Project Assignment on Practical Machine Learning

Nayan Pandya December 1, 2019

Project: Practical machine learning

Background

Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively. These type of devices are part of the quantified self movement - a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior, or because they are tech geeks. One thing that people regularly do is quantify how much of a particular activity they do, but they rarely quantify how well they do it. In this project, your goal will be to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants. They were asked to perform barbell lifts correctly and incorrectly in 5 different ways. More information is available from the website here:

http://web.archive.org/web/20161224072740/http:/groupware.les.inf.puc-rio.br/har (http://web.archive.org/web/20161224072740/http:/groupware.les.inf.puc-rio.br/har) (see the section on the Weight Lifting Exercise Dataset)

Data

The training data for this project are available here:

https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv (https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv)

The test data are available here:

https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv (https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv)

The data for this project come from this source:

http://web.archive.org/web/20161224072740/http:/groupware.les.inf.puc-rio.br/har (http://web.archive.org/web/20161224072740/http:/groupware.les.inf.puc-rio.br/har). If you use the document you create for this class for any purpose please cite them as they have been very generous in allowing their data to be used for this kind of assignment.

the content summary of weight lifting dataset: reference from http://groupware.les.inf.puc-rio.br/har#weight_lifting_exercises (http://groupware.les.inf.puc-rio.br/har#weight_lifting_exercises)

Six young health participants were asked to perform one set of 10 repetitions of the Unilateral Dumbbell Biceps Curl in five different fashions: exactly according to the specification (Class A), throwing the elbows to the front (Class B), lifting the dumbbell only halfway (Class C), lowering the dumbbell only halfway (Class D) and throwing the hips to the front (Class E).

Class A corresponds to the specified execution of the exercise, while the other 4 classes correspond to common mistakes. Participants were supervised by an experienced weight lifter to make sure the execution complied to the manner they were supposed to simulate. The exercises were performed by six male participants aged between 20-28 years, with little weight lifting experience. We made sure that all participants could easily simulate the mistakes in a safe and controlled manner by using a relatively light dumbbell (1.25kg)."

Acknowledgement

Data is from: Velloso, E.; Bulling, A.; Gellersen, H.; Ugulino, W.; Fuks, H. Qualitative Activity Recognition of Weight Lifting Exercises. Proceedings of 4th International Conference in Cooperation with SIGCHI (Augmented Human '13). Stuttgart, Germany: ACM SIGCHI, 2013.

step by step procedure to built prediction

- 1. loading data from testing and training data set
- 2. remove unwanted column where we have less than 60% records.
- 3. check multi-colinearity
- 4. use VIF function to remove colinear variable
- 5. check accuracy of three types of model and use best method to predict testing data set. ## Read library to use packages for programme

```
library(rpart)
library(caret)

## Loading required package: lattice

## Loading required package: ggplot2

library(ROSE)

## Loaded ROSE 0.0-3

library(Hmisc)

## Loading required package: survival
```

```
##
## Attaching package: 'survival'
## The following object is masked from 'package:caret':
##
##
       cluster
## The following object is masked from 'package:rpart':
##
##
       solder
## Loading required package: Formula
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
##
##
       format.pval, units
library(gridExtra)
library(GGally)
library(dummies)
## dummies-1.5.6 provided by Decision Patterns
library(car)
## Loading required package: carData
library(rpart.plot)
library(rattle)
## Rattle: A free graphical interface for data science with R.
## Version 5.2.0 Copyright (c) 2006-2018 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
library(randomForest)
```

```
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
## Attaching package: 'randomForest'
## The following object is masked from 'package:rattle':
##
##
       importance
## The following object is masked from 'package:gridExtra':
##
##
       combine
## The following object is masked from 'package:ggplot2':
##
##
       margin
library(knitr)
set.seed(3546)
```

Read file from location

remove with NA columns more than 60%

```
# it is very important to clean data by replacing NA or removing particular col
umn. Here, we have more than 60% NA in many of column. So we will be removing t
his column by writing following command.

training <- training[,-which(colSums(is.na(training))>(0.6*length(training$clas
se)))]
```

Partition of data into training and test set

```
# We need to split training data into train and test data set. We are splitting
data such that 80% records will be going into training data set while 20% data
will be going into test dataset.

intrain <- createDataPartition(y=training$classe,p=0.8,list = FALSE)
train_data<- training[intrain,]
test_data <- training[-intrain,]</pre>
```

Remove near zero variable from train and test data

```
# We are reducing data by removing those columns which has zero variance colum
n. zero variance factor doesn't impact on output at all. We have splitted dat
a previously, so we will apply treatment for both train and test dataset.
nsv <- nearZeroVar(train_data, saveMetrics = TRUE)
train_data <- train_data[,-c(which(nsv$nzv== TRUE))]
rm(nsv)
nsv <- nearZeroVar(test_data, saveMetrics = TRUE)
test_data <- test_data[,-c(which(nsv$nzv== TRUE))]</pre>
```

Convert all independent variable into numetic

```
# Next step, we will be checking multicolinearity so we are converting intiger
and factor to numeric vactor to run regression model. Following code is convert
ing complete dataset except predictor variable into numberic.

train_num <- data.frame(lapply(train_data[,-59], function(x) as.numeric((x))))
train_data <- data.frame(train_num,train_data$classe)
test_num <- data.frame(lapply(test_data[,-59], function(x) as.numeric((x))))
test_data <- data.frame(test_num,test_data$classe)</pre>
```

remove identification variable

```
# There are some idepntification variable which will create trouble while running prediction algorith, so we are removing those from test and train data set. train\_data <- train\_data[,-c(1:5)] \\ test\_data <- test\_data[,-c(1:5)]
```

check multicolineaty

```
# Our response variable is catagorical variable so we should choose any indepen
dent variable as response variable and check multicolinearity

# Check VIF factor and remove variable which has VIF more than 5 but need to ch
eck iteratively. Based on multiple itertive run, it was found out that followin
g variables are having multicolinearity so we are removing the same.
train_vif <- train_data[,-c(3,4,5,9,10,11,12,20,22,23,26,27,34,35,36,37,38,47,4
8,49)]

# Train_vif is our final train data set which will be used for building predict
ive model. it has 34 column and 15699 row

str(train_vif)</pre>
```

```
## 'data.frame': 15699 obs. of 34 variables:
## $ num_window : num 11 11 11 12 12 12 12 12 12 12 12 ...
## $ roll_belt : num 1.41 1.42 1.48 1.48 1.45 1.42 1.43
1.45 ...
3 ...
## $ gyros_belt_y : num 0 0 0 0 0.02 0 0 0 0 0 ...
## $ gyros_belt_z : num -0.02 -0.02 -0.03 -0.02 -0.02 -0.02 -0.0
2 -0.02 0 ...
## $ magnet_belt_y : num 599 608 600 604 600 603 599 603 602 609 ...
## $ magnet_belt_z : num -313 -311 -305 -310 -302 -312 -311 -313 -312
-308 ...
-128 ...
## $ pitch_arm : num 22.5 22.5 22.1 22.1 22 21.9 21.8 21.7 21.
6 ...
-161 ...
-124 ...
## $ magnet_arm_x : num -368 -369 -368 -372 -374 -369 -373 -372 -369
-376 ...
## $ roll_dumbbell : num 13.1 13.1 12.9 13.4 13.4 ...
## $ pitch dumbbell : num -70.5 -70.6 -70.3 -70.4 -70.4 ...
## $ yaw_dumbbell : num -84.9 -84.7 -85.1 -84.9 -84.9 ...
\#\# $ total accel dumbbell: num 37 37 37 37 37 37 37 37 37 ...
## $ gyros_dumbbell_x : num 0 0 0 0 0 0 0 0 0 ...
## $ gyros dumbbell y : num -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.0
2 -0.02 -0.02 ...
## $ magnet dumbbell y : num 293 296 298 303 292 294 295 300 292 291 ...
## $ magnet_dumbbell_z : num -65 -64 -63 -60 -68 -66 -70 -74 -65 -69 ...
## $ roll_forearm : num 28.4 28.3 28.3 28.1 28 27.9 27.9 27.8 27.7 27.
7 ...
## $ pitch_forearm : num -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.
8 -63.8 -63.8 ...
## $ yaw forearm : num -153 -152 -152 -152 -152 -152 -152 -152
-152 ...
## $ total accel forearm : num 36 36 36 36 36 36 36 36 36 36 ...
## $ gyros forearm x : num 0.03 0.02 0.03 0.02 0.02 0.02 0.02 0.03
0.02 ...
## $ gyros_forearm_y : num 0 0 -0.02 -0.02 0 -0.02 0 -0.02 0 0 ...
## $ accel_forearm_z : num -215 -216 -213 -214 -214 -215 -215 -213 -214
-215 ...
## $ magnet forearm x : num -17 - 18 - 18 - 16 - 17 - 9 - 18 - 9 - 16 - 22 ...
## $ magnet_forearm_y : num 654 661 658 655 660 659 660 653 656 ...
```

```
## $ magnet_forearm_z : num 476 473 469 469 473 478 470 474 476 473 ...
## $ train_data.classe : Factor w/ 5 levels "A", "B", "C", "D", ..: 1 1 1 1 1
1 1 1 1 ...
```

```
dim(train_vif)
```

```
## [1] 15699 34
```

```
## same treatment was applied for test_vif so that nuber of column and column n
ame are unique with train_vif data set.
test_vif <- test_data[,-c(3,4,5,9,10,11,12,20,22,23,26,27,34,35,36,37,38,47,48,
49)]
# test_vif is our final test dataset for calculating out of sample error
dim(test_vif)</pre>
```

```
## [1] 3923 34
```

Prediction with using Random Forest

```
# There are two option to run random forest. 1. use Train fuciton under CARET a
nd 2. call random forest library. we have used called randomforest function to
train our model.
library(randomForest)
set.seed(32343)
modelfit_rf <- randomForest(train_data.classe~.,data = train_vif,mtry=6,ntree=2
001,importance=TRUE)
# varImpPlot will be plotting significance of different factors.
varImpPlot(modelfit_rf)</pre>
```

modelfit_rf

we have used confusion matrix under CARET package to check out of sample erro
r. out of sample accuracy is 0.9973 with using randomforest.
confusionMatrix(predict(modelfit_rf,test_vif),test_vif\$test_data.classe)

```
## Confusion Matrix and Statistics
##
           Reference
## Prediction A B C D E
       A 1115 1 0 0 0
           в 1 758 1 0 0
           C 0 0 683 8
##
          D 0 0 0 635 0
##
## Overall Statistics
##
                  Accuracy: 0.9972
##
                     95% CI: (0.995, 0.9986)
      No Information Rate: 0.2845
##
      P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa : 0.9965
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
                       Class: A Class: B Class: C Class: D Class: E
                         0.9991 0.9987 0.9985 0.9876 1.0000
## Sensitivity
## Specificity 0.9996 0.9994 0.9975 1.0000 1.0000 ## Pos Pred Value 0.9996 0.9997 0.9997 0.9976 1.0000 ## Prevalence 0.2845 0.1935 0.1744 0.1639 0.1838 ## Detection Rate 0.2842 0.1932 0.1741 0.1619 0.1838
## Detection Prevalence 0.2845 0.1937 0.1761 0.1619 0.1838
## Balanced Accuracy 0.9994 0.9990 0.9980 0.9938 1.0000
```

Above graph is showing importance of factor for random forest

prediction with using Grediant Boosting Method

```
set.seed(32343)
modelfit_gbm <- train(train_data.classe~.,data=train_vif,method="gbm")</pre>
```

	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1267
##	2	1.5231	nan	0.1000	0.0886
##	3	1.4641	nan	0.1000	0.0675
##	4	1.4195	nan	0.1000	0.0554
##	5	1.3839	nan	0.1000	0.0443
##	6	1.3551	nan	0.1000	0.0464
##	7	1.3263	nan	0.1000	0.0385
##	8	1.3018	nan	0.1000	0.0310
##	9	1.2822	nan	0.1000	0.0350
##	10	1.2590	nan	0.1000	0.0293
##	20	1.1024	nan	0.1000	0.0167
##	40	0.9328	nan	0.1000	0.0097
##	60	0.8315	nan	0.1000	0.0068
##	80	0.7547	nan	0.1000	0.0044
##	100	0.6890	nan	0.1000	0.0032
##	120	0.6358	nan	0.1000	0.0033
##	140	0.5887	nan	0.1000	0.0031
##	150	0.5686	nan	0.1000	0.0029
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1869
##	2	1.4878	nan	0.1000	0.1280
##	3	1.4034	nan	0.1000	0.0964
##	4	1.3397	nan	0.1000	0.0879
##	5	1.2843	nan	0.1000	0.0713
##	6	1.2387	nan	0.1000	0.0603
##	7	1.1999	nan	0.1000	0.0539
##	8	1.1654	nan	0.1000	0.0539
##	9	1.1314	nan	0.1000	0.0517
##	10	1.0991	nan	0.1000	0.0374
##	20	0.8832	nan	0.1000	0.0177
##	40	0.6615	nan	0.1000	0.0094
##	60	0.5191	nan	0.1000	0.0076
##	80	0.4233	nan	0.1000	0.0066
##	100	0.3401	nan	0.1000	0.0057
##	120	0.2830	nan	0.1000	0.0042
##	140	0.2367	nan	0.1000	0.0022
##	150	0.2201	nan	0.1000	0.0020
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2299
##	2	1.4632	nan	0.1000	0.1659
##	3	1.3575	nan	0.1000	0.1251
##	4	1.2792	nan	0.1000	0.1020
##	5	1.2145	nan	0.1000	0.0823
##	6	1.1614	nan	0.1000	0.0792
##	7	1.1111	nan	0.1000	0.0641

##	8	1.0698	nan	0.1000	0.0750
##	9	1.0236	nan	0.1000	0.0651
##	10	0.9845	nan	0.1000	0.0517
##	20	0.7289	nan	0.1000	0.0303
##	40	0.4868	nan	0.1000	0.0105
##	60	0.3533	nan	0.1000	0.0089
##	80	0.2544	nan	0.1000	0.0054
##	100	0.1957	nan	0.1000	0.0027
##	120	0.1550	nan	0.1000	0.0021
##	140	0.1222	nan	0.1000	0.0028
##	150	0.1099	nan	0.1000	0.0017
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1271
##	2	1.5241	nan	0.1000	0.0871
##	3	1.4672	nan	0.1000	0.0632
##	4	1.4247	nan	0.1000	0.0535
##	5	1.3888	nan	0.1000	0.0436
##	6	1.3599	nan	0.1000	0.0460
##	7	1.3314	nan	0.1000	0.0360
##	8	1.3088	nan	0.1000	0.0409
##	9	1.2816	nan	0.1000	0.0311
##	10	1.2614	nan	0.1000	0.0299
##	20	1.1038	nan	0.1000	0.0192
##	40	0.9313	nan	0.1000	0.0093
##	60	0.8269		0.1000	0.0093
##	80	0.7520	nan	0.1000	0.0034
			nan		
##	100	0.6910	nan	0.1000	0.0040
##	120	0.6383	nan	0.1000	0.0035
##	140	0.5920	nan	0.1000	0.0041
##	150	0.5711	nan	0.1000	0.0032
##	T.	m	77-7 1 170	Q1 Q1	T
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1811
##	2	1.4883	nan	0.1000	0.1308
##	3	1.4033	nan	0.1000	0.1026
##	4	1.3362	nan	0.1000	0.0812
##	5	1.2835	nan	0.1000	0.0690
##	6	1.2395	nan	0.1000	0.0670
##	7	1.1970	nan	0.1000	0.0513
##	8	1.1636	nan	0.1000	0.0602
##	9	1.1266	nan	0.1000	0.0496
##	10	1.0965	nan	0.1000	0.0535
##	20	0.8795	nan	0.1000	0.0208
##	40	0.6649	nan	0.1000	0.0110
##	60	0.5285	nan	0.1000	0.0127
##	80	0.4211	nan	0.1000	0.0053
##	100	0.3520	nan	0.1000	0.0049
##	120	0.2936	nan	0.1000	0.0053
(

##	140	0 2400	nar	0.1000	0.0033
##	150	0.2490 0.2301	nan	0.1000	0.0033
##	100	0.2301	nan	0.1000	0.0032
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2288
##	2	1.4632	nan	0.1000	0.1574
##	3	1.3618	nan	0.1000	0.1224
##	4	1.2841	nan	0.1000	0.0982
##	5	1.2205		0.1000	0.0963
##	6	1.1594	nan	0.1000	0.0903
	7	1.1094	nan	0.1000	0.0734
##			nan		
	8	1.0626	nan	0.1000	0.0697
##	9	1.0191	nan	0.1000	0.0672
##	10	0.9785	nan	0.1000	0.0466
##	20	0.7336	nan	0.1000	0.0299
##	40	0.4911	nan	0.1000	0.0143
##	60	0.3497	nan	0.1000	0.0086
##	80	0.2672	nan	0.1000	0.0031
##	100	0.2082	nan	0.1000	0.0027
##	120	0.1629	nan	0.1000	0.0009
##	140	0.1297	nan	0.1000	0.0031
##	150	0.1169	nan	0.1000	0.0024
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1274
##	2	1.5228	nan	0.1000	0.0884
##	3	1.4641	nan	0.1000	0.0665
##	4	1.4209	nan	0.1000	0.0530
##	5	1.3859	nan	0.1000	0.0445
##	6	1.3565	nan	0.1000	0.0423
##	7	1.3290	nan	0.1000	0.0365
##	8	1.3054	nan	0.1000	0.0321
##	9	1.2849	nan	0.1000	0.0370
##	10	1.2595	nan	0.1000	0.0291
##	20	1.1024	nan	0.1000	0.0154
##	40	0.9347	nan	0.1000	0.0084
##	60	0.8337	nan	0.1000	0.0056
##	80	0.7547	nan	0.1000	0.0049
##	100	0.6920	nan	0.1000	0.0036
##	120	0.6388	nan	0.1000	0.0028
##	140	0.5923	nan	0.1000	0.0033
##	150	0.5707	nan	0.1000	0.0022
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1829
##	2	1.4902	nan	0.1000	0.1267
##	3	1.4083	nan	0.1000	0.1027
##	4	1.3415	nan	0.1000	0.0821
##	5	1.2885	nan	0.1000	0.0740

