Отчет по лабораторной работе 3.6.1

«Спектральный анализ электрических сигналов»

Цель работы: изучение спектрального состава периодических электрических сигналов

В работе используются: анализатор спектра СК4-56, генератор прямоугольных импульсов Γ 5-54, генератор сигналов специальной формы Γ 6-34, осциллограф C1-76.

Теоретические сведения:

Представление периодического сигнала в виде суммы гармонических сигналов называется разложением в ряд Фурье.

Пусть заданная функция f(t) периодически повторяется с частотой $\Omega_1 = \frac{2\pi}{T}$, где T – период повторения. Ее разложение в ряд Фурье имеет вид

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n \Omega_1 t) + b_n \sin(n \Omega_1 t) \right]$$

Здесь $\frac{a_0}{2}$ - среднее значение f(t),

$$a_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \cos(n\Omega_1 t) dt,$$

$$b_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \sin(n\Omega_1 t) dt.$$

Рассмотрим периодические функции, которые исследуются в нашей работе.

1. Периодическая последовательность прямоугольных импульсов (рис. 1) с амплитудой V_0 , длительностью τ , частотой повторения $\Omega_1 = \frac{2\pi}{T}$, где T – период повторения импульсов. Найдем коэффициенты разложения ряда Фурье:

$$\begin{split} \frac{a_0}{2} &= V_0 \frac{\tau}{T}, \\ a_n &= \frac{2}{T} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} V_0 \cos(n\Omega_1 t) dt = 2V_0 \frac{\tau}{T} \frac{\sin(n\Omega_1 \frac{\tau}{2})}{n\Omega_1 \frac{\tau}{2}} \sim \frac{\sin x}{x}. \end{split}$$

Поскольку наша функция четная, все коэффициенты синусоидальных гармоник $b_n = 0$. Спектр a_n последовательности прямоугольных импульсов представлен на рис.2 (изображен случай, когда T кратно τ).

Рис 1: Прямоугольные импульсы

Puc 2: Спектр последовательности прямоугольных импульсов

Назовем **шириной спектра** $\Delta \omega$ расстояние от главного максимума ($\omega = 0$) до первого нуля огибающей, возникающего при $n = \frac{2\pi}{\tau \Omega_1}$. При этом

$$\Delta \omega \tau \simeq 2\pi$$

или

$$\Delta v \, \Delta t \simeq 1 \tag{1}$$

Полученное соотношение взаимной связи интервалов Δv и Δt является частным случаем соотношения неопределенности в квантовой механике.

2. Периодическая последовательность цугов гармонического колебания $V_0cos(\omega_0t)$ с длительностью цуга т и периодом повторения T (рис. 3).

Функция f(t) снова является четной относительно t=0. Коэффициент при n-й гармонике равен

$$a_{n}\!=\!\frac{2}{T}\int_{-\frac{\tau}{2}}^{\frac{\tau}{2}}V_{0}\cos(n\Omega_{1}t)dt\!=\!2V_{0}\frac{\tau}{T}(\frac{\sin[(\omega_{0}\!-\!n\Omega_{1})\frac{\tau}{2}]}{(\omega_{0}\!-\!n\Omega_{1})\frac{\tau}{2}}\!+\!\frac{\sin[(\omega_{0}\!+\!n\Omega_{1})\frac{\tau}{2}]}{(\omega_{0}\!+\!n\Omega_{1})\frac{\tau}{2}})$$

Зависимость для случая, когда $\frac{T}{\tau}$ равно целому числу, представлена на рис. 4. Сравнивая спектр последовательности прямоугольных импульсов и цугов, мы видим, что они аналогичны, но их максимумы сдвинуты по частоте на величину ω_0 .

Рис 3: Последовательность цугов

Рис 4: Спектр последовательности цугов

3. Амплитудно-модулированные колебания. Рассмотрим гармонические колебания высокой частоты ω_0 , амплитуда которых медленно меняется по гармоническому закону с частотой Ω (Ω « ω_0) (рис. 5):

$$f(t) = A_0 [1 + m \cos \Omega t] \cos \omega_0 t$$
.

