PHẦN C. BÀI TẬP TRẮC NGHIỆM (PHẦN MÚC ĐỘ)

1. Câu hỏi dành cho đối tượng học sinh trung bình – khá

Nghiệm của phương trình $\log_3(5x) = 2$ là Câu 1.

A.
$$x = \frac{8}{5}$$
.

B.
$$x = 9$$
.

$$\underline{\mathbf{C}}$$
. $x = \frac{9}{5}$.

D.
$$x = 8$$
.

Lời giải

Chọn C

TXĐ:
$$D = (0; +\infty)$$
.

Ta có:
$$\log_3(5x) = 2 \Leftrightarrow 5x = 3^2 \Leftrightarrow x = \frac{9}{5}$$
.

Câu 2. Nghiệm của phương trình $\log_2(5x) = 3$ là:

A.
$$x = \frac{8}{5}$$
. **B.** $x = \frac{9}{5}$. **C.** $x = 8$. **D.** $x = 9$.

B.
$$x = \frac{9}{5}$$
.

C.
$$x = 8$$
.

D.
$$x = 9$$

Lời giải

Chon A

Điều kiên x > 0

$$\log_2(5x) = 3 \Leftrightarrow 5x = 2^3 \Leftrightarrow 5x = 8 \Leftrightarrow x = \frac{8}{5} \text{ (nhận)}.$$

Nghiệm của phương trình $\log_2(3x) = 3$ là: Câu 3.

A.
$$x = 3$$
.

B.
$$x = 2$$
. $\underline{\mathbf{C}}$. $x = \frac{8}{3}$. \mathbf{D} . $x = \frac{1}{2}$.

$$\underline{\mathbf{C}}$$
. $x = \frac{8}{3}$.

D.
$$x = \frac{1}{2}$$
.

Lời giải

Chọn C

Ta có
$$\log_2(3x) = 3 \Leftrightarrow 3x = 8 \Leftrightarrow x = \frac{8}{3}$$
.

Nghiệm của phương trình $\log_5(3x) = 2$ là Câu 4.

A.
$$x = 25$$
.

B.
$$x = \frac{32}{3}$$

C.
$$x = 32$$
.

B.
$$x = \frac{32}{3}$$
. **C.** $x = 32$. **D.** $x = \frac{25}{3}$.

Lời giải

Chọn D

Điều kiện: x > 0.

Với điều kiện phương trình đã cho tương đương $3x = 5^2 = 25 \Leftrightarrow x = \frac{25}{3}$.

Câu 5. Nghiệm của phương trình $\log_3(2x) = 2$ là

$$\underline{\mathbf{A}}$$
. $x = \frac{9}{2}$.

B.
$$x = 9$$
. **C.** $x = 4$.

C.
$$x = 4$$

D.
$$x = 8$$
.

Lời giải

Chon A

$$\log_3(2x) = 2 \Leftrightarrow 2x = 9 \Leftrightarrow x = \frac{9}{2}$$
.

Nghiệm của phương trình $\log_3(2x-1)=2$ là: Câu 6.

A. x = 3.

B. x = 5.

C. $x = \frac{9}{2}$. **D.** $x = \frac{7}{2}$.

Lời giải

Chọn B

Điều kiện: $2x-1>0 \Leftrightarrow x>\frac{1}{2}$

Ta có $\log_3(2x-1) = 2 \Leftrightarrow \begin{cases} x > \frac{1}{2} \\ 2x-1 = 3^2 \end{cases} \Leftrightarrow \begin{cases} x > \frac{1}{2} \Leftrightarrow x = 5. \end{cases}$

Vậy phương trình có nghiệm x = 5.

Câu 7. Nghiệm của phương trình $\log_3(x-1)=2$ là

A. x = 8.

B. x = 9.

C. x = 7.

<u>D</u>. x = 10.

Lời giải

Chọn

TXĐ: $D = (1; +\infty)$

 $\log_3(x-1) = 2 \Leftrightarrow x-1 = 3^2 \Leftrightarrow x = 10$

Nghiệm của phương trình $\log_2(x-1) = 3$ là Câu 8.

A. x = 10.

B. x = 8.

 $\underline{\mathbf{C}}$. x = 9.

D. x = 7.

Lời giải

Chọn C

Ta có $\log_2(x-1) = 3 \Leftrightarrow \begin{cases} x-1 > 0 \\ x-1 = 2^3 \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ x = 9 \end{cases} \Leftrightarrow x = 9.$

Câu 9. Nghiệm của phương trình $\log_2(x-2) = 3$ là:

A. x = 6.

B. x = 8.

C. x = 11.

D. x = 10.

Lời giải

Chọn D

Điều kiện: $x-2>0 \Leftrightarrow x>2$.

 $\log_2(x-2) = 3 \Leftrightarrow x-2 = 8 \Leftrightarrow x = 10$ (thỏa).

Vậy phương trình có nghiệm x = 10.

Câu 10. Nghiệm của phương trình $\log_3(x-2) = 2$ là

<u>A.</u> x = 11.

B. x = 10.

C. x = 7.

D. 8.

Chọn A

Điều kiện: x > 2

Phương trình tương đương với $x - 2 = 3^2 \Leftrightarrow x = 11$

Câu 11. Nghiệm của phương trình $\log_2(x+9) = 5$ là

A.
$$x = 41$$
.

B.
$$x = 23$$
.

C.
$$x = 1$$
.

D.
$$x = 16$$
.

Lời giải

Chon B

ĐK: x > -9

Ta có: $\log_2(x+9) = 5 \Leftrightarrow x+9 = 2^5 \Leftrightarrow x = 23$.

Câu 12. Nghiệm của phương trình $\log_{2}(x+6) = 5$ là:

A.
$$x = 4$$
.

B.
$$x = 19$$
.

C.
$$x = 38$$
.

D.
$$x = 26$$
.

Lời giải

Chon D

Điều kiện $x+6>0 \Leftrightarrow x>-6$

Ta có:
$$\log_2(x+6) = 5 \Leftrightarrow \log_2(x+6) = \log_2(x+6) = 32 \Leftrightarrow x = 32 - 6 \Leftrightarrow x = 26(TM)$$

Vậy nghiệm của phương trình: x = 26

Câu 13. Nghiệm của phương trình $\log_2(x+7) = 5$ là

A.
$$x = 18$$
.

B.
$$x = 25$$
.

C.
$$x = 39$$
.

D.
$$x = 3$$
.

Lời giải

Chon B

$$\log_2(x+7) = 5 \Leftrightarrow x+7 = 2^5 \Leftrightarrow x = 25.$$

Câu 14. Nghiệm của phương trình $\log_2(x+8) = 5$ bằng

A.
$$x = 17$$
.

B.
$$x = 24$$
.

C.
$$x = 2$$
.

D.
$$x = 40$$
.

Lời giải

Chọn B

Ta có $\log_2(x+8) = 5 \Leftrightarrow x+8 = 2^5 \Leftrightarrow x = 24$.

Câu 15. Tập nghiệm của phương trình $\log_2(x^2 - x + 2) = 1$ là:

$$\mathbf{C.} \{-1;0\}$$

Lời giải

Chọn B

$$\log_2(x^2 - x + 2) = 1 \Leftrightarrow x^2 - x + 2 = 2 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 1 \end{bmatrix}$$

Câu 16. Giải phương trình $\log_4(x-1) = 3$.

A.
$$x = 65$$

B.
$$x = 80$$

C.
$$x = 82$$

D.
$$x = 63$$

Lời giải

Chon A

ĐK: $\Leftrightarrow x-1>0 \Leftrightarrow x>1$

Phurong trình $\log_4(x-1) = 3 \iff x-1 = 4^3 \iff x = 65$.

Câu 17. Tìm nghiệm của phương trình $\log_2(1-x)=2$.

A.
$$x = 5$$
.

B.
$$x = -3$$
.

C.
$$x = -4$$
.

D.
$$x = 3$$
.

Lời giải

Chọn B

Ta có $\log_2(1-x) = 2 \Leftrightarrow 1-x = 4 \Leftrightarrow x = -3$.

Câu 18. Tập nghiệm của phương trình $\log_2(x^2-1)=3$ là

A.
$$\{-\sqrt{10}; \sqrt{10}\}$$

B.
$$\{-3;3\}$$

C.
$$\{-3\}$$

D. {3}

Lời giải

Chọn B

$$\log_2(x^2-1)=3 \Leftrightarrow x^2-1=8 \Leftrightarrow x^2=9 \Leftrightarrow x=\pm 3$$
.

Câu 19. Tìm nghiệm của phương trình $\log_2(x-5) = 4$.

A.
$$x = 11$$

B.
$$x = 13$$

C.
$$x = 21$$

D.
$$x = 3$$

Lời giải

Chon C

 $DK: x-5>0 \Leftrightarrow x>5$

Khi đó
$$\log_2(x-5) = 4 \Leftrightarrow x-5 = 16 \Leftrightarrow x = 21$$
.

Tập nghiệm của phương trình $\log_3(x^2 - 7) = 2$ là

C.
$$\{-\sqrt{15}; \sqrt{15}\}$$

Chọn D
$$\log_3(x^2 - 7) = 2 \Leftrightarrow x^2 - 7 = 9 \Leftrightarrow \begin{bmatrix} x = 4 \\ x = -4 \end{bmatrix}$$

Câu 21. Tìm nghiệm của phương trình $\log_{25}(x+1) = \frac{1}{2}$.

A.
$$x = 6$$

B.
$$x = 4$$

C.
$$x = \frac{23}{2}$$

D.
$$x = -6$$

Lời giải

Chon B

Điều kiện: x > -1

Xét phương trình $\log_{25}(x+1) = \frac{1}{2} \Leftrightarrow \log_5(x+1) = 1 \Leftrightarrow x+1 = 5 \Leftrightarrow x = 4$.

Câu 22. Phương trình $\log_3(3x-2)=3$ có nghiệm là

A.
$$x = \frac{25}{3}$$
.

B.
$$x = 87$$

B.
$$x = 87$$
. $\underline{\mathbf{C}}$. $\mathbf{c} = \frac{29}{3}$. $\mathbf{c} = \frac{11}{3}$.

D.
$$x = \frac{11}{3}$$
.

Lời giải

Chọn C

Ta có: $\log_3(3x-2) = 3 \Leftrightarrow 3x-2 = 3^3 \Leftrightarrow 3x = 29 \Leftrightarrow x = \frac{29}{3}$.

Vậy phương trình đã cho có nghiệm là $x = \frac{29}{2}$.

Câu 23. Tập nghiệm của phương trình $\log_3(x^2 - x + 3) = 1$ là

A.
$$\{1\}$$
.

B.
$$\{0;1\}$$
.

$$C. \{-1; 0\}.$$

D.
$$\{0\}$$
.

Lời giải

ĐKXĐ:
$$x^2 - x + 3 > 0$$
 ⇔ $x ∈ \mathbb{R}$

Ta có:
$$\log_3(x^2 - x + 3) = 1 \Leftrightarrow x^2 - x + 3 = 3 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 1 \end{bmatrix}$$

Vậy tập nghiệm của phương trình là $S = \{0,1\}$.

Câu 24. Tập nghiệm của phương trình $\log_3(x^2+x+3)=1$ là:

A.
$$\{-1;0\}$$
.

D.
$$\{-1\}$$
.

Lời giải

$$\log_3(x^2 + x + 3) = 1 \Leftrightarrow x^2 + x + 3 = 3 \Leftrightarrow x^2 + x = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = -1 \end{bmatrix}$$

Câu 25. Phương trình $\log_3(3x-2)=3$ có nghiệm là:

A.
$$x = \frac{25}{3}$$

C.
$$x = \frac{29}{3}$$

D.
$$x = \frac{11}{3}$$

Lời giải

Điều kiện:
$$x > \frac{2}{3}$$
.

Phương trình tương đương $3x-2=3^3 \Leftrightarrow x=\frac{29}{3}$ (nhận).

Vậy
$$S = \left\{ \frac{29}{3} \right\}$$
.

Câu 26. Tập nghiệm của phương trình $\log(x^2 - 2x + 2) = 1$ là

$$\mathbf{A.} \varnothing$$
.

B.
$$\{-2;4\}$$
.

D.
$$\{-2\}$$
.

Lời giải

Ta có
$$\log(x^2 - 2x + 2) = 1 \Leftrightarrow x^2 - 2x + 2 = 10 \Leftrightarrow x^2 - 2x - 8 = 0 \Leftrightarrow \begin{bmatrix} x = -2 \\ x = 4 \end{bmatrix}$$

Câu 27. Cho phương trình $\log_2(2x-1)^2 = 2\log_2(x-2)$. Số nghiệm thực của phương trình là:

A. 1.

B. 0.

C. 3.

D. 2.

Lời giải

Điều kiện: x > 2.

Phương trình đã cho tương đương với: $2\log_2(2x-1) = 2\log_2(x-2)$

$$\Leftrightarrow 2x-1=x-2 \Leftrightarrow x=-1$$

Nghiệm này không thỏa mãn điều kiện của phương trình nên phương trình đã cho vô nghiệm.

Câu 28. Tập nghiệm của phương trình $\log_3(x^2 + 2x) = 1$ là

A.
$$\{1; -3\}$$
.

$$C. \{0\}.$$

D.
$$\{-3\}$$
.

Phương trình $\log_3(x^2 + 2x) = 1 \Leftrightarrow x^2 + 2x = 3^1 \Leftrightarrow x^2 + 2x - 3 = 0 \Leftrightarrow \begin{vmatrix} x = 1 \\ x = -3 \end{vmatrix}$.

Tập nghiệm của phương trình là $\{1; -3\}$.

Tập hợp các số thực m để phương trình $\log_2 x = m$ có nghiệm thực là

- **B.** $(-\infty;0)$.
- $\underline{\mathbf{C}}$. \mathbb{R} .
- **D.** $(0;+\infty)$

Tập giá trị của hàm số $y = \log_2 x$ là \mathbb{R} nên để phương trình có nghiệm thực thì $m \in \mathbb{R}$

Tổng bình phương các nghiệm của phương trình $\log_{\frac{1}{2}}(x^2 - 5x + 7) = 0$ bằng

A. 6

B. 5

Chon C

$$\log_{\frac{1}{2}}(x^2 - 5x + 7) = 0 \Leftrightarrow x^2 - 5x + 7 = 1 \Leftrightarrow x^2 - 5x + 6 = 0 \Leftrightarrow x_1 = 2 \lor x_2 = 3 \Rightarrow x_1^2 + x_2^2 = 13$$

Câu 31. Tổng các nghiệm của phương trình $\log_4 x^2 - \log_2 3 = 1$ là

D. 0

Lời giải

Điều kiện $x \neq 0$. Có $\log_4 x^2 - \log_2 3 = 1 \Leftrightarrow \frac{1}{2} \log_2 x^2 = 1 + \log_2 3 \Leftrightarrow \log_2 x^2 = 2.\log_2 6 \Leftrightarrow x^2 = 6^2$ Dó đó, tổng các nghiệm sẽ bằng 0

Câu 32. Tập nghiệm của phương trình $\log_{0.25} (x^2 - 3x) = -1$ là:

- **A.** {4}.

