Indian Institute of Technology, Delhi

Semiconductor Optoelectronics (EPL336) Major May 2010

Answer all questions
Bullet point explanation is just enough

Max = 40 marks

- (a) Compare the features (at least five points) of Mott and Frenkel excitons and estimate first and second order exciton peaks in a pure GaAs semiconductor*. (check footnote for useful details)
 - (b) Differentiate between terms/terminologies spontaneous emission, stimulated emission, optical gain and laser.
 - (c) Describe (briefly) the radiative recombination process at different quantities of carrier injection.
 - (d) Show "graphically" how degenerate and non-degenerate nature of semiconductor changes with the increase of doping concentration in bulk and Quantum Wells.

... 15 marks

- (a) Categories basic mechanism of photodiode detectors (how photons are collected and converted into current).
 - (b) What is the usual electric bias operation of photodiode detector, why?
 - (c) What are the advantages/drawbacks of Avalanche photodiode detector?
 - (d) Explain the advantages of p-i-n photodiode over conventional p-n photo diode.
 - (e) What is quantum efficiency and responsivity of photodiode?

.... 10 marks

- (a) Write a short note on nonlinear refraction and nonlinear absorption. Discuss any one of the application of such nonlinearity in optoelectronics.
 - (b) If two optical beams, 1000nm and 600nm, are incident on a nonlinear material, assuming 2^{nd} order nonlinearity, what are the possible wavelengths be generated from this material?

....5 marks

- 4. Explain briefly the following electro-optic device operation. What kind of EO effect, is it Kerr or Pockel type?
 - (a) Quantum confined stark effect (QCSE) device
 - (b) LiNbO₃ crystal phase modulator
 - (c) Liquid crystal display device

.... 10 marks

^{*} Useful Constants: GaAs (E_g =1.424V, m_h *=0.51 m_0 , m_e *=0.063 m_0 ; static dielectric constant = 12.9)

 k_b = 8.617.10⁻⁵ eVK⁻¹., Electron rest mass m_0 = 9.1·10⁻³¹ kg, \hbar = 1.05.10⁻³⁴J-s