

Advanced Topics in Software Verification

WeChat: cstutorcs

Assignment Project Exam Help
Email: tutores@163.com

QQ: 749389476

Gerwin Klein, June Andronick, Miki Tanaka, Johannes Åman Pohjola https://tutorcs.com
T3/2022

Last time...

程序代写代做 CS编程辅导

- \rightarrow natural deduction $, \lor, \longrightarrow, \neg$, iff...
- → proof by assumpt o rule, elim rule
- → safe and unsafe ri
- → indent your proofs! (one space per subgoal)
- → prefer implicit backfracking (childhing) or rule_tac, instead of back
- → prefer and defer Assignment Project Exam Help
- → oops and sorry

Email: tutorcs@163.com

QQ: 749389476

Content

程序代写代做 CS编程辅导

下71147 00% 下4117	
→ Foundations & Principles	
 Intro, Lambe natural deduction 	[1,2]
• Higher Orde 🗱 👼 🔀 r (part 1)	$[2,3^a]$
Term rewritike Term rewritik	[3,4]
→ Proof & Specification Techniques	
 Proof & Specification Techniques Inductively defined sets, rule induction 	[4,5]
Datatype industipm niemitipe of the Param Help	[5,7]
 General recursive functions, termination proofs 	$[7^{b}]$
 Proof automationalls autopart @163.com 	[8]
 Hoare logic, proofs about programs, invariants 	[8,9]
• C verificatio QQ: 749389476	[9,10]
 Practice, questions, exam prep https://tutores.com 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

程序代写代做 CS编程辅导

Quantifiers

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Scope

程序代写代做 CS编程辅导

- Scope of parameters le subgoal

Example:

WeChat: cstutorcs

$$\bigwedge \times y. \ \llbracket \ (\forall y_1. \ P \ y_1 \longrightarrow Q \ z \ y_1); \ Q \times y \ \rrbracket \implies (\exists x_1. \ Q \ x_1 \ y)$$

Natural deduction for quantifiers

程序代写代做 CS编程辅导

$$\frac{\bigwedge x. \ P \ x}{\forall x. \ P \ x} \text{ all} = \frac{P \ ?x}{R} \text{ all} = \frac{P \ ?x}{\exists x. \ P \ x} \text{ ext} \frac{P \ x}{R} \text{ ext}$$

$$\frac{P \ ?x}{\exists x. \ P \ x} \text{ ext} \frac{P \ x}{R} \text{ ext} = \frac{P \ ?x}{R} \text{ ext}$$

Assignment Project Exam Help

- all and exE introduce new parameters $(A \times)$.
- allE and exl introduce new unknowns (?x). OQ: 749389476

Instantiating Rules

程序代写代做 CS编程辅导

Like **rule**, but ?x in rule is instantiated by term before application.

WeChat: cstutorcs

Similar: erule_tac

Assignment Project Exam Help

Email: tutorcs@163.com x is in rule, not in goal

QQ: 749389476

Two Successful Proofs

程序代写代做 CS编程辅导

8 | COMP4161 | G Klein, J Andronick, M Tanaka, J Åman Pohjola CC-BY-4.0 License

Two Unsuccessful Proofs

程序代写代做 CS编程辅导

1.
$$\exists y. \forall x. \ x = y$$

apply (rule_tac $x = \begin{bmatrix} 1 & 3y \\ 1 & 3y \end{bmatrix}$) apply (rule exl)

1. $\forall x. \ x = ?y$

apply (rule alll)

WeChat: cstutores $\land x. \ x = ?y$

Assignment Projapply (auteHell)

Email: tutores@ $\begin{bmatrix} 2 & 3 \\ 1 & 3 \end{bmatrix}$ $\land x'. \ x' = x$

Principle:

QQ: 749389476

 $\begin{cases} ?f \ x_1 \dots x_n \text{ can only be replaced by term } t \\ \text{https://tutores.com} \end{cases}$

if $params(t) \subseteq x_1, \dots, x_n$

Safe and Unsafe Rules

程序代写代做 CS编程辅导

WeChat: cstutorcs

Create parameters first, unknowns later Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导

Demo: Quantifier Proofs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Parameter names

程序代写代做 CS编程辅导

are chosen by Isabelle

1. WeChat: cstutorcs

apply (rule alll) Assignment Project Exam Help

1. $\bigwedge x$. $\exists y$. x = yEmail: tutorcs@163.com apply (rule_tac x = "x" in exl)

QQ: 749389476

Brittle! https://tutorcs.com

Renaming parameters

程序代写代做 CS编程辅导

- 1. $\forall x : \exists y : x = y$

applye (rename-tutory)

1. Ashigmment=Project Exam Help

applyndiuletteores@163.comex1)

QQ: 749389476

In general: (rename_tac $x_1 ldots ldots_n$) renames the rightmost (inner) n parameters to $x_1 ldots ldots_n$

