Interconnecting Devices

Session Objectives

After going through this session you will be able to understand:

- ✓ Networking
- ✓ The devices used in Networking like Router, Switch, Hub, Bridges and Repeaters
- ✓ The network layer at which they operate
- ✓ Working of each device

Introduction

- Network is an **infrastructure** made up of interconnecting devices.
- The most common devices are Hub, Switch, Router and Bridge.
- The devices are used to create LAN, WAN and MAN networks.
- The device make communication possible from one end to another.
- Each device follows a set of rule for data communication.
- The device does the job of signal enhancement, forwarding and routing.

List of Networking Devices

Repeaters

Hubs

Bridges

Layer Based Working of Connecting Devices

Application

Transport

Network

Data link

Physical

Application

Transport

Network

Data link

Physical

Repeaters

- A physical layer device that acts on bits not on frames or packets.
- **Can have two or more interfaces.**
- When a bit (0,1) arrives, the repeater receives it and **regenerates** it, and transmits it onto all other interfaces.
- Used in LAN to connect cable segments and extend the maximum cable length.
 - Ethernet **10base5** Max. segment length **500m** 4 repeaters (5 segments) are used to extend the cable to **2500m**)
 - Ethernet **10Base2** Max. segment length **185m** 4 repeaters (5 segments) are used to extend the cable to **925m**
- Repeaters do not implement any **access method** that means if any two nodes on any two connected segments transmit at the same time **collision** will happen.

Figure 1: Function of a Repeater

a. Right-to-left transmission.

b. Left-to-right transmission.

Figure 2: A repeater connecting two segments of a LAN

- Works on the **physical layer** and is also called **multiport repeater**.
- Operate on bits rather than frames.
- Used to connect stations adapters in a **physical** star topology but **logically** bus.
- Connection to the hub consists of **two pairs of twisted pair wire** one for **transmission** and the other for **receiving**.
- Follows no **access method** in data transmission.
- Does not do **filtering** it just copy the received frame onto **all other links**
- The entire hub forms a single collision domain, and a single Broadcast domain
 - Collision domain: is that part of the network (set of NICs) when two or more nodes transmit at the same time collision will happen.
 - **Broadcast domain:** is that part of the network (set of NIC) where each NIC can 'see' other NICs' traffic **broadcast messages.**
- Multiple Hubs can be used **to extend** the network length.
 - No buffering at the hub.

Contd...

Figure 3: *Hub Interconnection*

Bridges

- Acts on the **data link** layer (MAC address level).
- Used to **divide** (segment) the LAN into smaller LANs segments, or to **connect** LANs that use identical physical and data link layers protocol.

- **Each LAN segment is a separate collision domain.**
- Bridge does not send the received frame to all other interfaces like hubs and repeaters, but it performs **filtering**.
- Bridge uses a bridge table (**forwarding table**) that contains entries for the nodes on the LAN for packet forwarding.
- A bridge runs **CSMA/CD before sending a frame** onto the link not like the hub or repeater.

Figure 4: A bridge connecting two LANs

	Address	Port	
	71:2B:13:45:61:41	1	
	71:2B:13:45:61:42	1	Bridge Table
	64:2B:13:45:61:12	2	
	64:2B:13:45:61:13	2	

Figure 5: A learning bridge and the process of learning

Figure 6: A learning bridge and the process of learning

- (a) In heavy load, each station has an average effective theoretical **bandwidth** = 10/12
- (b) Each station has an average effective **bandwidth** equal =10/3 Contd...

Figure 7: Looping problem-1 in Bridge connectivity

Figure 8: Looping problem-2 in Bridge connectivity

- When using switches, the network **should not contain any <u>loop</u>** (there should be exactly one path from any LAN to any other LAN
- Loops can cause number of frames in the LAN to **increase** *indefinitely*

Contd...

Figure 9: Looping problem Solution

Ports 2 and 3 of bridge B3 are blocking ports (no frame is sent out of these ports). Port 1 of bridge B5 is also a blocking port (no frame is sent out of this port).

• Loops are logically disabled by the **minimum spanning tree algorithm**

Two types :

- **N-Port bridge** where N is equal to number of stations Usually used to **connect individual computers** not LANs like bridge Allows more than one device connected to the switch directly to transmit simultaneously Can operates in **Full-duplex** mode. Performs **MAC** address recognition and frame forwarding in hardware (bridge in software) П
 - Store-and-forward: switch receives the whole frame on the input line, buffers it, briefly performs error checking, then routes it to the appropriate output line (similar to bridge).
 - *Cut-through*: based on the destination address the frame is directly sent to the appropriate output line without buffering. Here no error checking is performed

Figure 10: Switch Interconnection -1

A Hub sending a packet form F to C.

A Switch sending a packet from F to C

Figure 11: Switch Interconnection -2

Isolated collision domains

Full-Duplex operation

Router

- Operates at network layer and deals with packets not frames.
- Connect LANs and WANs with similar or different protocols together.
- Routers **isolate both** collision domains and broadcast domains
- Acts like normal stations on a network, but have **more than one** network address (an address to each connected network).
- Deals with global address (network layer address (IP)) not local address (MAC address).
- Routers Communicate with each other and exchange routing information.
- Determine best route using **routing algorithm** by special software installed on them.
- **Forward traffic if information on destination** is available otherwise **discard** it (not like a switch or bridge).

Figure 12: Routers connecting independent LANs and WANs

Figure 13: Interconnecting Router, Switch and Hubs

Summary

In this section we have discussed the following:

- Interconnecting Devices
- Looping in LAN and eliminating it using Spanning Tree Protocol
- Broadcast and Collision Domains

han Ingli!