Problem Set 5

D. Zack Garza

October 21, 2019

Contents

1	Problem 1	1
	1.1 S < T:	1

1 Problem 1

We first make the following definitions:

$$S := \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{jk} = \sup \left\{ \sum_{(j,k) \in B} a_{jk} \ni B \subset \mathbb{N}^2, |B| < \infty \right\}$$
$$T := \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} a_{kj} = \sup \left\{ \sum_{(k,j) \in C} a_{kj} \ni C \subset \mathbb{N}^2, |B| < \infty \right\}.$$

We will show that S = T by showing that $S \leq T$ and $T \leq S$.

1.1 $S \leq T$:

Let $B \subset \mathbb{N}^2$ be finite, so $B \subseteq [0,I] \times [0,J] \subset \mathbb{N}^2$. Now letting $R > \max(I,J)$, we can define $C = [0,R]^2$, which satisfies $B \subseteq C \subset \mathbb{N}^2$ and $|C| < \infty$. Moreover, since $a_{jk} \geq 0$ for all pairs (j,k), we have the following inequality:

$$\sum_{(j,k)\in B} a_{jk} < \sum_{(j,k)\in C} a_{jk} \le T,$$

since T is a supremum over all such sets C. But since this holds for every B, we this inequality also holds for the supremum of the smaller term by order-limit laws, and so

$$S := \sup_{B} \sum_{(j,k) \in B} a_{jk} \le T.$$