函数

李修成 lixiucheng@hit.edu.cn

计算机科学与技术学院

Outline

函数的定义与性质

函数的运算

双射函数与集合基数

作业

函数的定义与性质

函数定义

定义 1.1. 令 A, B 为非空集合,一个从集合 A 到 B 上的函数 f 为一种赋值(assignment),对于 A 中每一个元素 a, f 都为其赋予 B 中唯一元素 b. 若 f 将 $a \in A$ 赋值为 b, 则记为 f(a) = b. 通常记函数为 $f: A \to B$.

- A 称为 f 的定义域(domain),B 称为 f 的<mark>陪域(codomain)</mark>.
- f 的<mark>值域(range</mark>)为 A 中所有元素像的集合,即 1 range $(f) = \{f(x) \mid x \in A\}$.
- range(f) \subseteq codomain(f) = B, range(f) 通常也被记为 image(f).
- $E_b(a) = b$, 则称 $b \to a$ 的像 (image), 称 $a \to b$ 的原像 (preimage) 2.
- 若 f(a) = b, 那么 b 的原像是否唯一?

 1 注意: 指定教材将 range(f) 简记为 ran(f), domain(f) 简记为 dom(f), 两种简记不是数学惯用符号.

2注意:指定教材将像与原像的定义限定于集合,这种限定并没有带来任何额外好处,亦不符合数学惯用定义.

函数相等

定义 1.2 (函数相等). $\Diamond f, g$ 为函数, $f \vdash g$ 相等当且仅当如下两个条件同时成立,

- 1. domain(f) = domain(g);
- 2. $\forall x \in \text{domain}(f)$, 有 f(x) = g(x).

例子 1.1 (函数相等). 判断如下函数是否相等,

- $f(x) = \frac{x^2 1}{x + 1}$, g(x) = x 1.
- $f(x) = \frac{1}{1-x}$, $g(x) = 1 + x + x^2 + \dots$, domain(f) = domain(g) = (0,1).

3

函数构造

定义 1.3. \Diamond A, B 为非空集合,所有从 A 到 B 的函数集合记为 B^A ,

$$B^A \triangleq \{f \mid f \colon A \to B\}.$$

- 2. 教材中讨论了 A 或 B 为空集的情形,这种极端情形对建立数学理论并没有帮助.

函数构造

例子 1.2. \diamondsuit $A = \{1, 2, 3\}, B = \{a, b\}, 求 B^A.$

我们用有序对 $\langle a,b\rangle$ 来表示有穷集合之间的函数, 其中 $a\in A,b\in B$.

$$f_{0} = \{\langle 1, a \rangle, \langle 2, a \rangle, \langle 3, a \rangle\}, \quad f_{1} = \{\langle 1, a \rangle, \langle 2, a \rangle, \langle 3, b \rangle\}$$

$$f_{2} = \{\langle 1, a \rangle, \langle 2, b \rangle, \langle 3, a \rangle\}, \quad f_{3} = \{\langle 1, a \rangle, \langle 2, b \rangle, \langle 3, b \rangle\}$$

$$f_{4} = \{\langle 1, b \rangle, \langle 2, a \rangle, \langle 3, a \rangle\}, \quad f_{5} = \{\langle 1, b \rangle, \langle 2, a \rangle, \langle 3, b \rangle\}$$

$$f_{6} = \{\langle 1, b \rangle, \langle 2, b \rangle, \langle 3, a \rangle\}, \quad f_{7} = \{\langle 1, b \rangle, \langle 2, b \rangle, \langle 3, b \rangle\}.$$

思考: 上述函数表示与二进制表示有何关联?

函数的像

定义 1.4. 令 f 为从 A 到 B 的函数, $S \subseteq A$, $T \subseteq B$.

- 1. S 在函数 f 下的像(image)被定义为 $f(S) \triangleq \{f(s) \mid s \in S\}$.
- 2. T 在函数 f 下的原像(preimage)被定义为 $f^{-1}(T) = \{a | a \in A \land f(a) \in T\}$.
- 在我们的定义中,像与原像同时适用于元素 $a \in A$ 和集合 $S \subseteq A$.
- 一般情况下,对 $S \subseteq A$,我们有 $S \subseteq f^{-1}(f(S))$,为什么?

