1 Numéro de publication:

0 241 363

12)

DEMANDE DE BREVET EUROPEEN

2) Numéro de dépôt: 87400739.6

2 Date de dépôt: 03.04.87

(a) Int. Cl.4: C 07 H 21/00

C 07 H 19/173, C 07 H 19/073, C 07 H 19/12

30 Priorité: 08.04.86 FR 8604990

43 Date de publication de la demande: 14.10.87 Bulletin 87/42

Etats contractants désignés:
AT BE CH DE ES FR GB GR IT LI LU NL SE

7) Demandeur: COMMISSARIAT A L'ENERGIE ATOMIQUE 31/33, rue de la Fédération F-75015 Paris (FR)

/2 Inventeur: Molko, Didier 11, Avenue de la Gare F-38120 Tullins (FR)

> Schulhof, Jean-Claude 49 Le Hameau Fleuri Montbonnot F-38330 Saint Ismier (FR)

Teoule, Robert 52, rue Thiers F-38000 Grenoble (FR)

(2) Mandataire: Mongrédien, André et al c/o BREVATOME 25, rue de Ponthieu F-75008 Paris (FR)

64 Dérivés de nucléosides et leur utilisation pour la synthèse d'oligonucléotides.

L'invention a pour objet des dérivés de nucléosides et leur utilisation pour la synthèse d'oligonucléotides

Ces dérivés répondent à la formule :

dans laquelle B représente un radical dérivé de la guanine, de la cytosine ou de l'adénine dont le groupement NH exocyclique est protégé par le groupement

-co-ch
$$\stackrel{R}{\stackrel{1}{\sim}}$$
 R

avec R¹ représentant un atome d'hydrogène ou un radical alkyle et R² représentant un atome d'hydrogène, un radical alkyle, un radical alcoxy ou un radical aryloxy éventuellement substitué, R³ représente un atome d'hydrogène, le radical diméthoxytrityle ou le radical :

R4 représente un atome d'hydrogène, le radical de formule :

ou un radical convenant à la synthèse de polynucléotides, et R⁵ représente un atome d'hydrogène ou le radical OH hydroxyle protégé ou non.

Bundesdruckerei Berlin

Description

5

15

20

25

30

35

40

45

50

Dérivés de nucleéosides et leur utilisation pour la synthèse d'oligonucléotides.

La présente invention a pour objet de nouveaux dérivés de nucléosides et leur utilisation pour la synthèse d'oligonucléotides.

De façon plus précise, elle concerne des dérivés de nucléosides formés à partir de bases pyrimidiques ou puriques comportant des groupements NH₂ exocycliques, c'est-à-dire des nucléosides formés à partir d'adénine, de guanine ou de cytosine, qui sont utilisables en particulier pour la synthèse d'oligonucléotides.

La synthèse d'oligonucléotides consiste à lier entre eux des nucléosides par un groupement phosphate pour former une chaîne d'ADN (acide désoxyribonucléique) ou d'ARN (acide ribonucléique). Dans cet assemblage, les groupements phosphates internucléotidiques relient toujours la fonction hydroxyle en position 3' d'un nucléoside à la fonction hydroxyle en position 5' d'un autre nucléoside. Ainsi, lors de la réaction de synthèse, seules les extrémités 3' et 5' des nucléosides sont sollicitées et la base nucléique (purique ou pyrimidique) utilisée ne doit pas intervenir au cours de cet assemblage.

Lorsque ces bases comprennent des groupements NH₂ exocycliques, il est nécessaire de protéger ces groupements lors de la synthèse des oligonucléotides car ceux-ci sont trop réactifs et risquent d'interférer avec les réactions de synthèse.

Cette protection des groupements NH₂ exocycliques doit répondre à certaines caractéristiques :

elle doit être sélective et facile à réaliser,
elle ne doit pas induire de modifications de réactivité des autres sites du nucléoside, et être stable pendant toutes les étapes de la synthèse oligonucléotidique, et

- elle doit pouvoir être éliminée ensuite dans des conditions douces sans détruire l'oligonucléotide qui vient d'être synthétisé.

Les groupements NH₂ exocycliques des nucléosides ont le plus souvent été protégés sous la forme d'amides, par exemple au moyen de groupes benzoyle ou anisoyle dans le cas de l'adénine et de la cytosine comme il est décrit par H. SCHALLER et al dans J. Amer. Chem. Soc. (1963), vol. 85, p. 3821-3827, et au moyen du groupe isobutyryle dans le cas de la guanine comme il est décrit par H.BÜCHI et H. KHORANA dans J. Mol. Biol. (1972), vol. 72, p. 251-288.

Ces groupes protecteurs peuvent être éliminés en fin de synthèse par action de l'ammoniaque à 28%, pendant 17 h, à une température de 60°C, comme il est préconisé. Cependant la RMN du proton montre que dans ces conditions on n'élimine pas tous les groupements isobutyryle de la guanine ; il est donc préférable de porter le temps de réaction à 72 heures, toujours à une température de 60°C.

Ce mode d'élimination des groupes protecteurs constitue un inconvénient car les conditions mises en oeuvre ne sont pas suffisamment douces pour pouvoir être utilisées avec des nucléosides modifiés, peu stables en milieu alcalin, comme c'est le cas par exemple de la dihydro-5,6 thymidine.

Aussi, des recherches ont été entreprises sur la possibilité d'utiliser d'autres groupements acyle plus faciles à éliminer, utilisables en particulier pour la synthèse d'oligonucléotides à partir de nucléosides labiles par la méthodologie de synthèse sur support qui consiste à fixer le premier nucléoside de la chaîne sur un support, généralement en silice, et à effectuer ensuite successivement des cycles de condensation pour fixer sur le premier nucléoside les autres nucléosides dans l'ordre voulu. L'utilisation de groupements acyle plus faciles à éliminer permet par ailleurs d'obtenir un meilleur rendement de déprotection. Ce point est très important car la présence de bases incomplètement déprotégées présente un inconvénient pour l'utilisation des produits obtenus.

La présente invention a précisément pour objet de nouveaux dérivés de nucléosides comportant des groupements protecteurs de type acyle, susceptibles d'être éliminés facilement.

Les dérivés de nucléosides de l'invention répondent à la formule :

$$R^{3}O \xrightarrow{0}_{R^{2}} CO-CH_{R^{2}}^{R^{1}}$$
 (1)

dans laquelle B représente un radical bivalent choisi parmi :

60

relié au groupement CO par son groupement NH- exocyclique ;

- R1 représente un atome d'hydrogène ou un radical alkyle,
- R² représente un atome d'hydrogène, un radical alkyle, un radical alcoxy, un radical aryloxy non substitué ou substitué par un ou des groupements choisis parmi NO₂, CN, alcoxy, aryloxy,

aryloxy, Cl, F,
$$C_{0R}^{=0}$$
, $C_{R}^{=0}$, so R, $S_{R}^{=0}$, $P_{0R}^{=0}$ (OR) 2'

15

25

35

45

50

60

alkyle ou aryle substitué ou non, SR avec R représentant un radical alkyle ou aryle, à l'exclusion de $R^1 = H$ et $R^2 = CH_3$ lorsque B est le radical (II) ou (III) et de $R^1 = R^2 = CH_3$ lorsque B est le radical (II); - R^3 représente un atome d'hydrogène, un radical labile en milieu acide ou le radical de formule:

dans laquelle R¹ et R² ont la signification donnée ci-dessus, - R⁴ représente un atome d'hydrogène, un radical phosphoré ou le radical :

dans lequel R1 et R2 ont la signification donnée ci-dessus; et

- R5 représente un atome d'hydrogène ou le radical OH protégé ou non.
- A titre d'exemple, les radicaux labiles en milieu acide susceptibles d'être utilisés pour former R³ dans le composé de formule (I) sont en particulier des radicaux utilisables en synthèse oligonucléotidique tels que : les radicaux trityle répondant à la formule :

$$-c \xrightarrow{O \to R^6}$$

$$- R^6$$

$$R^7 \qquad (V)$$

$$R^8$$

dans laquelle R⁶, R⁷ et R⁸ qui peuvent être identiques ou différents, représentent un atome d'hydrogène, un radical alkyle ou un radical alkoxy, par exemple le radical monométhoxytrityle ou le radical trityle de formule (V) dans laquelle R⁶ et R⁷ représentent le radical méthoxy et R⁸ représente un atome d'hydrogène ; les radicaux pixyle et les radicaux phényl-9 xanthènyle.

A titre d'exemple, les radicaux phosphorés susceptibles d'être utilisés pour former R⁴ dans le composé de 65

0 241 363

formule (I) sont également des radicaux utilisables en synthèse oligonucléotidique tels que le radical de formule :

10 le radical de formule :

$$^{15} \text{ NCCH}^{5}\text{CH}^{5}\text{O-b} - N \xrightarrow{\text{CH}}^{\text{CH}^{3}} \text{CH}^{2}$$

le radical phosphonate de formule :

20

35

45

30 Selon l'invention, lorsque R⁵ représente le radical OH protégé, on utilise comme groupe protecteur de OH les groupes habituellement utilisés dans la synthèse des ribonucléotides.

Les dérivés de nucléosides de l'invention sont ainsi les produits de l'union 1º) d'une base formée par la guanine, la cytosine ou l'adénine et 2º) du ribose ou du désoxyribose, les nucléosides étant modifiés au moins sur le groupement NH₂ exocyclique de leur base par un groupement

Ils peuvent également être modifiés par ce même groupement sur les positions 3' et 5' du désoxyribose ou 2', 3' et 5' du ribose, ou les positions 3' et 5' du ribose ou du désoxyribose peuvent être modifiées par d'autres groupements qui sont les groupements labiles R³ pour la position 5' et le groupement phosphoré R⁴ sur la position 3' du ribose ou du désoxyribose.

Les groupements acyle de formule

utilisés dans l'invention sont particulièrement intéressants pour la synthèse des nucléotides car ils peuvent être éliminés facilement en fin d'opération, par exemple par traitement à l'ammoniaque pendant 2 à 8 h selon le groupement utilisé, à la température ambiante, ce qui permet de libérer simultanément le polynucléotide du support sur lequel il a été synthétisé, lorsqu'on utilise la méthode de synthèse sur support.