6 1.2407 nan 0.1000 0.060 ## 7 1.2015 nan 0.1000 0.063 ## 8 1.1617 nan 0.1000 0.051 ## 9 1.1286 nan 0.1000 0.043 ## 10 1.1005 nan 0.1000 0.040 ## 20 0.8855 nan 0.1000 0.020 ## 40 0.6529 nan 0.1000 0.015
8 1.1617 nan 0.1000 0.051 ## 9 1.1286 nan 0.1000 0.043 ## 10 1.1005 nan 0.1000 0.040 ## 20 0.8855 nan 0.1000 0.020 ## 40 0.6529 nan 0.1000 0.015
9 1.1286 nan 0.1000 0.043 ## 10 1.1005 nan 0.1000 0.040 ## 20 0.8855 nan 0.1000 0.020 ## 40 0.6529 nan 0.1000 0.015
10 1.1005 nan 0.1000 0.040 ## 20 0.8855 nan 0.1000 0.020 ## 40 0.6529 nan 0.1000 0.015
20 0.8855 nan 0.1000 0.020 ## 40 0.6529 nan 0.1000 0.015
40 0.6529 nan 0.1000 0.015
60 0.5177 nan 0.1000 0.011
80 0.4078 nan 0.1000 0.006
100 0.3322 nan 0.1000 0.004
120 0.2765 nan 0.1000 0.002
140 0.2360 nan 0.1000 0.002
150 0.2191 nan 0.1000 0.001
##
Iter TrainDeviance ValidDeviance StepSize Improv
1 1.6094 nan 0.1000 0.228
2 1.4624 nan 0.1000 0.161
3 1.3584 nan 0.1000 0.118
4 1.2828 nan 0.1000 0.101
5 1.2184 nan 0.1000 0.089
6 1.1628 nan 0.1000 0.071
7 1.1160 nan 0.1000 0.073
8 1.0701 nan 0.1000 0.073
9 1.0254 nan 0.1000 0.049
10 0.9923 nan 0.1000 0.060
20 0.7355 nan 0.1000 0.018
40 0.4827 nan 0.1000 0.016
60 0.3435 nan 0.1000 0.007
80 0.2546 nan 0.1000 0.004
100 0.1944 nan 0.1000 0.003
120 0.1507 nan 0.1000 0.002
140 0.1237 nan 0.1000 0.002
150 0.1102 nan 0.1000 0.001
Iter TrainDeviance ValidDeviance StepSize Improv
1 1.6094 nan 0.1000 0.129
5 1.3870 nan 0.1000 0.050
6 1.3551 nan 0.1000 0.037
7 1.3304 nan 0.1000 0.041
8 1.3047 nan 0.1000 0.035
9 1.2803 nan 0.1000 0.032
10 1.2595 nan 0.1000 0.027
20 1.1031 nan 0.1000 0.020
40 0.9302 nan 0.1000 0.009
60 0.8253 nan 0.1000 0.007
80 0.7488 nan 0.1000 0.004

100 0.6885 nan 0.1000 0.0042 ## 120 0.6372 nan 0.1000 0.0039 ## 140 0.5910 nan 0.1000 0.0021 ## 150 0.5703 nan 0.1000 0.0035 ## 1ter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.1817 ## 2 1.4921 nan 0.1000 0.1333 ## 3 1.4051 nan 0.1000 0.0799 ## 4 1 0.3391 nan 0.1000 0.0799 ## 5 1.2864 nan 0.1000 0.0791 ## 6 1.2397 nan 0.1000 0.0655 ## 7 1.1981 nan 0.1000 0.0655 ## 8 1.1578 nan 0.1000 0.0655 ## 9 1.1224 nan 0.1000 0.0557 ## 10 1.0952 nan 0.1000 0.0451 ## 20 0.8709 nan 0.1000 0.0422 ## 10 1.0952 nan 0.1000 0.0421 ## 60 0.5112 nan 0.1000 0.0231 ## 40 0.6550 nan 0.1000 0.0010 ## 80 0.4051 nan 0.1000 0.0063 ## 120 0.2755 nan 0.1000 0.0063 ## 120 0.2755 nan 0.1000 0.0058 ## 140 0.2371 nan 0.1000 0.0058 ## 150 0.2174 nan 0.1000 0.0058 ## 14 0 0.2371 nan 0.1000 0.0058 ## 15 0.2174 nan 0.1000 0.0058 ## 14 12 0.2755 nan 0.1000 0.0058 ## 15 0.2174 nan 0.1000 0.0058 ## 15 0.2174 nan 0.1000 0.0058 ## 16 1.2831 nan 0.1000 0.0058 ## 17 1.1100 nan 0.1000 0.0058 ## 18 1.2831 nan 0.1000 0.1103 ## 5 1.2173 nan 0.1000 0.1103 ## 5 1.2173 nan 0.1000 0.0754 ## 7 1.1100 nan 0.1000 0.0754 ## 7 1.1100 nan 0.1000 0.0754 ## 8 1.0684 nan 0.1000 0.0684 ## 9 1.0255 nan 0.1000 0.0617 ## 8 1.0684 nan 0.1000 0.0618 ## 9 1.0255 nan 0.1000 0.0617 ## 10 0.9871 nan 0.1000 0.0617 ## 10 0.9871 nan 0.1000 0.0517 ## 20 0.7370 nan 0.1000 0.0517
140 0.5910 nan 0.1000 0.0021 ## 150 0.5703 nan 0.1000 0.0035 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.1817 ## 2 1.4921 nan 0.1000 0.0996 ## 4 1.3391 nan 0.1000 0.0799 ## 5 1.2864 nan 0.1000 0.0751 ## 6 1.2397 nan 0.1000 0.0655 ## 7 1.1981 nan 0.1000 0.0557 ## 9 1.1224 nan 0.1000 0.0557 ## 10 1.0952 nan 0.1000 0.0452 ## 20 0.8709 nan 0.1000 0.0451 ## 40 0.6550 nan 0.1000 0.0231 ## 40 0.6550 nan 0.1000 0.0063 ## 80 0.4051 nan 0.1000 0.0063 ## 120 0.2755 nan 0.1000 0.0063 ## 140 0.2371 nan 0.1000 0.0038 ## 140 0.2371 nan 0.1000 0.0038 ## 150 0.2174 nan 0.1000 0.0058 ## 150 0.2174 nan 0.1000 0.00684 ## 10 0.9871 nan 0.1000 0.0673 ## 8 1.0684 nan 0.1000 0.0664 ## 9 1.0255 nan 0.1000 0.0517 ## 8 1.0684 nan 0.1000 0.0615
150 0.5703 nan 0.1000 0.0035 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.1817 ## 2 1.4921 nan 0.1000 0.0996 ## 4 1.3391 nan 0.1000 0.0799 ## 5 1.2864 nan 0.1000 0.0791 ## 6 1.2397 nan 0.1000 0.0655 ## 7 1.1981 nan 0.1000 0.0557 ## 9 1.1224 nan 0.1000 0.0557 ## 10 1.0952 nan 0.1000 0.0451 ## 20 0.8709 nan 0.1000 0.0421 ## 40 0.6550 nan 0.1000 0.0231 ## 80 0.4051 nan 0.1000 0.0106 ## 80 0.4051 nan 0.1000 0.0106 ## 80 0.4051 nan 0.1000 0.0063 ## 120 0.2755 nan 0.1000 0.0063 ## 140 0.2371 nan 0.1000 0.0058 ## 140 0.2371 nan 0.1000 0.0058 ## 150 0.2174 nan 0.1000 0.0058 ## 140 0.2371 nan 0.1000 0.0058 ## 150 0.2174 nan 0.1000 0.0058 ## 150 0.2174 nan 0.1000 0.0058 ## 140 0.2371 nan 0.1000 0.0058 ## 150 0.2174 nan 0.1000 0.0058 ## 150 0.2174 nan 0.1000 0.0058 ## 140 0.2371 nan 0.1000 0.0058 ## 150 0.2174 nan 0.1000 0.0058 ## 170 0.2174 nan 0.1000 0.0058 ## 180 0.4051 nan 0.1000 0.0058 ## 190 0.2174 nan 0.1000 0.0058 ## 100 0.2371 nan 0.1000 0.00673 ## 20 0.2055 nan 0.1000 0.00674 ## 3 1.2055 nan 0.1000 0.0684 ## 9 1.0255 nan 0.1000 0.0517 ## 8 1.0055 nan 0.1000 0.00517
Item
Item
1 1.6094
1 1.6094
2 1.4921
##
4 1.3391
5 1.2864
6 1.2397
7 1.1981
8 1.1578
10 1.1224 nan 0.1000 0.0422 ## 10 1.0952 nan 0.1000 0.0451 ## 20 0.8709 nan 0.1000 0.0231 ## 40 0.6550 nan 0.1000 0.0107 ## 60 0.5112 nan 0.1000 0.0106 ## 80 0.4051 nan 0.1000 0.0070 ## 100 0.3322 nan 0.1000 0.0063 ## 120 0.2755 nan 0.1000 0.0036 ## 140 0.2371 nan 0.1000 0.0058 ## 150 0.2174 nan 0.1000 0.0058 ## 25 0.2174 nan 0.1000 0.0035 ## 15 0.2174 nan 0.1000 0.0351 ## 2 1.6094 nan 0.1000 0.2317 ## 3 1.3585 nan 0.1000 0.1702 ## 3 1.3585 nan 0.1000 0.1702 ## 4 1.2831 nan 0.1000 0.1037 ## 5 1.2173 nan 0.1000 0.0916 ## 6 1.1593 nan 0.1000 0.0916 ## 7 1.1100 nan 0.1000 0.0754 ## 7 1.1100 nan 0.1000 0.0673 ## 8 1.0684 nan 0.1000 0.0664 ## 9 1.0255 nan 0.1000 0.0517 ## 10 0.9871 nan 0.1000 0.0517 ## 10 0.9871 nan 0.1000 0.0517
10 1.0952
40 0.8709 nan 0.1000 0.0231 ## 40 0.6550 nan 0.1000 0.0107 ## 60 0.5112 nan 0.1000 0.0106 ## 80 0.4051 nan 0.1000 0.0070 ## 100 0.3322 nan 0.1000 0.0063 ## 120 0.2755 nan 0.1000 0.0036 ## 140 0.2371 nan 0.1000 0.0058 ## 150 0.2174 nan 0.1000 0.0035 ## 1 1 1.6094 nan 0.1000 0.2317 ## 2 1.4652 nan 0.1000 0.1702 ## 3 1.3585 nan 0.1000 0.1702 ## 4 1.2831 nan 0.1000 0.1037 ## 5 1.2173 nan 0.1000 0.1037 ## 5 1.2173 nan 0.1000 0.0916 ## 6 1.1593 nan 0.1000 0.0754 ## 7 1.1100 nan 0.1000 0.0754 ## 8 1.0684 nan 0.1000 0.0673 ## 8 1.0684 nan 0.1000 0.06615 ## 9 1.0255 nan 0.1000 0.0517 ## 10 0.9871 nan 0.1000 0.0314
40 0.6550 nan 0.1000 0.0107 ## 60 0.5112 nan 0.1000 0.0106 ## 80 0.4051 nan 0.1000 0.0070 ## 100 0.3322 nan 0.1000 0.0036 ## 120 0.2755 nan 0.1000 0.0036 ## 150 0.2174 nan 0.1000 0.0035 ## 150 0.2174 nan 0.1000 0.0035 ## 1 1 1.6094 nan 0.1000 0.2317 ## 2 1.4652 nan 0.1000 0.1702 ## 3 1.3585 nan 0.1000 0.1702 ## 4 1.2831 nan 0.1000 0.1037 ## 5 1.2173 nan 0.1000 0.0916 ## 6 1.1593 nan 0.1000 0.0754 ## 7 1.1100 nan 0.1000 0.0754 ## 7 1.1100 nan 0.1000 0.0673 ## 8 1.0684 nan 0.1000 0.0673 ## 9 1.0255 nan 0.1000 0.0615 ## 10 0.9871 nan 0.1000 0.0517 ## 20 0.7370 nan 0.1000 0.0314
60 0.5112 nan 0.1000 0.0106 ## 80 0.4051 nan 0.1000 0.0070 ## 100 0.3322 nan 0.1000 0.0063 ## 140 0.2755 nan 0.1000 0.0058 ## 150 0.2174 nan 0.1000 0.0035 ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.2317 ## 2 1.4652 nan 0.1000 0.1702 ## 3 1.3585 nan 0.1000 0.1702 ## 4 1.2831 nan 0.1000 0.1037 ## 5 1.2173 nan 0.1000 0.0916 ## 6 1.1593 nan 0.1000 0.0754 ## 7 1.1100 nan 0.1000 0.0673 ## 8 1.0684 nan 0.1000 0.0673 ## 8 1.0684 nan 0.1000 0.0615 ## 10 0.9871 nan 0.1000 0.0517 ## 20 0.7370 nan 0.1000 0.0314
80 0.4051 nan 0.1000 0.0070 ## 100 0.3322 nan 0.1000 0.0063 ## 120 0.2755 nan 0.1000 0.0036 ## 140 0.2371 nan 0.1000 0.0035 ## 150 0.2174 nan 0.1000 0.0035 ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1 1.6094 nan 0.1000 0.2317 ## 2 1.4652 nan 0.1000 0.1702 ## 3 1.3585 nan 0.1000 0.1195 ## 4 1.2831 nan 0.1000 0.1037 ## 5 1.2173 nan 0.1000 0.0916 ## 6 1.1593 nan 0.1000 0.0754 ## 7 1.1100 nan 0.1000 0.0673 ## 8 1.0684 nan 0.1000 0.0684 ## 9 1.0255 nan 0.1000 0.0615 ## 10 0.9871 nan 0.1000 0.0517 ## 20 0.7370 nan 0.1000 0.0314
100 0.3322 nan 0.1000 0.0063 ## 120 0.2755 nan 0.1000 0.0036 ## 140 0.2371 nan 0.1000 0.0058 ## 150 0.2174 nan 0.1000 0.0035 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.2317 ## 2 1.4652 nan 0.1000 0.1702 ## 3 1.3585 nan 0.1000 0.1195 ## 4 1.2831 nan 0.1000 0.1037 ## 5 1.2173 nan 0.1000 0.0916 ## 6 1.1593 nan 0.1000 0.0754 ## 7 1.1100 nan 0.1000 0.0673 ## 8 1.0684 nan 0.1000 0.0673 ## 8 1.0684 nan 0.1000 0.0684 ## 9 1.0255 nan 0.1000 0.0615 ## 10 0.9871 nan 0.1000 0.0517 ## 20 0.7370 nan 0.1000 0.0314
120 0.2755 nan 0.1000 0.0036 ## 140 0.2371 nan 0.1000 0.0058 ## 150 0.2174 nan 0.1000 0.0035 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1 0.6094 nan 0.1000 0.2317 ## 2 1.4652 nan 0.1000 0.1702 ## 3 1.3585 nan 0.1000 0.1195 ## 4 1.2831 nan 0.1000 0.1037 ## 5 1.2173 nan 0.1000 0.0916 ## 6 1.1593 nan 0.1000 0.0754 ## 7 1.1100 nan 0.1000 0.0673 ## 8 1.0684 nan 0.1000 0.0684 ## 9 1.0255 nan 0.1000 0.0615 ## 10 0.9871 nan 0.1000 0.0517 ## 20 0.7370 nan 0.1000 0.0314
140 0.2371 nan 0.1000 0.0058 ## 150 0.2174 nan 0.1000 0.0035 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 2 1.4652 nan 0.1000 0.1702 ## 3 1.3585 nan 0.1000 0.1195 ## 4 1.2831 nan 0.1000 0.1037 ## 5 1.2173 nan 0.1000 0.0916 ## 6 1.1593 nan 0.1000 0.0754 ## 7 1.1100 nan 0.1000 0.0673 ## 8 1.0684 nan 0.1000 0.0684 ## 9 1.0255 nan 0.1000 0.0615 ## 10 0.9871 nan 0.1000 0.0517 ## 20 0.7370 nan 0.1000 0.0314
150
Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.2317 ## 2 1.4652 nan 0.1000 0.1702 ## 3 1.3585 nan 0.1000 0.1195 ## 4 1.2831 nan 0.1000 0.1037 ## 5 1.2173 nan 0.1000 0.0916 ## 6 1.1593 nan 0.1000 0.0754 ## 7 1.1100 nan 0.1000 0.0673 ## 8 1.0684 nan 0.1000 0.0684 ## 9 1.0255 nan 0.1000 0.0615 ## 10 0.9871 nan 0.1000 0.0517 ## 20 0.7370 nan 0.1000 0.0314
Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.2317 ## 2 1.4652 nan 0.1000 0.1702 ## 3 1.3585 nan 0.1000 0.1195 ## 4 1.2831 nan 0.1000 0.1037 ## 5 1.2173 nan 0.1000 0.0916 ## 6 1.1593 nan 0.1000 0.0754 ## 7 1.1100 nan 0.1000 0.0673 ## 8 1.0684 nan 0.1000 0.0684 ## 9 1.0255 nan 0.1000 0.0615 ## 10 0.9871 nan 0.1000 0.0517 ## 20 0.7370 nan 0.1000 0.0314
1 1.6094 nan 0.1000 0.2317 ## 2 1.4652 nan 0.1000 0.1702 ## 3 1.3585 nan 0.1000 0.1195 ## 4 1.2831 nan 0.1000 0.1037 ## 5 1.2173 nan 0.1000 0.0916 ## 6 1.1593 nan 0.1000 0.0754 ## 7 1.1100 nan 0.1000 0.0673 ## 8 1.0684 nan 0.1000 0.0684 ## 9 1.0255 nan 0.1000 0.0615 ## 10 0.9871 nan 0.1000 0.0517 ## 20 0.7370 nan 0.1000 0.0314
2 1.4652 nan 0.1000 0.1702 ## 3 1.3585 nan 0.1000 0.1195 ## 4 1.2831 nan 0.1000 0.1037 ## 5 1.2173 nan 0.1000 0.0916 ## 6 1.1593 nan 0.1000 0.0754 ## 7 1.1100 nan 0.1000 0.0673 ## 8 1.0684 nan 0.1000 0.0684 ## 9 1.0255 nan 0.1000 0.0615 ## 10 0.9871 nan 0.1000 0.0517 ## 20 0.7370 nan 0.1000 0.0314
3 1.3585 nan 0.1000 0.1195 ## 4 1.2831 nan 0.1000 0.1037 ## 5 1.2173 nan 0.1000 0.0916 ## 6 1.1593 nan 0.1000 0.0754 ## 7 1.1100 nan 0.1000 0.0673 ## 8 1.0684 nan 0.1000 0.0684 ## 9 1.0255 nan 0.1000 0.0615 ## 10 0.9871 nan 0.1000 0.0517 ## 20 0.7370 nan 0.1000 0.0314
4 1.2831 nan 0.1000 0.1037 ## 5 1.2173 nan 0.1000 0.0916 ## 6 1.1593 nan 0.1000 0.0754 ## 7 1.1100 nan 0.1000 0.0673 ## 8 1.0684 nan 0.1000 0.0684 ## 9 1.0255 nan 0.1000 0.0615 ## 10 0.9871 nan 0.1000 0.0517 ## 20 0.7370 nan 0.1000 0.0314
5 1.2173 nan 0.1000 0.0916 ## 6 1.1593 nan 0.1000 0.0754 ## 7 1.1100 nan 0.1000 0.0673 ## 8 1.0684 nan 0.1000 0.0684 ## 9 1.0255 nan 0.1000 0.0615 ## 10 0.9871 nan 0.1000 0.0517 ## 20 0.7370 nan 0.1000 0.0314
6 1.1593 nan 0.1000 0.0754 ## 7 1.1100 nan 0.1000 0.0673 ## 8 1.0684 nan 0.1000 0.0684 ## 9 1.0255 nan 0.1000 0.0615 ## 10 0.9871 nan 0.1000 0.0517 ## 20 0.7370 nan 0.1000 0.0314
7 1.1100 nan 0.1000 0.0673 ## 8 1.0684 nan 0.1000 0.0684 ## 9 1.0255 nan 0.1000 0.0615 ## 10 0.9871 nan 0.1000 0.0517 ## 20 0.7370 nan 0.1000 0.0314
8 1.0684 nan 0.1000 0.0684 ## 9 1.0255 nan 0.1000 0.0615 ## 10 0.9871 nan 0.1000 0.0517 ## 20 0.7370 nan 0.1000 0.0314
9 1.0255 nan 0.1000 0.0615 ## 10 0.9871 nan 0.1000 0.0517 ## 20 0.7370 nan 0.1000 0.0314
9 1.0255 nan 0.1000 0.0615 ## 10 0.9871 nan 0.1000 0.0517 ## 20 0.7370 nan 0.1000 0.0314
10 0.9871 nan 0.1000 0.0517 ## 20 0.7370 nan 0.1000 0.0314
20 0.7370 nan 0.1000 0.0314
60 0.3445 nan 0.1000 0.0108
80 0.2518 nan 0.1000 0.0045
100 0.1947 nan 0.1000 0.0046
140 0.1221 nan 0.1000 0.0018
150 0.1086 nan 0.1000 0.0010
##
Iter TrainDeviance ValidDeviance StepSize Improve
1 1.6094 nan 0.1000 0.1252
2 1.5249 nan 0.1000 0.0840
3 1.4682 nan 0.1000 0.0650

