CS 10C: INTRO TO DATA STRUCTURES AND ALGORITHMS

Ryan Rusich

rusichr@cs.ucr.edu

Department of Computer Science

and Engineering

UC Riverside

Graphs

Graph

- A Graph G = (V, E)
 - ullet A set V of vertices and a set E edges
- ullet A graph is a way representing connections/relationships between pairs of objects in V
- Each edge is a pair (v, w), where $v, w \in V$.
- Edges are either directed or undirected
 - Directed referred to as ordered
 - Directed graphs are called Digraphs
 - Directed graphs with no cycles (acyclic) are called DAGs
 - Undirected referred to as unordered

Graph

- An edge (v,v) is a loop
- Vertices can have incoming and outgoing edges
 - ullet indegree number of incoming edges of a vertex ${oldsymbol v}$
 - ullet outdegree number of outgoing edges of a vertex ${oldsymbol v}$
- A path in a graph is a sequence of vertices w_l , w_2 , w_3 , ..., w_N such that $(\mathbf{W}_i, \mathbf{W}_{i+1}) \in \mathbf{E}$ for $1 \le i < N$
 - A simple path is a path where all vertices are distinct except possibly first/last
 - path length: N-1 for N vertices
- Edges can have an associated cost called the weight.

Graphs - Definitions

- An undirected graph is connected if there is a path from every vertex to every other vertex
- A directed graph that is connected is called strongly connected.
- Weakly connected If directed graph is not strongly connected, but removing direction makes graph connected
- Complete graph edge between every pair of vertices.

Graph Representations

- Adjacency matrix $|V|^2$ matrix, with 1 if there is an edge between two vertices, 0 otherwise.
 - Good for dense graphs.
 - Wasted space if not dense.

$$|E| = \Theta(|V|^2)$$

- If graph is sparse, adjacency list is better.
- Adjacency list for each vertex, store a list of vertices that share an edge
 - Example...

Adjacency list

1	2, 4, 3
2	4, 5
3	6
4	6, 7, 3
5	4, 7
6	(empty)
7	6

Undirected Graph

	1	2	3	4	5
1	0	1	0	0	
1 2 3 4 5	1	0	1	1	
3	0	1	0	1	0
4	0	1	1	0	1
5	0 1 0 0 1	1	0	1	0

Directed Graph

	1	2	3	4	5	6		
1	0	1	0	1	0	0		
2	0	1 0	0	0	1	0		
3	0	0	0	0	1	1		
1 2 3 4 5 6	0 0 0 0 0	1	0 0 0 0 0	0	0	0		
5	0	0	0	1	0	0		
6	0	0	0	0	0	1		
	(c)							

Directed Graph – Unweighted

Directed Graph - Weighted

Directed Acyclic Graph

- Linear ordering of vertices for a DAG (Directed Acyclic Graph).
- Every vertex comes before all vertices to which it has outgoing edges.
- Every DAG has at least 1 topological sort
 - 1 indicates a Hamiltonian path
 - 2 or more, no Hamiltonian path
 - Hamiltonian path every vertex is visited exactly once.
- Topological Sort used in scheduling jobs or tasks

Scheduling

• Simple algorithm:

- 1. Find an initial vertex ν with no incoming edges
- 2. Print v
- 3. Remove ν from graph
- 4. Remove *v*'s outgoing edges from graph, updating effected vertices
- 5. Iterate (steps 1-4) over the remaining graph

Running Time : $O(|V|^2)$

- \bullet Finding a vertex with in-degree zero, linear scan of V
- There are /V/ calls to do this
- Speed up:
 - Use a Queue to store vertices with in-degree zero
 - Only have to remove the front of Queue, skip linear scan of *V*
 - Running Time: O(|E| + |V|)

v1, v2, v5, v4, v3, v7, v6

A, B, C, G, D, E, F

A, B, C, G, D, E, F

Single-Source Shortest Path

- **Problem:** find the path between two vertices that minimizes the number of edges or minimizes the sum of the weights of the edges.
 - Unweighted Graphs number of edges
 - Weighted Graphs sum of the costs
- **BFS** solves for unweighted graphs
- **Dijkstra's** solves for directed graph with positive weights
- **Bellman Ford** solves for graphs that can include negative weights

Negative Cost Cycle

- Shortest Path is **NOT** defined.
- Reason: because you could complete cycle repeatedly and lower the cost.
- This is true for Dijkstra's and Bellman-Ford.

