Estruturas de Dados Árvores

Departamento de Computação Prof. Martín Vigil Adaptado de prof. Jean Martina e Aldo Wangenheim

2020.1

UNIVERSIDADE FEDERAL
DE SANTA CATARINA

Introdução a Árvores

Árvores

são estruturas de dados que se caracterizam por uma organização hierárquica entre seus elementos. Essa organização permite a definição de algoritmos relativamente simples, recursivos e de eficiência bastante razoável.

- No cotidiano, diversas informações são organizadas de forma hierárquica;
- ► Como exemplo, podem ser citados:
 - ► O organograma de uma empresa;
 - ► A divisão de um livro em capítulos, seções, tópicos;
 - ► A árvore genealógica de uma pessoa.

- ▶ De um modo mais formal, podemos dizer que uma árvore é um conjunto finito de um ou mais nodos, nós ou vértices, tais que:
 - Existe um nodo denominado raiz da árvore;
 - ▶ os demais nodos formam n >= 0 conjuntos disjuntos $c_1, c_2, ..., c_n$, sendo que cada um desses conjuntos também é uma árvore (denominada subárvore).

► Representação hierárquica

Representação por conjuntos (diagrama de inclusão)

- ► Representação por expressão parentetizada (parênteses aninhados)
 - Cada conjunto de parênteses correspondentes contém um nodo e seus filhos. Se um nodo não tem filhos, ele é seguido por um par de parênteses sem conteúdo.

```
(A(B(D()E()))(C(F())))
```

- ► Representação por expressão não parentetizada
 - Cada nodo é seguido por um número que indica sua quantidade de filhos, e em seguida por cada um de seus filhos, representados do mesmo modo.

A 2 B 2 D 0 E 0 C 1 F 0

- As representações hierárquica e por conjuntos facilitam visualizar árvores;
- ► As representações por expressões parametrizadas ou não facilitam a persistência dos nodos das árvores (em arquivos, por exemplo), possibilitando assim a sua reconstituição.

► Como, por definição, os subconjuntos c₁, c₂, ..., c_n são disjuntos, cada nodo pode ter apenas um pai. A representação a seguir, por exemplo, não corresponde a uma árvore.

Definições

- ► A linha que liga dois nodos da árvore denomina-se aresta;
- Existe um caminho entre dois nodos A e B da árvore, se a partir do nodo A é possível chegar ao nodo B percorrendo as arestas que ligam os nodos entre A e B;
- Existe sempre um caminho entre a raiz e qualquer nodo da árvore.

Definições

- Se houver um caminho entre A e B, começando em A diz-se que A é um nodo ancestral de B e B é um nodo descendente de A
- ► Se este caminho contiver uma única aresta, diz-se que A é o nodo pai de B e que B é um nodo filho de A;
- ▶ Dois nodos que são filhos do mesmo pai são denominados nodos irmãos;
- ► Qualquer nodo, exceto a raiz, tem um único nodo pai.

Definições

- ► Se um nodo não possui nodos descendentes, ele é chamado de folha ou nodo terminal da árvore;
- ► Grau de um nodo: é o número de nodos filhos do mesmo. Um nodo folha tem grau zero;
- ► **Nível de um nodo**: a raiz tem nível 0. Seus descendentes diretos têm nível 1, e assim por diante;
- ► Grau da árvore: é igual ao grau do nodo de maior grau da árvore;
- Nível da árvore: é igual ao nível do nodo de maior nível da árvore.

Exercício

Exercício

- ► Qual é a raiz da árvore?
- Quais são os nodos terminais?
- ▶ Qual o grau da árvore?
- ► Qual o nível da árvore?
- Quais são os nodos descendentes do nodo D?
- ▶ Quais são os nodos ancestrais do nodo #?
- ▶ Os nodos 4 e 5 são nodos irmãos?
- ► Há caminho entre os nodos C e S?
- ► Qual o nível do nodo 5?
- ► Qual o grau do nodo A?

Árvores Binárias

UFSC UNIVERSIDADE FEDERAL DE SANTA CATARINA

Árvores Binárias

- ➤ A inclusão de limitações estruturais define tipos específicos de árvores;
- ► Até agora, as árvores vistas possuíam nenhuma limitação quanto ao grau máximo de cada nodo;
- ► Uma árvore binária é uma árvore cujo grau máximo de cada nodo é 2. Essa limitação define uma nomenclatura específica:
 - As filhos de um nodo são classificados de acordo com sua posição relativa à raiz;
 - Assim, distinguem-se o filho da esquerda e o filho da direita e, consequentemente, a subárvore da esquerda e a subárvore da direita.

