GAOTIAN WANG

gwang@rice.edu https://vector-wangel.github.io/

EDUCATION

SEP 2022 - PRESENT

Rice University, Houston, TX Ph.D. in Computer Science Advisor: Dr. Kaiyu Hang

SEP 2018 - JUN 2022

University of Science and Technology of China, Hefei, China

B.S. in Optical Engineering and Computer Science

Advisor: Dr. Nikolaos M. Freris

RESEARCH INTERESTS

- ♦ Robot Manipulation, Manipulation under Uncertainties, Compliant Mechanisms
- Machine Learning, Deep Learning, Reinforcement Learning, Large Language Models Applications
- Optimal Control, Motion Planning

RESEARCH EXPERIENCE

SEP 2022 - PRESENT

Robot Π **Lab** at Rice University, Houston, TX Graduate Student, Advisor: Dr. Kaiyu Hang

- ♦ Unified Nonprehensile Object Pushing via Non-Parametric Estimation and Model Predictive Control (UNO Push): A combined framework addressing system modeling, action generation, and precise pushing via non-parametric estimation. It includes system motion models from few exploratory actions and precise pushing manipulation with continuously updated imprecise system models using in-task experiences.
- ♦ Manipulation Funnels for Robust Object Manipulation and a Case Study on Planar Pushing: A new robotic manipulation schematic, validated via extensive experiments. It efficiently conducts planar pushing tasks in open-loop scenarios, without requiring object specifics. The method's durability and adaptability to complex paths and shapes were confirmed through in-task disruptions.

Nov 2021 - Jun 2022

AloT Lab at USTC, Hefei, China

Undergraduate Researcher, Advisor: Dr. Nikolaos M. Freris

♦ Modeling and Control of Soft Arm via Piecewise Universal Joint Model: Introduced a new modeling method for soft robot arms under a piecewise universal joint (PUJ) assumption for improved interaction and dynamics with validated kinematic and dynamic models and a configuration space and a task space controller for dynamic trajectory tracking.

APR 2021 - SEP 2021

Reconfigurable Robotics Lab *at EPFL, Lausanne, Switzerland* Guest Researcher, Supervisor: Dr. Fabio Zuliani and Dr. Jamie Paik

♦ **Origami Structures Stiffness Modeling**: An efficient origami simulator using Taichi GPU platform, incorporating stiffness modeling and testing methodologies, validated on an origami joystick with less than 10% error under linear spring assumption.

AUG 2020 - OCT 2021

USTC Soft Robotics Lab at USTC, Hefei, China

Undergraduate Researcher, Dr. Hao Jiang and Dr. Xiaoping Chen

♦ Sim to Real Transfer of the Soft Robotics Arm via Q-learning: Proposed a scalable 3D model for a soft manipulator with realistic actuation and workspace. Also, proposed a Q-learning controller for a physical soft robot using pre-trained models from a rough simulator. Experimental validation showed our method's robustness, improved accuracy, and faster convergence rate by reducing real-world training data.

Professional Service

Referee:

- ♦ IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023
- ♦ IEEE International Conference on Robotics and Automation (ICRA), 2024
- ♦ IEEE Robotics and Automation Letters (RAL), 2024

SKILLS

Programming Capabilities: ROS, C, C++, Matlab, Python, Arduino Simulation Environments: PyBullet, Isaac gym, MuJoCo, Taichi

Deep Learning Frameworks: PyTorch, Tensorflow

Others: 3D modeling and printing, Solidworks, soldering, Mathematica,

COMSOL Multiphysics, OMPL, RViz

PUBLICATIONS

Preprints under review

P1. **Gaotian Wang**[†], Kejia Ren[†], Andrew S. Morgan, and Kaiyu Hang. "Title withheld for double-blind review." In Robotics: Science and Systems, 2024. [†] Equal Contribution. Under Review

Peer-Reviewed Journal Papers

J1. Yinghao Gan, Peijin Li, Hao Jiang, **Gaotian Wang**, Yusong Jin, Xiaoping Chen, and Jianmin Ji. 2022. "A Reinforcement Learning Method for Motion Control With Constraints on an HPN Arm." *IEEE Robotics and Automation Letters* 7 (4): 12006–13. https://doi.org/10.1109/LRA.2022.3196789.

Peer-Reviewed Conference Papers

- C5. Gaotian Wang, Kejia Ren, and Kaiyu Hang. "UNO Push: Unified Nonprehensile Object Pushing via Non-Parametric Estimation and Model Predictive Control." In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2025. (To appear)
- C4. Howard Qian, Yangxiao Lu, Kejia Ren, **Gaotian Wang**, Ninad Khargonkar, Yu Xiang, and Kaiyu Hang. 2024 "RISeg: Robot Interactive Object Segmentation via Body Frame-Invariant Features." In 2024 IEEE International Conference on Robotics and Automation (ICRA)
- C3. Zhanchi Wang, **Gaotian Wang**, Xiaoping Chen, and Nikolaos M Freris. 2024 "Kinematic Modeling and Control of a Soft Robotic Arm with Non-constant Curvature Deformation." In 2024 IEEE International Conference on Robotics and Automation (ICRA)
- C2. Zhanchi Wang, **Gaotian Wang**, Xiaoping Chen, and Nikolaos M. Freris. 2023. "Dynamic Modeling and Control of a Soft Robotic Arm Using a Piecewise Universal Joint Model." In *2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)*, 1–6. Koh Samui, Thailand: IEEE. https://doi.org/10.1109/ROBIO58561.2023.10354732.
- C1. Peijin Li, **Gaotian Wang**, Hao Jiang, Yusong Jin, Yinghao Gan, Xiaoping Chen, and Jianmin Ji. 2021. "A Q-Learning Control Method for a Soft Robotic Arm Utilizing Training Data from a Rough Simulator." In 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO), 839–45. Sanya, China: IEEE. https://doi.org/10.1109/ROBIO54168.2021.9739524.

Theses

T1. **Gaotian Wang**. A Randomized Kinodynamic Planner for Soft Robots based on Piecewise Universal Joint Model. Bachelor's thesis, USTC, Hefei, China, 2022

SCHOLARSHIPS AND CERTIFICATES

2022	Mengzhilan (D	room Of Blue	China	Aarocnaca	Foundation	Scholarchin	LISTC
2022	Mengzillan (D	ream of blue) Cililia	Aerosbace	roungation	Scholarshib.	USIC

2020 Outstanding Student Scholarship, Gold (Top 3%), USTC

2019 Endeavor Student Scholarship, USTC

2018 Yan Jici Talent Program Scholarship (Top 10%), USTC

TEACHING

ichermad					
FALL 2023	Teaching Assistant for Algorithmic Robotics COMP/ELEC/MECH 450/550 at Rice University				
SPRING 2023	Teaching Assistant for Deep Learning for Vision & Language COMP 646 at Rice University				
FALL 2020-2022	In-lab Teaching Assistant for College Physics-Comprehensive Experimentation at University of Science and Technology of China				