Parameter estimation for multivariate distributions

Statistical Computing and Empirical Methods Unit EMATM0061, Data Science MSc

Rihuan Ke

rihuan.ke@bristol.ac.uk

What we will cover today

We will introduce the concept of a random vector

We will introduce the family of multivariate Gaussian distributions.

We will also consider parameter estimation for multivariate Gaussian distributions

Multivariate distributions

Multivariate distributions

We often need to think about distributions involving multiple features.

```
## # A tibble: 9 x 8
## # Groups: species [3]
    species island bill_length_mm bill_depth_mm flipper_length_~ body_mass_g sex
   <fct> <fct>
                           <dbl>
                                         <dbl>
                                                                     <int> <fct>
## 1 Adelie Dream
                           37.3
                                         16.8
                                                           192
                                                                      3000 fema~
## 2 Adelie Torge~
                    33.5
                                          19
                                                           190
                                                                      3600 fema~
                                                                                      examples
                    45.6
## 3 Adelie Biscoe
                                          20.3
                                                           191
                                                                      4600 male
                        49.6
## 4 Chinst~ Dream
                                         18.2
                                                           193
                                                                     3775 male
                                                                  3700 lema
3725 male
                         58
52.7
## 5 Chinst~ Dream
                                         17.8
                                                           181
                                                                     3700 fema~
## 6 Chinst~ Dream
                                         19.8
                                                           197
                         49.6
## 7 Gentoo Biscoe
                                          15
                                                           216
                                                                     4750 male
## 8 Gentoo Biscoe
                                          13.9
                                                           217
                                                                      4900 fema~
                         43.6
## 9 Gentoo Biscoe
                            49.5
                                          16.1
                                                           224
                                                                      5650 male
## # ... with 1 more variable: year <int>
```

d variables

To model the relationships between these features we must consider multivariate distributions

Univariate analysis is about a single variable, e.g., bill length

Multivariate analysis considers several variables, e.g., (bill length, bill depth, body mass)

Random variables and random vectors

Suppose we have a probability space $(\Omega, \mathcal{E}, \mathbb{P})$. A random variable is a mapping $X : \Omega \to \mathbb{R}$, such that for every $a, b \in \mathbb{R}$, $\{\omega \in \Omega : X(\omega) \in [a, b]\}$ is an event in \mathcal{E}

Example: rolling a dice, we model its outcome with a random variable X (the value of X is a single number taken from $\{1, 2, \dots, 6\}$).

Suppose we have a probability space $(\Omega, \mathcal{E}, \mathbb{P})$. A random vector is a mapping $X: \Omega \to \mathbb{R}^d$, such that for every $a_1, \dots, a_d, b_1, \dots, b_d \in \mathbb{R}$ with each $a_i \leq b_i$, we have $\{\omega \in \Omega: X(\omega) \in \prod_{i=1}^d [a_i, b_i] \}$ is an event in \mathcal{E}

Note: here the mapping X outputs a vector (with d elements): $X(\omega) := (X_1(\omega), X_2(\omega), \cdots, X_d(\omega)).$

Example: rolling two dice, we model their outcome with a random vector X (the value of X is a pair of numbers e.g. $(1,2), (3,3), \cdots$).

Probability density function

Continuous random variables are specified by a probability density function $f_X : \mathbb{R} \to [0, \infty)$ with $\int_{-\infty}^{\infty} f_X(x) = 1$. For all $a, b \in \mathbb{R}$, we have

$$\mathbb{P}(X \in [a, b]) = \int_{a}^{b} f_X(x) dx$$

Continuous random vectors $X := (X_1, X_2, \dots, X_d)$ are specified by a multivariate probability density function $f_X : \mathbb{R}^d \to [0, \infty)$ with $\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_X(x_1, \dots, x_d) dx_d \cdots dx_1 = 1.$ For all $a_1, \dots, a_d, b_1, \dots, b_d \in \mathbb{R}$ with each $a_i \leq a_d$, we have

$$\mathbb{P}(X \in [a_1, b_1] \times \dots \times [a_d, b_d]) = \int_{a_1}^{b_1} \dots \int_{a_d}^{b_d} f_X(x_1, \dots, x_d) dx_d \dots dx_1$$

note: here $[a_1, b_1] \times \cdots \times [a_d, b_d]$ is a Cartesian product defined as follow:

$$[a_1,b_1] \times \cdots \times [a_d,b_d] := \{(x_1,\cdots,x_d) : x_1 \in [a_1,b_1],\cdots,x_d \in [a_d,b_d] \}$$

Gaussian random variables

A classical example of continuous random variables is a Gaussian.

A Gaussian random variable is a continuous random variable X with the probability density function $f_{\mu,\sigma}: \mathbb{R} \to [0,\infty)$ defined by

$$f_{\mu,\sigma}(x) := \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right) \text{ for all } x \in \mathbb{R}.$$

A Gaussian random variable is often referred to as a normal random variable.

