INFO 2950: Intro to Data Science

Lecture 11 2023-09-27

Agenda

- 1. Admin
- 2. Logistic Regression Review
 - a. Logit interpretations
- 3. Linear Regression Review
 - a. Log-log interpretations
 - b. Multivariable Dummies

Admin

- HW2 solutions posted on Canvas
- HW3 must be submitted by Friday
 - Questions tagged on Gradescope correctly
 - PDFs not cut off
 - Problem 0 filled out fully

Prelim locations: Oct 2nd during class

- Last name A-T in Ives 305 (this room)
- Last name U-Z in Sage Hall B01
- SDS accommodations: emailed to you via the Alternative Testing Program (ATP); please let us know if you did not receive an email already

How do we derive interpretations for logistic regression?

- 1. Summarize
- 2. Prediction (intercept)

3. Oddities

The probability that x=0 yields output y=1 is $e^{\alpha}/(e^{\alpha}+1)$

If x=0, then probability p = $e^{\alpha}/(e^{\alpha}+1)$

To deal with the log odds ratio, we just have to "solve" for p (the probability that yields output y=1)

To deal with the log odds ratio, we just have to "solve" for p (the probability that yields output y=1)

The probability that x=0 yields output y=1 is $e^{\alpha}/(e^{\alpha}+1)$

If x = 0, then RHS expression $a+\beta x = a$

To deal with the log odds ratio, we just have to "solve" for p (the probability that yields output y=1)

- If x = 0, then RHS expression $a+\beta x = a$
- We set logit(p) = RHS = a

To deal with the log odds ratio, we just have to "solve" for p (the probability that yields output y=1)

- If x = 0, then RHS expression $a+\beta x = a$
- We set logit(p) = RHS = a
- logit(p) = log(p/[1-p]) = a

To deal with the log odds ratio, we just have to "solve" for p (the probability that yields output y=1)

- If x = 0, then RHS expression $a+\beta x = a$
- We set logit(p) = RHS = a
- logit(p) = log(p/[1-p]) = a exponentiate!
- $p/[1-p] = e^{\alpha}$

To deal with the log odds ratio, we just have to "solve" for p (the probability that yields output y=1)

- If x = 0, then RHS expression $a + \beta x = a$
- We set logit(p) = RHS = a
- logit(p) = log(p/[1-p]) = a
- $p/[1-p] = e^{\alpha}$ arithmetic: solve for p
- p = ____

To deal with the log odds ratio, we just have to "solve" for p (the probability that yields output y=1)

- If x = 0, then RHS expression $a + \beta x = a$
- We set logit(p) = RHS = a
- logit(p) = log(p/[1-p]) = a
- $p/[1-p] = e^{\alpha}$
- $p = e^{\alpha}/(e^{\alpha}+1)$

The probability that x=0 yields output y=1 is $e^{\alpha}/(e^{\alpha}+1)$

Note: you can use a similar process to do predictions with other values of x (instead of 0)!

For a 1 unit change in x, we expect the odds of y to be multiplied by e^{β}

1. Summarize

- 2. Prediction (intercept)
- 3. Oddities

For a 1 unit change in x, we expect the odds of y to be multiplied by $e^{\boldsymbol{\beta}}$

If x increases by 1 unit,
 → RHS (α+βx) total increases by β

- If x increases by 1 unit,
 - \rightarrow RHS (α + β x) total increases by β
 - \rightarrow LHS logit(p) increases by β

- If x increases by 1 unit,
 - \rightarrow RHS (α + β x) total increases by β
 - \rightarrow LHS logit(p) increases by β
- Let our original value of x give us: logit(p_{old})

- If x increases by 1 unit,
 - \rightarrow RHS (α + β x) total increases by β
 - \rightarrow LHS logit(p) increases by β
- Let our original value of x give us: logit(p_{old})
- Our new value of x+1 gives us logit(p_{new})

•
$$logit(p_{new}) = logit(p_{old}) + \beta$$

- $logit(p_{new}) = logit(p_{old}) + \beta$
- $log(p_{new} / [1-p_{new}]) = log(p_{old} / [1-p_{old}]) + \beta$

- $logit(p_{new}) = logit(p_{old}) + \beta$
- $\log(p_{\text{new}} / [1-p_{\text{new}}]) = \log(p_{\text{old}} / [1-p_{\text{old}}]) + \beta$
- Solve for odds ratio difference:
 - \circ p_{new} / [1-p_{new}] in terms of p_{old} / [1-p_{old}]

- $logit(p_{pew}) = logit(p_{old}) + \beta$ exponentiate!
 - $log(p_{new} / [1-p_{new}]) = log(p_{old} / [1-p_{old}]) + \beta$
- Solve for odds ratio difference:
 - $p_{\text{new}} / [1-p_{\text{new}}] \text{ in terms of } p_{\text{old}} / [1-p_{\text{old}}]$
- $p_{new} / [1-p_{new}] = e^{\beta *} p_{old} / [1-p_{old}]$