## 4 1.4254 nan	0.1000	0.0528
## 5 1.3897 nan	0.1000	0.0469
## 6 1.3593 nan	0.1000	0.0389
## 7 1.3340 nan	0.1000	0.0386
## 8 1.3092 nan	0.1000	0.0321
## 9 1.2881 nan	0.1000	0.0364
## 10 1.2645 nan	0.1000	0.0272
## 20 1.1118 nan	0.1000	0.0187
## 40 0.9433 nan	0.1000	0.0098
## 60 0.8411 nan	0.1000	0.0070
## 80 0.7629 nan	0.1000	0.0058
## 100 0.6998 nan	0.1000	0.0038
## 120 0.6461 nan	0.1000	0.0034
## 140 0.6014 nan	0.1000	0.0029
## 150 0.5812 nan	0.1000	0.0041
##		
	StepSize	Improve
## 1 1.6094 nan	0.1000	0.1800
## 2 1.4935 nan	0.1000	0.1261
## 3 1.4105 nan	0.1000	0.1030
## 4 1.3442 nan	0.1000	0.1030
## 5 1.2914 nan	0.1000	0.0700
## 6 1.2464 nan	0.1000	0.0595
## 7 1.2083 nan	0.1000	0.0663
## 8 1.1681 nan	0.1000	0.0451
## 9 1.1386 nan	0.1000	0.0451
## 10 1.1090 nan	0.1000	0.0434
## 20 0.8930 nan	0.1000	0.0402
## 40 0.6767 nan	0.1000	0.0283
	0.1000	0.0140
		0.0133
	0.1000	
	0.1000	0.0052
## 120 0.2848 nan	0.1000	0.0023
## 140 0.2425 nan	0.1000	0.0021
## 150 0.2255 nan	0.1000	0.0018
##	7+0~0-	Tw
	StepSize	Improve
## 1 1.6094 nan	0.1000	0.2227
## 2 1.4660 nan	0.1000	0.1561
## 3 1.3653 nan	0.1000	0.1217
## 4 1.2879 nan	0.1000	0.1024
## 5 1.2219 nan	0.1000	0.0789
## 6 1.1710 nan	0.1000	0.0800
## 7 1.1201 nan	0.1000	0.0823
## 8 1.0690 nan	0.1000	0.0570
## 9 1.0335 nan	0.1000	0.0684
## 10 0.9915 nan	0.1000	0.0564
## 20 0.7382 nan	0.1000	0.0241
## 40 0.4952 nan	0.1000	0.0132

					0.05.55
##	60	0.3581	nan	0.1000	0.0069
##	80	0.2688	nan	0.1000	0.0051
##	100	0.2015	nan	0.1000	0.0035
##	120	0.1592	nan	0.1000	0.0021
##	140	0.1264	nan	0.1000	0.0023
##	150	0.1140	nan	0.1000	0.0020
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1257
##	2	1.5259	nan	0.1000	0.0849
##	3	1.4706	nan	0.1000	0.0675
##	4	1.4273	nan	0.1000	0.0516
##	5	1.3940	nan	0.1000	0.0513
##	6	1.3618	nan	0.1000	0.0378
##	7	1.3370	nan	0.1000	0.0402
##	8	1.3123	nan	0.1000	0.0372
##	9	1.2883	nan	0.1000	0.0305
##	10	1.2667	nan	0.1000	0.0300
##	20	1.1070	nan	0.1000	0.0176
##	40	0.9376		0.1000	0.0176
##	60	0.8342	nan	0.1000	0.0073
##	80	0.7567	nan		0.0073
			nan	0.1000	
##	100	0.6917	nan	0.1000	0.0042
##	120	0.6396	nan	0.1000	0.0038
##	140	0.5943	nan	0.1000	0.0023
##	150	0.5745	nan	0.1000	0.0021
##					_
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1923
##	2	1.4870	nan	0.1000	0.1292
##	3	1.4045	nan	0.1000	0.1012
##	4	1.3394	nan	0.1000	0.0841
##	5	1.2843	nan	0.1000	0.0718
##	6	1.2377	nan	0.1000	0.0638
##	7	1.1972	nan	0.1000	0.0468
##	8	1.1657	nan	0.1000	0.0477
##	9	1.1357	nan	0.1000	0.0554
##	10	1.1021	nan	0.1000	0.0412
##	20	0.8867	nan	0.1000	0.0268
##	40	0.6701	nan	0.1000	0.0155
##	60	0.5191	nan	0.1000	0.0069
##	80	0.4097	nan	0.1000	0.0085
##	100	0.3371	nan	0.1000	0.0074
##	120	0.2843	nan	0.1000	0.0027
##	140	0.2395	nan	0.1000	0.0024
##	150	0.2228	nan	0.1000	0.0033
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2294
(" "	_	I.0001	11411	3.1000	J • 2 2 J I

##	2	1.4627	nan	0.1000	0.1628
##	3	1.3584	nan	0.1000	0.1307
##	4	1.2778	nan	0.1000	0.1005
##	5	1.2148	nan	0.1000	0.0910
##	6	1.1568	nan	0.1000	0.0705
##	7	1.1111	nan	0.1000	0.0716
##	8	1.0658	nan	0.1000	0.0682
##	9	1.0233	nan	0.1000	0.0688
##	10	0.9820	nan	0.1000	0.0419
##	20	0.7289	nan	0.1000	0.0272
##	40	0.4914	nan	0.1000	0.0123
##	60	0.3391	nan	0.1000	0.0066
##	80	0.2578	nan	0.1000	0.0053
##	100	0.2041	nan	0.1000	0.0044
##	120	0.1588	nan	0.1000	0.0039
##	140	0.1261	nan	0.1000	0.0012
##	150	0.1143	nan	0.1000	0.0017
##	100	0.1110	11411	3.1000	3.0011
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1277
##	2	1.5240	nan	0.1000	0.0883
##	3	1.4659	nan	0.1000	0.0684
##	4	1.4216	nan	0.1000	0.0546
##	5	1.3865		0.1000	0.0517
##	6		nan	0.1000	0.0317
##	7	1.3541	nan		
		1.3295	nan	0.1000	0.0408
##	8	1.3042	nan	0.1000	0.0343
##	9	1.2821	nan	0.1000	0.0355
##	10	1.2585	nan	0.1000	0.0287
##	20	1.1054	nan	0.1000	0.0181
##	40	0.9305	nan	0.1000	0.0104
##	60	0.8246	nan	0.1000	0.0069
##	80	0.7461	nan	0.1000	0.0043
##	100	0.6831	nan	0.1000	0.0046
##	120	0.6315	nan	0.1000	0.0045
##	140	0.5880	nan	0.1000	0.0039
##	150	0.5674	nan	0.1000	0.0030
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1817
##	2	1.4907	nan	0.1000	0.1286
##	3	1.4058	nan	0.1000	0.1004
##	4	1.3401	nan	0.1000	0.0886
##	5	1.2827	nan	0.1000	0.0717
##	6	1.2368	nan	0.1000	0.0614
##	7	1.1968	nan	0.1000	0.0533
##	8	1.1617	nan	0.1000	0.0627
##	9	1.1241	nan	0.1000	0.0403
##	10	1.0978	nan	0.1000	0.0516
(

##	20	0.8840	nan	0.1000	0.0221
##	40	0.6646	nan	0.1000	0.0091
##	60	0.5225	nan	0.1000	0.0085
##	80	0.4169	nan	0.1000	0.0090
##	100	0.3429	nan	0.1000	0.0064
##	120	0.2867	nan	0.1000	0.0027
##	140	0.2415	nan	0.1000	0.0047
##	150	0.2196	nan	0.1000	0.0021
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2296
##	2	1.4613	nan	0.1000	0.1610
##	3	1.3589	nan	0.1000	0.1252
##	4	1.2783	nan	0.1000	0.1013
##	5	1.2140	nan	0.1000	0.0806
##	6	1.1610	nan	0.1000	0.0904
	7				
##		1.1040	nan	0.1000	0.0640
##	8	1.0631	nan	0.1000	0.0637
##	9	1.0231	nan	0.1000	0.0632
##	10	0.9844	nan	0.1000	0.0536
##	20	0.7287	nan	0.1000	0.0203
##	40	0.4880	nan	0.1000	0.0224
##	60	0.3443	nan	0.1000	0.0062
##	80	0.2530	nan	0.1000	0.0047
##	100	0.1955	nan	0.1000	0.0062
##	120	0.1569	nan	0.1000	0.0035
##	140	0.1250	nan	0.1000	0.0024
##	150	0.1127	nan	0.1000	0.0008
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1279
##	2	1.5245	nan	0.1000	0.0901
##	3	1.4667	nan	0.1000	0.0653
##	4	1.4235	nan	0.1000	0.0546
##	5	1.3872	nan	0.1000	0.0425
##	6	1.3599	nan	0.1000	0.0444
##	7	1.3318	nan	0.1000	0.0354
##	8	1.3086	nan	0.1000	0.0395
##	9	1.2813	nan	0.1000	0.0295
##	10	1.2627	nan	0.1000	0.0298
##	20	1.1057	nan	0.1000	0.0180
##	40	0.9366	nan	0.1000	0.0078
##	60	0.8340	nan	0.1000	0.0070
##	80	0.7562	nan	0.1000	0.0070
	100	0.6933		0.1000	0.0044
##			nan		
##	120	0.6405	nan	0.1000	0.0028
##	140	0.5941	nan	0.1000	0.0040
##	150	0.5750	nan	0.1000	0.0019
##					

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1851
##	2	1.4898	nan	0.1000	0.1319
##	3	1.4062	nan	0.1000	0.1017
##	4	1.3401	nan	0.1000	0.0881
##	5	1.2840	nan	0.1000	0.0783
##	6	1.2343	nan	0.1000	0.0579
##	7	1.1968	nan	0.1000	0.0536
##	8	1.1626	nan	0.1000	0.0545
##	9	1.1279	nan	0.1000	0.0523
##	10	1.0953	nan	0.1000	0.0432
##	20	0.8883	nan	0.1000	0.0204
##	40	0.6721	nan	0.1000	0.0109
##	60	0.5309	nan	0.1000	0.0088
##	80	0.4226	nan	0.1000	0.0056
##	100	0.3461	nan	0.1000	0.0053
##	120	0.2968	nan	0.1000	0.0027
##	140	0.2529	nan	0.1000	0.0040
##	150	0.2341	nan	0.1000	0.0024
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2266
##	2	1.4629	nan	0.1000	0.1637
##	3	1.3600	nan	0.1000	0.1258
##	4	1.2814	nan	0.1000	0.1051
##	5	1.2146	nan	0.1000	0.0930
##	6	1.1580	nan	0.1000	0.0689
##	7	1.1140	nan	0.1000	0.0839
##	8	1.0623	nan	0.1000	0.0632
##	9	1.0228	nan	0.1000	0.0550
##	10	0.9884	nan	0.1000	0.0534
##	20	0.7424	nan	0.1000	0.0254
##	40	0.4922	nan	0.1000	0.0129
##	60	0.3481	nan	0.1000	0.0075
##	80	0.2638	nan	0.1000	0.0042
##	100	0.2037	nan	0.1000	0.0037
##	120	0.1614	nan	0.1000	0.0026
##	140	0.1295	nan	0.1000	0.0020
##	150	0.1176	nan	0.1000	0.0014
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1271
##	2	1.5248	nan	0.1000	0.0863
##	3	1.4682	nan	0.1000	0.0703
##	4	1.4232	nan	0.1000	0.0521
##	5	1.3894	nan	0.1000	0.0464
##	6	1.3592	nan	0.1000	0.0438
##	7	1.3321	nan	0.1000	0.0378
##	8	1.3077	nan	0.1000	0.0370
(

##	9	1.2831	nan	0.1000	0.0317
##	10	1.2624	nan	0.1000	0.0325
##	20	1.1070	nan	0.1000	0.0175
##	40	0.9367	nan	0.1000	0.0098
##	60	0.8330	nan	0.1000	0.0064
##	80	0.7574	nan	0.1000	0.0049
##	100	0.6956	nan	0.1000	0.0033
##	120	0.6440	nan	0.1000	0.0030
##	140	0.5986	nan	0.1000	0.0032
##	150	0.5769	nan	0.1000	0.0030
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1784
##	2	1.4930	nan	0.1000	0.1253
##	3	1.4113	nan	0.1000	0.1099
##	4	1.3408	nan	0.1000	0.0833
##	5	1.2872	nan	0.1000	0.0733
##	6	1.2408	nan	0.1000	0.0625
##	7	1.2018	nan	0.1000	0.0549
##	8	1.1666	nan	0.1000	0.0461
##	9	1.1362	nan	0.1000	0.0503
##	10	1.1053	nan	0.1000	0.0438
##	20	0.8882	nan	0.1000	0.0237
##	40	0.6657	nan	0.1000	0.0099
##	60	0.5255	nan	0.1000	0.0092
##	80	0.4188	nan	0.1000	0.0057
##	100	0.3432	nan	0.1000	0.0037
##	120	0.2859	nan	0.1000	0.0052
##	140	0.2411	nan	0.1000	0.0052
##	150	0.2192	nan	0.1000	0.0035
##	100	0.2172	παπ	3.1000	0.0000
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2309
##	2	1.4648	nan	0.1000	0.1610
##	3	1.3636		0.1000	0.1010
##			nan	0.1000	0.1240
	4	1.2841	nan		0.0798
##	5	1.2141	nan	0.1000	
##	6	1.1634	nan	0.1000	0.0795
##	7	1.1145	nan	0.1000	0.0713
##	8	1.0700	nan	0.1000	0.0722
##	9	1.0251	nan	0.1000	0.0667
##	10	0.9852	nan	0.1000	0.0571
##	20	0.7402	nan	0.1000	0.0372
##	40	0.4868	nan	0.1000	0.0164
##	60	0.3490	nan	0.1000	0.0074
##	80	0.2622	nan	0.1000	0.0034
##	100	0.2012	nan	0.1000	0.0042
##	120	0.1570	nan	0.1000	0.0026
##	140	0.1246	nan	0.1000	0.0023

##	150	0.1132	nan	0.1000	0.0017
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1302
##	2	1.5223	nan	0.1000	0.0878
##	3	1.4645	nan	0.1000	0.0695
##	4	1.4196	nan	0.1000	0.0549
##	5	1.3834	nan	0.1000	0.0434
##	6	1.3542	nan	0.1000	0.0442
##	7	1.3260	nan	0.1000	0.0342
##	8	1.3042	nan	0.1000	0.0343
##	9	1.2825	nan	0.1000	0.0335
##	10	1.2595	nan	0.1000	0.0314
##	20	1.1051	nan	0.1000	0.0210
##	40	0.9352	nan	0.1000	0.0095
##	60	0.8346	nan	0.1000	0.0062
##	80	0.7604	nan	0.1000	0.0061
##	100	0.6961	nan	0.1000	0.0054
##	120	0.6401	nan	0.1000	0.0033
##	140	0.5938	nan	0.1000	0.0025
##	150	0.5755	nan	0.1000	0.0026
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1844
##	2	1.4908	nan	0.1000	0.1328
##	3	1.4053	nan	0.1000	0.0999
##	4	1.3409	nan	0.1000	0.0847
##	5	1.2869	nan	0.1000	0.0713
##	6	1.2409	nan	0.1000	0.0585
##	7	1.2032	nan	0.1000	0.0518
##	8	1.1691	nan	0.1000	0.0585
##	9	1.1327	nan	0.1000	0.0482
##	10	1.1019	nan	0.1000	0.0385
##	20	0.8892	nan	0.1000	0.0363
##	40	0.6717		0.1000	0.0195
##	60	0.5254	nan	0.1000	0.0143
			nan		
##	100	0.4224	nan	0.1000	0.0046
##	100	0.3470	nan	0.1000	0.0047
##	120	0.2885	nan	0.1000	0.0017
##	140	0.2425	nan	0.1000	0.0041
##	150	0.2213	nan	0.1000	0.0023
##			1 1 1- 1		_
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2301
##	2	1.4645	nan	0.1000	0.1621
##	3	1.3604	nan	0.1000	0.1245
##	4	1.2819	nan	0.1000	0.0960
##	5	1.2216	nan	0.1000	0.0877
##	6	1.1660	nan	0.1000	0.0842

