Post-event building damage assessment

Machine learning techniques for remote sensing data interpretation with application to disaster impact assessment.

Presenter: Victor Hertel

Prof. Dr. Christian Geiß

Increase of documented natural disasters since 1900

Data: EM-DAT - the International Disaster Database

How can remote sensing data be used for rapid *building damage assessment*?

Image analysis through artificial intelligence

- 20 068 satellite images
- 850 736 buildings
- 45 361 km²
- 19 natural disasters

Database: xBD

Al model

Image analysis through artificial intelligence

- 20 068 satellite images
- 850 736 buildings
- 45 361 km²
- 19 natural disasters

Database: xBD

Change detection

Session objectives

Application relevance

Machine learning workflow

Code implementation

optimize pre-trained model for volcanic building damage assessment

Terminology

Batch

Data splitting

Loss function	Measures the error between model predictions and actual values. The objective is to minimize this error during training.
Optimizer	Adjusts model parameters during training to minimize the loss function. It helps find the best values for the parameters by updating them iteratively based on gradients (backpropagation).
Learning rate	Controls how fast a model learns by determining the step size during parameter updates. Influences the speed of convergence and model accuracy.
Epoch	Complete pass through the training dataset during model training.

Subset of training dataset processed together during training before model parameter updates.

Dividing a dataset into three subsets: training, validation, and test sets.

Basics: *loss function* $f(Y, \widehat{Y}) = \text{Error between model predictions and actual values}$

Y Actual value

 \hat{Y} Model prediction

n Number of samples

i ith sample in dataset

Classification:

 $Y \in \mathbb{Z} \rightarrow \text{discrete values}$

Cross-entropy loss:

$$L = -\frac{1}{n} \sum_{i=1}^{n} y_i \cdot \log(\hat{y}_i)$$

Regression:

 $Y \in \mathbb{R} \rightarrow \text{continuous values}$

Mean squared error:

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

Basics: epoch & batch

Basics: data splitting

Dataset

60% 20% 20%

Basics: machine learning workflow

Basics: machine learning workflow

Basics: *u-net model architecture*

Stacked pre and post disaster imagery (6 bands)

Basics: model architecture

