Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently Amended) A compound of the formula (I), or a pharmaceutically-acceptable salt, or an in-vivo-hydrolysable ester thereof,

wherein in (I) C is a biaryl group C'-C"

where C' and C" are independently aryl or heteroaryl rings such that the group C is represented by:

$$\begin{bmatrix} R_3 \mathbf{a} & R_2 \mathbf{a} & R_2 \mathbf{b} \\ R_5 \mathbf{a} & R_6 \mathbf{a} & R_6 \mathbf{b} \end{bmatrix}$$

wherein A and B are independently selected from

wherein i) and/or ii) are linked as shown in (I) via the 3-position to group C and substituted in the 5-position as shown in (I) by $-CH_2-R_1a$ and $-CH_2-R_1b$;

R₂b and R₆b are independently selected from H, F, Cl, OMe, Me, Et and CF₃;

R₂a and R₆a are independently selected from H, Br; F, Cl, OMe, SMe; Me, Et and CF₃;

 R_3 a and R_5 a are independently selected from H, (1-4C)alkyl, Br, F, Cl, OH, (1-4C)alkoxy, $-S(O)_n(1-4C)$ alkyl (wherein n = 0,1,or 2), amino, (1-4C)alkylcarbonylamino, nitro, cyano, -CHO, -CO(1-4C) alkyl, -CONH₂ and -CONH(1-4C)alkyl;

wherein any (1-4C)alkyl group may be optionally substituted with F, OH, (1-4C)alkoxy, $-S(O)_n(1-4C)$ alkyl (wherein n = 0,1,or 2) or cyano;

wherein at least one of R₃a and R₅a is not H;

 R_1a and R_1b are independently selected from hydroxy, -OSi(tri-(1-6C)alkyl) (wherein the 3 (1-6C)alkyl groups are independently selected from all possible (1-6C)alkyl groups), -NR₅C(=W)R₄, -OC(=O)R₄,

a) R5
$$R_{5}$$
 R_{7} R_{7} R_{6} R_{6}

wherein W is O or S;

 R_4 is hydrogen, amino, (1-8C)alkyl, -NHR₁₂, -N(R₁₂)(R₁₃), -OR₁₂ or -SR₁₂, (2-4C)alkenyl, (1-8C)alkylaryl, mono-, di-, tri- and per-halo(1-8C)alkyl, -(CH₂)p(3-6C)cycloalkyl or -(CH₂)p(3-6C)cycloalkenyl wherein p is 0, 1 or 2; and wherein at each occurrence, alkyl, alkenyl, cycloalkyl cycloalkenyl in substituents in R_4 is optionally substituted with one, two, three or more F, Cl or CN;

 R_5 is hydrogen, (3-6C)cycloalkyl, phenyloxycarbonyl, tert-butoxycarbonyl, fluorenyloxycarbonyl, benzyloxycarbonyl, (1-6C)alkyl (optionally substituted by cyano or (1-4C)alkoxycarbonyl), $-CO_2R_8$, $-C(=O)R_8$, $-C(=O)SR_8$, $-C(=S)R_8$, $P(O)(OR_9)(OR_{10})$ and $-SO_2R_{11}$, wherein R_8 , R_9 , R_{10} and R_{11} are as defined hereinbelow;

HET-1 is selected from HET-1A and HET-1B wherein:

HET-1A is a C-linked 5-membered heteroaryl ring containing 2 to 4 heteroatoms independently selected from N, O and S; which ring is optionally substituted on a C atom by an oxo or thioxo group; and/or which ring is optionally substituted on any available C atom by one or two substituents selected from RT as hereinafter defined and/or on an available nitrogen atom, (provided that the ring is not thereby quaternised) by (1-4C)alkyl;

HET-1B is a C-linked 6-membered heteroaryl ring containing 2 or 3 nitrogen heteroatoms, which ring is optionally substituted on a C atom by an oxo or thioxo group; and/or which ring is optionally substituted on any available C atom by one, two or three substituents

selected from RT as hereinafter defined and/or on an available nitrogen atom, (provided that the ring is not thereby quaternised) by (1-4C)alkyl;