60 Dans le groupe protecteur de formule

65

utilisé dans l'invention, R¹ peut présenter un atome d'hydrogène ou un radical alkyle, et R² peut représenter un atome d'hydrogène, un radical alkyle, un radical alcoxy ou un radical aryloxy éventuellement substitué par différents groupements.

10

Les radicaux alkyle susceptibles d'être utilisés pour R¹ et R² peuvent être des radicaux linéaires ou ramifiés, par exemple des radicaux méthyle, éthyle, ...

15

Les radicaux alcoxy susceptibles d'être utilisés pour R² peuvent être également des radicaux linéaires ou ramifiés. Les radicaux aryloxy susceptibles d'être utilisés peuvent être en particulier des radicaux dérivés du benzène, du naphtalène et de l'anthracène, par exemple le radical phénoxy, et ils peuvent être substitués par un ou plusieurs des substituants mentionnés précédemment.

Selon l'invention, on choisit le groupement protecteur des groupements NH₂ exocycliques en fonction de la base utilisée afin d'obtenir la résistance au traitement alcalin souhaité.

20

Généralement, lorsque la base utilisée est la guanine, R¹ représente un atome d'hydrogène et R² est un radical alcoxy ou un radical aryloxy éventuellement substitué.

A titre d'exemple, le radical R² peut être le radical phénoxy, le radical méthoxy ou le radical chloro-2 phénoxy.

5

Lorsque la base utilisée est l'adénine, R¹représente de préférence un atome d'hydrogène et R² représente un radical aryloxy éventuellement substitué, par exemple le radical phénoxy.

25

Lorsque la base est la cytosine, les radicaux R¹ et R² sont de préférence des atomes d'hydrogène ou des radicaux alkyle, par exemple des radicaux méthyle.

30

L'utilisation des groupes protecteurs mentionnés ci-dessus permet d'obtenir une réduction du temps de déprotection des oligonucléotides obtenus par assemblage des nucléosides de l'invention, puisque ce temps peut être seulement de 2 à 8 h selon le groupement utilisé, au lieu des 17 à 72 h nécessaires antérieurement. On peut par ailleurs opérer dans des conditions réactionnelles plus douces puisqu'on réalise la déprotection à température ambiante alors qu'il était nécessaire auparavant de chauffer à 60°C. De plus, l'utilisation de ces groupes protecteurs éliminables plus facilement permet d'incorporer lors de la synthèse des oligonucléotides des bases nucléiques modifiées sensibles à des conditions alcalines plus violentes, par exemple de synthètiser des fragments d'ADN porteurs de ligands sensibles à des anticorps

35

synthétiser des fragments d'ADN porteurs de ligands sensibles à des anticorps.

Bien que l'invention s'applique aux nucléosides dérivés du ribose et aux nucléosides dérivés du désoxyribose, on l'utilise de préférence pour les nucléosides dérivés du désoxyribose, c'est-à-dire aux dérivés de formule (I) dans laquelle R⁵ est un atome d'hydrogène.

Les dérivés de nucléosides de l'invention peuvent être préparés par des procédés classiques, analogues à ceux utilisés pour fixer les groupements benzoyle et anisoyle sur les nucléosides à base d'adénine ou de cytosine. Dans ces procédés, on part du nucléoside de la guanine, de la cytosine ou de l'adénine, que l'on fait réagir avec le chlorure d'acide de formule :

40

R¹

45

R2 CH - COCL

50

ou l'anhydride d'acide de formule :

55

60

Lors de cette réaction, l'anhydride ou le chlorure d'acide réagit également avec les groupements hydroxyle en position 3' et 5' du ribose ou du désoxyribose et l'on obtient ainsi le dérivé du nucléoside triprotégé soit le dérivé de formule (I) dans lequel R³ et R⁴ représentent tous deux le radical :

30

35

45

50

55

65

On peut toutefois éliminer ces radicaux en position 3' et 5' par hydrolyse sélective, ce qui permet d'obtenir les dérivés de nucléosides de formule (I) dans laquelle R³ et R⁴ représentent des atomes d'hydrogène.

On peut préparer les dérivés de nucléosides de formule (I) dans laquelle R³ représente un radical trityle de formule (V), par exemple le groupement diméthoxytrityle, et R⁴ représente un atome d'hydrogène en faisant réagir les dérivés des nucléosides obtenus précédemment avec le chlorure de trityle correspondant dans un solvant approprié.

Les dérivés de nucléosides répondant à la formule (I) dans laquelle R³ représente un groupement trityle et R⁴ représente soit le radical de formule (VI), soit le radical de formule (VII), soit un radical de formule :

dans laquelle R¹¹, R¹² et R¹³ qui peuvent être identiques ou différents, sont des radicaux alkyle, par exemple éthyle, peuvent être préparés par des procédés classiques à partir des dérivés de nucléosides de formule (I) dans laquelle R³ représente un radical trityle et R⁴ représente un atome d'hydrogène.

Dans le cas où R⁴ représente, par exemple, le radical de formule (VI), on fait réagir ce dérivé de nucléoside avec du bistriazolidate de chloro-4 phénylphosphoryle dans un solvant approprié. Le bistriazolidate de chloro-4 phénylphosphoryle peut être préparé par addition de dichlorophosphate de chloro-4 phényle à une suspension de triazole et de triéthylamine dans du dioxanne.

Lorsque R⁴ représente, par exemple, le radical de formule (VII), on peut faire réagir le dérivé de nucléoside avec du β -cyanoéthyl-monochloro N,N-diisopropyl amino phosphoramidite dans un solvant approprié en présence de diisopropyléthylamine.

Lorsque R4 représente, par exemple, le radical de formule :

dans laquelle R¹¹, R¹² et R¹³ qui peuvent être identiques ou différents, sont des radicaux alkyle, on peut faire réagir le dérivé de nucléoside avec de la chloro-2 benzo(5,6-a) [dioxo-1,3 phosphor-2 inone-4] puis avec un sel de trialkyl ammonium tel que l'acétate de triéthyl ammonium.

Les dérivés de nucléosides obtenus par ces trois méthodes peuvent être utilisés pour la synthèse d'ologonucléotides soit par synthèse phosphotriester dans le cas où R⁴ est le radical de formule (VI), soit par synthèse phosphoramidite dans le cas où R⁴ est le radical de formule (VII), soit par synthèse H-phosphonate dans le cas où R⁴ est le radical de formule :

$$H - P - O^{(-)} \qquad \begin{array}{c} R^{11} \\ R^{12} \\ R^{13} \\ \end{array} NH^{(+)}$$

en utilisant également pour l'assemblage des chaîne oligonucléotidiques d'autres nucléosides, par exemple ceux correspondant à la thymidine et à la désoxy-2' uridine, ou encore des nucléosides comportant des bases labiles en milieu alcalin ou d'autres nucléosides labiles en milieu alcalin.

Le procédé, selon l'invention, de synthèse d'oligonucléotides, comprend :

1º au moins un cycle de condensation dans lequel on condense sur un dérivé de nucléoside ou sur un oligonucléotide un dérivé de nucléoside de formule :

$$R^{3}O \longrightarrow R^{1}$$
 $R^{2}O \longrightarrow R^{2}$
 $OR \longrightarrow R^{$

dans laquelle B représente un radical bivalent choisi parmi :

relié au groupement CO par son groupement NH- exocyclique;

- R1 représente un atome d'hydrogène ou un radical alkyle,
- R² représente un atome d'hydrogène, un radical alkyle, un radical alcoxy, un radical aryloxy non substitué ou substitué par un ou des groupements choisis parmi NO₂, CN, alcoxy, aryloxy,

aryloxy, Cl, F,
$$C_{OR}^{(0)}$$
, $C_{R}^{(0)}$, $S_{R}^{(0)}$, $S_{R}^{(0)}$, $S_{R}^{(0)}$

alkyle ou aryle substitué ou non, SR avec R représentant un radical alkyle ou aryle, à l'exclusion de $R^1 = H$ et $R^2 = CH_3$ lorsque B est le radical (II) ou (III) et de $R^1 = R^2 = CH_3$ lorsque B est le radical (II);

- R³ représente un radical labile en milieu acide,
- R4 représente un radical phosphoré, et
- R5 représente un atome d'hydrogène ; et
 - 2º) une étape d'élimination du ou des groupes protecteurs de formule :

65

45

50

55

60

5

10

15

20

25

30

35

40

45

50

55

60

65

dans laquelle R¹ et R² sont tels que définis ci-dessus, par exemple par mise en contact de l'oligonucléotide avec de l'ammoniaque à la température ambiante.

La synthèse oligonucléotidique peut être effectuée soit par des méthodes en solution, soit par des méthodes de synthèse sur support. On utilise de préférence les méthodes de synthèse sur support car celles-ci sont mieux adaptées à l'utilisation de nucléosides plus labiles, sans qu'il y ait une perte de rendement au cours de l'assemblage.

Les nucléosides de l'invention peuvent donc trouver des applications intéressantes en tant que produits de base destinés à la synthèse de fragments d'ADN ou d'ARN. Ils peuvent également convenir pour incorporer dans des oligonucléotides de synthèse des bases modifiées fragiles, ce qui peut concerner en particulier les produits de radiolyse gamma de l'ADN ainsi que les produits de photolyse.

Les nucléosides de l'invention peuvent permettre également l'accès à de nouvelles molécules à activité antivirale et à de nouvelles sondes d'ADN.

Les exemples suivants de préparation et d'utilisation des nucléosides conformes à l'invention sont donnés bien entendu à titre non limitatif pour illustrer l'invention.

EXAMPLE 1 : Préparation de (N2 -phénoxyacétyl)-désoxy-2' guanosine (composé nº)1

On sèche 1080 mg (4 mmol) de désoxy-2' guanosine par additions et évaporations successives de pyridine anhydre, puis on les met en suspension dans 20 ml de pyridine anhydre et on introduit la suspension dans un ballon. On refroidit le ballon au bain de glace et on y ajoute lentement 6 équivalents (4,25 g ; 24 mmol) de chlorure de phénoxyacétyle à 0°C. On laisse ensuite la réaction se poursuivre à la température ambiante pendant 90 min. Un précipité blanc de chlorure de pyridinium apparaît dans le milieu réactionnel tandis que celui-ci prend une coloration orangée à brune. On obtient ainsi le dérivé triprotégé du nucléoside de départ, c'est-à-dire le dérivé de formule (I) dans laquelle B représentê le radical de formule (II), dérivé de la guanine, R¹ représente un atome d'hydrogène, R² représente le radical phénoxy, R³ et R⁴ représentent le radical phénoxyacétyle et R⁵ est un atome d'hydrogène.

