OBJECTIVE

- 1. APPLYING DECISION TREE WITH BOW VECTORIZATION
 - FINDING THE BEST HYPERPARAMETER USING GRIDSEARCHCV WITH TRAIN DATA AND CROSS-VALIDATION DATA BY PLOTTING THE RESLUTS OF VAROIUS TRAIN DATA AND CROSS VALIDATION DATA
 - USING THE APROPRIATE VALUE OF HYPERPARAMETER, TESTING ACCURACY ON TEST DATA USING F1-SCORE
 - PLOTTING THE CONFUSION MATRIX TO GET THE PRECISOIN ,RECALL VALUE WITH HELP OF HEATMAP
 - PRINTING THE TOP 30 MOST IMPORTANT FEATURES </i>

```
In [0]: from sklearn.model_selection import train_test_split
    g the necessary libraries
    from sklearn.model_selection import RandomizedSearchCV
    from sklearn.datasets import *
    from sklearn import naive_bayes
    from sklearn.feature_extraction.text import CountVectorizer
    from sklearn.feature_extraction.text import TfidfVectorizer
    import numpy as np
    import pandas as pd
    from sklearn import *
    import warnings
    warnings.filterwarnings("ignore")
    from sklearn.tree import DecisionTreeClassifier
```

In [2]: from google.colab import drive
 drive.mount('/content/gdrive')#geeting the content from the google driv
 e

Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth? client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleuser content.com&redirect_uri=urn%3Aietf%3Awg%3Aoauth%3A2.0%3Aoob&scope=emai

l%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdocs.test%20https%3A%2F%2 Fwww.googleapis.com%2Fauth%2Fdrive%20https%3A%2F%2Fwww.googleapis.com%2 Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwww.googleapis.com%2Faut h%2Fpeopleapi.readonly&response type=code Enter your authorization code: Mounted at /content/gdrive In [0]: final processed data=pd.read csv("gdrive/My Drive/final new data.csv")# loading the preprocessed data with 100k points into dataframe In [4]: # getting the counts of 0 and 1 in "SCORE" column to know whether it is unbalanced data or not count of 1=0count of 0=0for i in final processed_data['Score']: if i==1: count of 1+=1 else: count of 0+=1print(count of 1) print(count of 0) #it is an imbalanced dataset 88521 11479 In [0]: #spliiting the data into train and test data x train,x test,y train,y test=model selection.train test split(final pr ocessed data['CleanedText'].values,final processed data['Score'].values ,test size=0.2,shuffle=False) In [6]: vectorizer=CountVectorizer(min df=2)#building the vertorizer with word counts equal and more then 2 train bow=vectorizer.fit transform(x train)#fitting the model on traini ng data print(train bow.shape)

```
(80000, 17204)
In [7]: test bow=vectorizer.transform(x test)#fitting the bow model on test dat
         print("shape of x test after bow vectorization ",test bow.shape)
         shape of x test after bow vectorization (20000, 17204)
In [0]: #using time series split method for cross-validation score
         from sklearn.model selection import TimeSeriesSplit
         tscv = TimeSeriesSplit(n splits=5)
         from sklearn.tree import DecisionTreeClassifier
In [10]: #biudling the model
         dt=DecisionTreeClassifier(criterion='gini', splitter='best',class weigh
         t=\{1:.5,0:.5\})
         tuned parameters=[{'max depth':[5,7,10,15,50],'min samples split':[5,25
         ,50,100,500]}]
         #applying the model of decision tree and using gridsearchev to find the
          best hyper parameter
         %time
         from sklearn.model selection import GridSearchCV
         model = GridSearchCV(dt, tuned parameters, scoring = 'f1', cv=tscv,n jo
         bs=-1)#building the gridsearchcv model
         CPU times: user 22 μs, sys: 3 μs, total: 25 μs
         Wall time: 1.47 ms
In [11]: | % time
         model.fit(train bow, y train)#fiitting the training data
         CPU times: user 3.45 s, sys: 183 ms, total: 3.63 s
         Wall time: 3min 27s
Out[11]: GridSearchCV(cv=TimeSeriesSplit(max train size=None, n splits=5),
                error score='raise-deprecating',
                estimator=DecisionTreeClassifier(class weight={1: 0.5, 0: 0.5},
         criterion='gini',
```

```
max depth=None, max features=None, max leaf nodes=None,
                     min impurity decrease=0.0, min impurity split=None,
                     min samples leaf=1, min samples split=2,
                     min weight fraction leaf=0.0, presort=False, random state=N
         one,
                     splitter='best'),
                fit params=None, iid='warn', n jobs=-1,
                param grid=[{'max depth': [5, 7, 10, 15, 50], 'min samples spli
         t': [5, 25, 50, 100, 500]}],
                pre dispatch='2*n jobs', refit=True, return train score='warn',
                scoring='f1', verbose=0)
In [12]: print(model.best estimator )#printing the best estimator
         DecisionTreeClassifier(class weight={1: 0.5, 0: 0.5}, criterion='gini',
                     max depth=10, max features=None, max leaf nodes=None,
                     min impurity decrease=0.0, min impurity split=None,
                     min samples leaf=1, min samples split=50,
                     min weight fraction leaf=0.0, presort=False, random state=N
         one,
                     splitter='best')
In [13]: print(model.score(test bow,y test))#checking the score on test Data
         0.9356330594700474
In [26]: results=pd.DataFrame(model.cv results )# getting varoius cv scores and
          train scores various values of hyperparameter given as parameter and s
         toring it in a dataframe
         results#printing the dataframe
Out[26]:
             mean fit time mean score time mean test score mean train score param max d
            0.827509
                         0.024285
                                         0.942337
                                                        0.945712
                                                                       5
```

