Francisco Edson Birimba Brito
Gisele Ribeiro Gomes
Gabriel Marques de Silva Abreu
Matheus Paolo dos Anjos Mourão
Paulo Chaves dos Santos Júnior

Relatório X

Rio Branco, Acre

Francisco Edson Birimba Brito
Gisele Ribeiro Gomes
Gabriel Marques de Silva Abreu
Matheus Paolo dos Anjos Mourão
Paulo Chaves dos Santos Júnior

Relatório X

Relatório de Laboratório de Eletrônica I, entregue para a composição parcial da nota da N1. Orientador : Elmer Osman Hancco

Universidade Federal do Acre - UFAC Bacharelado em Engenharia Elétrica Laboratório de Eletrônica I

Rio Branco, Acre 2017

Resumo

A prática presente baseia-se na montagem dos circuitos com o transistor 2N3391, sendo simulado com a utilização do software MULTISIM, aplicado um gerador de funções com uma tensão de 1,0mV e frequência 1kHz e com o ganho gerado, analisamos a relação com a frequência. Utilizando o diagrama de Bode, sendo uma forma de caracterizar sinais no domínio da frequência. E apresentação de conceitos de filtros, apresentando um exemplo prático desta aplicação.

Palavras-chaves:bode plots, frequência, amplificador

Abstract

The present practice is based on the assembly of the circuits with the transistor 2N3391, being simulated using the software MULTISIM, a manager of functions with a voltage of 1,0mV and frequency 1kHz and with the gain generated, we analyzed the relationship with frequency. Using the Bode diagram, it is a way of characterizing signals in the frequency domain. And presentation of filter concepts, presenting a practical example of this application.

Keyword: bode plots, frequency, amplifier

Sumário

	Introdução	5
1	DESENVOLVIMENTO	6
1.1	Fundamentação Teórica	6
1.2	Procedimentos	7
1.2.1	Amplificador 1° estágio	7
1.2.2	Amplificador 2° estágio	
1.2.3	Amplificador com dois estágios	ç
1.2.4	Analise	ç
1.3	Resultados	11
1.3.1	Amplificador 1° estágio	11
1.3.2	Amplificador 2° estágio	13
1.3.3	Amplificador com dois estágios	15
1.3.4	Análise	17
2	CONCLUSÃO 1	18
	REFERÊNCIAS	Tõ

Introdução

Neste relatório temos como objetivo a familiarização a resposta em frequência e o uso do diagrama de bode, onde trabalhamos no 1° e 2° estágio e depois com os dois ao mesmo tempo do amplificador, sendo usado o transistor 2N3391. Analisando o ganho do amplificador e depois relacionando com a frequência. Apresentando também conceitos de filtro passa baixa, passa alta, rejeita faixa e passa faixa.

1 Desenvolvimento

1.1 Fundamentação Teórica

- 1. Diagrama de bode
- 2. Resposta em frequência
- 3. Explicar um filtro passa baixa, passa alta, rejeita faixa e passa faixa (um exemplo prático desta aplicação) \dots

1.2 Procedimentos

1.2.1 Amplificador 1° estágio

Figura 1 – Circuito elétrico do 1° estágio do amplificador

- 1. Dado o circuito da figura 1, aplicar o gerador de funções com uma tensão 1,0mV e frequência de 1kHz;
- 2. Medir o ganho com o osciloscópio. Para tanto medir a tensão de saída V_s e de entrada V_e .
- 3. Usar o Bode Plotter (amplitude) e medir as frequências de corte e o ganho da banda passante em dB A $db = 20 \log(V_s/V_e)$;
- 4. Usar o Bode Plotter (fase) e medir os ângulos nas frequências importantes; Anotar todos os dados obtidos na tabela 1.

1.2.2 Amplificador 2° estágio

Figura 2 – Circuito elétrico do 2° estágio do amplificador

- 1. Dado o circuito figura 2, aplicar o gerador de funções com uma tensão 1,0mV e frequência de 1kHz;
- 2. Medir o ganho com o osciloscópio. Para tanto medir a tensão de saída V_s e de entrada V_e .
- 3. Usar o Bode Plotter (amplitude) e medir as frequências de corte e o ganho da banda passante em dB;
- 4. Usar o Bode Plotter (fase) e medir os ângulos nas frequências importantes; Anotar todos os dados obtidos na tabela 1.

1.2.3 Amplificador com dois estágios

Figura 3 – Circuito elétrico do amplificador com dois estágios

Fonte: Produzido pelos autores

- 1. Dado o circuito figura 3, aplicar o gerador de funções com uma tensão 1,0mV e frequência de 1kHz;
- 2. Medir o ganho com o osciloscópio. Para tanto medir a tensão de saída V_s e de entrada V_e .
- 3. Usar o Bode Plotter (amplitude) e medir as frequências de corte e o ganho da banda passante em dB;

1.2.4 Analise

- 1. Analise os resultados apontados na Tabela 5 e explique:
 - a) Por que a frequência de corte inferior (fr_1) para o circuito da figura 1 é maior que para o circuito da figura 2?
 - b) Por que o ganho, para a faixa de frequência médias, do circuito da figura 1 é bem maior do que o circuito da figura 2?