Коэффициент m называют глубиной модуляции. При m < 1 амплитуда колебаний меняется от минимальной $A_{min} = A_0(1-m)$ до максимальной $A_{max} = A_0(1+m)$. Глубина модуляции может быть представлена в виде:

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}}$$

Простым тригонометрическим преобразованием можно найти спектр амплитудно — модулированных колебаний:

$$f(t) = A_0 \cos(\omega_0 t) + \frac{A_0 m}{2} \cos(\omega_0 + \Omega)t + \frac{A_0 m}{2} \cos(\omega_0 - \Omega)t. \tag{3}$$

Спектр таких колебаний содержит три составляющих: основную компоненту и две боковых (рис. 6). Первое слагаемое в правой части представляет собой исходное не модулированное колебание с основной (несущей) частотой ω_0 и амплитудой $a_{och} = A_0$. Второе и третье слагаемые соответствуют новым гармоническим колебаниям с частотами $\omega_0 + \Omega$ и $\omega_0 - \Omega$. Амплитуды этих двух колебаний одинаковы и составляют m/2 от амплитуды не

модулированного колебания $a_{60\kappa} = \frac{A_0 m}{2}$. Начальные фазы всех трех колебаний одинаковы

Рис 5: Модулированные гармонические колебания

Рис 6: Спектр модулированных гармонических

Экспериментальные установки

1. Экспериментальная установка A для исследования спектра периодической последовательности прямоугольных импульсов представлена на рис.7. Сигнал с выхода генератора прямоугольных импульсов Г5-54 подается на вход анализатора спектра и одновременно на вход Y осциллографа. С генератора импульсов на осциллограф подается также сигнал синхронизации, запускающий ждущую развертку осциллографа. При этом на экране осциллографа можно наблюдать саму последовательность прямоугольных импульсов, а на экране ЭЛТ анализатора спектра распределение амплитуд спектральных составляющих этой последовательности.

Рис 7: Схема для исследования спектра периодической последовательности прямоугольных импульсов

2. Экспериментальная установка Б для исследования спектра периодической последовательности цугов гармонических колебаний (рис. 8). Генератор Г:-34 вырабатывает синусоидальные колебания высокой частоты. На вход АМ (амплитудная модуляция) генератора Г6-34 подаются прямоугольные импульсы с генератора Г5-54 и синусоида модулируется - «нарезается» на отдельные куски — цуги. Эти цуги с выхода генератора Г6-34 поступают на вход спектроанализатора и одновременно на вход У осциллографа. Сигнал синхронизации подается на осциллограф с генератора импульсов.

Рис 8: Схема для исследования спектра периодической последовательности цугов гармонических колебаний

3. Экспериментальная установка В для исследования спектра амплитудномодулированного сигнала (рис. 9). В генератор сигналов встроен модуляционный генератор, который расположен в левой части Γ 6-34. Синусоидальный сигнал с частотой модуляции $f_{\text{мод}} = 1 \ \kappa \Gamma \eta$ подается с модуляционного генератора на вход АМ (амплитудная модуляция) генератора, вырабатывающего синусоидальный сигнал высокой частоты (частота несущей

 $\upsilon_0 = 25 \ \mathrm{k} \Gamma$ ц). Амплитудно-модуляционный сигнал с основного выхода генератора поступает на осциллограф и на анализатор спектра.

Рис 9: Схема для исследования спектра амплитудно-модулированного сигнала

Ход работы

1. Исследование спектра периодической последовательности прямоугольных импульсов Соберем схему согласно рис. 7 и включим в сеть только генератор Г5-54. Установив на анализаторе режим работы с однократной разверткой, получим на его экране спектр импульсов с параметрами $f_{nosm} = 1 \ \kappa \Gamma u$; $\tau = 25 \ mkc$; частотный масштаб $m_x = 5 \ \kappa \Gamma u / \partial e n$. Полученная картина представлена на рис.10.

Рис 10: Спектр прямоугольных импульсов

При увеличении длительности импульсов т вдвое на экране получаем следующую картину (рис.11), а при увеличении вдвое f_{nosm} — рис.12. Таким образом, в первом случае уменьшилась ширина спектра, а во втором — увеличилось расстояние между компонентами спектра.

Рис 12: Спектр прямоугольных импульсов при

 $\tau = 50 \text{MKC}$

Теперь проведем измерения зависимости ширины спектра от длительности импульсов, оставляя неизменным $f_{nosm} = 1 \kappa \Gamma u$. Результаты занесем в таблицу и построим график зависимости $\Delta v(1/\tau)$.