Lời giải

Ta có:
$$\log_{0,25}(x^2 - 3x) = -1 \Leftrightarrow \begin{cases} x^2 - 3x > 0 \\ x^2 - 3x = (0,25)^{-1} \end{cases} \Leftrightarrow \begin{cases} \begin{bmatrix} x < 0 \\ x > 3 \\ x^2 - 3x - 4 = 0 \end{cases} \Leftrightarrow \begin{cases} \begin{bmatrix} x < 0 \\ x > 3 \end{cases} \\ x = -1 \quad (n) \end{cases}$$

Vậy tập nghiệm của phương trình là $S = \{-1, 4\}$.

Câu 33. Nghiệm nhỏ nhất của phương trình $\log_5(x^2 - 3x + 5) = 1$ là

- **A.** -3.
- **B.** *a* .
- C. 3.
- **D.** 0.

Lời giải

 $\log_5\left(x^2-3x+5\right)=1 \Leftrightarrow x^2-3x+5=5 \Leftrightarrow x^2-3x=0 \Leftrightarrow \begin{bmatrix} x=3\\ x=0 \end{bmatrix}.$ Vậy nghiệm nhỏ nhất của phương trình $\log_5(x^2 - 3x + 5) = 1$ là 0.

Câu 34. Số nghiệm dương của phương trình $\ln |x^2 - 5| = 0$ là

A. 2.

- **C.** 0.
- **D.** 1.

Lời giải

Có
$$\ln |x^2 - 5| = 0 \Leftrightarrow |x^2 - 5| = 1 \Leftrightarrow \begin{bmatrix} x^2 - 5 = 1 \\ x^2 - 5 = -1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \sqrt{6} \\ x = -\sqrt{6} \\ x = 2 \\ x = -2 \end{bmatrix}$$

Vậy phương trình có 2 nghiệm dương là $x = \sqrt{6}$, x = 2.

Câu 35. Số nghiệm của phương trình $(x+3)\log_2(5-x^2)=0$.

<u>**A**</u>. 2.

- **B.** 0.
- **C.** 1.

D. 3.

Lời giải

Điều kiện: $5 - x^2 > 0 \Leftrightarrow -\sqrt{5} < x < \sqrt{5}$.

Phương trình
$$(x+3)\log_2(5-x^2) = 0 \Leftrightarrow \begin{bmatrix} x+3=0 \\ \log_2(5-x^2) = 0 \end{cases} \Leftrightarrow \begin{bmatrix} x=-3 \\ 5-x^2 = 1 \end{cases} \Leftrightarrow \begin{bmatrix} x=-3 \\ x=\pm 2 \end{bmatrix}.$$

Đối chiếu điều kiện ta có $x = \pm 2$ thỏa mãn yêu cầu bài toán. Vậy phương trình có 2 nghiệm.

Câu 36. Tổng tất cả các nghiệm của phương trình $(2x^2 - 5x + 2)[\log_x(7x - 6) - 2] = 0$ bằng

- **A.** $\frac{17}{2}$.
- **B.** 9

- **C.** 8.
- **D.** $\frac{19}{2}$

Lời giải

Điều kiện
$$\begin{cases} 0 < x \neq 1 \\ x > \frac{6}{7} \end{cases} \Leftrightarrow \frac{6}{7} < x \neq 1(*).$$

Phương trình
$$(2x^2 - 5x + 2) [\log_x (7x - 6) - 2] = 0 \Leftrightarrow \begin{bmatrix} 2x^2 - 5x + 2 = 0 \\ \log_x (7x - 6) - 2 = 0 \end{bmatrix}$$

+ Phương trình
$$2x^2 - 5x + 2 = 0 \Leftrightarrow \begin{bmatrix} x = 2 \\ x = \frac{1}{2} \end{bmatrix}$$
. Kết hợp với điều kiện (*) $\Rightarrow x = 2$.

+ Phương trình
$$\log_x (7x-6) - 2 = 0 \Leftrightarrow 7x-6 = x^2 \Leftrightarrow x^2-7x+6 = 0 \Leftrightarrow \begin{bmatrix} x=1 \\ x=6 \end{bmatrix}$$
. Kết hợp với điều kiện (*) $\Rightarrow x=6$.

Vậy phương trình đã cho có hai nghiệm x = 2; x = 6 suy ra tổng các nghiệm bằng 8.

Câu 37. Tập hợp các số thực m để phương trình $\log_2 x = m$ có nghiệm thực là

- **A.** $(0;+\infty)$.
- **B.** $[0;+\infty)$.
- C. $(-\infty;0)$.
- **D.** \mathbb{R} .

Lời giải

Điều kiện để phương trình đã cho có nghĩa là x > 0.

Dễ thấy $\forall m \in \mathbb{R}$ thì đường thẳng y = m luôn cắt đồ thị hàm số $y = \log_2 x$ tại đúng một điểm.

Vậy tập hợp các số thực m để phương trình $\log_2 x = m$ có nghiệm thực là $\forall m \in \mathbb{R}$.

Câu 38. Nghiệm của phương trình $\log_2(x+4) = 3$ là:

A.
$$x = 5$$
.

B.
$$x = 4$$
.

C.
$$x = 2$$
.

D.
$$x = 12$$
.

Lời giải

Chon B

$$\log_2(x+4) = 3 \Leftrightarrow x+4 = 2^3 \Leftrightarrow x = 4$$
.

Câu 39. Nghiệm của phương trình $\log_{\frac{1}{2}}(2x-1)=0$ là $\mathbf{A.} x = \frac{3}{4} . \qquad \qquad \mathbf{\underline{B}.} x = 1 . \qquad \qquad \mathbf{C.} x = \frac{1}{2} . \qquad \qquad \mathbf{D.} x = \frac{2}{3} .$

A.
$$x = \frac{3}{4}$$

$$\mathbf{B}$$
. $x = 1$

$$C \cdot x = \frac{1}{2}$$
.

D.
$$x = \frac{2}{3}$$
.

Lời giải

Chon B

$$\log_{\frac{1}{2}}(2x-1) = 0 \Leftrightarrow 2x-1 = 1 \Leftrightarrow x = 1.$$

Vậy nghiệm của phương trình là x = 1.

Câu 40. Hàm số $y = \log_a x$ và $y = \log_b x$ có đồ thị như hình bên.

Đường thẳng y=3 cắt hai đồ thị tại các điểm có hoành độ là $x_1;x_2$. Biết rằng $x_1=2x_2$. Giá trị của $\frac{a}{b}$ bằng

A.
$$\frac{1}{3}$$
.

B.
$$\sqrt{3}$$
.

D.
$$\sqrt[3]{2}$$
.

Lời giải

Xét phương trình hoành độ giao điểm $\log_a x = 3 \Leftrightarrow x_1 = a^3$, và $\log_b x = 3 \Leftrightarrow x_2 = b^3$.

Ta có
$$x_1 = 2x_2 \Leftrightarrow a^3 = 2b^3 \Leftrightarrow \left(\frac{a}{b}\right)^3 = 2 \Leftrightarrow \frac{a}{b} = \sqrt[3]{2}$$
.

Câu 41. Tìm tập nghiệm S của phương trình $\log_2(x-1) + \log_2(x+1) = 3$.

A.
$$S = \{3\}$$

B.
$$S = \{-\sqrt{10}; \sqrt{10}\}$$
 C. $S = \{-3; 3\}$ **D.** $S = \{4\}$

C.
$$S = \{-3, 3\}$$

D.
$$S = \{4\}$$

Chọn A

Điều kiện x > 1. Phương trình đã cho trở thành $\log_2(x^2 - 1) = 3 \Leftrightarrow x^2 - 1 = 8 \Leftrightarrow x = \pm 3$

Đối chiếu điều kiện, ta được nghiệm duy nhất của phương trình là $x=3 \Rightarrow S=\{3\}$

Câu 42. Nghiệm của phương trình $\log_2(x+1)+1=\log_2(3x-1)$ là

A.
$$x = 1$$
.

B.
$$x = 2$$
.

C.
$$x = -1$$
.

D.
$$x = 3$$
.

Lời giải

Chon D

Điều kiện phương trình: $x > \frac{1}{2}$.

$$\log_2(x+1)+1=\log_2(3x-1) \Leftrightarrow \log_2\lceil(x+1).2\rceil = \log_2(3x-1) \Leftrightarrow 2(x+1)=3x-1 \Leftrightarrow x=3.$$

Ta có x = 3 (Thỏa mãn điều kiện phương trình)

Vậy nghiệm phương trình là x = 3.

Tìm tập nghiệm S của phương trình $\log_3(2x+1) - \log_3(x-1) = 1$.

A.
$$S = \{3\}$$

B.
$$S = \{4\}$$

C.
$$S = \{1\}$$
 D. $S = \{-2\}$

D.
$$S = \{-2\}$$

Lời giải

Chon B

$$\text{DK: } \begin{cases} 2x+1>0 \\ x-1>0 \end{cases} \Leftrightarrow \begin{cases} x>\frac{-1}{2} \Leftrightarrow x>1. \\ x>1 \end{cases}$$

Ta có $\log_3(2x+1) - \log_3(x-1) = 1 \Leftrightarrow \log_3 \frac{2x+1}{x-1} = 1 \Leftrightarrow \frac{2x+1}{x-1} = 3 \Leftrightarrow x = 4 \text{ (thỏa)}$

Câu 44. Nghiệm của phương trình $\log_3(x+1)+1=\log_3(4x+1)$

A.
$$x = 4$$
.

B.
$$x = 2$$
.

C.
$$x = 3$$

D.
$$x = -3$$
.

Lời giải

Chon B

Điều kiện: $x > -\frac{1}{4}$. Ta có:

$$\log_3(x+1)+1 = \log_3(4x+1)$$

$$\Leftrightarrow \begin{cases} x > \frac{-1}{4} \\ 3(x+1) = 4x + 1 \end{cases} \Leftrightarrow \begin{cases} x > \frac{-1}{4} \Leftrightarrow x = 2. \end{cases}$$

Vậy: Nghiệm của phương trình là x = 2.

Câu 45. Nghiệm của phương trình $\log_3(2x+1)=1+\log_3(x-1)$ là

A.
$$x = 4$$
.

B.
$$x = -2$$

C.
$$x = 1$$
.

D.
$$x = 2$$
.

Lời giải

Chọn A

Điều kiện:
$$\begin{cases} 2x+1>0 \\ x-1>0 \end{cases} \Leftrightarrow x>1.$$

Ta có:
$$\log_3(2x+1)=1+\log_3(x-1)$$

$$\Leftrightarrow \log_3(2x+1) = \log_3[3\cdot(x-1)]$$

$$\Leftrightarrow 2x+1=3x-3$$

$$\Leftrightarrow x = 4$$
 (nhận).

Câu 46. Nghiệm của phương trình $\log_2(x+1) = 1 + \log_2(x-1)$ là

A. x = 3.

B. x = 2.

C. x = 1.

D. x = -2.

Lời giải

Chọn A

Phương trình đã cho tương đương với

 $\log_2(x+1) = 1 + \log_2(x-1)$.

 $\Leftrightarrow \log_2(x+1) = \log_2 2.(x-1)$

 $\Leftrightarrow x+1=2x-2 \Leftrightarrow x=3$ (Thỏa mãn).

Câu 47. Số nghiệm của phương trình $\ln(x+1) + \ln(x+3) = \ln(x+7)$ là

<u>**A**</u>. 1.

B. 0.

C. 2.

D. 3.

Lời giải

Chọn A

Điều kiên: x > -1

 $PT \Leftrightarrow \ln[(x+1)(x+3)] = \ln(x+7)$

$$\Leftrightarrow$$
 $(x+1)(x+3) = x+7$

$$\Leftrightarrow x^2 + 3x - 4 = 0$$

$$\Leftrightarrow \begin{bmatrix} x = 1 & (n) \\ x = -4 & (\ell) \end{bmatrix}$$

Câu 48. Tìm số nghiệm của phương trình $\log_2 x + \log_2(x-1) = 2$

A. 0.

B. 1.

C.3

D. 2.

Lời giải

Chọn B

Điều kiện: x > 1

Ta có: $\log_2 x + \log_2 (x - 1) = 2$

$$\Leftrightarrow \log_2[x(x-1)] = 2 \Leftrightarrow x(x-1) = 4 \Leftrightarrow x^2 - x - 4 = 0$$

$$\Leftrightarrow \begin{cases} x = \frac{1 - \sqrt{17}}{2} \\ x = \frac{1 + \sqrt{17}}{2} \end{cases}$$

Đối chiếu với điều kiện ta được nghiệm của phương trình là $x = \frac{1 + \sqrt{17}}{2}$.

Câu 49. Số nghiệm của phương trình $\log_3 (6+x) + \log_3 9x - 5 = 0$.

A. 0

B. 2

C. 1

D. 3

Lời giải

+) Điều kiện x > 0

+) Phương trình $\Leftrightarrow \log_3(6+x) + \log_3 x = 3 \Leftrightarrow \log_3 x(6+x) = 3 \Leftrightarrow x^2 + 6x - 27 = 0$

$$\Leftrightarrow$$
 $\begin{cases} x = 3 \\ x = -9(L) \end{cases}$ \Leftrightarrow $x = 3$. Vậy phương trình có 1 nghiệm.

Vậy số nghiệm của phương trình là 1.

Câu 50. Tìm tập nghiệm S của phương trình: $\log_3(2x+1) - \log_3(x-1) = 1$.

A.
$$S = \{3\}$$
.

B.
$$S = \{1\}$$
.

C.
$$S = \{2\}$$
. **D.** $S = \{4\}$.

D.
$$S = \{4\}$$
.

Lời giải

Điều kiện:
$$\begin{cases} 2x+1>0 \\ x-1>0 \end{cases} \Leftrightarrow x>1.$$

Với điều kiên trên,

$$\log_3(2x+1) - \log_3(x-1) = 1 \Leftrightarrow \log_3(2x+1) = \log_3(x-1) + \log_3 3 \Leftrightarrow \log_3(2x+1) = \log_3(3x-3) \Leftrightarrow 2x+1 = 3x-3 \Leftrightarrow x = 4$$
 (thỏa mãn điều kiện).

Vậy tập nghiệm $S = \{4\}$.

