Cathode arrangement for an X-ray accelerating tube comprises a ferroelectric emitter which can emit electrons from an emitting surface and an electrode arranged on the emitting surface of the ferroelectric emitter

Patent number:

DE10057072

Publication date:

2001-05-23

Inventor:

LASKAI LASZLO (US); LIPKIN DON MARK (US)

Applicant:

GEN ELECTRIC (US)

Classification:

- international:

H01J1/30; H01J35/06

- european:

H01J1/30, H01J35/06

Application number: Priority number(s):

US19990444187 19991119

DE20001057072 20001117

Abstract of DE10057072

Cathode arrangement (1) comprises a ferroelectric emitter (3) which can emit electrons from an emitting surface; and an electrode (6, 15) arranged on the emitting surface of the ferroelectric emitter. The ferroelectric material has a Curie temperature which lies above the operating temperature of the cathode arrangement. An Independent claim is also included for a process for the emission of electrodes from the X-ray device. Preferred Features; The ferroelectric material is Pb(Mg, Nb)O3, (Ba, Sr)TiO3, (Pb, La)(Zr, Ti) O3 or zinc oxide.

Data supplied from the esp@cenet database - Worldwide

BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENT- UND. **MARKENAMT**

Offenlegungsschrift [®] DE 100 57 072 A 1

Aktenzeichen: Anmeldetag:

100 57 072.0 17. 11. 2000

Offenlegungstag:

23. 5.2001

(5) Int. Cl.⁷:

H 01 J 1/30 H 01 J 35/06

(31) Unionspriorität:

444187

US 19. 11. 1999

(7) Anmelder:

General Electric Company, Schenectady, N.Y., US

(74) Vertreter:

Tiedtke, Bühling, Kinne & Partner, 80336 München

(72) Erfinder:

Laskai, Laszlo, New York, N.Y., US; Lipkin, Don Mark, New York, N.Y., US

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Ferroelektrischer Emitter

Eine Kathodenanordnung (1) für ein Röntgengerät umfasst einen generell ebenen ferroelektrischen Emitter (3) und zumindest eine auf der Emissionsoberfläche des ferroelektrischen Emitters angeordnete Elektrode (6, 15). Der ferroelektrische Emitter weist eine Emissionsoberfläche auf, aus der die Elektronen emittiert werden. Der ferroelektrische Werkstoff besitzt eine Curietemperatur, die über der Betriebstemperatur des Emitters liegt. Erfindungsgemäß wird zudem ein Röntgengerät angegeben, welches die Kathodenanordnung und den ferroelektrischen Emitter beinhaltet. Weiterhin wird erfindungsgemäß ein Verfahren zur Elektronenerzeugung aus einem ferroelektrischen Emitter in einem Röntgengerät angeführt.

14

Beschreibung

Die Erfindung betrifft ferroelektrische Emitter. Insbesondere betrifft die Erfindung ferroelektrische Elektronenemitter für Kathodenanwendungen wie etwa Röntgenstrahlenröhren und Beleuchtungen.

Eine Kathode umfasst zumindest einen Emitter. Ein Emitter ist ein Bestandteil, welches Elektronen bei einer Energieabsorption freigibt. Bekannte Kathoden weisen eine spiralförmige Spulenemittergeometrie auf, welche oftmals aus 10 Wolfram oder einer Wolframlegierung ausgebildet ist. Wolframemitter haben sich für viele Anwendungen als adäquat erwiesen; da sie jedoch auf thermionischer Emission beruhen, sind viele Nachteile ersichtlich. Thermionischer Emissionsstrom ist durch die Child-Langmuir-Sättigung gebunden, welche bei Niederspannungsröntgenstrahlenanwendungen besonders schwer wiegt. Die Zeitverzögerung für die Versetzung eines thermionischen Emitters auf eine Gleichgewichtstemperatur stellt eine weitere Einschränkung dar, was zu einer kompromissbehafteten Bildqualität, dauer- 20 haftem Komfortmangel und Emitterdegradation führt. Thermionische Emitter verkomplizieren zudem das Management der Röntgenstrahlendosis, was komplexe Spannungsgitterschemata für die Initiierung und Beendigung der Röntgenstrahlenemission auf Anforderung erforderlich macht.

