PREDICTION OF AUTOMOBILE

IMPORTING THE LIBRARIES

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

 ${\bf from}~{\bf sklearn.linear_model~import}~{\bf LinearRegression}$

import statsmodels.api as sm

from sklearn.feature_selection import RFE

 ${\bf from}\ statsmodels.stats.outliers_influence\ {\bf import}\ variance_inflation_factor$

from sklearn.metrics import r2_score

from sklearn.metrics import mean_squared_error

import warnings

warnings.filterwarnings('ignore')

DATA PROCESSING

c_df.head()

Out[4]:

	sy m b ol in g	m ak e	f u el t y p	as pi ra ti o n	do or nu m be r	ca rb o d y	dr iv e w he el	en gin elo cat ion	w h ee lb as e	c a rl e n gt h	 e n gi n es iz e	fu el sy st e m	b o re r at io	s t r o k e	co mp ress ion rati o	ho rs ep o w er	p e a k r p m	ci t y m p	hi gh wa y m	p ri c e
0	3	alf a- ro m er o gi uli a	g a s	st d	tw o	co nv er ti bl e	rw d	fro nt	8 8. 6	1 6 8. 8	 1 3 0	m pf i	3. 4 7	2 6 8	9.0	11 1	5 0 0	2 1	27	1 3 4 9 5
1	3	alf a- ro m er o ste lvi o	g a s	st d	tw o	co nv er ti bl e	rw d	fro nt	8 8. 6	1 6 8. 8	 1 3 0	m pf i	3. 4 7	2 6 8	9.0	11 1	5 0 0	2 1	27	1 6 5 0 0
2	1	alf a- ro m er o Q ua dri fo gli o	g a s	st d	tw o	ha tc hb ac k	rw d	fro nt	9 4. 5	1 7 1. 2	 1 5 2	m pf i	2. 6 8	3 4 7	9.0	15 4	5 0 0	1 9	26	1 6 5 0 0
3	2	au di 10 0 ls	g a s	st d	fo ur	se da n	fw d	fro nt	9 9. 8	1 7 6. 6	 1 0 9	m pf i	3. 1 9	3 4 0	10. 0	10 2	5 5 0 0	2 4	30	1 3 9 5 0
4	2	au di 10 Ols	g a s	st d	fo ur	se da n	4 w d	fro nt	9 9. 4	1 7 6. 6	 1 3 6	m pf i	3. 1 9	3 4 0	8.0	11 5	5 5 0 0	1 8	22	1 7 4 5 0

In [5]:

	• •
<u> </u>	
<u> </u>	
+	

c_df.tail()

Out[5]:

	sy m b ol in g	m a k e	f u el t y p	as pi ra ti o n	do or nu m be r	c a r b o d y	dr iv e w he el	en gin elo cat ion	w he el b as e	ca rl e n gt h	en gi ne si ze	fu el sy st e m	b o re r at io	s t r o k e	co mp ress ion rati o	ho rs ep o we r	p e a k r p m	ci t y m p	hi gh wa y m	p ri c e
2 0 0	-1	v o 1 v o 1 4 5 e (s w)	g a s	st d	fo ur	s e d a n	rw d	fro nt	10 9. 1	1 8 8. 8	 14 1	m pf i	3. 7 8	3 1 5	9.5	11 4	5 4 0 0	2 3	28	1 6 8 4 5. 0
2 0 1	-1	v o 1 v o 1 4 4 e a	g a s	tu rb o	fo ur	s e d a n	rw d	fro nt	10 9. 1	1 8 8. 8	 14 1	m pf i	3. 7 8	3 1 5	8.7	16 0	5 3 0 0	1 9	25	1 9 0 4 5. 0
2 0 2	-1	v o l v o 2 4 4 d l l	g a s	st d	fo ur	s e d a n	rw d	fro nt	10 9. 1	1 8 8. 8	 17 3	m pf i	3. 5 8	2 8 7	8.8	13 4	5 5 0 0	1 8	23	2 1 4 8 5. 0
2 0 3	-1	v o l v	di e s el	tu rb o	fo ur	s e d a n	rw d	fro nt	10 9. 1	1 8 8. 8	 14 5	id i	3. 0 1	3 4 0	23.	10 6	4 8 0 0	2 6	27	2 2 4 7

```
sy
m
                                  do
                                                                                                                   co
                                                                                                                                                  hi
                                                         en
                                                                                     en
                                                                                                                                                  gh
                                                                                                                                                         p
ri
                                  \mathbf{or}
                                                                 he
                                                                                                                   mp
                                                         gin
     b
ol
in
g
            a
k
e
                          ra
                                  nu
                                                                          e
                                                                                                                  ress
                                                                                                                                                  wa
                                                         elo
                                                                                     ne
                          ti
o
n
                                                                         n
gt
h
                                  m
                                                                                                                  ion
                                                                                                                                          m
                   y
p
e
                                          o
d
y
                                                         cat
                                  be
r
                                                he
el
                                                                 as
e
                                                                                                                                           p
g
                                                                                                                  rati
                                                        ion
                                                                                                                                                  pg
                                                                                                                                                         0.
0
             2
4
6
                                                                                                                                                         2
6
2
5.
0
             v
o
2
6
4
                                                                         1
8
8.
8
                                          e
d
2
0
4
                                                                                    14
1
                                                                                                                           11
4
                                  fo
                                                         fro
                                                 rw
                                                                                                                   9.5
                          rb
                                                 d
                                                         nt
                                          a
```

5 rows x 25 columns

c_df.shape

(205, 25)

_

Out[7]:

c_df.dtypes

Out[8]:

symboling	int64
make	object
fueltype	object
aspiration	object
doornumber	object
carbody	object
drivewheel	object
enginelocation	object
wheelbase	float64
carlength	float64
carwidth	float64
carheight	float64

curbweight	int64
enginetype	object
cylindernumber	object
enginesize	int64
fuelsystem	object
boreratio	float64
stroke	float64
compressionratio	float64
horsepower	int64
peakrpm	int64
citympg	int64
highwaympg	int64
price	float64

dtype: object

c_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 25 columns):

Data	COTUMNIS (COCAT 25	COTUMITS).	
#	Column	Non-Null Count	Dtype
0	symboling	205 non-null	int64
1	make	205 non-null	object
2	fueltype	205 non-null	object
3	aspiration	205 non-null	object
4	doornumber	205 non-null	object
5	carbody	205 non-null	object
6	drivewheel	205 non-null	object
7	enginelocation	205 non-null	object
8	wheelbase	205 non-null	float64
9	carlength	205 non-null	float64
10	carwidth	205 non-null	float64
11	carheight	205 non-null	float64
12	curbweight	205 non-null	int64
13	enginetype	205 non-null	object
14	cylindernumber	205 non-null	object
15	enginesize	205 non-null	int64
16	fuelsystem	205 non-null	object
17	boreratio	205 non-null	float64
18	stroke	205 non-null	float64
19	compressionratio	205 non-null	float64
20	horsepower	205 non-null	int64
21	peakrpm	205 non-null	int64

22 citympg 205 non-null int64
23 highwaympg 205 non-null int64
24 price 205 non-null float64

dtypes: float64(8), int64(7), object(10)

memory usage: 40.2+ KB

c_df.describe()

Out[10]:

	sym boli ng	whe elb ase	carl eng th	car wid th	car hei ght	cur bwe ight	eng ines ize	bor erat io	stro ke	comp ressio nratio	hor sep owe r	pea krp m	city mp g	high way mpg	pric e
c o u n t	205 .00 000 0	205 .00 000 0	205 .00 000 0	205 .00 000 0	205 .00 000 0	205. 000 000	205 .00 000 0	205 .00 000 0	205 .00 000 0	205.0 00000	205. 000 000	205. 000 000	205 .00 000 0	205. 0000 00	205. 0000 00
m e a n	0.8 341 46	98. 756 585	174 .04 926 8	65. 907 805	53. 724 878	255 5.56 585 4	126 .90 731 7	3.3 297 56	3.2 554 15	10.14 2537	104. 117 073	512 5.12 195 1	25. 219 512	30.7 5122 0	1327 6.71 0571
st d	1.2 453 07	6.0 217 76	12. 337 289	2.1 452 04	2.4 435 22	520. 680 204	41. 642 693	0.2 708 44	0.3 135 97	3.972 040	39.5 441 67	476. 985 643	6.5 421 42	6.88 6443	7988 .852 332
m in	2.0 000 00	86. 600 000	141 .10 000 0	60. 300 000	47. 800 000	148 8.00 000 0	61. 000 000	2.5 400 00	2.0 700 00	7.000 000	48.0 000 00	415 0.00 000 0	13. 000 000	16.0 0000 0	5118 .000 000
2 5 %	0.0 000 00	94. 500 000	166 .30 000 0	64. 100 000	52. 000 000	214 5.00 000 0	97. 000 000	3.1 500 00	3.1 100 00	8.600 000	70.0 000 00	480 0.00 000 0	19. 000 000	25.0 0000 0	7788 .000 000
5 0 %	1.0 000 00	97. 000 000	173 .20 000 0	65. 500 000	54. 100 000	241 4.00 000 0	120 .00 000 0	3.3 100 00	3.2 900 00	9.000 000	95.0 000 00	520 0.00 000 0	24. 000 000	30.0 0000 0	1029 5.00 0000
7 5 %	2.0 000 00	102 .40	183 .10	66. 900 000	55. 500 000	293 5.00	141 .00	3.5 800 00	3.4 100 00	9.400 000	116. 000 000	550 0.00	30. 000 000	34.0 0000 0	1650 3.00 0000

	sym boli ng	whe elb ase	carl eng th	car wid th	car hei ght	cur bwe ight	eng ines ize	bor erat io	stro ke	comp ressio nratio	hor sep owe r	pea krp m	city mp g	high way mpg	pric e
		000	000			000	000					000			
m a x	3.0 000 00	120 .90 000 0	208 .10 000 0	72. 300 000	59. 800 000	406 6.00 000 0	326 .00 000 0	3.9 400 00	4.1 700 00	23.00 0000	288. 000 000	660 0.00 000 0	49. 000 000	54.0 0000 0	4540 0.00 0000

