NEW UTILITY PATENT APPLICATION TRANSMITTAL (Large Entity)

10857Z

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Total Pages in this Submission 3

Docket No.

TO THE ASSISTANT COMMISSIONER FOR PATENTS

Box Patent Application Washington, D.C. 20231

inventi	on e	ntitle	d:				(b) is a new utility patent ap	phoation for an
AN	OVE	LH	AEMOPOIETIN REC	EPTOR A	AND GENET	TC SEQUENC	CES ENCODING SAME	
and in								
							n, Jian-Guo Zhang, Warren i Kikuchi, Andrew Nash	Alexander,
If a C	ONT	INU	ATION APPLICATION	, check a	appropriate bo	ox and supply	the requisite information:	
	onti	inuat	tion 🗌 Divisional	⊠ Co	ontinuation-	in-part (CIP)	of prior application No.:	08/928,720
Enclos	sed a	are:			Amalication	Elemente		
					Application	i ciements		
1.	X	Filir	ng fee as calculated ar	nd transm	nitted as desc	ribed below		
2.	X	Spe	ecification having	10	06	pages and ir	ncluding the following:	
	a.	X	Descriptive Title of the	ne Inventio	on			
	b.	<u> </u>	Cross References to			(if applicable)		
	c.		Statement Regarding	g Federall	ly-sponsored	Research/Dev	velopment (if applicable)	
	d.		Reference to Microfic	che Apper	endix <i>(if applic</i>	able)		-
	e.	X	Background of the In	vention				
	f.	X	Brief Summary of the	e Inventior	n			
	g.	X	Brief Description of t	he Drawin	ngs <i>(if drawin</i>	gs filed)		
	h.	X	Detailed Description					
	i.	X	Claim(s) as Classifie	d Below				
	j.	X	Abstract of the Discle	osure				
3.	X	Dra	wing(s) <i>(when necess</i>	ary as pre	escribed by 3	5 USC 113)		
	a.	X	Formal	-	-			
	b.		Informal					
			Number of Sheets		27			

NEW UTILITY PATENT APPLICATION TRANSMITTAL (Large Entity)

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Docket No. 10857Z

Total Pages in this Submission 3

Application Elements (Continued)

4.		Oath or Declaration
	a.	☐ Newly executed (original or copy) ☐ Unexecuted
	b.	☐ Copy from a prior application (37 CFR 1.63(d)) (for continuation/divisional application only)
	C.	☐ With Power of Attorney ☐ Without Power of Attorney
5.		Incorporation By Reference (usable if Box 4b is checked) The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein.
6.		Computer Program in Microfiche (Appendix)
7.	X	Nucleotide and/or Amino Acid Sequence Submission (if applicable, all must be included)
	a.	☑ Paper Copy
	b.	☐ Computer Readable Copy (identical to computer copy)
	c.	☐ Statement Verifying Identical Paper and Computer Readable Copy
		Accompanying Application Parts
8.		Assignment Papers (cover sheet & document(s))
9.		37 CFR 3.73(B) Statement (when there is an assignee)
10.		English Translation Document (if applicable)
11.		Information Disclosure Statement/PTO-1449 Copies of IDS Citations
12.	X	Preliminary Amendment
13.	×	Acknowledgment postcard
14.		Certificate of Mailing
		☐ First Class ☑ Express Mail (Specify Label No.): EM166372464US
15.		Certified Copy of Priority Document(s) (if foreign priority is claimed)

NEW UTILITY PATENT APPLICATION TRANSMITTAL (Large Entity)

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Docket No. 10857Z

Total Pages in this Submission

P01ULRG/REV04

Accompanying Application Parts (Continued)

16. 🗆 Addition	nal Enclosures (p	lease identify bel	low):				
L		Fee Calcul	lation and Tr	ansmitta	ıl		
		CLAIMS	AS FILED				
For	#Filed	#Allowed	#Extra		Rate		Fee
Total Claims	43	- 20 =	23	х	\$22.00		\$506.00
ndep. Claims	15	- 3 =	12	×	\$82.00		\$984.00
Multiple Dependen	t Claims (check	if applicable)	×	1380		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	\$270.00
					E	BASIC FEE	\$790.00
OTHER FEE (spec	cify purpose)						\$0.00
					TOTAL F	ILING FEE	\$2,550.00
as described be Charge Credit Charge Charge	amount of \$ oner is hereby au elow. A duplicate e the amount of any overpayment e any additional fi e the issue fee se ant to 37 C.F.R. 1	thorized to charge e copy of this sheet t. Iling fees required et in 37 C.F.R. 1.1	et is enclosed as filing fee. d under 37 C.F	Deposit A	and 1.17.	19-1013 wance,	
Dated: March 10,	1998		S 40 G	cully, Sco 00 Garde	resser, Registr tt, Murphy Pi n City Plaza ty, New York		27

Page 3 of 3

ERTIFICATE OF M	MAILING BY "EXPRESS!	MAIL" (37 CFR 1.10)	Docket No.
	mes Hilton, et al.		10857Z
Serial No.	Filing Date	Examiner	Group Art Unit
unassigned	herewith	unassigned	unassigned
vention: A NOVEL F	IAEMOPOIETIN RECEPTOR A	AND GENETIC SEQUENCES	ENCODING SAME
I hereby certify that thi	S New CIP Patent Application	(Identify type of correspondence)	
,		(Identify type of correspondence)	
,	s <u>New CIP Patent Application</u> h the United States Postal Serv	(Identify type of correspondence)	to Addressee" service under
is being deposited wit	h the United States Postal Serv	(Identify type of correspondence) rice "Express Mail Post Office	
is being deposited wit	n the United States Postal Serv	(Identify type of correspondence) rice "Express Mail Post Office	
is being deposited with 37 CFR 1.10 in an environment	n the United States Postal Serv relope addressed to: The Assista	(Identify type of correspondence) rice "Express Mail Post Office	
is being deposited wit 37 CFR 1.10 in an env	n the United States Postal Serv relope addressed to: The Assista	(Identify type of correspondence) rice "Express Mail Post Office ant Commissioner for Patents Karen De	, Washington, D.C. 20231 on
is being deposited wit 37 CFR 1.10 in an env March 1	n the United States Postal Serv relope addressed to: The Assista	(Identify type of correspondence) ice "Express Mail Post Office ant Commissioner for Patents	, Washington, D.C. 20231 on
is being deposited wit 37 CFR 1.10 in an env March 1	n the United States Postal Serv relope addressed to: The Assista	(Identify type of correspondence) rice "Express Mail Post Office ant Commissioner for Patents Karen De	, Washington, D.C. 20231 on
is being deposited wit 37 CFR 1.10 in an env March 1	n the United States Postal Serv relope addressed to: The Assista	(Identify type of correspondence) rice "Express Mail Post Office ant Commissioner for Patents Karen De	, Washington, D.C. 20231 on Salvo Mailing Correspondence)
is being deposited wit 37 CFR 1.10 in an env March 1	n the United States Postal Serv relope addressed to: The Assista	(Identify type of correspondence) rice "Express Mail Post Office ant Commissioner for Patents Karen De (Typed or Printed Name of Person	, Washington, D.C. 20231 on Salvo Mailing Correspondence) Ing Correspondence)
is being deposited with 37 CFR 1.10 in an env	n the United States Postal Serv relope addressed to: The Assista	(Identify type of correspondence) rice "Express Mail Post Office ant Commissioner for Patents Karen De (Typed or Printed Name of Person Mathi	, Washington, D.C. 20231 on Salvo Mailing Correspondence) Ing Correspondence)

Note: Each paper must have its own certificate of mailing.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Douglas James Hilton, Examiner:

et al.

Serial No.: unassigned

Art Unit:

Filed: herewith

Docket: 10857Z

For: A NOVEL HAEMOPOIETIN RECEPTOR AND GENETIC SEQUENCES

Dated: March 10, 1998

ENCODING SAME

Assistant Commissioner for Patents Washington, DC 20231

PRELIMINARY AMENDMENT

Sir:

Prior to examination, please amend the aboveidentified patent application as follows:

IN THE SPECIFICATION:

Page 1, before line 5 please insert the following:

-- CROSS REFERENCE TO RELATED APPLICATION:

The present application is a continuation-in-part of application Serial Number 08/928,720 filed September 11, 1997.

IN THE CLAIMS:

Please amend the claims as follows:

Claim 32, line 1 change "trangenic" to --transgenic--

Claim 33, line 1 change "33" to --32--

Claim 34, line 1 change "33 or 34" to --32 or 33--

CERTIFICATE OF MAILING BY EXPRESS MAIL Express Mail mailing label number: EM166372464US Date of Deposit: March 10, 1998

I hereby certify that this correspondence is being deposited with the United States Postal Service as Express Mail Post Office to Addressee service under 37 C.F.R. §1.10 on the date indicated above addressed to: Assistant Commissioner for Patents, Washington, DC 20231, on March 10, 1998.

Dated: March 10, 1998

Karen DeSalvo

ae\F:\WORK\536\10857Z\amend\10857Z.pre

REMARKS

It is respectfully requested that this Preliminary

Amendment be entered in this application prior to examination.

Early and favorable consideration is requested.

Respectfully submitted,

Leopold Presse

Registration No. 19,827

SCULLY, SCOTT, MURPHY & PRESSER 400 Garden City Plaza Garden City, New York 11530 (516) 742-4343

LP:ae

15

20

A NOVEL HAEMOPOIETIN RECEPTOR AND GENETIC SEQUENCES ENCODING SAME

5 The present invention relates generally to a novel haemopoietin receptor or derivatives thereof and to genetic sequences encoding same. Interaction between the novel receptor of the present invention and a ligand facilitates proliferation, differentiation and survival of a wide variety of cells. The novel receptor and its derivatives and the genetic sequences encoding same of the present invention are useful in the development of a wide range of agonists, antagonists, therapeutics and diagnostic reagents based on ligand interaction with its receptor.

Bibliographic details of the publications numerically referred to in this specification are collected at the end of the description. Sequence Identity Numbers (SEQ ID NOs.) for the nucleotide and amino acid sequences referred to in the specification are defined following the bibliography.

Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.

The rapidly increasing sophistication of recombinant DNA techniques is greatly facilitating research into the medical and allied health fields. Cytokine research is of particular importance, especially as these molecules regulate the proliferation, differentiation and function of a wide variety of cells. Administration of recombinant cytokines or regulating cytokine function and/or synthesis is becoming increasingly the focus of medical research into the treatment of a range of disease conditions.

Despite the discovery of a range of cytokines and other secreted regulators of cell function, comparatively few cytokines are directly used or targeted in therapeutic regimens. One reason 30 for this is the pleiotropic nature of many cytokines. For example, interleukin (IL)-11 is a

functionally pleiotropic molecule (1,2), initially characterized by its ability to stimulate proliferation of the IL-6-dependent plasmacytoma cell line, T11 65 (3). Other biological actions of IL-11 include induction of multipotential haemopoietin progenitor cell proliferation (4,5,6), enhancement of megakaryocyte and platelet formation (7,8,9,10), stimulation of acute phase protein synthesis (11) and inhibition of adipocyte lipoprotein lipase activity (12, 13).

Other important cytokines in the IL-11 group include IL-6, leukaemia inhibitory factor (LIF), oncostatin M (OSM) and CNTF. All these cytokines exhibit pleiotropic properties with significant activities in proliferation, differentiation and survival of cells. Members of the haemopoietin receptor family are defined by the presence of a conserved amino acid domain in their extracellular region. However, despite the low level of amino acid sequence conservation between other haemopoietin receptor domains of different receptors, they are all predicted to assume a similar tertiary structure, centred around two fibronectin-type III repeats (18,19).

15 The size of the haemopoietin receptor family has now become extensive and includes the cell surface receptors for may cytokines including interleukin-2 (IL-2), IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-11, IL-12, IL-13, IL-15, granulocyte colony stimulating factor (G-CSF), granulocytemacrophage-CSF (GM-CSF), erythropoietin, thrombopoietin, leptin, leukaemia inhibitory factor, oncostatin-M, ciliary neurotrophic factor, cardiotrophin, growth hormone and prolactin. 20 Although most of the members of the haemopoietin receptor family act as classic cell surface receptors, binding their cognate ligand at the cell surface and initiating intracellular signal transduction, some receptors are also produced in naturally occurring soluble forms. These soluble receptors can either act as cytokine antagonists, by binding to cytokines and inhibiting productive interactions with cell surface receptors (eg LIF binding protein; (20) or as agonists, 25 binding to cytokine and potentiating interaction with cell surface receptor components (eg soluble interleukin-6 receptor a-chain; (21). Still other members of the family appear to be produced only as secreted proteins, with no evidence of a cell surface form. In this regard, the IL-12 p40 subunit is a useful example. The cytokine IL-12 is secreted as a heterodimer composed of a p35 subunit which shows similarity to cytokines such as IL-6 (22) and a p40 30 subunit which shares similarity with the IL-6 receptor a-chain (23). In this case the soluble

receptor acts as part of the cytokine itself and essential to formation of an active protein. In

addition to acting as cytokines (eg IL-12p40), cytokine agonists (eg IL-6 receptor a-chain) or cytokine antagonists (LIF binding protein), members of the haemopoietin receptor have been useful in the discovery of small molecule cytokine mimetics. For example, the discovery of peptide mimetics of two commercially valuable cytokines, erythropoietin and thrombopoietin, centred on the selection of peptides capable of binding to soluble versions of the erythropoietin and thrombopoietin receptors (24,25). Due to the importance and multifactorial nature of these cytokines, there is a need to identify receptors, including both cell bound and soluble, for pleiotropic cytokines. Identification of such receptors permits the identification of pleiotropic cytokines and the development of a range of therapeutic and diagnostic agents.

10

Accordingly, one aspect of the present invention relates to a nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding a novel haemopoietin receptor or a derivative thereof.

15 More particularly, the present invention provides a nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding a novel haemopoietin receptor or a derivative thereof having the motif:

Trp Ser Xaa Trp Ser [SEQ ID NO:1],

wherein Xaa is any amino acid and is preferably Asp or Glu.

20

Even more particularly, the present invention is directed to a nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding a novel haemopoietin receptor or a derivative thereof, said receptor comprising the motif:

Trp Ser Xaa Trp Ser [SEQ ID NO:1]

- wherein Xaa is any amino acid and is preferably Asp or Glu, said nucleic acid molecule is identifiable by hybridisation to said molecule under low stringency conditions at 42°C with 5' (A/G)CTCCA(A/G)TC(A/G)CTCCA 3' [SEQ ID NO:7] and
 - 5' (A/G)CTCCA(C/T)TC(A/G)CTCCA 3' [SEQ ID NO:8].

30

Still more particularly, the present invention provides an isolated nucleic acid molecule

comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:12 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:12 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42°C and wherein said nucleotide sequence encodes a novel haemopoietin receptor or a derivative 5 thereof.

In a related embodiment, the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:14 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:14 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42°C and wherein said nucleotide sequence encodes a novel haemopoietin receptor or a derivative thereof.

In another related embodiment, the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:16 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:16 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42°C and wherein said nucleotide sequence encodes a novel haemopoietin receptor or a derivative thereof.

20

In a further related embodiment, the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:18 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:18 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42°C and wherein said nucleotide sequence encodes a novel haemopoietin receptor or a derivative thereof.

In yet a further related embodiment, the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:24 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:24 or a nucleotide sequence capable of hybridising thereto under low stringency

conditions at 42°C and wherein said nucleotide sequence encodes a novel haemopoietin receptor or a derivative thereof.

Still yet a further embodiment of the present invention is directed to a sequence of nucleotides substantially as set forth in SEQ ID NO:28 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:28 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42°C and wherein said nucleotide sequence encodes a novel haemopoietin receptor or a derivative thereof.

10 In still yet another embodiment, the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides substantially set forth in SEQ ID NO:38 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:38 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42°C and wherein said nucleotide sequence encodes a novel haemopoietin receptor or a derivative 15 thereof.

Another embodiment of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides substantially set forth in SEQ ID NO:43 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:43 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42°C and wherein said nucleotide sequence encodes a novel haemopoietin receptor or a derivative thereof.

The term "receptor" is used in its broadest sense and includes any molecule capable of binding, associating or otherwise interacting with a ligand. Generally, the interaction will have a signalling effect although the present invention is not necessarily so limited. For example, the "receptor" may be in soluble form, often referred to as a cytokine binding protein. A receptor may be deemed a receptor notwithstanding that its ligand or ligands has or have not been identified.

30

preferred mammals include humans, primates, laboratory test animals (e.g. mice, rats, rabbits, guinea pigs), livestock animals (e.g. sheep, horses, pigs, cows), companion animals (e.g. dogs, cats) or captive wild animals (e.g. deer, foxes, kangaroos). Although the present invention is exemplified with respect to mice, the scope of the subject invention extends to all animals and in particular humans.

The present invention is predicated in part on an ability to identify members of the haemopoietin receptor family with limited sequence similarity. Based on this approach, a genetic sequence has been identified in accordance with the present invention which encodes a novel receptor. The expressed genetic sequence is referred to herein as "NR6". Different forms of NR6 are referred to as, for example, NR6.1, NR6.2 and NR6.3. The nucleotide and corresponding amino acid sequences for these molecules are represented in SEQ ID NOs:12, 14 and 16, respectively.

Preferred human and murine nucleic acid sequences for NR6 or its derivatives include sequences from brain, liver, kidney, neonatal, embryonic, cancer or tumour-derived tissues.

Reference herein to a low stringency at 42°C includes and encompasses from at least about 1% v/v to at least about 15% v/v formamide and from at least about 1M to at least about 2M salt for hybridisation, and at least about 1M to at least about 2M salt for washing conditions. Alternative stringency conditions may be applied where necessary, such as medium stringency, which includes and encompasses from at least about 16% v/v to at least about 30% v/v formamide and from at least about 0.5M to at least about 0.9M salt for hybridisation, and at least about 0.5M to at least about 0.9M salt for washing conditions, or high stringency, which includes and encompasses from at least about 31% v/v to at least about 50% v/v formamide and from at least about 0.01M to at least about 0.15M salt for hybridisation, and at least about 0.01M to at least about 0.15M salt for hybridisation, and at least about 0.01M to at least about 0.15M salt for hybridisation, and at least about 0.01M to at least about 0.15M salt for hybridisation, and at least about 0.01M to at least about 0.15M salt for hybridisation.

The nucleic acid molecules contemplated by the present invention are generally in isolated form and are preferably cDNA or genomic DNA molecules. In a particularly preferred embodiment, 30 the nucleic acid molecules are in vectors and most preferably expression vectors to enable expression in a suitable host cell. Particularly useful host cells include prokaryotic cells,

mammalian cells, yeast cells and insect cells. The cells may also be in the form of a cell line.

Accordingly, another aspect of the present invention provides an expression vector comprising a nucleic acid molecule encoding the novel haempoietin receptor or a derivative thereof as 5 hereinbefore described, said expression vector capable of expression in a selected host cell.

Another aspect of the present invention contemplates a method for cloning a nucleotide sequence encoding NR6 or a derivative thereof, said method comprising searching a nucleotide data base for a sequence which encodes the amino acid sequence set forth in SEQ ID NO:1, designing one or more oligonucleotide primers based on the nucleotide sequence located in the search, screening a nucleic acid library with said one or more oligonucleotides and obtaining a clone therefrom which encodes said NR6 or part thereof.

Once a novel nucleotide sequence is obtained as indicated above encoding NR6, oligonucleotides may be designed which bind cDNA clones with high stringency. Direct colony hybridisation may be employed or PCR amplification may be used. The use of oligonucleotide primers which bind under conditions of high stringency ensures rapid cloning of a molecule encoding the novel NR6 and less time is required in screening out cloning artefacts. However, depending on the primers used, low or medium stringency conditions may also be employed.

20

Alternatively, a library may be screened directly such as using oligonucleotides set forth in SEQ ID NO:7 or SEQ ID NO:8 or a mixture of both oligonucleotides may be used. In addition, one or more of oligonucleotides defined in SEQ ID NO:2 to 11 may also be used.

25 Preferably, the nucleic acid library is a cDNA, genomic, cDNA expression or mRNA library.

Preferably, the nucleic acid library is a cDNA expression library.

Preferably, the nucleotide data base is of human or murine origin and of brain, liver, kidney, neo-30 natal tissue, embryonic tissue, tumour or cancer tissue origin. Preferred percentage similarities to the reference nucleotide sequences include at least about 70%, more preferably at least about 80%, still more preferably at least about 90% and even more preferably at least about 95% or above.

- 5 Another aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding a novel haempoietin receptor or derivative thereof having an amino acid sequence as set forth in SEQ ID NO:13 or having at least about 50% similarity to all or part thereof.
- 10 Still yet another aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding a novel haempoietin receptor or derivative thereof having an amino acid sequence as set forth in SEQ ID NO:15 or having at least about 50% similarity to all or part thereof.
- 15 Even yet another aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding a novel haempoietin receptor or derivative thereof having an amino acid sequence as set forth in SEQ ID NO:17 or having at least about 50% similarity to all or part thereof.
- 20 A further aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding a novel haempoietin receptor or derivative thereof having an amino acid sequence as set forth in SEQ ID NO:19 or having at least about 50% similarity to all or part thereof.
- 25 Even yet a another aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding a novel haempoietin receptor or derivative thereof having an amino acid sequence as set forth in SEQ ID NO:25 or having at least about 50% similarity to all or part thereof.
- 30 Another aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding a novel haempoietin receptor or derivative thereof having

an amino acid sequence as set forth in one or more of SEQ ID NOs:29 or having at least about 50% similarity to all or part thereof.

Still another aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding a novel haemopoietin receptor or derivative thereof having an amino acid sequence as set forth in one or more of SEQ ID NOs:44 or having at least about 50% similarity to all or part thereof.

Preferably, the percentage amino acid similarity is at least about 60%, more preferably at least about 70%, even more preferably at least about 80-85% and still even more preferably at least about 90-95% or greater.

The NR6 polypeptide contemplated by the present invention includes, therefore, derivatives which are components, parts, fragments, homologues or analogues of the novel haempoietin receptors which are preferably encoded by all or part of a nucleotide sequences substantially set forth in SEQ ID NO:12 or 14 or 16 or 18 or 25 or 20 or 24 or 28 or 38 or 43 or a molecule having at least about 60% nucleotide similarity to all or part thereof or a molecule capable of hybridising to the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 20 or 24 or 28 or 38 or 43 or a complementary form thereof. The NR6 molecule may be glycosylated 20 or non-glycosylated. When in glycosylated form, the glycosylation may be substantially the same as naturally occurring haempoietin receptor or may be a modified form of glycosylation. Altered or differential glycosylation states may or may not affect binding activity of the novel receptor.

The NR6 hacmopoietin receptor may be in soluble form or may be expressed on a cell surface or conjugated or fused to a solid support or another molecule.

As stated above, the present invention further contemplates a range of derivatives of NR6.

Derivatives include fragments, parts, portions, mutants, homologues and analogues of the NR6 polypeptide and corresponding genetic sequence. Derivatives also include single or multiple amino acid substitutions, deletions and/or additions to NR6 or single or multiple nucleotide substitutions, deletions and/or additions to the genetic sequence encoding NR6. "Additions" to

amino acid sequences or nucleotide sequences include fusions with other peptides, polypeptides or proteins or fusions to nucleotide sequences. Reference herein to "NR6" includes reference to all derivatives thereof including functional derivatives or NR6 immunologically interactive derivatives.

5

Analogues of NR6 contemplated herein include, but are not limited to, modification to side chains, incorporating of unnatural amino acids and/or their derivatives during peptide, polypeptide or protein synthesis and the use of crosslinkers and other methods which impose conformational constraints on the proteinaceous molecule or their analogues.

10

Examples of side chain modifications contemplated by the present invention include modifications of amino groups such as by reductive alkylation by reaction with an aldehyde followed by reduction with NaBH₄; amidination with methylacetimidate; acylation with acetic anhydride; carbamoylation of amino groups with cyanate; trinitrobenzylation of amino groups with 2, 4, 6-trinitrobenzene sulphonic acid (TNBS); acylation of amino groups with succinic anhydride and tetrahydrophthalic anhydride; and pyridoxylation of lysine with pyridoxal-5-phosphate followed by reduction with NaBH₄.

The guanidine group of arginine residues may be modified by the formation of heterocyclic condensation products with reagents such as 2,3-butanedione, phenylglyoxal and glyoxal.

The carboxyl group may be modified by carbodiimide activation via O-acylisourea formation followed by subsequent derivitisation, for example, to a corresponding amide.

25 Sulphydryl groups may be modified by methods such as carboxymethylation with iodoacetic acid or iodoacetamide; performic acid oxidation to cysteic acid; formation of a mixed disulphides with other thiol compounds; reaction with maleimide, maleic anhydride or other substituted maleimide; formation of mercurial derivatives using 4-chloromercuribenzoate, 4-chloromercuriphenylsulphonic acid, phenylmercury chloride, 2-chloromercuri-4-nitrophenol and other mercurials; carbamoylation with cyanate at alkaline pH.

Tryptophan residues may be modified by, for example, oxidation with N-bromosuccinimide or alkylation of the indole ring with 2-hydroxy-5-nitrobenzyl bromide or sulphenyl halides. Tyrosine residues on the other hand, may be altered by nitration with tetranitromethane to form a 3-nitrotyrosine derivative.

Modification of the imidazole ring of a histidine residue may be accomplished by alkylation with iodoacetic acid derivatives or N-carbethoxylation with diethylpyrocarbonate.

Examples of incorporating unnatural amino acids and derivatives during peptide synthesis include, but are not limited to, use of norleucine, 4-amino butyric acid, 4-amino-3-hydroxy-5-phenylpentanoic acid, 6-aminohexanoic acid, t-butylglycine, norvaline, phenylglycine, omithine, sarcosine, 4-amino-3-hydroxy-6-methylheptanoic acid, 2-thienyl alanine and/or D-isomers of amino acids. A list of unnatural amino acid, contemplated herein is shown in Table 1.

15 These types of modifications may be important to stabilise NR6 if administered to an individual or for use as a diagnostic reagent.

Crosslinkers can be used, for example, to stabilise 3D conformations, using homo-bifunctional crosslinkers such as the bifunctional imido esters having $(CH_2)_{\Pi}$ spacer groups with n=1 to n=6, 20 glutaraldehyde, N-hydroxysuccinimide esters and hetero-bifunctional reagents which usually contain an amino-reactive moiety such as N-hydroxysuccinimide and another group specific-reactive moiety such as maleimido or dithio moiety (SH) or carbodiimide (COOH). In addition, peptides can be conformationally constrained by, for example, incorporation of C_{α} and N_{α} -methylamino acids, introduction of double bonds between C_{α} and C_{β} atoms of amino acids and 25 the formation of cyclic peptides or analogues by introducing covalent bonds such as forming an amide bond between the N and C termini, between two side chains or between a side chain and the N or C terminus.

TABLE 1

Non-conventional	Code	Non-conventional	Code
amino acid		amino acid	
;			
α-aminobutyric acid	Abu	L-N-methylalanine	Nmala
α -amino- α -methylbutyrate	Mgabu	L-N-methylarginine	Nmarg
aminocyclopropane-	Cpro	L-N-methylasparagine	Nmasn
carboxylate		L-N-methylaspartic acid	Nmasp
aminoisobutyric acid	Aib	L-N-methylcysteine	Nmcys
aminonorbornyl-	Norb	L-N-methylglutamine	Nmgln
carboxylate		L-N-methylglutamic acid	Nmglu
cyclohexylalanine		Chexa L-N-methylhistidine	Nmhis
cyclopentylalanine	Cpen	L-N-methylisolleucine	Nmile
D-alanine	Dal	L-N-methylleucine	Nmleu
D-arginine	Darg	L-N-methyllysine	Nmlys
D-aspartic acid	Dasp	L-N-methylmethionine	Nmmet
D-cysteine	Dcys	L-N-methylnorleucine	Nmnle
D-glutamine	Dgln	L-N-methylnorvaline	Nmnva
D-glutamic acid	Dglu	L-N-methylomithine	Nmorn
D-histidine	Dhis	L-N-methylphenylalanine	Nmphe
D-isoleucine	Dile	L-N-methylproline	Nmpro
D-leucine	Dleu	L-N-methylserine	Nmser
D-lysine	Dlys	L-N-methylthreonine	Nmthr
D-methionine	Dmet	L-N-methyltryptophan	Nmtrp
D-ornithine	Dorn	L-N-methyltyrosine	Nmtyr
D-phenylalanine	Dphe	L-N-methylvaline	Nmval
D-proline	Dpro	L-N-methylethylglycine	Nmetg
D-serine	Dser	L-N-methyl-t-butylglycine	Nmtbug
D-threonine	Dthr	L-norleucine	Nle
D-tryptophan	Dtrp	L-norvaline	Nva

	D-tyrosine	Dtyr	α-methyl-aminoisobutyrate	Maib
	D-valine	Dval	α-methyl-γ-aminobutyrate	Mgabu
	D-α-methylalanine	Dmala	α-methylcyclohexylalanine	Mchexa
	D-α-methylarginine	Dmarg	α-methylcylcopentylalanine	Mcpen
4	D-α-methylasparagine	Dmasn	α -methyl- α -napthylalanine	Manap
J	D-α-methylaspartate	Dmasp	α-methylpenicillamine	Mpen
	D-α-methylcysteine	Dmcys	N-(4-aminobutyl)glycine	Nglu
	D-α-methylglutamine	Dmgln	N-(2-aminoethyl)glycine	Naeg
	D-\a-methylhistidine	Dmhis	N-(3-aminopropyl)glycine	Norn
10	D-α-methylisoleucine	Dmile	N-amino-α-methylbutyrate	Nmaabu
10	D-α-methylleucine	Dmleu	α-napthylalanine	Апар
	D-α-methyllysine	Dmlys	N-benzylglycine	Nphe
	D-α-methylmethionine	Dmmet	N-(2-carbamylethyl)glycine	Ngln
	D-α-methylornithine	Dmorn	N-(carbamylmethyl)glycine	Nasn
15	D-α-methylphenylalanine	Dmphe	N-(2-carboxyethyl)glycine	Nglu
10	D-α-methylproline	Dmpro	N-(carboxymethyl)glycine	Nasp
	D-α-methylserine	Dmser	N-cyclobutylglycine	Nebut
	D-α-methylthreonine	Dmthr	N-cycloheptylglycine	Nchep
	D-α-methyltryptophan	Dmtrp	N-cyclohexylglycine	Nchex
20	D-α-methyltyrosine	Dmty	N-cyclodecylglycine	Nodec
20	D-α-methylvaline	Dmval	N-cylcododecylglycine	Ncdod
	D-N-methylalanine	Dnmala	N-cyclooctylglycine	Ncoct
	D-N-methylarginine	Dnmarg	N-cyclopropylglycine	Nepro
	D-N-methylasparagine	Dnmasn	N-cycloundecylglycine	Nound
25	D-N-methylaspartate	Dnmasp	N-(2,2-diphenylethyl)glycine	Nbhm
	D-N-methylcysteine	Dnmcys	N-(3,3-diphenylpropyl)glycine	Nbhe
	D-N-methylglutamine	Damgla	N-(3-guanidinopropyl)glycine	Narg
	D-N-methylglutamate	Dnmglu	N-(1-hydroxyethyl)glycine	Nthr
	D-N-methylhistidine	Dnmhis	N-(hydroxyethyl))glycine	Nser
3	D-N-methylisoleucine	Dnmile	N-(imidazolylethyl))glycine	Nhis
	D-N-methylleucine	Dnmleu	N-(3-indolylyethyl)glycine	Nhtrp

	D-N-methyllysine	Dnmlys	N-methyl-γ-aminobutyrate	Nmgabu
	N-methylcyclohexylalanine	Nmchexa	D-N-methylmethionine	Dnmmet
	D-N-methylornithine	Dnmorn	N-methylcyclopentylalanine	Nmcpen
	N-methylglycine	Nala	D-N-methylphenylalanine	Dnmphe
	N-methylaminoisobutyrate	Nmaib	D-N-methylproline	Dnmpro
	N-(1-methylpropyl)glycine	Nile	D-N-methylserine	Dnmser
	N-(2-methylpropyl)glycine	Nleu	D-N-methylthreonine	Dnmthr
	D-N-methyltryptophan	Dnmtrp	N-(1-methylethyl)glycine	Nval
	D-N-methyltyrosine	Dnmtyr	N-methyla-napthylalanine	Nmanap
10	D-N-methylvaline	Dnmval	N-methylpenicillamine	Nmpen
	γ-aminobutyric acid	Gabu	N-(p-hydroxyphenyl)glycine	Nhtyr
	L-t-butylglycine	Tbug	N-(thiomethyl)glycine	Ncys
	L-ethylglycine	Etg	penicillamine	Pen
	L-homophenylalanine	Hphe	L-α-methylalanine	Mala
15	L-α-methylarginine	Marg	L-α-methylasparagine	Masn
	L-α-methylaspartate	Masp	L-α-methyl- <i>i</i> -butylglycine	Mtbug
	L-α-methylcysteine	Mcys	L-methylethylglycine	Metg
	L-α-methylglutamine	Mgln	L - α -methylglutamate	Mglu
	L-α-methylhistidine	Mhis	L - α -methylhomophenylalanine	Mhphe
20	L-α-methylisoleucine	Mile	N-(2-methylthioethyl)glycine	Nmet
	L-α-methylleucine	Mleu	L - α -methyllysine	Mlys
	L-a-methylmethionine	Mmet	L-α-methylnorleucine	Mnle
	L-α-methylnorvaline	Mnva	L - α -methylomithine	Mom
	L-α-methylphenylalanine	Mphe	L - α -methylproline	Mpro
25	L-α-methylserine	Mser	L-α-methylthreonine	Mthr
	L-α-methyltryptophan	Mtrp	L-a-methyltyrosine	Mtyr
	L-α-methylvaline	Mval	L-N-methylhomophenylalanine	Nmhphe

N-(N-(2,2-diphenylethyl))carbamylmethyl)glycine 1-carboxy-1-(2,2-diphenylNnbhm

N-(N-(3,3-diphenylpropyl)

carbamylmethyl)glycine

Nnbhe

Nmbc

ethylamino)cyclopropane

The present invention further contemplates chemical analogues of NR6 capable of acting as antagonists or agonists of NR6 or which can act as functional analogues of NR6. Chemical analogues may not necessarily be derived from NR6 but may share certain conformational 10 similarities. Alternatively, chemical analogues may be specifically designed to mimic certain physiochemical properties of NR6. Chemical analogues may be chemically synthesised or may be detected following, for example, natural product screening.

