DAI Assignment-2

Aditya Neeraje, Balaji Karedla, Moulik Jindal

September 7, 2024

Contents

1	Mathemagic			
	1.1	Task A	1	
	1.2	Task B	1	
	1.3	Task C	1	
	1.4	Task D	2	
	1.5	Task E	3	
	1.6	Task F	3	
	1.7	$\operatorname{Task} G \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	4	
2	Nor	mal Sampling	5	
	2.1	Task A	5	
	2.2	Task B	5	
	2.3	Task C	6	
	2.4	Task D	6	
	2.5	Task E	8	
3	Qua	lity in Inequalities	9	
	3.1	Task A	9	
	3.2	Task B	9	
	3.3	Task C	0	
	3.4	Task D	1	
	3.5	Task E	3	

1 Mathemagic

1.1 Task A

For a Bernoulli random variable $X \sim Ber(p), P[X=0]=1-p, P[X=1]=p$ and $P[X=n]=0 \forall n \geq 2.$

$$G_{Ber}(z) = \sum_{n=0}^{\infty} P[X = n] z^n$$

= $P[X = 0] + P[X = 1] z$
 $G_{Ber} = (1 - p) + pz$

1.2 Task B

When $X \sim Bin(n, p)$, $P[X = k] = \binom{n}{k} p^k (1 - p)^{n-k} \ \forall k \in \mathbb{Z}, 0 \le k \le n$. $P[X = k] = 0 \ \forall k > n$.

$$G_{Bin}(z) = \sum_{k=0}^{\infty} P[X = n] z^k$$

$$= \sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k} z^k$$

$$= \sum_{k=0}^{n} \binom{n}{k} (pz)^k (1-p)^{n-k}$$

$$= (pz + (1-p))^n$$

$$G_{Bin}(z) = G_{Ber}(z)^n$$

1.3 Task C

Let X_1 and X_2 be two random variables which take up non-negative integers and let $X = X_1 + X_2$.

$$G_X(z) = \sum_{n=0}^{\infty} P[X = n] z^n$$

$$= \sum_{n=0}^{\infty} \sum_{i=0}^{n} (P[X_1 = i] P[X_2 = n - i]) z^n$$

$$= \sum_{i=0}^{\infty} \sum_{n=i}^{\infty} (P[X_1 = i] P[X_2 = n - i]) z^n$$

$$= \sum_{i=0}^{\infty} \sum_{n=i}^{\infty} (P[X_1 = i] z^i) (P[X_2 = n - i] z^{n-i})$$

$$= \sum_{i=0}^{\infty} P[X_1 = i] z^i \sum_{n=i}^{\infty} P[X_2 = n - i] z^{n-i}$$

$$= \sum_{i=0}^{\infty} P[X_1 = i] z^i \sum_{n=0}^{\infty} P[X_2 = n] z^n$$

$$G_X(z) = G_{X_1}(z) G_{X_2}(z)$$

For k = 1, $G_{\Sigma}(z) = G(z)^k$. If for k = n - 1, $G_{\Sigma}(z) = G(z)^k$, then for k = n,

$$G_{\Sigma}(z) = G_{X_1 + X_2 + \dots + X_{n-1}}(z)G_{X_n}(x)$$

$$= \prod_{i=1}^n G_{X_i}(z)G_{\Sigma}(z)$$

$$= G(z)^k$$

From the Principle of Mathematical Induction, for all $k \in \mathbb{N}$, $G_{\Sigma}(z) = G(z)^k$

1.4 Task D

When $X \sim Geo(p)$, $P[X = n] = (1 - p)^{n-1}p$ and P[X = 0] = 0.

$$G_{Geo}(z) = \sum_{n=0}^{\infty} P[X = n] z^n$$

$$= \sum_{n=1}^{\infty} (1 - p)^{n-1} p z^n$$

$$= p z \sum_{n=1}^{\infty} ((1 - p) z)^{n-1}$$

$$= \frac{p z}{1 - (1 - p) z}$$

1.5 Task E

 $X \sim Bin(n,p)$ and $Y \sim NegBin(n,p)$. $Y = \sum_{k=1}^{n} Y_k$ where $Y_k \sim Geo(p)$.

