Classification problem

Imagine that we have a classification problem: From features X, we predict one of K classes.

For example,

- 2. In the ER, a person with a certain set of symptoms could have one of three medical conditions: Stroke, drug overdose, or epileptic seizure. Which of the three conditions does the individual have?
 - The outcome medical condition has three categories/classes.

Let's refer to the classes as C_1 , C_2 , C_3 .

Q: If we know $p(X, C_k)$, how can we build a classifier?

We are looking to use the observed features, X, to predict a class, C_k .

As with Logistic Regression, it is useful to consider the probabilities,

$$p(C_k|X)$$
.

Hope: If we know these conditional probabilities, and someone gives us a datapoint with features X. We could predict that the data point belongs to the most-likely class at X.

We can estimate $p(C_k|X)$ from training data using Bayes' Theorem

$$p(C_k|X) = \frac{p(X|C_k)p(C_k)}{p(X)}.$$

Let's use $p(C_k|X)$ to classify aiming to make as few misclassifications as possible.

- We need to define a decision rule: When do we classify a point as C_k?
- Any decision rule divides the feature space into *decision regions* \mathcal{R}_k , $k \in {1, 2, ..., K}$.
- (These decision regions are separated by *decision boundaries*)

Aim to make as few misclassifications as possible. Minimize:

$$p(\mathsf{mistake}) = p(X \in \mathcal{R}_1, \mathcal{C}_2) + p(X \in \mathcal{R}_2, \mathcal{C}_1) \tag{1}$$

$$= \int_{\mathcal{R}_1} p(X, \mathcal{C}_2) dX + \int_{\mathcal{R}_2} p(X, \mathcal{C}_1) dX$$
 (2)

From the product rule, $p(X, C_k) = p(X)p(C_k|X)$, so we get,

$$p(\mathsf{mistake}) = \int_{\mathcal{R}_1} p(X) p(\mathcal{C}_2|X) dX + \int_{\mathcal{R}_2} p(X) p(\mathcal{C}_1|X) dX$$

p(X) contributes to both terms integrals, so we limit mistakes the most by assigning the class with the highest $p(C_k|X)$ at X. Aligning with our intuition!

We limit mistakes the most by assigning the class with the highest $p(C_k|X)$ at X.

(Argument generalizes to several classes)

Aligning with our intuition!

We limit mistakes the most by assigning the class with the highest $p(C_k|X)$ at X.

(Argument generalizes to several classes) **Aligning with our intuition!** But....

Bayes Classifier

The classifier we just developed is the Bayes classifier.

With the Bayes classifier we classify to the class k with the *highest* posterior probability, i.e. set

$$d(x) = \arg\max_{y} P(Y = y \mid x)$$

The Bayes Classifier is very important. We will get back to it later today.

Not all mistakes are equal

Sometimes, some mistakes are worse to make than others.

For example: When screening for cancer, a False Positive causes stress to the affected patient. A False Negative may cause the death of the patient. We *really* need to limit False Negatives!

So our goal may not be to limit mistakes, but to limit *certain* mistakes.

Loss and Loss matrix

Let's punish the algorithm for every classification it makes.

We do it by assigning it a **loss** L_{kj} (usually ≥ 0), which depends on k, the true class, and j, the assigned class of the data point. L_{kj} is an entry in a *loss matrix*.

Bigger loss for a given classification is a bigger punishment.

Q: For cancer detection, where should loss be big in the loss matrix?

Q: Try to write down a loss matrix for the cancer problem.

Loss and Loss matrix

Let's punish the algorithm for every classification it makes.

We do it by assigning it a **loss** L_{kj} (usually ≥ 0), which depends on k, the true class, and j, the assigned class of the data point. L_{kj} is an entry in a *loss matrix*.

Bigger loss for a given classification is a bigger punishment.

Q: For cancer detection, where should loss be big in the *loss matrix*?

$$\begin{array}{cc} \text{cancer} & \text{normal} \\ \text{cancer} & \begin{pmatrix} 0 & 1000 \\ 1 & 0 \end{pmatrix} \end{array}$$

Q: Try to write down a loss matrix for the cancer problem.

