Kompleksanalüüs ja diferentsiaalvõrrandid YMX0120 TalTech Diferentsiaalvõrrandite kodutöö Urmas Pitsi, detsember 2020

Ülesanne 1:

1.) Vorrandinisteer, mille mooderstavad m harilikku diferentsiaal võvrandit. Iga vorrand nob soltumatut muntufat a otnitavaid funktrisone ja nende tule fini. Seal junes pravad otritavad rahuldama korrogg metut virrandit. Uldkeyn: $(i=1,2,\ldots,m)$ Normacel keeju ! $(y) = f_1(x_1, y_1, y_2, ..., y_n)$ 2) $\begin{cases} y_{1}^{1} = f_{2}(x_{1}y_{1}, y_{2}, \dots, y_{n}) \\ y_{n}^{1} = f_{n}(x_{1}y_{1}, y_{2}, \dots, y_{n}) \end{cases}$

Lahendi olemasoler ja ühenes susteemi (2)
jaoles:

(i) Peano teoreem:
Olga funktrioonid f: (8, 4, 42, 42, 4n) (i=12, 1n)
pidevad muntujake x, y, y2, ..., yn
piin konnas D. Siis Rabi piinkonna D
iga punkti (x0, y1, y2, ..., yn) knegeb
vahe malt üls diferent naal võvrandike
sürteeni (2) inte graal kõver.

(ii) Cauchy teoriem:

Olga funktrioonid f; (x, y, yz, yn) (i=12,...n)
ja rende orabuletised di (i,j=1,2,...,n)
mai ratud ja pidevad
muntujate x, y, yz, ..., yn pinkonnas D.

Süs läbi pünkonna D

iga punkti (xo, y, yz, ..., yn) kulgeb
parajarti üls diferent naalvõvaudite
sürteemi (2) inte graalkõver.

Ülesanne 2:

Degen meil lineaeurue difenentrioalvõurand:

Ly = $p_0(z)y'' + p_1(z)y'' + ... + p_n(z)y = f(x)$ (1)

ja alstingimused: $\sum_{j=0}^{n-1} \left[\alpha_{ij} y^{(j)}(\alpha) + \beta_{ij} y^{(j)}(6) \right] = \%; \quad (i=1,2,...,n)$ (2)

kun α_{ij} , β_{ij} , β_{ij} on etheantud konstandid,

a ja b on raja punktid, integreerimis lõigen α_{ij} α_{ij

Rajaülerandeles nime tatalese diferentniaal voulandit (1) kors rajahinginustega (2).

Lemma 9.1. Raja úlesa nne on üherelt lorhendur para jasti suis, kui funktsioonidele yi, (i=1,2,...,n) nakenda tud vaja operaatorite U; , (j=1,2,...,n) vaartustest koostalud maa tribsi determinant

$$D = 0.$$

$$D = \begin{cases} u_{1}(y_{1}) & u_{1}(y_{2}) & \dots & u_{n}(y_{n}) \\ u_{2}(y_{1}) & u_{2}(y_{2}) & \dots & u_{n}(y_{n}) \\ u_{n}(y_{n}) & u_{n}(y_{2}) & \dots & u_{n}(y_{n}) \end{cases}$$

ühentt lahendur parajasti nis kui nisteemi determinent polerull. NÃIDE: f(z) on pideo w-perioodiline funktrioon. $y'' + a^2y = f(z)$, y(0) - y(w) = D, y(0) - y(w) = 0muil on toik [a,b] = [0,w] [a,b] = [0,w] [a,b] = [0,w] [a,b] = [0,w] [a,b] = [0,w][a,b] = [0,w]

 $y'' + \alpha^2 y = 0$, y(0) - y(w) = 0, y(0) - y(w) = 0or vaid triviagene lake ad.

the kui vorandil $y''+a^2y=f(x)$ on parajashi who we periodiline lahend ja kui võrandil $y''+a^2y=0$ pole mittetriviaalkid we periodilini lahendeid. Keei a=k k T/w, kees k on minezi taisarv, nis sõltuvalt we perioadilisest va ba liikmest f(x), autud võrandil $y''+a^2y=f(x)$ we perioodiline lahend kar peerideib või on peliseid lahendeid lõpmata palju.

Ülesanne 3:

 $y = y_{h} + y_{k}$ () Lohendame homogense võnnandi. $y_{h} \Rightarrow y'' - y = 0 \Rightarrow x^{2} - 1 = 0, x = 1$

2) Leianne erilahendi yx y' = c,ex + c,'ex - czex + cz'ex

$$y_{*} = A$$
, $y_{*} = 0$, $y_{*} = 0$ = 0 - A = -5
 $x_{*} = 5$

(3) $y = c_1 e^{x} + c_2 e^{x} + 5 \Rightarrow y = c_1 e^{x} - c_2 e^{x}$ $z = y^{2} - 5$ $z = c_1 e^{x} - c_2 e^{x} - 5$

$$\int_{z}^{z} = c_{1}e^{x} + c_{1}e^{x} + 5$$

$$z = c_{1}e^{x} - c_{2}e^{x} - 5$$
VASTUS

Ülesanne 4:Numbriline lahendus Google sheetsis:

х	y (tegelik)	y (dx=0.01)	y (dx=0.05)	y (dx=0.1)	y (dx=0.5)	y (dx=1)
0	5	5	5	5	5	5
1	15	15	14	14	12	10
2	41	41	40	39	33	26
3	109	109	107	104	86	67
4	289	288	282	275	226	173
5	767	763	749	730	596	454
6	2,053	2,043	2,003	1,954	1,589	1,206
7	5,532	5,505	5,396	5,262	4,273	3,235
8	14,969	14,894	14,599	14,235	11,549	8,732
9	40,596	40,394	39,592	38,604	31,305	23,653
10	110,232	109,683	107,502	104,817	84,980	64,187
viga, % 0		0.50%	2.48%	4.91%	22.91%	41.77%

Y. Leia Cauchy interande ligikandne
vac Muss kohal $x = d + \beta$, kus $d = \beta = 5$ x = 10. Euleri mee todil, vahe malt 10 samu.
(VAINIKKO, lk. 16)

$$\begin{cases} y^2 - 2xc = y - x^2 \\ y(0) = x = 5 \end{cases}$$

 $y' - y = 2x - x^{2}$ $y' \cdot e^{x} - y \cdot e^{x} = e^{-x} \cdot 2x - e^{x} \cdot x^{2}$ $(y \cdot e^{x})'$ $(y \cdot e^{x})'$

$$\begin{cases}
\frac{\partial}{\partial x} \left(y \cdot e^{x} \right) dx = \int \frac{\partial}{\partial x} \left(e^{-x} \cdot x^{2} \right) dx \\
y \cdot e^{x} = e^{-x} \cdot x^{2} + C \quad | : e^{-x} \\
y = x^{2} + C \cdot e^{x}
\end{cases}$$

y(0)=5 => 5=0+c.e°=> C=5

$$y = x^{2} + 5 \cdot e^{x}$$
 $y(0) = 5$
 $y' = 4x + 5 \cdot e^{x}$ $y'(0) = 5$

EULERI MEETOD: Leiame
$$y(10) = ?$$
 $Ax = x_1 - x_2 = 1: x_0 = 0, x_1 = 1, x_2 = 2, ..., x_0 = 10$
 $x_1 = x_0 + \Delta x_1, y_1 = y_0 + \Delta x_1 \cdot (x_0, y_0), x_1 = x_0 + \Delta x_1, y_2 = y_0 + \Delta x_1 \cdot (x_1, y_1), x_0 = y_0 + \Delta x_1 \cdot$