Wykład 3- Weryfikacja specyfikacji wymagań

- 1. Diagramy aktywności
- 2. Interfejs użytkownika pojęcia podstawowe; klasyfikacje interfejsów
- 3. Ergonomia interfejsu (normy i zalecenia budowy interfejsu)
- 4. Projekt techniczny interfejsu; przewodniki styli

Aktywność jako technika modelowania dialogu

- ■Przypadki użycia pokazują, **co powinien** robić system
- Aktywności umożliwiają określenie tego, w jaki sposób system będzie osiągał swoje zamierzone cele
 - Jakie akcje są wykonywane?
 - Jak te akcje są połączone ?

Aktywności stosuje się w prezentacji:

- procesów biznesowych
- scenariuszy przypadków użycia
- procesów systemowych charakteryzujących się dużą liczbą równoległych czynności i decyzji
- operacji
- algorytmów

Aktywność i Akcja

Aktywność – specyfikacja (wykonywalnego) zachowania poprzez:

- -składanie sekwencyjne i równoległe innych jednostek zachowania
- -zagnieżdżanie aktywności

Akcja – aktywność elementarna, najmniejsza jaką można wyrazić w UML, np. operacje arytmetyczne, ...

- -niepodzielna
- -nieprzerywalna
- •Składnia
- –piny wejściowe i wyjściowe (łuki przepływu danych)
- —łuki przepływu sterowania

Akcja - realizacja

Warunek rozpoczęcia akcji

- -gotowe dane na wszystkich łukach przepływu danych
- -znaczniki sterowania na wszystkich łukach przepływu sterowania

Wykonywanie akcji

- -konsumpcja danych wejściowych
- -konsumpcja znaczników sterowania

Zakończenie

- -generacja danych na wszystkich pinach wyjściowych
- –generacja znaczników sterowania na wszystkich łukach wyjściowych przepływu sterowania

Diagram aktywności i jego elementy składowe

- Opisuje zachowanie w terminach:
- -przepływu danych
- -przepływu sterowania
- Pokazuje dekompozycję aktywności w elementy składowe:
- -inne aktywności
- -akcje (aktywności elementarne)
- Rozszerzenie diagramów przepływu sterowania (schematów blokowych)

Diagram aktywności – notacja podstawowa

Aktywność jest opisywana diagramem aktywności reprezentowanym przez graf, którego wierzchołkami są węzły akcji, obiektu bądź węzły sterowania. Krawędzie reprezentują przepływ sterowania między węzłami.

Katedra Inżynierii Oprogramowania, Wydział Informatyki i Zarządzania, 2017/2018

Politechnika

Diagram aktywności – semantyka podstawowych składowych

Węzeł decyzyjny- posiada jedno wejście dla przepływu sterowania i co najmniej dwa wyjścia; każde wyjście (opatrzone wyrażeniem logicznym), jest warunkiem dozoru i zapisywane w nawiasach kwadratowych; aby zawsze istniała możliwość opuszczenia węzła decyzyjnego można zastosować wyjście oznaczonego warunkiem [else].

Węzeł scalenia: scala kilka (co najmniej dwa) przepływów sterowania; z węzła wychodzi pojedynczy przepływ.

Wrocławska

Żaden z tych węzłów nie jest punktem synchronizacji.

Diagram aktywności – semantyka podstawowych składowych

Węzeł rozwidlenia- używany do oznaczenia czynności, które mogą być wykonane współbieżnie; od tego węzła wychodzą co najmniej dwa osobne przepływy sterowania.

Węzeł rozwidlenia nie jest punktem synchronizacji

Węzeł złączenia - służy do łączenia współbieżnych przepływów w jeden przepływ. Węzeł łączenia jest punktem synchronizacji

Zasada współbieżności UML: liczba przepływów łączonych musi być równa liczbie przepływów opuszczających odpowiadający węzłowi złączenia węzeł rozwidlenia.

