,并和理工大学

本科生实验报告

买验课桯		
学院名称	地球物理学院	
土业友场	┸╬╶ ╻╬ ╶╇ ╬╸ ┲═╸ ╒ ╩╇	
专业名称		
学生姓名	赖利朋	
学生学号	202105050122	
指导教师	王堃鹏	
3日 44 38 かり	工 举 加力	
实验地点	地球物理学院实验室 5417	
实验成绩		

二〇 年月 —— 二〇 年月

1

填写说明

- 1、适用于本科生所有的实验报告(印制实验报告册除外);
- 2、专业填写为专业全称,有专业方向的用小括号标明;
- 3、格式要求:
 - ① 用 A4 纸双面打印(封面双面打印)或在 A4 大小纸上用蓝黑色水笔书写。
 - ② 打印排版:正文用宋体小四号,1.5倍行距,页边距采取默认形式(上下2.54cm,左右2.54cm,页眉1.5cm,页脚1.75cm)。字符间距为默认值(缩放100%,间距:标准);页码用小五号字底端居中。
 - ③ 具体要求:

题目 (二号黑体居中):

摘要("摘要"二字用小二号黑体居中,隔行书写摘要的文字部分,小 4 号宋体):

关键词(隔行顶格书写"关键词"三字,提炼 3-5 个关键词,用分号隔开,小4号黑体);

正文部分采用三级标题;

- 第1章 $\times \times (小二号黑体居中, 段前 0.5 行)$
- **1.1** ×××××小三号黑体×××××(段前、段后 0.5 行)
- 1.1.1 四号黑体(段前、段后 0.5 行)

参考文献(黑体小二号居中,段前 0.5 行),参考文献用五号宋体,参照《参考文献著录规则(GB/T 7714-2005)》。

电法与电磁法勘探课程实验

摘要

水平层状多层介质视电阻率测深正演模拟,本实验旨在利用电场理论导出的视电阻率计算公式,编写程序计算水平层状介质的视电阻率测深曲线,分析不同地电断面下视电阻率测深曲线的特征,并研究层厚度变化对视电阻率的影响规律。根据水平层状介质的电测深视电阻率计算公式,设计计算方法并设置参数,完成二层与三层介质的视电阻率测深正演计算。绘制不同地电断面的视电阻率测深曲线图,总结不同电性及厚度变化对地面视电阻率曲线的变化特征。实验通过递归公式和积分求和形式计算层状介质视电阻率测深曲线。成功分析了不同类型地电断面的视电阻率测深曲线特征及厚度变化对视电阻率的影响。提出可通过并行计算优化复杂度,以应对实际勘探中的复杂情况。

水平层状介质大地电磁测深正演模拟,本实验基于大地电磁场理论导出的频率测深视电阻率计算公式,编写程序计算水平层状介质的视电阻率频率测深响应,分析不同地电断面的视电阻率测深曲线特征,并研究层厚度变化对视电阻率曲线的影响规律。根据大地电磁测深视电阻率计算流程,设计计算方法并设置参数,完成二层和三层介质的视电阻率正演计算。绘制不同地电断面的视电阻率测深曲线图,总结不同电性及厚度变化对视电阻率曲线的变化特征。实验利用层状介质视电阻率解析计算式,简洁高效地计算视电阻率测深曲线。提示在Matlab中进行实数和虚数计算时需注意的问题。强调数学推公式和并行计算在提高数值模拟精度和效率中的重要性,并通过实验加强了编程经验及可视化分析能力。

关键词:正演: 视电阻率;电磁测深;电场理论

目 录

第	1 鬒	童	水平层状多层介质视电阻率测深正演模拟	1
	. 1		实验目的	
	. 2		实验内容	
			实验设备	
			实验步骤	
'			スセン族	
			. 2 电测深视电阻率计算过程	
1			· 2 电测床视电阻率订算过程	
			头验给比当队员	
2. 1			验目的	
2. 2			验内容1 - 4 > 5 - 4	
2. 3			验设备1	
2. 4			验步骤1	
2. 5)	实	验结论与认识2	.5

第1章 水平层状多层介质视电阻率测深正演模拟

1.1 实验目的

根据水平层状介质条件下电场理论导出的电测深视电阻率计算公式,设计程序计算水平层状介质视电阻率测深曲线,分析不同类型地电断面对应的视电阻率测深曲线特征,以及厚度变化对视电阻的影响规律。

1.2 实验内容

- (1) 根据水平层状介质电测深视电阻率计算公式,设计计算方法,设置相应的计算参数,完成二层与三层介质的视电阻率测深正演计算。
- (2)根据不同地电断面的计算结果绘制视电阻率测深曲线图,分析并总结不同电性及厚度变化时地面视电阻曲线的变化特征。

1.3 实验设备

本次实验为理论计算,用到的主要设备为个人计算机。需要的工具软件分别是程序设计平台,及成果图件绘制软件 Golden Software Grapher 7.0,完成测深曲线的绘制。

1.4 实验步骤

1.4.1 实验原理

水平层状地层理论模型示意图如图 3-1 所示。根据水平层状介质电场理论,计算 在地面某点视电阻率测深曲线。

图 3-1 水平层状地层理论模型示意图

根据多层层状介质的理论,地面观测点的电位可记为

$$U_{1}(r,0) = \frac{\rho_{1}I}{2\pi} \int_{0}^{\infty} \left[1 + 2B(m)\right] J_{0}(mr) dm$$
 (3-1)

利用电场强度和视电阻之间的关系式:

$$\rho_s = \frac{E\pi r^2}{I} = \frac{2\pi r^2}{I} \left(-\frac{\partial U_1}{\partial r} \right) \tag{3-2}$$