Single Pair Shortest Path Initialization Step

for each
$$u \in V - \{s\}$$

 $u.d = \infty$
 $s.d = 0$
 $Q = \emptyset$
ENQUEUE(Q, s)

- Set all distances to infinite, since a path from source not yet found.
- Set distance to source equal to zero (no cost to go from a node to itself).

```
BFS(V, E, s)
                                              (u, v)
                                              if v.d == infinity
  for each u \in V - \{s\}
                                                then update v.d to u.d + 1
        u.d = \infty
                                              (u, v)
  s.d = 0
                                              if v.d == infinity
  Q = \emptyset
                                                then update v.d to 0 + 1
  ENQUEUE(Q, s)
                                              (u, v)
  while Q \neq \emptyset
                                              if v.d == infinity
                                                then update v.d to 1 + 1
        u = \text{DEQUEUE}(Q)
        for each v \in G.Adi[u]
             if v.d == \infty
                    v.d = u.d + 1
                   ENQUEUE(Q, \nu)
```

Dijkstra's - RELAX

RELAX
$$(u, v, w)$$

if $v.d > u.d + w(u, v)$
 $v.d = u.d + w(u, v)$
 $v.\pi = u$

- Single-pair shortest path update distance step for Dijkstra's is similar to BFS.
- Main difference is that the weights of the edges, e.g. w(u, v), are positive values.
- Edge weights can be larger than 1.
- Dijkstra's edge weights cannot be negative.

Dijkstra's - RELAX

Dijkstra's - Example

Non-Unique Shortest Path

Bellman-Ford - CLRS

```
BELLMAN-FORD(G, w, s)

INIT-SINGLE-SOURCE(G, s)

for i = 1 to |G, V| - 1

for each edge (u, v) \in G.E

RELAX(u, v, w)

for each edge (u, v) \in G.E

if v.d > u.d + w(u, v)

return FALSE

return TRUE
```

Bellman Ford - Example

Breadth First Search (BFS)

A visited

A is

then F's

B,E,F are processed

I processed J,M,N visited

Explore J's, M's, N's neighbors

J, M, N processed

Running Time = O(|E| + |V|), every V is explored, all E in worst case.

Running Time = O(|E| + |V|)

Generalization of a preorder traversal.

- 1.Start at an arbitrary vertex s.
- 2.Traverse (visit) as many descendants of s as possible without visiting a previously visited vertex.
- 3.Once a previously visited vertex is encountered, back out until a vertex v_i with unexplored edges is found.
- 4. Depth first search on v_i.
- 5.Repeat (steps 3-4) until all vertices visited.

Spanning Tree

Spanning Tree

MST – Minimum Spanning Tree

- **Spanning Tree** Given an undirected, connected graph G, a spanning tree T is a connected acyclic subgraph (tree) that contains all vertices of the graph.
- Minimum Spanning Tree the spanning tree of the smallest weight, where the weight is the sum of the weights on all T's edges.
- **MST Problem** Find the minimum spanning tree for a given weighted connected graph.
- Not always a unique MST. There can be more than 1 MST with a different set of edges, perhaps some shared, in 1 or more MSTs.

MST

- useful for minimizing the amount of wiring needed for:
 - phone lines
 - cable lines
- used in wireless sensor networks
- used in network routing algorithms

Copyright notice: Google 2005, The GeoInformation Group 2006

- O(|V|²) Linear scan to find min
- O(|E|log|V|) Binary heaps

Directed Graph - Weighted

