Chapitre 3

Fonctions usuelles

Objectifs

- Définir et étudier les fonctions logarithmes, exponentielles.
- Définir et étudier les fonctions puissances. Comparaison.
- Définir et étudier les fonctions hyperboliques, leurs propriétés.
- Inversion des fonctions hyperboliques et des fonctions circulaires.

Sommaire

I)	Fonctions logarithmes et exponentielles		
	1)	Logarithme népérien	1
	2)	Logarithmes de base a	3
	3)	La fonction exponentielle	3
	4)	Fonctions exponentielles de base a	4
II)	Fonctions puissances		5
	1)	Puissance quelconque	5
	2)	Croissance comparée de ces fonctions	6
III)	Fonc	tions circulaires - Fonctions hyperboliques	7
	1)	Fonctions circulaires : rappels	7
	2)	Fonctions hyperboliques	8
	3)	Trigonométrie hyperbolique	10
IV)	Inver	rsion de fonctions usuelles	10
	1)	Inversion des fonctions circulaires	10
	2)	Inversion des fonctions hyperboliques	13
V)	Anne	exes	15
	1)	Injection (ou application injective)	15
	2)	Surjection (ou application surjective)	15
	3)	Bijection (ou application bijective)	15
VI)	Exer	cices	16

I) Fonctions logarithmes et exponentielles

1) Logarithme népérien

La fonction $x\mapsto \frac{1}{x}$ est continue sur $]0;+\infty[$, elle admet une unique primitive qui s'annule en 1.

L'unique primitive de la fonction $x\mapsto \frac{1}{x}$ sur $]0;+\infty[$ qui s'annule en 1 est appelée **logarithme népérien** et notée ln. On a donc $\forall x>0, \ln(x)=\int_1^x \frac{dt}{t}.$

Cette fonction est donc dérivable sur $I =]0; +\infty[$ et $\boxed{\ln'(x) = \frac{1}{x}}$, elle est donc strictement croissante sur I.

Soit y > 0, la fonction $f : x \mapsto \ln(xy)$ et dérivable sur I et $f'(x) = y \frac{1}{xy} = \frac{1}{x}$, on en déduit que $f(x) = \ln(x) + c$ où c est une constante, on a $\ln(y) = f(1) = \ln(1) + c = c$, par conséquent on obtient :

-THÉORÈME 3.1 (Propriété fondamentale du logarithme)

$$\forall x, y > 0, \ln(xy) = \ln(x) + \ln(y).$$

Conséquences :

- Si *u* est une fonction dérivable qui ne s'annule pas, alors $[\ln(|u|)]' = \frac{u'}{u}$.
- $\forall x, y \in \mathbb{R}^*, \ln(|xy|) = \ln(|x|) + \ln(|y|).$
- $\forall x, y \in \mathbb{R}^*, \ln(|\frac{x}{y}|) = \ln(|x|) \ln(|y|).$
- $\forall n \in \mathbb{Z}^*, \forall x \in \mathbb{R}^*, \ln(|x^n|) = n \ln(|x|).$

🌳 THÉORÈME 3.2 (Limites du logarithme népérien)

$$\lim_{x \to +\infty} \ln(x) = +\infty; \ \lim_{x \to 0^+} \ln(x) = -\infty; \ \lim_{x \to +\infty} \frac{\ln(x)}{x} = 0; \ \lim_{x \to 0^+} x \ln(x) = 0; \ \lim_{x \to 1} \frac{\ln(x)}{x - 1} = 1.$$

Preuve: $\forall n \in \mathbb{N}, \ln(2^n) = n \ln(2)$ or $\ln(2) > 0$, donc la suite $(\ln(2^n))$ tend vers $+\infty$ ce qui prouve que la fonction ln n'est pas majorée, par conséquent elle tend $+\infty$.

En posant
$$X = \frac{1}{x}$$
 on a $\lim_{x \to 0^+} X = +\infty$ donc $\lim_{x \to 0^+} \ln(x) = \lim_{X \to +\infty} -\ln(X) = -\infty$.

$$\lim_{x \to 1} \frac{\ln(x)}{x - 1} = \ln'(1) = 1.$$

Pour $t \ge 1$ on a $\sqrt{t} \le t$ et donc pour $x \ge 1$ on a $0 \le \ln(x) \le \int_1^x \frac{dt}{\sqrt{t}} = 2[\sqrt{x} - 1]$, le théorème des gendarmes entraı̂ne $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$.

Courbe représentative :

THÉORÈME 3.3 (Inégalité de convexité)

$$\forall x > 0, \ln(x) \leq x - 1.$$

Preuve: Il suffit d'étudier la fonction $f: x \mapsto \ln(x) - x + 1$.

2) Logarithmes de base a

🎖 THÉORÈME 3.4

Soit $f:]0; +\infty[\to \mathbb{R}$ une application dérivable telle que $\forall x, y > 0, f(xy) = f(x) + f(y)$, alors il existe une constante k telle que $\forall x > 0, f(x) = k \ln(x)$.

Preuve: En dérivant par rapport à y on a xf'(xy) = f'(y) d'où [avec y = 1] $f'(x) = \frac{k}{x}$ en posant k = f'(1), on en déduit que $f(x) = k \ln(x) + c$ avec c = f(1) = 2f(1) donc c = 0 et $f(x) = k \ln(x)$.

Remarque: On peut montrer que le théorème reste vrai si on remplace f dérivable par f continue.

