# **REVIEW of Some Algebra Facts**

- $z^*$  is called a root of a polynomial  $\phi$  if  $\phi$  ( $z^*$ ) = 0.
- Polynomial  $\phi$  of order p has p roots,  $z_1$ , ...,  $z_p$ , some might be the same number. Then,  $\phi$  can be rewritten as

$$\phi(z) = 1 - \phi_1 z - \phi_2 z^2 - \dots - \phi_p z^p = (1 - \frac{1}{z_1} z) (1 - \frac{1}{z_2} z) \dots (1 - \frac{1}{z_p} z).$$

#### Check:

 $\phi(z) = 0$  iff  $(1 - \frac{1}{z_k}z) = 0$  for some k. This happens iff  $z = z_k = 0$  one of the roots of  $\phi$ .

### **Example:**

$$\phi(z) = 1 - 2.5z + 2z^2 - 0.5z^3$$
 has  $z_1 = z_2 = 1$  and  $z_3 = 2$  and can be written as  $\phi(z) = (1 - \frac{1}{2}z)(1 - z)^2$ .

A fact from calculus:  $\sum_{n=0}^{\infty}q^n$  is convergent iff  $|\mathbf{q}|<1$ . Then,  $\frac{1}{1-q}=\sum_{n=0}^{\infty}q^n$ .

Proof: As  $N\to\infty$ ,  $\sum_{n=0}^Nq^n=\frac{1-q^{N+1}}{1-q}\to\frac{1}{1-q}$  iff  $q^{N+1}\to0$ .  $q^{N+1}\to0$  iff |q|<1.

If  $|q|>1\Rightarrow |q|^{N+1}\to\infty$ , that is, the series does not converge. If q=1 the limit is 0/0.

## Some Algebra REVIEW and MA Representation for AR(p)

- Inverting polynomials:
- Let polynomial  $\phi$  of order p have roots,  $z_1$ , ...,  $z_p$ . Then,  $\phi$  can be rewritten as

$$\phi(z) = 1 - \phi_1 z - \phi_2 z^2 - \cdots - \phi_p z^p = (1 - \frac{1}{z_1} z) (1 - \frac{1}{z_2} z) \dots (1 - \frac{1}{z_p} z).$$

Then, 
$$\phi^{-1}(z) \equiv \frac{1}{\phi(z)} = \left\{ \frac{1}{1 - (1/z_1)z} \right\} \left\{ \frac{1}{1 - (1/z_2)z} \right\} \dots \left\{ \frac{1}{1 - (1/z_p)z} \right\}$$



$$\frac{1}{1-\frac{1}{z_k}z} = \sum_{n=0}^{\infty} \left(\frac{1}{z_k}z\right)^n, \ k=1,2,\ldots,p.$$

if  $|\frac{1}{z_k}z| < 1$ . This is guaranteed for all  $|z| \le 1$ , if  $|\frac{1}{z_k}| < 1 \Leftrightarrow |z_k| > 1$ .

Conclude:  $\phi^{-1}(z)$  has a convergent infinite series representation if its roots  $z_1$ , ...,  $z_p$  satisfy conditions:  $|z_k| > 1$ , k = 1, 2, ..., p. The infinite series is a product of geometric series corresponding to terms  $(1 - \frac{1}{z_k}z)^{-1}$ .

If 
$$\phi^{-1}(z) = \sum_{j=0}^{\infty} \psi_j z^j$$
, then  $\phi^{-1}(B) = \sum_{j=0}^{\infty} \psi_j B^j$  and therefore

X:  $\phi$  (B)  $X_t = Z_t$  has MA( $\infty$ ) representation  $X_t = \phi^{-1}$  (B)  $Z_t = \sum_{j=0}^{\infty} \psi_j \ B^j \ Z_t = \sum_{j=0}^{\infty} \psi_j \ Z_{t-j}$ . Condition: All roots  $z_1$ , ...,  $z_p$  of polynomial  $\phi$  satisfy conditions:  $|z_k| > 1$ , k = 1, 2, ..., p.



# Some Algebra REVIEW

For complex roots, condition  $|z_k| > 1$ , k = 1, ..., p, means that the roots  $z_1, ..., z_p$  of the polynomial  $\phi(z)$  lie outside of the unit circle:

#### Math facts:

 $z^*$  is a root of polynomial  $\phi(z)$  if it satisfies the characteristic equation:  $\phi(z^*) = 0$ . Roots of polynomial of order p > 1 may be complex and lie on a complex plane (x,y).

For z\*= x+iy, condition  $|z^*| = |\sqrt{\{x^2 + y^2\}}| > 1$  means that on the complex plane (x,y), z\* lies is outside the unit circle  $x^2 + y^2 = 1$ . Points z: |z| < 1 are inside the circle.

#### **Example:**

Roots of  $\phi(z) = 1 - 1.3z + 0.7z^2$  corresponding to AR(2):  $X_t = 1.3X_{t-1} - 0.7X_{t-2} + Z_t$ .

Roots are complex and are outside unit circle:

0.9285714+0.7525467i

0.9285714-0.7525467i

On the plot, these are red stars.

Blue stars are inversed roots  $\frac{1}{z_{k}}$ 

