MATH 255 HW 1

January 23, 2025

1. Exercise 1.1 (5 points)

- (1) We prove this by contrapositive and thus assume f is not injective $\Rightarrow \exists x, x' \in A \text{ s.t. } x \neq x' \text{ and } f(x) = f(x')$. Let us define u = f(x) = f(x'). Then, h is not injective as h(x) = g(f(x)) = g(u) and h(x') = g(f(x')) = g(u) and so $\exists x, x' \in A \text{ s.t. } x \neq x' \text{ and } h(x) = h(x')$.
- (2) We prove this by contrapositive and thus assume that g is not surjective $\Rightarrow \exists c \in C$ s.t. $\nexists b \in B$ where g(b) = c. Because no element in B maps to C by g, this means $\forall x \in A, h(x) = g(f(x)) \neq c$ and so because $\nexists x \in A$ s.t. h(x) = c, h is not surjective.

2. Exercise 1.2 (5 points; Rudin 1.1)

(1) Prove $r + x \notin \mathbb{Q}$

Let us prove this by contradiction and assume that $r + x \in \mathbb{Q}$. By negation rule, $r \in \mathbb{Q} \Rightarrow -r \in \mathbb{Q}$. By addition rule, $(-r) + (r + x) \in \mathbb{Q}$ and so this means $(-r) + (r + x) = (-r + r) + x = 0 + x = x \in \mathbb{Q}$, which is a contradiction.

(2) Prove $rx \notin \mathbb{Q}$

Let us prove this by contradiction and assume that $rx \in \mathbb{Q}$. Because $r \neq 0$, by the inversion rule we have that r has an inverse r^{-1} . By multiplication rule, $(r^{-1}) \cdot rx \in \mathbb{Q}$ or $(r^{-1}) \cdot rx = (r^{-1} \cdot r)x = 1 \cdot x = x \in \mathbb{Q}$, which is a contradiction.

3. Exercise 1.3 (10 points; Rudin 1.3)

(1) Because $x \neq 0$, by the inversion rule we know $\exists x^{-1}$ s.t. $x^{-1} \cdot x = 1$. Thus:

$$xy = xz$$

$$x^{-1}xy = x^{-1}xz$$

$$1 \cdot y = 1 \cdot z$$

$$y = z$$

(2) Because $x \neq 0$, we can apply the inversion rule again:

$$xy = x$$

$$x^{-1}xy = x^{-1}x$$

$$1 \cdot y = 1$$

$$y = 1$$

(3) We first prove that $0 \cdot y = 0$:

$$0 \cdot y + 0 \cdot y = (0+0) \cdot y = 0 \cdot y$$
$$0 \cdot y + 0 \cdot y = 0 \cdot y$$

Because $0 \cdot y \in F$, its additive inverse is given by $-0 \cdot y$:

$$0 \cdot y + 0 \cdot y - 0 \cdot y = 0 \cdot y - 0 \cdot y$$
$$0 \cdot y + (0 \cdot y - 0 \cdot y) = 0$$
$$0 \cdot y + 0 = 0$$
$$0 \cdot y = 0$$

To prove that if $xy = 1 \implies x \neq 0$ we proceed by contradiction. If x = 0, then $xy = 0 \cdot y = 0 \neq 1$. We now show $y = x^{-1}$. Thus, $x \neq 0$. Because $x \neq 0$, we can apply the inversion rule again:

$$xy = 1$$

$$x^{-1}xy = x^{-1}$$

$$1 \cdot y = x^{-1}$$

$$y = x^{-1}$$

(4) Let us define inverse of x^{-1} to be u, where by definition $x^{-1} \cdot u = 1$. Because $x^{-1} \cdot x = 1$ by definition, then we have that u = x, or that the inverse of x^{-1} is x. Expressed as an equation, we have shown: $(x^{-1})^{-1} = x$.

