115TITUZIONI DI ALG& GEOM, lezione 7

11-10-22

.52

Definizione 4. Siano G un gruppo e $A\subseteq G$ un suo sottoinsieme. L'insieme

$$\langle A \rangle = \bigcap_{\substack{H < G \\ H \supset A}} H$$

è un sottogruppo, ed è il più piccolo sottogruppo contenente A, detto sottogruppo generato da A.

Osserviamo che $\langle \{x\} \rangle = \langle x \rangle$.

Esercizio. Dimostrare che < A > è un sottogruppo.

din: Abbrano jui visto che l'intersezione di sottogruppi è sottogruppo

A E < A > per definizione

. Manca redere che (A7 è il più picrolo: sia AcH sottopruppo. Allora PHCH HCG Definizione 1. Siano G un gruppo e H e K due suoi sottogruppi. Si dice **sottogruppo** unione di H e K, e lo si indica con $H \lor K$, il minimo sottogruppo di G che li contiene entrambi.

Proposizione 2. Siano G un gruppo e H e K due suoi sottogruppi. Allora:

$$H \vee K = \{h_1k_1 \cdots h_nk_n \mid h_i \in H, k_i \in K\}.$$

Corollario 3. Siano G un gruppo abeliano e H e K due suoi sottogruppi. Allora

$$H \lor K = H + K = \{h + k \mid h \in H, k \in K\}.$$

dim proposizione 2:

. Sia S= hhiki hakal hiEH, KiEKY. Dobbiemo

redere :

$$x = h_1 k_1 - h_n k_n$$
 = $x \cdot y^{-1} = (h_1 k_1 - h_n k_n)(h_1^{\prime} k_1^{\prime} - h_m^{\prime} k_n^{\prime})^{-1} = y = h_1^{\prime} k_1^{\prime} + h_m^{\prime} k_n^{\prime}$

ii) Hukes: sia heH, ellora h.1 ES p n H k

iii) S è il più piccolo sottoprupo che contrene

HUK: sia L'un sottejruppe quebicsi, tele che

Hukel Allora, sia des

d 21 bro 10vivers coms.

d=h, k,-. h, k, ∈ l (l ē stebile)

Ricordiamo che dati due gruppi (G,\star) e (H,\star) , una funzione $f:G\to H$ è detta omomorfismo (o morfismo di gruppi) se per ogni $x,y\in G$ si ha:

$$f(x \star y) = f(x) * f(y).$$

Proposizione 5. Sia $f: G \mapsto G'$ un omomorfismo. L'immagine di un sottogruppo di G è un sottogruppo di G'.

dim: sie H<G sottopopo. Vediemo che

f(H) = sottopopo di G':

sieno x'y' \(\)

Corollario 6. Sia $f: G \mapsto G'$ un omomorfismo. Im(f) = f(G) è un sottogruppo di G'.

Proposizione 7. Sia $f: G \mapsto G'$ un omomorfismo. La retroimmagine di un sottogruppo di G' è un sottogruppo di G.

dim: sia H' < G' s. Hograppo. Vediano $f'(H') \in G$ e coltograppo:

Siano $x,y \in f'(H') = f(x), f(y) \in H' = 1$ $f(x) \cdot f(y)' = f(x \cdot y') \in H(=) \quad x \cdot y' \in f'(H')$

Definizione 8. Sia $f: G \mapsto G'$ un omomorfismo. Il nucleo di f, denotato con Ker(f), è l'insieme delle retroimmagini dell'elemento neutro di G':

$$Ker(f) = \{x \in G \mid f(x) = 1_{G'}\}. = \begin{cases} f'(x) = 1_{G'}\} \end{cases}$$

Corollario 9. Sia $f: G \mapsto G'$ un omomorfismo. Ker(f) è un sottogruppo di G.

Proposizione 10. Sia $f: G \mapsto G'$ un omomorfismo. Allora:

- 1. $f \in un \ epimorfismo \Leftrightarrow Im(f) = G';$

2) =>1 Sia f monomorfismo e sia
$$x \in G$$
 hale

che $J(x) = I_G$, J mono

 $X = I_G = I_G$
 J mono

$$\xi \int \sin n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \sin n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \sin n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \sin n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \sin n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \sin n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \sin n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \sin n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \sin n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y \in G \text{ fall the fix1: } f(y) = 1$$

$$\xi \int \cos n \circ x, y$$