Modules over monoid algebras and bimonoids in species

Swapneel Mahajan

http://www.math.iitb.ac.in/~swapneel

1 Characteristic operations

Recall that the definition of a bimonoid makes use of the Tits monoid.

On the other hand, there is a bimonoid, namely, Σ , which is itself built out of faces.

This double occurrence of faces acquires formal meaning now.

We show that elements of Σ give rise to characteristic operations on bimonoids.

1.1 Characteristic operations

Let h be a bimonoid.

Given $z \in \Sigma[A]$ and $h \in h[A]$, define an element $z \cdot h \in h[A]$ as follows.

First, write

$$z = \sum_{F: F > A} a^{F/A} \mathbf{H}_{F/A}$$

for scalars $a^{F/A}$.

Then set

(1)
$$z \cdot h := \sum_{F: F \ge A} a^{F/A} \mu_A^F \Delta_A^F(h).$$

In particular,

$$\mathtt{H}_{F/A} \cdot h := \mu_A^F \Delta_A^F(h).$$

We refer to these as characteristic operations.

Recall that for any face A, the component $\Sigma[A]$ is an algebra, which can be identified with the Tits algebra of the arrangement \mathcal{A}_A .

Lemma 1. The following properties hold for any bimonoid h.

• For any $h \in h[A]$,

$$\mathbf{H}_{A/A} \cdot h = h.$$

• If h is cocommutative, then for any $z,w\in \Sigma[A]$ and $h\in {\mathsf{h}}[A],$

(3)
$$(z \cdot w) \cdot h = z \cdot (w \cdot h).$$

• If h is commutative, then for any $z,w\in \Sigma[A]$ and $h\in {\mathsf{h}}[A],$

(4)
$$(z \cdot w) \cdot h = w \cdot (z \cdot h).$$

In other words, when h is cocommutative, (1) defines a left action of the Tits algebra $\Sigma[A]$ on the space h[A]. When h is commutative, there is a right action of $\Sigma[A]$ on h[A] given by $h \cdot z := z \cdot h$.

Proof. Statement (2) follows from (co)unitality. The remaining statements are linear in z and w, so we assume them to be basis elements.

For (3), take
$$z={\rm H}_{G/A}$$
 and $w={\rm H}_{F/A}$. Then

$$z \cdot (w \cdot h) = \mu_A^G \Delta_A^G \mu_A^F \Delta_A^F (h)$$

$$= \mu_A^G \mu_G^{GF} \beta_{GF,FG} \Delta_F^{FG} \Delta_A^F (h)$$

$$= \mu_A^{GF} \beta_{GF,FG} \Delta_A^{FG} (h)$$

$$= \mu_A^{GF} \Delta_A^{GF} (h)$$

$$= \mu_A^{GF} \Delta_A^{GF} (h)$$

$$= (z \cdot w) \cdot h.$$

We used the bimonoid axiom, then (co)associativity, and finally cocommutativity.

The calculation for (4) proceeds similarly, except at the end, where β merges with μ instead of Δ .

Example. Recall that Σ is a cocommutative bimonoid.

Thus we may take $h=\Sigma$, resulting in a left action of the Tits algebra $\Sigma[A]$ on itself.

This coincides with the usual action.

Indeed, for faces F and G greater than A,

$$\mathbf{H}_{F/A} \cdot \mathbf{H}_{G/A} = \mu_A^F \Delta_A^F (\mathbf{H}_{G/A}) = \mu_A^F (\mathbf{H}_{FG/F}) = \mathbf{H}_{FG/A}.$$

Now take $h := \Gamma$.

This is also a cocommutative bimonoid.

One may check that the action of ${\rm H}_{F/A}$ sends ${\rm H}_{C/A}$ to ${\rm H}_{FC/A}.$

This is the usual left action of the Tits algebra on the module of chambers.

1.2 Review of bimonoid properties

Recall the following properties of a bimonoid h.

