8.1.2b If a has order 2k modulo the odd prime p, then $a^k \equiv -1 \pmod{p}$

Proof. Let p be an odd prime and $a^{2k} \equiv 1 \pmod{p}$. Notice,

$$(a^k)^2 - 1 \equiv 0 \pmod{p} \Rightarrow (a^k - 1)(a^k + 1) \equiv 0 \pmod{p}$$

Then, $p|(a^k-1)(a^k+1) \Rightarrow p|(a^k+1)$. So, $a^k \equiv -1 \pmod{p}$ Therefore, If a has order 2k modulo the odd prime p, then $a^k \equiv -1 \pmod{p}$

8.1.8a Prove that if p and q are odd primes and $q|a^p-1$, then either q|a-1 or else q=2kp+1 for some integer k.

Proof. Let p and q be odd primes and $q|a^p-1$ Note, $\gcd(a,q)=1$ and $a^p\equiv 1\pmod q$. Let r be the order of a modulo q. Then, r|p. As p is prime, we have r=1 or r=p. If r=1, we have $a\equiv 1\pmod q \Rightarrow q|(a-1)$

If r = p, we have $a^{\phi(q)} \equiv 1 \pmod{q}$. Then, $p|\phi(q) \Rightarrow p|q-1$. There must be some m such that pm = q-1. As q is odd, q-1 must be even, and as p is odd, m must be even, so m = 2k for some $k \in \mathbb{Z}$.

Thus, $p(2k) = q - 1 \Rightarrow q = 2pk + 1$.

Therefore, if p and q are odd primes and $q|a^p-1$, then either q|a-1 or else q=2kp+1 for some integer k

8.1.10 Let r be a primitive root of the integer n. Prove that r^k is a primitive root of n if and only if $gcd(k, \phi(n)) = 1$.

Proof. As r has order $\phi(n) \pmod{n}$, we then have r^k has order $\phi(n)/\gcd(k,\phi(n))$.

Assume $gcd(k, \phi(n)) = 1$ then r^k has order $\phi(n)$. Thus, r^k is a primitive root of n

Suppose r^k is a primitive root of n. Then r^k has order $\phi(n)$. As $\phi(n)$ is $\phi(n)/\gcd(k,\phi(n))$. Thus, $\gcd(k,\phi(n))=1$.

Therefore, r^k is a primitive root of n if and only if $gcd(k, \phi(n)) = 1$.