

Semantic Consistent Topic Discovery with Differential Privacy

Yexuan Shi¹, Zhiyang Su², Di Jiang³, Zimu Zhou⁴, Wenbin Zhang¹, Yongxin Tong¹

¹ Beihang University, Beijing, China

² Hong Kong University of Science and Technology, Hong Kong SAR, China

³ WeBank, Shenzhen, China

⁴ ETH Zurich, Zurich, Switzerland

Outline

Background

Solution

Experiments

Conclusion

Background: Topic Modeling

- Understanding the topics of documents is important for many tasks:
 - Tag recommendation
 - Text categorization
 - Opinion mining
 - Statistical language modeling
 - ...

Background: Topic Modeling

- Understanding the topics of documents is important for many tasks:
 - Tag recommendation
 - Text categorization
 - Opinion mining
 - Statistical language modeling
 - ...
- Topic modeling is a powerful technique for the above applications.

Background: Topic Modeling

- Topic modeling: model the generation of documents with latent topic structure
 - A topic ~ a distribution over words
 - A document ~ a mixture of topics
 - A word ~ a sample drawn from one topic

Background: Privacy Issue

- The General Data Protection Regulation (GDPR), enacted by the European Union, aims primarily to give control to residents over their private data.
- Typical topic modeling does not consider the privacy issue, which may violate the GDPR.

For every pair of inputs that differ in one row

For every output

0

• Basic idea: adversary should not be able to distinguish between any D_1 and D_2 on any O

For every pair of inputs that differ in one row

For every output

- Basic idea: adversary should not be able to distinguish between any D_1 and D_2 on any O
- Definition: mechanism M is (ϵ, δ) -differential private if

$$\Pr[M(D_1) = O] \le e^{\epsilon} \Pr[M(D_2) = O] + \delta$$

Dwork, C. (2006). Differential privacy. *International Colloquium on Automata Languages and Programming*.

For every pair of inputs that differ in one row

For every output

- Basic idea: adversary should not be able to distinguish between any D_1 and D_2 on any O
- Definition: mechanism M is (ϵ, δ) -differential private if Smaller the ϵ , more the privacy

$$\Pr[M(D_1) = O] \le e^{\epsilon} \Pr[M(D_2) = O] + \delta$$

Dwork, C. (2006). Differential privacy. *International Colloquium on Automata Languages and Programming*.

Randomized noise

Dwork, C. (2006). Differential privacy. *International Colloquium on Automata Languages and Programming*.

Background: Challenges

 Differential privacy (DP) introduces noise into topic models. It may degrade the accuracy of topic models.

Background: Challenges

 Differential privacy (DP) introduces noise into topic models. It may degrade the accuracy of topic models.

 The challenge is how to provide a reasonable degree of privacy while retaining the accuracy of topic modeling.

Background: Challenges

 Differential privacy (DP) introduces noise into topic models. It may degrade the accuracy of topic models.

- The challenge is how to provide a reasonable degree of privacy while retaining the accuracy of topic modeling.
- Solution: Private and Consistent Topic Discovery (PC-TD)

Outline

Background

Solution

Experiments

Conclusion

Overview

- A generative model to discover the topics of documents.
 - Local semantic consistency: semantic units
 - Global semantic consistency: word similarity

Local Semantic Consistency

 Basic idea: Several consecutive words should belong to the same topic

Local Semantic Consistency

- Semantic unit:
 - A semantic unit is a series of words generated by a single topic
 - It can be flexibly interpreted as:
 - N-gram
 - Sentence
 - Paragraph
 - 0 ...
 - A bi-gram example: (each color represent a topic)

Model Assumption

- Generation process:
 - 1. Select a document d_i with probability $p(d_i)$;
 - 2. For each semantic unit s_{ij} in d_i , pick a latent topic z_k with probability $p(z_k|d_i)$;
 - 3. For each position in s_{ij} , generate a word ω with probability $p(\omega|z_k)$.

