Submission Guideline:

- Please solve the problems in separate files (One notebook/python file per task).
- Download the python files as instructed in the class. (File -> Download -> Download .py)
- Create a new **folder** and put all your python files inside the folder.
- Rename the folder with your 9 digit student ID.
- Make a ZIP of the folder and **submit the .zip file**.

Online assignment 1

- 1. **[5 marks]** Create list called *my_list*. Initiate *my_list* with [5, 10, 5, 30, 25, 10, 10]. Take an input *num_of_rounds*. For *num_of_rounds* times, repeat the following:
 - a. In each round, take two inputs named index_1 and index_2. [Assume 0-indexing]
 - b. *index_1* and *index_2* must be two valid indices for *my_list*. If that is not true for the given input, print "Try again".
 - c. If valid indices are given, swap the two values found at those indices.
 - d. Print the updated my list.

Sample Input	Sample Output
3	
	5 30 5 10 25 10 10
2 5	5 30 10 10 25 5 10
5 6	5 30 10 10 25 10 5

2. **[5 marks]** Estimate the value of π using the setup below. You may use your offline assignment code and edit that necessarily for this problem.

- Task a) If we randomly sample a point from the inside of the rectangle, what is the probability that the point will be inside the semi-circle? Express this value in terms of π (pi). [Find this analytically using pen and paper]
- Task b) Simulate sampling 1000 data points and use the probability equation found from Task a to estimate the value of π.
- Task c) Make a scatter plot with your sampled data points. Mark points inside the circle red and outside the circle green.