

Universidade Federal do Ceará Faculdade de Economia

Métodos Quantitativos

Vicente Lima Crisóstomo

Fortaleza, 2020

Sumário

- Introdução
- Estatística Descritiva
- Probabilidade
- Distribuições de Probabilidades
- Amostragem e Distribuições Amostrais
- Estimação
- Testes de Significância
- Análise de Variância
- Teste de Significância para Proporções
- Testes Não Paramétricos
- Correlação e Regressão

 Estimação e Teste de Significância são cruciais para a inferência estatística

- Estimação
 - Estima um parâmetro populacional
 - em termos pontuais ou intervalares
- Teste de Significância
 - Indica, ou fornece subsídio para decidir-se
 - se a afirmação sobre um parâmetro populacional é verdadeira

- Exemplos de afirmações passíveis de um Teste de Significância
 - O salário médio do trabalhador do setor X é de 2.000,00
 - O tempo médio de uma consulta médica é de 15min
 - Esta moeda é equilibrada
 - A rentabilidade média da empresa cearense é de 10%
 - 10% dos alunos do curso X gostariam de mudar de curso
 - A vida útil de um pneu Y é de 45.000Km
 - A vida útil de uma bateria Z é de 2 anos
 - A renda média mensal de engenheiros é de 6.600
 - 50% de todos os processos judiciais são finalizados em até 6 meses

Finalidade do Teste de Significância

- Avaliar afirmações sobre valores de parâmetros populacionais alegados, ou especificados, ou declarados
 - Afirmação pode ser Verdadeira ou Falsa

- Núcleo/Ponto Central de um Teste de Significância
 - Avaliar a razão da diferença entre
 - Valor de uma estatística amostral e
 - Valor alegado populacional
 - Há duas alternativas para haver a diferença
 - 1- Resultado (diferença) deve-se somente à variabilidade amostral
 - 2- Diferença muito grande para ser somente casualidade devida à variabilidade amostral

Formulação de Hipóteses sobre a afirmação a ser testada

Hipótese

- É uma proposição sobre a veracidade da afirmação
- É uma sentença sobre o valor de um parâmetro populacional desenvolvida para o propósito de teste
- Exemplo de hipótese
 - O parâmetro populacional alegado está correto
 - Neste caso, a diferença é casual
 - O parâmetro populacional alegado NÃO está correto
 - Neste caso, a diferença Não é casual
 - De fato, o parâmetro alegado não é "verdadeiro"/correto

- Formulação de Hipóteses
 - Formalmente
 - Hipótese NULA (H₀)
 - O parâmetro populacional alegado é verdadeiro, é realmente como especificado, está correto
 - Hipótese ALTERNATIVA (H₁)

 Oferece uma alternativa à alegação, i.e, o verdadeiro parâmetro é distinto (maior ou menor) do valor especificado

- Formulação de Hipóteses
 - Formalmente
 - Hipótese <u>NULA (H₀)</u>
 - O parâmetro populacional alegado é verdadeiro, é realmente como especificado, está correto
 - A diferença nominal existente entre valor amostral e alegado é devida ao acaso
 - A diferença não é estatisticamente significativa
 - Hipótese ALTERNATIVA (H₁)
 - Oferece uma alternativa à alegação, i.e, o verdadeiro parâmetro populacional é distinto (maior ou menor) do valor especificado
 - A diferença entre valor amostral e especificado Não é casual
 - A diferença é estatisticamente significativa

Exemplos de Hipóteses

- Sobre o salário médio de trabalhadores do setor X
 - Hipótese NULA (H₀): O salário médio do trabalhador do setor X é de 2.000,00
 - Hipótese ALTERNATIVA (H₁): O salário médio do trabalhador do setor X é diferente de 2.000,00
- Sobre a rentabilidade média da empresa cearense é de 10%
 - Hipótese NULA (H₀): A rentabilidade média da empresa cearense é de 10%
 - Hipótese ALTERNATIVA (H₁): A rentabilidade média da empresa cearense difere de 10%
- Sobre a vida útil de um pneu Y
 - Hipótese NULA (H₀): A vida útil de um pneu Y é de 45.000Km
 - Hipótese ALTERNATIVA (H₁): A vida útil de um pneu Y difere de 45.000Km
- Decisão será:
 - Aceitar Hipótese NULA (H₀)

