4. State-space representation

4.1 Introduction – by examples

- Previously, we have developed models for a variety of systems, ending up in each case with one or more differential equations, some of which were nonlinear.
- When the equations were linear, the model can be described in terms of a Laplace transfer function.
- Consider for example the spring-mass damper system:

Physical model

$$M\ddot{x} + B\dot{x} + Kx = f(t)$$

or
$$M \frac{d^2x}{dt^2} + B \frac{dx}{dt} + Kx = f(t)$$

$$G(s) = \frac{X(s)}{F(s)} = \frac{1}{Ms^2 + Bs + K}$$

- While transfer functions are compact and have several advantages in relation to analysis of dynamical systems, they also have a number of weaknesses as follows:
 - They do not handle initial conditions (assumed to be zero!).
 - Information about internal variables is lost (\dot{x} in the case of the above example).
 - For general *m*-input, *p*-output systems, we would need a total of *m* x *p* transfer functions to fully describe the system.
- An alternative model representation, known as a state-space model, overcomes these
 weaknesses and, as we shall see later, lends itself to computer implementation
 (simulation).
- The basic idea behind state-space modelling is to write down a set of first-order differential equations in terms of the system state(s) and input(s).

• **Example 4.1:** Develop a state-space model for the second-order differential equation model of the spring-mass damper system:

$$M\ddot{x} + B\dot{x} + Kx = f(t)$$

Solution: We proceed as follows:

Firstly we have a **second-order** differential equation; hence we define two states x_1 and x_2 :

$$x_1 = x, \quad x_2 = \dot{x}$$

We then obtain expressions for \dot{x}_1 and \dot{x}_2 :

$$\dot{x}_1 = \dot{x}$$
 and $\dot{x}_2 = \ddot{x} = \frac{1}{M} (f(t) - B\dot{x} - Kx)$

Note the latter expression is obtained for the original mathematical model.

We can rewrite these in terms states x_1 and x_2 only, by replacing x and \dot{x} with their state equivalent. Hence:

$$\dot{x}_1 = x_2$$
 and $\dot{x}_2 = \frac{1}{M} (f(t) - Bx_2 - Kx_1)$

Now, we combine these into matrix form as follows:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{K}{M} & -\frac{B}{M} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{M} \end{bmatrix} f(t)$$

Finally, let us define the output as y = x, the displacement in the mass. Hence $y = x_I$ giving:

$$[y] = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} f(t) \Rightarrow \begin{bmatrix} y \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Hence our state-space model is expressed, in full, as:

$$\begin{bmatrix} \dot{x}_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{M} & -\frac{B}{M} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{M} \end{bmatrix} f(t)$$

$$[y] = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• **Example 4.2:** Develop a state-space model for the first-order differential equation model of the single tank system:

$$A\frac{dh}{dt} = F_{in} - kh$$

Solution:

Here, we only have a *first-order* differential equation and hence only one state:

$$x_1 = h$$

We now obtain an expression for \dot{x}_1 :

$$\dot{x}_1 = \dot{h}$$

We can obtain an expression for \dot{h} from the differential equation, as follows:

$$A\dot{h} = F_{in} - kh \Rightarrow \dot{h} = \frac{1}{A}(F_{in} - kh)$$

Rewriting this equation in terms of state x_I , and letting input $u = F_{in}$, we get:

$$\dot{x}_1 = \frac{-k}{A}x_1 + \frac{1}{A}u$$

Let output $y = h = x_1$. Hence, our state-space model is expressed, in full, as:

$$\left[\dot{x}_{1}\right] = \left[\frac{-k}{A}\right]\left[x_{1}\right] + \left[\frac{1}{A}\right]\left[u\right]$$

$$[y] = [1][x_1]$$

- Note in this example, all the matrices are simply 1x1 in dimensions, as this is a simple first order system.
- Nevertheless, the example serves to illustrate that all models, irrespective of their order, can be represented in a state-space format.

