

Brukerguide i Mathematica

av

Thomas Jordbru, Olga Rakvåg, og Joar Gjersund http://joargjersund.github.io/Mathematica-Brukerguide

Dette er en brukerguide laget av studenter ved UiA som prosjektoppgave i faget Ma-155 (Statistikk)

Hvem som helst kan bidra til denne guiden via Github. Hvordan du går fram blir forklart her

1.1 Basics om Mathematica og Wolfram Alpha

Wolfram Mathematica er et kraftig dataverktøy for symbolregning.

1.2 Oppsett og grunnleggende innstillinger

For å starte et nytt dokument, trykk på "New Notebook" ikonet i velkomstvinduet

Wolfram Mathematica[®]10

Ved å trykke på pluss-tegnet kan du velge input-type. Merk at "Alpha query" og Free-form input er avhengig av internett-tilgang.

- [] Wolfram Language input er standardvalget i Mathematica. Her kan kommandoer skrives over flere linjer, og man må holde inne shift samtidig som man trykker enter for å sende kommando. Her er det kritisk at kommandoene er riktig skrevet, kommandoene er "casesensitive" og begynner som regel på stor bokstav.
- Free-form input er lik Alpha query, men returnerer litt mindre detaljert resultat. I tilegg vises riktig Mathematica-syntaks der det er mulig, og er dermed en god måte å lære seg riktig syntaks på. Free-form input kan velges ved å skrive "=".
- Alpha query er det samme som wolframalpha.com. Alpha-motoren er basert på kunstig inteligens og kan ofte forstå hva du ønsker å regne ut selv om syntaksen ikke er riktig. En hurtigere måte å velge Alpha query som input-type på er å skrive "==".

2.1.0 Importere/Eksportere data fra/til excel

Gi dataen som importeres et valgfritt navn. I dette tilfellet "s" (s for seigmann)

Trykk på Insert->File Path... for å velge fil. Når fila er valgt, lukk firkantparantesen og trykk shift+enter for å kjøre kommando

Eksportere data til excell

For å eksportere tabell til excell fil:

Export["filnavn.xls", s, "XLS"]

Trykker på pila til høyre på linja som viser output får du opp info om hvor fila er lagret.

2.1.1 Kumulative data, tabeller, og diagrammer

Her tar vi utganspunkt i dataen vi har hentet fra en excell fil (se forrige kapitell). Dataen vi jobber med i dette eksemplet er gitt navnet "s"

Dataen består av en tabell men en liste over lengden man kan strekke forskjellige seigmenn før de ryker (resultat). Første rad i tabellen beskriver farge

A	Α	В	C
1	Rød	Grønn	Gul
2	16	16	16,5
3	16,5	17,5	15
4	12	17	16
5	17	15	15
6	13	15	15
7	16,5	17	14
8	18	16	17
9	18	16	17
10	17	17	16,5
11	18	17,5	17
12	16	18,5	19
13	15	15,5	17
14	14,5	17	16
15	15	18	19
16	17	15,5	
17		17	

Hente ut spesifikk kollonne/rad fra tabell

data[[rad, kolonne] (returnerer valgt rad og kolonne)

Rest@ data fjerner første rad

Rest/@ data fjerner første kolonne

```
In[121]:= farge = s[[All, 1]]
    lengde = Rest /@ s
Out[121]= {{Rød, Grønn, Gul}}
Out[122]= {{{16., 16., 16.5}, {16.5, 17.5, 15.}, {12., 17., 17., 16.5}, {18., 17.5, 17.}, {16.5}, {17., 17., 16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.5}, {18., 17.5, 17.}, {16.
```

Slå sammen kolonner (legge kolonner under hverandre)

Fjerne elementer fra liste

Dersom man sitter med en liste med enkelte tomme verdier, eller verdier man ønsker å fjerne.

F.Eks "N/A", kan det lett gjøres slik:

Frekvenstabell:

Her er hvordan du lager en tabell som viser antall tilfeller av hver måling. Første kolonne er måling/resultat, andre kolonne er antall/frekvens

```
In[373]:= frekvensTabell = Tally[alleResultater]
       frekvensTabell // TableForm
Out[373]= \{\{16., 7\}, \{16.5, 4\}, \{17.5, 2\}, \{15., 7\}
Out[374]//TableForm=
       16.
       16.5 4
       17.5 2
       15.
               7
       12.
               1
       17.
              12
       13.
              1
       14.
       18.
              4
       18.5 1
              2
       19.
       15.5
       14.5
```

Merk at denne tabellen er usortert, se lenger ned på siden for hvordan du kan sortere innholdet i tabeller.

Kumulativ frekvenstabell:

For å vise kumulativt antall bruker vi funksjonen Accumulate[data (antall tilfeller)]. Siden det er antall tilfeller vi ønsker å akumulere må vi hente ut daten fra andre kollonne i frekvenstabellen:

```
In[230]:= frekvens = frekvensTabell[[All, 2]]
       kumulativFrekvensTabell = Accumulate[frekvens]
       kumulativFrekvensTabell // TableForm
Out[230]= {1, 1, 1, 1, 7, 2, 7, 4, 12, 2, 4, 1, 2, 3}
Out[231]= {1, 2, 3, 4, 11, 13, 20, 24, 36, 38, 42, 43, 45, 48}
Out[232]//TableForm=
       2
       3
       4
       11
       13
       20
       24
       36
       38
       42
       43
       45
       48
```

Legge til kolonne i tabell:

```
|n[382]:= main = MapThread[Append, {frekvensTabell, kumulativFrekvensTabell}]
                                          main // TableForm
     \text{Out}[382] = \{\{16., 7, 7\}, \{16.5, 4, 11\}, \{17.5, 2, 13\}, \{15., 7, 20\}, \{12., 1, 21\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{17.5, 13\}, \{
                                                  Out[383]//TableForm=
                                          16.
                                         16.5
                                                                                      4
                                                                                                                    11
                                        17.5 2
                                                                                                                    13
                                                                                 7
                                                                                                                      20
                                        15.
                                       12.
                                                                                 1
                                                                                                                     21
                                                                                 12 33
                                        17.
                                                                                 1
                                        13.
                                                                                                                      34
                                                                                 1
                                                                                                                      35
                                          14.
                                                                                     4
                                          18.
                                                                                                                  40
                                        18.5 1
                                        19.
                                                                                   2
                                                                                                                   42
                                         15.5 2
                                                                                                                     44
                                        14.5 1 45
```

Legge til Rad i tabell:

```
In[384]:= Prepend[main, {"Utfall", "Antall", "Kumulativt antall"}] // TableForm
```

Out[384	4]//TableForm=			
	Utfall	Antall	Kumulativt	antall
	16.	7	7	
	16.5	4	11	
	17.5	2	13	
	15.	7	20	
	12.	1	21	
	17.	12	33	
	13.	1	34	
	14.	1	35	
	18.	4	39	
	18.5	1	40	
	19.	2	42	
	15.5	2	44	
	14.5	1	45	

Dersom raden skal legges i bunnen av tabellen istedenfor skriver du Append istedenfor Prepend.

Generere og sortere tabeller

For a sortere innholdet i tabeller kan man bruke funksjonen SortBy[liste, #[[kolonne]]&] (f.eks.

vil kolonne=1 sorterer basert på verdiene i 1. kolonne)

In[423]:= tabel1 = {{a, 1}, {b, 3}, {c, 2}}

```
SortBy[tabell, #[[1]] &] // TableForm
Out[423]= {{a, 1}, {b, 3}, {c, 2}}
```

```
Out[420]= {{a, 1}, {b, 5}, {c, 2}}
```

Out[424]//TableForm= a 1

b 3 c 2

Ŧ

Dersom lista kun inneholder en kolonne fjern "[kolonne]"

For å vise som tabell kan du skrive data //TableForm

Generere diagrammer:

Stolpediagram:

2.2.1 Median, gjennomsnitt

Av Olga Rakvåg

Definisjon (enkelt data):

Beregning av enkelt data i Mathematica:

1. Lag data som

 $In[1]:= data=\{x_1,x_2,x_3...x_n\}$

 $far utOut[1] = \{x_1, x_2, x_3...x_n\}$

2. Skriv som innput

In[2]:= {Mean [data], Median[data]}

får utOut[2]= {gjennomsnitt, median}

Eksempel:

La oss finne medianen og gjennomsnitt av data x_n : {11, 11, 11.5, 11.5, 11.5, 12, 12.5, 13, 13, 13.5} som er { $x_1, x_2, x_3...x_{10}$ }

Benytter vi formel for partall n og får median=12.25 og gjennomsnitt= $\Sigma x/10=12.05$

Slik ser beregning i Mathematica:

```
In[3]:= data = {11, 11, 11.5, 11.5, 11.5, 12, 12.5, 13, 13, 13
Out[3]= {11, 11, 11.5, 11.5, 11.5, 12, 12.5, 13, 13, 13.5}
In[4]:= {Mean[data], Median[data]}
Out[4]= {12.05, 11.75}
```

Beregning av flervariable data:

1. Lag liste eller generer tilfeldig data

In[1]:= data = BlockRandom[SeedRandom[variable]; RandomInteger[variable, {variable, variable}]]

2. Grupper data

```
In[1]:= Grid[data]
In[1]:= Grid[data, Frame -> All]
```

3.1 For å finne gjennomsnitt og median til hver kolonne skriv

```
In[1]:= {Mean [data], Median[data]}
```

3.2 Du kan velge en av kolonner for beregning

In[1]:= data[[All, number of column to be calculated]]

3.3 Gjennomsnitt og median til den utvalgte kollonen

In[1]:= {Mean [data[[All, number of column to be calculated]]], Median[data[[All, number of column to be calculated]]]}

Eksempel::

```
in[1]:= data = BlockRandom[SeedRandom[3];
         RandomInteger[10, {10, 4}]]
Outile {{7, 10, 8, 2}, {8, 0, 9, 10}, {9, 1, 0, 2}, {3, 9, 6, 0},
        {4, 5, 8, 6}, {9, 7, 2, 4}, {10, 7, 5, 2}, {3, 10, 7, 7}, {9, 9, 7, 1}, {2, 3, 9, 9}}
 In(3):= Grid [data]
        7 10 8 2
Out[3]= 9 7 2 4
       3 10 7 7
       2 3 9 9
 In(4): Grid [data, Frame -> All]
        7 10 8 2
        8 0 9 10
Out(4)= 9 7 2 4
       10 7 5 2
In(55):= {Mean[data], Median[data]}
Out(55)= \left\{ \left\{ \frac{32}{5}, \frac{61}{10}, \frac{61}{10}, \frac{43}{10} \right\}, \left\{ \frac{15}{2}, 7, 7, 3 \right\} \right\}
|h(56)= {Mean[data[[All, 1]]], Median[data[[All, 1]]]}
Out(56)= \left\{\frac{32}{5}, \frac{15}{2}\right\}
```

Sortere, analisere flervariable data:

- Lag liste (usorterte data, flervariable data)
 In[1]:= data={parametre av flere variable}, for eksempel{class, bredde, høyde}
- 2.1 Grupper data etter første parameterIn[1]:= byClass = GatherBy[data, First]
- 2.2 For å finne gjennomsnitt til den utvalgte gruppe skriv In[1]:= Table[{x[[1, 1]], N[Mean[x[[All, -1]]]]}, {x, byClassType}]
- 2.3 For å finne median til den utvalgte gruppe skriv In[1]:= Table[{x[[1, 1]], N[Median[x[[All, -1]]]]}, {x, byClassType}]

