网易严选指标异常检测与 诊断分析实践

李隆熙-网易-资深数据挖掘工程师

02 指标异常检测

03 指标异常诊断

04 指标问答机器人

为何要做指标异常检测和诊断

价值所在

- 1、发现问题
- ▶ 定位问题
- ▶ 分析问题
- ▶ 解决问题

- 2、发现亮点
- ♣ 定位原因
- 分析原因
- ♣ 推广亮点

目标与挑战

挑战 指标 数量多 指标 差异大 指标 变化快 定位 不精准

发现 有滞后

目标

自动化: 无需依赖用户输入

通用性: 适应多种指标分布

时效性:天&小时检测归因

准确性: 严格统计检验计算

主动性: 群机器人主动播报

发生 异常 主动式播报 异常检测 流程设计 指标序列 输出层 模型层 用户 输入层 异常诊断 交互式问答 02

指标异常检测

指标异常检测 | 问题定义

⊕ 网易严选 **∷DataFun.**

口 异常有哪些?

绝对值异常

不遵循指标分布,统计学上的离群点 反应业务状态

波动异常

环比过大的突增点或者突降点

反应业务变化

中长期呈现出确定性上升或下降趋势预示潜在风险

指标异常检测|检测框架

$$R_i = rac{\max_i |x_i - ar{x}|}{s} \ i = 1, 2, \ldots, r$$

$$\lambda_i = rac{(n-i)\,t_{p,\,n-i-1}}{\sqrt{(n-i-1+t_{p,\,n-i-1}^2)(n-i+1)}}$$

$$p=1-\frac{\alpha}{2(n-i+1)}$$

 $outlier = where(R_i > \lambda_i)$

1-绝对值异常检测

主要基于GESD检验算法

原理:

计算广义极端学生化偏差 统计量寻找异常点

适用指标分布:

正态分布

2-波动异常检测

主要基于波动率分布拐点阈值

原理:

基于二阶导数和距离寻找 MBP(最大弯曲点)为拐点

适用指标分布:

拐点存在的正态、非正态 分布

$$S=\sum_{i=1}^{n-1}\sum_{j=i+1}^n sgn(X_j-X_i)$$

$$sgn(X_j - X_i) = \left\{egin{array}{ll} 1 & (X_j - X_i) > 0 \ 0 & (X_j - X_i) = 0 \ -1 & (X_j - X_i) < 0 \end{array}
ight\}$$

$$Z = \left\{ egin{array}{ll} rac{S-1}{\sqrt{V_{ar}(S)}} & S > 0 \ 0 & S = 0 \ rac{S+1}{\sqrt{V_{ar}(S)}} & S < 0 \end{array}
ight\}$$

3-趋势异常检测

基于Man-Kendall检验

原理:

计算指标序列M-K统计量, 基于p值判断异常趋势

适用指标分布:

所有分布

4-后处理

减少不必要预警,降低打扰

数据异常:

上周期异常导致的本周期波动异常,基于规则剔除

S级大促:

基于数据协同剔除

03

指标异常诊断

指标异常诊断 | 层次划分

- ❷ GMV上涨30%,各类商品产生多大的贡献?
- 學新客户、老客户各起到了怎样的作用?

可能性推断:

♂ DAU下降30%, 跟用户满意度下降有多大关系?

猜测性推断:

❷ GMV下降30%,因为政策变化、竞品活动还是天气?

|指标异常诊断 | 方法比较

可能性推断

01 机器学习拟合

原理:面向指标数据做回归预测,计算特征重要性

缺点:不能解释单次异常

02 机器学习 + SHAP

原理:用shap value计算特征对目标的贡献值

缺点:不够精准,仅得出相关性非因果性

03 贝叶斯网络

原理:构建贝叶斯网络,衡量指标关系

缺点: 计算复杂、黑盒

确定性推断

01 拆解贡献度

GMV_1 + GMV_2 + 加法

乘法

毛利_2 除法 毛利率 GMV 2 +

原理

指标拆解下钻, 计算各部分贡献度

缺点

拆解维度多样, 组合维度爆炸

指标异常诊断 | 业务现状

平台电商的增长驱动方式

由**流量、留存**和**付费转化** 驱动

战略升级

品牌电商的增长驱动方式

全渠道协同**,爆品**突围, 塑造明星**品类**,立住品牌

品牌电商的 指标分级

拆解

战略层

1级指标

衡量目标达成情况,服务战略决策

战术层

行业 | 渠

2级指标

1级指标拆分到各部门及业务线, 服务过程管理

执行层

类目

商品

•••

3级指标

2级指标拆分到各级类目、商品 及负责人,服务具体实施

指标异常诊断 | 拆解贡献度

加法拆解

$$Y=\sum_i X_i$$
 $riangle Y^1-Y^0 \ riangle Y^0 = rac{Y^1-Y^0}{Y^0} \ riangle C_{X_i} = rac{X_i^1-X_i^0}{Y^0} = rac{ riangle X_i}{Y^0}$

