충분차원축소와 변수 선택

다변량 해석특론 프로젝트

212STG02 고정욱 212STG18 예지혜

프로젝트 주제 - 변수 선택의 중요성

SDR의 sufficient predictor는 보통 원 데이터의 모든 설명변수들의 선형 결합으로 이루어져 있다.

- → 해석이 복잡하다.
- → 중요 변수 식별이 어렵다.
- → less efficient!

무의미한 설명변수를 제거하면서 유의미한 설명변수들의 선형 결합으로 sufficient predictor를 추정하자.

프로젝트 주제

년도	저자	저널	제목
2005	Li, Cook and Nachtsheim	J. R. Stat. Soc. Ser. B Stat. Methodol.	Model-free variable selection
2005	Ni, Cook and Tsai	Biometrika	A note on shrinkage sliced inverse regression
2006	Zou, Hastie and Tibshirani	J. Comput. Graph. Statist	Sparse principal component analysis
2006	Li and Nachtsheim	Technometrics	Sparse sliced inverse regression
2007	Li	Biometrika	Sparse sufficient dimension reduction
2008	Zhou and He	Ann. Statist.	Dimension reduction based on constrained canonical correlation and variable filtering
2009	Leng and Wang	J. Comput. Graph. Statist.	On general adaptive sparse principal component analysis
2010	Chen and Zou	Annals of Statistics	Coordinate-independent sparse sufficient dimension reduction and variable selection

프로젝트 주제

Sparse SDR - 논문 소개

Lexin Li (2007), Biometrika

Sparse SDR

1. sufficient dimension reduction formula

$$Mv_i = \rho_i Gv_i$$
, for $i = 1, ..., p$,

1. 1번 식을 regression-type 으로 재구선

$$\hat{\beta} = \arg\min_{\beta} \sum_{i=1}^{p} \|G^{-1}m_i - \beta\beta^{\mathsf{T}}m_i\|_{G}^{2},$$

1. sparse ᄎ저치르 마드기 이체 리从 페너디 ㅂ어

$$\min_{\beta} \sum_{i=1}^{p} \|G^{-1}m_i - \beta \beta^{\mathsf{T}} m_i\|_G^2, \text{ subject to } \beta^{\mathsf{T}} G \beta = I_d, \text{ and } |\beta_j|_1 \leqslant \tau_j,$$

1. 최종 최적회 미제

$$\min_{\alpha,\beta} \left\{ \sum_{i=1}^{p} \|G^{-1}m_i - \alpha\beta^{\mathsf{T}}m_i\|_G^2 + \lambda_2 \operatorname{tr}(\beta^{\mathsf{T}}G\beta) + \sum_{j=1}^{d} \lambda_{1j} |\beta_j|_1 \right\},\,$$

Sparse SDR - 알고리즘

최종 최적화 문제 :

$$\min_{\alpha,\beta} \left\{ \sum_{i=1}^{p} \|G^{-1}m_i - \alpha\beta^{\mathsf{T}}m_i\|_G^2 + \lambda_2 \operatorname{tr}(\beta^{\mathsf{T}}G\beta) + \sum_{j=1}^{d} \lambda_{1j} |\beta_j|_1 \right\}$$

Sparse SDR - Simulation

true model :
$$Y_1 = \operatorname{sign}(\beta_1^{\mathsf{T}} X) \log(|\beta_2^{\mathsf{T}} X + 5|) + 0.2\varepsilon$$

- - (i) $\beta_1 = (1,1,1,1,0,...,0)^T$, $\beta_2 = (0,...,0,1,1,1,1)^T$
 - (ii) $\beta_1 = (1,1,0.1,0.1,0,...,0)^T$, $\beta_2 = (0,...,0,0.1,0.1,1,1)^T$
 - (iii) $\beta_1 = (1,...,1,0,...,0)^T$, $\beta_2 = (0,...,0,1,...,1)^T$
 - ⇒ n = 200, p = 20, true 0 : (i), (ii) 167%, (iii) 107%
- 평가 지표
 - 추정된 β₁, β₂의 number of zero components
 - βX의 추정치와 실제값의 절대값 상관계수
 - mean squared error
 - vector correlation coefficient (vcc)

Sparse SDR - Simulation

(i)
$$\beta_1 = (1,1,1,1,0,...,0)^{\mathsf{T}}, \ \beta_2 = (0,...,0,1,1,1,1)^{\mathsf{T}}: 유의미 4개, 불필요 16개$$

