Amendments to the Claims:

1

2

3

1

2

3

This listing of claims will replace all prior versions and listings of claims in the application:

1	1. (Currently Amended) A method for controlling a gap in an
2	electrically conducting solid state structure, comprising the steps of:
3	providing an electrically conducting solid state structure including a
4	gap in the structure;
5	exposing the structure to a fabrication process environment conditions
6	of which are selected to alter an extent of the gap in the structure;
7	applying a voltage bias across the gap in the structure during process
8	environment exposure of the structure;
9	measuring electron tunneling current across the gap during process
10	environment exposure of the structure to indicate an extent of the gap; and
11	controlling the process environment during process environment
12	exposure of the structure, based on the tunneling current measurement, to
13	control an extent of the gap.
	1

- 2. The method of claim 1 wherein controlling the (Original) process environment comprises halting process environment exposure of the structure based on tunneling current measurement.
- 3. (Original) The method of claim 1 wherein controlling the process environment comprises comparing tunneling current measurement with a threshold tunneling current corresponding to a prespecified gap extent and controlling the process environment based on the comparison.

1	4.	(Original)	The method of claim 1 wherein the conditions of the			
2	fabrication process environment are selected to increase an extent of the gap					
3	in the structure.					
1	5.	(Original)	The method of claim 1 wherein the conditions of the			
2	fabrication process environment are selected to decrease an extent of the gap					
3	in the structure.					
1	6.	(Original)	The method of claim 1 wherein the fabrication			
2	process env	rironment con	nprises ion beam exposure of the structure.			
	_	(O : : 1)				
1	7.	(Original)	The method of claim 6 wherein the ion beam			
2	exposure co	omprises blan	ket ion beam exposure of the structure.			
,	8.	(Original)	The method of claim 6 wherein the ion beam			
1 2		, ,	ering of the structure by a focused ion beam.			
2	exposure co	mprises rasc	ering of the structure by a focused fon beam.			
1	9.	(Currently	Amended) The method of claim 1 wherein the			
2	structure co	omprises two	electrically conducting electrodes having the a gap			
3	between the electrodes.					
1	10.	(Original)	The method of claim 9 wherein the electrically			
2	conducting electrodes are disposed on an electrically insulating membrane					
3	including a	n aperture al	igned with the gap between the electrodes.			
1	11.	(Original)	The method of claim 9 wherein the electrically			
2	conducting	electrodes ar	e disposed on an electrically insulating surface of a			

substrate.

3

12. ((Cancel	led)

- 13. (Canceled)
- 14. (Canceled)
- 15. (Canceled)
- 16. (Canceled)
- 17. (Canceled)
- 18. (Canceled)
- 19. (Canceled)
- 20. (Canceled)
- 21. (Canceled)
- 1 22. (Previously Presented) The method of claim 1 wherein the 2 fabrication process environment comprises electron beam exposure of the 3 structure.
- 1 23. (Previously Presented) The method of claim 9 wherein each 2 electrically conducting electrode is connected in a closed-loop circuit across the 3 gap for measuring electron tunneling across the gap.
- 1 24. (Previously Presented) The method of claim 9 wherein each 2 electrically conducting electrode is disposed in a connection to an electrical 3 contact pad.
- 1 25. (Previously Presented) The method of claim 24 wherein applying 2 a voltage bias across the gap in the structure comprises applying a voltage bias 3 between the electrical contact pads.

1	26. (Previously Presented) The method of claim 1 wherein providing					
2	an electrically conducting solid state structure including a gap in the structure					
3	comprises:					
4	first providing an electrically conducting solid state structure without a					
5	gap; and					
6	initiating the fabrication process environment to provide a gap in the solid					
7	state structure.					
1	27. (Previously Presented) The method of claim 1 wherein providing					
2	an electrically conducting solid state structure including a gap in the structure					
3	comprises:					
4	first providing an electrically conducting solid state structure without a					
5	gap; and					
6	initiating a fabrication process environment to provide a gap in the solid					
7	state structure that defines two electrically conducting electrodes separated from					
8	each other by the gap.					
1	28. (Previously Presented) The method of claim 27 wherein the					
2	exposure of the structure to fabrication process environment increases the extent					
3	of the gap between the two electrically conducting electrodes.					

29. (Previously Presented) The method of claim 10 wherein the electrically insulating membrane comprises a silicon nitride membrane.

1

2

1 30. (Previously Presented) The method of claim 11 wherein the 2 substrate comprises a silicon substrate.

- 1 31. (Previously Presented) The method of claim 1 wherein measuring 2 electron tunneling current comprises amplifying acquired electron tunneling 3 current prior to measuring electron tunneling current.
- 1 32. (Previously Presented) The method of claim 1 wherein measuring
 2 electron tunneling current comprises digitizing acquired electron tunneling
 3 current prior to measuring electron tunneling current.
- 1 33. (Previously Presented) The method of claim 1 wherein applying a
 2 voltage bias across the gap comprises applying across the gap a voltage that is
 3 less than a work function that is characteristic of the electrically conducting solid
 4 state structure.
- 1 34. (Currently Amended) The method of claim 1 wherein controlling
 2 the process environment based on tunneling current measurement comprises:
 3 determining an extent of the gap, g, as a function of measured tunneling
 4 current, I, and applied voltage bias, V, as:

5
$$I(V) = aV^{2}e^{-V}$$

6 where $a = \frac{\sigma e^{3}}{16\pi^{2}\phi hg^{2}}$ and $b = \frac{4(2m_{e})^{1/2}\phi^{3/2}g}{3he}$

- and where σ is an area of the solid state structure at opposite sides of the gap, e is the elementary charge, $1.6 \times 10^{-19} \text{ C}$; $h = 1.1 \times 10^{-34} \text{ J} \cdot \text{s}$; $m_e = 9.1 \times 10^{-31} \text{ Kg}$; and ϕ is a work function of the solid state structure at the gap; and controlling the process environment based on the determined gap.
- 1 35. (Currently Amended) The method of claim 1 wherein controlling 2 the process environment based on tunneling current measurement comprises:

Reply to Examiner's Action Mailed March 16, 2007

determining an extent of the gap, g, as a function of measured tunneling current, I, and applied voltage bias, V, as:

$$I(V) = I_0 e^{-\alpha\sqrt{\phi}g}$$

- 6 where $I_0 = \frac{\sigma e^2}{4\pi^2 h^2} \frac{\sqrt{2m_e \phi}}{g} V$ and $\alpha = \frac{2\sqrt{2m_e}}{h}$
- and where σ is an area of the solid state structure at opposite sides of the gap, e
- 8 is the elementary charge, 1.6 x 10^{-19} C; $h = 1.1 \times 10^{-34}$ J·s; $m_e = 9.1 \times 10^{-31}$ Kg; and
- ϕ is a work function of the solid state structure at the gap; and
- controlling the process environment based on the determined gap.