Podstawy Inżynierii Oprogramowania

Diagram aktywności - przykład (proces biznesowy)

Katedra Inżynierii Oprogramowania, Wydział Informatyki i Zarządzania, 2017/2018

Podstawy Inżynierii Oprogramowania

Diagram aktywności - partycia

Partycja

pozwala na
pogrupowanie
czynności, o
wspólnej
charakterystyce,
np. są związane
z pewną funkcją
systemu, częścią
systemu lub
aktorem

https://brasil.cel.agh.edu.pl/~09sbfraczek/

Katedra Inżynierii Oprogramowania, Wydział Informatyki i Zarządzania, 2017/2018

Politechnika Wrocławska

Podstawy Inżynierii Oprogramowania

Diagram aktywności – przykłady opisu scenariuszy

Politechnika Wrocławska

Diagram aktywności - sygnały

Czynności uruchamiane jako reakcja na sygnał czasowy

Diagram aktywności - region

Region rozszerzenia (obszar ekspansywny) strukturalny fragment aktywności, wykonywany wielokrotnie; odnosi się do obliczeń na kolekcjach wartości, np. listach, zbiorach, multizbiorach;

- -wnętrze regionu pokazuje aktywności wykonywane na elementach kolekcji
- tryby wykonywania regionu:
- parallel
- •iterative
- stream

Diagram aktywności- region przerwania

obszar otaczający czynności, których wykonanie może zostać przerwane

Katedra Inżynierii Oprogramowania, Wydział Informatyki i Zarządzania, 2017/2018

Prototyp interfejsu użytkownika

Cele:

- Weryfikacja modelu przypadków użycia
- Odkrywanie nowych wymagań użytkownika

Kroki:

- Projekt logicznego interfejsu użytkownika;
 specyfikacja elementów i ich atrybutów, którymi będzie manipulował użytkownik; np. faktury, zamówienia itp.
- Projekt i budowa fizycznego interfejsu użytkownika;
 szkice ekranów; budowa wykonywalnego prototypu w celu walidacji interfejsu

Definicja interfejsu użytkownika

INTERFEJS(styk, łącze) użytkownika – zespół narzędzi programowych i sprzętowych, które umożliwiają komunikację między człowiekiem i systemem informatycznym (ta część systemu, którą człowiek **bezpośrednio**używa)

Pożądane cechy interfejsu użytkownika:

- -ascetyczny
- -jasny (wizualnie, pojęciowo, lingwistycznie)
- -kompatybilny z użytkownikiem
- -zrozumiały
- -konfigurowalny
 - -spójny
 - -kontrolowalny
- -efektywny (ergonomia)
- przewidywalny
- powinien "wybaczać" użytkownikowi błędy

Modele: konceptualny i mentalny (użytkownika)

Mentalny model użytkownika to model posiadany przez użytkownika wyrażający jego wyobrażenie o systemie (w zakresie sposobów interakcji z nim) i w wiedzę o systemie (zakresie: konstrukcji systemu)..

Może być opisany w terminach obiektowych, np.

Podstawy Inżynierii Oprogramowania

Model dialogu – przykład "rezerwacji hotelowej"

Interfejs użytkownika - style interakcji

Tryb klawiszowy Bezpośrednia Lingwistyczna

manipulacja

Oparty na menu graficzna linia komend

Pytanie-odpowiedź formularze tekstowa, język naturalny

Klawisze funkcyjne

Oparta na głosie

Wybór stylu interakcji

Wybór stylu jest podstawowy dla tworzenia interfejsu, jego użyteczności, kosztu;

Jest szeroki zakres styli, lecz zwykle sprowadza się do jednego lub dwu.

Czynniki sukcesu interfejsu

Funkcjonalność

– *ergonomia*, prostota obsługi, czytelność prezentowanej informacji, realizacja określonych zadań itp.

Odporność na błędy

stabilność, powtarzalność, konsekwencja, zgodność...

Estetyka

- odbiór aplikacji przez użytkowników: aplikacji używa się z przyjemnością i chętnie do niej wraca,
- odpowiedni dobór kolorów i wyróżnień tak aby nie utrudniały odbioru przedstawionej informacji.

Dostępność

-aplikacja może być wykorzystywana 24/7.

