	 	T T	T	
Reg. No				

B.Tech DEGREE EXAMINATION, MAY 2024

Fifth Semester

18CSC361J - DESIGN AND ANALYSIS OF ALGORITHMS

(For the candidates admitted during the academic year 2018-2019 to 2021-2022)

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
 ii. Part - B and Part - C should be answered in answer booklet.
 Time: 3 Hours
 Max. Marks: 100
 Marks BL CO

PART - A (20 × 1 = 20 Marks) Answer all Questions				BL.	CO
1.	What will be effect of involving pop () on an em (A) Overflow (B)	pty queue? Underflow Garbage Value	1	2	1
2.	What is the maximum number of swaps that can algorithm? (A) n - 1 (B)		I	1	1
3.	is the maximum amount of time an algorof inputs. (A) Running time (B)	Average case time complexity Best case time complexity	1	1	1
4.	(C) If there is more than one way to (D)	tion of an algorithm? Ifn the hardware is used correctly Simple programming language must be used	1	1	1
5.		of a function for sufficiently large Big-Oh notation Theta notation	1	1	1
6.	matrix is used. (A) O (log V) (B)	of Prim's algorithm if adjacency $O(V^2)$ $O(V \log E)$	1	2	1
7.	source shortest path	c Programming? Floyd Warshall Algorithm for all pairs shortest paths Prim's Minimum Spanning Tree	1	1	2
8.	Which of the following is NOT true about comp (A) The minimum possible time complexity of a comparison-based sorting algorithm is O(n log n) for a random input array	Any comparison-based sorting algorithms? Any comparison-based sorting algorithm can be made stable by using position as a criteria when two elements are compared Heap Sort is not a comparison-based sorting algorithm.	1	1	2

9.	What happens when the backtracking algor (A) It backtracks to the root	rithm reaches a complete solution? (B) It continues searching for other possible solutions	1	1	2
	(C) It traverses from a different route	(D) It traverses the same route			
10.	The problem of finding a subset of positive positive integer is called as (A) n- queen problem (C) Knapsack problem	(B) Subset sum problem (D) Hamiltonian circuit problem	1	1	2
11.	Time Complexity of Breadth First Search is E - number of edges. (A) O(V+E)		1	1	2
	(C) O(E)	(D) O(VE)			
12.	When a top-down approach of dynamic it usually(A) Decreases both, the time		1	1	2
	complexity, and the space complexity	(B) Decreases the time complexity and increases the space complexity			
	(C) Increases the time complexity and decreases the space complexity	(D) Increases both, the time complexity, and the space complexity			
13.	The in-order and pre-order traversal of a bir respectively, then the post-order traversal of (A) debfgca (C) edbfgca	nary tree are d b e a f c g and a b d e c f g, f the binary tree is: (B) e d f g b c a (D) d e f g b c a	1	1	2
14.	Consider two decision problems Q1, Q2 su 3 - SAT and 3 - SAT reduces in polynon following is consistent with the above states (A) Q1 is in NP, Q2 is NP hard (C) Both Q1 and Q2 are in NP	1	1	4	
15.	Problems that can be solved in polynomial t (A) Intractable (C) Decision	(D) Both Q1 and Q2 are NP hard time are known as (B) Tractable (D) Complete	1	1	4 ·
16.	The sum and composition of two polynomisaid about this statement?	_	1	1	5
	(A) True (C) Sometimes	(B) False (D) Cannot decide			
	For maximization, the accuracy ratio of A constant k such that, for every instance I of it is A*(I) Optimal value for the instance I (ii) A(I) Value for the instance I generated by	P,	1	1	5
	(A) $A*(I)/A(I) \le k$. (C) $ A*(I) + A(I) \le k$.	(B) $ A*(I) - A(I) \le k$. (D) $A(I)/A*(I) \le k$			
	Identify the worst case time complexity of a (A) O(N) (C) O(N ²)	quick sort algorithm. (B) O(N log N) (D) O(log N)	1	2	5
	What is the basic principle in the Rabin Karp (A) Hashing (C) Augmenting	p algorithm? (B) Sorting (D) Dynamic Programming	1	2	5
1		_	1	2	5

	PART - B (5 × 4 = 20 Marks) Answer any 5 Questions	Marks	s BL	со
21.	State Master's theorem. When can it be used?	4	2	1
	Write notes on asymptotic notations.	4	3	1
	23. Differentiate between branch and bound and greedy technique.			
	Find the shortest path using topological sorting. Describe the steps in detail. 2 C D 2	4	1	2
25.	Differentiate between P and NP Problems with clear examples.	4	3	4
26.	Explain when a problem is in NP and NP Hard. Also briefly explain when a problem is NP Complete.	4	3	4
27.	Explain randomized version of Quick sort.	4	3	5
	PART - C ($5 \times 12 = 60 \text{ Marks}$) Answer all Questions	Marl	ks BL	CO
28.	 (a) Solve the following recurrence relation using tree method T(n) = T(n-1) + logn, T(1) = 0 (OR) 	12	3	1
	(b) Solve the following recurrence relation using substitution method			

Object.No	1	2	3	4	5	6	7
Profit (\$)	10	5	15	7	6	18	3
Weight (kgs)	2	3	5	7	1	4	1

that the final contents have the maximum profit.

T(n) = 2T(n-1) + 1,

T(1) = 3

29.

(OR)

(a) Given a Knapsack of a maximum capacity of M = 15 kg and N = 7 items

each with its own profit and weight. Throw items inside the Knapsack such

(b) Consider a set of given jobs as shown in the following table. Find a sequence of jobs, which will be completed within their deadlines and will give maximum profit. Each job is associated with a deadline and profit.

Job	Jl	J2	Ј3	J4	J5	
Deadline	2	1	3	2	1	
Profit	60	100	20	40	20	

2

2

12

- (a) Apply Floyd's method to find the shortest path for the below-mentioned all 30.

2

2

(OR)

- (b) Consider the following undirected, weighted graph:
 - Step through Dijkstra's algorithm to calculate the single-source shortest paths from A to every other vertex. Show your steps in a table. Cross out old values and write in new ones, from left to right within each cell, as the algorithm proceeds. (5 marks)
 - Also list the vertices in the order which you marked them known. (4 2. marks)
 - Finally, indicate the lowest-cast path from node A to node F. (3 3. marks)

- (a) Explain the approximation algorithm for the Travelling salesman problem 31. (TSP)
- 3

5

5

12

- (OR)
- (b) Prove that traveling salesman problem is NP complete.
- 32. (a) List Polynomial-Time Approximation Scheme (PTAS) algorithm for every ε 12 3 > 0. Explain the relation between ε and running time of the algorithm. (OR)
 - (b) Explain in detail randomized quicksort algorithm with analysis.