10/521049 OT12 Rec'd PCT/PTO 12 JAN 2005

SEQUENCE LISTING

<110>	FILIPCIK, PETER						
<120>	TRANSGENIC ANIMAL EXPRESSING ALZHEIMER'S TAU PROTEIN						
<130>	SON	1:066US					
<140> <141>	UNKI 2005	NOWN 5-01-12					
	-	/EP2003/0073 3-07-09	390				
<150> <151>		053/2002 2-07-12					
<160>	19						
<170>	Pate	entIn versio	on 3.3				
<210><211><211><212><213>	1 969 DNA huma	an					
<400> atgcaco	1 caag	accaagaggg	tgacacggac	gctggcctga	aagctgaaga	agcaggcatt	60
ggagaca	accc	ccagcctgga	agacgaagct	gctggtcacg	tgacccaagc	tcgcatggtc	120
agtaaaa	agca	aagacgggac	tggaagcgat	gacaaaaaag	ccaagggggc	tgatggtaaa	180
acgaaga	atcg	ccacaccgcg	gggagcagcc	cctccaggcc	agaagggcca	ggccaacgcc	240
accagga	attc	cagcaaaaac	cccgcccgct	ccaaagacac	cacccagctc	tggtgaacct	300
ccaaaat	cag	gggatcgcag	cggctacagc	agccccggct	ccccaggcac	tcccggcagc	360
cgctccc	cgca	ccccgtccct	tccaacccca	cccacccggg	agcccaagaa	ggtggcagtg	420
gtccgta	actc	cacccaagtc	gccgtcttcc	gccaagagcc	gcctgcagac	agcccccgtg	480
cccatgo	ccag	acctgaagaa	tgtcaagtcc	aagatcggct	ccactgagaa	cctgaagcac	540
cagccgg	ggag	gcgggaaggt	gcagataatt	aataagaagc	tggatcttag	caacgtccag	600
tccaagt	gtg	gctcaaagga	taatatcaaa	cacgtcccgg	gaggcggcag	tgtgcaaata	660
gtctaca	aaac	cagttgacct	gagcaaggtg	acctccaagt	gtggctcatt	aggcaacatc	720
catcata	aaac	caggaggtgg	ccaggtggaa	gtaaaatctg	agaagcttga	cttcaaggac	780
agagtco	cagt	cgaagattgg	gtccctggac	aatatcaccc	acgtccctgg	cggaggaaat	840
aaaaaga	attg	aaacccacaa	gctgaccttc	cgcgagaacg	ccaaagccaa	gacagaccac	900
ggggcgg	gaga	tcgtgtacaa	gtcgccagtg	gtgtctgggg	acacgtctcc	acggcatctc	960
agcaato	gtc						969

<210> 2 <211> 795 DNA <213> human <400> 60 atggtcagta aaagcaaaga cgggactgga agcgatgaca aaaaagccaa gggggctgat ggtaaaacga agatcgccac accgcgggga gcagcccctc caggccagaa gggccaggcc 120 aacgccacca ggattccagc aaaaaccccg cccgctccaa agacaccacc cagctctggt 180 240 gaacetecaa aateagggga tegeagegge tacageagee eeggeteeee aggeaeteee 300 ggcagccgct cccgcacccc gtcccttcca accccaccca cccgggagcc caagaaggtg gcagtggtcc gtactccacc caagtcgccg tcttccgcca agagccgcct gcagacagcc 360 cccgtgccca tgccagacct gaagaatgtc aagtccaaga tcggctccac tgagaacctg 420 480 aagcaccagc cgggaggcgg gaaggtgcag ataattaata agaagctgga tcttagcaac gtccagtcca agtgtggctc aaaggataat atcaaacacg tcccgggagg cggcagtgtg 540 caaatagtet acaaaccagt tgacetgage aaggtgacet ccaagtgtgg etcattagge 600 aacatccatc ataaaccagg aggtggccag gtggaagtaa aatctgagaa gcttgacttc 660 aaggacagag tecagtegaa gattgggtee etggacaata teacceaegt eeetggegga 720 ggaaataaaa agattgaaac ccacaagctg accttccgcg agaacgccaa agccaagaca 780 795 gaccacgggg cggag <210> 3 <211> 723 <212> DNA <213> human <400> 3 atcgccacac cgcggggagc agcccctcca ggccagaagg gccaggccaa cgccaccagg 60 attccagcaa aaaccccgcc cgctccaaag acaccaccca gctctggtga acctccaaaa 120 tcaggggatc gcagcggcta cagcagcccc ggctccccag gcactcccgg cagccgctcc 180 egeacecegt cecttecaac eccacecace egggagecea agaaggtgge agtggteegt 240 actecaceca agtegeegte tteegeeaag ageegeetge agacageece egtgeecatg 300 ccagacctga agaatgtcaa gtccaagatc ggctccactg agaacctgaa gcaccagccg 360 ggaggcggga aggtgcagat aattaataag aagctggatc ttagcaacgt ccagtccaag 420 tgtggctcaa aggataatat caaacacgtc ccgggaggcg gcagtgtgca aatagtctac 480