For any faces $A \leq F$ and $A \leq G$,

$$\Delta_A^F \mu_A^F = \mathrm{id},$$

$$\Delta_A^F \mu_A^G \Delta_A^G \mu_A^F = \mu_F^{FG} \Delta_F^{FG},$$

and, if h is commutative, then

(7)
$$\mu_A^G \Delta_A^G \mu_A^F = \mu_A^{FG} \Delta_F^{FG},$$

and, if h is cocommutative, then

(8)
$$\Delta_A^F \mu_A^G \Delta_A^G = \mu_F^{FG} \Delta_A^{FG}.$$

If $A \leq F \leq G$, then

(9)
$$\Delta_A^G \mu_A^F = \Delta_F^G$$
 and $\Delta_A^F \mu_A^G = \mu_F^G$.

1.3 Interaction with the bimonoid structure

We use the above properties to study how characteristic operations interact with the product and coproduct of Σ and h.

More precisely, we fix a pair of faces $F \geq A$.

We take an element z in either $\Sigma[F]$ or $\Sigma[A]$, and an element h in either h[F] or h[A].

There are two ways in which z and h can interact.

For instance, if $z \in \Sigma[F]$ and $h \in h[A]$, then we can consider $\mu_A^F(z) \cdot h$ and $z \cdot \Delta_A^F(h)$.

The results below explain the relations between these two interactions.

Proposition 1. Let h be a bimonoid. Let $A \leq F$. Then:

(i) For any $z \in \Sigma[F]$ and $h \in h[A]$,

(10)
$$\mu_A^F(z) \cdot h = \mu_A^F(z \cdot \Delta_A^F(h)).$$

(ii) For any $z \in \Sigma[A]$ and $h \in h[F]$,

(11)
$$\Delta_A^F(z) \cdot h = \Delta_A^F(z \cdot \mu_A^F(h)),$$

and if h is commutative, then

(12)
$$z \cdot \mu_A^F(h) = \mu_A^F ig(\Delta_A^F(z) \cdot h ig).$$

(iii) If h is cocommutative, then for any $z \in \Sigma[A]$ and $h \in h[A]$,

(13)
$$\Delta_A^F(z \cdot h) = \Delta_A^F(z) \cdot \Delta_A^F(h).$$

Proof. All statements are linear in z, so we may assume z is a basis element in each case.

(i) We assume $z=\mathrm{H}_{G/F}.$ We have

$$\mu_A^F \left(z \cdot \Delta_A^F (h) \right) = (\mu_A^F \mu_F^G \Delta_F^G \Delta_A^F)(h)$$

$$= (\mu_A^G \Delta_A^G)(h)$$

$$= \mathbb{H}_{G/A} \cdot h$$

$$= \mu_A^F (z) \cdot h.$$

We used (co)associativity.

(ii) We assume $z=\mathrm{H}_{G/A}.$ We have

$$\begin{split} \Delta_A^F \Big(z \cdot \mu_A^F(h)\Big) &= (\Delta_A^F \mu_A^G \Delta_A^G \mu_A^F)(h) \\ &= (\mu_F^{FG} \Delta_F^{FG})(h) \\ &= \mathbb{H}_{FG/F} \cdot h \\ &= \Delta_A^F(z) \cdot h. \end{split}$$

We used (6). In addition, if h is commutative,

$$\begin{split} \mu_A^F \Big(\Delta_A^F(z) \cdot h \Big) &= \mu_A^F \Big(\mathbf{H}_{FG/F} \cdot h \Big) \\ &= (\mu_A^F \mu_F^{FG} \Delta_F^{FG})(h) \\ &= (\mu_A^F G \Delta_F^{FG})(h) \\ &= (\mu_A^G \Delta_A^G \mu_A^F)(h) \\ &= \mathbf{H}_{G/A} \cdot \mu_A^F(h) \\ &= z \cdot \mu_A^F(h). \end{split}$$

We used (7) and associativity.

