DEBT SUSTAINABILITY

FISCAL AND MONETARY POLICY 2023

Piotr Żoch

January 5, 2024

PLAN

- We review several approaches to debt sustainability analysis.
- Can the government service its debt?
- Is the outstanding public debt and its projected path consistent with those of the government's revenues and expenditures?

DEBT TO OUTPUT RATIO

The government static budget constraint is

$$B_t = (1 + r_t)B_{t-1} + G_t - T_t.$$

where B_{t-1} is the market value of all outstanding debt (all maturities), G_t is nominal government spending (net of interest expenses), T_t is nominal tax revenue, and r_t is net return on government debt.

We abstract from money growth.

DEBT TO OUTPUT RATIO

Divide by nominal GDP Y_t and rearrange to get

$$\frac{B_t}{\gamma_t} = (1+r_t)\frac{B_{t-1}}{\gamma_{t-1}}\frac{\gamma_{t-1}}{\gamma_t} + \frac{G_t}{\gamma_t} - \frac{T_t}{\gamma_t}.$$

Define

$$R_{t-j,t} := \prod_{k=1}^{J} \left(1 + r_{t-j+k} \right),$$

the cumulative return on debt from t - j to t.

Define

$$X_{t-j,t} := \prod_{k=1}^{j} \frac{Y_{t-j+k}}{Y_{t-j+k-1}},$$

the cumulative gross rate of GDP from t - j to t.

DEBT TO OUTPUT RATIO

- For simplicity assume $B_0 = 0$.
- We can write the debt to output ratio as

$$\frac{B_t}{Y_t} = \sum_{j=0}^t \frac{G_{t-j} - T_{t-j}}{Y_{t-j}} \frac{R_{t-j,t}}{X_{t-j,t}}$$

- Debt to output ratio today is determined by:
 - 1. The past primary deficits to GDP ratios;
 - 2. The past returns on debt;
 - 3. The past growth rates of (nominal) GDP.
- We saw a similar decomposition when we discussed Hall and Sargent (it was more detailed there).

- A version of the formula is often used to assess debt sustainability –
 "whether the government can service its debt".
- Warning: this is about the future, not the present. The fact that people
 use the formula to assess the current situation is often a red flag!
- Classic debt sustainability analysis looks at the "long run".
- Assume that the economy is in a steady state with a constant growth rate of GDP X, an constant rate of return R and a constant primary deficit to GDP ratio.
- What is the debt to output ratio consistent witht the above?
- If the observed current debt to output ratio is below this level, the debt is sustainable.

- Classic debt sustainability analysis usually analyzed determinisic setups (or perfect foresight).
- In these setups, the appropriate R is the risk-free rate, R^f .
- Assuming the above, the formula in the steady state becomes

$$\frac{B}{Y} = \frac{G - T}{Y} \frac{X}{X - R^f}.$$

• For simplicity define x := X - 1 and $r^f := R^f - 1$ so we have

$$\frac{B}{Y} = \frac{G - T}{Y} \frac{1 + x}{x - r^f}.$$

$$\frac{B}{Y} = \frac{G - T}{Y} \frac{1 + x}{x - r^f}$$

- Example: the Treaty of Maastricht set the limit of the debt to output ratio at 60% and the deficit to output ratio at 3%. What must be the growth rate of GDP and the risk-free rate for this to be sustainable?
- We get $\frac{1+x}{x-r^f}$ = 20, for small x we have $x \approx r^f + 0.005$, so the economy has to grow at 0.5% above the risk-free rate per year for the debt at the limit to be sustainable with the largest allowed deficit.
- If the actual growth rate is lower, the debt to output ratio will be larger,
 even if the deficit is at the limit.

$$\frac{B}{Y} = \frac{G - T}{Y} \frac{1 + x}{x - r^f}$$

- The key role of $x r^f$.
- Depending on the sign of $x r^f$ the you require either surpluses or deficits to keep the debt to output ratio constant.
 - If $x < r^f$ you need surpluses.
 - If $x > r^f$ you can have deficits.
- A big "r versus g" debate (we have x instead of g).

