Math 362: Mathematical Statistics II

Le Chen

le.chen@emory.edu chenle02@gmail.com

> Emory University Atlanta, GA

Last updated on Spring 2021 Last compiled on January 15, 2023

2021 Spring

Creative Commons License (CC By-NC-SA)

Chapter 12. The Analysis of Variance

§ 12.1 Introduction

§ 12.2 The F Test

§ 12.3 Multiple Comparisons: Turkey's Method

§ 12.4 Testing Subhypotheses with Contrasts

Chapter 12. The Analysis of Variance

§ 12.1 Introduction

§ 12.2 The F Test

§ 12.3 Multiple Comparisons: Turkey's Method

§ 12.4 Testing Subhypotheses with Contrasts

Model assumptions

- 1. Independence of observations
- 2. Normality
- 3. Homogeneity of variances

Table 12.1.1				
		Treatme	nt Leve.	l
	1	2		k
	Y ₁₁	Y ₁₂		Y_{1k}
	Y ₂₁	Y ₂₂		
	$Y_{n_1 1}$	$Y_{n_2 2}$		$Y_{n_k k}$
Sample sizes: Sample totals:	$T_{.1}$	$T_{.2}$		$T_{.k}$
Sample means: True means:	$\overline{Y}_{.1}$	$\overline{Y}_{.2}$		$\overline{Y}_{.k}$
True means:	μ_1	μ_2		μ_k

1

Assume:

$$\forall j=1,\cdots,k,\,\forall j=1,\cdots,n_i,$$

- 1. Y_{ij} are independent.
- 2. $Y_{ij} \sim N(\mu_j, \sigma^2)$

Assume:

$$\forall j = 1, \dots, k, \forall j = 1, \dots, n_i,$$

$$Y_{ij} = \mu_j + \epsilon_{ij}$$

- 1. ϵ_{ij} are independent.
- 2. $\epsilon_{ij} \sim N(0, \sigma^2)$

Likelihood ratio test

1. The parameter spaces are

$$\Omega = \{ (\mu_1, \dots, \mu_k, \sigma^2) : -\infty < \mu_1, \dots, \mu_k < \infty, \sigma^2 > 0 \}$$

$$\omega = \{ (\mu_1, \dots, \mu_k, \sigma^2) : -\infty < \mu_1 = \dots = \mu_k < \infty, \sigma^2 > 0 \}$$

2. The likelihood functions are

$$L(\omega) = \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{j=1}^k \sum_{i=1}^{n_j} (y_{ij} - \mu)^2\right\}$$

$$L(\Omega) = \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{j=1}^k \sum_{i=1}^{n_j} (y_{ij} - \mu_j)^2\right\}$$

14

3. Now

$$\frac{\partial \ln L(\omega)}{\partial \mu} = \frac{1}{\sigma^2} \sum_{j=1}^k \sum_{i=1}^{n_j} (y_{ij} - \mu)$$
$$\frac{\partial \ln L(\omega)}{\partial (\sigma^2)} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^k \sum_{j=1}^{n_j} (y_{ij} - \mu)^2$$

Setting the above derivatives to zero, the solutsions for μ and σ^2 are,

$$\frac{1}{n} \sum_{j=1}^{k} \sum_{i=1}^{n_j} y_{ij} = \bar{y}..$$

$$\frac{1}{n} \sum_{j=1}^{k} \sum_{i=1}^{n_j} (y_{ij} - \bar{y}..)^2 = v$$

15

3' Similarly,

$$\frac{\partial \ln L(\Omega)}{\partial \mu_j} = \frac{1}{\sigma^2} \sum_{j=1}^k \sum_{i=1}^{n_j} (y_{ij} - \mu_j), \quad j = 1, \dots, k$$

$$\frac{\partial \ln L(\Omega)}{\partial (\sigma^2)} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^k \sum_{i=1}^{n_j} (y_{ij} - \mu_j)^2$$

Setting the above derivatives to zero, the solutsions for μ_i and σ^2 are,

$$\frac{1}{n_j} \sum_{i=1}^{n_j} y_{ij} = \bar{y}_{\cdot j}$$

$$\frac{1}{n} \sum_{i=1}^k \sum_{i=1}^{n_j} (y_{ij} - \bar{y}_{\cdot j})^2 = w$$

4. Hence,

$$L(\hat{\omega}) = \left(\frac{n}{2\pi \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} (y_{ij} - \bar{y}_{..})^{2}}\right)^{n/2} \exp\left\{-\frac{n \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} (y_{ij} - \bar{y}_{..})^{2}}{2 \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} (y_{ij} - \bar{y}_{..})^{2}}\right\}$$

$$\parallel \left(\frac{n}{2\pi \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} (y_{ij} - \bar{y}_{..})^{2}}\right)^{n/2} e^{-n/2}$$

