CSE413 – Security of Information Systems 2020

PhD Furkan Gözükara, Toros University

https://github.com/FurkanGozukara/Security-of-Information-Systems-CSE413-2020

Lecture 1

Basic concepts in Information Security

Composed from Prof. Audun Jøsang, University of Oslo, Information Security 2018 Lectures

Source: https://www.uio.no/studier/emner/matnat/ifi/INF3510/v18/lectures/

Why study information security?

- Being an IT expert requires knowledge about IT security
 - Analogy: Building architects must have knowledge about fire safety
- Developing IT systems without considering security will lead to vulnerable IT systems
- IT experts without security skills are part of the problem
- Learn about IT security to become part of the solution!
- Security by Design is a prerequisite for privacy by design which is a legal requirement for processing personal data
- Information security is a political issue
 - Often seen as a cost, but saves costs in the long term
 - Often given low priority in IT industry and IT education

Certifications for IS Professionals

- Many different types of certifications available
 - vendor neutral or vendor specific
 - from non-profit organisations or commercial for-profit organisations
- Certification gives assurance of knowledge and skills,
 - needed in job functions
 - gives credibility for consultants, applying for jobs, for promotion
- Sometimes required
 - US Government IT Security jobs
- Knowledge domains reflect current topics in IT Security
 - Generally kept up-to-date

ISACA Certifications

(Information Systems Audit and Control Association)

- ISACA provides certification for IT professionals
 - CISM Certified Information Security Manager
 - CISA Certified Information System Auditor
 - CGIT Certified in the Governance of Enterprise IT
 - CRSIC Certified in Risk and Information Systems Control
- CISM is the most popular ISACA security certification
- IT auditors and consultants commonly have ISACA certifications
- ISACA promotes IT governance framework COBIT (Control Objectives for Information and Related Technologies)

CISM: Certified Information Security Manager

- Focuses on 4 domains of IS management
 - 1. Information Security Governance
 - 2. Information Risk Management
 - 3. Information Security Program Development and Management
 - 4. Information Security Incident Management
- Official prep manual published by ISACA
 - https://www.isaca.org/bookstore/

Price: US \$115 (\$85 for ISACA members)

CISM Exam

- Exams normally twice per year worldwide
- 2018 exam information to give you an idea
 - Next exam in Oslo (and worldwide): June 2018
 - Deadline for registering: April 2018
 - Register for exam at <u>www.isaca.org</u>
 - Exam fee approx. US \$500
 - Multiple choice exam
 - Requires 5 years professional experience
 - Yearly CISM maintenance fee approx. US \$100
 - Requires 120 hours "practice time" per 3 years

(ISC)² Certifications

International Information Systems Security Certification Consortium

- (ISC)² provides certification for information security professionals
 - CISSP Certified Information Systems Security Professional
 - ISSAP Information Systems Security Architecture Professional
 - ISSMP Information Systems Security Management Professional
 - ISSEP Information Systems Security Engineering Professional
 - CAP Certification and Accreditation Professional
 - SSCP Systems Security Certified Practitioner
 - CSSLP Certified Secure Software Lifecycle Professional
- CISSP is the most common IT security certification
 - Most IT Security Consultants are CISSP

CISSP Exam:

Certified Information System Security Professional

- Many different books to prepare for CISSP exam
- e.g. text book used for INF3510 course

CISSP All-in-One Exam Guide 7th Edition, 2016 Author: Shon Harris and Fernando Maymí

- € 560 fee to sit CISSP exam
- Exam through http://www.pearsonvue.com/isc2/
- Test Centre in Oslo: http://www.glasspaper.no/
 Brynsveien 12, Bryn, Oslo
- Most of the of the material presented in the INF3510 course is taken from the syllabus of the CISSP CBK (Common Body of Knowledge).

CISSP CBK (Common Body of Knowledge) 8 domains

- Security and Risk
 Management (Security, Risk,
 Compliance, Law, Regulations,
 and Business Continuity)
- Asset Security (Protecting Security of Assets)
- Security Engineering
 (Engineering and Management of Security)
- 4. Communication and Network Security (Designing and Protecting Network Security)

- 5. Identity and Access Management (Controlling Access and Managing Identity)
- 6. Security Assessment and Testing (Designing, Performing, and Analyzing Security Testing)
- 7. Security Operations (Foundational Concepts, Investigations, Incident Management, and Disaster Recovery)
- 8. Software Development Security (Understanding, Applying, and Enforcing Software Security)

Security Surveys

Useful for knowing the trend and current state of information security threats and attacks

- Verizon Data Breach Report: http://www.verizonenterprise.com/DBIR/
- PWC security survey:

http://www.pwc.com/gx/en/issues/cyber-security/information-security-survey.html

- Mnemonic Security Report
 https://www.mnemonic.no/security-report/
- Mørketallsundersøkelsen;
 - http://www.nsr-org.no/moerketall/
 - New report in December every 2 years (even years).
- + many others

