Title in Progress

Amy Pitts, Hun Lee, Jimmy Kelliher, Tucker Morgan, and Waveley Qiu

2022-02-21

▶ Identifying the effect of a treatment, exposure, or intervention is one of the most fundamental tasks we encounter as biostatisticians. . .

- ▶ Identifying the effect of a treatment, exposure, or intervention is one of the most fundamental tasks we encounter as biostatisticians...
- but outside of a randomized control trial (RCT), confounding variables can bias our estimates of treatment effects.

- ▶ Identifying the effect of a treatment, exposure, or intervention is one of the most fundamental tasks we encounter as biostatisticians...
- but outside of a randomized control trial (RCT), confounding variables can bias our estimates of treatment effects.
- Propensity score matching (PSM) is a tool that can help us mitigate the effects of confounders. . .

- ▶ Identifying the effect of a treatment, exposure, or intervention is one of the most fundamental tasks we encounter as biostatisticians...
- but outside of a randomized control trial (RCT), confounding variables can bias our estimates of treatment effects.
- ▶ Propensity score matching (PSM) is a tool that can help us mitigate the effects of confounders. . .
- but there is no consensus on the best way to estimate standard errors when using the PSM algorithm.

- ▶ Identifying the effect of a treatment, exposure, or intervention is one of the most fundamental tasks we encounter as biostatisticians...
- but outside of a randomized control trial (RCT), confounding variables can bias our estimates of treatment effects.
- ▶ Propensity score matching (PSM) is a tool that can help us mitigate the effects of confounders. . .
- but there is no consensus on the best way to estimate standard errors when using the PSM algorithm.
- How can we assess which procedures reliably estimate standard errors?

A simulation study!

A Quick Foray into Confounding

(1) We start with an unmatched dataset.

- (1) We start with an unmatched dataset.
- (2) We estimate the propensity score the probability of treatment given some set of covariates according to some pre-specified model fitting (e.g., logistic regression).

- (1) We start with an unmatched dataset.
- (2) We estimate the propensity score the probability of treatment given some set of covariates according to some pre-specified model fitting (e.g., logistic regression).
- (3) We pair treated and untreated indiviuals who have similar propensity scores according to some pre-specified matching algorithm (e.g., nearest neighbors).

- (1) We start with an unmatched dataset.
- (2) We estimate the propensity score the probability of treatment given some set of covariates according to some pre-specified model fitting (e.g., logistic regression).
- (3) We pair treated and untreated indiviuals who have similar propensity scores according to some pre-specified matching algorithm (e.g., nearest neighbors).
- (4) We end with a matched dataset.

Bootstrapping is one of the most common procedures for estimating standard errors.

- Bootstrapping is one of the most common procedures for estimating standard errors.
- ► The PSM algorithm intakes an unmatched dataset and outputs a matched one.

- Bootstrapping is one of the most common procedures for estimating standard errors.
- ► The PSM algorithm intakes an unmatched dataset and outputs a matched one.
- When do we execute the bootstrap before the match or after it?

- Bootstrapping is one of the most common procedures for estimating standard errors.
- ► The PSM algorithm intakes an unmatched dataset and outputs a matched one.
- ▶ When do we execute the bootstrap before the match or after it?
- Let's try both!

Roadmap of the Simulation Study

An Example of Bootstrap Result Image.

Data Generation

Data Generation - Continuous Outcome

For each individual $i \in \{1, \ldots, n\}$, we consider covariates $L_{1i}, L_{2i}, L_{3i} \sim N(0,1)$. Treatments are distributed according to law $A_i \sim B(\pi_i)$, where π_i - the true propensity to be treated - is subject to the data-generating process

$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = \alpha_0 + \alpha_1 L_{1i} + \alpha_2 L_{2i}.$$

Given this, we further define the data-generating process of our continuous outcome via

$$Y_i = \beta_1 A_i + \beta_2 L_{2i} + \beta_3 L_{3i} + \varepsilon_i,$$

where ε_i denotes random error. Because L_{2i} effects both A_i and Y_i , it acts as a confounder in estimating the treatment effect.

Data Generation - Binary Outcome

For each individual $i \in \{1, \ldots, n\}$, we consider covariates $L_{1i}, L_{2i}, L_{3i} \sim N(0,1)$. Treatments are distributed according to law $A_i \sim B(\pi_i)$, where π_i - the true propensity to be treated - is subject to the data-generating process

$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = \alpha_0 + \alpha_1 L_{1i} + \alpha_2 L_{2i}.$$

Given this, we further define the data-generating process of our binary outcome via $Y_i \sim B(\tau_i)$ where

$$\log\left(\frac{\tau_i}{1-\tau_i}\right) = \beta_1 A_i + \beta_2 L_{2i} + \beta_3 L_{3i}.$$

Observe that we have omitted a random error term, as realizations of Y_i are innately subject to noise.

Parameters of Interest

- ▶ The sample size of each dataset $n_{\mathsf{sample}} \in \{100, 1000\}$
- The population proportion of treated individuals $\pi \in \{0.113, 0.216, 0.313\}$
- ▶ The true average treatment effect $\beta_1 \in \{0.15, 0.30\}$ for binary data; $\beta_1 \in \{-1, 1\}$ for continuous data

Other Parameters

- ▶ The number of datasets $m_{\text{sample}} = 100$
- ▶ The number of bootstrap re-sample $m_{\text{boot}} = 500$
- The sample size of bootstrap re-samples $n_{\text{simple}} = n_{\text{complex}} = n_{\text{sample}} \times \pi$
- Strength of Covariate Correlation on Treatment Status α_1, α_2 (continuous and binary data (log(1.25), log(1.75)))
- Strength of Covariate Correlation on Outcome Variable β_2, β_3 (continuous data (2,1), binary data (log(1.75), log(1.25)))

Measures of Interest

- ▶ Coverage Rate: Looks at the rate of the true avergae treatment effect falling in the 95% confidence intervals. $\hat{ATE} \pm 1.96 \times SE$
- **Standard Error:** the variability of the average estimate.

Other Measures

- ▶ Bias: This is mean of the average estimate subtract the true ATE
- ▶ 95% Confidence Intervals:

in binary coverage plot-1.pdf
Binary Coverage Rates by Parameters of Interest

standard error plot-1.pdf Binary Simulation Standard Error

coverage plot-1.pdf

Continuous Coverage Rates by Parameters of Interest

standard error plot-1.pdf
Continuous Simulation Standard Error

Summary of Results

- ► For binary outcomes, the simple bootstrap tended to underestimate the standard error
- Larger standard error estimates from complex bootstrap in binary and continuous settings
- Differences between simple and complex bootstrap were smaller for larger sample sizes
- Complex bootstrap not as reliable in small sample sizes

Limitations

- ► Sample size / treatment (or exposure) prevalence
- ► Small number of initial samples, limited in detecting significant differences in coverage rate

Future Work

- Larger number of initial samples, narrower coverage window
- Increased sample size, changes in bootstrap performance?
- Changes in treatment propensity model
- ► Non-normal distributions of covariates