1 Successioni

1.1 Successioni in \mathbb{R}

Sia $X \neq \emptyset$, una qualsiasi funzione $f: \mathbb{N} \to X$ si dice: **successione in** X. Una notazione si indica $\{f_n\}_{n\in\mathbb{N}}$ o f_1, f_2, \ldots, f_n f_n si chiama termine n-esimo.

 k_1, k_2, \dots, k_n è una successione di numeri naturali:

$$k_1 < k_2 < \dots < k_n < k_{n+1} < \dots \quad \forall n \in \mathbb{N}$$
 (1)

La successione $\{f_{k_n}\}$ è una sottosuccessione di $\{f_n\}$.

Definizione 1:

Se a_n tende $a \ l \in \mathbb{R}$ per $n \to \infty$, si dice che $\lim_{n \to \infty} a_n = l$

$$\forall \epsilon > 0 \exists \overline{n} : \forall n \in \mathbb{N} (n > \overline{n} \implies |a_n - l| < \epsilon)$$
 (2)

 $\{a_n\}$ converge ad l ed esso è il limite di $\{a_n\}$

Esempio 1.

$$\lim_{n \to \infty} \frac{1}{n} = 0 \tag{3}$$

Ovvero

$$\forall \epsilon > 0 \exists \overline{n} : \forall n \in \mathbb{N} \left(n > \overline{n} \implies \left| \frac{1}{n} - 0 \right| < \epsilon \right)$$
 (4)

DIMOSTRAZIONE 1 (Il limite se esiste è unico).

$$\lim_{x \to \infty} a_n = l \quad \land \quad \lim_{x \to \infty} a_n = m \quad \iff \quad l = m \tag{5}$$

Esempio 2.

Poniamo per assurdo che $l \neq m$ Fissiamo $\epsilon > 0$

$$\underbrace{|a_n - l| < \frac{\epsilon}{2}}_{n > \overline{n_1}} \quad \& \quad \underbrace{|a_n - m| < \frac{\epsilon}{2}}_{n > \overline{n_2}}$$

$$(6)$$

Ricordiamo che $|a_n - m| = |m - a_n|$

$$| -a_n - l - -a_n + m | |a_n - l| + |m - a_n| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$
 (7)

$$\downarrow \downarrow$$

$$|m-l| < \epsilon \implies |m-l| = 0$$
 (8)

Ma questo è assurdo perchè: $\epsilon>0, \forall \epsilon\in\mathbb{R}$

$$m = l (9)$$