EXAMEN A. 31 de octubre de 2013.

Problema 1. Prueba que la siguiente relación es de equivalencia en el conjunto $\mathbb{N} \times \mathbb{N}$:

$$(a,b)R(c,d) \iff a+d=b+c.$$

Determina todos los elementos de la clase en que está el (0,2) y también los de la clase del (3,7). ¿Sabes decir cuáles son todas las clases de equivalencia?.

Problema 2 Sea la aplicación:

$$f: [0, \infty) \to [0, 1)$$
 tal que $x \mapsto f(x) = \frac{x}{x+1}$

Determina si es inyectiva, suprayectiva o biyectiva. ¿Tiene inversa? (en caso afirmativo, dí cuál es).

Problema 3. En un cesto hay entre 100 y 110 manzanas. Al repartirlas de 3 en 3 sobran 2 manzanas y al repartirlas de 4 en 4 sobran 3. ¿Cuántas manzanas hay en el cesto?

EXAMEN B. 31 de octubre de 2013.

Problema 1 Sea la aplicación:

$$f: [0,1) \to [0,\infty)$$
 tal que $x \longmapsto f(x) = \frac{x}{1-x}$

Determina si es inyectiva, suprayectiva o biyectiva. ¿Tiene inversa? (en caso afirmativo, dí cuál es).

Problema 2. Prueba que la siguiente relación es de equivalencia en el conjunto $\mathbb{N} \times \mathbb{N}$:

$$(a,b)R(c,d) \iff a+d=b+c.$$

Determina todos los elementos de la clase en que está el (0,5) y también los de la clase del (4,6). ¿Sabes decir cuáles son todas las clases de equivalencia?.

Problema 3. Un criador de animales de raza gastó 100.000ε en comprar 100 animales entre ocas, ponis y caballos de raza. Si las ocas las compró a 50ε , los ponis a 1000ε y los caballos a 5000ε , y adquirió animales de los tres tipos, ¿cuántos animales compró de cada tipo?.

EXAMEN A. 5 de diciembre de 2013.

Problema 1.

Siete ladrones tratan de repartir, entre ellos y a partes iguales, un botín de lingotes de oro. Desafortunadamente, sobran seis lingotes y en la pelea que se desata muere uno de ellos. Como al hacer de nuevo el reparto sobran dos lingotes, vuelven a pelear y muere otro. En el siguiente reparto vuelve a sobrar una barra, y sólo después de que muera otro es posible repartirlas por igual. ¿Cuál es el mínimo número de barras para que esto ocurra?

(0 ' 6 puntos)

Problema 2

Se quieren entregar 3 premios entre los 14 participantes de un concurso. Calcula de cuántas formas se pueden repartir si:

- a) Los premios son distintos y se puede dar más de un premio a una misma persona.
- b) Los premios son distintos y no se puede dar más de un premio a una misma persona.
- c) Los premios son iguales y no se puede dar más de un premio a una misma persona.
- d) Los premios son iguales y se puede dar más de un premio a una misma persona.

(0 ' 2 puntos, 0 ' 3 puntos, 0 ' 3 puntos, 0 ' 4 puntos)

Problema 3.

Cuatro libros de matemáticas, seis de física y dos de química son todos distintos y han de ser colocados en una estantera. Determina el nmero de colocaciones diferentes si:

- a) Los libros de cada materia han de estar juntos.
- b) Solo los de matemáticas tienen que estar juntos.

Responde las preguntas anteriores pero ahora suponiendo que los libros de cada materia son iguales.

(0 ' 3 puntos, 0 ' 3 puntos, 0 ' 3 puntos, 0 ' 3 puntos)

EXAMEN B. 5 de diciembre de 2013.

Problema 1

Una banda de 10 piratas trata de repartirse un botín de entre 300 y 900 monedas de oro. Al intentar hacer el reparto equitativo les sobran 5 monedas que se disputan entre ellos y como consecuencia de la pelea muere uno de los piratas. Deciden hacer de nuevo un reparto equitativo pero les vuelven a sobrar 3 monedas. En una nueva disputa mueren otros dos piratas, y al hacer un nuevo reparto les sobran 1 monedas. ¿Cuál es el número de monedas del botín?

(0 ' 6 puntos)

Problema 2.