上述视电阻率是供电极距r的函数 (r=AB/2),因此上式可改写为:

$$\rho_s(r) = \rho_1 r^2 \int_0^\infty [1 + 2B(m)] J_1(mr) m dm$$
 (3-3)

$$\rho_s(r) = r^2 \int_0^\infty T_1(m) J_1(mr) m dm$$
 (3-4)

 $T_1(m)$ 即为电阻率转换函数。对于 N 层介质, $T_2(m)$ 且具有以下递推关系:

当 n 层以上全去除后,在第 n 层以下为均匀空间,则有第 n 层顶界面上

$$T_n(m) = \rho_n \tag{3-5}$$

当存在第 n-1 层和第 n 层这两层时, 第 n-1 层顶界面上有

$$T_{n-1}(m) = \rho_{n-1} \frac{\rho_{n-1} \left(1 - e^{-2mh_{n-1}}\right) + T_n(m) \left(1 + e^{-2mh_{n-1}}\right)}{\rho_{n-1} \left(1 + e^{-2mh_{n-1}}\right) + T_n(m) \left(1 - e^{-2mh_{n-1}}\right)}$$
(3-6)

上式 (3-14) 可改写为:

$$T_{i}(m) = \rho_{i} \frac{\rho_{i} \left(1 - e^{-2mh_{i}}\right) + T_{i+1}(m) \left(1 + e^{-2mh_{i}}\right)}{\rho_{i} \left(1 + e^{-2mh_{i}}\right) + T_{i+1}(m) \left(1 - e^{-2mh_{i}}\right)}$$
(3-7)

式(3-7)称为层状介质电阻率转换函数的递推公式。直流电测深计算视电阻率的公式(3-4)的积分在计算机求解时可改写为如下的求和形式。

$$\rho_s(r_i) = \sum_{k=1}^{20} T_1(m_{k-i}) C_k \tag{3-8}$$

其中, $r_i = e^{i\Delta x}$ 为供电极距 AB/2,一般取 $\Delta x = (\ln 10)/6$; $m_k = e^{k\Delta x + s}/r_i$, s 为位移系数,计算中取 -2.1719, C_k 为滤波系数,取值如下表 3-1。

k	C_k	k	C_k	k	C_k	k	C_k
1	0.003042	6	0. 23740	11	2. 70440	16	-0.02521
2	0. 001198	7	0. 61940	12	-1.13240	17	0. 01125
3	0. 01284	8	1. 18170	13	0. 39300	18	0. 004978
4	0. 02350	9	0. 42480	14	-0. 14360	19	0. 002072
5	0.08688	10	-3. 45070	15	0.05812	20	0.000318

表 3-1 视电阻率测深正演采用的 20 点滤波系数表

采用本方法计算层状介质视电阻率测深曲线时,只需要根据(3-8)式编写程序,通过输入不同的供电极距 r_i ,即可获得不同供电极距的视电阻率。但应注意供电极距 r_i 不是任意设定的,需要考虑采样值 Δx 与供电极距的关系。

计算流程为:

- (1)输入层参数,包括层数 N,各层的层厚度 h_i 和电阻率 ρ_i ,存入相应的数组中;
 - (2) 输入要计算的M个供电极距值 r_i , i=1,2,...,M, 存入对应的数组中;
 - (3) 读取要计算的第i个供电极距r值,
 - (4) 根据滤波系数序列计算第 $k \uparrow m$ 值,即 $m_k = e^{k\Delta x + s} / r_i = 0.11396 \times e^{k\Delta x} / r_i$;
 - (5) 用电阻率转换函数递推公式,循环计算 m_k 对应的 $T_1(m_k)$
 - (6) 将计算得到的第 $k \cap T_1(m_k)$ 与第 $k \cap x$ 小滤波系数 C_k 相乘,重复步骤(4)-(5);

- (6)将得到的 20 个 $T_1(m_k)$ C_k 值求和即可得到供电极距 r_i 时的视电阻率值 $\rho_s(r_i)$;
 - (7) 重复步骤(3)-(6),即可获得所有供电极距对应的视电阻率值。
 - (8) 输出供电极距 r_i 与 $\rho_s(r_i)$ 的值,即可获得电测生正演结果。

1.4.2 电测深视电阻率计算过程

(1) 计算参数设计

① 供电极距的计算与设置

计算视电阻率采用如表 3-2 的供电极距参数,表中的参数系根据 $r_i = e^{i\Delta x}$ 计算得到,计算结果如表 3-2,共 35 个供电极距。

序号	AB/2 (m)	序号	AB/2 (m)	序号	AB/2 (m)	序号	AB/2 (m)
1	1. 211528	10	6. 812921	19	38. 311868	28	215. 443469
2	1. 467799	11	8. 254042	20	46. 415888	29	261. 015722
3	1.778279	12	10.000000	21	56. 234133	30	316. 227766
4	2. 154435	13	12. 115277	22	68. 129207	31	383. 118685
5	2. 610157	14	14. 677993	23	82. 540419	32	464. 158883
6	3. 162278	15	17. 782794	24	100.000000	33	562. 341325
7	3. 831187	16	21. 544347	25	121. 152766	34	681. 292069
8	4. 641589	17	26. 101572	26	146. 779927	35	825. 404185
9	5. 623413	18	31.622777	27	177. 827941		

表 3-2 视电阻率测深采用的供电极距参数表

② 模型参数设置:

本次试验中需要计算的模型参数如下表 3-3, 共 12 个模型, 分为四组。

表 3-3 水平层状二层介质模型层参数表

推刑40.0	塔利克 贝	第一层电阻率	第二层电阻率	第一层厚度
模型组号	模型序号	$ ho_{_1}ig(\Omega\cdot mig)$	$\rho_2\big(\Omega\!\cdot\! m\big)$	$h_{_{\! 1}}\!\left(m ight)$

	1	10.00	100.00	4.0
第一组	2	10.00	100.00	8.0
	3	10.00	100.00	12. 0
	4	20.00	100.00	4.0
第二组	5	30.00	100.00	8.0
	6	40.00	100.00	12.0
	7	100.00	10.00	4.0
第三组	8	100.00	10.00	8.0
	9	100.00	10.00	12. 0
	10	100.00	20.00	4.0
第四组	11	100.00	30.00	8.0
	12	100.00	40.00	12. 0

(2) 计算程序设计与代码

① 程序设计语言

② 程序中的变量说明

程序中使用的主要变量名、数据类型及其数值含义说明如表 3-4。

表 3-4 程序中使用的主要变量及其说明

序号	变量名	数据类型	型 功能含义		
1	Dis	双精度数组	记录电极距		
2	Height	双精度数组	记录地层厚度		
3	Rho	双精度数组	记录地层对应对应的电阻率		
3	Trans	双精度数组	电阻率转换映射关系		
5	5 Rho_s 双精度浮点数		记录每个电极距的视电阻率		
6	С	双精度数组	记录滤波系数		

④ 程序源代码及相关注释

main.cpp:生成数据

#include <iostream>

```
#include <fstream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <vector>
#include <iomanip> // 浮点数
using std::cout;
using std::endl;
using std::vector;
using std::ofstream;
using std::fixed; // 使用 fixed 操控符
using std::setprecision; // 使用 setprecision 操控符
const int N = 35; // 供电极距个数
const double DeltaX = log(10) / 6.0; //
const int Sizeof_C = 20; // 滤波系数个数
int main()
{
   cout << "start work" << endl;</pre>
   // 计算视电阻测深供电极距
   vector<double> Dis(N+1, 0);
   for (int i = 0; i < Dis.size(); i++)</pre>
   {
       Dis[i] = exp(0.5 * (i + 1) * DeltaX);
       printf("#%d 序号供电极距离为: %.61fm\n", i, Dis[i]);
   }
   // 打开文件
   ofstream outputFile("电极距离.txt");
```

```
if (!outputFile.is_open())
{
   cout << "Failed to open file for writing!" << endl;</pre>
   return 1; // 如果无法打开文件,退出程序
}
// 设置浮点数输出格式,保留6位小数
outputFile << fixed << setprecision(6);</pre>
// 输出序号和电极距到文件
for (int i = 0; i < Dis.size(); i++)</pre>
{
   outputFile << " " << Dis[i] << endl;</pre>
}
// 关闭文件
outputFile.close();
cout << "Finish writing to file '电极距离.txt'" << endl;
// 读取并初始化滤波系数
// 打开滤波系数文件
std::ifstream coeffFile("滤波系数.txt");
if (!coeffFile.is_open())
{
   cout << "Failed to open coefficient file!" << endl;</pre>
   return 1; // 如果无法打开文件,退出程序
}
// 读取滤波系数并初始化
vector<double> C(Sizeof_C, 0); // 滤波系数
int index;
```

```
double value;
while (coeffFile >> index >> value)
{
   if (index > 0 && index <= Sizeof C)</pre>
   {
      C[index - 1] = value; // 将读取的系数放入对应的位置
   }
}
// 关闭文件
coeffFile.close();
// 打印滤波系数
cout << "滤波系数: " << endl;
for (int i = 0; i < Sizeof_C; ++i)</pre>
{
   cout << "系数#" << i + 1 << ": " << C[i] << endl;
}
// 计算视电阻率
int Layer;
cout << "请输入地层层数(至少大于等于 2 层)" << end1;
std::cin >> Layer;
cout << "您输入的地层层数为 " << Layer << " 层" << endl;
vector<double> Height(Layer, 0); // 地层厚度
vector<double> Rho(Layer, 0); // 电阻率
vector<double> Trans(Layer, 0); // 电阻率转换函数
for (int i = 0; i < Layer-1; i ++)
{
   printf("请输入第%d 层的深度和电阻率:(请注意中间空格) ", i + 1);
```

```
std::cin >> Height[i] >> Rho[i];
       printf("你输入的第%d 层的深度为%.6lf, 电阻率为:%.6lf\n", i + 1,
Height[i], Rho[i]);
   }
   printf("请输入第%d 层的电阻率: >", Layer);
   std::cin >> Rho[Layer-1];
   printf("你输入的第%d 层的电阻率为:> %.61f\n", Layer, Rho[Layer-1]);
   Trans[Layer - 1] = Rho[Layer - 1]; // 公式(3-13)
   double s = -2.1719; // 位移系数
   for (int i = 0; i < Dis.size(); i ++) // 对供电极循环 35
   {
       double Rho_s = 0; // 每次复原
       for (int j = 0; j < Sizeof C; j ++) // 对滤波系数循环 20
       {
          double mj = exp(j * DeltaX + s) / Dis[i];
          for (int k = 0; k < Layer - 1; k ++) // 对地层循环 2
          {
              int index = Layer - k - 2; //
             // 公式(3-15)
              Trans[index] = Rho[index] * (Rho[index] * (1 - exp(-2))
* mj * Height[index])) +
                               Trans[index+1] * (1 + exp(-2 * mj *
Height[index]))) /
                               (Rho[index] * (1 + exp(-2 * mj *
Height[index])) +
                               Trans[index+1] * (1 - exp(-2 * mj *
Height[index])));
          }
          // 公式(3-16)
          Rho_s += Trans[0] * C[j];
```

```
}
      printf("%.61f %.61f\n", Dis[i], Rho_s);
   }
   cout << "finish work!" << endl;</pre>
   return 0;
}
plot.py:根据数据文件绘图
folder path = 'Model'
for subdir in sorted(os.listdir(folder path)):
   subdir path = os.path.join(folder path, subdir)
   # 子文件夹中的文件列表
   file list = sorted(os.listdir(subdir path))
   # 创建一个新的图像
   plt.figure()
   # 遍历每个文件
   for file name in file list:
      file path = os.path.join(subdir path, file name)
      # 读取数据
      with open(file path, 'r') as file:
          data = [line.strip().split() for line in
file.readlines()]
          data = [[float(x) for x in row] for row in data]
          data = list(zip(*data)) # 转置数据以便绘制
      # 绘制数据
      plt.loglog(data[0], data[1], label=file_name[:-4]) # 使用文件
名(去除扩展名)作为图例标签
   #添加图例
   plt.legend()
```

