Chapitre 13: Fractions rationnelles

Dans ce chapitre, K est un sous corps de C.

I Généralités

A) Définition

On note $\mathbb{K}(X)$ le corps des fractions de l'anneau intègre $(\mathbb{K}[X],+,\times)$. Les éléments de $\mathbb{K}(X)$ sont appelés fractions rationnelles formelles à coefficients dans \mathbb{K} .

B) Premières conséquences

(1) $\mathbb{K}(X)$ est muni de deux lois + et \times , contient $\mathbb{K}[X]$, les lois + et \times sur $\mathbb{K}(X)$ prolongent celles de $\mathbb{K}[X]$.

 $(\mathbb{K}(X),+,\times)$ est un corps commutatif, les neutres pour + et \times sont :

$$\begin{cases} 0_{\mathbb{K}(X)} = 0_{\mathbb{K}[X]} (= 0_{\mathbb{K}}), \text{ noté } 0 \\ 1_{\mathbb{K}(X)} = 1_{\mathbb{K}[X]} (= 1_{\mathbb{K}}), \text{ noté } 1 \end{cases}$$

(2) Tout F de $\mathbb{K}(X)$ s'écrit sous la forme $P \times Q^{-1}$, où $P \in \mathbb{K}[X]$, et $Q \in \mathbb{K}[X] \setminus \{0\}$ $(Q^{-1}$ désigne l'inverse dans le corps $\mathbb{K}(X)$ de l'élément Q non nul de ce corps).

$$P \times Q^{-1}$$
 est noté $\frac{P}{Q}$ (c'est aussi $Q^{-1} \times P$ car le corps est commutatif)

Il en résulte diverses « règles de calcul » :

Pour tous $P, Q, R, A, D \in \mathbb{K}[X]$:

•
$$\frac{P}{1} = P \ (\text{car } 1^{-1} = 1)$$

• Si
$$P, Q \neq 0$$
, alors $\left(\frac{P}{Q}\right)^{-1} = \frac{Q}{P}$ (en effet : $\left(\frac{P}{Q}\right)^{-1} = (PQ^{-1})^{-1} = QP^{-1} = \frac{Q}{P}$)

• Si
$$Q_1, Q_2 \neq 0$$
, alors $\frac{P_1}{Q_1} \times \frac{P_2}{Q_2} = P_1 Q_1^{-1} P_2 Q_2^{-1} = (P_1 P_2) (Q_2 Q_1)^{-1} = \frac{P_1 P_2}{Q_1 Q_2}$

• Si
$$Q, D \neq 0$$
, alors $\frac{DP}{DQ} = \frac{P}{Q} ((DP)(DQ)^{-1} = DPQ^{-1}D^{-1} = D^{-1}DPQ^{-1} = \frac{P}{Q})$

• Si
$$Q_1, Q_2 \neq 0$$
, $\frac{P_1}{Q_1} = \frac{P_2}{Q_2} \Leftrightarrow P_1 Q_2 = P_2 Q_1$

• Si
$$Q \neq 0$$
, $\frac{P_1}{Q} + \frac{P_2}{Q} = \frac{P_1 + P_2}{Q}$

• Si
$$Q_1, Q_2 \neq 0$$
, $\frac{P_1}{Q_1} + \frac{P_2}{Q_2} = \frac{P_1 Q_2}{Q_1 Q_2} + \frac{P_2 Q_1}{Q_1 Q_2} = \frac{P_1 Q_2 + P_2 Q_1}{Q_1 Q_2}$

C) Produit externe

Pour $F \in \mathbb{K}(X)$ et $\lambda \in \mathbb{K}$, on note λF (ou λF) le produit $\lambda \times F$ Il en résulte que $(\mathbb{K}(X), +, \times, .)$ est une \mathbb{K} -algèbre.

II Diverses notions

A) Représentant – représentant irréductible

Soit $F \in \mathbb{K}(X)$.

- Un représentant de F est, par définition, un couple $(P,Q) \in \mathbb{K}[X] \times \mathbb{K}[X] \setminus \{0\}$ tel que $F = \frac{P}{Q}$
- Un représentant irréductible de F est, par définition, un couple $(A,B) \in \mathbb{K}[X] \times \mathbb{K}[X] \setminus \{0\}$ tel que $F = \frac{A}{B}$ et $\operatorname{pgcd}(A,B) = 1$

Proposition:

- (1) Toute fraction rationnelle *F* admet un représentant irréductible.
- (2) Si (A, B) est un représentant irréductible de F, alors les autres représentants de F sont les $(DA, DB), D \in \mathbb{K}[X] \setminus \{0\}$ (parmi lesquels les irréductibles sont les $(\lambda A, \lambda B), \lambda \in \mathbb{K} \setminus \{0\}$)

Démonstration:

- (1) Soit $F \in \mathbb{K}(X)$, (P,Q) un représentant de F. On pose $G = \operatorname{pgcd}(P,Q)$. Alors $P = GP_1$, $Q = GQ_1$, avec $\operatorname{pgcd}(P_1,Q_1) = 1$. Ainsi, $F = \frac{P}{Q} = \frac{GP_1}{GQ_1} = \frac{P_1}{Q_1}$.
- (2) Supposons $F = \frac{A}{B}$, avec $\operatorname{pgcd}(A,B) = 1$, soit (P,Q) un autre représentant. Alors $\frac{P}{Q} = \frac{A}{B}$; PB = QA. Donc B divise QA, donc Q car $\operatorname{pgcd}(A,B) = 1$. Donc $Q = Q_1B$. Donc $\frac{P}{Q_1B} = \frac{A}{B}$; $\frac{P}{Q_1} = A$ (car $B \neq 0$). Donc $P = Q_1A$. Donc $(P,Q) = (Q_1A,Q_1B)$. Inversement, les $(DA,DB),D \in \mathbb{K}[X] \setminus \{0\}$ sont des représentants de F

B) Degré

Soit $F = \frac{P}{Q}$. La valeur de $\deg P - \deg Q$ est indépendante du choix du représentant (P,Q) de F (immédiat), on l'appelle le degré de F. Alors $\deg F \in \mathbb{Z} \cup \{-\infty\}$

Exemples:

$$F = \frac{2X+1}{3X+2}$$
 est de degré 0.
$$2X+1$$

$$F = \frac{2X+1}{5X^2+4}$$
 est de degré -1.