	mean_fit_time	mean_score_time	mean_test_score	mean_train_score	param_max_d	
1	0.816876	0.023738	0.942328	0.945687	5	
2	0.808890	0.024651	0.942459	0.945584	5	
3	0.795021	0.023996	0.942528	0.945235	5	
4	0.740037	0.023346	0.942653	0.944246	5	
5	1.142660	0.024244	0.943008	0.948344	7	
6	1.125915	0.024061	0.942797	0.948183	7	
7	1.096828	0.023543	0.942704	0.947969	7	
8	1.074786	0.024038	0.942902	0.947405	7	
9	0.964208	0.023310	0.942856	0.945233	7	

	mean_fit_time	mean_score_time	mean_test_score	mean_train_score	param_max_d	
10	1.737079	0.024309	0.943213	0.952274	10	
11	1.670127	0.024599	0.943263	0.951764	10	
12	1.627351	0.025765	0.943383	0.951342	10	
13	1.568927	0.024144	0.943094	0.950321	10	
14	1.392833	0.024260	0.942963	0.946775	10	
15	3.001987	0.026018	0.942917	0.959000	15	
16	2.834739	0.025004	0.942875	0.957716	15	
17	2.752413	0.025245	0.943206	0.956711	15	
18	2.509027	0.024961	0.943368	0.954518	15	

	mean_fit_time	mean_score_time	mean_test_score	mean_train_score	param_max_d
19	2.089885	0.024971	0.942079	0.948594	15
20	10.996955	0.027560	0.936259	0.980332	50
21	10.719241	0.028056	0.934786	0.975204	50
22	9.852486	0.026932	0.935536	0.971445	50
23	9.103579	0.027458	0.935694	0.966601	50
24	6.842210	0.025296	0.936337	0.955774	50

25 rows × 22 columns

```
In [0]: results['mean_train_score']=results['mean_train_score']*100
    results['mean_test_score']=results['mean_test_score']*100

In [0]: results=results.round(decimals=2)

In [0]: results['mean_test_score']=100-results['mean_test_score']
```

PLOTTING THE HEATMAP WITH HYPERPARAMETERS FOR CV_ERROR SCORE

In [34]: test_score_heatmap

Out[34]:

param_min_samples_split	5	25	50	100	500
param_max_depth					
5	5.77	5.77	5.75	5.75	5.73
7	5.70	5.72	5.73	5.71	5.71
10	5.68	5.67	5.66	5.69	5.70
15	5.71	5.71	5.68	5.66	5.79
50	6.37	6.52	6.45	6.43	6.37

Out[35]: <matplotlib.axes. subplots.AxesSubplot at 0x7fc72a8095c0>

FROM THE ABOVE HEATMAPS RESULTS FOR

CV DATA,WE FOUND THAT BEST HYPERPARAMETERS AS MAX_DEPTH=10 AND MIN_SAMPLE_SPLIT=50

PLOTTING THE ROC CURVE FOR GETTING AUC SCORE

```
In [47]: probs = model.predict_proba(test_bow)
    preds = probs[:,1]
    fpr, tpr, threshold = metrics.roc_curve(y_test, preds)
    roc_auc = metrics.auc(fpr, tpr)

#
    import matplotlib.pyplot as plt
    plt.title('Receiver Operating Characteristic')
    plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
    plt.legend(loc = 'best')
    plt.plot([0, 1], [0, 1], 'r--')
    plt.xlim([0, 1])
    plt.ylim([0, 1])
    plt.ylabel('True Positive Rate')
    plt.show()
```


In [49]: print('accuracy from the ROC curve is found as ',roc_auc*100)
accuracy from the ROC curve is found as 71.88677795729427

VISUALIZING DECISION TREE WITH GRAPHVIZ, FOR PLOTTING PURPOSE TAKING MAX DEPTH AS 3

max depth=3, max features=None, max leaf nodes=None,

In [37]: dt=DecisionTreeClassifier(criterion='gini', splitter='best',class_weigh
 t={1:.5,0:.5},min_samples_split=10,max_depth=3)
 dt.fit(train_bow,y_train)#fitting the model