HET-2 is HET-2A wherein

HET- 2A is an N-linked 5-membered, fully or partially unsaturated heterocyclic ring, containing either (i) 1 to 3 further nitrogen heteroatoms or (ii) a further heteroatom selected from O and S together with an optional further nitrogen heteroatom; which ring is optionally substituted on a C atom, other than a C atom adjacent to the linking N atom, by an oxo or thioxo group; and/or which ring is optionally substituted on any available C atom, other than a C atom adjacent to the linking N atom, by a substituent selected from RT as hereinafter defined and/or on an available nitrogen atom, other than a N atom adjacent to the linking N atom, (provided that the ring is not thereby quaternised) by (1-4C)alkyl;

RT is selected from

- (a) hydrogen;
- (b) halogen;
- (c) cyano;
- (d) (1-4C)alkyl;
- (e) monosubstituted (1-4C)alkyl;
- (f) disubstituted (1-4C)alkyl, and
- (g) trisubstituted (1-4C)alkyl.

 R_8 is hydrogen, (3-6C)cycloalkyl, phenyl, benzyl, (1-5C)alkanoyl, (1-6C)alkyl (optionally substituted by substituents independently selected from (1-5C)alkoxycarbonyl, hydroxy, cyano, up to 3 halogen atoms and -NR₁₅R₁₆ (wherein R₁₅ and R₁₆ are independently selected from hydrogen, phenyl (optionally substituted with one or more substituents selected from halogen, (1-4C)alkyl and (1-4C)alkyl substituted with one, two, three or more halogen atoms) and (1-4C)alkyl (optionally substituted with one, two, three or more halogen atoms), or for any N(R₁₅)(R₁₆) group, R₁₅ and R₁₆ may additionally be taken together with the nitrogen atom to which they are attached to form a pyrrolidinyl, piperidinyl or morpholinyl ring);

 R_9 and R_{10} are independently selected from hydrogen and (1-4C)alkyl;

 R_{11} is (1-4C)alkyl or phenyl;

 R_{12} and R_{13} are independently selected from hydrogen, phenyl (optionally substituted with one or more substituents selected from halogen, (1-4C)alkyl and (1-4C)alkyl substituted with one, two, three or more halogen atoms) and (1-4C)alkyl (optionally substituted with one, two, three or more halogen atoms), or for any $N(R_{12})(R_{13})$ group, R_{12} and R_{13} may additionally be taken together with the nitrogen atom to which they are attached to form a pyrrolidinyl,

piperidinyl or morpholinyl ring which ring may be optionally substituted by a group selected from (1-4C)alkyl, (1-4C)cycloalkyl, (1-4C)acyl, -COO(1-4C)alkyl, S(O)n(1-4C)alkyl (wherein n = 1 or 2), -CS(1-4C)alkyl and -C(=S)O(1-4C)alkyl.

- 2. (Cancelled)
- 3. (Cancelled)
- 4. (Cancelled)
- 5. (Previously Presented) A compound of claim $\underline{1}$ wherein R_3 a is methoxy, methyl or fluoro and R_5 a is hydrogen.
- 6. (Previously Presented) A compound of claim $\underline{1}$ wherein R_3a is methoxy, methyl or fluoro and R_2a and R_6a are hydrogen; or R_3a and R_2a are hydrogen and R_6a is methyl or methoxy.
- 7. (Previously Presented) A compound of claim 1 wherein R_1 a and R_1 b are independently selected from -NHCO(1-4C)alkyl, -NHCO(1-4C)cycloalkyl, -NHCS(1-4C)alkyl, -N(R_5)-HET-1 and HET-2.
- 8. (Previously Presented) A compound of claim 1 wherein R_1 a and R_1 b are independently selected from hydroxy, -NHCO(1-4C)alkyl, and HET-2.
- 9. (Previously Presented) A compound of claim 1 wherein HET-2A is selected from the structures (Za) to (Zf) below:

wherein u and v are independently 0 or 1.

- 10. (Cancelled)
- 11. (Previously Presented) A compound of claim 1 wherein at least one of A and B is an oxazolidinone.
- 12. (Previously Presented) A compound of claim 1 wherein both A and B are oxazolidinones.
- 13. (Previously Presented) A compound of claim 1 having the formula (Ia)

$$R_1a$$

$$A$$

$$C$$

$$B$$

$$R_1b$$
(la)

- 14. (Cancelled)
- 15. (Previously Presented) A method for producing an antibacterial effect in a warm blooded animal which comprises administering to said animal an effective amount of a compound of claim 1.
- 16. Cancelled.

