

Facultad de Ciencias Exactas, Ingeniería y Agrimensura

Departamento de Matemática - Escuela de Ciencias Exactas y Naturales

ANÁLISIS MATEMÁTICO II

Licenciatura y Profesorado en Física, Licenciatura en Ciencias de la Computación, Licenciatura y Profesorado en Matemática - Año 2023

Práctica 2: Integral definida - Teorema fundamental del Cálculo

1. Suponga que f y h son integrables y que vale que $\int_{1}^{9} f(x) dx = -1$, $\int_{7}^{9} f(x) dx = 5$ y $\int_{7}^{9} h(x) dx = 4$. Determine:

a)
$$\int_{1}^{9} -2f(x) dx$$
,

c)
$$\int_{7}^{9} [4f(x) - 3h(x)] dx$$
 e) $\int_{9}^{1} f(u) du$

e)
$$\int_{9}^{1} f(u) du$$

b)
$$\int_{7}^{9} [f(x) + h(x)] dx$$
, d) $\int_{1}^{7} f(x) dx$

d)
$$\int_{1}^{7} f(x) dx$$

$$f)\int_{9}^{7} [h(t) - f(t)] dt.$$

a) Muestre que si f es una función continua en [a,b] y $\int\limits_a^b f(x)\,dx=0$, entonces la función f tiene al menos un cero en [a,b].

b) Sea f una función continua y no negativa en [a,b] con $\int\limits_a^b f(x)=0$. Pruebe que f(x)=0 para todo $x \in [a, b].$

3. Sea $f:[-a,a] \to \mathbb{R}$ una función integrable en su dominio. Demuestre las siguientes afirmaciones:

a) Si
$$f$$
 es una función par en $[-a,a]$ entonces $\int\limits_{-a}^a f(x)\,dx=2\int\limits_0^a f(x)\,dx.$

b) Si
$$f$$
 es una función impar en $[-a,a]$ entonces $\int\limits_{-a}^{a}f(x)\,dx=0.$

4. Sea $f:[a,b] \to \mathbb{R}$ una función continua y sea $c \in [a,b]$. Suponga que $\int\limits_a^b f(x)\,dx = 8$ y $\int\limits_a^b f(x)\,dx = 6$. Halle:

1

a)
$$\int_{b}^{c} f(x) dx$$
,

b) $\int_{a}^{c} f(x) dx$ e indique qué representa.

5. Escriba, sin calcular, una integral definida que indique el área de la región sombreada.

- 6. Determine el área total de la región encerrada entre la función $y=-x^2-2x,\,-3\leq x\leq 2$ y el eje x.
- 7. Determine las áreas de las regiones encerradas entre las curvas:

a)
$$y = |x| + |x - 1|$$
, $y = 0$, $x = -1$, $x = 2$;

b)
$$y = 2x - x^2$$
, $y = -3$;

c)
$$y = x^4$$
, $y = 3x^2 - 2$;

d)
$$y = x^2 - 2x$$
, $y = x$;

e)
$$y = x^2$$
, $y = -x^2 + 4x$;

f)
$$y = x(x^2 - 1)$$
, $y = x$, $x = -1$;

g)
$$x - y^2 = 0$$
, $x + 2y^2 = 3$;

h)
$$x = y^2 - y$$
, $x = 2y^2 - 2y - 6$;

i)
$$x + 4y^2 = 4$$
, $x + y^4 = 1$, para $x \ge 0$;

- 8. Determine el área de la región encerrada entre la curva $y=3-x^2$ y la recta y=-1 mediante la integración con respecto a x primero, y luego integrando respecto a y.
- 9. Suponga que el área de la región determinada por la gráfica de una función continua positiva f y el eje x desde x=a a x=b es 4 unidades. Determine el área entre las curvas y=f(x) y y=2f(x) desde x=a hasta x=b.

2

10. Siendo $f(x)=2x^2$ se definen las funciones:

i)
$$F(x) = \int_{0}^{x} f(t)dt$$
, ii) $G(x) = \int_{-2}^{x} f(t)dt$, iii) $H(x) = \int_{1}^{x} f(t)dt$.

Se pide:

a) Analice las relaciones existentes entre las funciones F, G y H.

- b) Trace la gráfica de dichas funciones.
- c) Analice las relaciones existentes entre las funciones F', G' y H'.
- 11. En cada uno de los siguientes casos la figura muestra la gráfica de una función $f:[a,b]\to\mathbb{R}$. Trace, para cada una de ellos, un croquis aproximado de la función $g(x) = \int_{c}^{x} f(t)dt$.

12. Para cada una de las siguientes funciones $f_i:[a,b]\to\mathbb{R}$ con i=1,2

$$f_1(x) = \begin{cases} 1 & \text{si } -2 \le x \le \\ x & \text{si } 0 < x \le 2, \end{cases}$$

i)
$$f_1(x) = \begin{cases} 1 & \text{si } -2 \le x \le 0, \\ x & \text{si } 0 < x \le 2, \end{cases}$$
 ii) $f_2(x) = \begin{cases} 1 & \text{si } -2 \le x \le 0, \\ x+1 & \text{si } 0 < x \le 2, \end{cases}$

se define la función $F_i(x) = \int_0^x f_i(t)dt$. Se pide:

- a) Represente gráficamente la función f_i y justificar su integrabilidad.
- b) Halle los puntos de continuidad de la función F_i .
- c) Halle los puntos de derivabilidad de la función F_i .
- d) Represente gráficamente las funciones F_i y F'_i .
- 13. Sea $f:[a,b]\to\mathbb{R}$ una función integrable en [a,b].
 - a) Sean $c \in [a,b]$ y la función $G:[a,b] \to \mathbb{R}$ definida como $G(x) = \int\limits_{a}^{c} f(t) dt$. Muestre que G es continua y, además, derivable en cada punto de continuidad de f, valiendo en tal caso $G^\prime(x)=-f(x)$.
 - b) Sean $lpha \in [a,b]$ y la función $\phi:[c,d] o \mathbb{R}$ derivable en (c,d) tal que $lpha < \phi(x) < b$ para todo $x\in [c,d].$ Se define la función $H:[c,d]\to \mathbb{R}$ como $H(x)=\int\limits_{-\infty}^{\phi(x)}f(t)dt.$

Muestre que H es continua y, además, derivable en cada punto x tal que $\phi(x)$ es un punto de continuidad de la función f, valiendo en tal caso $H'(x) = (f \circ \phi)(x) \ \phi'(x) = f[\phi(x)] \ \phi'(x)$.

14. Halle el dominio de las funciones siguientes, y sin intentar el cálculo de las integrales, halle la función derivada (dominio y ley) de las siguientes funciones:

3

$$a)f_1(x) = \int_0^{\sqrt{x}} \cos t dt,$$
 $b)f_2(x) = \int_1^{\sin x} 3t^2 dt,$ $c)f_3(x) = \int_{x^4}^2 \sqrt{t} dt.$

15. Pruebe que

a) para cada $x \in [-1,1]$ se verifica la igualdad

$$\arccos x + \arcsin x = \frac{\pi}{2}$$

b) y para todo $x \in \left[0, \frac{\pi}{2}\right]$ se tiene

$$\int_{0}^{\cos^{2} x} \arccos(\sqrt{t})dt + \int_{0}^{\sin^{2} x} \arcsin(\sqrt{t})dt = \frac{\pi}{4}.$$