Find the 11 (1)
$$y = (3n^2 - 4)^4$$
 (71) $y = (3n-1)^2$

the contract of the same

Solution

(i)
$$y = (3x^2 + 4)^4$$
 (of $V = 3x^2 - 4$ then $y = V^4$

$$\frac{dy}{dx} = 4x^3$$

$$\frac{dv}{dx} = 6x$$

Hen
$$\frac{dy}{dx} = \frac{4}{4} \times \frac{dy}{dx} = \frac{4}{4} \times \frac{3}{4} \times \frac{3}{4$$

(2)
$$y = \left(\frac{2i-1}{2i+1}\right)^2$$
, let $V = \frac{2i-1}{2i+1}$, then $y = V^2$.

$$\frac{dy}{dy} = 2V; \quad \frac{dv}{dn} = \frac{(2i+1)(1) - (2i-1)(1)}{(2i+1)^2}$$

$$\frac{dv}{dn} = \frac{2i-1}{2i+1} = \frac{2i-1}{2i+1}$$

$$\frac{1}{\sqrt{|x+1|^2}} = \frac{1}{(x+1)^2}$$

$$\frac{1}{(x+1)^2} = \frac{1}{(x+1)^2}$$

Hence
$$\frac{\delta y}{dn} = 2V \times \frac{2}{2} = \frac{4(n-1)}{(n+1)^2} \times \frac{1}{(n+1)^2}$$

$$= \frac{4(n-1)}{(n+1)^3},$$
mple:

Example

$$\frac{S6ln}{(1)} = Sin(4n^{2}+3n) \quad \text{(et } v = 4x^{2}+3n \implies y = SinV$$

$$\frac{dv}{dx} = 8n+3 \quad \text{(et } v = 4x^{2}+3n \implies y = SinV$$

$$\frac{dv}{dx} = 8n+3 \quad \text{(et } v = 4x^{2}+3n \implies y = SinV$$

$$\frac{dv}{dx} = 8n+3 \quad \text{(et } v = 4x^{2}+3n \implies y = SinV$$

$$\frac{dv}{dx} = 8n+3 \quad \text{(et } v = 4x^{2}+3n \implies y = SinV$$

$$\frac{dv}{dx} = 8n+3 \quad \text{(et } v = 4x^{2}+3n \implies y = SinV$$

$$\frac{dv}{dx} = 8n+3 \quad \text{(et } v = 4x^{2}+3n \implies y = SinV$$

$$\frac{dv}{dx} = 8n+3 \quad \text{(et } v = 4x^{2}+3n \implies y = SinV$$

$$\frac{dv}{dx} = 8n+3 \quad \text{(et } v = 4x^{2}+3n \implies y = SinV$$

$$\frac{dv}{dx} = 8n+3 \quad \text{(et } v = 4x^{2}+3n \implies y = SinV$$

$$\frac{dv}{dx} = 8n+3 \quad \text{(et } v = 4x^{2}+3n \implies y = SinV$$

$$\frac{dv}{dx} = 8n+3 \quad \text{(et } v = 4x^{2}+3n \implies y = SinV$$

$$\frac{dv}{dx} = 8n+3 \quad \text{(et } v = 4x^{2}+3n \implies y = SinV$$

$$\frac{dv}{dx} = 8n+3 \quad \text{(et } v = 4x^{2}+3n \implies y = SinV$$

$$\frac{dv}{dx} = 8n+3 \quad \text{(et } v = 4x^{2}+3n \implies y = SinV$$

$$\frac{dv}{dx} = 8n+3 \quad \text{(et } v = 4x^{2}+3n \implies y = SinV$$

$$\frac{dv}{dx} = 8n+3 \quad \text{(et } v = 4x^{2}+3n \implies y = SinV$$

$$\frac{dv}{dx} = 8n+3 \quad \text{(et } v = 4x^{2}+3n \implies y = SinV$$

$$\frac{dv}{dx} = 8n+3 \quad \text{(et } v = 4x^{2}+3n \implies y = SinV$$

$$\frac{dv}{dx} = 8n+3 \quad \text{(et } v = 4x^{2}+3n \implies y = SinV$$

$$\frac{dv}{dx} = 8n+3 \quad \text{(et } v = 4x^{2}+3n \implies y = SinV$$

$$\frac{dv}{dx} = 8n+3 \quad \text{(et } v = 4x^{2}+3n \implies y = SinV$$

$$\frac{dv}{dx} = 8n+3 \quad \text{(et } v = 4x^{2}+3n \implies y = SinV$$

$$\frac{dv}{dx} = 8n+3 \quad \text{(et } v = 4x^{2}+3n \implies y = SinV$$

(1)
$$y = Sec^2 40$$
 (cf $v = Sec 40$ =) $y = V^2$.

