ELEMENTOS DE LA INVESTIGACIÓN OPERATIVA

Prof. Adamo, Katia katiaadamo05@gmail.com

UNIDAD 1: ORÍGENES Y NATURALEZA DE LA IO

ORÍGENES DE LA IO

El inicio de la actividad llamada *Investigación de Operaciones* se dio en Inglaterra durante la Segunda Guerra Mundial, cuando se encomendó a un equipo de científicos ingleses la toma de decisiones acerca de la mejor utilización de materiales bélicos, entre otros problemas estratégicos y tácticos. En realidad, les solicitaron que hicieran investigaciones sobre operaciones (militares). Fueron los primeros equipos de IO.

Al finalizar la guerra, las ideas formuladas en operaciones militares fueron adaptadas para mejorar la eficiencia y la productividad en el sector civil. En la actualidad, es una herramienta dominante e indispensable para tomar decisiones.

¿QUÉ ES LA INVESTIGACIÓN DE OPERACIONES (IO)?

La IO es la aplicación de ciencia moderna a problemas complejos que aparecen en la dirección y administración de sistemas constituidos por hombres, materiales, equipos y dinero en la industria, el comercio, el gobierno y la defensa. Su característica primordial es la elaboración de modelos científicos que mediante la incorporación de factores de riesgo e incertidumbre permiten evaluar decisiones, políticas y alternativas. Su objeto es auxiliar al directivo o al administrativo en la selección científica de sus decisiones.

Está basada en el *método científico*, comenzando por una observación del sistema real, y la formulación del problema. El siguiente paso es la construcción de un modelo científico con el cual se intenta abstraer la esencia del problema real; cuyas soluciones, adecuadamente validadas, permiten definir y evaluar cursos de acción alternativos para el problema propuesto.

FASES O ETAPAS DE UN ESTUDIO DE IO

1. DEFINICIÓN DEL PROBLEMA Y RECOLECCIÓN DE DATOS

Definir el alcance del problema que se investiga

Determinación de los objetivos

Recolección de datos confiables y relevantes ----- Herramienta: extracción de datos

2. FORMULACIÓN DE UN MODELO MATEMÁTICO

Reformular el problema para su análisis

→ Modelo matemático →

Representación idealizada que extrae la esencia del caso de estudio, muestra sus interrelaciones y facilita su análisis.

Expresada en símbolos y expresiones matemáticas.

FASES O ETAPAS DE UN ESTUDIO DE IO

Elementos de un modelo matemático

- Variables de decisión $(x_1, x_2, ..., x_n)$. n decisiones cuantificables relacionadas entre sí.
- Función objetivo f(x): medida de desempeño adecuada, en función de las variables de decisión.
- Restricciones o condiciones de vinculo: limitaciones que se puedan imponer sobre los valores de las variables de decisión; en forma de ecuaciones o desigualdades.
 - $g(x) \le b \longrightarrow$ recursos o limitaciones
 - $g(x) \ge b \longrightarrow$ requerimientos
- Parámetros: constantes de las restricciones y de la función objetivo. Valores conocidos del ámbito del problema.

FASES O ETAPAS DE UN ESTUDIO DE IO

3. RESOLUCIÓN DEL MODELO

Desarrollar un procedimiento para obtener una solución.

Solución que brinda el mayor valor de la función objetivo.

4. PRUEBA DEL MODELO

Comparar los resultados con datos históricos.

Prueba y mejoramiento del modelo Validación del modelo

5. IMPLEMENTACIÓN Y CONTROL DEL MODELO

MODELADO DE PROBLEMAS

Identificar

Variables de decisión

Objetivo

Parámetros

Forma general de un modelo matemático

Max [f(x)] o bien $Min [f(x)] \longrightarrow FUNCIÓN OBJETIVO$

Sujeto a:

$$g_1(x) \ge$$
; =; $\le b_1$
 $g_2(x) \ge$; =; $\le b_2$
 \vdots \vdots \vdots $g_m(x) \ge$; =; $\le b_m$ CONDICIONES DE VÍNCULO O RESTRICCIONES

≥ REQUERIMIENTOS

≤ LIMITACIONES

VARIABLES A DETERMINAR $\vec{x} = (x_1, x_2, ... x_n)$ O DE DECISIÓN

PROGRAMACIÓN MATEMÁTICA

Herramienta ---> técnica de modelado

La programación matemática se puede definir como la formulación, solución y análisis de modelos de decisión que, además del planteo de un funcional, incluyen una o más restricciones que se deben satisfacer.

EJEMPLO DE MODELADO

Una empresa manufacturera fabrica dos piezas A y B que dejan respectivamente una ganancia de \$400 y \$300. El proceso de elaboración de ambos productos consiste en tres etapas: un tratamiento térmico realizado en un equipo que tiene la disponibilidad mensual de 720 horas; un proceso mecanizado llevado a cabo en un sector de máquinas que cuenta con una capacidad mensual de 640 horas; y una etapa de finalización manual efectuada en un departamento que tiene una disponibilidad de 480 horas/hombre por mes. El tiempo que requiere cada unidad en las diferentes etapas de elaboración para cada tipo de pieza es:

	Α	В
TRATAMIENTO TÉRMICO	9	18
MÁQUINA	16	8
MANO DE OBRA	10	10

Hallar la cantidad de piezas de cada tipo que debe producir la empresa para maximizar ganancias.