540

aaaccagttg acctgagcaa ggtgacctcc aagtgtggct cattaggcaa catccatcat

aaaccaggag	gtggccaggt	ggaagtaaaa	tctgagaagc	ttgacttcaa	ggacagagtc	600
cagtcgaaga	ttgggtccct	ggacaatatc	acccacgtcc	ctggcggagg	aaataaaaag	660
attgaaaccc	acaagctgac	cttccgcgag	aacgccaaag	ccaagacaga	ccacggggcg	720
gag						723
<210> 4 <211> 885 <212> DNA <213> huma	an					
<400> 4	aaaggaaaga	cgggactgga	agggatgaga	aaaaaaccaa	aaaaactaat	60
		accgcgggga				120
aacgccacca	ggattccagc	aaaaaccccg	cccgctccaa	agacaccacc	cagctctggt	180
gaacctccaa	aatcagggga	tcgcagcggc	tacagcagcc	ccggctcccc	aggcactccc	240
ggcagccgct	cccgcacccc	gtcccttcca	accccaccca	cccgggagcc	caagaaggtg	300
gcagtggtcc	gtactccacc	caagtcgccg	tcttccgcca	agagccgcct	gcagacagcc	360
cccgtgccca	tgccagacct	gaagaatgtc	aagtccaaga	tcggctccac	tgagaacctg	420
aagcaccagc	cgggaggcgg	gaaggtgcag	ataattaata	agaagctgga	tcttagcaac	480
gtccagtcca	agtgtggctc	aaaggataat	atcaaacacg	tcccgggagg	cggcagtgtg	540
caaatagtct	acaaaccagt	tgacctgagc	aaggtgacct	ccaagtgtgg	ctcattaggc	600
aacatccatc	ataaaccagg	aggtggccag	gtggaagtaa	aatctgagaa	gcttgacttc	660
aaggacagag	tccagtcgaa	gattgggtcc	ctggacaata	tcacccacgt	ccctggcgga	720
ggaaataaaa	agattgaaac	ccacaagctg	accttccgcg	agaacgccaa	agccaagaca	780
gaccacgggg	cggagatcgt	gtacaagtcg	ccagtggtgt	ctggggacac	gtctccacgg	840
catctcagca	atgtctcctc	caccggcagc	atcgacatgg	tagac		885
<210> 5 <211> 813 <212> DNA <213> huma	an					
<400> 5			000000000			
_		agcccctcca				60
attccagcaa	aaaccccgcc	cgctccaaag	acaccaccca	gctctggtga	acctccaaaa	120
tcaggggatc	gcagcggcta	cagcagcccc	ggctccccag	gcactcccgg	cagccgctcc	180
cgcaccccgt	cccttccaac	cccacccacc	cgggagccca	agaaggtggc	agtggtccgt	240
actocacoca	agtegeegte	ttacaccesa	agecacetae	202020000	catacccata	300

