MATH-UA 140: Assignment 1

James Pagan: September 2023

Professor Raquépas

Contents

1 Problem 1
2 Problem 2
2 Problem 3
3 Problem 4
4 Problem 4
5 Problem 5
4
6 Problem 6

1 Problem 1

(a) We have that

$$\mathbf{u} \cdot \mathbf{v} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} = 1(2) + 3(-1) + 2(1) = 1.$$

(b) Let the angle between \mathbf{u} and \mathbf{v} be θ ; as the norms of \mathbf{u} and \mathbf{v} are nonzero,

$$\cos(\theta) = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} = \frac{1}{\sqrt{1^2 + 3^2 + 2^2} \times \sqrt{2^2 + (-1)^2 + 1^2}} = \frac{1}{\sqrt{14} \times \sqrt{6}} = \frac{\sqrt{21}}{42}.$$

Therefore, $\theta = \arccos\left(\frac{\sqrt{21}}{42}\right) \approx 1.46$ radians.

(c) No; observe that

$$\mathbf{u} + 3\mathbf{v} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} + 3 \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} + \begin{bmatrix} 6 \\ -3 \\ 3 \end{bmatrix} = \begin{bmatrix} 7 \\ 0 \\ 5 \end{bmatrix} = \mathbf{w}.$$

Therefore, the family $\{\mathbf{u},\mathbf{v},\mathbf{w}\}$ is not independent.

2 Problem 2

(a) The span of \mathbf{u} and \mathbf{v} is a line,, pictured on the xy-plane below:

(b) The span of $\hat{\mathbf{i}}$ and $2\hat{\mathbf{k}}$ is the zx-plane, pictured in yellow in \mathbb{R}^3 as shown:

3 Problem 3

(a) True. If w is perpendicular to both u and v, then $\mathbf{w} \cdot \mathbf{u} = \mathbf{w} \cdot \mathbf{v} = 0$. Therefore,

$$\mathbf{w} \cdot (\mathbf{u} - \mathbf{v}) = \mathbf{w} \cdot \mathbf{u} - \mathbf{w} \cdot \mathbf{v} = 0 - 0 = 0,$$

so \mathbf{w} is perpendicular to $\mathbf{u} - \mathbf{v}$.

- (b) False. The canonical basis vector $\hat{\mathbf{i}}$ is perpendicular to $\hat{\mathbf{j}}$ and $\hat{\mathbf{k}}$, but $\hat{\mathbf{j}}$ is not collinear with $\hat{\mathbf{k}}$.
- (c) True. If $\mathbf{v} = \mathbf{0}$, then \mathbf{v} is colinear with all vectors \mathbf{w} . Otherwise, observe that $\mathbf{u} \cdot \mathbf{v} = 0$ and $\mathbf{u}, \mathbf{v} \neq 0$ implies that \mathbf{u} and \mathbf{v} are linearly independent as \mathbb{R}^2 has dimension 2, these two linearly independent vectors are a basis of \mathbb{R}^2 .

Let λ_1 and λ_2 be constants such that $\lambda_1 \mathbf{u} + \lambda_2 \mathbf{v} = \mathbf{w}$. Then

$$0 = \mathbf{u} \cdot \mathbf{w} = \mathbf{u} \cdot (\lambda_1 \mathbf{u} + \lambda_2 \mathbf{v}) = \lambda_1 (\mathbf{u} \cdot \mathbf{u}) + \lambda_2 (\mathbf{u} \cdot \mathbf{v}) = \lambda_1 ||\mathbf{u}||^2.$$

However, $\|\mathbf{u}\|^2 \neq 0$ as $\mathbf{u} \neq \mathbf{0}$; then $\lambda_1 = 0$. Then

$$\mathbf{w} = \lambda_1 \mathbf{u} + \lambda_2 \mathbf{v} = 0 \mathbf{u} + \lambda_2 \mathbf{v} = \lambda_2 \mathbf{v};$$

so \mathbf{w} and \mathbf{v} are collinear.

4 Problem 4

Using basic properties of the dot product, we have that

$$\frac{\|\mathbf{u} + \mathbf{v}\|^{2} - \|\mathbf{u} - \mathbf{v}\|^{2}}{4} = \frac{(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v}) - (\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v})}{4}$$

$$= \frac{(\mathbf{u} \cdot \mathbf{u} + 2(\mathbf{u} \cdot \mathbf{v}) + \mathbf{v} \cdot \mathbf{v}) - (\mathbf{u} \cdot \mathbf{u} - 2(\mathbf{u} \cdot \mathbf{v}) + \mathbf{v} \cdot \mathbf{v})}{4}$$

$$= \frac{4(\mathbf{u} \cdot \mathbf{v})}{4}$$

$$= \mathbf{u} \cdot \mathbf{v}.$$

5 Problem 5

(a) The form we desire is

$$\begin{bmatrix} 1 & 2 \\ 0 & -1 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \\ 8 \end{bmatrix}.$$

(b) The form we desire is

$$\begin{bmatrix} 1 & 1 & -1 \\ 2 & 0 & 1 \\ -1 & 3 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 0 \end{bmatrix}.$$

6 Problem 6

(a) As the former matrix is the identity matrix,

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix} = \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix}.$$

(b) The matrix product we seek is

$$\begin{bmatrix} 0 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}.$$