Árvores Binárias

► Exemplo de árvore binária;

Modelagem: Nodo de uma árvore binária

- ► Necessitamos:
 - Um ponteiro para o filho localizado à esquerda;
 - ► Um ponteiro para o filho localizado à direita;
 - ► Um ponteiro **genérico** o dado que vamos armazenar.
- ► Pseudo-código:

```
estrutura Nodo {
  Nodo *_filhoEsquerda;
  Nodo *_filhoDireita;
  T  *_dado;
};
```

- ► O percurso em árvores binárias corresponde ao caminhamento executado em listas:
 - Partimos de um nodo inicial (raiz) e visitamos todos os demais nodos em uma ordem previamente especificada;
- Como exemplo, considere uma árvore binária utilizada para representar uma expressão (com as seguintes restrições):
 - ► Cada operador representa uma bifurcação;
 - Seus dois operandos correspondentes são representados por suas subárvores.

Expressão: (A + (B / X)) * (E - (C * P))

- ► Existem três ordens para se percorrer uma árvore binária que são consequência natural da estrutura da árvore, considerando filho à esquerda (e), filho à direita (d) e raiz (r):
 - ► Preordem(r,e,d) *Preorder*;
 - ► Emordem(e,r,d) *Inorder*;
 - ► Pósordem(e,d,r) *Postorder*.

- Essas ordens são definidas recursivamente (definição natural para uma árvore) e em função da raiz(r), da subárvore esquerda(e) e da subárvore direita(d):
 - Preordem(r,e,d): visite a raiz ANTES das subárvores;
 - Emordem(e,r,d): visite primeiro a subárvore ESQUERDA, depois a RAIZ e depois a subárvore DIREITA;
 - ► Pósordem(e,d,r): visite a raiz DEPOIS das subárvores;
- As subárvores são SEMPRE visitadas da esquerda para a direita.

- ► Se percorrermos a árvore anterior usando as ordens definidas, teremos as seguintes seqüências:
 - ▶ Preordem (notação prefixada) : * + A / B X E * C P
 - ► Emordem (notação infixada) : A + B / X * E C * P
 - Pósordem (notação posfixada) : A B X / + * E C P *

Percurso em Preordem

```
void Preordem(Nodo *raiz, ListaEncadeada* lista)
início
  se raiz != NULO então
   adicionaNoFim(lista, raiz->_dado);
  Preordem(raiz->_filhoEsquerda, lista);
  Preordem(raiz->_filhoDireita, lista);
  fim se
  fim
```

Percurso em Emordem

```
Lista* EmOrdem(Nodo *raiz, ListaEncadeada* lista)
início
  se raiz != NULO então
  EmOrdem(raiz->_filhoEsquerda, lista);
  adicionaNoFim(lista, raiz->_dado);
  EmOrdem(raiz->_filhoDireita, lista);
  fim se
fim
```

Percurso em Posordem

```
Lista PosOrdem(Nodo *raiz, ListaEncadeada* lista)
início
  se raiz != NULO então
  PosOrdem(raiz->_filhoEsquerda, lista);
  PosOrdem(raiz->_filhoDireita, lista);
  adicionaNoFim(lista, raiz->_dado);
  fim se
fim
```

Árvores Binárias de Busca

Árvores Binárias de Busca

- ► Árvores (binárias) são muito utilizadas para se representar um grande conjunto de dados onde se deseja encontrar um elemento de acordo com a sua chave.
- ► Definição Árvore Binária de Busca (Niklaus Wirth):
 - "Uma árvore que se encontra organizada de tal forma que, para cada nodo t_i, todas as chaves (_dado) da subárvore à esquerda de t_i são menores que t_i e à direita são maiores (ou iguais) que t_i";
- ► Termo em Inglês: Search Tree.

Características de Árvores Binárias de Busca

- ► Em uma árvore binária de busca é possível encontrar-se qualquer chave existente descendo-se pela árvore:
 - Sempre à esquerda toda vez que a chave procurada for menor do que a chave do nodo visitado;
 - ► Sempre à direita toda vez que for maior ou igual;
- ► A escolha da direção de busca só depende da chave que se procura e da chave que o nodo atual possui.

Exemplo de árvore binária de busca

Algoritmo de Busca

```
Nodo* busca (T dado, Nodo* raiz)
 início
  enquanto(raiz != NULO E raiz->_dado != dado) faça
   // Esquerda ou direita.
   se (raiz-> dado < dado) então
   raiz <- raiz->filhoDireita
   senão
   raiz <- raiz->filhoEsquerda;
  fim se
  fim enquanto
 retorne raiz;
 fim
```

Custo do Algoritmo da Busca

- ▶ Se árvore tem altura $h \ge 0$ e o dado procurado está em uma das folhas mais distantes da raiz, então o custo é O(h)
- ▶ Um árvore balanceada com n > 1 nodos tem altura $\lfloor \log_2 n \rfloor$

Inserção de novas chaves na árvore binária de busca

- ► Similar ao algoritmo de busca
- Percorrer a árvore até encontrar nodo que possui um filho nulo onde a chave pode ser inserida respeitando as regras de comparação.