Die Elektronenemission aus ferroelektrischen Werkstoffen ist bekannt. Die Verwendung dieser ferroelektrischen Werkstoffe war jedoch auf eine sehr geringe Gesamtemissionsladung beschränkt und wurde durch ihre Curietemperatur niemals auf die speziellen Erfordernisse von entweder 30 Röntgenstrahlen- oder Beleuchtungsanwendungen angepasst. Die Curietemperatur definiert eine Temperatur oberhalb derer ferroelektrische Werkstoffe ihre spontane Elektronenpolarisation und damit verbundene Fähigkeit zur Elektronenemission verlieren können.

Demzufolge liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine einen derartigen Emitter beinhaltende Kathode anzugeben, welcher die Beschränkungen der bekannten thermionischen Emitter wie etwa Wolframspulen überwindet. Zudem soll eine Röntgenstrahlkathode bereitgestellt werden, welche einen Emitter verwendet, der das Dosismanagement verbessert und vereinfacht, die Emitterlebensdauer verlängert und/oder die Elektronenemission verbessert.

Erfindungsgemäß wird eine Kathodenanordnung für ein 45 Röntgenstrahlenröhrengerät angegeben. Die Kathodenanordnung weist einen ferroelektrischen Emitter und zumindest eine auf einer emittierenden Oberfläche und einer gegenüberliegenden Oberfläche des ferroelektrischen Emitters angeordnete Elektrode auf. Der ferroelektrische Werkstoff 50 besitzt eine Curietemperatur, die größer als die Betriebstemperatur des Emitters ist.

Zudem wird eine Kathodenanordnung angegeben, die für ein Röntgenstrahlenröhrengerät angepasst ist. Die Kathodenanordnung umfasst einen generell ebenen ferroelektrischen Emitter und eine Elektrode, welche einen Abschnitt des ferroelektrischen Emitters freilegt, wie etwa eine Elektrode mit einer auf einer emittierenden Oberfläche des ferroelektrischen Emitters angeordneten Vielzahl von Metallstreifen. Die Curietemperatur des ferroelektrischen Werkstoffs ist größer als die Betriebstemperatur des Emitters.

Erfindungsgemäß wird zudem ein Verfahren zur Emission von Elektronen aus einem Röntgenstrahlenröhrengerät angegeben.

Das Verfahren umfasst zum einen die Bereitstellung einer 65 Kathodenanordnung, wobei die Kathodenanordnung einen ferroelektrischen Emitter und zumindest eine auf einer Emissionsoberfläche des ferroelektrischen Emitters ange-

ordnete Elektrode aufweist, sowie die Bereitstellung einer gepulsten Spannung durch den ferroelektrischen Emitter der Kathodenanordnung zur Induktion der Elektronenemission aus der Kathode. Die Curietemperatur des ferroelektrischen Werkstoffs ist größer als die Betriebstemperatur des Emitters.

Diese und weitere Einzelheiten, Vorteile sowie herausragende Merkmale der Erfindung sind aus der nachstehenden näheren Beschreibung ersichtlich, welche in Verbindung mit der beigefügten Zeichnung Ausführungsbeispiel der Erfindung offenbart, wobei in der gesamten Zeichnung gleiche Teile mit gleichen Bezugszeichen bezeichnet sind.

Dabei zeigt

Fig. 1 eine Schnittansicht eines Ausführungsbeispiels einer Kathodenanordnung mit einem ferroelektrischen Emitter:

Fig. 2 eine Draufsicht einer Kathode mit einem ferroelektrischen Emitter gemäß der Linic 2-2 aus Fig. 1;

Fig. 3 eine Darstellung eines Ausführungsbeispiels eines ferroelektrischen Emitters; und

Fig. 4 eine Darstellung eines erfindungsgemäßen Röntgenstrahlengerätes.

