MICROELECTRONIC CIRCUIT DESIGN THIRD EDITION

by

RICHARD C. JAEGER and TRAVIS N. BLALOCK

Third Edition Errata

Text Corrections

- Page 33 The first answer to the exercise at the bottom of the page should be 9.20 kohms.
- Page 46 The units on the vertical axis of Fig. 2.4 should be cm⁻³.
- Page 108 Exercise: 2.13 mA, 1.13 mA, -1.27 V
- Page 117 Exercise: 0.912 ms, 19.7°
- Page 118 Exercise at bottom: 0.994 V, 1.07 V
- Page 172 Units in the equation near the bottom of the page should be A/V^2
- Page 178 Third exercise (25.4 uA, 6.52 V)
- Page 182 Exercise answer should be 83.2 uA
- Page 186 Exercise (2.22 uA, 2.96 mV)
- Page 192 Last exercise 127 GHz
- Page 193 Near the end of the first sentence: 10⁵ V/cm

- Page 217 Last answer in exercise 1.07 mA
- Page 223 Exercise answers (b) 0.300 fA, 5.26 aA, -0.305 fA
- Page 229 V_{CE} in second exercise should be 5.44 V
- Page 237 The units on D_n in the exercise are cm²/s.
- Page 240 First exercise 1.24 uF
- Page 250 Q-Point: (206 uA, 4.18 V)
- Page 278 Fig. 6.3(a): Remove the labels and arrows indicating NM_L and NM_H.
- Page 302 Exercise; $I_{DD} = 278 \text{ uA}$
- Page 306 In the figure, the voltages should be $V_{DSS} = 0.20 \text{ V}$ $V_{DSL} = 3.10 \text{ V}$
- Page 321 Spice Results Table: 11000 132 64.4 0 | 11111 64.6 31.9 31.9
- Page 330 Exercise: $4.47 \text{ ns} \rightarrow 4.97 \text{ ns}$, $3.84 \text{ ns} \rightarrow 2.84 \text{ ns}$
- Page 358 Exercise: 1.27 V
- Page 362 C = 0.75 pF in the first exercise. $\tau_P = 2.4$ x (2pF/0.75pF) x (2/1)/(8/1) = 1.6 ns Also "delay of 1.6 ns" just above the equation. The delay in Fig. 7.13(b) is 1.6 ns.
- Page 362 In the second exercise: $(W/L)_P = 78.8/1$ $(W/L)_N = 31.5$
- Page 380 Execise: P = 12.5 mW
- Page 456 The frequency used in the simulations is 2000 Hz, not 1000 Hz.
- Page 549 Example 11.2: The gain of E1 should be negative, -10⁹
- Page 573 Gain block E1 is not connected properly in Example 11.8. E1 should be flipped (mirrored) vertically, and the inverting input should be connected to the positive output.
- Page 626 Example 12.6: Known information: A = 80 dB
- Page 656 SPICE Results: $R_{in} = 28.9 \text{ Tohms } (10^{12})$
- Page 700 VAF should be 75 V in the SPICE simulation
- Page 725 The SPICE value of the input resistance should be 14.8 k Ω , not 16.0 k Ω .

Page 726 Example 13.10 - "with feedback bias" should be deleted

Page 842 SPICE results: V_{CE} - V_{BE} = 7.90 V and BF = 116

Page 938 SPICE Exercise Results: 64.164 uV, 0.520

Pages 1021 & 1030 Examples 16.6 and 16.7: $C_1 = C_2 = 3.9 \text{ uF}, C_3 = 0.082 \text{ uF}$

Problem Statements

- 2.48 The second dimension in Fig. P2.48 should be 2 μ m, not 3 μ m
- 4.39 Page (c) should refer to Fig. P4.39(b).
- $4.134 \quad V_{DS} = -5 \text{ V}$
- 7.91 Use $V_{DD} = 2.5V$
- 8.23 $C_{BL} = 500 \text{ fF}$
- 11.10 & 11.18 V_S should be V_S
- 11.69 3-kohms should be 3-kohms
- 13.33 $R_S = 1$ kohms and $R_4 = 1$ kohms
- 14.1 In Fig. 14.1(m), the power supply should be positive: $+V_{DD}$.
- 14.14 $V_{CC} = 15 \text{ V}, -V_{EE} = -15 \text{ V}$
- 14.69 $C_3 = 2.2 \text{ uF}.$
- 14.76 Ignore reference to C₃.
- 14.115 $C_3 = 2.2 \text{ uF}$
- 14.122 $C_1 = C_2 = C_3 = 1 \text{ uF}.$
- 15.96 Ignore the last sentence in the problem statement.
- 15.203 Problem should refer to Prob. 15.202.
- 16.65 Problem should refer to Prob. 16.14(e).

- 16.83 R_L is connected between the collectors of transistors Q_1 and Q_2 .
- 17.104 The transistor parameters should be $K_p = 1.25 \ mA/V^2$ and $V_{TN} =$ -4 V.
- 17.108 $R_S = 820~\Omega$, and the transistor parameters should be $K_p = 1.25~mA/V^2$ and $V_{TN} = -4~V$.