RWTH AACHEN UNIVERSITY CENTER FOR COMPUTATIONAL ENGINEERING SCIENCE

Hausaufgabenübung 1

Studenten: Joshua Feld, 406718 Jeff Vogel, 407758 Henrik Herrmann, 421853

Kurs: Mathematische Grundlagen I – Professor: Prof. Dr. Torrilhon & Prof. Dr. Stamm Abgabefrist: 9. November, 2020

Aufgabe 1. (Morgansche Regeln)

Beweisen Sie die Regeln von de Morgan für beliebige Mengen M, N, P:

a)
$$M \setminus (N \cap P) = (M \setminus N) \cup (M \setminus P)$$
,

b)
$$M \setminus (N \cup P) = (M \setminus N) \cap (M \setminus P)$$
.

Hinweis: Zeigen Sie die Gleichheit durch gegenseitige Inklusion (A = B): \iff $(A \subset B \land B \subset A)$. Achten Sie in Ihrer lösung auf korrekte und saubere Notation.

Lösung.

a) Sei $x \in M \setminus (N \cap P)$ beliebig. Dann gilt

$$x \in M \setminus (N \cap P) \iff x \in M \land x \notin N \cap P$$

$$\iff x \in M \land (x \notin N \lor x \notin P)$$

$$\iff (x \in M \land x \notin N) \lor (x \in M \land x \notin P)$$

$$\iff x \in M \setminus N \lor x \in M \setminus P$$

$$\iff x \in (M \setminus N) \cup (M \setminus P).$$

b) Sei $x \in M \setminus (N \cup P)$ beliebig. Dann gilt

$$x \in M \setminus (N \cup P) \iff x \in M \land x \notin N \cup P$$

$$\iff x \in M \land (x \notin N \land x \notin P)$$

$$\iff (x \in M \land x \notin N) \land (x \in M \land x \notin P)$$

$$\iff x \in M \setminus N \land x \in M \setminus P$$

$$\iff x \in (M \setminus N) \cap (M \setminus P).$$

Aufgabe 2. (Abbildungen)

Die Aussagenlogik bildet die Grundlage der Digitalelektronik: Es lassen sich beliebig komplizierte Schaltungen mit einer einzigen Art von Bauelement, dem sogenannten NAND-Gatter (NAND = not and), realisieren. Das NAND ↑ ist definiert durch

$$(A \uparrow B) : \iff \neg (A \land B).$$

Drücken Sie folgende aussagenlogische Formeln durch äquivalente NANDs aus und begründen Sie Ihre Antwort:

- a) $\neg A$,
- b) $A \vee B$,
- c) $A \wedge B$.

Hinweis: Verwenden Sie nur \uparrow und keinen der anderen logischen Operatoren (\lor, \land, \neg) .

Lösung.

- a) Es gilt $\neg A \iff \neg (A \land A) \iff A \uparrow A$.
- b) Wir starten mit $A \uparrow B \iff \neg (A \land B)$. Hier können wir die De-morganschen Regeln für Aussagen anwenden und erhalten $\neg A \lor \neg B$. Die Negation haben wir bereits in Teilaufgabe a) gezeigt und wir erhalten somit $(A \uparrow A) \uparrow (B \uparrow B)$.
- c) Es gilt $A \uparrow B \iff \neg (A \land B)$. Wir wollen diese Aussage nun negieren. Dies haben wir schon in Teilaufgabe a) gezeigt und erhalten somit $(A \uparrow B) \uparrow (A \uparrow B)$.

Aufgabe 3. (Relationen)

Untersuchen Sie die folgenden Relationen auf Reflexivität, Symmetrie, Transitivität, Antisymmetrie und Totalität. Hier bezeichne $\mathbb{N} = \{1, 2, 3, \ldots\}$ die Menge der natürlichen Zahlen.

