Devoir2 maison

Exercice 1

Cet exercice porte sur les représentations binaires et les protocoles de routage.

- Une adresse IPv4 est représentée sous la forme de 4 nombres séparés par des points. Chacun de ces 4 nombres peut être représenté sur un octet.
 - a. Donner en écriture décimale l'adresse IPv4 correspondant à l'écriture binaire : 11000000.10101000.10000000.100000011
 - b. Tous les ordinateurs du réseau A ont une adresse IPv4 de la forme : 192.168.128.___, où seul le dernier octet (représenté par ___) diffère. Donner le nombre d'adresses différentes possibles du réseau A.
- 2. On rappelle que le protocole RIP cherche à minimiser le nombre de routeurs traversés (qui correspond à la métrique). On donne les tables de routage d'un réseau informatique composé de 5 routeurs (appelés A, B, C, D et E), chacun associé directement à un réseau du même nom obtenues avec le protocole RIP :

Routeur A

Destination	Métrique
Α	0
В	1
С	1
D	1
Е	2

Routeur B

Destination	Métrique
Α	1
В	0
С	2
D	1
E	2

Routeur C

Destination	Métrique
Α	1
В	2
С	0
D	1
E	2

Routeur D

Destination	Métrique
Α	1
В	1
С	1
D	0
E	1

Routeur E

Destination	Métrique
Α	2
В	2
С	2
D	1
E	0

- a. Donner la liste des routeurs avec lesquels le routeur A est directement relié.
- Représenter graphiquement et de manière sommaire les 5 routeurs ainsi que les liaisons existantes entre ceux-ci.
- Le protocole OSPF est un protocole de routage qui cherche à minimiser la somme des métriques des liaisons entre routeurs.

Dans le protocole de routage OSPF le débit des liaisons entre routeurs agit sur la métrique via la relation : $métrique = \frac{10^8}{débit}$ dans laquelle le débit est exprimé en bit par seconde (bps).

On rappelle qu'un kbps est égal à 10^3 bps et qu'un Mbps est égal à 10^6 bps. Recopier sur votre copie et compléter le tableau suivant :

Débit	100 kbps	500 kbps	?	100 Mbps
Métrique associée	1 000	?	10	1

4. Voici la représentation d'un réseau et la table de routage incomplète du routeur F obtenue avec le protocole OSPF :

Destination Métrique
F 0
G 8
H 5
I
J
K

L

Routeur F

Les nombres présents sur les liaisons représentent les coûts des routes avec le protocole OSPF.

Les nombres présents sur les liaisons représentent les coûts des routes avec le protocole OSPF.

- a. Indiquer le chemin emprunté par un message d'un ordinateur du réseau F à destination d'un ordinateur du réseau I.
 Justifier votre réponse.
- b. Recopier et compléter la table de routage du routeur F.
- c. Citer une unique panne qui suffirait à ce que toutes les données des échanges de tout autre réseau à destination du réseau F transitent par le routeur G. Expliquer en détail votre réponse.

Exercice 2

Cet exercice porte sur les réseaux et les protocoles de routages.

Rappels:

Une adresse IPv4 est composée de 4 octets, soit 32 bits. Elle est notée a.b.c.d, où a, b, c et d sont les valeurs des 4 octets.

La notation a.b.c.d/n signifie que les n premiers bits de l'adresse IP représentent la partie « réseau », les bits qui suivent représentent la partie « machine ».

L'adresse IPv4 dont tous les bits de la partie « machine » sont à 0 est appelée « adresse du réseau ».

L'adresse IPv4 dont tous les bits de la partie « machine » sont à 1 est appelée « adresse de diffusion ».

On considère le réseau représenté sur la Figure 1 ci-dessous :

Figure 1 : schéma du réseau

- 1. On considère la machine d'adresse IPv4 192.168.1.1/24
 - a. Donner l'adresse du réseau sur leguel se trouve cette machine.
 - b. Donner l'adresse de diffusion (broadcast) de ce réseau.
 - c. Donner le nombre maximal de machines que l'on peut connecter sur ce réseau.
 - d. On souhaite ajouter une machine sur ce réseau, proposer une adresse IPv4 possible pour cette machine.

2.

a. La machine d'adresse IPv4 192.168.1.1 transmet un paquet IPv4 à la machine d'adresse IPv4 192.168.4.2

Donner toutes les routes pouvant être empruntées par ce paquet IPv4, chaque routeur ne pouvant être traversé qu'une seule fois.

- b. Expliquer l'utilité d'avoir plusieurs routes possibles reliant les réseaux 192.168.1.0/24 et 192.168.4.0/24
- 3. Dans cette question, on suppose que le protocole de routage mis en place dans le réseau est RIP. Ce protocole consiste à minimiser le nombre de sauts. Le schéma du réseau est celui de la figure 1.

Les tables de routage utilisées sont données ci-dessous :

Routeur A		Routeur B		Routeur C	
Destination	passe par	Destination	passe par	Destination	passe par
В		Α	Α	Α	Α
С		С	С	В	В
D	E	D	С	D	E
E		E	С	E	E
F	С	F	С	F	F

Routeur D		Routeur E		Routeur F	
Destination	passe par	Destination	passe par	Destination	passe par
Α	E	Α	Α	Α	С
В	F	В	С	В	С
С	F	С	С	С	С
E	E	D	D	D	D
F	F	F	С	E	С

Tables de routage

- a. Recopier et compléter sur la copie la table de routage du routeur A.
- b. Un paquet IP doit aller du routeur B au routeur D. En utilisant les tables de routage, donner le parcours emprunté par celui-ci.
- c. Les connexions entre les routeurs B-C et A-E étant coupées, sur la copie, réécrire les tables de routage des routeurs A, B et C.
- d. Déterminer le nouveau parcours emprunté par le paquet IP pour aller du routeur B au routeur D.
- 4. Dans cette question, on suppose que le protocole de routage mis en place dans le réseau est OSPF. Ce protocole consiste à minimiser la somme des coûts des liaisons empruntées. Le coût d'une liaison est défini par la relation $\cos \hat{u}t = \frac{10^8}{d}$ où d représente le débit en bit/s et $\cos \hat{u}t$ est sans unité. Le schéma du réseau est celui de la figure 1.

- a. Déterminer le coût des liaisons Ethernet ($d = 10^7 \, \text{bit/s}$), Fast-Ethernet ($d = 10^8 \, \text{bit/s}$) et Fibre ($d = 10^9 \, \text{bit/s}$).
- b. On veut représenter schématiquement le réseau de routeurs à partir du schéma du réseau figure 1.

Recopier sur la copie le schéma ci-dessous et tracer les liaisons entre les routeurs en y indiquant le coût.

- c. Un paquet IPv4 doit être acheminé d'une machine ayant pour adresse IPv4 192.168.2.1 à une machine ayant pour adresse IPv4 192.168.4.1 Écrire les routes possibles, c'est à dire la liste des routeurs traversés, et le coût de chacune de ces routes, chaque routeur ne pouvant être traversé qu'une seule fois.
- d. Donner, en la justifiant, la route qui sera empruntée par un paquet IPv4 pour aller d'une machine ayant pour adresse IPv4 192.168.2.1 à une machine ayant pour adresse IPv4 192.168.4.1