Estatística: Aplicação ao Sensoriamento Remoto

SER 204 - ANO 2024

Análise de Variância (ANOVA)

Camilo Daleles Rennó

camilo.renno@inpe.br http://www.dpi.inpe.br/~camilo/estatistica/

Comparando-se médias de duas populações

$$E(X_1) = \mu_1 \qquad \qquad E(X_2) = \mu_2$$

Hipóteses

$$H_0: \mu_1 - \mu_2 = 0 \ (\mu_1 = \mu_2)$$

 H_1 : $\mu_1 - \mu_2 \neq 0$

Teste z ou teste t

Comparando-se médias de várias populações

Comparando-se as médias de r populações ou tratamentos...

$$H_0: \mu_1 = \mu_2 = ... = \mu_r$$

Mesmo não se conhecendo as médias μ_i , seria possível verificar se elas são iguais a partir de seus valores amostrais?

Análise de Variância (ANOVA)

(ANOVA de 1 fator)

Comparando-se as médias de r populações ou tratamentos...

$$E(X_1) = \mu_1$$

$$X_1 \sim N(\mu_1, \sigma^2)$$

$$X_2 \sim N(\mu_2, \sigma^2)$$

$$X_r \sim N(\mu_r, \sigma^2)$$

 $E(X_r) = \mu_r$

Pressuposições: Todas r v.a. $(X_1, ..., X_r)$ são normalmente distribuídas e têm a mesma variância!!!

Comparando-se as médias de r populações ou tratamentos...

Desvio, resíduo ou erro

 $+\infty$

 $N(0, \sigma^2)$

-∞

0

Comparando-se as médias de r populações ou tratamentos...

$$E(X_1) = \mu_1$$

$$E(X_2) = \mu_2$$

-∞

$$(E(X_r) = \mu_r)$$

$$X_j = \mu_j + \, arepsilon_j$$
 erro em torno de cada média

 $\mu_j = \mu_T + au_j$ erro de cada média em torno da média global

$$X_j = \mu_T + \tau_j + \varepsilon_j$$

 μ_T = média global τ_j = efeito do tratamento j ε_i = efeito aleatório

Comparando-se as médias de r populações ou tratamentos...

 X_{ij} é o i-ésimo elemento da amostra retirada do tratamento j μ_j é a média populacional do tratamento j, estimado por \overline{X}_j i = 1, ..., n_j j = 1, ..., r

j	=	{1,	2,	,	<i>r</i> }
i	=	{1,	2,	,	n_i

$$n_T = \sum_{j=1}^r n_j$$

$$X_{*j} = \sum_{i=1}^{n_i} X_{ij}$$

$$X_{**} = \sum_{j=1}^{r} \sum_{i=1}^{n_i} X_{ij}$$

$$\bar{X}_j = \frac{X_{*j}}{n_i}$$

$$\bar{X}_T = \frac{X_{**}}{n_j}$$

	T1	T2	T3	T4	
	6,8	12,7	9,4	15,7	
	8,2	13,5	13,0	13,9	
	9,5	12,9	12,1	13,7	
	10,2	14,9	8,3	20,9	
	10,7	12,8	7,2	15,8	
	13,7	11,6	10,2	17,6	
	9,0	18,7	9,8	16,9	
	12,1	10,1	14,8	11,4	
	13,4	19,3	13,0	21,6	
	10,5	13,9	(9,1)	14,4	
	10,0	13,7		12,7	
	13,9	16,8			Total
n_i	12	12	10	11	45
Toťal	128,0	170,9	106,9	174,6	580,4
Média	10,67	14,24	10,69	15,87	(12,90)
•					

	T1	T2	T3	T4	
	6,8	12,7	9,4	15,7	
	8,2	13,5	13,0	13,9	
	9,5	12,9	12,1	13,7	
	10,2	14,9	8,3	20,9	
	10,7	12,8	7,2	15,8	
	13,7	11,6	10,2	17,6	
	9,0	18,7	9,8	16,9	
	12,1	(10,1)	14,8	11,4	
	13,4	19,3	13,0	21,6	
	10,5	13,9	9,1	14,4	
	10,0	13,7		12,7	
	13,9	16,8			Total
n_i	12	12	10	11	45
Total	128,0	170,9	106,9	174,6	580,4
Média	(10,67)	(14,24)	(10,69)	(15,87)	12,90

 $X_{ij} - \bar{X}_j$

	T1	T2	T3	T4	
	6,8	12,7	9,4	15,7	
	8,2	13,5	13,0	13,9	
	9,5	12,9	12,1	13,7	
	10,2	14,9	8,3	20,9	
	10,7	12,8	7,2	15,8	
	13,7	11,6	10,2	17,6	
	9,0	18,7	9,8	16,9	
	12,1	10,1	14,8	11,4	
	13,4	19,3	13,0	21,6	
	10,5	13,9	9,1	14,4	
	10,0	13,7		12,7	
	13,9	16,8			Total
n_{i}	12	12	10	11	45
Total	128,0	170,9	106,9	174,6	580,4
Média	10,67	14,24	10,69	(15,87)	(12,90)

 $\bar{X}_i - \bar{X}_T$

	T1	T2	T3	T4						
	6,8	12,7	9,4	15,7						
	8,2	13,5	13,0	13,9						
	9,5	12,9	12,1	13,7		(V	$\bar{v} \rightarrow - \epsilon \bar{v}$	$\bar{\mathbf{v}}$	$(V \overline{V})$	
	10,2	14,9	8,3	20,9		$(x_{ij} -$	$(X_T) = (X_T)$	$(j-\bar{X}_T)+$	$(x_{ij}-x_j)$	
	10,7	12,8	7,2	15,8						
	13,7	11,6	10,2	17,6						
	9,0	18,7	9,8	16,9		r n_j	r		r	n_j
	12,1	10,1	14,8	11,4		$\sum \sum (v \bar{v})$	$)^2 - \nabla$	$m (\bar{v} \bar{v})$	2 $$	$\sum (v \bar{v})^2$
	13,4	19,3	13,0	21,6		$\sum_{j=1}^{r} \sum_{i=1}^{n_j} (X_{ij} - \bar{X}_{ij})$	r) - <u>_</u>	$n_j(\Lambda_j-\Lambda_j)$	T) $+$ \angle	$\sum (\Lambda_{ij} - \Lambda_j)$
	10,5	13,9	9,1	14,4		$\overline{j=1} \ \overline{i=1}$	$\overline{j=1}$		$\overline{j=1}$	$\overline{i=1}$
	10,0	13,7		12,7						
	13,9	16,8			Total	,		, ,		, ,
n_i	12	12	10	11	45	SQTO	=	SQT	+	SQE
Total	128,0	170,9	106,9	174,6	580,4					
Média	10,67	14,24	10,69	15,87	12,90					

SQTO = Soma dos Quadrados Total

SQT = Soma dos Quadrados dos Tratamentos

SQE = Soma dos Quadrados dos Erros ou dos Resíduos

Fonte de Variação	Soma dos Quadrados	Graus de Liberdade	Quadrado Médio
Tratamentos	$SQT = \sum_{j=1}^{r} n_j (\bar{X}_j - \bar{X}_T)^2$		$QMT = \frac{SQT}{r - 1}$
Erro	$SQE = \sum_{j=1}^{r} \sum_{i=1}^{n_j} (X_{ij} - \bar{X}_j)^2$	$n_T - r$	$QME = \frac{SQE}{n_T - r}$
Total	$SQTO = \sum_{j=1}^{r} \sum_{i=1}^{n_j} (X_{ij} - \bar{X}_T)^2$	$n_T - 1$	

$$E(QME) = \sigma^2$$

 $E(QME) = \sigma^2$ QME é um estimador não-tendencioso de σ^2

$$\begin{split} E(QMT) &= \sigma^2 + \frac{\sum_{j=1}^r n_j \left(\mu_j - \mu_T\right)^2}{r-1} \\ &= \sigma^2 + \frac{\sum_{j=1}^r n_j \tau_j^2}{r-1} \\ &= \sigma^2 + \frac{\sum_{j=1}^r n_j \tau_j^2}{r-1} \\ &= \text{a menos que todos } \mu_j \text{ sejam iguais entre} \\ &\text{si, ou seja, } \mu_j = \mu_T \text{ ou } \tau_j = 0 \end{split}$$

