1

1.a

We consider two cases: Case $a \neq 0$:

Let $[a,b] \in Q$ with $0 \neq a = p + q\sqrt{3}$ and $b = n + m\sqrt{3}$. Then suppose there exists $c \in R, k \in \mathbb{Z}^{\times}$ such that [a,b] = [c,k]. Let $c = x + y\sqrt{3}$. It must be the case that ak = bc.

$$bc = (n + m\sqrt{3})(x + y\sqrt{3})$$
$$= (nx + 3my) + (ny + mx)\sqrt{3}$$

$$ak = (p + q\sqrt{3})(k)$$
$$= (pk) + (qk)\sqrt{3}$$

Thus nx+3my=pk and qk=ny+mx. $x=\frac{pk-3my}{n}$, so $qk=ny+m\left(\frac{pk-3my}{n}\right)$.

$$qkn = n^2y + mpk - 3m^2y$$

$$\implies qkn - mpk = y(n^2 - 3m^2)$$

$$\implies y = \frac{k(qn - mp)}{n^2 - 3m^2}$$

$$\implies y = \frac{qk - mx}{n}$$

$$nx + 3m\left(\frac{qk - mx}{n}\right) = pk$$

$$\implies n^2x + 3mqk - 3m^2x = pkn$$

$$\implies x(n^2 - 3m^2) = pkn - 3mqk$$

$$\implies x = \frac{k(pn - 3mq)}{n^2 - 3m^2}$$

Then let $c=x+y\sqrt{3}$ such that $x,y\in\mathbb{Z}$ and c=R, and let $k=n^2-3m^2$. Then there exists $c\in R, k\in\mathbb{Z}$ such that $[a,b]=[c,k], b\neq 0$. Case a=0: a=0 and ak=bc, so bc=0, by definition, $b\neq 0$, and so c=0 and thus [a,b]=[c,k] for all $k\in\mathbb{Z}^{\times}$.

1.b

Let $m \in F$ where $m = x + y\sqrt{3}$, $x = \frac{a}{b}$, $y = \frac{p}{q}$, with $a, p \in \mathbb{Z}$ and $b, q \in \mathbb{Z}^{\times}$. Then $m = x + \sqrt{3}y = \frac{a}{b} + \sqrt{3}\frac{p}{q} = \frac{aq + \sqrt{3}pb}{bq}$. Finally, we define our isomorphism:

$$\begin{aligned} f: F &\longrightarrow Q \\ \frac{aq + \sqrt{3}pb}{bq} &\longmapsto [aq + \sqrt{3}bp, bq] \end{aligned}$$

Surjective: take any $[c,u]\in Q$, then $c=n+\sqrt{3}m,\,k=i+\sqrt{3}j$ then by (a), $[c,k]=[n+\sqrt{3}m,i+\sqrt{3}j]=[v+w\sqrt{3},k].$ ****Thus WTS $[v+w\sqrt{3},k]=[aq+\sqrt{3}bp,bq]$ such that $v=aq,\,w=bp,\,k=bq^{****}$.