DATA CLEANING

In [11]:

c_df.duplicated().sum()

0

Out[11]:

c_df.isnull().sum()

Out[15]:

0 symboling make 0 fueltype 0 aspiration 0 doornumber 0 carbody 0 drivewheel enginelocation 0 wheelbase 0 carlength 0 carwidth 0 carheight 0 curbweight 0 enginetype 0 cylindernumber 0 enginesize 0 fuelsystem 0 boreratio

```
stroke
                       0
compressionratio
                       0
horsepower
                       0
peakrpm
                       0
                       0
citympg
highwaympg
                       0
price
                       0
dtype: int64
                                                                             In [16]:
c_df['symboling'].value_counts()
                                                                             Out[16]:
 0
       67
 1
       54
      32
 3
      27
-1
       22
-2
        3
Name: symboling, dtype: int64
                                                                             In [25]:
sns.pairplot(y_vars = 'symboling', x_vars = 'price', data=c_df)
                                                                             Out[25]:
<seaborn.axisgrid.PairGrid at 0x11771b787f0>
    1.0
    0.8
 symboling
    0.6
    0.2
    0.0
      0.00 0.25 0.50 0.75 1.00
                  price
```

In [26]:

```
c_df['make'].value_counts()
                                                                                              Out[26]:
peugeot 504
                                  6
toyota corolla
                                  6
                                  6
toyota corona
subaru dl
                                  4
mitsubishi q4
                                  3
                                 . .
plymouth duster
                                 1
mitsubishi mirage
                                  1
porsche boxter
                                  1
audi fox
dodge coronet custom
Name: make, Length: 147, dtype: int64
                                                                                              In [27]:
c_df['car_company'] = c_df['make'].apply(lambda x:x.split(' ')[0])
                                                                                              In [28]:
c_df.head()
                                                                                              Out[28]:
                                                   \mathbf{c}
                                                          fu
                                                                                        ci
                                                                                             hi
    sy
                        do
                                                                         co
                                                                                                       ca
                             ca
                                        en
               u
                                                          el
                                                                                            gh
    \mathbf{m}
                   рi
                        \mathbf{or}
                                   iv
                                                               0
                                                                        mp
                                                                                        t
                                                                                                       \mathbf{r}_{-}
              el
                             rb
                                       gin
     b
                   ra
                        nu
                                                                        res
                                                                                            wa
                                                                                                       co
                                   \mathbf{e}
                                             ee
                                                          \mathbf{s}\mathbf{y}
                                                              re
                                                                              ep
                                                                                        y
                                       elo
                                                  e
    ol
                   ti
                        m
                                             lb
                                                          st
                                                               r
                                                                        sio
                                                                                                       m
                                                                                       m
                                                                                             y
                              d
                                       cat
                                                  n
    in
                    \mathbf{0}
                        be
                                  he
                                             as
                                                          e
                                                              at
                                                                   k
                                                                        nra
                                                                               \mathbf{w}
                                                                                        p
                                                                                             m
                                                                                                      pa
                                       ion
                                                  gt
                                                                                   p
               p
                                                          m
                                                                        tio
     g
                                                                                                      ny
         alf
          a-
                             co
                                                                                                      alf
          ro
                             nv
          m
                                                          m
                                                                                                       a-
                                                                                   0
                                                  6
                                       fro
                                                                              11
                   st
                        tw
                             er
                                                          pf
i
          er
                                                                        9.0
                                                                                                       ro
                    d
                              ti
                                        nt
                                                                                                  5
                                   d
          o
                                                                                                      me
                              bl
          gi
                                                                                                       ro
                              e
         uli
```

	sy m b ol in g	m ak e	f u el t y p	as pi ra ti o n	do or nu m be r	ca rb o d y	dr iv e w he el	en gin elo cat ion	w h ee lb as e	c a rl e n gt h	 fu el sy st e m	b o re r at io	s t r o k e	co mp res sio nra tio	ho rs ep o w er	p e a k r p m	ci t y m p g	hi gh wa y m	p ri c e	ca r_ co m pa ny
1	3	alf a- ro m er o ste lvi o	g a s	st d	tw o	co nv er ti bl e	r w d	fro nt	8 8. 6	1 6 8. 8	 m pf i	3. 4 7	2 6 8	9.0	11 1	5 0 0 0	2 1	27	1 6 5 0 0	alf a- ro me ro
2	1	alf a- ro m er o Q ua dri fo gli o	g a s	st d	tw o	ha tc hb ac k	r w d	fro nt	9 4. 5	1 7 1. 2	 m pf i	2. 6 8	3 4 7	9.0	15 4	5 0 0	1 9	26	1 6 5 0 0	alf a- ro me ro
3	2	au di 10 0 ls	g a s	st d	fo ur	se da n	f w d	fro nt	9 9. 8	1 7 6. 6	 m pf i	3. 1 9	3 4 0	10. 0	10 2	5 5 0 0	2 4	30	1 3 9 5 0	au di
4	2	au di 10 01 s	g a s	st d	fo ur	se da n	4 w d	fro nt	9 9. 4	1 7 6. 6	 m pf i	3. 1 9	3 4 0	8.0	11 5	5 5 0 0	1 8	22	1 7 4 5 0	au di

5 rows × 26 columns

In [29]:

 $c_df = c_df.drop(['make'], axis = 1)$

```
c_df['car_company'].value_counts()
                                                                                  Out[30]:
                  31
toyota
                  17
nissan
                  15
mazda
mitsubishi
                  13
honda
                  13
subaru
                  12
                  11
peugeot
volvo
                  11
volkswagen
                   9
dodge
                   9
buick
                   8
bmw
audi
                   7
plymouth
                   7
saab
                   6
isuzu
                   4
porsche
                   3
alfa-romero
chevrolet
                   3
                   3
jaguar
maxda
                   2
VW
                   2
renault
Nissan
                   1
                   1
vokswagen
toyouta
                   1
mercury
                   1
porcshce
Name: car_company, dtype: int64
                                                                                  In [32]:
 4
c_df['car_company'].replace('toyouta', 'toyota',inplace=True)
c_df['car_company'].replace('Nissan', 'nissan', inplace=True)
c_df['car_company'].replace('maxda', 'mazda',inplace=True)
c_df['car_company'].replace('vokswagen', 'volkswagen', inplace=True)
c_df['car_company'].replace('vw', 'volkswagen',inplace=True)
c_df['car_company'].replace('porcshce', 'porsche', inplace=True)
                                                                                  In [33]:
```



```
Out[35]:
std
         168
turbo
         37
Name: aspiration, dtype: int64
                                                                          In [36]:
c_df['doornumber'].value_counts()
                                                                          Out[36]:
        115
four
two
          90
Name: doornumber, dtype: int64
                                                                          In [37]:
c_df['carbody'].value_counts()
                                                                          Out[37]:
sedan
                96
hatchback
                70
                25
wagon
hardtop
                 8
convertible
Name: carbody, dtype: int64
                                                                          In [38]:
c_df['drivewheel'].value_counts()
                                                                          Out[38]:
fwd
       120
rwd
        76
          9
4wd
Name: drivewheel, dtype: int64
                                                                          In [39]:
c_df['enginelocation'].value_counts()
                                                                          Out[39]:
front
          202
```



```
Out[42]:
157.3
          15
188.8
         11
166.3
           7
171.7
           7
186.7
           7
Name: carlength, dtype: int64
                                                                             In [43]:
sns.distplot(c_df['carlength'],color="orange")
plt.show()
    0.035
    0.030
    0.025
0.020
0.015
    0.015
    0.010
    0.005
    0.000
                   140
                                                                      220
                                160
                                             180
                                                         200
                                      carlength
                                                                             In [44]:
c_df['enginetype'].value_counts()
                                                                             Out[44]:
ohc
          148
           15
ohcf
ohcv
           13
dohc
           12
           12
            4
rotor
dohcv
            1
Name: enginetype, dtype: int64
```

```
In [45]:
c_df['cylindernumber'].value_counts()
                                                                                  Out[45]:
four
            159
six
             24
five
             11
              5
eight
two
              4
three
              1
twelve
              1
Name: cylindernumber, dtype: int64
                                                                                  In [46]:
 4
def number(x):
 return x.map({'four':4,'six':6,'five':5,'eight':8,'two':2,'three':3,'twelve':12})
c_df['cylindernumber']=c_df[['cylindernumber']].apply(number)
                                                                                  In [47]:
c_df['cylindernumber'].value_counts()
                                                                                  Out[47]:
4
       159
6
        24
5
        11
         5
8
2
         4
12
         1
Name: cylindernumber, dtype: int64
                                                                                  In [48]:
c_df['fuelsystem'].value_counts()
                                                                                  Out[48]:
```

mpfi

94

2bbl 66
idi 20
1bbl 11
spdi 9
4bbl 3
mfi 1
spfi 1

Name: fuelsystem, dtype: int64

Data Visulaization:

 $c_num = c_df.select_dtypes(include = ['int64','float64'])$

c_num.head()

