

Aufgabensammlung

Logarithmus

Legende

Kapitel	Inhalt	AHS	BHS/BRP
Grund-	Hier sind alle Typ1 Aufgaben	Diese Aufgaben sind	Diese Aufgaben sind nicht
kompetenzen	der AHS aus dem	natürlich zwingend	verpflichtend, aber können
	Aufgabenpool bzw. Matura	notwendig, wenn man in	sehr gut beim Üben
	zum Thema zu finden.	diesem Thema bestehen	unterstützen und gerade das
		möchte.	theoretische Wissen festigen.
Rookie Level	Einfache Textaufgaben aus	Textaufgaben für den	Diese Aufgaben sind natürlich
	dem BHS/BRP Aufgabenpool	Einstieg zu den Typ 2	zwingend notwendig. Sie
	bzw. Matura.	Aufgaben mit reduziertem	sollten auf jeden Fall
		Kontext.	verstanden werden, wenn
			man positiv sein möchte.
Pro Level	Mittelschwere Textaufgaben	Textaufgaben auf dem	Wenn man einen Großteil
	aus dem BHS/BRP	Niveau der Typ 2 Aufgaben	dieser Aufgaben verstanden
	Aufgabenpool bzw. Matura	mit reduziertem Kontext.	hat, stehen die Chancen gut,
	und Typ2 Aufgaben mit		positiv zu sein.
	reduziertem Kontext aus den		
	AHS-Reifeprüfungen.		
All Star Level	Schwere Textaufgaben aus	Textaufgaben auf dem	Sofern das Thema nicht
	dem BHS/BRP Aufgabenpool	Niveau von Typ 2 Aufgaben.	Clusterspezifisch ist (z.B.
	bzw. Matura und Typ2		Finanzmathematik für
	Aufgaben aus den AHS-		HAK/HUM) sind diese
	Reifeprüfungen.		Aufgaben eher nur für HTL-
			SchülerInnen relevant oder
			wenn man auf eine sehr gute
			Note hinarbeitet.
Kompensations-	Ausgewählte Aufgaben aus	Zusätzliches Übungsmaterial	Zusätzliches Übungsmaterial
prüfungsaufgaben	Kompensationsprüfungen, die	auf dem Niveau einer Typ 2	auf dem Niveau einer
	so vielleicht noch nicht so	Aufgabe mit reduziertem	mittelschweren Teil A
	häufig oder noch gar nicht im	Kontext.	Aufgabe.
	Aufgabenpool bzw. bei der		
	Matura vorgekommen sind.		

Zu allen Aufgaben, die in diesem Dokument vorkommen, gibt es auf www.mathago.at die passenden Videos, oft auch mit Technologieeinsatz (GeoGebra, Casio Classpad, TI Nspire und TI 82/84). Alle Aufgaben stammen aus offiziellen Dokumenten des BMBWF. Mathago ist lediglich für die Zusammenstellung der Aufgaben verantwortlich, nicht jedoch für den Inhalt dieser. Sollten Fehler in diesem Dokument gefunden werden, bitte um eine Nachricht über WhatsApp an 0660/6284246 oder auf Instagram @mathago.at

Logarithmusgesetze Stand: 16.03.2024

Logarithmus

Rookie Level	3
Bevoelkerungswachstum und -abnahme * (A_152)	3
Joghurt (A_138)	3
Sternbild Grosser Wagen (1) * (B_014)	3
Sonnenaufgang* (A_284)	3
Pro Level	4
Durchhaengende Kette (A_214)	4
Erdbeben (A_027)	4
Fahrzeugtests (1) (B_045)	4
Richtfunk (B_375)	5
Laerm * (B_549)	5
Trinkwasser * (A_311)	6
All Star Level	7
Lichtwellenleiter * (B_379)	7
Ausstellungshalle * (B_116)	7
Gebaeudetechnik * (B_260)	7
Kompensationsprüfungsaufgaben	8
Lösungen	9
Rookie Level	9
Pro Level	10
All Star Level	12
Komponeationenriifungeaufgahen	12

Rookie Level

Bevoelkerungswachstum und -abnahme * (A_152)

d) Beim Logarithmieren von Gleichung (1) ist ein Fehler passiert:

(1)
$$N = 8 \cdot 1,02^t$$

(2) $\ln(N) = \ln(8) \cdot t \cdot \ln(1,02)$

- Stellen Sie die logarithmierte Gleichung (2) richtig.

