Q1: KNote: Let T0 = Tom has changed oil, TS = Tom speeding, TC = Tom crashes

a) Step 1: Condition to get distribution PCTS, TC | TO = F)

TS.	TC	PCTS, TC 1 TO =F)
F	F	0.18/0.6 = 0.3
F	Т	0.12/0.6 = 0.2
T	F	0.06/0.6 = 0.1
T	T	0.24/0.6 = 0.4

Step 2: Marginalize out TS to get PCTCITO=F)

TC
$$P(TC|TO=F)$$

T $0.2 + 0.4 = 0.6$ \Rightarrow Answer: $P(Tom\ crashes=T|Tom\ has\ changed)$
 $Corrs oil = F$
 $Corrs oil = F$

1.b) Let
$$A = Changing oil$$
 $B = Tom speeding$
 $C = Tom crashing$

If for any pair X, Y: P(XIY) = P(X) then X and Y are independent.

$$p(A = T) = 0.12 + 0.08 + 0.04 + 0.16 = 0.4$$

$$p(A = T, B = T) = 0.04 + 0.16 = 0.2$$

$$p(B = T) = 0.06 + 0.24 + 0.04 + 0.16 = 0.5$$

$$p(A|B) = \frac{p(A,B)}{p(B)} = \frac{0.2}{0.5} = 0.4 = p(A)$$

: A and B are independent

$$p(B=T) = 0.5$$

$$p(B=T, C=T) = 0.24 + 0.16 = 0.4$$

$$p(C=T) = 0.12 + 0.24 + 0.08 + 0.16 = 0.6$$

$$p(BIC) = \frac{p(B,C)}{p(C)} = \frac{0.4}{0.6} = 0.66 \neq p(B)$$

: B and C are NOT independent

$$p(A = T) = 0.4$$

$$p(A = T, C = T) = 0.08 + 0.16 = 0.24$$

$$p(C = T) = 0.6$$

$$p(A|C) = \frac{p(A,C)}{p(C)} = \frac{0.24}{0.6} = 0.4 = p(A)$$

: A and C are independent

Now by chain rule:

$$p(a,b,c) = p(a|b,c) \times p(b|c) \times p(c)$$

$$= \frac{p(a,b,c)}{p(b,c)} \times \frac{0.4}{0.6} \times 0.6$$

$$= \frac{0.16}{4\pi} \times 0.4$$

$$7.a$$
) $0.46 \times 0.2 + 0.16 \times 0.3 + 0.18 \times 0.4 + 0.2 \times 0.5$
= 0.312

$$= \frac{0.172}{0.312}$$
$$= 0.95$$

Q3: JDP Representational Cost: $= 2^{3} \times 31^{3} - 1 = 8 \times 29791 - 1 = 238,327$

Bayesian Network (:

Cost= 1+1+1 + 62 + 62 + 31 = 158 probabilities need to be specified

Representational Saving = Cost JDP - Cost Bayesian
= 238327-158
= 238169