Exercise

Qi'ao Chen 21210160025

October 25, 2021

Exercise 1. Suppose G is infinite planar

Proof. Let $\mathcal{L} = \{E, R, W, B, Y\}$,

$$\begin{split} \sigma &= \forall x ((R(x) \land \neg W(x) \land \neg B(x) \land \neg Y(x)) \lor \\ &(\neg R(x) \land W(x) \land \neg B(x) \land \neg Y(x)) \lor \\ &(\neg R(x) \land \neg W(x) \land B(x) \land \neg Y(x)) \lor \\ &\neg (R(x) \land \neg W(x) \land \neg B(x) \land Y(x))) \end{split}$$

$$\begin{split} \sigma_R : \forall x, y(E(x,y) \rightarrow \neg (R(x) \land R(y))) \text{ and } \sigma_W, \sigma_B, \sigma_Y \text{ similarly.} \\ \operatorname{Diag_{el}}(G) &= \{\phi(a_1, \dots, a_n) \mid G \vDash \phi(a_1, \dots, a_n), a_i \in V, \phi \in L\} \\ \operatorname{Let} L_V &= L \cup V \end{split}$$

Let $\Sigma=\mathrm{Diag}(G)\cup\{\sigma,\sigma_R,\sigma_W,\sigma_B,\sigma_Y\}$. Σ is finitely satisfiable. For any finite $\Delta\subset\mathrm{Diag}(G)$, assume a_1,\ldots,a_m occurs in Δ , then the subgraph T of G with vertices a_1,\ldots,a_m s.t. Ea_ia_j in T iff Ea_ia_j in G is a model of Δ . As we can color T in 4 colors, Δ is satisfiable and thus Σ is satisfiable.

Thus Σ has a model G' with $f:G \xrightarrow{\prec} G'$ an elementary map. Prove Let $f(a)=a^{G'}$. For any $a_1,a_2\in G$

- 1. If a_1,a_2 are distinct elements of G, then $a_1\neq a_2\in {\rm Diag_{el}}(G)$. Hence $f(a_1)\neq f(a_2)$
- $\begin{array}{l} \text{2. For any relation } R \text{, if } \bar{a} \in R^G \text{, then } R(\bar{a}) \in \operatorname{Diag}_{\operatorname{el}}(G) \text{, hence } f(\bar{a}) \in R^{G'} \\ \text{If } \bar{a} \notin R^G \text{, then } \neg R(\bar{a}) \in \operatorname{Diag}_{\operatorname{el}}(G) \text{, hence } f(\bar{a}) \notin R^{G'} \\ \end{array}$

As G' has 4 color, so does G.