Balanced Generalized Weighing Matrices and Optimal Codes

Thomas Pender

University of Lethbridge Department of Mathematics and Computer Science

Canadian Mathematical Society Winter Meeting
December 2021

*** Joint work with Hadi Kharaghani, Sho Suda, Vlad Zatiev

T. Pender (U of L) BGWs and Codes CMS Dec 2021 1/43

Summary

- Constant weight error-correcting codes.
- Balanced generalized weighing matrices (BGWs).
- Use BGWs to construct optimal constant weight codes.

- A finite collection of "strings" (say \mathscr{C}) of given length over a given finite alphabet (say \mathcal{A}).
- A has 0.
- ullet Does not assume that ${\cal A}$ is endowed with an arithmetic.
- Usually take A = GF(q).

• Take $\mathcal{A}=GF(5)=\{0,1,\omega,\omega^2,\omega^3\}$, where ω is some primitive element.

• Take $A = GF(5) = \{0, 1, \omega, \omega^2, \omega^3\}$, where ω is some primitive element.

$$\omega^3 \quad 1 \quad \omega^3 \quad 0 \quad 1 \quad 1 \\
\omega \quad \omega^3 \quad 1 \quad \omega^3 \quad 0 \quad 1$$

4 / 43

• Take $A = GF(5) = \{0, 1, \omega, \omega^2, \omega^3\}$, where ω is some primitive element.

• Length 6 (n = 6).

• Take $A = GF(5) = \{0, 1, \omega, \omega^2, \omega^3\}$, where ω is some primitive element.

• Number of codewords is 2 (M = 2).

6 / 43

- A finite collection of "strings" (say \mathscr{C}) of given length over a given finite alphabet (say \mathcal{A}).
- Take A = GF(5), where ω is some primitive element.

- A finite collection of "strings" (say \mathscr{C}) of given length over a given finite alphabet (say \mathcal{A}).
- Take A = GF(5), where ω is some primitive element.

$$\omega^3 \quad 1 \quad \omega^3 \quad 0 \quad 1 \quad 1 \\
\omega \quad \omega^3 \quad 1 \quad \omega^3 \quad 0 \quad 1$$

8 / 43

- A finite collection of "strings" (say \mathscr{C}) of given length over a given finite alphabet (say \mathcal{A}).
- Take A = GF(5), where ω is some primitive element.

$$\omega^3 \quad 1 \quad \omega^3 \quad 0 \quad 1 \quad 1 \\
\omega \quad \omega^3 \quad 1 \quad \omega^3 \quad 0 \quad 1$$

• Constant weight 5. (w = 5)

- A finite collection of "strings" (say \mathscr{C}) of given length over a given finite alphabet (say \mathcal{A}).
- Take A = GF(5) and ω some primitive element.

- A finite collection of "strings" (say \mathscr{C}) of given length over a given finite alphabet (say \mathcal{A}).
- Take A = GF(5) and ω some primitive element.

- A finite collection of "strings" (say \mathscr{C}) of given length over a given finite alphabet (say \mathcal{A}).
- Take A = GF(5) and ω some primitive element.

- A finite collection of "strings" (say \mathscr{C}) of given length over a given finite alphabet (say \mathcal{A}).
- Take A = GF(5) and ω some primitive element.

- A finite collection of "strings" (say \mathscr{C}) of given length over a given finite alphabet (say \mathcal{A}).
- Take A = GF(5) and ω some primitive element.

- A finite collection of "strings" (say \mathscr{C}) of given length over a given finite alphabet (say \mathcal{A}).
- Take A = GF(5) and ω some primitive element.

- A finite collection of "strings" (say \mathscr{C}) of given length over a given finite alphabet (say \mathcal{A}).
- Take A = GF(5) and ω some primitive element.

• The codewords are at Hamming distance 5.

- A finite collection of "strings" (say \mathscr{C}) of given length over a given finite alphabet (say \mathcal{A}).
- Take A = GF(5) and ω some primitive element.

- The codewords are at Hamming distance 5.
- $d = \min_{\substack{c,c' \in \mathscr{C} \\ c \neq c'}} d(c,c').$

- A finite collection of "strings" (say \mathscr{C}) of given length over a given finite alphabet (say \mathcal{A}).
- Take A = GF(5) and ω some primitive element.

- The codewords are at Hamming distance 5.
- $d = \min_{\substack{c,c' \in \mathscr{C} \\ c \neq c'}} d(c,c').$
- d = 5.

- A finite collection of "strings" (say \mathscr{C}) of given length over a given finite alphabet (say \mathcal{A}).
- Take A = GF(5) and ω some primitive element.

• Write $(6, 5, 5)_5$ -code.

- A finite collection of "strings" (say \mathscr{C}) of given length over a given finite alphabet (say \mathcal{A}).
- Take A = GF(5) and ω some primitive element.

- Write (6, 5, 5)₅-code.
- More generally, $(n, d, w)_q$ -code.

• Fundamental Question:

denoted $A_q(n, d, w)$.

• Fundamental Question:

Max
$$M$$

Given n, w, d, q .

denoted $A_q(n, d, w)$.

