NP, NPC, NPH

Dominik Lau

21 grudnia 2022

1 NP

1.1 Definicja

Decyzyjny problem $\Pi \in NP \iff$ jest rozwiązywalny w czasie wielomianowym przy zastosowaniu idei wyroczni weryfikowalne w czasie wielomianowym.

Decyzyjny problem $\Pi \in P \iff jest rozwiązywalny w czasie wielomianowym.$

Decyzyjny problem $\Pi \in \text{NPI} \iff \Pi \in \text{NP - P (NP-intermediate)}$. Problemy, dla których nie udowodniono, że są ani P ani NPC.

Uwaga $\Pi \in P \to \Pi \in NP$

1.2 Algorytmy niedeterministyczne

Algorytm wykonywany na niedeterministycznej maszynie Turinga, definiujemy działanie wyboru O(1) zwracające dobry wynik dla zbioru danych.

1.3 Przykładowy problem NPI

Izomorfizm grafu

1.4 α -redukcja

 $\Pi_1 \alpha \Pi_2 \iff \text{mamy funkcję } T(x)$, która zachowuje problem i zmienia dane wejściowe Π_1 do Π_2 .

Istotne jest, że $tr(\Pi_1) \leq tr(\Pi_2)$, gdzie tr - trudność problemu.

2 NPC

2.1 Definicja

Decyzyjny problem $\Pi \in \text{NPC} \iff \Pi \in NP$ i $\forall_{\Pi_1 \in NP} \Pi_1 \alpha \Pi$. Czyli jest to problem przynajmniej tak samo trudny jak wszystkie inne problemy w NP.

2.2 3SAT i 3CNF

3CNF to formuła logiczna składająca się z iloczynu klauzul, w których występują po trzy literały. np. $\phi = (x_1 + x_2 + x_3)(\overline{x}_1 + x_4 + x_5)$

3SAT to problem o pytaniu: Czy podana formuła ϕ 3CNF jest spełnialna tj. czy dla pewnego wartościowania zmiennych ϕ , $\phi=1$. Jest to jedyny problem NPC, dla którego udowodniono bezpośrednio, że jest NPC (Cook,1971). Na chłopski rozum dlaczego tak jest: każdy algorytm można sprowadzić do układu funkcji logicznych (np. układu bramek logicznych).

2.3 Przykładowe problemy NPC

Pokrycie wierzchołkowe

3-wymiarowe skojarzenie

2-podział

Suma podzbioru

Genus grafu

3 NPH