PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: A61K 49/00	A1	ľ) International Publication Number:	WO 00/40274
		(43) International Publication Date:	13 July 2000 (13.07.00)
(21) International Application Number: PCT/US (22) International Filing Date: 7 January 2000 ((81) Designated States: AU, CA, JP, 1 CH, CY, DE, DK, ES, FI, FR, (NL, PT, SE).	
(30) Priority Data: 09/226,856 7 January 1999 (07.01.99)	·τ	JS	Published With international search report. Before the expiration of the tin claims and to be republished in	ne limit for amending the
(71) Applicant: ANTICANCER, INC. [US/US]; 7917 Street, San Diego, CA 92111 (US).	w	amendments.		
(72) Inventors: TAN, Yuying; 7575 Linda Vista Road Diego, CA 92111 (US). CHISHIMA, Takashi; Moriyaoka Isogo-ku, Yokohama (JP).	#95, S 2-14-3	an 30,		
(74) Agents: MURASHIGE, Kate, H. et al.; Morrison & LLP, 2000 Pennsylvania Avenue, N.W., Washin 20006–1888 (US).	Foers	ter OC		
		į		
(54) Title: METASTASIS MODELS USING GREEN FL	LUORE	SCE	NT PROTEIN (GFP) AS A MARKER	

(57) Abstract

A method to follow the progression of metastasis of a primary tumor, which method comprises observing fluorescence at various locations in an intact animal model is described. Animals which contain GFP producing tumors are useful models to study the mechanism of metastasis, as well as to evaluate candidate protocols and drugs. In addition, subjects already harboring tumors can be treated so as to modify the endogenous tumours to contain GFP, to permit clinical applications.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia	
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia	
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal	
ΑŬ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland	
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad	
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo	
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan	
BE	Belgium	. GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan	
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey	
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago	
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine	
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda	
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America	
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan	
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam	
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia	
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe	
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand			
CM	Cameroon		Republic of Korea	PL	Poland			
CN	China	KR	Republic of Korea	PT	Portugal			
CU	Cuba	KZ	Kazakstan	RO	Romania			
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation			
DE	Germany	LI	Liechtenstein	SD	Sudan			
DK	Denmark	LK	Sri Lanka	SE	Sweden			
	Estonia	LR	Liberia	SG	Singapore			

METASTASIS MODELS USING GREEN FLUORESCENT PROTEIN (GFP) AS A MARKER

Technical Field

5

The invention relates to the study of tumor progression. Specifically, it concerns model systems for studying the metastasis of tumors in vertebrate systems and to models and methods for evaluating candidate drugs.

Background Art

10

It has long been recognized that the ability of tumor tissues to metastasize constitutes a major portion of the life-threatening aspects of malignancy. Metastasis is the growth of secondary tumors at sites different from the primary tumor. Thus, despite surgical removal of the primary tumor, it may not be possible to arrest the progress of this condition. An understanding of the mechanism whereby metastasis occurs will be crucial to the development of protocols whereby the growth of secondary tumors can be controlled. In order to understand the mechanism of metastasis, it will be necessary to provide a model which permits identification of small numbers of tumor cells against a background of many host cells so that secondary tumor emboli and micrometastases can be observed over the course of real time.

20

25

30

15

Others have demonstrated extravasation and initial seeding steps in tumor metastasis in vitro using externally fluorescently labeled tumor cells. Khokha, R. et al., Cancer Metastasis Rev (1995) 14:279-301; Koop, S. et al., Cancer Res (1995) 55:2520-2523. Further, Margolis, L.B. et al., In Vitro Cell Dev Biol (1995) 31:221-226 was able to visualize the migration of externally fluorescently labeled lung tumor cells in host mouse lung in histoculture. In all cases, however, long-term observation was not possible due to the limitation of exogenous fluorescent labels. Retroviral transfer of a green fluorescent protein (GFP) gene has been shown to result in stable transfectants of human cancer cells in vitro (Levy, J.P. et al., Nature Biotechnol (1996) 14:610-614), as well as of hematopoietic cells (Grignani, F. et al. Cancer Res (1998) 58:14-19 and by Cheng, L. et al. Gene Therapy (1997) 4:1013-1022).

10

15

20

25

30

Attempts have been made to provide such a model using the β-galactosidase gene as a marker (Lin, W.C. et al., Cancer Res (1990) 50:2808-2817; Lin, W.C. et al., Invasion and Metastasis (1992) 12:197-209). However, this marker has not proved satisfactory, as fresh or processed tissue cannot be used. The present invention provides a marker which permits visualization of tumor invasion and micrometastasis formation in viable fresh tissue. In addition, by providing suitable contrast media, the method of the invention can be adapted to visualize angiogenesis in established and growing tumors. The methods of the invention can be applied not only to models of tumor growth and metastasis, but, through the use of retroviral vectors, can be employed to obtain clinical data in human subjects bearing tumors.

