Lecture XIII Nonnegative Matrices

Key Points:

- Markov matrices
- Stochastic and doubly stochastic matrices
- Theorem of Perron on convergence
- Perron-Frobenius theory
- Examples and applications

Nonnegative and Positive Matrices

A matrix $M = (m_{ij})$ is said to be nonnegative,

if $m_{ij} \ge 0$ for all i, j.

It is said to be positive, if $m_{ij} > 0$ for all i, j.

Comments

Positive matrix # Positive-definite matrix

Nonnegative matrix ≠ Nonnegative definite matrix (also known as positive semidefinite matrix)

A Motivating Example

Consider a particle taking values from the set $\{1, 2, ..., N\}$ and moving at discrete points in time n = 0, 1, 2, ...

Let $M = (m_{ij})$ be the (presumably time-invariant) transition matrix,

with m_{ij} the probability the particle jumping from state j at time n to state i at time n+1.

A Motivating Example (cont'd)

Such a stochastic process is usually called a discrete Markov process.

 $M = (m_{ij})$ is a (nonnegative) Markov matrix satisfying the following conditions:

$$i) m_{ij} \geq 0;$$

ii)
$$\sum_{i=1}^{N} m_{ij} = 1, \forall j = 1, 2, ..., N.$$

A Motivating Example (cont'd)

Let $x_i(n)$ be the probability the particle is in state i at time n. Then, the following relations hold:

$$x_i(n+1) = \sum_{j=1}^{N} m_{ij} x_j(n), \quad 1 \le i \le N$$

or, in compact matrix notation,

$$x$$
, in compact matrix notation, $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix}$

Fundamental Question:

What is the limiting behavior of x(n)?

Remark: For any n, x(n) is a probability vector, i.e.,

all components $x_i(n)$ are nonnegative,

and satisfy
$$\sum_{i=1}^{N} x_i(n) = 1$$
.

Question 1: Markov matrices

What is the range of parameters λ so that a linear combination $\lambda P + (1-\lambda)Q$ of two Markov matrices P, Q remains to be Markov?

Question 2: Probability Vector

Assume M is a Markov matrix and x is a probability vector. Is Mx a probability vector? Why?

Remarkable Result

For any *positive* Markov matrix M and any

probability vector x(0), the solution x(n)

to
$$x(n+1) = Mx(n)$$

settles at a fixed probability vector y, that is,

$$\lim_{n\to\infty}x(n)=y$$

In addition, y is independent of x(0), and is an eigenvector of M associated with eigenvalue 1.

Comment 1

It should be noted that this result does not hold, if *M* is only nonnegative matrix, but not positive. A counter-example is

$$M = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Indeed, in this case, $M^n x = x$ is dependent on initial condition x!

Comment 2

This type of matrix-theoretic results has been applied recently to address engineering and bio-problems, such as

- Coordination and control of groups of robots
- Consensus in biological multi-agents: bird flocking, fish schooling ...

See: "Jadbabaie, Lin and Morse, IEEE Transactions on Automat. Control, 2003" and many references on distributed control and computation.

Sketch of Proof

Noting that

$$\langle x(n), b \rangle = \langle M^n x(0), b \rangle = \langle x(0), (M^T)^n b \rangle,$$

it suffices to show that, for any b,

$$(M^T)^n b \to b_l$$
, as $n \to \infty$.

With this in mind, consider

$$z(n) = (M^T)^n b$$

obeying the difference equation

$$z(n+1) = M^{T}z(n)$$
, with $z(0) = b$.

Let u(n) be the largest component of z(n),

and v(n) the smallest component of z(n).

Now, we only need to prove that

$$u(n) - v(n) \rightarrow 0.$$

Since

$$z_i(n+1) = \sum_{j=1}^N m_{ji} z_j(n),$$

with
$$\sum_{j=1}^{N} m_{ji} = 1, m_{ji} > 0$$
, we have

we have

$$u(n+1) \le u(n)$$
 and $v(n+1) \ge v(n)$.