Out[53]:

	sy mb olin g	wh eel bas e	car len gth	car wi dth	car hei ght	cur bwe ight	cylind ernu mber	eng ine size	bor era tio	st ro ke	compr ession ratio	hors epo wer	pe ak rp m	cit y m pg	high way mpg	pr ice
0	3	88. 6	168 .8	64. 1	48. 8	254 8	4	130	3.4	2. 68	9.0	111	50 00	21	27	13 49 5. 0
1	3	88. 6	168 .8	64. 1	48. 8	254 8	4	130	3.4	2. 68	9.0	111	50 00	21	27	16 50 0. 0
2	1	94. 5	171 .2	65. 5	52. 4	282	6	152	2.6	3. 47	9.0	154	50 00	19	26	16 50 0. 0
3	2	99. 8	176 .6	66. 2	54. 3	233 7	4	109	3.1	3. 40	10.0	102	55 00	24	30	13 95 0. 0

	sy mb olin g	wh eel bas e	car len gth	car wi dth	car hei ght	cur bwe ight	cylind ernu mber	eng ine size	bor era tio	st ro ke	compr ession ratio	hors epo wer	pe ak rp m	cit y m pg	high way mpg	pr ice
4	2	99. 4	176 .6	66. 4	54. 3	282 4	5	136	3.1	3. 40	8.0	115	55 00	18	22	17 45 0. 0
															In [5	54]:

c_num.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204

Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	symboling	205 non-null	int64
1	wheelbase	205 non-null	float64
2	carlength	205 non-null	float64
3	carwidth	205 non-null	float64
4	carheight	205 non-null	float64
5	curbweight	205 non-null	int64
6	cylindernumber	205 non-null	int64
7	enginesize	205 non-null	int64
8	boreratio	205 non-null	float64
9	stroke	205 non-null	float64
10	compressionratio	205 non-null	float64
11	horsepower	205 non-null	int64
12	peakrpm	205 non-null	int64
13	citympg	205 non-null	int64
14	highwaympg	205 non-null	int64
15	price	205 non-null	float64

dtypes: float64(8), int64(8)

memory usage: 25.8 KB

plt.figure(figsize = (25,25))

sns.pairplot(c_num)

plt.show()

<Figure size 1800x1800 with 0 Axes>

plt.figure(figsize = (25,25))
sns.heatmap(c_df.corr(), annot = True, cmap = 'YlOrBr')
plt.show()

- -Price is highly (positively) correlated with wheelbase, carlength, carwidth, curbweight, enginesize, horsepower.
- -Price is negatively correlated to symboling, citympg and highwaympg.
- -This suggest that cars having high mileage may fall in the 'economy' cars category, and are priced lower.
- -There are many independent variables which are highly correlated: wheelbase, carlength, curbweight, enginesize etc.. all are positively correlated.

categorical_cols = c_df.select_dtypes(include = ['object'])

	fuelty pe	aspirati on	doornumb er	carbody	drivewh eel	enginelocati on	enginety pe	fuelsyste m	car_compa ny
0	gas	std	two	converti ble	rwd	front	dohc	mpfi	alfa-romero
1	gas	std	two	converti ble	rwd	front	dohc	mpfi	alfa-romero
2	gas	std	two	hatchbac k	rwd	front	ohev	mpfi	alfa-romero
3	gas	std	four	sedan	fwd	front	ohc	mpfi	audi
4	gas	std	four	sedan	4wd	front	ohc	mpfi	audi
plt.su sns.bo plt.su sns.bo plt.su sns.bo plt.su sns.bo plt.su sns.bo plt.su sns.bo plt.su	bplot(3, explot(x bplot(3,	= 'fueltype 3,2) = 'aspirati 3,3) = 'carbody 3,4) = 'drivewl 3,5) = 'enginele 3,6) = 'enginet	55)) c', y = 'price' on', y = 'price' neel', y = 'price' ocation', y = ype', y = 'pri em', y = 'pri	ce', data = c , data = c_d ice', data = 'price', dat ice', data =	_df,color=" f,color="gr c_df,color= a = c_df,col c_df,color=	lime") reen") "blue") or="red") "yellow")			<pre>In [64]:</pre> Out[64]:

<AxesSubplot:xlabel='fuelsystem', ylabel='price'>

1. From the price boxplot it is clear that The brands with the most expensive vehicles in the dataset belong to Bmw,Buick,Jaguar and porsche.

- 2. Whereas the lower priced cars belong to chevrolet
- 3. The median price of gas vehicles is lower than that of Diesel Vehicles.
- 4. 75th percentile of standard aspirated vehicles have a price lower than the median price of turbo aspirated vehicles.
- 5. Two and four Door vehicles are almost equally priced. There are however some outliers in the price of two-door vehicles.
- 6. Hatchback vehicles have the lowest median price of vehicles in the data set whereas hardtop vehicles have the highest median price.
- 7. The price of vehicles with rear placed engines is significantly higher than the price of vehicles with front placed engines.
- 8. Almost all vehicles in the dataset have engines placed in the front of the vehicle. However, the price of vehicles with rear placed engines is significantly higher than the price of vehicles with front placed engines.
- 9. The median cost of eight cylinder vehicles is higher than other cylinder categories.
- 10. It is clear that vehicles Multi-port Fuel Injection [MPFI] fuelsystem have the highest median price. There are also some outliers on the higher price side having MPFI systems.
- 11. Vehicles with OHCV engine type falls under higher price range.

Extract Features and Target

	s y m b o li n	d o o r n u m b e r	w h e e l b a s e	c a r l e n g t h	c a r w i d t	c a r h e i g h t	c u r b w e i g h	cy li n de rn u m be	e n g i n e s i z e	b o r e r a t i		ca r_ co m pa ny _n iss an	car _c om pa ny _p eu ge ot	car _co mp an y_ ply mo uth	car _c om pa ny _p ors ch e	ca r_ co m pa ny _r en aul t	ca r_ co m pa ny _s aa b	ca r_ co m pa ny _s ub ar	ca r_ co m pa ny _t oy ot a	car _co mp any _vo lks wa gen	ca r_ co m pa ny _v ol vo
2	1	t W O	0 2 3 0 3 2 1	0 4 4 9 2 5 4	0 4 3 3 3 3 3 3	5 2 4	0 5 1 7 8 4 3	6	0 3 4 3 3 9 6	0 1 0 0 0 0		0	0	0	0	0	0	0	0	0	0
3	2	f o u r	0 3 8 4 8 4 0	0 5 2 9 8 5 1	0 4 9 1 6 6 7	5 4	0 3 2 9 3 2 5	4	0 1 8 1 1 3 2	0 4 6 4 2 8 6	:	0	0	0	0	0	0	0	0	0	0
4	2	f o u r	0 3 7 3 1 7 8	0 5 2 9 8 5 1	0 5 0 8 3 3 3	5 4 3	0 5 1 8 2 3 1	5	0 2 8 3 0 1 9	0 4 6 4 2 8 6		0	0	0	0	0	0	0	0	0	0
2 0 0	1	f o u r	0 .6 5 5 9 7	0 7 1 1 9 4 0	0 7 1 6 6 6 7	5 5	0 5 6 7 8 8 2	4	0 3 0 1 8 8 7	0 8 8 5 7 1 4		0	0	0	0	0	0	0	0	0	1
2 0 1	1	f o u r	0 6 5 5	0 7 1 1 9	0 7 0 8 3	5 5	0 6 0 5 5	4	0 3 0 1 8	0 8 8 8 5 7		0	0	0	0	0	0	0	0	0	1

	s y m b o li n g	d o o r n u m b e r	w h e e l b a s e	c a r l e n g t h	c a r w i d t h	c a r h e i g h t	c u r b w e i g h t	cy li n de rn u m be r	e n g i n e s i z e	b o r e r a t i o	 ca r_ co m pa ny _n iss an	car _c om pa ny _p eu ge ot	car _co mp an y_ ply mo uth	car _c om pa ny _p ors ch e	ca r_ co m pa ny _r en aul t	ca r_ co m pa ny _s aa b	ca r_ co m pa ny _s ub ar u	ca r_ co m pa ny _t oy ot a	car _co mp any _vo lks wa gen	ca r_ co m pa ny _v ol vo
2 0 2	1	f o u r	0 6 5 5 9 7 7	0 7 1 1 9 4	0 7 1 6 6 6 7	5 5	0 5 9 1 1 5 6	6	0 4 2 2 6 4 2	0 7 4 2 8 5 7	 0	0	0	0	0	0	0	0	0	1
2 0 3	1	f o u r	0 6 5 5 9 7	0 7 1 1 9 4 0	0 7 1 6 6 6 7	5 5	0 6 7 0 6 7 5	6	0 3 1 6 9 8 1	0 3 3 5 7 1 4	 0	0	0	0	0	0	0	0	0	1
2 0 4	1	f o u r	0 .6 5 5 9 7	0 7 1 1 9 4 0	0 7 1 6 6 6 7	5 5	0 . 6 1 0 5 5	4	0 3 0 1 8 8 7	0 8 8 5 7 1 4	 0	0	0	0	0	0	0	0	0	1

205 rows x 61 columns

y=c_df["price"]

In [463]:

X=c_df.drop("price",axis="columns")