Proposition:

$$\deg(F_1F_2) = \deg(F_1) + \deg(F_2)$$

$$deg(\lambda F) = deg(F) \text{ si } \lambda \neq 0$$

$$\deg(F_1 + F_2) \le \max(\deg(F_1), \deg(F_2))$$

(Démonstration immédiate en raisonnant sur les degrés des représentants)

C) Zéros, pôles

Soit $F = \frac{A}{B}$, irréductible.

- Un zéro de F est, par définition, une racine de A. Son ordre de multiplicité est celui qu'il a en tant que racine de A.
- Un pôle de *F* est, par définition, une racine de *B*. Son ordre de multiplicité est celui qu'il a en tant que racine de *B*.

Exemple:

$$F = \frac{X^3 - 1}{X^2 - 3X + 2} = \frac{(X - j)(X - j^2)}{X - 2}$$
. Donc j et j^2 sont des zéros d'ordre 1, et 2 est un pôle d'ordre 1.

Remarque : Si $F = \frac{P}{Q}$, non nécessairement irréductible :

- Si λ est racine de P d'ordre α , alors λ est racine de F d'ordre $\leq \alpha$ (voire 0)
- Si λ est racine de Q d'ordre α , alors λ est pôle de F d'ordre $\leq \alpha$ (voire 0)

D) Fonction rationnelle associée

Soit
$$F = \frac{A}{B}$$
, irréductible.

On note $D_F = \mathbb{K} \setminus \{\text{pôles de } F\}$: domaine de définition de la fonction rationnelle associée à F (Remarque : l'ensemble des pôles de F est fini car $B \neq 0$)

On note alors
$$\widetilde{F}: D_F \to \mathbb{K}$$

$$x \mapsto \frac{A(x)}{B(x)}$$

Proposition:

- Si $F = \frac{P}{Q}$ non irréductible, et si x n'est pas une racine de Q, alors $x \in D_F$, et $\widetilde{F}(x) = \frac{P(x)}{Q(x)}$
- Si $F_1, F_2 \in \mathbb{K}(X)$ et $\lambda \in \mathbb{K}$, alors:

-
$$D_{F_1} \cap D_{F_2} \subset D_{F_1+F_2}$$
 et $\forall x \in D_{F_1} \cap D_{F_2}, \widetilde{F_1+F_2}(x) = \widetilde{F_1}(x) + \widetilde{F_2}(x)$

-
$$D_{F_1} \cap D_{F_2} \subset D_{F_1F_2}$$
 et $\forall x \in D_{F_1} \cap D_{F_2}$, $\widetilde{F_1 \times F_2}(x) = \widetilde{F_1}(x) \times \widetilde{F_2}(x)$

-
$$D_{F_1} \subset D_{\lambda F_1}$$
 et $\forall x \in D_{F_1}, \widetilde{\lambda F_1}(x) = \lambda \widetilde{F}_1(x)$

Proposition:

Soient F_1 , $F_2 \in \mathbb{K}(X)$. S'il existe un ensemble infini E inclus dans $D_{F_1} \cap D_{F_2}$ tel que $\forall x \in E, \widetilde{F}_1(x) = \widetilde{F}_2(x)$, alors $F_1 = F_2$

Démonstration:

$$F_1 = \frac{A_1}{B_1}$$
, $F_2 = \frac{A_2}{B_2}$ irréductibles.

Donc $\forall x \in E, A_1(x)B_2(x) = A_2(x)B_1(x)$. Donc A_1B_2 et A_2B_1 coïncident sur une infinité de valeurs. Donc $A_1B_2 = A_2B_1$. Donc $F_1 = F_2$.

Conséquence de ces propriétés : de même que pour les fonctions polynomiales, on peut enlever les ~ sur les fonctions rationnelles.

E) Dérivation formelle

Soit $F = \frac{P}{Q}$. La valeur de $\frac{P'Q - Q'P}{Q^2}$ ne dépend que de F (immédiat). On l'appelle F'.

Toutes les règles de calcul valables pour les dérivées formelles de polynômes sont aussi valables ici.

F) Substitution

Exemple:

$$F = \frac{X^3 - 2X + 4}{X^2 + X + 1}$$
. Alors $F(-X) = \frac{-X^3 + 2X + 4}{X^2 - X + 1}$, $F(X^2) = \frac{X^6 - 2X^2 + 4}{X^4 + X^2 + 1}$.

Attention, étant donnée $F \in \mathbb{K}(X)$, on ne parlera de F(Q) que lorsque Q est un polynôme ou une fraction rationnelle autre que constant et égal à un pôle de F.

G) Remarques, définitions complémentaires

* F est paire $\Leftrightarrow \widetilde{F}$ est paire

$$\Leftrightarrow F(-X) = F(X)$$

* F est impaire $\Leftrightarrow \widetilde{F}$ est impaire

$$\Leftrightarrow F(-X) = -F(X)$$

- * Soit $F \in \mathbb{C}(X)$. On a l'équivalence : F n'a pas de pôle dans $\mathbb{C}(X) \Leftrightarrow F \in \mathbb{C}[X]$.
- * Soit $F \in \mathbb{C}(X)$, $a \in \mathbb{C}$. Alors:
- (1) Il existe $r \in \mathbb{R}_+^*$ tel que $B(a,r) \setminus \{a\}$ ne contienne aucun pôle de F. On peut donc considérer la fonction :

$$\varphi:]-r,r[\setminus \{0\} \to \mathbb{K}$$

$$t \mapsto F(a+t)$$

- (2) a est pôle de $F \Leftrightarrow \varphi$ admet une limite infinie à droite et à gauche en 0 (et dans ce cas la multiplicité du pôle a de F est le plus petit entier $k \in \mathbb{N}$ tel que $t \mapsto t^k F(a+t)$ ait une limite finie en 0)
 - (3) a est zéro de $F \Leftrightarrow \varphi$ tend vers 0 en 0.
 - (4) a n'est ni zéro ni pôle de $F \Leftrightarrow \varphi$ admet une limite finie non nulle en 0.

