CSE-170 Computer Graphics

Lecture 26
Radiosity

Dr. Renato Farias rfarias2@ucmerced.edu

Global Illumination Methods

- Ray tracing
 - Reflection from other objects
 - Shadows
 - Transparency
 - Transmission (refraction)

Is anything missing?

Ambient Light

- What is really ambient light?
 - Ambient light does not really exist!
 - It should be light reflecting from other surfaces

Ambient Light

Example:

Ambient Light

 There are diffuse and specular interactions everywhere!

- Radiosity Principle
 - Conservation of energy
 - Light is either absorbed or reflected
 - Every piece of surface is a diffuse reflector and an emitter!
 - No more need to have "special" light element

- Based on radiative heat transfer
 - Cornell, Goral et al. 1984
 - Hemicube algorithm O(n²)

- Summary
 - Every surface in the scene is divided in patches
 - Each patch reflects light received from all others, until energy equilibrium
 - Light intensity is constant along each patch
 - Chosen subdivision is therefore very important

Radiosity is very realistic!

- It is viewer independent
 - After computation, a renderer computes a camera projection and hidden surface removal

- Comparison with Ray Tracing:
 - Radiosity alone does not incorporate specular interaction
 - Ray tracing cannot compute diffuse interaction

 Regular Scene Subdivision Example (adaptive subdivision is always better)

OpenGL Rendering

Radiosity Rendering

• Basic Method: (https://en.wikipedia.org/wiki/Radiosity_(computer_graphics))

radiosity *B* is the energy per unit area leaving the patch surface per discrete time interval and is the combination of emitted and reflected energy:

$$B(x)\,dA=E(x)\,dA+
ho(x)\,dA\int_S B(x')rac{1}{\pi r^2}\cos heta_x\cos heta_{x'}\cdot \mathrm{Vis}(x,x')\,\mathrm{d}A'$$

where:

- B(x)_i dA_i is the total energy leaving a small area dA_i around a point x.
- E(x)_i dA_i is the emitted energy.
- ρ(x) is the reflectivity of the point, giving reflected energy per unit area by multiplying by the incident energy per unit area
 (the total energy which arrives from other patches).
- S denotes that the integration variable x' runs over all the surfaces in the scene
- r is the distance between x and x'
- θ_x and θ_{x'} are the angles between the line joining x and x' and vectors normal to the surface at x and x' respectively.
- Vis(x,x') is a visibility function, defined to be 1 if the two points x and x' are visible from each other, and 0 if they are not.

Review

Part II – Modeling

- Geometric Modeling
 - Lagrange Interpolation
 - Hermite Formulation
 - Bézier
 - Geometric construction (De Casteljau method),
 Properties, Subdivision, Degree Elevation, Cubic Patches, Rational and Non-Rational
 - B-Splines, Rational B-Splines, NURBS
 - Interpolating Splines
 - Catmull-Rom, Bessel-Overhauser
 - Subdivision Surfaces

Part II – Modeling

- Solid Modeling
 - Implicit Curves and Marching Cubes
 - Primitive Instancing
 - CSG Representation and operations
 - Spatial Enumeration and Decomposition
 - Quad trees, Octrees, BSP trees
 - Boundary Representation
 - Euler Formula, Topological Classes, Plane Models, Data Structures
 - Global Illumination: Raytracing

Final Exam: Monday 8:00 AM

- From Part I:
 - Composition of transformations
- Main topics from Part II:
 - Parametric curves
 - Hermite, Bézier and B-Splines
 - Quadtrees
 - CSG
 - Marching Cubes
 - Representation of curves
 - Euler formula
 - etc.