Climate Change, Adaptation, and Sovereign Risk

Sarah Duffy

University of Oxford

October 2025

Adaptation and Sovereign Risk

Climate change is projected to increase the frequency and severity of natural disasters

- Climate Policy attention turning towards adaptation: adjusting to this 'new normal'
- e.g. seawalls, reefs, early warning systems
- Adaptation can limit damages, but it is costly

Adaptation and Sovereign Risk

Climate change is projected to increase the frequency and severity of natural disasters

- Climate Policy attention turning towards adaptation: adjusting to this 'new normal'
- e.g. seawalls, reefs, early warning systems
- Adaptation can limit damages, but it is costly

Many disaster-prone economies also fiscally constrained

- e.g. Cyclone activity concentrated around tropics
- Climate change likely to increase borrowing costs further: climate defaults?
- Calls for 'debt relief for climate resilience'

Adaptation and Sovereign Risk

Climate change is projected to increase the frequency and severity of natural disasters

- Climate Policy attention turning towards adaptation: adjusting to this 'new normal'
- e.g. seawalls, reefs, early warning systems
- Adaptation can limit damages, but it is costly

Many disaster-prone economies also fiscally constrained

- e.g. Cyclone activity concentrated around tropics
- Climate change likely to increase borrowing costs further: climate defaults?
- Calls for 'debt relief for climate resilience'

This paper:

- 1. How does sovereign risk affect adaptation? climate-related losses?
- 2. Could debt relief help?

Takeaways

- Analytical Model: Sovereign default + natural disasters, endogenous adaptation
 - Default risk constrains adaptation of emerging markets: Adaptation Trap

Takeaways

- Analytical Model: Sovereign default + natural disasters, endogenous adaptation
 - Default risk constrains adaptation of emerging markets: Adaptation Trap
- Data: Novel adaptation measure from government budgets
 - Adaptation increasing in exposure + ratings
 - Hurricane causes CDS spreads and default probs ↑, driven by low adaptation countries

Takeaways

- Analytical Model: Sovereign default + natural disasters, endogenous adaptation
 - Default risk constrains adaptation of emerging markets: Adaptation Trap
- Data: Novel adaptation measure from government budgets
 - Adaptation increasing in exposure + ratings
 - Hurricane causes CDS spreads and default probs \uparrow , driven by low adaptation countries
- Quantitative Model: long term debt, adaptation capital
 - Adaptation investment / GDP in Caribbean is 13% lower due to default risk
 - GDP effects of hurricanes are 10% higher increases with climate change
 - Debt relief can help: interest free loan, adaptation bond

Relation to the Literature

Climate Change and Sovereign Risk

- Climate Change exacerbates fiscal vulnerabilities (Mallucci, 2022; Phan + Schwartzmann, 2023)

Contribution: Endogenous Adaptation

Climate Change and Adaptation

- Macro: (Hong et al, 2023; Fried, 2021). Micro: access to finance matters (e.g. Lane, 2024)

Contribution: Default risk affecting aggregate adaptation

Adaptation: Measurement

- Macro: Latent variable approach (e.g. Burke et al, 2024)

Contribution: Direct measure of aggregate adaptation

Disaster Risk

- Matters for asset prices (e.g. Barro 2009, Gourio 2012)

Contribution: Additional feedback: protective capital

A Model of Sovereign Default

Sovereign Risk and Climate Risk

The spread increases with

- 1. Borrowing
- 2. Climate Change

The spread increases with

- 1. Borrowing
- 2. Climate Change

Additionally, spread falling in adaptation.

The spread increases with

- 1. Borrowing
- 2. Climate Change

Additionally, spread falling in adaptation.

Adaptation declining in sovereign risk

- Default risk restricts consumption smoothing
- and reduces lifetime income
- therefore increases the marginal cost of adaptation

The spread increases with

- 1. Borrowing
- 2. Climate Change

Additionally, spread falling in adaptation.

