ESTUDIOS FRABAJO FIN

Desarrollo de una aplicación web para la gestión centralizada de múltiples marketplaces

Documento:

Memoria

Autor/Autora:

Aleix Ribas Torras

Director/Directora - Codirector/Codirectora:

Francisco José Múgica Alvarez Maria Angela Nebot Castells

Titulación:

Grado en Ingeniería en Tecnologías Aeroespaciales

Convocatoria:

Primavera, 2025

Sumario

1.	Intr	oducci	ón	1	
2. Marco Teórico					
	2.1.	Comer	rcio electrónico y canales de venta en línea	2	
		2.1.1.	Plataformas <i>E-commerce</i>	3	
		2.1.2.	Marketplaces	4	
	2.2.	Model	os de distribución de software SaaS	6	
	2.3.	Arquit	sectura y tecnologías de una aplicación web	7	
		2.3.1.	Frontend	9	
		2.3.2.	Backend	10	
		2.3.3.	Base de datos	12	
		2.3.4.	API	15	
3.	Aná	ilisis C	omercial y de Competencia	18	
4.	Dise	eño y I	Desarrollo de la plataforma	19	
	4.1.	Proces	so inicial de desarrollo de la plataforma	19	

5	i. Conclusiones	25
	4.4. Desarrollo del frontend	20
	4.3. Desarrollo del backend	20
	4.2. Diseño de la base de datos	20
	4.1.1. Separación de tecnologías frontend y backend	19

Índice de figuras

2.1.	Modelos de distribución de software. Fuente: [3]	7
2.2.	Arquitectura de una aplicación web	8
2.3.	Diagrama de flujo del patrón de diseño MVC	12
2.4.	Tablas de ejemplo de una base de datos para guardar pedidos	14
2.5.	Ejemplo de consulta SQL y su equivalente en ORM para la obtención de dos campos de un registro de una tabla	14
2.6.	Ejemplo de una petición a una API REST con la correspondiente respuesta en formato JSON	16
2.7.	Ejemplo de una respuesta a una petición sin y con query parameters	17
Δ 1	Diagrama de la base de datos	21

Acrónimos

 ${\bf API}$ Application Programming Interface.

 ${\bf CRM}$ Customer Relationship Management.

SaaS Software as a Service.

Capítulo 1

Introducción

Capítulo 2

Marco Teórico

En este capítulo se presenta el marco teórico que sustenta el desarrollo de la aplicación web para la gestión centralizada de múltiples marketplaces. Se abordan conceptos clave relacionados con el comercio en línea, sus dificultades y sus múltiples vertientes. Además, se exploran las tecnologías y herramientas utilizadas en el desarrollo de la aplicación, así como las metodologías de trabajo adoptadas durante el proceso.

2.1. Comercio electrónico y canales de venta en línea

En los últimos años, el comercio electrónico se ha convertido en una parte fundamental de la economía global. La capacidad de comprar y vender productos y servicios a través de internet ha transformado la forma en que las empresas interactúan con sus clientes. Este fenómeno ha dado lugar a la aparición de nuevos canales de venta, los llamados canales de venta en línea, que permiten a las empresas llegar a un público más amplio y diversificado, donde antes dependían de tiendas físicas o distribuidores locales.

No obstante, el comercio electrónico no es tan fácil como puede parecer en primera instancia. Existen tres grandes desafíos que las empresas deben enfrentar: la competencia, la infraestructura tecnológica y logística.

En internet todo el mundo juega con las mismas reglas; las facilidades que ofrece este medio

son iguales para todos. El factor de proximidad al cliente ya no es el diferencial, sino la capacidad de ofrecer un producto o servicio que se diferencie del resto, tanto en calidad, precio o experiencia de compra. Esto genera que la competencia sea feroz, y las empresas deben encontrar formas innovadoras de destacar entre la multitud, tal como podrían ser las promociones, el marketing digital o la experiencia de usuario.

Por otro lado, el comercio electrónico requiere de una infraestructura tecnológica que permita listar productos, gestionar pedidos y pagos, y mantener una comunicación fluida con los clientes. Esto implica no solo contar con un sitio web atractivo y funcional, sino también con sistemas de gestión de inventario, plataformas de pago seguras y herramientas de análisis de datos que permitan tomar decisiones informadas. Todo esto puede resultar costoso y complicado de implementar, especialmente para pequeñas y medianas empresas que no cuentan con los recursos necesarios, ni en términos de personal, ni de dinero.

