Corso di Laurea in Ingegneria Informatica e Automatica

Corso di RICERCA OPERATIVA

PROVA di AUTOVALUTAZIONE N.1

ESERCIZI

1. Classificare i seguenti problemi:

$$\min -x_1 + 2x_2 + x_4 + 10x_5 + x_6 + x_7$$

$$x_3 - x_4 \le -1$$

$$x_5 - 4x_6 \ge 0$$

$$-x_1 + x_2 + x_7 = 10$$

$$x_1 \ge 0, x_2 \ge 0, x_4 \ge 0, x_5 \ge 0, x_7 \ge 0.$$

$$\min -x_1^2 + x_4 x_5$$

$$x_3 - x_4^3 \le -1$$

$$(1/x_5) - 4x_6 \ge 0$$

$$-x_1 + x_2 \ge 10$$

$$x_1 \ge 0, x_2 \ge 0.$$

$$\min \quad 10x_1 + x_2 + x_3$$

$$x_1 - 4x_2 \ge 0$$

$$-x_1 + x_3 \le 10$$

$$x_2 + x_3 = 1$$

$$x_1 \in Z, x_2 \in Z, x_3 \in Z.$$

2. Un'industria produce quattro prodotti (P1, P2, P3, P4) utilizzando tre materie prime (M1, M2, M3) che vengono acquistate dall'esterno. La tabella che segue riporta i chilogrammi di ciascuna materia prima richiesti da ogni unità di ciascun prodotto insieme alla quantità massima (in Kg) di ciascuna materia prima che si può acquistare mensilmente e al prezzo di acquisto delle materie prime in Euro al chilogrammo:

	M1	M2	М3
P1	2	10	4
P2	6	20	3
P3	7	2	20
P4	9	7	10
quantità massima	3000	2000	5000
prezzo di acquisto	10	15	20

Per ottenere un prodotto finito pronto per la vendita è necessaria una lavorazione che richiede un numero di ore diverso a seconda del prodotto. La tabella che segue riporta per ogni unità di ciascun prodotto il numero di ore di lavorazione necessarie, insieme al prezzo di vendita unitario (in migliaia di Euro al chilogrammo)

	P1	P2	P3	P4
ore lavorative	10	12	20	18
prezzo vendita	2	2.5	4	3.5

Costruire un modello lineare che permetta di pianificare la produzione di questa industria, determinando le quantità di prodotti venduti e le quantità di materie prime acquistate in modo da massimizzare il profitto netto (ricavo – costo) tenendo conto che un'ora lavorativa costa 100 Euro e che il numero delle ore impiegate per la lavorazione del prodotto P2 non deve superare il 30% del totale delle ore necessarie per la lavorazione di tutti i prodotti fabbricati (si supponga che tutti i prodotti fabbricati vengano venduti).

QUESTIONARIO

- 1. Dire quali delle seguenti affermazioni sono corrette:
 - l'insieme ammissibile di un problema di Programmazione Matematica è descritto da un sistema di equazioni e disequazioni;
 - (b) un problema di Programmazione Matematica può avere un numero infinito di vincoli;
 - (c) un problema di Programmazione Matematica ammette sempre una soluzione ottima;
 - (d) se in un punto \bar{x} un vincolo di disuguaglianza è attivo, allora \bar{x} non soddisfa tale vincolo.
- 2. Dire quali delle seguenti affermazioni sono corrette:
 - (a) un problema di Programmazione Matematica con vincoli lineari si dice problema di Programmazione Lineare;
 - l'insieme $S = \{x \in \mathbb{R}^3 \mid x_1 \cos 2 + x_2 \sin 4 x_3 \le 10, 2x_1 x_2 = 35\}$ può essere l'insieme ammissibile di un problema di Programmazione Lineare;
 - (c) il problema

$$\begin{cases} \min 2x_1 - x_2 + 5x_3 \\ x_1 + 2x_2 - 12x_3 \ge 4 \\ x_1 + 2x_2x_3 + 4x_3 > 5 \end{cases}$$

è un problema di Programmazione Lineare;

l'insieme ammissibile di un problema di Programmazione Lineare può essere sempre espresso nella forma $Ax \ge b$ con A matrice $m \times n$, $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$.

