10 ASP # 12

10.1 Définitions

Crédibilité Mesure de la valeur prédictive accordée aux données

Homogénéité Degré auxquels les résultats espérés dans une classe de risque ont des valeurs comparables

Pratique Approche réaliste sachant l'objet, la nature et la portée du travail à réaliser

Risque Individus (ou compagnies) couverts par un système financier

Caractéristique d'un risque Caractéristiques mesurables et observables qui sont utilisés pour assigner à un risque une classe de risque

Classe de risque Sous-ensemble de risques groupés ensemble sous un système de classification des risques

Système de classification des risques système utilisé pour assigner chaque risque à un groupe basé sur les coûts espérés de la couverture fournie.

10.2 Considérations pour la sélection des caractéristiques de risques

- > Les caractéristiques doivent être corrélées avec les coûts espérés. L'interdépendance entre les caractéristiques de risque doit aussi être considérée.
- > Il doit y avoir un lien entre les caractéristiques et coûts espérés, mais pas nécessairement un lien de cause à effet
- > Doit être basée sur des faits observables et vérificables, qui ne peuvent pas être manipulés
- > La caractéristique doit être **pratique** (au niveau des coûts, temps et efforts requis pour l'obtenir)
- > Doit respecter les lois applicables
- > Suivre les pratiques de l'industrie et de la compagnie

10.3 Considérations dans l'établissement des classes de risques

- > Quelle sera l'utilisation? (établissement réserve ou tarification?)
- > Considérations actuarielles (anti-sélection, crédibilité, pratique, ...)
- > Autres considérations : Légales, pratiques de l'industrie, pratiques de la compagnies, ...
- > Vérifier que les résultats sont raisonnables et consistants
- 1. Important d'utiliser les primes au taux courat pour cette approche

10.4 Validation du système de classification des risques

- > Estimer/quantifier l'effet de l'anti-sélection
- > Utiliser les classes de risque différentes pour le test
- > Tester l'effet des différents changements (système de classif., pratiques de l'industrie, pratiques de la compagnie, etc..)

11 Classification traditionnelle des risques

11.1 Critères d'évaluation des variables de tarification

Statistique Différence statistique significative, homogénéité, crédibilité

Opérationnel Variable objective, peu coûteuse à administrer et vérifiable

Social Prime abordable, lien de causalité, contrôlable et respect de la vie privée

Légal Il arrivent que la législation en place empêche l'utilisation de certaines variables de tarif.

11.2 Détermination des différentiels (relativity

11.2.1 Approche de la Prime pure

Soit la variable de tarification *R*1 avec un certains nombre de niveaux, dont le niveau de base *B*. Le différentiel indiqué de la variable *R*1 pour le niveau *i* est

$$R1_{I,i} = \frac{(\overline{L} + E_L)_i}{(\overline{L} + E_L)_B} \tag{1}$$

Cette approche suppose une distributin uniforme des unités dans les autres variables. De plus, elle ignore la corrélation qu'il peut exister entre les variables de tarification.

11.2.2 Approche du taux de sinistre

Soit $P_{C,i}$ la prime au taux courant ¹ pour le niveau i. On peut trouver les différentiels avec

Indicated Differential Chg =
$$\frac{R_{I,j}}{R_{C,i}} = \frac{\frac{(\overline{L} + E_L)_i}{P_{C,i}}}{\frac{(\overline{L} + E_L)_B}{P_{C,B}}}$$
(2)

11.2.3 Approche de la prime pure ajustée

Ajustement à l'approche vue en 11.2.1 pour limiter l'impact des biais (Distribution non-uniforme) dans la distribution.

- 1. Pour chaque niveau de l'autre variable, on calcule le différentiel moyen chargé (pondéré par les unités)
- 2. On ajuste nos unités d'exposition en multipliant par les différentiels moyen trouvés à l'étape 1.
- 3. On applique l'approche décrite en 11.2.1 en utilisant les unités d'exposition ajustées.

12 Classification multivariée

12.1 Défaillance des méthodes de classification traditionnelles

- > La méthode de la PP ne considère pas la corrélation entre les variables dans les unités d'exposition
- > La méthode du taux de sinistre / PP ajustée ne tiennent compte que partiellement de la distribution du portefeuille.

