Estudos de regressão logística

A Regressão Logística é um método estatístico utilizado quando a variável dependente é categórica, ou seja, quando você está interessado em prever a probabilidade de um evento ocorrer ou não. É frequentemente usada em problemas de classificação, como prever se um e-mail é spam ou não, se um paciente tem uma doença específica ou não, entre outros. A Regressão Logística é uma extensão da regressão linear que modela a relação entre uma variável categórica binária (0 ou 1) e uma ou mais variáveis independentes.

Diferenças

	Linear	Logística	
Reta	Reta	Curva - S	
Variável Dependente	Continua	Categórica	
Interpretação	ŷ	$\ln\left(rac{p}{1+p} ight)$	

Ao estudar a Regressão Logística, você aprenderá a ajustar o modelo, interpretar os coeficientes, calcular probabilidades e usar métricas de avaliação para medir o desempenho do modelo de classificação. Lembre-se de que em um cenário real, você teria um conjunto de dados muito maior e mais complexo, mas esta tabela de exemplo pode ser útil para entender os conceitos iniciais.

Aqui temos uma tabela com duas variáveis independentes (binária), "Horas de Estudo" (X1) e "Horas de Sono" (X2).

Horas de Est (Passou/Reprov	, , ,	Horas de	Sono (X2)	Resultado	
3 hor	as	8	horas	I	Reprovou
6 hor	as	7	horas	1	Passou
4 hor	as	1 6	horas	1	Reprovou
7 hor	as	7	horas	1	Passou
5 hor	as	5	horas		Reprovou
8 hor	as	8	horas	1	Passou
7 hor	as	1 6	horas		Passou
9 hor	as	7	horas	1	Passou
2 hor	as	6	horas		Reprovou
5 hor	as	7	horas		Reprovou

Bora resolver?

```
import pandas as pd
data = {
    'Horas de Estudo': [3, 6, 4, 7, 5, 8, 7, 9, 2, 5],
    'Horas de Sono': [8, 7, 6, 7, 5, 8, 6, 7, 6, 7],
'Resultado': ['Reprovou', 'Passou', 'Reprovou', 'Passou',
'Reprovou', 'Passou', 'Passou', 'Reprovou', 'Reprovou']
df = pd.DataFrame(data)
from sklearn.linear model import LogisticRegression
# Separar as variáveis independentes (X) e a variável dependente (Y)
X = df[['Horas de Estudo', 'Horas de Sono']]
Y = df['Resultado']
# Criar e ajustar o modelo de Regressão Logística
model = LogisticRegression()
model.fit(X, Y)
# Fazer previsões com o modelo
previsoes = model.predict(X)
# Adicionar as previsões ao DataFrame
df['Previsão'] = previsoes
# Exibir o DataFrame com as previsões
print(df)
```

Além disso, você pode usar métricas de avaliação, como precisão, recall e F1-score, para avaliar a qualidade do modelo de Regressão Logística.

Sem variáveis numéricas

Compras (Sim/Não)	Anteriores	(X1)	Tempo	Gasto no Site	(X2) Comp.	ra Online
	 Baixo	1		Baixo	1	Não
	Alto	į		Alto	i	Sim
	Médio	-		Médio		Sim
	Baixo			Alto		Não
	Alto			Baixo		Não
	Médio			Alto		Sim
	Baixo			Médio		Não

Como fica

```
pip install scikit-learn
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import LabelEncoder

# Criar o DataFrame com os dados
data = {
    'Compras Anteriores': ['Baixo', 'Alto', 'Médio', 'Baixo', 'Alto',
'Médio', 'Baixo'],
```

```
'Tempo Gasto no Site': ['Baixo', 'Alto', 'Médio', 'Alto', 'Baixo',
'Alto', 'Médio'],
    'Compra Online': ['Não', 'Sim', 'Sim', 'Não', 'Não', 'Sim', 'Não']
df = pd.DataFrame(data)
# Converter variáveis categóricas em numéricas usando LabelEncoder
le = LabelEncoder()
df['Compras Anteriores'] = le.fit_transform(df['Compras Anteriores'])
df['Tempo Gasto no Site'] = le.fit_transform(df['Tempo Gasto no
Site'])
# Separar as variáveis independentes (X) e a variável dependente (Y)
X = df[['Compras Anteriores', 'Tempo Gasto no Site']]
Y = df['Compra Online']
# Criar e ajustar o modelo de Regressão Logística
model = LogisticRegression()
model.fit(X, Y)
# Fazer previsões com o modelo
previsoes = model.predict(X)
# Adicionar as previsões ao DataFrame
df['Previsão'] = previsoes
# Exibir o DataFrame com as previsões
print(df)
```