

Abordagem de Computação Heterogénea para Reamostragem e Redimensinamento de Vídeo de Alto Desempenho

Autor: José Pedro Soares João Pereira

Orientador: Jorge M. G. Barbosa Supervisor: Alexandre U. Silva

Introdução

Contextualização do trabalho e seus objetivos

Contexto

- Crescente popularidade de elevadas resoluções de vídeo
- Vídeos de elevadas resoluções são constituídos por um grande número de pixeis
- Operações de pós-produção de vídeo operam ao nível de cada pixel das suas frames
- Sistemas devem ser reestruturados de modo a considerarem a escalabilidade de processamento da magnitude de dados

Fig. 1: Número de pixeis por frame de um vídeo em função da sua resolução

Computação Heterogénea

- Abordagem para execução de operações através de diferentes unidades de processamento
 - CPU + CPU, na mesma máquina ou em máquinas diferentes de uma rede
 - CPU + FPGA, circuito integrado para processamento paralelo de alto desempenho
 - CPU + GPU, unidade de processamento para renderização de componentes gráficos
- Desenvolvimento da tecnologia das unidades de processamento gráfico permitem a sua utilização para um processamento mais genérico de soluções

Fig. 2: Arquitetura interna de um CPU e GPU

Objetivos

- Tirar proveito do hardware existente no produto fornecido pelo proponente do tema desta dissertação através de uma abordagem de computação heterogénea, CPU + GPU
 - Do hardware existente no produto mxfSpeedrail da MOG Technologies S.A.
- Reduzir o tempo de uma das fases de pós-produção em comparação com a solução atual do produto
 - Redução do processo de reamostragem de vídeo em comparação com a ferramenta FFmpeg
- Implementação de uma solução de processamento de vídeo de elevadas resoluções em tempo real

Soluções Atuais

- Ferramentas dependentes de licenciamento de produção de vídeo
 - Como Adobe Premiere, Sony Vegas, MainConcept e Elecard
- Ferramentas *open source* de processamento de vídeo e imagens
 - Como FFmpeg, OpenCV e ImageMagick
 - A ferramenta OpenCV n\u00e3o suporta nativamente o modelo de cor YUV
 - A ferramenta ImageMagick baseia-se em FFmpeg
 - A ferramenta *FFmpeg* é bastante comum na área de multimédia, uitilizada por empresas como:
 - VLC Media Player, Blender, Youtube, Google Chrome, Mozilla Firefox, etc.

Solução Atual - FFmpeg

- Executa os processos de pós-produção de vídeo de forma single-thread
- Aceleração de processamento através de operações vetorizadas
 - Com SSE, AVX e AVX2
- Suporte a aceleração gráfica dos processos de pós-produção através do encoder de hardware da NVidia – NVENC
 - Solução baseada em hardware
 - A solução proposta é, puramente, digital

Fig. 3: Utilização do CPU com a ferramenta *FFmpeg* no processamento de vídeo sem compressão

Reamostragem e Redimensionamento

Descrição do processo de pós-produção de vídeo

Modelo de Cor YUV

- Modelo de cor frequentemente utilizado para representar vídeo digital
- Modelo aditivo de cor
- Constituído por três diferentes componentes de cor:
 - Luma, ou Y, representa o brilho da imagem
 - Crominâncias U e V representam, respetivamente, os valores de cor de uma imagem segundo uma projeção de cor azul e vermelha

Fig. 4: Modelo de cor YUV e as suas componentes

Modelo de Cor YUV - Subamostragem

- Este modelo tira partido da fraca sensibilidade da visão humana a alterações de crominâncias através da redução do número de amostras de cor
- O processo de redução do número de valores das componentes de crominância designa-se de subamostragem de crominâncias
- A subamostragem permite uma redução do tamanho de representação das frames de um vídeo

Fig. 5: Subamostragem de crominâncias na representação das componentes de cor de uma frame de um vídeo