III Partie entière

A) Proposition et définition

Soit $F \in \mathbb{K}(X)$. Alors il existe un et un seul polynôme $E \in \mathbb{K}[X]$ tel que $F = E + F_1$ avec $F_1 \in \mathbb{K}(X)$ et deg $F_1 < 0$. E s'appelle la partie entière de F.

Démonstration:

1) unicité:

Si
$$F = E_1 + F_1$$
 et $F = E_2 + F_2$ avec deg $F_1, F_2 < 0$

Alors
$$\underbrace{E_1 - E_2}_{\deg \in \mathbb{N} \cup \{-\infty\}} = \underbrace{F_1 - F_2}_{\deg \leq \max(\deg(F_1), \deg(F_2)) < 0}$$

Donc
$$E_1 - E_2 = F_1 - F_2 = 0$$
. Donc $E_1 = E_2$ et $F_1 = F_2$.

2) existence:

$$F = \frac{P}{Q}$$
. Division euclidienne de P par Q : $P = P_1Q + R_1$, avec $R_1 \in \mathbb{K}[X]$, de

 $\deg R_1 < \deg Q$, et $P_1 \in \mathbb{K}[X]$

Donc
$$F = \frac{P_1Q + R_1}{Q} = P_1 + \frac{R_1}{Q}$$
 avec $\deg R_1 < \deg Q$

B) Exemples

• partie entière de $\frac{X+2}{X-1}$: 1. Partie entière de $\frac{X^3+2X}{X^3+X^2-1}$: 1

• Plus généralement, partie entière de
$$\frac{aX^n + ...}{bX^n + ...}$$
: $\frac{a}{b}$

• Partie entière de
$$F = \frac{2X^2 + X}{X - 3}$$
:

$$2X^{2} + X = 2X(X - 3) + 7X = 2X(X - 3) + 7(X - 3) + 21 = (2X + 7)(X - 3) + 21$$

Donc
$$F = \underbrace{2X + 7}_{\text{partic entière}} + \frac{21}{X - 3}$$

• Partie entière de
$$F = \frac{(X-1)^7}{(X+2)(X+1)^5}$$
: de la forme $X+b$

$$(X-1)^7 = X^7 - 7X^6 + 21X^5 + \dots$$

$$(X+2)(X+1)^5 = (X+2) = (X+2)(X^5+5X^4+...) = X^6+7X^5+...$$

$$X^{7} - 7X^{6} + 21X^{5} + \dots \qquad X^{6} + 7X^{5}$$
 $14X^{6} + \dots \qquad X - 14$

Donc
$$F = X - 14 + R_1$$

IV Décomposition en éléments simples

A) Première décomposition

Lemme:

Soit
$$F = \frac{P}{Q_1 Q_2}$$
, où $P \in \mathbb{K}[X]$, $Q_1, Q_2 \in \mathbb{K}[X]$ et $pgcd(Q_1, Q_2) = 1$.

Alors il existe
$$P_1, P_2 \in \mathbb{K}[X]$$
 tels que $F = \frac{P_1}{Q_1} + \frac{P_2}{Q_2}$

Démonstration:

Selon le théorème de Bézout, il existe $U_1, U_2 \in \mathbb{K}[X]$ tels que $U_1Q_1 + U_2Q_2 = 1$

Donc
$$PU_1Q_1 + PU_2Q_2 = P$$

Donc
$$\frac{PU_1Q_1 + PU_2Q_2}{Q_1Q_2} = \frac{P}{Q_1Q_2}$$
. Donc $\frac{P}{Q_1Q_2} = \frac{PU_1}{Q_2} + \frac{PU_2}{Q_1}$

Théorème:

Soit $F = \frac{A}{Q_1 Q_2 \dots Q_n}$ où $A \in \mathbb{K}[X]$ et les Q_i sont des polynômes non nuls premiers

entre eux deux à deux.

Alors F se décompose de manière unique sous la forme :

$$F = E + \frac{A_1}{Q_1} + \frac{A_2}{Q_2} + \dots + \frac{A_n}{Q_n} \text{ où } \forall i \in [1, n], A_i \in \mathbb{K}[X] \text{ et deg } A_i < \deg Q_i$$

Démonstration:

(1) existence : par récurrence sur n.

Pour
$$n = 2$$
: le lemme donne $F = \frac{P_1}{Q_1} + \frac{P_2}{Q_2}$, avec $P_1, P_2 \in \mathbb{K}[X]$

La division euclidienne de P_1 par Q_1 et de P_2 par Q_2 donne :

$$P_1 = E_1 Q_1 + A_1$$
 et $P_2 = E_2 Q_2 + A_2$

$$\text{Donc } F = E_1 + E_2 + \frac{A_1}{Q_1} + \frac{A_2}{Q_2} \text{ avec } \deg A_1 < \deg Q_1 \text{ et } \deg A_2 < \deg Q_2.$$

Supposons que c'est vrai pour un entier naturel $n \ge 2$.