(ii) $\beta_1 = (1,1,0.1,0.1,0,...,0)^{\mathsf{T}}, \ \beta_2 = (0,...,0,0.1,0.1,1,1)^{\mathsf{T}}: 유의미 4개, 불필요 16개(iii) $\beta_1 = (1,...,1,0,...,0)^{\mathsf{T}}, \ \beta_2 = (0,...,0,1,...,1)^{\mathsf{T}}: 유의미 10개, 불필요 10개$$

		NUM	$\hat{\beta}_1$ COR	MSE	NUM	\hat{eta}_2 COR	MSE	$(\hat{\beta}_1, \hat{\beta}_2) \\ VCC$
Case (i)	SIR	0.000	0.926	1·604	0.000	0·911	1·245	0.934
	S-SIR	15.16	0.975	1·352	15.38	0·974	1·026	0.946
Case (ii)	SIR	0·000	0.884	0·551	0.000	0·856	0·544	0·932
	S-SIR	17·67	0.984	0·245	17.68	0·986	0·205	0·968
Case (iii)	SIR	0·000	0.916	4·793	0.000	0.942	4·168	0·917
	S-SIR	9·220	0.877	5·006	9.630	0.908	4·329	0·816

Sparse SDR - 스위스 은행 위조지폐 데이터

	SAVE					
SD1	-0.033 × Length - 0.200 × Left + 0.250 × Right + 0.594 × Bottom + 0.571 × Top - 0.466 × Diagonal					
SD2	-0.284 × Length - 0.055 × Left - 0.158 × Right + 0.505 × Bottom + 0.333 × Top + 0.725 × Diagonal					
Sparse SAVE						
SD1	$0 \times \text{Length} + 0 \times \text{Left} + 0 \times \text{Right}$ + 0.785 × Bottom + 0.619 × Top + 0 × Diagonal					
SD2	$0 \times \text{Length} + 0 \times \text{Left} + 0 \times \text{Right}$ + $0.400 \times \text{Bottom} + 0 \times \text{Top} + 0.917 \times \text{Diagonal}$					

첫번째 방향은 bottom과 top의 길이, 두번째 방향은 bottom과 diagonal의 길이를 의미 ⇒ 여전히 위조 지폐를 잘 분류하며, 해석이 간단하다.

Sparse SDR - Wisconsin breast cancer data

- 유방암 분류 문제
- n = 569, p = 30
- 두 방법 모두 잘 분류하며, 추정치 간 상관계수가 0.959로 매우 높다.

SIR							
first direction (-0.508, 0.013, 0.382, 0.074, 0.001, -0.147, 0.074, 0.055, 0.00 0.080, -0.002, -0.030, -0.028, 0.031, 0.001 -0.071, 0.043, 0.00 0.624, 0.029, -0.054, -0.381, 0.008, 0.007, 0.053, 0.020, 0.023							
Sparse SIR							
first direction (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0							

Sparse SDR - discussion

Sparse SDR의 장점

- 1. eigen decomposition을 사용하는 대부분의 차원 축소 방법론에 동일하게 적용할 수 있다.
- 2. 바이오 분야와 같이 sparse model이 많은 분야에서 유용하다.

한계점

eigen decomposition을 사용하지 않는 차원 축소 방법론에 바로 적용할 수 없다.

CISE (COORDINATE-INDEPENDENT SPARSE ESTIMATION)

• XIN CHEN(2010), Annals of Statistics.

CISE (COORDINATE-INDEPENDENT SPARSE ESTIMATION)

sparse sufficient dimension reduction

screen out irrelevant and redundant variables efficiently

CISE (COORDINATE-INDEPENDENT SPARSE ESTIMATION)

A new SDR penalty function

- invariant under orthogonal transformation
- targets the removal of row vectors from the basis matrix

(2.2)
$$\widehat{\mathbf{V}} = \underset{\mathbf{V}}{\operatorname{arg \, min}} \sum_{i=1}^{p} \|\mathbf{N}_{n}^{-1}\mathbf{m}_{i} - \mathbf{V}\mathbf{V}^{T}\mathbf{m}_{i}\|_{\mathbf{N}_{n}}^{2}$$
 subject to $\mathbf{V}^{T}\mathbf{N}_{n}\mathbf{V} = \mathbf{I}_{d}$,

$$(\widehat{\boldsymbol{\alpha}}, \widehat{\mathbf{V}}_s) = \min_{\boldsymbol{\alpha}, \mathbf{V}} \left\{ \sum_{i=1}^p \|\mathbf{N}_n^{-1} \mathbf{m}_i - \boldsymbol{\alpha} \mathbf{V}^T \mathbf{m}_i\|_{\mathbf{N}_n}^2 + \tau_2 \operatorname{tr}(\mathbf{V}^T \mathbf{N}_n \mathbf{V}) + \sum_{i=1}^d \tau_{1,j} \|\mathbf{V}_j\|_1 \right\},$$

