Continuum Mechanics Dr. M. Aßmus

Exercise 05

1. Projector representation of isotropic fourth-order tensor

Problem

· A projector decomposition of an arbitrary symmetric tensor of fourth-order is of the form

$$\mathbb{C} = \sum_{\alpha=1}^{N} \lambda_{\alpha} \mathbb{P}_{\alpha} .$$

Let N be the number of distinct eigenvalues λ_{α} of \mathbb{C} . Then the projectors \mathbb{P}_{α} fulfill subsequent projector rules:

 $\begin{array}{ll} \text{idempotence:} \ \ \mathbb{P}_{\alpha}\mathbb{P}_{\alpha} &= \mathbb{P}_{\alpha} \\ \text{orthogonality:} \ \ \mathbb{P}_{\alpha}\mathbb{P}_{\beta} &= \mathbb{O} \\ \text{completeness:} \ \ \sum \mathbb{P}_{\alpha} = \mathbb{I}^{\text{sym}} \end{array}$

If there are only simple eigenvalues, the projector decomposition coincides with the spectral form of the tensor. Determine the projector decomposition of an isotropic \mathbb{C} .

Solution

• The fourth-order identity tensor is given with respect to an ortonormal basis $\{e_i\}$.

$$\mathbb{I} = \boldsymbol{e}_i \otimes \boldsymbol{e}_j \otimes \boldsymbol{e}_i \otimes \boldsymbol{e}_j$$

The fourth-order transposer is given as follows.

$$\mathbb{T} = \boldsymbol{e}_i \otimes \boldsymbol{e}_i \otimes \boldsymbol{e}_i \otimes \boldsymbol{e}_i$$

· The fourth-order symmetrizer is given as

$$\mathbb{I}^{\mathrm{sym}} = \frac{1}{2} \left(\mathbb{I} + \mathbb{T} \right)$$

while the fourth-order anti(sym)metrizer is

$$\mathbb{I}^{\text{skw}} = \frac{1}{2} \left(\mathbb{I} - \mathbb{T} \right) .$$

The isotropic fourth-order tensor is given, while we additionally apply above introduced abbreviations

$$\mathbb{C} = a \, \mathbf{e}_i \otimes \mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{e}_j + b \, \mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{e}_i \otimes \mathbf{e}_j + c \, \mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{e}_j \otimes \mathbf{e}_i \\
= a \, \mathbf{I} \otimes \mathbf{I} + (b+c) \, \mathbb{I}^{\text{sym}} + (b-c) \, \mathbb{I}^{\text{skw}} \\
= (3a+b+c)\mathbb{P}_1 + (b+c)\mathbb{P}_2 + (b-c)\mathbb{P}_3$$

with $a,b,c\in\mathscr{R}$ (set of real numbers) and

$$\mathbb{P}_1 = rac{1}{3} m{I} \otimes m{I} \qquad \qquad \mathbb{P}_2 = \mathbb{I}^{ ext{sym}} - \mathbb{P}_1 \qquad \qquad \mathbb{P}_3 = \mathbb{I}^{ ext{skw}}$$

These tensors fulfill the projector rules. Thus, the eigenvalues of \mathbb{C} are as follows.

$$\lambda_1 = 3a + b + c \qquad \qquad \lambda_2 = b + c \qquad \qquad \lambda_3 = b - c$$

1

Dr. M. Aßmus Continuum Mechanics

2. Value ranges of material parameters

Problem

 Determine the constraints on the value range for Young's modulus and Poisson's ratio, which arise from the requirement of positive definiteness of the stiffness tetrad of the isotropic St. Venant-Kirchhoff material law

$$\mathbb{C} = \lambda \boldsymbol{I} \otimes \boldsymbol{I} + 2\mu \mathbb{I}^{\text{sym}}$$

with λ and μ beeing Lamé parameters.

Solution

· The spectral representation of this law is given as

$$\mathbb{C} = 3K\mathbb{P}_1 + 2G\mathbb{P}_2$$

with bulk modulus $K = \lambda + 2/3\mu$ and shear modulus $G = \mu$. \mathbb{P}_{α} are eigenspace projectors:

$$\mathbb{P}_1 = \frac{1}{3} \boldsymbol{I} \otimes \boldsymbol{I}$$

$$\mathbb{P}_2 = \mathbb{I}^{\text{sym}} - \mathbb{P}_1$$

· The projector rules are as follows:

idempotence: $\mathbb{P}_{\alpha}\mathbb{P}_{\alpha} = \mathbb{P}_{\alpha}$

$$\forall \alpha = \{1, 2\}$$

orthogonality: $\mathbb{P}_1\mathbb{P}_2 = \mathbb{P}_2\mathbb{P}_1 = \mathbb{O}$

completeness: $\mathbb{P}_1 + \mathbb{P}_2 = \mathbb{I}^{\mathrm{sym}}$

• The projector representation implies that 3K and 2G are the onefold and the fivefold eigenvalue of \mathbb{C} . Since \mathbb{C} is (major) symmetric and positive definite, these eigenvalues are also positive.

$$K > 0$$
 $G > 0$

• The relation between K and G as well as Young's modulus Y and Poisson's ratio ν is analogous to the Hooke's law.

$$3K = \frac{Y}{1 - 2\nu}$$

$$2G = \frac{Y}{1+\nu}$$

• From K > 0 and G > 0 follows

$$0 < \frac{1}{9K} + \frac{1}{3G} = \frac{1}{Y} \ .$$

This indicates the Y>0 for Young's modulus. We can transform the relations from two equations above

$$\nu_{-} = \frac{1}{2} \frac{Y}{G} - 1$$

$$\nu_{+} = -\frac{1}{6} \frac{Y}{K} + \frac{1}{2}$$

and set the bounds Y/G = Y/K = 0 to determine the range of Poisson's ratio: $-1 < \nu < 1/2$