3.1 Du kan velge en annen parameter for beregning, for eksempel 2=bredde. Først, grupper etter bredde parameter In[1]:= byBreddeType = GatherBy[data, #[[2]] &] 3.2 Gjennomsnitt til den utvalgte parameter $In[1]:= Table[{x[[1, 2]], N[Mean[x[[All, -1]]]]}, {x, byBreddeType}]$ 3.3 For å finne median til den utvalgte gruppe skriv In[1]:= Table[{x[[1, 2]], N[Median[x[[All, -1]]]]}, {x, byBreddeType} In[72]:= data = {{M, B, 175}, {S, B, 180}, {M, B, 165}, {L, A, 168}, {M, A, 184}, {L, B, 171}, {L, B, {M, A, 192}, {M, A, 184}, {M, A, 179}, {L, A, 182}, {L, B, 177}, {S, A, 180}, {M, B, 175 Out[72]= {{M, B, 175}, {S, B, 180}, {M, B, 165}, {L, A, 168}, {M, A, 184}, {L, B, 171}, {L, B, 173}, { {M, A, 192}, {M, A, 184}, {M, A, 179}, {L, A, 182}, {L, B, 177}, {S, A, 180}, {M, B, 175}, { In[74]:= byClassType = GatherBy[data, First] Out[74]= { { {M, B, 175}, {M, B, 165}, {M, A, 184}, {M, A, 186}, {M, A, 192}, {M, A, 184}, {M, A, 179}, {{S, B, 180}, {S, B, 174}, {S, A, 180}, {S, B, 181}, {S, B, 190}}, {{L, A, 168}, {L, B, 171} $In[75]:= Table[{x[[1, 1]], N[Mean[x[[All, -1]]]]}, {x, byClassType}]$ {{M, 180.}, {S, 181.}, {L, 176.571}} ln[81]:= Table[{x[[1, 1]], N[Median[x[[All, -1]]]]}, {x, byClassType}] Out[81]= {{M, 181.5}, {S, 180.}, {L, 176.}}

```
In[76]:= byBreddeType = GatherBy[data, #[[2]] &]

{{{M, B, 175}, {S, B, 180}, {M, B, 165}, {L, B, 171}, {L, B, 173}, {S, B, 174}, {L, B, 177},

{{L, A, 168}, {M, A, 184}, {L, A, 189}, {M, A, 186}, {M, A, 192}, {M, A, 184}, {M, A, 179}

In[77]:= Table[{x[[1, 2]], N[Mean[x[[All, -1]]]]}, {x, byBreddeType}]

Out[77]:= {{B, 176.1}, {A, 182.}}

In[83]:= Table[{x[[1, 2]], N[Median[x[[All, -1]]]]}, {x, byBreddeType}]
```

Out[83]= {{B, 175.}, {A, 183.}}

2.2.2 Varians, avvik, kovarians, korrelasjon

Varians

Definisjon (Populasjonsvarians/population variance):

Pass på at x^{2} (kvadratisk snitt) $\neq \bar{x}^{2}$ (gjennomsnitt/mean)

Populasjonsvarians beregning:

```
1. Lag data som
In[1]:= data={x<sub>1</sub>,x<sub>2</sub>,x<sub>3</sub>...x<sub>n</sub>}
får utOut[1]= {x<sub>1</sub>,x<sub>2</sub>,x<sub>3</sub>...x<sub>n</sub>}
2.Skriv som innputt
In[2]:= (data - Mean[data]).Conjugate[data - Mean[data]]/(Length[data])
får utOut[2]= populasjonsvarians verdi
```

Eksempel:

```
In[68]:= data = {11, 11, 11.5, 11.5, 11.5, 12, 12.5, 13, 13, 13.5}

Out[68]= {11, 11, 11.5, 11.5, 11.5, 12, 12.5, 13, 13, 13.5}

In[69]:= (data - Mean[data]).Conjugate[data - Mean[data]] / (Length[data])

Out[69]= 0.7225
```

Definisjon (Utvalgsvarians/sample variance):

Utvalgsvarians beregning:

```
    Lag liste
    In[1]:= list={x<sub>1</sub>,x<sub>2</sub>,x<sub>3</sub>...x<sub>n</sub>}
    får utOut[1]= {x<sub>1</sub>,x<sub>2</sub>,x<sub>3</sub>...x<sub>n</sub>}
    For å finne utvalsvarians skriv
    In[2]:= Variance[list]
```

Eksempel:

```
In[15]:= list = {11, 11, 11.5, 11.5, 11.5, 12, 12.5, 13, 13, 13.5}
Out[15]= {11, 11, 11.5, 11.5, 11.5, 12, 12.5, 13, 13, 13.5}
In[16]:= Variance[list]
Out[16]= 0.802778
```

Avvik

Definisjon (Populasjonsstandardavvik/population standard deviation):

1. Lag data som In[1]:= data={x₁,x₂,x₃...x_n}

2.For å finne p.s.avvik skriv

In[1]:= Sqrt[(data - Mean[data]).Conjugate[data - Mean[data]]/(Length[data])]

Eksempel:

Vi tar samme data

```
In[21]:= data = {11, 11, 11.5, 11.5, 11.5, 12, 12.5, 13, 13, 13.5}
Out[21]= {11, 11, 11.5, 11.5, 11.5, 12, 12.5, 13, 13, 13.5}
In[22]:= Sqrt[(data - Mean[data]).Conjugate[data - Mean[data]] / (Length[data])]
Out[22]= 0.85
```

Definisjon (Utvalgsstandardavvik/sample standard deviation):


```
    Lag data som
    In[1]:= data={x<sub>1</sub>,x<sub>2</sub>,x<sub>3</sub>...x<sub>n</sub>}
    For å finne s.s.avvik skriv
    In[1]:= StandardDeviation[data]
```

Eksempel:

Kovarians, korrelasjon

Definisjon (Populasjonskovariansen/population covariance, utvalgskovarians/sample covariance, korrelasjon/correlation):

```
11.1.2 Populasjonskovarians: \sigma_{xy} = \overline{xy} - \overline{x} \cdot \overline{y}
```

11.1.3 Utvalgsskovarians:
$$s_{xy} = \frac{n}{n-1}\sigma_{xy}$$

11.1.4 Korrelasjon: $\rho_{xy} = \frac{\sigma_{xy}}{\sigma_r \sigma_y} = \frac{n}{s_x s_y} = r_{xy}$

Beregning i Mathematica:

2.Får å finne populasjonskovariansen skriv

 $ln[3]:= Mean[x*y] - \{Mean[x]*Mean[y]\}$

3. Utvalgskovariansen

In[4]= Covariance[x, y]

4. Du kan gjøre om brøk til desimaltall (Numerical value) ved å taste

ln[5] = N[brøk]

5.

In[5]= Correlation[x, y]

N.B. Husk at correlation coeffecient er ca samme for både populasjonskovariansen og utvalskovariansen. Altso de 4-5 første desimaler i Pxy(populasjonskovariansen) er like med r xy(utvalskovariansen)

. Eksempel:

$$In[1]:= data = x = \{-1, 0, 3, 5\}$$

$$y = \{3, 5, 9, 7\}$$

Out[1]=
$$\{-1, 0, 3, 5\}$$

Out[2]=
$$\{3, 5, 9, 7\}$$

$$ln[3]:= Mean[x * y] - \{Mean[x] * Mean[y]\}$$

Out[3]=
$$\left\{\frac{17}{4}\right\}$$

Out[4]=
$$\frac{17}{3}$$

$$In[5]:= N\left[\frac{17}{3}\right]$$

Out[6]=
$$\frac{17}{\sqrt{455}}$$

$$ln[7]:=N\left[\frac{17}{\sqrt{455}}\right]$$

2.4.3 Lineærregresjon

Av Thomas Jordbru

For at arbeidet i Mathematica skal være enklere, spesielt som nybegynner anbefales det at data importeres fra Excel.

Data kan importeres som vist på figur:

```
In[47]:= c = Import[" ... '\ test.xlsx", {"Data", 1}]
```

For å finne regresjonslinjen.

```
In[48]:= model = LinearModelFit[c, x, x]
Out[48]= FittedModel [ -27.5295+3.98506x ]
```

Brukes som vist på bildet LinearModelFit["Navnet på importen", x, x]. Dvs har du kalt importen for c som på bildet bruker du variablen c her.

```
In[49]:= model["BestFit"]
Out[49]= -27.5295 + 3.98506 x
```

Modellen må så hentes ut, for å kunne beynttes senere. Dvs at skal du plotte eller bruke regresjonslinjen til noe. Dette gjøres som beskrevet i bildet.

Figuren hvis bruke av "BestFit", og plot funksjonen.

Denne plotter punktene og regresjonslinjen. Legg merke til at verdiene for x vinduet er endret.

Det er også mulig å få opp begge plottene samtidig.

For lineærregresjon med flere enn to varibler starter vi på sammme måte som med to. Imporere data inn til en liste i Mathematica, og gir denne et variabel navn. Ellers er mye likt.

```
In[17]:= model = LinearModelFit[z, {x1, x2}, {x1, x2}]
Out[17]= FittedModel [ 67.7362 + 0.201929x1 + 0.345562x2 ]
```

Som der er mulig å se av figuren er fremgangsmåten svært lik, som for to variabel. For å plotte dette:

ln[21]:= Show[Plot3D[model["BestFit"], {x1, 0, 100}, {x2, 0, 10}, PlotRange \rightarrow All]]

og

Show[ListPointPlot3D[z]]

Den første figuren viser regresjonsflaten, mens den siste viser punktene fra listen vår.

```
In[45]:= model["EstimatedVariance"]
Out[45]= 6.57654
```

For å finne variancen, og for å finne standardaviket:

```
In[55]:= Sqrt[model["EstimatedVariance"]]
Out[55]= 2.56448
```

4 Sannsynlighet

Binomial.

Brukes for å finne antall måter du kan trekke n objekter (uten tilbakelegging) ut av en f.eks en kurv med m objekter i.

Binomial[n,m]

Multinominal.

```
Multisets[{a, b, c}, 2]
{{a, a}, {a, b}, {a, c}, {b, b}, {b, c}, {c, c}}
Multinomial[3-1, 2]
6
```

Brukes for å finne antall måter du kan trekke n objekter (med tilbakelegging) ut av en f.eks en kurv med m objekter i.

Multinomial[m - 1, n]

6.1 Stokastiske variable, diskrete fordelinger.

Sannsynlighet, forventning, variansen, standardavviket.

En stokastisk variabel tar verdier fra ethvert utfall. Verdiene har enten diskret eller kontinuerlig fordeling. Mest sannsynlige utfallet utrykkes ved hjelp av forventningsverdien. Spredningen av utfallene rundt forventningsverdien vises ved hjelp av variansen og standardavviket.

Definisjon:

En funksjon er en diskret sannsynlighet fordeling dersom:

- 1.X tar kun et nummererbart, skillbart antall verdier. For eksempel i $\{0,1,2,3,4,...,n\}$, $\{2,\frac{1}{4},\frac{2}{5},\frac{3}{8},\frac{3}{4},\frac{4}{4}\}$
- 2. f(k)≥0 for alle k∈U
- $3.\sum_{k} \in Uf(k)=1$

For en konkret stokatisk variabel X

- **1.** Programmer sannsynlighetsfunksjonen med de gitte variablene. Du kan også generere funksjonen g[t] som gir sannsynlighet for 1 terning og g[t]² som viser sannsynlighet over summen med 2 terninger.
- **2.** Det kan settes opp en tabel over sannsynlighetene for de verdier som har sannsynlighet over 0.

