Mid-term Review

Today's Agenda

- Logistic Regression
- Mid-term review

Today's class mandatory steps

- Canvas \rightarrow Modules \rightarrow Week6
- Download "logistics_regression _code_complete.R"
- Place the file in
 - "oba_455_555_ddpm_r/rproject/ k. logistics_regression"
- Open RStudio project
- Open "logistics_regression _code_complete.R" file within RStudio

		1 -		- (
(=		Std. Error			ماد ماد ماد
(Intercept)	-1.84157	0.54068	-3.406	0.000659	***
Day_WeekTue	-0.67940		-2.636	0.008386	**
Day_WeekWed	-0.47836	0.25075	-1.908		
Day_WeekThu	-0.73454	0.24043	-3.055	0.002250	**
Day_WeekFri	-0.21699	0.22799		0.341217	
Day_WeekSat	-1.49640	0.34040		1.10e-05	***
Day_WeekSun	-0.20009	0.25419		0.431180	
Dep_Hour7	0.04760	0.42763	0.111	0.911363	
Dep_Hour8	0.28277	0.40780	0.693	0.488044	
Dep_Hour9	-0.51082	0.53187	-0.960	0.336842	
Dep_Hour10	-0.61237	0.52950	-1.156	0.247482	
Dep_Hour11	-0.20855	0.57692	-0.361	0.717728	
Dep_Hour12	0.19174	0.41037	0.467	0.640333	
Dep_Hour13	-0.45058	0.44891	-1.004	0.315508	
Dep_Hour14	0.61125	0.36355	1.681	0.092695	
Dep_Hour15	0.70128	0.38754	1.810	0.070360	
Dep_Hour16	-0.04023	0.39993	-0.101	0.919865	
Dep_Hour17	0.36409	0.35760	1.018	0.308607	
Dep_Hour18	0.10559	0.53913	0.196	0.844719	
Dep_Hour19	0.80912	0.40411	2.002	0.045260	*
Dep_Hour20	0.84016	0.51545	1.630	0.103110	
Dep_Hour21	0.76004	0.37590	2.022	0.043181	*
OriginBWI	0.58962	0.39020	1.511	0.130772	
OriginDCA	-0.23702	0.35701	-0.664	0.506743	
DestinationEWR	-0.23076	0.30188	-0.764	0.444635	
DestinationJFK	-0.51075	0.24129	-2.117	0.034279	*
carrierco	1.45615	0.49514	2.941	0.003273	**
CarrierDH	1.07403	0.47128	2.279	0.022668	*
CarrierDL	0.29343	0.28149	1.042	0.297213	
CarrierMQ	1.34045	0.28232	4.748	2.06e-06	***
CarrierOH	0.16358	0.76850	0.213		
CarrierRU	0.98956	0.45567		0.029881	*
CarrierUA	0.20541	0.80356		0.798236	
Weather	17.86962	465.82175		0.969399	
L					

High level Insights & Grouping

- Excessive variables
- Most of the variables are insignificant
- What can be done to improve the model exposition?
- Group into broader categories
 - ➤ Day_Week to weekend or weekday
 - ➤ Hours to morning (6-12pm), afternoon (12pm 5pm) and evening (5pm-10pm)
 - Insignificant carriers into one group

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-2.5146	0.2778	-9.051	< 2e-16	***
Day_Typeweekday	0.3494	0.1716	2.036	0.04175	*
Time_Dayafternoon	0.3399	0.1747	1.946	0.05163	
Time_Dayevening	0.6363	0.1783	3.568	0.00036	* * *
OriginBWI	0.4554	0.2754	1.653	0.09830	
OriginDCA	-0.1679	0.1672	-1.004	0.31542	
DestinationEWR	-0.3151	0.1950	-1.616	0.10605	
DestinationJFK	-0.4566	0.2185	-2.089	0.03670	*
Carrier_NewCO_DH_MQ_RU	0.9750	0.2034	4.794	1.63e-06	***
Weather	18.0735	466.1000	0.039	0.96907	
Signif. codes: 0 '***'	0.001 '	**' 0.01 '*'	0.05 '	.' 0.1 ' '	'1