Similarly,

$$L(\hat{\Omega}) = \left(\frac{n}{2\pi \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} (y_{ij} - \bar{y}_{\cdot j})^{2}}\right)^{n/2} \exp\left\{-\frac{n \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} (y_{ij} - \bar{y}_{\cdot j})^{2}}{2 \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} (y_{ij} - \bar{y}_{\cdot j})^{2}}\right\}$$

$$\parallel$$

$$\left(\frac{n}{2\pi \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} (y_{ij} - \bar{y}_{\cdot j})^{2}}\right)^{n/2} e^{-n/2}$$

1

5. Finally,

$$\lambda = \frac{L(\hat{\omega})}{L(\hat{\Omega})} = \left(\frac{\sum_{j=1}^k \sum_{i=1}^{n_j} (\mathbf{y}_{ij} - \bar{\mathbf{y}}_{\cdot j})^2}{\sum_{j=1}^k \sum_{i=1}^{n_j} (\mathbf{y}_{ij} - \bar{\mathbf{y}}_{\cdot \cdot})^2}\right)^{n/2}$$

⇒ Test statistic:

$$\Lambda = \frac{L(\hat{\omega})}{L(\hat{\Omega})} = \left(\frac{\sum_{j=1}^k \sum_{i=1}^{n_j} (Y_{ij} - \bar{Y}_{.j})^2}{\sum_{j=1}^k \sum_{i=1}^{n_j} (Y_{ij} - \bar{Y}_{..})^2}\right)^{n/2}$$

18

$$\begin{split} \textit{SSTOT} := & \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} \left(Y_{ij} - \overline{Y}_{..} \right)^{2} \\ & = \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} \left[\left(Y_{ij} - \overline{Y}_{.j} \right) + \left(\overline{Y}_{.j} - \overline{Y}_{..} \right) \right]^{2} \\ & = \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} \left(Y_{ij} - \overline{Y}_{.j} \right)^{2} + \text{zero cross term} + \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} \left(\overline{Y}_{.j} - \overline{Y}_{..} \right)^{2} \\ & = \underbrace{\sum_{j=1}^{k} \sum_{i=1}^{n_{j}} \left(Y_{ij} - \overline{Y}_{.j} \right)^{2}}_{SSE} + \underbrace{\sum_{j=1}^{k} n_{j} \left(\overline{Y}_{.j} - \overline{Y}_{..} \right)^{2}}_{SSTR} \end{split}$$

$$\Downarrow$$

$$\Lambda = \left(\frac{\textit{SSE}}{\textit{SSTOT}}\right)^{n/2} = \left(\frac{\textit{SSE}}{\textit{SSE} + \textit{SSTR}}\right)^{n/2} = \left(\frac{1}{1 + \textit{SSTR/SSE}}\right)^{n/2}$$

6. Critical regions: for some $\lambda_* \in (0,1)$ close to 0,

$$\begin{split} &\alpha = \mathbb{P}\left(\Lambda \leq \lambda_*\right) \\ &= \mathbb{P}\left(\frac{1}{1 + SSTR/SSE} \leq \lambda_*^{2/n}\right) \\ &= \mathbb{P}\left(\frac{SSTR}{SSE} \leq \lambda_*^{-2/n} - 1\right) \\ &= \mathbb{P}\left(\frac{SSTR/(k-1)}{SSE/(n-k)} \leq \left(\lambda_*^{-2/n} - 1\right) \frac{n-k}{k-1}\right) \end{split}$$

7. We will prove that under H_0 , $\frac{SSTR/(k-1)}{SSE/(n-k)} \sim F$ -distr. $df_1 = k-1$, $df_2 = n-k$

$$\Rightarrow \left(\lambda_*^{-2/n} - 1\right) \frac{n-k}{k-1} = F_{1-\alpha,k-1,n-k}.$$

