Table of contents

Outline

Outille

The delta

Derivation o the delta method

Lecture 20

Ciprian M Crainiceanu

Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

November 19, 2013

Table of contents

Table of contents

Outlin

The delt

Derivation of the delta method

- 1 Table of contents
- 2 Outline
- 3 Recap
- 4 The delta method
- 5 Derivation of the delta method

Table of contents

Outline

Recap

The delta method

Derivation of the delta method

- 1 Review two sample binomial results
- 2 Delta method

Derivation of the delta

Two sample binomials results

Recall $X \sim \text{Bin}(n_1, p_1)$ and $X \sim \text{Bin}(n_2, p_2)$. Also this information is often arranged in a 2×2 table:

whether arranged in a
$$2\times 2$$
 table:
$$\begin{array}{c|ccccc}
n_{11} = x & n_{12} = n_1 - x & n_1 \\
n_{21} = y & n_{22} = n_2 - y & n_2
\end{array}$$

•
$$\hat{RD} = \hat{p}_1 - \hat{p}_2$$

$$\hat{SE}_{\hat{RD}} = \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

•
$$\hat{RR} = \frac{\hat{p}_1}{\hat{p}_2}$$
 \hat{p}_r , \hat{p}_r

$$\hat{SE}_{\log \hat{RR}} = \sqrt{\frac{(1-\hat{p}_1)}{\hat{p}_1 n_1} + \frac{(1-\hat{p}_2)}{\hat{p}_2 n_1}}$$

•
$$\hat{OR} = \frac{\hat{p}_1/(1-\hat{p}_1)}{\hat{p}_2/(1-\hat{p}_2)} = \frac{n_{11}n_{22}}{n_{12}n_{21}}$$

$$\hat{SE}_{\log \hat{OR}} = \sqrt{\frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}}$$

$$CI = Estimate \pm Z_{1-\alpha/2}SE_{Est}$$

Standard errors

- delta method can be used to obtain large sample standard errors
- · Formally, the delta methods states that if

then
$$\frac{\hat{\theta}-\theta}{\hat{SE}_{\hat{\theta}}} \to \mathrm{N}(0,1)$$

$$\frac{f(\hat{\theta})-f(\theta)}{f'(\hat{\theta})\hat{SE}_{\hat{\theta}}} \to \mathrm{N}(0,1)$$

- Asymptotic mean of $f(\hat{\theta})$ is $f(\theta)$
- Asymptotic standard error of $f(\hat{\theta})$ can be estimated with $f'(\hat{\theta})\hat{SE}_{\hat{\theta}}$

- $\theta = p_1$
- $\hat{ heta}=\hat{p}_1$
- $\hat{SE}_{\hat{\theta}} = \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1}}$
- $f(x) = \log(x)$
- f'(x) = 1/x
- $\frac{\hat{\theta}-\theta}{\hat{SE}_{\hat{\alpha}}} o \mathrm{N}(0,1)$ by the CLT
- Then $\hat{SE}_{\log \hat{p}_1} = f'(\hat{\theta})\hat{SE}_{\hat{\theta}}$

$$=rac{1}{\hat{
ho}_1}\sqrt{rac{\hat{
ho}_1(1-\hat{
ho}_1)}{n_1}}=\sqrt{rac{(1-\hat{
ho}_1)}{\hat{
ho}_1n_1}}$$

And

$$\frac{\log \hat{p}_1 - \log p_1}{\sqrt{\frac{(1-\hat{p}_1)}{\hat{p}_1 p_1}}} \rightarrow \mathrm{N}(0,1)$$

Putting it all together

Asymptotic standard error

$$\begin{aligned}
\operatorname{Var}(\log \hat{R}R) &= \operatorname{Var}\{\log(\hat{p}_{1}/\hat{p}_{2})\} \\
&= \operatorname{Var}(\log \hat{p}_{1}) \bigoplus \operatorname{Var}(\log \hat{p}_{2}) \\
&\approx \frac{(1-\hat{p}_{1})}{\hat{p}_{1}n_{1}} + \frac{(1-\hat{p}_{2})}{\hat{p}_{2}n_{2}}
\end{aligned}$$

- The last line following from the delta method
- The approximation requires large sample sizes
- The delta method can be used similarly for the log odds ratio

$$y = \hat{\theta} \sim N(\theta N)$$

Motivation for the delta method

 $y = h(\hat{\theta})$
 $y = p(x = h(y))$

• If $\hat{\theta}$ is close to θ then

then
$$= \int_{X} (h^{-1}(y))$$

$$\frac{f(\hat{\theta}) - f(\theta)}{\hat{\theta} - \theta} \approx f'(\hat{\theta}) \quad \text{pat} = \int_{X} (Y_{2}y) dy$$

$$rac{f(\hat{ heta})-f(heta)}{f'(\hat{ heta})}pprox\hat{ heta}- heta$$

$$\frac{f(\hat{\theta}) - f(\theta)}{f'(\hat{\theta})} \approx \hat{\theta} - \theta$$

$$= \frac{\partial}{\partial y} F_{x}(h^{-1}(y))$$

$$= \int_{x} (h^{-1}(y)) \cdot \frac{\partial}{\partial y} (h^{-1}(y))$$

$$= f(\hat{\theta}) \cdot f(\theta) \cdot \hat{\theta} \cdot \theta$$