

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号
特開2002-189448
(P2002-189448A)

(43)公開日 平成14年7月5日(2002.7.5)

(51) Int.Cl. ⁷	識別記号	F I	テマコード(参考)
G 09 G 3/30		G 09 G 3/30	J 3 K 0 0 7
G 09 F 9/30	3 3 8	G 09 F 9/30	3 3 8 5 C 0 8 0
	3 6 5		3 6 5 Z 5 C 0 9 4
G 09 G 3/20	6 2 4	G 09 G 3/20	6 2 4 B
	6 7 0		6 7 0 J

審査請求 未請求 請求項の数20 OL (全12頁) 最終頁に続く

(21)出願番号	特願2001-313951(P2001-313951)
(22)出願日	平成13年10月11日(2001.10.11)
(31)優先権主張番号	特願2000-312391(P2000-312391)
(32)優先日	平成12年10月12日(2000.10.12)
(33)優先権主張国	日本 (JP)

(71)出願人	000002369 セイコーエプソン株式会社 東京都新宿区西新宿2丁目4番1号
(72)発明者	河西 利幸 長野県飯田市大和3丁目3番5号 セイコ ーエプソン株式会社内
(74)代理人	100095728 弁理士 上柳 雅善 (外2名)

最終頁に続く

(54)【発明の名称】 有機エレクトロルミネッセンス素子を含む駆動回路及び電子機器及び電気光学装置

(57)【要約】

【課題】 消費電力の増加やレイアウトスペースの増大をほとんど伴わずに逆バイアスの印加を実現できる有機エレクトロルミネッセンス素子駆動回路を実現する。

【解決手段】 スイッチ20-1, 20-2を設け、有機エレクトロルミネッセンス素子を逆バイアス状態に設定する。各画素単位、画面を構成する各ライン画素単位、全画素同時など、所定画素単位で逆バイアス状態に設定する。電源を追加する必要もなく、消費電力の増加やレイアウトスペースの増大をほとんど伴わずに逆バイアス印加を実現でき、有機エレクトロルミネッセンス素子の長寿命化を図ることができる。

1

【特許請求の範囲】

【請求項1】 有機エレクトロルミネッセンス素子を含む複数の画素がマトリクス状に配列された有機エレクトロルミネッセンス表示装置をアクティブ駆動する駆動回路であって、前記有機エレクトロルミネッセンス素子を所定領域単位で逆バイアス状態に設定する逆バイアス設定回路を含むことを特徴とする駆動回路。

【請求項2】 有機エレクトロルミネッセンス素子を含む複数の画素がマトリクス状に配列された有機エレクトロルミネッセンス表示装置をアクティブ駆動する駆動回路であって、前記有機エレクトロルミネッセンス素子のうち所定領域内の画素に含まれる有機エレクトロルミネッセンス素子を逆バイアス状態に設定する逆バイアス設定回路を含むことを特徴とする駆動回路。

【請求項3】 前記逆バイアス設定回路は、前記有機エレクトロルミネッセンス素子の少なくとも一方の電極の電気的な接続状態を、第1の電位を供給する第1の電源線との接続状態及び前記第1の電位よりも低い第2の電位を供給する第2の電源線との接続状態のいずれか一方に切換えるスイッチを有することを特徴とする請求項1または2に記載の駆動回路。

【請求項4】 前記逆バイアス設定回路は、前記有機エレクトロルミネッセンス素子の陰極側の電気的な接続状態を、第1の電位を供給する第1の電源線との接続状態及び前記第1の電位よりも低い第2の電位を供給する第2の電源線との接続状態のいずれか一方に切換えるスイッチを有することを特徴とする請求項1または2に記載の駆動回路。

【請求項5】 前記スイッチは各画素に対応して設けられ、前記スイッチを制御することによって各画素単位で前記有機エレクトロルミネッセンス素子を逆バイアス状態に設定するようにすることを特徴とする請求項3または4に記載の駆動回路。

【請求項6】 前記スイッチは前記画素の各ラインに対応して設けられ、前記スイッチを制御することによって1ライン単位で前記有機エレクトロルミネッセンス素子を逆バイアス状態に設定するようにすることを特徴とする請求項3乃至5のいずれかに記載の駆動回路。

【請求項7】 前記スイッチは前記画素全体に対して1つだけ設けられ、このスイッチを制御することによって全画素同時に前記有機エレクトロルミネッセンス素子を逆バイアス状態に設定するようにすることを特徴とする請求項3または4に記載の駆動回路。

【請求項8】 前記スイッチは特定画素のみに対して設けられ、このスイッチを制御することによって前記特定画素のみについて前記有機エレクトロルミネッセンス素子を逆バイアス状態に設定するようにすることを特徴とする請求項3または4に記載の駆動回路。