- If $x > r^f$ it seems there is no fiscal cost to debt.
- Blanchard (2019) argues that $x > r^f$ is a norm, not an exception.
- But what is r^f? How to measure it? Blanchard (2019) looks at the
 1-year US Treasury bill rate, the 10-year US Treasury bond rate, adjusts
 for various maturities...
- Note: it does not necessarily mean that it is optimal to have deficits.

RATES IN THE US

Source: Blanchard (2019)

- It only defines what long-run debt is for a given long-run primary balance (or vice versa) if stationarity holds, or defines lower bounds on the short-run dynamics of the primary balance.
- It does not connect the outstanding initial debt of a particular period with the steady state.
- There might be multiple paths of debt that do not violate the intertemporal government budget constraint (IGBC), some of them can even go to infinity (but slowly enough)!
- IGBC: the value of debt is equal to the present discounted value of future primary surpluses.

INTERTEMPORAL GOVERNMENT BUDGET

CONSTRAINT

IGBC

- We used the government budget constraint by going back in time.
- We can also solve it forward the valuation approach, the market value of government debt is determined by the discounted value of future government surpluses.
- This idea is often used in finance (e.g., Campbell and Shiller 1988).
- Allows us to think seriously about risk and asset pricing.

IGBC

We want to write something like

$$B_t = \mathbb{E}_t \sum_{j=1}^{\infty} M_{t,t+j} \left(T_{t+j} - G_{t+j} \right)$$

- We call $M_{t,t+j}$ the stochastic discount factor (SDF).
- It reflects how holders of government debt value discount future cash flows.
- Generally it is a function of the state of the economy at time t and t + j.
 Recall the first order condition for the household problem in the models we saw.
- We call the formula above the intertemporal government budget constraint IGBC.

DEBT SUSTAINABILITY

- We can say that debt is sustainable if and only if the IGBC holds.
- Problem: this condition is about the entire future.
- Solution (?): use forecasts of future taxes and spending to compute the present value of future surpluses. Some early papers did this, but they used risk-free rates.
- Valid if one of these conditions holds:
 - 1. There is perfect foresight;
 - 2. Investors are risk-neutral;
 - 3. Primary surpluses do not covary with the SDF.

- Recall the Barro (1979) tax smoothing model debt was a random walk, yet the IGBC held.
- Not even debt (or debt to GDP) going to infinity means that the IGBC does not hold, it has to go to infinity slowly enough.
- Bohn (1998): see if the government does something that guarantees the IGBC holds, investigate the fiscal reaction function.
- Allows to sidestep the problem of forecasting future taxes and spending and choosing the correct discount rate.
- Sufficient condition: IGBC might also hold if it violated, but if it is satisfied, IGBC holds for sure.

Linear reaction function:

$$\frac{T_t - G_t}{Y_t} = \rho \frac{B_{t-1}}{Y_{t-1}} + Z_t + \epsilon_t$$

- The left hand side is primary surplus.
- Z_t is a vector of exogenous variables that affect the primary surplus.
- Check if ρ > 0 raise surplus if debt is high.
- If $\rho > 0$, then the IGBC holds even if it is below the interest rate (net of x).

- If $\rho > 0$, the IGBC holds for any initial level of debt.
- This analysis works also for r x = 0 there was division by zero in the classic analysis.
- If $r x > \rho > 0$, debt explodes, but the IGBC still holds (under certain conditions: see Bohn 2007).

- Bohn (1998) estimates ρ for the US in 1916-1995.
- He includes the level of temporary government spending and business cycle indicator in Z_t .
- He find a positive value of ρ , around 0.05 for the entire sample.

(b) With adjustment for temporary spending and output fluctuations

Primary Surplus versus Initial Debt

The graph shows the privately held government debt/GDP at the start of a period on the horizontal axis against the primary budget surplus/GDP on the vertical axis, for 1916-1995, (a) shows raw data, and (b) shows the adjusted surplus, as explained in the text.