 $F = \frac{A}{Q_1 Q_2 \dots Q_n Q_{n+1}}$, où les Q_i sont premiers entre eux deux à deux. On applique le

lemme (Q_{n+1} est premier avec chaque Q_i , $i \le n$, donc avec $Q_1Q_2...Q_n$)

Donc $F = \frac{P}{Q_1 Q_2 \dots Q_n} + \frac{P_{n+1}}{Q_{n+1}}$. On applique ensuite l'hypothèse de récurrence, et on

fait la division euclidienne de P_{n+1} par Q_{n+1}

(2) unicité : supposons que
$$F = E + \frac{A_1}{Q_1} + \frac{A_2}{Q_2} + \dots + \frac{A_n}{Q_n}$$

Déjà, E est la partie entière de F:

$$E \in \mathbb{K}[X] \text{ et } \operatorname{deg}\left(\sum_{i=1}^{n} \frac{A_{i}}{Q_{i}}\right) \leq \max_{i \in [[1,n]]} \operatorname{deg}\left(\frac{A_{i}}{Q_{i}}\right) < 0$$

Si on a une deuxième décomposition :

$$F = E + \frac{B_1}{Q_1} + \frac{B_2}{Q_2} + \dots + \frac{B_n}{Q_n} \text{ où } \forall i \in [1, n], B_i \in \mathbb{K}[X] \text{ et deg } B_i < \deg Q_i$$

Donc
$$\frac{A_1}{Q_1} + \frac{A_2}{Q_2} + \dots + \frac{A_n}{Q_n} = \frac{B_1}{Q_1} + \frac{B_2}{Q_2} + \dots + \frac{B_n}{Q_n}$$

On obtient alors

$$Q_1Q_2...Q_n\left(\sum_{i=1}^n \frac{A_i}{Q_i}\right) = Q_1Q_2...Q_n\left(\sum_{i=1}^n \frac{B_i}{Q_i}\right)$$

$$\underbrace{Q_{1}Q_{2}...Q_{n}\left(\sum_{i=1}^{n-1}\frac{C_{i}}{Q_{i}}\right)}_{\text{divisible par }Q} + Q_{1}Q_{2}...Q_{n-1}C_{n} = 0 \text{ où } \forall i \in [1,n], C_{i} = A_{i} - B_{i}$$

Donc Q_n divise $Q_1Q_2...Q_{n-1}C_n$. Donc Q_n divise C_n .

Donc $C_n = 0$ car $\deg C_n \le \max(\deg A_n, \deg B_n) < \deg Q_n$

Et, de proche en proche, $\forall i \in [1, n], C_i = 0$

Donc $\forall i \in [1, n], A_i = B_i$

B) Deuxième décomposition

Théorème:

Soit
$$F = \frac{A}{Q^n}$$
 où $A \in \mathbb{K}[X], Q \in \mathbb{K}[X], n \in \mathbb{N}^*$

Alors F s'écrit de manière unique sous la forme $F = E + \frac{P_1}{Q} + \frac{P_2}{Q^2} + ... + \frac{P_n}{Q^n}$, où $E \in \mathbb{K}[X]$ et $\forall i \in [1, n], P_i \in \mathbb{K}[X]$ et $\deg P_i < \deg Q$

Démonstration:

(1) Existence

$$F = \frac{A}{Q^n} = \frac{D_1 Q + P_n}{Q^n}$$
 (Division euclidienne de *A* par *Q*)

Donc
$$F = \frac{D_1}{O^{n-1}} + \frac{P_n}{O^n}$$
 avec $\deg P_n < \deg Q$

La division euclidienne de D_1 par Q donne ensuite, de la même manière :

$$F = \frac{D_2}{Q^{n-2}} + \frac{P_{n-1}}{Q^{n-1}} + \frac{P_n}{Q^n}$$

Et ainsi de suite

$$F = \frac{D_{n-1}}{Q} + \frac{P_2}{Q^2} + ... + \frac{P_n}{Q^n}$$
. Enfin, la division euclidienne de D_{n-1} par Q donne :

$$F = E + \frac{P_1}{Q} + \frac{P_2}{Q^2} + \dots + \frac{P_n}{Q^n}$$

(2) Unicité

Si
$$F = E + \frac{P_1}{Q} + \frac{P_2}{Q^2} + ... + \frac{P_n}{Q^n}$$
, où $\forall i \in [1, n], \deg P_i < \deg Q$, on a alors:

 $EQ^n + P_1Q^{n-1} + P_2Q^{n-2} + ... + P_n = A$ Donc P_n est le reste dans la division euclidienne de A par Q, d'où l'unicité de P_n . On note ensuite A_1 le quotient de cette division euclidienne...

C) Décomposition en éléments simples

Définition : un élément simple de $\mathbb{K}(X)$ est une fraction rationnelle du type $\frac{P}{Q^n}$, où $Q \in \mathbb{K}[X]$ est irréductible, $n \in \mathbb{N}^*$, et $P \in \mathbb{K}[X] \setminus \{0\}$, de degré $< \deg Q$.

Exemples:

- $\frac{\lambda}{(X-a)^n}$ où $a \in \mathbb{K}$, $\lambda \in \mathbb{K}^*$ est un élément simple de $\mathbb{K}(X)$.
- Pour $\mathbb{K} = \mathbb{C}$, elles sont les seuls éléments simples de $\mathbb{C}(X)$
- Les éléments simples de $\mathbb{R}(X)$ sont les :

1^{ère} espèce:
$$\frac{\lambda}{(X-a)^n}$$
, où $a \in \mathbb{R}$, $\lambda \in \mathbb{R}^*$ et $n \in \mathbb{N}^*$.