The present invention utilizes green fluorescent protein (GFP) as a marker. Heterologous expression of this protein, principally to monitor expression of fused DNA, was disclosed in U.S. Patent No. 5,491,084. This document describes the expression of GFP in *E. coli* and *C. elegans* and postulates that cells in general can be modified to express GFP. Such expression, according to this document, permits not only a method to monitor expression of fused DNA, but also a means of monitoring protein localization within the cell.

The aspect of the invention which provides a metastatic model has been reported and described in a series of publications. Chishima, T. et al. Cancer Research (1997) 57:2042-2047 describe the construction of a dicistronic vector containing the gene for humanized green fluorescent protein (GFP) and dihydrofolate reductase (DHFR). This vector was transfected into CHO-K1 cells to obtain clone-38. Clone-38 showed stable GFP expression which was maintained in the presence of methotrexate (MTX). Clone-38 cells were injected into mice to obtain tumor fragments which were then implanted by surgical orthotopic implantation (SOI) on the ovarian serosa in nude mice. Metastasis could be followed in this model.

Chishima, T. et al. Proc Natl Acad Sci USA (1997) 94:11573-11576 describe the preparation of clone-26 by transfection of Anip 973 human lung adenocarcinoma cells with the codon optimized hGFP-S65T clone obtained from Clontech. Clone-26 was injected intravenously into nude mice and the resulting tumors were followed in histoculture.

10

15

20

25

30

Chishima, T. et al. Clin Exp Metastasis (1997) 15:547-552 and Chishima, T. et al. Anticancer Res (1997) 17:2377-2384 describe similar work with clone-26 wherein the cells were inoculated subcutaneously into nude mice resulting in a visualizable tumor which was then implanted into the visceral pleura of nude mice by SOI. Metastases were observed in this model as well.

Chishima, T. et al. In Vitro Cell Dev Biol (1997) 33:745-747 describe histoculture of clone-26 and visualization of growth using the fluorescence emitted by GFP.

Yang, M., et al., Cancer Res (1998) 58:4217-4221 describe transduction of the human lung cancer cell line H460 with a retroviral expression vector containing enhanced GFP to obtain a stable high-GFP-expressing clone. Cells from this cell line were injected into nude mice and the resulting subcutaneously growing labeled tumors were transplanted by SOI into the left lung of nude mice. Fluorescence could then be observed from the metastases in the collateral lung, pleural membrane and throughout the skeletal system.

Yang, M., et al., Cancer Res (In Press) report similar studies using a model for prostate tumor and showing fluorescence throughout the skeletal system in nude mice.

The contents of the foregoing publications are incorporated herein by reference.

In addition to the foregoing, Cheng, L., et al., Gene Therapy (1997) 4:1013-1022, describe the modification of hematopoietic stem cells using the GFP gene under control of a retroviral promoter. Although the authors state that human stem cells are

transfected with this system only with difficulty, by using an enhanced form of the GFP, satisfactory brightness could be achieved.

In addition, Grignani, F., et al., Cancer Res (1998) 58:14-19, report the use of a hybrid EBV/retroviral vector expressing GFP to effect high-efficiency gene transfer into human hematopoietic progenitor cells.

Vectors containing various modified forms of GFP to provide various colors are marketed by Clontech. The Clontech vectors intended for mammalian cell expression place the GFP under control of the cytomegalovirus (CMV) promoter.

WO 00/40274

- 4 -

Disclosure of the Invention

5

10.

15

20

25

30

The invention provides models which permit the intimate study of formation of metastases from primary tumors in a realistic and real-time setting. By using green fluorescent protein (GFP) as a stable and readily visualized marker, the progression of such metastasis can be modeled and the mechanism elucidated in an intact animal.

Thus, in one aspect, the invention is directed to a method to follow the progression of metastasis of a primary tumor, which method comprises visualizing fluorescence in a whole vertebrate animal by real-time fluorescence optical tumor imaging (FOTI), which animal has been modified to contain tumor cells that express GFP.

The vertebrate animal may constitute a model system, such as an immunocompromised or syngeneic animal wherein tumor cells or a tumor, modified to express green fluorescent protein has been introduced into the animal. The model system may be used to evaluate candidate drugs or protocols for their capacity to inhibit metastasis. Alternatively, the subject may be a human or other vertebrate subject which natively contains the tumor, but wherein the tumor has been subjected to viral infection or to transfection with a retroviral vector so as to produce said GFP. The efficacy of drugs administered to such patients or subjects can be evaluated by following the metastasis in the subject, as can the course of the disease.

The invention also includes a method to observe and follow angiogenesis in solid tumors which method comprises observing said tumors in a subject which are modified to express GFP, where the subject will have been administered a contrast dye to permit this observation.

Brief Description of the Drawings

Figures 1a and 1b show the construction of expression vectors useful in the invention.

Modes of Carrying Out the Invention

The invention provides model systems for the study of the mechanism of metastasis of tumors generally, as well as to study angiogenesis in solid tumors.

