Hoja de ejercicios 2 (Independencia)

Independencia de sucesos y de clases de sucesos

- 1.- Supóngase que A, B, C, D, E son sucesos independientes. Probar o refutar las afirmaciones siguientes:
 - (a) Los sucesos $AB \vee C^c \cup (DE^c)$ son independientes.
 - **(b)** $A \cup B$ y AC son independientes.
 - (c) P(AB|C) = P(A|C)P(B|C) (se supone P(C) > 0).
 - (d) P(AB|F) = P(A|F)P(B|F) (donde F es cualquier suceso de probabilidad no nula).
- **2.-** De tres sucesos A, B y C de probabilidades no nulas se sabe: (i) A es independiente de $B \cup C$ y de BC; (ii) B es independiente de AC; (iii) C es independiente de AB. Demostrar que A, B y C son mutuamente independientes.
- 3.- Sea $\Omega = \{\omega_1, \dots, \omega_p\}$, donde p es un número primo. Supongamos que los elementos de Ω son equiprobables. Comprobar que (salvo en los casos triviales) dos sucesos A y B no pueden ser independientes.
- **4.-** Dado un suceso C con P(C) > 0, decimos que A y B son condicionalmente independientes con respecto a C si

$$P(AB|C) = P(A|C)P(B|C).$$

Sean A y B dos sucesos. Demuestra o da un contraejemplo para las siguientes afirmaciones.

- (a) Si P(BC) > 0, A y B son condicionalmente independientes con respecto a C si y sólo si P(A|C) = P(A|BC).
- **(b)** Si *A* y *B* son independientes, entonces *A* y *B* son condicionalmente independientes con respecto a *C*.
- (c) Si A y B son condicionalmente independientes con respecto a C, entonces A y B son independientes.
- (d) Si P(C) = 1, A y B son independientes si y sólo si A y B son condicionalmente independientes respecto a C. SUGERENCIA: Para los apartados (b) y (c), puedes estudiar dos lanzamientos de una moneda.

Límite superior e inferior

- **5.-** Encontrar $\limsup A_n$ y $\liminf A_n$ en los siguientes casos:
 - (a) $A_n = A$, si n es par y $A_n = B$, si n es impar.
 - **(b)** $A_n = (-2 1/n, 1]$, si n es par y $A_n = [-1, 2 + 1/n)$, si n es impar.
 - (c) $A_n = [0, a_n)$, siendo $a_n = 2 + (-1)^n (1 + 1/n)$.
 - (d) $A_n \uparrow A \circ A_n \downarrow A$.
 - (e) Los A_n son disjuntos dos a dos.
- **6.-** Sean A_n y B_n subconjuntos de Ω . Demostrar:
 - (a) $(\limsup A_n) \cap (\limsup B_n) \supset \limsup (A_n \cap B_n)$.
 - **(b)** $(\limsup A_n) \cup (\limsup B_n) = \limsup (A_n \cup B_n).$
 - (c) $(\liminf A_n) \cap (\liminf B_n) = \liminf (A_n \cap B_n)$.
 - (d) $(\liminf A_n) \cup (\liminf B_n) \subset \liminf (A_n \cup B_n)$.
 - (e) En (a) y (d), las inclusiones opuestas no son ciertas en general.
 - (f) $\limsup A_n \liminf A_n = \limsup (A_n A_{n+1}) = \limsup (A_{n+1} A_n)$.
 - (g) Si P($\limsup A_n$) = 1 = P($\liminf B_n$), entonces P($\limsup (A_n \cap B_n)$) = 1.

 - (h) De P($\limsup A_n$) = 1 = P($\limsup B_n$) no se sigue, en general, que P($\limsup A_n \cap B_n$)) = 1. (i) Si $\lim_{n\to\infty} P(A_n) = 0$ y $\sum_{n=1}^{\infty} P(A_n \cap A_{n+1}^c) < \infty$, entonces P($\limsup A_n$) = 0. SUGERENCIA: Recordar el apartado (f).
- 7.- Sean A_n y B_n subconjuntos de Ω . Demostrar:
 - (a) Si $A_n \to A$, entonces $P(A_n) \to P(A)$. Es decir, la probabilidad es continua.
 - **(b)** Si $A_n \to A$ y $B_n \to B$, entonces $A_n \cup B_n \to A \cup B$ y $A_n \cap B_n \to A \cap B$.
- 8.- Sean A_1, A_2, \ldots sucesos independientes. Según la convergencia o divergencia de las series $\sum_{n>1} P(A_n) y \sum_{n>1} P(A_n^c)$, se presentan, en principio, cuatro casos posibles. En cada caso, describir qué ocurre con P(lím sup A_n) y P(lím inf A_n).
- 9.- Sean A_1, A_2, \ldots sucesos independientes tales que $P(A_n) < 1$ $(n \ge 1)$ y $P(\cup_n A_n) = 1$. Demostrar que $P(\limsup A_n) = 1$ 1. Averiguar si se mantiene la conclusión cuando se suprime la condición de independencia.
- **10.-** Construir sucesiones de sucesos $\{A_n\}$ tales que: (a) $P(\limsup A_n) = \alpha \ (\alpha \in [0,1] \text{ fijo});$ (b) $\sum_{n\geq 1} P(A_n) = \infty \text{ y}$ $P(\limsup A_n) = 0.$