Nombre de la asignatura: Diseño y análisis de experimentos

Línea de trabajo: Básica

Tiempo de dedicación del estudiante a las actividades de:

DOC (48) - TIS (20) - TPS (100) - 168 horas totales - 6 Créditos

DOC: Docencia; TIS: Trabajo independiente significativo; TPS: Trabajo profesional supervisado

2. Historial de la asignatura.

Fechas revisión	Participantes	Observaciones, cambios o
/actualización		justificación
Marzo 2017	Dra. Genoveva Domínguez Sánchez	Análisis y conformación del
Instituto Tecnológico	MGC. Rodolfo Alberto Román Montano	programa. Metodología del
de Veracruz		desarrollo del curso,
		prácticas propuestas

3. Pre-requisitos y correquisitos.

Pre-requisito:

Haber aprobado un curso de estadística inferencial o su equivalente a nivel licenciatura.

Correquisito

Manejo de software como Excel, Statistical, etc.

4. Objetivo de la asignatura.

Proporcionar al alumno las herramientas estadísticas de análisis de datos y de diseño de experimentos necesarias para obtener conclusiones científicamente válidos.

5. Aportación al perfil del graduado.

El curso proporciona al estudiante la capacidad de diseñar experimentos útiles para la investigación científica y tecnológica. Forma una actitud ordenada en el trabajo experimental y crítica en relación con la obtención de conclusiones basadas en datos experimentales.

5. Contenido temático.

Unidad	Temas	Subtemas
1	Introducción al diseño de experimentos.	1.1. Principios de experimentación
		1.2. Aplicaciones del diseño de
		experimentos en la investigación.
		1.3. Experimentos, tratamientos y
		unidades experimentales.
		1.4. Tipos de error experimental y su
		control
		1.5. Aleatorizacion
		1.6. Planteamiento de Hipótesis
		estadística.
		1.7 Fuentes de variación y análisis de
		varianza
2	Análisis de Regresión.	2.1. Relación de variables
		2.2. Modelo de línea recta
		2.3.Método de mínimos cuadrados
		2.4. Ordenada al origen y pendiente de la
		recta
		2.5. Ajuste de datos
		2.6. Análisis de regresión
		2.7. Regresión múltiple
		2.8. Regresiones no lineales
3	Diseño de análisis de experimentos.	3.1. Notación sumatoria
		3.2. Diseño experimental completamente
		al azar (DCA)
		3.2.1 Modelo lineal
		3.2.2 Fuentes de variación

Unidad	Temas	Subtemas
		3.2.3 Aleatorización
		3.2.4.Planteamiento de hipótesis
		3.2.5 Análisis de varianza
		3.3. Diseño experimental bloques
		completos al azar
		3.3.1 Modelo lineal
		3.3.2 Fuentes de variación
		3.3.3 Aleatorización
		3.3.4.Planteamiento de hipótesis
		3.3.5 Análisis de varianza
		3.4. Diseño de cuadro latino.
		3.4.1 Modelo lineal
		3.4.2 Fuentes de variación
		3.4.3 Aleatorización
		3.4.4.Planteamiento de hipótesis
		3.4.5 Análisis de varianza
		3.5. Diseño de Parcelas divididas
		3.5.1 Tamaños de parcela
		3.5.2 Modelo lineal
		3.5.3 Aleatorización
		3.5.4.Planteamiento de hipótesis
		3.5.5 Análisis de varianza para
		parcelas dividas.
		3.6. Diseños factoriales
		3.6.1 Definiciones y principios
		básicos.
		3.6.2 Ventajas de los diseños
		factoriales
		3.6.3 Diseño factorial de dos factores.
		3.6.4.Análisis estadístico del modelo
		con efectos fijos
		3.6.5 Estimación de los parámetros
		del modelo
		3.6.6. Diseño factorial general
4	Métodos de Optimización.	4.1. Técnicas clásicas de optimización

Unidad	Temas	Subtemas
		4.1.2 Funciones de una variable.
		4.1.2 Funciones de múltiples
		variables sin restricciones.
		4.1.3 Funciones de múltiples
		variables con restricciones de
		igualdad y desigualdad.
		4.2. Métodos numéricos de optimización.
		4.2.1 Programación lineal.
		4.2.2 Programación entera.
		4.2.3 Programación cuadrática.
		4.2.4 Programación no lineal.
		4.2.5 Programación estocástica.
		4.2.6 Programación dinámica.
		4.2.7 Optimización combinatoria.
		4.2.8 Optimización infinito-
		dimensionales.

6. Metodología de desarrollo del curso.

- El profesor analizará y discutirá con los alumnos los conceptos fundamentales del curso, reforzándolos con ejercicios propuestos y dinámicas de grupo.
- El contenido del curso será teórico.
- Fuera de clase, el afianzamiento de los temas puede ser abordado por medio de tutorías con el profesor.

7. Sugerencias de evaluación.

- Constará de tres evaluaciones parciales y una evaluación final.
- Los alumnos reforzarán el aprendizaje con exposiciones y ejercicios teóricos de los temas vistos en clase.
- A través de la participación en clase con la discusión de artículos relacionados con el tema.
 Informe y análisis de la visita industrial.

8. Bibliografía y Software de apoyo.

- Montgomery D.C. 2003. Diseño y Análisis de Experimentos. 2ª Edición. Editorial LIMUSA-WILEY. México. (Texto principal).
- Piggott J.R. 1997. Statistical Procedures in Food Research. Elsevier. London.
- Anderson, V. and McLean, R. 1974. Design of Experiments, a realistic approach.
- Marcel Dekker Inc. New York.
- Conover. 1971. Nonparametric Statistics. Academic Press. New York.
- Cochran, W. y Cox, G.M. 1965. Diseños Experimentales. Editorial Trillas, México
- Infante G.S., Zárate de Lara G.P.1990. Métodos Estadísticos. Editorial Trillas. México
- Kuehl R.O. 2001. Diseño de Experimentos. Editorial Thomson Learning. México

9. Actividades propuestas.

Se deberán desarrollar las actividades que se consideren necesarias por tema

10. Nombre y firma de los catedráticos responsables.

Dra. Genoveva Domínguez Sánchez	
MGC. Rodolfo Alberto Román Montano	