Лабораторная работа № 4

«Итерационные методы решения проблемы собственных значений»

Задание 1

Написать и отладить программу нахождения степенным методом (методом скалярных произведений) наибольшего по модулю собственного значения и соответствующего ему собственного вектора вещественной диагонализируемой матрицы A порядка n. Вычислительный процесс проводить с нормировкой векторов итерационной последовательности (использовать евклидову норму). В качестве критерия остановки итерационного процесса использовать $\|Au^{(k+1)} - \lambda_1 u^{(k+1)}\|_2 < \varepsilon$. Предусмотреть сообщение о выходе из итерационного процесса, если он расходится.

Выполнить следующий вычислительный эксперимент.

Сгенерировать симметрическую матрицу A порядка 10. Задать начальный ненулевой вектор $y^{(0)}$ и $\varepsilon=10^{-7}$. Степенным методом найти наибольшее по модулю собственное значение и соответствующий ему собственный вектор матрицы A.

В результатах необходимо привести следующую информацию:

- начальный вектор $y^{(0)}$;
- номер итерации q, при которой достигнута требуемая точность;
- приближенное наибольшее по модулю собственное значение λ_1 и соответствующий ему нормированный собственный вектор $x_1 \approx u^{(q)}$.
 - вектор $Au^{(q)} \lambda_1 u^{(q)}$;
 - $\bullet \quad \left\| Au^{(q)} \lambda_1 u^{(q)} \right\|_2.$

Задание 2

Написать и отладить программу нахождения итерационным методом вращений (Якоби) всех собственных значений и соответствующих им собственных векторов вещественной симметрической матрицы A порядка n. В качестве критерия остановки итерационного процесса использовать $\sum_{i\neq i}(a_{ij}^{(k)})^2<\varepsilon\ .$

Выполнить следующий вычислительный эксперимент.

Взять симметрическую матрицу A сгенерированную в первом задании. Задать $\epsilon=10^{-7}$. Методом вращений найти все собственные значения и соответствующие им собственные векторы матрицы A.

В результатах необходимо привести следующую информацию:

- номер итерации q, при которой достигнута требуемая точность;
- приближенные собственные значения λ_i и соответствующие им собственные векторы x_i , $i=\overline{1,n}$;
 - векторы $r_i = Ax_i \lambda_i x_i$, $i = \overline{1,n}$.

По результатам лабораторной работы оформляется отчет. Он должен содержать:

- титульный лист;
- постановку задачи;
- краткие теоретические сведения (алгоритм метода скалярных произведений и алгоритм итерационного метода вращений);
- листинг программы с комментариями;
- результаты вычислительного эксперимента.
- выводы.

Отчет необходимо отправить на *yvolotovskaya@gmail.com*. **Тема письма**: «ЛР4 2к 6гр Фамилия».