$$G(Y) = G(Y_1 + Y_2 + \dots + Y_n)$$

$$= G(Y_1)G(Y_2) \dots G(Y_n)$$

$$= \left(\frac{pz}{1 - (1 - p)z}\right)^n$$

$$G_Y^{(n,p)}(z) = \left(\frac{pz}{1 - (1 - p)z}\right)^n$$

$$= \left(\frac{1}{\frac{1}{pz} + (1 - \frac{1}{p})}\right)^n$$

$$G_X^{(n,p^{-1})}(z^{-1}) = \left(\frac{1}{pz} + (1 - \frac{1}{p})\right)^n$$

$$\implies G_Y^{(n,p)}(z) = \left(G_X^{(n,p^{-1})}(z^{-1})\right)^{-1}$$

1.6 Task F

 $P[Y = k] = {\binom{k-1}{n-1}} p^n (1-p)^{k-n}.$

$$G_Y^{(n,p)}(z) = \sum_{k=0}^{\infty} P[Y=k] z^k$$

$$= \sum_{k=n}^{\infty} {k-1 \choose n-1} p^n (1-p)^{k-n} z^k$$

$$\left(\frac{1}{pz} + \left(1 - \frac{1}{p}\right)\right)^{-n} = \sum_{k=n}^{\infty} {k-1 \choose n-1} p^n (1-p)^{k-n} z^k$$

Substitute x = z, p = 2

$$\left(\frac{1}{2x} + \frac{1}{2}\right)^{-n} = \sum_{k=n}^{\infty} {k-1 \choose n-1} 2^n (-1)^{k-n} x^k$$

$$x^n (1+x)^{-n} = \sum_{k=n}^{\infty} {k-1 \choose n-1} (-1)^{k-n} x^k$$

$$(1+x)^{-n} = \sum_{k=n}^{\infty} {k-1 \choose n-1} (-1)^{k-n} x^{k-n}$$

$$(1+x)^{-n} = \sum_{r=0}^{\infty} {n+r-1 \choose n-1} (-1)^r x^r$$

$$(1+x)^{-n} = \sum_{r=0}^{\infty} {n+r-1 \choose r} (-1)^r x^r$$

1.7 Task G

$$G(z) = \sum_{n=0}^{\infty} P[X = n] z^n$$

$$G'(z) = \sum_{n=0}^{\infty} n P[X = n] z^{n-1}$$

$$G'(1) = \sum_{n=0}^{\infty} n P[X = n]$$

$$G'(1) = E[X]$$

For Bernoulli random variable $X \sim Ber(p)$,

$$G_{Ber}(z) = (1 - p) + pz$$

$$G'_{Ber}(z) = p$$

$$G'_{Ber}(1) = p$$

$$E[X] = p$$

For Binomial random variable $X \sim Bin(n, p)$,

$$G_{Bin}(z) = (pz + (1-p))^n$$

 $G'_{Bin}(z) = np(pz + (1-p))^{n-1}$
 $G'_{Bin}(1) = np$
 $E[X] = np$

For Geometric random variable $X \sim Geo(p)$,

$$G_{Geo}(z) = \frac{pz}{1 - (1 - p)z}$$

$$G'_{Geo}(z) = \frac{p}{(1 - (1 - p)z)^2}$$

$$G'_{Geo}(1) = \frac{p}{p^2}$$

$$E[X] = \frac{1}{p}$$

For Negative Binomial random variable $X \sim NegBin(n, p)$,

$$G_{NegBin}(z) = \left(\frac{pz}{1 - (1 - p)z}\right)^n$$

$$G'_{NegBin}(z) = n\left(\frac{pz}{1 - (1 - p)z}\right)^{n-1} \frac{p}{(1 - (1 - p)z)^2}$$

$$G'_{NegBin}(1) = n\left(\frac{p}{p}\right)^{n-1} \frac{p}{p^2}$$

$$E[X] = \frac{n}{p}$$

2 Normal Sampling

2.1 Task A

To prove that Y is uniformly distributed in [0,1], we need to prove that for an arbitrary interval [a,b] in [0,1], Y lies in [a,b] with probability b-a.

The probability that $a \leq Y \leq b$ is the probability that the randomly chosen X is such that $a \leq F_X(x) \leq b$. The cumulative probability of x being in the interval $[a_0, b_0]$ such that $F_X(a_0) = a$ and $F_X(b_0) = b$ is b - a, since the cumulative probability that $x \leq b_0$ is b, and the cumulative probability of $x \leq a_0$ is a, hence probability that $a_0 \leq x \leq b_0$ is b - a. Our condition that $F_X()$ is invertible guarantees that the \leq can be replaced with <, since it cannot be that $\lim_{x\to a_0^+} \neq \lim_{x\to a_0^+}$, otherwise between a_0^- and a_0^+ , all elements would be mapped to by a_0 .