$$\frac{dy}{dv} = 2V$$

$$\frac{dy}{dv} = 2V$$

$$\frac{dy}{dv} = Sec 40 + 20 \times 4$$

$$\frac{dv}{dv} = Sec 40 + 20 \times 4$$

$$\frac{dv}{dv} = 4 + 20 \times 4$$

$$\frac{dv}{dv} = 4 + 20 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4 \times 4 \times 4 \times 4 \times 4$$

$$\frac{dv}{dv} = 4$$

Exercises

Evaluate the first derivative of the following functions. 1- y= (x2+2n+1)4

Bring roup last of attached the the state of

OF FIRE TO ECONOLE VIEW SILVER

a- y = 22 cr33x

3. $y = (2n^2 - 3n)^5$

4. y= x sin 4x

5. y= sec 3nl

Scanned with CamScanner

DERIVATIVE OF OR Where n & NEGATIVE OF A FRACTION

$$y=x^{-m}=\frac{1}{x^m}$$

$$\frac{dy}{dx} = -m x^{-m-1}$$

$$\frac{dy}{dx} = \frac{p}{q} x^{\frac{2}{q}-1}$$

$$y = \sqrt{n} = n^{\frac{1}{2}} \cdot \frac{dy}{dx} = \frac{1}{2} x^{\frac{1}{2}} = \frac{1}{2\sqrt{x}}$$

(2)
$$y = \frac{1}{2^4} = x^{-4}$$
; $\frac{dy}{dx} = -4x^{-5} = -\frac{4}{x^5}$

(ii)
$$y = \sqrt{\left(\frac{x}{1+n}\right)}$$

1)
$$y = (\chi^2 - \frac{2}{\chi^2})^2$$
. Let $v = \chi^2 - \frac{2}{\chi^2}$, then $y = V^2$

$$\frac{dy}{dv} = 2V \qquad \frac{dv}{dn} = 2n - 2(-2)n^{-3} = 2n + 4$$

Here
$$\frac{dy}{dn} = \frac{1}{n} \times \frac{dv}{dn}$$

$$= \frac{1}{n} \left(n^{2} - \frac{2}{n^{2}} \right) \left(2n + \frac{4}{n^{2}} \right)$$

$$= \frac{1}{n} \left(n^{2} - \frac{2}{n^{2}} \right) \left(2n + \frac{4}{n^{2}} \right)$$

$$= \frac{1}{n} \left(n^{2} - \frac{2}{n^{2}} \right) \left(2n + \frac{4}{n^{2}} \right)$$

$$= \frac{1}{n} \left(2n + \frac{2}{n^{2}} \right)$$

$$=$$

f(n)

log a?

Sin-1(n)

Cr3-1(n)

tan-1(n)

In g(n)

eg(n)

1/(x)

(1' dix 1) 1 (5 -10)

DIFFERENTIATION OF INVERSE FUNCTIONS.

In general if y=f(x) then the value of ne will depend on the value of y and so ne is a function of yn=g(y).

Example: if y-n2, then n= Ty !

If y= sin x then n= sin y

Thus, if y = f(x), and x = g(y), then the derivative of $\frac{dx}{dy}$ of g(y) in terms of the derivative $\frac{dy}{dn}$ of f(x) is given by = $\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$ or $\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}$

Examples

1. If
$$y = \tan^{-1}nx$$
 =) $n = \tan y$.

$$\frac{dx}{dy} = \frac{\sin^{-2}y}{\sin^{-2}y} = 1 + \tan^{-2}y$$

$$= 1 + n^{2}$$

Hence,
$$\frac{dy}{dx} = \frac{1}{\frac{dn}{dy}} = \frac{1}{1+x^2}$$

(Note that once you get do you have to write your answer in terms of sc and noty).