- Flights that operate on **weekdays** have delays with an odds of **1.4182**(**2.718**^{0.3494}) relative to Flights that operate on a **weekend**
- Flights that leave during the **evening** have delays with an odds of **1.8894**(**2.718**^{0.6363}) relative to Flights that leave during the **morning**
- Flights that arrive at **JFK** have delays with an odds of **0.6334**(**2.718**^{-0.4566}) relative to Flights that arrive to **LGA**

Confusion Matrix and Accuracy

```
Confusion Matrix and Statistics
          Reference
Prediction
         0 533 120
             0
              Accuracy : 0.8182
                 95% CI : (0.7866, 0.8469)
    No Information Rate: 0.8076
    P-Value [Acc > NIR] : 0.2624
                  Kappa: 0.0861
Mcnemar's Test P-Value : <2e-16
           Sensitivity: 1.00000
            Specificity: 0.05512
         Pos Pred Value: 0.81623
         Neg Pred Value: 1.00000
             Prevalence: 0.80758
         Detection Rate: 0.80758
   Detection Prevalence: 0.98939
      Balanced Accuracy: 0.52756
       'Positive' Class: 0
```

Comparison before and after grouping

Before Grouping

After Grouping

```
Confusion Matrix and Statistics
         Reference
Prediction
        0 532 118
        1 1 9
              Accuracy : 0.8197
                95% CI : (0.7882, 0.8483)
   No Information Rate: 0.8076
   P-Value [Acc > NIR] : 0.2309
                 Kappa : 0.1063
Mcnemar's Test P-Value : <2e-16
           Sensitivity: 0.99812
           Specificity: 0.07087
        Pos Pred Value: 0.81846
        Neg Pred Value: 0.90000
            Prevalence: 0.80758
        Detection Rate: 0.80606
  Detection Prevalence: 0.98485
      Balanced Accuracy: 0.53449
       'Positive' Class: 0
```

```
Confusion Matrix and Statistics
         Reference
Prediction 0 1
        0 533 120
            0 7
              Accuracy : 0.8182
                95% CI : (0.7866, 0.8469)
   No Information Rate: 0.8076
    P-Value [Acc > NIR] : 0.2624
                 Kappa: 0.0861
Mcnemar's Test P-Value : <2e-16
           Sensitivity: 1.00000
            Specificity: 0.05512
         Pos Pred Value: 0.81623
         Neg Pred Value: 1.00000
             Prevalence: 0.80758
         Detection Rate: 0.80758
   Detection Prevalence: 0.98939
      Balanced Accuracy: 0.52756
       'Positive' Class : 0
```

Can we apply Linear Regression to Classification?

- Technically YES
- Treating Y (which is 0 or 1) as continuous
- Often referred to as "Linear Probability Model."
- What is the problem with this model?
- The predictions can be beyond the range of 0 to 1
- What does it mean to have probability beyond the range of 0 to 1?

Midterm2 (20%)

- Canvas quiz
 - > Thursday 12th May 2022, 8 am 9:45 am (105 minutes)
 - > 49 questions, 60 points
 - ➤ Path: Canvas → Assignments → Midterm2
- Content
 - > Linear regression, Logistics regression
 - Model evaluation (classification & regression) and Cross-validation
- Open book
- Exam in class

Linear Regression

- Rudimentary model in Supervised Learning
- Predicting a numeric response
- Goal: Fit a relationship between
 - \triangleright numeric output variable Y & set of "p" input variables $X_1, X_2, X_3, \dots X_p$
- Output variable Y is also referred as
 - Response / Target / Outcome variable
- Input variables $X_1, X_2, X_3, \dots X_p$ are also referred as
 - Predictors / Independent variables / Regressors / Covariates

Linear Regression

■ Predict "Y" using a linear combination of predictors $X_1, X_2, X_3, \dots X_p$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

Noise or Unexplained part

- Information available on both X's & Y
- $\beta_0, \beta_1, \beta_2 \cdots \beta_p$ are coefficients
- Required to estimate the coefficients
- Underlying estimation process: Ordinary Least Squares (OLS)

Estimated values are generally represented by hat

Types

Simple Linear Regression (p = 1)

$$Y = \beta_0 + \beta_1 X_1 + \epsilon$$

Multiple Linear Regression (p > 1)

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

- Regression modeling includes estimating coefficients, and choosing which predictors (X's) to include and in what form
- E.g., A transformed numerical predictor can be included (E.g., $\log X_1$) in the regression

