The pca algorithm

Algorithm 1 principal component analysis

- **10 input:** m properties each measured n times represented as m total $n \times 1$ vectors $\vec{x}^{(1)}, \dots, \vec{x}^{(m)}$
- Populate the $m \times n$ data matrix X to have column vectors $\vec{x}^{(1)}, \dots, \vec{x}^{(m)}$, i.e. $X = [\vec{x}^{(1)} | \dots | \vec{x}^{(m)}]$
- 2 Center each column $\vec{x}^{(j)}$ of X by subtracting off its mean, i.e.

$$\vec{\pmb{x}}^{(j)} \leftarrow \vec{\pmb{x}}^{(j)} - \overline{\vec{\pmb{x}}^{(j)}}$$
 where $\overline{\vec{\pmb{x}}^{(j)}} = \frac{1}{n} \sum_{i=1}^{n} X_{ij}$

- 3 Either
 - (3.1) Compute the **eigendecomposition** of the **covariance matrix** $C \propto X^T X$
 - (3.2) Decompose X via the **SVD** directly as $X = U\Sigma V^T$