INTRO TO DATA SCIENCE REVIEW

supervised unsupervised

making predictions discovering patterns

supervised unsupervised

labeled examples no labeled examples

TYPES OF ML SOLUTIONS

continuouscategoricalsupervisedregressionclassificationunsuperviseddimension reductionclustering

QUESTION

HOW DO YOU REPRESENT

YOUR
DATA?

quantitative qualitative

	continuous	categorical	
color	RGB-values	{red, blue}	
ratings	1 — 10 rating	Good / Bad	

QUESTION

HOW DO YOU MEASURE

OF
QUALITY?

supervised unsupervised

test out your predictions

...

supervised unsupervised

Accuracy, MSE, MAE, AUC

...

INTRO TO DATA SCIENCE

III. SUPERVISED LEARNING

Q: What steps does a classification problem require?

Q: What steps does a classification problem require?

1) split dataset

- Q: What steps does a classification problem require?
 - 1) split dataset
- 2) train model

Q: What steps does a classification problem require?

- 1) split dataset
- 2) train model
- 3) test model

Q: What steps does a classification problem require?

- 1) split dataset
- 2) train model
- 3) test model
- 4) make predictions

INTRO TO DATA SCIENCE

III. LINEAR REGRESSION

continuous

categorical

supervised unsupervised

regression

dimension reduction

classification clustering

- Q: What is a regression model?
- A: A functional relationship between input & response variables

The simple linear regression model captures a linear relationship between a single input variable x and a response variable y:

$$y = \alpha + \beta x + \epsilon$$

Q: What do the terms in this model mean?

$$y = \alpha + \beta x + \epsilon$$

A: y = response variable (the one we want to predict)

x =input variable (the one we use to train the model)

 α = intercept (where the line crosses the y-axis)

 β = regression coefficient (the model "parameter")

 ε = residual (the prediction error)

OLS: $\min(\|\mathbf{y} - \mathbf{x}\boldsymbol{\beta}\|^2)$

L1 regularization: $\min(\|y - x\beta\|^2 + \lambda \|\beta\|)$

L2 regularization: $\min(\|\mathbf{y} - \mathbf{x}\boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|^2)$

INTRO TO DATA SCIENCE

IV. LOGISTIC REGRESSION

THE LOGISTIC FUNCTION

$$E(y|x) = \pi(x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$$

$$E(y|x) = \pi(x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$$

We've already seen what this looks like:

The **logit function** is an important transformation of the logistic function. Notice that it returns the linear model!

$$g(x) = \ln(\frac{\pi(x)}{1 - \pi(x)}) = \alpha + \beta x$$

The **logit function** is an important transformation of the logistic function. Notice that it returns the linear model!

$$g(x) = \ln(\frac{\pi(x)}{1 - \pi(x)}) = \alpha + \beta x$$

The logit function is also called the log-odds function.

INTRO TO DATA SCIENCE

V. KNN CLASSIFICATION

KNN CLASSIFICATION

Suppose we want to predict the color of the grey dot.

- 1) Pick a value for k.
- 2) Find colors of k nearest neighbors.

KNN CLASSIFICATION

Suppose we want to predict the color of the grey dot.

- 1) Pick a value for k.
- 2) Find colors of k nearest neighbors.
- 3) Assign the most common color to the grey dot.

INTRO TO DATA SCIENCE

VI. NAIVE BAYES

Suppose we have a dataset with features $x_1, ..., x_n$ and a class label c. What can we say about classification using Bayes' theorem?

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

Bayes' theorem can help us to determine the probability of a record belonging to a class, given the data we observe.

This term is the likelihood function. It represents the joint probability of observing features $\{x_i\}$ given that that record belongs to class \subset .

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

This term is the prior probability of \subset . It represents the probability of a record belonging to class \subset before the data is taken into account.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

This term is the normalization constant. It doesn't depend on \subset , and is generally ignored until the end of the computation.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

This term is the posterior probability of \subset . It represents the probability of a record belonging to class \subset after the data is taken into account.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

This term is the posterior probability of \subset . It represents the probability of a record belonging to class \subset after the data is taken into account.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

The goal of any Bayesian computation is to find ("learn") the posterior distribution of a particular variable.

The idea of Bayesian inference, then, is to **update** our beliefs about the distribution of c using the data ("evidence") at our disposal.

$$P(\text{class } C \mid \{x_i\}) = \frac{P(\{x_i\} \mid \text{class } C) \cdot P(\text{class } C)}{P(\{x_i\})}$$

Then we can use the posterior for prediction.

supervised
unsupervisedregression
dimension reductionclassification
clustering

INTRO TO DATA SCIENCE

V. COMPARISON

KNN

linear N

42

CLASSIFICATION

linear N scalability +/-

	_I KNN		
linear	N		
scalability	+/-		
interpretation	_		

	KNN		
linear	N		
scalability	+/-		
interpretation	_		
configuration	+		

	_I KNN
linear	N
scalability	+/-
interpretation	_
configuration	+
specification	_

	KNN
linear	N
scalability	+/-
interpretation	_
configuration	+
feature-select	-
overfitting	< K

	KNN	Logistic
linear	N	Y
scalability	+/-	+
interpretation	-	+
configuration	+	+
feature-select	-	+
overfitting	< K	L1/L2

	KNN	Logistic	NB
linear	N	Y	Y
scalability	+/-	+	+
interpretation	-	+	+
configuration	+	+	+
feature-select	-	+	+
overfitting	< K	L1/L2	Prior

	KNN	Logistic	NB	RF
linear	N	γ	Υ	N
scalability	+/-	+	+	_
interpretation	-	+	+	_
configuration	+	+	+	+
feature-select	-	+	+	+
overfitting	< K	L1 / L2	Prior	n tree

	KNN	Logistic	NB	<i>RF</i>	SVM
linear	N	Υ	Υ	N	Y/N
scalability	+/-	+	+	_	_
interpretation	_	+	+	_	_
configuration	+	+	+	+	_
feature-select	_	+	+	+	_
overfitting	< K	L1 / L2	Prior	n tree	C-cost