STAT 401A - Statistical Methods for Research Workers Simple linear regression

Jarad Niemi (Dr. J)

Iowa State University

last updated: October 14, 2014

Simple Linear Regression

Recall the one-way ANOVA model:

$$Y_{ij} \stackrel{ind}{\sim} N(\mu_j, \sigma^2)$$

where Y_{ij} is the observation for individual i in group j.

The simple linear regression model is

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_i, \sigma^2)$$

where Y_i and X_i are the response and explanatory variable, respectively, for individual i.

Terminology (all of these are equivalent):

response	
outcome	
dependent	
endogenous	

explanatory covariate independent exogenous

Telomere length

http://www.pnas.org/content/101/49/17312

People who are stressed over long periods tend to look haggard, and it is commonly thought that psychological stress leads to premature aging and the earlier onset of diseases of aging.

. . .

This design allowed us to examine the importance of perceived stress and measures of objective stress (caregiving status and chronicity of caregiving stress based on the number of years since a child's diagnosis).

. . .

Telomere length values were measured from DNA by a quantitative PCR assay that determines the relative ratio of telomere repeat copy number to single-copy gene copy number (T/S ratio) in experimental samples as compared with a reference DNA sample.

Interpretation

$$E[Y_i|X_i=x] = \beta_0 + \beta_1 x \qquad V[Y_i|X_i=x] = \sigma^2$$

- If $X_i = 0$, then $E[Y_i|X_i = 0] = \beta_0$. β_0 is the expected response when the explanatory variable is zero.
- If X_i increases from x to x + 1, then

$$E[Y_i|X_i = x + 1] = \beta_0 + \beta_1 x + \beta_1$$

$$-E[Y_i|X_i = x] = \beta_0 + \beta_1 x$$

$$= \beta_1$$

 β_1 is the expected increase in the response for each unit increase in the explanatory variable.

 \bullet σ is the standard deviation of the response for a fixed value of the explanatory variable.

Remove the mean:

$$Y_i = \beta_0 + \beta_1 X_i + e_i$$
 $e_i \stackrel{iid}{\sim} N(0, \sigma^2)$

So the error is

$$e_i = Y_i - (\beta_0 + \beta_1 X_i)$$

which we approximate by the residual

$$r_i = \hat{\mathbf{e}}_i = Y_i - (\hat{\beta}_0 + \hat{\beta}_1 X_i)$$

The least squares, maximum likelihood, and Bayesian estimators are

$$\hat{\beta}_{1} = \frac{SXY}{SXX}$$

$$\hat{\beta}_{0} = \overline{Y} - \hat{\beta}_{1}\overline{X}$$

$$\hat{\sigma}^{2} = \frac{SSE}{(n-2)} \quad \text{df} = n-2$$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_{i}$$

$$SXY = \sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y})$$

$$SXX = \sum_{i=1}^{n} (X_{i} - \overline{X})(X_{i} - \overline{X}) = \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

$$SSE = \sum_{i=1}^{n} r_{i}^{2}$$

How certain are we about $\hat{\beta}_0$ and $\hat{\beta}_1$ being equal to β_0 and β_1 ?

We quantify this uncertainty using their standard errors:

$$\begin{array}{ll} SE(\beta_0) &= \hat{\sigma} \sqrt{\frac{1}{n} + \frac{\overline{X}^2}{(n-1)s_X^2}} & df = n-2 \\ SE(\beta_1) &= \hat{\sigma} \sqrt{\frac{1}{(n-1)s_X^2}} & df = n-2 \\ \\ s_X^2 &= SXX/(n-1) \\ s_Y^2 &= SYY/(n-1) \\ SYY &= \sum_{i=1}^n (Y_i - \overline{Y})^2 \\ \\ r_{XY} &= \frac{SXY/(n-1)}{s_X s_Y} \\ R^2 &= r_{XY}^2 \\ SST &= SYY = \sum_{i=1}^n (Y_i - \overline{Y})^2 \end{array} \qquad \begin{array}{ll} \text{correlation coefficient} \\ &= \frac{SST - SSE}{SST} \\ \text{coefficient of determination} \end{array}$$

The coefficient of determination (R^2) is the proportion of the total response variation explained by the explanatory variable(s).

Telomere length vs years post diagnosis

Pvalues and confidence interval

We can compute two-sided pvalues via

$$2P\left(t_{n-2}<-\left|\frac{\hat{eta}_0}{SE(eta_0)}
ight|
ight) \qquad ext{and} \qquad 2P\left(t_{n-2}<-\left|\frac{\hat{eta}_1}{SE(eta_1)}
ight|
ight)$$

These test the null hypothesis that the corresponding parameter is zero.

