

Universidade Federal de Viçosa - Campus Florestal Fundamentos da Teoria da Computação - CCF 131 Trabalho Prático 2

Nome: Gabriel Vitor da Fonseca Miranda

Matrícula:3857

Exercícios:

1)
$$\{a^nb^{2n} \mid n > 0\}$$

Input	Result
abb	Accept
aabbbb	Accept
aaabbbbbb	Accept
ba	Reject
baa	Reject
aabbbba	Reject

2)
$$\{0^{3n}1^{2n} \mid n > 0\}$$

Input	Result
00011	Accept
0000001111	Accept
00000000111111	Accept
111	Reject
000111	Reject
00000011	Reject
0001	Reject

3) $\{0^n1^{3n}0^{2m}1^m \mid n > 0\}$

Input	Result
0111	Accept
0111001	Accept
00111111000011	Accept
011101	Reject
0111011	Reject
001111110111	Reject

- 4) Uma linguagem livre do contexto qualquer, <u>definida por você</u>. Você deverá escrever também em português, ou em notação matemática, a definição desta linguagem.
 - a) Seja a seguinte linguagem livre de contexto: $L = \{w \in \{0,1\}^* \mid w \text{ \'e um pal\'indromo}\}$ é livre de contexto. Crie uma gramática livre de contexto que gere está linguagem.

G =
$$(\{P, A\}, \{0,1\}, R, P)$$

P \rightarrow A $|0P0|1P1$
A \rightarrow 1| 0| λ

Exemplo:

$$P => 0P0 => 01P10 => 01A10 => 0110$$

Ou seja, para todo o exemplo aplicado você gera uma palavra palíndroma.

b) Produza uma gramática livre de contexto para gerar a linguagem livre de contexto abaixo, e faça o autômato de pilha da gramática.

$$\{w \in \{0,1\}^* \mid w = 0^n 1^n \}$$

$$G = (\{P\}, \{0,1\}, R, P)$$

$$P \to 0P1 \mid \lambda$$

Exemplo:

 $P \Rightarrow 0P1 \Rightarrow 00P11 \Rightarrow 0011$, ou seja para toda regra aplicada teremos a mesma quantidade de 0's e 1's.

	Input	Result
000111		Accept
01		Accept
0011		Accept
1100		Reject
11000		Reject
00111		Reject

5) Construa uma máquina de Moore que leia palavras do alfabeto {a, b, c} e produza palavras do alfabeto {0, 1, 2}, sendo que ao ler um a deve ser produzido um 0, ao ler um b deve ser produzido um 1 e ao ler um c deve ser produzido um 2.

Input	Result
aabbcc	001122
abcbca	012120
bbbbbb	111111
ccccc	22222
aaaaa	00000
cbcbac	212102

6) Construa uma máquina de Mealy equivalente à máquina de Moore do Exercício 5.

<u> </u>	
Input	Result
aabbcc	001122
aabbcc abcbca bbbbb	012120
bbbbb	11111
cccc	2222
cccc aaaa abcbca	0000
abcbca	012120

7) Construa uma Máquina de Moore que receba como entrada palavras formadas por símbolos do alfabeto {0,1,2} e que gera palavras formadas por símbolos do alfabeto {x,y,z} da seguinte forma: um 0 sempre gera um x; um 1 gera um y, mas se três ou mais 1's consecutivos são lidos, a partir do terceiro (incluindo o terceiro) ele passa a gerar z. Um 2 gera um x se é lido após um 0 ou após um 2 ou se é lido inicialmente, e gera um y se é lido após um 1.

Input	Result
002211101000111	XXXXYXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100010222010011	yxxxyxxxxyy
001100000111112	xxyyxxxxyyzzzy
000120210110001	xxxyyxxyxxxyx
111000222000110	yyzxxxxxxxyxx
222111000112220	xxxyyzxxxxyyyxxx

8) Construa uma máquina de Moore de acordo com uma <u>especificação feita por você</u>, escrevendo também esta especificação em português no trabalho.

Exemplo:

Construa uma Máquina de moore que receba como entrada palavras formadas pelos simbolos {0,1} e que geram palavras formadas pelo alfabeto {0,1,2}, da seguinte forma: Toda vez que se lê um 1 gere um 0, e toda vez que leia um 0 gere um 1, mas todas vez que lê 00, gera 12, demonstrando que foram digitados 00 e que 12 representa 2 valores contrários de 0. Da mesma forma forma lendo 11 vai ser gerado 02, representando dois zeros contrários.

Input	Result
1100	0212
111000	020121
0001111	1210202
001110	120201
11001100	02120212
001100	120212

9) Construa uma máquina de Mealy de acordo com uma <u>especificação feita por você</u>, escrevendo também esta especificação em português no trabalho.

Exemplo:

Construa uma Máquina de Mealy que receba como entrada palavras formadas por símbolos do alfabeto $\{0,1\}$ e que gera palavras formadas por símbolos do alfabeto $\{0,1\}$, Dessa maneira, utilize a maquina de Mealy para fazer o complemento de 1 de um número binário.

Input	Result
1100	0011
11111	00000
000	111
101010	010101
01010	10101
0010101	1101010