(iii) We again assume $z={\mathrm{H}}_{G/A}.$ We have

$$\begin{split} \Delta_A^F(z \cdot h) &= (\Delta_A^F \mu_A^G \Delta_A^G)(h) \\ &= (\mu_F^{FG} \Delta_A^{FG})(h) \\ &= (\mu_F^{FG} \Delta_F^{FG} \Delta_A^F)(h) \\ &= \mathrm{H}_{FG/F} \cdot \Delta_A^F(h) \\ &= \Delta_A^F(z) \cdot \Delta_A^F(h). \end{split}$$

We used (8) and coassociativity.

The following properties complement (10)–(13) (and follow from the first of these).

Corollary 1. Let h be a bimonoid. Let $A \leq F$. Then:

(i) For any $z \in \Sigma[F]$ and $h \in h[A]$,

(14)
$$z \cdot \Delta_A^F(h) = \Delta_A^F(\mu_A^F(z) \cdot h).$$

(ii) For any $z \in \Sigma[F]$ and $h \in h[F]$,

(15)
$$\mu_A^F(z \cdot h) = \mu_A^F(z) \cdot \mu_A^F(h).$$

Proof. Equation (14) follows by applying Δ_A^F to both sides of (10), in view of (5). Equation (15) follows by replacing h in (10) for $\mu_A^F(h)$ and employing (5).

2 Commutative characteristic operations

Recall that bicommutative bimonoids can be formulated using the Birkhoff monoid.

On the other hand, there is a bimonoid, namely, Π , which is itself built out of flats.

Formally, elements of Π give rise to operations on bicommutative bimonoids.

This is the commutative analogue of the characteristic operations introduced in Section 1.

2.1 Commutative characteristic operations

Let h be a bicommutative bimonoid.

Given $z \in \Pi[\mathbf{Z}]$ and $h \in \mathsf{h}[\mathbf{Z}]$, define an element $z \cdot h \in \mathsf{h}[\mathbf{Z}]$ as follows.

First, write

$$z = \sum_{\mathbf{X}: \, \mathbf{X} > \mathbf{Z}} a^{\mathbf{X}/\mathbf{Z}} \mathbf{H}_{\mathbf{X}/\mathbf{Z}}$$

for scalars $a^{X/Z}$.

Then set

(16)
$$z \cdot h := \sum_{X: X > Z} a^{X/Z} \mu_Z^X \Delta_Z^X(h).$$

In particular,

$$\mathbf{H}_{\mathbf{X}/\mathbf{Z}} \cdot h := \mu_{\mathbf{Z}}^{\mathbf{X}} \Delta_{\mathbf{Z}}^{\mathbf{X}}(h).$$

We refer to these as commutative characteristic operations.

Recall that for any flat Z, the component $\Pi[Z]$ is an algebra, which can be identified with the Birkhoff algebra of the arrangement \mathcal{A}_Z .

Lemma 2. For any $z,w\in\Pi[\mathbf{Z}]$ and $h\in\mathsf{h}[\mathbf{Z}]$,

(17)
$$(z \cdot w) \cdot h = z \cdot (w \cdot h)$$
 and $H_{\mathbb{Z}/\mathbb{Z}} \cdot h = h$.

In other words, (16) defines an action of the Birkhoff algebra $\Pi[Z]$ on the space h[Z].

Since $\Pi[Z]$ is a commutative algebra, there is no distinction between left and right actions.

Proof. The second statement follows from (co)unitality. It suffices to check the first statement on basis elements. Take $z={\rm H}_{{
m Y}/{
m Z}}$ and $w={\rm H}_{{
m X}/{
m Z}}$. Then

$$z \cdot (w \cdot h) = \mu_{\mathbf{Z}}^{\mathbf{Y}} \Delta_{\mathbf{Z}}^{\mathbf{Y}} \mu_{\mathbf{Z}}^{\mathbf{X}} \Delta_{\mathbf{Z}}^{\mathbf{X}}(h)$$