We can construct $100(1-\alpha)\%$ two-sided confidence intervals via

$$\hat{eta}_0 \pm t_{n-2}(1-lpha/2)SE(eta_0)$$
 and $\hat{eta}_1 \pm t_{n-2}(1-lpha/2)SE(eta_1)$

These provide ranges of the parameters consistent with the data.

```
DATA t;
INFILE 'telomeres.csv' DSD FIRSTOBS=2;
INPUT years length;
PROC CORR DATA=t;
VAR length;
WITH years;
```

RUN;

The CORR Procedure

1 With Variables: years
1 Variables: length

Simple Statistics

Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
years	39	5.58974	2.93543	218.00000	1.00000	12.00000
length	39	1.22026	0.17977	47.59000	0.84000	1.63000

Pearson Correlation Coefficients, N = 39 Prob > |r| under H0: Rho=0

length

years -0.43065 0.0062 PROC GLM DATA=t;

MODEL length = years / SOLUTION CLPARM; RUN;

The GLM Procedure

Number of Observations Read 39 Number of Observations Used 39

Dependent Variable: length

Source Model Error Correc	ted Total	37 1.	Sum of Squares .22776588 .00033156 .22809744	Mean Square 0.22776588 0.02703599	8.42	Pr > F 0.0062
	R-Square	Coeff Var	r Root	MSE length	Mean	
	0.185462	13.47473	0.164	1426 1.2	20256	
Source years			Type I SS .22776588	Mean Square 0.22776588		Pr > F 0.0062
Source		DF Tvr	oe III SS	Mean Square	F Value	Pr > F
years			.22776588	0.22776588		0.0062
Parameter	Estimate	Standard Error	t Value	Pr > t	95% Confide	ence Limits
Intercept	1.367682067	0.05721112	23.91	<.0001	1.251761335	1.483602799
years	-0.026374315	0.00908674	-2.90	0.0062		-0.007962836

Regression in R

Regression in R

```
m = lm(telomere.length~years, Telomeres)
summary(m)
Call:
lm(formula = telomere.length ~ vears, data = Telomeres)
Residuals:
   Min 10 Median 30 Max
-0.4222 -0.0854 0.0206 0.1074 0.2887
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.36768 0.05721 23.9 <2e-16 ***
years -0.02637 0.00909 -2.9 0.0062 **
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.164 on 37 degrees of freedom
Multiple R-squared: 0.185, Adjusted R-squared: 0.163
F-statistic: 8.42 on 1 and 37 DF, p-value: 0.0062
confint(m)
              2.5 % 97.5 %
(Intercept) 1.25176 1.483603
           -0.04479 -0.007963
years
```

Conclusion

Telomere length at the time of diagnosis of a child's chronic illness is estimated to be 1.37 with a 95% confidence interval of (1.25, 1.48). For each year increase since diagnosis, the length decreases by 0.026 with a 95% confidence interval of (0.008, 0.045). The proportional of variability in telomere length described by years since diagnosis is 18.5%.

http://www.pnas.org/content/101/49/17312

The zero-order correlation between chronicity of caregiving [years] and mean telomere length, r,is -0.445 (P < 0.01). [$R^2 = 0.198$ was shown in the plot.]

Remark I'm guessing our analysis and that reported in the paper don't match exactly due to a discrepancy in the data.

Summary

• The simple linear regression model is

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_i, \sigma^2)$$

where Y_i and X_i are the response and explanatory variable, respectively, for individual i.

- Know how to use SAS/R to obtain $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\sigma}^2$, R^2 , pvalues, CIs, etc.
- Interpret SAS output
 - At a value of zero for the explanatory variable $(X_i = 0)$, β_0 is the expected value for the response (Y_i) .
 - For each unit increase in the explanatory variable value, β_1 is the expected increase in the response.
 - At a constant value of the explanatory variable, σ^2 is the variance of the responses.
 - The coefficient of determination (R^2) is the percentage of the total response variation explained by the explanatory variable(s).

What is E[Y|X=x]?

We know $\beta_0 = E[Y|X=0]$, but what about X=x?

$$E[Y|X=x] = \beta_0 + \beta_1 x$$

which we can estimate via

$$E[\widehat{Y|X} = x] = \hat{\beta}_0 + \hat{\beta}_1 x$$

but there is uncertainty in both β_0 and β_1 . So the standard error of E[Y|X=x] is

$$SE(E[Y|X=x]) = \hat{\sigma}\sqrt{\frac{1}{n} + \frac{(\overline{X}-x)^2}{(n-1)s_X^2}}$$

and a $100(1-\alpha)\%$ confidence interval is

$$\hat{\beta}_0 + \hat{\beta}_1 x \pm t_{n-2} (1 - \alpha/2) SE(E[Y|X=x])$$

What do we predict about Y at X = x?

