

K-Means

Clustering

Machine Learning types

Unsupervised Learning usecases

- Dimensionality Reduction ⇒ Compress datasets
- Clustering ⇒ Divide data into meaningful groups

Supervised vs Unsupervised

VS

X 1	X2	Y
х1	х2	V1
		\.\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
xn	xn	yn
		/

Supervised vs Unsupervised

Supervised classification

Unsupervised Clustering

K-Means

K-Means Algorithm

The **KMeans** algorithm clusters data by trying to **separate samples in n groups** of equal variance, minimizing a criterion known as the **inertia or within-cluster sum-of-squares**

Source: Sklearn

K-Means Algorithm

$$\text{WCSS} = \sum_{i=0}^n \min_{\mu_j \in C} (||x_i - \mu_j||^2)$$

C = clusters

 μ = mean within a given cluster

x = data point

Step 1 - Initialize K clusters

$$K = 3$$

Step 2 - Calculate centroïds

Step 3 - Assign data points to the closest centroid

Step 2 - Calculate centroids

Step 3 - Assign data points to the closest centroid

Step 2 - Calculate centroids

Step 3 - Assign data points to the closest centroid

Step 4 - Get our K clusters

How to get the optimal number K?

Two methods

- Elbow ⇒ Check if data points within a cluster are close from their centroid
- Silhouette ⇒ Check if clusters are far from each other

€ Elbow

Elbow - WCSS with 1 cluster

Elbow - WCSS with 3 clusters

Elbow - WCSS with 4 clusters

Elbow - WCSS with 4 clusters

Silhouette

$$\frac{b^i - a^i}{max(a^i, b^i)}$$

Where

- a → average distance from all data points in the same cluster
- b → average distance from all data points in the closest cluster

Silhouette

- Close to 0 ⇒ Clusters are close from each other
- Close to 1 ⇒ Clusters are far from each other

Thanks!

See you in the next course