Fonte de Variação	Soma dos Quadrados	Graus de Liberdade	Quadrado Médio
Tratamentos	$SQT = \sum_{j=1}^{r} n_j (\bar{X}_j - \bar{X}_T)^2$		$QMT = \frac{SQT}{r - 1}$
Erro	$SQE = \sum_{j=1}^{r} \sum_{i=1}^{n_j} (X_{ij} - \bar{X}_j)^2$	$n_T - r$	$QME = \frac{SQE}{n_T - r}$
Total	$SQTO = \sum_{j=1}^{r} \sum_{i=1}^{n_j} (X_{ij} - \bar{X}_T)^2$	$n_T - 1$	

 $\begin{array}{ll} \mathbf{H}_0: \mu_1 = \mu_2 = \ldots = \mu_r \\ \mathbf{H}_1: \text{ nem todos } \mu_j \text{ são iguais} & \Longleftrightarrow & \mathbf{H}_0: \ \tau_j = 0 \\ \mathbf{H}_1: \text{ nem todos } \tau_j = 0 \end{array}$

Se H₀ for verdadeiro:

$$\frac{QMT}{QME} \sim F_{r-1,n_T-r}$$

$$F_{calc} = \frac{QMT}{QME} \cong 1$$

Se
$$H_0$$
 for falso:

Se
$$H_0$$
 for falso: $F_{calc} = \frac{QMT}{QME} >>> 1$

Fonte de Variação	Soma dos Quadrados	Graus de Liberdade	Quadrado Médio
Tratamentos	$SQT = \sum_{j=1}^{r} n_j (\bar{X}_j - \bar{X}_T)^2$	r-1	$QMT = \frac{SQT}{r - 1}$
Erro	$SQE = \sum_{j=1}^{r} \sum_{i=1}^{n_j} (X_{ij} - \bar{X}_j)^2$	$n_T - r$	$QME = \frac{SQE}{n_T - r}$
Total	$SQTO = \sum_{j=1}^{r} \sum_{i=1}^{n_j} (X_{ij} - \bar{X}_T)^2$	$n_T - 1$	

 $\begin{array}{ll} \mathbf{H}_0: \mu_1 = \mu_2 = \ldots = \mu_r \\ \mathbf{H}_1: \text{ nem todos } \mu_j \text{ são iguais} & \Longleftrightarrow & \mathbf{H}_0: \tau_j = 0 \\ \mathbf{H}_1: \text{ nem todos } \tau_j = 0 \end{array}$

Se H₀ for verdadeiro:

$$\frac{QMT}{QME} \sim F_{r-1,n_T-r} \qquad F_{calc} = \frac{QMT}{QME} \cong 1$$

$$F_{calc} = \frac{QMT}{QME} \cong 1$$

Se
$$H_0$$
 for falso:

Se
$$H_0$$
 for falso: $F_{calc} = \frac{QMT}{QME} >>> 1$

ANOVA é sempre um teste unilateral a direita

Fórmulas Alternativas

$$SQT = \sum_{j=1}^{r} n_j (\bar{X}_j - \bar{X}_T)^2 = \sum_{j=1}^{r} \frac{X_{*j}^2}{n_j} - \frac{X_{**}^2}{n_T}$$

$$SQE = \sum_{j=1}^{r} \sum_{i=1}^{n_j} (X_{ij} - \bar{X}_j)^2 = SQTO - SQT$$

$$SQTO = \sum_{j=1}^{r} \sum_{i=1}^{n_j} (X_{ij} - \bar{X}_T)^2 = \sum_{j=1}^{r} \sum_{i=1}^{n_j} X_{ij}^2 - \frac{X_{**}^2}{n_T}$$

	T1	T2	T3	T4	
	6,8	12,7	9,4	15,7	
	8,2	13,5	13,0	13,9	
	9,5	12,9	12,1	13,7	
	10,2	14,9	8,3	20,9	
	10,7	12,8	7,2	15,8	
	13,7	11,6	10,2	17,6	
	9,0	18,7	9,8	16,9	
	12,1	10,1	14,8	11,4	
	13,4	19,3	13,0	21,6	
	10,5	13,9	9,1	14,4	
	10,0	13,7		12,7	
	13,9	16,8			Total
n_{i}	12	12	10	11	45
Toťal	128,0	170,9	106,9	174,6	580,4
Média	10,67	14,24	10,69	15,87	12,90

Fonte de Variação	SQ	gl	QM	F
Tratamento Erro				
Total	522,01			

$$SQTO = \sum_{j=1}^{r} \sum_{i=1}^{n_j} X_{ij}^2 - \frac{X_{**}^2}{n_T}$$

	T1	T2	T3	T4	
	6,8	12,7	9,4	15,7	
	8,2	13,5	13,0	13,9	
	9,5	12,9	12,1	13,7	
	10,2	14,9	8,3	20,9	
	10,7	12,8	7,2	15,8	
	13,7	11,6	10,2	17,6	
	9,0	18,7	9,8	16,9	
	12,1	10,1	14,8	11,4	
	13,4	19,3	13,0	21,6	
	10,5	13,9	9,1	14,4	
	10,0	13,7		12,7	
	13,9	16,8			Total
n_i	12	12	10	11	45
Total	128,0	170,9	106,9	174,6	580,4
Média	10,67	14,24	10,69	15,87	12,90
	•		•		

Fonte de Variação	SQ	gl	QM	F
Tratamento Erro	227,50			
Total	522,01			

$$SQT = \sum_{j=1}^{r} \frac{X_{*j}^{2}}{n_{j}} - \frac{X_{**}^{2}}{n_{T}}$$

	T1	T2	T3	T4	
	6,8	12,7	9,4	15,7	
	8,2	13,5	13,0	13,9	
	9,5	12,9	12,1	13,7	
	10,2	14,9	8,3	20,9	
	10,7	12,8	7,2	15,8	
	13,7	11,6	10,2	17,6	
	9,0	18,7	9,8	16,9	
	12,1	10,1	14,8	11,4	
	13,4	19,3	13,0	21,6	
	10,5	13,9	9,1	14,4	
	10,0	13,7		12,7	
	13,9	16,8			Total
n_{i}	12	12	10	11	45
Total	128,0	170,9	106,9	174,6	580,4
Média	10,67	14,24	10,69	15,87	12,90
·					

SQ	gl	QM	F
227,50			
294,51			
522,01			
	227,50 294,51	227,50 294,51	227,50 294,51

$$SQE = SQTO - SQT$$

	T1	T2	T3	T4	
	6,8	12,7	9,4	15,7	
	8,2	13,5	13,0	13,9	
	9,5	12,9	12,1	13,7	
	10,2	14,9	8,3	20,9	
	10,7	12,8	7,2	15,8	
	13,7	11,6	10,2	17,6	
	9,0	18,7	9,8	16,9	
	12,1	10,1	14,8	11,4	
	13,4	19,3	13,0	21,6	
	10,5	13,9	9,1	14,4	
	10,0	13,7		12,7	
	13,9	16,8			Total
n_{i}	12	12	10	11	45
Total	128,0	170,9	106,9	174,6	580,4
Média	10,67	14,24	10,69	15,87	12,90

