证

本证明之附件是向本局提交的下列专利申请副本

申 请

日: 2003.07.01

申 请 号: 03139699.2

REC'D 15 SEP 2004

WIPO

PCT

申 请类 别: 发明

发明 创造名称: 一种宽带接入服务器 DHCP 用户上网

计时的方法

发明人或设计人: 深圳市中兴通讯股份有限公司

申 请 人: 孙鹏

PRIORITY

COMPLIANCE WITH RULE 17.1(a) OR (b)

中华人民共和国

国家知识产权局局长

五季川

2004年 09月02日

权利要求书

- 1、 一种宽带接入服务器 DHCP 用户上网计时的方法, 其包括以下步骤:
 - a) 设定所述接入服务器统计用户数据流量的内部时间和外部时间 以及流量阀值,并且内部时间比外部时间短;
 - b) 用户接入所述接入服务器,经过认证通过后,该接入服务器通知计时服务器开始对用户上网时长进行计费;
 - c) 针对每一用户,所述接入服务器建立一记录数据流量的环形链表;
- 10 d) 所述接入服务器设定所述环形链表的元素数为所述外部时间对 所述内部时间的倍数;
 - e) 所述接入服务器依内部时间检测所述用户的数据流量,依次填入所述环形链表的元素头指针的内容中,直至新检测数据流量值与 头指针的记录值没有超过所述流量阀值。
- 15 2、 根据权利要求 1 所述的方法, 其特征在于, 所述步骤 e) 在用户环 形链表未满时包括以下步骤:
 - e1)检查新检测的数据流量与头指针的内容,超过所述流量阀值时, 该新检测的数据流量值保存在头指针的内容中,同时,所述头尾 指针同时下移一位。
- 20 3、 根据权利要求1所述的方法,其特征在于,所述步骤 e)在用户环 形链表已满时包括以下步骤:
 - e2)检查新检测的数据流量与头指针元素的值,超过所述流量阀值时,该新检测的数据流量值保存在头指针的内容中,所述头尾指针同时下移一位。
- 25 4、 根据权利要求 2 或 3 所述的方法, 其特征在于, 所述方法还包括:
 - f) 所述新检测数据流量值与头指针的记录值没有超过所述流量阀

值时,所述接入服务器认为该用户处于闲置状态,置用户为未认证状态;

- g) 所述接入服务器通知计费服务器停止对该用户的计费。
- 5、 根据权利要求 4 所述的方法,其特征在于,所述计费服务器停止计 费的时间为距离检测到闲置状态所在的内部时间的一外部时间之前。
 - 6、 根据权利要求 5 所述的方法, 其特征在于, 所述内部时间为 30 秒。 根据权利要求 5 所述的方法, 其特征在于, 所述外部时间为 5 分钟。

说明书

一种宽带接入服务器 DHCP 用户上网计时的方法

5 技术领域

本发明涉及通讯技术中服务器对用户上网的计时方法,尤其涉及宽带接入服务器的 DHCP 用户上网计时的方法改进。

背景技术

15

20

25

10 随着数据业务的普及,对上网用户知识程度的要求也越来越低。 DHCP+WEB+RADIUS 的接入方式,由于其用户界面友好,不需要客户端,越来 越收到广大运营商的青睐。

DHCP 是动态主机配置协议 (Dynamic Host Configuration Protocol)的 缩写, 该协议允许服务器向客户端动态分配 IP 地址和其他配置信息。由于DHCP 开机就获得并占用了 IP 地址,因此这种接入方式,大量的占用了运营商的地址资源。而且,采用 DHCP 方式接入,不象窄带接入一样提供一个机制完善的连接和断开的人机界面,因此在目前的市场上未投入正式使用按照时长计费的方式,目前都是包月使用。但是随着对服务等级、投资回报的关注,运营商迫切需要一种能够精确计时的技术,从而对 DHCP 方式接入的用户,能够实现按时计费。很多运营商提出,当 DHCP 接入用户一段时间闲置时,即从表现上来看,用户一段时间内流量小于指定值时,就认为用户已经下网,此时应停止对用户的计费,也就是要对用户的 IDLE (闲置)状态进行检测。一旦检测出用户处于该状态,就将用户断开网络连接,同时停止用户的上网计费。因此对 DHCP 用户上网计时的精确性,取决于 IDLE 状态检测的及时性、准确性。

传统的 IDLE 检测方法,都是直接设置一个定时器,每隔一段时间定时进

行检查,检测用户的数据流量与前一次检测点的增量是否小于阈值(指定值),如果不超过,则认为用户已经下线;如果超过就认为这段时间内,用户在正常上网浏览、或者下载。

但现有技术存在下述缺陷:

1. 计费不精确,导致用户虽然处于 IDLE 状态,却仍然认为用户处于正常上网状态。

如图 1A 所示,假设 IDLE 检测的时间范围是 5 分钟,用户在第 1 分钟时有大量流量,而以后都没有超过阈值的流量,这样按照传统算法,用户要到第 10 分钟时,才会被踢下线。这样的检测误差实在是太大了。对上述问题,传统 IDLE 检测,通常是采用减小检测的间隔时间,来减少误差。

2. 时间间隔死,经常误报。

如图 1B 所示,如果用户在第 4 分钟和第 6 分钟都有相对比较大的流量,但是都不足以超过阈值,这时,在第 10 分钟用户会被踢下线,而其实他在 5 分钟的间隔内的流量和超过了阈值,从而出现误报的情况。对上述问题,传统 IDLE 检测,通常是采用增加检测时间,来减少误报次数。

以上可以看出,这就产生了一个矛盾,使传统的方法在实现 DHCP 用户按照时长计费时,很难达到要求的精确度。

发明内容

5

10

15

25

20 本发明的目的在于提供一种宽带接入服务器对 DHCP 用户进行精确的时长 计费的方法,通过在服务器建立对应认证通过的用户的环形链表,使用间隔 更小的内部时间来检测用户的数据流量并判断用户是否处于 IDLE 状态,如不 是,记录当前流量值到环形链表并继续检测数据流量,减小检测的时间单位, 从而减小检测误差,解决 IDLE 检测难题,满足精度的要求。

本发明的一种宽带接入服务器 DHCP 用户上网计时的方法, 其包括以下步骤:

- a) 设定所述接入服务器统计用户数据流量的内部时间和外部时间 以及流量阀值,并且内部时间比外部时间短;
- b) 用户接入所述接入服务器,经过认证通过后,该接入服务器通知计时服务器开始对用户上网时长进行计费:
- c) 针对每一用户,所述接入服务器建立一记录数据流量的环形链表;
- d) 所述接入服务器设定所述环形链表的元素数为所述外部时间对 所述内部时间的倍数;
- e) 所述接入服务器依内部时间检测所述用户的数据流量,依次填入所述环形链表的元素头指针的内容中,直至新检测数据流量值与 头指针的记录值没有超过所述流量阀值。

所述的方法,其中,所述步骤 e)在用户环形链表未满时包括以下步骤:

- e1)检查新检测的数据流量与头指针的内容,超过所述流量阀值时, 该新检测的数据流量值保存在头指针的内容中,同时,所述头尾 指针同时下移一位。
- 所述的方法,其中,所述步骤 e)在用户环形链表已满时包括以下步骤: e2)检查新检测的数据流量与头指针元素的值,超过所述流量阀值时,该新检测的数据流量值保存在头指针的内容中,所述头尾指针同时下移一位。
- 20 所述的方法,其中,所述方法还包括:

5

10

- f) 所述新检测数据流量值与头指针的记录值没有超过所述流量阀 值时,所述接入服务器认为该用户处于闲置状态,置用户为未认证 状态;
- g) 所述接入服务器通知计费服务器停止对该用户的计费。
- 25 所述的方法,其中,所述计费服务器停止计费的时间为距离检测到闲置 状态所在的内部时间的一外部时间之前。

所述的方法,其中,所述内部时间为30秒。

所述的方法,其中,所述外部时间为5分钟。

本发明的一种宽带接入服务器 DHCP 用户上网计时的方法,由于采用了在接入服务器上设立了对应登录用户的环形链表,该环形链表的每一元素,其头指针内容存储的是依次检测的超过指定阀值的数据流量,尾指针指向下一个元素,因此动态监控用户的数据流量,并且检测时间精度以内部时间为准,提高了检测精度,减少了检测误差。

以下结合附图,通过对本发明的较佳实施例的详细描述,将使本发明的技术方案及其有益效果显而易见。

10

15

20

25

附图说明

图 1A 和图 1B 分别为现有技术的流量检测示意图;

图 2 示出的本发明的一种宽带接入服务器 DHCP 用户上网计时的方法的主流程图;

图 3 为本发明方法的每个内部检测周期的检测流程图;

图 4 是本发明方法的软件实现的数据结构示意图。

具体实施方式

以下详细描述本发明。

本发明实现的宽带接入服务器 DHCP 用户精确计时方法, 其主要有如下步骤:

首先由于采用 IDLE 方式检测用户下线,需在接入服务器上设置 Idle 检测的外部时间和内部时间。一般来说,接入服务器会对用户的流量进行统计,而接入服务器内部统计流量的间隔,都是以秒为单位,而系统外部 IDLE 检测时间,一般都是以分钟为单位。本发明中,内部流量统计的时间间隔,必须小于外部 IDLE 检测的设定时间。例如,可以设定外部检测时间为 5 分钟,指