贡献度具有可加性,满足**MECE原则** 整体变化等于各部分变化贡献之和

乘法LMDI拆解

$$Y = \prod_i X_i \ riangle Y'' = rac{Y^1 - Y^0}{Y^0} \ L(Y^1, Y^0) = rac{Y^1 - Y^0}{ln(Y^1) - ln(Y^0)}$$

$$C_{X_i} = rac{L(Y^1,Y^0) \cdot \ln(rac{X_i^1}{X_i^0})}{Y^0}$$

除法双因素拆解

$$Y=rac{S}{P}=rac{\sum_{i}s_{X_{i}}}{\sum_{X_{i}}p_{X_{i}}},$$
 $P_{i}=rac{\sum_{X_{i}}p_{X_{i}}}{\sum_{X_{i}}p_{X_{i}}},$ $S_{i}=rac{s_{X_{i}}}{\sum_{X_{i}}s_{X_{i}}},$ $Y_{i}=rac{s_{X_{i}}}{p_{X_{i}}}$

A:波动贡献

B: 结构变化贡献

$$A_{X_i} = (Y_i^1 - Y_i^0) imes P_i^0 \ B_{X_i} = (P_i^1 - P_i^0) imes (Y_i^1 - Y^0) \ C_{X_i} = rac{A_{X_i} + B_{X_i}}{Y^0}$$

指标异常诊断 | 拆解贡献度

指标异常诊断 | 拆解贡献度

 维度1x2x3
 指标
 贡献度

 维值
 X_i^{123} $C_i^{123} = f(X_i^{123})$

维度1x2x4	指标	贡献度
维值	X_i^{124}	$C_i^{124} = f(X_i^{124})$

.....

维度1x4xn	指标	贡献度
维值	X_i^{14n}	$C_i^{14n} = f(X_i^{14n})$

三维度拆解

维度1x2xxn	指标	贡献度	
维值	X_i^{12n}	$C_i^{12\dots n} = f(X_i^{12\dots n})$	

Step 1: 构建2ⁿ张中间表

维度拆解

Step 2: 执行2ⁿ次拆解算法

维度爆炸

维 度 拆

解

指标异常诊断 拆解贡献度

维度1	指标	贡献度
维值	X_i^1	$C_i^1 = sum^1(C_i^{12\dots n})$

维	度2	指标	贡献度
绉	値	X_i^2	$C_i^1 = sum^2(C_i^{12\dots n})$

维度3	指标	贡献度
维值	X_i^3	$C_i^1 = sum^3(C_i^{12\dots n})$

维度4	指标	贡献度
维值	X_i^4	$C_i^1 = sum^4(C_i^{12\dots n})$

•••••

维度n	指标	贡献度
维值	X_i^n	$C_i^1 = sum^n(C_i^{12\dots n})$

单维度聚合

维度1x2	指标	贡献度
维值	X_i^{12}	$C_i^{12} = sum^{12}(C_i^{12n})$

维度1x3	指标	贡献度
维值	X_i^{13}	$C_i^{13} = sum^{13}(C_i^{12n})$

维度1x4	指标	贡献度
维值	X_i^{14}	$C_i^{14} = sum^{14}(C_i^{12n})$

维度1xn 指标 贡献度 维值 X_i^{1n} $C_i^{1n} = sum^{1n}(C_i^{12...n})$

双维度**聚合**

维度 1x2x3	指标	贡献度
维值	X_i^{123}	$C_i^{123} = sum^{123}(C_i^{12n})$
		<u> </u>

维度 1x2x4	指标	贡献度
维值	X_i^{124}	$C_i^{124} = sum^{124}(C_i^{12n})$

•••••

维度 1x4xn	指标	贡献度
维值	X_i^{14n}	$C_i^{14n} = sum^{14n}(C_i^{14n})$

三维度聚合

贡

度

聚

合

	年度 1x2x4xn	指标
₩40	维值	X_i^{124n}

四维度聚合

维度1x2x...xn 指标 贡献度 维值 $X_i^{12...n}$ $C_i^{12...n} = f(X_i^{12...n})$

末级指标(销售额...)