ccagaco	ctga	agaatgtcaa	gtccaagatc	ggctccactg	agaacctgaa	gcaccagccg	360
ggaggcg	ggga	aggtgcagat	aattaataag	aagctggatc	ttagcaacgt	ccagtccaag	420
tgtggct	caa	aggataatat	caaacacgtc	ccgggaggcg	gcagtgtgca	aatagtctac	480
aaaccag	gttg	acctgagcaa	ggtgacctcc	aagtgtggct	cattaggcaa	catccatcat	540
aaaccag	ggag	gtggccaggt	ggaagtaaaa	tctgagaagc	ttgacttcaa	ggacagagtc	600
cagtcga	aaga	ttgggtccct	ggacaatatc	acccacgtcc	ctggcggagg	aaataaaaag	660
attgaaa	accc	acaagctgac	cttccgcgag	aacgccaaag	ccaagacaga	ccacggggcg	720
gagatc	gtgt	acaagtcgcc	agtggtgtct	ggggacacgt	ctccacggca	tctcagcaat	780
gtctcct	cca	ccggcagcat	cgacatggta	gac			813
<210><211><211><212><213>	6 285 DNA huma	an					
<400> atcaaac	6 cacg	tcccgggagg	cggcagtgtg	caaatagtct	acaaaccagt	tgacctgagc	60
aaggtga	acct	ccaagtgtgg	ctcattaggc	aacatccatc	ataaaccagg	aggtggccag	120
gtggaag	gtaa	aatctgagaa	gcttgacttc	aaggacagag	tccagtcgaa	gattgggtcc	180
ctggaca	aata	tcacccacgt	ccctggcgga	ggaaataaaa	agattgaaac	ccacaagctg	240
accttco	cgcg	agaacgccaa	agccaagaca	gaccacgggg	cggag		285
<210><211><212><213>	7 291 DNA huma	an					
<400>	7						
				agtgtgcaaa			60
ctgagca	aagg	tgacctccaa	gtgtggctca	ttaggcaaca	tccatcataa	accaggaggt	120
ggccagg	gtgg	aagtaaaatc	tgagaagctt	gacttcaagg	acagagtcca	gtcgaagatt	180
gggtcc	ctgg	acaatatcac	ccacgtccct	ggcggaggaa	ataaaaagat	tgaaacccac	240
aagctga	acct	tccgcgagaa	cgccaaagcc	aagacagacc	acggggcgga	g	291
<210> <211> <212> <213> <400>	8 240 DNA huma	an					
	_	trccagaaga	caacaatata	caaatagtct	acaaaccagt	tgacctgagc	60

aaggtgacct	ccaagtgtgg	ctcattaggc	aacatccatc	ataaaccagg	aggtggccag	120
gtggaagtaa	aatctgagaa	gcttgacttc	aaggacagag	tccagtcgaa	gattgggtcc	180
ctggacaata	tcacccacgt	ccctggcgga	ggaaataaaa	agattgaaac	ccacaagctg	240
<210> 9 <211> 189 <212> DNA <213> huma	an					
<400> 9	tataaaaaaa	agttgaggtg	agga aggt ga	actecanata	taaataatta	60
	tctacaaacc					
ggcaacatcc	atcataaacc	aggaggtggc	caggtggaag	taaaatctga	gaagcttgac	120
ttcaaggaca	gagtccagtc	gaagattggg	tccctggaca	atatcaccca	cgtccctggc	180
ggaggaaat						189
<210> 10 <211> 876 <212> DNA <213> huma	an					
<400> 10	accaagaggg	tgacacggac	actaacctaa	aagetgaaga	agcaggcatt	60
ggagacaccc	ccagcctgga	agacgaagct	getggteaeg	tgacccaagc	tegeatggte	120
agtaaaagca	aagacgggac	tggaagcgat	gacaaaaaag	ccaagggggc	tgatggtaaa	180
acgaagatcg	ccacaccgcg	gggagcagcc	cctccaggcc	agaagggcca	ggccaacgcc	240
accaggattc	cagcaaaaac	cccgcccgct	ccaaagacac	cacccagctc	tggtgaacct	300
ccaaaatcag	gggatcgcag	cggctacagc	agccccggct	ccccaggcac	tcccggcagc	360
cgctcccgca	ccccgtccct	tccaacccca	cccacccggg	agcccaagaa	ggtggcagtg	420
gtccgtactc	cacccaagtc	gccgtcttcc	gccaagagcc	gcctgcagac	agcccccgtg	480
cccatgccag	acctgaagaa	tgtcaagtcc	aagatcggct	ccactgagaa	cctgaagcac	540
cagccgggag	gcgggaaggt	gcaaatagtc	tacaaaccag	ttgacctgag	caaggtgacc	600
tccaagtgtg	gctcattagg	caacatccat	cataaaccag	gaggtggcca	ggtggaagta	660
aaatctgaga	agcttgactt	caaggacaga	gtccagtcga	agattgggtc	cctggacaat	720
atcacccacg	tccctggcgg	aggaaataaa	aagattgaaa	cccacaagct	gaccttccgc	780
gagaacgcca	aagccaagac	agaccacggg	gcggagatcg	tgtacaagtc	gccagtggtg	840
tataaaaaa	catctccaca	acatatasaa	aatoto			876

