS」という）、ラウリル硫酸リチウム（以下、「LiLS」という）、4-アミノアゾベンゼン-4'-スルホン酸ナトリウム（以下
、「ABSA」という）、4-アミノ-4'-ニトロスチルベン-2,2'-ジスルホ
15 ナトリウム（以下、「ANDS」という）、4,4'-ジアゾスチルベン
ゼン-2,2'-ジスルホン酸2ナトリウム（以下、「DADS」という）、N-
シクロヘキシル-2-アミノエタンスルホン酸、N-シクロヘキシル-3-アミ
ノプロパンスルホン酸、N-シクロヘキシル-2-ハイドロキシ-3-アミノプロ
20 パンスルホン酸、ピペラジン-1,4-ビス（2-エタンスルホン酸）、バ
ソフェナントロリンスルホン酸等が使用でき、より好ましくは、SLS、S
DBS、LiLSである。

これらのスルホン酸化合物は、一般的に溶解性に優れるため、試料中の糖化タンパク質の濃度が高濃度であっても処理が容易であり、また、コストの面でも低価格であるため、非常に有用である。

25 また、本発明の製造方法および測定方法においては、糖化タンパク質
の分解がより一層促進できることから、スルホン酸化合物およびニトロ

化合物の共存下でプロテアーゼ処理を行うことが好ましい。

前記ニトロ化合物としては、特に制限されないが、例えば、ニトロベンゼン化合物やジニトロベンゼン化合物等があげられる。これらの化合物は、ベンゼン環がニトロ基の他に、例えば、 $-NH_2$ 、 $-OH$ 、 $-COOH$ 、 $-SO_3$ 、 $-(CH_2)_nCH_3$ ($n = 2 \sim 9$) 等の置換基を有することが好まし。前記置換基としては、例えば、ハロゲン基、エーテル基、フェニル基などがあげられる。

前記ニトロ化合物の具体例としては、例えば、2,4-ジニトロフェノール (2,4-DNP)、2,5-ジニトロフェニル、2,6-ジニトロフェニル、4,6-ジニトロ-2-メチルフェノール、2-アミノ-4-ニトロフェノール、2-アミノ-5-ニトロフェノール、2-アミノ-4-ニトロフェノール、p-ニトロフェノール (p-NP)、2,4-ジニトロアニリン (2,4-DNA)、p-ニトロアニリン (p-NA)、亜硝酸ナトリウム ($NaNO_2$)、亜硝酸カリウム (KNO_2)、4-アミノ-4'-ニトロスチルベン-2,2'-ジスルホン酸 2 ナトリウム (以下、「ANPS」という)、ニトロベンゼン等が使用できる。このようにスルホン酸化合物とニトロ化合物とを共存させる場合、これらの組み合わせは特に制限されない。

本発明の製造方法および測定方法において、前記プロテアーゼは、特に制限されないが、例えば、セリンプロテアーゼ、チオールプロテアーゼ、メタロプロテアーゼ等が使用でき、具体的には、トリプシン、プロテナーゼK、キモトリプシン、パパイン、プロメライン、ズブチリシン、エラスターーゼ、アミノペプチダーゼ等が好ましい。また、前記分解する糖化タンパク質が糖化ヘモグロビンの場合、前記プロテアーゼは、前記糖化ヘモグロビンを選択的に分解するプロテアーゼであり、プロメライン、パパイン、ブタ臍臓由来トリプシン、メタロプロテイナーゼ、Ba

cillus subtilis由来のプロテアーゼ等が好ましい。前記Bacillus subtilis由来プロテアーゼとしては、商品名プロテアーゼN（例えば、フルカ社製）、商品名プロテアーゼN「アマノ」（天野製薬社製）等があげられる。前記メタロプロテイナーゼとしては、Bacillus属由来メタロプロテイナーゼ（E C 3. 4. 24. 4）等があげられる。これらの中でもより好ましくはメタロプロテイナーゼ、プロメライン、パパインであり、特に好ましくはメタロプロテイナーゼである。このように、選択的に分解するプロテアーゼを使用すれば、特定の糖化タンパク質の分解物を選択的に調製できる。

10

前述のように、本発明のタンパク質分解物の製造方法は、タンパク質をスルホン酸化合物の存在下においてプロテアーゼ処理することを特徴とする方法である。

前記スルホン酸化合物の添加量は、特に制限されず、例えば、プロテアーゼの種類および添加量、試料の種類、前記試料に含まれるタンパク質の量等によって適宜決定できる。

具体例としては、試料 1 μ L当たり、例えば、前記スルホン酸化合物を、0. 01～1 000 μ molの範囲になるように添加することが好ましく、より好ましくは0. 03～2 00 μ molの範囲、特に好ましくは、0. 05～4 0 μ molの範囲である。

また、スルホン酸化合物およびニトロ化合物を共存させる場合は、試料 1 μ L当たり、例えば、前記スルホン酸化合物 0. 005～2 0 μ molの範囲、ニトロ化合物 0. 005～2 5 μ molの範囲で添加することが好ましく、より好ましくはスルホン酸化合物 0. 02～4 μ molの範囲、ニトロ化合物 0. 01～5 μ molの範囲である。