Mierniki użyteczności

Użyteczność stara się formalizować ocenę funkcjonalności wprowadzając mierniki użyteczności:

- 1. Skuteczność: czy użytkownik może osiągnąć cel?
- 2. Nauka obsługi: czy łatwo się jej nauczyć?
- 3. Ergonomia: po nauczeniu się, czy szybko się używa?
- 4.,,Pamiętalność" czy łatwo przypominamy sobie to czego się nauczyliśmy?
- 5. Błędy: czy błędów użytkownika jest niewiele i są odwracalne?
 - Satysfakcja: czy systemu używa się z przyjemnością?

Projekt IU – pożądane charakterystyki

Zwiększenie prędkości przyswajania (uczenia się obsługi).

– Miernik: czas potrzebny użytkownikowi do osiągnięcia określonego poziomu zaawansowania? Aspekt ten jest najbardziej istotny w przypadku aplikacji używanych sporadycznie.

Zwiększenie prędkości używania (ergonomia).

– Jak dużo czasu zajmuje zaawansowanemu użytkownikowi wykonanie określonego zadania? Ważne w Systemy intensywnie wykorzystywane. (Przykład CRM, Kasjer na Poczcie, itp.)

Minimalizacja popełniania błędów.

 Jak dużo błędów popełnia przeciętny użytkownik podczas typowej sesji z systemem?

Wspomaganie szybkiego przypominania.

 Jak dużo czasu zajmuje sporadycznemu użytkownikowi przypomnienie sobie obsługi?

Podniesienie poziomu atrakcyjności.

– Jaka część użytkowników odbiera system pozytywnie? Ilu osobom podoba się system wizualnie? Katedra Inzvnierii Oprogramowania, Wydział Informatyki i

Zarzadzania, 2017/2018

Projekt IU – pomiar charakterystyk

Intensity of Viewers	
Low —	→ High

Sample	12
Time of Snapshot	20 sec

Chronological Gaze Plot

# of Viewers Per Area	
\circ	\rightarrow
Low	High

Sample	12
Avg. Time on Page	20 sec

Rys. 2. Przykładowe wyniki badania eye-trackingowego: mapa ciepła oraz przejścia wzroku.

Źródło: http://www.evocinsights.com/img/Eye_Tracking_Data.jpg (dostępne 12 września 2011 roku).

Interfejs użytkownika - ergonomia

Ergonomia interfejsu użytkownika służy:

- wzbogaceniu użyteczności -> satysfakcja i produktywność użytkownika
- uzyskaniu spójności między aplikacjami/systemami
- pomocą w wyborze i nabyciu produktu

Ergonomię posługiwania się interfejsem należy uwzględnić przy:

- projektowaniu struktury ekranu,
- wyborze odpowiednich rodzajów okien,
- opracowywaniu menu,
- wyborze odpowiednich kontrolek,
- organizacji i wyglądzie okien,
- wyborze kolorów,tworzeniu ikon.

Interfejs użytkownika - ergonomia

Ilość prezentowanej informacji

- minimalizacja ilości informacji
- skróty
- poziom szczegółowości
- słownictwo
- stosowania typowych formatów danych

Grupowanie informacji

- zastosowanie kolorów
- granice
- Rozjaśnianie

Uwydatnianie informacji

zastosowanie kolorów podkreślanie migotanie rozjaśnianie

Interfejs użytkownika – ergonomia (cd)

Położenie i kolejność informacji

- kolejność wykorzystywania
- typowość zastosowań
- ważność
- częstotliwość wykorzystywania
- ogólność prezentowanej informacji
- uporządkowanie

Zależności przestrzenne miedzy danymi

- wyrównanie i wcięcia
- etykietowanie
- symetria

Prezentacja tekstu

- duże litery
- justowanie
- interlinia
- akapity
- długość linii

Prezentacja grafiki

- obrazy
- piktogramy
- prezentacja danych liczbow.

