K-Theory and Localization

Recall...

- · co-Q. construction of Barwick
- · K: Exact ∞-Cat -> Sp
- · defined stable co-cat

Goals:

- · Motivate K as stable -invariant
- · Additivity Property
- · Applications of Additivity, e.g. descent

K of Schemes

Rmk: K in this talk will really be non-connective, as slightly cleaner version of additivity

Waldhausen S.

· K(C):= |wS.(C)|, C = cat w/cofib or co-cat where SnC=

- · Prop: K via Q. = via S. if both defined
- · Prop: K(C) = K(Stab(C)), so consider K: Cata → Sp

$\cdot K(X)$

- recall $K(R) \cong K(Proj_{+,2}(R))$, where RHS via Q.
- thus, motivates K(X) := K(Vect(X))
- however, Thomason-<u>Trobaugh</u> ⇒ K(X) := K(Perf(XI) ria S.
 - → 'deeper base', e.g. G-R-R and pushforward
 - -> similar motivation for co-cat, e.g. Zariski descent

Stable 00-Cat

Examples

- · Stab(C) = $\lim_{m \to \infty} (m \to C_* \xrightarrow{\Omega} C_* \xrightarrow{\Omega} C_*)$
- · Sp := Stab (Anim) i.e. Stab (S)
- · (most) triangulated cat, e.g. D(R)

Properties

· enriched in Sp ie

{ roughly, S <>> Set, Sp <>> Ab}

· pushout \ pullback, e.g. fiber = cofiber

 $\mathfrak{D}(X)$

- z.) D(R) := Anim" (Moda), or model cat, or dg cat etc
- iz.) X= Spec A, D: (Xzcr) D → Cutes via D(Zl(f)) = D(A[f-1])

 Pf Barr-Beck-Lurie
- $\dot{z}\dot{z}\dot{z}$.) I! $D: (Sch_{zar})^{op} \rightarrow Cat_{co}$ s.t. extends affine case i.e. $D(X) \cong \lim_{S \to X} D(S)$, S affine

Rmk: fails for non co-cat version e.g. consider

is not a 2-pullback since \exists nonzero monthism $O \rightarrow O(-2)[1]$ which go to zero in pullback

defn: F & D(R) perfect if F & thick (A) and

F & D(X) perfect if restriction to all affines is

Rmk: Perf(-) also Zariski sheef since local condition

Categorical Preregs

· Compacts

- xel compact if Mep(x,-) communes w/filtered adim
- e.g. finitely presented groups/R-modules etc
- Rmk: triangulated/stable, STS for coproduct
- compactly generated = jointly conservative set of compacts
- Prop: $\mathcal{B}(X)^{\omega} = Perf(X)$

· Idem(C)

- ie every idempotent splits
- 2- Cats: finite lim/colim
 - e.g. Free(R) → Proj(R), Open → Man
- cats: lim/colim but not finite
- Prop: K is Morita invariant

· Ind(C)

- freely adjoin filtered colim to C; Fun (Cop, 5) for Ce Cates
- Prop: Ind (C) = Idem(C)
- Prop: X gcgs, Ind (Perf(X)) = D(X)

Categories of stable categories

- · Cata
 - small, Stable @-cet
 - exact functors, ie preserve finite lim/colim

- · Cato
 - small, idempotent-complete stable co-cet
 - exact functors, ie preserve finite lim/colim
 - via Morita invariance, K: Cato > Sp
- · Prst
 - presentable stable o-cat w/left adjoint functors
 4 adjoint functor theorem
 - Prop: Cato Prop Prop

Karoubi seguences

Verdier quotients

defn: A sequence $D \xrightarrow{i} C \xrightarrow{p} E$ in Catas is

Karoubi if the following hold:

- z.) poz = 0
- zi.) z is tally faithful
- iii) & = Idem (C/D)

Prop: let $C \in Catoo$, $D \subseteq C$ stable, $p: C \to C/D$, then Ind(p)=L $ker L \to Ind(C) \xrightarrow{Ind(C/D)} Ind(C/D)$ is a fiber ie SES

segn in Pr_{s+}^{L} w/fully faithful right adjoint w/ker $L \cong Ind(D)$

Cor: (Thomason - Neeman localization)

D→C→C/D Karoubi ⇔ Ind(-) is fiber segn in Print

Rmk: Bousfield Localizations

Additivity Thm

`Additivity' Thm:

K: Cato → Sp sends Karoubi segn to fiber segn.

{ ie K is a 'localizing invariant'; e.g. THH}

Pf: · Waldhausen 1985, Blumberg-Gepner-Ebuccha 2013

- · Barwide 2013
- · Hebestreit Ladmann Steimle 2023

Universality Thm

K is the universal localizing invariant, e.g. it is corepresentable in noncommutative motives via $map(\mathcal{U}(Sp^{\omega}), \mathcal{U}(A)) \cong K(A)$

Pf: • "

General Strategy

- z.) show Ind (C) → Ind (B) is a Bousfield localization
- zz.) show kernel is compactly generated