$$= \mu_{\mathbf{Z}}^{\mathbf{Y}} \mu_{\mathbf{Y}}^{\mathbf{Y} \vee \mathbf{X}} \Delta_{\mathbf{X}}^{\mathbf{X} \vee \mathbf{Y}} \Delta_{\mathbf{Z}}^{\mathbf{X}}(h)$$

$$= \mu_{\mathbf{Z}}^{\mathbf{Y} \vee \mathbf{X}} \Delta_{\mathbf{Z}}^{\mathbf{Y} \vee \mathbf{X}}(h)$$

$$= (z \cdot w) \cdot h.$$

We used the bicommutative bimonoid axiom followed by (co)associativity.

Example. Recall that Π is a bicommutative bimonoid. Thus, we may take $h := \Pi$, resulting in an action of $\Pi[Z]$ on itself. This coincides with the usual action. Indeed, for flats X and Y greater than Z,

$$\mathtt{H}_{\mathbf{X}/\mathbf{Z}} \bullet \mathtt{H}_{\mathbf{Y}/\mathbf{Z}} = \mu_{\mathbf{Z}}^{\mathbf{X}} \Delta_{\mathbf{Z}}^{\mathbf{X}} (\mathtt{H}_{\mathbf{Y}/\mathbf{Z}}) = \mu_{\mathbf{Z}}^{\mathbf{X}} (\mathtt{H}_{\mathbf{X}\vee\mathbf{Y}/\mathbf{X}}) = \mathtt{H}_{\mathbf{X}\vee\mathbf{Y}/\mathbf{Z}}.$$

For h := E, the action of any flat is by the identity map.

2.2 Interaction with the bimonoid structure

Proposition 2. Let h be a bicommutative bimonoid. Let $Z \leq X$. Then:

• For any $z \in \Pi[X]$ and $h \in h[Z]$,

(18)
$$\mu_{\mathbf{Z}}^{\mathbf{X}}(z) \cdot h = \mu_{\mathbf{Z}}^{\mathbf{X}}(z \cdot \Delta_{\mathbf{Z}}^{\mathbf{X}}(h)),$$

and

(19)
$$z \cdot \Delta_{\mathbf{Z}}^{\mathbf{X}}(h) = \Delta_{\mathbf{Z}}^{\mathbf{X}}(\mu_{\mathbf{Z}}^{\mathbf{X}}(z) \cdot h).$$

• For any $z \in \Pi[\mathrm{Z}]$ and $h \in \mathsf{h}[\mathrm{X}]$,

(20)
$$\Delta_{\mathbf{Z}}^{\mathbf{X}}(z) \cdot h = \Delta_{\mathbf{Z}}^{\mathbf{X}}(z \cdot \mu_{\mathbf{Z}}^{\mathbf{X}}(h)),$$

and

(21)
$$z \cdot \mu_{\mathbf{Z}}^{\mathbf{X}}(h) = \mu_{\mathbf{Z}}^{\mathbf{X}}(\Delta_{\mathbf{Z}}^{\mathbf{X}}(z) \cdot h).$$

• For any $z \in \Pi[\mathrm{Z}]$ and $h \in \mathsf{h}[\mathrm{Z}]$,

(22)
$$\Delta_{\mathbf{Z}}^{\mathbf{X}}(z \cdot h) = \Delta_{\mathbf{Z}}^{\mathbf{X}}(z) \cdot \Delta_{\mathbf{Z}}^{\mathbf{X}}(h).$$

• For any $z \in \Pi[X]$ and $h \in h[X]$,

(23)
$$\mu_{\mathbf{Z}}^{\mathbf{X}}(z \cdot h) = \mu_{\mathbf{Z}}^{\mathbf{X}}(z) \cdot \mu_{\mathbf{Z}}^{\mathbf{X}}(h).$$

Proof. We essentially repeat the arguments inProposition 1 and Corollary 1, with faces replaced by flats.

3 Modules over algebras and bimonoids

3.1 Idempotent operators

Recall that an idempotent operator on a vector space V is a linear map $e:V\to V$ such that $e^2=e$. In this situation, we let e(V) denote the image of e.

