Дифференциальные уравнения

В главе рассмотрено численное решение обыкновенных дифференциальных уравнений первого и второго порядка. Общая теория разностных схем применена для построения дискретных аналогов дифференциальных задач с начальными или краевыми условиями. Конкретизированы понятия аппроксимации, устойчивости и сходимости. Особое внимание уделено исследованию методов решения и оценкам погрешности.

8.1. Задача Коши

Конкретизируем в случае задачи Коши для обыкновенного дифференциального уравнения

$$y' = f(x, y), \tag{8.1}$$

$$y(x_0) = y_0, (8.2)$$

общие понятия разностного метода. Пусть, для простоты, рассматривается равномерная сетка $x_k = x_0 + kh$, $k \ge 0$. Тогда разностной схемой для задачи (8.1), (8.2) называют семейство разностных уравнений

$$\frac{1}{h} \sum_{i=0}^{n} a_{-i} y_{k-i} = \sum_{i=0}^{n} b_{-i} f_{k-i}, \quad k = n, n+1, \dots,$$
(8.3)

с известными начальными условиями $y_0 = y(x_0), y_1, \dots, y_{n-1},$ где a_{-i}, b_{-i} не зависят от $h, a_0 \neq 0$ и $f_{k-i} = f(x_{k-i}, y_{k-i}).$

Разностная задача (8.3) аппроксимирует на решении (8.1) дифференциальную на отрезке $[x_0,x_0+X]$ с порядком p, если для функции погрешности

$$r_k^h = \frac{1}{h} \sum_{i=0}^n a_{-i} y(x_{k-i}) - \sum_{i=0}^n b_{-i} f(x_{k-i}, y(x_{k-i}))$$

справедлива оценка $\|r^h\|_{F_h}\leqslant ch^p$ и выполнено условие нормировки $\lim_{h\to 0}\|f_h\|_{F_h}=\|f\|_F$. Напомним, что постоянные c и p не зависят от шага h

В общем случае задача (8.3) — нелинейная система, поэтому аппроксимацию левой и правой частей уравнения (8.1) нужно рассматривать отдельно. При оценке порядка аппроксимации разностной схемы следует также учитывать порядок, с которым начальные условия аппроксимируют значения точного решения задачи (8.1), (8.2) в соответствующих узлах сетки. Если рассматривается только уравнение (8.1) без начального условия (8.2), то под разностной схемой понимают систему (8.3), а ее начальные условия во внимание не принимают.

Рассмотрим характеристическое уравнение для левой части разностной схемы (фактически для аппроксимации уравнения y'=0):

$$F(\mu) \equiv \sum_{i=0}^{n} a_{-i} \mu^{n-i} = 0.$$

Схема называется α -устойчивой, если выполнено следующее условие: все корни характеристического уравнения принадлежат единичному кругу и на границе круга нет кратных корней. Это условие является необходимым. Можно показать, что для любой разностной схемы, не удовлетворяющей условию α -устойчивости, существует дифференциальное уравнение с бесконечно-дифференцируемой правой частью, для которого даже при отсутствии округлений и погрешностей в начальных данных, решение его разностного аналога не стремится к непрерывному решению при измельчении шага.

Если в задаче не приведен конкретный вид правой части, то устойчивость понимают в смысле α -устойчивости.

8.1. Показать, что необходимым и достаточным условием аппроксимации уравнения (8.1) разностными уравнениями (8.3) является выполнение равенств: $\sum_{i=0}^{n} a_{-i} = 0$, $-\sum_{i=0}^{n} i a_{-i} = 1$, $\sum_{i=0}^{n} b_{-i} = 1$.

 \triangleleft Пусть y(x) — произвольная гладкая функция. Тогда условия аппроксимации для левой и правой частей уравнения (8.1) означает справедливость соотношений в произвольном узле x_k , $k \geqslant n$:

$$\lim_{h \to 0} \frac{1}{h} \sum_{i=0}^{n} a_{-i} y_{k-i} = y'(x_k), \lim_{h \to 0} \sum_{i=0}^{n} b_{-i} f(x_{k-i}, y_{k-i}) = f(x_k, y_k).$$

Согласно формуле Тейлора,

$$y(x - ih) = y(x) - ihy'(x) + O(h^{2}),$$

$$f(x - ih, y(x - ih)) = f(x, y(x)) + O(h).$$

Подставляем эти выражения в условия аппроксимации, имеем

$$\lim_{h \to 0} \left[\left(\frac{1}{h} \sum_{i=0}^{n} a_{-i} \right) y(x_k) - \left(\sum_{i=0}^{n} i a_{-i} \right) y'(x_k) + O(h) \right] = y'(x_k),$$

$$\lim_{h \to 0} \left[\left(\sum_{i=0}^{n} b_{-i} \right) f(x_k, y(x_k)) + O(h) \right] = f(x_k, y(x_k)),$$