Se quieren asignar 5 tareas a 14 personas de una empresa. Calcula de cuántas formas se pueden asignar si:

- a) Las tareas son distintas y no se asigna más de una tarea a una misma persona.
- b) Las tareas son distintas y se puede asignar más de una tarea a una misma persona.
- c) Las tareas son iguales y no se puede asignar más de una tarea a una misma persona.
- d) Las tareas son iguales y se puede asignar más de una tarea a una misma persona.

(0 '2 puntos, 0 '3 puntos, 0 '3 puntos, 0 '4 puntos)

Problema 3.

Se quieren saber las posibles colocaciones distintas en una fila de 5 esferas, 3 cubos y 4 tetraedros, todos de colores distintos, en los siguientes casos:

- a) Ponemos juntos todos los objetos de la misma forma geométrica.
- b) Solo ponemos juntos las 5 esferas.

Responde las preguntas anteriores pero ahora suponiendo que las esferas, los tetraedros y los cubos son del mismo color.

(0 ' 3 puntos, 0 ' 3 puntos, 0 ' 3 puntos, 0 ' 3 puntos)

EXAMEN FINAL DE MATEMÁTICA DISCRETA. EXAMEN A. 30 de enero de 2014.

Funciones generadoras, sucesiones recurrentes, grafos

Problema 1

Sea a_n el número de secuencias de longitud n que se pueden hacer con 1, 2, 3 y 4 de modo que el número de doses y treses sea par y haya por lo menos tres unos y menos de siete unos. Determina la función generadora de dicha sucesión. Calcula a_{17}

Problema 2.

Se quiere pintar una bandera a base de franjas horizontales de cuatro colores: azul, verde, amarillo y rojo. Queremos saber el número total de banderas que se pueden pintar con n franjas suponiendo que cada franja está pintada de un color, dos franjas contiguas están pintadas en colores distintos y la franja superior y la franja inferior están pintadas de distinto color. Se pide la sucesión recurrente lineal que aparece al variar n y el término general de dicha sucesión.

Problema 3.

- a) Se considera el grafo que determinan los vértices y aristas de un cubo a los que se ha añadido un nuevo vértice en el centro del cubo y aristas que unen este vértice con los otros ocho. ¿Es un grafo conexo? ¿Es euleriano? ¿Es bipartido?; Es hamiltoniano?
- b) Un grafo con n vértices y (n-1)(n-2)/2 aristas, ¿es conexo?

Conjuntos y aritmética

Problema 1

En una reunión de 50 personas, 3 de ellas no leen la prensa (y el resto leen alguno o varios de los periódicos L, M, P), 30 leen el periódico P, 26 leen el periódico M, 20 leen los periódicos P y L, 15 leen P y M, 12 leen M y L y finalmente, 7 leen P, M y L. ¿Cuántos leen L pero no leen P ni M?.

Problema 2.

En el conjunto \mathbf{R}^2 definimos la relación (x,y)R(a,b) si y solo si $x^2+y^2=a^2+b^2$. Prueba que es de equivalencia. ¿Podrías decir qué elementos de \mathbf{R}^2 están en la clase de (1,0). ¿ ¿Cuáles son todas las clases de \mathbf{R}^2/R ?

Problema 3.

¿De cuántas formas se pueden tener 325 puntos en vales de 10 y 25 puntos?

Aritmética modular y combinatoria

Problema 1

Calcula $132^{231} (mod.7)$ (0.5 puntos)

Problema 2.

Resuelve el sistema de congruencias $x \equiv 1 \pmod{3}, x \cong 2 \pmod{5}, x \equiv 3 \pmod{7}$ (1 punto)

Problema 3.

¿Cuántas permutaciones de $\{1,2,\ldots,n\}$ hay que tengan a 1 y 2 en su sitio? ¿¿Y que tengan exactamente a r elementos en su sitito?

¿En un alfabeto de 10 consonantes y 5 vocales, ¿cuántas palabras de cinco letras sin dos vocales seguidas ni tres consonantes seguidas se pueden formar? (1.5 puntos)

EXAMEN FINAL DE MATEMÁTICA DISCRETA. EXAMEN B. 30 de enero de 2014.

Funciones generadoras, sucesiones recurrentes, grafos

Problema 1

Sea a_n el número de secuencias de longitud n que se pueden hacer con 1, 2, 3 y 4 de modo que el número de doses y treses sea impar y haya por lo menos cuatro cuatros y menos de ocho cuatros. Determina la función generadora de dicha sucesión. Calcula a_{18} .

