1. Означення множини: відкритої, замкненої, зв'язної, області.

Множину D в R^n називають:

- а) відкритою, якщо кожна точка цієї множини міститься в D разом з деякою кулею з центром в цій точці;
- б) замкненою, якщо вона містить всі свої межові точки, тобто $\partial D \subset D$;
- в) зв'язною, якщо кожні її дві точки можна сполучити ламаною, яка повністю лежить в D;
- г) область це відкрита і зв'язна множина в просторі R^n
- 2. Означення просторів: неперервних функцій, неперервно диференційовних функцій.
- 1) якщо $M \subset R^n$, то $C(M) = \{u: M \to R | \forall x_0 \in M \lim_{M \in x \to x_0} u(x) = u(x_0)\}$
- 2) якщо $M \in N$, то $C^m (< a, b >)$
- 3. Що таке ліво- та правостороння похідна?

Якщо існує скінченна границя $\lim_{\Delta x \to +0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$, то цю границю називають правосторонньою похідною функції y = f(x) у точці x_0 і позначають $f'_+(x_0)$. (лівостороння прямує до -0).

4. Яка заміна змінних на площині називається невиродженою?

$$\xi=m{\xi}(x,y), m{\eta}=m{\eta}(x,y)$$
є невиродженою => $\frac{D(\xi,\eta)}{D(x,y)}=$ визначник $|\xi'x\;\xi'y;\;\eta'x\;\eta'y|\neq 0$ в D

- 5. Означення того, що функція задовольняє умову Ліпшиця.
- $f: D \to R$ задовольняє в D ум. Л. за змінною y, якщо існує таке число L>0, що для всіх (x, y_1) , (x, y_2) ∈ Dвиконується нерівність $|f(x, y_1) - f(x, y_2)| \le L|y_1 - y_2|$
- 6. Теорема про достатні умови того, що функція задовольняє умову Ліпшиця.

Якщо функція f(x,y) у випуклій області G має обмежену часткову похідну по y, то $f \in Lip_{\nu}(G)$.

Деякі загальні питання теорії диференціальних рівнянь

7. Означення диференціального рівняння порядку п.

Співвідношення вигляду $G(x, y(x), y'(x), y''(x), \dots, y^{(n)}(x)) = 0$ між незалежною змінною х, невідомою функцією у(х) та її похідними до порядку п включно, називається звичайним диференціальним *рівнянням n-го порядку*, якщо похідна $v^{(n)}$ дійсно є в рівнянні.

8. Вигляд диференціального рівняння першого порядку в нормальній формі.

Рівняння y' = f(x, y) називається диференціальним рівнянням 1-го порядку в нормальній формі.

9. Що таке розв'язок диференціального рівняння першого порядку в нормальній формі? Нехай D - множина з R^2 . Функція $y = \varphi(x)$, х є <a,b> називається розв'язком диф. рів. 1-го порядку в нормальній формі на проміжку <a,b> якщо:

1)
$$\varphi \in C^1(\langle a, b \rangle);$$

2) $\forall x \in \langle a, b \rangle : (x, \varphi(x)) \in D;$
3) $\forall x \in \langle a, b \rangle : \varphi'(x) = f(x, \varphi(x));$

10. Вигляд диференціального рівняння першого порядку в симетричній формі.

Вираз M(x,y)dx + N(x,y)dy = 0 називається диф. рів. 1-го порядку в симетричній формі.

11. Що таке розв'язок диференціального рівняння першого порядку в симетричній формі? Функція $y = \varphi(x)$, x є <a,b> називається розвязком диф. рів. 1-го порядку в симетричній формі на проміжку <a,b> якщо:

```
1)\varphi \in C^1(\langle a, b \rangle);
2)\forall y \in \langle a, b \rangle : (\varphi(x), y) \in D;
3) \forall y \in \langle a, b \rangle : M(\varphi(x), y)\varphi'(y)dy + N(\varphi(y), y)dy = 0.
```

12. Означення загального розв'язку диференціального рівняння першого порядку.

Однопараметричну сім'ю функцй $y = \varphi(x, C), x \in I_C$; де параметр C пробігає деяку множину P \subset R, називаємо загальним розв'язком ДР, якщо

1) для всіх С є Р функія φ є розвязком ДР на I_C

2) для кожного розвязку z ДР існують такі $C_0 \in P \text{ та } I_{C_0} \subset R$, що $z(x) \equiv \varphi(x, C_0)$ для всіх $x \in I_{C_0}$.

13. Що таке інтеграл диференціального рівняння першого порядку?