Step 1: 计算最细粒度贡献度

贡献度

 $C_i^{124n} = sum^{124}(C_i^{124...n})$

基于贡献度可加

Step 2: 各维度贡献度聚合

优化1: 维度拆解->贡献度聚合

省去中间表的I/O过程 仅需1次算法调用

指标异常诊断 拆解贡献度

维度分组1(多级行业)

维度1	指标	贡献度
维值	X_i^1	$C_i^1 = sum^1(C_i^{12\dots n})$

维度2	指标	贡献度
维值	X_i^2	$C_i^1 = sum^2(C_i^{12\dots n})$

维度分组2(多级渠道)

维度3	指标	贡献度	维度4	指标	贡献度
维值	X_i^3	$C_i^1 = sum^3(C_i^{12\dots n})$	维值	X_i^4	$C_i^1 = sum^4 (C_i^{12}$

维度分组3

维度n	指标	贡献度
维值	X_i^n	$C_i^1 = sum^n(C_i^{12\dots n})$

单维度聚合

维度跨组组合

1		_	***************************************			
	维度1x3	指标	贡献度			
	维值	X_i^{13}	$C_i^{13} = sum^{13}(C_i^{12n})$			

		(a) (d ¹)
维度1x4	指标	贡献度
维值	X_i^{14}	$C_i^{14} = sum^{14}(C_i^{12\dots n})$

维度1xn 指标 贡献度 X_i^{1n} $C_i^{1n} = sum^{1n}(C_i^{12...n})$

双维度**聚合**

制

维

优化2: 限制维度组合实现剪枝

空间复杂度 $O((1+k)^n)$ 降 至 $O((1+k)^3)$ 以内

维度 1x4xn 指标		贡献度		
维值	X_i^{14n}	$C_i^{14n} = sum^{14n}(C_i^{14n})$		

三维度聚合

Gini(D) =	$1 - \sum C_i^2$
-----------	------------------

优化3:基于维度基尼系数排序

确定最佳诊断维度 实现异常精准定位

指标	拆解维度	维值	贡献度	基尼系数	拆解维度	维值	贡献度	基尼系数
		item_1	8%			渠道1	50%	0.65
		item_2	5%		一级行业 x 二级渠道	渠道2	30%	
		item_3	3%	0.99			•••	
销量	商品	item_4	1%			渠道10	10%	
切里	印印	item_5	1%			行业1 x 渠道1	60%	0.54
	-	item_6	0%			行业2 x 渠道2	30%	
		•••					•••	0.54
		item_100	-1%			行业8 x 渠道1	-10%	

指标异常诊断|效果展示

⊕ 网易严选 ****DataFun.**

主动式播报

问题与不足

查指标:

查贡献:

查原因:

♂ 在2023年8月19号,销售额变化的主要原因是?——指标未异常

定位

- 1. 播报仅在异常发生时提供主要原因
- 2. 但95%时间无指标异常

04

指标问答机器人

指标问答机器人

指标问答机器人

挑战

输入的非标准化

在2023年8月19号,食品部1对销售额波动的影响是?

影响

结果的有效性

```
SQLQuery:SELECT sub_dimension_contribution
FROM metric_volatility_en
WHERE date = date('2023-08-19')
AND anomaly_indicator = '销售额'
AND sub_dimension_name = '食品部1'
;
SQLResult: []
Answer:结果为空,因为没有名为"食品部1"的项。

Case 1.维值不存在
```

```
食品部对销售额波动的影响是多少?
SQLQuery:SELECT indicator_fluctuation_rate * sub_dimension_contribution
FROM metric_volatility_en
WHERE anomaly_indicator = '销售额'
AND sub_dimension_name = '食品部'
;
SQLResult: [(0.005827831048926929,)]
Answer:食品部对毛利率波动的影响是0.005827831048926929。
Case 2.缺少必填顶
```


需求确认模块

```
**你是一名电商行业的数据科学专家,能够根据用户的输入,解析用户的意图,填充需求参数,并针对缺失的
参数进行提问补全。
**你必须使用下面的function来响应用户的意图:
1.查询指标数据: "get indicator", args: "indicator name": "指标名称", "query date": "查询时
间", "query_dim": "查询维度".
2.查询指标贡献度或影响度: "get contribution", args: "indicator name": "指标名称", "query dat
e": "查询时间", "query_dim": "诊断维度".
3.查询指标变化的诊断原因: "get reason", args: "indicator name": "指标名称", "query date":
"杳询时间".
4.无法执行前3个命令: "reply info", args: "input": "用户的原始输入".
**你给function输入的args只能为以下几种格式:
1.indicator name: 需求必要参数,参数取值为{indicator list},如果问题中没有提及,设为空.
2.query date: 需求必要参数,具体的年月日,值用2023-08-19这种类型表示,当前时间为{cur date},可
作为时间锚点,推算用户的时间,如果问题中没有提及,设为空.
3.query dim: 参数取值为{dim list},如果问题中没有提及,设为空.
**你所有的回答必须是JSON格式,返回如下所述响应格式:
                                           "function": {
                                            "name": "get indicator data",
"function": {
                                            "args": {
   "name": "function name",
                                            "indicator name": "销售额",
                                            "query_date": "2023-08-19",
   "args": {
                                            "query dim": "食品部"
   "arg name": "value"
                  时间、指标、维值
                                           标准问题query:2023年8月19日,食品部的销售额是多少?
```

指标问答机器人

业务流程

效果展示

