Ergebnisse

Najat Brüne

2024-01-07

Analyse der Diskrepanzerkennung

Deskriptive Statistik

```
## [1] "daten$i1_dd_w_MW"

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000000 0.1400000 0.3150000 0.4563636 0.5600000 1.5000000

## [1] "daten$i1_dd_f_MW"

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.170000 1.177500 1.370000 1.232273 1.400000 1.500000
```

t-Test

```
##
## Paired t-test
##
## data: daten$i1_dd_f_MW and daten$i1_dd_w_MW
## t = 13.112, df = 65, p-value < 2.2e-16
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## 0.6577277 0.8940905
## sample estimates:
## mean difference
## 0.7759091</pre>
```

Effektstärke mittels Cohens d berechnen

```
##
## Cohen's d
##
## d estimate: 2.178303 (large)
## 95 percent confidence interval:
## lower upper
## 1.743615 2.612992
```

Nicht parametrischer Test mittels Wilcoxon-Vorzeichen-Rang-Test

```
##
## Wilcoxon signed rank test with continuity correction
##
## data: daten$i1_dd_f_MW and daten$i1_dd_w_MW
## V = 2159, p-value = 1.729e-11
## alternative hypothesis: true location shift is not equal to 0
```

Grafische Analyse

Diskrepanzerkennung

Analyse der initialen Überraschung

Deskriptive Statistik

```
## [1] "daten$i1_ue_w_MW"
      Min. 1st Qu.
##
                    Median
                              Mean 3rd Qu.
                                               Max.
             1.500
##
     1.500
                     1.530
                             1.592
                                      1.630
                                              2.670
## [1] "daten$i1_ue_f_MW"
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                               Max.
     1.500
             1.600
                     1.830
                             1.949
                                     2.070
                                              3.530
##
```

t-Test

```
##
## Paired t-test
##
## data: daten$i1_ue_f_MW and daten$i1_ue_w_MW
## t = 6.2563, df = 65, p-value = 3.491e-08
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## 0.2429151 0.4707213
## sample estimates:
## mean difference
## 0.3568182
```

Effektstärke mittels Cohen's d berechnen

```
##
## Cohen's d
##
## d estimate: 1.063693 (large)
## 95 percent confidence interval:
## lower upper
## 0.6957522 1.4316331
```

Nicht parametrischer Test mittels Wilcoxon-Vorzeichen-Rang-Test

```
##
## Wilcoxon signed rank test with continuity correction
##
## data: daten$i1_ue_f_MW and daten$i1_ue_w_MW
## V = 1840.5, p-value = 1.215e-08
## alternative hypothesis: true location shift is not equal to 0
```

Grafische Analyse

Initiale Überraschung

Manova der kombinierten Daten

```
##
## Residual standard errors: 0.3561988 0.3354523
## Estimated effects may be unbalanced
             Df
                  Wilks approx F num Df den Df
                                                Pr(>F)
## Truth
              1 0.44032 81.984 2
                                          129 < 2.2e-16 ***
## Residuals 130
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "summary.aov(manova_results)"
## Response dd:
##
               Df Sum Sq Mean Sq F value Pr(>F)
                1 19.867 19.8672 156.59 < 2.2e-16 ***
## Truth
## Residuals 130 16.494 0.1269
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Response ue :
               Df Sum Sq Mean Sq F value Pr(>F)
##
                1 4.2015 4.2015 37.338 1.076e-08 ***
## Truth
## Residuals
            130 14.6287 0.1125
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Anhang

Daten

VPN	i1_dd_w_MW	i1_dd_f_MW	i1_ue_w_MW	i1_ue_f_MW
3	0.07	0.50	1.57	1.53
4	0.50	1.43	1.60	1.83
6	0.37	1.40	1.50	2.80
9	0.10	1.40	1.70	1.67
14	0.93	1.43	1.70	1.57
15	0.50	1.03	1.63	1.70
20	0.43	1.47	1.50	2.23
24	0.50	1.33	1.70	1.63
27	0.17	1.00	1.53	2.10
29	0.23	1.33	1.53	1.90
32	0.30	1.33	1.53	1.57
37	1.30	1.40	1.67	1.77
38	0.80	1.40	1.57	2.03
44	0.93	1.17	1.70	1.57
57	0.07	1.03	1.50	2.17

VPN	i1_dd_w_MW	i1_dd_f_MW	i1_ue_w_MW	i1_ue_f_MW
63	0.27	1.37	1.50	1.50
67	0.53	1.47	1.50	2.23
74	0.87	1.37	1.53	1.97
78	0.07	1.47	1.50	3.53
80	1.07	0.53	1.53	1.70
92	0.10	1.33	1.50	1.60
93	0.10	0.57	1.53	1.53
99	0.90	0.97	1.73	1.60
104	0.03	1.33	1.50	1.83
113	0.10	1.37	1.57	2.03
122	0.57	1.40	1.50	1.77
125	0.17	1.43	1.50	1.70
133	0.10	1.37	1.63	3.00
136	0.00	0.93	1.50	2.30
140	1.50	1.13	2.67	1.83
151	0.27	1.37	1.50	2.30
155	0.37	1.10	1.50	1.77
160	0.23	1.50	1.50	1.60
169	0.13	1.43	1.63	2.07
170	0.13	1.37	1.63	1.67
171	0.07	0.60	1.57	1.60
175	0.13	1.47	1.63	2.50
178	0.30	1.43	1.53	1.50
179	0.50	1.40	1.53	1.60
199	1.20	1.47	1.63	1.90
205	0.27	0.80	1.50	2.03
214	0.43	1.50	1.63	2.00
221	1.07	1.40	1.57	1.60
223	1.40	1.27	1.67	1.90
233	0.53	0.40	1.63	1.90
237	0.47	1.37	1.50	2.60
241	1.03	1.50	1.50	1.77
248	0.33	1.40	1.50	1.83
275	0.17	1.20	1.63	1.50
277	0.17	1.00	1.50	1.83
279	0.47	0.57	1.57	2.20

VPN	i1_dd_w_MW	i1_dd_f_MW	i1_ue_w_MW	i1_ue_f_MW
286	0.00	1.50	1.50	2.93
295	0.27	1.43	1.50	2.90
296	1.00	1.33	1.50	1.60
300	0.37	1.40	1.50	1.90
302	0.17	1.23	1.50	1.63
307	0.03	1.40	1.50	1.50
315	0.40	1.23	1.57	1.50
342	1.37	1.30	1.60	1.93
350	0.27	1.37	2.03	2.07
353	0.33	1.23	1.53	2.03
365	0.90	1.30	2.30	3.00
369	0.13	0.17	1.53	1.50
421	0.23	1.37	1.57	2.37
427	0.27	1.50	1.50	1.90
483	1.13	1.33	1.50	2.03