(2.7)
$$\tilde{\mathbf{V}} = \underset{\mathbf{V}}{\operatorname{arg\,min}} \{ -\operatorname{tr}(\mathbf{V}^T \mathbf{M}_n \mathbf{V}) + \rho(\mathbf{V}) \}$$
 subject to $\mathbf{V}^T \mathbf{N}_n \mathbf{V} = \mathbf{I}_d$,

$$\rho(\mathbf{V}) = \sum_{i=1}^p \theta_i \|\mathbf{v}_i\|_2.$$

CISE (COORDINATE-INDEPENDENT SPARSE ESTIMATION)

A Coordinate-Independent penalty function.

$$\phi(\mathbf{V}) = \sum_{i} \theta_{i} h_{i} (\mathbf{q}_{i}^{T} \mathbf{V} \mathbf{V}^{T} \mathbf{q}_{i}),$$

$$\rho(\mathbf{V}) = \sum_{i=1}^{p} \theta_{i} ||\mathbf{v}_{i}||_{2}.$$

Coordinate-Independent sparse Estimation

(2.7)
$$\tilde{\mathbf{V}} = \underset{\mathbf{V}}{\operatorname{arg\,min}} \{ -\operatorname{tr}(\mathbf{V}^T \mathbf{M}_n \mathbf{V}) + \rho(\mathbf{V}) \}$$
 subject to $\mathbf{V}^T \mathbf{N}_n \mathbf{V} = \mathbf{I}_d$,

A Coordinate-Independent penalized procedure

 incorporate many model-free and model-based SDR approaches into a simple and unified framework to implement variable selection within SDR.

4 Studies

- 3 with forward reg models
- 1 using inverse reg model

SDR methods

- C3(alpha = 0.01 / 0.005)
- SSIR (BIC, RIC used to select the tuning parameters)
- CISE (use SIR and PFC to generate Mn and Nn for Cise selection) = CIS-SIR / CIS-PFC

simulation data

- 2500 datasets / n=60, n = 120
- C3 = quadratic spline w/ 4 internal knots
- h=6 For SSIR
- calculate Mn in PFC, using f(y) = (|y|, y, y^2)T

summary statistics - r1, r2, r3 (how well the methods select variables)

- r1 = average fraction of nonzero rows of V (relevant predictors)
- r2 = average fraction of zero rows of V (irrelevant predictors)
- r3 = fraction of runs (both relevant and irrelevant predictors)

simulation results

STUDY 1

with 24 predictors

$$X = (x1,...,x24)$$

true beta

$$b = (1,1,1,0,0,...,0)$$

beta with 21 zero coefficients

$$y = x_1 + x_2 + x_3 + 0.5\epsilon$$
,

TABLE 2
Summary of Study 1

Method:	CIS-SIR	CIS-PFC	•	SSIR		
Criterion:	BIC	BIC	$\alpha = 0.01 \qquad \alpha = 0.005$		BIC	RIC
Sample size			n = 60)		
r_1	0.991	1.000	1.000	1.000	0.993	0.974
r_2	0.999	1.000	0.999	0.999	0.997	0.999
r_3	0.970	1.000	0.978	0.991	0.939	0.914
Sample size			n = 12	0		
r_1	1.000	1.000	1.000	1.000	1.000	1.000
r_2	1.000	1.000	1.000	1.000	0.999	1.000
r_3	1.000	1.000	1.000	1.000	0.994	1.000

oracle property?