Lorsque k = 0 la fonction f est nulle, lorsque $k \neq 0$, il existe un unique réel a > 0 différent de 1 tel que $\ln(a) = \frac{1}{k}$, ce qui donne $f(x) = \frac{\ln(x)}{\ln(a)}$

DÉFINITION 3.2

Soit $a \in \mathbb{R}_+^* \setminus \{1\}$, on appelle **logarithme de base** a la fonction notée \log_a et définie sur $]0; +\infty[$ $par \log_a(x) = \frac{\ln(x)}{\ln(a)}$

Remarques:

- $\forall x, y \in \mathbb{R}^*_+, \log_a(xy) = \log_a(x) + \log_a(y).$
- $-\log_a(1) = 0$ et $\log_a(a) = 1$.
- On note *e* l'unique réel strictement positif tel que ln(e) = 1, on a alors $ln = log_e$.
- La fonction \log_a est dérivable et $\forall x > 0, \log_a'(x) = \frac{1}{r \ln(a)}$.
- $-\log_{\frac{1}{2}} = -\log_a.$

3) La fonction exponentielle

La fonction ln est strictement croissante sur $I =]0; +\infty[$, elle définit donc une bijection de I sur $J = \operatorname{Im}(\ln)$, comme elle est continue on a $\operatorname{Im}(\ln) = \lim_{n \to \infty} \ln \lim_{n \to \infty} \ln = \mathbb{R}$.

DÉFINITION 3.3

La réciproque est appelée fonction exponentielle et notée exp, elle est définie par :

exp:
$$\mathbb{R} \to]0; +\infty[$$

 $x \mapsto \exp(x) = y \text{ tel que } y > 0 \text{ et } \ln(y) = x$

Propriétés:

- La fonction exp est strictement croissante sur \mathbb{R} et continue, de plus $\exp(0) = 1$ et $\exp(1) = e$.
- La fonction ln est dérivable sur]0;+∞[et sa dérivée ne s'annule pas, donc la fonction exp est dérivable sur \mathbb{R} et $\exp'(x) = \frac{1}{\ln'(\exp(x))} = \exp(x)$
- Dans un repère orthonormé, la courbe de la fonction exp et celle de la fonction ln sont symétriques par rapport à la première bissectrice.

Soient $x, y \in \mathbb{R}$, notons $X = \exp(x)$ et $Y = \exp(y)$ alors X et Y sont dans $]0; +\infty[$ on peut donc écrire ln(XY) = ln(X) + ln(Y) ce qui donne x + y = ln(XY), par conséquent exp(x + y) = XY = exp(x) exp(y), on peut donc énoncer:

Notation: On déduit de ce théorème que pour tout entier $n \in \mathbb{Z}$ et pour tout réel x on a $\exp(nx)$ $[\exp(x)]^n$. En particulier on a pour x=1, $\exp(n)=[\exp(1)]^n=e^n$. Si p et q sont deux entiers premiers entre eux avec $q \neq 0$ et si $r = \frac{p}{q}$, alors $\exp(qr) = \exp(r)^q = e^p$, comme $\exp(r) > 0$ on peut écrire $\exp(r) = \sqrt[q]{e^p} = e^r$ [cf fonctions puissances]. On convient alors d'écrire pour tout réel x:

$$\exp(x) = e^x$$

Les propriétés s'écrivent alors :

- $-e^{x+y} = e^x \times e^y.$
- $e^0 = 1$, $e^{-x} = \frac{1}{e^x}$, $\forall n \in \mathbb{Z}$, $e^{nx} = [e^x]^n$. Si u désigne une fonction dérivable alors $[e^u]' = u' \times e^u$.
- $\forall x \in \mathbb{R}, e^x \ge x + 1.$

Preuve: Soit $X = e^x$, on sait que $\ln(X) \le X - 1$ ce qui donne l'inégalité.

Preuve: La fonction exp est continue et strictement croissante sur \mathbb{R} donc Im(exp) = $\lim_{n \to \infty} \exp[=]0; +\infty[$. Soit $X = e^x \text{ alors } \lim_{x \to +\infty} \frac{e^x}{x} = \lim_{X \to +\infty} \frac{X}{\ln(X)} = +\infty. \lim_{x \to 0} \frac{e^x - 1}{x} = \exp'(0) = 1.$

Il en découle que $\lim_{x \to +\infty} xe^{-x} = 0$.

Fonctions exponentielles de base a

- THÉORÈME 3.7

Soit $f: \mathbb{R} \to]0; +\infty[$ une fonction dérivable telle $\forall x, y \in \mathbb{R}, \ f(x+y) = f(x)f(y)$, alors il existe un réel k tel que $\forall x \in \mathbb{R}, f(x) = e^{kx}$.

Preuve: On a en dérivant par rapport à y : f'(x + y) = f(x)f'(y), en prenant y = 0 on obtient f'(x) = f'(0)f(x), d'où $\frac{f'(x)}{f(x)} = k$ en posant k = f'(0), donc $\ln(f(x)) = kx + c$, or on a forcément f(0) = 1 ce qui donne c = 0, finalement on a $f(x) = e^{kx}$.

Il existe un réel a > 0 tel que $\ln(a) = k$, on peut donc écrire $f(x) = e^{x \ln(a)}$.

ØDéfinition 3.4

Soit a > 0, *on appelle* **exponentielle de base** a, *la fonction notée* \exp_a *définie sur* \mathbb{R} *par :*

$$\forall x \in \mathbb{R}, \ \exp_a(x) = e^{x \ln(a)}.$$

Remarques:

- $\forall x, y \in \mathbb{R}, \exp_a(x+y) = \exp_a(x) \times \exp_a(y).$
- $-\exp_a(0) = 1$, $\exp_a(1) = a$ et $\forall x \in \mathbb{R}$, $\exp_e(x) = e^x$.
- La fonction \exp_a est dérivable et $\forall x \in \mathbb{R}, \exp_a'(x) = \ln(a) \exp_a(x)$.
- $\exp_{\frac{1}{a}} = \frac{1}{\exp_a}.$
- Lorsque $a \neq 1$, la fonction \exp_a est bijective et sa réciproque est \log_a .

Preuve: Si
$$x > 0$$
: $\exp_a(\log_a(x)) = e^{\ln(x)} = x$ et si $x \in \mathbb{R}$, $\log_a(\exp_a(x)) = \frac{\ln(e^{x \ln(a)})}{\ln(a)} = x$.

