Definition of σ -algebra

A nonempty collection Σ of subsets E is called a σ -algebra if it satisfies the following conditions^a:

- (i) $\backslash E \in \Sigma$ if $E \in \Sigma$
- (ii) $\cup_k E_k \in \Sigma$ if $E_k \in \Sigma, k = 1, 2, \dots$

 $^a{\rm Richard}$ L. Wheeden and Antoni Zygmund. Measure and integral: An introduction to real analysis. CRC, 2015, p. 49.

Borel σ -algebra

The smallest σ -algebra of subsets of \mathbb{R}^n containing all the open subsets of \mathbb{R}^n is called the Borel σ -algebra \mathfrak{B} of \mathbb{R}^n , and the sets in \mathfrak{B} are called Borel subsets of \mathbb{R}^n . Sets of type F_{σ} , G_{δ} , $F_{\sigma\delta}$, $G_{\delta\sigma}$ (see p.6 in Section 1.3), etc., are Borel sets.^a

^aIbid., p. 49.

Problem 1. Zygmund p59 exercise 08

Show that the Borel σ -algebra \mathfrak{B} in \mathbb{R}^n is the smallest σ -algebra containing the closed sets in \mathbb{R}^n .

Solution.

To show that the Borel σ -algebra \mathfrak{B} in \mathbb{R}^n is the smallest σ -algebra containing the closed sets in \mathbb{R}^n , we need to show that

- (i) \mathfrak{B} contains the closed sets in \mathbb{R}^n .
- (ii) $\mathfrak{B} \subseteq A$ if A is a σ -algebra containing the closed sets in \mathbb{R}^n .

(i)

For every closed subset $E \in \mathbb{R}^n$, there is a open subset $E \in \mathbb{R}^n$. By definition of the Borel σ -algebra \mathfrak{B} , we have $E \in \mathfrak{B}$, implying that $E \in \mathfrak{B}$. Thus, \mathfrak{B} contains the closed sets in \mathbb{R}^n .

(ii)

Let A be a σ -algebra containing the closed sets in \mathbb{R}^n , the definition of σ -algebra implies that A is a σ -algebra containing all the open sets in \mathbb{R}^n

By definition of the Borel σ -algebra \mathfrak{B} , it is the smallest σ -algebra containing the closed sets in \mathbb{R}^n . Thus, we have $\mathfrak{B} \subseteq A$.

Therefore, we can conclude that the Borel σ -algebra \mathfrak{B} in \mathbb{R}^n is the smallest σ -algebra containing the closed sets in \mathbb{R}^n .

Problem 2. Zygmund p59 exercise 09

If $\{E_k\}_{k=1}^{\infty}$ is a sequence of sets with $\sum_{k=1}^{\infty} |E_k|_e < +\infty$, show that $\limsup_{k\to\infty} E_k$ (and so also $\liminf_{k\to\infty} E_k$) has measure zero.

 ${}^a \text{Suppose } \{E_k\}_{k=1}^{\infty}$ is a sequence of subsets:

$$\limsup_{k\to\infty} E_k := \lim_{n\to\infty} V_n = \bigcap_{n=1}^\infty \bigcup_{k=n}^\infty E_k,$$

$$\liminf_{k \to \infty} E_k := \lim_{n \to \infty} B_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} E_k.$$

In other words,

$$V_n = \bigcup_{k=n}^{\infty} E_k \searrow V = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k =: \limsup_{k \to \infty} E_k,$$

$$B_n = \bigcap_{k=n}^{\infty} E_k \nearrow B = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} E_k =: \liminf_{k \to \infty} E_k.$$

Solution. By the definition of the limit of a sequence, let $\epsilon > 0$, there exists $N \in \mathbb{N}$ s.t. $\forall n \geq N$,

$$\sum_{k=n}^{\infty} |E_k|_e = \sum_{k=1}^{\infty} |E_k|_e - \sum_{k=1}^{n-1} |E_k|_e < \epsilon.$$

Since

$$\limsup_{k \to \infty} E_k := \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k$$
$$\subseteq \bigcup_{k=N}^{\infty} E_k,$$

we have

$$\begin{split} |\limsup_{k \to \infty} E_k|_e &\leq |\bigcup_{k=N}^{\infty} E_k|_e \\ &= \sum_{k=N}^{\infty} |E_k|_e < \epsilon. \end{split}$$

Let $\epsilon \to 0$, we have

$$|\limsup_{k\to\infty} E_k|_e = 0.$$

......

By the definition, we have

$$\liminf_{k \to \infty} E_k \subseteq \limsup_{k \to \infty} E_k.$$

Thus,

$$|\liminf_{k\to\infty} E_k|_e \leq |\limsup_{k\to\infty} E_k|_e = 0.$$

Therefore, $|\liminf_{k\to\infty} E_k|_e = 0$.

 $[^]a$ Wheeden and Zygmund, see n. a, p. 49.

Problem 3. Zygmund p59 exercise 09

Show that there exist sets $\{E_k\}_{k=1}^{\infty}$ such that $E_k \searrow E$, $|E_k|_e < +\infty$, and $\lim_{k \to \infty} |E_k|_e > |E|_e$ with strict inequality.