Treatment sum of squares: SSTR

Sample size: (Weights)	n_1	n_2	n_k	$n = \sum_{j=1}^k n_j$
(Troigino)				Weighted average
Sample means:	$\overline{m{\gamma}}_{\cdot 1}$	$\overline{Y}_{\cdot 2}$	$\overline{Y}_{\cdot k}$	$\overline{\mathbf{Y}}_{\cdot\cdot} = \frac{1}{n} \sum_{j=1}^{k} n_j \overline{\mathbf{Y}}_{\cdot j}$
True means:	μ_1	μ_2	μ_{k}	$\mu = rac{1}{n} \sum_{j=1}^k \textit{n}_j \mu_j$
Squares:	$\left(\overline{Y}_{\cdot1} - \overline{Y}_{\cdot\cdot}\right)^2$	$\left(\overline{\mathbf{y}}_{\cdot 2} \!-\! \overline{\mathbf{y}}_{\cdot \cdot}\right)^2$	$\left(\overline{\mathbf{y}}_{\cdot k} - \overline{\mathbf{y}}_{\cdot \cdot}\right)^2$	SSTR

$$extit{SSTR} := \sum_{j=1}^k n_j \left(\overline{Y}_{.j} - \overline{Y}_{..}
ight)^2$$

- 1. When k = 1, $SSTR \equiv 0$.
- 2. When k = 2, say X_1, \dots, X_n and Y_1, \dots, Y_m :

$$\overline{Y}_{\cdot \cdot} = \frac{1}{m+n} \left(n\overline{X} + m\overline{Y} \right)$$

$$SSTR = n \left[\overline{X} - \frac{1}{n+m} \left(n \overline{X} + m \overline{Y} \right) \right]^2 + m \left[\overline{Y} - \frac{1}{n+m} \left(n \overline{X} + m \overline{Y} \right) \right]^2$$

$$= n \left[\frac{m(\overline{X} - \overline{Y})}{n+m} \right]^2 + m \left[\frac{n(\overline{X} - \overline{Y})}{n+m} \right]^2$$

$$= \left[\frac{nm^2}{(n+m)^2} + \frac{n^2 m}{(n+m)^2} \right] \left(\overline{X} + \overline{Y} \right)^2$$

$$= \frac{nm}{n+m} \left(\overline{X} - \overline{Y} \right)^2$$

$$SSTR = \frac{\left(\overline{X} - \overline{Y}\right)^2}{\frac{1}{m} + \frac{1}{n}}$$

$$SSTR = \sum_{j=1}^{k} n_{j} (\overline{Y}_{.j} - \overline{Y}_{..})^{2} = \sum_{j=1}^{k} n_{j} [(\overline{Y}_{.j} - \mu) - (\overline{Y}_{..} - \mu)]^{2}$$

$$= \sum_{j=1}^{k} n_{j} [(\overline{Y}_{.j} - \mu)^{2} + (\overline{Y}_{..} - \mu)^{2} - 2(\overline{Y}_{.j} - \mu)(\overline{Y}_{..} - \mu)]$$

$$= \sum_{j=1}^{k} n_{j} (\overline{Y}_{.j} - \mu)^{2} + \sum_{j=1}^{k} n_{j} (\overline{Y}_{..} - \mu)^{2} - 2(\overline{Y}_{..} - \mu) \sum_{j=1}^{k} n_{j} (\overline{Y}_{.j} - \mu)$$

$$= \sum_{j=1}^{k} n_{j} (\overline{Y}_{.j} - \mu)^{2} + n(\overline{Y}_{..} - \mu)^{2} - 2(\overline{Y}_{..} - \mu)n(\overline{Y}_{..} - \mu)$$

$$= \sum_{j=1}^{k} n_{j} (\overline{Y}_{.j} - \mu)^{2} - n(\overline{Y}_{..} - \mu)^{2}$$
(12.2.1)

$$SSTR = \sum_{i}^{k} n_{j} \left[\left(\overline{\mathbf{Y}}_{\cdot j} - \mu_{j} \right)^{2} - 2 \left(\overline{\mathbf{Y}}_{\cdot j} - \mu_{j} \right) (\mu - \mu_{j}) + (\mu - \mu_{j})^{2} \right] - n \left(\overline{\mathbf{Y}}_{\cdot \cdot} - \mu \right)^{2}$$

Notice that

$$\overline{Y}_{.j} \sim N(\mu_j, \sigma^2/n_j)$$
 and $\overline{Y}_{..} \sim N(\mu, \sigma^2/n)$