【請求項9】 複数の電気光学素子がマトリクス状に配列された電気光学装置を駆動する駆動回路であって、前

2

記複数の電気光学素子のうち少なくとも1つの電気光学素子を逆バイアス状態に設定する逆バイアス設定回路を含むこと、を特徴とする駆動回路。

【請求項10】 請求項1乃至6のいずれかに記載の駆動回路を備えるアクティブマトリクス型表示装置が実装されてなる電子機器。

【請求項11】 電気光学素子を含む複数の画素がマトリクス状に配列された表示装置をアクティブ駆動する駆動回路を有する電気光学装置であって、

10 前記駆動回路が、前記電気光学素子を所定領域単位で逆バイアス状態に設定する逆バイアス設定回路を含むことを特徴とする電気光学装置。

【請求項12】 電気光学素子を含む複数の画素がマトリクス状に配列された表示装置をアクティブ駆動する駆動回路を有する電気光学装置であって、

前記駆動回路が、前記電気光学素子のうち所定領域内の画素に含まれる電気光学素子を逆バイアス状態に設定する逆バイアス設定回路を含むことを特徴とする電気光学装置。

20 【請求項13】 前記逆バイアス設定回路が、前記電気光学素子の少なくとも一方の電極の電気的な接続状態を、第1の電位を供給する第1の電源線との接続状態及び前記第1の電位よりも低い第2の電位を供給する第2の電源線との接続状態のいずれか一方に切換えるスイッチを有することを特徴とする請求項11または12に記載の電気光学装置。

【請求項14】 前記逆バイアス設定回路は、前記電気光学素子の陰極側の電気的な接続状態を、第1の電位を供給する第1の電源線との接続状態及び前記第1の電位よりも低い第2の電位を供給する第2の電源線との接続状態のいずれか一方に切換えるスイッチを有することを特徴とする請求項11または12に記載の電気光学装置。

【請求項15】 前記スイッチは各画素に対応して設けられ、前記スイッチを制御することによって各画素単位で前記電気光学素子を逆バイアス状態に設定するようにしたことを特徴とする請求項13または14に記載の電気光学装置。

40 【請求項16】 前記スイッチは前記画素の各ラインに對応して設けられ、前記スイッチを制御することによって1ライン単位で前記電気光学素子を逆バイアス状態に設定するようにしたことを特徴とする請求項13乃至15のいずれかに記載の電気光学装置。

【請求項17】 前記スイッチは前記画素全体に対して1つだけ設けられ、このスイッチを制御することによって全画素同時に前記電気光学素子を逆バイアス状態に設定するようにしたことを特徴とする請求項13または14に記載の電気光学装置。

【請求項18】 前記スイッチは特定画素のみに対して設けられ、このスイッチを制御することによって前記特

50

定画素のみについて前記電気光学素子を逆バイアス状態に設定するようにしたことを特徴とする請求項13または14に記載の電気光学装置。

【請求項19】複数の電気光学素子がマトリクス状に配列された電気光学素子を駆動する駆動回路を有する電気光学装置であって、前記駆動回路が、前記複数の電気光学素子のうち少なくとも1つの電気光学素子を逆バイアス状態に設定する逆バイアス設定回路を含むこと、を特徴とする電気光学装置。

【請求項20】前記電気光学素子が有機エレクトロルミネッセンス素子であることを特徴とする請求項11乃至19に記載の電気光学装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は有機エレクトロルミネッセンス(Electro Luminescense)素子を用いたアクティブマトリクス型表示装置の駆動回路及び電子機器及び電気光学装置に関し、特に有機エレクトロルミネッセンス素子の劣化を抑制するために有機エレクトロルミネッセンス素子に対し逆バイアス印加する機能を有した駆動回路及び電子機器及び電気光学装置に関する。

【0002】

【従来の技術】電気光学素子の一つである有機エレクトロルミネッセンス素子からなる複数の画素をマトリクス状に配列することによって有機EL表示装置を実現できることが知られている。有機エレクトロルミネッセンス素子は、例えばMg:Ag、Al:Li等の金属電極による陰極と、ITO(Indium Tin Oxide)からなる透明電極による陽極との間に、発光層を含む有機積層薄膜を有す構成をとる。

【0003】有機エレクトロルミネッセンス素子を用いたアクティブマトリクス型表示装置の駆動回路の一般的な構成が図9に示されている。同図において、有機エレクトロルミネッセンス素子はダイオードD10として表記されている。また駆動回路は、薄膜トランジスタ(TFT)からなる二つのトランジスタTr1、Tr2と、電荷を蓄積する容量素子C2とから構成されている。

【0004】トランジスタTr1及びTr2は共にPチャネル型のTFTであるものとする。同図中の容量素子C2に蓄積された電荷に応じてトランジスタTr1の導通状態が制御される。容量素子C2の充電は、選択電位V_{SEL}をローレベルにすることによってオン状態になったトランジスタTr2を介してデータ線V_{DAT}によって行う。トランジスタTr1がオン状態になると、トランジスタTr1を介して有機エレクトロルミネッセンス素子D10に電流が流れ。この電流を有機エレクトロルミネッセンス素子D10に供給することにより、有機エレクトロルミネッセンス素子D10は継続して発光する。