откуда в силу произвольности функции y(x) и следует необходимость и достаточность указанных в условии задачи равенств. \triangleright

8.2. Проверить, аппроксимирует ли разностная схема уравнение (8.1):

1)
$$\frac{1}{h}(y_k - y_{k-1}) = f_{k-1}$$
; 2) $\frac{1}{h}(y_k - y_{k-1}) = \frac{1}{2}(f_k + f_{k-1})$;

3)
$$\frac{1}{h}(y_k - y_{k-1}) = \frac{1}{2}(3f_{k-1} - f_{k-2}); 4) \frac{1}{3h}(y_k - y_{k-3}) = f_{k-1};$$

$$5) \ \frac{1}{8h} \left(y_k - 3y_{k-2} + 2y_{k-3} \right) = \frac{1}{2} \left(f_{k-1} + f_{k-2} \right); \\ 6) \ \frac{1}{2h} \left(3y_k - 4y_{k-1} + y_{k-2} \right) = f_k.$$

8.1. Задача *Коши* **265**

Указание. Использовать условия, сформулированные в 8.1.

Ответ: 1) да; 2) да; 3) да; 4) да; 5) нет; 6) да.

8.3. Для задачи y' + y = x + 1, y(0) = 0 рассматривается схема

$$\frac{y_{k+1} - y_k}{h} + \frac{y_{k+1} + y_k}{2} = \left(k + \frac{1}{2}\right)h + 1, \quad y_0 = 0.$$

Каков порядок аппроксимации на решении данной схемы? Ответ: второй.

8.4. Для задачи y' + y = x + 1, y(0) = 0 рассматривается схема

$$\frac{y_{k+1} - y_{k-1}}{2h} + y_k = kh + 1, \quad y_0 = 0, \quad y_1 = 0.$$

Каков порядок аппроксимации на решении данной схемы? Можно ли его улучшить?

Ответ: первый; можно, если положить $y_1=h$, то порядок аппроксимации равен двум. В отличие от дифференциального случая для разностной задачи необходимы два начальных условия. Поэтому аппроксимация решения в точке x=h— часть формальной аппроксимации дифференциального оператора L.

8.5. Пусть для решения задачи y' + 5y = 5, y(0) = 2 построена следующая разностная схема:

$$\frac{y_{k+1} - y_{k-1}}{2h} + 5y_k = 5$$
, $y_0 = 2$, $y_1 = 2 - 5h$.

Исследовать ее аппроксимацию и сходимость.

$$y(x) = e^{-5x} + 1,$$

 $y_k = 1 + C_1 \mu_1^k + C_2 \mu_2^k, \quad \mu_{1,2} = -5h \pm \sqrt{1 + 25h^2}, \ |\mu_1| < 1, |\mu_2| > 1.$

Так как коэффициенты C_1 , C_2 находятся из начальных условий y_0 , y_1 :

$$1 + C_1 + C_2 = 2$$
, $1 + C_1 \mu_1 + C_2 \mu_2 = 2 - 5h$,

то имеем $C_1, C_2 \neq 0$. Следовательно, решение разностной задачи содержит растущую компоненту, и разностная схема на больших промежутках времени неверно отражает решение дифференциальной задачи, хотя схема α -устойчива и разностное решение сходится на любом конечном интервале к решению дифференциальной задачи.

8.6. Для задачи

$$y' + a(x)y = f(x), \quad y(0) = c$$

рассматривается схема

$$\frac{y_{k+1} - y_k}{h} + (\alpha_1 a(x_k) + \alpha_2 a(x_{k+1})) (\beta_1 y_k + \beta_2 y_{k+1}) = \gamma_1 f(x_k) + \gamma_2 f(x_{k+1}),$$

$$y_0 = c$$
.

Какими следует выбрать α_k, β_k и γ_k , чтобы получить второй порядок аппроксимации на решении?

Ответ: все коэффициенты равны $\frac{1}{2}$.

8.7. Построить для уравнения (8.1) разностную схему с наивысшим порядком аппроксимации p на решении

$$\frac{y_k - y_{k-2}}{2h} = a_1 f_k + a_0 f_{k-1} + a_{-1} f_{k-2}.$$

У казание. Использовать метод неопределенных коэффициентов построения разностных схем, заменив f на y' и сдвинув (для удобства вычислений) индексы заменой j=k-1.

