AMENDMENTS TO THE CLAIMS

1-6. Canceled

7. (Original) An azomethine dye compound represented by formula (II):

formula (II)

wherein Q represents a residue that forms, together with the -N-C=N- moiety, a nitrogen-containing 6-membered ring; R_A represents an aryl group, a heterocyclic group, or an $-(R_1)_r-(R_4)_m$ group; X represents an aryl group; wherein,

when R_A represents an $-(R_1)_r$ - $(R_4)_m$ group, R_1 represents a methylene group, a methine group, or a carbon atom; r represents an integer of 1 to 30, and R_1 s may be the same or different independently, when r is 2 or more; R_4 represents a substituent except for a hydrogen atom; m represents an integer of 1 to 30, and R_4 s may be the same or different independently, or R_4 s may be combine together to form a multiple bond, or alternatively R_4 s may bond with each other to form a ring, when m is 2 or more; and the $-(R_1)_r$ - $-(R_4)_m$ group does not represent a straight-chain

alkyl group; R_5 and R_6 each represent a hydrogen atom or a substituent, or R_5 and R_6 may bond with each other to form a ring; R_7 represents a hydrogen atom or a substituent; n represents 0 (zero) or an integer of 1 to 4, with the proviso that R_7 s may be the same or different independently, or R_7 s may bond with each other to form a condensed ring, n is 2 or more; or R_7 may bond with R_5 or R_6 to form a condensed ring, n is 1 or more.

8. (Original) The azomethine dye compound as claimed in claim 7, wherein the azomethine dye compound represented by formula (II) is represented by formula (IIA):

formula (IIA)

wherein Q represents a residue that forms, together with the -N-C=N- moiety, a nitrogen-containing 6-membered ring; R_{11} represents an aryl group or a heterocyclic group; X represents an aryl group; R_5 and R_6 each represent a hydrogen atom or a substituent, or R_5 and R_6 may bond with each other to form a ring; R_7 represents a hydrogen atom or a substituent; n represents 0 (zero) or an integer of 1 to 4, with the proviso that R_7 s may be the same or different

3 MAA/

independently, or R_7 s may bond with each other to form a condensed ring, when n is 2 or more; or R_7 may bond with R_5 or R_6 to form a condensed ring, when n is 1 or more.

- 9. (Original) The azomethine dye compound as claimed in claim 8, wherein, in the azomethine dye compound represented by formula (IIA), Q is a residue that forms, together with the -N-C=N- moiety, a 4-pyrimidone ring.
- 10. (Original) The azomethine dye compound as claimed in claim 7, wherein the azomethine dye compound represented by formula (II) is represented by formula (IIB):

formula (IIB)

wherein Q represents a residue that forms, together with the -N-C=N- moiety, a nitrogen-containing 6-membered ring; R_1 represents a methylene group, a methine group, or a carbon atom; r represents an integer of 1 to 30, and R_1 s may be the same or different independently, when r is 2 or more; R_4 represents a substituent except for a hydrogen atom; m represents an integer of 1 to 30, and R_4 s may be the same or different independently, or R_4 s may be combined together to form a multiple bond, or alternatively R4s may bond with each other to form a ring, when m is 2 or more; X represents an aryl group; and the - $(R_1)_r$ - $(R_4)_m$ group does

not represent a straight-chain alkyl group; R_5 and R_6 each represent a hydrogen atom or a substituent, or R_5 and R_6 may bond with each other to form a ring; R_7 represents a hydrogen atom or a substituent; n represents 0 (zero) or an integer of 1 to 4, with the proviso that R_7 s may be the same or different independently, or R_7 s may bond with each other to form a condensed ring, when n is 2 or more; or R_7 may bond with R_5 or R_6 to form a condensed ring, when n is 1 or more.

- 11. (Original) The azomethine dye compound as claimed in claim 10, wherein, in the azomethine dye compound represented by formula (IIB), Q is a residue that forms, together with the -N-C=N- moiety, a 4-pyrimidone ring; and R₄ is a group selected from the group consisting of an alkyl group, an alkenyl group, an aryl group, a heterocyclic group, a halogen atom, an amino group, a hydroxyl group, a carboxyl group, a sulfo group, an acylamino group, an alkyl- or aryl-sulfonylamino group, a carbamoyl group, a sulfamoyl group, an acyl group, a sulfonyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an alkylthio group, an aryloxy group.
- 12. (Original) The azomethine dye compound as claimed in claim 10, wherein, in the azomethine dye compound represented by formula (IIB), at least one R4 bonds with a carbon atom at at least one α to δ -positions in the $(R_1)_r$.