 \Longrightarrow

$$\mathbb{E}[SSTR] = \sum_{j=1}^{k} n_j \left[\frac{\sigma^2}{n_j} - 2 \times 0 + (\mu - \mu_j)^2 \right] - n \frac{\sigma^2}{n}$$
$$= (k-1)\sigma^2 + \sum_{i=1}^{k} n_i (\mu - \mu_j)^2$$

Remark

When $\mu_1 = \cdots = \mu_i$ then

- $0.1 \ \mathbb{E}[SSTR] = (k-1)\sigma^2$
- 0.2 $MSTR := \frac{SSTR}{k-1}$ is an unbiased estimator for σ^2 .
- 0.3 $SSTR/\sigma^2 \sim \text{Chi square } (df = k 1).$ (Homework)

Test $H_0: \mu_1 = \cdots = \mu_k$ v.s. μ_j are not the same.

Case I. when σ^2 is known.

Reject
$$H_0$$
 if $SSTR/\sigma^2 \ge \chi^2_{1-\alpha,k-1}$.

Case II. when σ^2 is unknown.

....

Sum of Squared Errors: SSE

1. Sum of squred error:

$$SSE := \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} \left(Y_{ij} - \overline{Y}_{.j} \right)^{2}$$

$$= \sum_{j=1}^{k} (n_{j} - 1) \left[\frac{1}{n_{j} - 1} \sum_{i=1}^{n_{j}} \left(Y_{ij} - \overline{Y}_{.j} \right)^{2} \right]$$

$$= \sum_{j=1}^{k} (n_{j} - 1) S_{j}^{2}$$

2. Pooled variance S_p^2 :

$$S_p^2 = \frac{SSE}{\sum_{i=1}^k (n_i - 1)} = \frac{SSE}{n - k}$$

Mean square of error $MSE = S_p^2$

Notice that

1.
$$(n_j - 1)S_j^2/\sigma^2 \sim \text{Chi square } (df = n_j - 1)$$

- 2. S_i^2 's are independent
- 3. $SSE/\sigma^2 = (n k)S_p^2/\sigma^2 = \sum_{j=1}^k (n_j 1)S_j^2/\sigma^2$, Sum of independent of Chi squares

1

Thm. No matter $H_0: \mu_1 = \cdots = \mu_k$ is true or not

a.
$$SSE/\sigma^2 = (n-k)S_p^2/\sigma^2 \sim \text{Chi square } (df = \sum_{j=1}^k (n_j - 1) = n - k)$$

b. $SSTR \perp SSE$.

Proof. We have shown part (a). Part (b) is trickier. Indeed, both parts are a consequence of Cochran's theorem¹ ...

¹https://en.wikipedia.org/wiki/Cochran%27s_theorem

Let's see two special cases of

Thm. No matter $H_0: \mu_1 = \cdots = \mu_k$ is true or not

a.
$$SSE/\sigma^2 = (n-k)S_p^2/\sigma^2 \sim Chi$$
 square $(df = \sum_{i=1}^k (n_i - 1) = n - k)$

b. $SSTR \perp SSE$.

Cases

1. k=1, one sample case, S_p^2 is sample variance

Chapter 7

a.
$$(n-1)S^2/\sigma^2 \sim \chi^2(n-1)$$

b. $SSTR \equiv 0$

2. k = 2, two sample case

Chapter 9

a.
$$(n-2)S_n^2/\sigma^2 \sim \chi^2(n-2)$$

b.
$$\overline{X} - \overline{Y} \perp S_p^2 \iff SSTR \perp SSE$$

28

Under $H_0: \mu_1 = \cdots = \mu_k$

- 1. $SSTR/\sigma^2 \sim \chi^2(k-1)$
- 2. $SSE/\sigma^2 \sim \chi^2(n-k)$
- 3. SSTR ⊥ SSE

$$\Rightarrow \qquad \textit{F} = \frac{\textit{SSTR}/(\textit{k}-1)}{\textit{SSE}/(\textit{n}-\textit{k})} \sim \textit{F}(\textit{df}_1 = \textit{k}-1, \textit{df}_2 = \textit{n}-\textit{k})$$