Source: Bohn (1998)

TABLE I
DETERMINANTS OF THE BUDGET SURPLUS

Sample	Constant	<i>G</i> VAR	YVAR	d_t	R 2	σ	DИ
(1) 1916–1995	-0.019	-0.776	-1.450	0.054	0.936	0.014	1.4
	(-5.424)	(-33.001)	(-3.628)	(6.048)			
		[-20.874]		[3.787]			
(2) 1920-1995 excl							
1940–1947	-0.009	-0.551	-1.906	0.028	0.618	0.011	1.4
	(-2.030)	(-4.034)	(-4.666)	(2.701)			
	[-2.155]	[-3.721]	[-4.296]	[2.491]			
(3) 1916–1983	-0.018	-0.782	-1.414	0.054	0.942	0.014	1.5
	(-4.903)	(-31.667)	(-3.360)	(5.996)			
	[-3.958]	[-20.943]	[-4.004]	[4.076]			
(4) 1920-1982 excl							
1940–1947	-0.008	-0.520	-1.912	0.030	0.630	0.011	1.5
	(-1.710)	(-3.612)	(-4.441)	(2.815)			
	[-1.932]	[-3.272]	[-3.959]	[2.856]			
(5) 1948–1995	-0.015	-0.593	-2.139	0.037	0.651	0.010	1.5
	(-3.536)	(-4.182)	(-4.361)	(3.589)			
	[-3.496]	[-3.701]	[-3.757]	[2.821]			
(6) 1960–1984	-0.013	-0.410	-2.051	0.044	0.724	0.007	1.4
	(-2.110)	(-2.173)	(-4.174)	(2.028)			
	[-2.174]	[-2.281]	[-3.391]	[2.587]			

The variable d_t is the privately held debtGDP at the start of the year. GVAR and TVAR are measures of temporary government spending and of eyclical variations in output, respectively, from Barro [1986a], All estimates are OLS with annual data; () = ordinary-stratistics; [1] = heteroskedasticity- and autocorrelation-consistent t-statistics (computed with Newey-West lag window of size 1); σ = standard error, DW = Drabin-Watson statistic

Source: Bohn (1998)

FISCAL REACTION FUNCTIONS

- Bohn (2008) extends the analysis to 1793-2003.
- $\, \cdot \,$ He finds that ρ > 0.1, more than twice as large as in the previous study.
- Mendoza and Ostry (2008) study fiscal reaction functions for a panel of multiple countries – similar results.
- Ghosh et al. (2013) show that ρ is much lower at high levels of debt.
- D'Erasmo et al. (2016):
 - primary balance adjustment in the US after 2008 was too large to be explained by the fiscal reaction function;
 - 2. adjustment is slower than before (structural break);
 - 3. nevertheless, with the estimated ρ , the IGBC holds.

FISCAL REACTION FUNCTIONS

- Leeper (2017) warns against using surplus-debt regressions to assess debt sustainability.
- For the estimator of ρ to be consistent, we must have

$$\mathbb{E}\left(\epsilon_t \mid \frac{B_{t-1}}{Y_{t-1}}\right) = 0.$$

- 1. This means that shocks at t-1 that affect debt-output ratio in must not affect ϵ_t .
- 2. This means that the debt-output ratio cannot depend on the expectation of ϵ_t .
- Since the value of debt depends on the expected value of future surpluses, this is a strong assumption: ϵ_t could be serially correlated.

VALUATION APPROACH

We go back to the budget constraint and solve it forward as

$$B_t = \mathbb{E}_t \sum_{j=1}^T M_{t,t+j} \left(T_{t+j} - G_{t+j} \right) + \mathbb{E}_t M_{t,t+T} B_{t+T}$$

We obtained the standard IGBC if

$$\lim_{T\to\infty} \mathbb{E}_t M_{t,t+T} B_{t+T} = 0.$$

- The IGBC implies that a higher debt-to-output ratio today can be attributed to higher ex- pected future primary surpluses (cash flows) or lower expected future returns (discount rates).
- The counterpart of the Campbell-Shiller expression for the log of the price-to-dividend ratio in the stock market.

VALUATION APPROACH

- Cochrane (2011) shows that discount rate variation is the main driver of stock valuation ratios.
- Cochrane (2019): half of the variation in the debt-to-GDP ratio to variation in future primary surpluses and half to varying discount rates.
- Jiang et al. (2021) conclude no statistical evidence of a discount rate or cash flow channel.
- Fluctuation in the debt-to-GDP ratio at time t predict fluctuations in the debt-to-GDP ratio at time t + T.
- Jiang et al. argue the differences result from small sample bias.