Problema 2.

Con fichas de 5 tipos: A, B, C, D, E se quieren hacer todas las posibles series de n fichas de modo que no haya dos contiguas del mismo tipo y que nunca se empiece y acabe por la misma ficha. Determina la sucesión recurrente lineal que aparece al variar n y da su término general.

Problema 3.

- a) Sea el grafo completo de n vértices, K_n . ¿Es hamiltoniano?; Es euleriano? ¿Es bipartido?; Es conexo?
- b) Un grafo con n vértices y (n-1)(n-2)/2 aristas, ¿es conexo?

Conjuntos y aritmética

Problema 1

En una reunión de 60 personas, 9 de ellas no son consumidores de ninguna de las marcas A, B y C (el resto sí lo son de una o varias), 29 consumen la marca A, 29 consumen la marca C, 10 consumen las marcas A y B, 12 consumen A y C, 9 consumen B y C y finalmente, 4 consumen A, B y C. ¿Cuántos consumen la marca C pero no la A ni C?.

Problema 2.

En el conjunto de los números enteros \mathbf{Z} se define la relación R dada por: xRy si y solo si $x^2 = y^2$. Prueba que es de equivalencia. Determina la clase de equivalencia del 5 y la del -2. Puedes determinar el conjunto cociente \mathbf{Z}/R ?.

Problema 3.

¿De cuántas formas se pueden tener 325 tizas en paquetes de 10 y 25 tizas?

Aritmética modular y combinatoria

Problema 1

Calcula $246^{218} (mod.11)$ (0.5 puntos)

Problema 2.

Resuelve el sistema de congruencias $x \equiv 1 \pmod{3}, x \cong 2 \pmod{5}, x \equiv 3 \pmod{7}$. (1 punto)

Problema 3.

¿Cuántas permutaciones de $\{1,2,\ldots,n\}$ hay que tengan a 1 y 2 en su sitio? ¿¿Y que tengan exactamente a r elementos en su sitito?

¿En un alfabeto de 10 consonantes y 5 vocales, ¿cuántas palabras de cinco letras sin dos vocales seguidas ni tres consonantes seguidas se pueden formar? (1.5 puntos)

EXAMEN DE MATEMÁTICA DISCRETA. 27 de junio de 2014.

Conjuntos y aritmética

Problema 1 (1 punto)

Prueba que la siguiente relación en el conjunto \mathbb{Q} de los números racionales es de equivalencia xRy si y solo si existe $h \in \mathbb{Z}$ tal que $x = \frac{3y+h}{3}$. Determina la clase de 2/3 y el conjunto cociente \mathbb{Q}/R .

Problema 2. (1 punto)

Sea la función: $f: \mathbb{R} - \{5\} \to \mathbb{R}$, $f(x) = \frac{x+1}{5x-1}$. ¿Es inyectiva? ¿Es suprayectiva?; Tiene inversa? En caso afirmativo de tener inversa, calcúlala.

Problema 3. (1 punto)

Determina todos los números racionales $x=a/b\in\mathbb{Q}$ (en forma reducida, es decir, con m.c.d(a,b)=1) de modo que verifiquen que $3x^2+7x\in\mathbb{Z}$.

Aritmética modular y combinatoria.

Problema 1 (1'5 puntos)

Determina las soluciones de la ecuación $x^2 + y^2 = z^2$ en \mathbb{Z}_3 . Prueba que en \mathbb{Z} en cada solución de $x^2 + y^2 = z^2$ ó x ó y ó z es múltiplos de 3. Determina que además ó x ó y ó z son múltiplos de 5.

Problema 2 (1'5 puntos)

¿De cuántas maneras se pueden ordenar 8 bolas numeradas del 1 al 8, suponiendo que las 4 primeras son blancas y las 4 segundas rojas, si han de quedar con colores alternados? ¿Y si las bolas 4 y 5 han de ir juntas además?.

¿De cuántas formas se pueden colocar 6 bolas indistinguibles en 5 urnas distintas?

¿Cuántas formas hay de elegir 4 chicos y 5 chicas de un total de 10 chicos y 6 chicas?

Funciones generadoras, sucesiones recurrentes, grafos.