前記プロテアーゼ処理の条件は、特に制限されないが、例えば、使用

する酵素の至適条件に従って設定することが好ましい。前記プロテアーゼがメタロプロティナーゼの場合には、例えば、温度10～37℃の範囲、処理時間30秒～60分の範囲であり、好ましくは、温度20～37℃の範囲、処理時間30秒～10分の範囲であり、より好ましくは、
5 温度25～37℃の範囲、処理時間30秒～5分の範囲である。

つぎに、本発明の糖化タンパク質の測定方法は、前述のように、糖化タンパク質を含む試料をプロテアーゼ処理することによって、前記糖化タンパク質を分解し、得られた糖化タンパク質分解物の糖化部分とフル
10 クトシルアミノ酸オキシダーゼとを反応させ、この酸化還元反応を測定することによって、前記糖化タンパク質の量を測定する糖化タンパク質の測定方法であって、スルホン酸化合物の存在下で前記プロテアーゼ処理を行うことを特徴とする方法である。

本発明の測定方法において、前記スルホン酸化合物の添加量は、特に
15 制限されず、例えば、プロテアーゼの種類および添加量、試料の種類、前記試料に含まれる糖化タンパク質の量等によって適宜決定できる。

具体例としては、試料1μL当たり、例えば、前記スルホン酸化合物を、0.01～1000μmolの範囲になるように添加することが好ましく、より好ましくは0.03～200μmolの範囲、特に好ましくは、0.05～40μmolの範囲である。
20

また、スルホン酸化合物およびニトロ化合物を共存させる場合は、試料1μL当たり、例えば、前記スルホン酸化合物0.005～20μmolの範囲、ニトロ化合物0.005～25μmolの範囲で添加することが好ましく、より好ましくはスルホン酸化合物0.02～4μmol
25 1の範囲、ニトロ化合物0.01～5μmolの範囲である。

本発明の測定方法において、前記試料は、特に制限されないが、全血

、血漿、血清、血球等の血液試料の他に、例えば、尿、髄液、唾液等の生体試料や、ジュース等の飲料水、醤油、ソース等の食品類等もあげられる。この中でも好ましくは、全血等の血液試料や血球試料である。

本発明における測定対象物、すなわちプロテアーゼで分解する糖化タンパク質としては、例えば、糖化ヘモグロビン、糖化アルブミン等があげられ、この中でも好ましくは糖化ヘモグロビンである。血液中のヘモグロビンは、その濃度が約60～200g/Lと高く、また、分解が困難であったため、プロテアーゼ処理に数時間～数日かかっていたが、本発明の測定方法によれば、例えば、20秒～2時間でのプロテアーゼ処理が可能になり、糖化ヘモグロビンの測定を迅速に行うことができる。

また、本発明の測定方法においては、スルホン酸化合物だけでなく、糖化タンパク質の分解がより一層促進できることから、スルホン酸化合物およびニトロ化合物の共存下において、プロテアーゼ処理することが好ましい。

15

本発明の測定方法において、前記酸化還元反応の測定は、前記糖化タンパク質の糖化部分とFAODとの反応によって発生した過酸化水素の量の測定であることが好ましい。そして、この過酸化水素量は、例えば、POD等の酸化酵素によって、発生した前記過酸化水素を還元し、かつ、酸化により発色する基質（以下、「発色基質」という）を酸化させ、前記基質の発色程度を測定することによって、求めることが好ましい。

前記発色基質としては、特に制限されないが、例えば、以下に示すような発色基質が使用できる。これらの発色基質は、通常、400nm以上に吸収を持つが、前述のようなスルホン酸化合物やニトロ化合物は、一般的に400nm以上に吸収を持たないため、このような発色基質と

共に使用しても、測定に誤差が生じるおそれがないためである。

前記発色基質の具体例としては、例えば、N-(カルボキシメチルアミノカルボニル)-4,4'-ビス(ジメチルアミノ)ジフェニルアミンナトリウム（以下、「DA-64」という）、トリンダー試薬と4-アミノアンチピリンとの組み合せ、N,N,N',N',N'
5 ,N',N',-ヘキサ(3-スルホプロピル)-4,4',4' -トリアミノトリフェニルメタン ヘキサリテイウム
塩（以下、「TPM-PS」という）、N,N,N',N',N',N'-ヘキサ(2-ヒドロキシ-3-
スルホプロピル)-4,4',4' -トリアミノトリフェニルメタン ヘキサリテイウム塩（以下、「TPM-OS」
といふ）、10-(カルボキシメチルアミノカルボニル)3,7-ビス(ジメチルアミノ)フェノチアジンナトリ
ウム塩（以下、「DA-67」という）、10-(メチルアミノカルボニル)3,7-ビス(ジメチルアミノ)
10)フェノチアジン（以下、「MCDP」という）、10-(カルボキシアミノメチル-4-ペニソアミノカル
ボニル)3,7-ビス(ジメチルアミノ)フェノチアジンナトリウム塩（以下、「MMX」という）等が
あげられる。これらの中でも、例えば、トリアミノトリフェニルメタン系の発色基質が好ましい。