Ou

Rejeitar Hipótese NULA (H₀) e Aceitar Hipótese ALTERNATIVA (H₁)

Teste de Hipóteses

- Fundamento do teste de significância
 - Particionar uma distribuição amostral basendo-se na suposição de que H0 seja verdadeira
- A Distribuição Amostral é particionada em regiões
 - Região de aceitação da Hipótese Nula
 - (parâmetro observado próximo ao alegado)
 - Região de rejeição da Hipótese Nula
 - (parâmetro observado distante do alegado)
- Valor Crítico da região
 - Limite do intervalo de confiança
 - Baseado em probabilidade específica estabelecida por "conhecedor" do assunto

■ Teste de Hipóteses

- A Distribuição Amostral é particionada em regiões
- Cálculo do Valor Crítico que indica valor mínimo (ou máximo) aceito
- Valor Crítico é um valor limite, ou valor divisório entre zonas de aceitação e rejeição da Hipótese Nula
 - Associado ao nível de significância do teste
- Nível de significância do teste
 - O nível de significância do teste determina o Valor Crítico
 - Padrão de comparação para julgamento da <u>estatística de teste</u>
 - É a probabilidade de uma hipótese nula ser rejeitada quando, de fato, é verdadeira

Distribuição Amostral baseada no parâmetro especificado

Teste Bilateral: Estatística de teste dentro do intervalo de confiança?

Teste Unilateral: Estatística de teste supera o valor crítico?

Nível de significância α

H₀: Parâmetro populacional = Parâmetro de referência

H₁: Parâmetro populacional > Parâmetro de referência

Valor Crítico

Teste Unilateral: Estatística de teste é inferior ao valor crítico?

Valor Crítico

H₀: Parâmetro populacional = Parâmetro de referência H₁: Parâmetro populacional < Parâmetro de referência

- Teste de Hipóteses
 - A Distribuição Amostral é particionada em regiões
 - Região de <u>aceitação</u> da Hipótese Nula e
 - Região de <u>rejeição</u> da Hipótese Nula
 - Valor crítico e Nível de Significância do teste
 - Baseado em probabilidade específica
 - Analista/especialista do problema estabelece
 - Ele determina até que nível está disposto a aceitar
 - Estatística de teste dentro do limite do valor crítico
 - Sugere Não rejeição de H0
 - Estatística de teste além do valor crítico

Sugere rejeição de H0 e aceitação de H1

Teste de Hipóteses - Resumo

- Um procedimento, baseado na evidência amostral e na teoria da probabilidade, usado para determinar se a hipótese é uma afirmação razoável e não seria rejeitada, ou não é razoável e seria rejeitada.
- 5 passos para um teste de hipóteses:
 - Passo 1: Estabelecer a Hipótese Nula (H₀) e a Hipótese Alternativa (H₁)
 - Passo 2: Estabelecer um nível de significância: α
 - Passo 3: Identificar a Distribuição Amostral adequada que determinará a Estatística de teste usada: z, t, outra
 - Passo 4: Dividir a distribuição amostral em regiões de <u>aceitação</u> (variação provavelmente casual) e de <u>rejeição</u> (variação provavelmente NÃO casual)
 - Passo 5: A partir de uma amostra, calcule a <u>estatística de teste</u> que servirá de subsídio para a decisão: Não rejeitar H₀, ou, rejeitar H₀ e aceitar H₁

- Testes Unilaterais e Bilaterais
 - O teste de hipótese, ou do parâmetro populacional pode envolver
 - desvios em ambas direções
 - desvio em apenas uma direção

H0: Parâmetro populacional = Parâmetro de referência

Possibilidades para Hipótese Alternativa

H1: Parâmetro populacional ≠ Parâmetro de referência

H1: Parâmetro populacional > Parâmetro de referência

H1: Parâmetro populacional < Parâmetro de referência

- Testes Bilaterais
 - Desvio em ambas direções
 - Situações nas quais há parâmetros de para valor mínimo e máximo
 - Verificar se o valor populacional está dentro de intervalo aceito
 - Tamanho de peças de roupa
 - Tamanho de componentes eletrônicos
 - Conteúdo mínimo e máximo de líquidos que exija muita precisão
 - Componentes mecânicos de máquinas para os quais se exija muita precisão

Teste Bilateral: Estatística de teste dentro do intervalo de confiança?

