Видалення λ-переходів

Щоб перейти від вихідного скінченного автомата $M = \langle Q, \Sigma, \Delta, I, F \rangle$ до еквівалентного скінченного автомата $M' = \langle Q', \Sigma, \Delta', I', F' \rangle$ без λ -переходів, достатньо у вихідному графі M здійснити такі перетворення.

1. Всі стани, крім початкового, в які заходять тільки дуги з міткою λ , видаляються; тим самим визначається множина Q' скінченного автомата M '. Зрозуміло, що $Q' \subseteq Q$. При цьому вважаємо, що початковий стан залишається попереднім.

2. Множина дуг скінченного автомата M' та їх міток (тим самим і функція переходів M') визначається так: для довільних двох станів $p,r \in Q'$ перехід з $p \in P$ по дузі з міткою a:

 $p \rightarrow r$

має місце тоді і тільки тоді, коли $a \in \Sigma$, а в графі М існує дуга з р в г, мітка якої символ a або існує такий стан q, що $p \Rightarrow_{\lambda}^{+} q$ і $q \xrightarrow{q} r$.

При цьому вершина q, взагалі кажучи, може не належати Q' і надалі бути видалена в процесі подальшого видалення λ переходів.

Якщо ж $q \in Q'$ (тобто крім дуги з міткою λ до нього входить принаймні одна дуга з міткою $b \in \Sigma$, $b \neq \lambda$), природно, в M' збережеться дуга $p \xrightarrow{a} r$ і символ a буде одним з символів, що належать мітці цієї дуги.

3. Множина заключних станів F' скінченного автомата M' містить всі стани $q \in Q'$, які або належали до заключних станів початкового автомата M, або з яких веде шлях ненульової довжини з q в заключний стан $f \in F$ початкового автомата M з міткою шляху λ

