Automi e Linguaggi Formali

a.a. 2016/2017

LT in Informatica 13 Marzo 2017

Compitini

- Due compitini, uno a metà del corso e uno alla fine.
- I compitini sostituiscono l'esame
 - devono essere entrambi sufficenti
- Per gli appelli di Giugno e Luglio:
 - compito diviso in due parti
 - si può recuperare un compitino insufficente
- Dagli appelli di Settembre in poi:
 - si deve fare l'esame completo

Esercizio 1 del 3 Marzo

Costruire un Automa a Stati Finiti Deterministico (DFA) che riconosce il linguaggio di tutte le stringhe sull'alfabeto $\{0,1\}$ tali che il penultimo simbolo è 0

Esercizio 2 del 3 Marzo

Descrivere il linguaggio riconosciuto dal seguente NFA

	0	1
$\rightarrow P$	{ <i>P</i> , <i>Q</i> }	{ <i>Q</i> }
Q	{ <i>R</i> }	{ <i>R</i> }
R	<i>{S}</i>	Ø
*S	<i>{S}</i>	<i>{S}</i>

Tutte le stringhe che si possono scomporre in uvw dove

- *u* è una sequenza (anche vuota) di 0
- v è una stringa di lunghezza 3 che termina con 0
- w è una qualsiasi stringa in $\{0,1\}^*$

Esercizio 3 del 3 Marzo

Convertire il seguente NFA in DFA:

NFA con epsilon-transizioni

Esercizio: costruiamo un NFA che accetta numeri decimali:

- 1 Un segno + o -, opzionale
- **2** Una stringa di cifre decimali $\{0, \dots, 9\}$
- 3 un punto decimale .
- 4 un'altra stringa di cifre decimali

Una delle stringhe (2) e (4) può essere vuota, ma non entrambe

ε -NFA: definizione

Un Automa a Stati Finiti Non Deterministico con ε -transizioni (ε -NFA) è una quintupla

$$A = (Q, \Sigma, \delta, q_0, F)$$

dove:

- \blacksquare Q, Σ, q_0, F sono definiti come al solito
- lacksquare δ è una funzione di transizione che prende in input:
 - uno stato in Q
 - un simbolo nell'alfabeto $\Sigma \cup \{\varepsilon\}$

e restituisce un sottoinsieme di Q

Esempio di ε -NFA

L'automa che riconosce le cifre decimali è definito come

$$A = (\{q_0, q_1, \dots, q_5\}, \{+, -, ., 0, \dots, 9\}, \delta, q_0, \{q_5\})$$

dove δ è definita dalla tabella di transizione

	ε	+,-		$0, \ldots, 9$
$ o q_0$	$\{q_1\}$	$\{q_1\}$	Ø	Ø
q_1	Ø	Ø	$\{q_2\}$	$\{q_1,q_4\}$
q_2	Ø	Ø	Ø	$\{q_3\}$
q 3	$\{q_5\}$	Ø	Ø	$\{q_3\}$
94	Ø	Ø	$\{q_3\}$	Ø
* q 5	Ø	Ø	Ø	Ø

Eliminare le ε -transizioni

Epsilon chiusura: definizione

L'eliminazione delle ε -transizioni procede per ε -chiusura degli stati:

 \blacksquare tutti gli stati raggiungibili da q con una sequenza $\varepsilon\varepsilon\ldots\varepsilon$

La definizione di ECLOSE(q) è per induzione:

Caso base:

$$q \in \text{ECLOSE}(q)$$

Caso induttivo:

se
$$p \in \text{ECLOSE}(q)$$
 e $r \in \delta(p, \varepsilon)$ allora $r \in \text{ECLOSE}(q)$

Epsilon chiusura: esempio

$$ECLOSE(q_0) = \{q_0, q_1, q_4, q_2, q_3\}$$

Procedura di eliminazione delle ε -transizioni

Dato un ε -NFA

$$E = (Q, \Sigma, q_0, \delta_E, F_E)$$

costruiremo un NFA senza ε -transizioni

$$N = (Q, \Sigma, q_0, \delta_N, F_N)$$

che accetta lo stesso linguaggio

- E ed N hanno lo stesso insieme di stati e lo stesso stato iniziale
- lacksquare Per ogni $q\subseteq Q$ e per ogni $a\in \Sigma$

$$\delta_N(q, a) = \bigcup_{p \in \text{ECLOSE}(q)} \delta_E(p, a)$$

■ $F_N = \{q \in Q : \text{ECLOSE}(q) \cap F_E \neq \emptyset\}$ Uno stato è finale se c'è almeno uno stato finale nella ε -chiusura

Esercizio

- **1** Costruiamo un ε -NFA che riconosce le parole costituite da
 - zero o più *a*
 - seguite da zero o più *b*
 - seguite da zero o più *c*
- **2** Eliminare le ε -transizioni dal risultato
- 3 Convertire l'NFA senza ε -transizioni in DFA