Otbet: $a_1 = a_{-1} = \frac{1}{6}$, $a_0 = \frac{2}{3}$, p = 4.

8.8. Исследовать устойчивость разностной схемы

$$\theta \frac{y_{k+1} - y_k}{h} + (1 - \theta) \frac{y_k - y_{k-1}}{h} = f_k$$
 при $\theta \in [0, 1]$.

Ответ: схема устойчива при $\theta = 0$ и $1 \geqslant \theta \geqslant \frac{1}{2}$.

8.9. При каких a, b и c схема

$$\frac{1}{h}\left(y_{k}+ay_{k-1}-ay_{k-3}-y_{k-4}\right)=bf_{k-1}+cf_{k-2}+bf_{k-3}$$

для уравнения y'=f имеет максимальный порядок аппроксимации на решении? Выполнено ли условие α -устойчивости?

$$2a+4=1$$
, $2b+c=1$, $8+a=3b$,

или $a=-\frac{3}{2},\;b=\frac{13}{6},\;c=-\frac{10}{3}.$ При этом характеристическое уравнение имеет вид

$$(\mu^2 - 1) \left(\mu^2 - \frac{3}{2} \mu + 1\right) = 0,$$

т. е. условие α -устойчивости выполнено.

Без учета нормировки $\lim_{h\to 0}\|f_h\|_{F_h}=\|f\|_F$ можно прийти к неверному ответу: a=28, b=12, c=36, для которого условие α -устойчивости не выполнено.

8.10. Исследовать сходимость решения разностной схемы

$$\frac{\varphi_k - \varphi_{k-1}}{h} + l\psi_{k-1} = 0, \quad \varphi_0 = a, \quad h = \frac{1}{N} ,$$

$$\frac{\psi_k - \psi_{k-1}}{h} - l\varphi_{k-1} = 0, \quad \psi_0 = b, \quad k = 1, \dots, N,$$

8.1. Задача Коши 267

к решению дифференциальной задачи

$$u' + lv = 0$$
, $u(0) = a$,
 $v' - lu = 0$, $v(0) = b$

на отрезке $x \in [0,1]$ при $l = \text{const} \neq 0$, используя решения обеих задач.

< Запишем дифференциальную задачу в виде

$$\mathbf{y}' = -A\mathbf{y}, \quad \mathbf{y}(0) = \mathbf{d},$$

где

$$\mathbf{y} = \begin{pmatrix} u \\ v \end{pmatrix}, \quad A = \begin{pmatrix} 0 & l \\ -l & 0 \end{pmatrix}, \quad \mathbf{d} = \begin{pmatrix} a \\ b \end{pmatrix}.$$

Тогда

$$\mathbf{y} = \exp(-Ax) \mathbf{d}$$
.

Так как $\lambda_{1,2}(A) = \pm \mathrm{i}\,l$, то, обозначив через X матрицу, столбцами которой являются собственные векторы матрицы A, получаем

$$\mathbf{y} = X \begin{pmatrix} e^{-\lambda_1 x} & 0 \\ 0 & e^{-\lambda_2 x} \end{pmatrix} X^{-1} \mathbf{d}.$$

Для нахождения решения разностной задачи представим ее в виде

$$\mathbf{y}_{k}^{h} = A_{h} \mathbf{y}_{k-1}^{h}, \quad k = 1, \dots, N, \quad \mathbf{y}_{0}^{h} = \mathbf{d},$$

где

$$\mathbf{y}_k^h = \begin{pmatrix} \varphi_k \\ \psi_k \end{pmatrix}, \quad A_h = I - hA = \begin{pmatrix} 1 & -hl \\ hl & 1 \end{pmatrix}.$$

Так как $\mathbf{y}_k^h = (A_h)^k \mathbf{y}_0^h$, то

$$\mathbf{y}_k^h = X \begin{pmatrix} (1 - \mathrm{i}lh)^k & 0 \\ 0 & (1 + \mathrm{i}lh)^k \end{pmatrix} X^{-1} \mathbf{d}.$$

При нахождении $(A_h)^k$ использовано совпадение собственных векторов матриц A_h и A и связь между их собственными числами

$$\lambda(A_h) = 1 - h\lambda(A)$$
.

