CIS2520

6. Graphs

Reading suggestion: Chapter 10 of the textbook

CIS2520 Graphs

UNDIRECTED GRAPHS

6.2

An *undirected graph* is a pair G=(V,E) where

- ♦ V is a finite nonempty set
- ♦ E is a set of unordered pairs of distinct elements of V

The elements of V are the **vertices** of the graph.

The elements of E are the (undirected) edges.

 $V=\{a,b,c,d,e,f\}, E=\{\{a,b\},\{a,f\},\{b,c\},\{c,d\},\{c,e\},\{c,f\},\{d,e\},\{d,f\}\}\}$

6.3

A **directed graph**, or **digraph**, is a pair G=(V,E) where

- ♦ V is a finite nonempty set
- ♦ E is a set of ordered pairs of distinct elements of V

The elements of V are the **vertices** of the graph.

The elements of E are the (directed) edges.

 $V=\{a,b,c,d,e,f\}, E=\{(a,b),(b,a),(b,c),(c,d),(c,e),(d,e),(d,f),(f,a)\}$

Reading suggestion: Chapter 10 of the textbook

CIS2520 Graphs

BASIC TERMINOLOGY (1/2)

6.4

Consider a graph.

If $\{u,v\}$ or $\{u,v\}$ is an edge then: • this edge is **incident** with u and v

u and v are its endpoints

u and v are adjacent

The **degree** of a vertex v is the number of vertices adjacent to v.

BASIC TERMINOLOGY (2/2)

6.5

Consider a directed graph.

If (u,v) is an edge then: • u is its *origin*, v its *destination* • u is a *predecessor* of v, v a *successor* of u

The *in-degree* of a vertex v is the number of predecessors of v. The *out-degree* of v is the number of successors of v.

Reading suggestion: Chapter 10 of the textbook

CIS2520 Graphs

IMPLEMENTATION (1/2)

6.6

Adjacency matrix:

(e.g., 1 means that 3 and 4 are adjacent)

Adjacency lists:

(e.g., **2**, **4** and **5** are adjacent to **3**)

CIS2520 Graphs

IMPLEMENTATION (2/2)

6.7

Adjacency matrix:

(e.g., 1 means that 4 is a successor of 3)

Adjacency lists:

(e.g., 4 and 5 are the successors of 3)

Reading suggestion: Chapter 10 of the textbook

CIS2520

Graphs

PATHS (1/2)

6.8

A **path** is a tuple $(v_0, v_1, ..., v_n)$ of vertices, with n a positive integer, such that for any i in 1..n the pair $\{v_{i-1}, v_i\}$, or (v_{i-1}, v_i) , is an edge.

The path $(v_0, v_1, ..., v_n)$ is a path of **length** n **from** its **origin** v_0 **to** its **destination** v_n .

It **passes** through the vertices $v_0, v_1, ..., v_n$ and **traverses** the edges $\{v_{i-1}, v_i\}$, or (v_{i-1}, v_i) .

(b,c): path of length 1 (a,d,a): path of length 2

(a,b,e,a): path of length 3

(a,b,c,b,e): path of length 4

(c,a,e,b,a,d): path of length 5

Consider a path $(v_0, v_1, ..., v_n)$.

 \diamond If all its edges and all its vertices are distinct, except maybe v_0 and v_n , then the path is **simple**.

♦ If $v_0 = v_n$ then the path is a **cycle**.

Reading suggestion: Chapter 10 of the textbook

CIS2520 Graphs

WEIGHTED GRAPHS (1/2)

6.10

Let (V,E) be a graph, \mathbb{R} the set of real numbers, w a total function from E to $\mathbb{R}_{11}\{-\infty,+\infty\}$.

(V,E,w) is a weighted graph.

6.11

Let (V,E,w) be a weighted graph.

- ♦ The weight of the edge e is w(e).
- ♦ The **weight** of the path $(v_0, v_1, ..., v_n)$ is the sum of the weights of its edges.
- ♦ A **shortest path** from u to v is a path from u to v with minimum weight.

(e.g., (c,e) and (c,f,d,e) are shortest paths from c to e with weight 9)

Reading suggestion: Chapter 10 of the textbook

CIS2520 Graphs

OTHER TERMS (1/2)

6.12

Let (V,E) be a graph, V' a nonempty subset of V, and E' a subset of E.

(V',E') is a **subgraph** of (V,E).

If V'=V then (V',E') is a **spanning subgraph** of (V,E).

6.13

Consider a graph G.

- ♦ Let u and v be two distinct vertices. u is *connected* to v if there exists a path from u to v.
- ♦ G is connected if, for any distinct vertices u and v, u is connected to v or v is connected to u.

Reading suggestion: Chapter 10 of the textbook

CIS2520 Graphs

APPLICATIONS: Example 1

6.14

Consider a digital circuit. Is it possible to embed the circuit on a chip, so that none of the wires cross?

The circuit is represented by a graph: each edge of the graph represents a wire. *Find out whether the graph is planar.*

CIS2520 Graphs

APPLICATIONS: Example 2

6.15

Two adjacent cell phone transmitters should be assigned different frequencies. What is the minimum number of frequencies that must be used?

In a map, two regions sharing a common border should be given different colors. What is the minimum number of colors that must be used?

The map is represented by a graph: each vertex represents a region; two vertices are adjacent if the corresponding regions share a common border. *Calculate the chromatic number of the graph.*

Reading suggestion: Chapter 10 of the textbook

CIS2520 Graphs

APPLICATIONS: Example 3

6.16

Draw a picture without retracing any line or picking the pencil up off the paper.

Find a path around a collection of bridges that crosses each bridge exactly once.

The problem is modeled by a *multigraph*: each vertex represents one of the regions the bridges give access to; two vertices are adjacent if the corresponding regions are linked by a bridge. *Find an Euler cycle*.

