		APPLIED CHEMISTRY/ENGINEERING CHE			-13	
Ti	me: í	3 Hours			. Marks	: 100
		Instructions: 1. Questions from Unit II and Unit V are compulso. 2. Answer any one FULL question from each of the	-	units	4	4
					1	1
		UNIT - I	${f L}$	CO	PO	M
1	a.	Analyze the effect of temperature on the EMF of the following cell if E 290 K. Fe/Fe ⁺² (0.5M)//Cu ⁺² (0.05M)/Cu. The standard reduction of Fe and respectively. Given: $R = 8.314$ J/K/mol, $F = 96485$ C				
			(4)	(1)	(1,3,5)	(06)
	b.	What is reference electrode? Derive Nernst equation for single electrode.	, y	(4)	(4.0)	(0.6)
	c.	Differentiate battery and Fuel cell. Write anode and cathode reactions in batteries.	(3) volved	(1) in Zn	(1,3) -air and	(06) Li-Ion
		O.D.	(3)	(1)	(1,3)	(08)
2	a.	OR Define redox electrode. Explain construction and working of Ag-AgCl elec	etrode			
_	u.	Define redox electrode. Explain construction and working of Fig Figer elec-	(2)	(1)	(1,3)	(05)
	b.	Derive an expression for glass electrode. How Calomel electrode and Glassed to determine pH of a solution?				
	c.	What is photovoltaic cell? Explain construction and working of solar cell.	(3)	(1)	(1,5)	(09)
			(2)	(1)	(1)	(06)
		UNIT - II	L	CO	PO	M
3	a.	Electroless plating is one of the convenient methods for manufacturing of boards. Explain process of electroless plating of copper in the manufacturing and electroless plating.				
			(3)	(2)	(1)	(10)
	b.	Identify and explain the type of corrosion that may occur in the following (i) Iron bolt in contact with copper vessel (ii) Partially buried iron pipe	cases.			
			(3)	(2)	(3)	(06)
	c.	What is cathodic protection? Explain cathodic protection by sacrificial are example	nodic n	nethod	taking su	iitable
	Ċ		(2)	(2)	(1)	(04)
4.4		UNIT - III	L	CO	PO	M
4	a.	Differentiate GCV and NCV. Explain determination of Gross calorific vacalorimeter.				
	b.	Define cracking. Explain the fluidized bed catalytic cracking process with	(3)	(3) balad d	(1,3)	(07)
	υ.	Define Clacking. Explain the fluidized bed catalytic clacking process with	(2)	(3)	(1,3)	(07)
	c.	Identify ill effects of knocking. Give instrumentation and apspectrophotometer.	plicati	. ,	f UV-V	
			(3)	(3)	(1,3)	(06)
		OR	•	-	•	•

