Autumn 2016 AR

Topics: \mathbb{R}^n , subspaces, linear independence, rank of a matrix, solvability of linear systems using rank.

- 1. Suppose that the state of land use in a city area in 2003 was
 - 1 (Residential) 30percent
 - 2 (Commercial) 20percent
 - 3 (Industrial) 50percent

Estimate the states of land use in 2008, 2013, 2018, assuming that the transitional prob-

abilities for 5-year intervals are given by the stochastic matrix $\begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.1 & 0.7 & 0.2 \\ 0.0 & 0.1 & 0.9 \end{bmatrix}$, where

 $(i,j)^{th}$ entry is the probability for the i^{th} type to change to the j^{th} type. (For e.g. 0.2 is the probability for commercially used land to become industrial in a 5-year interval.)

Solution. Let R, C and I denote the residential, the commercial and the industrial us-

age respectively in percentages. The given stochastic matrix represents schematically,

the probabilities of the transitions: $\begin{bmatrix} R \mapsto R & R \mapsto C & R \mapsto I \\ C \mapsto R & C \mapsto C & C \mapsto I \\ I \mapsto R & I \mapsto C & I \mapsto I \end{bmatrix}$. Clearly, after 5 years

$$[R \ C \ I] = [R_0 \ C_0 \ I_0] S.$$

Hence

$$[R C I]_{2008} = [30 \ 20 \ 50] \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.1 & 0.7 & 0.2 \\ 0.0 & 0.1 & 0.9 \end{bmatrix}$$
$$= [26 \ 22 \ 52]$$

$$[R C I]_{2013} = [26 22 52] \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.1 & 0.7 & 0.2 \\ 0.0 & 0.1 & 0.9 \end{bmatrix}$$
$$= [23.0 \ 23.2 \ 53.8]$$

$$[R C I]_{2018} = [23.0 \ 23.2 \ 53.8] \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.1 & 0.7 & 0.2 \\ 0.0 & 0.1 & 0.9 \end{bmatrix}$$
$$= [20.72 \ 23.92 \ 55.36]$$

Remark 0.0.1. Note that $[R \ C \ I] = [12.5 \ 25.0 \ 62.5]$ gives the equilibrium solution.

2. Find whether the following sets of vectors are linearly dependent or independent:

(i)
$$[1,-1,1],[1,1,-1],[-1,1,1],[0,1,0].$$

(ii)
$$[1, 9, 9, 8], [2, 0, 0, 3], [2, 0, 0, 8].$$

Solution. (i) 2[0,1,0] = [1,1,-1] + [-1,1,1] hence linearly dependent.

Aliter:

$$\begin{bmatrix}
1 & -1 & 1 \\
1 & 1 & -1 \\
-1 & 1 & 1 \\
0 & 1 & 0
\end{bmatrix}
\mapsto
\begin{bmatrix}
1 & -1 & 1 \\
0 & 1 & -1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}$$

Hence dimension $\lim \text{span} = 3 < 4 \Longrightarrow \lim \text{DEPendent}$.

Aliter-2:(changing to colulmns)

$$\begin{bmatrix} 1 & 1 & -1 & 0 \\ -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 0 \end{bmatrix} \mapsto \begin{bmatrix} \boxed{1} & 1 & -1 & 0 \\ 0 & \boxed{2} & 0 & 1 \\ 0 & 0 & \boxed{2} & 1 \end{bmatrix}$$

Hence dimension lin span $= 3 < 4 \Longrightarrow$ lin DEPendent. Moreover, on dropping the fourth vector we get a linearly independent set, since the fourth column is pivot-free

(ii)
$$a[1,9,9,8] + b[2,0,0,3] + c[2,0,0,8] = [0,0,0,0]$$

 $\implies a+2b+2c=9a=8a+3b+8c=0 \implies a=0,\ b=0,\ c=0.$ Hence linearly independent.

