KonukhinaOV 20122024-155533

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью плюс 3.3 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 15 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность на выходе промежуточной частоты измерена с помощью широкополосного измерителя мощности с входным сопротивлением 50 Ом, и получено значение минус 2.3 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 1.)

Рисунок 1 – Схема измерения потерь в трансформаторе

Варианты ОТВЕТА:

1) 0.8 дБ 2) 1.4 дБ 3) 2 дБ 4) 2.6 дБ 5) 3.2 дБ 6) 3.8 дБ 7) 4.4 дБ 8) 5 дБ 9) 5.6 дБ

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

$$s_{21} = -0.14365 - 0.29536i, s_{31} = 0.30382 - 0.14776i.$$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь нижняя боковая составляющая при преобразовании частоты вверх?

Варианты ОТВЕТА:

1) -35 дБн 2) -37 дБн 3) -39 дБн 4) -41 дБн 5) -43 дБн 6) -45 дБн 7) -47 дБн 8) -49 дБн 9) 0 дБн

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 2. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r + mf_{\Pi \Psi}|$ Какой комбинацией $\{n; m\}$ можно было бы объяснить наличие в спектре составляющей, отмеченной маркером 4?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 2 – Экран анализатора спектра

Варианты ОТВЕТА:

1)
$$\{13;45\}$$
 2) $\{23;-153\}$ 3) $\{8;-131\}$ 4) $\{13;-65\}$ 5) $\{23;-21\}$ 6) $\{18;-65\}$ 7) $\{8;-131\}$ 8) $\{18;-87\}$ 9) $\{8;-65\}$

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 858 М Γ ц с внутренним сопротивлением 50 Ом и доступной мощностью плюс 12 дБм.

Колебание ПЧ формируется с помощью генератора меандра частотой 157 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 1 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 1920 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 1016 МГц до 1058 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра?

Варианты ОТВЕТА:

1) -79 дБм 2) -82 дБм 3) -85 дБм 4) -88 дБм 5) -91 дБм 6) -94 дБм 7) -97 дБм 8) -100 дБм 9) -103 дБм

На рисунке 3 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1=r_3$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 3 – Двойной балансный смеситель

Частота гетеродина 458 МГц, частота ПЧ 49 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

Варианты ОТВЕТА:

- 1) 2290 MΓ_{II}
- 1832 ΜΓ_{ΙΙ}
- 3) 507 МГц
- 1325 MΓ_Ц.

Для полного подавления **верхней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный Т-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная минус 13 градусов.

Чему равна индуктивность компонента фазовращателя, если частота ПЧ равна 51 МГц?

Варианты ОТВЕТА:

1) 152 нГн 2) 160.1 нГн 3) 196.2 нГн 4) 124.1 нГн