13. (Cancelled)

- 14. (Original) The azomethine dye compound as claimed in claim 7, wherein Q represents a residue that forms, together with the -N-C=N moiety, a nitrogen-containing 6-membered ring, wherein the members of the nitrogen-containing 6-membered ring are selected from the group consisting of nitrogen and carbon.
 - 15. (Currently Amended) A compound represented by formula (I):

Docket No.: 0234-0471P

formula (I)

wherein Q represents a residue that forms, together with the -N-C=N- moiety, a nitrogen-containing 6-membered ring; R_A represents a heterocyclic group, or an - $(R_1)_r$ - $(R_4)_m$ group; X represents an aryl group; Y represents a hydrogen atom, or a group that is capable of being split-off upon a coupling reaction with an oxidized product of a developing agent: wherein,

when R_A represents an $-(R_I)_r$ - $(R_4)_m$ group, R_1 represents a methylene group, a methine group, or a carbon atom; r represents an integer of 1 to 30, and R_I s may be the same or different independently, when r is 2 or more; R_4 represents a substituent except for a hydrogen atom; m represents an integer of 1 to 30, and R_4 s may be the same or different independently, or R_4 s may be combined together to form

a multiple bond, or alternatively $\underline{R_{48}}$ R4s may bond with each other to form a ring, when m is 2 or more; and the $-(R_1)_r$ - $-(R_4)_m$ group does not represent a straight-chain alkyl group.

6

16. (Previously presented) The compound represented by formula (IA):

MAA/

Docket No.: 0234-0471P

formula (IA)

wherein Q represents a residue that forms, together with the -N-C=N- moiety, a nitrogen-containing 6-membered ring; R₁₁ represents an aryl group X represents an aryl group; Y represents a group that is capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

- 17. (Original) The compound as claimed in claim 16, wherein, in the compound represented by formula (IA), Q is a residue that forms, together with the -N-C=N moiety, a 4-pyrimidone ring.
- 18. (Currently Amended) The compound as claimed in claim 15, wherein the compound represented by formula (I) is represented by formula (IB):

formula (IB)

wherein Q represents a residue that forms, together with the -N-C=N- moiety, a nitrogen-containing 6-membered ring; R_1 represents a methylene group, a methine group, or a carbon atom; r represents an integer of 1 to 30, and $\underline{R_{18}}$ R1s may be the same or different independently, when r is 2 or more; R_4 represents a substituent except for a hydrogen atom; m represents an integer of 1 to 30, and R_{48} may be the same or different independently, or R_{48} may be combined together to form a multiple bond, or alternatively R_{48} may bond with each other to form a ring, when m is 2 or more; X represents an aryl group; Y represents a hydrogen atom, or a group that is capable of being split-off upon a coupling reaction with an oxidized product of a developing agent; and the $-(R_1)_r$ - $(R_4)_m$ group does not represent a straight-chain alkyl group.

- 19. (Currently amended) The compound as claimed in claim 18, wherein, in the compound represented by formula (IB), Q is a residue that forms, together with the -N-C=N moiety, a 4-pyrimidone ring; and R4 R4 is a group selected from the group consisting of an alkyl group, an alkenyl group, an aryl group, a heterocyclic group, a halogen atom, an amino group, a hydroxyl group, a carboxyl group, a sulfo group, an acylamino group, an alkyl- or aryl-sulfonylamino group, a carbamoyl group, a sulfamoyl group, an acyl group, a sulfonyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an alkylthio group, an arylthio group, a cyano group, an alkoxy group and an aryloxy group.
- 20. (Original) The compound as claimed in claim 18, wherein, in the compound represented by formula (IB), at least one R_4 bonds with a carbon atom at at least one α to δ -positions in the $(R_1)_r$.
- 21. (Original) The compound as claimed in claim 15, wherein Q represents a residue that forms, together with the -N-C=N moiety, a nitrogen-containing 6-membered ring, wherein the

members of the nitrogen-containing 6-membered ring are selected from the group consisting of nitrogen and carbon.

22. (Previously presented) A compound represented by formula (IA):

formula (IA)

wherein Q' represents $-C(-R_2)=C(-R_3)-CO^*$, in which R_2 and R_3 form a 5- to 7-membered ring together with the $-C=C^*$ -moiety, or R_2 and R_3 each independently represent a hydrogen atom or a substituent, and * indicates the position where Q' bonds to the nitrogen atom of the N-R₁₁ moiety; R_{11} represents an aryl group; X represents an aryl group; and Y' represents a hydrogen atom.

9