• **Example 4.3:** Develop a state-space model for the double-mass-spring-damper car suspension system with the equations:

$$M\ddot{x}_1 + B(\dot{x}_1 - \dot{x}_2) + K(x_1 - x_2) = f(t)$$

$$m\ddot{x}_2 + B_t\dot{x}_2 + K_tx_2 = B(\dot{x}_1 - \dot{x}_2) + K(x_1 - x_2)$$

Solution: We can rewrite these equations as:

$$\ddot{x}_1 = -\frac{B}{M}\dot{x}_1 + \frac{B}{M}\dot{x}_2 - \frac{K}{M}x_1 + \frac{K}{M}x_2 + \frac{f(t)}{M}$$

$$\ddot{x}_2 = -\left(\frac{B}{m} + \frac{B_t}{m}\right)\dot{x}_2 + \frac{B}{m}\dot{x}_1 - \left(\frac{K}{m} + \frac{K_t}{m}\right)x_2 + \frac{K}{m}x_1$$

Here, we have *two second-order* differential equations and hence we need 4 states:

$$X_1 = x_1$$

$$X_2 = x_2$$

$$X_3 = \dot{x}_1$$

$$X_4 = \dot{x}_2$$

Note, here we're using capital X for the states, to avoid confusion with the actual variables in the equations.

We now obtain an expression for $\dot{X}_1, \dot{X}_2, \dot{X}_3$ and \dot{X}_4 :

$$\dot{X}_1 = \dot{x}_1 = X_3$$

$$\dot{X}_2 = \dot{x}_2 = X_4$$

$$\dot{X}_3 = -\frac{B}{M}X_3 + \frac{B}{M}X_4 - \frac{K}{M}X_1 + \frac{K}{M}X_2 + \frac{f(t)}{M}$$

$$\dot{X}_4 = -\left(\frac{B}{m} + \frac{B_t}{m}\right)X_4 + \frac{B}{m}X_3 - \left(\frac{K}{m} + \frac{K_t}{m}\right)X_2 + \frac{K}{m}X_1$$

Let us define the outputs as the position of both masses, i.e. $y_1 = X_1$ and $y_2 = X_2$.

Hence, our state-space model is:

$$\begin{bmatrix} \dot{X}_{1} \\ \dot{X}_{2} \\ \dot{X}_{3} \\ \dot{X}_{4} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac{K}{M} & \frac{K}{M} & -\frac{B}{M} & \frac{B}{M} \\ \frac{K}{m} & -\left(\frac{K+K_{t}}{m}\right) & \frac{B}{m} & -\left(\frac{B+B_{t}}{m}\right) \end{bmatrix} \begin{bmatrix} X_{1} \\ X_{2} \\ X_{3} \\ X_{4} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{1}{M} \\ 0 \end{bmatrix} f(t)$$

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}$$

- Note, with a state-space representation, it is very easy to add other outputs.
- By way of illustration, let's say that for in the last example we also want to consider the output $y_3 = X_1 X_2$, i.e. the difference in position between the two masses.
- In this instance, we can simply rewrite the output matrix, for the last example, as:

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}$$

4.2 Formal definitions

- The commonly used terms associated with state-space representation are as follows:
 - ➤ **State** the state of a dynamic system is the smallest set of variables (called state variables) such that knowledge of these variables at $t = t_0$, together with knowledge of the input for $t \ge t_0$, completely determines the behaviour of the system for $t \ge t_0$.
 - ➤ **State variables** the variables that make up the state as defined above.
 - ➤ **State vector** when there is more than one state variable, they are normally collected together into a vector called a state vector.
 - ➤ **State-space** the *n*-dimensional state vector can be viewed as a point moving around in *n*-dimensional space. This *n*-dimensional space is known as state-space.

