Séquence 06 - TP01 - Îlot 04

Lycée Dorian Renaud Costadoat Françoise Puig

La cinématique des mécanismes

Référence S06 - TP01 - I04

Compétences Mod2-C10-1: Modèle de solide indéformable

Mod2-C11: Modélisation géométrique et cinématique des mouvements

entre solides indéformables

Rés-C1: Loi entrée sortie géométrique et cinématique

Rés-C6: Utilisation d'un solveur ou d'un logiciel multi physique Com1-C1: Différents descripteurs introduits dans le programme

Com2-C4: Outils de communication

Description Lois E/S de fermeture géométrique et cinématique. Simulation du com-

portement de modèles. Proposer des lois de commande en fonction d'exi-

gences. Présenter les modèles acausaux

Système Plateforme

Problématique du TP:

Modéliser la loi d'entrée/sortie cinématique d'un système

MODELISER

Détermination de la loi d'entrée/sortie géométrique

L'objectif de cette partie est de déterminer la loi de fermeture géométrique de la plateforme Stewart. Elle est complémentaire de l'activité 2.

Étude de l'embase fixe

L'embase fixe, posée sur le sol est caractérisée par un repère $R_F(O_F, \overrightarrow{x_F}, \overrightarrow{y_F}, \overrightarrow{z_F})$.

Les barres sont ancrées aux points B_i répartis sur un cercle de rayon r_F .

Les points B_i sont positionnés par couple tous les 120°.

Les deux points formant un couple sont séparés angulairement de l'angle 2α .

On pose:

— Pour le point
$$B_i = B_{2k+1}$$
, $k \in [0,2]$, l'angle $\alpha_i = \left(\overrightarrow{x_F}, \overrightarrow{O_FB_i}\right) = k\frac{2 \cdot \pi}{3} + \alpha$

— Pour le point
$$B_i = B_{2k}$$
, $k \in [0, 2]$, l'angle $\alpha_i = \left(\overrightarrow{x_F}, \overrightarrow{O_FB_i}\right) = k\frac{2 \cdot \pi}{3} - \alpha$

Question 1 Déterminer les coordonnées du vecteur $\overrightarrow{O_FB_i}$ dans le repère $R_F(O_F, \overrightarrow{x_F}, \overrightarrow{y_F}, \overrightarrow{z_F})$ er fonction de α_i et r_F .

Question 2 Proposer un algorithme à partir d'une récurrence permettant de calculer tous les α_i . La valeur de α sera mesurée sur le système.

Question 3 Compléter cet algorithme afin de déterminer l'ensemble des vecteurs $\overrightarrow{O_FB_i}$ dans le repère $R_F(O_F,\overrightarrow{x_F},\overrightarrow{y_F},\overrightarrow{z_F})$

Étude d'un axe

Chaque barre a une longueur L_i , elle relie deux points A_i et B_i .

Mobilité de la plate-forme La position de la plate-forme est caractérisée par le vecteur $\overrightarrow{O_FO_M} = x.\overrightarrow{x_F} + y.\overrightarrow{y_F} + z.\overrightarrow{z_F}$.

Question 4 En utilisant la relation suivante $\overrightarrow{B_iA_i} = -\overrightarrow{O_FB_i} + \overrightarrow{O_FO_M} + \overrightarrow{O_MA_i}$ ainsi que les résultats de l'activité 2 concernant les vecteurs $\overrightarrow{O_MA_i}$ écrire le vecteur $\overrightarrow{B_1A_1}$ dans la base $R_F(O_F,\overrightarrow{x_F},\overrightarrow{y_F},\overrightarrow{z_F})$ en fonction de θ_1 , θ_2 , θ_3 , x, y et f.

Attention, la plateforme et la base forment un angle de $\frac{\pi}{3}$ lorsque les bras ont la même longueur. Il faut faire attention à l'association

Question 5 Enfin, calculer L_1 à partir des données précédentes.

- MODELISER

Activité 2 : Détermination de la loi d'entrée/sortie géométrique

L'objectif de cette partie est de déterminer la loi de fermeture géométrique de la plateforme Stewart.

Étude de la plate forme mobile

La plate forme mobile, est caractérisée par un repère $R_F(O_M,\overrightarrow{x_M},\overrightarrow{y_M},\overrightarrow{z_M})$.

Les barres sont ancrées aux points A_i répartis sur un cercle de rayon r_M .

Les points A_i sont positionnés par couple tous les 120°.

Les deux points formant un couple sont séparés angulairement de l'angle 2β .

