The Decomposition of Work

Crowdwork's perspective. The crowdsourcing research into work decomposition has largely focused on minimizing the additional context necessary to do tasks, and making it easier to do tasks with less time. This first thread is perhaps best described by Verroios and Bernstein as making crowd workers "... able to act with global understanding when each contributor only has access to local views" [16]. With the exception of a few cases (specifically, Kinnaird, Dabbish, and Kiesler's work which finds that greater work context fosters more reliably high–quality work), the micro task paradigm has emerged as the overwhelming favorite [13, 14, 4, 7].

As the additional context necessary to complete a task diminishes, the marginal cost of finding and *doing* tasks has increasingly become the focus of research. Chilton et al. illustrate the challenges on AMT, and some work has gone into ameliorating the problems specific to this work site (*Re-Launcher*), while other work designs tasks around gap time (*Twitch Crowdsourcing & Wait–Learning*) [5, 9, 15, 3]. Yet more work looks at the general framing of tasks, chaining and arranging them to maximally exploit the attention and stress threshold of workers [2]. Rather than attempt to minimize the error rates in micro–tasks, as Kinnaird, Dabbish, and Kiesler suggested, we as a community have leaned *into* the peril of low–context work, "embracing error" in crowdsourcing [8].

Not all of the work toward optimizing crowd work–flows has gone toward minimizing the creative input of crowd workers; a thriving body of literature adopts practices such as pipelining to allow experts to participate in crowd work [12].

Piecework's perspective. The research community relating to piecework and labor has been wrestling with the decomposition of work for centuries. The beginnings of systematic task decomposition stretch back as far as the 17th century, when Airy employed young boys at the Greenwich Observatory who "possessed the basic skills of mathematics, including 'Arithmetic, the use of Logarithms, and Elementary Algebra' "to compute, by hand, astronomical phenomena [6]. These workers became the first computers.

The work Airy solicited was interesting for several reasons. First, work output was quickly verifiable; Airy could assign variably skilled workers to compute values, and have other workers check their work. [al2: I could point out that the opportunity to check work and repeat the task is a little like find–fix–verify, but is that jumping the gun?] Second, tasks were discrete — that is, independent from one another. Finally, knowledge of the full scope of the project — indeed, knowledge of anything more than the problem set at hand — was unnecessary.

The insight of breaking tasks down into smaller components didn't find its audience until the early 20th century, with the rise of Fordism and scientific management (or Taylorism). From scientific management, we found that we could measure work at unprecedented resolution and precision. As Brown points out, piecework most greatly benefits the instrumented measurement of workers, but certainly in Ford and Taylor's time — and certainly in Airy's time — highly instrumented,

automatic measurement of workers was all but impossible. As a result, the distillation of work into smaller chunks ultimately reached a limit of usefulness.

[al2: Marx in here? Alienated from the context of the work? Critiques about piecework marginalizing workers? Labor. Railway Employees Dept and Board wrote about this as well (albeit they were advocating from workers' perspectives, but who isn't?)]

What's different about crowdwork. 1) Computers make it possible to switch from one task to another unlike any arbitrary manufacturing factory possibly could; 2) we've sliced works to such small sizes that the marginal costs — things like task—finding, cognitive load switching, etc...— have become relatively large; 3) instrumentation has become so advanced that the curve of diminishing value on measuring and tracking workers has shifted significantly (but not been obliterated); [al2: some companies have suggested self—tracking through programs that give workers fitbits and whatnot — I could make the argument that this is just an illustration of that, but it's not really about work *per se* unless you think about it as the general management of workers. Thoughts?]

Implications for crowdwork research.