10

15

20

25

30

Advantage is taken of the visible marker green fluorescence protein (GFP) to label the tumor cells so that their migration and colonization in tissues distal to the tumor can be followed as the migration and colonization progresses. Further, by administering to the subject a contrast dye, such as rhodamine, the growth of blood vessels in solid tumors which have been labeled with GFP can also be observed.

Since sufficient intensity can be achieved to observe the migration of fluorescent cells in the intact animal, the progression of metastasis can be observed real time in the intact subject. Either this method wherein the animal is opened may be employed to observe metastasis in evaluating, in model systems, the efficacy of potential antimetastatic drugs. The success or failure of treatments provided to patients with potentially metastatic cancers can also be followed using the materials and methods of the invention.

The label used in the various aspects of the invention is green fluorescent protein (GFP). The native gene encoding this protein has been cloned from the bioluminescent jellyfish Aequorea victoria (Morin, J. et al., J Cell Physiol (1972) 77:313-318). The availability of the gene has made it possible to use GFP as a marker for gene expression. GFP itself is a 283 amino acid protein with a molecular weight of 27 kD. It requires no additional proteins from its native source nor does it require substrates or cofactors available only in its native source in order to fluoresce. (Prasher, D.C. et al., Gene (1992) 111:229-233; Yang, F. et al., Nature Biotechnol (1996) 14:1252-1256; Cody, C.W. et al., Biochemistry (1993) 32:1212-1218.) Mutants of the GFP gene have been found useful to enhance expression and to modify excitation and fluorescence. GFP-S65T (wherein serine at 65 is replaced with threonine) is particularly useful in the invention method and has a single excitation peak at 490 nm. (Heim, R. et al., Nature (1995) 373:663-664); U.S. Patent No. 5.625.048. Other mutants have also been disclosed by Delagrade, S. et al., Biotechnology (1995) 13:151-154; Cormack, B. et al., Gene (1996) 173:33-38 and Cramer, A. et al. Nature Biotechnol (1996) 14:315-319. Additional mutants are also disclosed in U.S. Patent No. 5,625,048. By suitable modification, the spectrum of light emitted by the GFP can be altered. Thus, although the term "GFP" is used in the present application, the proteins included within this definition are not necessarily

PCT/US00/00243

5

10

15

20

25

30

green in appearance. Various forms of GFP exhibit colors other than green and these, too, are included within the definition of "GFP" and are useful in the methods and materials of the invention. In addition, it is noted that green fluorescent proteins falling within the definition of "GFP" herein have been isolated from other organisms, such as the sea pansy, *Renilla reriformis*. Any suitable and convenient form of the GFP gene can be used to modify the tumor cells useful in the models of the invention, and for retroviral transformation of endogenous tumors. The particular humanized hGFP-S65T clone is used in the examples set forth below for illustration.

Techniques for labeling cells in general using GFP are disclosed in U.S. 5,491,084 (*supra*).

In one application, the method of the invention provides a model system for studying the effects of various therapeutic candidate protocols and substances on metastatic growth of tumors.

In general, the model involves modifying a vertebrate, preferably a mammal, so as to contain tumor tissue, wherein the tumor cells have, themselves, been modified to contain an expression system for GFP. The tumor cells may arise from cell lines wherein tumor cells have been modified to contain expression systems for GFP and optionally an immortalizing factor, such as SV40 T-antigen. Tumors can be formed in such vertebrate systems by administering the transformed cells containing the GFP expression system and permitting these transformed cells to form tumors. Typically such administration is subcutaneous and the tumors are formed as solid masses. The tumors thus formed can be implanted in any suitable host tissue and allowed to progress, metastasize and develop.

Suitable procedures for growing the initial tumor, thus, involve transcutaneous injection of the tumor cells producing GFP, such as CHO cells, HeLa cells, carcinoma and sarcoma cell lines, well established cell lines such as the human lung adenocarcinoma line Anip 973, or lung cancer cell line H460 as well as GFP-containing human breast cancer lines MDA-MB468 and MDA-MB435; human prostate cancer lines PC3 and DU-145, human glioblastoma line 324, mouse melanoma B16 and others that may become available in the art, and cells immortalized by methods of the invention. The administered cells will have been

modified to contain an expression system for GFP. After administration, solid tumors generally develop, typically at the site of subcutaneous injection: The animal into which these cells are implanted should either be immunocompromised or syngeneic with the cells implanted. These tumors, which are themselves fluorescent, can then be removed and used for implantation in the model vertebrate.

