BIOS27815: Infectious Diseases

Introduction to Vector-Borne Diseases

UChicago Center in Paris
Paris, France
January 2025

Goals for this lecture

- To introduce vector-borne diseases (VBD) broadly
- To introduce arboviruses specifically
- To describe the role of climate change in the expansion of arboviruses

Goals for this lecture

- To introduce vector-borne diseases (VBD) broadly
- To introduce arboviruses specifically
- To describe the role of climate change in the expansion of arboviruses

Mechanisms of disease transmission

- Directly-transmitted diseases transmitted via exchange of bodily fluids
 - Droplet (> 5 microns) spread or direct contact, includes sexually-transmitted pathogens
 - Ex: Smallpox (Variola spp.), HIV, Mononucleosis (Epstein Barr virus)
- Indirectly-transmitted diseases transmitted via droplets retained in air
 - Droplets < 5 microns in diameter
 - Ex: Measles, COVID (SARS-CoV-2)
- Vertically-transmitted pathogens transmitted mother-to-child in utero
 - Ex: HIV, Herpes simplex virus, Cytomegalovirus, Rubella, Zika
- Environmentally-transmitted pathogens transmitted outside host (e.g. water, food)
 - Ex: Cholera (Vibrio cholerae), Salmonellosis (Salmonella spp. bacteria)
- **Vector-borne** diseases (a type of indirect transmission) are transmitted via blood-feeding arthropod (mosquitoes, ticks, fleas)
 - Ex: malaria, arboviruses (dengue, yellow fever), sleeping sickness, plague

- **Vector-borne** diseases (a type of indirect transmission) are transmitted via blood-feeding arthropod (mosquitoes, ticks, fleas)
 - Euclidean vector: a quantity with a magnitude and direction

 Epidemiological vector: an agent that carries and transmits an infectious patient into another living organism

- **Vector-borne** diseases (a type of indirect transmission) are transmitted via blood-feeding arthropod (mosquitoes, ticks, fleas)
 - Malaria: Mosquito-borne protozoan Plasmodium spp.
 - "Arboviruses": Mosquito-borne viruses, including Dengue, Zika, Yellow fever virus, West Nile virus, Chikungunya virus
 - Sleeping sickness, also known as African trypanosomiasis: tsetse fly vector and protozoan pathogen (trypanosome)
 - Chagas disease: kissing bug vector and trypanosome pathogen
 - Plague: flea vector and bacterial pathogen (Yersinia pestis)

- **Vector-borne** diseases (a type of indirect transmission) are transmitted via blood-feeding arthropod (mosquitoes, ticks, fleas)
 - Malaria: Mosquito-borne protozoan Plasmodium spp.
 - "Arboviruses": Mosquito-borne viruses, including Dengue, Zika, Yellow fever virus, West Nile virus, Chikungunya virus
 - Sleeping sickness, also known as African trypanosomiasis: tsetse fly vector and protozoan pathogen (trypanosome)
 - Chagas disease: kissing bug vector and trypanosome pathogen
 - Plague: flea vector and bacterial pathogen (Yersinia pestis)

Plague is BOTH vectorborne and zoonotic!

- **Vector-borne** diseases (a type of indirect transmission) are transmitted via blood-feeding arthropod (mosquitoes, ticks, fleas)
 - Malaria: Mosquito-borne protozoan *Plasmodium spp.*
 - "Arboviruses": Mosquito-borne viruses, including Dengue, Zika, Yellow fever virus, West Nile virus, Chikungunya virus
 - Sleeping sickness, also known as African trypanosomiasis: tsetse fly vector and protozoan pathogen (trypanosome)
 - Chagas disease: kissing bug vector and trypanosome pathogen
 - Plague: flea vector and bacterial pathogen (Yersinia pestis)

4 main human *Plasmodium* parasites (falciparum, vivax, malariae, ovalae).

Malaria

Over 200 Plasmodium spp. globally, infecting birds, reptiles, and other mammals (rodents, bats, primates)

Guerra et al. 2006. Trends in Parasitology

• 4 main human *Plasmodium* parasites (falciparum, vivax, malariae, ovalae).

