ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 15 settembre 2014

Esercizio A

Ω 00
600 Ω
) kΩ
nF
nF
nF
nF
8 V

 Q_1 è un transistore BJT BC109B resistivo con $h_{re} = h_{oe} = 0$. Q_2 è un transistore MOS a canale p resistivo, con la corrente di drain in saturazione data da $I_D = k(V_{GS} - V_T)^2$ con k = 0.5 mA/V 2 e $V_T = -1$ V. Con riferimento al circuito in figura:

- 1) Calcolare il valore della resistenza R_2 in modo che, in condizioni di riposo, la tensione sul drain di Q_2 sia 7.2 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q_2 . (R: $R_2 = 282368 \Omega$)
- 2) Determinare V_U/V_i alle frequenze per le quali C_1 , C_2 , C_3 e C_4 possono essere considerati dei corto circuiti. (R: $V_U/V_i = -6.1665$)
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: $f_{z1} = 2.38$ Hz; $f_{p1} = 3.44$ Hz; $f_{z2} = 260.06$ Hz; $f_{p2} = 269.99$ Hz; $f_{z3} = 3762.53$ Hz; $f_{p3} = 11577$ Hz; $f_{z4} = 0$ Hz; $f_{p4} = 6236.48$ Hz)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \overline{BC}(\overline{A} + D + \overline{E}) + \overline{B}(\overline{D} + AC) + CD$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 1 \text{ k}\Omega$	$R_5 = 5 \text{ k}\Omega$
$R_2 = 1 \text{ k}\Omega$	$R_6 = 1 \text{ k}\Omega$
$R_3 = 21.5 \text{ k}\Omega$	C = 100 nF
$R_4 = 5 \text{ k}\Omega$	$V_{CC} = 6 V$

Il circuito IC₁ è un NE555 alimentato a $V_{CC} = 6V$, Q_1 ha una $R_{on} = 0$ e $V_T = 1V$, Q_2 ha una $R_{on} = 0$ e $V_T = -1V$ e gli inverter sono ideali. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 4907.85 Hz)