2^{ème} espèce :
$$\frac{\lambda X + \mu}{(X - sX + p)^n}$$
, où $(\lambda, \mu) \in \mathbb{R}^2 \setminus \{(0,0)\}, s, p \in \mathbb{R}, s^2 - 4p < 0, n \in \mathbb{N}^*$

Théorème :

Soit
$$F = \frac{A}{B} \in \mathbb{K}(X)$$
, où $A \in \mathbb{K}[X]$ et $B \in \mathbb{K}[X] \setminus \mathbb{K}_0[X]$ (ainsi, $F \notin \mathbb{K}[X]$)

B s'écrit sous la forme $Q_1^{\alpha_1}Q_2^{\alpha_2}...Q_n^{\alpha_n}$ où les Q_i sont irréductibles, non associés deux à deux et les $\alpha_i \in \mathbb{N}^*$.

Alors F s'écrit de manière unique sous la forme :

$$F = \underbrace{E}_{\in \mathbb{K}[X]} + \sum_{i=1}^{n} \underbrace{\sum_{j=1}^{\alpha_{i}} \frac{A_{ij}}{Q_{i}^{j}}}_{\text{elément simple}} , \text{ où } \forall i \in [[1, n]], \forall j \in [[1, \alpha_{i}]], \deg A_{ij} < \deg Q_{ij}$$

partie polaire de F relative au facteur irréductible Q_i

Démonstration :

(1) Existence:

Selon l'étape 1, on a :

$$F = E + \sum_{i=1}^{n} \frac{A_i}{Q_i^{\alpha_i}}, \text{ où } \forall i \in [1, n], \deg A_i < \deg Q_i^{\alpha_i}$$

Et, selon l'étape 2, on a, pour tout $i \in [1, n]$:

$$\frac{A_{i}}{Q_{i}^{\alpha_{i}}} = \underbrace{E_{i}}_{\substack{=0 \text{ car} \\ \deg A_{i} < \deg O^{\alpha_{i}}}} + \sum_{j=1}^{\alpha_{i}} \frac{A_{ij}}{Q_{i}^{j}}, \text{ où } \forall j \in [1, \alpha_{i}], \deg A_{ij} < \deg Q_{i}$$

(2) Unicité

On décompose F sous la forme $F = E + \sum_{i=1}^{n} \sum_{j=1}^{\alpha_i} \frac{A_{ij}}{Q_i^j}$.

Pour chaque $i \in [1, n]$, $\sum_{j=1}^{\alpha_i} \frac{A_{ij}}{Q_i^j}$ s'écrit sous la forme $\frac{A_i}{Q_i^{\alpha_i}}$, où $A_i \in \mathbb{K}[X]$. Ces A_i sont déterminés de manière unique d'après la première décomposition. Ensuite, chacun de ces A_i , $\frac{A_i}{Q_i^{\alpha_i}}$ se décompose de manière unique sous la forme $\sum_{i=1}^{\alpha_i} \frac{A_{ij}}{Q_i^j}$. D'où l'unicité.

Remarque : ceci est valable même si (A,B) n'est pas un représentant irréductible de F, mais si (A,B) est irréductible, les A_{i,α_i} sont tous non nuls (en effet, si $A_{i,\alpha_i}=0$, alors, en remettant au même dénominateur la décomposition, on obtient $F=\frac{A_1}{B_1}$, où

$$B_1 = Q_1^{\alpha_1} Q_2^{\alpha_2} ... Q_i^{\alpha_i - 1} ... Q_n^{\alpha_n}$$
 donc (A, B) n'était pas irréductible)

Exemples:

$$F = \frac{X^{10} + 1}{(X^3 - 1)^2(X + 2)} \leftarrow B$$

$$B = (X^3 - 1)^2(X + 2) = (X - 1)^2(X - j)^2(X - j^2)^2(X + 2)$$

$$A(-2), A(1), A(j), A(j^2) \text{ sont non nuls. Done pgcd}(A, B) = 1$$

$$F = X^3 + bX^2 + cX + d + \underbrace{\frac{\lambda}{X + 2}}_{\text{partie polaire realtive au pôle}} + \underbrace{\frac{\alpha}{X - 1}}_{\text{partie polaire relative au pôle}} + \underbrace{\frac{\beta'}{X - j}}_{\text{partie polaire relative au pôle}} + \underbrace{\frac{\beta'}{X - j}}_{\text{partie polaire relative au pôle}}$$

$$+\frac{\alpha''}{X-j^2}+\frac{\beta''}{(X-j^2)^2}$$

Attention : on ne peut utiliser le terme de partie polaire relative à un nombre (comme dans l'exemple donné) que lorsqu'on travaille dans $\mathbb{C}(X)$.

V Pratique de la décomposition

Exemple : $F = \frac{X}{(X^4 - 1)(X^2 - 1)} \leftarrow \frac{A}{C}$ à décomposer en éléments simples dans $\mathbb{C}(X)$:

(1) Factorisation du dénominateur :

 $B = (X^4 - 1)(X^2 - 1) = (X - i)(X + i)(X - 1)^2(X + 1)^2$. On a donc les racines i, -i, 1, -1.

Donc (A,B) est irréductible. Les pôles de F sont donc i,-i,1,-1 avec les multiplicités 1,1,2,2.

- (2) Partie entière : obtenue en faisant la division euclidienne de A par B. Ici 0.
- (3) Forme de la décomposition :

$$F = 0 + \frac{\alpha}{X - i} + \frac{\alpha'}{X + i} + \frac{\beta}{X - 1} + \frac{\gamma}{(X - 1)^2} + \frac{\beta'}{X + 1} + \frac{\gamma'}{(X + 1)^2} \text{ où } \alpha, \alpha', \beta, \beta', \gamma, \gamma' \in \mathbb{C}$$

(Remarque : $\alpha, \alpha', \gamma, \gamma' \neq 0$)

(4) Considération de symétries

Ici,
$$F = \frac{X}{(X^4 - 1)(X^2 - 1)}$$
. Donc $F(-X) = -F(X)$ (impaire)

On a:

$$\underbrace{F(-X)}_{-F(X)} = \frac{-\alpha}{X+i} + \frac{-\alpha'}{X-i} + \frac{-\beta}{X+1} + \frac{\gamma}{(X+1)^2} + \frac{-\beta'}{X-1} + \frac{\gamma'}{(X-1)^2}$$