- Comme pour la fonction exponentielle [de base e] on montre que $\forall r \in \mathbb{Q}$, $\exp_a(r) = a^r$. Par conséquent on pose pour tout réel $x: \exp_a(x) = a^x$. Avec cette notation on a $(\forall x, y \in \mathbb{R}, \forall a, b \in]0; +\infty[)$:
 - $-a^x = \exp(x \ln(a)).$
 - $-\ln(a^x) = x\ln(a)$.
 - $-a^{x+y} = a^x \times a^y, a^0 = 1 \text{ et } a^1 = a.$ $-a^{-x} = \frac{1}{a^x}, \text{ d'où } a^{x-y} = \frac{a^x}{a^y}.$

 - $[a^x]^y = \exp(y \ln(a^x)) = \exp(xy \ln(a)) = a^{xy} \text{ et donc } (\frac{1}{a})^x = \frac{1}{a^x}.$
 - $-a^x \times b^x = \exp(x \ln(a)) \times \exp(x \ln(b)) = \exp(x \ln(ab)) = (ab)^x \text{ et donc } \left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}.$
 - Si $x \neq 0$, $a^x = b \iff b = a^{\frac{1}{x}}$.

Seul un réel strictement positif peut être élevé à une puissance quelconque, par exemple $\pi^{\sqrt{2}}$ est égal à [d'après la définition ci-dessus] $\exp_{\pi}(\sqrt{2}) = \exp(\sqrt{2}\ln(\pi))$.

II) **Fonctions puissances**

Les puissances entières sont supposées connues.

1) Puissance quelconque

Si α est un réel et si x > 0 alors on a déjà adopté la notation suivante :

$$x^{\alpha} = \exp_{x}(\alpha) = e^{\alpha \ln(x)}$$
.

Cela définit une fonction f_{α} continue et dérivable sur $]0; +\infty[$ avec la formule :

$$\lceil x^{\alpha} \rceil' = \alpha x^{\alpha - 1}.$$

Il en découle que si u est une fonction dérivable à valeurs strictement positives, alors la fonctin u^{α} est dérivable et:

$$(u^{\alpha})' = \alpha \times u' \times u^{\alpha - 1}$$

On a $\lim_{x\to 0} f_{\alpha}(x) = \begin{cases} 0 & \text{si } \alpha > 0 \\ +\infty & \text{si } \alpha < 0 \end{cases}$. Dans le premier cas on pose $0^{\alpha} = 0$, dans le second cas il y a une asymptote verticale.

Lorsque $\alpha > 0$: $\frac{x^{\alpha} - 0}{x} = e^{(\alpha - 1)\ln(x)} \xrightarrow[x \to 0]{} \begin{cases} 0 & \text{si } \alpha > 1 \\ +\infty & \text{si } 0 < \alpha < 1 \end{cases}$, lorsque $\alpha > 1$ on a une tangente horizontale et lorsque α < 1 on a une tangente verticale

Cas particuliers (avec x > 0):

- a) Lorsque $\alpha = n \in \mathbb{Z}$, on retrouve bien les puissances entières car $\exp(n \ln(x)) = (\exp(\ln(x)))^n = x^n$.
- b) Lorsque $\alpha = \frac{1}{n}$ avec $n \in \mathbb{N}^*$: soit $y = x^{\alpha}$, on a $y^n = \exp(\frac{n}{n}\ln(x)) = x$, comme y est positif, on dit que y est la racine nième de x. Notation pour x > 0: $x^{1/n} = \sqrt[n]{x}$.
- c) Lorsque $\alpha = \frac{p}{q} \in \mathbb{Q}$ avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$: soit $y = x^{\alpha}$, on a $y^q = \exp(q\frac{p}{q}\ln(x)) = x^p$, comme y est positif, on dit que y est la racine qième de x^p . Autrement dit, pour x > 0: $x^{p/q} = \sqrt[q]{x^p}$.

🛜 THÉORÈME 3.8 (Propriétés) Avec x, y > 0 et $\alpha, \beta \in \mathbb{R}$: $-x^{\alpha} \times x^{\beta} = x^{\alpha+\beta}, \text{ et donc } x^{-\alpha} = \frac{1}{x^{\alpha}}, \text{ et } \frac{x^{\alpha}}{x^{\beta}} = x^{\alpha-\beta}.$ $-(x^{\alpha})^{\beta} = x^{\alpha\beta}.$ $-(xy)^{\alpha} = x^{\alpha} \times y^{\alpha}.$

- Pour α non nul, $y = x^{\alpha} \iff x = y^{\frac{1}{\alpha}}$.

Exemples:

- Soient *u* et *v* deux fonctions dérivables avec *u* > 0, calculer la dérivée de la fonction *x* → $u(x)^{v(x)}$.
- Calculer $\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x$.

Remarque: Pour les réels x strictement positifs, on peut définir les puissances complexes à l'aide de l'exponentielle complexe en posant $x^z = e^{z \ln(x)}$.

Croissance comparée de ces fonctions

ØDéfinition 3.5

Soit f et g deux fonctions qui ne s'annulent pas au voisinage d'un point a, on dit que f et négligeable devant g au voisinage de a lorsque : $\lim_{x\to a} \frac{f(x)}{g(x)} = 0$.

