[Annexure] Predicting Anti-Microbial Peptides (AMP) through ensemble-based machine learning approach

Atharva Mandar Phatak 1,† , G K Harish Balaji 2,† , Sanjeev M 3,† , Hrutik Ravindra Pawar 4,† , Kritika M 5,† and Ramavat Yamuna 6,†

Tables

Table 1: Feature Information

Feature Name	Feature Description
APAAC (1-28)	The Pseudo Amino Acid Composition, that reflect some sequence-order information via a series of rank-different correlation factors
А	Percentage of Alanine residue present in the sequence
R	Percentage of Arginine residue present in the sequence
N	Percentage of Asparagine residue present in the sequence
D	Percentage of Aspartic Acid residue present in the sequence
С	Percentage of Cysteine residue present in the sequence
Q	Percentage of Glutamine residue present in the sequence
E	Percentage of Glutamic Acid residue present in the sequence
G	Percentage of Glycine residue present in the sequence

¹ BE21B009

² BE21B017

³ BE21B034

⁴BE21B026

⁵ BE21B022

⁶ BE21B030

[†]These authors contributed equally to this work

Н	Percentage of Histidine residue present in the sequence		
I	Percentage of Isoleucine residue present in the sequence		
L	Percentage of Leucine residue present in the sequence		
К	Percentage of Lysine residue present in the sequence		
М	Percentage of Methionine residue present in the sequence		
F	Percentage of Phenylalanine residue present in the sequence		
Р	Percentage of Proline residue present in the sequence		
S	Percentage of Serine residue present in the sequence		
Т	Percentage of Threonine residue present in the sequence		
W	Percentage of Tryptophan residue present in the sequence		
PolarizabilityC1	Percentage of Class 1 (Value 0 - 0.108) residues based on polarizability present in the sequence		
PolarizabilityC2	Percentage of Class 2 (Value 0.128 - 0.186) residues based on polarizability present in the sequence		
Percentage of Class 3 (Value 4.03 - 8.08) residues based on polari present in the sequence			
SolventAccessibilityC1 Percentage of Class 1 (Buried) residues based on solvent accessibility in the sequence			
SolventAccessibilityC2	Percentage of Class 2 (Exposed) residues based on solvent accessibility present in the sequence		
SolventAccessibilityC3 Percentage of Class 3 (Intermediate) residues based on solvent access present in the sequence			

	,	
SecondaryStrC1	Percentage of Class 1 (Helix) residues based on occurrence in protein secondary structure prediction present in the sequence	
SecondaryStrC2	Percentage of Class 2 (Strand) residues based on occurrence in protein secondary structure prediction present in the sequence	
SecondaryStrC3	Percentage of Class 3 (Intermediate) residues based on occurrence in protein secondary structure prediction present in the sequence	
ChargeC1	Percentage of Class 1 (Positive) residues based on charge present in the sequence	
ChargeC2	Percentage of Class 2 (Neutral) residues based on charge present in the sequence	
ChargeC3	Percentage of Class 3 (Negative) residues based on charge present in the sequence	
PolarityC1	Percentage of Class 1 (Value 4.9 - 6.2) residues based on polarity present in the sequence	
PolarityC2	Percentage of Class 2 (Value 8.0 - 9.2) residues based on polarity present in the sequence	
PolarityC3	Percentage of Class 3 (Value 10.4 - 13) residues based on polarity present in the sequence	
NormalizedVDWVC1	Percentage of Class 1 (Volume 0 - 2.78) residues based on normalized van der Waals volume present in the sequence	
NormalizedVDWVC2	Percentage of Class 2 (Volume 2.95 - 4.0) residues based on normalized van der Waals volume present in the sequence	
NormalizedVDWVC3	Percentage of Class 3 (Volume 4.03 - 8.08) residues based on normalized van der Waals volume present in the sequence	
HydrophobicityC1	Percentage of Class 1 (Polar) residues based on polarity present in the sequence	

HydrophobicityC2	Percentage of Class 2 (Neutral) residues based on polarity present in the sequence
HydrophobicityC3	Percentage of Class 3 (Hydrophobic) residues based on polarity present in the sequence

Table 2 : Descriptive Statistics Results

Statisti c	APAA C13	APAA C6	М	E	APAA C17	D	APAA C23	APAA C15	APAA C24	Q
Mean	2.0836 63	4.4781 75	2.1290 65	4.5917 95	4.2304 92	3.3415 69	-0.1987 66	3.9751 53	-0.1695 04	2.8930 20
Median	1.6135 00	3.9310 00	1.6530 00	4.0000 00	3.9965 00	2.8570 00	-0.0250 00	3.1460 00	-0.0100 00	2.4610 00
Mode	0.0000	0.0000	0.0000 00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Skewn ess	2.2101 22	1.2089 86	2.1113 51	1.3130 39	1.4280 17	4.0667 32	-0.3171 74	4.3802 12	-0.8439 88	2.4279 90
Kurtosi s	12.459 285	2.9142 27	10.814 811	3.4488 23	5.9191 00	72.435 296	11.785 018	36.967 099	12.889 921	20.843 188
25th Percen tile	0.0000	0.0000	0.0000 00	0.0000	1.1680 00	0.0000	-0.7160 00	1.1680 00	-0.6140 00	0.0000
50th Percen tile	1.6135 00	3.9310 00	1.6530 00	4.0000 00	3.9965 00	2.8570 00	-0.0250 00	3.1460 00	-0.0100 00	2.4610 00
75th Percen tile	3.2692 50	6.9292 50	3.3330 00	7.0420 00	6.2800 00	5.3330 00	0.5560 00	5.3680 00	0.4360 00	4.3960 00