Por último, la logística es otro de los grandes retos del comercio electrónico. En el comercio tradicional, los productos se entregan directamente al cliente en la tienda. En el comercio electrónico, las empresas deben gestionar el almacenamiento, el envío y la entrega de productos a los clientes, lo que puede resultar complicado y costoso. La gestión de inventarios, la selección de proveedores de transporte y la coordinación de envíos son solo algunos de los aspectos logísticos que las empresas deben tener en cuenta para garantizar una experiencia de compra satisfactoria que cumpla con las expectativas de los clientes.

Estos tres factores son solo algunos de los muchos desafíos que enfrentan las empresas en el comercio electrónico. Por este mismo motivo, diferentes soluciones han surgido para ayudar a las empresas a superar estos obstáculos y aprovechar al máximo las oportunidades que ofrece el comercio en línea. Entre estas soluciones se encuentran dos que destacan por encima de las demás: las plataformas *e-commerce* y los *marketplaces*. Ambas ofrecen a las empresas la posibilidad de vender sus productos y servicios en línea, pero lo hacen de maneras diferentes.

2.1.1. Plataformas *E-commerce*

Diseñar y programar una tienda en línea desde cero puede ser un proceso largo y costoso. Una tienda en línea no es una simple página web, sino un sistema complejo que debe gestionar

una gran cantidad de información, como productos, precios, inventarios, pedidos y clientes.

Muchas empresas optan por utilizar las llamadas plataformas e-commerce. Una plataforma e-commerce es una aplicación que permite a las empresas crear y gestionar su propia tienda en línea en relativamente pocos pasos. Existen muchas plataformas e-commerce, pero todas se caracterizan por ofrecer una serie de herramientas y funcionalidades por defecto de manera que las empresas puedan crear su tienda en línea sin necesidad de tener conocimientos técnicos avanzados. Estas plataformas suelen incluir plantillas de diseño, sistemas de gestión de inventario, herramientas de marketing y análisis, y opciones de pago seguras. Además, muchas de ellas ofrecen integraciones con otros servicios y funcionalidades adicionales, todo bajo los llamados plugins [1].

Todo este conjunto de facilidades hacen que el uso de plataformas e-commerce sea una opción atractiva para muchas empresas, especialmente para aquellas que están comenzando en el comercio electrónico o que no cuentan con los recursos necesarios para desarrollar su propia tienda en línea desde cero. Sin embargo, también existen desventajas asociadas al uso de estas plataformas. Por ejemplo, las empresas pueden tener menos control sobre el diseño y la funcionalidad de su tienda en línea, y pueden estar sujetas a las políticas y tarifas de la plataforma, entre muchas otras cosas. Además, algunas plataformas pueden no ser escalables o flexibles lo suficiente como para adaptarse a las necesidades cambiantes de una empresa en crecimiento.

Existe una amplia variedad de plataformas e-commerce en el mercado, cada una con sus propias características y funcionalidades. Algunas de las más populares son Shopify, Woo-Commerce (plugin de WordPress), Magento y PrestaShop. Cada una de estas plataformas tiene sus propias ventajas y desventajas, y la elección de la plataforma adecuada dependerá de las necesidades, objetivos específicos y las dimensiones de cada empresa.

2.1.2. Marketplaces

Los marketplaces son plataformas en línea que permiten a las empresas vender sus productos y servicios a través de un canal de venta compartido. A diferencia de las plataformas e-commerce, donde las empresas crean y gestionan su propia tienda en línea, los marketplaces

permiten a las empresas listar sus productos y servicios junto con los de otras empresas en una única plataforma. Esto significa que las empresas pueden aprovechar la audiencia y el tráfico del *marketplace* para llegar a nuevos clientes sin necesidad de invertir en marketing o publicidad.

Aquí radica realmente la ventaja de los *marketplaces*: la posibilidad de llegar a un público más amplio y diversificado sin necesidad de invertir grandes cantidades de dinero en marketing o publicidad. Tanto en los *e-commerce* tradicionales (tiendas en línea creadas desde cero) como en las plataformas *e-commerce*, las empresas deben invertir considerables cantidades de dinero para atraer tráfico a su tienda en línea, mientras que en los *marketplaces* el tráfico ya está allí, lo que significa que las empresas pueden aprovecharlo para aumentar sus ventas y llegar a nuevos clientes.

No obstante, este tipo de plataformas también tienen sus desventajas. En primer lugar, todos los productos acostumbran a estar bajo una comisión de manera que la empresa o bien debe subir el precio de su producto o asumir la pérdida de margen. Está comisión puede rondar entre el 10 % y el 20 %. En segundo lugar, los marketplaces pueden ser muy competitivos, pues un mismo producto puede ser vendido por distintas empresas, dando lugar a una guerra de precios que puede afectar la rentabilidad de las empresas. Por último, en un marketplace la empresa no tiene ningún tipo de control sobre la experiencia de compra del cliente, lo que puede afectar la percepción de la marca y la lealtad del cliente, además de que debe someterse a la política de la plataforma, que muchas veces puede no ser beneficiosa para la empresa y puede llegar a afectar sus operaciones.