		value (26400 kJ/kg), temperature of 2000 g of water in the calorimeter rost the same calorimeter, when 0.60g of coal sample is burnt, the rise in twater observed is 2.0 degrees. Calculate GCV of coal sample. Specific he Latent heat of steam is 587 kcal/g	the tem	peratu	re of 200	0 g of
			(3)	(3)	(1,3,5)	(07)
	b.	Identify advantages of power alcohol. Explain catalytic reforming with a in it.	t least f	our rea	actions in	volved
			(3)	(3)	(1,3)	₄ (07)
	c.	What is octane number? Explain instrumentation of flame photometer and		ts appl		()
			(2)	(3)	(1,12)	(06)
		UNIT - IV	L	CO	PO	M
6	a.	What is glass transition temperature? Explain how the fallowing fatemperature with suitable examples.	ictors :			
		(i) Intermolecular force of attraction			-	
		(ii) Branching and cross linking		N. A.		
		(iii) Stereo-regularity.	4) [']		
		(iv) Flexibility				
		(iv) Trememey	(2)	(4)	(1,3)	(10)
	b.	A sample of polymer contains 10, 20, 30 and 40% of molecules of the polymer	<i>y</i>	` ′	. , ,	
	٠.	10000, 12000, 14000 and 16000. Compute the number average and weigh	-			_
		10000, 12000, 11000 und 100000 compute und numera une mage und 101g.	(3)	(4)	(1,5)	(06)
	c.	How carbon fibers are synthesized from PAN?	· /	()	() /	()
			(2)	(4)	(1,3)	(04)
		OR	· /	()	() /	(-)
7	a.	What are bio-degradable plastics? Write the synthesis of polylactic applications of PLA.	c acid	. Men	tion any	three
		applications of 112/1.	(2)	(4)	(1,3)	(07)
	b.	What are conducting polymers? Mention any two requirements of constructure of conducting polyaniline	` ,	` ,	,	
			(2)	(4)	(1,5)	(06)
	c.	Write the reactions involved in the synthesis of silicone rubber, epoxy properties and applications.	/ resin	` '	,	
		properties and appreciations.	(2)	(4)	(1,3)	(07)
		UNIT -V	(-) I.	CO	PO	M
8	0	Differentiate between COD and BOD.	L	CO	10	141
0	a.	35 ml of waste water was diluted to 600 ml and equal volumes are fille				
		blank titration 50 ml of diluted waste water when titrated immediately rec 2O ₃ . 50 ml of the incubated sample after 5 days required 1.5 ml of sam	_			
		BOD of the waste water.	(2)	(5)	(1.2.5)	(0.5)
	1.		(3)	(5)	(1,3,5)	(05)
	b.	Explain activated sludge method and rotating biological contactor method		(5)	(1.5)	(00)
	C	Eventsian sympthesis of mean amount also by insert and months of 25 and of an Ind	(2)	(5)	(1,5)	(80)
4	c.	Explain synthesis of nanoparticles by inert gas method. 25 ml of an Ind				
4	integral	10.0 ml of 0.25M K ₂ Cr ₂ O ₇ solution for complete oxidation. Calculate CO			•	
	-		(3)	(5,6)	(1,3,5)	(07)

a. In a bomb calorimeter determination, on burning 0.75 g of standard fuel of known Gross calorific

Time: 3 Hours APPLIED CHEMISTRY Time: 3 Hours Max. M Instructions: 1. Questions from Unit II and Unit V are compulsory 2. Answer any one FULL question from each of the other units	Marks: 100
Time: 3 Hours Max. Max. Max. Max. Max. Max. Max. Max.	PO M
- v	~ Y Y
	~ Y Y
	~ Y Y
	~ Y Y
	(A \
1 a. What are reference electrodes? Discuss the construction and working of Calomel electrodes	trode with
neat labeled diagram.	(1.0)
	(1,3) (06
b. What are primary and secondary batteries? Describe the construction and working of N	Nickel meta
hydride battery. (2) (1) ((1,3) (06
c. Explain the design of PV module and array. Calculate the emf of Ni-Pb cell at 29	
concentrations of Ni ²⁺ and Pb ²⁺ are 0.05M and 0.5M respectively. The standard electron	de potentia
of Ni and Pb are -0.24 V and -0.13 V respectively. Write the cell representation and cell	
(3) (1) (1	1,3,5) (08
OR	
2 a. What are the differences between Li-ion and Li-ion polymer battery? Discuss the cons	struction ar
working of a Photo Voltaic cell.	
	(1,3) (06
b. Define the term Electrode potential and derive an equation for single electrode potential.	
	(1,3) (06
c. List out the different types of Fuel cells based on electrolyte. Describe the construction a of polymer electrolyte membrane fuel cell.	and working
	(1,3) (08
	PO M
	10 M
a. Explain effect of nature of the corrosion product on the rate of corrosion. A thick steel sheet of area 250 cm ² is exposed to air near ocean. After one year period i	it was four
to experience a weight loss of 210 g due to corrosion. The density of steel is 7.9 g/c	
corrosion penetration rate.	
	1,3,5) (05
b. Identify and explain the types of corrosion occurring in the following examples with reach	actions;
i. Iron nail partially hammered inside the concrete wall,	
ii. A dust particle sitting on the smooth metal surface	(1.2) (06
	(1,3) (08
c. What is throwing power? Calculate the throwing power of plating bath solution in a Fe cell, if the distances between the two cathodes are 5.5 cm and 7.3 cm from the anode and	
of the plating on the cathodes are 62 mg and 58 mg respectively.	a the masse