设置标题和轴标签

plt.title('Model ' + subdir)
plt.xlabel('Ele_distance')
plt.ylabel('Rho')
显示图像
plt.show()

⑤ 输出数据文件名称及格式

输出文件名称: test1.txt等,第一列电极距,第二列为视电阻率成果数据文件格式:二列,第1列为AB/2值,第2列为供电极距对应的视电阻率值。

(3) 二层地电模型电测深视电阻率计算结果

计算获得的不同模型电测深视电阻率结果(列出前8个模型计算结果)如表3-5。

表 3-5 不同模型电测深视电阻正演计算结果

供电极距			模型戶	序号对应的视	L电阻率 ρ_s (Ω	$(\Omega \cdot m)$		
AB/2	模型1	模型 2	模型3	模型 4	模型 5	模型 6	模型 7	模型 8
1.211528	10.190610	10.024394	10.006938	20.300987	30.046231	40.014040	98.484289	99.799413
1.467799	10.330117	10.043508	10.012677	20.520440	30.082006	40.025375	97.392881	99.647333
1.778279	10.564184	10.077049	10.022838	20.887955	30.144624	40.045288	95.584213	99.380987
2.154435	10.947370	10.135473	10.040767	21.488014	30.253477	40.080255	92.677770	98.918682
2.610157	11.554564	10.236152	10.072251	22.435158	30.440681	40.141467	88.198471	98.126817
3.162278	12.477552	10.407071	10.127147	23.866527	30.757687	40.247943	81.668215	96.795271
3.831187	13.811819	10.691363	10.221879	25.917742	31.283081	40.431244	72.806526	94.612359
4.641589	15.634505	11.151402	10.383014	28.683699	32.128781	40.742058	61.808862	91.155857
5.623413	17.984063	11.869505	10.651740	32.182145	33.438489	41.258070	49.547317	85.933067
6.812921	20.856837	12.941054	11.088121	36.346140	35.369798	42.090405	37.470933	78.512567
8.254042	24.224001	14.457286	11.772386	41.052753	38.054530	43.382476	27.126091	68.764777
10.00000	28.053272	16.482128	12.799109	46.163657	41.546684	45.292148	19.526572	57.135520
12.11527	32.317203	19.036849	14.261141	51.547178	45.787394	47.950632	14.790287	44.754453
14.67799	36.985887	22.105277	16.226560	57.076487	50.615506	51.406063	12.287445	33.181927
17.78279	42.015066	25.655123	18.721626	62.620708	55.818499	55.581964	11.134361	23.827231
21.54434	47.338576	29.656009	21.733484	68.043325	61.185518	60.284421	10.629570	17.373282

26.10157	52.866360	34.080936	25.230522	73.209255	66.532010	65.258529	10.389582	13.603650
31.62277	58.486475	38.895716	29.181744	77.995851	71.699514	70.255132	10.257544	11.725734
38.31186	64.070513	44.048159	33.560183	82.304058	76.551299	75.069314	10.176989	10.889453
46.41588	69.482392	49.462824	38.333087	86.067380	80.974925	79.546785	10.124899	10.517204
56.23413	74.589696	55.040747	43.450676	89.256652	84.889036	83.578066	10.090424	10.329895
68.12920	79.275911	60.662766	48.840227	91.879454	88.248638	87.094879	10.067722	10.221867
82.540419	83.451547	66.196287	54.405333	93.974502	91.046086	90.068929	10.052724	10.154185
100.0000	87.062054	71.505213	60.028842	95.602611	93.307330	92.508638	10.042612	10.109826
121.1527	90.090887	76.461852	65.579232	96.836369	95.084164	94.452321	10.035790	10.080475
146.7799	92.557165	80.958979	70.920228	97.750607	96.444219	95.958881	10.031286	10.061179
177.8279	94.508677	84.919948	75.922567	98.415183	97.460972	97.097762	10.028300	10.048335
215.4434	96.012066	88.304873	80.476148	98.890628	98.205612	97.939882	10.026222	10.039637
261.0157	97.142442	91.111598	84.500467	99.226449	98.741607	98.550909	10.024655	10.033815
316.2277	97.974430	93.371392	87.951330	99.461323	99.122027	98.987374	10.023284	10.029987
383.1186	98.575827	95.140597	90.822439	99.624407	99.389046	99.295264	10.021824	10.027413
464.1588	99.004162	96.490329	93.141642	99.737078	99.574888	99.510356	10.020095	10.025572
562.3413	99.305699	97.496446	94.962946	99.814687	99.703436	99.659520	10.018084	10.024117
681.2926	99.516105	98.231518	96.356322	99.868086	99.791990	99.762410	10.015914	10.022742
825.4041	99.661989	98.759619	97.397543	99.904859	99.852860	99.833127	10.013744	10.021190