Problema 1 (1 punto)

Determina la función generadora que daría el número de selecciones españolas de baloncesto de n jugadores que se puede hacer con jugadores del R. Madrid, Barcelona, otros equipos españoles y jugadores de la NBA, de modo que el número de los del R. Madrid sea de por lo menos cuatro jugadores, los del Barcelona menos de 4 y de la NBA un número par menor que 5. Determina cuántas hay de 12 jugadores.

Problema 2 (1'5 puntos)

Determina la fórmula de recurrencia que nos da el número de sucesiones de ceros, unos y doses que no tienen 2 ceros consecutivos.

De la sucesión $a_n = 4a_{n-1} - 4a_{n-2}, n \ge 2$, con $a_0 = 6, a_1 = 8$ determina el término general.

Problema 2 (0'5 puntos)

Construye un grafo euleriano que no sea hamiltoniano, y un grafo hamiltoniano que no sea euleriano.

EXAMEN A.

27 de octubre de 2014.

Conjuntos y aritmética

- 1) Sea la relación en \mathbb{Z} dada por aRb si y solo si $a^2 b^2 = a b$. Determina si es de equivalencia y en caso en que lo sea da sus clases de equivalencia.
- 2) Sean la aplicaciones

$$f\colon [-1,1]\to \mathbb{R}$$
 tal que $f(x)=0$ si $x\in \mathbb{Q},$ $f(x)=1$ si $x\notin \mathbb{Q}$
$$g\colon [0,1]\to [0,1] \text{ tal que } g(x)=+\sqrt{1-x^2}$$

Determina de qué tipo son.

3) Determina el menor entero positivo de seis cifras tal que al dividirlo por 3, por 5 y por 19 da el mismo resto, 2, pero al dividirlo por 17 da resto 1.

EXAMEN B.

27 de octubre de 2014.

Conjuntos y aritmética

- 1) Sea la relación en $\mathbb{R} \times \mathbb{R}$ dada por (a,b)R(c,d) si y solo si a-2b=c-2d. Determina si es de equivalencia y en caso en que lo sea da sus clases de equivalencia y una interpretación geométrica de dichas clases.
- 2) Sean la aplicaciones

$$f: \mathbb{Z} \to \mathbb{Z}$$
 tal que $f(x) = \frac{x}{2}$ si x es par, $f(x) = 0$ si x es impar

$$g: \mathbb{R} - \{3/2\} \to \mathbb{R} - \{1/2\}$$
 tal que $g(x) = \frac{x+2}{2x-3}$

Determina de qué tipo son.

3) Calcula el menor entero positivo de 6 cifras tal que su resto al dividirlo por 4, por 7 y por 17 es el mismo, 3, pero al dividirlo por 15 da resto 2.

EXAMEN A.

9 de diciembre de 2014.

Aritmética modular y Combinatoria.

- 1) Determina los enteros positivos n tales $\phi(n)$ sea un número impar (ϕ es la función de Euler). (0, 5 puntos)
- 2) ¿Se puede determinar de forma única un número entero sabiendo que es menor que $500~\rm y$ sus restos al dividir por $6, 7 \rm y 13?~(0~, 5~\rm puntos)$
- 3) Se suponen ordenadas en sentido creciente todas las permutaciones posibles de las cifras $\{1, 2, 3, 5, 7, 8\}$. ¿Qué lugar ocupa la permutación 731825? (1 punto)
- 4) Determina las formas diferentes en que se pueden elegir 20 monedas de cuatro recipientes con monedas de diferente tipo (pero con cada recipiente un solo tipo de monedas). (0, 5 puntos)
- 5) ¿De cuántas formas puede sacar un jugador cinco cartas de una baraja (con las cartas As, 2, 3, 4, 5, 6, 7, 8, 9, 10, Sota, Caballo, Rey) y obtener un trío (es decir, 3 cartas iguales) y una pareja (2 cartas iguales, y distintas a las anteriores)? ¿Y una doble pareja? (0, 5 puntos)

NOTA: Todas las respuestas para ser válidas han de estar razonadas.

EXAMEN B.

9 de diciembre de 2014.

Aritmética modular y Combinatoria.

