# $12a_{1128} \ (K12a_{1128})$



Ideals for irreducible components<sup>2</sup> of  $X_{par}$ 

$$I_1^u = \langle u^{29} - u^{28} + \dots + u - 1 \rangle$$

\* 1 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 29 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

<sup>&</sup>lt;sup>2</sup> All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. 
$$I_1^u = \langle u^{29} - u^{28} + \dots + u - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} - 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{10} + 7u^{8} - 16u^{6} + 13u^{4} - 3u^{2} + 1 \\ u^{10} - 6u^{8} + 11u^{6} - 6u^{4} - u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{8} - 5u^{6} + 7u^{4} - 4u^{2} + 1 \\ -u^{10} + 6u^{8} - 11u^{6} + 6u^{4} + u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{21} - 14u^{19} + \dots - 6u^{3} - u \\ -u^{23} + 15u^{21} + \dots + 3u^{5} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{23} - 16u^{21} + \dots - 44u^{5} + 6u^{3} \\ -u^{23} + 15u^{21} + \dots + 3u^{5} + u \end{pmatrix}$$

#### (ii) Obstruction class = -1

(iii) Cusp Shapes =  $-4u^{26} + 76u^{24} - 624u^{22} + 2900u^{20} - 4u^{19} - 8396u^{18} + 56u^{17} + 15708u^{16} - 320u^{15} - 19072u^{14} + 960u^{13} + 14724u^{12} - 1620u^{11} - 6940u^{10} + 1528u^9 + 1900u^8 - 752u^7 - 256u^6 + 180u^5 - 28u^4 - 36u^3 + 8u^2 + 4u + 6$ 

### (iv) u-Polynomials at the component

| Crossings                                | u-Polynomials at each crossing       |
|------------------------------------------|--------------------------------------|
| $c_1$                                    | $u^{29} - 7u^{28} + \dots - 7u + 1$  |
| $c_2, c_3, c_7$ $c_8$                    | $u^{29} + u^{28} + \dots + u - 1$    |
| $c_4, c_5, c_6$ $c_{10}, c_{11}, c_{12}$ | $u^{29} - u^{28} + \dots + u - 1$    |
| <i>C</i> 9                               | $u^{29} - 5u^{28} + \dots + 17u - 1$ |

## (v) Riley Polynomials at the component

| Crossings                                | Riley Polynomials at each crossing   |
|------------------------------------------|--------------------------------------|
| $c_1$                                    | $y^{29} + 3y^{28} + \dots + 67y - 1$ |
| $c_2, c_3, c_7 \ c_8$                    | $y^{29} - 33y^{28} + \dots + 3y - 1$ |
| $c_4, c_5, c_6$ $c_{10}, c_{11}, c_{12}$ | $y^{29} - 41y^{28} + \dots + 3y - 1$ |
| <i>c</i> 9                               | $y^{29} - y^{28} + \dots + 239y - 1$ |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 1.07968               | 2.46262                               | 2.59660             |
| u = -0.840545 + 0.145144I | -5.25732 + 0.07846I                   | 2.69491 + 1.17577I  |
| u = -0.840545 - 0.145144I | -5.25732 - 0.07846I                   | 2.69491 - 1.17577I  |
| u = -1.205760 + 0.116422I | 6.35623 - 1.67361I                    | 9.89817 + 0.46541I  |
| u = -1.205760 - 0.116422I | 6.35623 + 1.67361I                    | 9.89817 - 0.46541I  |
| u = 1.202640 + 0.175266I  | 5.26333 + 5.33299I                    | 6.65607 - 6.84513I  |
| u = 1.202640 - 0.175266I  | 5.26333 - 5.33299I                    | 6.65607 + 6.84513I  |
| u = -1.199740 + 0.218974I | -2.23245 - 7.72857I                   | 3.61909 + 5.37469I  |
| u = -1.199740 - 0.218974I | -2.23245 + 7.72857I                   | 3.61909 - 5.37469I  |
| u = 1.26442               | 1.39387                               | 5.96400             |
| u = 0.471072 + 0.447454I  | -7.58667 + 5.43585I                   | -0.17849 - 6.76696I |
| u = 0.471072 - 0.447454I  | -7.58667 - 5.43585I                   | -0.17849 + 6.76696I |
| u = -0.467285 + 0.371692I | -0.11770 - 3.45863I                   | 2.80280 + 9.42983I  |
| u = -0.467285 - 0.371692I | -0.11770 + 3.45863I                   | 2.80280 - 9.42983I  |
| u = 0.182355 + 0.485286I  | -8.43922 - 2.34125I                   | -3.35682 - 0.17846I |
| u = 0.182355 - 0.485286I  | -8.43922 + 2.34125I                   | -3.35682 + 0.17846I |
| u = 0.466672 + 0.213238I  | 0.927707 + 0.489193I                  | 8.47168 - 2.23458I  |
| u = 0.466672 - 0.213238I  | 0.927707 - 0.489193I                  | 8.47168 + 2.23458I  |
| u = -0.153276 + 0.375440I | -1.021340 + 0.906585I                 | -2.70117 - 1.63465I |
| u = -0.153276 - 0.375440I | -1.021340 - 0.906585I                 | -2.70117 + 1.63465I |
| u = 1.73522               | 4.28136                               | 2.00000             |
| u = -1.76786              | 12.9166                               | 2.00000             |
| u = 1.78372 + 0.05527I    | 8.64020 + 8.93823I                    | 04.29230I           |
| u = 1.78372 - 0.05527I    | 8.64020 - 8.93823I                    | 0. + 4.29230I       |
| u = -1.78538 + 0.04379I   | 16.1866 - 6.3008I                     | 0. + 5.54756I       |
| u = -1.78538 - 0.04379I   | 16.1866 + 6.3008I                     | 0 5.54756I          |
| u = 1.78638 + 0.03003I    | 17.3230 + 2.3306I                     | 0                   |
| u = 1.78638 - 0.03003I    | 17.3230 - 2.3306I                     | 0                   |
| u = -1.79318              | 12.6221                               | 5.86870             |

II. u-Polynomials

| Crossings                                | u-Polynomials at each crossing       |
|------------------------------------------|--------------------------------------|
| $c_1$                                    | $u^{29} - 7u^{28} + \dots - 7u + 1$  |
| $c_2, c_3, c_7$ $c_8$                    | $u^{29} + u^{28} + \dots + u - 1$    |
| $c_4, c_5, c_6$ $c_{10}, c_{11}, c_{12}$ | $u^{29} - u^{28} + \dots + u - 1$    |
| <i>c</i> <sub>9</sub>                    | $u^{29} - 5u^{28} + \dots + 17u - 1$ |

III. Riley Polynomials

| Crossings                                | Riley Polynomials at each crossing   |
|------------------------------------------|--------------------------------------|
| $c_1$                                    | $y^{29} + 3y^{28} + \dots + 67y - 1$ |
| $c_2, c_3, c_7$ $c_8$                    | $y^{29} - 33y^{28} + \dots + 3y - 1$ |
| $c_4, c_5, c_6$ $c_{10}, c_{11}, c_{12}$ | $y^{29} - 41y^{28} + \dots + 3y - 1$ |
| <i>c</i> 9                               | $y^{29} - y^{28} + \dots + 239y - 1$ |