FISCAL CAPACITY

- Jiang et al. in a series of recent papers propose a new approach to debt sustainability analysis.
- Suppose an investor buys the entire stock of government debt and participates in all new issuances.
- How much would that investor be willing to pay for the debt?
- Cash flow is $\{T_t G_t\}$.
- Use tools from asset pricing to answer this question.
- The price will depend on the riskiness of the cash flows.

- Before we talk about Jiang et al., let's review some asset pricing basics.
- The general idea dates back to Lucas (1978) who considers asset prices in a general equilibrium model.
- An asset is a claim on a stream of prospective payments.
- Consider an economy with i = 1, ..., N assets.
- Each of this assets has an associated stream of real dividends $\left\{d_{i,t}\right\}_{t=0}^{\infty}$.
- Assume the representative investor maximizes $\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$.
- Let $p_{i,t}$ be the price of asset i at time t (in goods).

For each asset the investor holds, the optimality condition is:

$$p_{i,t} = \beta \mathbb{E}_t \frac{u'(c_{t+1})}{u'(c_t)} \left(p_{i,t+1} + d_{i,t+1} \right).$$

- This is the consumption-based asset pricing equation.
- We can slightly rearrange it as

$$1 = \beta \mathbb{E}_t \frac{u'(c_{t+1})}{u'(c_t)} \frac{p_{i,t+1} + d_{i,t+1}}{p_{i,t}}.$$

• Here $R_{i,t,t+1} := \frac{p_{i,t+1} + d_{i,t+1}}{p_{i,t}}$ is the (gross) rate of return on asset i from t to t+1.

- Define $M_{t,t+1} := \beta \frac{u'(c_{t+1})}{u'(c_t)}$.
- We call it the stochastic discount factor (SDF).
- We can write the asset pricing equation for each asset as

$$1 = \mathbb{E}_t M_{t,t+1} R_{i,t,t+1}.$$

• The risk-free rate $R_{t,t+1}^f$ satisfies

$$1 = R_{t,t+1}^f \mathbb{E}_t M_{t,t+1}.$$

• Sometimes you will see the asset pricing equation written as

$$v_{i,t} = \mathbb{E}_t M_{t,t+1} \frac{d_{i,t+1}}{d_t} (1 + v_{i,t+1}).$$

- Here $v_{i,t} := \frac{\rho_{i,t}}{d_t}$ is the price-dividend ratio of asset *i* at time *t*.
- This form is useful when we want to think of an asset that has an ever increasing stream of dividends.

- Generally $\mathbb{E}_t M_{t,t+1} R_{i,t,t+1} \neq \mathbb{E}_t M_{t,t+1} \cdot \mathbb{E}_t R_{i,t,t+1}$.
- We have

$$\mathbb{E}_t\,M_{t,t+1}R_{i,t,t+1} = \mathbb{E}_t\,M_{t,t+1}\cdot\mathbb{E}_t\,R_{i,t,t+1} + \mathsf{cov}_t\left(M_{t,t+1},R_{i,t,t+1}\right).$$

• This allows us to write the asset pricing equation as

$$1 = \mathbb{E}_t \, M_{t,t+1} \cdot \mathbb{E}_t \, R_{i,t,t+1} + \mathsf{cov}_t \left(M_{t,t+1}, R_{i,t,t+1} \right).$$

• Use $1 = R_{t,t+1}^f \mathbb{E}_t M_{t,t+1}$ to write

$$\mathbb{E}_{t} R_{i,t,t+1} = R_{t,t+1}^{f} - \frac{\operatorname{cov}_{t} (M_{t,t+1}, R_{i,t,t+1})}{\mathbb{E}_{t} M_{t,t+1}}.$$

The formula

$$\mathbb{E}_{t} R_{i,t,t+1} = R_{t,t+1}^{f} - \frac{\operatorname{cov}_{t} \left(M_{t,t+1}, R_{i,t,t+1} \right)}{\mathbb{E}_{t} M_{t,t+1}}.$$

tells us that the expected return on asset *i* is the risk-free rate plus a risk premium.

