

Evaluation of Tolerance Selection Strategies and Multifidelity Techniques in ABC Methods

Graziele Sena

November 11-14, 2024, Maceió, AL, Brazil

1 Introduction

► Introduction

- ▶ Objective
- ► ABC Background
- ► Tolerances Strategies
- ► Multifidelity Techniques
- ▶ Models
- ► Results
- ▶ Conclusions

Introducing Our ProblemSome context

- Mathematical models are essential tools for understanding complex systems and predicting outcomes.
- Standard Bayesian inference:
 - Posterior simulation algorithms (MCMC, importance sampling, etc).
- Computational intractability of $L(y|\theta)$.
- Unable to numerically evaluate likelihood for any θ .

Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) methods effectively approximate posterior distribution to make model calibration.

2 Objectives

► Introduction

▶ Objectives

► ABC Backgroun

Tolerances Strategies

► Multifidelity Techniques

▶ Models

Results

Conclusions

This work focuses on the analysis of the tolerance techniques choice and the application of multifidelity process in ABC methodology.

- Compare three different tolerance strategies within ABC-SMC.
- Explore the integration of **multifidelity techniques** to reduce computational costs while maintaining or improving result accuracy.

3 ABC Background

- ► Introduction
- ▶ Objectives
- ► ABC Background

- ► Tolerances Strategies
- ► Multifidelity Techniques
- ► Models
- ▶ Results
- Conclusions

In Bayesian framework:

$$p(\theta|y) \propto \mathcal{L}(y|\theta)\pi(\theta)$$
. (1)

In ABC framework:

$$p(\theta|y) \propto p(\theta|\rho(y, y_{obs}) \le \epsilon),$$
 (2)

where,

- $\rho(.)$: some distance measure;
- y: simulated value;
- *y*_{obs}: observed value,
- ϵ : tolerance value.

How Does ABC Work?

3 ABC Background

Simple ABC Mechanism:

- **1.** Sample θ^* from the prior distribution $p(\theta)$;
- 2. Simulate data set from the model, using parameter θ^* , to get D^* ;
- 3. If D is "close enough" of D^* , accept θ^* ; otherwise, reject,
- **4.** Repeat until N particles (the parameter values or parameter sets) $\Theta^* = \{\theta_i^*; i = 1, \dots, N\}$ are accepted.

Note: "close enough" could be if $||D - D^*|| \le \epsilon$ for small ϵ .

Note: Computation increases exponentially as accuracy increases (i.e. as $\epsilon \to 0$).

ABC BasicsChoice of Tolerances

- Sequential Monte Carlo Approximate Bayesian Computation (ABC SMC):
 - The algorithm starts with a higher tolerance level and gradually decreases it over iterations.
 - Each particle (sample) has a weight, allowing the method to prioritize particles that better represent the posterior distribution in subsequent iterations.
 - Kernel functions are applied to perturb particles to create diversity.

One fundamental point is the **choice of tolerances** ϵ for ABC

$$||D - D^*|| \le \epsilon \tag{3}$$

- Choosing an appropriate tolerance level is crucial for balancing accuracy and computational efficiency in ABC.
 - The choice of tolerance may be using predetermined vectors (trial and error).
 - Or from adaptive methods.

Another fundamental challenge in ABC methods is the need for a large number of simulations

- One way to overcome this is using models that can be simulated more cheaply through the multifidelity technique.
- Combines simulation with different levels of fidelity to improve the efficiency of the inference process.

4 Tolerances Strategies

- ► Introduction
- Objectives
- ► ABC Background
- ► Tolerances Strategies
- ► Multifidelity Technique
- ► Models
- ▶ Results
- Conclusions

Tolerance Strategies in ABCThe Choice of Tolerances

- The choice of tolerance values significantly impacts the computational efficiency of ABC methods.
 - Fixed.
 - Percentile-based.
 - Percentage-based.

Tolerance Strategies in ABC

4 Tolerances Strategies

Tolerance Choice Implemented

- Fixing values in advance:
 - Based in prior knowledge and empirical tests performed with the model.

Tolerance Strategies in ABC

Tolerance Choice Implemented

- Adaptive percentile and percentage selection:
 - Using the value corresponding to the percentile or percentage in the ordered distance vector (d_{t-1}^T) accepted in the previous iteration t-1.

5 Multifidelity Techniques

- ► Introduction
- Objectives
- ► ABC Background
- ► Tolerances Strategies
- ► Multifidelity Techniques

- Models
- Results
- Conclusions

Multifidelity Technique in ABC context

- One way to improving the efficiency is the use of multifidelity models:
 - Combines less expensive models with more costly ones.