Adaptation declining in sovereign risk

- Default risk restricts consumption smoothing
- and reduces lifetime income
- therefore increases the marginal cost of adaptation

Measuring Adaptation

No existing data on aggregate adaptation across countries

Build a measure of adaptation expenditure utilising data from government budgets

NLP Approach: transfer learning

- 1. Start with a list of keywords describing adaptation
- 2. 'Learn' related terms from an auxilliary corpus \rightarrow adaptation dictionary
- 3. Search for terms from adaptation dictionary
- 4. Record corresponding monetary amounts

Sample: Rated economies in Latin America and the Caribbean with

- English or Spanish budgets
- Machine readable budgets
- ▶ sample

Measuring Adaptation

Spend on average 0.31% (1.1%) of GDP (Total expenditure) on adaptation.

	N	Mean	St. Dev.	Min	Max
Adaptation Total / GDP	163	0.31%	0.0021	0.001	0.0187
Adaptation Total / Expenditure	163	1.1%	0.0080	0.0038	0.0538

Table: Panel of 19 Latin American and Caribbean countries 2014-2025.

Adaptation Expenditure is:

- 1. Increasing in disaster exposure

 exposure
- 2. Trending upwards over time trend

Possible to disaggregate measure by action bine items

Adaptation Expenditure is Increasing in Rating

Adaptation Expenditure is Increasing in Rating

	adapt		
sovrate	67,554,921*** (16,647,312)	30,964,525*** (9,241,031)	
gdp	0.0022*** (0.0002)	0.0069*** (0.0018)	
exposure	143,757,032** (62,519,154)		
government effectiveness	121,350,937** (48,299,257)		
Country Fixed Effects	No	Yes	
Year Fixed Effects	Yes	Yes	
Observations	98	105	
R-squared	0.95	0.84	

*p<0.1; **p<0.05; ***p<0.01

Cyclones and Sovereign Risk

Data:

- International Best Track Archive: hurricane location at 6-hourly intervals
- Map to country units:
- $D_{it} = 1$ if country i experiences at least category 1 hurricane in year t
- CDS spreads (36 countries)
- Default indicators (80 countries)

Cyclones and Sovereign Risk

Data:

- International Best Track Archive: hurricane location at 6-hourly intervals
- Map to country units:
- $D_{it} = 1$ if country i experiences at least category 1 hurricane in year t
- CDS spreads (36 countries)
- Default indicators (80 countries)

Contribution:

- Local projection with cyclone shock
- Previous empirical literature on disasters + sovereign risk uses EMDAT
- Disaster incidence data collated from news articles + insurance claims \rightarrow selection bias
- Combine with adaptation data

Cyclones cause sovereign risk to increase

Figure: IRFs from local projections. Shocks are storms at least category 1 strength from IBTrACS geolocated to country coordinates. Outcome: sovereign crisis dummy from Global Macro Database.

Simple Model and Empirical Evidence: Summary

- 1. Adaptation is declining in sovereign risk
- 2. Natural disasters increase sovereign risk
- 3. Adaptation attenuates that affect

Simple Model and Empirical Evidence: Summary

- 1. Adaptation is declining in sovereign risk
- 2. Natural disasters increase sovereign risk
- 3. Adaptation attenuates that affect

How quantitatively important is this sovereign risk - adaptation channel?

- What does it mean for the welfare effects of disasters? and climate change?
- Could debt relief help?

