Modelos de bioprocesos

Intercambio de gases

Intercambio de gases

$$\dot{x} = r(x, u) - q(x, u) + p(x, u)$$

Algunas sustancias pueden pasar de una fase a otra (líquida a gaseosa o gaseosa a líquida).

$$\dot{c} = \pm r_c + D (c_{in} - c) + F - Q$$

Por ejemplo, el oxígeno disuelto, que se suele denotar con la letra c

$$\dot{c} = -OUR + D (c_{in} - c) + OTR$$

$$OUR = r_{O_2}$$
 (oxygen uptake rate)

$$OTR = k_L a (c^* - c)$$
 (oxygen transfer rate)

Intercambio de gases

Tasa de transferencia de masa (gas a película)

$$N_{AG} = k_G a \left(C_{AG} - C_{AGi} \right)$$

Tasa de transferencia de masa (líquido a película)

$$N_{AL} = k_L a \left(C_{ALi} - C_{AL} \right)$$

 k_G : coeficiente de transferencia de masa de la fase gaseosa

 k_L : coeficiente de transferencia de masa de la fase líquida

a: área de la interfaz/película

Intercambio de gases

Normalmente se asume que la película está en equilibrio y

$$C_{AGi} = m \cdot C_{ALi}$$

Tasa de transferencia de masa (gas a película)

$$N_{AG} = k_G a \left(C_{AG} - C_{AG}^* \right)$$

Tasa de transferencia de masa (líquido a película)

$$N_{AL} = k_L a \left(C_{AL}^* - C_{AL} \right)$$

Se suele despreciar el efecto de la de menor resistencia (mayor k_L)

Dinámica del oxígeno

De lo anterior se puede observar que:

- La transferencia del componente i dentro de la burbuja es rápida.
- La interfase G-L impone poca resistencia
- La resistencia de la película estanca alrededor de la burbuja ofrece la mayor resistencia a la transferencia.
- Si el sistema está uniformemente agitado y la viscosidad del medio no es muy elevada, la resistencia en el líquido es baja.
- Al ser la célula mucho más pequeña que la burbuja el efecto de la película que rodea la célula es despreciable respecto a la burbuja.
- Del mismo modo que en el caso anterior, debido al tamaño de la célula la resistencia de la membrana y del citoplasma son despreciables.

Dinámica del oxígeno

La mayor resistencia al paso de oxígeno está en la película líquida alrededor de las burbujas.

La concentración de equilibrio está dada por la ley de Henry:

$$c^* = k_H \cdot P_c$$

Donde:

 P_c : presión parcial del oxígeno en la interfase GL

 c^st : concentración de de equilibrio en la interfase GL

c: concentración en la fase líquida

Película de líquido estanca

Gas	Henry's constant at 25°C	Unit
O_2	0.0013	$mol/atm \cdot l$
CO_2	0.035	mol/atm·l

Dinámica del oxígeno

La mayor resistencia al paso de oxígeno está en la película líquida alrededor de las burbujas:

$$OTR = k_L a (c^* - c)$$

Donde:

 k_L : coeficiente de transferencia de masa de en la fase líquida

a: área interfacial [A/V]

 c^*-c : Fuerza impulsora de la transferencia, asociada a la producción y/o consumo en la fase líquida.

Película de líquido estanca

 $k_L a$: depende de agitación, reología del medio, flujo de aire, etc. (continuará...)

Ejemplo 2: Crecimiento de levadura (óxido/fermentativo)

$$\dot{x} = (r_{x1} + r_{x2} + r_{x3}) - Dx$$

$$\dot{s} = -(k_{21}r_{x1} + k_{22}r_{x2}) + D(s_{in} - s)$$

$$\dot{e} = (k_{32}r_{x2} - k_{33}r_{x3}) - De$$

$$\dot{c} = -(k_{41}r_{x1} + k_{43}r_{x3}) + D(c^* - c) + k_L a(c^* - c)$$

$$\dot{p} = (k_{51}r_{x1} + k_{52}r_{x2} + k_{53}r_{x3}) - Dp - k_L a(p - p^*)$$