Eine erfindungsgemäße Kathodenanordnung umfasst einen ferroelektrischen Emitter. Der Emitter umfasst Elektroden oder Metallisierungsschichten auf seinen beiden Seiten. Eine der Elektroden ist so angeordnet, dass ein Abschnitt der ferroelektrischen Emitteroberfläche frei bleibt. Diese Elektrode kann ein verschaltetes Metallgitter oder alternativ verschaltete Metallstreifen aufweisen. Diese Elektrode kann auf einer Seite des Emitters angeordnet sein, wie etwa eine generell ebene Seite oder eine gekrümmte Seite des Emitters, die Elektronen emittieren kann. Der ferroelektrische Emitter umfasst zudem eine Gegenelektrode auf der der emittierenden Seite mit der einen Elektrode gegenüberliegenden Seite zur Vervollständigung der Elektronenemissionsfunktion. Die Rückseite des Emitters kann beispielsweise mit einer Gegenelektrode versehen sein, die als durchgehende Schichtelektrode angeordnet ist.

Ein erfindungsgemäßer ferroelektrischer Emitter stellt eine Elektronenemission mit hohen Elektronenstromdichten bereit. Dabei wurden Stromdichten von bis zu 400 A/cm² beobachtet, wenngleich die meisten Berichte Stromdichten von etwa 10 A/cm² bis zu etwa 100 A/cm² zeigten. Die Stromdichte eines erfindungsgemäßen ferroelektrischen Emitters liegt oberhalb der Emitterstromdichten der bekannten (thermionischen) Wolframspulen, die typischerweise weniger als etwa 5 A/cm² betragen. Die Emissionsstromdichte von thermionischen Emittern wird in der Praxis entweder insbesondere bei geringen Beschleunigungsspannungen durch Sättigung oder beispielsweise aufgrund von thermischer Verdampfung durch schwere Lebensdauerverschlechterungen begrenzt. Demzufolge sind die erfindungsgemäßen ferroelektrischen Emitter sowohl für industrielle als auch für medizinische Abbildungsanwendungen gut geeignet.

Ein erfindungsgemäßer ferroelektrischer Werkstoff besitzt eine hinreichend hohe Curietemperatur, um seine ferroelektrischen Eigenschaften bei der Betriebstemperatur zu behalten. Die Curietemperatur definiert eine Temperatur, oberhalb der ferroelektrische Werkstoffe ihre spontane Elektronenpolarisation und die damit verbundene Fähigkeit verlieren, Elektronen zu emittieren.

Der ferroelektrische Emitter ist in der Lage, eine ungedämpfte Elektronenemissionsleistungsfähigkeit bei hohen Stromdichten aufrechtzuerhalten. Da der ferroelektrische Werkstoff ohne Vorheizen zur Elektronenemission in der Lage ist, kann somit der ferroelektrische Emitter im Vergleich zu bekannten thermionischen Emittern Elektronen . , ! 3

rasch emittieren, weil diese zuerst auf eine Elektronenemissionstemperatur aufgeheizt werden müssen. Die Werkstoffe für die erfindungsgemäßen ferroelektrischen Emitter umfassen keramische Werkstoffe. Diese keramischen Werkstoffe sind beispielsweise aber nicht ausschließend aus der Gruppe 5 Pb(Mg, Nb)O₃ {PMN}, (Ba, Sr)TiO₃, (Pb, La)(Zr, Ti)O₃ {PZT, PLZT}, sowie Zinkoxid (ZnO) ausgewählt. Ein erfindungsgemäßer ferroelektrischer Emitter 3 weist eine relativ kleine Dicke auf. Der ferroelektrische Emitter 3 ist beispielsweise mit einer Dicke im Bereich zwischen etwa 10 0,1 mm bis etwa 2,0 mm ausgebildet.

Nachstehend wird ein Ausführungsbeispiel einer erfindungsgemäßen Kathodenanordnung 1 unter Bezugnahme auf die Figuren beschrieben. Das Ausführungsbeispiel der Kathodenanordnung 1 wird nicht in einem die Erfindung beschränkenden Sinne angegeben und dient lediglich zur Darstellung einer Verwendung eines erfindungsgemäßen ferroclektrischen Emitters. Gemäß Fig. 1 umfasst die Kathodenanordnung 1 eine Kathodenabdeckung 2 und einen ferroelektrischen Emitter 3. Der ferroelektrische Emitter 3 weist 20 gemäß den Fig. 1 und 3 eine erste emittierende Oberfläche 4 und eine zweite gegenüberliegende Oberfläche 5 auf. Die Oberflächen 4 und 5 können generell eben sein. Alternativ kann zumindest eine der Oberflächen 4 und 5 mit einer Kurvensorm versehen sein, wie etwa generell konkav, so dass 25 der ferroelektrische Emitter Elektronen erzeugen kann, die vollständiger auf ein Ziel fokussiert werden können.