Joghurt (A_138)

a) Für die Herstellung von Joghurt werden Milchsäurebakterien verwendet. Das Wachstum der Milchsäurebakterien kann durch die folgende Funktion N beschrieben werden:

$$N(t) = 20 \cdot 1,02337^{t}$$

t ... Zeit in Minuten (min)

N(t) ... Bakterienmasse in Mikrogramm (µg) nach t Minuten

- Lesen Sie das prozentuelle Wachstum pro Minute ab.
- Berechnen Sie die Masse der Bakterien nach 1 Stunde in Gramm in der Gleitkommadarstellung.
- Begründen Sie, warum der nachstehend dargestellte Rechenschritt falsch ist.

$$\frac{a}{20} = 1,02337^t$$

$$\frac{\log(a)}{\log(20)} = t \cdot \log(1,02337)$$

Sternbild Grosser Wagen (1) * (B_014)

- c) In der Astronomie wird als Maß für die Entfernung r eines Sterns von der Erde der sogenannte Entfernungsmodul $5 \cdot \lg \left(\frac{r}{10}\right)$ verwendet.
 - Kreuzen Sie denjenigen Ausdruck an, der <u>nicht</u> dem Entfernungsmodul entspricht.
 [1 aus 5]

Sonnenaufgang* (A_284)

b) An einem Wintertag wurde die Beleuchtungsstärke E in Lux am Morgen und zu Mittag gemessen. Die dekadischen Logarithmen (Logarithmen zur Basis 10) der beiden Messergebnisse sind nachstehend dargestellt:

Marco behauptet, die Beleuchtungsstärke E sei an diesem Tag zu Mittag 4-mal so hoch wie am Morgen gewesen.

1) Zeigen Sie, dass Marcos Behauptung falsch ist.

Pro Level

Durchhaengende Kette (A_214)

c) Für eine Abstandsberechnung wurden ausgehend von der Gleichung $e^x + e^{-x} = 2,5$ folgende Umformungsschritte durchgeführt:

(1)
$$e^x + \frac{1}{e^x} = 2.5$$

(2)
$$e^{2 \cdot x} + 1 = 2.5 \cdot e^{x}$$

(3)
$$ln(e^{2 \cdot x}) + ln(1) = ln(2, 5 \cdot e^{x})$$

(4)
$$2 \cdot x + 0 = \ln(2,5) + x$$

(5)
$$x = \ln(2,5)$$

In der Umformung von Zeile 2 auf Zeile 3 wurde ein Fehler gemacht.

- Erklären Sie, worin der Fehler besteht.

Erdbeben (A_027)

Die Stärke von Erdbeben wird meist auf der Richterskala angegeben. Dabei wird der Ausschlag gemessen, den ein Erdbeben auf einem Seismographen (Messgerät) verursacht, und so die Magnitude M ermittelt.

c) Für einen d Kilometer vom Epizentrum des Bebens entfernten Seismographen gilt:

$$M = \lg\left(\frac{A(a)}{A_0(a)}\right)$$

M ... Magnitude

A(d) ... Ausschlag des Bebens in Mikrometern (µm)

 $A_0(d)$... Ausschlag (in µm) eines Bebens der Magnitude M=0

Geben Sie an, wie sich die Magnituden zweier Beben unterscheiden, wenn der Ausschlag des zweiten Bebens 10-mal so groß ist wie derjenige des ersten Bebens.
 Erklären Sie Ihr Ergebnis mithilfe der logarithmischen Rechengesetze.

