4.4 Loss Function in Predictive Model.

4.4.1. In Regression:

$$2 (\hat{y}, y) = \frac{1}{i} (\hat{y} - y)^{2}$$

$$\geq (\hat{y}, y) = |\hat{y} - y|$$

$$\geq (\hat{y}, y) = |\hat{y} - y|$$

$$\geq (\hat{y}, y) = |\hat{y} - y|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y}, y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y} - y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y} - y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y} - y) = |\hat{z} + (\hat{y} - y)^{2}|$$

$$\geq (\hat{y} - y) = |\hat{z} + (\hat{y} - y)|$$

$$\geq (\hat{y} - y) = |\hat{z} + (\hat{y} - y)|$$

$$\geq (\hat{y} - y) = |\hat{z} + (\hat{y} - y)|$$

$$\geq (\hat{z} + y) = |\hat{z} + (\hat{z} + y)|$$

$$\geq (\hat{z} + y) = |\hat{z} + (\hat{z} + y)|$$

$$\geq (\hat{z} + y) = |\hat{z} + (\hat{z} + y)|$$

$$\geq (\hat{z} + y) = |\hat{z} + y|$$

$$\geq (\hat{z} + y) = |\hat{z$$

4.4.2 In Classification:

4. 4.2.1 Non-differentiable loss function

Assume k different classes, loss function 219, yo can be represented as KXK matrix.

· the diggral 212, 2) are zero as correct prediction.

· the off-diagonal 212j; are positive: loss incurred when predicting i instead of j."

Dero-one loss

• If
$$L(i,j) = 1$$
 for $i \neq j$, $0 \neq \text{ otherwise}$: $L(i,j) = \begin{cases} 1 & i \neq j \\ 0 & i = j \end{cases}$
• The expected $J(h) = \sum_{x,y} [L(h(x), y)]$

$$= \sum_{i,j} L(i,j) P(i,j) \quad \text{where } P(i,j) = P(\hat{y} = i, y = j)$$

$$= \sum_{i \neq j} P(i,j) \quad \text{mis classification or error rate}.$$
Binary Classification.

Binary Classification

Meaning	ý	y	conditional prop.	other names	meaning	joint probability
TRue-positive rate	/	,	P(g=1/y=1)	sensitivety, his not received	true positive	P(y=1, y=1)
true-negative rate	-1	-1	P(y=-1 1y=1)	specificity	trene regative	
false - positive rate	1	-1	P(g=1 y=-1)	type 1 emor	1	13(y=1,y=-1)
false-negative rate	-1	1	PM=+1 y=1)	type r emor	1	p(y=-11 y=+1)