Разработка алгоритмов прогнозирования индивидуального поведения на основе визуального распознавания эмоций

Леонид Ивановский, аспирант

Постановка задачи

• <u>Разработка кроссплатформенной библиотеки для</u> классификации эмоций человека по изображению лица

Основные требования к алгоритму

• Работа в режиме реального времени

 Распознавание спонтанных выражений лица под разными углами обзора камеры

• Устойчивость алгоритма в зависимости от различной степени освещенности сцены, разрешения и пр.

Области применимости

• Медицина

(клиническая психология, психиатрия, реабилитация)

• Безопасность

(борьба с преступностью и терроризмом)

• Видеоаналитика

(оценка работы персонала при общении с клиентом, оценка качества предоставленных услуг, оценка вовлеченности аудитории)

• Сбор статистики

(в масштабах ТЦ, города, в местах массового скопления людей, мониторинг эффективности маркетинговых и рекламных компаний)

• Ритейл

(в сфере развлекательных услуг)

Бизнес-логика

Наша команда

Ивановский Леонид

аспирант / научный сотрудник ЯрГУ им. П.Г. Демидова / НЦЧ РАН

Разработчик ПО

Сергей Моржов

аспирант / инженер-программист ЯрГУ им. П.Г. Демидова / Малвин Системс

Разработчик ПО

Хрящев Владимир Вячеславович

доцент, кандидат технических наук / соучередитель ЯрГУ им. П.Г. Демидова / 27 faces

Консультант из области бизнеса, эксперт по нейросетевым технологиям

Этапы распознавания эмоций

• Захват изображений лица из базы данных или потокового видео

 Предварительная обработка изображений (снижение помех, фильтрация, повышение четкости)

• Извлечение оптимального набора признаков

• Классификация

Инструменты разработки

Caffe

Архитектура сверточной нейронной сети

Обучение и тестирование алгоритма

Суперкомпьютер NVIDIA-DGX-1 с 8 ускорителями NVIDIA Tesla V100 Центра Искусственного Интеллекта и Цифровой Экономики ЯрГУ

- Обучение: ~45 мин
- Тестирование: ~9-10 мин.

Обучение и тестирование алгоритма

Суперкомпьютер NVIDIA DGX-1

- 960 TFLOPS | 8x GPU Tesla V100
- Заменяет **400** традиционных серверов в задачах ИИ

Оценка производительности NVIDIA DGX-1 на классическом примере работы сети ResNet-50

NVIDIA DGX-1 Delivers 96X Faster Training

База изображений Multi-PIE

- ~750000 цветных картинок
- 337 различных людей
- различные углы обзора камеры (не более 90°)
- разный уровень освещения сцены

Виды эмоций

а) Спокойствие

б) Улыбка

в) Удивление

г) Заинтересованность

д) Презрение

е) Крик

Формирование выборок

- 35000 снимков, отобранных случайным образом, для каждого класса
- Разметка: 6 классов для задачи классификации эмоций,
 2 класса для задачи детектирования улыбки
- Угол обзора камеры: [-45, 45]
- Тренировочный и тестовый наборы данных: 80/20 (не содержали одинаковых изображений, а также снимков одного и того же субъекта)

Детектирование улыбки: результаты численных экспериментов

- Доля правильных ответов: 95.42% (около 13400 из 14000 картинок тестовой выборки были классифицированы правильно).
- Значение показателя AUC-ROC: 0.98, что говорит о высоком качестве работы алгоритма.

Детектирование улыбки: результаты численных экспериментов

Кла	ССЫ	Фактический класс		
Rolucedi		Улыбки	Неулыбки	
Предсказанный	Улыбки	6590	<u>246</u>	
класс	Неулыбки	<u>410</u>	6754	

Анализ ошибок		Метрики качества			
		Точность	Полнота	F-мера	
Классы	Улыбки	0,96	0,94	0,95	
	Неулыбки	0,94	0,96	<u>0,95</u>	

Распознавание эмоций: результаты численных экспериментов

- Доля правильных ответов: 92.29% (около 38800 из 42000 картинок тестовой выборки были классифицированы правильно).
- Согласно графику изменения функции потерь, алгоритм сходится, переобучения не происходит.

Распознавание эмоций: результаты численных экспериментов

		Фактический класс					
Классы		Улыбка	Удивление	Презрение	Заинтересова нность	Крик	Спокойствие
Предсказанный класс	Улыбка	6471	48	68	8	4	136
	Удивление	87	6715	3	1	47	30
	<u>Презрение</u>	102	28	<u>6006</u>	<u>556</u>	34	61
	Заинтересова <u>нность</u>	143	20	<u>749</u>	<u>6112</u>	12	184
	Крик	53	98	48	22	6903	26
	Спокойствие	144	91	126	301	0	6563

Распознавание эмоций: результаты численных экспериментов

Анализ ошибок		Метрики качества			
		Точность	Полность	F-мера	
Классы	Улыбка	0,96	0,82	0,94	
	Удивление	0,98	0,96	0,97	
	<u>Презрение</u>	<u>0,89</u>	<u>0,86</u>	<u>0,87</u>	
	Заинтересованность	<u>0,85</u>	<u>0,87</u>	<u>0,86</u>	
	Крик	0,97	0,99	0,98	
	Спокойствие	0,91	0,92	0,92	

Труднораспознаваемые классы эмоций

а) Заинтересованность

б) Презрение

Предварительные результаты работы

- Разработаны алгоритмы детектирования улыбки и распознавания эмоций
- Доля правильных ответов для каждой из задач составила 95.42% и 92.29% соответственно
- Значение F-меры превысило 0.85 для каждого класса, что говорит о высоком качестве работы алгоритма
- Наиболее трудно распознаваемые типы эмоций «Заинтересованность» и «Презрение». Это объясняется схожестью многих представленных базе экземпляров этих классов

Развитие проекта

• Апробация алгоритма на снимках, полученных с реальных камер видеонаблюдения [в процессе]

• Распознавание жестов для более точного прогнозирования индивидуального поведения человека [в процессе]

Разработка алгоритмов прогнозирования индивидуального поведения на основе визуального распознавания эмоций

Леонид Ивановский, аспирант