4.3 General state-space form

• The dynamics of a general n^{th} order linear dynamical system, with m inputs, is completely described by a n^{th} order state-space equation of the form:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} b_{11} & \cdots & b_{1m} \\ b_{21} & \cdots & b_{2m} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nm} \end{bmatrix} \begin{bmatrix} u_1 \\ \vdots \\ u_m \end{bmatrix}$$

$$\equiv \dot{x} = Ax + Bu$$
 state equation

with a set of initial conditions (one for each state):

$$\mathbf{x}(0) = \begin{bmatrix} x_1(0) \\ x_2(0) \\ \vdots \\ x_n(0) \end{bmatrix} = \mathbf{x_0}$$
 initial conditions

• The model output(s) are given by a linear combination of the states and the inputs. Given *p* outputs, we obtain:

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_p \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{p1} & c_{p2} & \cdots & c_{pn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} d_{11} & \cdots & d_{1m} \\ d_{21} & \cdots & d_{2m} \\ \vdots & \ddots & \vdots \\ d_{p1} & \cdots & d_{pm} \end{bmatrix} \begin{bmatrix} u_1 \\ \vdots \\ u_m \end{bmatrix}$$

$$\equiv$$
 $y = Cx + Du$ output equation

• Together, these two equations describe the state-space model of a system.

$$\dot{x} = Ax + Bu \qquad , x(0) = x_0$$
$$y = Cx + Du$$

• The matrices **A**, **B**, **C** and **D** are called the state matrix, input matrix, output matrix and direct transmission matrix respectively:

A - state matrix (n x n)
B - input matrix (n x m)
C - output matrix (p x n)

D - direct transmission matrix $(p \times m)$

4.4 Transforming system models to state-space form

- It is not always obvious how to choose the system state variables so that we end up with a set of state-equations (i.e. a set of first-order differential equations).
- For example, consider the set of equations obtained from the circuit modelling example that used nodal analysis (see example 3.7), one for each node:

$$\frac{L}{R_1}\dot{v}_1 + v_1 + LC\ddot{v}_1 - v_0 - \frac{L}{R_1}\dot{v}_{in} = 0$$

and

$$v_1 = \frac{L}{R_2} \dot{v}_0 + v_0$$

• For the sake of convenience, let R = C = L = 1, giving:

$$\dot{v}_1 + v_1 + \ddot{v}_1 - v_0 - \dot{v}_{in} = 0$$
 or $\ddot{v}_1 = \dot{v}_{in} - \dot{v}_1 - v_1 + v_0$

and

$$v_1 = \dot{v}_0 + v_0$$
 or $\dot{v}_0 = v_1 - v_0$

• We can try assigning the states $x_1 = v_1$, $x_2 = \dot{v}_1$ and $x_3 = v_0$, but this doesn't give us a workable set of first-order equations because of the derivative on the input, i.e. \dot{v}_{in} :

$$\dot{x}_1 = x_2
\dot{x}_2 = -x_2 - x_1 + x_3 + \dot{v}_{in}
\dot{x}_3 = x_1 - x_3$$

We cannot have a derivative of the input in a state-space equation. We need to choose the states so that this does not occur.

• One possible solution is to bring \dot{v}_{in} over to the left hand side of the equation, i.e.:

$$\ddot{v}_1 - \dot{v}_{in} = -\dot{v}_1 - v_1 + v_0$$

and then choose the states as follows:

$$x_1 = v_1, x_2 = \dot{v}_1 - v_{in}$$
 and $x_3 = v_0$

• This leads to:

$$\begin{aligned} \dot{x}_1 &= \dot{v}_1 \\ \dot{x}_2 &= \ddot{v}_1 - \dot{v}_{in} = -\dot{v}_1 - v_1 + v_0 \\ \dot{x}_3 &= \dot{v}_0 = v_1 - v_0 \end{aligned}$$

- However: $x_2 = \dot{v}_1 v_{in}$ \Rightarrow $\dot{v}_1 = x_2 + v_{in}$
- Hence, we can write the state equation as follows:

$$\dot{x}_1 = x_2 + v_{in}$$

$$\dot{x}_2 = -(x_2 + v_{in}) - x_1 + x_3$$

$$\dot{x}_3 = x_1 - x_3$$

or:

$$\mathbf{x} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} v_{in}$$

- Note, that the rank of the state matrix (i.e. matrix A) is 2.
- In other words, the determinant of matrix A = 0. Verify this for yourself.
- The reason for this is that the third equation is not independent of the other two.
- Here, it is a composite of the other two equations, i.e.

equation
$$3 = -$$
 (equation $1 +$ equation 2)

• The transfer function for the system is:

$$\frac{V_0(s)}{V_i(s)} = \frac{1}{s^2 + 2s + 2}$$
 (Verify this for yourself)

- This is a second order transfer function.
- Hence the system is second order and, therefore, we should only need two states to describe it.
- Thus, the state model obtained above is *not a minimal state-space realisation*.
- The best way to obtain a minimal realisation is to derive the state-space model from the transfer function model of the system.
- There are two possibilities, leading to two different methods for determining the state variables one does not involve derivatives in the input, the other one does!

