重庆理工大学本科生课程考试试卷

2020 ~ 2021 学年第 2 学期

开课学院_____课程名称___高等数学【(2) 机电】_______考核方式__闭卷____

考试时间120分钟	A 卷	第1页共3页
考生姓名	考生班级	
一、选择题(本大题共 1	0 小题,每小题 3 分,总计 3	30分)
1. 下列函数为微分方程 y	"+y=0的解的是()	
(A) $y = e^{-x}$ (B)	$y = e^x + e^{-x} \qquad (C) y = \sin$	$x + \cos x$ (D) $y = x(\sin x + \cos x)$
2. 微分方程 y"-4y'+8y=	$= xe^{2x}$ 的特解可设为 $y^* = ($)
(A) Axe^{2x} (B	$(C) (Ax+B)e^{2x}$	$(D) Ax^2e^{2x}$
3. 过点(1,-2,3)且与 yoz	面平行的平面方程为()
(A) $x-2y+3z=0$	(B) $x=1$ (C) $y=1$	=-2 (D) $z=3$
4. 直线 L_1 : $\begin{cases} 2x + y = 1 \\ x - z = -2 \end{cases}$ 与	L_2 : $\begin{cases} x-y=6\\ 2x+z=3 \end{cases}$ 的夹角为()
(A) $\frac{\pi}{2}$ (B) $\frac{\pi}{3}$	$\frac{\pi}{3} \qquad (C) \frac{\pi}{4} \qquad (D)$	$\frac{\pi}{6}$
5. 函数 $u = x^2 y^2 z^3$ 在点(-1,	1,2)处沿从点(-1,1,2)到点(3,	2,6)的方向的方向导数为()
	$-\frac{4}{\sqrt{33}}$ (C) 0 (D)	
6. 设 Ω 由 $z = \sqrt{x^2 + y^2}$ 与 z	$=1$ 所围的闭区域,则 $\iint_{\Omega} (x^2)$	$+y^2$) $dxdydz=($
(A) $\frac{\pi}{2}$ (B)	$\frac{\pi}{3}$ (C) $\frac{\pi}{6}$	(D) $\frac{\pi}{10}$
7. 设 L 为连接(1,0) 和(0,1)	两点的直线段,则 $\int_L (x+y)ds$	s = ($)$
(A) 0 (B) 1	(C) $\sqrt{2}$ (D) $\sqrt{2}\pi$	
8. 设Σ是平面 x-y+z=4	披柱面 $x^2 + y^2 = 2x$ 截出的有限	艮部分,则 $\iint xydS = ($)
	_	Σ) 0

重庆理工大学本科生课程考试试卷

2020 ~ 2021 学年第 2 学期

开课学院课程名称高等数学【(2) 机电】	考核方式闭卷
考试时间 120 分钟 A 卷	第2页共3页
考生姓名	考生学号
9. 下列级数中绝对收敛的是()	
(A) $\sum_{n=1}^{\infty} n \ln(1+\frac{1}{n})$ (B) $\sum_{n=1}^{\infty} (-1)^n (1-\cos\frac{1}{n})$ (C) 10. 设函数 $f(r)$ 是以 2年 为国期位国 期 录数 。 $f(r)$	$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \qquad (D) \sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$
10. 设函数 $f(x)$ 是以 2π 为周期的周期函数,在 $[-\pi,\pi]$ 上 f 傅里叶级数,其系数 $b_n = ($	$f(x) = x^2$,则函数 $f(x)$ 展开成
(A) $\frac{4}{n^2}$ (B) 0 (C) $\frac{2}{n^2}$ (D) (-	$-1)^n \frac{4}{n^2}$
二、填空题 (本大题共 5 小题,每小题 2 分,总计 10 分) 11. 微分方程 $y'' = 2 + \sin x$ 满足初始条件 $y'_{ x=0} = 0$, $y_{ x=0} = 1$	的特解为
12. 极限 $\lim_{(x,y)\to(0,2)} \frac{\tan(xy)}{x} = $	
13. 设函数 $z = xy + (x^2 - x + 1)e^{\sqrt{x}}$,则 $\frac{\partial^2 z}{\partial x \partial y} = $	
14. 交换二次积分的积分次序 $\int_0^1 dy \int_0^{\sqrt{y}} f(x,y) dx = $	
15. 函数 $\frac{1}{x}$ 展开成 $x-3$ 的幂级数为 $\frac{1}{x} =$	0 < x < 6).
三、解答题(本大题共6小题,每小题10分,总计60分)	
6. 设函数 $z = f(x, y)$ 由方程 $2xy - xe^z = 3$ 确定,	
(1) 求 $dz\Big _{(-1,-1)}$;	
(2) 求曲面 $2xy - xe^z = 3$ 在点 $(-1, -1, 0)$ 处的切平面及法线力	方程.

重庆理工大学本科生课程考试试卷

		2020 ~ 2021 学年第	2 学期
开课学院课程名称高等数学【(2) 机电】考核方式_ 闭卷	开课学院课程	名称高等数学【(2) 机自	*************************************
考试时间 <u>120</u> 分钟 <u>A 卷</u> 第 3 页 共 3 页	考试时间120分钟	NAME OF TAXABLE PARTY.	
考生姓名	考生姓名		
专工子亏			
17. 设函数 $f(u)$ 具有一阶连续导数,函数 $z = f(e^{2x*y})$ 满足方程 $\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} = e^{2x*y}(z+1),$ 若 $f(0) = 0$,求函数 $f(u)$ 的表达式。 18. 计算曲线积分 $I = \oint_L (e^x \sin y - y^2) dx + (e^x \cos y - x^3) dy$,其中 L 为圆周 $x^2 + y^2 = 2$ 沿时针方向。 19. 计算曲面积分 $I = \iint_\Sigma (z^2 + x) dy dz - z dx dy$,其中 Σ 是曲面 $z = \frac{1}{2}(x^2 + y^2)$ 介于平面 $z = 0$ 及 $z = 2$ 之间的部分的下侧。 20. 给定幂级数 $\sum_{n=1}^\infty \frac{n}{2^{n-1}} x^n$. 求:(1)该幂级数的收敛域; (2)该幂级数在收敛域内的和函数 . 21. 求二元函数 $f(x,y) = e^{2y}(x^2 + 2x + y)$ 的极值。	$\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}$ 若 $f(0) = 0$,求函数 $f(x)$ 18. 计算曲线积分 $I = \oint_L (e^x s)$ 时针方向. 19. 计算曲面积分 $I = \iint_{\Sigma} (z^2 z) z = 0$ 及 $z = 2$ 之间的部分 20. 给定幂级数 $\sum_{n=1}^{\infty} \frac{n}{2^{n-1}} x^n$. 求: (1) 该幂级数的收敛	$x_{y}^{2} = e^{2x+y}(z+1)$, x_{y}^{2} ,的表达式. $\sin y - y^{2}$ $dx + (e^{x}\cos y - 2x) + x$ $dydz - z dxdy$,其分的下侧.	(x^{x+y}) 满足方程 (x^2+y^2) 满足方程 (x^2+y^2) 介于平面 (x^2+y^2) 介于平面