Câu 51. Phương trình $\log_2 x + \log_2 (x-1) = 1$ có tập nghiệm là

A.
$$S = \{-1, 3\}$$
. **B.** $S = \{1, 3\}$.

B.
$$S = \{1; 3\}$$

C.
$$S = \{2\}$$
.

D.
$$S = \{1\}$$
.

Lời giải

Điều kiên: x > 1.

Với điều kiện trên, ta có:
$$\log_2 x + \log_2 (x-1) = 1 \Leftrightarrow \log_2 [x(x-1)] = 1 \Leftrightarrow x^2 - x - 2 = 0 \Leftrightarrow \begin{bmatrix} x = -1 \\ x = 2 \end{bmatrix}$$
.

Kết hợp với điều kiện ta được: x = 2.

Vậy tập nghiệm của phương trình là $S = \{2\}$.

Tổng các nghiệm của phương trình $\log_2(x-1) + \log_2(x-2) = \log_5 125$ là **Câu 52.**

A.
$$\frac{3+\sqrt{33}}{2}$$

A.
$$\frac{3+\sqrt{33}}{2}$$
. **B.** $\frac{3-\sqrt{33}}{2}$. **C.** 3.

D.
$$\sqrt{33}$$
.

Lời giải

Điều kiên: x > 2

$$\log_2(x-1) + \log_2(x-2) = \log_5 125 \Leftrightarrow \log_2(x^2 - 3x + 2) = 3$$

$$\Leftrightarrow x^2 - 3x - 6 = 0 \Leftrightarrow \begin{bmatrix} x = \frac{3 + \sqrt{33}}{2} \\ x = \frac{3 - \sqrt{33}}{2} \end{bmatrix}$$

Đối chiếu điều kiện ta thấy nghiệm $x = \frac{3 + \sqrt{33}}{2}$ thỏa mãn.

Vậy tổng các nghiệm của phương trình là $\frac{3+\sqrt{33}}{2}$.

Câu 53. Tập nghiệm của phương trình $\log_2 x + \log_2(x-3) = 2$ là

A.
$$S = \{4\}$$

B.
$$S = \{-1, 4\}$$

C.
$$S = \{-1\}$$

D.
$$S = \{4, 5\}$$

Lời giải

Chọn A

Điều kiên: $x \ge 3$.

PT
$$\Leftrightarrow \log_2[x(x-3)] = 2 \Leftrightarrow x^2 - 3x - 4 = 0 \Leftrightarrow \begin{bmatrix} x = 4 \\ x = -1 \end{bmatrix}$$
.

So sánh điều kiên ta được x = 4.

Vậy tập nghiệm của phương trình là $S = \{4\}$.

Câu 54. Số nghiệm của phương trình $\log_3 x + \log_3 (x - 6) = \log_3 7$ là

A. 0

- **B.** 2
- Lời giải

D. 3

Dk: x > 6

Ta có: $\log_3 x + \log_3 (x - 6) = \log_3 7 \Leftrightarrow \log_3 \left[x(x - 6) \right] = \log_3 7 \Leftrightarrow x^2 - 6x - 7 = 0 \Leftrightarrow \begin{vmatrix} x = -1 \\ x = 7 \end{vmatrix}$

So với điều kiên vậy phuiwng trình có một nghiệm x = 7

Cho $x \in \left(0; \frac{\pi}{2}\right)$, biết rằng $\log_2\left(\sin x\right) + \log_2\left(\cos x\right) = -2$ và $\log_2\left(\sin x + \cos x\right) = \frac{1}{2}\left(\log_2 n + 1\right)$.

Giá trị của *n* bằng

- **A.** $\frac{1}{4}$.
- **B.** $\frac{5}{2}$.
- $C. \frac{1}{2}$.
- **D.** $\frac{3}{4}$.

Lời giải

Vì $x \in \left(0; \frac{\pi}{2}\right)$ nên $\sin x > 0$ và $\cos x > 0$.

Ta có: $\log_2(\sin x) + \log_2(\cos x) = -2 \Leftrightarrow \log_2(\sin x \cdot \cos x) = -2 \Leftrightarrow \sin x \cdot \cos x = \frac{1}{4}$

$$\Rightarrow (\sin x + \cos x)^2 = 1 + 2\sin x \cdot \cos x = \frac{3}{2}.$$

Suy ra: $\log_2(\sin x + \cos x) = \frac{1}{2}(\log_2 n + 1) \Leftrightarrow \log_2(\sin x + \cos x)^2 = \log_2(2n)$

$$\Leftrightarrow (\sin x + \cos x)^2 = 2n \Leftrightarrow \frac{3}{2} = 2n \Leftrightarrow n = \frac{3}{4}$$

Tìm tập nghiệm S của phương trình $\log_{\sqrt{2}}(x-1) + \log_{\frac{1}{2}}(x+1) = 1$.

A.
$$S = \{3\}$$

B.
$$S = \{2 - \sqrt{5}; 2 + \sqrt{5}\}$$

C.
$$S = \{2 + \sqrt{5}\}$$

C.
$$S = \left\{2 + \sqrt{5}\right\}$$
 D. $S = \left\{\frac{3 + \sqrt{13}}{2}\right\}$

Lời giải

Chọn C

Điều kiện
$$\begin{cases} x-1>0 \\ x+1>0 \end{cases} \Leftrightarrow x>1 \quad (*).$$

Phương trình $\Leftrightarrow 2\log_2(x-1) - \log_2(x+1) = 1$

$$\Leftrightarrow 2\log_2(x-1) = \log_2(x+1) + \log_2 2$$

$$\Leftrightarrow \log_2(x-1)^2 = \log_2[2(x+1)]$$

$$\Leftrightarrow x^2 - 2x + 1 = 2x + 2$$

$$\Leftrightarrow x^2 - 4x - 1 = 0 \Leftrightarrow \begin{bmatrix} x = 2 - \sqrt{5}(L) \\ x = 2 + \sqrt{5} \end{bmatrix}$$
. Vậy tập nghiệm phương trình $S = \{2 + \sqrt{5}\}$

- **Câu 57.** Số nghiệm của phương trình $\log_3(x^2+4x) + \log_{\frac{1}{3}}(2x+3) = 0$ là
 - **A.** 2.

- **D.** 1.

Lời giải

Viết lại phương trình ta được

$$\log_{3}(x^{2}+4x) = \log_{3}(2x+3) \iff \begin{cases} 2x+3>0 \\ x^{2}+4x=2x+3 \end{cases} \iff \begin{cases} x>-\frac{3}{2} \\ x=1 \\ x=-3 \end{cases} \Leftrightarrow x=1.$$

- Tổng giá trị tất cả các nghiệm của phương trình $\log_3 x \cdot \log_9 x \cdot \log_{27} x \cdot \log_{81} x = \frac{2}{3}$ bằng
 - **A.** 0.

- **B.** $\frac{80}{9}$.

D. $\frac{82}{9}$.

Lời giải

Chọn D

Điều kiện x > 0.

Phương trình đã cho tương đương với

$$\log_{3} \cdot \frac{1}{2} \cdot \log_{3} x \cdot \frac{1}{3} \log_{3} x \cdot \frac{1}{4} \log_{3} x = \frac{2}{3} \Leftrightarrow (\log_{3} x)^{4} = 16 \Leftrightarrow \begin{bmatrix} \log_{3} x = 2 \\ \log_{3} x = -2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 9 \\ x = \frac{1}{9} \end{bmatrix}$$

- **Câu 59.** Nghiệm của phương trình $\log_2 x + \log_4 x = \log_{\frac{1}{2}} \sqrt{3}$ là
 - **A.** $x = \frac{1}{\sqrt[3]{3}}$. **B.** $x = \sqrt[3]{3}$. **C.** $x = \frac{1}{3}$. **D.** $x = \frac{1}{\sqrt{3}}$.

Lời giải

Điều kiên: x > 0

Ta có:
$$\log_2 x + \log_4 x = \log_{\frac{1}{2}} \sqrt{3} \iff \log_2 x + \frac{1}{2} \log_2 x = -\frac{1}{2} \log_2 3$$

$$\Leftrightarrow 2\log_2 x + \log_2 x + \log_3 3 = 0 \Leftrightarrow 3\log_2 x + \log_3 3 = 0$$

$$\Leftrightarrow \log_2 x^3 + \log_2 3 = 0 \Leftrightarrow \log_2 (3x^3) = 0 \Leftrightarrow 3x^3 = 1 \Leftrightarrow x = \frac{1}{\sqrt[3]{3}}.$$

So với điều kiện, nghiệm phương trình là $x = \frac{1}{3\sqrt{2}}$.

- Gọi S là tập nghiệm của phương trình $\log_{\sqrt{2}}(x+1) = \log_2(x^2+2) 1$. Số phần tử của tập S là
 - **A.** 2

B. 3

D. 0

Lời giải

ĐK: x > -1

$$\log_{\sqrt{2}}(x+1) = \log_2(x^2+2) - 1 \Rightarrow (x+1)^2 = \frac{x^2+2}{2} \Rightarrow \begin{bmatrix} x = 0(TM) \\ x = -4(L) \end{bmatrix}$$

Vậy tập nghiệm có một phần tử

Câu 61. Số nghiệm thục của phương trình $3\log_3(x-1) - \log_{\frac{1}{2}}(x-5)^3 = 3$ là

A. 3

B. 1

C. 2

D. 0

Lời giải

Chọn B

Điều kiện: x > 5

$$3\log_3(x-1) - \log_{\frac{1}{3}}(x-5)^3 = 3 \Leftrightarrow 3\log_3(x-1) + 3\log_3(x-5) = 3$$

$$\Leftrightarrow \log_3(x-1) + \log_3(x-5) = 1 \Leftrightarrow \log_3\left[(x-1)(x-5)\right] = 1 \Leftrightarrow (x-1)(x-5) = 3$$

$$\Leftrightarrow x^2 - 6x + 2 = 0 \Leftrightarrow x = 3 \pm \sqrt{7}$$

Đối chiếu điều kiện suy ra phương trình có 1 nghiệm $x = 3 + \sqrt{7}$

Câu 62. Tổng các nghiệm của phương trình $\log_{\sqrt{3}}(x-2) + \log_3(x-4)^2 = 0$ là $S = a + b\sqrt{2}$ (với a,b là các số nguyên). Giá trị của biểu thức Q = a.b bằng

A. 0.

B. 3.

C. 9.

D. 6.

Lời giải

Chọn D

Điều kiên: $2 < x \neq 4$.

Với điều kiện trên, phương trình đã cho tương đương

$$2\log_3(x-2) + 2\log_3|x-4| = 0 \Leftrightarrow \log_3(x-2)|x-4| = 0 \Leftrightarrow (x-2)|x-4| = 1$$

$$\Leftrightarrow \begin{bmatrix} (x-2)(x-4) = 1 \\ (x-2)(x-4) = -1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x^2 - 6x + 7 = 0 \\ x^2 - 6x + 9 = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 3 \pm \sqrt{2} \\ x = 3 \end{bmatrix}$$

So lại điều kiện, ta nhận hai nghiệm $x_1 = 3 + \sqrt{2}$; $x_2 = 3$

Ta được: $S = x_1 + x_2 = 6 + \sqrt{2} \implies a = 6; b = 1$. Vậy Q = a.b = 6.

Câu 63. Nghiệm của phương trình $5^{2x-4} = 25$ là

 $\underline{\mathbf{A}}$. x = 3.

B. x = 2.

C. x = 1.

D. x = -1.

Lời giải

Chon A

• Ta có
$$5^{2x-4} = 25 \Leftrightarrow 5^{2x-4} = 5^2 \Leftrightarrow 2x-4 = 2 \Leftrightarrow x = 3$$
.

• Vậy tập nghiệm của phương trình đã cho là $S = \{3\}$.

Câu 64. Nghiệm của phương trình $3^{x-1} = 27$ là

 $\underline{\mathbf{A}}$. x = 4.

B. x = 3.

C. x = 2.

D. x = 1.

Lời giải

Chọn A

Ta có: $3^{x-1} = 27 \Leftrightarrow 3^{x-1} = 3^3 \Leftrightarrow x-1 = 3 \Leftrightarrow x = 4$.

Vậy nghiệm của phương trình là x = 4.

Câu 65. Nghiệm của phương trình $3^{x-1} = 9$ là:

A.
$$x = -2$$
.

B.
$$x = 3$$
.

C.
$$x = 2$$
.

D. x = -3.

Lời giải

<u>Chọn</u> <u>B</u>.

$$3^{x-1} = 9 \Leftrightarrow x-1 = \log_3 9 \Leftrightarrow x-1 = 2 \Leftrightarrow x = 3$$

Câu 66. Nghiệm của phương trình $3^{x-2} = 9$ là

A.
$$x = -3$$
.

B.
$$x = 3$$
.

C.
$$x = 4$$
.

D.
$$x = -4$$
.

Lời giải

Chọn C

Ta có
$$3^{x-2} = 9 \Leftrightarrow x-2 = 2 \Leftrightarrow x = 4$$
.

Câu 67. Nghiệm của phương trình $3^{x+1} = 9$ là

A.
$$x = 1$$
.

B.
$$x = 2$$
.

C.
$$x = -2$$
.

D.
$$x = -1$$
.

Lời giải

Chon A

Ta có:
$$3^{x+1} = 9 \Leftrightarrow 3^{x+1} = 3^2 \Leftrightarrow x+1=2 \Leftrightarrow x=1$$
.

Câu 68. Nghiêm của phương trình $3^{x+2} = 27$ là

A.
$$x = -2$$
.

B.
$$x = -1$$
.

C.
$$x = 2$$
.

D.
$$x = 1$$
.

Lời giải

Chọn D

Ta có
$$3^{x+2} = 27 \Leftrightarrow 3^{x+2} = 3^3 \Leftrightarrow x+2=3 \Leftrightarrow x=1$$
.

Câu 69. Nghiệm của phương trình $2^{2x-4} = 2^x$ là

A.
$$x = 16$$
.

B.
$$x = -16$$
.

C.
$$x = -4$$
.

D.
$$x = 4$$
.

Lời giải

Chọn D

Ta có:
$$2^{2x-4} = 2^x \Leftrightarrow 2x-4 = x \Leftrightarrow x = 4$$
.

Câu 70. Nghiệm của phương trình $2^{2x-3} = 2^x$ là

A.
$$x = 8$$
.

B.
$$x = -8$$
.

C.
$$x = 3$$
.

D.
$$x = -3$$
.

Lời giải

Chon C

Ta có $2^{2x-3} = 2^x \Leftrightarrow 2x-3 = x \Leftrightarrow x=3$. Vậy phương trình đã cho có một nghiệm x=3.

