Tutorial Sheet 6

1. For the vectors given below, evaluate the following expressions where it is possible.

$$\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} -1 \\ 0 \\ 4 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} -4 \\ 3 \end{bmatrix}, \mathbf{w} = \begin{bmatrix} 1 \\ 0 \\ 2 \\ -5 \end{bmatrix}, \mathbf{z} = \begin{bmatrix} 2 \\ 2 \\ 2 \\ 3 \end{bmatrix}$$

- i) $2\mathbf{u} + 3\mathbf{v}$
- vi) $\mathbf{v} + \mathbf{w}$

xi) $\mathbf{w} \cdot (\mathbf{z} + \mathbf{w})$

- ii) $3\mathbf{u} \mathbf{v}$
- vii) $\mathbf{u} \cdot \mathbf{v}$

 $xii) |\mathbf{x}|$

- iii) $\mathbf{x} + 3\mathbf{v}$
- viii) $(2\mathbf{u}) \cdot (3\mathbf{v})$
- viii) |

- iv) $2\mathbf{z} \mathbf{w}$
- ix) $\mathbf{x} \cdot \mathbf{y}$

xiii) $|\mathbf{w}|$

 $\mathbf{v}) \mathbf{u} + \mathbf{x}$

 $x) \mathbf{w} \cdot \mathbf{z}$

- xiv) $|\mathbf{y}| + |\mathbf{w}|$
- 2. Calculate the angles between the pairs $\mathbf{u}, \mathbf{v}, \mathbf{x}, \mathbf{y}$, and \mathbf{w}, \mathbf{z} from the previous question. Give your answers in both radians and degrees.
- 3. Calculate the area of the parallelogram spanned by the vectors \mathbf{x} and \mathbf{y} .
- 4. Show that the volume of the parallelopiped spanned by the vectors \mathbf{u} , \mathbf{v} and $2\mathbf{u} + 3\mathbf{v}$ is zero.
- 5. For the matrices below, evaluate the following expressions where it is possible.

$$A = \left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \right], B = \left[\begin{array}{cc} -2 & 0 \\ 1 & -7 \end{array} \right], C = \left[\begin{array}{cc} 3 & 2 & -2 \\ 4 & 8 & 2 \end{array} \right], D = \left[\begin{array}{cc} 3 & 2 & -2 \\ 4 & 8 & 2 \end{array} \right],$$

$$E = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}, F = \begin{bmatrix} -1 & 0 & 2 \\ 3 & 4 & 1 \\ 3 & 1 & 0 \end{bmatrix},$$

- i) 2A + 3B
- vii) det(A+B)
- xiii) Au

- ii) 3C D
- viii) $\det(C)$
- xiv) Cx

- iii) 8A + 4C
- ix) det(E)
- xv) Cw

- iv) 2000A + 3000B
- x) Ax

- v) E F
- xi) Bx

xvi) Eu

- vi) det(A) + det(B)
- xii) $A\mathbf{y} + B\mathbf{x}$
- xvii) $E\mathbf{w} \mathbf{F}\mathbf{w}$

Tutorial Sheet 7

1. For each of the following systems of linear equations, write down the corresponding coefficient matrix A, vector of unknowns \mathbf{x} , and vector of right hand sides \mathbf{b} so that the system can be expressed in the form $A\mathbf{x} = \mathbf{b}$

i) ii)
$$2x + 3y = 1 2x + 3y + 4z = 1 3x + y + z = 1$$
$$5x + 7y = 3 x - 2y + 2z = 7 y + 4z = -4$$
$$3x + 2y + z = 0.2 x - y = 2$$

2.

Let the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ be given by

$$\mathbf{a} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \mathbf{c} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$

These vectors span a three dimensional parallelopiped as shown in the figure to the right.

- i) Find the area of the parallelogram S_{ab} which is spanned by the vectors **a** and **b**. Hence state the area of the parallelogram S'_{ab} on the opposite side of the parallelopiped.
- ii) Find the areas of the parallelograms S_{bc} and S_{ac} spanned by the relevant pairs of vectors and hence find the total surface area of the parallelopiped.
 - iii) Find the signed volume of the parrallelopiped.
- 3. Rotate the vector $\mathbf{x} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ anti-clockwise $\frac{\pi}{4}$ radians about the origin.
- 4. Rotate the point $\mathbf{x} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ anti-clockwise $\frac{\pi}{4}$ radians about the point $\mathbf{p} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$.
- 5. Rotate the line segment with endpoints $\mathbf{x} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$ anti-clockwise $\frac{\pi}{2}$ radians about the point $\mathbf{p} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$. Give the new endpoints \mathbf{x}' and \mathbf{y}' of the rotated line segment.