Cybersecurity Incident Report: Phishing & Simulated DDoS

1. Introduction

On May 11, 2023, Servidae Industries experienced a targeted phishing attack leading to a compromised workstation. Additionally, a separate simulated Distributed Denial of Service (DDoS) attack was conducted on a local machine for testing purposes. The Security Operations Center (SOC) detected abnormal network behavior and unauthorized access attempts, prompting an in-depth investigation using forensic tools such as Wireshark, Splunk, and Kibana. This report details the findings, root cause analysis, mitigation measures, and recommendations to strengthen the organization's security posture.

2. Incident Summary

- Incident 1: Simulated DDoS Attack
 - **Type**: SYN Flood
 - o **Date & Time**: May 11, 2023, 13:59 UTC
 - o Tools Used for Analysis: Wireshark, Splunk, Kibana
 - Affected System: 10.0.2.3 (Local Machine)
 - Attack Source: Multiple IPs, primarily 127.0.0.1 (localhost simulation)
 - Impact: High packet loss (100%), excessive SYN requests, potential service unavailability
- Incident 2: Compromised Workstation
 - o **Date & Time**: May 11, 2023, 18:45 19:01 UTC
 - Affected System: Bill Smith's workstation (SERVIDAE-BOB-FIN-04)
 - Detection Method: EndDefender EDR alert for suspicious network activity and unauthorized remote access
 - Root Cause: Phishing attack via email containing a malicious PDF attachment
 - Impact: Unauthorized access, credential theft, remote access trojan (RAT) installation

3. Attack Details

3.1 Start a local web server on port 80

"sudo python3 -m http.server 80"

3.2. Attack Simulation Command

The attack was simulated using hping3:

"sudo hping3 -c 1000 -d 120 -S -w 64 -p 80 --flood 10.0.2.3"

• Type: SYN Flood

• Packet Count: 1,000 SYN packets

Target IP: 10.0.2.3Port: 80 (HTTP)

4. Forensic Analysis

4.1. Wireshark Analysis

1. tcp.port == 80: This shows all packets targeting port 80.

2. tcp.flags.syn == 1 and tcp.flags.ack == 0

This filters only **SYN packets**, which are part of the DoS attack.

4.1.1 Key Indicators of a DoS Attack

a) High Volume of SYN Packets

Using the second filter **thousands of SYN packets** with no corresponding SYN-ACK responses are seen. This confirms a **SYN flood attack**, a common DoS method.

b) Increased Network Traffic

The packet rate over time visualized in IO Graphs shows sparks which is a clear DoS signature.

c) Check TCP Conversations

127.0.0.1 sending thousands of requests with no response. This is the attacking machine.

d) No or Few SYN-ACK Responses

Normal TCP communication should follow a 3-way handshake:

- 1. $SYN \rightarrow from client to server$
- 2. **SYN-ACK** \rightarrow from server to client
- 3. $ACK \rightarrow$ from client to server

In a DoS attack, the server gets overwhelmed and **does not send SYN-ACK responses** or drops them due to the high load.

4.2 Splunk Analysis

Step1. Setup and start splunk tool:

"sudo /opt/splunk/bin/splunk start"

Step2. Convert .pcapng to CSV

"tshark -r ddostest.pcapng -T fields -e frame.time -e ip.src -e ip.dst -e tcp.flags.syn -e tcp.dstport -E separator=, > attack.csv"

Step3. Import CSV into Splunk

In Splunk, go to **Settings** > **Add Data** > **Upload**.

Step4. Choose attack.csv and follow the import process.

Step5. Use Splunk search queries to analyze the network traffic.

Additional search output

Search processing Language used to analyze windowslogs in hackthebox machine

(https://tryhackme.com/room/splunkexploringspl)

a. Index = "windowslogs"

Retrieves all logs from windows logs without any filters. In the SourceIp field on left side it shows the SourceIP that recorded max events.

b. index=windowslogs "cyber*"

Searches for events in windowslogs where any field contains a word starting with "cyber" (e.g., "cyberattack", "cybersecurity").

c. index=windowslogs | table EventID User Image Hostname | dedup EventID Retrieves EventID, User, Image, and Hostname from windowslogs, removes duplicate EventID values, and displays the result as a table.

d. *index=windowslogs* | *table_time EventID Hostname SourceName* | *sort SourceName* Displays_time, EventID, Hostname, and SourceName fields as a table, sorted alphabetically by SourceName.

e. index=windowslogs | rare limit=4 User

Finds the 6 least frequently occurring User values in the windowslogs index.

f. index=windowslogs | chart count by Image

Creates a chart showing the count of events grouped by Image (process names).

4.3 Kibana Analysis

Accessing Kibana :log in kibana using the kibana credentials

Kibana homepage

TASK DONE:

Q1:Update the date and time filter as specified. How many total **hits** were captured within the selected time period?

answer::

Q2: Look at the **Top values** under the **destination.ip** field. Which IP address stands out? **answer**:

Q3: Use an IP address lookup tool (such as iplocation.io). What country does this IP address originate from?

answer:

Q4: Which **process name** is running the most frequently on the compromised workstation? **answer:**

Q5: What was the **process ID (PID)** of the potentially malicious PowerShell script? **answer:**

Q6: What was the **parent process name** of the process that spawned powershell.exe? **answer**:

Q6: What is the domain name of the attacker's server hosting the winPEAS executable? answer:

Q7: What is the full path of the **HKEY_LOCAL_MACHINE** registry entry that was queried? **answer:**

Q8: What is the name of the malicious .msi file?

answer:

Q9: What is the **name** of the **user account** that the attacker created to maintain privileged access? **answer:**

Q10: What is the flag sent via **cURL** requests to the **evilparrot.thm** server? **answer:**

Q11: What is the **name** of the registry value that the attacker added? **answer:**

Q12: What was the **password** that the attacker used to access Bill's user account on the internal payroll website?

answer:

Q13: What **flag** was included within the **HTTP requests** during the attacker's successful logins? **answer:**

Q14: What was the **session cookie value** that the attacker included in the cURL request at **18:58:08.001**? **answer:**

Q15: What is the name of the sensitive file that the attacker downloaded? **answer:**

5. Root Cause Analysis

- **DDoS Attack**: A high volume of SYN packets from localhost overwhelmed the network.
- Compromised Workstation: A phishing email led to the execution of a malicious payload.

6. Mitigation Steps

- **DDoS Attack**: Adjusted firewall rules and rate-limiting settings.
- Compromised Workstation: Isolated the device, removed malware, and reset credentials

7. Recommendations

- **Security Awareness Training**: Educate employees on phishing and email security.
- Enhanced Email Filtering: Block malicious attachments and suspicious links.
- **DDoS Prevention**: Implement traffic monitoring and rate-limiting.
- Endpoint Security: Keep all systems updated with EDR solutions.

8. Conclusion

This investigation identified and mitigated two security incidents: a simulated DDoS attack on a local machine and a phishing-based workstation compromise. The SOC team successfully restored normal operations and reinforced security measures. Continuous monitoring and proactive security strategies remain essential to prevent future incidents.