<210> 11

- <211> 702 <212> DNA <213> human
- <400> 11 atggtcagta aaagcaaaga cgggactgga agcgatgaca aaaaagccaa gggggctgat 60 ggtaaaacga agatcgccac accgcgggga gcagccctt caggccagaa gggccaggcc 120 aacgccacca ggattccagc aaaaaccccg cccgctccaa agacaccacc cagctctggt 180 gaacetecaa aateagggga tegeagegge tacageagee eeggeteeee aggeacteee 240 ggcagccgct cccgcacccc gtcccttcca accccaccca cccgggagcc caagaaggtg 300 gcagtggtcc gtactccacc caagtcgccg tcttccgcca agagccgcct gcagacagcc 360 cccgtgccca tgccagacct gaagaatgtc aagtccaaga tcggctccac tgagaacctg 420 aagcaccagc cgggaggcgg gaaggtgcaa atagtctaca aaccagttga cctgagcaag 480 gtgacctcca agtgtggctc attaggcaac atccatcata aaccaggagg tggccaggtg 540 gaagtaaaat ctgagaagct tgacttcaag gacagagtcc agtcgaagat tgggtccctg 600 gacaatatca cccacgtccc tggcggagga aataaaaaga ttgaaaccca caagctgacc 660 702 ttccgcgaga acgccaaagc caagacagac cacggggcgg ag
- <210> 12 <211> 630
- <212> DNA
- <213> human
- <400> 12 ategecacae egeggggage ageceeteea ggecagaagg gecaggecaa egecaceagg 60 attocagoaa aaacccogoo ogotocaaag acaccaccca gototggtga acotocaaaa 120 traggggate grageggeta cagragerer ggetrerrag gractering ragergetre 180 egeaceegt ceetteeaac eccaceeace egggageeca agaaggtgge agtggteegt 240 actocaccca agtogoogto ttoogocaag agcogoctgo agacagocco ogtgoccatg 300 ccagacctga agaatgtcaa gtccaagatc ggctccactg agaacctgaa gcaccagccg 360 ggaggcggga aggtgcaaat agtctacaaa ccagttgacc tgagcaaggt gacctccaag 420 tgtggctcat taggcaacat ccatcataaa ccaggaggtg gccaggtgga agtaaaatct 480 gagaagettg aetteaagga cagagteeag tegaagattg ggteeetgga caatateace 540 cacgtccctg gcggaggaaa taaaaagatt gaaacccaca agctgacctt ccgcgagaac 600 630 gccaaagcca agacagacca cggggcggag
- <210> 13
- <211> 792

<212> DNA <213> human

<400> 13 atggtcagta aaagcaaaga cgggactgga agcgatgaca aaaaagccaa gggggctgat 60 ggtaaaacga agatcgccac accgcgggga gcagccctc caggccagaa gggccaggcc 120 180 aacgccacca ggattccagc aaaaaccccg cccgctccaa agacaccacc cagctctggt gaacetecaa aateagggga tegeagegge tacageagee eeggeteeee aggeaeteee 240 300 ggcagccgct cccgcacccc gtcccttcca accccaccca cccgggagcc caagaaggtg gcagtggtcc gtactccacc caagtcgccg tcttccgcca agagccgcct gcagacagcc 360 cccgtgccca tgccagacct gaagaatgtc aagtccaaga tcggctccac tgagaacctg 420 aagcaccagc cgggaggcgg gaaggtgcaa atagtctaca aaccagttga cctgagcaag 480 gtgacctcca agtgtggctc attaggcaac atccatcata aaccaggagg tggccaggtg 540 gaagtaaaat ctgagaagct tgacttcaag gacagagtcc agtcgaagat tgggtccctg 600 gacaatatca cccacgtccc tggcggagga aataaaaaga ttgaaaccca caagctgacc 660 ttccgcgaga acgccaaagc caagacagac cacggggcgg agatcgtgta caagtcgcca 720 gtggtgtctg gggacacgtc tccacggcat ctcagcaatg tctcctccac cggcagcatc 780 792 gacatggtag ac

