МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа № 4.4.1: Определение числа Рейнольдса перехода к турбулентности в пограничном слое

Выполнили:
Рогозин Владимир
Герасимов Илья
Кравец Кирилл
Казусев Степан
Дюгаева Юлия

Цель работы:

Исследовать переход ламинарного режима течения в пограничном слое в турбулентный. Найти критическое значение числа Рейнольдса.

Введение:

Проблема перехода к турбулентности в пограничном слое на протяжении уже нескольких десятилетий вызывает большой интерес исследователей. Это обусловлено, во-первых, необходимостью решения практических задач. Во-вторых, изучение процесса возникновения турбулентности является составной частью более общей фундаментальной проблемы описания турбулентности.

Переход от ламинарного течения к турбулентному в пограничном слое представляет собой сложный процесс эволюции и трансформации возмущений различной природы и их взаимодействия между собой. В соответствии с этим термин "переход к турбулентности"понимают в широком смысле как совокупность всех явлений, ответственных за разрушение ламинарного режима течения, образование турбулентного режима течения.

В гидродинамике принято представлять мгновенное значение скорости в виде суммы ее среднего по времени значения и мгновенного отклонения от этой величины, которое называют пульсацией скорости. Для трех компонент скорости можно записать:

$$u = U + u',$$
 $v = V + v',$ $\omega = W + \omega'.$

Мерой интенсивности возмущений потока служит величина

$$\varepsilon_0 = \frac{\sqrt{(< u'^2 > + < v'^2 > + < \omega'^2 >)/3}}{U}$$

(угловые скобки означают осреднение по времени; для плоскопараллельных течений ${
m W}={
m V}=0$)

В случае, когда возмущения во внешнем потоке изотропны, т.е. $< u'^2> = < v'^2> = < \omega'^2>$, уровень возмущений потока определяется величиной

$$\varepsilon_0 = \frac{\sqrt{\langle u'^2 \rangle}}{U}.$$

Процесс перехода течения в пограничном слое от ламинарного режима к турбулентному при малой интенсивности внешних возмущений состоит из трех условно разделяемых этапов: 1) генерации волн в пограничном слое, 2) их усиления по законам линейной теории и 3) нелинейного разрушения ламинарного режима течения. Описанная последовательность стадий перехода схематически показана на рис. 1

Рис. 1: Основные стадии перехода к турбулентности в пограничном слое

Обоснование методики эксперимента

Переход течений в пограничном слое в трубе и на пластине из ламинарной формы в турбулентную заметнее всего отражается на распределении скоростей в пограничном слое и скорости нарастания толщины пограничного слоя. Этот факт хорошо иллюстрирует рис.2

Рис. 2: Зависимость безразмерной толщины пограничного слоя от числа Рейнольдса

Условия проведения этого эксперимента были таковы, что после достижения числом Рейнольдса значения $Re=U_0x/\nu>3.2\cdot 10^5$ толщина пограничного слоя начинала сильно нарастать. В месте с переходом от ламинарного движения к турбулентному наблюдается и резкое изменение распределения скоростей в пограничном слое. Уменьшение степени турбулентности приводит к смещению вниз по потоку области перехода от ламинарноготечения к турбулентному в пограничном слое, т.е. к увеличению Re. С изменением распределения скоростей в области перехода связано уменьше- ние формпараметра $H=\delta^*/\delta^{**}$, приведенное на рис. 3, где δ^* — толщина вытеснения, δ^{**} — толщина потери импульса. В пограничном слое на пластине формпараметр уменьшается от значения H=2.6, в ламинарной области — до значения H=1.4, в турбулентной области.

Изменение распределения скорости в пограничном слое при переходе из ламинарной формы движения в турбулентную можно использовать для простого способа определения положения точки перехода (точнее говоря, области перехода). Принцип такого определения пояснен на рис.4

Изменение скорости нарастания толщины пограничного слоя (зависимости $\delta(x)$) при изменении режима течения может быть использовано для определения числа Рейнольдса перехода к турбулентности, построенного по скорости внешнего потока и расстоянию, на котором нарастает пограничный слой. Трубка полного напора в этом случае должна устанавливаться во внешней части пограничного слоя. Если при заданной скорости пограничный слой перед трубкой полного напора ламинарный, то увеличением скорости можно добиться, чтобы переход к турбулентности происходил перед трубкой полного напора. Отношение скорости в месте установки трубки полного напора в