Câu 71. Nghiệm của phương trình $2^{2x-2} = 2^x$ là

A.
$$x = -2$$
.

B.
$$x = 2$$
.

C.
$$x = -4$$
.

D.
$$x = 4$$
.

Lời giải

Chon B

$$2^{2x-2} = 2^x \iff 2x - 2 = x \iff x = 2.$$

Câu 72. Nghiệm của phương trình: $3^{2x-1} = 27$ là

A.
$$x = 1$$
.

B.
$$x = 2$$
.

C.
$$x = 4$$
.

D.
$$x = 5$$
.

Lời giải

Chọn B

Ta có:
$$3^{2x-1} = 27 \iff 3^{2x-1} = 3^3 \iff 2x-1 = 3 \iff x = 2$$
.

Câu 73. Nghiệm của phương trình $3^{2x+1} = 27$ là

A. 5.

B. 4.

C. 2.

D. 1.

Lời giải

Chọn D

Ta có: $2x+1=3 \Rightarrow x=1$.

Câu 74. Tìm nghiệm của phương trình $3^{x-1} = 27$

A. x = 10

B. x = 9

C. x = 3

D. x = 4

Lời giải

Chọn D

 $3^{x-1} = 3^3 \Leftrightarrow x-1 = 3 \Leftrightarrow x = 4$.

Câu 75. Phương trình $5^{2x+1} = 125$ có nghiệm là

A. $x = \frac{5}{2}$

B. x = 1

C. x = 3

D. $x = \frac{3}{2}$

Lời giải

Ta có: $5^{2x+1} = 125 \iff 5^{2x+1} = 5^3 \iff 2x+1=3 \iff x=1$.

Câu 76. Phương trình $2^{2x+1} = 32$ có nghiệm là

A. x = 3

B. $x = \frac{5}{2}$

C. x = 2

D. $x = \frac{3}{2}$

Lời giải

Ta có $2^{2x+1} = 32 \Leftrightarrow 2^{2x+1} = 2^5 \Leftrightarrow 2x+1=5 \Leftrightarrow x=2$.

Câu 77. Nghiệm của phương trình $2^{2x-1} = 32$ là **A.** x = 2. **B.** $x = \frac{17}{2}$. **C.** $x = \frac{5}{2}$.

D. x = 3.

Lời giải

Chọn D

 $2^{2x-1} = 32 \Leftrightarrow 2^{2x-1} = 2^5 \Leftrightarrow 2x-1 = 5 \Leftrightarrow x = 3$.

Câu 78. Nghiệm của phương trình $2^{2x-1} = 8$ là

A. x = 2.

B. $x = \frac{5}{2}$.

C. x = 1.

D. $x = \frac{3}{2}$.

Lời giải

Chọn A

Ta có: $2^{2x-1} = 8 \Leftrightarrow 2x-1 = 3 \Leftrightarrow x = 2$.

Câu 79. Tìm tất cả các giá trị thực của m để phương trình $3^x = m$ có nghiệm thực.

A. *m* ≥ 1

B. $m \ge 0$

C. m > 0

D. $m \neq 0$

Lời giải

Chọn C

Để phương trình $3^x = m$ có nghiệm thực thì m > 0.

Câu 80. Tìm tập nghiệm S của phương trình $5^{2x^2-x}=5$.

A. $S = \emptyset$

B. $S = \left\{0; \frac{1}{2}\right\}$ **C.** $S = \{0; 2\}$

<u>D</u>. $S = \left\{1; -\frac{1}{2}\right\}$

Chọn D

$$5^{2x^2-x} = 5 \Leftrightarrow 2x^2 - x = 1 \Leftrightarrow 2x^2 - x - 1 = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = -\frac{1}{2} \end{bmatrix}$$

Tìm tập nghiệm S của phương trình $2^{x+1} = 8$. **Câu 81.**

A.
$$S = \{4\}$$
.

B.
$$S = \{1\}$$
.

C.
$$S = \{3\}.$$

D.
$$S = \{2\}$$
.

Lời giải

Ta có:
$$2^{x+1} = 8 \Leftrightarrow 2^{x+1} = 2^3 \Leftrightarrow x+1=3 \Leftrightarrow x=2$$
.

Vậy tập nghiệm của phương trình đã cho là $S = \{2\}$.

Phương trình $(\sqrt{5})^{x^2+4x+6} = \log_2 128$ có bao nhiều nghiệm? **Câu 82.**

A. 1

B. 3

D. 0

Lời giải

Phương trình đã cho tương đương với: $x^2 + 4x + 6 = \log_{\sqrt{5}} 7 \Leftrightarrow x^2 + 4x + 6 - \log_{\sqrt{5}} 7 = 0$ Sử dụng máy tính bỏ túi ta thấy phương trình trên có hai nghiệm phân biệt.

Tập nghiệm S của phương trình $3^{x^2-2x} = 27$.

A.
$$S = \{1; 3\}$$
.

B.
$$S = \{-3;1\}$$
.

C.
$$S = \{-3; -1\}$$
. **D.** $S = \{-1; 3\}$.

D.
$$S = \{-1, 3\}$$

Ta có:
$$3^{x^2-2x} = 27 \Leftrightarrow x^2 - 2x = 3 \Leftrightarrow \begin{bmatrix} x = -1 \\ x = 3 \end{bmatrix}$$
.

Vậy tập nghiệm S của phương trình $3^{x^2-2x} = 27$ là $S = \{-1,3\}$.

Số nghiệm thực phân biệt của phương trình $e^{x^2} = \sqrt{3}$ là:

D. 2.

Lời giải

Ta có
$$e^{x^2} = \sqrt{3} \iff x^2 = \ln \sqrt{3} \iff x = \pm \sqrt{\ln \sqrt{3}}$$
.

Vậy phương trình có 2 nghiệm thực phân biệt.

Câu 85. Phương trình $5^{x+2} - 1 = 0$ có tập nghiệm là

A.
$$S = \{3\}$$
.

B.
$$S = \{2\}$$
.

C.
$$S = \{0\}$$
.

$$\mathbf{\underline{D}}$$
. $S = \{-2\}$.

Lời giải

Ta có
$$5^{x+2} - 1 = 0 \Leftrightarrow 5^{x+2} = 1 \Leftrightarrow x + 2 = 0 \Leftrightarrow x = -2$$

Vây $S = \{-2\}$.

Câu 86. Họ nghiệm của phương trình $4^{\cos^2 x} - 1 = 0$ là

A.
$$\{k\pi; k \in \mathbb{Z}\}$$
.

A.
$$\left\{k\pi; k \in \mathbb{Z}\right\}$$
. **B.** $\left\{\frac{\pi}{2} + k\pi; k \in \mathbb{Z}\right\}$. **C.** $\left\{k2\pi; k \in \mathbb{Z}\right\}$. **D.** $\left\{\frac{\pi}{3} + k\pi; k \in \mathbb{Z}\right\}$.

C.
$$\{k2\pi; k \in \mathbb{Z}\}$$
.

$$\mathbf{D.} \left\{ \frac{\pi}{3} + k\pi; k \in \mathbb{Z} \right\}.$$

Ta có:
$$4^{\cos^2 x} - 1 = 0 \Leftrightarrow 4^{\cos^2 x} = 1 \Leftrightarrow \cos^2 x = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi$$
, $k \in \mathbb{Z}$

Vậy họ nghiệm của phương trình là: $\frac{\pi}{2} + k\pi; k \in \mathbb{Z}$.

Câu 87. Cho biết $9^x - 12^2 = 0$, tính giá trị của biểu thức $P = \frac{1}{3^{-x-1}} - 8.9^{\frac{x-1}{2}} + 19$.

A. 31.

- **B.** 23.
- C. 22.
- **D.** 15.

Lời giải

Ta có $9^x - 12^2 = 0 \Leftrightarrow 3^x = 12$.

$$P = 3^{x+1} - 8.3^{x-1} + 19 = 3.3^{x} - 8.\frac{3^{x}}{3} + 19 = 3.12 - 8.\frac{12}{3} + 19 = 23.$$

Tính tổng tất cả các nghiệm của phương trình $2^{2x^2+5x+4} = 4$

- A. $-\frac{5}{2}$.

D. $\frac{5}{2}$.

Lời giải

$$2^{2x^2+5x+4} = 4 \Leftrightarrow 2x^2 + 5x + 2 = 0 \Leftrightarrow \begin{bmatrix} x = -\frac{1}{2} \\ x = -2 \end{bmatrix}$$

Vậy tổng hai nghiệm bằng $-\frac{5}{2}$.

Tìm tất cả các giá trị thực của tham số m để phương trình $3^{2x-1} + 2m^2 - m - 3 = 0$ có nghiệm.

$$\underline{\mathbf{A}} \cdot m \in \left(-1; \frac{3}{2}\right)$$

B.
$$m \in \left(\frac{1}{2}; +\infty\right)$$

$$\mathbf{C.} \ m \in (0; +\infty)$$

$$\underline{\mathbf{A}}. \ m \in \left(-1; \frac{3}{2}\right). \qquad \mathbf{B}. \ m \in \left(\frac{1}{2}; +\infty\right). \qquad \mathbf{C}. \ m \in \left(0; +\infty\right). \qquad \mathbf{D}. \ m \in \left[-1; \frac{3}{2}\right].$$

Chọn A

$$3^{2x-1} + 2m^2 - m - 3 = 0 \Leftrightarrow 3^{2x-1} = 3 + m - 2m^2$$

Phương trình có nghiệm khi $3 + m - 2m^2 > 0 \Leftrightarrow -1 < m < \frac{3}{2}$.

Vậy
$$m \in \left(-1; \frac{3}{2}\right)$$
.

Câu 90. Cho a, b là hai số thực khác 0, biết: $\left(\frac{1}{125}\right)^{a^2+4ab} = \left(\sqrt[3]{625}\right)^{3a^2-8ab}$. Tỉ số $\frac{a}{b}$ là:

A. $\frac{-8}{7}$

Ta có:
$$\left(\frac{1}{125}\right)^{a^2+4ab} = \left(\sqrt[3]{625}\right)^{3a^2-8ab} \Leftrightarrow 5^{-3(a^2+4ab)} = 5^{\frac{4}{3}(3a^2-8ab)}$$

$$\Leftrightarrow -3(a^2+4ab) = \frac{4}{3}(3a^2-8ab) \Leftrightarrow 21a^2 = -4ab \Leftrightarrow \frac{a}{b} = -\frac{4}{21}$$

Câu 91. Tổng các nghiệm của phương trình $2^{x^2-2x+1} = 8$ bằng

A. 0.

D. 1.

Ta có:
$$2^{x^2-2x+1} = 8 \Leftrightarrow 2^{x^2-2x+1} = 2^3 \Leftrightarrow x^2-2x+1 = 3 \Leftrightarrow x^2-2x-2 = 0 \Leftrightarrow \begin{bmatrix} x = 1 - \sqrt{3} \\ x = 1 + \sqrt{3} \end{bmatrix}$$

Như vậy phương trình đã cho có hai nghiệm: $1-\sqrt{3}$; $1+\sqrt{3}$.

Tổng hai nghiệm là: $(1-\sqrt{3})+(1+\sqrt{3})=2$.

Câu 92. Phương trình $2^{2x^2+5x+4} = 4$ có tổng tất cả các nghiệm bằng

B.
$$\frac{5}{2}$$
.

D.
$$-\frac{5}{2}$$
.

Lời giải

\underline{C} họn \underline{D}

Cách 1:

Ta có:
$$2^{2x^2+5x+4} = 4 \Leftrightarrow 2^{2x^2+5x+4} = 2^2 \Leftrightarrow 2x^2+5x+4=2 \Leftrightarrow 2x^2+5x+2=0 \Leftrightarrow \begin{bmatrix} x=-2 \\ x=-\frac{1}{2} \end{bmatrix}$$

Tổng tất cả các nghiệm của phương trình đã cho là: $-2 + \left(-\frac{1}{2}\right) = -\frac{5}{2}$.

Cách 2:

Ta có:
$$2^{2x^2+5x+4} = 4 \Leftrightarrow 2^{2x^2+5x+4} = 2^2 \Leftrightarrow 2x^2+5x+4=2 \Leftrightarrow 2x^2+5x+2=0$$
 (1)

Xét phương trình (1): $\Delta = 9 > 0 \Rightarrow$ Phương trình (1) có hai nghiệm phân biệt $x_1; x_2$.

Theo định lý Viet ta có: $x_1 + x_2 = -\frac{5}{2}$.

Tổng tất cả các nghiệm của phương trình đã cho là: $-\frac{5}{2}$.

Câu 93. Phương trình $5^{2x^2+5x+4} = 25$ có tổng tất cả các nghiệm bằng

B.
$$\frac{5}{2}$$

D.
$$-\frac{5}{2}$$

Lời giải

Chọn D

$$5^{2x^2+5x+4} = 5^2 \iff 2x^2 + 5x + 4 = 2 \iff 2x^2 + 5x + 2 = 0$$

Tổng các nghiệm là $-\frac{5}{2}$.

Câu 94. Phương trình $7^{2x^2+5x+4} = 49$ có tổng tất cả các nghiệm bằng

A.
$$-\frac{5}{2}$$
.

D.
$$\frac{5}{2}$$
.

Lòigiải

$$7^{2x^2+5x+4} = 49 \Leftrightarrow 7^{2x^2+5x+4} = 7^2 \Leftrightarrow 2x^2+5x+4=2 \Leftrightarrow 2x^2+5x+2=0 \Leftrightarrow \begin{bmatrix} x=-2 \\ x=-\frac{1}{2} \end{bmatrix}.$$

Vậy tổng tất cả các nghiệm của phương trình bằng: $-2 + (-\frac{1}{2}) = -\frac{5}{2}$.

Câu 95. Nghiệm của phương trình $3^{2x+1} = 3^{2-x}$ là:

$$\underline{\mathbf{A}}$$
. $x = \frac{1}{3}$.

B.
$$x = 0$$
.

C.
$$x = -1$$
.

D.
$$x = 1$$
.

Lời giải

Chon A

$$3^{2x+1} = 3^{2-x} \iff 2x+1 = 2-x \iff 3x = 1 \iff x = \frac{1}{3}.$$

Số nghiệm thực của phương trình $2^{x^2+1} = 4$ là

C. 3.

D. 0 .

Lời giải

Chọn B

$$2^{x^2+1} = 2^2 \Leftrightarrow x^2+1 = 2 \Leftrightarrow x^2 = 1 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = -1 \end{bmatrix}$$

Câu 97. Tập nghiệm của phương trình: $4^{x+1} + 4^{x-1} = 272$ là

A. $\{3;2\}$.

B. {2}.

<u>C</u>. {3}.