D'où, par unicité de la décomposition, on obtient :

$$\alpha' = \alpha$$
, $\beta' = \beta$, $\gamma' = -\gamma$

$$F = \frac{\alpha}{X - i} + \frac{\alpha}{X + i} + \frac{\beta}{X - 1} + \frac{\gamma}{(X - 1)^2} + \frac{\beta}{X + 1} - \frac{\gamma}{(X + 1)^2}$$

- (5) Détermination des parties polaires
- D'abord celles relatives à des pôles simples (c'est plus simple[®])
 En effet

Pour $F = \frac{A}{B}$, si a est un pôle simple de F, c'est-à-dire si $\begin{cases} (X - a)Q = B \text{ avec } Q(a) \neq 0 \\ A(a) \neq 0 \end{cases}$.

Alors $F = \frac{\lambda}{(X - a)} + G$ où G est une fraction rationnelle dont a n'est pas pôle.

Donc
$$(X-a)F = \lambda + (X-a)G$$
. Donc $\frac{A(a)}{Q(a)} = \lambda$

$$= \frac{A}{Q}, \text{ fraction rationnelle } \text{dont } a \text{ est un zéro}$$

$$\text{Ici, } \underbrace{\underbrace{F \times (X-i)}_{X}}_{\text{$\frac{X}{(X+i)(X^2-1)^2}}} = \alpha + (X-i) \times G \text{, où } G = \frac{\alpha}{X+i} + \frac{\beta}{X-1} + \frac{\gamma}{(X-1)^2} + \frac{\beta}{X+1} - \frac{\gamma}{(X+1)^2}.$$

Donc
$$\alpha = \frac{i}{(i+i)(i^2-1)^2} = \frac{1}{8}$$

Remarque : dans certains cas, calculer Q(a) n'est pas aisé.

On a :
$$B = (X - a)Q$$
. Donc $B' = (X - a)Q' + Q$. Donc $B'(a) = Q(a)$

Ainsi,
$$\lambda = \frac{A(a)}{Q(a)} = \frac{A(a)}{B'(a)}$$

- Les pôles multiples : d'abord les pôles doubles

Pour
$$F = \frac{A}{B}$$
, si a est pôle double de F :
$$\begin{cases} (X - a)^2 Q = B \text{ avec } Q(a) \neq 0 \\ A(a) \neq 0 \end{cases}$$
.

$$F = \frac{\lambda_1}{(X - a)} + \frac{\lambda_2}{(X - a)^2} + G \text{ où } a \text{ n'est pas pôle de } G.$$

Calcul de λ_2 : en multipliant l'égalité par $(X-a)^2$, on obtient :

Executed
$$\lambda_2$$
: of interplant regards par $(X - a)^2 = \lambda_1 (X - a)^2 + \lambda_2 + (X - a)^2 G$

$$\underbrace{F \times (X - a)^2}_{=\frac{A}{O}} = \lambda_1 (X - a)^2 + \lambda_2 + (X - a)^2 G$$

En remplaçant X par a, on a alors $\lambda_2 = \frac{A(a)}{Q(a)}$.

Pour calculer λ_1 , on a deux méthodes :

1^{ère} méthode :

On dérive la deuxième égalité : $\left(\frac{A}{Q}\right)' = \lambda_1 + 2(X - a)G + (X - a)^2 G'$

Ainsi,
$$\lambda_1 = \left(\frac{A}{Q}\right)'(a)$$

2^{ème} méthode :

On connaît déjà λ_2 . D'après la première égalité, $F - \frac{\lambda_2}{(X-a)^2} = \frac{\lambda_1}{(X-a)} + G$. D'après

le membre de droite, celui de gauche n'a *a* pour pôle que d'ordre au maximum 1.

Le calcul donne
$$F_1 = F - \frac{\lambda_2}{(X - a)^2} = \frac{A_1}{(X - a)Q_1}$$
.

On est ensuite ramené au problème du pôle simple.

Application sur l'exemple :

$$F = \frac{\beta}{X-1} + \frac{\gamma}{(X-1)^2} + G$$

$$= \frac{X}{(X-1)^2(X^2+1)(X+1)^2}$$
Donc $\frac{X}{(X^2+1)(X+1)^2} = \beta(X-1) + \gamma + (X-1)^2 G$. Donc $\gamma = \frac{1}{2 \times 2^2} = \frac{1}{8}$
Méthode 1:
$$\frac{(X+1)^2(X^2+1) - X(2(X+1)(X^2+1) + (X+1)^2 2X)}{(X+1)^4(X^2+1)^2} = \beta + G'(X-1)^2 + 2G(X-1)$$

$$\frac{(X+1)(X^2+1) - 2X(X^2+1) - (X+1) \times 2X^2}{(X+1)^3(X^2+1)^2} = \beta + G'(X-1)^2 + 2G(X-1)$$

Donc
$$\beta = \frac{-1}{8}$$

Méthode 2:

Methode 2:

$$F - \frac{\gamma}{(X-1)^2} = \frac{X}{(X-1)^2(X^2+1)(X+1)^2} - \frac{1}{8(X-1)^2}$$

$$= \frac{8X - (X+1)^2(X^2+1)}{8(X-1)^2(X+1)^2(X^2+1)}$$

$$= \frac{8X - (X+1)^2(X^2+1)}{8(X-1)^2(X+1)^2(X^2+1)}$$

$$= (X-1)^2(X^2+1) = 8(X-1+1) - (X-1+2)(X+1)(X^2+1)$$

$$= (X-1)[8 - (X+1)(X^2+1)] + 8 - 2(X+1)(X^2+1)$$

$$= (X-1)[-2(X^2+1)] + 8 - 4(X^2+1)$$

$$= (X-1)[-2(X^2+1)] - 4(X^2-1)$$

$$= (X-1)[-2(X^2+1)] - 4(X^2-1)$$
Donc
$$F - \frac{\gamma}{(X-1)^2} = \frac{8 - (X+1)(X^2+1) - 2(X^2+1) - 4(X+1)}{8(X-1)(X+1)^2(X^2+1)} = \frac{\beta}{(X-1)} + G$$
Ainsi,
$$\beta = \frac{8 - 2 \times 2 - 2 \times 2 - 4 \times 2}{8 \times 2^2 \times 2} = \frac{-1}{8}$$

