NAME	Rec. Instructor:		
Signature	Rec Time		

CALCULUS II - EXAM 1 September 22, 2015

Show all work for full credit. No books, notes or calculators are permitted. The point value of each problem is given in the left-hand margin. You have 65 minutes.

Problem	Points	Points Possible	Problem	Points	Points Possible
1a		12	5a		8
1b		12	5b		8
2		12	5c		8
3		12	6a		8
4		12	6b		8
			Total Score		100

$$\frac{d}{dx} \tan x = \sec^2 x \qquad \qquad \frac{d}{dx} \sec x = \sec x \tan x$$

$$\frac{d}{dx} \sin^{-1}(x) = \frac{1}{\sqrt{1-x^2}} \qquad \qquad \frac{d}{dx} \tan^{-1}(x) = \frac{1}{1+x^2} \qquad \qquad \frac{d}{dx} \sec^{-1}(x) = \frac{1}{|x|\sqrt{x^2-1}}$$

$$\int \tan x \, dx = -\ln|\cos x| + C \qquad \qquad \int \sec x \, dx = \ln|\sec x + \tan x| + C$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}(\frac{x}{a}) + C \qquad \qquad \int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1}(\frac{x}{a}) + C$$

$$\int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx,$$

$$\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx,$$

$$\int \sec^n x \, dx = \frac{\sec^{n-2} x \tan x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx$$

1. Evaluate the following integrals.

(12) a)
$$\int x^2 \ln(x) \ dx$$

(12) b)
$$\int \sin^4(x) \ dx$$

(12) 2. Evaluate the following integral using an appropriate trig substitution.

$$\int \frac{dx}{\sqrt{1+x^2}}$$

(12) 3. Evaluate the following integral using an appropriate substitution.

$$\int \frac{e^x}{(1+e^x)^3} \ dx$$

(12) 4. Evaluate the integral $\int \frac{x+5}{x^3+x} dx$

5. Evaluate the following limits or indicate that they diverge.

(8) a)
$$\lim_{x\to 0} \frac{e^{2x} - 2x - 1}{x^2}$$

(8) b)
$$\lim_{x \to \infty} \frac{e^{2x} + x}{e^{3x} + 5}$$

(8) c)
$$\lim_{x \to \infty} \left(\frac{x+1}{x} \right)^{2x}$$

6. Evaluate the improper integrals or show that they diverge. Make careful use of limit notation.

(8) a)
$$\int_{2}^{5} \frac{dx}{\sqrt{x-2}}$$

(8) b)
$$\int_3^\infty \frac{1}{(x-1)^3} \ dx$$