##	7	1.1126	nan	0.1000	0.0771
##	8	1.0657	nan	0.1000	0.0654
##	9	1.0251	nan	0.1000	0.0573
##	10	0.9890	nan	0.1000	0.0610
##	20	0.7352	nan	0.1000	0.0296
##	40	0.4878	nan	0.1000	0.0069
##	60	0.3558	nan	0.1000	0.0066
##	80	0.2708	nan	0.1000	0.0055
##	100	0.2093	nan	0.1000	0.0031
##	120	0.1655	nan	0.1000	0.0031
##	140	0.1335	nan	0.1000	0.0026
##	150	0.1194	nan	0.1000	0.0018
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1309
##	2	1.5229	nan	0.1000	0.0858
##	3	1.4663	nan	0.1000	0.0697
##	4	1.4207	nan	0.1000	0.0550
##	5	1.3855	nan	0.1000	0.0517
##	6	1.3521	nan	0.1000	0.0382
##	7	1.3266	nan	0.1000	0.0387
##	8	1.3022	nan	0.1000	0.0350
##	9	1.2799	nan	0.1000	0.0353
##	10	1.2552	nan	0.1000	0.0315
##	20	1.1009	nan	0.1000	0.0182
##	40	0.9286	nan	0.1000	0.0091
##	60	0.8252	nan	0.1000	0.0063
##	80	0.7492	nan	0.1000	0.0045
##	100	0.6882	nan	0.1000	0.0036
##	120	0.6346	nan	0.1000	0.0027
##	140	0.5895	nan	0.1000	0.0033
##	150	0.5696	nan	0.1000	0.0035
##	100	0.0000	11411	3.1000	3.0000
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1840
##	2	1.4902	nan	0.1000	0.1366
##	3	1.4029	nan	0.1000	0.0991
##	4	1.3389	nan	0.1000	0.0861
##	5	1.2831	nan	0.1000	0.0720
##	6	1.2356	nan	0.1000	0.0534
##	7	1.1990	nan	0.1000	0.0621
##	8	1.1594	nan	0.1000	0.0485
##	9	1.1280	nan	0.1000	0.0483
##	10	1.1280		0.1000	0.0423
##	20	0.8757	nan	0.1000	0.0427
			nan		
##	40	0.6522	nan	0.1000	0.0179
##	60	0.5145	nan	0.1000	0.0061
##	100	0.4115	nan	0.1000	0.0086
##	100	0.3437	nan	0.1000	0.0040

##	120	0.2851	nan	0.1000	0.0018
##	140	0.2410	nan	0.1000	0.0028
##	150	0.2229	nan	0.1000	0.0026
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2252
##	2	1.4664	nan	0.1000	0.1650
##	3	1.3609	nan	0.1000	0.1263
##	4	1.2810	nan	0.1000	0.1054
##	5	1.2152	nan	0.1000	0.0940
##	6	1.1562	nan	0.1000	0.0913
##	7	1.1000	nan	0.1000	0.0657
##	8	1.0578	nan	0.1000	0.0596
##	9	1.0205	nan	0.1000	0.0648
##	10	0.9796	nan	0.1000	0.0618
##	20	0.7251	nan	0.1000	0.0325
##	40	0.4879	nan	0.1000	0.0160
##	60	0.3487	nan	0.1000	0.0100
##	80	0.2593	nan	0.1000	0.0074
##	100	0.1977	nan	0.1000	0.0031
##	120	0.1551	nan	0.1000	0.0048
##	140	0.1234	nan	0.1000	0.0019
##	150	0.1123	nan	0.1000	0.0014
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1278
##	2	1.5240	nan	0.1000	0.0888
##	3	1.4660	nan	0.1000	0.0652
##	4	1.4228	nan	0.1000	0.0521
##	5	1.3882	nan	0.1000	0.0507
##	6	1.3557	nan	0.1000	0.0410
##	7	1.3281	nan	0.1000	0.0364
##	8	1.3050	nan	0.1000	0.0371
##	9	1.2796	nan	0.1000	0.0347
##	10	1.2580	nan	0.1000	0.0270
##	20	1.1079	nan	0.1000	0.0169
##	40	0.9380	nan	0.1000	0.0083
##	60	0.8348	nan	0.1000	0.0057
##	80	0.7580	nan	0.1000	0.0051
##	100	0.6965	nan	0.1000	0.0042
##	120	0.6431	nan	0.1000	0.0039
##	140	0.5965	nan	0.1000	0.0029
##	150	0.5739	nan	0.1000	0.0023
##	100	0.0709	11411	3.1000	0.0022
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1783
##	2	1.4925	nan	0.1000	0.1342
##	3	1.4057	nan	0.1000	0.1019
##	4	1.3396	nan	0.1000	0.0830
(""	-1	1.5550	nan	3.1000	0.0000

(n n					0 0 7 7 7
##	5	1.2857	nan	0.1000	0.0661
##	6	1.2422	nan	0.1000	0.0639
##	7	1.2015	nan	0.1000	0.0589
##	8	1.1629	nan	0.1000	0.0451
##	9	1.1334	nan	0.1000	0.0456
##	10	1.1048	nan	0.1000	0.0435
##	20	0.8876	nan	0.1000	0.0206
##	40	0.6668	nan	0.1000	0.0120
##	60	0.5187	nan	0.1000	0.0099
##	80	0.4198	nan	0.1000	0.0049
##	100	0.3458	nan	0.1000	0.0043
##	120	0.2925	nan	0.1000	0.0042
##	140	0.2448	nan	0.1000	0.0030
##	150	0.2278	nan	0.1000	0.0012
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2227
##	2	1.4644	nan	0.1000	0.1602
##	3	1.3631	nan	0.1000	0.1220
##	4	1.2841	nan	0.1000	0.1108
##	5	1.2142	nan	0.1000	0.1111
##	6	1.1453	nan	0.1000	0.0734
##	7	1.0986	nan	0.1000	0.0738
##	8	1.0526	nan	0.1000	0.0652
##	9	1.0129	nan	0.1000	0.0497
##	10	0.9814	nan	0.1000	0.0600
##	20	0.7254	nan	0.1000	0.0262
##	40	0.4946	nan	0.1000	0.0186
##	60	0.3417	nan	0.1000	0.0105
##	80	0.2576	nan	0.1000	0.0054
##	100	0.1976	nan	0.1000	0.0026
##	120	0.1569	nan	0.1000	0.0027
##	140	0.1258	nan	0.1000	0.0015
##	150	0.1117	nan	0.1000	0.0038
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1243
##	2	1.5255	nan	0.1000	0.0851
##	3	1.4691	nan	0.1000	0.0658
##	4	1.4261	nan	0.1000	0.0514
##	5	1.3928	nan	0.1000	0.0429
##	6	1.3646	nan	0.1000	0.0412
##	7	1.3379	nan	0.1000	0.0357
##	8	1.3155	nan	0.1000	0.0382
##	9	1.2896	nan	0.1000	0.0308
##	10	1.2686	nan	0.1000	0.0288
##	20	1.1103	nan	0.1000	0.0201
##	40	0.9400	nan	0.1000	0.0102
##	60	0.8357	nan	0.1000	0.0062
(" "	0.0	0.0557	nan	0.1000	0.0002

##	80	0.7591	nan	0.1000	0.0038
##	100	0.6957	nan	0.1000	0.0044
##	120	0.6445	nan	0.1000	0.0027
##	140	0.5992	nan	0.1000	0.0020
##	150	0.5803	nan	0.1000	0.0033
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1841
##	2	1.4910	nan	0.1000	0.1248
##	3	1.4109	nan	0.1000	0.1040
##	4	1.3451	nan	0.1000	0.0852
##	5	1.2901	nan	0.1000	0.0742
##	6	1.2426	nan	0.1000	0.0590
##	7	1.2036	nan	0.1000	0.0611
##	8	1.1652		0.1000	0.0454
##	9	1.1353	nan	0.1000	0.0434
			nan	0.1000	
##	10	1.1048	nan		0.0488
##	20	0.8812	nan	0.1000	0.0242
##	40	0.6706	nan	0.1000	0.0152
##	60	0.5272	nan	0.1000	0.0158
##	80	0.4205	nan	0.1000	0.0039
##	100	0.3472	nan	0.1000	0.0047
##	120	0.2903	nan	0.1000	0.0022
##	140	0.2438	nan	0.1000	0.0019
##	150	0.2273	nan	0.1000	0.0029
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2245
##	2	1.4667	nan	0.1000	0.1604
##	3	1.3647	nan	0.1000	0.1249
##	4	1.2859	nan	0.1000	0.1026
##	5	1.2201	nan	0.1000	0.0814
##	6	1.1670	nan	0.1000	0.0844
##	7	1.1144	nan	0.1000	0.0697
##	8	1.0709	nan	0.1000	0.0629
##	9	1.0310	nan	0.1000	0.0625
##	10	0.9923	nan	0.1000	0.0615
##	20	0.7530	nan	0.1000	0.0319
##	40	0.4893	nan	0.1000	0.0151
##	60	0.3478	nan	0.1000	0.0087
##	80	0.2590	nan	0.1000	0.0054
##	100	0.2017	nan	0.1000	0.0029
##	120	0.1601	nan	0.1000	0.0040
##	140	0.1269	nan	0.1000	0.0024
##	150	0.1147	nan	0.1000	0.0019
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1278
##	2	1.5250	nan	0.1000	0.0920
U" "		1.0200	11411	3.1000	3.0520

##	3	1.4653	nan	0.1000	0.0672
##	4	1.4210	nan	0.1000	0.0542
##	5	1.3858	nan	0.1000	0.0431
##	6	1.3575	nan	0.1000	0.0463
##	7	1.3278	nan	0.1000	0.0376
##	8	1.3043	nan	0.1000	0.0384
##	9	1.2783	nan	0.1000	0.0308
##	10	1.2581	nan	0.1000	0.0299
##	20	1.0993	nan	0.1000	0.0199
##	40	0.9311	nan	0.1000	0.0092
##	60	0.8260	nan	0.1000	0.0060
##	80	0.7490	nan	0.1000	0.0056
##	100	0.6879	nan	0.1000	0.0043
##	120	0.6353	nan	0.1000	0.0038
##	140	0.5905	nan	0.1000	0.0041
##	150	0.5704	nan	0.1000	0.0021
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1840
##	2	1.4900	nan	0.1000	0.1298
##	3	1.4059	nan	0.1000	0.1012
##	4	1.3406	nan	0.1000	0.0848
##	5	1.2864	nan	0.1000	0.0692
##	6	1.2412	nan	0.1000	0.0621
##	7	1.2022	nan	0.1000	0.0528
##	8	1.1673	nan	0.1000	0.0542
##	9	1.1330	nan	0.1000	0.0404
##	10	1.1070	nan	0.1000	0.0482
##	20	0.8817	nan	0.1000	0.0243
##	40	0.6633	nan	0.1000	0.0088
##	60	0.5306	nan	0.1000	0.0126
##	80	0.4293	nan	0.1000	0.0101
##	100	0.3502	nan	0.1000	0.0058
##	120	0.2913	nan	0.1000	0.0068
##	140	0.2450	nan	0.1000	0.0034
##	150	0.2264	nan	0.1000	0.0024
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2316
##	2	1.4623	nan	0.1000	0.1514
##	3	1.3667	nan	0.1000	0.1492
##	4	1.2744	nan	0.1000	0.0978
##	5	1.2108	nan	0.1000	0.0939
##	6	1.1512	nan	0.1000	0.0806
##	7	1.1014	nan	0.1000	0.0867
##	8	1.0492	nan	0.1000	0.0557
##	9	1.0142	nan	0.1000	0.0595
##	10	0.9761	nan	0.1000	0.0670
##	20	0.7293	nan	0.1000	0.0260
(

##	40	0.4804	nan	0.1000	0.0124
##	60	0.3360	nan	0.1000	0.0051
##	80	0.2541	nan	0.1000	0.0068
##	100	0.1973	nan	0.1000	0.0041
##	120	0.1561	nan	0.1000	0.0024
##	140	0.1275	nan	0.1000	0.0009
##	150	0.1143	nan	0.1000	0.0009
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1280
##	2	1.5259	nan	0.1000	0.0873
##	3	1.4691	nan	0.1000	0.0649
##	4	1.4262	nan	0.1000	0.0530
##	5	1.3916	nan	0.1000	0.0507
##	6	1.3588	nan	0.1000	0.0388
##	7	1.3338	nan	0.1000	0.0405
##		1.3086		0.1000	0.0403
	8		nan		
##	9	1.2845	nan	0.1000	0.0335
##	10	1.2632	nan	0.1000	0.0269
##	20	1.1061	nan	0.1000	0.0192
##	40	0.9361	nan	0.1000	0.0092
##	60	0.8339	nan	0.1000	0.0059
##	80	0.7600	nan	0.1000	0.0049
##	100	0.6973	nan	0.1000	0.0051
##	120	0.6447	nan	0.1000	0.0035
##	140	0.5987	nan	0.1000	0.0029
##	150	0.5784	nan	0.1000	0.0029
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1813
##	2	1.4912	nan	0.1000	0.1331
##	3	1.4062	nan	0.1000	0.1010
##	4	1.3410	nan	0.1000	0.0859
##	5	1.2861	nan	0.1000	0.0645
##	6	1.2435	nan	0.1000	0.0615
##	7	1.2043	nan	0.1000	0.0602
##	8	1.1666	nan	0.1000	0.0510
##	9	1.1339	nan	0.1000	0.0556
##	10	1.0998	nan	0.1000	0.0518
##	20	0.8825	nan	0.1000	0.0190
##	40	0.6697	nan	0.1000	0.0159
##	60	0.5314	nan	0.1000	0.0117
##	80	0.4223	nan	0.1000	0.0090
##	100	0.3443	nan	0.1000	0.0041
##	120	0.2860	nan	0.1000	0.0034
##	140	0.2430	nan	0.1000	0.0030
##	150	0.2450	nan	0.1000	0.0030
##	100	0.2200	παπ	3.1000	3.0031
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
_ ππ	1001	- T O T I I D C A T O I I C G	varrabe vrance	PCCPDITE	TWDTOAG

					0 00:-
##	1	1.6094	nan	0.1000	0.2318
##	2	1.4646	nan	0.1000	0.1634
##	3	1.3615	nan	0.1000	0.1300
##	4	1.2799	nan	0.1000	0.1046
##	5	1.2130	nan	0.1000	0.0930
##	6	1.1564	nan	0.1000	0.0727
##	7	1.1095	nan	0.1000	0.0736
##	8	1.0630	nan	0.1000	0.0615
##	9	1.0235	nan	0.1000	0.0780
##	10	0.9773	nan	0.1000	0.0503
##	20	0.7229	nan	0.1000	0.0366
##	40	0.4816	nan	0.1000	0.0101
##	60	0.3498	nan	0.1000	0.0053
##	80	0.2614	nan	0.1000	0.0055
##	100	0.2012	nan	0.1000	0.0057
##	120	0.1627	nan	0.1000	0.0037
##	140	0.1292	nan	0.1000	0.0020
##	150	0.1169	nan	0.1000	0.0031
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1291
##	2	1.5222	nan	0.1000	0.0894
##	3	1.4626	nan	0.1000	0.0674
##	4	1.4181	nan	0.1000	0.0586
##	5	1.3810	nan	0.1000	0.0444
##	6	1.3514	nan	0.1000	0.0466
##	7	1.3231	nan	0.1000	0.0374
##	8	1.2989	nan	0.1000	0.0335
##	9	1.2779	nan	0.1000	0.0297
##	10	1.2591	nan	0.1000	0.0344
##	20	1.0992	nan	0.1000	0.0177
##	40	0.9297	nan	0.1000	0.0095
##	60	0.8285	nan	0.1000	0.0068
##	80	0.7520	nan	0.1000	0.0044
##	100	0.6907	nan	0.1000	0.0032
##	120	0.6385	nan	0.1000	0.0043
##	140	0.5937	nan	0.1000	0.0041
##	150	0.5731	nan	0.1000	0.0032
##	100	0.0751	11411	3.1000	0.0002
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1831
##	2	1.4885	nan	0.1000	0.1271
##	3	1.4059	nan	0.1000	0.1046
##	4	1.3398	nan	0.1000	0.0890
##	5	1.2830	nan	0.1000	0.0754
	6	1.2355		0.1000	0.0569
##	7	1.1972	nan	0.1000	0.0589
			nan		
##	8	1.1602	nan	0.1000	0.0553
##	9	1.1250	nan	0.1000	0.0444

C					
##	10	1.0977	nan	0.1000	0.0394
##		0.8793	nan	0.1000	0.0269
##	40	0.6645	nan	0.1000	0.0118
##	60	0.5203	nan	0.1000	0.0126
##	80	0.4225	nan	0.1000	0.0140
##	100	0.3383	nan	0.1000	0.0047
##	120	0.2814	nan	0.1000	0.0022
##	140	0.2413	nan	0.1000	0.0014
##	150	0.2213	nan	0.1000	0.0017
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2334
##	2	1.4621	nan	0.1000	0.1679
##		1.3570	nan	0.1000	0.1261
##		1.2792	nan	0.1000	0.1075
##		1.2119	nan	0.1000	0.0812
##		1.1602	nan	0.1000	0.0923
##		1.1046	nan	0.1000	0.0717
##		1.0606	nan	0.1000	0.0615
##		1.0213	nan	0.1000	0.0013
##		0.9786	nan	0.1000	0.0526
##		0.7311	nan	0.1000	0.0320
##		0.4864	nan	0.1000	0.0133
##		0.3496	nan	0.1000	0.0120
##		0.2563	nan	0.1000	0.0072
##		0.1986	nan	0.1000	0.0059
##		0.1557	nan	0.1000	0.0039
##		0.1239	nan	0.1000	0.0013
##		0.1107	nan	0.1000	0.0014
##	130	0.1107	IIaII	0.1000	0.0014
	Iter	TrainDeviance	ValidDeviance	StepSize	Improvo
	_				Improve
##		1.6094	nan		0.1277
##	2	1.5242	nan	0.1000	0.0892
##	3	1.4662	nan	0.1000	0.0694
##	4	1.4214	nan	0.1000	0.0545
##	5	1.3853	nan	0.1000	0.0439
##	6	1.3571	nan	0.1000	0.0433
##	7	1.3297	nan	0.1000	0.0396
##	8	1.3050	nan	0.1000	0.0406
##	9	1.2785	nan	0.1000	0.0317
##	10	1.2577	nan	0.1000	0.0288
##	20	1.1056	nan	0.1000	0.0166
##	40	0.9390	nan	0.1000	0.0091
##	60	0.8369	nan	0.1000	0.0068
##	80	0.7598	nan	0.1000	0.0041
##	100	0.6989	nan	0.1000	0.0040
##	120	0.6472	nan	0.1000	0.0033
##	140	0.6005	nan	0.1000	0.0048
##	150	0.5789	nan	0.1000	0.0028