Existen múltiples marketplaces, tanto de productos físicos, como Amazon, eBay o AliExpress, como de productos digitales o servicios, como Udemy, Uber o Glovo. Cada uno de estos tiene sus propias características y funcionalidades, y la elección del marketplace adecuado dependerá de las necesidades y objetivos específicos de cada empresa. Es importante destacar que el uso de una plataforma e-commerce no excluye la posibilidad de listar productos o servicios en un marketplace. De hecho, muchas empresas optan por combinar ambas estrategias para maximizar su alcance y diversificar sus canales de venta, aprovechando las ventajas que ofrece cada una de estas opciones [2].

2.2. Modelos de distribución de software SaaS

Hay una gran variedad de modelos de distribución de software, tal como pueden ser el modelo On-Premise, el modelo Infrastructure as a Service (IaaS) o el modelo Platform as a Service (PaaS). Sin embargo, el modelo que más se utiliza en la actualidad es el modelo Software as a Service (SaaS).

Años atrás, el software se distribuía principalmente a través de licencias perpetuas, donde los usuarios compraban una licencia para utilizar el software en sus propios servidores o computadoras. Este modelo requería que los usuarios gestionaran la infraestructura y el mantenimiento del software, lo que podía ser costoso y complicado. Esto significaba que el proveedor del software simplemente facilitaba el producto y el usuario debía hacerse cargo de la instalación, configuración y mantenimiento del mismo. Esto podía resultar complicado y costoso, especialmente para pequeñas y medianas empresas que no contaban con los recursos necesarios para gestionar su propia infraestructura. Esto es conocido como una infraestructura *On-Premise*.

Con la llegada de internet y la nube, surgieron nuevos modelos de distribución de software que permitieron a las empresas ofrecer sus productos y servicios de manera más eficiente y escalable. El modelo SaaS es uno de los más populares y se basa en la idea de que el software se aloja en la nube y se accede a través de internet. Esto significa que los usuarios no necesitan instalar ni gestionar el software en sus propios servidores u ordenadores, sino que pueden acceder a él a través de un navegador web.

Sin embargo, la dependencia de la conexión a internet, la falta de control sobre la infraestructura y la seguridad de los datos son puntos críticos en el modelo. Además, los proveedores de SaaS suelen cobrar tarifas mensuales o anuales por el uso del software, pues el mantenimiento de la infraestructura y el soporte técnico son responsabilidad del proveedor.

Existen también otras alternativas, como pueden ser los modelos IaaS y PaaS. Cada uno de estos modelos tiene sus propias ventajas y desventajas, y dependiendo del tipo de negocio y las necesidades del cliente, uno puede ser más adecuado que otro. En la figura 2.1 se pueden observar los diferentes modelos de distribución de software y sus características.

Figura 2.1: Modelos de distribución de software. Fuente: [3]

2.3. Arquitectura y tecnologías de una aplicación web

En el mundo del software existen dos tipos de aplicaciones: las aplicaciones de escritorio y las aplicaciones web. Las aplicaciones de escritorio son aquellas que se instalan en un ordenador y se ejecutan de forma local, mientras que las aplicaciones web son aquellas que se ejecutan en un servidor y se acceden a través de un navegador web.

Desde los inicios del desarrollo de software, las aplicaciones de escritorio han sido la norma. Sin embargo, en los últimos años ha habido un cambio significativo hacia el desarrollo de aplicaciones web, pues el avance de las distintas tecnologías web y la conectividad a internet han mitigado considerablemente las desventajas que anteriormente presentaban [4].

Las aplicaciones de escritorio no requieren de un servidor externo para funcionar, toda la lógica se encuentra en el ordenador del usuario y es este mismo quien lo ejecuta. Esto hace que la aplicación sea más rápida y eficiente, ya que no hay necesidad de enviar datos a través de internet. No obstante, esto también significa que el usuario debe instalar la aplicación en su ordenador y mantenerla actualizada, lo que puede ser un inconveniente [5].

Por otro lado, las aplicaciones web sí que requieren de un servidor externo para funcionar. Esto significa que el usuario no necesita instalar nada en su ordenador, ya que la aplicación se ejecuta en el servidor y se accede a través de un navegador web. Este paradigma de desarrollo permite que la aplicación sea más accesible, pues se puede acceder a la aplicación

Figura 2.2: Arquitectura de una aplicación web.

desde cualquier dispositivo y lugar con conexión a internet. Además, como todo se encuentra en el servidor y no en el usuario, las actualizaciones son mucho más inmediatas. Sin embargo, esto también significa que la aplicación puede ser más lenta y menos eficiente debido a que la lógica y los datos no se encuentran en el ordenador del usuario, sino en el servidor [5].