Comparaison des puissances : si $\alpha < \beta$ alors x^{α} est négligeable devant x^{β} au voisinage de $+\infty$ et x^{β} est négligeable devant x^{α} au voisinage de 0. C'est à dire :

$$\lim_{x \to +\infty} \frac{x^{\alpha}}{x^{\beta}} = 0 \text{ et } \lim_{x \to 0^{+}} \frac{x^{\beta}}{x^{\alpha}} = 0.$$

Comparaison des puissances et des logarithmes : si α et β sont des réels strictement positifs, alors $[\ln(x)]^{\beta}$ est négligeable devant x^{α} au voisinage de $+\infty$ et $|\ln(x)|^{\beta}$ est négligeable devant $\frac{1}{x^{\alpha}}$ au voisinage de 0. C'est à dire :

$$\lim_{x \to +\infty} \frac{[\ln(x)]^{\beta}}{x^{\alpha}} = 0 \text{ et } \lim_{x \to 0^+} x^{\alpha} |\ln(x)|^{\beta} = 0.$$

Preuve: $\frac{[\ln(x)]^{\beta}}{x^{\alpha}} = \left(\frac{\frac{\beta}{\alpha}\ln(u)}{u}\right)^{\beta} = k\left(\frac{\ln(u)}{u}\right)^{\beta}$ avec $u = x^{\frac{\alpha}{\beta}}$, ce qui donne la première limite. La deuxième en découle avec le changement de variable $u = \frac{1}{x}$.

Comparaison des puissances et des exponentielles : si α est un réel et si $\beta > 0$, alors x^{α} est négligeable devant $e^{\beta x}$ au voisinage de $+\infty$, c'est à dire :

$$\lim_{x \to +\infty} x^{\alpha} e^{-\beta x} = 0$$

Preuve: Lorsque $\alpha \le 0$ il n'y rien à démontrer. Lorsque $\alpha > 0$, $u = e^x \longrightarrow_{x \to +\infty} +\infty$ et on a $x^{\alpha}e^{-\beta x} = \frac{[\ln(u)]^{\alpha}}{u^{\beta}} \longrightarrow_{u \to +\infty} 0$. \square

Exemple: Comparer x^{α} et $e^{x^{\beta}}$ au voisinage de $+\infty$.

Fonctions circulaires - Fonctions hyperboliques III)

Fonctions circulaires : rappels

Le plan \mathscr{P} est muni d'un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$. Soit x un réel, et M(x) le point du cercle trigonométrique tel que $(\overrightarrow{u},\overrightarrow{OM}) = x \pmod{2\pi}$ alors les coordonnées de M(x) sont $(\cos(x),\sin(x))$, lorsque cela est possible, on pose $tan(x) = \frac{\sin(x)}{\cos(x)}$.

Le réel x représente également la longueur de l'arc de cercle (AM) avec A(1,0), le cercle étant orienté dans le sens direct.

Quelques propriétés :

- $\forall x \in \mathbb{R}, \cos^2(x) + \sin^2(x) = 1.$
- Les fonctions sinus et cosinus sont 2π -périodiques définies continues dérivables sur \mathbb{R} , à valeurs dans [-1; 1], et on a $\sin' = \cos \cot \cos' = -\sin$.

- La fonction tangente est π -périodique, définie continue dérivable sur $\mathbb{R} \setminus \{\frac{\pi}{2} + k\pi\}$ et on a $\tan'(x) =$ $1 + \tan^2(x) = \frac{1}{\cos^2(x)}.$
- Les fonctions sinus et tangente sont impaires alors que la fonction cosinus est paire.

- On a les relations $\sin(\pi + x) = -\sin(x)$ et $\cos(\pi + x) =$
- $\frac{\pi}{3}$ $\frac{\pi}{2}$ 0 x 1 sin(x)- On a les valeurs remarquables : cos(x)0 $\sqrt{3}$ tan(x)

comme $\sin(\pi - x) = \sin(x)$ et $\cos(\pi - x) = -\cos(x)$, on peut compléter le tableau avec les valeurs $\frac{2\pi}{3}$, $\frac{3\pi}{4}$, $\frac{5\pi}{6}$ et π , la parité permet ensuite d'avoir un tableau de $-\pi$ à π . – Formules d'addition : $\forall x,y \in \mathbb{R}$ on a :

- - $-\cos(x+y) = \cos(x)\cos(y) \sin(x)\sin(y).$

 - $-\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y).$ $-\tan(x+y) = \frac{\tan(x)+\tan(y)}{1-\tan(x)\tan(y)}.$

- $\forall x \in \mathbb{R}$, $|\sin(x)| \le |x|$, $0 \le 1 - \cos(x) \le \frac{x^2}{2}$ et $|\tan(x)| \ge |x|$. **Preuve**: Il suffit de le démontrer pour x positif en étudiant la fonction $x \mapsto x - \sin(x)$, puis on intègre de 0 à xce qui donne la deuxième inégalité. La troisième s'obtient en étudiant $x \mapsto x - \tan(x)$.

Extension: on peut prolonger les fonctions sinus et cosinus à \mathbb{C} en posant $\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$ et $\sin(z) = \frac{e^{iz} + e^{-iz}}{2}$ $\frac{e^{iz}-e^{-iz}}{2i}$.

2) Fonctions hyperboliques

DÉFINITION 3.6

Pour $x \in \mathbb{R}$, on pose $\operatorname{ch}(x) = \frac{e^x + e^{-x}}{2}$ [cosinus hyperbolique], $\operatorname{sh}(x) = \frac{e^x - e^{-x}}{2}$ [sinus hyperbolique] et $\operatorname{th}(x) = \frac{\operatorname{sh}(x)}{\operatorname{ch}(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ [tangente hyperbolique].