Extend the two period model: infinite horizon details

- Long term debt
- Adaptation investment cumulates into capital
- Quadratic default costs
- Estimated to match moments details

Sovereign Risk Restricts Adaptation

	Simulated Moments: Caribbean	
Moment	Model	No-Default Counterfactual
Adaptation Investment/GDP	0.003	+13%
GDP loss per Hurricane	0.05	-10%
Welfare loss from Hurricanes	5.02%	4.62%

- GDP loss from a hurricane is 10% larger due to the sovereign risk- adaptation channel
- This gap increases to 13% with a projected increase in frequency and severity by end of century

Debt Relief can Help

1. Interest Free Loan

- Motivated by IMF Resilience and Sustainability Trust
- 'Default free' due to seniority structure \rightarrow risk free rate
- 10% of pre-loan output with a 3 year grace period
- 5% increase in λ/GDP

Debt Relief can Help

1. Interest Free Loan

- Motivated by IMF Resilience and Sustainability Trust
- 'Default free' due to seniority structure ightarrow risk free rate
- 10% of pre-loan output with a 3 year grace period
- 5% increase in λ/GDP

2. Adaptation Bond

- Sustainability linked bonds: lower coupon payment if reach environmental target
- Consider an adaptation linked bond
- 2.5% coupon reduction if adaptation capital 5% larger
- 11% increase in λ/\textit{GDP}

Conclusion

Sovereign Risk restricts adaptation and increases the costs of disasters

- Theory: adaptation trap
- Data: robust negative correlation between sovereign risk and adaptation
- Quantitative: default risk is a quantitatively important driver of climate losses due to restricted adaptation.

Questions and suggestions very welcome!

sarah.duffy@economics.ox.ac.uk sarahwduffy.github.io

Model Equations

The sovereign's lifetime value is:

$$v_0 = \sum_{t=0}^{\infty} \beta^t \mathbb{E} \left(u \left(c_t \right) \right),\,$$

where $u(c_t)$ is the household's utility from consumption.

The income process is given by:

$$y_{t} = y_{t-1}^{\rho} (1 - x_{t} d_{t} F(\Lambda_{t})) \epsilon_{t}^{y},$$

where ρ allows for persistence in the endowment process and x_t is an indicator variable for the natural disaster shock with

$$\mathbb{P}(x_t=1)=p_t.$$

Disaster damage is given by the continuous variable d_t which is iid distributed according to the distribution F(d) with support [0,1). The endowment shock $log(\epsilon^y)$ is normally distributed with mean zero.

Model Equations

$$\Lambda_t = (1 - \delta)\Lambda_{t-1} + \lambda_{t-1},$$

where λ_t is investment in adaptation. Consumption is:

$$c_t = (1 - D_t)y_t + D_t(y_t - \phi(y_t)) + (1 - D_t)q_t(b_{t+1} - (1 - \psi)b_t) - (1 - D_t)b_t - \lambda_t,$$

where the bond price accounts for default risk:

$$q_t = rac{1}{1+r} \mathbb{E} \left((1-D_{t+1}) + (1-\psi)(1-D_{t+1}) q_{t+1}
ight).$$

▶ back

Model Equations

$$V = \max_{D} \{ (1 - D)V_{nd} + DV_{d} \},$$
 (1)

$$V_{nd}(y,b,\Lambda) = \max_{b',\Lambda'} u(c) + \beta \mathbb{E}[V(y',b',\Lambda')], \tag{2}$$

$$V_d(y, 0, \Lambda) = \max_{\Lambda'} u(c) + \beta \mathbb{E}[(1 - \eta)V_d(y', 0, \Lambda') + \eta V(y', b', \Lambda')],$$
(3)

▶ back

Details: two period model

Assume:

- T = 2
- $\Lambda_1 = 0$, $y_1 = 1$
- log utility
- Simple pro-cyclical default costs: $\phi(y_t) = \left(1 ar{\it l} e^{\psi {\sf g}} \right)$

Default if $C_2(D = 1) > C_2(D = 0)$, i.e. if:

$$\underbrace{g + \frac{1}{1 + \psi} \ln(1 - x_t d_t (1 - \lambda_t))}_{\tilde{g}} < \underbrace{\frac{1}{1 + \psi} \ln\left(\frac{B}{\bar{l} y_1^{\rho}}\right)}_{\tilde{g}(B)}$$

