Instructions for Using BayesLabs

This repository contains a series of laboratory exercises designed to support an introductory course in Bayesian modeling for graduate students, post-docs, faculty, and research scientists. The material can be adapted for use in a 10-day intensive workshop format or a more traditional semester-long course. Examples are drawn from social science and ecology. The materials were developed by N. Thompson Hobbs, Mevin B. Hooten, Christian Che-Castaldo, Mary Collins, Kiona Ogle, and Maria Uriarte with support from the National Science Foundation (awards DBI 1052875 and DEB1145200). The labs were designed to compliment reading and lectures based on Hobbs, N. T., and M. B. Hooten. 2015. Bayesian models: a statistical primer for ecologists. Princeton University Press, Princeton, N.J. (Table 1).

Each folder in the repository contains an R markdown file with switches that toggle output of .html files for exercises alone and exercises with answers. Using these switches is explained in the R markdown files. The files /Labs/title.txt and /Labs/subtitle.txt specify the course name on all materials, allowing users to change the title to match the name of the course they are teaching. We ask that the logo acknowledging NSF support remain unchanged by users.

The /Admin folder contains instructions for pulling the repository and for creating an R package containing the data library required for the exercises.

 $Table\ 1:$ Laboratory exercises supporting an introductory course in Bayesian modeling. Readings are chapters from Hobbs and Hooten 2015. Exercises are arranged with introductory topics at the top of the table and more advanced topics toward the bottom.

Folder in /Labs	Topics and challenges	Reading
Probability	Rules of probability. Factoring joint distributions.	Chapter 3
	Probability distributions. Marginal distributions.	
	Moment matching.	
HemlockLightExample	Likelihood functions. Computing total likelihoods	Chapter 4
	from multiple observations. Using prior information	
	in the likelihood framework.	
ConjugatePriors	Find parameters of posterior distributions using	Chapter 5.3
	conjugacy between likelihoods and priors.	
BayesTheorem	Compute the likelihood, prior, and marginal	Chapter 5.1,
	distribution of the data and assemble them to	5.2
	compute the posterior distribution.	
MCMC1	Introduction to Markov chain Monte Carlo using	Chapter 7
	Gibbs sampling for normal mean and variance.	
MCMC2	Accept-reject sampling using Metropolis-Hastings	Chapter 7
	algorithm.	
JAGSPrimer	A tutorial on JAGS and rjags for implementing	none
	Markov chain Monte Carlo.	
JAGSProblem	Using JAGS and rjags.	none
ModelBuilding	Word problems to teach drawing directed acyclic	Chapters 6,
	graphs and using them to write posterior and joint	10, 11, 12
	distributions.	
MultiLevelModels	Model building and computation for group-level	Chapter 6.2.2
	intercepts and slopes.	
PosteriorPredictiveChecks	Using data simulation to test for lack of fit.	Chapter 8.1
	Computing Bayesian p values.	
SwissBirds	Occupancy models. Zero inflation. Derived	Chapter 6.2.3
	quantities.	
ModelSelection	Evaluating evidence for alternative models using the	Chapter 9
	DIC, WAIC, and posterior-predictive loss.	
DynamicModels	State space models. Predictive process distributions.	Chapter 8.4,
	Forecasting.	8.5
MetaAnalysis	Combining information from multiple studies in	Chapter 4
	priors and likelihoods.	