4.4.1 Transfer function \rightarrow State space, when the input DOES NOT involve derivatives

• Consider the following third-order transfer function:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{k}{s^3 + a_2 s^2 + a_1 s + a_0}$$

• Converting this to the time domain gives:

$$\ddot{y} + a_2 \ddot{y} + a_1 \dot{y} + a_0 y = ku$$

or

$$\ddot{y} = -a_2 \ddot{y} - a_1 \dot{y} - a_0 y + ku$$

• We simply define the states as $x_1 = y$, $x_2 = \dot{y}$ and $x_3 = \ddot{y}$, leading to the following state model:

$$\dot{x}_1 = \dot{y} = x_2$$

$$\dot{x}_2 = \ddot{y} = x_3$$

$$\dot{x}_3 = \ddot{y} = -a_2 x_3 - a_1 x_2 - a_0 x_1 + ku$$

$$y = x_1$$

giving:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -a_0 & -a_1 & -a_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ k \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

This state-space model is known as the **control** (or controller) canonical form.

4.4.2 Transfer function \rightarrow State space, when the input involves derivatives

• Consider the following third-order transfer function:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_3 s^3 + b_2 s^2 + b_1 s + b_0}{s^3 + a_2 s^2 + a_1 s + a_0}$$

• Firstly, we split the transfer function into two parts by defining an intermediate variable Z(s) as follows:

$$\frac{Z(s)}{U(s)} = \frac{1}{s^3 + a_2 s^2 + a_1 s + a_0}$$

and

$$\frac{Y(s)}{Z(s)} = b_3 s^3 + b_2 s^2 + b_1 s + b_0$$

$$\begin{array}{c|c}
U(s) & \hline
 & 1 & \\
\hline
 & s^3 + a_2 s^2 + a_1 s + a_0
\end{array}$$

$$Z(s) & b_3 s^3 + b_2 s^2 + b_1 s + b_0$$

$$Y(s) & \hline
 & Y(s) & \hline
 & Y(s)$$

• Converting to the time domain gives:

$$\ddot{z} + a_1 \ddot{z} + a_1 \dot{z} + a_0 z = u$$

and

$$b_3\ddot{z} + b_2\ddot{z} + b_1\dot{z} + b_0z = y$$

• Setting the states as $x_1 = z$, $x_2 = \dot{z}$ and $x_3 = \ddot{z}$, we get the state equation as follows:

$$\begin{aligned} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= x_3 \\ \dot{x}_3 &= -a_2 x_3 - a_1 x_2 - a_0 x_1 + u \end{aligned}$$

giving:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -a_0 & -a_1 & -a_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

Once again, we have the **control canonical form**.

• In terms of the output equation:

- **if**
$$b_3 = 0$$
 then: $y = b_2 \ddot{z} + b_1 \dot{z} + b_0 z = b_2 x_3 + b_1 x_2 + b_0 x_1$

giving:
$$y = \begin{bmatrix} b_0 & b_1 & b_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 (Note, the D matrix is 0 in this case)

- **if**
$$b_3 \neq 0$$
 then: $y = b_2 x_3 + b_1 x_2 + b_0 x_1 + b_3 \ddot{z}$

but:
$$\ddot{z} = \dot{x}_3 = -a_2 x_3 - a_1 x_2 - a_0 x_1 + u$$

giving:
$$y = (b_2 - b_3 a_2) x_3 + (b_1 - b_3 a_1) x_2 + (b_0 - b_3 a_0) x_1 + b_3 u$$

therefore:
$$y = [(b_0 - b_3 a_0) \quad (b_1 - b_3 a_1) \quad (b_2 - b_3 a_2)] \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + [b_3] u$$

- Note that the state matrix (i.e. matrix A) is exactly the same for both types of transfer function models.
- This implies that the dynamics depend on the transfer function denominator only.

