

PROYECTO FINAL ASIGNATURA

Aprendizaje automático y Big data

24 DE ENERO DE 2019

VÍCTOR RAMOS Y FELIX VILLAR Universidad Complutense de Madrid

Índice

- Presentación de los datos
- <u>Técnicas de aprendizaje utilizadas</u>
 - o Regresión logística multiclase
 - o Redes neuronales
 - o Support Vector Machine
- Comparación de resultados obtenidos
- Anexo
 - o Implementación de Regresión logística multiclase
 - Código empleado
 - o Implementación de Redes Neuronales
 - Código empleado
 - o Implementación de Support Vector Machine
 - Código empleado
- Bibliografía

Presentación de los datos

Los datos empleados en este proyecto son:

Abstract: Predict student performance in secondary education (high school).

Data Set Characteristics:	Multivariate	Number of Instances:	649	Area:	Social
Attribute Characteristics:	Integer	Number of Attributes:	33	Date Donated	2014-11-27
Associated Tasks:	Classification, Regression	Missing Values?	N/A	Number of Web Hits:	402219

Han sido extraídos de la siguiente URL:

http://archive.ics.uci.edu/ml/datasets/Student+Performance

Este conjunto de datos contiene la información de los estudiantes de 2 colegios portugueses.

La finalidad es conocer la nota final del alumno.

- ➤ 382 están matriculados en ambas asignaturas.
- > 395 matriculados en matemáticas.
- ➤ 649 matriculados en portugués.

A continuación se muestra un listado con el significado de cada atributo en orden de aparición en el fichero "student.txt".

Además se incluye una tabla con el atributo y el intervalo de su posible valor.

Cada uno de los alumnos contiene 33 atributos:

- 1. Colegio: Sigla del colegio al que acuden los niños.
- 2. Sexo del alumno
- 3. Edad del alumno
- 4. Dirección de su casa
- 5. Tamaño familiar: si son más de 3 integrantes en la familia.
- 6. Situación de los padres: viven juntos o separados.
- 7. Nivel educativo de la madre
- 8. Nivel educativo del padre
- 9. Empleo de la madre
- 10. Empleo del padre
- 11. Razón para escoger el colegio
- 12. Tutor legal
- 13. Tiempo empleado en ir al colegio
- 14. Tiempo destinado al estudio por semana
- 15. Número de asignaturas suspensas
- 16. Apoyo extra escolar
- 17. Apoyo extra familiar
- 18. Clases de refuerzo ó academias
- 19. Actividades extraescolares
- 20. Servicio de enfermería en el colegio
- 21. Deseo del alumno por ir acceder a estudios superiores
- 22. Acceso a Internet desde casa
- 23. Relación sentimental
- 24. Relación entre los integrantes de la familia
- 25. Tiempo libre fuera del horario lectivo
- 26. Tiempo con los amigos fuera del horario escolar
- 27. Consumo de alcohol en días lectivos
- 28. Consumo de alcohol los fines de semana
- 29. Estado de salud
- 30. Ausencias en clase
- 31. Nota del primer período
- 32. Nota del segundo período
- 33. Nota final del curso

Atributo	Valor
Colegio	[0,1]
Sexo	[0,1]
Edad	#Valor
Dirección	[0,1]
Tamaño Familiar	[0,1]
Nivel educativo de la madre	[0,4]
Nivel educativo del padre	[0,4]
Empleo de la madre	[0,1]
Empleo del padre	[0,1]
Motivos elección colegio	[0,3]
Tutor	[0,2]
Tiempo casa-colegio	[0,4]
Tiempo estudio	[0,4]
Número suspensos	[1,4]
Apoyo extraescolar	[0,1]
Apoyo familiar	[0,1]
Clases de refuerzo	[0,1]
Actividades extraescolares	[0,1]
Servicio enfermería	[0,1]
Expectativas futuro	[0,1]
Acceso a Internet	[0,1]
Relación sentimental	[0,1]
Relación familiar	[0,1]
Tiempo libre	[0,5]
Tiempo libre con amigos	[0,5]
Consumo alcohol en día laboral	[0,5]
Consumo de alcohol en fin de semana	[0,5]
Estado de salud	[0,5]
Ausencias	[0,93]
Nota primer período	[0,20]
Nota segundo período	[0,20]
Nota final	[0,20]

Técnicas de aprendizaje utilizadas

En este proyecto se han utilizado 3 tipos de técnicas que han sido estudiadas durante el curso de esta asignatura:

- * Regresión logística multiclase
- * Redes Neuronales
- ❖ SVM

Durante el empleo de estas técnicas, se van a dividir los datos en tres grupos:

- ✓ Datos de entrenamiento
 - O Utilizados en el entrenamiento de los sistemas
- ✓ Datos de validación
 - De cara a la evaluación de distintos valores de los parámetros
- ✓ Datos de prueba
 - o Evaluación del porcentaje de éxito de cada técnica.