12.2 Bénéfice des méthodes de classification multivariées

- 1. Considèrent toutes les variables simultanément et ajustement automatiquement pour la corrélation entre les variables.
- 2. Tentent de capturer les effets systématiques (signal) et non les effets nonsystématiques (bruit)
- 3. Produisent des modèles diagnostics
- 4. Permettent d'inclure une considération pour les interactions entre 2 variables

12.3 Modèles linéaires généralisés (GLM)

12.3.1 Tests de diagnostic

- > Calcul de l'écart-type
- > Consistance dans les résultats d'une année à l'autre
- > Holdout : comparer le résultats espéré prédit vs résultat sur Holdout
- > Test statistique (Chi-Squared):
 - $-H_0$: le modèle actuel (sans la variable) est adéquat

- Selon la valeur de la *p-value* :

$$\label{eq:Decision} \begin{aligned} \text{D\'ecision} &= \begin{cases} \text{p-value} < 0.05 & \text{, Rej\`ete } H_0 \\ 0.05 \leq \text{p-value} \leq 0.30 & \text{On ne peut rien conclure} \\ \text{p-value} > 0.30 & \text{, On ne rej\`ete pas } H_0 \\ \end{aligned}$$

13 Classification spéciale

13.1 Analyse de territoire

TODO: il manque des infos

- > Déterminer les unités géographiques
- > Calculer l'estimateur géographique
- > Lissage (smoothing)
 - Basé sur la distance
 - Basé sur les unités adjacents
- > Regroupement de territoires
- > Calculer les différentiels par territoire

13.2 Tarification des limites augmentées

On utilise les *increased limit factors* (ILF) pour augmenter le taux de base si l'assuré sélectionne une limite *H* supérieure à la limite de base *B*. Le ILF indiqué est

$$ILF_I(H) = \frac{(L + E_L)_H}{(\overline{L} + E_L)_B} \tag{3}$$

Si la fréquence et la sévérité sont indépendants, on a

$$ILF_{I}(H) = \frac{\text{Fréquence}_{H} \times \text{Sévérité}_{H}}{\text{Fréquence}_{B} \times \text{Sévérité}_{B}}$$
(4)

Si la fréquence est la même (peu importe la limite), alors on peut simplifier à

$$ILF_I(H) = \frac{\text{S\'ev\'erit\'e}_H}{\text{S\'ev\'erit\'e}_B} = \frac{LAS(H)}{LAS(B)}$$

où LAS(H) est le limited average severity at H limit.

13.2.1 Approche standard de calcul des ILF (sinistres censurés)

Voir exemple 13.2 au besoin. De façon générale, pour $H_1 \le H_2$, on a $LAS(H_2) = LAS(H_1) + LAS(H_2 - H_1|X \ge H_1) \Pr(X \ge H_1)$

On doit utiliser les sinistres projetés (avec facteur de tendance) à l'ultime

13.3 Tarificaiton de franchise

13.3.1 Loss Elimination Ratio (LER) approach

Dans le cas discret,

$$LER(d) = 1 - \frac{\sum_{x_i} \max(x_i - d; 0)}{\sum_{x_i} x_i}$$

Dans le cas continu, TODO

Si on veut mesurer le LER suite à un changement de franchise (de *B* à *D*) :

$$LER(B \to D) = \frac{(L + E_L)_B - (L + E_L)_D}{(L + E_L)_B}$$

13.4 Grosseurs des risques en workers compensation

13.4.1 Composante de frais (fees component

En *Workers Compensation*, on utilise la méthode *All Variable Approach* pour déterminer la provision pour frais. Or, une petite compagnie (i.e. petite prime) seront sous-tarifé par rapport aux frais et l'inverse pour les grandes compagnies. **on doit apporter quelques ajustements**

- > Calculer une provision pour frais qui s'appliquera seulement sur le premier 5000\$.
- > Charger un frais constant à tous les risques
- > Accorder un rabais aux polices ayant une prime supérieure à un certain montant (escompte graduée).

Calcul de l'escompte graduée Voir au besoin exemple 13.5

13.4.2 Composante de perte (loss components)

Les petits risques ont tendance à avoir une expérience (en % de la prime) moins favorables que les gros risques. Il faut donc ajouter un frais constant pour perte, afin que la prime soit adéquate Voir exemple 13.6

13.5 Assurance à la valeur (*Insurance-to-value*, *ITV*)

Lorsqu'un assuré est en sous-assurance, la prime n'est pas suffisante pour couvrir les paiements espérés. Il y a 2 façon de régler les problèmes de sous-assurance : coassurance ou chager une prime qui tient réellement compte des sinistres espérés.

13.5.1 Coassurance

L'indemnité payée par l'assureur est

$$I = L \times \frac{F}{cV}$$

Donc, la pénalité est définie par

$$e = \begin{cases} L - I & , L \le F \\ F - I & , F < L < cV \\ 0 & , L \ge cV \end{cases}$$

où

I Indemnité

L Montant du sinistre après franchise

F Montant d'assurance sur la police

V Valeur de la propriété

c % de coassurance exigé par le contrat

e pénalité

13.5.2 Variation des taux selon le niveau d'assurance à la valeur

TODO: par sûr de comprendre