BM25 Extension to Field Weights

By ChungHao Ku, Yinghao Qin

BM25-CTF Improvement

By Jingye Shang, Shangyu Luo

Group E

Simple BM25 Extension to Multiple Weighted Fields - Background

- Conference paper (January 2004) by Stephen E. Robertson (UCL), Michael J. Taylor (Microsoft), Hugo Zaragoza (Websays)
- Structured-document retrieval (field weighting)
- BM25 (retrieval, weighting function)
- Early works
- Empirical studies of field weighting (by Wilkinson)
- Information aggregation (by Lalmas)
- Combining document representations from different sources in a language model (by Ogilvie and Callan)

BM25

$$\bar{d} = (d_1, ..., d_V)$$

 $\mathbf{d} = (\bar{d}[1], \bar{d}[2], ..., \bar{d}[f], ..., \bar{d}[K])$

Weighting function

$$w_j(\bar{d}, C) := \frac{(k_1 + 1)d_j}{k_1((1 - b) + b\frac{dl}{avdl}) + d_j} log \frac{N - df_j + 0.5}{df_j + 0.5}$$

Ranking function (scoring function)

$$W(\bar{d}, q, C) = \sum_{j} w_{j}(\bar{d}, C) \cdot q_{j}$$

Problems

- Linear combination of field scores is bad for retrieval functions like BM25
- Example: Plot of tf and term weight
- Tf scaling has to be controlled

Okapi weights:

$w_j(\bar{d}, C) := \frac{(k_1 + 1)d_j}{k_1((1 - b) + b\frac{dl}{avdl}) + d_j} log \frac{N - df_j + 0.5}{df_j + 0.5}$

Solutions

- Unstructured-document scoring
- Structured-document scoring (each field is treated as an "unstructured document")
- Original approach: linear combination of field scores
- New Approach: Linear combination of TF's (take into account all tfs)
- Term weighting and scoring functions are applied only once to each document

$$W(\bar{d}, q, C) = \sum_{j} w_{j}(\bar{d}, C) \cdot q_{j}$$

$$W(\bar{d}[f], q, C) = \sum_{j} w_{j}(\bar{d}[f], C) \cdot q_{j}$$

$$W_1(\mathbf{d}, q, \mathbf{C}, \mathbf{v}) := \sum_{f=1}^K v_f \cdot W(\bar{d}[f], q, C)$$

$$\mathbf{d}' := \sum_{f=1}^K v_f \cdot \bar{d}[f]$$

 $W_2(\mathbf{d}, q, \mathbf{C}, \mathbf{v}) := W(\mathbf{d}', q, \mathbf{C}')$

Experiment results

Figure 2: Title and Body Fields

Strengths and weaknesses

Strengths

- Resolve many of the issues
- Simplicity
- Potentially reduce the effort required to optimize the tuning parameters of a ranking function
- Intuitively understandable

Weaknesses

- Test collections were not ideal (limited fields in documents)
- Its applicability to anchor text was arguable

Another way to improve BM25

BM25-CTF: Improving TF and IDF factors in BM25 by using collection term frequencies

Article in Journal of Intelligent and Fuzzy Systems · May 2018

DOI: 10.3233/JIFS-169475

CITATIONS

2

READS

479

5 authors, including:

Sergio Jimenez

Caro y Cuervo Institute

39 PUBLICATIONS 260 CITATIONS

SEE PROFILE

Silviu Cucerzan

Microsoft

44 PUBLICATIONS 1,688 CITATIONS

SEE PROFILE

Fabio A. González

National University of Colombia

237 PUBLICATIONS 4,525 CITATIONS

SEE PROFILE

Alexander Gelbukh

Instituto Politécnico Nacional

513 PUBLICATIONS 4,935 CITATIONS

SEE PROFILE

BM25-CTF

- What are the differences between TF and CTF?
- What is BM25-CTF?
- What problems do BM25-CTF solve ?
- How to improve BM25 ?
- Results of comparing BM25 with BM25-CTF
- How do we think about BM25-CTF?

BM25

$$\sum_{w \in Q} idf(w) \times \frac{(k_1+1) \times tf(w,d)}{k_1 \times K(d) + tf(w,d)} \times \frac{(k_3+1) \times tf(w,q)}{k_3 + tf(w,q)}$$

BM25-CTF

$$\sum_{w \in q} bidf(w) \times \frac{(k_1 + 1) \times btf(w, d)}{k_1 \times K(d) + btf(w, d)} \times \frac{(k_3 + 1) \times btf(w, q)}{k_3 + btf(w, q)}$$

$$btf(w, d) = C(d) \times \frac{tf(w, d)}{t\hat{f}(w, d)}$$

$$ictf(w) = \log\left(\frac{M}{ctf(w)}\right), \qquad pidf(w) = \log\left(\frac{\hat{d}f(w)}{c\hat{t}f(w)} + 1\right)$$

Compare BM25 with BM25 CTF

Compare MAP Matrix

There are 8 collections
Compared the optimal k1 and b throughout the tested collections between BM25 and BM25CTF(table 5)

Table 5
Optimal parameters for BM25 and BM25-CTF using MAP across collections

model	param.	TREC-8	TREC-7	TREC-6	TREC-5	TREC-4	TREC-3	TREC-2	TREC-1	Average	Average
BM25	k_1	0.80	1.20	0.90	0.70	1.50	1.50	1.25	1.40	1.16(0.30)	1.02(0.33)
	b	0.95	0.75	0.85	1.00	0.60	0.75	0.70	0.75	0.79(0.12)	0.83(0.16)
BM25-CTF	k_1	1.30	1.10	0.90	1.25	1.50	1.50	1.50	1.50	1.32(0.21)	1.21(0.22)
	b	0.85	0.95	0.95	0.95	0.70	0.80	0.75	0.80	0.84(0.09)	0.88(0.11)

Compare BM25 with BM25 CTF

Table 7 Comparison for each collection using its default parameters											
		MAP	P@10								
TREC	BM25	BM25-CTF	Improv.	BM25	BM25-CTF	Improv.					
1	0.323	0.3305	2.32%	0.5158	0.5248	1.75%					
2	0.3404	0.3401	-0.09%	0.4416	0.4576	3.62%					
3	0.3287	0.3316	0.88%	0.68	0.674	-0.88%					
4	0.2028	0.2204*	8.68%	0.582	0.582	0.00%					
5	0.2141	0.2373*	10.84%	0.656	0.654	-0.30%					
6	0.2282	0.2611*	14.42%	0.454	0.458	0.88%					
7	0.2146	0.2427*	13.09%	0.414	0.416	0.48%					
8	0.2332	0.2744*	17.67%	0.428	0.4520*	5.61%					
[*] significantly better using Wilcoxon's test (p-value<0.05)											

- Conclusion :
- In the 7 performance measures considered, BM25-CTF was significantly better 20 times
- The improvement of BM25-CTF over BM25 can be only observed when BM25-CTF is used in collections containing relatively large documents.

References

- [1] Robertson, Stephen & Zaragoza, Hugo & Taylor, Michael. (2004). Simple BM25 extension to multiple weighted fields. International Conference on Information and Knowledge Management, Proceedings.
- [2] Jimenez, Sergio & Cucerzan, Silviu & González, Fabio & Gelbukh, Alexander & Dueñas, George. (2018). BM25-CTF: Improving TF and IDF factors in BM25 by using collection term frequencies. Journal of Intelligent & Fuzzy Systems.