La mejor conectividad a internet y el avance de las tecnologías web han permitido que las aplicaciones web sean cada vez más rápidas y eficientes. Esto ha llevado a un aumento en la popularidad de las aplicaciones web, y muchas empresas están optando por desarrollar aplicaciones web en lugar de aplicaciones de escritorio.

Con todo esto, se ha formado lo que se conoce como arquitectura web, que hace referencia a la forma en que se organiza y estructura el software. Esto incluye la forma en que se comunican los diferentes componentes de la aplicación, así como la forma en que se almacenan y gestionan los datos. Todas las aplicaciones web están compuestas por tres componentes principales: el cliente, la lógica de negocio y la base de datos.

Estos tres componentes se dividen en dos bloques: el frontend y el backend. El frontend es la parte de la aplicación que interactúa con el usuario, es decir, el cliente, mientras que el backend es la parte de la aplicación que se encarga de gestionar los datos y la lógica de negocio. Ambos bloques se comunican entre sí a través de una API (Interfaz de Programación de Aplicaciones), que es un conjunto de reglas y protocolos que permiten que diferentes componentes de software se comuniquen entre sí. Todo esto se puede ver en la figura 2.2.

2.3.1. Frontend

El frontend es la parte de la aplicación que interactúa con el usuario. Esto incluye la interfaz de usuario, que es la parte de la aplicación que el usuario ve y con la que interactúa, así como la lógica de presentación, que es la parte de la aplicación que se encarga de mostrar los datos al usuario. El frontend se desarrolla principalmente utilizando HTML, CSS y JavaScript, tecnologías que se ejecutan de manera nativa en los navegadores.

El HTML (*Hypertext Markup Language*) es el lenguaje de marcado utilizado para estructurar el contenido de una página web. El CSS (*Cascading Style Sheets*) es el lenguaje utilizado para dar estilo a una página web, es decir, para definir cómo se verá el contenido estructurado por el HTML. Por último, JavaScript es un lenguaje de programación que se utiliza para añadir interactividad a una página web, es decir, para permitir que el usuario interactúe con la aplicación.

Con todo esto, el servidor envía todo este contenido al usuario de manera que su navegador lo pueda representar, en caso del HTML y el CSS, y ejecutar, en caso del JavaScript.

Desarrollar aplicaciones de manera nativa, es decir, utilizando HTML, CSS y JavaScript sin el apoyo de ninguna librería o herramienta adicional, puede ser complicado, tedioso y poco eficiente. Para facilitar esta tarea, existen distintos frameworks que proporcionan un conjunto de herramientas y funcionalidades pensadas para abstraer la complejidad del desarrollo. De esta manera, los frameworks cumplen principalmente dos propósitos:

- Ahorrar tiempo: Los frameworks permiten al desarrollador ahorrar tiempo ofreciendo funcionalidades predefinidas a problemas comunes o recurrentes. En el caso de una aplicación web, esto puede incluir la gestión de rutas, la gestión del estado de la aplicación, la gestión de formularios, entre otros [6].
- Garantizar buenas prácticas de desarrollo: Los frameworks suelen seguir patrones de diseño y buenas prácticas de desarrollo que ayudan a los desarrolladores a escribir código limpio, mantenible y escalable. Adicionalmente ofrecen características de seguridad por defecto, de manera que el desarrollador no tiene que implementar sus propias medidas de seguridad que pueden resultar ser vulnerables. Un ejemplo es la

autenticación de usuarios, donde el *framework* se encarga de gestionar la creación y validación de los *tokens* de acceso, así como la gestión de sesiones [6].

Algunos de los frameworks más populares para el desarrollo de frontend son React, Angular y Vue.js. En el caso de este proyecto, se ha optado por utilizar React, un framework desarrollado por Facebook que en los últimos años se ha convertido en un estándar de la industria. React es un framework basado en componentes, lo que significa que la interfaz de usuario se divide en unidades independientes y reutilizables, facilitando así la creación de aplicaciones más complejas y escalables.

React se desarrolla utilizando JavaScript, un lenguaje de programación de tipado dinámico, lo que significa que no requiere de declarar el tipo de las variables al momento de crearlas. Esta característica, si bien ofrece flexibilidad, puede provocar errores difíciles de detectar. Para solventarlo, existe TypeScript, un lenguaje que extiende JavaScript añadiendo tipado estático [7]. Con TypeScript, el desarrollador puede especificar el tipo de las variables, permitiendo que los errores de tipado se detecten en tiempo de interpretación. Aunque los navegadores solo interpretan JavaScript, el código en TypeScript se transpila automáticamente a JavaScript. Por este motivo, en este proyecto se ha decidido utilizar TypeScript para mejorar la calidad y la robustez del código [8].