In[2]:= TableForm[funksjonen, TableHeadings -> {{"tall/verdier du vil ha i første kolonne"},
{"navne på sannsynlighetsfordeling"}}]

Eksempel:

X er sumen du får når du slår 2 vannlige , rettferdige terninger D_6 . Vi gir navn på de to sannsynlighetsfordelingene prob1, prob 2 og utrykker de som: P(X = x) = P(X = 12 - x) = (x - x)

Metode 1

prob1 = Table[(x-1)/36, {x, 2, 7}]
$$\left\{\frac{1}{36}, \frac{1}{18}, \frac{1}{12}, \frac{1}{9}, \frac{5}{36}, \frac{1}{6}\right\}$$
prob2 = Table[(12-x)/36, {x, 7, 11}]
$$\left\{\frac{5}{36}, \frac{1}{9}, \frac{1}{12}, \frac{1}{18}, \frac{1}{36}\right\}$$

$$\left\{\frac{5}{36}, \frac{1}{9}, \frac{1}{12}, \frac{1}{18}, \frac{1}{36}\right\}$$

TableForm[prob2, TableHeadings \rightarrow {{"7", "8", "9", "10", "11"}, {"P(X=X)"}}]

$$\begin{array}{c|cccc}
7 & \frac{5}{36} \\
8 & \frac{1}{9} \\
9 & \frac{1}{12} \\
10 & \frac{1}{18} \\
11 & \frac{1}{36}
\end{array}$$

1. og 2. moment, forventningen, variansen, standardavviket.

$$\mu_X \text{=E[X]},\, \text{E[X]}^2,\, \sigma^2_{\,X},\, \sigma_X$$

Definisjon:

g[t] := St g[t]

$$\frac{t}{6} + \frac{t^2}{6} + \frac{t}{6}$$

Expand[g

$$\frac{t^2}{36} + \frac{t^3}{18} +$$

probsfor

$$\left\{\frac{1}{36}, \frac{1}{18}, \right.$$

1. moment, Forventningen:
$$\mu_X = E[X]$$

$$\mu_X = \sum_{\text{alle } x} x p_x$$
 2. moment,
$$E[X^2]$$

$$E[X^2] = \sum_{\text{alle } x} x^2 p_x$$

$$Variansen$$

$$\sigma_X^2 = Var(X)$$

$$\sigma_X^2 = E[X^2] - \mu_X^2$$
 Standardavviket
$$\sigma_X$$

$$\sigma_X = \sqrt{Var(X)}$$

1. For å finne $\mu_X = E[X]$. Skriv som innput

In[1]:= mean = Sum[i*sannsynlighetsfunksjon[[i - 1]], {i, grenser til i}]

- **2.** Programmer $\sigma^2 \chi$.
- 3. Ta kvadratrot av svaret for å finne σ_X .

In[1]:= kombinasjon Esc Sqrt Esc [σ^2 x-verdi]

Eksempel:

for samme oppgave med to rettferdige terninger

```
E[X] = mean = Sum[i*probsfor2[[i-1]], \{i, 2, 12\}]
variance = Sum[i^2*probsfor2[[i-1]], \{i, 2, 12\}] - mean^2
\frac{35}{6}
N[\frac{35}{6}]
5.83333
ln[14] = Sqrt[35/6]
Out[14] = \sqrt{\frac{35}{6}}
```

For mengden M og funksjonen f

Eksempel

Finn sannsynligheter, μ_X , σ^2_X , σ_X for M={1,4} og f(x)=x/10 hvis x={1,2,3,4} og lik 0 ellers

1. Beskriv x ved å taste

$$ln[1]:=x = Range[1, 4]$$

2. Programmer sannsynligheten:

In[2]:=velgfrittnavn på funksjonen = N[x/10]

eller ved hjelp av

$$ln[3]:=Sum[x/10, \{x, 1, 4\}]$$

4. For a finne $\mu_X = E[X]$. Skriv som innput

5. Programmer $\sigma^2 x$

6. Ta kvadratrot av svaret for å finne σ_X .

In[6]:= kombinasjon Esc Sqrt Esc [σ^2 X-verdi]

```
x = Range[1, 4]
{1, 2, 3, 4}

prob1 = N[x/10]

{0.1`, 0.2`, 0.3`, 0.4`}

Sum[x/10, {x, 1, 4}]

{0.1, 0.2, 0.3, 0.4}

1

mean = Sum[i*prob1[[i]], {i, 1, 4}]

3.

variance = Sum[i^2*prob1[[i]], {i, 1, 4}] - mean^2

1.

√1

1
```

6.2 Stokastiske variable, kontinuerlig fordelinger.

Sannsynlighet, forventning, variansen, standardavviket.

Definisjon:

En funksjon er en kontinuerlig sannsynlighet fordeling dersom:

- 1. X tar verdier i et intervall, eller i hele \mathbb{R} .
- 2. f(k)≥0
- 3. En sannsynlighetstetthet funksjon f(x) må oppfylle kravet

$$\int_{-\infty}^{\infty} f(x) \, dx = 1$$

Det kan anvendes mange av formlene definert for en diskret fordeling på en generell kontinuerlig sannsynlighetsfordeling f(x) ved at summen over diskrete måleverdier erstattes med integral. Wolfram Language inneholder et meget kraftig systemverktøy for integrering. Den kan ta nesten hvilken som helst integral i form av standarte matematiske funksjoner. En kan få integraltegn, greskebokstaver, kvadratrot tegn osv ved hjelp av kombinasjonen: Esc, førstebokstaver til tegn du trenger, Esc. Standard integralprogrammering er

In[1]:=Integrate[funksjon ønsket integrert, grenser, {x-verdi, y-verdi når dobbel integral skal beregnes}].

For mer informasjon se Wolfram Documentation Center/Integral

for beregning uten programmering tast

In[1]:= ==Integral

Eksempel med gitt mengden M og funksjonen f

Finn sannsynligheter, μ_X , σ^2_X , σ_X for M={0,0.5} og f(x)=3x^2 x \in [0,1] og lik 0 ellers

1. Integrer funksjonen for å finne sannsynligheten

$$In[1]:=prob1 = Integrate[3 x^2, {x, 0, 1}]$$

2. For å finne $\mu_X=E[X]$. Skriv som innput

$$In[2]:=Integrate[x*3 x^2, \{x, 0, 1\}]$$

3. For $E[X^2]$.

 $variance = \sigma^2 = z - mean^2$

5

80

SD = Sqrt[3/80]

6.6 Flervariable sannsynlighetsfordelinger.

Marginale sannsynligheter, forventning, varians, standardavvik, kovarians.

Marginale sannsynligheter for diskrete X og Y:

11.2.4 Marginal sannsynlighetsfordeling:
$$f_X(a) = \sum_{\text{alle } y} f_{XY}(a, y)$$

For stokastiske flervariable

1. Gi navn på funksjonen med variablene og skriv i form

$$ln[1] := \{x_1, x_2, x_3\}, \{x_4, x_5, x_6\}, \{...x_n\}$$

2. Sett opp tabel over de gitte variablene

In[2]:= TableForm[fx, TableHeadings -> {{"navn på kolonnevariabler}, {"navn på rad variabler"}}]

3. Regn ut marginale sannsynligheter etter kolonne, fx

og marginale sannsynligheter fy, dvs. sum av variabler etter rad

In[4]:= Plus @@ Transpose[fy][[Range[matrise størrelse]]]

4. Du kan kontrollere at summen av variablene er lik 1

$$In[5]:= Plus @@ P[X = fx]$$

og

Eksempel:

```
fx = \{\{0.05, 0.05, 0.3\}, \{0.05, 0.25, 0.05\}, \{0.2, 0.05, 0\}\}
     {{0.05`, 0.05`, 0.3}, {0.05`, 0.25`, 0.05`}, {0.2`, 0.05`, 0}} // Grid
     0.05 0.05 0.3
     0.05 0.25 0.05
      0.2 0.05 0
TableForm [fx, TableHeadings \rightarrow {{"y=1", "y=2", "y=3"}, {"x=1", "x=2", "x=3"}}]
         "x=1"
                "x=2"
                          "x=3"
"y=1"
         0.05`
                 0.05
                         0.3
                0.25 0.05
         0.05
"y=2"
"y=3" 0.2`
                0.05 0
      P[X = fx] = Total[fx]
      {0.3, 0.35, 0.35}
      P[Y = fy] = Plus @@ Transpose[fx][[Range[3]]]
      {0.4', 0.35', 0.25'}
      Plus @@ P[X = fx]
      1.
      Plus @@ P[Y = fy]
      1.
```

Forventning, 2. moment, varians, standardavvik:

1. Gi nytt navn til de marginale sannsynlighetene du fant, for eksempel F_X . For å finne $\mu_X = E[X]$ skriv som innput

```
In[1]:= Apply[Plus, x*Fx]

og for µY=E[Y]

In[2]:=Apply[Plus, y*Fy]

2. For å finne 2. moment E[X^2] skriv som innput

In[3]:= Apply[Plus, x^2*Fx]

og for E[Y^2]
```

```
\label{eq:ln[4]:=Apply[Plus, y^2*Fy]} \textbf{3.} Programmer $\sigma^2_X$. \\ In[5]:=Apply[Plus, x^2*Fx] - (Apply[Plus, x*Fx])^2 \\ og $\sigma^2_Y$. \\ In[6]:=Apply[Plus, y^2*Fy] - (Apply[Plus, y*Fy])^2 \\ \textbf{4.} Ta kvadratrot av svaret for å finne $\sigma_X$ og $\sigma_Y$. \\ In[6]:= Sqrt[Var[X]] \\ og \\ In[7]:= Sqrt[Var[Y]]
```

Eksempel:

```
ln[11] = Fx = \{0.3, 0.35, 0.35\}
      Fy = {0.4', 0.35', 0.25'}
Out[11]= {0.3, 0.35, 0.35}
Out[12]= {0.4, 0.35, 0.25}
In(14):= x = Range[1, 3]
      y = Range[1, 3]
Out[14]= {1, 2, 3}
Out[15]= {1, 2, 3}
in[16]: E[X] = Apply[Plus, x * Fx]
Out[16]- 2.05
In[17]: E[X^2] = Apply[Plus, x^2 * Fx]
Out[17]= 4.85
In[18]= Var[X] = Apply[Plus, x^2 * Fx] - (Apply[Plus, x * Fx])^2
Out[18]- 0.6475
In[19]: SD[X] = Sqrt[Var[X]]
Out[19]= 0.804674
ln(20) = E[Y] = Apply[Plus, y * Fy]
Out(20)- 1.85
ln(21)= E[Y^2] = Apply[Plus, Y^2 * Fy]
Out[21]= 4.05
ln[22] = Var[Y] = Apply[Plus, y^2 + Fy] - (Apply[Plus, y + Fy]) 2
Out(22)= 0.6275
In(23): SD[Y] = Sqrt[Var[Y]]
Out(23)- 0.792149
```

Sannsynlighet:

Den betingede sannsynlighetsfordelingen for X kan finnes hvis det er gitt en spesiell verdi for Y (eller omvendt). Hvis vi tar bare første kolonnen så er Y = 1. Vi bruker definisjonen av betinget sannsynlighet:

Betinget
$$P(A|B) = \frac{P(AB)}{P(B)}$$

1. For å finne marginsannsynlighet til første rad. Skriv

```
og til første kolonne
```

```
In[2]:=Plus @@ P[X = fx][[1]]
```

2. Nå kan sannsynlighet P(X=Y) finnes ved

```
In[3]:=P (x = 3 | Y = 1) = (Plus @@ P[X = fx][[1]])/(Plus @@ P[Y = fy][[1]])
Plus @@ P[Y = fy] [[1]]
0.4
Plus @@ P[X = fx] [[1]]
0.3
P (x = 3 | Y = 1) = (Plus @@ P[X = fx] [[1]]) / (Plus @@ P[Y = fy] [[1]])
0.75
```

Marginale sannsynlighetsfordelinger for kontinuerlig X og Y:

$$\textbf{11.2.2 Kumulativ marginal fordeling:} \ \ F_X(a) = F_{XY}(a,\infty) = \ \ \int_{-\infty}^a \int_{-\infty}^\infty f_{XY}(x,y) \, dy \, dx$$

11.2.4 Marginal sannsynlighetsfordeling:
$$f_X(a) = \frac{\partial}{\partial y} F_X(a) = \int_{-\infty}^{\infty} f_{XY}(a, y) dy$$

Eksempel:

Vi ser på oppgave med $f_z=4/5(2-x-y^3)$ for $x,y \in [0,1]$

1. Gi et navn til funksjonen, for eksempel f_x og integrer den. For å finne f_x skriv som innput

```
In[1]:= fx = Integrate[4/5 (2 - x - y^3), { y, 0, 1}] og for fy
```

$$ln[2]:=Integrate[4/5 (2 - x - y^3), { x, 0, 1}]$$

$$In[3]:=Integrate[7/5 - (4 x)/5, \{x, 0, 1\}]$$

og for $\mu_Y = E[Y]$

```
In[4]:=Integrate[6/5 - (4 y^3)/5, {y, 0, 1}]
3. E[XY] \sigma^2 X.
In[5]:=Integrate[x*y*(4/5 (2 - x - y^3)), \{x, 0, 1\}, \{y, 0, 1\}]
4. Finn kovariansen σχΥ
ln[6]:=N[E[XY] - (\mu_X^*\mu_V)]
  fx = Integrate [4/5(2-x-y^3), {y, 0, 1}]
  fy = Integrate[4/5(2-x-y^3), {x, 0, 1}]
  \frac{6}{5} - \frac{4 y^3}{5}
  \mu x = Integrate \left[ \frac{7}{5} - \frac{4 x}{5}, \{x, 0, 1\} \right]
  \mu y = Integrate \left[ \frac{6}{5} - \frac{4 y^3}{5}, \{y, 0, 1\} \right]
  1
  E[XY] = Integrate[x * y * (4/5 (2 - x - y^3)), {x, 0, 1}, {y, 0, 1}]
   14
   75
  \sigma_{XY} = N[E[XY] - (\mu x * \mu y)]
```

-0.813333

6.7 Summen av stokastiske variable.

Definisjon:

Hvis X og X_1 , ..., X_n er stokastiske variable med forventninger μ og μ_1 , ..., μ_n , og $X=a_1X_1+...+a_nX_n$ så er

$$\mu = a_1 \mu_1 + ... + a_n \mu_n$$

Hvis variansen er σ^2 og σ_1^2 , ..., σ_n^2 , og variablene X_1 , ..., X_n er uavhengige så er

$$\sigma^2 = a_1^2 \sigma_1^2 + ... + a_1^2 \sigma_n^2$$

Eksempel

La oss se på en konkret oppgave:

Finn
$$\mu_Z$$
, σ_Z når $Z=X+Y$, $\mu_X=4$, $\sigma_X=3$, $\mu_Y=-3$, $\sigma_Y=2$.