- Testes Unilaterais
 - Verificação se valor populacional
 - é inferior a certo valor mínimo ou
 - é superior a certo valor máximo

Testes Unilaterais

- Desvio apenas numa direção
 - Testar se valor populacional está acima de um padrão mínimo "aceitável"
 - Conteúdo mínimo de gordura no leite
 - Peso mínimo de determinados produtos alimentícios
 - Vida útil de uma bateria, pilha, lâmpada
 - Vida útil de certos bens ou componentes de bens

Teste Unilateral: Estatística de teste supera o valor crítico?

Nível de significância α

H0: Parâmetro populacional = Parâmetro de referência

H1: Parâmetro populacional > Parâmetro de referência

Valor Crítico

Testes Unilaterais

- Desvio apenas numa direção
 - Testar se valor populacional está abaixo de um certo valor padrão "estabelecido"
 - Conteúdo máximo de gordura em categorias de leite
 - Conteúdo máximo de gordura trans em alimentos
 - Radiação máxima tolerada no ambiente
 - Nível Máximo de CO₂ aceito no ar da cidade
 - Número máximo de unidades do produto com defeito num lote

Teste Unilateral: Estatística de teste é inferior ao valor crítico?

Valor Crítico

H0: Parâmetro populacional = Parâmetro de referência

H1: Parâmetro populacional < Parâmetro de referência

■ Erros em Testes de Significância

		contaigae real de lie.	
		Verdadeira	Falsa
Ação	Aceitar H0	Decisão correta	Erro tipo II (β)
	Rejeitar H0 e aceitar H1	Erro tipo I (α)	Decisão correta

Condição "real" de H0:

- Objetivo de Testes de Significância de Médias
 - Verificar se afirmações sobre médias populacionais são verdadeiras
 - Três tipos de afirmações envolvendo médias
 - A média de uma população única em relação a um valor de referência
 - Teste de uma amostra
 - A média de duas populações comparativamente
 - Teste comparativo de duas amostras
 - A média de mais de duas populações comparativamente

Teste comparativo de k amostras

- Teste de média de uma população única em relação a um valor de referência
 - Testar afirmação sobre a média da populacional
 - Tem-se um valor de referência/alegado/especificado da população
 - Calcula-se a média de uma amostra daquela população

- Teste de média de uma população única em relação a um valor de referência
 - Calcula-se a relação entre
 - o diferença (desvio) entre parâmetro especificado populacional e a média amostral, e,
 - a variabilidade da distribuição amostral baseada na afirmação a respeito da média

$$estatítica\ de\ teste = \frac{m\'edia\ amostral-m\'edia\ alegada\ populacional}{desvio\ padr\~ao\ da\ distribui\~ç\~ao\ amostral}$$

- Exemplo: Fabricante afirma que sua lâmpada tem uma vida útil de 500 horas.
 - O teste desta afirmativa envolve o uso de uma amostra com teste destrutivo, ou, consultando-se usuários
 - A hipótese nula H_0 : $\mu = 500h$
 - Hipóteses alternativas possíveis
 - H1: µ ≠ 500h
 - H1: $\mu > 500h$
 - H1: μ < 500h
 - Avaliação leva em conta até que ponto a estimativa amostral pode variar, ou seja, que desvio pode haver do parâmetro especificado devido a apenas variação casual na amostra

- Exemplo: Fabricante afirma que sua lâmpada tem uma vida útil de 500 horas.
 - Distribuição Amostral será
 - Distribuição Normal
 - Amostras de uma população Normal com DP conhecido
 - Distribuição t
 - DP populacional desconhecido
 - Pequenas amostras (n < 30)
 - Valores críticos
 - Baseados em Parâmetros técnicos específicos
 - De acordo com nível de aceitação
 - Depende do ponto de vista, ou interesse, do realizador do teste

- Exemplo: Fabricante afirma que sua lâmpada tem uma vida útil de 500 horas.
 - Nível de Significância
 - Associado a valores críticos
 - Estatística de teste

$$estatítica \ de \ teste = \frac{m\'edia \ amostral - m\'edia \ alegada \ populacional}{desvio \ padr\~ao \ da \ distribui\~ç\~ao \ amostral}$$

- Desvio Padrão Populacional
 - Conhecido: teste z
 - Desconhecido: teste t

Exemplo: Fabricante afirma que sua lâmpada tem uma vida útil de 500 horas.

