Евклидовы пространства. Решения оставшихся задач

Задача 2б

Остался случай, когда в $C_2[a,b]$ нестандартное салярное произведение (x(t),y(t)) определено по формуле:

$$(x(t), y(t)) = \int_{a}^{b} x(t)y(t)p(t)dt,$$

где "весовая" функция p(t) неотрицательна и непрерывна, но обращается в ноль на некотором конечном множестве точек $T = \{t_1, \dots t_n\} \in [a, b]$.

Все аксиомы скалярного произведения выполнены. Проверим, например, аксиому 3. Докажем, что

$$0 = (\widetilde{x(t)}, x(t)) = \int_a^b x^2(t)p(t)dt,$$

только если непрерывная функция $x(t) \equiv 0$. В самом деле, если для некоторой непрерывной x(t) выполнено равенство $x(t_0) = x_0 \neq 0$, то найдется $\delta > 0$ такое, что $[t_0 - \delta, t_0 + \delta] \subset [a, b]$ и $x^2(t) > \frac{x_0^2}{2} > 0$, если $t \in [t_0 - \delta, t_0 + \delta]$. Если $t_0 \notin T$, то доказательство было проведено ранее. Было доказано, что (x(t), x(t)) > 0. Если $t_0 \in T$, то δ выберем вдобавок меньшим половины минимального расстояния $\min_i \{t_{i+1} - t_i\}, i = 1, \ldots, s-1$. Тогда при $t \in [t_0 + \frac{\delta}{2}, t_0 + \delta]$ получится $x^2(t) > \frac{x_0^2}{2} > 0$, но на указанном отрезке из области определения p(t) > 0. Поэтому (x(t), x(t)) > 0, за исключением случая $x(t) \equiv 0$. Аксиома 3 проверена.

Ответ: в $C_2[a,b]$ можно ввети указанное нестандартное скалярное произведение даже в случае, если непрерывная весовая функция неотрицательна и принимает конечное число нулевых значений.

Задача 8 "Гильбертовы пространства"

$$0 = \int_0^1 x(t) \sin(t) dt$$

По задачам 2 и 7а в гильбертовом пространстве с нестандартным скалярным произведением, построенном по весовой функции p(t) = sin(t)

получится пространство "констант", т.е. таких функций f(t), для которых

$$\int_{t_1}^{t_2} f(t)sin(t)dt = C(t_2 - t_1), \quad t_1, t_2 \in [0, 1].$$

Следовательно, $f(t) = C \sin^{-1}(t)$.

Несколько замечаний по поводу решения задач из KP1

Задача 4 Вариант 5

Как записать $\lim_{n\to +\infty} \mathbf{x}(n) = \mathbf{x}$ формулой, если $\mathbf{x} \in l_1$? По определению $\forall \varepsilon > 0, \exists N$ такое, что $n > N \Rightarrow ||\mathbf{x}(n) - \mathbf{x}|| < \varepsilon$. Что такое $||\mathbf{x}(n) - \mathbf{x}||$ для вектров из l_1 ? $||\mathbf{x}(n) - \mathbf{x}|| = \sum_{i=1}^{\infty} |x_i(n) - x_i|, \mathbf{x}(n) = (x_1(n), \dots x_i(n), \dots),$ $\mathbf{x} = (x_1, \dots x_i, \dots)$. Поэтому верный ответ: $\forall \varepsilon > 0, \exists N$ такое, что $n > N \Rightarrow \sum_{i=1}^{\infty} |x_i(n) - x_i| < \varepsilon$. Номер вектора в последовательности указан в скобках, этот номер входит в определение предела, а нижний индекс обозначает номер координаты вектора, по ему ведется суммирование при вычислении нормы.

Задача 5 Вариант 5

Почему шар $D \subset l_2$ из векторов длины не большей 2 некомпактен?

Определим счетное замкнутое подмножество $\Sigma \subset D$, состоящее из базисных векторов (концы базисных векторов,отложеных из начала координат — это точки в нашем пространстве l_2). Подмножество Σ — дискретно (что это такое?) и замкнуто (задача 3 листок "Гильбертовы пространства"). Поэтому $l_2 \setminus \Sigma$ —открытое множество (дополнение замкнутого множества — открытое множество). Рассмотрим покрытие D, состоящее из бесконечного числа открытых шаров радиуса $\frac{1}{2}$ с центрами в точках Σ и еще одного множества $l_2 \setminus \Sigma$. В задаче 3 мы проверили, что шары попарно не пересекаются, т.к. расстояние между любыми двумя разными точками из Σ равно $\sqrt{2}$ (почему?). Открытое покрытие не допускает конечного подпокрытия. Как толко уберем из покрытия открытый шар, покрывающий точку $\mathbf{e}_i \in \Sigma$, эта точка \mathbf{e}_i останется непокрытой. Значит, никакое объединения конечного числа открытых шаров не покрывает D.