5

10

15

20

25

30

- 7 -

Techniques for implantation of the solid tumors, now labeled with GFP, into vertebrates especially mammals include direct implantation by surgical orthotopic implantation (SOI) at the desired site, typically the site from which the tumor cells were derived. Suitable sites include lung, liver, pancreas, stomach, breast, ovary, prostate, bone marrow, brain, and other tissues susceptible to malignancy. Again the subject should be immunocompromised or syngeneic with the tumor. Once the solid tumors have been implanted, the vertebrate becomes a model system for studying metastasis. The tumor is thus allowed to progress and develop and the vertebrate is monitored for appearance of the GFP labeled cells at sites distal from the original implantation site. The monitoring is done in real time on the whole vertebrate since the tumors are sufficiently bright that opening the animal is unnecessary -- they can be seen directly through the skin, as can the metastatic locations. GFP is visible to the naked eye, no development systems to stain the tissue are required. For model systems in drug monitoring protocols, while observation in the intact animal is preferred, the animal may be opened and/or tissues may be excised if desired. Comparison with a control animal is also desirable.

It is particularly convenient to visualize the migration of tumor cells in the intact animal through fluorescent optical tumor imaging (FOTI). This permits real-time observation and monitoring of progression of metastasis on a continuous basis, in particular, in model systems, in evaluation of potential anti-metastatic drugs. Thus, the relative lack of metastasis observed directly in test animals admnistered a candidate drug in comparison to controls which have not been administered the drugs indicates the efficacy of the candidate and its potential as a treatment. In subjects being treated for cancer, the availability of FOTI permits those devising treatment protocols to be informed on a continuous basis of the advisability of modifying or not modifying the protocol.

Suitable vertebrate subjects for use as models are preferably mammalian subjects, most preferably convenient laboratory animals such as rabbits, rats, mice, and the like. For closer analogy to human subjects, primates could also be used. Useful are subjects that are particularly susceptible to tumor development, such as subjects with impaired immune systems, such as nude mice or SCID mice. Compromise of the immune system may be effected in any vertebrate by administration of drugs or other techniques known generally in the art. Any appropriate vertebrate subject can be used, the choice being dictated mainly by convenience and similarity to the system of ultimate interest.

10

5

Any suitable expression system operable in the tumor cells to be implanted may be used. A number of vectors are commercially available that will effect expression in tumor cells of various types. The nature of the vector may vary with the nature of the tumor and the vertebrate in which it finds its origin. However, when GFP is used to visualize metastasis in a model system, it is preferred to utilize vectors which do not use retroviral or other viral promoters which may complicate the nature of the model.

15

In order to provide cell lines that are helpful in establishing tumors for these model systems, it is also often advantageous to employ expression vectors which provide the cells with the SV40 T-antigen. The presence of this antigen ensures immortality of the culture. Thus, particularly useful in the invention are vectors which comprise expression systems that result in the production both of GFP and SV40 T-antigen.

20

In order to transfect and modify the transformed cells which are effective in generating tumors, any suitable transfection method may be used, such as liposomes, calcium phosphate precipitation, electroporation and use of a gene gun. Lipofection is preferred.

25

In contrast, when the method of the invention is used to visualize metastasis in tumors that natively occur in a subject such as a human cancer patient, vectors that employ retroviral or other viral promoters are preferred. The use of such vectors permits the insertion of an expression system for GFP into the already existent tumor. In addition, the expression system may contain nucleotide sequence encoding other

30

10

15

20

25

30

useful proteins such as therapeutic proteins which permit simultaneous diagnosis of metastasis and treatment. Among such suitable proteins are included methioninase (see, for example, PCT/US93/11311 and PCT/US96/09935). Such proteins may be produced either as fusions with the GFP, or independently either using a dicistronic expression system or independent expression systems, one for the therapeutic protein and the other for the GFP.

Retroviral based expression systems for GFP have already been described by Grignani, F. et al. Cancer Res (1998) 58:14-19 and by Cheng, L. et al. Gene Therapy (1997) 4:1013-1022. In these reports, the retroviral expression system itself was used to transfect hematopoietic progenitor cells or packaging cells were employed to provide virus-containing supernatants which can be used directly for infection of the mammalian cells. Thus, in the method of the invention, the tumor contained in the vertebrate subject is typically infected with virus which has been modified and packaged to contain the expression system for GFP. In situ infection with virus results in the ability of the tumor to produce GFP and, in effect, label itself.

Various retroviral systems useful in producing proteins in mammalian cells are known in the art. Examples include commercially available vector and packaging systems such as those sold by Clontech, San Diego, California, including their Retro-X vectors pLNCX and pLXSN which permit expression of GFP under a variety of promoters by insertion into the multiple cloning site. These vectors contain ψ^* (the extended viral packaging signal) and antibiotic resistance genes for selection. A number of these systems have been developed for use in gene therapy, including vectors which provide a multiple cloning site sandwiched between 5' and 3' LTR derived from retroviral sources, and thus would be useful in labeling the tumors of human patients.

Thus, retroviral based vectors such as those set forth in Figures 1a-1b can be transfected into packaging cells and transferred directly to targeted cancer cells or supernatants from the packaging cells can be used to infect tumor cells with the retrovirus. Preferred combinations of retrovirus and packaging cells include the GFP-retrovirus vector pLEIN in PT-67 packaging cells. Co-culture of the packaging cells with colon cancer cells results in transfer of the GFP-retrovirus to the cancer cells.