- Do ponto de vista do fabricante
 - Não quer divulgar um valor de referência que possa ser superior ao valor real e trazer prejuízos para a imagem da empresa se descoberto
 - Não quer vender uma lâmpada com maior durabilidade por preço inferior ao que poderia cobrar se o produto tem realmente mais durabilidade
 - Seu interesse é que a lâmpada realmente tenha uma vida útil bem próxima do valor declarado/alegado

- Exemplo: Fabricante afirma que sua lâmpada tem uma vida útil de 500 horas.
 - Desvio Padrão Populacional Conhecido: teste z
 - Amostra de tamanho n = 49
 - Média amostral = 480 horas
 - DP *populacional* = 30 horas
 - Passo 1: Proposição de Hipóteses
 - H_0 : $\mu = 500h$
 - H₁: μ ≠ 500h
 - Nível de Significância (0,10; 0,05; 0,01)
 - Valor Crítico
 - Unilateral ou Bilateral
 - Estatística de teste

- Teste do ponto de vista do fabricante
 - Teste Bicaudal (Bilateral) <u>z</u>
- Nível de Significância
- $\alpha = 1\%$: z = +/- 2,57 (Grau de confiança = 99%)
 - bilateral = 0,01 → área unilateral = (0,01 / 2) = 0,005;
 - 0.5 0.005 = 0.495 (tabela z = 2.57)
 - Valores Críticos padronizados: z = -2,57; +2,57
 - Valores Críticos efetivos: x = 422,9; +577,1
- $\alpha = 5\%$: z = +/- 1,96 (Grau de confiança = 95%)
 - bilateral = 0,05 → área unilateral = (0,05 / 2) = 0,025;
 - 0.5 0.025 = 0.475 (tabela z = 1.96)
 - Valores Críticos padronizados: z = -1,96; +1,96
 - Valores Críticos efetivos: x = 441,2; +558,8
- $\alpha = 10\%$: z = +/-1,65 (Grau de confiança = 90%)
 - bilateral = 0,10 → área unilateral = (0,10 / 2) = 0,05;
 - 0.5 0.05 = 0.45 (tabela z = 1.65)
 - Valores Críticos padronizados: z = -1,65; +1,65
 - Valores Críticos efetivos: x = 450,5; +549,5

Teste Bilateral a nível de significância de 1% e grau de confiança de 99%

Teste Bilateral a nível de significância de 5% e grau de confiança de 95%

Teste Bilateral a nível de significância de 10% e grau de confiança de 90%

- Exemplo: Fabricante afirma que sua lâmpada tem uma vida útil de 500 horas.
 - Teste do fabricante
 - Teste Bicaudal
 - Estatística de teste

$$z = \frac{\bar{x} - \mu}{\sigma_{\bar{x}}} = \frac{\bar{x} - \mu}{\frac{\sigma_x}{\sqrt{n}}} = \frac{480 - 500}{\frac{30}{\sqrt{49}}} = -4,66$$

- z = -4,66 (x = 360,2horas) é menor que VC inferior
 - ao nível de 10%, 5% e 1%
 - Há subsídio/razão/suporte para Rejeitar-se H0 e Aceitar-se H1
 - É muito provável que a vida da lâmpada tenha média de duração diferente de 500 horas. No caso, o verdadeiro valor é inferior a 500 horas
 - Fabricante deve mudar especificação

- Exemplo: Fabricante afirma que sua lâmpada tem uma vida útil de 500 horas.
 - Desvio Padrão Populacional Conhecido: teste z
 - Amostra de tamanho n = 49
 - Média amostral = 515 horas
 - DP *populacional* = 30 horas
 - Passo 1:
 - H_0 : $\mu = 500h$
 - H₁: μ ≠ 500h
 - Nível de Significância (0,10; 0,05; 0,01)
 - Valor Crítico
 - Unilateral ou Bilateral
 - Estatística de teste

- Exemplo: Fabricante afirma que sua lâmpada tem uma vida útil de 500 horas.
 - Teste do fabricante
 - Teste Bicaudal (Bilateral)
 - Estatística de teste

$$z = \frac{\bar{x} - \mu}{\sigma_{\bar{x}}} = \frac{\bar{x} - \mu}{\frac{\sigma_x}{\sqrt{n}}} = \frac{515 - 500}{\frac{30}{\sqrt{49}}} = +3.5$$

- z = +3,5 (x = 605horas) é maior que VC superior
 - ao nível de 10%, 5% e 1%
 - Há subsídio para Rejeitar-se H0 e aceitar-se H1
 - É muito provável que a vida da lâmpada tenha média de duração superior a 500 horas
 - Fabricante deve mudar especificação e aumentar o preço? Refazer o teste com outras amostras?