Fahrzeugtests (1) (B_045)

c) Tests zur Haltbarkeit neuer Bremsbeläge haben ergeben, dass deren Zuverlässigkeit R mithilfe einer Funktion R folgender Form beschrieben werden kann:

$$R(t) = e^{-\left(\frac{t}{T}\right)^{n}}$$

R(t) ... Prozentsatz der Bremsbeläge, die nach der Benützungsdauer t noch intakt sind t ... Benützungsdauer

T, b ... materialabhängige Parameter

Der Parameter T wird charakteristische Lebensdauer genannt.

- Weisen Sie nach, dass nach der charakteristischen Lebensdauer der Prozentsatz der intakten Bremsbeläge – unabhängig vom Wert des Parameters b – ca. 36,8 % beträgt.
- Ermitteln Sie die fehlerhafte Zeile in folgender Umformung der Formel $R(t) = e^{-\frac{(t)^n}{2}}$ nach der Benützungsdauer t.

- Formen Sie die fehlerhafte Zeile so um, dass diese mathematisch richtig ist.

1.
$$R(t) = e^{-\frac{(t)^{\circ}}{(t)}}$$

2.
$$ln(R) = b \cdot ln(e^{-(\frac{t}{r})})$$

$$3. \ \frac{\ln(R)}{b} = -\frac{t}{T}$$

4.
$$t = -T \cdot \frac{\ln(R)}{h}$$

Richtfunk (B_375)

c) Der Antennengewinn-Faktor G ist ein Maß für die Verstärkung einer Antenne.

$$G = \frac{4 \cdot \pi}{\lambda^2} \cdot A \cdot \eta$$

 η ... dimensionsloser Parameter

A ... Antennenfläche in m²

λ ... Wellenlänge in m

G... Antennengewinn-Faktor

- Geben Sie an, um welchen Faktor sich G verändert, wenn λ verdoppelt wird.

Für den Antennengewinn g in Dezibel (dB) gilt:

 $G = 10^{\frac{9}{10}}$

 Zeigen Sie mithilfe der Logarithmusrechenregeln, dass eine Verdoppelung von G eine Erhöhung von g um rund 3 dB hervorruft.

Laerm * (B_549)

b) Laura steht 1 m von einem Lautsprecher entfernt und fühlt sich durch den hohen Schallpegel von 110 Dezibel (dB) gestört. Daher beschließt sie, sich vom Lautsprecher zu entfernen.

Die Funktion ${\it L}$ beschreibt den Schallpegel in Abhängigkeit von der Entfernung ${\it r}$ von diesem Lautsprecher.

$$L(r) = 110 - 20 \cdot \lg(r)$$
 mit $r \ge 1$

r ... Entfernung vom Lautsprecher in m

L(r) ... Schallpegel bei der Entfernung r in dB

Zeichnen Sie im nachstehenden Koordinatensystem den Graphen der Funktion L im Intervall [1; 15] ein.

Laura möchte sich an einer Stelle aufhalten, an der der Lautsprecher einen Schallpegel von 75 dB erzeugt.

2) Berechnen Sie die Entfernung dieser Stelle vom Lautsprecher.

[0/1 P.]

Jonas behauptet: "Wenn ich meine Entfernung von 10 m auf 20 m vergrößere, dann sinkt der Schallpegel auf die Hälfte."

3) Zeigen Sie, dass diese Behauptung falsch ist.

[0/1 P.]

Elisabeth möchte die Gleichung $L = 110 - 20 \cdot \lg(r)$ nach r umformen und führt folgende Umformung durch:

$$\frac{L-110}{-20} = \lg(r)$$

$$e^{\frac{L-110}{-20}} = r$$

4) Beschreiben Sie den Fehler, den Elisabeth bei der Umformung gemacht hat.

[0/1 P.]

Trinkwasser * (A_311)

b) Der pH-Wert des Trinkwassers wird regelmäßig überprüft. Der pH-Wert ist folgendermaßen definiert:

$$pH = -log_{10}(a)$$

a ... Wasserstoffionen-Aktivität (a > 0)

Der Ausdruck -log₁₀(a) soll umgeformt werden.

