CONCOURS COMMUN 1996 ENTPE, ENSG, ENTM, ENSTIMD Banque de notes pour le concours EIVP

COMPOSITION DE MATHEMATIQUES OPTION

Temps accordé : 4 heures (4 pages)

NOTATIONS

Pour p et q entiers de \mathbb{N} , avec $p \leq q$, [|p,q|] désigne l'ensemble des entiers compris au sens large entre p et q. E désigne un espace vectoriel de dimension finie n, $n \geq 2$, sur le corps \mathbb{K} , avec $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.

Dans tout le problème f désigne un endomorphisme de E; on a $f^2 = f \circ f$ et de même $f^{k+1} = f^k \circ f$; I désigne l'identité et 0 désigne l'application nulle.

Par convention, $f^0 = I$.

Si $R \in \mathbb{K}[X]$, $R(X) = a_0 + a_1X + \dots + a_pX^p$, on note R(f) l'endomorphisme $a_0I + a_1f + \dots + a_pf^p$.

On note alors $\mathbb{K}[f]$ l'algèbre des polynômes de f, c'est-à-dire $\mathbb{K}[f] = \{R(f) \mid R \in \mathbb{K}[X]\}$.

On note $P_f(X) = \det(f - XI)$ le polynôme caractéristique de f et on rappelle que $P_f(f) = 0$.

Pour une matrice $M \in \mathcal{M}_n(\mathbb{K})$, on pourra également introduire le polynôme caractéristique de M défini par $P_M(X) = \det (M - XI_n)$ où I_n est la matrice unité de $\mathcal{M}_n(\mathbb{K})$.

On dit que f est cyclique si, et seulement si, il existe x_0 dans E tel que $(x_0, f(x_0), \ldots, f^{n-1}(x_0))$ soit une base de E.

On appelle <u>commutant</u> de f l'ensemble $\mathscr{C}(f) = \{g \in \mathscr{L}(E) \mid f \circ g = g \circ f\}.$

On admettra que $\mathscr{C}(f)$ est une algèbre de dimension au moins n sur \mathbb{K} .

 $\mathscr{GL}_n(\mathbb{K})$ est l'ensemble des matrices inversibles d'ordre n sur \mathbb{K} .

PREMIERE PARTIE : Matrice compagne d'un endomorphisme cyclique.

I.1. Montrer que f est cyclique si et seulement si, il existe une base \mathcal{B} de E dans laquelle f a pour matrice

$$C = \begin{pmatrix} 0 & \dots & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \ddots & \vdots & -a_2 \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & & \ddots & 1 & 0 & -a_{n-2} \\ 0 & \dots & \dots & 0 & 1 & -a_{n-1} \end{pmatrix} \text{ avec } (a_0, a_1, \dots, a_{n-1}) \in \mathbb{C}^n.$$

On dira que C est la matrice compagne de f

On conserve les notations de I.1.

- **I.2.** Soit $Q(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_0$. Déterminer en fonction de Q le polynôme P_C caractéristique de C. On dira aussi que C est la matrice compagne de P_C .
 - Si f est un endomorphisme cyclique, a-t-on unicité de la matrice compagne de f?
- I.3. Soit λ une valeur propre de C; déterminer la dimension du sous-espace propre associé. Déterminer une base de ce sous-espace propre.

$\underline{\bf DEUXIEME\ PARTIE}$: Endomorphismes nilpotents.

II.4. On suppose dans cette question $f^{n-1} \neq 0$ et $f^n = 0$.

Montrer que f est cyclique et déterminer sa matrice compagne.

Quelle est la dimension du noyau de f?

II.5. On suppose maintenant f nilpotent; c'est-à-dire qu'il existe un entier p supérieur ou égal à 2 tel que $f^{p-1} \neq 0$ et $f^p = 0$.

On pose pour $k \in [0, p]$, $N_k = \ker f^k$ et $n_k = \dim N_k$.

On suppose également que $n_1 = 1$.

- **5.a)** Montrer que $\forall k \in [[0, p-1]], N_k \subset N_{k+1}$ et $f(N_{k+1}) \subset N_k$.
- **5.b)** En considérant l'application $\varphi: \begin{bmatrix} N_{k+1} \to N_k \\ x \mapsto f(x) \end{bmatrix}$ montrer que : $\forall k \in [[0, p-1]], n_{k+1} \leq n_k + 1.$
- **5.c)** Montrer par récurrence que : $n_k = n_{k+1} \Rightarrow \forall j \geq k, N_j = N_k$. En déduire que p = n et déterminer n_k pour $k \in [0, n]$.

TROISIEME PARTIE : Une caractérisation des endomorphismes cycliques.

III.6. Montrer que si f est cyclique, $(I, f, f^2, \dots, f^{n-1})$ est libre dans $\mathcal{L}(E)$. Ce résultat sera également utilisé dans la quatrième partie.

On suppose, dans cette partie, que $(I, f, f^2, \dots, f^{n-1})$ est libre et on se propose de montrer que f est cyclique.

III.7. Dans cette question $\mathbb{K}=\mathbb{C}.$ On factorise le polynôme caractéristique P_f de f sous la forme :

$$P_f(X) = \prod_{k=1}^p (\lambda_k - X)^{m_k},$$

 $P_f(X) = \prod_{k=1}^p (\lambda_k - X)^{m_k},$ où les λ_k sont les p valeurs propres distinctes de f, et les m_k dans \mathbb{N}^* leur ordre respectif de multiplicité.

Pour $k \in [|1, p|]$, on pose $E_k = \ker((f - \lambda_k I)^{m_k})$.