- $a) = auf \mathbb{N},$
- b) \neq auf \mathbb{N} ,
- c) \leq auf \mathbb{N} ,
- d) < auf \mathbb{N} ,
- e) | auf \mathbb{N} (Teilbarkeit: $a|b \iff \exists n \in \mathbb{N} : an = b$),
- f) \subseteq auf $\mathcal{P}(\{1,2\})$.

Entscheiden Sie jeweils, ob es sich um eine Äquivalenzrelation und/oder eine (Total-) Ordnung handelt.

Lösung.

- a)
- Reflexivität: $\forall x \in \mathbb{N} : x = x$. (ja)

- Symmetrie: Seien $x, y \in \mathbb{N}$ mit $x = y \implies y = x$. (ja)
- Transitivität: Seien $x, y, z \in \mathbb{N}$ mit x = y und $y = z \implies x = z$. (ja)
- Antisymmetrie: Seien $x, y \in \mathbb{N}$ mit x = y und $y = x \implies x = y$. (ja)
- Totalität: Sei x = 1 und y = 2, dann gilt weder x = y noch y = x. (nein)

Die Relation ist eine Äquivalenzrelation und eine Ordnung aber keine Totalordnung.

b)

- Reflexivität: Sei $x = 2 \in \mathbb{N}$, dann gilt $x \neq x$ nicht. (nein)
- Symmetrie: Seien $x, y \in \mathbb{N}$ mit $x \neq y \implies y \neq x$. (ja)
- Transitivität: Sei x=1,y=2 und z=1, dann gilt $x\neq y$ und $y\neq z$ aber nicht $x\neq z.$ (nein)
- Antisymmetrie: Sei x = 1 und y = 2, dann gilt $x \neq y$ und $y \neq x$. (nein)
- Totalität: Sei x = 1 und y = 1, dann gilt weder $x \neq y$ noch $y \neq x$. (nein)

Die Relation ist weder eine Äquivalenzrelation noch eine Ordnung, also folglich auch keine Totalordnung.

c)

- Reflexivität: $\forall x \in \mathbb{N} : x \leq x$. (ja)
- Symmetrie: Sei x=1 und y=2, dann gilt $x\leq y$ aber y>a. (nein)
- Transitivität: Seien $x, y, z \in \mathbb{N}$ mit $x \leq y$ und $y \leq z \implies x \leq z$. (ja)
- Antisymmetrie: Seien $x, y \in \mathbb{N}$ mit $x \leq y$ und $y \leq x \implies x = y$. (ja)
- Totalität: Seien $x, y \in \mathbb{N}$, dann gilt $x \leq y$ oder $y \leq x$. (ja)

Die Relation ist keine Äquivalenzrelation aber eine Totalordnung also folglich auch eine Ordnung.

d)

- Reflexivität: Sei x = 1, dann gilt nicht x < x. (nein)
- Symmetrie: Sei x = 1 und y = 2, dann gilt x < y aber nicht y < x. (nein)
- Transitivität: Seien $x, y, z \in \mathbb{N}$ mit x < y und $y < z \implies x < z$. (ja)
- Antisymmetrie: Für $x, y \in \mathbb{N}$ kann nicht gleichzeitig x < y und y < x gelten. Da die Voraussetzung nicht gilt ist die Aussage immer wahr. (ja)
- Totalität: Sei x = 1 und y = 1, dann gilt weder x < y noch y < x. (nein)

Die Relation ist weder eine Äquivalenzrelation noch eine Ordnung, also folglich auch keine Totalordnung.

e)

- Reflexivität: $\forall x \in \mathbb{N} : x | x$. (ja)
- Symmetrie: Sei x = 1 und y = 2, dann gilt x|y aber nicht y|x. (nein)

