

디지털놀리회로 [Digital Logic Circuits]

12강.

레지스터와 카운터(1)

컴퓨터과학과 강지훈교수

제7장 | 레지스터와 카운터

레지스터

- 레지스터 개요
- 레지스터의 기본형태
- 데이터 적재 레지스터
- 시프트 레지스터

카운터

- 카운터 개요
- 비동기식 카운터

7.1 레지스터

7.1.1 레지스터의 개요

- 레지스터(Register)
 - 데이터를 일시 저장하거나 전송하는 장치
 - 여러 개의 플립플롭을 연결하여 구성
 - 플립플롭은 기본적으로 1비트의 값을 저장, 여러 개를 연결하여 더 큰 데이터를 저장함
 - n비트 레지스터
 - n개의 플립플롭으로 구성되며, n개의 2진 정보를 저장
 - 레지스터는 여러 개의 비트 정보를 일시적으로 저장하거나 저장된 비트를 좌, 우로 자리를 이동시키는데 사용

7.1.2 레지스터의 기본 형태

•레지스터의 기본 형태

7.1.2 레지스터의 기본 형태

- 데이터 적재 레지스터
 - 입력된 데이터를 그대로 기억하는 역할을 수행
 - 일반적으로 D 플립플롭을 사용하여 구성
 - 가장 단순한 형태이기 때문
 - 데이터 입력 방식
 - 직렬 적재 레지스터
 - 병렬 적재 레지스터

• 직렬적재 레지스터

- 여러 개의 플립플롭을 연결하여 구성
 - 4개의 플립플롭을 연결한다면 4비트의 정보를 저장
- 직렬적재 방식: 직렬 입력-직렬 출력 레지스터
 - 데이터를 1비트 씩 순차적으로 입력하는 방식

• 직렬적재 레지스터의 동작

• 병렬적재 레지스터

- 레지스터에 클럭 펄스가 입력되면 4개의 입력 데이터가 병렬로 적재
- 적재된 내용을 그대로 유지하려면 회로에 클럭 펄스가 입력되지 않아야 함
 - 클럭 펄스가 1이면 적재, 0이면 내용 유지

• 병렬적재 레지스터의 구현

적재입력이 1이면

• 클럭의 상승에지에서 입력 데이터 는 레지스터로 전송

적재입력이 0 이면

- 입력 데이터는 차단
- D 플립플롭의 현재 상태값이 재입력되어 레지스터는 현재 내용을 유지

- 시프트 레지스터(Shift register)
 - 레지스터에 저장된 값에 대해 한 방향 또는 양방향으로 저장된 값의 위치를 이동시킬 수 있는 레지스터
 - 플립플롭을 직렬 연결, 모든 플립플롭은 공통 클럭 펄스를 사용
 - 클럭 펄스에 따라 한 칸씩 자리를 이동

• 시프트 레지스터의 동작 원리

• 오른쪽 시프트 레지스터

- 레지스터 A에서 레지스터 B로의 직렬 전송(1)
 - 한번에 한 비트씩 정보 전송

• 레지스터 A에서 레지스터 B로의 직렬 전송(2)

- 4비트 직렬 전송의 예시
 - 레지스터 A의 내용: 1010
 - 레지스터 B의 내용: 1011

직렬 전송은 4단계를 거쳐 수행

- 첫 번째 클럭 펄스인 T1이 입력되면
 - ▶ 레지스터 A의 가장 오른쪽 비트는 레지스터 B의 가장 왼쪽 비트 위치로 시프트
 - ▶ 동시에 레지스터 A의 가장 왼쪽 위치로 피드백
- 이후 T_2 , T_3 , T_4 에서도 동일한 동작 수행
 - ▶ 최종적으로 레지스터 A의 내용이 레지스터 B로 한 비트씩 이동

타이밍 펄스	시프트 레지스터 A			Y	시프트 레	지스터 I	В		
초기값	1	0 /	1 \	_0 \	1 /	0 <	1	1 —	-
T ₁ 후	0	1	0	1	0	1	0	1	
T ₂ 후	1	0	1	0	1	0	1	0	
T ₃ 후	0	1	0	1	0	1	0	1	
T ₄ 후	1	0	1	0	1	0	1	0	

7.1.5 병렬적재 양방향 시프트 레지스터

• 왼쪽, 오른쪽 시프트와 병렬적재가 가능한 레지스터

레지스터 기능표

P	Q	레지스터 동작
0	0	변화 없음
0	1	왼쪽 시프트
1	0	오른쪽 시프트
1	1	병렬적재

$$PQ = 00$$

$$D_{A_3} = A_3$$
, $D_{A_2} = A_2$, $D_{A_1} = A_1$, $D_{A_0} = A_0$

$$PQ = 01$$

$$D_{A_3} = A_2, D_{A_2} = A_1, D_{A_1} = A_0, D_{A_0} = I_L$$

$$PQ = 10$$

$$D_{A_3} = I_R$$
, $D_{A_2} = A_3$, $D_{A_1} = A_2$, $D_{A_0} = A_1$

$$PQ = 11$$

$$D_{A_3} = I_3, D_{A_2} = I_2, D_{A_1} = I_1, D_{A_0} = I_0$$

12강. 레지스터와 카운터(1)

