

GENERALIZED LINEAR MODELS

CS6140

Predrag Radivojac

KHOURY COLLEGE OF COMPUTER SCIENCES

NORTHEASTERN UNIVERSITY

Spring 2021

ORDINARY LEAST SQUARES REGRESSION

Given: a set of observations $\mathcal{D} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n, \ (\boldsymbol{x}_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$

Assume: $Y = \omega_0 + \sum_{j=1}^d \omega_j X_j + \varepsilon$, where $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

Goal: find optimal fit $f(x) = w_0 + \sum_{j=1}^d w_j x_j$ by maximizing likelihood

The following holds:

- 1. $\mathbb{E}[Y|\mathbf{x}] = \boldsymbol{\omega}^T \mathbf{x}$
- 2. $Y|\mathbf{x} \sim \mathcal{N}(\mu, \sigma^2)$, where $\mu = \boldsymbol{\omega}^T \mathbf{x}$

$$oldsymbol{\omega}, \mathbf{x} \in \mathbb{R}^{d+1}$$

ORDINARY LEAST SQUARES REGRESSION

Given: a set of observations $\mathcal{D} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n, (\boldsymbol{x}_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$

Assume: $Y = \omega_0 + \sum_{j=1}^d \omega_j X_j + \varepsilon$, where $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

Goal: find optimal fit $f(x) = w_0 + \sum_{j=1}^d w_j x_j$ by maximizing likelihood

The following holds:

- 1. $\mathbb{E}[Y|\mathbf{x}] = \boldsymbol{\omega}^T \mathbf{x}$
- 2. $Y|\mathbf{x} \sim \mathcal{N}(\mu, \mathbf{\sigma^2})$, where $\mu = \boldsymbol{\omega}^T \mathbf{x}$

$$oldsymbol{\omega}, \mathbf{x} \in \mathbb{R}^{d+1}$$

EXAMPLE: TARGET VARIABLE IS A NON-NEGATIVE COUNT

Figure 6. Four female horseshoe crabs (buried in the sand) nesting within 5 m of each other attract very different numbers of satellites. From bottom to top, female #1 has five satellite males in addition to her attached male, female #2 only has an attached male, female #3 has two satellites plus her attached male, and female #4 only has an attached male.

EXAMPLE: TARGET VARIABLE IS A NON-NEGATIVE COUNT

Table 3.2. Number of Crab Satellites by Female's Color, Spine Condition, Width, and Weight

C	S	W	Wt	Sa	C	S	W	Wt	Sa	C	S	W	Wt	Sa	C	S	W	Wt	Sa
2	3	28.3	3.05	8	3	3	22.5	1.55	0	1	1	26.0	2.30	9	3	3	24.8	2.10	0
3	3	26.0	2.60	4	2	3	23.8	2.10	0	3	2	24.7	1.90	0	2	1	23.7	1.95	0
3	3	25.6	2.15	0	3	3	24.3	2.15	0	2	3	25.8	2.65	0	2	3	28.2	3.05	11
4	2	21.0	1.85	O	2	1	26.0	2.30	14	1	1	27.1	2.95	8	2	3	25.2	2.00	1
2	3	29.0	3.00	1	4	3	24.7	2.20	0	2	3	27.4	2.70	5	2	2	23.2	1.95	4
1	2	25.0	2.30	3	2	1	22.5	1.60	1	3	3	26.7	2.60	2	4	3	25.8	2.00	3
4	3	26.2	1.30	0	2	3	28.7	3.15	3	2	1	26.8	2.70	5	4	3	27.5	2.60	0
2	3	24.9	2.10	0	1	1	29.3	3.20	4	1	3	25.8	2.60	0	2	2	25.7	2.00	0
2	1	25.7	2.00	8	2	1	26.7	2.70	5	4	3	23.7	1.85	0	2	3	26.8	2.65	0
2	3	27.5	3.15	6	4	3	23.4	1.90	0	2	3	27.9	2.80	6	3	3	27.5	3.10	3
1	1	26.1	2.80	5	1	1	27.7	2.50	6	2	1	30.0	3.30	5	3	1	28.5	3.25	9
3	3	28.9	2.80	4	2	3	28.2	2.60	6	2	3	25.0	2.10	4	2	3	28.5	3.00	3
2	1	30.3	3.60	3	4	3	24.7	2.10	5	2	3	27.7	2.90	5	1	1	27.4	2.70	6
2	3	22.9	1.60	4	2	1	25.7	2.00	5	2	3	28.3	3.00	15	2	3	27.2	2.70	3
3	3	26.2	2.30	3	2	1	27.8	2.75	0	4	3	25.5	2.25	0	3	3	27.1	2.55	0
3	3	24.5	2.05	5	3	1	27.0	2.45	3	2	3	26.0	2.15	5	2	3	28.0	2.80	1
2	3	30.0	3.05	8	2	3	29.0	3.20	10	2	3	26.2	2.40	0	2	1	26.5	1.30	0
2	3	26.2	2.40	3	3	3	25.6	2.80	7	3	3	23.0	1.65	1	3	3	23.0	1.80	0
2	3	25.4	2.25	6	3	3	24.2	1.90	0	2	2	22.9	1.60	0	3	2	26.0	2.20	3
2	3	25.4	2.25	4	3	3	25.7	1.20	0	2	3	25.1	2.10	5	3	2	24.5	2.25	0
4	3	27.5	2.90	0	3	3	23.1	1.65	0	3	1	25.9	2.55	4	2	3	25.8	2.30	0
4	3	27.0	2.25	3	2	3	28.5	3.05	0	4	1	25.5	2.75	0	4	3	23.5	1.90	0
2	2	24.0	1.70	O	2	1	29.7	3.85	5	2	1	26.8	2.55	0	4	3	26.7	2.45	0
2	1	28.7	3.20	0	3	3	23.1	1.55	O	2	1	29.0	2.80	1	3	3	25.5	2.25	0