Security Advisories

- Useful for managing threats and vulnerabilities
 - NorCERT: For government sector: https://www.nsm.stat.no/
 - NorSIS: For private sector: http://www.norsis.no/
 - FinansCERT: http://www.finanscert.no/
 - KraftCERT: https://www.kraftcert.no/
 - -HelseCERT:

https://www.nhn.no/tema/sikkerhet/HelseCERT/Sider/default.aspx

- UNINETT-CERT: https://www.uninett.no/cert
- UiO-CERT: http://www.uio.no/english/services/it/security/cert/
- US CERT: http://www.cert.org/
- Australia AusCERT: http://www.auscert.org.au/
- + many others

Academic Forum on Security

- Monthly seminar on information security
- https://wiki.uio.no/mn/ifi/AFSecurity/
- Guest expert speakers
- Next AFSecurity seminar:
 - Topic: History of Cryptology in Norway
 - Speaker: Sondre Rønjom, NSM
 - Time: January 2018
 - Place: Kristen Nygaards sal, 5th floor, OJD
- All interested are welcome!
- Organised by SecurityLab

UiO : University of Oslo

Information Security Basic Concepts

What is security in general

- Security is about protecting assets from damage or harm
- Focuses on all types of assets
 - Example: your body, possessions, the environment, the nation
- Security and related concepts
 - National security (political stability)
 - Safety (health)
 - Environmental security (clean environment)
 - Information security
 - etc.

What is *Information* Security

- Information Security focuses on protecting information assets from damage or harm
- What are the assets to be protected?
 - Example: data files, software, IT equipment and infrastructure
- Covers both intentional and accidental events
 - Threat agents can be people or acts of nature
 - People can cause harm by accident or by intent
- Information Security defined:
 - The preservation of confidentiality, integrity and availability of information; in addition, other properties such as authenticity, accountability, non-repudiation and reliability can also be involved. (ISO27000 Information Security Management Systems
 - Overview and Vocabulary)

Scope of information security

- IS management has as goal to avoid damage and to control risk of damage to information assets
- IS management focuses on:
 - Understanding threats and vulnerabilities
 - Managing threats by reducing vulnerabilities or threat exposures
 - Detection of attacks and recovery from attacks
 - Investigate and collect evidence about incidents (forensics)

The Need for Information Security

- Why not simply solve all security problems once for all?
- Reasons why that's impossible:
 - Rapid innovation constantly generates new technology with new vulnerabilities
 - More activities go online
 - Crime follows the money
 - Information security is a second thought when developing IT
 - New and changing threats
 - More effective and efficient attack technique and tools are being developed
- Conclusion: Information security doesn't have a final goal, it's a continuing process

Internet Storm Survival Time Measure

The survival time is calculated as the average time between attacks against average target IP address. http://isc.sans.org/survivaltime.html

Last update: 12-18-2017 10:11

Copyright @ AV-TEST GmbH, www.av-test.org

Security control categories

Physical controls

- Facility protection
- Security guards
- Locks
- Monitoring
- Environmental controls
- Intrusion detection

Technical controls

- Logical access control
- Cryptographic controls
- Security devices
- User authentication
- Intrusion detection
- Forensics

Administrative controls

- Policies & standards
- Procedures & practice
- Personnel screening
- Awareness training
- •Secure System Dev.
- Incident Response

Security control functional types

- Preventive controls:
 - prevent attempts to exploit vulnerabilities
 - Example: encryption of files
- Detective controls:
 - warn of attempts to exploit vulnerabilities
 - Example: Intrusion detection systems (IDS)
- Corrective controls:
 - correct errors or irregularities that have been detected.
 - Example: Restoring all applications from the last known good image to bring a corrupted system back online
- Use a combination of controls to help ensure that the organisational processes, people, and technology operate within prescribed bounds.

Controls by Information States

- Information security involves protecting information assets from harm or damage.
- Information is considered in one of three possible states:
 - During storage
 - Information storage containers
 - · Electronic, physical, human

- During transmission
 - Physical or electronic

- During processing (use)
 - Physical or electronic

Security controls for all information states are needed

Security Services and Properties

- A security service provides a high level security property
- The traditional definition of information security is to preserve the three CIA properties for data and services:
 - Confidentiality:
 - ntearity
 - Availability:

- CIA are the three main security properties/services
- Data privacy is an additional property which assumes CIA

Data Privacy

Security services and controls

- Security services (aka. goals or properties)
 - implementation independent
 - supported by specific controls
- Security controls (aka. mechanisms)
 - Practical mechanisms, actions, tools or procedures that are used to provide security services

Security services:

e.g. Confidentiality – Integrity – Availability

Security controls:

e.g. Encryption – Firewalls – Awareness

Confidentiality

- The property that information is not made available or disclosed to unauthorized individuals, entities, or processes. (ISO 27000)
- Can be divided into:
 - Secrecy: Protecting business data
 - Privacy: Protecting personal data
 - Anonymity: Hide who is engaging in what actions
- Main threat: Information theft, unintentional disclosure
- Controls: Encryption, Access Control, Perimeter defence As general controls, also include:

Secure Systems Development, Incident Response

Integrity

 Data Integrity: The property that data has not been altered or destroyed in an unauthorized manner.