	 5 3 -
→	

X

Out[464]:

	s y m b o li n	d o o r n u m b e r	w h e e l b a s	c a r l e n g t	c a r w i d t	c a r h e i g h t	c u r b w e i g h	cy li n de rn u m be	e n g i n e s i z e	b o r e r a t i	 ca r_ co m pa ny _n iss an	car _c om pa ny _p eu ge ot	car _co mp an y_ ply mo uth	car _c om pa ny _p ors ch	ca r_ co m pa ny _r en aul	ca r_ co m pa ny _s aa b	ca r_ co m pa ny _s ub ar	ca r_ co m pa ny _t oy ot a	car _co mp any _vo lks wa gen	ca r_ co m pa ny _v ol vo
0	3	t w o	0 0 5 8 3 0 9	0 4 1 3 4 3 3	0 3 1 6 6 6 7	4 8 8	0 4 1 1 1 7 1	4	0 2 6 0 3 7 7	0 6 6 4 2 8 6	 0	0	0	0	0	0	0	0	0	0
1	3	t w o	0 0 5 8 3 0 9	0 4 1 3 4 3 3	0 3 1 6 6 6 7	4 8 8	0 4 1 1 1 7	4	0 2 6 0 3 7	0 6 6 4 2 8 6	 0	0	0	0	0	0	0	0	0	0
2	1	t W O	0 2 3 0 3 2 1	0 4 4 9 2 5 4	0 4 3 3 3 3 3	5 2 4	0 5 1 7 8 4 3	6	0 3 4 3 3 9 6	0 1 0 0 0 0	 0	0	0	0	0	0	0	0	0	0
3	2	f o u r	0 3 8 4 8 4 0	0 5 2 9 8 5 1	0 4 9 1 6 6 7	5 4	0 3 2 9 3 2 5	4	0 1 8 1 1 3 2	0 4 6 4 2 8 6	 0	0	0	0	0	0	0	0	0	0

	s y m b o li n g	d o o r n u m b e r	w h e e l b a s e	c a r l e n g t h	c a r w i d t	c a r h e i g h t	c u r b w e i g h	cy li n de rn u m be r	e n g i n e s i z e	b o r e r a t i	 ca r_ co m pa ny _n iss an	car _c om pa ny _p eu ge ot	car _co mp an y_ ply mo uth	car _c om pa ny _p ors ch e	ca r_ co m pa ny _r en aul t	ca r_ co m pa ny _s aa b	ca r_ co m pa ny _s ub ar u	ca r_ co m pa ny _t oy ot a	car _co mp any _vo lks wa gen	ca r_ co m pa ny _v ol vo
4	2	f o u r	0 3 7 3 1 7 8	0 5 2 9 8 5 1	0 5 0 8 3 3 3	5 4 · 3	0 5 1 8 2 3 1	5	0 2 8 3 0 1 9	0 4 6 4 2 8 6	 0	0	0	0	0	0	0	0	0	0
:											 									
2 0 0	1	f o u r	0 6 5 5 9 7 7	0 7 1 1 9 4 0	0 7 1 6 6 6 7	5 5	0 5 6 7 8 8 2	4	0 3 0 1 8 8 7	0 8 8 5 7 1 4	 0	0	0	0	0	0	0	0	0	1
2 0 1	1	f o u r	0 6 5 5 9 7 7	0 7 1 1 9 4 0	0 7 0 8 3 3 3	5 5	0 6 0 5 5 0 8	4	0 3 0 1 8 8 7	0 8 8 5 7 1 4	 0	0	0	0	0	0	0	0	0	1
2 0 2	1	f o u r	0 6 5 5 9 7 7	0 7 1 1 9 4 0	0 7 1 6 6 6 7	5 5	0 5 9 1 1 5 6	6	0 4 2 2 6 4 2	0 7 4 2 8 5 7	 0	0	0	0	0	0	0	0	0	1
2 0 3	- 1	f o u r	0 6 5 5 9	0 7 1 1 9	0 7 1 6 6	5 5	0 6 7 0 6	6	0 3 1 6 9	0 3 3 5 7	 0	0	0	0	0	0	0	0	0	1

```
ca
                                                                                               ca
                                                                                                      ca
                                                      ca
                                                            car
                                                                          car
                                                                                         ca
                                                                                                                    ca
                                  cy
                                                                   car
                                                                                                      r_
                                                                                                            car
                                                                                  r_
                                                                                               r_
          h a
                                                      \mathbf{r}_{-}
                                                             _{\mathbf{c}}
                                                                                         r_
                                                                                                                    r_{-}
                                                                   _co
                                                                                               co
                                                                                                      \mathbf{co}
                                                                                                            _co
                                                      co
   r e r r r b n
n l e l w e r r
u b n i i e u
m a g d g m
                                   n
                                                            om
                                                                          om
                                                                                        co
                                                                                                                    co
m
                                                                   mp
                                                                                  m
                                                                                               m
                                                                                                            mp
                                                                                                      m
                                                      m
                                                             pa
                                                                           pa
                                                                                         m
                                                                                                                    m
                                        n
                                                                                               pa
                                                                                                     pa
                                                                                                            any
                                                      pa
                                                                           ny
                                                                                                                   pa
0
                                                      ny
                                                                                        ny
                                                                                                                   ny
                                                             _{\mathbf{p}}
                                                                           _{\mathbf{p}}
li
                                                                   ply
                                                                                                            lks
                                                                                                      _t
                                  m
                                                      n
                                                             eu
                                                                          ors
                                                                                                                    _v
                   t
                                                                   mo
                                                                                               ub
                                                                                                      oy
                                                      iss
                                                             ge
                                                                           ch
                                                                                                                    ol
                   h
                                                                   uth
                                                                                 aul
                                                                                               ar
                                                                                                      ot
                                                                                                            gen
              h
                                                             ot
                                                                                         b
                                                      an
                                                                            \mathbf{e}
                                                                                                                    V0
                              7
                                        8
                   6
                                        0
         6 7
                   7
                        5
                             6
                                        3
         5 1
5 1
                        5
                                        0
                                            8
                             1
                                                              0
                                                                                   0
                              0
          9
              9
                   6
                             5
                                        8
                   6
```

205 rows x 60 columns

Features should be of numeric nature:

X=pd.get_dummies(X,columns=NonNumericColumns,drop_first=True)

Features should be of type array/ dataframe:

pandas.core.frame.DataFrame

Features should have some rows and some columns:

X.shape

Out[470]: (205, 60)

Split the dataset-training and testing:

from sklearn.model_selection import train_test_split

In [472]:

 $X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.2, random_state=4)$

Features should be on the same scale:

In [473]: X.describe() Out[473]: ca ca ca ca ca ca do car r_ _co m mp m m m m mp m pa r pa pa any an pa pa e n pa pa m ny **y**_ ny ny ny ny _vo ny be _p ply lks _p m b er eu mo ub ors en oy wa ol twaa uth aul ge gen 2 0 0 0 5 20 20 20 20 20 20 20 20 205 5.0 5.0 5.0 5.0 5. 5.0 5.0 0 0 0 0 0 0 0 .00 0 00 00 00 00 00 00 00 00 0 0 0 0 0 0 000 00 00 00 00 00 00 00 00 00 0 5 6 4 1 0.0 0.0 0.0 0.0 2 4 8 7 2 5 5 4 0.0 0. 0.1 0. 0.0 6 7 3 1 7 53 34 24 09 02 58 56 05 43 1 4 1 585 53 7 14 39 75 92 09 36 90 37 0 3 0.2 0.1 0.1 0.0 0. 0.2 0.3 0.2 0 1 4 3 5 2 2 9 3 4 1 16 63 49 353 3 58 74 89 05 63 53 89 33 83 7 1 70 9 7 1

	s y m b o li n	w h e e l b a s e	c a r l e n g t	c a r w i d t	c a r h e i g h t	c u r b w e i g h	cy li n d er n u m b er	e n g i n e si z e	b o r e r a ti o	s t r o k e	 ca r_ co m pa ny _p eu ge ot	car _co mp an y_ ply mo uth	ca r_ co m pa ny _p ors ch e	ca r_ co m pa ny _r en aul t	ca r_ co m pa ny _s aa b	ca r_ co m pa ny _s ub ar	ca r_ co m pa ny _t oy ot a	car _co mp any _vo lks wa gen	ca r_ co m pa ny _v ol vo	do or n u m be r_ tw
m i n	2 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	4 7 8 0 0 0 0 0	0 0 0 0 0 0	2. 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	2 0 7 0 0 0 0	 0.0 00 00 0	0.0 00 00 0	0.0 00 00 0	0.0 00 00 0	0. 00 00 00	0.0 00 00 0	0.0 00 00 0	0.0 000 00	0. 00 00 00	0. 00 00 00
2 5 %	0 0 0 0 0 0	0 2 3 0 3 2 1	0 3 7 6 1 1 9	0 3 1 6 6 6 7	5 2 0 0 0 0 0 0	0 2 5 4 8 4 9	4. 0 0 0 0 0	0 1 3 5 8 4 9	0 4 3 5 7 1 4	3 1 1 0 0 0	 0.0 00 00 0	0.0 00 00 0	0.0 00 00 0	0.0 00 00 0	0. 00 00 00	0.0 00 00 0	0.0 00 00 0	0.0 000 00	0. 00 00 00	0. 00 00 00
5 0 %	1 0 0 0 0 0	0 3 0 3 2 0 7	0 4 7 9 1 0 4	0 4 3 3 3 3 3	5 4 1 0 0 0 0 0	0 3 5 9 1 9	4. 0 0 0 0 0	0 2 2 2 2 6 4 2	0 5 5 0 0 0	3 2 9 0 0 0	0.0 00 00 0	0.0 00 00 0	0.0 00 00 0	0.0 00 00 0	0. 00 00 00	0.0 00 00 0	0.0 00 00 0	0.0 000 00	0. 00 00 00	0. 00 00 00
7 5 %	2 0 0 0 0 0 0	0 4 6 0 6 4 1	0 6 2 6 8 6 6	0 5 5 0 0 0	5 5 5 0 0 0 0	0 5 6 1 2 8	4. 0 0 0 0 0	0 3 0 1 8 8 7	0 7 4 2 8 5 7	3 4 1 0 0 0	 0.0 00 00 0	0.0 00 00 0	0.0 00 00 0	0.0 00 00 0	0. 00 00 00	0.0 00 00 0	0.0 00 00 0	0.0 000 00	0. 00 00 00	1. 00 00 00
m a x	3 0 0 0 0	1 0 0 0 0	1 0 0 0 0	1 . 0 0 0 0	5 9 8 0 0	1 0 0 0	1 2. 0 0 0	1 0 0 0 0	1 0 0 0 0	4 1 7 0 0	 1.0 00 00 0	1.0 00 00 0	1.0 00 00 0	1.0 00 00 0	1. 00 00 00	1.0 00 00 0	1.0 00 00 0	1.0 000 00	1. 00 00 00	1. 00 00 00