So, the decreasing sequence u(n) and the

increasing sequence v(n) both converge:

$$u(n) \rightarrow u, \ v(n) \rightarrow v.$$

Next, we need to show that u = v.

Let d be the positive lower bound for m_{ij} .

Using the component form of $z(n+1) = M^T z(n)$, it follows that

$$\binom{*}{v(n+1)} \le (1-d)u(n) + dv(n),$$
$$v(n+1) \ge (1-d)v(n) + du(n).$$

$$\Rightarrow$$

$$u(n+1)-v(n+1) \leq (1-2d)(u(n)-v(n))$$

Remark: Detailed derivations of (*)

To illustrate the idea, let's first look at the Case of N = 2. It suffices to prove the following

$$c = \alpha a + \beta b \le (1 - d)a + db$$

for any $a \ge b \ge 0$ and $\alpha + \beta = 1$.

Of course, the above is equivalent to

$$0 \le (1 - \alpha - d)a - (\beta - d)b \Leftrightarrow (\beta - d)(a - b) \ge 0.$$

The latter clearly holds, because $d \leq \beta$.

To prove the general case $N \ge 2$, note that we can assume that $v = u_N$. Also note that

$$\sum_{j=1}^{N} m_{ji} u_j \le (1-d)u + dv$$

holds if

$$0 \le \left(1 - \sum_{j=1}^{N-1} m_{ji} - d\right) u - (m_{Ni} - d) v$$

$$\Leftrightarrow (m_{Ni}-d)(u-v) \geq 0.$$

The latter clearly holds, because $d \leq m_{Ni}$.

Since $d \le 0.5$ when $N \ge 2$,

$$|u(n+1)-v(n+1) \le (1-2d)(u(n)-v(n))$$

implies that $u(n)-v(n) \to 0$, as $n \to \infty$.

As a result, z(n) converges to a vector z with

the components being equal. That is,

$$z = (a_1, \dots, a_1)^T$$
. So, $x(n) \rightarrow y$.

Using $\langle x(n), b \rangle = \langle x(0), (M^T)^n b \rangle$, and letting c = x(0),

$$\langle y,b\rangle = \langle c,z\rangle = a_1(c_1 + \cdots + c_N) = a_1.$$

Since a_1 depends only on b, y is independent of c!

Sketch of Proof (end)

Finally, we need to show that y is an eigenvector of M associated with eigenvalue 1. Indeed,

$$y = \lim_{n \to \infty} M^{n+1}c = M \lim_{n \to \infty} M^n c = My.$$

Note that y > 0.

Property 1 of Markov Matrices

For any eigenvalue λ of a Markov matrix M, $|\lambda| \le 1$.

Proof

Since M^T shares the same eigenvalues with M, let us take an eigenvector x of M^T associated with the eigenvalue λ . That is,

$$(*) \lambda x = M^T x.$$

Let m be the absolute value of a component of x of greatest magnitude, then using l_{∞} -norm, (*) implies:

$$\left|\lambda\right| m \le m \sum_{j=1}^N m_{ji} = m \implies \left|\lambda\right| \le 1.$$
Prof.Jiang@ECE NYU

Remark (Jie Du, 2013.12.10)

We can prove it using the Gersgorin disk Theorem.

Property 2 of Markov Matrices

If *M* is a *positive* Markov matrix, then $\lambda = 1$ is the only eigenvalue of absolute value one.

Proof

Assume that μ is another eigenvalue with $|\mu| = 1$, and $\omega + jz$ an associated eigenvector.

Choose a big enough t_1 to make $\omega + t_1 y$ and $z + t_1 y$ both positive vectors, with y the limit of $M^n x(0)$. It can be directly checked that

$$M(\omega + jz + t_1(1+j)y) = \mu(\omega + jz) + t_1(1+j)y.$$
So,

$$M^{n}\left(\omega+jz+t_{1}\left(1+j\right)y\right)=\mu^{n}\left(\omega+jz\right)+t_{1}\left(1+j\right)y.$$

Proof (Cont'd)

On the other hand, as $n \to \infty$,

$$M^{n}(\omega+jz+t_{1}(1+j)y)=M^{n}((\omega+t_{1}y)+j(z+t_{1}y)).$$

As shown previously, $M^{n}(\omega+t_{1}y)$ and $M^{n}(z+t_{1}y)$

converge to a scalar multiple of ones, resp.