- The risk premium depends on the covariance between the SDF and the return on asset *i*.
- When the covariance is negative (SDF is low when the return is high),
 the risk premium is positive.
- When the covariance is positive (SDF is high when the return is high),
 the risk premium is negative.

• To understand it better consider a basic example: let $u(c) = \ln c$. We have

$$M_{t,t+1} = \beta \frac{c_t}{c_{t+1}}.$$

- The SDF is high when c_{t+1} is low.
- If the asset has a low return when c_{t+1} is low, the covariance is negative and the risk premium is positive.
- This is because the asset is risky it does not pay much when you need it the most.

ASSET PRICING BASICS

We sometimes write the formula as

$$\mathbb{E}_{t} R_{i,t,t+1} = R_{t,t+1}^{f} - \frac{\mathsf{cov}_{t} \left(M_{t,t+1}, R_{i,t,t+1} \right)}{\mathsf{var}_{t} M_{t,t+1}} \times \frac{\mathsf{var}_{t} M_{t,t+1}}{\mathbb{E}_{t} M_{t,t+1}}.$$

- There are two terms:
 - The first term is the risk exposure it is the covariance between the SDF and the return on asset i divided by the variance of the SDF.
 - The second term is the price of risk it is the variance of the SDF divided by the expected value of the SDF. It does not depend on the asset.

ASSET PRICING BASICS

We have

$$\mathbb{E}_t R_{i,t,t+1} = R_{t,t+1}^f + \beta_{i,t} \lambda_t.$$

- β_t^i is the risk exposure of asset i, $\beta_{i,t} := -\frac{\text{cov}_t(M_{t,t+1},R_{i,t,t+1})}{\text{var}_t M_{t,t+1}}$
- Note: do not confuse $\beta_{i,t}$ with β , the discount factor.
- λ_t is the price of risk, $\lambda_t := \frac{\operatorname{var}_t M_{t,t+1}}{\mathbb{E}_t M_{t,t+1}}$.
- Risk premium is the product of the risk exposure and the price of risk.

ASSET PRICING BASICS

- So far we assumed that the SDF results from the optimization problem of the representative agent.
- (Some) SDF exists under much weaker conditions: it is enough that there is no arbitrage.
- Once we have a SDF, we can use it to price assets.
- This is the approach of Jiang et al. (2021).

Return to the formulation of the valuation problem:

$$B_t = \mathbb{E}_t \sum_{j=1}^{\infty} M_{t,t+j} \left(T_{t+j} - G_{t+j} \right)$$

- Here we understand everything as nominal and $M_{t,t+j}$ is the SDF used to price nominal claims.
- Jiang et al. call the right hand side the fiscal capacity of the government.

- To simplify the notation, define $S_{t+j} := T_{t+j} G_{t+j}$, the primary surplus at time t+j.
- Rewrite the formula as

$$\begin{split} B_{t} &= E_{t} \sum_{j=1}^{\infty} M_{t,t+j} S_{t+j} \\ &= \sum_{j=1}^{\infty} \left(E_{t} M_{t,t+j} \cdot E_{t} S_{t+j} \right) + \sum_{j=1}^{\infty} \mathsf{cov}_{t} \left(M_{t,t+j}, S_{t+j} \right) \\ &= \sum_{j=1}^{\infty} \left(E_{t} M_{t,t+j} \cdot E_{t} S_{t+j} \right) \\ &+ \sum_{j=1}^{\infty} \mathsf{cov}_{t} \left(M_{t,t+j}, T_{t+j} \right) - \sum_{j=1}^{\infty} \mathsf{cov}_{t} \left(M_{t,t+j}, G_{t+j} \right). \end{split}$$

- Fiscal capacity depends on three terms:
- $\sum_{j=1}^{\infty} (E_t M_{t,t+j} \cdot E_t S_{t+j})$ the expected value of future primary surpluses discounted by the risk-free rate.
- $\sum_{j=1}^{\infty} \text{cov}_t \left(M_{t,t+j}, T_{t+j} \right)$ the covariance between the SDF and future taxes.
- $\sum_{j=1}^{\infty} \text{cov}_t\left(M_{t,t+j}, G_{t+j}\right)$ the covariance between the SDF and future government spending.

