PhD Thesis

Koustuv Sinha

Acknowledgements

Abstract

Abstract in French

Contributions to Original Knowledge

List of Figures

List of Tables

Contents

1	Intr	${f coduction}$	4
2	Bac	kground	5
	2.1	Neural Inductive bias of text representation	5
	2.2	Pre-training and the advent of Large Language Models	5
	2.3	Systematicity and Generalization	5
3	Uno	derstanding semantic generalization through productivity	6
	3.1	Related Work	6
	3.2	CLUTRR: A Diagnostic Benchmark for Inductive Reasoning in Text	6
	3.3	Results	6
	3.4	Discussion	6
	3.5	Follow-up findings in the community	6
	3.6	Summary	6
4	Qua	antifying syntactic generalization using word order	7
	4.1	Related Work	7
	4.2	Word Order in Natural Language Inference	7
	4.3	Experiments & Results	7
	4.4	Discussion	7
	4.5	Follow-up findings in the community	7
	4.6	Summary	7
5	Pro	bing syntax understanding through distributional hypothesis	8
	5.1	Related Work	8
	5.2	Dataset construction and pre-training	8
	5.3	Experiments	8

	5.4 Discussion	. 8
	5.5 Follow-up findings in the community	. 8
	5.6 Summary	. 8
6	Measuring systematic generalization by exploiting absolute positions	9
	6.1 Related Work	. 9
	6.2 Systematic understanding of absolute position embeddings	. 9
	6.3 Experiments	. 9
	6.4 Discussion	. 9
	6.5 Summary	. 9
7	Conclusion	10
	7.1 Future Work	. 10
8	Bibliography	11
9	Acronyms	11
10	Appendix	11
	10.1 Org mode auto save	. 11
	10.2 Add newpage before a heading	. 11

1 Introduction

 ${\bf Central\ Theme\ of\ the\ thesis}: \ {\bf Understanding\ and\ evaluating\ systematicity\ in\ pre-trained\ language\ models\ through\ semantic\ and\ syntactic\ generalization...$

2 Background

- 2.1 Neural Inductive bias of text representation
- 2.1.1 Feed Forward Neural Networks
- 2.1.2 Recurrent Neural Networks
- 2.1.3 Transformer Models
- 2.2 Pre-training and the advent of Large Language Models
- 2.2.1 Success of pre-training and scale
- 2.3 Systematicity and Generalization
- 2.3.1 Definitions
 - 1. Productivity
 - 2. Word Order Sensitivity

2.3.2 Tasks

- 3 Understanding semantic generalization through productivity
- 3.1 Related Work
- 3.2 CLUTRR: A Diagnostic Benchmark for Inductive Reasoning in Text
- 3.2.1 Dataset construction
- 3.2.2 Productivity and reasoning
- 3.3 Results
- 3.4 Discussion
- 3.5 Follow-up findings in the community
- 3.6 Summary

- 4 Quantifying syntactic generalization using word order
- 4.1 Related Work
- 4.2 Word Order in Natural Language Inference
- 4.2.1 Probe Construction
- 4.3 Experiments & Results
- 4.4 Discussion
- 4.5 Follow-up findings in the community
- 4.6 Summary

5 Probing syntax understanding through distributional hypothesis

- 5.1 Related Work
- 5.2 Dataset construction and pre-training
- 5.3 Experiments
- 5.3.1 Downstream reasoning tasks
- 5.3.2 Evaluating the effectiveness of probing syntax
- 5.4 Discussion
- 5.5 Follow-up findings in the community
- 5.6 Summary

- 6 Measuring systematic generalization by exploiting absolute positions
- 6.1 Related Work
- 6.2 Systematic understanding of absolute position embeddings
- 6.3 Experiments
- 6.4 Discussion
- 6.5 Summary

7 Conclusion

7.1 Future Work

8 Bibliography

9 Acronyms

10 Appendix

10.1 Org mode auto save

Run the following snippet to auto save and compile in org mode.