例子 1.3 (像与原像). 设 $f: \mathbb{N} \to \mathbb{N}$,且

$$f(x) = \begin{cases} x/2, & \text{if } n \text{ is even} \\ x+1, & \text{if } n \text{ is odd} \end{cases}$$

$$\diamondsuit S = \{0,1\}, T = \{2\}, 那么有$$

- $f(S) = f(\{0,1\}) = \{f(0), f(1)\} = \{0,2\}, \quad f^{-1}(T) = f^{-1}(\{2\}) = \{4,1\}.$
- $f^{-1}(f(S)) = ?$

定义 1.5. 设 $f: A \to B$,

- 1. 若对任意 $x_1, x_2 \in A$, $f(x_1) = f(x_2)$ 仅当 $x_1 = x_2$, 则称 f 是<mark>单射函数</mark> (injection) ³;
- 2. 若 range(f) = B, 则称 f 是满射函数(surjection)⁴;
- 3. 若f既是单射也是满射函数,则称f是双射函数(bijection)⁵.
- injective, surjective, and bijective.
- injectif, surjectif, and bijectif are creations of Bourbaki.

³英文又称为 one-to-one.

⁴英文又称为 onto.

⁵英文又称为 one-to-one correspondence.

例子 1.4. 判断如下函数是否为单射,满射,双射:

- 1. $f: \mathbb{R} \to \mathbb{R}$, $f(x) = -x^2 + 2x 1$.
- 2. $f: \mathbb{Z}^+ \to \mathbb{R}$, $f(x) = \ln x$.
- 3. $f: \mathbb{R} \to \mathbb{Z}$, $f(x) = \lfloor x \rfloor$.
- 4. $f: \mathbb{R} \to \mathbb{R}, f(x) = 2x 1.$
- 5. $f: \mathbb{R}^+ \to \mathbb{R}^+$, $f(x) = (x^2 + 1)/x$.

例子 1.5. 对于给定的集合 A 和 B 构造双射函数 $f: A \rightarrow B$

1.
$$A = \mathcal{P}(\{1, 2, 3\}), B = \{a, b\}^{\{1, 2, 3\}}.$$

2.
$$A = [0, 1], B = [1/4, 1/2].$$

3.
$$A = \mathbb{Z}, B = \mathbb{N}$$
.

4.
$$A = \left[\frac{\pi}{2}, \frac{3\pi}{2}\right], B = [-1, 1].$$

1.
$$A = \mathcal{P}(\{1, 2, 3\}), B = \{a, b\}^{\{1, 2, 3\}}.$$

$$A = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\},$$

$$B = \{f_0, f_1, \dots, f_7\}, \ \sharp \oplus$$

$$f_0 = \{\langle 1, a \rangle, \langle 2, a \rangle, \langle 3, a \rangle\}, \quad f_1 = \{\langle 1, a \rangle, \langle 2, a \rangle, \langle 3, b \rangle\}$$

$$f_2 = \{\langle 1, a \rangle, \langle 2, b \rangle, \langle 3, a \rangle\}, \quad f_3 = \{\langle 1, a \rangle, \langle 2, b \rangle, \langle 3, b \rangle\}$$

$$f_4 = \{\langle 1, b \rangle, \langle 2, a \rangle, \langle 3, a \rangle\}, \quad f_5 = \{\langle 1, b \rangle, \langle 2, a \rangle, \langle 3, b \rangle\}$$

$$f_6 = \{\langle 1, b \rangle, \langle 2, b \rangle, \langle 3, a \rangle\}, \quad f_7 = \{\langle 1, b \rangle, \langle 2, b \rangle, \langle 3, b \rangle\}.$$

故,可建立如下双射函数
$$f: A \rightarrow B$$
:

$$f(\emptyset) = f_0, f(\{1\}) = f_1, f(\{2\}) = f_2, f(\{3\}) = f_3,$$

 $f(\{1,2\}) = f_4, f(\{1,3\}) = f_5, f(\{2,3\}) = f_6, f(\{1,2,3\}) = f_7.$

2.
$$A = [0, 1], B = [1/4, 1/2].$$

$$\Rightarrow f: A \to B$$
, $f(x) = x/4 + 1/4$. The two steps correspond to Scale and Shift.