Finalmente, otro motivo relevante para la elección de React es su gran comunidad de desarrolladores, así como la amplia disponibilidad de librerías y herramientas que extienden sus funcionalidades básicas. La elección de React y el detalle de su funcionamiento se explican en profundidad en la sección (Añadir sección parte desarrollo frontend).

2.3.2. Backend

El backend es la parte de la aplicación que administra la funcionalidad general de la aplicación. Cuando el usuario interactúa con el frontend, la interacción envía una solicitud al backend para que la procese y devuelva una respuesta [9]. De este modo, el backend se encarga de gestionar la lógica de negocio, es decir, es la parte de la aplicación que se encarga de procesar los datos y realizar las operaciones necesarias para realizar las distintas funcionalidades de ésta. Adicionalmente contiene la base de datos, que es donde se almacenan todos

los datos de la aplicación.

A diferencia del *frontend*, el *backend* no se ejecuta en el navegador del usuario, sino en un servidor. Esto significa que el *backend* puede utilizar lenguajes de programación y tecnologías que no son compatibles con los navegadores, como Java, Python o Ruby. No obstante, un factor que si tiene en común con el *frontend* es la existencia de *frameworks*.

Para el desarrollo de este proyecto se ha decidido utilizar Django, un framework escrito en Python. Django es un framework un tanto especial, ya que permite desarrollar tanto el frontend como el backend de una aplicación web. Sin embargo, en este proyecto se ha optado por utilizar Django únicamente para el desarrollo del backend, dejando el frontend a cargo de React, pues se considera que es la mejor opción para el desarrollo de aplicaciones web modernas. En cuanto al aspecto más técnico, Django está basado en el modelo MVC (Modelo-Vista-Controlador), un patrón de diseño que separa la lógica en tres componentes principales: el modelo, que se encarga de gestionar los datos; la vista, que se encarga de mostrar los datos al usuario; y el controlador, que se encarga de gestionar la interacción entre el modelo y la vista [10].

El funcionamiento del modelo MVC se representa en la figura 2.3. Para entender mejor este flujo, se puede tomar como ejemplo una acción concreta dentro del proyecto: acceder a la sección de productos de la aplicación. A continuación, se explica paso a paso lo que ocurre en ese proceso:

- 1. **Solicitud del usuario** El usuario accede a la sección de productos desde el *frontend*, ya sea a través de un menú o directamente introduciendo una URL. Esta acción genera una solicitud HTTP que se envía a un *endpoint* del *backend* (paso 1 en la figura).
- 2. Recepción por parte del controlador: El endpoint está vinculado a una función del controlador, que es el encargado de procesar la solicitud. En este caso, el controlador interpreta que se necesita acceder a los datos de los productos y actúa en consecuencia (paso 2).
- 3. Consulta al modelo: El controlador solicita la información al modelo correspondiente, es decir, a los productos. El modelo representa la estructura de datos y contiene la lógica necesaria para interactuar con la base de datos de manera más sencilla y segura

Figura 2.3: Diagrama de flujo del patrón de diseño MVC.

(paso 3).

- 4. **Respuesta del modelo:** El modelo realiza la consulta a la base de datos y devuelve al controlador los datos solicitados, en este caso, la lista de productos (paso 4).
- 5. **Selección de la vista:** Con los datos recibidos, el controlador selecciona la vista adecuada para estructurar la respuesta. Esta vista se encarga de preparar los datos en un formato que el *frontend* pueda interpretar, normalmente JSON (*JavaScript Object Notation*) (paso 5).
- 6. Respuesta al usuario: La vista estructurada en formato JSON se devuelve al controlador, que finalmente la envía como respuesta al usuario. El frontend recibe estos datos y se encarga de representarlos en la interfaz gráfica, mostrando al usuario la información solicitada: los productos (paso 6).

Una mayor profundidad sobre el funcionamiento de los modelos y la base de datos se puede encontrar en la sección 2.3.3 y sobre la comunicación entre el *frontend* y el *backend* en la sección 2.3.4.

2.3.3. Base de datos

La base de datos es una colección de datos electrónicamente almacenados y organizados de manera que se puedan acceder, gestionar y actualizar fácilmente. En el caso de una

aplicación web, la base de datos se utiliza para almacenar toda la información necesaria para el funcionamiento de ésta [11].

