Questions	Réponses
1. Soit ABC un triangle rectangle en C. Alors cos \widehat{B} est égal à	$\Box \frac{AC}{AB}$
	AB _ AB
	$\Box \frac{AB}{BC}$
	$\Box \frac{BC}{\Box}$
	AB NP
2. MNP est un triangle rectangle en P. sin M est égal à	$\Box \frac{N}{MN}$
	□ MN
	MP
	$\Box \frac{MP}{MN}$
3. EFG est un triangle rectangle en F. tan Ĝ est égal à	□ FG
	EF
	$\Box \frac{\mathrm{EF}}{\mathrm{EG}}$
	EF
	□ FG
4. M est le point du quart de cercle ci-contre de centre l'origine du repère et de rayon 1. Les coordonnées de M sont	□ (sin(30°); cos(30°))
	□ (cos(30°); sin(30°))
	□ (sin(30°); tan(30°))
5. L'arrondi au degré de la mesure de l'angle aigu \widehat{A} tel que $\tan(\widehat{A}) = 0, 6$ est	□ 31°
	□ 37°
	□ 53°
6. Dans la situation ci-contre, pour calculer AB, on utilise C 25° A	$\square \cos(\widehat{C})$
	$\Box \sin(\widehat{C})$
	□ tan(Ĉ)
7. Dans la situation ci-contre, pour calculer AC, on utilise	$\square \cos(\widehat{B})$
	$\Box \sin(\widehat{B})$
	□ tan(B̂)
8. Quel que soit l'angle aigu de mesure x , la valeur de $\cos^2 x + \sin^2 x$	\Box dépend de x
	□ est toujours égale à 1
	□ est toujours égale à 2
9. Quel que soit l'angle aigu de mesure x , la valeur de $\tan x$ est égale à	$\Box (\sin x)(\cos x)$
	$\Box \frac{\cos x}{\cdot}$
	$\sin x$ $\sin x$
	$\Box \frac{\sin x}{\cos x}$