3. $A = \mathbb{Z}, B = \mathbb{N}$.

$$f: \mathbb{Z} \to \mathbb{N}, \quad f(x) = \begin{cases} 2x & x \ge 0, \\ -2x - 1 & x < 0. \end{cases}$$

4.
$$A = \left[\frac{\pi}{2}, \frac{3\pi}{2}\right], B = [-1, 1].$$

$$f: [\pi/2, 3\pi/2] \to [-1, 1], \quad f(x) = -\sin(x).$$

满射函数的计数

例子 1.6. 令集合 $A = \{1, 2, ..., m\}$, $B = \{1, 2, ..., n\}$, $m \ge n$, $S = B^A$. S 中有多少满射函数?

分析:满射意味着 B 中的所有元素都要出现在 range(f),这一约束条件使计数变的困难.如果能消除约束,则计数从 A 到 B 的函数会很容易,即 $|B|^{|A|}$.比如,从 A 到集合 $B-\{1\}$ 的全部函数个数为 $(n-1)^m$,从 A 到集合 $B-\{1,2\}$ 的全部函数个数为 $(n-2)^m$. 这启发我们使用容斥原理.

求解: 令 P_i 表示元素 $i \in B$ 不出现在 range(f) 这一性质, A_i 表示从 A 到 B 满足 P_i 函数 的集合. 则所求满射函数的个数为 $|\overline{A}_1 \cap \overline{A}_2 \cap \ldots \cap \overline{A}_n|$.

根据函数计数规则有, $|A_i|=(n-1)^m$, $|A_i\cap A_j|=(n-2)^m$, ..., $|A_1\cap A_2\cap...\cap A_n|=0$, 其中 $1\leq i\leq j\leq n$. 根据容斥原理有,

$$|\overline{A}_1 \cap \overline{A}_2 \cap \ldots \cap \overline{A}_n| = n^m - \binom{n}{1} (n-1)^m + \binom{n}{2} (n-2)^m + \ldots (-1)^n \binom{n}{n} 0$$
$$= \sum_{k=0}^n (-1)^k \binom{n}{k} (n-k)^m.$$

线性函数的单射与满射 (选学)

回忆线性代数中介绍的线性函数,

• $\diamond V, W$ 为向量空间, 对给定函数 $f: V \to W$, 如果对任意 $\mathbf{u}, \mathbf{v} \in V$, $a, b \in \mathbb{R}$ 有,

$$f(a\mathbf{u} + b\mathbf{v}) = af(\mathbf{u}) + bf(\mathbf{v}),$$

则称函数 f 为从向量空间 V 到 W 的线性函数.

- 证明 V 上的线性函数为单射函数当且仅当 $f(\mathbf{v}) = 0 \Rightarrow \mathbf{v} = 0$.
- 考虑特殊的向量空间 $V = \mathbb{R}^n$, $W = \mathbb{R}^m$, 此时 V 上的线性函数 f 等价于 $\mathbf{A} \in \mathbb{R}^{m \times n}$.
- 此时,矩阵 A 满足何种条件时 f 分别是单射、满射和双射的?
- 在线性代数中,为什么我们只对方阵定义逆矩阵?

单射与满射

定理 1.1. 令 A, B 为有穷集合,

- 1. 若从 A 到 B 存在单射函数则 $|A| \leq |B|$;
- 2. 若从 A 到 B 存在满射函数则 $|A| \ge |B|$;
- 3. 若 |A| = |B| 则 f 为单射 $\iff f$ 为满射 $\iff f$ 为双射.

证明. (1) 假设 $f: A \to B$ 为单射函数,则 $\forall a_1, a_2 \in A, a_1 \neq a_2$ 有 $f(a_1) \neq f(a_2)$. 由于 $f(a_1), f(a_2) \in B$,故 B 至少包含与 A 一样多的元素,即 $|A| \leq |B|$.

证明. (2) 假设 $f: A \to B$ 为满射函数,则 $\forall b_1, b_2 \in B, b_1 \neq b_2$ 有 $f^{-1}(\{b_1\}), f^{-1}(\{b_2\})$ 非空. 由函数定义可知 $f^{-1}(\{b_1\}) \cap f^{-1}(\{b_2\}) = \emptyset$. 由于 $A = \bigcup_{b \in B} f^{-1}(\{b\})$,故 $|A| \geq |B|$.