- Transitivität: Seien $x, y, z \in \mathbb{N}$ mit x|y und y|z, dann existieren $m, n \in \mathbb{N}$ für die gilt $x \cdot m = y$ und $y \cdot n = z$. Also ist $z = y \cdot n = (x \cdot m) \cdot n = x \cdot mn$. Da $mn \in \mathbb{N}$, gilt x|z. (ja)
- Antisymmetrie: Seien $x, y \in \mathbb{N}$ mit x|y und y|x, dann existieren $m, n \in \mathbb{N}$ für die gilt $x \cdot m = y$ und $y \cdot n = x$. Damit gilt $x = y \cdot n = (x \cdot m) \cdot n$. Hieraus folgt, dass m = n = 1 gelten muss, da $m, n \in \mathbb{N}$. Setzen wir ein erhalten wir direkt x = y. (ja)
- Totalität: Sei x = 2 und y = 3, dann gilt weder x|y noch y|x. (nein)

Die Relation ist keine Äquivalenzrelation. Die Relation ist eine Ordnung aber keine Totalordnung.

f)

- Reflexivität: $\forall M \in \mathcal{P}(\{1,2\}) : M \subseteq M$. (ja)
- Symmetrie: Es gilt $\emptyset \subseteq \{1\}$ aber $\{1\} \not\subseteq \emptyset$. (nein)
- Transitivität: Seien $M, N, O \in \mathcal{P}(\{1, 2\})$ für die gilt $M \subseteq N$ und $N \subseteq O$, dann folgt direkt $M \subseteq O$. (ja)
- Antisymmetrie: Seien $M, N \in \mathcal{P}(\{1, 2\})$ für die gilt $M \subseteq N$ und $N \subseteq M$, dann folgt M = N. (ja)
- Totalität: Für $\{1\}, \{2\} \in \mathcal{P}(\{1,2\})$ gilt weder $\{1\} \subseteq \{2\}$ noch $\{2\} \subseteq \{1\}$. (nein)

Die Relation ist keine Äquivalenzrelation. Die Relation ist eine Ordnung aber keine Totalordnung.

Aufgabe 4. (Äquivalenzrelation)

a) Sei $M=\left\{\frac{m}{n}:m,n\in\mathbb{Z},n\neq0\right\}$ die Menge aller Brüche. Zeigen Sie, dass durch

$$\frac{a}{b} \sim \frac{c}{d} \iff bc = ad$$

eine Äquivalenzrelation auf M definiert ist.

b) Beschreiben Sie möglichst genau die Menge aller Äquivalenzklassen, in die M bezüglich \sim zerfällt.

Lösung.

- a) Wir müssen zeigen, dass die Relation reflexiv, symmetrisch und transitiv ist.
 - Reflexivität: $\forall x = \frac{m}{n} \in M : x \sim x \iff nm = mn.$
 - Symmetrie: Seien $x = \frac{a}{b}, y = \frac{c}{d} \in M$. Dann gilt

$$x \sim y \iff bc = ad \iff da = cb \iff y \sim x.$$

• Transitivität: Seien $x=\frac{a}{b},y=\frac{c}{d},z=\frac{e}{f}\in M$ für die gilt $x\sim y$ und $y\sim z$. Dann gilt

$$x \sim y \wedge y \sim z \iff bc = ad \wedge de = cf$$

$$\iff c = \frac{ad}{b} \wedge de = cf$$

$$\iff de = \frac{ad}{b}f$$

$$\iff bde = adf$$

$$\iff be = af \iff x \sim z$$

Da \sim reflexiv, symmetrisch und transitiv ist, handelt es sich um eine Äquivalenzrelation auf M.

b) M zerfällt bezüglich \sim in eine Menge von Äquivalenzklassen. Jede Äquivalenzklasse wird durch einen Bruch, der sich nicht weiter kürzen lässt repräsentiert. Sei A_M die Menge aller Äquivalenzklassen, dann ist

$$A_M = \left\{ \left\{ \frac{m}{n} \right\}_{\sim} \mid m, n \in \mathbb{Z}, n \neq 0 \land ggT(m, n) = 1 \right\}.$$