

```
5, and (2,b) p(c,d) e (e,f)p(g,h) quindi 2d=bc/eh=5g, dimostro
 (2,b)+(e,5)=(c,d)+(g,h)=> (25+be,b5)=(ch+dg,dh)
 =>(25+be). dh = (ch+dg). b5 =D 25dh+bedh-bsch-bsdg = 0 = 5h 2d-5hbc = bd 3g-bdeh
=PUSO LE 1POTESI 2d=bc/eh=Sg =D Shbc-Shbc=bdeh-bdeh=DO=O verificato.
 (2.b)·(e, 5)=(c,d)·(gh)=(2e,b5)=(cg,dh)=> Zedh=bscg=>bcfg=Zoleh=bcsg
                                      \mathbb{Q}[\sqrt{2}] := \{\alpha + \sqrt{2}\beta\,, \alpha, \beta \in \mathbb{Q}\} \subset \mathbb{R}.
                        Verificare che le due operazioni di (\mathbb{R},+,\cdot) inducono in questo insieme una struttura di anello ^2; dimostrare che \mathbb{Q}[\sqrt{2}] è un campo.
dimostro che Q[12] siz un anello, come primz cosa, verifico
                                                                                       che
gli elementi di Q[12] commutino rispetto alla somma.
 2, b ∈ Q[√2], 2+b= (a+β√2)+(a+β'√2)= a+β√2+ a+β√2= a+β√2+ a+β√2 = b+ 2.
513 26 Q[12], 2+ 2 = 0 = 2 = x+312 / 2 = -x+(-p)-12 0 zero e' 0.012
Dim inv. 2+ 2 = D a+ 3+2 + (-a+ 6p) +2) = a-a+ (p-p) +2 = 0+0+2 = 0.
          2550ci z Liva: (2.b)·c: (x+312.a+p12)·a"+3"/2=(x+312)·a+p12·a"+p"/2=2.(b.c)
Valgono le proprieta distributive:
2.(b+c)= 0+ B 12. ((a+ B'12)+(a"+B"12))=(a+B12)(a+B'12)+(a+B12)(a"+B"12)(a"+B"12)= 26+26
l'elemento neutro rispetto al prodotto e' 1 = 1+0-12
 ogni elemento ha un inverso: 0+1312 · (a+1312) = 1
  (\alpha + \beta \sqrt{2}) = \frac{\alpha + \beta \sqrt{2}}{(\alpha + \beta \sqrt{2})^2} = \frac{\alpha}{(\alpha + \beta \sqrt{2})^2} + \frac{\beta \sqrt{2}}{(\alpha + \beta \sqrt{2})^2}
• 2 · (-b) = (-2) · b ⇒ 2 · (-b) + ((-2) · b) = 0 ⇒ 2 · (-b) + (-b · 2) = 0
⟨> 2 · (-b)+b · (-2)=0 ⟨> (2 · (-b))=b · (-a) ma
(2.6b) = b. (-2) quind: 2.6b) = (-2).b.
· (-2)· (-b) - (2b) = (-2)· (-b) + (-2)· b= NON FINITO
· 2. (b+(-c)) = 2.b+2.(-c) = PER IL PUNTO 1= 2.b+(-2.c) = 2b-2c
                                           -(ab) = 2 (-b)
```

rigorosa di Q. Verificare che le operazioni definite in

