

Energy System Modeling with Python

University of Freiburg (Germany) | Faculty of Engineering
Department of Sustainable Systems Engineering | INATECH
Chair for Control and Integration of Grids

Tuesday, 3. June 2025

Branches of ML

Theoretical part

From Un- to Supervised Learning

- ▶ Last lecture: labels were not available → Unsupervised learning to discover structure in data without labels (e.g., clustering similar load profiles)
- **Now**: labels are available → move to **supervised learning** to learn a function $h: \mathcal{X} \to \mathcal{Y}$, where
 - \mathcal{X} = input features,
 - *y* = discrete class labels
- ➤ **Task:** predict class $y \in \{0, 1, ..., K-1\}$ from features $x \in R^d$

Find $h(x) \approx y$ with $y \in \{\text{class labels}\}$

Problem Formulation

Regression vs Classification

What changes when we add labels? → Depends on the type of label

Regression:

- Target variable $y \in R$ (continuous)
- Goal: predict precise numeric output
- Typical loss: Mean Squared Error (MSE)

Classification:

- Target variable $y \in \{0, 1, ..., K-1\}$ (discrete)
- Goal: assign input to one of K classes
- Typical loss: Cross-Entropy or 0-1 loss (more later)

Consequences for model behavior:

- Regression → continuous output
- Classification → probability or discrete label

Regression vs Classification

Energy-System Examples: Regression vs Classification

Task	Label Type	Goal	Method Type
Demand Forecasting	Continuous (kWh)	Predict numeric load	Regression
Device Type Classification	Multi-class (e.g., heat pump, boiler,)	Identify type	Classification
Anomaly Detection	Binary or multi- class	Detect and classify faults	Classification
Price Estimation	Continuous (€/MWh)	Predict future price	Regression

- Choosing the correct ML formulation depends on the *nature of the label*
- Common tasks in energy systems involve **both** regression and classification

Loss & Cost Refresher

- You've already seen this in regression:
 - Loss = error for one example
 - *Cost* = average loss over training set
- Same structure holds for classification, but with different loss functions
- Classification requires losses suitable for discrete outputs
- We'll look at:
 - 0-1 Loss (ideal, non-differentiable)
 - Hinge Loss (Support Vector Machine SVM)
 - Cross-Entropy Loss (used today)

Classification Loss Functions – Overview

0–1 Loss

$$\mathcal{L}(y, \hat{y}) = \begin{cases} 0 \text{ if } y = \hat{y} \\ 1 \text{ otherwise} \end{cases}$$

- Directly measures classification accuracy
- Not differentiable → not usable for gradient descent

Hinge Loss (SVMs)

$$\mathcal{L}(y, \hat{y}) = \max(0, 1 - y \cdot \hat{y})$$

- Promotes large margins
- Used in Support Vector Machines

Log Loss / Cross-Entropy (our focus)

- Smooth, convex
- Measures probability error
- Used in logistic regression & neural networks

Classification Loss Functions – Overview

Cross-Entropy Loss (Binary Case)

- Used in binary classification, especially with logistic regression
- Prediction using sigmoid function:

$$\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}, \quad z = \theta^{\mathsf{T}} x$$

Binary Cross-Entropy Loss:

$$\mathcal{L}(y, \hat{y}) = -(y \log(\hat{y}) + (1 - y) \log(1 - \hat{y}))$$

- > Intuition:
 - Penalizes confident wrong predictions heavily
 - Encourages well-calibrated probabilities

Cross-Entropy Loss (Binary Case)

Classification Models

Logistic Regression – Probabilistic Classifier

Model form:

$$\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}$$
 where $z = \theta^{T} x$

Training objective: minimize binary cross-entropy

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} [y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i)]$$

- Optimized via **gradient-based methods** (e.g. gradient descent)
- Output $\hat{y} \in (0,1)$ is a **probability** estimate for class 1
- **Decision rule:**

Predict class =
$$\begin{cases} 1 \text{ if } \hat{y} \ge \tau \\ 0 \text{ otherwise} \end{cases}$$

Logistic regression learns a **linear decision boundary** in feature space

Logistic Regression – Probabilistic Classifier

Random Forest Classifier – Splits & Impurity

- > Ensemble of trees built on bootstrapped samples & random feature subsets
- Trees choose splits that maximize impurity reduction
- **Node impurity** quantifies class mix:

Gini: $1 - \sum_k p_k^2$

Entropy: $-\sum_k p_k \log_2 p_k$

Regression trees instead minimize MSE at each split Toy Tree Node: Gini Impurity Before and After Split

Random Forest Classifier – Voting & Probabilities

- **Hard vote**: final class = majority of tree predictions
- Soft vote: class k probability

$$P(y = k \mid x) = \frac{1}{T} \sum_{t=1}^{T} 1\{h_t(x) = k\}$$

- Probabilities enable thresholding and confidence analysis
- **Regression trees** instead use average of the trees

LightGBM for Classification – What Changes?