Multiple Linear Regression model

price

$$= \beta_0 + \beta_1$$
 age $+ \beta_2$ km

+
$$\beta_3$$
 fuel_type + β_4 hp

$$+ \beta_5$$
 metcolor $+ \beta_6$ automatic

$$+ \beta_7 cc + \beta_8 doors$$

+
$$\beta_9$$
 quarterly tax + β_{10} weight

$$+ \epsilon$$

Data Partition: Training & Validation

Is the Regression overall significant?

```
lm(formula = price_actual ~ age + km + fuel_type + hp + met_color_+
   automatic + cc + doors + quarterly_tax + weight, data = train)
Residuals:
             1Q Median
    Min
                              3Q
                                      Max
                                                    Regression on training
-12352.2 -758.4 -64.0 731.0
                                   6383.4
                                                             data
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept) -9.328e+03 1.514e+03 -6.162 1.04e-09 ***
      -1.218e+02 3.179e+00 -38.295 < 2e-16 ***
age
             -1.774e-02 1.639e-03 -10.825 < 2e-16 ***
km
fuel_typeDiesel 8.093e+02 5.232e+02 1.547
                                            0.1222
fuel_typePetrol 2.253e+03 5.117e+02 4.404 1.18e-05 ***
             2.483e+01 4.130e+00 6.011 2.59e-09 ***
hp
met_color -4.311e+00 9.143e+01 -0.047 0.9624
automatic 1.320e+02 1.880e+02 0.702 0.4827
            -3.994e-02 9.185e-02 -0.435 0.6638
\mathsf{CC}
doors
             -1.238e+02 4.824e+01 -2.565 0.0105 *
quarterly_tax 8.457e+00 2.031e+00 4.164 3.39e-05 ***
weight
       2.175e+01 1.507e+00 14.438 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 1326 on 993 degrees of freedom
Multiple R-squared: 0.8749, Adjusted R-squared: 0.8736
F-statistic: 631.6 on 11 and 993 DF, p-value: < 2.2e-16
```

If p-value < 0.05, then at minimum one of the predictors impacts price

Significance of individual predictors

```
lm(formula = price_actual ~ age + km + fuel_type + hp + met_color +
   automatic + cc + doors + quarterly_tax + weight, data = train)
Residuals:
             1Q Median
    Min
                              3Q
                                     Max
-12352.2 -758.4 -64.0 731.0
                                  6383.4
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept) -9.328e+03 1.514e+03 -6.162 1.04e-09 ***
      -1.218e+02 3.179e+00 -38.295 < 2e-16 ***
age
             -1.774e-02 1.639e-03 -10.825 < 2e-16 ***
km
fuel_typeDiesel 8.093e+02 5.232e+02 1.547
                                           0.1222
fuel_typePetrol 2.253e+03 5.117e+02 4.404 1.18e-05 ***
             2.483e+01 4.130e+00 6.011 2.59e-09 ***
hp
met_color -4.311e+00 9.143e+01 -0.047 0.9624
automatic 1.320e+02 1.880e+02 0.702 0.4827
           -3.994e-02 9.185e-02 -0.435 0.6638
\mathsf{CC}
      -1.238e+02 4.824e+01 -2.565 0.0105 *
doors
quarterly_tax 8.457e+00 2.031e+00 4.164 3.39e-05 ***
weight
       2.175e+01 1.507e+00 14.438 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1326 on 993 degrees of freedom
Multiple R-squared: 0.8749, Adjusted R-squared: 0.8736
F-statistic: 631.6 on 11 and 993 DF, p-value: < 2.2e-16
```

