Abschlussklausur

Moderne Netzstrukturen

18. Februar 2015

Name:
Vorname:
Matrikelnummer:
Mit meiner Unterschrift bestätige ich, dass ich die Klausur selbständig bearbeite und das ich mich gesund und prüfungsfähig fühle. Mir ist bekannt, dass mit dem Erhalt der Aufgabenstellung die Klausur als angetreten gilt und bewertet wird.
Unterschrift:

- Tragen Sie auf allen Blättern (einschließlich des Deckblatts) Ihren Namen, Vornamen und Ihre Matrikelnummer ein.
- Schreiben Sie Ihre Lösungen auf die vorbereiteten Blätter. Eigenes Papier darf nicht verwendet werden.
- Legen Sie bitte Ihren Lichtbildausweis und Ihren Studentenausweis bereit.
- Als Hilfsmittel ist ein selbständig vorbereitetes und handschriftlich einseitig beschriebenes DIN-A4-Blatt zugelassen.
- Als Hilfsmittel ist ein Taschenrechner zugelassen.
- Mit Bleistift oder Rotstift geschriebene Ergebnisse werden nicht gewertet.
- Die Bearbeitungszeit beträgt 90 Minuten.
- Schalten Sie Ihre Mobiltelefone aus.

Bewertung:

Aufgabe:	1	2	3	4	5	6	7	8	9	10	11	12	13	Σ	Note
Maximale Punkte:	7	6	6	6	9	10	4	8	4	6	6	10	8	90	_
Erreichte Punkte:															

Name:	Vorname:	Matr.Nr.:
Aufgab	e 1)	Punkte:
Maximale Punkte	5+2=7	

a) Es existieren unterschiedliche Netzwerktopologien (Bus, Ring, Stern, vollständig vermascht, teilweise vermascht, Baum und Zelle).

Schreiben Sie in der folgenden Tabelle in jede Zeile <u>eine</u> Netzwerktopologie, die zur jeweiligen Aussage passt.

Aussage	Topologie
Mobiltelefone (GSM-Standard) verwenden diese Topologie	
Diese Topologie enthält einen Single Point of Failure	
Thin Ethernet und Thick Ethernet verwenden diese Topologie	
WLAN mit Access Point verwendet diese Topologie	
WLAN ohne Access Point verwendet diese Topologie	
Token Ring (logisch) verwendet diese Topologie	
Ein Kabelausfall führt zum kompletten Netzwerkausfall	
Diese Topologie enthält keine zentrale Komponente	
Moderne Ethernet-Standards verwenden diese Topologie	
Token Ring (physisch) verwendet diese Topologie	

Für jede korrekte Antwort gibt 0,5 Punkte. Für jede falsche Antwort gibt es 0 Punkte.

b) Warum ist das hybride Referenzmodell verglichen mit dem TCP/IP-Referenzmodell näher an der Realität?

Name:	Vorname:	Matr.Nr.:

Aufgabe 2)

Punkte:

Maximale Punkte: 6

Stellen Sie sich vor, die NASA hätte es geschafft, ein Raumschiff zum Planeten Mars zu schicken. Zwischen dem Planeten Erde und dem Raumschiff gibt es eine Punkt-zu-Punkt-Verbindung mit einer Datendurchsatzrate von 256 kbps (Kilobit pro Sekunde).

Die Entfernung zwischen Erde und Mars schwankt zwischen ca. 55.000.000 km und ca. 400.000.000 km. Für die weiteren Berechnungen verwenden Sie ausschließlich den Wert 55.000.000 km, welcher der kürzesten Entfernung zwischen Erde und Mars entspricht.

Die Signalausbreitungsgeschwindigkeit entspricht der Lichtgeschwindigkeit (299.792.458 m/s).

a) Berechnen Sie die Umlaufzeit = Round Trip Time (RTT) der Verbindung. RTT = (2 * Distanz) / Signalausbreitungsgeschwindigkeit

b) Berechnen Sie das Bandbreite-Verzögerung-Produkt für die Verbindung, um herauszufinden, was die maximale Anzahl an Bits ist, die sich zwischen Sender und Empfänger in der Leitung befinden können.