a. What is knocking in IC engines? Explain the mechanism of knocking in petrol engine with suitable reactions. Mention its disadvantages.
(2) (3) (1,3) (06)
b. Describe the instrumentation and applications of UV-visible spectroscopy with a neat labeled

UNIT - III

diagram.

(1,3,5) **(07)**

M

PO

(3)

(2)

CO

c.	Define the terms cracking and reforming. Calculate the GCV	and NCV of	f a soli	d fuel fro	m the
	following data: Mass of solid fuel = $0.6 \times 10^{-3} \text{ kg}$; Mass of v	water in the ca	lorime	ter – 2 0 k	σ.
		emperature = 3		ter – 2.0 k	5,
		eat of water = :		/g:	
	Percentage of Hydrogen = 3.2%;			. 6,	
		(3)	(3)	(1,3,5)	(08)
	OR				
a.	Explain the following reforming reactions;				1
	i) Isomerization ii) Dehydrocyclization iii) Hydrocrackin	ng		_	1
		(2)	(3)	(1,3)	⁽⁰⁶⁾
b.	What is Biodiesel? Explain the synthesis and advantages of Bio		. ,		` /
	1 ,	(2)	(3)	(1,3)	(06)
c.	Write a short note on:) ×	
	i) Octane Number and Cetane Number ii) Power alcohol	6			
		(2)	(3)	(1,3)	(08)
	UNIT - IV	L	CO	PO	\mathbf{M}
a.	What are conducting polymers? A sample of polymer contains	15, 25, 35 an	d 25%	of molecu	ıles of
	the polymer with molecular weights 15000, 25000, 35000 and 4	45000. Calcul	ate the	number a	verage
	and weight average molecular weight of the polymer.				
		(3)	(4)	(1,3,5)	(07)
b.	Give synthesis and applications of ABS, polycarbonate and plea	xiglass			
		(2)	(4)	(1,3)	(09)
c.	Define polymer composite. Give synthesis and applications of I	Kevlar fiber.			
		(2)	(4)	(1,3)	(04)
	OR				
a.	What is photoconducting polymer? Give synthesis, proper	ties and app	licatior	ns of pol	yvinyl
	carbozole.			_	
		(2)	(4)	(1,5)	(05)
b.	What is glass transition temperature, Tg? Explain the effect of	flexibility, In	termol	ecular for	ce and
	molecular weight on Tg.				
		(2)	(4)	(1,3)	(07)
c.	Give synthesis, properties and applications of epoxy resin and p	•			
	The state of the s	(2)	(4)	(1,5)	(08)
	UNIT -V	L	CO	PO	M
a.	Mention the membrane filtration methods with their pore size				_
	sample when 30 ml of sewage requires 8.6 ml of 0.05 l	$M K_2Cr_2O_7 s$	olution	for oxid	dation.
	Given: Molecular weight of K ₂ Cr ₂ O ₇ is 294.	(2)	>		
		(3)	(5)	(1,3,5)	(06)
b.	What are nano scale materials? Describe the synthesis of	nano scale i	nateria	Is by ine	rt gas
de	condensation method.	(2)	(5)	(1.2)	(0.6)
	Evaloin the following with next discusses:	(2)	(5)	(1,3)	(06)
C.	Explain the following with neat diagram: i) Activated sludge method ii) Desclination by electrodials	waia mathad			
dia.	i) Activated sludge method ii) Desalination by electrodial		(5)	(1.2)	(NQ)
		(2)	(5)	(1,3)	(08)