Analytical results

$$\begin{split} s\left(b,\lambda\right) &= \Pr\left[\tilde{g}' < \bar{g}\left(b\right)\right] \\ &= (1-\rho)\Phi_g(\bar{g}) + \rho E_{d'}\left[\Phi_g\left(\bar{g} - \frac{1}{1+\psi} ln(1-d_t(F(\lambda_t))\right)\right] \\ &\frac{\partial s}{\partial \rho} = -\Phi_g(\bar{g}) + E_{d'}\Phi_g\left(\bar{g} - \frac{1}{1+\psi} ln(1-d_tF(\lambda_t))\right) > 0. \\ &\hat{\Phi}_d \overset{fosd}{\geq} \bar{\Phi}_d \Rightarrow s(\cdot,\cdot|\hat{\Phi}_d) \geq s(\cdot,\cdot|\bar{\Phi}_d). \\ &\frac{\partial s}{\partial \lambda} = \rho E_{d'}\left[\phi_g\left(\bar{g} - \frac{1}{1+\psi} ln(1-d\cdot F(\lambda))\right) \cdot \frac{d\cdot F(\lambda)}{(1+\psi)(1-d\cdot F(\lambda))}\right] < 0 \end{split}$$

▶ back

Analytical results

$$\frac{1}{c_1} = \underbrace{\beta \mathbb{E} \left(\frac{y_2'(\lambda)}{c_R} - s(\lambda) \frac{y_2'(\lambda)b}{y_2 c_R} \right)}_{\text{MB damage reduction}} + \underbrace{\beta \mathbb{E} \left(s'(\lambda) \left(u(c_D) - u(c_R) \right) \right)}_{\text{MB reduced default prob}} \underbrace{-\frac{\frac{1}{1+r} s'(\lambda)b}{c_1}}_{\text{MB lower spread}}$$

▶ back

Initial Keywords

- adaptation
- climate_adaptation
- coastal_protection
- seawall
- shoreline_management
- coral_reef_restoration
- stormwater_management
- mangrove_plantation
- coastal_management
- urban_green_area
- air_conditioning_system
- shading
- drainage
- flood_insurance

- irrigation
- water_management
- natural_disaster_management
- national_disaster_management
- drought_management
- flood_management
- hazard_mapping
- cyclone_shelter
- storm_management
- wastewater_management
- managed_retreat
 - ecosystem_restoration
- watershed_management
- wetlands_management

Word Embeddings

Word embedding: real-valued vector representation of a word

- Words closer in the vector space are expected to be similar in meaning
- Use GloVe model from Stanford NLP group trained on my adaptation corpus

Keyword Discovery

Initial Term: sea wall		
Cosine Similarity		
0.89		
0.86		
0.81		
0.79		
0.78		
0.72		
0.71		

▶ back

Sample

- Latin America: 18 sovereigns. Caribbean: 13 sovereigns
- Lose 2 due to language
 - Haiti, Brazil
- Lose 3 due to lack of rating
 - Saint Lucia, Antigua + Barbuda, Dominica
- Lose 7 due to lack of machine readability
 - Trinidad and Tobago, Cuba, Bolivia, El Salvador, Nicaragua, Paraguay, Venezuela
- Lose 74 country-year observations due to lack of availability

Final sample: Unbalanced panel of 19 economies 2014-2025

- 163 country-year observations

▶ back

Exposure

Adaptation Measure: Disaggregated

How are governments adapting?

