CS 225 - Spatial Computing

Predicting Forest Fires

Our Team(Group-5)

Abhishek Premnath (862323549)

Balaji Arunachalam (862321425)

Madhusudhan Tungamitta (862325125)

Shreya Godishala (862313765)

Thirumalai Vinjamoor Akhil Srinivas (862320790)

List Of Academic Related Work:

	Academic Work			
1.	http://www3.dsi.uminho.pt/pcort ez/fires.pdf	A Data Mining Approach to Predict Forest Fires using Meteorological Data		
2.	https://www.researchgate.net/publication/228527438 Learning to predict forest fires with different data mining techniques	Learning to predict forest fires with different data mining techniques		
3.	https://www.researchgate.net/publication/347395483_Predicting_Forest_Fire_Using_Remote_Sensing_Data_And_Machine_Learning	Predicting Forest Fire Using Remote Sensing Data And Machine Learning		
4.	https://www.researchgate.net/publication/1834541_Are_Forest_Fires_Predictable	Are forest fires predictable?		

5.	https://ieeexplore.ieee.org/docu ment/9719887	Prediction of Forest Fire Using Machine Learning Algorithms: The Search for the Better Algorithm
6.	https://cdnsciencepub.com/doi/pdf/10.1139/er-2020-0019	A review of machine learning applications in wildfire science and management
7.	https://fireecology.springeropen.com/articles/10.4996/fireecology.1101106	Predicting Burned Areas of Forest Fires: an Artificial Intelligence Approach

Non-Academic Related Work:

	Non-Academic Work			
1.	https://blog.breezometer.com/how-do-wildfires-start-can-we-predict-them/	How do wildfire starts and can we predict them?		
2.	https://www.allerin.com/blog/2-w ays-in-which-machine-learning-c ombats-forest-fires	2 Ways In Which Machine Learning Combats Forest Fires		
3.	https://www.obviously.ai/post/predicting-brazils-wildfire-patterns-in-2020	Predicting Brazil's Wildfire Patterns in 2020		
4.	https://blogs.sas.com/content/subconsciousmusings/2021/12/02/fighting-the-amazon-forest-fireswith-advanced-analytics/	Fighting the Amazon forest fires with advanced analytics		
5.	https://blog.google/technology/ai/fighting-fire-machine-learning-t	Fighting fire with machine learning: two students use TensorFlow to		

	wo-students-use-tensorflow-pre dict-wildfires/	predict wildfires
6.	https://towardsdatascience.com/leveraging-machine-learning-to-predict-wildfires-contributing-to-the-united-nations-sustainable-a10c5044dcae	Leveraging Machine Learning to predict wildfires using PyTorch Lightning

Taxonomy:

Model	Spatial Component Used	Dataset
Logistic Regression,Boosting Model,Random Forest	Geographical Information System	Aladin and MODIS satellite data(2a)
Neural Network For Supervised Learning	Remote Sensing,Hoptspot Prediction Model	Landsat 7 satellite data from google earth enginee (3a).
Decision Tree, KNN,Naive bayes	Geo-AI, Satellite based, Infrared/ Smoke scanner	meteorological(5a)
SVM,KNN,K-SVM	Spatial data on GPU,Spatial Clustering	spatiotemporal datasets,geospatial datasets(6a)
HoshenKopelman algorithm	-	Canada forest fire data(4a)
GP-GS method, SVM Model,Neural Network(Poor performance)	geospatial probabilistic model	historic climatological data,meteorological data(8a)

Tensorflow	smart wildlife sensor	aerial drones images(5b)
Image based approach, Sensor based approach	GeoAi	carbon monoxide data(2b),
-	GeoAi, Geo Visualization	Brazil wildfire dataset(3b)
Al Models	Geospatial clustering,Hot spot analysis	Gridded or pixelated data, Amazon forest fires dataset (4b)
Pytorch Neural Network	Geo Visualization	