La tangente est (\emptyset) : y = g'(1).[x-1] + g(1)

$$g(1) = \frac{1}{(2-1)} = 1$$
 et $g'(1) = \frac{-2}{(2-1)^2} = -2$

Donc (\varnothing): y = -2.[x-1] + 1 = -2x + 2 + 1

La tangente en 1 a pour équation (\emptyset): y = -2x + 3

3.4. Convexité et point d'inflexion

Soit f une fonction supposée deux fois dérivables sur un intervalle I, et sa dérivée seconde est notée f''(x).

- f est convexe sur I si est seulement si, pour tout réel x de I, f''(x) est positives.(ou f'(x) est croissante).
- f est concave sur I si est seulement si, pour tout réel x de I, f''(x) est négative.(ou f'(x) est décroissante).
- Un point d'inflexion est un point où f''(x) s'annule et change de signe (la convexité change).

Exemple: Montrons que la fonction $u(x) = x^3$ admet un point d'inflexion.

$$u'(x) = 3x^2 \text{ et } u''(x) = 6x$$

Puisque $\mathfrak{u}''(0)=0$ et $\mathfrak{u}''(x)$ change de signe en 0, le point M(0,0) est un point d'inflexion.

Mr Randrianarimanana Tahinasoa LTB II 2022-2023

FONCTION NUMÉRIQUE D'UNE VARIABLE RÉELLE

1. Limite et continuité

1.1. Notion de limite en un point

Soit f une fonction de \mathbb{R} , $x_0 \in D_f$ (ou x_0 est borne de D_f) et $l \in \mathbb{R}$.

On dit que f a pour limite l en x_0 si $\,:\,$

« f(x) se rapproche de l quand x se rapproche de x_0 »

Exemple : Soit la fonction f définie par $f(x) = \frac{x-1}{\sqrt{x}-1}$

Cette fonction n'est pas définie en 1 alors voyons le comportement de f(x)

quand x se rapproche de 1.

f(x)
2,22
2,20
2,18
2,16
2,14
2,12
2,10
2,07
2,05
2,02

\mathbf{x}	f(x)
0,50	1,71
0,55	1,74
0,60	1,77
0,65	1,81
0,70	1,84
0,75	1,87
0,80	1,89
0,85	1,92
0,90	1,95
0,95	1,97

On voit que quand x se rapproche de 1, f(x) se rapproche de 2.

On dit que la limite de f(x) quand x tend vers 1 est 2.

On écrit : $\lim_{x \to 0} f(x) = 2$ (voir exemple 2 pour la démonstration)

Remarque:

Quand on parle de limite à l'infini, on choisit x aussi grand que l'on veut. (ou aussi petit que l'on veut si on parle de limite vers $-\infty$.)

Exemple:

Soit la fonction g définie par $g(x) = \frac{1}{x}$

Voyons le comportement de g(x) quand $x \to +\infty$.

<u> </u>	
x	g(x)
1	1
10	0,1
100	0,01
1000	0,001

On peut conjecturer que $\lim_{x \to +\infty} g(x) = 0$

Propriété:

Si f admet une limite en un réel x_0 , alors cette limite est unique.

1.2. Détermination pratique de la limite :

Dans la pratique on admet les opérations suivantes :

• $k \in \mathbb{R}$

k×∞=∞	∞± k=	=∞	$\frac{\infty}{k} = \infty$
$\frac{k}{\infty} = 0$		$\frac{\mathbf{k}}{0} = \infty$	
$\infty + \infty = \infty$ (infinie de r	nême signe)	$\infty \times \infty =$	∞
Par conséquent			
$\frac{0}{\infty} = \infty$		$\frac{0}{\infty} = 0$)

1.3 . Forme indéterminée

On ne peut pas effectuer directement les calculs suivants :

$$\infty - \infty$$
 ; $\frac{\infty}{\infty}$; $0 \times \infty$ et $\frac{0}{0}$

Ce sont des formes indéterminées ; il faut alors lever l'indétermination.

1.4 . Exemples de calcul de limite avec forme indéterminée :

Exemple 1: $\frac{0}{0}$: fraction rationnelle: limite en un point: simplification

Calculons la limite :
$$\lim_{x\to 2} \frac{x^2-4}{x+2} = \frac{(-2)^2-4}{-2+2} = \frac{4-4}{2-2} = \frac{0}{0}$$
 : **F.I**

Pour lever l'indétermination, on peut simplifier d'abord.