Signalausbreitungsgeschwindigkeit = $299.792.458\,\mathrm{m/s}$ Distanz = $55.000.000.000\,\mathrm{m}$ Übertragungsverzögerung = $0\,\mathrm{s}$ Wartezeit = $0\,\mathrm{s}$

Name:	Vorname:	Matr.Nr.:
Aufgab	e 3)	Punkte:
Maximale Punkto	e: 1+1+1+1+1=6	
,		Protokolle der Sicherungsschicht? gische Netzwerkadressen
b) Welches Pr	otokoll verwendet Ethernet für	die Auflösung der Adressen?
c) Wer empfär	ngt einen Rahmen mit der Ziel	ladresse FF-FF-FF-FF-FF?
d) Was ist MA	AC-Spoofing?	
e) Nennen Sie	zwei Netzwerkgeräte, die die l	Kollisionsdomäne unterteilen.
f) Nennen Sie	zwei Netzwerkgeräte die die l	Broadcast-Domäne unterteilen.

Aufgabe 4)

Punkte:

Maximale Punkte: 5+1=6

a) Zeichnen Sie alle Kollisionsdomänen in die abgebildete Netzwerktopologie.

b) Zeichnen Sie alle Broadcast-Domänen in die abgebildete Netzwerktopologie.

c) Wie viele logische Subnetze sind für diese Netzwerktopologie nötig?

Name	e:	Vorname:	Matr.Nr.:
	ufgabe 5) male Punkte: 1+1+1+	-1+2+1+2-9	Punkte:
	Was ist ein autonome		
α)	was ist cili autonome	s bystem.	
b)	Das Open Shortest P $\hfill\Box$ Intra-AS-Routing	ath First (OSPF) is \Box Inter-AS-I	
c)	Das Border Gateway ☐ Intra-AS-Routing	Protocol (BGP) ist	
d)	Das Routing Informa ☐ Intra-AS-Routing	tion Protocol (RIP)	ist ein Protokoll für Routing
e)	Bei RIP kommunizier einen Vorteil und e	•	mit seinen direkten Nachbarn. Nennen sie eser Vorgehensweise.
f)	•	m Weg zum Zielnet) ausschließlich von der Anzahl der Router z hängen, passiert werden müssen. Nennen se.
g)	Bei OSPF kommuniz einen Nachteil diese		iteinander. Nennen sie einen Vorteil und

Name:	Vorname:	Matr.Nr.:
Aufgab	e 6)	Punkte:
Maximale Punkte	: 1+1+1+1+1+1+1+1+2=10	

- a) Nennen Sie ein Beispiel, wo es sinnvoll ist, TCP zu verwenden.
- b) Nennen Sie ein Beispiel, wo es sinnvoll ist, UDP zu verwenden.
- c) Was ist ein Socket?
- d) Was gibt die Seq-Nummer in einem TCP-Segment an?
- e) Was gibt die Ack-Nummer in einem TCP-Segment an?
- f) Warum verwaltet der Sender bei TCP zwei Schiebefenster und nicht nur ein einziges?
- g) Was ist die Phase Slow Start bei TCP?
- h) Was ist die Phase Congestion Avoidance bei TCP?
- i) Beschreiben Sie die Funktionsweise einer Denial of Service-Attacke via SYN-Flood.

Name	e:	Vorname:	Matr.Nr.:
${f A}$ ι	ufgabe 7)		Punkte:
Maxi	male Punkte: 0,5+1+	1+0,5+1=4	
Welcl	hes Netzwerkgerät bz	w. welche Netzwerkg	eräte in Computernetzen
a)	übertragen Signale ü Hochfrequenzbereich		ndem sie diese auf eine Trägerfrequenz im
b)	verbinden Netzwerke (Nennen Sie zwei Ge		en logischen Adressbereichen?
c)	verbinden physische (Nennen Sie zwei Ge		
d)	verbinden drahtlose l	Netzwerkgeräte im Ir	nfrastruktur-Modus?
e)	erweitern die Reichw (Nennen Sie zwei Ge		

Name:	vorname:	Matr.Nr.:
Aufgabe 8	8)	Punkte:
Maximale Punkte: 4+	4=8	

a) Fehlererkennung via CRC: Prüfen Sie, ob der empfangene Rahmen korrekt übertragen wurde.

Empfangener Rahmen: 1011010110100 Generatorpolynom: 100101

b) Berechnen Sie den zu übertragenen Rahmen

Nutzdaten: 11010011 Generatorpolynom: 100101

Name:	Vorname:	Matr.Nr.:
Aufgabe	9)	Punkte:
Maximale Punkte: 4		
Berechnen Sie die erst des Subnetzes.	e und letzte Hostadresse	e, die Netzadresse und die Broadcast-Adresse
IP-Adresse:	153.213.11.213	10011001.11010101.00001011.11010101
Netzmaske	255.255.255.224	11111111.11111111.11111111.11100000
Netzadresse?		
Erste Hostadresse?		·····
Letzte Hostadresse	?	

binäre Darstellung	dezimale Darstellung
10000000	128
11000000	192
11100000	224
11110000	240
11111000	248
11111100	252
11111110	254
11111111	255

Broadcast-Adresse?