The identification of NR6 permits the generation of a range of therapeutic molecules capable 15 of modulating expression of NR6 or modulating the activity of NR6. Modulators contemplated by the present invention includes agonists and antagonists of NR6 expression. Antagonists of NR6 expression include antisense molecules, ribozymes and co-suppression molecules. Agonists include molecules which increase promoter ability or interfere with negative regulatory mechanisms. Agonists of NR6 include molecules which overcome any negative regulatory 20 mechanism. Antagonists of NR6 include antibodies and inhibitor peptide fragments.

Other derivatives contemplated by the present invention include a range of glycosylation variants from a completely unglycosylated molecule to a modified glycosylated molecule. Altered glycosylation patterns may result from expression of recombinant molecules in different 25 host cells.

Another embodiment of the present invention contemplates a method for modulating expression of NR6 in a subject such as a human or mouse, said method comprising contacting the genetic sequence encoding NR6 with an effective amount of a modulator of NR6 expression 30 for a time and under conditions sufficient to up-regulate or down-regulate or otherwise modulate expression of NR6. Modulating NR6 expression provides a means of modulating

NR6-ligand interaction or NR6 stimulation of cell activities.

Another aspect of the present invention contemplates a method of modulating activity of NR6 in a human, said method comprising administering to said mammal a modulating effective amount of a molecule for a time and under conditions sufficient to increase or decrease NR6 activity. The molecule may be a proteinaceous molecule or a chemical entity and may also be a derivative of NR6 or its ligand or a chemical analogue or truncation mutant of NR6 or its ligand.

- 10 The present invention, therefore, contemplates a pharmaceutical composition comprising NR6 or a derivative thereof or a modulator of NR6 expression or NR6 activity and one or more pharmaceutically acceptable carriers and/or diluents. These components are referred to as the "active ingredients".
- 15 The pharmaceutical forms suitable for injectable use include sterile aqueous solutions (where water soluble) and sterile powders for the extemporaneous preparation of sterile injectable solutions. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dilution medium comprising, for example, water, ethanol, polyol (for example, glycerol, propylene glycol and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of superfactants. The preventions of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thirmerosal and the like. In many cases, it will be preferable to include isotonic 25 agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.

Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filtered sterilization. In the case of sterile powders for the preparation

of sterile injectable solutions, the preferred methods of preparation are vacuum drying and the freeze-drying technique which yield a powder of the active ingredient plus any additional desired ingredient from previously sterile-filtered solution thereof.

5 When the active ingredients are suitably protected they may be orally administered, for example, with an inert diluent or with an assimilable edible carrier, or it may be enclosed in hard or soft shell gelatin capsule, or it may be compressed into tablets, or it may be incorporated directly with the food of the diet. For oral therapeutic administration, the active compound may be incorporated with excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like. Such compositions and preparations should contain at least 1% by weight of active compound. The percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 5 to about 80% of the weight of the unit. The amount of active compound in such therapeutically useful compositions in such that a suitable dosage will be obtained. Preferred compositions or preparations according to the present invention are prepared so that an oral dosage unit form contains between about 0.1 ug and 2000 mg of active compound. Alternative dosage amounts include from about 1 μg to about 1000 mg and from about 10 μg to about 500 mg.

The tablets, troches, pills, capsules and the like may also contain the components as listed 20 hereafter: A binder such as gum, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; and a sweetening agent such a sucrose, lactose or saccharin may be added or a flavouring agent such as peppermint, oil of wintergreen, or cherry flavouring. When the dosage unit form is a capsule, it may contain, in addition to materials of 25 the above type, a liquid carrier. Various other materials may be present as coatings or to otherwise modify the physical form of the dosage unit. For instance, tablets, pills, or capsules may be coated with shellac, sugar or both. A syrup or elixir may contain the active compound, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavouring such as cherry or orange flavour. Of course, any material used in preparing any dosage unit form should be pharmaceutically pure and substantially non-toxic in the amounts employed. In addition, the active compound(s) may be incorporated into sustained-release

preparations and formulations.

The present invention also extends to forms suitable for topical application such as creams, lotions and gels as well as a range of "paints" which are applied to skin and through which the 5 active ingredients are absorbed.

Pharmaceutically acceptable carriers and/or diluents include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutical active substances is well known in the art and except insofar as any conventional media or agent is incompatible with the active ingredient, their use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.

It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the mammalian subjects to be treated; each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the novel dosage unit forms of the invention are dictated by and directly dependent on (a) the unique characteristics of the active material and the particular therapeutic effect to be achieved, and (b) the limitations inherent in the art of compounding such an active material for the treatment of disease in living subjects having a diseased condition in which bodily health is impaired as herein disclosed in detail.

25 The principal active ingredient is compounded for convenient and effective administration in effective amounts with a suitable pharmaceutically acceptable carrier in dosage unit form as hereinbefore disclosed. A unit dosage form can, for example, contain the principal active compound in amounts ranging from 0.5 µg to about 2000 mg. Expressed in proportions, the active compound is generally present in from about 0.5 µg to about 2000 mg/ml of carrier. In 30 the case of compositions containing supplementary active ingredients, the dosages are

determined by reference to the usual dose and manner of administration of the said ingredients.

Dosages may also be expressed per body weight of the recipient. For example, from about 10 ng to about 1000 mg/kg body weight, from about 100 ng to about 500 mg/kg body weight and for about 1 μ g to above 250 mg/kg body weight may be administered.

5 The pharmaceutical composition may also comprise genetic molecules such as a vector capable of transfecting target cells where the vector carries a nucleic acid molecule capable of modulating NR6 expression or NR6 activity. The vector may, for example, be a viral vector.

Still another aspect of the present invention is directed to antibodies to NR6 and its derivatives.

Such antibodies may be monoclonal or polyclonal and may be selected from naturally occurring antibodies to NR6 or may be specifically raised to NR6 or derivatives thereof. In the case of the latter, NR6 or its derivatives may first need to be associated with a carrier molecule. The antibodies and/or recombinant NR6 or its derivatives of the present invention are particularly useful as therapeutic or diagnostic agents. For example, NR6 antibodies or antibodies to its ligand may act as antagonists.

For example, NR6 and its derivatives can be used to screen for naturally occurring antibodies to NR6. These may occur, for example in some autoimmune diseases. Alternatively, specific antibodies can be used to screen for NR6. Techniques for such assays are well known in the art and include, for example, sandwich assays and ELISA. Knowledge of NR6 levels may be important for diagnosis of certain cancers or a predisposition to cancers or for monitoring certain therapeutic protocols.

Antibodies to NR6 of the present invention may be monoclonal or polyclonal. Alternatively, fragments of antibodies may be used such as Fab fragments. Furthermore, the present invention extends to recombinant and synthetic antibodies and to antibody hybrids. A "synthetic antibody" is considered herein to include fragments and hybrids of antibodies. The antibodies of this aspect of the present invention are particularly useful for immunotherapy and may also be used as a diagnostic tool for assessing apoptosis or monitoring the program of a therapeutic

30 regimen.

For example, specific antibodies can be used to screen for NR6 proteins. The latter would be important, for example, as a means for screening for levels of NR6 in a cell extract or other biological fluid or purifying NR6 made by recombinant means from culture supernatant fluid. Techniques for the assays contemplated herein are known in the art and include, for example, sandwich assays and ELISA.

It is within the scope of this invention to include any second antibodies (monoclonal, polyclonal or fragments of antibodies or synthetic antibodies) directed to the first mentioned antibodies discussed above. Both the first and second antibodies may be used in detection assays or a first antibody may be used with a commercially available anti-immunoglobulin antibody. An antibody as contemplated herein includes any antibody specific to any region of NR6.

Both polyclonal and monoclonal antibodies are obtainable by immunization with the enzyme or protein and either type is utilizable for immunoassays. The methods of obtaining both types of sera are well known in the art. Polyclonal sera are less preferred but are relatively easily prepared by injection of a suitable laboratory animal with an effective amount of NR6, or antigenic parts thereof, collecting serum from the animal, and isolating specific sera by any of the known immunoadsorbent techniques. Although antibodies produced by this method are utilizable in virtually any type of immunoassay, they are generally less favoured because of the potential heterogeneity of the product.

The use of monoclonal antibodies in an immunoassay is particularly preferred because of the ability to produce them in large quantities and the homogeneity of the product. The preparation of hybridoma cell lines for monoclonal antibody production derived by fusing an immortal cell line and lymphocytes sensitized against the immunogenic preparation can be done by techniques which are well known to those who are skilled in the art.

Another aspect of the present invention contemplates a method for detecting NR6 in a biological sample from a subject said method comprising contacting said biological sample with an antibody specific for NR6 or its derivatives or homologues for a time and under conditions sufficient for an antibody-NR6 complex to form, and then detecting said complex.

The presence of NR6 may be accomplished in a number of ways such as by Western blotting and ELISA procedures. A wide range of immunoassay techniques are available as can be seen by reference to US Patent Nos. 4,016,043, 4, 424,279 and 4,018,653. These, of course, includes both single-site and two-site or "sandwich" assays of the non-competitive types, as well as in the traditional competitive binding assays. These assays also include direct binding of a labelled antibody to a target.

Sandwich assays are among the most useful and commonly used assays and are favoured for use in the present invention. A number of variations of the sandwich assay technique exist, and 10 all are intended to be encompassed by the present invention. Briefly, in a typical forward assay, an unlabelled antibody is immobilized on a solid substrate and the sample to be tested brought into contact with the bound molecule. After a suitable period of incubation, for a period of time sufficient to allow formation of an antibody-antigen complex, a second antibody specific to the antigen, labelled with a reporter molecule capable of producing a detectable signal is then added 15 and incubated, allowing time sufficient for the formation of another complex of antibodyantigen-labelled antibody. Any unreacted material is washed away, and the presence of the antigen is determined by observation of a signal produced by the reporter molecule. The results may either be qualitative, by simple observation of the visible signal, or may be quantitated by comparing with a control sample containing known amounts of hapten. Variations on the 20 forward assay include a simultaneous assay, in which both sample and labelled antibody are added simultaneously to the bound antibody. These techniques are well known to those skilled in the art, including any minor variations as will be readily apparent. In accordance with the present invention, the sample is one which might contain NR6 including cell extract, tissue biopsy or possibly serum, saliva, mucosal secretions, lymph, tissue fluid and respiratory fluid. 25 The sample is, therefore, generally a biological sample comprising biological fluid but also extends to fermentation fluid and supernatant fluid such as from a cell culture.

In the typical forward sandwich assay, a first antibody having specificity for the NR6 or antigenic parts thereof, is either covalently or passively bound to a solid surface. The solid surface is typically glass or a polymer, the most commonly used polymers being cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene. The solid supports

may be in the form of tubes, beads, discs of microplates, or any other surface suitable for conducting an immunoassay. The binding processes are well-known in the art and generally consist of cross-linking covalently binding or physically adsorbing, the polymer-antibody complex is washed in preparation for the test sample. An aliquot of the sample to be tested is then added to the solid phase complex and incubated for a period of time sufficient (e.g. 2-40 minutes or overnight if more convenient) and under suitable conditions (e.g. from about room temperature to about 37°C) to allow binding of any subunit present in the antibody. Following the incubation period, the antibody subunit solid phase is washed and dried and incubated with a second antibody specific for a portion of the hapten. The second antibody is linked to a reporter molecule which is used to indicate the binding of the second antibody to the hapten.

An alternative method involves immobilizing the target molecules in the biological sample and then exposing the immobilized target to specific antibody which may or may not be labelled with a reporter molecule. Depending on the amount of target and the strength of the reporter molecule signal, a bound target may be detectable by direct labelling with the antibody. Alternatively, a second labelled antibody, specific to the first antibody is exposed to the target-first antibody complex to form a target-first antibody-second antibody tertiary complex. The complex is detected by the signal emitted by the reporter molecule.

20 In another alternative method, the NR6 ligand is immobilised to a solid support and a biological sample containing NR6 brought into contact with its immobilised ligand. Binding between NR5 and its ligand can then be determined using an antibody to NR6 which itself may be labelled with a reporter molecule or a further anti-immunoglobulin antibody labelled with a reporter molecule could be used to detect antibody bound to NR6.

25

By "reporter molecule" as used in the present specification, is meant a molecule which, by its chemical nature, provides an analytically identifiable signal which allows the detection of antigen-bound antibody. Detection may be either qualitative or quantitative. The most commonly used reporter molecules in this type of assay are either enzymes, fluorophores or

30 radionuclide containing molecules (i.e. radioisotopes) and chemiluminescent molecules.

In the case of an enzyme immunoassay, an enzyme is conjugated to the second antibody,

generally by means of glutaraldehyde or periodate. As will be readily recognized, however, a wide variety of different conjugation techniques exist, which are readily available to the skilled artisan. Commonly used enzymes include horseradish peroxidase, glucose oxidase, betagalactosidase and alkaline phosphatase, amongst others. The substrates to be used with the specific enzymes are generally chosen for the production, upon hydrolysis by the corresponding enzyme, of a detectable colour change. Examples of suitable enzymes include alkaline phosphatase and peroxidase. It is also possible to employ fluorogenic substrates, which yield a fluorescent product rather than the chromogenic substrates noted above. In all cases, the enzyme-labelled antibody is added to the first antibody hapten complex, allowed to bind, and then the excess reagent is washed away. A solution containing the appropriate substrate is then added to the complex of antibody-antigen-antibody. The substrate will react with the enzyme linked to the second antibody, giving a qualitative visual signal, which may be further quantitated, usually spectrophotometrically, to give an indication of the amount of hapten which was present in the sample. "Reporter molecule" also extends to use of cell agglutination or inhibition of agglutination such as red blood cells on latex beads, and the like.

Alternately, fluorescent compounds, such as fluorescein and rhodamine, may be chemically coupled to antibodies without altering their binding capacity. When activated by illumination with light of a particular wavelength, the fluorochrome-labelled antibody adsorbs the light 20 energy, inducing a state to excitability in the molecule, followed by emission of the light at a characteristic colour visually detectable with a light microscope. As in the EIA, the fluorescent labelled antibody is allowed to bind to the first antibody-hapten complex. After washing off the unbound reagent, the remaining tertiary complex is then exposed to the light of the appropriate wavelength the fluorescence observed indicates the presence of the hapten of interest.

25 Immunofluorescene and EIA techniques are both very well established in the art and are particularly preferred for the present method. However, other reporter molecules, such as radioisotope, chemiluminescent or bioluminescent molecules, may also be employed.

The present invention also contemplates genetic assays such as involving PCR analysis to detect
the NR6 gene or its derivatives. Alternative methods or methods used in conjunction include
direct nucleotide sequencing or mutation scanning such as single stranded conformational

polymorphisms analysis (SSCP) as specific oligonucleotide hybridisation, as methods such as direct protein truncation tests.

The nucleic acid molecules of the present invention may be DNA or RNA. When the nucleic acid molecule is in a DNA form, it may be genomic DNA or cDNA. RNA forms of the nucleic acid molecules of the present invention are generally mRNA.

Although the nucleic acid molecules of the present invention are generally in isolated form, they may be integrated into or ligated to or otherwise fused or associated with other genetic molecules such as vector molecules and in particular expression vector molecules. Vectors and expression vectors are generally capable of replication and, if applicable, expression in one or both of a prokaryotic cell or a eukaryotic cell. Preferably, prokaryotic cells include *E. coli*, *Bacillus sp* and *Pseudomonas sp*. Preferred eukaryotic cells include yeast, fungal, mammalian and insect cells.

15

Accordingly, another aspect of the present invention contemplates a genetic construct comprising a vector portion and a mammalian and more particularly a human NR6 gene portion, which NR6 gene portion is capable of encoding an NR6 polypeptide or a functional or immunologically interactive derivative thereof.

20

Preferably, the NR6 gene portion of the genetic construct is operably linked to a promoter on the vector such that said promoter is capable of directing expression of said NR6 gene portion in an appropriate cell.

25 In addition, the NR6 gene portion of the genetic construct may comprise all or part of the gene fused to another genetic sequence such as a nucleotide sequence encoding maltose binding protein or glutathione-S-transferase or part thereof.

The present invention extends to such genetic constructs and to prokaryotic or eukaryotic cells comprising same.

5

The present invention also extends to any or all derivatives of NR6 including mutants, part, fragments, portions, homologues and analogues or their encoding genetic sequence including single or multiple nucleotide or amino acid substitutions, additions and/or deletions to the naturally occurring nucleotide or amino acid sequence.

NR6 may be important for the proliferation, differentiation and survival of a diverse array of cell types. Accordingly, it is proposed that NR6 or its functional derivatives be used to regulate development, maintenance or regeneration in an array of different cells and tissues in vitro and in vivo. For example, NR6 is contemplated to be useful in modulating neuronal proliferation, 10 differentiation and survival.

Soluble NR6 polypeptides are also contemplated to be useful in the treatment of a range of diseases, injuries or abnormalities.

15 Membrane bound or soluble NR6 may be used *in vitro* on nerve cells or tissues to modulate proliferation, differentiation or survival, for example, in grafting procedures or transplantation.

As stated above, the NR6 of the present invention or its functional derivatives may be provided in a pharmaceutical composition comprising the NR6 together with one or more 20 pharmaceutically acceptable carriers and/or diluents. In addition, the present invention contemplates a method of treatment comprising the administration of an effective amount of a NR6 of the present invention. The present invention also extends to antagonists and agonists of NR6s and their use in therapeutic compositions and methodologies.

25 A further aspect of the present invention contemplates the use of NR6 or its functional derivatives in the manufacture of a medicament for the treatment of NR6 mediated conditions defective or deficient.

Still a further aspect of the present invention contemplates a ligand for NR6 preferably, in 30 isolated or recombinant form or a derivative of said ligand.

The present invention further contemplates knockout animals such as mice or other murine species for the NR6 gene including homozygous and heterozygous knockout animals. Such animals provide a particularly useful live *in vivo* model for studying the effects of NR6 as well as screening for agents capable of acting as agonists or antagonists of NR6.

5

According to this embodiment there is provided a transgenic animal comprising a mutation in at least one allele of the gene encoding NR6. Additionally, the present invention provides a transgenic animal comprising a mutation in two alleles of the gene encoding NR6. Preferably, the transgenic animal is a murine animal such as a mouse or rat.

10

The present invention is further described by the following non-limiting Figures and Examples.

In the Figures:

15 Figure 1 is a diagrammatic representation showing expansion of sequenced region of the mouse NR6 gene indicating splicing patterns seen in the three forms of NR6 cDNA, NR6.1, NR6.2 and NR6.3.

Figure 2 is a representation of the nucleotide sequence of the mouse NR6 gene, containing exons encoding the cDNA from nucleotide 148 encoding D50 of the cDNAs shown in SEQ ID NOs:12 and 14 to the end of the 3' untranslated region shared by both NR6.1, NR6.2 and NR6.3. In this figure, this region encompasses nucleotides g1182 to g6617. This sequence is also defined in SEQ ID NO:28.

25 Figure 3 is a representation of the nucleotide sequence of the mouse genomic NR6 gene with additional 5' sequences. The coding exons of NR6 span approximately 11kb of the mouse genome. There are 9 coding exons separated by 8 introns:

	exon1	at least 239nt	intron1 5195nt
	exon 2	282nt	intron2 214nt
30	exon3	130nt	intron3 107nt
	exon4	170nt	intron4 1372nt

- 27 -

	exon5	158nt	intron5 68nt
	exon6	169nt	intron6 2020nt
	exon6	188nt	intron7 104nt
	exon8	43nt	intron8 181nt
5	exon9	252nt	

Exon 1 encoding the signal sequence, exon 2 the Ig-like domain, exons 3 to 6 the haemopoietin domain. Exons 7, 8 and 9 are alternatively spliced.

10 Figure 4 is a diagrammatic representation showing the genomic structure of murine NR6.

Figure 5 is a diagrammatic representation showing targetting of the NR6 locus by homologous recombination.

15 Figure 6 is a representation of a comparison of human and mouse NR6 cDNA sequences.

Figure 7 is a representation of a comparison of human and mouse NR6 protein sequences.

Figure 8 is a representation showing transient expression of C-terminal FLAG tagged human 20 NR6 in 293T cells. (A) Biosensor response, M2 immobilised; (B) SDS PAGE/silver staining analysis of M2 eluted fractions; and (C) Western blot analysis of M2 eluted fractions.

Figure 9 a photographic representation showing biosensor analysis of supernatant fluid from each of clones CHO C' FLAG human NR6 clone #30, CHO N' FLAG human NR6 clone #23 and 293T C' FLAG human NR6 clone #38 (lanes 1-3, respectively).

- 28 -

Single and three letter abbreviations for amino acid residues used in the specification are summarised in Table 2:

TABLE 2

Amino Acid	Three-letter	One-letter
	Abbreviation	Symbol
Alanine	Ala	A
O Arginine	Arg	R
Asparagine	Asn	N
Aspartic acid	Asp	D
Cysteine	Cys	C
Glutamine	Gln	Q
5 Glutamic acid	Glu	E
Glycine	Gly	G
Histidine	His	H
Isoleucine	Пе	I
Leucine	Leu	L
) Lysine	Lys	K
Methionine	Met	M
Phenylalanine	Phe	F
Proline	Pro	P
Serine	Ser	S
5 Threonine	Thr	Т
Tryptophan	Trp	W
Tyrosine	Tyr	Y
Valine	Val	v
Any residue	Xaa	x
)		

- 29 -

TABLE 3 SUMMARY OF SEQ ID NO.

	Sequence	SEQ ID NO.
	Amino acid sequence WSXWS	1
5	Oligonucleotide primers and probes listed in Example 1	2-11
	Nucleotide sequence of NR6.11	12
	Amino acid sequence of NR6.1	13
	Nucleotide sequence of NR6.22	14
	Amino acid sequence of NR6.2	15
10	Nucleotide sequence of NR6.3 ³	16
	Amino acid sequence of NR6.3	17
	Nucleotide sequence of products generated by 5' RACE of brain cDNA using NR6 specific primers ⁴	18
	Amino acid sequence of SEQ ID NO:18	19
15	Nucleotide sequence unique to 5' RACE of brain cDNA	20
	Amino acid sequence for SEQ ID NO:20	21
	Unspliced murine NR6 nucleotide sequence	22
	PCR product for human NR6	23
	Nucleotide sequence of clone HFK-66 encoding human NR6	24
20	Amino acid sequence of SEQ ID NO:24	25
	Oligonucleotide sequences UP1 and LP1, respectively	26-27
	Genomic nucleotide sequence of murine NR6	28
	Amino acid sequence of SEQ ID NO:28	29
	Murine NR6.1 oligonucleotide primers	30, 31
25	Murine IL-3 signal sequence	32
	Linker sequence for mouse IL-3 signal sequence and FLAG epitope	33-35
	Genomic nucleotide sequence of murine NR6 containing additional 5' sequence	38
	Oligonucleotide 2199 and 2200, respectively	367

	N-terminal region of NR6	39
	Oligonucleotide sequences	40-42
	Nucleotide sequence of NR6	43
	Amino acid sequence of NR6	44
5	Oligonucleotide sequences	45-54

- The polyadenylation signal AATAAATAAA is at nucleotide position 1451 to 1460; NR6.1 (SEQ ID NO:12) and NR6.2 (SEQ ID NO:14) are identical to nucleotide 1223 encoding Q407, the represents the end of an exon. NR6.1 splices out an exon present only in NR6.2 and uses a different reading frame for the final exon which is shared with NR6.2; this corresponds to amino acids VLPAKL at amino acid residue positions 408-413. The region of 3'-untranslated DNA shared by NR6.1, NR6.2 and NR6.3 is from nucleotide 1240 to 1475. The WSXWS motif is at amino acid residues 330 to 334.
- The polyadenylation signal AATAAA is at nucleotide positions 1494 to 1503. The WSXWS motif is at amino acid residues 330 to 334. NR6.1 and NR6.2 are identical to nucleotide 1223 encoding Q407 which represents the end of an exon. NR6.2 splices in an exon beginning at amino acid residue D408, nucleotide 1224 and ends at residue G422, nucleotide 1264. The region of 3' untranslated DNA shared by NR6.1, NR6.2 and NR6.3 is from nucleotide position 1283 to 1517.
- The nucleotide and amino acid numbering corresponds to SEQ ID NO:12 and 14. The WSXWS motif is at amino acid residues 330 to 334. The polyadenylation signal AATAAATAAA is from nucleotide 1781 to 1780. NR6.1, NR6.2 and NR6.3 are identical to nucleotide 1223 encoding Q407, this represents the end of an exon. NR6.3 fails to splice from this position and, therefore, translation continues through the intron, giving rise to the C-terminal protein region from amino acid residues 408 to 461. The region of 3' untranslated DNA shared by NR6.1, NR6.2 and NR6.3 is from nucleotide 1469 to 1804.

- The nucleotide sequence is identical to NR6.1, NR6.2 and NR6.3 from nucleotide C151, the first nucleotide for Pro51. The numbering from this nucleotide is the same as for SEQ ID NO:14 and 16. The 5' of this point is unique to the products generated by 5' RACE not being found in NR6.1, NR6.2 and NR6.3 and is represented in SEQ ID NOs:20 and 21.
- Structure of the murine genomic NR6 locus. The coding exons of NR6 span approximately 11kb of the mouse genome. There are 9 coding exons separated by 8 introns:

1	\sim
1	U

5

	exon 1 at least 239nt	intron1 5195nt
	exon 2 282nt	intron2214nt
	exon 3 130nt	intron3 107nt
	exon 4 170nt	intron 4 1372nt
15	exon 5 158nt	intron5 68nt
	exon 6 169nt	intron6 2020nt
	exon 7 188nt	intron7 104nt
	exon 8 43nt	intron8 181nt
	exon 9 252nt	

20

Exon 1 encodes the signal sequence, exon 2 the Ig-like domain, exons 3 to 6 the hemopoietin domain. Exons 7, 8 and 9 are alternatively spliced.

The NRG molecules of the present invention have a range of utilities referred to in the subject specification. Additional utilities include:

- 1. Identification of molecules that interact with NR6. These may include:
- a) a corresponding ligand using standard orphan receptor techniques (26),
- 30
- b) monoclonal antibodies that act either as receptors antagonists or agonists,

- c) mimetic or antagonistic peptides isolated using phage display technology (27,28),
- d) small molecule natural products that act either as antagonists or agonists.
- 5 2. Development of diagnostics to detect deletions/rearrangements in the NR6 gene.

The NR6 knock-out mice studies described herein provide a useful model for this utility. There are also applications in the field of reproduction. For example, people can be tested for their NR6 status. NR6 +/- carriers might be expected to give rise to offspring with developmental problems.

- 33 -

EXAMPLE 1

Oligonucleotides

	M116:	5' ACTCGCTCCAGATTCCCGCCTTTT 3' [SEQ ID NO:2]
5	M108:	5' TCCCGCCTTTTTCGACCCATAGAT 3' [SEQ ID NO:3]
	M159:	5' GGTACTTGGCTTGGAAGAGGAAAT 3' [SEQ ID NO:4]
	M242:	5' CGGCTCACGTGCACGTCGGGTGGG 3' [SEQ ID NO:5]
	M112:	5' AGCTGCTGTTAAAGGGCTTCTC 3' [SEQ ID NO:6]
	WSDWS	5' (A/G)CTCCA(A/G)TC(A/G)CTCCA 3' [SEQ ID NO:7]
10	WSEWS	5' (A/G)CTCCA(C/T)TC(A/G)CTCCA 3' [SEQ ID NO:8]
	1944	5' AAGTGTGACCATCATGTGGAC 3' [SEQ ID NO:9]
	2106	5' GGAGGTGTTAAGGAGGCG 3' [SEQ ID NO:10]
	2120	5' ATGCCCGCGGGTCGCCCG 3' [SEQ ID NO:11]

15 EXAMPLE 2

Isolation of initial NR6 cDNA clones using oligonucleotides designed against the conserved WSXWS motif found in members of the haemopoietin receptor family

(i) A commercial adult mouse testis cDNA library cloned into the UNI-ZAP bacteriophage 20 (Stratagene, CA, USA; Catalogue numbers 937 308) was used to infect Escherichia coli of the strain LE392. Infected bacteria were grown on twenty 150 mm agar plates, to give approximately 50,000 plaques per plate. Plaques were then transferred to duplicate 150 mm diameter nylon membranes (Colony/Plaque Screen, NEN Research Products, MA, USA), bacteria were lysed and the DNA was denatured and fixed by autoclaving at 100°C for 1 min 25 with dry exhaust. The filters were rinsed twice in 0.1%(w/v) sodium dodecyl sulfate (SDS), 0.1 x SSC (SSC is 150 mM sodium chloride, 15 mM sodium citrate dihydrate) at room temperature and pre-hybridized overnight at 42°C in 6 x SSC containing 2 mg/ml bovine serum albumin, 2 mg/ml Ficoll, 2 mg/ml polyvinylpyrrolidone, 100 mM ATP, 10 mg/ml tRNA, 2 mM sodium pyrophosphate, 2 mg/ml salmon sperm DNA, 0.1% (w/v) SDS and 200 mg/ml sodium 30 azide. The pre-hybridisation buffer was removed. 1.2 μ g of the degenerate oligonucleotides for hybridization (WSDWS; Example 1) were phosphorylated with T4 polynucleotide kinase

using 960 mCi of y³²P-ATP (Bresatec, S.A., Australia). Unincorporated ATP was separated from the labelled oligonucleotide using a pre-packed gel filtration column (NAP-5; Pharmacia, Uppsala, Sweden). Filters were hybridized overnight at 42°C in 80 ml of the prehybridisation buffer containing 0.1%(w/v) SDS, rather than NP40, and 10⁶ - 10⁷ cpm/ml of labelled oligonucleotide. Filters were briefly rinsed twice at room temperature in 6 x SSC, 0.1%(v/v) SDS, twice for 30 min at 45°C in a shaking waterbath containing 1.5 l of the same buffer and then briefly in 6 x SSC at room temperature. Filters were then blotted dry and exposed to autoradiographic film at -70°C using intensifying screens, for 7 - 14 days prior to development.

10 Plaques that appeared positive on orientated duplicate filters were picked, eluted in 1 ml of 100 mM NaCl, 10 mM MgCl₂, 10 mM Tris.HCl pH7.4 containing 0.5%(w/v) gelatin and 0.5% (v/v) chloroform and stored at 4°C. After 2 days LE392 cells were infected with the eluate from the primary plugs and replated for the secondary screen. This process was repeated until hybridizing plaques were pure.

15

Once purified, positive cDNAs were excised from the ZAP II bacteriophage according to the manufacturer's instructions (Stratagene, CA, USA) and cloned into the plasmid pBluescript. A CsCl purified preparation of the DNA was made and this was sequenced on both strands. Sequencing was performed using an Applied Biosystems automated DNA sequencer, with 120 fluorescent dideoxynucleotide analogues according to the manufacturer's instructions. The DNA sequence was analysed using software supplied by Applied Biosystems.

Two clones isolated from the mouse testis cDNA library shared large regions of nucleotide sequence identity 68-1 and 68-2 and appeared to encode a novel member of the haemopoietin receptor family and the inventors gave the putative receptor the working name "NR6".

(ii) In a parallel series of experiments, a commercial mouse brain cDNA library (STRATAGENE #967319, Balb/c day-20, whole brain cDNA/Uni-ZAP XR Vector) was used to infect *E.coli* strain XL1-Blue MRF'. Infected bacteria were grown on 90x135mm square agar plates to give about 25,000 plaques per plate. Plaques were then transferred to positively charged nylon membranes, Hybond-N(+) (Amersham RPN 203B), bacteria were lysed and the

DNA was denatured with denaturing 0.5 M NaOH, 1.5 M NaCl at room temperature for 7 min. The membranes were neutralized with 0.5 M Tris-HCL pH7.2, 1.5 M NaCl, 1 mM EDTA at room temperature for 10 min before the DNA fixation by UV crosslinking.

- 5 A mixture of WSDWS and WSEWS oligonucleotide probes (SEQ ID NOs: 7 and 8) were labelled with a [α-³²P]-ATP (TOYOBO #PNK-104 Kination kit). The membranes from the mouse brain cDNA library were then hybridized with the mixture of WSDWS and WSEWS oligonucleotide probes in the Rapid Hybridization Buffer (Amersham, RPN1636) at 42°C for 16 hours. Filters were washed with 1xSSC/0.1% (w/v) SDS at 42°C before autoradiography.
- 10 Plaques that appeared positive on orientated duplicate filters were picked and replated on *E. coli*, XL1-Blue MRF' with the process of immobilisation on nylon membranes, hybridization of membranes with oligonucleotide probes, washing and autoradiography repeated until pure plaques had been obtained.
- 15 The cDNA fragment from pure positively hybridizing plaques was isolated by excision with the helper phage strain ExAssist according to the manufacturer's instructions (Stratagene, #967319). Sequencing was performed after the amplification with Ampli-Taq DNA polymerase and Taq dideoxy terminator cycle sequencing kit (Perkin Elmer, #401150) by 25 cycles of 96°C for 10 sec, 50°C for 5 sec, 60°C for 4 min followed by 60°C for 5 min with the sequencing primers on an ABI model 377 DNA sequencer.
 - One clone, MBC-8, from the mouse brain library shared large regions of nucleotide sequence identity with both the 68-1 and 68-2 clones isolated from the mouse testis cDNA library.
- 25 (iii) In a third series of experiments, total RNA was prepared from the mouse osteoblastic cell line, KUSA, according to the method of Chirgwin *et al.* (15), and poly(A)+RNA was further purified by oligo(dT)-cellulose chromatography (Pharmacia Biotech). Complementary DNA was synthesized by oligo(dT) priming, inserted into the UniZAP XR directional cloning vector (Stratagene), and packaged into λ phage using Gigapack Gold (Stratagene), yielding 1.25 x 10⁷
- 30 independent clones.

Approximately 10⁶ clones were screened essentially as described in (ii) above. Briefly, probes were labeled with ³²P using T4 polynucleotide kinase and prehybridization was performed for 4 hr in the Rapid hybridization buffer (Amersham LIFE SCIENCE) at 42°C. Filters (Hybond N+, Amersham) were then hybridized for 19 hr under the same condition with the addition of ³²P-labeled WSXWS mix oligonucleotides and washed 3 times. The final wash was for 30 min in 1 x SSPE, 0.1% (w/v) SDS at 42°C. Filters were then exposed with an intensifying screen to Kodak X-OMAT AR film for 5 days.

Isolated clones were subjected to the *in vivo* excision of pBluescript SK(-) phagemid (Stratagene), and plasmid DNA was prepared by the standard method. DNA sequences were determined using an ABI PRISM 377 DNA Sequencer (Perkin Elmer) with appropriate synthetic oligonucleotide primers. A clone pKUSA166 shared large regions of nucleotide sequence identity with the MBC-8, 68-1 and 68-2 clones isolated from the mouse brain and testis cDNA libraries.

