

Tutorium 42, #8

Max Göckel- uzkns@student.kit.edu

Institut für Theoretische Informatik - Grundbegriffe der Informatik

Prädikatenlogik: Grundlagen

Mit der Prädikatenlogik kann man mehr Aussagen formulieren als mit der Aussagenlogik. Wir können damit auch Aussagen in prädikatenlogische Formeln ("Mathesprache") umformlieren.

Die Prädikatenlogik (PL) 1. Stufe benutzt die folgenden Zeichen:

- $\quad \blacksquare \quad \neg, \, \lor, \, \land, \, \rightarrow, \, \leftrightarrow, \, (, \,) \text{ aus der Aussagenlogik}$
- lacktriangledown (Allquantor für Variablen) und \exists (Existenzquantor für Variablen)
- Variablen (zum Beispiel x, y, z)
- Funktionen (zum Beispiel f, g, h)
- Prädikate (zum Besipiel p, q, r)

Prädikatenlogik: Prädikate

Prädikate sind Funktionen, die für eine Eingabe (eine oder mehr Variablen) einen Wahrheitswert zurückgeben. Ähnlich wie zum Beispiel public boolean p (Var x, Var y) in Java, die für Var x und v einen Boolean-Wahrheitswert zurückgibt.

Prädikate in PL sehen zum Besipiel so aus:

- Vater(x,y): Wahr, wenn x Vater von y ist
- Mann(x): Wahr wenn x Männlich ist, sonst falsch
- Verheiratet(x,y): wahr wenn x und y verheiratet sind

Prädikatenlogik: Aufgaben

Die folgenden Prädikate sind gegeben

- Vater(x,y): Wahr, wenn x Vater von y ist
- Mann(x): Wahr wenn x Männlich ist, sonst falsch
- Verheiratet(x,y): wahr wenn x und y verheiratet sind

Drücke die Aussagen in PL aus

- Jede m\u00e4nnliche Person hat mindestens einen Vater
- Jeder Mann hat mehrere Kinder
- Jede Frau ist mit höchstens einem Mann verheiratet

Prädikatenlogik: Lösung

Drücke die Aussagen in PL aus

- Jede männliche Person hat mindestens einen Vater
 - $\forall x \exists y (Mann(x) \lor Vater(y, x))$
 - "Für jede Person x exist. min. 1 Person v wo gilt: x ist ein Mann und v ist Vater von x"
- Jeder Mann hat mehrere Kinder
 - $\forall x \exists y \exists z (Mann(x) \land Vater(x, y) \land Vater(x, z) \land \neg (y = z))$
 - "Für jede Person x existiert min. 1 Person y und 1 Person z wo gilt: x ist männlich und Vater von v und z wobei $y \neq z$ ist"
- Jede Frau ist mit höchstens einer Person verheiratet
 - $\forall x \forall y \forall z (\neg Mann(x) \land \neg (y = z) \land Verheiratet(x, y)) \rightarrow \neg Verheiratet(x, z))$
 - Für jede Person x,y, z gilt: Ist x nicht m\u00e4nnlich und y,z m\u00e4nnlich und y ≠ z und x mit y verheiratet so folgt: x ist nicht mit z verheiratet

Prädikatenlogik: Aufbau

- Jede Variable ist ein Term (Bsp.: x)
- Eine Funktion f mit Termen als Eingabe ist wieder ein Term (Bsp: f(x,y, f(z))
- Atomare Formeln sind die "kleinsten" PL-Formeln die wir bilden können
- Objektgleichheit (x = y) ist eine atomare Formel
- Ein Prädikat mit Termen als Eingabe ist eine atomare Formel
- Aus atomaren Formeln bilden wir mittels Konnektiven größere PL-Formeln

Natürlich gibt es auch bei PL Regeln für (syntaktisch) korrekte Formeln.

Prädikatenlogik: Aufgabe

Sind die folgenden PL-Formeln syntaktisch korrekt gebildet?

- $\forall x(\forall y(\forall z(r(x,y) \land r(y,z) \rightarrow r(x,z))))$ Ja
- $\forall x \forall y (p(x) \rightarrow r(y))$ Nein, r ist zweistellig
- $\forall x \exists p : p(x)$ Nein, \exists gilt nur für Variablen, nicht für Prädikate
- $\forall x(q(x)) \land \exists x(\neg q(x))$ Ja

Prädikatenlogik: **Quantoren-Wirkungsbereich**

∀ und ∃ haben einen begrenzten "Wirkungsbereich" auf die Variablen hinter ihnen

Der Wirkungsbereich eines Quantores ist eine Teilformel und die Var. muss die Bindung in der Teilformel befolgen.