1. Skriv den gitte data og programmer funksjonen til µz som

$$ln[1]:=\mu\chi+\mu\gamma$$

 $\boldsymbol{2}.$ Samme for å finne σ_Z men programmer funksjonen som

In[2]:= Esc sqrt Esc
$$\sigma_X^2 + \sigma_Y^2$$

3. µZ

4. Finn σ_Z

```
\mu x = 4
\mu y = 3
\mu z = \mu x + \mu y

4

3

7

\sigma x = 3
\sigma y = 2
\sigma z = \sqrt{(\sigma x^2 + \sigma y^2)}

3

2

\sqrt{13}

\mu z = \text{Total}[\text{Range}[1, 6]]

21

\sigma z = \text{Sqrt}[\text{Total}[\text{Range}[1, 6]]]
```

7 Kontinuerlige fordelinger

Generelt: Fordelinger i Mathematica 10

Programmet beskriver langt flere fordelinger enn beskrevet i denne guiden. En sammenlikning mellom samplede datasett og tilhørende kontinuerlige monovariate fordelingsfunksjoner kan studeres i denne demonstrasjonen: function destribution demonstrations

En oversikt over alle fordelinger (både diskrete og kontinuerlige) i Mathematica, kan du få ved å skrive inn:

In[1]:= ?*Distribution

In[1]:= ?*Distribution

^ System'

-7	
ArcSinDistribution	LogLogisticDis
BarabasiAlbertGraphDistribution	LogMultinorma
BatesDistribution	LogNormalDist
BeckmannDistribution	LogSeriesDistr
BenfordDistribution	MarchenkoPas
BeniniDistribution	MarginalDistrib
BenktanderGibratDistribution	MatrixNormalDi
BenktanderWeibullDistribution	MatrixPropertyD
BernoulliDistribution	MatrixTDistribut
BernoulliGraphDistribution	MaxStableDistr
BetaBinomialDistribution	MaxwellDistribu
BetaDistribution	MeixnerDistribu
BetaNegativeBinomialDistribution	MinStableDistri
BetaPrimeDistribution	MixtureDistribut
BinomialDistribution	MoyalDistribution
BinormalDistribution	MultinomialDis
BirnbaumSaundersDistribution	MultinormalDis
BorelTannerDistribution	MultivariateHyp
CauchyDistribution	MultivariatePois
CensoredDistribution	MultivariateTDis
ChiDistribution	NakagamiDistr
ChiSquareDistribution	NegativeBinom
CircularOrthogonalMatrixDistribution	NegativeMultino

Velg gjerne en, scroll ned og følg pilen for å få full oversikt over den valgte fordelingen du er interresert i.

Eksempel:

JohnsonDistribution	VoigtDistribution
KDistribution	VonMisesDistribution
KernelMixtureDistribution	WakebyDistribution
KumaraswamyDistribution	WalleniusHypergeometri
LandauDistribution	WaringYuleDistribution
LaplaceDistribution	WattsStrogatzGraphDistr
LevyDistribution	valg WeibullDistribution
LindleyDistribution	WignerSemicircleDistrib
LogGammaDistribution	WishartMatrixDistribution
LogisticDistribution	ZipfDistribution

WeibullDistribution[α , β] represents a Weibull distribution with shape parameter α and scale parameter β . WeibullDistribution[α , β , μ] represents a Weibull distribution with shape parameter α , scale parameter β , and location parameter μ . \gg

Du får lignende oversikt over fordelingen:

WeibullDistribution

Modifiser kommandoer/variabler for å få ønsket resultat.

7.1 Normalfordelingen, z_{α}

Normalfordelingen $N_{\mu, \sigma}(x)$

Definisjon: Sannsynlighetsfordeling $N_{\mu, \sigma}(x) f = \phi$

Sannsynlighetstetthet:
$$X \sim f(x) = \phi_{(\mu,\sigma)} = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

1. Skriv som innput

 $In[1]:= PDF[NormalDistribution[\mu, \sigma], x]$

Out[1]=
$$\frac{e^{-\frac{(\mathbf{x}-\mu)^2}{2\sigma^2}}}{\sqrt{2\pi}\sigma}$$

2. Spesifiser verdiene

In[2]:= PDF[NormalDistribution[μ -verdi, σ -verdi], x-verdi eller x₁, x₂]

Eksempel:

$$\label{eq:out_sales} \begin{split} & \text{In[38]:= PDF[NormalDistribution[μ, σ], x]} \\ & \text{Out[38]=} \ \frac{\frac{-\frac{(\mathbf{x}-\mu)^2}{2\,\sigma^2}}{\sqrt{2\,\pi}\,\,\sigma}}{\sqrt{2\,\pi}\,\,\sigma} \\ & \text{In[39]:= PDF[NormalDistribution[1.1, 2.1], 1.7]} \\ & \text{Out[39]=} \ 0.182375 \end{split}$$

3. For å tegne grafen skriv

In[4]:=Plot[Evaluate@ Table[PDF[NormalDistribution[μ , σ], x], { μ , μ -verdi/verdier}eller { σ , σ -verdi/verdier}, {x, x-verdi/verdier}, Filling -> Axis]

Ta gjerne større x-verdier enn angitt slik at du kan se mønster på grafen

Eksempel:

for
$$[\mu=1.1, \sigma=2.1], x_1=-6, x_2=9]$$

ln[42] = Plot[Evaluate@Table[PDF[NormalDistribution[1.1, σ], x], { σ , {2.1}}], {x, -6, 9}, Filling -1

Definisjon: Kumulativ sannsynlighet $N_{\mu, \sigma}$ F= Φ

Kumulativ sannsynlighet: $P(X \le x) = F(x) = \Phi_{(\mu,\sigma)}(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$

1. Skriv som innput

In[1]:= CDF[NormalDistribution[μ , σ], x]

Out[1]=
$$\frac{1}{2} \operatorname{Erfc} \left[\frac{-\mathbf{x} + \mu}{\sqrt{2} \sigma} \right]$$

2. Spesifiser verdiene

In[2]:= CDF[NormalDistribution[μ -verdi, σ -verdi], x-verdi eller x₁, x₂]

3. Hadde du flere x-verdier og fikk flere resultater gi dem navn og trekk resultat x_1 fra resultat x_2

 $ln[3]:=\{p_1, p_2\}=\{resultat x_1, resultat x_2\}$

Eksempel:

4. Det kan tegnes grafen ved å skrive

In[4]:=Plot[Evaluate@ Table[CDF[NormalDistribution[μ , σ], x], { μ , μ -verdi/verdier}eller { σ , σ -verdi/verdier}, Filling -> Axis]

Ta gjerne større x-verdier enn angitt slik at du kan se mønster på grafen

Eksempel:

for
$$[\mu=0, \sigma=1], x_1=-6, x_2=6]$$

In[33]:= Plot[Evaluate@Table[CDF[NormalDistribution[0, σ], x], { σ , {1}}], {x, -6, 6}, Filling \rightarrow Axi

0.8

0.8

Definisjon (z_{α} den inverse til Φ):

Invers:
$$\Phi_{(\mu,\sigma)}^{-1}(p) = \mu + z_p \cdot \sigma$$

z_{α} beregning:

1. Skriv

In[1]:= InverseCDF[NormalDistribution[μ , σ], x]

Eksempel:

2. Tegn gjerne grafen ved å skrive

In[2]:=Plot[Evaluate@ Table[InverseCDF[NormalDistribution[μ , σ], x], { μ , μ -verdi/verdier}eller { σ , σ -verdi/verdier}, Filling -> Axis]

7.2 "Student's" t-fordeling, ST⁻¹

"Student's" t-fordelingen $St_{(\mu, \sigma, v)}(x)$

Definisjon: Sannsynlighetstettheten St (x)

$$X \sim f(x) = St_{(\mu,\sigma,\nu)}(x) = \left(\frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})} \cdot \frac{1}{\sigma\sqrt{\pi\nu}}\right) \cdot \left(1 + \frac{(x-\mu)^2}{\nu\sigma^2}\right)^{-\frac{\nu+1}{2}}$$

For f=St(v)(x)

1. Skriv som innput

In[1]:= PDF[StudentTDistribution[v], x]

Out[1]=
$$\frac{\left(\frac{\gamma}{x^2+\gamma}\right)^{\frac{1+\gamma}{2}}}{\sqrt{\gamma} \operatorname{Beta}\left[\frac{\gamma}{2}, \frac{1}{2}\right]}$$

2. Spesifiser verdiene

In[2]:= PDF[StudentTDistribution[v-verdi], x-verdi]

Eksempel:

In[46]:= PDF[StudentTDistribution[v], x]

Out[46]=
$$\frac{\left(\frac{v}{x^2+v}\right)^{\frac{1+v}{2}}}{\sqrt{v} \text{ Beta}\left[\frac{v}{2}, \frac{1}{2}\right]}$$

In[47]:= PDF[StudentTDistribution[7], 1.7]

Out[47]= 0.096618

For a finne $f=St(\mu, \sigma, \nu)$ (x)

1. Skriv som innput

In[1]:= PDF[StudentTDistribution[μ , σ , ν], x]

Out[1]=
$$\frac{\left(\frac{\gamma}{\gamma + \frac{(\mathbf{x} - \mu)^2}{\sigma^2}}\right)^{\frac{1+\gamma}{2}}}{\sqrt{\gamma} \sigma \operatorname{Beta}\left[\frac{\gamma}{2}, \frac{1}{2}\right]}$$

2. Spesifiser verdiene

In[2]:= PDF[StudentTDistribution[μ -verdi, σ -verdi, ν -verdi], x-verdi]

3. For å tegne grafen skriv

In[4]:=Plot[Evaluate@ Table[PDF[StudentTDistribution[μ , σ , ν], χ], χ , μ , μ -verdi eller verdier}eller σ , σ -verdi eller verdier} eller ν -verdi eller verdier}, Filling -> Axis]

Ta gjerne større x-verdier enn angitt slik at du kan se mønster på grafen

Eksempel:

for $[\mu=0.7, \sigma=1.1, v=5], x=1.9]$

 $ln[48]:= PDF[StudentTDistribution[\mu, \sigma, \nu], x]$

Out[48]=
$$\frac{\left(\frac{\nu}{\nu + \frac{(\mathbf{x} - \mu)^2}{\sigma^2}}\right)^{\frac{1+\nu}{2}}}{\sqrt{\nu} \sigma \text{Beta}\left[\frac{\nu}{2}, \frac{1}{2}\right]}$$

