

Now, at wt =
$$\beta$$
,

 $\frac{V_m \sin (\beta - \theta)}{V_R^2 + (wL)^2} + \frac{V_m \sin \theta}{V_R^2 + (wL)^2} = 0$

Let $R = 100 \cdot D$, $L = 0.1 \text{ H}$, $R = 60 \cdot \text{Hz}$,

 $V_m = 100 \cdot V$
 $\theta = \frac{1}{2} \text{Tan}^{-1} \cdot 0.1 \text{ R}$
 $= \frac{100 \cdot B}{12 \text{ Tan}} = 0$
 $\Rightarrow \beta = 3.5 \text{ Rad}$
 $\Rightarrow \beta = 3$

Arre)

(WL>>R in practical ckt)