X_test=scaler.transform(X_test)

Train the model on the training dataset:

X.shape

```
(205, 60)
                                                                    In [479]:
from sklearn.feature_selection import RFE
                                                                    In [480]:
from sklearn.linear_model import LinearRegression
                                                                    In [481]:
model=LinearRegression()
                                                                    In [482]:
rfe_model=RFE(model,15)
                                                                    In [483]:
rfe_model.fit(X_train,y_train)
                                                                    Out[483]:
RFE(estimator=LinearRegression(), n_features_to_select=15)
                                                                    In [484]:
rfe_model.support_
                                                                    Out[484]:
array([False, False, False, True, False, True,
                                                  True, True,
        True, False, True, False, False, False, False, False,
       False, False, False, False, False, True, True, False,
       False, False, False, False, False, False, False, False,
       False, False, True, True, False, False, False, False,
```

```
False, False, False, True, False)
                                                                  In [485]:
X.columns
                                                                  Out[485]:
Index(['symboling', 'wheelbase', 'carlength', 'carwidth', 'carheight',
       'curbweight', 'cylindernumber', 'enginesize', 'boreratio', 'stroke',
       'compressionratio', 'horsepower', 'peakrpm', 'citympg', 'highwaympg'
       'fueltype_gas', 'aspiration_turbo', 'doornumber_two', 'carbody_hardt
op',
       'carbody hatchback', 'carbody sedan', 'carbody wagon', 'drivewheel f
wd',
       'drivewheel rwd', 'enginelocation rear', 'enginetype dohcv',
       'enginetype l', 'enginetype ohc', 'enginetype ohcf', 'enginetype ohc
ν',
       'enginetype rotor', 'fuelsystem 2bbl', 'fuelsystem 4bbl',
       'fuelsystem idi', 'fuelsystem_mfi', 'fuelsystem_mpfi',
       'fuelsystem spdi', 'fuelsystem spfi', 'car company audi',
       'car company bmw', 'car company buick', 'car company chevrolet',
       'car company dodge', 'car company honda', 'car company isuzu',
       'car company jaguar', 'car company mazda', 'car company mercury',
       'car company mitsubishi', 'car company nissan', 'car company peugeot
       'car_company_plymouth', 'car_company_porsche', 'car_company_renault'
       'car company saab', 'car company subaru', 'car company toyota',
       'car company volkswagen', 'car company volvo', 'doornumber two'],
      dtype='object')
                                                                  In [486]:
Top15Columns=X.columns[rfe_model.support_]
                                                                  In [487]:
```

True, False, False, False, False, False, True, False,

Top15Columns

Out[487]:

```
Index(['carwidth', 'curbweight', 'cylindernumber', 'enginesize', 'boreratio
١,
        'stroke', 'horsepower', 'enginelocation_rear', 'enginetype_dohcv',
       'car_company_audi', 'car_company_bmw', 'car_company_buick',
        'car company jaguar', 'car company porsche', 'car company volvo'],
      dtype='object')
                                                                        In [488]:
4
X_train=pd.DataFrame(X_train,columns=X.columns)
                                                                        In [489]:
X_test=pd.DataFrame(X_test,columns=X.columns)
                                                                        In [490]:
X_train=X_train[Top15Columns]
                                                                        In [491]:
X_test=X_test[Top15Columns]
                                                                        In [492]:
import statsmodels.api as sm
                                                                        In [493]:
X_train
```

Out[493]:

	ca r wi dt h	cu rb we igh t	cyli nde rnu mbe r	en gi ne siz e	bo re ra tio	st ro ke	ho rse po we r	engin eloca tion_ rear	engi nety pe_d ohcv	car_ com pany _aud i	car_c omp any_ bmw	car_c ompa ny_b uick	car_c ompa ny_ja guar	car_c ompa ny_po rsche	car_c ompa ny_v olvo
0	0. 34 28 57	0.1 83 59 5	0.2	0. 14 84 38	0. 74 60 32	0. 22 72 73	0.1 27 11 9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0. 19 04 76	0.1 17 29 7	0.2	0. 07 81 25	0. 23 01 59	0. 52 52 53	0.0 67 79 7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0. 24 76 19	0.0 98 17 3	0.2	0. 08 59 37	0. 23 01 59	0. 52 52 53	0.0 67 79 7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	0. 35 23 81	0.2 34 16 9	0.2	0. 10 54 69	0. 26 19 05	0. 61 11	0.0 00 00 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	0. 19 04 76	0.0 87 12 3	0.2	0. 07 81 25	0. 23 01 59	0. 52 52 53	0.0 67 79 7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1 5 9	1. 00 00 00	0.7 02 50 7	0.6	0. 51 95 31	1. 00 00 00	0. 46 46 46	1.0 00 00 0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0
1 6 0	0. 51 42 86	0.5 64 81 1	0.2	0. 27 73 44	0. 87 30 16	0. 48 48 48	0.2 62 71 2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0
1 6 1	0. 35 23 81	0.2 10 79 5	0.2	0. 15 23 44	0. 40 47 62	0. 61 11	0.1 39 83 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

	ca r wi dt h	cu rb we igh t	cyli nde rnu mbe r	en gi ne siz e	bo re ra tio	st ro ke	ho rse po we r	engin eloca tion_ rear	engi nety pe_d ohcv	car_ com pany _aud i	car_c omp any_ bmw	car_c ompa ny_b uick	car_c ompa ny_ja guar	car_c ompa ny_po rsche	car_c ompa ny_v olvo
1 6 2	0. 44 76 19	0.3 25 96 7	0.2	0. 15 62 50	0. 46 82 54	0. 58 58 59	0.0 88 98 3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1 6 3	0. 19 04 76	0.2 03 14 5	0.2	0. 10 93 75	0. 23 01 59	0. 52 52 53	0.0 67 79 7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

164 rows x 15 columns

y_train=pd.DataFrame(y_train).reset_index(drop=True)

y_train

Out[495]:

price

0 0.049849

1 0.061839

2 0.026588

3 0.071421

4 0.011271

··· ..

```
price
 159
       0.652463
 160
       0.282930
 161
       0.070925
       0.138523
 162
 163
       0.061839
164 rows x 1 columns
                                                                                             In [496]:
pvalues=sm.OLS(y_train,X_train).fit()
                                                                                             In [497]:
pvalues.summary()
                                                                                             Out[497]:
 OLS Regression Results
    Dep. Variable:
                               price
                                          R-squared (uncentered):
                                                                       0.971
           Model:
                                      Adj. R-squared (uncentered):
                               OLS
                                                                       0.968
          Method:
                                                       F-statistic:
                                                                       327.3
                       Least Squares
            Date:
                    Thu, 27 Jan 2022
                                                 Prob (F-statistic):
                                                                    8.07e-106
            Time:
                           09:26:34
                                                  Log-Likelihood:
                                                                       261.59
 No. Observations:
                                164
                                                            AIC:
                                                                       -493.2
     Df Residuals:
                                149
                                                            BIC:
                                                                       -446.7
        Df Model:
                                 15
 Covariance Type:
                           nonrobust
                                                           [0.025 0.975]
                                 std err
                           coef
                                                    P>|t|
```

carwidth	0.2120	0.048	4.381	0.000	0.116	0.308
curbweight	0.1875	0.052	3.596	0.000	0.084	0.290
cylindernumber	-0.1643	0.061	-2.694	0.008	-0.285	-0.044
enginesize	0.3026	0.081	3.742	0.000	0.143	0.462
boreratio	-0.0840	0.024	-3.437	0.001	-0.132	-0.036
stroke	-0.0392	0.020	-1.926	0.056	-0.079	0.001
horsepower	0.2397	0.053	4.546	0.000	0.135	0.344
enginelocation_rear	0.2773	0.063	4.390	0.000	0.153	0.402
enginetype_dohcv	-0.0377	0.079	-0.476	0.635	-0.194	0.119
car_company_audi	0.0607	0.025	2.474	0.014	0.012	0.109
car_company_bmw	0.2757	0.024	11.414	0.000	0.228	0.323
car_company_buick	0.2533	0.032	7.948	0.000	0.190	0.316
car_company_jaguar	0.1792	0.048	3.734	0.000	0.084	0.274
car_company_porsche	0.1503	0.054	2.795	0.006	0.044	0.257
car_company_volvo	0.0635	0.022	2.914	0.004	0.020	0.107
Omnibus: 38.9	01 Dur	bin-Wats	on:	2.128		
Prob(Omnibus): 0.0	00 Jarqu	e-Bera (J	B): 10	0.672		
Skew: 0.9	67	Prob(J	B): 1.3	8e-22		
Kurtosis: 6.3	15	Cond.	No.	27.8		

