ABSTRACT BOOK

XIV EDITION University of Minho 26 - 28 MARCH Gualtar Campus

Bioinformatics Open Days 2025

SCIENTIFIC SUBMISSIONS

ORAL PRESENTATIONS

N°	Authors	Title
01	Isabel Duarte	Mitochondrial Gene Expression Is Independent of Organ Metabolic Rates: Do Cancer Selective Pressures Override the Tumor Microenvironment?
02	João Miranda	The Neighbour Effect: How Interacting Proteins Influence Driver Mutations and Cancer Patient Outcomes
О3	Bruno Sá	Implementing Metabolic Transformation Algorithms and their application in Ageing-related research
04	Rogério Ribeiro	Integration of multi-modal datasets to estimate human aging
05	Ricardo Pinto	DepMap and GDSC data mining to inform ancestry-driven mechanisms in triple-negative breast cancer
06	Rita Teixeira	Guiding computational design for SARS-CoV-2 Spike protein using Molecular Dynamics simulations
07	Pedro Fernandes	Tracing the prevalence and pathogenicity of artifact mutations in ancient Human mitochondrial DNA
08	Gonçalo Apolinário	DeepTransyt, annotation of transporter proteins using deep learning
09	João Correia	Improving Docking Predictions with a ML-Based Scoring Ensemble
010	Alexandra Balola	Computational Engineering of PETase for Improved PET plastics Substrate Affinity and Degradation Efficiency
011	Herlander Azevedo	Application of bioinformatics in the characterization of multiple aspects of grapevine diversity
012	Ricardo Franco-Duarte	Phylogenomics and functional annotation of 530 non- Saccharomyces yeasts from winemaking environments reveals their fermentome and flavorome
013	Luis Gonçalves	Genome-wide characterization of plant resistance genes in cork oak (Quercus suber)
014	Raquel Ríos- Castro	Eukaryotic Communities and Potential Pathogens in Wastewater Effluents in Ría de Vigo
015	José Morim	Deciphering the venoms of Conus species with transcriptomics

O1 - Mitochondrial Gene Expression Is Independent of Organ Metabolic Rates: Do Cancer Selective Pressures Override the Tumor Microenvironment?

Metabolic reprogramming is a recognized hallmark of cancer, playing a crucial role in its initiation and progression. Recent evidence highlights the impact of non-cancer cell metabolism within the tumor microenvironment in modulating tumor development, emphasizing the importance of metabolic factors in understanding cancer biology.

To identify differentially expressed genes (DEGs) in cancer, with a specific focus on mitochondria-located genes, and to compare gene expression profiles between organs with high metabolic-rates (brain, liver, kidneys) and low metabolic-rates (bladder, colon, skin).

RNA-seq data for normal and cancer tissues from the six organs under study were sourced from the GTEx and TCGA databases. The dataset included 2,675 normal tissue samples from GTEx, and 3,633 cancer tissue samples from TCGA. Differential expression analysis was performed using General Linear Models (GLMs), while hierarchical and soft fuzzy clustering were applied to identify distinct gene expression patterns. All analyses were performed in R, and the code is openly accessible in GitHub [https://github.com/orgs/MitoProfiles/repositories].

The analysis identified mitochondrial DEGs such as ACSM1, ACSM5, and PRODH, likely reflecting cancer cell adaptations to metabolic and microenvironmental stress. Significant differences in FDX2 (iron-sulfur protein biogenesis) and ACSM2B (free fatty acid activation) suggest the involvement of these pathways in oncogenesis. However, the expression differences were largest between normal and cancer tissues, overshadowing the variation between high and low metabolic-rate organs. Mitochondrial gene expression profiles differ more significantly between cancer and normal tissues than between cancers originating from organs with varying metabolic-rates. This highlights the dominant role of cancer-induced cellular reprogramming over organ-specific microenvironment signals. This raises the hypothesis of a functional convergence of mitochondrial pathways in cancer, particularly those involved in processes such as iron-sulfur cluster biogenesis and fatty acid metabolism, which may be selectively enhanced/suppressed to meet the metabolic demands of cancer cells. This suggests the possibility of a general cancer mitochondrial expression-signature, warranting further investigation.

O2 - The Neighbour Effect: How Interacting Proteins Influence Driver Mutations and Cancer Patient Outcomes

O3 - Implementing Metabolic Transformation Algorithms and their application	n
in Ageing-related research	

O4 - Integration of multi-modal datasets to estimate human aging					
hattura (//sither the comp/mus sou 40 /my this mandal to see mus disting					
https://github.com/zroger49/multi_modal_age_prediction					

O5 - DepMap and GDSC data mining to inform ancestry-driven mechanisms in triple-negative breast cancer

O6 - Guiding computational design for SARS-CoV-2 Spike protein using Molecular Dynamics simulations

07 - Tracing the prevalence and pathogenicity of artifact mutations in ancient
Human mitochondrial DNA

O8 - DeepTransyt, annotation of transporter proteins using deep learning						
https://github.com/Apolinario8/deeptransyt						

O9 - Improving Docking Predictions with a ML-Based Scoring Ensemble

www.itqb.unl.pt/pm

O10 - Computational Engineering of PETase for Improved PET plastics Substrate Affinity and Degradation Efficiency

O11 - Application of bioinformatics in the characterization of multiple aspect of grapevine diversity	S
hazevedo@cibio.up.pt	

			non-Saccharomyces r fermentome and
ricardo	filipeduarte@bio.uı	minho.pt,ricardof	rancoduarte@gmail.com