Функцію U = U(x, y)з областю визначення $\Omega \subset R^2$ та множиною значень $R \subset R^1$ називаємо інтегралом диф. рів. y' = f(x,y) чи M(x,y)dx + N(x,y)dy = 0, якщо: $1)\Omega \subset D$; $2) \forall C \in R$ рівність U(x,y) = C неявно задає розвязок $y = \varphi(x)$ на деякому інтервалі $I \subset R^1$.

14. Означення загального інтегралу диференціального рівняння першого порядку.

Запис вигляду U(x,y) = C називається загальним інтегралом ДР.

15. Що таке поле напрямків диференціального рівняння першого порядку в нормальній

Нехай $D \subset R^2$ - область, $f: D \to R$ - деяка функція. Візьмемо y' = f(x,y). В кожній точці $(x,y) \in D$ побудуємо вектор, нахилений під кутом ψ до осі OX, де $tg\psi = f(x,y)$. Сукупність таких векторів називається полем напрямків диф. рів. y' = f(x, y).

16. Що таке поле напрямків диференціального рівняння першого порядку в симетричній формі?

Нехай M, N \in C(D). У кожній точці (x, y) \in D побудуємо вектор, нахилений під кутом ψ до осі OX, де $\mathrm{tg}\psi \ = \ -rac{M(x,y)}{N(x,y)}$ якщо N(x,y) != 0, і вертикальний вектор, якщо N(x,y)=0

Сукупність таких векторів назвемо полем напрямків рівняння M(x,y)dx + N(x,y)dy = 0

17. Що таке інтегральна крива диференціального рівняння першого порядку?

Крива q, яка в кожній своїй точці дотикається до відповідного вектора поля напрямків називається інтегральною кривою рівнянняy' = f(x, y).

Інтегровні типи звичайних диференціальних рівнянь

18. Вигляд рівняння на відшукання первісної.

$$f: \langle a, b \rangle \rightarrow R^{1}; y' = f(x)$$

19. Теорема про вигляд загального розв'язку рівняння на відшукання первісної. Якщо $f \in \mathcal{C}(< a, b>)$, то ф-ла $y = \int_{x_0}^x f(\xi) d\xi + \mathcal{C}$ визначає загальний р-ок р-ня y' = f(x)

20. Означення рівняння з відокремленими змінними.

Рівняння: K(x)dx + L(y)dy = 0; де $K: < a, b > \to R^1, L: < \alpha, \beta > \to R^1$ називається диф. рівнянням з відокремленими змінними

21. Теорема про вигляд загального інтегралу рівняння з відокремленими змінними.

Якщо К \in C(<a, b>), L \in C(< α , β >), то формула $\int_{x_0}^{x} \mathsf{K}(\xi) \mathsf{d}\xi + \int_{y_0}^{y} \mathsf{L}(\eta) \mathsf{d}\eta = \mathsf{C}$

де $x_0 \in \{c, b\}$, $y_0 \in \{c, \beta\}$, а С - довільна стала, задає загальний інтеграл рівняння.

22. Означення рівняння з відокремлюваними змінними.

Рівняння, яке можна записати у вигляді:

y' = f(x)g(y), де $x \in \langle a, b \rangle$, або

 $M_1(x)M_2(y)dx + N_1(x)N_2(y)dy = 0$, де x є <a, b> та y є<a, b>, називається рівнянням з відокремлюваними змінними (відповідно в нормальній та симетричній формі).

23. Які рівняння зводяться до рівнянь з відокремлюваними змінними?

1)
$$y' = f(ax + by + c)$$

2) $y' = f(\frac{y}{x})$

24. Означення однорідної функції виміру к.

Функція G = G(x, y) називається однорідною функцією виміру $k \in R$, якщо $G(tx, ty) = t^k G(x, y)$ для всіх t > 0.

25. Означення однорідного рівняння.

Диференціальне рівняня називається однорідним рівняням, якщо його можна перетворити до вигляду $y' = f(\frac{y}{x})$.

26.Вигляд рівняння, права частина якого є функцією від дробово-лінійного виразу.

 $y' = f((a_1x + b_1y + c_1)/(a_2x + b_2y + c_2))$

27.Означення узагальнено однорідного рівняння.

Д.р. y' = f(x, y) чи M(x,y)dx + N(x,y)dy = 0 називається узагальнено однорідним диф. р-ням, якщо заміна $y(x) \sim z(x)$, де $y = z^{\alpha}$, при деякому $\alpha! = 0.1$ зводить це р-ня до однорідного.

28.Означення рівняння в повних диференціалах.