Projekt techniczny interfejsu

Wybór:

- środowiska programowego
- stylu interakcji
- Jeśli WIMP (Windows, Icons, Menus, Poiting device)
 - -model zarządzania oknami
 - dobór okien
- narzędzi interakcji (metafory modelu konceptualnego)
- projekt ekranów

Projekt techniczny – organizacja elementów ekranu

Balans – równe obciążenie ekranu elementami graficznymi, ciemne kolory, nieregularne kształty są "cięższe"

Symetria – powielenie elementów z lewej i prawej strony ekranu; balans można uzyskać bez symetrii, symetria implikuje balans

Regularność – zachowanie standardowej odległości pomiędzy poziomymi i pionowymi punktami wyrównania;

Projekt techniczny – organizacja elementów ekranu

Przewidywalność – wygląd różnych ekranów jest podobny (według tego samego schematu)

Sekwencyjność – elementy ekranu powinny być ułożone w oczywisty, efektywny, a nie losowy sposób (oko ma tendencje do wychwytywania elementów izolowanych, grafiki, kolorów, ciemnych obszarów, dużych elementów)

Ekonomia – jedynie niezbędna liczba styli, kolorów, technik wyświetlania

Jednolitość – używanie podobnych rozmiarów, kształtów, kolorów dla podobnej informacji; pozostawianie większych marginesów niż odległośc<u>i między elementami</u>

Projekt techniczny – organizacja elementów ekranu

Proporcja – zalecanie proporcje 1:1 (kwadrat), 1:1.41 ("książka"), 1:1.61 ("złoty prostokąt"), 1:2

Prostota – optymalizacja liczby elementów na ekranie (minimalizacja liczby elementów bez utraty jasności), minimalizacja liczby punktów dopasowania (zwłaszcza poziomych i pionowych)

Złożoność ekranu – suma liczby elementów ekranu, punktów dopasowania pionowego i poziomego, np. 4 + 10 = 14

Projekt techniczny – dobór okien

Model zarządzania oknami

- SDI Single Document Interface
- MDI Multiple Document Interface
- Workbook (metafora książki, np. Excel)
- Formularze
- Projekty (zbiór powiązanych okien i obiektów, np. Access)
- www

Rodzaje okien:

- Okno główne aplikacji
- Okna drugoplanowe (modalne, niemodalne)
- Okna dialogowe
- Okna komunikatów

Projekt techniczny – dobór okien

Model zarządzania oknami

- SDI Single Document Interface
- MDI Multiple Document Interface
- Workbook (metafora książki, np. Excel)
- Formularze
- Projekty (zbiór powiązanych okien i obiektów, np. Access)
- www

Rodzaje okien:

- Okno główne aplikacji
- Okna drugoplanowe (modalne, niemodalne)
- Okna dialogowe
- Okna komunikatów

Projekt techniczny – prezentacja

PIE	EDITOR	PIF EDITOR	
Program Filename: Window Title: Optional Parameters: Start-up Directory: Video Memory:	KB Limit	APPLICATION Program Filename: Window Title: Optional Parameters: Start-up Directory: MEMORY REAL > Required: EMS > Required: XMS > Required:	
	Required: KB Desired: KB XMS Required: KB Limit: KB	MS Required: KB Limit: KB Tideo Text	
itechnika	Display Usage Execution Full Screen Windowed Execution Execution Execution Execution	nd ☐ Close on Exit	55

Projekt techniczny - poprawianie ergonomii okna [Gallitz2004]

Politechnika Wrocławska Katedra Inżynierii Oprogramowania, Wydział Informatyki i Zarządzania, 2017/2018

Projekt techniczny – dobór elementów interakcji

Kontrolki: obiekty graficzne reprezentujące obiekty graficzne, ich własności lub operacje, które można wykonać na obiektach (zwykle interaktywne)

Przyciski: poleceń, opcji (check), wyboru (choice)

Nazwa polecenia: najlepiej pojedyncze słowo, pisane wielką literą (book title capitalization)

Projekt techniczny – dobór elementów interakcji: przyciski, menu (JAVA)

Przyciski JButton, JToggleButton, JCheckBox, JRadioButton

- tekst i/lub ikona na przycisku z dowolnym pozycjonowaniem
- różne ikony dla różnych stanów (wciśnięty, kursor myszko nad przyciskiem etc)
- ustalanie tekstu w HTML
- programistyczne symulowanie kliknięć (metoda doClick())
- ustalanie **mnemoniki** (metoda setMnemonic())

Suwak: klasa JSlider

Ustalanie wartości za pomocą suwaka. W pełni konfigurowalny, jako etykiety może zawierać ikony.