前記トリンダー試薬としては、例えば、フェノール、フェノール誘導体、アニリン誘導体、ナフトール、ナフトール誘導体、ナフチルアミン、ナフチルアミン誘導体等があげられる。また、前記トリンダー試薬と組み合わせる化合物としては、前記4-アミノアンチピリンの他に、例えば、アミノアンチピリン誘導体、バニリンジアミンスルホン酸、メチルベンズチアゾリノンヒドラゾン（M B T H）、スルホン化メチルベンズチアゾリノンヒドラゾン（S M B T H）等も使用できる。

本発明において、前記FAODとしては、下記式(1)に示す反応を触媒するFAODであることが好ましい。

前記式（1）において、R¹は、水酸基もしくは糖化反応前の糖に由來する残基（糖残基）を示す。前記糖残基（R¹）は、反応前の糖がアルドースの場合はアルドース残基であり、反応前の糖がケトースの場合5、ケトース残基である。例えば、反応前の糖がグルコースの場合は、アマドリ転位により、反応後の構造はフルクトース構造をとるが、この場合、糖残基（R¹）は、グルコース残基（アルドース残基）となる。この糖残基（R¹）は、例えば、

10 で示すことができ、nは、0～6の整数である。

前記式（1）において、R²は、特に制限されないが、例えば、糖化アミノ酸、糖化ペプチドまたは糖化タンパク質の場合、α-アミノ基が糖化されている場合と、それ以外のアミノ基が糖化されている場合とで異なる。

15 前記式（1）において、α-アミノ基が糖化されている場合、R²は、下記式（2）で示すアミノ酸残基またはペプチド残基である。

20 前記式（2）において、R³はアミノ酸側鎖基を示す。また、R⁴は水酸基、アミノ酸残基またはペプチド残基を示し、例えば、下記式（3）で示すことができる。下記式（3）において、nは、0以上の整数であり、R³は、前述と同様にアミノ酸側鎖基を示す。

また、前記式（1）において、 α -アミノ基以外のアミノ基が糖化されている（アミノ酸側鎖基が糖化されている）場合、R²は下記式（4）で示すことができる。

前記式（4）において、R⁵は、アミノ酸側鎖基のうち、糖化されたアミノ基以外の部分を示す。例えば、糖化されたアミノ酸がリジンの場合、R⁵は

であり、

例えば、糖化されたアミノ酸がアルギニンの場合、R⁵は、

である。

15 また、前記式（4）において、R⁶は、水素、アミノ酸残基またはペプチド残基であり、例えば、下記式（5）で示すことができる。なお、下記式（5）において、nは0以上の整数であり、R³は、前述と同様にアミノ酸側鎖基を示す。

また、前記式（4）において、R⁷は、水酸基、アミノ酸残基またはペプチド残基であり、例えば、下記式（6）で示すことができる。なお、下記式（6）において、nは0以上の整数であり、R³は、前述と同様にアミノ酸側鎖基を示す。

以下に、本発明の糖化タンパク質の測定方法について、具体的な例を上げて説明するが、これらの実施形態には制限されない。

5

(実施形態 1)

本発明の糖化タンパク質の測定方法について、測定対象物が血球中の糖化タンパク質である例をあげて説明する。

まず、全血をそのまま溶血し、または全血から遠心分離等の常法により10 血球画分を分離してこれを溶血し、溶血試料を調製する。この溶血方法は、特に制限されず、例えば、界面活性剤を用いる方法、超音波による方法、浸透圧の差を利用する方法等が使用でき、この中でも前記界面活性剤を用いる方法が好ましい。

溶血用の界面活性剤としては、特に制限されないが、例えば、ポリオキシエチレン-p-t-オクチルフェニル エーテル (Triton系界面活性剤等)、ポリオキシエチレンリルビタン アルキル エステル (Tween系界面活性剤等)、ポリオキシエチレン アルキル エーテル (Brig系界面活性剤等) 等の非イオン性界面活性剤が使用でき、具体的には、例えば、商品名 Triton X-100、商品名 Tween-20、商品名 Brig 35 等があげられる。前記界面活性剤による処理条件は、通常、処理溶液中の血球濃度が 1 ~ 10 体積%の場合、前記処理溶液中の濃度が 0.1 ~ 1 重量%になるように前記界面活性剤を添加し、室温で 5 秒 ~ 1 分程度攪拌すればよい。

また、前記浸透圧の差を利用する場合は、例えば、全血の体積に対し 2 ~ 100 倍体積量の精製水を添加して溶血できる。

25

つぎに、前記溶血試料を、前記スルホン酸化合物の存在下で前記プロ

テアーゼ処理することにより糖化タンパク質を分解し、糖化タンパク質分解物を調製する。このように糖化タンパク質をプロテアーゼで処理するのは、前述のように後の処理に使用する F A O D がタンパク質および長いポリペプチド鎖に作用し難いため、これらを分解して糖化部分に作用し易くするためである。前述のように、スルホン酸化合物存在下でプロテアーゼ処理すれば、短時間で、かつ高い分解効率で糖化タンパク質を分解できるため、プロテアーゼ処理時間が短くても、F A O D は十分に糖化部分に作用できる。なお、より分解を促進できることから、後述するように、スルホン酸化合物およびニトロ化合物の存在下で処理してもよい。

