Лабораторная работа №17

Задания для самостоятельной работы

Кадров Виктор Максимович

Содержание

1	Введение							
	1.1 Цели и задачи		4					
2	Выполнение лабораторной работы		5					
	2.1 Моделирование работы вычислительного центра		5					
	2.2 Модель работы аэропорта		7					
	2.3 Моделирование работы морского порта		11					
3	Выводы		20					
Сг	исок литературы		21					

Список иллюстраций

2.1	Модель работы вычислительного центра	6
2.2	Отчёт по модели работы вычислительного центра	7
2.3	Модель работы аэропорта	9
		10
2.5	Модель работы морского порта	12
		13
2.7	Модель работы морского порта с оптимальным количеством причалов	14
2.8	Отчет по модели работы морского порта с оптимальным	
	количеством причалов	15
2.9	Модель работы морского порта	16
2.10	Отчет по модели работы морского порта	17
2.11	Модель работы морского порта с оптимальным количеством причалов	18
2.12	Отчет по модели работы морского порта с оптимальным	
	количеством причалов	19

1 Введение

1.1 Цели и задачи

Цель работы

Реализовать с помощью gpss модели работы вычислительного центра, аэропорта и морского порта[1].

Задание

Реализовать с помощью gpss[2]:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.

2 Выполнение лабораторной работы

2.1 Моделирование работы вычислительного центра

На вычислительном центре в обработку принимаются три класса заданий А, В и С. Исходя из наличия оперативной памяти ЭВМ задания классов А и В могут решаться одновременно, а задания класса С монополизируют ЭВМ. Задачи класса С загружаются в ЭВМ, если она полностью свободна. Задачи классов А и В могут дозагружаться к решающей задаче.

Смоделируем работу ЭВМ за 80 ч. и определим её загрузку.

Построим модель (рис. 2.1).

evm ST∰RAGE 2 GENERATE 20,5 QUEUE que A ENTER evm,1 DEPART que A ADVANCE 20,5 LEAVE evm,1 TERMINATE 0 GENERATE 20,10 QUEUE que_B ENTER evm,1 DEPART que B ADVANCE 21,3 LEAVE evm,1 TERMINATE 0 GENERATE 28,5 *QUEUE que C* ENTER evm, 2 DEPART que C ADVANCE 28,5 LEAVE evm, 2 TERMINATE 0 GENERATE 4800 TERMINATE 1 START 1

Рис. 2.1: Модель работы вычислительного центра

Код состоит из трех блоков: первые два обрабатывают задания класса A и B, используя один элемент ЭВМ, а третий обрабатывает задания класса C, используя два элемента ЭВМ. Также есть блок времени генерирующий 4800 минут (80 часов). После запуска симуляции получаем отчёт (рис. 2.2, ??).

LABEL	T.O.C.	BLOCK TYPE	ENT	RY COUNT C	URRENT COUNT	RETRY
222	1	GENERATE				0
	\mathbb{I}_2	QUEUE		240	4	0
	3	ENTER		236		0
	_	DEPART		236	0	0
		ADVANCE		236	1	0
		LEAVE		235	0	0
	7	TERMINATE		235	0	0
		GENERATE		236	0	0
	9	OUFUE		236	5	0
	10	ENTER		231	0	0
	11	DEPART		231	0	0
		ADVANCE		231	1	0
		LEAVE		230	0	0
		TERMINATE		230	0	0
		GENERATE			0	0
		QUEUE		172	172	0
	17 ENTER			0	0	0
		DEPART		0	0	0
	19 ADVANCE			0	0	0
20		LEAVE		0	0	0
		TERMINATE		0	0	0
	22	GENERATE		1	0	0
	23	TERMINATE		1	0	0
QUEUE QUE_A	MAX C	ONT. ENTRY	ENTRY(0)	AVE.CONT.	AVE.TIME	AVE.(-0) RETRY
OUE A	7	4 240	3	3.288	65.765	66.597 0
QUE B	7	5 236	1	3.280	66.703	66.987 0
						2394.038 0
STORAGE	CAP.	REM. MIN. N	MAX. ENT	RIES AVL.	AVE.C. UTIL	. RETRY DELAY
					1.988 0.99	
FEC XN PRT	BDT	ASSE	d CURREN	T NEXT P	ARAMETER	VALUE

Рис. 2.2: Отчёт по модели работы вычислительного центра

2.2 Модель работы аэропорта

Самолёты прибывают для посадки в район аэропорта каждые 10 ± 5 мин. Если взлетно-посадочная полоса свободна, прибывший самолёт получает разрешение на посадку. Если полоса занята, самолет выполняет полет по кругу и возвращается в аэропорт каждые 5 мин. Если после пятого круга самолет не получает разрешения на посадку, он отправляется на запасной аэродром.