推论 1.1. 令 A,B 为有穷集合, $f:A\to B$ 为从 A 到 B 的函数. 若从 A 到 B 存在双射函数则 |A|=|B|.

单射与满射

思考:

- $\mathbf{A} \in \mathbb{R}^{m \times n}$ 可视为从 \mathbb{R}^n 到 \mathbb{R}^m 上的线性函数;

重要函数举例

- 1. 常函数 (constant function) $f: A \to B$, 对 $\forall x \in A$ 都有 f(x) = c, 其中 c 为常数.
- 2. 恒等函数(identity function) $I: A \to A$,对 $\forall x \in A$ 都有 $I_A(x) = x$.
- 3. 特征函数 (indicator function) $\chi: U \to \{0,1\}$, 令 $A \subseteq U$,

$$\chi_A(x) = \begin{cases} 1, & x \in A, \\ 0, & x \notin A. \end{cases}$$

4. 阶跃函数 (step function) $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \sum_{i=1}^{n} \alpha_i \chi_{A_i}(x),$$

其中 A_i 为 \mathbb{R} 的一个划分(partition),满足 1) $A_i \cap A_j = \emptyset \, \forall i, j, 2$) $\bigcup_{i=1}^{n} A_i = \mathbb{R}, \ \alpha_i \in \mathbb{R}.$

阶跃函数为特征函数的线性组合,在分析中有着重要应用,如定义黎曼积分(Riemann integral)、勒贝格积分 (Lebesgue integral) 以及离散随机变量的累积概率分布.

勒贝格积分初探(选学)

- 黎曼积分通过划分定义域来定义积分,比如划分成不相交的区间.
- Dirichlet 函数的定义域为 [0,1],

$$f(x) = \begin{cases} 0, & x \in \mathbb{Q}, \\ 1, & x \notin \mathbb{Q}. \end{cases} \qquad \int_{[0,1]} f(x) dx = ?$$

- 勒贝格积分通过划分函数的值域来定义积分.
- $f(x) = \sum_{i=1}^{n} \alpha_i \chi_{A_i}(x)$ 对应的勒贝格积分为 $\int f dx = \sum_{i=1}^{n} \alpha_i \ell(A_i)$.
- 勒贝格积分比黎曼积分对应的可积函要更广,且有更优良的性质,如积分与极限可交换顺序,是打开现代数学大门的一把钥匙.
- 感兴趣的同学可以参考 Gerald B. Folland 的经典教材⁶.

⁶Real Analysis: Modern Techniques and Their Applications.

定理 1.2. 令 $f: A \to B, X_1, X_2 \subseteq A.$ 有

- 1. $f(X_1 \cup X_2) = f(X_1) \cup f(X_2)$.
- 2. $f(X_1 \cap X_2) \subseteq f(X_1) \cap f(X_2)$.
- 3. $f(X_1) f(X_2) \subseteq f(X_1 X_2)$.
- 4. 若f为单射,则有 $f(X_1 \cap X_2) = f(X_1) \cap f(X_2)$, $f(X_1) f(X_2) = f(X_1 X_2)$.

(1) 对任意 $y \in f(X_1 \cup X_2)$ 有

$$y \in f(X_1 \cup X_2) \iff \exists x (x \in X_1 \cup X_2 \land f(x) = y)$$

$$\iff \exists x ((x \in X_1 \lor x \in X_2) \land f(x) = y)$$

$$\iff (\exists x \in X_1 \land f(x) = y) \lor (\exists x \in X_2 \land f(x) = y))$$

$$\iff y \in f(X_1) \lor y \in f(X_2)$$

$$\iff y \in f(X_1) \cup f(X_2).$$

$$(1)$$

(2) 对任意 $y \in f(X_1 \cap X_2)$ 有

$$y \in f(X_1 \cap X_2) \iff \exists x(x \in X_1 \cap X_2 \wedge f(x) = y)$$

$$\iff \exists x((x \in X_1 \wedge x \in X_2) \wedge f(x) = y)$$

$$\iff (\exists x \in X_1 \wedge f(x) = y) \wedge (\exists x \in X_2 \wedge f(x) = y)$$

$$\iff y \in f(X_1) \wedge y \in f(X_2)$$

$$\iff y \in f(X_1) \cap f(X_2).$$
(3)