Reject H_0 if $F \geq F_{1-\alpha,k-1,n-k}$

Total Sum of Squares: SSTOT SSTOT=SSE+SSTR

$$extit{SSTOT} := \sum_{j=1}^k \sum_{i=1}^{n_j} \left(Y_{ij} - \overline{Y}_{\cdot \cdot}
ight)^2$$

$$\sum_{j=1}^{k} \sum_{i=1}^{n_{j}} \left[\left(\mathbf{Y}_{ij} - \overline{\mathbf{Y}}_{j \cdot} \right) + \left(\overline{\mathbf{Y}}_{\cdot j} - \overline{\mathbf{Y}}_{\cdot \cdot} \right) \right]^{2}$$

$$\parallel$$

$$\sum_{j=1}^{k} \sum_{i=1}^{n_{j}} \left(Y_{ij} - \overline{Y}_{j.} \right)^{2} + 2 \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} \left(Y_{ij} - \overline{Y}_{.j} \right) \left(\overline{Y}_{.j} - \overline{Y}_{..} \right) + \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} \left(\overline{Y}_{.j} - \overline{Y}_{..} \right)^{2}$$

$$\sum_{j=1}^{k} \sum_{i=1}^{n_{j}} \left(\mathsf{Y}_{ij} - \overline{\mathsf{Y}}_{j.} \right)^{2} + 2 \sum_{j=1}^{k} \left(\overline{\mathsf{Y}}_{.j} - \overline{\mathsf{Y}}_{..} \right) \sum_{i=1}^{n_{j}} \left(\mathsf{Y}_{ij} - \overline{\mathsf{Y}}_{.j} \right) + \sum_{j=1}^{k} \mathsf{n}_{j} \left(\overline{\mathsf{Y}}_{.j} - \overline{\mathsf{Y}}_{..} \right)^{2}$$

II

SSE + 0 + SSTR

$$SSTOT = SSE + SSTR$$

$$\downarrow \downarrow$$

$$\frac{SSTOT}{\sigma^2} = \frac{SSE}{\sigma^2} + \frac{SSTR}{\sigma^2}$$

$$\downarrow \downarrow$$

$$\chi^2(n-1) \qquad \chi^2(n-k) \perp \chi^2(k-1)$$
Under H_0

$$\checkmark \qquad \text{Under } H_0$$

One-way ANOVA Table

Source of Variance	Degree of Freedom (df)	Sum Square (SS)	Mean Square (MS)	F-ratio
Between Groups (Treatment)	k-1	$SSB = \sum_{j=1}^{k} \left(\frac{\overline{I_{j}^{2}}}{n_{j}} \right) - \frac{\overline{I}^{2}}{n} \qquad SSB = \sum_{j=1}^{k} n_{j} \left(\overline{X}_{j} - \overline{X}_{t} \right)^{2}$	$MSB = \frac{SSB}{k-1}$	$F = \frac{MSB}{MSW}$
Within Groups (Error)	n-k	$\begin{split} SSW &= \sum_{j=1}^{K} \sum_{i=1}^{\infty} X_{ij}^2 - \sum_{j=1}^{K} \left[\frac{T_j^2}{n_j} \right] \\ SSW &= \sum_{j=1}^{K} \sum_{i=1}^{\infty} \left(\mathbf{x}_{ij} - \overline{\mathbf{x}}_{j} \right)^2 \end{split}$	$MSW = \frac{SSW}{n-k}$	
Total	n-1	$SST = \sum_{j=1}^{K} \sum_{i=1}^{n} \chi^{2}_{ij} - \frac{T^{2}}{n} \qquad SST = \sum_{j=1}^{k} \sum_{i=1}^{n} (X_{ij} - \overline{X}_{t})^{2}$		

SST = SSB + SSW

k: number of groups n: number of samples df: degree of freedom

Source	df	SS	MS	F	P
Treatment	k - 1	SSTR	MSTR	MSTR MSE	$P(F_{k-1,n-k} \ge \text{observed}F)$
Error					
Total		SSTOT			

Common notation

d.f.

k-1 Error sum of squares
$$SSE = SSW = SS_{\textit{within}}$$
 Mean square of error
$$MSE = MSW = MS_{\textit{within}} = S_p^2$$
 (Pooled sample variance)

n-kTreatment sum of squares
$$SSTR = SSB = SS_{between}$$
Mean square of treatment $MSTR = MSB = MS_{between}$

n-1 Total sum of squares:
$$SST = SSTOT$$

One way ANOVA v.s. Two sample t-test

Let X_1, \dots, X_n and Y_1, \dots, Y_m be samples from $N(\mu_X, \sigma^2)$ and $N(\mu_{\vee}, \sigma^2)$, respectively.