D. {3;5}.

Lời giải

Chọn C

$$4^{x+1} + 4^{x-1} = 272 \Leftrightarrow 4.4^x + \frac{4^x}{4} = 272 \Leftrightarrow 4^x = 64 \Leftrightarrow x = 3$$

Vậy phương trình có tập nghiệm $S = \{3\}$.

Câu 98. Phương trình $27^{2x-3} = \left(\frac{1}{3}\right)^{x^2+2}$ có tập nghiệm là

A.
$$\{-1,7\}$$
.

B.
$$\{-1; -7\}$$

$$C. \{1; 7\}.$$

D.
$$\{1; -7\}$$
.

Lời giải

Chọn D

Ta có:
$$27^{2x-3} = \left(\frac{1}{3}\right)^{x^2+2} \Leftrightarrow 3^{6x-9} = 3^{-x^2-2}$$

$$\Leftrightarrow 6x - 9 = -x^2 - 2 \Leftrightarrow x^2 + 6x - 7 = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = -7 \end{bmatrix}.$$

Vậy tập nghiệm của phương trình là $\{1,-7\}$.

Câu 99. Phương trình $3^x ext{.} 2^{x+1} = 72$ có nghiệm là

A.
$$x = \frac{5}{2}$$
.

$$\underline{\mathbf{B}}. \ \ x=2.$$

C.
$$x = \frac{3}{2}$$
.

D.
$$x = 3$$
.

Lời giải

$$3^{x}.2^{x+1} = 72 \Leftrightarrow 3^{x}.2^{x}.2 = 72 \Leftrightarrow 6^{x} = 36 \Leftrightarrow x = 2.$$

Câu 100. Nghiệm của phương trình $\left(\frac{1}{5}\right)^{x^2-2x-3} = 5^{x+1}$ là

A.
$$x = -1$$
; $x = 2$. **B.** $x = 1$; $x = -2$. **C.** $x = 1$; $x = 2$.

B.
$$x = 1$$
: $x = -2$

C.
$$x = 1$$
: $x = 2$.

D. Vô nghiệm.

<u>C</u>họn <u>A</u>

Ta có:

$$\left(\frac{1}{5}\right)^{x^2-2x-3} = 5^{x+1} \Leftrightarrow 5^{-(x^2-2x-3)} = 5^{x+1} \Leftrightarrow -x^2+2x+3 = x+1 \Leftrightarrow -x^2+x+2 = 0 \Leftrightarrow \begin{bmatrix} x=-1 \\ x=2 \end{bmatrix}.$$

Vậy nghiệm của phương trình là x = -1; x = 2.

Câu 101. Tập nghiệm của phương trình $\left(\frac{1}{7}\right)^{x^2-2x-3} = 7^{x+1}$ là

- **A.** $\{-1\}$
- **<u>B</u>**. $\{-1;2\}$.
- $C. \{-1; 4\}.$
- **D.** {2}.

Lời giải

Chọn B

Ta có:
$$\left(\frac{1}{7}\right)^{x^2 - 2x - 3} = 7^{x+1} \Leftrightarrow 7^{-x^2 + 2x + 3} = 7^{x+1} \Leftrightarrow -x^2 + 2x + 3 = x + 1.$$

$$\Leftrightarrow x^2 - x - 2 = 0 \Leftrightarrow \begin{bmatrix} x = -1 \\ x = 2 \end{bmatrix}$$
.

Câu 102. Tổng các nghiệm của phương trình $2^{x^2+2x} = 8^{2-x}$ bằng

- **A.** -6.
- **B**. −5.
- **C.** 5.
- **D.** 6.

Lời giải

Chọn B

Ta có:
$$2^{x^2+2x} = 8^{2-x} \Leftrightarrow 2^{x^2+2x} = 2^{6-3x} \Leftrightarrow x^2 + 5x - 6 = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = -6 \end{bmatrix}$$

Vậy tổng hai nghiệm của phương trình bằng -5.

Câu 103. Gọi x_1 , x_2 là hai nghiệm của phương trình $7^{x+1} = \left(\frac{1}{7}\right)^{x^2-2x-3}$. Khi đó $x_1^2 + x_2^2$ bằng:

- **A.** 17.
- **B.** 1.
- <u>C</u>. 5.

Lời giải

D. 3.

<u>C</u>họn <u>C</u>

$$7^{x+1} = \left(\frac{1}{7}\right)^{x^2 - 2x - 3} \iff 7^{x+1} = 7^{-\left(x^2 - 2x - 3\right)} \iff x + 1 = -x^2 + 2x + 3 \iff x^2 - x - 2 = 0 \iff \begin{bmatrix} x_1 = -1 \\ x_2 = 2 \end{bmatrix}.$$

Vậy $x_1^2 + x_2^2 = 5$.

Câu 104. Tổng bình phương các nghiệm của phương trình $5^{3x-2} = \left(\frac{1}{5}\right)^{-x^2}$ bằng

A. 2.

- **B**. 5.
- **C.** 0.

Lời giải

D. 3.

Chọn B

Ta có
$$5^{3x-2} = \left(\frac{1}{5}\right)^{-x^2} \Leftrightarrow 5^{3x-2} = 5^{x^2} \Leftrightarrow x^2 - 3x + 2 = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = 2 \end{bmatrix}.$$

Vậy tổng bình phương các nghiệm của phương trình $5^{3x-2} = \left(\frac{1}{5}\right)^{-x^2}$ bằng 5.

Câu 105. Nghiệm của phương trình $2^{7x-1} = 8^{2x-1}$ là

A.
$$x = 2$$
.

B.
$$x = -3$$
.

C.
$$x = -2$$
.

D.
$$x = 1$$
.

Lời giải

Chon C

$$2^{7x-1} = 8^{2x-1} \Leftrightarrow 2^{7x-1} = 2^{3(2x-1)} \Leftrightarrow 2^{7x-1} = 2^{6x-3} \Leftrightarrow 7x - 1 = 6x - 3 \Leftrightarrow x = -2.$$

Câu 106. Giải phương trình $(2,5)^{5x-7} = \left(\frac{2}{5}\right)^{x+1}$.

A.
$$x \ge 1$$
.

B.
$$x = 1$$
.

C.
$$x < 1$$
.

D.
$$x = 2$$
.

Ta có
$$(2,5)^{5x-7} = \left(\frac{2}{5}\right)^{x+1} \Leftrightarrow \left(\frac{5}{2}\right)^{5x-7} = \left(\frac{5}{2}\right)^{-x-1} \Leftrightarrow 5x-7 = -x-1 \Leftrightarrow x=1$$
.

Câu 107. Phương trình $3^{x^2-4} = \left(\frac{1}{9}\right)^{3x-1}$ có hai nghiệm x_1, x_2 . Tính x_1x_2 .

$$\underline{\mathbf{A}}$$
. -6 .

B.
$$-5$$
.

Lời giải

Ta có
$$3^{x^2-4} = \left(\frac{1}{9}\right)^{3x-1} \iff x^2 - 4 = 2 - 6x \iff x^2 + 6x - 6 = 0$$
.

Áp dụng Vi-ét suy ra phương trình đã cho có hai nghiệm x_1 , x_2 thì $x_1x_2 = -6$.

Câu 108. Tổng các nghiệm của phương trình $2^{x^2+2x} = 8^{2-x}$ bằng **A.** 5. **B.** -5. **C.** 6.

Phương trình đã cho tương đương: $2^{x^2+2x} = 2^{3(2-x)} \Leftrightarrow x^2 + 2x = 6 - 3x \Leftrightarrow x^2 + 5x - 6 = 0$.

Do đó tổng các nghiệm của phương trình là: $S = -\frac{b}{a} = -5$.

Câu 109. Tập nghiệm của phương trình $4^{x-x^2} = \left(\frac{1}{2}\right)^x$ là

A.
$$\left\{0; \frac{2}{3}\right\}$$
.

B.
$$\left\{0; \frac{1}{2}\right\}$$
.

$$C. \{0;2\}.$$

$$\underline{\mathbf{D}} \cdot \left\{ 0; \frac{3}{2} \right\}.$$

Lời giải

Ta có
$$4^{x-x^2} = \left(\frac{1}{2}\right)^x \Leftrightarrow 2^{2x-2x^2} = 2^{-x} \Leftrightarrow -2x^2 + 2x = -x \Leftrightarrow -2x^2 + 3x = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = \frac{3}{2} \end{bmatrix}$$

Câu 110. Tìm nghiệm của phương trình $(7+4\sqrt{3})^{2x+1}=2-\sqrt{3}$.

A.
$$x = \frac{1}{4}$$
.

B.
$$x = -1 + \log_{7+4\sqrt{3}} \left(2 - \sqrt{3}\right)$$
.

$$\underline{\mathbf{C}}$$
. $x = -\frac{3}{4}$

C.
$$x = -\frac{3}{4}$$
. **D**. $x = \frac{25 - 15\sqrt{3}}{2}$.

Ta có

$$\left(7+4\sqrt{3}\right)^{2x+1}=2-\sqrt{3} \iff \left(2+2\sqrt{3}\right)^{4x+2}=\left(2+\sqrt{3}\right)^{-1} \iff 4x+2=-1 \iff 4x=-3 \iff x=-\frac{3}{4}.$$

Câu 111. Tính tổng $S = x_1 + x_2$ biết x_1 , x_2 là các giá trị thực thỏa mãn đẳng thức $2^{x^2 - 6x + 1} = \left(\frac{1}{4}\right)^{x - 3}$.

A.
$$S = -5$$
.

B.
$$S = 8$$
.

C.
$$S = 4$$
.

D.
$$S = 2$$
.

Lời giải

Ta có
$$2^{x^2-6x+1} = \left(\frac{1}{4}\right)^{x-3} \Leftrightarrow 2^{x^2-6x+1} = \left(2\right)^{-2(x-3)} \Leftrightarrow x^2 - 6x + 1 = -2x + 6$$

$$\Leftrightarrow x^2 - 4x - 5 = 0 \Leftrightarrow \begin{bmatrix} x_1 = -1 \\ x_2 = 5 \end{bmatrix} \Rightarrow S = x_1 + x_2 = 4.$$

Câu 112. Tập nghiệm S của phương trình $\left(\frac{4}{7}\right)^x \left(\frac{7}{4}\right)^{3x-1} - \frac{16}{49} = 0$ là

$$\underline{\mathbf{A}} \cdot S = \left\{ \frac{-1}{2} \right\}$$

B.
$$S = \{2\}$$

A.
$$S = \left\{ \frac{-1}{2} \right\}$$
 B. $S = \left\{ 2 \right\}$ **C.** $S = \left\{ \frac{1}{2}; \frac{-1}{2} \right\}$ **D.** $S = \left\{ \frac{-1}{2}; 2 \right\}$

D.
$$S = \left\{ \frac{-1}{2}; 2 \right\}$$

Lời giải

Ta có
$$\left(\frac{4}{7}\right)^{x} \left(\frac{7}{4}\right)^{3x-1} - \frac{16}{49} = \left(\frac{4}{7}\right)^{x} \left(\frac{7}{4}\right)^{x} \left(\frac{7}{4}\right)^{2x-1} - \frac{16}{49} = \left(\frac{7}{4}\right)^{2x-1} - \frac{16}{49} = 0$$

$$\Leftrightarrow \left(\frac{7}{4}\right)^{2x-1} = \frac{16}{49} = \left(\frac{7}{4}\right)^{-2} \Leftrightarrow 2x - 1 = -2 \Leftrightarrow x = \frac{-1}{2}.$$

Câu 113. Tích các nghiệm của phương trình $\left(\sqrt{5}+2\right)^{x-1} = \left(\sqrt{5}-2\right)^{\frac{x-1}{x+1}}$ là

$$A. -2.$$

D. 2.

Lời giải

Chon.

ÐKXÐ: x ≠ -1

Vì
$$(\sqrt{5}-2)(\sqrt{5}+2)=1$$
 nên $(\sqrt{5}-2)=(\sqrt{5}+2)^{-1}$.

Khi đó phương trình đã cho tương đương $\left(\sqrt{5}+2\right)^{x-1} = \left(\sqrt{5}+2\right)^{\frac{-x+1}{x+1}}$

$$\Leftrightarrow x-1=\frac{-x+1}{x+1}$$

$$\Leftrightarrow \begin{bmatrix} x=1\\ x=-2 \end{bmatrix}$$
. (thỏa điều kiện)

Suy ra tích hai nghiệm là −2.

Câu 114. Giải phương trình $4^{2x+3} = 8^{4-x}$

$$\underline{\mathbf{A}} \cdot x = \frac{6}{7}.$$

B.
$$x = \frac{2}{3}$$
.

C.
$$x = 2$$
.

D.
$$x = \frac{4}{5}$$
.

Lời giải

$$4^{2x+3} = 8^{4-x} \iff 2^{4x+6} = 2^{12-3x} \iff 4x+6 = 12-3x \iff x = \frac{6}{7}.$$

Câu 115. Tập nghiệm của bất phương trình $\log x \ge 1$ là

A.
$$(10; +\infty)$$
.

B.
$$(0;+\infty)$$
.

$$\underline{\mathbf{C}}$$
. $[10; +\infty)$.

D.
$$(-\infty;10)$$
.

Lời giải

Chon C

$$\log x \ge 1 \Leftrightarrow \begin{cases} x > 0 \\ x \ge 10 \end{cases} \Leftrightarrow x \ge 10.$$

Vậy bất phương trình đã cho có tập nghiệm là $[10;+\infty)$.

Câu 116. Tập nghiệm của bất phương trình $\log_3(13-x^2) \ge 2$ là

A.
$$(-\infty; -2] \cup [2:+\infty)$$
. **B.** $(-\infty; 2]$.

B.
$$\left(-\infty;2\right]$$

Lời giải

• Bất phương trình
$$\log_3(13-x^2) \ge 2 \Leftrightarrow \begin{cases} 13-x^2 > 0 \\ 13-x^2 \ge 9 \end{cases} \Leftrightarrow \begin{cases} x^2 < 13 \\ x^2 \le 4 \end{cases}$$

$$\Leftrightarrow \begin{cases} -\sqrt{13} < x < \sqrt{13} \\ -2 \le x \le 2 \end{cases} \Leftrightarrow -2 \le x \le 2.$$

• Vậy, tập nghiệm của bất phương trình $\log_3 (13-x^2) \ge 2$ là [-2;2].

Câu 117. Tập nghiệm của bất phương trình $\log_3(36-x^2) \ge 3$ là

A.
$$(-\infty; -3] \cup [3; +\infty)$$
. **B.** $(-\infty; 3]$.

B.
$$\left(-\infty;3\right]$$
.

D. (0;3].

Chon C

Ta có:
$$\log_3(36-x^2) \ge 3 \Leftrightarrow 36-x^2 \ge 27 \Leftrightarrow 9-x^2 \ge 0 \Leftrightarrow -3 \le x \le 3$$
.