(4) 四组模型视电阻率测深曲线图及其特征分析

通过计算,获得的视电阻率测深数据绘制的测深曲线图如下图 3-2、图 3-3、图 3-4、图 3-5,共四幅图,每个图为一组模型的计算结果,采用的坐标为双对数坐标。

图 3-2 第一组模型电测深曲线图

图 3-3 第二组模型电测深曲线图

图 3-4 第三组模型电测深曲线图 图 3-5 第四组模型电测深曲线图

视电阻率测深曲线图特征分析:

对于视电阻率 ρ_s 的变化,在电极距趋近于 0 的时候,视电阻率接近于第一个地层的电阻率;在电极距逐渐增大时,视电阻率趋近于第二个地层的电阻率。并且根据第一层的地层的厚度,发现地层越厚,视电阻率起初变化较慢,但是中间有段区间,视电阻率变化很大,而后变化又变慢。

1.5 实验结论与认识

- (1)本次实验主要采用层状介质电阻率转换函数的递归公式,通过在计算机中使用循环,并且将积分转换成求和形式求解。
- (2)通过完成本次实验,分析了不同类型地电断面对应的视电阻率测深曲线特征,以及厚度变化对视电阻率影像的规律,很好的达成了本次的实验目的
- (3)本次实验中应用了多次循环,可从并行计算的角度使用 parallel for 即 openmp 去优化复杂度,从而更好的应对现实勘探中的复杂情景。

第2章 水平层状介质大地电磁测深正演模拟

2.1 实验目的

根据水平层状介质条件下大地电磁场的相关理论导出的频率测深视电阻率计算公式,设计程序计算水平层状介质视电阻率频率测深响应,总结不同类型地电断面对应的视电阻率测深曲线特征,并分析厚度变化对视电阻曲线的影响规律。

2.2 实验内容

- (1)根据水平层状介质大地电磁测深视电阻率计算流程,设计计算方法,设置相应的计算参数,完成二层和三层介质的视电阻率正演计算。
- (2)根据不同地电断面的计算结果绘制视电阻率测深曲线图,分析并总结不同电性及厚度变化时地面视电阻曲线的变化特征。

2.3 实验设备

本次实验为理论计算,用到的主要设备为个人计算机。需要的工具软件分别是程序设计平台,及成果图件绘制软件 Golden Software Grapher 7.0,完成测深曲线的绘制。

2.4 实验步骤

2.4.1 实验原理

(1) 水平层状大地电磁场基本理论 水平层状大地理论模型示意图如图 4-1。

图 4-1 水平层状地层理论模型示意图

根据水平层状介质电磁场理论,视电阻率概念是从均匀介质中电阻率与波阻抗的关系中引出的,即:

$$p_T = \frac{1}{\omega \mu} \times \left| Z_{1.n} \right|^2 \tag{4-1}$$

式中 p_T 表示视电阻率, $Z_{1,n}$ 表示 n 层介质情况下第一层处的波阻抗。

当定义 n 层介质中第 m+1 层的变换阻抗 $R_{m,n}$ 为:

$$R_{m+1.n} = \frac{Z_{m+1.n}}{Z_{0m+1}} \tag{4-2}$$

其中, $Z_{m+1,n}$ 为第 m+1 层波阻抗, Z_{0m+1} 为第 m+1 层特征阻抗,那么第一层的波阻抗为:

$$Z_{1.n} = Z_{0m} R_{1.n} = -\frac{i\omega\mu}{\kappa_1} R_{1.n}$$
 (4-3)

于是,层状介质的视电阻率公式为:

$$\rho_T = \rho_1 \left| R_{1,n} \right|^2 \tag{4-4}$$

根据(4-2),再定义第 m 层底界面的磁反射系数:

$$L_{m+1} = \frac{Z_{0m} - Z_{m+1}}{Z_{0m} + Z_{m+1}} = \frac{1 - \frac{Z_{m+1}}{Z_{0m}}}{1 + \frac{Z_{m+1}}{Z_{0m}}} = \frac{1 - \frac{Z_{0m+1}}{Z_{0m}} R_{m+1,n}}{1 + \frac{Z_{0m+1}}{Z_{0m}} R_{m+1,n}} = \frac{1 - \sqrt{\frac{\rho_{m+1}}{\rho_m}} R_{m+1,n}}{1 + \sqrt{\frac{\rho_{m+1}}{\rho_m}} R_{m+1,n}}$$
(4-5)

其中, ρ_{m+1} 为第 m+1 层的电阻。

把变换阻抗用反射系数来表示,即

$$R_{m.n} = \frac{1 - L_{m+1} e^{-2k_m h_m}}{1 + L_{m+1} e^{-2k_m h_m}} \tag{4-6}$$