- $logit(p_{new}) = logit(p_{old}) + \beta$
- $log(p_{new} / [1-p_{new}]) = log(p_{old} / [1-p_{old}]) + \beta$
- Solve for odds ratio difference:
 - $p_{\text{new}} / [1-p_{\text{new}}] \text{ in terms of } p_{\text{old}} / [1-p_{\text{old}}]$
- $p_{\text{new}} / [1-p_{\text{new}}] = e^{\beta *} p_{\text{old}} / [1-p_{\text{old}}]$

Summarizing

For a 1 unit change in x, we expect the odds of y to be multiplied by $e^{\boldsymbol{\beta}}$

1 unit change in x is associated with a $100*(e^{\beta} - 1)\%$ change in y

For a 1 unit change in x, we expect the odds of y to be multiplied by e^{β}

1 unit change in x is associated with a $100*(e^{\beta} - 1)\%$ change in y

- Simply convert the previous "summarizing" interpretation from a multiplicative value to a percentage!
 - E.g. if something is doubled (2x), there's a $100^*(2-1)=100\%$ increase

Formalizing multivariable regression

i	x	у
1	78	18
2	83	14

i	X ₁	X ₂	X ₃	У
1	78	0	30.5	18
2	83	1	28.0	14

$$y_i = \alpha + \beta x_i + \epsilon_i$$

$$y_i = \alpha + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \beta_3 x_{3,i} + ... + \epsilon_i$$

Formalizing multivariable regression

	\bigcap	
i	x	у
1	78	18
2	83	14

y _i	_	a	+	β>	(_i +	- ε _i

i	x ₁	X ₂	X ₃	у
1	78	0	30.5	18
2	83	1	28.0	14
			\ <i>\</i>	•••

$$y_i = \alpha + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \beta_3 x_{3,i} + ... + \epsilon_i$$

skincare_df (data from Indonesia)

Product		Category	Brand	OverallRating
Perfect 3D Gel		Night Cream	Hada Labo	3.8
Aqua Beauty Protecting Mist	1.78	Face Mist	PIXY	4.2
Thermal Spring Water	13.13	Face Mist	Avene	4.4
White Secret Night Cream		Night Cream	Wardah	3.6
Mineral Water Spray	10.56	Face Mist	Evian	3.8
Vitamin E Hydrating Toner	11.15	Toner	The Body Shop	4.1
Skin Perfecting 2% BHA Liquid Exfoliant	25.74	Toner	Paula's Choice	4.3
Facial Lotion	0.99	Toner	Ovale	2.9
Centella Water Alcohol-Free Toner	10.36	Toner	Cosrx	4.0
Rose Water Toner	12.76	Toner	Mamonde	4.2

What if our outcome is a binary outcome?


```
ax = sns.scatterplot(data=skincare df,
     x="OverallRating", y="USD",
    hue="is_nosepack")
                                                 is_nosepack
        70
                                                    False
                                                    True
        60
        50
      OSD
        30
        20
        10
```

1.5

2.0

2.5

3.0

3.5

OverallRating

4.0

4.5

5.0

```
ax = sns.scatterplot(data=skincare_df,
    x="OverallRating", y="USD",
    hue="is nosepack")
```

Hypothesis: we can use product ratings and prices to predict whether a product is a nose pack or not

Multivar Logistic Regression (sklearn)

Define X

```
X = skincare_df[["OverallRating", "USD"]]
y = skincare_df[["is_nosepack"]].values.ravel()
m2 = LogisticRegression().fit(X,y)
yhat = m2.predict(X)
m2.intercept_
m2.coef_
```

Multivar Logistic Regression (sklearn)

```
Define y

X = skincare_df[["OverallRating", "USD"]]

y = skincare_df[["is_nosepack"]].values.ravel()

m2 = LogisticRegression().fit(X,y)

yhat = m2.predict(X)

m2.intercept_ ravel "flattens" 2d array
 so [[1,2,3]] → [1,2,3]
```

Multivar Logistic Regression (sklearn)

Define model m2 using a Logistic Regression

```
X = skincare_df[["OverallRating", "USD"]]
y = skincare_df[["is_nosepack"]].values.ravel()
m2 = LogisticRegression().fit(X,y)

yhat = m2.predict(X)
m2.intercept_
m2.coef_
```

Multivar Logistic Regression (sklearn)

```
X = skincare_df[["OverallRating", "USD"]]
y = skincare_df[["is_nosepack"]].values.ravel()
m2 = LogisticRegression().fit(X,y)

yhat = m2.predict(X)
m2.intercept_
m2.coef_
```

Predict and get α , β 's; same as before

Multivar Logit: Formulation

- y = is product a nose pack?
- x₁ = avg customer rating; x₂ = price in \$
- Hypothesis: we expect to see a [positive?
 negative?] effect of x_i on y
- $y \sim \sigma (x_1 + x_2)$
- $y \sim \sigma(\alpha + \beta_1 x_1 + \beta_2 x_2)$

Multivar Logit: Formulation

- y = is product a nose pack?
- x₁ = avg customer rating; x₂ = price in \$
- Hypothesis: I expect to see negative effects of both rating and price on y
- $y \sim \sigma (x_1 + x_2)$
- $y \sim \sigma(\alpha + \beta_1 x_1 + \beta_2 x_2)$