Die erste emittierende Oberfläche 4 des ferroelektrischen Emitters 3 definiert eine erste Achse 100 und eine zweite Achse 101. Die erste emittierende Oberfläche 4 ist als die 30 Elektrode mit einem Gitter oder periodisch auftretenden metallischen Streifen 6 bereitgestellt. Diese Elektrode kann alternativ eine beliebige ähnliche Struktur 6 aufweisen, welche einen Abschnitt des ferroelektrischen Emitters freilässt. Die Elektrode in beispielsweise der Gestalt der Streifen 6 ist 35 aus einem leitenden Werkstoff wie etwa Silber, Aluminium, Gold, Wolfram und Kupfer ausgebildet, worauf sie aber nicht darauf beschränkt ist. Die Gegenelektrode 15 kann entweder eine strukturierte Elektrode oder eine kontinuierlich geschichtete Elektrode aufweisen.

Eine Spannungsquelle 7 umfasst eine Energiequelle, beispielweise eine Energieimpulsquelle, die eine geeignete Frequenz und Größenordnung für Emissionszwecke aufweist. Die Spannungsquelle 7 ist an den Elektroden 6 und 15 an den ferroelektrischen Emitter 3 angeschlossen. Somit ist 45 eine Schaltung in der Kathodenanordnung ausgebildet, und Energie kann dem ferroelektrischen Emitter 3 zugeführt werden. Die Spannungsimpulse V_{fe} werden in Richtung des Pfeils 8 angelegt. Alternativ sind auch andere Spannungsverläufe oder -muster wie etwa Gleichspannungen (einschlägig auch als Dauerspannungen bekannt) und Wechselspannungen erfindungsgemäß, so lange eine Elektronenemission etabliert werden kann.

Die Kathodenabdeckung 2 umfasst einen geeigneten Aufbau, der die Elektronenfokussierung auf ein Target 50 verbessert, wobei das Target eine Teil der Anode aufweist. Die Anodenabdeckung 2 umfasst einen Sitz 11 zum Anbringen des ferroelektrischen Emitters 3. Der ferroelektrische Emitter 3 ist an den Sitz 11 durch ein geeignetes Verfahren angebracht. Die Kathodenandeckung 2 kann zudem Merkmale wie etwa Stufen 13 und (in den Figuren nicht gezeigte) Aperturvorsprünge aufweisen. Die Stufen 13 und die Aperturvorsprünge der Kathodenabdeckung 2 sind mit einer die Emission und Fokussierung von Elektronen zwischen dem ferroelektrischen Emitter 3 und dem Target 6 fördernden 65 Größe und Abmessung versehen. Die dargestellte Struktur der Kathodenabdeckung 2 ist lediglich ein Ausführungsbeispiel der erfindungsgemäßen Kathodenabdeckungsstruktu-

ren. Der erfindungsgemäße ferroelektrische Emitter 3 kann mit variierenden Strukturen der Kathodenabdeckung 2 und der Kathodenanordnung 1 verwendet werden.

4

Die einen erfindungsgemäßen ferroelektrischen Emitter 3 beinhaltende Kathodenanordnung 1 kann in ein Röntgenstrahlengerät eingebaut werden. Die Kathodenanordnung kann in ein beliebiges bekanntes Röntgengerät eingebaut werden; andere Anwendungen der Kathodenanordnung 1 wie etwa bei Beleuchtungen sind jedoch auch erfindungsgemäß. Die US-Patentdruckschriften 5 498 186 (Benz et al) und 4 736 400 (Koller et al) geben Beispiele für Röntgengeräte an. Fig. 4 zeigt eine Darstellung eines Ausführungsbeispiels für ein erfindungsgemäßes Röntgengerät 100.

