Effect of Exendin-4 and GLP-1 on Food Intake in NIH/SW Mice

ilme
All Injections given IP (5 ml/kg) at T=0 minutes

FIGURE 1

Effect of Exendin-4 on Food Intake in Female ob/ob Mice Mean ± S.E.

All injections given IP (5 ml/kg) at T=0 minutes

FIGURE 2

Effect of ICV Exendin-4 on food intake in HSD rats during the onset of dark cycle

Effect of ICV Exendin-4 on food intake in HSD rats during the onset of dark cycle

FIGURE 3

FIGURE 4

SEKUTO, SUBREDOSO

IGURE 5

FIGURE 6

SOZOTO" CSETODED

FIGURE 7

BOZOTO 6 SECOLOD Effect of Compound 5 on Food Intake

FIGURE 8

Effect of Compound 6 on Food Intake

FIGURE 9

OCACHO CORROCCO

27	NH2	. NH2		. NH2	. NH2	: NH2	: NH2	NH2	: NH2	C NH2	r NH2	r NH2		E.
Хаа18	Ser	Ser	Ser	Ser	Tyr	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ser
Xaa ₁ ,	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro
Xaaı6	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro
Xaa ₁₅	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro
Хаал	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro
Xaa ₁₃	Phe	Trp	Phe	Trp	Trp	ŢĭŢ	ŢŢŢ	Trp	Trp	Trp	Trp	Trp	Phe	Trp
Xaa ₁₂	Glu	Glu	Glu	Glu	Glu	Glu	Glu	Glu	Glu	Glu	Glu	Glu	Glu	Glu
Хаап	Ile	ıle	Ile	Ile	Ile	Ile	Ile	Ile	ıle	Ile	Ile	Ile	Ile	11e
Xaaıo	Phe	Phe	Phe	Phe	Phe	Phe	Phe	Phe	Phe	Phe	Phe	Phe	Phe	Phe
Xaa,	Leu	Leu	Met	Met	Met	Met	Met	Met	Met	Met	Met	Met	ren	pGly
Xaag	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Leu	pGly	pGly	Leu
Xaa,	Asp	Asp	Asp	Asp	Asp	Asp	Asp	Asp	Asp	Asp	Glu	Asp	Asp	Asp
Хаа	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Thr	Thr	Ser	Ser	Ser	Ser
Xaas	Thr	Thr	Thr	Thr	Thr	Thr	Thr	Ser	Ser	Thr	Thr	Thr	Thr	Thr
Xaa,	Phe	Phe	Phe	Phe	Phe	Phe	naph	Phe	Phe	Phe	. əųd	Phe	Phe	Phe
Xaa3	Glu	Glu	Glu	Glu	Glu	Asp	Glu	Glu	Glu	Glu	Glu	Glu	Glu	Glu
Xaa,	Gly	Gly	Gly	Gly	βĵλ	дзу	Gly	Gly	ĞЗУ	Gly	Gly	Gly	Gly	Gly
Xaaı	His	His	His	Tyr	His	His	His	His	His	His	His	His	His	His
[SEQ. ID.	6	10	11	12	13	14	15	16	17	18	19	20	21	22

FIGURE 10 (Sheet 1 of 2)

. 63	NH2	NH2	NH2	NH2		The second	NH2	NH2	NH ₂	NH2	NH2	NH2	NH2	NH2	H.	4,	NH2
Xaa ₁₈	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ser
Xaa ₁ ,	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	tPro	tPro	hPro	hPro	tPro	hPro	MeAla	MeAla	MeAla
Xaaı6	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	tPro	tPro	hPro	hPro	tPro	hPro	MeAla	MeAla	MeAla
Xaa ₁₅	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	tPro	tPro	hPro	hPro	tPro	hPro	MeAla	MeAla	MeAla
Xaaı4	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	tPro	Pro	hPro	Pro	tPro	hPro	MeAla	Pro	MeAla
Xaa ₁₃	Phe	Trp	Trp	Phe	Trp	Phe	Trp	Phe	Trp	Trp	Trp	Trp	Phe	Phe	Trp	Trp	Phe
Xaaıı	Glu	Glu	.Glu	Glu	Glu	Glu	Asp	Glu	Glu	Glu	Glu	Glu	Glu	Glu	Glu	Glu	Glu
Xaa ₁₁	Ile	Ile	Val	Val	tBuG	tBuG	Ile	Ile	Ile	Ile	Ile	Ile	Ile	Ile	Ile	Ile	Ile
Xaaıo	Phe	naph	Phe	Phe	Phe	Phe	əųa	Phe	Phe	Phe	Phe	Phe	Phe	Phe	Phe	Phe	Phe
Xaa,	pGly	Met	Met	Leu	Met	Leu	Met	Met	Met	Met	Met	Met	Leu	Leu	Met	Met	Leu
Xaag	Leu	Leu	Leu	nəŋ	Leu	nəŋ	ren	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Leu	ren	Leu
Xaa,	Asp	Asp	Asp	Asp	Asp	Asp	Asp	Asp	dsy	Asp	Asp	Asp	Asp	Asp	Asp	Asp	Asp
Xaaç	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ser	ser	Ser	Ser	IeS	Ser	Ser	Ser	Ser
Xaas	Thr	Thr	Thr	Thr	Thr	Thr	Thr	Thr	Thr	Thr	Thr	лүл	Thr	лųт	IŲI	лүл	Thr
Хаа,	Phe	Phe	Phe	Phe	Phe	Phe	Phe	Phe	Phe	Phe	Phe	Phe	Phe	Phe	bhe	əųđ	Phe
Xaa,	Glu	Glu	Glu	Glu	Glu	Glu	Glu	ոլց	ոլց	nĮĐ	nto	Glu	nĮĐ	ոլք	Glu	Glu	Glu
Xaa,	Gly	Gly	Gly	дъ	Gly	ďξ	Gly	дъ	Gly	Gly	Gly	Gly	Gly	Gly	Gly	Gly	Gly
Xaaı	His	His	His	His	His	BiH	His	His	His	His	His	His	His	His	His	His	His
[SEQ. ID. NO.]	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39

FIGURE 10 (Sheet 2 of 2)