FLASHATTENTION: Fast and Memory-Efficient **Exact** Attention with **IO-Awareness**

Tri Dao†, Daniel Y. Fu , Stefano Ermon Atri Rudra , Christopher Ré

Contribution

Fast Transformer training

Train BERT-large (seq. length 512) 15% faster than the training speed record in MLPerf 1.1, GPT2 (seq. length 1K) 3x faster than baseline implementations from HuggingFace and Megatron-LM, and long-range arena (seq. length 1K-4K) 2.4x faster than baselines.

Memory efficient

compared to vanilla attention, which is quadratic in sequence length, $O(N^2)$, this method is sub-quadratic/linear in N (O(N)).

- Exact but also extended to block-sparse (Approximate) attention
- IO Aware

Background: Language Model

Sequence to Sequence Model

- Encoder Decoder Architecture
- RNN, LSTM
- Problem
 - Short term memory
 - Sequential Execution

Don't eat the delicious looking and smelling pizza.

Eat the delicious looking and smelling pizza.

Background: Transformer

- Attention Mechanism
- Keeps track how similar each word is to all of the words in the sentences including itself
 - Calculate similarity score between each pair of words

Background: Transformer

```
when input is [47] the target: 58
when input is [47, 58] the target: 1
when input is [47, 58, 1] the target: 51
when input is [47, 58, 1, 51] the target: 59
when input is [47, 58, 1, 51, 59] the target: 57
when input is [47, 58, 1, 51, 59, 57] the target: 58
when input is [47, 58, 1, 51, 59, 57, 58] the target: 1
when input is [47, 58, 1, 51, 59, 57, 58, 1] the target: 40
when input is [0] the target: 24
when input is [0, 24] the target: 43
when input is [0, 24, 43] the target: 58
when input is [0, 24, 43, 58] the target: 1
when input is [0, 24, 43, 58, 1] the target: 46
when input is [0, 24, 43, 58, 1, 46] the target: 47
when input is [0, 24, 43, 58, 1, 46, 47] the target: 51
when input is [0, 24, 43, 58, 1, 46, 47, 51] the target: 1
```

Background: Transformer

BERT

Encoder

GPT

Decoder

Background: Attention mechanism

- Quadratic in Memory and Time
- Challenge: how to scale transformer to longer sequence
- Attention is bottlenecked by memory read and write

O = Dropout(Softmax(Mask(QK^T)))V

Background: Attention mechanism

 Naive implementation requires repeated read and write from slow GPU HBM memory. Hard to scale for longer sequence.

Background: Approximate Attention

No training time improvement in Approximate Attention mechanism

- Exploits Memory Asymmetry with IO awareness
- It reduces HBM read/write by using Tiling mechanism, block by block loading from HBM memory to SRAM for computing attention
- It also does not store Attention Matrix for backpropagation rather recompute
- It does not materialize the whole Attention Matrix into SRAM
- But Softmax computation needs the whole Attention Matrix

SoftMax: Online Normalizer Calculation

- Online normalizer calculation for softmax paper by Nvidia
- Naive Softmax and safe version

$$y_{i} = \frac{e^{x_{i}}}{\sum_{j=1}^{V} e^{x_{j}}} \qquad y_{i} = \frac{e^{x_{i} - \max_{k=1}^{V} x_{k}}}{\sum_{j=1}^{V} e^{x_{j} - \max_{k=1}^{V} x_{k}}}$$

Safe version

Online Version (reduce HBM R/W)

Algorithm 2 Safe softmax

```
1: m_0 \leftarrow -\infty

2: for k \leftarrow 1, V do

3: m_k \leftarrow \max(m_{k-1}, x_k)

4: end for

5: d_0 \leftarrow 0

6: for j \leftarrow 1, V do

7: d_j \leftarrow d_{j-1} + e^{x_j - m_V}

8: end for

9: for i \leftarrow 1, V do

10: y_i \leftarrow \frac{e^{x_i - m_V}}{d_V}

11: end for
```

Algorithm 3 Safe softmax with online normalizer calculation

```
1: m_0 \leftarrow -\infty

2: d_0 \leftarrow 0

3: for j \leftarrow 1, V do

4: m_j \leftarrow \max(m_{j-1}, x_j)

5: d_j \leftarrow d_{j-1} \times e^{m_{j-1} - m_j} + e^{x_j - m_j}

6: end for

7: for i \leftarrow 1, V do

8: y_i \leftarrow \frac{e^{x_i - m_V}}{d_V}

9: end for
```

Used Fused Kernel with Tiling

Standard Attention Implementation

Initialize O, I and m matrices with zeroes. m and I are used to calculate cumulati softmax. Divide Q, K, V into blocks (due to SRAM's memory limits) and iterate ov them, for i is row & j is column.

