PadhAl: 6 Jars of Sigmoid Neuron

One Fourth Labs

More intuitions about Taylor Series

Can we get the answer from some basic mathematics?

- 1. The real aim is:
 - a. $w \Rightarrow w + \eta \Delta w$
 - b. $b \Rightarrow b + \eta \Delta b$
 - c. Loss(w) > Loss(w + $\eta \Delta w$)
 - d. Loss(b) > Loss(b + $\eta \Delta b$)
 - e. Loss(w, b) > Loss(w + $\eta \Delta w$, b + $\eta \Delta b$)
 - f. $Loss(\theta) > Loss(\theta + \eta \Delta \theta)$
- (where $\theta = [w, b]$)
- 2. Vectorized Taylor Series: $L(\theta + \eta u) = L(\theta) + \eta * u^T \nabla_{\theta} L(\theta) + \frac{\eta^2}{2!} * u^T \nabla^2 L(\theta) u + \frac{\eta^3}{3!} * \dots$
- 3. Where, $u = \Delta \theta$
- 4. Here, we know that in practice, η is very small ie (0.001) etc
- 5. So η^2 , η^3 ... all end up being negligible, so remove those corresponding terms
- 6. New Vectorized Taylor Series: $L(\theta + \eta u) \approx L(\theta) + \eta * u^T \nabla_{\theta} L(\theta)$
 - a. Here, ∇_{θ} refers to Gradient w.r.t θ and it consists of the partial derivatives of L(θ) w.r.t w and b, stacked up into a vector
 - b. $L(\theta + \eta u) \in \mathbb{R}$
 - c. $L(\theta) \in \mathbb{R}$
 - d. $\eta \in \mathbb{R} \frac{\partial Loss}{\partial w} \frac{\partial Loss}{\partial b}$
 - e. $u^{\mathsf{T}}(\nabla_{\theta} L(\theta)) = \mathsf{Dot}$ product of $\Delta \theta$ transposed and the partial derivative vector $\nabla_{\theta} (\in \mathbb{R})$