Lemma 3. Let V and W be vector spaces, and $p:V\to W$ and $i:W\to V$ linear maps such that $pi=\mathrm{id}_W$. Let $e=ip:V\to V$. Then e is idempotent and there is an isomorphism $W\cong e(V)$ for which the following diagrams commute.

Proof. The maps
$$ei:W\to e(V)$$
 and $p|_{e(V)}:e(V)\to W$ are inverse. \qed

3.2 Modules over the Tits algebra

Recall that the linearization of the Tits monoid is the Tits algebra. It is denoted by $\Sigma[\mathcal{A}]$. Note that

$$\Sigma[\mathcal{A}] = \Sigma[O], \quad \mathsf{H}_F \leftrightarrow \mathsf{H}_{F/O},$$

where the latter refers to the O-component of the bimonoid Σ .

Proposition 3. The category of left modules over $\Sigma[A]$ is equivalent to the category of cocommutative A-bimonoids.

Proof. We first construct a functor from cocommutative \mathcal{A} -bimonoids to left $\Sigma[\mathcal{A}]$ -modules.

Accordingly, suppose h is a cocommutative \mathcal{A} -bimonoid. Then h[O] is a left $\Sigma[\mathcal{A}]$ -module, with the action of H $_F$ on an element x given by

$$H_F \cdot x := \mu_O^F \Delta_O^F(x).$$

Since h is cocommutative, this defines an action as noted in (2) and (3).

Further, if h and k are cocommutative \mathcal{A} -bimonoids and $f: \mathsf{h} \to \mathsf{k}$ is a morphism of \mathcal{A} -bimonoids, then the component $f_O: \mathsf{h}[O] \to \mathsf{k}[O]$ is a map of left $\Sigma[\mathcal{A}]$ -modules as shown below.

$$\begin{split} \mathbf{h}[O] & \xrightarrow{\Delta_O^F} \mathbf{h}[F] \xrightarrow{\mu_O^F} \mathbf{h}[O] \\ f_O & & \downarrow f_F & \downarrow f_O \\ \mathbf{k}[O] & \xrightarrow{\Delta_O^F} \mathbf{k}[F] \xrightarrow{\mu_O^F} \mathbf{k}[O] \end{split}$$

The squares commute since f is a morphism of comonoids and monoids.

Now we construct a functor from left $\Sigma[\mathcal{A}]$ -modules to cocommutative \mathcal{A} -bimonoids.

Accordingly, suppose M is a left $\Sigma[\mathcal{A}]$ -module. Then put

$$\mathsf{h}[F] := \mathsf{H}_F \boldsymbol{\cdot} M.$$

This is the subspace of M onto which M projects by the action of the idempotent ${\rm H}_F$.

Note that h[O] = M.

Whenever ${\cal F}$ and ${\cal G}$ have the same support, there is an isomorphism

$$\beta_{G,F}:\mathsf{h}[F]\to\mathsf{h}[G]$$

induced by the action of H_G (with the inverse induced by the action of H_F). These turn h into an \mathcal{A} -species.

Now let $A \leq F$. Then AF = F and hence

$$H_A \cdot (H_F \cdot x) = (H_A \cdot H_F) \cdot x = H_{AF} \cdot x = H_F \cdot x,$$

so h[F] is a subspace of h[A].

Define μ_A^F to be the inclusion map, and Δ_A^F to be the projection induced by the action of H_F . This turns h into an \mathcal{A} -monoid and an \mathcal{A} -comonoid.

The coproduct is cocommutative. The cocommutativity axiom is checked below.

$$H_G \cdot (H_F \cdot x) = (H_G \cdot H_F) \cdot x = H_{GF} \cdot x = H_G \cdot x.$$

For the bimonoid axiom, we start with the element ${\rm H}_F \cdot x$, and the check reduces to

$$H_G \cdot (H_F \cdot x) = H_{GF} \cdot H_{FG} \cdot (H_F \cdot x).$$

Thus, (h,μ,Δ) is indeed an \mathcal{A} -bimonoid.