10

15

20

25

30

Using histoculture techniques, and supernatants from PT-67 packaging cells generating GFP-pLEIN virus, the successful modification of a human cancer tissue to display the fluorescence associated with GFP has been demonstrated. For use *in vivo*, the virus is administered, preferably locally to the tumor, which can be observed within hours after injection either of packaging cells or of the viral containing supernatants. The malignant cells can be identified by their green color, sometimes sufficiently bright so that the tumors can be seen through the skin.

In addition to direct observation of tumor metastasis and growth either in a model system or in a vertebrate, typically mammalian and more typically a human subject which is already afflicted by a tumor, the methods of the invention can be adapted to observe angiogenesis in solid tumors. The tumor is itself labeled with GFP as described above. The subject is then administered a contrast dye, typically by injection, preferably intravenous injection, which allows blood vessels in the tumor to be observed. Suitable dyes include rodamine and other contrast dyes. Any dye which forms a contrasting color with the green color of the GFP can be used. Preferably, the dye is coupled to an inert polymer such as polyethylene glycol to increase the length of time the dye will remain in the blood vessel. A sufficient amount of dye is provided to permit ready visualization; the amount of dye required will depend on the choice of dye, the location of the tumor, the nature of the background GFP, and the method used for observation. Within a few minutes, vessels growing into the solid tumors in such areas as the mesentery, colon wall, and omentum can be observed. Observations can be continued over substantial periods; for example, angiogenesis after several hours is still observed by using this method.

The following examples are intended to illustrate but not to limit the invention.

Example 1

Preparation of Tumor Cells that Produce GFP

The humanized hGFP-S65T clone described by Zolotukhin, S. et al., J Virol (1996) 70:4646-4654 was used as the green fluorescent protein coding sequence. This codon-optimized gene was purchased from Clontech Laboratories, Inc. (Palo Alto,

WO 00/40274 PCT/US00/00243

- 11 -

CA) and ligated into the dicistronic expression vector (pED-mtx¹) obtained from Genetics Institute, Cambridge, MA and described in Kaufman, R.J. et al., Nucleic Acids Res (1991) 19:4485-4490. hGFP-S65T was digested with HindIII and blunted; the entire hGFP coding region was excised with XbaI and then unidirectionally subcloned into pED-mtx¹ which had been digested with PstI, blunted and then further digested with XbaI.

5

10

15

20

. 30

CHO-K1 cells were cultured in DMEM containing 10% fetal calf serum, 2 mM L-glutamine and 100 μM nonessential amino acids. Near confluent cells were incubated with a precipitated mixture of LipofectAMINETM reagent (GIBCO) and saturating amounts of plasmids for six hours and then replenished with fresh medium. The cells were harvested by trypsin/EDTA 48 hours later and subcultured at 1:15 into selective medium containing 1.5 μM methotrexate (MTX). Cells with stably integrated plasmids were selected in MTX-containing medium and isolated with cloning cylinders (Bel-Art Products, Pequannock, NJ) by EDTA. After amplification and transfer, Clone-38 was selected because of its high-intensity GFP fluorescence and stability.

In a similar manner, Anip 973 cells, a human lung cancer cell line obtained from Harbin Medical University, China, were cultured as described above for CHO-K1 cells except using RPMI1640 (GIBCO) in place of DMEM. Transfection, selection and amplification and transfer were conducted as described above. Clone-26 was chosen because of its high-intensity GFP fluorescence and stability.

Example 2

Construction of a Retroviral Expression Vector for GFP and

25 <u>Preparation of Labeled Tumor Cell Lines</u>

Figures 1a and 1b show the construction of expression vectors for GFP under control of the SV40 promoter. The constructs employ commercially available pEGFP series vectors available from Clontech. Both bacterial and mammalian expression vectors are available which permit production of additional proteins, as well as GFP, either as fusions or in dicistronic systems. Figure 1a shows the construction of an expression vector, pGFP/Met, for a fusion of GFP with methioninase; Figure 1b

shows the construction of a vector pGFP/SV40 for production of a fusion protein of GFP with the SV40 T-antigen.

Commercial vectors containing the GFP coding sequence of the desired spectral characteristics using the pLEIN system described in Example 6 were transfected into cell lines originating from tumors, such as human breast cancer, human prostate cancer, human glioblastoma and mouse melanoma. In this manner, human breast cancer cell lines MF-7, MDA-MB468 and MDA-MB435, human prostate cancer cell lines PC3 and DU145, human glioblastoma cell line 324, human lung cancer cells Anip-73 and H460, human colon cancer cells lines Colo-205, HCT-15 and WiDr, human gastric cancer cell line NVGC-4, human kidney cancer cell line SN12C, human tongue cancer cell line SCC-25, human melanomas LOX and SK-mel-5, labeled Chinese hamster ovary cells from cell line CHO-K1 and mouse melanoma cell line B16 labeled with green fluorescent protein were established.