前記プロテアーゼ処理は、通常、緩衝液中で行われる。前記緩衝液の種類は、特に制限されず、例えば、トリス塩酸緩衝液、E P P S 緩衝液、P I P E S 緩衝液、リン酸緩衝液、A D A 緩衝液、クエン酸緩衝液、酢酸緩衝液、グリシンアミド緩衝液、C H E S 緩衝液等が使用でき、そのpHは、pH 5～12の範囲が好ましく、より好ましくは6～10の範囲、特に好ましくは7～9の範囲である。

前記プロテアーゼは、前述のように、例えば、プロテアーゼK、ズブチリシン、トリプシン、アミノペプチダーゼ等が使用できる。前記プロテアーゼの添加割合は、例えば、前処理溶液中の血球濃度が、0.1～10体積%の場合、プロテアーゼを0.1～100g/Lの範囲になるように添加することが好ましく、より好ましくは0.3～50g/Lの範囲、特に好ましくは0.5～20g/Lの範囲である。

また、分解する糖化タンパク質が糖化ヘモグロビンの場合、プロテアーゼは、前述のように、例えば、糖化ヘモグロビンを選択的に分解するプロテアーゼであり、前記プロテアーゼが、プロメライン、パパイン、ブタ臍臓由来トリプシン、メタロプロテイナーゼ、Bacillus subtilis

由来のプロテアーゼであることが好ましい。これらのプロテアーゼの添加割合は、例えば、前処理溶液中の血球濃度が、0.1～10体積%の場合、プロテアーゼを0.1～50g/Lの範囲になるように添加することが好ましく、より好ましくは0.3～30g/Lの範囲、特に好ましくは1～20g/Lの範囲である。具体的には、プロテアーゼがメタロプロテイナーゼの場合、血球濃度0.3～5体積%の前処理溶液に、0.1～30g/Lの範囲になるように添加することが好ましく、より好ましくは0.3～20g/Lの範囲、特に好ましくは1～10g/Lの範囲である。

前記スルホン酸化合物の添加割合は、例えば、プロテアーゼ処理溶液中の血球濃度が、1体積%の場合、濃度0.0001～100mmol/Lの範囲になるように添加することが好ましく、より好ましくは0.0003～60mmol/Lの範囲、特に好ましくは0.001～30mmol/Lの範囲である。具体的には、前記スルホン酸化合物がSLSであり、プロテアーゼ処理溶液中の血球濃度が、1体積%の場合、濃度0.1～100mmol/Lの範囲になるように添加することが好ましく、より好ましくは0.2～60mmol/Lの範囲、特に好ましくは0.5～30mmol/Lの範囲である。

前記スルホン酸化合物は、そのまま使用してもよいが、操作の簡便性や処理効率等の点から、溶媒に溶解したスルホン酸化合物化合物溶液として使用することが好ましい。前記溶液の濃度は、スルホン酸化合物の種類等により適宜決定でき、例えば、1～1000mmol/Lの範囲である。前記溶媒としては、例えば、蒸留水、生理食塩水、緩衝液等が使用でき、前記緩衝液としては、例えば、前述の緩衝液等が使用できる。なお、前記スルホン酸化合物は、一種類でもよいし、二種類以上を併用してもよい。

前記スルホン酸化合物存在下におけるプロテアーゼ処理の条件は、特に制限されないが、例えば、温度10～37℃の範囲、処理時間30秒～60分の範囲であり、好ましくは、温度20～37℃の範囲、処理時間30秒～10分の範囲であり、より好ましくは、温度25～37℃の範囲、処理時間30秒～5分の範囲である。

このようにスルホン酸化合物存在下で試料のプロテアーゼ処理を行えば、試料中の糖化タンパク質の分解を促進できるため、短時間で、かつ優れた分解効率で糖化タンパク質の分解物を得ることができる。

また、このプロテアーゼ処理は、前述のようにスルホン酸化合物だけではなく、スルホン酸化合物とニトロ化合物との共存下で行うことにより、さらにプロテアーゼによる分解を促進できる。

ニトロ化合物の添加割合は、特に制限されず、例えば、スルホン酸化合物の添加量、プロテアーゼ量等に応じて適宜決定できるが、プロテアーゼ処理溶液中の血球濃度が、1体積%の場合、例えば、濃度0.01～25mmol/Lの範囲になるように添加することが好ましく、より好ましくは0.05～10mmol/Lの範囲である。

