Uge 1: Hurtigopgave

Niels Richard Hansen, Københavns Universitet

Vi ser i denne opgave på det målelige rum $\mathcal{X} = \{1, 2, \dots, n\}$ udstyret med sigmaalgebraen $\mathbb{P}(\mathcal{X})$ – potensmængden af \mathcal{X} , der indeholder alle delmængder af \mathcal{X} . Lad endvidere

$$\mathbb{D} = \{\emptyset, \{1\}, \dots, \{n\}\}.$$

Før sætning 3.7:

Vis at $\sigma(\mathbb{D}) = \mathbb{P}(\mathcal{X})$.

Efter sætning 3.7:

Punktsandsynlighederne for et sandsynlighedsmål μ på $(\mathcal{X}, \mathbb{P}(\mathcal{X}))$ er givet ved $p_i = \mu(\{i\})$. Gør rede for at punktsandsynlighederne entydigt bestemmer μ .

Lad nu $A_1, \ldots, A_m \subseteq \mathcal{X}$ være givne mængder med tilsvarende sandsynligheder

$$q_i = \mu(A_i) \in [0, 1]$$

for $i = 1, \ldots, m$.

Gør rede for at der findes en $m \times n$ matrix H med $H_{ij} \in \{0,1\}$, således at

$$Hp = q$$

hvor $p = (p_1, \dots, p_n)^T$ og $q = (q_1, \dots, q_m)^T$. Find H i tilfældet m = n og $A_i = \{1, 2, \dots, i\}$.

Angiv en tilstrækkelig betingelse på H, der sikrer at q_1, \ldots, q_m entydigt bestemmer μ . Hvor stor skal m som minimum være for at din betingelse er opfyldt?