On détruit alors l'excès de chlorure d'acide à 0°C par 2 ml d'eau bidistillée, ce qui solubilise le milieu réactionnel puis on le dilue par 100 ml de chloroforme. On lave 4 fois la phase chloroformique par 50 ml de solution aqueuse à 5% de bicarbonate de sodium pour éliminer l'acide phénoxyacétique formé. On sèche alors la phase chloroformique sur du sulfate de sodium, on évapore le solvant et on obtient ainsi un résidu orange. On dissout celui-ci dans 100 ml de pyridine refroidis à 0°C, puis on ajoute 100 ml de soude 0,2 N à 0°C. On effectue ainsi l'hydrolyse sélective des positions 3′ et 5′ en 20 min. On neutralise alors le milieu au moyen de la résine échangeuse de cations, Dowex 50W-X8 d'une granulométrie de 100 à 200 mesh (0,074 à 0,149 mm), sous forme pyridinium. Après filtration et rinçage de la résine, on évapore à sec le filtrat.

On isole ensuite la N₂-phénoxyacétyl-désoxy-2' guanosine formée par chromatographie sur une colonne de silice (3 cm de diamètre, 15 cm de hauteur) que l'on élue par un gradient de chloroforme-méthanol. L'évaporation des fractions contenant le produit recherché permet de recueillir 250 mg de N₂-phénoxyacétyl-désoxy-2' guanosine, ce qui correspond à un rendement de 15%.

On contrôle l'identité et la pureté du produit obtenu par résonance magnétique nucléaire à 250 MHz, par chromatographie en couche mince et par spectrométrie de masse. On obtient les résultats suivants :

- $R_F=0.36$ avec le mélange de migration chloroforme-méthanol (80/20 en vol),
- (M + H) pic moléculaire (m/e : 402 13%); guanine phénoxyacétylée (m/e : 286 51%).

EXEMPLE 2 : Préparation de[-N2-(chloro-2 phénoxy)acétyl]-désoxy-2' guanosine (composé nº)2

On sèche 1080 mg (4 mmol) de désoxy-2' guanosine comme dans l'exemple 1, puis on les met en suspension dans 20 ml de pyridine anhydre et on les introduit dans un ballon placé dans un bain d'eau glacée. On ajoute lentement à 0°C, 6 équivalents (5,1 g ; 24 mmol) de chlorure de (chloro-2-phénoxy)acétyle. On laisse la réaction se poursuivre à la température ambiante pendant 150 min. Une coloration verte à marron apparaît dans le milieu réactionnel et on forme ainsi le dérivé triprotégé du nucléoside de départ, soit le dérivé de formule (I) dans laquelle B représente le radical de formule (II) dérivé de la guanine, R¹ représente un atome d'hydrogène, R² représente le radical chloro-2 phénoxy, R³ et R⁴ représentent le radical chloro-2 phénoxyacétyle et R⁵ est un atome d'hydrogène.

On détruit l'excès de chlorure d'acide à 0°C par 2 ml d'eau distillée qui solubilisent le milieu réactionnel. On le dilue alors par 100 ml de chloroforme et on lave cette phase chloroformique par 4 fois 50 ml d'une solution aqueuse à 5% de bicarbonate de sodium pour éliminer l'acide chlorophénoxyacétique. On sèche la phase chloroformique sur du sulfate de sodium, on évapore le solvant et l'on obtient ainsi un résidu orangé. On dissout ce résidu dans 100 ml de pyridine, on place la solution obtenue dans un bain d'eau glacée et on lui ajoute 100 ml de soude 0,2 N, ce qui donne un mélange titrant 0,1N et permet d'hydrolyser sélectivement les

positions 3' et 5' du nucléoside en 20 min. On neutralise alors le milieu par la résine échangeuse de cations Dowex 50W-X8 utilisée dans l'exemple 1 sous forme pyridinium. On filtre et on rince la résine, puis on évapore à sec le filtrat. On obtient ainsi la [N₂-(chloro-2 phénoxy)acétyl]-désoxy-2' guanosine qui est soluble uniquement dans la pyridine.

On la purifie par chromatographie sur colonne de silice en utilisant un gradient chloroforme-méthanol. On isole ainsi 220 mg du composé no2, ce qui correspond à un rendement de 13%. On caractérise le composé par chromatographie en couche mince et par spectrométrie de masse.

Les résultats obtenus sont les suivants :

- R_F = 0,4 dans un mélange de migration chloroforme-méthanol (80/20 en volume),
- (M + H) : pic moléculaire (m/e : 436 17%) ; guanine chloro-2 phénoxyacétylée (m/e : 320 44%). La pureté du produit est confirmée par analyse par résonance magnétique nucléaire à 250 MHz.

EXEMPLE 3: Préparation de (N2-méthoxyacétyl)-désoxy-2'guanosine (composé nº3)

On sèche 5,4 g (20 mmol) de désoxyguanosine puis on les met en suspension dans 100 ml de pyridine anhydre. On refroidit à 0°C et on ajoute lentement 4,5 équivalents (10 g ; 90 mmol) de chlorure de méthoxyacétyle. On laisse la réaction se poursuivre à la température ambiante pendant 3 h pour former le dérivé triprotégé du nucléoside de départ, soit le dérivé de formule (I) dans laquelle B représente le radical de formule (II) dérivé de la guanine, R¹ représente un atome d'hydrogène, R² représente le radical méthoxy, R³ et R⁴ représentent le radical méthoxyacétyle et R⁵ représente un atome d'hydrogène.

On détruit l'excès de chlorure d'acide par du méthanol pendant 30 min, ce qui produit du méthoxyacétate de méthyle de basse température d'ébullition (129-130°C). On évapore les solvants et on reprend le résidu par du chloroforme, puis on le lave par une phase aqueuse à 5% de bicarbonate de sodium. On sèche la phase chloroformique sur du sulfate de sodium, puis on l'évapore, ce qui conduit à l'obtention d'un résidu orangé qui correspond au dérivé triprotégé.

On purifie le dérivé par chromatographie sur colonne de silice (diamètre 4 cm, longueur 10 cm) en utilisant un gradient chloroforme-méthanol. On recueille ainsi 7 g de dérivé triprotégé, ce qui correspond à un rendement de 73%.

On hydrolyse alors les fonctions ester au moyen d'un mélange de triéthylamine, de pyridine et d'eau (20/20/60 en volume). On évapore ensuite les solvants et on purifie la N₂-méthoxyacétyl désoxy-2' guanosine (composé no3) par chromatographie sur colonne de silice silanisée en réalisant l'élution par un mélange d'eau et d'acétone (70/30 v/v). On obtient ainsi 3,4 g de produit, ce qui correspond à un rendement de 51%. On contrôle le produit par résonance magnétique nucléaire à 250 MHz et par spectrométrie de masse et l'on obtient les résultats suivants :

- (M - H) : pic moléculaire (m/e : 338 - 10%) ; guanine méthoxy-acétylée : (m/e : 222 - 31%).

EXEMPLE 4: Préparation de (N6-phénoxyacétyl)-désoxy-2' adénosine (composé nº4)

On sèche 1025 mg (4 mmol) de désoxyadénosine puis on les dissout dans 20 ml de pyridine distillée anhydre et on les introduit dans un ballon placé dans un bain d'eau glacée. On ajoute alors lentement 8 équivalents d'anhydride phénoxyacétique (9,5 g ; 32 mmol) dissous dans 20 ml de pyridine à 0° C. On laisse la réaction se poursuivre à la température ambiante pendant 90 min et une coloration jaunâtre apparaît progressivement. On forme ainsi le dérivé de nucléoside de formule (I) dans laquelle B représente le radical de formule (IV) dérivé de l'adénine, R¹ représente l'hydrogène, R² représente le radical phénoxy, R³ et R⁴ représentent le radical phénoxyacétyle et R⁵ représente un atome d'hydrogène.

On détruit alors l'excès d'anhydride d'acide à 0°C par addition de 3 ml d'eau distillée, puis on dilue le milieu réactionnel par 100 ml de chloroforme. On lave la phase chloroformique 4 fois au moyen de 50 ml d'une solution aqueuse à 5% de bicarbonate de sodium, et on évapore le solvant, ce qui conduit à l'obtention d'un résidu jaune. On dissout celui-ci dans 100 ml de pyridine et, aprés avoir placé la solution dans un bain d'eau glacée, on ajoute 100 ml de soude 0,2 N à 0°C pour hydrolyser sélectivement les positions 3' et 5' de l'adénosine en 15 min. On neutralise alors la résine échangeuse de cations Dowex 50W-X8 sous forme pyridinium utilisée dans l'exemple 1. On filtre et on rince la résine puis on évapore à sec le filtrat.

On obtient ainsi la (N₆-phénoxyacétyl)-désoxy-2' adénosine (composé nº4) que l'on purifie par chromatographie sur colonne de silice (diamètre 4 cm et longueur 10 cm) en utilisant un gradient de chloroforme-méthanol (100-0-96-4). On évapore alors les fractions contenant le produit recherché et l'on obtient ainsi 1010 mg d'une poudre blanchâtre, ce qui correspond à un rendement de 65%.

On caractérise alors le produit par chromatographie sur couche mince, par résonance magnétique nucléaire du proton à 250 MHz et par spectrométrie de masse. Les résultats obtenus sont les suivants : - R_F : 0,66 avec le mélange de migration chloroforme-méthanol (80/20 en volume),

- résonance magnétique nucléaire du proton à 250 MHz : 1 H-RMN (pyridine d₅) : 2,7-3,3 (m, 2H, H₂"; 4,1-4,35 (m, 2H, H₅H₅") ; 4,6 (m, H₄") ; 5,25 (m, H₃") ; 5,65 (s, 2H, CH₂) ; 7,0 (m, H₁") ; 6,9-7,4 (m, 5H, C₆H₅) ; 8,75 et 9,05 (s, H₂ et H₆).
- spectrométrie de masse : (M+H) : pic moléculaire (m/e : 386-16%) ; adénine phénoxy acétylée (m/e : 270 66%).

