Connie Okasaki AMATH 584 Assignment 1 9 October 2020

Problem 1: Show that if matrix A is triangular and unitary, then it is diagonal.

Suppose that A is upper triangular. Since it is unitary its columns are orthogonal and have unit length. The first column must therefore be of the form $(a_{11}, 0, 0,, 0)$ where $||a_{11}|| = 1$. Now suppose by induction that the first k columns are diagonal, i.e. each consists of a single norm-1 complex entry on the diagonal. The k + 1st column must be orthogonal to the first k columns. In order to achieve this, each inner product $\langle a_{k+1}, a_i \rangle = a_{k+1,i}a_{ii} = 0$. Therefore, since a_{ii} is non-zero $a_{k+1,i} = 0$, and a_{k+1} is of the same diagonal form. Therefore the whole matrix A is diagonal. The same holds for lower-triangular matrices, where we induct from a_{nn} instead of a_{11} .

Problem 2: Consider that the matrices $A \in \mathbb{C}^{n \times m}$ and $B \in \mathbb{C}^{n \times m}$ are Hermitian (self-adjoint)

- (a) Prove that all eigenvalues λ_k of A are real
- (b) Prove that if x_k is the kth eigenvector, then eigenvectors with distinct eigenvalues are orthogonal
- (c) Prove the sum of two Hermitian matrices is Hermitian
- (d) Prove the inverse of an invertible Hermitian matrix is Hermitian as well
- (e) Prove the produce of two Hermitian matrices is Hermitian if and only if AB = BA.
- (a) By definition of the adjoint has the property $\langle Ax_k, x_k \rangle = \langle x_k, A^*x_k \rangle$. Similarly, for scalars $\langle cx_k, x_k \rangle = \langle x_k, \overline{c}x_k \rangle$. Therefore,

$$\langle \lambda x_k, x_k \rangle = \langle A x_k, x_k \rangle = \langle x_k, A^* x_k \rangle = \langle x_k, A x_k \rangle = \langle x_k, \lambda x_k \rangle = \langle \overline{\lambda} x_k, x_k \rangle.$$

Therefore, $\lambda = \overline{\lambda}$ is a real number.

(b) Suppose $\lambda_k \neq \lambda_i$. Since these eigenvalues are distinct at least one must be nonzero, and without loss of generality let that be λ_k . Then

$$\langle x_k, x_i \rangle = \lambda_k^{-1} \langle \lambda_k x_k, x_i \rangle = \lambda_k^{-1} \langle A x_k, x_i \rangle = \lambda_k^{-1} \langle x_k, A x_i \rangle = \lambda_k^{-1} \langle x_k, \lambda_i x_i \rangle = \frac{\lambda_i}{\lambda_k} \langle x_k, x_i \rangle.$$

If $\lambda_i = 0$ then $\langle x_k, x_i \rangle = 0$. Otherwise, nevertheless $\frac{\lambda_i}{\lambda_k} \neq 1$ so $\langle x_k, x_i \rangle = 0$.

- (c) The adjoint operation is distributive so therefore $(A + B)^* = A^* + B^* = A + B$.
- (d) Suppose here that n = m. Then $I = (AA^{-1}) = (A^{-1})^*A^* = (A^{-1})^*A$. Therefore since the inverse of A is unique, $(A^{-1})^* = A^{-1}$.
- (e) Suppose here that $B \in \mathbb{C}^{m \times ell}$. Then $(AB)^* = B^*A^* = BA$. Therefore, $(AB)^* = AB$ if and only if BA = AB.

Problem 3: Consider the matrix $U \in \mathbb{C}^{n \times m}$ which is unitary

- (a) Prove that the matrix is diagonalizable
- (b) Prove that the inverse is $U^{-1} = U^*$.
- (c) Prove it is isometric with respect to the ℓ_2 norm, i.e. ||Ux|| = ||x||
- (d) Prove that all eigenvalues have modulus unity.

We will assume here that n = m.

- (a) The spectral theorem states that complex normal matrices have an orthonormal basis consisting of eigenvectors of U. Since U is unitary, U is normal so simply choose V to transform into the given orthonormal basis and $U = VDV^{-1}$.
- (b) Since the columns are orthogonal and have norm 1, $U^*U = I$. Therefore $U^{-1} = U^*$.
- (c) $||Ux|| = \langle Ux, Ux \rangle = \langle x, U^*Ux \rangle = \langle x, x \rangle = ||x||$
- (d) $||x|| = ||Ux|| = ||\lambda x|| = ||\lambda|| ||x||$. Therefore $||\lambda|| = 1$.