In[77]:= PDF[StudentTDistribution[0.7, 1.1, 5], 1.9]

In[80]:= 0.18187032509746728`

Out[80]= 0.18187

In[81]:=

 ${\tt Plot[Evaluate@Table[PDF[StudentTDistribution[0.7, 1.1, v], x], \{v, \{5\}, v, \{5\}, v, \{6\}, v$

Definisjon: Kumulativ sannsynlighet

For $F=ST_{(V)}(x)$

$$P(X \le x) = ST_{(\mu,\sigma,\nu)}(x) = ST_{\nu}\left(\frac{x-\mu}{\sigma}\right)$$

1. Skriv som innput

In[1]:= CDF[StudentTDistribution[v], x]

$$Out[1] = \left\{ \begin{array}{ll} \frac{1}{2} \; \text{BetaRegularized} \Big[\frac{\gamma}{x^2 + \gamma}, \; \frac{\gamma}{2}, \; \frac{1}{2} \Big] & x \leq 0 \\ \frac{1}{2} \; \Big(1 + \text{BetaRegularized} \Big[\frac{x^2}{x^2 + \gamma}, \; \frac{1}{2}, \; \frac{\gamma}{2} \Big] \Big) & \text{True} \end{array} \right.$$

2. Spesifiser verdiene

In[2]:= CDF[StudentTDistribution[v-verdi], x-verdi]

Eksempel:

$$ln[43] = CDF[StudentTDistribution[v], x]$$

$$\text{Out[43]=} \left\{ \begin{array}{l} \frac{1}{2} \; \text{BetaRegularized} \Big[\frac{\gamma}{x^2 + \gamma} \text{, } \frac{\gamma}{2} \text{, } \frac{1}{2} \Big] & \text{x} \leq 0 \\ \frac{1}{2} \; \Big(1 + \text{BetaRegularized} \Big[\frac{x^2}{x^2 + \gamma} \text{, } \frac{1}{2} \text{, } \frac{\gamma}{2} \Big] \Big) & \text{True} \end{array} \right.$$

In[45]:= CDF[StudentTDistribution[7], 1.7]

Out[45]= 0.933536

For $F=ST_{(\mu, \sigma, v)}(x)$

1. Skriv som innput

In[1]:= CDF[StudentTDistribution[μ , σ , v], x]

$$\text{Out[1]=} \left\{ \begin{array}{l} \frac{1}{2} \, \text{BetaRegularized} \Big[\, \frac{\nu \, \sigma^2}{\left(\mathbf{x} - \boldsymbol{\mu}\right)^2 + \nu \, \sigma^2} \, , \, \, \frac{\nu}{2} \, , \, \, \frac{1}{2} \, \Big] & \mathbf{x} \, \leq \, \boldsymbol{\mu} \\ \frac{1}{2} \, \left(1 + \, \text{BetaRegularized} \Big[\, \frac{\left(\mathbf{x} - \boldsymbol{\mu}\right)^2}{\left(\mathbf{x} - \boldsymbol{\mu}\right)^2 + \nu \, \sigma^2} \, , \, \, \frac{1}{2} \, , \, \, \frac{\nu}{2} \, \Big] \right) & \text{True} \end{array} \right.$$

2. Spesifiser verdiene

In[2]:= CDF[StudentTDistribution[μ -verdi, σ -verdi, ν -verdi], x-verdi]

3. Det kan tegnes grafen ved å skrive

In[4]:=Plot[Evaluate@ Table[CDF[StudentTDistribution[μ , σ , ν], χ], χ , μ , μ -verdi eller verdier}eller σ , σ -verdi eller verdier}eller τ , τ -verdi eller verdier}, Filling -> Axis, Exclusions -> None

Det er bedre med større x-verdier for å kunne se mønster av funksjonen.

Eksempel:

for
$$[\mu=0.7, \sigma=1.1, v=5], x=1.9]$$

 $ln[52]:= CDF[StudentTDistribution[\mu, \sigma, \nu], x]$

$$\text{Out[52]=} \left\{ \begin{array}{l} \frac{1}{2} \; \text{BetaRegularized} \Big[\, \frac{\gamma \, \sigma^2}{\left(\mathbf{x} - \boldsymbol{\mu} \right)^2 + \gamma \, \sigma^2} \, , \, \, \frac{\gamma}{2} \, , \, \, \frac{1}{2} \, \Big] \qquad \quad \mathbf{x} \leq \boldsymbol{\mu} \\ \frac{1}{2} \, \left(1 + \text{BetaRegularized} \Big[\, \frac{\left(\mathbf{x} - \boldsymbol{\mu} \right)^2}{\left(\mathbf{x} - \boldsymbol{\mu} \right)^2 + \gamma \, \sigma^2} \, , \, \, \frac{1}{2} \, , \, \, \frac{\gamma}{2} \, \Big] \right) \quad \text{True} \right.$$

In[82]:= CDF[StudentTDistribution[0.7, 1.1, 5], 1.9]

Out[82]= 0.837465

ln[83]:= Plot[Evaluate@Table[CDF[StudentTDistribution[0.7, 1.1, v], x], {v, { Exclusions → None]

Definisjon: ST^1 (den inverse til ST(x)):

$$ST-1_{(\mu,\sigma,\nu)}(p) = \mu + t_{\nu,p} \cdot \sigma$$

ST¹ beregning:

1. Skriv

In[1]:= InverseCDF[StudentTDistribution[μ , σ , v], x]

Eksempel:

[n[4]:= InverseCDF[StudentTDistribution[μ , σ , ν], x]

$$|\mu| = \text{ConditionalExpression} \begin{bmatrix} \mu - \sqrt{\gamma} & \sigma \sqrt{-1 + \frac{1}{\text{InverseBetaRegularized}[2 \, \mathbf{x}, \frac{\gamma}{2}, \frac{1}{2}]} & 0 < \mathbf{x} < \frac{1}{2} \\ \mu & \mathbf{x} = \frac{1}{2} \\ \mu + \sqrt{\gamma} & \sigma \sqrt{-1 + \frac{1}{\text{InverseBetaRegularized}[2 \, (1-\mathbf{x}), \frac{\gamma}{2}, \frac{1}{2}]}} & \frac{1}{2} < \mathbf{x} < \frac{1}{2} < \mathbf{x}$$

2. Tegn gjerne grafen ved å skrive

In[2]:=Plot[Evaluate@ Table[InverseCDF[StudentTDistribution[μ , σ , ν], χ], χ , μ , μ -verdi eller verdier}eller σ , σ -verdi eller verdier} eller ν , ν -verdi eller verdier}, χ , χ -verdi eller verdier}, Filling -> Axis, Exclusions -> None]

Eksempel:

for [μ =0.7, σ =1.1, ν =5], x=1.9]

ln[5]:= Plot[Evaluate@Table[InverseCDF[StudentTDistribution[0.7, 1.1, v], x], Exclusions → None]

7.4 Beta-fordelingen β(a, b)

Sannsynlighetsfordeling, kumulativ fordeling, forventning, varians

Betafordeling

Definisjon: Sannsynlighetsfordeling $f(x)=\beta_{(a,b)}$

 $x \in (0,1)$. Sannsynlighet for andel.

$$f(x) = \beta_{(a,b)}(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}x^{a-1}(1-x)^{b-1}$$

 $\mu_X = \frac{a}{a+b}$
 $\sigma_X^2 = \frac{ab}{(a+b)^2(a+b+1)}$
 $\beta_{(a,b)}$ er kun definert i [0, 1]

Beregning i Mathematica

1. Skriv som innput

In[1]:= PDF[BetaDistribution[α , β], x]

$$Out[1] = \left\{ \begin{array}{ll} \frac{(1-x)^{-1+\beta} x^{-1+\alpha}}{Beta[\alpha,\beta]} & 0 < x < 1 \\ 0 & True \end{array} \right.$$

2. Spesifiser verdiene

In[2]:= PDF[BetaDistribution[α -verdi, β -verdi], x-verdi]

Eksempel:

```
In[17]:= PDF[BetaDistribution[1/4, 1.2], 0.7]
Out[17]: 0.273253
```

3. Når du tegner grafen kan du velge om du vil ha definert en eller flere alfa-, beta-, x-er.

In[4]:=Plot[Evaluate@ Table[PDF[BetaDistribution[α eller α -verdi, β eller β -verdi], x], { α , { α -verdi eller verdier}} eller { β , { β -verdi eller verdier}}], { α , 0, 1}, Filling -> Axis]

Eksempel:

for $[\alpha=0.25, \beta=1.2,], x_1=0, x_2=0.7]$

 $\label{eq:locality} $$ \ln[22]:= Plot[Evaluate@Table[PDF[BetaDistribution[\alpha, 1.2], x], \{\alpha, \{1/4\}\}], \{x, 0, 0.7\}, Filling=1.25, x=1.25, x=1.25,$

ln[23]:= Plot[Evaluate@Table[PDF[BetaDistribution[1/4, β], x], { β , {1.2}}], {x, 0, 0.7}, Filling = 1.2}

Eksempel med flere verdier:

for { α_1 =0.25, α_2 =3, α_3 =5}, β =1.2, x_1 =0, x_2 =0.7 og for α =0.25, { β_1 =1.2, β_2 =3, β_3 =5}, x_1 =0, x_2 =0.7

 $ln[28] = Plot[Evaluate@Table[PDF[BetaDistribution[\alpha, 1.2], x], \{\alpha, \{1/4, 3, 5\}\}], \{x, 0, 0.7\}, Fillow [a] = Plot[Evaluate@Table[PDF[BetaDistribution[\alpha, 1.2], x], \{\alpha, \{1/4, 3, 5\}\}], \{x, 0, 0.7\}, [a] = Plot[Evaluate@Table[PDF[BetaDistribution[\alpha, 1.2], x], \{\alpha, \{1/4, 3, 5\}\}], \{x, 0, 0.7\}, [a] = Plot[Evaluate@Table[PDF[BetaDistribution[\alpha, 1.2], x], \{\alpha, \{1/4, 3, 5\}\}], \{x, 0, 0.7\}, [a] = Plot[Evaluate@Table[PDF[BetaDistribution[\alpha, 1.2], x], \{\alpha, \{1/4, 3, 5\}\}], \{x, 0, 0.7\}, [a] = Plot[Evaluate@Table[PDF[BetaDistribution[\alpha, 1.2], x], \{\alpha, \{1/4, 3, 5\}\}], \{x, 0, 0.7\}, [a] = Plot[Evaluate@Table[PDF[BetaDistribution[\alpha, 1.2], x], \{\alpha, \{1/4, 3, 5\}\}], \{x, 0, 0.7\}, [a] = Plot[Evaluate@Table[PDF[BetaDistribution[\alpha, 1.2], x], [a] = Plot[Evaluate@Table[PDF[BetaDistribution[\alpha, 1.2], x], [a] = Plot[Evaluate@Table[PDF[BetaDistribution[\alpha, 1.2], x]], [a] = Plot[Evaluate@Table[PDF[BetaDistribution[\alpha, 1.2], x], [a] = Plot[Evaluate@Table[PDF[BetaDistribution[\alpha, 1.2], x]], [a] = Plot[Evaluate@Table[PDF[BetaDistribution[a, 1$

 $\ln[27] = \text{Plot}[\text{Evaluate@Table}[\text{PDF}[\text{BetaDistribution}[1/4, \beta], x], \{\beta, \{1.2, 3, 5\}\}], \{x, 0, 0.7\}, \text{Filed for the property of the pr$

Definisjon: Kumulativ sannsynlighet

$$F^{\beta}_{(a, b)}(x) = B_{(a,b)}(x)$$

der B er den inkomplette Euler beta-funksjonen:

$$B_{(a,b)}= {}_0\int^x \beta_{(a,b)}(t)dt$$
 for $t \in [0,1]$

Beregning i Mathematica:

1. Skriv som innput

In[1]:= CDF[BetaDistribution[α , β], x]

$$Out[1] = \left\{ \begin{array}{ll} BetaRegularized[x, \alpha, \beta] & 0 < x < 1 \\ 1 & x \ge 1 \\ 0 & True \end{array} \right.$$