Menu: JMenu, JMenuItem, JChceckBoxMenuItem, JRadioMenuItem.

Pochodzą od AbstractButton – wszystkie właściwości przycisków! Menu kontekstowe: klasa JPopupMenu

Projekt techniczny – dobór elementów interakcji: listy

Lista: klasa JList oparta na współpracy modelu danych listy z widokiem tych danych. Elementy: teksty i/lub obrazki, a nawet inne komponenty GUI (wygląd). Różne elementy listy mogą mieć różny wygląd (kolor, pismo, obrazek lub nie etc).

Lista rozwijalna: JComboBox

oszczędność miejsca w GUI te same właściwości co lista + możliwość przechodzenia do elementu tekstowego po wciśnięciu pierwszej litery napisu, który on reprezentuje

Tabela: klasa JTable

Ogromne możliwości konfiguracyjne, przestawianie kolumn (myszką i programistycznie), różny wygląd kolumn (teksty, obrazki, komponenty interakcyjne), sortowanie wierszy, wielozaznaczanie (po wierszach i po kolumnach)

Drzewo: klasa JTree

Reprezentowanie hierarchii. Węzły drzewa mają te same właściwości co elementy tabeli (tzn. mogą być reprezentowane w postaci napisów i/lub ikon oraz innych komponentów)

Politechnika Wrocławska Katedra Inżynierii Oprogramowania, Wydział Informatyki i Zarzadzania, 2017/2018

Interfejs użytkownika – przewodniki styli i standardy

Przewodniki styli obejmują powszechnie akceptowane reguły, stosowane podczas opracowywania np. interfejsu, kodu.

Standardy – zatwierdzone przez organizacje normalizacyjną zbiór reguł, pojęć i zasad ; dla interfejsu użytkownika opracowano standard ISO/IEC 9241, 17-częściowy; część 4 dotyczy menu

Przewodniki styli – cel i zalety stosowania

Przewodnik stylu może służyć jako:

- 1. Narzędzie zapewnienia spójności w zbiorze produktów;
- 2. Sposób uzyskania współpracy w grupie;
- 3. Repozytorium dla norm i zaleceń projektowych
- 4. Pomoc w szkoleniu nowych członków zespołu

Uzytkownicy końcowi	Wytwórcy	Zespół klientów
Redukcja błędów	Utrzymywania kontroli nad "look &feel"	Wytworzenie użytecznych systemów które redukują koszty wspierania i zwiększają satysfakcje klientów
Mniejsza frustracja	Minimalizacja 'nowych' pomysłów	Zwiększenie zainteresowania rynku
Zwiększone morale	Nacisk na naukę	Zwiększenie zainteresowania produktem
Poprawiona wydajność	Umożliwia produkcję produktów "ponownego użycia"	Zmniejszony koszt szkoleń
Zwiększone zaufanie	Redukcja czasu wytwarzania	Polepszenie personelu
Zredukowany opór do nowych technologii	Redukcja arbitralnych decyzji projektowych	Zwiększenie stopnia akceptacji nowych technologii przez użytkownika

Przewodniki styli do projektowania interfejsu

Microsoft Windows Usability Guidelines

http://msdn.microsoft.com/en-us/windows/desktop/aa511258.aspx

http://msdn.microsoft.com/en-us/library/bb158578.aspx

Sun Microsystems- Java related

Java Look and Feel Guidelines (Version 1) http://java.sun.com/products/jlf/ed1/dg/index.htm

Java Look and Feel Guidelines (Version 2)

Java Look and Feel Guidelines: Advanced Topics

http://wiki.eclipse.org/UI_Graphics_:_Design_:_Style_%26_Design

Mobile UI Patterns. http://www.mobile-patterns.com/

Android UI Design Patterns. https://developer.android.com/design/patterns/index.html

iOS Human Interface Guidelines

https://developer.apple.com/library/ios/documentation/userexperience/conceptual/MobileHIG/index.html

