

Geometria Analítica

Prof.: Francielle Kuerten Boeing

Definição: Chama-se produto escalar (ou produto interno usual) de dois vetores $\vec{u}=(x_1,y_1,z_1), \vec{v}=(x_2,y_2,z_2)$, e representa-se $\vec{u}\cdot\vec{v}$, ao número real

$$\vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2 + z_1 z_2.$$

Notação alternativa: Em algumas bibliografias, representa-se $\vec{u} \cdot \vec{v}$ como $\langle \vec{u}, \vec{v} \rangle$.

Lê-se sempre "u escalar v". (Nunca "u vezes v")

Obs.: Para vetores em \mathbb{R}^2 , a definição é análoga.

Módulo de um Vetor:

$$|\vec{v}| = \sqrt{x^2 + y^2 + z^2},$$

O módulo de um vetor $\vec{v} = (x, y, z)$ é dado por

Equivalentemente,

$$\vec{v} \cdot \vec{v} = (x, y, z) \cdot (x, y, z) = x^2 + y^2 + z^2 = |\vec{v}|^2$$

Versor de um Vetor:

O versor de um vetor \vec{v} é dado por

$$\vec{e} = \frac{\vec{v}}{|\vec{v}|} = \frac{\vec{v}}{\sqrt{\vec{v} \cdot \vec{v}}}$$

Distância entre dois Pontos:

A distância d entre dois pontos $A(x_1, y_1, z_1), B(x_2, y_2, z_2)$ é definida como

$$d = |\overrightarrow{AB}| = |B - A| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Propriedades do Produto Escalar:

I.
$$\vec{v} \cdot \vec{v} \ge 0$$
, para qualquer vetor \vec{v} ; Além disso, $\vec{v} \cdot \vec{v} = 0 \iff \vec{v} = \vec{0}$;

II.
$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$
 (Comutativa)

III.
$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$$
 (Distributiva com relação à soma)

IV.
$$(k \vec{u}) \cdot \vec{v} = k(\vec{u} \cdot \vec{v}) = \vec{u} \cdot (k \vec{v})$$

$$V. \quad \vec{v} \cdot \vec{v} = |\vec{v}|^2$$

Ângulo entre dois vetores: Se \vec{u} , \vec{v} são vetores não nulos e θ é o ângulo entre eles, então

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$$

Observações:

a) Se $\vec{u} \cdot \vec{v} > 0$, então $\cos \theta$ deve ser positivo, ou seja, temos $0 \le \theta < \frac{\pi}{2}$ (θ é agudo);

b) Se $\vec{u} \cdot \vec{v} < 0$, então $\cos \theta$ deve ser negativo, ou seja, temos $\frac{\pi}{2} < \theta \le \pi$ (θ é obtuso);

c) Se $\vec{u} \cdot \vec{v} = 0$, então $\cos \theta = 0$, ou seja, temos $\theta = \frac{\pi}{2}$.

Projeção de um Vetor

Sejam \vec{u} e \vec{v} vetores não-nulos, e seja θ o ângulo formado entre eles. Estamos interessados em determinar o vetor \vec{w} , que é a projeção do vetor \vec{u} sobre \vec{v} . Veja abaixo as duas possibilidades, sendo θ agudo ou obtuso.

Projeção de um Vetor

Sejam \vec{u} e \vec{v} vetores não nulos, e seja θ o ângulo formado entre eles. Estamos interessados em determinar o vetor \vec{w} , que é a projeção do vetor \vec{u} sobre \vec{v} . Veja abaixo as duas possibilidades, sendo θ agudo ou obtuso.

