Theoretical Justification for Noise Testing

0. Definitions

- We will denote by $(\mathbf{X})_{c,i,j}$ our original image with dimensions $n \times m$ indexed by i and j and i channels indexed by i ,
- ullet We denote by f X the noisy version of f X
- Let $N = n \times m \times h$

1. Gaussian Noise

1.1 Model

We have $ilde{\mathbf{X}}_{c,i,j} = \mathbf{X}_{c,i,j} + \epsilon$ where $\epsilon \sim \mathcal{N}(0,\sigma)$

So we have:

$$\mathbf{S} = \sum_{c.i.j} rac{1}{\sigma^2} (ilde{\mathbf{X}}_{c,i,j} - \mathbf{X}_{c,i,j})^2 \sim \chi^2_N$$

1.2 Confidence Interval

let $p\in[0,1]$. we will construct a symmetric interval $\mathcal I$ centered at $\mathbb E[\mathbf S]=n$ from which $\mathcal P(\mathbf S
ot\in\mathcal I)=p$

We will choose $p=10^{-6}$ and we will call it the likelihood limit.

1.3 Test

- If the calculated term $\mathbf{S} \in \mathcal{I}$. We will say that the result is consistent with the noise model, and it will pass.
- Otherwise, the calculated noise is not consistent with the noise model, and the test will fail within a confidence of 1-p.

2. Impulsive Noise

Inspired from the Wilson score on binomial distribution

3. Speckle Noise

Similar to Gaussian Noise test, but with:

$$\mathbf{S} = \sum_{c,i,j} rac{1}{\sigma^2} \Bigg(rac{ ilde{\mathbf{X}}_{c,i,j}}{\mathbf{X}_{c,i,j}} - 1\Bigg)^2 \sim \chi^{2}_N$$