

Outline

1. Background

- Fisheries ecology, population dynamics
- Statistical models, software development

2. Quantitative methods in fisheries ecology

- Selected studies: cod, shrimp, salmon, etc.
- Overview of basic ecological models

3. Open science

- ICES Methods Working Group
- Transparent Assessment Framework

1. Background

Arni Magnusson

Data & Assessment Professional Officer ICES Secretariat, Copenhagen

Background

M.S. and Ph.D., University of Washington

Fish population dynamics Fisheries management Statistical models Software development

National Fisheries Advisory Committee, Iceland

Software

AD Model Builder Template Model Builder glmmTMB icesAdvice icesTAF

Lecturer

United Nations University University of Iceland Tech University Denmark ICES Training Courses

Stock Assessment Scientist

First author

2000–2016 Iceland: cod, silver smelt, herring, saithe

2001–2003 New Zealand: ling, blue whiting, smooth oreo

2012–2015 Greenland: inshore cod

Reviewer

2010– ICES: deep sea fishes, turbot, plaice, seabass, silver smelt

2011–2016 Iceland: National Advisory Committee, 37 stocks

NOAA (CIE): Gulf of Mexico king mackerel

2016– Implementation of the ICES precautionary approach

2018 SPRFMO: Chilean jack mackerel

2019 NAFO: Newfoundland 3Ps cod

Other Services

Internal

2011–2015	Editor of annual report of assessments and advice for all Icelandic stocks
2013	Review of research proposals and funding priorities in Icelandic marine science
2014-2016	Creator and maintainer of https://data.hafro.is, open science repository
2017-	Contact between ICES and the RAM Legacy Database

External

2009-	Member of ADMB Foundation and Core Development Team
2017	Chair of stock assessment session at ICES Annual Science Conference
2017-	Chair of the ICES Methods Working Group
2018-	Member of SPRFMO Scientific Committee

Fisheries Science

Methods

What makes fisheries data informative for stock assessment (Magnusson and Hilborn 2007) Performance of uncertainty methods in stock assessment (Magnusson et al. 2013)

Iceland

Population genetics of Icelandic cod (Jakobsdottir et al. 2011)

Influence of cod abundance and temperature on shrimp recruitment (Jonsdottir et al. 2013)

Remote sensing of chlorophyll in Icelandic waters (Gudmundsson et al. 2016)

Other regions

Estuarine influence on survival rates of Pacific salmon (Magnusson and Hilborn 2003)

State of the world's fisheries (Hilborn et al. 2003)

Population ecology of North Sea turbot and brill (van der Hammen et al. 2013)

Stock status of offshore shrimp stocks of Bangladesh (Barua et al. 2018)

Statistical Computing

Peer-reviewed publications

Core developer and coauthor of AD Model Builder (Fournier et al. 2012)

Coauthor of general guidelines for fitting nonlinear models (Bolker et al. 2013)

Paper on literate programming and reproducible analysis (Magnusson and Jonsson 2014)

Coauthor of high-impact R package glmmTMB (Brooks et al. 2017)

Other contributions

Significant contributions to base R since 2004 and TMB since 2013

First author of AD Studio, development environment for ADMB and TMB $\,$

Serve a key role in ICES Secretariat to assist all stock assessors with R coding

ICES training course instructor in ADMB and TMB model development

First author of 8 R packages on CRAN, including icesAdvice and icesTAF

2. Quantitative Methods in Fisheries Ecology

Selected Studies in Fisheries Ecology

- 1. Pacific salmon survival rates and estuaries (Magnusson & Hilborn 2003)
- 2. Shrimp recruitment (Jonsdottir et al. 2013)
- 3. Triploid cod in aquaculture (Derayat et al. 2013)
- 4. Chlorophyll remote sensing (Gudmundsson et al. 2016)
- 5. Shrimp in Bangladesh (Barua et al. 2018)