定阈值为 10k, 系统内部设定的流量查询时间, 即内部时间为 30 秒。以下对流程的说明, 就是对 DHCP 用户的精确时长计费实现算法。

用户通过 DHCP 自动获得 IP 地址,并通过 Web 或者 802.1x 等认证方式通过认证,自由上网,接入服务器即通知计费服务器对该接入用户开始时长计费。用户计费开始的时间,以用户认证通过的时间开始计算。一般来说,用户认证通过,表示用户开始享受运营商提供的服务。

所述接入服务器根据配置的内部时间、外部时间间隔计算出环形链表的元素数目,外部时间÷内部时间=元素数目,例如本实施例中,元素数目为5÷0.5=10个。所述接入服务器记录计算结果。

本发明的环形链表示意图,如图 3 所示,每个通过认证的接入用户都对应一个环形链表。在记录该对应用户的数据流量过程中,使用一个指针指向该环形链表的头指针,而头指针元素的内容是 IDLE 检测时间间隔前的流量值,另外一个尾指针指向的元素内容是最新的流量检测结果。

10

15

20

25

在用户刚刚认证通过时,用户环形链表还没有满。此时首先要检查环形链表的元素数目是否已经到10个。如果没有到10个,则在每一内部时间间隔增加一个元素,其头指针内容中填入数据流量上报的结果,将该新增加的元素放到环形链表的尾巴上,用尾指针指向该新增加的元素。具体地,对每次新的数据流量值都与环形链表的头指针的内容进行比较,比较后如果用户没有处在IDLE状态,则该新的数据流量值保存在头指针的内容中。同时,头尾指针同时下移一位,这样仍然保证头指针元素的内容是IDLE检测时间间隔前的流量值,另外一个尾指针指向的元素内容则是最新的数据流量检测结果。

如果环形链表队列已满(已经到10个),则比较新来的流量统计结果和 头指针元素的值,如果超过指定流量阀值,则以新的数据流量值改写头指针 内容,同时,头尾指针同时下移一位,这样仍然保证头指针元素的内容是 IDLE 检测时间间隔前的流量值,另外一个尾指针指向的元素内容则是最新的数据 流量检测结果。

上述比较结果,如果未超过指定阀值 10k,则认为用户已经离线,所述接入服务器置该用户为未认证状态,即已将该用户踢下线。此时所述接入服务器同时通知 RADIUS Server 用户已下线,停止计费,用户的下线时间认为是5分钟前的时间。

本发明方法的流程如图 2 和图 3 所示的,所述接入服务器开始对应该用户的数据流量的查询,首先得到其对应环形链表的元素应该的个数,在进行用户的数据流量检测时,与当前环形链表的元素个数进行比较,看是否达到应有的个数。如没有,则将检测结果填入头指针内容,同时置尾指针指向新的元素;同时将头尾指针同时下移一位,进行下一内部时间的数据流量检测。

5

10

15

20

25

如果环形链表的元素数已超过应有的个数,则进行判断,尾指针元素与头指针元素的内容比较是否超过指定阀值如 10k,如超过,则将头尾指针同时下移一位,并将该新的数据流量中填入所述头指针元素中,否则,所述接入服务器即可将所述用户置为未认证状态,即将该用户踢下线。

在本发明的系统中,是将用户最近一段时间的流量检测结果逐一保存下来,相当于用一个数据窗口来看用户的流量统计数据队列,该窗口的宽度就是用户配置的流量检测内部时间的长度。在这个窗口中保存了多个检测结果,每个结果的时间间隔为系统内部进行流量统计的内部时间。

本发明的系统内部每查询一次用户的数据流量,数据窗口就向前移动一格。在移动的同时,对窗口两端用户的流量结果进行比较,如果没有超过阈值则认为用户已经处于 IDLE 状态,从而将用户踢下线。否则,即将新的检测数据写入头指针内容。

普通的实现 IDLE 检测的算法,一般其检测的粒度就是配置检测时间的间隔,如 5 分钟。而用本发明专利算法,检测粒度是系统内部查询用户数据流量的内部时间,如 30 秒,因此检测更精确。

需要说明的是,本发明方法的内部时间和外部时间都是可以进行设定的,上述具体值仅为说明本发明方法的一个实施例,不能因此用来限制本发明的

专利保护范围。

应当指出的是,本发明方法对本领域普通技术人员来说,可以根据本发明的技术方案及其有益效果进行改变或替换,而所有这些改变或替换都应属于本发明的权利要求的保护范围。

说明书附图

图 1B

图 2

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потиер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.