

Machine Learning

Group 16 - Assigment 4

Luca Pfrang	5332329
Tran Luong Bang	5365615
Louis Ngo	4506205
Vu Thi Hoang Anh	5367008
Tidiane Ndir	5364532

1. Support Vector Machine

a. Explain the "kernel trick" and why use it in SVMs.

A kernel trick is a simple method where a non-linear data is projected onto a higher dimension space so as to make it easier to classify the data where it could be linearly divided by a plane. The kernel trick replaces the mapping and following dot product operations by a simple calculation in the input space.

Some kernel functions:

- Polynomial kernel
- Gaussian Radial basis function kernels
- Sigmoid kernel

Kernel trick is widely used in the SVM model to bridge linearity and non-linearity.

b. What is the difference between hard-and soft-margin SVM?

The difference between a hard margin and a soft margin in SVMs lies in the separability of the data. If our data is linearly separable, we go for a hard margin. However, if this is not the case, it won't be feasible to do that. In the presence of the data points that make it impossible to find a linear classifier, we would have to be more lenient and let some of the data points be misclassified. In this case, a soft margin SVM is appropriate.

Sometimes, the data is linearly separable, but the margin is so small that the model becomes prone to overfitting or being too sensitive to outliers. Also, in this case, we can opt for a larger margin by using soft margin SVM in order to help the model generalize better.

2. Linear Separability

	It to find w, b such that: $\frac{1}{2}\ \omega\ ^2$ is min bject to $y_i(\langle \omega, x_i \rangle + b) > 1 + i = 1,2,3,4$
	be rewritten as minumize $L(w,b,d) = \frac{1}{2} w ^2 - \frac{4}{2} x (y_i(\langle w,\tau_i\rangle + b) - 1)$
	ther represented as an optimization problem in λ_i argumax $W(\alpha) = \sum_{i=1}^{4} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{4} \alpha_j \alpha_j \gamma_j \langle x_i, x_j \rangle$ (1)
subject Substitu	to $\sum_{i=1}^{4} \alpha_i \gamma_i = 0$ or $-\alpha_i + \alpha_2 + \alpha_3 - \alpha_4 = 0$ using the pre-calculated do products into (1) gives.
w(d)	$= \frac{1}{2} x_{1} - \frac{1}{2} \left[2x_{1}^{2} + 2x_{1}x_{4} + 6 x_{5}x_{4}(-1) + 2x_{5}^{2} + 2x_{1}x_{4} + 6 x_{5}x_{4}(-1) + 20x_{4}^{2} \right]$
	$= \sum_{i=1}^{4} \alpha_{i} - \left[\alpha_{1}^{2} + 2\alpha_{1}\alpha_{4} + \alpha_{4}^{2} + \alpha_{5}^{2} - 6\alpha_{5}\alpha_{4} + 9\alpha_{4}^{2}\right]$ $= \sum_{i=1}^{4} \alpha_{i} - (\alpha_{1} + \alpha_{4})^{2} - (\alpha_{3} - 3\alpha_{4})^{2}$ $= \sum_{i=1}^{4} \alpha_{i} - (\alpha_{1} + \alpha_{4})^{2} - (\alpha_{3} - 3\alpha_{4})^{2}$
	$= 2(\alpha_1 + \alpha_4) - (\alpha_1 + \alpha_4)^2 - (\alpha_3 - 3\alpha_4)^2$ $= 1 - (\alpha_1 + \alpha_4 - 1)^2 - (\alpha_3 - 3\alpha_4)^2$
, W/6	1) = 1 when , $\alpha_1 + \alpha_2 = \alpha_2 + \alpha_3 = 1$
w = \(\frac{1}{1=1} \)	$\alpha_{i} \ u_{i} \ x_{i} - \alpha_{1} \ (-1) \ [-1] + \alpha_{2} \ (1) \ [0] + \alpha_{3} \ (1) \ [1] + \alpha_{4} \ (-1) \ [4]$
	$= \frac{1}{2} + $
Substitution	$(-\alpha_1 - \alpha_4) + (\alpha_3 - 3\alpha_4)$
tlyper plane	$1+\sqrt{5}$, we have $x-\sqrt{2}$ $\sqrt{2}$ $\sqrt{1}=\sqrt{1}+\sqrt{5}$ $\sqrt{3}+\sqrt{5}$ $\sqrt{7}$
151751	2 + 1 = -1 + 1 = 0
Hence the	point lies on the separating hyperplane

3. Soft-Margins and Regression in SVM:

1. To accommodate soft margins, the objective function of SVM is modified by adding the sum of slack variables, controlled by a certain factor C:

$$\tau(w, \xi) = \frac{1}{2} |w|^2 + C \sum_{i=1}^{m} \xi_i$$

subject to $y_i (< w, x_i > + b) \ge 1 - \xi_i$ for all $i = 1,...,m$

The hyper parameter C controls the strength of this regularization. When C is large, it allows for very few margin "violations" and hence less points will become support vectors.

2. To use support vector in regression, we introduce precision term ϵ which determines how much our predictions can deviate from the ground truth. Any point within the $[-\epsilon, +\epsilon]$ tube is considered as having 0 loss and any point outside have a loss of $|\xi| - \epsilon$. This is called the ϵ intensive loss function:

$$\xi = 0 \ if \ |\xi| \le \epsilon$$

 $\xi = |\xi| - \epsilon \ otherwise$