Pożyczki Konsumenckie

Paweł Pozorski Michał Pytel

Dane

#	Column	Non-Null Count	Dtype
0	PRODUCT	15097 non-null	object
1	AGE	15097 non-null	int64
2	AREA	15097 non-null	object
3	RESIDENTIAL_PLACE	15097 non-null	object
4	EDUCATION	15097 non-null	object
5	MARITAL_STATUS	15097 non-null	object
6	HOUSEHOLD_MEMBERS	15097 non-null	int64
7	NO_OF_DEPENDENTS	15097 non-null	int64
8	INCOME	15097 non-null	float64
9	WORK_SENIORITY	15097 non-null	int64
10	BUSINESS AGE	15097 non-null	int64
11	ECONOMIC_SECTOR	15097 non-null	object
12	EMPLOYEE_NO	15097 non-null	object
13	LENGTH_RELATIONSHIP_WITH_CLIENT	15097 non-null	int64
14	DEBIT_CARD	15097 non-null	int64
15	CURRENT_ACCOUNT	15097 non-null	int64
16	SAVING_ACCOUNT	15097 non-null	int64
17	SALARY_ACCOUNT	15097 non-null	int64
18	FOREIGN_ACCOUNT	15097 non-null	int64
19	FINALIZED_LOAN	15097 non-null	int64
20	DEPOSIT	15097 non-null	int64
21	PENSION_FUNDS	15097 non-null	int64

	dtype	missing	example_row_1	example_row_2	example_row_3	example_row_4
PRODUCT	object	0	C	C	F	C
AGE	int64	0	65	64	30	39
AREA	object	0	County capital	County capital	Urban area	County capital
RESIDENTIAL_PLACE	object	0	Owner without mortgage	Owner without mortgage	Living with family	Owner without mortgage
EDUCATION	object	0	University	University	University	Post-graduate
MARITAL_STATUS	object	0	married	married	married	divorced
HOUSEHOLD_MEMBERS	int64	0	2	2	2	1
NO_OF_DEPENDENTS	int64	0	0	0	0	0
INCOME	float64	0	1245.0	1380.0	1131.0	1730.0
WORK_SENIORITY	int64	0	5	5	2	9
BUSINESS AGE	int64	0	16	16	6	13
ECONOMIC_SECTOR	object	0	Missing	Missing	Other	Education
EMPLOYEE_NO	object	0	Missing	Missing	> 1.000	between 11-20
LENGTH_RELATIONSHIP_WITH_CLIENT	int64	0	1	8	1	2
DEBIT_CARD	int64	0	0	0	1	0
CURRENT_ACCOUNT	int64	0	0	0	1	0
SAVING_ACCOUNT	int64	0	0	0	0	0
SALARY_ACCOUNT	int64	0	0	0	0	0
FOREIGN_ACCOUNT	int64	0	0	0	0	0
FINALIZED_LOAN	int64	0	0	0	0	0
DEPOSIT	int64	0	0	0	0	0
PENSION_FUNDS	int64	0	0	0	0	0

Dla kogo jest ten model?

Dla kogo jest ten model?

Dla Pożyczkobiorców

Dlaczego to może być przydatne?

decyzje przyznania pożyczki

- decyzje przyznania pożyczki
- Wpływ cech

- decyzje przyznania pożyczki
- Wpływ cech
- Co można polepszyć, aby dostać pożyczkę

- decyzje przyznania pożyczki
- Wpływ cech
- Co można polepszyć, aby dostać pożyczkę
- Oszczędność czasu po stronie konsumenta i banku

Czy można to skomercjalizować?

Czy można to skomercjalizować?

TAK

Podajemy cechy pożyczkobiorcy

- Podajemy cechy pożyczkobiorcy
- Na podstawie cech model podejmuje decyzje

- Podajemy cechy pożyczkobiorcy
- Na podstawie cech model podejmuje decyzje
- Możliwe wyniki: 1 lub 0

- Podajemy cechy pożyczkobiorcy
- Na podstawie cech model podejmuje decyzje
- Możliwe wyniki: 1 lub 0
- Finalny model pozwala również na zwrócenie wyznaczonego prawdopodobienstwa otrzymania kredytu – finalna decyzja pozostawiona klientowi

 Wykorzystaliśmy pipeline do przeróbki danych pod optymalne działanie modelu

- Wykorzystaliśmy pipeline do przeróbki danych pod optymalne działanie modelu
- Te pipeliny usuwają mało znaczące cechy

