

Universidad Nacional Autónoma de México Facultad de Ciencias Cálculo I

Tarea II

Elías López Rivera elias.lopezr@ciencias.unam.mx

Problemas sobre infimos y supremos

Ejercicio 1

Sea S un conjunto no vacio acotado en \mathbb{R}

i) Sea a > 0 y sea $aS := \{as : s \in S\}$. Demostrar que:

$$inf(aS) = a inf(S)$$
 $sup(aS) = a sup(S)$

ii) Sea b < 0 y sea $bS := \{bs : s \in S\}$. Demostrar que :

$$inf(bS) = b \, sup(S) \quad sup(bS) = b \, inf(S)$$

Demostración.

i) Tomemos $s \in S$, tenemos que como sup(S), es cota superior de S, se sigue que $as \leq asup(S)$, pues a>0 luego asup(S), es cota superior de aS, por tanto $sup(aS)\leq asup(S)$, pues sup(aS), es la mínima cota superior de $aS \cdots a$)

Luego tomamos $as \in aS$, como sup(aS) es cota superior se tiene que $as \leq sup(aS)$, como $a > 0 \implies$ $\frac{1}{a} > 0$, por tanto $s \le \frac{\sup(aS)}{a}$, por tanto $\frac{\sup(aS)}{a}$, es cota superior de S, luego $\sup(A) \le \frac{\sup(aS)}{a}$, de nuevo usando que a > 0 se tiene que $a\sup(A) \le \sup(aS) \cdots$ b)

De a) y b, junto con la lev de tricotomia se sigue que sup(aS) = asup(S)

Tomamos $s \in S$, tenemos que como inf(S), es cota inferior de S, se sigue que ainf(S) < as, pues a>0 luego ainf(S), es cota inferior de aS, por tanto $ainf(S)\leq inf(aS)$, pues inf(aS), es la máxima cota inferior de $aS \cdots c$)

Tomamos $as \in aS$, como inf(aS) es cota inferior se tiene que $inf(aS) \leq as$, como $a > 0 \implies \frac{1}{a} > 0$, entonces $\frac{inf(aS)}{a} \le s$, luego $\frac{inf(aS)}{a} \le inf(S)$, por tanto $inf(aS) \le ainf(S) \cdots d$)

De c) y d) se tiene que necesariamente in f(aS) = ain f(S)

ii) Tomemos $s \in S$, se sigue que $s \leq \sup(S)$, luego como b < 0, $bs \geq b\sup(S)$, por tanto $b\sup(S) \leq s\sup(S)$ $inf(bS) \cdots a$

Luego sea $bs \in bS$, tenemos que $inf(bS) \leq bs$, como $b < 0 \implies \frac{1}{b} < 0$, entonces $\frac{inf(bS)}{b} \geq s$, por tanto $sup(S) \leq \frac{inf(bS)}{b}$, se concluye que $inf(bS) \leq bsup(S)$, pues $b < 0 \cdots b$)

De a) y b), se sigue que inf(bS) = bsup(S)

Tomemos $s \in S$ se sique que $inf(S) \ge s$, luego como b < 0, $binf(S) \ge bs$, entonces $sup(bS) \le binf(S) \cdots c$)

Luego sea $bs \in bS$, entonces $bs \leq sup(bS)$, luego como $b < 0 \implies \frac{1}{b} < 0$, $s \geq \frac{sup(bS)}{b}$, por tanto $inf(S) \geq \frac{sup(bS)}{b}$, finalmente $binf(S) \leq sup(bS) \cdots d$)

De c) y d) se sigue que binf(S) = sup(bS)

Ejercicio 2

Determine si el súpremo y el ínfimo de los siguientes conjuntos existen y de ser así encontralos:

$$A := \left\{ 1 - \frac{1}{n} : n \in \mathbb{N} \right\}$$

$$B := \left\{ \frac{1}{n} - \frac{1}{m} : n, m \in \mathbb{N} \right\}$$

Demostración.

Tomemos $a=1-\frac{1}{1}$, como $1 \in \mathbb{N}$, se tiene que $a \in A$, como $A \neq \emptyset$, luego tenemos que $0 < 1 \le n \ \forall \ n \in \mathbb{N}$, se sigue que $1 > \frac{1}{n} > 0$, por tanto $0 < 1 - \frac{1}{n} < 1 \ \forall \ n \in \mathbb{N}$, por tanto A es acotado, por axioma del súpremo $\exists \ inf(A), \ sup(A) \in \mathbb{R}$.