Remarque:

Si on peut écrire l'image d'une fonction f sous la forme f(x) = ax+b+g(x) tel que $\lim_{x\to\infty} g(x)=0$ alors la droite d'équation y=ax+b est une asymptote

oblique à la courbe représentative de f.

Exemple:

Soit la fonction définie par $h(x) = \frac{x^2 + 3x + 4}{x - 3}$

On peut effectuer la division euclidienne du numérateur par le dénominateur :

Donc $3x^2 - 3x + 4 = (x - 3)(3x + 6) + 22$

Et ainsi,
$$h(x) = 3x + 6 + \frac{22}{x - 3}$$

Et puisque $\lim_{x \to +\infty} \frac{22}{x-3} = 0$, on en conclut que la droite d'équation

y=3 x+6 est une asymptote oblique en $+\infty$ et $-\infty$ à la courbe représentative de h.

3.3 . Tangente à la courbe

Soit f une fonction de \mathbb{R} et C_f sa courbe représentative.

 (\mathcal{D}) est la droite tangente à C_f en un point d'abscisse \mathfrak{x}_0

L'équation de (\emptyset) est : $y = f'(x_0).[x-x_0] + f(x_0)$ (À démontrer)

Exemple:

Déterminons l'équation de la tangente en 1 de la fonction $g(x) = \frac{1}{2x-1}$.

On a g'(x) =
$$\frac{-2}{(2 - 1)^2}$$

$$\lim_{x \to -2} \frac{x^2 - 4}{x + 2} = \lim_{x \to -2} \frac{x^2 - 2^2}{x + 2} = \lim_{x \to -2} \frac{(x - 2)(x + 2)}{x + 2} = \lim_{x \to -2} x - 2 = -2 - 2 = -4$$

Exemple 2 : $\frac{0}{0}$: fonction irrationnelle: limite en un point : forme conjuguée.

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x-1}{\sqrt{x-1}} = \frac{1-1}{\sqrt{1-1}} = \frac{0}{0} : \mathbf{F.I}$$

Levons l'indétermination:

Pour
$$x \neq 1$$
: $\frac{x-1}{\sqrt{x-1}} = \frac{x-1}{\sqrt{x-1}} \times \frac{\sqrt{x+1}}{\sqrt{x+1}} = \frac{(x-1)(\sqrt{x+1})}{(x-1)} = \frac{x-1}{\sqrt{x-1}} = \sqrt{x+1}$

Donc $\lim f(x) = \lim \sqrt{x} + 1 = \sqrt{1} + 1 = 2$

Exemple 3: ∞ - ∞ : polynôme : limite à l'infinie : factorisation « forcée »

$$\lim_{x \to -\infty} 3x^2 + 10x - 6 = 3(-\infty)^2 + 10(-\infty) - 6 = +\infty - \infty - 6 = +\infty - \infty : \mathbf{F.I}$$

Pour lever l'indétermination, on peut factoriser par x²

$$\lim_{x \to -\infty} 3x^2 + 10x - 6 = \lim_{x \to -\infty} x^2 \left(3 + \frac{10}{x} - \frac{6}{x^2}\right) = (-\infty)^2 \left(3 + \frac{10}{-\infty} - \frac{6}{(-\infty)^2}\right) = +\infty(3 + 0 - 0)$$

$$= +\infty \times 3 = +\infty$$

À l'infinie, la limite d'un polynôme est la même que la limite du monôme du plus haut degré :

$$\lim_{x \to -\infty} 3x^2 + 10x - 6 = \lim_{x \to -\infty} 3x^2$$

 $\lim_{x \to -\infty} 3x^2 + 10x - 6 = \lim_{x \to -\infty} 3x^2$ **Approfondissement**: Calcule $\lim_{x \to -\infty} \frac{3x^2 - 3x - 2}{2x^2 + 4x}$

Exemple 4: $\infty - \infty$: fonction irrationnelle: limite à l'infinie: forme conjuguée. calculons la limite $\lim \sqrt{x^2+3}-x$

$$\lim_{x \to +\infty} \sqrt{x^2 + 3} - x = \sqrt{(+\infty)^2 + 3} - \infty = \sqrt{(+\infty)} - \infty = \infty - \infty \quad \mathbf{F.I}$$