Multivar Logistic Regression

```
X = skincare_df[["OverallRating", "USD"]]
y = skincare_df[["is_nosepack"]].values.ravel()
m2 = LogisticRegression().fit(X,y)
yhat = m2.predict(X)
m2.intercept_______ array([1.47402304])
m2.coef_______ array([[-0.90925508, -0.30896428]])
```

Interpret: summarize x₁

- y = is product a nose pack?
- x₁ = avg customer rating; x₂ = price in \$
- $y \sim sigmoid(1.5 0.9x_1 0.3x_2)$
- $e^{-0.9} \approx 0.4$, $e^{-0.3} \approx 0.7$

Interpret: summarize x₁

- y = is product a nose pack?
- x₁ = avg customer rating; x₂ = price in \$
- $y \sim sigmoid(1.5 0.9x_1 0.3x_2)$
- $e^{-0.9} \approx 0.4$, $e^{-0.3} \approx 0.7$
- Our model estimates that, all else equal, for each additional star rating given to the product, the odds of the product being a nose pack are multiplied by 0.4 (a.k.a. 100*(0.4-1)% = decrease of 60% in odds)

- y = is product a nose pack?
- x₁ = avg customer rating; x₂ = price in \$
- $y \sim sigmoid(1.5 0.9x_1 0.3x_2)$
- Predict for $x_1 = 0$ and $x_2 = 0$:
- Hint: $e^R/(e^R+1)\approx 0.82$ where R refers to the RHS of solving: $logit(p) = log(p/[1-p]) = a+\beta_1x_1 + \beta_2x_2$

- y = is product a nose pack?
- $x_1 = avg$ customer rating; $x_2 = price$ in \$
- $y \sim sigmoid(1.5 0.9x_1 0.3x_2)$

Remember, we want to solve prediction: •
$$y \sim sigmoid(1.5 - 0.9x_1 - 0.3x_2)$$

 $logit(p) = log(p/[1-p]) = e^{R}/(e^{R}+1) = e^{1.5}/(e^{1.5}+1) \approx 0.82$

If $x_1=0$ and $x_2=0$, RHS is just a = 1.5

$$p = e^{R}/(e^{R}+1) =$$

 $e^{1.5}/(e^{1.5}+1) = 0.82$

- y = is product a nose pack?
- x₁ = avg customer rating; x₂ = price in \$
- $y \sim sigmoid(1.5 0.9x_1 0.3x_2)$
- $e^{1.5}/(e^{1.5}+1)\approx 0.82$
 - Our model predicts that, for a product with an average rating of 0 stars and price of 0, there is a $e^R/(e^R+1) = 0.82$ probability that the product is a nose pack.
- Remember, we want to solve prediction: $logit(p) = log(p/[1-p]) = \alpha + \beta_1 x_1 + \beta_2 x_2$
- If $x_1=0$ and $x_2=0$, RHS is just $\alpha = 1.5$
- $p = e^{R}/(e^{R}+1) =$ $e^{1.5}/(e^{1.5}+1) = 0.82$

- y = is product a nose pack?
- x₁ = avg customer rating; x₂ = price in \$
- $y \sim sigmoid(1.5 0.9x_1 0.3x_2)$
- Predict for $x_1 = 3$ and $x_2 = 3$:
- Hint: $e^R/(e^R+1)\approx 0.12$ where R refers to the RHS of solving: $logit(p) = log(p/[1-p]) = a+\beta_1x_1 + \beta_2x_2$

- y = is product a nose pack?
- x₁ = avg customer rating; x₂ = price in \$
- $y \sim sigmoid(1.5 0.9x_1 0.3x_2)$
 - Our model predicts that, for a product with an average rating of 3 stars and price of \$3, there is a $e^R/(e^R+1) = 0.12$ probability that the product is a nose pack.
- Remember, we want to solve prediction: $logit(p) = log(p/[1-p]) = \alpha + \beta_1 x_1 + \beta_2 x_2$
- If $x_1 = 3$ and $x_2 = 3$, RHS is 1.5 0.9*3 0.3*3 = -2.1

$$p = e^{R}/(e^{R}+1) =$$

 $e^{-2.1}/(e^{-2.1}+1) = 0.12$

Interpret: Oddities

- y = is product a nose pack?
- x₁ = avg customer rating; x₂ = price in \$
- $y \sim sigmoid(1.5 0.9x_1 0.3x_2)$

Interpret: Oddities

- y = is product a nose pack?
- x₁ = avg customer rating; x₂ = price in \$
- $y \sim sigmoid(1.5 0.9x_1 0.3x_2)$
- It doesn't make sense to have an x₁value that's not between 1-5, and it doesn't make sense to have a negative x₂

1 minute break

The midterm is right around the corner

Model	Interpretation		
Linear y = α + βx	1 unit change in x is associated with a β unit change in y		
Linear-log y = α + β ln(x)	If x is multiplied by e, we expect a β unit change in y 1% change in x is associated with a 0.01*β unit change in y		
Log-linear In(y) = α + βx	For a 1 unit change in x, we expect y to be multiplied by e^{β} 1 unit change in x is associated with a $100*(exp(\beta)-1)\%$ change in y		
Log-log $ln(y) = a + \beta ln(x)$	If x is multiplied by e , we expect y to be multiplied by e^{β} n(x) 1% change in x is associated with a β % change in y (<i>elasticity</i>)		