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

from statsmodels.stats.outliers_influence **import** variance_inflation_factor

list(range(0,len(X_train.columns)))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

In [500]:

Out[499]:

VIF=[]

for i in range(len(X_train.columns)):

vifvalue=variance_inflation_factor(X_train.values,i)

VIF.append(vifvalue)

results=pd.DataFrame()

results["Features"]=X_train.columns

results["VIF"]=VIF

results.sort_values("VIF",ascending=False)

Out[500]:

	Features	VIF
3	enginesize	30.339968
1	curbweight	28.574975
0	carwidth	27.252337
2	cylindernumber	15.862157
6	horsepower	13.584559
4	boreratio	11.514555

	Features	VIF
5	stroke	7.957269
13	car_company_porsche	5.449883
7	enginelocation_rear	4.512491
8	enginetype_dohcv	2.362695
11	car_company_buick	2.297328
12	car_company_jaguar	1.735591
9	car_company_audi	1.363560
10	car_company_bmw	1.319310
14	car_company_volvo	1.254465

results

Out[501]:

In [501]:

	Features	VIF
0	carwidth	27.252337
1	curbweight	28.574975
2	cylindernumber	15.862157
3	enginesize	30.339968
4	boreratio	11.514555
5	stroke	7.957269

	Features	VIF
6	horsepower	13.584559
7	enginelocation_rear	4.512491
8	enginetype_dohcv	2.362695
9	car_company_audi	1.363560
10	car_company_bmw	1.319310
11	car_company_buick	2.297328
12	car_company_jaguar	1.735591
13	car_company_porsche	5.449883
14	car_company_volvo	1.254465
		A
4		▼
X_tra	in=X_train.drop("bore	eratio",axis
	•	▼
X_tes	t=X_test.drop("borera	atio",axis="c
		_
	•	₹
X_tra	in.shape	
(164	1, 14)	

 $X_{test.shape}$

(41, 14)

Out[505]:

In [506]:

pvalues=sm.OLS(y_train,X_train).fit()
pvalues.summary()

Out[506]:

OLS Regression Resul	ts						
Dep. Variable:	pı	rice	R-squar	ed (unce	ntered):	0.9	68
Model:	C	LS Ad j	j. R-squar	ed (unce	ntered):	0.9	65
Method:	Least Squa	ares		F-8	statistic:	326	5.3
Date:	Thu, 27 Jan 20	022	P	rob (F-s	tatistic):	1.27e-1	04
Time:	09:28	:30		Log-Lik	elihood:	255.	34
No. Observations:		164			AIC:	-482	2.7
Df Residuals:		150			BIC:	-439	€.3
Df Model:		14					
Covariance Type:	nonrob	oust					
	coef	std err	t	P> t	[0.025	0.975]	
carwidt	h 0.1668	0.048	3.460	0.001	0.072	0.262	
curbweigh	nt 0.1558	0.053	2.933	0.004	0.051	0.261	
cylindernumbe	e r -0.1610	0.063	-2.551	0.012	-0.286	-0.036	
enginesiz	e 0.2718	0.083	3.266	0.001	0.107	0.436	

0.2345

horsepower

0.055

4.297 0.000

0.127

0.342

enginelocation_rear	0.2806	0.065	4.291	0.000	0.151	0.410
enginetype_dohcv	-0.0044	0.081	-0.055	0.957	-0.165	0.156
car_company_audi	0.0877	0.024	3.642	0.000	0.040	0.135
car_company_bmw	0.2814	0.025	11.282	0.000	0.232	0.331
car_company_buick	0.2868	0.031	9.131	0.000	0.225	0.349
car_company_jaguar	0.2235	0.048	4.671	0.000	0.129	0.318
car_company_porsche	0.1269	0.055	2.298	0.023	0.018	0.236
car_company_volvo	0.0643	0.023	2.848	0.005	0.020	0.109
Omnibus: 36.7	709 Dur	bin-Wats	on:	2.045		
Prob(Omnibus): 0.0	000 Jarqu	e-Bera (J	B): 9	3.492		
Skew: 0.9	916	Prob(J	B): 4.9	9e-21		
Kurtosis: 6.2	213	Cond.	No.	23.9		

[1] R^2 is computed without centering (uncentered) since the model does not contain a constant.

[2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [508]:

VIF=[]

for i in range(len(X_train.columns)):

 $vifvalue = variance_inflation_factor(X_train.values, i)$

VIF.append(vifvalue)

results=pd.DataFrame()

 $results \hbox{\tt ["Features"]=X_train.columns}$

results["VIF"]=VIF

results.sort_values("VIF",ascending=False)

	Features	VIF
3	enginesize	29.967218
1	curbweight	27.683483
0	carwidth	25.240891
2	cylindernumber	15.858262
5	horsepower	13.573386
4	stroke	7.566429
12	car_company_porsche	5.362649
6	enginelocation_rear	4.511440
7	enginetype_dohcv	2.327402
10	car_company_buick	2.082103
11	car_company_jaguar	1.610138
9	car_company_bmw	1.312935
13	car_company_volvo	1.254343
8	car_company_audi	1.224016

X_train=X_train.drop("stroke",axis="columns")
X_test=X_test.drop("stroke",axis="columns")

In [510]:

pvalues=sm.OLS(y_train,X_train).fit()
pvalues.summary()

Out[510]:

OLS Regression Results								
Dep. Variable:	ariable: price			R-squared (uncentered):				
Model:	C	DLS Ad j	j. R-squar	ed (unce	ntered):	0.9	64	
Method:	Least Squa	ares		F-9	statistic:	337	7.2	
Date: Th	nu, 27 Jan 20	022	P	rob (F-s	tatistic):	2.14e-1	04	
Time:	09:30):59		Log-Lik	elihood:	251.	55	
No. Observations:		164			AIC:	-477	7.1	
Df Residuals:		151			BIC:	-436	5.8	
Df Model:		13						
Covariance Type:	nonrob	oust						
	coef	std err	t	P> t	[0.025	0.975]		
carwidth	0.1193	0.046	2.611	0.010	0.029	0.210		
curbweight	0.1502	0.054	2.774	0.006	0.043	0.257		
cylindernumber	-0.2329	0.058	-4.003	0.000	-0.348	-0.118		
enginesize	0.2982	0.084	3.539	0.001	0.132	0.465		
horsepower	0.2396	0.056	4.307	0.000	0.130	0.350		
enginelocation_rear	0.2800	0.067	4.198	0.000	0.148	0.412		
enginetype_dohcv	0.0353	0.082	0.433	0.666	-0.126	0.196		
car_company_audi	0.0988	0.024	4.085	0.000	0.051	0.147		
car_company_bmw	0.2913	0.025	11.574	0.000	0.242	0.341		

car_company_bu	iick	0.3123	0.031	10.229	0.000	0.252	0.373
car_company_jag	uar	0.2551	0.047	5.396	0.000	0.162	0.349
car_company_pors	che	0.1375	0.056	2.448	0.016	0.027	0.249
car_company_vo	olvo	0.0779	0.022	3.476	0.001	0.034	0.122
Omnibus:	35.03	2 Dur	bin-Watse	on:	2.024		
Prob(Omnibus):	0.00	0 Jarqu	e-Bera (J	B): 90	0.028		
Skew:	0.86	9	Prob(J	B): 2.82	2e-20		
Kurtosis:	6.18	7	Cond. I	No.	19.6		

[1] R² is computed without centering (uncentered) since the model does not contain a constant.

[2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

VIF=[]

for i in range(len(X_train.columns)):

vifvalue=variance_inflation_factor(X_train.values,i)

VIF.append(vifvalue)

results=pd.DataFrame()

results["Features"]=X_train.columns

results["VIF"]=VIF

results.sort_values("VIF",ascending=False)

Out[511]:

	Features	VIF
3	enginesize	29.540020
1	curbweight	27.639910
0	carwidth	21.779889

	Features	VIF				
4	horsepower	13.556504				
2	cylindernumber	12.953959				
11	car_company_porsche	5.334717				
5	enginelocation_rear	4.511385				
6	enginetype_dohcv	2.248999				
9	car_company_buick	1.889715				
10	car_company_jaguar	1.510843				
8	car_company_bmw	1.284272				
12	car_company_volvo	1.189612				
7	car_company_audi	1.187264				
4	•	A			In	[513]:
X_tra		ndernumbe	er",axis="columns")			
X_tes	st=X_test.drop(" <mark>cylind</mark>	ernumber"	,axis="columns")		_	F = 1
	ues=sm.OLS(y_train,X_ ues.summary()	_train).fit()				[514]:
OL	S Regression Results				Out	[514]:
	Dep. Variable:	price	R-squared (uncentered):	0.963		
	Model:	OLS	Adj. R-squared (uncentered):	0.960		

Method:	Least Squa	ares		F-statistic:			1.3
Date: T	hu, 27 Jan 20	022	P	Prob (F-statistic):			02
Time:	09:34	:19		Log-Likelihood:			28
No. Observations:		164			-462	2.6	
Df Residuals:		152			BIC:	-425	5.4
Df Model:		12					
Covariance Type:	nonrob	oust					
	coef	std err	t	P> t	[0.025	0.975]	
carwidth	0.0519	0.045	1.166	0.246	-0.036	0.140	
curbweight	0.1954	0.056	3.520	0.001	0.086	0.305	
enginesize	0.0990	0.071	1.389	0.167	-0.042	0.240	
horsepower	0.2431	0.058	4.169	0.000	0.128	0.358	
enginelocation_rear	0.2449	0.069	3.534	0.001	0.108	0.382	
enginetype_dohcv	-0.0051	0.085	-0.060	0.952	-0.173	0.163	
car_company_audi	0.0991	0.025	3.909	0.000	0.049	0.149	
car_company_bmw	0.2945	0.026	11.170	0.000	0.242	0.347	
car_company_buick	0.3535	0.030	11.735	0.000	0.294	0.413	
car_company_jaguar	0.2716	0.049	5.501	0.000	0.174	0.369	
car_company_porsche	0.1739	0.058	2.993	0.003	0.059	0.289	
car_company_volvo	0.0869	0.023	3.716	0.000	0.041	0.133	
Omnibus: 55.	065 Du i	rbin-Wats	son:	2.054			