15

EXAMPLE 3

Isolation of further NR6 cDNA clones using probes specific for NR6

(i) In order to identify other cDNA libraries containing cDNA clones for NR6, the inventors performed PCR upon 1 μl aliquots of λ-bacteriophage cDNA libraries made from mRNA from various human tissues and using oligonucleotides 2070 and 2057, designed from the sequence of 68-1 and 68-2, as primers. Reactions contained 5 μl of 10 x concentrated PCR buffer (Boehringer Mannheim GmbH, Mannheim, Germany), 1 μl of 10 mM dATP, dCTP, dGTP and dTTP, 2.5 μl of the oligonucleotides HYB2 and either T3 or T7 at a concentration of 100 mg/ml, 0.5 μl of Taq polymerase (Boehringer Mannheim GmbH) and water to a final volume of 50 μl. PCR was carried out in a Perkin-Elmer 9600 by heating the reactions to 96°C for 2 min and then for 25 cycles at 96°C for 30 sec, 55°C for 30 sec and 72°C for 2 min. PCR products were resolved on an agarose gel, immobilized on a nylon membrane and hybridized with ³²P-labelled oligonucleotide 1943 (SEQ ID NO:42).

In addition to the original library, a mouse brain cDNA library appeared to contain NR6 cDNAs. These were screened using a ³²P-labelled oligonucleotides 1944, 2106, 2120 (Example 1) or with a fragment of the original NR6 cDNA clone from 68-1 (nucleotide 934 to the end of NR6.1 in Figure 1) labelled with ³²P using a random decanucleotide labelling kit (Bresatec). Conditions used were similar to those described in (i) above except that for the labelled oligonucleotides, filters were washed at 55°C rather than 45°C, while for the NR6 cDNA fragment prehybridization and hybridization was carried out in 2xSSC and filters were washed at 0.2 x SSC at 65°C. Again, as described in (i) above, positively hybridising plaques were purified, the cDNAs were recovered and cloned into plasmids pBluescript II or pUC19.

10 Independent cDNA clones were sequenced on both strands.

Using this procedure, 6 further clones, 68-5, 68-35, 68-41, 68-51, 68-77 and 73-23, contained large regions of sequence identity with 68-1, 68-2, MBC-8 and pKUSA166.

In a parallel series of experiments, further screening was performed with hybridization probes prepared from the 1.7 kbp EcoRI-XhoI fragment excised from pKUSA166. This fragment was excised and labeled with ³²P by using T7QuickPrime Kit (Pharmacia Biotech). Approximately 6x10⁵ clones were screened. Hybond N+ filters (Amersham) were first prehybridized for 4hr at 42°C in 50% (v/v) formamide, 5xSSPE, 5xDenhardt's solution, 0.1% (w/v) SDS, and 0.1mg/ml denatured salmon sperm DNA. Hybridization was for 16 hours under the same conditions with the addition of ³²P- labelled NR6- cDNA fragment probes. Finally the filters were washed once for 1hr in 0.2xSSC, 0.1% (w/v) SDS at 68°C. Eight clones were isolated, and phage clones were subjected to the *in vivo* excision of the pBluescript SK(-) phagemid (Stratagene). The plasmid DNAs were prepared by the standard method. DNA sequences were determined by an ABI PRISM 377 DNA Sequencer using appropriate synthetic oligonucleotide primers.

Using this procedure 8 further clones from the KUSA library contained large regions of sequence identity with 68-1, 68-2, MBC-8, pKUSA166, 68-5, 68-35, 68-41, 68-51, 68-77 and 73-23 were isolated.

- 38 -

EXAMPLE 4

Isolation of genomic DNA encoding NR6

DNA encoding the murine NR6 genomic locus was also isolated using the 68-1 cDNA as a probe. Two positive clones, 2-2 and 57-3, were isolated from a mouse 129/Sv strain genomic DNA library cloned into λ FIX. These clones were overlapping and the position of the restriction sites, introns and exons were determined in the conventional manner. The region of the genomic clones containing exons and the intervening introns were sequenced on both strands using an Applied Biosystems automated DNA sequencer, with fluorescent dideoxynucleotide analogues according to the manufacturer's instructions. Figure 2 shows the nucleotide sequence and corresponding amino acid sequence of the translation regions. This is also shown in SEQ ID NO:30 and 31. Figure 3 provides the genomic NR6 gene sequence but with additional 5' sequence. This is also represented in SEQ ID NO:38 in relation to this sequence. The coding exons of NR6 span approximately 11kb of the mouse genome. There are 9 coding exons separated by 8 introns:

	exon1	at least 239nt	intron1 5195nt
	exon2	282nt	intron2 214nt
	exon3	130nt	intron3 107nt
20	exon4	170nt	intron4 1372nt
	exon5	158nt	intron5 68nt
	exon6	169nt	intron6 2020nt
	exon7	188nt	intron7 104nt
	exon8	43nt	intron8 181nt
25	exon9	252nt	

Exon 1 encodes the signal sequence, exon 2 the Ig-like domain, exons 3 to 6 the hemopoietin domain. Exons 7, 8 and 9 are alternatively spliced.

EXAMPLE 5 5' RACE analysis of NR6

5'-RACE was used to investigate the nature of the sequence 5' of nucleotide 960, encoding 5 Ile321 of NR6.1, 2 and 3. The nucleotide and corresponding amino acid sequences are shown in SEQ ID NOs:12, 14 and 16, respectively. 5'-RACE was performed using Advantage KlenTaq polymerase (CLONTECH, CAT NO. K1905-1) on mouse brain Marathon-ready cDNA (CLONTECH, CAT NO. 7450-1) according to the manufacturer's instructions. Briefly, the first rounds of amplification were performed using 5µl of cDNA in a total volume of 50µl, with 10 1mM each of the primers AP1&M116 [SEQ ID NO:2] or AP1&M159 [SEQ ID NO:4] by 35 cycles of 94°C x 0.5min, 68°C x 2.0min on GeneAmp 2400 (Perkin-Elmer). An amount of 5µl of 50-fold diluted product from the first amplification was then re-amplified; for the products generated with primers AP1 and M116 [SEQ ID NO:2] in the first amplification, 1 mM of the primers AP2&M108 [SEQ ID NO:3] were used in the second amplification. For 15 the products generated with primers AP1 and M116 [SEQ ID NO:2] in the first amplification, two separate secondary reactions were performed, one reaction with 1 mM primers AP2&M242 [SEQ ID NO:5] and the other with 1 mM primers AP2&M112 [SEQ ID NO:6]. Amplification was achieved using 25 cycles of 94°C x 0.5min, 68°C x 2.0min. These samples were analyzed by agarose gel electrophoresis. When a single ethidium bromide staining 20 amplification product was observed, it was purified by QIAquick PCR purification kit according to the manufacturer's instructions (QIAGEN, CAT NO. DG-0281) and its sequence was directly determined using both primers used in the secondary amplification step, that is AP2 and either M108 [SEQ ID NO:3], M242 [SEQ ID NO:5] or M112 [SEQ ID NO:6].

25 EXAMPLE 6 Cloning of NR6

From the initial screens of mouse brain and testis cDNA libraries with the degenerate WSXWS oligonucleotides and subsequent screening of cDNA libraries from mouse testis, mouse brain and the KUSA osteoblastic cells line a total of 18 NR6 cDNAs have been isolated. Nucleotide sequence of NR6 was also determined from 5TRACE analysis of brain cDNA. Additionally, two

murine genomic DNA clones encoding NR6 have also been isolated.

Comparison of the NR6 cDNA clones revealed a common region of nucleotide sequence which included a 123 base pairs 5'-untranslated region and 1221 base pairs open reading frame, stretching from the putative initiation methionine, Met1 to Gln407 (SEQ ID NOs:12, 14 and 16, respectively). Within this common open reading frame, a haemopoietin receptor domain was observed which contained the four conserved cysteine residues and the five amino acid motif WSXWS typical of members of the haemopoietin receptor family, was observed.

10 Further analyses revealed that after nucleotide 1221, three different classes of NR6 cDNAs could be found, these were termed NR6.1, NR6.2 and NR6.3 (SEQ ID NOs:12, 14 and 16, respectively). Each encoded a receptor that appeared to lack a classical transmembrane domain and, would, therefore be likely to be secreted into the extracellular environment. Although the putative C-terminal region of the three classes of NR6 proteins appear to be different, the cDNAs encoding them also had a common region of 3'-untranslated region.

With regard to SEQ ID NOs:12, 14 and 16, the number of both nucleotides and amino acids begins at the putative initiation methione. NR6.1 and NR6.2 are identical to nucleotide 1223 encoding Q407, this represents the end of an exon. NR6.1 splices out an exon present only in NR6.2 and uses a different reading frame for the final exon which is shared with NR6.2. The 3'-untranslated region is shared by NR6.1, NR6.2 and NR6.3, NR6.2 splices in an exon starting with nucleotide 1224 encoding D408 and ending with nucleotide 1264 encoding the first nucleotide in the codon for G422 and uses a different reading frame for the final exon which is shared with NR6.2 (see Figure 1). NR6.3 fails to splice from position nucleotide 1224, therefore, translation continues through the intron, giving rise to the C-terminal protein region.

The sequence of NR6 cDNA products generated by 5'-RACE amplification from mouse brain cDNA preparation is shown in SEQ ID NO:18. The nucleotide sequence identified using 5'-RACE appeared to be identical to the sequence of cDNAs encoding NR6.1, NR6.2, and NR6.3 from nucleotide C151, the first nucleotide for the codon for Pro51. 5' of this nucleotide, the sequences diverged and the sequence is unique not being found in NR6.1.

NR6.2 or NR6.3. Additionally, there is a single nucleotide difference, with the sequence from the RACE containing an G rather than an A at nucleotide 475, resulting in Thr159 becoming Ala.

5 Analysis of the genomic clones, revealed that they were overlapping and contained exons encoding the majority of the coding region of the three forms of NR6 (Figures 1, 2 and 3). These genomic clones, contained exons encoding from Asp50 (nucleotide 148) of the NR6 cDNAs. Sequence 5' of this in the cDNAs, including the 5'-untranslated region and the region encoding Met1 to Gln49 (SEQ ID NO:12, 14 and 16), and the 5' end predicted from analysis of 5' RACE products (SEQ ID NO:18) were not present in the two genomic clones isolated.

Analysis of the NR6 genomic DNA clones also provided an explanation of the three classes of NR6 cDNAs found. It is likely that NR6.1, NR6.2 and NR6.3 arise through alternative splicing of NR6 mRNA (Figure 1). The last amino acid residue that these different NR6 proteins are predicted to share is Gln407. SEQ ID NO:18 shows that Gln407 is the last amino acid encoded by the exon that covers nucleotides g5850 to g6037 (see Figure 2). Alternative splicing from the end of this exon (Figure 1) accounts for the generation of cDNAs encoding NR6.1 (SEQ ID NO:12), NR6.2 (SEQ ID NO:14) and NR6.3 (SEQ ID NO:16). In the case of NR6.1, the region from g6038 to g6425 is spliced out, leading to juxtaposition of g6037 and g6426. In the case of NR6.2, the region from g6038 to 6141 is spliced out, an exon from 6142 to g6183 is retained and then this is followed by splicing out of the region from g6183 to g6425. NR6.3 appears to arise when there is no splicing from nucleotide g6038. For all three forms, a secreted rather then transmembrane form is generated, these differ however in their predicted C-terminal region. The genomic NR6 sequence with additional 5' sequence is shown in Figure 3.

EXAMPLE 7

ESTs

30 Databases were searched with the murine NR6 corresponding to the unspliced version shown in SEQ ID NO:16. The murine NR6 sequence used is shown in SEQ ID NO:22.

The databases searched were:

- (i) dbEST Database of Expressed Sequence Tags National Center for Biotechnology Information National Library of Medicine, 38A, 8N8058600 Rockville Pike, Bethesda, MD
 5 20894 Phone: 0011-1-301-496-2475 Fax: 0015-1-301-480-9241 USA.
- (ii) DNA Data Bank of Japan DNA Database Release 3689. Prepared by: Sanzo Miyazawa Manager/Database Administrator HidenoriHayashida Scientific Reviewer Yukiko Yamazaki/Eriko Hatada/Hiroaki Serizawa Annotators/reviewers Motono Horie/Shigeko Suzuki/Yumiko SataoSecretaries/typists DNA Data Bank of JapanNational Institute of Genetics Center for Genetic Information research Laboratory of Genetic Information Analyses 1111 YataMishima, Shizuoka 411 Japan.
 - (iii) EMBL Nucleic Acid Sequence Data Bank Release 47.0.

15

- (iv) EMBL Nucleic Acid Sequence Data Bank Weekly Updates Since Release 44.
- (v) Genetic Sequence Data Bank NCBI-GenBank Release 94 National Center for Biotechnology Information National Library of Medicine, 38A, 8N805 8600 Rockville Pike,
 20 Bethesda, MD 20894 Phone: 0011-1-301-495-2475 Fax: 0015-1-301-480-9241 USA.
 - (vi) Cumulative Updates since NCBI-GenBank Release 88 National Center for Biotechnology Information National Library of Medicine, 38A, 8N805 8600 Rockville Pike, Bethesda, MD 20894 USA.

25

The search of the databases with the murine probe identified several EST's having sequence similarity to the probe. The EST's were:

W66776 (murine sequence)

30 MM5839 (murine sequence)

AA014965 (murine sequence)

W46604 (human sequence)

W46603 (human sequence)

H14009 (human sequence)

N78873 (human sequence)

5 R87407 (human sequence).

EXAMPLE 8

Isolation of 3' cDNA clones encoding human NR6

- 10 PCR products encoding human NR6 were generated using oligonucleotides UP1 and LP1 (see below) based on human ESTs (Genbank Acc:H14009, Genbank Acc:AA042914) that were identified from databases searched with murine NR6 sequence (SEQ ID NO:22). PCR was performed on a human fetal liver cDNA library (Marathon ready cDNA CLONTECH #7403-1) using Advantage Klen Taq Polymerase mix (CLONTECH #8417-1) in the buffer supplied at 15 94°C fro 30s and 68°C for 3 min for 35 cycles followed by 68°C for 4 min and then stopping at 15°C. A standard PCR programme for the Perkin-Elmer GeneAmp PCT system 2400 thermal cycle was used. The PCR yielded a prominent product of approximately 560 base pairs (bp; SEQ ID NO:18), which was radiolabelled with $[\alpha^{-32}P]$ dCTP using a random priming method (Amersham, RPN, 1607, Mega prime kit) and used to screen a human fetal kidney 5'-20 STRETCH PLUS cDNA library (CLONTECH #HL1150x). Library screens were performed using Rapid Hybridisation Buffer (Amersham, RPn 1636) according to manufacturer's instructions and membranes washed at 65°C for 30 min in 0.1xSSC/0.1% (w/v) SDS. Two independent cDNA clones were obtained as lambda phage and subsequently subcloned and sequenced. Both clones (HFK-63 and HFK-66) contained 1.4 kilobase (kb) inserts that showed 25 sequence similarity with murine NR6. The sequence and corresponding amino acid translation of HFK-66 is shown in SEQ ID NO:24.
 - The translation protein sequences of clone HFK-66 shows a high degree of sequence similarity with the mouse NR6.

- 44 -

UP1: 5'TCC AGG CAG CGG TCG GGG GAC AAC 3' [SEQ ID NO:26]

LP1: 5' TTG CTC ACA TCG TCC ACC ACC TTC 3' [SEQ ID NO:27]

EXAMPLE 9

Genomic Structure of Human NR6

Human genomic DNA clones encoding human NR6 was isoloated by screening a human genomic library (Lambda FIXTMI Stratagene 946203) with radiolabelled oligonucleotides, 2199 and 2200 (see below). These oligonucleotides were designed based on human ESTs (Genbank Acc:R87407, Genbank Acc:H14009) that were identified from databases searched with murine NR6. Filters were hybridised overnight at 37°C in 6xSSC containing 2 mg/ml bovine serum albumin, 2 mg/ml Ficoll, 2mg/ml polyvinylpyrrolidone, 100 mM ATP, 10 mg/ml tRNA, 2 mM sodium pyrophosphate, 2 mg/ml salmon sperm DNA, 0.1% (w/v) SDS and 200 mg/ml sodium azide and washed at 65°C in 6 x SSC/0.1% SDS. Five independent genomic clones were obtained and sequenced. The extend of sequence obtained has determined that the clones overlap and exhibit a similar genomic structure to murine NR6. Exon coding regions are almost identical over the region covered by the genomic clones while intron coding regions differ, although the size of the introns are comparable. The extent of known overlap is shown in Fig. 5.

20

5

OLIGONUCLEOTIDES:

2199: 5' CCC ACG CTT CTC ATC GGA TTC TCC CTG 3' [SEQ ID NO:36]

2200: 5' CAG TCC ACA CTG TCC TCC ACT CGG TAG 3' [SEQ ID NO:37]

25

EXAMPLÉ 10

Northern Blot Analysis of Human NR6 mRNA Expression

30 Clontech Multiple Tissue Northern Blots (Human MTN Blot, CLONTECH #7760-1, Human MTN Blot IV, CLONTECH #7766-I, Human Brain MTN Blot II, CLONTECH #7755-1,

Human Brain MTN Blot III, CLONTECH #7750) were probed with a radiolabelled 3' human NR6 cDNA clone, HFK-66 (SEQ ID NO:24). The clone was labelled with [α-32P] dCTP using a random priming method (Amersham, RPN 1607, Mega prime kit). Hybridisation was performed in Express Hybridisation Solution (CLONTECH H50910) for 3 hours at 67°C and membranes were washed in 0.1xSSC/0.1% w/v SDS at 50°C.

A 1.8 kb transcript was detected in a variety of human tissues encompassing reproductive, digestive and neural tissues. High levels were observed in the heart, placenta, skeletal muscle, prostate and various areas of the brain, lower levels were observed in the testis, uterus, small intestine and colon. Photographs showing these Northern blots are available upon request. This expression pattern differs from the expression pattern observed with murine NR6.

EXAMPLE 11

Mouse NR6 Expression Vectors

15

pEF-FLAG/mNR6.1

The mature coding region of mouse NR6.1 was amplified using the PCR to introduce an inframe Asc I restriction enzyme site at the 5' end of the mature coding region and an Mlu I site 20 at the 3' end, using the following oligonucleotides:-

- 5' oligo 5'-AGCTGGCGCGCCTCCCGGGCGGATCGGGAGCCCAC-3' [SEQ ID NO:30]
 3' oligo 5'-AGCTACGCGTTTAGAGTTTAGCCGGCAG-3' [SEQ ID NO:31]
- 25 The resulting PCR derived DNA fragment was then digested with Asc I and Mlu I and cloned into the Mlu I site of pEF-FLAG. Expression of NR6 is under the control of the polypeptide chain elongation factor 1α promoter as described (16) and results in the secretion, using the IL3 signal sequence from pEF-FLAG, of N-terminal FLAG-tagged NR6 protein.
- 30 pEF-FLAG was generated by modifying the expression vector pEF-BOS as follows:-

pEF-BOS (16) was digested with Xba I and a linker was synthesized that encoded the mouse IL3 signal sequence (MVLASSTTSIHTMLLLLLMLFHLGLQASIS) and the FLAG epitope (DYKDDDDK). Asc I and Mlu I restriction enzyme sites were also introduced as cloning sites. The sequence of the linker is as follows:-

5

M V L A S S T T S I H T M CTAGACTAGTGCTGACACAATGGTTCTTGCCAGCTCTACCACCAGCATCCACACCATG TGATCACGACTGTGTTACCAAGAACGGTCGAGATGGTGGTGGTAGGTGTTGCTAC

10 L L L L M L F H L G L Q A S I S Asc I

CTGCTCCTGCTCCTGATGCTCTTCCACCTGGGACTCCAAGCTTCAATCTCGGCGCGCC

GACGAGGACGAGGACTAGCAGAAGGTGGACCCTGAGGTTCGAAGTTAGAGCCGCGCGG

DYKDDDK Mlu I

15 AGGACTACAAGGACGACGATGACAAGACGCGTGCTAGCACTAGT

TCCTGATGTTCCTGCTGCTACTGTTCTGCGCACGATCGTGATCAGATC

The two oligonucleotides were annealed together and ligated into the Xba I site of 20 pEF-BOS to give pEF-FLAG.

pCOS1/FLAG/mNR6 & pCHO1/FLAG/mNR6

A DNA fragment containing the sequences encoding IL3 signal sequence/Flag/mNR6 and the poly(A) adenylation signal from human G-CSF cDNA, was excised from pEF-FLAG/mNR6 using the restriction enzyme *EcoR* I. This DNA fragment was then inserted into the *EcoR* I cloning site of pCOS1 and pCHO1

The pCOSI and pCHO1 vectors were constructed as follows. pCH01 is also described 30 in reference (17) but with a different selectable marker.

pCOS1 was prepared by digesting HEF-12h-ga1 (see Figure 24 of International Patent

Publication No. WO 92/19759) with *EcoRI* and *SmaI* and ligating the digesting product iwht an *EcoRI-NotI-BamHI* adaptor (Takara 4510). The resulting plasmid comprises an EFIα promoter/enhancer, Nco^r marker gene, SV40E, ori and an Amp^r marker gene.

5 pCH01 was constructed by digesting DHFR-PMh-gr1 (see Figure 25 of International Patent Publication No. WO 92/19759) with PvuI and Eco47III and ligating same with pCOSI digested with PvuI and Eco47III. The resulting vector, pCH01, comprises an EFIα promoter/enhancer, an DHFR marker gene, SV40E, Ori and a Amp^r gene.

10

EXAMPLE 12

mRN6 has been expressed as an N' Flag tagged protein following transfection of CHO cells and as a C' Flag tagged protein following transfection of KUSA cells in both cases varying levels of dimeric and aggregated NR6 were secreted.

EXAMPLE 13

Murine NR6 expression

20

NR6 expression studies were conducted in murine Northern Blots. At the level of sensitivity used in the adult mouse, NR6 expression was detected in salivary gland, lung and testis. During embryonic development, NR6 is expressed in fetal tissues from day 10 of gestation through to birth. In cell lines, NR6 expression has been observed in the T-lymphoid line CTLL-2 as well as in FD-PyMT (FDC-P1 myeloid cells expressing polyoma midle T gene), and fibroblastoid cells including bone marrow and fetal liver stromal lines.

EXAMPLE 14

Expression, purification and characterisation of CHO and KUSA mNR6

The methods provide for the production of a dimeric form of CHO derived N' FLAG-5 mNR6 without refolding. All other methods are capable of producing NR6 and are encompassed by the present invention.

A. Production of CHO derived N' FLAG-mNR6 (dimeric form)

(i) Protein Production

10

To analyse structure and functional activity, a cDNA fragment containing the entire coding sequence of murine NR6 with an N-terminal FLAG (N' FLAG) sequence was cloned into the EcoR1 site of the expression vector pCHO1. For stable production of N-terminal FLAG-tagged NR6 the vector contains the DHFR (dihydrofolate reductase) gene as a selective marker with the NR6 gene under the control of an EF1a promoter. CHO cells were transfected with the construct using a polycationic liposome transfection reagent (Lipofectamine, GibcoBRL).

(ii) Lipofectamine transfection method

20

Using six well tissue culture plates either 2 x 10⁵ KUSA cells in 2ml IMDM + 10% (v/v) FCS or 2 x 10⁵ CHO cells were cultured in 2ml α-MEM + 10% (v/v) FCS until 70% confluent. 2μg DNA diluted in 100μl OPTI-MEM I (Gibco BRL, USA) was mixed gently with 12μl lipofectamine diluted in 100μl OPTI-MEM I and incubated at room temperature for 30min to allow DNA complex formation. DNA complexes were gently diluted in a total volume of 1ml of OPTI-MEM I and overlaid onto washed KUSA or CHO cell monolayers. A further 1ml IMDM + 20% (v/v) FCS (KUSA cells) or 1ml α-MEM + 20% (v/v) FCS (CHO cells) was added to transfected cells after 5 hours. At 24 hours, the culture medium was replaced with fresh complete growth medium. At 48 hours after transfection, selection was applied. A methotrexate resistant clone secreting comparatively high levels of NR6 was selected and expanded for further analysis.

(iii) Protein expression

CHO cells were grown to confluence in roller bottles in nucleoside free α-MEM + 10% (v/v) FCS. Selection was maintained by using 100 ng/ml Methotrexate in the conditioned media according to manufacturer instructions. Expression was monitored by Biosensor and harvesting found to be optimal at 3 to 4 days.

B. Protein Analysis

10 (i) Biosensor analysis

Expression and purification was monitored by Biosensor analysis (BiaCoreTM, Sweden) where anti FLAG peptide M2 antibody (Kodak Eastman, USA), specific for the FLAG peptide sequence was bound to the sensorchip. Fractions were analysed for binding to the sensor surface (resonance units) and the sample then removed from the surface using 50 mM Diethylamine pH 12.0 prior to analysis of the next fraction. Immobilisation and running conditions of the Biosensor follow the manufacturer's instructions.

(ii) Protein Production

20

In order to generate and characterise NR6, conditioned media (2 L) produced by CHO cells was harvested after day 3, post confluence. Conditioned media was concentrated using diafiltration with a 10,000 molecular weight cut-off. (Easy flow, Sartorius, Aus). At a volume of 200 ml (i.e. 10 x concentrated) the sample was buffer exchanged into 20 mM Tris, 0.15M NaCl, 0.02% (v/v) Tween 20 pH 7.5 (Buffer A).

(iii) Immunoprecipitation and Western Blot analysis of mNR6

Concentrated conditioned media (1ml) was immunoprecipitated with M2 affinity resin 30 (20µl, Kodak Eastman). To examine the structural characterisation of mNR6 SDS PAGE was performed under reducing and non-reducing conditions. Separation was performed

5

15

on NOVEX 4-20% (v/v) Tris/glycine gradient gels and protein transferred on PVDF membrane. Western blots were probed with biotinylated M2 antibody (primary, 1:500) and then streptavidin peroxidase (secondary, 1:3000). Samples were visualised by autoradiography using electrochemiluminescence (ECL, Dupont, USA).

By regressional analysis of prestained standards (BIORAD, Aus.) the molecular weight of the monomeric unit was calculated to be 65,000 daltons. Under non-reducing conditions the molecular weight was calculated to be 127,000 indicating that NR6 is a disulphide linked dimer. A tetrameric complex running at approximately 250,000 daltons was also observed. Although a band running at approximately 50,000 daltons was observed, no monomeric NR6 was detected under non-reducing conditions indicating that the majority of NR6 expressed in this system is disulphide linked.

(iv) Affinity Chromatography of mNR6

Concentrated conditioned media (200 ml) was applied to M2 affinity resin (5ml) under gravity. To enhance recovery the unbound fraction was reapplied to the column four times prior to extensive washing of the column with 200 volumes of Buffer A. Biosensor analysis indicates that approximately 20% of the M2 binding originally present in the concentrate remains in the unbound fraction. The bound fraction was eluted from the column using an immunodesorbant (50 ml); actisep (Sterogene Labs, USA).

(v) Ion exchange and Desalting of mNR6

25 In order to buffer exchange mNR6 prior to anion chromatography, 10 ml batches of the eluted fraction (50 ml) were applied to an XK column (400 x 26 mm I.D.) containing G25 sepharose (Pharmacia, Sweden). Chromatography was developed at 4 ml/min using an FPLC (Pharmacia, Sweden) equipped with an online UV280 and conductivity monitor. The mobile phase was 10 mM Tris, 0.1M NaCl, 0.02% v/v Tween, pH 8.0. 10 ml fractions were collected between 12.5 min and 25 min to optimise recovery and removal of salt. Fractions were analysed by Biosensor analysis and pooled according to binding.

All pooled active fractions were diluted with an equal volume of 20 mM Tris, 0.02% (v/v) Tween, pH 8.5 (Buffer B) and then loaded onto a Mono Q 5/5 (Pharmacia, Sweden) at a flow rate of 2 ml/min. The column was washed with buffer B. Elution was performed using a linear gradient between buffer B and buffer B containing 0.6M NaCl over 30 min at a flow rate of 1 ml/min. Fractions (1 minute) were collected and analysed on the Biosensor and also by SDS PAGE and Western blot analysis. Fractions 15 to 26 (approximately 0.4M NaCl) appear to contain the majority of mNR6 as indicated by the Biosensor.

10 C. Production of CHO derived N' FLAG-mNR6 (monomeric form)

(i) Protein Production

A cDNA fragment containing the entire coding sequence of murine NR6 with an N15 terminal FLAGTM sequence was cloned into the expression vector pCHO1 for production
of N-terminal FLAG-tagged protein. This vector contains a neomycin resistance gene
with expression of the NR6 gene under the control of an EF1α promoter. This
expression construct was transfected into CHO cells using Lipofectamine (Gibco BRL,
USA) according to the manufacturer instructions. Transfected cells were cultured in
20 IMDM + 10% (v/v) FCS with resistant cells selected in geneticin (600μg/ml, Gibco BRL,
USA). A neomycin resistant clone, secreting comparatively high levels of NR6 was
selected and expanded for further analysis.

(ii) Protein expression

25

N' FLAG-NR6 expressed in serum free conditioned media (10 litre) was harvested from transfected CHO and cells. Collected media was concentrated using a CH2 ultrafiltration system equipped with a S1Y10 cartridge (Amicion molecular weight cut-off 10,000). Preliminary examination of the expressed product under reducing and non-reducing SDS PAGE followed by western blot analysis was performed. Visualisation of the protein on Westerns was specific to the primary antibody anti FLAG M2. Under reducing conditions

a band approximately at 65,000 daltons was observed. Under non-reducing conditions, dimer and larger molecular weight aggregates were observed. These are disulphide linked monomers as they are not present in the reducing gel. Small amounts of monomer appear to be present in non-reducing gels.

(iii) Affinity Chromatography of NR6

Concentrated conditioned media was applied to an anti FLAG M2 affinity resin (100 x 16 mm I.D.). After washing the unbound proteins off the column, the bound proteins were eluted using FLAG peptide (60µg/ml) in PBS.

(iv) Ion Exchange Chromatography of NR6

Eluted fractions from affinity column were dialysed overnight against 20 mM Tris-HCl pH 8.5 (buffer C) containing 50 mM Dithiothretol (DTT) using 25,000 cut-off dialysis tubing (Spectra/Por7, Spectrum). The dialysed fractions were loaded onto Mono Q 5/5 (Pharmacia, Sweden) previously equilibrated with buffer C containing 5 mM DTT. Chromatography was developed using a linear gradient between buffer C and buffer C containing 1.0 M NaCl at a flow rate of 0.5 ml/min.

20

5

(v) Refolding of NR6

Fractions containing NR6 from the Mono Q were adjusted to 50 mM DTT and left overnight at 4°C. To initiated refolding the sample was then dialysed against 50 mM Tris-25 HCl (pH 8.5), 2 M Urea, 0.1% (v/v) Tween 20, 10 mM Glutathione (reduced) and 2 mM Glutathione (oxidised) at a final protein concentration of 100 μ g / ml. Folding was carried out at ambient temperature with one change of the buffer over 24 hours.

(v) Reversed Phase High Performance Liquid Chromatography (RP-HPLC)

30

mm I.D.) previously equilibrated with 0.1% (v/v) Trifluoroacetic acid (TFA). Elution was carried out using a linear gradient from 0 to 80% (v/v) acetonitrile / 0.1% (v/v) TFA at a flow rate of 1 ml per minute.

5 D. pCHO1/NR6/FLAG

In order to determine the native N termini of NR6, a C terminal FLAG NR6 CHO cell line was established.

10 The plasmid pKUSA166 (murine NR6 cDNA cloned into the EcoR I site of pBLUESCRIPT) was digested with BamH I to remove the sequences encoding the last 15 amino acids of murine NR6. Synthetic oligonucleotides which encode the 3' end of mouse NR6 followed by the FLAG peptide tag were annealed and ligated into the BamH I site of pKUSA166. The sequence of the oligonucleotides was as follows:-

15

I L P S G R R G A A R G P A G D Y K D D D D K * [SEQ ID NO:34]
GATCTTGCCCTCGGGCAGACGGGGTGCGGCGAGAGGTCCTGCCGGCGACT
ACAAGGACGACGATGACAAGTA G [SEQ ID NO:33]

20 AACGGGAGCCCGTCTGCCCCACGCCGCTCTCCAGGACGGCCGCTGATGTT
CCTGCTGCTACTGTTCATCCTAG [SEQ ID NO:35]

The 5' end of the linker introduces a silent mutation (CTG > TTG), to destroy the 5' BamH I site upon insertion of the linker. The NR6 cDNA (with native signal sequence) with the C-terminal FLAG was cut out of pKUSA166 with EcoR I and BamH I and cloned into the EcoR I - BamH I cloning sites of pCHO-1. This vector results in the secretion of NR6 protein with a C-terminal flag tag (C' FLAG-mRN6).

This vector results in the secretion of NR6 protein from KUSA cells. The vector pCHO1 30 has been previously described in (17) although with a different secretable marker.

5

(i) Production of polyclonal NR6 antiserum

The following peptide from the N terminal area of NR6 was chosen for production of polyclonal antiserum to NR6

VISPQDPTLLIGSSLQATCSIHGDTP [SEQ ID NO:39]

The peptide was conjugated to KLH and injected into rabbits. Production and purification of the polyclonal antibody specific to the NR6 peptide sequence follows standard 10 methods.

(ii) Protein expression

KUSA cells transfected with cDNA of C terminal tagged mNR6 were grown to confluence in flasks (800ml) using IMDM media containing 10% (v/v) FBS. Conditioned media (100 ml) was harvested 3 -4 days post confluence.

(iii) Characterisation of NR6 by Immunoprecipitation and Western blotting

20 In order to establish that NR6 with the predicted sequence is produced in KUSA cells transfected with the cDNA, western blot analysis using both M2 antibody and purified NR6 specific rabbit antibody were performed. Conditioned media (1 to 5 ml) was immunoprecipitated with M2 affinity resin (10-20 μl). Then after sufficient time for binding, the beads were washed with MT-PBS and subsequently NR6 eluted with 100 μg/ml FLAG peptide (40 μl, (1, 5 minute incubation). The sample was then subjected to reducing and non reducing SDS PAGE followed by western blot analysis. Both purified NR6 polyclonal antibody (purified by protein G) and M2 antibody recognise a band under reducing conditions of a molecular weight size approximately 65,000 daltons. Since the two antibodies reconising resides at the N terminus and C terminus it is reasonable to assume that full length NR6 is produced. Biotinylation of the respective antibodies by standard methods reduces the background. Under non-reducing conditions polyclonal

NR6 bind antibodies to a band of a molecular weight of approximately 127,000, consistent with a dimeric NR6 disulphide linked form. Minor components of tetrameric NR6 are present, no monomeric NR6 is evident using polyclonal NR6 antibodies.