1) Vervollständigen Sie die nachstehende Umformung durch Eintragen in die beiden Kästchen.

$$-\log_{10}(a) = \log_{10}\left(a\right) = \log_{10}\left(\frac{1}{a}\right)$$

Ein pH-Wert von 6,5 entspricht einer Wasserstoffionen-Aktivität von $10^{-6.5}$. Die Zahl $10^{-6.5}$ kann auch in der Form $\sqrt{10^2}$ geschrieben werden, wobei z eine ganze Zahl ist.

2) Geben Sie diese Zahl z an.

$$Z =$$

[0/1 P.]

Piratenschiff * (B_572)

a) An einen Kasten (Turngerät) wird eine Matte gelegt. In der nachstehenden Abbildung ist der Verlauf der Matte zwischen den Punkten A und B durch den Graphen der Funktion f modellhaft dargestellt.

Es gilt:

$$f(x) = a - 1,209 \cdot \ln(x + 0,5)$$

x ... horizontale Entfernung von der Wand in m

f(x) ... Höhe über dem Boden bei der horizontalen Entfernung x in m

a ... Parameter

- 1) Ermitteln Sie den Parameter a.
- 2) Berechnen Sie die Stelle x_B .

All Star Level

Lichtwellenleiter * (B_379)

c) Um den Intensitätsverlust in einem Lichtwellenleiter zu bestimmen, wird die nach 1 km noch vorhandene Intensität gemessen.

Die Größe zur Beschreibung des Intensitätsverlusts ist die Dämpfung *D*, die in Dezibel angegeben wird:

$$D = 10 \cdot \lg\left(\frac{I_0}{I}\right)$$
 in Dezibel (dB)

I... Anfangsintensität

I... noch vorhandene Intensität nach 1 km

Ein modernes Glasfaserkabel weist nach 1 km noch eine Intensität von 95,5 % des Anfangswertes I_0 auf.

- Berechnen Sie, welcher Dämpfung dies entspricht.

Bei älteren Glasfaserkabeln stellte man pro Kilometer Kabellänge eine Dämpfung von 20 dB fest.

– Berechnen Sie, wie viel Prozent der Anfangsintensität I_0 nach 1 km noch vorhanden waren

Für die Dämpfung wird oft auch die Formel $D_1 = 10 \cdot \lg \left(\frac{I}{I_0}\right)$ angegeben.

– Zeigen Sie mithilfe der Rechengesetze für Logarithmen: $D_* = -D$.

Ausstellungshalle * (B_116)

d) Der Schallpegel in der Ausstellungshalle soll durch zusätzliche Absorptionsflächen vermindert werden. Dabei gilt:

$$L(A) = 10 \cdot \lg\left(1 + \frac{A}{10}\right)$$

A ... Inhalt der zusätzlichen Absorptionsfläche in m²

L(A) ... Schallpegelminderung bei einer zusätzlichen Absorptionsfläche A in Dezibel (dB)

 Berechnen Sie den Inhalt der zusätzlichen Absorptionsfläche, die für eine Schallpegelminderung um 10 dB benötigt wird.

Gebaeudetechnik * (B_260)

b) Um das Gesamtschalldämmmaß $R_{\rm Ges}$ einer Wand aus Ziegelmauer und Fenster in Dezibel (dB) zu berechnen, wird in der Gebäudetechnik die nachstehende Formel verwendet.

$$R_{\text{Ges}} = -10 \cdot \lg \left(f_{\text{F}} \cdot 10^{-\frac{R_{\text{F}}}{10}} + f_{\text{Z}} \cdot 10^{-\frac{R_{\text{F}}}{10}} \right)$$

 $f_{\scriptscriptstyle E}$... relativer Flächenanteil des Fensters an der gesamten Wandfläche

f., ... relativer Flächenanteil der Ziegelmauer an der gesamten Wandfläche

R_c, R_z ... Schalldämmmaß des Fensters bzw. der Ziegelmauer in dB

R_{Gas} ... Gesamtschalldämmmaß der Wand in dB

Ein Bauunternehmen plant, aus einer 50 m² großen Wand eine Fensterfläche herauszubrechen. Dabei hat das Fenster ein Schalldämmmaß von $R_{\rm F}=43$ dB, die Ziegelmauer ein Schalldämmmaß von $R_{\rm Z}=65$ dB.

