ACÚSTICA FORENSE BASADA EN RELACIONES DE VEROSIMILITUD:

REPRESENTACIONES PARAMÉTRICAS

DE LAS TRAYECTORIAS FORMÁNTICAS DE ALGUNAS COMBINACIONES

VOCÁLICAS DEL ESPAÑOL PENINSULAR

Eugenia San Segundo Fernández
Consejo Superior de Investigaciones Científicas
eugenia.sansegundo@cchs.csic.es

N R D

CAMBIO DE PARADIGMA:

- →evaluación + presentación de la evidencia
- → comparación de perfiles de ADN
- 1) análisis probabilístico basado en datos
- uso de bases de datos con características muestrales de una población de referencia relevante
- cuantificación de las limitaciones de la comparación forense llevada a cabo mediante la medida de índices de error

N R

4) Adopción del marco de relaciones de verosimilitud ¿?

¿Cuánto más probable es que las diferencias observadas entre las muestras indubitada (muestra de origen conocido) y dubitada (muestra de origen desconocido) ocurran bajo la hipótesis de que ambas muestras tienen el mismo origen que bajo la hipótesis de que estas tienen un origen distinto?

$$LR = \frac{p(E|H_{so})}{p(E|H_{do})}$$

REVISIÓN BIBLIOGRÁFICA

 Métodos de análisis muy dispares + gran diversidad de parámetros acústicos

¿Qué parámetros discriminan mejor entre hablantes?

→ Requisitos básicos: cantidad y calidad

- Formantes vocálicos → relevancia forense
 - aspectos estáticos
 - propiedades dinámicas (targets y transiciones)
- Español: diptongos e hiatos
 - → Factores dialectales
 - → Factores sociolingüísticos
 - → Factores idiolectales

FORMULACIÓN DE LA HIPÓTESIS DE PARTIDA

"¿Hasta qué punto las trayectorias formánticas de ciertas secuencias vocálicas del español son parámetros útiles para la comparación forense de voces?"

- 1. ¿Algunas representaciones paramétricas son más útiles que otras para ajustar las trayectorias formánticas de una secuencia vocálica en español?
- 2. ¿Considerar el diptongo [ja] y el hiato [ia] por separado ofrece mejores resultados que considerarlos conjuntamente?
- 3. ¿Algunas secuencias vocálicas son más útiles que otras para la comparación forense de voces?

MÉTODO:

1) CORPUS E INFORMANTES

- 29 hombres adultos
- variedad centropeninsular del castellano
 - Corpus Ahumada → habla espontánea
- dos sesiones no contemporáneas por hablante
- aproximadamente 90 segundos cada muestra

MÉTODO:

2) PROCEDIMIENTO DE ANÁLISIS

2.1. Análisis acústico y métodos de ajuste paramétrico:

- 58 grabaciones (29 h. x 2 sesiones)[we], [je], [ja] y [ia]
- Medición de los valores frecuenciales de las trayectorias formánticas F1, F2, F3
- <u>Curvas</u> que se ajustaron a dichas trayectorias formánticas:
- -Polinomiales cúbicas $\rightarrow ax^3 + bx^2 + cx + d = 0$
- Transformadas discretas de cosenos (DCT)

$$X_k = \sum_{n=0}^{N-1} x_n \cos\left[\frac{\pi}{N}\left(n + \frac{1}{2}\right)k\right] \quad k = 0, \dots, N-1$$

MÉTODO:

2) PROCEDIMIENTO DE ANÁLISIS

2.1. Cálculo de las relaciones de verosimilitud

Aitken & Lucy 2004* Morrison 2009*

- formula MVKD (Multivariate Kernel Density)
- Variables introducidas: valores numéricos → coeficientes → aproximación paramétrica
- Múltiples variables → posibles correlaciones entre dichas variables
- Forma de modelar la variabilidad interlocutor: suma de kernels de tipo gaussiano
- * Aitken, C.G.G. and Lucy, D (2004) Evaluation of trace evidence in the form of multivariate data. *Appl. Stat*, 53, pp.109–122
- * Morrison, G.S. (2009) Likelihood-ratio forensic voice comparison using parametric representations of the formant trajectories of diphthongs. *Journal of the Acoustical Society of America*, 125 (4), 2387-2397.

