Лабораторная работа № 2

<u>Детерминированные циклические</u> <u>вычислительные процессы с управлением по</u> <u>аргументу</u>

Цель работы: научиться реализовывать алгоритмы детерминированных циклических вычислительных процессов с управлением по аргументу средствами Free Pascal.

Оборудование: PC, Lazarus

Задача № 1

Постановка задачи: Написать программу, которая позволит вычислить n!, где n вводится с клавиатуры.

Математическая модель:

F=n!

Список идентификаторов (обозначение переменных):

Таблица 1

Имя	Смысл	Тип
n	Вводимые данные	longint
F	Искомое значение	real
I	Параметр цикла	longint

Код программы:

```
program zadanie1;
var i,n : longint;
F : real;
begin
    writeln('Vvedite n');
    readln(n);
    F := 1;
    for i := 1 to n do
    F := F*i;
    writeln('Factorial = ',F:0:0);
    readln();
```

Результаты выполненной работы:

Анализ результатов вычисления: программа вычисляет с помощью цикла и выводит на экран факториал некоторого числа n.

Задача №2

Постановка задачи: Написать программу, которая позволит рассчитать значения для построения диаграммы направленности антенны в вертикальной плоскости. Q меняется в диапазоне от 0 до 90 градусов с шагом 1 градусов, а= 13.5, лямбда = 3 см.

Математическая модель:

$$f(Q) = \frac{(1 + \sin(Q)) \cdot \cos\left(\frac{\pi \cdot a}{\lambda} \cdot \cos(Q)\right)}{\left(\frac{\pi}{2}\right)^2 - \left(\frac{\pi \cdot a}{\lambda} \cdot \cos(Q)\right)^2}$$

Код программы:

program zadanie2;

var q:integer;

t,alpha,lambda,f: real;

```
begin
```

end.

```
alpha:=13.5;

lambda:=3;

for q:= 0 to 90 do begin

t:=((pi*alpha/lambda)*cos(q));

f:=(1+sin(q)*cos(t))/((pi/2)*(pi/2)-(t*t));

writeln(q,'. F = ',f:3:5);

end;

readln();
```

Список идентификаторов (обозначение переменных):

Таблица 2

Имя	Смысл	Тип
q	Градусы наклона	integer
t	Промежуточная переменная для ((pi*alpha/lambda)*cos(q));	real
alpha	Значение альфа	real
lambda	Значение лямбда	real
f	Искомое значение	real

Результаты выполненной работы:

```
□ D\Education\Информатика\Пабораторная работа 2\Zadacha2.exe
67. F = -0.0011.04
68. F = -0.00508
70. F = -0.00400
71. F = -0.00400
71. F = -0.00603
73. F = -0.01299
74. F = -0.50923
75. F = -0.00390
76. F = -0.01010
77. F = 0.83722
78. F = -0.01013
79. F = -0.00353
80. F = 30.88916
81. F = -0.00855
82. F = -0.00678
83. F = -0.01032
84. F = -0.00311
85. F = -0.00503
86. F = -0.01471
87. F = -0.01865
88. F = -0.003057
90. F = -0.05026
```

Анализ результатов вычисления: Программа вычисляет и выводит на экран значения для построения диаграммы направленности антенны в вертикальной плоскости в соответствии с формулой, используя цикл.

Задача №3

Постановка задачи: вычислить значение выражения

выражение	n	X
$y = 2.4 \sin x + \prod_{i=6}^{n} (\frac{x}{x+1} + \frac{i^2}{1+i^2})$	30	9

Математическая модель:

$$y = 2.4 \sin x + \prod_{i=6}^{n} (\frac{x}{x+1} + \frac{i^2}{1+i^2})$$

Для вычисления произведения от i=6 до n используется переменная pr, т.е.:

$$y=2,4\sin x+pr.$$

Список идентификаторов (обозначение переменных):

Таблица 3

Имя	Смысл	Тип
x	Элемент выражения	real
у	Результат вычислений	real
i	Элемент выражения	integer
pr	Произведения от i=6 до n	real
n	Элемент выражения	integer

Код программы:

```
program Zadacha3;
var
y, x, pr:real;
i, n: integer;
begin
   n:=30;
   x := 9;
   pr:= 1;
   for i = 6 to n do
     begin
         pr:=pr*(x/(x+1)+i*i/(1+i*i));
     end;
   y := 2.4*\sin(x)+pr;
   writeln('y=', y:2:5);
readln();
end.
```

Результаты выполненной работы:

Анализ результатов вычисления: Программа вычисляет с помощью цикла и выводит на экран некоторое значение *у* в соответствии с формулой.

Задача №4

Постановка задачи: Написать программу, которая вычисляет значение выражения. N вводится пользователем.

Математическая модель:

$$y = \frac{3 \cdot \sum_{i=2}^{n} i^2 + \prod_{i=2}^{n} \frac{i}{i+2}}{\prod_{i=2}^{n} i^2 + 2 \cdot \sum_{i=2}^{n} \frac{i}{i+2}}$$

Список идентификаторов (обозначение переменных):

Таблица 4

Имя	Смысл	Тип
У	Искомое значение	real
pr1	Произведение 1	real
pr2	Произведение 2	real
sum1	Сумма 1	real
sum2	Сумма 2	real
i	Параметр цикла	integer
n	Входные данные	integer

Код программы:

```
program zadanie4;
var y,pr1,pr2,sum1,sum2 : real;
i,n: integer;
begin
   writeln('Vvedite N');
   readln(n);
   pr1 := 1;
   pr2 := 1;
   sum1 := 0;
   sum 2 := 0;
   for i:= 2 to n do begin
     sum1 := sum1 + i*i;
     pr1 := pr1*i/(i+2);
     sum2 := sum2 + i/(i+2);
     pr2 := pr2*i*i;
   end;
   y := (3*Sum1+pr1)/(pr2+2*Sum2);
   writeln('y = ',y:2:5);
   readln();
end.
```

Результат выполненной работы:

Анализ результатов вычисления: Программа вычисляет с помощью цикла и выводит на экран некоторое значение у в соответствии с формулой.

Вывод.

Детерминированный циклический вычислительный процесс представляет собой изолированную структуру, которая может потенциально существовать бесконечно долгое время. Число состояний структуры следует принять конечной величиной, равной п.