Digital Frequency Spectrum Analysis Based on DFT

Spectrum Analysis

- Acquire the physical characteristics of signals
- Widely used in signal processing and analysis
- Light spectrum (different colors)
- Frequency spectrum
 - ☐ Based on Fourier transform
 - □ Strength of each frequency component in the signal

Diagram block of spectrum analysis

- Interested in frequency band $[-\Omega_H, \Omega_H]$
 - \square Set up sampling frequency $\Omega_s \ge 2\Omega_H$
 - \square Anti-aliasing filter, $\Omega_s/2$
 - \square ADC, sampling interval $T_s = 2\pi/\Omega_s$,
 - \square Windowing, $x_w[n] = x[n]w[n]$
 - \square DFT, $X_w[k] = DFT\{x_w[n]\}$

Key steps in spectrum analysis

- For $x_a(t)$ ←CTFT→ $X_a(j\Omega)$
- After sampling, $x[n] \leftarrow DTFT \rightarrow X(e^{j\omega})$
 - □ Following Nyquist rule, $X(e^{jω})$ and $X_a(jΩ)$ contain the same information
- Windowing, i.e., fetch finite (M) samples of $x[n], x_w[n] = x[n]w[n] \leftarrow DTFT \rightarrow X_w(e^{j\omega})$ □ Usually, $X_w(e^{j\omega}) \neq X(e^{j\omega})$
- N-point DFT, get discrete values of $X_w(e^{j\omega})$ with sampling interval $2\pi/N$

■ Time domain multiplication, frequency domain convolution

$$X_{w}(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) W(e^{j(\omega-\theta)}) e^{j\theta} d\theta$$

- □ Computational capability constraint
- ☐ Memory storage constraint
- □ Real time requirement

.

How windowing affects the analysis?

Rectangular Window

$$w_R[n] = \begin{cases} 1, & 0 \le n \le M - 1 \\ 0, & \text{otherwise} \end{cases}$$

$$W_R(e^{j\omega}) = \sum_{n=0}^{M-1} e^{-j\omega n} = \frac{\sin(M\omega/2)}{\sin(\omega/2)} e^{-j\frac{(M-1)\omega}{2}}$$

Main lobe width: $4\pi/M$, side lobe

Zero points: $2\pi m/M$, $m = \pm 1, \pm 2, ...$

How windowing affects the analysis?

- Sinusoidal sequence $x[n] = \cos(\omega_0 n)$
 - ☐ Spectrum: two impulses

$$\cos(\omega_0 n) \xleftarrow{\text{DTFT}} \pi \delta(\omega + \omega_0) + \pi \delta(\omega - \omega_0), \quad |\omega| \le \pi$$

☐ After windowing

$$X_{w}(e^{j\omega}) = \pi W_{R}\left(e^{j(\omega+\omega_{0})}\right) + \pi W_{R}\left(e^{j(\omega-\omega_{0})}\right), \quad |\omega| \leq \pi$$

■ Multiple frequency components, resolution?

■ Sinusoidal sequence: $x[n] = \cos\left(\frac{\pi n}{4}\right) + \cos\left(\frac{5\pi n}{16}\right)$

- Different windows have different mainlobe width and different side lobe levels (find the details in the textbook)
- Side lobe may conceal some "weak" freq. components

表 11.9-1 常用窗函数及其参数 (主瓣峰值归一化,长度为 M)↓

窗函数₽	主瓣宽度₽	3dB 带宽₽	最大旁瓣电平₽
矩形(Rectangular)窗↩	4 π/ M ₽	0.89×2π/M ₀	-13 dB ₽
汉宁 (Hann) 窗₽	8π/ M ⇔	1.44×2π/ <i>Μ</i> ο	-31 d B₽
汉明 (Hamming) 窗₽	8π/ <i>M</i> ↔	1.30×2π/M ₂	-41dB₽
布莱克曼 (Blackman) 窗♪	12π/ <i>M</i> ↔	1.68×2π/M ₂	-57 dB ₽

Consider the signal: $x[n] = \cos\left(\frac{\pi n}{4}\right) + 0.05\cos\left(\frac{5\pi n}{16}\right)$

- N-point DFT means sampling $X_w(e^{j\omega})$ with the interval of $2\pi/N$
- \blacksquare The larger N, the better performance?
- Consider the signal:

$$x_w[n] = \cos\left(\frac{5\pi n}{13}\right) w_R[n]$$

 $w_R[n]$, 32-point rectangular window

Perform 26-point, 32-point, 128-poing DFT

- 26-point DFT has the best result, why?
 - ☐ Two clean spectrum lines
 - □ Corresponding to the actual frequency
- 32-point and 128-point DFT
 - ☐ Spectrum leakage
 - Many nonzero spectrum lines
 - ☐ Picket fence effect
 - Cannot sample the mainlobe peak

- **Explanation I**: DFT v.s. DTFT
 - □ For 26-point DFT, just sample the mainlobe peak and zeros of $X_{w-26}(e^{j\omega})$

$$X_{w-26}(e^{j\omega}) = \pi W_{R-26}\left(e^{j(\omega+5\pi/13)}\right) + \pi W_{R-26}\left(e^{j(\omega-5\pi/13)}\right)$$

$$W_{R-26}(e^{j\omega}) = \frac{\sin(13\omega)}{\sin(\omega/2)}e^{-j25\omega/2}$$

How DFT length affects the analysis?

- **Explanation I**: DFT v.s. DTFT
 - □ For 32/128-point DFT, cannot sample the main lobe peak and zeros

$$X_{w-32}(e^{j\omega}) = \pi W_{R-32}\left(e^{j(\omega+5\pi/13)}\right) + \pi W_{R-32}\left(e^{j(\omega-5\pi/13)}\right)$$

$$W_{R-32}(e^{j\omega}) = \frac{\sin(16\omega)}{\sin(\omega/2)} e^{-j31\omega/2}$$

 \square Increasing N alleviates Picket fence effect

How DFT length affects the analysis?

- **Explanation II**: DFT v.s. DFS
 - \square N-point DFT actually calculates the DFS of another periodical sequence with the period of N

$$\tilde{x}[n] = x[n], \quad n = 0, 1, ..., N-1$$

$$\Box \text{For } x[n] = \cos\left(\frac{5\pi n}{13}\right)$$

the period is actually 26.

- **Explanation II**: DFT v.s. DFS
 - ☐ For 26-point DFT

$$x_{w-26}[n]$$

$$\tilde{x}_{p-26}[n]$$
 ...

$$\tilde{x}_{p-26}[n] = x[n] = \cos(5\pi n/13)$$

- **Explanation II**: DFT v.s. DFS
 - □ For 32/128-point DFT

Project

Consider the following signal

$$x(t) = 10\sin\left(2\pi \times 64t\right) + \sin\left(2\pi \times 250t\right) + 20\sin\left(2\pi \times 256t\right)$$
$$+ 3\sin\left(2\pi \times 260t\right) + 10\sin\left(2\pi \times 512t\right)$$

- Design the digital spectrum analysis scheme
 - □ Determine the sampling rate
 - ☐ Choose the window (type and length)
 - ☐ Design the length of DFT
- Use as less data as possible
- Complexity issue