# Simple Analysis

Grant Esparza
September 6, 2018

#### Introduction

For this assignment I will be looking at records of political lobbyist activities in the city of Chicago. I obtained this data from the website Kaggle, which was orignally found on the City of Chicago's organization page. There were several datasets to choose from, however I decided to focus on the relationship between a lobbyist's compensation and how that affected the amount of money donated to political organizations. This information was found in two seperate files, lobbyist\_data-compensation.csv and lobbyist-data-contributions.csv.

### **Data Preparation**

```
## load libraries
library(ggplot2)
library(dplyr)
library(pander)
## Read data
comp_dat <- read.csv("lobbyist-data-compensation.csv")</pre>
contribute_dat <- read.csv("lobbyist-data-contributions.csv")</pre>
## Select variables of interest
comp dat <- comp dat %>% select(LOBBYIST ID, COMPENSATION AMOUNT)
contribute_dat <- contribute_dat %>% select(LOBBYIST_ID, AMOUNT)
## Join datasets
lobby dat <- inner join(comp dat, contribute dat,
                          on = c("LOBBYIST_ID" = "LOBBYIST_ID"))
## Make lobbyist id a factor for grouping
lobby_dat[, "LOBBYIST_ID"] <- as.factor(lobby_dat[, "LOBBYIST_ID"])</pre>
## Clean variable names
colnames(lobby_dat) <- c("lobbyist.id", "comp.amount", "contrib.amount")</pre>
pander(head(lobby_dat))
```

| lobbyist.id | comp.amount | contrib.amount |
|-------------|-------------|----------------|
| 8081        | 52500       | 1500           |
| 8081        | 52500       | 250            |
| 8081        | 52500       | 250            |
| 6039        | 2000        | 500            |
| 6039        | 2000        | 100            |
| 6039        | 2000        | 250            |

#### Fine tuning

After some manipulation with dplyr I now have a managable dataset with only the variables I care about. However, notice that there are multiple records for each lobbyist. To take care of that I'll use group\_by and summarise to calculate the total values for each lobbyist.

```
# Group by lobbyist, calculate sum for comp and contribution
lobby_summary <- lobby_dat %>%
    group_by(lobbyist.id) %>%
    summarise(comp_sum = sum(comp.amount), contrib_sum = sum(contrib.amount))
## View new tibble
pander(head(lobby_summary))
```

| lobbyist.id | $comp\_sum$ | $contrib\_sum$ |
|-------------|-------------|----------------|
| 5505        | 169500      | 2500           |
| 5536        | 7500        | 1300           |
| 5684        | 1260000     | 42750          |
| 5703        | 439000      | 4000           |
| 5728        | 2800        | 600            |
| 5762        | 548500      | 28000          |

### Visualization

```
require(gridExtra)
plot1 <- ggplot(lobby_summary, aes(comp_sum)) +</pre>
  geom histogram(bins = 11) +
  ggtitle("Compensation per Lobbyist") +
  xlab("Compensation Total") + ylab("Count") +
  scale_x_continuous(labels = scales::comma) +
  theme_minimal() +
  theme(axis.title.x = element_text(face = "italic"),
       axis.title.y = element_text(face = "italic"),
        axis.text.x = element_text(angle=45, hjust=1),
        title = element_text(face = "bold"))
plot2 <- ggplot(lobby_summary, aes(contrib_sum)) +</pre>
  geom_histogram(bins = 11) +
  ggtitle("Contribution per Lobbyist") +
  xlab("Contribution Total") + ylab("Count") +
  scale_x_continuous(labels = scales::comma) +
  theme_minimal() +
  theme(axis.title.x = element_text(face = "italic"),
        axis.title.y = element_text(face = "italic"),
        axis.text.x = element text(angle=45, hjust=1),
       title = element_text(face = "bold"))
grid.arrange(plot1, plot2, ncol=2)
```



As shown in the plots above, there is a heavy right skew on both variables. Interestingly, there seems to be a few incredibly well compensated lobbyists. The contributions do not reach such high numbers as it seems to cap around \$1,500,000. The big takeaway from these plots is that there are a few incredibly expensive endeavours that companies deem worth the money.

## **Summary Statistics**

Table 3: Compensation per lobbyist

| Mean    | Median | $\operatorname{Std}\operatorname{\underline{-dev}}$ | IQR    |
|---------|--------|-----------------------------------------------------|--------|
| 1437068 | 110586 | 4397683                                             | 517688 |

Table 4: Contribution per lobbyist

| Mean  | Median | Std_dev | IQR   |
|-------|--------|---------|-------|
| 61119 | 9050   | 138014  | 44500 |

### COME BACK HERE AND EXPLAIN

# Simple Linear Regression

lobby\_mod <- lm(data=lobby\_summary, contrib\_sum ~ comp\_sum)
pander(summary(lobby\_mod))</pre>

|             | Estimate | Std. Error | t value | $\Pr(> t )$ |
|-------------|----------|------------|---------|-------------|
| (Intercept) | 27016    | 2772       | 9.746   | 1.235e-21   |
| $comp\_sum$ | 0.02373  | 0.0005994  | 39.59   | 1.899e-218  |

Table 6: Fitting linear model: contrib\_sum ~ comp\_sum

| Observations | Residual Std. Error | $R^2$  | Adjusted $\mathbb{R}^2$ |
|--------------|---------------------|--------|-------------------------|
| 1176         | 90353               | 0.5718 | 0.5714                  |

### EXPLAIN LINEAR MODEL HERE

### Bivariate Plot



Bootstrap Confidence Interval