65

5

10

15

20

25

30

35

40

45

50

55

EXEMPLE 5 : Préparation de (N4-isobutyryl)-désoxy-2' cytidine (composé nº5)

On sèche 4 mmol de désoxycytidine puis on les dissout dans 15 ml de pyridine anhydre et on introduit la solution dans un ballon placé dans un bain d'eau glacée. On ajoute alors lentement 6 équivalents (2,5 ml; 24 mmol) de chlorure d'isobutyryle. On laisse la réaction se poursuivre à la température ambiante pendant 120 min et le milieu prend une teinte orangée. On forme ainsi le dérivé triprotégé du nucléoside de départ, soit le dérivé de formule (I) dans laquelle B représente le radical de formule (III) dérivé de la cytosine, R₁ et R² représentent le radical méthyle, R³ et R⁴ représentent le radical isobutyryle et R⁵ représente un atome d'hydrogène.

On détruit l'excès de chlorure d'acide à 0°C par 2 ml d'eau bidistillée et on dilue le milieu réactionnel par 100 ml de chloroforme. On lave la phase chloroformique 4 fois par 50 ml de solution à 5% de bicarbonate de sodium pour éliminer l'acide isobutyrique formé, on sèche sur du sulfate de sodium et on évapore à sec. On obtient un résidu orange que l'on dissout dans 5 ml de pyridine refroidie à 0°C. On ajoute alors 100 ml de soude 0,2 N à 0°C et on laisse la réaction d'hydrolyse sélective des fonctions ester en 3' et 5' du désoxyribose se poursuivre pendant 30 min. On neutralise alors le milieu par la résine échangeuse d'ions Dowex 50W-X8 sous forme pyridinium utilisée dans l'exemple 1. On filtre ensuite et on rince la résine, puis on évapore à sec le filtrat.

On purifie par chromatographie sur colonne de silice (diamètre 4 cm; L: 10 cm) en utilisant un gradient de chloroforme-méthanol (100-0 à 95-5). On évapore les solvants et l'on obtient ainsi 630 mg d'une poudre blanche constituée d'isobutyryl-désoxycytidine, ce qui correspond à un rendement de 50%.

On caractérise le produit par chromatographie sur couche mince, spectrométrie de masse et résonance magnétique nucléaire du proton à 250 MHz. Les résultats obtenus sont les suivants :

- R_F : 0,55 avec le mélange de migration chloroforme-méthanol (80/20),
- spectrométrie de masse (M+H) : pic moléculaire (m/e = 298-11%), cytosine isobutyrylée (m/e = 182-100%)
- résonance magnétique nucléaire du proton à 250 MHz : ¹H-RMN (méthanol d₄) : 1,2 (d, 6H, 2(CH₃) de ib.),
 2,15-2,6 (m, 2H, H₂·, H₂·), 2,7 (m, HiÞ) ; 3,7-3,9 (m, 2H, H₅·, H₅·) ; 4,0 (m, H₄) ; 4,4 (m, H₃·) ; 6,25 (t, H₁·) ; 7,5 et
 8,5 (d, H₅ et H₆).

EXEMPLE 6 : Préparation de (N₄-isobutyryl)(diméthoxy-4,4'-trityl)-5' désoxy-2' cytidine (composé nº6)

On sèche 2,5 mmol du composé nº5 par additions et évaporations successives de pyridine anhydre. On reprend par 25 ml de pyridine, on refroidit à 0°C et on ajoute 2,75 mmol (1,1 équivalent) de chlorure de diméthoxy-4,4′ trityle dans 25 ml de pyridine, à 0°C. On laisse la réaction se poursuivre pendant 17 h à 5°C et on ajoute alors 2 ml de méthanol au milieu réactionnel. Après 30 min, on chasse le solvant à l'évaporateur rotatif et on reprend le résidu huileux par 100 ml d'acétate d'éthyle, et on lave par 3 fois 50 ml de solution aqueuse à 5% de NaHCO₃ et une fois 50 ml d'eau bidistillée. On sèche alors la phase organique sur sulfate de sodium et on la concentre. Par fractionnements sur colonne de gel de silice, on isole le composé nº6 ainsi obtenu qui répond à la formule (I) dans laquelle B est le radical de formule (III) dérivé de la cytosine, R¹ et R² sont des radicaux méthyle, R³ est le radical diméthoxy-4,4′ trityle, R⁴ est un atome d'hydrogène et R⁵ est un atome d'hydrogène.

Les caractéristiques physico-chimiques de ce composé et le rendement de la réaction sont donnés dans le tableau 1 annexé.

EXEMPLE 7: préparation de (N₆-phénoxyacétyl)-(diméthoxy-4,4' trityl)-5' désoxy-2' adénosine (composé no7)

On suit le même mode opératoire que dans l'exemple 6, mais en utilisant 2,5 mmol du composé nº4 au lieu du composé nº5 et l'on produit ainsi le composé nº7 : (N6-phénoxyacétyl)-(diméthoxy-4,4' trityl)-5' désoxy-2' adénosine, soit le composé répondant à la formule (I) dans laquelle B est le radical dérivé de l'adénine de formule (IV), R¹ est un atome d'hydrogène, R² est le radical phénoxy, R³ est le radical diméthoxy-4,4'-trityle, R⁴ est un atome d'hydrogène et R⁵ est un atome d'hydrogène.

Le rendement de la réaction et les caractéristiques physico-chimiques de ce composé sont données dans le tableau I annexé.

EXEMPLE 8 : Préparation du (N2-méthoxyacétyl)-(diméthoxy-4,4' trityl)-5' désoxy-2' guanosine (composé no8)

On suit le même mode opératoire que dans l'exemple 6, mais en utilisant 2,5 mmol du composé no3 au lieu du composé no5. On obtient ainsi le composé no8 répondant à la formule (I) dans laquelle B est le radical de formule (II) dérivé de la guanine, R¹ est un atome d'hydrogène, R² est le radical méthoxy, R³ est le radical diméthoxy-4,4′-trityle, R⁴ est un atome d'hydrogène et R⁵ est un atome d'hydrogène.

Le rendement de la réaction et les caractéristiques physico-chimiques de ce composé sont donnés dans le tableau 1 annexé.

Dans ce tableau, les lettres entre parenthèses indiquent la multiplicité du pic avec s = singulet, d = doublet, t = triplet; q = quadruplet et m = multiplet.

65

60

10

15

20

30

35

40

45

50

EXEMPLE 9 : Préparation du composé nº9

Cet exemple illustre la préparation d'un dérivé phosphorylé du composé no8 destiné à la synthèse phosphotriester de polynucléotides.

5

10

15

20

25

30

35

40

45

55

60

65

On sèche 3 mmol du composé nº8 par ajout et évaporation de pyridine anhydre (3 fois 5 ml). On reprend le résidu dans 15 ml de pyridine et on ajoute 4,5 mmol de bistriazolidate de chloro-4 phénylphosphoryle dans 30 ml de dioxanne anhydre (le bistriazolidate de chloro-4 phénylphosphoryle a été obtenu en ajoutant 4,5 mmol de dichlorophosphate de chloro-4 phényle à une suspension de 9 mmol de triazole et 9,35 mmol de triéthylamine dans 30 ml de dioxanne). On laisse la réaction se poursuivre pendant 20 min et on la stoppe alors par addition de 6 ml d'un mélange H₂O-triéthylamine (1/1 en volume) puis on réduit le volume du milieu réactionnel à 5 ml par évaporation. On reprend dans 100 ml de chloroforme et on lave 3 fois avec 50 ml de solution aqueuse de NaHCO₃ puis avec 100 ml d'eau. On sèche la phase chloroformique sur sulfate de sodium, puis on l'évapore à sec. Le composé recherché est isolé par chromatographie sur gel de silice. On contrôle alors le produit obtenu par spectrométrie de masse et par résonance magnétique nucléaire. Le rendement de la réaction et les résultats obtenus sont donnés dans le tableau 2 annexé.

Le composé nº9 ainsi obtenu est le dérivé de nucléoside de formule (I) dans laquelle B représente le radical dérivé de la guanine de formule (II), R¹ représente un atome d'hydrogène, R² représente le radical méthoxy, R³ représente le radical diméthoxy-4,4′ trityle, R⁴ représente le radical de formule (VI) et R⁵ représente un atome d'hydrogène.

EXAMPLE 10 : Préparation du composé nº10

Dans cet exemple, on suit le même mode opératoire que dans l'exemple 9 pour préparer le dérivé phosphorylé destiné à la synthèse phosphotriester du composé no7 en utilisant 2,5 mmol du composé no7 au lieu de 2,5 mmol du composé no8. On obtient ainsi le composé no10 qui répond à la formule (I) dans laquelle B représente le radical de formule (IV) dérivé de l'adénine, R¹ représente un atome d'hydrogène, R² représente le radical phénoxy, R³ représente le radical diméthoxy-4,4′ trityle, R⁴ représente le radical de formule (VI) et R⁵ représente un atome d'hydrogène.

On contrôle comme précédemment les caractéristiques du composé obtenu par spectrométrie de masse et par résonance magnétique, les résultats obtenus et le rendement de la réaction sont donnés également dans le tableau 2 annexé.

EXEMPLE 11 : Préparation du composé nº11

Dans cet exemple, on suit le même mode opératoire que dans l'exemple 9 pour préparer le dérivé phosphorylé du composé no6 destiné à la synthèse phosphotriester en utilisant 3 mmol du composé no6 au lieu de 3 mmol du composé no8.

On obtient ainsi le composé nº11 répondant à la formule (I) dans laquelle B représente le radical de formule (III) dérivé de la cytosine, R¹ et R² représentent le radical méthyle, R³ représente le radical diméthoxy-4,4′ trityle, R⁴ représente le radical de formule (VI) et R⁵ représente un atome d'hydrogène.

Comme dans les exemples 9 et 10, on contrôle le produit obtenu par spectrométrie de masse et par résonance magnétique nucléaire. Le rendement de la réaction et les résultats obtenus sont donnés dans le tableau 2 annexé.

EXEMPLE 12 : Préparation du composé nº12

Dans cet exemple, on prépare le dérivé phosphorylé du composé nº8 destiné à la synthèse phosphoramidite d'oligonucléotides.