US	N [15CHE2	2/16	CHE2	2/18CH	IE22
		Se	eco	nd S	Sem	este	r B.	E. S	em	este	er Er	d Examina	ation, M	ay/Jı	ıne 2	018-19	
				EN	GIN	EEI	RIN	G C	HE	MI	STR	Y / APPL	IED CH	EMI	STR	Y	
Tin	1e: 3	Ho	ours												Max	. Marks:	100
			Ins	truct	ions:				_		-	the questions estion each fro	•			7	4
						U	NIT	_ I	(Co	mpı	ılsor	y)		L	CO	PO 🦽	M
1	a.	W	hat a	are re	serve	batte	ries?	Desc	cribe	the c	onstrı	action and wor	rking of Ca	lomel (2)	electro (1)	de. (1,3)	(06)
	b.	W	hat a	are ic	n sel	ective	e elec	trode	es? V	Vrite	the co	ell representat	ion, cell re	action	and ca	liculate th	he cell
		po sil	ver p	ai ai olate	روور imme	ersed	in 1x	10 ⁻¹	M A	unng .g ⁺ sc	copp olution	er plate imme n. Given E ^o Cu+	$_{+} = 0.34 \text{V}$	and E^{c}	$A_{g+}=0$.	80V.	and a
														(3)	(1)	(1,3,5)	(06)
	c.				_							s, panels and cell with a ne	•	10			
									NIT					(3) L	(1) CO	(1,3) PO	(08) M
2	a.	Dı	raw a	a dia	gram	illus	tratin	_			n of	galvanic cells	on iron s	_			
		ae	rated	l, nei	ıtral a	and ac	cidic	envir				ss the theory b					
		an	ode	and c	athoo	lic rea	actior	ıs.					ague-	(2)	(2)	(1)	(10)
	b.	Ide	entif	y and	l expl	ain th	ne typ	e of	corro	sion	that n	nay occur in th	ne followin	` /	` /	(1)	(10)
			(i)							copp	er pla	te and exposed	d to enviro	nment	•		
			(ii)		Partia	lly bu	iried	iron j	pipe	4		*		(2)	(2)	(3)	(06)
	c.	W	hat a	are m	etalli	c coat	tings	? Exp	plain	Galv	anizii	ng process		(-)	(-)	(0)	(00)
									OR		,			(2)	(2)	(1)	(04)
3	a.											er in the mar	nufacturing	of Po	CB's. V	Write any	three
		d11	ffere	nces	betw	een el	lectro	platn	ng an	id ele	ectrole	ess plating.		(2)	(2)	(1)	(10)
	b.	Н	ow tł									lectro-deposit		(-)	(-)	(-)	(20)
			(i)]	pH of	the b	ath	(ii) C	Curre	nt de	nsity	(iii) Throwin	g power	(2)	(2)	(2)	(06)
	c.	Inc	orgai	nic é	oatin	gs are	e sup	erior	over	orga	anic c	oatings. Justi	fy the state	(2) ement.	(2) Expla	(3) in anodiz	(06) sing of
			_	ium.			1			C		C	•		-		
)	y				TIN					(3)	(2)	(1)	(04)
4	a.	Who.	- /		-	g? Ex	_	flui	dized	bed	catal	ytic cracking	with a nea	ıt labe	led dia	gram. Gi	ve the
1	7)							•					(2)	(3)	(1,3)	(06)
	b.	Gi	ive th	ne ins	strum	entati	on ar	id ap	plica	tions	of Fla	ame photomet	ry.	(2)	(3)	(1.12)	(06)
7	c.	De	efine	GC	V and	NCV	7. A s	olid	fuel	weig	hing (0.8x10 ⁻³ kg an	d having th	` /	(3) positio	(1,12) n 85% C.	(06) , 8%
		H_2	2, 1%	6 Sul	phur,	2%]	N_2 an	d 4%	6 ash	gav	e the	following resi	ults in a bo	omb ca	alorime	ter exper	iment.
												; Water equ of water(s) =					
			CV.		iporui		∠. r(, ,	Spc	21110	nout	or <i>maio</i> r(<i>b</i>) =		₅ , C	, care		
														(3)	(3)	(1,3)	(08)