5

- 56 -

EXAMPLE 15

Generation of NR6 knockout mice

To construct the NR6 targeting vector, 4.1kb of genomic NR6 DNA containing exons 2 through to 6 was deleted and replaced with G418-resistance cassette, leaving 5' and 3' NR6 arms of 2.9 and 4.5 kb respectively. A 4.5 kb Xhol fragment of the murine genomic NR6 clone 2.2 (Figure 3) containing exons 7, 8 and 3' flanking sequence was subcloned into the Xhol site of pBluescript generating pBSNR6Xho4.5. A 2.9kb NotI-Stul fragment within NR6 intron 1 from the same genomic clone was inserted into NotI and EcoRV digested pBSNR6Xho4.5 creating pNR6-Ex2-6. This plasmid was digested with ClaI, which was situated between the two NR6 fragments, and following blunt ending, ligated with a blunted 6kb HindIII fragment from placZneo, which contains the *lac*Zgene and a PGKneo cassette, to generate the final targeting vector, pNR61acZneo. pNR61acZneo was linearised with NotI and electroporated into W9.5 embryonic stem cells. After 48 hours, transfected cells were selected in 175 μg/ml G418 and resistant clones picked and expanded after a further 8 days.

Clones in which the targetting vector had recombined with the endogenous NR6 gene were identified by hybridising SpeI-digested genomic DNA with a 0.6 kb XhoI-StuI fragment from genomic NR6 clone 2.2. This probe (probe A, Figure 4), which is located 3' to the NR6 sequences in the targeting vector, distinguished between the endogenous (9.9 kb) and targeted (7.1 kb) NR6 loci (Figure 5).

Genomic DNA was digested with SpeI for 16hrs at 37°C, electrophoresed through 0.8% (w/v) agarose, transferred to nylon membranes and hybridised to ³²P-labelled probe in a solution containing 0.5M sodium phosphate, 7% (w/v) SDS, 1mM EDTA and washed in a solution containing 40mM sodium posphate, 1% (w/v) SDS at 65°C. Hybridising bands were visualised by autoradiography for 16 hours at -70°C using Kodak XAR-5 film and intensifying screens. Two targeted ES cell clones, W9.5NR6-2-44 and W9.5NR6-4-30 2, were injected into C57B1/6 blastocysts to generate chimeric mice. Male chimeras were

mated with C57B1/6 females to yield NR6 heterozygotes which were subsequently

interbred to produce wild-type (NR6^{+/-}), heterozygous (NR6^{+/-}) and mutant (NR6^{-/-}) mice. The genotypes of offspring were determined by Southern Blot analysis of genomic DNA extracted from tail biopsies.

5 Genotyping of mice at weaning from matings between NR^{4/2} heterozygous mice derived from both targated ES cell clones revealed an absence of homozygous NR6^{4/2} mutants. As no unusual loss of mice was observed between birth and weaning, this suggest that lack of NR6 is lethal during embryonic development or immediately after birth. Genotyping of embryonic tissues at various stages of development suggests that death occurs late in gestation (beyond day 16) or at birth.

EXAMPLE 16

Oligonucleotides

1943:

15 5' GTC CAA GTG CGT TGT AAC CCA 3' [SEQ ID NO: 40] 2070:

5' GCT GAG TGT GCG CTG GGT CTC ACC 3' [SEQ ID NO: 41] 2057:

5' GGC TCC ACT CGC TCC AGA 3' [SEQ ID NO: 42]

20

EXAMPLE 17

Isolation of a full-length human NR6 cDNA clones

25 PCR amplification of a huNR6 specific probe:

Two human ESTs (Genbank Acc: AA042914 and H14009) showing homology with murine NR6 were used to design oligonucleotides for PCR screening of arange of commercially available human genomic and cDNA libraries. Oligonucleotide sequence:

30 Fwd primer: 5' - TGC CCC CAG AGA AAC CCG TCAAC - 3' [SEQ ID NO: 45] and Rev primer: 5' - CGT GAG TAC ATC GGA GCG GGC AGA G - 3' [SEQ ID NO: 46].

The expected fragment size of 300 bp was amplified (25 cycles, 96oCdenaturation, 60°C annealing and 72°C extension, Stratagene Pfu DNA polymerase Cat#600159, Corbett PC-960G) from a human placental cDNA library (Clontech Human Placenta 5'-STRETCH PLUS cDNA library Cat#HL3007b, cloning vector lgt11, oligo(dT) and random primed, source RNA25 year old Caucasian mother). PCR amplification was repeated using aproof reading polymerase (Stratagene) to generate blunt ended PCR products for cloning into pCR-Blunt vector (Invitrogen ZeroBlunt PCRCloning Kit, Cat# 440302). PCR colony analysis was used to identifytransformed E. coli containing appropriately ligated vector and theidentity of the inserts confirmed by sequencing.

10

Screening of human placental library:

The huNR6 probe was excised from pCR-Blunt using EcoRI, 3' end labelled with 32P (Pharmacia Biotech Ready To Go DNA Labelling Beads Cat # 27-9240-01) and used to screen the placental cDNA library (standard methods, duplicate filters, 106 plaques screened, high stringency washes - 0.2X SSC, 0.1% SDS, 65oC). Twenty positives were identified on primary screening and following two rounds of plaque purification, eighteen cloned tertiary phage stocks containing inserts ranging from ~1-3 kb in size remained. Phage clone #11 was selected for thorough sequencing and found to contain 2079 bp insert, with an ORF of 1260 bases, 515bp of 5'UTR and 304bp of 3'UTR. The sequence of the ORF and the corresponding amino acid translation showed a high degree of homology to the corresponding mouse NR6 cDNA and amino acid sequences (88% and 95% respectively, Fig. 6 and 7).

25

EXAMPLE 18

Human NR6 Expression Vectors

pEF-N'-FLAG/hNR6

30 The coding region of the mature human NR6 protein was amplified using PCR to introduce in frame Asc I restriction enzyme sites at the 5' and 3' ends using the following

oligonucleotides:

5'Oligo 5'-TCAGGCGCGCCTTGCCCACACAGCTGTGATC-3' [SEQ ID NO: 47]
3'Oligo 5'-TCAGGGCGCGCCTTATCTGGCAGGACCTCT-3' [SEQ ID NO: 48]
The resulting PCR derived DNA fragment was then digested with Asc I and cloned into
the Mlu I site of pEF-FLAG-S. Expression of NR6 is under control of the polypeptide
elongation factor 1a promoter and results in the secretion, using the IL3 signal sequence
from pEF-FLAG, of N-terminal FLAG-tagged NR6 protein.

pEF-C'-FLAG/hNR6

10

The complete coding region, including the endogenous signal sequence, of human NR6 protein was amplified using PCR to introduce in frame Asc I restriction enzyme sites at the 5' and 3' ends using the following oligonucleotides:

15 3'Oligo 5'-ATAAGGCGCGCCCTGGCAGGACCTCTCG-3' [SEQ ID NO: 50]

The resulting PCR derived DNA fragment was then digested with Asc I and cloned into the Asc I site of pEF-FLAG-I. Expression of NR6 is under control of the polypeptide elongation factor 1a promoter and results in the secretion, using the endogenous NR6 signal sequence, of C-terminal FLAG-tagged NR6 protein.

20

pEF-N'-I-SPY/hNR6

The coding region of the mature human NR6 protein was amplified using PCR to introduce in frame Asc I restriction enzyme sites at the 5' and 3' ends using the following

25 oligonucleotides:

5'Oligo 5'-TCAGGCGCGCCTTGCCCACACAGCTGTGATC-3' [SEQ ID NO: 51]
3'Oligo 5'-TCAGGGCGCGCCTTATCTGGCAGGACCTCT-3' [SEQ ID NO: 52]
The resulting PCR derived DNA fragment was then digested with Asc I and cloned into the Mlu I site of pEF-I-SPY-S. In this vector the region encoding the FLAG tag has been excised from pEF-FLAG-S and replaced with sequence encoding an I-SPY epitope tag (QYPALT, AMRAD Biotech, Australia). Expression of NR6 is under control of the

polypeptide elongation factor 1a promoter and results in the secretion, using the IL3 signal sequence from pEF-FLAG, of N-terminal FLAG-tagged NR6 protein.

pEF-C'-I-SPY/hNR6

5

The complete coding region, including the endogenous signal sequence, of human NR6 protein was amplified using PCR to introduce in frame Asc I restriction enzyme sites at the 5' and 3' ends using the following oligonucleotides:

5'Oligo 5'-TCAGGCGCCCCGCCGCCGCCGCCGCCGC'3' [SEQ ID NO: 53]

10 3'Oligo 5'-ATAAGGCGCCCCTGGCAGGACCTCTCG-3' [SEQ ID NO: 54]

The resulting PCR derived DNA fragment was then digested with Asc I and cloned into the Asc I site of pEF-I-SPY-I (see above for details). Expression of NR6 is under control of the polypeptide elongation factor 1a promoter and results in the secretion, using the endogenous NR6 signal sequence, of C-terminal FLAG-tagged NR6 protein.

15

EXAMPLE 19

Expression, purification and characterisation of CHO human NR6

A. Transient expression and analysis of NR6

20

Transient expression of C'-terminal FLAG-tagged human NR6

For transient expression of human NR6 the pEF-C'-FLAG/hNR6 expression construct described above was transfected into 293T cells using Lipofectamine (Gibco BRL, USA) according to the manufacturers instructions. Briefly, cells grown to approximately 70-80% confluence in 75 cm2 tissue culture flasks were washed in serum free DMEM media then exposed to a mixture of pEF-C'-FLAG/hNR6 and Lipofectamine diluted in DMEM. After 5 hours at 37oC with 5% CO2 the cells were washed once with DMEM and incubated for a further 16 hours in DMEM supplemented with 10% v/v FCS, glutamine and antibiotics (DM10). At this time the DM10 was removed and replaced with a further 10 ml/flask of fresh DM10 and transfected cells incubated for a further 48 hours.

25

Supernatants containing secreted human NR6 were recovered, centrifuged and filtered to remove cell debri, then stored at 4°C. Expression and purification was monitored by Biosensor analysis (BiaCore TM, Sweden) where anti-FLAG peptide monoclonal antibody (M2, Kodak Eastman, USA) was bound to the sensorchip. Where multiple fractions were analysed for binding to the sensor surface (resonance units) the chip was desorbed with 50 mM Diethylamine pH 12.0 prior to application of the next sample. Biosensor analysis indicated that the transfected 293T cells secreted significant quantities of FLAG-tagged human NR6 protein into the surrounding media (Figure 8A). The conditioned media (5 ml) was applied to M2 affinity resin (1 ml) under gravity. To enhance recovery the unbound fraction was reapplied to the column 4 times prior to extensive washing of the column with 200 volumes of Buffer A (see Example 14).

The bound fraction was eluted from the column with 10 X 1 ml volumes of 100 mg/ml FLAG peptide (Kodak Eastman) in Tris-buffered saline. The first 5 fractions were electrophoresed on an SDS-PAGE gel under non-reducing conditions. Silver staining revealed a band of the expected size for dimeric NR6 at approximately 120 kDa in fractions 1-3 (Figure 8B). To confirm that this band was indeed NR6, an identical gel was subjected to Western blot analysis using the M2 monoclonal antibody. Fractions were electrophoresed under non-reducing conditions, transferred to a PVDF membrane then probed with a biotinylated M2 antibody. Bound antibody was detected using a Streptavidin-HRPO conjugate and ECL substrate. Subsequent autoradiography indicated a band of the expected size for dimeric NR6 at approximately 120 kDa (Figure 8C).

N-terminal amino acid sequence of C-terminal FLAG-tagged NR6

For determination of the N-terminal amino acid sequence, C-terminal FLAG-tagged NR6 was purified from 75 ml of transfected 293T cell supernatant by M2 affinity chromatography as described above. Peak fractions (as determined by SDS-PAGE) were concentrated by lyophillization, resuspended in 0.5 ml and applied to a Superose 12 size exclusion column (Pharmacia, Flow rate 0.5 ml/min, 1 min fractions in 1% w/v ammonium bicarbonate, pH7.8). Peak fractions containing NR6, as determined by

Biosensor and SDS-PAGE analysis, were sunjected to N-terminal sequence analysis using a Hewlett Packard sequencer with the indicated N-terminus at Ala40. This is identical to the N-terminus of mature CHO cell derived murine NR6.

5 NR6 is secreted as a homodimer

Western blot analysis following non-reducing and reducing SDS-PAGE and N'-terminal sequence analysis indicated that the secreted form of NR6 was as a homodimer rather than a heterodimer. To further confirm secretion of homodimeric NR6, 293 T cells were transiently cotransfected (Lipofectamine, as above) with vectors encoding C'-terminal FLAG-tagged NR6 and C'-terminal I-SPY-tagged NR6. For control purposes 293T cells were also transfected with each vector alone.

Supernatants from each transfection were immunoprecipitated with resin coupled monoclonal antibody specific for either I-SPY or FLAG epitopes. The precipitates were
then electrophoresed on SDS-PAGE, transferred to PVDF and probed with anti-FLAG
antibody according to the standard protocol. FLAG specific reactivity of the appropriate
molecular weight was detected in appropriate controls and in supernatants from
cotransfections following precipitation with both anti-FLAG and anti-I-SPY coupled
resins (results not shown). This indicates that FLAG-tagged and I-SPY tagged
monomers are associating to form homodimers.

B. Production of stable cell lines secreting dimeric human NR6

25 For the generation of stable cell lines expressing human NR6, CHO cells and 293T cells were cotransfected with the pEF-C'-FLAG/hNR6 or pEF-N'-FLAG/hNR6 expression constructs and a vector incorporating a gene encoding puromycin resistance using Lipofectamine (Gibco BRL, USA) according to the manufacturers instructions. Following selection in puromycin (25 mg/ml, Sigma) resistant cells were cloned in 96 well microtitre plates by limiting dilution and clones assayed for NR6 production by a

combination of Dot-blot analysis and Biosensor analysis (as above). For Dot-blot analysis

50 ml of supernatant from each clone was transferred to nitrocellulose membrane using a Dot-blot apparatus (BioRad, USA). The nitrocellulose was then incubated in blocking buffer (Phosphate buffered saline, PBS + 1% Casein) for 30 min, washed in PBS and then probed with anti-FLAG M2 antibody (1:1000 in blocking buffer, 60 min), washed again and bound M2 detected using a HRPO conjugated anti-mouse antibody (Silenus, 1:2000 in blocking buffer, 60 min) used in conjunction with TMB substrate (Boehringer Mannheim). Following Dot-blot and Biosensor analysis 6 CHO cell clones expressing C-terminal FLAG-tagged human NR6, 6 CHO cell clones expressing N-terminal FLAG-tagged human NR6, and 6 293T cell clones expressing C-terminal FLAG-tagged human NR6 were selected and expanded for further analysis. Following further analysis a single clone was selected from each group of 6 for expansion and production of human NR6 for subsequent biological analysis. Biosensor analysis of supernatant from each of these clones indicated relatively high level production of NR6 (Fig. 9) and Western blot analysis confirmed that the dominant form of FLAG-tagged protein was a dimer of molecular weight approx. 120 kDa (Fig. 9).

Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications. The 20 invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations of any two or more of said steps or features.

BIBLIOGRAPHY:

- 1. Du, X.X. and Williams, D.A. (1994) Blood 83: 2023-2030.
- 2. Yang, Y.C. and Yin, T. (1992) Biofactors 4: 15-21.
- Paul, S.R., Bennett, F., Calvetti, J.A., Kelleher, K., Wood, C.R., O'Hara, R.J.J.,
 Leary, A.C., Sibley, B., Clark, S.C., Williams, D.A. and Yang, Y.-C. (1990) Proc.
 Natl. Acad. Sci. USA 87: 7512.
- Musashi, M., Clark, S.C., Sudo, T., Urdal, D.L., and Ogawa, M. (1991) Blood
 78: 1448-1451.
- 5. Schibler, K.R., Yang, Y.C. and Christensen, R.D. (1992) Blood 80: 900-3.
- 6. Tsuji, K., Lyman, S.D., Sudo, T., Clark, S.C., and Ogawa, M. (1992) *Blood 79:* 2855-60.
- 7. Burstein, S.A., Mei, R.L., Henthorn, J., Friese, P. and turner, K. (1992) J. Cell. Physiol. 153: 305-12.
- 8. Hangoc, G., Yin, T., Cooper, S., Schendel, P., Yang, Y.C. and Broxmeyer, H.E. (1993) Blood 81: 965-72.
- 9. Teramura, M., Kobayashi, S., Hoshino, S., Oshimi, K. and Mizoguchi, H. (1992)

 Blood 79: 327-31.
- 10. Yonemura, Y., Kawakita, M., Masuda, T., Fujimoto, K., Kato, K. and Takatsuki, K. (1992) Exp. Hematol. 20: 1011-6.
- 11. Baumann, H. and Schendel, P. (1991) J. Biol. Chem. 266: 20424-7.
- 12. Kawashima, I., Ohsumi, J., Mita-Honjo, K., Shimoda-Takano, K., Ishikawa, H., Sakakibara, S., Miyadai, K. and Takiguchi, Y. (1991) Febs. Lett. 283: 199-202.
- 13. Keller, D.C., Du, X.X., Srour, E.f., Hoffman, R. and Williams, D.A. (1993)

 Blood 82: 1428-35.
- 14. Sambrook et al (1989) Cloning: A Laboratory Manual. Cold Spring Harbour Laboratory, Cold Spring Harbour, NY.
- 15. Chirgwin et al (1979) Biochemistry 18: 5294-5299.
- 16. Mizushima and Nagata (1990) Nucl. Acids Res., 18: 5322.
- 17. FEBS Lett (1994) 356: 244-248.

- 18. Bazan, J.F. (1990) Proc Natl Acad Sci USA, 87, 6934-8
- 19. de Vos, A.M., Ultsch, M. and Kossiakoff, A.A. (1992) Science, 255, 306-12
- 20. Layton, M.J., Cross, B.A., Metcalf, D., Ward, L.D., Simpson, R.J. and Nicola, N.A. (1992) Proceedings of the National Academy of Sciences of the United States of America 89: 8616-8620
- Taga, T., Hibi, M., Hirata, T., Tamasaki, K., Tasukawa, K., Matsuda, T., Hirano,
 T. and Kishimoto, T. (1989) Cell 58: 573-581
- 22. Merberg, D.M., Wolf, S.F. and Clark, S.C. (1992) Sequence similarity between NKSF and the IL-6/G-CSF family (1992) *Immunology Today* 13: 77-78
- 23. Cearing, D.P. and Cosman, D. (1991) Cell 66:9-10
- 24. Wrighton, N.C., Farrell, F.X., Chang, R., Kashyap, A.K., Barbone, F.P., Mulcahy, L.S., Johnson, D.L., Barrett, R.W., Jolliffe, L.K. and Dower, W.J. (1996) Science 273: 458-464.
- Cwirla, S.E., Balasubramanian, P., Duffin, D.J., Wagstrom, C.R., Gates, C.M., Singer, S.C., Davis, A.M., Tansik, R.L., Mattheakis, L.C., Boytos, C.M., Schatz, P.J., Baccanari, D.P., Wrighton, N.C., Barret, R.W. and Dower, W.J. (1997) Science 276: 1696--9, 1997
- 26. Samuel Davis et al (1996) Cell 87:1161-1169.
- 27. Chitra Suri et al (1996) Cell 87: 1171-1180.
- 28. Nicholas C. Wrighton et al (1996) Science 273: 458-463.

- 29. Oded Livnah et al (1996) Science 273: 464-471.
- 30. Cwirla, Steven E. et al (1997) Science 276: 1696-1699.

- 67 -

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: (Other than US) AMRAD OPERATIONS PTY LTD (US only) Douglas James HILTON, Nicos Antony NICOLA, Alison FARLEY, Tracey WILLSON, Jian-Guo ZHANG, Warren ALEXANDER, Steven RAKAR, Louis FABRI, Tetsuo KOJIMA, Masatsugu MAEDA, Yasumfumi KIKUCHI, Andrew NASH
 - (ii) TITLE OF INVENTION: A NOVEL HAEMPOIETIN RECEPTOR AND GENETIC SEQUENCES ENCODING SAME
 - (iii) NUMBER OF SEQUENCES: 54
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: SCULLY, SCOTT, MURPHY & PRESSOR
 - (B) STREET: 400 GARDEN CITY PLAZA (C) CITY: GARDEN CITY

 - (D) STATE: NEW YORK
 - (E) COUNTRY: UNITED STATES OF AMERICA (F) ZIP: 11530-0299
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk

 - (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vii) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: CIP APPLICATION OF USSN 08/928,720 (B) FILING DATE:10-MAR-1998

 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: PCT/GB97/02479
 (B) FILING DATE: 11-SEP-1997
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US APPLICATION NO. 08/928,720
 - (B) FILING DATE: 11-SEP-1997
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: P02246/96
 - (B) FILING DATE: 11-SEP-1996
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: DIGIGLIO, FRANK S
 - (B) REGISTRATION NO: 31,346
 - (C) REFERENCE/DOCKET NUMBER: 10857Z
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: +516 742 4343 (B) TELEFAX: +516 742 4366

(2	2) INFORMATION FOR SEQ ID NO:1:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
T	rp Ser Xaa Trp Ser	
(:	2) INFORMATION FOR SEQ ID NO:2:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
A	CTCGCTCCA GATTCCCGCC TTTT	24
(:	2) INFORMATION FOR SEQ ID NO:3:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
T	CCCGCCTTT TTCGACCCAT AGAT	24
(:	2) INFORMATION FOR SEQ ID NO:4:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	
	(wi) anoughous programment, see ID No.4.	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	

24

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 24 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

GGTACTTGGC TTGGAAGAGG AAAT (2) INFORMATION FOR SEQ ID NO:5:

(ii) MOLECULE TYPE: DNA

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
CGGC	TCACGT GCACGTCGGG TGGG	24
(2)	INFORMATION FOR SEQ ID NO:6:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	-
	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
AGCT	GCTGTT AAAGGGCTTC TC	22
(2)	INFORMATION FOR SEQ ID NO:7:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Oligonucleotide	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
(A/G	CTCCA(A/G)TC(A/G) CTCCA	15
(2)	INFORMATION FOR SEQ ID NO:8:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Oligonucleotide	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
(A/G	S)CTCCA(C/T)TC(A/G) CTCCA	15
(2)	INFORMATION FOR SEQ ID NO:9:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

- 70 -

AAGTGTGACC ATCATGTGGA C	21
(2) INFORMATION FOR SEQ ID NO:10:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
GGAGGTGTTA AGGAGGCG	18
(2) INFORMATION FOR SEQ ID NO:11:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
ATGCCCGCGG GTCGCCCG	18
(2) INFORMATION FOR SEQ ID NO:12:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1506 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 11242	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
GGCACGAGCT TCGCTGTCCG CGCCCAGTGA CGCGCGTGCG GACCCGAGCC CCAATCTGCA	-64
CCCCGCAGAC TCGCCCCCGC CCCATACCGG CGTTGCAGTC ACCGCCCGTT GCGCGCCACC	-4
ссс	-3
ATG CCC GCG GGT CGC CCG GGC CCC GTC GCC CAA TCC GCG CGG CGG CCG Met Pro Ala Gly Arg Pro Gly Pro Val Ala Gln Ser Ala Arg Arg Pro 1 5 10 15	48
CCG CGG CCG CTG TCC TCG CTG TGG TCG CCT CTG TTG CTC TGT GTC CTC Pro Arg Pro Leu Ser Ser Leu Trp Ser Pro Leu Leu Leu Cys Val Leu 20 25 30	96

GGG GGG	GTG Val	CCT Pro 35	CGG Arg	GGC	GGA Gly	TCG Ser	GGA Gly 40	GCC Ala	CAC His	ACA Thr	GCT Ala	GTA Val 45	ATC Ile	AGC Ser	CCC Pro	144
CAG Gln	GAC Asp 50	CCC Pro	ACC Thr	CTT Leu	CTC Leu	ATC Ile 55	Gly	TCC Ser	TCC Ser	CTG Leu	CAA Gln 60	GCT Ala	ACC Thr	TGC Cys	TCT Ser	192
Ile 65	His	Gly	Asp	Thr	CCT Pro 70	Gly	Ala	Thr	ALA	75	GIĀ	Leu	Tyr	TID	80	240
CTC Leu	AAT Asn	ggt Gly	CGC Arg	CGC Arg 85	CTG Leu	CCC Pro	TCT Ser	GAG Glu	CTG Leu 90	TCC Ser	CGC	CTC Leu	CTT Leu	AAC Asn 95	ACC Thr	288
TCC Ser	ACC Thr	CTG Leu	GCC Ala 100	CTG Leu	GCC Ala	CTG Leu	GCT Ala	AAC Asn 105	Leu	AAT Asn	GGG	TCC Ser	AGG Arg 110	CAG Gln	CAG Gln	336
TCA Ser	GGA Gly	GAC Asp 115	AAT Asn	CTG Leu	GTG Val	TGT Cys	CAC His 120	GCC Ala	CGA Arg	GAC Asp	ely ecc	AGC Ser 125	ATT Ile	CTG Leu	GCT Ala	384
GJY	TCC Ser 130	Cya Cya	CTC Leu	TAT Tyr	GTT Val	GGC Gly 135	TTG Leu	CCC Pro	CCT Pro	GAG Glu	AAG Lys 140	CCC	TTT Phe	AAC Asn	ATC Ile	432
AGC Ser 145	TGC Cys	TGG Trp	TCC Ser	CGG Arg	AAC Asn 150	ATG Met	AAG Lys	GAT Asp	CTC Leu	ACG Thr 155	TGC Cys	Arg	TGG Trp	ACA Thr	CCG Pro 160	480
GGT Gly	GCA Ala	CAC His	Gly	GAG Glu 165	ACA Thr	TTC Phe	TTA Leu	CAT His	ACC Thr 170	AAC Asn	TAC Tyr	TCC Ser	Leu	AAG Lys 175	TAC Tyr	528
AAG Lys	CTG Leu	AGG Arg	TGG Trp 180	TAC Tyr	GGT Gly	CAG Gln	GAT Asp	AAC Asn 185	ACA Thr	TGT Cys	GAG Glu	GAG Glu	TAC Tyr 190	CAC His	ACT	576
GTG Val	GGC	CCT Pro 195	CAC His	TCA Ser	TGC Cys	CAT His	ATC Ile 200	CCC Pro	AAG Lys	GAC Asp	CTG Leu	GCC Ala 205	CTC Leu	TTC Phe	ACT Thr	624
Pro	TAT Tyr 210	GAG Glu	ATC	TGG Trp	GTG Val	GAA Glu 215	GCC Ala	ACC Thr	AAT Asn	yrg CGC	CTA Leu 220	GGC	TCA Ser	GCA Ala	AGA Arg	672
TCT Ser 225	Asp	GTC Val	CTC	ACA Thr	CTG Leu 230	gat Asp	GTC Val	CTG Leu	GAC Asp	GTG Val 235	GTG Val	ACC Thr	ACG Thr	GAC	CCC Pro 240	720
CCA Pro	CCC Pro	GAC Asp	GTG Val	CAC His 245	Val	AGC Ser	CGC	GTT Val	GGG Gly 250	G17 GC	CTG Leu	GAG Glu	GAC Asp	CAG Gln 255	CTG Leu	768
AGT Ser	GTG Val	CGC	TGG Trp 260	Val	TCA Ser	CCA Pro	CCA Pro	GCT Ala 265	Leu	AAG Lys	GAT Asp	TTC Phe	CTC Leu 270	TTC Phe	CAA Gln	816
GCC Ala	AAG Lys	TAC Tyr 275	Gln	ATC Ile	CGC	TAC Tyr	CGC Arg 280	Val	GAG Glu	GAC Asp	AGC Ser	GTG Val 285	GAC Asp	TGG	AAG Lys	864
GTG Val	GTG Val 290	Asp	GAC Asp	GTC Val	AGC Ser	AAC Asn 295	CAG Gln	ACC Thr	TCC Ser	TGC Cys	CGT Arg 300	Len	GCG Ala	GGC Gly	CTG Leu	912
AAG Lys 305	Pro	GGC Gly	ACC Thr	GTT Val	TAC Tyr 310	Phe	GTC Val	CAA Gln	GTG Val	CGT Arg 315	Cys	AAC Asn	CCA Pro	TTC Phe	GGG Gly 320	960
ATC Ile	TAT Tyr	GGG Gly	TCG	Lys Lys	AAG Lys	GCG	GGA	ATC	TGG	AGC Ser	GAG Glu	TGG Trp	AGC Ser	CAC His	CCC Pro	1008

- 72 -

	325	330	335	
ACC GCT GCC TCC Thr Ala Ala Ser 340	ACC CCT CGA AGT Thr Pro Arg Ser	GAG CGC CCG GGC Glu Arg Pro Gly 345	CCG GGC GGC GGG Pro Gly Gly Gly 350	1056
GTG TGC GAG CCG Val Cys Glu Pro 355	CGG GGC GGC GAG Arg Gly Gly Glu 360	CCC AGC TCG GGC Pro Ser Ser Gly	CCG GTG CGG CGC Pro Val Arg Arg 365	1104
GAG CTC AAG CAG Glu Leu Lys Gln 370	TTC CTC GGC TGG Phe Leu Gly Trp 375	CTC AAG AAG CAC Leu Lys Lys His 380	GCA TAC TGC TCG Ala Tyr Cys Ser	1152
AAC CTT AGT TTC Asn Leu Ser Phe 385	CGC CTG TAC GAC Arg Leu Tyr Asp 390	CAG TGG CGT GCT Gln Trp Arg Ala 395	TGG ATG CAG AAG Trp Met Gln Lys 400	1200
TCA CAC AAG ACC Ser His Lys Thr	CGA AAC CAG GTC Arg Asn Gln Val 405	CTG CCG GCT AAA Leu Pro Ala Lys 410	CTC TAAGGATAGG Leu	1249
CCATCCTCCT GCTG	GGTCAG ACCTGGAGGC	TCACCTGAAT TGG	AGCCCCT CTGTACCATC	1309
TGGGCAACAA AGAA	ACCTAC CAGAGGCTGG	GGCACAATGA GCT	CCCACAA CCACAGCTTT	1369
GGTCCACATG ATGG	TCACAC TTGGATATAC	CCCAGTGTGG GTA	AGGTTGG GGTATTGCAG	1429
GGCCTCCCAA CAAT	CTCTTT AAATAAATAA	AGGAGTTGTT CAG	GTAAAAA AAAAAAAAA	1489
AAAA AAAAAAAA	AAA			1506
(i) SEOU	FOR SEQ ID NO:13	CICS:		
(A (E) LENGTH: 413 ami B) TYPE: amino aci C) TOPOLOGY: line	.no acids .d		
(ii) MOLE	CULE TYPE: protei	.n		
	JENCE DESCRIPTION:			
1	Arg Pro Gly Pro	10	±3	
Pro Arg Pro Leu 20	Ser Ser Leu Trp	Ser Pro Leu Leu 25	30	
35	Gly Gly Ser Gly		45	
50	Leu Leu Ile Gly 55	50		
Ile His Gly Asp 65	Thr Pro Gly Ala 70	Thr Ala Glu Gly 75	Leu Tyr Trp Thr 80	
Leu Asn Gly Arg	g Arg Leu Pro Ser 85	Glu Leu Ser Arg	Leu Leu Asn Thr 95	
100		105	110	
Ser Gly Asp Ass 115	n Leu Val Cys His 120	Ala Arg Asp Gly	Ser Ile Leu Ala 125	

Gly Ser Cys Leu Tyr Val Gly Leu Pro Pro Glu Lys Pro Phe Asn Ile 130 135 140

Ser Cys Trp Ser Arg Asn Met Lys Asp Leu Thr Cys Arg Trp Thr Pro 145 150 160

Gly Ala His Gly Glu Thr Phe Leu His Thr Asn Tyr Ser Leu Lys Tyr 165 170 175 Lys Leu Arg Trp Tyr Gly Gln Asp Asn Thr Cys Glu Glu Tyr His Thr Val Gly Pro His Ser Cys His Ile Pro Lys Asp Leu Ala Leu Phe Thr 195 200 205 Pro Tyr Glu Ile Trp Val Glu Ala Thr Asn Arg Leu Gly Ser Ala Arg 210 225 220 Ser Asp Val Leu Thr Leu Asp Val Leu Asp Val Val Thr Thr Asp Pro 225 230 235 Pro Pro Asp Val His Val Ser Arg Val Gly Gly Leu Glu Asp Gln Leu 245 250 255 Ser Val Arg Trp Val Ser Pro Pro Ala Leu Lys Asp Phe Leu Phe Gln 260 265 270 Ala Lys Tyr Gln Ile Arg Tyr Arg Val Glu Asp Ser Val Asp Trp Lys 275 280 285 Val Val Asp Asp Val Ser Asn Gln Thr Ser Cys Arg Leu Ala Gly Leu 290 295 300 Lys Pro Gly Thr Val Tyr Phe Val Gln Val Arg Cys Asn Pro Phe Gly 305 310 315 320 Ile Tyr Gly Ser Lys Lys Ala Gly Ile Trp Ser Glu Trp Ser His Pro 325 330 335 Thr Ala Ala Ser Thr Pro Arg Ser Glu Arg Pro Gly Pro Gly Gly Gly 340 345 350 Val Cys Glu Pro Arg Gly Gly Glu Pro Ser Ser Gly Pro Val Arg Arg 355 360 365 Glu Leu Lys Gln Phe Leu Gly Trp Leu Lys Lys His Ala Tyr Cys Ser 370 375 380 Asn Leu Ser Phe Arg Leu Tyr Asp Gln Trp Arg Ala Trp Met Gln Lys 385 390 395 400 Ser His Lys Thr Arg Asn Gln Val Leu Pro Ala Lys Leu

- (2) INFORMATION FOR SEQ ID NO:14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1549 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..1278
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