22.b.) if not, use Efimor K-theory

zzz.) apply additivity

Applications - Descent

I.) Base Case

- · consider basic Zariski open i.e.
- · let A be comm ring, feA
- have $\mathcal{O}(A) \xrightarrow{f \in \mathcal{A}(f^{-1})} \mathcal{O}(A[f^{-1}])$

$$P_{rop}: \ker i^{\omega} \rightarrow P_{erf}(A) \rightarrow P_{erf}(A[f])$$

$$Pf - D(A), D(A[f-1])$$
 compactly generated

- WTS ker j compactly generated
- note ker j = D(Aon(f))
- $k(f) = cofib(A \xrightarrow{f} A) \in \mathcal{D}(A \circ n(f))$ is compact
- STS VM & D(A on (f)), Hom (k(f), M)=0 > M=0
- Hom $(k(f), M) = f_i b(M \xrightarrow{f} M) = 0 \Rightarrow M \xrightarrow{f} M \Rightarrow M = 0$
- recognize Perf (A) = D(A) + apply lemma

Cor: we have a fiber sequence in Sp, $K(Perf(Aon(f)) \longrightarrow K(A) \longrightarrow K(A[f^{-1}])$

Applications - Descent

II.) Zariski Descent

Thm: (Neeman; Bondal - van der Bergh)

let X acqs scheme, $U \subseteq X$ acopen, $Z := X \setminus U$, then $\mathcal{D}_{gc}(X \text{ on } Z) \to \mathcal{D}_{gc}(X) \to \mathcal{D}_{gc}(U)$ is a SES in Prst and each category belongs to $Pr_{st}^{L,w}$

Cor: $Perf(X \text{ on } Z) \rightarrow Perf(X) \rightarrow Perf(U)$ is Karoubi

Idea - incluet on covers since gogs + direct sum; Koszul complex

Prop: K: Schiegs -> Sp scristics Zariski descent

- Pf i.) Zariski descent \Leftrightarrow Mayer-Vietoris i.e. WTS $K(X) \longrightarrow K(U)$ X = UUV, qc opens $\Rightarrow \qquad \downarrow \qquad \downarrow$ $K(V) \longrightarrow K(UnV)$
 - ii) let $Z = X \setminus U'$, $Z' = V \setminus U \cap V$ then we have $Perf(X on Z) \longrightarrow Perf(X) \longrightarrow Perf(U) \quad \text{via Zaviski descent to}$ $S \downarrow \qquad \qquad \downarrow^J \qquad \qquad \downarrow$ $Perf(V on Z) \longrightarrow Perf(V) \longrightarrow Perf(W) \quad \text{limits commute}$
 - izi.) $K_{\mathbf{Z}}(X) \longrightarrow K(X) \longrightarrow K(\mathcal{U})$ iso on fibers \Rightarrow $\begin{cases} \downarrow & \downarrow & \downarrow \\ K_{\mathbf{Z}'}(V) \longrightarrow K(V) \longrightarrow K(\mathcal{U} \cap V) \end{cases}$ Cartesian Educates now pt3

Applications - Descent

II.) Nisnevich Descent

defn: a Nisnevich cover $\{2U_i \xrightarrow{f_i} X\}$ if each f_i is étale and \forall Spec $k \rightarrow X$, $\exists i$ s.t. we have a lift

Prop: K-theory satisfies Nisnevich descent

i.) STS that all Nisnevich squares i.e.

where j is an open immersion $V \xrightarrow{j} X = u \cup v$ and π is Etcle and single-sheeted on $X \mid V$, ie $\pi^{-1}(X \mid V) \cong X \mid V$ is sent to a homotopy pullback Consider $K(X) \longrightarrow K(V)$ and $S: K(X) \xrightarrow{>} F$, F the pullback

izi.) $Perf(X \text{ on } Z) \rightarrow Perf(X) \rightarrow Perf(U)$ and thus vic $Perf(V \text{ on } Z) \rightarrow Perf(V) \rightarrow Perf(W)$ and it ivity of K_1 $fib(Y) \rightarrow K(X)$ note lower rectangle pullbacks, $fib(Y) \rightarrow F \rightarrow K(V)$ hence so is lower left square $fib(Y) \rightarrow K(V) \rightarrow K(V)$ hence so is lower left square $fib(Y) \rightarrow K(V) \rightarrow K(V)$ \Rightarrow left rectangle, thus upper left

pullback => by stability, a pushout, so f equivalence >> 5 equivalence

Applications - K(P2)

defn: let \mathcal{C} be a stable ∞ -cat, $\mathcal{D} \subseteq \mathcal{C}$ stable full subject. $\chi \in \mathcal{C} \text{ is left orthogonal to } \mathcal{D} \text{ if } Map(\chi, \mathcal{C}) \cong \mathcal{C} \text{ denote subject of left/right orthog, resp.}$

defn: let $\mathcal{E}(0)$, ..., $\mathcal{E}(-n)$ be full stable subcat s.t.

i.) $\forall z > j$, $\mathcal{E}(z) \subseteq^{\perp} \mathcal{E}(j)$ ii.) \mathcal{E} is generated by $\mathcal{E}(0)$, ..., $\mathcal{E}(-n)$ under finite limits and colimits. then we say that $(\mathcal{E}(0), \dots, \mathcal{E}(-n))$ is a Semi-orthogonal decomposition of \mathcal{E}

Prop: let $C \le m$ be the full stable subject generated by $C(-m) \cup U \cup C(-n)$, $0 \le m \le n$. Then we have a split Karaubi segn $C \le -m \longrightarrow C(-m)$

Thm: (Beilinson) $D^b(\mathbb{R}^1) = \langle \mathcal{O}_x, \mathcal{O}_x (-1) \rangle$

Cor: $K(\mathbb{P}^2_{\mathbb{R}}) \cong K(\mathbb{R}) \oplus K(\mathbb{R})$