Рис. 3: Изменение формпараметра $H = \delta^*/\delta^{**}$ для пограничного слоя на пластине в области перехода

Рис. 4: К определению положения точки перехода ламинарного режима в турбулентный в пограничном слое при $U_o = const, x = var$

пограничном слое U к скорости внешнего потока U0 в зависимости от скорости внешнего потока будет в этом случае иметь характер, приведенный на рис. 5. При ламинарном режиме течения в пограничном слое перед трубкой полного напора увеличение скорости приведет к уменьшению толщины пограничного слоя и увеличению отношения U/U_0 . Когда переход будет происходить непосредственно перед трубкой полного напора, увеличение скорости приведет к тому, что трубка будет все глубже погружаться в быстронарастающий по координате х турбулентный пограничный слой (рис. 5), а это, в свою очередь приведет к уменьшению U/U_0 .

Рис. 5: К определению положения точки перехода ламинарного режима в турбулентный в пограничном слое при $U_0=const, x=var$

Экспериментальная установка

Основными узлами экспериментальной установки являются: система подачи рабочего газа (воздуха), устройство для формирования пограничного слоя и система измерений. Основным элементом узла, формирующего пограничный слой, является аэродинамическая дозвуковая труба 1 с набором цилиндрических насадков 4 различной длины, называемых рабочими каналами, закрепленная на станине 8 (рис. 6). Для выравнивания потока и подавления турбулентных пульсаций внутри трубы установлена система латунных сеток 2. Аэродинамическая труба создает на выходе конфузора 3 равномерный поток воздуха с низким уровнем турбулентных пульсаций (менее 0.5%) в необходимом диапазоне скоростей (7–15 м/сек). Выходящий из конфузора поток воздуха попадает в цилиндрический рабочий канал 4 диаметром 49 мм, на внутренней поверхности которого нарастает пограничный слой. Толщина этого пограничного слоя мала по сравнение с радиусом трубы, поэтому все его параметры (профиль скорости, толщина, формпараметр и т.д.) близки к соответствующим характеристикам пограничного слоя на плоской пластине. Измерения проводятся на срезе рабочего канала. Система измерения состоит из двух наклонных, либо U -образных манометров 7, соединенных с трубками полного напора 5, закрепленных на координатнике 6, обеспечивающим их перемещениев диаметральном направлении в плоскости среза рабочего канала.

Рис. 6: Схема установки и система измерений

Теоретические сведения

Для сжимаемого идеального газа в адиабатическом процессе можно записать:

$$\frac{p}{p_0} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{-\frac{\gamma}{\gamma - 1}}$$

где р - давление в потоке, p_0 - атмосферное давление, M - число Maxa.

Учтем малость числа Маха:

$$p_0 = p + \frac{\rho u^2}{2} \tag{1}$$

В практических расчетах коэффициент динамической вязкости можно рассчитать:

$$\mu = \mu_0 \cdot \left(\frac{T}{273}\right)^{3/4},\tag{2}$$

где $\mu_0 = 1.75 \cdot 10^{-5} \cdot c$

Число Рейнольдса вычисляется по формуле:

$$Re = \frac{\rho u L}{\mu} \tag{3}$$

Для пограничного слоя характерен следующий профиль скорости:

Толщину пограничного слоя можно оценить:

Рис. 7: Пограничный слой

1. Для турбулентного потока

$$\delta_{\text{typ6}} = 0.37 \cdot x \left(\frac{U_0 x}{\nu}\right)^{-1/5} \sim \frac{1}{Re_{\text{typ6}}}^{1/5}$$
 (4)

2. Для ламинарного потока

$$\delta_{\text{\tiny JAM}} = 5 \cdot x \left(\frac{U_0 x}{\nu}\right)^{-1/2} \sim \frac{1}{Re_{\text{\tiny JAM}}}^{1/2} \tag{5}$$

