Teoremi di Fondamenti Matematici per l'Informatica

Carlo Ramponi May 16, 2019

Contents

1	L'ordinamento dei numeri naturali è un buon ordinamento	3
2	Il principio di induzione (seconda forma)	4
3	La divisione euclidea (esistenza e unicità)	5
4	Codifica dei natuali in base maggiore o uguale a 2	6
5	Il massimo comun divisore	8
6	Il minimo comune multiplo	9

1 L'ordinamento dei numeri naturali è un buon ordinamento

Enunciato

L'ordinamento dei numeri naturali è un buon ordinamento

Dimostrazione

Supponiamo che l'insieme $A\subseteq\mathbb{N}$ non abbia minimo e proviamo che allora $A=\emptyset$. Chiamiamo B il suo complementare $(B=\mathbb{N}\setminus A)$ e dimostriamo per induzione che

$$\forall n \in \mathbb{N} \quad \{0, 1, ..., n\} \subseteq B$$

- $0 \notin A$, altrimenti ne sarebbe il minimo, quindi $0 \in B$ e pertanto $\{0\} \subseteq B$.
- Supponiamo che $\{0, 1, ..., n\} \subseteq B$, allora $0, 1, ..., n \notin A$ e quindi $n+1 \notin A$, altrimenti ne sarebbe il minimo, ma allora $n+1 \in B$ e pertanto $\{0, 1, ..., n, n+1\} \subseteq B$.

Per il principio di induzione di prima forma un insieme con queste proprietà coincide con quello dei numeri naturali $(B = \mathbb{N})$ e quindi $A = \emptyset$

2 Il principio di induzione (seconda forma)

Enunciato

Sia P(n) una famiglia di proposizioni indicate su \mathbb{N} e si supponga che

- 1. P(0) sia vera
- 2. $\forall n > 0 (P(k)vera \forall k < n) \Rightarrow P(n)vera$

allora P(n) è vera $\forall n \in \mathbb{N}$

Dimostrazione

Sia $A = \{n \in \mathbb{N} | P(n) \text{ non è vera } \}$, e supponiamo per assurdo che $A \neq \emptyset$. Allora per la proprietà di buon ordinamento A ha minimo n.

Chiaramente $n \neq 0$ in quanto P(0) è vera per ipotesi.

Inoltre se k < n allora $k \notin A$ in quanto $n = \min A$, ma allora dalla (2) segue che P(n) è vera e quindi $n \notin A$, contraddicendo il fatto che $n \in A$.

3 La divisione euclidea (esistenza e unicità)

Enunciato

Siano $n, m \in \mathbb{Z}$ con $m \neq 0$, allora esistono unici $q, r \in \mathbb{Z}$ tali che

$$\begin{cases} n = mq + r \\ 0 \le r < |m| \end{cases}$$

Dimostrazione

- Esistenza Supponiamo dapprima che $n, m \in \mathbb{N}$, ed usiamo il principio di induzione della seconda forma su n.
 - Se n = 0 basta prendere q = 0 e r = 0.
 - Supponiamo n>0 e che la tesi sia vera $\forall k< n$. Se n< m basta prendere q=0 e r=n, altrimenti sia k=n-m, dato che $m\neq 0$, 0< k< n, quindi per ipotesi di induzione esistono $q,r\in\mathbb{N}$ tali che

$$\begin{cases} k = mq + r \\ 0 \le r < |m| \end{cases}$$

ma allora n = k + m = mq + r + m = (q + 1)m + r.

Supponiamo ora n < 0 e m > 0. Allora -n > 0 e quindi per il caso precedente si ha che esistono $q, r \in \mathbb{Z}$ tali che -n = mq + r e $0 \le r < m = |m|$. E quindi n = m(-q) - r. Se r = 0 abbiamo finito, se invece 0 < r < m allora 0 < m - r < m = |m| e n = m(-q) - r = m(-q) - m + m - r = m(-1 - q) + (m - r).