つぎに、前記プロテアーゼ処理により得られた分解物を、前記F A O Dで処理する。このF A O D処理により、前記式(1)に示す反応が触媒される。

このF A O D処理は、前記プロテアーゼ処理と同様に緩衝液中で行なうことが好ましい。その処理条件は、使用するF A O Dの種類、測定対象物である糖化タンパク質の種類およびその濃度等により適宜決定される。

具体的には、例えば、反応液中のF A O D濃度50～50,000U/L、反応液中の血球濃度0.01～1体積%、反応温度15～37℃

、反応時間1～60分、pH6～9の範囲である。前記緩衝液の種類も特に制限されず、前記プロテアーゼ処理と同様の緩衝液が使用できる。

つぎに、前記F A O D処理で生成した過酸化水素に、P O Dおよび前記発色基質を添加して、前記基質の発色反応を行い、その発色程度を測定する。前記過酸化水素にP O Dを作用させれば、過酸化水素は還元され、かつ前記発色性基質は酸化されて発色する。前記酸化により発色した基質の発色程度と生成した過酸化水素量との間には相関関係があるため、前記発色程度を測定することによって、過酸化水素の量が測定できるのである。

前記発色性基質としては、前述のような基質が使用でき、特に好ましくは、N-(カルボキシメチルアミノカルボニル)-4,4'-ビス(ジメチルアミノ)ジフェニルアミンナトリウムである。

前記発色反応は、通常、緩衝液中で行われ、その条件は、前記生成した過酸化水素の濃度等により適宜決定される。通常、反応液中のP O D濃度10～20,000IU/L、発色性基質濃度0.001～1mmol/L、反応温度20～37℃、反応時間1～5分、pH6～9である。また、前記緩衝液は、特に制限されず、例えば、前記プロテアーゼ処理およびF A O D処理等と同様の緩衝液等が使用できる。

前記発色反応において、例えば、前記発色基質を用いた場合、前記反応液の発色程度(吸光度)を分光光度計で測定することにより、過酸化水素の量を測定できる。そして、この過酸化水素濃度と検量線等とを用いて、試料中の糖化タンパク質量を求めることができる。

なお、前記過酸化水素量は、前記P O D等を用いた酵素的手法の他に、例えば、電気的手法により測定することもできる。

このような本発明の測定方法によれば、前述のように迅速に測定を行うことができる。また、従来法では、プロテアーゼ処理を短時間にすると、測定精度が低下するおそれがあったが、本発明の測定方法によれば、短時間でも優れた精度で測定できる。

5

実施例

つぎに、実施例について比較例と併せて説明する。

(実施例 1、比較例 1)

この実施例は、スルホン酸化合物存在下で糖化ヘモグロビンをプロテアーゼ処理し、その分解物の糖化程度を、発色基質TPM-PSを用いて測定した例である。以下に、使用した試料、試薬および方法を示す。なお、下記第1試薬におけるスルホン酸化合物としては、SLS(カライネク社製)を使用した。

15 (測定試料の調製)

ヘモグロビン凍結乾燥品を精製水で溶解し、ヘモグロビン濃度50g/L、HbA1c濃度6.5%のヘモグロビン溶液(HbA1c:Low)と、ヘモグロビン濃度50g/L、HbA1c濃度11.5%のヘモグロビン溶液(HbA1c:High)とを調製した。そして、これらの各ヘモグロビン溶液60μLと精製水240μLとを混合して、HbA1c濃度6.5%の試料(以下、「試料Low」という)とHbA1c濃度11.5%の試料(以下、「試料High」という)とした。

(第1試薬)

25 スルホン酸化合物

6. 4 mM

界面活性剤(ボリオキシエチレン(9)ト'テ'シリエ-テル)

1. 85 g/L

CHES-CHES・Na緩衝液 (pH9.4)	4.0 mM
MOPS-MOPS・Na緩衝液 (pH9.4)	1.5 mM

(第2試薬)

5 メタロプロテアーゼ (アークレイ社製)	2.0 M U/L
CaCl ₂	2.5 mM
NaCl	5.0 mM
MOPS-MOPS・Na緩衝液 (pH6.5)	1.0 mM

10 (第3試薬)

F A O D (アークレイ社製)	18 K U/L
P O D (キッコーマン社製)	67 K U/L
TPM-PS (同仁化学社製)	0.25 mM
Tris-HCl緩衝液 (pH7.0)	300 mM

15

(方法)

前記試料Lowおよび試料Highのそれぞれについて測定を行った。まず、前記測定試料0.14 μLに前記第1試薬8.26 μLを添加した後、さらに、前記第2試薬75.6 μLを混合して、37°Cで5分間放置した。そして、この混合液に前記第3試薬18.9 μLを混合し、37°Cでインキュベートして発色反応を行った。そして、第3試薬を添加してから2.5分後における、反応液の吸光度を商品名JCA-BM8(日本電子社製)で測定した。測定波長は、主波長571 nm、副波長805 nmとした。一方、比較例としては、第1試薬のスルホン酸化合物を添加していない以外は、前記実施例と同様にして吸光度の測定を行った。なお、試料に第1試薬および第2試薬を混合した時点での、試料1 μ