4.5 Discrete-time state-space models

- Difference equation models can also be represented in state-space form.
- In this case, the state-space equations take the form:

$$\mathbf{x}_{k+1} = \mathbf{A}_D \mathbf{x}_k + \mathbf{B}_D \mathbf{u}_k$$

 $\mathbf{y}_k = \mathbf{C}_D \mathbf{x}_k + \mathbf{D}_D \mathbf{u}_k$

or

$$\mathbf{x}(k+1) = \mathbf{A}_{D}\mathbf{x}(k) + \mathbf{B}_{D}\mathbf{u}(k)$$
$$\mathbf{y}(k) = \mathbf{C}_{D}\mathbf{x}(k) + \mathbf{D}_{D}\mathbf{u}(k)$$

- The *D* subscript simply denotes discrete-time.
- This is similar in structure to the continuous state-space model equations.
- Furthermore, the matrices and vectors have the same dimensions as their continuous counterparts.
- Finally, the same methods can be used to derive the models from difference equation representations.
- Example 4.4: Obtain the state-space model from the following difference equation:

$$y_k = 0.5y_{k-1} + 0.3y_{k-2} + 1.5u_{k-1} + 0.5u_{k-2}$$

Solution:

The transfer function (using *z*-transforms) is given by:

$$\frac{Y(z)}{U(z)} = \frac{1.5z^{-1} + 0.5z^{-2}}{1 - 0.5z^{-1} - 0.3z^{-2}}$$

Note that $y_k \to Y(z)$, $y_{k-1} \to z^{-1}Y(z)$, etc. Verify the transfer function for yourself.

Let Q(z) be the intermediate variable.

Hence:

$$\frac{Q(z)}{U(z)} = \frac{1}{1 - 0.5z^{-1} - 0.3z^{-2}} \quad \text{and} \quad \frac{Y(z)}{Q(z)} = 1.5z^{-1} + 0.5z^{-2}$$

Therefore:

$$q_k - 0.5q_{k-1} - 0.3q_{k-2} = u_k$$
 ... (A)

and

$$1.5q_{k-1} + 0.5q_{k-2} = y_k \qquad \dots (B)$$

Choosing the discrete states as $x_1(k) = q_{k-1}$ and $x_2(k) = q_{k-2}$, gives:

$$x_1(k+1) = q_k = 0.5q_{k-1} + 0.3q_{k-2} + u_k$$

 $\Rightarrow x_1(k+1) = 0.5x_1(k) + 0.3x_2(k) + u_k$ from equation A

and

$$x_2(k+1) = q_{k-1} = x_1(k)$$

Hence:

$$\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} 0.5 & 0.3 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$

$$\equiv \mathbf{x}(k+1) = \mathbf{A}_D \mathbf{x}(k) + \mathbf{B}_D \mathbf{u}(k)$$

In terms of the output equation:

$$y_k = 1.5q_{k-1} + 0.5q_{k-2}$$

 $\Rightarrow y_k = 1.5x_1(k) + 0.5x_2(k)$

from equation B

Hence:

$$y_k = \begin{bmatrix} 1.5 & 0.5 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}$$

$$\equiv \mathbf{y}(k) = \mathbf{C}_D \mathbf{x}(k)$$

4.6 Obtaining transfer functions from state-space models

4.6.1 Continuous-time state-space model → transfer function

• Consider the following single-input-single-output continuous-time state-space model:

$$\dot{x}(t) = Ax(t) + Bu(t) \qquad y(t) = Cx(t)$$

• Taking the Laplace transform gives:

$$sX(s) = AX(s) + BU(s)$$
 $Y(s) = CX(s)$

• Rearranging the state equation gives:

$$(sI - A)X(s) = BU(s)$$
 \Rightarrow $X(s) = (sI - A)^{-1}BU(s)$

- Substituting this equation into the output equation gives: $Y(s) = \mathbf{C}(sI \mathbf{A})^{-1}\mathbf{B}U(s)$
- Hence, the transfer function is defined in terms of the state-space equations matrices as:

