Введение в математический анализ

Тюленев Александр Иванович (Конспектировал Иван-Чай) 5 лекция

Содержание

- 1 Предельный переход в неравенство
- 2 Теорема о двух милиционерах
- 3 Пределы монотонных последовательностей
- 4 Подпоследовательности и частичные пределы
- 5 Теорема Больцано Вейерштрасса

1 Предельный переход в неравенство

Lem 1.
$$\Pi ycmb \ A, B \in \overline{\mathbb{R}}$$
. $\Pi ycmb \lim_{n \to \infty} x_n = A$, $\lim_{n \to \infty} y_n = B$, $A < B$
 $Tor\partial a \ \exists N \in \mathbb{N} : \forall n \ge N \hookrightarrow x_n < y_n$

Доказательство.

$$\exists \varepsilon^* > 0 : U_{\varepsilon^*}(A) \cap U_{\varepsilon^*}(B) = \varnothing.$$

$$A < B \Rightarrow \forall x \in U_{\varepsilon^*}(A), \forall y \in U_{\varepsilon^*}(B) \hookrightarrow x < y..$$

$$\forall \varepsilon > 0 \quad \exists N_1(\varepsilon) \in \mathbb{N} \quad \forall n \geq N_1 \hookrightarrow x_n \in U_{\varepsilon}(A).$$

$$\forall \varepsilon > 0 \quad \exists N_2(\varepsilon) \in \mathbb{N} \quad \forall n \geq N_2 \hookrightarrow y_n \in U_{\varepsilon}(B).$$

$$N := \max\{N_1(\varepsilon^*), N_2(\varepsilon^*)\} : \forall n \geq N \hookrightarrow x_n \in U_{\varepsilon^*}(A) \land y_n \in U_{\varepsilon^*}(B) \Rightarrow .$$

$$x_n < y_n.$$

Th 1 (Теорема о предельном переходе в неравенство). Пусть
$$\begin{cases}\exists \lim_{n\to\infty} x_n = A \in \overline{\mathbb{R}} \\ \exists \lim_{n\to\infty} y_n = B \in \overline{\mathbb{R}} \end{cases}$$
 пусть $\exists N \in \mathbb{N} : x_n \leq y_n \quad \forall n \geq N, \ Tor\partial a \ A \geq B$

Доказательство. Предположим, что A>B. По только что доказаной лемме $\exists N^*: \forall n\geq N^*\hookrightarrow x_n>y_n$

$$\widetilde{N} := max\{N, N^*\}: \quad \forall n \ge \widetilde{N} \hookrightarrow \begin{cases} x_n \le y_n \\ x_n > y_n \end{cases}$$

Противоречие.

St. $\Pi y cmb \ \exists N \in \mathbb{N} : x_n < y_n \quad \forall n \geq N,$

$$x_n \to A, n \to \infty,$$

$$y_n \to B, n \to \infty.$$

Тогда не обязательно A < B.

Контрпример.

$$y_n = \frac{1}{n}.$$
$$x_n = -\frac{1}{n}.$$

Nt. Предельный переход может портить строгие неравенства и превращать их в нестрогие.

Cl 1.1.
$$x_n \ge a, a \in \mathbb{R}$$

$$\exists \lim_{n \to \infty} x_n = A \in \overline{\mathbb{R}}$$
 $\Rightarrow A \ge a.$

Доказательство. Положим $y_n = a$. $\forall n \in \mathbb{N}$ применим предыдущее утверждение (теорему о предельном переходе в неравенство).

2 Теорема о двух милиционерах

Th (Теорема о двух милиционерах \Leftrightarrow теорема о трех последовательностях). $\Pi y c m b \{a_n\}_{n=1}^{\infty}, \{b_n\}_{n=1}^{\infty}, \{c_n\}_{n=1}^{\infty}$ - числовые последовательности. $\Pi y c m b \exists \lim_{n \to \infty} a_n$ $\lim_{n\to\infty} b_n = c \in \mathbb{R}$. $\Pi y c m b \exists N \in \mathbb{N} : \forall n \geq N \hookrightarrow a_n \leq c_n \leq b_n$. $Tor \partial a \exists \lim_{n\to\infty} c_n = c$.

Доказательство.

$$\lim_{n \to \infty} a_n = c \Leftrightarrow \forall \varepsilon > 0 \quad \exists N_1 : \forall n \ge N \hookrightarrow a_n \in U_{\varepsilon}(C).$$

$$\lim_{n \to \infty} b_n = c \Leftrightarrow \forall \varepsilon > 0 \quad \exists N_2 : \forall n \ge N \hookrightarrow b_n \in U_{\varepsilon}(C).$$

$$\forall \varepsilon > 0 \exists N = \max\{N_1, N_2, N\} \hookrightarrow \begin{cases} a_n \in U_{\varepsilon}(c) \\ b_n \in U_{\varepsilon}(c) \end{cases} \Rightarrow$$

$$c_n \in U_{\varepsilon}(c) \quad \forall n \ge N \Rightarrow \exists \lim_{n \to \infty} c_n = c.$$

Th 2. Пусть $\exists \lim_{n\to\infty} x_n = +\infty$ u $\exists N \in \mathbb{N} : \forall n \geq N \hookrightarrow y_n \geq x_n$. Тогда $\exists \lim_{n\to\infty} y_n = +\infty$. Аналогично для $-\infty$.

