Outils Logiques Groupe 3 & 4 – DM 3

Chaitanya Leena Subramaniam

On notera les formules propositionnelles par A, B, C... et les variables propositionnelles par x, y, z, ... On note V l'ensemble des variables propositionnelles et $\mathbb{B} = \{0, 1\}$ l'ensemble des valeurs de vérité.

Définition. Soit $v: V \longrightarrow \mathbb{B}$ une affectation, $x \in V$ une variable, et $b \in \mathbb{B}$ une valeur de vérité. On écrit v[b/x] pour l'affectation définie comme suit, qu'on appelle la *mise* à *jour de* v *avec* b *pour* x.

$$v[b/x] \colon V \longrightarrow \mathbb{B}$$

 $x \mapsto b$
 $y \mapsto v(y)$ pour tout $y \neq x$

Exercice 0 (Substitution)

(⋆ – Vous pouvez utiliser le résultat de cet exercice sans le démontrer.)

Soit $x \in V$ une variable, B une formule et $v: V \longrightarrow \mathbb{B}$ une affectation. Soit $b = [\![B]\!]v$ dans \mathbb{B} . Montrer que :

- (1) On a [x](v[b/x]) = [x[B/x]]v dans \mathbb{B} .
- (2) Pour toute variable $y \neq x$, on a [y](v[b/x]) = [y[B/x]]v dans \mathbb{B} .
- (3) Pour toute formule A, si [A](v[b/x]) = [A[B/x]]v, alors on a $[\neg A](v[b/x]) = [(\neg A)[B/x]]v$ dans \mathbb{B} .
- (4) Pour toutes formules A_1, A_2 , si $[A_i](v[b/x]) = [A_i[B/x]]v$ pour i = 1, 2, alors on a
 - (a) $[A_1 \lor A_2](v[b/x]) = [(A_1 \lor A_2)[B/x]]v$ et
 - (b) $[A_1 \wedge A_2](v[b/x]) = [(A_1 \wedge A_2)[B/x]]v$

dans \mathbb{B}

En déduire que pour toute formule A, on a $[\![A]\!](v[b/x]) = [\![A[B/x]]\!]v$. (Indice : faire une récurrence sur la taille de la formule A).

Solution

- (1) Par définition de v[b/x], on a $\llbracket x \rrbracket (v[b/x]) = v[b/x](x) = b$ et par définition de la substitution, on a $\llbracket x \llbracket B/x \rrbracket \rrbracket v = \llbracket B \rrbracket v = b$.
- (2) Par définition de v[b/x], on a [y](v[b/x]) = v(y) et par définition de la substitution, on a [y[B/x]]v = [y]v = v(y).
- (3) Supposons [A](v[b/x]) = [A[B/x]]v. Alors on a:

(4) Supposons $[A_i](v[b/x]) = [A_i[B/x]]v$ pour i = 1, 2. Alors on a :

(a)

(b)

$$[A_1 \wedge A_2][v[b/x]) = AND([A_1][v[b/x]), [A_2][v[b/x]])$$
 (par déf. de $[-]$)
$$= AND([A_1[B/x]][v, [A_2[B/x]][v)$$
 (par supposition)
$$= [(A_1[B/x]) \wedge (A_2[B/x])[v]$$
 (par déf. de $[-]$)
$$= [(A_1 \wedge A_2)[B/x][v]$$
 (par déf. de la substitution).

Montrons que pour toute formule A, on a [A](v[b/x]) = [A[B/x]]v. On fait une récurrence sur la taille de A.

- Le cas de base est celle où A est une variable (et donc de taille 1). On conclut grâce aux points (1) et (2) précédents.
- Il y a trois cas d'induction, où à chaque fois l'hypothèse d'induction nous donne le résultat pour toute formule de taille strictement plus petite que A:
 - Dans le premier cas, $A = \neg B$. Comme B est de taille strictement plus petite que A, on conclut grâce à l'hypothèse d'induction et au point (3) précédent.
 - Dans le deuxième cas, $A = A_1 \vee A_2$. Comme A_1 et A_2 sont de taille strictement plus petite que A, on conclut grâce à l'hypothèse d'induction et au point (4.a) précédent.
 - Dans le troisième cas, $A = A_1 \wedge A_2$. Comme A_1 et A_2 sont de taille strictement plus petite que A, on conclut grâce à l'hypothèse d'induction et au point (4.b) précédent.

Exercice 1 (Implication)

Soit A, B des formules propositionnelles. Introduisons la notation suivante : on écrit $A \Rightarrow B$ (dit « A implique B ») pour la formule $B \lor \neg A$. On écrit $A \Leftrightarrow B$ pour la formule $(A \Rightarrow B) \land (B \Rightarrow A)$.

- (1) Calculer la table de vérité de $x \Rightarrow y$.
- (2) Calculer la table de vérité de $x \Leftrightarrow y$.
- (3) Calculer la table de vérité de $(x \wedge y) \vee (\neg x \wedge \neg y)$. Qu'observez-vous?

Solution

(1) Par définition, $x \Rightarrow y = y \vee \neg x$.