(3) 对任意
$$y \in f(X_1) - f(X_2)$$
 有

$$y \in f(X_1) - f(X_2) \iff y \in f(X_1) \land y \notin f(X_2)$$

$$\iff (\exists x \in X_1 \text{ s.t. } f(x) = y) \land (\forall x \in X_2(f(x) \neq y))$$

$$\iff \exists x \in X_1 - X_2 \text{ s.t. } f(x) = y$$

$$\iff y = f(x) \in f(X_1 - X_2).$$
(5)

例子 1.7. 考虑从集合 $A = \{a, b, c\}$ 到 $B = \{1, 2\}$ 上的函数 $f = \{(a, 1), (b, 1), (c, 1)\}$. $X_1 = \{a, b\}, X_2 = \{c\}.$

- $f(X_1 \cap X_2) = f(\emptyset) = \emptyset \subseteq \{1\} = f(X_1) \cap f(X_2).$
- $f(X_1) f(X_2) = \emptyset \subseteq \{1\} = f(X_1 X_2).$

定理 1.3. 令 $f: A \to B, Y_1, Y_2 \subseteq B.$ 有

1.
$$f^{-1}(Y_1 \cup Y_2) = f^{-1}(Y_1) \cup f^{-1}(Y_2)$$
.

2.
$$f^{-1}(Y_1 \cap Y_2) = f^{-1}(Y_1) \cap f^{-1}(Y_2)$$
.

3.
$$f^{-1}(Y_1 - Y_2) = f^{-1}(Y_1) - f^{-1}(Y_2)$$
.

- 1. $f^{-1}(Y_1 \cup Y_2 \cup \ldots \cup Y_n) = f^{-1}(Y_1) \cup f^{-1}(Y_2) \cup \ldots \cup f^{-1}(Y_n)$.
- 2. $f^{-1}(Y_1 \cap Y_2 \cap \ldots \cap Y_n) = f^{-1}(Y_1) \cap f^{-1}(Y_2) \cap \ldots \cap f^{-1}(Y_n)$.

定理 1.4. 给定 $f: A \rightarrow B$. 证明如下结论:

- 1. 对任意 $X \subseteq A$, $X \subseteq f^{-1}(f(X))$.
- 2. 对任意 $Y \subseteq B$, $Y \supseteq f(f^{-1}(Y))$.
- 3. 如果 f 是单射,对任意 $X \subseteq A$, $X = f^{-1}(f(X))$.
- 4. 如果 f 是满射,对任意 $Y \subseteq B$, $Y = f(f^{-1}(Y))$.

例子 1.8. 考虑从集合 $A = \{a, b, c\}$ 到 $B = \{1, 2\}$ 上的函数 $f = \{(a, 1), (b, 1), (c, 1)\}$. $X = \{a, b\}, Y = \{1, 2\}.$

- $X \subseteq f^{-1}(f(X)) = \{a, b, c\}.$
- $Y \supseteq f(f^{-1}(Y)) = \{1\}.$

函数的运算

逆函数

定义 2.1. 令 f 为从集合 A 到 B 的双射函数. f 的逆函数(inverse function)是一个从 B 到 A 的映射,其将 $b \in B$ 映射到 $a \in A$ 如果 f(a) = b. 函数 f 的逆函数被记为 f^{-1} . $f^{-1}(b) = a$ 当 f(a) = b.

- **思考 1**: 这个定义是否是良好定义(well-defined)的? 即 $f^{-1}(b)$ 是否唯一.
- **思考 2**: 可否将定义中的双射函数修改为单射函数?

逆函数举例

例子 2.1.

- \diamondsuit $f: \{a, b, c\} \to \{1, 2, 3\}, f(a) = 2, f(b) = 3, f(c) = 1.$ 问 f(x) 是否可逆?
- $\diamondsuit f: \mathbb{Z} \to \mathbb{Z}, \ f(x) = 2x + 3. \ \Box f(x) \ \text{是否可逆?}$
- $\diamondsuit f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2. \ \Box f(x) \ \text{是否可逆}$?