Interfejsy dla aplikacji webowych – 10 heurystyk Nielsena

- Widoczny status systemu informacja co się dzieje
- Zgodność systemu i świata realnego —ten sam język, kolejność...
- Kontrola użytkownika i swoboda undo/redo
- Spójność i standardy
- Zapobieganie błędom
- Rozpoznanie, a nie odwołania nieobciążanie pamięci
- Elastyczność i efektywność wykorzystania
- Akceleratory
- Estetyczny i minimalistyczny design
- Pomoc użytkownikom w rozpoznawaniu,
 diagnozowaniu i odzyskiwaniu danych po błędach

Projektowanie interfejsów webowych podejście SaaS (Software_as_a_System) i RIA (Rich Interactive Application)

Zasady projektowania interfejsów aplikacji webowych

- Make It Direct / zaprojektuj by był "bezpośredni"
- Keep It Lightweight/ utrzymuj go lekkim
- Stay in the Page /pozostawaj na stronie
- Provide Invitations/ zapewnij powitanie
- Use Transitions/ używaj przejść
- React Immediately/ reaguj natychmiast

Podstawowe zalecenie:

"jeden cel realizowany w jednym oknie"

Struktura typowego okna/strony

Katedra Inżynierii Oprogramowania, Wydział Informatyki i Zarządzania, 2017/2018

Podstawy Inżynierii Oprogramowania Struktura przykładowej strony ← ① helion.pl Q helion Nasze księgarnie: () Onepress 🔘 Sensus 💊 Septem 🔆 Helion edukacja 📓 Bezdroza 👂 ebookpoint 🦻 videopoint Zaloguj się | Załóż konto | POMOC | LiveCHAT Obszar nawigacji Informatyka w najlepszym wydaniu DOSTAWA 0,002t przeglądarki INTERNETOWA Przechowalnia szukanie zaawansowane » Twój koszyk Aktualności Czytelnia Wydawnictwo Obszar nawigacji Katalog książek Recenzje » promocja dnia Zamówienia dotacyjne Helion Z mercuriu strony Codziennie inna ksiażka! Aplikacje biurowe Bazy danych Biznes IT CAD/CAM Obszar nawigacji NA WARSZTATY Digital Lifestyle ■ DTP strony Elektronika Inne promocje Fotografia cyfrowa Grafika komputerowa Nowości wydawnicze ■ Gry Hacking Roboty JavaScript od Software Craftsman. 25 tys, polubienia Profesjonalizm, czysty kod podstaw. Projekty Hardware lodeBots... Kursy video Rick Waldron, Anna Ger., Sandro Mancuso Pakiety naukowe PRAGMATYZM, PERFEKCJA I CEL Cena: 59.00 zł Cena: 59.00 zł Podręczniki szkolne Polub te strone Podstawy komputera Mapowanie historyjek indroid. Programowanie ■ Programowanie użytkownika. Przepis na aplikacji. Rusz głowa! Bądź pierwszą osobą wśród Dawn Griffiths, David ... Programowanie mobilne znajomych, która to polubi leff Patton Serwery internetowe Sieci komputerowe Cena: 99.00 zł 7 Cena: 44.90 zł Start-up Zarządzanie 3.0. Kierowanie aawansowane techniki Systemy operacyjne ęzyka JavaScript. Wydani. zespołami z wykorzy... » Bądź w kontakcie ■ Webmasterstwo ohn Resig, Russ Fergu... Jurgen Appelo Ta strona ko vysta z ciasteczek (cookies), więcej informacji » OK, ROZUMIEM Katedra Inżynierii Op Obszar informacyjny strony yki i Politechnika Zarządzania, 2017/2018 Wrocławska

Projektowanie interfejsów webowych projekty ekranów w RIA

Generalia/szczegóły

Pozostaje się w jednym oknie; poziome – gdy wiele ogółów

Przeglądarka kolumn

Przeglądanie i nawigowanie po wielu danych w jednym oknie

Paleta/kanwy

Wygodne dla dokumentowania liniowych i nieliniowych procesów, przepływów sterowania itp.

Projektowanie interfejsów webowych projekty ekranów w RIA

Dashboard

Kluczowa informacja "na jeden rzut oka"

Arkusze

Edytowanie, dodawanie, przeglądanie i nawigowanie po tabelach

Model interaktywny

Spójny z modelem mentalnym użytkownika, bezpośrednia manipulacja.