On the last slide, we calculated E[Y|X=x] and it's uncertainty, but if we are trying to predict a new observation, we need to account for the sampling variablity σ^2 . Thus a prediction about Y at a new X=x is still

$$Pred(Y|X=x) = \hat{\beta}_0 + \hat{\beta}_1 x$$

but the uncertainty includes the variability due to σ^2 . So the standard error of Pred(Y|X=x) is

$$SE(Pred(Y|X=x])) = \hat{\sigma}\sqrt{1+\frac{1}{n}+\frac{(\overline{X}-x)^2}{(n-1)s_X^2}}$$

and a $100(1-\alpha)\%$ confidence interval is

$$\hat{\beta}_0 + \hat{\beta}_1 x \pm t_{n-2} (1 - \alpha/2) SE(Pred(Y|X = x)).$$

Testing Composite hypotheses

Comparing two models

- *H*₀ : (reduced)
- *H*₁ : (full)

Do the following

- 1. Calculate extra sum of squares.
- 2. Calculate extra degrees of freedom
- 3. Calculate

$$\text{F-statistic} = \frac{\text{Extra sum of squares} \; / \; \text{Extra degrees of freedom}}{\hat{\sigma}_{\textit{full}}^2}$$

- 4. Compare this to an F-distribution with
 - numerator degrees of freedom = extra degrees of freedom
 - \bullet denominator degrees of freedom = degrees of freedom in estimating $\hat{\sigma}^2_{\textit{full}}$

Simple Linear Regression

Two models:

ANOVA: $Y_{ij} \stackrel{ind}{\sim} N(\mu_i, \sigma^2)$ (full) Regression: $Y_{ii} \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_i, \sigma^2)$ (reduced)

- Regression model is reduced:
 - ANOVA has J parameters for the mean
 - Regression has 2 parameters for the mean
 - $\mu_i = \beta_0 + \beta_1 X_i$
- Small pvalues indicate a lack-of-fit, i.e. the reduced model is not adequate.
- Lack-of-fit F-test requires multiple observations at a few X_i values.

Telomere length

Telomere length

SAS code

```
DATA t;
INFILE 'telomeres.csv' DSD FIRSTOBS=2;
INPUT years length;
PROC REG DATA=t;
MODEL length = years / CLB LACKFIT;
RUN;
```

The REG Procedure Model: MODEL1 Dependent Variable: length

Number of Observations Read 39
Number of Observations Used 39

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	0.22777	0.22777	8.42	0.0062
Error	37	1.00033	0.02704		
Lack of Fit	9	0.18223	0.02025	0.69	0.7093
Pure Error	28	0.81810	0.02922		
Corrected Total	38	1.22810			

Indicates no evidence for a lack of fit, i.e. regression seems adequate.

```
m_anova = lm(telomere.length ~ as.factor(years), Telomeres)
m_reg = lm(telomere.length ~
                                years , Telomeres)
anova(m_reg, m_anova)
Analysis of Variance Table
Model 1: telomere.length ~ years
Model 2: telomere.length ~ as.factor(years)
  Res.Df RSS Df Sum of Sq F Pr(>F)
     37 1.000
     28 0.818 9
                    0.182 0.69 0.71
```

No evidence of a lack of fit.

Summary

- Lack-of-fit F-test tests the assumption of linearity
- Needs multiple observations at various explanatory variable values
- Small pvalue indicates a lack-of-fit, i.e. means are not linear
 - Transform response, e.g. log
 - Transform explanatory variable
 - Add other explanatory variables

Regression

The simpler linear regression model is

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_i, \sigma^2)$$

this can be rewritten as

$$Y_i = \beta_0 + \beta_1 X_i + e_i$$
 $e_i \stackrel{ind}{\sim} N(0, \sigma^2)$

where we estimate the errors via the residuals

$$r_i = \hat{\mathbf{e}}_i = Y_i - (\hat{\beta}_0 + \hat{\beta}_1 X_i).$$

Key assumptions are:

- Linearity between mean response and explanatory variable
- Normality of the errors
- Constant variance of the errors
- Independence between observations

Linearity

Assess using scatterplots of transformed response vs transformed explanatory variable:

Normality

These are normal.

SAS swaps the x and y axes

Normality

These are normal.

SAS swaps the x and y axes

Normality

SAS swaps the x and y axes

Constant variance

Most common non-constant variance is when the variance increases with the mean

Red Dye 40 residuals vs fitted values

Independence

Lack of independence includes

- Cluster effect
- Serial correlation
- Spatial association

Make plots of residuals vs relevant explanatory variables and look for patterns, e.g.

- Residuals vs groups (prefer blocking)
- Residuals vs time (or observation number)
- Residuals vs spatial variable

Summary

Often the best strategy is graphical exploration of the data, here are some relevant graphs:

- transformed response vs transformed explanatory
- transformed response vs transformed explanatory
- qqplot of residuals
- residual vs fitted value
- residual vs explanatory
- residual vs observation number
- residual vs any other variable