对于最后一层的地层,由于没有反射波,其波阻抗等于特征阻抗,所以有:

$$R_{n,n} = 1 \tag{4-7}$$

在地球物理勘探中,通常把野外观测获得的不同周期(频率)的地面波阻抗换算成视电阻率,并以频率或周期为横坐标,以视电阻为纵坐标,将测量结果绘制的双对

数坐标系中,通常称为频率测深曲线。利用视电阻测深曲线研究地下介质电性分布特征。

(2) 递推公式的计算问题

记 k_m 为第m层的复波数,当波长以公里为单位时有

$$k_{m} = \frac{2\pi}{\sqrt{10\rho_{m}T}}(1-i) \tag{4-8}$$

于是 $R_{m,n}$ 和 L_{m+1} 也都是复数。考虑到采用计算机编程时复数分解为实部和虚部分别进行运算,为此,令

$$R_{m,n} = u_m + iv_m, \qquad L_{m+1} = P_{m+1} + iQ_{m+1}$$
 (4-9)

求解 L_{m+1} 的实部和虚部;

$$L_{m+1} = \frac{1 - \sqrt{\frac{\rho_{m+1}}{\rho_m}}(u_{m+1} + iv_m)}{1 + \sqrt{\frac{\rho_{m+1}}{\rho_m}}(u_{m+1} + iv_m)} = \frac{1 - (\sqrt{\frac{\rho_{m+1}}{\rho_m}}u_{m+1})^2 - (\sqrt{\frac{\rho_{m+1}}{\rho_m}}v_{m+1})^2 - i2\sqrt{\frac{\rho_{m+1}}{\rho_m}}v_{m+1}}{(1 + \sqrt{\frac{\rho_{m+1}}{\rho_m}}u_{m+1})^2 + (\sqrt{\frac{\rho_{m+1}}{\rho_m}}v_{m+1})^2}$$

$$P_{m+1} = \frac{1 - \left(\sqrt{\frac{\rho_{m+1}}{\rho_m}} u_{m+1}\right)^2 - \left(\sqrt{\frac{\rho_{m+1}}{\rho_m}} v_{m+1}\right)^2}{\left(1 + \sqrt{\frac{\rho_{m+1}}{\rho_m}} u_{m+1}\right)^2 + \left(\sqrt{\frac{\rho_{m+1}}{\rho_m}} v_{m+1}\right)^2}$$
(4-10)

$$Q_{m+1} = \frac{-2\sqrt{\frac{\rho_{m+1}}{\rho_m}}v_{m+1}}{\left(1 + \sqrt{\frac{\rho_{m+1}}{\rho_m}}u_{m+1}\right)^2 + \left(\sqrt{\frac{\rho_{m+1}}{\rho_m}}v_{m+1}\right)^2} \tag{4-11}$$

求解 R_{mn} 的实部和虚部,并将其中的复数

$$e^{-2k_{m}h_{m}}=e^{\frac{-4\pi h_{m}}{\sqrt{10\rho_{m}T}}}$$

作如下变换

$$G_{m} = \frac{4\pi h_{m}}{\sqrt{10\rho_{m}T}}$$

$$e^{-G_{m}(1-i)} = e^{-G_{m}(\cos G_{m} + i\sin G_{m})}$$
(4-12)

$$R_{m,n} = \frac{1 - e^{-G_m} (\cos G_m + i \sin G_m) (P_{m+1} + i Q_{m+1})}{1 + e^{-G_m} (\cos G_m + i \sin G_m) (P_{m+1} + i Q_{m+1})}$$
(4-13)

$$R_{m,n} = \frac{1 - e^{-G_m} (P_{m+1} \cos G_m - Q_{m+1} \sin G_m)}{1 + e^{-G_m} (P_{m+1} \cos G_m - Q_{m+1} \sin G_m)} = \frac{-ie^{-G_m} (Q_{m+1} \cos G_m + P_{m+1} \sin G_m)}{+ie^{-G_m} (Q_{m+1} \cos G_m + P_{m+1} \sin G_m)} = \frac{(1 - A_m) - iB_m}{(1 + A_m) + iB_m}$$

$$A_m = e^{-G_m} (P_{m+1} \cos G_m - Q_{m+1} \sin G_m)$$
 (4-14)

$$B_m = e^{-G_m} (Q_{m+1} \cos G_m + P_{m+1} \sin G_m)$$
 (4-15)

$$u_{m} = \frac{1 - A_{m}^{2} - B_{m}^{2}}{(1 + A_{m}^{2})^{2} + B_{m}^{2}}, \qquad v_{m} = \frac{-2B_{m}}{(1 + A_{m}^{2})^{2} + B_{m}^{2}}$$
(4-16)

(3)程序计算流程

计算之前需要设定地下介质的层参数,以及采集信号的频率 f(或周期 T)的数值,对于每一个频率 f 主要是计算 $R_{m.n}$ 。而该计算过程为一递推过程,递推过程是由底层至上层逐层进行的。

- ① 从最底层开始,有 $R_{nn}=1$,故有 $u_n=1$, $v_n=0$,并令n=m+1;
- ② 进而可计算出 L_{m+1} 的实部 P_{m+1} 和虚部 Q_{m+1} ,并计算到 L_{m+1} ;
- ③ 由 P_{m+1} 和 Q_{m+1} 可通过(4-14)、(4-15)、(4-16),可以计算出 u_m 和 v_m ,从而得到 $R_{m,n}$ 。
 - ④ 这样就完成由 R_{m+1} ,到 R_{m} ,的一个循环。
- ⑤ 依次进行上述②—④的循环,直至 m=1 求出 u_1 和 v_1 ,即可由 $\rho_T = \rho_1(u_1^2 + v_1^2)$ 计算出相应的视电阻率值。

