Write your name here Surname	Other names
Edexcel International GCSE	Centre Number Candidate Number
Further Pu	re Mathematics
Paper 2	ile Mathematics

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

P 4 0 6 6 5 A 0 1 3 2

Turn over ▶

Answer all TEN questions Write your answers in the spaces provided You must write down all stages in your working

1	Referred to a fixed origin O , the position vectors of the points P and Q are $(10\mathbf{i} - 3\mathbf{j})$ and $(4\mathbf{i} + 6\mathbf{j})$ respectively. The point R divides PQ internally in the ratio 2:1	
	(a) Find the position vector of <i>R</i>	(2)
	The point S divides OQ internally in the ratio 5:4 and area $\triangle OPQ = \lambda$ area $\triangle SRQ$.	
	(b) Find the exact value of λ .	(4)

Question 1 continued
(Total for Question 1 is 6 marks)

2

Diagram **NOT** accurately drawn

Figure 1

Figure 1 shows a right pyramid with vertex V and base ABCDEF which is a regular hexagon. The diagonal AD of the base is 10 cm and X is the mid-point of AD. The height VX of the pyramid is 12 cm.

((a)	Find	the	length	of	VA.

(2)

(b) Find,	in degrees	s to 1	decimal	place,	the size	of the	angle	between	the	plane	VAB	and
the ha	ase											

/		À		`	
1	/				١
٧.	-	٦	r		,

(1)

Question 2 continued

Question 2 continued
(Total for Question 2 is 6 marks)

Find the coordinates of the points of intersection of the curve with equiv $y = 3 + 6x - x^2$ and the line with equation $y - x = 7$	ation
	(5)
/TT / 16 A	
(Total for Q	uestion 3 is 5 marks)

(2)

(2)

(b) the length of the arc AB,

Diagram NOT accurately drawn

1.2 rad

Figure 2

Figure 2 shows an arc AB of a circle with centre O. The arc subtends an angle of 1.2 radians at O and the area of the sector AOB is 15 cm².

1.2 radians at O and the area of the sector AOB is 15 cm².Find(a) the radius of the circle,

(c) the area of the shaded segment, giving your answer to 3 significant figures.

Question 4 continued	
	(Total for Question 4 is 7 marks)

5	 (a) Expand (1+3x)^{1/5} in ascending powers of x up to and including the term in x³, simplifying your terms as far as possible. (b) By substituting x=-1/8 into your expansion, obtain an approximation for √√20 	(4)
	Write down all the figures on your calculator display.	(4)
	(c) Explain why you cannot obtain an approximation for $\sqrt[5]{4}$ by substituting $x = 1$ into your expansion.	(1)

Question 5 continued	

Question 5 continued

Question 5 continued
(Total for Question 5 is 9 marks)

6

Diagram **NOT** accurately drawn

Figure 3

A container in the shape of a right circular cone of height 10 cm is fixed with its axis of symmetry vertical. The vertical angle of the container is 60° , as shown in Figure 3. Water is dripping out of the container at a constant rate of 2 cm³/s. At time t = 0 the container is full of water. At time t = 0 the depth of water remaining is t = 0 cm.

(a) Show that $h = \left[1000 - \frac{18t}{\pi}\right]^{\frac{1}{3}}$ (6)

(b)	Find,	in	cm ² /s,	to 3	significan	t figures,	the rate	of	change	of the	area	of the	surface	of
	the w	ate	r whei	1 t =	15									

(6)

(~)

Question 6 continued	

Question 6 continued
(Total for Question 6 is 12 marks)

7	 The points A, B and C have coordinates (3,5), (7,8) and (6,1) respectively. (a) Show, by calculation, that AB is perpendicular to AC. (b) Find an equation for AC in the form ax + by + c = 0, where a, b and c are integers whose values must be stated. 	(4)
	The point D is on AC produced and $AC:CD=1:2$ (c) Find the coordinates of D . (d) Calculate the area of triangle ABD .	(2) (4)

Question 7 continued

Question 7 continued		

Question 7 continued	
	ol for Organian 7 is 12
101)	al for Question 7 is 13 marks)

(3)

(4)

8

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$
$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\tan A = \frac{\sin A}{\cos A}$$

- (a) Show that $\tan(A+B) = \frac{\tan A + \tan B}{1 \tan A \tan B}$
- (b) Hence write down an expression for $\tan 2\theta$ in terms of $\tan \theta$
- (c) Show that $\tan 3\theta = \frac{3\tan\theta \tan^3\theta}{1 3\tan^2\theta}$ (4)

Given that $\tan 3\theta = -1$ and $\tan \theta \neq \pm \frac{\sqrt{3}}{3}$

(d) without finding the value of θ , show that $\tan^3 \theta + 3 \tan^2 \theta - 3 \tan \theta - 1 = 0$ (1)

Given also that $\tan \theta \neq 1$

(e) find the exact values of $\tan \theta$, giving your answers in the form $a \pm \sqrt{b}$ where a and b are integers.

Question 8 continued		

Question 8 continued		

Question 8 continued		
(Total for Que	stion 8 is 13 marks)	

9	The curve C, with equation $y = f(x)$, passes through the point with coordinates $(0,4)$.	
	Given that $f'(x) = x^3 - 3x^2 - x + 3$	
	(a) find $f(x)$.	(3)
	(b) Show that C has a minimum point at $x = -1$ and a minimum point at $x = 3$	
	(b) Show that C has a minimum point at $x = -1$ and a minimum point at $x = 3$	(6)
	(c) (i) Find the coordinates of the maximum point on C.	
	(ii) Show that the point found in (i) is a maximum point.	
	(ii) Show that the point round in (i) is a maximum point.	(3)
	(d) State the ranges of values of x for which $f'(x) > 0$	
	(a) 2 me en en gre en range en men en e	(2)

Question 9 continued		

Question 9 continued		

Question 9 continued		
(То	tal for Question 9 is 14 marks)	

10	The sum of the first and third terms of a geometric series G is 104	
	The sum of the second and third terms of G is 24	
	Given that G is convergent and that the sum to infinity is S , find	
	(a) the common ratio of G	
		(4)
	(b) the value of S	(4)
	The sum of the first and third terms of another geometric series H is also 104 and the sum of the second and third terms of H is 24. The sum of the first n terms of H is S_n	
	(c) Write down the common ratio of H	
		(1)
	(d) Find the least value of n for which $S_n > S$	(6)

Question 10 continued		

Question 10 continued		
	(Total for Question 10 is 15 marks)	
	TOTAL FOR PAPER IS 100 MARKS	