Line Items: Descriptive Statistics

	N	Mean	St. Dev.	Min	Max
Line Items (country x year)	163	17.7	23.3	3	126
Line Items (country average)	19	20.33	23.4	4.9	75.4

	N	Corr	p-value
(Line Items, T/GDP)	163	-0.0967	0.2489
(avg Line Items, avg T/GDP)	19	-0.131	0.589

Expenditure Comparisons

Mean
0.31%
1.3%
3.4%

Table: Source: ELAC

Official Debt: Share of Total

Share of		
Official Debt (%)		
7		
3		
20		
3		
14		
7		
16		
29		
26		
22		
4		
25		
8		
7		
14		

Table: Share of Official Debt in Total Public Debt (2018)

Data

- sovrate:
 - Index from 0-21
 - From World Bank
- 2. exposure:
 - average maximum monthly windspeed scaled by land area from GeoMet or:
 - climate vulnerability index from INFORM RISK
 - Constructed by the EU commission
- 3. government effectiveness:
 - World Bank Index

▶ back

Robustness

- Narrower measures of adaptation: disaster preparedness, meteorological services
- Validation with hand read budgets
- English and Spanish subsamples
- Drop 10% of sample
- EMBI or CDS rather than sovrate
- alternative indices of exposure
- regulatory quality rather than government effectiveness
- Stricter word embedding cutoffs
- Instrument for ratings with a global factor

Aggregate irf

Calibration Strategy

- 1. External parameters: η , γ , δ
- 2. Calibrated directly from data: r, ψ , p, ρ , μ_{ϵ} , σ_{ϵ}^2 , σ_{d}^2
 - Estimate:

$$\log(y_t) = \rho \log(y_{t-1}) - \xi x_t + \varepsilon$$

- Model counterpart:

$$\xi_t = F(\Lambda_t)d_t$$

- 3. Jointly calibrated to target moments:
 - μ_d : mean GDP loss from disaster, ξ
 - α : adaptation investment to GDP ratio
 - β : debt to GDP ratio
 - κ : mean spread

Solution Algorithm

Discretize output, debt, adaptation.

Iterative algorithm:

- 1. Initial guesses for the unconditional debt price function and for the value functions
- 2. Update the value function V_{nd} by solving the maximization problem in the market access case
 - Each possible choice of debt and adaptation is associated with an additive taste shock.
 - The sovereign chooses b' conditional on having chosen a particular Λ' subject to taste shocks, and that Λ' is chosen subject to taste shocks for a fixed b'.
 - Probability of choosing a given discrete value is given by the multinomial logit formula.
- 3. Update the value function V by solving the discrete choice default problem.
 - Introduce extreme value shocks to the default problem.
- 4. Update the default value function V_d making use of the update values of V and V_{nd} .
- 5. Repeat (2-4) until value functions have converged.
- 6. Update the unconditional debt price function by imposing the default policy and the average equilibrium price function.
- 7. Repeat (2-6) until convergence of the unconditional debt price function.

Calibration: Caribbean

Parameter		Value	Source/Target statistic
Parameters set Externally:			
Relative risk aversion	γ	2	Standard
Readmission probability	η	0.33	Standard
Depreciation	δ	0.1	Standard
Parameters Estimated Externally:			
Risk free rate	r	0.0451	US T-Bill
Duration	ψ	0.0564	Average Maturity
Hurricane Frequency	p	0.103	NOAA
Endowment autocorr	ρ	0.95	Data
Endowment st dev	σ_ϵ	0.021	Data
Disaster st dev	σ_d	0.031	Data
Parameters Set Internally:			
Discount factor	β	0.92	Debt/GDP
Default cost	d_0	0.621	Mean Spread
Default cost	d_1	0.978	Std. dev Spread
Hurricane intensity	$\mu_{\sf d}$	0.096	Mean hurricane loss
Adaptation benefit	α	2.496	Adaptation investment/ GDP

Model Performance

	Model	Data
Targeted	0.000	0.000
Adaptation Investment/GDP	0.003	0.003
Debt/GDP	0.401	0.414
GDP loss — Cyclone	0.052	0.050
Mean Spread	502	526
Std. dev Spread	352	374
Untargeted Default Frequency Spread Increase — Cyclone	0.048 0.015	0.051 0.01
Untargeted		
Adaptation Capital/GDP	0.029	
Percent Damages Avoided	0.45	
Market Value Debt/GDP	0.37	
Median Spread	121	

Bond Price