Р-ня вигляду M(x,y)dx + N(x,y)dy = 0, називається р-ням в повних диференціалах, якщо існує така функція u(x,y), що du(x,y) = M(x,y)dx + N(x,y)dy

29. Теорема про необхідні та достатні умови того, що рівняння ε рівнянням в повних диференціалах.

Нехай D = $\{(x,y)\in R^2 | \ \alpha < x < b, \ \alpha < y < \beta\}$, M, N, $\frac{\partial M}{\partial y}, \frac{\partial N}{\partial x}\in C(D)$, |M|+|N|>0 в D. Тоді р-няM(x,y)dx + N(x,y)dy = 0, $(x,y)\in D$ є р-ням в повних диференціалах тоді і тільки тоді коли виконується умова $\frac{\partial M}{\partial y}$ $\frac{\partial N}{\partial x}\equiv 0$

30. Що таке інтегрувальний множник?

Функція $\mu = \mu(x,y), (x,y) \in D$, називається *інтегрувальним множником* для рівняння M(x,y)dx + N(x,y)dy = 0, якщо $\mu \neq 0$ і рівняння $\mu(x,y)M(x,y)dx + \mu(x,y)N(x,y)dy = 0$ є рівнянням в повних диференціалах.

32. Означення лінійного рівняння першого порядку

Д.р. назив *лінійним диференціальним рівнянням першого порядку*, якщо його можна записати у вигляді y' = a(x)y + b(x)

34. Вигляд рівняння Бернуллі

Диференціальне рівняння називається *рівнянням Бернуллі*, якщо його можна записати у вигляді y' = a(x)y + b(x)y α , де $\alpha \in \mathbb{R} \setminus \{0; 1\}$.

35. Сформулюйте закон Мальтуса

Нехай u=u(t)-чисельність популяції. Функція u задовільняє закон Мальтуса $u'=\varepsilon u$, де $\varepsilon=\varepsilon(u,t)$ істинна швидкість збільшення чисельності популяції.

36. Вигляд рівняння Фархюльста

Диференціальне рівняння вигляду $u'=\varkappa u-rac{\varkappa}{\kappa}u^{-2}$, називається *рівнянням Ферхюльста*

38. Вигляд рівняння балансу доходу економіки.

$$Y' = \frac{1 - a(t)}{K(t)} Y - \frac{b(t) - E(t)}{K(t)}$$
, де Y(t) — національний дохід, E(t) — державні витрати, K(t) — норма акселерації, a(t) — коефіцієнт схильності до споживання (0

41. Зв'язок між струмом і напругою реохорда, котушки і конденсатора.

Реохорд (металева струна) служить для зміни опору, тобто, для обмеження струму. Зв'язок між І та U: $U_{\alpha\beta}(t)=R_{\alpha\beta}I_{\alpha\beta}(t)$, де $R_{\alpha\beta}=R_{\beta\alpha}>0$ - стала (опір реохорда).

Котушка - додатковий опір: $U_{\alpha\beta}(t)=L_{\alpha\beta}\frac{d}{dt}I_{\alpha\beta}(t)$, де $L_{\alpha\beta}=L_{\beta\alpha}>0$ - стала (індуктивність котушки)

Конденсатор (дві пластини) - це прилад для накопичення електричного заряду. $I_{\alpha\beta}(t) = C_{\alpha\beta} \frac{d}{dt} U_{\alpha\beta}(t)$, де $C_{\alpha\beta} = C_{\beta\alpha} > 0$ - стала (ємність конденсатора).

Інтегральні рівняння Вольтерра

43.Означення інтегрального рівняння Вольтера

Співвідношення вигляду $y = y_0 + \int_{x_0}^x f(t, y(t)) dt$ яке зв'язує незалежну змінну х, невідому функцію y(x)та інтеграл від якогось виразу назив р-ям Вольтера 2-го роду.

44. Що таке розв'язок інтегрального рівняння Вольтерра.

 $y=\varphi(x)$ називається розв'язком інтегрального рівнння Вольтера на < a,b>, якщо: $1)\ x_0\in < a,b>$; $2)\ \forall x\in < a,b>$: $(x,\varphi(x))\ \in D$; $3)\ \varphi\in \mathcal{C}(< a,b>$); $4)\ \forall x\in < a,b>$: $\varphi(x)=y_0+\int_{x_0}^x f(t,y(t))dt$

45. Теорема Пікара для інтегральних рівнянь.

Якщо $f \in C(D) \cap Lip_y(D)$, то інтегральне p-ня Вольтера $\forall (x_0, y_0) \in D$ має єдиний розв'язок визначений на проміжку $[x_0 - h, x_0 + h], h > 0$.

46. Формула послідовних наближень розв'язку інтегрального рівняння Вольтерра.