2. If
$$y = \sin^{-1} x$$
 =) $\pi = \sin y$

$$\frac{dx}{dy} = \cos y = \sqrt{1-\sin^{2} y}$$

$$= \sqrt{1-x^{2}}$$
Note that $\sin^{2} y + \cos^{2} y = 1$

$$= \cos^{2} y = 1-\sin^{2} y$$

=> CESY= 1-SINY Cosy = VI-singy

3) If
$$y = \cos^{-1} x = 2$$
 $x = asy$

$$\Rightarrow \frac{dx}{dy} = -\sin y = -\sqrt{1-as^2y}$$

$$= -\sqrt{1-x^2}$$

Note that sinytoury=1 =) Siny = 1- cosy

Hence dy = -1 $dx = \sqrt{1-x^2}$

derivative dy - f(x) will be some other function of x.

We might as well enquire what is the rate of charge of
the derivative with respect to x. The derivative of
dy is called the second derivative or the second
doc differential coefficient of y with respect to x and is
written as dy. The third derivative of y
is doc differential

denoted by dy and the nth coefficient of y with
respect to x with

respect to x with

respect to x and

the of y

is

denoted by dy and the nth coefficient of y

with

respect to x with

respect to x and

the nth coefficient of y

with

respect to x is

dy

drivential

obx"

If the notation ffx) is used, the first, second, third, --..

with derivatives are denoted by fl(x), f''(x), f''(x), ..., f''(x).

Example

1. If $y = \sin nx$, show that $\frac{d^2y}{dn^2} = -y$, $\frac{d^4y}{dn^4} = y$. $\frac{dy}{dn^2} = \cos nx$ $\frac{d^2y}{dn^2} = -\sin nx = 7y$

 $\frac{d^3y}{dx^3} = -\cos 2x$ $\frac{d^3y}{dx^3} = -(-\sin 2x) = \sin 2x = y$

2) Find the 2nd decidative of
$$y=f(\theta)=\frac{\sin \theta}{1+\cos \theta}$$

$$\frac{\sinh \theta}{\det \theta} = \frac{(1+\cos \theta)\cos \theta - \sin \theta(-\sin \theta)}{(1+\cos \theta)} = \frac{\sinh \theta}{(1+\cos \theta)}$$

$$= \frac{\cos \theta + \cos^2 \theta + \sin^2 \theta}{(1+\cos \theta)^2} = \frac{\cos \theta + 1}{(1+\cos \theta)^2} = \frac{1}{1+\cos \theta}$$

$$\frac{d^2y}{d\theta^2} = -\frac{d}{d\theta} \frac{(1+\cos \theta)}{(1+\cos \theta)^2} = -\frac{(-\sin \theta)}{(1+\cos \theta)^2} = \frac{\sin \theta}{(1+\cos \theta)^2}$$

$$\frac{d^2y}{d\theta^2} = \frac{\sin \theta}{(1+\cos \theta)} = \frac{\sin \theta}{(1+\cos \theta)^2}$$

$$\frac{d^2y}{d\theta^2} = \frac{\cos \theta}{\cos \theta} \cdot \sec \theta$$

$$\frac{d^2y}{d\theta^2} = \frac{\sec \theta}{\cos \theta} \cdot \sec \theta$$

$$= 2 \sec \theta \cdot (\sec \theta + \cos \theta) + \sec \theta \cdot (\sec \theta + \cos \theta)$$

$$= 2 \sec \theta \cdot (\sec \theta + \cos \theta) + \sec \theta \cdot (\sec \theta + \cos \theta)$$

$$= 2 \sec \theta \cdot (\sec \theta + \cos \theta) + \sec \theta \cdot (\sec \theta + \cos \theta)$$

$$= 2 \sec \theta \cdot (\sec \theta + \cos \theta) + \sec \theta \cdot (\sec \theta + \cos \theta)$$

$$= 2 \sec \theta \cdot (\sec \theta + \cos \theta) + \sec \theta \cdot (\sec \theta + \cos \theta)$$

$$= 2 \sec \theta \cdot (\sec \theta + \cos \theta) + \sec \theta \cdot (\sec \theta + \cos \theta)$$

$$= 2 \cot \theta \cdot (1+\tan^2 \theta) + \sec \theta \cdot (\sec \theta + \cos \theta)$$

$$= 2 \cot \theta \cdot (1+\tan^2 \theta) + \sec \theta \cdot (\sec \theta + \cos \theta)$$

$$= 2 \cot \theta \cdot (1+\tan^2 \theta) + \sec \theta \cdot (\sec \theta + \cos \theta)$$