Out[37]: DecisionTreeClassifier(class weight={1: 0.5, 0: 0.5}, criterion='gini',

Create PDF in your applications with the Pdfcrowd HTML to PDF API

```
min impurity decrease=0.0, min impurity split=None,
                              min samples leaf=1, min samples split=10,
                              min weight fraction leaf=0.0, presort=False, random state=N
             one,
                              splitter='best')
In [38]: import graphviz
             target=['0','1']
             dot data = tree.export graphviz(dt,out file=None,feature names=vectoriz
             er.get feature names(),class names=target,filled=True,rounded=True,spec
             ial characters=True)
             graph = graphviz.Source(dot data)
             graph
Out[38]:
                                                            gini = 0.198
                                                         samples = 80000
value = [4466.5, 35533.5]
                                                                            best ≤ 0.5
                                                 gini = 0.184
                                                                            gini = 0.49
                                                                          samples = 2272
                                               value = [3980, 34884]
                                                                         value = [486.5, 649.5]
                                                                            class = 1
                                                                           great ≤ 0.5
                               great ≤ 0.5
gini = 0.18
                                                 great ≤ 0.5
                                                 gini = 0.405
                                                                           gini = 0.499
                                                                                               samples = 338
ralue = [25.5, 143.5]
                              samples = 77388
lue = [3858, 34836]
                                                samples = 340
                                                                          samples = 1934
                                                value = [122, 48]
                                                                          value = [461, 506]
                                                 class = 0
                                                                            class = 1
                               gini = 0.071
                                                                    gini = 0.497
                                                                                  gini = 0.351
                                                                                                gini = 0.202
               gini = 0.214
samples = 57398
                                            gini = 0.317
                                                       gini = 0.408
                              samples = 19990
                                           samples = 284
                                                       samples = 56
                                                                   samples = 1560
                                                                                                             samples = 14
                                                                                  samples = 374
                                           value = [114, 28]
                                                                  value = [418.5, 361.5]
                                                                                 value = [42.5, 144.5]
                                class = 1
             graph.render("gdrive/My Drive/decision tree bow")
In [39]:
Out[39]: 'gdrive/My Drive/decision tree bow.pdf'
In [40]: print(dt.feature importances )#weight vector of features
             [0. \ 0. \ 0. \ ... \ 0. \ 0. \ 0.]
In [41]: dt=DecisionTreeClassifier(criterion='gini', splitter='best', class weigh
             t={1:.5,0:.5},min samples split=50,max depth=10)
             dt.fit(train bow,y train)#fitting the model
```

```
z=dt.feature_importances_
a=z.argsort()
print('shape of wieght vector is:',a.shape)
top_features=np.take(vectorizer.get_feature_names(),a[17180:])#taking l
ast features as they are of very high importance
shape of wieght vector is: (17204,)

In [42]: print(top_features)#printing the top_features
top=list(top_features)
    ['box' 'pinhead' 'horribl' 'back' 'notifi' 'stale' 'compani' 'tasti' 'a
w'
    'favorit' 'flatul' 'unfortun' 'safeti' 'wast' 'return' 'love' 'delici'
    'money' 'threw' 'terribl' 'best' 'worst' 'great' 'disappoint']
```

REPRESENTING TOP IMPORTANT FEATURES USING WORDCLOUD LIBRARY

```
In [43]: from wordcloud import WordCloud #here we are printing the top features using wordcloud library import matplotlib.pyplot as plt wordcloud = WordCloud(width = 1500, height = 1000, background_color = 'white',

min_font_size = 10).generate(str(top))

# plot the WordCloud image plt.figure(figsize = (8, 8), facecolor = None) plt.imshow(wordcloud) plt.axis("off") plt.tight_layout(pad = 0)

plt.show()
```


TESTING OUR MODEL ON TEST DATA AND CHECKING ITS PRECISION, RECALL, F1_FCORE

```
In [44]: #Testing Accuracy on Test data
import seaborn as sns #importing seaborn as sns
from sklearn.metrics import *#importing varoius metrics from sklearn
#building the model
dt=DecisionTreeClassifier(criterion='gini', splitter='best',class_weigh
t={1:.5,0:.5},min_samples_split=50,max_depth=10)
dt.fit(train_bow,y_train)#fitting the model
y_pred = dt.predict(test_bow)
```

```
print("Accuracy on test set: %0.3f%"%(accuracy score(y test, y pred)*1
         00))#printing accuracy
         print("Precision on test set: %0.3f"%(precision score(y test, y pred)))
         #printing precision score
         print("Recall on test set: %0.3f"%(recall score(y test, y pred))) #prin
         ting recall
         print("F1-Score on test set: %0.3f"%(f1 score(y test, y pred)))
         print("Confusion Matrix of test set:\n [ [TN FP]\n [FN TP] ]\n")
         df cm = pd.DataFrame(confusion matrix(y test, y pred), range(2),range(2)
         )) #generating the heatmap for confusion matrix
         sns.set(font scale=1.4)#for label size
         sns.heatmap(df cm, annot=True,annot kws={"size": 16}, fmt='g')
         Accuracy on test set: 88.120%
         Precision on test set: 0.890
         Recall on test set: 0.986
         F1-Score on test set: 0.935
         Confusion Matrix of test set:
          [ [TN FP]
          [FN TP] ]
Out[44]: <matplotlib.axes. subplots.AxesSubplot at 0x7fc72598d898>
```


BOW VECTORIZATION FOR DECISION TREE IS COMPLETED

In [0]: #bow vertorization is completed for decision_trees