On sèche 3 mmol de composé no8 par co-évaporation de pyridine, de toluène et de tétrahydrofuranne (THF). On reprend le résidu dans 15 ml de THF en présence de 12 mmol de N,N,N-diisopropyléthylamine et on ajoute goutte à goutte en 2 min 6 mmol de -cyanoéthyl-monochloro N,N-diisopropylaminophosphoramidite. Après 5 min de réaction, on observe la formation d'un précipité de chlorhydrate de l'amine. On laisse la réaction se poursuivre pendant 35 min et on filtre le précipité en fin de réaction, puis on évapore à sec le filtrat et on le reprend dans 150 ml d'acétate d'éthyle. On lave par une solution aqueuse glacée à 10% de Na₂CO₃. On sèche ensuite la phase organique sur sulfate de sodium et on l'évapore à sec.

On purifie le composé obtenu par chromatographie basse pression sur une colonne MERCK "LOBAR" de taille B en utilisant pour l'élution un mélange CH₂Cl₂-hexane-triéthylamine (70/20/10 de en volume). On reprend le composé obtenu par un minimum de dichlorométhane ou d'acétate d'éthyle et on le précipite dans l'hexane à -80° C. On analyse le produit par résonance magnétique nucléaire. Les résultats obtenus et le rendement de la réaction sont donnés dans le tableau 3 annexé.

On obtient ainsi le composé nº12 qui répond à la formule (I) dans laquelle B représente le radical de formule (II), dérivé de la guanine, R¹ représente un atome d'hydrogène, R² représente le radical méthoxy, R³ représente le radical diméthoxy-4,4′ trityle, R⁴ représente le radical de formule (VII) et R⁵ représente un atome d'hydrogène.

EXEMPLE 13 : Préparation du composé nº13

Dans cet exemple, on prépare comme dans l'exemple 12 le dérivé phosphorylé du composé no destiné à la synthèse phosphoramidite en utilisant 3 mmol du composé no au lieu de 3 mmol du composé no 8. On analyse également le produit obtenu par résonance magnétique nucléaire. Le rendement de la réaction et les résultats

sont donnés dans le tableau 3 annexé.

5

15

20

25

30

35

40

45

50

55

60

65

On obtient ainsi le composé nº13 qui répond à la formule (I) dans laquelle B est le radical de formule (IV) dérivé de l'adénine, R¹ est un atome d'hydrogène, R² est le radical phénoxy, R³ est le radical diméthoxy-4,4′ trityle, R⁴ est le radical de formule (VII) et R⁵ est un atome d'hydrogène.

EXEMPLE 14 : Préparation du composé Nº14

Dans cet exemple, on prépare comme dans l'exemple 12 l;e dérivé phosphorylé du composé nº6 destiné à la synthèse phosphoramidite en utilisant 3 mmol du composé nº6 au lieu de 3 mmol du composé nº8. On analyse également le produit obtenu par résonance magnétique nucléaire. Le rendement de la réaction et les résultats obtenus sont donnés dans le tableau 3 annexé.

On obtient ainsi le composé no14 qui répond à la formule (II) dans laquelle B représente le radical de formule (III) dérivé de la cytosine, R¹ et R² représentent le radical méthyle, R³ représente le radical diméthoxy-4,4′ trityle, R⁴ représente le radical de formule (VII) et R⁵ représente un atome d'hydrogène.

EXEMPLE 15: Préparation de la N6-phénoxyacétyl (diméthoxy-4,4' trityl)-5' désoxy-2' guanosine (composé no15).

On suit le même mode opératoire que dans l'exemple 6, en utilisant 4 mmol du composé no1 au lieu du composé no5 et l'on produit ainsi le composé no15, soit le composé répondant à la formule (i) dans laquelle B est le radical dérivé de la guanine de formule (II), R1 est un atome d'hydrogène, R2 est le radical phénoxy, R3 est le radical diméthoxy-4,4′ trityle, R4 est un atome d'hydrogène, R5 est un atome d'hydrogène.

Le rendement de la réaction est de 70%. Le Rf de ce composé dans le mélange Chloroforme/Méthanol (90:10) vaut 0,40. Les déplacements chimiques des principaux protons de cette molécule dans le méthanol deutérié ont les valeurs suivantes : H8 . 8,07 ppm, H1′ : 6,45 ppm (t), H3′: 4,75 ppm (m), H CH3 de diméthoxy trityle : 3,86 ppm (s), H CH2 de phénoxyacétyle : 5,05 ppm (s).

EXEMPLE 16: Préparation du composé nº16.

Dans cet exemple on prépare comme dans l'exemple 12 le dérivé phosphorylé du composé nº15, destiné à la synthèse phosphoramidite en utilisant 3 mmol du composé nº15 au lieu de 3 mmol du composé nº8. Le rendement en produit final est de 50%. Le produit est caractérisé par un doublet en RMN du 31P localisé à 146 et 146,2 ppm dans la pyridine deutériée. Les principaux pics en RMN du proton dans l'acétonitrile deutérié sont localisés à : 8,12 ppm (s, H8), 6,45 ppm (t, H1'), 5,05 ppm (s, CH2 phénoxyacétyle) et 4,88 ppm (m, H3'). Par spectrométrie de masse à l'aide d'une source d'ions FAB il est possible d'observer le pic moléculaire de ce produit pour une valeur m/e de 903.

On obtient ainsi le composé n° 16 répondant à la formule (I) dans laquelle B est le radical dérivé de la guanine de formule (II), R1 est un atome d'hydrogène, R2 est le radical phénoxy, R3 est le radical diméthoxy-4,4′ trityle, R4 est le radical phosphoré de formule (VII), R5 est un atome d'hydrogène.

Les exemples 17 à 19 qui suivent illustrent la préparation de mononucléotides complètement protégés destinés à la synthèse d'oligonucléotides selon la méthode H-phosphonate.

EXEMPLE 17 : Préparation du composé nº17.

Dans cet exemple, on prépare le composé nº17 destiné à la synthèse des oligonucléotides selon la méthode H-Phosphonate.

On sèche 5 mmol de composé no7 par co-évaporation de 5 ml de dioxanne anhydre et on les reprend dans 15 ml de ce solvant et 5 ml de pyridine anhydre. On additionne alors 5 ml d'une solution 1,25 M de chloro-2 benzo-5,6-a) [dioxo-1,3 phosphor-2 inone-4] ou salicylchlorophosphite de formule :

et on laisse la réaction se dérouler pendant 10 minutes à la température ambiante.

On additionne alors 0,5 ml d'eau et on laisse évoluer l'hydrolyse pendant 10 minutes. On verse alors ce mélange dans 250 ml de solution aqueuse molaire d'acétate de triéthylammonium et l'on extrait le produit désiré avec 2 fois 250 ml de chloroforme. On sèche la phase organique avec du sulfate de sodium anhydre et on la concentre à l'évaporateur rotatif. On purifie le résidu ainsi obtenu par chromatographie liquide haute performance sur une colonne de gel de silice (200 × 40 mm). On élue le produit avec des solutions à concentration croissante de méthanol dans un mélange à 2% de triéthylamine dans le chloroforme (0% de méthanol : 250 ml ; 1% de méthanol : 250 ml ; 2% de méthanol : 250 ml ; 5% de méthanol : 250 ml ; 7% de méthanol : 500 ml). On rassemble les fractions contenant le produit recherché et on

évapore le solvant pour obtenir un produit se présentant sous la forme d'une mousse blanche. Le rendement en produit No17 est de 55%. On analyse le produit par résonance magnétique nucléaire, les résultats obtenus sont regroupés dans le tableau IV.

On obtient ainsi le composé n°17 qui répond à la formule (I) dans laquelle B représente le radical de formule (IV), dérivé de l'adénine, R₁ représente un atome d'hydrogène, R2 représente le radical phénoxy, R3 représente le radical diméthoxy-4,4' trityle, R4 représente le radical phosphoré de formule

$$H - \frac{1}{P} - 0$$
 $(C_{2}H_{5})_{3}NH^{+}$

5

15

20

30

35

40

50

55

60

et R5 représente un atome d'hydrogène.

EXEMPLE 18 : Préparation du composé nº18.

Dans cet exemple, on prépare comme dans l'exemple 17 le dérivé phosphorylé du composé no 15 destiné à la synthèse d'oligonucléotides selon la méthode H-phosphonate en utilisant 5 mmol du composé no 15 au lieu de 5 mmol du composé no 7. Le rendement de la réaction est de 48% et on analyse le produit obtenu par résonance magnétique nucléaire. Les résultats obtenus sont présentés dans le tableau IV.

On obtient ainsi le composé n°18 qui répond à la formule (I) dans laquelle B représente le radical de formule (II), dérivé de la guanine, R₁ représente un atome d'hydrogène, R₂ représente le radical phénoxy, R₃ représente le radical dimétoxy-4,4′ trityle, R₄ représente le radical phosphoré de formule

$$H - P - 0$$
 $(CH)NH^{\dagger}$

et R5 représente un atome d'hydrogène.

EXEMPLE 19 : Préparation du composé nº19.

Dans cet exemple, on prépare comme dans l'exemple 17 le dérivé phosphorylé du composé nº5 destiné à la synthèse d'oligonucléotides selon la méthode H-phosphonate en utilisant 5 mmol du composé nº5 au lieu de 5 mmol du composé nº7.

Le rendement de la réaction est de 62% et on analyse le produit obtenu par résonance magnétique nucléaire. Les résultats obtenus sont présentés dans le tableau IV.

On obtient ainsi le composé n°19 qui répond à la formule(I) dans laquelle B représente le radical de formule (III), dérivé de la cytosine, R₁ et R2 représentent le radical métyle, R3 représente le radical diméthoxy-4,4′ trityle, R4 représente le radical phosphoré de formule

$$H - P - 0$$
 $(C_{2}H_{5})_{3}NH$

et R5 représente un atome d'hydrogène.

EXEMPLE 20:

Cet exemple illustre l'utilisation des composés no 9, no 10 et no 11 pour la synthèse d'un oligonucléotide dont la séquence est la suivante :

d(AATTCAGATUTGATCAT) AGRE-AGRE

Dans cette séquence, A représente le nucléotide formé avec l'adénine, C représente le nucléotide formé avec la cytosine et G représente le nucléotide formé avec la guanine, T représente le nucléotide formé avec la thymine et U le nucléotide formé avec l'uracile.