- In the risk free world, the first term is the only one that matters.
- In the risk free world, fiscal capacity is determined only by the ability to generate current and future surpluses.
- The second and the third term reflect the riskiness of the surplus process.
- If taxes are high when the SDF is low, the second term lowers the fiscal capacity.
- If government spending is high when the SDF is low, the third term lowers the fiscal capacity.
- Tax revenue is usually procyclical, government spending is usually countercyclical – this lowers the fiscal capacity.

- This suggests that the fiscal capacity is most likely lower than the expected value of future primary surpluses discounted by the risk-free rate.
- · By how much?
- Jiang et al. (2021) quantify this for the US. They find that the second and the third term matter quantitatively.
- Is there a way to increase the fiscal capacity by financial engineering?
- This would require insuring bondholders against the risk of future taxes and spending. Is it feasible?
- We now follow Jiang et al. (2023) to illustrate it.

- For simplicity assume that taxes to GDP τ and government spending to GDP γ are constant.
- GDP growth is risky, i.i.d. with a mean of x and volatility of σ .
- Let P_t^T and P_t^G denote the present value of future tax revenues and government spending:

$$\begin{split} P_t^T &= \mathbb{E}_t \sum_{j=1}^\infty M_{t,t+j} \, T_{t+j} = \tau \, \mathbb{E}_t \sum_{j=1}^\infty M_{t,t+j} \, Y_{t+j} \\ P_t^G &= \mathbb{E}_t \sum_{j=1}^\infty M_{t,t+j} \, G_{t+j} = \gamma \, \mathbb{E}_t \sum_{j=1}^\infty M_{t,t+j} \, Y_{t+j} \, . \end{split}$$

• Given the simplifying assumptions, debt to GDP ratio is:

$$\frac{B}{\gamma} = \frac{\tau - \gamma}{r^f + \text{risk premium on GDP } - x}.$$

- Consider the following parametrization:
 - Taxes to GDP, τ are 25%.
 - Government spending to GDP, γ is 22.5%.
 - Risk-free rate r^f is 1.5%.
 - Mean GDP growth rate x is 2%.
 - GDP risk premium is 3%.
 - Initial GDP is 10 trillion.
- Risk premium on GDP is GDP volatility times the price of risk (3 times 1)
- Stock market acts as a levered claim to the aggregate: the GDP risk premium equals the unlevered equity risk premium.

- The value of the claim to GDP is $10 \cdot \frac{1}{0.015+0.03-0.02} = 400$ trillion.
- The claim on the stream of surpluses is worth $10 \cdot \frac{0.025 0.0225}{0.015 + 0.03 0.02} = 10$ trillion.
- Fiscal capacity of this economy is 10 trillion.
- It equals 100% of GDP.
- If we evaluated it using the risk-free rate (net of growth), we would get infinity.

- The claim on surpluses is the claim on taxes net of the claim on government spending.
- The government cost of funding r_B can be written as

$$r_B = r_T \frac{P^T}{Y} \frac{Y}{B} - r_G \frac{P^T}{Y} \frac{Y}{B}.$$

• The risk exposure β , the covariance of a return with the SDF divided by the variance of the SDF is

$$\beta_B = \beta_T \frac{P^T}{Y} \frac{Y}{B} - \beta_G \frac{P^G}{Y} \frac{Y}{B}.$$

The formula

$$\beta_B = \beta_T \frac{P^T}{Y} \frac{Y}{B} - \beta_G \frac{P^G}{Y} \frac{Y}{B}$$

show that holding the risk exposure of gov. spending constant, if the government insures taxpayers (higher β_T) – lower tax payment in high marginal utility state – there is less insurance of bondholders (higher β_B).

