What Is Amazon VPC?

Amazon Virtual Private Cloud (Amazon VPC) enables you to launch AWS resources into a virtual network that you've defined. This virtual network closely resembles a traditional network that you'd operate in your own data center, with the benefits of using the scalable infrastructure of AWS.

Amazon VPC Concepts

Amazon VPC is the networking layer for Amazon EC2. If you're new to Amazon EC2, see What is Amazon EC2? in the Amazon EC2 User Guide for Linux Instances to get a brief overview.

The following are the key concepts for VPCs:

- A virtual private cloud (VPC) is a virtual network dedicated to your AWS account.
- A subnet is a range of IP addresses in your VPC.
- A route table contains a set of rules, called routes, that are used to determine where network traffic is directed.
- An *internet gateway* is a horizontally scaled, redundant, and highly available VPC component that allows communication between instances in your VPC and the internet. It therefore imposes no availability risks or bandwidth constraints on your network traffic.
- A VPC endpoint enables you to privately connect your VPC to supported AWS services and VPC
 endpoint services powered by PrivateLink without requiring an internet gateway, NAT device, VPN
 connection, or AWS Direct Connect connection. Instances in your VPC do not require public IP
 addresses to communicate with resources in the service. Traffic between your VPC and the other
 service does not leave the Amazon network.

Accessing Amazon VPC

You can create, access, and manage your VPCs using any of the following interfaces:

- AWS Management Console— Provides a web interface that you can use to access your VPCs.
- AWS Command Line Interface (AWS CLI) Provides commands for a broad set of AWS services, including Amazon VPC, and is supported on Windows, Mac, and Linux. For more information, see AWS Command Line Interface.
- AWS SDKs Provides language-specific APIs and takes care of many of the connection details, such
 as calculating signatures, handling request retries, and error handling. For more information, see AWS
 SDKs.
- Query API— Provides low-level API actions that you call using HTTPS requests. Using the Query API is the most direct way to access Amazon VPC, but it requires that your application handle low-level details such as generating the hash to sign the request, and error handling. For more information, see the Amazon EC2 API Reference.

Pricing for Amazon VPC

There's no additional charge for using Amazon VPC. You pay the standard rates for the instances and other Amazon EC2 features that you use. There are charges for using an Site-to-Site VPN connection and using a NAT gateway. For more information, see Amazon VPC Pricing and Amazon EC2 Pricing.

Amazon VPC Limits

There are limits to the number of Amazon VPC components that you can provision. You can request an increase for some of these limits. For more information, see Amazon VPC Limits (p. 299).

Amazon VPC Resources

To get a hands-on introduction to Amazon VPC, complete Getting Started with Amazon VPC (p. 10). This exercise guides you through the steps to create a nondefault VPC with a public subnet, and to launch an instance into your subnet.

If you have a default VPC, and you want to get started launching instances into your VPC without performing any additional configuration on your VPC, see Launching an EC2 Instance into Your Default VPC (p. 88).

To learn about the basic scenarios for Amazon VPC, see Examples for VPC (p. 46). You can configure your VPC and subnets in other ways to suit your needs.

The following table lists related resources that you might find useful as you work with this service.

Resource	Description
Amazon Virtual Private Cloud Connectivity Options	Provides an overview of the options for network connectivity.
Amazon VPC forum	A community-based forum for discussing technical questions related to Amazon VPC.
Getting Started Resource Center	Information to help you get started building on AWS.
AWS Support Center	The home page for AWS Support.
Contact Us	A central contact point for inquiries concerning AWS billing, accounts, and events.

PCI DSS Compliance

Amazon VPC supports the processing, storage, and transmission of credit card data by a merchant or service provider, and has been validated as being compliant with Payment Card Industry (PCI) Data Security Standard (DSS). For more information about PCI DSS, including how to request a copy of the AWS PCI Compliance Package, see PCI DSS Level 1.

How Amazon VPCs Work

Amazon Virtual Private Cloud (Amazon VPC) enables you to launch AWS resources into a virtual network that you've defined. This virtual network closely resembles a traditional network that you'd operate in your own data center, with the benefits of using the scalable infrastructure of AWS.

Amazon VPC Concepts

As you get started with Amazon VPC, you should understand the key concepts of this virtual network, and how it is similar to or different from your own networks. This section provides a brief description of the key concepts for Amazon VPC.

Amazon VPC is the networking layer for Amazon EC2. If you're new to Amazon EC2, see What is Amazon EC2? in the Amazon EC2 User Guide for Linux Instances to get a brief overview.

Contents

- VPCs and Subnets (p. 3)
- Supported Platforms (p. 3)
- Default and Nondefault VPCs (p. 4)
- Accessing the Internet (p. 4)
- Accessing a Corporate or Home Network (p. 7)
- Accessing Services Through AWS PrivateLink (p. 8)
- AWS Private Global Network Considerations (p. 9)

VPCs and Subnets

A virtual private cloud (VPC) is a virtual network dedicated to your AWS account. It is logically isolated from other virtual networks in the AWS Cloud. You can launch your AWS resources, such as Amazon EC2 instances, into your VPC. You can specify an IP address range for the VPC, add subnets, associate security groups, and configure route tables.

A *subnet* is a range of IP addresses in your VPC. You can launch AWS resources into a specified subnet. Use a public subnet for resources that must be connected to the internet, and a private subnet for resources that won't be connected to the internet. For more information about public and private subnets, see VPC and Subnet Basics (p. 65).

To protect the AWS resources in each subnet, you can use multiple layers of security, including security groups and network access control lists (ACL). For more information, see Security (p. 112).