Pour effectuer cette synthèse, on utilise les composés no9, no10 et no11 comme synthons correspondant respectivement à la guanine, l'adénine, et à la cytosine et des synthons correspondant à la thymine et à l'uracile. Ceux-ci sont obtenus à partir des nucléosides correspondants en protégeant les fonctions hydroxyle en 5' et en 3' respectivement par le radical diméthoxy-4,4' trityle et le radical de formule VI) en utilisant le même mode opératoire que dans les exemples 6 à 11.

On effectue la synthèse au moyen d'un automate Biosearch "SAM ONE" en utilisant :

- 50 mg, soit environ 1,5 à 3 mol, du support comportant l'extrémité 5' de la chaîne (Pierce "Controlled Pore Glass"),
- 25 mg par cycle de condensation des dérivés de nucléosides obtenus dans les exemples 9 à 11 et des 65

synthons de thymidine et de désoxy-2' uridine, ce qui représente environ 8 à 15 équivalents, et

- 25 mg par cycle de condensation, soit 2 équivalents par rapport au nucléoside, d'un agent d'activation constitué par du chlorure de mésitylène sulfonyle.

Les étapes composant chaque cycle de condensation sont les suivantes :

- détritylation : acide trichloracétique à 2 % dans CH2Cl2 pendant 2 min,
 - lavage: CH3CN pendant 1 min,
 - séchage : CH₃CN anhydre pendant 6 min,
 - condensation : dérivé de nucléoside monomère et chlorure de mésitylène sulfonyle dans le mélange CH₃CN/méthyl-1 imidazole (85/15 en volume pendant 15 min, et
- lavage: CH3CN pendant 6 min.

10

15

20

25

30

35

40

50

55

60

A la fin des cycles de condensation, on obtient donc un gel de silice comportant l'oligonucléotide lié de façon covalente. On transfère alors le tout dans une ampoule en pyrex, on ajoute de l'ammoniaque à 28%, et on la laisse pendant 8 h à la température ambiante. On libère ainsi l'oligonucléotide du support en éliminant également les groupes protecteurs faisant l'objet de l'invention.

On prélève alors le surnageant et on rince la silice avec 3 fois 1 ml d'eau bidistillée. On évapore le solvant et on reprend le résidu dans 0,5 ml d'eau, puis on le fractionne sur une colonne de Séphadex G 25 (diamètre 1 cm, H 7 cm), on recueille les fractions qui présentent une absorption dans l'ultraviolet à 254 nm et on les lyophilise.

On vérifie par marquage au phosphore 32 au moyen de la T4-polynucléotide kinase et par électrophorèse sur gel de polyacrylamide la bonne longueur du fragment d'ADN synthétique obtenu. Le découpage de la bande correspondante et l'élution du composé permettent de purifier le produit en vue d'une utilisation biologique.

On prépare de la même façon les oligonucléotides dont les séquences sont les suivantes :

- d(AATTCAGAUCTGATCAT),
- d(AATTCAGUTCTGATCAT),
 - d(AATTCAUATCTGATCAT), et
 - d(CGATGATCAGATCTG).

On obtient également de bons résultats et une élimination des groupes protecteurs dans des conditions douces, dans l'ammoniaque à température ordinaire.

EXEMPLE 21

Dans cet exemple, on utilise les composés nº12, nº13 et nº14 pour synthétiser des homopolymères de 15 nucléotides de longueur en utilisant la synthèse phosphoramidite.

On réalise les synthèses à l'aide du même automate Biosearch "SAM ONE" que dans l'exemple 20 et on utilise les quantités de réactif suivantes :

- 50 mg, soit de 1,5 à 3 mol du support utilisé dans l'exemple 15 comportant l'extrémité 3' de la chaîne polynucléotidique,
- 20 mg des composés 12, 13, ou 14 par cycle de condensation (20 à 25 équivalents), et
- 15 mg par cycle de condensation (2 équivalents par rapport au nucléotide) d'un agent d'activation constitué par le paranitrophényl-5 tétrazole.

Chaque cycle de condensation comporte les étapes suivantes :

- détritylation : acide trichloracétique à 2 % dans CH₂Cl₂ pendant 1 min 30,
- lavage: CH3CN pendant 1 min,
- séchage : CH₃CN anhydre/diméthylformamide anhydre (90/10) pendant 3 min,
- condensation : dérivé de nucléoside + agent d'activation dans le mélange CH₃CN/diméthylformamide (90/10) pendant 3 min,
 - oxydation : iode à 0,45% dans tétrahydrofuranne/eau/lutidine (89,5/10/0,5) pendant 1 min,
 - masquage des fonctions hydroxyle n'ayant pas réagi pour stopper l'élongation des chaînes incomplètes : mélange d'anhydride acétique et de méthyl-1 imidazole dans CH₃CN anhydre pendant 2 min,
 - lavage : CH₃CN pendant 3 min.

Après 14 cycles de condensation réalisés avec le même composé (composés no 12, no13 ou no14), on transfère le support comportant le produit synthétisé dans une ampoule de pyrex et on ajoute 2 ml d'ammoniaque à 28%. On maintient les ampoules pendant 8 h à la température ambiante, ce qui permet d'éliminer les groupes protecteurs faisant l'objet de l'invention.

On prélève alors le surnageant et on rince la silice avec 3 fois 1 ml d'eau bidistillée, puis on chasse le solvant à l'évaporateur rotatif. On reprend le résidu brut dans 0,5 ml d'eau et on le purifie par chromatographie sur gel de Séphadex G 25. On recueille les fractions absorbant à 254 nm et on analyse leur contenu par électrophorèse sur gel de polyacrylamide après marquage au phosphore 32 par T4-polynucléotide kinase.

On contrôle ainsi que les 3 homopolymères synthétisés ont la longueur voulue et qu'ils correspondent respectivement à $d(A_{15})$, $d(C_{15})$ et $d(G_{15})$.

EXEMPLE 22 : Préparation d'un oligonucléotide par la méthode H-phosphonate.

Cet exemple illustre l'utilisation des composés nº17, nº18 et nº19 pour la synthèse d'un oligonucléotide dont la séquence est la suivante :

65 5' d(ATGATCTACT) 3'

0 241 363

Dans cette séquence, A, G, C et T représentent les mêmes nucléotides que dans la séquence de l'exemple 20.

Pour effectuer l'assemblage, on utilise les composés no17, no18 et no19 comme synthons correspondant respectivement à l'adénine, la guanine et la cytosine et un synthon correspondant à la thymine. Ce dernier est obtenu à partir de la thymidine en protégeant la fonction 5' par un groupement diméthoxy-4,4' trityle et la fonction 3' par le groupement phosphoré de formule

5

10

15

20

25

30

$$H - \frac{1}{0} - 0 - (C_{H}) NH^{+}$$

en utilisant le même mode opératoire que celui rapporté précédemment pour le dérivé H-phosphonate de

On effectue l'assemblage au moyen d'un automate Biosearch "SAM ONE" en utilisant :

- une colonne préconditionnée par le constructeur comprenant le support greffé avec 1 micromole de thymidine protégée en 5' par un groupement diméthoxy-4,4' trityle.
- 8 mg par cycle de condensation des dérivés de nucléosides no17, no18 et no19 et du dérivé correspondant de la thymidine. Ce qui représente environ 10 équivalents molaires, et
- 6 microlitres par cycle de condensation soit 50 équivalents molaire de chlorure de triméthyl acétyle, utilisé comme agent d'activation.

Les étapes composant chaque cycle de condensation sont les suivantes :

- acide trichloracétique à 2% dans le dichlorométhane, 3ml en 1 minute,
- lavage à l'acétonitrile : 3 ml,
- séchage avec un mélange pyridine/acétonitrile 1:1 / 3 ml.
- condensation : dérivé du nucléoside et agent d'activation dans 2 ml de mélange pyridine/acétonitrile en 1 minute,
- lavage par 3 ml de mélange de pyridine et d'acétonitrile,
- lavage par 3 ml d'acétonitrile.

A la fin des cycles de condensation, on procède à l'oxydation des phosphores internucléotidiques par passage d'une solution d'iode à 2% dans un mélange pyridine/eau 98/2 (3ml). On effectue ensuite un lavage par le mélange de pyridine et d'acétonirile (5ml), par l'acétonitrile (3ml) et l'on procède à la détritylation comme il est décrit ci-dessus.

On obtient alors un gel de silice comportant le polynucléotide lié de façon covalente. On transfère le tout dans une ampoule en pyrex, on ajoute 2ml d'ammoniaque à 28% et on la laisse pendant 2 heures à la température ordinaire. On libère ainsi l'oligonucléotide du support en éliminant également les groupements protecteurs faisant l'objet de l'invention. On prélève alors le surnageant, on rince la silice avec 3 fois 1 ml d'eau bidistillée, on évapore le solvant et on reprend le résidu par 0,5 ml d'eau. On le fractionne ensuite sur une colonne de Séphadex G25 (diamètre 1 cm, hauteur 7 cm), on réunit les fractions présentant une absorption dans l'ultraviolet à 254 nm et on les lyophilise.

On vérifie la bonne longueur du produit synthétisé par marquage radio-actif au phosphore 32 au moyen de la T4-polynucléotide kinase suivi d'une électrophorèse sur gel de polyacrylamide.

45

40

50

55

60

ABLEAU I

			Spect	rematrie Bun 'II	Spectromatrie RMN 111 A 250 Mik & en pre dans Chigh + TMS	CD 101) + TMS
Compose nº Rendement	Rendement	H ₁ ·	Н3.1	CH, (trityle)	Dane	Protection de la base
9	7 74 %	6,15(¢)	4,5 (q)	3,7 (0)	H ₆ = 7,4(d), H ₆ = 8,3(d)	3,7 (e) H ₆ = 7,4(d), H ₆ = 8,3(d) CH; (isobutyryle) = 1,15(d.d)
7	K 55	6,51(¢)	4,68(m)	3,72(d)	Hz, Hg = 8,46-8,57(a)	CH ₂ (phénoxyacétyle) = 4,97(s)
∞	76 X	6,33(¢)	4,57(m)	3,72(8)	H, - 8,04(e)	CH ₂ (méthoxyacétyle) = 4,13(e) CH ₃ (méthoxyacétyle) = 3,46(e)

TABLEAU II

						R ₁ NOW	
Composé n.	Rendement	Spect,	RHN 31PP)	Su	Sucre		Despession of the
		,		Н1 г	H3r	D Be	201122011
6	% 00	830 (2,3%)	.5,0	(4)9(4)	5,19(m)	. H ₆ (8) = 8,03	CH ₂ = 4,13(e) CH ₂ = 3,46(e)
10	72 %	876 (6,7 %)	-5,5	6,36(t)	5,28(m)	Hz, He(#) - 8,53 ec 8,42	CR2 = 5,01(e)
	r 19	788 (2,7 %)	. 6.3	6,22(¢)	5,20(m)	H ₅ (d) = 7,56 H (d) = 8,19	CH, (isobutyryle)(d,d) = 1,46

Table II - a) Source PAB ions négatifs. Mesure de la masse du pic phosphodiester, b) Les déplacements chimiques sont indiqués en ppm par rapport à H1PO. 85 % pris comme référence externe.