【0005】図9の回路に関する簡単なタイミングチャートが図10に示されている。図10に示されているよ

うに、データ書き込みを行う場合には、選択電位V_{SEL}をローレベルにすることによって、トランジスタTr2をオン状態にして、容量素子C2を充電する。この充電期間が同図中の書き込み期間T_Wである。この書き込み期間T_Wの後、実際に表示を行う期間となる。この期間においては、容量素子C2に蓄積された電荷によりトランジスタTr1の導通状態が制御される。この期間が同図中の表示期間T_Hである。

【0006】また、図11には、有機エレクトロルミネッセンス素子駆動回路の他の構成が示されている。同図に示されている駆動回路は、文献「The Impact of Transient Response of Organic Light Emitting Diodes on the Design of Active Matrix OLED Displays」(1998 IEEE IEDM 98-875)に記載されている。同図において、Tr1は駆動トランジスタ、Tr2は充電制御トランジスタ、Tr3は第1の選択トランジスタ、Tr4は容量素子C2の充電期間にオフ状態になる第2の選択トランジスタである。

【0007】ここでよく知られているように、トランジスタは同一規格のものであってもその特性にはばらつきがある。そのため、トランジスタのゲート電極に同一の電圧を印加した場合でも、必ずしもトランジスタに一定の電流が流れる訳ではなく、これが輝度むら等の要因となることがある。しかしながら、この駆動回路ではデータ信号に応じた値の書き込み電流が電流源4から供給され、データ信号によりトランジスタのゲート電圧を調節することができ、これにより有機エレクトロルミネッセンス素子の発光状態を制御することができる。

【0008】トランジスタTr1～Tr4はすべてPチャネル型トランジスタであり、選択電位V_{SEL}をローレベルにすることにより、トランジスタTr2及びTr3をオン状態にし、電流源4の出力に応じた値の電荷が容量素子C2に蓄積される。そして、選択電位V_{SEL}がハイレベルとなり、Tr2およびTr3がオフ状態となった後に、容量素子C2に蓄積された電荷によりトランジスタTr1の導通状態が制御され、データ保持制御信号V_{gp}によってトランジスタTr4がオン状態になることにより、有機エレクトロルミネッセンス素子D10に容量素子C2に蓄積された電荷に応じた電流が供給される。

【0009】図11の回路に関する簡単なタイミングチャートが図12に示されている。図12に示されているように、電流源4によるデータ書き込みを行う場合には、選択電位V_{SEL}をローレベルにすることによって、トランジスタTr2、Tr3をオン状態にして、容量素子C2を充電する。この充電期間が同図中の書き込み期間T_Wである。次に電位V_{SEL}をハイレベルに、トランジスタTr2、Tr3をオフ状態に、データ保持制御信号V_{gp}をローレベルにすることにより、容量素子C2に蓄積された電荷に基づいてトランジスタTr1の導通状態が決定され、容量素子C2に蓄積された電荷に応じた電流が有機エ

クトロルミネッセンス素子10に供給される。この期間が表示期間 T_H になる。

【0010】図13には有機エレクトロルミネッセンス素子駆動回路のさらに別の構成が示されている。同図に示されている駆動回路は、特開平11-272233号公報に記載されている回路である。同図において、駆動回路は、オン状態になっているときに電源による電流を有機エレクトロルミネッセンス素子10に与える駆動トランジスタTr1と、このトランジスタTr1の導通状態を制御するための電荷を蓄積する容量素子2と、外部信号に応じて容量素子2への充電を制御する充電制御トランジスタTr5とを含んで構成されている。なお、有機エレクトロルミネッセンス素子10を発光させる場合、充電制御トランジスタTr7をオフ状態にするために電位 V_{rscan} をローレベルの状態に保持しておく。これにより、リセット信号 V_{rsig} は出力されない。尚、Tr6は調整用のトランジスタである。

【0011】この駆動回路において、有機エレクトロルミネッセンス素子10を発光させる場合、トランジスタTr5をオン状態にし、データ線 V_{DATA} によってトランジスタTr6を介して容量素子2を充電する。この充電レベルに応じてトランジスタTr1のソースードレイン間のコンダクタンスを制御し、有機エレクトロルミネッセンス素子10に電流を流せば良い。すなわち、図14に示されているように、トランジスタTr5をオン状態にするために電位 V_{scan} をハイレベルの状態にすれば、トランジスタTr6を介して容量素子2が充電される。この充電レベルに応じてトランジスタTr1のソースードレイン間のコンダクタンスが制御され、有機エレクトロルミネッセンス素子10に電流が流れることになる。

【0012】

【発明が解決しようとする課題】ところで、有機エレクトロルミネッセンス素子に逆バイアスを印加することは、有機エレクトロルミネッセンス素子の長寿命化に効果的な手段であることが知られている。この長寿命化については、例えば特開平11-8064号公報に記載されている。

【0013】しかしながら、同公報の方法では、有機エレクトロルミネッセンス素子に逆バイアス印加を行う場合、新たにマイナス電源などの追加電源を用意し、有機エレクトロルミネッセンス素子に逆バイアスをかけるように制御することが必要になる。