Tendremos un 70% de datos de entrenamiento, de los datos de validación y prueba, un 15% respectivamente.

Como aclaración, la información del Dataset está clasificada por colegio, con lo cual los datos se componen de la extracción de cada parte pertinente.

Regresión logística multiclase

Sabiendo cómo están distribuidos los datos, procedemos primero a encontrar el mejor valor posible para <u>lambda</u>.

Utilizamos para ello la función "<u>errorlambda</u>" junto a los valores de entrenamiento y validación.

Lambda tendrá distintos valores, en este caso:

[0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 5, 10, 15]

El resultado es el siguiente:

El valor que utilizaremos para lambda será de 3.

Se ha repetido el paso anterior otras dos veces más obteniendo los siguientes resultados:

Lambda tendrá distintos valores, en este caso: [0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 30, 50, 70, 100]

Lambda tendrá distintos valores, en este caso: [0.001,0.003,0.01,0.03,0.1,0.3,1,3,5,10,15,30,70,120,200]

Una vez introducido el valor de lamba, procedemos a calcular los porcentajes de entrenamiento, validación y test por cada asignatura y por el conjunto de ambas.

Redes Neuronales

Al igual que en la regresión logística multiclase, se empieza escogiendo el valor más adecuado para lambda.

La función escogida es "<u>errorlmdb</u>", los diferentes valores que puede adoptar lambda son:

0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 15, 20, 30, 50, 80, 100, 150, 300

La gráfica resultante es:

El mejor valor para lambda es variable, la minimización a veces llega a un punto y a veces a otro, lo que conlleva que los pesos iniciales sean aleatorios.

A continuación se muestra una gráfica con los porcentajes de acierto de la red neuronal con los distintos tipos de datos:

Support Vector Machine

Comenzamos eligiendo el mejor Kernel gaussiano para entrenar las SVM con distintos valores:

[0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 1, 3, 5, 10, 15, 30, 50, 100, 150, 300]

Así obtendremos la mejor solución lineal y gaussiana de distintas opciones:

• Solo matemáticas

En este apartado obtenemos: como mejor solución lineal un valor de C = 0.05, con un porcentaje de acierto del 51%.

Como mejor solución Gaussiana tenemos a C = 50, Gamma = 30 y un 53.33% de tasa de acierto.

• Solo matemáticas sin G1 y G2

Aquí obtenemos: como mejor solución lineal un valor de C = 0.05, con un porcentaje de acierto del 26,6%

Por otra parte, como mejor solución Gaussiana tenemos a C = 15, Gamma = 30 y un 28.3% de tasa de acierto

• Solo portugués

En este apartado obtenemos: como mejor solución lineal un valor de C=0.1, con un porcentaje de acierto del 38,144%

La mejor solución Gaussiana obtenida es C = 300, Gamma = 50 y un 38% de tasa de acierto.

Solo portugués sin G1 y G2

Aquí obtenemos: como mejor solución lineal un valor de C = 0.01, con un porcentaje de acierto del 18.56%.

Y, como mejor solución Gaussiana tenemos a C = 300, Gamma = 50 y un 20,62% de tasa de acierto.

• Todos los datos

Obtenemos: como mejor solución lineal un valor de C = 10, con un porcentaje de acierto del 45,22%.

De mejor solución Gaussiana tenemos a C = 300, Gamma = 50 y un 39,49 % de tasa de acierto.

• Todos los datos sin G1 y G2

En este apartado obtenemos: como mejor solución lineal un valor de C=0.03, con un porcentaje de acierto del 15,92 %

La mejor solución Gaussiana obtenida es C = 100, Gamma = 5 y un 15,92% de tasa de acierto.