Aliter:(changing to colulmns)

$$\begin{bmatrix} 1 & 2 & 2 \\ 9 & 0 & 0 \\ 9 & 0 & 0 \\ 8 & 3 & 8 \end{bmatrix} \mapsto \begin{bmatrix} \boxed{1} & 2 & 2 \\ 0 & \boxed{1} & 1 \\ 0 & 0 & \boxed{5} \\ 0 & 0 & 0 \end{bmatrix}.$$

No. of pivots = 3 = no. of vectors, hence lin. INDependent.

3. Find the ranks of the following matrices:

(i)
$$\begin{bmatrix} 8 & -4 \\ -2 & 1 \\ 6 & -3 \end{bmatrix}$$
, (ii) $\begin{bmatrix} m & n \\ n & m \\ p & p \end{bmatrix}$ $(m^2 \neq n^2)$, (iii) $\begin{bmatrix} 0 & 8 & -1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \\ 0 & 4 & 5 \end{bmatrix}$.

Solution. (i) By row operations, $\begin{bmatrix} 8 & -4 \\ -2 & 1 \\ 6 & -3 \end{bmatrix} \mapsto \begin{bmatrix} 2 & -1 \\ -2 & 1 \\ 2 & -1 \end{bmatrix} \mapsto \begin{bmatrix} 2 & -1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$. Rank is 1.

(ii)
$$\begin{bmatrix} m & n \\ n & m \\ p & p \end{bmatrix} \mapsto \begin{bmatrix} m+n & n+m \\ n & m \\ p & p \end{bmatrix} \mapsto \begin{bmatrix} 1 & 1 \\ n & m \\ 0 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 1 \\ 0 & m-n \\ 0 & 0 \end{bmatrix}$$
. Rank is 2.

Remark 0.0.2. We used the fact that $m \pm n \neq 0$.

(iii)
$$\begin{bmatrix} 0 & 8 & -1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \\ 0 & 4 & 5 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 2 & 0 \\ 0 & 8 & -1 \\ 0 & 4 & 5 \\ 0 & 0 & 3 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & -11 \\ 0 & 4 & 5 \\ 0 & 0 & 3 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & -11 \\ 0 & 4 & 5 \\ 0 & 0 & 3 \end{bmatrix} . \text{ Rank is 3.}$$

4. Solve the following system of linear equations in the unknowns x_1, \ldots, x_5 by GEM:

(i)
$$2x_3 - 2x_4 + x_5 = 2$$
 (ii) $2x_1 - 2x_2 + x_3 + x_4 = 1$ $2x_2 - 8x_3 + 14x_4 - 5x_5 = 2$ $-2x_2 + x_3 + 7x_4 = 0$ $x_2 + 3x_3 + x_5 = \alpha$ $3x_1 - x_2 + 4x_3 - 2x_4 = -2$ Solution. (i) Augmented matrix is
$$\begin{bmatrix} 0 & 0 & 2 & -2 & 1 & 2 \\ 0 & 2 & -8 & 14 & -5 & 2 \\ 0 & 1 & 3 & 0 & 1 & \alpha \end{bmatrix}$$
.

A REF is
$$\begin{bmatrix} 0 & \boxed{1} & 3 & 0 & 1 & \alpha \\ 0 & 0 & \boxed{2} & -2 & 1 & 2 \\ 0 & 0 & 0 & 0 & \boxed{16-2\alpha} \end{bmatrix}$$
. Hence no solutions if $\alpha \neq 8$.

For
$$\alpha = 8$$
, the REF is $\begin{bmatrix} 0 & \boxed{1} & 3 & 0 & 1 & 8 \\ 0 & 0 & \boxed{2} & -2 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ and the solution set is $x_3 = 1 + x_4 - x_5/2$, $x_2 = 5 - 3x_4 + x_5/2$; x_1, x_4, x_5 being arbitrary.