Prob(Omnibus): 0.000 **Jarque-Bera (JB):** 172.858

Skew: 1.308 **Prob(JB):** 2.91e-38

Kurtosis: 7.295 **Cond. No.** 17.6

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [515]:

VIF=[]

for i in range(len(X_train.columns)):

vifvalue=variance_inflation_factor(X_train.values,i)

VIF.append(vifvalue)

results=pd.DataFrame()

results["Features"]=X_train.columns

results["VIF"]=VIF

results.sort_values("VIF",ascending=False)

Out[515]:

	Features	VIF
1	curbweight	26.439464
2	enginesize	19.238065
0	carwidth	18.820871
3	horsepower	13.553243
10	car_company_porsche	5.195056
4	enginelocation_rear	4.433400
5	enginetype_dohcv	2.214503
8	car_company_buick	1.674605
9	car_company_jaguar	1.499397

VIF **Features** 7 car_company_bmw 1.282924 6 car_company_audi 1.187254 11 car_company_volvo 1.177738 In [518]: X_train=X_train.drop("enginesize",axis="columns") X_test=X_test.drop("enginesize",axis="columns") In [519]: pvalues=sm.OLS(y_train,X_train).fit() pvalues.summary() Out[519]: **OLS** Regression Results Dep. Variable: price R-squared (uncentered): 0.963 Model: OLS Adj. R-squared (uncentered): 0.960 Method: Least Squares F-statistic: 359.0 **Prob** (F-statistic): 3.05e-103 Date: Thu, 27 Jan 2022 Time: 09:37:11 Log-Likelihood: 242.25 No. Observations: AIC: -462.5 164 **Df Residuals:** BIC: -428.4 153 11 **Df Model: Covariance Type:** nonrobust std err [0.025 0.975] coef P>|t|carwidth 0.0634 -0.023 0.150 0.044 1.446 0.150 4.043 curbweight 0.2165 0.054 0.000 0.111 0.322

horsepower	0.2808	0.052	5.427	0.000	0.179	0.383
enginelocation_rear	0.2550	0.069	3.688	0.000	0.118	0.392
enginetype_dohcv	-0.0179	0.085	-0.211	0.833	-0.185	0.149
car_company_audi	0.0942	0.025	3.739	0.000	0.044	0.144
car_company_bmw	0.3037	0.026	11.863	0.000	0.253	0.354
car_company_buick	0.3727	0.027	13.877	0.000	0.320	0.426
car_company_jaguar	0.3011	0.045	6.732	0.000	0.213	0.389
car_company_porsche	0.1740	0.058	2.985	0.003	0.059	0.289
car_company_volvo	0.0829	0.023	3.560	0.000	0.037	0.129
Omnibus: 59.4	.38 Dur	bin-Wats	on:	2.091		
Prob(Omnibus): 0.0	00 Jarqu	e-Bera (J	B): 22	5.933		
Skew: 1.3	39	Prob(J	B): 8.7	0e-50		
Kurtosis: 8.0	188	Cond.	No.	16.3		

[1] \mathbb{R}^2 is computed without centering (uncentered) since the model does not contain a constant.

[2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

VIF=[]

for i in range(len(X_train.columns)):

vifvalue=variance_inflation_factor(X_train.values,i)

VIF.append(vifvalue)

results=pd.DataFrame()

results["Features"]=X_train.columns

results["VIF"]=VIF

OLS Regression Results

Out[520]:

Out[522]:

	Features	VIF
1	curbweight	24.457594
0	carwidth	18.166648
2	horsepower	10.610975
9	car_company_porsche	5.195050
3	enginelocation_rear	4.384744
4	enginetype_dohcv	2.188629
7	car_company_buick	1.323009
8	car_company_jaguar	1.222734
6	car_company_bmw	1.202203
5	car_company_audi	1.163552
10	car_company_volvo	1.159505
4	Þ	▼
	n=X_train.drop(" <mark>curl</mark> =X_test.drop(" <mark>curbw</mark>	
		,
4	Þ	
	es=sm.OLS(y_train,X __ es.summary()	_train).fit()

Dep. Variable:	nı	rice	R-squar	ed (unce	ntered):	0.9	59
Model:	•		. R-squar			0.9	
Method:	Least Squa		•		statistic:	357	.7
Date: Th	nu, 27 Jan 20		P	rob (F-s	tatistic):	3.63e-1	01
Time:	09:38	:37		Log-Lik	elihood:	233.	93
No. Observations:		164			AIC:	-447	.9
Df Residuals:		154			BIC:	-416	5.9
Df Model:		10					
Covariance Type:	nonrob	oust					
	coef	std err	t	P> t	[0.025	0.975]	
carwidth	0.2034	0.028	7.197	0.000	0.148	0.259	
horsepower	0.3807	0.048	7.985	0.000	0.287	0.475	
enginelocation_rear	0.2712	0.072	3.747	0.000	0.128	0.414	
enginetype_dohcv	-0.0785	0.087	-0.899	0.370	-0.251	0.094	
car_company_audi	0.0774	0.026	2.971	0.003	0.026	0.129	
car_company_bmw	0.3161	0.027	11.860	0.000	0.263	0.369	
car_company_buick	0.3929	0.028	14.201	0.000	0.338	0.448	
car_company_jaguar	0.3309	0.046	7.155	0.000	0.240	0.422	
car_company_porsche	0.1469	0.061	2.418	0.017	0.027	0.267	
car_company_volvo	0.0902	0.024	3.708	0.000	0.042	0.138	
Omnibus: 52.9	980 D ui	rbin-Wats	on:	2.236			
Prob(Omnibus): 0.0	000 Jarq ı	ue-Bera (J	B): 15	4.272			
Skew: 1.2	287	Prob(J	(B): 3.1	6e-34			

Kurtosis: 6.994 **Cond. No.** 12.9

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [524]:

VIF=[]

for i in range(len(X_train.columns)):

vifvalue=variance_inflation_factor(X_train.values,i)

VIF.append(vifvalue)

results=pd.DataFrame()

results["Features"]=X_train.columns

results["VIF"]=VIF

results.sort_values("VIF",ascending=False)

Out[524]:

	Features	VIF
1	horsepower	8.191734
0	carwidth	6.854279
8	car_company_porsche	5.126040
2	enginelocation_rear	4.369984
3	enginetype_dohcv	2.119965
6	car_company_buick	1.277027
7	car_company_jaguar	1.189413
5	car_company_bmw	1.184970
9	car_company_volvo	1.152389
4	car_company_audi	1.132036

 $X_train=X_train.drop("carwidth",axis="columns")$ X_test=X_test.drop("carwidth",axis="columns")

In [553]:

enginetype_dohcv

car_company_bmw

car_company_buick

car_company_jaguar

-0.2203

0.2653

0.4265

0.2391

0.106

0.032

0.032

0.056

pvalues=sm.OLS(y_train,X_train).fit()

Out[553]:

pvalues.summary()							
sults							
pi	rice	R-squar	ed (unce	ntered):	0.93	6	
C	DLS Ad j	j. R-squar	ed (unce	ntered):	0.93	3	
Least Squa	ares		F-9	statistic:	325.	.6	
Thu, 27 Jan 20	022	P	rob (F-s	tatistic):	4.90e-9	0	
10:05	:33		Log-Lik	elihood:	197.4	0	
	164			AIC:	-380.	.8	
	157			BIC:	-359.	.1	
	7						
nonrob	oust						
coef	std err	t	P> t	[0.025	0.975]		
wer 0.7376	0.027	27.243	0.000	0.684	0.791		
ear 0.1105	0.086	1.285	0.201	-0.059	0.280		
	Least Squa Thu, 27 Jan 20 10:05 nonrot coef	DLS Adj Least Squares Thu, 27 Jan 2022 10:05:33 164 157 7 nonrobust coef std err wer 0.7376 0.027	price R-squar OLS Adj. R-squar Least Squares Thu, 27 Jan 2022 P 10:05:33 164 157 7 nonrobust coef std err t wer 0.7376 0.027 27.243	price R-squared (unce OLS Adj. R-squared (unce Least Squares F-s Thu, 27 Jan 2022 Prob (F-s 10:05:33 Log-Lik 164 157 7 nonrobust coef std err t P> t wer 0.7376 0.027 27.243 0.000	Price R-squared (uncentered): OLS Adj. R-squared (uncentered): Least Squares F-statistic: Thu, 27 Jan 2022 Prob (F-statistic): 10:05:33 Log-Likelihood: 164 AIC: 157 BIC: 7 nonrobust coef std err t P> t [0.025 wer 0.7376 0.027 27.243 0.000 0.684	price R-squared (uncentered): 0.93 OLS Adj. R-squared (uncentered): 0.93 Least Squares F-statistic: 325. Thu, 27 Jan 2022 Prob (F-statistic): 4.90e-9 10:05:33 Log-Likelihood: 197.4 164 AIC: -380. 157 BIC: -359. 7 nonrobust coef std err t P> t [0.025 0.975] wer 0.7376 0.027 27.243 0.000 0.684 0.791	