2. Spesifiser verdiene

In[2]:= CDF[BetaDistribution[α -verdi, β -verdi], x-verdi]

Eksempel:

```
In[30]:= CDF[BetaDistribution[2, 1.5], 1]
Out[30]:= 1
```

3. Plot grafen med en eller flere α - β - og x-verdier

In[4]:=Plot[Evaluate@ Table[CDF[BetaDistribution[α eller α -verdi, β eller β -verdi], x], { α , { α -verdi eller verdier}} eller { β , { β -verdi eller verdier}}], {x, 0, 1}, Filling -> Axis]

Eksempel:

for [
$$\alpha$$
=2, β =1.5,], x_1 =0, x_2 =1]

 $\label{eq:local_$

 $\label{eq:localization} $$ \ln[33] = \text{Plot}[\text{Evaluate@Table}[\text{CDF}[\text{BetaDistribution}[\alpha, 1.5], x], \{\alpha, \{2\}\}], \{x, 0, 1\}, \text{Filling} \to \text{Axial}[x, x], \{\alpha, \{2\}\}], \{x, 0, 1\}, \{x, 0, 1\},$

for $\{\alpha_1=0.5, \alpha_2=2, \alpha_1=4\}$, $\beta=1.5, x_1=0, x_2=1$ og for $\alpha=2, \{\beta_1=0.25, \beta_2=2, \beta_3=4\}$, $x_1=0, x_2=1$

 $\ln[34]$ = Plot[Evaluate@Table[CDF[BetaDistribution[α , 1.5], x], { α , {1/2, 2, 4}}], {x, 0, 1}, Filling = Plot[Evaluate@Table[CDF[BetaDistribution[α , 1.5], x], { α , {1/2, 2, 4}}], {x, 0, 1}, Filling = Plot[Evaluate@Table[CDF[BetaDistribution[α , 1.5], x], { α , {1/2, 2, 4}}], {x, 0, 1}, Filling = Plot[Evaluate@Table[CDF[BetaDistribution[α , 1.5], x], { α , {1/2, 2, 4}}], {x, 0, 1}, Filling = Plot[Evaluate@Table[CDF[BetaDistribution[α , 1.5], x], { α , {1/2, 2, 4}}], {x, 0, 1}, Filling = Plot[Evaluate@Table[CDF[BetaDistribution[α , 1.5], x], { α , {1/2, 2, 4}}]], {x, 0, 1}, Filling = Plot[Evaluate@Table[CDF[BetaDistribution[α , 1.5], x], { α , {1/2, 2, 4}}]], {x, 0, 1}, Filling = Plot[Evaluate@Table[CDF[BetaDistribution[α , 1.5]], x], { α , {1/2, 2, 4}}]]

Forventing (mean):

Definisjon:

$$\mu_X = \frac{a}{a+b}$$

Beregning i Mathematica:

- **1.** In[1]:= Mean[BetaDistribution[α , β]]
- 2. Spesifiser verdiene

In[2]:= Mean[BetaDistribution[α -verdi, β -verdi]]

Eksempel:

$$In[1]:= Mean[BetaDistribution[\alpha, \beta]]$$

$$In[1]:=\frac{\alpha}{\alpha+\beta}$$

Mean[BetaDistribution[4, 3]]

Out[1]=
$$\frac{\alpha}{\alpha + \beta}$$

In[5]:=
$$\frac{4}{7}$$
N[4/7]

$$Out[5] = \frac{4}{7}$$

Out[6]= 0.571429

Varians (variance):

Definisjon:

$$\sigma_X^2 \ = \ \tfrac{ab}{(a+b)^2(a+b+1)}$$

Innput:

- **1.** In[1]:= $Variance[BetaDistribution[<math>\alpha$, β]]
- 2. Spesifiser verdiene

In[2]:= Variance[BetaDistribution[α -verdi, β -verdi]]

Eksempel:

 $In[2]:= Variance[BetaDistribution[\alpha, \beta]]$

$$In[7]:=\frac{\alpha\beta}{(\alpha+\beta)^2(1+\alpha+\beta)}$$

Variance [BetaDistribution[4, 3]]

Out[7]=
$$\left(\frac{\alpha \beta}{(\alpha + \beta)^2 (1 + \alpha + \beta)}\right)'$$

In[9]:=
$$\frac{3}{98}$$
N[3/98]

Out[9]=
$$\frac{3}{98}$$

Out[10]= 0.0306122

7.6 Eksponentialfordelingen

Sannsynlighetsfordeling, kumulativ fordeling, forventning, varians, median

Eksponentialfordeling

Definisjon: Sannsynlighetsfordeling (Probability density function) $f(x)=Exp_{\lambda}(x)$

7.2.

 $x \in (0, \infty)$. Ventetid for en hendelse hvor sjansen for suksess er uavhengig av hvor lenge du allerede har ventet.

$$f(x) = \lambda \cdot e^{-\lambda x}$$

Ingen tilnærminger. Eksponentialfordelingen er eksakt.

Merk at *Eksponential fordeling* er en spesialtilfelle av *Erlangfordeling*, dvs. når n=1 har vi *Eksponentialfordeling*:

 $Exp_{\lambda}(x)=Erl_{1,\lambda}(x)$

Beregning i Mathematica

1. Innput

In[1]:= PDF[ExponentialDistribution[λ], x]

Out[1]=
$$\begin{cases} e^{-x\lambda} \lambda & x \ge 0 \\ 0 & \text{True} \end{cases}$$

2. Spesifiser verdiene

In[2]:= PDF[EksponentialDistribution[λ-verdi], x-verdi]

Eksempel:

```
In[3]:= PDF[ExponentialDistribution[1.25], 0.5]
Out[3]= 0.669077
```

3. Definer valgfritt en eller flere lambda- og x-verdier og plot funksjonen.

In[4]:=Plot[Evaluate@ Table[PDF[ExponentialDistribution[λ eller λ -verdi], x], { λ , { λ -verdi eller verdier}}], {x, x- eller x-verdier}, Filling -> Axis, PlotRange -> All]

Eksempel:

for
$$[\lambda=1.25]$$
, $x_1=0$, $x_2=4$]

 $ln[18] = Plot[Evaluate@Table[PDF[ExponentialDistribution[<math>\lambda$], x], { λ , {1.25}}], {x, 0, 4}, Filling

Eksempel med flere verdier:

for
$$\{\lambda_1=0.5, \lambda_2=1, \lambda_3=2\}, x_1=0, x_2=3$$

In[1]:= Plot[Evaluate@Table[PDF[ExponentialDistribution[
$$\lambda$$
], x], { λ , {1/2, 1, 2}}], {x, 0, 3}, Filling \rightarrow Axis

Definisjon: Kumulativ sannsynlighet (Cumulative distribution function):

$$F(x) = F_{\lambda}^{Exp}(x) = 1 - e^{-\lambda x}$$

Beregning i Mathematica:

1. Skriv som innput

In[1]:= CDF[ExponentialDistribution[
$$\lambda$$
], x]
Out[1]=
$$\begin{cases} 1 - e^{-x\lambda} & x \ge 0 \\ 0 & \text{True} \end{cases}$$

2. Spesifiser verdiene

In[2]:= CDF[ExponentialDistribution[λ -verdi], x-verdi]

Eksempel:

$$In[4]:=$$
 CDF[ExponentialDistribution[1.25], 0.5] Out[4]:= 0.464739

3. Plot grafen med en eller flere λ - og x-verdier.

In[4]:=Plot[Evaluate@ Table[CDF[ExponentialDistribution[λ], x], { λ , { λ -verdi eller λ -verdier}}], {x, x-verdi eller x-verdier}, Filling -> Axis]

Eksempel:

for
$$[\lambda=1.25]$$
, $x_1=0$, $x_2=3$]

Eksempel med flere verdier:

for
$$\{\lambda_1=0.5, \lambda_2=1, \lambda_3=2\}$$
, $x_1=0, x_2=4$

 $In[1] := Plot[Evaluate@Table[CDF[ExponentialDistribution[\lambda], x], \{\lambda, \{1/2, 1, 2\}\}], \{x, 0, 4\}, Filling \rightarrow Axis]$

Forventing (mean) og Varians (variance):

Definisjon:

$$\mu_X = \frac{1}{\lambda}$$

$$\sigma_X^2 = \frac{1}{\lambda^2}$$

Beregning i Mathematica:

1. Innput

In[1]:= Mean[ExponentialDistribution[λ]]

 $In[2] := Variance[ExponentialDistribution[\lambda]]$

2. Spesifiser verdiene

In[3]:= Mean[ExponentialDistribution[λ-verdi]]

In[4]:= Variance[ExponentialDistribution[λ -verdi]]

Eksempel:

```
\label{eq:continuous} \begin{split} & \ln[20] \coloneqq \text{Mean}[\text{ExponentialDistribution}[\lambda]] \\ & \text{Out}[20] \coloneqq \frac{1}{\lambda} \\ & \ln[19] \coloneqq \text{Variance}[\text{ExponentialDistribution}[\lambda]] \\ & \text{Out}[19] \coloneqq \frac{1}{\lambda^2} \\ & \ln[21] \coloneqq \text{Mean}[\text{ExponentialDistribution}[1.25]] \\ & \text{Out}[21] \coloneqq 0.8 \\ & \ln[22] \coloneqq \text{Variance}[\text{ExponentialDistribution}[1.25]] \\ & \text{Out}[22] \coloneqq 0.64 \end{split}
```

Median:

Innput:

1. Skriv

In[1]:= Median[ExponentialDistribution[λ]]

2. Spesifiser lambdaverdi

In[2]:= Median[ExponentialDistribution[λ-verdi]]

Eksempel:

```
In[23]:= Median[ExponentialDistribution[\lambda]]
Out[23]:= \frac{Log[2]}{\lambda}
In[24]:= Median[ExponentialDistribution[1.25]]
Out[24]:= 0.554518
```

7.7 Erlang-fordeling

Sannsynlighetsfordeling, kumulativ fordeling, forventning, varians

Erlang-fordeling

Definisjon: Sannsynlighetsfordeling (Probability density function) $f(x)=Erl_{(k,\lambda)}(x)$

6.2.5

 $x \in (0, \infty)$. Ventetid for k hendelser hvor sjansen for en suksess er uavhengig av antall tidligere suksesser og hvor lenge du allerede har ventet.

$$f(x) = \frac{(\lambda x)^{k-1}}{(k-1)!} \lambda \cdot e^{-\lambda x}$$

Merk at *Erlang-fordeling* er for heltallige k :

i Mathematica

1. Innput

 $In[1]:= PDF[ErlangDistribution[k, \lambda], x]$

Out[1]=
$$\begin{cases} \frac{e^{-x\lambda}x^{-1+k}\lambda^k}{Gamma[k]} & x > 0\\ 0 & True \end{cases}$$

2. Spesifiser verdiene

In[2]:= PDF[ErlangDistribution[k-verdi, λ-verdi], x-verdi]

Eksempel:

 $ln[25]:= PDF[ErlangDistribution[k, \lambda], x]$

Out[25]=
$$\begin{cases} \frac{e^{-\mathbf{x} \lambda} \mathbf{x}^{-1+\mathbf{k}} \lambda^{\mathbf{k}}}{Gamma[\mathbf{k}]} & \mathbf{x} > 0 \\ 0 & True \end{cases}$$

ln[28]:= PDF[ErlangDistribution[13, 4.4], 2]

Out[28]= 0.298618

3. Definer valgfritt en eller flere k-, lambda- og x-verdier og tegn funksjonen.

In[4]:=Plot[Evaluate@ Table[PDF[ErlangDistribution[k, λ], x], {k, {k-verdi eller verdier}}], {x, x-eller x-verdier}, Filling -> Axis]

eller ved

In[5]:=Plot[Evaluate@ Table[PDF[ErlangDistribution[k, λ], x], { λ , { λ -verdi eller verdier}}], {x, x-eller x-verdier}, Filling -> Axis, PlotRange -> All]