Model Assumption

- Generation process:
 - 1. Select a document d_i with probability $p(d_i)$;
 - 2. For each semantic unit s_{ij} in d_i , pick a latent topic z_k with probability $p(z_k|d_i)$;
 - 3. For each position in s_{ij} , generate a word ω with probability $p(\omega|z_k)$.
- Complete data logarithm likelihood:

$$L(\mathbf{d}, \mathbf{s}, \mathbf{z}) = \sum_{i=1}^{D} \sum_{j=1}^{S_i} \sum_{k=1}^{Z} \log p(d_i, s_{ij}, z_k)$$

$$= \sum_{i=1}^{D} \sum_{j=1}^{S_i} \sum_{k=1}^{Z} \log \left(p(d_i) p(z_k | d_i) p(s_{ij} | z_k) \right)$$

D: number of documents

 S_i : number of semantic units in the i-th document

Z: number of topics

• The posterior estimation of the latent topic z_k of semantic unit s_{ij} in document d_i :

$$p(z_k|d_i, s_{ij}) = \frac{p(z_k|d_i)p(s_{ij}|z_k)}{\sum_{k'=1}^{Z} p(z_{k'}|d_i)p(s_{ij}|z_{k'})}$$

$$p(s_{ij}|z_k) = \prod_{\omega=1}^W p(\omega|z_k)^{N_{ij\omega}}$$

 $N_{ij\omega}$ is the number of ω in s_{ij}

• The posterior estimation of the latent topic z_k of semantic unit s_{ij} in document d_i :

•
$$p(z_k|d_i, s_{ij}) = \frac{p(z_k|d_i)p(s_{ij}|z_k)}{\sum_{k'=1}^{Z} p(z_{k'}|d_i)p(s_{ij}|z_{k'})}$$

$$p(s_{ij}|z_k) = \prod_{\omega=1}^W p(\omega|z_k)^{N_{ij\omega}}$$

- $N_{ij\omega}$ is the number of ω in s_{ij}
- Which term will access the training data?

• The posterior estimation of the latent topic z_k of semantic unit s_{ij} in document d_i :

•
$$p(z_k|d_i, s_{ij}) = \frac{p(z_k|d_i)p(s_{ij}|z_k)}{\sum_{k'=1}^{Z} p(z_{k'}|d_i)p(s_{ij}|z_{k'})}$$

$$p(s_{ij}|z_k) = \prod_{\omega=1}^W p(\omega|z_k)^{N_{ij\omega}}$$

- $N_{ij\omega}$ is the number of ω in s_{ij}
- Which term will access the training data?
 - $N_{ij\omega}$

- Apply DP mechanism to counting $N_{ij\omega}$
 - Add Gaussian noise to $N_{ij\omega}$: $(\Delta N = 1)$

$$\hat{N}_{ijw} = N_{ijw} + \Omega \qquad \Omega \sim \mathcal{N}(0, (\Delta N)^2 \sigma^2)$$

- Apply DP mechanism to counting $N_{ij\omega}$
 - Add Gaussian noise to $N_{ij\omega}$: $(\Delta N = 1)$

$$\hat{N}_{ijw} = N_{ijw} + \Omega \qquad \Omega \sim \mathcal{N}(0, (\Delta N)^2 \sigma^2)$$

The perturbed posterior estimation:

$$\hat{r}_{ijk} = \hat{p}(z_k|d_i, s_{ij})$$

$$= \frac{p(z_k|d_i) \prod_{w=1}^{W} p(w|z_k)^{\hat{N}_{ijw}}}{\sum_{k'=1}^{Z} p(z_{k'}|d_i) \prod_{w'=1}^{W} p(w'|z'_k)^{\hat{N}_{ijw}}}$$

 The maximization of expected logarithm likelihood leads to:

$$p(z_k|d_i) = \frac{\sum_{j=1}^{S_i} \hat{r}_{ijk}}{\sum_{j=1}^{S_i} \sum_{k'=1}^{Z} \hat{r}_{ijk'}}$$
$$p(w|z_k) = \frac{\sum_{i=1}^{D} \sum_{j=1}^{S_i} N_{ijw} \hat{r}_{ijk}}{\sum_{i=1}^{D} \sum_{j=1}^{S_i} N_{ij} \hat{r}_{ijk}}$$