Further, if M and N are left $\Sigma[\mathcal{A}]$ -modules with h and k as the corresponding cocommutative \mathcal{A} -bimonoids, and $f:M\to N$ is a morphism of modules, then f restricts to linear maps

$$f_F:\mathsf{h}[F]\to\mathsf{k}[F],$$

one for each face F, and this family of maps constitutes a morphism $f:\mathsf{h}\to\mathsf{k}$ of \mathcal{A} -bimonoids.

Finally, we check that the functors we have constructed between modules and bimonoids define an equivalence.

If we start from a module M, construct the bimonoid h, and then the corresponding module, we return to $\mathbf{H}_O \cdot M = M.$

In the other direction, starting from a bimonoid \hat{h} going to modules and back yields the bimonoid \hat{h} with components

$$\tilde{\mathsf{h}}[F] = \mu_O^F \Delta_O^F(\mathsf{h}[O]).$$

Recall that $\Delta_O^F \mu_O^F = \mathrm{id}_{\mathsf{h}[F]}$. Applying Lemma 3 to this splitting, we obtain a linear isomorphism $\mathsf{h}[F] \cong \tilde{\mathsf{h}}[F]$, for each face F. These constitute a natural isomorphism of \mathcal{A} -bimonoids $\mathsf{h} \cong \tilde{\mathsf{h}}$, in view of (24).

Proposition 4. The category of right modules over $\Sigma[A]$ is equivalent to the category of commutative A-bimonoids.

Proof. The argument is similar to the one for Proposition 3, so we only briefly indicate how the functors work.

If h is a commutative $\mathcal A$ -bimonoid, then $\mathrm h[O]$ is a right $\Sigma[\mathcal A]$ -module with action given by

$$x \cdot H_F := \mu_O^F \Delta_O^F(x).$$

Conversely, if M is a right $\Sigma[\mathcal{A}]$ -module, then we set

$$h[F] := M \cdot H_F.$$

The product and coproduct are given by inclusion and projection induced by the right action. Observe that $M \cdot {\rm H}_F$ and $M \cdot {\rm H}_G$ coincide whenever ${\rm s}(F) = {\rm s}(G)$, and $\beta_{G,F}$ is defined to be identity. So commutativity holds. The bimonoid axiom reduces to

$$(x \cdot H_F) \cdot H_G = (x \cdot H_F) \cdot H_{FG}.$$

Note very carefully that cocommutativity requires $x \cdot H_F = x \cdot H_G$ whenever $\mathbf{s}(F) = \mathbf{s}(G)$, hence it does not hold in general.

3.3 Modules over the Birkhoff algebra

Recall that the linearization of the Birkhoff monoid is the Birkhoff algebra. It is denoted by $\Pi[\mathcal{A}]$. Since $\Pi[\mathcal{A}]$ is commutative, there is no distinction between its left and right modules.

Proposition 5. The category of modules over $\Pi[A]$ is equivalent to the category of bicommutative A-bimonoids.

Proof. The argument is similar to the one for Proposition 3, so we will be brief.

We make use of the commutative characteristic operation (16).

Suppose h is a bicommutative \mathcal{A} -bimonoid. Then h $[\bot]$ is a $\Pi[\mathcal{A}]$ -module, with the action of H_X on an element x given by

$$H_X \cdot x := \mu_{\perp}^X \Delta_{\perp}^X(x).$$

This defines an action as noted in (17).