Effect of predictors are **insignificant** if you see "." or no stars

Impact of individual predictors

```
lm(formula = price_actual ~ age + km + fuel_type + hp + met_color +
   automatic + cc + doors + quarterly_tax + weight, data = train)
Residuals:
             1Q Median
    Min
                              3Q
                                     Max
-12352.2 -758.4 -64.0 731.0 6383.4
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
              (Intercept)
                         3.179e+00 -38.295 < 2e-16 ***
              -1.218e+02
age
              -1.774e-02 | 1.639e-03 -10.825 | < 2e-16 ***
km
fuel_typeDiesel 8.093e+02 5.232e+02 1.547 0.1222
fuel_typePetrol 2.253e+03 5.117e+02 4.404 1.18e-05 ***
               2.483e+01 4.130e+00 6.011 2.59e-09 ***
hp
met_color
                         9.143e+01 -0.047 0.9624
              -4.311e+00
                         1.880e+02 0.702 0.4827
automatic
              1.320e+02
                         9.185e-02 -0.435 0.6638
              -3.994e-02
\mathsf{CC}
doors
              -1.238e+02
                         4.824e+01 -2.565 0.0105 *
              8.457e+00 2.031e+00 4.164 3.39e-05 ***
quarterly_tax
                         1.507e+00 14.438 < 2e-16 ***
weight
               2.175e+01
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 1326 on 993 degrees of freedom
Multiple R-squared: 0.8749, Adjusted R-squared: 0.8736
F-statistic: 631.6 on 11 and 993 DF, p-value: < 2.2e-16
```

Coefficients (All β ^s)

Interpreting character predictor

```
lm(formula = price_actual ~ age + km + fuel_type + hp + met_color +
   automatic + cc + doors + quarterly_tax + weight, data = train)
Residuals:
             1Q Median
    Min
                             3Q
                                    Max
-12352.2 -758.4 -64.0 731.0
                                 6383.4
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept) -9.328e+03 1.514e+03 -6.162 1.04e-09 ***
              -1.218e+02 3.179e+00 -38.295 < 2e-16 ***
age
            -1.774e-02 1.639e-03 -10.825 < 2e-16 ***
km
fuel_typeDiesel 8.093e+02 5.232e+02 1.547
                                          0.1222
2.483e+01 4.130e+00 6.011 2.59e-09 ***
hp
met_color
         -4.311e+00 9.143e+01 -0.047 0.9624
automatic
           1.320e+02 1.880e+02 0.702 0.4827
              -3.994e-02 9.185e-02 -0.435 0.6638
\mathsf{CC}
doors
             -1.238e+02 4.824e+01 -2.565 0.0105 *
quarterly_tax 8.457e+00 2.031e+00 4.164 3.39e-05 ***
weight
       2.175e+01 1.507e+00 14.438 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1326 on 993 degrees of freedom
Multiple R-squared: 0.8749, Adjusted R-squared: 0.8736
F-statistic: 631.6 on 11 and 993 DF, p-value: < 2.2e-16
```

What is the base category in the **fuel_type** predictor?

Model fit

```
lm(formula = price_actual ~ age + km + fuel_type + hp + met_color +
    automatic + cc + doors + quarterly_tax + weight, data = train)
Residuals:
    Min
              10 Median
                                3Q
                                       Max
-12352.2 -758.4 -64.0
                            731.0
                                    6383.4
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
               -9.328e+03 1.514e+03 -6.162 1.04e-09 ***
(Intercept)
               -1.218e+02 3.179e+00 -38.295 < 2e-16
age
               -1.774e-02 1.639e-03 -10.825 < 2e-16 ***
km
fuel_typeDiesel 8.093e+02 5.232e+02
                                      1.547
                                              0.1222
fuel_typePetrol 2.253e+03 5.117e+02 4.404 1.18e-05 ***
                2.483e+01 4.130e+00 6.011 2.59e-09 ***
hp
               -4.311e+00 9.143e+01 -0.047
met color
                                              0.9624
automatic
             1.320e+02 1.880e+02 0.702
                                             0.4827
               -3.994e-02 9.185e-02 -0.435
                                             0.6638
\mathsf{CC}
doors
               -1.238e+02 4.824e+01 -2.565
                                              0.0105 *
quarterly_tax 8.457e+00 2.031e+00 4.164 3.39e-05 ***
            2.175e+01 1.507e+00 14.438 < 2e-16 ***
weight
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1326 on 993 degrees of freedom
Multiple R-squared: 0.8749,
                              Adjusted R-squared: 0.8736
F-statistic: 631.6 on 11 and 993 DF, p-value: < 2.2e-16
```

Multiple R-Square (R^2) : Proportion of variation in price explained by predictors

Predictor selection in Linear Regression

- Kitchen-Sink approach
 - > Use all the variables
- Problems
 - Expensive and Time consuming
 - ➤ Unstable (Multi-collinearity, large standard errors.....)
 - ➤ Including uncorrelated predictors (insignificant) can increase the variance of predictions
 - Dropping correlated predictors (significant) can increase the average bias of predictions

How to reduce number of predictors?