 The maximization of expected logarithm likelihood leads to:

$$p(z_k|d_i) = \frac{\sum_{j=1}^{S_i} \hat{r}_{ijk}}{\sum_{j=1}^{S_i} \sum_{k'=1}^{Z} \hat{r}_{ijk'}}$$

$$p(z_k|d_i) = \frac{\sum_{j=1}^{S_i} \sum_{j=1}^{Z} \hat{r}_{ijk'}}{\sum_{j=1}^{D} \sum_{j=1}^{S_i} N_{ijw} \hat{r}_{ij}}$$

$$p(w|z_k) = \frac{\sum_{i=1}^{D} \sum_{j=1}^{S_i} N_{ijw} \hat{r}_{ijk}}{\sum_{i=1}^{D} \sum_{j=1}^{S_i} N_{ij} \hat{r}_{ijk}}$$

• The same as E-step, we add noise to $N_{ij\omega}$ and get the perturbed $\hat{P}(\omega|z_k)$:

$$\hat{p}(w|z_k) = \frac{\sum_{i=1}^{D} \sum_{j=1}^{S_i} \hat{N}_{ijw} \hat{r}_{ijk}}{\sum_{i=1}^{D} \sum_{j=1}^{S_i} \hat{r}_{ijk} \sum_{w=1}^{W} \hat{N}_{ijw}}$$

Analysis of Privacy

We use the *Moments Accountant* (MA) composition method to account the privacy loss incurred by iterations of our EM algorithm.

Theorem 1. For any $\epsilon < \Theta(T)$, PC-TD is (ϵ, δ) -differentially private for any $\delta > 0$ if we choose

$$\sigma \ge \Theta\left(\frac{\sqrt{T\log(1/\delta)}}{\epsilon}\right)$$

Global Semantic Consistency

 Basic idea: The words with similar meanings should belong to the same topic.

Global Semantic Consistency

 Basic idea: The words with similar meanings should belong to the same topic.

 Use word embedding to represent the words to vectors.

• The similarity of two words a and b can be calculated by cosine similarity.

$$R_{ab} = \frac{v_a \cdot v_b}{||v_a||_2 ||v_b||_2}.$$

Global Semantic Consistency

• For a given similarity matrix R, we adjust the topic-word distribution $P(\omega|z_k)$ as:

$$p'(w|z_k) \leftarrow p(w|z_k) + \tau \frac{p(w|z_k) \sum_{i=1}^{W} R_{iw} p(i|z_k)}{P(\cdot|z_k)^T R P(\cdot|z_k)}$$

τ is a hyperparameter.

Outline

Background

Solution

Experiments

Conclusion

Experiments: Setup

- Dataset:
 - New York Times, June 26th-30th, 2016
 - 500 documents
 - 18,286 unique words
- Compared Algorithms:
 - PC-TD ($\tau = 0.3$)
 - LDA($\alpha = Z/50, \beta = 0.01$)

Experiments: Metric

- We use the perplexity of documents to evaluate the performance of topic models.
- Perplexity =

$$\exp\left(-\frac{1}{\sum_{i=1}^{D}|d_{i}|}\sum_{i=1}^{D}\sum_{w\in d_{i}}\ln(\sum_{k=1}^{Z}p(w|z_{k})p(z_{k}|d_{i}))\right)$$

Experiments: Result

- Convergence curves of varying σ
 - the smaller the privacy budget is, the more slowly the algorithm converges.

Experiments: Result

- Perplexity of varying number of topics
 - As the amount of topics increases, the perturbed PC-TD performs gradually better than LDA.

Outline

Background

Solution

Experiments

Conclusion

Conclusion

 We propose PC-TD to discover latent topics with semantic consistency and privacy guarantee.

 We propose a differential private parameter inference algorithm for PC-TD to ensure the privacy of sensitive documents.

 Experiments on a corpus collected from New York Times show that the proposed method outperforms the conventional LDA.

Q & A

Thank You