Assessment: Individual Coursework 1

1ai)

 $s \hspace{1cm} q0 \hspace{1cm} q1 \hspace{1cm} q2$

Door 1 = Right Door 1 = Left Door 1 = Right Door 1 = Left

Door 2 = Right Door 2 = Left Door 2 = Left

A0 A1

Door 1 = Left Door 1 = Right

Door 2 = Left Door 2 = Right

1aii)

$$M = (Q, \sum, \delta, q0, F)$$

 $\Sigma = \{ g, r \}$

q0 = s

F{a0,a1}

 $\delta: Q \times \Sigma \rightarrow Q$ is

$Q \setminus \Sigma$	g	r
S	q0	S
q0	q1 q2 a1	q0
q1	q2	q1
q 2	a1	a0
S q0 q1 q2 a0 a1	a1	a0
a1	q0	S

1bi) Accepted

1bii) Accepted

1c)

2 Add start and end states

3 Remove q1

4 Remove q2

5 Remove a0

6 Remove a0

Therefore the language recognised by the automata can be described as:

(r* U g r* (g r* g g U g r* g r g g)* g r* g r g r (g r* g g U g r* g r g g)* g r* g r g U g r* g g U g r* g r g

2a)

Q\∑	0	1			0	1
[q0]	[q0]	[q0 q2 q5]	A		A	В
[q0 q2 q5]	[q0 q6]	[q0 q2 q5 q3]	В	В	С	D
[q0 q6]	[q0]	[q0 q2 q5 q3]	С	С	A	D
[q0 q2 q5 <u>q3]</u>	[q0 q6]	[q0 q2 q5 q3]	D	D	С	D

2bi)

2bii)

Q\S	(0,0)	(0,1)	(1,0)	(1,1)
S	Ø	{q1}	{q0}	{q2}
<i>q0</i>	Ø	{q1 , q2}	Ø	{q2}
q1	Ø	Ø	{ q0 , q2}	{q2}
q2	{s}	{s}	{s}	{s}

3)

 $\{(I_e^*I_i)^nI_e^{2N} \mid n>0\}$

40206210

4)

$$L = \{a^i b^j \mid I > 2j \text{ for } i, j \in \mathbb{N}\}\$$

Assume by way of contradiction that $L \in REG$, then L satisfies the conditions of the pumping lemma.

Let P > 0 be the pumping length

Consider the word $S = a^{2p+1} b^p$

Clearly W \in L and |w| > p so according to the pumping lemma there exists x,y,z $\in \Sigma$ such that w = x y z, $|x y| \le p$, |y| > 0 and for all $i \ge 0$ it holds that $x y^i z \in L$.

Since $|x y| \le p$, then $x = a^n$, $y = a^m$ and $y = a^k b^p$ such that $y = a^k b^p$ such that y =

We pump with i = 0 and get the word $x z = a^n z = a^n a^k b^p$.

Since m + n + k = 2p + 1 and m > 0 then $n + k \le 2p + 1$

Thus $x \ z \ \Sigma \in L$ in contradiction to the pumping lemma

Therefore L is not regular.

5b)

5c)

$$X \rightarrow OX2 \mid OY$$

$$Y \rightarrow 1Y \mid \epsilon$$

- 1: Create new start variable and 'map' it to the original start variable
- $S \rightarrow X$
- $A \rightarrow 0X2 \mid 0Y$
- $Y \rightarrow 1Y \mid \epsilon$
- 2: Remove ε rules
- $S \rightarrow X$
- $A \rightarrow 0X2 \mid 0Y$
- $Y \rightarrow 1Y \mid 1$
- 3: Remove unit rules
- $S \rightarrow 0X2 \mid 0Y \mid 0$
- $A \rightarrow 0X2 \mid 0Y \mid 0$
- $Y \rightarrow 1Y \mid 1$
- 4: "Break chains" of length > 2
- $S \rightarrow 0X2$
- $X \rightarrow 0X2$
- $S \rightarrow 0Z_0$
- $X \rightarrow 0Z_0$
- $Z_0 \rightarrow X2$
- $S \rightarrow T_0 Z_0 | T_0 Y | T_0$
- $X \rightarrow T_0 Z_0 | T_0 Y | T_0$
- $Y \rightarrow T_1 Y | T_1$
- $Z_0 \rightarrow X2$
- $T_0 \rightarrow 0$
- $T_1 \rightarrow 1$

References

18-Pumping lemma example to prove a language not regular by Deeba Kannan. (n.d.).

Retrieved from https://www.youtube.com/watch?v=SLG-LvaA6Hc

Using pumping lemma to prove $\{a^ib^j \mid i>j\}$ non-regular. (2018, November 3). Retrieved December 5, 2019, from https://cs.stackexchange.com/questions/99546/using-pumping-lemma-to-prove-aibj-i-j-non-regular