Summary

Machine can understand 0 or 1, so we use high level programming languages to communicate with machines.

Two ways to execute high level machine code:

<u>Translation</u> and interpretation

Hardwired or microprogram are two ways used in CPU's to implement the control unit.

Summary Current Multilevel Machines

Summary

Different Architectures

X86, AVR, ARM

Microprogrammed control unit

Hardwired control unit

- 1) Data Representations
- 2) Boolean Algebra
- 3) Logic gates

```
Math (review)
Number Systems
1. Decimal {0,1,...9}
2. Octal {0,1,...7}
3. Hexadecimal {0,1,...10(A),...15(F)}
4. Binary {0,1}
Floating Point Representation
```

Math

Laws of exponents

For any number a: $a^m \cdot a^n = a^{n+m}$ (same base but different powers) $a^1 = a$ $a^0 = 1$ $a = a \cdot 1$

```
10^{0} = 1

10^{1} = 10

100 = 10.10 = 10^{1}.10^{1} = 10^{2}

1000 = 10.10.10 = 10^{1}.10^{1}.10^{1} = 10^{3}
```

Positive and negative numbers

```
Positive numbers: +1 (1), +200,(200) +45(45)
Negative numbers: -1, -200, -45
Zero: is not positive or negative
-(-5) = 5
```

Math

Addition

Math Addition

Math

Addition

Math

Addition

5555

Math

Subtraction

Example:

$$4 - 9 = 4 + (-9) = -5$$

-9 - 4 = (-9) + (-4) = -13

Subtraction can be considered addition of a negative number

Example:

If you have 9 dollars and you owe someone 4 dollars, you really only have 5 dollars

$$9 - 4 = 9 + (-4) = 5$$

Math

Subtraction

Example:

$$4 - 4 = 4 + (-4) = 0$$

4 + positive number = 0 ????

<u>Is it possible to replace -4 with a positive number and get zero ?</u>

Decimal

```
Decimal system:
Symbols or digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Example:
    224 = two hundred twenty four
         200 20 4
       = 200 + 20 + 4
       = 2 \times 100 + 2 \times 10 + 4
       = 2x(10x10) + 2x10 + 4
       = 2 \times 10^2 + 2 \times 10^1 + 4 \times 1
       = 2 \times 10^2 + 2 \times 10^1 + 4 \times 10^0
```

Decimal

Decimal system:

```
Symbols or digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
```

Example:

390 =

Octal

Octal system:

Symbols or digits: 0, 1, 2, 3, 4, 5, 6, 7

Example:

$$20 (20_{10}) = 24_8$$

Converting decimal to octal

- 1. Continually divide by 8 until the number is greater than or equal zero and less than 8
- 2. At each step write down the reminder ($0 \le \text{reminder} < 8$)
- 3. At the end write out the remainders in the reverse order

$$20_{10} = 24_{8}$$

Data Representations Octal

```
Octal system:

Symbols or digits: 0, 1, 2, 3, 4, 5, 6, 7
```

```
Example: 100 (100_{10}) = (144)_8
```

Data Representations Octal

Converting octal to decimal

$$(a_n...a_3a_2a_1a_0)_8 = a_nx8^n + ... + a_3x8^3 + a_2x8^2 + a_1x8^1 + a_0x8^0$$

Example:

$$24_8 = 2X8^1 + 4X8^0 = 20$$

 $100_8 = 1X8^2 + 0X8^1 + 0X8^0 = 64$

$$108_8 = (?)_{10}$$

Hexadecimal

Hexadecimal systems:

```
Symbols or digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A(10), B(11), C(12), D(13), E(14), F(15)
```

Example:

```
224_{10} = E0_{16}

224_{10} = EX16^2 + 0X16^0 = 14X16^2 + 0X16^0
```

Converting decimal to hexadecimal

- 1. Continually divide by 16 until the number is greater than or equal zero and less than 16
- 2. At each step write down the reminder (0 \leq reminder < 16)
- 3. At the end write out the remainders in the reverse order

Hexadecimal

Hexadecimal systems:

```
Symbols or digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A(10), B(11), C(12), D(13), E(14), F(15)
```

```
100_{10} = (64)_{16}
```

Data Representations Hexadecimal

Converting hexadecimal to decimal

$$(a_n...a_3a_2a_1a_0)_8 = a_nx16^n + ... + a_3x16^3 + a_2x16^2 + a_1x16^1 + a_0x16^0$$

$$E0_{16} = EX16^1 + 0X16^0 = 14X16^1 + 0X16^0 = 224_{10}$$

$$ABC_{16} = (?)_{10}$$

Binary systems:

Symbols or digits: 0, 1

```
7_{10} = 111_2

8_{10} = 1000_2

9_{10} = 1001_2

10_{10} = 1010_2

100_{10} = 1100100_2
```

Binary

Converting decimal to binary

- 1. Continually divide by 2 until the number is greater than or equal zero and less than 2
- 2. At each step write down the reminder ($0 \le \text{reminder} < 2$)
- 3. At the end write out the remainders in the reverse order

Example:

$$224_{10} = 11100000_2$$

Converting binary to decimal

$$(a_n...a_3a_2a_1a_0)_2 = a_nx2^n + ... + a_3x2^3 + a_2x2^2 + a_1x2^1 + a_0x2^0$$

- 2^N quantities can be represented by N bits (number of different combinations)
- Covers numbers between 0 and $2^N 1$

Binary system is used in computers

- Binary devices are easy to design (circuits)
- Two voltage levels (on, off)

Binary addition:

$$\begin{array}{c|cccc}
0 & 0 & 1 & 1 \\
+0 & +1 & +0 & +1 \\
\hline
0 & 1 & 10
\end{array}$$

Example:

carry out

01000

_ _ _ _ _ _

110111

Binary, negative numbers:

- Sign-magnitude representation
 - uses the most significant bit(sign bit)
 - 2. <u>zero</u> for positive numbers and <u>one</u> for negative numbers

Binary, negative numbers:

• Sign-magnitude representation

Example:

4 bits

1 1 1 1 -7

0 1 1 1 1 +7

-(
$$2^{4-1} - 1$$
) $\leq \text{numbers} \leq +(2^{4-1} - 1)$

 $-7 \leq \text{numbers} \leq +7$

Binary, negative numbers:

- Sign-magnitude representation
 - 1. Two zeros, \pm 0
 - 2. Difficult to perform addition and subtraction

Question: what is sign-magnitude representation of ±10 in 6 bits?

±10 ?

Binary, negative numbers:

Two's-complement notation
 negative number is obtained by inverting each bit of
 the number(1->0 and 0->1) and adding 1 to the result

Binary, negative numbers:

Two's-complement notation
 negative number is obtained by inverting each bit of
 the number(1->0 and 0->1) and adding 1 to the result

$$24_{10} = 11000_2 - 24_{10} = 01000_2$$

 $11000_2 + (-11000_2) = 0$
 $11000 + 01000 = 100000$

- Two's-complement notation
 - The sign of a number is determined by examining the high bit, 1 for negative numbers and 0 positive numbers
 - 2. Retrieving the original number by applying twice two's-complement technique
 - 3. One representation of 0
 - 4. No need to design a new hardware for number subtraction e.g. 3-13 = 3 + (-13)
 - 5. Can represent values from $-(2^{N-1})$ to $(2^{N-1}-1)$

Example: use the 8-bit representation
to obtain 3-13

```
Example: use the 8-bit representation to
  obtain 3-13 = -10
3_2 = 00000011
13_2 = 00001101
(-13)_{10} = (11110010+1)_{2} = 11110011_{2}
3_{10} - 13_{10} = (00000011 + 11110011)_2 = 11110110_2 =
 (-10)_{10}
(-10)_{10} = 11110110_2
-(-10)_{10} = (00001001 + 1)_{2} = (00001010)_{2} =
  + 10<sub>10</sub>
```

Binary to Hexadecimal and vice versa

- 1. Divide the binary number into sets of 4 digits starting from right to left
- 2. Use the hexadecimal equivalent of every 4 digit binary number from right to left

Binary	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

Binary to Hexadecimal and vice versa

Example : 1101010011010

			1	1	0	1	0	1	0	0	1	1	0	1	0
0	0	0	1	1	0	1	0	1	0	0	1	1	0	1	0
1 A			9				Δ								

1A9A

Binary	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

Binary to Hexadecimal and vice versa

Example : FBC9

F B C 9

1 1 1 1 1 0 1 1 1 0 0 1 1

1111101111001001

Binary	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

Example: memory

Binary	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

```
1184:0100
                          F3 AE 47-61 O3 1F 8B
1184:0110
                          OA DO D3-48 DA 2B DO 34 OO A3 11
1184:0120
                       EO 03 FO 8E-DA 8B C7 16 CZ B6 01 16
                       CZ AC 8A DO-OO OO 4E AD 8B C8 46 8A
11B4:0130
1184:0140
                       BO 75 05 AC-F3 AA AO OA
1184:0150
                          01 50 14-74
1184:0160
                          DZ Z9 E3-13 8B CZ 03 C3 69 0Z 00
                       FF 74 11 26-01 1D E2 F3 81 00 94 FA
1184:0170
```

Data Representations Basic concepts

64 bits, 1 word = 8 bytes

Data Representations Floating Point Representation

Central Processing Unit (CPU):

• Arithmetic Logic Unit (ALU)

Performs integer arithmetic operations such as addition, subtraction, and logic operations such as AND, OR, XOR, NOT and so on.