$$G(s) = \frac{Y(s)}{U(s)} = \mathbf{C}(sI - \mathbf{A})^{-1}\mathbf{B}$$

4.6.2 Discrete-time state-space model → transfer function

• Consider the following single-input-single-output discrete-time state-space model:

$$x(k+1) = Ax(k) + Bu(k) \qquad y(k) = Cx(k)$$

• Taking the *z*-transform gives:

$$zX(z) = AX(z) + BU(z)$$
 $Y(z) = CX(z)$

• Rearranging the state equation gives:

$$(zI - A)X(z) = BU(z)$$
 \Rightarrow $X(z) = (zI - A)^{-1}BU(z)$

- Substituting this equation into the output equation gives: $Y(z) = \mathbf{C}(zI \mathbf{A})^{-1}\mathbf{B}U(z)$
- Hence, the transfer function is defined in terms of the state-space equations matrices as:

$$G(z) = \frac{Y(z)}{U(z)} = \mathbf{C}(zI - \mathbf{A})^{-1}\mathbf{B}$$

• **Example 4.5:** Determine the transfer function for the following system:

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} 0 & 2 \\ -3 & 5 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t), \quad y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}(t)$$

Solution:

$$G(s) = C(sI - A)^{-1}B$$

$$= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 0 & 2 \\ -3 & 5 \end{bmatrix} \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} s - 2 \\ 3 & s - 5 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \frac{\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} s - 5 & 2 \\ -3 & s \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}}{s^2 - 5s + 6}$$

$$= \frac{\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} s - 5 \\ -3 \end{bmatrix}}{s^2 - 5s + 6} = \frac{s - 5}{s^2 - 5s + 6}$$

Hence:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{s-5}{s^2 - 5s + 6}$$

4.7 Nonlinear state-space equations

- The examples of continuous and discrete state-space models considered thus far have all been linear.
- However, these are only special cases of the more general form of the state space equations, which are used to describe general nonlinear dynamical systems:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$$

$$y = g(x, u)$$

i.e.:

$$\begin{bmatrix} \dot{x}_1 = f_1(x_1, x_2, ..., x_n, u_1, u_2, ..., u_m) \\ \dot{x}_2 = f_2(x_1, x_2, ..., x_n, u_1, u_2, ..., u_m) \\ \vdots \\ \dot{x}_n = f_n(x_1, x_2, ..., x_n, u_1, u_2, ..., u_m) \end{bmatrix}$$

n nonlinear state equations

$$\begin{bmatrix} y_1 = g_1(x_1, x_2, ..., x_n, u_1, u_2, ..., u_m) \\ y_2 = g_2(x_1, x_2, ..., x_n, u_1, u_2, ..., u_m) \\ \vdots \\ y_p = g_n(x_1, x_2, ..., x_n, u_1, u_2, ..., u_m) \end{bmatrix}$$

p nonlinear output equations

 Consider, for example, the coupled tank system, which was represented by a set of nonlinear equations:

$$\dot{h}_1 = \frac{1}{A_1} f_{in} - \frac{k_1}{A_1} \sqrt{h_1 - h_2}$$
 $\rightarrow \dot{h}_1 = f_1 (h_1, h_2, f_{in})$

$$\dot{h}_2 = \frac{k_1}{A_2} \sqrt{h_1 - h_2} - \frac{k_2}{A_2} \sqrt{h_2 - h_3}$$
 $\rightarrow \dot{h}_2 = f_2 (h_1, h_2, f_{in})$

- Note, in the second equation, the value associated with f_{in} is 0 in this case!
- Here, we have two states, h_1 and h_2 and input f_{in} .
- If we are interested in the flow between the tanks and the height of tank 1, for example, then we can represent the **output equations** as:

$$y_1 = k_1 \sqrt{h_1 - h_2}$$
 \rightarrow $y_1 = g_1 (h_1, h_2, f_{in})$
 $y_2 = h_1$ \rightarrow $y_2 = g_2 (h_1, h_2, f_{in})$

 Although this system is clearly nonlinear, we can nevertheless write down the full statespace model for this system.