Agresti. An introduction to categorical data analysis. Wiley. 2007.

Poisson Regression

Example: the target variable is non-negative counts

1.
$$\log(\mathbb{E}[Y|\mathbf{x}]) = \boldsymbol{\omega}^T \mathbf{x}$$

2.
$$Y|\mathbf{x} \sim \text{Poisson}(\lambda)$$
, where $\lambda = e^{\boldsymbol{\omega}^T \mathbf{x}}$

Mass function:
$$p(y|\mathbf{x}, \mathbf{w}) = \frac{e^{\mathbf{w}^T \mathbf{x} y} \cdot e^{-e^{\mathbf{w}^T \mathbf{x}}}}{y!}$$

Log-likelihood:
$$ll(\mathbf{w}) = \sum_{i=1}^{n} \mathbf{w}^{T} \mathbf{x}_{i} y_{i} - \sum_{i=1}^{n} e^{\mathbf{w}^{T} \mathbf{x}_{i}} - \sum_{i=1}^{n} y_{i}!$$

Poisson Regression: Maximize Likelihood

$$ll(\mathbf{w}) = \sum_{i=1}^{n} \mathbf{w}^{T} \mathbf{x}_{i} y_{i} - \sum_{i=1}^{n} e^{\mathbf{w}^{T} \mathbf{x}_{i}} - \sum_{i=1}^{n} y_{i}!$$

Gradient:

$$\frac{\partial ll(\mathbf{w})}{\partial w_j} = \sum_{i=1}^n x_{ij} y_i - \sum_{i=1}^n e^{\mathbf{w}^T \mathbf{x}_i} x_{ij}$$
$$= \sum_{i=1}^n x_{ij} \cdot \left(y_i - e^{\mathbf{w}^T \mathbf{x}_i} \right)$$
$$= \mathbf{f}_j^T \cdot (\mathbf{y} - \mathbf{p})$$

Hessian:

$$\frac{\partial^2 ll(\mathbf{w})}{\partial w_j \partial w_k} = -\sum_{i=1}^n x_{ij} \cdot e^{\mathbf{w}^T \mathbf{x}_i} \cdot x_{ik}$$
$$= -\mathbf{f}_j^T \cdot \mathbf{P} \cdot \mathbf{f}_k$$

$$\nabla ll(\mathbf{w}) = \mathbf{X}^T \cdot (\mathbf{y} - \mathbf{p})$$

$$H_{ll(\mathbf{w})} = -\mathbf{X}^T \cdot \mathbf{P} \cdot \mathbf{X}$$

EXPONENTIAL FAMILY OF DISTRIBUTIONS

$$p(x|\boldsymbol{\theta}) = c(\boldsymbol{\theta})h(x) \exp\left(\sum_{i=1}^{m} q_i(\boldsymbol{\theta})t_i(x)\right)$$
, where $\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_m)$ is a set of parameters. $x \in \mathbb{R}$