Pacific Salmon Survival Rates and Estuaries

Magnusson and Hilborn 2003

Shrimp Recruitment

Jonsdottir et al. 2013

Triploid Cod in Aquaculture

Derayat et al. 2013

Chlorophyll Remote Sensing

Gudmundsson et al. 2016

$$\widehat{\mathrm{Chl}\,a} \ = \ \exp\bigl[0.166 \, + \, 0.740 \log(\mathrm{CHL1}) \, + \, 0.0387 \, \mathrm{Sun} \, - \, 0.00423 \, \mathrm{Day} \, - \, 0.110 \log(\mathrm{Depth})\bigr]$$

log(Chl a) vs.	Intercept	log(CHL1)	Sun	Day	log(Depth)	R^2	AIC
log(CHL1)	0.494	0.807				0.473	752.6
+ Sun	-1.226	0.764	0.0411			0.496	741.9
+ Day	-0.538	0.772	0.0402	-0.00413		0.510	735.8
+ log(Depth)	0.166	0.740	0.0387	-0.00423	-0.110	0.521	731.1
+ Bearing	0.250	0.741	0.0396	-0.00424	-0.120	0.522	732.6

Shrimp in Bangladesh

Barua et al. 2018

$$B_{t+1} = B_t + rB_t \left(1 - \frac{B_t}{K}\right) - C_t$$

Shrimp in Bangladesh

Barua et al. 2018

Quantity	Estimate	95% CI
r	0.597	0.426 - 0.837
K	31544	22605 - 44018
a	0.685	0.511 - 0.918
q	4.81×10^{-5}	3.46×10 ⁻⁵ - 6.68×10 ⁻⁵
σ	0.124	0.097 - 0.159
u ₂₀₁₆	0.204	0.159 - 0.263
B_{2017}	20286	15706 - 26201
uMSY	0.298	0.213 - 0.418
B_{MSY}	15772	11302 - 22009
MSY	4709	4565 - 4858

Methods WG

The ICES Methods Working Group focuses on stock assessment methods.

The objectives of the Methods WG are to improve existing assessment models and develop new ones, organize a collection of datasets, test the performance of new and existing models, and work on assessment-related techniques.

Methods WG on GitHub

Atlantic Cod Selectivity

3. Open Science

Open Science at ICES

Open Data

ICES databases can be accessed online, via web services

Open Source

Software maintained by the ICES Secretariat is hosted on https://github.com/ices-tools-prod icesAdvice, icesDatras, icesTAF, icesVocab

Open and Reproducible Research

ICES working groups make their analytical scripts available on https://github.com/ices-taf https://github.com/ices-eg any other analyses

Transparent Assessment Framework (TAF)

Aim

Assure quality, improve efficiency, and ensure transparency of data and analyses used in the ICES advisory processes.

taf.ices.dk

DATA

(R)

SOFTWARE

RESULTS

Input

Data are fed in from ICES databases or other sources and transformed

Model

Analysis runs within a model from the ICES toolbox or other source and results are generated **Output**

Results from the model are made available online in the ICES databases

Science for sustainable seas

TAF Overview

- ► ICES gives advice for over 200 stock assessments every year:

 data preparation → analysis → peer review → advice
- ▶ Open: data files, model scripts, and results available online
- ► Reproducible: anyone can browse, download, and run the assessment, on their own computer or on the ICES TAF server (final run)
- Assessment repository is private, but the analysis becomes public after the peer review and advice is released
- Easy to see exactly what has changed in the data or model setup between years
- Standard sequence of scripts (data, model, output, report) facilitates quality checks and peer review

Summary

1. Background

- Fisheries ecology, population dynamics
- Statistical models, software development

2. Quantitative methods in fisheries ecology

- Selected studies: cod, shrimp, salmon, etc.
- Overview of basic ecological models

3. Open science

- ICES Methods Working Group
- Transparent Assessment Framework