<u>Аксиоматика действительных чисел. Элементарные свойства действительных чисел. Два</u> неравенства треугольника для модуля.

Определение:

Операция на множестве X есть отображение (=правило) F, которое каждой паре чисел x, $y \in X$ ставит в соответствие некоторый один $F(x, y) \in X$.

Примеры:

- **1)** $F = + \text{ Ha } \mathbb{Q}: x, y \in \mathbb{Q} \to + (x, y) \equiv x + y \in \mathbb{Q}$
- **2)** $F = * Ha \mathbb{Q}: x, y \in \mathbb{Q} \rightarrow * (x, y) \equiv x*y \in \mathbb{Q}$

Определение:

Множеством вещественных чисел (\mathbb{R}) называется множество в котором выполняются следующие аксиомы.

1. Аксиомы сложения

На ${\mathbb R}$ определена операция «+» которая называется операцией сложения, такая что

- **1.1** \forall x, y, z ∈ \mathbb{R} : (x+y)+z=x+(y+z)
- **1.2** ∃ нейтральный элемент $0 \in \mathbb{R}$, такой что \forall $x \in \mathbb{R}$: x+0=0+x=x
- **1.3** \forall x ∈ \mathbb{R} \exists противоположный элемент (-x) ∈ \mathbb{R} , такой что x+(-x)=(-x)+x=0
- **1.4** \forall x, y ∈ \mathbb{R} : x+y=y+x

2. Аксиомы умножения

На $\mathbb R$ определена операция «*» которая называется операцией умножения, такая что

- **2.1** $\forall x, y, z \in \mathbb{R}$: $(x^*y)^*z=x^*(y^*z)$
- **2.2** \exists нейтральный элемент $1 \in \mathbb{R} \{0\}$, такой что \forall $x \in \mathbb{R} \{0\}$: x*1=1*x=x
- **2.3** \forall $x \in \mathbb{R} \{0\}$ \exists обратный элемент $x^{-1} \in \mathbb{R} \{0\}$, такой что $x^*(x^{-1}) = (x^{-1})^*x = 1$
- **2.4** $\forall x, y \in \mathbb{R}: x^*y = y^*x$

3. Аксиома связи сложения и умножения

3.1
$$\forall x, y, z \in \mathbb{R}: (x+y)^*z=(x^*z)+(y^*z)$$

4. Аксиомы порядка

В множестве $\mathbb R$ введено отношение порядка « \leqslant », такое что

- **4.1** \forall **x** ∈ \mathbb{R} : **x** \leqslant **x** (рефлексивность)
- **4.2** Если x, y $\in \mathbb{R}$: (x \leqslant y) \land (y \leqslant x), то x=y (закон тождества)
- **4.3** Если x, y, z $\in \mathbb{R}$: (x \leq y) \land (y \leq z), то x \leq z (транзитивность)
- **4.4** \forall x, y ∈ \mathbb{R} : (x≤y) \lor (y≤x) (линейная упорядоченность)

5. Аксиомы связи отношения порядка с сложением и умножением

- **5.1** \forall x, y, z ∈ \mathbb{R} , если x \leqslant y, то x+z \leqslant y+z
- **5.2** \forall x, y ∈ \mathbb{R} , если $(0 \leqslant x) \land (0 \leqslant y)$, то $(0 \leqslant x^*y)$

6. Аксиома полноты и непрерывности ${\mathbb R}$

6.1
$$\forall \emptyset = X, Y \subset \mathbb{R}, X \leqslant Y, \exists c \in \mathbb{R}: X \leqslant \{c\} \leqslant Y$$
 (T.e. $\forall x \in X, \forall y \in Y: x \leqslant c \leqslant y$)

Некоторые следствия определения и дополнительные сведения:

1.
$$x, y \in \mathbb{R}$$
, полагаем y-x =y+(-x) и $\frac{x}{y} = y * (x^{-1})$
2. $x \in \mathbb{R}, x^n = x^* x^* ... * x (n раз) и $x^{-n} = (x^{-1})^n$$

2.
$$x \in \mathbb{R}, x^n = x^* x^* \dots * x \text{ (n pas) } \mu x^{-n} = (x^{-1})^n$$

3.
$$\forall x \in \mathbb{R}: 0*x=0$$

4.
$$\forall x \in \mathbb{R}: (-1)^*x = (-x)$$

5.
$$x, y \in \mathbb{R}$$
: $(x < y) \Leftrightarrow (x \le y) \land (x \ne y)$
 $(x > y) \Leftrightarrow (y < x)$

- **6.** всегда \forall x, y ∈ \mathbb{R} имеет место: либо x<y, либо x=y, либо x>y (трихотомия)
- **7.** если x>0, то (-x)<0

8. a)
$$x>0$$
 u $y>0 => x*y>0$

в) x<0 и y<0 =>
$$x*y>0$$

Неравенства треугольника для абсолютной величины числа:

1)
$$|x + y| \le |x| + |y|$$

2)
$$||x|-|y|| \le |x-y|$$