Observe que, pelo triângulo retângulo,

$$|\vec{w}| = |\vec{u}||\cos\theta| = |\vec{u}|\frac{|\vec{u}\cdot\vec{v}|}{|\vec{u}||\vec{v}|} = \frac{|\vec{u}\cdot\vec{v}|}{|\vec{v}|}$$

Projeção de um Vetor

Mas por outro lado, \vec{w} tem a mesma direção de \vec{v} , logo é múltiplo de \vec{v} :

$$\vec{w} = k \vec{v}$$

Ou seja,

$$|k| = |\vec{w}| \frac{1}{|\vec{v}|} = \frac{|\vec{u} \cdot \vec{v}|}{|\vec{v}|} \frac{1}{|\vec{v}|} = \frac{|\vec{u} \cdot \vec{v}|}{|\vec{v}|^2} \implies k = \frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^2}$$

Logo,

$$\vec{w} = \left(\frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^2}\right) \vec{v}$$

Projeção de um Vetor

Concluímos assim que o vetor projeção de \vec{u} sobre \vec{v} , $(proj_{\vec{v}} \vec{u} = \vec{w})$ é dado por

$$proj_{ec{v}} \ \overrightarrow{u} = \left(rac{ec{u} \cdot \overrightarrow{v}}{ec{v} \cdot ec{v}}
ight) \ \overrightarrow{v}$$

Ex.: Determine a projeção do vetor $\vec{u}=(2,3,4)$ sobre o vetor $\vec{v}=(1,-1,0)$.

OBS.: Se \vec{v} é unitário, temos

$$proj_{\vec{v}} \vec{u} = \left(\frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}}\right) \vec{v} = proj_{\vec{v}} \vec{u} = \left(\frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^2}\right) \vec{v} = (\vec{u} \cdot \vec{v}) \vec{v}.$$

Considerando os vetores \vec{i} , \vec{j} e \vec{k} da base canônica e $\vec{u}=(x,y,z)$,

$$proj_{\vec{i}} \vec{u} = (x, y, z) \cdot (1, 0, 0) \vec{i} = x \vec{i}$$

$$proj_{\vec{i}} \vec{u} = (x, y, z) \cdot (0, 1, 0) \vec{j} = y \vec{j}$$

$$proj_{\vec{k}} \vec{u} = (x, y, z) \cdot (0, 0, 1) \vec{k} = z \vec{k}$$

Definição: Dados os vetores $\vec{u}=(x_1,y_1,z_1), \vec{v}=(x_2,y_2,z_2)$, chamamos produto vetorial e representamos $\vec{u}\times\vec{v}$ ao vetor

$$\vec{u} \times \vec{v} = (y_1 z_2 - z_1 y_2) \vec{i} + (z_1 x_2 - x_1 z_2) \vec{j} + (x_1 y_2 - y_1 x_2) \vec{k},$$

ou equivalentemente, representado pelo seguinte determinante simbólico:

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}$$

Lê-se sempre "u vetorial v". (Nunca "u vezes v")

Ex.: Vamos calcular o produto vetorial entre os vetores $\vec{u}=(5,4,3)$ e $\vec{v}=\vec{\iota}+\vec{k}$.

Propriedades do Produto Vetorial:

I.
$$\vec{v} \times \vec{v} = \vec{0}$$
, para qualquer vetor \vec{v} ;

II.
$$\vec{u} \times \vec{v} = -\vec{v} \times \vec{u}$$

$$III.\vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}$$
 (Distributiva com relação à soma)

$$IV.(k \vec{u}) \times \vec{v} = k(\vec{u} \times \vec{v}) = \vec{u} \times (k \vec{v})$$

 \vec{U} . $\vec{u} \times \vec{v} = \vec{0}$ se, e somente se, um dos dois vetores é nulo ou $\vec{u} = k \vec{v}$;

 $VI. \ \vec{u} \times \vec{v}$ é ortogonal simultaneamente aos vetores \vec{u} e \vec{v} ;

Propriedades do Produto Vetorial:

VII. \vec{u} , \vec{v} e \vec{u} × \vec{v} (nesta ordem!) têm as direções das arestas de um triedro direto (regra da mão direita)

Propriedades do Produto Vetorial:

OBS.: Usando a regra da mão direita, podemos concluir que

$$\vec{i} \times \vec{j} = \vec{k}$$

$$\vec{j} \times \vec{k} = \vec{i}$$

$$\vec{k} \times \vec{i} = \vec{j}$$

$$\vec{i} \times \vec{k} = -\vec{j}$$

$$\vec{k} \times \vec{j} = -\vec{i}$$

$$\vec{j} \times \vec{i} = -\vec{k}$$

Propriedades do Produto Vetorial:

VIII.
$$|\vec{u} \times \vec{v}|^2 = |\vec{u}|^2 |\vec{v}|^2 - (\vec{u} \cdot \vec{v})^2$$
 (Identidade de Lagrange)

IX. Se \vec{u} , \vec{v} são não-nulos e θ é o ângulo entre eles, então

$$|\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| \sin \theta$$

Propriedades do Produto Vetorial:

X. O produto vetorial não é associativo: $\vec{u} \times (\vec{v} \times \vec{w}) \neq (\vec{u} \times \vec{v}) \times \vec{w}$.

