Anomaly Detection on BACnet Systems

Sofian Ghazali Rahul Balamurugan Zahid Kamil

Dr. Hussein Al-Nuweiri Dr. Ferdous Wahid Mr. Salah Hessien

BMS – Building Management Systems

BACnet – Building Automation Control Network

Automated Building System Controls [1]

Standards

ANSI-ASHRAE 135-2016 [3]

48,112

Current number of exposed BAS devices [4]

230,000 people

Ukraine power outage, December 2015, [5]

\$18,500,000

Losses in Targett hack [6]

Problem Statement

"There is a need for robust intrusion detection systems using Machine Learning to alert the user of malicious zero-day attacks"

Objectives

Understand BMS BACnet data traffic

Classify BACnet traffic and train the anomaly detector

Evaluate detector performance against novel attacks

Constraints

Lack of anomalous data or real

system for testing [8]

Implement model on real BACnet

BMS

Solutions

Addressing the Objectives

Gathered BACnet traffic data set from Qatar University

Built representation of the data, trained detector

Tested on synthesized anomalous data

Performance Criteria & Analysis

	AC2000 Interface [11]	THE-Driven Anomaly Detector [12]	Our Solution	
Responsiveness	Responsive to certain attacks	Not dynamic	Highly Responsive due to unsupervised learning capabilities	
Adaptability	Limited to predetermined threat models	Limited by frequency analysis Techniques	Needs human input to adapt to new patterns, but easily does so	
Comprehensiveness	Threats like Man-in-the Middle or DOS can intercept the system	Can classify traffic into Time, Human based and event based	Accounts for a wide range of threats as it only learns normal patterns	
Economics	Need separate device-moderately expensive	Can be run on the main host- Cheap implementation	Can be run on the main host- Cheap implementation	
Global	Global Can be applied in any BACnet protocol systems		BACnet network across the globe	
Accuracy	Information Not Available	~96%	~98%	

Anomaly Detection with ML

Take features X1, X2 & X3 and cluster into groups

Take inputs from user and compare with model to find dissimilarity

Dissimilarity
Measure goes
above threshold, its
an anomaly

K-Modes and K-Means Algorithm

Choose Number of cluster K

Pick an observation to be centroid

Compare data points to centroid & Cluster based on mode and mean of features

Assign data to the closest centroid

Update centroid & Repeat until centroid converges

Preprocessing

Wireshark captured data (pcap file)

Tin	e Source	Destination	Protocol	Length	Info	Messages
0.0000	00 10.10.10.43	10.30.10.12	BACnet-APDU	187.0	Complex-ACK readPropertyMultiple[87]	Read-Property

BACnet Data in csv format

	Ack-Message	At	I-am	Read-Property	Tell	Unconfirmed-Transfer	Who-Is	Who-Router	Write-Property
0	20	23	14	333	30	42	20	47	6

Frequency information (one time interval)

Preprocessed dataframe (normal dataset)

bit1 bit2 bit3 bit4 bit5 ... Messages_Tell Messages_Unconfirmed-Transfer Messages_Who-Is

Cluster Selection

We used two methods to determine the number of our clusters that can best represent our data:

- 1. Elbow method
- 2. Silhouette method

Anomaly Detection

Algorithm:

Data = input arrays, cluster arrays Output = Dissimilarity score

Start:

di = min{score(input,r)}, r∈Clusters if di<Threshold, classified as normal. Otherwise, determined to be an anomaly. return(di) *End*

Dissimilarity Score for K-modes:

Jaccard-Needham Dissimilarity

$$J(A,B)=rac{|A\cap B|}{|A\cup B|}=rac{|A\cap B|}{|A|+|B|-|A\cap B|}.$$

Distance measure for K-means:

Squared Euclidean Distance

$$\|x-y\| = \sum_{i=1}^d (x_i - y_i)^2$$

Threshold setting

Message & IP Anomaly Scoring Functions - Jaccard Needham Dissimilarity

	Jaccard	Dice	Hamming	Rogers-Tanimoto	Sokal-Michener	Sokal-Sneath	Yule
3	0.0454545	0.0232558	0.0131579	0.025974	0.025974	0.0869565	0
	DC)S Attack s	scoring fu	nction - Squared	d Euclidean Dis	stance	
				251034925473			
			E 20 20 20 20 20 20 20 20 20 20 20 20 20	etector:	24		
			3.7-3	or passed no	ormal data	check!	

