CIVE	6363 Fal	1997	Exam #1		
Name	:				

Page: 1

Instructions:

- (1) Be sure you have five (5) different problems.
- (2) Read each problem carefully.(3) Indicate the fundamental principles that you are using for each problem.

Solutions

1.

(a) What volume of solid material is present in one cubic meter of sandstone if the porosity is 20%?

(b) What volume of water is contained in one cubic meter of material if the porosity is 20% and the saturation expressed as a percentage of the pore space is 30%? Show calculations:

$$S_{\omega} = (0.3)(0.2)(lm^3) = 0.06m^3$$

(c) Write a Darcy's law. Define each term in your equation.

$$Q = -KA \frac{\Delta h}{\Delta x}$$

$$K - hydraulic conductivity$$

$$A - Flow area$$

$$\frac{\Delta h}{\Delta x} - gradient of head$$

(d) Write the water budget equation.

- 2. An aquifer is monitored by three wells located as shown. The head in each well is indicated on the map.
- a) Find the magnitude and direction of the hydraulic gradient in this aquifer.
- b) A tracer released near Well 1 arrives near Well 3 in 25 days. The aquifer has a porosity of 30%. Estimate the hydraulic conductivity of the aquifer.

ALTERNATIVE

$$100 = a 30 + b 10 + c$$

 $90 = q 10 + b 90 + c$
 $80 = a 90 + b 80 + c$

SOLVE

$$\begin{pmatrix} i30 & 10 & 1 \\ ii10 & 90 & 1 \\ iiiq0 & 80 & 1 \end{pmatrix} \begin{pmatrix} 9 \\ b \\ c \end{pmatrix} = \begin{pmatrix} 106 \\ 90 \\ 80 \end{pmatrix}$$

$$i_1 = 30 \ 10 \ 1 \ 100 \ i_2 = 30 \ 10 \ 1 \ 100 \ i_1 = 30 \ 10 \ 1 \ 100 \ i_1 = 30 \ i_2 = 20 \ i_1 = 30 \ i_1 = 30 \ i_1 = 30 \ i_2 = 20 \ i_1 = 20 \ i_1 = 30 \ i_2 = 20 \ i_1 = 30 \ i_1 = 30 \ i_1 = 30 \ i_2 = 20 \ i_1 = 30 \ i_1 = 30$$

$$30 \ 10 \ 1 \ 100$$
 $\frac{1}{30} \ 1 \ 0.333 \ 0.0333 \ 3.333$
 $\frac{3}{3}$
 $\frac{1}{260} \ 0 \ 1 \ 0.00769 \ 0.6538$
 $\frac{1}{50} \ 0 \ 1 \ -0.04 \ -4.4$
 $\frac{1}{11} - \frac{1}{10} \ 0 \ 0 \ -0.04769 \ -5.0538$

back substitute
$$C = \frac{-5.0538}{-0.04769} = 105.97$$

$$\frac{0.145}{0.216} \stackrel{?}{\downarrow} + \frac{0.161}{0.216} \stackrel{?}{j} = 0.671 \stackrel{?}{\downarrow} + 0.745 \stackrel{?}{j}$$

DISTANCE WELL I TO WELL 3

$$D = \sqrt{60^2 + 70^2} = 92.19$$

DIRECTION COSINES

$$\frac{60i}{92.19} + \frac{70j}{92.19} = 0.65i + 0.759j$$

VECTOR WELL 1 - WELL 3

PROJECTION ALONG FLOWLINE

$$\frac{D}{\Delta h} = 92.19 (0.65i + 0.759j) \cdot (0.671i + 0.745j)$$

$$= 92.19 (0.436 + 0.565) = 92.32$$

FLOWLINE IS NEARLY PARALLEL WITH

D.

$$U = \frac{L}{t} = \frac{92.32m}{25 dy} = 3.69 m/d$$

$$K = \frac{1.107m/d}{0.216} = 5-125m/d$$

3. An aquifer consists of the three formations shown. Each individual formation is homogeneous and isotropic. Derive formulas to determine the overall apparent hydraulic conductivity in the horizontal and vertical directions.