- 1) ¿Puede determinarse de forma única un número entero sabiendo que es menor que 200 y conociendo sus restos al dividir por 4, 5 y 11? (0,5 puntos)
- 2) Determina los enteros positivos n tales que $\phi(n)=n/2$ (siendo ϕ la función de Euler). (0 , 5 puntos)
- 3) Se suponen ordenadas en sentido creciente todas las permutaciones posibles de las cifras $\{1,2,3,5,7,8\}$. ¿Qué lugar ocupa la permutación 528317? (1 punto)
- 4) ¿De cuántas maneras se pueden distribuir 12 libros distintos entre 4 personas de modo que cada persona reciba tres libros? ¿Y de modo que las dos mayores de edad reciban 4 libros y las dos menores dos libros cada una? (0 , 5 puntos)
- 5) ¿De cuantas formas se pueden colocar doce bolas del mismo tipo en cinco recipientes distintos? (0, 5 puntos)

NOTA: Todas las respuestas para ser válidas han de estar razonadas.

EXAMEN FINAL DE MATEMÁTICA DISCRETA. EXAMEN final. 30 de enero de 2015.

Grafos y árboles

Problema 1

Dibuja un ejemplo de un grafo simple G, con a lo más 6 vértices, que verifique cada una de las siguientes condiciones:

- a) G es euleriano y es hamiltoniano
- b) G es euleriano pero no es hamiltoniano
- c) G no es euleriano pero sí es hamiltoniano
- d) G no es ni euleriano ni hamiltoniano (1 punto)

Problema 2.

Determina un árbol generador maximal (usando el algoritmo de búsqueda en profundidad) y un árbol generador minimal del grafo cuya matriz de adyacencia con pesos es la siguiente:

$$\begin{pmatrix} 0 & 7 & 0 & 5 & 0 & 0 & 0 \\ 7 & 0 & 8 & 9 & 7 & 0 & 0 \\ 0 & 8 & 0 & 0 & 5 & 0 & 0 \\ 5 & 9 & 0 & 0 & 15 & 6 & 0 \\ 0 & 7 & 5 & 15 & 0 & 8 & 9 \\ 0 & 0 & 0 & 6 & 8 & 0 & 11 \\ 0 & 0 & 0 & 0 & 9 & 11 & 0 \end{pmatrix}$$

¿Es único? (1 puntos)

Problema 3.

En el caso del grafo del problema anterior, determina el camino más corto entre el vértice primero de la matriz y el resto de vértices. $(1\ punto)$

Conjuntos y aritmética

Problema 1

a) Determina si la siguiente relación, R en $A = \{1, 2, 3, 4, 5, 6\}$ es de equivalencia:

$$R = \{(1,1), (1,3), (2,5), (2,4), (4,5), (5,2), (5,5), (4,4), (3,1), (4,2), (3,3), (2,2), (5,4), (6,6), (1,6), (6,1)\}.$$

b) Determina las clases de equivalencia en la relación de equivalencia definida en $\mathbb{R}^2 - \{(0, a) : a \in \mathbb{R}\}$ del modo siguiente:

$$(x,y)R(c,d)$$
 si y solo si $\frac{y}{x^2} = \frac{d}{c^2}$

¿Quién está en la clase del (1,2)? ¿Puedes representar las clases de modo gráfico? $(1 \ punto)$

Problema 2.

Determina en base 7 el número que en base 5 es 42 ' 0 $\widehat{024}_{5}$. (1 punto)

Problema 3.

Demuestra que si a es un entero positivo tal que $\sqrt{n} < a \le n$ y a es compuesto, alguno de sus factores primos es inferior a \sqrt{n} . (1 punto)

Aritmética modular y combinatoria

Problema 1

Encuentra todos los valores enteros de x que cumplen $x^2 - 3x + 3 \equiv 0 \pmod{7}$. (1 punto)

Problema 2.

En 5 urnas distintas queremos introducir 8 bolas:

- a) Si las bolas son del mismo tipo, ¿de cuántas formas se puede hacer?
- b) ¿Y si cada bola es de un color distinto?
- c) ¿Y si exigimos que ninguna urna quede vacía y las bolas sean iguales?
- d) ¿Y si cada bola es de un color distinto y pedimos que ninguna urna quede vacía? (1 ' 5 puntos)

Problema 3.

Descompón la siguiente permutación, σ , como producto de permutaciones cíclicas disjuntas y determina el menor número natural r tal que al componer σ r veces de la aplicación identidad

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 \\
9 & 0 & 7 & 3 & 8 & 6 & 4 & 5 & 2 & 1
\end{pmatrix}$$

(0 '5 puntos)