Можно показать, что $\exp{(\pm \mathrm{i} l x_k)} - (1 \pm \mathrm{i} l h)^k = O(h)$, и так как по условию $kh \leqslant 1$, то для $k=1,2,\ldots,N$ имеем $\|\mathbf{y}(x_k)-\mathbf{y}_k^h\|_\infty = O(h)$. Вводя в пространстве \mathbf{Y}_h норму

$$\|\mathbf{y}_h\|_{\mathbf{Y}_h} = \max_{0 \le k \le N} (\|\mathbf{y}_k^h\|_{\infty}),$$

приходим к следующей оценке сходимости решения разностной схемы к решению дифференциальной задачи

$$\|(\mathbf{y})_h - \mathbf{y}_h\|_{\mathbf{Y}_h} = O(h).$$

 \triangleright

Таким образом, схема имеет первый порядок сходимости.

8.11. Для задачи y' = y, y(0) = 1 рассмотрим схему

$$\frac{y_{k+1}-y_k}{h} = y_k, \quad y_0 = 1, \quad k \geqslant 0.$$

В разложении ошибки $y(x_N)-y_N=c_1h+c_2h^2+\cdots$ найти постоянную c_1 для $x_N=Nh=1$.

< Для разностной задачи имеем

$$y_N = (1+h)y_{N-1} = (1+h)^N y_0 = (1+h)^N,$$

а точное решение дифференциальной задачи при $x=x_N$ равно $y(x_N)=\exp(x_N).$ Пусть $x_N=N$ h=1, тогда

$$y(x_N) - y_N = e - (1+h)^{1/h} = e - \exp\left[\frac{1}{h}\ln(1+h)\right] =$$

= $e\left(1 - \exp\left[-\frac{h}{2} + O(h^2)\right]\right) = \frac{e}{2}h + O(h^2).$

Ответ: $c_1 = \frac{e}{2}$.

8.12. Для задачи y' = y, y(0) = 1 рассмотрим схему

$$\frac{y_{k+1} - y_k}{h} = \frac{y_{k+1} + y_k}{2}, \quad y_0 = 1, \quad k \geqslant 0.$$

В разложении ошибки $y(x_N)-y_N=c_1h+c_2h^2+\cdots$ найти постоянную c_1 для $x_N=Nh=1.$

Ответ: $c_1 = 0$.

8.13. Для задачи y' = y, y(0) = 1 рассмотрим схему

$$\frac{y_{k+1} - y_{k-1}}{2h} = y_k, \quad y_0 = 1, \quad y_1 = e^h, \quad k \geqslant 1.$$

В разложении ошибки $y(x_N)-y_N=c_1h+c_2h^2+\cdots$ найти постоянную c_1 для $x_N=Nh=1.$

Указание. Вывести формулу

$$y_k = y_0 \left[\frac{\mu_2}{\mu_2 - \mu_1} \mu_1^k - \frac{\mu_1}{\mu_2 - \mu_1} \mu_2^k \right] + y_1 \left[-\frac{1}{\mu_2 - \mu_1} \mu_1^k + \frac{1}{\mu_2 - \mu_1} \mu_2^k \right],$$

где $\mu_{1,2}$ — корни уравнения $\mu^2 + 2h\mu - 1 = 0$:

$$\mu_1 = -h + \sqrt{1 + h^2} = 1 - h + \frac{h^2}{2} + O(h^4), \ \mu_2 = -\left(1 + h + \frac{h^2}{2}\right) + O(h^4).$$

Ответ: $c_1 = 0$.

8.14. Для задачи y' = y, y(0) = 1 рассмотрим схему

$$4 \frac{y_{k+1} - y_{k-1}}{2h} - 3 \frac{y_{k+1} - y_k}{h} = y_k, \quad y_0 = 1, \quad y_1 = e^h, \quad k \geqslant 1.$$

В разложении ошибки $y(x_N)-y_N=c_1h+c_2h^2+\cdots$ найти постоянные c_1 и c_2 для $x_N=Nh=1.$

Ответ: эта схема неустойчива, сходимости нет.

8.15. Для задачи $y' + y = \cos 2x$, y(0) = 0, построить трехточечную разностную схему второго порядка сходимости.

Ответ: например,

$$\frac{y_{k+1} - y_{k-1}}{2h} + y_k = \cos(2hk), \quad y_0 = 0, \quad y_1 = h, \quad k \geqslant 1.$$

8.16. Для задачи $y' + 5y = \sin 2x, \ y(0) = 2,$ построить двухточечную разностную схему второго порядка сходимости.

Ответ: например,

$$\frac{y_{k+1} - y_k}{h} + 5 \frac{y_{k+1} + y_k}{2} = \frac{\sin(2h(k+1)) + \sin(2hk)}{2}, \quad y_0 = 2, \quad k \geqslant 0.$$

8.17. Для задачи $y'-y=\exp 2x,\ y(0)=1,$ построить трехточечную разностную схему второго порядка сходимости.