整个程序计算流程图如图 4-2。

图 4-2 层状介质大地电磁测深正演计算流程

4.4.2 大地电磁测深视电阻率计算

(1) 计算参数设计

① 频率的计算与设置

频率测深中需要给定一系列的频率,从高频到低频一般为对数等间隔分布,计算好的一组频率值如表 4-1, 共 60 个频点。

ch a	频率	₽ □	频率	₽ □	频率	₽ □	频率
序号	(Hz)	序号	(Hz)	序号	(Hz)	序号	(Hz)
1	10000	16	780	31	57	46	4. 1
2	8800	17	640	32	49	47	3. 4
3	7200	18	530	33	40	48	2.81
4	6000	19	460	34	33	49	2. 34
5	5200	20	390	35	27. 5	50	2.03
6	4400	21	320	36	22. 5	51	1.72
7	3600	22	265	37	18.8	52	1.41
8	3000	23	229	38	16. 2	53	1. 17
9	2600	24	194	39	13. 7	54	1.02

表 4-1 频率测深使用的频率表

10	2200	25	159	40	11.2	55	0.86
11	1800	26	132	41	9. 4	56	0.7
12	1500	27	115	42	8. 1	57	0. 59
13	1300	28	97	43	6. 9	58	0. 51
14	1100	29	79	44	5. 6	59	0. 43
15	900	30	66	45	4. 7	60	0.35

② 模型参数设置

本次试验中需要计算的模型参数如下表 4-2, 共 22 个模型, 分为五组, 其中二层模型 G、D 合为一组, 三层模型中 H、K、Q、A 分别为一组。

表 4-2 水平层状二层介质模型层参数表

模型	组	相对电阻率		电阻率 $(\Omega \cdot m)$		第一层厚	第二层厚
号	<u>.</u>	$ ho_{\scriptscriptstyle 2}/ ho_{\scriptscriptstyle 1}$	第一层	第二层率	第三层	度 h ₁ (m)	度 $h_2(m)$
		0.01	100.00	1.00		100.0	
二	D	0. 1	100.00	10.00		100.0	
层		0. 5	100.00	50.00		100.0	
模		5	100.00	500.00		100.0	
型	G	10	100.00	1000.00		100.0	
		100	100.00	10000.00		100.0	
	Н	1/19	100.00	5. 26	∞	200.00	40.00
		1/19	100.00	5. 26	∞	200.00	100.00
		1/19	100.00	5. 26	∞	200.00	400.00
		1/19	100.00	5. 26	∞	200.00	1000.00
三		19	100.00	1900.00	0	200.00	760.00
层	K	19	100.00	1900.00	0	200.00	1900.00
模	IX	19	100.00	1900.00	0	200.00	5700.00
型		19	100.00	1900.00	0	200.00	19000.00
		1/19	1000.00	52. 63	2.77	200.00	100.00
	Q	1/19	1000.00	52. 63	2.77	200.00	40.00
	٧	1/19	1000.00	52. 63	2. 77	200.00	400.00
		1/19	1000.00	52. 63	2.77	200.00	1800.00

		19	100.00	1900.00	36100	200.00	760.00
	Δ	19	100.00	1900.00	36100	200.00	1900.00
	11	19	100.00	1900.00	36100	200.00	5700.00
		19	100.00	1900.00	36100	200.00	19000.00

(2) 计算程序设计与代码

① 程序设计语言

Matlab

② 程序中的变量说明

程序中使用的主要变量名、数据类型及其数值含义说明如表 4-3。

序号	变量名	数据类型	功能含义	备 注
1	h	双精度数组	地层厚度	输入参数
2	rho	双精度数组	电阻率	
3	fs	双精度数组	频率	
3	u	双精度浮点数	真空中磁导率	
5	d	双精度数组	视电阻率	
6	j		虚数单位	

