Can We Estimate the Motion of the Heart?

Valentina Staneva

Center for Imaging Science Johns Hopkins University

January 23, 2012

Motivation

From a set of training data we want to estimate a model for the motion of the heart, which can be used to facilitate tasks such as heart segmentation.

Background - in the context of my work

Filtering of shapes:

- define a stochastic model for shape deformation
- use this model to estimate the shape in each image frame

Need shape-specific models.

Background - in the context of others' work

- shape and image regression: Stanley Durrleman, Aastha Jain,
 Francois-Xavier Vialard, Marc Niethammer
- spatiotemporal registration: Stanley Durrleman
- other work?

Data Set

• sequence of manually segmentated shapes $\gamma_1, ..., \gamma_t$

Registration

evolution is along constrained EPDiff:

$$\gamma_{t+1} = \exp^{\sharp}_{\gamma_t}(\alpha_t) \tag{1}$$

energy calculates mismatch between the two curves:

$$E(\alpha_t) = \alpha_t^T K_{\gamma_t} \alpha_t + |B_{\gamma_t} - B_{\gamma_{t+1}}|$$
 (2)

 \blacktriangleright minimization is with respect to the initial momentum α_t

- using parallel transport preserving the inner product
- using coadjoint transport preserving the action of the momentum

- using parallel transport preserving the inner product
- using coadjoint transport preserving the action of the momentum

- using parallel transport preserving the inner product
- using coadjoint transport preserving the action of the momentum

- using parallel transport preserving the inner product
- using coadjoint transport preserving the action of the momentum

Time series

We have obtained a time series of the transported momenta $\tilde{\alpha}_1,...,\tilde{\alpha}_t$.

Time series

We should rather look at the transported vector fields $\tilde{v}_1,...,\tilde{v}_t.$

So what?

We can transfer this time series to another shape ho_1

- find a geodesic between γ_1 and ρ_1
- lacktriangle transport the time series attached to γ_1
- lacktriangle deform ho_1 based on the dynamics of γ_t

Next steps

- add noise and incorporate in filtering
- fit a model to the time series of vector fields
- use tools from functional data analysis
- compare/classify time series