The SV40 T-antigen protein is useful to immortalize cultured cells so as to establish permanent cell lines. Accordingly, the vector pGFP/SV40 is transfected into a series of tumor cell cultures to provide fluorescent immortalized cell lines.

Example 3

In Vivo Labeling of Established Tumors

20

25

30

5

10

15

Unlabeled tumors derived from the human lung cancer cell line Anip973 were established in mice as follows procedure. Tumors were grown in six-week-old Balb/C nu/nu male mice injected subcutaneously with a single 0.4 ml dose of 10⁷ Anip 973 cells within 40 minutes of harvesting by trypsinization and washing three times with cold serum-containing medium. The cells were kept on ice prior to injection. The animals were sacrificed when the tumors had reached approximately 1.2 cm diameters. The 1.2 cm tumors formed after about 5 weeks.

The tumor pieces, 1 mm³, were implanted by SOI into the left visceral pleura of 8 such mice as described by Astoul, P. et al., Anticancer Research (1994) 14:85-92; Astoul, P. J Cell Biochem (1994) 56:9-15, both incorporated herein by reference. Briefly, the mice were anesthetized by isofluoran inhalation an a small 1 cm transverse incision made on the left lateral chest, via the fourth intercostal space,

resulting in total lung collapse. Five tumor pieces were sewn together with a 7-0 nylon surgical suture and fixed by making one knot. The lung was taken up by forceps and the tumor sewn into the lower part of the lung with one suture, after which the lung was returned to the chest cavity and the muscles and skin closed with a single layer of 6-0 silk sutures. The lung was reinflated by withdrawing air from the chest cavity with a 23-gauge needle. The mice were then injected with 1x10⁷ packaging cells containing the retroviral vector GFP-retrovirus pLEIN contained in PT67 cells. This virus packaging system is available from Clontech, San Diego. California. pLEIN contains an insert of the coding sequence for EGFP, a red-shifted variant of wild-type GFP that has been optimized for brighter fluorescence and higher expression in mammalian cells. It has an excitation maximum of 488 nm and an emission maximum at 507 nm. This mutant contains a double amino acid substitution at position 64 from Phe to Leu and at position 65 from Ser to Thr. It is described by Comack, B. et al. Gene (1996) 173:31-38. There are more than 190 silent base changes to maximize human codon usage preferences as described by Haas, J. et al. Curr Biol (1996) 6:315-324. Thus, pLEIN contains the above-described GFP coding sequence inserted into the multiple cloning site of pLXIN to obtain a dicistronic expression system which permits coordinated translation of the GFP and neomycin resistance. Three days after injection of the cells into the peritoneal cavity of the mice, the tumor cells could be seen in the seminal vesicles under bright-field microscopy and under fluorescent microscopy.

Example 4

Observation of Angiogenesis

25

30

5

10

15

20

A suspension containing 1x10⁷ clone-38 cells, described in Example 1, were injected into the peritoneal cavity of a mouse. Five days later, the mouse was injected in the tail with rhodamine and the mouse was then put under anesthesia and the abdominal cavity opened sufficiently to visualize the tumor. Recovery from this surgery is straightforward. In some cases, abdominal opening is unnecessary as the intraperitoneal tumors can be visualized through intact skin. Tumors were visible in the abdominal cavity and angiogenesis was apparent as identified by the rhodamine

WO 00/40274

fluorescence. Similar results were found in tumors growing in the omentum in the wall of the small intestine, and in the mesentery.

- 14 -

In an analogous experiment, a suspension containing 1x10⁷ cells of clone-26, described in Example 1, were injected into the peritoneal cavity of a mouse. After one day, tumors appeared in the mesentery and in the colon wall. These were observed by anesthetizing the mouse and a minimal opening of the abdomen. Observations on day 3 of a similarly treated mouse showed tumors in the wall of the small intestine and in the omentum as well as in the colon wall and mesentery. On day 5, a similarly treated mouse was injected in the tail with 100 µl of 2x10⁻³ M rhodamine and a few vessels could be seen in the tumor growing in the mesentery. After day 60, numerous vessels were seen in the tumor growing in the colon wall.

Example 5 Construction of Metastatic Models

15

20

10

5

Using the labeled human cancer cell lines described in Example 2, murine models are established for various types of cancer. The cell lines are implanted into 6-week-old nu/nu female mice with a single dose of 107 GFP expressing human tumor cells which had been harvested by trypsinization and washed three time with cold, serum-containing medium and then kept on ice. The cells are injected in subcutaneous space in the flank of the animal at a total volume of 0.4 ml within 40 min of harvesting. The nude mice are sacrificed to harvest the tumor fragments 3 weeks after tumor cell injection. These tumor fragments are then used for surgical implantation into the corresponding tissue (surgical orthotopic implantation (SOI)) in nude mice as recipients.

