Series-shunt feedback amplifier

Shaik Mastan*

A series-shunt feedback amplifier employs a basic amplifier with parameters listed in Table 0. Find the

Parame- ters	Definition	For given circuit
Open loop gain	G	1000
Feedback factor	Н	0.1
Open- loop input resistance	R_i	$2K\Omega$
Open- loop output resistance	R_o	2ΚΩ

TABLE 0

input resistance R_{if} , output resistance R_{of} and gain of the closed-loop amplifier.

1. Represent the parameters in Table 0 through a circuit.

Solution: See Fig. 1.1.Design the *H* circuit.Solution: From fig:2.1

$$H = \frac{V_f}{V_o} = \frac{R_1}{R_1 + R_2} = 0.1 \tag{2.1}$$

where R_1 and R_2 are listed in Table 2.

3. Find the closed loop gain T and design the equivalent circuit.

Solution: See Fig. 3.1 for the equivalent circuit for T.

$$T = \frac{G}{1 + GH} \tag{3.1}$$

$$= 9.9$$
 (3.2)

Fig. 1.1: Ideal structure

Fig. 2.1: H circuit

4. Show R_{if} and R_{of} for the closed loop circuit and compute them.

Solution: See Fig. 4.1.

$$R_{if} = (1 + GH)R_i = 202K\Omega$$
 (4.1)

$$R_{of} = \frac{R_o}{1 + GH} = 19.802\Omega$$
 (4.2)

5. Verify the amplifier gain for a sinusoidal input of 1kHz through spice.

Solution: See Fig. 5.1 generated using

^{*}The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Parame- ter	Value
Op-amp gain(μ)	10^{4}
R_s	100Ω
R_{id}	$1K\Omega$
r_o	$10K\Omega$
R_1	$1K\Omega$
R_2	$9K\Omega$
R_L	$3.33K\Omega$

TABLE 2: Parameter values

Fig. 3.1: Amplifier design

Fig. 4.1: Equivalent circuit

/codes/ee18btech11039/ ee18btech11039_spice1.py

Fig. 5.1: Time domain output of the simulation