Maximum score for each respective scoring function -> Threshold

Any score above (Jaccard, 0.45) or (Euclidean, 9.3) is determined to be an anomaly.

Model Testing

Generating anomalous dataset:

Input exceeds above threshold of 0.45 (input > 0.45) -> Anomaly If any row exceeds the threshold (Jaccard 0.45) it was considered as an anomaly.

98% Accuracy

Graphical User Interface (GUI)

GUI Application for testing our model for messages and ips

GUI Application for testing our model with Frequency

Risks

Overfitting [9]

Security [10]

Potential Breach - Transparency [12]

Ethics

Data Collection - Privacy [11]

To Recap

Build an Anomaly

Detector using Similarity

Score Algorithm

References

- MLN Company. (2019). Building Management Systems MLN Company. [online] Available at: http://www.mlncompany.com/what-we-do/building-management-systems/ [Accessed 4 Dec. 2019].
- Dms.hvacpartners.com. (2019). Bacnet Basics User's Guide. [online] Available at: https://dms.hvacpartners.com/docs/1000/Public/04/11-808-417-01.pdf [Accessed 3 Sep. 2019].
- Metadata, https://censys.io/ipv4/metadata?q=bacnet&
- Pavel et al, "Ukraine's power outage was a cyber attack: Ukrenergo", Reuters, Jan 18,2017. Accessed 16 Sep 2019
- 5. Google Search. [Online]. Available: https://www.google.com/search?q=laptop&sxsrf=ACYBGNTFECOoj5LsWVDNZAtvfmGRDvmjTg:1575445883360&source=Inms&tbm=isch&sa=X&ved=2ahUKEwiG_vWhwZvmAhXFqlkKHUNgD4QQ_AUoAXoECA8QAw&biw=1536&bih=722#imgrc=kte5opKgrQ4V2M: [Accessed: 04-Dec-2019].
- 6. Google.com. (2019). [online] Available at: https://www.google.com/search?biw=1536&bih=722&tbm=isch&sxsrf=ACYBGNS8tUPvlhPpovtFekzpGNjoJJSAQw%3A1575445890149&sa=1&ei=gmXnXdvkCKHH_Qb-uYGgCA&q=python+logo&oq=python+logo&gs_l=img.3..0i67l6j0l4.172058.173659..173854...1.0..0.263.1954.2-8.....0....1..gws-wiz-img.....10..35i39j35i362i39j0i131.gFK6bEnemfw&ved=0ahUKEwjbrZSlwZvmAhWhY98KHf5cAlQQ4dUDCAc&uact=5#imgrc=0-lAWpuQBjsPGM: [Accessed 4 Dec. 2019].
- 7. "Download," Wireshark · Go Deep. [Online]. Available: https://www.wireshark.org/. [Accessed: 04-Dec-2019].
 - https://www.google.com/search?biw=1536&bih=722&tbm=isch&sxsrf=ACYBGNQtVIGHlieP1T0np9TKirjY3qQ9w%3A1575446119500&sa=1&ei=Z2bnXYuQHu2c_Qbfj7XoAw&q=vnc+viewer+logo&oq=vnc+viewer+logo&gs_l=img.3..0.10232.10815..11082...0
 .0..0.241.1666.2-7.....0....1..gws-wiz-img......35i39j0i24.BsssxU3wkTM&ved=0ahUKEwjL38KSwpvmAhVtTt8KHd9HDT0Q4dUDCAc&uact=5#imgrc=sk6Rlltid5PenM:
- 9. Ashrae.org. (2019). Standard 135-2016, BACnet™ -- A Data Communication Protocol for Building Automation and Control Networks. [online] Available at: https://www.ashrae.org/technical-resources/standards-and-guidelines/standards-addenda/standard-135-2016-bacnet-a-data-communication-protocol-for-building-automation-and-control-networks [Accessed 4 Dec. 2019].
- "AC2000," AC2000 Access Control & Security Management | CEM Systems. [Online]. Available: https://www.cemsys.com/products/access-control-systems/ac2000/. [Accessed: 06-Nov-2019].
- 11. Z. Zheng and A. Reddy, "Safeguarding Building Automation Networks: THE-Driven Anomaly Detector Based on Traffic Analysis," 2017. [Online]. Available: http://cesg.tamu.edu/wpcontent/uploads/2018/01/ICCCN-Zhiyuan-Zheng-Paper-2017-July-1.pdf