Automotive Door Control System Design (Dynamic Design)

Name: Abdullah Mohamed Abdullah

Email: mhamad50513@gmail.com

Dynamic Design

ECU 1

1- State Machine Diagram for each ECU1 Component

Door Sensor

Light Switch

Speed Sensor

2- State Machine Diagram for ECU1 Operation

Door Sensor

Light Switch

Speed Sensor

3- Sequence Diagram for CPU1

4- CPU load for CPU1

CPU Utilization =
$$100 - IDLE \ time$$

= $100 - 65 = 35\%$

ECU 2

1- State Machine Diagram

Buzzer(B)

Light Right (LR)

Light Right (LL)

ECU 2

- 2. State Machine Diagram for Operations
 - Buzzer(B)

Light Right (LR)

Light Right (LL)

3- Sequence Diagram for CPU2

4- CPU load for CPU2

CPU Utilization =
$$100 - IDLE \ time$$

= $100 - 65 = 35\%$