Tabela 1 – Valores obtidos dos circuitos

		Circuito 1	Circuito 2	Circuito 3
	$V_e \ (V_{pp})$			
Osciloscópio	V_s (V_{pp})			
	$A_V (V_s/V_e)$			
	A_V em frequências médias (dB)			
Bode Plotter	frequência 1 a $(-3dB)$			
	frequência 2 a $(-3dB)$			

1.3 Resultados

1.3.1 Amplificador 1° estágio

Temos a seguinte montagem do circuito da figura 1 com a utilização do MULTISIM:

— ADD a imagem - Simulação_Circuito1.png —

Com a utilização do Osciloscópio do simulador, conseguimos obter a forma de onda da entrada e da saída, que para uma melhor visualização deixando as duas formas de onda com escalas diferentes.

Figura 4 – Imagem do osciloscópio do Circuito 1

Fonte: Produzido pelos autores

Usando o Bode Plotter, conseguimos analisar o gráfico do ganho em relação a frequência do circuito.

Figura 5 – Bode Plotter do Circuito 1

Figura 6 – Bode Plotter do Circuito 1

Fonte: Produzido pelos autores

Com as informações encontradas, obtemos a seguintes informações:

Tabela 2 – Valores obtidos do circuito 1

1.3.2 Amplificador 2° estágio

Temos a seguinte montagem do circuito da figura 2 com a utilização do MULTISIM:

— ADD a imagem - Simulação_Circuito2.png —

Com a utilização do Osciloscópio do simulador, conseguimos obter a forma de onda da entrada e da saída, que para uma melhor visualização deixando as duas formas de onda com escalas diferentes.

Figura 7 – Imagem do osciloscópio do Circuito 2

Fonte: Produzido pelos autores

Usando o Bode Plotter, conseguimos analisar o gráfico do ganho em relação a frequência do circuito.

Figura 8 – Bode Plotter do Circuito 2

Figura 9 – Bode Plotter do Circuito 2

Fonte: Produzido pelos autores

Com as informações encontradas, obtemos a seguintes informações:

Tabela 3 – Valores obtidos do circuito 2

1.3.3 Amplificador com dois estágios

Temos a seguinte montagem do circuito da figura 3 com a utilização do MULTISIM:

— ADD a imagem - Simulação_Circuito3.png —

Com a utilização do Osciloscópio do simulador, conseguimos obter a forma de onda da entrada e da saída, que para uma melhor visualização deixando as duas formas de onda com escalas diferentes.

Figura 10 – Imagem do osciloscópio do Circuito 3

Fonte: Produzido pelos autores

Usando o Bode Plotter, conseguimos analisar o gráfico do ganho em relação a frequência do circuito.

Figura 11 – Bode Plotter do Circuito 3

Figura 12 – Bode Plotter do Circuito 3

Fonte: Produzido pelos autores

Com as informações encontradas, obtemos a seguintes informações:

Tabela 4 – Valores obtidos do circuito 3

1.3.4 Análise

Para facilitar a análise, juntamos as informações obtidas de cada circuito numa tabela só.

Tabela 5 – Valores obtidos dos circuitos

		Circuito 1	Circuito 2	Circuito 3
	$V_e (V_{pp})$	2mV	2mV	2mV
Osciloscópio	$V_s (V_{pp})$	55, 1mV	4,81mV	162mV
	$A_V (V_s/V_e)$	27,55	2,405	81
	A_V em frequências médias (dB)	28,8dB	7,62dB	38,17dB
Bode Plotter	frequência 1 a $(-3dB)$	454,523mHz	435,032mHz	235,093mHz
	frequência 2 a $(-3dB)$	7,286MHz	5,138MHz	17,23MHz

- 1. Analise os resultados apontados na Tabela 5 e explique:
 - a) Por que a frequência de corte inferior (fr_1) para o circuito da figura 1 é maior que para o circuito da figura 2?
 - b) Por que o ganho, para a faixa de frequência médias, do circuito da figura 1 é bem maior do que o circuito da figura 2?

2 Conclusão

A prática presente baseia-se na montagem e obtenção de dados de um circuito amplificador com polarização de base comum. A realização de todo processo de experimentação deste relatório foi relativamente complexo, após a montagem, a obtenção de todos os dados necessários eram de fácil intuição. Quanto aos conceitos e conhecimentos demandados durante a execução e resolução das questões teóricos, todos são compatíveis com os vistos durante as aulas de eletrônica I.

Referências