GGCACGAGCT TCGCTGTCCG CGCCCAGTGA CGCGCGTGCG GACCCGAGCC CCAATCTGCA

CCCA ATG CCC GCG GGT CGC CCG GGC CCC GTC GCC CAA TCC GCG CGG CGG CCG Met Pro Ala Gly Arg Pro Gly Pro Val Ala Gln Ser Ala Arg Arg Pro CCG CGG CCG CTG TCC CTG TGG TCG CCT CTG TTG CTC TGT GTC CTC Pro Arg Pro Leu Ser Ser Leu Trp Ser Pro Leu Leu Leu Cys Val Leu GGG GTG CCT CGG GGC GGA TCG GGA GCC CAC ACA GCT GTA ATC AGC CCC Gly Val Pro Arg Gly Gly Ser Gly Ala His Thr Ala Val Ile Ser Pro 35 144 CAG GAC CCC ACC CTT CTC ATC GGC TCC TCC CTG CAA GCT ACC TGC TCT Gln Asp Pro Thr Leu Leu Ile Gly Ser Ser Leu Gln Ala Thr Cys Ser 192 ATA CAT GGA GAC ACA CCT GGG GCC ACC GCT GAG GGG CTC TAC TGG ACC Ile His Gly Asp Thr Pro Gly Ala Thr Ala Glu Gly Leu Tyr Trp Thr 65 70 75 80 240 CTC AAT GGT CGC CGC CTG CCC TCT GAG CTG TCC CGC CTC CTT AAC ACC Leu Asn Gly Arg Leu Pro Ser Glu Leu Ser Arg Leu Leu Asn Thr 95 288 TCC ACC CTG GCC CTG GCC CTG GCT AAC CTT AAT GGG TCC AGG CAG CAG Ser Thr Leu Ala Leu Ala Leu Ala Asn Leu Asn Gly Ser Arg Gln Gln 100 105 110 336 TCA GGA GAC AAT CTG GTG TGT CAC GCC CGA GAC GGC AGC ATT CTG GCT Ser Gly Asp Asn Leu Val Cys His Ala Arg Asp Gly Ser Ile Leu Ala 384 GGC TCC TGC CTC TAT GTT GGC TTG CCC CCT GAG AAG CCC TTT AAC ATC Gly Ser Cys Leu Tyr Val Gly Leu Pro Pro Glu Lys Pro Phe Asn Ile 130 432 AGC TGC TGG TCC CGG AAC ATG AAG GAT CTC ACG TGC CGC TGG ACA CCG 480 Ser Cys Trp Ser Arg Asn Met Lys Asp Leu Thr Cys Arg Trp Thr Pro GGT GCA CAC GGG GAG ACA TTC TTA CAT ACC AAC TAC TCC CTC AAG TAC Gly Ala His Gly Glu Thr Phe Leu His Thr Asn Tyr Ser Leu Lys Tyr 528 AAG CTG AGG TGG TAC GGT CAG GAT AAC ACA TGT GAG GAG TAC CAC ACT Lys Leu Arg Trp Tyr Gly Gln Asp Asn Thr Cys Glu Glu Tyr His Thr 180 576 GTG GGC CCT CAC TCA TGC CAT ATC CCC AAG GAC CTG GCC CTC TTC ACT Val Gly Pro His Ser Cys His Ile Pro Lys Asp Leu Ala Leu Phe Thr 195 624 CCC TAT GAG ATC TGG GTG GAA GCC ACC AAT CGC CTA GGC TCA GCA AGA
Pro Tyr Glu Ile Trp Val Glu Ala Thr Asn Arg Leu Gly Ser Ala Arg 672 TCT GAT GTC CTC ACA CTG GAT GTC CTG GAC GTG GTG ACC ACG GAC CCC Ser Asp Val Leu Thr Leu Asp Val Leu Asp Val Val Thr Thr Asp Pro 720 CCA CCC GAC GTG CAC GTG AGC CGC GTT GGG GGC CTG GAG GAC CAG CTG Pro Pro Asp Val His Val Ser Arg Val Gly Gly Leu Glu Asp Gln Leu 245 768 AGT GTG CGC TGG GTC TCA CCA CCA GCT CTC AAG GAT TTC CTC TTC CAA Ser Val Arg Trp Val ser Pro Pro Ala Leu Lys Asp Phe Leu Phe Gln 260 265 270 816 GCC AAG TAC CAG ATC CGC TAC CGC GTG GAG GAC AGC GTG GAC TGG AAG Ala Lys Tyr Gln Ile Arg Tyr Arg Val Glu Asp Ser Val Asp Trp Lys 275 280 280 864

-74 -

-1

- 75 -

GTG Val	GTG Val 290	gat Asp	GAC Asp	GTC Val	AGC Ser	AAC Asn 295	CAG G1n	ACC Thr	TCC Ser	Cys Cys	CGT Arg 300	CTC Leu	GCG Ala	GGC	CTG Leu	9	12
AAG Lys 305	CCC Pro	ely ecc	ACC Thr	GTT Val	TAC Tyr 310	TTC Phe	GTC Val	CAA Gln	otg Val	CGT Arg 315	Tot Cys	AAC Asn	CCA Pro	TTC Phe	GGG Gly 320	9	60
ATC Ile	TAT Tyr	GGG Gly	TCG Ser	AAA Lys 325	AAG Lys	GCG Ala	GGA Gly	ATC Ile	TGG Trp 330	AGC Ser	GAG Glu	TGG Trp	AGC Ser	CAC His 335	CCC Pro	10	300
ACC Thr	GCT Ala	GCC Ala	TCC Ser 340	ACC Thr	CCT Pro	CGA Arg	AGT Ser	GAG Glu 345	Arg	CCG Pro	Gly	CCG Pro	GGC Gly 350	GIY	gly GGG	10)56
GTG Val	TGC Cys	GAG Glu 355	CCG Pro	CGG	Gly	GGC	GAG Glu 360	Pro Pro	AGC Ser	TCG Ser	Gly	CCG Pro 365	GTG Val	CGG	CGC	11	L04
GAG Glu	CTC Leu 370	AAG Lys	CAG Gln	TTC Phe	CTC Leu	GGC Gly 375	TGG TYP	CTC	AAG Lys	AAG Lys	CAC His 380	GCA Ala	TAC Tyr	CÀa ICC	TCG Ser	11	152
AAC Asn 385	CTT Leu	AGT Ser	TTC Phe	CGC	CTG Leu 390	TAC Tyr	GAC qa A	CAG Gln	TGG Trp	CGT Arg 395	GCT Ala	TGG Trp	ATG Met	CAG Gln	AAG Lys 400	12	200
TCA Ser	CAC His	aag Lys	ACC Thr	CGA Arg 405	AAC Asn	CAG Gln	gac Asp	GAG Glu	GGG Gly 410	ATC Ile	CTG Leu	CCT Pro	TCG Ser	GGC Gly 415	aga Arg	12	248
CGG Arg	GGT Gly	GCG	GCG Ala 420	AGA Arg	GGT Gly	CCT Pro	GCC Ala	GGT Gly 425	TAAL	ACTC:	raa (GAT.	AGGC	CA		12	295
TCC:	CCT	GCT (GGT	CAGA	CC TO	GAG	GCTÇ!	A CC	rgaa:	rtgg	AGC	CCT	ctg :	TACC	ATCTG	G 13	355
GCAI	ACAA	AGA A	AACC:	PACC	AG AG	GCT	GGGG	ac	AATG	AGCT	ccci	ACAA(CCA (CAGC	rttgg	T 14	115
CCA	CATG	ATG (CACTE	CACT	rg G	ATAT!	ACCC	AG:	rgre	GGTA	AGG	rtgg	GGT 2	ATTG	CAGGG	C 14	175
CTC	CAA	CAA :	rcrc:	TTA	AA T	AAAT	AAAG	G AG	rtor:	rcag	GTA	AAAA	AAA A	AAAA	AAAA	A 15	535
AAA	LAAA	AAA J	AAAA													15	549

(2) INFORMATION FOR SEQ ID NO:15:

- (1) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 425 amino acids

 (B) TYPE: amino acid

 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Met Pro Ala Gly Arg Pro Gly Pro Val Ala Gln Ser Ala Arg Arg Pro 1 10 15

Pro Arg Pro Leu Ser Ser Leu Trp Ser Pro Leu Leu Leu Cys Val Leu 20 25 30

Gly Val Pro Arg Gly Gly Ser Gly Ala His Thr Ala Val Ile Ser Pro 35

Gln Asp Pro Thr Leu Leu Ile Gly Ser Ser Leu Gln Ala Thr Cys Ser 50 60

Ile His Gly Asp Thr Pro Gly Ala Thr Ala Glu Gly Leu Tyr Trp Thr 65 70 75 80

Leu Asn Gly Arg Arg Leu Pro Ser Glu Leu Ser Arg Leu Leu Asn Thr Ser Thr Leu Ala Leu Ala Leu Ala Asn Leu Asn Gly Ser Arg Gln Gln Ser Gly Asp Asn Leu Val Cys His Ala Arg Asp Gly Ser Ile Leu Ala 115 120 125 Gly Ser Cys Leu Tyr Val Gly Leu Pro Pro Glu Lys Pro Phe Asn Ile 130 140 Ser Cys Trp Ser Arg Asn Met Lys Asp Leu Thr Cys Arg Trp Thr Pro 145 150 155 160 Gly Ala His Gly Glu Thr Phe Leu His Thr Asn Tyr Ser Leu Lys Tyr 165 170 175 Lys Leu Arg Trp Tyr Gly Gln Asp Asn Thr Cys Glu Glu Tyr His Thr 180 185 190 Val Gly Pro His Ser Cys His Ile Pro Lys Asp Leu Ala Leu Phe Thr 195 200 205 Pro Tyr Glu Ile Trp Val Glu Ala Thr Asn Arg Leu Gly Ser Ala Arg 210 215 220 Ser Asp Val Leu Thr Leu Asp Val Leu Asp Val Val Thr Thr Asp Pro 225 230 235 Pro Pro Asp Val His Val Ser Arg Val Gly Gly Leu Glu Asp Gln Leu 245 250 255 Ser Val Arg Trp Val Ser Pro Pro Ala Leu Lys Asp Phe Leu Phe Gln 260 265 270 Ala Lys Tyr Gln Ile Arg Tyr Arg Val Glu Asp Ser Val Asp Trp Lys 275 280 Val Val Asp Asp Val Ser Asn Gln Thr Ser Cys Arg Leu Ala Gly Leu 290 295 300 Lys Pro Gly Thr Val Tyr Phe Val Gln Val Arg Cys Asn Pro Phe Gly 305 310 315 320 Ile Tyr Gly Ser Lys Lys Ala Gly Ile Trp Ser Glu Trp Ser His Pro 325 330 335 Thr Ala Ala Ser Thr Pro Arg Ser Glu Arg Pro Gly Pro Gly Gly Gly 340 345 Val Cys Glu Pro Arg Gly Gly Glu Pro Ser Ser Gly Pro Val Arg Arg 355 360 365 Glu Leu Lys Gln Phe Leu Gly Trp Leu Lys Lys His Ala Tyr Cys Ser 370 375 380 Asn Leu Ser Phe Arg Leu Tyr Asp Gln Trp Arg Ala Trp Met Gln Lys 385 390 395 400 Ser His Lys Thr Arg Asn Gln Asp Glu Gly Ile Leu Pro Ser Gly Arg Arg Gly Ala Ala Arg Gly Pro Ala Gly

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 938 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

- 77 -

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 1..468

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

GGC Gly 1	ACC Thr	GTT Val	TAC Tyr	TTC Phe 5	GTC Val	CAA Gln	GTG Val	CGT Arg	TGT Cys 10	AAC Asn	CCA Pro	TTC Phe	GGG Gly	ATC Ile 15	TAT Tyr	48
Gly GGG	TCG Ser	AAA Lys	AAG Lys 20	GCG Ala	ggy Ggy	ATC Ile	TGG Trp	AGC Ser 25	GAG Glu	TGG Trp	AGC Ser	CAC His	CCC Pro 30	ACC Thr	GCT Ala	96
GCC Ala	TCC Ser	ACC Thr 35	CCT Pro	CGA Arg	AGT Ser	GAG Glu	CGC Arg 40	CCG Pro	Gly	CCG Pro	Gly	GGC Gly 45	GGG	GTG Val	TGC Cys	144
GAG Glu	CCG Pro 50	CGG Arg	Gly	GGC Gly	GAG Glu	CCC Pro 55	AGC Ser	TCG Ser	GGC Gly	CCG Pro	GTG Val 60	CGG	CGC Arg	GAG Glu	CTC	192
AAG Lys 65	CAG Gln	TTC Phe	CTC Leu	GGC	TGG Trp 70	CTC Leu	AAG Lys	aag Lys	CAC His	GCA Ala 75	TAC Tyr	TGC TGC	TCG Ser	AAC Asn	CTT Leu 80	240
											ATG Met					288
											GCT Ala					336
aaa Lys	GGA Gly	GCA Ala 115	GAG Glu	GAA Glu	GAG Glu	AGA Arg	GAC Asp 120	CCG Pro	GGT Gly	GAG Glu	CAG Gln	CCT Pro 125	CCA Pro	CAA Gln	CAC His	384
											TCC Ser 140					432
						GTA Val					TGAG	TGGG	SGC C	TACA	AGCAGT	485
CTAC	atga	AGG (CCTT	TCCC	C TO	CTTC	CGTC	TTC	CTCA	LAAG	GGAT	CTCI	TA C	TGCI	CATTT	545
CACC	CACT	rgc 3	L AAG?	/GCC	C AC	GTTI	TACI	GCA	TCAT	CAA	GTTG	CTGA	AG G	GTCC	AGGCT	605
TAAT	GTG	CC 1	CTT	TCIC	C CC	TCAC	GTCC	TGC	CGGC	AAT	ACTO	TAAC	GA 1	AGGC	CATCC	665
TCCI	GCTC	GG 1	CAG	CCTC	G AC	GCTC	CACCI	GAA	TTGG	AGC	CCCI	CTGI	'AC C	TATO	TGGGC	725
AACA	AAGA	AAA C	CTAC	CATO	A GO	CTGC	GGC?	CAA	TGAG	CTC	CCAC	AACC	AC A	GCTI	TGGTC	785
CACA	TGAT	rgg 1	CAC	CTT	G AT	ATAC	CCCA	GTC	TGGG	AAT	GGTI	GGGG	TA T	TGC	reeecc	845
TCCC	AACA	AT C	TCT	LAAT	A TA	LATA	AGGA	GT1	GTTC	'AGG	KAAT	AAAA	AA A	LAAA	AAAAA	. 905
AAAA	AAAA	AA.	'AAA'	LAAA	A A	LAAA	LAAA	AAA A	L							938

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 155 amino acids
(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Gly Thr Val Tyr Phe Val Gln Val Arg Cys Asn Pro Phe Gly Ile Tyr
1 10 15

- 78 -

Gly Ser Lys Lys Ala Gly Ile Trp Ser Glu Trp Ser His Pro Thr Ala 20 25 30

Ala Ser Thr Pro Arg Ser Glu Arg Pro Gly Pro Gly Gly Gly Val Cys
35 40 45

Glu Pro Arg Gly Gly Glu Pro Ser Ser Gly Pro Val Arg Arg Glu Leu 50 60

Lys Gln Phe Leu Gly Trp Leu Lys Lys His Ala Tyr Cys Ser Asn Leu 65 70 80

Ser Phe Arg Leu Tyr Asp Gln Trp Arg Ala Trp Met Gln Lys Ser His 85 90 95

Lys Thr Arg Asn Gln Val Gly Lys Leu Gly Glu Ala Cys Val Gly Gly 100 105 110

Lys Gly Ala Glu Glu Glu Arg Asp Pro Gly Glu Gln Pro Pro Gln His 115 120 125

Arg Thr Leu Leu Ser Lys His Arg Thr Arg Gly Ser Cys Pro Arg Ala 130 135 140

Asp Gly Val Arg Arg Glu Val Arg Gly Ser Gly 145 150 150

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
 - (\bar{A}) LENGTH: 834 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..834

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

CCC ACC CTT CTC ATC GG	C TCC TCC CTG CAA GCT ACC	C TGC TCT ATA CAT	98
Pro Thr Leu Leu Ile Gl	y Ser Ser Leu Gln Ala Thi	r Cys Ser Ile His	
51 55	60	65	

GGA Gly	gac Asp	ACA Thr	CCT Pro	GGG Gly	GCC Ala	ACC Thr	GCT Ala	GAG Glu 75	GGG Gly	CTC Leu	TAC Tyr	TGG Trp	ACC Thr 80	CTC Leu	AAT Asn		146
------------	------------	------------	------------	------------	------------	------------	------------	------------------	------------	------------	------------	------------	------------------	------------	------------	--	-----

GGT Gly	CGC Arg	CGC	CTG Leu	CCC Pro	TCT Ser	GAG Glu	CTG	TCC Ser	CGC Arg	CTC	CTT Leu	AAC Asn	ACC Thr	TCC Ser	ACC Thr	19	4
		85					90					95					

CTG GCC CTG GCT AAC CTT AAT GGG TCC AGG CAG CAG TCA GGA
Leu Ala Leu Ala Leu Ala Asn Leu Asn Gly Ser Arg Gln Gln Ser Gly
100
105
110

GAC AAT CTG GTG TGT CAC GCC CGA GAC GGC AGC ATT CTG GCT GGC TCC 290

Asp 115		Leu	Val	Суз	His 120	Ala	Arg	Asp	Gly	Ser 125	Ile	Leu	Ala	Gly	Ser 130	
						CCC				Pro					Суз	338
						GAT Asp									GCA Ala	386
						CAT His										434
						AAC Asn 225										482
						CCC Pro										530
						ACC Thr										578
GTC Val	ren	ACA Thr	CTG Leu 270	GAT Asp	GTC Val	CTG Leu	gac Asp	GTG Val 275	GTG Val	ACC Thr	ACG Thr	GAC Asp	CCC Pro 280	CCA Pro	CCC Pro	626
						GTT Val										674
						GCT Ala 305										722
						GTG Val										770
GAT Asp	GAC Asp	GTC Val	AGC Ser	AAC Asn 335	CAG Gln	ACC Thr	TCC Ser	TGC Cys	CGT Arg 340	re <i>n</i> CLC	GCG Ala	GGC	ren Cle	AAG Lys 345	CCC Pro	818
GC	ACC Thr	Val	TAC Tyr 350	TTC Phe	GTC Val	CAA Gln	Val	CGT Arg 355	TGT Cys	AAC Asn	CCA Pro	Phe	GGG Gly 360	ATC Ile	TAT Tyr	866
		AAA Lys 365												*		894

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 278 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Pro Thr Leu Leu Ile Gly Ser Ser Leu Gln Ala Thr Cys Ser Ile His 51 60 65

Gly Asp Thr Pro Gly Ala Thr Ala Glu Gly Leu Tyr Trp Thr Leu Asm 70 75 30

Gly	Arg	Arg 85	Leu	Pro	Ser	Glu	Leu 90	Ser	Arg	Leu	Гел	Aen 95	Thr	Ser	Thr
Leu	Ala 100	Leu	Ala	Leu	Ala	Asn 105	Гел	Asn	Gly	Ser	Arg 110	Gln	Gln	Ser	Gly
Asp 115	Asn	Leu	Val	Сла	His 120	λla	Arg	Asp	Gly	Ser 125	Ile	Leu	Ala	Gly	Ser 130
Cys	Leu	Tyr	Val	Gly 135	Leu	Pro	Pro	Glu	Lys 140	Pro	Phe	Asn	Ile	Ser 145	Суs
Trp	Ser	Arg	Asn 150	Met	Lys	Asp	Leu	Thr 155	Cys	Arg	Trp	Thr	Pro 200	Gly	Ala
His	Gly	Glu 205	Thr	Phe	Leu	His	Thr 210	Asn	Tyr	Ser	Leu	Lys 215	Tyr	Lys	Leu
Arg	Trp 220	Tyr	Gly	Gln	Авр	Asn 225	Thr	Cys	Glu	Glu	Tyr 230	His	Thr	Val	Gly
Pro 235	His	Ser	Cys	His	Ile 240	Pro	Lys	Asp	Гөл	Ala 245	Leu	Phe	Thr	Pro	Tyr 250
Glu	Ile	Trp	Val	Glu 255	Ala	Thr	Asn	Arg	Leu 260	Gly	Ser	Ala	Arg	Ser 265	Asp
Val	Leu	Thr	Leu 270	qeA	Val	Leu	Asp	Val 275	Val	Thr	Thr	Asp	Pro 280	Pro	Pro
Asp	Val	His 285	Val	Ser	Arg	Val	Gly 290	Gly	Leu	Glu	Asp	Gln 295	Leu	Ser	Val
Arg	Trp 300	Val	Ser	Pro	Pro	Ala 305	Leu	Lys	Asp	Phe	Leu 310	Phe	Gln	λla	Lys
Tyr 315	Gln	Ile	Arg	Tyr	Arg 320	Val	Glu	Asp	Ser	Val 325	Asp	Trp	Lys	Val	Val 330
qsA	qaA	Val	Ser	Asn 335	Gln	Thr	Ser	Сув	Arg 340	Leu	Ala	Gly	Leu	Lys 345	Pro
Gly	Thr	Val	Tyr 350	Phe	Val	Gln	Val	Arg 355	Cys	Asn	Pro	Phe	Gly 360	Ile	Tyr
Gly	Ser	Lys 365	Lys	Ala	Gly										

- (2) INFORMATION FOR SEQ ID NO:20:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 143 base pairs (B) TYPE: nucleic acids (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

GGCATGAAGG CTTAGGGTGG GGATCGGTAG GACCCATGCA CCCAGAGAAA GGGACTGGTG 60 104 GCAACTTTCA AACTCTCTGG GGAAGGAAGA AGGGCTGAAA GAGG ATG AAC GGG CTC AGA CAC AGC TGT AAT CAG CCC CCA GGA Met Asn Gly Leu Arg His Ser Cys Asn Gln Pro Pro Gly $10\,$ 143

- (2) INFORMATION FOR SEQ ID NO:21:
 - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 amino acids

- (B) TYPE: amino acids (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Met Asn Gly Leu Arg His Ser Cys Asn Gln Pro Pro Gly 5

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1930 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

			-			
GGCACGAGCT	TCGCTGTCCG	CGCCCAGTGA	CGCGCGTGCG	GACCCGAGCC	CCAATCTGCA	60
CCCCGCAGAC	TCGCCCCCCC	CCCATACCGG	COTTGCAGTC	ACCGCCCGTT	GCGCGCCACC	120
CCCAATGCCC	CCCCCTCCCC	CGGGCCCCGT	CGCCCAATCC	ececeecec	CGCCGCGGCC	180
GCTGTCCTCG	CTGTGGTCGC	CTCTGTTGCT	CTGTGTCCTC	GGGGTGCCTC	GGGGCGGATC	240
GGGAGCCCAC	ACAGCTGTAA	TCAGCCCCCA	GGACCCCACC	CTTCTCATCG	GCTCCTCCCT	300
GCAAGCTACC	TGCTCTATAC	ATGGAGACAC	ACCTGGGGCC	ACCGCTGAGG	GGCTCTACTG	360
GACCCTCAAT	GGTCGCCGCC	TGCCCTCTGA	GCTGTCCCGC	CTCCTTAACA	CCTCCACCCT	420
GGCCCTGGCC	CTGGCTAACC	TTAATGGGTC	CAGGCAGCAG	TCAGGAGACA	ATCTGGTGTG	480
TCACGCCCGA	GACGGCAGCA	TTCTGGCTGG	CTCCTGCCTC	TATGTTGGCT	TGCCCCCTGA	540
GAAGCCCTTT	AACATCAGCT	GCTGGTCCCG	GAACATGAAG	GATCTCACGT	GCCGCTGGAC	600
ACCGGGTGCA	CACGGGGAGA	CATTCTTACA	TACCAACTAC	TCCCTCAAGT	ACAAGCTGAG	660
GTGGTACGGT	CAGGATAACA	CATGTGAGGA	GTACCACACT	GTGGGCCCTC	ACTCATGCCA	720
TATCCCCAAG	GACCTGGCCC	TCTTCACTCC	CTATGAGATC	TGGGTGGAAG	CCACCAATCG	780
CCTAGGCTCA	GCAAGATCTG	ATGTCCTCAC	ACTGGATGTC	CTGGACGTGG	TGACCACGGA	840
CCCCCACCC	GACGTGCACG	TGAGCCGCGT	TGGGGGCCTG	GAGGACCAGC	TGAGTGTGCG	900
CTGGGTCTCA	CCACCAGCTC	TCAAGGATTT	CCTCTTCCAA	GCCAAGTACC	AGATCCGCTA	960
CCGCGTGGAG	GACAGCGTGG	actggaaggt	GGTGGATGAC	GTCAGCAACC	AGACCTCCTG	1020
CCGTCTCGCG	GGCCTGAAGC	CCGGCACCGT	TTACTTCGTC	CAAGTGCGTT	GTAACCCATT	1080
CGGGATCTAT	GCGTCGAAAA	AGGCGGGAAT	CTGGAGCGAG	TGGAGCCACC	CCACCGCTGC	1140
CTCCACCCCT	CGAAGTGAGC	GCCCGGGCCC	GGGCGGCGGG	GTGTGCGAGC	ceceeecee	1200
CGAGCCCAGC	TCGGGCCCGG	TGCGGCGCGA	GCTCAAGCAG	TTCCTCGGCT	GGCTCAAGAA	1260
GCACGCATAC	TGCTCGAACC	TTAGTTTCCG	CCTGTACGAC	CAGTGGCGTG	CTTGGATGCA	1320
GAAGTCACAC	AAGACCCGAA	accaggtagg	AAAGTTGGGG	GAGGCTTGCG	TGGGGGGTAA	1380
AGGAGCAGAG	GAAGAGAGAG	ACCCGGGTGA	GCAGCCTCCA	CAACACCGCA	CTCTTCTTTC	1440

CAAGCACAGG	ACGAGGGGAT	CCTGCCCTCG	GGCAGACGGG	GTGCGGCGAG	AGGTAAGGGG	1500
GTCTGGGTGA	GTGGGGCCTA	CAGCAGTCTA	GATGAGGCCC	TTTCCCCTCC	TTCGGTGTTG	1560
CTCAAAGGGA	TCTCTTAGTG	CTCATTTCAC	CCACTGCAAA	GAGCCCCAGG	TTTTACTGCA	1620
TCATCAAGTT	GCTGAAGGGT	CCAGGCTTAA	TGTGGCCTCT	TTTCTGCCCT	CAGGTCCTGC	1680
CGGCTAAACT	CTAAGGATAG	GCCATCCTCC	TGCTGGGTCA	GACCTGGAGG	CTCACCTGAA	1740
TTGGAGCCCC	TCTGTACCTA	TCTGGGCAAC	aaagaaacct	ACCATGAGGC	TGGGGCACAA	1800
TGAGCTCCCA	CAACCACAGC	TTTGGTCCAC	ATGATGGTCA	CACTTGGATA	TACCCCAGTG	1860
TGGGTAAGGT	TGGGGTATTG	CAGGGCCTCC	CAACAATCTC	TTTAAATAAA	TAAAGGAGTT	1920
GTTCAGGTAA						1930

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 560 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

TCCAGGCAGC	GGTCGGGGGA	CAACCTCGTG	TGCCACGCCC	GTGACGGCAG	CATCCTGGCT	60
GGCTCCTGCC	TCTATGTTGG	CCTGCCCCCA	GAGAAACCCG	TCAACATCAG	CTGCTGGTCC	120
AAGAACATGA	AGGACTTGAC	CTGCCGCTGG	ACGCCAGGGG	CCCACGGGGA	GACCTTCCTC	180
CACACCAACT	ACTCCCTCAA	GTACAAGCTT	AGGTGGTATG	GCCAGGACAA	CACATGTGAG	240
GAGTACCACA	CAGTGGGGCC	CCACTCCTGC	CACATCCCCA	AGGACCTGGC	TCTCTTTACG	300
CCCTATGAGA	TCTGGGTGGA	GGCCACCAAC	CGCCTGGGCT	CTGCCCGCTC	CGATGTACTC	360
ACGCTGGATA	TCCTGGATGT	GGTGACCACG	GACCCCCCCC	CCGACGTGCA	CGTGAGCCGC	420
GTCGGGGGCC	TGGAGGACCA	GCTGAGCGTG	CGCTGGGTGT	CGCCACCCGC	CCTCAAGGAT	480
TTCCTTTTTC	AAGCCAAATA	CCAGATCCGC	TACCGAGTGG	AGGACAGTGT	GGAATGGAAG	540
GTGGTGGACG	ATGTGAGCAA			•		560

(2) INFORMATION FOR SEQ ID NO:24:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1391 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (ix) FEATURE:

 - (A) NAME/KEY: CDS
 (B) LOCATION: 1..1053

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

	(xi)	SEC	QUENC	E DE	ESCRI	PTIC	N: 2	EQ J	(D NC):24;	!					
ACC Thr 1	CTC Leu	aac Asn	GGG Gly	CGC Arg 5	cgc Arg	CTG Leu	CCC Pro	CCT Pro	GAG Glu 10	CTC Leu	TCC Ser	CGT Arg	GTA Val	CTC Leu 15	AAC Asn	48
GCC Ala	TCC Ser	ACC Thr	TTG Leu 20	GCT Ala	CTG Leu	GCC Ala	CTG Leu	GCC Ala 25	AAC Asn	CTC Leu	AAT Asn	GGG Gly	TCC Ser 30	AGG Arg	CAG Gln	96
CGG Arg	TCG Ser	GGG Gly 35	gac Asp	AAC Asn	CTC Leu	gtg Val	TGC Cys 40	CAC His	GCC Ala	CGT Arg	GAC Asp	GGC Gly 45	AGC Ser	ATC Ile	CTG Leu	144
GCT Ala	GGC Gly 50	TCC Ser	TGC Cys	CTC Leu	TAT Tyr	GTT Val 55	GGC	CTG Leu	CCC Pro	CCA Pro	GAG Glu 60	AAA Lys	CCC	GTC Val	AAC Asn	192
ATC Ile 65	AGC Ser	TGC Cys	TGG Trp	TCC Ser	AAG Lys 70	AAC Asn	ATG Met	Г ^{Лв} УУС	GAC Asp	TTG Leu 75	ACC Thr	TGC Cyb	CGC Arg	TGG Trp	ACG Thr 80	240
CCA Pro	ejā eee	GCC Ala	CAC His	GGG Gly 85	GAG Glu	ACC Thr	TTC Phe	CTC Leu	CAC His 90	ACC Thr	AAC Asn	TAC TYT	TCC Ser	CTC Leu 95	AAG Lys	288
TAC Tyr	AAG Lys	CTT Leu	AGG Arg 100	TGG Trp	TAT Tyr	GGC	CAG Gln	GAC Asp 105	AAC Asn	ACA Thr	TGT Cys	GAG Glu	GAG Glu 110	TAC Tyr	CAC His	336
ACA Thr	GTG Val	GGG Gly 115	CCC	CAC His	TCC Ser	TGC Cys	CAC His 120	ATC Ile	CCC Pro	AAG Lys	GAC Asp	CTG Leu 125	GCT Ala	CTC Leu	TTT Phe	384
ACG Thr	CCC Pro 130	TAT Tyr	GAG Glu	ATC Ile	TGG Trp	GTG Val 135	GAG Glu	GCC Ala	ACC Thr	AAC Asn	CGC Arg 140	CTG Leu	GGC Gly	TCT Ser	GCC Ala	432
CGC Arg 145	TCC Ser	GAT Asp	GTA Val	CTC Leu	ACG Thr 150	CTG Leu	GAT Asp	ATC Ile	CTG Leu	GAT Asp 155	GTG Val	GTG Val	ACC Thr	ACG Thr	GAC Asp 160	480
CCC Pro	CCG Pro	CCC Pro	GAC Asp	GTG Val 165	CAC His	GTG Val	AGC Ser	CGC	GTC Val 170	GGG Gly	GGC Gly	CTG Leu	GAG Glu	GAC Asp 175	CAG Gln	528
CTG Leu	AGC Ser	GTG Val	CGC Arg 180	TGG Trp	GTG Val	TCG Ser	CCA Pro	CCC Pro 185	GCC Ala	CTC	AAG Lys	GAT Asp	TTC Phe 190	CTC Leu	TTT Phe	576
CAA Gln	GCC Ala	AAA Lys 195	Tyr	CAG Gln	ATC Ile	Arg	TAC Tyr 200	CGA Arg	GTG Val	GAG Glu	GAC Asp	AGT Ser 205	GTG Val	gac Aep	TGG Trp	624
AAG Lys	GTG Val 210	GTG Val	GAC Asp	GAT Asp	GTG Val	AGC Ser 215	AAC Asn	CAG Gln	ACC Thr	TCC Ser	TGC Cys 220	CGC Arg	CTG Leu	GCC Ala	GGC Gly	672
CTG Leu 225	AAA Lys	CCC	ejå eec	ACC Thr	GTG Val 230	TAC Tyr	TTC Phe	GTG Val	CAA Gln	GTG Val 235	CGC Arg	TGC Cys	AAC Asn	CCC Pro	TTT Phe 240	720
GGC	ATC Ile	TAT	GGC Gly	TCC Ser 245	AAG Lys	aaa Lys	GCC Ala	GGG	ATC Ile 250	TGG Trp	AGT Ser	GAG Glu	TGG Trp	AGC Ser 255	CAC His	768
CCC Pro	ACA Thr	GCC Ala	GCC Ala 260	Ser	ACT	CCC	CGC	AGT Ser 265	Glu	CGC A rg	CCG Pro	GGC Gly	CCG Pro 270	GGC	GGC Gly	816
GGG	GCG Ala	TGC Cys 275	Glu	CCG Pro	CGG Arg	ejà eec	GGA Gly 280	Glu	CCG	AGC Ser	TCG Ser	GGG Gly 285	CCG Pro	GTG Val	CGG Arg	864

CGC Arg	GAG Glu 290	CTC Leu	AAG Lys	CAG Gln	TTC Phe	CTG Leu 295	GIY	TGG Trp	CTC Leu	AAG Lys	AAG Lys 300	CAC His	GCG Ala	TAC Tyr	TGC Cye	912
TCC Ser 305	AAC Asn	CTC Leu	AGC Ser	TTC Phe	CGC Arg 310	CTC Leu	TAC Tyr	GAC Asp	CAG Gln	TGG Trp 315	CGA Arg	GCC Ala	TGG Trp	ATG Met	CAG Gln 320	960
EY4 DAA	TCG Ser	CAC His	AAG Lys	ACC Thr 325	CGC Arg	AAC Asn	CAG Gln	CAC His	AGG Arg 330	ACG Thr	AGG Arg	GGA Gly	TCC Ser	TGC Cys 335	CCT Pro	1008
CGG Arg	GCA Ala	GAC Asp	GGG Gly 340	GCA Ala	CGG Arg	CGA Arg	GAG Glu	GTC Val 345	CTG Leu	CCA Pro	GAT Asp	AAG Lys	CTG Leu 350	TAGO	GGCTCA	1060
GGCC	CACCO	ere (CCIG	CAC	T GO	GAGA	GCAC	G AGO	CCG!	AACC	CAA	ACTGO	GGG (CCACC	CTCTGT	1120
ACC	TCAC	TT (CAGG	CAC	T GA	AGCC	CTC	A GC2	AGGAC	CTG	GGG:	rggc	cc :	rgago	CTCCAA	1180
CGGC	CATA	AAC I	AGCT	CTGA	T C	CAC	AOTE	GCC	CACCI	rttg	GGT	CAC	ccc z	AGTGG	GTGTG	1240
TGT	TGTO	TG '	TGAG	GTT	G T	rgag:	rtgc	TAC	AACO	CCT	GCCZ	AGGG	OTG (GGG 1	rgagaa	1300
GGGG	SAGT	CAT '	TACTO	ccci	AT TA	ACCTA	AGGGG	000	TCC	AAAA	GAG	rcct:	rrr I	AAATI	laatga	1360
GCT	LTTT?	AGG '	TGCA	AAAA	AA AA	LAAAA	LAAA.	A A								1391