##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1865
##	2	1.4881	nan	0.1000	0.1337
##	3	1.4028		0.1000	0.1015
##	4	1.3382	nan nan	0.1000	0.0845
##	5	1.2836		0.1000	0.0345
			nan		
##	6	1.2379	nan	0.1000	0.0624
##	7	1.1983	nan	0.1000	0.0586
##	8	1.1617	nan	0.1000	0.0534
##	9	1.1284	nan	0.1000	0.0402
##	10	1.1028	nan	0.1000	0.0390
##	20	0.8879	nan	0.1000	0.0241
##	40	0.6793	nan	0.1000	0.0142
##	60	0.5323	nan	0.1000	0.0063
##	80	0.4285	nan	0.1000	0.0079
##	100	0.3500	nan	0.1000	0.0026
##	120	0.2899	nan	0.1000	0.0021
##	140	0.2479	nan	0.1000	0.0033
##	150	0.2283	nan	0.1000	0.0026
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2318
##	2	1.4625	nan	0.1000	0.1634
##	3	1.3594	nan	0.1000	0.1198
##	4	1.2823	nan	0.1000	0.1009
##	5	1.2186	nan	0.1000	0.0938
##	6	1.1606	nan	0.1000	0.0726
##	7	1.1147	nan	0.1000	0.0681
##	8	1.0724	nan	0.1000	0.0568
##	9	1.0368	nan	0.1000	0.0566
##	10	1.0017	nan	0.1000	0.0565
##	20	0.7428	nan	0.1000	0.0273
##	40	0.4966	nan	0.1000	0.0118
##	60	0.3486	nan	0.1000	0.0078
##	80	0.2628	nan	0.1000	0.0024
##	100	0.2034	nan	0.1000	0.0023
##	120	0.1617	nan	0.1000	0.0023
##	140	0.1311	nan	0.1000	0.0018
##	150	0.1163	nan	0.1000	0.0018
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1276
##	2	1.5248	nan	0.1000	0.0851
##	3	1.4690	nan	0.1000	0.0643
##	4	1.4266	nan	0.1000	0.0539
##	5	1.3914	nan	0.1000	0.0505
##	6	1.3593	nan	0.1000	0.0386
##	7	1.3348	nan	0.1000	0.0380
(

##	8	1.3108	nan	0.1000	0.0353
##	9	1.2884	nan	0.1000	0.0348
##	10	1.2650	nan	0.1000	0.0259
##	20	1.1124	nan	0.1000	0.0198
##	40	0.9403	nan	0.1000	0.0086
##	60	0.8391	nan	0.1000	0.0055
##	80	0.7636	nan	0.1000	0.0044
##	100	0.7006	nan	0.1000	0.0043
##	120	0.6479	nan	0.1000	0.0034
##	140	0.6025	nan	0.1000	0.0026
##	150	0.5817	nan	0.1000	0.0025
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1809
##	2	1.4912	nan	0.1000	0.1283
##	3	1.4085	nan	0.1000	0.1047
##	4	1.3421	nan	0.1000	0.0848
##		1.2873			
	5		nan	0.1000	0.0673
##	6	1.2435	nan	0.1000	0.0617
##	7	1.2042	nan	0.1000	0.0568
##	8	1.1685	nan	0.1000	0.0497
##	9	1.1373	nan	0.1000	0.0523
##	10	1.1048	nan	0.1000	0.0400
##	20	0.8953	nan	0.1000	0.0212
##	40	0.6775	nan	0.1000	0.0190
##	60	0.5281	nan	0.1000	0.0070
##	80	0.4175	nan	0.1000	0.0073
##	100	0.3420	nan	0.1000	0.0038
##	120	0.2860	nan	0.1000	0.0036
##	140	0.2408	nan	0.1000	0.0041
##	150	0.2217	nan	0.1000	0.0018
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2234
##	2	1.4652	nan	0.1000	0.1651
##	3	1.3610	nan	0.1000	0.1205
##	4	1.2836	nan	0.1000	0.0967
##	5	1.2214	nan	0.1000	0.0883
##	6	1.1642	nan	0.1000	0.0734
##	7	1.1165	nan	0.1000	0.0969
##	8	1.0572	nan	0.1000	0.0616
##	9	1.0187	nan	0.1000	0.0521
##	10	0.9859	nan	0.1000	0.0460
##	20	0.7298	nan	0.1000	0.0228
	40			0.1000	
##		0.4813	nan		0.0155
##	60	0.3397	nan	0.1000	0.0071
##	80	0.2600	nan	0.1000	0.0063
##	100	0.1963	nan	0.1000	0.0025
##	120	0.1542	nan	0.1000	0.0027

## 140 0.1243 nan 0.10	0.0015
## 150 0.1110 nan 0.10	0.0012
##	
## Iter TrainDeviance ValidDeviance StepSi	ze Improve
## 1 1.6094 nan 0.10	00 0.1284
## 2 1.5230 nan 0.10	0.0866
## 3 1.4653 nan 0.10	0.0667
## 4 1.4213 nan 0.10	0.0535
## 5 1.3861 nan 0.10	0.0484
## 6 1.3547 nan 0.10	0.0395
## 7 1.3291 nan 0.10	
## 8 1.3079 nan 0.10	
## 9 1.2831 nan 0.10	
## 10 1.2615 nan 0.10	
## 20 1.1035 nan 0.10	
## 40 0.9337 nan 0.10	
## 60 0.8313 nan 0.10	
## 80 0.7528 nan 0.10	
## 100 0.6897 nan 0.10	
## 120 0.6379 nan 0.10	
## 140 0.5933 nan 0.10	
## 150 0.5749 nan 0.10	
## 130 0.3743 Hall 0.10	0.0027
## Iter TrainDeviance ValidDeviance StepSi	ze Improve
## 1 1.6094 nan 0.10	
## 2 1.4883 nan 0.10	
## 3 1.4013 nan 0.10	
## 4 1.3375 nan 0.10	
## 5 1.2824 nan 0.10	
## 6 1.2360 nan 0.10	
## 7 1.1967 nan 0.10	
## 10 1.1003 nan 0.10	
## 20 0.8816 nan 0.10	
## 40 0.6659 nan 0.10	
## 60 0.5268 nan 0.10	
## 80 0.4228 nan 0.10	
## 100 0.3508 nan 0.10	
## 120 0.2929 nan 0.10	
## 140 0.2500 nan 0.10	
## 150 0.2337 nan 0.10	0.0023
##	
## Iter TrainDeviance ValidDeviance StepSi	
## 1 1.6094 nan 0.10	
## 2 1.4630 nan 0.10	
## 3 1.3551 nan 0.10	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00 0.1014
## 4 1.2783 nan 0.10 ## 5 1.2127 nan 0.10	