4. Exercise 1.4 (10 points)

(1) Let us suppose $x = \frac{p}{q} \in \mathbb{Q}$, where $p, q \in \mathbb{Z}$ and $\frac{p}{q}$ are in lowest terms. For proof by contradiction, we assume $x^2 = 3$. This means $\frac{p^2}{q^2} = 3$ or $p^2 = 3q^2$ and thus p^2 has a factor of three.

We now prove that p has a factor of three. Because p^2 has a factor of three, the prime factorization of p^2 can be given by 3^{α} ... where $\alpha \geq 1 \in \mathbb{Z}$. Let us define the prime factorization of $p = 3^{\beta}$... where $\beta \geq 0 \in \mathbb{Z}$. Note that since $p^2 = (3^{\beta} \dots)^2$,

 $\alpha=2\beta$. The lowest possible integer value of α s.t. $\alpha\geq 1$ and $\beta\in\mathbb{Z}$ is then $\alpha=2$ and $\beta=1$, so we are guaranteed that p has a factor of three. This means we can express p=3k, where $k\in\mathbb{Z}$ and so $p^2=(3k)^2=9k^2=3q^2$ or $q^2=3k^2$. Using the same logic as before because q^2 has a factor of three, so does q. Thus, p and q both have a factor of three and so this contradicts the assumption that $\frac{p}{q}$ are in lowest terms.

- (2) We show that these provided operations define $\mathbb{Q}(\sqrt{3})$ as a field:
 - 1. Zero & One Element

Our zero and one element in $\mathbb{Q}(\sqrt{3})$ are given by $0+0\sqrt{3}$ and $1+0\sqrt{3}$ respectively. Written as ordered pairs, they are given by (0,0) and (1,0) respectively.

2. Negation Law

For an element $u = a + b\sqrt{3} \in \mathbb{Q}(\sqrt{3}), -u = (-a) + (-b)\sqrt{3} \in \mathbb{Q}(\sqrt{3}).$

3. Inversion Law

For an element $u = a + b\sqrt{3} \in \mathbb{Q}$, u^{-1} is given by:

$$\begin{split} uu^{-1} &= 1_{\mathbb{Q}\sqrt{3}} = 1 + 0\sqrt{3} \\ u^{-1} &= \frac{1 + 0\sqrt{3}}{u} = \frac{1 + 0\sqrt{3}}{a + b\sqrt{3}} = \frac{(1 + 0\sqrt{3})(a - b\sqrt{3})}{(a + b\sqrt{3})(a - b\sqrt{3})} = \frac{(1 + 0\sqrt{3})(a - b\sqrt{3})}{(a^2 - 3b^2) + (-ab + ba)\sqrt{3}} \\ &= \frac{a - b\sqrt{3}}{a^2 - 3b^2} = \frac{a}{a^2 - 3b} + (\frac{-b}{a^2 - 3b^2})\sqrt{3} \end{split}$$

4. $\forall x, y \in \mathbb{Q}\sqrt{3}, x + y = y + x$ Define $x = a + b\sqrt{3}, y = a' + b'\sqrt{3} \in \mathbb{Q}\sqrt{3}$. x + y is given by:

$$x + y = (a + b\sqrt{3}) + (a' + b'\sqrt{3}) = (a + a') + (b + b')\sqrt{3}$$

and y + x is given by:

$$y + x = (a' + b'\sqrt{3}) + (a + b\sqrt{3}) = (a' + a) + (b' + b)\sqrt{3} = (a' + a) + (b + b')\sqrt{3}$$

and so x + y = y + x.

5. $\forall x, y, z \in \mathbb{Q}\sqrt{3}, (x+y)+z=x+(y+z)$ We define x, y the same as above. We define $z=a''+b''\sqrt{3}\in\mathbb{Q}\sqrt{3}$. Then (x+y)+z is given by:

$$(x+y) + z = [(a+a') + (b+b')\sqrt{3}] + z = ((a+a') + (b+b')\sqrt{3}) + (a'' + b''\sqrt{3})$$
$$= ((a+a') + a'') + ((b+b') + b'')\sqrt{3} = (a+a'+a'') + (b+b'+b'')\sqrt{3}$$

and x + (y + z) is given by:

$$x + (y + z) = x + ((a' + b'\sqrt{3}) + (a'' + b''\sqrt{3})) = x + ((a' + a'') + (b' + b'')\sqrt{3})$$
$$= (a + b\sqrt{3}) + ((a' + a'') + (b' + b'')\sqrt{3}) = (a + a' + a'') + (b + b' + b'')\sqrt{3}$$

and so (x + y) + z = x + (y + z).