(ii) Augmented matrix
$$\begin{bmatrix} 2 & -2 & 1 & 1 & 1 \\ 0 & -2 & 1 & 7 & 0 \\ 3 & -1 & 4 & -2 & -2 \end{bmatrix}.$$
A REF is
$$\begin{bmatrix} 2 & -2 & 1 & 1 & 1 \\ 0 & -2 & 1 & 7 & 0 \\ 0 & 0 & 1 & 1 & -1 \end{bmatrix}$$
. Hence the solution set is
$$x_3 = -x_4 - 1, \ x_2 = 3x_4 - 1/2; \ x_1 = 3x_4 + 1/2; \ x_4 \text{ being arbitrar}.$$

5. Determine the equilibrium solution $(D_1 = S_1, D_2 = S_2)$ of the two-commodity market with linear model (D, S, P) = (demand, supply, price):

$$D_1 = 40 - 2P_1 - P_2$$
 $S_1 = 4P_1 - P_2 + 4$
 $D_2 = 16 + 5P_1 - 2P_2$ $S_2 = 3P_2 - 4$.

Solution. Equilibrium condition implies

$$40 - 2P_1 - P_2 = 4P_1 - P_2 + 4$$

$$16 + 5P_1 - 2P_2 = 3P_2 - 4$$

$$\implies P_1 = 6, P_2 = 5.$$

6. For the following linear systems, find solvability by comparing the ranks of the coefficient matrix and the augmented matrix. Write down a basis for the solutions of the associated homogeneous systems and hence describe the general solution of each of the systems.

(i)
$$-2x_4 + x_5 = 2$$
 (ii) $2x_1 -2x_2 + x_3 + x_4 = 1$
$$2x_2 -2x_3 +14x_4 -x_5 = 2$$

$$-2x_2 +x_3 -x_4 = 2$$

$$2x_2 +3x_3 +13x_4 +x_5 = 3$$

$$x_1 +x_2 +2x_3 -x_4 = -2$$

Solution. (i) The augmented matrix
$$A^+ = \begin{bmatrix} 0 & 0 & 0 & -2 & 1 & 2 \\ 0 & 2 & -2 & 14 & -1 & 2 \\ 0 & 2 & 3 & 13 & 1 & 3 \end{bmatrix}$$
.

$$\begin{bmatrix} 0 & 0 & 0 & -2 & 1 & 2 \\ 0 & 2 & -2 & 14 & -1 & 2 \\ 0 & 2 & 3 & 13 & 1 & 3 \end{bmatrix} \mapsto \begin{bmatrix} 0 & 2 & 3 & 13 & 1 & 3 \\ 0 & 2 & -2 & 14 & -1 & 2 \\ 0 & 0 & 0 & -2 & 1 & 2 \end{bmatrix}$$

$$\mapsto \begin{bmatrix} 0 & 2 & 3 & 13 & 1 & 3 \\ 0 & 0 & -2 & 1 & 2 \end{bmatrix} \quad \mapsto \begin{bmatrix} 0 & 2 & 3 & 13 & 1 & 3 \\ 0 & 0 & -5 & 1 & -2 & -1 \\ 0 & 0 & 0 & -2 & 1 & 2 \end{bmatrix}.$$

Hence $\rho(A^+)=3=\rho(A)$ and the system is solvable. The homogeneous system has solutions $x_4=0.5x_5,\ x_3=-0.3x_5,\ x_2=-3.3x_5;\ x_1,x_5$ arbitrary. A basis of the homogeneous solutions is $\{[1,0,0,0,0]^T,[0,3.3,0.3,-0.5,-1]^T\}$. A particular solution of the given system is $[0,8,0,-1,0]^T$. The general solution is

$$[s, 8-33t, -3t, 5t-1, 10t]^T$$
; s, t arbitrary.