Sia infine m<0 allora -m>0, quindi per i due casi precedenti $\exists q,r\in\mathbb{Z}$ tali che n=(-m)q+r=m(-q)+r con $0\leq r<-m=|m|$

- Unicità Supponiamo che n=mq+r e n=mq'+r' con $0 \le r, r' < m$. Supponiamo che $r' \ge r$, allora m(q-q')=r'-r e quindi passando ai moduli si ha |m||q-q'|=|r'-r|=r'-r<|m|, da cui $0 \le |q-q'|<1$ e quindi |q-q'|=0 ovvero q=q'.
 - Ma allora da mq + r = mq' + r' segue che anche r = r'.

4 Codifica dei natuali in base maggiore o uguale a 2

Enunciato

Definizione Sia $b \in \mathbb{N}$, diremo che $n \in \mathbb{N}$ è rappresentabile in base b se esistono numeri $\epsilon_0, \epsilon_1, ..., \epsilon_k \in I_b = \{0, 1, ..., b - 1\}$ tali che $n = \epsilon_0 + \epsilon_1 b + \epsilon_2 b^2 + ... + \epsilon_k b^k$.

Sia $b \in \mathbb{N}, b \geq 2$. Allora ogni $n \in \mathbb{N}$ è rappresentabile in modo unico in base b. Ossia esiste una successione $\{\epsilon_i\}_{i\in\mathbb{N}}$ tale che:

- 1. $\{\epsilon_i \text{ è definitivamente nulla } (\exists i_0 \in \mathbb{N} : \epsilon_i = 0 \quad \forall i > i_0)$
- 2. $\epsilon_i \in I_b$ (ossia $0 \le \epsilon_i < b$) per ogni $i \in \mathbb{N}$
- 3. $n = \sum_{i=0}^{\infty} \epsilon_i b^i$

e se $\{\epsilon_i'\}_{i\in\mathbb{N}}$ è un'altra tale successione, allora $\epsilon_i=\epsilon_i'$ $\forall i\in\mathbb{N}$

Dimostrazione

Esistenza per induzione su n.

- 1. Se n = 0 basta prendere $\epsilon_i = 0 \quad \forall i \in \mathbb{N}$.
- 2. Supponiamo ora n > 0 e che la tesi sia vera per ogni k < n. Siano q, r tali che n = bq + r con $0 \le r < b$. Dato che $b \ge 2$ si ha che $0 \le q < bq \le bq + r = n$ e quindi per l'ipotesi di induzione esiste una successione definitivamente nulla $\{\delta_i\}_{i \in \mathbb{N}}$, costituita da interi tali che $0 \le \delta_i < b \quad \forall i \in \mathbb{N}$ e tale che $q = \sum_{i=0}^{\infty} \delta_i b^i$. Ma allora

$$n = bq + r = b\sum_{i=0}^{\infty} \delta_i b^i + r = \sum_{i=0}^{\infty} \delta_i b^{i+1} + r = \sum_{i=1}^{\infty} \delta_{i-1} b^i + r = \sum_{i=0}^{\infty} \epsilon_i b^i$$

dove si è posto $\epsilon_0 = r$ e $\epsilon_i = \delta_{i-1} \quad \forall i > 0$.

La successione $\{\epsilon_i\}$ è definitivamente nulla, dato che lo è $\{\delta_i\}$ ed inoltre $0 \le \epsilon_i = \delta_{i-1} < b \quad \forall i > 0 \text{ e } 0 \le \epsilon_0 = r < b.$

Unicità per induzione su n.