6. $\forall x \in \mathbb{Q}\sqrt{3}, 0+x=x$

Using the previous definition of x:

$$0_{\mathbb{Q}\sqrt{3}} + x = (0 + 0\sqrt{3}) + (a + b\sqrt{3}) = (0 + a) + (0 + b)\sqrt{3} = a + b\sqrt{3} = x$$

7. $\forall x \in \mathbb{Q}\sqrt{3}, -x + x = 0.$

Using the previous definition of x:

$$-x + x = ((-a) + (-b)\sqrt{3}) + (a + b\sqrt{3}) = ((-a + a) + (-b + b)\sqrt{3}) = 0 + 0\sqrt{3} = 0_{\mathbb{Q}\sqrt{3}}$$

8. $\forall x, y \in \mathbb{Q}\sqrt{3}, xy = yx$

We define x, y the same as before. This gives us xy as:

$$xy = (a + b\sqrt{3})(a' + b'\sqrt{3}) = (aa' + 3bb') + (ab' + ba')\sqrt{3}$$

and yx as:

$$yx = (a' + b'\sqrt{3})(a + b\sqrt{3}) = (a'a + 3b'b) + (a'b + b'a)\sqrt{3} = (aa' + 3bb') + (ba' + ab')\sqrt{3}$$
$$= (aa' + 3bb') + (ab' + ba')\sqrt{3}$$

and so xy = yx.

9. $\forall x, y, z \in \mathbb{Q}\sqrt{3}, (xy)z = x(yz)$

We use the previous definitions of x, y, z as before. This gives us (xy)z as:

$$(xy)z = ((aa' + 3bb') + (ab' + ba')\sqrt{3})(z) = ((aa' + 3bb') + (ab' + ba')\sqrt{3})(a'' + b''\sqrt{3})$$
$$= (a''(aa' + 3bb') + 3(ab' + ba')b'')) + ((aa' + 3bb')b'' + (ab' + ba')a'')\sqrt{3}$$

and x(yz) as:

$$x(yz) = x((a'+b'\sqrt{3})(a''+b''\sqrt{3})) = x((a'a''+3b'b'') + (a'b''+b'a'')\sqrt{3})$$

$$= (a+b\sqrt{3})((a'a''+3b'b'') + (a'b''+b'a'')\sqrt{3})$$

$$= (a(a'a''+3b'b'') + 3b(a'b''+b'a'')) + (a(a'b''+b'a'') + b(a'a''+3b'b''))\sqrt{3}$$

$$= (a''(aa'+3bb') + 3(ab'+ba')b'')) + ((aa'+3bb')b'' + (ab'+ba')a'')\sqrt{3}$$
and so $(xy)z = x(yz)$.

10. $\forall x \in \mathbb{Q}, 1 \cdot x = x$ Using previous definition of x:

$$1_{\mathbb{Q}\sqrt{3}} \cdot x = (1 + 0\sqrt{3})(a + b\sqrt{3}) = (1 \cdot a + 3 \cdot 0 \cdot b) + (1 \cdot b + 0 \cdot a)\sqrt{3} = a + b\sqrt{3} = x$$

11. $\forall x \in \mathbb{Q}\sqrt{3}$ with $x \neq 0, x \cdot x^{-1} = 1$ Using the previous definition of x:

$$x \cdot x^{-1} = (a + b\sqrt{3})(\frac{a}{a^2 - 3b^2} + (\frac{-b}{a^2 - 3b^2})\sqrt{3}) = (\frac{a^2}{a^2 - 3b^2} - \frac{3b^2}{a^2 - 3b^2}) + (\frac{-ab}{a^2 - 3b^2} + \frac{ba}{a^2 - 3b^2})\sqrt{3} = \frac{a^2 - 3b}{a^2 - 3b} + (\frac{ab - ab}{a^2 - 3b})\sqrt{3} = 1 + 0\sqrt{3} = 1_{\mathbb{Q}\sqrt{3}}$$