Lに対するスルホン酸化合物の添加量は、0.378 μmolであった。

(表1)

5

	スルホン酸化合物 (mM)	ニトロ化合物 (mM)	吸光度		
			試料High (mAbs)	試料Low (mAbs)	High-Low (mAbs)
実施例1	SLS (6.4)	—	51.0	34.0	17.0
比較例1	—	—	16.7	16.0	0.7

10

前記表1に示すように、実施例1によれば、試料Highの吸光度および試料Lowの吸光度は、それぞれ比較例よりも高い値が得られた。これは、スルホン酸化合物の存在下でプロテアーゼ処理することによって、糖化ヘモグロビンの分解が促進されたため、糖化部分に対して、FAODが作用し易くなつたからである。つまり、実施例によれば、分解の促進によって、FAODが比較例よりも多くの糖化部分に作用し易くなつたため、測定精度が向上したといえる。

また、実施例によれば、試料Highの吸光度と試料Lowの吸光度との差は、比較例よりも高い値が得られた。前記試料Highは、同じヘモグロビン濃度であっても、試料Lowに比べてHbA1c濃度が高い。つまり、ヘモグロビンの糖化量が大きいため、試料Highの吸光度は、理論上、HbA1c濃度に比例して、試料Lowの吸光度よりも大きな値となる。しかし、比較例によると、スルホン酸化合物非存在下でプロテアーゼ処理しており、糖化ヘモグロビンが分解され難いため、試料のHbA1c濃度が異なるにも拘わらず、試料Highと試料Lowとの吸光度差が7.1mAbsと低い値であった。

。これに対して、スルホン酸化合物存在下でプロテアーゼ処理した実施例によれば、試料Highと試料Lowとの吸光度差が比較例に比べて約2倍～3倍に増加した。このことからも、前述と同様の理由により、実施例の方法により測定感度および測定精度が向上したといえる。

5

(実施例2)

この実施例は、スルホン酸化合物存在下で糖化ヘモグロビンをプロテアーゼ処理し、その分解物の糖化程度を、発色基質DA-64を用いて測定した例である。以下に、使用した試料、試薬および方法を示す。

10

(第1試薬)

スルホン酸化合物 (SLS : ナカライト社製)	6 . 4 mM
--------------------------	----------

界面活性剤 (ポリオキシエチレン(9)ドデシルエーテル)	1 . 85 g / L
------------------------------	--------------

CHES-CHES・Na緩衝液 (pH9.4)	40 mM
-------------------------	-------

15 MOPS-MOPS・Na緩衝液 (pH9.4)	15 mM
----------------------------	-------

(第2試薬)

ニトロ化合物	0.9mM 又は 1.8mM
--------	----------------

メタロプロテアーゼ (アークレイ社製)	2 . 0 MU / L
---------------------	--------------

20 CaCl ₂	2 . 5 mM
----------------------	----------

NaCl	50 mM
------	-------

MOPS-MOPS・Na緩衝液 (pH6.5)	1 . 0 mM
-------------------------	----------

前記ニトロ化合物としては、2,4-DNA (和光純薬工業社製)、p-NA (25 和光純薬工業社製)、p-NP (和光純薬工業社製)、NaNO₂ (ナカライトスク社製)、2,4-DNH (和光純薬工業社製) をそれぞれ使用した。なお

、ニトロ化合物を二種類添加する場合は、それぞれの濃度を0.9 mMとし、合計1.8 mMとした。

(第3試薬)

5	F A O D (アークレイ社製)	1 8 K U / L
	P O D (キッコーマン社製)	6 7 K U / L
	DA-64 (和光純薬工業社製)	7 0 μ M
	Tris-HCl緩衝液 (pH7.0)	3 0 0 mM

10 (方法)

前記実施例1で調製した試料Lowおよび試料Highのそれぞれについて測定を行った。測定試料0.14 μ Lに前記第1試薬8.26 μ Lを添加した後、さらに、前記第2試薬75.6 μ Lを混合して、37℃で5分間放置した。そして、この混合液に前記第3試薬18.9 μ Lを混合し、37℃でインキュベートして発色反応を行った。そして、5分後の吸光度を商品名JCA-BM8(日本電子社製)で測定した。測定波長は、主波長751 nm、副波長805 nmとした。一方、比較例2としては、第1試薬のスルホン酸化合物、第2試薬のニトロ化合物を添加しない以外は、前記実施例と同様にして吸光度の測定を行った。これらの結果を下記表2に示す。なお、下記表2において「High-Low(mAbs)」は、試料Highの吸光度から試料Lowの吸光度を引いた値である。

(表 2)

