Probabilidad

Abel Doñate Muñoz

Contents

1	Esp	acios de probabilidad	2
	1.1	Espacio producto	2
	1.2	Borel-Cantelli	2
2	Var	iables aleatorias	3
	2.1	Variable aleatoria	3
	2.2	Esperanza y varianza	3
3	Var	s aleatorias discretas	4
	3.1	Funciones generadoras de probabilidad	4
	3.2	Modelos discretos	4

1 Espacios de probabilidad

Definition (σ -áglebra). Tupla (Ω, \mathcal{A}) con Ω un conjunto (espacio muestral) y $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ tal que

- 1. $\emptyset \in \mathcal{A}$
- 2. $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$
- 3. $\{A_n\}$ colección numerable de $A \Rightarrow \bigcup A_n \in A$

Definition (Espacio de probabilidad). Terna (Ω, A, p) con $p : A \to \mathbb{R}$ tal que

- 1. $p(\emptyset) = 0$, $p(\Omega) = 1$
- 2. $0 \le p(A) \le 1$
- 3. $\{A_n\}$ colección numerable disjunta $\Rightarrow p(\bigcup A_n) = \sum p(A_n)$

Lemma (Desigualdades de Bonferroni).

$$p\left(\bigcup A_i\right) \begin{cases} \leq \sum p(A_i) \\ \geq \sum p(A_i) - \sum p(A_i \cap A_j) \\ \leq \sum p(A_i) - \sum p(A_i \cap A_j) + \sum p(A_i \cap A_j \cap A_k) \end{cases}$$

Definition (Probabilidad condicionada). La probabilidad de A condicionada a B es

$$p(A|B) = \frac{p(A \cap B)}{p(B)} = \frac{p(B|A)p(A)}{p(B)}$$

Theorem (Bayes). Sea $\{A_1, \ldots, A_n\}$ un conjunto de sucesos mutuamente excluyentes y exhaustivos. Entonces si B es otro suceso:

$$p(A_i|B) = \frac{p(B|A_i)p(A_i)}{\sum p(B|A_k)p(A_k)}$$

Definition (Independencia). A y B son independientes si (TFAE)

$$p(A \cap B) = p(A)p(B) \equiv p(A|B) = p(A) \equiv p(B|A) = p(B)$$

1.1 Espacio producto

Definition (Espacio producto). Sean $(\Omega_1, \mathcal{A}_1, p_1)$ y $\Omega_2, \mathcal{A}_2, p_2$ dos espacios de probabilidad, definimos el espacio producto $(\Omega_3, \mathcal{A}_3, p_3)$ tal que

- 1. $\Omega 3 = \Omega_1 \times \Omega_2$
- 2. $\mathcal{A}_3 = \sigma(\mathcal{A}_1 \times \mathcal{A}_2)$
- 3. p_3 cumple $\forall A_1 \times A_2 \in \mathcal{A}_1 \times \mathcal{A}_2 \Rightarrow p_3(A_1 \times A_2) = p_1(A_1)p_2(A_2)$

1.2 Borel-Cantelli

Definition (Límites superior e inferior). Sea $\{A_n\} \in \mathcal{A}$ definimos los límites superior e inferior como

$$\lim \sup A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k \qquad y \qquad \lim \inf A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$$

Proposition. Sea $\{A_n\}$ succession. $p(\lim A_n) = \lim p(A_n) = p(A)$

Theorem (Borel-Cantelli). Sea $\{A_n\}$ una sucesión de eventos

- 1. $\sum_{n>1} p(A_n) < \infty \Rightarrow p(\limsup A_n) = 0$
- 2. Si $\{A_n\}$ independent $y \sum_{n\geq 1} p(A_n) = \infty \Rightarrow p(\limsup A_n) = 1$

$\mathbf{2}$ Variables aleatorias

Variable aleatoria

Definition (Variable aleatoria). Sean $(\Omega_1, \mathcal{A}_1), (\Omega_2, \mathcal{A}_2)$ espacios mesurables. Decimos que $X : \Omega_1 \to \Omega_2$ es una variable aleatoria si

$$X^{-1}(A_2) \in \mathcal{A}_1, \ \forall A_2 \in \mathcal{A}_2$$

En este curso siempre tomaremos $(\Omega_2, \mathcal{A}_2) = (\mathbb{R}, \mathcal{B})$