(2) INFORMATION FOR SEQ ID NO:25:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 350 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

Thr Leu Asn Gly Arg Arg Leu Pro Pro Glu Leu Ser Arg Val Leu Asn 1 5 10 15 Ala Ser Thr Leu Ala Leu Ala Leu Ala Asn Leu Asn Gly Ser Arg Gln 20 25 30 Arg Ser Gly Asp Asn Leu Val Cys His Ala Arg Asp Gly Ser Ile Leu 35 40 45 Ala Gly Ser Cys Leu Tyr Val Gly Leu Pro Pro Glu Lys Pro Val Asn Ile Ser Cys Trp Ser Lys Asn Met Lys Asp Leu Thr Cys Arg Trp Thr 65 70 75 80 Pro Gly Ala His Gly Glu Thr Phe Leu His Thr Asn Tyr Ser Leu Lys 85 90 95 Tyr Lys Leu Arg Trp Tyr Gly Gln Asp Asn Thr Cys Glu Glu Tyr His 100 $$105\,$ Thr Val Gly Pro His Ser Cys His Ile Pro Lys Asp Leu Ala Leu Phe Thr Pro Tyr Glu Ile Trp Val Glu Ala Thr Asn Arg Leu Gly Ser Ala 130 135 140 Arg Ser Asp Val Leu Thr Leu Asp Ile Leu Asp Val Val Thr Thr Asp 145 150 150

Pro Pro Pro Asp Val His Val Ser Arg Val Gly Gly Leu Glu Asp Gln 165 170 175

Leu Ser Val Arg Trp Val Ser Pro Pro Ala Leu Lys Asp Phe Leu Phe

			180					185					190		
Gln	Ala	Lys 195	Tyr	Gln	Ile	Arg	Tyr 200	Arg	Val	Glu	qzA	ser 205	Val	Asp	Trp
Lys	Val 210	Val	Asp	Asp	Val	Ser 215	Asn	Gln	Thr	Ser	220 CAB	Arg	Leu	Ala	Gly
Leu 225	Lув	Pro	Gly	Thr	Val 230	Tyr	Phe	Val	Gln	Val 235	Arg	Сув	Asn	Pro	Phe 240
Gly	Ile	Tyr	Gly	Ser 245	Lys	Lys	Ala	Gly	Ile 250	Trp	Ser	Glu	Trp	Ser 255	His
Pro	Thr	Ala	Ala 260	ser	Thr	Pro	Arg	Ser 265	Glu	Arg	Pro	Gly	Pro 270	Gly	Gly
Gly	Ala	Сув 275	Glu	Pro	Arg	Gly	Gly 280	Glu	Pro	Ser	Ser	Gly 285	Pro	Val	Arg
Arg	Glu 290	Leu	Lys	Gln	Phe	Leu 295	Gly	Trp	Leu	Lys	Lys 300	His	Ala	Tyr	Суз
Ser 305	Asn	Leu	Ser	Phe	Arg 310	Leu	Tyr	Asp	Gln	Trp 315	Arg	Ala	Trp	Met	Gln 320
Lys	Ser	His	Lys	Thr 325	Arg	Asn	Gln	His	Arg 330	Thr	Arg	Gly	Ser	Сув 335	Pro
Arg	Ala	Asp	Gly 340	Ala	Arg	Arg	G1u	Val 345	Leu	Pro	Asp	Lys	Leu 350		

- (2) INFORMATION FOR SEQ ID NO:26:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 24 base pairs

 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

TCCAGGCAGC GGTCGGGGGA CAAC

24

- (2) INFORMATION FOR SEQ ID NO:27:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 24 base pairs

 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

TTGCTCACAT CGTCCACCAC CTTC

24

- (2) INFORMATION FOR SEQ ID NO:28:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 6663 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
CCCAGAACTC TTGGACGCTG AGGCAGGAGG ATTCCCAAGT TTCAAGACAG TGTGTTTCTA	60
GGTAATGAGA CCCTGTCAAG AAAAGAAAAG AAATAAAGAG ACAAGAAAAT GTTTATAGGC	120
TOTGAGACAG CTTGGTGGGT AAGGGGCACT TGCCTCCAAT CAAGATGACC TCAGCCCCAT	180
CCCTAGGAAT CCATGOTAGA AGGAGAAAGC AAACTCGCAG CTGCTGACCT CCATACATGT	240
GCTCCAATGT GCACACACA AGGGAGACAT AATCAATTAA TAGGATGTAT TTGCTTAGAT	300
TTGAGTAGGC ATTTATGACT GATGTTTTAA AATTTTTATT TGATTTTATG AAAATATACC	360
TGTTTGTATT TGGTTTGGTT TGGTTTGAGT TTTGTTTATT TGAGACAGGG CTTCTCTGTG	420
TAGTCCTGGC TGTCCTTGGA ACTCACTCTG TAGACCAGGC TGGCCTTGAA CTCAGAAATC	480
CGCCTGCTTG TGCTTCCCAA GTGCTTAGAT TAAAGGTGTG CACTGCCATT CAGCAAAATT	540
GCATACTTTA ACCCCAGTAT TTGGGAGGCA GAGGCAGACT AATGTGTGAA TTCCAGGCTA	600
GCCAAGGATA CAGAGTGAGA CCCTATTCTT ACCCTCCCCC CCCAAAACCC CAAAATGTAT	660
TTTGTGCTTG TGTATGTACA TGTGTGTTGC AGCACGTAAA TGTCCAAGGA CAACTTGTAG	720
AAGTTCTCTC CGTTCACAGT CTAAGTCCTG AATTCAAACT AAGGTCCTCA GGCTTAGCCA	780
CAGTOTTCTT TATGTACTGA GCCATTTCAC TGGCCCTGGA TTGACTGATG AATTAATTTT	840
TGAGATAAGG TCTCTTGTAG CTCTAGCTAG GCTCAAACTA TGAACTCCCA AGGTCATCTT	900
GAGCTGCTGG TACTCTTGCT TCCACCCCAA GTGGTGGAAT GATACTCAGG CAGCACTTCT	960
CTGGGGAAGG GGCTGGCCTT GGCCTTGATT TTGTTGCCTC AGCTTCAATG AGTGCTTGGG	1020
TCTCGTTGTT TCTTTTCTTT ATCTGTGAAA TGGGTGAACA CCTGTTCAAG ACTTCCTGAC	1080
TCTTGAAACA TCCAGGCAGG GTGAGGGACT TGAAGTGGGC TCATCCCATG CCTAACAAAG	1140
TOTOGTOTT GACCOCAGAC ACAGCTGTAA TCAGCCCCCA GGACCCCACC CTTCTCATCG	1200
GCTCCTCCCT GCAAGCTACC TGCTCTATAC ATGGAGACAC ACCTGGGGCC ACCGCTGAGG	1260
GGCTCTACTG GACCTTCAAT GGTCGCCGCC TGCCCTCTGA GCTGTCCCGC CTCCTTAACA	1320
CCTCCACCCT GGCCCTGGCC CTGGCTAACC TTAATGGGTC CAGGCAGCAG TCAGGAGACA	1380
ATCTGGTGTG TCACGCCCGA GACGGCAGCA TTCTGGCTGG CTCCTGCCTC TATGTTGGCT	1440
GTAAGTGGGG CCCCAGACAC TCAGAGATAG ATGGGGGTTG GCAATGACAG ATTTAGAGCC	1500
TEGETETTET ETECTEGESC AGAGCCATEG SCTCTCACTT SCATSCAGGC ATSSTCATAC	1560
CCAGCACAGG CATTGCAACT CTAGGGACAG CTGTGGCTGC ACTGTCCCCT GTGTACCCCA	1620
CAGCTTTAGA AAAGCTGTCA TGTTTTCCTT GTAGTGCCCC CTGAGAAGCC CTTTAACATC	1680
AGCTGCTGGT CCCGGAACAT GAAGGATCTC ACGTGCCGCT GGACACCGGG TGCACACGGG	1740
GAGACATTCT TACATACCAA CTACTCCCTC AAGTACAAGC TGAGGTTGGT ACCCAGCCAA	1800
GCCTTGCTGT GTGACTTCTG GCAATACTTA CCTTCTCTGA TCAAATATGT TCCTGTTTAT	1860
GAACTCAAAA GGGACTCTCG CACCTCCACA GGTGGTACGG TCAGGATAAC ACATGTGAGG	1920
AGTACCACAC TGTGGGCCCT CACTCATGCC ATATCCCCAA GGACCTGGCC CTCTTCACTC	1980
CCTATGAGAT CTGGGTGGAA GCCACCAATC GCCTAGGCTC AGCAAGATCT GATGTCCTCA	2040

CACTGGATGT	CCTGGACGTG	GGTGAGCCCC	CAGTGTCCAC	CTGTGTTCTG	CCCTAGACCT	2100
TATAGGGCGC	CTCCCCCCA	TCCCCCAGA	CTTTTTGGTT	CTTCTAGAGG	TCTTAGCCAC	2160
AGCCACGGTG	GTTGCAGGAC	AGTGGTTGTT	CATAACTTAA	TGCAAAGACT	TTCCCCCAAG	2220
ACAGTCAAGA	TTTTTCCCCT	CCCCACCCC	AACACACACA	TACACACACA	CTCTGCAGAG	2280
AACACCTGGC	CTGACCACCC	TCCCTCTCTA	CAGCCCAGGT	GTTCAGAAGG	GACTCCTAGG	2340
GGACTGAGAG	GAGGCGCCCA	GGTCTGAAGG	CGCCCCAGGA	AGCCGAGGCC	TTGAGCTGGG	2400
cccccccc	AGGGTTGGAG	GCACGAACTG	GATGATCCCT	GAGCACAACT	GGGCCTAATC	2460
TAATTAGGGT	GTTCCCAGCC	CAAAGCAGCC	TGGGCCATTT	AACCCTTCAA	GTGCCTCACT	2520
GAAGACTCAG	GGGAGAGATC	AGCTTGTACT	CTCTCCATGG	TCCCCCAGGA	GGGTTCCTGG	2580
GTGCCCCTGG	CTCATTCCCA	CATCCAGAGG	TTTTGTGTCT	TCCTGGCATC	TAACCCTCAG	2640
TTGTGCTCTG	TGGCTGGCAC	AGCTGCCCCG	TGGAGGCTCT	TGGTAATGTA	CAAGGCATCA	2700
GAGGTGGACA	TGGGATGGGG	ATACATAGGG	ATGGAGCCAA	ATAGCACCTC	AAGGTGGGGT	2760
GATATACAAT	AAAGCTTGTC	ACCCTGACGC	TCAGAAAGCC	TACTCATGAT	GATCACAATT	2820
GTTGACATCA	CTCTGGGACA	TGTAGTGAGA	CCCTAGCTCA	AAACACAGAC	AGTAGCTTTA	2880
AGAGTCAGCT	TGTGACTTAA	TACTGGAACT	CAGGGCCTAA	TAGGTGCTGG	GTGATGCTCG	2940
CCTCACTCCC	TOTTTACTCA	GATCTCTGCG	CTAATCTCCA	CCCCAGCTGG	GTGGGCTGCT	3000
CTGTCCCCTT	GAGGGCAGGA	ATGTGTGTCT	TCCATCAGAG	ATAGGACCCG	TGGTAGCAGC	3060
AACTGCTGC T	GGCTGTTTCT	GGAATATTAA	ATGACAGTAA	TCTATCAGGC	CTGGGTGAGT	3120
AGCTAACAGG	GGTGGGGGG	TGGTCTGGAA	AACGCAGATA	GGGTCATAGG	AGCCACTGCA	3180
GCCTAGATTA	CACCACTGGG	TGTTCTGTCA	CTAGGCCATT	CTCACCAAGC	AGTCCTCAGA	3240
ACTGGGAGCA	CTGTTGCCAG	CATTTAATGC	CAGCATTTAA	TGCCAGCATT	AGGGGAGGCA	3300
GAGGCAGAAG	GATCTCTCTG	AGTTCAAGGC	CATCCTGAAT	TTACATAAAG	AGCTCCAGGC	3360
CAGCCAGGGT	GCGCAGTAAA	ACCTTGTCTC	ААААААСААА	GCATCTTTAG	TGACCAGGCT	3420
TGCTCCACCC	CCAGTGACCA	CGGACCCCCC	ACCCGACGTG	CACGTGAGCC	GCGTTGGGGG	3480
CCTGGAGGAC	CAGCTGAGTG	TGCGCTGGGT	CTCACCACCA	GCTCTCAAGG	ATTTCCTCTT	3540
CCAAGCCAAG	TACCAGATCC	GCTACCGCGT	GGAGGACAGC	GTGGACTGGA	AGGTGCCCGT	3600
SOCCOCCCG	ACCCGCCCCT	GACCCCGCCC	CCCGCATCTG	ACTCCTCCCT	CACCGTGCAG	3660
GTGGTGGATG	ACGTCAGCAA	CCAGACCTCC	TGCCGTCTCG	CGGGCCTGAA	GCCCGGCACC	3720
GTTTACTTCG	TCCAAGTGCG	TTGTAACCCA	TTCGGGATCT	ATGGGTCGAA	AAAGGCGGGA	3780
ATCTGGAGCG	AGTGGAGCCA	CCCCACCGCT	GCCTCCACCC	CTCGAAGTGG	TGAGCACCTC	3840
TCCAGGGCTG	GCTGGCCCAT	GGAATCCCCA	ATCCATCCTG	TTCCTTCCCC	CCCACCCTTT	3900
TTTTGAGACA	GCGTCTTCAG	GTAGCGCATG	CTGGCCTTAA	ATTCAGTATG	TAGTCAAGGA	3960
TGACCTCGAG	CTCCTGGTCT	TTTTGTCTCC	acttagagac	AATGGCCAGT	GGCCATCACC	4020
ACCTTTGGGA	GACTAGCCAT	GGAGTCTATT	TAGCCTGTCA	TTTGGTGACA	GATGGAGTAC	4080
aacagtgtga	CCTCTTGTAA	GAGAACTGAA	GACAGGCTGT	TTTTAACCCC	AATATCCTAG	4140
GCTCTCTAGA	GGTTAACTTT	ATATAAAATA	GAGACTATTA	CAGCCAGTTA	TCACATGGTC	4200
CCACAGAACC	TTTTGTCACA	CAACCTATAG	ACCACAGTGC	CTGTGCCTAC	CACATAAGGG	4260

TCTCTACTGC	TGGCCCACCC	CTCCAACCCT	TAAAAGGTAA	CCTAGGCAGC	CTTAATATTT	4320
GCAATCCTCC	TACCTCAGCC	TCTTGAATGC	: TCAGAAACCA	GGCATTAACO	CAAGTTTCTC	4380
TTCTCTGGGI	CCCTTTCTTA	AGGTGGGAGG	GCCTAAAGAT	GACTTCCTTI	GTCCTGAAGA	4440
CTCTCCGAGC	: CCATGGATCT	GCACTCTCTA	. Atatgaaata	TATTGCATAA	AATGTCTGGC	4500
CTCAGTTTCC	CCACCTGTCA	GGTTTAGGCA	GCACAGTCGG	TCCAAGACAC	TTCATTATTT	4560
GCAGGCAGTA	TAAGAAGAAG	CTCCCATCCC	CCACCCGCTT	CCTCCGGTCC	CTAAGACAGA	4620
ATACTTCTAC	ACTGAAACTG	AACTCTCGCA	GACGCATATG	CTCACTTTAA	TGATGATGAA	4680
ATAATGGGGA	AACTGAGGCT	CCGAGAGATT	CCTGGAGGAA	GAGGGTCAAA	ACCAGCTCCA	4740
GGAAGCTCTC	CAGCCCCCAT	CCGGGCCTCT	CCAGGTTCTG	GGCTTGGCGG	GAGTGAACAC	4800
AGCTGGGAGG	GGCTGGAGCC	TGGGAGCTTT	GGCCCTTGCT	CGTGCCCAGC	ACCTGCGATT	4860
CTTGCACGGG	AGCCAGCAGG	CGGCTGCGTC	CGCCCGAGAG	actgaagaag	CCGGGGGTAG	4920
GGTTGGAGGG	AGGTAAGCAG	GGGCTGTGGG	GGCCGAAGCT	TGTGCCAGGG	CCTGTCAGCG	4980
AGTCCCCAGT	TTTATTTATG	GCGTGAGGCC	GATGTCCTTA	TCCGCTGGCC	TGCTGGGGGA	5040
TEGETECEGE	TGGGGATTGG	ACCCAAGGGC	TGGCTTCCCA	CTCAGTCCTC	CAGCCCACTC	5100
CATGTCACAC	CCGTGCATTC	TCTGAGGCTT	ATCTTGGGAA	CCCGCCCTTG	TTCTGTGCTG	5160
TCTGTCTCTA	TTTCTGTCAT	TCACTTTCCC	AGAGCCTTTT	TTTTATGCTT	TTAATATAAC	5220
TACGTTTTAA	AAATTGCTTT	TGTATAATGT	GTGTGCCTTC	GTGAGCGTGC	GTGCCACAAC	5280
ACACACGTGA	aggttagaga	ACTTTGTTGA	GTAGGCTCCT	TCCACCATGT	GGGACTAGGG	5340
CTGGCGACAA	GAGCAATTAC	TGAGTCATCT	CGCCAGCCCC	TCACCCCTCA	CTTCCCATCC	5400
TGTTTGGATA	GTCATAGGTA	ATCGAAGGTA	AATCGCTGGC	TTTAATTTCG	TAGCTATCCT	5460
GCCTCAGCCT	ACCAAGTGCT	GTGCTACCAC	CTTTCTGGGA	GGGGCTCTCC	TCCCAGTGTC	5520
TGGGGGTGAC	ACAGTCCCAA	GATCTCTGCT	TTCTAGGTCT	TTGTCTTAGT	TTGCCCCTTG	5580
CTTTGTCCGT	GTCCCTAGAG	TCTCCGGCCC	CACTTATCCA	TTGACTGGTC	TTTCCTTTAC	5640
CGAATACTCG	GTTTTACCTC	CCACTGATTT	GACTCCCTCC	TTTGCTTGTC	TCCATCGCCG	5700
TGGCATTGCC	ATTCCTCTGG	GTGACTCTGG	GTCCACACCT	GACACCTTTC	CCAACTTTCC	5760
CCAGCCGAAG	CTGGTCTGGT	ATGGGAGGCC	GCCGTCCCGC	GCGCGCCTCC	TGCTGGCCGC	5820
GCCCCAACAC	TGCCGCTCCA	TTCTCTTTAG	AGCGCCCGGG	ccceeceec	GGGGTGTGCG	5880
AGCCGCGGG	CGGCGAGCCC	AGCTCGGGCC	CGGTGCGGCG	CGAGCTCAAG	CAGTTCCTCG	5940
GCTGGCTCAA	GAAGCACGCA	TACTGCTCGA	ACCITAGITT	CCGCCTGTAC	GACCAGTGGC	6000
GTGCTTGGAT	GCAGAAGTCA	CACAAGACCC	GAAACCAGGT	AGGAAAGTTG	GGGGAGGCTT	6060
CCCTGGGGGG	TAAAGGAGCA	GAGGAAGAGA	GAGACCCGGG	TGAGCAGCCT	CCACAACACC	6120
GCACTCTTCT	TTCCAAGCAC	AGGACGAGGG	GATCCTGCCC	TCGGGCAGAC	GGGTGCGGC	6180
GAGAGGTAAG	GGGTCTGGG	TGAGTGGGGC	CTACAGCAGT	CTAGATGAGG	CCCTTTCCCC	6240
TCCTTCGGTG	TTGCTCAAAG	GGATCTCTTA	GTGCTCATTT	CACCCACTGC	AAAGAGCCCC	6300
AGGTTTTACT	GCATCATCAA	GTTGCTGAAG	GGTCCAGGCT	TAATGTGGCC	TCTTTTCTGC	6360
CCTCAGGTCC	TGCCGGCTAA	actctaagga	TAGGCCATCC	TCCTGCTGGG	TCAGACCTGG	6420
AGGCTCACCT	GAATTGGAGC	CCCTCTGTAC	CATCTGGGCA	ACAAAGAAAC	CTACCAGAGG	6480

CTGGGCACAA	TGAGCTCCCA	CAACCACAGC	TTTGGTCCAC	ATGATGGTCA	CACTTGGATA	6540
						6600
					TGGGGTGGGG	6660
CCA						6663

(2) INFORMATION FOR SEQ ID NO:29:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 186 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:
- Asp Pro Thr Leu Leu Ile Gly Ser Ser Leu Gln Ala Thr Cys Ser Ile 1 5 10 15
- His Gly Asp Thr Pro Gly Ala Thr Ala Glu Gly Leu Tyr Trp Thr Phe 20 25 30
- Asn Gly Arg Arg Leu Pro Ser Glu Leu Ser Arg Leu Leu Asn Thr Ser 35 40
- Thr Leu Ala Leu Ala Leu Ala Asn Leu Asn Gly Ser Arg Gln Gln Ser 50 60
- Gly Asp Asn Leu Val Cys His Ala Arg Asp Gly Ser Ile Leu Ala Gly 65 70 75 80
- Ser Cys Leu Tyr Val Gly Leu Pro Pro Glu Lys Pro Phe Asn Ile Ser
- Cys Trp Ser Arg Asn Met Lys Asp Leu Thr Cys Arg Trp Thr Pro Gly
 100 105 110
- Ala His Gly Glu Thr Phe Leu His Thr Asn Tyr Ser Leu Lys Tyr Lys
 115 120 125
- Leu Arg Leu Val Arg Ser Gly * His Met * Gly Val Pro His Cys 130 135 140
- Gly Pro Ser Leu Met Pro Tyr Pro Gln Gly Pro Gly Pro Leu His Ser 145 150 155 160
- Leu * Asp Leu Gly Gly Ser His Gln Ser Pro Arg Leu Ser Lys Ile 165 170 175
 - * Cys Pro His Thr Gly Cys Pro Gly Arg 180 185
- (2) INFORMATION FOR SEQ ID NO:30:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 35 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

35

- (2) INFORMATION FOR SEQ ID NO:31:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

AGCTACGCGT TTAGAGTTTA GCCGGCAG

28

- (2) INFORMATION FOR SEQ ID NO:32:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

Met Val Leu Ala Ser Ser Thr Thr Ser Ile His Thr Met Leu Leu Leu 10

Leu Leu Met Leu Phe His Leu Gly Leu Gln Ala Ser Ile Ser 20 30

- (2) INFORMATION FOR SEQ ID NO:33:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

Ile Lys Pro Ser Gly Arg Arg Gly Ala Ala Arg Gly Pro Ala Gly Asp Tyr Lys Asp Asp 20 Asp Asp Lys

- (2) INFORMATION FOR SEQ ID NO:34:
 - (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 73 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- 91 -

	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:	
	CTTGCCC TCGGGCAGAC GGGGTGCGGC GAGAGGTCCT GCCGGCGACT ACAAGGACGA	60
CGA!	TGACAAG TAG	7;
(2)	INFORMATION FOR SEQ ID NO:35:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 73 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:	
AAC	SEGAGOO CETCTECCOO ACECCECTCT COASGACGEC CECTGATETT COTECTA	60
CTGT	TTCATCC TAG	73
(2)	INFORMATION FOR SEQ ID NO:36:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:	
CCCA	ACGCTTC TCATCGCATT CTCCCTG	27
(2)	INFORMATION FOR SEQ ID NO:37:	
	(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:	

27

CAGTCCACAC TGTCCTCCAC TGGGTAG

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 11832 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

(714)	-K	_	-			
eceeccecre	CAGTGATTAC	TCACCGCGTG	GCGCACCCCA	CCCGCGGGCC	GCTGAGTGGA	60
TTTTTCCGTG	GGGGGATGTG	AAGAAGTTTA	GGGAGAACTC	TTCTGCACCG	ATGGGAACTA	120
GGAATGCAGG	GTTCGGTCCC	GTTCCCCAAA	GGACACACCT	CTCCCCATAA	GCCCACTCAT	180
AAGGGCTCCC	TGCACGCGCT	CCGGGACATC	CCCATATCCA	ATACCCGCAG	ATATGATAGT	240
TGAGAAGGGA	CCAGAGGCCG	GAGACTCCCT	CCCTGCCTTC	TGGCTTTCCC	CCCCCCTGC	300
ACGAAACGAG	ACTACAGCGA	TGGGAGAGGT	GGCATGAAGG	CTTAGGGTGG	GGATCGGTAG	360
GACCCATGCA	CCCAGAGAAA	GGGACTGGTG	GCAACTTTCA	AACTCTCTGG	GGAAGGAAGA	420
AGGGCTGAAA	GAGGATGAAC	GGGCTCAGGT	ACTGCTCAAT	GTGTGTGTGG	CGGACCAAAG	480
TGGGTATGGG	GGCCCCGTAA	GAGGGGCGGG	GAAGGTGGAT	AGGAAGGATC	CCGGTAGACT	540
GGAGGGGATC	CTGGAAAAGC	ACCAGGGCTG	CGAGCTAGGA	ACCCATTCGG	ACTTAAGGGT	600
ACAGGATCCC	AGATGAGGGG	GTGGGAAGCC	TGGGACGGGC	GGGACCAGAG	AGGGAGGTCC	660
CACGGGCTGG	TGGGGAAAGA	GTGGGGGGCT	TCGCGCAGGA	GGATGGGACG	TTCAGGAGTG	720
GTAACTGGGC	GGAGGCCGGC	ceeeceeec	GCGCGGTGCC	CGCGGGGGGT	GGGAAGGCCG	780
GTGCGGGGCC	CACGATCAAC	CCCCCCCAG	GGGCGGGCC	GCGCCGGGGG	CGGGCCGGG	840
CGGGGCGAGC	GGCGCATTAG	CGCCTTGTCA	ATTTCGGCTG	CTCAGACTTG	CTCCGGCCTT	900
CGCTGTCCGC	GCCCAGTGAC	GCGCGTGAGG	ACCCGAGCCC	CAATCTGCAC	CCCGCAGACT	960
ceccccecc	CCATACCGGC	GTTGCAGTCA	CCGCCCGTTG	CGCGCCACCC	CCATGCCCGC	1020
GGGTCGCCCG	GCCCCGTCG	CCCAATCCGC	GCGGCGGCCG	CCGCGGCCGC	TGTCCTCGCT	1080
GTGGTCGCCT	CTGTTGCTCT	GTGTCCTCGG	GGTGCCTCGG	GGCGGATCGG	GAGCCCGTGA	1140
GTACCGTGCG	CCCTGCTCCC	CACCTCCCCA	GGGAAGCCGG	GATCCGGCGC	CCCGGGGGGT	1200
AGTCGCGGGG	GATGGAAGAA	GGGGCGCGAG	CGCCACCTGG	ACGTCCCGGG	AACAAAGGAA	1260
GGCGGCCCTC	GGGGCGCCCT	CACCTGTGGG	GCTCATGGCA	CCACCACCCA	GCCTCCCAAG	1320
AGTACCCCGT	TATACATCAG	AGGCCTCTTA	TCTGTATCCC	CTTTGCGAGG	CTGTCTGGCC	1380
AGGCTCAGTT	TGAAGGACAT	CGCAGTGTCC	TGGGACCCCC	CTCCTTCAGG	GTGCTGGGAC	1440
CCTTCGGGGC	GCACGCCTGT	GTCTTGGATA	TCAGAGCGGA	AGGGAAGCCT	CCCTGGCCGG	1500
GGGCGCACGC	TTGGGTGCGT	TGGGTTGGGT	GCTGGCGCAA	AGTGGGGTCC	CCTCCCCCAT	1560
GAAGTGATGA	TCCCCGGGG	GAGGGTGGGG	COTTATCGTG	AGCCCTCCTG	TCCGCCTGGC	1620
ATGCGGCCCG	GCGTCCCTCG	GGACTTGCCT	CTCCGTGGGG	TEGGEGEEGE	CCCCTCCCC	1680
CTATAGCAGA	. CTCCATGCTT	TGGTATCCTC	GAAGTCCTCT	CCACTGGTGG	GGCTCACAAC	1740
CGGTCTCATT	CAGGCTGCGC	TGGGTTGAGA	GCCTCTAGCG	ACTGAAATTT	CGGTGAGGAG	1800
CGAGAGCAAG	CGTGTCCGGG	CACCGCGAGC	CCAGACTTCA	TTGTCTAAGG	GGCACCCAGT	1860

GGGGGTCAGC TGC	CGAGAGA A	ATCCCACTGT	CCCAGGAGGA	ACTCCTGGCC	TTGAGCCCCC	1920
ATCACCCAAC GCA	CACATCC (CCGCCAGGAT	GCGGTCTCCA	CATCCAGACC	CTCTCTGGGA	1980
CACACCCAAA GAC	ACACAAA 2	AGAGCCCCAC	TGGCTTATGT	CCCGTCACCC	TGCCCTCCGA	2040
CGCGCGCTGC AGC						2100
ACACACACAC ACA						2160
ACACGCACGC ACA						2220
GCAACACCGG GGT						2280
ACCCCATCCG GAG	ACACAGG (CCACACCGCA	GGGGCACCAC	GCTGCGCTGC	TGCTCTGGGC	2340
TAGTAGTCTT GTG	CAGTTTG '	TCCGCGGTGT	CTGTGGACGC	CCTCCCGCTC	TTGTCAGGGG	2400
ACAGGAACCT ACA	CTCCTGC '	TTGCCCAAGG	CGGCTGGGCA	GGTGATGTGG	TGACACCCGG	2460
GACCTTTCCG GGG	AGTTGGT	GTTGCTGCCA	AGCCTGGGTA	CTTTTTGAAT	GCCACCAATA	2520
GCGCTAAGCT TTG	TTTCCGG	GCGGGCTGCA	GAGCAACAGG	CGAAGGTGGC	GGAGTGGGGG	2580
TGGCGCGTGT GTI	TTTTCTT '	TTAAGGGGGA	GAGAAATTAA	ATAAGAGGTT	CTCACACCTC	2640
TGCAATCTGT TTG	TACTTAC	Cotototot	AACACCTGAC	CAGCCAGCCG	GTGGGTCGTA	2700
AAAGTGTATG CAG	GTACCAG	CGGGACAGGA	GATGGGGGCC	CCTGGGGTAT	GGCTGGGATG	2760
GAGGCCACCT TCC	CCTTCCC	CTTTCAGGGA	ATCTCACACT	TTTCCCTTTT	AAAACACATG	2820
GTGTTCTTTT TAA	TAACGGC	AGCAACTCCG	CATTGGGAAA	GGGGGAAATA	AGCTTGTATA	2880
GGCCCCGGCT TTG	TGGAAAG	GAGGGGAAGA	GGGAAGAAAA	AAGGAGGGGT	GTCTCCTCCA	2940
GGCTTAGGGG GCT	GTCAGCT	GCTGCTCTGT	CTAGCTTGGC	ATGTGTGTGC	CCCAGTCCCC	3000
AGTGGCTTTG GCC	CATTGTT	TGTGGAAGCC	AAGAGGGAGA	CTGGAGTCCT	CTATCTCTGG	3060
TACTCCAGAG TCA	LEGETTET	CAGTCCGAGC	CCAGAGAACG	TCTTCCCTGT	TTTATGGAGG	3120
GAATCAGGGA AGG	GGGTGCC	aggtggacta	CGTTCTGCTG	AGGACTGTAC	CAGTCGCTCG	3180
AAGGAGAAAG CTT	GGGCTTG	CCCCCTCCC	CCCTCAAGCC	ACGAAGGGCA	GCTGCTAGGC	3240
TAGTGTGGTA AA	AGGGCATT	ACTCCCCAGC	CAGGACCCCC	CAGAGAGTCC	CCTTCCTGGC	3300
CAGACAAATG CTC	GGGAGGG	ACAGAGGGT	GTGATCATTG	CCCAGGAGTG	CAGACAGTGG	3360
GGTCCCGGGT CGC	SGCAGTGC	CTCCCACCCT	GCTGAGGGGG	GCGCCCAGGC	AGGAAGCGGT	3420
GGTGGGCCG GGC						3480
CCGGCGCCT GGC	CTGCCTGG	GACCTCCGGG	GCGGCCCCCT	GCCCCCCCC	GCTCCGTCTG	3540
GCCTGCTCCT CC						3600
CCCAAATGCA AC	rgcgattg -	CAGGCTTCGC	AAGACCCGCC	TCCTCCCAAG	GCCAAATTTG	3660
CCTGGGAGAA GT	CATTCAGG	GCCCAGACTA	GAACCATGTT	GGTGCCACCT	CATCCATCTG	3720
GGGCATGAAG GAG	CCGTCCAG	GGCTGCAGTT	TAGCTTCTTA	ATAGGAACCT	GGGGGTGGGT	3780
GCAGCCTCTG TT						3840
AATACTCTTT TC						3900
TGCAGTCTTC CC	PAACCTTT	TCTTTGCTTC	TACCCCAGGG	CCTTTGCACA	TGGAGTCCCA	3960
CCTCTCCCCT TG	CCCAACTG	GGGCTCCAGC	CTTACTGCAT	TTGGCTCTTG	GTAACTGTCC	4020
CAGGGCCTCT CT	GACACACA	GGGTTGTAGC	CCCAGCTCCC	TCTCTTCTCC	TCCCCCCTTT	4080