1. Se $n=0=\sum_i \epsilon_i b^i$ allora ogni addendo della somma, essendo non negativo, deve essere nullo e quindi $\epsilon_i=0 \quad \forall i\in\mathbb{N}$

2. Supponiamo ora n>0 e che l'espressione in base b sia unica per tutti i numeri k< n. Sia n tale che $n=\sum_{i=0}^{\infty}\epsilon_ib^i=\sum_{i=0}^{\infty}\epsilon_i'b^i$, allora possiamo scrivere

$$n = b \sum_{i=1}^{\infty} \epsilon_i b^{i-1} + \epsilon_0 = b \sum_{i=1}^{\infty} \epsilon'_i b^{i-1} + \epsilon'_0$$

ma per l'unicità della divisione euclidea si ha che $\epsilon_0=\epsilon_0'$ e $q=\sum_{i=1}^\infty \epsilon_i b^{i-1}=\sum_{i=1}^\infty \epsilon_i' b^{i-1}$. Come prima q< n e quindi per ipotesi induttiva si ha anche che $\epsilon_i=\epsilon_i'$ $\forall i\geq 1$

5 Il massimo comun divisore

Enunciato

Definizione Dati due interi $n, m \in \mathbb{Z}$ non entrambi nulli, si dice che d è un massimo comun divisore tra n e m se:

1.
$$d|n \in d|m$$
 (è un divisore)

2. Se
$$c|n$$
 e $c|m$ allora $c|d$ (è il massimo)

Proposizione Se d e d' sono due massimi comun divisori tra n ed m allora $d' = \pm d$.

Dimostrazione d è un divisore comune di n e m, quindi poichè d' è un massimo comun divisore di ha che d|d'. Scambiando i ruoli di d e d' si ha allora che anche d'|d e quindi si ha che $d' = \pm d$.

Definizione Diremo che d è il massimo comun divisore di n e m se è un massimo comun divisore positivo. La proposizione precedente ci garantisce che se esiste un massimo comun divisore esso è unico.

Dati due numeri $n, m \in \mathbb{Z}$ non entrambi nulli, allora esiste il massimo comun divisore tra n ed m.

Dimostrazione

Esistenza Si consideri l'insieme

$$S = \{ s \in \mathbb{Z} | s > 0, \exists x, y \in \mathbb{Z} : s = nx + my \}$$

 $S \neq \emptyset$ dato che nn+mm>0 (visto che
n ed m non sono entrambi nulli). Sia ora

$$d = nx + my = \min S$$

dimostriamo che d è il massimo comun divisore:

Se c|n e c|m allora n = ck e m = ch, quindi d = nx + my = ckx + chy = c(kx + hy), ossia c|d.

Dimostriamo ora che d|n:

consideriamo la divisione euclidea tra n e d, ossia n = dq + r con $0 \le r < d$, se r > 0, allora $r = n - dq = n - (nx + my)q = n(1 - qx) + (-m)y \in S$. Ciò è assurdo perchè r < d e $d = \min S$. Quindi r = 0 ossia d|n. In modo del tutto analogo si prova che d|m.

6 Il minimo comune multiplo

Enunciato

Definizione Dati due interi $n, m \in \mathbb{Z}$ si dice che M è un minimo comune multiplo di n ed m se:

1.
$$n|M \in m|M$$
 (è un multiplo)

2. se
$$n|c$$
 e $m|c$ allora $M|c$ (è il minimo)

Come nel caso del massimo comun divisore di dimostra che due minimi comuni multipli sono uguali a meno del segno e quindi si chiama il minimo comune multiplo quello positivo (è quindi unico)

Siano $n, m \in \mathbb{Z}$ non entrambi nulli, allora esiste il minimo comune multiplo tra $n \in \mathbb{Z}$.

Dimostrazione

Esistenza Sia

$$M = \frac{nm}{(n,m)} = n'm'(n,m)$$

dove si è posto

$$\begin{cases} n = n'(n, m) \\ m = m'(n, m) \end{cases}$$

Chiaramente allora M=nm'=n'm e quindi n|M e m|M. Se n|c e m|c allora (n,m)|c e quindi posto c=c'(n,m) si ha che n'|c' e m'|c'. Dato che (n',m')=1, si ha che n'm'|c' e quindi che M=n'm'(n,m)|c'(n,m)=c.