Домашнее задание 1

Группа Б05-203

После условий задач указано количество баллов, которое можно получить за решение. Всего за задание можно получить 31 балл.

Матрично-векторное дифференцирование.

Задача 1. (36.) Найдите градиент и гессиан следующих функций:

$$\overline{\mathbf{a})}$$
 (16.) $f(x) = \frac{\langle a, x \rangle + b}{\langle c, x \rangle + d}$ на множестве $Q = \{x \in \mathbb{R}^d : \langle c, x \rangle + d > 0\}$.

b) (16.)
$$f(x) = \sqrt{1 - \|x\|^2}$$
 на множестве $B_1(0) = \{x \in \mathbb{R}^d : \|x\| \le 1\}$.

с) (16.) $f(X) = (1-y^\top X^{-1}y)^{1/2}$ на множестве неотрицательно определенных матриц \mathbb{S}^n_+ .

Выпуклые множества.

Задача 2. (26.) Дана положительно определенная матрица $A \in \mathbb{S}^n_{++}$. Покажите, что эллипсоид $Q = \left\{x \in \mathbb{R}^d : \left\langle (x-x_0), A^{-1}(x-x_0) \right\rangle \leq 1 \right\}$ можно эквивалентно задать в виде образа шара $B_1(0) = \left\{x \in \mathbb{R}^d : \|x\| \leq 1 \right\}$ при аффинном отображении $h(x) = A^{1/2}x + x_0$. Степень матрицы 1/2 определяется так: рассмотрим разложение $A = U\Lambda U^{\top}$, где U ортогональная матрица, $\Lambda = \operatorname{diag}\left(\lambda_1, \ldots, \lambda_d\right)$ - диагональная с собственными числами на диагонали. Тогда $A^{1/2} = U\Lambda^{1/2}U^{\top}$, где $\Lambda^{1/2} = \operatorname{diag}\left(\lambda_1^{1/2}, \ldots, \lambda_d^{1/2}\right)$. Покажите, что эллипсоид — выпуклое множество.

Задача 3. (46.) Докажите выпуклость следующих множеств.

а) (16.) $Q = \{x \in \mathbb{R}^d : \langle x, Ax \rangle + \langle b, x \rangle + c \leq 0\}$, где $A \in \mathbb{S}^n_+$. Обратите внимание: Q не обязательно является эллипсоидом.

b) (36.)
$$Q = \{x \in \mathbb{R}^d : \langle x, Ax \rangle + \langle b, x \rangle + c \leq 0\} \cap \{x \in \mathbb{R}^d : \langle g, x \rangle + h = 0, \ g \neq 0\},$$
 где $A + \theta g g^\top \in \mathbb{S}_+^n$ для некоторого $\theta \in \mathbb{R}$.

Задача 4. (26.) Пусть ξ – дискретная случайная величина, принимающая значения $a_1,\dots,a_d\in\mathbb{R}$ с вероятностями p_1,\dots,p_d . Будем рассматривать $p=(p_1\dots p_d)^{\top}$ как переменную, лежащую на единичном симплексе $Q=\left\{p\in\mathbb{R}^d:\sum_{i=1}^d p_i=1,\; p_i\geq 0\;\forall i=1,\dots,d\right\}$. Зафиксируем ξ . Для каждой из данных функций (как функций от p) определите, является ли сама функция выпуклой и являются ли множества $\{p\in P: f(p)\leq \alpha\}$, $\{p\in P: f(p)\geq \alpha\}$ выпуклыми.

- a) (0.56.) $f(p) = \mathbb{E}\xi.$
- b) (0.56.) $f(p) = \mathbb{E}\xi^2$.
- c) (0.56.) $f(p) = V\xi.$

d) (0.56.) $f(p) = \text{quartile}_{\gamma}(\xi) = \inf \{ q : \mathbb{P}(\xi < q) \ge \gamma \}.$

Опорные гиперплоскости.

Задача 5. (36.) Выпишите, какой вид имеет опорная гиперплоскость в каждой точке границы следующих множеств.