We often write $X \sim \mathcal{N}(\mu, \sigma^2)$ to mean X is Gaussian with parameters μ, σ .

For a Gaussian random variable X, we have $\mathbb{E}(X) = \mu$ and $\operatorname{Var}(X) = \sigma^2$.

Gaussian random variables

For a Gaussian random variable X, we have $\mathbb{E}(X) = \mu$ and $\text{Var}(X) = \sigma^2$.

Multivariate Gaussians

A classical example of continuous random vector is a multivariate Gaussian $X = (X_1, \dots, X_d)$.

Its parameters are

- 1) A mean vector: $\mu = \mathbb{E}(X) \in \mathbb{R}^d$
- 2) A covariance matrix: $\Sigma = \mathbb{E}[(X \mathbb{E}(X))(X \mathbb{E}(X))^T] \in \mathbb{R}^{d \times d}$.

The probability density function $f_{\mu,\Sigma}:\mathbb{R}^d\to(0,\infty)$ is given by

$$f_{\mu,\Sigma}(x) := \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

where $x \in \mathbb{R}^d$, $|\Sigma|$ is the determinant of Σ , Σ^{-1} is the inverse of Σ , and $(x - \mu)^T$ is the transpose of $x - \mu$.

For comparison:
$$f_{\mu,\sigma}(x) := \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$$
.

Note: if d = 1, then the multivariate Gaussian defined above reduces to a univariate Gaussian that we discussed previously.

Multivariate Gaussians

A univariate Gaussian and a bivariate Gaussian

univariate Gaussian

bivariate Gaussian

Parameter estimation for multivariate Gaussians

Parameter estimation for multivariate Gaussians

Suppose that we have a i.i.d. sample $X_1, X_2, \dots, X_n \sim \mathcal{N}(\mu, \Sigma)$ from a multivariate Gaussian distribution.

The population parameters are $\mu := \mathbb{E}(X)$ and $\Sigma := \mathbb{E}[(X - E(X)(X - E(X))^T]$.

Parameter estimation: Given the sample X_1, \dots, X_n , we want to estimate the population parameter μ and Σ .

- 1. The sample mean \overline{X} is both the MVUE and the MLE for μ .
- 2. $\hat{\Sigma}_U = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})(X_i \overline{X})^T \in \mathbb{R}^{d \times d}$ is the MVUE for $\Sigma \in \mathbb{R}^{d \times d}$.
- 3. $\hat{\Sigma}_{\mathrm{ML}} = \frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})(X_i \overline{X})^T \in \mathbb{R}^{d \times d}$ is the MLE for $\Sigma \in \mathbb{R}^{d \times d}$.

Example

Example. fit a multivariate model for our Gentoo penguins.

Our sample:

```
penguins_gwf<-penguins%>%
  filter(species=="Gentoo")%>%
  select(body_mass_g,flipper_length_mm)
```

We model the body mass and flipper length with a bivariate Gaussian random vector.

we want to fit the model to the data. To do this, we obtain estimates of the population mean and population covariance

Example

MLE for population mean:

```
mu_gwf<-map_dbl(penguins_gwf,~mean(.x,na.rm=1)) # MLE estimate of the mean
mu_gwf</pre>
```

```
## body_mass_g flipper_length_mm
## 5076.016 217.187
```

2.
$$\hat{\Sigma}_U = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})(X_i - \overline{X})^T \in \mathbb{R}^{d \times d}$$

MVUE estimate of the covariance (matrix):

```
Sigma_gwf<-cov(penguins_gwf,use="complete.obs") # MVUE estimate of the covariance 
Sigma_gwf
```

```
## body_mass_g flipper_length_mm
## body_mass_g 254133.180 2297.14448
## flipper length mm 2297.144 42.05491
```

3. $\hat{\Sigma}_{\mathrm{ML}} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})(X_i - \overline{X})^T \in \mathbb{R}^{d \times d}$.

MLE estimate of the covariance (matrix):

 $\label{limits_gwf_MLE} Sigma_gwf_MLE <-cov\,(penguins_gwf,use="complete.obs")*(n-1)/n \# \textit{MLE estimate of the covariance Sigma_gwf_MLE} \\$

```
## body_mass_g flipper_length_mm
## body_mass_g 252083.719 2278.61912
## flipper length mm 2278.619 41.71576
```

Example

The density function of the fitted model (i.e., the bivariate Gassuain with the estimated mean and covariance):

What have we covered?

We introduced the concept of a random vector.

We saw that continuous random vectors can be understood via probability density functions.

We introduced the concept of a multivariate Gaussian distribution.

We also considered parameter estimation for multivariate Gaussian distributions.

ammary 1

Thanks for listening!

Dr. Rihuan Ke rihuan.ke@bristol.ac.uk

Statistical Computing and Empirical Methods Unit EMATM0061, MSc Data Science