(6) Conclusion:

$$F = \frac{1}{8} \left(\frac{1}{X - i} + \frac{1}{X + i} - \frac{1}{X - 1} + \frac{1}{(X - 1)^2} - \frac{1}{X + 1} - \frac{1}{(X + 1)^2} \right)$$

Intérêt de la décomposition en éléments simples : pour l'intégration.

Exemples:

*
$$F = \frac{1}{X^2 - a^2}$$
 où $a \in \mathbb{C}^*$

Partie entière nulle ($\deg F = -2$)

Forme de la décomposition :

$$F = \frac{\alpha}{X - a} + \frac{\beta}{X + a}$$

On multiplie par X - a, on prend la valeur en $a : \alpha = \frac{1}{2a}$

De même,
$$\beta = \frac{-1}{2a}$$

Donc
$$\frac{1}{X^2 - a^2} = \frac{1}{2a} \left(\frac{1}{X - a} - \frac{1}{X + a} \right)$$

*
$$F = \frac{1}{X^n - 1}$$

Forme de la décomposition :
$$F = \frac{\alpha_0}{X - \omega_0} + \frac{\alpha_1}{X - \omega_1} + \ldots + \frac{\alpha_{n-1}}{X - \omega_{n-1}} \text{ où } \omega_k = e^{\frac{2ik\pi}{n}}.$$

Pour chaque k : on multiplie par $X - \omega_k$. On obtient $\frac{1}{Q} = \alpha_k + (X - \omega_k)G$, où Q est tel

que
$$X^n - 1 = (X - \omega_k)Q$$

Donc
$$\alpha_k = \frac{1}{Q(\omega_k)}$$

On a : $X^n - 1 = (X - \omega_k)Q$. Donc, en dérivant :

$$nX^{n-1} = Q + (X - \omega_k)Q'$$

Donc
$$\alpha_k = \frac{1}{n\omega_k^{n-1}} = \frac{\omega_k}{n}$$

Donc
$$F = \frac{1}{n} \left(\frac{\omega_0}{X - \omega_0} + \frac{\omega_1}{X - \omega_1} + \dots + \frac{\omega_{n-1}}{X - \omega_{n-1}} \right)$$

Autre méthode:

On multiplie par X - 1. D'où $\alpha_0 = \frac{1}{Q(1)}$ où $Q = 1 + X + ... + X^{n-1}$

Donc
$$\alpha_0 = \frac{1}{n}$$

On remarque que :

$$F(\omega_1 X) = \frac{1}{(\omega_1 X)^n - 1} = \frac{1}{X^n - 1} = F(X)$$

On a donc:

$$F = \frac{\alpha_0}{\omega_1 X - \omega_0} + \frac{\alpha_1}{\omega_1 X - \omega_1} + \dots + \frac{\alpha_{n-1}}{\omega_1 X - \omega_{n-1}}$$

$$= \frac{\alpha_0}{\omega_1} \frac{1}{X - \underbrace{\omega_0 / \omega_1}_{\omega_{n-1}}} + \frac{\alpha_1}{\omega_1} \frac{1}{X - 1} + \dots + \frac{\alpha_{n-1}}{\omega_1} \frac{1}{X - \omega_{n-2}}$$

Donc $\alpha_{n-1} = \frac{\alpha_0}{\omega_1}$, $\alpha_0 = \frac{\alpha_1}{\omega_1}$... $\alpha_{n-2} = \frac{\alpha_{n-1}}{\omega_1}$. Comme α_0 est connu, on peut trouver les

autres.

*
$$F = \frac{1}{(X^n - 1)^2} = \sum_{k=0}^{n-1} \left(\frac{\alpha_k}{X - \omega_k} + \frac{\beta_k}{(X - \omega_k)^2} \right)$$

Symétries:

$$F(\boldsymbol{\omega}_{1}X) = F(X) = \sum_{k=0}^{n-1} \left(\frac{\boldsymbol{\alpha}_{k}}{\boldsymbol{\omega}_{1}X - \boldsymbol{\omega}_{k}} + \frac{\boldsymbol{\beta}_{k}}{(\boldsymbol{\omega}_{1}X - \boldsymbol{\omega}_{k})^{2}} \right)$$

Pour tout $k \in [0, n-1]$, on a :

$$\frac{\beta_k}{(\omega_k X - \omega_k)^2} = \frac{\beta_k}{\omega_k^2} \frac{1}{(X - \omega_{k-1})^2}, \frac{\alpha_k}{\omega_k X - \omega_k} = \frac{\alpha_k}{\omega_k} \frac{1}{X - \omega_{k-1}} \text{ (avec } \omega_{-1} = \omega_{n-1} \text{)}$$

D'où:
$$\forall k \in [0, n-1], \frac{\alpha_k}{\omega_1} = \alpha_{k-1} \text{ et } \frac{\beta_k}{\omega_1^2} = \beta_{k-1}$$

D'où,
$$\forall k \in [0, n-1]$$
,
$$\begin{cases} \alpha_k = \omega_1^k \alpha_0 = \omega_k \alpha_0 \\ \beta_k = \omega_1^{2k} \beta_0 = \omega_{2k} \beta_0 \end{cases}$$