Comparación de resultados obtenidos

Como conclusión, se puede corroborar que los resultados han sido dispares, si bien la mejor tasa de acierto le ha correspondido a la Support Vector Machine (SVM).

También se debe destacar que el porcentaje de la SVM se incrementa al incluir en los datos G1 y G2, es decir, las notas finales de cada parte del curso.

Anexo

Implementación de Regresión logística multiclase

Código empleado

```
import numpy as np
import scipy.optimize as opt
import matplotlib.pyplot as plt
def sigmoide(x):
  return 1/(1+np.exp(-x))
def h(x,th):
  return sigmoide(np.matmul(x,th))
def costeGrad(th,X,y,lambd):
  n = X.shape[0]
  grad = (1/n)*(np.matmul((h(X,th)-y[:,0]).T,X))
  grad = grad.T
  reg = (lambd/n)*th
  reg[0] = 0
  grad = grad + reg
  a = ((-y*np.log(h(X,th))).T)
  b = (np.matmul((1-y).T,np.log(1-h(X,th))).T)
  coste = (1/n)*np.sum(a-b)
  reg = (lambd/(2*n))* np.sum(th**2)
  coste = coste+reg
  return coste, grad
def oneVsAll(X,y,num_etiquetas,lambd):
  Xaux = np.hstack((np.ones((X.shape[0],1)),X))
```

```
entrenador = np.zeros((num_etiquetas,X.shape[1]+1))
  for i in range(0,num_etiquetas):
     entrenador[i]=
opt.fmin_tnc(costeGrad,entrenador[i],args=(Xaux,(y==i)*1,lambd))[0]
     #entrenador[i]
                               opt.minimize(coste,entrenador[i],args=(X,(y==i)*1,reg),
jac=gradiente).x
  return entrenador
def porcentaje(th,X,y):
  res = h(X,th.T)
  maximo = np.argmax(res, axis = 1)
  comp = (maximo == y[:,0])*1
  g= np.count_nonzero(comp)
  return (g/len(comp))*100
def errorlambda(X,y,Xval,yval):
  lmdb = np.array([0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 5, 10, 15])
  n = X.shape[0]
  num_etiquetas = 21
  m=len(lmdb)
  porcent= np.zeros(m)
  porcval = np.zeros(m)
  for i in range(0,m):
     th=oneVsAll(X,y,num_etiquetas,lmdb[i])
     Xaux = np.hstack((np.ones((n,1)),X))
    porcent[i] = porcentaje(th,Xaux,y)
     Xaux = np.hstack((np.ones((Xval.shape[0],1)),Xval))
     porcval[i] = porcentaje(th,Xaux,yval)
  plt.xlabel('lambda')
  plt.ylabel('Error')
  plt.plot(lmdb,porcent,label="Entrenamiento", c='r')
  plt.plot(lmdb,porcval,label="Validacion", c= 'g')
  plt.legend()
```

```
datamat = np.genfromtxt('student-mat-Modificado.csv', delimiter = ';')
datapor = np.genfromtxt('student-por-Modificado.csv', delimiter = ';')
#datos ordenados
entmat = np.vstack((datamat[:244],datamat[349:381]))
entpor = np.vstack((datapor[:296], datapor[423:581]))