(ii) The augmented matrix
$$A^+ = \begin{bmatrix} 2 & -2 & 1 & 1 & 1 \\ 0 & -2 & 1 & -1 & 2 \\ 1 & 1 & 2 & -1 & -2 \end{bmatrix}$$
.

$$\begin{bmatrix} 2 & -2 & 1 & 1 & | & 1 \\ 0 & -2 & 1 & -1 & | & 2 \\ 1 & 1 & 2 & -1 & | & -2 \end{bmatrix} \mapsto \begin{bmatrix} 2 & 0 & 0 & 2 & | & -1 \\ 0 & -2 & 1 & -1 & | & 2 \\ 1 & 1 & 2 & -1 & | & -2 \end{bmatrix}$$

$$\mapsto \begin{bmatrix} 2 & 0 & 0 & 2 & | & -1 \\ 0 & -2 & 1 & -1 & | & 2 \\ 0 & 2 & 4 & -4 & | & -1 \end{bmatrix} \mapsto \begin{bmatrix} 2 & 0 & 0 & 2 & | & -1 \\ 0 & \boxed{-2} & 1 & -1 & | & 2 \\ 0 & 0 & \boxed{5} & -5 & | & 1 \end{bmatrix}.$$

Hence $\rho(A^+) = 3 = \rho(A)$ and the system is solvable. The homogeneous system has solutions $x_3 = x_4$, $x_2 = 0$, $x_1 = -x_4$; x_4 arbitrary. A basis of the homogeneous solutions is $\{[-1,0,1,1]^T\}$. A particular solution of the given system is $-[0.5,1.1,0.2,0]^T$. The

general solution is

$$\left[-t - \frac{1}{2}, -\frac{11}{10}, t - \frac{2}{5}, t \right]^T$$
; t arbitrary.

7. Is the given set of vectors a vector space?

(i) All vectors $[v_1, v_2, v_3]^T$ in \mathbb{R}^3 such that $3v_1 - 2v_2 + v_3 = 0$, $4v_1 + 5v_2 = 0$. (ii) All vectors in \mathbb{R}^2 with components less than 1 in absolute value.

Solution. (i) YES. (ii) NO.

8. For a < b, consider the system of equations:

$$x + y + z = 1$$

 $ax + by + 2z = 3$
 $a^{2}x + b^{2}y + 4z = 9$

Find the pairs (a, b) for which the system has infinitely many solutions. Solution. For a square matrix A, $A\mathbf{x} = \mathbf{b}$ to have infinitely many solutions, a necessary (but not sufficient) condition is that $\det A = 0$.

$$A = \begin{bmatrix} 1 & 1 & 1 \\ a & b & 2 \\ a^2 & b^2 & 4 \end{bmatrix} \implies \det A = (b - a)(2 - a)(2 - b) = 0. \text{ Hence } a = 2 \text{ or } b = 2 \text{ since } b - a \neq 0.$$

Case 1:(a=2) The augmented matrix is

$$A^{+} = \begin{bmatrix} 1 & 1 & 1 & | & 1 \\ 2 & b & 2 & | & 3 \\ 4 & b^{2} & 4 & | & 9. \end{bmatrix}$$

Elementary row operations give

$$A^{+} \mapsto \begin{bmatrix} 1 & 1 & 1 & | & 1 \\ 0 & b - 2 & 0 & | & 1 \\ 0 & b^{2} - 4 & 0 & | & 5 \end{bmatrix}$$

$$\mapsto \begin{bmatrix} \boxed{1} & 1 & 1 & | & 1 \\ 0 & \boxed{b - 2} & 0 & | & 1 \\ 0 & 0 & 0 & | & 3 - b \end{bmatrix}$$

For existence $\rho(A^+) = \rho(A) \Longrightarrow b = 3$. Thus a = 2, b = 3 will give infinitely many solutions.

Case 2:(b=2) Solving similarly, we find that a = 3 which is inadmissible since a < b.

9. Show that the row space of a matrix does not change by row operations. Show that the dimension of the column space is unchanged by row operations.

Proof:

- (i) The new rows are linear combinations of previous rows and vice versa.
- (ii) Suppose that $C_1, ..., C_n$ are the columns of a matrix. If an ERO is applied through a matrix E, then the new columns are $EC_1, ..., EC_n$. If $C_{j_1}, ..., C_{j_r}$ are lin. ind. then so are $EC_{j_1}, ..., EC_{j_r}$ and vice versa due to invertibility of E.