Tomemos $\delta \in \mathbb{R}$, tal que $0 < \delta < 1$, se sigue que $0 < 1 - \delta < 1$, aplicando propiedad arquimediana tenemos que $\exists n_{\delta} \in \mathbb{N}$ tal que $n_{\delta} (1 - \delta) > 1$, usando las propiedades de orden en \mathbb{R} , tenemos que $1 - \delta > \frac{1}{n_{\delta}} \implies \delta < 1 - \frac{1}{n_{\delta}} = a_{\delta} \in A$, por tanto $\forall \delta \in \mathbb{R}$, tal que $0 < \delta < 1$, se sigue que $\exists a_{\delta} \in A$, que cumple que $\delta < a_{\delta}$, esto implica que ningún número entre 0 y 1 puede ser cota superior de A, por tanto la mínima cota superior es de A debe ser 1, es decir $\sup(A) = 1$. (Los números menores a 0 se descartan automáticamente pues 0 es cota inferior del conjunto).

De la misma manera tenemos que 0 es cota inferior de A, como $1 \in \mathbb{N}$, se tiene que $0 = 1 - \frac{1}{1} \in A$, luego sea $\epsilon > 0$, tenemos que $\exists a_{\epsilon} \in A$, tal que $a_{\epsilon} < 0 + \epsilon = \epsilon$, en este caso $a_{\epsilon} = 0$, por tanto inf(A) = 0.

Tomemos $n,m\in\mathbb{N}$, tal que n>m, por propiedades de orden en \mathbb{R} , se sigue que $\frac{1}{m}>\frac{1}{n}$, luego $1>0>\frac{1}{n}-\frac{1}{m}>-\frac{1}{m}$, pues $\frac{1}{n}>0$, luego como $m\geq 1$, entonces $\frac{1}{m}<1$, multiplicando por menos $\frac{-1}{m}>-1$, por tanto $1>\frac{1}{n}-\frac{1}{m}>-1$

Ahora tomemos el caso $n,m\in\mathbb{N}$, tal que m< n, por propiedades del orden de \mathbb{R} , se sigue que $\frac{1}{n}>\frac{1}{m}$, se sigue que $\frac{1}{n}-\frac{1}{m}>0>-1$, a su vez $\frac{1}{n}-\frac{1}{m}<\frac{1}{n}$, pues $\frac{1}{m}>0$, como $n\geq 1$, por tanto $\frac{1}{n}<1$, finalmente se concluye que $-1<\frac{1}{n}-\frac{1}{m}<1$

Tenemos que $\forall b \in B$ entonces -1 < b < 1, por tanto B es acotado, luego tomemos $0 = \frac{1}{1} - \frac{1}{1}$, como $1 \in \mathbb{N}$, entonces $0 \in B$, se sigue que $B \neq \emptyset$, por axioma del supremo se sigue que $\exists inf(B), sup(B) \in \mathbb{R}$

Tenemos que $sup(B) \ge 0$, pues $0 \in B$, tomemos $\delta \in \mathbb{R}$, tal que $0 < \delta < 1$, tomemos el n_{δ} definido anteriormente entonces se tiene que necesariamente $\delta < 1 - \frac{1}{n_{\delta}} \in B$, por tanto cualquier número menor a 1 y mayor a 0, no puede ser cota superior, se concluye que sup(B) = 1, pues es la cota superior más pequeña posible.

De la misma manera tenemos que $inf(B) \leq 0$, pues $0 \in B$, tomemos $\delta \in \mathbb{R}$, tal que $0 < \delta < 1$, tomemos de nuevo n_{δ} entonces se sigue que $\delta < 1 - \frac{1}{n_{\delta}}$, usando propiedades del orden de \mathbb{R} , si multiplicamos obtenemos $-1 < -\delta < 0$ y $-\delta > \frac{1}{n_{\delta}} - 1 \in B$, por tanto $-\delta > -1$, no puede ser cota inferior, se sigue que inf(B) = -1, pues es la cota inferior máxima posible.

Ejercicio 3

Si un connjunto $S \subset \mathbb{R}$, contiene una de sus cotas superiores, demostrar que esta cota es el supremo de S.

Demostración.

Tomemos $l \in S$, de tal manera que $s \leq l \ \forall \ s \in S$, es decir l, es cota superior de S, tenemos que para que l sea súpremo también debe cumplir que $\forall \epsilon > 0 \ \exists \ s_{\epsilon} \in S$ tal que $l - \epsilon < s_{\epsilon}$, en partícular sea $\epsilon > 0$, por propiedades del orden en los números reales tenemos que $l - \epsilon < l$, es decir $a_{\epsilon} = l$, pues $l \in S$, como tomamos $\epsilon > 0$ arbitraria se sigue que l cumple la condición y por tanto es súpremo.

