SELMER GROUPS IN ARITHMETIC TOPOLOGY

DANIEL MILLER

In the first couple sections I construct things in a relatively elementary way. The rest of this note looks at categorical foundations.

1. Arithmetic setup

Let F be a number field, S a finite set of places of F. Write $G_{F,S} = \pi_1(\operatorname{Spec}(O_F) \setminus S)$ for the Galois group of the maximal extension of F unramified outside S. Let M be a $G_{F,S}$ -module. The S-Tate-Shafarevich group of M is

$$\mathrm{III}_{S}^{\bullet}(M) = \ker \left(\mathrm{H}^{\bullet}(G_{F,S}, M) \to \bigoplus_{v \in S} \mathrm{H}^{\bullet}(G_{v}, M) \right),$$

where $G_v = \pi_1(F_v)$ is the decomposition group at v. Let's start by giving a geometric definition of III.

Let $X = \operatorname{Spec}(O_F)$, and let $S \subset X$ be a closed subscheme. Write $i: S \hookrightarrow X$ and $j: U = X \setminus S \hookrightarrow X$ for the inclusion maps. We should think of the $G_{F,S}$ -module M as being a locally constant sheaf \mathscr{F} on U. The question is: how should we think of $\bigoplus_{v \in S} \operatorname{H}^{\bullet}(G_v, M)$? Let S^+ be the infinitesimal étale neighborhood of S. Then $S^+ = \coprod_{v \in S} \operatorname{Spec}(O_{F,v})$. It follows that

$$\partial S = S^+ \setminus S = \coprod_{v \in S} \operatorname{Spec}(F_v).$$

Locally constant sheaves on ∂S are the same thing as a collection of G_v -modules for $v \in S$. The analogue of "treating M as a G_v -module" is $j_* \mathscr{F}|_{\partial S}$. So our sheaf-theoretic Tate-Shafarevich group is

$$\coprod_{S}^{\bullet}(\mathscr{F}) = \ker \left(H^{\bullet}(U, \mathscr{F}) \to H^{\bullet}(\partial S, j_{*}\mathscr{F}|_{\partial S}) \right).$$

A common place for these groups to arise is in deformation theory. If $\bar{\rho}: G_{F,S} \to \operatorname{GL}_2(\mathbf{F}_q)$ is a Galois representation, one wants $\coprod_S^1(\operatorname{ad}\bar{\rho})$ to vanish. Often, by enlarging S cleverly, one can ensure this.

2. Topological analogue

Let M be a three manifold and let $L \subset M$ be a link (not just a knot – this is important). Put $U = M \setminus L$, and let \mathscr{L} be a local system on U. Let $j: U \hookrightarrow M$ be the inclusion. Let V_L be a tubular neighborhood of L, and put $\partial V_L = V_L \setminus L$ (this deformation retracts onto a union of tori). The topological Tate-Shafarevich group is

$$\coprod_{L}^{\bullet}(\mathscr{L}) = \ker \left(H^{\bullet}(U, \mathscr{L}) \to H^{\bullet}(\partial V_{L}, j_{*}\mathscr{L}|_{\partial V_{L}}) \right).$$

General question: is $\coprod_L^{\bullet}(\mathscr{L})$ an "already known object"? If so, what role does it play?

Let's look at a baby example. Let $K \subset S^3$ be a knot, $\mathscr L$ the constant sheaf $\mathbf Z$. Then

$$\begin{aligned} & \coprod_{K}^{1}(\mathbf{Z}) = \ker\left(\operatorname{hom}(\pi_{1}(U), \mathbf{Z}) \to \operatorname{hom}(\pi_{1}(\partial V_{L}), \mathbf{Z})\right) \\ &= \ker\left(\operatorname{hom}(G_{K}^{\operatorname{ab}}, \mathbf{Z}) \to \mathbf{Z}^{2}\right) \\ &= \left(G_{K}^{\operatorname{ab}}/\mathbf{Z}^{2}\right)^{\vee}, \end{aligned}$$

where $\mathbf{Z}^2 \to G_K$ is the peripheral map. Since $G_K^{\mathrm{ab}} = \mathbf{Z}$, this "topological Tate-Shafarevich group" is cyclic. It's not clear to me whether we can say much about general $\coprod_L^1(\mathcal{L})$.