Exemplo: Fabricante afirma que sua lâmpada tem uma vida útil de 500 horas.

- Do ponto de vista do mercado (controle externo)
 - Quer-se ter certeza que o parâmetro especificado pelo fabricante é verdadeiro pois ele pagou pelo produto em função deste parâmetro/informação/durabilidade especificada
 - Estabelece-se um VC mínimo para aceitação do parâmetro alegado pelo fabricante

- Exemplo: Fabricante afirma que sua lâmpada tem uma vida útil de 500 horas.
 - Desvio Padrão Populacional Conhecido: teste z
 - Amostra de tamanho n = 49
 - Média amostral = 492 horas
 - DP *populacional* = 30 horas
 - Passo 1:
 - H_0 : μ = 500h (fabricante diz a verdade)
 - H₁: μ < 500h (fabricante não diz a verdade)
 - Nível de Significância (0,10; 0,05; 0,01)
 - Valor Crítico
 - Unilateral ou Bilateral
 - Estatística de teste

- Teste do ponto de vista do mercado
 - Teste Unicaudal <u>z</u>
- Nível de Significância
- $\alpha = 1\%$: z = 2,33 (Grau de confiança = 99%)
 - área unilateral = 0,01
 - 0.5 0.01 = 0.49 (tabela z = 2.33)
 - Valor Crítico padronizado: z = -2,33
 - Valor Crítico efetivo: x = 430,1
- $\alpha = 5\%$: z = 1,65 (Grau de confiança = 95%)
 - área unilateral = 0,05
 - 0.5 0.05 = 0.45 (tabela z = 1.65)
 - Valor Crítico padronizado: z = -1,65
 - Valor Crítico efetivo: x = 441,2
- $\alpha = 10\%$: z = 1,3 (Grau de confiança = 90%)
 - área unilateral = 0,10
 - 0.5 0.1 = 0.4 (tabela z = 1.3)
 - Valor Crítico padronizado: z = -1,3
 - Valor Crítico efetivo: x = 461

- Exemplo: Fabricante afirma que sua lâmpada tem uma vida útil de 500 horas.
 - Teste do mercado
 - Teste Unicaudal (Unilateral)
 - Estatística de teste

$$z = \frac{\bar{x} - \mu}{\sigma_{\bar{x}}} = \frac{\bar{x} - \mu}{\frac{\sigma_x}{\sqrt{n}}} = \frac{492 - 500}{\frac{30}{\sqrt{49}}} = -1,87$$

- z = -1.87 (x = 444 horas) é menor que VC inferior
 - ao nível de 10% e 5%
 - Há subsídio para Rejeitar-se H0 e aceitar-se H1
 - É muito provável que a vida da lâmpada tenha média de duração inferior a 500 horas
 - Mercado deve destruir a fábrica? Coletar outras amostras e refazer o teste? Tentar obter mais forte evidência a nível de 1%?

- Exemplo: Fabricante afirma que sua lâmpada tem uma vida útil de 500 horas.
 - Desvio Padrão Populacional <u>Desconhecido</u>
 - Se n > 30 (grande amostra)
 - z aproximadamente t
 - Exemplo
 - n = 25 observações → <u>Distribuição t</u>
 - Média amostral = 480 horas
 - DP *amostral* = 30 horas
 - Passo 1:
 - H0: $\mu = 500h$
 - H1: μ < 500h

- Teste Unicaudal (Unilateral)
- n = 25 → 24 Graus de Liberdade
- Nível de Significância
 - $\alpha = 1\%$: t = -2,49 (tabeça t)
 - Valor Crítico padronizado: t = -2,49
 - Valor Crítico efetivo: x = 425,3
 - $\alpha = 5\%$: t = -1,71 (tabeça t)
 - Valor Crítico padronizado: t = -1,71
 - Valor Crítico efetivo: x = 448,7
 - $\alpha = 10\%$: t = 1,32
 - Valor Crítico padronizado: t = -1,32
 - Valor Crítico efetivo: x = 460,4

