Universidad Nacional Autónoma de México Facultad de Ciencias Álgebra Moderna I

Tarea 8

Ángel Iván Gladín García No. cuenta: 313112470 angelgladin@ciencias.unam.mx

28 de Abril 2020

Ejercicio 1. (40 puntos)

Demuestre que S_n^{-1} no tiene subgrupos de índice t con 2 < t < n.

Demostración. Sea $G = S_n$ y A_n el grupo alternante de grado n (el cual es simple). Sabemos que el único subgrupo no trivial de G es A_n . Sea $H \leq G$ y G/H el conjunto de las clases laterales izquierdas de H. Sea $S_{G/H}$ el grupo simétrico en G/H y $f: G \to S_{G/H}$ el homomorfismo inducido por los donjugados de G en G/H. Sea N el kernel de f, entones N es un subgrupo de H. Ya que |G| = n! y $S_{G/H} = m!$, f no puede ser inyectiva. Entonces el único grupo normal no tricial de G es A_n , entonces $N = A_n$. Por tanto [G:N] = 2 y H = N y de ahí que t = 2.

Ejercicio 2. (30 puntos)

Demuestre que A_6 no tiene subgrupos de índice primo.

Demostración. Sea A_6 es un grupo simple² de orden $360 = 2^2 \cdot 3^2 \cdot 5$. Si H fuera un subgrupo de índice primo entonces $[A_6:H]=2,3,5$. Por la generalización del teorema de Cailey³ entonces hay un homomorfismo $\varphi:A_6\to S_n$ con n=2,3,5 con $\varphi\subset H$, en particular ker φ es un subgrupo normal de A_6 con ker $\varphi\neq A_6$. Como A_6 es simple, ker $\varphi=1$ y φ es inyectiva. Pero esto es imposible porque $|S_5|=120<360$.

Ejercicio 3. (30 puntos)

Sea G un grupo simple infinito. Demuestre que

1. Todo $x \in G$ con $x \neq 1$ tiene una cantidad infinita de conjugados.

Demostración. Por contrapositiva. Si tiene una cantidad finita de conjugados, entonces G no es simple.

Sea X denotado como el conjunto finito de conjugados de x y sea S_X el grupo simétrico de X. Sea $\phi: G \to S_n$ el homomorfismo definido como sigue. Para $g \in G$, $\phi(g)$ es la permutación de X que toma $y \in X$ a gyg^{-1} . Verifiquemos que es inyectiva y que ϕ sea un homomorfismo.

Sea $H = \ker \phi$. Entonces H es un subrupo normal de G. Si $H \neq 1$ y $H \neq G$, entonces G no es simple. Si H = 1, entonces ϕ es inyectiva de un grupo infinito G a un grupo finito S_X , lo cual es imposible. Si H = G, entonces implica que $X \in Z(G)$. Como $X \neq e$, implica que Z(G) es no trivial. Ya que Z(G) es un subrupo normal de de G, si $Z(G) \neq G$ entonces G no es simple. De lo contrario, G sería conmutativo y un grupo commutativo infinito no es simple.

2. Todo subgrupo propio $H \neq 1$ tiene una cantidad infinita de conjugados.

Demostración.	ı
D chroson actor.	

 $^{^{1}}$ Con n > 4.

²Se demostró en la tarea pasada.

³ Teorema 3.14. Si $H \leq G$ y [G:H] = n, entonces hay un homomorfismo $\rho: G \to S_n$ con $\ker \rho \leq H$.