Utilisons la forme conjuguée

$$\lim_{x \to +\infty} \sqrt{x^2 + 3} - x = \lim_{x \to +\infty} \frac{(\sqrt{x^2 + 3} - x)(\sqrt{x^2 + 3} + x)}{(\sqrt{x^2 + 3} + x)} = \lim_{x \to +\infty} \frac{(x^2 + 3 - x^2)}{\sqrt{x^2 + 3} + x}$$
$$= \lim_{x \to +\infty} \frac{3}{\sqrt{x^2 + 3} + x} = \frac{3}{+\infty} = 0$$

Application: Calcule $\lim_{x \to -\infty} \sqrt{x^2 - 3x} + x$

1.5 . Limite à gauche et limite à droite

	Limite à gauche	Limite à droite
Signification	x se rapproche de x_0 mais est <u>plus petit que</u> x_0	x se rapproche de x_0 mais est <u>plus grand que</u> x_0
Notation :	$\lim_{\substack{x \to x_0 \ x < x_0}} f(x) \text{ou} \lim_{\substack{x \to x_0^-}} f(x)$	$\lim_{x \to x_0} f(x)$ ou $\lim_{x \to x_0^+} f(x)$

Propriété:

f admet un limite en x_0 si $\lim_{x\to x_0^-}f(x)\!=\!\lim_{x\to x_0^+}f(x)$.

1.6. Continuité en un point

Définition : une fonction f est continue en un point de son domaine de définition si et seulement si $\lim_{x\to x^-} f(x) = \lim_{x\to x^-} f(x) = f(a)$

Définition : une fonction f est continue sur une partie I de son domaine de définition si et seulement si elle est continue en tout point de I

2 . Dérivation

2.1. Nombre dérivée en réel

Par définition, le nombre dérivé d'une fonction f en α représente la pente de la courbe représentative de f au voisinage du point d'abscisse α .

On note la dérivée de f en α : $f'(\alpha)$.

$$f'(\alpha) = \lim_{x \to \alpha} \frac{f(x) - f(\alpha)}{x - \alpha}$$

Si cette limite existe et est finie, alors f est dérivable en a sinon f n'est pas dérivable en a.

 $\mathbf{E}\mathbf{x}$: Cherchons la dérivée de f(x) = 3x en 2:

$$f'(2) = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} \frac{3 \cdot x - 3 \times 2}{x - 2} = \lim_{x \to 2} \frac{3(x \neq 2)}{x \neq 2} = \lim_{x \to 2} 3 = 3$$

Ex: La dérivée de $f(x)=x^2$ en 3

$$f'(3) = \lim_{x \to 3} \frac{f(x) - f(3)}{x - 3} = \lim_{x \to 3} \frac{x^2 - 3^2}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x + 3)}{x - 3} = \lim_{x \to 3} x + 3 = 6$$

3.2.3 Limite infinie à l'infinie

Pour déterminer l'allure de la courbe représentative de f à l'infinie $(+\infty)$ et $-\infty$, on doit calculer plusieurs limite.

3.2. Limite infinie et limite à l'infinie

3.2.1 Limite infinie en a : Asymptote verticale

Si : $\lim_{x \to a} f(x) = \pm \infty$, alors la courbe représentative de f admet **une**

asymptote verticale : la droite d'équation x=a

Quand x se rapproche de α , la courbe C_f se rapproche de l'asymptote mais ne la touche jamais.

3.2.2 Limite finie à l'infinie : asymptote horizontale

Si : $\lim_{x \to \infty} f(x) = b$ (où $b \in \mathbb{R}$) , alors la courbe représentative de f admet **une**

asymptote horizontale : la droite d'équation y=b

Remarque:

Les fonctions élémentaires : C^{te} ; $x^n(n \in \mathbb{N})$; \sqrt{x} et $\frac{1}{x}$ ainsi que leurs

compositions et leurs sommes sont continues et dérivables sur leurs domaines de définition.

2.2. Dérivé sur un intervalle et fonction dérivée

Une fonction f est dérivable sur un intervalle I si elle est dérivable en tout point de I.

Si f est dérivable sur un intervalle I alors on peut définir une fonction dérivée de f noté f'.