- Wykorzystaliśmy pipeline do przeróbki danych pod optymalne działanie modelu
- Te pipeliny usuwają mało znaczące cechy
- Standaryzują dane

- Wykorzystaliśmy pipeline do przeróbki danych pod optymalne działanie modelu
- Te pipeliny usuwają mało znaczące cechy
- Standaryzują dane
- Uzupełniają missing values

- Wykorzystaliśmy pipeline do przeróbki danych pod optymalne działanie modelu
- Te pipeliny usuwają mało znaczące cechy
- Standaryzują dane
- Uzupełniają missing values
- Wszystko po to aby uławtić działanie użytkowników naszego rozwiązania

Czyli zawężają interfejs użytkownika do 2 komend – predict() i predict_proba() + wczytanie go do ramu.

Jaki Model?


```
Models roc_auc
     RandomForestClassifier
                                    0.9329136509618493
     XGBClassifier
                                    0.9271466976381806
     GradientBoostingClassifier
                                    0.9167174808016347
     AdaBoostClassifier
                                    0.9088979595380599
     LinearSVC
                                    0.8995210164868662
     LogisticRegression
                                    0.8981257017506247
     RidgeClassifier
                                    0.89739705341036
     MLPClassifier
                                    0.8938190855011617
     SVC
                                    0.8831598680627386
     KNeighborsClassifier
                                    0.8749405763990152
     GaussianNB
                                    0.8670563180878653
```

Models f1	
RandomForestClassifier	0.6436123860097299
XGBClassifier	0.6340540027889251
GaussianNB	0.5831107786032614
GradientBoostingClassifier	0.5788268852569985
KNeighborsClassifier	0.5539355850935707
AdaBoostClassifier	0.5492881373776033
MLPClassifier	0.5336105247883204
LogisticRegression	0.49069298061651995
LinearSVC	0.48191654627497477
SVC	0.37152547802315067
RidgeClassifier	0.3348761905954387

```
Models recall
     GaussianNB
                                    0.7938857111664775
     XGBClassifier
                                    0.6066934921024825
     RandomForestClassifier
                                    0.5905719120531207
     KNeighborsClassifier
                                    0.5373158188191348
     GradientBoostingClassifier
                                    0.5344948591079762
     MLPClassifier
                                    0.496947047057585
     AdaBoostClassifier
                                    0.49333848007392583
     LogisticRegression
                                    0.437690322178163
     LinearSVC
                                    0.41429117294997914
     SVC
                                    0.2726973209655597
     RidgeClassifier
                                    0.23840813652899137
```

Zbadajmy kandydatów

Kandydaci

Kandydaci

Kandydaci

XGBClassifier

	precision	recall	f1-score	support	
0	0.93	0.94	0.94	2734	
1	0.66	0.60	0.63	501	
accuracy			0.89	3235	
macro avg	0.79	0.77	0.78	3235	
weighted avg	0.89	0.89	0.89	3235	
ROC AUC score: 0.7730504608924068					

Number of finished trials: 100 Best trial:

Value: 0.8907731168383899

Params:

booster: dart

lambda: 5.300729413321117 alpha: 0.004373402847043272

max_depth: 46

eta: 0.36324883963950516

gamma: 0.0014298698374813413

grow_policy: depthwise

Refitted best model f1-score on valid: 0.8905718701700155

SVC

	precision	recall	f1-score	support		
0	0.90	0.96	0.93	2734		
1	0.68	0.44	0.53	501		
			0.00	2225		
accuracy			0.88	3235		
macro avg	0.79	0.70	0.73	3235		
weighted avg	0.87	0.88	0.87	3235		
ROC AUC score: 0.7005411269633374						

Number of finished trials: 40

Best trial:

Value: 0.8767968868249433

Params:

C: 22208.56815131227

kernel: rbf

max_iter: 5000

probability: True

gamma: 0.26672481100997353

Refitted best model f1-score on valid: 0.8809891808346213

GaussianNB

	precision	recall	f1-score	support
0	0.97	0.82	0.89	2734
1	0.47	0.85	0.60	501
accuracy			0.83	3235
macro avg	0.72	0.84	0.75	3235
weighted avg	0.89	0.83	0.85	3235
ROC AUC score	: 0.83618534	69359743		

Number of finished trials: 100

Best trial:

Value: 0.8927364293893408

Params:

var_smoothing: 9.026696330003137e-05

Refitted best model f1-score on valid: 0.8278207109737249

Voting Classifier

Voting Classifier

	precision	recall	f1-score	support
0	0.94	0.92	0.93	2734
1	0.61	0.69	0.65	501
accuracy			0.88	3235
macro avg	0.78	0.80	0.79	3235
weighted avg	0.89	0.88	0.89	3235
ROC AUC score	: 0.80462593	346705272		

Let's go deeper

Deep learning

SCORES		
Name	auc	f1_score
Simple Classifier (Dropout=0.2)	0.693110852	0.503954802
Simple Classifier (Dropout=0.0)	0.696272050	0.506666667
Simple Classifier (Dropout=0.5)	0.643539914	0.421319797
Residual Net	0.500000000	0.268201285
Drop Connect Net	0.662005543	0.451306413
Dense Net	0.684860345	0.490825688

Simple Classifier

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 256)	14,080
leaky_re_lu (LeakyReLU)	(None, 256)	0
dropout (Dropout)	(None, 256)	0
dense_1 (Dense)	(None, 128)	32,896
leaky_re_lu_1 (LeakyReLU)	(None, 128)	0
dense_2 (Dense)	(None, 128)	16,512
leaky_re_lu_2 (LeakyReLU)	(None, 128)	0
dense_3 (Dense)	(None, 64)	8,256
leaky_re_lu_3 (LeakyReLU)	(None, 64)	0
dropout_1 (Dropout)	(None, 64)	Ø
dense_4 (Dense)	(None, 1)	65

Simple Classifier

	precision	recall	f1-score	support
0	0.90	0.94	0.92	2734
1	0.58	0.45	0.50	501
accuracy			0.86	3235
macro avg	0.74	0.69	0.71	3235
weighted avg	0.85	0.86	0.86	3235
ROC AUC score: 0.6931108521800583				

Jak to działa?

Jak zrobiliśmy kolumny dotworzone

```
class FeatureCorrelationEngineer(BaseEstimator, TransformerMixin):
def __init__(self, cols_to_combine, target_col, new_name=None, drop=False):
    super().__init__()
    self.cols to combine = cols to combine
    self.target col = target col
    self.weights = np.ones(len(cols to combine))
    self.new_name = new_name if new_name is not None else "_".join(cols to combine)
    self.drop = drop
    self.scaler = StandardScaler()
def get_combined_value(self, X):
    return X[self.cols_to_combine].values.dot(self.weights.reshape(-1, 1))
def get_corr(self, X):
    return np.corrcoef(self.get combined value(X).ravel(), X[self.target_col])[0, 1]
def fit(self, X, y=None):
    def get score(weights):
        self.weights = weights
        return -np.abs(self.get_corr(X))
    self.weights = minimize(get score, self.weights, method="Nelder-Mead")["x"]
    new_col = self.get_combined_value(X)
    self.scaler.fit(new col)
     return self
def transform(self, X):
    new_col = self.get_combined_value(X)
    new_col = self.scaler.transform(new_col)
    X[self.new_name] = new_col
    if self.drop:
        X.drop(columns=self.cols_to_combine, inplace=True)
    return X
def set output(self, *args, **kwargs):
     raturn calf
```

```
class CreateAdditionalFeatures(BaseEstimator, TransformerMixin):
def fit(self, X, y=None):
    return self
def transform(self, X):
    # Calculate additional features
    X["LENGTH RELATIONSHIP WITH CLIENT TO WORK SENIORITY"] = (
        X["LENGTH RELATIONSHIP_WITH_CLIENT"] / X["WORK_SENIORITY"]
    X["INCOME TO WORK SENIORITY RATIO"] = X["INCOME"] / X["WORK SENIORITY"]
    X["BUSINESS AGE TO AGE RATIO"] = X["BUSINESS AGE"] / X["WORK SENIORITY"]
    X["LENGTH RELATIONSHIP WITH CLIENT TO BUSINESS AGE"] = (
        X["LENGTH RELATIONSHIP WITH CLIENT"] / X["BUSINESS AGE"]
    X["INCOME TO LENGTH RELATIONSHIP WITH CLIENT"] = (
        X["INCOME"] / X["LENGTH RELATIONSHIP WITH CLIENT"]
    return X
def set output(self, *args, **kwargs):
    return self
```


Ostateczny wybór

GaussianNB

	precision	recall	f1-score	support
0	0.97	0.82	0.89	2734
1	0.47	0.85	0.60	501
2001182011			a 02	2225
accuracy			0.83	3235
macro avg	0.72	0.84	0.75	3235
weighted avg	0.89	0.83	0.85	3235
ROC AUC score: 0.8361853469359743				