Restricted Johnson Bound

$$A_q(n,d,w) \le \left\lfloor \frac{nd(q-1)}{qw^2 - 2(q-1)nw + nd(q-1)} \right\rfloor, \tag{1}$$

if $qw^2 - 2(q-1)nw + nd(q-1) > 0$.

T. Pender (U of L)

BGWs and Codes

$$\omega^{3}$$
 1 ω^{3} 0 1 1 ω^{3} 0 0 1

$$\omega^3$$
 1 ω^3 0 1 1

$$\omega^3$$
 1 ω^3 0 1 1 ω^3

$$\omega^3$$
 1 ω^3 0 1 1 ω^3 1

$$\omega^3 \quad 1 \quad \omega^3 \quad 0 \quad 1 \quad 1$$
$$\omega^3 \quad 1 \quad \omega^3$$

$$\omega^3 \quad 1 \quad \omega^3 \quad 0 \quad 1 \quad 1 \\ \omega^3 \quad 1 \quad \omega^3 \quad 0$$

$$\omega^3$$
 1 ω^3 0 1 1 ω^3 1 ω^3 0 1

$$\omega^{3}$$
 1 ω^{3} 0 1 1 ω^{3} 0 0 1 1

ω^3	1	ω^3	0	1	1
ω	ω^3	1	ω^3	0	1
ω	ω	ω^3	1	ω^3	0
0	ω	ω	ω^3	1	ω^3
1	0	ω	ω	ω^3	1
ω	1	0	ω	ω	ω^3
1	ω	1	0	ω	ω
ω^2	1	ω	1	0	ω
ω^2	ω^2	1	ω	1	0
0	ω^2	ω^2	1	ω	1
ω	0	ω^2	ω^2	1	ω
ω^2	ω	0	ω^2	ω^2	1

Optimal Code

ω^3	1	ω^3	0	1	1	ω		ω	0	ω^2	ω^2
ω	ω^3	1	ω^3	0	1	ω^3		ω^2	ω	0	ω^2
ω	ω	ω^3	1	ω^3	0	ω^3		ω	ω^2	ω	0
0	ω	ω	ω^3	1	ω^3	0	ω^3	ω^3	ω	ω^2	ω
1	0	ω	ω	ω^3	1	ω^2	0	ω^3	ω^3	ω	ω^2
ω	1	0	ω	ω	ω^3	ω^3	ω^2	0	ω^3	ω^3	ω
1	ω	1	0	ω	ω						
ω^2	1	ω	1	0	ω						
ω^2	ω^2	1	ω	1	0						
0	ω^2	ω^2	1	ω	1						
ω	0	ω^2	ω^2	1	ω						
ω^2	ω	0	ω^2	ω^2	1						

Optimal Code

ω^3	1	ω^3	0	1	1		ω^2	ω	0	ω^2	ω^2
ω	ω^3	1	ω^3		1		ω	ω^2	ω	0	ω^2
ω	ω	ω^3	1	ω^3		ω^3	ω^3		ω^2	ω	
0	ω	ω	ω^3	1	ω^3					ω^2	
1	0	ω	ω	ω^3	1	ω^2			ω^3	ω	ω^2
ω	1	0	ω		ω^3						ω
1	ω	1	0	ω	ω	ω^2		ω^2			ω^3
ω^2	1	ω	1	0	ω	1	ω^2				ω^3
ω^2	ω^2	1	ω	1	0	1	1	ω^2	ω^3		-
0	ω^2	ω^2	1	ω	1	0	1	1	ω^2		ω^2
ω	0	ω^2	ω^2	1	ω	ω^3	0	1	1	ω^2	ω^3
ω^2	ω	0	ω^2	ω^2	1	1	ω^3	0	1	1	ω^2

Optimal Code

• Parameters: n = 6, q = 5, d = 5, w = 5, M = 24.

$$\left\lfloor \frac{nd(q-1)}{qw^2 - 2(q-1)nw + nd(q-1)} \right\rfloor = \left\lfloor \frac{6 \cdot 5 \cdot 4}{5^3 - 2 \cdot 4 \cdot 6 \cdot 5 + 6 \cdot 5 \cdot 4} \right\rfloor = 24$$

- The code is optimal.
- $A_5(6,5,5) = 24$.

T. Pender (U of L) BGWs and Codes

- *G* some finite group.
- $W = [w_{ij}]$ a (0, G)-matrix of order v.
- k non-zero entries in every row.
- The multisets

$$\{w_{ih}w_{jh}^{-1}: w_{ih} \neq 0 \neq w_{jh}, 0 \leq h < v\}, \text{ for } i \neq j.$$

contain each group element a constant $\lambda/|G|$ times.

- W is a balanced generalized weighing matrix.
- Write $BGW(v, k, \lambda; G)$.