\boldsymbol{x}	y	$\neg x$	$y \vee \neg x$
0	0	1	1
0	1	1	1
1	0	0	0
1	1	0	1

(2) Par définition $x \Leftrightarrow y = (y \vee \neg x) \wedge (x \vee \neg y)$.

x	y	$\neg x$	$\neg y$	$y \vee \neg x$	$x \vee \neg y$	$x \Leftrightarrow y$
0	0	1	1	1	1	1
0	1	1	0	1	0	0
1	0	0	1	0	1	0
1	1	0	0	1	1	1

	\boldsymbol{x}	$y \mid$	$\neg x$	$\neg y$	$x \wedge y$	$\neg x \land \neg y$	$(x \land y) \lor (\neg x \land \neg y)$
	0	0	1	1	0	1	1
(3)	0	1	1	0	0	0	0
	1	0	0	1	0	0	0
	1	1	0	0	1	0	1

On observe que les variables, ainsi que les dernières colonnes des deux tables sont identiques, donc on a que les formules $x \Leftrightarrow y$ et $(x \land y) \lor (\neg x \land \neg y)$ sont équivalentes.

Exercice 2 (Validité)

Lesquelles des formules suivantes sont valides? (Indice : calculer la table de vérité pour chacune.)

(1) $x \Rightarrow (x \lor y)$

 $(3) \ x \Rightarrow (y \Rightarrow x)$

 $(5) (x \Rightarrow y) \lor (y \Rightarrow x)$

(2) $x \Rightarrow (x \land y)$

 $(4) (x \Rightarrow y) \Rightarrow x$

(6) $x \lor (x \Rightarrow y)$

Montrer que si A, B sont des formules telles que $x, y \notin var(A)$ et $x, y \notin var(B)$, alors pour chacune des formules précédentes C, si C est valide, alors C[A/x][B/y] est valide. (Indice : utiliser Exercice 0).

Solution

1,3,5,6 sont valides.

Soit C une formule valide. Pour toute affectation $v: V \longrightarrow \mathbb{B}$, on a:

Donc C[A/x][B/y] est valide.

Exercice 3 (Équivalence logique)

Deux formules A, B sont **équivalentes** (noté $A \equiv B$) si pour toute affectation $v: V \longrightarrow \mathbb{B}$, on a $[\![A]\!]v = [\![B]\!]v$ dans \mathbb{B} .

- (1) Montrer que si A et B sont équivalentes, alors pour toute formule C,
 - (a) A[C/x] et B[C/x] sont équivalentes,
 - (b) C[A/x] et C[B/x] sont équivalentes.
- (2) Montrer que A et B sont équivalentes si et seulement si $A \Leftrightarrow B$ est valide. (Indice : commencer par montrer que $x \Rightarrow x$ est valide. Puis montrer que pour $y \notin (var(A) \cup var(B)), (y \Rightarrow A)[B/y]$ est valide.)

Solution

- (1) Soit $A \equiv B$, et C une formule. Pour toute affectation $v: V \longrightarrow \mathbb{B}$, on a
 - (a) [A[C/x]]v = [A](v[[C]v/x]) = [B](v[[C]v/x]) = [B[C/x]]v. Donc $A[C/x] \equiv B[C/x]$.
 - (b) [C[A/x]] = [C](v[A]v/x] = [C](v[B]v/x] = [C[B/x]]. Donc $C[A/x] \equiv C[B/x]$.
- (2) (a) Soit $A \equiv B$. Il faut montrer que $A \Leftrightarrow B$ est valide. D'abord, on montre $x \Rightarrow x$ valide par table de vérité. Donc, en utilisant l'Exercice 2, $(x \Rightarrow x)[A/x]$ est valide, c-à-d $A \Rightarrow A$ est valide.

En suite, comme $A \equiv B$, en utilisant le point (1.b) précédent, on a que $(y \Rightarrow A)[A/y]$ et $(y \Rightarrow A)[B/y]$ sont équivalentes. Donc comme la première est valide, la deuxième (à savoir $B \Rightarrow A$) l'est aussi. Le même raisonnement en échangeant B et A montre que $A \Rightarrow B$ est valide. Donc $A \Leftrightarrow B$ est valide.

- (b) Soit $A \Leftrightarrow B$ valide. Il faut montrer que $A \equiv B$. Soit $v \colon V \longrightarrow \mathbb{B}$ une affectation quelconque. Il faut donc montrer que $[\![A]\!]v = [\![B]\!]v$.
 - Par l'Exercice 2, on a que $A \Leftrightarrow B \equiv (A \wedge B) \vee (\neg A \wedge \neg B)$. Donc, comme $A \Leftrightarrow B$ est valide, on a que $[\![A \Leftrightarrow B]\!]v = OR([\![A \wedge B]\!]v, [\![\neg A \wedge \neg B]\!]v) = 1$. Donc au moins l'un de $[\![A \wedge B]\!]v$ et $[\![\neg A \wedge \neg B]\!]v$ est égal à 1.
 - Dans le premier cas, on a $[A \land B]v = AND([A]v, [B]v) = 1$, donc [A]v = [B]v = 1.
 - Dans le deuxième cas, on a $[\![\neg A \land \neg B]\!]v = AND(NOT([\![A]\!]v), NOT([\![B]\!]v)) = 1$, donc $[\![A]\!]v = [\![B]\!]v = 0$.

Donc $[\![A]\!]v = [\![B]\!]v$. On conclut que $A \equiv B$.

(a) et (b) nous permettent de conclure que $A \equiv B$ si et seulement si $A \Leftrightarrow B$ est valide.

Remarque. Les résultats de ce DM nous permettent de *simplifier* des formules par équivalence logique : on se permet de remplacer des formules par des formules équivalentes plus simples. Par exemple $(x \lor \neg x) \lor (x \lor y) \equiv (x \lor y)$.