TABLEAU III

	Amide		CH ₂ = 4, 12 CH ₃ = 3,45	CR2 = 4,99	CH; (isobutyryle) = 1,07	
रษณ ¹ ศ à 250 หπ κ ^{в)} сD₁CH	6 6	2 6 6 6	No = 7,87	H₂, H₃ = 8,28 ; 8,56	8,14; 8,21	-
	Sucre	H3 t	69'4	4,93	7,60	
	ng.	Н1 -	6,26	6,44	6,14	
	RPAN 31P		155,3	155,3	155,3	
	Rendement		S 18	53 ¥	85 ×	
	Composé n°		12	13	14	

Tableau III - a) Les composés se présentent sous la forme d'un mélange de deux diastéréoisomères et les spectres RMM 1H sont difficilement interprétables.

ableau IV

	 I		1		
1 1 1		20 10 10 10 10 10 10 10 10 10 10 10 10 10	រ	1 1 1 (1) 1	dd
((י ל י בי) 리 -	5,69	5,71	1.25
!) L		າ ທີ່ ເຂົ້າ	- !
1	1 1		1 	! !]
S S	[刊	1	E vs vs	י ט	q q X
ROJ	BASE	1	a — ro	ж 8	9 0 - 1 - 1 - 1
RMN DU PROTON	[} } }	H8 et 8,31	8.40 HR	H6 et 8,53
Ω z	 	· · · · ·		i I	j
RM	! !	1	E		E
		EH.	5,66	5.30	5,60
: 	品	! !	i i	U) 	
	SUCRE	1		 ا دہ اِ	ا د ده ۱۰ ا ا نها
!	! !	H1-1	្រុ	<u>რ</u>	
1	} ! !	II 	6,95	. 6 . 6	6.77
•		.	: • •• •• •• •• •• :	! !]
	31P	<u>-</u>	! !	1	
	RMN 31P	mdd)	3,46	2,26	3,62
	ිස <u>ි</u>				; ; ; ; ;
- - •	田田	 		! !	i I
	COMPOSE	Z	17	18	6
	Ś			! !	
•	•		·	· · · · ·	

Spectres enregistrés dans la pyridine deutériée.

$$\begin{array}{c} \text{Composé n° 11} \\ \text{NH-CO-CH} & \text{CH}_3 \\ \text{CH}_3 & \text{CO} \\ \text{CH}_3 & \text{CO} \\ \text{CH}_3 & \text{CO} \\ \text{CO} & \text{CO} \\ \text{CH}_3 & \text{CO} \\ \text{CH}_3 & \text{CO} \\ \text{CH}_3 & \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 & \text{CH}_3 \\ \text{CH}_3 & \text{CH}_3 \\ \text{CH}_3 & \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 & \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 & \text{CH}_3 \\ \text{CH}_3 \\$$

Composé n° 12

Composé nº 13

Composé n° 14

Composé nº 17

Composé n° 18

Composé nº 19

Revendications

1. Dérivé de nucléoside répondant à la formule :

 $R^{3}0 \xrightarrow{0} R^{5}$ R^{2} R^{5} R^{5}

5

20

35

45

dans laquelle B représente un radical bivalent choisi parmi :

-HN (III) OU NH NH N (IV) 25

relié au groupement CO par son groupement NH- exocyclique;

- R1 représente un atome d'hydrogène ou un radical alkyle ;
- R² représente un atome d'hydrogène, un radical alkyl, un radical alcoxy, un radical aryloxy non substitué ou substitué par un ou des groupements choisis parmi NO₂, CN, alcoxy, aryloxy,

aryloxy, Cl, F,
$$C = \begin{pmatrix} 0 \\ 0R \end{pmatrix}$$
, $C = \begin{pmatrix} 0 \\ R \end{pmatrix}$, $S = \begin{pmatrix} 0 \\ R \end{pmatrix}$, $S = \begin{pmatrix} 0 \\ 0R \end{pmatrix}$

alkyle ou aryle substitué ou non, SR avec R représentant un radical alkyle ou aryle ; à l'exclusion de $R^1 = H$ et $R^2 = CH_3$ lorsque B est le radical (II) ou (III), et de $R^1 = R^2 = CH_3$ lorsque B₃ est le radical (II);

- R³ représente un atome d'hydrogène, un radical labile en milieu acide ou le radical de formule :

dans laquelle R1 et R2 ont la signification donnée ci-dessus.

- R4 représente un atome d'hydrogène, un radical phosphoré ou le radical :

dans lequel R1 et R2 ont la signification donnée ci-dessus ; et

- R5 représente un atome d'hydrogène ou le radical OH.
 - 2. Dérivé de nucléos1de selon la revendication 1, caractérisé en ce que le radical labile en milieu acide 65

R3 est choisi dans le groupe des radicaux trityl de formule :

$$rac{5}{-c} = \frac{O}{R^{6}}$$

dans laquelle R^6 , R^7 et R^8 qui peuvent être identiques ou différents, représentent un atome d'hydrogène, un radical alkyle ou un radial alcoxy, des radicaux pixyle et des radicaux phényl-9 xanthényle.

3. Dérivé de nucléoside selon l'une quelconque des revendications 1 et 2, caractérisé en ce que le radical phosphoré R⁴ est choisi dans le groupe des radicaux de formule :

$$0 = P - 0 (C_{1} + C_{2} + C_{3}) + (VI)$$

$$0 C_{6} + C_{4} + C_{1}$$

de formule :

15

25

45

50

55

 $H - \frac{\eta}{I} - 0$

4. Dérivé de nucléoside selon la revendication 1, caractérisé en ce que B représente :

R¹ représente un atome d'hydrogène et R² représente un radical alcoxy ou un radical aryloxy éventuellement substitué.

5. Derivé de nucléoside selon la revendication 4, caractérisé en ce que R2 est un radical choisi parmi :

65

6. Dérivé de nucléoside selon la revendication 1, caractérisé en ce que B représente :

R¹ représente un atome d'hydrogène et R² représente un radical aryloxy éventuellement substitué.

7. Dérivé de nucléoside selon la revendication 6, caractérisé en ce que R² représente le radical phénoxy.

8. Dérivé de nucléoside selon la revendication 1, caractérisé en ce que B représente :

R¹ et R² qui peuvent être identiques ou différents représentent un atome d'hydrogène ou un radical alkyle.

9. Dérivé de nucléoside selon la revendication 8, caractérisé en ce que R¹ et R² représentent le radical méthyle.

10. Dérivé de nucléoside selon l'une quelconque des revendications 1 et 4 à 9, caractérisé en ce que R³ et R⁴ représentent un atome d'hydrogène.

11. Dérivé de nucléoside selon l'une quelconque des revendications 1 et 4 à 9, caractérisé en ce que R³ représente le radical :

et R4 représente un atome d'hydrogène.

12. Dérivé de nucléoside selon l'une quelconque des revendications 1 à 11, caractérisé en ce que R⁵ représente un atome d'hydrogène.

13. Dérivé de nucléoside selon l'une quelconque des revendications 1 et 4 à 9, caractérisé en ce que R³ représente le radical :

65

10

20

25

40

45

55

0

5

5

et R4 représente le radical :

$$0 = P - O \left[(C_2 H_5)_3 NH \right]^+ \text{ (VI)}$$

14. Dérivé de nucléoside selon l'une quelconque des revendications 1 et 4 à 9, caractérisé en ce que ${\sf R}^3$ représente le radical :

et R4 représente le radical :

15. Dérivé de nucléoside selon l'une quelconque des revendications 1 et 4 à 9, caractérisé en ce que R³ représente le radical :

et R4 représente le radical :

16. Dérivé de nucléoside selon l'une quelconque des revendications 13 à 15, caractérisé en ce que R5 représente un atome d'hydrogène.

17. Procédé de synthèse d'oligonucléotides, caractérisé en ce qu'il comprend :

1º au moins un cycle de condensation dans lequel on condense sur un dérivé de nucléoside ou sur un oligonucléotide un dérivé de nucléoside de formule :

$$\begin{array}{c}
R^{3}O \\
OR \\
R^{5}
\end{array}$$
(1)

dans laquelle B représente un radical bivalent choisi parmi :

relié au groupement CO par son groupement NH- exocyclique ;

- R¹ représente un atome d'hydrogène ou un radical alkyle,
- R² représente un atome d'hydrogène, un radical alkyle, un radical alcoxy, un radical aryloxy non substitué ou substitué par un ou des groupements choisis parmi NO₂, CN, alcoxy, aryloxy,

Cl, F,
$$C_{OR}^{(0)}$$
, $C_{R}^{(0)}$, $S_{R}^{(0)}$

ou aryle substitué ou non, SR avec R représentant un radical alkyle ou aryle, à l'exclusion de $R^1 = H$ et R²=CH₃ lorsque B est le radical (II) ou (III) et de R¹=R²=CH₃ lorsque B est le radical (II);

- R³représente un radical labile en milieu acide,
- R4 représente un radical phosphoré, et
- R⁵ représente un atome d'hydrogène ; et
 - 2º) une étape d'élimination du ou des groupes protecteurs de formule :

dans lesquelles R1 et R2 sont tels que définis ci-dessus.

65

5

10

25

40

50

Revendications pour les Etats contractants suivants : ES, AT.