(X.800: Security Architecture for OSI)

• System Integrity: The property of accuracy and completeness (ISO 27000).

Can include the accountability of actions.

- Threats: Data and system corruption, loss of accountability
- Controls:
 - Hashing, cryptographic integrity check and encryption
 - Authentication, access control and logging
 - Software digital signing
 - Configuration management and change control (system integrity)

As general controls, also include:

Secure System Development, Incident Response

Availability

- The property of being accessible and usable upon demand by an authorized entity. (ISO 27000)
- Main threat: Denial of Service (DoS)
 - The prevention of authorized access to resources or the delaying of time critical operations
- Controls:
 - Redundancy of resources,
 - Load balancing,
 - Software and data backups

As general controls, also include:

Secure System Development and

Incident Response

Data Privacy

To protect specific aspects of information that may be related to natural persons (personal information).

- Prevent unauthorized collection and storage of personal information
- Prevent unauthorized use of collected personal information
- Make sure your personal information is correct
- Ensure transparency and access for data subjects
- Provide adequate information security (CIA) around personal information
- Define clear responsibilities around personal information
- GDPR becomes EU law on 25 May 2018 (General Data Protection Regulation)

Authenticity (Security Service)

The CIA properties are quite general security services. Other security services are often mentioned.

Authentication is very important, with various types:

- User authentication:
 - The process of verifying a claimed identity of a (legal) user when accessing a system or an application.

- Organisation authentication:
 - The process of verifying a claimed identity of a (legal) organisation in an online interaction/session

- System authentication (peer entity authentication):
 - The corroboration (verification) that a peer entity (system) in an association (connection, session) is the one claimed (X.800).

- Data origin authentication (message authentication):
 - The corroboration (verification) that the source of data received is as claimed (X.800).

Taxonomy of Authentication

User Identification and Authentication

- Identification
 - Who you claim to be
 - Method: (user)name, biometrics
- User authentication
 - Prove that you are the one you claim to be
- Main threat: Unauthorized access
- Controls:
 - Passwords,
 - Personal cryptographic tokens,
 - OTP generators, etc.
 - Biometrics
 - Id cards
 - Cryptographic security/authentication protocols

Authentication token

Organisation/System Authentication

- Goal
 - Establish the correct identity of organisations/remote hosts
- Main threat:
 - Network intrusion
 - Masquerading attacks,
 - Replay attacks
 - (D)DOS attacks
- Controls:
 - Cryptographic authentication protocols based on hashing and encryption algorithms
 - Examples: TLS, VPN, IPSEC

Data Origin Authentication (Message authentication)

- Goal: Recipient of a message (i.e. data) can verify the correctness of claimed sender identity
 - But 3rd party may not be able to verify it
- Main threats:
 - False transactions
 - False messages and data
- Controls:
 - Encryption with shared secret key
 - MAC (Message Authentication Code)
 - Security protocols
 - Digital signature with private key
 - Electronic signature,
 - · i.e. any digital evidence

Non-Repudiation

(Strong form of Data Authentication)

- Goal: Making sending and receiving messages undeniable through unforgible evidence.
 - Non-repudiation of origin: proof that data was sent.
 - Non-repudiation of delivery: proof that data was received.
 - NB: imprecise interpretation: Has a message been received and read just because it has been delivered to your mailbox?
- Main threats:
 - Sender falsely denying having sent message
 - Recipient falsely denying having received message
- Control: digital signature
 - Cryptographic evidence that can be confirmed by a third party
- Data origin authentication and non-repudiation are similar
 - Data origin authentication only provides proof to recipient party
 - Non-repudiation also provides proof to third parties

Accountability

(Can be considered as a part of System integrity)

- Goal: Trace action to a specific user and hold them responsible
 - Audit information must be selectively kept and protected so that actions affecting security can be traced to the responsible party (TCSEC/Orange Book)
- Main threats:
 - Inability to identify source of incident
 - Inability to make attacker responsible
- Controls:
 - Identify and authenticate users
 - Log all system events (audit)
 - Electronic signature
 - Non-repudiation based on digital signature
 - Forensics

Authorization

- Authorization is to specify access and usage permissions for entities, roles or processes
 - Authorization policy normally defined by humans
 - Issued by an authority within the domain/organisation
- Authorities authorize, systems don't
- Authority can be delegated
 - Management → Sys.Admin
 - Implemented in IT systems as configuration/policy

Identity and Access Management (IAM) Phases

Confusion about Authorization

- The term "authorization" is often wrongly used in the sense of "access control"
 - e.g. misleading figure on p.725 in Harris 7th ed.
 - Common in text books and technical specifications (RFC 2196 ...)
 - Cisco AAA Server (Authentication, Authorization and Accounting)
- Wrong usage of "authorization" leads to absurd scenario:
 - 1. You get somebody's password, and uses it to access account.
 - 2. Login screen gives warning: "Only authorized users may access this system".
 - 3. You get caught and taken to the police
 - 4. You argue: "Text books in security state that a system authorizes the user when typing the right password, hence I was authorized because I typed the right password".
 - 5. Case dismissed, you go free.

Identity and Access Management Concepts

End of lecture