- Domain knowledge
 - Experienced individuals in the industry sometimes can provide a more valuable information
- Computational power
 - > Exhaustive search
 - Subset selection algorithms

Exhaustive Search

- Evaluate all combinations of predictors
- For "n" predictors, how many models can you run with different combinations of X's

$$> 2^{n}-1$$

- Three predictors X_1, X_2, X_3
 - > 7 models
 - $> Y \sim X_1, Y \sim X_2, Y \sim X_3, Y \sim X_1 + X_2, Y \sim X_1 + X_3, Y \sim X_2 + X_3, Y \sim X_1 + X_2 + X_3$
- Choose the model based on one of the performance measures
 - \triangleright High Adjusted R-Square (R^2)
 - Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC)
 - ➤ Mallow's C_p

Algorithms

Backward Elimination

- Step 1 : Run a regression with all the predictor variables
- > Step 2 : Drop the insignificant predictor with the highest p-value
- Step 3: Run a regression model with the remaining predictors
- > Step 4 : Repeat steps 2 & 3 until all the predictors are significant

Forward Selection

- > Step 1 : Run list of regression models with each individual predictor separately
- > Step 2 : Choose the model among the list with highest R²
- ➤ Step 3 : Run list of regression models by incrementally advancing Step 2 model by adding remaining predictors individually
- ➤ Step 4 : Repeat steps 2 & 3 until all predictors are significant in the model and all exhaustive combinations are executed

Steps for building Regression model

- Step 1 : Partition the data into training and validation
- Step 2 : Build the Regression model on the training data
- Step 3: Use the model from Step 2 to predict the output in validation data
- Step 4 : Compute error as difference between actual output and predicted output in the validation data
- Step 5 : Develop accuracy measures using errors

Accuracy Measures Regression

Error

- Error (e_i) for each observation i
- Error (e_i) : Difference between actual (Y_i) and predicted outcome (\widehat{Y}_i)

Error measures for Regression

- Mean Error (ME) : $\frac{1}{n}\sum_{i=1}^{n} e_i$
 - Indicates on-average predictions are over or under the outcome
- Mean Absolute Error (MAE) : $\frac{1}{n}\sum_{i=1}^{n}|e_i|$
 - > Magnitude of average absolute error
- Mean Percentage Error (MPE) : $\left(\frac{1}{n}\sum_{i=1}^{n}\frac{e_i}{Y_i}\right)*100$
 - Measure relative to the size of outcome Y_i
- MAPE (Mean Absolute Percentage Error) : $\left(\frac{1}{n}\sum_{i=1}^{n}\left|\frac{e_{i}}{Y_{i}}\right|\right)*100$
- Root Mean Square Prediction Error (RMSE) : $\sqrt{\frac{1}{n}\sum_{i=1}^{n}e_{i}^{2}}$
 - > Similar to standard error and has same units as outcome Yi

Error/Accuracy Measures

- We computed error measures for validation data
- Can they be computed for **training** data?
- What do the measures infer for each data?

Training

- ➤ Goodness-of-fit
- \triangleright Additional measures R^2 , standard error \triangleright Used to <u>compare across models</u> to
- Does not indicate predictive abilities

Validation

- > Indicates predictive abilities
 - - assess their degree of prediction
 - accuracy
- Overfitting can be detected by comparing the error measures between training and validation data
- Greater the difference in train & validation data error measures, greater the overfitting

Logistic Regression Model

- Predict a categorical outcome
- Logistic response function

$$p = Pr(Y = 1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_q X_q)}}$$

 Odds: Ratio of probability of belonging to class 1 to probability of belonging to class 0

$$Odds(Y = 1) = \frac{p}{1 - p} \qquad Odds(Y = 0) = \frac{1 - p}{p}$$

$$log(Odds(Y = 1)) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_q X_q$$

Estimation methodology: Maximum Likelihood Estimation

Steps for building Logistics Regression Model

- Step 1: Partition the data into training and validation
- Step 2: Build the Logistics Regression model on the training data
- Step 3: Use the model to predict the probability that each observation in validation data belongs to a Class1 (assume the data has two classes)
- Step 4 : Set the cutoff value (0.5) and classify the record into a class
 - \triangleright If p \ge 0.5, observation is classified to category "Class1"
 - \triangleright If p < 0.5, observation is classified to category "Class2"
- Step 5 : Develop accuracy measures based on actual output class and predicted output class