Eksempel:

for $[k=13, \lambda=4.4], x_1=0, x_2=7]$

Eksempel med flere verdier:

for $\{k_1=1, k_2=3, k_3=5\}$, $\lambda=0.3, x_1=0, x_2=22$ og for for $k=4, \{\lambda_1=0.5, \lambda_2=1, \lambda_3=2\}$, $x_1=0, x_2=15$

 $In[1]:= Plot[Evaluate@Table[PDF[ErlangDistribution[k, .3], x], \{k, \{1, 3, 5\}\}], \{x, 0, 22\}, Filling \rightarrow Axis]$

 $In[2]:= Plot[Evaluate@Table[PDF[ErlangDistribution[4, <math>\lambda], x], \{\lambda, \{0.5, 1, 2\}\}], \{x, 0, 15\}, Filling \rightarrow Axis, Plot[Evaluate@Table[PDF[ErlangDistribution[4, <math>\lambda], x], \{\lambda, \{0.5, 1, 2\}\}], \{x, 0, 15\}, Filling \rightarrow Axis, Plot[Evaluate@Table[PDF[ErlangDistribution[4, <math>\lambda], x], \{\lambda, \{0.5, 1, 2\}\}], \{x, 0, 15\}, Filling \rightarrow Axis, Plot[Evaluate@Table[PDF[ErlangDistribution[4, <math>\lambda], x], \{\lambda, \{0.5, 1, 2\}\}], \{x, 0, 15\}, Filling \rightarrow Axis, Plot[Evaluate@Table[PDF[ErlangDistribution[4, \lambda], x], \{\lambda, \{0.5, 1, 2\}\}], \{x, 0, 15\}, Filling \rightarrow Axis, Plot[Evaluate@Table[PDF[ErlangDistribution[4, \lambda], x], \{\lambda, \{0.5, 1, 2\}\}], \{x, 0, 15\}, Filling \rightarrow Axis, Plot[Evaluate@Table[PDF[Evaluate@Table[Evaluate@Table[PDF[Evaluate@Table[Eva$

Definisjon: Kumulativ sannsynlighet (Cumulative distribution function):

$$F(x) = F_{(k,\lambda)}^{Erl}(x) = 1 - \sum_{n=0}^{k-1} \frac{(\lambda x)^n}{n!} e^{-\lambda x}$$

Beregning i Mathematica:

1. Skriv som innput

$$\begin{split} &\text{In[1]:= CDF[ErlangDistribution[k, \lambda], x]} \\ &\text{Out[1]= } \left\{ \begin{array}{ll} \text{GammaRegularized[k, 0, x \lambda]} & \text{x} > 0 \\ 0 & \text{True} \end{array} \right. \end{split}$$

2. Spesifiser verdiene

In[2]:= CDF[ErlangDistribution[k-verdi, λ-verdi], x-verdi]

Eksempel:

3. Plot grafen med en eller flere k-, λ- og x-verdier

In[1]:=Plot[Evaluate@ Table[PDF[ErlangDistribution[k, λ], x], {k, {k-verdi eller verdier}}], {x, x-eller x-verdier}, Filling -> Axis]

eller ved

In[2]:=Plot[Evaluate@ Table[PDF[ErlangDistribution[k, λ], x], { λ , { λ -verdi eller verdier}}], {x, x-eller x-verdier}, Filling -> Axis, PlotRange -> All]

Eksempel:

for [k=13, λ =4.4], x_1 =0, x_2 =10]

6

Eksempel med flere verdier:

2

for $\{k_1=1, k_2=3, k_3=5\}$, $\lambda=0.3, x_1=0, x_2=22$ og for for $k=4, \{\lambda_1=0.5, \lambda_2=1, \lambda_3=2\}$, $x_1=0, x_2=15$

8

10

 $In[1] := Plot[Evaluate@Table[CDF[ErlangDistribution[k, .3], x], \{k, \{1, 3, 5\}\}], \{x, 0, 22\}, Filling \rightarrow Axis]$

In[2]:= Plot[Evaluate@Table[CDF[ErlangDistribution[4, λ], x], { λ , {0.5, 1, 2}}], {x, 0, 15}, Filling \rightarrow Axis, PlotRange \rightarrow All]

Forventing (mean) og Varians (variance):

Definisjon:

$$\begin{array}{rcl} \mu_X & = & \frac{k}{\lambda} \\ \sigma_X^2 & = & \frac{k}{\lambda^2} \end{array}$$

Beregning i Mathematica:

1. Innput

In[1]:= Mean[ErlangDistribution[k, λ]]

 $In[2]{:=}\ Variance[ErlangDistribution[k,\,\lambda]]$

2. Spesifiser verdiene

In[3]:= Mean[ErlangDistribution[k-, λ-verdi]]

 $In[4]{:=}\ Variance[ErlangDistribution[k-,\,\lambda\text{-verdi}]]$

Eksempel:

```
In[1]:= Mean[ErlangDistribution[k, \lambda]] Out[1]=\frac{k}{\lambda} In[2]:= Variance[ErlangDistribution[k, \lambda]] Out[2]=\frac{k}{\lambda^2} In[37]:= Mean[ErlangDistribution[13, 4.4]] Out[37]= 2.95455 In[38]:= Variance[ErlangDistribution[13, 4.4]] Out[38]:= 0.671488
```

7.9 Weibull-fordelingen

Sannsynlighetsfordeling, kumulativ fordeling, forventning, varians

Weibull-fordeling

Definisjon: Sannsynlighetsfordeling f(x)=Weib (λ, k)

 $x \in (0, \infty)$.

$$f(x) = \text{Weib}_{(\lambda,k)}(x) = \frac{k}{\lambda} \cdot \left(\frac{x}{\lambda}\right)^{k-1} e^{-\left(\frac{x}{\lambda}\right)^k}$$

Beregning

I Mathematica er $k=\alpha$ og $\lambda=\beta$

1. Skriv som innput

 $In[1]:= PDF[WeibullDistribution[\alpha, \beta], x]$

Out[1]=
$$\begin{cases} \frac{e^{-\left(\frac{\mathbf{x}}{\beta}\right)^{\alpha}} \alpha \left(\frac{\mathbf{x}}{\beta}\right)^{-1+\alpha}}{\beta} & \mathbf{x} > 0 \\ 0 & \text{True} \end{cases}$$

2. Spesifiser verdiene

 $In[2]:= PDF[WeibullDistribution[\alpha-verdi, \beta-verdi], x-verdi]$

Eksempel:

```
In[49]:= PDF[WeibullDistribution[1.7, 15.4], 5]
Out[49]:= 0.0433296
```

3. Du kan tegne funksjonen og velge definert en eller flere alfa-, beta- og x-verdier.

In[4]:=Plot[Evaluate@ Table[PDF[WeibullDistribution[α eller α -verdi, β eller β -verdi], x], { α , { α -verdi eller verdier}} eller { β , { β -verdi eller verdier}}, {x, fra 0 til ∞ }, Filling -> Axis]

Eksempel:

for $[\alpha=1.7, \beta=15.4]$, $x_1=0, x_2=30$

 $ln[53]:= Plot[Evaluate@Table[PDF[WeibullDistribution[\alpha, 15.4], x], \{\alpha, \{1.7\}\}], \{x, 0, 30\}, Filling[53]:= Plot[Evaluate@Table[PDF[WeibullDistribution[\alpha, 15.4], x], \{\alpha, \{1.7\}\}], \{x, 0, 30\}, Filling[53]:= Plot[Evaluate@Table[PDF[WeibullDistribution[\alpha, 15.4], x], \{\alpha, \{1.7\}\}], \{x, 0, 30\}, Filling[53]:= Plot[Evaluate@Table[PDF[WeibullDistribution[\alpha, 15.4], x], \{\alpha, \{1.7\}\}], \{x, 0, 30\}, Filling[53]:= Plot[Evaluate@Table[PDF[WeibullDistribution[\alpha, 15.4], x], \{\alpha, \{1.7\}\}], \{x, 0, 30\}, Filling[53]:= Plot[Evaluate@Table[PDF[WeibullDistribution[\alpha, 15.4], x], \{\alpha, \{1.7\}\}], \{x, 0, 30\}, Filling[53]:= Plot[Evaluate@Table[PDF[WeibullDistribution[\alpha, 15.4], x], \{\alpha, \{1.7\}\}], \{x, 0, 30\}, Filling[53]:= Plot[Evaluate@Table[PDF[WeibullDistribution[\alpha, 15.4], x], \{\alpha, \{1.7\}\}], \{x, 0, 30\}, Filling[53]:= Plot[Evaluate@Table[PDF[WeibullDistribution[\alpha, 15.4], x], \{\alpha, \{1.7\}\}], \{x, 0, 30\}, Filling[53]:= Plot[Evaluate@Table[PDF[WeibullDistribution[\alpha, 15.4], x], \{\alpha, \{1.7\}\}, \{\alpha, \{1.7\}\},$

Eksempel med flere verdier:

for $\{\alpha_1=0.5, \alpha_2=2, \alpha_3=4\}$, $\beta=2$, $x_1=0$, $x_2=5$ og for $\alpha=2$, $\{\beta_1=1, \beta_2=2, \beta_3=4\}$, $x_1=0$, $x_2=5$

 $\label{eq:initial_initial} \mbox{In[1]:= Plot[Evaluate@Table[PDF[WeibullDistribution[α, 2], x], $\{\alpha$, $\{0.5, 2, 4\}\}]$, $\{x$, 0, 5\}$, $\mbox{Filling} \rightarrow Axis]$}$

 $In[2] := \ Plot[\texttt{Evaluate@Table}[PDF[\texttt{WeibullDistribution}[2,\,\beta]\,,\,x]\,,\,\{\beta,\,\{1,\,2,\,4\}\}]\,,\,\{x,\,0,\,5\}\,,\,\texttt{Filling} \rightarrow \texttt{Axis}]$

Definisjon: Kumulativ sannsynlighet

$$F(x) = F_{(\lambda,k)}^{Weib}(x) = 1 - e^{-\left(\frac{x}{\lambda}\right)^k}$$

Beregning i Mathematica:

1. Skriv som innput

 $In[1]:= CDF[WeibullDistribution[<math>\alpha$, β], x]

Out[1]=
$$\begin{cases} 1 - e^{-\left(\frac{x}{\delta}\right)^{\alpha}} & x > 0 \\ 0 & \text{True} \end{cases}$$

2. Spesifiser verdiene

In[2]:= CDF[WeibullDistribution[α -verdi, β -verdi], x-verdi]

Eksempel:

3. Plot grafen med en eller flere α - β - og x-verdier

In[4]:=Plot[Evaluate@ Table[CDF[WeibullDistribution[α eller α -verdi, β eller β -verdi], x], { α , { α -verdi eller verdier}} eller { β , { β -verdi eller verdier}}], {x, fra 0 til ∞ }, Filling -> Axis]

Eksempel:

for [
$$\alpha$$
=1.7, β =15.4], x_1 =0, x_2 =30]

ln[58]:= Plot[Evaluate@Table[CDF[WeibullDistribution[α , 15.4], x], { α , {1.7}}], {x, 0, 30}, Filling

for $\{\alpha_1=0.5, \alpha_2=2, \alpha_3=4\}$, $\beta=2$, $x_1=0$, $x_2=5$ og for $\alpha=2$, $\{\beta_1=1, \beta_2=2, \beta_3=4\}$, $x_1=0$, $x_2=5$

 $In[1] := Plot[Evaluate@Table[CDF[WeibullDistribution[\alpha, 2], x], \{\alpha, \{0.5, 2, 4\}\}], \{x, 0, 5\}, Filling \rightarrow Axis]$

 $In[2] := Plot[Evaluate@Table[CDF[WeibullDistribution[2, \beta], x], \{\beta, \{1, 2, 4\}\}], \{x, 0, 5\}, Filling \rightarrow Axis]$

Forventing (mean):

Definisjon:

$$\mu_X = \frac{\lambda}{k} \cdot \Gamma\left(\frac{1}{k}\right)$$

Beregning i Mathematica:

- **1.** In[1]:= Mean[WeibullDistribution[α, β]]
- 2. Spesifiser verdiene

In[2]:= Mean[WeibullDistribution[α -verdi, β -verdi]]

Eksempel:

```
In[59]:= Mean[WeibullDistribution[\alpha, \beta]]
Out[59]:= \beta Gamma \left[1+\frac{1}{\alpha}\right]
In[60]:= Mean[WeibullDistribution[1, 2.5]]
Out[60]:= 2.5
```

Varians (variance):

Definisjon:

$$\sigma_X^2 = \lambda^2 \left(\Gamma \left(1 + \frac{2}{k} \right) - \left(\Gamma \left(1 + \frac{1}{k} \right) \right)^2 \right)$$

Innput:

- **1.** $In[1]:= Variance[WeibullDistribution[<math>\alpha$, β]]
- 2. Spesifiser verdiene

In[2]:= Variance[WeibullDistribution[α -verdi, β -verdi]]

Eksempel:

```
\begin{aligned} & & \text{In[61]:= Variance[WeibullDistribution}[\alpha, \beta]] \\ & \text{Out[61]:= } \beta^2 \left( -\text{Gamma} \left[ 1 + \frac{1}{\alpha} \right]^2 + \text{Gamma} \left[ 1 + \frac{2}{\alpha} \right] \right) \\ & & & \text{In[62]:= Variance[WeibullDistribution[1, 2.5]]} \\ & \text{Out[62]:= } 6.25 \end{aligned}
```

Diskrete fordelinger

Binomisk fordeling

For å benytte seg av binomisk fordeling i Mathematica gjør man: BinomialDistribution[n, p] hvor "n" er antall forsøk og sansynligheten p for å oppnå en suksess. Må også bruke funksjonen PDF[Dist, x] for å få en tall verdi. "Dist" er da BinomialDistribution funksjonen, mens x er antall ønskede suksesser. Se figur under. Legg også merke til N[.....]. Dette er bare for å få tallet ut som desimal tall og ikke brøk.

N[PDF[BinomialDistribution[300, 1/2500], 2]]
0.00636948

Hypergeometrisk fordeling

Hypergeometrisk fordeling er svært likt som binomisk fordeling, men siden vi trekker og ikke legger tilbake vil oddsen endre seg for vært trekk. I tilfeller hvor oddsen endre seg svært lite på et trekk. Kan binomisk fordeling benyttes.

N[PDF[HypergeometricDistribution[n, ns, ntot], n1] Hvor "n" er antall trekk fra populasjonen. "ns" er antall suksesser i populasjonen. "ntot" er den totale størrelsen på populasjonen, og den siste variablen "n1" er antall ønskede suksesser. Se figur under.

N[PDF[HypergeometricDistribution[1000, 20, 10000], 6]]

0.00881284

Poisson-fordeling

For å regne ut Poisson-fordelingen gjøres dette på samme måte som de andre fordelingene. N[PDF[PoissonDistribution[u], X]], hvor u er Poisson sannsynlighetsfordelingen, og X er variablen som du sjekker for. Hvis du får en oppgave P(X (element) {1,2}) må du gjør to stk. Se bilde under.

```
In[15]:= N[PDF[PoissonDistribution[2.37], 1] + PDF[PoissonDistribution[2.37], 2]]
Out[15]:= 0.484085
```

Geometrisk-fordeling

For geometrisk-fordeling gjøres dette igjen ganske likt som de andre fordelingene. N[PDF[GeometricDistribution[p], x]] p er sansynligheten, mens x er antall forsøk.

Hvis man har en oppgave som P(X (element) {1, 2}) da gjøres dette slik:

```
In[52]:= PDF[GeometricDistribution[0.33], 1] + PDF[GeometricDistribution[0.33], 2]
Out[52]:= 0.369237
```

Negativ Binomisk fordeling

Her også ganske lik som de andre fordelingene.

N[PDF[NegativeBinomialDistribution[p, n], x]], hvor p er sansynligheten, n er antall parametre og x antall forsøk.

```
In[83]:= PDF[NegativeBinomialDistribution[4, 0.67], 6]
Out[83]= 0.0218606
```

Varians

For alle disse regner vi ut varians helt likt. Variance[NegativeBinomialDistribution[n, p]] Bare bytter ut funksjonene i midten. Variance[......].

Statistisk inferens

Siden Mathematica per i dag ikke har noen innebygde funksjoner for bayersiansk utregning av konfidensintervall er man nødt til å lage funksjonene selv.

I påfølgende underkapitler er selve funksjonen ferdiglaget, og alt du trenger å gjøre er å fylle inn nødvendig informasjon (som f.eks prior, intervall grenser, m.m)

Funksjonene kan enten kopieres rett fra tekstfeltet, eller du kan laste ned mathlab fila (type .nb).

Beta konfidensintervall

```
(*β-fordelingen *)
 (*Sett inn \sigma*)
a := 568;
 (*Sett inn µ*)
b := 434;
(*Velg størrelsen på konfidensintervallet*)
konfint := 0.95;
(*For endringer på intervallet, normalt skal denne bare stå på 0 til 1*)
Nedre := 0.0;
Ovre := 1.0;
Endringer gjøres på de første linjene (som forklart), deretter trykker du Shift+Enter.
(*\[Beta]-fordelingen *)
(*Sett inn \[Sigma]*)
a := 568;
(*Sett inn \[Mu]*)
b := 434;
(*Velg størrelsen på konfidensintervallet*)
konfint := 0.95;
(*For endringer på intervallet, normalt skal denne bare
stå på 0 til \
1*)
Nedre := 0.0;
Ovre := 1.0;
(*Her trenger man ikke gjøre endringer*)
Temp := BetaDistribution[a, b];
f[t ] := PDF[Temp, t];
F[t ] := CDF[Temp, t];
Ff[t ] := InverseCDF[Temp, t];
theInterval[t , start , end ] :=
UnitStep[t - Ff[start]] (1 - UnitStep[t - Ff[1 - end]])
                                                          download .nb file
```

Beta konfidensintervall med Bernoulli prior

```
(*β(a,b)-bayes og prior, Bernoulli forsøk*)
(*Valg av prior *)
(*Jeffreys 1/2, 1/2*)
(*Flat 1,1*)
(*Uekte 0,0*)
a = 2.5;
b = 3.5;
(*Velg størrelsen på konfidensintervallet*)
konfint := 0.95;
(*For endringer på intervallet, normalt skal denne bare stå på 0 til 1*)
Nedre := 0.0;
Ovre := 1.0;
Endringer gjøres på de første linjene (som forklart), deretter trykker du Shift+Enter.
(*\[Beta](a,b)-bayes og prior, Bernoulli forsøk*)
(*Valg av prior *)
(*Jeffreys 1/2, 1/2*)
(*Flat 1,1*)
(*Uekte 0,0*)
a = 2.5:
b = 3.5:
(*Velg størrelsen på konfidensintervallet*)
konfint := 0.95:
(*For endringer på intervallet, normalt skal denne bare
stå på 0 til \
1*)
Nedre := 0.0;
Ovre := 1.0;
(*Her trenger man ikke gjøre endringer*)
                                                        download .nb file
```

Normal konfidensintervall

```
(*Normal fordelingen *)
(*Sett inn o*)
vari := 2;
(*Sett inn µ*)
u:=5;
(*Velg graph intervall nedre grense*)
Nedre := -10;
(*Velg graf intervall øvre grense*)
Ovre := 10;
(*Velg størrelsen på konfidensintervallet*)
konfint := 0.8;
Endringer gjøres på de første linjene (som forklart), deretter trykker du Shift+Enter.
(*Normal fordelingen *)
(*Sett inn \[Sigma]*)
vari := 2;
(*Sett inn \[Mu]*)
u := 5;
(*Velg graph intervall nedre grense*)
Nedre := -10;
(*Velg graf intervall øvre grense*)
Ovre := 10;
(*Velg størrelsen på konfidensintervallet*)
konfint := 0.8;
Temp := NormalDistribution[u, vari];
f[t ] := PDF[Temp, t];
F[t_] := CDF[Temp, t];
                                                         download .nb file
```

Normal Konfidensintervall med prior

```
(*Prior for Normal fordeling*)
μpre := 14;
opre := 6;
δpre := 1/(σpre)^2;
(*Observasjonsdata, hvor n er antall målinger*)
snitt := 13.1;
n := 4;
σdata := 9.1;
δdata := n/(σdata)^2;
(*Posterior*)
\delta post := \delta pre + \delta data;
μpost := δpre/δpost*μpre+δdata/δpost*snitt;
σpost := 1/Sqrt[δpost];
(*Velg intervall størrelser for grafen*)
Nedre := 5;
Ovre := 20;
(*Velg størrelsen på konfidensintervallet*)
konfint := 0.8;
```

Endringer gjøres på de første linjene (som forklart), deretter trykker du Shift+Enter.

```
(*Prior for Normal fordeling*)
\[Mu]pre := 14;
\[Sigma]pre := 6;
\[Delta]pre := 1/(\[Sigma]pre)^2;
(*Observasjonsdata, hvor n er antall målinger*)
snitt := 13.1;
n := 4;
\[Sigma]data := 9.1;
\[Delta]data := n/(\[Sigma]data)^2;
(*Posterior*)
\[Delta]post := \[Delta]pre + \[Delta]data;
\[Mu]post := \[Delta]pre/\[Delta]post*\[Mu]pre + \
\[Delta]data/\[Delta]post*snitt;
\[Sigma]post := 1/Sqrt[\[Delta]post];
(*Velg intervall størrelser for grafen*)
Nedre := 5;
Ovre := 20;
(*Velg størrelsen på konfidensintervallet*)
```

download .nb file

Students Konfidensintervall

```
(*Data for plotting*)
(*Fyll inn og trykke <ctrl+enter>*)
\mu := 14;
\sigma := 6;
df := 7;
(*Endre her for å endre intervallet som tegnes på grafen*)
Nedre := 0;
Ovre := 20;
(*Konfidensintervallet*)
konfint := 0.90;
Endringer gjøres på de første linjene (som forklart), deretter trykker du Shift+Enter.
(*Data for plotting*)
(*Fyll inn og trykke <ctrl+enter>*)
\[Mu] := 14;
\[Sigma] := 6;
df := 7;
(*Endre her for å endre intervallet som tegnes på
grafen*)
Nedre := 0;
Ovre := 20;
(*Konfidensintervallet*)
konfint := 0.90;
Temp := StudentTDistribution[\[Mu], \[Sigma], df];
f[t ] := PDF[Temp, t];
F[t] := CDF[Temp, t];
Ff[t ] := InverseCDF[Temp, t];
```

download .nb file

Students Konfidensintervall med prior

```
(*Prior for ukjent o posterior*)
μpre := 14;
opre := 6;
(*Observasjons data*)
(*Skriv inn antall måle data*)
n := 4;
(*Snittet til måledatene*)
snitt := 13.1;
(*Skriv inn utvalgsvariansen*)
Sy := 1.257;
(*Mellom regniger*)
\deltadata = n/Sy^2;
δpost = 1/opre + δdata;
(*Velg størrelsen på konfidensintervallet*)
konfint := 0.98;
(*For endringer på intervallet som vises når data tegnes opp*)
Nedre := 0.0;
Ovre := 20.0;
Endringer gjøres på de første linjene (som forklart), deretter trykker du Shift+Enter.
(*Prior for ukjent \[Sigma] posterior*)
\[Mu]pre := 14;
\[Sigma]pre := 6;
(*Observasjons data*)
(*Skriv inn antall måle data*)
n := 4;
(*Snittet til måledatene*)
snitt := 13.1;
(*Skriv inn utvalgsvariansen*)
Sy := 1.257;
(*Mellom regniger*)
\[Delta]data = n/Sy^2;
\[Delta]post = 1/\[Sigma]pre + \[Delta]data;
(*Posterior*)
\[Delta]post := \[Delta]pre + \[Delta]data;
\[Mu]post := \[Delta]pre/\[Delta]post*\[Mu]pre + \
\[Delta]data/\[Delta]post*snitt;
```

\[Sigma]post := 1/Sqrt[\[Delta]post];

download .nb file