In [2]: import pandas as pd
import matplotlib.pyplot as plt
from sklearn import linear_model

In [3]: df = pd.read_csv('C:/Users/nisho/Documents/SEM 5/ML and core applications/Life Expectancy Data.csv')
 df.head()

Out[3]:

	Country	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	 Polio	Total expenditure	Diphtheria
0	Afghanistan	2015	Developing	65.0	263.0	62	0.01	71.279624	65.0	1154	 6.0	8.16	65.0
1	Afghanistan	2014	Developing	59.9	271.0	64	0.01	73.523582	62.0	492	 58.0	8.18	62.0
2	Afghanistan	2013	Developing	59.9	268.0	66	0.01	73.219243	64.0	430	 62.0	8.13	64.0
3	Afghanistan	2012	Developing	59.5	272.0	69	0.01	78.184215	67.0	2787	 67.0	8.52	67.0
4	Afghanistan	2011	Developing	59.2	275.0	71	0.01	7.097109	68.0	3013	 68.0	7.87	68.0

rows × 22 columns

<

In [4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2938 entries, 0 to 2937
Data columns (total 22 columns):

#	Column	Non Null Count	Dtura							
# 	Column	Non-Null Count	Dtype							
0	Country	2938 non-null	object							
1	Year	2938 non-null	int64							
2	Status	2938 non-null	object							
3	Life expectancy	2928 non-null	float64							
4	Adult Mortality	2928 non-null	float64							
5	infant deaths	2938 non-null	int64							
6	Alcohol	2744 non-null	float64							
7	percentage expenditure	2938 non-null	float64							
8	Hepatitis B	2385 non-null	float64							
9	Measles	2938 non-null	int64							
10	BMI	2904 non-null	float64							
11	under-five deaths	2938 non-null	int64							
12	Polio	2919 non-null	float64							
13	Total expenditure	2712 non-null	float64							
14	Diphtheria	2919 non-null	float64							
15	HIV/AIDS	2938 non-null	float64							
16	GDP	2490 non-null	float64							
17	Population	2286 non-null	float64							
18	thinness 1-19 years	2904 non-null	float64							
19	thinness 5-9 years	2904 non-null	float64							
20	Income composition of resources	2771 non-null	float64							
21	Schooling	2775 non-null	float64							
<pre>dtypes: float64(16), int64(4), object(2)</pre>										
memory usage: 505.1+ KB										

localhost:8888/notebooks/Downloads/Life expectancy .ipynb

```
In [5]: df.drop(['Country', 'Status'], axis=1, inplace=True)
    df.head()
```

Out[5]:

	Year	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	ВМІ	under- five deaths	Polio	Total expenditure	Diphtheria	HIV/AIDS
0	2015	65.0	263.0	62	0.01	71.279624	65.0	1154	19.1	83	6.0	8.16	65.0	0.1
1	2014	59.9	271.0	64	0.01	73.523582	62.0	492	18.6	86	58.0	8.18	62.0	0.1
2	2013	59.9	268.0	66	0.01	73.219243	64.0	430	18.1	89	62.0	8.13	64.0	0.1
3	2012	59.5	272.0	69	0.01	78.184215	67.0	2787	17.6	93	67.0	8.52	67.0	0.1
4	2011	59.2	275.0	71	0.01	7.097109	68.0	3013	17.2	97	68.0	7.87	68.0	0.1

In [6]: df.isnull().values.any()

Out[6]: True

```
In [7]: df.isna().any()
 Out[7]: Year
                                             False
         Life expectancy
                                              True
         Adult Mortality
                                              True
         infant deaths
                                             False
         Alcohol
                                              True
                                             False
         percentage expenditure
         Hepatitis B
                                              True
         Measles
                                             False
          BMI
                                              True
         under-five deaths
                                             False
         Polio
                                              True
         Total expenditure
                                              True
         Diphtheria
                                              True
          HIV/AIDS
                                             False
         GDP
                                              True
         Population
                                              True
          thinness 1-19 years
                                              True
          thinness 5-9 years
                                              True
         Income composition of resources
                                              True
         Schooling
                                              True
         dtype: bool
 In [8]: df['Adult Mortality'].fillna(df['Adult Mortality'].median(), inplace=True)
 In [9]: df['Life expectancy '].fillna(df['Life expectancy '].median(), inplace=True)
In [10]: df['Hepatitis B'].fillna(df['Hepatitis B'].median(), inplace=True)
In [11]: df['Polio'].fillna(df['Polio'].median(), inplace=True)
```

```
In [12]: plt.figure(figsize=(5,5))
    plt.xlabel('Adult Mortality')
    plt.ylabel('Life expectancy')
    plt.scatter(df['Adult Mortality'], df['Life expectancy '])
```

Out[12]: <matplotlib.collections.PathCollection at 0x27fb747f310>


```
In [13]: plt.figure(figsize=(5,5))
    plt.xlabel('infant death')
    plt.ylabel('Life expectancy')
    plt.scatter(df['infant deaths'], df['Life expectancy '])
```

Out[13]: <matplotlib.collections.PathCollection at 0x27fb75b92b0>


```
In [14]: plt.figure(figsize=(5,5))
    plt.xlabel('under-five deaths')
    plt.ylabel('Life expectancy')
    plt.scatter(df['under-five deaths '], df['Life expectancy '])
```

Out[14]: <matplotlib.collections.PathCollection at 0x27fb761e8e0>


```
In [18]: model.intercept_
Out[18]: 77.88910698885105

In [19]: plt.figure(figsize=(5,5))
    plt.xlabel('Polio')
    plt.ylabel('Life expectancy')
    plt.scatter(df['Polio'], df['Life expectancy '])
```

Out[19]: <matplotlib.collections.PathCollection at 0x1d01077a4c0>


```
In [20]: plt.figure(figsize=(5,5))
    plt.xlabel('Hepatitis B')
    plt.ylabel('Life expectancy')
    plt.scatter(df['Hepatitis B'], df['Life expectancy '])
```

Out[20]: <matplotlib.collections.PathCollection at 0x1d010e4f580>


```
In [21]: rRegression().fit(df[['Adult Mortality', 'infant deaths', 'under-five deaths ', 'Polio', 'Hepatitis B']], df['Li-
```

```
In [22]: model2.coef
Out[22]: array([-0.04540593, 0.14347081, -0.11237082, 0.10245096, -0.0083418])
In [23]: model2.intercept
Out[23]: 69.31838278076285
In [19]: import pandas as pd
         from sklearn.linear model import LogisticRegression
         from sklearn.model selection import cross val score
         from sklearn.model selection import KFold
         cv = float(format(cross val score(model,df[['Adult Mortality','infant deaths', 'under-five deaths', ]],df['Life
                                                                                                                       >
In [20]: print('Intercept: {}'.format(model.intercept ))
         print('Coefficient: {}'.format(model.coef ))
         Intercept: 77.88910698885105
         Coefficient: [-0.04954221 0.18538215 -0.14538407]
In [23]: print (cv)
         0.468
 In [ ]:
```