ent = np.vstack((entmat,entpor))
valmat = np.vstack((datamat[244:297], datamat[381:387]))
valpor = np.vstack((datapor[296:360], datapor[581:615]))
val = np.vstack((valmat,valpor))
testmat = np.vstack((datamat[297:349],datamat[387:]))
testpor = np.vstack((datapor[360:423],datapor[615:]))
test = np.vstack((testmat,testpor))
Xmat = entmat[:,:32]
Xpor = entpor[:,:32]
X = ent[:,:32]
ymat = entmat[:,32:]
ypor = entpor[:,32:]
y = ent[:,32:]
Xvalmat = valmat[:,:32]
Xvalpor = valpor[:,:32]
Xval = val[:,:32]
yvalmat = valmat[:,32:]
yvalpor = valpor[:,32:]
yval = val[:,32:]
Xtestmat = testmat[:,:32]
Xtestpor = testpor[:,:32]
```

```
Xtest = test[:,:32]
ytestmat = testmat[:,32:]
ytestpor = testpor[:,32:]
ytest = test[:,32:]
errorlambda(X,y,Xval,yval)
Xent_val = np.concatenate((X,Xval))
yent_val = np.concatenate((y,yval))
print("Todo")
th = oneVsAll(Xent_val,yent_val,21,3)
Xp = np.concatenate((np.atleast\_2d(np.ones(X.shape[0])).T,X),axis=1)
p=porcentaje(th,Xp,y)
print("Porcentaje entrenamiento")
print(p)
Xpval = np.concatenate((np.atleast_2d(np.ones(Xval.shape[0])).T,Xval),axis=1)
pval=porcentaje(th,Xpval,yval)
print("Porcentaje validacion")
print(pval)
Xptest = np.concatenate((np.atleast_2d(np.ones(Xtest.shape[0])).T,Xtest),axis=1)
ptest=porcentaje(th,Xptest,ytest)
print("Porcentaje test")
print(ptest)
Xent_valmat = np.concatenate((Xmat,Xvalmat))
yent_valmat = np.concatenate((ymat,yvalmat))
print("Matematicas")
th = oneVsAll(Xent_valmat,yent_valmat,21,3)
Xpmat = np.concatenate((np.atleast_2d(np.ones(Xmat.shape[0])).T,Xmat),axis=1)
```

```
p=porcentaje(th,Xpmat,ymat)
print("Porcentaje entrenamiento")
print(p)
Xpvalmat
np.concatenate((np.atleast_2d(np.ones(Xvalmat.shape[0])).T,Xvalmat),axis=1)
pval=porcentaje(th,Xpvalmat,yvalmat)
print("Porcentaje validacion")
print(pval)
Xptestmat
np.concatenate((np.atleast_2d(np.ones(Xtestmat.shape[0])).T,Xtestmat),axis=1)
ptest=porcentaje(th,Xptestmat,ytestmat)
print("Porcentaje test")
print(ptest)
Xent\_valpor = np.concatenate((Xpor,Xvalpor))
yent_valpor = np.concatenate((ypor,yvalpor))
print("Portugues")
th = oneVsAll(Xent_valpor,yent_valpor,21,3)
Xppor = np.concatenate((np.atleast_2d(np.ones(Xpor.shape[0])).T,Xpor),axis=1)
p=porcentaje(th,Xppor,ypor)
print("Porcentaje entrenamiento")
print(p)
Xpvalpor
np.concatenate((np.atleast_2d(np.ones(Xvalpor.shape[0])).T,Xvalpor),axis=1)
pval=porcentaje(th,Xpvalpor,yvalpor)
print("Porcentaje validacion")
print(pval)
```