Further, if h and k are bicommutative \mathcal{A} -bimonoids and $f:\mathsf{h}\to\mathsf{k}$ is a morphism of \mathcal{A} -bimonoids, then the component $f_\perp:\mathsf{h}[\perp]\to\mathsf{k}[\perp]$ is a map of $\Pi[\mathcal{A}]$ -modules as shown below.

$$\begin{array}{c} \mathbf{h}[\bot] \xrightarrow{\Delta_{\bot}^{\mathbf{X}}} \mathbf{h}[\mathbf{X}] \xrightarrow{\mu_{\bot}^{\mathbf{X}}} \mathbf{h}[\bot] \\ f_{\bot} \downarrow \qquad \qquad \downarrow f_{\mathbf{X}} \qquad \qquad \downarrow f_{\bot} \\ \mathbf{k}[\bot] \xrightarrow{\Delta_{\bot}^{\mathbf{X}}} \mathbf{k}[\mathbf{X}] \xrightarrow{\mu_{\bot}^{\mathbf{X}}} \mathbf{k}[\bot] \end{array}$$

The squares commute since f is a morphism of comonoids and monoids.

Conversely: Suppose M is a $\Pi[\mathcal{A}]$ -module. This defines an \mathcal{A} -species h whose X-component is given by

$$h[X] := H_X \cdot M.$$

For $Z \leq X$, we note that h[X] is a subspace of h[Z]. Define μ_Z^X to be the inclusion map, and Δ_Z^X to be the projection induced by the action of H_X . The bicommutative bimonoid axiom holds, and h is indeed a bicommutative \mathcal{A} -bimonoid.

Further, if M and N are $\Pi[\mathcal{A}]$ -modules with h and k as the corresponding bicommutative \mathcal{A} -bimonoids, and $f:M\to N$ is a morphism of modules, then f restricts to linear maps

$$f_{\mathbf{X}}: \mathsf{h}[\mathbf{X}] \to \mathsf{k}[\mathbf{X}],$$

one for each flat X, and this family of maps constitutes a morphism $f:\mathsf{h}\to\mathsf{k}$ of $\mathcal{A}\text{-bimonoids}$. \square

3.4 Summary

For any algebra A, let A-Mod denote the category of left A-modules. The category of right A-modules is isomorphic to the category of left A^{op} -modules, where A^{op} denote the algebra opposite to A.

A summary of the categorical equivalences obtained in the preceding discussion is given in Table 1.

Table 1:

Modules over algebras		Bimonoids in species	
$\Sigma[\mathcal{A}] ext{-Mod}$	left $\Sigma[\mathcal{A}]$ -modules		cocom. b
$\Sigma[\mathcal{A}]^{\mathrm{op}} ext{-}Mod$	right $\Sigma[\mathcal{A}]$ -modules	$Bimon^{co}(\mathcal{A}\text{-}\mathtt{Sp})$	com. bir
$\Pi[\mathcal{A}]$ -Mod	$\Pi[\mathcal{A}]$ -modules	$^{co}Bimon^{co}(\mathcal{A} ext{-}Sp)$	bicom. bi

Illustrations of these equivalences on particular modules and bimonoids are given below.

Module	Bimonoid	
trivial module over $\Pi[\mathcal{A}]$	Exponential bimonoid E	
left module $\Gamma[\mathcal{A}]$ over $\Sigma[\mathcal{A}]$	Bimonoid of chambers Γ	
$\Pi[\mathcal{A}]$ as a module over itself	Bimonoid of flats Π	
$\Sigma[\mathcal{A}]$ as a left module over itself	Bimonoid of faces Σ	

By using charactertistic operations, the bimonoids listed above yield the corresponding modules listed above. These facts are contained in Examples 1.1 and 2.1.

3.5 Janus monoid

A bi-face is a pair (F,F') of faces such that F and F' have the same support. Let $J[\mathcal{A}]$ denote the set of bi-faces. The operation

$$(F, F')(G, G') := (FG, G'F')$$

turns J[A] into a monoid. The unit element is (O, O). We call it the Janus monoid.

There is a commutative diagram of monoids

(25)
$$J[\mathcal{A}] \longrightarrow \Sigma[\mathcal{A}]^{\mathrm{op}}$$

$$\downarrow s$$

$$\Sigma[\mathcal{A}] \longrightarrow \Pi[\mathcal{A}]$$

with s being the support map, and the maps from J being the projections on the two coordinates, respectively.