Obtention de α_0 et β_0 :

$$F = \frac{1}{(X^{n} - 1)^{2}} = \frac{\alpha_{0}}{X - 1} + \frac{\beta_{0}}{(X - 1)^{2}} + G$$

Donc, en multipliant par $(X-1)^2$ et en prenant la valeur en 1, on trouve $\beta_0 = \frac{1}{n^2}$.

$$F = \frac{1}{(1 + X + \dots + X^{n-1})^2} = \alpha_0(X - 1) + \beta_0 + G(X - 1)^2$$

En dérivant, on obtient :

$$\frac{-2Q'}{Q^3} = \alpha_0 + (X-1)^2 G' + 2(X-1)G$$

Valeur en 1 :
$$\alpha_0 = \frac{-2Q'(1)}{n^3}$$
 ; $Q'(1) = (n-1) + (n-2) + ... + 1 = \frac{n(n-1)}{2}$

Donc
$$\alpha_0 = \frac{-(n-1)}{n^2}$$

*
$$F = \frac{1}{(X^2 - X + 1)^2 (X - 1)}$$
 dans $\mathbb{C}(X)$: pôles $-j, -j^2, 1$

$$F = \frac{\alpha}{X+j} + \frac{\beta}{(X+j)^2} + \frac{\alpha'}{X+j^2} + \frac{\beta'}{(X+j^2)^2} + \frac{\gamma}{X-1}$$

Symétries:

Pour tout $x \in \mathbb{R} \setminus \{1\}$, $F(x) \in \mathbb{R}$ (car $F \in \mathbb{R}(X)$)

Donc
$$\overline{F(x)} = F(x)$$

Or,
$$F(x) = \frac{\alpha}{x+j} + \frac{\beta}{(x+j)^2} + \frac{\alpha'}{x+j^2} + \frac{\beta'}{(x+j^2)^2} + \frac{\gamma}{x-1}$$

Et
$$\overline{F(x)} = \frac{\overline{\alpha}}{x+j^2} + \frac{\overline{\beta}}{(x+j^2)^2} + \frac{\overline{\alpha}'}{x+j} + \frac{\overline{\beta}'}{(x+j)^2} + \frac{\overline{\gamma}}{x-1}$$
 (rappel : $j^2 = \overline{j}$)

Donc
$$F = \frac{\overline{\alpha}}{X+i^2} + \frac{\overline{\beta}}{(X+i^2)^2} + \frac{\overline{\alpha}'}{X+i} + \frac{\overline{\beta}'}{(X+i)^2} + \frac{\overline{\gamma}}{X-1}$$
 (car les deux fractions

rationnelles coïncident sur une infinité de valeurs, à savoir $\mathbb{R} \setminus \{1\}$)

Donc, par unicité de la décomposition en éléments simples :

$$\alpha' = \overline{\alpha}, \ \beta' = \overline{\beta}, \ \gamma \in \mathbb{R}$$

En multipliant par X-1 et en prenant la valeur en 1, on obtient $\gamma = \frac{1}{1^2} = 1$

En multipliant par $(X + j)^2$ on obtient la valeur de β , puis α en dérivant...

Remarques à propos de la décomposition dans $\mathbb{R}(X)$:

1ère idée : mauvaise quand les pôles non réels sont d'ordre plus grand (ou égal) à 2 :

Pour $F = \frac{A}{B}$ irréductible :

Si B a toutes ses racines dans \mathbb{R} , on procède comme dans $\mathbb{C}(X)$

Si B a une racine a non réelle, alors \overline{a} est aussi racine de B avec la même multiplicité :

- Si cette multiplicité vaut 1 :

$$B = \underbrace{(X - a)(X - \overline{a})}_{X^2 - sX + p} Q, \text{ où } Q(a) \neq 0$$

La décomposition en éléments simples dans $\mathbb{C}(X)$ donne :

$$F = \frac{\lambda}{X - a} + \frac{\overline{\lambda}}{X - \overline{a}} \leftarrow \text{voir exemple précédent} + G = \frac{(\lambda + \overline{\lambda})X - (a\overline{\lambda} + \overline{a}\lambda)}{X^2 - sX + p} + G$$

- Si cette multiplicité est ≥ 2 (ici, 2) La décomposition dans $\mathbb{C}(X)$ donne :

$$F = \underbrace{\frac{\lambda}{X - a} + \frac{\overline{\lambda}}{X - \overline{a}}}_{\underbrace{\frac{(\lambda + \overline{\lambda})X - (a\overline{\lambda} + \overline{a}\lambda)}{X^2 - sX + p}}} + \underbrace{\frac{\mu}{(X - a)^2} + \frac{\overline{\mu}}{(X - a)^2}}_{\underbrace{\mu(X - \overline{a})^2 + \overline{\mu}(X - a)^2}_{(X^2 - sX + p)^2}}_{\leftarrow \text{ non simple}} + G$$

(Remarque : on peut quand même s'en sortir avec la décomposition de la forme

$$\frac{A}{Q^{n}} = E + \frac{A_{1}}{Q_{1}} + \frac{A_{2}}{Q_{2}} + \dots + \frac{A_{n}}{Q_{n}}$$

Autre idée : (pour un pôle *a* non réel d'ordre 2)

Ecrire la forme de la décomposition dans $\mathbb{R}(X)$:

$$F = \frac{\lambda X + \mu}{X^2 - sX + p} + \frac{\lambda' X + \mu'}{(X^2 - sX + p)^2} + G$$

En multipliant par $(X^2 - sX + p)^2$ et en prenant la valeur en a, on obtient la valeur de $\lambda' a + \mu'$ d'où λ' et μ' car $a \in \mathbb{C} \setminus \mathbb{R}$ et $\lambda', \mu' \in \mathbb{R}$ ((1, a) est une famille libre du \mathbb{R} -ev \mathbb{C})

Ensuite, par dérivation, on peut obtenir λ et μ