

REGULARIZATION

Machine Learning Course Balázs Nagy, PhD

Fit problems

Fit problems

Underfit:

Model is too simple, need more features

Right fit:

Nothing to do, model is good

Overfitting:

- If we have too many features, the learned hypothesis may fit the training set very well, but fail to generalize to new examples (predict on new examples)
- Model is too complex, has too many features

Fit problems

Underfit:

Model is too simple, need more features

Right fit:

Nothing to do, model is good

Overfitting:

- If we have too many features, the learned hypothesis may fit the training set very well, but fail to generalize to new examples (predict on new examples)
- Model is too complex, has too many features

How to prevent overfit?

Prevent overfitting

- Reduce number of features
 - Manually select which features to keep
 - Model selection algorithm
- Regularization
 - Keep all the features, but reduce magnitude / values of parameters ∂
 - Works well when we have a lot of features, each of which contributes a bit to predicting y

Regularization – Linear Regression

Suppose we penalize high rank element and make w₃, w₄ really small

Regularization – Linear Regression

• Suppose we penalize high rank element and make w_3 , w_4 really small

$$\max_{w} \frac{1}{2m} \sum_{i=1}^{m} (h_w(x^{(i)} - y^{(i)})^2 + \lambda \sum_{j=1}^{n} w_j^2$$

NOTE: w₀ is **not** penalized

• The λ is the regularization parameter

Regularized Gradient descent

Repeat {

$$w_0 := w_0 - \mu \frac{1}{m} \sum_{i=1}^m (h_w(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}$$

$$w_j := w_j - \mu \left[\left(\frac{1}{m} \sum_{i=1}^m (h_w(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)} \right) + \frac{\lambda}{m} w_j^2 \right] \quad j \in \{1, 2, ..., n\}$$

}

Regularized Gradient descent

Repeat {

$$w_0 := w_0 - \mu \frac{1}{m} \sum_{i=1}^m (h_w(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}$$

$$w_j := w_j - \mu \left[\left(\frac{1}{m} \sum_{i=1}^m (h_w(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)} \right) + \frac{\lambda}{m} w_j^2 \right] \quad j \in 1, 2, ..., n$$

L1 regularization: $|w_j|$ L2 regularization: w_j^2

Regularization – Logistic Regression

$$h_w(x) = g(w_0 + w_1x_1 + w_2x_2 + w_3x_1^2 + w_4x_1^2x_2 + w_5x_1^2x_2^2 + w_6x_1^3x_2 + ...)$$

Regularization - Logistic Regression

$$h_w(x) = g(w_0 + w_1x_1 + w_2x_2 + w_3x_1^2 + w_4x_1^2x_2 + w_5x_1^2x_2^2 + w_6x_1^3x_2 + ...)$$

$$C(w) = -\left[\frac{1}{m}\sum_{i=1}^{m}(y^{(i)}log(h_w(x^{(i)})) + (1 - y^{(i)})log(1 - h_w(x^{(i)})))\right] + \frac{\lambda}{2m}\sum_{i=1}^{m}w_i^2$$
 with L2 regularization

Thank you for your attention!