Model

Linear

$$y = \alpha + \beta x$$

Linear-log

$$y = \alpha + \beta \ln(x)$$

Log-linear

$$ln(y) = \alpha + \beta x$$

Log-log

$$ln(y) = \alpha + \beta ln(x)$$

Model

Linear

$$y = a + \beta x$$

Linear-log

$$y = a + \beta \ln(x)$$

Log-linear

$$ln(y) = \alpha + \beta x$$

Log-log

$$ln(y) = \alpha + \beta ln(x)$$

Model

Linear

$$y = a + \beta x$$

Linear-log

$$y = \alpha + \beta \ln(x)$$

Log-linear

$$ln(y) = a + \beta x$$

Log-log

$$ln(y) = \alpha + \beta ln(x)$$

Linear scale

Log-Linear line looks straight if we plot the y-axis on a log scale!

Model

Linear

$$y = a + \beta x$$

Linear-log

$$y = \alpha + \beta \ln(x)$$

Log-linear

$$ln(y) = \alpha + \beta x$$

Log-log

$$ln(y) = \alpha + \beta ln(x)$$

Linear-Log line looks straight if we plot the x-axis on a log scale!

Model

Linear

$$y = \alpha + \beta x$$

Linear-log

$$y = \alpha + \beta \ln(x)$$

Log-linear

$$ln(y) = \alpha + \beta x$$

Log-log

$$ln(y) = \alpha + \beta ln(x)$$

When to use log-log?

Model

Linear

$$y = a + \beta x$$

Linear-log

$$y = \alpha + \beta \ln(x)$$

Log-linear

$$ln(y) = a + \beta x$$

Log-log

$$ln(y) = \alpha + \beta ln(x)$$

When you want to 'smoosh' both axes, e.g. often with powers

Model	Interpretation	
Linear y = α + βx	1 unit change in x is associated with a β unit change in y	
Linear-log $y = \alpha + \beta \ln(x)$	If x is multiplied by e, we expect a β unit change in y 1% change in x is associated with a 0.01* β unit change in y	
Log-linear $ln(y) = \alpha + \beta x$	For a 1 unit change in x, we expect y to be multiplied by e^{β} 1 unit change in x is associated with a $100*(exp(\beta)-1)\%$ change in y	
Log-log $ln(y) = \alpha + \beta ln(x)$	If x is multiplied by e, we expect y to be multiplied by e^{β} 1% change in x is associated with a $\beta\%$ change in y (<i>elasticity</i>)	

Let's do log-log

```
Step 1, Write the model: log(y) = a+b*log(x)
Step 2, Define new variable for x: x_{new} = x^*e
Step 3. Define new variable for y: log(y_{new}) = a+b*log(x_{new})
Step 4, Plug in Step 2 to Step 3: log(y_{new}) = a+b*log(x*e)
Step 5, Use Step 1 to Rewrite Step 4's RHS in terms of y:
     log(y_{new}) = a+b*[log(x)+log(e)] because log(a*b)=log(a)+log(b)
     \log(y_{new}) = a+b*\log(x)+b*\log(e) = a+b*\log(x)+b*1 = a+b*\log(x)+b
     log(y_{new}) = log(y) + b
Step 6, Calculate the difference between y and y:
     y_{new} = e^{\log(y) + b} = e^{\log(y)} * e^b = y * e^b
     y_{pew} / y = e^b
```

For linear-log and log-log (any time we want to smoosh the x), the interpretation will involve multiplying by e (≈2.72)

```
Step 1, Write the model: log(y) = a+b*log(x)
Step 2. Define new variable for x: x_{new} = x^*e
Step 3. Define new variable for y: log(y_{new}) = a + b*log(x_{new})
Step 4, Plug in Step 2 to Step 3: log(y_{new}) = a+b*log(x*e)
Step 5, Use Step 1 to Rewrite Step 4's RHS in terms of y:
     log(y_{new}) = a+b*[log(x)+log(e)] because log(a*b)=log(a)+log(b)
     \log(y_{new}) = a+b*\log(x)+b*\log(e) = a+b*\log(x)+b*1 = a+b*\log(x)+b
     \log(y_{new}) = \log(y) + b
Step 6, Calculate the difference between y and y:
     y_{new} = e^{\log(y)+b} = e^{\log(y)} * e^b = y * e^b
     y_{pew} / y = e^b
```