2.2 Task B

Given a sample y, let us return $F_X^{-1}(y)$. To prove that this has the same CDF as X, we need to prove that if $F_X(a_0) = a$ and $F_X(b_0) = b$, the probability of getting $a_0 \le F_X^{-1}(y) \le b_0$ is b - a. But this is fairly straightforward, since $a_0 \le F_X^{-1}(y) \le b_0 \iff a \le y \le b$, and the probability of getting $a \le y \le b$ is b - a.

Thus, this is the required function.

2.3 Task C

Code provided in 2c.ipynb.

Figure 1: Histogram of the samples generated

2.4 Task D

Code provided in 2d.ipynb.

Figure 2: h=10

Figure 3: h=50

Figure 4: h=100

For h=100 alone, for better visibility, I have also written code with bins set to increment every 2 pockets. To observe the property of only even indexed bins being filled, simply replace range(-100, 102, 2) with range(-100, 102, 1).

2.5 Task E

$$P_h[X=2i] = \frac{\binom{2k}{i+k}}{2^{2k}}$$

Since the likelihood of a ball arriving at pocket i is equal to the likelihood of having i+k collisions which move it to the right within the 2k possible collisions overall. Applying Stirling's approximations,

$$P_{h}[X = 2j] \approx \frac{k^{2k}\sqrt{4\pi k}}{(k+j)^{k+j}\sqrt{2\pi(k+j)}(k-j)^{k-j}\sqrt{2\pi(k-j)}}$$

$$\approx \frac{k^{2k}\sqrt{2k}(k-j)^{j}}{(k^{2}-j^{2})^{k}\sqrt{2\pi(k^{2}-j^{2})}(k+j)^{j}}$$

$$\approx \frac{1}{\sqrt{\pi k}} \frac{k^{2k}(k-j)^{j}}{(k^{2})^{k}(k+j)^{j}} \qquad \text{(By approximating } k^{2}-j^{2}\approx j^{2})$$

$$= \frac{1}{\sqrt{\pi k}} \left(1 - \frac{2j}{k+j}\right)^{j}$$

Now, we independently approximate $\left(1 - \frac{2j}{k+j}\right)^j$ by taking its logarithm and using the property that for small x, $\ln(1-x) \approx -x$.

$$\ln\left(\left(1 - \frac{2j}{k+j}\right)^{j}\right) = j\ln\left(1 - \frac{2j}{k+j}\right)$$

$$\approx -\frac{2j^{2}}{k+j}$$

$$\left(1 - \frac{2j}{k+j}\right)^{j} \approx e^{-\frac{2j^{2}}{k}}$$

Setting i = 2j as required, we get

$$P_h[X=i] \approx \frac{1}{\sqrt{\pi k}} e^{-\frac{i^2}{2k}}$$
$$= \frac{1}{\sqrt{2\pi k}} e^{-\frac{i^2}{\hbar}}$$

As required.

3 Quality in Inequalities

3.1 Task A

$$\mathbb{E}[X] = \int_0^\infty XP(X) \, dX$$

$$= \int_0^a XP(X) \, dX + \int_a^\infty XP(X) \, dX$$

$$\geq \int_0^a XP(X) \, dX + \int_a^\infty aP(X) \, dX$$

$$\geq \int_0^a XP(X) \, dX + aP[X \geq a]$$

$$\geq aP[X \geq a]$$

Here, we have used the fact that $\int_0^a XP(X)dX$ is ≥ 0 since $X \geq 0$ and $P(X) \geq 0$ everywhere in that interval.

From the above result, we get

$$\frac{\mathbb{E}[X]}{a} \ge P[X \ge a]$$

Intuitively, this corresponds to saying that if there is a high probability that $X \ge a$, then we can also expect that a random sample will give us a value greater than a.

