Lab 6

Cubic spline interpolation

Use Matlab function spline.

- 1. Consider the function: $f(x)=\sin(x)$ defined on $[0,2\pi]$ and the nodes $0,\frac{\pi}{2},\ \pi,\frac{3\pi}{2},2\pi.$
 - (a) display the value of the function, the value of the cubic natural spline and the value of cubic clamped spline function at $x = \frac{\pi}{4}$.
 - (b) plot the graphs of the function, the cubic natural spline and the cubic clamped spline function, in the same figure.
- 2. There are given 5 arbitrary points, using Matlab function *ginput*. Plot the points and the graph of cubic natural spline function that passes through all the given points.

Least squares approximation

Use Matlab functions polyfit and polyval.

1. The vapor pressure P of the water (in bars) as a function of temperature T (in ${}^{o}C$) is:

T	0	10	20	30	40	60	80	100
P	0.0061	0.0123	0.0234	0.0424	0.0738	0.1992	0.4736	1.0133

- (a) Obtain the best liniar least squares polynomial and use it to approximate the pressure P at $T=45^{\circ}$.
- (b) Obtain other two least squares approximations for the given data, for 2 different degrees of the polynomials. Find their values for $T=45^{\circ}$.
- (c) Compute in all three cases the approximation errors, knowing that the exact value is P(45) = 0.095848.
- (d) Plot the interpolation points, the 3 least squares approximants and the interpolation polynomial, in the same figure.