Deriving interpretations If we didn't want to smoosh x, this would

```
Step 1, Write the model: log(y) = a+b*log(x) instead be x+1 (a 1
Step 2, Define new variable for x: x_{new} = x^*e unit change)
Step 3, Define new variable for y: log(y_{new}) = a + b*log(x_{new})
Step 4, Plug in Step 2 to Step 3: log(y_{new}) = a+b*log(x*e)
Step 5, Use Step 1 to Rewrite Step 4's RHS in terms of y:
     log(y_{new}) = a+b*[log(x)+log(e)] because log(a*b)=log(a)+log(b)
     \log(y_{new}) = a+b*\log(x)+b*\log(e) = a+b*\log(x)+b*1 = a+b*\log(x)+b
     log(y_{new}) = log(y) + b
Step 6, Calculate the difference between y and y:
     y_{new} = e^{\log(y) + b} = e^{\log(y)} * e^b = y * e^b
    y_{new} / y = e^b
```

Rewrite Step 1 using both new x and new y

```
Step 1, Write the model: log(y) = a+b*log(x)
```

Step 2. Define new variable for x:
$$x_{new} = x^*e$$

Step 3, Define new variable for y:
$$log(y_{new}) = a+b*log(x_{new})$$

Step 4, Plug in Step 2 to Step 3:
$$log(y_{new}) = a+b*log(x*e)$$

Step 5, Use Step 1 to Rewrite Step 4's RHS in terms of y

$$log(y_{new}) = a+b*[log(x)+log(e)]$$
 because $log(a*b)=log(a)+log(b)$

$$\log(y_{\text{new}}) = a + b*\log(x) + b*\log(e) = a + b*\log(x) + b*1 = a + b*\log(x) + b$$

$$\log(y_{\text{new}}) = \log(y) + b$$

Step 6, Calculate the difference between y and y:

$$y_{\text{new}} = e^{\log(y)+b} = e^{\log(y)} *e^b = y *e^b$$

 $y_{\text{new}} / y = e^b$

```
Step 1, Write the model: log(y) = a+b*log(x)
                        Step 2, Define new variable for x: x_{new} = x^*e
                        Step 3. Define new variable for y: log(y_{new}) = a+b*log(x_{new})
Get rid of x<sub>new</sub>
                        Step 4, Plug in Step 2 to Step 3: log(y_{new}) = a+b*log(x*e)
                        Step 5, Use Step 1 to Rewrite Step 4's RHS in terms of y:
                             log(y_{new}) = a+b*[log(x)+log(e)] because log(a*b)=log(a)+log(b)
                             \log(y_{new}) = a+b*\log(x)+b*\log(e) = a+b*\log(x)+b*1 = a+b*\log(x)+b
                             log(y_{new}) = log(y) + b
                        Step 6, Calculate the difference between y and y:
                             y_{new} = e^{\log(y)+b} = e^{\log(y)} * e^b = y * e^b
                             y_{pew} / y = e^b
```

```
Get rid of x
(often requires
log / exp rules)
```

```
Step 1, Write the model: log(y) = a+b*log(x)
Step 2, Define new variable for x: x_{new} = x^*e
Step 3. Define new variable for y: log(y_{new}) = a+b*log(x_{new})
Step 4, Plug in Step 2 to Step 3: log(y_{now}) = a+b*log(x*e)
Step 5, Use Step 1 to Rewrite Step 4's RHS in terms of y:
     log(y_{now}) = a+b*[log(x)+log(e)] because log(a*b)=log(a)+log(b)
     \log(y_{new}) = a+b*\log(x)+b*\log(e) = a+b*\log(x)+b*1 = a+b*\log(x)+b
     log(y_{new}) = log(y) + b
Step 6, Calculate the difference between y and y:
     y_{new} = e^{\log(y) + b} = e^{\log(y)} * e^b = y * e^b
     y_{pew} / y = e^b
```

```
Step 1, Write the model: log(y) = a+b*log(x)
Step 2, Define new variable for x: x_{new} = x^*e
Step 3. Define new variable for y: log(y_{new}) = a+b*log(x_{new})
Step 4, Plug in Step 2 to Step 3: log(y_{new}) = a+b*log(x*e)
Step 5, Use Step 1 to Rewrite Step 4's RHS in terms of y:
     log(y_{new}) = a+b*[log(x)+log(e)] because log(a*b)=log(a)+log(b)
     \log(y_{new}) = a+b*\log(x)+b*\log(e) = a+b*\log(x)+b*1 = a+b*\log(x)+b
     log(y_{new}) = log(y) + b
Step 6, Calculate the difference between y and y:
     y_{\text{new}} = e^{iog(y)+b} = e^{iog(y)} *e^b = y *e^b
     y_{pew} / y = e^b
```

Express y_{new} in terms of y. (If we're squishing y, it's multiplicative. If not, it's a unit change)

Squishing x with a log → interpret by multiplying x by e (or think about % change in x)

Model	Interpretation	
Linear y = α + βx	1 unit change in x is associated with a β unit change in y	
Linear-log $y = \alpha + \beta \ln(x)$	If x is multiplied by e we expect a β unit change in y 1% change in x is associated with a 0.01*β unit change in y	
Log-linear $ln(y) = \alpha + \beta x$	For a 1 unit change in x, we expect y to be multiplied by e^{β} 1 unit change in x is associated with a $100*(exp(\beta)-1)\%$ change in y	
Log-log $ln(y) = a + \beta ln(x)$	If x is multiplied by e we expect y to be multiplied by e^{β} 1% change in x is associated with a β % change in y (<i>elasticity</i>)	