25

30

The recipient mice are first anesthetized and then implanted using established SOI techniques with fragments of the subcutaneously grown colon cancer, lung cancer, breast cancer, prostate cancer or melanoma. In all cases, except for melanoma, the size of the fragment is 1 mm³; for melanoma, 0.025 mm³ fragments are prepared from the human melanoma LOX-GFP subcutaneous tumor and 5-6 fragments are implanted. The progress of metastasis is then observed using FOTI with a Leica Stereomicroscope MZ12 with a mercury lamp source. GFP is excited

10

15

20

25

30

with a D425/60 bandpass filter and a 470DCXR dichroic mirror; fluorescence is emitted through a GG475 longpass filter (Chroma Technology, Brattle -boro, VT) and collected by a thermoelectrically cooled ST-133 Micromass High-Speed Controlled Camera -- TEA/CCD-1317K1 (Princeton Instruments, Trenton, NJ) with a 1317x1035 pixels chip. The images are processed and analyzed with ImagePro⁺ 3.1 Software (Media Cybernetics, Silver Spring, MD). High resolution images are captured by computer, or continuously through video output onto video tape.

In the colon cancer model, a small midline incision is made in the abdomen and the colorectal part of the intestine is exteriorized. The serosa is removed and 8-15 pieces of tumor fragments are implanted. An 8-0 surgical suture is used to penetrate the small tumor pieces and suture them to the wall of the intestine. The intestine is returned to the abdominal cavity and abdominal wall is closed. The animals are then observed for metastases.

For lung cancer models, a small 1 cm transverse incision is made on the left lateral chest via the fourth intercostal space; total lung collapse results. Five tumor pieces sewn together with 8-0 nylon surgical suture are fixed by making one knot; the lung is taken out by forceps and the tumor sewn into the lower part of the lung with one suture. After returning the lung to the chest cavity, the chest muscles and skin are closed. The lung is reinflated by withdrawing air from the chest cavity with a 23-gauge needle. The animals can then be observed for metastasis either by FOTI or by excising various tissues.

For breast cancer, an incision of 1.5 cm is made along the medial side of the nipple and after blunt dissection, the fat pad is exposed. A small incision is made and a small pocket formed to accommodate 2 fragments of the tumor tissue; an 8-0 suture is made to close the pocket. The skin layer is then closed. The animals are then observed by FOTI or by tissue excision.

For prostate cancer, an opening is made above the pubic symphysis to expose the prostate gland. The fascia surrounding the dorsal portion of the prostate and the dorsal lateral lobes of the gland are separated by a small incision. Five randomized fragments are sutured into the incision using a 8-0 nylon suture. The two parts of the separated lobes are sutured together and the surrounding fascia used to wrap this

10

portion of the gland to consolidate the incision. The abdomen is then closed and the animals maintained for observation.

For melanoma, 5-6 fragments are transplanted subdermally into the flank with a 13x1/4 cancer implant needle (Popper & Sons, New Hyde Park, NY).

Images can be obtained as described above showing metastases to various locations in the animal.

The animals treated as described above, can then be used to evaluate potential protocols for treatment of cancer and metastasis inhibition. The metastatic progress of the fluorescent tumors in animals administered the protocols is compared to similar animals lacking treatment. The efficacy of the protocols can then be directly observed.

Claims

1. A method to evaluate a candidate protocol or drug for the inhibition of metastasis of a primary tumor which method comprises

5

administering said protocol or drug to an animal which contains a primary tumor that expresses green fluorescent protein (GFP) stably at a high level when said tumor metastasizes, wherein said animal is immunocompromised or is syngeneic to said tumor; and

10

monitoring the progression of metastasis by observing the presence, absence or intensity of the fluorescence at various locations in said treated animal;

monitoring the progression of metastasis in a control animal which contains a similar tumor that expresses green fluorescent protein; and

comparing the progression of metastasis in said treated animal with the progress of metastasis in said control animal;

15

whereby a diminution of the progression of metastasis in said treated animal as compared to said control animal identifies the protocol or drug as effective in inhibiting metastasis.

20

2. The method of claim 1 wherein said primary tumor has been modified to contain an expression system for GFP by administering a retroviral vector containing said expression system to said animal or wherein said primary tumor is implanted by surgical orthotopic implantation and contains an expression system for said GFP.

25

- 3. The method of claim 1 or 2 wherein the animal is a rabbit, rat or mouse.
- 4. The method of any of claims 1-3 wherein said monitoring is by fluorescent optical tumor imaging (FOTI) in the intact animal.

5. A method to evaluate a candidate protocol or drug for the inhibition of metastasis of a primary tumor which method comprises

administering said protocol or drug to an animal which contains a primary tumor that expresses green fluorescent protein (GFP) stably at a high level when said tumor metastasizes,

monitoring the progression of metastasis by observing the presence, absence or intensity of the fluorescence at various locations in said treated animal;

whereby a diminution of the progression of metastasis in said treated animal identifies the protocol or drug as effective in inhibiting metastasis.