Recall

1.
$$SSTR/\sigma^2 = \frac{\left(\overline{X} - \overline{Y}\right)^2}{\sigma^2 \left(\frac{1}{n} + \frac{1}{m}\right)} \sim \chi^2(1)$$

2. $SSE/\sigma^2 = (n + m - 2)S_p^2/\sigma^2 \sim \chi^2(n + m - 2)$

2.
$$SSE/\sigma^2 = (n+m-2)S_p^2/\sigma^2 \sim \chi^2(n+m-2)$$

$$\implies F = \frac{SSTR/1}{SSE/(n+m-2)} = \frac{\left(\overline{X} - \overline{Y}\right)^2}{S_p^2\left(\frac{1}{n} + \frac{1}{m}\right)} \sim F(df_1 = 1, df_2 = n+m-2)$$

$$\parallel$$

$$T^2$$

$$\implies \alpha = \mathbb{P}\left(|\mathsf{T}| \geq t_{\alpha/2,n+m-2}\right) = \mathbb{P}\left(\mathsf{T}^2 \geq t_{\alpha/2,n+m-2}^2\right) = \mathbb{P}\left(\mathsf{F} \geq \mathsf{F}_{1-\alpha,1,n+m-2}\right)$$

Equivalent!

E.g. 1 Study the relation between smoking and heart rates.

Generations of athletes have been cautioned that cigarette smoking impedes performance. One measure of the truth of that warning is the effect of smoking on heart rate. In one study, six nonsmokers, six light smokers, six moderate smokers, and six heavy smokers each engaged in sustained physical exercise. Table 8.1.1 lists their heart rates after they had rested for three minutes.

Table 8.1.1	Heart Rates			
	Nonsmokers	Light Smokers	Moderate Smokers	Heavy Smokers
	69	55	66	91
	52	60	81	72
	71	78	70	81
	58	58	77	67
	59	62	57	95
	65	66	79	84
Averages:	62.3	63.2	71.7	81.7

Show whether smoking affects heart rates at $\alpha = 0.05$.

Sol. Let μ_1, \dots, μ_4 be the true heart rates.

Test $H_0: \mu_0 = \cdots = \mu_4$ or not.

Critical region:

Let $\alpha = 0.05$. For these data, k = 4 and n = 24, so H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$ should be rejected if

$$F = \frac{SSTR/(4-1)}{SSE/(24-4)} \ge F_{1-0.05,4-1,24-4} = F_{.95,3,20} = 3.10$$

(see Figure 12.2.2).

Figure 12.2.2

Computing....

Table	12.2.1			
	Nonsmokers	Light Smokers	Moderate Smokers	Heavy Smokers
	69	55	66	91
	52	60	81	72
	71	78	70	81
	58	58	77	67
	59	62	57	95
	65	66	79	84
$T_{.j}$	374	379	430	490
$\frac{T_{.j}}{\overline{Y}_{.j}}$	62.3	63.2	71.7	81.7

The overall sample mean, $\overline{Y}_{...}$, is given by

$$\overline{Y}_{..} = \frac{1}{n} \sum_{j=1}^{k} T_{.j} = \frac{374 + 379 + 430 + 490}{24}$$

$$= 69.7$$

Therefore,

$$SSTR = \sum_{j=1}^{4} n_j (\overline{Y}_{.j} - \overline{Y}_{..})^2 = 6[(62.3 - 69.7)^2 + \dots + (81.7 - 69.7)^2]$$
$$= 1464.125$$

Similarly,

$$SSE = \sum_{j=1}^{4} \sum_{i=1}^{6} (Y_{ij} - \overline{Y}_{.j})^2 = [(69 - 62.3)^2 + \dots + (65 - 62.3)^2] + \dots + [(91 - 81.7)^2 + \dots + (84 - 81.7)^2]$$
$$= 1594.833$$

The observed test statistic, then, equals 6.12:

$$F = \frac{1464.125/(4-1)}{1594.833/(24-4)} = 6.12$$

Since $6.12 > F_{.95,3,20} = 3.10$, $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$ should be rejected. These data support the contention that smoking influences a person's heart rate.