Ответ: например,

$$\frac{y_{k+1} - y_{k-1}}{2h} - y_k = \exp(2hk), \quad y_0 = 1, \quad y_1 = 1 + 2h, \quad k \geqslant 1.$$

8.18. Для задачи $y'-2y=\exp x,\ y(0)=1,$ построить двухточечную разностную схему второго порядка сходимости.

Ответ: например,

$$\frac{y_{k+1} - y_k}{h} - (y_{k+1} + y_k) = \frac{\exp(h(k+1)) + \exp(hk)}{2}, \quad y_0 = 1, \quad k \geqslant 0.$$

8.19. Привести пример неустойчивой разностной схемы, аппроксимирующей уравнение y' = f(x,y) строго: 1) с первым порядком; 2) со вторым порядком; 3) с третьим порядком.

У казание. Например, можно взять заведомо α -неустойчивую схему

$$4\frac{y_{k+1} - y_{k-1}}{2h} - 3\frac{y_{k+1} - y_k}{h} = cf_{k-1} + df_k + ef_{k+1}$$

и методом неопределенных коэффициентов получить заданный порядок аппроксимации.

8.20. Найти главный член погрешности аппроксимации на решении и исследовать устойчивость разностной схемы

$$\frac{y_k - y_{k-2}}{2h} = \frac{f_k + 4f_{k-1} + f_{k-2}}{6} \,.$$

Ответ: $-\frac{h^4}{180}y^{(5)}(\xi)$, схема lpha-устойчива.

8.21. Найти главный член погрешности аппроксимации на решении и исследовать устойчивость разностной схемы

$$\frac{y_{k+1} - y_k}{h} = \frac{5f_k + 8f_{k+1} - f_{k+2}}{12}.$$

Ответ: $\frac{h^3}{24} y^{(4)}(\xi)$, схема α -устойчива.

8.22. Найти главный член погрешности аппроксимации на решении и исследовать устойчивость разностной схемы

$$\frac{y_{k+4} - y_k}{4h} = \frac{2f_{k+1} - f_{k+2} + 2f_{k+3}}{3}.$$

Ответ: $\frac{7h^4}{90}y^{(5)}(\xi)$, схема α -устойчива.

8.23. Найти главный член погрешности аппроксимации на решении и исследовать устойчивость разностной схемы:

$$\frac{y_k + 4y_{k-1} - 5y_{k-2}}{6h} = \frac{2f_{k-1} + f_{k-2}}{3}.$$

Методы Рунге—Кутты и Адамса. Один из наиболее популярных подходов к решению задачи Коши для уравнений первого порядка $y'=f(x,y),\ y(x_0)=y_0$ заключается в следующем. Зафиксируем некоторые числа $\alpha_2,\ldots,\alpha_q,\quad p_1,\ldots,p_q,\quad \beta_{i,j},\ 0< j< i\leqslant q,$ и последовательно вычислим

$$k_{1}(h) = hf(x, y),$$

$$k_{2}(h) = hf(x + \alpha_{2}h, y + \beta_{2,1}k_{1}(h)),$$

$$k_{3}(h) = hf(x + \alpha_{3}h, y + \beta_{3,1}k_{1}(h) + \dots + \beta_{3,q-1}k_{q-1}(h)).$$

Расчетная формула имеет вид

$$y(x + h) \approx z(h) = y(x) + \sum_{i=1}^{q} p_i k_i(h).$$

Обозначим погрешность метода на шаге через $\varphi(h)=y(x+h)-z(h)$. Если f(x,y) — достаточно гладкая функция своих аргументов, то справедлива формула Тейлора

$$\varphi(h) = \sum_{i=0}^{s} \frac{\varphi^{(i)}(0)}{i!} h^{i} + \frac{\varphi^{(s+1)}(\theta h)}{(s+1)!} h^{s+1},$$

где $0 < \theta < 1$. Выберем параметры метода α_i , p_i , $\beta_{i,j}$ так, что $\varphi'(0) = \cdots = \varphi^{(s)}(0) = 0$. Тогда величина s называется *порядком метода*.

8.24. Построить метод при q=1 и записать формулу погрешности.

< Имеем

$$\varphi(h) = y(x+h) - y(x) - p_1 h f(x, y), \quad \varphi(0) = 0,$$

$$\varphi'(0) = (y'(x+h) - p_1 f(x, y))|_{h=0} = f(x, y)(1 - p_1),$$

$$\varphi''(h) = y''(x+h).$$

Равенство $\varphi'(0)=0$ выполняется для всех гладких функций f(x,y) только в случае $p_1=1$. Для погрешности этого метода на шаге получаем выражение

$$\varphi(h) = \frac{y''(x+\theta h)h^2}{2} \,.$$

8.25. Построить все методы при q = 2.