3.2 Task B

First, we will prove a result which is useful later

$$\mathbb{E}\left[\left(X - \mathbb{E}[X] + \frac{\sigma^2}{\tau}\right)^2\right] = Var(X - \mathbb{E}[X] + \frac{\sigma^2}{\tau}) + \left(E[X - \mathbb{E}[X] + \frac{\sigma^2}{\tau}]\right)^2$$

Now, since the variance of a distribution does not change on adding a constant to the distribution, and since the expectation value of the sum of terms is the sum of expectations of the terms, we get that this is equal to

$$\mathbb{E}\left[\left(X - \mathbb{E}[X] + \frac{\sigma^2}{\tau}\right)^2\right] = \sigma^2 + \left(\frac{\sigma^2}{\tau}\right)^2$$

Now, we notice that whenever $X - \mu \ge \tau$, it also holds that $\left(X - \mu + \frac{\sigma^2}{\tau}\right)^2 \ge \left(\tau + \frac{\sigma^2}{\tau}\right)^2$. Since we are assuming that $x - \mu + \frac{\sigma^2}{\tau} \ge \tau + \frac{\sigma^2}{\tau} \ge 0$, this result is proven by the fact that x^2 is an increasing function over the non-negative reals.

Thus,
$$P[X - \mu \ge \tau] \le P[\left(X - \mu + \frac{\sigma^2}{\tau}\right)^2 \ge \left(\tau + \frac{\sigma^2}{\tau}\right)^2].$$

Using Markov's inequality on the above result, we get

$$P[X - \mu \ge \tau] \le P\left[\left(X - \mu + \frac{\sigma^2}{\tau}\right)^2 \le \left(\tau + \frac{\sigma^2}{\tau}\right)^2\right] \le \frac{\sigma^2 + \left(\frac{\sigma^2}{\tau}\right)^2}{\left(\tau + \frac{\sigma^2}{\tau}\right)^2}$$
$$= \frac{\sigma^2}{\sigma^2 + \tau^2}$$

Thus proving our desired result.

3.3 Task C

$$P[X \ge x] = \int_{x}^{\infty} P(X) \, dX$$

$$\begin{split} e^{-tx}E[e^{tx}] &= e^{-tx} \int_{-\infty}^{\infty} e^{tX} P(X) \, dX \\ &= e^{-tx} \int_{-\infty}^{x} e^{tX} P(X) \, dX + e^{-tx} \int_{x}^{\infty} e^{tX} P(X) \, dX \\ &\geq e^{-tx} \int_{x}^{\infty} e^{tX} P(X) \, dX \qquad \qquad \text{(since both P(X) and } e^{tX} \text{ are positive for all X)} \\ &\geq e^{-tx} e^{tx} \int_{x}^{\infty} P(X) \, dX \qquad \qquad \text{(since } e^{tX} \text{ is increasing if } \mathbf{t} \downarrow \mathbf{0}) \\ &= e^{-tx} e^{tx} P[X \geq x] \\ &= P[X \geq x] \end{split}$$

This proves that

$$P[X \ge x] \le e^{-tx} E[e^{tx}] \tag{1}$$

Similarly,

$$P[X \le x] = \int_{-\infty}^{x} P(X) \, dX$$

$$\begin{split} e^{-tx}E[e^{tx}] &= e^{-tx} \int_{-\infty}^{\infty} e^{tX}P(X) \, dX \\ &= e^{-tx} \int_{-\infty}^{x} e^{tX}P(X) \, dX + e^{-tx} \int_{x}^{\infty} e^{tX}P(X) \, dX \\ &\geq e^{-tx} \int_{-\infty}^{x} e^{tX}P(X) \, dX \qquad \qquad \text{(since both P(X) and } e^{tX} \text{ are positive for all X)} \\ &\geq e^{-tx} \cdot e^{tx} \cdot \int_{-\infty}^{x} P(X) \, dX \qquad \qquad \text{(since } e^{tx} \leq e^{tx'} \text{ where } x \geq x' \text{ when t is negative)} \\ &= \int_{-\infty}^{x} P(X) \, dX \\ &= P[X \leq x] \end{split}$$

as required.