Fonte de Variação	SQ	gl	QM	F
Tratamento	227,50			
Erro	294,51			
Total	522,01	44		

$$gl_{Total} = n_T - 1$$

	T1	T2	T3	T4	
	6,8	12,7	9,4	15,7	
	8,2	13,5	13,0	13,9	
	9,5	12,9	12,1	13,7	
	10,2	14,9	8,3	20,9	
	10,7	12,8	7,2	15,8	
	13,7	11,6	10,2	17,6	
	9,0	18,7	9,8	16,9	
	12,1	10,1	14,8	11,4	
	13,4	19,3	13,0	21,6	
	10,5	13,9	9,1	14,4	
	10,0	13,7		12,7	
	13,9	16,8			Total
n_{i}	12	12	10	11	45
Total	128,0	170,9	106,9	174,6	580,4
Média	10,67	14,24	10,69	15,87	12,90

Fonte de Variação	SQ	gl	QM	F
Tratamento	227,50	3		
Erro	294,51			
<u> </u>	522,01	44		

$$gl_{Total} = n_T - 1$$

$$gl_{Trat} = r - 1$$

	T1	T2	T3	T4	
	6,8	12,7	9,4	15,7	
	8,2	13,5	13,0	13,9	
	9,5	12,9	12,1	13,7	
	10,2	14,9	8,3	20,9	
	10,7	12,8	7,2	15,8	
	13,7	11,6	10,2	17,6	
	9,0	18,7	9,8	16,9	
	12,1	10,1	14,8	11,4	
	13,4	19,3	13,0	21,6	
	10,5	13,9	9,1	14,4	
	10,0	13,7		12,7	
	13,9	16,8			Total
n_{i}	12	12	10	11	45
Total	128,0	170,9	106,9	174,6	580,4
Média	10,67	14,24	10,69	15,87	12,90

Fonte de Variação	SQ	gl	QM	F
Tratamento	227,50	3		
Erro	294,51	41		
Total	522,01	44		

$$gl_{Total} = n_T - 1$$
 $gl_{Trat} = r - 1$ $gl_{erro} = gl_{Total} - gl_{Trat}$

	T1	T2	T3	T4	
	6,8	12,7	9,4	15,7	
	8,2	13,5	13,0	13,9	
	9,5	12,9	12,1	13,7	
	10,2	14,9	8,3	20,9	
	10,7	12,8	7,2	15,8	
	13,7	11,6	10,2	17,6	
	9,0	18,7	9,8	16,9	
	12,1	10,1	14,8	11,4	
	13,4	19,3	13,0	21,6	
	10,5	13,9	9,1	14,4	
	10,0	13,7		12,7	
	13,9	16,8			Total
n_{i}	12	12	10	11	45
Total	128,0	170,9	106,9	174,6	580,4
Média	10,67	14,24	10,69	15,87	12,90

SQ	gl	QM	F
227,50	3	75,83	10,56
294,51	41	7,18	
522,01	44		
	227,50 294,51	227,50 3 294,51 41	227,50 3 75,83 294,51 41 7,18

$$QMT = \frac{SQT}{r-1}$$
 $QME = \frac{SQE}{n_T - r}$ $F_{calc} = \frac{QMT}{OME}$

 $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$

 H_1 : nem todos μ_i são iguais

Se $F_{calc} < F_{crit}$ então H_0 verdadeiro

	T1	T2	T3	T4	
	6,8	12,7	9,4	15,7	
	8,2	13,5	13,0	13,9	
	9,5	12,9	12,1	13,7	
	10,2	14,9	8,3	20,9	
	10,7	12,8	7,2	15,8	
	13,7	11,6	10,2	17,6	
	9,0	18,7	9,8	16,9	
	12,1	10,1	14,8	11,4	
	13,4	19,3	13,0	21,6	
	10,5	13,9	9,1	14,4	
	10,0	13,7		12,7	
	13,9	16,8			Total
n_{i}	12	12	10	11	45
Total	128,0	170,9	106,9	174,6	580,4
Média	10,67	14,24	10,69	15,87	12,90
-		-	-	-	

Fonte de Variação	SQ	gl	QM	F
Tratamento	227,50	3	75,83	10,56
Erro	294,51	41	7,18	
Total	522,01	44		

$$QMT = \frac{SQT}{r-1}$$
 $QME = \frac{SQE}{n_T - r}$ $F_{calc} = \frac{QMT}{QME}$

 $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$

 H_1 : nem todos μ_j são iguais

Se $valor-P > \alpha$ então H_0 verdadeiro

Fonte de Variação	SQ	gl	QM	F	valor-P
Tratamento	227,50	3	75,83	10,56	2,83E-05
Erro	294,51	41	7,18		
<u>Total</u>	522,01	44			

 $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$

 H_1 : nem todos μ_j são iguais

Adotando α = 5%, o que se pode concluir?

Rejeito H_0 , ou seja, pelo menos uma das médias é diferente das demais

Importante: se H_0 for rejeitada, a ANOVA não identifica quais médias diferem-se entre si.

OBSERVAÇÕES:

- A ANOVA não considera que os tratamentos tenham algum ordenamento específico
 Para agregar esta informação na análise, usa-se a Análise de Regressão
- ANOVA com 2 tratamentos (r = 2) não deve ser realizada, uma vez que corresponde a um teste t homocedástico bilateral
- ANOVA pode ter mais do que 2 fatores avaliados (ANOVA multivariada)

	TA1	TA2	TA3	TA4
	10,3	9,5	9,6	14,8
TB1	11,0	9,1	15,0	10,6
	15,1	10,0	13,3	
	20,7	23,2	21,0	29,6
TB2	21,7	23,9	22,9	28,8
	18,9	21,7		25,4

Fonte de	F
Variação	Γ
Trat TA	F_{TA}
Trat TB	F_{TB}
$TA \times TB$	$F_{T\!AxT\!B}$
Erro	
Total	

PRESSUPOSIÇÕES:

- Cada observação deve ser independente das demais;
 condição garantida pelo processo de amostragem
- Cada tratamento deve ter distribuição normal; deve ser verificado anteriormente através de testes específicos obs: o teste F para ANOVA de 1 fator é pouco afetado pela falta de normalidade dos dados (atenção especial quando $F_{calc}\cong F_{crit}$ ou $Valor-P\cong \alpha$)
- Todos os tratamentos devem ter a mesma variância; deve ser verificado anteriormente através de testes específicos obs: se todos tratamentos possuírem o mesmo tamanho de amostra $(n_j = n)$, o teste F será pouco afetado pelo fato das variâncias dos tratamentos não serem iguais (também, neste caso, atenção especial quando $F_{calc} \cong F_{crit}$ ou $Valor-P \cong \alpha$)

Teste alternativo: Kruskal-Wallis (teste não paramétrico)

Testes de Normalidade

- D'Agostino K², Jarque-Bera e Shapiro-Wilk
 testam se a curtose e a assimetria amostral podem ser obtidas a partir de uma distribuição normal
- estatística não-paramétrica
- Anderson Darling, Cramér-von Mises, Lilliefors, Kolmogorov-Smirnov comparam a distribuição acumulada empírica (obtida a partir de uma amostra) com uma distribuição acumulada teórica qualquer
- χ² de Pearson (teste de aderência)
 compara a distribuição empírica e uma distribuição teórica qualquer
 divididas em um número determinada de classes

Para a ANOVA, verifica-se se $\varepsilon_{ij} \sim N(0,\sigma^2)$ através dos erros amostrais $e_{ij} = X_{ij} - \bar{X}_j$

Testes de Igualdade de Variâncias

• Bartlett

baseia-se na comparação entre a média ponderada e a média geométrica das variâncias amostrais

Hartley

baseia-se na comparação entre os valores máximo e mínimo das variâncias amostrais

· Cochran

baseia-se na comparação entre a variância amostral máxima e a soma de todas as variâncias amostrais

