МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЫБИНСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ П.А. СОЛОВЬЕВА»

ИНСТИТУТ «ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И СИСТЕМЫ УПРАВЛЕНИЯ»

КАФЕДРА ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ

«АРХИТЕКТУРЫ ARM И х86»

Работа выполнена студентом группы ИВМ-24

Преподаватель к. т. н., доцент

Морозов А. А.

Павлов Р. В.

ARM И x86

• Современные вычислительные системы базируются на двух основных подходах к архитектуре процессоров — *ARM* и x86.

ОСНОВЫ РАБОТЫ МИКРОЭВМ

Любая
 микропроцессорная
 система служит для
 обработки информации с
 целью получения
 требуемого результата

РАННИЕ ГОДЫ ЭВМ

• Первая электронная вычислительная машина (ЭВМ) ENIAC была создана в США в 1946 году для расчета баллистических таблиц. В ней использовалось 17468 электронных ламп и 1500 электромагнитных реле

lengyroban kog "Murer-22"

код пердичен. таг	Zuwamne kogei	Newyt su synci -compl
	0	0
	1	4
	2	14
	3	J
	4	4
	5	ч
00.00	6	ø.
.000	7	7
8	8	00
0 0	9	0
0 0	+ Bachmegmr.	† 0
0.00	- lock wegmr.	1 9
0.0	+ generius.	+ 3
0.00	- getinnur.	1 5
0.00	34maran	·
0.000	Determer systems	0 %
0 . 0	Tropieg war agreed	~ 3
0 . 0 0		10/10/1 /
0 .0 0	neprogram agrices	
0 .000	nepolyrum agfocca	1 1
00.	sernice	1-0
00.0		11/1 3
00.0	Выпринимается	17/1/1/3
00.00	нак запись	777 3
	Trater	- 6
0.0		1/1//
0.0		1///
0 .00	Boen funnaciones	17/// 2
00.0	Kak moter	3
00.00		1///
00.00		12/1
00.000	Gramma Chago (bruetje c	77

МАШИННЫЙ КОД

• Машинный код — это низкоуровневый код, состоящий из двоичных инструкций, которые могут быть интерпретированы процессором и выполнены без дополнительных преобразований

Машинный код vs Ассемблер

Машинный код (побайтовый)

B8 22 11 00 FF 01 CA 31 F6 53 8B 5C 24 04 8D 34 48 39 C3 72 EB C3

Код на Ассемблере

```
foo:
movl $0xFF001122, %eax
addl %ecx, %edx
xorl %esi, %esi
pushl %ebx
movl 4(%esp), %ebx
leal (%eax,%ecx,2), %esi
cmpl %eax, %ebx
jnae foo
retl
```

АССЕМБЛЕР

 Ассемблер был разработан как промежуточный шаг между машинным кодом и более высокоуровневыми языками программирования.

АРХИТЕКТУРА Х86

• Архитектура x86 была разработана компанией Intel в начале 1970-х годов. Первый процессор с архитектурой x86, Intel 8086, был выпущен в 1978 году, и с тех пор эта архитектура претерпела множество изменений и усовершенствований.

CISC APXИТЕКТУРА КОМАНД

• Архитектура CISC (Complex Instruction Set Computing) относится к архитектуре процессора, в которой используется набор сложных инструкций, каждая из которых может выполнять несколько операций за один цикл.

ОСОБЕННОСТИ CISC

- К особенностям *CISC* относят:
 - Использование переменной длины команд;
 - Работа напрямую с памятью;
 - Небольшое количество регистров.

СОВМЕСТИМОСТЬ С ПРЕДЫДУЩИМИ ПОКОЛЕНИЯМИ

• С развитием архитектуры x86 появились новые расширения, такие как 32-битные и 64-битные режимы работы. Для обратной совместимости используются режимы Long mode и Legacy mode.

РАСШИРЕНИЯ ДЛЯ Х86

- Архитектура x86 прошла через множество улучшений и расширений. Наиболее значимым из них оказали:
 - MMX (MultiMedia Extensions);
 - SSE (Streaming SIMD Extensions);
 - AVX (Advanced Vector Extensions).

APXИТЕКТУРА ARM

• Разработана в 1980-х годах британской компанией Acorn Computers и была ориентирована на создание высокопроизводительных, энергоэффективных процессоров, способных удовлетворять потребности быстро развивающегося рынка.

RISC APXИТЕКТУРА КОМАНД

• RISC (Reduced Instruction Set Computer) — это архитектурная концепция, основная цель которой заключается в упрощении набора машинных команд для повышения производительности и уменьшения затрат на обработку инструкций.

ОСОБЕННОСТИ RISC APXИТЕКТУРЫ

- К особенностям *RISC* относят:
 - Регистровые окна и файл;
 - Фиксированная длина команд;
 - Конвейер команд.

РЕГИСТРОВЫЕ ОКНА

- Регистровые окна состоят из 3 полей:
 - - левое поле для входных значений;
 - - среднее поле для локальных значений;
 - - правое поле для выходных значений.

Сохранение Алок B.BX Возврат A.ex В.лок Указатель сохраненного окна 00 (F) C.sx 05 C.nox 04 D.BX (E) **D**.лок Указатель текущего окна Вызов Возврат

ЦИКЛИЧЕСКИЙ БУФЕР РЕГИСТРОВЫХ ОКОН

 Указатель смещается при каждом вызове вложенной функции, тем самым перекрывает концы регистровых окон

ФИКСИРОВАННАЯ ДЛИНА КОМАНД

• Все команды в RISC имеют одинаковую длину, обычно 32 бита, что существенно упрощает их обработку процессором (декодирование).

КОНВЕЙЕР КОМАНД

• Конвейер в позволяет выполнять процессору сразу несколько команд, значительно увеличивая его производительность. В *RISC* архитектуре конвейер выполняет намного проще и появился раньше чем в *CISC*.

Big Endian Little Endian Number Number OB OC OD OA OB OC OD Memory Memory Addr Addr Addr + 1 Addr + 1 Addr + 2 0C Addr + 2 Addr + 3 Addr + 3

ПОРЯДОК БАЙТОВ

• В ARM реализована поддержка сразу обоих порядков байтов, а в x86 только little-endian (младший байт по младшему адресу).

ARM BIG.LITTLE

- 2 типа ядер:
 - Большие ядра;
 - Маленькие ядра.
- 3 способа управления ядрами:
 - Heterogeneous Multi-Processing;
 - Clustered switching;
 - In-kernel switcher.

СПАСИБО ЗА ВНИМАНИЕ!

Презентацию подготовил студент группы ИВМ-24 Морозов А. А.