

mmBody Benchmark: 3D Body Reconstruction Dataset and Analysis for MillimeterWave Radar

Anjun Chen*, Xiangyu Wang*, Shaohao Zhu, Yanxu Li, Jiming Chen, Qi Ye {anjunchen, xy_wong, zhushh9, zjulianxu, cjm, qi.ye}@zju.edu.cn

Questions

- How accurately can the mmWave radar reconstruct 3D human body in different scenarios?
- Can the mmWave radar work **robustly** in severe environments?
- Can the mmWave radar achieve comparable accuracy with RGB(D) cameras?

Dataset Comparison

mmWave point cloud + SMPL-X body annotation + RGBD images **100k frames** & **100 motions** of 20 volunteers in **7 different scenes**

					Scenes								
Dataset	Signals	Labels	No. Actions	Public	Occlusion	Poor Lighting	Furnished	Rain	Smoke				
RF-Pose [59]	RF Signal	2D Skeletons	/	X	✓	✓	X	X	\overline{x}				
RF-Pose3D [61]	RF Signal	3D Skeletons	/	×	\checkmark	×	X	\times	X				
RF-MMD [27]	RF Signal	3D Skeletons	35	×	\checkmark	\checkmark	X	\times	X				
Person-in-WiFi [51]	Wi-Fi	2D Skeletons	/	×	X	×	X	X	X				
RF-Avatar [60]	RF Signal	3D Mesh	/	×	\checkmark	×	X	\times	X				
mmMesh [55]	mmWave	3D Mesh	8	×	\checkmark	\checkmark	\checkmark	\times	X				
Ours	mmWave, RGB(D)	3D Skeletons/Mesh	100	✓	✓	✓	✓	✓	✓				

Data Collection System

2 Azure Kinects: synchronized and calibrated RGBD images

8 OptiTrack cameras: mesh annotation generated using MoSh++.

TSNE Visualization of Dataset Pose & Shape Space

- Completeness and diversity of scenarios, shapes, and poses
- Coverage of our dataset is equal to or better than popular datasets for human body reconstruction using MoCap or RGB(D) images.
- Fig. (a) Our mmBody pose and shape space
- Fig. (b) Compares with the MPI Limits dataset.
- Fig. (c) Compares with the CMU dataset.
- Fig. (d) Compares with the ACCAD dataset.

Experiments and Analysis

• Shape errors for the mmWave radar and the RGB(D) camera in different scenes.

Mean joint errors of each body joint for the mmWave radar and the RGB(D) camera in different scenes.

The proportion of frames with the max vertex errors within thresholds for different inputs in different scenes.

Errors (cm) of 3D body reconstruction from the mmWave radar and the RGB(D) camera in different scenes. For each scene, the first column is for joint error and the second vertex error.

Scenes		Basic Scenes Lab1 Lab2			Furnished		Rain		Adverse I Smoke		Environments Poor Lighting		Occlusion		Average		
Mean Error	mmWave	7.8	9.5	5.8	6.6	8.2	10.4	8.8	10.2	8.7	10.0	7.5	9.5	10.7	14.1	8.2	10.0
	Depth	5.5	6.5	3.9	4.3	5.5	6.9	8.6	10.9	24.3	28.0	5.1	6.5	/	/	8.8	10.5
	RGBD	5.8	7.0	3.4	3.9	5.4	6.8	9.5	11.6	15.4	18.3	5.8	7.2	/	/	7.5	9.1
	RGB	7.4	8.9	7.3	10.0	7.1	9.1	8.0	10.1	8.6	10.8	10.5	15.6	/	/	8.1	10.8
	mmWave	16.9	22.5	13.3	18.8	17.5	25.5	20.0	26.3	20.5	29.0	16.2	22.6	25.3	35.3	18.5	25.7
Max Error	Depth	12.6	17.2	8.8	12.7	11.3	16.4	29.8	44.6	49.4	61.7	10.3	14.4	/	/	20.3	27.8
	RGBD	12.2	16.5	7.5	10.9	10.1	14.1	29.0	43.7	38.8	53.4	11.2	14.5	/	/	18.1	25.5
	RGB	22.0	28.8	24.8	35.3	20.0	27.9	26.3	34.8	28.1	37.1	46.2	66.0	/	/	27.9	38.3

1. Naureen Mahmood, Nima Ghorbani, Nikolaus F Troje, Gerard Pons-Moll, and Michael J Black. AMASS: Archive of motion capture as surface shapes. In: ICCV (2019) 2. Ijaz Akhter and Michael J. Black. Pose-Conditioned Joint Angle Limits for 3D Human Pose Reconstruction. In: CVPR (2015)

3. CMU Graphics Lab. 2000. CMU Graphics Lab Motion Capture Database. http://mocap.cs.cmu.edu/. 4. OSU ACCAD. 2022. ACCAD. https://accad.osu.edu/research/motion-lab/systemdata. * Indicates equal contribution.

Conclusion

3D body reconstruction from mmWave radar can:

- be well reconstructed from the noisy and sparse mmWave radar signal, even emulating the results of RGB images;
- be affected slightly by adverse environments like rain and smoke;
- perform worse than depth camera in normal scenes but robust in extreme scenes.