17. Cancelled.

- 18. (Previously Presented) A pharmaceutical composition which comprises a compound of claim 1 and a pharmaceutically-acceptable diluent or carrier.
- 19. (Original) A process for the preparation of a compound of formula (I) as claimed in claim 1 or pharmaceutically acceptable salts or in-vivo hydrolysable esters thereof, which process comprises one of processes (a) to (h); and thereafter if necessary:
- i) removing any protecting groups;
- ii) forming a pro-drug (for example an in-vivo hydrolysable ester); and/or
- iii) forming a pharmaceutically-acceptable salt; wherein said processes (a) to (h) are:
- (a) modifying a substituent in, or introducing a substituent into another compound of the invention by using standard chemistry;
- (b) reaction of a molecule of a compound of formula (IIa) with a molecule of a compound of formula (IIb), wherein X and X' are leaving groups useful in palladium coupling and are chosen such that an aryl-aryl, heteroaryl-aryl, or heteroaryl-heteroaryl bond replaces the aryl-X (or heteroaryl-X) and aryl-X' (or heteroaryl-X') bonds;

c) reaction of a (hetero)biaryl derivative (IIIa) or (IIIb) carbamate with an appropriately substituted oxirane to form an oxazolidinone ring at the undeveloped aryl position

or by variations on this process in which the carbamate is replaced by an isocyanate or by an amine or/and in which the oxirane is replaced by an equivalent reagent X-CH₂CH(O-optionally protected)CH₂R₁a or X-CH₂CH(O-optionally protected)CH₂R₁b where X is a displaceable group; d) reaction of a (hetero)biaryl derivative (IVa) or (IVb) to form an isoxazoline ring at the undeveloped aryl position;

OHC C B
$$H_2N$$
-OH $HO-N$ H C B R_1b R_1a R_1a R_1a R_1a R_1a R_1a R_1a R_1a R_1a R_1b R_1a R_1b R_1a R_1b R_1b

or by variations on this process in which the reactive intermediate (a nitrile oxide IVa" or IVb") is obtained other than by oxidation of an oxime (IVa') or (IVb');

$$\begin{bmatrix} O^- N^{\stackrel{+}{=}} C - C \\ O^- N^{\stackrel{+}{=}} C - C \end{bmatrix} \begin{bmatrix} A \\ R_1 A \\ (IVa'') \end{bmatrix}$$

$$(IVb'')$$

- (e) for HET as optionally substituted 1,2,3-triazoles, compounds of the formula (I) by cycloaddition via the azide to acetylenes, or to acetylene equivalents such as optionally substituted cylcohexa-1,4-dienes or optionally substituted ethylenes bearing eliminatable substituents such as arylsulfonyl;
- (f) for HET as 4-substituted 1,2,3-triazole compounds of formula (I) by reacting aminomethyloxazolidinones with 1,1-dihaloketone sulfonylhydrazones

$$\begin{array}{c|c} & & & & \\ & &$$

- (g) for HET as 4-substituted 1,2,3-triazole compounds of formula (I), by reacting azidomethyl oxazolidinones with terminal alkynes using Cu(I) catalysis to give 4-substituted 1,2,3-triazoles
- (h) for HET as 4-halogenated 1,2,3-triazole compounds of formula (I) may also be made by reacting azidomethyl oxazolidinones with halovinylsulfonyl chlorides at a temperature between 0 °C and 100 °C either neat or in an inert diluent, as shown below

- 20. (Original) A pharmaceutical composition as claimed in claim 18, wherein said composition includes a vitamin.
- 21. (Original) A pharmaceutical composition as claimed in claim 20 wherein said vitamin is Vitamin B.
- 22. (Original) A pharmaceutical composition as claimed in claim 18, wherein said composition comprises a combination of a compound of the formula (I) and an antibacterial agent active against gram-positive bacteria.
- 23. (Original) A pharmaceutical composition as claimed in claim 18, wherein said composition comprises a combination of a compound of the formula (I) and an antibacterial agent active against gram-negative bacteria.