Gemäß Fig. 4 umfasst das beispielhaft angegebene Röntgengerät 100 ein Gehäuse 52, welches generell das Röntgengerät 100 umschließt. Das Röntgengerät 100 weist ein Targetende 24, ein Kathodenende 26 und einen Zentralabschnitt 28 auf, der zwischen dem Targetende und dem Kathodenende liegt. Der Zentralabschnitt umfasst die Röntgenröhre 30. Das Röntgengerät 100 weist zudem eine erfindungsgemäße Kathodenanordnung 1 als Elektronenemissionsquelle, eine Anode wie z. B. eine rotierende Anode 50 sowie einen Rotor 58 auf (bei den eine rotierende Anode aufweisenden Anwendungen). Die Röhre ist in einer Glasoder Metallumfassung 60 eingeschlossen. Wenn die von dem ferroelektrischen Emitter 3 der Kathodenanordnung 1 emittierten Elektronen auf das Target auftreffen, werden Röntgenstrahlen erzeugt. In dem Gehäuse 52 ist an einer dem Target entsprechenden Stelle ein Fenster 64 zur Emission der Röntgenstrahlen ausgebildet, so dass Röntgenstrahlen aus der Röhre austreten können.

Bei der beispielhaften und nicht ausschließenden Verwendung bei einer Kathodenanordnung ist der ferroelektrische Werkstoff einer angelegten Spannung unterworfen. Die Emission tritt bei Polarisationsumkehr auf. Eine beispielhafte Impulsdauer für einen erfindungsgemäßen ferroelektrischen Emitter liegt im Bereich von etwa 100 ns bis etwa 100 µs.

Erfindungsgemäß umfasst eine Kathodenanordnung 1 für ein Röntgengerät einen generell ebenen ferroelektrischen Emitter 3 und zumindest eine auf der Emissionsoberfläche des ferroelektrischen Emitters angeordnete Elektrode 6, 15. Dabei weist der ferroelektrische Emitter eine Emissionsoberfläche auf, aus der die Elektronen emittiert werden. Der ferroelektrische Werkstoff besitzt eine Curietemperatur, die über der Betriebstemperatur des Emitters liegt. Erfindungsgemäß wird zudem ein Röntgengerät angegeben, welches die Kathodenanordnung und den ferroelektrischen Emitter beinhaltet. Weiterhin wird erfindungsgemäß ein Verfahren zur Elektronenerzeugung aus einem ferroelektrischen Emitter in einem Röntgengerät angeführt.

Während vorliegend viele Ausführungsbeispiele beschrieben sind, sind dabei die dem Fachmann aus dieser Beschreibung ersichtlichen Kombinationen von Elementen, Abwandlungen und Verbesserungen ebenfalls erfindungsgemäß.

Patentansprüche

1. Kathodenanordnung (1) für ein Röntgengerät mit einem ferroelektrischen Emitter (3), der Elektronen aus einer emittierenden Oberfläche emittieren kann, und einer Elektrode (6, 15), die auf der emittierenden Oberfläche des ferroelektrischen Emitters angeordnet ist, wobei

der ferroelektrische Werkstoff eine Curietemperatur besitzt, die oberhalb der Betriebstemperatur der Kathodenanordnung liegt.