CTCTTTTGCT	TCTGAGACTT	AATTTTTTTC	TTTTTCTTTT	TGGCTTTTTG	AGACAGGGTT	4140
TCTCTGTACA	SCCCTGGCTG	CCCTGGCACT	CATTCTGTAG	ACCAGGCTAG	CCTCAAACTC	4200
ACAAACCTAC	CTGCCTCTGC	CTTTCCAGTG	CTGGCACTAA	AGATGTGGGC	CACCACAACT	4260
agtagttaag	TGTTTTGCTG	TGTCTTTATT	CCTATAGTGA	CCTCAGTTCC	TGGCATATTG	4320
TAGGCGATGG	ATGGATGAAT	GGATGGATGG	atggatggat	GGATGGTTGG	ATGGAGCAAG	4380
CTTGAATCGT	CCTGAGTGAA	AAAAGAGACC	TCAGAGAACT	GAATGGAGTT	AGGTTCCCAG	4440
GGCAGCCTGG	CCTGCTGGTC	TCATGGGAGC	TCCCTGTGAA	ACTTCCCCCA	CACCTCCCAC	4500
CACCCTGCCA	TCCTGTGTGG	CTGACAAGAA	AGGCCAATGG	CCAGATGGGG	ACACAGACTC	4560
AGGGAAGCTT	GGAATATGTT	CCCCTCCTCA	TATCCTAGGC	CTTGTTGTCC	CCCTGAGGGC	4620
CCAGCCTATG	AGTAGGGCAG	CTGTGGGCTG	CCCTAAGGTT	GGGTAGGCAA	GAAGGGGGTG	4680
	GTGGGTCACA					4740
AGGAAATGAT	TGTGGAGAGT	CAGAACTCCT	GTTGGGAGTT	GTAGAGGGCC	TTGCATGTGG	4800
	CTGTCCCTTC					4860
	GCACGGGGAA					4920
	TCACCTCTCC					4980
TTTGATTCCC	TTCCTTTGGT	CTCCTGGGAT	GACAAACATT	TACCAGGGTA	GGATTTTACA	5040
TTTTAGATAT	GTCCATTCTC	CAGAAACACA	CTTGTGAGGT	TAGGGTATCA	GTGAAAGGAC	5100
ACCACCAGGA	CAGACAAAGA	ATTGGAGAGG	AAGGAAATTG	GTAAGCCAGG	CCATGCTTGA	5160
TGGCTTATGT	GTAATCCCAG	AACTCTGGAC	GCTGAGGCAG	GAGGATTCCA	AGTTTCAAGA	5220
	TAGGTAATGA					5280
	GCTGTGAGAC					5340
	ATCCCTAGGA					, 5400
	TGCTCCAATG					5460
TTTGCTTAGA	. TTTGAGTAGG	CATTTATGAC	TGATGTTTTA	AAATTTTTAT	TTGATTTTAT	5520
	CTGTTTGTAT					5580
	GTAGTCCTGG					5640
	CCGCCTGCTT					5700
					TAATGTGTGA	
					CCCCAAAACC	
					ATGTCCAAGG	
					TAAGGTCCTC	
AGGCTTAGCC	ACAGTCTTCT	TTATGTACTG	AGCCATTTCA	CTGGCCCTGG	ATTGACTGAT	6000
					ATGAACTCCC	
					TGATACTCAG	
					CAGCTTCAAT	
GAGTGCTTGG	GTCTCGTTGT	TTCTTTTCTT	TATCTGTGAA	ATGGGTGAAC	ACCTGTTCAA	б240
GACTTCCTGA	CTCTTGAAAC	ATCCAGGCAG	GGTGAGGGAC	TTGAAGTGGG	CTCATCCCAT	6300

GCCTAACAAA	GTGTCGTCTI	TGACCCCAGA	. CACAGCTGTA	ATCAGCCCCC	AGGACCCCAC	6360
CCTTCTCATC	GCTCCTCCC	TGCAAGCTAC	CTGCTCTATA	CATGGAGACA	CACCTGGGGC	6420
CACCGCTGAG	GGGCTCTACT	GGACCTTCAA	. TGGTCGCCGC	CTGCCCTCTG	AGCTGTCCCG	6480
CCTCCTTAAC	ACCTCCACCC	TGGCCCTGGC	CCTGGCTAAC	CTTAATGGGT	CCAGGCAGCA	6540
GTCAGGAGAC	AATCTGGTGT	GTCACGCCCG	AGACGGCAGC	ATTCTGGCTG	GCTCCTGCCT	6600
CTATGTTGGC	: TGTAAGTGGG	GCCCCAGACA	CTCAGAGATA	GATGGGGGTI	GGCAATGACA	6660
GATTTAGAGC	: CTGGGTCTTC	Tetecteges	CAGAGCCATG	GGCTCTCACT	TGCATGCAGG	6720
CATGGTCATA	CCCAGCACAG	GCATTGCAAC	TCTAGGGACA	GCTGTGGCTG	CACTGTCCCC	6760
TGTGTACCCC	ACAGCTTTAG	AAAAGCTGTC	ATGTTTTCCT	TGTAGTGCCC	CCTGAGAAGC	6840
CCTTTAACAT	CAGCTGCTGG	TCCCGGAACA	TGAAGGATCT	CACGTGCCGC	TGGACACCGG	6900
GTGCACACGG	GGAGACATTC	TTACATACCA	ACTACTCCCT	CAAGTACAAG	CTGAGGTTGG	6960
TACCCAGCCA	. AGCCTTGCTG	TGTGACTTCT	GGCAATACTT	ACCTTCTCTG	ATCAAATATG	7020
TTCCTGTTTA	TGAACTCAAA	AGGGACTCTC	GCACCTCCAC	AGGTGGTACG	GTCAGGATAA	7080
CACATGTGAG	GAGTACCACA	CTGTGGGCCC	TCACTCATGC	CATATCCCCA	AGGACCTGGC	7140
CCTCTTCACT	CCCTATGAGA	TCTGGGTGGA	AGCCACCAAT	CGCCTAGGCT	CAGCAAGATC	7200
TGATGTCCTC	ACACTGGATG	TCCTGGACGT	GGGTGAGCCC	CCAGTGTCCA	CCTGTGTTCT	7260
GCCCTAGACC	TTATAGGGCG	CCTCCCCCC	ATCCCCCCAG	ACTTTTTGGT	TCTTCTAGAG	7320
GTCTTAGCCA	CAGCCACGGT	GGTTGCAGGA	CAGTGGTTGT	TCATAACTTA	ATGCAAAGAC	7380
TTTCCCCCAA	GACAGTCAAG	ATTTTCCCCT	CCCCACCCCC	AACACACACA	TACACACACA	7440
CTCTGCAGAG	AACACCTGGC	CTGACCACCC	TCCCTCTCTA	CAGCCCAGGT	GTTCAGAAGG	7500
GAGTCCTAGG	GGACTGAGAG	GAGGCGCCCA	GGTCTGAAGG	CGCCCCAGGA	AGCCGAGGCC	7560
TTGAGCTGGG	GGGGGGGGG	AGGGTTGGAG	GCACGAACTG	GATGATCCCT	GAGCACAACT	7620
GGGCCTAATC	TAATTAGGGT	GTTCCCAGCC	CAAAGCAGCC	TGGGCCATTT	AACCCTTCAA	7680
GTGCCTCACT	GAAGACTCAG	GGGAGAGATC	AGCTTGTACT	CTCTCCATGG	TCCCCCAGGA	7740
GGGTTCCTGG	GTGCCCCTGG	CTCATTCCCA	CATCCAGAGG	TTITGTGTCT	TCCTGGCATC	7800
TAACCCTCAG	TTGTGCTCTG	TGGCTGGCAC	AGCTGCCCCG	TGGAGGCTCT	TGGTAATGTA	7860
CAAGGCATCA	GAGGTGGACA	TGGGATGGGG	ATACATAGGG	ATGGAGCCAA	ATAGCACCTC	7920
aaggtggggt	GATATACAAT	AAAGCTTGTC	ACCCTGACGC	TCAGAAAGCC	TACTCATGAT	7980
GATCACAATT	GTTGACATCA	CTCTGGGACA	TGTAGTGAGA	CCCTAGCTCA	AAACACAGAC	8040
AGTAGCTTTA	AGAGTCAGCT	TGTGACTTAA	TACTGGAACT	CAGGGCCTAA	TAGGTGCTGG	8100
GTGATGCTCG	CCTCACTCCC	TGTTTAGTGA	GATCTCTGCG	CTAATCTCCA	CCCCAGCTGG	8160
GTGGGCTGCT	CTGTCCCCTT	GAGGGCAGGA	ATGTGTGTCT	TCCATCAGAG	ATAGGACCCG	8220
TGGTAGCAGC	AACTGCTGCT	GGCTGTTTCT	GGAATATTAA	ATGACAGTAA	TCTATCAGGC	8280
CTGGGTGAGT	AGCTAACAGG	GGTGGGGGCG	TGGTCTGGAA	AACGCAGATA	GGGTCATAGG	8340
agccactgca	GCCTAGATTA	CACCACTGGG	TGTTCTGTCA	CTAGGCCATT	CTCACCAAGC	8400
AGTCCTCAGA	ACTGGGAGCA	CTGTTGCCAG	CATTTAATGC	CAGCATTTAA	TGCCAGCATT	8460
AGGGGAGGCA	GAGGCAGAAG	GATCTCTCTG	AGTTCAAGGC	CATCCTGAAT	TTACATAAAG	8520

AGCTCCAGGC	CAGCCAGGGT	GCGCAGTAAA	ACCTTGTCTC	AAAAAACAAA	GCATCTTTAG	8580
TGACCAGGCT	TGCTCCACCC	CCAGTGACCA	CGGACCCCC	ACCCGACGTO	CACGTGAGCC	8640
GCGTTGGGGG	CCTGGAGGAC	CAGCTGAGTG	Tecectegei	'CTCACCACCA	GCTCTCAAGG	9700
ATTTCCTCTT	CCAAGCCAAG	TACCAGATCO	GCTACCGCGT	GGAGGACAGC	GTGGACTGGA	8760
AGGTGCCCGT	ccccccccc	ACCCGCCCCT	. eycccccccc	CCCGCATCTC	ACTCCTCCCT	8820
CACCGTGCAG	GTGGTGGATG	ACGTCAGCAA	CCAGACCTCC	TGCCGTCTCG	CGGGCCTGAA	8880
GCCCGGCACC	GTTTACTTCG	TCCAAGTGCG	TTGTAACCCA	TTCGGGATCT	ATGGGTCGAA	8940
AAAGGCGGGA	ATCTGGAGCG	AGTGGAGCCA	CCCCACCGCT	GCCTCCACCC	CTCGAAGTGG	9000
TGAGCACCTC	TCCAGGGCTG	GCTGGCCCAT	GGAATCCCCA	ATCCATCCTG	TTCCTTCCCC	9060
CCCACCCTTT	TTTTGAGACA	GCGTCTTCAG	GTAGCGCATG	CTGGCCTTAA	ATTCAGTATG	9120
TAGTCAAGGA	TGACCTCGAG	CTCCTGGTCT	TTTTGTCTCC	ACTTAGAGAC	AATGGCCAGT	9180
GGCCATCACC	ACCTTTGGGA	GACTAGCCAT	GGAGTCTATT	TAGCCTGTCA	TTTGGTGACA	9240
GATGGAGTAC	aacagtgtga	CCTCTTGTAA	GAGAACTGAA	GACAGGCTGT	TTTTAACCCC	9300
AATATCCTAG	GCTCTCTAGA	GGTTAACTTT	ATATAAAATA	GAGACTATTA	CAGCCAGTTA	9360
TCACATGGTC	CCACAGAACC	TTTTGTCACA	CAACCTATAG	ACCACAGTGC	CTGTGCCTAC	9420
CACATAAGGG	TCTCTACTGC	TGGCCCACCC	CTCCAACCCT	TAAAAGGTAA	CCTAGGCAGC	9480
CTTAATATTT	GCAATCCTCC	TACCTCAGCC	TCTTGAATGC	TCAGAAACCA	GGCATTAACC	9540
CAAGTTTCTC	TTCTCTGGGT	CCCTTTCTTA	ACCTCCCACC	GCCTAAAGAT	GACTTCCTTT	9600
GTCCTGAAGA	CTCTCCGAGC	CCATGGATCT	GCACTCTCTA	ATATGAAATA	TATTGCATAA	9660
AATGTCTGGC	CTCAGTTTCC	CCACCTGTCA	GGTTTAGGCA	GCACAGTCGG	TCCAAGACAC	9720
TTCATTATTT	GCAGGCAGTA	TAAGAAGAAG	CTCCCATCCC	CCACCCGCTT	CCTCCGGTCC	9780
CTAAGACAGA	ATACTTCTAC	ACTGAAACTG	AACTCTCGCA	GACGCATATG	CTCACTTTAA	9840
TGATGATGAA	ATAATGGGGA	AACTGAGGCT	CCGAGAGATT	CCTGGAGGAA	GAGGGTCAAA	9900
ACCAGCTCCA	GGAAGCTCTC	CAGCCCCCAT	CCGGGCCTCT	CCAGGTTCTG	GCCTTGCCGG	9960
GAGTGAACAC	AGCTGGGAGG	GGCTGGAGCC	TGGGAGCTTT	GGCCCTTGCT	CGTGCCCAGC	10020
ACCTGCGATT	CTTGCACGGG	AGCCAGCAGG	CGGCTGCGTC	CGCCCGAGAG	actgaagaag	10080
CCGGGGGTAG	GGTTGGAGGG	AGGTAAGCAG	GGGCTGTGGG	GGCCGAAGCT	TGTGCCAGGG	10140
CCTGTCAGCG	AGTCCCCAGT	TTTATTTATG	GCGTGAGGCC	GATGTCCTTA	TCCGCTGGCC	10200
TGCTGGGGGA	TGGCTGCGGC	TGGGGATTGG	ACCCAAGGGC	TGGCTTCCCA	CTCAGTCCTC	10260
CAGCCCACTC	CATGTCACAC	CCGTGCATTC	TCTGAGGCTT	ATCTTGGGAA	CCCGCCCTTG	10320
TTCTGTGCTG	TCTGTCTCTA	TTTCTGTCAT	TCACTTTCCC	AGAGCCTTTT	TTTTATGCTT	10380
TTAATATAAC	TACGTTTTAA	AAATTGCTTT	TGTATAATGT	GTGTGCCTTC	GTGAGCGTGC	10440
GTGCCACAAC	acacacotga	aggttagaga	actttgttga	GTAGGCTCCT	TCCACCATGT	10500
GGGACTAGGG	CTGGCGACAA	GAGCAATTAC	TGAGTCATCT	CGCCAGCCCC	TCACCCCTCA	10560
CTTCCCATCC	TGTTTGGATA	GTCATAGGTA	ATCGAAGGTA	AATCGCTGGC	TTTAATTTCG	10620
TAGCTATCCT	GCCTCAGCCT	ACCAAGTGCT	GTGCTACCAC	GTTTGTGGGA	GGGGCTCTCC	10680
TCCCAGTGTC	TGGGGGTACA	CAGTCCCAAG	ATCTCTGCTT	TCTAGGTCTT	TGTCTTAGTT	10740

TGCCCCTTGC	TTTGTCCGTG	TCCCTAGAGT	CTCCGGCCCC	ACTTAGTCTC	CATTGATTTC	10800
CTTTCTGACC	GAATACTCGG	TTTTACCTCC	CACTGATTTG	ACTCCCTCCT	TIGCTIGTCT	10860
CCATCGCCGT	GGCATTGCCA	TTCCTCTGGG	TGACTCTGGG	TCCACACCTG	ACACCTTTCC	10920
CAACTTTCCC	CAGCCGAAGC	TGGTCTGGTA	TGGGAGGCCG	CCGTCCCGCG	CGCGCCTCCT	10980
GCTGGCCGCG	CCCCAACACT	GCCGCTCCAT	TCTCTTTAGA	GCGCCCGGGC	cceeecece	11040
GGGTGTGCGA	GCCGCGGGGC	GGCGAGCCCA	GCTCGGGCCC	GGTGCGGCGC	GAGCTCAAGC	11100
AGTTCCTCGG	CTGGCTCAAG	AAGCACGCAT	ACTGCTCGAA	CCTTAGTTTC	CGCCTGTACG	11160
ACCAGTGGCG	TGCTTGGATG	CAGAAGTCAC	ACAAGACCCG	AAACCAGGTA	GGAAAGTTGG	11220
GGGAGGCTTG	CGTGGGGGGT	AAAGGAGCAG	AGGAAGAGAG	AGACCCGGGT	GAGCAGCCTC	11280
CACAACACCG	CACTCTTCTT	TCCAAGCACA	GGACGAGGGG	ATCCTGCCCT	CGGGCAGACG	11340
GGGTGCGGCG	AGAGGTAAGG	GGGTCTGGGT	GAGTGGGGCC	TACAGCAGTC	TAGATGAGGC	11400
CCTTTCCCCT	CCTTCGGTGT	TGCTCAAAGG	GATCTCTTAG	TGCTCATTTC	ACCCACTGCA	11460
AAGAGCCCCA	GOTTTTACTG	CATCATCAAG	TTGCTGAAGG	GTCCAGGCTT	AATGTGGCCT	11520
CTTTTCTGCC	CTCAGGTCCT	GCCGGCTAAA	CTCTAAGGAT	AGGCCATCCT	CCTGCTGGGT	11580
CAGACCTGGA	GGCTCACCTG	AATTGGAGCC	CCTCTGTACC	ATCTGGGCAA	CAAAGAAACC	11640
TACCAGAGGC	TGGGCACAAT	GAGCTCCCAC	AACCACAGCT	TTGGTCCACA	TGATGGTCAC	11700
acttggatat	ACCCCAGTGT	GGGTAGGGTT	GGGGTATTGC	AGGCCTCCC	AAGAGTCTCT	11760
TAAATAAAT	AAAGGAGTTG	TTCAGGTCCC	GATGGCCAGT	CTCTTTGGGG	CCTATGTGCT	11820
GGGGTGGGGG	GA					11832

- (2) INFORMATION FOR SEQ ID NO:39:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 26 amino acids
 (B) TYPE: amino acids
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

Val Ile Ser Fro Gln Asp Pro Thr Leu Leu Ile Gly Ser Ser Leu Gln Ala Thr Cys Ser

Ile His Gly Asp Thr Pro

(2)	INFORMATION FOR SEQ ID NO:40:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:	
GTC	CAASTGC GTTGTAACCC A	21
(2)	INFORMATION FOR SEQ ID NO:41:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:	
GCT	SAGTGTG CGCTGGGTCT CACC	24
(2)	INFORMATION FOR SEQ ID NO:42:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:	
GGC	CCCACTC GCTCCAGA	18

CLAIMS:

1. A nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding a novel haemopoietin receptor or derivative thereof having the motif:

Trp Ser Xaa Trp Ser [SEQ ID NO:1],

wherein Xaa is any amino acid.

- 2. A nucleic acid molecule according to claim 1 wherein Xaa is Asp or Glu.
- 3. A nucleic acid molecule according to claim 1 or 2 wherein said nucleic acid molecule is capable of hybridisation under low stringency conditions at 42°C to:
 - 5' (A/G)CTCCA(A/G)TC(A/G)CTCCA 3' [SEQ ID NO:7]; and 5' (A/G)CTCCA(C/T)TC(A/G)CTCCA 3' [SEQ ID NO:8].
- 4. A nucleic acid molecule according to claim 3 comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:12 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:12 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42°C.
- 5. A nucleic acid molecule according to claim 3 comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:14 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:14 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42°C.
- 6. A nucleic acid molecule according to claim 3 comprising a sequence of

nucleotides substantially as set forth in SEQ ID NO:16 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:16 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42°C.

- 7. A nucleic acid molecule according to claim 3 comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:18 or 24 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:18 or 24 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42°C.
- 8. A nucleic acid molecule according to claim 3 comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:28 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:28 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42°C.
- 9. A nucleic acid molecule according to claim 3 comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:38 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:38 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42°C.
- 10. A nucleic acid molecule according to claim 4 or 5 or 6 or 7 or 8 or 9 wherein said haemopoietin receptor is of murine origin.
- 11. A nucleic acid molecule according to claim 9 wherein said haemopoietin receptor is of human origin.
- 12. An expression vector comprising a nucleic acid molecule selected from the list consisting of:

- (i) a nucleotide sequence as set forth in SEQ ID NO:12;
- (ii) a nucleotide sequence as set forth in SEQ ID NO:14;
- (iii) a nucleotide sequence as set forth in SEQ ID NO:16;
- (iv) a nucleotide sequence as set forth in SEQ ID NO:18;
- (v) a nucleotide sequence as set forth in SEQ ID NO:24;
- (vi) a nucleotide sequence as set forth in SEQ ID NO:28; and
- (vii) a nucleotide sequence as set forth in SEQ ID NO:38.
- 13. A method for cloning a nucleotide sequence encoding a haemopoietin receptor having the characteristics of NR6 or a derivative thereof, said method comprising searching a nucleotide database for a sequence which encodes an amino acid sequence as set forth in one or more of SEQ ID NO:1, SEQ ID NO:7 and/or SEQ ID NO:8, designing one or more oligonucleotide primers based on the nucleotide sequence located in said search, screening a nucleic acid library with said one or more oligonucleotides and obtaining a clone therefore which encodes NR6 or a part or derivative thereof.
- 14. An isolated nucleic acid molecule comprising a sequence of nucleotides encoding a haemopoietin receptor or derivative thereof having an amino acid sequence substantially as set forth in SEQ ID NO:13 or having at least about 50% similarity thereto.
- 15. An isolated nucleic acid molecule comprising a sequence of nucleotides encoding a haemopoietin receptor or derivative thereof having an amino acid sequence substantially as set forth in SEQ ID NO:15 or having at least about 50% similarity thereto.
- 16. An isolated nucleic acid molecule comprising a sequence of nucleotides encoding a haemopoietin receptor or derivative thereof having an amino acid sequence substantially as set forth in SEQ ID NO:17 or having at least about 50% similarity thereto.

- 17. An isolated nucleic acid molecule comprising a sequence of nucleotides encoding a haemopoietin receptor or derivative thereof having an amino acid sequence substantially as set forth in SEQ ID NO:19 or having at least about 50% similarity thereto.
- 18. An isolated nucleic acid molecule comprising a sequence of nucleotides encoding a haemopoietin receptor or derivative thereof having an amino acid sequence substantially as set forth in SEQ ID NO:25 or having at least about 50% similarity thereto.
- 19. An isolated nucleic acid molecule comprising a sequence of nucleotides encoding a haemopoietin receptor or derivative thereof having an amino acid sequence substantially as set forth in SEQ ID NO:29 or having at least about 50% similarity thereto.
- 20. An isolated novel haemopoietin receptor comprising the amino acid motif:

Trp Ser Xaa Trp Ser [SEQ ID NO:1]

wherein Xaa is any amino acid.

- 21. An isolated hacmopoletin receptor according to claim 20 wherein Xaa is Asp or Glu.
- 22. An isolated haemopoietin receptor according to claim 21 comprising the amino acid sequence substantially as set forth in SEQ ID NO:13.
- 23. An isolated haemopoietin receptor according to claim 21 comprising the amino acid sequence substantially as set forth in SEQ ID NO:15.
- 24. An isolated haemopoietin receptor according to claim 21 comprising the amino

acid sequence substantially as set forth in SEQ ID NO:17.

- 25. An isolated haemopoietin receptor according to claim 21 comprising the amino acid sequence substantially as set forth in SEQ ID NO:19.
- 26. An isolated haemopoietin receptor according to claim 21 comprising the amino acid sequence substantially as set forth in SEQ ID NO:25.
- 27. An isolated haemopoietin receptor according to claim 21 comprising the amino acid sequence substantially as set forth in SEQ ID NO:29.
- 28. A method for modulating expression of NR6 in a mammal, said method comprising contacting a genetic sequence encoding said NR6 with an effective amount of a modulator of NR6 expression for a time and under conditions sufficient to upregulate or down-regulate or otherwise modulate expression of NR6, wherein the genetic sequence encoding said NR6 is selected from the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 or is a sequence having at least about 60% similarity to at least one of SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 and is capable of hybridising thereto under low stringency conditions at 42°C.
- 29. A method of modulating activity of NR6 in a mammal, said method comprising administering to said mammal, a modulating effective amount of a molecule for a time and under conditions sufficient to increase or decrease NR6 activity wherein said NR6 comprises an amino acid sequence:
- (i) encoded by a nucleotide sequence selected from the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 and which is capable of hybridising thereto under low stringency conditions at 42°C; and
- (ii) substantially as set forth in SEQ ID NO:12 or 14 or 16 or 18 or 32 or 30 or a

sequence having at least 50% similarity thereto.

- 30. A pharmaceutical composition comprising an NR6 receptor in soluble form and one or more pharmaceutically acceptable carriers and/or diluents wherein said NR6 comprises the amino acid sequence:
- (i) encoded by a nucleotide sequence selected from the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 and which is capable of hybridising thereto under low stringency conditions at 42°C; and
- (ii) substantially as set forth in SEQ ID NO:12 or 14 or 16 or 18 or 32 or 30 or a sequence having at least 50% similarity thereto.
- 31. An isolated antibody or a preparation of antibodies to an NR6 receptor, said NR6 receptor comprising the amino acid sequence:
- (i) encoded by a nucleotide sequence selected from the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 and which is capable of hybridising thereto under low stringency conditions at 42°C; and
- (ii) substantially as set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 or a sequence having at least 50% similarity thereto.
- 32. A trangenic animal comprising a mutation in at least one allele of the gene encoding NR6.
- 33. A transgenic animal according to claim 33 comprising a mutation in two alleles of the gene encoding NR6.

- 105 -

34. A transgenic animal according to claim 33 or 34 wherein said animal is a murine animal.

ABSTRACT

The present invention relates generally to a novel haemopoietin receptor or derivatives thereof and to genetic sequences encoding same. Interaction between the novel receptor of the present invention and a cytokine ligand facilitates proliferation, differentiation and survival of a wide variety of cells. The novel receptor and its derivatives and the genetic sequences encoding same of the present invention are useful in the development of a wide range of agonists, antagonists, therapeutics and diagnostic reagents based on ligand interaction with its receptor.

FIGURE 1

FIGURE 2

3/23
4/23
5/23
6/23
7/23
8/23
9/23
10/23
11/23

aatgatactcaggcagcacttctgggggaaggggctgggcttgg gtttcttttctttatctgtgaaatgggtgaacacctgttcaagac tcctgactcttgaaacatccaggcagggtgagggacttgaagtg actaaggtcctcaggcttagccacagtcttctttatgtactgagc catttcactggccctggattgactgatgaattaatttttgagata aggtotottgtagototagotaggotcaaactatgaactoccaag gtcatcttgagctgctggtactcttgcttccaccccaagtggtgg ccitgattttgttgcctcagcttcaatgagtgcttgggtctcgtt aatatacctgtttgtatttggtttggtttggtttgagttttgttt atttgagacagggcttctctgtgtagtcctggctgtccttggaac tcactctgtagaccaggctggccttgaactcagaaatccgcctgc ttgtgcttcccaagtgcttagattaaaggtgtgcactgccattca gcaaaattgcatactttaaccccagtatttgggaggcagaggcag actaatgtgtgaattccaggctagccaaggatacagagtgagacc ctattettaccetecececeaaaeeeeaaatgtatttgtge ttgtgtatgtacatgtgtgttgcagcacgtaaatgtccaaggaca acttgtagaagttctctccgttcacagtctaagtcctgaattcaa ggagacataatcaattaataggatgtatttgcttagatttgagta ggcatttatgactgatgttttaaaatttttatttgattttatgaa agccccatccctaggaatccatggtagaaggagaaagcaaactcg cccagaactcttggacgctgaggcaggaggattccca agtttcaagacagtgtgtttctaggtaatgagaccctgtcaagaa aagaaaagaaataaagagacaagaaaatgtttataggctgtgaga cagottggtgggtaaggggcacttgcotccaatcaagatgacotc

9938 9938 9938 99353 99353 99333 99338 99338

g1118	ggctcatcccatgcctaacaagtgtcgtctttgaccccagacac D P T I, I, I G S S
g1163	agctgtaatcagccccagGACCCCACCCTTCTCATCGGCTCCTC
g1208	L Q A T C S I H G D T P G A T CCTGCAAGCTACCTGCTCTATACATGGAGACACCTGGGGGCCAC
g1253	A E G L Y W T F N G R R L P S CGCTGAGGGCTCTACTGGACCTTCAATGGTCGCCGCCTGCCT
g1298	E L S R L L N T S T L A L A L IGAGCTGTCCGCCTTAACACCTCCACCCTGGCCCTGGCCCT
g1343	A N L N G S R Q Q S G D N L V GGCTAACCTTAATGGGTCCAGGCAGTCAGGAGACAATCTGGT
g1388	CHARDGSITCTGGCTGCCTCTA
g1433	y g <u>TGTTGGCT</u> gtaagtggggccccagacactcagagatagatggggg
g1478 g1523 g1568	ttggcaatgacagatttagagcctgggtcttctgtcctggggcag agccatgggctctcacttgcatgcaggcatggtcatacccagcac aggcattgcaactctagggacagctgtgggctgcactgtcccctgt
q1613	$_{ m L}$ gtaccccacagc ${ m ttagaaaagctgtcatgttttccttgtag}_{ m IGC}$

g1658	P P E K P F N I S C W S R N M CCCCTGAGAAGCCCTTTAACATCAGCTGCTGGTCCCGGAACATGA
g1703	K D L T C R W T P G A H G E T AGGATCTCACGTGCCGGGGAGACAT
g1748 g1793 g1838	F L H T N Y S L K Y K L R TCTTACATACCAACTCCCTCAAGTACAAGCTGAGGttggtac ccagccaagccttgctgtgtgacttctggcaatacttaccttctc tgatcaaatatgttcctgtttatgaactcaaaagggactctcgca
g1883	W Y G Q D N T C E E Y H cctccacag <u>GTGGTACGGTCAGGATAACACATGTGAGGAGTACCA</u>
g1928	T V G P H S C H I P K D L A L CACTGTGGGCCCTCACTCATGCCAAGGACCTGGCCCT
g1973	F T P Y E I W V E A T N R L G CTTCACTCCCTATGAGATCTGGGTGGAAGCCACCAATCGCCTAGG
g2018	S A R S D V L T L D V L D V CTCAGCAAGAICTGATGTCCTCACACGTGGG
g2063 g2108 g2153	tgagcccccagtgtccacctgtgttctgccctagaccttataggg cgcctccccccatcccccagactttttggttcttctagaggtc ttagccacagccacggtggttgcaggacagtggttgttcataact

FIGURE 2 (continued)

tctctgcgctaatctccacccagctgggtgggctgctctgtccc gtctggaaaacgcagatagggtcataggagccactgcagcctaga ttacaccactgggtgttctgtcactaggccattctcaccaagcag ttcaaggccatcctgaatttacataaagagctccaggccag tggtcccccaggaggttcctgggtgcccctggctcattcccaca tccagaggttttgtgtcttcctggcatctaaccctcagttgtgct ctgtggctggcacagctgcccgtggaggctcttggtaatgtaca aggcatcagaggtggacatgggatggggatacatagggatggagc caaatagcacctcaaggtggggtgatatacaataaagcttgtcac cctgacgctcagaaagcctactcatgatgatcacaattgttgaca tagctttaagagtcagcttgtgacttaatactggaactcagggcc taataggtgctgggtgatgctcgcctcactccctgtttagtgaga cttgagggcaggaatgtgtgtcttccatcagagataggacccgtg gtagcagcaactgctgctggttttctggaatattaaatgacag tcctcagaactgggagcactgttgccagcatttaatgccagcatt taatgccagcattaggggaggcagaggcagaaggatctctctgag ygtgcgcagtaaaaccttgtctcaaaaaacaaagcatctttagtg gtcctaggggactgagaggaggcgcccaggtctgaaggcgcccca ggaagccgaggccttgagctgggggggggggggggttggaggc acgaactggatgatccctgagcacaactgggcctaatctaattag ggtgttcccagcccaaagcagcctgggccatttaacccttcaagt gcctcactgaagactcaggggagagatcagcttgtactctcca caccccaacacacatacacacacactctgcagagaacact ggcctgaccaccctcctctacagcccaggtgttcagaaggga

>	GTGTG
യ	TGAG
П	CCT
Ø	ACCA
Ω	3G7
团	GGA
Ы	CCL
ט	000
Ö	TGG
>	CGT
足	GCCGCGTTGGGGGCCCTGGA
Ŋ	Ž
>	ACGTG,
H	CC
>	GT

K	CCC
Ø	CAA
ഥ	TTCC
П	CTC
ī	TTTCCTC
Ω	GA
ĸ	AAG
J	CTC
A	SCTCTC
Ы	ACCA
Д	Σ
ß	TCA(
>	STC
3	CTGGGTCT
ĸ	CGC

×	AG	iat
ß	TGG?	gtgcccgtcccggacccgccctgacccgcccccgcat
Ω	GAC	CCCC
>	GTG	cgc
ഗ	AGCGTG(CCC
Ω	GAC	tga
田	3AG	CCC
>	FIG	gga
ĸ	CCCC	acci
×	TAC	cgg
ĸ	ATCCGCTA(CCC
Н	ATC	acg
ø	CAG.	gta
×	TAC	CCC
ĸ	AAG'	gtg
	•	_

ctgactcctccaccgtgcag<u>GTGGTGGATGA</u>

ט

Ŋ

, -	r CCC aat	T F K CCCCTCGI	CGA CCA	T F K B <u>CCCTCGAAGTG</u> gtgagcacctctccagggctggctggccatgg aatccccaatccatcctqttccttccccccacccttttttqaq
-----	-----------------	-------------------	------------	---

13458	3 3503	J 3548 J3593	3638	3683	33728	33773	3818
, Q	ď	ם מ	מ	þ	מ	מ	ָ מ

FIGURE 2 (continued)

gagactgaagaccgggggtagggttggagggaggtaagcaggg gctgtgggggccgaagcttgtgccagggcctgtcagcgagtcccc agttttatttatggcgtgaggccgatgtccttatccgctggcctg aggggctggagcctgggagctttggcccttgctcgtgcccagcac ctgcgattcttgcacgggagccagcaggcggctgcgtccgccga tgtctggcctcagtttccccacctgtcaggtttaggcagcacagt cggtccaagacacttcattatttgcaggcagtataagaagaagct cccatcccccacccgcttcctccggtccctaagacagaatacttc tacactgaaactgaactctcgcagacgcatatgctcactttaatg atgatgaaataatggggaaactgaggctccgagagattcctggag gaagaggtcaaaaccagctccaggaagctctccagccccatcc gggcctctccaggttctgggcttggcgggagtgaacacagctggg taatatttgcaatcctcctacctcagcctcttgaatgctcagaaa ccaggcattaacccaagtttctcttctctgggtccctttcttaag gtgggagggcctaaagatgacttcctttgtcctgaagactctccg agcccatggatctgcactctctaatatgaaatatattgcataaaa acctatagaccacagtgcctgtgcctaccacataagggtctctac tgotggcccacccctccaacccttaaaaggtaacctaggcagcct gacctcttgtaagagaactgaagacaggctgtttttaaccccaa atcctaggctctctagaggttaactttatataaaatagagacta ttacagccagttatcacatggtcccacagaaccttttgtcacaca acagcgtcttcaggtagcgcatgctggccttaaattcagtatgta gtcaaggatgacctcgagctcctggtctttttgtctccacttaga gacaatggccagtggccatcaccacctttgggagactagccatgg agtctatttagcctgtcatttggtgacagatggagtacaacagtg gggggatggctggggattggacccaagggctggctt