В аэропорту через каждые 10 ± 2 мин к взлетно -посадочной полосе выруливают готовые к взлёту самолёты и получают разрешение на взлёт, если полоса свободна. Для взлета и посадки самолёты занимают полосу ровно на 2

мин. Если при свободной полосе одновременно один самолёт прибывает для посадки, а другой – для взлёта, то полоса предоставляется взлетающей машине. Требуется:

- выполнить моделирование работы аэропорта в течение суток;
- подсчитать количество самолётов, которые взлетели, сели и были направлены на запасной аэродром;
- определить коэффициент загрузки взлетно-посадочной полосы.

Построим модель (рис. 2.3).

```
GENERATE 10,5,,,1
ASSIGN 1,0
QUEUE que_ar
check GATE NU line, wait
SEIZE line
DEPART que ar
ADVANCE 2
RELEASE LINE
TERMINATE 0
wait TEST L p1,5,skip
ADVANCE 5
ASSIGN 1+,1
TRANSFER 0, check
skip SEIZE dop
DEPART que ar
RELEASE dop
TERMINATE 0
GENERATE 10,2,,,2
QUEUE que fly
SEIZE line
DEPART que fly
ADVANCE 2
RELEASE line
TERMINATE 0
GENERATE 1440
TERMINATE 1
START 1
```

Рис. 2.3: Модель работы аэропорта

Блок для влетающих самолетов имеет приоритет 2, для прилетающий приоритет 1 (чем выше значение, тем выше приоритет). Происходит проверка: если полоса пустая, то заявка просто отрабатывается, если нет, то происходит переход в блок ожидания. При ожидании заявка проходит в цикле 5 раз, каждый раз проверяется не освободилась ли полоса, если освободилась – переход в блок обработки, если нет – самолет обрабатывается дополнительным обработчиком в

запасном аэродроме. Время задаем в минутах – 1440 (24 часа). После запуска симуляции получаем отчёт (рис. 2.4).

LABEL	LOC	BLOCK TYPE	ENTRY COUNT CURR	ENT COUNT	r retry	
		GENERATE	146	0	0	
	2	ASSIGN	146	0	0	
	3	QUEUE	146	0	0	
CHECK	4	GATE	184	0	0	
	5	SEIZE	146	0	0	
	6	DEPART	146	0	0	
	7	ADVANCE	146	0	0	
	8	RELEASE	146	0	0	
	9	TERMINATE	146	0	0	
WAIT	10	TEST	38	0	0	
		ADVANCE	38	0	0	
	12	ASSIGN	38	0	0	
	13	TRANSFER	38	0	0	
SKIP	14	SEIZE	0	0	0	
	15	DEPART	0	0	0	
	16	RELEASE	0	0	0	
		TERMINATE	0	0	0	
	18	GENERATE	142	0	0	
	19	QUEUE	142	0	0	
		SEIZE	142	0	0	
	21	DEPART	142	0	0	
	22	ADVANCE	142	0	0	
	23	RELEASE	142	0	0	
	24	TERMINATE	142	0	0	
	25	GENERATE	1	0	0	
	26	TERMINATE	1	0	0	
FACILITY LINE	ENTRIES 288	UTIL. AV	E. TIME AVAIL. OWNER 2.000 1 0			
QUEUE QUE FLY	MAX C	ONT. ENTRY EI	NTRY(0) AVE.CONT. AV			ETRY 0
QUE_AR	2	0 146	114 0.132	1.301	5.937	0

Рис. 2.4: Отчёт по модели работы аэропорта

Взлетело 142 самолета, село 146, а в запасной аэропорт отправилось 0. В запасной аэропорт не отправились самолеты, поскольку процессы обработки длятся всего 2 минуты, что намного быстрее, чем генерации новых самолетов. Коэффициент загрузки полосы равняется 0.4, полоса большую часть времени не используется.

2.3 Моделирование работы морского порта

Морские суда прибывают в порт каждые [$\alpha \pm \delta$] часов. В порту имеется N причалов. Каждый корабль по длине занимает M причалов и находится в порту [$b \pm \varepsilon$] часов.

Требуется построить GPSS-модель для анализа работы морского порта в течение полугода, определить оптимальное количество причалов для эффективной работы порта.

Рассмотрим два варианта исходных данных:

1)
$$a = 20 \text{ y}, \delta = 5 \text{ y}, b = 10 \text{ y}, \varepsilon = 3 \text{ y}, N = 10, M = 3;$$

2)
$$a = 30 \text{ y}, \delta = 10 \text{ y}, b = 8 \text{ y}, \varepsilon = 4 \text{ y}, N = 6, M = 2.$$

Первый вариант модели

Построим модель для первого варианта (рис. 2.5).

prichal STORAGE 10

GENERATE 20,5 QUEUE que ENTER prichal,3 DEPART que ADVANCE 10,3 LEAVE prichal,3 TERMINATE 0

GENERATE 4320 TERMINATE 1 START 1

Рис. 2.5: Модель работы морского порта

После запуска симуляции получаем отчёт (рис. 2.6).