Bspe.:

- $\forall x(p(x) \land q(x,y)) \rightarrow r(x)$ beide Prädikate sind gebunden
- $\forall x(p(x) \land \forall x(\neg p(x)))$ Überschattung, also ein x umbenennen

Die Bindung von Variablen wird später noch sehr wichtig.

Prädikatenlogik: Aufgabe

Kennzeichne die Bindung von Variablen in der Formel mit Pfeilen zu ihren Quantoren

 $p(x) \to \forall x \exists y (p(x) \land q(y,z) \leftrightarrow \forall z (q(x,z)))$

Prädikatenlogik: Substitution

In PL-Formeln kann man Variablen gegen andere Variablen oder Terme ersetzen.

Wichtig dabei: Es werden nur freie Variablen ersetzt (also solche die nicht an einen Quantor gebunden sind)

Eine Substitution schreibt man so: $\epsilon[x/y](A)$, sie ersetzt alle x durch y in Formel A.

Beispielsubstitutionen:

- $\beta_1[x/5](p(x) \vee q(x,y)) = (p(5) \vee q(5,y))$
- $\beta_2[x/f(x)](p(x) \vee \forall x(q(x,y))) = p(f(x)) \vee \forall x(q(x,y)))$

Prädikatenlogik: Substitutionskollisionen

Eine Substitution enthält eine Kollision falls in der Substitution eine freie Variable gegen eine gebundene Variable (also eine Variable im Wirkungsbereich eine Quantors) getauscht wird. Eine Substitution, die keine Kollision enthält heißt "Kollisionsfrei" und ist zu bevorzugen.

Bsp.:

Prädikatenlogik: Lösung

Führe die Substitutionen aus:

- $\bullet \ \sigma_1[x/f(y,z),y/9](q(x,f(y,z)) \land \forall x(p(x)))$
 - $q(f(y,z),f(9,z) \wedge \forall x(p(x))$
- $\sigma_2[x/g(y), y/x](\beta_1[x/y, y/f(x, y)](\exists z(r(x, y, z))))$

 - $\exists z (r(x, f(g(y), x), z))$

Prädikatenlogik: Semantik

Neben dem syntaktisch korrekten Aufbau von Prädikatenlogik-Formeln kann man diesen auch eine Bedutung (Semantik) zuordnen und sie auswerten.

Ähnlich in der Aussagnelogik gibt es Val und I. I weist einer Konstanten, Funktion, Abbildung oder Relation eine Bedeutung zu, wobei Val einen ganzen Term auswertet.

Zusätzlich gibt es in der PL noch 2 weitere Dinge, die sich von der Aussagenlogik unterscheiden:

- Die Zielmenge, auf die I abbildet (Ein Universum D und $\{w, f\}$)
- Belegung ungebundener bzw. freier Variablen (idR β)

Das Tupel (D,I) ist damit eine Interpretation und mit $val_{D,I,\beta}$ kann betimmt werden ob eine Formel wahr ist

Prädikatenlogik: Lösung

- $p(x) \to \exists y (q(y,x) \land p(y))$
 - $Val_{D,I,B}(p(x)) = I(p(7)) = w$
 - $\exists y$ bel. wählbar also $y = 8 \Rightarrow I(q(8,7)) = w$ und $I(p(8)) = w \Rightarrow Val_{D,L,\beta}(\exists y...) = w \Rightarrow Val_{D,L,\beta}(p(x) \rightarrow ...) = w$
- $p(x) \to \exists y (q(f(c,y),x) \land p(y))$
 - $Val_{D,I,\beta}(p(x)) = w$ (s.o.)
 - $Val_{D,I,\beta}(q(f(c,y),x)) = Val_{D,I,\beta}(q(f(c,y),x)) = Val_{D,I,\beta}(q(10-y,7)) \rightarrow w \text{ für } y \in \{0,1,2\}$
 - $Val_{D,I,\beta}(p(y)) = w \text{ für } y \geq 5$
 - Keine Lösung da $y \in \{0, 1, 2\}$ und $y \ge 5$ nicht beide gelten können