【0014】そこで本発明は、消費電力やコストの増加をほとんど伴わずに有機エレクトロルミネッセンス素子に逆バイアスを印加することのできる有機エレクトロルミネッセンス素子の駆動回路及び電子機器及び電気光学装置を提供することを目的とする。

【0015】

【課題を解決するための手段】本発明の第1の駆動回路は、有機エレクトロルミネッセンス素子を含む複数の画

素がマトリクス状に配列された有機エレクトロルミネッセンス表示装置をアクティブ駆動する駆動回路であつて、前記有機エレクトロルミネッセンス素子を所定領域単位で逆バイアス状態に設定する逆バイアス設定回路を含むこととする。

【0016】本発明の第2の駆動回路は、有機エレクトロルミネッセンス素子を含む複数の画素がマトリクス状に配列された有機エレクトロルミネッセンス表示装置をアクティブ駆動する駆動回路であつて、前記有機エレクトロルミネッセンス素子のうち所定領域内の画素に含まれる有機エレクトロルミネッセンス素子を逆バイアス状態に設定する逆バイアス設定回路を含むこととする。

【0017】本発明の第3の駆動回路は、上記駆動回路であつて、前記逆バイアス設定回路は、前記有機エレクトロルミネッセンス素子の少なくとも一方の電極の電気的な接続状態を、第1の電位を供給する第1の電源線との接続状態及び前記第1の電位よりも低い第2の電位を供給する第2の電源線との接続状態のいずれか一方に切換えるスイッチを有することとする。

20 【0018】要するに、駆動回路に対する第1電源と第2電源との接続状態をスイッチで切換えてるので、電源を追加する必要もなく、消費電力やコストの増加をほとんど伴わずに有機エレクトロルミネッセンス素子に逆バイアスを印加することができる。この場合、一般的には、第1電源が V_{CC} で、第2電源がグランド(GND)であり、もともと用意されている電位を用いる。もっとも、有機エレクトロルミネッセンス素子を発光させるのに充分な電位差が確保できれば、それらに限定されることはない。

30 【0019】本発明の第4の駆動回路は、上記駆動回路であつて、前記逆バイアス設定回路は、前記有機エレクトロルミネッセンス素子の陰極側の電気的な接続状態を、第1の電位を供給する第1の電源線との接続状態及び前記第1の電位よりも低い第2の電位を供給する第2の電源線との接続状態のいずれか一方に切換えるスイッチを有することとする。

【0020】本発明の第5の駆動回路は、上記駆動回路であつて、前記スイッチは各画素に対応して設けられ、前記スイッチを制御することによって各画素単位で前記40 有機エレクトロルミネッセンス素子を逆バイアス状態に設定するようにすることとする。

【0021】本発明の第6の駆動回路は、上記駆動回路であつて、前記スイッチは前記画素の各ラインに対応して設けられ、前記スイッチを制御することによって1ライン単位で前記有機エレクトロルミネッセンス素子を逆バイアス状態に設定するようにすることとする。

【0022】本発明の第7の駆動回路は、上記駆動回路であつて、前記スイッチは前記画素全体に対して1つだけ設けられ、このスイッチを制御することによって全画

50 素同時に前記有機エレクトロルミネッセンス素子を逆バ

イアス状態に設定することとする。

【0023】本発明の第8の駆動回路は、上記駆動回路であって、前記スイッチは特定画素のみに対して設けられ、このスイッチを制御することによって前記特定画素のみについて前記有機エレクトロルミネッセンス素子を逆バイアス状態に設定することとする。

【0024】本発明の第9の駆動回路は、複数の電気光学素子がマトリクス状に配列された電気光学装置を駆動する駆動回路であって、前記複数の電気光学素子のうち少なくとも1つの電気光学素子を逆バイアス状態に設定する逆バイアス設定回路を含むこととする。

【0025】本発明の第1の電子機器は、上記駆動回路を備えるアクティブマトリクス型表示装置が実装されることとなる電子機器であることとする。

【0026】本発明の第1の電気光学装置は、電気光学素子を含む複数の画素がマトリクス状に配列された表示装置をアクティブ駆動する駆動回路を有する電気光学装置であって、前記駆動回路が、前記電気光学素子を所定領域単位で逆バイアス状態に設定する逆バイアス設定回路を含むこととする。

【0027】本発明の第2の電気光学装置は、電気光学素子を含む複数の画素がマトリクス状に配列された表示装置をアクティブ駆動する駆動回路を有する電気光学装置であって、前記駆動回路が、前記電気光学素子のうち所定領域内の画素に含まれる電気光学素子を逆バイアス状態に設定する逆バイアス設定回路を含むこととする。

【0028】本発明の第3の電気光学装置は、前記逆バイアス設定回路が、前記電気光学素子の少なくとも一方の電極の電気的な接続状態を、第1の電位を供給する第1の電源線との接続状態及び前記第1の電位よりも低い第2の電位を供給する第2の電源線との接続状態のいずれか一方に切換えるスイッチを有することとする。