Levene modificado
 compara os desvios médios absolutos entre e dentro de cada grupo

Se $s_1^2, ..., s_r^2$ são as variâncias amostrais de r populações com distribuição normal, então

$$QME = \frac{\sum_{j=1}^{r} (n_j - 1)s_j^2}{n_T - 1}$$

 $QME = \frac{\sum_{j=1}^{r} (n_j - 1)s_j^2}{n_r - 1}$ representa a média aritmética ponderada das variâncias amostrais

$$GQME = \left(\prod_{j=1}^{r} (s_j^2)^{n_i-1}\right)^{\frac{1}{n_T-r}}$$
 representa a média geométrica dessas mesmas variâncias amostrais

 $GQME \le QME$ (GQME = QME se todas variâncias amostrais são idênticas)

$$B = \frac{2,302585}{C}(n_T - r)(\log_{10} QME - \log_{10} GQME) \text{ onde } C = 1 + \frac{1}{3(r-1)} \left[\sum_{j=1}^r \frac{1}{n_j - 1} - \frac{1}{n_T - r} \right]$$

$$B = \frac{2,302585}{C} \left[(n_T - r) \log_{10} QME - \sum_{j=1}^r (n_j - 1) \log_{10} s_j^2 \right]$$

$$B = \frac{2,302585}{C} \left[(n_T - r) \log_{10} QME - \sum_{j=1}^r (n_j - 1) \log_{10} s_j^2 \right]$$
onde $C = 1 + \frac{1}{3(r-1)} \left[\sum_{j=1}^r \frac{1}{n_j - 1} - \frac{1}{n_T - r} \right]$

$$H_0$$
: $\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \sigma_4^2$

 H_1 : nem todas σ_j^2 são iguais

Se H_0 for verdadeiro:

$$B \sim \chi^2_{r-1}$$

(idealmente $n_j \ge 5$)

$$B = \frac{2,302585}{C} \left[(n_T - r) \log_{10} QME - \sum_{j=1}^r (n_j - 1) \log_{10} s_j^2 \right]$$
onde $C = 1 + \frac{1}{3(r-1)} \left[\left(\sum_{j=1}^r \frac{1}{n_j - 1} \right) - \frac{1}{n_T - r} \right]$

$$H_0$$
: $\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \sigma_4^2$

 H_1 : nem todas σ_j^2 são iguais

Se H_0 for verdadeiro:

$$B \sim \chi^2_{r-1}$$

(sempre teste unilateral a direita)

Usando-se o exemplo da ANOVA:

	T1	T2	T3	T4	
	6,8	12,7	9,4	15,7	
	8,2	13,5	13,0	13,9	
	9,5	12,9	12,1	13,7	
	10,2	14,9	8,3	20,9	
	10,7	12,8	7,2	15,8	
	13,7	11,6	10,2	17,6	
	9,0	18,7	9,8	16,9	
	12,1	10,1	14,8	11,4	
	13,4	19,3	13,0	21,6	
	10,5	13,9	9,1	14,4	
	10,0	13,7		12,7	
	13,9	16,8			Total
I_j	12	12	10	11	45
J					

$$H_0$$
: $\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \sigma_4^2$

 H_1 : nem todas σ_i^2 são iguais

$$C = 1 + \frac{1}{9} \left[\left(\frac{1}{11} + \frac{1}{11} + \frac{1}{9} + \frac{1}{10} \right) - \frac{1}{41} \right] = 1,0409$$

$$B = \frac{2,302585}{1,0409} [35,1088 - 34,4267] = 1,5087$$

$$0,05$$

0

7,81

 $+\infty$

Conclusão: aceito H_0 a 5%, ou seja, as variâncias dos tratamentos podem ser as mesmas

Análise de Variância / EXCEL

Análise de Variância / EXCEL

ANOVA: fator único

T1	T2	T3	T4
6,8	12,7	9,4	15,7
8,2	13,5	13,0	13,9
9,5	12,9	12,1	13,7
10,2	14,9	8,3	20,9
10,7	12,8	7,2	15,8
13,7	11,6	10,2	17,6
9,0	18,7	9,8	16,9
12,1	10,1	14,8	11,4
13,4	19,3	13,0	21,6
10,5	13,9	9,1	14,4
10,0	13,7		12,7
13,9	16,8		

RESUMO				
Grupo	Contagem	Soma	Média	Variância
T1	12	128,0	10,667	5,004
T2	12	170,9	14,242	7,617
T3	10	106,9	10,690	5,852
T4	11	174,6	15,873	10,300

ANOVA					
Fonte da variação	SQ	gl	MQ	F	valor-P
Entre grupos	227,503	3	75,834	10,557	2,83E-05
Dentro dos grupos	294,507	41	7,183		
Total	522,010	44			
	,				

 $H_0: \mu_1 = \mu_2 = ... = \mu_r$

 H_1 : nem todos μ_j são iguais

Adotando α = 5%, o que se pode concluir?

Rejeito H₀, ou seja, pelo menos uma das médias é diferente das demais

Análise de Variância / R

ANOVA: fator único

T1	T2	T3	T4
6,8	12,7	9,4	15,7
8,2	13,5	13,0	13,9
9,5	12,9	12,1	13,7
10,2	14,9	8,3	20,9
10,7	12,8	7,2	15,8
13,7	11,6	10,2	17,6
9,0	18,7	9,8	16,9
12,1	10,1	14,8	11,4
13,4	19,3	13,0	21,6
10,5	13,9	9,1	14,4
10,0	13,7		12,7
13,9	16,8		

> dados<-c(6.8,8.2,9.5,10.2,10.7,13.7,9,12.1,13.4,10.5,10,13.9,12.7, 13.5,12.9,14.9,12.8,11.6,18.7,10.1,19.3,13.9,13.7,16.8,9.4,13, 12.1,8.3,7.2,10.2,9.8,14.8,13,9.1,15.7,13.9,13.7,20.9,15.8, 17.6,16.9,11.4,21.6,14.4,12.7)

>resultado<-aov(dados~trat) #analise de variancia

>anova(resultado) # tabela ANOVA

Analysis of Variance Table

Response: dados

Df Sum Sq Mean Sq F value Pr(>E) 3 227.50 75.834

trat Residuals 41 294.51 7.183 10.557 (2.834e-0!

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 $H_0: \mu_1 = \mu_2 = ... = \mu_r$

 H_1 : nem todos μ_i são iguais

Adotando α = 5%, o que se pode concluir?

Rejeito H₀, ou seja, pelo menos uma das médias é diferente das demais

Teste de Shapiro-Wilk / R

ANOVA: fator único

T1	T2	T3	T4
6,8	12,7	9,4	15,7
8,2	13,5	13,0	13,9
9,5	12,9	12,1	13,7
10,2	14,9	8,3	20,9
10,7	12,8	7,2	15,8
13,7	11,6	10,2	17,6
9,0	18,7	9,8	16,9
12,1	10,1	14,8	11,4
13,4	19,3	13,0	21,6
10,5	13,9	9,1	14,4
10,0	13,7		12,7
13,9	16,8		

> dados<-c(6.8,8.2,9.5,10.2,10.7,13.7,9,12.1,13.4,10.5,10,13.9,12.7, 13.5,12.9,14.9,12.8,11.6,18.7,10.1,19.3,13.9,13.7,16.8,9.4,13, 12.1,8.3,7.2,10.2,9.8,14.8,13,9.1,15.7,13.9,13.7,20.9,15.8, 17.6,16.9,11.4,21.6,14.4,12.7)</p>

>resultado<-aov(dados~trat) #analise de variancia

>shapiro.test(residuals(resultado)) #teste de Shapiro-Wilk

Shapiro-Wilk normality test

data: residuals(resultado) W = 0.961, p-value 0.1333

 H_0 : $\varepsilon_{ij} \sim N(0, \sigma^2)$

 $H_1: \varepsilon_{ii} \sim ?$

Adotando α = 5%, o que se pode concluir?