Squishing y with a log → interpret by multiplying y by e^β (or think about % change in y)

Model	Interpretation
Linear y = α + βx	1 unit change in x is associated with a β unit change in y
Linear-log $y = \alpha + \beta \ln(x)$	If x is multiplied by e, we expect a β unit change in y 1% change in x is associated with a 0.01*β unit change in y
Log-linear $\ln(y) = \alpha + \beta x$	For a 1 unit change in x, we expect $\frac{1}{2}$ to be multiplied by e^{β} 1 unit change in x is associated with a $100^*(\exp(\beta)-1)\%$ change in y
Log-log $\ln(y) = \alpha + \beta \ln(x)$	If x is multiplied by e , we expect y to be multiplied by e^{β} 1% change in x is associated with a β % change in y (<i>elasticity</i>)

Back to multivariable regression

i	x	у
1	78	18
2	83	14

$$y_i = \alpha + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \beta_3 x_{3,i} + ... + \epsilon_i$$

Interpreting *more* dummies

- y = temperature (numerical)
- x_1 = air pressure (numerical)
- x_2 = season [spring, summer, fall, winter] (categorical)

Interpreting dummies

Temp (F)	Pressure	Season
80	81	Summer
50	63	Fall
70	75	Spring

Regression needs numbers, not words!

Interpreting dummies

Temp (F)	Pressure	Season	Season_num
80	81	Summer	2
50	63	Fall	3
70	75	Spring	1

If we map categories to numeric values, [Spring→Summer] = [Summer→Fall]... Problematic?

Interpreting dummies

Temp (F)	Pressure	Season	Season_num
80	81	Summer	2
50	63	Fall	3
70	75	Spring	1

Problem: Spring and Winter far away (1 vs 4) but they are likely more similar attribute-wise than Spring and Fall (1 vs 3)

Interpreting dummies

Temp (F)	Pressure	Season	Spring	Summer	Fall	Winter
80	81	Summer	0	1	0	0
50	63	Fall	0	0	1	0
70	75	Spring	1	0	0	0

get_dummies (without drop_first=True) gives us a new column for each unique Season value

y	X ₁			\mathbf{X}_{2}	\mathbf{x}_3	X ₄
Temp (F)	Pressure	Season	Spring	Summer	Fall	Winter
80	81	Summer	0	1	0	0
50	63	Fall	0	0	1	0
70	75	Spring	1	0	0	0

Why do we exclude "Spring"?

Why do we exclude "Spring"? We can derive that info from x_2 , x_3 , and x_4 !

Why do we exclude "Spring"? We can derive that info from x_2 , x_3 , and x_4 !

У	X ₁				x ₂	x ₃	X ₄
Temp (F)	Pressure	Season	Spring	l	Summer	Fall	Winter
80	81				1	0	0
50	63				0	1	0
70	75				0	0	0

Why do we exclude "Spring"? If all the other dummies x_2 , x_3 , and x_4 are 0, then the season must be Spring.

y	X ₁			x_{2}	X ₃	X ₄
Temp (F)	Pressure	Season	Spring	Summer	Fall	Winter
80	81	Summer	0	1	0	0
50	63	Fall	0	0	1	0
70	75	Spring	1	0	0	0

Spring = 1 - (Summer + Fall + Winter)

y	X ₁			X_2	X_3	X ₄
Temp (F)	Pressure	Season	Spring	Summer	Fall	Winter
80	81	Summer	0	1	0	0
50	63	Fall	0	0	1	0
70	75	Spring	1 <	0	0	0

Spring (a.k.a. x_2 , x_3 , and x_4 are 0) is our reference level.

- Regression: $y \sim x_1 + x_2 + x_3 + x_4$
- $y = temperature, x_1 = air pressure$
- x_2, x_3, x_4 = Summer, Fall, Winter
- How to understand difference between coefficients? Plug numbers in!

Dummy variables

- Regression: $y \sim x_1 + x_2 + x_3 + x_4$
- $y = temperature, x_1 = air pressure$
- x_2, x_3, x_4 = Summer, Fall, Winter

Season	x ₂	x ₃	X ₄	Equation	Simplified
Spring	0	0	0	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2^* 0 + \beta_3^* 0 + \beta_4^* 0$	
Summer	1	0	0	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2^{*1} + \beta_3^{*0} + \beta_4^{*0}$	
Fall	0	1	0	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2^* 0 + \beta_3^* 1 + \beta_4^* 0$	
Winter	0	0	1	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2^* 0 + \beta_3^* 0 + \beta_4^* 1$	

- Regression: $y \sim x_1 + x_2 + x_3 + x_4$
- $y = temperature, x_1 = air pressure$
- x_2, x_3, x_4 = Summer, Fall, Winter

Season	x ₂	x ₃	X ₄	Equation	Simplified
Spring	0	0	0	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2^* 0 + \beta_3^* 0 + \beta_4^* 0$	$y^{hat} = \alpha + \beta_1 x_1$
Summer	1	0	0	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2^{*1} + \beta_3^{*0} + \beta_4^{*0}$	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2$
Fall	0	1	0	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2^* 0 + \beta_3^* 1 + \beta_4^* 0$	$y^{hat} = \alpha + \beta_1 x_1 + \beta_3$
Winter	0	0	1	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2^{*0} + \beta_3^{*0} + \beta_4^{*1}$	$y^{hat} = \alpha + \beta_1 x_1 + \beta_4$

 What is the difference between the two highlighted simplified equations?