				吸光度		
		スルホン酸化合物 (mM)	ニトロ化合物 (mM)	試料High (mAbs)	試料Low (mAbs)	High-Low (mAbs)
5 実施例						
2-1	SLS (6.4)	2,4-DNA (0.9)		4.2	1.6	2.6
2-2	SLS (6.4)	p-NA (0.9)		2.6	1.2	1.4
2-3	SLS (6.4)	p-NP (0.9)		3.2	1.6	1.6
2-4	SLS (6.4)	NaNO ₂ (0.9)		2.3	1.3	1.0
10 2-5	SLS (6.4)	2,4-DNA (0.9)		3.5	1.6	1.9
		p-NA (0.9)				
2-6	SLS (6.4)	2,4-DNA (0.9)		2.8	1.1	1.7
		p-NA (0.9)				
2-7	SLS (6.4)	p-NP (0.9)		3.3	1.3	2.0
15		p-NA (0.9)				
2-8	SLS (6.4)	2,4-DNA (0.9)		4.0	1.9	2.1
		NaN ₃ (0.9)				
比較例						
20 2	—	—		1.1	0.9	0.2

20

前記表 2 に示すように、実施例 2 によれば、実施例 1 と同様に、試料 High の吸光度および試料 Low の吸光度は、それぞれ比較例よりも高い値が得られた。また、試料 High の吸光度と試料 Low の吸光度との差も、比較例 2 よりも高い値が得られた。以上のことから、前記実施例 1 と同様に、スルホン酸化合物およびニトロ化合物存在下でプロテアーゼ処理することによって、糖化ヘモグロビンの分解が促進され、これによって測

定感度および測定精度が向上したといえる。

産業上の利用の可能性

以上のように、本発明の測定方法は、前記スルホン酸化合物の存在下
5 でプロテアーゼ処理を行うことによって、短時間でタンパク質等を分解
できるため、迅速に糖化タンパク質等の測定を行うことが可能である。
このため、よりいっそう高精度な測定を実現でき、本発明の測定方法は
、前述のような臨床医療等における各種検査に有用である。

請求の範囲

1. タンパク質分解物の製造方法であって、
タンパク質をスルホン酸化合物の存在下においてプロテアーゼ処理する
5 ことを特徴とするタンパク質分解物の製造方法。
2. タンパク質をスルホン酸化合物およびニトロ化合物の存在下においてプロテアーゼ処理する請求の範囲 1 記載の製造方法。
- 10 3. スルホン酸化合物が、ラウリル硫酸ナトリウム (SLS) 、ドデシルベンゼンスルホン酸ナトリウム (SDBS) 、ラウリル硫酸リチウム (LiLS) 、4-アミノアゾベンゼン-4'-スルホン酸ナトリウム (ABSA) 、4-アミノ-4'-ニトロスチルベン-2,2'-ジスルホン酸 2 ナトリウム (ANDS) 、4,4'-ジアゾスチルベンゼン-2,2'-ジスルホン酸 2 ナトリウム (DADS) 、N-シクロヘキシリ-2-アミノエタンスルホン酸、N-シクロヘキシリ-3-アミノプロパンスルホン酸、N-シクロヘキシリ-2-ハイドロキシ-3-アミノプロパンスルホン酸、ピペラジン-1,4-ビス (2-エタンスルホン酸) およびバソフェナントロリンスルホン酸からなる群から選択された少なくとも一つのである請求の範囲 1 記載
15 の製造方法。
- 20 4. 前記ニトロ化合物が、2,4-ジニトロフェノール (2,4-DNP) 、2,5-ジニトロフェニル、2,6-ジニトロフェニル、4,6-ジニトロ-2-メチルフェノール、2-アミノ-4-ニトロフェノール、2-アミノ-5-ニトロフェノール、2-アミノ-4-ニトロフェノール、p-ニトロフェノール (p-NP)
25 、2,4-ジニトロアニリン (2,4-DNA) 、p-ニトロアニリン (p-NA) 、亜

硝酸ナトリウム (NaNO_2) 、亜硝酸カリウム (KNO_2) 、4-アミノ-4'-ニトロスチルベン-2,2'-ジスルホン酸2ナトリウム（以下、「ANPS」という）およびニトロベンゼンからなる群から選択された少なくとも一つである請求の範囲2記載の製造方法。

5

5. プロテアーゼが、メタロプロテナーゼである請求の範囲1記載の製造方法。

6. タンパク質が糖化タンパク質である請求の範囲1記載の製造方法

10

7. 糖化タンパク質を含む試料をプロテアーゼ処理することによって、前記糖化タンパク質を分解し、得られた糖化タンパク質分解物の糖化部分とフルクトシルアミノ酸オキシダーゼとを反応させ、この酸化還元反応を測定することによって、前記糖化タンパク質の量を測定する糖化タンパク質の測定方法であって、

スルホン酸化合物の存在下で前記プロテアーゼ処理を行うことを特徴とする糖化タンパク質の測定方法。

20 8. スルホン酸化合物およびニトロ化合物の存在下で前記プロテアーゼ処理を行う請求の範囲7記載の測定方法。

9. スルホン酸化合物が、ラウリル硫酸ナトリウム (SLS) 、ドデシルベンゼンスルホン酸ナトリウム (SDBS) 、ラウリル硫酸リチウム (LILS) 、4-アミノアゾベンゼン-4'-スルホン酸ナトリウム (ABSA) 、4-アミノ-4'-ニトロスチルベン-2,2'-ジスルホン酸2ナ