FIGURE 2 (continued)

actttccccagccgaagctggtctggtatgggaggccgccgtccc gececttgetttgteegtgteectagagteteeggeeeeacttate cattgactggtctttcctttaccgaatactcggttttacctccca ctgatttgactccctcctttgcttgtctccatcgccgtggcattg ccattcctctgggtgactctgggtccacacctgacacctttccca gagagagaataatggaagaaaaaaaatgaagataatta tttgttgagtaggctccttccaccatgtgggactagggctggcga tcccatcctgtttggatagtcataggtaatcgaaggtaaatcgct ggotttaatttcgtagctatcctgcctcagcctaccaagtgctgt gctaccacgtttgtgggagggctctcctcccagtgtctggggggt gacacagtcccaagatctctgctttctaggtctttgtcttagttt ctatttctgtcattcactttcccagagccttttttttatgctttt ttegtgagegtgegtgeeacaeacacaegtgaaggttagagaae caagagcaattactgagtcatctcgccagcccctcaccctcact coactcaqtcctccaqcccactccatqtcacacccqtqcattctc tgaggettatettgggaaceegeeettgttetgtgetgtetgtet

95348 95348 95438 95528 95573 95618

g5213 g5258 g5303

回 tetttag<u>AGCGCCCGGCCCGGCGGGGGGGGGGGTGT</u>GCGA Ç Ç Ö Ü

G GCCCCCCCA Д U

g5888

g5933

5843

b

Ħ	CAC
Ŋ	TCAC
×	AAG
ø	CAG
M	ATG
3	TGG
Ø	CCT
ĸ	STGGCGTG
3	TGG
Ø	CAG
Ω	GAC
×	TAC
ц	CIG
ፚ	CGC
দ	TIC

g5978

Ü	GGG
>	CGTGGG
ບ	IGC
Ą	CCT
闰	GAG
ტ	TGGGGG
'n	LIG
×	PAG.
O	'AGGA
>	STA(
Ø	ACCAGGT
Z	AAC (
2	GA
₽	ACCCG
×	AAG

Ъ	CCA
Д	GCCT
Ø	CAG
Ħ	GAG
ರ	GGI
а	SACCCGGGT
Ω	GAC
ĸ	AGAG
臼	GAG
囝	GAA
团	GAG
Ø	GCA
Ŋ	GGA
¥	AAA
Ü	GGT

ပ	ᄓ	ATCOTO
ഗ	Н	
Ü	ტ	CAACACGCACTCTTCCTAAGCACAGGACGAGGA
×	田	AGG
₽	Ω	ACG
ĸ		AGG
H		CAC
꾹		AAG
Ŋ		CC
J		CTL
Ч		CTT
۲		ACT
R		CGC
H		CAC
Ø		CAA

*	
Ŋ	
ß	
ŋ	
×	
>	
ΙΞÌ	ĸ
瓦	Ø
X	Ø
>	ග
Ŋ	吖
Ω	æ
Ø	ෆ
ĸ	വ
Д	Ωı

GTGGGGCCTACAGCAGTCTAGATGAGGCCCTTTCCCCTCCTTCGG TGTTGCTCAAAGGGATCTCTTAGTGCTCATTTCACCCACTGCAAA GAGCCCCAGGTTTTACTGCATCATCAAGTTGCTGAAGGGTCCAGG CCTCGGGCAGACGGGGTGCGGCGAGAGGGGGGTCTGGGTGA

96248

g6293

g6203

g6158

g6113

g6068

g6023

CTTAATGTGGCCTCTTTTCTGCCCTCAGGTCCTGC

CTAAGGATAGGCCATCCTCCTGCTGGGTCAGACCTGGAGGCTCAC

g6383

g6338

ACATGATGGTCACACTTGGATATACCCCCAGTGTGGGTAGGGTTGG Trgrrcaggreegatggeeagtgtgtttggggeetatgtgetgg CCAGAGGCTGGGCACAATGAGCTCCCACAACCACAGGTTTGGTCC CTGAATTGGAGCCCCTCTGTACCATCTGGGCAACAAAAAAACTA ggtggggga

96428 96473 96518 96563 966508

FIGURE 3

13/23
14/23
15/23
16/23
17/23
18/23
19/23
20/23
21/23

FIGURE 3

GCGGCCGCTG	CAGTGATTAC	TCACCGCGTG	GCGCACCCCA	ccccccccc	GCTGAGTGGA	60
TTTTTCCGTG	GGGGGATGTG	AAGAAGTTTA	GGGAGAACTC	TTCTGCACCG	ATGGGAACTA	120
GGAATGCAGG	GTTCGGTCCC	GTTCCCCAAA	GGACACACCT	CTCCCCATAA	GCCCACTCAT	180
AAGGGCTCCC	TGCACGCGCT	CCGGGACATC	CCCATATCCA	ATACCCGCAG	ATATGATAGT	240
TGAGAAGGGA	CCAGAGGCCG	GAGACTCCCT	CCCTGCCTTC	TGGCTTTCCC	CCCCCCTGC	300
ACGAAACGAG	ACTACAGCGA	TGGGAGAGGT	GGCATGAAGG	CTTAGGGTGG	GGATCGGTAG	360
GACCCATGCA	CCCAGAGAAA	GGGACTGGTG	GCAACTTTCA	AACTCTCTGG	GGAAGGAAGA	420
AGGGCTGAAA	GAGGATGAAC	GGGCTCAGGT	ACTGCTCAAT	CTCTCTCTCC	CGGACCAAAG	480
TGGGTATGGG	GGCCCCGTAA	GAGGGGGGG	GAAGGTGGAT	AGGAAGGATC	CCGGTAGACT	540
GGAGGGGATC	CTGGAAAAGC	ACCAGGGCTG	CGAGCTAGGA	ACCCATTCGG	AGTTAAGGGT	600
ACAGGATCCC	AGATGAGGGG	GTGGGAAGCC	TGGGACGGGC	GGGACCAGAG	AGGGAGGTCC	660
CACGGGCTGG	TGGGGAAAGA	GTGGGGGGCT	TCGCGCAGGA	GGATGGGACG	TTCAGGAGTG	720
GTAACTGGGC	GGAGGCCGGC	ceecceec	GCGCGGTGCC	CGCGGGGGT	GGGAAGGCCG	780
GTGCGGGGCC	CACGATCAAC	CCCCCCCAG	ececcesecc	ececceeee	ceeeccee	840
CGGGGCGAGC	GGCGCATTAG	CGCCTTGTCA	ATTTCGGCTG	CTCAGACTTG	CTCCGGCCTT	900
CGCTGTCCGC	GCCCAGTGAC	GCGCGTGAGG	ACCCGAGCCC	CAATCTGCAC	CCCGCAGACT	960
CGCCCCCGCC	CCATACCGGC	GTTGCAGTCA	CCGCCCGTTG	CGCGCCACCC	CCATGCCCGC	1020
GGGTCGCCCG	GGCCCGTCG	CCCAATCCGC	ececcecce	ccccccccc	TGTCCTCGCT	1080
GTGGTCGCCT	CTGTTGCTCT	GTGTCCTCGG	GGTGCCTCGG	GGCGGATCGG	GAGCCCGTGA	1140
GTACCGTGCG	CCCTGCTCCC	CACCTCCCCA	GGGAAGCCGG	GATCCGGCGC	CCCGGGGGGT	1200
AGTCGCGGGG	GATGGAAGAA	GGGGCGCGAG	CGCCACCTGG	ACGTCCCGGG	AACAAAGGAA	1260
GGCGGCCCTC	GGGGGGCCCT	CACCTGTGGG	GCTCATGGCA	CCACCACCCA	GCCTCCCAAG	1320

FIGURE 3 (CONTINUED) AGTACCCCGT TATACATCAG AGGCCTCTTA TCTGTATCCC CTTTGCGAGG CTGTCTGGCC 1380 AGGCTCAGTT TGAAGGACAT CGCAGTGTCC TGGGACCCCC CTCCTTCAGG GTGCTGGGAC 1440 GCTTCGGGGC GCACGCCTGT GTCTTGGATA TCAGAGCGGA AGGGAAGCCT CCCTGGCCGG 1500 GGGCGCACGC TTGGGTGCGT TGGGTTGGGT GCTGGCGCAA AGTGGGGTCC CCTCCCCCAT 1560 GAAGTGATGA TCCCCGGGGG GAGGGTGGGG CGTTATCGTG AGCCCTCCTG TCCGCCTGGC 1620 ATGCGGCCCG GCGTCCCTCG GGACTTGCCT CTCCGTGGGG TCGGCGCCGC CCCCTCCCCC 1680 CTATAGCAGA CTCCATGCTT TGGTATCCTC GAAGTCCTCT CCACTGGTGG GGCTCACAAC 1740 CGGTCTCATT CAGGCTGCGC TGGGTTGAGA GCCTCTAGCG ACTGAAATTT CGGTGAGGAG 1800 CGAGAGCAAG COTOTCCGGG CACCGCGAGC CCAGACTTCA TTGTCTAAGG GGCACCCAGT 1860 GGGGGTCAGC TGCCGAGAGA ATCCCACTGT CCCAGGAGGA ACTCCTGGCC TTGAGCCCCC 1920 ATCACCCAAC GCACACATCC CCGCCAGGAT GCGGTCTCCA CATCCAGACC CTCTCTGGGA 1980 CACACCCAAA GACACAAA AGAGCCCCAC TGGCTTATGT CCCGTCACCC TGCCCTCCGA 2040 CGCGCGCTGC AGCCCAGATG CGTATTCGCA CACCATCGCG GCGCTCGCAT TCCATCCTCT 2100 2160 ACACGCACGC ACACACACGC ACGCCCGCAC TCGTGGTCCC ACATTTATTT CACAGGGGAG 2220 GCAACACCGG GGTACGCATA TGGTTGAGTG CACTGGAGAT CTTTCCCCAC CACTCTCAGG 2280 2340 TAGTAGTOTT GTGCAGTTTG TCCGCGGTGT CTGTGGACGC CCTCCCGCTC TTGTCAGGGG 2400 ACAGGAACCT ACACTCCTGC TTGCCCAAGG CGGCTGGGCA GGTGATGTGG TGACACCCGG 2460 GACCTTTCCG GGGAGTTGGT GTTGCTGCCA AGCCTGGGTA GTTTTTGAAT GCCACCAATA 2520 GCGCTAAGCT TTGTTTCCGG GCGGGCTGCA GAGCAACAGG CGAAGGTGGC GGAGTGGGGG 2580 TGGCGCGTGT GTTTTTCTT TTAAGGGGGA GAGAAATTAA ATAAGAGGTT CTCACACCTC 2640 TGCAATCTGT TTGTACTTAC CGTGTGTCTT AACACCTGAC CAGCCAGCCG GTGGGTCGTA 2700 2760 AAAGTGTATG CAGGTACCAG CGGGACAGGA GATGGGGGCC CCTGGGGTAT GGCTGGGATG

FIGURE 3 (CONTINUED) GAGGCCACCT TCCCGTTGGC CTTTCAGGGA ATCTCACACT TTTCCCTTTT AAAACACATG GTGTTCTTTT TAATAACGGC AGCAACTCCG CATTGGGAAA GGGGGAAATA AGCTTGTATA 2880 GGCCCCGGCT TTGTGGAAAG GAGGGGAAGA GGGAAGAAAA AAGGAGGGGT GTCTCCTCCA 2940 GGCTTAGGGG GCTGTCAGCT GCTGCTCTGT CTAGCTTGGC ATGTGTGTGC CCCAGTCCCC 3000 AGTGGCTTTG GCCCATTGTT TGTGGAAGCC AAGAGGGAGA CTGGAGTCCT CTATCTCTGG TACTCCAGAG TCAGGCTTCT CAGTCCGAGC CCAGAGAACG TCTTCCCTGT TTTATGGAGG 3120 GAATCAGGGA AGGGGGTGCC AGGTGGACTA CGTTCTGCTG AGGACTGTAC CAGTCGCTCG AAGGAGAAAG CTTGGGCTTG CCCCCCTCCC CCCTCAAGCC ACGAAGGGCA GCTGCTAGGC TAGTGTGGTA AAAGGGCATT ACTCCCCAGC CAGGACCCCC CAGAGAGTCC CCTTCCTGGC 3300 CAGACAAATG CTGGGGAGGG ACAGAGGGGT GTGATCATTG CCCAGGAGTG CAGACAGTGG 3360 GGTCCCGGGT CGGGCAGTGC CTCCCACCCT GCTGAGGGGG GCGCCCAGGC AGGAAGCGGT 3420 GGGTGGGCCG GGGTAGAGAC GCTGGCACGT CCCAGTTCAT GCCGAAGGAA TTCTGAATTA 3480 GCGGGCGGTT GGCTGCCTGG GACCTCCGGG GCGGCCCCCT GGCCCCGGCC GCTCCGTCTG 3540 GCCTGCTCCT CCTGCTCCTT CGCACGGACG CTGAGACCTC CGCTGAGCCC TGGGACAAGC CCCAAATGCA ACTGCGATTG CAGGCTTCGC AAGACCCGCC TCCTCCCAAG GCCAAATTTG 3660 CCTGGGAGAA GTCATTCAGG GCCCAGACTA GAACCATGTT GGTGCCACCT CATCCATCTG 3720 GGGCATGAAG GACCGTCCAG GGCTGCAGTT TAGCTTCTTA ATAGGAACCT GGGGGTGGGT GCAGCCTCTG TTCTCCGAGC CTCTTTGGAA ATCGGTTTTG TTTTTGTTTT TGTTTTTTCC 3840 AATACTCTTT TCCTCTCATC CCATCCCGGG ACTGTTTCC TCCCTAAGGG TTGAGAGCCC 3900 TGCAGTCTTC CCTAACCTTT TCTTTGCTTC TACCCCAGGG CCTTTGCACA TGGAGTCCCA 3960 CCTCTCCCCT TGCCCAACTG GGGCTCCAGC CTTACTGCAT TTGGCTCTTG GTAACTGTCC 4020 CAGGGCCTCT CTGACACACA GGGTTGTAGC CCCAGCTCCC TCTCTTCTCC TCCCCCCTTT 4080 CTCTTTTGCT TCTGAGACTT AATTITTTTC TTTTTCTTTT TGGCTTTTTG AGACAGGGTT 4140 TCTCTGTACA GCCCTGGCTG CCCTGGCACT CATTCTGTAG ACCAGGCTAG CCTCAAACTC 4200 FIGURE 3 (CONTINUED) ACAAACCTAC CTGCCTCTGC CTTTCCAGTG CTGGCACTAA AGATGTGGGC CACCACAACT 4260 AGTAGTTAAG TOTTTTGCTG TGTCTTTATT CCTATAGTGA CCTCAGTTCC TGGCATATTG 4320 TAGGCGATGG ATGGATGAAT GGATGGATGG ATGGATGGAT GGATGGTTGG ATGGAGCAAG 4380 CTTGAATCGT CCTGAGTGAA AAAAGAGACC TCAGAGAACT GAATGGAGTT AGGTTCCCAG 4440 GGCAGCCTGG CCTGCTGGTC TCATGGGAGC TCCCTGTGAA ACTTCCCCCA CACCTCCCAC 4500 CACCCTGCCA TCCTGTGTGG CTGACAAGAA AGGCCAATGG CCAGATGGGG ACACAGACTC 4560 AGGGAAGCTT GGAATATGTT CCCCTCCTCA TATCCTAGGC CTTGTTGTCC CCCTGAGGGC 4620 CCAGCCTATG AGTAGGGCAG CTGTGGGCTG CCCTAAGGTT GGGTAGGCAA GAAGGGGGTG 4680 GTCCCTCAGG GTGGGTCACA GGATTGAGGT CATTTCCAAA GTGGCCATCA CAGTGGCCCT AGGAAATGAT TGTGGAGAGT CAGAACTCCT GTTGGGAGTT GTAGAGGGCC TTGCATGTGG GCTTCTGTGG CTGTCCCTTC TCTTGTGGTC CTTTGCACAG TCCCCTCGTG TGTGCTGGGA 4860 TGTGAGGAGG GCACGGGGAA AATGAAGGCT CAGCCCCTCA GCTTGCCCTT CACGGTTCAC CCAACAGGGC TCACCTCTCC TCTGGACAGG CTCTCACTGT ATGCACAGAT TGGCCTCACA 4980 TTTGATTCCC TTCCTTTGGT CTCCTGGGAT GACAAACATT TACCAGGGTA GGATTTTACA 5040 TTTTAGATAT GTCCATTCTC CAGAAACACA CTTGTGAGGT TAGGGTATCA GTGAAAGGAC 5100 ACCACCAGGA CAGACAAAGA ATTGGAGAGG AAGGAAATTG GTAAGCCAGG CCATGCTTGA 5160 TGGCTTATGT GTAATCCCAG AACTCTGGAC GCTGAGGCAG GAGGATTCCA AGTTTCAAGA 5220 5280 ATGTTTATAG GCTGTGAGAC AGCTTGGTGG GTAAGGGGCA CTTGCCTCCA ATCAAGATGA 5340 CCTCAGCCCC ATCCCTAGGA ATCCATGGTA GAAGGAGAAA GCAAACTCCA GCTGCTGACC 5400 TCCATACATG TGCTCCAATG TGCACACACA CAGGGAGACA TAATCAATTA ATAGGATGTA 5460 TTTGCTTAGA TTTGAGTAGG CATTTATGAC TGATGTTTTA AAATTTTTAT TTGATTTAT 5520 GAAAATATAC CTGTTTGTAT TTGGTTTGGT TTGGTTTGAG TTTTGTTTAT TTGAGACAGG 5580 GCTTCTCTGT GTAGTCCTGG CTGTCCTTGG AACTCACTCT GTAGACCAGG CTGGCCTTGA 5640

FIGURE 3 (CONTINUE	D)				
ACTCAGAAAT CCGCCTGCTT	GTGCTTCCCA	AGTGCTTAGA	TTAAAGGTGT	GCACTGCCAT	5700
TCAGCAAAAT TGCATACTTT	AACCCCAGTA	TTTGGGAGGC	AGAGGCAGAC	TAATGTGTGA	5760
ATTCCAGGCT AGCCAAGGAT	ACAGAGTGAG	ACCCTATTCT	TACCCTCCCC	CCCCAAAACC	5820
CCAAAATGTA TTTTGTGCTT	GTGTATGTAC	ATGTGTGTTG	CAGCACGTAA	ATGTCCAAGG	5880
ACAACTTGTA GAAGTTCTCT	CCGTTCACAG	TCTAAGTCCT	GAATTCAAAC	TAAGGTCCTC	5940
AGGETTAGEC ACAGTETTET	TTATGTACTG	AGCCATTTCA	CTGGCCCTGG	ATTGACTGAT	6000
GAATTAATTT TTGAGATAAG	GTCTCTTGTA	GCTCTAGCTA	GGCTCAAACT	ATGAACTCCC	6060
AAGGTCATCT TGAGCTGCTG	GTACTCTTGC	TTCCACCCCA	agtggtggaa	TGATACTCAG	6120
GCAGCACTTC TCTGGGGAAG	GGGCTGGCCT	TGGCCTTGAT	TTTGTTGCCT	CAGCTTCAAT	6180
GAGTGCTTGG GTCTCGTTGT	TTCTTTTCTT	TATCTGTGAA	ATGGGTGAAC	ACCTGTTCAA	6240
GACTTCCTGA CTCTTGAAAC	ATCCAGGCAG	GGTGAGGGAC	TTGAAGTGGG	CTCATCCCAT	6300
GCCTAACAAA GTGTCGTCTT	TGACCCCAGA	CACAGCTGTA	ATCAGCCCCC	AGGACCCCAC	6360
CCTTCTCATC GGCTCCTCCC	TGCAAGCTAC	CTGCTCTATA	CATGGAGACA	CACCTGGGGC	6420
CACCGCTGAG GGGCTCTACT	GGACCTTCAA	TGGTCGCCGC	CTGCCCTCTG	AGCTGTCCCG	6480
CCTCCTTAAC ACCTCCACCC	TGGCCCTGGC	CCTGGCTAAC	CTTAATGGGT	CCAGGCAGCA	6540
GTCAGGAGAC AATCTGGTGT	GTCACGCCCG	AGACGGCAGC	ATTCTGGCTG	GCTCCTGCCT	6600
CTATGTTGGC TGTAAGTGGG	GCCCCAGACA	CTCAGAGATA	GATGGGGGTT	GGCAATGACA	6660
GATTTAGAGC CTGGGTCTTC	TGTCCTGGGG	CAGAGCCATG	GGCTCTCACT	TGCATGCAGG	6720
CATGGTCATA CCCAGCACAG	GCATTGCAAC	TCTAGGGACA	GCTGTGGCTG	CACTGTCCCC	6780
TGTGTACCCC ACAGCTTTAG	AAAAGCTGTC	ATGTTTTCCT	TGTAGTGCCC	CCTGAGAAGC	6840
CCTTTAACAT CAGCTGCTGG	TCCCGGAACA	TGAAGGATCT	CACGTGCCGC	TGGACACCGG	6900
GTGCACACGG GGAGACATTC	TTACATACCA	ACTACTCCCT	CAAGTACAAG	CTGAGGTTGG	6960
TACCCAGCCA AGCCTTGCTG	TGTGACTTCT	GGCAATACTT	ACCTTCTCTG	ATCAAATATG	7020
TTCCTGTTTA TGAACTCAAA	AGGGACTCTC	GCACCTCCAC	AGGTGGTACG	GTCAGGATAA	7080

CACATGTGAG GAGTACCACA CTGTGGGCCC TCACTCATGC CATATCCCCA AGGACCTGGC 7140 CCTCTTCACT CCCTATGAGA TCTGGGTGGA AGCCACCAAT CGCCTAGGCT CAGCAAGATC 7200 · TGATGTCCTC ACACTGGATG TCCTGGACGT GGGTGAGCCC CCAGTGTCCA CCTGTGTTCT 7260 GCCCTAGACC TTATAGGGCG CCTCCCCCC ATCCCCCCAG ACTTTTTGGT TCTTCTAGAG 7320 OTOTTAGCCA CAGCCACGGT GGTTGCAGGA CAGTGGTTGT TCATAACTTA ATGCAAAGAC 7380 7440 CTCTGCAGAG AACACCTGGC CTGACCACCC TCCCTCTCTA CAGCCCAGGT GTTCAGAAGG 7500 GAGTCCTAGG GGACTGAGAG GAGGCGCCCA GGTCTGAAGG CGCCCCAGGA AGCCGAGGCC 7560 TTGAGCTGGG GGGGGGGGG AGGCTTGGAG GCACGAACTG GATGATCCCT GAGCACAACT 7620 GGGCCTAATC TAATTAGGGT GTTCCCAGCC CAAAGCAGCC TGGGCCATTT AACCCTTCAA 7680 STSCCTCACT GAAGACTCAG GGGAGAGATC AGCTTGTACT CTCTCCATGG TCCCCCAGGA 7740 GGGTTCCTGG GTGCCCCTGG CTCATTCCCA CATCCAGAGG TTTTGTGTCT TCCTGGCATC 7800 TAACCCTCAG TTGTGCTCTG TGGCTGGCAC AGCTGCCCCG TGGAGGCTCT TGGTAATGTA 7860 CAAGGCATCA GAGGTGGACA TGGGATGGGG ATACATAGGG ATGGAGCCAA ATAGCACCTC AAGGTGGGGT GATATACAAT AAAGCTTGTC ACCCTGACGC TCAGAAAGCC TACTCATGAT 7980 GATCACAATT GTTGACATCA CTCTGGGACA TGTAGTGAGA CCCTAGCTCA AAACACAGAC 8040 AGTAGCTTTA AGAGTCAGCT TGTGACTTAA TACTGGAACT CAGGGCCTAA TAGGTGCTGG B100 GTGATGCTCG CCTCACTCCC TGTTTAGTGA GATCTCTGCG CTAATCTCCA CCCCAGCTGG 81.60 GTGGGCTGCT CTGTCCCCTT GAGGGCAGGA ATGTGTGTCT TCCATCAGAG ATAGGACCCG 8220 TGGTAGCAGC AACTGCTGCT GGCTGTTTCT GGAATATTAA ATGACAGTAA TCTATCAGGC 8280 CTGGGTGAGT AGCTAACAGG GGTGGGGGGG TGGTCTGGAA AACGCAGATA GGGTCATAGG AGCCACTGCA GCCTAGATTA CACCACTGGG TGTTCTGTCA CTAGGCCATT CTCACCAAGC AGTOCTCAGA ACTGGGAGCA CTGTTGCCAG CATTTAATGC CAGCATTTAA TGCCAGCATT 8460 AGGGGAGGCA GAGGCAGAAG GATCTCTCTG AGTTCAAGGC CATCCTGAAT TTACATAAAG 8520

AGCTCCAGGC CAGCCAGGGT GCGCAGTAAA ACCTTGTCTC AAAAAACAAA GCATCTTTAG 8580 TGACCAGGCT TGCTCCACCC CCAGTGACCA CGGACCCCCC ACCCGACGTG CACGTGAGCC 8640 GCGTTGGGGG CCTGGAGGAC CAGCTGAGTG TGCGCTGGGT CTCACCACCA GCTCTCAAGG 8700 ATTTCCTCTT CCAAGCCAAG TACCAGATCC GCTACCGCGT GGAGGACAGC GTGGACTGGA 8760 AGGTGCCCGT CCCGCCCCGG ACCCGCCCCT GACCCCGCCC CCCGCATCTG ACTCCTCCCT 8820 CACCGTGCAG GTGGTGGATG ACGTCAGCAA CCAGACCTCC TGCCGTCTCG CGGGCCTGAA 8880 GCCCGGCACC GTTTACTTCG TCCAAGTGCG TTGTAACCCA TTCGGGATCT ATGGGTCGAA 8940 AAAGGCGGGA ATCTGGAGCG AGTGGAGCCA CCCCACCGCT GCCTCCACCC CTCGAAGTGG 9000 TGAGCACCTC TCCAGGGCTG GCTGGCCCAT GGAATCCCCA ATCCATCCTG TTCCTTCCCC 9060 CCCACCCTTT TTTTGAGACA GCGTCTTCAG GTAGCGCATG CTGGCCTTAA ATTCAGTATG 9120 TAGTCAAGGA TGACCTCGAG CTCCTGGTCT TTTTGTCTCC ACTTAGAGAC AATGGCCAGT 9180 GGCCATCACC ACCTTTGGGA GACTAGCCAT GGAGTCTATT TAGCCTGTCA TTTGGTGACA 9240 GATGGAGTAC AACAGTGTGA CCTCTTGTAA GAGAACTGAA GACAGGCTGT TTTTAACCCC 9300 AATATCCTAG GCTCTCTAGA GGTTAACTTT ATATAAAATA GAGACTATTA CAGCCAGTTA 9360 TCACATGGTC CCACAGAACC TTTTGTCACA CAACCTATAG ACCACAGTGC CTGTGCCTAC 9420 CACATAAGGG TCTCTACTGC TGGCCCACCC CTCCAACCCT TAAAAGGTAA CCTAGGCAGC 9480 CTTAATATTT GCAATCCTCC TACCTCAGCC TCTTGAATGC TCAGAAACCA GGCATTAACC 9540 CAAGTTTCTC TTCTCTGGGT CCCTTTCTTA AGGTGGGAGG GCCTAAAGAT GACTTCCTTT 9600 GTCCTGAAGA CTCTCCGAGC CCATGGATCT GCACTCTCTA ATATGAAATA TATTGCATAA 9660 AATGTCTGGC CTCAGTTTCC CCACCTGTCA GGTTTAGGCA GCACAGTCGG TCCAAGACAC 9720 TTCATTATTT GCAGGCAGTA TAAGAAGAAG CTCCCATCCC CCACCCGCTT CCTCCGGTCC 9780 CTAAGACAGA ATACTTCTAC ACTGAAACTG AACTCTCGCA GACGCATATG CTCACTTTAA TGATGATGAA ATAATGGGGA AACTGAGGCT CCGAGAGATT CCTGGAGGAA GAGGGTCAAA 9900 ACCAGCTOCA GGAAGCTOTO CAGCOCCCAT COGGGCCTCT CCAGGTTCTG GGCTTGGCGG 9960

GAGTGAACAC AGCTGGGAGG GGCTGGAGCC TGGGAGCTTT GGCCCTTGCT CGTGCCCAGC 10020 ACCTGCGATT CTTGCACGGG AGCCAGCAGG CGGCTGCGTC CGCCCGAGAG ACTGAAGAAG 10080 CCGGGGGTAG GGTTGGAGGG AGGTAAGCAG GGGCTGTGGG GGCCGAAGCT TGTGCCAGGG 10140 CCTGTCAGCG AGTCCCCAGT TTTATTTATG GCGTGAGGCC GATGTCCTTA TCCGCTGGCC 10200 TGCTGGGGGA TGGCTGCGGC TGGGGATTGG ACCCAAGGGC TGGCTTCCCA CTCAGTCCTC 10260 CAGCCCACTC CATGTCACAC CCGTGCATTC TCTGAGGCTT ATCTTGGGAA CCCGCCCTTG 10320 TTCTGTGCTG TCTGTCTCTA TTTCTGTCAT TCACTTTCCC AGAGCCTTTT TTTTATGCTT 10380 TTAATATAAC TACGTTTTAA AAATTGCTTT TGTATAATGT GTGTGCCTTC GTGAGCGTGC 10440 GTGCCACAAC ACACACGTGA AGGTTAGAGA ACTTTGTTGA GTAGGCTCCT TCCACCATGT 10500 GGGACTAGGG CTGGCGACAA GAGCAATTAC TGAGTCATCT CGCCAGCCCC TCACCCCTCA 10560 CTTCCCATCC TGTTTGGATA GTCATAGGTA ATCGAAGGTA AATCGCTGGC TTTAATTTCG 10620 TAGCTATCCT GCCTCAGCCT ACCAAGTGCT GTGCTACCAC GTTTGTGGGA GGGGCTCTCC 10680 TCCCAGTGTC TGGGGGTACA CAGTCCCAAG ATCTCTGCTT TCTAGGTCTT TGTCTTAGTT 10740 TECCCCTTEC TTTETCCGTG TCCCTAGAGT CTCCGGCCCC ACTTAGTCTC CATTGATTTC 10800 CTTTCTGACC GAATACTCGG TTTTACCTCC CACTGATTTG ACTCCCTCCT TTGCTTGTCT 10860 CCATCGCCGT GGCATTGCCA TTCCTCTGGG TGACTCTGGG TCCACACCTG ACACCTTTCC 10920 CAACTTTCCC CAGCCGAAGC TGGTCTGGTA TGGGAGGCCG CCGTCCCGCG CGCGCCTCCT 10980 GCTGGCCGCG CCCCAACACT GCCGCTCCAT TCTCTTTAGA GCGCCCGGGC CCGGGCGGCG 11040 GGGTGTGCGA GCCGCGGGG GGCGAGCCCA GCTCGGGCCC GGTGCGGCGC GAGCTCAAGC 11100 AGTTCCTCGG CTGGCTCAAG AAGCACGCAT ACTGCTCGAA CCTTAGTTTC CGCCTGTACG 11160 ACCAGTGGCG TGCTTGGATG CAGAAGTCAC ACAAGACCCG AAACCAGGTA GGAAAGTTGG 11220 GGGAGGCTTG CGTGGGGGT AAAGGAGCAG AGGAAGAGA AGACCCGGGT GAGCAGCCTC 11280 CACAACACCG CACTCTTCTT TCCAAGCACA GGACGAGGGG ATCCTGCCCT CGGGCAGACG 11340 GGGTGCGGCG AGAGGTAAGG GGGTCTGGGT GAGTGGGGCC TACAGCAGTC TAGATGAGGC 11400

FIGURE 3 (CONTINUED) CCTTTCCCCT CCTTCGGTGT TGCTCAAAGG GATCTCTTAG TGCTCATTTC ACCCACTGCA 11460 AAGAGCCCCA GOTTTACTG CATCATCAAG TTGCTGAAGG GTCCAGGCTT AATGTGGCCT 11520 CTTTTCTGCC CTCAGGTCCT GCCGGCTAAA CTCTAAGGAT AGGCCATCCT CCTGCTGGGT 11580 CAGACCTGGA GGCTCACCTG AATTGGAGCC CCTCTGTACC ATCTGGGCAA CAAAGAAACC 11640 TACCAGAGGC TGGGCACAAT GAGCTCCCAC AACCACAGCT TTGGTCCACA TGATGGTCAC 11700 ACTTGGATAT ACCCCAGTGT GGGTAGGGTT GGGGTATTGC AGGGCCTCCC AAGAGTCTCT 11760 TTAAATAAAT AAAGGAGTTG TTCAGGTCCC GATGGCCAGT GTGTTTGGGG CCTATGTGCT 11820 GGGGTGGGGG GA 11832

FIGURE 4

Murine NR-6 genomic structure

FIGURE 5

Figure 6: Comparison of human and mouse NR6 cDNA sequences

Figure 7: Comparison of human and mouse NR6 protein sequences

Figure 8

Transient Expression of C Terminal FLAG tagged Human NR6 in 293T cells

Figure 9

Lane 1: CHO C' FLAG human NR6 clone #30 Lane 2: CHO N' FLAG human NR6 clone #23

Lane 3: 293T C' FLAG human NR6 clone #38

Biosensor response

1577 Units 2141 Units Not Determined

United States Patent & Trademark Office

Office of Initial Patent Examination - Scanning Division

Application deficiencies found during scanning:

Ι.	Application papers are not suitable for scanning and are not in compliance with 37 CF
	1.52 because:
	\square All sheets must be the same size and either A4 (21 cm x 29.7 cm) or 8-1/27x 117
	Pages do not meet these requirements.
	Papers are not flexible, strong, smooth, non-shiny, durable, and white.
	Papers are not typewritten or mechanically printed in permanent ink on one side.
	Papers contain improper margins. Each sheet must have a left margin of at least
	2.5 cm (1") and top, bottom and right margins of at least 2.0 cm (3/4").
	Papers contain hand lettering.
2.	Drawings are not in compliance and were not scanned because: The drawings or copy of drawings are not suitable for electronic reproduction. All drawings sheets are not the same size. Pages must be either A4 (21 cm x 29.7 or 8-1/2" x 11". Each sheet must include a top and left margin of at least 2.5 cm (1"), a right margin at least 1.5 cm (9/16") and a bottom margin of at least 1.0 cm (3/8").
٠.	Page(s) are not of sufficient clarity, contrast and quality for
	electronic reproduction.
	Page(s) are missing.
	OTHER: No Declaration