Table 3: Inferential Statistics Results

Featur e	Z-score	P-value	T-statisti c	P-value	F-statistic	P-value	U-statisti c	P-val ue
APAAC 13	88.57379 0	0.000000e +00	90.18624 9	0.000000e +00	8133.5595 72	0.000000e +00	74522391 8.0	0.0
APAAC 6	109.7130 45	0.000000e +00	110.0612 00	0.000000e +00	12113.467 668	0.000000e +00	73879710 2.0	0.0
M	89.48039 8	0.000000e +00	91.02760 9	0.000000e +00	8286.0255 34	0.000000e +00	74464402 8.0	0.0
E	106.9388 89	0.000000e +00	107.3799 89	0.000000e +00	11530.462 142	0.000000e +00	73877120 5.5	0.0
APAAC 17	50.04729 0	0.000000e +00	51.30922 0	0.000000e +00	2632.6360 99	0.000000e +00	63630016 9.5	0.0
D	78.63974 2	0.000000e +00	79.88585 6	0.000000e +00	6381.7500 63	0.000000e +00	70201787 2.0	0.0
APAAC 23	42.92022 5	0.000000e +00	44.78842 4	0.000000e +00	2006.0029 26	0.000000e +00	57896871 3.0	0.0
APAAC 15	-6.22776 9	4.731246e- 10	-6.46663 2	1.009584e- 10	41.817336	1.009584e- 10	56555036 6.0	0.0
APAAC 24	50.26704 3	0.000000e +00	52.38968 3	0.000000e +00	2744.6788 75	0.000000e +00	60471252 7.0	0.0
Q	45.46430 9	0.000000e +00	46.31359 4	0.000000e +00	2144.9489 58	0.000000e +00	65347108 5.5	0.0

Table 4 : Top 10 features(obtained using Recursive Feature Elimination)

Feature	RFE_Rank	Column_Number
APAAC13	1	13
APAAC6	2	6
М	3	41
Е	4	34
APAAC17	5	17
D	6	32
APAAC23	7	23
APAAC15	8	15
APAAC24	9	24
Q	10	35

Table 5: Groupings of amino acids based on the physical properties

Property	Class 1 (C1)	Class 2 (C2)	Class 3 (C3)	
Hydrophobicity	Polar	Neutral	Hydrophobic	
Peptides	R, K, E, D, Q, N	G, A, S, T, P, H, Y	C, L, V, I, M, F, W	
Normalized van der Waals	Volume range 0-2.78	Volume range 2.95-4.0	Volume range 4.03-8.08	
Peptides	G, A, S, T, P, D	N, V, E, Q, I, L	M, H, K, F, R, Y, W	
Polarity	Polarity value 4.9-6.2	4.9-6.2 Polarity value 8.0-9.2 Polarity value 10.4		
Peptides	L, I, F, W, C, M, V, Y	P, A, T, G, S	H, Q, R, K, N, E, D	
Polarizability	Polarizability value	Polarizability value 186	Polarizability value 409	
Peptides	G, A, S, D, T	C, P, N, V, E, Q, I, L	K, M, H, F, R, Y, W	
Charge	Positive	Neutral	Negative	
Peptides	K, R	A, N, C, Q, G, H, I, L, M, F, P, S,	D, E	
Secondary structure	Helix	Strand	Coil	
Peptides	E, A, L, M, Q, K, R, H	V, I, Y, C, W, F, T	G, N, P, S, D	
Solvent accessibility	Buried	Exposed	Intermediate	
Peptides	A, L, F, C, G, I, V, W	P, K, Q, E, N, D	M, P, S, T, H, Y	

Figures

Figure 1 : Violin Plots

Figure 2 : Pair plots

Figure 3 : Jitter plots

Figure 4 : Histograms

Figure 5 : Density Plots

Figure 6 : Box plots

Contributions

Team Member	Roll No.	Contribution
Atharva Mandar Phatak	DE31D000	Literature review, Feature Compilation, Feature Extraction, Feature selection, Report
Attidiva ividiludi Pilatak	DEZIBOUS	Writing, Report Formatting, Presentation.
		Literature review, Report writing , Formatting, Presentation, Data Preprocessing, Dataset
G.K Harish Balaji	BE21B017	Compilation, Data Analysis (Descriptive, Visual and Inferential Statistics) and
		Interpretation.
Krithika M	BE21B022	Literature Review, Visual analysis, Data Compilation, Presentation, Report writing,
Kritnika ivi		Report Formatting.
Hrutik Ravindra Pawar	BE21B026	Literature review, Data collection and preprocessing, Features reduction, Report
Hrutik Kavinura Pawar		Writing, Report Formatting, Preliminary Analysis, Presentation
Yamuna Ramavath	BE21B030	Literature review, Descriptive statistics, Report writing, Report Formatting, Compilation
ramuna Kamavatn		and Analysis
Canicay M	BE21B034	Literature review, Report writing, Report formatting , Model development, Sequence-
Sanjeev M.		descriptor extraction, Managed Github repository, Developed streamlit website tool