复合函数

定义 2.2. 令 g 为从集合 A 到 B 的函数,f 为从集合 B 到 C 的函数。f 与 g 的复合 (composition) $f \circ g$ 是一个从 A 到 C 的函数,

$$(f \circ g)(a) = f(g(a)).$$

复合函数举例

例子 2.2. 令 f, g 为 \mathbb{Z} 到 \mathbb{Z} 的函数, f(x) = 2x + 3, g(x) = 3x + 2. 计算 $f \circ g$ 和 $g \circ f$.

$$(f \circ g)(x) = f(g(x)) = f(3x+2) = 2(3x+2) + 3 = 6x + 7.$$

$$(g \circ f)(x) = g(f(x)) = g(2x+3) = 3(2x+3) + 2 = 6x + 11.$$

- 一般情况下, $f \circ g \neq g \circ f$, 即函数复合运算不满足交换律.
- $\Diamond f: C \to D, g: B \to C, h: A \to B,$ 根据函数复合定义,

$$(f \circ g) \circ h = f(g(h(x))) = f \circ (g \circ h),$$

即函数复合运算满足结合律.

复合函数性质

定理 2.1. \diamondsuit $g: A \rightarrow B$, $f: B \rightarrow C$.

- 1. 若 f, g 都是单射的,则 $f \circ g : A \to C$ 也是单射的.
- 2. 若 f, g 都是满射的,则 $f \circ g : A \to C$ 也是满射的.
- 3. 若 f, g 都是双射的,则 $f \circ g : A \to C$ 也是双射的.

复合函数性质

定理 2.2. \diamondsuit $g: A \rightarrow B$, $f: B \rightarrow C$.

- 1. 若 $f \circ g : A \to C$ 是单射的,则 g 是单射的.
- 2. 若 $f \circ g : A \to C$ 是满射的,则 f 是满射的.
- 3. 若 $f \circ g : A \to C$ 是双射的,则 g 是单射的,f 是满射的.

复合函数性质

定理 2.3. 令 $g: A \rightarrow B, f: B \rightarrow C$ 均为双射函数,则

$$(f \circ g)^{-1} = g^{-1} \circ f^{-1}.$$

证明. 根据复合函数和逆函数的定义, $(f \circ g)^{-1}$ 与 $g^{-1} \circ f^{-1}$ 均为从 C 到 A 的函数,故定义 域相同.

任取
$$a \in A$$
, 令 $b = g(a)$, $c = f(b) = f(g(a))$. 根据逆函数定义,

$$(f \circ g)^{-1}(c) = a = g^{-1}(b) = g^{-1}(f^{-1}(c)) = g^{-1} \circ f^{-1}(c).$$

逆函数与复合函数

定理 2.4. 令 $f: A \to B$ 为双射函数,则

$$f^{-1} \circ f = I_A, \quad f \circ f^{-1} = I_B.$$

证明. 任取 $a \in A$,令 b = f(a),则由逆函数定义可知 $f^{-1}(b) = a$. 故

$$f^{-1} \circ f(a) = f^{-1}(f(a)) = f^{-1}(b) = a.$$

即 $f^{-1} \circ f = I_A$. 同时有,

$$f \circ f^{-1}(b) = f(f^{-1}(b)) = f(a) = b.$$

 $\exists I \ f \circ f^{-1} = I_B.$

双射函数与集合基数

- **定义 3.1.** 若存在一个从集合 A 到集合 B 的双射函数,则称 A 和 B 是等势,即具有相同的基 (cardinality),记为 $A \approx B$ 或 |A| = |B|.
- **定义 3.2.** 如果存在一个从集合 A 到集合 B 的单射函数,则称集合 B 优势于集合 A,记为 $A \preceq \cdot B$ 或 $|A| \leq |B|$. 若 $|A| \leq |B|$ 且二者的基不同,则称集合 B 真优势于A,记为 $A \prec \cdot B$ 或 |A| < |B|.
- **定义** 3.3. 若一个集合为有穷集合或与自然数 $\mathbb N$ 有相同的基则称其为可数的 (countable),否则称其为不可数的 (uncountable).

例子 3.1 (正奇数可数). 证明正奇数为可数集.

证明. 考虑 f(n) = 2n - 1, $n \in \mathbb{N}$. f 为从 \mathbb{N} 到正奇数集的双射函数.

例子 3.2 (希尔伯特旅馆). 希尔伯特旅馆 (Hilbert's Grand Hotel) 为一个拥有可数无穷个 (countably infinite number) 房间的旅馆,每个房间都住着一个神秘旅客. 夜幕降临,旅馆新来了一个旅客,我们需要为其安排房间.

