Theoretische Informatik: Blatt 7

Abgabe bis 13. November 2015 Assistent: Sacha Krug, CHN D42

Linus Fessler, Markus Hauptner, Philipp Schimmelfennig

Aufgabe 19

Aufgabe 20

(a) $e(n) = 2^n$

Wir konstruieren eine 2-Band Turingmaschine M, wobei $Band\ \theta$ das Eingabeband und $B\ddot{a}nder\ 1-2$ die Arbeitsbänder sind. M bekommt als Eingabe das Wort 0^n auf $Band\ \theta$. Zu Beginn schreibt M eine 0 auf $Band\ 1$. Solange der Lesekopf des Eingabebandes nicht \$ liest:

- 1. Gehe auf $Band\ 1$ nach links bis φ .
- 2. Gehe auf Band 2 nach links bis ¢
- 3. Lies Zeichen auf Band 1. Schreibe für jede gelesene 0 auf Band 1 00 auf Band 2. Für ein ... schreibe ein ...
- 4. Gehe auf beiden Bändern nach links und kopiere Inhalt von Band 2 auf Band 1 einschließlich bis Zeichen ...
- 5. Rücke mit Lesekopf nach rechts.

Das Ergebnis steht dann auf $Band\ 2$ bis zum ersten $_$.

Auf diese Art generieren wir 2^n Nullen. Für n Nullen der Eingabe lesen wir pro Schritt 2^i Nullen. Das Schreiben geschieht jeweils in $\mathcal{O}(1)$.

$$\sum_{i=1}^{n} 2^{i} = 2^{n+1} - 2 \in \mathcal{O}(2^{n})$$

Folglich ist e(n) zeitkonstruierbar.

(b) $f(n) = fib_n$

Wir konstruieren eine 3-Band Turingmaschine M, wobei $Band\ \theta$ das Eingabeband und $B\ddot{a}nder\ 1-3$ die Arbeitsbänder sind. M bekommt als Eingabe das Wort $w=0^n$ auf $Band\ \theta$. Wir unterscheiden drei Eingaben w.

Fall 1: $w = \lambda$.

In diesem Fall ist n = 0. M schreibt $0^{fib_0} = \lambda$ auf

Fall 2: w = 0.

In diesem Fall ist n = 1. M schreibt $0^{fib_1} = 0$ auf B and 1 und hält.

- Fall 3: $|w| = n, n \ge 2$. Der Lesekopf auf $Band \ \theta$ liegt auf der zweiten 0 und M liest auf $Band \ \theta$ von links nach rechts. Für die erste gelesene 0 schreibt M eine 0 auf $Band \ 2$. Für jede weitere gelesene 0 führt M Schritte 1.–3. aus, bis \$ gelesen wird. Dann ist auf $Band \ 1$ das Ergebnis 0^{fib_n} (und auf $Band \ 2 \ 0^{fib_{n-1}}$ und auf $Band \ 3 \ 0^{fib_{n-2}}$).
 - 1. M überschreibt Band 3 mit dem Inhalt von Band 2 ($fib_{i-2} \leftarrow fib_{i-1}$).
 - 2. M überschreibt Band 2 mit dem Inhalt von Band 1 $(fib_{i-1} \leftarrow fib_i)$.
 - 3. M schreibt den Inhalt von B and β in B and β in B and β (konkateniert also die Nullen auf B and β in B and β) ($fib_i \leftarrow fib_{i-1} + fib_{i-2}$).

In den Fällen 1 und 2 ist die Laufzeit konstant, also ist $f(n) \in \mathcal{O}(1)$. Im Fall 3 schreiben wir bei der i-ten Ausführung, $i \leq n-2$ (weil wir auf der zweiten 0 starten), fib_{i-2} Nullen auf Band 3, fib_{i-1}

Nullen auf $Band\ 2$ und fib_{i-2} Nullen auf $Band\ 1$, also pro Schritt $2fib_{i-2} + fib_{i-1} \le 3fib_{i-1}$ Nullen. Insgesamt ergibt das also

$$3\sum_{i=2}^{n} fib_{i-1} = 3\sum_{i=1}^{n-1} fib_{i}$$
 (Indexverschiebung)
$$= 3\sum_{i=0}^{n-1} fib_{i}$$
 ($fib_{0} = 0$)
$$= 3(fib_{n+1} - 1).$$
 ($\sum_{i=0}^{n} fib_{i} = fib_{n+2} - 1$)
$$= 3(fib_{n} + fib_{n-1} - 1)$$
 (Definition fib_{n})
$$\leq 3(2fib_{n} - 1)$$

 $3(2fib_n-1)=6fib_n-2\in\mathcal{O}(fib_n)$. Damit ist f(n) zeitkonstruierbar.

Aufgabe 21

Wir wissen: $f: \mathbb{N} \to \mathbb{N}, g: \mathbb{N} \to \mathbb{N}$ und f und g sind beide platzkonstruierbar.

 \Rightarrow Es gibt 1-Band-Turingmaschinen F und G, so dass $\begin{array}{c} \operatorname{Space}_F(n_1) \leq s_1(n_1) \\ \operatorname{Space}_G(n_2) \leq s_2(n_2) \end{array} \quad \forall n_1, n_2 \in \mathbb{N}$

und für jede Eingabe $\frac{0^{n_1} \text{ generiert } F \text{ das Wort } 0^{s_1(n_1)}}{0^{n_2} \text{ generiert } G \text{ das Wort } 0^{s_2(n_2)}} \text{ auf ihrem Arbeitsband und hält in Zustand } q_{accept}.$

Sei nun H eine 1-Band-Turingmaschine mit Eingabe mit Arbeitsalphabet $\Gamma_F \times \Gamma_G \cup \Gamma_F \cup \Gamma_G$ und Eingabe 0^n .

H simuliert nun die Arbeit von F auf folgende Weise:

Ist der Lesekopf des Arbeitsbandes auf dem Symbol $\binom{\alpha}{\beta}$, simuliert H F so als würde F α lesen. Schreibt F ein neues Zeichen α' , schreibt H $\binom{\alpha'}{\beta}$ auf das Band.

Sobald F gehalten hat, fährt H mit Éingabe- und Arbeitsbandkopf nach links auf $\dot{\varsigma}$.

Anschließend simuliert H, G auf gleiche Art wie F.

Für $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ wird β gelesen, und für β' wird an der gleichen Stelle $\begin{pmatrix} \alpha \\ \beta' \end{pmatrix}$ geschrieben.

 ${\cal H}$ wandelt nun die das Band von der Form

$$\varphi\left(\begin{smallmatrix}0\\0\end{smallmatrix}\right)\left(\begin{smallmatrix}0\\0\end{smallmatrix}\right)\cdots\left(\begin{smallmatrix}0\\0\end{smallmatrix}\right)$$

Schrittweise um in 0^l , wie folgt:

- 1. Ist Zeichen der Form $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, ersetze durch 0 und ersetze erstes \Box durch eine 0.
- 2. Ist Zeichen der Form $(\vec{0})$ oder $(\vec{0})$ ersetze mit 0.

Wiederhole Schritte bis von links zeichen _ gelesen wird. Dann akzeptiere.

Es steht nun genau $s_1(n)+s_2(n)=:s_3(n)$ auf dem Band und der benutzte Platze Space_H = $\max s_1(n), s_2(n) \le s_1(n)+s_2(n)=s_3(n)$.

 $\Rightarrow H$ ist platzkonstruierbar.