- Exemplo: Fabricante afirma que sua lâmpada tem uma vida útil de 500 horas.
 - Teste do mercado
 - Teste Unicaudal
 - Estatística de teste

$$t = \frac{\bar{x} - \mu}{s_{\bar{x}}} = \frac{\bar{x} - \mu}{\frac{s_x}{\sqrt{n}}} = \frac{480 - 500}{\frac{30}{\sqrt{25}}} = -3,33$$

- t = -3,33 (x = 400,1 horas) é menor que VC inferior
 - ao nível de 10%, 5% e 1%
 - Há forte subsídio para Rejeitar-se H0 e aceita-se H1
 - É muito provável que a vida da lâmpada tenha média de duração inferior a 500 horas, ou seja, que o fabricante esteja ludibriando o consumidor com a informação declarada sobre o produto.

- Exemplo: Fabricante afirma que sua lâmpada tem uma vida útil de 500 horas.
 - Desvio Padrão Populacional <u>Desconhecido</u>
 - Se n > 30 (grande amostra)
 - z aproximadamente t
 - Exemplo
 - n = 25 observações → Distribuição t
 - Média amostral = 493 horas
 - DP *amostral* = 30 horas
 - Passo 1:
 - H0: $\mu = 500h$
 - H1: μ < 500h

- Exemplo: Fabricante afirma que sua lâmpada tem uma vida útil de 500 horas.
 - Teste do mercado
 - Teste Unicaudal
 - Estatística de teste

$$t = \frac{\bar{x} - \mu}{s_{\bar{x}}} = \frac{\bar{x} - \mu}{\frac{s_x}{\sqrt{n}}} = \frac{492 - 500}{\frac{30}{\sqrt{25}}} = -1,17$$

- t = -1,17 (x = 465 horas) NÃO é menor que VC inferior
 - Não há subsídio para Rejeitar-se H0
 - É muito IMprovável que a vida da lâmpada tenha média de duração inferior a 500 horas, ou seja, o fabricante está dizendo a verdade sobre o produto.

- A média de duas populações comparativamente
 - As médias de duas populações são iguais (estatisticamente)?
 - Populações independentes!
 - Exemplos
 - Consumo de veículos de mesmo porte de fabricantes distintos
 - Desempenho de empresas por distintas características (país, setor, tamanho, etc)
 - Métodos de ensino
 - Produtos equivalentes de marcas distintas
 - · Longevidade populacional média entre países

- A média de duas populações comparativamente
 - Hipóteses sobre a igualdade de médias de duas populações 1 e 2
 - A hipótese nula
 - H_0 : $\mu_1 = \mu_2$
 - Hipóteses alternativas possíveis
 - H1: $\mu_1 \neq \mu_2$
 - H1: $\mu_1 > \mu_2$
 - H1: $\mu_1 < \mu_2$

- A média de duas populações comparativamente
 - O teste estatístico centra-se na diferença relativa entre as duas médias
 - Conhece-se as médias amostrais e quer-se inferir sobre as médias populacionais. São iguais (estatisticamente)?
 - Cálculo da estatística de teste
 - Diferença entre médias amostrais dividida por
 - Desvio padrão de uma distribuição amostral

$$estatítica \ de \ teste = \frac{m\'edia \ amostra \ 1 - m\'edia \ amostra \ 2}{desvio \ padr\~ao \ da \ distribui\~ç\~ao \ amostral}$$

- A média de duas populações comparativamente
 - Diferença entre médias amostrais
 - Desvio padrão de uma distribuição amostral
 - Combinação das variâncias das duas populações (ou amostras se variâncias populacionais desconhecidas)
 - Para DP populacionais conhecidos (teste z)

$$z_{teste} = rac{ar{x}_1 - ar{x}_2}{\sqrt{rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}}}$$

- Z_{teste}
 - diretamente proporcional à diferença das médias
 - inversamente proporcional à variabilidade populacional

- A média de duas populações comparativamente
 - Diferença entre médias amostrais
 - Desvio padrão de uma distribuição amostral
 - Combinação das variâncias das duas populações (ou amostras se variâncias populacionais desconhecidas)
 - Para DP populacionais DESCONHECIDOS (teste t)

$$t_{teste} = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_{x_1}^2}{n_1} + \frac{s_{x_2}^2}{n_2}}}$$