$$= 2 \cot \theta \cdot (1+\tan^2 \theta) + \sec \theta \cdot (\sec \theta + \cos \theta)$$

$$= 2 \cot \theta \cdot (1+\tan^2 \theta) + \sec \theta \cdot (\sec \theta + \cos \theta)$$

$$= 2 \cot \theta \cdot (1+\tan^2 \theta) + \sec \theta \cdot (\sec \theta + \cos \theta)$$

$$= 2 \cot \theta \cdot (1+\tan^2 \theta) + \sec \theta \cdot (\sec \theta + \cos \theta)$$

$$= 2 \cot \theta \cdot (1+\tan^2 \theta) + \sec \theta \cdot (\sec \theta + \cos \theta)$$

$$= 2 \cot \theta \cdot (1+\tan^2 \theta) + \sec \theta \cdot (\sec \theta + \cos \theta)$$

$$= 2 \cot \theta \cdot (1+\tan^2 \theta) + \sec \theta \cdot (\sec \theta + \cos \theta)$$

$$= 2 \cot \theta \cdot (1+\tan^2 \theta) + \sec \theta \cdot (\sec \theta + \cos \theta)$$

$$= 2 \cot \theta \cdot (1+\tan^2 \theta) + \cot \theta \cdot (1+\tan^2 \theta)$$

$$= 2 \cot^2 \theta \cdot (1+\tan^2 \theta) + \cot^2 \theta \cdot (1+\tan^2 \theta)$$

$$= 2 \cot^2 \theta \cdot (1+\tan^2 \theta) + \cot^2 \theta \cdot (1+\tan^2 \theta)$$

$$= 2 \cot^2 \theta \cdot (1+\tan^2 \theta) + \cot^2 \theta \cdot (1+\tan^2 \theta)$$

$$= 2 \cot^2 \theta \cdot (1+\tan^2 \theta) + \cot^2 \theta \cdot (1+\tan^2 \theta)$$

$$= 2 \cot^2 \theta \cdot (1+\tan^2 \theta) + \cot^2 \theta \cdot (1+\tan^2 \theta)$$

$$= 2 \cot^2 \theta \cdot (1+\tan^2 \theta) + \cot^2 \theta \cdot (1+\tan^2 \theta)$$

$$= 2 \cot^2 \theta \cdot (1+\tan^2 \theta) + \cot^2 \theta \cdot (1+\tan^2 \theta)$$

$$= 2 \cot^2 \theta \cdot (1+\tan^2 \theta) + \cot^2 \theta \cdot (1+\tan^2 \theta)$$

$$= 2 \cot^2 \theta \cdot (1+\tan^2 \theta) + \cot^2 \theta \cdot (1+\tan^2 \theta)$$

$$= 2 \cot^2 \theta \cdot (1+\tan^2 \theta) + \cot^2 \theta \cdot (1+\tan^2 \theta)$$

$$= 2 \cot^2 \theta \cdot (1+\tan^2 \theta) + \cot^2 \theta \cdot (1+\tan^2 \theta)$$

$$= 2 \cot^2 \theta \cdot (1+\tan^2 \theta) + \cot^2 \theta \cdot (1+\tan^2 \theta)$$

$$= 2 \cot^2 \theta \cdot (1+\tan^2 \theta) + \cot^2 \theta \cdot (1+\tan^2 \theta)$$

$$= 2 \cot^2 \theta \cdot (1+\tan^2 \theta) + \cot^2 \theta \cdot (1+\tan^2 \theta)$$

$$= 2 \cot^2 \theta \cdot (1+\tan^2 \theta) + \cot^2 \theta \cdot (1+\tan^2 \theta)$$

$$= 2 \cot^2 \theta \cdot (1+\tan^2 \theta) + \cot^2 \theta \cdot (1+\tan^2 \theta)$$

$$= 2 \cot^2 \theta \cdot (1+\tan^2 \theta) + \cot^2 \theta \cdot (1+\tan^2 \theta)$$

$$= 2 \cot^2 \theta \cdot (1+\tan^2 \theta) + \cot^2 \theta \cdot (1+\tan^2 \theta)$$

$$= 2 \cot^2 \theta \cdot (1+\tan^2 \theta) + \cot^2 \theta \cdot (1+\tan^2 \theta)$$

$$= 2 \cot^2 \theta \cdot (1+\tan^2$$

Scanned with CamScanner