< Запишем расчетную формулу в виде

$$\varphi(h) = y(x+h) - y(x) - p_1 h f(x, y) - p_2 h f(\bar{x}, \bar{y}),$$

где $\bar{x} = x + \alpha_2 h$, $\bar{y} = \beta_{21} h f(x, y)$. Вычислим производные функции $\varphi(h)$: $\varphi'(h) = y'(x+h) - p_1 f(x,y) - p_2 f(\bar{x},\bar{y}) - p_2 h(\alpha_2 f_x(\bar{x},\bar{y}) + \beta_{21} f_y(\bar{x},\bar{y}) f(x,y)),$ $\varphi''(h) = y''(x+h) - 2p_2(\alpha_2 f_x(\bar{x},\bar{y}) + \beta_{21} f_y(\bar{x},\bar{y}) f(x,y)) - p_2 h(\alpha_2^2 f_{xx}(\bar{x},\bar{y}) + 2\alpha_2 \beta_{21} f_{xy}(\bar{x},\bar{y}) f(x,y) + \beta_{21}^2 f_{yy}(\bar{x},\bar{y}) (f(x,y))^2),$ $\varphi'''(h) = y'''(x+h) - 3p_2(\alpha_2^2 f_{xx}(\bar{x},\bar{y}) + 2\alpha_2 \beta_{21} f_{xy}(\bar{x},\bar{y}) f(x,y)) + \beta_{21}^2 f_{yy}(\bar{x},\bar{y}) (f(x,y))^2) + O(h).$

Согласно исходному дифференциальному уравнению

$$y'=f$$
, $y''=f_x+f_yf$, $y'''=f_{xx}+2f_{xy}f+f_{yy}f^2+f_yy''$.

Подставим в выражения $\varphi(h)$, $\varphi'(h)$, $\varphi''(h)$, $\varphi'''(h)$ значение h=0; воспользовавшись этими соотношениями, получим

$$\varphi(0) = y - y = 0,$$

$$\varphi'(0) = (1 - p_1 - p_2)f(x, y),$$

$$\varphi''(0) = (1 - 2p_2\alpha_2)f_x(x, y) + (1 - 2p_2\beta_{21})f_y(x, y)f(x, y),$$

$$\varphi'''(0) = (1 - 3p_2\alpha_2^2)f_{xx}(x, y) + (2 - 6p_2\beta_{21})f_{xy}(x, y)f(x, y) +$$

$$+ (1 - 3p_2\beta_{21}^2)f_{yy}(x, y)(f(x, y))^2 + f_y(x, y)y''(x).$$
(8.4)

Соотношение $\varphi'(0) = 0$ выполняется при всех f(x, y), если

$$1 - p_1 - p_2 = 0, (8.5)$$

соотношение $\varphi''(0) = 0$ выполняется, если

$$1 - 2p_2\alpha_2 = 0 \quad \text{и} \quad 1 - 2p_2\beta_{21} = 0. \tag{8.6}$$

Таким образом, $\varphi(0) = \varphi'(0) = \varphi''(0) = 0$ при всех f(x,y), если выполнены три соотношения (8.5), (8.6) относительно четырех параметров. Задавая произвольно один из параметров, получим различные методы Рунге—Кутты с s=2. Например, при $p_1=\frac{1}{2}$ получаем $p_2=\frac{1}{2},\ \alpha_2=1,\ \beta_{21}=1$. При $p_1=0$ получаем $p_2=1,\ \alpha_2=\frac{1}{2},\ \beta_{21}=\frac{1}{2}$. В случае уравнения y'=y, согласно (8.4), имеем $\varphi'''(0)=y$ независимо от значений $p_1,\ p_2,\ \alpha_2,\ \beta_{21}$. Отсюда следует, что нельзя построить формул Рунге—Кутты со значениями q=2 и s=3.

8.26. Определить порядок метода s для следующей совокупности формул при q=3:

$$k_1 = hf(x, y), \quad k_2 = hf\left(x + \frac{h}{2}, y + \frac{k_1}{2}\right),$$

 $k_3 = hf(x + h, y - k_1 + 2k_2), \quad z(h) = y(x) + \frac{k_1 + 4k_2 + k_3}{6}.$

Ответ: s = 3.

