Name	Student No
Nama	Student No
rame	Student No

No aids allowed. Answer all questions on test paper. Use backs of sheets for scratch work.

Total Marks: 60

[20] 1. Give a context free grammar that generates the language

$$\{a^ib^jc^k:\ i=j\ {\rm or}\ j=k\ {\rm where}\ i,j,k\geq 0\ \}.$$

Solution:

$$S \longrightarrow E_{ab}C|AE_{bc}$$

$$E_{ab} \longrightarrow aE_{ab}b|\varepsilon$$

$$E_{bc} \longrightarrow bE_{bc}c|\varepsilon$$

$$C \longrightarrow Cc|\varepsilon$$

$$A \longrightarrow Aa|\varepsilon$$

[20] 2. Consider the language $L = \{ww^R : w \in \{0,1\}^*\}$, that is, L is the language of even length palindromes over $\{0,1\}$. Give a PDA for this language; explain why do we need non-determinism for this language.

Solution: The PDA should push w onto the stack, and then pop the stack while reading w^R , comparing the bits. Non-determinism is necessary in order to "guess" where is the middle of the string (on a wrong guess the computation will reject; on a right guess it will compare the two halves). The diagram is given in figure 2.19 in Sipser.

[20] 3. Define what it means for a CFG to be in Chomsky Normal Form. Show that if G is in CNF, then for any string $w \in L(G)$, where $|w| = n \ge 1$, exactly 2n - 1 steps are required for any derivation of w.

Solution: CNF is given in definition 2.8 in Sipser. Consider a derivation of w; each application of the rule $A \longrightarrow BC$ increases the length of the sentential form by 1; so there is a need of n-1 steps. Then each variable yields a single terminal, which takes n steps. Hence, 2n-1 steps in total.