Ejemplos de variables aleatorias (siendo X, Y variables aleatorias)

- c (función constante)
- I_A (función indicadora)
- $X \pm Y$, aX, XY, |X|, $\max X$, Y, $\min X$, Y
- g(X,Y) con g mesurable

2.2Esperanza y varianza

Definition (Esperanza). Sea X una variable aleatoria y P_x su probabilidad asociada P_x se define la esperanza como

$$E[X] = \int_{\Omega} X dp = \int_{\mathbb{D}} x dP_x$$

Definition (Momento). El momento de orden r de X es $E[X^r]$

Definition (Varianza). $Var[X] = E[(|X - E[X]|)^2] = E[X^2] - E[X]^2$

Definition (Covarianza). Cov[X,Y] = E[(|X - E[X]|)(|Y - E[Y]|)] = E[XY] - E[X]E[Y]

Definition (Desviación típica). $\sigma(X) = \sqrt{Var[X]}$

Algunas propiedades de la esperanza y la varianza

- E[a] = 0
- E[aX + bY] = aE[X] + bE[Y]
- $E[I_A] = p(A)$
- Var[a] = 0
- Var[a + X] = Var[X]
- $Var[aX] = a^2 Var[X]$

Proposition. Designaldades

Theorem (Designaldad de Markov). Sea X > 0 una variable aleatoria $y \in \mathbb{R}^+$. Se cumple

$$p(X \ge a) \le \frac{E[X]}{a}$$

Theorem (Designaldad de Chebyshev). Sea X una variable aleatoria con $E[X] < \infty, Var[X] < \infty$ ∞ , $Var[X] \neq 0, k > 0$

$$p(|X - E[X]| \ge kVar[X]^{\frac{1}{2}}) \le \frac{1}{k^2}$$

3 Variables aleatorias discretas

3.1 Funciones generadoras de probabilidad

Definition (Función generadora). Asociamos a la variable aleatoria X la función generadora

$$G_X(z) = \sum_{n \ge 0} p(X = n)z^n$$

Las funciones generadoras satisfacen las siguientes propiedades

- $G_X(0) = p(X = 0), \qquad G_X(1)q = 1$
- $E[X(X-1)\cdots(X-k+1)] = G^{(k)}(1)$
- $Var(X) = G''(1) + G'(1) G'(1)^2$
- X, Y variables aleatorias independientes $\Rightarrow G_{X+Y} = G_X G_Y$

3.2 Modelos discretos

Modelo	p(X=k)	E[X]	Var[X]	$G_X(z)$
	$\begin{cases} p(X=1) = p \\ p(X=0) = 1 - p \end{cases}$	p	p(1-p)	(1-p)+pz
	$\binom{N}{k} p^i (1-p)^{N-k}$	Np	Np(1-p)	()
Uniforme	1	N+1	$N^2 - 1$	$1 \ z(z^N - 1)$
$\sim U(1,N)$	\overline{N}	2	12	\overline{N} $\overline{z-1}$
Poisson	λ^k	λ	λ	$e^{\lambda(z-1)}$
$\sim Po(\lambda)$	$\frac{\lambda^{\kappa}}{k!}e^{-\lambda}$			e · · ·
Geométrica	$p(1-p)^k - 1$	1	1-p	pz
$\sim Geom(p)$	p(1-p) = 1	\overline{p}	p^2	$\overline{1-(1-p)z}$
Binomial negativa $\sim BinN(r,p)$	$\begin{cases} 0 & \text{si } k < r \\ \binom{k-1}{r-1} p^r (1-p)^{k-r} & \text{si } k \ge r \end{cases}$	$\frac{r}{n}$	$r\frac{1-p}{n^2}$	$\left(\frac{pz}{1-(1-p)z}\right)^r$
Bereit (1, p)	$ (r-1)p (1-p) $ SI $k \ge T$	p	ρ	(1-p)z

Descripciones de cada modelo

- 1. Bernoulli Lanzamiento de moneda con probabilidad p y 1-p en cada cara
- 2. Binomial Número de éxitos haciendo N experimentos independientes $\sim Be(p)$
- 3. Uniforme De 1 a N todas las probabilidades son iguales
- 4. Poisson
- 5. Geométrica Número de experimentos necesarios antes de obtener el primer éxito en Bernoulli.
- 6. Binomial negativa Numero de experimentos necesarios para conseguir r éxitos.