- ▶ LightGBM = gradient boosting → models built sequentially, each new tree fits the gradient of the loss
- You've seen this for regression:
 - Loss: MSE
 - Gradients: residuals $y_i \hat{y}_i$
- > For classification:
 - Loss = binary cross-entropy

$$\mathcal{L}(y, \hat{y}) = -(y \log(\hat{y}) + (1 - y) \log(1 - \hat{y}))$$

- Gradients = from this loss, based on predicted probabilities
- Output is a logit score, converted via sigmoid:

$$\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}$$

- Supports:
 - **Hard predictions** via thresholding (e.g., 0.5)
 - **Probabilistic outputs** for metric evaluation

Performance Metrics

Confusion Matrix Fundamentals

- **Definition of terms**
 - True Positive (TP): model predicts 1, actual = 1
 - > False Positive (FP): model predicts 1, actual = 0
 - False Negative (FN): model predicts 0, actual = 1
 - > True Negative (TN): model predicts 0, actual = 0
- > **Purpose:** all classification metrics derive from these four counts
- Cost implications: different errors carry different real-world costs (e.g., missed fault vs. false alarm)

	Predicted 1	Predicted 0
Actual 1	TP	FN
Actual 0	FP	TN

Precision & Recall Trade-off

Precision (P): also known as positive predictive value

$$P = \frac{TP}{TP + FP}$$

- "Of all predicted positives, how many were correct?"
- Recall (R): also known as sensitivity

$$R = \frac{TP}{TP + FN}$$

- ✓ "Of all actual positives, how many did we catch?"
- Trade-offs:
 - ✓ raising threshold → ↑precision, ↓recall;
 - ✓ lowering threshold → ↑recall, ↓precision
- When to prioritize:
 - ✓ High precision → costly false positives (e.g., dispatching crews)
 - ✓ High recall → costly misses (e.g., undetected faults)

Precision & Recall Trade-off

F1 Score & Averaging

F1 score combines precision and recall into one metric:

$$F1 = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

Why F1? Balances false positives and false negatives when both matter.

Averaging for multi-class:

- Macro-F1
 - Compute F1 for each class independently and take the unweighted mean:

$$Macro - F1 = \frac{1}{K} \sum_{k=1}^{K} F1_k$$

- Treats all classes equally → highlights poor performance on rare classes
- Weighted-F1
 - Compute F1 for each class, then weight by support n_k :

Weighted-F1 =
$$\frac{1}{N}\sum_{k=1}^{K}n_k F1_k$$
, where $N=\sum_k n_k$

Reflects dataset composition → gives more influence to common classes

F1 Score & Averaging

Averaging for multi-class:

Macro-F1

Compute F1 for each class independently and take the **unweighted mean**:

$$Macro - F1 = \frac{1}{K} \sum_{k=1}^{K} F1_k$$

Treats all classes equally → highlights poor performance on rare classes

Weighted-F1

Compute F1 for each class, then weight by support n_k :

Weighted-F1 =
$$\frac{1}{N}\sum_{k=1}^{K} n_k F1_k$$
, where $N = \sum_k n_k$

Reflects dataset composition → gives more influence to common classes

Class	F1	Support n_k
Α	0.90	100
В	0.60	20
Macro-F1	(0.90+0.60)/2 = 0.75	
Weighted-F1	(100.0.90+20.0.60)/120 = 0.85	

Example – Confusion Matrix & Classification Report

Confusion Matrix

Predicted ↓ \ True →	Baseline	EV
Baseline	191	9
EV	9	41

Classification Report

Class	Precision	Recall	F1-Score	Support
Baseline	0.95	0.95	0.95	200
EV	0.82	0.82	0.82	50
Accuracy			0.93	250
Macro avg	0.89	0.89	0.89	250
Weighted avg	0.93	0.93	0.93	250

Key Takeaways from Classification Report

- High overall accuracy (0.93) hides class imbalance effects
- **Baseline class (n=200):** precision & recall = $0.95 \rightarrow \text{very reliable}$
- **EV class (n=50):** precision & recall = $0.82 \rightarrow$ notably weaker performance
- **Macro-F1 = 0.89** < overall accuracy → equal weighting reveals minority-class challenges
- Weighted-F1 = 0.93 ≈ accuracy → majority class dominates the aggregate metric
- Next steps: focus on improving EV detection (e.g., resampling, class weights, tailored) features)

Unbalanced Datasets

Imbalanced Datasets – Why It's a Problem

Confusion Matrix

Predicted \downarrow \ True \rightarrow	Baseline	EV
Baseline	90	10
EV	0	0

Classification Report

			-	
Class	Precision	Recall	F1-Score	Support
Baseline	0.90	1.0	0.95	90
EV	0.00	0.00	0.00	10
Accuracy			0.90	100
Macro avg	0.45	0.50	0.47	100
Weighted avg	0.81	0.90	0.85	100

- **Definition:** one class (majority) far outnumbers the other(s) (minority)
- Naïve accuracy trap:
 - Suppose Baseline:EV = 90:10 ratio
 - Always predicting "Baseline" → 90% accuracy, but **zero** detection of EV
- Real-world stakes:
 - In **fault detection**, rare faults may be only 1–5% of data
 - Missing every fault → catastrophic consequences despite high accuracy
- **Key insight:** accuracy alone is **misleading** under imbalance

Coffee Break

Time to put everything into code

What You'll Do in Code Today

Goal:

Assign missing households their correct demand-response device type.

Main Steps:

- **Load data** (household profiles + known device labels)
- **Feature extraction** (reuse last exercise's time-series summary pipeline)
- 3. **Split** into training and test sets (stratified by device type)
- **Train** three classifiers:
 - **Logistic Regression**
 - **Random Forest Classifier**
 - c. LightGBM Classifier
- **Evaluate** on test set:
 - **Confusion matrix** for each model
 - **Classification report** (precision, recall, F1, support)
 - Macro-F1 and weighted-F1 comparisons
- **Compare** model behavior and decision making

Takeaways

- Classification tasks require appropriate loss functions (cross-entropy) and evaluation metrics beyond accuracy
- Logistic Regression, Random Forest, and LightGBM offer different trade-offs in interpretability, non-linearity, and handling of rare classes
- Macro-F1 vs Weighted-F1 reveal performance on minority classes
- **Unbalanced datasets** can often be an issue and require special treatment

Further Questions to Think About

- How might you **improve detection** of the rarest device class?
- When would you choose **one classifier** over another in production?
- How could **threshold tuning** or **class weighting** further boost performance?
- What additional **features** might capture device-specific behavior more effectively?