Example: Acceptance of Personal Loan

- Response: Bank customer accepting a loan (1) or not (0)
- Predictors (X)
 - ➤ Age (years), Experience (years), Income(\$000s)
 - Family Size
 - Education (undergrad, graduate, advanced)
 - Ccavg (Spending on Credit cards)
 - ➤ Mortgage (value of house mortgage in \$000s)
 - Securities account (1 if the customer has securities account with the bank)
 - CD account ((1 if the customer has a certificate of deposit account with the bank)
 - ➤ Online banking (1 if the customer uses Internet banking facilities)
 - > Credit card (1 if the customer uses credit card issued by the bank)
- 5000 customers, 480 accepted (9.8%)

Logistic Regression on training data

```
glm(formula = loan_status_actual ~ age + experience + income +
   family + ccavg + education_graduate + education_advanced +
   mortgage + securities_account + cd_account + online + credit_card,
   family = "binomial", data = train)
                                                       logistic regression is run on
Deviance Residuals:
                                                              training data
             1Q Median
   Min
                              3Q
                                      Max
-2.1580 -0.1806 -0.0698 -0.0223
                                   4.1862
Coefficients:
                    Estimate Std. Error z value Pr(>|z|)
                 -1.309e+01 2.198e+00 -5.957 2.57e-09 ***
(Intercept)
                 -9.487e-03 8.084e-02 -0.117 0.906585
age
experience
                2.162e-02 8.014e-02 0.270 0.787312
                5.939e-02 3.500e-03 16.970 < 2e-16 ***
income
family
               6.998e-01 9.638e-02 7.261 3.86e-13 ***
                  1.529e-01 5.218e-02 2.930 0.003394 **
ccavg
education_graduate 3.724e+00 3.197e-01 11.647 < 2e-16 ***
education_advanced 3.944e+00 3.228e-01 12.218 < 2e-16 ***
                  6.233e-04 7.057e-04 0.883 0.377107
mortgage
securities_account -1.155e+00 3.876e-01 -2.980 0.002882 **
cd_account 3.833e+00 4.281e-01 8.954 < 2e-16 ***
         -6.788e-01 2.010e-01 -3.376 0.000734 ***
online
credit_card
                 -1.093e+00 2.667e-01
                                       -4.099 4.15e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

```
glm(formula = loan_status_actual ~ age + experience + income +
   family + ccavg + education_graduate + education_advanced +
   mortgage + securities_account + cd_account + online + credit_card,
   family = "binomial", data = train)
Deviance Residuals:
   Min
                 Median
             10
                              3Q
                                      Max
-2.1580 -0.1806 -0.0698 -0.0223
                                   4.1862
Coefficients:
                    Estimate Std. Error z value Pr(>|z|)
(Intercept)
                  -1.309e+01 2.198e+00 -5.957 2.57e-09 ***
                  -9.487e-03 8.084e-02
                                        -0.117 0.906585
age
experience
                  2.162e-02 8.014e-02 0.270 0.787312
income
                  5.939e-02 3.500e-03 16.970 < 2e-16
family
                  6.998e-01 9.638e-02 7.261 3.86e-13
                  1.529e-01 5.218e-02 2.930 0.003394 **
ccavg
education_graduate 3.724e+00 3.197e-01 11.647 < 2e-16
education advanced 3.944e+00 3.228e-01 12.218 < 2e-16 ***
                  6.233e-04 7.057e-04 0.883 0.377107
mortgage
securities_account -1.155e+00 3.876e-01 -2.980 0.002882 **
cd_account 3.833e+00 4.281e-01 8.954 < 2e-16 ***
online
                                        -3.376 0.000734 ***
                -6.788e-01 2.010e-01
credit card
                  -1.093e+00
                             2.667e-01
                                        -4.099 4.15e-05 ***
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

- Higher income, family
- Higher ccavg
- Graduate
- ➤ Advanced degree
- Holding a cd account