- t_{teste}
 - diretamente proporcional à diferença das médias
 - inversamente proporcional à variabilidade populacional

- Exemplo
 - DP populacionais conhecidos (teste z)
 - Sabe-se os DP de salários de dois setores da economia
 - Pesquisa uma amostra de cada setor, diga se as médias salariais são iguais
 - Dados:
 - Setor A: média 4.000; DP populacional 1.000; n = 30
 - Setor B: média 4.300; DP populacional 1.050; n = 24

$$z_{teste} = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} = -1,066$$

Valores de z

<u>Teste Bicaudal</u>		Teste Unicaudal		
Nível de Significância z limite do		Nível de Significância z limite do		
(α)	IC	(α)	IC	
0,01 = 1%	2,57	0,01 = 1%	2,53	
0,05 = 5%	1,96	0,05 = 5%	1,65	
0,10 = 10%	1,65	0,10 = 10%	1,3	

- $z_{\text{teste}} = -1,066$
 - z teste inferior a z referência ao nível de 10%, 5% e 1%
 - Como a estatística de teste é inferior a VC
 - Não há razão (subsídio) para rejeitar H0
 - A diferença "nominal" das médias amostrais é provavelmente resultado de variação casual devida à amostragem aleatória

- Situação 2:
 - Setor A: média 3.800; DP popul 1.000; n = 30
 - Setor B: média 4.300; DP popul 1.050; n = 24
 - $z_{\text{teste}} = -1,776$
- Trabalhadores do setor A se "agarrariam" a este resultado para barganhar aumento
 - teste unilateral: diferença significativa a nível de 5%
- Os patrões já diriam que evidência não garante que a diferença de médias salariais entre os setores é significativa
 - teste bilateral: diferença significativa somente a nível de 10%
- Já os patrões do setor B teriam um argumento para adiar aumentos
 - Teste unilateral mostra que seus salários estão superiores em média

- Situação 3:
 - Setor A: média 3.900; DP popul 1.000; n = 30
 - Setor B: média 4.700; DP popul 1.200; n = 24
 - $z_{\text{teste}} = -2,841$
- Trabalhadores do setor A <u>infelizes</u> por saber que ganham menos e <u>felizes</u> por terem forte argumento para barganhar aumento
 - teste unilateral: diferença significativa a nível de 1%
- Os patrões do setor A já não podem questionar muito a evidência de que seus colaboradores realmente ganham menos em média
 - teste bilateral: diferença significativa a nível de 1%
- Patrões do setor B nem querem ouvir falar de aumento

 Teste unilateral e bilateral mostram que seus salários estão superiores em média

- Exemplo
 - DP populacionais DESCONHECIDOS (teste t)
 - Dados:
 - Setor A: média 4.000; DP AMOSTRAL 1.000; n₁ = 30
 - Setor B: média 4.300; DP AMOSTRAL 1.050; n₂ = 32
 - $n_1 + n_2 > 30$; então $z \approx t$

$$t_{teste} = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_{x_1}^2}{n_1} + \frac{s_{x_2}^2}{n_2}}}$$

- Exemplo
 - DP populacionais DESCONHECIDOS (teste t)
 - Dados:
 - Setor A: média 4.000; DP **AMOSTRAL** 1.000; $n_1 = 30$
 - Setor B: média 4.300; DP AMOSTRAL 1.050; n₂ = 32
 - t = -1,152
 - Graus de liberdade = $(n_1 + n_2) 2 = 62 2 = 60$

Valores de t para GL = 60					
Uma Cauda (α)	0,1	0,05	0,025	0,01	0,005
	90%	95%	97,5%	99%	99,5%
Duas Caudas (α)	0,2	0,1	0,05	0,02	0,01
	80%	90%	95%	98%	99%
GL = 60	1,296	<i>1,671</i>	2,000	2,390	<i>2,660</i>

- $t_{\text{teste}} = -1,152$
 - t_{teste} não é inferior a t de referência ao nível de 10%, 5% e 1%
 - Como a estatística de teste t não é inferior a VC
 - Não há razão (subsídio) para rejeitar H0
 - A diferença "nominal" das médias amostrais é provavelmente resultado de variação casual devida à amostragem aleatória