Более просто было бы доказать, что само Σ некомпактно (Σ замкнуто и ограничено в l_2).

Еще более просто было бы доказать, что $\Sigma \subset l_2$ некомпактно, применив второе определение компактности. Последовательность $\mathbf{e}_i, i = 1, \ldots,$

точек из Σ не имеет предельных точек (почему?). Значит, Σ некомпактно. Тем не менее, Σ замкнуто (почему?) и ограничено (содержится в шаре радиуса 2). На плоскости такой пример построить невозможно. По теореме Гейне-Бореля любое замкнутое (что это такое?) и ограниченное множество на плоскости компактно: из любого его покрытия открытыми множествами (отрытыми дисками) конечное подпокрытие (что значит покрытие и подпокрытие?). Сегодня на лекции этим воспользуемся для построения счетно-аддитивной меры Лебега.

Задача 7 Вариант 5

Почему при непрерывном отображении $f: X \to Y$ метрических пространств прообраз $f^{-1}(Z) \subset X$ открытого подмножества $Z \subset Y$ является окрестностью каждой своей точки $x_0 \in f^{-1}(Z)$?

Определим $\delta > 0$ настолько малым, что шар $U_{\delta}(f(x_0))$ целиком лежит в Z (определение того, что Z-открытое и условие того, что $f(x_0) \in Z$). По определению непрерывного отображения, найдется $\varepsilon > 0$ такое, что $f(U_{\varepsilon}(x_0)) \subset U_{\delta}(f(x_0))$. Поэтому $U_{\varepsilon}(x_0) \subset f^{-1}(Z)$.

Введение в теорию меры. Решения задач

Задача 1

1а. Прямоугольники $< a, b > \times < c, d >$ порождают кольцо, если X-вся плоскость и порождают алгебру, если X-прямоугольник. Само множество прямоугольников кольцом не является, за исключением случая одного прямоугольника P, который опеределяет алгебру $\{P,\emptyset\}$.

16. Конечные множества в \mathbb{N} образуют кольцо (если пустое множество считать конечным) и не образуют алгебру (почему?). Это Пример 1.3 гл.І, параграф 5, раздел 1. Интересное наблюдение было в одной из работ. Мощность кольца \aleph конечных подмножеств в \mathbb{N} счетно, а минимальная σ -алгебра, которая содержит кольцо \aleph , континуальна. Поэтому \aleph не является σ -алгброй.

Вот так живет-поживает себе кольцо \aleph , думает себе, что оно σ -алгебра. А потом, вдруг, ни с того ни с сего, выясняется, что кольцо \aleph не континуально и поэтому не σ -алгебра!

Задача 2

2a. Это доказано в гл.1, параграф 5, раздел 4. По формуле двойственности

$$\cap_n A_n = E \setminus \cup_n (E \setminus A_n).$$

По свойству алгебры

$$A_n \in \aleph \Rightarrow E \setminus A_n \in \aleph$$
.

По свойству σ -алгебры

$$(E \setminus A_n) \in \aleph \Rightarrow (\cup_n (E \setminus A_n)) \in \aleph.$$

По свойству алгебры

$$(\cup_n (E \setminus A_n)) \in \aleph \Rightarrow \cap_n A_n = E \setminus (\cup_n (E \setminus A_n)) \in \aleph.$$

Задача 3

Задача разделяется на 2 независимых, когда E-плоскость и когда Eпрямоугольник (один из 16 видов). Остановимся на случае, когда Eпрямоугольник. Решение каждой задачи состоит в переборе 16 случаев, в зависимости от типа прямоугольника $P \subset E$. Если E-прямоугольник, то от каждого двойного неравенства, которое определяет одну из координат P, следует перейти к дополнительному двойному неравенству. Каждое неравенство скомпоновать с одним из неравенств для той же координаты E. Получится по 2+1 двойных неравенств для каждой координаты, включая двойное неравенство для координаты P. Всего получится 9 двойных неравенств, которые образуют совокупность неравенств, определяющих Е. Из этой совокупности одно двойное неравенство будет определять P, а оставшиеся 8 будут определять прямоугольники из $E \setminus P$. Тем самым, $E \setminus P$ элементарное множество: оно разбивается на конечное число (на 8) попарно непересекающихся элементарных прямоугольника.

Задача 4

Для случая σ -алгебры плоских множеств это Теорема 3, гл.V, параграф 1, раздел 2. Для общего случая это Теорема 2 I, гл.V, параграф 2, раздел 2, если число слагаемых конечно и Теорема 4 I, гл. V, параграф 3, раздел 3, если число слагаемых бесконечно (счетно). Рассмотрим второе

доказательство (первое будет на лекции). Мы уже доказали, что мера σ -аддитивна и пользуемся этим при решении задачи.

