Homework #4

- 1. Consider an infinite square well that runs from 0 to a. As a perturbation, we place a delta-function bump at the center of the well, $\hat{H}' = \alpha \delta(x a/2)$ where α is a constant.
 - (a) Determine the first-order correction to the allowed energies. Why are the energies for even n unperturbed?
 - (b) Determine the first three non-zero terms in the perturbation expansion, $\psi_n^1 = \sum_{m \neq n} \frac{\langle \psi_m^0 | \hat{H}' | \psi_n^0 \rangle}{(E_n^0 E_m^0)} \psi_m^0$, of the correction to the ground state ψ_1^1 .
- 2. The allowed energies for the harmonic oscillator are $E_n = (n+1/2)\hbar\omega$ where $\omega = \sqrt{k/m}$ is the classical frequency and the potential energy is $V(x) = (1/2)kx^2$. Suppose the spring constant increases slightly, $k \to (1+\epsilon)k$.
 - (a) Determine the exact new energies, then expand your formula as a power series in ϵ up to second order.
 - (b) Calculate the first-order perturbation to the energy using $E_n^1 = \langle \psi_n^0 | \hat{H}' | \psi_n^0 \rangle$. To perform this calculation, you will need to determine what \hat{H}' is in this case. Compare you result with your result from part (a).