Доказательство.

$$\forall \varepsilon > 0 \quad \exists N(\varepsilon) \in \mathbb{N} : \quad \forall n \ge N(\varepsilon) \hookrightarrow x_n > \frac{1}{\varepsilon}.$$

$$\forall \varepsilon > 0 \quad \exists \overline{N}(\varepsilon) = \max\{N(\varepsilon), N\} \in \mathbb{N} :$$

$$\forall n \ge \overline{N}(\varepsilon) \hookrightarrow y_n \ge x_n > \frac{1}{\varepsilon} \Rightarrow$$

$$\lim_{n \to \infty} y_n = +\infty.$$

3 Пределы монотонных последовательностей

Def 1. Последовательность $\{x_n\}_{n=1}^{\infty}$ называется нестрого возрастающей (нестрого убывающей), если $\forall n \in \mathbb{N} \hookrightarrow x_{n+1} \geq x_n (x_{n+1} \leq x_n)$.

Def 2. Последовательность $\{x_n\}_{n=1}^{\infty}$ называется строго возрастающей (строго убывающей), если $\forall n \in \mathbb{N} \hookrightarrow x_{n+1} > x_n(x_{n+1} < x_n)$.

Def 3. Последовательность $\{x_n\}_{n=1}^{\infty}$ называется монотонной, если она нестрого убывающая или нестрого возрастающая.

Th (О пределе монотонной последовательности). Любая монотонная последовательность имеет предел в $\overline{\mathbb{R}}$.

Если
$$\{x_n\}_{n=1}^{\infty}$$
 нестрого возрастает, то $\exists \lim_{n\to\infty} x_n = \sup\{x_n\}$.
Если $\{x_n\}_{n=1}^{\infty}$ нестрого убывает, то $\exists \lim_{n\to\infty} x_n = \inf\{x_n\}$.

Докажем для нестрого возрастающей.

$$M = \sup A \Leftrightarrow \begin{cases} a \leq M & \forall a \in A \\ \forall M' < M & \exists a \in A : M' < a \leq M \end{cases}$$

$$\forall \varepsilon > 0 & \exists a \in U_{\varepsilon}(M) \cap A.$$

$$M = \sup x_n \Rightarrow \forall \varepsilon > 0 & \exists N(\varepsilon) : X_{N(\varepsilon)} \in U_{\varepsilon}(M).$$

$$\{x_n\} \text{ - Bospoctaet.}$$

$$\downarrow \downarrow$$

$$x_n \geq x_{N(\varepsilon)} & \forall n \geq N(\varepsilon).$$

$$\downarrow \downarrow$$

$$x_n \in U_{\varepsilon}(M) & \forall n \geq N(\varepsilon). \quad (x_n \leq M)$$

$$\downarrow \downarrow$$

$$\forall \varepsilon > 0 & \exists N(\varepsilon) \in \mathbb{N} : \forall n \geq N(\varepsilon) \hookrightarrow x_n \in U_{\varepsilon}(M).$$

$$\downarrow \downarrow$$

$$M = \lim_{n \to \infty} x_n.$$

4 Подпоследовательности и частичные пределы

Def 4. Пусть дана числовая последовательность $\{x_n\}_{n=1}^{\infty}$. Последовательность $\{y_k\}_{k=1}^{\infty}$ называется подпоследовательностью последовательности $\{x_n\}_{n=1}^{\infty}$, если существует строго возрастающая последовательность $\{n_k\}_{k=1}^{\infty} \subseteq \mathbb{N}:$ $y_k = x_{n_k} \forall k \in \mathbb{N}.$

Def 5. Будем говорить, что $A \in \mathbb{R}$ - частичный предел последовательности $\{x_n\}_{n=1}^{\infty}$, если $\exists \{x_{n_k}\}$ - подпоследовательность $\{x_n\}$: $\lim_{k\to\infty} x_{n_k} = A$

Th (Критерий частичного предела). Пусть $\{x_n\}_{n=1}^{\infty}$ - числовая последовательность. Пусть $A \in \overline{\mathbb{R}}$ Следущие условия эквивалентны.

- 1. $A u.n. \{x_n\}_{n=1}^{\infty}$
- 2. $\forall \varepsilon > 0$ в $U_{\varepsilon}(A)$ содержатся значения бесконечного количества элементов последовательности $\{x_n\}_{n=1}^{\infty}$.
- 3. $\forall \varepsilon > 0 \quad \forall N \in \mathbb{N} \quad \exists n \geq N : x_n \in U_{\varepsilon}(A)$.
- $(1)\Rightarrow (2)$. Пусть A ч.п. $\Rightarrow \exists \{n_k\}_{k=1}^{\infty}\subset \mathbb{N}$, возрастающая: $\lim_{k\to\infty}x_{n_k}=A\Leftrightarrow \forall \varepsilon>0$ $\exists K(\varepsilon)\in \mathbb{N}: \forall k\geq K(\varepsilon)\hookrightarrow x_{n_k}\in U_{\varepsilon}(a)$.

