Lista 4

O modelo entregue para análise utiliza as variáveis *Length*, *Area* e *Year* para explicar a prevalência do parasita.

Através do gráfico abaixo vemos que a distribuição da variável *Length* é parecida em casos com e sem prevalência do parasita.

```
ggplot(ParasiteCod) +
  geom_boxplot(aes(x = Prevalence, y = Length)) +
  theme_classic() +
  ggtitle('Distribuição do comprimento por prevalência do parasita') +
  theme(plot.title = element_text(hjust = 0.5))
```

Warning: Removed 6 rows containing non-finite values (stat_boxplot).

Outra variável presente no modelo é a área e, no gráfico abaixo vemos que para área tem uma proporção diferente de prevalência. Os valores de proporção estão na tabela seguinte.

```
ParasiteCod %>%
  group_by(Prevalence, fArea) %>%
  summarise(contagem = n()) %>%
  ggplot(aes(x = fArea, y = contagem, fill = Prevalence)) +
  geom_col(position = "dodge") +
  theme_classic() + ylab('Número de ocorrências') + xlab('Área') +
  ggtitle('Comparação entre prevalência por área') +
    theme(plot.title = element_text(hjust = 0.5))
```

'summarise()' regrouping output by 'Prevalence' (override with '.groups' argument)

Comparação entre prevalência por área


```
ParasiteCod %>%
  group_by(Prevalence, fArea) %>%
  summarise(contagem = n()) %>%
  pivot_wider(id_cols = 'fArea', names_from = 'Prevalence', values_from = 'contagem') %>%
  mutate(`Prevalence proportion` = (`1`/(`1`+`0`))) %>%
  kable(row.names = F)
```

'summarise()' regrouping output by 'Prevalence' (override with '.groups' argument)

fArea	0	1	Prevalence proportion
1	136	136	0.5000000
2	171	84	0.3294118
3	265	150	0.3614458
4	82	230	0.7371795

O ano da observação é outra variável descritiva do modelo e, novamente vemos no gráfico e na tabela abaixo que a proporção de prevalência varia de ano para ano.

```
ParasiteCod %>%
  group_by(Prevalence, fYear) %>%
  summarise(contagem = n()) %>%
  ggplot(aes(x = fYear, y = contagem, fill = Prevalence)) +
  geom_col(position = "dodge") +
```

```
theme_classic() + ylab('Número de ocorrências') + xlab('Ano') +
ggtitle('Comparação entre prevalência por ano') +
theme(plot.title = element_text(hjust = 0.5))
```

'summarise()' regrouping output by 'Prevalence' (override with '.groups' argument)


```
ParasiteCod %>%
  group_by(Prevalence, fYear) %>%
  summarise(contagem = n()) %>%
  pivot_wider(id_cols = 'fYear', names_from = 'Prevalence', values_from = 'contagem') %>%
  mutate(`Prevalence proportion` = (`1`/(`1`+`0`))) %>%
  kable(row.names = F)
```

'summarise()' regrouping output by 'Prevalence' (override with '.groups' argument)

fYear	0	1	Prevalence proportion
1999	278	289	0.5097002
2000	86	144	0.6260870
2001	290	167	0.3654267

Através da tabela abaixo observamos que dentro de cada ano existe variação da proporção de prevalência por área, isso significa que é necessário considerar a interação entre as variáveis no modelo, assim como foi feito.

```
ParasiteCod %>%
  group_by(Prevalence, fArea, fYear) %>%
  summarise(contagem = n()) %>%
  pivot_wider(id_cols = c('fYear', 'fArea'), names_from = 'Prevalence', values_from = 'contagem') %>%
  mutate(`Prevalence proportion` = scales::percent(`1`/(`1`+`0`))) %>%
  pivot_wider(id_cols = 'fArea', names_from = 'fYear', values_from = 'Prevalence proportion') %>%
  kable(row.names = F)
```