I	START T		END TIME 4320.000			STORAGES 1
	NAME PRICHAL QUE			VALUE 000.000 001.000		
LABEL		1 GEN 2 QUE 3 ENT 4 DEP 5 ADV 6 LEA	UE ER ART ANCE VE MINATE ERATE	215 215 215 215 215 215 214	0 0 0 0 1	0 0 0 0 0 0
QUEUE						AVE.(-0) RETRY 0.000 0
STORAGE PRICHAL						TIL. RETRY DELAY
216 217	0	4324.260 4335.233	ASSEM CURE 216 5 217 (218 (6	PARAMETER	VALUE

Рис. 2.6: Отчет по модели работы морского порта

При запуске с 10 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 3 (рис. 2.7), получаем оптимальный результат, что видно на отчете (рис. 2.8).

prichal STORAGE 3
GENERATE 20,5
QUEUE que
ENTER prichal,3
DEPART que
ADVANCE 10,3
LEAVE prichal,3
TERMINATE 0

GENERATE 4320 TERMINATE 1 START 1

Рис. 2.7: Модель работы морского порта с оптимальным количеством причалов

I	START TIME 0.000				LITIES STOR	
	NAME PRICHAL QUE		VAL 10000. 10001.	000		
LABEL	1 2 3 4 5 6 7 8	BLOCK TYPE GENERATE QUEUE ENTER DEPART ADVANCE LEAVE TERMINATE GENERATE TERMINATE		Y COUNT CU 215 215 215 215 215 215 214 214 1	ORRENT COUNT 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0
QUEUE					AVE.TIME A	VE.(-0) RETRY 0.000 0
STORAGE PRICHAL					AVE.C. UTIL. 1.485 0.495	RETRY DELAY 0 0
217	0 4324 0 4335		5 0	6 1	RAMETER V	ALUE

Рис. 2.8: Отчет по модели работы морского порта с оптимальным количеством причалов

Второй вариант модели

Построим модель для второго варианта (рис. 2.9).

Рис. 2.9: Модель работы морского порта

После запуска симуляции получаем отчёт (рис. 2.10).

START TIME 0.000				BLOCKS F.	ACILITIES S	TORAGES 1
ĵ	NAME PRICHAL QUE			VALUE 000.000 001.000		
LABEL		1 GENE 2 QUEU 3 ENTE 4 DEPA 5 ADVA 6 LEAV 7 TERM 8 GENE 9 TERM	RATE E R RT NCE E INATE RATE INATE	143 143 143 143 143 142 142 142 1	0 0 0 1 0 0 0	0 0 0 0 0 0
QUEUE						AVE.(-0) RETRY 0.000 0
STORAGE PRICHAL						IL. RETRY DELAY 087 0 0
FEC XN 144 145 146	0	4325.892 4336.699	ASSEM CURE 144 5 145 0 146 0	6) 1	PARAMETER	VALUE

Рис. 2.10: Отчет по модели работы морского порта

При запуске с 6 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 2 (рис. 2.11), получаем оптимальный результат, что видно из отчета (рис. 2.12).

```
prichal STORAGE 2
GENERATE 30,10
QUEUE que
ENTER prichal,2
DEPART que
ADVANCE 8,4
LEAVE prichal,2
TERMINATE 0

GENERATE 4320
TERMINATE 1
START 1
```

Рис. 2.11: Модель работы морского порта с оптимальным количеством причалов

I	START T	IME 000			FACILITIES 0	STORAGES 1	
	NAME PRICHAL QUE			VALUE 000.000 001.000			
LABEL		LOC BLOCK 1 GENER. 2 QUEUE 3 ENTER 4 DEPAR. 5 ADVAN. 6 LEAVE 7 TERMIN 8 GENER. 9 TERMIN	ATE I CE NATE ATE		0	0 0 0 0 0	
QUEUE						E AVE.(-0) RETRY 0 0.000 0	
STORAGE PRICHAL						JTIL. RETRY DELAY	
145	0	BDT 4325.892 4336.699 8640.000	144 5 145 0	6	PARAMETER	VALUE	

Рис. 2.12: Отчет по модели работы морского порта с оптимальным количеством причалов

3 Выводы

В результате выполнения данной лабораторной работы я реализовала с помощью gpss:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.

Список литературы

- 1. Королькова А.В., Кулябов Д.С. Лабораторная работа 17. Задания для самостоятельной работы [Электронный ресурс].
- 2. Королькова А.В., Кулябов Д.С. Имитационное моделирование в GPSS [Электронный ресурс].