3.4 Task D

1. We know, by the linearity of expectation, that

$$\mathbb{E}[Y] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \sum_{i=1}^{n} p_i$$

2. For this question, we make use of the first result proved in Task C above 1.

$$\begin{split} P[Y \geq (1+\delta)\mu] &\leq \frac{\mathbb{E}[e^{tY}]}{e^{(1+\delta)\mu t}} \\ &= \frac{\mathbb{E}[e^{\left(t\sum_{i=1}^{n} X_{i}\right)}]}{e^{(1+\delta)\mu t}} \end{split}$$

We will now prove that for independent random variables, $\mathbb{E}[e^{(t\sum_{i=1}^{n}X_{i})}] = \prod_{i=1}^{n}\mathbb{E}[e^{tX_{i}}]$. To prove that, we prove the simpler result that for independent variables, $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$.

$$\mathbb{E}[XY] = \int_{-\infty}^{\infty} (xy)p_{X,Y}(x,y) \, dy \, dx$$

$$= \int_{-\infty}^{\infty} (xy)p_X(x)p_Y(y) \, dy \, dx \qquad \text{(For independent RVs, p(xy)=p(x)p(y))}$$

$$= \int_{-\infty}^{\infty} xp_X(x) \int_{-\infty}^{\infty} yp_Y(y) \, dy \, dx$$

$$= \int_{-\infty}^{\infty} xp_X(x) \, dx \int_{-\infty}^{\infty} yp_Y(y) \, dy$$

$$= \mathbb{E}[X]\mathbb{E}[Y]$$

Since above, all X_i 's are independent, so are e^{tX_i} for all i. Thus,

$$E[e^{(t\sum_{i=1}^{n} X_{i})}] = \mathbb{E}[e^{tX_{1}}]E[e^{(t\sum_{i=2}^{n} X_{i})}]$$

$$= \mathbb{E}[e^{tX_{1}}]\mathbb{E}[e^{tX_{2}}]\mathbb{E}[e^{(t\sum_{i=3}^{n} X_{i})}]$$

$$\dots$$

$$= \prod_{i=1}^{n} \mathbb{E}[e^{tX_{i}}]$$

For each Bernoulli random variable X_i , it is easily observed that $E[e^{tX_i}] = 1 + (e^t - 1)p_i$. Using this result,

$$E[e^{(t\sum_{i=1}^{n} X_i)}] = \prod_{i=1}^{n} (1 + (e^t - 1)p_i)$$

We will now prove $\prod_{i=1}^{n} (1+x_i) \leq e^{\sum_{i=1}^{n} x_i}$ for positive x_i 's.

$$\ln\left(\prod_{i=1}^{n}(1+x_i)\right) = \sum_{i=1}^{n}\ln(1+x_i)$$

$$\leq \sum_{i=1}^{n}x_i \qquad \text{(Well known result that } \ln(1+x) \leq x\text{)}$$

$$= \ln\left(e^{\sum_{i=1}^{n}x_i}\right)$$

Since our initial assumption in using 1 required t > 0 and hence $e^t > 1$, all $(e^t - 1)p_i$ values are positive and we can use the above result. Hence, $\mathbb{E}[e^{tY}] \leq e^{\mu(e^t - 1)}$. Plugging this into ??, we get

$$P[Y \ge (1+\delta)\mu] \le \frac{e^{\mu(e^t-1)}}{e^{(1+\delta)t\mu}}$$

as required.

3. Since this holds for arbitrary positive t, we can find the t for which the value of $e^{\mu(e^t-1-(1+\delta)t)}$ is minimum. By differentiation, we observe the minima of the function is when $t = \ln(1+\delta)$. At the minima, we have

$$e^{t} - 1 - (1 + \delta)t = \delta - (1 + \delta)\ln(1 + \delta)$$

Using the expansion $\ln(1+\delta) = \sum_{i=1}^{\infty} \frac{\delta^{i}(-1)^{i-1}}{i}$,

$$\delta - (1+\delta) \ln(1+\delta) = \delta + (1+\delta) \left(\sum_{i=1}^{\infty} \frac{\delta^{i}(-1)^{i}}{i} \right)$$

$$= \delta + \sum_{i=1}^{\infty} \frac{\delta^{i}(-1)^{i}}{i} + \sum_{i=2}^{\infty} \frac{\delta^{i}(-1)^{i-1}}{i-1}$$

$$= \sum_{i=2}^{\infty} \frac{\delta^{i}(-1)^{i-1}}{i(i-1)}$$

This is approximately $-\frac{\delta^2}{2} + \frac{\delta^3}{6}$ for small delta. Thus we get a good upper bound of $e^{\frac{-\mu\delta^2(3-\delta)}{6}}$ for $P[Y \ge (1+\delta)\mu]$.