Exemplo

- DP populacionais DESCONHECIDOS (teste t)
 - Dados:
 - Setor A: média 3.950; DP **AMOSTRAL** 1.000; $n_1 = 30$
 - Setor B: média 4.390; DP AMOSTRAL 1.050; n₂ = 32
 - t = -1,69
 - Graus de liberdade = $(n_1 + n_2) 2 = 62 2 = 60$

Valores de t para GL = 60					
Uma Cauda (α)	0,1	0,05	0,025	0,01	0,005
	90%	95%	97,5%	99%	99,5%
Duas Caudas (α)	0,2	0,1	0,05	0,02	0,01
	80%	90%	95%	98%	99%
GL = 60	<i>1,296</i>	<i>1,671</i>	<i>2,000</i>	<i>2,390</i>	<i>2,660</i>

- $t_{\text{teste}} = -1,69$
 - t_{teste} superior (em valor absoluto) a t de referência ao nível de 10% (bilateral), 5% (unilateral) (t de referência = VC = 1,671)
 - Como a estatística de teste t é superior a VC
 - Há razão (subsídio) para rejeitar H0 e aceitar H1
 - A diferença "nominal" das médias amostrais provavelmente NÃO é resultado de variação casual devida à amostragem aleatória

Exemplo

- DP populacionais DESCONHECIDOS (teste t)
 - Dados:
 - Setor A: média 3.950; DP **AMOSTRAL** 500; $n_1 = 30$
 - Setor B: média 4.390; DP AMOSTRAL 600; n₂ = 32
 - t = -3,144
 - Graus de liberdade = $(n_1 + n_2) 2 = 62 2 = 60$

Valores de t para GL = 60					
Uma Cauda (α)	0,1	0,05	0,025	0,01	0,005
	90%	95%	97,5%	99%	99,5%
Duas Caudas (α)	0,2	0,1	0,05	0,02	0,01
	80%	90%	95%	98%	99%
GL = 60	<i>1,296</i>	<i>1,671</i>	<i>2,000</i>	<i>2,390</i>	<i>2,660</i>

- $t_{\text{teste}} = -3,144$
 - t_{teste} superior (em valor absoluto) a t de referência ao nível de 10%, 5% e 1% (bilateral e unilateral)
 - Como a estatística de teste t é superior a VC
 - Há razão (subsídio) para rejeitar H0 e aceitar H1
 - A diferença "nominal" das médias amostrais provavelmente NÃO é resultado de variação casual devida à amostragem aleatória
 - Neste caso, com mais segurança ainda que o exemplo anterior

- Exemplo
 - DP populacionais DESCONHECIDOS (teste t)
 - Dados:
 - Setor A: média 4.000; DP AMOSTRAL 1.000; n₁ = 15
 - Setor B: média 4.300; DP AMOSTRAL 1.050; n₂ = 14
 - Graus de liberdade = $(n_1 + n_2) 2 = 29 2 = 27$
 - $t_{teste} = -0.788$

$$t_{teste} = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\left[\frac{(n_1 - 1)s_{x_1}^2 + (n_2 - 1)s_{x_2}^2}{(n_1 + n_2 - 2)}\right]\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

- $t_{\text{teste}} = -0.788$
 - t_{teste} inferior (em valor absoluto) a t de referência ao nível de 10%, 5% e 1%
 - Como a estatística de teste t é inferior a VC
 - Não há razão (subsídio) para rejeitar H0
 - A diferença "nominal" das médias amostrais é provavelmente resultado de variação casual devida à amostragem aleatória

- Exemplo
 - DP populacionais DESCONHECIDOS (teste t)
 - Dados:
 - Setor A: média 4.000; DP AMOSTRAL 200; n₁ = 15
 - Setor B: média 4.300; DP **AMOSTRAL** 350; $n_2 = 14$
 - Graus de liberdade = $(n_1 + n_2) 2 = 29 2 = 27$
 - $t_{teste} = -2,859$

$$t_{tests} = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\left[\frac{(n_1 - 1)s_{x_1}^2 + (n_2 - 1)s_{x_2}^2}{(n_1 + n_2 - 2)}\right]\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

- $t_{\text{teste}} = -3,144$
 - t_{teste} superior (em módulo) a t de referência ao nível de 1% (VC = 2,771) (bilateral e unilateral)
 - Como a estatística de teste t é superior a VC
 - Há razão (subsídio) para rejeitar H0 e aceitar H1
 - A diferença "nominal" das médias amostrais provavelmente NÃO é resultado de variação casual devida à amostragem aleatória