1. Thanaporn Yankomut	60070501018
2. Phuraefa Rattanatakun	60070501045
3. Wantanee Saetear	60070501053
4. Parattha Weerapong	60070501080
5. Phurithat Phuthikhunkasem	59070501090

Rotation by arbitrary axis

Step1

Change the start point's position of rotation axis to the origin.

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 & -x_1 \\ 0 & 1 & 0 & -y_1 \\ 0 & 0 & 1 & -z_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Step2

u is a unit vector of rotation axis. And u' is projection of u on yz plane.

Then rotate u' in x axis to xz plane with **a** angle.

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & \sin\theta & 0 \\ 0 & -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Find $sin(\mathbf{a})$ and $cos(\mathbf{a})$ from pythagoras triangle.

$$sin(\mathbf{a}) = \frac{b}{d}$$
 and $cos(\mathbf{a}) = \frac{c}{d}$

Step3

Rotate u' again with β angel in counter clockwise direction to make u' lie on z axis.

Rotate in y axis with $-\beta$ angle.

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos\theta & 0 & -\sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ \sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} .$$

Find $sin(-\beta)$ and $cos(-\beta)$ from pythagoras triangle.

$$sin(-\beta) = \frac{b}{d}$$
 and $cos(-\beta) = \frac{c}{d}$

Step4

Now the rotation axis is lie on z axis so we can rotate it in z axis with any angle.

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta & 0 & 0 \\ -\sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Step5

Rotate back in x and y axis to make it be on the old axis.

There for, formula for rotate in arbitrary axis for 3D is

$$R(\theta) = T^{-1} \cdot R_x^{-1}(\alpha) \cdot R_y^{-1}(\beta) \cdot R_z(\theta) \cdot R_y(\beta) \cdot R_x(\alpha) \cdot T$$

Implement Rotation for 45 degree axis for draw a hexagon

```
RotateX[theta_, {x_, y_, z_}] := Module[{xp, yp, zp},
    xp = x;
    yp = y * Cos[theta] - z * Sin[theta];
    zp = y * Sin[theta] + z * Cos[theta];
    Return[{N[xp], N[yp], N[zp]}];
]
```

Module for Rotate any point in x-axis with any angle.

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & \sin\theta & 0 \\ 0 & -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

```
RotateY[theta_, {x_, y_, z_}] := Module[{xp, yp, zp},
    xp = x * Cos[theta] - z * Sin[theta];
    yp = y;
    zp = z * Sin[theta] + x * Cos[theta];
    Return[{N[xp], N[yp], N[zp]}];
]
```

Module for Rotate any point in y-axis with any angle.

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos\theta & 0 & -\sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ \sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} .$$

```
RotateZ[theta_, {x_, y_, z_}] := Module[{xp, yp, zp},
    xp = x * Cos[theta] - y * Sin[theta];
    yp = x * Sin[theta] + y * Cos[theta];
    zp = z;
    Return[{N[xp], N[yp], N[zp]}];
]
```

Module for Rotate any point in z-axis with any angle.

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta & 0 & 0 \\ -\sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

```
Rotate45axis[theta_, {x_, y_, z_}] := Module[{ans},
    (*Rx(alfa)^-1*Ry(beta)^-1*Rz(theta)*Ry(beta)*Rx(alfa)*)
ans = RotateX[-45 Degree,
    RotateY[45 Degree,
    RotateZ[theta,
    RotateY[-45 Degree,
    RotateX[45 Degree, {x, y, z}]
    ]
    ]
    ]
    Return[ans];
];
```

Module for Rotate any point in 45 Degree-axis with any angle.

$$R(\theta) = T^{-1} \cdot R_x^{-1}(\alpha) \cdot R_y^{-1}(\beta) \cdot R_z(\theta) \cdot R_y(\beta) \cdot R_x(\alpha) \cdot T$$

For 45 degree axis the rotation axis is start from origin point so it's no need to translate.

First rotate in x-axis with 45 degree angle. And then rotate in y-axis with -45 degree angle.

Then the rotation axis will lies on z-axis so rotate it in z-axis with any angle. And finally rotate it back,rotation in y-axis with 45 degree angle and rotate in x-axis with -45 degree angle.

```
p0 = {5, 0, 5}
p1 = Rotate45axis[60 Degree, point]
p2 = Rotate45axis[120 Degree, point]
p3 = Rotate45axis[180 Degree, point]
p4 = Rotate45axis[240 Degree, point]
p5 = Rotate45axis[300 Degree, point]
```

Drawing a hexagon.

The first point is (5, 0, 5). And for the next 5 point we have to rotate in each 60 degree. So, rotate with 60, 120, 180, 240, 300 degree in 45 degree axis.

```
(*plot*)
pol = Polygon[{p0, p1, p2, p3, p4, p5}];
{Graphics3D[{Blue, pol}]}
```

Plot polygon from point

<u>Output</u>

Hexagon vertices are

```
{5, 0, 5}

{3.56671, 6.00358, 1.11159}

{-0.701053, 5.48581, -4.40618}

{-5., 4.44089×10<sup>-16</sup>, -5.}

{-5.03118, -4.96804, -0.076053}

{-0.763413, -4.45028, 5.44171}
```

Polygon graph

Why Know that this graph is hexagon that place about 45 degree axis? Because it's hexagon when we look from 45 degree axis direction.