Т.к. \exists бесконечно много чисел $k \in \mathbb{N}: k \geq K(\varepsilon)$, в $U_{\varepsilon}(A)$ содержатся значения бесконечного количества элементов $\{x_n\}_{n=1}^{\infty}$.

 $(2) \Rightarrow (3)$. Фиксируем произвольный $\varepsilon > 0 \Rightarrow$ в $U_{\varepsilon}(A)$ содержатся значения бесконечного количества элементов последовательности $\{x_n\}_{n=1}^{\infty}$.

Пусть $I(\varepsilon)$ - это те натуральные индексы, что $x_n \in U_{\varepsilon}(A) \quad \forall n \in I(\varepsilon)$. Тогда

$$\forall N \in \mathbb{N} \quad \exists n \in I(\varepsilon) : n \ge N.$$

Но т.к. ε было выбрано произвольно

$$\forall \varepsilon > 0 \quad \forall N \in \mathbb{N} : x_n \in U_{\varepsilon}(A).$$

 $(3) \Rightarrow (1)$. Построим подпоследовательность $\{x_{n_k}\}_{k=1}^{\infty} : \exists \lim_{k \to \infty} x_{n_k} = A$.

$$n_1 = 1$$
.

Поскольку при $\varepsilon=\frac{1}{2}$ и $N\geq 1+n_1$ $\exists n\geq 1+n_1: x_n\in U_{\frac{1}{2}}(A)$ если построенны $n_1< n_2<\dots< n_k\ x_{n_i}\in U_{\frac{1}{2}}(A).$

$$\begin{split} n_{k+1} &= n \left(\frac{1}{k+1}, n_k + 1 \right). \\ & \qquad \qquad \Downarrow \\ x_{n_{k+1}} &\in U_{\frac{1}{k+1}}(A). \\ & \qquad \qquad \Downarrow \\ \forall k \in \mathbb{N} \quad \exists n_k = n \left(\frac{1}{k}, n_{k-1} \right) \in \mathbb{N} \quad x_{n_k} \in U_{\frac{1}{k}}(A). \\ & \qquad \qquad \Downarrow \\ \forall k \in \mathbb{N} \quad \exists n_k \in \mathbb{N} : \forall j \geq k \hookrightarrow x_{n_j} \in U_{\frac{1}{k}}(A). \\ & \qquad \qquad \Downarrow \\ \forall \varepsilon > 0 \quad \exists K(\varepsilon) = \left[\frac{1}{\varepsilon} \right] + 1 : \forall k \geq K(\varepsilon) \hookrightarrow x_{n_k} \in U_{\varepsilon}(A). \end{split}$$

5 Теорема Больцано - Вейерштрасса

Th (Теорема Больцано - Вейерштрасса). Пусть $\{x_n\}_{n=1}^{\infty}$ - ограниченная числовая последовательность. \exists хотя бы один конечный частичный предел $\{x_n\}_{n=1}^{\infty}$.

Доказательство. Поскольку $\{x_n\}_{n=1}^{\infty}$ - ограничена $\exists M \geq 0 : |x_n| \leq M$.

Далее считаем M>0, т.к. при M=0 доказываемое утверждение очевидно. Пусть $I^1=[-M,M]$. Выберим как I^2 половину отрезка I^1 , содержащую значения бесконечного количества элементов $\{x_n\}_{n=1}^\infty$. Такая найдется, иначе в I^1 содержится конечное число значений элементов последовательности.

Предположим мы построили последовательность $I^1\subset I^2\subset\cdots\subset I^k:$ I^j содержит значения бесконечного количества элементов последовательности $\forall j\leq k.$ Разделим I^k на два конгруентных отрезка и выберем как I^{k+1} половину, содержащую значения бесконечного количества элементов $\{x_n\}_{n=1}^\infty$. (Такая найдется по указаным выше причинам.)

В итоге получим бесконечную последовательность вложенных отрезков $I^1\subset I^2\subset\cdots\subset I^k$, которая еще и стягивающаяся, т.к. $\left|I^k\right|=\frac{|I^{k-1}|}{2^{k-1}}$. Из этого $\exists x^*=\bigcap_{k=1}^\infty I^k$.

Покажем, что $\forall \varepsilon > 0$ в $U_{\varepsilon}(x^*)$ содержатся значения бесконечного количества элементов последовательности $\{x_n\}_{n=1}^{\infty}$, чтобы доказать, что x^* - ч.п..

Действительно, из определения предела и из того, что $x^* \in I^k \quad \forall k \in \mathbb{N} \Rightarrow \exists K(\varepsilon) : x^* \in I^{K(\varepsilon)} \subset U_{\varepsilon}(x^*) \Rightarrow$ по построению получаем, что в $I^{k(\varepsilon)}$ содержится бесконечное количество значений элементов последовательности $\{x_n\}_{n=1}^{\infty}$.