When $q_i(\boldsymbol{\theta}) = \theta_i$ for $\forall i, \theta_1, \theta_2, \dots, \theta_m$ are called natural parameters. This gives

$$p(x|\boldsymbol{\theta}) = \exp\left(\sum_{i=1}^{m} \theta_{i} t_{i}(x) - a(\boldsymbol{\theta}) + b(x)\right)$$
$$= \exp\left(\boldsymbol{\theta}^{T} \mathbf{t}(x) - a(\boldsymbol{\theta}) + b(x)\right)$$

where
$$\mathbf{t}(x) = (t_1(x), t_2(x), \dots, t_m(x))$$

EXAMPLES OF EXPONENTIAL FAMILY MEMBERS

$$p(x|\boldsymbol{\theta}) = \exp\left(\boldsymbol{\theta}^T \mathbf{t}(x) - a(\boldsymbol{\theta}) + b(x)\right)$$

Poisson:

$$x \in \mathbb{R}$$

$$p(x|\lambda) = \exp(x \log \lambda - \lambda - \log x!)$$

$$\theta = \log \lambda, \ t(x) = x, \ a(\theta) = e^{\theta}, \ \text{and} \ b(x) = -\log x!$$

Gaussian:

$$p(x|\mu,\sigma) = \exp\left(-\frac{x^2}{2\sigma^2} + x\frac{\mu}{\sigma^2} - \frac{\mu^2}{2\sigma^2} - \frac{1}{2}\log(2\pi\sigma^2)\right)$$
$$\boldsymbol{\theta} = (\frac{\mu}{\sigma^2}, -\frac{1}{2\sigma^2}), \ \mathbf{t}(x) = (x, x^2), \ a(\boldsymbol{\theta}) = \frac{\theta_1^2}{4\theta_2} + \frac{1}{2}\log(\frac{\theta_2}{\pi}), \ \text{and} \ b(x) = 0.$$

... and many more.

ESTIMATING PARAMETERS IN EXPONENTIAL FAMILY OF DISTRIBUTIONS

Given: $\mathcal{D} = \{x_i\}_{i=1}^n$, where $X \sim \text{Exponential Family Member}$

Log-likelihood:

$$ll(\mathbf{w}) = \log \prod_{i=1}^{n} e^{\boldsymbol{\theta}^{T} \mathbf{t}(x_{i}) - a(\boldsymbol{\theta}) + b(x_{i})}$$

$$= \sum_{i} \sum_{m} \theta_{m} t_{m}(x_{i}) - n \cdot a(\boldsymbol{\theta}) + \sum_{i} b(x_{i})$$

$$= \sum_{i} ll_{i}(\mathbf{w})$$

Gradient:

$$\frac{\partial ll_i(\mathbf{w})}{\partial w_j} = \sum_{k=1}^m \frac{\partial \theta_k}{\partial w_j} t_k(x_i) - \frac{\partial a(\boldsymbol{\theta})}{\partial w_j}$$

GENERALIZED LINEAR MODEL

- 1. $f(\mathbb{E}[Y|\mathbf{x}]) = \boldsymbol{\omega}^T \mathbf{x}$
- 2. $p(y|\mathbf{x}) \in \text{Exponential Family}$

$$f(\cdot) = \text{link function}$$

LOGISTIC REGRESSION

1.
$$\operatorname{logit}(\mathbb{E}[Y|\mathbf{x}]) = \boldsymbol{\omega}^T \mathbf{x}$$

2.
$$Y|\mathbf{x} \sim \text{Bernoulli}(\alpha)$$
, where $\alpha = \frac{1}{1 + e^{-\boldsymbol{\omega}^T \mathbf{x}}}$

where
$$logit(x) = log \frac{x}{1-x}$$

$$p(y|\mathbf{x}, \mathbf{w}) = \left(\frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}\right)^y \left(1 - \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}\right)^{1-y}$$