N	T, MKC	Δν, κΓц	1/τ, 10 ⁻³ мкс ⁻¹
1	32	31	31.3
2	50	19.0	20.0
3	70	12.5	14.3
4	90	10.0	11.1
5	120	7.0	8.3
6	150	6.0	6.7
7	175	4.5 5.7	
8	200	3.5	5.0

Из него получаем уравнение аппроксимирующей прямой: $y = (1.029 \pm 0.017)x + (-1.497 \pm 0.268)$ Коэффициент наклона данной прямой удовлетворяет соотношению неопределенности (1).

2. Исследование спектра периодической последовательности цугов гармонических колебаний

Соберем схему, изображенную на рис.8. Установив частоту несущей $\upsilon_0 = 25$ к Γ ц, посмотрим, как изменяется вид спектра при увеличении длительности импульса вдвое (т.е. при $\tau = 50,100$ мкс, $f_{nosm} = 1$ к Γ ц). Получаем, что ширина спектра уменьшится, а модули спектра (амплитуда) увеличится.

При фиксированных значениях $f_{nosm}=1$ к Γ ц, $\tau=100$ мкс и частотном масштабе $m_x=5$ к Γ ц / дел посмотрим, как меняется картина спектра при изменении несущей частоты υ_0 (на генераторе Γ 6-34 $\upsilon_0=10$, 25, 40 к Γ ц). Результаты представлены на рисунках 13-15.

Рис 13: Спектр при частоте несущей $\upsilon_0 = 25 \ \kappa \Gamma \mu$

Рис 14: Спектр при частоте несущей υ_0 = 10 к Γ ц

Рис 15: Спектр при частоте несущей $\upsilon_0 = 40$ к Γ ц

При фиксированной длительности импульсов $\tau = 50$ мкс исследуем зависимость расстояния между соседними спектральными компонентами от периода T (частоты повторения импульсов f_{nosm}). Проведем измерения для 5-6 значений частоты f_{nosm} в диапазоне 1-8 кГц, подбирая горизонтальный масштаб m_x , удобный для измерений. Результаты занесем в таблицу и построим график зависимости расстояния между компонентами спектра δv 0 от частоты повторения импульсов f_{nosm} .

N	<i>f</i> _{повт} , кГц	δυ, κΓц	
1	1.0	1.2	
2	2.0	2.3	
3	3.5	3.7	
4	5.0	5.6	
5	6.5	7.2	
6	8.0	9.0	

Из него получаем уравнение аппроксимирующей прямой: $y = (1.10\pm0.02)x + (0.01\pm0.10)$. Из графика видно, что при стремлении частоты повторения к нулю стремится к нулю и расстояние между компонентами спектра.

3. Исследование спектра гармонических сигналов, модулированных по амплитуде Соберем схему, изображенную на рис.9 . Изменяя глубину модуляции на Γ 6-34, исследуем зависимость отношения амплитуды боковой линии спектра к амплитуде основной линии (A_{ocn}/A_{6ok}) от глубины модуляции m, которая находится из отношения амплитуд на осциллографе по формуле (2). Результаты занесем в таблицу и построим график.

N	A_{min}	A_{max}	A_{och}	$A_{ m бок}$	m	Абок/Аосн
1	1.0	1.8	6.0	1.1	0.29	0.18
2	0.6	2.0	6.3	2.0	0.54	0.32
3	0.4	2.3	6.5	2.7	0.70	0.42
4	0.2	2.5	6.3	3.2	0.85	0.51
5	0.8	1.8	6.3	1.5	0.38	0.24

Из него получаем уравнение аппроксимирующей прямой: $y = (0.54\pm0.03)x + (0.012\pm0.0007)$. Т.е. наш коэффициент $a = 0.54\pm0.03$, что примерно совпадает с теоретическим значением из формулы (3)

Вывод

В данной работе мы изучили понятие спектра и спектрального анализа, а также исследовали спектральный состав периодических электрических сигналов.

А именно, мы посмотрели на прямоугольные импульсы, цуги гармонических колебаний и гармонические сигналы, модулированные по амплитуде. Кроме того, нами экспериментально проверен частный случай выполнения соотношения неопределенности.