DOCID: <DF 10057072A1 I >

45

55

6

- 2. Kathodenanordnung nach Anspruch 1, wobei der ferroelektrische Werkstoff Pb(Mg, Nb)O₃ {PMN}, (Ba, Sr)TiO₃, (Pb, La)(Zr, Ti)O₃ {PZT, PLZT} oder Zinkoxid (ZnO) ist.
- 3. Kathodenanordnung nach Anspruch 1, wobei die auf der emittierenden Oberfläche des ferroelektrischen Emitters angeordnete Elektrode zumindest ein Gitter oder eine Vielzahl von parallel auf der emittierenden Oberfläche des ferroelektrischen Emitters angeordneten Streifen aufweist, dabei lässt die auf der emittierenden Oberfläche des ferroelektrischen Emitters angeordnete Elektrode einen Abschnitt des ferroelektrischen Emitters frei.
- 4. Kathodenanordnung nach Anspruch 3, wobei der ferroelektrische Emitter eine erste Achse (100) und 15 eine zweite Achse (101) aufweist, dabei ist die erste Achse länger als die zweite Achse, und wobei die auf der emittierenden Oberfläche des ferroelektrischen Emitters angeordnete Elektrode zumindest ein Gitter oder eine Vielzahl von parallel auf der emittierenden 20 Oberfläche des ferroelektrischen Emitters angeordneten Streifen aufweist, dabei lässt die auf der emittierenden Oberfläche des ferroelektrischen Emitters angeordnete Elektrode einen Abschnitt des ferroelektrischen Emitters frei, und die Vielzahl von auf der emittieren- 25 den Oberfläche des ferroelektrischen Emitters angeordneten Streifen ist im wesentlichen orthogonal zu der ersten Achse des ferroelektrischen Emitters angeordnet. 5. Kathodenanordnung nach Anspruch 1, zudem mit einer Kathodenabdeckung (2), wobei die Kathodenab- 30 deckung einen Sitz aufweist und wobei der ferroelektrische Emitter auf dem Sitz der Kathodenabdeckung angebracht ist.
- 6. Kathodenanordnung nach Anspruch 5, wobei die Kathodenabdeckung zudem zumindest eine Stufe auf- 35 weist, welche für die Ausrichtung von durch den ferroelektrischen Emitter erzeugten Elektronen auf ein Target eines Röntgengerätes hinreichend ist.
- 7. Kathodenanordnung nach Anspruch 1, zudem mit einer Gegenelektrode auf dem ferroelektrischen Emitter, wobei die Gegenelektrode auf einer der auf der emittierenden Oberfläche des ferroelektrischen Emitters angeordneten Elektrode gegenüberliegenden Seite des ferroelektrischen Emitters angeordnet ist.
- 8. Röntgengerät mit einer Kathodenanordnung (1), wobei die Kathodenanordnung einen generell ebenen ferroelektrischen Emitter (2) aufweist, der Elektronen aus einer emittierenden Oberfläche (4) emittieren kann; und
- einer Elektrode (6, 15), die auf der emittierenden Ober- 50 fläche des ferroelektrischen Emitters angeordnet ist, wobei
- der ferroelektrische Werkstoff eine Curietempertur aufweist, die oberhalb der Betriebstemperatur der Kathodenanordnung liegt.
- 9. Röntgengerät nach Anspruch 8, wobei der ferroelektrische Werkstoff Pb(Mg, Nb)O₃ {PMN}, (Ba, Sr)TiO₃, (Pb, La)(Zr, Ti)O₃ {PZT, PLZT} oder Zinkoxid (ZnO) ist.
- 10. Röntgengerät nach Anspruch 8, wobei die auf der 60 emittierenden Oberfläche des ferroelektrischen Emitters angeordnete Elektrode zumindest ein Gitter oder eine Vielzahl von parallel auf der emittierenden Oberfläche des ferroelektrischen Emitters angeordneten Streifen aufweist, dabei lässt die auf der emittierenden 65 Oberfläche des ferroelektrischen Emitters angeordnete Elektrode einen Abschnitt des ferroelektrischen Emitters frei.

- 11. Röntgengerät nach Anspruch 8, wobei der ferroelektrische Emitter eine erste Achse und eine zweite
 Achse aufweist, dabei ist die erste Achse länger als die
 zweite Achse, und wobei die auf der emittierenden
 Oberfläche des ferroelektrischen Emitters angeordnete
 Elektrode zumindest ein Gitter oder eine Vielzahl von
 parallel auf der emittierenden Oberfläche des ferroelektrischen Emitters angeordneten Streifen aufweist, dabei
 lässt die auf der emittierenden Oberfläche des ferroelektrischen Emitters angeordnete Elektrode einen Abschnitt des ferroelektrischen Emitters frei, und die Vielzahl von Streifen ist im wesentlichen orthogonal zu der
 ersten Achse des ferroelektrischen Emitters angeordnet.
- 12. Röntgengerät nach Anspruch 8, zudem mit einer Kathodenabdeckung (2), wobei die Kathodenabdekkung einen Sitz für den ferroelektrischen Emitter aufweist und wobei der ferroelektrische Emitter auf dem Sitz der Kathodenabdeckung angebracht ist.
- 13. Röntgengerät nach Anspruch 12, wobei die Kathodenabdeckung zudem zumindest eine Stufe aufweist, welche für die Ausrichtung von durch den ferroelektrischen Emitter erzeugten Elektronen auf ein Target des Röntgengerätes hinreichend ist.
- 14. Röntgengerät nach Anspruch 8, zudem mit einer Gegenelektrode auf dem ferroelektrischen Emitter, wobei die Gegenelektrode auf einer der auf der emittierenden Oberfläche des ferroelektrischen Emitters angeordneten Elektrode gegenüberliegenden Seite des ferroelektrischen Emitters angeordnet ist.
- 15. Verfahren zur Emission von Elektronen aus einem Röntgengerät mit den Schritten