Exemplo de inserção

Algoritmo de Inserção

```
void inserir(Nodo* raiz, T* dado)
início
  se (dado < raiz-> dado) então
  // Inserção à esquerda.
   se (raiz->_filhoEsquerda = NULO) então
    Nodo* oNovo <- aloque(Nodo); oNovo->_dado <- dado;
    oNovo->filhoEsquerda <- NULO; oNovo->filhoDireita <- NULO;
   raiz-> filhoEsquerda <- oNovo:
   senão
    inserir(raiz->_filhoEsquerda, dado);
   fim se
   senão
   // Inserção à direita.
   se (raiz->filhoDireita = NULO) então
    Nodo* oNovo <- aloque(Nodo); oNovo->_dado <- dado;
    oNovo->filhoEsquerda <- NULO; oNovo->filhoDireita <- NULO;
   raiz-> filhoDireita <- oNovo;
   senão
    inserir(raiz->filhoDireita. dado):
  fim se
 fim se
fim
```

Custo do Algoritmo de Inserção

- ▶ Se árvore tem altura $h \ge 0$ e as inserções podem ocorrer nas folhas mais distantes da raiz, então o custo é O(h)
- ▶ Um árvore balanceada com n > 1 nodos tem altura $\lfloor \log_2 n \rfloor$

Algoritmo de Deleção

- ► Substitui-se o nodo a ser removido por outro existente na árvore
- Precisa-se evitar que característica organizacional da árvore seja quebrada:
 - A subárvore da direita de um nodo não deve possuir chaves menores do que o pai do nodo eliminado;
 - ► A subárvore da esquerda de um nodo não deve possuir chaves maiores do que o pai do nodo eliminado.

Algoritmo de deleção

- ► Se o nodo a ser removido é folha, simplesmente remova-o.
- ► Lembre-se de atualizar o pai do nodo removido.

Deleção em uma Árvore de Busca Binária

► Se o nodo a ser excluído tem **somente** filho à esquerda, então substitua o nodo pelo seu filho.

Deleção em uma Árvore de Busca Binária

- ► Se o nodo a ser removido possui subárvore à direita:
 - ► A estratégia geral (Mark Allen Weiss) é sempre substituir a chave retirada pela menor chave da subárvore direita.
 - Se o filho à direita não possui subárvore esquerda, é ele quem ocupa o seu lugar;
 - Se possuir uma subárvore esquerda, a raiz desta será movida para cima e assim por diante;

Algoritmo de Deleção

- 1. Localize o nodo que tem o dado a ser removido
- 2. Se o nodo for folha:
 - 2.1 Desaloque o nodo
 - 2.2 Atualize seu pai anulando ponteiro para nodo desalocado
- 3. Caso contrário:
 - 3.1 Localize o substituto
 - 3.2 Substituir nodo pelo substituto segundo uma estratégia:
 - 3.2.1 Atualizar ponteiros (solução iterativa); ou
 - 3.2.2 Atualizar dados (solução recursiva)
- 4. Retorne dado do nodo excluído

Algoritmo de Deleção Atualizando Ponteiros

- 1. Se nodo a excluir não é raiz, seu pai deverá apontar para nodo substituto
- 2. Filho do substituto pode virar filho do avô
- 3. O substituto herdará os filhos do nodo a excluir (cuidado se nodo a excluir é pai do substituto)
- 4. Desaloque nodo a ser excluído (cuidado se o nodo for raiz para não perder referência à raiz da árvore)

Algoritmo de Deleção Atualizando Dados

- 1. Atualize dado do nodo a ser excluído com dado do substituto
- 2. Remover substítuto via chamada recursiva
- 3. Recursão termina quando substituto for uma folha

Custo do Algoritmo de Deleção

- ▶ Se árvore tem altura $h \ge 0$ e o nodo substituto está em uma das folhas mais distantes da raiz, então o custo é $O(h) = O(\lfloor \log_2 n \rfloor) = O(\log_2 n)$
- ▶ Os custos **assintóticos** das estratégia vistas são $O(\log_2 n)$, mas a estratégia com recursão possui constante maior c > 0 e portanto custo $c \log_2 n$ maior.

Problemas com Árvores de Busca Binária

- ► Desbalanceamento:
 - Quando inserimos utilizando a inserção simples, dependendo da distribuição de dados, pode haver desbalanceamento;
 - Árvores deterioradas perdem a característica de eficiência de busca.

Problemas com Árvores de Busca Binária

Perguntas????

ccreative commons

Este trabalho está licenciado sob uma Licença Creative Commons Atribuição 4.0 Internacional. Para ver uma cópia desta licença, visite http://creativecommons.org/licenses/by/4.0/.