10

5

- 6. The method of claim 5 wherein said primary tumor has been modified to contain an expression system for GFP by administering a retroviral vector containing said expression system to said animal.
- 15
- 7. The method of any of claims 5-6 wherein said monitoring is by fluorescent optical tumor imaging (FOTI) in the intact animal.
- 8. A method to monitor metastasis of a primary tumor in an intact animal which method comprises

20

monitoring the progression of metastasis in an animal which comprises said primary tumor, wherein said tumor expresses green fluorescent protein (GFP) stably at a high level when said tumor metastasizes, by observing the presence, absence or intensity of the fluorescence as a function of time at various locations in said intact animal.

25

- 9. The method of claim 8 wherein said primary tumor is endogenous and has been provided an expression system for GFP by administering a retroviral vector containing said expression system to said animal.
- 30
- 10. The method of claim 9 wherein said expression system comprises a viral promoter.

WO 00/40274 PCT/US00/00243

- 19 -

11. The method of any of claims 8-10 wherein the animal is human.

FIG. IA

FIG. IB

Inte Jonal Application No PCT/US 00/00243

		PCI/L	JS 00/00243
a. Classii IPC 7	FICATION OF SUBJECT MATTER A61K49/00		
According to	o International Patent Classification (IPC) or to both national cla	ssification and IPC	
	SEARCHED		···
	ocumentation searched (classification system followed by class A61K	ification symbols)	
Documentat	tion searched other than minimum documentation to the extent	that such documents are included in the	e fields searched
Electronic d	ata base consulted during the international search (name of da	ata base and, where practical, search te	rma used)
	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with Indication, where appropriate, of t	he relevant passages	Relevant to claim No.
X	WO 97 18841 A (UNIV LELAND STA JUNIOR) 29 May 1997 (1997-05-2 page 7, line 4 - line 18; clai page 6, line 7 - line 20	29)	1-11
Υ .	page 20, line 9 -page 21 WO 98 49336 A (ANTICANCER INC) 5 November 1998 (1998-11-05) page 8, line 18 -page 9, line page 6, line 1 - line 13		1-11
A	page 6, line 25 - line 30 YANG, MENG ET AL: "A fluoresconthotopic bone metatastis more prostate cancer" CANCER RES. (1999), 59(4), 781 XP002135777	del of human	1-11
	abstract	•	
	·	-/	
χ Furt	her documents are listed in the continuation of box C.	X Patent family members	are listed in annex.
'A" docume	ategories of cited documents : ent defining the general state of the art which is not dered to be of particular relevance	cited to understand the princ	r the international filing date nflict with the application but tiple or theory underlying the
E" earlier of filling of "L" docume which citation	document but published on or after the International date ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another in or other special reason (as specified)	"Y" document of particular releval cannot be considered to invo	or cannot be considered to en the document is taken alone nce; the claimed invention plye an inventive step when the
other i	ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filing date but han the priority date dalmed		one or more other such docu- ing obvious to a person skilled ne patent (amily
	actual completion of the international search	Date of mailing of the interna	
1	4 April 2000	09/05/2000	•
Name and r	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk	Authorized officer	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Berte, M	

1

Inti donal Application No PCT/US 00/00243

		<u> </u>
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	YANG, MENG ET AL: "Widespread skeletal metastatic potential of human lung cancer revealed by green fluorescent protein expression" CANCER RES. (1998), 58(19), 4217-4221, XP002135778 cited in the application abstract	1-11
P,Y	DATABASE CHEMABS 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US YANG, MENG ET AL: "Green fluorescent protein: new light to visualize metastasis and angiogenesis in cancer" retrieved from STN Database accession no. 132:177649 XP002135779 abstract & PROC. SPIE-INT. SOC. OPT. ENG. (1999), 3600(BIOMEDICAL IMAGING: REPORTERS DYES, AND INSTRUMENTATION), 117-124,	1-11
P,Y	DATABASE EMBASE 'Online! ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL HOFFMAN R.M.: "Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: A bridge to the clinic." retrieved from STN Database accession no. 2000091532 XP002135780 abstract & INVESTIGATIONAL NEW DRUGS, (1999) 17/4 (343-359).,	1-11

1

international application No.

PCT/US 00/00243

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Inte	rnational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: See FURTHER INFORMATION SHEET PCT/ISA/210
2.	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	rnational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210 Continuation of Box I.1

Although claim(s) 1-11 are directed to a diagnostic method practised on the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

Although claims 1-11 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

Information on patent family members

int. .ional Application No PCT/US 00/00243

Patent document cited in search report		Publication date		atent family nember(s)	Publication date
WO 9718841	Α	29-05-1997	CA US AU EP	2237983 A 5650135 A 4285096 A 0861093 A	29-05-1997 22-07-1997 11-06-1997 02-09-1998
WO 9849336	Α	05-11-1998	AU EP	7164898 A 0979298 A	24-11-1998 16-02-2000