Associated with a higher probability of accepting a loan offer

```
glm(formula = loan_status_actual ~ age + experience + income +
    family + ccavg + education_graduate + education_advanced +
   mortgage + securities_account + cd_account + online + credit_card,
   family = "binomial", data = train)
Deviance Residuals:
   Min
                  Median
             10
                               3Q
                                      Max
-2.1580 -0.1806 -0.0698 -0.0223
                                   4.1862
                                                                     Holding securities account
Coefficients:
                    Estimate Std. Error z value Pr(>|z|)
                                                                     Holding a credit card
                  -1.309e+01 2.198e+00 -5.957 2.57e-09 ***
(Intercept)
                  -9.487e-03 8.084e-02 -0.117 0.906585
age
                  2.162e-02 8.014e-02 0.270 0.787312
experience
income
                  5.939e-02 3.500e-03 16.970 < 2e-16
family
                  6.998e-01 9.638e-02 7.261 3.86e-13
                   1.529e-01 5.218e-02 2.930 0.003394 **
ccavg
education_graduate 3.724e+00 3.197e-01 11.647 < 2e-16
education advanced 3.944e+00 3.228e-01 12.218 < 2e-16 ***
                   6.233e-04 7.057e-04 0.883 0.377107
mortgage
securities_account -1.155e+00 3.876e-01 -2.980 0.002882 **
cd_account 3.833e+00 4.281e-01 8.954 < 2e-16 ***
online
                                        -3.376 0.000734 ***
                -6.788e-01 2.010e-01
credit_card
                  -1.093e+00 2.667e-01
                                        -4.099 4.15e-05 ***
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

Associated with a lower probability of accepting a loan offer

```
glm(formula = loan_status_actual ~ age + experience + income +
   family + ccavg + education_graduate + education_advanced +
   mortgage + securities_account + cd_account + online + credit_card,
   family = "binomial", data = train)
Deviance Residuals:
             10 Median
   Min
                              3Q
                                      Max
-2.1580 -0.1806 -0.0698 -0.0223
                                   4.1862
Coefficients:
                    Estimate Std. Error z value Pr(>|z|)
(Intercept)
                  -1.309e+01 2.198e+00 -5.957 2.57e-09 ***
                  -9.487e-03 8.084e-02 -0.117 0.906585
age
experience
                   2.162e-02 8.014e-02 0.270 0.787312
                  5.939e-02 3.500e-03 16.970 < 2e-16 ***
income
family
                  6.998e-01 9.638e-02 7.261 3.86e-13
                  1.529e-01 5.218e-02 2.930 0.003394 **
ccavg
education_graduate 3.724e+00 3.197e-01 11.647 < 2e-16 ***
education advanced 3.944e+00 3.228e-01 12.218 < 2e-16 ***
                  6.233e-04 7.057e-04 0.883 0.377107
mortgage
securities_account -1.155e+00 3.876e-01 -2.980 0.002882 **
cd_account 3.833e+00 4.281e-01 8.954 < 2e-16 ***
online
               -6.788e-01 2.010e-01 -3.376 0.000734 ***
credit card
                 -1.093e+00 2.667e-01
                                        -4.099 4.15e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

• A \$1000 increase in income, holding others constant increases the odds that the customer accepts the loan offer by a factor of 1.061(2.718^{0.05939})