Malaria

• Over 200 *Plasmodium* spp. globally, infecting birds, reptiles, and other mammals (rodents, bats, primates)

Guerra et al. 2006. Trends i, mosquito vectors are feeding at dusk!

Malaria has also shaped human DNA.

Duffy antigen

Guerra et al. 2006. *Trends in Parasitology* Howes et al 2011. *Nature Communications.*

Modeled

of Duffy-

negative

population

human

distribution

Malaria

- 4 main human *Plasmodium* parasites (falciparum, vivax, malariae, ovalae).
- Over 200 *Plasmodium* spp. globally, infecting birds, reptiles, and other mammals (rodents, bats, primates)
- >400 global species of Anopheles mosquito, >100 that can transmit human malaria
- ~30-40 Anopheles spp. most commonly implicated in human malaria transmission!

Malaria

- 4 main human *Plasmodium* parasites (falciparum, vivax, malariae, ovalae).
- Over 200 Plasmodium spp. globally, infecting birds, reptiles, and other mammals (rodents, bats, primates)
- >400 global species of Anopheles mosquito, >100 that can transmit human malaria
- ~30-40 *Anopheles* spp. most commonly implicated in human malaria transmission!

Malaria has been eliminated from many regions where it was previously endemic, including the US.

Still one of the leading causes of child mortality globally – responsible for about half a million childhood deaths a year, 80% in Africa.

Goals for this lecture

- To introduce vector-borne diseases (VBD) broadly
- To introduce arboviruses specifically
- To describe the role of climate change in the expansion of arboviruses

- **Vector-borne** diseases (a type of indirect transmission) are transmitted via blood-feeding arthropod (mosquitoes, ticks, fleas)
 - Malaria: Mosquito-borne protozoan Plasmodium spp.
 - "Arboviruses": Mosquito-borne viruses, including Dengue, Zika, Yellow fever virus, West Nile virus, Chikungunya virus.
 Arbovirus is not a phylogenetic term!
 - Sleeping sickness, also known as African trypanosomiasis: tsetse fly vector and protozoan pathogen (trypanosome)
 - Chagas disease: kissing bug vector and trypanosome pathogen
 - Plague: flea vector and bacterial pathogen (Yersinia pestis)

Arboviruses infect a wide range of hosts and vectors

Is flavivirus pathogenesis correlated with vector identity?

Dengue vaccines

- Two licensed vaccines in circulation both tetravalent live attenuated vaccines which confer immunity to all 4 serotypes simultaneously
- Dengvaxia by Sanofi Pasteur
 - First licensed in 2016 but controversy developed after severe cases developed in those who were previously naïve in Philippines
 - Now recommended only in those who test seropositive
 - This policy has greatly diminished demand. Vaccine no longer widely used.
- Qdenga TAK-003 by Takeda
 - Pre-qualified for use in May 2024
 - Appears to be efficacious in both seronegative/seropositive individuals, though is ineffective at preventing infection for DENV-3/4 in seronegatives and lack of enhanced pathogenicity cannot be ruled out.
 - WHO recommends use in children 6-16 in high transmission settings only at this stage.
- NIH NIAID vaccine TV005 also showing promise but not yet licensed.

Global distribution of Aedes aegypti

Global distribution of Aedes albopictus

Detailed probability of occurrence of *Aedes albopictus* in Europe and US, areas where the mosquito is most rapidly expanding its range

Dengue fever infections, 2019

Estimated annual number of new dengue infections. Dengue is a viral infection transmitted through the bite of infected mosquitoes; symptoms include fever, headaches, and nausea. Most infections are asymptomatic or mild, but dengue can occasionally be severe or fatal.

Zika is also vectored by Aedes aeygpti and its relatives

Goals for this lecture

- To introduce vector-borne diseases (VBD) broadly
- To introduce arboviruses specifically
- To describe the role of climate change in the expansion of arboviruses

Arboviruses and climate change

- Mosquito development rates are highly sensitive to temperature.
- As a result, many arboviruses are climate-constrained in distribution but ranges are expanding with climate change.

Thermal performance curves for *Aedes aegypti*

Different vectors respond to temperature in different ways.

Mordecai et al 2017. PLoS NTDs.

These vector differences have important consequences for disease dynamics.

These vector differences have important consequences for disease dynamics.