If $\delta > 0$, this can be simplified further, in a way that is more useful for us in question 5. Observe that for x > 0

$$\ln(1+x) \ge \frac{2x}{2+x}$$

This can be seen by observing that at x=0, $\ln(1+x) - \frac{2x}{2+x}$ evaluates to 0 and that its derivative, $\frac{4}{(1+x)(2+x)^2}$ is always non-negative.

Thus,

$$\mu(\delta - (1+\delta)\ln(1+\delta)) \le \mu(\delta - \frac{2\delta(1+\delta)}{2+\delta})$$
$$= \frac{-\mu\delta^2}{2+\delta}$$

Thus, we get,

$$P[Y \ge (1+\delta)\mu] \le e^{\frac{-\mu\delta^2}{2+\delta}} \tag{2}$$

For the last few steps of simplification, https://math.mit.edu/ goemans/18310S15/chernoff-notes.pdf was used as a guide.

3.5 Task E

First, let us consider the corner cases where $\mu = 0$ or $\mu = 1$. In these cases, $A_n = 0$ or $A_n = 1$ always, and the result is trivial.

Now we can consider $0 < \mu < 1$.

Consider the random variable $B_n = nA_n$.

We need to prove $\lim_{n\to\infty} P[|B_n - n\mu| > n\epsilon] = 0$.

Note that we are done if we prove $\lim_{n\to\infty} P[B_n - n\mu > = n\epsilon] = 0$ and $\lim_{n\to\infty} P[n\mu - B_n > = n\epsilon] = 0$.

We will prove the first part first, assuming μ is not 0.

$$P[B_n \ge n\epsilon + n\mu] \le e^{-\frac{n\epsilon^2}{2\mu + \epsilon}}$$

For a positive μ (since the distribution is the sum of Bernoulli RVs) and ϵ (given), $\frac{\epsilon^2}{2\mu+\epsilon}$ is a positive coefficient. e^{-n} tends to 0 as n tends to ∞ , which we will use henceforth.

Note that the result that $P[X \ge (1+\delta)\mu] \le e^{\frac{-\mu\delta^2}{2+\delta}}$ was not proven without referring to the internet, so I will prove the claim above using an alternative method which assumes only what has been proven by me.

$$P[X \ge (1+\delta)\mu] \le e^{\mu(\delta - (1+\delta)\ln(1+\delta))}$$

We want to prove that $f(\delta) = \delta - (1 + \delta) \ln(1 + \delta)$ is strictly negative if δ is positive. For that, notice that f(0) = 0 and $f'(\delta) = -\ln(1 + \delta)$, which is non-positive for all non-negative δ . Thus, $f(\delta)$ is strictly negative for all positive δ .

This again means that $P[B_n \ge n\epsilon + n\mu] \le e^{-nk}$ for some positive coefficient k. Thus, $P[B_n \ge n\epsilon + n\mu]$ tends to 0 as n tends to ∞ .

Similarly, $P[B_n \le n\mu - n\epsilon]$ also tends to 0 as n tends to ∞ .

We can prove this by considering the RV $1-A_n$ instead of A_n and using the same logic as above. $P[n-B_n-n-n\mu \geq n\delta] = P[n\mu-nB_n \geq n\delta] \leq e^{-nk}$ for some positive coefficient k.

Now, combining the two results,

$$\begin{split} P[|B_n - n\mu| > n\epsilon] &\leq P[B_n - n\mu \geq n\epsilon] + P[n\mu - B_n \geq n\epsilon] \\ &\leq e^{-nk} + e^{-nk'} \end{split} \qquad \text{(for some positive coefficients k and k')} \end{split}$$

If we get any positive value σ for the value of $P[|B_n - n\mu| > n\epsilon]$, simply set $n > \max(\frac{\ln(\frac{2}{\sigma})}{k}, \frac{\ln(\frac{2}{\sigma})}{k'})$ and we have

$$P[|B_n - n\mu| > n\epsilon] \le e^{-nk} + e^{-nk'}$$

$$< \frac{\sigma}{2} + \frac{\sigma}{2}$$

$$= \sigma$$

which is a contradiction.

Thus, we have proven that $\lim_{n\to\infty} P[|B_n - n\mu| > n\epsilon] = \lim_{n\to\infty} P[|A_n - \mu| > \epsilon] = 0$.