- In this example tax revenue and government purchases are proprtional to GDP.
- The risk exposure of tax revenue is $\beta_T = \beta_{GDP}$.
- The risk exposure of government spending is $\beta_G = \beta_{GDP}$.
- Normalize $\beta_{GDP} = 1$.
- We have

$$\beta_B = \beta_T \frac{P^T}{Y} \frac{Y}{B} - \beta_G \frac{P^G}{Y} \frac{Y}{B}$$
$$= \frac{100}{10} - \frac{90}{10} = 1$$

Tax and spending claims are equally risky, but government debt has a
positive beta of 1.

- Investors who buy the government debt portfolio are net long a claim to output.
- The output risk in spending does not fully offset the output risk in tax revenue.
- Debt is a constant fraction of GDP, it inherits the risk properties of the GDP claim.
- The government's interest payments are as risky as GDP, because they
 are a constant fraction of GDP.

- Usually $\beta_T > \beta_Y > \beta_G$.
- This is because tax revenue is more volatile than GDP, and GDP is more volatile than government spending.
- This means that the average tax revenue to output has to be higher to support the same amount of debt.
- See Jiang et al. (2020) for a quantitative analysis.

- Using the risk-free rate to evaluate the fiscal capacity of the government is misleading.
- It requires that the risk exposure of the government debt, β_B , is zero.
- For that to be true we need

$$\beta_T = \left(\frac{P^T}{Y}\frac{Y}{B}\right)^{-1} \left(\frac{P^G}{Y}\frac{Y}{B}\right) \beta_G$$
$$= \frac{P^G}{P^G + B} \beta_G$$

which is lower than β_G if debt is positive.

- Go back to our example: $\beta_G = 1$, $P^G/Y = 90$, B/Y = 10.
- We need β_T = 0.9 to insure bondholders.
- We had $r^f = 1.5\%$ and risk premium on GDP of 3%.
- This meant that $r_V = r^f + RP = 4.5\%$.
- We have $r_T = 1.5\% + 0.9 \cdot 3\% = 4.2\%$.
- The lower risk premium for the tax process reflects the fact that the tax rate is counter-cyclical.

- What is the average tax revenue to output needed to sustain the debt?
- Recall that $\frac{B}{Y} = 100\%$, $\frac{P^{G}}{Y} = 9$.
- We will use the formula

$$\frac{B}{Y} = \frac{T}{Y} \frac{P^T}{T} - \frac{P^G}{Y}$$

We now have

$$\frac{P^T}{T} = \frac{1}{r_T - x} = \frac{1}{0.042 - 0.2} = 45.45.$$

so
$$\frac{T}{V}$$
 = 10/45.45 = 0.22.

The average tax revenue to output ratio is 22%.

- The previous example shows that the government can on average run a deficit of 0.5% of GDP.
- This is because the government provides insurance to bondholders by delivering positive surpluses when GDP growth is lower than average.
- Bondholders pay an insurance premium of 0.5% of GDP to receive relatively larger surplus payments when their marginal utility is high.
- But providing insurance is costly it requires the government to have surpluses in recessions. Less room for output stabilization.

CONVENIENCE YIELDS

- Sometimes government debt is more valuable than the sum of its discounted cash flows.
- This is because it provides liquidity and safety to investors.
- Similar to cash: we hold it although it has a negative real return, because we need it for transations.
- We call the difference between the return on debt and the risk free rate the convenience yield of government debt.
- Think of it as of some extra benefit that makes investors willing to hold government debt despite low returns.

CONVENIENCE YIELDS

- The convenience yield is nonnegligible, especially for the US.
- Krishnamurthy and Vissing-Jorgensen (2012) estimate convenience yield of 73 basis points per annum on average between 1926 and 2008 in the US.
- This is an important source of seignorage for the US government (0.25% of GDP).
- The convenience yield depends on debt to GDP ratio.

CONVENIENCE YIELDS

Fig. 1.—Corporate bond spread and government debt. The figure plots the Aaa-Treasury corporate bond spread (yaxis) against the debt-to-GDP ratio (xaxis) on the basis of annual observations from 1919 to 2008. The corporate bond spread is the difference between the percentage yield on Moody's Aaa long-maturity bond index and the percentage yield on long-maturity Treasury bonds.