Bereitstellen eine Kathodenanordnung (1) mit einem ferroelektrischen Emitter (3);

Bereitstellen einer gepulsten Spannung (7) an dem ferroelektrischen Emitter der Kathodenanordnung zur Emission von Elektronen aus dem Emitter; und Emittieren eines Elektronenimpulses aus dem ferroelektrischen Emitter;

wobei die Kathodenanordnung versehen ist mit einem ferroelektrischen Emitter mit einer emittierenden Oberfläche, aus der Elektronen aus einem ferroelektrischen Werkstoff emittiert werden, und

einer Elektrode (6, 15), die auf dem ferroelektrischen Emitter angeordnet ist, dabei umfasst die Elektrode zumindest einen auf der emittierenden Obersläche des ferroelektrischen Emitters angeordneten metallischen Abschnitt,

wobei der ferroelektrische Emitter eine Curietemperatur aufweist, die oberhalb der Betriebstemperatur der Kathodenanordnung liegt.

- 16. Verfahren nach Anspruch 15, wobei der Schritt zum Bereitstellen des ferroelektrischen Emitters das Bereitstellen eines generell planaren Elementes umfasst.
- 17. Verfahren nach Anspruch 15, wobei die auf der emittierenden Oberfläche des ferroelektrischen Emitters angeordnete Elektrode zumindest ein Gitter oder eine Vielzahl von parallel auf der emittierenden Oberfläche des ferroelektrischen Emitters angeordneten Streifen aufweist, dabei lässt die auf der emittierenden Oberfläche des ferroelektrischen Emitters angeordnete Elektrode einen Abschnitt des ferroelektrischen Emitters frei.
- 18. Verfahren nach Anspruch 15, wobei die Vielzahl von metallischen Streifen generell parallel zueinander angeordnet sind.
- 19. Verfahren nach Anspruch 15, wobei der Schritt der

7

8

Emission eines Elektronenimpulses die Emission ei	nes
Elektronenimpulses mit einer Stromdichte von bis	zu
etwa 400 A/cm ² umfasst.	

20. Verfahren nach Anspruch 15, wobei der Schritt der Emission eines Elektronenimpulses die Emission eines 5 Elektronenimpulses mit einer Impulsdauer im Bereich von etwa 100 ns bis etwa 100 µs umfasst.

21. Verfahren nach Anspruch 15, wobei der Schritt der Emission eines Elektronenimpulses die Emission eines Elektronenimpulses mit einer Stromdichte in einem 10 Bereich von etwa 10 A/cm² bis etwa 100 A/cm² umfasst.

22. Verfahren nach Anspruch 15, wobei der Schritt der Emission eines Elektronenimpulses die Emission eines Elektronenimpulses mit einer Stromdichte in einem 15 Bereich von etwa 30 A/cm² bis etwa 100 A/cm² umfasst.

Hierzu 3 Seite(n) Zeichnungen

20

25

.30

35 .

40

45

50

55

60

65

Nummer: Int. Cl.⁷: Offenlegungstag: DE 100 57 072 Å1 H 01 J 1/30 23. Mai 2001

FIG. 1

Nummer: Int. Cl.⁷: Offenlegungstag: DE 100 57 072 A1 H 01 J 1/30 23. Mai 2001

FIG. 2

FIG. 3

Nummer: int. Cl.⁷: Offenlegungstag: DE 100 57 072 A1 H 01 J 1/30 23. Mai 2001

FIG. 4