3.6 Janus algebra

The linearization of the Janus monoid yields an algebra. We call this the Janus algebra, and denote it by $J[\mathcal{A}]$. Using H for the canonical basis, we write

(26)
$$H_{(F,F')} \cdot H_{(G,G')} = H_{(FG,G'F')}.$$

Linearizing diagram (25) yields the following commutative diagram of algebras.

(27)
$$J[\mathcal{A}] \longrightarrow \Sigma[\mathcal{A}]^{\mathrm{op}}$$

$$\downarrow \qquad \qquad \downarrow_{\mathrm{s}}$$

$$\Sigma[\mathcal{A}] \longrightarrow_{\mathrm{s}} \Pi[\mathcal{A}].$$

For any face A, let ${\sf J}^o[A]$ denote the vector space linearly spanned by bi-faces (F,G) such that both F and G are greater than A.

It is an algebra with product given by (28)

$$\mathtt{H}_{(F/A,F'/A)} \cdot \mathtt{H}_{(G/A,G'/A)} := \mathtt{H}_{(FG/A,G'F'/A)}.$$

The unit element is $H_{(A/A,A/A)}$.

This can be identified with the Janus algebra of the arrangement \mathcal{A}_A .

3.7 Two-sided characteristic operations

Let h be a bimonoid.

Given $z \in \mathsf{J}^o[A]$ and $h \in \mathsf{h}[A]$, define an element $z \cdot h \in \mathsf{h}[A]$ as follows.

First, write

$$z = \sum_{\substack{(F,F'): F,F' \ge A \\ s(F) = s(F')}} a^{F/A,F'/A} \, \mathbb{H}_{(F/A,F'/A)}$$

for scalars $a^{F/A,F'/A}$.

Then set

(29)
$$z \cdot h := \sum_{\substack{(F,F'): F,F' \geq A \\ s(F) = s(F')}} a^{F/A,F'/A} \, \mu_A^F \beta_{F,F'} \Delta_A^{F'}(h).$$

In particular,

$$H_{(F/A,F'/A)} \cdot h := \mu_A^F \beta_{F,F'} \Delta_A^{F'}(h).$$

We refer to these as two-sided characteristic operations.

Lemma 4. The following holds for any bimonoid h. For any $z,w\in \mathsf{J}^o[A]$ and $h\in \mathsf{h}[A]$, (30)

$$(z \cdot w) \cdot h = z \cdot (w \cdot h)$$
 and $\mathbf{H}_{(A/A,A/A)} \cdot h = h$.

In other words, (29) defines a left action of the Janus algebra $\mathsf{J}^o[A]$ on the space $\mathsf{h}[A]$.

Proof. The second statement follows from (co)unitality. It suffices to check the first statement on basis elements. Take $z=\mathrm{H}_{(G/A,G'/A)}$ and $w=\mathrm{H}_{(F/A,F'/A)}.$ We calculate:

$$z \cdot (w \cdot h) = \mu_A^G \beta_{G,G'} \Delta_A^{G'} \mu_A^F \beta_{F,F'} \Delta_A^{F'}(h)$$

$$= \mu_A^G \beta_{G,G'} \mu_{G'}^{G'F} \beta_{G'F,FG'} \Delta_F^{FG'} \beta_{F,F'} \Delta_A^{F'}(h)$$

$$= \mu_A^G \mu_G^{GF} \beta_{GF,G'F} \beta_{G'F,FG'} \beta_{FG',F'G'} \Delta_{F'}^{F'G'} \Delta_A^{F'}(h)$$

$$= \mu_A^{GF} \beta_{GF,F'G'} \Delta_A^{F'G'}(h)$$

$$= (z \cdot w) \cdot h.$$

We used the bimonoid axiom and then naturality and (co)associativity.

3.8 Modules over the Janus algebra

Proposition 6. The category of (left) modules over J[A] is equivalent to the category of A-bimonoids.