Existen distintos tipos de bases de datos, pero las más comunes son las bases de datos relacionales y las bases de datos no relacionales. Las bases de datos relacionales almacenan los datos en tablas, donde cada fila representa un registro y cada columna representa un campo. Este tipo de base de datos es ideal para aplicaciones que requieren una estructura de datos rígida y bien definida. Por otro lado, las bases de datos no relacionales almacenan los datos en formatos más flexibles, como documentos o pares clave-valor. Este tipo de base de datos es ideal para aplicaciones que requieren una estructura de datos más flexible y escalable [12].

En este proyecto se ha optado por utilizar una base de datos relacional, pues la mayoría de los datos que se gestionan son estructurados y requieren una relación entre ellos. Así pues, se ha decidido usar PostgreSQL, un sistema de gestión de bases de datos relacional de código abierto que funciona de manera nativa con Django.

Con el tipo de base de datos definido, es fundamental comprender el funcionamiento básico de una base de datos relacional. Este tipo de base de datos organiza la información en tablas, cada una con un nombre específico. Las tablas están compuestas por un conjunto fijo de columnas, que representan los campos o atributos de los datos, y un conjunto variable de filas, donde cada una corresponde a un registro u objeto dentro de la tabla. Cada fila, es decir, cada registro, tiene un identificador único conocido como clave primaria, que permite distinguirlo de los demás registros de la tabla y relacionarlo con otras tablas a partir de claves foráneas. Las claves foráneas son columnas que establecen una relación entre dos o más tablas, permitiendo que los datos de una tabla se vinculen con los datos de otras. Esto es especialmente útil para representar relaciones entre diferentes entidades dentro de la base de datos, como por ejemplo, la relación entre un pedido, el cliente que lo ha realizado y sus productos asociados, tal como se muestra en la figura 2.4.

Para crear, modificar, eliminar y consultar los datos de una base de datos relacional, se utiliza SQL (Structured Query Language), un lenguaje de programación diseñado específicamente para gestionar bases de datos. SQL permite realizar operaciones como la creación de tablas, la inserción de datos, la actualización de registros y la consulta de información [13]. No

Figura 2.4: Tablas de ejemplo de una base de datos para guardar pedidos.

obstante, realizar consultas SQL directamente puede ser complicado y propenso a errores, especialmente en aplicaciones más complejas. Por este motivo, Django ofrece una capa de abstracción llamado sistema ORM (Object-Relational Mapping), que permite interactuar con la base de datos utilizando objetos y clases de Python en lugar de escribir consultas SQL directamente. De esta manera, con ORM cada tabla de la base de datos es representada por lo que se llama un modelo, que es una clase de Python que define la estructura de la tabla y sus relaciones con otras tablas. Cada instancia de un modelo representa una fila en la tabla correspondiente, y los atributos de la clase representan las columnas de la tabla. Este enfoque se puede ver ejemplificado en la figura 2.5, donde se muestra una consulta SQL y su equivalente en ORM para obtener los campos total y date del registro que tiene customer = 7 de la tabla order.

Figura 2.5: Ejemplo de consulta SQL y su equivalente en ORM para la obtención de dos campos de un registro de una tabla.

2.3.4. API

La API (Application Programming Interface) es un conjunto de mecanismos que permiten la comunicación entre diferentes componentes de software mediante unas definiciones y unos protocolos. En el caso de una aplicación web, la API es la interfaz que permite al frontend comunicarse con el backend y viceversa. Esto significa que cuando el usuario interactúa con el frontend se envían solicitudes a la API (al backend), que las procesa y devuelve una respuesta. No obstante, las API no solo permiten la comunicación entre el frontend y el backend, sino que también permiten la comunicación entre diferentes aplicaciones. Un ejemplo que aplica a este proyecto es la comunicación entre el backend de la aplicación y un marketplace, donde se emplea una API. Para obtener un pedido de un marketplace, el backend debe enviar una solicitud a la API del marketplace y recibe una respuesta con la información del pedido [14].

La arquitectura de una API se entiende en términos de cliente y servidor, de manera que la aplicación que envía la solicitud se llama cliente y la aplicación que recibe y procesa la solicitud se llama servidor. En el ejemplo anterior, el backend actua como cliente y el marketplace actua como servidor.

