POSSESSION OF MODILES IN EXAMINE OF METRACTICE		
Stude	Student Name Enrollment No	
Jaypee Institute of Information Technology, Noida End Term Examination, ODD Semester-2016 B.Tech. 3rd Semester		
Course Title: Probability and Random Processes/ Probability Theory and Random Processes Course Code: 15B11MA301/10B11MA411 Max Time: 2 Hours		
Note: A	Attempt all Questions. One way to design a spam filter is to look at the words in an email. In particular, some words are more frequent in spam emails. Suppose that we have the following information: 50% of emails are spam, 1% of spam emails contain the word "refinance" and 0.001% of non-spam emails contain the word "refinance". Suppose that an email is checked and found out to contain the word refinance. What is the probability that the email is spam?	
Q2.	The joint probability density function of two dimensional random variables $f(x, y) = \begin{cases} \frac{8}{9}xy & \text{, } 1 < x < y < 2\\ 0 & \text{, otherwise} \end{cases}$	bles (X,Y) is given by (4)
Q3.	Find the marginal density functions of X and Y . Also find the conditional mean of Y for given $X = x$. Find the characteristic function of geometric distribution and hence find the first four moments about origin. (4)	
Q4.	Eight identical components with constant failure rates are connected in components in each subsystem. Determine the component MTTF, necess 0.90 after 100 hours of operation.	ssary to provide a system reliability of (4)
	Prove that the inter-arrival time of a Poisson process with parameter with mean $1/\lambda$. Patients arrive randomly and independently at doctor's consulting room	(3)
(b)	in 5 minute. The waiting room can hold 12 persons. What is the probable doctor arrives at 9 a.m?	(2)
Q6	The three-state Markov chain is given by the transition probability matr $P = \begin{pmatrix} 0 & 2/3 & 1/3 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{pmatrix}.$ Determine whether the chain is irreducible	, non-null persistent, aperiodic or not.
Q7.	Justify your answer. An engineer analyzing a series of digital signals generated by a testing highly distorted signals follows a highly distorted signal, with no recount of 23 recognizable signals follow recognizable signals with no high only highly distorted signals are not recognizable, find the fraction of run).	ognizable signal between, where as 25 hly distorted signal between. Given that f signals that are highly distorted (long (4)
Q8.	run). Let $\{X(t)\}$ be a stationary random process with spectral density full independent random process where $Y(t) = A\cos(\omega_0 t + \theta)$ and θ is a	nction $S_{xx}(\omega)$ and $\{Y(t)\}$ be another a uniformly distributed random variable
	independent random process where $I(t) = A\cos(\omega_0 t + \delta)$ and δ is	(4)

over $(-\pi, \pi)$. Find the spectral density function of $\{Z(t)\}$, where Z(t) = X(t)Y(t). Prove that a random process defined by $X(t) = \cos(bt + \theta)$ is mean ergodic process, where b is a constant Q9. (3) and heta is a uniform random variable over $(0,2\pi)$. Justify your answer.

(4)