Flash Attention

Softmax calculation

- 10: On chip, compute $\tilde{m}_{ij} = \operatorname{rowmax}(\mathbf{S}_{ij}) \in \mathbb{R}^{B_r}$, $\tilde{\mathbf{P}}_{ij} = \exp(\mathbf{S}_{ij} \tilde{m}_{ij}) \in \mathbb{R}^{B_r \times B_c}$ (pointwise), $\tilde{\ell}_{ij} = \operatorname{rowsum}(\tilde{\mathbf{P}}_{ii}) \in \mathbb{R}^{B_r}$.
- 11: On chip, compute $m_i^{\text{new}} = \max(m_i, \tilde{m}_{ij}) \in \mathbb{R}^{B_r}$, $\ell_i^{\text{new}} = e^{m_i m_i^{\text{new}}} \ell_i + e^{\tilde{m}_{ij} m_i^{\text{new}}} \tilde{\ell}_{ij} \in \mathbb{R}^{B_r}$

Write
$$\mathbf{O}_i \leftarrow \operatorname{diag}(\ell_i^{\text{new}})^{-1}(\underline{\operatorname{diag}}(\ell_i)e^{m_i - m_i^{\text{new}}}\mathbf{O}_i + \underline{e^{\tilde{m}_{ij} - m_i^{\text{new}}}}\tilde{\mathbf{P}}_{ij}\mathbf{V}_j)$$

It uses recomputation during backpropagation

Algorithm 4 FlashAttention Backward Pass

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V}, \mathbf{O}, \mathbf{dO} \in \mathbb{R}^{N \times d}$ in HBM, vectors $\ell, m \in \mathbb{R}^N$ in HBM, on-chip SRAM of size M, softmax scaling constant $\tau \in \mathbb{R}$, masking function MASK, dropout probability p_{drop} , pseudo-random number generator state \mathcal{R} from the forward pass.

FlashAttention: Memory Efficiency and IO Awareness

 Similar work from Google 1 year ago but that was not IO Aware. so Flash Attention has better performance gain

Self-attention Does Not Need $O(n^2)$ Memory

A PREPRINT

Markus N. Rabe and Charles Staats Google Research

{mrabe,cstaats}@google.com

- Uses online softmax, tilling, gradient checkpoint during backpropagation
- Perspective was showing Attention does not need quadratic memory, so their Implementation was not IO aware

Analysis: IO Complexity of FlashAttention

Figure 2: Left: Forward + backward runtime of standard attention and FlashAttention for GPT-2 medium (seq. length 1024, head dim. 64, 16 heads, batch size 64) on A100 GPU. HBM access is the primary factor affecting runtime. Middle: Forward runtime of FlashAttention (seq. length 1024, head dim. 64, 16 heads, batch size 64) on A100 GPU. Fewer HBM accesses result in faster runtime, up to a point. Right: The runtime (for seq. length 4K) of block-sparse FlashAttention is faster than FlashAttention by a factor proportional to the sparsity.

Faster Models with FlashAttention

Table 1: Training time of BERT-large, starting from the same initialization provided by the MLPerf benchmark, to reach the target accuracy of 72.0% on masked language modeling. Averaged over 10 runs on 8×A100 GPUs.

BERT Implementation	Training time (minutes)
Nvidia MLPerf 1.1 58	20.0 ± 1.5
FLASHATTENTION (ours)	17.4 ± 1.4

Table 2: GPT-2 small and medium using FlashAttention achieve up to 3× speed up compared to Huggingface implementation and up to 1.7× compared to Megatron-LM. Training time reported on 8×A100s GPUs.

Model implementations	OpenWebText (ppl)	Training time (speedup)
GPT-2 small - Huggingface 87	18.2	9.5 days (1.0×)
GPT-2 small - Megatron-LM [77]	18.2	4.7 days (2.0×)
GPT-2 small - FlashAttention	18.2	$2.7 \text{ days } (3.5 \times)$
GPT-2 medium - Huggingface 87	14.2	21.0 days (1.0×)
GPT-2 medium - Megatron-LM 77	14.3	11.5 days $(1.8\times)$
GPT-2 medium - FlashAttention	14.3	6.9 days $(3.0 \times)$

Faster Models with FlashAttention

Table 3: The performance of standard attention, FlashAttention, block-sparse FlashAttention, and approximate attention baselines on the Long-Range-Arena benchmarks.

Models	ListOps	Text	Retrieval	Image	Pathfinder	Avg	Speedup
Transformer	36.0	63.6	81.6	42.3	72.7	59.3	
FLASHATTENTION	37.6	63.9	81.4	43.5	72.7	59.8	2.4×
Block-sparse FlashAttention	37.0	63.0	81.3	43.6	73.3	59.6	2.8×
Linformer 84	35.6	55.9	77.7	37.8	67.6	54.9	2.5×
Linear Attention 50	38.8	63.2	80.7	42.6	72.5	59.6	2.3×
Performer 12	36.8	63.6	82.2	42.1	69.9	58.9	1.8×
Local Attention 80	36.1	60.2	76.7	40.6	66.6	56.0	1.7×
Reformer 51	36.5	63.8	78.5	39.6	69.4	57.6	1.3×
Smyrf 19	36.1	64.1	79.0	39.6	70.5	57.9	1.7×

Better Models with Longer Sequences

Table 4: GPT-2 small with FlashAttention, with 4× larger context length compared to Megatron-LM, is still 30% faster while achieving 0.7 better perplexity. Training time on 8×A100 GPUs is reported.

Model implementations	Context length	OpenWebText (ppl)	Training time (speedup)
GPT-2 small - Megatron-LM	1k	18.2	4.7 days (1.0×)
GPT-2 small - FlashAttention	1k	18.2	2.7 days $(1.7 \times)$
GPT-2 small - FlashAttention	2k	17.6	$3.0 \text{ days } (1.6 \times)$
GPT-2 small - FlashAttention	4k	17.5	3.6 days (1.3×)

Runtime and Memory Usage

Figure 3: Left: runtime of forward pass + backward pass. Right: attention memory usage.

Thanks