SUMMARY MILESTONE TABLE: YEAR 1

Milestone ¹	Details		Progress		
§2 - Finish SIMpliPy workflow management tool	Resource: <i>Mira</i> Online storage: –	node-hours: – Archival storage: –	Complete. Capable of managing automatic restarts, including job submission. Can configure large parameter studies and build custom job execution scripts.		
§2 - Implement marching cubes for EOS and opacities	Resource: <i>Mira</i> Online storage: –	node-hours: – Archival storage: –	Complete. Substantial progress in improving efficiency in this part of the code through vectorization. Marching cube EOS and opacity tables did not, in the end, yield a substantial increase in performance. Other optimizations were made.		
§2.2 - High-fidelity 3D Simulations of Magnetorotational CCSNe	Resource: <i>Mira</i> Online storage: 40 TB Resource: <i>Theta</i> Online storage: 20 TB	node-hours: 4.1M Archival storage: 80 TB <i>Mira</i> node-hours: 141k Archival storage: 40 TB	Complete.		
§2.3 - 3D Simulations of Iron Core Collapse in Rotating Stars	Resource: <i>Mira</i> Online storage: 10 TB	node-hours: 1.25M Archival storage: more	Full 3D simulation in a non-rotating progenitor complete and publication in preparation.		
§2.4 - High-resolution Simulation of Magnetorotational Turbulence in CCSNe	Resource: <i>Mira</i> Online storage: 50 TB	node-hours: 3.75M Archival storage: 100 TB	Complete.		
Total Request – Mira: 9.375M node-hours, 300 TB storage; Theta: 141k node-hours; 40 TB online storage					

¹Yellow: code development milestone; Teal: simulation milestone.

SUMMARY MILESTONE TABLE: YEAR 2

Milestone ¹	Details		Progress
§2 - Implement TEAMS opacities and EOS and NES	Resource: <i>Mira</i> Online storage: –	node-hours: – Archival storage: –	Neutrino-electron scattering has been successfully implemented in our Spark-M1 application. Work on the TEAMS opacity and EOS framework continues.
§2.5 - Long time scale simulations	Resource: <i>Mira</i> Online storage: 40 TB	node-hours: 4.1M Archival storage: 80 TB	These simulations are running in the Capability queue on <i>Mira</i> now.
§2.7 - High-res PNS dynamo simulation	Resource: <i>Mira</i> Online storage: 50 TB	node-hours: 3.9M Archival storage: 100 TB	We are on track to start this simulation in the next couple weeks, consistent with the original plan.
§2.6 - MHD progenitor simulations for more masses	Resource: <i>Mira</i> Online storage: 10 TB	node-hours: 1.375M Archival storage: 20 TB	We are behind schedule on this due to required improvements and development to the progenitor application. The first non-MHD 3D progenitor simulation is complete and we will still be able to complete the planned MHD progenitor simulations before the end of 2019.
§2.8 - CCSN sims with 3D progens from Year 1	Resource: <i>Theta</i> Online storage: 40 TB	node-hours: 281k Archival storage: 80 TB	These simulations will commence shortly on <i>Theta</i> , consistent with our original schedule.
§2 - Implement high-order MHD based on differential transforms Total Request on <i>Mira</i> : 9.375M node-hours, 30	Resource: <i>Mira</i> Online storage: –	node-hours: – Archival storage: –	We have finished on initial implementation of a truly high-order finite-volume MHD scheme in FLASH. Further development will be needed before it is ready for production simulations but we expect that to be the case for 2020.

¹Yellow: code development milestone; Teal: simulation milestone.

ORIGINAL MILESTONE TABLE: YEAR 3

Milestone ¹	Details		Dates		
§2 - Implement simple task-based parallelism	Resource: Mira	node-hours: –	Jan – Mar 2020		
32 - Implement simple task-based paranelism	Online storage: –	Archival storage: –	Jan – Wai 2020		
§2.9 - MHD CCSN Simulations Using 3D Progenitors	Resource: Theta	node-hours: 16M	Jan – June 2020		
	Online storage: 40 TB	Archival storage: 80 TB			
§2.10 - Late time sims in 3D progenitors	Resource: Theta	Core-hours: 16M	Jan – Jun 2020		
32.10 - Late time sims in 3D progenitors	Online storage: 40 TB	Archival storage: 80 TB			
§2.11 - Enhanced physics CCSN parameter study	Resource: Aurora	Core-hours: 400M	Feb – Dec 2020		
	Online storage: 2 PB	Archival storage: 4 PB	1 CO - DCC 2020		
Total Request on Theta: 32M SU, 100 TB storage; Aurora: 400M, 2 PB storage					

¹Yellow: code development milestone; Teal: simulation milestone.

REVISED MILESTONE TABLE: YEAR 3

Milestone ¹	Details		Dates
Adapt Spark-M1 to AMReX-based FLASH5	Resource: Mira	node-hours: –	Jan – Mar 2020
	Online storage: –	Archival storage: –	
MHD CCSN Simulations Using 3D Progenitors	Resource: Theta	node-hours: 250k	Mar – Oct 2020
WITH CCSN Simulations Using 3D Progenitors	Online storage: 40 TB	Archival storage: 80 TB	
Late time sims in 3D progenitors	Resource: Theta	node-hours: 250k	Jan – Jun 2020
Late time sims in 3D progenitors	Online storage: 40 TB	Archival storage: 80 TB	
Enhanced physics CCSN parameter study	Resource: Theta	node-hours: 500k	Jul – Dec 2020
	Online storage: 80 TB	Archival storage: 160 TB	
Total Request on Theta: 1M node-hours, 300 TB storage			

¹Yellow: code development milestone; Teal: simulation milestone.