3. Kan extensions

A source for some of this is [Rie14], available online at http://www.math.harvard.edu/~eriehl/cathtpy.pdf. Let $f: \mathcal{C} \to \mathcal{D}$ be a functor. We get an induced natural transformation (of 2-functors?) $f^*: [\mathcal{D}, -] \to [\mathcal{C}, -]$. That is, for each category \mathcal{E} , there is a functor $f^*: \mathcal{E}^{\mathcal{D}} \to \mathcal{E}^{\mathcal{C}}$ that sends $g: \mathcal{D} \to \mathcal{E}$ to $gf: \mathcal{C} \to \mathcal{E}$. We say that f admits left (resp. right) Kan extensions (non-standard terminology) if $f^*: \mathcal{E}^{\mathcal{D}} \to \mathcal{D}^{\mathcal{C}}$ has left (resp. right) adjoints, which we denote L_f (resp. R_f). If f^* has both adjoints, we say that f has Kan extensions. In this case, there is an adjoint triple (L_f, f^*, R_f) fitting into a diagram

To be more concrete, we have natural isomorphisms

$$[L_f g, h] = [g, f^* h]$$
$$[f^* g, h] = [g, R_f h]$$

4. Derived functors

Now let $f: \mathcal{A} \to \mathcal{B}$ be an additive functor on abelian categories. We also write f for the induced functor $\mathsf{K}(\mathcal{A}) \to \mathsf{K}(\mathcal{B})$ on categories of chain complexes modulo homotopy. Let $q: \mathsf{K}(-) \to \mathsf{D}(-)$ be the localization functor. We define (if they exist)

$$Lf = R_q \bar{f}$$

$$Rf = L_q \bar{f}.$$

This deserves some explanation. We will concentrate on the right-derived functor $Rf : D(A) \to D(B)$. The functor $q_A : K(A) \to D(A)$ induces

$$q_{\mathcal{A}}^*: \mathsf{D}(\mathcal{B})^{\mathsf{D}(\mathcal{A})} \to \mathsf{D}(\mathcal{B})^{\mathsf{K}(\mathcal{A})}.$$

The image of \bar{f} under its left adjoint is $\mathsf{R}f$. That is, there is a natural isomorphism

$$\hom_{[\mathsf{D}(\mathcal{A}),\mathsf{D}(\mathcal{B})]}(\mathsf{R}f,g) = \hom_{[\mathsf{K}(\mathcal{A}),\mathsf{D}(\mathcal{B})]}(\bar{f},g\circ q_{\mathcal{A}}).$$

Putting $g = \mathsf{R} f$, the identity morphism $\mathsf{R} f \to \mathsf{R} f$ induces the unit $\eta_f : \bar{f} \to \mathsf{R} f \circ q_{\mathcal{A}}$. All morphisms $\bar{f} \to gq$ come from a unique $\mathsf{R} f \to g$ via η . We say that Rf = f if $\eta : \overline{f} \to Rf \circ q$ is an isomorphism. When this is the case, we will write f instead of Rf.