However, $\mu^n(\omega + jz)$ converges only when $\mu = 1$, under the constraint $|\mu| = 1$.

Exercise

For any positive Markov matrix, if λ is an eigenvalue with an associated *positive* eigenvector, then $\lambda = 1$.

Detailed Solution

By hypothesis, $Mx = \lambda x$, with M a positive Markov matrix and x a positive eigenvector.

Clearly, λ can only be a positive real eigenvalue.

Without loss of generality, we can assume that x is a positive probability vector.

By the remarkable result, $M^n x = \lambda^n x$ must converge to a probability vector. If $\lambda < 1$, then a contradiction occurs.

Another Proof (by Matt)

Let $x = (x_1, x_2, ..., x_n)^T$ be the positive eigenvector associated with λ . Then, $Mx = \lambda x$ implies:

$$m_{i1}x_1 + \dots + m_{in}x_n = \lambda x_i, \ \forall i = 1, 2, \dots, n.$$

Summing up these equations, and using the fact that

M is a Markov matrix, it holds:

$$x_1 + \dots + x_n = \lambda (x_1 + \dots + x_n)$$

$$\Rightarrow \lambda = 1$$
.

Note: indeed, we only need to assume

$$x_1 + \cdots + x_n \neq 0$$
.

Positive Matrices

The following linear equations often occur as a simple model for the growth of a set of biological objects:

$$x_i(n+1) = \sum_{j=1}^{N} a_{ij} x_j(n), i = 1, 2, \dots, N.$$

Or, in compact matrix notation,

$$x(n+1) = Ax(n),$$

where $A = (a_{ij})_{N \times N}$ is a positive matrix, i.e. $a_{ij} > 0$.

Problem

Determine the behavior of $x_i[n]$ as $n \to \infty$?

Theorem of Perron (1907)

(1) If A is a positive matrix, there is a unique eigenvalue of A, denoted as $\lambda_{\max}(A)$, which has the greatest absolute value.

(2) This eigenvalue $\lambda_{\text{max}}(A)$ is positive and simple, and its associated eigenvector may be taken positive.

Proof. See the textbook.

Application: A Limit Theorem

Let $c \neq 0$ be any nonnegative vector. Then,

$$v = \lim_{n \to \infty} A^n c / \lambda_{\max} (A)^n$$

exists and is an eigenvector of A associated with $\lambda_{\max}(A)$, unique up to a scalar multiple determined by the choice of c, but otherwise independent of the initial state c.

See the textbook.

As a result,

the solution of x(n+1) = Ax(n), with $A = (a_{ij})$ a positive matrix, asymptotically looks like

$$x(n) \sim \lambda^n \gamma$$
, $\lambda = \lambda_{\max}(A)$: Perron root

where γ is a (positive) eigenvector associated with λ , or a positive multiple of a special normalized eigenvector.

For the population example described by

$$x(n+1) = Ax(n),$$

the above result implies that:

regardless of the initial population, we will approach a steady-state situation where the total population grows exponentially, but the proportions of the total various species remain constant.

Continuous Growth Processes

Starting with a discrete-time process with a small time interval Δ , then

$$x_i(t+\Delta) = (1+a_{ii}\Delta)x_i(t) + \Delta\sum_{j\neq i}a_{ij}x_j(t)$$

 $i = 1, 2, \dots, N$; $a_{ij} = \text{rates of production}$.

Letting $\Delta \rightarrow 0$, we have

$$\dot{x}_i = a_{ii}x_i + \sum_{j \neq i} a_{ij}x_j, \quad 1 \leq i \leq N.$$

Continuous Version of Perron's Theorem

If $a_{ij} > 0$, $i \neq j$, then the eigenvalue of A with largest real part, denoted as $\rho(A)$, is real and simple. There is an associated positive eigenvector which is unique up to a multiplicative constant.

