CS 156:Introduction to Artificial Intelligence

Instructor: Dr. Sayma Akther

San José State University

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(t) = \sum_{s} P(t, s)$$

$$P(s) = \sum_{t} P(t, s)$$

Т	Р
hot	0.5
cold	0.5

P(W)

W	Р
sun	0.6
rain	0.4

$$P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$$
 CS 156: Dr. Sayma Akther

Conditional Probabilities

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the *definition* of a conditional probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$

$$= P(W = s, T = c) + P(W = r, T = c)$$

$$= 0.2 + 0.3 = 0.5$$
3

Conditional Distributions

• Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

Joint Distribution

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Normalization Trick

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

$$= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

$$P(W = r | T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

$$P(W|T=c)$$

W	Р
sun	0.4
rain	0.6

Normalization Trick

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

$$= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

SELECT the joint probabilities matching the evidence

P(c,W)

Т	V	Р
cold	sun	0.2
cold	rain	0.3

NORMALIZE the selection (make it sum to one)

$$P(W|T=c)$$

W	P
sun	0.4
rain	0.6

$$P(W = r | T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.3}{156: 0.25 + 0.3} = 0.6$$
CS 156: 0.25 + 0.3 Akther

To Normalize

(Dictionary) To bring or restore to a normal condition

All entries sum to ONE

- Procedure:
 - Step 1: Compute Z = sum over all entries
 - Step 2: Divide every entry by Z
- Example 1

W	Р
sun	0.2
rain	0.3

	W	Р
•	sun	0.4
	rain	0.6

Example 2

]	Т	W	Р
	hot	sun	20
1	hot	rain	5
J	cold	sun	10
CS 156: Dr.	Say <mark>ina Ak</mark> the	_{er} rain	15

Back to the dentist example ...

- We now represent the world of the dentist D using three propositions
 - Cavity, Toothache, and PCatch
- D's belief state consists of 2³ = 8 states each with some probability: {Cavity^Toothache^PCatch, —Cavity^Toothache^PCatch, Cavity^—Toothache^PCatch,...}

The belief state is defined by the full joint probability of the propositions

	Toothache		\neg Toothache	
	PCatch	-PCatch	PCatch	¬PCatch
Cavity	0.108	0.012	0.072	0.008
¬Cavity	0.016	0.064	0.144	0.576

Probabilistic Inference

	Toothache		\neg Toothache	
	PCatch	¬PCatch	PCatch	¬PCatch
Cavity	0.108	0.012	0.072	0.008
¬Cavity	0.016	0.064	0.144	0.576

Probabilistic Inference

	Toothache		\neg Toothache	
	PCatch	¬PCatch	PCatch	¬PCatch
Cavity	0.108	0.012	0.072	0.008
¬Cavity	0.016	0.064	0.144	0.576

$$P(Cavity) = 0.108 + 0.012 + 0.072 + 0.008$$

= 0.2

Conditional Probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

$$P(A \land B) = P(A \mid B) P(B)$$
$$= P(B \mid A) P(A)$$

	Toothache		\neg Toothache	
	PCatch	¬PCatch	PCatch	¬PCatch
Cavity	0.108	0.012	0.072	0.008
-Cavity	0.016	0.064	0.144	0.576

 $P(Cavity|Toothache) = P(Cavity \land Toothache)/P(Toothache)$ = (0.108+0.012)/(0.108+0.012+0.016+0.064) = 0.6

Conditional Probability

```
■ P(A \land B) = P(A \mid B) P(B)
= P(B \mid A) P(A)
■ P(A \land B \land C) = P(A \mid B, C) P(B \land C)
= P(A \mid B, C) P(B \mid C) P(C)
```

Independence

- Two random variables A and B are independent if $P(A \land B) = P(A) P(B)$ hence if $P(A \mid B) = P(A)$
- Two random variables A and B are independent given C, if $P(A \land B \mid C) = P(A \mid C) P(B \mid C)$ hence if $P(A \mid B, C) = P(A \mid C)$

Bayes' Rule

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

where A and B are events and $P(B) \neq 0$.

- P(A|B) is a conditional probability: the probability of event A occurring given that B is true. It is also called the posterior probability of A given B.
- P(B|A) is also a conditional probability: the probability of event B occurring given that A is true. It can also be interpreted as the likelihood of A given a fixed B because P(B|A) = L(A|B).
- P(A) and P(B) are the probabilities of observing A and B respectively without any given conditions; they are known as the prior probability and marginal probability.

Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Dividing, we get:

$$P(x|y) = rac{P(y|x)}{P(y)} P(x)$$
CS 156: Dr. Sayma Akther

Inference with Bayes' Rule

• Example: Diagnostic probability from causal probability:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

- Example:
 - M: meningitis, S: stiff neck

$$P(+m) = 0.0001$$

$$P(+s|+m) = 0.8$$
 Example givens
$$P(+s|-m) = 0.01$$

$$P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}$$