Implementación de Redes Neuronales

Código empleado

```
import numpy as np
import scipy.optimize as opt
import matplotlib.pyplot as plt
def sigmoide(x):
  return 1/(1 + \text{np.exp(np.negative(x))})
def sigmoideDerivada(z):
  sd = sigmoide(z) * (1 - sigmoide(z));
  return sd
def porcentajeRedNeuronal(Theta1, Theta2, X, y):
 m = X.shape[0]
 a1=np.hstack((np.ones((m,1)),X))
 z2=np.matmul(Theta1,np.transpose(a1))
 a2=sigmoide(z2)
 a2=np.vstack((np.ones((1,a2.shape[1])),a2))
 z3=np.matmul(Theta2,a2)
 a3=sigmoide(z3)
 h=a3
 maximo=np.argmax(h,axis=0)
 comparacion=(maximo == y[:,0])*1
 bienPredecidos = np.count_nonzero(comparacion)
 porcentaje = (bienPredecidos/m)*100
```

```
return porcentaje
def pesosAleatorios(L_in,L_out):
  ini = 0.12
  pesos = np.random.rand((L_in+1)*L_out)*(2*ini) - ini
  pesos = np.reshape(pesos, (L_out,1+L_in))
  return pesos
def errorlmdb(X,y,Xval,yval,Theta1_ini,Theta2_ini):
  lmdb = np.array([0,0.001,0.003,0.01,0.03,0.1,0.3,1,3,10,15,20,30,50,80,100,150,300])
  num_etiquetas=21
  num_entradas=32
  num ocultas=10 #Probar con distintos valores
  aux = np.reshape(Theta1_ini,(num_entradas+1)*num_ocultas)
  aux2 = np.reshape(Theta2_ini,(num_ocultas+1)*num_etiquetas)
  params_ini=np.concatenate((aux,aux2))
  porcentajeEnt = np.zeros(len(lmdb))
  porcentajeVal = np.zeros(len(lmdb))
  for i in range(0,len(lmdb)): \#_i i == 1?
opt.minimize(backprop,params_ini,args=(num_entradas,num_ocultas,num_etiquetas,X,
y,lmdb[i]),jac=True)
    grad = res.jac
    Theta1
                     np.reshape(grad[:num_ocultas*(num_entradas+1)],(num_ocultas,
(num_entradas+1)))
    Theta2
                   np.reshape(grad[num_ocultas*(num_entradas+1):],(num_etiquetas,
(num_ocultas+1)))
```

```
porcentajeEnt[i] = porcentajeRedNeuronal(Theta1, Theta2, X, y)
    porcentajeVal[i] = porcentajeRedNeuronal(Theta1, Theta2, Xval, yval)
  plt.xlabel('lambda')
  plt.ylabel('ac')
  plt.plot(lmdb,porcentajeEnt,label="Entrenamiento", c='r')
  plt.plot(lmdb,porcentajeVal,label="Validacion", c= 'g')
  plt.legend()
def debugInitializeWeights(fan_in, fan_out):
  ,,,,,,
  Initializes the weights of a layer with fan_in incoming connections and
  fan_out outgoing connections using a fixed set of values.
  # Set W to zero matrix
  W = np.zeros((fan_out, fan_in + 1))
  # Initialize W using "sin". This ensures that W is always of the same
  # values and will be useful in debugging.
  W = np.array([np.sin(w) for w in
          range(np.size(W))]).reshape((np.size(W, 0), np.size(W, 1)))
  return W
def backprop(params_rn, num_entradas, num_ocultas, num_etiquetas, X, y, reg):
                np.reshape(params_rn[:num_ocultas*(num_entradas+1)],(num_ocultas,
  Theta1
(num_entradas+1)))
```

```
Theta2 = np.reshape(params_rn[num_ocultas*(num_entradas+1):],(num_etiquetas,
(num_ocultas+1)))
  m = X.shape[0]
  #Propagacion hacia delante
  a1 = np.vstack((np.ones(X.shape[0]),X.T))
  z2=np.matmul(Theta1,a1)
  a2=sigmoide(z2)
  a2 = np.vstack((np.ones(a2.shape[1]),a2))
  z3=np.matmul(Theta2,a2)
  a3=sigmoide(z3)
  h = a3
  etiqueta = np.identity(num_etiquetas)
  ycod = etiqueta[y[:,0].astype(int),:]
