PATENT ABSTRACTS OF JAPAN

(11)Publication number:

57-016376

(43)Date of publication of application: 27.01.1982

(51)Int.CI.

G04C 3/14 H02P 8/00

(21)Application number: 55-091383

(71)Applicant: SEIKO EPSON CORP

(22)Date of filing:

04.07.1980

(72)Inventor: MOMOI KYOJI

(54) STEP MOTOR DISTURBANCE DETECTING AND CONTROLLING DEVICE FOR WATCH

(57)Abstract:

PURPOSE: To lower driving current by reducing attraction of a rotor, by providing a function capable of detecting rotation of the rotor caused by disturbance at the time when the rotor stays stationary, and also of holding the rotor in a stationary position electromagnetically.

CONSTITUTION: A depth B of a notch 4 of a step motor is set to 0.04mm, and area of the notch section is reduced to approximately two-fifth of the conventional area. As it is possible to weaken the attraction and also to make width of driving pulse narrower by doing this, drive-consuming current becomes smaller. And, in case when erroneous rotation of the stationary rotor 3 started taking place, this is detected to give a control pulse in the same direction as the driving pulse of the width of 1.5sec existing immediately before start of the erroneous rotation to keep the rotor 3 to the attraction side. After impression of control pulse by attraction, the rotor 3 is pulled back to a stationary stabilizing point 5 located in the neighborhood of the attraction side, so that it is corrected to the initial position.

LEGAL STATUS

[Date of request for examination]

£.....

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

BEST AVAILABLE COPY

40特許出願公告

⑫ 特 許公 報(B2)

昭61 - 61356

@Int_Cl_4

識別記号

庁内整理番号

2000公告 昭和61年(1986)12月25日

G 04 C 3/14 // H 02 P 8/00 X - 6781 - 2F7315-5H

発明の数 1 (全8頁)

❷発明の名称 電子時計

前置審査に係属中

②特 頲 昭55-91383

司

够公 第 昭57-16376

22出 頭 昭55(1980)7月4日 ❸昭57(1982)1月27日

⑫発 明 者 挑 井 恭次 諏訪市大和3丁目3番5号 株式会社諏訪精工舍内

セイコーエプソン株式 の出 願 人

東京都新宿区西新宿2丁目4番1号

会社

四代 理 人

弁理士 最上 務

耕

審査官 七條

50参考文献 特開 昭53-48564(JP, A)

1

の特許請求の範囲

1 間欠的なパルス信号にもとづいて作動する駆 動回路、ステータ、コイル及び着磁ロータからな り前記駆動回路31により間欠的に駆動されるス テップモータを備えた電子時計において、前記パ 5 ルス信号を前記駆動回路に分配して供給する駆動 制御回路30、前記コイル端に接続され前記ロー タが減衰振動を終了した後前記コイルに発生する 誘起電圧を検出する検出回路32、前記検出回路 と前記駆動制御回路の間に接続されるとともに前 10 対する変化率で与えられる。磁気エネルギーEと 記検出回路の出力に応じて制御バルスを発生する 検出制御回路33とからなり、前記検出制御回路 は前記制御パルスの極性を前回のロータ駆動用の パルス信号と同極にし、且つ前記ロータ駆動後の 減衰振動が終了するまでの所定時間検出を禁止す 15 引きつけるように働くのである。ここでロータ3 るゲート回路33aを有しており、前記駆動制御 回路を介して前記駆動回路に供給される前記制御 パルスにより前記ロータをもとの位置にひきもど して成ることを特徴とする電子時計。

発明の詳細な説明

本発明は、二極ロータ、一体型ステータ、コイ ルを有するステップモータにおいて、引き力を低 く設定しておくことにより駆動電流を減少させ、 静止時に生じ易くなつたロータ誤回転を防ぐ時計 用ステップモータの外乱検出制御装置を有する電 25 少なくできる。しかし、瞬間的な衝撃、外部磁 子時計に関するものである。

