Problem 1: A dart is thrown at random at a wall. Let (x, y) denote the Cartesian coordinates of the point in the wall pierced by the dart. Suppose that x and y are statistically independent Gaussian random variables, each with mean zero and variance σ^2 , i.e.,

$$p_x(a) = p_y(a) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{a^2}{2\sigma^2}}.$$

- a) Find the probability that the dart will fall within the σ -radius circle centered at the point (0,0).
- b) Find the probability that the dart will hit in the first quadrant $(x \ge 0, y \ge 0)$.
- c) Find the conditional probability that the dart will fall within the σ -radius circle centered at (0,0) given that the dart hits the first quadrant.
- d) Let $r = \sqrt{x^2 + y^2}$ and $\theta = \tan^{-1}(y/x)$ be the polar coordinates associated with (x, y). Find $\mathbb{P}[0 \le r \le R, \ 0 \le \theta \le \Theta]$ and obtain density $p_{r, \theta}(R, \Theta)$.

Problem 2: Let x_1 and x_2 be zero-mean jointly Gaussian random variables with covariance matrix

$$\Lambda_x = \begin{bmatrix} 34 & 12 \\ 12 & 41 \end{bmatrix}$$

- (a) Verify that Λ_x is a valid covariance matrix.
- (b) Find the marginal probability density for x_1 . Find the probability density for $y = 2x_1 + x_2$.
- (c) Find a linear transformation defining two new variables

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

so that x'_1 and x'_2 are statistically independent and so that $TT^t = I$.

A) 1 = porog og

Axis symmetric

Because both eigenvalues >0 | 1L

1.xis positive somi definite

This avalid covariance

Mantrix

Mintrix

$$= \frac{1}{5 \sqrt{5}} \frac$$

B) Find Mary inn 1 Probability for X,

Problem 3: Let \underline{z} be an N+M dimensional Gaussian random vector with mean vector \underline{m}_z and covariance matrix Λ_z . The random vector \underline{z} is partitioned into a N-vector \underline{x} and an M-vector y as shown below

$$\underline{z} = \begin{bmatrix} \underline{x} \\ \underline{y} \end{bmatrix}, \quad \underline{m}_z = \begin{bmatrix} \underline{m}_x \\ \underline{m}_y \end{bmatrix}, \quad \Lambda_z = \begin{bmatrix} \Lambda_x & \Lambda_{xy} \\ \Lambda_{xy}^t & \Lambda_y \end{bmatrix}.$$

We wish to find an expression for $p_{\underline{x}/\underline{y}}(X/Y)$. We shall do this in three steps. Express all your results in terms of \underline{m}_x , \underline{m}_y , Λ_x , Λ_y and Λ_{xy} . Assume Λ_x and Λ_y are nonsingular.

(a) For any $N \times M$ matrix A it is clear that the transformation from \underline{z} to \underline{z}' given by

$$\underline{z}' = \begin{bmatrix} \underline{x} - A\underline{y} \\ \underline{y} \end{bmatrix} = \begin{bmatrix} \underline{x}' \\ \underline{y}' \end{bmatrix}$$

is 1:1, i.e., knowledge of \underline{x} and \underline{y} is equivalent to knowledge of \underline{x}' and \underline{y} . Find the matrix A which makes \underline{x}' and \underline{y} statistically independent random variables.

(b) Using the matrix A found in part a) find the marginal density $p_{x'}(\underline{X}')$.

(c) Use the transformation of part a) to write $p_{\underline{x},\underline{y}}(\underline{X},\underline{Y})$ in terms of $p_{\underline{x}',\underline{y}}(\underline{X}',\underline{Y})$. Now use the statistical independence of \underline{x}' and \underline{y} and the result of part b) to find $p_{\underline{x}/y}(\underline{X}/\underline{Y})$.

a) XA2 independent

b) a(X1) = c

= (io(xy) - (oul-Ayy)) = (xy) + A = (xy) = (xy) + A = (xy) = (xy) + A = (xy)

Problem 4: Let Θ be a random variable uniformly distributed on $[0, 2\pi]$. Show that $X = \sin \Theta$ and $Y = \cos \Theta$ are uncorrelated.

$$E[(5,n\theta) \cdot E(5,n\theta)] (1056 - E[1050])$$

$$= E[5,n\theta) \cdot (050 - E[1050])$$

$$= E[5,n\theta] \cdot (050 - E[1050])$$

$$= E[1050] - [1050] + E[1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050]$$

$$= [1050] - [1050] + [1050] + [1050]$$

$$= [1050] - [1050] + [1050] + [1050] + [1050]$$

$$=$$

Problem 5: Show that for all random variables X and Y with finite variance, and for all real numbers a, b, c, d

$$\rho_{aX+b, cY+d} = \rho_{X, Y} \, sgn(ac)$$

where sgn(ac) = 1 if ac > 0, -1 if ac < 0, and 0 if ac = 0.