UNIVERSITY OF BRISTOL

January 2021 Examination Period

FACULTY OF ENGINEERING

Third Year Examination for the Degrees of Bachelor of Science Master of Engineering

COMS30039J Types and Lambda Calculus

TIME ALLOWED: 2 Hours

This paper contains *two* questions, answer *both*. Each question is worth 25 marks. The maximum for this paper is *50 marks*. Credit will be given for partially correct answers.

PLEASE WRITE YOUR 7 DIGIT STUDENT NUMBER (NOT CANDIDATE NUMBER) ON THE ANSWER BOOKLET. YOUR STUDENT NUMBER CAN BE FOUND ON YOUR UCARD.

Other Instructions:

You may use the lecture notes to help you, but you may not collaborate.

YOU MAY START IMMEDIATELY

Page 1 of 3

Q1. This question concerns the pure, untyped λ -calculus.

It will be useful to recall the combinators $\mathbf{I} = \lambda x \cdot x$ and $\mathbf{K} = \lambda x y \cdot x$

- (a) Give the set of free variables for each of the following terms:
 - i. $\lambda xyz.xz(yz)$
 - ii. $z(\lambda x. xy)$
 - iii. $\lambda z.(\lambda x.y)(xz)$
 - iv. $(\lambda x. x (\lambda y. xy))(\lambda x. y)$

[4 marks]

- (b) For each of the following, give a term M that satisfies the statement.
 - i. $Mx =_{\beta} xx$
 - ii. $M \lceil n \rceil =_{\beta} \lceil 2 * n \rceil$
 - iii. $M =_{\beta} MM$
 - iv. $Mx =_{\beta} MM$

[8 marks]

(c) Recall that there is a combinator **Pred** satisfying:

Pred
$$\lceil 0 \rceil =_{\beta} \lceil 0 \rceil$$

Pred
$$\lceil n+1 \rceil =_{\beta} \lceil n \rceil$$

Define combinators **Sub** and **Succ** as follows:

Succ
$$= \lambda nfx f(nfx)$$

Sub
$$= \lambda mn \ n \operatorname{Pred} m$$

Prove, by induction on *n*, that **Sub** satisfies:

Sub
$$\lceil m \rceil \lceil n \rceil =_{\beta} \begin{cases} \lceil 0 \rceil & \text{if } m \leq n \\ \lceil m - n \rceil & \text{otherwise} \end{cases}$$

You may use the fact that, for all natural numbers p, $\lceil p+1 \rceil =_{\beta} \mathbf{Succ} \lceil p \rceil$.

[7 marks]

(d) Prove that there does not exist a term M such that, for all terms N:

$$MN =_{\beta} \begin{cases} \mathbf{I} & \text{if } N \text{ is in } \beta\text{-normal form} \\ \mathbf{K} & \text{otherwise} \end{cases}$$

[3 marks]

(e) Find a finite sequence of *closed* terms M_1, M_2, \ldots, M_k for $k \ge 0$ such that the following two equations are both satisfied:

$$(\lambda x. x \mathbf{I} (x \mathbf{II})) M_1 M_2 \cdots M_k x y =_{\beta} x$$
$$(\lambda x. x \mathbf{I} (x x \mathbf{I})) M_1 M_2 \cdots M_k x y =_{\beta} y$$

[3 marks]

- **Q2**. This question concerns type systems.
 - (a) Give a typing derivation for each of the following judgements:
 - i. $\vdash \lambda xy.x: a \rightarrow b \rightarrow a$
 - ii. $\vdash \lambda x. x(\lambda y. y) : ((a \rightarrow a) \rightarrow b) \rightarrow b$
 - iii. $y : c \vdash (\lambda x. y)(\lambda xz. x) : c$

[6 marks]

- (b) For each of the following types, find a closed term that inhabits the type:
 - i. $a \rightarrow b \rightarrow b$
 - ii. $(a \rightarrow b) \rightarrow (a \rightarrow b \rightarrow c) \rightarrow a \rightarrow c$
 - iii. $c \to ((a \to b \to a) \to c \to d) \to d$

[6 marks]

(c) Prove, by induction on the Damas-Miler typing relation, that: if $\Gamma \vdash M : A$ then, for all Γ' , $\Gamma \subseteq \Gamma'$ implies $\Gamma' \vdash M : A$.

[6 marks]

(d) Define the order, order(A) of a monotype A recursively on the structure of A:

$$order(a) = 0$$

 $order(B \rightarrow C) = max(1 + order(B), order(C))$

where $\max(m, n)$ is the larger of the two natural numbers m and n. Prove that, if $\operatorname{order}(A) \leq 2$ and $\vdash M : A$, then there is a term N such that:

- (i) $M =_{\beta} \lambda x_1 \dots x_n$. N
- (ii) and, moreover, ${\it N}$ does not contain any abstraction as a subterm

[7 marks]