<210> 14

<211> 720

<212> DNA

human

<400> 14 atogocacao egeggggago ageceeteca ggecagaagg gecaggecaa egecaceagg 60 attecageaa aaacccegee egetecaaag acaccaecca getetggtga acetecaaaa 120 teaggggate geageggeta cageageece ggeteeceag geacteeegg cageegetee 180 egeacecegt ceetteeaac eccacecace egggagecea agaaggtgge agtggteegt 240 actocaccca agtogoogto ttoogocaag agcogootgo agacagoooc ogtgoocatg 300 ccagacctga agaatgtcaa gtccaagatc ggctccactg agaacctgaa gcaccagccg 360 ggaggcggga aggtgcaaat agtctacaaa ccagttgacc tgagcaaggt gacctccaag 420 tgtggctcat taggcaacat ccatcataaa ccaggaggtg gccaggtgga agtaaaatct 480 gagaagcttg acttcaagga cagagtccag tcgaagattg ggtccctgga caatatcacc 540 cacgtccctg gcggaggaaa taaaaagatt gaaacccaca agctgacctt ccgcgagaac 600

660

gccaaagcca agacagacca cggggcggag atcgtgtaca agtcgccagt ggtgtctggg

gacacgtctc cacggcatct	cagcaatgtc	tcctccaccg	gcagcatcga	catggtagac	720
<210> 15 <211> 2946 <212> DNA <213> human					
<400> 15 aatgtcccga attcccagcc	traccacccc	ttctcagtaa	taaccctaat	taattacaaa	60
aggtacctac tccatactga					120
ggaccccagc ctctcactct					180
	_	_		_	
atgatetgat teggtteeet					240
cagctgtgac cctaggtgtt					300
ggcctggccc cttcctgtgc	tgagcccaca	gcagcaggct	gggtgtcttg	gttgtcagtg	360
gtggcaccag gatggaaggg	caaggcaccc	agggcaggcc	cacagtcccg	ctgtccccca	420
cttgcaccct agcttgtagc	tgccaacctc	ccagacagcc	cagcccgctg	ctcagctcca	480
catgcatagt atcagccctc	cacacccgac	aaaggggaac	acaccccctt	ggaaatggtt	540
cttttccccc agtcccagct	ggaagccatg	ctgtctgttc	tgctggagca	gctgaacata	600
tacatagatg ttgccctgcc	ctccccatct	gcaccctgtt	gagttgtagt	tggatttgtc	660
tgtttatgct tggattcacc	agagtgacta	tgatagtgaa	aagaaaaaaa	aaaaaaaaa	720
aggacgcatg tatcttgaaa	tgcttgtaaa	gaggtttcta	acccaccctc	acgaggtgtc	780
tctcaccccc acactgggac	tcgtgtggcc	tgtgtggtgc	caccctgctg	gggcctccca	840
agttttgaaa ggctttcctc	agcacctggg	acccaacaga	gaccagcttc	tagcagctaa	900
ggaggccgtt cagctgtgac	gaaggcctga	agcacaggat	taggactgaa	gcgatgatgt	960
ccccttccct acttcccctt					1020
ggtctggctt gcggcgcgag					1080
cccaaaggag gcttacaact					1140
gatctgcagc tcccagaagc					1200
aagetegeee tetggagggg					1260
gattgggatg aattgcctgt	cctggatctg	ctctagaggc	ccaagctgcc	tgcctgagga	1320
aggatgactt gacaagtcag	gagacactgt	tcccaaagcc	ttgaccagag	cacctcagcc	1380
cgctgacctt gcacaaactc	catctgctgc	catgagaaaa	gggaagccgc	ctttgcaaaa	1440
cattgctgcc taaagaaact	cagcagcctc	aggcccaatt	ctgccacttc	tggtttgggt	1500
acagttaaag gcaaccctga	gggacttggc	agtagaaatc	cagggcctcc	cctggggctg	1560