Goal in terms of loss

The concept of loss gives us a new way of expressing our goal:

We want our classification algorithm to *minimize the expected loss*.

$$\mathbb{E}[L] = \sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} L_{kj} p(X, \mathcal{C}_{k}) dX$$

Again, we can rewrite this to get

$$\mathbb{E}[L] = \sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} L_{kj} p(X) p(\mathcal{C}_{k}|X) dX.$$

So we minimize loss by assigning a new X to the class j that minimizes

$$\sum_{k} L_{kj} p(\mathcal{C}_k|X).$$

Readily doable if we know the posterior probabilities $p(C_k|X)$.

Loss: A few more points

Minimising posterior expected loss is enough

If d(x) minimises the posterior expected loss for each fixed x (averaging over y), d(x) also minimises the expected loss (i.e. averaging over both x and y).

In classification, we often use 0-1 loss:

$$L(j,k) = \begin{cases} 1, & j \neq k \\ 0, & j = k \end{cases}$$

In regression, we can also use loss, e.g. Squared error loss

$$L(y, d(x)) = (y - d(x))^2.$$

Absolute error loss

$$L(y, d(x)) = |y - d(x)|.$$

Remember: the loss function is usually non-negative.

Expected loss for a prediction mechanism

The expected loss is a theoretical quantity that has many names: test error, generalisation error, risk, prediction error.

We can estimate the expected loss from a specific dataset by the *empirical risk*:

$$\frac{1}{n}\sum_{i=1}^{n}L(Y_i,d(X_i))$$

where n is the number of observations in the dataset.

Test and training error

The *training error* is the empirical risk computed from the training set. Generally a bad estimator of the expected loss.

The term *test error* is, in practice, used to denote both

- the true expected loss
- the estimate that is the empirical risk computed from the test data.

The test error you compute by cross-validation is also an estimate of the expected loss for your prediction model.

Bayes Classifier

In the language of Loss:

The *Bayes classifier* minimises the expected loss under the specific choice of 0-1 loss (misclassification error).

The associated error, the *Bayes error rate*, is a theoretical lower bound – a bit like the irreducible error in the bias-variance decomposition.

Remember: with a Bayes classifier, we classify to the class k with the *highest posterior probability*, i.e. set

$$d(x) = \arg\max_{y} P(Y = y \mid x)$$

Bayes Classifier

Sometimes there may be many X that we have never observed. How to classify?

Sometimes there may be many X that we have never observed. How to classify?

Sometimes there may be many X that we have never observed. How to classify?

Sometimes there may be many X that we have never observed. How to classify?

Sometimes there may be many X that we have never observed. How to classify?

Sometimes there may be many X that we have never observed. How to classify?

Sometimes there may be many X that we have never observed. How to classify?

K-nearest neighbours (KNN) - A simple approximation to the Bayes classifier.

KNN approximates the posterior class probabilities.

K-nearest neighbours classification of point x_0

- 1. Find the K points in the training data that are closest to x_0 (call this set \mathcal{N}_0)
- 2. Estimate the posterior probability for class j as the fraction of points in \mathcal{N}_0 from class j:

$$P(Y = j | X = x_0) = \frac{1}{K} \sum_{i \in \mathcal{N}_0} I(y_i = j).$$

3. Choose the class with highest posterior probability.

FIGURE 2.16. A comparison of the KNN decision boundaries (solid black curves) obtained using K=1 and K=100 on the data from Figure 2.13. With K=1, the decision boundary is overly flexible, while with K=100 it is not sufficiently flexible. The Bayes decision boundary is shown as a purple dashed line.

FIGURE 2.17. The KNN training error rate (blue, 200 observations) and test error rate (orange, 5,000 observations) on the data from Figure 2.13, as the level of flexibility (assessed using 1/K on the log scale) increases, or equivalently as the number of neighbors K decreases. The black dashed line indicates the Bayes error rate. The jumpiness of the curves is due to the small size of the training data set.

K-nearest neighbours (KNN): Summary

- The resulting decision rule is simply that KNN assigns a class according to a majority vote among the K closest training points.
- Gives extremely flexible boundaries
- Often a good 'baseline' classifier with error rate close to Bayes error rate
- Often does not work well in high dimension feature space
- K can be chosen by cross-validation