Le cosinus hyperbolique : la fonction ch est paire, définie continue dérivable sur \mathbb{R} et ch' $(x) = \operatorname{sh}(x)$, on en déduit le tableau de variation et la courbe :

Quelques propriétés :

$$- \forall x \in \mathbb{R}, \operatorname{ch}(x) \geqslant 1.$$

$$-\lim_{x\to +\infty} \frac{\operatorname{ch}(x)}{x} = +\infty$$
 et $\lim_{x\to +\infty} \frac{\operatorname{ch}(x)}{e^x} = \frac{1}{2}$

 $-\forall x \in \mathbb{R}, \operatorname{ch}(x) \geqslant 1.$ $-\lim_{x \to +\infty} \frac{\operatorname{ch}(x)}{x} = +\infty \text{ et } \lim_{x \to +\infty} \frac{\operatorname{ch}(x)}{e^x} = \frac{1}{2}.$ **Le sinus hyperbolique**: la fonction sh est impaire, définie continue dérivable sur \mathbb{R} et $\operatorname{sh}'(x) = \operatorname{ch}(x)$, on en déduit le tableau de variation et la courbe :

Quelques propriétés :

$$- \forall x \in \mathbb{R}, \operatorname{ch}(x) \geq 1$$

$$-\forall x \in \mathbb{R}, \operatorname{ch}(x) \ge 1.$$

$$-\lim_{x \to +\infty} \frac{\operatorname{ch}(x)}{x} = +\infty \text{ et } \lim_{x \to +\infty} \frac{\operatorname{ch}(x)}{e^x} = \frac{1}{2}.$$

$$-\forall x \in \mathbb{R}, \operatorname{ch}(x) + \operatorname{sh}(x) = e^x \text{ et } \operatorname{ch}(x) - \operatorname{sh}(x) = e^{-x}.$$

$$- \forall x \in \mathbb{R}, \operatorname{ch}(x) + \operatorname{sh}(x) = e^x \operatorname{et} \operatorname{ch}(x) - \operatorname{sh}(x) = e^{-x}$$

$$- \forall x > 0, x < \operatorname{sh}(x) < \operatorname{ch}(x)$$

$$-\lim_{x\to +\infty} \frac{\sinh(x)}{x} = +\infty$$
 et $\lim_{x\to +\infty} \frac{\sinh(x)}{e^x} = \frac{1}{2}$.

 $\begin{array}{l} - \ \forall x > 0, \, x < \mathrm{sh}(x) < \mathrm{ch}(x). \\ - \lim_{x \to +\infty} \frac{\mathrm{sh}(x)}{x} = +\infty \ \mathrm{et} \ \lim_{x \to +\infty} \frac{\mathrm{sh}(x)}{e^x} = \frac{1}{2}. \end{array}$ **La tangente hyperbolique** : la fonction th est impaire, définie continue dérivable sur $\mathbb R$ et

$$th'(x) = \frac{ch^2(x) - sh^2(x)}{ch^2(x)} = 1 - th^2(x) = \frac{1}{ch^2(x)}$$

d'où les variations et la courbe :

Quelques propriétés :

- $\forall x \in \mathbb{R}, -1 < \operatorname{th}(x) < 1.$
- $\forall x > 0, \text{th}(x) < x.$

3) Trigonométrie hyperbolique

- $\forall x \in \mathbb{R}, \operatorname{ch}^{2}(x) \operatorname{sh}^{2}(x) = 1.$
- Formules d'addition : $\forall x, y \in \mathbb{R}$ on a :
 - $\operatorname{ch}(x+y) = \operatorname{ch}(x)\operatorname{ch}(y) + \operatorname{sh}(x)\operatorname{sh}(y).$
 - $\operatorname{sh}(x+y) = \operatorname{sh}(x)\operatorname{ch}(y) + \operatorname{ch}(x)\operatorname{sh}(y).$ $\operatorname{th}(x+y) = \frac{\operatorname{th}(x)+\operatorname{th}(y)}{1+\operatorname{th}(x)\operatorname{th}(y)}.$

 $ch(2x) = 2ch^2(x) - 1 = 1 + 2sh^2(x)$

- y = p q, on obtient :
 - y = p q, on obtain . $\operatorname{ch}(x) + \operatorname{ch}(y) = 2\operatorname{ch}(\frac{x+y}{2})\operatorname{ch}(\frac{x-y}{2}).$ $\operatorname{ch}(x) \operatorname{ch}(y) = 2\operatorname{sh}(\frac{x+y}{2})\operatorname{sh}(\frac{x-y}{2}).$ $\operatorname{sh}(x) + \operatorname{sh}(y) = 2\operatorname{sh}(\frac{x+y}{2})\operatorname{ch}(\frac{x-y}{2}).$ $\operatorname{th}(x) + \operatorname{th}(y) = \frac{\operatorname{sh}(x+y)}{\operatorname{ch}(x)\operatorname{ch}(y)}.$

Remarque: Il est possible d'étendre ces fonctions aux complexes, en posant pour $z \in \mathbb{C}$: $ch(z) = \frac{e^z + e^{-z}}{2}$ et $sh(z) = \frac{e^z + e^{-z}}{2}$ $\frac{e^z-e^{-z}}{2}$. On peut déduire des formules d'*Euler* que pour tout réel x, $\cos(x)=\cosh(ix)$ et $i\sin(x)=\sinh(ix)$.

Inversion de fonctions usuelles

La fonction exponentielle est notre premier exemple de fonction obtenue comme inversion d'une fonction usuelle (la fonction ln), c'est à dire définie comme bijection réciproque d'une fonction connue. Nous allons définir six nouvelles fonctions en appliquant le théorème des bijections à des fonctions usuelles sur des intervalles particuliers.

Inversion des fonctions circulaires 1)

La fonction arcsin: la fonction sin est strictement croissante sur $I = \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$, elle définit une bijection de I sur $J = \left[\sin(-\frac{\pi}{2}); \frac{\pi}{2}\right] = \left[-1; 1\right]$. La bijection réciproque est notée arcsin $\left[\arcsin s\right]$, elle est définie par : arcsin: $\left[-1; 1\right] \rightarrow \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$. $x \mapsto \arcsin(x) = y \text{ tel que } \begin{cases} y \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right] \\ \sin(y) = x \end{cases}$

$$x \mapsto \arcsin(x) = y \text{ tel que } \begin{cases} y \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right] \\ \sin(y) = x \end{cases}$$

Exemple: $\arcsin(0) = 0$, $\arcsin(\frac{1}{2}) = \frac{\pi}{6}$, ...