- **7.a)** Montrer que les sous-espaces vectoriels E_k sont stables par f et que $E = E_1 \oplus \cdots \oplus E_p$.
- **7.b)** Pour $k \in [|1,p|]$, on note φ_k l'endomorphisme $\varphi_k : \left| \begin{array}{c} E_k \to E_k \\ x \mapsto f(x) \lambda_k x \end{array} \right|$ Déterminer $\varphi_k^{m_k}$. Quelle est la dimension de E_k ?

 Montrer que $\varphi_k^{m_k-1}$ n'est pas l'endomorphisme nul.

7.c) En déduire l'existence d'une base \mathscr{B} de E dans laquelle f a une matrice « diagonale par

blocs », ces blocs appartenant à
$$\mathcal{M}_{m_k}(\mathbb{C})$$
, et étant de la forme :
$$\begin{pmatrix} \lambda_k & 0 & \dots & \dots & 0 \\ 1 & \lambda_k & \ddots & & \vdots \\ 0 & 1 & \lambda_k & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \lambda_k & 0 \\ 0 & \dots & \dots & 0 & 1 & \lambda_k \end{pmatrix}$$

(On pourra utiliser la partie II).

- **7.d)** En utilisant la matrice compagne de P_f montrer que f est cyclique.
- **III.8.** On suppose, dans cette question uniquement, que $\mathbb{K} = \mathbb{R}$.
 - **8.a)** Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$ semblables dans $\mathcal{M}_n(\mathbb{C})$:

$$A = QBQ^{-1}$$
 avec $Q \in \mathscr{GL}_n(\mathbb{C})$.

On écrit $Q = Q_1 + iQ_2$ avec Q_1 et Q_2 dans $\mathcal{M}_n(\mathbb{R})$.

Montrer que $\{\lambda \in \mathbb{R} \mid Q_1 + \lambda Q_2 \in \mathscr{GL}_n(\mathbb{R})\}$ est non vide.

En déduire que A et B sont semblables dans $\mathcal{M}_n(\mathbb{R})$

8.b) Montrer que f est cyclique.

Conclure.

QUATRIEME PARTIE: Une autre caractérisation des endomorphismes cycliques.

- **IV.9.** On suppose f cyclique et on choisit x_0 dans E tel que $(x_0, f(x_0), \ldots, f^{n-1}(x_0))$ soit une base de
 - **9.a)** Soit $g \in \mathcal{C}(f)$. En écrivant $g(x_0) = \sum_{k=0}^{n-1} \alpha_k f^k(x_0)$, montrer que $g \in \mathbb{K}[f]$.

- **9.b)** Montrer que $g \in \mathcal{C}(f)$ si, et seulement si, il existe un unique polynôme $R \in \mathbb{K}_{n-1}[X]$ tel que g = R(f). (On rappelle que $\mathbb{K}_{n-1}[X]$ est l'ensemble des polynômes sur \mathbb{K} de degré $\leq n-1$).
- **IV.10.** On suppose que $\mathscr{C}(f) = \mathbb{K}[f]$. Montrer que f est cyclique. Conclure.

${\bf CINQUIEME\ PARTIE}: {\bf Cycles}.$

Dans cette partie $\mathbb{K} = \mathbb{C}$. On dit que f est un « p-cycle » si, et seulement si, il existe $x_0 \in E$ tel que la famille $(x_0, f(x_0), \dots, f^{p-1}(x_0))$ soit génératrice de E et $f^p(x_0) = x_0$.

- **V.11.** Dans cette partie, f désigne un p-cycle.
 - **11.a)** Montrer que $f^p = I$.
 - **11.b)** Soit $\mathscr{E} = \{k \in \mathbb{N}^* \mid (x_0, f(x_0), \dots, f^{k-1}(x_0)) \text{ est une famille libre} \}.$ Montrer que \mathscr{E} admet un maximum noté m.
 - **11.c)** Montrer que : $\forall k \geq m, f^k(x_0) \in \text{Vect}(x_0, f(x_0), \dots, f^{m-1}(x_0))$. En déduire que f est cyclique. Déterminer le nombre de valeurs propres distinctes de f.
- **V.12.** Dans cette question, f désigne un n-cycle.

Déterminer C, matrice compagne de f.

On pose
$$\omega = e^{\frac{2i\pi}{n}}$$
 et, pour $k \in \mathbb{Z}$, $U_k = \begin{pmatrix} \overline{\omega}^k \\ \overline{\omega}^{2k} \\ \vdots \\ \overline{\omega}^{nk} \end{pmatrix}$.

Pour $k \in [|1, n|]$, calculer CU_k .

V.13. Soit $M \in \mathcal{M}_n(\mathbb{C})$ définie par $M = (m_{k,l})_{\substack{1 \leq k \leq n \\ 1 \leq l \leq n}}$, avec $m_{k,l} = \overline{\omega}^{kl}$.

Calculer $M\overline{M}$; en déduire que $M\in\mathscr{GL}_n(\mathbb{C})$ et calculer M^{-1}

V.14. Soit
$$(a_0, a_1, \dots, a_{n-1}) \in \mathbb{C}^n$$
 et $A = \begin{pmatrix} a_0 & a_{n-1} & \dots & a_1 \\ a_1 & a_0 & \dots & a_2 \\ \vdots & \dots & & \vdots \\ \vdots & \dots & & a_0 & a_{n-1} \\ a_{n-1} & a_{n-2} & \dots & a_1 & a_0 \end{pmatrix}$.

Montrer que A est diagonalisable. Déterminer les valeurs propres et une base de vecteurs propres de A.

FIN