Season	x ₂	x ₃	X ₄	Equation	Simplified
Spring	0	0	0	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2^* 0 + \beta_3^* 0 + \beta_4^* 0$	$y^{hat} = \alpha + \beta_1 x_1$
Summer	1	0	0	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2^{*1} + \beta_3^{*0} + \beta_4^{*0}$	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2$
Fall	0	1	0	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2^* 0 + \beta_3^* 1 + \beta_4^* 0$	$y^{hat} = \alpha + \beta_1 x_1 + \beta_3$
Winter	0	0	1	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2^{*0} + \beta_3^{*0} + \beta_4^{*1}$	$y^{hat} = \alpha + \beta_1 x_1 + \beta_4$

β₂ represents the **difference** in output y^{hat} between summer and spring

Season	x ₂	x ₃	X ₄	Equation	Simplified
Spring	0	0	0	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2^* 0 + \beta_3^* 0 + \beta_4^* 0$	$y^{hat} = \alpha + \beta_1 x_1$
Summer	1	0	0	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2^{*1} + \beta_3^{*0} + \beta_4^{*0}$	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2$
Fall	0	1	0	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2^* 0 + \beta_3^* 1 + \beta_4^* 0$	$y^{hat} = \alpha + \beta_1 x_1 + \beta_3$
Winter	0	0	1	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2^{*0} + \beta_3^{*0} + \beta_4^{*1}$	$y^{hat} = \alpha + \beta_1 x_1 + \beta_4$

 What is the difference between the two highlighted simplified equations?

Season	x ₂	x ₃	X ₄	Equation	Simplified
Spring	0	0	0	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2^* 0 + \beta_3^* 0 + \beta_4^* 0$	$y^{hat} = \alpha + \beta_1 x_1$
Summer	1	0	0	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2^{*1} + \beta_3^{*0} + \beta_4^{*0}$	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2$
Fall	0	1	0	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2^* 0 + \beta_3^* 1 + \beta_4^* 0$	$y^{hat} = \alpha + \beta_1 x_1 + \beta_3$
Winter	0	0	1	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2^{*0} + \beta_3^{*0} + \beta_4^{*1}$	$y^{hat} = \alpha + \beta_1 x_1 + \beta_4$

 β_3 represents the **difference** in output y^{hat} between fall and spring

Season	X ₂	x ₃	X ₄	Equation	Simplified
Spring	0	0	0	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2^* 0 + \beta_3^* 0 + \beta_4^* 0$	$y^{hat} = \alpha + \beta_1 x_1$
Summer	1	0	0	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2^{*1} + \beta_3^{*0} + \beta_4^{*0}$	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2$
Fall	0	1	0	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2^* 0 + \beta_3^* 1 + \beta_4^* 0$	$y^{hat} = \alpha + \beta_1 x_1 + \beta_3$
Winter	0	0	1	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2^* 0 + \beta_3^* 0 + \beta_4^* 1$	$y^{hat} = \alpha + \beta_1 x_1 + \beta_4$

 What is the difference between the two highlighted simplified equations?

Season	x ₂	x ₃	X ₄	Equation	Simplified
Spring	0	0	0	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2^* 0 + \beta_3^* 0 + \beta_4^* 0$	$y^{hat} = \alpha + \beta_1 x_1$
Summer	1	0	0	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2^{*1} + \beta_3^{*0} + \beta_4^{*0}$	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2$
Fall	0	1	0	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2^* 0 + \beta_3^* 1 + \beta_4^* 0$	$y^{hat} = \alpha + \beta_1 x_1 + \beta_3$
Winter	0	0	1	$y^{hat} = \alpha + \beta_1 x_1 + \beta_2^{*0} + \beta_3^{*0} + \beta_4^{*1}$	$y^{hat} = \alpha + \beta_1 x_1 + \beta_4$

- Regression: $y \sim x_1 + x_2 + x_3 + x_4$
- $y = temperature, x_1 = air pressure$
- $x_2, x_3, x_4 = Summer, Fall, Winter$
- β₂ represents the **difference** in output y^{hat} between summer and spring
- β_3 represents the **difference** in output y^{hat} between fall and spring
- β₄ represents the difference in output y^{hat} between winter and spring

- Regression: $y \sim x_1 + x_2 + x_3 + x_4$
- $y = temperature, x_1 = air pressure$
- $x_2, x_3, x_4 = Summer, Fall, Winter$
- All interpretations are relative to spring!
- By omitting spring from the regression, we've made it our "reference"
- β₂ represents the difference in output y^{hat} between summer and spring
- β₃ represents the difference in output y^{hat} between fall and spring
- β₄ represents the difference in output y^{hat} between winter and spring

What is a reference variable?

The thing you interpret a β coefficient relative to.