		OR			
5	a.	What is knocking in IC engines? Explain its chemical mechanism in IC engin	es with	ill effects	•
		(2)	(3)	(1)	(06)
	b.	List the applications of UV-Visible spectroscopy and explain the following			rming
		reactions: a) Isomerization b) Dehydrogenation c) Dehydrocyclization and d		_	(06)
	c.	Define the terms Octane number, Cetane number and Power alcohol. Ex	(3)	(1,5)	(06)
	C.	Biodiesel with advantages and disadvantages.	rpiaiii	the synthe	313 01
		(2)	(3)	(1,3)	(08)
		UNIT - IV			and and
6	a.	A polymer sample contains 10, 20, 30 and 40% of molecules of the polymer			
		$10x10^3$, $20x10^3$, $30x10^3$ and $40x10^3$ respectively. Calculate the number average	age and	d weight av	verage
		molecular weight of the polymer.			(0.6)
	h	What are conducting polymore? Explain the synthesis and applications of a	(4)	(1,3)	(06)
	b.	What are conducting polymers? Explain the synthesis and applications of a bacid.	iodegra	adable por	ylactic
		(2)	(4)	(1,3)	(06)
	c.	What is glass transition temperature? Explain any three factors influencing gl	ass trar	. , ,	, ,
		temperature? Give its significance.			
		(2)	(4)	(1)	(08)
		OR			
7	a.	Define an adhesive. Explain the synthesis and applications of epoxy resin.	(4)	(4.0)	(0.6)
	b.	What are composite materials? Explain the synthesis and applications of Keyl	(4)	(1,3)	(06)
	υ.	what are composite materials? Explain the synthesis and applications of Rev. (2)	(4)	(1,3)	(06)
	c.	Give the synthesis and properties of Nomex and Silicone rubber.	(4)	(1,5)	(00)
		(2)	(4)	(1,3,12)	(08)
		UNIT -V (Compulsory)	` ^	. , , ,	, ,
8	a.	A sewage sample of 30ml was diluted to 500ml and equal volumes were fill	ed in t	wo BOD b	ottles.
		About 50 ml of one of the sample was titrated immediately and it requi			
		Na ₂ S ₂ O ₃ solution. The second sample was incubated for 5 days and it requi	red 3.5	ml of the	same
		Na ₂ S ₂ O ₃ solution for titration. Calculate the BOD of the sewage sample.	(5)	(1.2)	(06)
	b.	What is Desalination? Explain the desalination of water by Electrodialys	(5)	(1,3)	(06)
	0.	sketch.	15 11100	nou with	a mai
		(2)	(5)	(1,5)	(06)
	c.	Discuss in brief the synthesis of nanoscale materials by sol-gel and inert gas of	ondens	sation meth	nods.
		(2)	(4)	(1,5)	(08)
	C				
1					