Modelo de Cor YUV – Formatos de Pixeis

- A representação das components de cor das frames segundo o modelo de cor YUV seguem um dos seguintes formatos:
 - Planar separação das componentes por planos
 - Entrelaçado valores de componentes intercalados
 - Semi-planar valores intercalados de componentes representadas separadamente

Fig. 6: Formatos de pixeis do modelo de cor YUV, respetivamente YUV420p, UYVY e NV12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 U0 V0 V0 V0 V0 V0 V0 V0 V0 U2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2

Reamostragem e Redimensionamento

- A reamostragem e redimensionamento de uma imagem é o processo de alteração das suas dimensões
- O processo é realizado através de uma operação de convolução que reconstrói a imagem reamostrada a partir da original através de diferentes filtros
- Os diferentes filtros balanceiam a qualidade dos resultados da reamostragem e redimensionamento e o tempo de execução do processo

$$k_{nn}(x) = \begin{cases} 1 & |x| < 0.5 \\ 0 & sen\tilde{a}o \end{cases}$$

$$k_{linear}(x) = \begin{cases} 1 - |x| & |x| < 1 \\ 0 & senão \end{cases}$$

$$k_{spline}(x) = \begin{cases} 1.4 \times |x|^3 - 2.4 \times |x|^2 + 1 & |x| < 1 \\ -0.6 \times |x|^3 + 3 \times |x|^2 - 4.8 \times |x| + 2.4 & 1 \le |x| < 2 \\ 0 & senão \end{cases}$$

Fig. 7: Filtros de reconstrução utilizados na operação de convolução: *Nearest Neighbor*, Linear e por *Spline*

Reamostragem e Redimensionamento

Fig. 8: Diferença de qualidade dos resultados de reamostragem obtidos por diferentes filtros de reconstrução

Solução Proposta

Exploração da solução implementada neste trabalho

Solução Proposta

- Devido ao grande número de combinações de formatos de pixeis de entrada e saída, a solução proposta foi normalizada em termos de lógica
- O processo de reamostragem está dividido em duas operações:
 - A operação de conversão de formato de pixeis
 - A operação de reamostragem

Conversão de Formato de Pixeis

- Operação executada, exclusivamente, pelas capacidades de processamento do CPU
- Solução paralelizada através da ferramenta OpenMP para a utilização total dos núcleos de processamento do CPU
- Divisão da imagem processada em regiões verticais para tirar partido do sistema de cache da memória
- Ao utilizar dados presentes no sistema cache existe uma redução de latência a respostas de acessos a memória

Fig. 9: Divisão de trabalho pelos diferentes núcleos de processamento do CPU

Reamostragem e Redimensionamento

- Operação executada, exclusivamente, pelas capacidades de processamento das unidades de processamento gráfico
- Solução implementada através da plataforma de desenvolvimento da NVidia CUDA
- Para promover o máximo de atividade da placa gráfica as operações de transferência de dados entre a memória da máquina e do GPU é executada em simultâneo com o processo de reamostragem
- Utilização do nível de memória de textura devido aos acessos strided a memória

Fig. 10: Escalonamento das operações de transferências de dados e o processo de reamostragem e redimensionamento

Fig. 11: Diagrama representativo de acessos coalescidos e strided a memória

Erros de Precisão de Dados

- De modo a utilizar eficientemente as capacidades computacionais das unidades de processamento gráfico é necessário a utilização do tipo de dados float do standard IEEE 754
- As placas gráficas têm um maior número de núcleos de processamento gráfico que suportam operações com precisão singular do que dupla
- Os erros de cor associados ao tipo de dados float não têm um impato considerável nas imagens reamostradas

	float	double	
Nearest Neighbor	1,52 x 10 ⁻⁴	2,83 x 10 ⁻¹³	
Linear	2,02 x 10 ⁻⁴	3,77 x 10 ⁻¹³	
Spline	1,408	6,07 x 10 ⁻⁵	

