浙江工业大学 2009/2010 学年第一学期期终试卷 人工智能及其应用 A卷

课程	人工	智能及其	其应用	姓名	, 1 		
学号				得分			
		(清	考生注:	意: 本	试卷共	4 页)	
题序			<u></u>	四	五.	六	总分
计分							
一、单选	题 (本語	返共 8 小是	题, 每题	2分,共	(16 分)		
1. 在谓词	司公式中	, 连接词	的优先级	別从高到	到低排列;	是 ()。
Α	\neg , \vee ,	∧ , -	→ ,	В.	\wedge , \vee	, ¬, →	\leftrightarrow
C	\neg , \wedge ,	\vee , \leftrightarrow	→	D.	\neg , \wedge	, \/,	\rightarrow , \leftrightarrow
,		,用(B.					系。). 属性联系
(域上是不可满			を対する	个体变量域 D 上是
4. 假设的推理过		「满足的,	则()	一个归结	结推理规	则的从 S 到空子句
A. 7	字在	B. 不	存在	C. 5	无法确定		
5. 在主观	見 Bayes [方法中,	几率 O(x))的取值₹	范围为 ()。
A. [-1, 1]	B. [0	, 1]	C. [[-1, ∞)	D.	$[0, \infty)$
6. 在可信结论 H 为		中 <i>,CF</i> (H, E)	的取值为	() 时,	前提E为真不支持
A. 1	-	B. 0		C. <0		D. >0	
7. 在深度	更优先搜	索策略中	, open 表	是是()	的数据结	构。
A. 5 8. 归纳护	走进先出 连理是(B. 先进) 的推:		C	.根据估值	介函数值重排
	人一般到			一。 个别到一	般 C	. 从个别	到个别

二、多选题(本题共5小题,每题2分,共10分)
1. 人工智能研究的三大学派是()。
A. 符号主义 B.进化主义 C.任知主义 D.连接主义
2. 对于框架表示法,下面叙述正确的是()。
A. 框架中,一个槽用于描述所论对象某一方面的属性,一个侧面用于描述相
应属性的一个方面。
B. 槽值可以是另一个框架的名字,从而实现一个框架对另一个框架的调用,
表示出框架之间的纵向联系。
C. 框架系统中问题的求解主要是通过匹配与填槽实现的。
D. 框架表示法不能表示具有因果关系的知识。
3. 在主观 Bayes 推理中,充分性度量 LS 和必要性度量 LN 的取值下面哪些是仓
理的 ()。
A. LS>1, LN>1 B. LS>1, LN<1
C. LS<1, LN>1 D. LS<1, LN=1
4. 下面对专家系统叙述错误的是: ()。
A. 专家系统是运用知识和推理来解决问题的;
B. 专家系统是把关于问题求解的知识隐含于程序中的;
C. 专家系统不具有透明性,无法回答用户"Why"和"How"等问题。
D. 利用骨架系统开发专家系统,相对于其他开发工具,其效率是最高的,
灵活性是最好的,局限性也是最少的。
5. 下面对机器学习方法叙述正确的是: ()。
A. 解释学习需要环境提供一组示例,而示例学习只要环境提供一个示例;
B. 机械式学习是没有推理能力的。
C. 符号学习对模拟人类较低级的神经活动是比较有效的。
D. 观察与发现学习是基于归纳推理的。
三、填空题(本题共 5 小题,每个空格 1 分,共 14 分)
1. 产生式系统一般由三个基本部分组成:、、、
o

- 3. 若用三层 BP 神经网络解决字母 T 和 L 的识别问题。每个字母用 3×3 二维二值图表示,令黑方格为 1, 白方格为 0。要求网络输出为 1 时,对应的字母是 T; 而输出为 0 时,对应的字母是 L。因此该 BP 神经网络的输入层应包含______个神经元,输出层应包含______个
- 4. BP 学习算法的学习过程包括两个过程,它是通过______ 过程使误差最小。
- 5. 遗传算法的基本操作算子包括____、___、___、___。

四、(8分)设A、B、C 三人中有人从不说真话,也有人从不说假话。某人向这三人分别提出用一个问题:"谁是说谎者?"A 答:"B 和 C 都是说谎者";B 答:"A 和 C 都是说谎者";C 答:"A 和 B 至少一个是说谎者"。试用归结原理证明 C 是老实人,即 C 从不说假话。(提示:定义谓词 T (x)表示 x 说真话。)

五、(8分)设有如下一组推理规则

 $r_1: \text{ IF } E_1 \text{ THEN } E_2 \quad (0.5)$

 r_2 : IF E_2 AND E_3 THEN E_4 (0.8)

 r_3 : IF E_4 THEN H (0.7)

 r_4 : IF E_3 OR E_5 THEN H (0.9)

且已知 $CF(E_1) = 0.5$, $CF(E_3) = 0.6$, $CF(E_5) = 0.5$, 用可信度方法计算 CF(H),并画出推理网络。

六、 $(10 \, \text{分})$ 用 A^* 搜索算法求解八数码难题,其初始状态和目标状态分别如下图所示。

- (1) 试确定求解该问题的 A*算法的估价函数,给出相应的搜索图(图中需标注 各状态的估价值),以及问题的最优解。
- (2) 说明 A^* 搜索算法与 A 搜索算法的区别。

七、(10分)设有模糊控制规则: "如果温度低,则将风门开大"。设温度和风门开度的论域为{1,2,3,4,5}。"温度低"和"风门大"的模糊量可以表示为

$$A=$$
"温度低"= $\frac{1}{1}+\frac{0.6}{2}+\frac{0.3}{3}+\frac{0}{4}+\frac{0}{5}$, $B=$ "风门大"= $\frac{0}{1}+\frac{0}{2}+\frac{0}{3}+\frac{0}{4}+\frac{0}{5}$ 已知事实 "温度较低",可以表示为

$$A' = "温度较低" = \frac{0.8}{1} + \frac{1}{2} + \frac{0.6}{3} + \frac{0.4}{4} + \frac{0}{5}$$

试用模糊推理确定风门开度。要求:

- (1) 确定模糊控制规则的蕴含关系 R。
- (2) 确定"温度较高"时"风门开度"的模糊量(其中合成采用最大一最小合成法)。
- (3)给出(2)所得模糊量的 Zadeh 表示,并用加权平均判决法进行模糊决策,给出"风门开度"的清晰量。

八、(8分)已知离散 Hopfield 神经网络的连接权值矩阵为

$$W = \begin{bmatrix} 0 & -\frac{2}{3} & \frac{2}{3} \\ -\frac{2}{3} & 0 & -\frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & 0 \end{bmatrix}$$

各神经元的阈值取为 0。任意给定一个初始状态 $V(0)=\{-1,-1,1\}$,请确定其所对应的一个稳定状态。

九、(16分)已知一个非线性函数:

$$f(x_1, x_2) = 10(x_1^2 - x_2)^2 + (1 - x_1)^2$$
$$0 \le x_i \le 2.5 \qquad i = 1, 2$$

- 1) 若用连续 Hopfield 神经网络(CHNN)求解其最小值,要求画出 CHNN 的 网络结构图(图中需标注各神经元的输入连接权和阈值),给出神经元的输出变换函数,以及求解上述问题的计算能量函数;(6分)
 - 2) 用遗传算法(GA) 求解其最小值,若采用二进制编码,试确定染色体的长度,设计GA的适应度函数,并说明适应度函数在GA中的作用;(5分)
 - 3)分别给出 CHNN和 GA 求解上述问题的主要求解步骤。(5分)