Aceito H_0 , ou seja, os erros provém de uma distribuição normal

Teste de Bartlett / R

ANOVA: fator único

T1	T2	T3	T4
6,8	12,7	9,4	15,7
8,2	13,5	13,0	13,9
9,5	12,9	12,1	13,7
10,2	14,9	8,3	20,9
10,7	12,8	7,2	15,8
13,7	11,6	10,2	17,6
9,0	18,7	9,8	16,9
12,1	10,1	14,8	11,4
13,4	19,3	13,0	21,6
10,5	13,9	9,1	14,4
10,0	13,7		12,7
13,9	16,8		

- > dados<-c(6.8,8.2,9.5,10.2,10.7,13.7,9,12.1,13.4,10.5,10,13.9,12.7, 13.5,12.9,14.9,12.8,11.6,18.7,10.1,19.3,13.9,13.7,16.8,9.4,13, 12.1,8.3,7.2,10.2,9.8,14.8,13,9.1,15.7,13.9,13.7,20.9,15.8, 17.6,16.9,11.4,21.6,14.4,12.7)
- > bartlett.test(dados~trat) #teste de Bartlett

Bartlett test of homogeneity of variances

data: dados by trat

Bartlett's K-squared = 1.5087, df = 3, p-value (0.6803)

 H_0 : $\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \sigma_4^2$

 H_1 : nem todas σ_i^2 são iguais

Adotando α = 5%, o que se pode concluir?

Aceito H_0 , ou seja, as variâncias dos tratamentos podem ser as mesmas

Análise de Variância

Quando a ANOVA indica a aceitação de H_0 , conclui-se que todas as médias dos tratamentos são iguais entre si, ou melhor, que não há diferenças significativas entre as médias dos tratamentos.

Neste caso, encerra-se a análise.

No entanto, quando H_0 é rejeitada, a ANOVA não é capaz de identificar quais as médias são diferentes entre si.

Basta que apenas uma média seja diferente para que a ANOVA indique a rejeição da H_0 .

Como descobrir quais médias são diferentes?

Não se deve fazer testes t homocedásticos para todos os pares de tratamentos!!!

A identificação é feita através de um Teste de Comparação Múltipla

Exemplos: Teste de Tukey

Teste de Dunnet

Teste de Scheffe

Teste de Duncan Teste de Bonferroni

Teste de Fisher

Utilizado quando se deseja comparar todos os pares de médias de r populações, adotando-se um único nível de significância.

$$H_0: \mu_a - \mu_b = 0$$

 $H_1: \mu_a - \mu_b \neq 0$ $\forall a \neq b$ $a, b = \{1, 2, ..., r\}$

O teste consiste em calcular um valor (D_{crit}) , acima do qual, a diferença entre duas médias amostrais (em absoluto) é significativamente diferente de zero.

$$D_{crit(a,b)} = \frac{q_{r,n_T-r}}{\sqrt{2}} \sqrt{QME\left(\frac{1}{n_a} + \frac{1}{n_b}\right)}$$

onde q_{r,n_T-r} representa o valor tabelado (vindo de uma distribuição da amplitude studentizada - "studentized range") associado ao nível de significância adotado.

Distribuição da Amplitude Studentizada

$$P(q_{r,g} > q_{tab}) = 0.01$$

										r									
g	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	90,024	135,041	164,258	185,575	202,210	215,769	227,166	236,966	245,542	253,151	259,979	266,165	271,812	277,003	281,803	286,263	290,426	294,328	297,997
2	14,036	19,019	22,294	24,717	26,629	28,201	29,530	30,679	31,689	32,589	33,398	34,134	34,806	35,426	36,000	36,534	37,034	37,502	37,943
3	8,260	10,619	12,170	13,324	14,241	14,998	15,641	16,199	16,691	17,130	17,526	17,887	18,217	18,522	18,805	19,068	19,315	19,546	19,765
4	6,511	8,120	9,173	9,958	10,583	11,101	11,542	11,925	12,264	12,567	12,840	13,090	13,318	13,530	13,726	13,909	14,081	14,242	14,394
5	5,702	6,976	7,804	8,421	8,913	9,321	9,669	9,971	10,239	10,479	10,696	10,894	11,076	11,244	11,400	11,545	11,682	11,811	11,932
6	5,243	6,331	7,033	7,556	7,972	8,318	8,612	8,869	9,097	9,300	9,485	9,653	9,808	9,951	10,084	10,208	10,325	10,434	10,538
7	4,949	5,919	6,542	7,005	7,373	7,678	7,939	8,166	8,367	8,548	8,711	8,860	8,997	9,124	9,242	9,353	9,456	9,553	9,645
8	4,745	5,635	6,204	6,625	6,959	7,237	7,474	7,680	7,863	8,027	8,176	8,311	8,436	8,552	8,659	8,760	8,854	8,943	9,027
9	4,596	5,428	5,957	6,347	6,657	6,915	7,134	7,325	7,494	7,646	7,784	7,910	8,025	8,132	8,232	8,325	8,412	8,495	8,573
10	4,482	5,270	5,769	6,136	6,428	6,669	6,875	7,054	7,213	7,356	7,485	7,603	7,712	7,812	7,906	7,993	8,075	8,153	8,226
11	4,392	5,146	5,621	5,970	6,247	6,476	6,671	6,841	6,992	7,127	7,250	7,362	7,464	7,560	7,648	7,731	7,809	7,883	7,952
12	4,320	5,046	5,502	5,836	6,101	6,320	6,507	6,670	6,814	6,943	7,060	7,166	7,265	7,356	7,441	7,520	7,594	7,664	7,730
13	4,260	4,964	5,404	5,726	5,981	6,192	6,372	6,528	6,666	6,791	6,903	7,006	7,100	7,188	7,269	7,345	7,417	7,484	7,548
14	4,210	4,895	5,322	5,634	5,881	6,085	6,258	6,409	6,543	6,663	6,772	6,871	6,962	7,047	7,125	7,199	7,268	7,333	7,394
15	4,167	4,836	5,252	5,556	5,796	5,994	6,162	6,309	6,438	6,555	6,660	6,756	6,845	6,927	7,003	7,074	7,141	7,204	7,264
16	4,131	4,786	5,192	5,489	5,722	5,915	6,079	6,222	6,348	6,461	6,564	6,658	6,744	6,823	6,897	6,967	7,032	7,093	7,151
17	4,099	4,742	5,140	5,430	5,659	5,847	6,007	6,147	6,270	6,380	6,480	6,572	6,656	6,733	6,806	6,873	6,937	6,997	7,053
18	4,071	4,703	5,094	5,379	5,603	5,787	5,944	6,081	6,201	6,309	6,407	6,496	6,579	6,655	6,725	6,791	6,854	6,912	6,967
19	4,046	4,669	5,054	5,334	5,553	5,735	5,889	6,022	6,141	6,246	6,342	6,430	6,510	6,585	6,654	6,719	6,780	6,837	6,891
20	4,024	4,639	5,018	5,293	5,510	5,688	5,839	5,970	6,086	6,190	6,285	6,370	6,449	6,523	6,591	6,654	6,714	6,770	6,823
25	3,942	4,527	4,885	5,144	5,347	5,513	5,655	5,778	5,886	5,983	6,070	6,150	6,224	6,292	6,355	6,414	6,469	6,522	6,571
30	3,889	4,455	4,799	5,048	5,242	5,401	5,536	5,653	5,756	5,848	5,932	6,008	6,078	6,142	6,202	6,258	6,311	6,361	6,407
40	3,825	4,367	4,695	4,931	5,114	5,265	5,392	5,502	5,599	5,685	5,764	5,835	5,900	5,961	6,017	6,069	6,118	6,165	6,208
60	3,762	4,282	4,594	4,818	4,991	5,133	5,253	5,356	5,447	5,528	5,601	5,667	5,728	5,784	5,837	5,886	5,931	5,974	6,015
120	3,702	4,200	4,497	4,709	4,872	5,005	5,118	5,214	5,299	5,375	5,443	5,505	5,561	5,614	5,662	5,708	5,750	5,790	5,827
∞	3,643	4,120	4,403	4,603	4,757	4,882	4,987	5,078	5,157	5,227	5,290	5,348	5,400	5,448	5,493	5,535	5,574	5,611	5,645

