الاشتقاقية

x_0 العدد المشتق لدالة f عند -1

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0)$$

2- مشتقات دوال مألوفة

ميدان الاشتقاق	f'(x) =	f(x) =
\mathbb{R}	0	عدد ثابت k
\mathbb{R}	1	x
\mathbb{R}	2x	x^2
\mathbb{R}	nx^{n-1}	$x^n \ (n \in \mathbb{N}^* - \{1\})$
\mathbb{R}	a	$ax + b (a \neq 0)$
$]0;+\infty[$	$\frac{1}{2\sqrt{x}}$	$\sqrt{x} (x \ge 0)$
\mathbb{R}^*	$-\frac{1}{x^2}$	$\frac{1}{x} (x \neq 0)$
\mathbb{R}	$-\sin\left(x\right)$	$\cos\left(x\right)$
\mathbb{R}	$\cos(x)$	$\sin\left(x\right)$
$\boxed{\mathbb{R} - \left\{ \frac{\pi}{2} + k\pi; k \in \mathbb{Z} \right\}}$	$\frac{1}{\cos^2(x)} = 1 + \tan^2(x)$	$\tan\left(x\right)$

3- معادلة المماس

معادلة (Δ) المستقيم المماس للمنحنى $(\mathbf{C_f})$ عند النقطة ذات الفاصلة x_0 هي:

$$(\Delta): y = f'(x_0)(x - x_0) + f(x_0)$$

4- العمليات على الدوال المشتقة

	
مشتقتها	الدالة
u' + v'	u + v
$u' \times v + v' \times u$	$u \times v$
ku'	ku (عدد ثابت k)
$u' \times v - v' \times u$	$\frac{u}{-}$ $(v \neq 0)$
v^2	$v^{-(0 \neq 0)}$
-kv'	k (عدد ثابت k)
$\overline{v^2}$	$\frac{-}{v}$ $(v \neq 0)$
$u' \times (v' \circ u)$	$v \circ u$

5- مشتقات دوال مركبة مألوفة

مشتقتها	الدالة	
au'(ax+b)	$u\left(ax+b\right)$	
$nu'.u^{n-1}$	$u^n \ (n \in \mathbb{N}^* - \{1\})$	
$\frac{u'}{2\sqrt{u}} \ (u > 0)$	$\sqrt{u} (u \ge 0)$	
$-\frac{n}{x^{n+1}}$	$\frac{1}{x^n} (x \neq 0)$ $(n \in \mathbb{N}^*)$	
$-\frac{nu'}{u^{n+1}}$	$\frac{1}{u^n} (u \neq 0)$ $(n \in \mathbb{N}^*)$	

6- التقريب التآلفي

أحسن تقريب تآلفي للدالَّة f عند القيمة x_0 هو:

$$f(x) \approx f'(x_0) (x - x_0) + f(x_0)$$
باعتبار $h = x - x_0$ قریب جدا من الصفر، یمکن کتابة التقریب علی الشکل التالی:

 $f(x_0 + h) \approx f'(x_0).h + f(x_0)$

$\underline{\mathbb{R}}$ على مجال I من f على مجال من f

- ا اذا کان I افل I اجل کل I من افل اذا I افل: الحال الحال
- ا اذا کان I من أجل کل x من فإن: f'(x) < 0 متناقصة تماما على f
- . اذا کان I(x)=0 من أجل کل x من I فإن: f ثابتة على f

\mathbb{R} القيم الحدية المحلية لدالة fعلى مجال من I

إذا كانت f' تنعدم عند قيمة x_0 من I أي $f'(x_0)=f'$ مغيرة إشارتها فإن $f(x_0)$ قيمة حدية محلية للدالة fعلى f في حالتين:

أ- فيمة حدية محلية صغري كما في هذا الجدول $f(x_0)$

x	x_0	
f'(x)	- () +	
f(x)	_	
	lacksquare	

ب-(x_0) قيمة حدية محلية كبرى كما في هذا الجدول

x	x_0	
f'(x)	+ ф -	
f(x)		

9- نقطة الانعطاف

المشتقة الثانية للدالة f على مجال I من \mathbb{R} و x_0 قيمة منه. f'' المشتقة الثانية للدالة x_0 عند x_0 أي x_0 مغيرة إشارتها إذا كانت $f''(x_0)=0$ يقبل نقطة انعطاف $\Omega\left(x_0;f(x_0)\right)$ يقبل نقطة انعطاف $\Omega\left(x_0;f(x_0)\right)$