ω^3	1	ω^3	0	1	1	ω	ω^2	ω	0	ω^2	ω^2
ω	ω^3	1	ω^3		1				ω	0	ω^2
ω	ω	ω^3	1	ω^3	0	ω^3			ω^2	ω	0
0	ω	ω	ω^3	1	ω^3	0	ω^3	ω^3	ω	ω^2	ω
1	0	ω	ω	ω^3	1	ω^2	0	ω^3	ω^3	ω	ω^2
ω	1	0	ω	ω	ω^3	ω^3	ω^2	0	ω^3		
1	ω	1	0	ω	ω	ω^2	ω^3	ω^2	0		ω^3
ω^2	1	ω	1	0	ω	1	ω^2	ω^3	ω^2	0	
ω^2	ω^2	1	ω	1	0	1	1	ω^2	ω^3	ω^2	0
0	ω^2	ω^2	1	ω	1		1	1	ω^2	ω^3	ω^2
ω	0	ω^2	ω^2	1	ω	ω^3	0	1	1	ω^2	ω^3
ω^2	ω	0	ω^2	ω^2	1	1	ω^3	0	1	1	ω^2

Trace Construction

- q a prime power, m > 1.
- $K = GF(q), F = GF(q^m).$
- Relative trace $F \rightarrow K$:

$$\operatorname{Tr}_{F/K}(\alpha) = \alpha + \alpha^q + \dots + \alpha^{q^{m-1}}, \qquad \alpha \in F.$$

- $\beta \in F$ a primitive element.
- $\omega = \beta^{-\ell}$, where $\ell = \frac{q^m 1}{q 1}$.

Trace Construction

Construct the ℓ-dimensional vector

$$u = (\operatorname{Tr}_{F/K}(\beta^0), \operatorname{Tr}_{F/K}(\beta^1), \dots, \operatorname{Tr}_{F/K}(\beta^{\ell-1})).$$

- Take u as the first row of W.
- Remaining rows are the first $\ell-1$ ω -shifts of u.
- Jungnickel and Tonchev (2002) showed that these structures are

$$BGW\left(\frac{q^{m}-1}{q-1},q^{m-1},q^{m-1}-q^{m-2};GF(q)^{*}\right)s.$$

Codes From BGWs

- If W is a classical parameter BGW over $GF(q)^*$, then the rows of $W, \omega W, \ldots, \omega^{q-2}W$, form an optimal, constant weight code.
- Can be assumed to be generated by single codeword.
- Parameters:

$$n = \frac{q^m - 1}{q - 1}, d = q^{m-1}, w = q^{m-1}, M = q^m - 1.$$

Theorem

$$A_q\left(\frac{q^m-1}{q-1}, q^{m-1}, q^{m-1}\right) = q^m - 1,$$

• A $BGW(6,5,4;GF(5)^*)$.

- A $BGW(6,5,4;GF(5)^*)$.
- $\bullet \ \, \mathsf{Apply} \,\, \omega \mapsto -1.$

$$\begin{bmatrix} -1 & 1 & -1 & 0 & 1 & 1 \\ -1 & -1 & 1 & -1 & 0 & 1 \\ -1 & -1 & -1 & 1 & -1 & 0 \\ 0 & -1 & -1 & -1 & 1 & -1 \\ 1 & 0 & -1 & -1 & -1 & 1 \\ -1 & 1 & 0 & -1 & -1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 1 & -1 & 0 & 1 & 1 \\ -1 & -1 & 1 & -1 & 0 & 1 \\ -1 & -1 & -1 & 1 & -1 & 0 \\ 0 & -1 & -1 & -1 & 1 & -1 \\ 1 & 0 & -1 & -1 & -1 & 1 \\ -1 & 1 & 0 & -1 & -1 & -1 \end{bmatrix}$$

• A $BGW(6,5,4;\{-1,1\})$.

Ternary Codes

- If q is odd, then apply $\omega \mapsto -1$.
- The result is a BGW over $\{-1,1\}$.
- The matrix and its negative form an optimal ternary code.

Theorem

$$A_3\left(\frac{q^m-1}{q-1},q^{m-2}\left(\frac{q+3}{2}\right),q^{m-1}\right)=2\left(\frac{q^m-1}{q-1}\right),$$

for q odd.

• Östergård and Svanström (2002) considered the case m = 2.

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ から(で)

Ternary Codes

• Our optimal constant weight $(6,5,5)_5$ -code becomes...

... an optimal constant weight $(6,3,5)_3$ -code.

The End!!

References

- Jungnickel, D. and Tonchev, V. D. (2002). Perfect codes and balanced generalized weighing matrices. II. *Finite Fields Appl.*, 8(2):155–165.
- Östergård, P. R. J. and Svanström, M. (2002). Ternary constant weight codes. *Electron. J. Combin.*, 9(1):Research Paper 41, 23.

42 / 43

T. Pender (U of L) BGWs and Codes CMS Dec 2021

Codes

Unrestricted Johnson Bound

- If 2w < d, then $A_q(n, d, w) = 1$; and
- ② if $2w \ge d$ and $d \in \{2e 1, 2e\}$, then

$$A_q(n,d,w) \leq \left\lfloor \frac{n(q-1)}{w} \left\lfloor \frac{(n-1)(q-1)}{w-1} \left\lfloor \cdots \left\lfloor \frac{(n-w+e)(q-1)}{e} \right\rfloor \cdots \right\rfloor \right\rfloor \right\rfloor$$