表 4-3 程序中使用的主要变量及其说明

③ 程序源代码及相关注释

two_layers.m:第二层的算法

```
warning off;
clc, clear, close all;

h1 = 100;
rho = [100, 1; 100, 10; 100, 50; 100, 500; 100, 1000; 100, 10000];
fs = [
    10000, 8800, 7200, 6000, 5200, 4400, 3600, 3000, 2600, 2200, ...
    1800, 1500, 1300, 1100, 900, 780, 640, 530, 460, 390, ...
    320, 265, 229, 194, 159, 132, 115, 97, 79, 66, ...
    57, 49, 40, 33, 27.5, 22.5, 18.8, 16.2, 13.7, 11.2, ...
    9.4, 8.1, 6.9, 5.6, 4.7, 4.1, 3.4, 2.81, 2.34, ...
    2.03, 1.72, 1.41, 1.17, 1.02, 0.86, 0.7, 0.59, 0.51, ...
```

```
0.43, 0.35
];
u=4*pi*1e-7;%真空中的磁导率
figure(1)
for n = 1:1:length(rho)
   x=1;
   for f = fs
      k=sqrt(-j*2*pi*f*u./rho(n,:)); % 求 k_{m}
      % disp(k(1));
      L2=(z1-Z(x,2))/(z1+Z(x,2));
      Z(x,1)=z1*(1-L2*exp(-2*k(1)*h1))/(1+L2*exp(-2*k(1)*h1)); % 求 Z_{m}
      x=x+1;
   end
   d(n,:)=(abs(Z(:,1)).^2./(2*pi*fs'*u))';%卡尼亚视电阻率 阻抗
   % d(n, :) / rho(n, 1) = 视电阻率
   loglog((1 ./ fs),(d(n,:)),'DisplayName', sprintf('p%d = [%d, %d]', n,
rho(n, 1), rho(n, 2)));%振幅曲线
   % loglog((1./fs), (d(n,:)), 'DisplayName', sprintf('p%d = [%d, %d]', n,
rho(n, 1), rho(n, 2)));%振幅曲线
   title("电测深曲线");
   ylabel("视电阻率");
   xlabel("T = 1 / f(s)");
   hold on
end
legend('show');
hold off
figure(2);
for n = 1:1:length(rho)
   x=1;
   for f = fs
      k=sqrt(-j*2*pi*f*u./rho(n,:));
      Z(x,2)=-j*2*pi*f*u/k(2);
      z1=-j*2*pi*f*u/k(1);
      L2=(z1-Z(x,2))/(z1+Z(x,2));
      Z(x,1)=z1*(1-L2*exp(-2*k(1)*h1))/(1+L2*exp(-2*k(1)*h1));
      x=x+1;
   end
  d(n,:)=(phase(Z(:,1)))'.*180./pi;%弧度转角度
```

```
L(n,:)=abs(d(n,:));
  semilogx((1./fs), L(n,:), 'DisplayName', sprintf('p%d = [%d, %d]', n, )
rho(n, 1), rho(n, 2));
  % \log \log((1./fs), L(n,:), 'DisplayName', sprintf('p%d = [%d, %d]', n, )
rho(n, 1), rho(n, 2)));
  hold on
  title("相位曲线");
  ylabel("phi °");
  xlabel("T = 1/f(s)");
end
legend('show');
three. layers. m: 第三层的算法
warning off;
clc, clear, close all;
rho = [100, 1900, 36100];
h = [200, 760; 200, 1900; 200, 5700; 200, 19000];
figure(1)
for i=1:size(h,1)
   [b,T,y,pc,ph]=MT1D_Forward1(rho,h(i,:));
   % loglog(T,pc./rho(1));
   loglog(T, pc, 'DisplayName', sprintf('p%d = [%d, %d]', i, h(i, 1), h(i,
2)));
hold on
title("电测深曲线, rho1 = 100, rho2 = 1900, rho3 = 36100");
ylabel("视电阻率");
xlabel("T = 1 / f(s)");
legend('show');
hold off
figure(2)
for i=1:size(h,1)
   [b,T,y,pc,ph]=MT1D_Forward1(rho,h(i,:));
   semilogx(T,ph, 'DisplayName', sprintf('p%d = [%d, %d]', i, h(i, 1),
h(i, 2)));
hold on
title("相位曲线, rho1 = 100, rho2 = 1900, rho3 = 36100");
ylabel("phi °");
```

```
xlabel("T = 1 / f(s)");
legend('show');
hold off
%%
function [b,T,y,pc,ph]=MT1D_Forward1(rho,h)
mu = (4e - 7) * pi;
T=logspace(-5,7,100);
omega=2*pi./T;
i=sqrt(-1);
k=zeros(size(rho,2),size(T,2));
for N=1:size(rho,2)
   k(N,:)=sqrt(-i*2*pi*mu./(T.*rho(N)));%每一层复波数
end
m=size(rho,2);
%阻抗计算公式
y=-i*2*pi*mu./(T.*k(m,:));
for nn=m-1:-1:1
   A=-i*2*pi*mu./(T.*k(nn,:));
   B=\exp(-2*k(nn,:).*h(nn));
   y=A.*(A.*(1-B)+y.*(1+B))./(A.*(1+B)+y.*(1-B));
end
pc=abs(y).^2./(mu*2*pi./T);
ph=-atan(imag(y)./real(y)).*180/pi;
b=[pc,ph];
end
```

④ 输出数据文件名称及格式

输出文件名称:

成果数据文件格式:二列,第1列为AB/2值,第2列为供电极距对应的视电阻率值。

(3) 五组模型视电阻率及相位曲线图及其特征分析

通过计算,获得的视电阻率测深数据绘制的测深曲线图如下图 4-3、图 4-4、图 4-5、图 4-6、图 4-7,共五幅图,每幅图中有视电阻率曲线和相位曲线,采用的坐标为双对数坐标。

(注: 采用不同类型的线条代表不同的电测深曲线,图例用模型层参数标注)

图 4-3 二层模型电测深曲线及相位曲线图

图 4-4 H 模型电测深曲线及相位曲线图

图 4-5 K 模型电测深曲线及相位曲线图

图 4-6 Q 模型电测深曲线及相位曲线图

图 4-7 A 模型电测深曲线及相位曲线图

视电阻率测深曲线图特征分析:

对于二层介质模型,其电测深曲线,在高频情况下,其视电阻率接近第一层的电阻率,在低频情况下,其视电阻率接近第二层的电阻率

对于三层介质模型,其电测深曲线,在高频情况下,其视电阻率接近第一层的电阻率,在低频情况下,其视电阻率接近第二层的电阻率;并且随着第二层厚度的增加,其变化的起跳点延后。

2.5 实验结论与认识

- (1)本次实验结果是利用层状介质视电阻率解析计算式得到,相比于传统方法,更为简洁,且计算高效。
- (2) 需要注意的是 Matlab 中实数和虚数的计算。

对于数值模拟与计算, 最重要的就是精度和效率, 其中需要利用到数 学和计算机的技巧, 即数学推公式, 使得式子更为简单, 而这往往更难 实现;对于计算机技巧,可以使用并行计算,并且通过模块化程序,使 得更好进行该进维护, 这需要通过大量的编程经验, 在本次实验中, 加 学 强了编码经验及通过可视化图像, 更能直接感受到视电阻率的变化, 生 而不是枯燥的公式。 实 验 S 得 学生(签名): 赖利朋 2024年6月16日 指 부 教 师 评 语 成绩评定: 指导教师(签名): 年 月 \Box