Supported Platforms

The original release of Amazon EC2 supported a single, flat network that's shared with other customers called the *EC2-Classic* platform. Earlier AWS accounts still support this platform, and can launch instances into either EC2-Classic or a VPC. Accounts created after 2013-12-04 support EC2-VPC only.

Amazon Virtual Private Cloud User Guide Default and Nondefault VPCs

For more information, see Detecting Your Supported Platforms and Whether You Have a Default VPC (p. 86).

By launching your instances into a VPC instead of EC2-Classic, you gain the ability to:

- · Assign static private IPv4 addresses to your instances that persist across starts and stops
- Optionally associate an IPv6 CIDR block to your VPC and assign IPv6 addresses to your instances
- Assign multiple IP addresses to your instances
- · Define network interfaces, and attach one or more network interfaces to your instances
- · Change security group membership for your instances while they're running
- Control the outbound traffic from your instances (egress filtering) in addition to controlling the inbound traffic to them (ingress filtering)
- Add an additional layer of access control to your instances in the form of network access control lists (ACL)
- Run your instances on single-tenant hardware

Default and Nondefault VPCs

If your account supports the EC2-VPC platform only, it comes with a *default VPC* that has a *default subnet* in each Availability Zone. A default VPC has the benefits of the advanced features provided by EC2-VPC, and is ready for you to use. If you have a default VPC and don't specify a subnet when you launch an instance, the instance is launched into your default VPC. You can launch instances into your default VPC without needing to know anything about Amazon VPC.

Regardless of which platforms your account supports, you can create your own VPC, and configure it as you need. This is known as a *nondefault VPC*. Subnets that you create in your nondefault VPC and additional subnets that you create in your default VPC are called *nondefault subnets*.

Accessing the Internet

You control how the instances that you launch into a VPC access resources outside the VPC.

Your default VPC includes an internet gateway, and each default subnet is a public subnet. Each instance that you launch into a default subnet has a private IPv4 address and a public IPv4 address. These instances can communicate with the internet through the internet gateway. An internet gateway enables your instances to connect to the internet through the Amazon EC2 network edge.

By default, each instance that you launch into a nondefault subnet has a private IPv4 address, but no public IPv4 address, unless you specifically assign one at launch, or you modify the subnet's public IP address attribute. These instances can communicate with each other, but can't access the internet.

You can enable internet access for an instance launched into a nondefault subnet by attaching an internet gateway to its VPC (if its VPC is not a default VPC) and associating an Elastic IP address with the instance.

Alternatively, to allow an instance in your VPC to initiate outbound connections to the internet but prevent unsolicited inbound connections from the internet, you can use a network address translation (NAT) device for IPv4 traffic. NAT maps multiple private IPv4 addresses to a single public IPv4 address. A NAT device has an Elastic IP address and is connected to the internet through an internet gateway. You can connect an instance in a private subnet to the internet through the NAT device, which routes traffic from the instance to the internet gateway, and routes any responses to the instance.

For more information, see NAT (p. 216).

You can optionally associate an Amazon-provided IPv6 CIDR block with your VPC and assign IPv6 addresses to your instances. Instances can connect to the internet over IPv6 through an internet gateway. Alternatively, instances can initiate outbound connections to the internet over IPv6 using an egress-only internet gateway. For more information, see Egress-Only Internet Gateways (p. 213). IPv6 traffic is separate from IPv4 traffic; your route tables must include separate routes for IPv6 traffic.

Accessing a Corporate or Home Network

You can optionally connect your VPC to your own corporate data center using an IPsec AWS Site-to-Site VPN connection, making the AWS Cloud an extension of your data center.

A Site-to-Site VPN connection consists of a virtual private gateway attached to your VPC and a customer gateway located in your data center. A virtual private gateway is the VPN concentrator on the Amazon side of the Site-to-Site VPN connection. A customer gateway is a physical device or software appliance on your side of the Site-to-Site VPN connection.

For more information, see What is AWS Site-to-Site VPN? in the AWS Site-to-Site VPN User Guide.

Accessing Services Through AWS PrivateLink

AWS PrivateLink is a highly available, scalable technology that enables you to privately connect your VPC to supported AWS services, services hosted by other AWS accounts (VPC endpoint services), and supported AWS Marketplace partner services. You do not require an internet gateway, NAT device, public IP address, AWS Direct Connect connection, or AWS Site-to-Site VPN connection to communicate with the service. Traffic between your VPC and the service does not leave the Amazon network.

To use AWS PrivateLink, create an interface VPC endpoint for a service in your VPC. This creates an elastic network interface in your subnet with a private IP address that serves as an entry point for traffic destined to the service. For more information, see VPC Endpoints (p. 256).

You can create your own AWS PrivateLink-powered service (endpoint service) and enable other AWS customers to access your service. For more information, see VPC Endpoint Services (AWS PrivateLink) (p. 286).

AWS Private Global Network Considerations

AWS provides a high-performance, and low-latency private global network that delivers a secure cloud computing environment to support your networking needs. AWS Regions are connected to multiple Internet Service Providers (ISPs) as well as to a private global network backbone, which provides improved network performance for cross-Region traffic sent by customers.

The following considerations apply:

- Traffic that is in an Availability Zone, or between Availability Zones in all Regions, routes over the AWS private global network.
- Traffic that is between Regions always routes over the AWS private global network, except for China Regions.

Network packet loss can be caused by a number of factors, including network flow collisions, lower level (Layer 2) errors, and other network failures. We engineer and operate our networks to minimize packet loss. We measure packet-loss rate (PLR) across the global backbone that connects the AWS Regions. We operate our backbone network to target a p99 of the hourly PLR of less than 0.0001%.