Câu 118. Tập nghiệm của bất phương trình $\log_3(18-x^2) \ge 2$ là

A.
$$(-\infty;3]$$
.

C.
$$[-3;3]$$
.

D.
$$\left(-\infty;-3\right]\cup\left[3;+\infty\right)$$
.

Lời giải

Chọn C

Điều kiện:
$$18 - x^2 > 0 \Leftrightarrow x \in (-3\sqrt{2}; 3\sqrt{2})$$
 (*).

Khi đó ta có:
$$\log_3(18-x^2) \ge 2 \Leftrightarrow 18-x^2 \ge 9 \Leftrightarrow -3 \le x \le 3$$
.

Kết hợp với điều kiện (*) ta được tập ngiệm của bất phương trình đã cho là [-3;3].

Câu 119. Tập nghiệm của bất phương trình $\log_3(31-x^2) \ge 3$ là

A.
$$\left(-\infty;2\right]$$
.

C.
$$(-\infty; -2] \cup [2; +\infty)$$
. D. $(0; 2]$.

Chọn B

$$\log_3(31-x^2) \ge 3 \Leftrightarrow 31-x^2 \ge 27 \Leftrightarrow x^2-4 \le 0 \Leftrightarrow x \in [-2,2].$$

Câu 120. Giải bất phương trình $\log_2(3x-1) > 3$.

A.
$$x > 3$$

B.
$$\frac{1}{3} < x < 3$$
 C. $x < 3$ **D.** $x > \frac{10}{3}$

C.
$$x < 3$$

D.
$$x > \frac{10}{3}$$

Lời giải

Chọn A

Dkxđ:
$$3x-1>0 \Leftrightarrow x>\frac{1}{3}$$

Bất phương trình $\Leftrightarrow 3x - 1 > 2^3 \Leftrightarrow 3x > 9 \Leftrightarrow x > 3$ (t/m đk).

Vậy bpt có nghiệm x > 3.

Câu 121. Tìm tập nghiệm S của bất phương trình $\ln x^2 < 0$.

A.
$$S = (-1;1)$$
.

B.
$$S = (-1, 0)$$
.

$$\underline{\mathbf{C}}$$
. $S = (-1;1) \setminus \{0\}$. \mathbf{D} . $S = (0;1)$.

D.
$$S = (0:1)$$

Lời giải

Ta có:
$$\ln x^2 < 0 \Leftrightarrow 0 < x^2 < 1 \Leftrightarrow \begin{cases} x \neq 0 \\ -1 < x < 1 \end{cases}$$
. Vậy $S = (-1;1) \setminus \{0\}$.

Câu 122. Tìm tập nghiệm S của bất phương trình $\log_{\frac{1}{2}}(x+1) < \log_{\frac{1}{2}}(2x-1)$.

A.
$$S = (2; +\infty)$$
.

B.
$$S = (-1, 2)$$

$$\mathbf{C}$$
. $S = (-\infty; 2)$.

A.
$$S = (2; +\infty)$$
. **B.** $S = (-1; 2)$. **C.** $S = (-\infty; 2)$. **D.** $S = (\frac{1}{2}; 2)$.

Ta có
$$\log_{\frac{1}{2}}(x+1) < \log_{\frac{1}{2}}(2x-1) \Leftrightarrow \begin{cases} x+1 > 2x-1 \\ 2x-1 > 0 \end{cases} \Leftrightarrow \frac{1}{2} < x < 2.$$

Câu 123. Tập nghiệm S của bất phương trình $\log_2(2x+3) \ge 0$ là

A.
$$S = (-\infty; -1]$$
.

B.
$$S = [-1; +\infty)$$

A.
$$S = (-\infty; -1]$$
. **B.** $S = [-1; +\infty)$. **C.** $S = (-\infty; -1)$. **D.** $S = (-\infty; 0]$.

D.
$$S = (-\infty; 0]$$

Ta có
$$\log_2(2x+3) \ge 0 \Leftrightarrow 2x+3 \ge 1 \Leftrightarrow x \ge -1$$

Vậy tập nghiệm bất phương trình $S = [-1; +\infty)$

Câu 124. Tập nghiệm của bất phương trình $\log_{0.3} (5-2x) > \log_{\frac{3}{2}} 9$ là

$$\mathbf{A.}\left(0;\frac{5}{2}\right).$$

B.
$$(-\infty;-2)$$
. $\underline{\mathbf{C}} \cdot \left(-2;\frac{5}{2}\right)$.

$$\underline{\mathbf{C}}.\left(-2;\frac{5}{2}\right).$$

D.
$$\left(-2;+\infty\right)$$
.

$$\log_{0.3}(5-2x) > \log_{\frac{3}{10}}9 \Leftrightarrow \begin{cases} 5-2x > 0 \\ 5-2x < 9 \end{cases} \Leftrightarrow \begin{cases} x < \frac{5}{2} \\ x > -2 \end{cases} \Leftrightarrow -2 < x < \frac{5}{2}.$$

Vậy bất phương trình có tập nghiệm là $S = \left(-2; \frac{5}{2}\right)$.

Câu 125. Tập nghiệm của bất phương trình $\log_{0.5}(x-1) > 1$ là

$$\mathbf{A.}\left(-\infty; -\frac{3}{2}\right). \qquad \qquad \mathbf{\underline{B.}}\left(1; \frac{3}{2}\right).$$

$$\underline{\mathbf{B}} \cdot \left(1; \frac{3}{2}\right).$$

$$\mathbf{C} \cdot \left(\frac{3}{2}; +\infty\right).$$
 $\mathbf{D} \cdot \left[1; \frac{3}{2}\right).$

D.
$$\left[1; \frac{3}{2}\right]$$

Lời giải

Bất phương trình $\Leftrightarrow 0 < x - 1 < 0, 5 \Leftrightarrow 1 < x < \frac{3}{2}$.

Vậy tập nghiệm bất phương trình đã cho là: $S = \left(1; \frac{3}{2}\right)$.

Câu 126. Tập nghiệm của bất phương trình $\log_{\frac{\pi}{4}}(x+1) > \log_{\frac{\pi}{4}}(2x-5)$ là

A.
$$(-1;6)$$

B.
$$\left(\frac{5}{2};6\right)$$

B.
$$\left(\frac{5}{2};6\right)$$
 D. $\left(-\infty;6\right)$

D.
$$(-\infty; 6)$$

Do
$$\frac{\pi}{4} < 1$$
 nên $\log_{\frac{\pi}{4}}(x+1) > \log_{\frac{\pi}{4}}(2x-5) \Leftrightarrow \begin{cases} x+1 > 0 \\ x+1 < 2x-5 \end{cases} \Leftrightarrow x > 6$.

Câu 127. Tìm tập nghiệm S của bất phương trình $\log_3(2x+3) < \log_3(1-x)$

$$\mathbf{A} \cdot \left(-\frac{2}{3}; +\infty\right)$$

A.
$$\left(-\frac{2}{3}; +\infty\right)$$
 B. $\left(-\frac{3}{2}; -\frac{2}{3}\right)$ **C.** $\left(-\frac{3}{2}; 1\right)$ **D.** $\left(-\infty; -\frac{2}{3}\right)$

C.
$$\left(-\frac{3}{2};1\right)$$

D.
$$\left(-\infty; -\frac{2}{3}\right)$$

Lời giải

Chọn B

Chọn B

Điều kiện:
$$\begin{cases} 2x+3>0 \\ 1-x>0 \end{cases} \Leftrightarrow -\frac{3}{2} < x < 1.$$

$$\log_3(2x+3) < \log_3(1-x) \Leftrightarrow 2x+3 < 1-x \Leftrightarrow x < -\frac{2}{3}$$

So với điều kiện, ta được tập nghiệm của bất phương trình là $S = \left(-\frac{3}{2}; -\frac{2}{2}\right)$.

Câu 128. Tập nghiệm của bất phương trình $\log_3 \left(\log_{1} x\right) < 1$ là

B.
$$\left(\frac{1}{8};3\right)$$

$$\underline{\mathbf{C}} \cdot \left(\frac{1}{8};1\right).$$

B.
$$\left(\frac{1}{8};3\right)$$
. **D.** $\left(\frac{1}{8};+\infty\right)$.

Ta có
$$\log_3 \left(\log_{\frac{1}{2}} x\right) < 1 \iff 0 < \log_{\frac{1}{2}} x < 3^1 \iff \left(\frac{1}{2}\right)^0 > x > \left(\frac{1}{2}\right)^3 \iff 1 > x > \frac{1}{8}.$$

Vậy tập nghiệm của bất phương trình là $S = \left(\frac{1}{8}; 1\right)$.

Câu 129. Số nghiệm nguyên của bất phương trình $\log_{0.8} (15x+2) > \log_{0.8} (13x+8)$ là

Lời giải

Điều kiện $x > -\frac{2}{15}$.

: 0946798489 TOÁN 11-CHÂN TRỜI SÁNG TẠO Khi đó, $\log_{0.8} (15x+2) > \log_{0.8} (13x+8) \Leftrightarrow 15x+2 < 13x+8 \Leftrightarrow 2x < 6 \Leftrightarrow x < 3$.

Tập nghiệm bất phương trình là: $T = \left(-\frac{2}{15}; 3\right) \Rightarrow x \in \{0; 1; 2\}$.

Câu 130. Tập xác định của hàm số $y = \sqrt{\log_2(4-x)-1}$ là

- **A.** $(-\infty;4)$.
- **B.** [2;4).
- $\underline{\mathbf{C}}.\ (-\infty;2].$ $\mathbf{D}.\ (-\infty;2).$

Hàm số xác định $\Leftrightarrow \log_2(4-x)-1 \ge 0 \Leftrightarrow \begin{cases} \log_2(4-x) \ge 1 \\ 4-x > 0 \end{cases} \Leftrightarrow \begin{cases} 4-x \ge 2 \\ 4-x > 0 \end{cases} \Leftrightarrow \begin{cases} x \le 2 \\ x < 4 \end{cases} \Leftrightarrow x \le 2.$

Vậy tập xác định của hàm số là: $D = (-\infty; 2]$.

Câu 131. Tập nghiệm của bất phương trình $\log_2(3x+1) < 2$ là

- **A.** $\left| -\frac{1}{3}; 1 \right|$ **B.** $\left(-\frac{1}{3}; \frac{1}{3} \right)$ **C.** $\left(-\frac{1}{3}; 1 \right)$

Lời giải

Chon C

$$DK: x > -\frac{1}{3}$$

$$\log_2(3x+1) < 2 \Leftrightarrow 3x+1 < 4 \Leftrightarrow x < 1$$

Kết hợp với điều kiện ta được nghiệm của bất phương trình là $-\frac{1}{2} < x < 1$

Vậy tập nghiệm của bất phương trình $\left(-\frac{1}{3};1\right)$.

Câu 132. Tập nghiệm của bất phương trình $\log_2(x^2-1) \ge 3$ là?

- **A.** [-2;2].
- $\underline{\mathbf{B}}. (-\infty; -3] \cup [3; +\infty).$
- C. $(-\infty; -2] \cup [2; +\infty)$. D. [-3; 3].

Lời giải

$$\log_2(x^2 - 1) \ge 3 \Leftrightarrow x^2 - 1 \ge 8 \Leftrightarrow x^2 \ge 9 \Leftrightarrow \begin{bmatrix} x \ge 3 \\ x \le -3 \end{bmatrix}$$

Câu 133. Tập nghiệm S của bất phương trình $\log_{0.8}(2x-1) < 0$ là

A.
$$S = \left(-\infty; \frac{1}{2}\right)$$

$$\underline{\mathbf{B}}. S = (1; +\infty)$$

A.
$$S = \left(-\infty; \frac{1}{2}\right)$$
. **B.** $S = \left(1; +\infty\right)$. **C.** $S = \left(\frac{1}{2}; +\infty\right)$. **D.** $S = \left(-\infty; 1\right)$.

D.
$$S = (-\infty; 1)$$

Bất phương trình $\log_{0.8} (2x-1) < 0 \Leftrightarrow 2x-1 > (0,8)^0 \Leftrightarrow 2x > 2 \Leftrightarrow x > 1$.

Tập nghiệm S của bất phương trình $\log_{0.8}(2x-1) < 0$ là $S = (1; +\infty)$.

Câu 134. Tập nghiệm của bất phương trình $\log_{0,5} (5x+14) \le \log_{0,5} (x^2+6x+8)$ là

- **A.** (-2;2].
- **B.** $(-\infty; 2]$.
- **C.** $\mathbb{R} \setminus \left| -\frac{3}{2}; 0 \right|$. **D.** [-3; 2].

Điều kiện:
$$\begin{cases} 5x+14>0 \\ x^2+6x+8>0 \end{cases} \Leftrightarrow x>-2 \quad (*)$$

Ta có:
$$\log_{0.5} (5x+14) \le \log_{0.5} (x^2+6x+8) \Leftrightarrow 5x+14 \ge x^2+6x+8 \Leftrightarrow -3 \le x \le 2$$

Kết hợp với điều kiện (*) ta được $-2 < x \le 2$.

Vậy tập nghiệm của bất phương trình là (-2;2].

Câu 135. Bất phương trình $\log_2(3x-2) > \log_2(6-5x)$ có tập nghiệm là

A.
$$(0;+\infty)$$

B.
$$\left(\frac{1}{2};3\right)$$
. **C.** $(-3;1)$

$$\underline{\mathbf{D}}$$
. $\left(1;\frac{6}{5}\right)$

Vì 2 > 1 nên

$$\log_2(3x-2) > \log_2(6-5x) \begin{cases} 3x-2 > 6-5x \\ 6-5x > 0 \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ x < \frac{6}{5} \Leftrightarrow 1 < x < \frac{6}{5}. \end{cases}$$

Câu 136. Tập hợp nghiệm của bất phương trình $\log_2(x+1) < 3$ là:

A.
$$S = (-1; 8)$$
.

B.
$$S = (-\infty; 7)$$
.

C.
$$S = (-\infty; 8)$$
. $\underline{\mathbf{D}} \cdot S = (-1; 7)$.

D.
$$S = (-1; 7)$$
.

Chọn D

Ta có:
$$\log_2(x+1) < 3 \Leftrightarrow \begin{cases} x+1 > 0 \\ x+1 < 2^3 \end{cases} \Leftrightarrow \begin{cases} x > -1 \\ x < 7 \end{cases} \Leftrightarrow -1 < x < 7$$

Vậy tập nghiệm của bất phương trình là S = (-1; 7).