7.2 카운터

- 카운터(Counter)
 - 플립플롭을 사용해 만든 순서논리회로
 - 클럭 펄스가 입력될 때 마다 미리 정해진 순서에 따라 상태가 변함
 - 외부 입력이나 출력이 없음
 - 상태 변화는 클럭펄스에 의해 수행
 - 일반적으로 T 플립플롭이나 JK 플립플롭이 사용됨

• 카운터의 종류

 실제 카운터를 나타낼 때는 비동기식 2진 카운터, 동기식 10진 카운터 등으로 표현

- 비동기식 카운터 개요
 - 카운터를 구성하는 각 플립플롭에 동시에 클럭이 가해지지 않는 카운터
 - 입력 클럭 펄스가 앞 단의 출력값에 영향을 받으며, 리플 카운터(ripple counter)라고 함
 - 2진 리플 카운터(binary ripple counter)
 - BCD 리플 카운터(BCD ripple counter)

• 2진 리플 카운터

- 클럭 입력이 F/F의 첫째 단, 즉 가장 낮은 자리의 비트를 저장하는 F/F에만 연결
- 두번째 F/F 부터는 앞의 F/F의 출력에 의해 트리거 됨

- 각 플립플롭의 출력은 순차적으로 다음 플립플롭의 클럭 입력에 연결
- LBS(최하위 비트) 플립플롭은 계수 입력 펄스가 들어오고, J와 K는 모두 논리-1

• 2진 리플 카운터

• 4비트 2진 리플 카운터(업 카운터)

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	$ar{Q}(t)$

- 플립플롭 A₀의 출력
 - ▶ 각 클럭의 하강 에지에서 앞 상태를 보수로 만듦
- 플립플롭 A₁의 출력
 - ▶ A₀가 1에서 0으로 변하는 순간 보수를 취함
- 플립플롭 *A*₂의 출력
 - ▶ A₁이 1에서 0으로 변하는 순간 보수를 취함
- 플립플롭 A₃의 출력
 - ▶ A₂가 1에서 0으로 변하는 순간 보수를 취함

• 4비트 2진 리플 카운터(업 카운터) 개요

- 2진 카운터의 계수 순서
 - ▶ 계수 0에서 시작하여 매 계수 클럭 펄스마다 1씩 증가
 - ▶ 15를 계수한 다음 0으로 되고 다시 같은 순서 반복
 - ▶ 업 카운터는 이와 같이 계수를 상향 계수함
 - ▶ 반대로 하향 계수하면 다운 카운터(down counter)임

계수 순서	A_3	A_2	A_1	A_0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

• 2진 리플 카운터

• 4비트 2진 리플 카운터(다운 카운터)의 논리도

• 4비트 2진 리플 카운터(다운 카운터)의 계수 순서

계수 순서 15	A_3	A_2	A_1	A_0
15	1	1	1	1
14	1	1	1	0
13	1	1	0	1
12	1	1	0	0
11	1	0	1	1
10	1	0	1	0
9	1	0	0	1
8	1	0	0	0
7	0	1	1	1
6	0	1	1	0
5	0	1	0	1
4	0	1	0	0
3	0	0	1	1
2	0	0	1	0
1	0	0	0	1
0	0	0	0	0

• BCD 리플 카운터(1)

• 0~9까지 10개의 상태를 계수하는 카운터

계수 순서	BCD 코드				
계구 군시	A_3	A_2	A_1	A_0	
0	0	0	0	0	
1	0	0	0	1	
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	
9	1	0	0	1	

• BCD 리플 카운터(2)

- 첫 번째 플립플롭 A_0
 - ▶ J, K의 입력을 1로 하면 토글(보수)
- 두 번째 플립플롭 A_1
 - $A_3 = 0$ (즉, $\overline{A_3} = 1$) 이면 토글
 - $A_3 = 1(즉, \overline{A_3} = 0)$ 이면 0
- M 번째 플립플롭 A_2
 - ▶ A₁이 1에서 0으로 바뀔 때 토글
- 네 번째 플립플롭 *A*₃
 - A₀가 1에서 0으로 바뀔 때,
 A₁ = A₂ = 1 1이면 토글
 - A₁과 A₂가 하나라도 0이면 A₃는 0

내용 정리

Summary

12강 | 레지스터와 카운터(1)

레지스터

- 레지스터 개요
- 데이터 적재 레지스터
- 시프트레지스터

02 카운터

- 카운터 개요
- 비동기식카운터
 - 2진리플카운터
 - BCD리플카운터

디지털논리회로 [Digital Logic Circuits]

13강 레지스터와 카운터(2)