  J = np.sum(np.matmul((-ycod),np.log(h)) - np.matmul((1 - ycod),np.log(1 - h)))/m
  #Regularizacion
  regular
(reg/(2*m))*(np.sum(np.square(Theta1[:,1:]))+np.sum(np.square(Theta2[:,1:])))
  final = J + regular
  #Retro propagacion
  d3 = h.T - ycod
  d2 = np.matmul(Theta2.T,d3.T)[1:,:] *sigmoideDerivada(z2)
  grad1 = np.matmul(d2,a1.T)/m
  grad2 = np.matmul(d3.T,a2.T)/m
  #Regularizacion del gradiente
  reg1= (reg/m) * Theta1[:,1:]
  reg2= (reg/m) * Theta2[:,1:]
```

```
#Regularizacion del gradiente
  fingrad1 = grad1
  fingrad1[:,1:] += reg1
  fingrad2 = grad2
  fingrad2[:,1:] += reg2
  #Fin del gradiente
  aux = np.reshape(fingrad1,fingrad1.shape[0]*fingrad1.shape[1])
  aux2 = np.reshape(fingrad2, fingrad2.shape[0]*fingrad2.shape[1])
  grad =np.concatenate((aux,aux2))
  return final, grad
def main():
  #DATOS INICIALES
  num_etiquetas=21
  num_entradas=32
  num_ocultas=10 #Probar con distintos valores
  datamat = np.genfromtxt('student-mat-Modificado.csv', delimiter = ';')
  datapor = np.genfromtxt('student-por-Modificado.csv', delimiter = ';')
  #Datos de entrada
  entmat = np.vstack((datamat[:244],datamat[349:381]))
  entpor = np.vstack((datapor[:296],datapor[423:581]))
  ent = np.vstack((entmat,entpor))
  #Datos de validacion
  valmat = np.vstack((datamat[244:297], datamat[381:387]))
```

```
valpor = np.vstack((datapor[296:360], datapor[581:615]))
val = np.vstack((valmat,valpor))
#Datos test
testmat = np.vstack((datamat[297:349],datamat[387:]))
testpor = np.vstack((datapor[360:423],datapor[615:]))
test = np.vstack((testmat,testpor))
#Datos de todos
Xent = ent[:,:32]
Yent = ent[:,32:]
Xval = val[:,:32]
Yval = val[:,32:]
Xtest = test[:,:32]
ytest = test[:,32:]
#Inicializacion de pesos aleatorios
Theta1_ini = pesosAleatorios(num_entradas,num_ocultas)
Theta2_ini = pesosAleatorios(num_ocultas,num_etiquetas)
#Calculamos el error de lambda y cogemos el mejor
errorlmdb(Xent,Yent,Xval,Yval,Theta1_ini,Theta2_ini)
# params_ini=np.concatenate((Theta1_ini,Theta2_ini))
#options = np.optimset('MaxIter', 5000);
#Unimos los datos de entrenamiento y validacion
Xent_val=np.concatenate((Xent,Xval))
yent_val=np.concatenate((Yent,Yval))
#Entrenamiento de la red neuronal
```

```
aux = np.reshape(Theta1_ini,(num_entradas+1)*num_ocultas)
  aux2 = np.reshape(Theta2_ini,(num_ocultas+1)*num_etiquetas)
  params_ini=np.concatenate((aux,aux2))
  res
opt.minimize(backprop,params_ini,args=(num_entradas,num_ocultas,num_etiquetas,Xe
nt_val,yent_val,50),jac=True)
  grad = res.jac
                     np.reshape(grad[:num_ocultas*(num_entradas+1)],(num_ocultas,
  Theta1
(num_entradas+1)))
                   np.reshape(grad[num_ocultas*(num_entradas+1):],(num_etiquetas,
  Theta2
             =
(num_ocultas+1)))
            = np.reshape(params_rn(1:num_ocultas
                                                          (num entradas
                                                                              1)),
num_ocultas, (num_entradas + 1));
  #Theta21 = np.reshape(params_rn((1 + (num_ocultas * (num_entradas + 1))):end),
num_etiquetas, (num_ocultas + 1));
  #Porcentaje
  num_por = porcentajeRedNeuronal(Theta1, Theta2, Xtest, ytest)
  print(num_por)
main()
```