従来のステップモータ及び駆動パルス波形を第

1図、第2図に示す。第1図において、ノッチ4 の深さは、 $\alpha = 0.10$ mmである。第2図の駆動パル スが第1図のコイル2に印加されることにより、 ロータるはステップ回転する。ここで、静止時に おいてロータ3の磁極はノッチ4とほぼ直角の位 置に静止している。これを静的安定点5と言い、 ロータ3が静的安定点5に引きつけられようとす る力を引き力と言う。この引き力は、磁気回路全 体に蓄えられる磁気エネルギーのロータ回転角に 引き力は、第4図a, bでみるようにロータ3の 回転角 θ と共に変化する。引き力が 0 になる点 は、安定な静的安定点5と不安定な中立点6であ る。この引き力が常にロータ3を静的安定点5に を1ステップ回転させる場合、中立点6を乗り越 える前には、引き力がロータ3を回転させない方 向に働くため、これを補う広いパルス幅(3m sec以上)で駆動させなければならず、低消費電 20 流化への障害となる。また、ノッチ4による引き 力を小さく設定した場合、中立点6の磁気ポテン シャルが低くなり乗り越え易くなるため、駆動パ ルス幅が狭くても駆動トルクは確保でき、ロータ 3 はステップ回転する。これから駆動消費電流を 界、振動などの外乱によるロータ誤回転が生じ易 くなる。

3

従来より、ロータ3の駆動回転ミスリを検出し もう―発広いパルス幅の駆動パルスを与えてロー タ3をステップ回転させミスリを修正する装置は 一般に知られている。しかし、静止時においてロ い。ここで、ロータ駆動時と静止時とを時間の長 さで比較した場合、圧倒的に静止時のほうが長 い。よつて、外乱が加わる確率として考えた場合 にも、静止時において加わる確率のほうが高いこ とになる。これは、すなわち静止時におけるロー 10 ながる。 タ3の誤回転し易さにつながり、しいては時計の 精度の劣化につながる。

本発明は、この特にロータ3の静止時における 欠点を除去したもので、まず引き力を小さく設定 じ易くなつた静止時でのロータ3の誤回転を防ぐ 装置を提供するものである。

以下、本発明を図面に従つて詳細に説明する。 まず第1図の従来ステツプモータ構造において 図でみるように、ノッチ深さが、 $\beta = 0.04$ mとな り、ノッチ部分面積が約2/5と大幅に縮小されて いる点である。これにより引き力が弱くなり、先 に述べたように駆動パルス幅を狭くできるので、 駆動消費電流は少なくなる。この場合の駆動パル 25 ス波形は、第5図cに示されるパルス幅1.5msec の波形である。ここで、ロータ3を静的安定点5 に引きつけている力が弱くなつているので、ロー ク3は誤回転し易い状態にある。本発明では、な おかつこの誤回転し始めを検出し、検出した瞬間 30 に、その直前の駆動パルスと同じ方向のパルスを コイル2に与えて、ロータ3を吸引側(回転角θ のマイナス方法)に引きつけるので、その後ロー タ3は静的安定点にもどり、誤回転は修正され う。検出時間は、駆動時付近を除く静止時間であ る。検出装置は、ロータ3の回転によるコイル2 の誘起電圧をチョツパ増幅し、インバータ検出部 で検出する装置である。このチョッパ増幅された 回転角のプラス方向、マイナス方向のどちらに 回転したかについては検出していない。中立点 6 を越えそうになる誤回転を検出するだけである。 ロータ3に誤回転し始める以前の静的安定点へも

どす動作をさせる制御パルス波形は、第5図eの **彼形である。ここで、駆動時におけるロータ3の** ステップ回転は誤回転ではないので、この時の回 転を検出しても制御パルスは出力しない。この制 ータ3が誤回転してしまつた場合の修正方式はな 5 御パルス禁止区間は、第6図jの波形において Hiの区間である。以上の誤回転検出制御をする ことにより、引き力が小さいことに寄因する静止 時のロータ3の誤回転はなくなる。これは、しい