【0029】本発明の第4の電気光学装置は、前記逆バイアス設定回路が、前記電気光学素子の陰極側の電気的な接続状態を、第1の電位を供給する第1の電源線との接続状態及び前記第1の電位よりも低い第2の電位を供給する第2の電源線との接続状態のいずれか一方に切換えるスイッチを有することとする。

【0030】本発明の第5の電気光学装置は、前記スイッチが各画素に対応して設けられ、前記スイッチを制御することによって各画素単位で前記電気光学素子を逆バイアス状態に設定することとする。

【0031】本発明の第6の電気光学装置は、前記スイッチが前記画素の各ラインに対応して設けられ、前記スイッチを制御することによって1ライン単位で前記電気光学素子を逆バイアス状態に設定することとする。

【0032】本発明の第7の電気光学装置は、前記スイッチが前記画素全体に対して1つだけ設けられ、このスイッチを制御することによって全画素同時に前記電気光

学素子を逆バイアス状態に設定することとする。

【0033】本発明の第8の電気光学装置は、前記スイッチは特定画素のみに対して設けられ、このスイッチを制御することによって前記特定画素のみについて前記電気光学素子を逆バイアス状態に設定することとする。

【0034】本発明の第9の電気光学装置は、複数の電気光学素子がマトリクス状に配列された電気光学素子を駆動する駆動回路を有する電気光学装置であって、前記駆動回路が、前記複数の電気光学素子のうち少なくとも1つの電気光学素子を逆バイアス状態に設定する逆バイアス設定回路を含むこととする。

【0035】本発明の第10の電気光学装置は、前記電気光学素子が有機エレクトロルミネッセンス素子であることとする。

【0036】

【発明の実施の形態】次に、図面を参照して本発明の実施の形態について説明する。なお、以下の説明において20 参照する各図では、他の図と同等部分は同一符号によって示されている。

【0037】(1) 従来の駆動回路に対する逆バイアス印加

①図9の回路における逆バイアス印加

図2は本発明による有機エレクトロルミネッセンス素子を用いたアクティブマトリクス型表示装置の駆動回路の実施の一形態を示す回路図である。図2に示されているように、本例の有機エレクトロルミネッセンス素子駆動回路には、有機エレクトロルミネッセンス素子の陰極側を第2の電位(GND)から第1の電位(V_{CC})に切換えるためのスイッチ20を含んで構成されている。有機エレクトロルミネッセンス素子10を発光させる場合には、スイッチ20を第2の電位(GND)に接続すれば良い。この状態は、前述した図9の状態と同じになる。

【0038】一方、有機エレクトロルミネッセンス素子10に逆バイアスを印加するには、トランジスタTr1をオフ状態にし、スイッチ20を切換えて第1の電位(V_{CC})に設定すれば良い。このとき、有機エレクトロルミネッセンス素子の陽極側の電位は第1の電位

40 (V_{CC})以上にはなり得ないので、有機エレクトロルミネッセンス素子10には逆バイアスが印加されることになる。

【0039】但し、このとき有機エレクトロルミネッセンス素子の陽極側の寄生容量Cが小さい場合には、有機エレクトロルミネッセンス素子の陰極側の電位変化、すなわち第2の電位(GND)から第1の電位(V_{CC})への電位上昇に追従して陽極側の電位も上昇してしまい、十分に逆バイアスが印加されないことが有る。十分な逆バイアスを印加するためには陽極側の電位上昇を抑えることが必要であり、その手段としては陽極側の配線寄生

容量Cを大きくすることが考えられる。陽極側の寄生容量Cを大きくすることによって大きな逆バイアスを印加することができるが、有機エレクトロルミネッセンス素子の劣化防止を効果的に行うことができる。

【0040】そこで、陽極側の寄生容量を大きくする方法について図3を用いて説明する。まず、有機エレクトロルミネッセンス素子の一般的な断面構造を図3(a)を用いて説明する。

【0041】ガラス基板81上には半導体薄膜層が形成されている。トランジスタのソース領域82及びドレイン領域85が半導体薄膜層内に形成されている。ゲート絶縁層83は、トランジスタのソース領域82及びドレイン領域85を覆っている。トランジスタのゲート電極84がゲート絶縁層83上に形成されている。第1層間絶縁層86は、ゲート電極84及びゲート絶縁層83を覆っている。ゲート絶縁層83及び第1層間絶縁層86には接続孔が形成されている。トランジスタのソース領域82及びドレイン領域85と、ソース電極87及びドレイン電極91とは、接続孔に導電材料を埋め込むことによって接続されている。第2層間絶縁層88は、ソース電極87、ドレイン電極91及び第1層間絶縁層86を覆っている。ドレイン電極91は、ITOからなるからなる陽極89を介して発光層95を含む有機積層薄膜に接続されている。有機積層薄膜は、正孔注入層93と発光層95とを少なくとも含んでいる。有機積層薄膜上には、有機エレクトロルミネッセンス素子の陰極97が形成されている。この陰極97の電位を前述したスイッチ20によって、第2の電位(GND)から第1の電位(V_{CC})に切換えるのである。