De fato, o vetor $\vec{u} \times (\vec{v} \times \vec{w})$ é coplanar aos vetores \vec{v} e \vec{w} . Já o vetor $(\vec{u} \times \vec{v}) \times \vec{w}$ é coplanar aos vetores \vec{u} e \vec{v} . Logo, a associatividade, em geral, não vale.

Interpretação Geométrica do Produto Vetorial:

Interpretação Geométrica do Produto Vetorial:

O módulo do produto vetorial entre \vec{u} e \vec{v} mede a área do paralelogramo determinado pelos por \vec{u} e \vec{v} , pois

$$A = |\vec{v}|h = |\vec{v}| |\vec{u}| \operatorname{sen} \theta = |\vec{u} \times \vec{v}|.$$

Ex.1: Sejam os vetores $\vec{u}=(3,1,-1)$ e $\vec{v}=(a,0,2)$. Calcule o valor de a para que a área do paralelogramo determinado por \vec{u} e \vec{v} seja igual a $2\sqrt{6}$.

Ex.2: Determine um vetor unitário simultaneamente ortogonal aos vetores $\vec{u}=(2,-6,3)$ e $\vec{v}=(4,3,1)$.

Ex.2: Determine um vetor unitário simultaneamente ortogonal aos vetores $\vec{u}=(2,-6,3)$ e $\vec{v}=(4,3,1)$.

Basta fazer
$$\frac{\vec{u} \times \vec{v}}{|\vec{u} \times \vec{v}|}$$
.

Ex.3: Calcule a área do triângulo de vértices A(0,0,3), B(5,1,2) e C(-2,-5,0).

Ex.3: Calcule a área do triângulo de vértices A(0,0,3), B(5,1,2) e C(-2,-5,0).

Basta fazer
$$\frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}|$$
.

Ex.4: Dados os vetores $\vec{u}=(1,2,-1)$ e $\vec{v}=(0,-1,3)$, calcule a área do paralelogramo determinado pelos vetores $\vec{u}=\vec{v}-\vec{u}$.

Ex.4: Dados os vetores $\vec{u}=(1,2,-1)$ e $\vec{v}=(0,-1,3)$, calcule a área do paralelogramo determinado pelos vetores $\vec{u}=\vec{v}-\vec{u}$.

Basta fazer $|3\vec{u} \times (\vec{v} - \vec{u})|$.

Definição: Dados os vetores $\vec{u}=(x_1,y_1,z_1), \vec{v}=(x_2,y_2,z_2), \vec{w}=(x_3,y_3,z_3)$ chamamos produto misto ao número real $\vec{u}\cdot(\vec{v}\times\vec{w})$. Denotamos o produto misto por $(\vec{u},\vec{v},\vec{w})$.

Observe que calcular o produto $\vec{u} \cdot (\vec{v} \times \vec{w})$ é o mesmo que calcular o seguinte determinante:

$$\vec{u} \cdot (\vec{v} \times \vec{w}) = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$$

Ex.: Vamos calcular o produto misto entre os vetores $\vec{u}=(2,3,5), \vec{v}=(-1,3,3)$, $\vec{w}=(4,-3,2)$:

Propriedades do Produto Misto:

 $(\vec{u}, \vec{v}, \vec{w}) = 0$ se um dos três vetores é nulo, se dois deles são paralelos, ou se os três vetores são coplanares.

