# Metro Interstate Traffic Volume

Chen Lou and Josef Pishek (Group 4)
MA 5790 Predictive Modeling

UCI Machine Learning Repository Dataset of Hourly Minneapolis-St Paul, MN traffic volume for westbound I-94. Includes weather and holiday features from 2012-2018.

### <u>Outline</u>

Background **Data Structure** Objective **Initial Observations** Filtering **Summary Statistics Dummy Variables** Resampling Methods References

#### **Automatic Traffic Recorders (ATR)**

One of several methods for collecting data on traffic volume.

Permanent installations with varying levels of technology to continuously monitor traffic volume, additional types of data depending upon their equipment and sensors.

This project's data is from one of 70+ active devices in Minnesota-- 30+ in the seven-county metro area and 35+ in greater Minnesota.

Find more information about <u>Traffic</u>
Forecasting and Analysis from the
Minnesota Department of Transportation
(MNDoT).



#### **Data Structure**

| holiday             | Categorical US National holidays plus regional holiday,<br>Minnesota State Fair |
|---------------------|---------------------------------------------------------------------------------|
| temp                | Numeric Average temp in kelvin                                                  |
| rain_1h             | Numeric Amount in mm of rain that occurred in the hour                          |
| snow_1h             | Numeric Amount in mm of snow that occurred in the hour                          |
| clouds_all          | Numeric Percentage of cloud cover                                               |
| weather_main        | Categorical Short textual description of the current weather                    |
| weather_description | Categorical Longer textual description of the current weather                   |
| date_time           | DateTime Hour of the data collected in local CST time                           |
| *traffic_volume     | Numeric Hourly I-94 ATR 301 reported westbound traffic volume                   |

- Categorical variables:
  - holiday (12 levels)
  - veather\_main (11 levels)
  - weather\_description (38 levels)
- Numerical variables:
  - temp
  - o rain 1h
  - o snow\_1h
  - clouds all
  - traffic volume
- Date and Time variables:
  - date\_time
- Sample size: 9 variables with 48204 observations
- \*Response variable: traffic\_volume
- Source notes: MNDoT ATR station 301, roughly midway between Minneapolis and St Paul, MN.
   Weather data from OpenWeatherMap.

#### Objective

Predict the response variable "traffic\_volume" from a collection of numerical and categorical predictors by:

- Preprocessing Data
- Fitting and Evaluating a Model

#### **Initial Observations**

There are no missing data, but there is repeated data.

Date and Time need to be converted to categorical attributes: year, month, day of week, and hour.

| ^     | holiday <sup>‡</sup>      | temp ‡ | rain_1h ‡ | snow_1h <sup>‡</sup> | clouds_all <sup>‡</sup> | weather_main ‡ | weather_description 🕏 | date_time           | traffic_volume ‡ |
|-------|---------------------------|--------|-----------|----------------------|-------------------------|----------------|-----------------------|---------------------|------------------|
| 11612 | Martin Luther King Jr Day | 271.79 | 0         | 0                    | 64                      | Clouds         | broken clouds         | 2014-01-20 00:00:00 | 480              |
| 30081 | Martin Luther King Jr Day | 266.08 | 0         | 0                    | 1                       | Mist           | mist                  | 2017-01-16 00:00:00 | 698              |
| 30082 | Martin Luther King Jr Day | 266.08 | 0         | 0                    | 1                       | Haze           | haze                  | 2017-01-16 00:00:00 | 698              |
| 40656 | Martin Luther King Jr Day | 262.54 | 0         | 0                    | 90                      | Snow           | light snow            | 2018-01-15 00:00:00 | 600              |
| 40657 | Martin Luther King Jr Day | 262.54 | 0         | 0                    | 90                      | Mist           | mist                  | 2018-01-15 00:00:00 | 600              |
| 40658 | Martin Luther King Jr Day | 262.54 | 0         | 0                    | 90                      | Haze           | haze                  | 2018-01-15 00:00:00 | 600              |

## Filtering Duplicate Observations

- There are 40,575 unique date\_time values of the 48,204 observations
  - Taking the first observation of any duplicated date\_time
- There are 35,130 non-duplicated date\_time values of the 48,204 observations
  - Removing any observations that have repeated date\_time

# Filtering Near Zero Variance Predictors

From initial screening, the following predictors exhibited signs of degenerate distributions

- holiday
- rain 1h
- snow\_1h



#### **Summary Statistics for Numerical Variables**



# Summary Statistics for Numerical Variables after Center, Scale, KNN Imputation



|          | temp    | clouds_all |
|----------|---------|------------|
| mean     | 5e-04   | 0          |
| median   | 0.1133  | -0.1086    |
| sd       | 1.0003  | 1          |
| 0%       | -2.902  | -1.1426    |
| 25%      | -0.7283 | -1.1167    |
| 50%      | 0.1133  | -0.1086    |
| 75%      | 0.8328  | 1.184      |
| 100%     | 2.1907  | 1.4425     |
| IQR      | 1.5611  | 2.3007     |
| skewness | -0.3818 | 0.0296     |

temp

clouds\_all

### Summary Statistics for Categorical Variables



### Response by Categorical Predictors



#### **Dummy Variables**

Created a binary predictor for each level of each categorical predictor.

With weather\_main (11), weather\_description (35), year (7), month (12), day (7), hour (24), plus 2 numerical predictors (temp and clouds\_all) yields 98 predictors.

| df.newnew_hour_9 | df.newnew_hour_10 ‡ | df.newnew_hour_11 🕏 | df.newnew_hour_12 | df.newnew_hour_13 🕏 | df.newnew_hour_14 🕏 | df.newnew_hour_15 | df.newnew_hour_16 🗘 |
|------------------|---------------------|---------------------|-------------------|---------------------|---------------------|-------------------|---------------------|
| 1                | 0                   | 0                   | 0                 | 0                   | 0                   | 0                 | 0                   |
| 0                | 1                   | 0                   | 0                 | 0                   | 0                   | 0                 | 0                   |
| 0                | 0                   | 1                   | 0                 | 0                   | 0                   | 0                 | 0                   |
| 0                | 0                   | 0                   | 1                 | 0                   | 0                   | 0                 | 0                   |
| 0                | 0                   | 0                   | 0                 | 1                   | 0                   | 0                 | 0                   |
| 0                | 0                   | 0                   | 0                 | 0                   | 1                   | 0                 | 0                   |
| 0                | 0                   | 0                   | 0                 | 0                   | 0                   | 1                 | 0                   |
| 0                | 0                   | 0                   | 0                 | 0                   | 0                   | 0                 | 1                   |

#### Resampling Methods

Generic 80% Train, 20% Test sets from 40,575 observations

10-fold validation: Our dataset is large; low bias; time consuming

Do not need to repeat, because of large sample size

Bootstrap validation: Relies on random sampling replacement; low variances

#### References

Hogue, John. (2019). "Metro Interstate Traffic Volume Data Set". UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science.

Kuhn M, Johnson K (2013). Applied Predictive Modeling. Springer Science + Business Media.

MNDoT (2019). "Collection Methods". Traffic Forecasting and Analysis. St. Paul, MN.