

Национальный исследовательский ядерный университет МИФИ

Кафедра 42 «Криптология и кибербезопасность»

«Обнаружение внутреннего нарушителя путём выявления стрессового состояния пользователя»

Исполнитель:

Султанов Азамат

студент гр. Б16-505

Научный руководитель: Когос К.Г.

K.T.H.

Актуальность

Выявление стрессового состояния на основе биометрических показателей пользователя информационной системы позволяет обнаруживать внутреннего нарушителя*

*.

- 1. Paбота «Insider Threat Detection Based on Users' Mouse Movements and Keystrokes Behavior» (Yessir H., 2017 г.);
- 2. Работа «On the Possibility of Insider Threat Detection Using Physiological Signal Monitoring» (Abdulaziz A., 2014 г.);
- 3. Paбoтa «An Application of Data Leakage Prevention System based on Biometrics Signals Recognition Technology» (Hojae L., 2013 г.);

Оценить возможность выявления стрессового состояния пользователя на основе анализа взаимодействия с клавиатурой и мышью.

Сбор данных

6 сценариев:

- нормальное поведение (найти в браузере ответы на вопросы, поработать с таблицами, ответить на письма в условиях неограниченного времени)
- поведение нарушителя (взломать архив, подделать документ, скрытно поделиться информацией в условиях ограниченного времени)

События мыши:

- 1. Клик левой кнопкой
- 2. Клик правой кнопкой

События клавиатуры:

- 1. Специальные символы (esc, alt, caps lock,...)
- 2. Биграммы
- 3. Триграммы

Признаки

Nº	Название	Определение
1	Время удержания	время между нажатием и отпусканием одной и той же клавиши
2	Время «полёта»	время между нажатием одной клавиши и нажатием другой клавиши
3	Время задержки	время между нажатием одной клавиши и отпусканием другой клавиши
4	Интервал	время между отпусканием одной клавиши и нажатием другой клавиши
5	Отпускание- отпускание	время между отпусканием одной клавиши и отпусканием другой клавиши
6	Частота нажатий*	количество использования клавиши в минуту
7	Скорость движения мыши**	расстояние (в пикселах), пройденное курсором за минуту

рассчитан только для спец. символов

** — не использован в данном исследовании

Предобработка данных – часть 1

Шаги*:

- 1. Удаление признаков редко встречающихся событий клавиатуры и мыши, например события нажатия клавиши alt;
- 2. Удаление признаков с маленьким значением стандартного отклонения;
- 3. Заполнение пустот признаков медианами.
- * Размерность пространства признаков уменьшилась со 191 до 150;

Предобработка данных – часть 1

Рис 1,2 — усреднённые значения признаков, рассчитанные для категорий нормального и аномального поведений по отдельности

*: синий цвет — нормальное поведение, красный цвет — аномальное поведение.

** — выделенные красным цветом зоны на рисунках показывают наиболее информативные признаки

Предобработка данных - часть 2 Выделение информативных признаков*

- * использован алгоритм SelectKBest на основе критерия хиквадрат из библиотеки sklearn
- ** зелёным цветом выделены признаки, отобранные в результате выделения наиболее информативных признаков

Предобработка признаков – часть 2

- Аномальное поведение в обучаемой выборке
- Нормальное поведение в обучаемой выборке
- Аномальное поведение в тестовой выборке
- Нормальное поведение в тестовой выборке

Рис 3 — Распределение примеров датасета в пространстве выделенных признаков

Результаты классификации

Nº	Алгоритм	Точность (нет стресса) (обучение / тестирование)	Точность (есть стресс) (обучение / тестирование)	Полнота (нет стресса) (обучение / тестирование)	Полнота (стресс) (обучение / тестирование)	Точность (Ассигасу) (обучение / тестирование)
1	LR	1.00 / 0.70	1.00 / 0.83	1.00 / 0.88	1.00 / 0.62	1.00 / 0.75
2	k-NN	0.92 / 0.73	1.00 / 1.00	1.00 / 1.00	0.91 / 0.62	0.95 / 0.81
3	RF	1.00 / 0.80	1.00 / 1.00	1.00 / 1.00	1.00 / 0.75	0.91 / 0.88
4	MLP	1.00 / 0.70	1.00 / 0.83	1.00 / 0.88	1.00 / 0.62	1.00 / 0.75
5	GB	1.00 / 0.70	1.00 / 0.83	1.00 / 0.88	1.00 / 0.62	1.00 / 0.75

LR Логистическая регрессия RF Метод случайного леса

k-NN Метод k-ближайших соседей MLP Многослойный перцептрон

GB Градиентный бустинг

Результаты классификации

Случайный лес | Обучающая выборка

- 胸 ип истинно положительный
- ио истинно отрицательный

-) 🖊 ЛО ложно отрицательный
- 🥚 ЛП ложно положительный

Рис 4 — визуализированные результаты лучшего классификатора

Результаты обнаружения аномалий

Nº	Алгоритм	Точность (нет стресса)	Точность (есть стресс)	Полнота (нет стресса)	Полнота (стресс)	Точность (Accuracy)
1	RC	0.60	0.91	0.75	0.83	0.81
2	OCSVM	0.00	0.75	0.00	1.00	0.75
3	IF	1.00	1.00	1.00	1.00	1.00
4	LOF	0.88	0.96	0.88	0.96	0.94

RC Метод робастной IF Метод изолирующего леса

ковариации

OCSVM Одноклассовый метод LOF Локальный уровень выброса

опорных векторов

Результаты обнаружения аномалий

Изолирующий лес | Тестовая выборка

胸 ип - истинно положительный

ио - истинно отрицательный

ЛО - ложно отрицательный

П - ложно положительный

Рис 5 — визуализированные результаты лучшей модели обнаружения аномалий

Результаты исследования

- Проанализированы существующие методы обнаружения внутреннего нарушителя с использованием биометрических показателей на основе алгоритмов машинного обучения с учителем и без учителя
- Реализованы процессы накопления данных, предобработки данных, обучения и оценки моделей классификаторов и моделей обнаружения аномалий
- Наилучшие результаты получены для моделей на основе алгоритмов случайного леса (Точность 88%) и изолирующего леса (Точность 100%)