8.27. Определить порядок метода s для следующей совокупности формул при q=4:

$$k_1 = hf(x, y), \quad k_2 = hf\left(x + \frac{h}{2}, y + \frac{k_1}{2}\right),$$

 $k_3 = hf\left(x + \frac{h}{2}, y + \frac{k_2}{2}\right), \quad k_4 = hf(x + h, y + k_3),$
 $z(h) = y(x) + \frac{k_1 + 2k_2 + 2k_3 + k_4}{6}.$

Ответ: s = 4.

8.28. Доказать, что погрешность метода на шаге $\varphi(h)$ имеет главный член, т. е. справедливо представление вида

$$\varphi(h) = \psi(x, y)h^{s+1} + O(h^{s+2}).$$

 \triangleleft Пусть в уравнении y'=f функция f(x,y) и все ее производные до порядка s+1 включительно равномерно ограничены в области $G: x_0 \leqslant x \leqslant x_0 + X, -\infty < y < \infty$. Тогда также равномерно ограничены производные всех решений уравнения y'=f до порядка s+2 включительно. В этом случае согласно формуле Тейлора представление погрешности можно записать в уточненной форме

$$\varphi(h) = \frac{\varphi^{(s+1)}(0)}{(s+1)!} h^{s+1} + \frac{\varphi^{(s+2)}(\theta h)}{(s+2)!} h^{s+2}.$$

Отсюда имеем

$$\varphi^{(s+1)}(0) = y^{(s+1)}(0) - z^{(s+1)}(0).$$

Величины $y^{(s+1)}(0)$ и $z^{(s+1)}(0)$ явно выражаются через значения в точке (x,y) функции f и ее производных порядка не выше s. Правая часть равенства дифференцируема s+1 раз, отсюда следует, что функция $\psi(x,y)$ дифференцируема в области G и ее производные ψ_x и ψ_y равномерно ограничены в этой области. Аналогично устанавливается, что величина $\varphi^{(s+2)}(\theta h)$ равномерно ограничена при $x_0 \leqslant x < x+h \leqslant x_0+X$. Таким образом, искомое соотношение имеет место.

8.29. Найти главный член погрешности расчетной формулы

$$y_{j+1}^* = y_j + hf(x_j, y_j),$$

$$y_{j+1} = y_j + \frac{h}{2} (f(x_j, y_j) + f(x_{j+1}, y_{j+1}^*)).$$

Ответ:
$$(B-A)h^3$$
, где $B=\frac{f_yy''}{6}$, $A=\frac{f_{xx}+2f_{xy}y'+f_{yy}(y')^2}{12}$.

8.30. Найти главный член погрешности расчетной формулы

$$y_{j+1/2} = y_j + \frac{h}{2} \, f(x_j, \, y_j),$$

$$y_{j+1} = y_j + h f\left(x_j + \frac{h}{2} \, , \, y_{j+1/2}\right).$$
 Ответ: $\left(B + \frac{A}{2}\right) h^3$, где $B = \frac{f_y y''}{6}$, $A = \frac{f_{xx} + 2f_{xy} y' + f_{yy} (y')^2}{12}$.

Формулы Адамса. Явной формулой Адамса для решения уравнения y' = f(x,y) называют выражение

$$y_k - y_{k-1} = h \sum_{i=0}^m \gamma_i \nabla^i f_{k-1};$$

неявная формула Адамса имеет вид

$$y_k - y_{k-1} = h \sum_{i=0}^m \bar{\gamma}_i \nabla^i f_k,$$

где

$$\nabla^{i} f_{k} = \sum_{j=0}^{i} (-1)^{j} C_{i}^{j} f_{k-j},$$

а коэффициенты γ_i и $\bar{\gamma}_i$ определяются следующим образом:

$$\gamma_0 = \bar{\gamma}_0 = 1,$$

$$\gamma_i = \int_0^1 \prod_{k=1}^i \left(1 - \frac{u}{k} \right) du \,, \quad \bar{\gamma}_i = \gamma_i - \gamma_{i-1} = -\int_0^1 \frac{u}{i} \prod_{k=1}^{i-1} \left(1 - \frac{u}{k} \right) du \,, \ i \geqslant 1.$$

8.31. Вывести явные формулы Адамса p-го порядка точности для p=2,3,4.

Other:
$$y_{j+1}=y_j+(3\,f_j-f_{j-1})\,\frac{h}{2}\;,\quad p=2;$$

$$y_{j+1}=y_j+(23\,f_j-16\,f_{j-1}+5\,f_{j-2})\,\frac{h}{12}\;,\quad p=3;$$

$$y_{j+1}=y_j+(55\,f_j-59\,f_{j-1}+37\,f_{j-2}-9\,f_{j-3})\,\frac{h}{24}\;,\quad p=4.$$

8.32. Вывести неявные формулы Адамса p-го порядка точности для p=2,3,4.

