中国最专业软件开发培训机构

分布式云平台

讲师: 肖斌

- Hadoop核心组件——MR
 - Hadoop 分布式计算框架 (MapReduce)

• MapReduce设计理念

- 何为分布式计算。
- 移动计算,而不是移动数据。

• 计算框架MR

• 计算框架MR

- Mapper
 - Map-reduce的思想就是"分而治之"
 - Mapper负责"分",即把复杂的任务分解为若干个"简单的任务"执行
 - "简单的任务"有几个含义:
 - 数据或计算规模相对于原任务要大大缩小;
 - 就近计算,即会被分配到存放了所需数据的节点进行计算;
 - 这些小任务可以并行计算,彼此间几乎没有依赖关系

• 计算框架Mapper

- Map: "Run this computation on your local data"
- Job Tracker delivers Java code to Nodes with local data

- Hadoop计算框架Reducer
 - 对map阶段的结果进行汇总。
 - Reducer的数目由mapred-site.xml配置文件里的项目mapred.reduce.tasks 决定。缺省值为1,用户可以覆盖之

• Hadoop技术框架Reducer

Data Processing: Reduce

- Reduce: "Run this computation across Map results"
- Map Tasks <u>send output data to Reducer over the network</u>
- Reduce Task data output <u>written to and read from HDFS</u>

- Hadoop计算框架Shuffler
 - 在mapper和reducer中间的一个步骤
 - 可以把mapper的输出按照某种key值重新切分和组合成n份,把key值符合某种范围的输出送到特定的reducer那里去处理
 - 可以简化reducer过程

• Hadoop计算框架Shuffler

- Hadoop计算框架shuffle过程详解
 - 每个map task都有一个内存缓冲区(默认是100MB),存储着map的输出结果
 - 当缓冲区快满的时候需要将缓冲区的数据 以一个临时文件的方式存放到磁盘(Spill
 - 溢写是由单独线程来完成,不影响往缓冲 区写map结果的线程(spill.percent,默认 是0.8)
 - 当溢写线程启动后,需要对这80MB空间 内的key做排序(Sort)

- Hadoop计算框架shuffle过程详解
 - 假如client设置过Combiner,那么现在就是使用Combiner的时候了。将 有相同key的key/value对的value加起来,减少溢写到磁盘的数据量。 (reduce1, word1, [8]).
 - 当整个map task结束后再对磁盘中这个map task产生的所有临时文件做 合并(Merge), 对于"word1"就是像这样的: {"word1", [5, 8, 2, ...]}, 假 如有Combiner,{word1[15]},最终产生一个文件。
 - reduce 从tasktracker copy数据
 - copy过来的数据会先放入内存缓冲区中,这里的缓冲区大小要比map端 的更为灵活,它基于JVM的heap size设置
 - merge有三种形式:1)内存到内存 2)内存到磁盘 3)磁盘到磁盘。merge 从不同tasktracker上拿到的数据, {word1 [15, 17, 2]}
 - 参考博客http://langyu.iteye.com/blog/992916?page=3#comments

Hadoop计算框架shuffle过程详解

• MapReduce的 Split大小

- max.split(100M)
- min.split(10M)
- block(64M)
- max(min.split,min(max.split,block))

• MapReduce的架构

Hadoop Server Roles

- MapReduce的架构
 - 一主多从架构
 - 主 JobTracker:
 - 负责调度分配每一个子任务task运行于TaskTracker上,如果发现有失败的 task就重新分配其任务到其他节点。每一个hadoop集群中只一个JobTracker, 一般它运行在Master节点上。
 - 从TaskTracker:
 - TaskTracker主动与JobTracker通信,接收作业,并负责直接执行每一个任务, 为了减少网络带宽TaskTracker最好运行在HDFS的DataNode上

• MapReduce安装

Mapred-size.xml

mapred.job.tracker	主机名和	local	jobtracker 的 RPC 服务器运行
	端口		的主机名和端口、如果设置为
			默认值 local,则当运行一道作
			业时, jobtracker 也在同一进程
			内(此时,不必启动 MapReduce
			守护进程)
mapred.local.dir	用逗号分	\${hadoop.tmp.dir	r} MapReduce 存储作业中间数据
	隔的目录	/mapred/local	的目录列表。当作业结束时数
	名称		据会被清空
mapred.system.dir	URI	\${hadoop.tmp.dir	r) 当一道作业运行时,与存储共
		/mapred/system	享文件的 fs.default.name 相关的
			目录
mapred.tasktracker.	int	2	任一时刻 tasktracker 上运行
map.tasks.maximum			map 任务的数量
mapred.tasktracker.	int	2	任一时刻在 tasktracker 上运行
reduce.tasks.maximum			的 reduce 任务的数量
Mapred.child.	String		用来启动 tasktracker 子进程,运行
java.opts		n	nap 和 reduce 任务的 JVM 选项。
		川	比属性可以在每道作业上设置,这
		天	力 debug 设置 JVM 属性比较
		4	ī 用

• MR安装-----Hadoop配置有关文件

表 9-1: Hadoop 配置文件

文件名	格式	描述	
hadoop-env.sh	bash 脚本	在运行 Hadoop 的脚本中使用的环境变量	
core-site.xml	Hadoop 配置 XML	Hadoop 核心®的配置,例如 HDFS 和 MapReduce 中很普遍的 I/O 设置	
hdfs-site.xml	Hadoop 配置 XML	HDFS 后台程序设置的配置: 名称节点, 第二名称节点和数据节点	
mapred-site.xml	Hadoop 配置 XML	MapReduce 后台程序设置的配置: jobtracker和tasktracker	
masters	纯文本	记录运行第二名称节点的机器(一行一个 的列表	
slaves	纯文本	记录运行数据节点和 tasktracker 的机器 (一行一个)的列表	
hadoop-met rics.properties	Java 属性	控制 Hadoop 怎么发布 metrics(参见第 10章)的属性	
log4j.properties	Java 属性	系统日志文件的属性、名称节点审计日记	
		和 tasktracker 子进程(参见第 5 章)的日志 的属性	