Name:	Vorname:	Matr.Nr.:	
-------	----------	-----------	--

Aufgabe 10)

Punkte:

Maximale Punkte: 3+3=6

In jeder Teilaufgabe überträgt ein Sender ein IP-Paket an einen Empfänger. Berechnen Sie für jede Teilaufgabe die Subnetznummern von Sender und Empfänger und geben Sie an, ob das IP-Paket während der Übertragung das Subnetz verlässt oder nicht.

a)

Sender: 10110011.11110001.01010000.11010101 179.241.80.213 Netzmaske: 11111111.1111111.11111000.00000000 255.255.248.0

Empfänger: 10110011.11110001.01010101.11100101 179.241.85.229
Netzmaske: 11111111.1111111.11111000.00000000 255.255.248.0

Subnetznummer des Senders?

Subnetznummer des Empfängers?

Verlässt das IP-Paket das Subnetz [ja/nein]?

b)

Sender: 10110110.10010001.00001011.11010001 182.145.11.209 Netzmaske: 11111111.11111111.11111111.11100000 255.255.255.224

Empfänger: 10110110.10010001.00001011.11100001 182.145.11.225 Netzmaske: 11111111.11111111.111100000 255.255.224

Subnetznummer des Senders?

Subnetznummer des Empfängers?

Verlässt das IP-Paket das Subnetz [ja/nein]?

Name: Vorname: Matr.Nr.:	
--------------------------	--

Aufgabe 11)

Punkte:

Maximale Punkte: 6

Der folgende Signalverlauf ist mit NRZI und 4B5B kodiert. Geben sie die Nutzdaten an.

Bezeichnung	4B	5B	Funktion
0	0000	11110	0 hexadezimal
1	0001	01001	1 hexadezimal
2	0010	10100	2 hexadezimal
3	0011	10101	3 hexadezimal
4	0100	01010	4 hexadezimal
5	0101	01011	5 hexadezimal
6	0110	01110	6 hexadezimal
7	0111	01111	7 hexadezimal
8	1000	10010	8 hexadezimal
9	1001	10011	9 hexadezimal
A	1010	10110	A hexadezimal
В	1011	10111	B hexadezimal
С	1100	11010	C hexadezimal
D	1101	11011	D hexadezimal
E	1110	11100	E hexadezimal
F	1111	11101	F hexadezimal

Name:	Vorname:	Matr.Nr.:	
-------	----------	-----------	--

Aufgabe 12)

Punkte:

Maximale Punkte: 10

Kodieren Sie die Bitfolge mit 5B6B und NRZ und zeichnen Sie den Signalverlauf.

Bitfolge: 00001 01011 11000 01110 10011

5B	6B	6B	6B	5B	6B	6B	6B
	neutral	positiv	negativ		neutral	positiv	negativ
00000		001100	110011	10000		000101	111010
00001	101100			10001	100101		
00010		100010	101110	10010		001001	110110
00011	001101			10011	010110		
00100		001010	110101	10100	111000		
00101	010101			10101		011000	100111
00110	001110			10110	011001		
00111	001011			10111		100001	011110
01000	000111			11000	110001		
01001	100011			11001	101010		
01010	100110			11010		010100	101011
01011		000110	111001	11011	110100		
01100		101000	010111	11100	011100		
01101	011010			11101	010011		
01110		100100	011011	11110		010010	101101
01111	101001			11111	110010		

Name:	Vorname:	Matr.Nr.:
Aufgab	e 13)	Punkte:
Maximale Punkte	e: 1+1+1+1+1+2+1=8	
a) Was ist ein	Spannbaum?	
Determin	griffsverfahren verwendet Et nistisches Zugriffsverfahren terministisches Zugriffsverfal	
c) Welches Zu	griffsverfahren verwendet W	LAN?
	nistisches Zugriffsverfahren terministisches Zugriffsverfal	hren
	es wichtig, dass die Übertrag ne Kollision im Netzwerk au	gung eines Rahmens noch nicht abgeschlosser uftritt?
· · · · · · · · · · · · · · · · · · ·		pertragung eines Rahmens noch nicht abge- em Ethernet-Netzwerk auftritt?
/	len speziellen Eigenschaften unerkannte Kollisionen bei	des Übertragungsmediums von Funknetzer m Empfänger?
g) Warum sind selten nötig		ungsschicht von Computernetzen heutzutage