【0042】次に、陽極側の寄生容量を大きくする方法について具体的に説明する。

【0043】(i) ソース電極とドレイン電極との間での寄生容量

有機エレクトロルミネッセンス素子の陽極89とトランジスタとの間の配線の近傍に導体部材を設け、配線との間で寄生容量を構成する。すなわち、図3(b)に示されているように、ソース電極87とドレイン電極91との間隔を通常よりも狭くしたり、両電極の対向する部分の面積を他の部分と比べ大きくすることによって、寄生容量Cを大きくすることができる。つまり、駆動トランジスタのソース電極とドレイン電極との間で寄生容量Cを構成するのである。

【0044】(ii) 絶縁膜層内に設けた金属層との間での寄生容量

また、図3(c)に示されているように、第1層間絶縁層86内に金属層92を設けることにより、この金属層92とドレイン電極91との間の寄生容量を大きくすることができる。つまり、第1層間絶縁層86内に設けられた金属層92とドレイン電極91との間で寄生容量Cを構成するのである。

【0045】いずれにしても、スイッチ20の設定を切換えるだけで、有機エレクトロルミネッセンス素子を発光状態あるいは逆バイアス状態にでき、しかもマイナスの電源電圧を新たに用意する必要がないので、消費電力が増加したり、レイアウトスペースが増大することはない。なお、このスイッチ20は、トランジスタを組み合わせて簡単に実現できる。

【0046】②図11の回路における逆バイアス印加図4に示されているように、有機エレクトロルミネッセンス素子10の陰極側にスイッチ20を設け、このスイッチ20を第2の電位(GND)から第1の電位(V_{CC})に切換えれば、図2の場合と同様に寄生容量Cを利用して、有機エレクトロルミネッセンス素子10を逆バイアス状態に設定することができる。

【0047】③図13の回路における逆バイアス印加さらに、前述した図13に示されている駆動回路についても、図5に示されているように、有機エレクトロルミネッセンス素子10の陰極側にスイッチ20を追加すれば良い。そして、このスイッチ20により、有機エレクトロルミネッセンス素子の陰極側を第1の電位(V_{CC})から第2の電位(GND)に切換えるのである。これにより、寄生容量Cを利用して、有機エレクトロルミネッセンス素子10を逆バイアス状態に設定することができる。

【0048】(2) 所定単位に対する逆バイアス印加ところで、有機エレクトロルミネッセンス素子を用いて表示装置を構成する場合、各有機エレクトロルミネッセンス素子が1つの画素に対応する。このため、前述した図2～図5の構成においては、各有機エレクトロルミネッセンス素子毎、すなわち各画素回路毎にスイッチを設けることになる。

【0049】①各画素毎に逆バイアス印加図1には、有機エレクトロルミネッセンス素子を有する各画素回路1-1, 1-2…と、これらに対応するスイッチ20-1, 20-2…との接続関係が示されている。

【0050】同図においては、有機エレクトロルミネッセンス素子を有する画素回路1-1に対応してスイッチ20-1が設けられ、画素回路1-2に対応してスイッチ20-2が設けられていることになる。つまり、各画素それぞれに対して前述したスイッチを設けているのである。そして、これらスイッチは、制御信号S1, S2で切換え制御する。この制御信号は、各画素回路内のキャパシタを充電している期間及び有機エレクトロルミネッセンス素子を発光させている期間を除く期間に入力し、各スイッチを切換え制御する。例えば前述した図4の実施例を例に取れば、この制御信号Sは、書込期間T_wを定める選択電圧V_{SEL}及び表示期間T_Hを定めるデータ保持制御信号V_{gp}を参照して容易に生成することができる。すなわち、図6(a)に示されているように、選

選電圧 V_{SEL} による書込期間 T_W 及びデータ保持制御信号 V_{gp} による表示期間 T_H 以外の期間を逆バイアス期間 T_B とすることになる。

【0051】②各ライン毎に逆バイアス印加

また、前述したスイッチを、画面を構成する画素の各ラインに対応して設けても良い。すなわち、図7に示されているように、画素回路1-11, 1-12…によるラインに対してスイッチ20-1を設け、また、画素回路1-21, 1-22…によるラインに対してスイッチ20-2を設けるのである。各ラインに対してスイッチを1つ設ける場合、図1の場合よりもスイッチ数を少なくすることができ、低コスト化が図れる。

【0052】このように画素の各ライン単位で逆バイアスを印可する場合、図6 (b) に示されているように、あるラインが逆バイアス期間 T_B である時、他のラインは書込期間 T_W 又は表示期間 T_H であることになる。このように、1つの画面を構成する複数のラインそれぞれに対応して上記スイッチを設けることにより、各ライン単位で定期的に逆バイアス状態に設定し、有機エレクトロルミネッセンス素子の長寿命化を図ることができるのである。