> 次に、実際の回路について、第6図のタイミン グチャート、第7図、第8図の回路図に従いなが ら説明していくことにする。

> ては時計の精度が劣化しなくなるということにつ

第7図、第8図中、30は駆動制御回路であ することにより駆動電流を下げ、それに伴つて生 15 り、31は駆動回路、32は検出回路、33は検 出制御回路である。

駆動制御回路30は、パルス信号を駆動回路3 1及び検出回路32に選択的に振り分ける回路で あり、モータ駆動用のパルス信号入力の。吶、制 本発明で改められた部分はノッチ4であり、第3 20 御パルス入力⑦、⑧、及び検出作動用2048Hz信号 入力⑰の各入力端子を有する。また入力端子に入 力された信号はゲートG1乃至G18により振り 分けられ駆動回路31、検出回路32に出力され

> 駆動回路31は、MOSトランジスタ⑪。 ⑫か らなるインバータとMOSトランジスタ図、⑮か らなるインバータによる構成されており、駆動制 御回路30からのパルス信号に応じて駆動コイル 端O1,O2に電流を供給する。

検出回路部32は駆動回路31を構成するトラ ンジスタ囮と⑮、及びコイル端O』に接続される 抵抗γとトランジスタΦ、コイル端O₂に接続さ れる抵抗γとトランジスタ⑮によつて構成され る。又第8図に示す検出制御回路33は、電圧検 る。この役目をはたすパルスを制御パルスと言 35 出用インバータ20,21、ゲートG19,G2 0, G21、カウンタ19、SET-RESET-FLIP-FLOP18、及びゲートG20, G21 に接続される入力端子⑫、⑳からなる。又第8図 中33aで示されるゲートG20とG21は制御 検出電圧が、第5図dの波形である。ロータ3が 40 パルス信号の極性を前回の駆動パルスと同極に し、且つロータ駆動後の減衰振動が終了するまで の所定時間、検出を禁止するゲート回路を形成し ている。

尚第6図の信号は各々、信号fは端子⑩に入力

5

され、信号gは端子⑨に入力される。信号hと信 号iは各々端子四、砂に入力される。信号iは信 号hとjによつて形成される禁止期間のタイミン グを示す。信号 k と l は各々第 8 図の検出制御回 は端子⑦に、信号」は端子⑧に入力される。

次いで第7図、第8図の作動について述べる。 駆動時には、第7図駆動回路の端子⑨と⑩にそ れぞれ第6図タイミングチヤートのfとgの駆動 の働きにより、fの駆動パルスが入力されるとト ランジスタ⑪と⑮が開放になり、またgの駆動パ ルスが入力されるとトランジスタ図と図が開放に なるので、ロータ3が180° づつステツプ駆動す において、端子団に2048Hz信号が入力されている ため、トランジスタ⑫と⑬が交互に、またトラン ジスタ個と個が交互に0.5msec周期で開閉してい る。これによりロータが外乱により振動したとき コイル 2 の両端O1, O2間に発生する誘起電圧 20 が、常にチョツパ増幅される状態にある。よつ て、ロータ3が回転し始めれば、その誘起電圧が コイル2のO1, O₂間にかかるので、増幅された 検出電圧として、第8図制御回路の検出用インバ 21の出力電圧のうち少なくとも一方が、CMOS 回路でHi状態となる電圧であれば、G19の出 力がHiとなる。ゲートGiaがHiとなると、SETー RESET-FLIP-FLOP 18とカウンター19に なり、次いでカウンター 1 9 の出力512Hzの信号 がFF18のR端子に入力されQがLowに落ち る。その結果FF18の出力Qにパルス幅1msec の制御パルス信号が出力される。

形 h, iが入力されている。これらの波形が、1 8の入力を論理ゲート G 2 0 及び G 2 1 の出力と する区間を決めている。これにより、制御パルス 信号が第6図の信号kとiの2種類に振り分けら れており、kが端子⑦に、そして l が端子®に入 40 を縮小することにより引き力を弱くしているた 力され、駆動回路31が動作しロータが元の位置 に引き戻される。従つてゲートG20、G21は 端子型, 図と共同して制御パルスが必ず前回の駆 動パルスと同極性となるように振り分けるもので