4.1. Composition of derived functors. Let $\mathcal{A} \xrightarrow{f} \mathcal{B} \xrightarrow{g} \mathcal{C}$ be additive functors. We will construct a canonical natural transformation $R(g \circ f) \to Rg \circ Rf$. By the definition of R(-), we have

$$[\mathsf{R}(g\circ f),\mathsf{R}g\circ\mathsf{R}f]=[\overline{g\circ f},\mathsf{R}g\circ\mathsf{R}f\circ q].$$

We construct a transformation $\overline{g \circ f} \to \mathsf{R} g \circ \mathsf{R} f \circ q$ as follows:

$$\overline{g \circ f} = \bar{g} \circ f \xrightarrow{\eta_g \circ f} \mathsf{R} g \circ q \circ f = \mathsf{R} g \circ \bar{f} \xrightarrow{\mathsf{R} g \circ \eta_f} \mathsf{R} g \circ \mathsf{R} f \circ q.$$

4.2. Functoriality of derived functors. Suppose we have $\alpha: f \to g$. There should be $R\alpha: Rf \to Rg$. For this, it suffices to construct $[Rg, -] \to [Rf, -]$ via

$$[\mathsf{R}g,-] = [\bar{g},q^*-] \xrightarrow{\bar{\alpha}^*} [\bar{f},q^*-] = [\mathsf{R}f,-].$$

Suppose we have functors $f: \mathcal{A} \to \mathcal{B}$, $g: \mathcal{B} \to \mathcal{C}$, $h: \mathcal{A} \to \mathcal{C}$ together with $\alpha: h \to gf$. Suppose further that Rf = f. Then there is a canonical transformation

$$Rh \to R(qf) \to Rq \circ f$$
.

5. Derived Tate-Shafarevich groups

If \mathcal{X} be a topos, let $\Gamma = \Gamma_{\mathcal{X}} = \text{hom}(1_{\mathcal{X}}, -)$. Recall that a morphism of topoi (called a geometric morphism in [MLM94]) $f: \mathcal{X} \to \mathcal{Y}$ is an adjoint pair (f^*, f_*) , where $f_*: \mathcal{X} \to \mathcal{Y}$ and f^* preserves limits. Note that f^* already preserves colimits. Write $D(\mathcal{X})$ for the derived category of abelian group objects in \mathcal{X} . Since f^* is exact, we write $f^*: D(\mathcal{Y}) \to D(\mathcal{X})$ for the induced functor.

There is a canonical natural transformation $\Gamma_{\mathcal{Y}} \to \Gamma_{\mathcal{X}} \circ f^*$, constructed via

$$\Gamma_{\mathcal{V}} \to \text{hom}(1_{\mathcal{V}}, f_* f^* -) = \text{hom}(f^* 1_{\mathcal{V}}, f^* -) = \Gamma_{\mathcal{X}} \circ f^*,$$

via the unit $1 \to f_*f^*$. We have seem that this gives $\mathsf{R}\Gamma_{\mathcal{Y}} \to \mathsf{R}\Gamma_{\mathcal{X}} \circ f^*$. We define the f-Tate-Shafarevich group to be

$$\coprod_f = \ker (\mathsf{R}\Gamma_{\mathcal{Y}} \to \mathsf{R}\Gamma_{\mathcal{X}} \circ f^*).$$

The problem is, this doesn't exist (in general) as an object of the derived category. So we can either look at

$$\coprod_{f}^{\bullet}(-) = \ker\left(\mathcal{H}^{\bullet}(Y, -) \to \mathcal{H}^{\bullet}(X, f^*-)\right)$$

or define

$$\coprod_f = \text{hok} (\mathsf{R}\Gamma_{\mathcal{V}} \to \mathsf{R}\Gamma_{\mathcal{X}} \circ f^*)$$

the homotopy-kernel.

We could go even further and define the Tate-Shafarevich category to be

$$\coprod(f) = \mathsf{D}(\mathcal{Y})/\ker(\coprod_f).$$

There is the obvious functor $D(\mathcal{Y}) \to \coprod (f)$.

References

[MLM94] Saunders Mac Lane and Ieke Moerdijk. Sheaves in geometry and logic. Universitext. Springer-Verlag, 1994. Corrected reprint of the 1992 edition.

[Rie14] Emily Riehl. Categorical homotopy theory, volume 24 of New Mathematical Monographs. Cambridge University Press, 2014.