Fon	ictions	Fonctions dérivées	remarque/exemple
k	$k \in \mathbb{R}$	0	La pente est nulle La dérivée d'une constante est nulle
\mathbf{x}		1	
\mathbf{x}^{n}	$n\in \mathbb{Z}$	$n.x^{n-1}$	$(x^2)' = 2.x^1 = x$
$\frac{1}{x}$		$\frac{-1}{x^2}$	n'est pas dérivable en 0
\sqrt{x}		$\frac{1}{2\sqrt{x}}$	x doit être strictement positif

Dans le cas général, si u et v sont des fonctions de $\mathbb{R},$ on note u' et v' les dérivées de u et v

k.u k ∈ IR	k.u'	$(2x^3)' = 2.(x^3)' = 2.3.x^2 = 6x^2$
(u±v)	u'±v'	La dérivée d'une somme est la somme des dérivées $\mathbf{E}\mathbf{x} : f(x) = 2x^2 - 3x$ $f'(x) = 2.2x - 3 = 4x - 3$
(u.v)	u'.v+u.v'	$f(x)=x\sqrt{x}$ Choisissons: $u=x$ et $v=\sqrt{x}$ on a: $u'=1$ et $v'=\frac{1}{2\sqrt{x}}$

		$f'(x) = 1.\sqrt{x} + x \cdot \frac{1}{2\sqrt{x}} = \sqrt{x} + \frac{x}{2\sqrt{x}}$ $f'(x) = \sqrt{x} + \frac{1}{2}\sqrt{x} = \frac{3}{2}\sqrt{x}$
$\frac{\mathbf{u}}{\mathbf{v}}$	$\frac{\mathbf{u}' \cdot \mathbf{v} - \mathbf{u} \cdot \mathbf{v}'}{\mathbf{v}^2}$	$f(x) = \frac{x}{1+x}$ Choisissons: $u = x$ et $v = 1+x$ $u' = 1 \text{ et } v' = 1$ $f'(x) = \frac{1 \cdot (x+1) - x \cdot 1}{(1+x)^2} = \frac{x+1-x}{(1+x)^2}$ $f'(x) = \frac{1}{(1+x)^2}$
$u \circ v$ ou $f(u)$	v'.u'°v ou u'.f'(u)	$f(x) = \sqrt{x^2 - 1}$ $donc \ f'(x) = \frac{(x^2 - 1)!}{2\sqrt{x^2 - 1}} = \frac{2x}{2\sqrt{x^2 - 1}}$

Remarques:

- Comme pour les limites on définit aussi les dérivées à gauche et dérivées à droite.
- ➤ Une fonction est dérivable en un point si les dérivées à gauche et droite sont égales.
- > Une fonction dérivable en un point est toujours continue en ce point; mais le réciproque n'est pas forcément vrai.

Exemple : Soit la fonction définie par g(x)=|x|

 \triangleright Est-elle continue en 0 ?

$$\lim_{x \to 0^{+}} |x| = |0^{+}| = 0 \text{ et } \lim_{x \to 0^{-}} |x| = |0^{-}| = 0$$

donc $\lim_{x\to 0^-} |x| = \lim_{x\to 0^+} |x| : g$ est continue en 0

 \triangleright Mais est-elle dérivable en 0 ?

On sait que :
$$g(x) = \begin{cases} -x & \text{si} & x < 0 \\ x & \text{si} & x \ge 0 \end{cases}$$

La dérivée à gauche de 0 de g est |g'(x)| = |x|' = (-x)' = -1

La dérivée à droite de 0 de g est : g'(x)=|x|'=(x)'=1

Les deux dérivées ne sont pas égales donc g
 n'est pas dérivable en $0. \,$

3. Étude des fonctions

3.1 . Variations et extremums

Pour déterminer les variations d'une fonction on étudie d'abord le signe de sa dérivée.

- Si la dérivée est positive, la fonction est croissante.
- Si la dérivée est négative, la fonction est décroissante.
- Si la dérivée est nulle, la fonction est constante.

Ex : Étudions les variations de la fonction f définie par $f(x)=x^3-3x+1$. Ici $f'(x)=3.x^2-3$

Étudions le signe de f'(x).

• On résout d'abord $3.x^2-3=0$ et on trouve deux racines: $x_1=1$ et $x_2=-1$.

$$f(-1) = (-1)^3 - 3 \cdot (-1) + 1 = -1 + 3 + 1 = 3$$

$$f(1)=1^3-3.(1)+1=-1$$

La fonction f admet deux extremums :

- Un maximum local: 3
- Un minimum local: -1

Remarque:

- La fonction dérivée s'annule et change de signe sur les extremums.
- Il est possible d'avoir un minimum local plus grand qu'un maximum local !