12. $\forall x, y, z \in \mathbb{Q}\sqrt{3}, x(y+z) = xy + xz$ We use the previous definitions for $x, y, z \in \mathbb{Q}\sqrt{3}$. This gives us x(y+z) as:

$$x(y+z) = x((a'+b'\sqrt{3}) + (a''+b''\sqrt{3})) = x((a'+a'') + (b'+b'')\sqrt{3})$$
$$= (a+b\sqrt{3})((a'+a'') + (b'+b'')\sqrt{3})$$
$$= (a(a'+a'') + 3b(b'+b'')) + (a(b'+b'') + b(a'+a''))\sqrt{3}$$

and xy + xz as:

$$xy + xz = ((aa' + 3bb') + (ab' + ba')\sqrt{3}) + xz$$

$$= ((aa' + 3bb') + (ab' + ba')\sqrt{3}) + ((a + b\sqrt{3})(a'' + b''\sqrt{3}))$$

$$= ((aa' + 3bb') + (ab' + ba')\sqrt{3}) + ((aa'' + 3bb'') + (ab'' + ba'')\sqrt{3})$$

$$= ((aa' + 3bb' + aa'' + 3bb'') + (ab' + ba' + ab'' + ba'')\sqrt{3})$$

$$= (a(a' + a'') + 3b(b' + b'')) + (a(b' + b'') + b(a' + a''))\sqrt{3}$$

and so x(y+z) = xy + xz.

(3) Given these addition and product laws, the inversion rule we defined in (2) for $\mathbb{Q}\sqrt{3}$ looks like:

$$(a+b\sqrt{3})^{-1} = \frac{a}{a^2 - 3b} + (\frac{-b}{a^2 - 3b^2})\sqrt{3}$$

and the zero element was given by $0 + 0\sqrt{3}$.

Now consider element $x=2+0\sqrt{3}\neq 0+0\sqrt{3}$, where $x\in\mathbb{Z}\sqrt{3}$. The inverse of x is given by $x^{-1}=\frac{2}{4}+0\sqrt{3}$. Because $\frac{2}{4}\notin\mathbb{Z}, x^{-1}\notin\mathbb{Z}$ and so the inversion rule does not apply for $\mathbb{Z}\sqrt{3}$ with the provided addition and product rules.

5. Exercise 1.5 (5 points)

We prove that \prec does not make $\mathbb Q$ into an ordered set by a contradictory example. Consider $x=\frac{1}{6}$ and $y=\frac{2}{3}$. For these values, $x\not\prec y$ and $y\not\prec x$. Furthermore, $x\neq y$ because they are not the same element in the set $\mathbb Q$ (this set is reduced to lowest terms, so two elements are equivalent only if their numerator and denominator are the same.) Thus, we have shown for $x,y\in\mathbb Q$, none of the following statements are true: $x\prec y,y\prec x,x=y$ and so \prec does not make $\mathbb Q$ an ordered set.

6. Exercise 1.6 (5 points)

Theorem 0.1 If S is an ordered set with elements $x, y, z \in S$, $x \le y$ and $y \le z \implies x \le z$.

Proof: We do casework:

1. Case 1: x < y

We investigate the two subcases:

1. Subcase 1: y < z

By the transitivity property of ordered sets, x < y and $y < z \implies x < z \implies x \le z$.

2. Subcase 2: y = z

We are given x < y. Because $y = z, x < z \implies x \le z$.

2. Case 2: x = y

We are given $y \leq z$. Because x = y, we can conclude $x \leq z$.

Because A is a non-empty set, $\exists x \in A$. Pick any $x \in A$. Because α is a lower bound and β is an upper bound $\alpha \le x \le \beta \implies \alpha \le \beta$ by **Theorem 0.1**.