Пусть $A_1, \ldots, A_n \in \aleph$, $A = \bigcup_{i=1}^n A_i \in \aleph$. Тогда, если A_i попарно не пересекаются, то это свойство выполнено и называется аддитивностью меры (при этом неравенство заменяется на равенство). Если A_i -общего вида, то $A_1 \cup A_2 = (A_1 \setminus A_2) \cup (A_2 \setminus A_1) \cup (A_1 \cap A_2)$. По свойству аддитивности меры, поскольку $A_1 \setminus A_2 \cup (A_1 \cap A_2)$, получится:

$$m(A_1 \cup A_2) = m(A_1 \setminus A_2) + m(A_1 \cap A_2) + m(A_2 \setminus A_1) \le$$

$$m(A_1 \setminus A_2) + m(A_1 \cap A_2) + m(A_2 \setminus A_1) + m(A_1 \cap A_2) =$$

$$m(A_1) + m(A_2).$$

Итак, $m(A_1 \cup A_2) \le m(A_1) + m(A_2)$. Далее по индукции получится:

$$m(\bigcup_{i=1}^{n} A_i) \le \sum_{i=1}^{n} m(A_i).$$

Мы выбираем $\bigcup_{i=1}^{n-1} A_i = C$, применяем предыдущее рассуждение к паре C, A_n . Получается неравенство

$$m(C \cup A_n) \le m(C) + m(A_n) \le \sum_{i=1}^{n-1} m(A_i) + m(A_n).$$

Случай бесконечного числа слагаемых доказывается так. Множества $B_n = A_n \setminus \bigcup_{i=1}^{n-1} A_i \in \aleph$, поскольку \aleph -кольцо. Поскольку $A = \bigcup_{n=1}^{\infty} B_n$, при этом $B_n \subset A$ и B_n попарно не пересекаются, то по σ -аддитивности меры получится

$$m(A) = \sum_{n=1}^{\infty} m(B_n) \le \sum_{n=1}^{\infty} m(A_n). \quad \Box$$

Задача 7

Мы рассматриваем пространство X всех бесконечных дробей вида

$$\{0, a_1 \quad a_2 \quad \dots \quad a_m \dots\},$$

причем выполнено условие $a_{2i}=0$. Рассмотрим первые два разряда дроби a_1,a_2 и разобъем пространство X на 4 попарно непересекающихся подпространства:

$$X = X_{0.0} \cup X_{0.1} \cup X_{1.0} \cup X_{1.1}$$

в соответствии со значениями первых двух разрядов. Заметим, что указанные подпространства изометричны (конгруэнтны), поскольку переходят друг в друга при соответствующей трансляции на отрезке X. Поэтому

$$m(X_{0,0}) = m(X_{0,1}) = m(X_{1,0}) = m(X_{1,1}) = \frac{1}{4}.$$

По условию задачи искомое подпространство $X_{\infty} \subset X$ лежит в подпространствах:

$$X_{\infty} \subset X_{1,0} \cup X_{0,0}$$

поэтому

$$0 \le m(X_{\infty}) \le m(X_{1,0} \cup X_{0,0}) = m(X_{1,0}) + m(X_{0,0}) = \frac{1}{2}.$$

Каждое пространство $X_{0,0}$, $X_{1,0}$ разобъем на 4 попарно непересекающихся подпространства:

$$X_{0,0} = X_{0,0,0,0} \cup X_{0,0,0,1} \cup X_{0,0,1,0} \cup X_{0,0,1,1};$$

$$X_{1,0} = X_{1,0,0,0} \cup X_{1,0,0,1} \cup X_{1,0,1,0} \cup X_{1,0,1,1}.$$

Повторяя предыдущее рассуждение получится:

$$0 \le m(X_{\infty} \le m(X_{1,0,1,0}) + m(X_{1,0,0,0}) + m(X_{0,0,1,0}) + m(X_{0,0,0,0}) = 2^{-2}.$$

По индукции заключаем, что для произвольного $j \ge 1$ справедливо двойное неравенство:

$$0 \le m(X_{\infty}) \le 2^{-2j}.$$

По теореме о двух милиционерах (теорема о двух милиционерах была переименована указом Д.А.Медведева в теорему о двух полицейских) получится ответ:

$$m(X_{\infty})=0.$$

Задача 9

Для функции f(x) на отрезке [0,1] график

$$\Gamma(f) = \{(x,y)|y = f(x), x \in [0,1].\}$$

лежит внутри элементарной области Ω , заключенной между графиками нижней и верхней мажоранты Дарбу, построенных по произвольному разбиению калибра ε , снабженного разметкой. Если f(x) интегриуема по Риману, то при $\varepsilon \to +0$, получится, что $m(\Omega) \to 0$. Поэтому $\Gamma(f)$ имеет внешнюю меру ноль. Множество внешней меры ноль измеримо и имеет меру ноль (обсудим на лекции). Ответ:

$$m(\Gamma(f)) = 0.$$

Замечание

Задачи 5,6,8 остаются, мы их разберем после майских каникул. К ним добявляются еще 2 задачи 10,11 из расширенного листочка "Введение в теорию меры".