2013 - 2014

Filière Master 2 GIL

Épreuve Applications Web et sécurité

Durée 2 heures **Documents autorisés** Aucun

Exercice 1 (10 points)

- Quel est principe du chiffrement One-Time Pad? Donnez ses avantages et ses inconvénients.
- 2. À quel type de chiffrement appartient le DES? Quelle attaque a remis principalement en cause le DES? Quel est son remplaçant aujourd'hui?
- 3. Citez deux problèmes mathématiques difficiles utilisés pour construire des systèmes de chiffrement. Donnez un exemple de système pour chaque problème.
- 4. Que signifie pour un système cryptographique d'avoir κ bits de sécurité?
- 5. Que signifie pour système de chiffrement d'être *hybride*? Pourquoi existe-t-il? Donnez un exemple de votre choix.
- 6. Quel est le but du protocole de DIFFIE-HELLMAN? Rappelez son principe.
- 7. Donnez la définition d'une fonction à sens unique? Sait-on en construire (si oui, donnez alors un exemple de fonction)?
- 8. Quelles sont les principales méthodes actuelles pour authentifier un individu?
- 9. Que signifie et pourquoi utilise-t-on la certification de clef publique?
- 10. On imagine qu'une banque souhaite proposer une application web qui permette à ses clients de gérer leur compte courant au moyen d'un navigateur. Dîtes quelles sont les contraintes sécuritaires que l'application doit satisfaire?

Exercice 2 (2 points) Rappeler les paramètres du système de chiffrement RSA(n,e). On suppose que le même message m est chiffré deux fois (pour deux personnes différentes) avec les clefs (n, e_1) et (n, e_2) . Les chiffrés sont respectivement c_1 et c_2 . On suppose de plus que le $PGCD(e_1, e_2) = 1$.

- 1. Montrer que l'on peut retrouver m à partir c_1 et c_2 .
- 2. Quelles solutions préconisez-vous pour éviter ce genre d'attaque?
- 3. Appliquer cette attaque lorsque les clefs RSA sont (493,3) et (493,5), et les chiffrés sont respectivement 293 et 421.

Exercice 3 (3 points) On suppose que l'on essaye d'améliorer la sécurité d'un système de chiffrement *symétrique* $(f_K)_{K\in\mathcal{K}}$ (on peut penser au DES) avec $f_K:\{0,1\}^n\to\{0,1\}^n$ dont les clés trop courtes n'interdisent pas une recherche exhaustive en chiffrant deux fois :

$$M \longmapsto C = f_{K_2}(f_{K_1}(M)).$$

- 1. Quelle est la taille de la nouvelle clé?
- 2. On considère l'attaque suivante : Oscar connaît M et $C = f_{K_2}(f_{K_1}(M))$ et crée deux listes

$$\mathcal{L}_{\mathcal{M}} = (f_{\mathcal{K}}(\mathcal{M}))_{\mathcal{K} \in \mathcal{K}}$$
 et $\mathcal{L}_{\mathcal{C}} = (f_{\mathcal{K}}^{-1}(\mathcal{C}))_{\mathcal{K} \in \mathcal{K}}$

Dites quel est le type de cette attaque, et ce que doit rechercher Oscar dans ces listes.

3. Pouvez-vous donner la complexité de cette attaque *i.e.* le nombre de comparaisons nécessaires (*Indic.* Les listes étant triées $\rightsquigarrow n \times \#\mathcal{K}$)?

Exercice 4 (5 points) Dans un protocole d'identification, une entité P que l'on appelle prouveur doit prouver son identité à une entité V que l'on appelle vérifieur. P choisit un secret s et publie $I=\alpha^s \mod p$ où α est un générateur de ' \mathbb{Z}_p^* et p un nombre premier. Ces données sont publiques et on suppose que I identifie P. L'objectif du protocole suivant est de prouver que P connaît le secret s sans le révéler à V:

- ii. (**Défi**) : V choisit un bit aléatoire $\varepsilon = 0, 1$ et le communique à P
- iii. (**Réponse**) : P donne x à V où : — $x = r \mod (p-1)$ si $\varepsilon = 0$ — $x = (r+s) \mod (p-1)$ si $\varepsilon = 1$
- iv. (Vérification): V calcule $X = \alpha^x \mod p$ et vérifie que R = X quand $\varepsilon = 0$ et $X = R \times I$ quand $\varepsilon = 1$.

Un attaquant P^* cherche à se faire passer pour P auprès de V sans connaître s.

- 1. Sur quel problème repose la sécurité de ce protocole?
- 2. Montrer que si P^* choisit $r \mod (p-1)$ comme engagement, il ne peut alors répondre correctement que si $\varepsilon = 0$.
- 3. Montrer que si dans la phase d'engagement P^* tire $r \mod (p-1)$ aléatoire et envoie $RI^{-1} \mod (p-1)$, il peut répondre correctement uniquement quand $\varepsilon = 1$.
- 4. En déduire que si V répète k fois le protocole, P^* se fait passer pour P avec une probabilité de $\frac{1}{2k}$.
- 5. Pourquoi ce protocole est à divulgation nulle de connaissance?