【0053】図6 (c) に示されているように、逆バイアス期間 T_B と書込期間 T_W を同時に実現できる画素回路については、あるラインについては逆バイアス期間 T_B 又は書込期間 T_W となり、他のラインについては表示期間 T_H となる。

【0054】③全画素同時に逆バイアス印加

さらに、画面を構成する画素全体に対して上記スイッチを1つだけ設け、このスイッチを制御することによって画面を構成する画素について全画素同時に有機エレクトロルミネッセンス素子を逆バイアス状態に設定しても良い。この場合、図8に示されているように、画素回路1-11, 1-12…及び画素回路1-21, 1-22…によって構成される画面に対して1つのスイッチ20を設け、このスイッチ20によって全画素を同時に逆バイアス状態に設定するのである。全画素に対してスイッチを1つだけ設ける場合、スイッチ数を最少にすることができ、より低コスト化を図ることができる。

【0055】全画素を同時に逆バイアス状態に設定する場合、図6 (d) に示されているように、1フレーム期間 F において、例えば書込期間 T_W 及び表示期間 T_H と同程度の長さといったように、所定の長さの逆バイアス期間 T_B を設ければ良い。同図では、1フレーム期間 F 中の先頭位置に逆バイアス期間 T_B を設け、その後に書込期間 T_W 及び表示期間 T_H を連続して設けているが、1フレーム期間 F 中における逆バイアス期間 T_B の位置は任意で良い。

【0056】④特定画素のみに逆バイアス印加

ところで、有機エレクトロルミネッセンス素子でカラー表示装置を実現する場合、例えば赤、緑、青のように異

なる発光色を有する有機エレクトロルミネッセンス材料を用いることがある。一般に、有機エレクトロルミネッセンス材料が異なる場合、その寿命には差が生じる。そのため、複数の有機エレクトロルミネッセンス材料によって表示装置を構成したとき、最も短寿命の有機エレクトロルミネッセンス材料の寿命が表示装置の寿命を決定することになる。そこで特定画素のみに逆バイアス印加することが考えられる。この場合、次の2つの方法が考えられる。(i) 短寿命の画素を表示する有機エレクトロルミネッセンス素子についてのみ逆バイアス状態にする処理を行う方法。(ii) 短寿命の画素を表示する有機エレクトロルミネッセンス素子に逆バイアスを印加する回数を、他の有機エレクトロルミネッセンス素子に逆バイアスを印加する回数よりも多くする。このような方法においても、表示画面全体の寿命を延ばすことができる。

【0057】また、例えば表示画面を部分的にオレンジ色、青色、緑色等の特定の色で表示する、いわゆるエリア表示を行う有機エレクトロルミネッセンス表示装置においては、寿命の短いエリアを表示する有機エレクトロルミネッセンス素子についてのみ逆バイアス状態にしても良い。この場合においても、表示画面の寿命を延ばすことができる。

【0058】ところで、以上では有機エレクトロルミネッセンス素子を用いたアクティブマトリクス型表示装置の駆動回路について説明したが、本発明の適用範囲はこれに限らず、例えば、TFT-LCD、FED (Field Emission Display)、電気泳動素子や電場反転素子、レーザーダイオード、LEDなど、有機エレクトロルミネッセンス素子以外の電気光学素子を用いたアクティブマトリクス型の表示装置にも適用することができる。

【0059】つぎに、以上に説明した駆動回路1を備えて構成されるアクティブマトリクス型表示装置を適用した電子機器のいくつかの事例について説明する。図15はこのアクティブマトリクス型表示装置を適用したモバイル型のパーソナルコンピュータの構成を示す斜視図である。この図において、パーソナルコンピュータ1100は、キーボード1102を備えた本体部1104と、表示ユニット1106とにより構成され、この表示ユニット1106が前記アクティブマトリクス型表示装置100を備えている。

【0060】また、図16は前述の駆動回路を備えて構成されるアクティブマトリクス型表示装置100をその表示部に適用した携帯電話機の構成を示す斜視図である。この図において、携帯電話機1200は、複数の操作ボタン1202のほか、受話口1204、送話口1206とともに、前記のアクティブマトリクス型表示装置100を備えている。

【0061】また、図17は前述の駆動回路を備えて構成されるアクティブマトリクス型表示装置100をその

13

ファインダに適用したデジタルスチルカメラの構成を示す斜視図である。なお、この図には外部機器との接続についても簡易的に示している。ここで通常のカメラは、被写体の光像によりフィルムを感光するのに対し、デジタルスチルカメラ1300は、被写体の光像をCCD(Charge Coupled Device)などの撮像素子により光電変換して撮像信号を生成する。デジタルスチルカメラ1300におけるケース1302の背面には、アクティブマトリクス型表示装置100が設けられ、CCDによる撮像信号に基づいて表示を行う構成になっており、アクティブマトリクス型表示装置100は被写体を表示するファインダとして機能する。また、ケース1302の観察側(図においては裏面側)には、光学レンズやCCDなどを含んだ受光ユニット1304が設けられている。