Sin embargo, las API pueden ser de distintos tipos, dependiendo de cómo se estructuren y cómo se comuniquen. En el caso de este proyecto, se ha optado por utilizar una API REST (Representational State Transfer), que son las más comunes en la actualidad. Una API REST es un tipo de API que utiliza el protocolo HTTP para la comunicación entre el cliente y el servidor, lo que significa que las solicitudes y respuestas se envían a través de HTTP, utilizando principalmente los siguientes métodos para realizar operaciones sobre los recursos:

- **GET:** Se utiliza para obtener información de un recurso. Por ejemplo, si se quiere obtener la lista de productos de la aplicación, se enviaría una solicitud GET a la API con la URL correspondiente.
- POST: Se utiliza para crear un nuevo recurso. Por ejemplo, si se quiere crear un nuevo producto, se enviaría una solicitud POST a la API con la información del producto en el cuerpo de la solicitud.
- PUT: Se utiliza para actualizar un recurso existente. Por ejemplo, si se quiere actua-

lizar la información de un producto, se enviaría una solicitud PUT a la API con la información actualizada en el cuerpo de la solicitud.

- PATCH: Se utiliza para actualizar parcialmente un recurso existente. Por ejemplo, si se quiere actualizar solo el precio de un producto, se enviaría una solicitud PATCH a la API con la información actualizada en el cuerpo de la solicitud.
- DELETE: Se utiliza para eliminar un recurso. Por ejemplo, si se quiere eliminar un producto, se enviaría una solicitud DELETE a la API con la URL del producto a eliminar.

Tal como se puede observar en los ejemplos de cada uno de los métodos, la API REST utiliza URLs para identificar los recursos. Cada recurso tiene una URL única que se utiliza para acceder a él. Por ejemplo, la URL para acceder a la lista de productos podría ser https://api.ejemplo.com/products, mientras que la URL para acceder a un producto específico podría ser https://api.ejemplo.com/products/1, donde el número 1 representa el identificador único del producto. Algunos métodos, como pueden ser el POST y el PATCH incluyen un body, que es el cuerpo de la solicitud, donde se encuentran los datos que se envían en la petición.

Tanto el body como la respuesta de la API acostumbran a estar en formato JSON, un formato basado en texto estructurado de manera que permite representar datos de manera sencilla y legible. En la figura 2.6 se puede ver un ejemplo de una petición a una API REST y la respuesta en formato JSON. En este caso, se está realizando una petición GET a la API para obtener el producto que tiene id = 1, y la respuesta es un objeto JSON que contiene la información de dicho producto.

Figura 2.6: Ejemplo de una petición a una API REST con la correspondiente respuesta en formato JSON.

Por último, es importante destacar los llamados query parameters, que son parámetros que se pueden añadir a la URL para filtrar o modificar la respuesta de la API. Por ejemplo, si se quiere obtener solo los productos que tienen stock, se podría añadir un parámetro a la URL como ?stock=true. Esto permite que la API devuelva solo los productos que cumplen con ese criterio, lo que puede ser útil para optimizar las consultas y reducir la cantidad de datos transferidos. De esta manera, para obtener los productos que están en oferta, la URL de la API podría ser https://api.ejemplo.com/products?stock=true. Esto puede verse en la figura 2.7, donde se muestra un ejemplo de una respuesta a una petición sin y con query parameters. En este caso, la primera respuesta devuelve todos los productos, mientras que la segunda respuesta devuelve solo los productos que tienen un stock superior a 0.

Figura 2.7: Ejemplo de una respuesta a una petición sin y con query parameters.

Capítulo 3

Análisis Comercial y de Competencia

Capítulo 4

Diseño y Desarrollo de la plataforma

En este capítulo se explicará todo el proceso de diseño y desarrollo de la plataforma, dando especial énfasis a la justificación de las decisiones tomadas y a la explicación de los distintos problemas que se han ido encontrando a lo largo del proceso. En concreto, se detallará el diseño de la base de datos, el desarrollo del *backend* y el desarrollo del *frontend*. No obstante, antes de entrar en detalle en cada una de estas secciones, se explicará el proceso inicial de desarrollo de la plataforma y se justificarán las tecnologías elegidas, cumplimentando así la sección 2.3 del capítulo 2.

4.1. Proceso inicial de desarrollo de la plataforma

El desarrollo de la aplicación web no surge de simplemente decidir qué tecnologías se van a utilizar y empezar a programar. Antes de comenzar a desarrollar la plataforma se ha llevado a cabo un proceso de diseño que ha permitido definir la arquitectura del sistema, las tecnologías a utilizar y el flujo de trabajo.

4.1.1. Separación de tecnologías frontend y backend

El primer paso que se ha realizado y una vez ya definido el objetivo de la aplicación y las funcionalidades que se querían implementar, se ha llevado a cabo un análisis de como

estructurar la plataforma. Como ya se ha comentado en la sección 2.3, se ha optado por una arquitectura dividida en dos partes: el backend, incluyendo la base de datos, y el frontend. No obstante, a pesar de que Django ofrece la posibilidad de crear ambas partes, se ha decidido utilizar React. Esta decisión ha supuesto un reto, ya que ha significado realizar un frontend entero además de preparar una API en el backend para que ambos se puedan comunicar. Sin embargo, esta decisión ha permitido crear una aplicación más escalable, flexible y, sobre todo, dinámica.