例子 3.3 (整数集可数). 证明整数集为可数集.

证明. 考虑 $f: \mathbb{N} \to \mathbb{Z}$,

$$\mathit{f}(n) = \begin{cases} n/2, & \text{if } n \text{ is even}, \\ -(n-1)/2, & \text{if } n \text{ is odd}. \end{cases}$$

例子 3.4 (正有理数可数). 证明正有理数集为可数集.

证明. 每个正有理数都可以写成两个正整数的商 p/q. 我们可以这样排列正有理数,分母 q=1 的放在第一行,q=2 的放在第二行,以此类推.

然后以对角线的形式排列正有理数. 定义 p+q为 p/q 的高度, 先列出高度为 2 的有理数, 然后是高度 3 的有理数, 以此类推, 如果一个数之前出现过, 我们则跳过. 用这种方式, 我们给每个正有理数赋值了一个唯一的正整数,即我们建立了从有理数到 \mathbb{N} 的双射函数.

例子 3.5 (有理数可数). 证明有理数集为可数集.

证明. 与例子 3.4 类似,考虑有理数的分数表示 p/q,不过此时我们令 q>0. 并定义 |p|+q 为有理数 p/q 的高.

$$\frac{0}{1} = 0$$

为仅有的高度为1的有理数,

$$\frac{-1}{1}$$
, $\frac{1}{1}$

为仅有的高度为 2 的有理数,

$$\frac{-2}{1}$$
, $\frac{-1}{2}$, $\frac{2}{1}$, $\frac{1}{2}$

为仅有的高度为 3 的有理数,以此类推. 按照对角线方向,我们先列出所有高度为 1 的有理数,然后是所有高度为 2 的,以此类推. 这样我们就建立了从有理数 $\mathbb Q$ 到自然数 $\mathbb N$ 之间的双射函数.

例子 3.6 ($\mathbb{N} \times \mathbb{N}$ 可数). 证明 $\mathbb{N} \times \mathbb{N}$ 为可数集.

使用与例子 3.4 类似的对角线法则 (将有序对 $\langle p,q \rangle$ 放置在 p 行 q 列), 可以将 $\mathbb{N} \times \mathbb{N}$ 中所有的数枚举出来.

例子 3.7. 任意两个闭区间 [a, b] 与 [c, d] 上的点集具有相同的基.

例子 *3.8.* 复平面(complex plane)与三维空间中的单位球(unit sphere)具有相同的基. 考虑立体投影(steregraphic projection),即从北极点(north pole)N 与复平面任意一点 z 连线与单位球的交点.

例子 3.9. 闭区间 [0,1] 与开区间 (0,1) 上的点集具有相同的基.

对于 $0,1,1/2,1/2^2,\ldots$ 构造如下映射,

而 [0,1] 中其余的数则映射到自身. 该映射为双射函数.

这与希尔伯特旅馆有何关联?

定理 3.1 (实数不可数 $|\mathbb{R}| \neq |\mathbb{N}|$). 单位闭区间 [0,1] 内的实数集不可数.

证明. 假若 [0,1] 内的实数可数,并被如下方式列出,

$$\alpha_1 = 0. a_{11} a_{12} a_{13} a_{14} \cdots a_{1n} \dots$$

$$\alpha_2 = 0. a_{21} a_{22} a_{23} a_{24} \cdots a_{2n} \dots$$

$$\alpha_3 = 0. a_{31} a_{32} a_{33} a_{34} \cdots a_{3n} \dots$$

$$\alpha_4 = 0. a_{41} a_{42} a_{43} a_{44} \cdots a_{4n} \dots$$

$$\vdots$$

现考虑 $\beta = 0.b_1b_2b_3...b_n...$

$$b_n = \begin{cases} 1 & \text{if } a_{nn} \neq 1, \\ 2 & \text{if } a_{nn} = 1. \end{cases}$$

则 β 不会出现在 α_n 序列中.

定理 3.2. 对任意集合 A 都有 $|A| < |\mathcal{P}(A)|$.

证明. 首先,从 A 到 $|\mathcal{P}(A)|$ 存在单射函数 $f(x) = \{x\}$,故 $|A| \leq |\mathcal{P}(A)|$.