Floating Point Unit (FLU/FPU)

performs floating point operations.

• Registers

Local fast memories

• Control Unit

Floating Point Representation

Complex numbers

Real numbers

Rational numbers

Integer numbers

Extremely large and small values:

Sun/Mass : $1.989 \times 10^{30} \text{ kg}$

Electron/Mass: $9.11 \times 10^{-31} \text{ kg}$

Fraction × Base power

Floating Point Representation

Decimal fractions to Binary conversion

Example:

$$3.14_{10} = 3 + 0.14 = 3 + 14/100 = 3 + (10+4)/100 = 3 + 10/100 + 4/100$$

= $3 + 1/10 + 4/100 = 3 \times 10^{0} + 1 \times 10^{-1} + 4 \times 10^{-2}$
 $3.14_{10} = 3 \times 10^{0} + 1 \times 10^{-1} + 4 \times 10^{-2}$

$$512.123 = 5 \times 10^2 + 1 \times 10^1 + 2 \times 10^0 + 1 \times 10^{-1} + 2 \times 10^{-2} + 3 \times 10^{-3}$$

Floating Point Representation

Decimal fractions to Binary conversion

Example:

$$110.11_{2} = (1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2})_{10}$$

$$= (4 + 2 + 0.5 + 0.25)_{10}$$

$$= 6.75_{10}$$

$$0.75_{10} = (0.11)_2$$

 $0.75 = 0.75 \times 2 = 1.5$
 $= 0.5 \times 2 = 1.0$

Floating Point Representation

Decimal fractions to Binary conversion

Example :

```
0.6_{10} = (0.100110011001....)_{2}
0.6 = 0.6 \times 2 = 1.2
= 0.2 \times 2 = 0.4
= 0.4 \times 2 = 0.8
= 0.8 \times 2 = 1.6
= 0.6 \times 2 = 1.2
```

$$0.125_{10} = (0.001)_2$$

= $0.125 \times 2 = 0.25$
= $0.25 \times 2 = 0.5$
= $0.5 \times 2 = 1.0$

Floating Point Representation

Normalized Floating Point Numbers

Floating point(FP)

Base =2

$$(-1)^S \times 1.F \times 2^E$$

```
S = sign (0-positive number , 1-negetive number)
F = fraction (fixed point number)
    called mantissa or significand
E = exponent (positive or negative integer)
```

Floating Point Representation

Normalized Floating Point Numbers

Floating point(FP)

Base =2

$$(-1)^S \times 1.F \times 2^E$$

$$100101.101_2 = (-1)^0 \times 1.00101101_2 \times 2^5$$

S = 0, F = 00101101, E = 5

Floating Point Representation

Normalized Floating Point Numbers

Floating point(FP)

Base =2

$$(-1)^S \times 1.F \times 2^E$$

 $-0.001_2 = ?$ Obtain S, F, and E value ?

Floating Point Representation

Normalized Floating Point Numbers

Floating point(FP)

Base =2

$$(-1)^S \times 1.F \times 2^E$$

```
110000.101100110011001101_2 = ? Obtain S, F, and E value ?
```

Floating Point Representation

IEEE 754 standard

Single precision numbers (32bits)

Double precision numbers (64bits)

Floating Point Representation

IEEE 754 standard (Part F)

Single precision numbers

- 1.000000000000000000000000
- 1.111111111111111111111111111

$$1 \le 1.F \le (2-2^{-23})$$

 $1 \le 1.F < 2$

Floating Point Representation

IEEE 754 standard (Part F)

Double precision numbers

$$1 \le 1.F \le (2-2^{-52})$$

 $1 \le 1.F < 2$

Floating Point Representation

IEEE 754 standard (Part E)

Single precision numbers

bias 127

$$E_b = 127 + E$$

Double precision numbers

bias 1023

Floating Point Representation

Examples:

$$-0.75_{10} = -0.11_2 = -1.1_2 \times 2^{-1}$$

$$2 \times 0.75 = 1.50$$

$$2 \times 0.50 = 1.00$$

$$0.75_{10} = 0.11_2$$