トリウム（ANDS）、4,4'-ジアソスチルベンゼン-2,2'-ジスルホン酸2ナトリウム（DADS）、N-シクロヘキシリ-2-アミノエタンスルホン酸、N-シクロヘキシリ-3-アミノプロパンスルホン酸、N-シクロヘキシリ-2-ハイドロキシ-3-アミノプロパンスルホン酸、ピペラジン-1,4-ビス（2-エタンスルホン酸）およびバソフェナントロリンスルホン酸からなる群から選択された少なくとも一つである請求の範囲7記載の測定方法。

10. 前記ニトロ化合物が、2,4-ジニトロフェノール（2,4-DNP）、2,5-ジニトロフェニル、2,6-ジニトロフェニル、4,6-ジニトロ-2-メチルフェノール、2-アミノ-4-ニトロフェノール、2-アミノ-5-ニトロフェノール、2-アミノ-4-ニトロフェノール、p-ニトロフェノール（p-NP）、2,4-ジニトロアニリン（2,4-DNA）、p-ニトロアニリン（p-NA）、亜硝酸ナトリウム（NaNO₂）、亜硝酸カリウム（KNO₂）、4-アミノ-4'-ニトロスチルベン-2,2'-ジスルホン酸2ナトリウム（以下、「ANPS」という）およびニトロベンゼンからなる群から選択された少なくとも一つである請求の範囲7記載の測定方法。

11. プロテアーゼが、メタロプロテナーゼである請求の範囲7記載の測定方法。

12. 酸化還元反応の測定が、前記糖化タンパク質の糖化部分とフルクトシリアルアミノ酸オキシダーゼとの反応によって発生した過酸化水素の量の測定である請求の範囲7記載の測定方法。

25

13. 酸化酵素によって、発生した前記過酸化水素を還元し、かつ、

酸化により発色する基質を酸化させ、前記基質の発色程度を測定することによって、過酸化水素量を測定する請求の範囲 1 2 記載の測定方法。

1 4. 前記発色程度の測定が、前記基質の検出波長における吸光度測
5 定である請求の範囲 1 3 記載の測定方法。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/05487

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl' C12Q1/37, C12Q1/26, G01N33/50, G01N33/14

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl' C12Q1/00-70, C12N9/00-99, G01N33/00-98, C12N9/00-99

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

MEDLINE (STN), WPI (DIALOG), BIOSIS (DIALOG)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X/Y	JP 09-512586 A (CHEMISCHE FABRIK DR. WEIGERT), 16 December, 1997 (16.12.97), & EP 730024 A1 & US 5810944 A & WO 96/26998 A1	1, 3, 6/ 2, 4, 5, 7-14
X/Y	JP 09-185021 A (Toray Industries, Inc.), 15 July, 1997 (15.07.97), (Family: none)	1, 3, 5, 6/ 2, 4, 7-14
X/Y	JP 09-503818 A (The Procter & Gamble Co.), 15 April, 1997 (15.04.97), & EP 723579 A1 & EP 723580 A1 & US 5677272 A	1, 3, 6/ 2, 4, 5, 7-14

 Further documents are listed in the continuation of Box C. See patent family annex.

- * Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search
30 June, 2003 (30.06.03)Date of mailing of the international search report
15 July, 2003 (15.07.03)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/05487

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	JP 10-210967 A (Ajinomoto Co., Inc.), 11 August, 1998 (11.08.98), (Family: none)	1-14
Y	JP 11-196897 A (Kyoto Daiichi Kagaku Co., Ltd.), 27 July, 1999 (27.07.99), (Family: none)	7-14

A. 発明の属する分野の分類（国際特許分類（IPC））

Int. Cl' C12Q 1/37, C12Q 1/26, G01N33/50, G01N33/14

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. Cl' C12Q 1/00~70, C12N 9/00~99, G01N33/00~98, C12N 9/00~99

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

MEDLINE (STN), WPI (DIALOG), BIOSIS (DIALOG)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X/Y	JP 09-512586 A (ケミシェ・ファブリーク・ドクトル・ヴァイグルト) 1997.12.16 & EP 730024 A1 & US 5810944 A & WO 96/26998 A1	1, 3, 6 / 2, 4, 5, 7-14
X/Y	JP 09-185021 A (東レ株式会社) 1997.07.15 (ファミリーなし)	1, 3, 5, 6 / 2, 4, 7-14
X/Y	JP 09-503818 A (ザ、プロクター、エンド、ギヤンブル、カンパニー) 1997.04.15 & EP 723579 A1 & EP 723580 A1 & US 5677272 A	1, 3, 6 / 2, 4, 5, 7-14

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

30.06.03

国際調査報告の発送日

15.07.03

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

齊藤 真由美

4 B 8931

電話番号 03-3581-1101 内線 3448

C (続き) . 関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP 10-210967 A (味の素株式会社) 1998.08.11 (ファミリーなし)	1 - 1 4
Y	JP 11-196897 A (株式会社京都第一科学) 1999.07.27 (ファミリーなし)	7 - 1 4