Other:
$$y_{j+1}=y_j+(f_{j+1}+f_j)\frac{h}{2}$$
, $p=2$;
$$y_{j+1}=y_j+(5\,f_{j+1}+8\,f_j-f_{j-1})\,\frac{h}{12}\;,\quad p=3;$$

$$y_{j+1}=y_j+(9\,f_{j+1}+19\,f_j-5\,f_{j-1}+f_{j-2})\,\frac{h}{24}\;,\quad p=4.$$

8.33. Показать, что для коэффициентов γ_i в формулах Адамса при $i \to \infty$ справедлива асимптотика

$$\gamma_i \approx \frac{\text{const}}{\ln i} , \quad \bar{\gamma}_i \approx \frac{\text{const}}{i \ln i} .$$

Уравнения второго порядка. Рассмотрим следующую задачу:

$$y'' = f(x, y, y'), \quad y(x_0) = a, \quad y'(x_0) = b.$$
 (8.7)

Вводя новую неизвестную функцию v(x) = y'(x), ее можно свести к системе уравнений первого порядка

$$v' = f(x, y, v), \quad v(x_0) = b,$$

 $y' = v, \qquad y(x_0) = a,$

а для ее решения применить рассмотренные выше методы.

Однако алгоритмы, ориентированные на специальный класс задач, часто более эффективны. Далее будем предполагать, что функция f не зависит от y':

 $f(x, y, y') \equiv f(x, y)$.

В этом случае (по аналогии с задачей Коши для уравнения первого порядка) разностной схемой на равномерной сетке $x_k=x_0+kh,\ k\geqslant 0$ называют семейство разностных уравнений

$$\frac{1}{h^2} \sum_{i=0}^{n} a_{-i} y_{k-i} = \sum_{i=0}^{n} b_{-i} f_{k-i}, \quad k = n, n+1, \dots$$
 (8.8)

с известными начальными условиями $y_0=y(x_0),\ y_1,\dots,y_{n-1},$ где $a_{-i},\ b_{-i}$ не зависят от $b,\ a_0\neq 0$ и $f_{k-i}=f(x_{k-i},y_{k-i}).$

Схему для уравнения второго порядка называют α -устойчивой, если выполнено следующее условие: все корни характеристического уравнения принадлежат единичному кругу и на границе круга нет кратных корней, за исключением двукратного корня, равного единице.

8.34. Получить необходимые и достаточные условия аппроксимации уравнения (8.7) разностными уравнениями (8.8).

Ответ:
$$\sum_{i=0}^n a_{-i} = 0$$
, $\sum_{i=0}^n i a_{-i} = 0$, $\sum_{i=0}^n i^2 a_{-i} = 2$, $\sum_{i=0}^n b_{-i} = 1$.

8.35. Определить порядок аппроксимации на решении разностной схемы Нумерова

 $\frac{y_{k+1} - 2y_k + y_{k-1}}{h^2} = \frac{f_{k+1} + 10f_k + f_{k-1}}{12} .$

Ответ: главный член погрешности равен $\frac{h^4}{240}\,y^{(6)}(\xi), p=4.$

8.36. Определить порядок аппроксимации на решении разностной схемы $\frac{1}{2} \frac{1}{2} \frac{1}{2$

$$\frac{y_{k+1} - y_k - y_{k-2} + y_{k-3}}{3h^2} = \frac{5f_k + 2f_{k-1} + 5f_{k-2}}{12}.$$

Ответ: главный член погрешности равен $\frac{17h^4}{720}y^{(6)}(\xi), p=4.$

8.2. Краевая задача

Рассмотрим первую краевую задачу для обыкновенного дифференциального уравнения второго порядка:

$$-(k(x) u')' + p(x) u = f(x), 0 < x < 1, u(0) = u(1) = 0.$$

Предполагаем, что коэффициенты уравнения удовлетворяют условиям $0 < k_0 \le k(x) \le k_1, \ 0 \le p(x) \le p_1.$ На любом из концов отрезка краевое условие может быть задано в виде линейной комбинации функции и производной $a\,u + b\,u' = c.$ В этом случае следует обратить внимание на способ его аппроксимации. Если это не оговаривается специально, то в задачах параграфа сетка на отрезке [0,1] выбирается равномерной: $x_i = i\,h, \ i = 0,\dots,N,\ N\,h = 1.$