US	N [18CH	IE22
		Second Semester B.E. Makeup Examination, May/	June	2018	-19	
		APPLIED CHEMISTRY				
Tir	ne: 3	Hours		Max	. Marks:	100
		Instructions: 1. Answer compulsorily Unit I and Unit V questions 2. Answer any one full question each from Unit II, Unit	nit III	and Un	nit IV	1
		UNIT – I (Compulsory)	L	CO	PO	™ M
1	a.	What are ion selective electrodes? Explain the construction of glass elec	ctrode	and der	ive an eq	uation
		for glass electrode potential.		4	The same of the sa	
			(2)	(1)) (1,3)	(07)
	b.	Identify the active cathodic materials used in lithium ion batteries, nicke				
		Zinc-air cell. Calculate the cell potential of Zn-Cu cell at 298 K if the				
		Cu^{+2} are 0.5M and 0.05M respectively and $E^0_{Zn^{+2}/Zn}$ is -0.76V are	$\operatorname{id} E_{\alpha}$	Cu ⁺² /Cu	18 U.34V	. w nai
		happens to the cell potential, if the concentration of Zn ⁺² is doubled? An	aiyze τ (4)	ne resu (1)	(1,3)	(08)
	c.	Explain the construction and working of photovoltaic cell.	(4)	(1)	(1,3)	(00)
	٠.	Explain the construction and working of photo-vortale cent	(2)	(1)	(1,5)	(05)
		UNIT – II	L	CO	PO	M
2	a.	Discuss the electrochemical theory of corrosion taking iron as an examp	le witl			
			(2)	(2)	(1)	(06)
	b.	Explain the effect of nature of metal and corrosion product on the rate of				
		having area 150cm ² is exposed to a corrosion medium. After 3 years it				
		loss of 30×10^3 mg due to corrosion. The density of the steel is 8.0 g c	cm ⁻³ . C	Calculate	e the Cor	rosion
		Penetration Rate in mm/yr.	(3)	(2)	(1.2)	(07)
	c.	Mention the advantages of electrolessplating over electroplating and giv	(-)	()	(1,3)	(07)
	C.	electroplating of Decorative chromium.	c the t	icians (, 1	
			(2)	(2)	(1,12)	(07)
		OR				
3	a.	What is tinning? Explain the corrosion control by cathodic metal coating	g?			
			(2)	(2)	(1,5)	(06)
	b.	Define throwing power of plating bath. Find the throwing power o				
		Haring-Blum cell. Given that the distances between the two cathodes			nd 8.6 cm	ı from
		the anode and the metal deposits on the cathodes are 80 mg and 75 mg r	-	-	(1.2)	(0.0)
	0	Haw do you applain the influence of Current density, metal ion conce	(3)	(2)	(1,3)	(06)
	c.	How do you explain the influence of Current density, metal ion concernon electrodeposit?	nu au0	n, temp	cialule a	па рп
	À	on clock outposit.	(3)	(2)	(1)	(08)
Á.	-	UNIT - III	L	CO	PO	M
4	a.	Justify the objectives of cracking of petroleum and reforming of petrol				
A London	dia.	working of Fluidized bed catalytic cracking process				

c. Mention the light sources used for infra-red spectrophotometer. Explain the instrumentation and applications of Differential scanning calorimetry (DSC).
 (2) (3) (1,5,12) (07)

Describe bomb calorimeteric experiment for the determination of calorific value of solid fuel with a

(1,3)

(1,3)

(3)

(2)

(3)

(3)

(07)

(06)

b.

neat labeled diagram.