Distribuição da Amplitude Studentizada

$$P(q_{r,g} > q_{tab}) = 0.05$$

										r									
g	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	17,969	26,976	32,819	37,082	40,408	43,119	45,397	47,357	49,071	50,592	51,957	53,194	54,323	55,361	56,320	57,212	58,044	58,824	59,558
2	6,085	8,331	9,798	10,881	11,734	12,435	13,027	13,539	13,988	14,389	14,749	15,076	15,375	15,650	15,905	16,143	16,365	16,573	16,769
3	4,501	5,910	6,825	7,502	8,037	8,478	8,852	9,177	9,462	9,717	9,946	10,155	10,346	10,522	10,686	10,838	10,980	11,114	11,240
4	3,926	5,040	5,757	6,287	6,706	7,053	7,347	7,602	7,826	8,027	8,208	8,373	8,524	8,664	8,793	8,914	9,027	9,133	9,233
5	3,635	4,602	5,218	5,673	6,033	6,330	6,582	6,801	6,995	7,167	7,323	7,466	7,596	7,716	7,828	7,932	8,030	8,122	8,208
6	3,460	4,339	4,896	5,305	5,628	5,895	6,122	6,319	6,493	6,649	6,789	6,917	7,034	7,143	7,244	7,338	7,426	7,508	7,586
7	3,344	4,165	4,681	5,060	5,359	5,606	5,815	5,997	6,158	6,302	6,431	6,550	6,658	6,759	6,852	6,939	7,020	7,097	7,169
8	3,261	4,041	4,529	4,886	5,167	5,399	5,596	5,767	5,918	6,053	6,175	6,287	6,389	6,483	6,571	6,653	6,729	6,801	6,869
9	3,199	3,948	4,415	4,755	5,024	5,244	5,432	5,595	5,738	5,867	5,983	6,089	6,186	6,276	6,359	6,437	6,510	6,579	6,643
10	3,151	3,877	4,327	4,654	4,912	5,124	5,304	5,460	5,598	5,722	5,833	5,935	6,028	6,114	6,194	6,269	6,339	6,405	6,467
11	3,113	3,820	4,256	4,574	4,823	5,028	5,202	5,353	5,486	5,605	5,713	5,811	5,901	5,984	6,062	6,134	6,202	6,265	6,325
12	3,081	3,773	4,199	4,508	4,750	4,950	5,119	5,265	5,395	5,510	5,615	5,710	5,797	5,878	5,953	6,023	6,089	6,151	6,209
13	3,055	3,734	4,151	4,453	4,690	4,884	5,049	5,192	5,318	5,431	5,533	5,625	5,711	5,789	5,862	5,931	5,995	6,055	6,112
14	3,033	3,701	4,111	4,407	4,639	4,829	4,990	5,130	5,253	5,364	5,463	5,554	5,637	5,714	5,785	5,852	5,915	5,973	6,029
15	3,014	3,673	4,076	4,367	4,595	4,782	4,940	5,077	5,198	5,306	5,403	5,492	5,574	5,649	5,719	5,785	5,846	5,904	5,958
16	2,998	3,649	4,046	4,333	4,557	4,741	4,896	5,031	5,150	5,256	5,352	5,439	5,519	5,593	5,662	5,726	5,786	5,843	5,896
17	2,984	3,628	4,020	4,303	4,524	4,705	4,858	4,991	5,108	5,212	5,306	5,392	5,471	5,544	5,612	5,675	5,734	5,790	5,842
18	2,971	3,609	3,997	4,276	4,494	4,673	4,824	4,955	5,071	5,173	5,266	5,351	5,429	5,501	5,567	5,629	5,688	5,743	5,794
19	2,960	3,593	3,977	4,253	4,468	4,645	4,794	4,924	5,037	5,139	5,231	5,314	5,391	5,462	5,528	5,589	5,647	5,701	5,752
20	2,950	3,578	3,958	4,232	4,445	4,620	4,768	4,895	5,008	5,108	5,199	5,282	5,357	5,427	5,492	5,553	5,610	5,663	5,714
25	2,913	3,523	3,890	4,153	4,358	4,526	4,667	4,789	4,897	4,993	5,079	5,158	5,230	5,297	5,359	5,417	5,471	5,522	5,570
30	2,888	3,486	3,845	4,102	4,301	4,464	4,601	4,720	4,824	4,917	5,001	5,077	5,147	5,211	5,271	5,327	5,379	5,429	5,475
40	2,858	3,442	3,791	4,039	4,232	4,388	4,521	4,634	4,735	4,824	4,904	4,977	5,044	5,106	5,163	5,216	5,266	5,313	5,358
60	2,829	3,399	3,737	3,977	4,163	4,314	4,441	4,550	4,646	4,732	4,808	4,878	4,942	5,001	5,056	5,107	5,154	5,199	5,241
120	2,800	3,356	3,685	3,917	4,096	4,241	4,363	4,468	4,560	4,641	4,714	4,781	4,842	4,898	4,950	4,998	5,043	5,086	5,126
∞	2,772	3,314	3,633	3,858	4,030	4,170	4,286	4,387	4,474	4,552	4,622	4,685	4,743	4,796	4,845	4,891	4,934	4,974	5,012
																			11

	T1	T2	T3	T4	
	6,8	12,7	9,4	15,7	
	8,2	13,5	13,0	13,9	
	9,5	12,9	12,1	13,7	
	10,2	14,9	8,3	20,9	
	10,7	12,8	7,2	15,8	
	13,7	11,6	10,2	17,6	
	9,0	18,7	9,8	16,9	
	12,1	10,1	14,8	11,4	
	13,4	19,3	13,0	21,6	
	10,5	13,9	9,1	14,4	
	10,0	13,7		12,7	
	13,9	16,8			Total
n_i	12	12	10	11	45
Média	10,67	14,24	10,69	15,87	12,90

Fonte de Variação	SQ	gl	QM	F	valor-P
Tratamento	227,50	3	75,83	10,56	2,83E-05
Erro	294,51	41	7,18		
Total	522,01	44			

$$D_{crit(a,b)} = \frac{q_{4,41}}{\sqrt{2}} \sqrt{QME\left(\frac{1}{n_a} + \frac{1}{n_b}\right)}$$

$$q_{4,41} = 3,794 \quad (\alpha = 5\%)$$

	T1	T2	T3	T4		
	6,8	12,7	9,4	15,7		
	8,2	13,5	13,0	13,9		
	9,5	12,9	12,1	13,7		
	10,2	14,9	8,3	20,9		
	10,7	12,8	7,2	15,8		
	13,7	11,6	10,2	17,6		
	9,0	18,7	9,8	16,9		
	12,1	10,1	14,8	11,4		
	13,4	19,3	13,0	21,6		
	10,5	13,9	9,1	14,4		
	10,0	13,7		12,7		,
	13,9	16,8			Total	
n_i	12	12	10	11	45	
Média	10,67	14,24	10,69	15,87	12,90	