$$S_0 \quad K_V = \frac{300 + 150 + 220}{\frac{300}{11} + \frac{150}{78} + \frac{220}{8}} = \frac{670}{56.69} = \frac{11.8 \,\text{m/d}}{}$$

$$Q = KA \frac{h_1 - h_2}{D} = K(L_1 + L_2 + L_3)W \frac{h_1 - h_2}{D}$$

$$= Q_1 + Q_2 + Q_3$$

$$= K_1 L_1 W \frac{h_1 - h_2}{D} + K_2 L_2 W \frac{h_1 - h_2}{D} + K_3 L_3 W \frac{h_1 - h_2}{D}$$

$$= (K_1 L_1 + K_2 L_2 + K_3 L_3) \frac{W}{D} (h_1 - h_2)$$

K= K, L, + K2 L2 + K3 L3

L, + L2 + L3

4. Dog Run Creek penetrates a confined aquifer 3 meters thick (Figure 3.1). During a long drought the flow in the creek decreases by 1.1 cubic meters per second between two gaging (flow measurement) stations along the creek located 6 kilometers apart. On the west side of the creek the hydraulic head contours run parallel to the bank of the creek and the contour levels decrease as one moves away from the creek at a rate of 0.0007 m/m. The head contours on the east side of the creek are also parallel to the creek and the levels decrease as one moves towards the creek at a rate of 0.0003 m/m.

(a) Write a water balance for the aquifer in the 6 km section near the creek.

$$GW_{IN} + R_{IN} = GW_{00T}$$

$$GW_{IN} = -K(G_{000})(3)(0.0007)$$

$$GW_{00T} = -K(G_{000})(3)(G_{000})(3)$$
 $R_{IN} = 1.1 \text{ m}^3/\text{sec}$

(b) Use Darcy's Law and the water balance to estimate the hydraulic conductivity of the aquifer.

$$- K (6000)(3)(0.0007) + 1.1 m3/s = - K (6000)(3)(0.0003)$$

$$1.1m3/s = - K (6000)(3)(0.0003) + K (6000)(3)(0.0007)$$

$$K = \frac{1.1}{(6000)(3)(0.0004)} = 0.153 m/sec$$

5. The two maps below are shaded contour maps of an aquifer before and after 2.5 million cubic meters were pumped from the aquifer. The grid cells are 100 meters x 100 meters. The head values are in meters. The contour intervals are shown by the different color panels. Estimate the storativity of the aquifer.

A worksheet grid is provided to help calculate Δh for the aquifer.

Head in Aquifer - Befor	e:
-------------------------	----

	a maragani	1 - Delote	•							
	1	2	3	4	5	6	7	8	9	10
1	110	110	ماا	TO TO	109	108	107	107	106	105
2	110 /	lio	110	109	109	08	108	107	106	05
3	110 -	109	109	189	108	109	107	106	105	05
4	109	109	109	108	109	107	106	106	105	104
5		108	108	107	107	106	106	105	104	
6		107		106	106	105	101	104	103	ł i
7	•	165	104	103	102	102	103	102	102	101
8		104	104	103	102	02	102	lol	950	99
9		102	102	102	101	101	100	99	99	97
10	100	100	100	100	99	99	98	97	97	96

Head in Aquifer - After:

icau ii Aquitei - Aice.										
	1	2	3	4	5	6	7	8	9	1(
1	loo	100	100	99	98	97	96	94	92	91
2	100	100	600	99	90	97	96	14	92	91
3	100	100	160	99	58	97	26	94	92	9/
. 4	160	(00	(00	99	98	97	96	94	92	9/
5	100	100	001	99	98	17	96	94	92	91
6	. 00	(00	(10	99	98	97	96	94	92	11
7		(00	(00	99	18	77	96	94	१र	91
8		(00	100	99	18	97	98	94	92	1/
9	100	(00	[00	94	98	97	96	94	92	91
10		100	100	90	98	97	96	94	12	1/

Char	nge in head	d (Δh)	decl	انمو						
	1	2	3	4	5	6	7	8	9	10
1	10	ि	10	10	=	11.	11.)	[13]	14	14)
2	10	10	10	10	7	(1	[1	13	14	14
3	0	9	9	छ	9	U	11	12	13	14
4	9	9.	9	9	9	10	5	12	13	13
=	8	8	8	8.	9.	.9	10	1	12_	12)
6	7	· ,	1,	争	9	.4	9.	10	11	11.
7	ة خ *	\ 5 x	4 x	H	平	5×	F	87	0	10.
8	4 *	4	4 x	IJĸ	4,	5x	62	7	8	8.
9	2 ,	7.	25	3 ×	3,	メナ	¥ _x)5×	×	6x
10	0	0	D	1	l	2:	2	3,	5x	5x

λ

$$14 \times 35 = 70$$
 $13 \times 35 = 121$
 $10 \times 18 = 121$
 $10 \times 18 = 120$
 $10 \times 18 = 120$

AREA = 100 × 100

TOTAL VOLUME DEWATERED

791 *100 *100

791,0000 7.91.106 m3

Sy = Hounts

 $= \frac{2.5 \cdot 10^6 \text{m}^3}{7.91 \cdot 10^6 \text{m}^3}$

$$= 0.316$$