【0062】撮影者が駆動回路に表示された被写体像を確認しシャッタボタン1306を押下すると、その時点におけるCCDの撮像信号が、回路基板1308のメモリに転送・格納される。また、このデジタルスチルカメラ1300にあっては、ケース1302の側面に、ビデオ信号出力端子1312と、データ通信用の入出力端子1314とが設けられている。そして、図に示されるように、前者のビデオ信号出力端子1312にはテレビモニタ1430が、また、後者のデータ通信用の入出力端子1314にはパーソナルコンピュータ1430が、それぞれ必要に応じて接続される。さらに、所定の操作により回路基板1308のメモリに格納された撮像信号が、テレビモニタ1430や、パーソナルコンピュータ1440に出力される構成になっている。

【0063】なお、本発明のアクティブマトリクス型表示装置100が適用される電子機器としては、図15のパーソナルコンピュータや、図16の携帯電話、図17のデジタルスチルカメラの他にも、液晶テレビや、ビューファインダ型、モニタ直視型のビデオテープレコーダ、カーナビゲーション装置、ページャ、電子手帳、電卓、ワードプロセッサ、ワークステーション、テレビ電話、POS端末、タッチパネルを備えた機器等などが挙げられる。そして、これらの各種電子機器の表示部として、前述したアクティブマトリクス型表示装置100が適用可能であることは言うまでもない。

【0064】

【発明の効果】以上説明したように本発明は、所定画素単位で有機エレクトロルミネッセンス素子を逆バイアス状態に設定するので、消費電力の増加やレイアウトスペースの増大をほとんど伴わずに逆バイアス印加を実現でき、有機エレクトロルミネッセンス素子の長寿命化を図ることができるという効果がある。また、寄生容量を利用することにより、電源を追加せずに逆バイアス印加を実現でき、有機エレクトロルミネッセンス素子の長寿命化を図ることができるという効果がある。

【図面の簡単な説明】

【図1】本発明による有機エレクトロルミネッセンス素子駆動回路の実施の一形態を示すブロック図である。

【図2】本発明による有機エレクトロルミネッセンス素子駆動回路の構成例を示すブロック図である。

【図3】本発明による有機エレクトロルミネッセンス素子駆動回路における画素回路の断面構成を示す図である。

【図4】本発明による有機エレクトロルミネッセンス素子駆動回路の他の構成例を示すブロック図である。

【図5】本発明による有機エレクトロルミネッセンス素子駆動回路の他の構成例を示すブロック図である。

【図6】本発明による有機エレクトロルミネッセンス素子駆動回路の動作を示す波形図である。

【図7】本発明による有機エレクトロルミネッセンス素子駆動回路の実施の他の形態を示すブロック図である。

【図8】本発明による有機エレクトロルミネッセンス素子駆動回路の実施の他の形態を示すブロック図である。

【図9】従来の有機エレクトロルミネッセンス素子駆動回路の構成例を示すブロック図である。

【図10】図9の有機エレクトロルミネッセンス素子駆動回路の動作を示す波形図である。

【図11】従来の有機エレクトロルミネッセンス素子駆動回路の他の構成例を示すブロック図である。

【図12】図11の有機エレクトロルミネッセンス素子駆動回路の動作を示す波形図である。

【図13】従来の有機エレクトロルミネッセンス素子駆動回路の他の構成例を示すブロック図である。

【図14】図13の有機エレクトロルミネッセンス素子駆動回路の動作を示す波形図である。

【図15】本発明の一実施例による駆動回路を備えたアクティブマトリクス型表示装置を、モバイル型のパーソナルコンピュータに適用した場合の一例を示す図である。

【図16】本発明の一実施例による駆動回路を備えたアクティブマトリクス型表示装置を、携帯電話機の表示部に適用した場合の一例を示す図である。

【図17】本発明の一実施例による駆動回路を備えたアクティブマトリクス型表示装置を、ファインダ部分に適用したデジタルスチルカメラの斜視図を示す図である。

【符号の説明】

1-1, 1-2, 1-11 画素回路

1-12, 1-21, 1-22 画素回路

2 キャパシタ

4 電流源

10 有機エレクトロルミネッセンス素子

20, 20-1, 20-2 スイッチ

C 寄生容量

50 T r 1 ~ T r 7 トランジスタ

【図1】

【図3】

(a)

(b)

(c)

【図2】

【図4】

【図10】

【図14】

【図5】

【図6】

【図7】

【図8】

【図9】

【図11】

【図13】

【図15】

【図16】

【図17】

フロントページの続き

(51) Int.C1.7

H 0 5 B 33/08
33/14

識別記号

F I

H 0 5 B 33/08
33/14

テマコード(参考)

A

F ターム(参考) 3K007 AB11 AB18 BA06 DA01 DB03
EB00 GA00
5C080 AA06 BB05 DD22 DD29 FF11
JJ03 JJ04
5C094 AA15 AA31 AA45 AA56 BA03
BA27 CA19 DB01 DBO4 DB10
EA04 FB01 FB20 GA10