CISE and C3

- CISE is a unified method (can be applied to many popular sdr methods (PCA, PFC, SIR, SAVE, DR)
- C3 is based on one specified sdr method = canonical correlation
- on r3 measure, CISE >>> C3 (only in Table 1, C3 did slightlyl better than CISE)
- simpler, easily implemented

TABLE 4
Summary of Study 3

Method:	CIS-SIR	CIS-PFC	(C^3	SSIR	
Criterion:	BIC	BIC	$\alpha = 0.01$	$\alpha = 0.005$	BIC	RIC
Sample size			n = 60)		
r_1	0.789	0.906	0.770	0.742	0.934	0.888
r_2	0.965	0.979	0.948	0.955	0.633	0.828
r_3	0.344	0.588	0.229	0.226	0.000	0.004
Sample size		n = 120				
r_1	0.948	0.995	0.839	0.781	0.994	0.983
r_2	0.992	0.998	0.956	0.963	0.664	0.865
r_3	0.838	0.973	0.309	0.245	0.001	0.027

Variable screening

- 506 obs (census tracts)
- response y = median value of owner-occupied homes
- 13 predictors
- x1 x13 (table)
- * as suggestion of previous studies, remove obs with crime rate greater than 3.2 (used 374 obs)
 - in PFC model $\mathbf{f} = (\sqrt{y}, y, y^2)T$ / did not standardize since PFC is a scale-invariant method
 - pick up 2 Directions to estimate the central subspace

source - http://lib.stat.cmu. edu/datasets/boston_corrected.txt.

the estimated bases of the central subspace for all the considered methods

TABLE 6
Estimated bases of the central subspace in Boston housing data

Method:	CIS-SIR	CIS-PFC	C^3	SSIR-BIC	SSIR-RIC
x_1	0 0	0 0	0 0	-0.050 - 0.131	-0.041 -0.123
x_2	-0.004 - 0.047	0 0	0 0	-0.001 -0.002	-0.001 -0.001
x_3	0 0	0 0	0 0	0.001 0.005	0 0
<i>x</i> ₄	0 0	0 0	0 0	$-0.033\ 0.020$	0 0
<i>x</i> ₅	0 0	0 0	0 0	0.719 - 0.882	0.543 - 0.765
x_6	$-0.999\ 0.034$	$-0.999\ 0.034$	0.962 - 0.645	-0.684 - 0.448	-0.834 - 0.627
x_7	-0.008 - 0.139	-0.003 - 0.077	-0.174 - 0.096	0.006 - 0.001	0.005 - 0.001
<i>x</i> ₈	0 0	0 0	0 0	0.082 - 0.012	0.060 - 0.010
<i>x</i> ₉	0 0	0 0	0 0	$-0.019\ 0.035$	$-0.016\ 0.033$
x_{10}	-0.001 -0.01	-0.002 -0.035	-0.1660	0.001 - 0.001	0.001 - 0.001
x_{11}	0.021 - 0.361	0.018 - 0.280	-0.1260	0.058 - 0.033	0.055 - 0.036
x_{12}	0.001 0.011	0.002 0.035	0 0	$-0.000\ 0.000$	0 0
x_{13}	-0.044 - 0.920	-0.040 -0.955	0 - 0.758	0.014 - 0.043	0.017 - 0.059

results

- the coeff of C3 is based on a data-specific weighted original dataset (the coeff of other methods are based on the original dataset)
- As suggested by CIS-PFC, explanatory var x6,7,10,11,12,x13 would be important in explaining y.

Bootstrap study

Bootstrap procedure

- randomly choose w.r. 374 obs for y jointly w/ x6,7,10,11,12,x13
- separately for x1,2,3,4,5,8,9
- combine two bootstrap samples to make one complete bootstrap dataset forcing x1,2,3,4,5,8,9 to be irrelevant as with the analysis of orig. data.
- repeated 2500 times (M=2500)

Bootstrap study results (w/o C3)

- similar to the results in simulation studies
- CISE performed quite well

TABLE 7
Variable selection in bootstrapping Boston housing data

Method:	CIS-SIR	CIS-PFC	SSIR-BIC	SSIR-RIC
r_1	0.947	0.962	0.963	0.877
r_2	0.969	0.980	0.780	0.952
r_3	0.550	0.672	0.118	0.264

Discussion

limitations

- by the establishment of the oracle property = simple trace form tr(VT MnV)
- proof in the Appendix can be extended to more general objective functions

Further concerns

- whether CISE and its oracle property are still valid in high-dimensional setting in which p>n
- Nn usually takes the form of the marginal sample covariance matrix of x
- while, Mn depends on the specific method
 - => how to choose Mn for variable selection is an imp issue and merits thorough investigation***
- BIC could identify the true sparse model well if the true model is included in the cand. set
 - => also deserves further study

프로젝트 계획

감사합니다