Folha 8A – Áreas em coordenadas polares. Comprimentos de curva. Volumes de sólidos de revolução. Áreas de superfícies de revolução.

1. Use coordenadas polares para determinar a área da região

$$A = \left\{ (x, y) \in \mathbb{R}^2 : \left(x - \frac{1}{2} \right)^2 + y^2 \le \frac{1}{4} \ \land \ x^2 + \left(y - \frac{1}{2} \right)^2 \le \frac{1}{4} \right\}.$$

2. Determine a área da região plana que é interior, simultaneamente, à circunferncia $\rho = \sqrt{2} \operatorname{sen} \theta$ e à lemniscata $\rho^2 = \operatorname{sen} 2\theta$.

3. Seja \mathcal{A} a região limitada pelas curvas de equações $y = \operatorname{ch} x$ e $y = \operatorname{ch} 2$. Determine a área de \mathcal{A} e o comprimento da linha que contorna \mathcal{A} .

4. Calcule os comprimentos dos arcos de curva identificados nas alíneas seguintes:

(a)
$$y = \arcsin e^{-x}$$
, para $\frac{1}{2} \le x \le 1$;

(b)
$$y = \sqrt{1 - x^2}$$
, para $0 \le x \le 1$.

5. Determine o volume do sólido gerado pela rotação em torno de OX da região plana limitada pelas curvas:

(a)
$$y = x^2$$
 e $x = y^2$, para $0 \le x \le 1$;

(b)
$$y = x$$
 e $x = 4y - y^2$.

6. Estabeleça um integral que dê a área da superfície de revolução gerada pela rotação em torno de OX das seguintes curvas:

(a)
$$y = x^3$$
, $x \in [0, 1]$;

(b)
$$y = \cos x, -\frac{\pi}{4} \le x \le \frac{\pi}{2};$$

(c)
$$y = \sqrt{r^2 - x^2}, -r \le x \le r.$$