##	C	_				
## 8	##	6	1.1602	nan	0.1000	0.0755
## 10 0.9899 nan 0.1000 0.0724 ## 10 0.9899 nan 0.1000 0.0539 ## 20 0.7230 nan 0.1000 0.0334 ## 40 0.4789 nan 0.1000 0.0027 ## 60 0.3476 nan 0.1000 0.0049 ## 100 0.2075 nan 0.1000 0.0049 ## 1100 0.2075 nan 0.1000 0.0025 ## 140 0.1599 nan 0.1000 0.0025 ## 150 0.1162 nan 0.1000 0.0027 ## 120 0.1599 nan 0.1000 0.0027 ## 150 0.1162 nan 0.1000 0.0027 ## 150 0.1162 nan 0.1000 0.0027 ## 1 1 0.6094 nan 0.1000 0.027 ## 2 1.5235 nan 0.1000 0.0889 ## 3 1.4648 nan 0.1000 0.0889 ## 4 1.4215 nan 0.1000 0.0551 ## 5 1.3863 nan 0.1000 0.0465 ## 5 1.3863 nan 0.1000 0.0466 ## 7 1.3281 nan 0.1000 0.0466 ## 8 1.3373 nan 0.1000 0.0466 ## 9 1.2801 nan 0.1000 0.0368 ## 9 1.2801 nan 0.1000 0.0368 ## 9 1.2801 nan 0.1000 0.0368 ## 10 1.2569 nan 0.1000 0.0368 ## 10 0.9341 nan 0.1000 0.0368 ## 10 0.9341 nan 0.1000 0.0264 ## 10 0.6905 nan 0.1000 0.0062 ## 80 0.7535 nan 0.1000 0.0062 ## 80 0.7535 nan 0.1000 0.0062 ## 1100 0.6905 nan 0.1000 0.0062 ## 120 1.1024 nan 0.1000 0.0034 ## 120 0.6365 nan 0.1000 0.0064 ## 120 1.1024 nan 0.1000 0.0064 ## 120 1.1024 nan 0.1000 0.0064 ## 120 1.1024 nan 0.1000 0.0064 ## 140 0.5946 nan 0.1000 0.0064 ## 150 0.5750 nan 0.1000 0.0034 ## 120 0.6365 nan 0.1000 0.0054 ## 140 0.5946 nan 0.1000 0.0034 ## 120 0.6365 nan 0.1000 0.0062 ## 140 0.5946 nan 0.1000 0.0034 ## 120 0.6365 nan 0.1000 0.0064 ## 150 0.5750 nan 0.1000 0.0034 ## 120 0.6365 nan 0.1000 0.0064 ## 140 0.5946 nan 0.1000 0.0034 ## 150 0.5750 nan 0.1000 0.0034 ## 140 0.5946 nan 0.1000 0.0034 ## 140 0.5946 nan 0.1000 0.0034 ## 150 0.5750 nan 0.1000 0.0034 ## 140 0.5946 nan 0.1000 0.0034 ## 140 0.5946 nan 0.1000 0.0034 ## 150 0.5750 nan 0.1000 0.0034 ## 140 0.5946 nan 0.1000 0.0034 ## 150 0.5750 nan 0.1000 0.0034 ## 150 0.5750 nan 0.1000 0.0034 ## 140 0.5946 nan 0.1000 0.0034 ## 150 0.5050 nan 0.1000 0.0034 ## 140 0.5946 nan 0.1000 0.0036 ## 140 0.6694 nan 0.1000 0.00425 ## 140 0.6694 nan 0.1000 0.00115				nan		
## 10 0.9899 nan 0.1000 0.0539 ## 20 0.7230 nan 0.1000 0.0334 ## 40 0.4789 nan 0.1000 0.0123 ## 60 0.3476 nan 0.1000 0.0077 ## 80 0.2679 nan 0.1000 0.0049 ## 100 0.2075 nan 0.1000 0.0040 ## 120 0.1599 nan 0.1000 0.0026 ## 150 0.1162 nan 0.1000 0.0027 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 3 1.4648 nan 0.1000 0.0551 ## 4 1.4215 nan 0.1000 0.0551 ## 5 1.3863 nan 0.1000 0.0554 ## 6 1.3573 nan 0.1000 0.0564 ## 7 1.3281 nan 0.1000 0.0388 ## 8 1.3038 nan 0.1000 0.0388 ## 9 1.2801 nan 0.1000 0.0368 ## 9 1.2801 nan 0.1000 0.0368 ## 10 1.2569 nan 0.1000 0.0368 ## 10 0.9341 nan 0.1000 0.0343 ## 10 0.9341 nan 0.1000 0.0343 ## 10 0.8293 nan 0.1000 0.0064 ## 20 1.1024 nan 0.1000 0.0064 ## 10 0.9341 nan 0.1000 0.0364 ## 10 0.5946 nan 0.1000 0.0064 ## 20 1.1024 nan 0.1000 0.0054 ## 150 0.5750 nan 0.1000 0.0054 ## 140 0.9341 nan 0.1000 0.0064 ## 3 1.4688 nan 0.1000 0.0368 ## 10 0.8293 nan 0.1000 0.0064 ## 20 1.1024 nan 0.1000 0.0064 ## 3 1.4688 nan 0.1000 0.0064 ## 10 0.8946 nan 0.1000 0.0064 ## 150 0.5946 nan 0.1000 0.0054 ## 140 0.5946 nan 0.1000 0.0054 ## 150 0.5750 nan 0.1000 0.0029 ## 140 0.5946 nan 0.1000 0.0034 ## 150 0.5750 nan 0.1000 0.0034 ## 120 0.6365 nan 0.1000 0.0034 ## 150 0.5750 nan 0.1000 0.0034 ## 150 0.5750 nan 0.1000 0.0034 ## 150 0.5750 nan 0.1000 0.0034 ## 160 0.8293 nan 0.1000 0.0034 ## 17 1.1694 nan 0.1000 0.0054 ## 180 0.5946 nan 0.1000 0.0054 ## 17 1.1694 nan 0.1000 0.0054 ## 180 0.5946 nan 0.1000 0.0034 ## 180 0.5946 nan 0.1000 0.0034 ## 180 0.5946 nan 0.1000 0.0034 ## 190 0.6695 nan 0.1000 0.0034 ## 10 0.5946 nan 0.1000 0.0034 ## 120 0.6365 nan 0.1000 0.0036 ## 120 0.6365		8		nan		
## 20 0.7230	##	9	1.0338	nan	0.1000	0.0724
## 40 0.4789 nan 0.1000 0.0123 ## 60 0.3476 nan 0.1000 0.0077 ## 80 0.2679 nan 0.1000 0.0049 ## 100 0.2075 nan 0.1000 0.0049 ## 120 0.1599 nan 0.1000 0.0025 ## 140 0.1289 nan 0.1000 0.0026 ## 150 0.1162 nan 0.1000 0.0027 ## 2 1 1.6094 nan 0.1000 0.1279 ## 3 1.4648 nan 0.1000 0.0546 ## 3 1.4648 nan 0.1000 0.0546 ## 6 1.3573 nan 0.1000 0.0466 ## 7 1.3281 nan 0.1000 0.0388 ## 8 1.3038 nan 0.1000 0.0388 ## 9 1.2801 nan 0.1000 0.0388 ## 10 1.2569 nan 0.1000 0.0386 ## 20 1.1024 nan 0.1000 0.0346 ## 60 0.8293 nan 0.1000 0.0264 ## 10 0.5946 nan 0.1000 0.0062 ## 40 0.5946 nan 0.1000 0.0034 ## 120 0.6365 nan 0.1000 0.0037 ## 120 0.6365 nan 0.1000 0.0034 ## 140 0.5946 nan 0.1000 0.0034 ## 150 0.5750 nan 0.1000 0.0029 ## 140 0.5946 nan 0.1000 0.0029 ## 140 0.5946 nan 0.1000 0.0034 ## 150 0.5750 nan 0.1000 0.0029 ## 140 0.5946 nan 0.1000 0.0034 ## 150 0.5750 nan 0.1000 0.0029 ## 140 0.5946 nan 0.1000 0.0029 ## 140 0.5946 nan 0.1000 0.0029 ## 140 0.5946 nan 0.1000 0.0034 ## 150 0.5750 nan 0.1000 0.0029 ## 140 0.5946 nan 0.1000 0.0034 ## 150 0.5750 nan 0.1000 0.0034 ## 100 0.6905 nan 0.1000 0.0034	##	10	0.9899	nan	0.1000	0.0539
## 60 0.3476 nan 0.1000 0.0077 ## 80 0.2679 nan 0.1000 0.0049 ## 100 0.2075 nan 0.1000 0.0049 ## 120 0.1599 nan 0.1000 0.0025 ## 140 0.1289 nan 0.1000 0.0027 ## 150 0.1162 nan 0.1000 0.0027 ## 1 1 1.6094 nan 0.1000 0.027 ## 2 1.5235 nan 0.1000 0.0889 ## 3 1.4648 nan 0.1000 0.0546 ## 5 1.3863 nan 0.1000 0.0546 ## 6 1.3573 nan 0.1000 0.0469 ## 8 1.3038 nan 0.1000 0.0469 ## 8 1.3038 nan 0.1000 0.0388 ## 8 1.3038 nan 0.1000 0.0388 ## 8 1.3038 nan 0.1000 0.0368 ## 9 1.2801 nan 0.1000 0.0368 ## 10 1.2569 nan 0.1000 0.0368 ## 20 1.1024 nan 0.1000 0.0264 ## 10 0.9341 nan 0.1000 0.0264 ## 10 0.9341 nan 0.1000 0.0049 ## 4 0 0.9341 nan 0.1000 0.0062 ## 120 0.6365 nan 0.1000 0.0062 ## 8 0 0.7535 nan 0.1000 0.0062 ## 120 0.6365 nan 0.1000 0.0062 ## 120 0.6365 nan 0.1000 0.0029 ## 120 0.6365 nan 0.1000 0.0029 ## 120 0.6365 nan 0.1000 0.0034 ## 120 0.6365 nan 0.1000 0.0029 ## 120 0.6365 nan 0.1000 0.0037 ## 120 0.6365 nan 0.1000 0.0029 ## 120 0.6365 nan 0.1000 0.0034 ## 120 0.6365 nan 0.1000 0.0029 ## 120 0.6365 nan 0.1000 0.0034 ## 120 0.6365 nan 0.1000 0.0029 ## 120 0.6365 nan 0.1000 0.0029 ## 120 0.6365 nan 0.1000 0.0029 ## 120 0.6365 nan 0.1000 0.0034 ## 120 0.6365 nan 0.1000 0.0037 ## 120 0.6365 nan 0.1000 0.0037 ## 120 0.6365 nan 0.1000 0.0037 ## 120 0.6365 nan 0.1000 0.0034 ## 120 0.6365 nan 0.1000 0.0034 ## 120 0.6365 nan 0.1000 0.0034 ## 120 0.6365 nan 0.1000 0.0029	##	20	0.7230	nan	0.1000	0.0334
## 80 0.2679 nan 0.1000 0.0049 ## 100 0.2075 nan 0.1000 0.0040 ## 120 0.1599 nan 0.1000 0.0025 ## 140 0.1289 nan 0.1000 0.0026 ## 150 0.1162 nan 0.1000 0.0027 ## # Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.0546 ## 3 1.4648 nan 0.1000 0.0546 ## 5 1.3863 nan 0.1000 0.0436 ## 6 1.3573 nan 0.1000 0.0436 ## 7 1.3281 nan 0.1000 0.0388 ## 8 1.3038 nan 0.1000 0.0388 ## 9 1.2801 nan 0.1000 0.0368 ## 10 1.2569 nan 0.1000 0.0343 ## 10 0.341 nan 0.1000 0.0264 ## 20 1.1024 nan 0.1000 0.0264 ## 20 1.024 nan 0.1000 0.0099 ## 60 0.8293 nan 0.1000 0.0062 ## 80 0.7535 nan 0.1000 0.0062 ## 120 0.6365 nan 0.1000 0.0054 ## 120 0.6365 nan 0.1000 0.0054 ## 120 0.6365 nan 0.1000 0.0054 ## 140 0.5946 nan 0.1000 0.0034 ## 150 0.5750 nan 0.1000 0.0034 ## 150 0.5750 nan 0.1000 0.0029 ## 140 0.5946 nan 0.1000 0.0034 ## 150 0.5750 nan 0.1000 0.0029 ## 140 0.5946 nan 0.1000 0.0034 ## 150 0.5750 nan 0.1000 0.0034	##	40	0.4789	nan	0.1000	0.0123
## 100 0.2075 nan 0.1000 0.0040 ## 120 0.1599 nan 0.1000 0.0025 ## 140 0.1289 nan 0.1000 0.0026 ## 150 0.1162 nan 0.1000 0.0027 ## Iter TrainDeviance ValidDeviance StepSize Improve ## 2 1.5235 nan 0.1000 0.0651 ## 3 1.4648 nan 0.1000 0.0651 ## 5 1.3863 nan 0.1000 0.0436 ## 6 1.3573 nan 0.1000 0.0436 ## 7 1.3281 nan 0.1000 0.0385 ## 8 1.3038 nan 0.1000 0.0385 ## 9 1.2801 nan 0.1000 0.0385 ## 10 1.2569 nan 0.1000 0.0343 ## 10 0.9341 nan 0.1000 0.0343 ## 10 0.9341 nan 0.1000 0.0026 ## 20 1.1024 nan 0.1000 0.0026 ## 100 0.6905 nan 0.1000 0.0026 ## 100 0.6905 nan 0.1000 0.0052 ## 140 0.5946 nan 0.1000 0.0054 ## 120 0.6365 nan 0.1000 0.0034 ## 120 0.6365 nan 0.1000 0.0026 ## 140 0.5946 nan 0.1000 0.0034 ## 150 0.5750 nan 0.1000 0.0026 ## 140 0.5946 nan 0.1000 0.0026 ## 150 0.5750 nan 0.1000 0.0026 ## 140 0.5946 nan 0.1000 0.0026 ## 150 0.5750 nan 0.1000 0.0026 ## 150 0.5750 nan 0.1000 0.0034 ## 140 0.5946 nan 0.1000 0.0034 ## 150 0.5750 nan 0.1000 0.0034 ## 140 0.5946 nan 0.1000 0.0034 ## 150 0.5750 nan 0.1000 0.0034 ## 140 0.5946 nan 0.1000 0.0034 ## 150 0.5750 nan 0.1000 0.0034 ## 140 0.5946 nan 0.1000 0.0034 ## 150 0.5750 nan 0.1000 0.0034	##	60	0.3476	nan	0.1000	0.0077
## 120 0.1599 nan 0.1000 0.0025 ## 140 0.1289 nan 0.1000 0.0026 ## 150 0.1162 nan 0.1000 0.0027 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.1279 ## 2 1.5235 nan 0.1000 0.0651 ## 4 1.4215 nan 0.1000 0.0546 ## 5 1.3863 nan 0.1000 0.0466 ## 6 1.3573 nan 0.1000 0.0466 ## 7 1.3281 nan 0.1000 0.0385 ## 8 1.3038 nan 0.1000 0.0388 ## 9 1.2801 nan 0.1000 0.0368 ## 10 1.2569 nan 0.1000 0.0264 ## 20 1.1024 nan 0.1000 0.0264 ## 40 0.9341 nan 0.1000 0.0264 ## 80 0.7535 nan 0.1000 0.0062 ## 80 0.7535 nan 0.1000 0.0062 ## 100 0.6905 nan 0.1000 0.0054 ## 100 0.6905 nan 0.1000 0.0037 ## 120 0.6365 nan 0.1000 0.0037 ## 120 0.6365 nan 0.1000 0.0029 ## 140 0.5946 nan 0.1000 0.0024 ## 150 0.5750 nan 0.1000 0.0024 ## 150 0.5750 nan 0.1000 0.0026 ## 150 0.5750 nan 0.1000 0.0034 ## 20 0.8861 nan 0.1000 0.0425 ## 30 0.6694 nan 0.1000 0.0425 ## 40 0.6694 nan 0.1000 0.0011 ## 40 0.5280 nan 0.1000 0.0011	##	80	0.2679	nan	0.1000	0.0049
## 140 0.1289 nan 0.1000 0.0026 ## 150 0.1162 nan 0.1000 0.0027 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 2 1.5235 nan 0.1000 0.0889 ## 3 1.4648 nan 0.1000 0.0651 ## 4 1.4215 nan 0.1000 0.0546 ## 5 1.3863 nan 0.1000 0.0436 ## 6 1.3573 nan 0.1000 0.0436 ## 7 1.3281 nan 0.1000 0.0385 ## 8 1.3038 nan 0.1000 0.0385 ## 9 1.2801 nan 0.1000 0.0343 ## 10 1.2569 nan 0.1000 0.0264 ## 20 1.1024 nan 0.1000 0.0264 ## 40 0.9341 nan 0.1000 0.0049 ## 40 0.9341 nan 0.1000 0.0062 ## 80 0.7535 nan 0.1000 0.0062 ## 100 0.6905 nan 0.1000 0.0054 ## 100 0.6905 nan 0.1000 0.0054 ## 100 0.6905 nan 0.1000 0.0037 ## 120 0.6365 nan 0.1000 0.0029 ## 140 0.5946 nan 0.1000 0.0029 ## 150 0.5750 nan 0.1000 0.0024 ## 5 1.2844 nan 0.1000 0.034 ## 5 1.2844 nan 0.1000 0.088 ## 7 1.1975 nan 0.1000 0.0883 ## 9 1.1286 nan 0.1000 0.0632 ## 18 1.1592 nan 0.1000 0.0632 ## 19 1.1286 nan 0.1000 0.0432 ## 10 1.1016 nan 0.1000 0.0422 ## 10 1.1016 nan 0.1000 0.0423 ## 10 1.1016 nan 0.1000 0.0423 ## 10 1.1016 nan 0.1000 0.0425 ## 10 0.8881 nan 0.1000 0.0425 ## 10 0.8881 nan 0.1000 0.0425 ## 10 0.06694 nan 0.1000 0.0425 ## 10 0.06694 nan 0.1000 0.0425 ## 10 0.06694 nan 0.1000 0.0229	##	100	0.2075	nan	0.1000	0.0040
## 150	##	120	0.1599	nan	0.1000	0.0025
## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1	##	140	0.1289	nan	0.1000	0.0026
## Iter TrainDeviance	##	150	0.1162	nan	0.1000	0.0027
## Iter TrainDeviance	##					
## 1 1.6094		Iter	TrainDeviance	ValidDeviance	StepSize	Improve
## 2 1.5235				nan		
## 3 1.4648		2				
## 4 1.4215						
## 5 1.3863						
## 6						
## 7 1.3281						
## 8 1.3038						
## 9 1.2801						
## 10 1.2569 nan 0.1000 0.0264 ## 20 1.1024 nan 0.1000 0.0149 ## 40 0.9341 nan 0.1000 0.0099 ## 60 0.8293 nan 0.1000 0.0062 ## 80 0.7535 nan 0.1000 0.0054 ## 100 0.6905 nan 0.1000 0.0037 ## 120 0.6365 nan 0.1000 0.0029 ## 140 0.5946 nan 0.1000 0.0026 ## 150 0.5750 nan 0.1000 0.0034 ## ## Tter TrainDeviance ValidDeviance StepSize Improve ## 1 1 1.6094 nan 0.1000 0.1827 ## 2 1.4898 nan 0.1000 0.1294 ## 3 1.4068 nan 0.1000 0.0299 ## 4 1.3412 nan 0.1000 0.0888 ## 5 1.2844 nan 0.1000 0.0888 ## 5 1.2844 nan 0.1000 0.0733 ## 6 1.2379 nan 0.1000 0.0632 ## 7 1.1975 nan 0.1000 0.0632 ## 7 1.1975 nan 0.1000 0.0618 ## 8 1.1592 nan 0.1000 0.0632 ## 9 1.1286 nan 0.1000 0.0425 ## 10 1.1016 nan 0.1000 0.0425 ## 20 0.8861 nan 0.1000 0.0209 ## 40 0.6694 nan 0.1000 0.0215						
## 20 1.1024 nan 0.1000 0.0149 ## 40 0.9341 nan 0.1000 0.0099 ## 60 0.8293 nan 0.1000 0.0062 ## 80 0.7535 nan 0.1000 0.0054 ## 100 0.6905 nan 0.1000 0.0037 ## 120 0.6365 nan 0.1000 0.0029 ## 140 0.5946 nan 0.1000 0.0026 ## 150 0.5750 nan 0.1000 0.0034 ## ## Tter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.1827 ## 2 1.4898 nan 0.1000 0.1294 ## 3 1.4068 nan 0.1000 0.0299 ## 4 1.3412 nan 0.1000 0.0999 ## 5 1.2844 nan 0.1000 0.0888 ## 5 1.2844 nan 0.1000 0.0733 ## 6 1.2379 nan 0.1000 0.0632 ## 7 1.1975 nan 0.1000 0.0632 ## 7 1.1975 nan 0.1000 0.0632 ## 9 1.1286 nan 0.1000 0.0483 ## 9 1.1286 nan 0.1000 0.0432 ## 10 1.1016 nan 0.1000 0.0425 ## 20 0.8861 nan 0.1000 0.0209 ## 40 0.6694 nan 0.1000 0.0215						
## 40 0.9341 nan 0.1000 0.0099 ## 60 0.8293 nan 0.1000 0.0062 ## 80 0.7535 nan 0.1000 0.0054 ## 100 0.6905 nan 0.1000 0.0037 ## 120 0.6365 nan 0.1000 0.0029 ## 140 0.5946 nan 0.1000 0.0026 ## 150 0.5750 nan 0.1000 0.0034 ## ## Tter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.1827 ## 2 1.4898 nan 0.1000 0.1294 ## 3 1.4068 nan 0.1000 0.0299 ## 4 1.3412 nan 0.1000 0.0999 ## 5 1.2844 nan 0.1000 0.0888 ## 5 1.2844 nan 0.1000 0.0733 ## 6 1.2379 nan 0.1000 0.0632 ## 7 1.1975 nan 0.1000 0.0632 ## 9 1.1286 nan 0.1000 0.0483 ## 9 1.1286 nan 0.1000 0.0483 ## 10 1.1016 nan 0.1000 0.0425 ## 20 0.8861 nan 0.1000 0.0209 ## 40 0.6694 nan 0.1000 0.0115						
## 60 0.8293 nan 0.1000 0.0062 ## 80 0.7535 nan 0.1000 0.0054 ## 100 0.6905 nan 0.1000 0.0037 ## 120 0.6365 nan 0.1000 0.0029 ## 140 0.5946 nan 0.1000 0.0026 ## 150 0.5750 nan 0.1000 0.0034 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1 1.6094 nan 0.1000 0.1827 ## 2 1.4898 nan 0.1000 0.1294 ## 3 1.4068 nan 0.1000 0.0299 ## 4 1.3412 nan 0.1000 0.0988 ## 5 1.2844 nan 0.1000 0.0888 ## 5 1.2844 nan 0.1000 0.0733 ## 6 1.2379 nan 0.1000 0.0632 ## 7 1.1975 nan 0.1000 0.0632 ## 7 1.1975 nan 0.1000 0.0632 ## 9 1.1286 nan 0.1000 0.0425 ## 10 1.1016 nan 0.1000 0.0425 ## 20 0.8861 nan 0.1000 0.0209 ## 40 0.6694 nan 0.1000 0.0115						
## 80 0.7535 nan 0.1000 0.0054 ## 100 0.6905 nan 0.1000 0.0037 ## 120 0.6365 nan 0.1000 0.0029 ## 140 0.5946 nan 0.1000 0.0026 ## 150 0.5750 nan 0.1000 0.0034 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.1827 ## 2 1.4898 nan 0.1000 0.1294 ## 3 1.4068 nan 0.1000 0.0299 ## 4 1.3412 nan 0.1000 0.0888 ## 5 1.2844 nan 0.1000 0.0733 ## 6 1.2379 nan 0.1000 0.0632 ## 7 1.1975 nan 0.1000 0.0632 ## 7 1.1975 nan 0.1000 0.0632 ## 8 1.1592 nan 0.1000 0.0618 ## 8 1.1592 nan 0.1000 0.0483 ## 9 1.1286 nan 0.1000 0.0425 ## 10 1.1016 nan 0.1000 0.0425 ## 20 0.8861 nan 0.1000 0.0209 ## 40 0.6694 nan 0.1000 0.0115						
## 100 0.6905 nan 0.1000 0.0037 ## 120 0.6365 nan 0.1000 0.0029 ## 140 0.5946 nan 0.1000 0.0026 ## 150 0.5750 nan 0.1000 0.0034 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 2 1.4898 nan 0.1000 0.1294 ## 3 1.4068 nan 0.1000 0.0299 ## 4 1.3412 nan 0.1000 0.0888 ## 5 1.2844 nan 0.1000 0.0888 ## 5 1.2844 nan 0.1000 0.0733 ## 6 1.2379 nan 0.1000 0.0632 ## 7 1.1975 nan 0.1000 0.0632 ## 7 1.1975 nan 0.1000 0.0618 ## 8 1.1592 nan 0.1000 0.0425 ## 9 1.1286 nan 0.1000 0.0425 ## 10 1.1016 nan 0.1000 0.0425 ## 20 0.8861 nan 0.1000 0.0209 ## 40 0.6694 nan 0.1000 0.0209 ## 40 0.6694 nan 0.1000 0.0110						
## 120 0.6365 nan 0.1000 0.0029 ## 140 0.5946 nan 0.1000 0.0026 ## 150 0.5750 nan 0.1000 0.0034 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.1827 ## 2 1.4898 nan 0.1000 0.1294 ## 3 1.4068 nan 0.1000 0.0999 ## 4 1.3412 nan 0.1000 0.0888 ## 5 1.2844 nan 0.1000 0.0733 ## 6 1.2379 nan 0.1000 0.0632 ## 7 1.1975 nan 0.1000 0.0618 ## 8 1.1592 nan 0.1000 0.0618 ## 9 1.1286 nan 0.1000 0.0425 ## 10 1.1016 nan 0.1000 0.0425 ## 20 0.8861 nan 0.1000 0.0209 ## 40 0.6694 nan 0.1000 0.0110						
## 140 0.5946 nan 0.1000 0.0026 ## 150 0.5750 nan 0.1000 0.0034 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.1827 ## 2 1.4898 nan 0.1000 0.1294 ## 3 1.4068 nan 0.1000 0.0999 ## 4 1.3412 nan 0.1000 0.0888 ## 5 1.2844 nan 0.1000 0.0733 ## 6 1.2379 nan 0.1000 0.0632 ## 7 1.1975 nan 0.1000 0.0618 ## 8 1.1592 nan 0.1000 0.0483 ## 9 1.1286 nan 0.1000 0.0483 ## 10 1.1016 nan 0.1000 0.0425 ## 20 0.8861 nan 0.1000 0.0209 ## 40 0.6694 nan 0.1000 0.0110 ## 60 0.5280 nan 0.1000 0.0115						
## 150 0.5750 nan 0.1000 0.0034 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.1827 ## 2 1.4898 nan 0.1000 0.1294 ## 3 1.4068 nan 0.1000 0.0999 ## 4 1.3412 nan 0.1000 0.0888 ## 5 1.2844 nan 0.1000 0.0733 ## 6 1.2379 nan 0.1000 0.0632 ## 7 1.1975 nan 0.1000 0.0618 ## 8 1.1592 nan 0.1000 0.0483 ## 9 1.1286 nan 0.1000 0.0432 ## 10 1.1016 nan 0.1000 0.0425 ## 20 0.8861 nan 0.1000 0.0209 ## 40 0.6694 nan 0.1000 0.0110 ## 60 0.5280 nan 0.1000 0.0115						
## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.1827 ## 2 1.4898 nan 0.1000 0.1294 ## 3 1.4068 nan 0.1000 0.0999 ## 4 1.3412 nan 0.1000 0.0888 ## 5 1.2844 nan 0.1000 0.0733 ## 6 1.2379 nan 0.1000 0.0632 ## 7 1.1975 nan 0.1000 0.0618 ## 8 1.1592 nan 0.1000 0.0483 ## 9 1.1286 nan 0.1000 0.0483 ## 10 1.1016 nan 0.1000 0.0425 ## 20 0.8861 nan 0.1000 0.0209 ## 40 0.6694 nan 0.1000 0.0110 ## 60 0.5280 nan 0.1000 0.0115						
## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.1827 ## 2 1.4898 nan 0.1000 0.1294 ## 3 1.4068 nan 0.1000 0.0999 ## 4 1.3412 nan 0.1000 0.0888 ## 5 1.2844 nan 0.1000 0.0733 ## 6 1.2379 nan 0.1000 0.0632 ## 7 1.1975 nan 0.1000 0.0618 ## 8 1.1592 nan 0.1000 0.0432 ## 9 1.1286 nan 0.1000 0.0483 ## 9 1.1286 nan 0.1000 0.0425 ## 20 0.8861 nan 0.1000 0.0209 ## 40 0.6694 nan 0.1000 0.0110 ## 60 0.5280 nan 0.1000 0.0115		120	0.5/50	nan	0.1000	0.0034
## 1 1.6094 nan 0.1000 0.1827 ## 2 1.4898 nan 0.1000 0.1294 ## 3 1.4068 nan 0.1000 0.0999 ## 4 1.3412 nan 0.1000 0.0888 ## 5 1.2844 nan 0.1000 0.0733 ## 6 1.2379 nan 0.1000 0.0632 ## 7 1.1975 nan 0.1000 0.0618 ## 8 1.1592 nan 0.1000 0.0483 ## 9 1.1286 nan 0.1000 0.0483 ## 10 1.1016 nan 0.1000 0.0425 ## 20 0.8861 nan 0.1000 0.0209 ## 40 0.6694 nan 0.1000 0.0110 ## 60 0.5280 nan 0.1000 0.0115		T+ ~ ~	TrainDarries	ValidDorri	C+ c~ C	Tmm =====
## 2 1.4898 nan 0.1000 0.1294 ## 3 1.4068 nan 0.1000 0.0999 ## 4 1.3412 nan 0.1000 0.0888 ## 5 1.2844 nan 0.1000 0.0632 ## 7 1.1975 nan 0.1000 0.0632 ## 8 1.1592 nan 0.1000 0.0483 ## 9 1.1286 nan 0.1000 0.0483 ## 10 1.1016 nan 0.1000 0.0425 ## 20 0.8861 nan 0.1000 0.0209 ## 40 0.6694 nan 0.1000 0.0110 ## 60 0.5280 nan 0.1000 0.0115						
## 3 1.4068 nan 0.1000 0.0999 ## 4 1.3412 nan 0.1000 0.0888 ## 5 1.2844 nan 0.1000 0.0733 ## 6 1.2379 nan 0.1000 0.0632 ## 7 1.1975 nan 0.1000 0.0618 ## 8 1.1592 nan 0.1000 0.0483 ## 9 1.1286 nan 0.1000 0.0432 ## 10 1.1016 nan 0.1000 0.0425 ## 20 0.8861 nan 0.1000 0.0209 ## 40 0.6694 nan 0.1000 0.0110 ## 60 0.5280 nan 0.1000 0.0115						
## 4 1.3412 nan 0.1000 0.0888 ## 5 1.2844 nan 0.1000 0.0733 ## 6 1.2379 nan 0.1000 0.0632 ## 7 1.1975 nan 0.1000 0.0618 ## 8 1.1592 nan 0.1000 0.0483 ## 9 1.1286 nan 0.1000 0.0432 ## 10 1.1016 nan 0.1000 0.0425 ## 20 0.8861 nan 0.1000 0.0209 ## 40 0.6694 nan 0.1000 0.0110 ## 60 0.5280 nan 0.1000 0.0115						
## 5 1.2844 nan 0.1000 0.0733 ## 6 1.2379 nan 0.1000 0.0632 ## 7 1.1975 nan 0.1000 0.0618 ## 8 1.1592 nan 0.1000 0.0483 ## 9 1.1286 nan 0.1000 0.0432 ## 10 1.1016 nan 0.1000 0.0425 ## 20 0.8861 nan 0.1000 0.0209 ## 40 0.6694 nan 0.1000 0.0110 ## 60 0.5280 nan 0.1000 0.0115						
## 6 1.2379 nan 0.1000 0.0632 ## 7 1.1975 nan 0.1000 0.0618 ## 8 1.1592 nan 0.1000 0.0483 ## 9 1.1286 nan 0.1000 0.0432 ## 10 1.1016 nan 0.1000 0.0425 ## 20 0.8861 nan 0.1000 0.0209 ## 40 0.6694 nan 0.1000 0.0110 ## 60 0.5280 nan 0.1000 0.0115						
## 7 1.1975 nan 0.1000 0.0618 ## 8 1.1592 nan 0.1000 0.0483 ## 9 1.1286 nan 0.1000 0.0432 ## 10 1.1016 nan 0.1000 0.0425 ## 20 0.8861 nan 0.1000 0.0209 ## 40 0.6694 nan 0.1000 0.0110 ## 60 0.5280 nan 0.1000 0.0115						
## 8 1.1592 nan 0.1000 0.0483 ## 9 1.1286 nan 0.1000 0.0432 ## 10 1.1016 nan 0.1000 0.0425 ## 20 0.8861 nan 0.1000 0.0209 ## 40 0.6694 nan 0.1000 0.0110 ## 60 0.5280 nan 0.1000 0.0115						
## 9 1.1286 nan 0.1000 0.0432 ## 10 1.1016 nan 0.1000 0.0425 ## 20 0.8861 nan 0.1000 0.0209 ## 40 0.6694 nan 0.1000 0.0110 ## 60 0.5280 nan 0.1000 0.0115						
## 10 1.1016 nan 0.1000 0.0425 ## 20 0.8861 nan 0.1000 0.0209 ## 40 0.6694 nan 0.1000 0.0110 ## 60 0.5280 nan 0.1000 0.0115						
## 20 0.8861 nan 0.1000 0.0209 ## 40 0.6694 nan 0.1000 0.0110 ## 60 0.5280 nan 0.1000 0.0115						
## 40 0.6694 nan 0.1000 0.0110 ## 60 0.5280 nan 0.1000 0.0115				nan		
## 60 0.5280 nan 0.1000 0.0115				nan		
				nan		
## 80 0.4237 nan 0.1000 0.0048			0.5280	nan	0.1000	0.0115
	##	80	0.4237	nan	0.1000	0.0048

