IN6228-1 Teoría de Juegos 2018

Profesor: José Correa.

Auxiliares: Carlos Bonet y Andrés Cristi.

Control 1 27 de Abril de 2018

P1. Considere el juego definido por la matriz de pagos presentada a continuación y responda.

	A	В	С	D
W	4,5	5,4	-1,4	0,0
X	0,0	$4,\!5$	2,-2	5,4
Y	2,2		5,1	-1,-1
\mathbf{Z}	5,4	0,0	3,2	4,5

a) Realice una eliminación iterativa de estrategias estrictamente dominadas. Encuentre todos los equilibrios de Nash del juego.

Considere de ahora en adelante el juego reducido.

- b) Haga dos iteraciones del algoritmo de Lemke-Howson partiendo de $k_0 = 0$ y verifique si encuentra un equilibrio de Nash.
- c) Asuma que el juego es secuencial, comenzado el jugador asociado a las filas. Encuentre los EPS del juego.
- d) Calcule un equilibrio correlacionado en el que el pago de ambos jugadores es estrictamente mayor que en cualquier equilibrio de Nash.

P2. Hotelling Game

Dos cadenas de comida rápida quieren instalar locales en una playa de creciente popularidad y deben decidir en qué lugar. Representamos la playa por el intervalo [0,1] y las posiciones de los locales como $x,y\in[0,1]$. Los potenciales clientes, que son infinitesimalmente pequeños, se distribuyen uniformemente en la playa y simplemente eligen la tienda más cercana. Si las dos son igualmente cercanas, entonces una mitad va a una y la otra mitad a la otra tienda. Cada cadena gana según la masa de clientes que capta. Si entonces x=1/3,y=1, todos los clientes en $\left[0,\frac{2}{3}\right]$ van a la cadena 1, la que tiene una ganancia de 2/3 y los clientes en $\left(\frac{2}{3},1\right]$ van a la cadena 2 que tiene una ganancia de 1/3.

- a) Escriba las funciones de utilidad de las cadenas y muestre que no son continuas, por lo que no aplican los teoremas de existencia de equilibrio.
- b) Pruebe que $(x,y) = (\frac{1}{2}, \frac{1}{2})$ es un EN.
- c) Pruebe que $(\frac{1}{2},\frac{1}{2})$ es el único equilibrio en estrategias puras.
- d) Pruebe que $(\frac{1}{2}, \frac{1}{2})$ es el único equilibrio en estrategias mixtas.
- e) Pruebe que si en vez de dos hay tres cadenas que quieren poner una tienda entonces no hay equilibrio en estrategias puras.

P3. Juegos en Redes

a) Consideremos un juego secuencial entre dos jugadores. En la siguiente red ambos jugadores escogen un camino de s a t, uno después del otro.

Calcule el óptimo social, el equilibrio de Nash y el equilibrio perfecto en subjuegos. Compare los precios de la anarquía de ambos casos.

b) Considere nuevamente un juego secuencial en que n jugadoras quieren atravesar de s a t en un grafo de m arcos paralelos. Cada jugadora debe elegir un arco e y su costo es una función creciente $c_e(x_e)$, con x_e el número de jugadoras que eligen e. Probaremos que existe un EPS que corresponde a un equilibrio de Nash.

Para ello considere un EPS.

- I Pruebe que, dadas las acciones de las n-1 primeras jugadoras, la última jugadora elige una acción en la que no tiene incentivo a desviarse (juega como si fuera Nash).
- II Procediendo por induccion, asuma que dadas las acciones de las primeras k jugadoras, las últimas n-k escogen acciones tal que el perfil de estrategias es un equilibrio de Nash. Pruebe que demostrar que la jugadora k tampoco tiene incentivo a desviarse es equivalente a demostrar que la primera jugadora no tiene incentivo a desviarse cuando las últimas n-1 escogen acciones cuyo perfil de estrategias es un equilibrio de Nash.
- III Por lo anterior falta demostrar que si las últimas n-1 jugadoras escogen acciones cuyo perfil de estrategias es un equilibrio de Nash entonces la primera también lo hace. Para ello suponga que en el EPS la jugadora 1 juega la acción e y suponga además que alguna de las jugadoras restantes tambien juega e. Concluya que en este caso la jugadora 1 no tiene incentivo a desviarse.
- IV Finalmente suponga que ninguna de las ultimas n-1 jugadoras escoge la acción e y por contradicion sea f el arco al que la jugadora 1 tiene incentivo a desviarse . Sea x_g la carga del arco g cuando 1 juega e, y sea y_g la carga del arco g cuando 1 juega f. Considere el potencial de Rosenthal $\phi(z) = \sum_g \sum_{i=1}^{z_g} c_g(i)$. BONUS: Pruebe que el valor óptimo (mínimo restringido a $\sum_g z_g = n$) de este potencial es único.
- V Use el potencial anterior para probar que $y_e = 0$. Concluya que el costos para el jugador 1 cuando juega la acción f es menor igual que cuando juega la acción e, es decir, $c_f(y_f) \le c_e(x_e)$ y concluya.