	UK				
a.	What is knocking? Explain the mechanism of knocking in petrol engine.				
		(2)	(3)	(1,3)	(07)
b.	Define Gross calorific value and net calorific value. 0.85g of coal sample and 2% ash, on burning in the bomb calorimeter raised the temperature	e of 1.			
	⁰ C. Calculate the gross calorific value and net calorific value of coal, giv Water equivalent of calorimeter = 0.24 kg, Specific heat of water=4.187		¹ K ⁻¹		
	Latent heat of condensation of steam = 2457 kJ kg^{-1} .	(2)	(2)	(1.2)	(0.7)
c.	Explain instrumentation and applications of flame photometer.	(3)	(3)	(1,3)	(07)
C.	Explain instrumentation and applications of frame photometer.	(2)	(3)	(1,5,12)	(06)
	UNIT - IV	L	CO	PO	M
a.	A polymer sample contains 15, 20, 25 and 40% of molecules of the poly			olecular w	
	12000, 13000, 14000 and 16000. Calculate the number average and weight				
	of the polymer.	(2)	5	(1.2)	(0.0)
b.	Write the synthesis and applications of ABS, Kevlar and PMMA	(3)	(4)	(1,3)	(06)
υ.	write the synthesis and applications of Abs, Keviai and I MMA	(2)	(4)	(1,3,12)	(09)
c.	What are conducting polymers? Give the synthesis and applications of c	/ ` /	` /		(0)
		(2)	(4)	(1,3)	(05)
	OR				
a.	What is glass transition temperature? Explain any three factors	influen	icing	glass tran	sition
	temperature.				
,		(2)	(5)	(1,3)	(07)
b.	Give the synthesis and applications of polycarbonate, polyurethane and			(1.12)	(00)
c.	What are photoconducting polymers? Write the synthesis and applicatio	(2)	(5)	(1,12)	(09)
C.	what are photoconducting polymers: White the synthesis and application	(2)	(5)	(1,3)	(04)
	UNIT -V (Compulsory)	(-)	(0)	(190)	(0.)
a.	Define COD and BOD.				
	25 ml of waste water was diluted to 500ml and equal volumes are filled	in two	BOD	bottles. In	the
	blank titration 100ml of diluted waste water when titrated immediately r	-			
	Na ₂ S ₂ O ₃ . 100ml of the incubated sample after 5 days required 4.1ml of s	same N	la_2S_2O	3. Calculat	e
	BOD of the wastewater.	(3)	(5)	(1,3)	(07)
b.	How to desalinate saline water by electrodialysis?	(3)	(3)	(1,5)	(07)
	50 ml of an Industrial sewage has consumed 10.6 ml of 0.5 N K ₂ t	Cr_2O_7	solutic	n for con	nplete
	oxidation. Calculate COD of industrial sewage.				-
		(3)	(5)	(1,3,5)	(08)
c.	Explain the inert gas condensation method of synthesizing nanoparticles		(4)	(1.5.13)	(0.5)
		(2)	(4)	(1,5,12)	(05)
1					
No.					

USN	, [CHE2	2/16CI	HE12/2	22/18CHI	≣12/22
F	irst	Second semester B.E. Fast Track Semester End Examin	ation,	July/	August 2	019
		ENGINEERING CHEMISTRY/APPLIED C	-	_	_	
Tin	ne: 3	Hours		Ma	ax. Marks	: 100
		Instructions: 1. Unit I and Unit V are compulsory 2. Write any one full question from each Unit	II. III	and IV		
			_			3.4
1	a.	UNIT – I (Compulsory) Name any four types of electrodes. Explain construction and working	L of cal	CO omel ele	PO ectrode?	M
•	٠.	Traine any 1941 types of electrodes. Emplain construction and working	(2)	(1)	(1,3)	(10)
	b.	Identify types of batteries. Calculate EMF of the following cell F				M)/Cu.
		The standard reduction potentials of Fe and Cu are -0.44 V and 0.34	_		V Y	(0.5)
	c.	What is photovoltaic cell? Explain Module, Panel and array.	(3)	(1)	(1)	(05)
	С.	What is photo volume cent. Explain Module, I allei and array.	(2)	(1)	(1,3)	(05)
		UNIT – II	L	CO	PO	M
2	a.	Explain electrochemical theory of corrosion by taking iron as an example of example of the examp	4	7	/ 4 \	(0.0)
	b.	Identify and explain type of corrosion occurring in the following	(2)	(2)	(1)	(06)
	υ.	i) Iron nail partially hammered inside the concrete wall. i) Copper pl	ate in c	ontact v	with iron n	ails.
			(3)	(2)	(1)	(08)
	c.	Differentiate electroplating and electroless plating techniques. Explain	n elect	roplatin	g of Chror	nium
		with bath conditions and reactions.	(3)	(2)	(1,3)	(06)
		OR	(3)	(2)	(1,3)	(00)
3	a.	Explain impressed current technique which is used to control the c				
		area 250 cm ² is exposed to corrosive atmosphere. After one year per weight loss of 200 g due to corrosion. The density of steel is 7.9 g/cc				
		rate.	(3)	(2)	(1,3,12)	(06)
	b.	Calculate the throwing power of plating bath solution in a Haring-Bl	()	` '	. , , ,	` ′
		the two cathodes are 5.6 cm and 6.9 cm from the anode and the cathodes are 65 mg and 62 mg respectively.	e mass	es of th	ne plating	on the
		and so the set ing the set of the	(3)	(2)	(1,3,5)	(06)
	c.	Explain effect of Temperature and pH on nature of electrodepe	osit an	d list o	out techno	ological
		importance of metal finishing.	(2)	(2)	(1)	(00)
		UNIT - III	(2) L	(2) CO	(1) PO	(08) M
4	a.	What is reforming? Give at least four reactions involved in the reform				171
			(2)	(3)	(1)	(06)
	b.	Calculate Gross and Net calorific value of a fuel sample from the	follov	ving da	ta obtaine	d from
4		bomb calorimeter experiment. I. Weight of fuel sample: 0.75g				
	y	II. Water equivalent of Calorimeter: 650 g				
		III. Weight of water taken in calorimeter: 1500g				
		IV. rise in temperature: 2.3°C				
		V. Latent heat of steam: 587 cal/gVI. Percent of Hydrogen in fuel sample: 2.5%				
		VII. Specific heat of water 4.187 kJ/kg/K				
			(3)	(3)	(1,5)	(06)

