I. Introduction

- Neutral gas, molecular gas, general viewpoint -6-
- Dust -8-
- Ionized Gas -9-
 - photoionization
 - collisions
 - cosmic rays
- Phases of interstellar gas -12-
- Magnetic fields and cosmic rays -13-
- Pressure sources -14-

II. Statistical physics in the ISM -16-

- The "Big Four"
 - 1. Maxwell distribution -16-
 - 2. Boltzmann distribution of energy levels in atoms and molecules
 - 3. Saha equation for ionization equilibrium
 - 4. Planck function for radiation
- Detailed Balancing -19-
- Statistical equilibrium -22-

III. Radiative Transfer -24-

- (a) radiative transfer equation -26-
- (b) Einstein Coefficients -28-
- (c) Line profile function -31
 - i. Natural Line Width
 - ii. Doppler and Collisional Broadening
 - A. Doppler thermal and bulk (turbulence)
 - B. Collisional (pressure)

IV. HI

- (a) Atomic H in the ISM -33-
- (b) 21 cm line -34-
- (c) Single layer of gas -38
 - i. $\tau_{\nu_o} >> 1$
 - ii. $\tau_{\nu_o} << 1$
- (d) Observing Brightness Temperature -40-
- (e) HI emission and absorption -41
 - i. absorption of external background source (BGS)
- (f) Conclusions -45
 - i. 1
 - ii. 2
 - iii. 3
 - iv. 4
- (g) Relevant Results -47
 - i. 1
 - ii. 2

- iii. 3
- iv. 4
- v. 5 Problem with Different Temperatures along LOS
- (h) Special Cases -48-
- (i) Additional Points on HI -49-

V. Atomic Structure

- electron spin -I6-
- spin-orbit coupling -I8-
- atoms with multiple electrons -I10-
- transition rules
- x-ray emission, Zeeman effect -I20-

VI. HII Regions -51-

- Stromgren Theory -52-
- HII Region spectra
 - Continuum Radiation -63-
 - * 2-photon
 - * free-free
 - * free-bound
 - * dust
 - Line Radiation -69-
 - * Recombination lines -69-
 - · radio -71-
 - \cdot optical and IR -72-
 - * Collisionally excited lines -79-
- $\bullet\,$ Types of HII Regions -85-
 - "Blister model" cavity inside GMC
 - "Champagne model" half cavity at edge of GMC
 - Compact only visible at radio and FIR wavelengths

VII. Spectra in the ISM -89-

- Interstellar absorption lines in stellar and quasar spectra -89-
- Theory of formation of (interstellar) absorption lines -90-
 - Equivalent width (W) -90-
- Growth curves in practice -94-
- \bullet UV absorption lines from H and H $_2$ -96-

VIII. Dust -104-

- Far infrared emission from dust -104-
 - General properties of dust -104-
 - Absorption efficiency: the Q parameter -105-
 - Calculating dust mass from FIR fluxes -106-
 - * Spectrum emitted by dust grains \rightarrow modified blackbody spectrum -108-
 - Dust temperatures -109-
- \bullet Interstellar extinction -116-
 - The extinction law -117-

• Interstellar reddening -118-

IX. Molecular Hydrogen and CO -124-

- \bullet Molecular gas and CO as a tracer -128-
- Collisional Excitation and Ionization -142-
- Properties of hot ionized gas and spectrum -145-

X. Heating and Cooling -151-

- General
 - Primary heat source: photoionization -152-
 - Primary cooling source: inelastic collisions -153-
- HII regions (ionized) -154-
 - Heating -154-
 - Cooling -155-
- HI gas (neutral) -160-
 - Dominant cooling line from CII (IP = 11.26 eV)
 - HI naturally cool, but observe very warm HI!
 - General players:
 - * Cooling function -160-
 - * Heating function -161-