1)	$\min -x_1 + 2x_2 + x_4 + 10x_5 + x_6 + x_7$	Parkama :	programmemone maternatica Gu	12020
	$x_3 - x_4 \le -1$	1 2 Saging	productive desired	CO (C
	$x_5 - 4x_6 \ge 0$, ,	P	
	$-x_1 + x_2 + x_7 = 10$	in Jours	generale	
	$x_1 \ge 0, x_2 \ge 0, x_4 \ge 0, x_5 \ge 0, x_7 \ge 0.$			
	min $-x_1^2 + x_4 x_5$	Problèma	li programosome motemotro m	wu
	$x_3 - x_4^3 \le -1$			
	$(1/x_5) - 4x_6 \ge 0$	Ciucoro, in	Jorus generale	
	$-x_1 + x_2 \ge 10$		0 + 0 = 0	
	$x_1 \ge 0, x_2 \ge 0.$			
	$\min \ 10x_1 + x_2 + x_3 - \dots - $			
	$x_1 - 4x_2 \ge 0$	trobleme	di programmasione molematica	
	$-x_1 + x_3 \le 10$			
	$x_2 + x_3 = 1$	julero iu	fano generale.	
	$x_1 \in Z, x_2 \in Z, x_3 \in Z.$			
	1			

2)	Un'industria produce quattro prodotti (P1, P2, P3, P4) utilizzando tre materie prime (M1, M2, M3) che vengono acquistate dall'esterno. La tabella che segue riporta i chilogrammi di ciascuna materia	
	prima richiesti da ogni unità di ciascun prodotto insieme alla quantità massima (in Kg) di ciascuna materia prima che si può acquistare mensilmente e al prezzo di acquisto delle materie prime in Euro	
	al chilogrammo:	P1 P2 P3 P4 ore lavorative 10 12 20 18
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	prezzo vendita
	P4 9 7 10 [quantità massima 3000 2000 5000	Costruire un modello lineare che permetta di pianificare la produzione di questa industria, determi- nando le quantità di prodotti venduti e le quantità di materie prime acquistate in mode da massimizzare _ il profitto netto (ricavo – costo) tenendo conto che un'ora lavorativa costa 100 Euro e che il numero
	prezzo di acquisto 10 15 20	delle ore impiegate per la lavorazione del prodotti P2 non deve superare il 30% del totale delle ore necessarie per la lavorazione di tutti i prodotti fabbricati (si supponga che tutti i prodotti fabbricati
		vengano venduti).
	XI = quantità di Pi y = quantità	a di Hi
	X2 =	H ₂
	N2 = 4	102
	X3= / P3 4 = /	H3
	$X_3 = $ $X_3 = $ $X_3 = $	
	X4= // P4	
	Fundance objetivo:	
	max (2000 X, + 2500 X, + 9000 X 3 + 35	00 X4 - 104, - 1542 - 20 43 +
	- 1000 X1 - 1200 X2 - 2000 X3 - 1800	
	1000 X1 = (200 X2 = 2000X3 = 1000	
	= wax (1000 X1 + 1300 X2 + 2000 X3 + 190	DO X4-104,-154,-204,)
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
	Viucoli	
	$X_1 = 2y_1 + 10y_2 + 4y_3$	
	$X_1 = 6g + 20g_2 + 3g_3$	
	X2 - 74, 12, 4 1204	
	$x_3 = 7g_1 + 2g_2 + 20g_3$	
	X4 = 9 y, 4 9 y + 10 y3	
	02 03	
	y ≤ 3000	
	y _a ≤ 2008	
	y ≤ 5000	
	$ 2X_2 \leq (0,3) \left(0X_1 + 2X_2 + 20X_3 + 0X_1 \right)$	
	X: >D	
	9i ≥ 0	