Cette fonction est strictement croissante et continue sur [-1;1], elle est dérivable sur]-1;1[mais pas en -1 ni en 1 [tangente verticale en ces points], on a la formule suivante :

$$\forall x \in]-1;1[,\arcsin'(x) = \frac{1}{\cos(\arcsin(x))} = \frac{1}{\sqrt{1-x^2}}.$$

Propriétés:

- $\forall x \in [-1; 1], \sin(\arcsin(x)) = x.$
- $\forall x \in [-\frac{\pi}{2}; \frac{\pi}{2}], \arcsin(\sin(x)) = x.$ $\forall x \in [-\frac{\pi}{2}; \frac{\pi}{2}], \arcsin(\sin(x)) = x.$ $\forall x \in [-1; 1], \arcsin(-x) = -\arcsin(x) \text{ [fonction impaire]}.$ $\forall x \in [-1; 1], \cos(\arcsin(x)) = \sqrt{1 x^2}.$ $\forall x \in [-\pi; \pi], \arcsin(\cos(x)) = \frac{\pi}{2} |x|.$

La fonction $f: x \mapsto \arcsin(\sin(x))$ n'est pas l'identité, elle est 2π - périodique et impaire, il suffit donc l'étudier sur $[0; \pi]$, mais elle vérifie $f(\pi - x) = f(x)$, la droite $x = \frac{\pi}{2}$ est donc un axe de symétrie et l'étude se réduit à $[0; \frac{\pi}{2}]$, intervalle sur lequel f(x) = x.

La fonction arccos: la fonction $f:[0;\pi] \to [-1;1]$ définie par $f(x) = \cos(x)$, est continue et strictement décroissante, elle définit donc une bijection de $[0; \pi]$ sur [-1; 1]. Par définition, la bijection réciproque est appelée fonction arccosinus et notée arccos, elle est définie par :

arccos:
$$[-1;1] \rightarrow [0;\pi]$$

 $x \mapsto \arccos(x) = y \text{ tel que } \begin{cases} y \in [-0;\pi] \\ \cos(y) = x \end{cases}$

Exemple: arccos(1) = 0, $arccos(0) = \frac{\pi}{2}$, $arccos(-\frac{1}{2}) = \frac{2\pi}{3}$, ...

Cette fonction est strictement décroissante et continue sur [-1;1], elle est dérivable sur]-1;1[mais pas en -1 ni en 1 [tangente verticale en ces points], on a la formule suivante :

$$\forall x \in]-1;1[,\arccos'(x) = \frac{-1}{\sin(\arccos(x))} = \frac{-1}{\sqrt{1-x^2}}.$$

Propriétés:

- \forall *x* ∈ [-1;1], $\cos(\arccos(x)) = x$.
- $\forall x \in [0; \pi], \arccos(\cos(x)) = x.$
- $\forall x \in [-1; 1], \sin(\arccos(x)) = \sqrt{1 x^2}.$
- $\forall x \in [-1; 1], \arccos(x) + \arcsin(x) = \frac{\pi}{2}.$ $\forall x \in [-1; 1], \arccos(-x) = \pi \arccos(x).$

La fonction $f: x \mapsto \arccos(\cos(x))$ n'est pas l'identité, elle est 2π - périodique et paire, il suffit donc l'étudier sur $[0; \pi]$ intervalle sur lequel f(x) = x.

La fonction arctan: la fonction $f:]-\frac{\pi}{2}; \frac{\pi}{2}[\to \mathbb{R}$ définie par $f(x) = \tan(x)$, est continue et strictement croissante, elle définit donc une bijection de $]-\frac{\pi}{2}; \frac{\pi}{2}[$ sur \mathbb{R} . Par définition, la bijection réciproque est appelée fonction arctangente et notée arctan, elle est définie par :

$$\arctan: \mathbb{R} \to]-\frac{\pi}{2}; \frac{\pi}{2}[\\ x \mapsto \arctan(x) = y \text{ tel que } \begin{cases} y \in]-\frac{\pi}{2}; \frac{\pi}{2}[\\ \tan(y) = x \end{cases}.$$

Exemple: $\arctan(0) = 0$, $\arctan(1) = 1$, $\arctan(\sqrt{3}) = \frac{\pi}{3}$, ...

Cette fonction est strictement croissante, continue et dérivable sur $\mathbb R$ et on a la formule suivante :

$$\forall x \in \mathbb{R}, \arctan'(x) = \frac{1}{1 + \tan^2(\arctan(x))} = \frac{1}{1 + x^2}.$$

Propriétés:

- $\forall x \in \mathbb{R}, \tan(\arctan(x)) = x.$ $\forall x \in] -\frac{\pi}{2}; \frac{\pi}{2}[, \arctan(\tan(x)) = x.$
- $\forall x \in \mathbb{R}, \arctan(-x) = -\arctan(x).$

- $\forall x \in \mathbb{R}_{+}^{*}$, $\operatorname{arctan}(x) + \operatorname{arctan}(\frac{1}{x}) = \frac{\pi}{2}$. - $\forall x \in \mathbb{R}$, $\operatorname{arctan}(x) = \operatorname{arcsin}\left(\frac{x}{\sqrt{1+x^2}}\right)$. - $\forall x \in \mathbb{R}$, $\operatorname{arctan}(x) = \operatorname{Arg}(1+ix)$.

2) Inversion des fonctions hyperboliques

La fonction ch définit une bijection de $[0; +\infty[$ sur l'intervalle $[1; +\infty[$, la bijection réciproque est notée argch [argument cosinus hyperbolique] et définie par :

argch:
$$[1; +\infty[$$
 \rightarrow $[0; +\infty[$ $x \mapsto \operatorname{argch}(x) = y \text{ tel que } y \ge 0 \text{ et ch}(y) = x$

Cette fonction est continue sur $[1; +\infty[$, strictement croissante, dérivable sur $]1; +\infty[$ mais pas en 1 (car la dérivée de ch s'annule en 0 et ch(0) = 1), sa dérivée est :

$$\forall x > 1, \operatorname{argch}'(x) = \frac{1}{\operatorname{sh}(\operatorname{argch}(x))} = \frac{1}{\sqrt{x^2 - 1}}.$$

Propriétés:

- $\forall x \ge 0$, argch(ch(x)) = x.
- $\forall x \ge 1$, $\operatorname{ch}(\operatorname{argch}(x)) = x$.
- $\forall x \ge 1$, argch(x) = ln(x + $\sqrt{x^2 1}$).