6

あり、極性判別回路となつている。信号kとlに おいて、ロータ回転検出の矢印が示してあるが、 両者共にその直後の制御パルス信号のない時点が ある。これは、ちようど第6図j波形がHiの区 路33の出力A₁, A₂の出力信号であり、信号 k 5 間内であり、制御パルスが禁止の区間であるから である。ここで、駆動パルス印加前1 msec間の 制御パルスの禁止の理由は、制御パルスが駆動パ ルスに重なることがないようにし、制御パルスに よる駆動ミスリをなくすためである。また、駆動 パルスが入力されているため、ゲートG.乃至G.s 10 パルス印加後の20msec間の禁止の理由は、ロー タの駆動回転後の減衰振動を検出してしまい、無 駄な制御パルスを出力してしまうことがないよう にするためである。従つてゲートG20、G21 はロータの減衰振動が終了するまでの所定時間検 る。ロータ3の静止時の場合、第7図の駆動回路 15 出を禁止する禁止回路ともなつている。次に、信 号kは、第7図駆動回路の端子⑦に入力され、 Oュ側からコイル2に出力される制御パルスとな り、信号 1 は、端子®に入力され、O2 側から出 力される制御パルスとなる。

ここで、第7図のゲートG1からG18までの **論理ゲートの動作説明をしておく。G1,G2,** G3, G4は、入力gがLowのとき2048Hz信号を 出力し、入力gがHiのときは、G1出力がHiと なり、その他がLowとなる。 G 5 , G 6 , G 7 , ータ20もしくは21に入力される。この21と 25 G B は、入力 f がLowのとき2048Hz信号を出力 し、入力fがHiのとき、G7出力がHiとなり、 その他がLowとなる。G9, G10, G12, G 15,G17は、制御信号kを割り込ませる論理 ゲートである。G11, G13, G14, G1 入力される。これによりFF 1 8 の出力 QがHiに 30 6, G 1 B は、制御信号 I を割り込ませる論理ゲ ートである。

このような回路上の動作により、静止時におい てロータ3の誤回転が生じ始めた場合、その直前 のパルス幅1.5msecの駆動パルスと同じ方向に制 ここで、端子母、珍には、それぞれ第6図の波 35 御パルスを与えて、ロータ3を吸引側に引きつけ る。制御パルス印加後、引き力により、ロータ3 は吸引側近くにある静的安定点 5 に引きもどさ れ、もとの位置に修正される。

> 以上の例にみられるように、本発明は、ノッチ め、駆動時において、駆動パルス幅を狭く設定し ても、駆動トルクを確保でき、駆動回転ミスリが 生じ易くなることはない。これにより、低消費電 流化が達成される。ここで、引き力を弱くしたこ

8

とにより、本来ロータ3が静止していなければな らないときでも、外乱などにより誤回転しそうに なるときがある。本発明は、このような静止区間 での不安定な状態を即座に検出し、ロータ3の誤 ップモータの信頼性を低下させずに、低消費電流 化を達成できるものである。

図面の簡単な説明

第1図は従来の時計用ステップモータ、第2図 時計用ステップモータである。第4図はロータ、 ステータ間の磁気エネルギーに関するグラフと、 引き力に関するグラフである。第5図はコイル両 端にかかる電圧波形、第6図は回路のタイミング 図は検出制御回路である。

1はステータ、2はコイル、3はロータ、4は

従来のノッチ、5は静的安定点、6は中立点であ る。

第5図において、cは駆動電圧波形、dはロー タ3の静止時における検出電圧波形、eは制御パ 回転を未然に防ぐ効果も有するので、時計用ステ 5 ルス波形である。第5図中の矢印はロータ誤動作 検出時である。

第6図において、fはコイル2の0.側にかか る2秒信号、gはO₂側にかかる2秒信号、hは O₁側にかかる制御パルス発生区間信号、 i はO₂ は従来の駆動電圧波形、第3図は本発明における 10 側にかかる制御パルス発生区間信号、jは制御パ ルス禁止信号、kはO₁側にかかる制御パルス信 号、1はOa側にかかる制御パルス信号である。 矢印は、ロータ回転検出時である。

第8図において、18はSET-RESET-FLIP チャート、第7図は駆動回路周辺の回路図、第8 15 -FLOP、19はカウンター、20と21はイン バータ検出部である。A1, A2からは、それぞれ 制御パルス信号k, 」が出力される。

第 2 Ø

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.