ML Task: Classification & Regression Using Decision Trees

You are required to build two machine learning models using decision trees:

- 1. Classification on the Iris dataset
- 2. Regression on the Diamond dataset (Price prediction)

Part 1: Iris Classification

Goal: Predict the species of Iris flower using the following features:

- SepalLengthCm
- SepalWidthCm
- PetalLengthCm
- PetalWidthCm

Steps to follow:

- 1. Exploratory Data Analysis (EDA) & Visualization:
 - Check data types, nulls, value counts
 - Visualize feature distributions using histograms or KDE plots
 - Use pair plots or scatter plots to explore relationships between features
 - Visualize class distribution (species)

2. Model Building:

- Use DecisionTreeClassifier
- Perform GridSearchCV to tune hyperparameters such as:
- max_depth
- min_samples_split
- min_samples_leaf
- criterion (gini or entropy)

3. Model Evaluation:

- Perform cross-validation using the best model
- Evaluate using:
- Accuracy
- Precision, Recall, F1-score
- Confusion Matrix

4. Model Interpretation:

- Print the decision tree using plot_tree or export_text
- Show feature importances
- Check for overfitting by comparing training vs validation scores

Part 2: Diamond Price Regression

Goal: Predict the price of a diamond using features like:

- carat, cut, color, clarity, x, y, z, depth, table

Steps to follow:

- 1. EDA & Visualization:
 - Explore the distribution of the price and numeric features
 - Plot price vs carat, price vs depth, etc.
 - Boxplots for price by cut, color, and clarity
 - Detect and handle any anomalies or outliers
- 2. Data Cleaning and Preprocessing:
- Encode categorical features: cut, color, clarity
- Try scaling numerical features (especially for linear regression comparison)
- 3. Model Building:
- Train a DecisionTreeRegressor and tune using GridSearchCV with parameters like:
- max_depth, min_samples_split, min_samples_leaf, criterion (mse or mae)
- Train a Linear Regression model for comparison
- 4. Model Evaluation:
- Use cross-validation to compare both models (e.g., using cross_val_score)
- Report metrics like:
- Mean Squared Error (MSE)
- R² score
- 5. Model Interpretation:
- Print the decision tree
- Show feature importances
- Analyze if model is overfitting