Задача А. Предок

Имя входного файла: ancestor.in Имя выходного файла: ancestor.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Напишите программу, которая для двух вершин дерева определяет, является ли одна из них предком другой.

Формат входных данных

Первая строка входного файла содержит натуральное число n ($1 \le n \le 100\,000$) — количество вершин в дереве. Во второй строке находятся n чисел, i-е из которых определяет номер непосредственного родителя вершины с номером i. Если это число равно нулю, то вершина является корнем дерева.

В третьей строке находится число m ($1 \le m \le 100\,000$) — количество запросов. Каждая из следующих m строк содержит два различных числа a и b ($1 \le a, b \le n$).

Формат выходных данных

Для каждого из m запросов выведите на отдельной строке число 1, если вершина a является одним из предков вершины b, и 0 в противном случае.

ancestor.in	ancestor.out
6	0
0 1 1 2 3 3	1
5	1
4 1	0
1 4	0
3 6	
2 6	
6 5	

Задача В. Поиск цикла

Имя входного файла: cycle2.in Имя выходного файла: cycle2.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дан ориентированный невзвешенный граф без кратных рёбер. Необходимо определить, есть ли в нём циклы, и если есть, то вывести любой из них.

Формат входных данных

В первой строке входного файла находятся два натуральных числа N и M ($1 \leqslant N \leqslant 100\,000$, $M \leqslant 100\,000$) — количества вершин и рёбер в графе соответственно. Далее в M строках перечислены рёбра графа. Каждое ребро задаётся парой чисел — номерами начальной и конечной вершин.

Формат выходных данных

Если в графе нет цикла, то вывести «NO», иначе — «YES» и затем перечислить все вершины в порядке обхода цикла.

cycle2.in	cycle2.out
2 2	YES
1 2	1 2
2 1	
2 1	NO
1 2	

Задача С. Мосты

Имя входного файла: bridges.in Имя выходного файла: bridges.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дан неориентированный граф. Требуется найти все мосты в нём.

Формат входных данных

Первая строка входного файла содержит два натуральных числа n и m — количества вершин и рёбер графа соответственно ($1 \le n \le 20\,000$, $1 \le m \le 200\,000$).

Следующие m строк содержат описание рёбер по одному на строке. Ребро номер i описывается двумя натуральными числами b_i, e_i — номерами концов ребра $(1 \le b_i, e_i \le n)$.

Формат выходных данных

Первая строка выходного файла должна содержать одно натуральное число b — количество мостов в заданном графе. На следующей строке выведите b целых чисел — номера рёбер, которые являются мостами, в возрастающем порядке. Рёбра нумеруются с единицы в том порядке, в котором они заданы во входном файле.

bridges.in	bridges.out
6 7	1
1 2	3
2 3	
3 4	
1 3	
4 5	
4 6	
5 6	

Задача D. Точки сочленения

Имя входного файла: points.in Имя выходного файла: points.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дан неориентированный граф. Требуется найти все точки сочленения в нём.

Формат входных данных

Первая строка входного файла содержит два натуральных числа n и m — количества вершин и рёбер графа соответственно ($1 \le n \le 20\,000$, $1 \le m \le 200\,000$).

Следующие m строк содержат описание рёбер по одному на строке. Ребро номер i описывается двумя натуральными числами b_i , e_i — номерами концов ребра $(1 \leq b_i, e_i \leq n)$.

Формат выходных данных

Первая строка выходного файла должна содержать одно натуральное число b — количество точек сочленения в заданном графе. На следующей строке выведите b целых чисел — номера вершин, которые являются точками сочленения, в возрастающем порядке.

points.in	points.out
6 7	2
1 2	2
2 3	3
2 4	
2 5	
4 5	
1 3	
3 6	

Задача Е. Конденсация графа

Имя входного файла: condense2.in Имя выходного файла: condense2.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Требуется найти количество рёбер в конденсации ориентированного графа. Примечание: конденсация графа не содержит кратных рёбер и петель.

Формат входных данных

Первая строка входного файла содержит два натуральных числа n и m — количество вершин и рёбер графа соответственно ($n \le 10\,000, m \le 100\,000$). Следующие m строк содержат описание рёбер, по одному на строке. Ребро номер i описывается двумя натуральными числами b_i, e_i — началом и концом ребра соответственно ($1 \le b_i, e_i \le n$). В графе могут присутствовать кратные рёбра и петли.

Формат выходных данных

Первая строка выходного файла должна содержать одно число — количество рёбер в конденсации графа.

condense2.in	condense2.out
4 4	2
2 1	
3 2	
2 3	
4 3	

Задача F. Противопожарная безопасность

Имя входного файла: firesafe.in Имя выходного файла: firesafe.out Ограничение по времени: 0.5 секунда Ограничение по памяти: 256 мегабайт

В Судиславле n домов. Некоторые из них соединены дорогами с односторонним движением.

В последнее время в Судиславле участились случаи пожаров. В связи с этим жители решили построить в посёлке несколько пожарных станций. Но возникла проблема: едущая по вызову пожарная машина, конечно, может игнорировать направление движения текущей дороги, однако возвращающаяся с задания машина обязана следовать правилам дорожного движения (жители Судиславля свято чтут эти правила!).

Ясно, что, где бы ни оказалась пожарная машина, у неё должна быть возможность вернуться на ту пожарную станцию, с которой она выехала. Но строительство станций стоит больших денег, поэтому на совете посёлка было решено построить минимальное количество станций таким образом, чтобы это условие выполнялось. Кроме того, для экономии было решено строить станции в виде пристроек к уже существующим домам.

Ваша задача — написать программу, рассчитывающую оптимальное положение станций.

Формат входных данных

В первой строке входного файла задано число n ($1 \le n \le 3000$). Во второй строке записано количество дорог m ($1 \le m \le 100000$). Далее следует описание дорог в формате a_i b_i , означающее, что по i-й дороге разрешается движение автотранспорта от дома a_i к дому b_i ($1 \le a_i, b_i \le n$).

Формат выходных данных

В первой строке выведите минимальное количество пожарных станций K, которое необходимо построить. Во второй строке выведите K чисел в произвольном порядке — дома, к которым необходимо пристроить станции. Если оптимальных решений несколько, выведите любое.

firesafe.in	firesafe.out
5	2
7	4 5
1 2	
2 3	
3 1	
2 1	
2 3	
3 4	
2 5	