Projektowanie interfejsów webowych projekty ekranów w RIA

Szukanie/wyniki

Szybka reprezentacja wyników wyszukiwania

Wypełnianie zestawów danych

Równoległe panele

Poziome lub pionowe uzupełnianie danych i oglądanie wyników

Przedstawianie zależnych fragmentów informacji

Projektowanie interfejsów webowych projekty ekranów w RIA

Pytanie/ odpowiedź

Szybkie znajdowanie wyników

Formularze

Zależy od dziedziny; znajomość potrzeb/użyteczności

Portal

Dla nowych stron; dozwolone dopasowanie do potrzeb

Projektowanie interfejsów webowych projekty ekranów w RIA

Wizard

Wskazanie wykonania złożonych lub rzadko wykonywanych prac

Katedraki

Struktura wyglądu strony gdy inne nie mają zastosowania

Przeglądarka

Do szybkiego szukania/przeglądania; 2-3 kolumny; lewa najważniejsza

Interfejsy dla aplikacji mobilnych

Web UI powinny działać na różnych rozmiarach (ekranów urządzeń)=> uwzględniać więcej czynników w projekcie

1. Rozmiar wyświetlacza: limit informacji (tekst &obrazy wyczerpują obszar display'a) =>skalowalność aplikacji

Interfejsy dla aplikacji mobilnych

2. Różnorodność systemów operacyjnych => projektowanie odmienne dla: nawigacji, sterowania i stylu wizualizacji

Fig. 30. The DesktopMate application: mock-up (a), Android (b) and iPhone (c) versions.

3. Wprowadzanie danych (dotyk =>odpowiedni rozmiar przycisków; mniej kontrolek na panelu (telefon); zasłanianie ekranu palcami/dłonia);

Aplikacje mobilne są wieloplatformowe => należy uwzględnić różne sposoby wprowadzania danych (klawiatura fizyczna, wirtualna czy obie; różne fizyczne przyciski dla akcji nawigacyjnych) Katedra Inżynierii Oprogramowania, Wydział Informatyki i

Zarządzania, 2017/2018

Politechnika

Dobre praktyki projektowania interfejsów aplikacji mobilnych

- 1. wygląd natywny;
- 2. interakcja natywna (wirtualne przyciski);
- 3. pozwól na wybór (zamiast konieczności wpisywania danych); prosta nawigacja (2-3 poziomy; HOME gdy więcej);
- 4. podpowiedzi/ pomoc (gestures);

Dobre praktyki projektowania interfejsów aplikacji mobilnych

5. dużo grafiki – wykorzystywać widgets (Dojo)

Katedra Inżynierii Oprogramowania, Wydział Informatyki i Zarządzania, 2017/2018

Opracowywanie interfejsów - podsumowanie

Wg szacunków wytworzenie UI stanowi 50%:

- czasu poświęconego na projekt i implementację
- kosztów / czasu utrzymania systemu
- rozmiaru całkowitego kodu systemu

Redukcja nakładów tworzenia UI przez:

- stosowanie gotowych i maksymalnie uniwersalnych komponentów
- ponowne wykorzystanie (widoki obiektów, itp.)
- automatyzacja generowania interfejsów
- DOBRY PROJEKT

Makietowanie interfejsu wykorzystuje:

- Storyboards (odręczne szkice)

Narzędzia wspierające (wireframesnp. BalsamiqueMockup) Język i środowisko docelowe aplikacji (prototypowanie)

Opracowywanie interfejsów - podsumowanie

Podstawowe wymaganie dot. interfejsu: Użyteczność (ang. usability)

Użyteczność serwisów WWW oraz aplikacji rozumiana jako:

- intuicyjna nawigacja,
- ułatwienie skanowania w poszukiwaniu informacji,
- zapewnienie zrozumiałej dla użytkownika komunikacji,
- udostępnienie odpowiedniej funkcjonalności

Ocena interfejsu może polegać na:

- przeglądzie interfejsu z użytkownikiem
- ocenie interaktywnej u użytkownika
- formalnym testowaniu użyteczności
 opinii min. 3 ekspertów sprawdzających zalecenia.