 $\varphi_0(x) = y_0;$ $\varphi_n(x) = y_0 + \int_{x_0}^x f(t)\varphi_{n-1}(t)dt, \qquad n \in \mathbb{N}$

Задача Коші для звичайного диференціального рівняння першого порядку, розв'язаного стосовно похідної

47. Як ставиться задача Коші для диференціального рівняння 1-го порядку в нормальній формі?

Нехай $D\subset R^2, (x_0,y_0)\in D$, $f\colon D\to R$. Задача Коші: y'=f(x,y), $y(x_0)=y_0$

48. Що таке розв'язок задачі Коші для диференціального рівняння 1-го порядку в нормальній формі?

Функція $y = \varphi(x)$ наз. розвязком задачі Коші на проміжку <a,b>, якщо:

- 1) $x \in \langle a, b \rangle$; 2) $\varphi \in C^1(\langle a, b \rangle)$; 3) $\forall x \in \langle a, b \rangle : (x, \varphi(x)) \in D$; 4) $\forall x \in \langle a, b \rangle : \varphi'(x) = f(x, \varphi(x))$; 5) $\varphi(x_0) = y_0$;
- **49.** Лема про зв'язок інтегрального рівняння та задачі Коші для диференціального рівняння. Якщо $f \in C(D)$, то задача Коші y' = f(x,y) , $y(x_0) = y_0$ є еквівалентною до інтегрального рівняння $y(x) = y_0 + \int_{x_0}^x f(t,y(t))dt, x \in < a,b>$.
- **50.** Теорема Пікара для диференціального рівняння 1-го порядку в нормальній формі. Якщо $f \in \mathcal{C}(D) \cap Lip_y(D)$ то $\forall (x_0^-, y_0^-) \in D$ з. Коші має єдиний розв'язок визначений на деякому $I_h = [x_0 h, x_0 + h]$ де h>0.

51. Теорема Пеано для диференціального рівняння **1**-го порядку в нормальній формі. Якщо $f \in C(\Pi_{a,b}(x_0,y_0))$, то задачі Коші $y'=f(x,y),\ y(x_0)=y_0$ має р-ок визначений на $I_h=[x_0-h,x_0+h]$, де $h=min\{a,\frac{b}{M}\}$, $a\ M=max\frac{|f(x,y)|}{(x_0,y_0)}$ для $(x,y)\in\Pi_{a,b}(x_0,y_0)$

52. Що таке відрізок Пеано?

Відрізок $I_h = [x_0 - h, x_0 + h]$, де $h = min\{a, \frac{b}{M}\}$, а $M = max \frac{|f(x,y)|}{(x_0,y_0)}$ для $(x,y) \in \Pi_{a,b}(x_0,y_0)$ називається відрізком Пеано для задачі Коші y' = f(x,y), $y(x_0) = y_0$.

53. Лема Гронуолла-Беллмана.

Нехай $u \in \mathcal{C}([a,b]), \ x_0 \in [a,b], \ \mathcal{C}, L \geq 0$ - сталі. Якщо $\forall x \in [a,b]$ виконується нерівність $|u(x)| \leq \mathcal{C} + L|\int_{x_0}^x |u(\xi)| d\xi|$ то $\forall x \in [a,b]$: $|u(x)| \leq \mathcal{C} * e^{-L|x-x_0|}$

54. Теорема єдиності розв'язку задачі Коші для диференціального рівняння 1-го порядку в нормальній формі.

Якщо $f \in \mathcal{C}(D) \cap Lip_{\mathcal{Y}}(D)$, то задача Коші $(y' = f(x,y), y(x_0) = y_0)$ не може мати на < a, b >більше одного розв'язку.

55. Означення продовження розв'язку задачі Коші для диференціального рівняння.

Якщо $y=\varphi(x)$ - розв'язок задачі Коші на < a,b>, а $y=\psi(x)$ - розв'язок задачі на $x\epsilon < a,b+\varepsilon>$ і, крім того,

- 1) $\varepsilon > 0$;
- 2) $\forall x \in \langle a, b \rangle : \varphi(x) = \psi(x)$,

то ψ називається продовженням розв'язку φ вправо.

56. Означення непродовжувального розв'язку задачі Коші для диференціального рівняння.

Функція $y = \varphi(x)$ назив непродовжувальним розвязком задачі Коші, якщо φ не можна продовжити ні вліво, ні вправо.

57. Теорема про продовження розв'язку задачі Коші для диференціального рівняння 1-го порядку в нормальній формі.