## 100						
## 140 0.2483	##	100	0.3457	nan		0.0040
## 150	##	120	0.2915	nan	0.1000	0.0041
## Item	##	140	0.2483	nan	0.1000	0.0028
## Iter	##	150	0.2298	nan	0.1000	0.0030
## 1 1.6094 nan 0.1000 0.2292	##					
## 1 1.6094 nan 0.1000 0.2292	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
## 2 1.4618	##	1	1.6094	nan	0.1000	0.2292
## 3 1.3630		2		nan		
## 4 1.2796 nan 0.1000 0.1214 ## 5 1.2064 nan 0.1000 0.0840 ## 6 1.1523 nan 0.1000 0.0890 ## 7 1.0974 nan 0.1000 0.0670 ## 8 1.0548 nan 0.1000 0.0663 ## 9 1.0134 nan 0.1000 0.0581 ## 10 0.9779 nan 0.1000 0.0542 ## 20 0.7251 nan 0.1000 0.0236 ## 40 0.4790 nan 0.1000 0.0199 ## 80 0.2546 nan 0.1000 0.0059 ## 100 0.1959 nan 0.1000 0.0059 ## 140 0.1959 nan 0.1000 0.0024 ## 120 0.1563 nan 0.1000 0.0024 ## 150 0.1152 nan 0.1000 0.0024 ## 150 0.1152 nan 0.1000 0.0024 ## 2 1.5226 nan 0.1000 0.0865 ## 3 1.4659 nan 0.1000 0.0865 ## 3 1.4659 nan 0.1000 0.0661 ## 5 1.3872 nan 0.1000 0.0665 ## 5 1.3872 nan 0.1000 0.0536 ## 5 1.3872 nan 0.1000 0.0337 ## 6 1.3600 nan 0.1000 0.0347 ## 8 1.3077 nan 0.1000 0.0339 ## 10 1.2646 nan 0.1000 0.0339 ## 10 1.2646 nan 0.1000 0.0339 ## 10 0.2645 nan 0.1000 0.0034 ## 120 0.6657 nan 0.1000 0.0039 ## 10 0.6677 nan 0.1000 0.0039 ## 10 0.6679 nan 0.1000 0.0039 ## 10 0.6679 nan 0.1000 0.0034 ## 120 0.6454 nan 0.1000						
## 5						
## 6						
## 7 1.0974						
## 8 1.0548						
## 9 1.0134						
## 10 0.9779						
## 20 0.7251						
## 40 0.4790						
## 60 0.3431 nan 0.1000 0.0109 ## 80 0.2546 nan 0.1000 0.0059 ## 100 0.1959 nan 0.1000 0.0024 ## 120 0.1563 nan 0.1000 0.0036 ## 140 0.1272 nan 0.1000 0.0016 ## 150 0.1152 nan 0.1000 0.0024 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.1289 ## 2 1.5226 nan 0.1000 0.0865 ## 3 1.4659 nan 0.1000 0.0661 ## 4 1.4225 nan 0.1000 0.0536 ## 5 1.3872 nan 0.1000 0.0536 ## 5 1.3872 nan 0.1000 0.0410 ## 6 1.3600 nan 0.1000 0.0410 ## 8 1.3077 nan 0.1000 0.0347 ## 8 1.3077 nan 0.1000 0.0338 ## 9 1.2851 nan 0.1000 0.0338 ## 9 1.2851 nan 0.1000 0.0329 ## 10 1.2646 nan 0.1000 0.0329 ## 10 0.9413 nan 0.1000 0.0295 ## 20 1.1095 nan 0.1000 0.0295 ## 20 0.6454 nan 0.1000 0.0077 ## 60 0.8384 nan 0.1000 0.0077 ## 100 0.6979 nan 0.1000 0.0077 ## 1100 0.6979 nan 0.1000 0.0049 ## 120 0.6454 nan 0.1000 0.0034 ## 120 0.6454 nan 0.1000 0.0034 ## 120 0.6454 nan 0.1000 0.0034 ## 150 0.5771 nan 0.1000 0.0034						
## 80 0.2546 nan 0.1000 0.0059 ## 100 0.1959 nan 0.1000 0.0024 ## 120 0.1563 nan 0.1000 0.0036 ## 140 0.1272 nan 0.1000 0.0016 ## 150 0.1152 nan 0.1000 0.0024 ## ## Tter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.0865 ## 3 1.4659 nan 0.1000 0.0865 ## 4 1.4225 nan 0.1000 0.0661 ## 5 1.3872 nan 0.1000 0.0536 ## 5 1.3872 nan 0.1000 0.0410 ## 6 1.3600 nan 0.1000 0.0410 ## 7 1.3304 nan 0.1000 0.0347 ## 8 1.3077 nan 0.1000 0.0338 ## 9 1.2851 nan 0.1000 0.0338 ## 9 1.2851 nan 0.1000 0.0329 ## 10 1.2646 nan 0.1000 0.0329 ## 10 1.2646 nan 0.1000 0.0295 ## 20 1.1095 nan 0.1000 0.0295 ## 40 0.9413 nan 0.1000 0.0014 ## 10 0.8384 nan 0.1000 0.0077 ## 60 0.8384 nan 0.1000 0.0074 ## 10 0.6679 nan 0.1000 0.0049 ## 10 0.6679 nan 0.1000 0.0044 ## 110 0.5981 nan 0.1000 0.0034 ## 120 0.6454 nan 0.1000 0.0034 ## 150 0.5771 nan 0.1000 0.0034						
## 100 0.1959 nan 0.1000 0.0024 ## 120 0.1563 nan 0.1000 0.0036 ## 140 0.1272 nan 0.1000 0.0016 ## 150 0.1152 nan 0.1000 0.0024 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 2 1.5226 nan 0.1000 0.0865 ## 3 1.4659 nan 0.1000 0.0661 ## 4 1 1.4225 nan 0.1000 0.0536 ## 5 1.3872 nan 0.1000 0.0410 ## 6 1.3600 nan 0.1000 0.0410 ## 7 1.3304 nan 0.1000 0.0347 ## 8 1.3077 nan 0.1000 0.0338 ## 9 1.2851 nan 0.1000 0.0338 ## 9 1.2851 nan 0.1000 0.0329 ## 10 1.2646 nan 0.1000 0.0329 ## 10 1.2646 nan 0.1000 0.0295 ## 20 1.1095 nan 0.1000 0.0295 ## 40 0.9413 nan 0.1000 0.0014 ## 40 0.9413 nan 0.1000 0.0014 ## 80 0.7617 nan 0.1000 0.0061 ## 80 0.7617 nan 0.1000 0.0061 ## 10 0.6979 nan 0.1000 0.0049 ## 110 0.6979 nan 0.1000 0.0049 ## 120 0.6454 nan 0.1000 0.0044 ## 140 0.5981 nan 0.1000 0.0034 ## 150 0.5771 nan 0.1000 0.0034						
## 120 0.1563						
## 140 0.1272						
## Iter TrainDeviance ValidDeviance StepSize Improve Imp				nan		
## Iter TrainDeviance ValidDeviance StepSize Improve ## 1				nan		
## Iter		150	0.1152	nan	0.1000	0.0024
## 1 1.6094 nan 0.1000 0.1289 ## 2 1.5226 nan 0.1000 0.0865 ## 3 1.4659 nan 0.1000 0.0661 ## 4 1.4225 nan 0.1000 0.0536 ## 5 1.3872 nan 0.1000 0.0410 ## 6 1.3600 nan 0.1000 0.0347 ## 8 1.3077 nan 0.1000 0.0347 ## 8 1.3077 nan 0.1000 0.0338 ## 9 1.2851 nan 0.1000 0.0329 ## 10 1.2646 nan 0.1000 0.0295 ## 20 1.1095 nan 0.1000 0.0295 ## 40 0.9413 nan 0.1000 0.0184 ## 40 0.9413 nan 0.1000 0.0077 ## 60 0.8384 nan 0.1000 0.0077 ## 80 0.7617 nan 0.1000 0.0049 ## 100 0.6979 nan 0.1000 0.0049 ## 140 0.5981 nan 0.1000 0.0034 ## 150 0.5771 nan 0.1000 0.0034	##					
## 2 1.5226	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
## 3 1.4659 nan 0.1000 0.0661 ## 4 1.4225 nan 0.1000 0.0536 ## 5 1.3872 nan 0.1000 0.0410 ## 6 1.3600 nan 0.1000 0.0466 ## 7 1.3304 nan 0.1000 0.0347 ## 8 1.3077 nan 0.1000 0.0338 ## 9 1.2851 nan 0.1000 0.0329 ## 10 1.2646 nan 0.1000 0.0295 ## 20 1.1095 nan 0.1000 0.0295 ## 4 0 0.9413 nan 0.1000 0.0184 ## 6 0 0.8384 nan 0.1000 0.0061 ## 80 0.7617 nan 0.1000 0.0061 ## 100 0.6979 nan 0.1000 0.0049 ## 120 0.6454 nan 0.1000 0.0034 ## 120 0.6454 nan 0.1000 0.0034 ## 140 0.5981 nan 0.1000 0.0034 ## 150 0.5771 nan 0.1000 0.0034	##	1	1.6094	nan	0.1000	0.1289
## 4 1.4225	##	2	1.5226	nan	0.1000	0.0865
## 5 1.3872	##	3	1.4659	nan	0.1000	0.0661
## 6 1.3600 nan 0.1000 0.0466 ## 7 1.3304 nan 0.1000 0.0347 ## 8 1.3077 nan 0.1000 0.0338 ## 9 1.2851 nan 0.1000 0.0329 ## 10 1.2646 nan 0.1000 0.0295 ## 20 1.1095 nan 0.1000 0.0184 ## 40 0.9413 nan 0.1000 0.0077 ## 60 0.8384 nan 0.1000 0.0061 ## 80 0.7617 nan 0.1000 0.0049 ## 100 0.6979 nan 0.1000 0.0034 ## 120 0.6454 nan 0.1000 0.0034 ## 140 0.5981 nan 0.1000 0.0034 ## 150 0.5771 nan 0.1000 0.0024	##	4	1.4225	nan	0.1000	0.0536
## 6 1.3600 nan 0.1000 0.0466 ## 7 1.3304 nan 0.1000 0.0347 ## 8 1.3077 nan 0.1000 0.0338 ## 9 1.2851 nan 0.1000 0.0329 ## 10 1.2646 nan 0.1000 0.0295 ## 20 1.1095 nan 0.1000 0.0184 ## 40 0.9413 nan 0.1000 0.0077 ## 60 0.8384 nan 0.1000 0.0061 ## 80 0.7617 nan 0.1000 0.0049 ## 100 0.6979 nan 0.1000 0.0034 ## 120 0.6454 nan 0.1000 0.0034 ## 140 0.5981 nan 0.1000 0.0034 ## 150 0.5771 nan 0.1000 0.0024	##	5	1.3872	nan	0.1000	0.0410
## 8 1.3077 nan 0.1000 0.0338 ## 9 1.2851 nan 0.1000 0.0329 ## 10 1.2646 nan 0.1000 0.0295 ## 20 1.1095 nan 0.1000 0.0184 ## 40 0.9413 nan 0.1000 0.0077 ## 60 0.8384 nan 0.1000 0.0061 ## 80 0.7617 nan 0.1000 0.0049 ## 100 0.6979 nan 0.1000 0.0034 ## 120 0.6454 nan 0.1000 0.0041 ## 140 0.5981 nan 0.1000 0.0034 ## 150 0.5771 nan 0.1000 0.0034 ## 150 ValidDeviance StepSize Improve ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.1839 ## 2 1.4913 nan 0.1000 0.1236	##	6	1.3600	nan	0.1000	0.0466
## 8 1.3077 nan 0.1000 0.0338 ## 9 1.2851 nan 0.1000 0.0329 ## 10 1.2646 nan 0.1000 0.0295 ## 20 1.1095 nan 0.1000 0.0184 ## 40 0.9413 nan 0.1000 0.0077 ## 60 0.8384 nan 0.1000 0.0061 ## 80 0.7617 nan 0.1000 0.0049 ## 100 0.6979 nan 0.1000 0.0034 ## 120 0.6454 nan 0.1000 0.0041 ## 140 0.5981 nan 0.1000 0.0034 ## 150 0.5771 nan 0.1000 0.0034 ## 150 ValidDeviance StepSize Improve ## Tter TrainDeviance ValidDeviance StepSize Improve ## 1 1 1.6094 nan 0.1000 0.1839 ## 2 1.4913 nan 0.1000 0.1236	##	7	1.3304	nan	0.1000	0.0347
## 10 1.2851 nan 0.1000 0.0329 ## 20 1.1095 nan 0.1000 0.0184 ## 40 0.9413 nan 0.1000 0.0077 ## 60 0.8384 nan 0.1000 0.0061 ## 80 0.7617 nan 0.1000 0.0049 ## 100 0.6979 nan 0.1000 0.0034 ## 120 0.6454 nan 0.1000 0.0041 ## 140 0.5981 nan 0.1000 0.0034 ## 150 0.5771 nan 0.1000 0.0034 ## 150 0.5771 nan 0.1000 0.0024 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.1839 ## 2 1.4913 nan 0.1000 0.1236		8				
## 10 1.2646 nan 0.1000 0.0295 ## 20 1.1095 nan 0.1000 0.0184 ## 40 0.9413 nan 0.1000 0.0077 ## 60 0.8384 nan 0.1000 0.0061 ## 80 0.7617 nan 0.1000 0.0049 ## 100 0.6979 nan 0.1000 0.0034 ## 120 0.6454 nan 0.1000 0.0034 ## 140 0.5981 nan 0.1000 0.0034 ## 150 0.5771 nan 0.1000 0.0034 ## 150 0.5771 nan 0.1000 0.0024 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.1839 ## 2 1.4913 nan 0.1000 0.1236						
## 20 1.1095 nan 0.1000 0.0184 ## 40 0.9413 nan 0.1000 0.0077 ## 60 0.8384 nan 0.1000 0.0061 ## 80 0.7617 nan 0.1000 0.0049 ## 100 0.6979 nan 0.1000 0.0034 ## 120 0.6454 nan 0.1000 0.0041 ## 140 0.5981 nan 0.1000 0.0034 ## 150 0.5771 nan 0.1000 0.0024 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.1839 ## 2 1.4913 nan 0.1000 0.1236						
## 40 0.9413 nan 0.1000 0.0077 ## 60 0.8384 nan 0.1000 0.0061 ## 80 0.7617 nan 0.1000 0.0049 ## 100 0.6979 nan 0.1000 0.0034 ## 120 0.6454 nan 0.1000 0.0041 ## 140 0.5981 nan 0.1000 0.0034 ## 150 0.5771 nan 0.1000 0.0024 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.1839 ## 2 1.4913 nan 0.1000 0.1236						
## 60 0.8384 nan 0.1000 0.0061 ## 80 0.7617 nan 0.1000 0.0049 ## 100 0.6979 nan 0.1000 0.0034 ## 120 0.6454 nan 0.1000 0.0034 ## 140 0.5981 nan 0.1000 0.0034 ## 150 0.5771 nan 0.1000 0.0024 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.1839 ## 2 1.4913 nan 0.1000 0.1236						
## 80 0.7617 nan 0.1000 0.0049 ## 100 0.6979 nan 0.1000 0.0034 ## 120 0.6454 nan 0.1000 0.0034 ## 140 0.5981 nan 0.1000 0.0034 ## 150 0.5771 nan 0.1000 0.0024 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.1839 ## 2 1.4913 nan 0.1000 0.1236						
## 100 0.6979 nan 0.1000 0.0034 ## 120 0.6454 nan 0.1000 0.0041 ## 140 0.5981 nan 0.1000 0.0034 ## 150 0.5771 nan 0.1000 0.0024 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.1839 ## 2 1.4913 nan 0.1000 0.1236						
## 120 0.6454 nan 0.1000 0.0041 ## 140 0.5981 nan 0.1000 0.0034 ## 150 0.5771 nan 0.1000 0.0024 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.1839 ## 2 1.4913 nan 0.1000 0.1236						
## 140 0.5981 nan 0.1000 0.0034 ## 150 0.5771 nan 0.1000 0.0024 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.1839 ## 2 1.4913 nan 0.1000 0.1236						
<pre>## 150 0.5771</pre>						
<pre>## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094</pre>						
## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.1839 ## 2 1.4913 nan 0.1000 0.1236		150	0.5//1	nan	0.1000	0.0024
## 1 1.6094 nan 0.1000 0.1839 ## 2 1.4913 nan 0.1000 0.1236						_
## 2 1.4913 nan 0.1000 0.1236						
				nan		
## 3 1.4099 nan 0.1000 0.1080				nan		
	##	3	1.4099	nan	0.1000	0.1080