RESULTADOS

• Para definir el rendimiento de los LRs finales → C_{III} (log-likelihood-ratio cost)

$$C_{llr} = \frac{1}{2} \left(\frac{1}{N_{so}} \sum_{i=1}^{N_{so}} \log_2 \left(1 + \frac{1}{LR_{so_i}} \right) + \frac{1}{N_{do}} \sum_{j=1}^{N_{do}} \log_2 \left(1 + LR_{do_j} \right) \right)$$

- → Medida de precisión = función continua:
 - -valores pequeños → LRs correctos
 - valores grandes → LRs incorrectos

IDEA BÁSICA: comparaciones intrahablante → log-LR muy altos comparaciones interhablante → log-LR muy bajos

¿Desviaciones de este principio? Cllr + bajos

RESULTADOS

Valores Cllr

L	[we]			[je]			[ja]			[ia]			[ja] & [ia]		
	F1	F2	F3	F1	F2	F3									
DCT :	1.046	1.075	0.999	1.003	0.971	0.951	1.043	1.087	1.047	1.027	1.168	1.007	0.978	1.060	0.998
POLINOMIAL (0.984	0.998	0.833	1.036	0.982	0.890	1.045	1.145	0.914	1.065	1.012	0.943	0.973	1.064	1.056

RESULTADOS

Mejores sistemas de comparación forense

Tippett plots
Meuwly 2001*

Ajuste DCT: el sistema formado por el diptongo [je] y el F3 (C_{IIr} de 0.951)

Ajuste polinomial: el sistema formado por el diptongo [we] y el F3 (C_{IIr} de 0.833)

^{*} Meuwly, D. (2001) Reconnaissance de locuteurs en sciences forensiques: l'apport d'une approche automatique. PhD dissertation, University of Lausanne, Lausanne, Switzerland.

RESULTADOS

Máxima y mínima diferencia hallada entre los valores de un sistema polinomial y uno DCT

Sistema formado por el diptongo [we] y el F3

Sistema formado por el diptongo [ja] y el F1

ANÁLISIS DE LOS RESULTADOS

- resultados no excesivamente buenos:
 - Parametrizaciones con DCT \rightarrow C_{IIr} < 1 (5/15)
 - Parametrizaciones con curvas polinomiales → C_{IIr} < 1 (8/15)
- ¿? → pequeño tamaño de la muestra
 - → escasa incidencia de algunas secuencias vocálicas (habla espontánea)
- no diferencias entre uso de curvas polinomiales y curvas DCT
- resultados no parecen mejorar si consideramos [ja] y [ia] conjuntamente
- necesaria fusión de los tres formantes

→ ¿Qué combinación de formantes y de secuencias vocálicas ofrece mejores valores Cllr? mejores sistemas de comparación forense!

F3 de cada combinación vocálica

CONCLUSIONES

propiedades dinámicas de diptongos → parámetros

Alta variabilidad interlocutor Baja variabilidad intralocutor

• [we], [je], [ja] y [ia] aparecen con relativa alta frecuencia en el habla espontánea

<u>APORTACIONES DE ESTE ESTUDIO</u>

- → distinción entre diptongo e hiato
- → corpus de habla espontánea

TRABAJOS FUTUROS

- →otras técnicas de cálculo de relaciones de verosimilitud → GMM-UBM (Gaussian Mixture Model Universal Background Model)
- →técnicas de fusión y calibración.

ACÚSTICA FORENSE BASADA EN RELACIONES DE VEROSIMILITUD:

REPRESENTACIONES PARAMÉTRICAS

DE LAS TRAYECTORIAS FORMÁNTICAS DE ALGUNAS COMBINACIONES

VOCÁLICAS DEL ESPAÑOL PENINSULAR

iMUCHAS GRACIAS!

Eugenia San Segundo Fernández
Consejo Superior de Investigaciones Científicas
eugenia.sansegundo@cchs.csic.es