Forward Proof: frule and drule

程序代写代做 CS编程辅导

Rule: $A_m \longrightarrow A$

Subgoal: $[B_1; \ldots; B_n] \Longrightarrow C$

Substitutio We Char B; tetto (A)

New subgoalssignmen Project A am>Help

Email: tutorcs@163.com

QQ: 7493894 $B_1; \dots; B_n \longrightarrow A_m$

Like **frule** but also deletes B_i : **apply** (drule < rule >)

Examples for Forward Rules

程序代写代做 CS编程辅导

$$\frac{P \wedge Q}{Q}$$
 conjunct2

We Chat: coutopecs mp
Assignment Project Exam Help

Email: tutorcs@163.com

OO: $\frac{\forall x. P.x}{749389476}$ spec

Forward Proof: OF

程序代写代做 CS编程辅导

Prove assumption r_1 , and assumption r_2 , and r_2 , and r_3 , and r_4 , and r_4 , and r_5 , and r_6 , and r_6 , and r_7 , and r_8 , and r_8 , and r_8 , and r_9 , are an experimental properties and r_9 , and r_9 ,

Rule
$$r$$
 W A_1 A_2 A_3 A_4 A_5 A_6 Rule r_1 A_5 A_6 A_7 A_8 A_9 A_9

Example:

 $dvd_add: [?a dvdhttps?/atvdlvotcscc]pm \rightarrow ?a dvd?b + ?c$

dvd_refl: ?a dvd ?a

 $dvd_add[OF\ dvd_refl]: [?a\ dvd\ ?c] \Longrightarrow ?a\ dvd\ ?a + ?c$

Forward proofs: THEN

程序代写代做 CS编程辅导

means r_2 [OF r_1]

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导

Demo: Forward Proofs Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Hilbert's Epsilon Operator

程序代写代做 CS编程辅导

(VeChatilestut 1862-1943)

 ε x. Px is a value that satisfies P (if such a value exists)

 ε also known as description operator.

In Isabelle the corporation 45 written SOME x. P x

 $\frac{\text{https://putorcs.com}}{P \text{ (SOME } x. P x)} \text{ somel}$

More Epsilon

程序代写代做 CS编程辅导

Existential and universal quantification can be defined with ε .

WeChat: cstutorcs

Isabelle also knows the sdefinite de ripe in Forera i de T HE (aka ι):

Email: tutorcs@163.com $(THEX: \chi = 3) = 3$ (749389476)

Some Automation

程序代写代做 CS编程辅导

More Proof Methoes

apply (intro <intro-like epeatedly applies intro rules

apply (elim <elim-rเ**เนีย** repeatedly applies elim rules

apply clarify applies all safe rules

WeChat: cstutorcs that do not split the goal

Assignment Project Exam Help apply safe

Email: tutorcs@163;com apply blast

OO: 7493894856well on predicate logic)

https://tuenetherautomatic search tactic apply fast

Epsilon and Automation

Demo Assignment Project Exam Help

We have learned so far...

程序代写代做 CS编程辅导

- → Proof rules for pr
- → Safe and unsafe r
- → Forward Proof
- → The Epsilon Operator
- → Some automationWeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导

Isar (Parta: 1) tores

Assignment Project Exam Help

A Language for Structured Proofs

QQ: 749389476

Motivation

程序代写代做 CS编程辅导

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Motivation

```
程序代写代做 CS编程辅导
Is this <u>true</u>: (A \longrightarrow B) = (B \vee \neg A)?
                YES!
                 (rule iffI)
              Lv (cases A)
             apply (rule disjI1)
              apply assumption
     Assignment Project Exam Help
                                        by blast
            apply assumption
      Email: total @ileB.com
           apply (erule disjE)
      OO: 74pply Gasymption
           apply (erule notE)
      https://tutorcs.com
      OK it's true. But WHY?
```

Motivation

程序代写代做 CS编程辅导

WeChat: Psturorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Isar

程序代写代做 CS编程辅导

apply so

What about..

- → unreadable
- → Elegance?
- → hard to maintain → Explaining deeper insights?
- → do not scale WeChat: → stutarge developments?

Assignment Project Exam Help

No structure. Isar!

Email: tutorcs@163.com

QQ: 749389476

A typical Isar proof

程序代写代做 CS编程辅导

```
∵formula∩
                       mula_1
                               by simp
             Wavehatingstytorcby blast
             show formula by Exam Help
            ged
             Email: tutorcs@163.com
          proves formula_0 \Longrightarrow formula_{n+1}
             OO: 749389476
(analogous to assumes/shows in lemma statements)
             https://tutorcs.com
```

Isar core syntax

程序代写代做 CS编程辅导 proof = proof [method] statement* qed by method $method = (simp \dots \underbrace{line [a]}_{line [a]} \dots) \mid (rule \dots) \mid \dots$ statement = fix variablesassume posti 6 stutores) [from name⁺] (have show) proposition proof next separates subgoals) proposition = [mail: tutorcs@163.com | [name:] formula OO: 749389476 https://tutorcs.com

proof and qed

程序代写代做 CS编程辅导

📹 d] statement* **ged** lemma " $\llbracket A; B \rrbracket \Longrightarrow$ proof (rule conjl) assume A: "A" from A show "A" Woodsetingstletores next Assignment Project Exam Help assume B: "B" from B show "B"Eby Assumption 163 com qed OO: 749389476 **proof** (<method>) applies method to the stated goal https://tutores.gomgle rule that fits proof proof does nothing to the goal

How do I know what to Assume and Show?