#valorlambda = 1 #El que resulte de la grafica de errorlmbd

Implementación de Support Vector Machine

Código empleado

```
import numpy as np
from sklearn.svm import SVC
import matplotlib.pyplot as plt
def supportv(Xent,yent,Xval,yval):
  val = np.array([0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 1, 3, 5, 10, 15, 30, 50, 100, 150, 300])
  maxilin = 0
  Csollin = 0
  for i in range(0,val.shape[0]):
    svm = SVC( kernel='linear', C=val[i])
    svm.fit(Xent,yent)
     w = svm.predict(Xval)
    t = (w == yval[:, 0])
    p = (np.count\_nonzero(t)/yval.shape[0])*100
    #text = 'C='+repr(val[i])+'.Porcentaje='+repr(p)
     if(p>maxilin):
       Csollin = val[i]
       maxilin = p
    #print(text)
  textlin = 'Mejor solucion lineal: C = '+ repr(Csollin)+ ' . % = ' +repr(maxilin)
  maxigaus = 0
  Csolgaus = 0
  sigmasolgaus= 0
  for i in range(0,val.shape[0]):
     for j in range(0,val.shape[0]):
       svm = SVC(kernel='rbf', C=val[i], gamma = 1/(2*val[i]**2))
       svm.fit(Xent,yent)
       w = svm.predict(Xval)
```

```
t = (w = yval[:,0])
       p = (np.count\_nonzero(t)/yval.shape[0])*100
       #text = 'C='+repr(val[i])+',sigma='+repr(val[j])+'.Porcentaje='+repr(p)
       if(p>maxigaus):
        Csolgaus = val[i]
        sigmasolgaus = val[i]
        maxigaus = p
       #print(text)
  text = 'Mejor solucion gaussiana: C = '+ repr(Csolgaus)+',
'+repr(sigmasolgaus)+ '. % = '+repr(maxigaus)
  print(textlin)
  print(text)
datamat = np.genfromtxt('student-mat-Modificado.csv', delimiter = ';')
datapor = np.genfromtxt('student-por-Modificado.csv', delimiter = ';')
entmat = np.vstack((datamat[:244],datamat[349:381]))
entpor = np.vstack((datapor[:296],datapor[423:581]))
ent = np.vstack((entmat,entpor))
valmat = np.vstack((datamat[244:297], datamat[381:387]))
valpor = np.vstack((datapor[296:360], datapor[581:615]))
val = np.vstack((valmat,valpor))
testmat = np.vstack((datamat[297:349],datamat[387:]))
testpor = np.vstack((datapor[360:423],datapor[615:]))
test = np.vstack((testmat,testpor))
print("Solo matematicas")
#lin C= 0.05 51,666%
#Gaus C=50 Sigma = 30 53,333%
X = entmat[:,:32]
```

```
y = entmat[:,32:]
Xval = valmat[:,:32]
yval = valmat[:,32:]
Xtest = testmat[:,:32]
ytest = testmat[:,32:]
Xr = np.vstack((X,Xval))
yr = np.vstack((y, yval))
yr = np.reshape(yr,yr.shape[0])
supportv(Xr,yr,Xtest,ytest)
print("Solo matematicas sin G1 y G2")
#lin C =0.05 26,666%
#Gaus C = 15 Sigma = 30 28,333%
X = entmat[:,:30]
Xval = valmat[:,:30]
Xtest = testmat[:,:30]
Xr = np.vstack((X,Xval))
supportv(Xr,yr,Xtest,ytest)
print("Solo portugues")
#lin C =0.1 39,17%
#Gaus C = 300 Sigma = 50 38,14%
X = entpor[:,:32]
y = entpor[:,32:]
Xval = valpor[:,:32]
yval = valpor[:,32:]
Xtest = testpor[:,:32]
ytest = testpor[:,32:]
Xr = np.vstack((X,Xval))
yr = np.vstack((y, yval))
```

```
yr = np.reshape(yr,yr.shape[0])
supportv(Xr,yr,Xtest,ytest)
print("Solo portugues sin G1 y G2")
#lin C =0.01 18,556%
#Gaus C = 300 Sigma = 50 20,62%
X = entpor[:,:30]
Xval = valpor[:,:30]
Xtest = testpor[:,:30]
Xr = np.vstack((X,Xval))
supportv(Xr,yr,Xtest,ytest)
print("Todo")
#lin C =10 45,22%
#Gaus C = 300 Sigma = 50 39,49%
X = ent[:,:32]
y = ent[:,32:]
Xval = val[:,:32]
yval = val[:,32:]
Xtest = test[:,:32]
ytest = test[:,32:]
Xr = np.vstack((X,Xval))
yr = np.vstack((y, yval))
yr = np.reshape(yr,yr.shape[0])
supportv(Xr,yr,Xtest,ytest)
print("Todo sin G1 y G2")
#lin C =0.03 15,92%
#Gaus C = 100 Sigma = 5 15,92%
X = ent[:,:30]
```

Xval = val[:,:30]

Xtest = test[:,:30]

Xr = np.vstack((X,Xval))

supportv(Xr,yr,Xtest,ytest)

Bibliografía

- ► https://es.stackoverflow.com/
- https://relopezbriega.github.io/blog/2015/10/10/mach ine-learning-con-python/
- http://www.aprendemachinelearning.com/principalesalgoritmos-usados-en-machine-learning/
- https://www.kaggle.com/pablorr10/algoritmos-demachine-learning-con-python-spa
- ➤ Diapositivas explicativas facilitadas por el profesor a través del campus virtual
- ➤ P. Cortez and A. Silva. Using Data Mining to Predict Secondary School Student Performance. In A. Brito and J. Teixeira Eds., Proceedings of 5th FUture BUsiness TEChnology Conference (FUBUTEC 2008) pp. 5-12, Porto, Portugal, April, 2008, EUROSIS, ISBN 978-9077381-39-7. [Web Link]