Es wird ein Gesamtschalldämmmaß $R_{\scriptscriptstyle{\mathrm{Ges}}}$ von mindestens 55 dB für diese Wand gefordert.

- Erstellen Sie eine Gleichung zur Berechnung des relativen Flächenanteils f_F, den die Fensterfläche in dieser Wand maximal erreichen darf.
- 2) Berechnen Sie diese Fensterfläche in m2.

Kompensationsprüfungsaufgaben

Lösungen

Rookie Level

Bevoelkerungswachstum und -abnahme * (A_152) Lösung

d)
$$ln(N) = ln(8) + t \cdot ln(1,02)$$

Joghurt (A_138) Lösung

a) Die Masse der Bakterien wächst um 2,337 % pro Minute.

$$N(60) = 20 \cdot 1,02337^{60} = 79,9... \approx 80$$

80 µg = 0,000080 g = 8 · 10⁻⁵ g

Nach 1 h sind rund 8 · 10⁻⁵ g vorhanden.

Bei $\frac{\log(a)}{\log(20)} = t \cdot \log(1,02337)$ wurden die logarithmischen Rechenregeln falsch angewendet. Die linke Seite der Gleichung muss lauten: $\log\left(\frac{a}{20}\right)$ bzw. $\log(a) - \log(20)$

Sternbild Grosser Wagen (1) * (B_014) Lösung

c)

Sonnenaufgang* (A_284) Lösung

b1) Mit den konkreten Zahlen folgt: $E_{\text{Morgen}} = 10 \text{ Lux}$, $E_{\text{Mittag}} = 10\,000 \text{ Lux}$ Daher war die Beleuchtungsstärke zu Mittag nicht 4-mal so hoch wie am Morgen.

Auch ein allgemeiner Nachweis ist als richtig zu werten.

Pro Level

Durchhaengende Kette (A_214) Lösung

c) Es wurde nicht die Summe logarithmiert, sondern die Summanden. Richtig müsste es heißen: $\ln(e^{2\cdot x} + 1) = \ln(2, 5 \cdot e^x)$.

Erdbeben (A_027) Lösung

c) Ausschlag des ersten Bebens ... A(d) \Rightarrow $M_1 = Ig(\frac{A(d)}{A_0(d)})$

Ausschlag des zweiten Bebens ... $10 \cdot A(d) \Rightarrow M_2 = \lg\left(\frac{10 \cdot A(d)}{A_0(d)}\right)$

$$M_2 = \lg\left(\frac{10 \cdot A(d)}{A_0(d)}\right) = \lg\left(10 \cdot \frac{A(d)}{A_0(d)}\right) = \lg(10) + \lg\left(\frac{A(d)}{A_0(d)}\right) = 1 + M_1$$

Ist der Ausschlag 10-mal so stark, dann ist die Magnitude um 1 größer.

Fahrzeugtests (1) (B_045) Lösung

c)
$$R(t) = e^{-(t)^2}$$

$$R(T) = e^{-\left(\frac{T}{T}\right)^{b}}$$

$$R(T) = e^{-1} = 0.3678... \approx 36.8 \%$$

$$R(t) = e^{-(t)^b} \Rightarrow \ln(R) = b \cdot \ln(e^{-(t)})$$

Der Ausdruck $b \cdot \ln(e^{-(\frac{t}{t})})$ ist falsch (2. Zeile).