Fig. 12: Valor do erro propagado a um pixel da imagem reamostrada

Resultados

Apresentação dos resultados obtidos pela solução proposta

Metodologia de Teste

- A solução proposta foi comparada com a solução atual baseada em FFmpeg
 - O processo foi analisado pelas diferentes operações de conversão de formato de pixeis e reamostragem e redimensionamento de imagens
- Foi utilizado o filme Big Buck Bunny na resolução Full High Definition com diferentes formatos de pixeis

Fig. 13: Frame do vídeo Big Buck Bunny em Full High Definition

Conversão de Formato de Pixeis

- Foram utilizados dois modelos de processadores com diferentes caraterísticas
- Realizaram-se conversões de formatos de pixeis entre os formatos: UYVY, YUV422p, YUV420p e NV12
- Valores de speed up da solução proposta em relação à mesma operação executada com a ferramenta FFmpeg são de:
 - 2,56 para o processador M1 (com maior frequência de relógio)
 - 2,23 para o processador M2

Fig. 14: Tempo de execução da conversão de formato de pixeis da solução proposta e da solução atual com diferentes processadores

Reamostragem e Redimensionamento

- Testes realizados com dois modelos de unidades de processamento gráficos presentes no produto da MOG Technologies com caraterísticas diferentes: o modelo NVidia Quadro P600 e P2000
- Processo realizado com o modelo de processador M1 pelo melhor desempenho de execução que demonstrou na operação de conversão de formato de pixeis
- O processo de reamostragem envolve duas operações de formatos de pixeis e três operações de reamostragem, por cada uma das componentes de cor
- Os testes realizados consideram o processo de reamostragem e redimensionamento de um vídeo Full High Definition para diferentes resoluções, a partir de diferentes formatos de pixeis e filtros de reconstrução utilizados

Fig. 15: Tempos de execução do processo de reamostragem com os filtros de reconstrução: *Nearest Neighbor*, Linear e por *Spline*

Reamostragem e Redimensionamento

- Existe um maior ganho de desempenho quando o formato de pixel de saída é do tipo não planar
- A implementação da ferramenta FFmpeg contém operações adicionais para separar os valores de componentes de cor em formatos com componentes entrelaçadas
- Valor de speed up da solução proposta em relação à mesma operação executada com a ferramenta FFmpeg é de 2,47

	Planar	Não Planar		
Nearest Neighbor	1,72	2,23		
Linear	1,95	3,07		
Spline	1,84	3,99		

Fig. 16: Valor de speed up da solução proposta relativamente ao FFmpeg

Conclusão

Satisfação dos objetivos iniciais

Conclusão - Objetivos

- O hardware existente nos produtos do proponente é totalmente utilizado pela solução proposta devido à abordagem heterogénea que alia as capacidades do processador e da placa gráfica da máquina
- A solução proposta reduz efetivamente o tempo de execução do processo de reamostragem e redimensionamento de vídeo relativamente à solução atual do produto
- As otimizações implementadas permitem o processamento em tempo real de vídeos de elevadas resoluções

	Full High Definition			4K		
	NN	Linear	Spline	NN	Linear	Spline
FFmpeg	217	176	102	42	36	20
Solução	476	403	350	110	93	70

Fig. 17: Valor de frames processadas por segundo de um vídeo

Trabalho Futuro

- Implementar um suporte mais abrangente de formatos de pixeis e filtros de reconstrução
- Integrar a solução proposta no produto fornecido pelo proponente do tema desta dissertação, a empresa MOG Technologies
- Escalar a solução proposta a um sistema distribuído de processamento utilizando várias máquinas de uma rede

Abordagem de Computação Heterogénea para Reamostragem e Redimensinamento de Vídeo de Alto Desempenho

Autor: José Pedro Soares João Pereira

Orientador: Jorge M. G. Barbosa Supervisor: Alexandre U. Silva