Fonte de Variação	SQ	gl	QM	F	valor-P
Tratamento	227,50	3	75,83	10,56	2,83E-05
Erro	294,51	41	7,18		
Total	522,01	44			

$$D_{crit(a,b)} = \frac{q_{4,41}}{\sqrt{2}} \sqrt{QME\left(\frac{1}{n_a} + \frac{1}{n_b}\right)}$$

$$q_{4.41} = 3,794 \quad (\alpha = 5\%)$$

$$\bar{X}_j$$
T1 10,67 a
T3 10,69 a
T2 14,24 b
T4 15.87

$$D_{crit(1,2)} = \frac{3,794}{\sqrt{2}} \sqrt{7,18\left(\frac{1}{12} + \frac{1}{12}\right)} = 2,935$$

	T1	T2	T3	T4	
	6,8	12,7	9,4	15,7	
	8,2	13,5	13,0	13,9	
	9,5	12,9	12,1	13,7	
	10,2	14,9	8,3	20,9	
	10,7	12,8	7,2	15,8	
	13,7	11,6	10,2	17,6	
	9,0	18,7	9,8	16,9	
	12,1	10,1	14,8	11,4	
	13,4	19,3	13,0	21,6	
	10,5	13,9	9,1	14,4	
	10,0	13,7		12,7	
	13,9	16,8			Total
n_i	12	12	10	11	45
лédia	10,67	14,24	10,69	15,87	12,90

Fonte de Variação	SQ	gl	QM	F	valor-P
Tratamento	227,50	3	75,83	10,56	2,83E-05
Erro	294,51	41	7,18		
Total	522,01	44			

$$D_{crit(a,b)} = \frac{q_{4,41}}{\sqrt{2}} \sqrt{QME\left(\frac{1}{n_a} + \frac{1}{n_b}\right)}$$

$$q_{4,41} = 3,794 \quad (\alpha = 5\%)$$

$$\bar{X}_j$$
T1 10,67 a
T3 10,69 a
T2 14,24 b
T4 15,87 c
 $D = 5,21$

$$D_{crit(1,4)} = \frac{3,794}{\sqrt{2}} \sqrt{7,18\left(\frac{1}{12} + \frac{1}{11}\right)} = 3,001$$

	T1	T2	T3	T4	
	6,8	12,7	9,4	15,7	
	8,2	13,5	13,0	13,9	
	9,5	12,9	12,1	13,7	
	10,2	14,9	8,3	20,9	
	10,7	12,8	7,2	15,8	
	13,7	11,6	10,2	17,6	
	9,0	18,7	9,8	16,9	
	12,1	10,1	14,8	11,4	
	13,4	19,3	13,0	21,6	
	10,5	13,9	9,1	14,4	
	10,0	13,7		12,7	
	13,9	16,8			Total
n_{i}	12	12	10	11	45
Média	10,67	14,24	10,69	15,87	12,90

Fonte de Variação	SQ	gl	QM	F	valor-P
Tratamento	227,50	3	75,83	10,56	2,83E-05
Erro	294,51	41	7,18		
Total	522,01	44			

$$D_{crit(a,b)} = \frac{q_{4,41}}{\sqrt{2}} \sqrt{QME\left(\frac{1}{n_a} + \frac{1}{n_b}\right)}$$

$$q_{4.41} = 3,794 \quad (\alpha = 5\%)$$

$$\bar{X}_j$$
T1 10,67 a
T3 10,69 a
T2 14,24 b
D = 3,55
T4 15,87 c

$$D_{crit(3,2)} = \frac{3,794}{\sqrt{2}} \sqrt{7,18\left(\frac{1}{10} + \frac{1}{12}\right)} = 3,079$$

	T1	T2	T3	T4		
	6,8	12,7	9,4	15,7		
	8,2	13,5	13,0	13,9		
	9,5	12,9	12,1	13,7		
	10,2	14,9	8,3	20,9		
	10,7	12,8	7,2	15,8		
	13,7	11,6	10,2	17,6		
	9,0	18,7	9,8	16,9		
	12,1	10,1	14,8	11,4		
	13,4	19,3	13,0	21,6		
	10,5	13,9	9,1	14,4		
	10,0	13,7		12,7		
	13,9	16,8			Total	
n_i	12	12	10	11	45	
1édia	10,67	14,24	10,69	15,87	12,90	

Fonte de Variação	SQ	gl	QM	F	valor-P
Tratamento	227,50	3	75,83	10,56	2,83E-05
Erro	294,51	41	7,18		
Total	522,01	44			

$$D_{crit(a,b)} = \frac{q_{4,41}}{\sqrt{2}} \sqrt{QME\left(\frac{1}{n_a} + \frac{1}{n_b}\right)}$$

$$q_{4,41} = 3,794 \quad (\alpha = 5\%)$$

$$\bar{X}_j$$
T1 10,67 a
T3 10,69 a
T2 14,24 b
T4 15,87 c
 $D = 5,18$

$$D_{crit(3,4)} = \frac{3,794}{\sqrt{2}} \sqrt{7,18\left(\frac{1}{10} + \frac{1}{11}\right)} = 3,142$$

	T1	T2	T3	T4	
	6,8	12,7	9,4	15,7	
	8,2	13,5	13,0	13,9	
	9,5	12,9	12,1	13,7	
	10,2	14,9	8,3	20,9	
	10,7	12,8	7,2	15,8	
	13,7	11,6	10,2	17,6	
	9,0	18,7	9,8	16,9	
	12,1	10,1	14,8	11,4	
	13,4	19,3	13,0	21,6	
	10,5	13,9	9,1	14,4	
	10,0	13,7		12,7	
	13,9	16,8			Total
n_{i}	12	12	10	11	45
Média	10,67	14,24	10,69	15,87	12,90

Fonte de Variação	SQ	gl	QM	F	valor-P
Tratamento	227,50	3	75,83	10,56	2,83E-05
Erro	294,51	41	7,18		
Total	522,01	44			

$$D_{crit(a,b)} = \frac{q_{4,41}}{\sqrt{2}} \sqrt{QME\left(\frac{1}{n_a} + \frac{1}{n_b}\right)}$$

$$q_{4.41} = 3,794 \quad (\alpha = 5\%)$$

$$\bar{X}_j$$
T1 10,67 a
T3 10,69 a
T2 14,24 b
T4 15,87 b
 $D = 1,63$

$$D_{crit(2,4)} = \frac{3,794}{\sqrt{2}} \sqrt{7,18\left(\frac{1}{12} + \frac{1}{11}\right)} = 3,001$$

Usando-se o exemplo da ANOVA:

	T1	T2	T3	T4		
	6,8	12,7	9,4	15,7		
	8,2	13,5	13,0	13,9		
	9,5	12,9	12,1	13,7		
	10,2	14,9	8,3	20,9		
	10,7	12,8	7,2	15,8		
	13,7	11,6	10,2	17,6		
	9,0	18,7	9,8	16,9		
	12,1	10,1	14,8	11,4		
	13,4	19,3	13,0	21,6		
	10,5	13,9	9,1	14,4		
	10,0	13,7		12,7		,
	13,9	16,8			Total	
n_i	12	12	10	11	45	
⁄lédia	10,67	14,24	10,69	15,87	12,90	

Fonte de Variação	SQ	gl	QM	F	valor-P
Tratamento	227,50	3	75,83	10,56	2,83E-05
Erro	294,51	41	7,18		
Total	522,01	44			

 \bar{X}_j T1 10,67 a
T3 10,69 a
T2 14,24 b
T4 15,87 b

Teste de Tukey / R

Usando-se o exemplo da ANOVA:

T1	T2	T3	T4	
6,8	12,7	9,4	15,7	
8,2	13,5	13,0	13,9	
9,5	12,9	12,1	13,7	
10,2	14,9	8,3	20,9	
10,7	12,8	7,2	15,8	
13,7	11,6	10,2	17,6	
9,0	18,7	9,8	16,9	
12,1	10,1	14,8	11,4	
13,4	19,3	13,0	21,6	
10,5	13,9	9,1	14,4	
10,0	13,7		12,7	
13,9	16,8			Total
12	12	10	11	45
10,67	14,24	10,69	15,87	12,90
	6,8 8,2 9,5 10,2 10,7 13,7 9,0 12,1 13,4 10,5 10,0 13,9	6,8 12,7 8,2 13,5 9,5 12,9 10,2 14,9 10,7 12,8 13,7 11,6 9,0 18,7 12,1 10,1 13,4 19,3 10,5 13,9 10,0 13,7 13,9 16,8 12 12	6,8 12,7 9,4 8,2 13,5 13,0 9,5 12,9 12,1 10,2 14,9 8,3 10,7 12,8 7,2 13,7 11,6 10,2 9,0 18,7 9,8 12,1 10,1 14,8 13,4 19,3 13,0 10,5 13,9 9,1 10,0 13,7 13,9 13,9 16,8 12	6,8 12,7 9,4 15,7 8,2 13,5 13,0 13,9 9,5 12,9 12,1 13,7 10,2 14,9 8,3 20,9 10,7 12,8 7,2 15,8 13,7 11,6 10,2 17,6 9,0 18,7 9,8 16,9 12,1 10,1 14,8 11,4 13,4 19,3 13,0 21,6 10,5 13,9 9,1 14,4 10,0 13,7 12,7 13,9 16,8 12 10 11

 \bar{X}_j T1 10,67 a
T3 10,69 a
T2 14,24 b
T4 15,87 b

- > dados<-c(6.8,8.2,9.5,10.2,10.7,13.7,9,12.1,13.4,10.5,10,13.9,12.7, 13.5,12.9,14.9,12.8,11.6,18.7,10.1,19.3,13.9,13.7,16.8,9.4,13, 12.1,8.3,7.2,10.2,9.8,14.8,13,9.1,15.7,13.9,13.7,20.9,15.8, 17.6,16.9,11.4,21.6,14.4,12.7)</p>
- > resultado<-aov(dados~trat) #analise de variancia
- > tukey<-TukeyHSD(resultado,ordered=TRUE, conf.level=0.95)
- > plot(tukey)

95% family-wise confidence level

Exemplos de Teste de Tukey

A interpretação dos resultados de um teste de múltiplas comparações pode não ser muito fácil. Vamos analisar alguns exemplos.

Suponha que 4 tratamentos estão sendo comparados e encontram-se ordenados pela média:

T1	l)	a
7	2	b
T:	2	_

Todas médias são

diferentes entre si

Apenas o tratamento T4 apresenta média diferente dos demais

A média do tratamento T3 é a mesma que T1 e T2, e também é igual a T4. No entanto, a média de T4 é diferente de T1 e T2

Apenas T1 e T4 são diferentes entre si

Quais tratamentos apresentam as menores e as majores médias?

maior

OBS: Para melhorar a distinção entre as médias dos tratamentos, deve-se aumentar o tamanho das amostras

ANOVA x testes t par a par

Através de 10000 simulações foram geradas 10 amostras independentes para 4 populações, todas normalmente distribuídas com média 100 e variância 5. Estas amostras foram submetidas a ANOVA e testes t para cada par de tratamentos. Adotando-se 5% de significância, espera-se que apenas 5% das simulações rejeitassem indevidamente a hipótese nula de que todas as médias são iguais entre si.

 H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$

H₁: pelo menos uma média é diferente

Exemplo:

Trat1	Trat2	Trat3	Trat4
98,89	98,07	96,51	96,89
102,13	97,14	102,92	98,82
96,02	99,98	99,53	101,43
99,50	101,88	103,48	100,55
96,27	98,73	102,31	101,36
99,91	100,85	98,90	100,97
98,96	100,28	101,70	98,04
98,42	98,67	97,19	100,92
102,76	98,82	104,09	101,60
99,80	99,45	102,73	99,35

Resultado de uma simulação qualquer:

Fo	nte	SQ	gl		MQ	F	val	or-P	
Entre grupo Dentr dos	s	17,4518		3	5,8173	1,407	7 (0	,2564	aceita ${\rm H}_0$
grupo	s	148,7684		36	4,1325				
Total		166,2202		39					
Média	Trat1 99,2659	Trat2 99.3870	Média	Trat1	Trat3 100,9350	Média	Trat1 99,2659	Trat4 99,9939	
Variância Observaç	4,6216	1,9458	Variância Observaç	4,6216	7,3107	Variância Observaç	4,6216	2,6517	
ões	10	10	ões	10	10	ões	10	10	
gl	18		gl	18		gl	18		
Stat t	-0,1494		Stat t	-1,5280		Stat t	-0,8536		
Valor-P	0,8829	(bilateral)	Valor-P	0,1439	bilateral	Valor-P	0,4046	(bilateral)	todas ${ m H}_0$
	Trat2	Trat3		Trat2	Trat4		Trat3	Trat4	são aceitas
Média	99,3870	100,9350	Média	99,3870	99,9939	Média	100,9350	99,9939	
Variância	1,9458	7,3107	Variância Observaç	1,9458	2,6517	Variância Observaç	7,3107	2,6517	
Observaç			O DOO. ray			O DOO! Tay			

ANOVA x testes t par a par

Através de 10000 simulações foram geradas 10 amostras independentes para 4 populações, todas normalmente distribuídas com média 100 e variância 5. Estas amostras foram submetidas a ANOVA e testes t para cada par de tratamentos. Adotando-se 5% de significância, espera-se que apenas 5% das simulações rejeitassem indevidamente a hipótese nula de que todas as médias são iguais entre si.

 H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$

H₁: pelo menos uma média é diferente

Resultado da simulação:

ANOVA

Proporção de rejeição de H_0 : 5,08% (muito próximo ao nível de significância!)

testes t

Proporção de rejeição de H_0 : 20,57% (rejeitado por pelo menos um dos testes t) rejeita muito mais!!!!

Discordância entre ANOVA e testes t: 15,49%

Tamanho de Amostra para ANOVA

Determinar o tamanho da amostra conveniente evita o desperdício de tempo, força de trabalho, custos, etc. no processo de coleta e análise de dados.

A definição do tamanho de amostra apropriado depende do tipo de ANOVA, do número de tratamentos que estão sendo comparados e do nível de significância (α) adotado. Também depende do tamanho do efeito (effect size - f).

$$f = \sqrt{\frac{\sum_{j=1}^{r} (\mu_j - \mu_T)^2}{r\sigma^2}} = \sqrt{\frac{\sum_{j=1}^{r} \tau_j^2}{r\sigma^2}}$$

 $B = \frac{1}{\mu_1 \mu_2 \mu_3}$

Em qual situação é mais fácil distinguir as médias?

$$f_A < f_B$$

apesar das médias estarem mais próximas entre si, a variância é menor, aumentando o poder de discriminação das médias populacionais

Tamanho de Amostra para ANOVA

Determinar o tamanho da amostra conveniente evita o desperdício de tempo, força de trabalho, custos, etc. no processo de coleta e análise de dados.

A definição do tamanho de amostra apropriado depende do tipo de ANOVA, do número de tratamentos que estão sendo comparados e do nível de significância (α) adotado. Também depende do poder do teste (1- β) e do tamanho do efeito (effect size - f) desejados.

Estimativas do tamanho de amostra por tratamento para ANOVA de 1 fator (amostras independentes)*

			f	
r	α	0,10	0,25	0,40
3	1%	916	148	59
3	5%	516	84	34
4	1%	748	121	49
4	5%	431	70	28
5	1%	638	104	42
<i>J</i>	5%	373	61	25
6	1%	560	91	37
	5%	331	54	22