(Begründung: Die Potenz wurde falsch interpretiert bzw. das Logarithmusgesetz falsch angewendet.)

korrekte Umformung:

$$R(t) = e^{-\frac{t}{1}}$$

$$ln(R) = ln\left(e^{-\left(\frac{t}{T}\right)^{2}}\right)$$

$$ln(R) = -\left(\frac{t}{T}\right)^t$$

$$-\ln(R) = \left(\frac{t}{7}\right)$$

$$\sqrt[b]{-\ln(R)} = \frac{t}{T}$$

$$t = T \cdot \sqrt[b]{-\ln(R)}$$

Richtfunk (B_375) Lösung

c) Wenn die Wellenlänge λ verdoppelt wird, beträgt G nur noch ein Viertel des ursprünglichen Wertes.

$$G = 10^{\frac{g}{10}}$$

$$\lg(G) = \frac{g}{10}$$

$$10 \cdot \lg(G) = g$$

Für eine Verdoppelung von G gilt:

$$g_{\text{neu}} = 10 \cdot \lg(2 \cdot G) = \underbrace{10 \cdot \lg(2)}_{= 3,010...} + \underbrace{10 \cdot \lg(G)}_{= g} \approx 3 + g$$

Laerm * (B_549) Lösung

b1)

b2)
$$75 = 110 - 20 \cdot \lg(r)$$

Berechnung mittels Technologieeinsatz:

r = 56,2...

Die Entfernung beträgt rund 56 m.

b3)
$$\frac{L(10)}{2} = 45$$

 $L(20) = 83,9...$

Auch ein allgemeiner Nachweis, dass eine Verdoppelung der Entfernung nicht zu einer Halbierung des Schallpegels führt, ist als richtig zu werten.

b4) Der dekadische Logarithmus \lg ist die Umkehrfunktion der Exponentialfunktion mit der Basis 10, nicht mit der Basis e.

oder:

Elisabeth hat bei der Umformung anstelle der Basis 10 die Basis e verwendet.

Trinkwasser * (A_311) Lösung

b1)
$$-\log_{10}(a) = \log_{10}(a^{-1}) = \log_{10}(\frac{1}{a})$$

b2)
$$z = -13$$

Piratenschiff * (B_572) Lösung

a1)
$$f(0,5) = 1,2$$
 oder $a - 1,209 \cdot \ln(0,5 + 0,5) = 1,2$
 $a = 1,2$

a2)
$$f(x) = 0$$
 oder $1,2-1,209 \cdot \ln(x+0,5) = 0$

Berechnung mittels Technologieeinsatz: $x_B = 2,198...$ m

All Star Level

Lichtwellenleiter * (B_379) Lösung

c)
$$D = 10 \cdot \lg \left(\frac{I_0}{0.955 \cdot I_0} \right) = 0.19...$$

Die Dämpfung beträgt rund 0,2 dB.

$$20 = 10 \cdot \lg\left(\frac{I_0}{I}\right)$$

$$I = I_0 \cdot 10^{-2}$$

Nach 1 km war noch 1 % der Anfangsintensität vorhanden.

$$D_1 = 10 \cdot \lg\left(\frac{I}{I_0}\right)$$

$$D_1 = 10 \cdot \lg\left(I - \frac{I}{I_0}\right)$$

$$D_1 = 10 \cdot (\lg(I) - \lg(I_0))$$

Durch Herausheben von -1 erhält man:

$$D_1 = -10 \cdot (\lg(I_0) - \lg(I))$$

$$D_1 = -10 \cdot \lg\left(\frac{I_0}{I}\right)$$

$$\Rightarrow D_1 = -D$$

$$\Rightarrow D_1 = -D$$

Ausstellungshalle * (B_116) Lösung

d1)
$$L(A) = 10$$
 oder $10 \cdot \lg(1 + \frac{A}{10}) = 10$
 $A = 90$

Es wird eine zusätzliche Absorptionsfläche von 90 m² genötigt.

Gebaeudetechnik * (B_260) Lösung

b1)
$$55 = -10 \cdot \lg \left(f_F \cdot 10^{-\frac{43}{10}} + (1 - f_F) \cdot 10^{-\frac{65}{10}} \right)$$

b2) Berechnung mittels Technologieeinsatz:

 $f_{\rm F} = 0.0571...$

maximale Fensterfläche: 0,0571... · 50 = 2,857...

Die maximale Fensterfläche, die das geforderte minimale Gesamtschalldämmmaß erfüllt, beträgt rund 2,86 m².

Kompensationsprüfungsaufgaben

Logarithmusgesetze