Preuve: $y = \operatorname{argch}(x) \iff y \ge 0$ et $e^y + e^{-y} = 2x \iff y \ge 0$ et $e^{2y} - 2e^y + 1 = 0 \iff e^y = x + \sqrt{x^2 - 1}$.

 $-\lim_{x\to+\infty}\frac{\operatorname{argch}(x)}{x}=0 \text{ et } \lim_{x\to+\infty}\frac{\operatorname{argch}(x)}{\ln(x)}=1.$

La fonction sh définit une bijection de $\mathbb R$ sur $\mathbb R$, la bijection réciproque est notée argsh [argument sinus hyperbolique] et définie par :

$$\operatorname{argsh}: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto \operatorname{argsh}(x) = y \text{ tel que sh}(y) = x$

Cette fonction est continue sur \mathbb{R} , strictement croissante, dérivable sur \mathbb{R} (car la dérivée de sh ne s'annule pas), sa dérivée est :

$$\forall x \in \mathbb{R}, \operatorname{argsh}'(x) = \frac{1}{\operatorname{ch}(\operatorname{argsh}(x))} = \frac{1}{\sqrt{x^2 + 1}}.$$

Propriétés:

- $\forall x \in \mathbb{R}, \operatorname{argsh}(\operatorname{sh}(x)) = x \text{ et } \operatorname{sh}(\operatorname{argsh}(x)) = x.$
- ∀ $x \in \mathbb{R}$, argsh $(-x) = -\operatorname{argsh}(x)$.

Preuve: Soit $a = -\operatorname{argsh}(x)$, $\operatorname{sh}(a) = -\operatorname{sh}(\operatorname{argsh}(x)) = -x$, donc $a = \operatorname{argsh}(-x)$.

 $- \forall x \in \mathbb{R}, \operatorname{argsh}(x) = \ln(x + \sqrt{x^2 + 1}).$

Preuve: $y = \operatorname{argsh}(x) \iff e^y - e^{-y} = 2x \iff e^{2y} - 2e^y - 1 = 0 \iff e^y = x + \sqrt{x^2 + 1}$.

- $\forall x > 0, x < \operatorname{argsh}(x).$

 $-\lim_{x\to +\infty}\frac{\operatorname{argsh}(x)}{x}=0 \text{ et }\lim_{x\to +\infty}\frac{\operatorname{argsh}(x)}{\ln(x)}=1.$ La fonction th définit une bijection de $\mathbb R$ sur] -1; 1[, la bijection réciproque est notée argth [argument] tangente hyperbolique] et définie par :

$$argth:]-1;1[\rightarrow \mathbb{R}$$
 $x \mapsto argth(x) = y \text{ tel que th}(x) = y$

Cette fonction est continue sur]-1;1[, strictement croissante, dérivable sur]-1;1[(car la dérivée de th ne s'annule pas), sa dérivée est :

$$\forall x \in]-1; 1[, \operatorname{argth}'(x) = \frac{1}{1 - \operatorname{th}^2(\operatorname{argth}(x))} = \frac{1}{1 - x^2}.$$

Propriétés:

- $\forall x \in \mathbb{R}$, argth(th(x)) = x et $\forall x \in]-1;1[$, th(argth(x)) = x.
- $\forall x \in]-1;1[, \operatorname{argth}(-x) = -\operatorname{argth}(x).$

Preuve: Soit $a = -\operatorname{argth}(x)$, $\operatorname{th}(a) = -\operatorname{th}(\operatorname{argth}(x)) = -x$, donc $a = \operatorname{argth}(-x)$.

- $\forall x > 0, \operatorname{argth}(x) > x.$
- $\forall x \in]-1; 1[, \operatorname{argth}(x) = \frac{1}{2} \ln \left(\frac{1+x}{1-x}\right).$

V) Annexes

Injection (ou application injective)

Soient E et F deux ensembles et soit $f: E \to F$ une application (tout élément de E a une et une seule image), on dit que f est une **injection** (ou une application injective) lorsque :

$$\forall x, y \in E, x \neq y \Longrightarrow f(x) \neq f(y),$$

ie des éléments distincts ont des images distinctes. Ce qui peut s écrire encore en prenant la contraposée :

$$\forall x, y \in E, f(x) = f(y) \Longrightarrow x = y.$$

Exemples:

- $-f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$ définie par $f(x) = \frac{x+1}{x-1}$ est une injection.
- -g:]0;+∞[→ \mathbb{R} définie par $g(x) = \ln(x)$ est une injection.
- $-h:\mathbb{R}\to\mathbb{R}$ définie par $h(x)=x^2$ n'est pas une injection.

Quelques propriétés :

- a) $f: E \to F$ est injective ssi tout élément de F a **au plus un antécédent** dans E par f.
- b) La composée de deux injections est une injection.
- c) Si la composée $g \circ f$ est injective, alors f est injective.

Surjection (ou application surjective)

Soient E, F deux ensembles et soit $f: E \to F$ une application, on dit que f est une surjection (ou application surjective) lorsque tout élément de F a au moins un antécédent par f, ce qui peut s'écrire de la manière suivante :

$$\forall y \in F, \exists x \in E, f(x) = y.$$

Exemples:

- $f: \mathbb{C} \to \mathbb{C}$ définie par $f(z) = z^2$ et une surjection. $f: \mathbb{R} \to \mathbb{U}$ définie par $f(x) = e^{ix}$ est une surjection. $h: \mathbb{R} \setminus \{1\} \to \mathbb{R}$ définie par $h(x) = \frac{2x+1}{x-1}$ n'est pas surjective.