On pose:

- Pour le point $A_i=A_{2k+1}$, $k\in[0,2]$, l'angle $\beta_i=\left(\overrightarrow{x_M},\overrightarrow{O_MA_i}\right)=k\frac{2\cdot\pi}{3}+\alpha$
- Pour le point $A_i = A_{2k}$, $k \in [0,2]$, l'angle $\beta_i = \left(\overrightarrow{x_M}, \overrightarrow{O_M A_i}\right) = k \frac{2 \cdot \pi}{3} \alpha$
- **Question 6** Déterminer les coordonnées du vecteur $\overrightarrow{O_MA_i}$ dans le repère $R_M(O_M, \overrightarrow{x_M}, \overrightarrow{y_M}, \overrightarrow{z_M})$ en fonction de β_i et r_M .
- **Question 7** Proposer un algorithme à partir d'une récurrence permettant de calculer tous les β_i . La valeur de β sera mesurée sur le système.
- **Question 8** Compléter cet algorithme afin de déterminer l'ensemble des vecteurs $\overrightarrow{O_MA_i}$ dans le repère $R_M(O_M,\overrightarrow{x_M},\overrightarrow{y_M},\overrightarrow{z_M})$.

Mobilité de la plate-forme La plate-forme possède 6 degrés de liberté par rapport à la base. Afin de caractériser l'orientation de la plate-forme, 3 paramètres permettent d'orienter

la base mobile R_M par rapport à la base fixe R_F , ce sont les trois angles θ_1 , θ_2 et θ_3 . Les figures suivantes présentent les changements de base successifs.

Question 9 A partir de cette figure, écrire les vecteurs de la base $R_M(O_M, \overrightarrow{x_M}, \overrightarrow{y_M}, \overrightarrow{z_M})$ dans la base $R_M(O_M, \overrightarrow{x_F}, \overrightarrow{y_F}, \overrightarrow{z_F})$.

Question 10 Utiliser cette conversion dans le programme afin de projeter les vecteurs $\overrightarrow{O_MA_i}$ dans la base $R_M(O_M, \overrightarrow{x_F}, \overrightarrow{y_F}, \overrightarrow{z_F})$.

Programmation d'un mouvement Nous souhaitons programmer deux types de mouvement :

- une rotation pure autour de \overrightarrow{z} dont l'angle de $-10^{\circ} < \theta < +10^{\circ}$, avec une distance de 30cm entre la plate-forme et la base,
- une translation le long de \overrightarrow{z} la distance entre la plate-forme et la base étant $d=300+50.cos(\omega.t)$ (en mm).

Question 11 Donner les valeurs de $x, y, z, \theta_1, \theta_2$ et θ_3 en fonction du temps.

En déduire la valeur des longueurs L_i en fonction du temps.

EXPERIMENTER

Modélisation sur un modeleur 3D

Le logiciel Solidworks va permettre de déterminer les lois d'entrée sortie géométrique et cinématique de la plateforme Stewart.

Le fichier à ouvrir pour cette étude est le fichier SW_Stewart/Stewart.SLDASM.

— Les mouvements d'entrée du mécanisme sont les translation au niveau des vérins L_i . Vous prendrez dans un premier temps une vitesse pour ces vérins de la forme $\dot{L}_i = 0, 2*sin(\frac{5.t}{2.\pi})$

è

Question 12 Sur Solidworks, paramétrer le modèle de la plateforme Stewart sur le logiciel Meca3d afin de pouvoir simuler son comportement.

Question 13 Construire une courbe pour les vérins correspondant à celle calculée par les activités 1 et 2, afin de vérifier que la modélisation issue des ces étapes correspond à la demande du cahier des charges concernant le movuement de rotation pure et celui de translation pure.

ANALYSER

Activité 4 : Système acausal

Cette partie va permettre d'introduire le modèle « acausal »afin de déterminer si celui qui a été mis en place pour la plateforme en est un. Un modèle « acausal »est un modèle qui ne possède pas de lien cause à effet. Il revient à des équations implicites sans ordre entre les variables et sans spécification d'entrée et de sortie.

- **Question 14** A la vue de la définition précédente, pensez-vous que ce système puisse être modélisé par un modèle « acausal » ?
- **Question 15** Vous effectuerez la liaison entre les activités afin de récupérer les résultats de l'activité 2 pour les utiliser sur Solidworks durant l'activité 3.
- **Question 16** Vous montrerez l'influence sur les résultat des dimensions géométrique du système afin de déterminer si leur choix dépend des données cinématiques.