Якщо $f \in C(D)$, то $\forall (x_0, y_0) \in D$ р-ок φ задачі Коші $y' = f(x, y), y(x_0) = y_0$ можна продовжити на інтервал (ξ, η) , який: 1) $\lim_{x \to \eta = 0} |\varphi(x)| = +\infty$ або 2) $\lim_{x \to \eta = 0} dist(\varphi(x), \vartheta D) = 0, \vartheta D$ -межа області D. Аналогічні співвідношення при $x \to \xi + 0$ виконуються і для точки ξ .

58. Теорема про існування непродовжувального розв'язку задачі Коші для диференціального рівняння 1-го порядку в нормальній формі.

Якщо $f \in C(D)$, то для кожної точки $(x_0, y_0) \in D$ існує непродовжувальний розв'язок задачі Коші.

59. Теорема про єдиністьнепродовжувального розв'язку задачі Коші для диференціального рівняння 1-го порядку в нормальній формі.

Якщо $f \in \mathcal{C}(D) \cap Lip_{\gamma}(D)$, то задача Коші має єдиний непродовжувальний розв'язок.

Неявні диференціальні рівняння першого порядку

60. Що таке неявне диференціальне рівняння 1-го порядку?

Диференційне рівняння вигляду F(x,y,y')=0, F cCG, GcR^3 називається неявним д.р.

61. Означення розв'яку неявного диференціального рівняння 1-го порядку?

Функція $y = \varphi(x)$ називається розв'язком неявного д.р. F(x,y,y') = 0, $F \in CG$, $G \in R^3$ якщо

- 1) $\varphi \in C1(\langle a,b \rangle)$;
- 2) $\forall x \in \langle a,b \rangle : (x,\varphi(x),\varphi'(x)) \in G$;
- 3) $\forall x \in \langle a,b \rangle : F(x,\varphi(x),\varphi'(x)) = 0$.
- 62. Як ставиться задача Коші для неявного диф.рівняння 1-го порядку?

Для задачі Коші потрібно задавати такі умови: $y(x_0) = y_0$, $y'(x_0) = y_1$, також має виконуватися рівність $F(x_0, y_0, y_1) = 0$.

63. Теорема існування та єдиності розв'язку задачі Коші для неявного диф. рівняння 1-го порядку?

Нехай $(x_0,y_0,y_I)\epsilon$ G , F ϵ C(G) і виконується умови:

- 1) $F(x_0, y_0, y_1) = 0$,
- $2)F_{y}',F_{y'}'$ неперервні функції в деякому околі точки (x_{0},y_{0},y_{1}) ;
- $3)F'_{v_1}(x_0, y_0, y_1)\neq 0$,

то задача Коші має єдиний розвязок $y = \varphi(x)$, визначений інтервалі $I_h = [x_0 - h, x_0 + h]$ де h>0

- **64. Що таке звичайні точки неявного диференціального рівняння 1-ого порядку?** Точки (x_0, y_0) в яких існує єдиний розвязок задачі Коші для F(x,y,y')=0, називаються звичайними точками цього рівняння.
- **65. Що таке особливі точки неявного диференціального рівняння 1-го порядку?** Точки площини хОу, в яких порушується єдиність розв'язку задачі Коші.
- **66. Що таке особлива інтегральна крива неявного диференціального рівняння 1-го порядку?** Особлива інтегральна крива це крива утворена з особливих точок.
- **67. Що таке особливий розв'язок неявного диференціального рівняння 1-го порядку?** Розв'язок неявного ДР F(x, y, y') = 0, який в кожній своїй точці дотикається до графіка якогось іншого розв'язку цього ж рівняння називається *особливим розв'язком*.
- **68. Як знайти дискримінантні криві неявного диференціального рівняння 1-го порядку?** $\{F(x,y,y')=0;\ F_{y'}'(x,y,y')=0.\}$ Щоб знайти криві, потрібно знайти з 1-го рівняння системи y' і підставити у 2-ге рівняння цієї системи. Якщо отримана рівність задає на площині хОу якусь криву, то ця крива називається *дискримінантною кривою* рівняння F(x,y,y')=0; вона підозріла на особливий розв'язок.
- **69.** Загальний вигляд рівняння Лагранжа. У чому полягає особливість цього рівняння? $y = x \varphi(y') + \psi(y')$. Особливість: розв'язуючи це рівняння за допомогою методу введення параметра, всередині отримаємо просте лінійне рівняння.
- **70.** Загальний вигляд рівняння Клеро. У чому полягає особливість цього рівняння? $y = xy' + \psi(y')$. Особливість: розв'язуючи це рівняння за допомогою методу введення параметра, всередині отримаємо просте лінійне рівняння.