References

- [1] Charles Brown. "Firms' Choice of Method of Pay". In: Industrial & Labor Relations Review 43.3 (1990), 165S—182S. DOI: 10.1177/001979399004300311. eprint: http://ilr.sagepub.com/content/43/3/165S.full.pdf+html. URL: http://ilr.sagepub.com/content/43/3/165S.abstract.
- [2] Carrie J. Cai, Shamsi T. Iqbal, and Jaime Teevan. "Chain Reactions: The Impact of Order on Microtask Chains". In: *Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems*. CHI '16. New York, NY, USA: ACM, 2016, pp. 3143–3154. ISBN: 978–1-4503–3362–7. DOI: 10.1145/2858036.2858237. URL: http://doi.acm.org/10.1145/2858036.2858237.
- [3] Carrie J. Cai et al. "Wait-Learning: Leveraging Wait Time for Second Language Education". In: *Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems*. CHI '15. Seoul, Republic of Korea: ACM, 2015, pp. 3701–3710. ISBN: 978-1-4503-3145-6. DOI: 10.1145/2702123.2702267. URL: http://doi.acm.org/10.1145/2702123.2702267.
- [4] Justin Cheng et al. "Break it down: A comparison of macro–and microtasks". In: *Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems*. ACM. 2015, pp. 4061–4064.
- [5] Lydia B. Chilton et al. "Task Search in a Human Computation Market". In: Proceedings of the ACM SIGKDD Workshop on Human Computation. HCOMP '10. New York, NY, USA: ACM, 2010, pp. 1–9. ISBN: 978–1-4503–0222–7. DOI: 10.1145/1837885.1837889. URL: http://doi.acm.org/10.1145/1837885.1837889.
- [6] David Alan Grier. *When computers were human*. Princeton University Press, 2013.

- [7] Peter Kinnaird, Laura Dabbish, and Sara Kiesler. "Workflow Transparency in a Microtask Marketplace". In: *Proceedings of the 17th ACM International Conference on Supporting Group Work*. GROUP '12. Sanibel Island, Florida, USA: ACM, 2012, pp. 281–284. ISBN: 978-1-4503-1486-2. DOI: 10.1145/2389176.2389219. URL: http://doi.acm.org/10.1145/2389176.2389219.
- [8] Ranjay A. Krishna et al. "Embracing Error to Enable Rapid Crowdsourcing". In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. CHI '16. New York, NY, USA: ACM, 2016, pp. 3167–3179. ISBN: 978–1-4503–3362–7. DOI: 10.1145/ 2858036.2858115. URL: http://doi.acm.org/10.1145/ 2858036.2858115.
- [9] Pavel Kucherbaev et al. "ReLauncher: Crowdsourcing Micro-Tasks Runtime Controller". In: Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing. CSCW '16. New York, NY, USA: ACM, 2016, pp. 1609–1614. ISBN: 978– 1-4503–3592–8. DOI: 10.1145/2818048.2820005. URL: http://doi.acm.org/10.1145/2818048.2820005.
- [10] American Federation of Labor. Railway Employees Dept and United States Railroad Labor Board. *The problem of piece work*. The Problem of Piece Work nos. 1-16. Bronson Canode Print. Co., 1921. URL: https://books.google.com/books?id=NN5NAQAAIAAJ.
- [11] Karl Marx. *Economic and philosophic manuscripts of* 1844. Courier Corporation, 2012.
- [12] Daniela Retelny et al. "Expert Crowdsourcing with Flash Teams". In: *Proceedings of the 27th Annual ACM*

- Symposium on User Interface Software and Technology. UIST '14. New York, NY, USA: ACM, 2014, pp. 75–85. ISBN: 978–1-4503–3069–5. DOI: 10.1145/2642918. 2647409. URL: http://doi.acm.org/10.1145/2642918. 2647409.
- [13] Jaime Teevan, Daniel J. Liebling, and Walter S. Lasecki. "Selfsourcing Personal Tasks". In: CHI '14 Extended Abstracts on Human Factors in Computing Systems. CHI EA '14. New York, NY, USA: ACM, 2014, pp. 2527–2532. ISBN: 978–1-4503–2474–8. DOI: 10.1145/2559206. 2581181. URL: http://doi.acm.org/10.1145/2559206. 2581181.
- [14] Jaime Teevan et al. "Productivity Decomposed: Getting Big Things Done with Little Microtasks". In: *Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems*. CHI EA '16. New York, NY, USA: ACM, 2016, pp. 3500–3507. ISBN: 978–1-4503–4082–3. DOI: 10.1145/2851581.2856480. URL: http://doi.acm.org/10.1145/2851581.2856480.
- [15] Rajan Vaish et al. "Twitch Crowdsourcing: Crowd Contributions in Short Bursts of Time". In: *Proceedings of the 32Nd Annual ACM Conference on Human Factors in Computing Systems*. CHI '14. Toronto, Ontario, Canada: ACM, 2014, pp. 3645–3654. ISBN: 978-1-4503-2473-1. DOI: 10.1145/2556288.2556996. URL: http://doi.acm.org/10.1145/2556288.2556996.
- [16] Vasilis Verroios and Michael S Bernstein. "Context trees: Crowdsourcing global understanding from local views". In: Second AAAI Conference on Human Computation and Crowdsourcing. 2014.