ME111 - Laboratório de Estatística

Aula 14 - Teste de Independência

Profa. Larissa Avila Matos

Teste de Independência

- Um dos principais objetivos de se construir uma tabela de contingência, com o objetivo de se analisar a distribuição conjunta de duas variáveis qualitativas, é descrever a associação entre elas.
- Ou seja, de certo modo esperamos que haja uma certa dependência entre as variáveis, por exemplo, sexo e curso de graduação. Desta forma, nosso foco é buscar evidências estatísticas de que duas variáveis possuem certo grau de associação.
- Como vimos no teste de aderência, devemos realizar um teste de hipóteses para investigar a existência de associação contra inexistência de associação.

Exemplo: Cor do cabelo versus Cor dos olhos

Um estudo em 1899 examinou 6800 homens para verificar se a cor do cabelo e a cor dos olhos estavam relacionadas.

Cor dos olhos	Castanhos	Pretos	Loiro	Ruivo	Total
Castanhos	438	288	115	16	857
Verdes	1387	746	946	53	3132
Azuis	807	189	1768	47	2811
Total	2632	1223	2829	116	6800

Objetivo: Testar se cor dos olhos é independente da cor do cabelo. Ou seja, testar as seguintes hipóteses:

 H_0 : cor de olhos e cor de cabelo são independentes

 H_1 : cor de olhos e cor de cabelos não são independentes

Em geral, os dados referem-se a mensurações de duas características (L e C) feitas em n unidades experimentais, que são apresentadas conforme a seguinte tabela:

					ı
	C				
L	C_1	C_2		C_c	Total
L_1	n_{11}	n_{12}		n_{1c}	n_1 .
L_2	n_{21}	n_{22}		n_{2c}	n_2 .
÷	:	:		÷	:
L_r	n_{r1}	n_{r2}		n_{rc}	n_r .
Total	$n_{\cdot 1}$	$n_{\cdot 2}$		$n_{\cdot c}$	n = n

■ Em resumo, o objetivo é testarmos a independência das variáveis L e C: H_0 : As variáveis L e C são independentes

 H_1 : As variáveis L e C não são independentes

 \blacksquare Quantas observações devemos ter em cada casela se L e C forem independentes?

- \blacksquare Quantas observações devemos ter em cada casela se L e C forem independentes?
- Se L e C forem independentes, temos que, para todos os possíveis (L_i e C_j):

$$P(L_i \cap C_j) = P(L_i) \times P(C_j), \qquad i = 1, \dots, r;$$

$$j = 1, \dots, c.$$

■ Logo, o número esperado de observações com as características $(L_i \in C_j)$ entre as n observações sob a hipótese de independência, é dado por

$$E_{ij} = n.. \times p_{ij} = n.. \times p_{i.} \times p_{\cdot j} = n.. \times \frac{n_{i.}}{n..} \times \frac{n_{\cdot j}}{n..},$$

sendo p_{ij} a proporção de observações com as características $(L_i \in C_j)$.

Assim,

$$E_{ij} = \frac{n_{i\cdot} \times n_{\cdot j}}{n_{\cdot \cdot}}.$$

 \blacksquare O processo deve ser repetido para todas as caselas (ij).

Para quantificar quão distante os frequências observadas estão das frequências esperadas, usamos a seguinte estatística:

Estatística do Teste:

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(O_{ij} - E_{ij})^2}{E_{ij}},$$

em que $O_{ij} = n_{ij}$ representa o total de observações na casela (ij).

- Se H_0 é verdadeira: $\chi^2 \sim \chi_q^2$, com $q = (r-1) \times (c-1)$.
- Em outras palavras, se H_0 é verdadeira, a v.a. χ^2 segue uma distribuição aproximadamente Qui-quadrado com q graus de liberdade.

- Regra de decisão: Calcular o **p-valor** ou encontrar o **valor crítico**.
- **p-valor**: $P(\chi_q^2 \ge \chi_{obs}^2)$, em que χ_{obs}^2 é o valor da estatística do teste calculada a partir dos dados.

■ Valor Crítico: Para um nível de significância α , encontrar o valor crítico χ^2_{crit} na tabela Chi-quadrado tal que $P(\chi^2_q \ge \chi^2_{crit}) = \alpha$.

■ Conclusão: Rejeitamos H_0 se

$$p$$
-valor $\leq \alpha$ ou $\chi^2_{obs} \geq \chi^2_{crit}$

Exemplo

Cabelo

Olhos	Castanhos	Pretos	Loiro	Ruivo	Sum
Castanhos	438	288	115	16	857
Verdes	1387	746	946	53	3132
Azuis	807	189	1768	47	2811
Sum	2632	1223	2829	116	6800

■ Valores esperados

```
n < -6800
n11<-(857*2632)/n
n12<-(857*1223)/n
n13<-(857*2829)/n
n14<-(857*116)/n
n21<-(3132*2632)/n
n22<-(3132*1223)/n
n23<-(3132*2829)/n
n24<-(3132*116)/n
n31<-(2811*2632)/n
n32<-(2811*1223)/n
n33<-(2811*2829)/n
n34<-(2811*116)/n
```

Cabelo

Olhos	${\tt Castanhos}$	Pretos	Loiro	Ruivo	Sur
Castanhos	331.7094	154.1340	356.5372	14.61941	857
Verdes	1212.2682	563.2994	1303.0041	53.42824	3132
Azuis	1088.0224	505.5666	1169.4587	47.95235	2811
Sum	2632.0000	1223.0000	2829.0000	116.00000	6800

observado<-x

addmargins(observado)

Cabelo

Olhos	Castanhos	Pretos	Loiro	Ruivo	Sum
Castanhos	438	288	115	16	857
Verdes	1387	746	946	53	3132
Azuis	807	189	1768	47	2811
Sum	2632	1223	2829	116	6800

```
x.1<-((esperado-observado)^2/esperado)
x2<-sum(x.1)
x.1</pre>
```

Cabelo

 Olhos
 Castanhos
 Pretos
 Loiro
 Ruivo

 Castanhos
 34.05899
 116.26323
 163.63011
 0.13037624

 Verdes
 25.18518
 59.25713
 97.81392
 0.00343237

 Azuis
 72.58450
 198.22199
 306.33978
 0.01891411

x2

[1] 1073.508

■ Graus de liberdade:

```
gl<-(dim(x)[1]-1)*(dim(x)[2]-1)
gl
```

[1] 6

■ Valor critico, considerando $\alpha = 0.05$

[1] 12.59159

■ Como, $\chi^2_{obs} = 1073.51 > 12.59 = \chi^2_{crit}$, rejeitamos H_0 a um nível de significância de 5%. Ou seja, a cor de olhos e cor de cabelos não são independentes.

■ p-valor

```
p.valor=1-pchisq(x2,df=gl)
p.valor
```

[1] 0

■ Como, p-valor= $0 < 0.05 = \alpha$, rejeitamos H_0 a um nível de significância de 5%. Ou seja, a cor de olhos e cor de cabelos não são independentes.

chisq.test(x)

Pearson's Chi-squared test

data: x

X-squared = 1073.5, df = 6, p-value < 2.2e-16

Exercício

■ Um inspetor de qualidade toma uma amostra de 220 produtos num centro de distribuição. Se sabe que cada produto pode vir de uma de três fábricas e pode ou não estar defeituoso. O inspetor avalia todos os produtos e obtém os seguintes resultados:

	Fábrica			
	1	2	3	Total
Defeituoso	8	15	11	34
Não Defeituoso	62	67	57	186
Total	70	82	68	220

■ Ser defeituoso independe da fábrica?