0.040

0.000

0.000

0.000

-2.073

8.226

13.219

4.280

-0.430

0.202

0.363

0.129

-0.010

0.329

0.490

0.349

```
car_company_porsche
                       0.1351
                                 0.075
                                          1.803 0.073
                                                         -0.013
                                                                  0.283
      Omnibus:
                 32.059
                            Durbin-Watson:
                                                2.198
Prob(Omnibus):
                  0.000
                                               49.111
                          Jarque-Bera (JB):
         Skew:
                   1.031
                                  Prob(JB):
                                             2.17e-11
      Kurtosis:
                  4.714
                                 Cond. No.
                                                 7.53
```

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

for i in range(len(X_train.columns)):

vifvalue=variance_inflation_factor(X_train.values,i)

VIF.append(vifvalue)

results=pd.DataFrame()

results["Features"]=X_train.columns

results["VIF"]=VIF

results.sort_values("VIF",ascending=False)

Out[554]:

	Features	VIF
6	car_company_porsche	5.098936
1	enginelocation_rear	4.029362
2	enginetype_dohcv	2.050239
0	horsepower	1.724928
4	car_company_buick	1.133970
5	car_company_jaguar	1.133280

```
VIF
              Features
 3
      car_company_bmw
                        1.132587
                                                                                   In [557]:
VIF=[]
for i in range(len(X_train.columns)):
 vifvalue=variance_inflation_factor(X_train.values,i)
 VIF.append(vifvalue)
results=pd.DataFrame()
results["Features"]=X_train.columns
results["VIF"]=VIF
results.sort_values("VIF",ascending=False)
                                                                                   Out[557]:
                            VIF
              Features
    car_company_porsche
                        5.098936
 1
                        4.029362
      enginelocation_rear
 2
        enginetype_dohcv
                        2.050239
 0
                        1.724928
             horsepower
 4
      car_company_buick
                       1.133970
 5
      car_company_jaguar
                        1.133280
 3
      car_company_bmw
                        1.132587
                                                                                    In [558]:
X_train.columns
                                                                                   Out[558]:
Index(['horsepower', 'enginelocation rear', 'enginetype dohcv',
         'car_company_bmw', 'car_company_buick', 'car_company_jaguar',
```

```
'car_company_porsche'],
         dtype='object')
                                                                                                      In [559]:
c_df.head()
                                                                                                      Out[559]:
                                                                                                    ca
                                                                                 ca
                                                                                             ca
                                                       ca
                                                             car
                                                                                       ca
                                                                                                                ca
                                                                   car
                                                                                             r_
                                                                                                    r_
                                                                                                         car
                                     ľi
                                                                                                    co
                                                                   _co
                                                                                 co
                                                                                             co
                                                                                                         _co
                                                                          om
                                                       co
                                                             om
                                                                                       co
                                                                                                                co
     m
                                b
                                                                                                    m
                                                                   mp
                                                                                 m
                                                                                             m
                                                                                                         mp
                                                       m
                                                              pa
                                                                           pa
     b
                                          n
                                                                                 pa
                                                                                                   pa
                                                                                                         any
                                                                                             pa
              l
                                                             ny
                                                                           ny
                                                                                                                pa
                                                                                                   ny
                                                                                                         _vo
              b
                  n
                                     u
                                                       ny
                                                                                       ny
                                                                                                                ny
                                                              _p
                                                                           _p
     li
         m
                                                                                                          lks
                                                                   ply
                                                                                                    _t
                                     m
                                                       _n
                                                              eu
                                                                          ors
                                                                                                                _v
                                g
h
     n
                                                                   mo
                                                                                             ub
                                                                                                          wa
                                                                                 en
                                                                                                   oy
                                     be
                                                       iss
                                                              ge
                                                                                       aa
                                                                                                                 ol
                                                                                aul
                                                                   uth
                                                                                                    ot
                                                                                                         gen
                                                                                             ar
                                                       an
                                                              ot
                                                                                        b
                                                                                                                vo
              0
                  0
                       0
                                0
                                          0
                                               0
                                          .
2
6
0
3
7
7
              0
5
8
3
                       3
                                               6
                  1
                                1
                                               6
    3
                                                        0
                                                               0
                                                                     0
                                                                            0
                                                                                  0
                                                                                        0
                                                                                              0
                                                                                                    0
                  3
                       6
                                1
                                               4
                  4
                       6
6
                                1
                                7
                                               8
              0
                  0
                       0
                                0
                                          0
                                               0
                                          .
2
6
0
3
7
7
                                               6
                  1
                                1
                       1
                           8
                                               6
 1 3
                                                              0
                                                                     0
                                                                            0
                                                                                  0
                                                                                        0
                                                                                              0
                                                                                                    0
                                                                                                           0
                                                                                                                 0
                                                        0
                  3
4
3
                       6
                                1
                                               4
                       6
6
                                1
                                7
                                               8
                       7
                                1
              0
                  0
                       0
                                0
                                          0
                                               0
                           5
2
                       4
                                5
1
                  4
4
9
2
5
                                          3
4
3
              2
3
0
                                               0
 2 1
                                                        0
                                                               0
                                                                     0
                                                                            0
                                                                                  0
                                                                                        0
                                                                                              0
                                                                                                     0
                                                                                                           0
                                                                                                                 0
                       3
                                7
                                               0
                                          3
9
                       3
3
                                8
                                4
                                               0
              0
                  0
                       0
                                0
                                               0
                                          0
                      4
9
1
                  5
2
9
8
5
1
              3
8
4
8
4
                                3
2
9
3
2
5
                                           1
                                          8
                                               6
 3 2
                                                        0
                                                               0
                                                                     0
                                                                            0
                                                                                  0
                                                                                        0
                                                                                              0
                                                                                                    0
                                                                                                           0
                                                                                                                 0
                                          1
                                               4
```

2

6 6 7

```
ca
                                                                      ca
                                                                                ca
                c
                                                ca
                                                    car
                                                               car
                                                                           ca
                                                                                                ca
                                                          car
                                                                                     r_
                                                                                          car
                                                                      r_
                                                                                r_
            h
                                                r_
                                                                           \mathbf{r}_{-}
                                                                                                \mathbf{r}_{-}
           e r r r r r h l e i i
                                                          _co
                                                                                \mathbf{co}
                                                                                     co
                                                                                          _co
                                               \mathbf{co}
                                                    \mathbf{om}
                                                                om
                                                                           co
                                                                                                \mathbf{co}
    m
                                                          mp
                                                                      m
                                                                                          mp
                                                                                m
                                                                                     m
                               de
                                               m
                                                     pa
                                                                                                m
                                                                pa
                                                                           m
                           w
e
                                    n
                                                                                          any
                                                          an
                                                                     pa
                                                                                pa
                                                                                     pa
                               rn
                                               pa
                                                     ny
                                                                                                pa
        u
                               u
                                               ny
                                                                           ny
                                                                                                ny
    li
       m
                   d
                            i
                                                          ply
                                                                                          lks
                g
t
            a
                                m
                                               _n
                                                     eu
                                                               ors
                                                                                                 _v
                    t
                                                          mo
                                                                      en
                                                                                ub
                                                                                     oy
                                                                                           wa
                               be
                                               iss
                                                     ge
                                                                ch
                                                                           aa
                                                                                                 ol
                   h
                                                          uth
                                                                     aul
                                                                                ar
                                                                                     ot
                                                                                          gen
                                               an
                                                     ot
                                                                           b
                                                                                                vo
            0
               0 0
                            0
                                    0
                                        0
           3 5 5 5
7 2 0 4
2 9 8 .
                                    2
                                    8
                           1
                                       6
                                              0
                                                   0
                                                         0
                                                                 0 0
                                                                           0
                                                                              0
                                                                                      0
               9
8
5
                   8
3
3
                            8
                                        4
                                    0
                            3
                                        8
                                    1
5 rows x 61 columns
                                                                                       In [560]:
model=LinearRegression()
                                                                                       In [561]:
model.fit(X_train,y_train)
                                                                                       Out[561]:
LinearRegression()
                                                                                       In [562]:
model.coef_
                                                                                       Out[562]:
array([[ 0.68554384, 0.12465035, -0.18828237, 0.27183568, 0.4332186,
            0.2613242 , 0.14057525]])
                                                                                       In [563]:
```

```
results["Features"]=X_train.columns
                                                                         In [564]:
X_train.columns
                                                                         Out[564]:
Index(['horsepower', 'enginelocation_rear', 'enginetype_dohcv',
        'car_company_bmw', 'car_company_buick', 'car_company_jaguar',
        'car company porsche'],
      dtype='object')
                                                                         In [565]:
X_train.columns
                                                                         Out[565]:
Index(['horsepower', 'enginelocation_rear', 'enginetype_dohcv',
        'car_company_bmw', 'car_company_buick', 'car_company_jaguar',
        'car company porsche'],
      dtype='object')
                                                                         In [568]:
results["Importance"]=model.coef_.reshape(7,)
                                                                         In [569]:
results.sort_values(by="Importance",ascending=False)
                                                                         Out[569]:
            Features Importance
0
           horsepower
                       0.685544
```

results=pd.DataFrame()

car_company_buick

0.433219

	Features	Importance
3	car_company_bmw	0.271836
5	car_company_jaguar	0.261324
6	car_company_porsche	0.140575
1	enginelocation_rear	0.124650
2	enginetype dohcy	-0.188282

Here, above are the features that makes car price huge among all car drives.