Numerical Methods

- Euler Method
- Richardson Extrapolation

Multifidelity Cost Comparative in ABC-SMC with Multifidelity

By using this multifidelity strategy, the computational cost becomes proportional to the total number of Euler evaluations.

Total Cost =
$$N_{h_{samples}} + 2 \cdot N_{\text{accepted}}$$
 (4)

Total Savings =
$$\left(N_{h_{samples}} + 2 \cdot N_{\text{accepted}}\right) - 2 \cdot N_{samples \frac{h}{2}}$$
 (5)

Contents 6 Models

- ► Introduction
- ▶ Objectives
- ► ABC Background
- ► Tolerances Strategies
- Multifidelity Techniques
- ▶ Models
- Results
- ▶ Conclusions

Epidemiological ModelsSusceptible - Infected - Recovery

- β : infection rate.
- γ : recovery rate.

SIR model ODE's

$$\frac{dS}{dt} = -\beta SI,$$

$$\frac{dI}{dt} = \beta SI - \gamma I,$$

$$\frac{dD}{dt} = \gamma I.$$
(6)

7 Results

- ► Introduction
- ▶ Objectives
- ► ABC Background
- ► Tolerances Strategies
- ► Multifidelity Technique:
- ▶ Models
- ► Results

▶ Conclusion:

Tolerances Strategies with SIR model

- Fixed.
- Percentile-based.
- Percentage-based.

Tolerances Strategies with SIR model

Figure: Comparison of histograms for the posterior distribution of β and γ for each tolerance strategy with pop=5 and h=0.25.

(a) Fixed tolerance method.

(b) Percentile tolerance method.

(c) Percentage tolerance method.

ResultsMultifidelity Techniques with SIR model

 We utilized our proposed approach with a multifidelity and percentile-based tolerance selection strategy.

Multifidelity Techniques and Percentile-based Tolerance Strategy with SIR model

Figure: Comparison of the histograms of β and γ for percentile tolerance strategies with multifidelity techniques for pop=5 and h=0.5,0.25,0.125.

Multifidelity Techniques and Percentile-based Tolerance Strategy with SIR model

Figure: Comparison of the infects population curve of SIR model for percentile tolerance strategies with multifidelity techniques for pop=5, N=70, h=0.5,0.25,0.125, line in blue, and the observed data, orange dots.

Multifidelity Techniques and Percentile-based Tolerance Strategy with SIR model

Strategies for h = 0.5, 0.25, 0.125

Initially, all methods yield good results;

Table: Parameters with smallest distance with step size of h=0.5, 0.25 and 0.125, and pop=5.

	β	γ	dmin
h = 0.5	1.6333	0.1482	1.4247
h = 0.25	1.5832	0.1385	0.3901
h = 0.125	1.5176	0.1421	0.1610
h = 0.167	1.5516	0.1432	0.1868
h = 0.083	1.4855	0.1428	0.1310
h = 0.042	1.4538	0.1425	0.0972

• Reference Parameter:

— Transmission rate: $\beta = 1.4247$

- Recovery rate: $\gamma = 0.14286$

Multifidelity Techniques and Percentile-based Tolerance Strategy with SIR model

Table: Number of samples necessary for each population in pop=5 round, with h=0.5, 0.25 and 0.125.

	pop1	pop2	pop3	pop4	pop5
h = 0.5	1181	1121	892	923	915
h = 0.25	1770	925	848	1127	989
h = 0.125	2657	1117	926	1328	1157

Multifidelity Techniques and Percentile-based Tolerance Strategy with SIR model

Table: Number of samples necessary for each population in pop=5 round, with h=0.5, 0.25 and 0.125.

	pop1	pop2	pop3	pop4	pop5
h = 0.5	1181	1121	892	923	915
h = 0.25	1770	925	848	1127	989
h = 0.125	2657	1117	926	1328	1157

Multifidelity Techniques and Percentile-based Tolerance Strategy with SIR model

Table: Cost comparison between h=0.5 and h=0.25, and between h=0.25 and h=0.125, for Euler and multifidelity.

	pop1	pop2	pop3	pop4	pop5
0.5/0.25	-1759	-129	-204	-731	-463
0.25/0.125	-2944	-709	-404	-929	-725

8 Conclusions

- ▶ Introduction
- ▶ Objectives
- ► ABC Background
- ► Tolerances Strategies
- ► Multifidelity Techniques
- Models
- Results
- **▶** Conclusions

- The adaptive strategies provide the best results.
- Initial analysis indicates that these strategies do not produce significant variations in the parameter estimates.
- The adjustment of the step size h present improvements.
- The implementation of multifidelity technique provides a more efficient calibration.

To be investigate is:

- Check how the other parameters are correlated.
- Application to complex and high-dimensional models.

Thank you all for your attention!