Prim's MST

- 1. Create a set mst to keep track of vertices included in MST.
- 2. Also keep track of parent of each vertex. Initialize parent of each vertex -1.
- 3. Assign a key to all vertices in the input graph. Key for all vertices should be initialized to INF. The start vertex key should be 0.
- 4. While mst doesn't include all the vertices
 - i. Pick a vertex u which is not there in mst and has minimum key.
 - ii. Include vertex u to mst.
 - iii. Update key and parent of all adjacent vertices of u.
 - a. For each adjacent vertex v,
 if weight of edge u-v is less than the current key of v,
 then update the key as weight of u-v.

b. Record u as parent of v.

Prim's MST

	K P
0	42
1	∞ -/
2	<u> </u>
3	22
4	∞ -
5	52
6	

	K P
0	13
1	3 3
2	0 -
3	2
4	73
5	52
6	43

_

	K P
0	ry)
1	2 0
2	<u> </u>
3	2
4	3
5	52
6	43
	5 2 4 3

	K	P
0	_	3
1	2	0
2	\bigcirc	-
3	N	2
4	()	6
5		6
6	4	3

	K	P
0		3)
1	2	\bigcirc
2	\bigcirc	-[
3	2	N-
4	Û	0
5		9)
6	4	3


```
int findMinKey(){
    int minKey = INF;
    for(int i = 0 ; i < vertexCount ; i++){
        if(keys[i] < minKey){
            minKey = keys[i];
        }
    }
    return minKey;
}</pre>
```

```
    K

    0
    ∞

    1
    ∞

    2
    ○

    3
    ∞

    4
    ∞

    5
    ∞

    6
    ०
```

```
vertexcount=7

minkey 1 ketil minky

0 F

1 F

2 3

4 F

F
```

```
int findMinKeyVertex(){
    int minKey = INF, minKeyVertex = -1;
    for(int i = 0 ; i < vertexCount ; i++){
        if(!mst[i] && keys[i] < minKey){
            minKey = keys[i];
            minKeyVertex = i;
        }
    }
    return minKeyVertex;</pre>
```

	K	
0	80	
1	\otimes	
2	Ŏ	
3	∞	
4	8	
5	∞	
6	<u></u>	

verk-count=7

minkey minkey i ketij minkey

verland i ketij minkey

1 0 F

2 2 F

4 F

5 F

Dijkstra's Algorithm

- 1. Create a set spt to keep track of vertices included in shortest path tree.
- 2. Track distance of all vertices in the input graph. Distance for all vertices should be initialized to INF. The start vertex distance should be 0.
- 3. While spt doesn't include all the vertices
 - i. Pick a vertex u which is not there in spt and has minimum distance.
 - ii. Include vertex u to spt.
 - iii. Update distances of all adjacent vertices of u.

For each adjacent vertex v,

if distance of u + weight of edge u-v is less than the current distance of v, then update its distance as distance of u + weight of edge u-v.

Dijkstra's Algorithm

	D	P
0	4	2
1		\bigcirc
2	0	-1
3	k)	\bigcirc
4	12	ا (ک
5	<i>M</i>	2
6	0)	3

	D	P
0	4	2
1		
2	0	-1
3	∞	+
4	∞	7
5	M	N
6	90	

	D	P
0	4	2
1	6	0
2	0	
3		\bigcirc
4	∞	7
5	M	N
6	00	

	D	P
0	4	2
1	V	\bigcirc
2	0	-1
3	5	\bigcirc
4	12	3
5	M	N
6	9	3

	D	P
0	4	2
1	· W	\bigcirc
2	0	-1
3	5	\bigcirc
4	12	3
5	M	N
6	9	3

	D	P
0	4	2
1	\ ()	\bigcirc
2	0	-1
3	k)	\bigcirc
4	12	3
5	M	2
6	9	3

	D	P
0	4	2
1		\bigcirc
2	0	-1
3		\bigcirc
4	12	-3
5	M	2
6	9	3

Relaxation

Algorithm Design/Problem solving technique: Divide and Conquor

- Bigger problem is divided into sub problems
- All sub problems are solved individually
- All solutions of sub problems are conquored(merged) to get final solution
- generally recursion is used to implement
- e.g. Merge sort and Quick sort

pune -> delhi

road train plane - solutions

min fare -> train plane - optimal soln

min time -> plane - optimal soln

Problem solving technique: Greedy approach

- A greedy algorithm is any algorithm that follows the problem-solving heuristic of making the locally optimal choice at each stage with the intent of finding a global optimum.
- We can make choice that seems best at the moment and then solve the sub-problems that arise later.
- The choice made by a greedy algorithm may depend on choices made so far, but not on future choices or all the solutions to the sub-problem.
- It iteratively makes one greedy choice after another, reducing each given problem into a smaller one.
- A greedy algorithm never reconsiders its choices.
- A greedy strategy may not always produce an optimal solution.
- eg. Greedy algorithm decides minimum number of coins to give while making change. coins available: 50, 20, 10, 5, 2, 1

e.g. Prim's MST Dijkstr'æ SPT Kruskal's MST