Câu 137. Tìm tập nghiệm S của bất phương trình $\ln x^2 > \ln (4x-4)$.

A.
$$S = (2; +\infty)$$
. **B.** $S = (1; +\infty)$.

B.
$$S = (1; +\infty)$$

$$\mathbf{C.} \ S = R \setminus \{2\}.$$

C.
$$S = R \setminus \{2\}$$
. $\underline{\mathbf{D}}$. $S = \{1, +\infty\} \setminus \{2\}$.

Lời giải

$$\ln x^2 > \ln \left(4x - 4\right) \Leftrightarrow \begin{cases} x^2 > 4x - 4\\ 4x - 4 > 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x^2 - 4x + 4 > 0 \\ x > 1 \end{cases} \Leftrightarrow \begin{cases} x \neq 2 \\ x > 1 \end{cases}.$$

Vậy tập nghiệm của bất phương trình là $S = (1; +\infty) \setminus \{2\}$.

Câu 138. Tập nghiệm của bất phương trình $\log_2 \lceil x^2 - 1 \rceil \ge 3$ là:

A.
$$[-2;2]$$

A.
$$[-2;2]$$
. $\underline{\mathbf{B}}. (-\infty; -3] \cup [3; +\infty)$.

C.
$$(-\infty; -2] \cup [2; +\infty)$$
. D. $[-3; 3]$.

Ta có
$$\log_2 \left\lceil x^2 - 1 \right\rceil \ge 3 \Leftrightarrow x^2 - 9 \ge 0 \Leftrightarrow x \in (-\infty; -3] \cup \left[3; +\infty \right)$$

Câu 139. Tập nghiệm của bất phương trình $\frac{\log(x^2-9)}{\log(3-x)} \le 1$ là:

A.
$$(-4;-3)$$

B.
$$[-4;-3)$$
.

Lời giải

$$\text{DK:} \begin{cases} x^2 - 9 > 0 \\ 3 - x > 0 \Leftrightarrow \begin{cases} x > 3 \lor x < -3 \\ x < 3 \Leftrightarrow x < -3. \end{cases}$$
$$x \neq 2$$

Với x < -3 suy ra $\log(3-x) > 0$ nên bất phương trình đã cho tương đương với

$$\log(x^2 - 9) \le \log(3 - x) \Leftrightarrow x^2 + x - 12 \le 0 \Leftrightarrow x \in [-4; 3]$$

Kết hợp điều kiện suy ra tập nghiệm của bất phương trình là [-4;-3)

Câu 140. Có tất cả bao nhiêu giá trị của tham số m để bất phương trình

 $\log_2(x^2 + mx + m + 2) \ge \log_2(x^2 + 2)$ nghiệm đúng $\forall x \in \mathbb{R}$?

A. 2.

- C. 3.

D. 1.

Lời giải

Ta có : $\log_2(x^2 + mx + m + 2) \ge \log_2(x^2 + 2)$ nghiệm đúng $\forall x \in \mathbb{R}$ $\Leftrightarrow x^2 + mx + m + 2 \ge x^2 + 2, \forall x \in \mathbb{R} \Leftrightarrow mx + m \ge 0, \forall x \in \mathbb{R} \Leftrightarrow m = 0.$

Suy ra có 1 giá trị m thỏa mãn.

Câu 141. Giải bất phương trình $\log_2(3x-2) > \log_2(6-5x)$ được tập nghiệm là (a;b). Hãy tính tổng S = a + b.

A.
$$S = \frac{26}{5}$$

B.
$$S = \frac{11}{5}$$

A.
$$S = \frac{26}{5}$$
. **B.** $S = \frac{11}{5}$. **C.** $S = \frac{28}{15}$. **D.** $S = \frac{8}{3}$.

D.
$$S = \frac{8}{3}$$

Điều kiện
$$\begin{cases} 3x - 2 > 0 \\ 6 - 5x > 0 \end{cases} \Leftrightarrow \begin{cases} x > \frac{2}{3} \\ x < \frac{6}{5} \end{cases} \Leftrightarrow \frac{2}{3} < x < \frac{6}{5}.$$

Ta có

$$\log_2(3x-2) > \log_2(6-5x) \Leftrightarrow 3x-2 > 6-5x \Leftrightarrow 8x > 8 \Leftrightarrow x > 1.$$

Kết hợp với điều kiện, ta được $1 < x < \frac{6}{5}$.

Vậy, tập nghiệm của bất phương trình là $\left(1; \frac{6}{5}\right)$.

Từ đó,
$$S = a + b = 1 + \frac{6}{5} = \frac{11}{5}$$
.

Lời giải ngắn gọn như sau:

$$\log_2(3x-2) > \log_2(6-5x) \Leftrightarrow \begin{cases} 3x-2 > 6-5x \\ 6-5x > 0 \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ x < \frac{6}{5} \Leftrightarrow 1 < x < \frac{6}{5}. \end{cases}$$

Câu 142. Bất phương trình $\log_3(x^2 - 2x) > 1$ có tập nghiệm là

$$\underline{\mathbf{A}}$$
. $S = (-\infty; -1) \cup (3; +\infty)$.

B.
$$S = (-1;3)$$
.

C.
$$S = (3; +\infty)$$
.

C.
$$S = (3; +\infty)$$
. **D.** $S = (-\infty; -1)$.

$$\log_3(x^2 - 2x) > 1 \Leftrightarrow x^2 - 2x > 3 \Leftrightarrow x^2 - 2x - 3 > 0 \Leftrightarrow \begin{bmatrix} x > 3 \\ x < -1 \end{bmatrix}.$$

Vậy tập nghiệm của bất phương trình $S = (-\infty; -1) \cup (3; +\infty)$.

Câu 143. Tập nghiệm của bất phương trình $\ln 3x < \ln (2x+6)$ là:

A.
$$[0;6)$$
.

C.
$$(6; +\infty)$$
.

D.
$$(-\infty;6)$$
.

Lời giải

Chọn B

Bất phương trình $\ln 3x < \ln (2x+6) \Leftrightarrow \begin{cases} 3x > 0 \\ 3x < 2x+6 \end{cases} \Leftrightarrow 0 < x < 6$.

Câu 144. Tập nghiệm S của bất phương trình $\log_2(x-1) < 3$ là

A.
$$S = (1,9)$$
.

B.
$$S = (1;10)$$
.

C.
$$S = (-\infty; 9)$$
. **D.** $S = (-\infty; 10)$.

D.
$$S = (-\infty; 10)$$

Lời giải

Chọn A

$$\log_2(x-1) < 3 \Leftrightarrow 0 < x-1 < 2^3 \Leftrightarrow 1 < x < 9.$$

Câu 145. Tập nghiệm của bất phương trình $\log_2(x^2-1) \ge 3$ là?

A.
$$[-2; 2]$$

$$\underline{\mathbf{B}}. (-\infty; -3] \cup [3; +\infty)$$

A.
$$[-2;2]$$
. **B.** $(-\infty;-3] \cup [3;+\infty)$. **C.** $(-\infty;-2] \cup [2;+\infty)$. **D.** $[-3;3]$.

Chon B

Chon B
$$\log_2(x^2 - 1) \ge 3 \Leftrightarrow x^2 - 1 \ge 8 \Leftrightarrow x^2 \ge 9 \Leftrightarrow \begin{bmatrix} x \ge 3 \\ x \le -3 \end{bmatrix}.$$

Câu 146. Bất phương trình $\log_2(3x-2) > \log_2(6-5x)$ có tập nghiệm là (a;b). Tổng a+b bằng

A.
$$\frac{8}{3}$$
.

B.
$$\frac{28}{15}$$

B.
$$\frac{28}{15}$$
. **C.** $\frac{26}{5}$.

D.
$$\frac{11}{5}$$
.

Lời giải

Chon D

Ta có:
$$\log_2(3x-2) > \log_2(6-5x) \Leftrightarrow \begin{cases} 3x-2 > 6-5x \\ 6-5x > 0 \end{cases} \Leftrightarrow \begin{cases} x > 1 \\ x < \frac{6}{5} \Leftrightarrow 1 < x < \frac{6}{5} \end{cases}$$

Tập nghiệm của bất phương trình là $(1; \frac{6}{5})$.

Vậy
$$a+b=1+\frac{6}{5}=\frac{11}{5}$$
.

Câu 147. Có tất cả bao nhiều số nguyên x thỏa mãn bất phương trình $\log_{\frac{1}{2}} \left[\log_2 (2 - x^2) \right] > 0$?

A. Vô số.

B. 1.

<u>C</u>. 0.

D. 2.

Lời giải

Chọn C

$$\log_{\frac{1}{2}} \left[\log_2 \left(2 - x^2 \right) \right] > 0$$

$$\Leftrightarrow 0 < \log_2(2-x^2) < 1$$

$$\Leftrightarrow 1 < 2 - x^2 < 2$$

$$\Leftrightarrow \begin{cases} 2 - x^2 < 2 \\ 2 - x^2 > 1 \end{cases} \Leftrightarrow \begin{cases} x^2 > 0 \\ x^2 < 1 \end{cases} \Leftrightarrow \begin{cases} x \neq 0 \\ -1 < x < 1 \end{cases}$$

Kết hợp với giả thiết x là số nguyên ta thấy không có số nguyên x nào thỏa mãn bất phương trình $\log_{\underline{1}} \left[\log_2 \left(2 - x^2 \right) \right] > 0$.

Câu 148. Nghiệm của bất phương trình $\log_{2-\sqrt{3}}(2x-5) \ge \log_{2-\sqrt{3}}(x-1)$ là

$$\underline{\mathbf{A}}$$
. $\frac{5}{2} < x \le 4$.

B.
$$1 < x \le 4$$
.

A.
$$\frac{5}{2} < x \le 4$$
. **B.** $1 < x \le 4$. **C.** $\frac{5}{2} \le x \le 41$. **D.** $x \ge 4$.

D.
$$x \ge 4$$

Lời giải

Chon A

$$\log_{2-\sqrt{3}}(2x-5) \ge \log_{2-\sqrt{3}}(x-1) \Leftrightarrow \begin{cases} 2x-5 \le x-1 \\ 2x-5 > 0 \end{cases} \Leftrightarrow \begin{cases} x \le 4 \\ x > \frac{5}{2} \end{cases}$$

Vậy nghiệm của bất phương trình là $\frac{5}{2} < x \le 4$.

Câu 149. Bất phương trình $\log_4(x+7) > \log_2(x+1)$ có bao nhiều nghiệm nguyên

A. 3.

D. 2.

Chọn D

Điều kiện xác định của bất phương trình là $\begin{cases} x+7>0 \\ x+1>0 \end{cases} \Leftrightarrow \begin{cases} x>-7 \\ x>-1 \end{cases} \Leftrightarrow x>-1$

Ta có $\log_4(x+7) > \log_2(x+1) \Leftrightarrow \frac{1}{2}\log_2(x+7) > \log_2(x+1) \Leftrightarrow \log_2(x+7) > \log_2(x+1)^2$

$$\Leftrightarrow x^2 + x - 6 < 0 \Leftrightarrow -3 < x < 2$$

Kết hợp điều kiên ta được -1 < x < 2

Vì $x \in \mathbb{Z}$ nên tìm được x = 0, x = 1.

Câu 150. Tập nghiệm của bất phương trình $\log_{\frac{3}{2}}(2x^2-x+1)<0$ là

$$\mathbf{A.}\left(-1;\frac{3}{2}\right).$$

A.
$$\left(-1; \frac{3}{2}\right)$$
. **B.** $\left(-\infty; 1\right) \cup \left(\frac{3}{2}; +\infty\right)$.

$$\underline{\mathbf{C}}.\left(-\infty;0\right)\cup\left(\frac{1}{2};+\infty\right).\quad \mathbf{D}.\left(0;\frac{1}{2}\right).$$

Lời giải

Chon C

Ta có: $2x^2 - x + 1 > 0$, $\forall x \in \mathbb{R}$.

Do đó
$$\log_{\frac{3}{5}} \left(2x^2 - x + 1\right) < 0 \Leftrightarrow 2x^2 - x + 1 > 1 \Leftrightarrow 2x^2 - x > 0 \Leftrightarrow \begin{bmatrix} x < 0 \\ x > \frac{1}{2} \end{bmatrix}$$

Vậy tập nghiệm của bất phương trình là $S = (-\infty; 0) \cup (\frac{1}{2} : +\infty)$.

Câu 151. Tập nghiệm của bất phương trình $2^x < 5$ là

$$\underline{\mathbf{A}}$$
. $(-\infty; \log_2 5)$.

B.
$$(\log_2 5; +\infty)$$
. **C.** $(-\infty; \log_5 2)$. **D.** $(\log_5 2; +\infty)$.

C.
$$(-\infty; \log_5 2)$$
.

D.
$$(\log_5 2; +\infty)$$

Lời giải

Chon A

Ta có:
$$2^x < 5 \Leftrightarrow x < \log_2 5$$

Vậy tập nghiệm $S = (-\infty; \log_2 5)$.

Câu 152. Tập nghiệm của bất phương trình $3^{4-x^2} \ge 27$ là

$$\underline{\mathbf{A}}$$
. $[-1;1]$.

B.
$$\left(-\infty;1\right]$$
.

$$\mathbf{C}.\left[-\sqrt{7};\sqrt{7}\right].$$
 $\mathbf{D}.\left[1;+\infty\right).$

D.
$$[1; +\infty)$$
.

Lời giải

Chon A

Ta có:
$$3^{4-x^2} \ge 27 \Leftrightarrow 4-x^2 \ge 3 \Leftrightarrow -1 \le x \le 1$$
.

Câu 153. Tập nghiệm của bất phương trình $3^x < 2$ là

$$\underline{\mathbf{A}}$$
. $(-\infty; \log_3 2)$

$$\mathbf{R} \cdot (\log_2 2 + \infty)$$

C.
$$(-\infty; \log_2 3)$$
.

$$\underline{\mathbf{A}}.\ (-\infty; \log_3 2).$$
 $\mathbf{B}.\ (\log_3 2; +\infty).$ $\mathbf{C}.\ (-\infty; \log_2 3).$ $\mathbf{D}.\ (\log_2 3; +\infty).$

Lời giải

Chon A

Ta có
$$3^x < 2 \Leftrightarrow x < \log_3 2$$

Vậy
$$S = (-\infty; \log_3 2)$$
.

Câu 154. Tập nghiệm của bất phương trình $2^x > 5$ là

A.
$$(-\infty; \log_2 5)$$
. **B.** $(\log_5 2; +\infty)$.

B.
$$(\log_{\varepsilon} 2; +\infty)$$
.

$$\mathbf{C}.(-\infty;\log_5 2)$$
.

$$\underline{\mathbf{D}}.\ (\log_2 5; +\infty)$$

Lời giải

Chon D

Ta có:
$$2^x > 5 \Leftrightarrow x > \log_2 5$$
.