1. Procédé de préparation de dérivés de nucléosides de formule :

$$R^{3} = R^{3} = R^{3$$

dans laquelle B représente un radical bivalent choisi parmi : 15

relié au groupement CO par son groupement NH-exocyclique;

-R1 représente un atome d'hydrogène ou un radical alkyle ;

- R² représente un atome d'hydrogène, un radical alkyle, un radical alcoxy, un radical aryloxy non substitué ou substitué par un ou des groupements choisis parmi NO2, CN, alcoxy, aryloxy, CI, F,

alkyle, aryle substitué ou non, SR avec R représentant un radical alkyle ou aryle ; à l'exclusion de R 1 = H et R^2 = CH_3 lorsque B est le radical (II) ou (III), et R^1 = R^2 = CH_3 lorsque B est le radical (II);

- R³ représente le radical de formule :

dans laquelle R1 et R2 ont la signification donnée ci-dessus,

- R4 représente le radical :

dans lequel R1 et R2 ont la signification donnée ci-dessus ; et

R⁵ représente un atome d'hydrogène, 60

caractérisé en ce que l'on fait réagir un nucléoside choisi parmi les nucléosides de la guanine, de la cytosine et de l'adénine avec un chlorure d'acide de formule :

65

30

*3*5

40

ou un anhydride d'acide de formule:

10

15

20

dans lesquelles R1 et R2 sont tels que définis ci-dessus.

2. Procédé de préparation d'un dérivé de nucléoside répondant à la formule : 25

$$R^{3}_{0} \xrightarrow{Q} R^{1}_{R^{2}}$$
 (1)

35

30

dans laquelle B représente un radical bivalent choisi parmi :

40

50

45

relié au groupement CO par son groupement NH-exocyclique;

- R¹ représente un atome d'hydrogène ou un radical alkyle ;
- R2 représente un atome d'hydrogène, un radical alkyle, un radical alcoxy, un radical aryloxy non substitué ou substitué par un ou des groupements choisis parmi NO2, CN, alcoxy, aryloxy, Cl, F,

55

$$C_{OR}^{(0)}, C_{R}^{(0)}, S_{OR}^{(0)}, S_{R}^{(0)}, S_{R}^{(0)}, S_{R}^{(0)}$$

60

alkyle, aryle substitué ou non, SR avec R représentant un radical alkyle ou aryle ; à l'exclusion de R1 = H et $R^2 = CH_3$ lorsque B est le radical (II) ou (III), et de $R^1 = R^2 = CH_3$ lorsque B est le radical (II);

- R3 représente un radical trityle de formule :

dans laquelle R⁶, R⁷ et R⁸ qui peuvent être identiques ou différents, représentent un atome d'hydrogène, un radical alkyle ou un radical alcoxy,

- \mathbb{R}^4 représente un radical phosphoré choisi parmi le radical de formule :

le radical de formule:

15

20

25

30

35

45

50

55

60

- et le radical de formule :

$$R^{11}$$
 $H-P-0^{(-)}$
 R^{12}
 R^{13}
 R^{13}

dans laquelle R^{11} , R^{12} et R^{13} qui peuvent être identiques ou différents, sont des radicaux alkyle, et - R^5 représente un atome d'hydrogène, caractérisé en ce qu'il comprend les étapes successives suivantes:

a) réaction d'un nucléoside choisi parmi les nucléosides de la guanine, de la cytosine et de l'adénine avec un chlorure d'acide de formule :

ou un anhydride d'acide de formule :

dans lesquelles R¹ et R² sont tels que définis ci-dessus, pour former un dérivé de nucléoside répondant à la formule (I) dans laquelle R³ et R⁴ représentent le radical de formule :

dans laquelle R1 et R2 sont tels que définis ci-dessus, et R5 représente un atome d'hydrogène.

b) élimination des radicaux R³ et R⁴ du dérivé de nucléoside obtenu dans l'étape a) par hydrolyse sélective pour obtenir le dérivé de nucléoside de formule (I) dans laquelle R³ et R⁴ représentent un atome d'hydrogène;

c) réaction du dérivé de nucléoside obtenu dans l'étape b) avec un chlorure de trityle de formule :

$$\begin{array}{c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$$

dans laquelle R⁶, R⁷ et R⁸ qui peuvent être identiques ou différents, représentent un atome d'hydrogène, un radical alkyle ou un radical alcoxy, pour obtenir le dérivé de nucléoside de formule (I) dans laquelle R³ représente un radical trityle ;

d) réaction du dérivé de nucléoside obtenu dans l'étape c) avec soit le bis-triazolidate de chloro-4-phénylphosphoryle, soit le ß -cyanoéthyl-monochloro N,N-diisopropylamine phosphoramidite, soit la chloro-2 benzo-(5, 6-a) dioxo-1,3 phosphor-2 inone-4 et un sel de trialkyl ammonium, pour obtenir le dérivé de nucléoside de formule (I) dans laquelle R³ représente un radical trityle, R⁴ représente un radical choisi parmi les radicaux de formule :

de formule :

60

15

25

40

45

(VII)

5

10

15

ou de formule

20

25

et R⁵ représente l'hydrogène.

3 Procédé de synthèse d'oligonucléotides, caractérisé en ce qu'il comprend

30

1º) au moins un cycle de condensation dans lequel on condense sur un dérivé de nucléoside ou sur un oligonucléotide un dérivé de nucléoside de formule :

35

$$R^{3}_{0} \xrightarrow{0} B^{-CO-CH} R^{2}$$
 (1)

45

40

dans laquelle B représente un radical bivalent choisi parmi :

50

55

60

relié au groupement CO par son groupement NH-exocyclique;

- R1 représente un atome d'hydrogène ou un radical alkyle ;
- R² représente un atome d'hydrogène, un radical alkyle, un radical alcoxy, un radical aryloxy non substitué ou substitué par un ou des groupements choisis parmi NO₂, CN, alcoxy, aryloxy, Cl, F,

$$c_{OR}^{=0}, c_{R}^{=0}, so_{2}^{R}, s_{R}^{=0}, p_{OR}^{=0}$$

alkyle, aryle substitué ou non, SR avec R représentant un radical alkyle ou aryle ; à l'exclusion de $R^1 = H$ et $R^2 = CH_3$ lorsque B est le radical (II) ou (III), et $R^1 = R^2 = CH_3$ lorsque B est le radical (II) ;

- R3 représente un radical labile en milieu acide,
- R4 représente un radical phosphoré, et

10

- R^5 représente un atome d'hydrogène ; et

2º) une étape d'élimination du ou des groupes protecteurs de formule :

20

15

dans lesquelles R1 et R2 sont tels que définis ci-dessus.

4. Procédé selon la revendication 3, caractérisé en ce que le radical labile en milieu acide R³ est choisi dans le groupe des radicaux trityle de formule :

25

35

dans laquelle R^6 , R^7 et R^8 qui peuvent être identiques ou différents, représentent un atome d'hydrogène, un radical alkyle ou un radical alcoxy, des radicaux pixyle et des radicaux phényl-9 xanthényle.

5. Procédé selon l'une quelconque des revendications 3 et 4, caractérisé en ce que le radical phosphoré R⁴ est choisi dans le groupe des radicaux

(VII)

40

$$0 = P - 0 (C_{H_5})_{3 NH} + (VI)_{0 C_{H_4CL}}$$

45

de formule :

50

NCCH_CH_O-P-N

60

55

ou de formule:

15

20

25

30

35

40

45

50

55

60

dans laquelle R¹¹, R¹² et R¹³ qui peuvent être identiques ou différents, sont des radicaux alkyle.
6. Procédé selon l'une quelconque des revendications 3 à 5, caractérisé en ce que B représente :

R¹ représente un atome d'hydrogène et R² représente un radical alcoxy ou un radical aryloxy éventuellement substitué.

7. Procédé selon la revendication 6, caractérisé en ce que R² est un radical choisi parmi :

8. Procédé selon l'une quelconque des revendications 3 à 5, caractérisé en ce que B représente :

 R^1 représente un atome d'hydrogène et R^2 représente un radical aryloxy éventuellement substitué.

9. Procédé selon la revendication 8, caractérisé en ce que R² représente le radical phénoxy.

10. Procédé selon l'une quelconque des revendications 3 à 5, caractérisé en ce que B représente :

R¹ et R² qui peuvent être identiques ou différents représentent un atome d'hydrogène ou un radical alkvle.

- 11. Procédé selon la revendication 10, caractérisé en ce que R¹ et R² représentent le radical méthyle.
- 12. Procédé selon l'une quelconque des revendications 6 à 11, caractérisé en ce que R³ représente le radical :

et R4 représente le radical :

$$0 = P - O \left[(C_{2} + C_{5}) \right] + (VI)$$

$$0 = C_{5} + CL$$

13. Procédé selon l'une quelconque des revendications 6 à 11, caractérisé en ce que R³ représente le 25 radical :

et R4 représente le radical :

14. Procédé selon 1 une quelconque des revendications 6 à 11, caractérisé en ce que R³ représente le radical de formule :

65

60

55

et R4 représente le radical :

$$0 = \begin{cases} 0 & 0 \\ 0 & 0 \end{cases} = \begin{bmatrix} (0 & 0) \\ 0 & 0 \end{bmatrix}$$

0

5

5

RAPPORT DE RECHERCHE EUROPEENNE

Numero de la demande

EP 87 40 0739

Catégorie		vec indication, en cas de rties pertinentes	besoin. F	levendication concernée	CLASSEME DEMANDE	
А	EP-A-0 090 789 COMPANY) * Exemples 1,2			1,17	C 07 H C 07 H C 07 H C 07 H	19/173
	·					
					DOMAINES TI RECHERCHE	
					С 07 Н	21/00
				_		
		·				
Lep	résent rapport de recherche a été é	tabli pour toutes les reve	ndications			
	Lieu de la recherche	Date d'achèvemen			Examinateur	
	LA HAYE	14-07-1	1987	VAN :	BIJLEN H	•
Y : part autr A : arrie	CATEGORIE DES DOCUMEN: iculièrement pertinent à lui seu iculièrement pertinent en comie document de la même catégore-plan technologique ilgation non-écrite ument intercalaire	ul binaison avec un	T: théorie ou pri E: document de date de dépôi D: cité dans la d L: cité pour d'au	brevet antér l ou après ce emande	rieur, mais publi ette date	n é à la

This Page Blank (uspto)