Span and Subspace

- **Definition**: A **subspace** H is defined as a subset of \mathbb{R}^n closed under linear combination:
 - For any two vectors, $\mathbf{u}_1, \mathbf{u}_2 \in H$, and any two scalars c and d, $c\mathbf{u}_1 + d\mathbf{u}_2 \in H$.
- Span $\{v_1, \dots, v_p\}$ is always a subspace. Why?

•
$$\mathbf{u}_1 = a_1 \mathbf{v}_1 + \dots + a_p \mathbf{v}_p$$
, $\mathbf{u}_2 = b_1 \mathbf{v}_1 + \dots + b_p \mathbf{v}_p$

•
$$c\mathbf{u}_1 + d\mathbf{u}_2 = c(a_1\mathbf{v}_1 + \dots + a_p\mathbf{v}_p) + d(b_1\mathbf{v}_1 + \dots + b_p\mathbf{v}_p)$$

= $(ca_1 + db_1)\mathbf{v}_1 + \dots + (ca_p + db_p)\mathbf{v}_p$

• In fact, a subspace is always represented as Span $\{v_1, \dots, v_p\}$.

Basis of a Subspace

- **Definition**: A **basis** of a subspace *H* is a set of vectors that satisfies both of the following:
 - Fully spans the given subspace H
 - Linearly independent (i.e., no redundancy)
- In the previous example, where $H = \text{Span } \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, Span $\{\mathbf{v}_1, \mathbf{v}_2\}$ forms a plane, but $\mathbf{v}_3 = 2\mathbf{v}_1 + 3\mathbf{v}_2 \in \text{Span } \{\mathbf{v}_1, \mathbf{v}_2\}$, $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis of H, but not $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ nor $\{\mathbf{v}_1\}$ is a basis.

Non-Uniqueness of Basis

• Consider a subspace *H* (green plane).

• Is a basis unique?

• That is, is there any other set of linearly independent vectors that span the same subspace *H*?