'summarise()' regrouping output by 'Prevalence', 'fArea' (override with '.groups' argument)

fArea	1999	2000	2001
1	61.2%	70.9%	10.0%
2	32.65%	36.00%	31.78%
3	33.9%	57.3%	28.7%
4	75.5%	88.0%	65.9%

Ajuste do modelo

Na regressão logistica com função de ligação logit estamos construindo um modelo para

$$ln(\frac{p}{1-p})$$

, onde

$$\frac{p}{1-p}$$

é a chance de acontecimento de um evento, no caso do conjunto de dados ParasiteCod é a chance de prevalência do parasita.

```
##
## glm(formula = Prevalence ~ Length + fArea * fYear, family = binomial,
##
      data = ParasiteCod)
##
## Deviance Residuals:
##
      Min
                1Q
                    Median
                                3Q
                                        Max
## -2.0922 -0.9089
                   -0.4545
                             0.9678
                                     2.2394
##
## Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
                   0.003226
                             0.291973
                                        0.011 0.99118
## (Intercept)
## Length
                   0.008516
                                        1.858 0.06324 .
                             0.004585
                             0.276897 -4.283 1.85e-05 ***
## fArea2
                  -1.185849
## fArea3
                  2.783 0.00538 **
## fArea4
                   0.728736
                             0.261815
## fYear2000
                   0.383756
                             0.343877
                                        1.116 0.26444
                            0.433542 -6.126 9.03e-10 ***
## fYear2001
                  -2.655704
```

```
## fArea2:fYear2000 -0.209035
                               0.503494
                                         -0.415 0.67802
## fArea3:fYear2000 0.561158
                               0.443733
                                          1.265 0.20600
## fArea4:fYear2000 0.451582
                               0.588318
                                          0.768 0.44274
## fArea2:fYear2001
                    2.595866
                               0.528472
                                          4.912 9.01e-07 ***
## fArea3:fYear2001
                    2.403050
                               0.493512
                                          4.869 1.12e-06 ***
## fArea4:fYear2001 2.115534
                               0.513489
                                          4.120 3.79e-05 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
  (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 1727.8 on 1247 degrees of freedom
##
## Residual deviance: 1495.2 on 1235
                                      degrees of freedom
     (6 observations deleted due to missingness)
##
## AIC: 1521.2
##
## Number of Fisher Scoring iterations: 4
```

Os fatores de referência são fYear = 1999 e fArea = 1. Length é uma variável contínua e sua média é 53.45. Usaremos a média do comprimento para o cálculo das probabilidades de cada ano e área.

Interpretação da chance de prevalência Para encontrar a probabilidade dos eventos precisamos calcular o inverso da função de ligação utilizando os coeficientes resultantes do treinamento do modelo.

 $\mathbf{Ex.:}$ A probabilidade de prevalência do parasita quando o ano é $\mathbf{1999}$ e a área é $\mathbf{1}$ é utiliza os coeficientes 0.0032259, e 0.0085164, onde

$$p = exp\{\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n\}$$

é a probabilidade de prevalência nesse cenário é

$$\frac{p}{1+p}$$

Então, a probabilidade de prevalência de parasita no ano de 1999 na área 1 com comprimento de 53.45 é 0.61.

Ex.: Para calcular as probabilidades das interações, todas as informações referentes às características da amostra para a qual queremos calcular a probabilidade são utilizadas. Considerando agora a probabilidade de prevalência na área $\bf 2$ no ano $\bf 2000$, para isso precisaremos considerar os seguintes β_s :

• intercepto: 0.0032259

• efeito do comprimento: 0.0085164

 $\bullet\,$ efeito da área 2: -1.1858494

• efeito do ano 2000: 0.3837563

• efeito da interação entre ano e área: -0.209035

Portanto, a probabilidade de prevalência do parasita, considerando comprimento médio, na área $\mathbf{2}$ no ano $\mathbf{2000}$ é 37%.

Interpretação da razão de chance