- a) (16.) $Q = \{x \in \mathbb{R}^2 : x_1 x_2 \ge 1\}.$
- b) (16.) $Q = B_1^1(0) = \{x \in \mathbb{R}^d : ||x||_1 \le 1\}.$ c) (16.) $Q = B_1^{\infty}(0) = \{x \in \mathbb{R}^d : ||x||_{\infty} \le 1\}.$

Задача 6. (26.) Пусть $Q \subseteq \mathbb{R}^d$ – выпуклое множество. Рассмотрим точки x_1, \ldots, x_n , принадлежащие границе Q. Пусть опорные гиперплоскости в данных точках задаются условиями $\langle a_i, x - x_i \rangle = 0$. Определим

$$Q_{inner} = \operatorname{conv}(x_1, \dots, x_n), \quad Q_{outer} = \left\{ x \in \mathbb{R}^d : \langle a_i, x - x_i \rangle \le 0, \ i = 1, \dots, n \right\}.$$

Покажите, что $Q_{inner} \subseteq Q \subseteq Q_{outer}$. Приведите примеры, когда левое/правое включение включение обращается в равенство.

Конусы.

Задача 7. (36.) Покажите, что следующие множества являются конусами и постройте соответствующие двойственные конусы.

- а) (16.) $K = \{x \in \mathbb{R}^2 : -x_1/2 \le x_2 \le x_1/3\}$. b) (26.) $K = \{x \in \mathbb{R}^d : x_1 \ge x_2 \ge \dots \ge x_d \ge 0\}$. Указание: используйте соотношение

$$\sum_{i=1}^{d} x_i y_i = (x_1 - x_2) y_1 + (x_2 - x_3) (y_1 + y_2) + \dots + (x_{n-1} - x_n) (y_1 + \dots + y_{n-1}) + x_n (y_1 + \dots + y_n).$$

Выпуклые функции.

Задача 8. (16.) Пусть $f(x):Q\to R$ – всюду положительная на Qвогнутая функция. Покажите, что $\ln f(x)$ является вогнутой функцией на Q, 1/f(x) – выпуклой на Q.

Задача 9. (26.) Линии уровня некоторой функции $f(x):\mathbb{R}^3 o\mathbb{R}$ $\frac{\text{Биди и } v}{\text{(т.е. }}$ множества вида $\{x:f(x)=\alpha\}$) имеют вид $\{x:x_1^2+x_2^2+x_3^2=1\}$, $\{x:x_1^2+x_2^2+x_3^2=2\}$, $\{x:x_1^2+x_2^2+x_3^2=3\}$ для некоторых $\alpha_1,\alpha_2,\alpha_3$. Обязательно ли f(x) является выпуклой функцией?

Задача 10. (16.) Покажите, что дивергенция Кульбака-Лейблера

$$g(x,y) = \sum_{i=1}^{d} \left(x_i \ln \frac{x_i}{y_i} - x_i + y_i \right),$$

определенная при $x,y \in \mathbb{R}^n_{++}$, является выпуклой функцией относительно (x,y).

Задача 11. (26.) Покажите, что следующие функции являются выпуклыми.

 \overline{a}) (16.) $f(x) = \max_{i=1,...,k} ||A_i x - b_i||$, где $A_i \in \mathbb{R}^{n \times d}, b_i \in \mathbb{R}^n$, $a || \cdot ||$ некоторая норма на \mathbb{R}^n .

b) (16.) $f(x) = \sum_{i=1}^r |x|_{[i]}$, где |x| – поточечное взятие моделя от компонент x, а $|x|_{[i]}$ является i-ой по убыванию компонентой вектора |x|.

Сопряженные функции.

Задача 12. (6б.) Найдите сопряженную функцию для f.

$$\overline{a)} (16.) f(X) = \ln \det(X^{-1}) : \mathbb{S}_{++}^n \to \mathbb{R}.$$

$$\frac{\text{Sадача 12.}}{\text{a) (16.)}} \frac{f(X)}{f(X)} = \ln \det(X^{-1}) : \mathbb{S}^n_{++} \to \mathbb{R}.$$
b) (16.) $f(x) = I_S(x) = \begin{cases} 0, & x \in S \\ +\infty, & x \notin S \end{cases}$ – индикаторная функция мн-ва S .

- c) (16.) $f(x) = \max_{i=1,\dots,d} x_i$.

- d) (16.) $f(x) = \max_{i=1,\dots,d} a_i x_i t_i$ e) (16.) $f(x) = \max_{i=1,\dots,d} (a_i x_i + b_i) : \mathbb{R} \to \mathbb{R}$. e) (16.) $f(x,t) = -\ln(t^2 \|x\|^2) : \{(x,t) \in \mathbb{R}^d \times \mathbb{R}, \|x\| < t\} \to \mathbb{R}$. f) (16.) $f(x) = \sum_{i=1}^d x_i \ln\left(\frac{x_i}{\sum_{i=1}^d x_i}\right) : \mathbb{R}_{++}^n \to \mathbb{R}$.