Ход работы

Начальные условия

1.
$$T_0 = 295 \text{ K}$$

2.
$$p_{\text{atm}} = 10^5 \text{ }\Pi\text{a}$$

3.
$$R_{\text{атм}} = 286.7 \frac{\text{дж}}{\text{кг·K}}$$

4.
$$\mu_{\text{atm}} = 1.85 \cdot 10^{-5} \Pi \text{a} \cdot$$

$$5. L = 0.49 м$$

6.
$$\rho_{\text{atm}} = 1.19 \text{ kg/m}^3$$

1. Из формулы (1), для скорости ядра получили:

$$u = \sqrt{\frac{2\Delta p}{\rho}} = K_1 \sqrt{\Delta p},$$

где
$$K_1=1.30~{
m m}^{3/2}/{
m kr}^{1/2}$$

2. Из формулы (3) для числа Рейнольда получили:

$$Re_L = K_2 \sqrt{\Delta p},$$

где
$$K_2 = 4 \cdot 10^4$$
 Па $^{-1/2}$

3. Получили экспериментальные значения:

V	$δP_b$ Πα	ΔP_c ,	U/U_c	U_c м/с	Re_L	$(P_b/P_c)^2$	P_b/P_c
80	22	39	0.75	8.12	249799	0.32	0.56
90	31	46	0.82	8.82	271293	0.45	0.67
100	43	55	0.88	9.64	296647	0.61	0.78
110	50	63	0.89	10.32	317490	0.63	0.79
120	53	71	0.86	10.95	337045	0.56	0.75
130	54	79	0.83	11.55	355527	0.47	0.68
140	56	87	0.80	12.13	373095	0.41	0.64
150	59	96	0.78	12.74	391918	0.38	0.61
160	63	104	0.78	13.26	407921	0.37	0.61
180	71	120	0.77	14.24	438178	0.35	0.59
200	80	135	0.77	15.10	464758	0.35	0.59
220	88	150	0.77	15.92	489897	0.34	0.59
240	98	166	0.77	16.75	515363	0.35	0.59

Таблица 1:

Рис. 8:

- 4. Определили $Re_{\rm kp}=3.2\cdot 10^5$ при котором будет переход от ламинарного к турбулентному потоку.
- 5. Из полученных данных (1, 8) видно, что при V = 105 В будет явный ламинарный поток, а при V = 230 В будет наблюдаться турбулентный поток. Исследовали потоки при 105В и 230В, перемешая трубку Пито от пристеночного потока к центральному.

у, мм	ΔP , K Π a	U, м/с	U/U_c	Re_L
0.25	3	2.25	0.23	69282
0.50	8	3.68	0.37	113137
0.75	13	4.69	0.48	144222
1.00	20	5.81	0.59	178885
1.50	34	7.58	0.77	233238
2.00	43	8.52	0.87	262297
2.50	49	9.10	0.93	280000
3.25	54	9.55	0.98	293938
4.00	55	9.64	0.99	296647
5.00	56	9.73	1.00	299332
6.00	56	9.73	1.00	299332
7.00	56	9.73	1.00	299332

Таблица 2: Ламинарный поток V=105B

77 3 63 6	δP, KΠa	II M/a	U/U_c	Re_L
у, мм		U, м/с	, -	
0.25	3	2.25	0.14	69282
0.50	23	6.23	0.38	191833
0.75	47	8.91	0.55	274226
1.00	64	10.40	0.64	320000
1.50	75	11.26	0.69	346410
2.00	83	11.84	0.73	364417
2.50	89	12.26	0.76	377359
3.25	99	12.93	0.80	397994
4.00	110	13.63	0.84	419523
5.00	120	14.24	0.88	438178
6.00	130	14.82	0.91	456070
7.00	139	15.33	0.95	471593
8.50	150	15.92	0.98	489897
10.00	154	16.13	0.99	496386
11.50	155	16.18	1.00	497995
13.00	155	16.18	1.00	497995

Таблица 3: Турбулентный поток V=230B

6. Построили график:

Рис. 9:

7. Оценили толщину пограничных слоев по формулам(1, 2):

$$\delta_{\text{\tiny JAM}} \sim 1.8 \cdot 10^{-3}$$

$$\delta_{\text{турб}} \sim 0.0725$$

Вывод

- 1. Исследовали профиль скоростей в пограничном слое. В турбулентном режиме течения характерная толщина в пограничного слоя больше, в связи с большим трением в этой области.
- 2. Определили критическое значения числа Рейнольдса $Re_L=3.2\cdot 10^5$ перехода из ламинарного режима в турбулентный.
- 3. Из графика (9) можно сделать вывод, что поле течения можно разбить на область пограничного слоя, в котором действуют силы трения и область, в которой этими силами можно пренебречь и использовать теорию идеальной жидкости.