Алгоритмы. Домашнее задание №3

Горбунов Егор Алексеевич 1 октября 2015 г.

Задача №1 (про слегка перемешавшиеся патроны)

- (а) [сортировка за $\mathcal{O}(nk)$] Ясно, что т.к. 1-ый по порядку патрон не мог оказаться дальше, чем на k-ой позиции, то за $\mathcal{O}(k)$ операций легко найти его, пробежавшись по первым k элементам и поменять местами с текущим патроном на первой позиции. Теперь на первой позиции нужный патрон. Тогда аналогично для 2-ого по порядку патрона: он точно не дальше, чем на k+1 позиции. Тогда опять за $\mathcal{O}(k)$ операций находим его и сажаем на 2-ую позицию. И т.д. мы после i-ого шага будем иметь первые i патронов в отсортированном порядке, причём операций затрачено $\mathcal{O}(ki)$. Итого в конце будем иметь отсортированный массив, за $\mathcal{O}(kn)$
- (b) [сортирока за $\mathcal{O}(n+I)$] Для i=0 число инверсий в массиве $\leq k-1$. Аналогично для остальных i. Но тогда инверсий в перестановке патронов $\mathcal{O}(n(k-1)) = \mathcal{O}(nk-n)$. Т.е. $I \leq (nk-n)$. У нас есть алгоритм из предыдущего пункта, который работает за $\mathcal{O}(nk)$. Но $\mathcal{O}(nk) = \mathcal{O}(n+(nk-n)) = \mathcal{O}(n+I)$
- (c) Предположим, что можем отсортировать патроны быстрее, чем за $\Omega n \log k$, но тогда, если k = n, то можем отсортировать обычный массив, без доп. условий на элементы, быстрее, чем за $\mathcal{O}(n \log n)$, что невозможно
- (d) Рассмотрим алгоритм из пункта (a). На каждом i-ом шаге этого алгоритма мы ищем минимум среди элементов с номерами $i, \ldots, i+k$. Заметим, что это можно реализовать используя кучу: добавим первые k элементов массива в кучу, с операцией extractMin, извлечём минимум, положим его на место первого элемента массива (тут куча не могла сломаться, если что), а потом добавим в кучу k+1 элемент и снова извлечём минимум. Таким образом всего операций с кучей $\mathcal{O}(n)$, а высота кучи всегда $\mathcal{O}(k)$, а значит суммарная сложность алгоритма $\mathcal{O}(n\log k)$

Задача №2 (p_i -ые порядковые статистики)

Задача №3 (про перестановку p максимизирующую сумму $a_{n(i)}b_i$)

Очевидно, что максимальная такая сумма равна:

$$\sum_{i=1}^{n} a_{sort_a(i)} b_{sort_b(i)}$$

Действительно, пускай в сумме $\sum_{i=1}^{n}a_{i}b_{i}$ нет слагаемого $a_{max}b_{max}$ (a_{max} — максимальный элемент в $a,\ b_{max}$ аналогично, но вместо него есть слагаемые $a_{max}b_{i}+b_{max}a_{j}$. Покажем тогда, что $a_{max}b_{max}+a_{j}b_{i}>a_{max}b_{i}+b_{max}a_{j}$, т.е. произведение максимальных брать выгоднее:

$$(a_{max}b_i + b_{max}a_j) - (a_{max}b_{max} + a_jb_i) = a_{max}(b_i - b_{max}) + a_j(b_{max} - b_i) = (a_{max} - a_j)(b_i - b_{max}) \le 0$$

Тут $sort_a$ - перестановка, соответствующая сортировке элементов массива a по убыванию (или по возрастанию). Аналогично $sort_b(i)$ Тогда перестановку p нужно задать таким образом, чтобы, $a_{p(i)}$ был элементом, стоящим на той же позиции в a после его сортировки, что и b_i в массиве b после сортировки. Ясно, что такая перестановка это:

$$p = sort_a^{-1} \circ sort_b$$

Тогда соответственно:

индекс элемента в массиве a, что после сортировки попал бы на позицию i

индекс b_i в отсортированном массиве b

$$p(i) = sort_a^{-1} \circ sort_b(i) = sort_a^{-1} (sort_b(i))$$

 $sort_a^{-1}$ — обратная перестановка.