gcagcttcgt	gtgcagctag	agctttacct	gaaaggaagt	ctctgggccc	agaactctcc	1620
accaagagcc	tccctgccgt	tcgctgagtc	ccagcaattc	tcctaagttg	aagggatctg	1680
agaaggagaa	ggaaatgtgg	ggtagatttg	gtggtggtta	gagatatgcc	cccctcatta	1740
ctgccaacag	tttcggctgc	atttcttcac	gcacctcggt	tcctcttcct	gaagttcttg	1800
tgccctgctc	ttcagcacca	tgggccttct	tatacggaag	gctctgggat	ctcccccttg	1860
tggggcaggc	tettggggee	agcctaagat	catggtttag	ggtgatcagt	gctggcagat	1920
aaattgaaaa	ggcacgctgg	cttgtgatct	taaatgagga	caatccccc	agggctgggc	1980
actcctcccc	tcccctcact	tctcccacct	gcagagccag	tgtccttggg	tgggctagat	2040
aggatatact	gtatgccggc	tccttcaagc	tgctgactca	ctttatcaat	agttccattt	2100
aaattgactt	cagtggtgag	actgtatcct	gtttgctatt	gcttgttgtg	ctatgggggg	2160
aggggggagg	aatgtgtaag	atagttaaca	tgggcaaagg	gagatcttgg	ggtgcagcac	2220
ttaaactgcc	tcgtaaccct	tttcatgatt	tcaaccacat	ttgctagagg	gagggagcag	2280
ccacggagtt	agaggccctt	ggggtttctc	ttttccactg	acaggettte	ccaggcagct	2340
ggctagttca	ttccctcccc	agccaggtgc	aggcgtagga	atatggacat	ctggttgctt	2400
tggcctgctg	ccctctttca	ggggtcctaa	gcccacaatc	atgcctccct	aagaccttgg	2460
catccttccc	tctaagccgt	tggcacctct	gtgccacctc	tcacactggc	tccagacaca	2520
cagcctgtgc	ttttggagct	gagatcactc	gcttcaccct	cctcatcttt	gttctccaag	2580
taaagccacg	aggtcggggc	gagggcagag	gtgatcacct	gcgtgtccca	tctacagacc	2640
tgcagcttca	taaaacttct	gatttctctt	cagctttgaa	aagggttacc	ctgggcactg	2700
gcctagagcc	tcacctccta	atagacttag	ccccatgagt	ttgccatgtt	gagcaggact	2760
atttctggca	cttgcaagtc	ccatgatttc	ttcggtaatt	ctgagggtgg	ggggagggac	2820
atgaaatcat	cttagcttag	ctttctgtct	gtgaatgtct	atatagtgta	ttgtgtgttt	2880
taacaaatga	tttacactga	ctgttgctgt	aaaagtgaat	ttggaaataa	agttattact	2940
ctgatt						2946

<210> 16

<211> 20 <212> DNA <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Primer

<400> 16

gtggatctca agccctcaag

17	
20	
DNA	
Artificial Sequence	
Description of Artificial Sequence:	Synthetic
Primer	
17	
- ·	20
18	
Artificial Sequence	
Description of Artificial Sequence:	Synthetic
Primer	
18	20
gacct ccaagtgtgg	20
19	
20	
DNA	
Description of Artificial Sequence:	Synthetic
Primer	
19	
	2
	Description of Artificial Sequence: Primer 17 ctga ttttggaggt 18 20 DNA Artificial Sequence Description of Artificial Sequence: Primer 18 gacct ccaagtgtgg 19 20 DNA Artificial Sequence Description of Artificial Sequence: Primer 18 pact ccaagtgtgg 19 20 DNA Artificial Sequence Description of Artificial Sequence: Primer