Figure 12.2.3 shows the analysis of these data summarized in the ANOVA table format. Notice that the small P-value (= 0.004) is consistent with the conclusion that H_0 should be rejected.

Source	df	SS	MS	F	P
Treatment	3	1464.125	488.04	6.12	0.004
Error	20	1594.833	79.74		
Total	23	3058.958			

Figure 12.2.3

```
> Input <-c("
> Data = read.table(textConnection(Input),
                   header=TRUE)
```

> L	Oata rates	group
	latoo	
	69	non
2	52	non
3	71	non
4	58	non
5	59	non
6	65	non
7	55	light
8	60	light
9	78	light
10	58	light
11	62	light
12	66	light
13	66	moderate
14	81	moderate
15	70	
16	77	moderate
17	57	
18	79	moderate
19	91	heavy
20	72	
21	81	heavy
22	67	heavy
23	95	heavy
24	84	heavy


```
> # Compute the analysis of variance
> res.aov <- aov(rates ~ group, data = Data)
> # Summary of the analysis
> summary(res.aov)

Df Sum Sq Mean Sq F value Pr(>F)
group 3 1464 488.0 6.12 0.00398 **
Residuals 20 1595 79.7

---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
1 > # Tukey multiple multiple-comparisons
 > TukeyHSD(res.aov)
   Tukey multiple comparisons of means
     95% family-wise confidence level
  Fit: aov(formula = rates ~ group, data = Data)
 $aroup
                                lwr
                                         upr
                                                p adi
  light –non
                0.8333333 -13.596955 15.26362 0.9984448
 moderate-non 9 3333333 -5 096955 23 76362 0 2978123
               19.3333333 4.903045 33.76362 0.0063659
 heavy-non
 moderate-light 8.5000000 -5.930289 22.93029 0.3755571
 heavy-light
                18.5000000 4.069711 32.93029 0.0091463
 heavy-moderate 10.0000000 -4.430289 24.43029 0.2438158
```

- 1. diff: difference between means of the two groups
- 2. lwr, upr: the lower and the upper end point of the C.I. at 95% (default)
- 3. p adj: p-value after adjustment for the multiple comparisons

$\begin{array}{ccc} & \text{Inferences} \\ \text{if p-value} \leq 0.05 & \Longleftrightarrow & \text{if zero is in the C.I.} \end{array}$

```
2 > library (multcomp)
  > summary(glht(res.aov, linfct = mcp(group = "Tukey")))
      Simultaneous Tests for General Linear Hypotheses
   Multiple Comparisons of Means: Tukey Contrasts
   Fit: aov(formula = rates ~ group, data = Data)
   Linear Hypotheses:
                       Estimate Std. Error t value Pr(>|t|)
   light - non == 0
                         0.8333
                                   5.1556
                                           0.162 0.99844
moderate – non == 0
                       9.3333
                                   5.1556 1.810 0.29776
  heavy - non == 0
                        19.3333
                                   5.1556 3.750 0.00629 **
  moderate - light == 0 8.5000
                                   5.1556
                                           1.649 0.37544
  heavy - light == 0
                        18.5000
                                   5.1556
                                           3.588 0.00901 **
  heavy - moderate == 0 10.0000
                                   5.1556
                                           1.940 0.24382
   Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' ' 1
  (Adjusted p values reported -- single-step method)
```

- 1 # Check ANOVA assumptions: test validity?
- 2 # diagnostic plots
- 3 layout (matrix(c(1,2),1,2)) # optional 1x2 graphs/page
- 4 plot (res.aov,c(1,2))

1. Residuals vs Fitted: test homogeneity of variances One can also use Levene's test for this purpose:

```
1  ># Use Levene's test to gest homogeneity of variances
2  > library (car)
3  > levene Test(rates ~ group, data = Data)
4  Levene's Test for Homogeneity of Variance (center = median)
5  Df F value Pr(>F)
6  group 3  0.3885  0.7625
7  20
```

Normal Q-Q plot: Test normality. (It should be close to diagonal line.) One can also use Shapiro-Wilk test:

```
# Extract the residuals

aov_residuals <- residuals(object = res.aov)

# Run Shapiro-Wilk test

shapiro-Wilk normality test

Shapiro-Wilk normality test

data: aov_residuals

W = 0.9741, p-value = 0.7677
```

Non-parametric alternative to one-way ANOVA test

See Section 4 of Chapter 14 for more details.