Django es un framework que funciona del lado del servidor, lo que significa que cada vez que se quiere mostrar una página distinta, el servidor tiene que procesar la petición y devolver la página completa. De esta manera, cuando el usuario cambia de página, el servidor carga todos los recursos (HTML, CSS y JavaScript) y los rellena con los datos necesarios, sirviendo una página estática. Por el contrario, React es un framework que funciona del lado del cliente, lo que significa que el servidor solo tiene que enviar los datos necesarios y el cliente se encarga de mostrar la información. Con esto, el servidor solo tiene que enviar los datos necesarios y el cliente se encarga de mostrar la información. Esto permite crear aplicaciones más dinámicas y rápidas, ya que no es necesario recargar la página cada vez que se quiere mostrar un nuevo contenido.

Este enfoque, a pesar de ser más complejo, es el estándar en la actualidad y es por este motivo que se ha optado por esta división de tecnologías.

4.2. Diseño de la base de datos

Para estructurar el proyecto, se ha optado por empezar definiendo la base de datos.

4.3. Desarrollo del backend

4.4. Desarrollo del frontend

Figura 4.1: Diagrama de la base de datos

Capítulo 5

Conclusiones

Referencias

- 1. ADOBE. What is an Ecommerce Platform? 2021. Disponible también desde: https://business.adobe.com/blog/basics/ecommerce-platforms. Visitado: 22/04/2025.
- 2. SHARETRIBE, Mira Muurinen. What is a marketplace? 2024. Disponible también desde: https://www.sharetribe.com/how-to-build/what-is-a-marketplace/. Visitado: 25/04/2025.
- 3. WIKIPEDIA. Software as a service. 2025. Disponible también desde: https://es.wikipedia.org/wiki/Software_as_a_service. Visitado: 26/04/2025.
- PANWAR, Vijay. Web Evolution to Revolution: Navigating the Future of Web Application Development. *International Journal of Computer Trends and Technology*. 2024, vol. 72, págs. 34-40. Disp. desde DOI: 10.14445/22312803/IJCTT-V72I2P107.
- 5. GENDRA, Mariano. Aplicaciones Web Vs Aplicaciones de Escritorio. 2021. Disponible también desde: https://marianogendra.com.ar/Articulos/aplicaciones-web-vs-escritorio. Visitado: 26/04/2025.
- 6. MAKE ME A PROGRAMMER, Carlos Schults. What Is a Programming Framework? 2022. Disponible también desde: https://makemeaprogrammer.com/what-is-a-programming-framework/. Visitado: 28/04/2025.
- 7. TYPESCRIPT. TypeScript Documentation. 2025. Disponible también desde: https://www.typescriptlang.org/docs/. Visitado: 28/04/2025.
- 8. EDTEAM, Alvaro Felipe Chávez. ¿Qué son los lenguajes tipados y no tipados? (Explicación sencilla). 2022. Disponible también desde: https://ed.team/blog/que-son-los-lenguajes-tipados-y-no-tipados-explicacion-sencilla. Visitado: 28/04/2025.

- 9. SERVICES, Amazon Web. ¿Cuál es la diferencia entre el front end y back end en el desarrollo de aplicaciones? [s.f.]. Disponible también desde: https://aws.amazon.com/es/compare/the-difference-between-frontend-and-backend/. Visitado: 28/04/2025.
- CÓDIGO FACILITO, Uriel Hernández. MVC (Model, View, Controller) explicado.
 2015. Disponible también desde: https://codigofacilito.com/articulos/mvc-model-view-controller-explicado. Visitado: 28/04/2025.
- 11. SERVICES, Amazon Web. What is a database? [s.f.]. Disponible también desde: https://aws.amazon.com/what-is/database/. Visitado: 05/05/2025.
- 12. SERVICES, Amazon Web. What's the Difference Between Relational and Non-relational Databases? [s.f.]. Disponible también desde: https://aws.amazon.com/compare/the-difference-between-relational-and-non-relational-databases/. Visitado: 05/05/2025.
- 13. SERVICES, Amazon Web. ¿Qué es SQL (lenguaje de consulta estructurada)? [s.f.]. Disponible también desde: https://aws.amazon.com/es/what-is/sql/. Visitado: 06/05/2025.
- 14. SERVICES, Amazon Web. ¿Qué es una interfaz de programación de aplicaciones (API)? [s.f.]. Disponible también desde: https://aws.amazon.com/es/what-is/api/. Visita-do: 06/05/2025.