Note: The asymptotic behavior of $x_i(t)$, as $t \to \infty$, is determined by $\rho(A)$.

Exercise from Mathematical Economics

(K.D. Arrow & A.C. Enthoven, 1956)

If A has all negative diagonal elements, and no negative off-diagonal elements, if D is a diagonal matrix, and if the real parts of the eigenvalues of both A and DA are negative, then the diagonal elements of D are positive.

Other Notions and Extensions

- Irreducible matrix
- Perron-Frobenuis theory
- Stochastic and doubly stochastic matrices

Irreducible Matrix

A nonnegative matrix $A \in \mathbb{R}^{n \times n}_+$ is said to be irreducible, if for every pair (i, j), $\exists k \ge 1$ such that the (i, j) entry of A^k is positive.

Example 1: Positive Markov matrices

Example 2: Any matrix $A \in \mathbb{R}_{+}^{n \times n}$ with the property that $A^{k} > 0$ for some $k \ge 1$. Such a matrix is known as "primitive matrix".

Is the converse true?

Remark: Irreducible Matrices may not be primitive

A Counter-Example:

The following matrix

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

is a (nonnegative) irreducible matrix, but A^k is not a positive matrix for *any* k. (Do you know why?)

Comment (Primitive matrices)

Definition: A matrix $A \in \mathbb{R}^{n \times n}$ is primitive, if it is irreducible and has only one nonzero eigenvalue of maximum modulus.

Theorem

For any matrix $A \in \mathbb{R}_+^{n \times n}$, A is primitive, if and only if A^m is a positive matrix for some $m \ge 1$.

(See the text of Horn-Johnson, 2013, page 540, for a proof.)
Fall 2017 Prof.Jiang@ECE NYU

Examples

Show that the matrix

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

is irreducible.

• How about an upper-triangular matrix

like
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
?

Interesting Result

Let $A \in \mathbb{R}^{n \times n}$ be a nonnegative irreducible matrix.

Then, $(I_n + A)^{n-1}$ is a positive matrix.

Proof: follows from the following identity

$$(I_n + A)^{n-1} = \sum_{k=1}^{n-1} {n-1 \choose k} A^{n-1-k}$$

and Caley-Hamilton Theorem.

Exercise

For any nonnegative matrix $A \in \mathbb{R}^{n \times n}$ and a diagonal matrix $D \in \mathbb{R}^{n \times n}$ with positive entries in the diagonal.

The following statements are equivalent:

- 1) A is irreducible;
- 2) AD is irreducible;
- 3) DA is irreducible.

Perron-Frobenius Theory

For any nonnegative irreducible matrix $A \in \mathbb{R}^{n \times n}$, it holds:

- 1) the spectral radius $\rho(A) \triangleq \max \{|\lambda| : \lambda \in \sigma(A)\}$ is an eigenvalue of A.
- 2) $\exists u \in \mathbb{R}_{>0}^n$, such that $Au = \rho(A)u$.
- 3) The algebraic multiplicity of $\rho(A)$ is one.

Stochastic and Doubly Stochastic Matrices

Consider a nonnegative matrix $P = (p_{ij}) \in \mathbb{R}_{+}^{n \times n}$.

- 1) It is stochastic, if $\sum_{j=1}^{n} p_{ij} = 1$, $\forall i$.
- 2) It is doubly stochastic, if both P and P^T are stochastic.

Theorem of Birkhoff-von Neumann

Any doubly stochastic matrix $P \in \mathbb{R}^{n \times n}$ is a convex combination of finitely many permutation matrices. That is,

$$P = \sum_{i=1}^{m} \lambda_i P_i$$
, with $\lambda_i \ge 0$, $\sum_i \lambda_i = 1$,

where P_i is a permutation matrix derived from

 I_n after interchanging some of the rows.