##	4	1.3414	nan	0.1000	0.0852
##	5	1.2869	nan	0.1000	0.0673
##	6	1.2430	nan	0.1000	0.0617
##	7	1.2036	nan	0.1000	0.0565
##	8	1.1667	nan	0.1000	0.0547
##	9	1.1329	nan	0.1000	0.0434
##	10	1.1056	nan	0.1000	0.0471
##	20	0.8920	nan	0.1000	0.0217
##	40	0.6764	nan	0.1000	0.0175
##	60	0.5216	nan	0.1000	0.0093
##	80	0.4204	nan	0.1000	0.0123
##	100	0.3406	nan	0.1000	0.0038
##	120	0.2862	nan	0.1000	0.0034
##	140	0.2419	nan	0.1000	0.0029
##	150	0.2225	nan	0.1000	0.0028
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2218
##	2	1.4657	nan	0.1000	0.1619
##	3	1.3647	nan	0.1000	0.1201
##	4	1.2881	nan	0.1000	0.1055
##	5	1.2209	nan	0.1000	0.0861
##	6	1.1666	nan	0.1000	0.0883
##	7	1.1140	nan	0.1000	0.0598
##	8	1.0749	nan	0.1000	0.0723
##	9	1.0294	nan	0.1000	0.0647
##	10	0.9896	nan	0.1000	0.0557
##	20	0.7390	nan	0.1000	0.0280
##	40	0.4814	nan	0.1000	0.0121
##	60	0.3388	nan	0.1000	0.0093
##	80	0.2497	nan	0.1000	0.0033
##	100	0.1954		0.1000	0.0033
		0.1551	nan		0.0029
##	120		nan	0.1000	
##	140	0.1249	nan	0.1000	0.0012
##	150	0.1120	nan	0.1000	0.0012
##	T+~~	TrainDaviance	ValidDowiana	Q+02G; -0	Tmnxa
	Iter 1	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1309
##	2	1.5223	nan	0.1000	0.0885
##	3	1.4647	nan	0.1000	0.0651
##	4	1.4213	nan	0.1000	0.0573
##	5	1.3842	nan	0.1000	0.0430
##	6	1.3552	nan	0.1000	0.0443
##	7	1.3269	nan	0.1000	0.0404
##	8	1.3012	nan	0.1000	0.0304
##	9	1.2812	nan	0.1000	0.0372
##	10	1.2561	nan	0.1000	0.0301
##	20	1.0990	nan	0.1000	0.0165
##	40	0.9294	nan	0.1000	0.0083

##	60	0.8275	nan	0.1000	0.0075
##	80	0.7510	nan	0.1000	0.0054
##	100	0.6901	nan	0.1000	0.0031
##	120	0.6387	nan	0.1000	0.0031
##	140	0.5937	nan	0.1000	0.0016
##	150	0.5737	nan	0.1000	0.0026
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1893
##	2	1.4881	nan	0.1000	0.1305
##	3	1.4034	nan	0.1000	0.1001
##	4	1.3382	nan	0.1000	0.0823
##	5	1.2839	nan	0.1000	0.0776
##	6	1.2356	nan	0.1000	0.0635
##	7	1.1947		0.1000	0.0569
			nan		0.0503
##	8	1.1589	nan	0.1000	
##	9	1.1277	nan	0.1000	0.0517
##	10	1.0951	nan	0.1000	0.0464
##	20	0.8763	nan	0.1000	0.0352
##	40	0.6532	nan	0.1000	0.0097
##	60	0.5136	nan	0.1000	0.0120
##	80	0.4139	nan	0.1000	0.0047
##	100	0.3401	nan	0.1000	0.0028
##	120	0.2801	nan	0.1000	0.0017
##	140	0.2425	nan	0.1000	0.0022
##	150	0.2228	nan	0.1000	0.0039
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2323
##	2	1.4612	nan	0.1000	0.1697
##	3	1.3544	nan	0.1000	0.1243
##	4	1.2754	nan	0.1000	0.1023
##	5	1.2096	nan	0.1000	0.0922
##	6	1.1515	nan	0.1000	0.0700
##	7	1.1061	nan	0.1000	0.0815
##	8	1.0555	nan	0.1000	0.0492
##	9	1.0237	nan	0.1000	0.0632
##	10	0.9848	nan	0.1000	0.0556
##	20	0.7360	nan	0.1000	0.0290
##	40	0.4744	nan	0.1000	0.0183
##	60	0.3389	nan	0.1000	0.0054
##	80	0.2570	nan	0.1000	0.0043
##	100	0.1998	nan	0.1000	0.0015
##	120	0.1584	nan	0.1000	0.0015
##	140	0.1276		0.1000	0.0033
			nan		
##	150	0.1174	nan	0.1000	0.0023
##	T.L	maria Da la ca	TT-1-1-4De lees	Q+ Q '	T
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1303

					0.05==
##	2	1.5220	nan	0.1000	0.0855
##	3	1.4648	nan	0.1000	0.0669
##	4	1.4209	nan	0.1000	0.0515
##	5	1.3867	nan	0.1000	0.0418
##	6	1.3586	nan	0.1000	0.0411
##	7	1.3319	nan	0.1000	0.0356
##	8	1.3089	nan	0.1000	0.0358
##	9	1.2866	nan	0.1000	0.0331
##	10	1.2633	nan	0.1000	0.0291
##	20	1.1075	nan	0.1000	0.0183
##	40	0.9375	nan	0.1000	0.0103
##	60	0.8352	nan	0.1000	0.0054
##	80	0.7600	nan	0.1000	0.0047
##	100	0.6974	nan	0.1000	0.0046
##	120	0.6451	nan	0.1000	0.0037
##	140	0.6000	nan	0.1000	0.0031
##	150	0.5789	nan	0.1000	0.0028
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1839
##	2	1.4882	nan	0.1000	0.1238
##	3	1.4084	nan	0.1000	0.1020
##	4	1.3431	nan	0.1000	0.0827
##	5	1.2886	nan	0.1000	0.0714
##	6	1.2422	nan	0.1000	0.0636
##	7	1.2020	nan	0.1000	0.0554
##	8	1.1667	nan	0.1000	0.0524
##	9	1.1328	nan	0.1000	0.0522
##	10	1.1006	nan	0.1000	0.0444
##	20	0.8926	nan	0.1000	0.0215
##	40	0.6683	nan	0.1000	0.0090
##	60	0.5216	nan	0.1000	0.0106
##	80	0.4159	nan	0.1000	0.0039
##	100	0.3448	nan	0.1000	0.0056
##	120	0.2902	nan	0.1000	0.0072
##	140	0.2448	nan	0.1000	0.0022
##	150	0.2257	nan	0.1000	0.0023
##	100	0.2207	11411	3.1000	0.0023
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2306
##	2	1.4613	nan	0.1000	0.1566
##	3	1.3609	nan	0.1000	0.1256
##	4	1.2811		0.1000	0.1230
##	5	1.2158	nan	0.1000	0.1002
	6	1.1621	nan	0.1000	
##			nan		0.0742
##	7	1.1139	nan	0.1000	0.0829
##	8	1.0634	nan	0.1000	0.0519
##	9	1.0300	nan	0.1000	0.0680
##	10	0.9884	nan	0.1000	0.0480

##	20	0.7356	nan	0.1000	0.0268
##	40	0.4979	nan	0.1000	0.0165
##	60	0.3566	nan	0.1000	0.0089
##	80	0.2701	nan	0.1000	0.0077
##	100	0.2090	nan	0.1000	0.0023
##	120	0.1623	nan	0.1000	0.0023
##	140	0.1317	nan	0.1000	0.0012
##	150	0.1179	nan	0.1000	0.0018
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1270
##	2	1.5241	nan	0.1000	0.0864
##	3	1.4668	nan	0.1000	0.0672
##	4	1.4238	nan	0.1000	0.0551
##	5	1.3878	nan	0.1000	0.0488
##	6	1.3569	nan	0.1000	0.0414
##	7	1.3303	nan	0.1000	0.0386
##	8	1.3059	nan	0.1000	0.0337
##	9	1.2839	nan	0.1000	0.0370
##	10	1.2586	nan	0.1000	0.0299
##	20	1.1029	nan	0.1000	0.0182
##	40	0.9309	nan	0.1000	0.0090
##	60	0.8286	nan	0.1000	0.0063
##	80	0.7539	nan	0.1000	0.0055
##	100	0.6911	nan	0.1000	0.0033
##	120	0.6418	nan	0.1000	0.0035
##	140	0.5966	nan	0.1000	0.0033
##	150	0.5750	nan	0.1000	0.0021
##	130	0.3730	nan	0.1000	0.0027
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1849
##	2	1.4886		0.1000	0.1326
##			nan		0.1326
	3	1.4042	nan	0.1000	
##	4	1.3382	nan	0.1000	0.0813
##	5	1.2861	nan	0.1000	0.0741
##	6	1.2390	nan	0.1000	0.0627
##	7	1.1987	nan	0.1000	0.0532
##	8	1.1640	nan	0.1000	0.0518
##	9	1.1312	nan	0.1000	0.0628
##	10	1.0932	nan	0.1000	0.0447
##	20	0.8767	nan	0.1000	0.0243
##	40	0.6577	nan	0.1000	0.0134
##	60	0.5238	nan	0.1000	0.0086
##	80	0.4205	nan	0.1000	0.0078
##	100	0.3449	nan	0.1000	0.0059
##	120	0.2864	nan	0.1000	0.0042
##	140	0.2432	nan	0.1000	0.0043
##	150	0.2219	nan	0.1000	0.0043
##					

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve	
##	iter 1	1.6094		0.1000	Improve 0.2311	
##	2	1.4627	nan nan	0.1000	0.2311	
##					0.1045	
	3	1.3607	nan	0.1000		
##	4	1.2831	nan	0.1000	0.1090	
##	5	1.2145	nan	0.1000	0.0891	
##	6	1.1586	nan	0.1000	0.0982	
##	7	1.0983	nan	0.1000	0.0732	
##	8	1.0530	nan	0.1000	0.0681	
##	9	1.0119	nan	0.1000	0.0542	
##	10	0.9771	nan	0.1000	0.0635	
##	20	0.7204	nan	0.1000	0.0282	
##	40	0.4928	nan	0.1000	0.0167	
##	60	0.3442	nan	0.1000	0.0077	
##	80	0.2546	nan	0.1000	0.0038	
##	100	0.1986	nan	0.1000	0.0020	
##	120	0.1566	nan	0.1000	0.0016	
##	140	0.1245	nan	0.1000	0.0033	
##	150	0.1120	nan	0.1000	0.0013	
##						
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve	
##	1	1.6094	nan	0.1000	0.1265	
##	2	1.5236	nan	0.1000	0.0833	
##	3	1.4672	nan	0.1000	0.0655	
##	4	1.4240	nan	0.1000	0.0536	
##	5	1.3895	nan	0.1000	0.0491	
##	6	1.3578	nan	0.1000	0.0389	
##	7	1.3328	nan	0.1000	0.0382	
##	8	1.3082	nan	0.1000	0.0283	
##	9	1.2899		0.1000	0.0263	
##			nan			
	10	1.2647	nan	0.1000	0.0279	
##	20	1.1127	nan	0.1000	0.0156	
##	40	0.9430	nan	0.1000	0.0092	
##	60	0.8421	nan	0.1000	0.0058	
##	80	0.7663	nan	0.1000	0.0040	
##	100	0.7051	nan	0.1000	0.0027	
##	120	0.6534	nan	0.1000	0.0040	
##	140	0.6074	nan	0.1000	0.0024	
##	150	0.5863	nan	0.1000	0.0034	
##					_	
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve	
##	1	1.6094	nan	0.1000	0.1830	
##	2	1.4920	nan	0.1000	0.1322	
##	3	1.4076	nan	0.1000	0.0977	
##	4	1.3442	nan	0.1000	0.0808	
##	5	1.2930	nan	0.1000	0.0676	
##	6	1.2490	nan	0.1000	0.0591	
##	7	1.2110	nan	0.1000	0.0594	
##	8	1.1726	nan	0.1000	0.0570	

##	9	1.1373	nan	0.1000	0.0427
##	10	1.1100	nan	0.1000	0.0429
##	20	0.9071	nan	0.1000	0.0307
##	40	0.6817	nan	0.1000	0.0142
##	60	0.5362	nan	0.1000	0.0164
##	80	0.4359	nan	0.1000	0.0071
##	100	0.3550	nan	0.1000	0.0044
##	120	0.2961	nan	0.1000	0.0045
##	140	0.2502	nan	0.1000	0.0031
##	150	0.2288	nan	0.1000	0.0020
##	130	0.2200	nan	0.1000	0.0020
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2250
##	2	1.4653	nan	0.1000	0.1593
##	3	1.3642	nan	0.1000	0.1187
##	4	1.2890		0.1000	0.1101
			nan		
##	5	1.2194	nan	0.1000	0.0875
##	6	1.1637	nan	0.1000	0.0765
##	7	1.1168	nan	0.1000	0.0589
##	8	1.0791	nan	0.1000	0.0679
##	9	1.0365	nan	0.1000	0.0461
##	10	1.0068	nan	0.1000	0.0516
##	20	0.7529	nan	0.1000	0.0279
##	40	0.4935	nan	0.1000	0.0142
##	60	0.3489	nan	0.1000	0.0098
##	80	0.2628	nan	0.1000	0.0043
##	100	0.2087	nan	0.1000	0.0036
##	120	0.1646	nan	0.1000	0.0015
##	140	0.1332	nan	0.1000	0.0021
##	150	0.1209	nan	0.1000	0.0018
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2270
##	2	1.4641	nan	0.1000	0.1552
##	3	1.3647	nan	0.1000	0.1299
##	4	1.2831	nan	0.1000	0.1038
##	5	1.2173	nan	0.1000	0.0812
##	6	1.1653	nan	0.1000	0.0826
##	7	1.1144	nan	0.1000	0.0826
##	8	1.0622	nan	0.1000	0.0637
##	9	1.0224	nan	0.1000	0.0614
##	10	0.9846		0.1000	0.0489
	20		nan		
##		0.7319	nan	0.1000	0.0289
##	40	0.4755	nan	0.1000	0.0223
##	60	0.3402	nan	0.1000	0.0093
##	80	0.2587	nan	0.1000	0.0068
##	100	0.1964	nan	0.1000	0.0040
##	120	0.1578	nan	0.1000	0.0034

```
## 140 0.1264 nan 0.1000 0.0011
## 150 0.1139 nan 0.1000 0.0028
```

we have used confusion matrix under CARET package to check out of sample error. out of sample accuracy is 0.9973 with using randomforest.

confusionMatrix(predict(modelfit_gbm,test_vif),test_vif\$test_data.classe)

```
## Confusion Matrix and Statistics
##
##
           Reference
## Prediction A
                       С
##
         A 1110
                 6
                       0
                           0
              5 746 6
##
          В
                           1
##
          С
              0 4 676
                          10
##
         D
              1
                1
                      1 632
##
              0
                   2
                       1
                          0 712
##
## Overall Statistics
##
##
               Accuracy: 0.988
                 95% CI: (0.9841, 0.9912)
##
##
    No Information Rate: 0.2845
##
     P-Value [Acc > NIR] : < 2.2e-16
##
##
                  Kappa: 0.9848
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
                     Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                     0.9946 0.9829 0.9883 0.9829 0.9875
                      0.9979 0.9956 0.9951 0.9976 0.9991
## Specificity
## Pos Pred Value
                     0.9946 0.9816 0.9769 0.9875 0.9958
## Neg Pred Value
                     0.9979 0.9959 0.9975 0.9966 0.9972
                     0.2845 0.1935 0.1744 0.1639 0.1838
## Prevalence
## Detection Rate
                  0.2829 0.1902 0.1723 0.1611 0.1815
## Detection Prevalence 0.2845 0.1937 0.1764 0.1631 0.1823
## Balanced Accuracy 0.9962 0.9892 0.9917 0.9902 0.9933
```

Prediction with using classification method

```
# Train function under CARET is having
modelfit_class <- train(train_data.classe ~ ., method="rpart", data=train_vif)
# we have installed rattle package to create fancy tree
fancyRpartPlot(modelfit_class$finalModel)</pre>
```


Rattle 2019-Dec-09 13:36:34 irgcmh

```
pred_test <- table(predict(modelfit_class, test_vif), test_vif$test_data.class
e)
pred_test</pre>
```

```
##
##
                 В
                       С
                              D
                                   Ε
     A 1017
                     313
                           280
                                  98
               336
##
               243
                           134
                                 103
                      17
                     354
                           229
##
           0
                 0
                       0
                              0
                                    0
           3
                              0
##
                 0
                       0
                                 342
```

```
# Out of sample accuracy of classification method is 52.63% which is very less
than random forest.
sum(diag(pred_test)) / nrow(test_vif)
```

```
## [1] 0.498598
```

Comparison

Random forest Accuracy : 0.9973 Generalize boosting method Accuracy : 0.9888 Classification method accuracy : 0.5263

Accuracy of random forest is high so final validation will be made using random forest.

Final prediction of testing data set with using random forest

```
# our train vif data has reduced to 34 column. So we need to create out testing
dataset to sample unique column to predict classes A,B,C,D and E. Following cod
e is reducing testing data set variable from 160 to 34 column.
set.seed(32343)
testing <- testing[,-c(1:6)]</pre>
testing <- testing[,-c(3:30)]</pre>
testing <- testing[,-c(6:9)]
testing <- testing[,-c(12:21)]</pre>
testing < testing[,-c(13,15,16,19:35)]
testing \langle -\text{testing}[, -\text{c}(19:33)]
testing < testing[,-c(20:29)]
testing <- testing[,-c(22:26)]</pre>
testing <- testing[,-c(27:41,43:52)]
testing < testing[,-c(30:32)]
# Prediction with using random forest
predict(modelfit rf,testing)
```

```
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
## B A B A A E D B A A B C B A E E A B B B
## Levels: A B C D E
```