再证,从 A 到 $|\mathcal{P}(A)|$ 不存在满射函数,即 $|A| \neq |\mathcal{P}(A)|$. 给定任意函数 $f: A \to \mathcal{P}(A)$,现构造如何集合 B:

$$B = \{ x \mid x \in A \land x \notin f(x) \}.$$

① 若 $B = \emptyset$, 则 $\forall x \in A, f(x) \neq \emptyset$, 此时 $\emptyset \in \mathcal{P}(A)$ 无原像. ② 若 $B \neq \emptyset$, 则对任意 $x \in A$ 都 有 $f(x) \neq B$. 不然,若 f(x) = B,则 $\forall x \in B$ 都有 $x \in f(x)$,与 B 的定义矛盾. 故 $B \in \mathcal{P}(A)$ 无原像.

集合的等势与优势

定理 3.3. 令 A, B, C 为任意集合, 有

- 1. $|A| \leq |A|$.

集合的等势与优势

例子 3.10. 证明 $\{0,1\}^{\mathbb{N}} \approx [0,1)$.

证明. 首先,注意 $\{0,1\}^{\mathbb{N}}$ 为所有的可数无穷长度的 0,1 序列.

建立从 [0,1) **至** $\{0,1\}^{\mathbb{N}}$ **的单射函数**. 任取 $x \in [0,1)$,令 $x = 0.x_0x_1x_2 \dots$ 为 x 的二进制表示且规定序列中无连续无穷个 1 (即 0.0111 ... 对应 0.1000 ...),则对 $\forall x \in [0,1), x$ 有唯一的二进制表示,故函数 $f(x) = x_0x_1x_2 \dots$ 为所求单射函数.

建立从 $\{0,1\}^{\mathbb{N}}$ **至** [0,1) **的单射函数**. 任取 $s=x_0x_1x_2\ldots\in\{0,1\}^{\mathbb{N}}$,定义函数 $g(s)=0.x_0x_1x_2\ldots$,其中 $0.x_0x_1x_2\ldots$ 为十进制表示的浮点数,则不同的序列 s 对应不同的浮点数,故 g 为单射.

综上, $\{0,1\}^{\mathbb{N}} \approx [0,1)$.

集合等势与优势

令 a, b, c, d 为任意实数,则有

- $\mathbb{N} \approx \mathbb{Z} \approx \mathbb{Q} \approx \mathbb{N} \times \mathbb{N}$.
- $\mathbb{R} \approx [a, b] \approx (c, d) \approx \{0, 1\}^{\mathbb{N}} \approx \mathcal{P}(\mathbb{N}).$
- $\{0,1\}^A \approx \mathcal{P}(A)$.
- $\mathbb{N} \prec \cdot \mathbb{R}$.
- $\bullet A \prec \cdot \mathcal{P}(A).$

集合的基数

- 自然数集 \mathbb{N} 的基数记作 \aleph_0 , 即 $|\mathbb{N}| = \aleph_0$.
- 实数集 ℝ 的基数记作 ⋈, 即 |ℝ| = ⋈.
- 从定义 3.1 可知,集合的基数就是集合的势,基数越大,势就越大.
- 由于对任意集合 A 均有 $|A| < |\mathcal{P}(A)|$,故不存在最大的基数.
- \aleph_0 是最小的无穷基数,若 $|A| \le \aleph_0$,则 A 为可数集.

集合的基数

- 1. 可数集的任何子集都是可数集.
- 2. 两个可数集的并是可数集.
- 3. 两个可数集的笛卡儿积是可数集 $(\mathbb{N} \times \mathbb{N})$.
- 4. 可数个可数集的笛卡儿积仍是可数集.
- 5. 无穷集 A 的幂集 $\mathcal{P}(A)$ 不是可数集.

集合的基数

例子 3.11. 令 A, B 为集合且有 $|A| = \aleph_0, |B| = n > 0$,求 $|A \times B|$. 考虑希尔伯特旅馆,现在来了 n 个队列,每个队列均为可数集.

作业

作业

指定教材习题 8:

- **7**, 10, 12, 21.
- 29. \diamondsuit $A = \{a, b, c\}, B = \{0, 1\}^A$, 证明 $\mathcal{P}(A) \approx B$.
- **34**, 37, 39.

作业

- 证明定理1.1-(3).
- 证明定理1.2.
- 证明定理1.3.
- 证明定理1.4.