程序代写代做 CS编程辅导

lemma " $[A; B] \Rightarrow A$ proof (rule conjl)

- → proof (rule conjl) changes proof state to
 - 1. $\llbracket A; B \rrbracket \Longrightarrow A$
 - 2. $[A; B] \Longrightarrow B$ Assignment Project Exam Help
- → so we need 2 shows: **show** "A" and **show** "B"
- → We are allowed to the assumptions of the proof state.

 QQ: 749389476

The Three Modes of Isar

程序代写代做 CS编程辅导

- → [prove]:
 goal has been sta ______needs to follow.
- → [state]:

 proof block has old the block has been proved, new from statement, goal statement or assumptions can follow.
- → [chain]: WeChat: cstutorcs from statement has been made, goal statement needs to follow.

```
Assignment Project Exam Help lemma "[A; B] \Rightarrow A \land B" [prove] proof (rule conjl) [state]il: tutorcs@163.com assume A: "A" [state] from A [chain] show "A" [prove] by assumption [state] next [state] ... https://tutorcs.com
```

Have

程序代写代做 CS编程辅导

```
Can be
                              礼中ake intermediate steps.
Example:
           lemma "(x :: nat) + 1 = 1 + x"
           proof - WeChat: cstutorcs
              have A: "x+1 = \operatorname{Suc} x" by simp
have B: "1+x = \operatorname{Suc} x" by simp
              show "Email=tutores" (by (simponenly: A B)
           ged
                       OO: 749389476
                       https://tutorcs.com
```

程序代写代做 CS编程辅导

Demo

WeChat: cstutores

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Backward and Forward

程序代写代做 CS编程辅导

Backward reasoning: ... have " $A \wedge B$ " proof

- → proof picks an in tomatically
- \rightarrow conclusion of rule $A \land B$

Forward reasoning:

assume AB: " $A \wedge B$ " from AB have ... proof

- → now proof picks Asselign rulent uPomjetita Exam Help
- → triggered by from
- → first assumption of meintutoring with ABM

General case: from $\sqrt{10}$: 74

- \rightarrow first *n* assumptions of rule must unify with $A_1 \ldots A_n$
- → conclusion of rule https://

Fix and Obtain

程序代写代做 CS编程辅导

Introduce itrary but fixed variables

 $(\sim \text{ parameters, } \land)$ WeChat: cstutorcs

Assignment Project Exam Help

obtain $v_1 \dots v_n$ where $\langle prop \rangle \langle proof \rangle$

Email: tutorcs@163.com

Introduces new variables together with property

QQ: 749389476

Fancy Abbreviations

程序代写代做 CS编程辅导

previous fact proved or assumed

then

this

this

thus = then show hence WeChatrostutores

with $A_1 \dots A_n$ Assignment Project Exam Help

?thesis Emaithe last enclosing goal statement

OO: 749389476

程序代写代做 CS编程辅导

Demo

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Moreover and Ultimately

程序代写代做 CS编程辅导

```
have X_1: P_1 . have X_2: P_2 .
                             have P_1 \ldots
                              moreover have P_2 ...
have X_n: P_n ... WeChat: cstutores
from X_1 \dots X_{n} show ment Project Exam Help ...
wastes lots of brainibowtores@163.com
on names X_1 \cdot 00^n 749389476
              https://tutorcs.com
```

General Case Distinctions

程序代写代做 CS编程辅导

```
show formula
proof -
   have P_1 \vee P_2 \setminus \mathbb{R}
                                {}^{\mathbf{p}_1} ... \mathsf{have} ?thesis <proof> \}
   moreover
                     assume P_2 have ?thesis proof> }
We hat: cstutores
assume P_3 ... have ?thesis proof> }
   moreover
   moreover
  ultimately shows the size by I blastect Exam Help
ged
        { ... } is a Email bluter similar to coroof ... ged
              { assume: P_1^{49389476} P < proof> }
                     https://datforce.com
```

Mixing proof styles

程序代写代做 CS编程辅导

from ... have ... incoming facts assumptions apply -WeChat: cstutorcs apply (Assignment Project Exam Help done Email: tutorcs@163.com QQ: 749389476 https://tutorcs.com

We have learned so far...

程序代写代做 CS编程辅导

- → Isar style proofs
- → proof, qed
- → assumes, shows
- → fix, obtain
- → moreover, ultimatWeChat: cstutorcs
- → forward, backward
- → mixing proof styles Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476