Tập nghiệm của bất phương trình là : $(\log_2 5; +\infty)$

Câu 155. Tập nghiệm của bất phương trình $2^x > 3$ là

A.
$$(\log_3 2; +\infty)$$
,

B.
$$(-\infty; \log_2 3)$$

B.
$$(-\infty; \log_2 3)$$
, C. $(-\infty; \log_3 2)$, $\underline{\mathbf{D}}$ $(\log_2 3; +\infty)$.

$$\underline{\mathbf{D}_{\bullet}} \left(\log_2 3; +\infty \right).$$

Lời giải

Chon D

Ta có:
$$2^x > 3 \Leftrightarrow x > \log_2 3$$
.

Tập nghiệm của bất phương trình là $(\log_2 3; +\infty)$.

Câu 156. Tập nghiệm của bất phương trình $5^{x-1} \ge 5^{x^2-x-9}$ là

$$\underline{\mathbf{A}} \cdot [-2; 4].$$

$$\textbf{C.} \left(-\infty;-2\right] \cup \left[4;+\infty\right). \quad \textbf{D.} \left(-\infty;-4\right] \cup \left[2;+\infty\right).$$

Lời giải

Chọn A

$$5^{x-1} \ge 5^{x^2-x-9} \iff x-1 \ge x^2-x-9 \iff x^2-2x-8 \le 0 \iff -2 \le x \le 4$$
.

Vậy Tập nghiệm của bất phương trình là [-2;4].

Câu 157. Tập nghiệm của bất phương trình $9^x + 2.3^x - 3 > 0$ là

A.
$$[0;+\infty)$$
.

B.
$$(0; +\infty)$$
.

C.
$$(1; +\infty)$$
. **D.** $[1; +\infty)$.

$$0. [1; +\infty).$$

Lời giải

Chon B

$$9^x + 2.3^x - 3 > 0 \Leftrightarrow (3^x - 1)(3^x + 3) > 0 \Leftrightarrow 3^x > 1 \text{ (vi } 3^x > 0, \forall x \in \mathbb{R} \text{)} \Leftrightarrow x > 0.$$

Vậy tập nghiệm của bất phương trình đã cho là $(0;+\infty)$.

Câu 158. Tập nghiệm của bất phương trình $3^{x^2-13} < 27$ là

A.
$$(4;+\infty)$$
.

B.
$$(-4;4)$$
.

C.
$$(-\infty;4)$$
.

D.
$$(0;4)$$
.

Lời giải

Chọn B

Ta có:
$$3^{x^2-13} < 27 \Leftrightarrow 3^{x^2-13} < 3^3 \Leftrightarrow x^2-13 < 3 \Leftrightarrow x^2 < 16 \Leftrightarrow |x| < 4 \Leftrightarrow -4 < x < 4$$
.

Vậy tập nghiệm của bất phương trình đã cho là S = (-4, 4).

Câu 159. Tập nghiệm của bất phương trình $3^{x^2-23} < 9$ là

$$\underline{\mathbf{A}}$$
. $(-5;5)$.

B.
$$(-\infty;5)$$
.

C.
$$(5;+\infty)$$
.

D.
$$(0;5)$$
.

Lời giải

Chọn A

Ta có
$$3^{x^2-23} < 9 \Leftrightarrow x^2-23 < 2 \Leftrightarrow x^2 < 25 \Leftrightarrow -5 < x < 5$$
.

Vây nghiêm của bất phương trình $3^{x^2-23} < 9$ là (-5;5).

Câu 160. Tập nghiệm của bất phương trình $2^{x^2-7} < 4$ là

A.
$$(-3;3)$$
.

C.
$$(-\infty;3)$$
.

D.
$$(3; +\infty)$$
.

Lời giải

Chọn A

Ta có:
$$2^{x^2-7} < 4 \Leftrightarrow 2^{x^2-7} < 2^2 \Rightarrow x^2-7 < 2 \Leftrightarrow x^2 < 9 \Rightarrow x \in (-3;3)$$
.

Câu 161. Tập nghiệm của bất phương trình $2^{x^2-1} < 8$ là

A.
$$(0;2)$$
.

B.
$$(-\infty;2)$$
.

C.
$$(-2;2)$$
. **D**. $(2;+\infty)$.

D.
$$(2;+\infty)$$
.

Lời giải

Chon C

Từ phương trình ta có $x^2 - 1 < 3 \Leftrightarrow -2 < x < 2$.

Câu 162. Tập nghiệm của bất phương trình $2^{2x} < 2^{x+6}$ là:

A.
$$(-\infty;6)$$

C.
$$(6;+\infty)$$

Lời giải:

Chọn A

Cách 1: $2^{2x} < 2^{x+6} \Leftrightarrow 2x < x + 6 \Leftrightarrow x < 6$

Cách 2:

Đặt
$$t=2^x$$
, $t>0$

Bất phương trình trở thành: $t^2 - 64t < 0 \Leftrightarrow 0 < t < 64 \Leftrightarrow 0 < 2^x < 64 \Leftrightarrow x < 6$.

Câu 163. Tâp nghiêm của bất phương trình $3^{x^2-2x} < 27$ là

A.
$$(3; +\infty)$$

B.
$$(-1;3)$$

C.
$$(-\infty;-1)\cup(3;+\infty)$$
 D. $(-\infty;-1)$

$$(-\infty;-1)$$

Lời giải

Chọn B

Ta có
$$3^{x^2-2x} < 27 \Leftrightarrow x^2 - 2x < 3 \Leftrightarrow x^2 - 2x - 3 < 0 \Leftrightarrow -1 < x < 3$$
.

Câu 164. Cho hàm số $f(x) = 2^x . 7^{x^2}$. Khẳng định nào sau đây là khẳng định sai?

A.
$$f(x) < 1 \Leftrightarrow x + x^2 \log_2 7 < 0$$

B.
$$f(x) < 1 \Leftrightarrow x \ln 2 + x^2 \ln 7 < 0$$

C.
$$f(x) < 1 \Leftrightarrow x \log_7 2 + x^2 < 0$$

D.
$$f(x) < 1 \Leftrightarrow 1 + x \log_2 7 < 0$$

Lời giải

Chọn D

Đáp án A đúng vì $f(x) < 1 \Leftrightarrow \log_2 f(x) < \log_2 1 \Leftrightarrow \log_2 \left(2^x.7^{x^2}\right) < 0 \Leftrightarrow \log_2 2^x + \log_2 7^{x^2} < 0$ $\Leftrightarrow x + x^2 \cdot \log_2 7 < 0$

Đáp án B đúng vì $f(x) < 1 \Leftrightarrow \ln f(x) < \ln 1 \Leftrightarrow \ln \left(2^x.7^{x^2}\right) < 0 \Leftrightarrow \ln 2^x + \ln 7^{x^2} < 0$

$$\Leftrightarrow x.\ln 2 + x^2.\ln 7 < 0$$

Đáp án C đúng vì $f(x) < 1 \Leftrightarrow \log_7 f(x) < \log_7 1 \Leftrightarrow \log_7 \left(2^x.7^{x^2}\right) < 0 \Leftrightarrow \log_7 2^x + \log_7 7^{x^2} < 0$

$$\Leftrightarrow x.\log_7 2 + x^2 < 0$$

Vậy D sai vì $f(x) < 1 \Leftrightarrow \log_2 f(x) < \log_2 1 \Leftrightarrow \log_2 \left(2^x \cdot 7^{x^2}\right) < 0 \Leftrightarrow \log_2 2^x + \log_2 7^{x^2} < 0$ $\Leftrightarrow x + x^2 \log_2 7 < 0$.

Câu 165. Tìm tập nghiệm S của bất phương trình $5^{x+1} - \frac{1}{5} > 0$.

A.
$$S = (-\infty; -2)$$

B.
$$S = (1; +\infty)$$

$$\mathbf{C.} \ S = (-1; +\infty).$$

A.
$$S = (-\infty; -2)$$
. **B.** $S = (1; +\infty)$. **C.** $S = (-1; +\infty)$. **D.** $S = (-2; +\infty)$.

Bất phương trình tương đương $5^{x+1} > 5^{-1} \Leftrightarrow x+1 > -1 \Leftrightarrow x > -2$.

Vậy tập nghiệm của bất phương trình là $S = (-2; +\infty)$.

Câu 166. Tập nghiệm của bất phương trình $\left(\frac{1}{3}\right)^2 > 9$ trên tập số thực là

A.
$$(2;+\infty)$$
.

$$\mathbf{\underline{B}} \cdot (-\infty; -2)$$
.

$$\mathbf{C}.(-\infty;2).$$

D.
$$(-2; +\infty)$$
.

$$\left(\frac{1}{3}\right)^x > 9 \Leftrightarrow 3^{-x} > 3^2 \Leftrightarrow -x > 2 \Leftrightarrow x < -2$$
.

Vậy tập nghiệm là: $S = (-\infty, -2)$.

Câu 167. Tập nghiệm của bất phương trình $4^{x+1} \le 8^{x-2}$ là

$$\underline{\mathbf{A}}$$
. $[8;+\infty)$.

$$\mathbf{B}. \varnothing$$
.

D.
$$(-\infty; 8]$$
.

Lời giải

Ta có:
$$4^{x+1} \le 8^{x-2} \iff 2^{2x+2} \le 2^{3x-6} \iff 2x+2 \le 3x-6 \iff x \ge 8$$
.

Vậy tập nghiệm của bất phương trình là $S = [8; +\infty)$.

Câu 168. Tập nghiệm của bất phương trình $2^{x^2+2x} \le 8$ là

A.
$$(-\infty; -3]$$
.

B.
$$[-3;1]$$
.

$$C. (-3;1).$$

D.
$$(-3;1]$$
.

Lời giải

Ta có:
$$2^{x^2+2x} \le 8 \Leftrightarrow 2^{x^2+2x} \le 2^3 \Leftrightarrow x^2+2x-3 \le 0 \Leftrightarrow -3 \le x \le 1$$
.

Câu 169. Tập nghiệm S của bất phương trình $5^{x+2} < \left(\frac{1}{25}\right)^{-x}$ là

A.
$$S = (-\infty; 2)$$

A.
$$S = (-\infty; 2)$$
 B. $S = (-\infty; 1)$ **C.** $S = (1; +\infty)$ **D.** $S = (2; +\infty)$

C.
$$S = (1; +\infty)$$

D.
$$S = (2; +\infty)$$

$$5^{x+2} < \left(\frac{1}{25}\right)^{-x} \Leftrightarrow 5^{x+2} < 5^{2x} \Leftrightarrow x+2 < 2x \Leftrightarrow x > 2$$

Câu 170. Tập nghiệm bất phương trình $2^{x^2-3x} < 16$ là

A.
$$(-\infty;-1)$$

A.
$$(-\infty; -1)$$
. **B.** $(4; +\infty)$.

$$\underline{\mathbf{C}}$$
. $(-1;4)$.

D.
$$(-\infty; -1) \cup (4; +\infty)$$
.

Lời giải

$$2^{x^2-3x} < 16 \Leftrightarrow 2^{x^2-3x} < 2^4 \Leftrightarrow x^2 - 3x < 4 \Leftrightarrow -1 < x < 4$$
.

Câu 171. Tập nghiệm bất phương trình: $2^x > 8$ là

A.
$$(-\infty;3)$$
.

B.
$$[3;+\infty)$$
.

$$\underline{\mathbf{C}}$$
. $(3;+\infty)$.

D.
$$(-\infty;3]$$
.

Lời giải

Ta có:
$$2^x > 8 \Leftrightarrow 2^x > 2^3 \Leftrightarrow x > 3$$

Vậy tập nghiệm bất phương trình là (3;+∞).

Câu 172. Tìm tập nghiệm S của bất phương trình $\left(\frac{1}{2}\right)^{-x^2+3x} < \frac{1}{4}$.

A.
$$S = [1;2]$$

B.
$$S = (-\infty; 1]$$

C.
$$S = (1;2)$$

B.
$$S = (-\infty; 1)$$
 C. $S = (1; 2)$ **D.** $S = (2; +\infty)$

$$\left(\frac{1}{2}\right)^{-x^2+3x} < \frac{1}{4} \Leftrightarrow \left(\frac{1}{2}\right)^{-x^2+3x} < \left(\frac{1}{2}\right)^2 \Leftrightarrow -x^2+3x > 2 \Leftrightarrow x^2-3x+2 < 0 \Leftrightarrow 1 < x < 2.$$

Vậy tập nghiệm của bất phương trìnhđã cho là S = (1;2).

Câu 173. Tập nghiệm của bất phương trình $3^{x^2-2x} < 27$ là

A.
$$\left(-\infty;-1\right)$$

B.
$$(3; +\infty)$$

C.
$$(-1;3)$$

D.
$$(-\infty;-1)\cup(3;+\infty)$$

Lời giải

Chọn C

Ta có
$$3^{x^2-2x} < 27 \Leftrightarrow x^2-2x < 3 \Leftrightarrow x^2-2x-3 < 0 \Leftrightarrow -1 < x < 3$$
.

Câu 174. Số nghiệm nguyên của bất phương trình $\left(\frac{1}{3}\right)^{2x^2-3x-7} > 3^{2x-21}$ là

<u>A</u>. 7.

B. 6.

C. vô số.

D. 8.

Lời giải

Ta có
$$\left(\frac{1}{3}\right)^{2x^2-3x-7} > 3^{2x-21} \Leftrightarrow 3^{-\left(2x^2-3x-7\right)} > 3^{2x-21}$$

 $\Leftrightarrow -\left(2x^2-3x-7\right) > 2x-21 \Leftrightarrow -2x^2+3x+7 > 2x-21$
 $\Leftrightarrow -2x^2+x+28 > 0 \Leftrightarrow -\frac{7}{2} < x < 4$.

Do $x \in \mathbb{Z}$ nên $x \in \{-3; -2; -1; 0; 1; 2; 3\}$.

Vậy bất phương trình đã cho có 7 nghiệm nguyên.

Câu 175. Tập nghiệm của bất phương trình $2^{3x} < \left(\frac{1}{2}\right)^{-2x-6}$ là

A. (0;6).

 $\underline{\mathbf{B}}.\ (-\infty;6).$

C. (0;64).

D. $(6;+\infty)$.

Lời giả

Ta có
$$2^{3x} < \left(\frac{1}{2}\right)^{-2x-6} \Leftrightarrow 2^{3x} < 2^{2x+6} \Leftrightarrow 3x < 2x+6 \Leftrightarrow x < 6$$
.

Vậy tập nghiệm của bất phương trình là $S = (-\infty; 6)$.