

UL HPC School 2017

PS7: Bioinformatics software on the UL HPC Platform

V. Plugaru and S. Peter

University of Luxembourg, Luxembourg

Latest versions available on Github:

UL HPC tutorials:

https://github.com/ULHPC/tutorials

UL HPC School:

http://hpc.uni.lu/hpc-school/

PS7tutorial sources:

https://github.com/ULHPC/tutorials/tree/devel/advanced/Bioinformatics

Summary

- Objectives
- 2 Bioinformatics packages
- **3** Notes
- 4 Practical session
- **5** Conclusion

Objectives

Summary

- Objectives
- 2 Bioinformatics packages
- **3** Notes
- 4 Practical session
- **5** Conclusion

Objectives

Objective of this PS

Better understand the usage of Bioinformatics packages on the UL HPC Platform.

Better understand the usage of Bioinformatics packages on the UL HPC Platform.

Better understand the usage of Bioinformatics packages on the UL HPC Platform.

Why Bioinformatics? 3Vs:

very relevant in the context of the UL/LCSB

Better understand the usage of Bioinformatics packages on the UL HPC Platform.

- very relevant in the context of the UL/LCSB
- very fast growing domain

Better understand the usage of Bioinformatics packages on the UL HPC Platform.

- very relevant in the context of the UL/LCSB
- very fast growing domain
- very many associated workflows, thus excellent examples

Better understand the usage of Bioinformatics packages on the UL HPC Platform.

- very relevant in the context of the UL/LCSB
- very fast growing domain
- very many associated workflows, thus excellent examples

Better understand the usage of Bioinformatics packages on the UL HPC Platform.

- very relevant in the context of the UL/LCSB
- very fast growing domain
- very many associated workflows, thus excellent examples

Better understand the usage of Bioinformatics packages on the UL HPC Platform.

- very relevant in the context of the UL/LCSB
- very fast growing domain
- very many associated workflows, thus excellent examples

Better understand the usage of Bioinformatics packages on the UL HPC Platform.

- very relevant in the context of the UL/LCSB
- very fast growing domain
- very many associated workflows, thus excellent examples

Better understand the usage of Bioinformatics packages on the UL HPC Platform.

- very relevant in the context of the UL/LCSB
- very fast growing domain
- very many associated workflows, thus excellent examples

Summary

- Objectives
- 2 Bioinformatics packages
- 3 Notes
- 4 Practical session
- 5 Conclusion

ABySS

ABySS: Assembly By Short Sequences a de novo, parallel, paired-end sequence assembler designed for short reads

ABySS

ABySS: Assembly By Short Sequences a de novo, parallel, paired-end sequence assembler designed for short reads

- several applications in the ABySS package
- only ABYSS-P is parallelized using MPI
- workflow (pipeline) of abyss-pe also includes:
 - → OpenMP-parallel applications
 - $\hookrightarrow \ \ \text{serial applications}$
- Note: compared with other de novo assemblers, the per-node memory requirements are smaller due to ABySS' task distribution model

Bioinformatics packages

Gromacs

GROMACS: GROningen MAchine for Chemical Simulations versatile package for molecular dynamics, primarily designed for biochemical molecules

Gromacs

GROMACS: GROningen MAchine for Chemical Simulations versatile package for molecular dynamics, primarily designed for biochemical molecules

- very large codebase: 1.836.917 SLOC
- many applications in the package, several parallelization modes
- mdrun: computational chemistry engine, performing:
 - \hookrightarrow molecular dynamics simulations
 - ⇔ Brownian Dynamics, Langevin Dynamics

 - $\hookrightarrow L$ -BFGS

 - → Normal Mode Analysis
- mdrun parallelized using MPI, OpenMP, pthreads and with support for GPU acceleration

Bowtie2/TopHat

Bowtie2: Fast and sensitive read alignment

ultrafast & memory-efficient alignment of sequencing reads to long ref. sequences

TopHat: A fast spliced read mapper for RNA-Seq

alignment of RNA-Seq reads to a genome, to identify exon-exon splice junctions

Bowtie2/TopHat

Bowtie2: Fast and sensitive read alignment

ultrafast & memory-efficient alignment of sequencing reads to long ref. sequences

TopHat: A fast spliced read mapper for RNA-Seq

alignment of RNA-Seq reads to a genome, to identify exon-exon splice junctions

- TopHat aligns reads to mammalian-sized genomes using Bowtie
- then analyzes the mapping results to identify splice junctions between exons
- bowtie2 is OpenMP-parallel
- rest of workflow is sequential

mpiBLAST

mpiBLAST: Open-Source Parallel BLAST

parallel implementation of NCBI BLAST, scaling to hundreds of processors $\,$

mpiBLAST

mpiBLAST: Open-Source Parallel BLAST

parallel implementation of NCBI BLAST, scaling to hundreds of processors

- two main applications: mpiblast mpiformatdb
- requires (NCBI) substitution matrices and formatted BLAST databases
- the databases can be segmented
- ullet mpiblast requires >=3 processes, 2 used for internal tasks
 - \hookrightarrow mpirun -np 3 mpiblast [...] only gives you one searcher process!

Summary

- Objectives
- 2 Bioinformatics packages
- **3** Notes
- 4 Practical session
- **5** Conclusion

Notes..

- .. on real world applications (bioinfo or others):
 - make sure you understand the parallel capabilities of your software

 ⇒ pthreads/OpenMP vs MPI vs hybrid
 - \hookrightarrow use of GPU acceleration

Notes..

- .. on real world applications (bioinfo or others):
 - make sure you understand the parallel capabilities of your software

 → pthreads/OpenMP vs MPI vs hybrid
 - \hookrightarrow use of GPU acceleration
 - make sure you request the appropriate resources for the processing needs of your workflow
 - \hookrightarrow Does the software always take advantage of more than 1 core or node?
 - → How does it scale? Many obstacles to perfect scalability!

Notes..

- .. on real world applications (bioinfo or others):
 - make sure you understand the parallel capabilities of your software

 → pthreads/OpenMP vs MPI vs hybrid
 - \hookrightarrow use of GPU acceleration
 - make sure you request the appropriate resources for the processing needs of your workflow
 - \hookrightarrow Does the software always take advantage of more than 1 core or node?
 - → How does it scale? Many obstacles to perfect scalability!
- .. on data management:
 - make sure you use the appropriate storage place
 - \hookrightarrow \$HOME vs \$WORK vs \$SCRATCH
 - stage data in/out, archive your (many & unused) 'small' files

Summary

- Objectives
- 2 Bioinformatics packages
- 3 Notes
- 4 Practical session
- 5 Conclusion

Exercises

- Read and understand the Bioinformatics tutorial
 - https://github.com/ULHPC/tutorials/tree/devel/advanced/Bioinformatics
- Run the examples
 - \hookrightarrow all calculations should be fast
 - \hookrightarrow you should attempt the exercises proposed in each section
- Try even more tests, e.g.:
 - → on different node classes
 - \hookrightarrow with one core per node on >= 2 nodes
 - \hookrightarrow vs >= 2 cores on single node

Conclusion

Summary

- Objectives
- 3 Notes
- **6** Conclusion

Conclusion

- Bioinformatics applications execution on the UL HPC Platform
- Outlined:
 - → different workflows
 - some of the concepts you should care about when running complex software

Perspectives

• Personalize the UL HPC launchers with the specific commands for ABySS, Gromacs, TopHat, Bowtie, mpiBLAST...

Questions?

- Objectives
- 2 Bioinformatics packages
- **3** Notes
- 4 Practical session
- 5 Conclusion