Results

```
glm(formula = loan_status_actual ~ age + experience + income +
    family + ccavg + education_graduate + education_advanced +
   mortgage + securities_account + cd_account + online + credit_card,
   family = "binomial", data = train)
Deviance Residuals:
             10 Median
   Min
                               3Q
                                      Max
-2.1580 -0.1806 -0.0698 -0.0223
                                   4.1862
Coefficients:
                    Estimate Std. Error z value Pr(>|z|)
                  -1.309e+01 2.198e+00 -5.957 2.57e-09 ***
(Intercept)
                  -9.487e-03 8.084e-02 -0.117 0.906585
age
                  2.162e-02 8.014e-02 0.270 0.787312
experience
                  5.939e-02 3.500e-03 16.970 < 2e-16 ***
income
family
                  6.998e-01 9.638e-02 7.261 3.86e-13
                   1.529e-01 5.218e-02 2.930 0.003394 **
ccavg
education_graduate 3.724e+00 3.197e-01 11.647 < 2e-16 ***
education advanced 3.944e+00 3.228e-01 12.218 < 2e-16 ***
                   6.233e-04 7.057e-04 0.883 0.377107
mortgage
securities_account -1.155e+00 3.876e-01 -2.980 0.002882 **
                   3.833e+00 4.281e-01 8.954 < 2e-16 ***
cd_account
online
                  -6.788e-01 2.010e-01 -3.376 0.000734 ***
credit card
                  -1.093e+00
                             2.667e-01
                                        -4.099 4.15e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

• Customer who has cd account will accept the offer with an odds of 46.2 (2.718^{3.833}) relative to a customer who does not have a cd account holding all other variables

Accuracy Measures Classification

Confusion/Classification Matrix

		Actual/Reference			
		C_1	C_2		
Prediction	C_1	Correct Classification (n ₁₁)	Incorrect Classification (n ₁₂)		
	C_2	Incorrect Classification (n ₂₁)	Correct Classification (n ₂₂)		

- Total observations in **validation** data, $n = n_{11} + n_{12} + n_{21} + n_{22}$
- Estimated misclassification rate, err = $\frac{n_{12}+n_{21}}{n}$
- Accuracy = $1 err = \frac{n_{11} + n_{22}}{n}$

Confusion Matrix for validation data

		Actual/Reference			
		Nonowner	Owner		
Prediction	Nonowner	4 (n ₁₁)	1 (n ₁₂)		
	Owner	2 (n ₂₁)	3 (n ₂₂)		

- Total observation in **validation** data $n = n_{11} + n_{12} + n_{21} + n_{22} = 10$
- Estimated misclassification rate, err = $\frac{n_{12}+n_{21}}{n} = \frac{3}{10} = 30\%$

• Accuracy =
$$1 - err = \frac{n_{11} + n_{22}}{n} = \frac{7}{10} = 70\%$$

Unequal importance of classes

- Sometimes it is **more important** to predict a membership correctly in class C_1 than in class C_2
- Example: Predicting financial status (bankrupt/solvent) of firms
- Predicting bankrupt status is more important than solvent
- Overall Accuracy is not a good measure under unequal importance of classes
- Measures : Sensitivity and Specificity

Confusion Matrix

		Actual/Reference			
		C_1	C_2		
Prediction	C_1	Correct Classification (n ₁₁)	Incorrect Classification (n ₁₂)		
	C_2	Incorrect Classification (n ₂₁)	Correct Classification (n ₂₂)		

- Lets say the important class is C_1
- Sensitivity: Ability to <u>detect</u> the important class members correctly

$$> \frac{n_{11}}{n_{11} + n_{21}}$$

• Specificity: Ability to <u>rule out</u> non-important class members correctly

$$> \frac{n_{22}}{n_{22} + n_{12}}$$

Data Partition: Training & Validation

• Assuming 80-20 partition, how many exhaustive partitions are possible for a dataset with 100 rows?

- We are analyzing only one partition of $5.36 * 10^{20}$
- What about other partitions?

Drawbacks

- What are the drawbacks of analyzing one randomly partition?
 - Model fit is analyzed on <u>one</u> training data partition
 - Error/Accuracy measures are evaluated on <u>one</u> validation data partition
 - Likelihood of an excellent model fit and performance on this <u>one</u> partition is possible
- Analyzing on a different partition can lead to an unfavorable end result
- How to overcome this drawback?

Resampling

- Indispensable tool in Statistics/Machine Learning
- Idea
- Repeatedly draw sample from the data
- Fit model of interest on each sample
- Example
 - Fit Linear Regression on each repeated sample
 - Examine the extent to which results/accuracy measures differ across multiple validation datasets
- Computationally expensive
- Methods: Cross-Validation and Bootstrap

Leave-One-Out Cross-Validation (LOOCV)

Report the Mean/Standard deviation of the accuracy measures

K-fold Cross-Validation

Fold 1	Fold 2	Fold 3	•	•	Fold K-1	Fold K
Validation	Training	Training		•	Training	Training
Training	Validation	Training	•	•	Training	Training
Training	Training	Validation	•	•	Training	Training
			:			
			:			
Training	Training	Training	•		Validation	Training
Training	Training	Training	•		Training	Validation

Report the Mean/Median of the accuracy measures obtained for **K** iterations

Generally K is chosen 5 or 10

Comparison

LOOCV

K-fold CV

- ➤ No randomness in the process
- Time-consuming when "n" is large
- \triangleright Special case of K-fold CV when K = n
- Less bias compared to **true** validation error measures
- > Higher variance

- Incorporates randomness
- Less time consuming as the process requires to run only K times
- ➤ More bias compared to **true** validation error measures
- > Less variance

Bias-Variance Trade-off

Thank You