Model Checking Real-Time Systems

Vincent Trélat

Technical University of Munich

December 12, 2022

1. Timed Automata

- 1.1 Preliminaries
- 1.2 Timed Automata
- 1.3 Regions and zones
- 1.4 Extensions

2. Model Checking Real-Time Systems

- 2.1 TLTL
- 2.2 Timed Games
- 3. Language-Theoretic Properties
- 4. References

Timed Automata Preliminari

1. Timed Automata

- 1.1 Preliminaries
- 1.2 Timed Automata
- 1.3 Regions and zones
- 1.4 Extensions
- 2. Model Checking Real-Time Systems
 - 2.1 TLTI
 - 2.2 Timed Games
- Language-Theoretic Properties
- 4. References

Set of *time values*: $\mathbb{R}_{\geq 0}$

Timed words over $\Sigma \times \mathbb{R}_{\geq 0}$

Set of *valuations* over a set of clocks $C \colon \mathbb{R}_{\geq 0}^C$

Constraints over $C: \varphi := x \odot k \mid \varphi \land \varphi$ where $x \in C$, $k \in \mathbb{Z}$ and $\odot \in \{<, \leq, =, \geq, >\}$

Set of valuations satisfying φ : $\llbracket \varphi \rrbracket_C = \{ v \in \mathbb{R}_{>0}^C \mid v \models \varphi \}$

Timed Automata Timed Automata

Definition 1

A *Timed Automaton* (TA) \mathcal{A} is the tuple $(L, \ell_0, C, \Sigma, I, E)$ where:

- L is a finite set of *locations* with initial location $\ell_0 \in L$
- C is a finite set of clocks
- Σ is a finite set of *actions*
- $I: L \to \Phi(C)$ is an invariant mapping
- $E \subseteq L \times \Phi(C) \times \Sigma \times 2^C \times L$ is a set of edges.

Edges are denoted by $\ell \xrightarrow{\varphi,a,r} \ell'$.

Example of a TA with 3 locations, 2 clocks and 2 actions (letters):

$$\begin{cases} v(x) = 1.2 \\ v(y) = 0.8 \end{cases}$$

$$\begin{cases} v(x) = 1.2 \\ v(y) = 0.8 \end{cases} \qquad (\ell, v) \xrightarrow{0.5, a} (\ell', v')$$

$$\begin{cases} v(x) = 1.2 \\ v(y) = 0.8 \end{cases} \qquad (\ell, v) \xrightarrow{0.5, a} (\ell', v') \qquad \begin{cases} v'(x) = 0 \\ v'(y) = 1.3 \end{cases}$$
$$\begin{cases} v(x) = 1.2 \\ v(y) = 0.8 \end{cases}$$

$$\begin{cases} v(x) = 1.2 \\ v(y) = 0.8 \end{cases} \qquad (\ell, v) \xrightarrow{0.5, a} (\ell', v') \qquad \begin{cases} v'(x) = 0 \\ v'(y) = 1.3 \end{cases}$$
$$\begin{cases} v(x) = 1.2 \\ v(y) = 0.8 \end{cases} \qquad (\ell, v) \xrightarrow{1.2, a} (\ell', v')$$

$$\begin{cases} v(x) = 1.2 \\ v(y) = 0.8 \end{cases} \qquad (\ell, v) \xrightarrow{0.5, a} (\ell', v') \qquad \begin{cases} v'(x) = 0 \\ v'(y) = 1.3 \end{cases}$$
$$\begin{cases} v(x) = 1.2 \\ v(y) = 0.8 \end{cases} \qquad (\ell, v) \xrightarrow{1.2, a} (\ell', v') \qquad \begin{cases} v'(x) = 0 \\ v'(y) = 2 \end{cases}$$

provided that:

$$\ell \xrightarrow{\varphi,a,r} \ell'$$
 is a transition in the TA
$$\forall t \in [0,d], \ v+t \models I(\ell)$$

$$v+d \models I(\ell')$$

Timed Automata Timed Automa

Operational Semantics

Definition 2

The operational semantics of a TA $A = (L, \ell_0, C, \Sigma, I, E)$ is the infinite-state timed transition system $[\![A]\!] = (S, s_0, \Sigma \times \mathbb{R}_{\geq 0}, T)$, where

$$S := \{(\ell, v) \in L \times \mathbb{R}^{\mathsf{C}}_{\geq 0} \mid v \models I(\ell)\}, \quad s_0 := (\ell_0, \mathbf{0}_{\mathsf{C}}),$$

$$T := \{(\ell, v) \xrightarrow{d, a} (\ell', (v + d)[r]) \mid d \in \mathbb{R}_{\geq 0},$$

$$\forall d' \in [0, d], v + d' \models I(\ell) \land \exists \ell \xrightarrow{\varphi, a, r} \ell' \in E, v + d \models \varphi\}$$

References