

Examen

P1. Sea $T: P_3(\mathbb{R}) \to P_3(\mathbb{R})$ la transformación lineal del espacio de polinomios con coeficientes reales de grado menor o igual que 3 definida por,

$$T(p(x)) = (x^2 - 3) \frac{d^2}{dx^2} p(x) \beta_2 \rightarrow \beta_4 = \beta_3 \beta_4 \rightarrow \beta_5 \beta_4$$

Sean $B_1 = \{1, x, x^2, x^3\}$ y $B_2 = \{1, x, x(x-1), x(x-1)(x-2)\}$ bases de $P_3(\mathbb{R})$.

- a) (2 ptos.) Determinar N, matriz representante de T con respecto a B_1 en la partida y B_1 en la llegada.
- b) (2 ptos.) Si anotamos M, a la matriz representante de T con respecto a B_2 en la partida y B_1 en la llegada, encuentre matrices P y Q tales que

P2. a) (2 ptos.) Sea $T: \mathbb{R}^n \to \mathbb{R}$ una función lineal. Pruebe que existe un único $a \in \mathbb{R}^n$ tal que

$$\forall x \in \mathbb{R}^n, \quad T(x) = \langle a, x \rangle = \bigcup_{i=1}^{N} 0_i \times i = 0^{t}.$$

b) (2 ptos.) Sea $P: \mathbb{R}^n \to \mathbb{R}^n$ una función lineal tal que $P \circ P = P$. Pruebe que

lineal tal que
$$P \circ P = P$$
. Pruebe que $\chi_{\eta} = \chi_{2} = \chi_{2} = \chi_{3} = \chi_{4} = \chi_{4}$

$$\mathbb{R}^n = \operatorname{Ker}(P) \oplus \operatorname{Im}(P)$$

- c) (2 ptos.) Sea $A \in M_{n,n}(\mathbb{R})$ una matriz invertible. Pruebe que AA^T es definida positiva.
- P3. a) (1,5 pto.) Sea $A \in M_{n,n}(\mathbb{R})$ simétrica. Probar que si A tiene un único valor propio $\lambda \in \mathbb{R}$, entonces A es diagonal. Concluya que si $A \in M_{n,n}(\mathbb{R})$ es simétrica y de coeficientes estrictamente positivos, entonces A tiene al menos 2 valores propios distintos.
 - b) Sea $A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$ con a, b, c > 0 y valores propios distintos λ y μ . Sean $u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$ y $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ base ortonormal de vectores propios de A asociados a λ y μ respectivamente.
 - (i) (1 pto.) Probar que $a + c = \lambda + \mu$.
 - (i) (1 pto.) Asuma que $|\lambda| > |\mu|$. Pruebe que $\lambda > 0$ y que $|\mu| < \lambda$.
 - (i) (1 pto.) Probar que $u_1 \neq 0$ y $u_2 \neq 0$.
 - (i) (1,5 ptos.) Descomponga $x \in \mathbb{R}^2$ como $x = \alpha u + \beta v$. Probar que $\alpha u = \lim_{n \to \infty} \frac{1}{\lambda^n} A^n x$ y que si x tiene coordenas positivas entonces αu también. Asuma que 1 λ1 > 1 m1

05 de diciembre de 2009 Sin consultas Tiempo: 3:00