Source: Krishnamurthy and Vissing-Jorgensen (2012)

• We need to modify the IGBC to account for the convenience yield.

$$B_{t} = \mathbb{E}_{t} \sum_{j=1}^{\infty} M_{t,t+j} \left(T_{t+j} - G_{t+j} \right) + \mathbb{E}_{t} \sum_{j=1}^{\infty} M_{t,t+j} B_{t+j} \left(1 - e^{-\delta_{t+j}} \right)$$

• The new term $K_{t+j} := B_{t+j} \left(1 - e^{-\delta_{t+j}}\right)$ represents the seignorage revenue from issuing debt.

-

- Return to the example with $\beta_T = \beta_G = \beta_Y = 1$, but consider convenience yields.
- Previously we said that the risk-free rate is equal to interest rate on treasuries, 1.5%.
- If the convenience yield is 0.73%, the true risk-free rate is higher –
 2.23%.
- The PDV of surpluses is

$$\frac{0.25 - 0.225}{0.0523 - 0.02}$$
 = 77% of GDP.

- The PDV of seignorage will depend on β_K and the convenience yield.
- Set the convenience yield to 0.73%.

• If $\beta_K = 1$ (seignorage varies proportionally with GDP), then $r_K = 0.523$ and the PDV of seignorage is

$$\frac{0.0073}{0.0523 - 0.02}$$
 = 23% of GDP.

- This means that fiscal capacity is 100% of GDP.
- Two counteracting forces:
 - 1. Convenience yield generates seignorage.
 - 2. For a given interest rate, convenience yield means that the true risk-free rate is higher this lowers the fiscal capacity.
- Extra surplus increases fiscal capacity by less than without the convenience yield.

- Most likely $\beta_K < 1$.
- In the short run, convenience yields can be counter-cyclical (flight to safety).
- This increases the seignorage term, without affecting the risk-free rate.
- Lowering β_K to 0.584, increases fiscal capacity to 114% of GDP.

- Jiang et al. use two approaches to estimate the fiscal capacity of the US.
- In the first approach they Congressional Budget Office (CBO)
 projections of tax revenue and non-interest spending for the next 31
 years (2022-2052).
- CBO also forecasts interest rates and GDP.
- At the end of the projection horizon debt to GDP is 185%.

- Given $r^f = 1.5\%$, the risk premium on GDP to 3% and the average growth rate 2%, annual surpluses would have to be 4.625% of GDP since 2052 to sustain debt to GDP of 185%.
- The present value of that is 35.2 trillion.
- The present value of the surpluses between 2022 and 2052 is -21.1 trillion (negative).
- The fiscal capacity in 2022 is 35.2-21.1 trillion = 14.1 trillion.
- This is 8.2 trillion below the 22.3 trillion in debt outstanding at the end of 2021.

- This is already a generous estimate of the fiscal capacity.
- It assumes that the government can start running surpluses in 2052.
- It assumes acyclicality of taxes and spending.
- Another problem: duration mismatch.
- Surpluses are far in the future, fiscal capacity sensitive to small changes in the risk-free rate.

- The second approach: create forecast of cash flows using a VAR model.
- The model captures the cyclicality of tax and spending ratios.
- It captures multiple aggregate sources of risk: inflation, interest rates, the price-to-dividend ra- tio in the stock market, and shocks to tax and spending rates.
- They calculate total fiscal capacity in two ways: (a) assume the discount rates are the same for taxes and spending, (b) model the SDF.

Source: Jiang et al. (2023)

BOND VALUATION PUZZLE

- These estimates suggest a much lower fiscal capacity than the market value of outstanding debt.
- Possible explanations:
 - Convenience yields?
 - Bubble?
 - Global safe asset supplier?
 - Mispricing?
 - Fiscal correction?
 - Large-scale asset purchases and financial repression?

BOND VALUATION PUZZLE

- Similar calculations for other countries suggest that the US is an outlier.
- For example, for the UK after World War 2 fiscal capacity was 82% of GDP, but the debt to GDP ratio was 53%.
- It was different in 1729-1946 when fiscal capacity was 68% of GDP, but the debt to GDP ratio was 87%.
- Developing countries: procyclical surpluses, debt prices react strongly to funamentals (unlike the US).