De fato,

a) Se um dos vetores é nulo, (digamos \vec{u}), então

$$(\vec{u}, \vec{v}, \vec{w}) = \begin{vmatrix} 0 & 0 & 0 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} = 0;$$

b) Se dois vetores são paralelos (digamos $\vec{u}=k\ \vec{v}$), então

$$(\vec{u}, \vec{v}, \vec{w}) = \begin{vmatrix} kx_2 & ky_2 & kz_2 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} = 0;$$

Propriedades do Produto Misto:

c) Se os três vetores são coplanares, então o vetor $\vec{v} \times \vec{w}$ (que já sabemos ser ortogonal a \vec{v} e \vec{w}), será

também ortogonal a \vec{u} :

Uma consequência disso é que 4 pontos A, B, C, D pertencerão a um mesmo plano se os vetores $\overrightarrow{AB}, \overrightarrow{AC} \ e\overrightarrow{AD}$ forem coplanares, ou seja, se $(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}) = 0$.

Propriedades do Produto Misto:

II. O produto misto independe da ordem circular dos vetores, isto é,

$$(\vec{u}, \vec{v}, \vec{w}) = (\vec{v}, \vec{w}, \vec{u}) = (\vec{w}, \vec{u}, \vec{v})$$

Porém, o produto misto muda de sinal quando se trocam as posições de dois vetores consecutivos, i.e.,

$$(\vec{u}, \vec{v}, \vec{w}) = -(\vec{v}, \vec{u}, \vec{w})$$

Ex.: Verifique se os vetores $\vec{u}=(3,-1,4), \vec{v}=(1,0,-1)$, $\vec{w}=(2,-1,0)$ são coplanares:

Ex.: Verifique se os vetores $\vec{u}=(3,-1,4), \vec{v}=(1,0,-1)$, $\vec{w}=(2,-1,0)$ são coplanares:

Basta verificar se $(\vec{u}, \vec{v}, \vec{w}) = 0$.

Ex.: Os pontos A(1,2,4), B(-1,0,-2), C(0,2,2), D(-2,1,-3) pertencem a um mesmo plano?

Ex.: Os pontos A(1,2,4), B(-1,0,-2), C(0,2,2), D(-2,1,-3) pertencem a um mesmo plano?

Basta verificar se $(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}) = 0$.

Interpretação Geométrica do Produto Misto: Volume do Paralelepípedo

Interpretação Geométrica do Produto Misto: Volume do Paralelepípedo

Temos que o volume do paralelepípedo abaixo é igual à área da base vezes a altura, ou seja:

$$V = |\vec{v} \times \vec{w}|h = |\vec{v} \times \vec{w}||\vec{u}|\cos\theta = \vec{u} \cdot (\vec{v} \times \vec{w}) = (\vec{u}, \vec{v}, \vec{w}).$$

Interpretação Geométrica do Produto Misto: Volume do Tetraedro

- Todo paralelepípedo pode ser dividido em 2 prismas triangulares iguais (fácil de ver);
- Cada um desses prismas triangulares pode ser dividido em 3 tetraedros de mesmo volume (não tão fácil de ver)

Logo, o volume do tetraedro determinado por três vetores dados é igual a $\frac{1}{6}$ do volume do paralelepípedo, ou seja,

$$V_T = \frac{1}{6} |(\vec{u}, \vec{v}, \vec{w})|$$

Ex.: Dados os vetores $\vec{u}=(x,5,0), \ \vec{v}=(3,-2,1), \ \vec{w}=(1,1,-1), \ \text{calcule o valor de } x \text{ para que o volume do paralelepípedo determinado por } \vec{u}, \vec{v}, \vec{w} \text{ seja de } 24 \ u. \ v. \text{ (unidades de volume).}$

Ex.: Dados os vetores $\vec{u}=(x,5,0), \ \vec{v}=(3,-2,1), \ \vec{w}=(1,1,-1), \ \text{calcule o valor de } x \text{ para que o volume do paralelepípedo determinado por } \vec{u}, \vec{v}, \vec{w} \text{ seja de } 24 \ u. \ v. \text{ (unidades de volume).}$

Ex.: Calcule o volume do tetraedro com vértices A(1,2,1), B(7,4,3), C(4,6,2), D(3,3,3).

Ex.: Calcule o volume do tetraedro com vértices A(1,2,1), B(7,4,3), C(4,6,2), D(3,3,3).