Ouelques propriétés:

- a) La composée de deux surjections est une surjection.
- b) Si la composée $f \circ g$ est surjective, alors f est surjective.

3) Bijection (ou application bijective)

Soient E, F deux ensembles et $f: E \to F$ une application, on dit que f est une **bijection** (ou application bijective) lorsque tout élément de F a un unique antécédent par f, ce qui peut s'écrire de la manière suivante:

$$\forall y \in F, \exists ! \ x \in E, f(x) = y.$$

Dire que tout élément de F a un unique antécédent revient à dire que tout élément de F a au moins un antécédent et au plus un antécédent. Par conséquent dire que f est bijective revient à dire que f est surjective et injective. On retiendra donc :

f est bijective \iff f est surjective et injective.

Si $f: E \to F$ est une bijection, alors on peut considérer l'application qui va de F vers E et qui à tout élément x de F associe son unique antécédent par f, cette application est appelée bijection réciproque **de** f, on la note f^{-1} :

$$f^{-1}: F \rightarrow E$$

 $x \mapsto y$ défini par $f(y) = x$.

On peut aussi écrire (lorsque f est bijective) : $\forall x \in F, \forall y \in E, f^{-1}(x) = y \iff f(y) = x$.

Exemples:

- $-f: [0; +\infty[\rightarrow [0; +\infty[$ définie par $f(x) = x^2$ est une bijection.
- $g : \mathbb{R}$ →]0;+∞[définie par $g(x) = e^x$ est une bijection.
- $h : \mathbb{R}$ → \mathbb{R} définie par $h(x) = e^x$ n'est pas une bijection.

Quelques propriétés :

- a) Si $f: E \to F$ et $g: F \to H$ sont deux bijections, alors la composée $g \circ f$ est une bijection de E vers H, de plus sa bijection réciproque est : $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- b) Si $f: E \to F$ est bijective, alors $f^{-1} \circ f = \mathrm{id}_E$ et $f \circ f^{-1} = \mathrm{id}_F$.

🚜 Définition 3.7

Une involution est une application f d'un ensemble E vers **lui - même** telle que $f \circ f = \mathrm{id}_E$. Une telle application est bijective et elle est sa propre réciproque : $f^{-1} = f$.

VI) **Exercices**

★Exercice 3.1

Résoudre les équations suivantes :

a)
$$x^{\sqrt{x}} = \sqrt{x}^x$$
 b) $2^{x^3} = 3^{x^2}$ c) $\log_a(x) = \log_x(a)$ d) $\log_3(x) - \log_2(x) = 1$.

★Exercice 3.2

- a) Simplifier les sommes : $\sum_{k=0}^{n} \operatorname{ch}(a+kb)$ et $\sum_{k=0}^{n} \operatorname{sh}(a+kb)$.
- b) Simplifier le produit $P_n = \prod_{k=0}^{n} (2\operatorname{ch}(2^k a) 1)$. On commencera par simplifier $(2\operatorname{ch}(a) + 1)P_n$.

★Exercice 3.3

Étudier la dérivabilité des fonctions suivantes et calculer leur dérivée :

a)
$$f(x) = th(x) - \frac{1}{3}th^3(x)$$

b)
$$f(x) = \arcsin(\operatorname{th}(x))$$

c)
$$f(x) = \arctan(\sinh(x))$$

d)
$$f(x) = \arctan(\operatorname{th}(x))$$

e)
$$f(x) = \arcsin\left(\frac{1+x}{1-x}\right)$$

f)
$$f(x) = \sqrt{\frac{1 - \arcsin(x)}{1 + \arcsin(x)}}$$

d)
$$f(x) = \arctan(\operatorname{th}(x))$$
 e) $f(x) = \arcsin\left(\frac{1+x}{1-x}\right)$ f) $f(x) = \sqrt{\frac{1-\arcsin(x)}{1+\arcsin(x)}}$ g) $f(x) = \arctan\left(\frac{1}{1+x^2}\right)$ h) $f(x) = \arctan\left(\sqrt{\frac{1-\sin(x)}{1+\sin(x)}}\right)$

★Exercice 3.4

Étudier les fonctions suivantes :

- a) $x \mapsto \arcsin(\sin(x))$ b) $x \mapsto \arccos(\cos(x))$
- c) $x \mapsto \arctan(\tan(x))$ d) $x \mapsto \arctan(\tan(x)) + \arccos(\cos(x))$.

Soient $x, y \in \mathbb{R}$, simplifier $\arctan(x) + \arctan(y)$.

★Exercice 3.6

- a) Montrer que $\arctan(7) + 2\arctan(3) = \frac{5\pi}{4}$.
- b) Montrer que : $4\arctan(\frac{1}{5}) \arctan(\frac{1}{239}) = \frac{\pi}{4}$.
- c) Pour $p \in \mathbb{N}$, calculer $\arctan(p+1) \arctan(p)$. En déduire la limite de la suite (S_n) définie $\operatorname{par} S_n = \sum_{n=0}^n \arctan\left(\frac{1}{p^2 + p + 1}\right)$.

★Exercice 3.7

Soit $f(x) = \arcsin(x) + 2\arctan\left(\sqrt{\frac{1-x}{1+x}}\right)$. Ensemble de définition de f? Dérivabilité de f? Calculer f' et en déduire une simplification de f(x).

★Exercice 3.8

Montrer que la fonction $f(x) = 2\arctan(\sqrt{x^2+1}-x) + \arctan(x)$ est constante sur \mathbb{R} .

★Exercice 3.9

Soit $f(x) = 2\arctan(e^x) - \arctan(\sinh(x))$. Étudier la dérivabilité de f et simplifier f(x).

★Exercice 3.10

Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction continue en 0 telle que $\forall x \in \mathbb{R}, f(2x) = f(x)$. Montrer que f est constante.