Problemas sobre propiedades en \mathbb{R}

Ejercicio 4

Sean $a, b, c, d \in \mathbb{R}$, demuestre que:

i)
$$(-1)(-1) = 1$$

ii)
$$(-1)(a+b) = -a-b$$

iii) Si a < b y c < d demostrar que a + c < b + d

Demostración.

i)

$$(-1) + (-1)(-1) = (-1)(1) + (-1)(-1)$$
 Propiedad del elemento neutro del producto
$$(-1)(1) + (-1)(-1) = (-1)(1+(-1))$$
 Propiedad distributiva del producto sobre la adición
$$(-1)(1+(-1)) = (-1)(0)$$
 Propiedad del inverso aditivo
$$(-1)(0) = 0$$
 Todo número real multiplicado por 0 da como resultado 0

$$(-1)+(-1)(-1)=0=1+(-1)$$

Por tanto (-1)(-1) es inverso aditivo de -1 al igual que 1, de la unicidad de este se deduce que (-1)(-1)=1

ii)

$$(a+b)+(-1)(a+b)=(a+b)(1)+(-1)(a+b)$$
 Propiedad del elemneto neutro del producto $(a+b)(1)+(-1)(a+b)=(a+b)(1+(-1))$ Distributividad del producto respecto a la adición $(a+b)(1+(-1))=(a+b)(0)$ Propiedad del inverso aditivo $(a+b)(0)=0$ Todo número real multiplicado por 0 da como resultado 0 $(a+b)+(-1)(a+b)=0=(a+b)+(-a-b)$

Por tanto (-1)(a+b) es inverso aditivo de a+b al igual que -a-b, de la unicidad de este se deduce que (-1)(a+b)=-a-b

iii)

$$a < b \implies b - a \in \mathbb{P}, c < d \implies d - c \in \mathbb{P}, \text{ por tanto } b - a + d - c = (b + d) + (-a - c) \in \mathbb{P} \implies a + c < b + d \quad \Box$$

Ejercicio 5

Responda las siguientes preguntas, justifique a detalle:

- i)Si a es racional y b es irracional, ¿Es a + b necesariamente irracional?, ¿Qué pasa si ambos son irracionales, cóm es a + b?
- ii)Si a es racional y b es irracional, ¿Sera ab irracional?

Demostración.

i) Sea $a \in \mathbb{Q}$ y $b \in \mathbb{I}$ demostremos que $a + b \in \mathbb{I}$

Procedemos por contradicción, es decir $a+b=c\in\mathbb{Q}$, como $a\in\mathbb{R}$, $\exists -a\in\mathbb{R}$ tal que a+(-a)=0, por tanto sea b=0+b=a+(-a)+b=c+(-a)

Como $a \in \mathbb{Q}$, tenemos que $a = \frac{m}{n}$, con $m, n \in \mathbb{Z}$, por tanto $-a = \frac{-m}{n}$, se sigue que $-a \in \mathbb{Q}$

Luego como \mathbb{Q} es cerrado bajo la adición se tiene que necesariamente $b=c+(-a)\in\mathbb{Q}$, lo cual es una contradicción ya que por hipótesis se tenia que $b\in\mathbb{I}$

ii) Si a=0, como $b\in\mathbb{R}$, se sique que a(b)=0, por tanto $a(b)=0\in\mathbb{Q}$.

Tomemos entonces $a \neq 0$, con $a \in Q$, $b \in \mathbb{I}$, demostremos que $ab \in \mathbb{I}$

Procedemos por contradicción es decir $ab=c\in\mathbb{Q}$, como $a\in\mathbb{R}$, $a\neq 0$ $\exists \frac{1}{a}\in\mathbb{R}$, tal que $\frac{1}{a}(a)=1$, por tanto sea $b=b(1)=\frac{1}{a}(a)(b)=(c)\frac{1}{a}$.

Tenemos que $a=\frac{r}{s}$ con $r,s\in\mathbb{Z}$, pues $a\in\mathbb{Q}$, luego se tiene que $\frac{r}{s}\frac{s}{r}=1$, de la unicidad del neutro se tiene que $\frac{1}{a}=\frac{s}{r}$, por tanto $\frac{1}{a}\in\mathbb{Q}$

Como \mathbb{Q} , es cerrado bajo el producto se tiene que necesariamente $b=(c)\frac{1}{a}\in\mathbb{Q}$, una contradiccón pues $b\in\mathbb{I}$, por hipótesis, por tanto $ab\in\mathbb{I}$