	c.	Identify advantages of biodiesel over petro-diesel. Explain instrumentat photometer.	ion a	nd ap	plications of	flame
		•	(3)	(3)	(1,5,12)	(08)
		OR				
5	a.	Define Gross calorific value. Describe bomb calorimeter experiment wi	th nea (2)	at labe	eled diagram (1,5)	(07)
	b.	Define cracking. Explain fluidized bed catalytic cracking process with n	` '	, ,	. , ,	(07)
	c.	Explain instrumentation of UV visible spectrophotometer with nea applications				
			(2)	(3)	(1,5)	(06)
		UNIT - IV	L	CO	PO	M
6	a.	A polymer sample contains 20, 20, 25 and 35% of molecules of the polymer average and weight of the polymer.	d we	ight a	average mol	lecular
	1	·	(3)	(4)	(1)	(06)
	b.	Identify the importance of glass transition temperature in polymers usa affecting Tg.	70	_	-	
			(3)	(4)	(1)	(09)
	c.	What are conducting polymers? Explain the synthesis and applications of	-	•		
			(2)	(4)	(1,3)	(05)
		OR				
7	a.	Give synthesis, properties and applications of polymethyl meth acrylate	and l	Kevla	r	
,	u.		(2)	(4)	(1,3,12)	(08)
	b.	Write reactions involved in synthesis of polyurethane and polyving applications.				
		**	(2)	(4)	(1,3,12)	(06)
	c.	Define biodegradable polymers. Give synthesis and applications of poly	. ,			(00)
	٠.		(2)	(4)	(1,3)	(06)
			L	CO	PO	M
8	a.	25 ml of waste water was diluted to 500ml and equal volumes are fille	_			
		blank titration 100 ml of diluted waste water when titrated immediate Na ₂ S ₂ O ₃ . 100 ml of the incubated sample after 5 days required 2.5 ml	ly rec	quired	1 5.0 ml of (0.02 N
		BOD of the wastewater.				
			(3)	(5)	(1,5)	(06)
	b.	Explain steps involved in primary treatment of sewage water? 25 ml of				
		for COD is reacted with 30 ml of K ₂ Cr ₂ O ₇ solution and the unreacted				
		0.25 N FAS solution. Under similar conditions, in blank titration 15 ml COD of the sample.	of F	AS is	used up. Cal	lculate
			(3)	(5)	(1,3,5)	(08)
	c.	Define nanomaterials? Explain synthesis of nanoparticles by inert gas co			-	
4	0		(2)	(4)	(1,3,12)	(06)
	7					