Regression interpretations: summarize relationship

x = millimeters of rainfall

y = umbrellas sold

y = -19 + 0.45x

Summarize relationship between variables:

Our model shows a positive correlation between rain and sales of umbrellas; specifically, each additional mm of rain corresponds to an extra 0.45 umbrellas we expect to be sold. $x = \{0 \text{ if no rain, } 1 \text{ if any rain}\}$

y = umbrellas sold

y = 0.0 + 8x

Summarize relationship between variables:

What is the reference for a single binary variable?

1 - (variable)

Regression interpretations: summarize relationship

x = millimeters of rainfall

y = umbrellas sold

y = -19 + 0.45x

Summarize relationship between variables:

Our model shows a positive correlation between rain and sales of umbrellas; specifically, each additional mm of rain corresponds to an extra 0.45 umbrellas we expect to be sold. $x = \{0 \text{ if no rain, 1 if any rain}\}$

y = umbrellas sold

y = 0.0 + 8x

Summarize relationship between variables:

- Regression: $y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4$
- $y = temperature, x_1 = air pressure$
- x_2, x_3, x_4 = Summer, Fall, Winter
- How do we summarize the interpretation of β_2 in English?

- Regression: $y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4$
- $y = temperature, x_1 = air pressure$
- x_2, x_3, x_4 = Summer, Fall, Winter
- How do we summarize the interpretation of β_2 in English?

When it is summer, all else equal, we expect the temperature to increase by β_2 degrees relative to when it is spring.

- Regression: $y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4$
- $y = temperature, x_1 = air pressure$
- x_2, x_3, x_4 = Summer, Fall, Winter
- How do we summarize the interpretation of β_1 in English?

- Regression: $y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4$
- $y = temperature, x_1 = air pressure$
- x_2, x_3, x_4 = Summer, Fall, Winter
- How do we summarize the interpretation of β_1 in English?

For a one unit increase in air pressure, all else equal, we expect the temperature to increase by β_1 degrees.

- Regression: $y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4$
- $y = temperature, x_1 = air pressure$
- x_2, x_3, x_4 = Summer, Fall, Winter
- How do we summarize the interpretation of β_{4} in English?

Regression interpretation

- Regression: $y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4$
- $y = temperature, x_1 = air pressure$
- x_2, x_3, x_4 = Summer, Fall, Winter
- How do we summarize the interpretation of β_{4} in English?

When it is winter, all else equal, we expect the temperature to increase by β_4 degrees relative to when it is spring.

How to decide on multivariable regression inputs

 Start with a hypothesis of what "covariates" (inputs) are relevant

How to decide on multivariable regression inputs

- Start with a hypothesis of what "covariates" (inputs) are relevant
- Exclude relevant covariates that are very collinear with other covariates in your model already (can check correlations)

What happens if we include "collinear" inputs?

- Collinearity = correlation between inputs
- Are x₁ and x₂ correlated? Yes (corr = -1)
 - \circ $\mathbf{x_1}$ = binary: use oil cleanser daily
 - \circ \mathbf{x}_2 = binary: does not use oil cleanser daily

Multicollinearity

$$\bullet \quad \mathbf{x}_2 = \mathbf{x}_1^2$$

Are x₁ and x₂ collinear?

No, x and x² are not collinear!

Negative correlation

No, x and x² are not collinear!

Positive correlation

No, x and x² are not collinear!

Simulation on 1000 random x's drawn from normal distribution shows us a tiny correlation of 0.03

How to decide on multivariable regression inputs

- Start with a hypothesis of what "covariates" (inputs) are relevant
- Exclude relevant covariates that are very collinear with other covariates in your model already (can check correlations)

add noise and not new info to your model?

How to decide on multivariable regression inputs

- Start with a hypothesis of what "covariates" (inputs) are relevant
- Exclude relevant covariates that are very collinear with other covariates in your model already (can check correlations)
- Check your residual plots, just like before! (Look for randomness, use transformations as needed)

What variables to include/exclude?

- Want to include any input (x) that might have some effect on output (y)
- Don't want to include input (x) that's noise

What variables to include/exclude?

- Want to include any input (x) that might have some effect on output (y)
- Don't want to include input (x) that's noise
- You can get both "included variable bias" and "excluded variable bias" – there's no one-size-fits-all rule, but some guidelines...

Takeaways on multivariable regression inputs

- Choose covariates that...
 - make sense
 - aren't redundant (i.e., aren't collinear and don't overfit the data)
 - allow you (with transformation) to get
 random-looking residual plots

Residual plots for multivar reg

Same method as for single variable regressions!

X-axis: prediction ŷ,

Y-axis: residual ε,

Residual plots for multivar reg

Does this residual plot imply issues with our model?

Predictions vs. Reality

This is what you are used to seeing:

Predictions vs. Reality

Multivariable Regression in Python

- We can use Python to get values for α , β_1 , β_2 , β_3 , ...
- For single variable regression, we learned about minimizing the squared error by hand (setting the derivative of Q to 0)
- What about with multiple variables?

Multivariable Minimizing Intuition

Attendance

tinyurl.com/yx3xvta5