O13 - Genome-wide characterization of plant resistance genes in cork oak (Quercus suber)

O14 - Eukaryotic Communities and Potential Pathogens in Wastewater Effluents in Ría de Vigo

04E D :						
015 - Deci	nnering the	venoms of	Conus si	necies with	transcrir	ntomics
0 10 001	biioiiiig aic	10110111001	Ochiao o	pooloo miti	CIGIIOOII	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

SCIENTIFIC SUBMISSIONS

POSTER AND SOFTWARE PRESENTATIONS

N°	Authors	Title
P1	Gonçalo Sousa	WGCNA as a tool to identify key gene expression networks associated with mistranslation and azole resistance in the human fungal pathogen Candida albicans
P2	Maria Inês Gomes	Benchmarking Causal Reasoning Algorithms for enhanced Drug Discovery: Insights from Clarivate's pre-competitive Algorithm Benchmarking Consortium
P3	Tiago Miranda	Towards a Machine Learning Framework for Predicting MicroRNAs involved in Candidiasis
P4	Diana Silva	Comprehensive Molecular Characterization of Anti-EFG1 2'OMe Effects on C. albicans: A Bioinformatics Study
P5	Inês Carvalho	A machine learning model based on geometric morphometric data for Skeletal Malocclusion diagnosis
P6	Filipa Ferreira	The Diagnosis Network App (DiNA): a computational system for the diagnosis of depressive major disorder
P7	Grigore Platon	Expanding the Kinetic-Regulatory Model of Escherichia coli for High-Value Compound Production from Aromatic Amino Acids
P8	Elias Barreira	Predictability of Genomic Evolution at the Molecular Level
P9	Constança Ilunga	Design and Characterization of MHETase Mutants for Improved PET Degradation: A Combined In Silico and In Vitro Study
P10	Raquel Ríos- Castro	High Throughput sequencing for Monitoring Eukaryotic Pathogens in Castellana WWTP: Insights from the AWARE Project
P11	Rafael Vleira	Introducing AptaCom - A centralized aptamer database
P12	Mahmoud Abdallah	Exploring the Genomic Potential of Macroalgae: A Bioinformatics Pipeline for Protein and Gene Discovery
P13	João Guimarães	Evaluating the Viability of BEAST Software for Accurate Phylogenetic Dating
P14	David Henriques	Enhancing the simulation of anaerobic flux distributions in Saccharomyces cerevisiae using genome-scale metabolic models
P15	Sirine Gaieb	Structural Dynamics of H5N1 Hemagglutinin Globular Head: Insights from Molecular Dynamics Simulations
P16	Sofia Torres	Characterization of tissue immunity in metastatic breast cancer by single- cell RNA-sequencing
P17	Raquel Romão	

SCIENTIFIC SUBMISSIONS

POSTER AND SOFTWARE PRESENTATIONS

N°	Authors	Title
P18	Sofia Ferreira	Understanding lactoferrin multifunctionality by analyzing the full spectrum of its interacting partners and its evolutionary history
P19	Daniela Holdych	Antiphospholipid Syndrome: Insights into the cellular basis of autoimmunity
P20	Mariana Vasques	Characterizing the Heterogeneity and Differentiation of Murine T Follicular Cells using Single-Cell
P21	Bruna Cruz	Decoding Early Neuronal Responses to Injury: A Bioinformatics Approach to Identify Regeneration- Associated Genes
P22	Ana Paulino	The molecular regulatory mechanisms behind the vegetative-to- reproductive transition in Cynara cardunculus
P23	Diana Lourenço	Plastic Biodegradation by Microalgae: Database Development and Sequence Retrieval
P24	Ana Lima	Comprehensive multi-omics database for highly infectious viruses: a focus on HIV, Ebola and SARS-CoV-2
P25	Raquel Domingues	Structural Bioinformatics insights into the stability of a promising RSV-targeting nanobody
P26	André Bagão	Molecular Dynamics Simulations of Glycan Shielding on Prefusion RSV F Protein: Implications for Epitope Accessibility and Vaccine Design
P27	Benedita Pereira	Developing a Repository for the Storage and Analysis of Novel Computationally Designed Proteins
P28	Raquel Ríos- Castro	Behaviour of Infective Stages (L3) of Anisakis simplex in Water Mass and Fish-waste: Transcriptomic Contribution to understanding the Parasite Life Cycle
P29	Elias Barreira	Developing Genomic Models to Predict Breast Cancer Metastatic Progression

P1 - WGCNA as a tool to identify key gene expression networks associated with mistranslation in the human fungal pathogen *Candida albicans*

P2 - Benchmarking Causal Reasoning Algorithms for enhanced Drug Discovery: Insights from Clarivate's pre-competitive Algorithm Benchmarking Consortium

P3 - Towards a Machine Learning Framework for Predicting MicroRNAs involved in Candidiasis

P4 - Comprehensive Molecular Characterization of Anti-*EFG1* 2'OMe Effects on *C. albicans*: A Bioinformatics Study

P5 - A machine learning model based on geometric morphometric data for Skeletal Malocclusion diagnosis

P6 - The Diagnosis Network App (DiNA): a computational system for the diagnosis of depressive major disorder

P7 - Expanding the Kinetic-Regulatory Model of *Escherichia coli* for High-Value Compound Production from Aromatic Amino Acids

P8 - Predictability of Genomic Evolution at the Molecular Level

P9 - Design and Characterization of MHETase Mutants for Improved PET Degradation: A Combined *In Silico* and *In Vitro* Study

P10 - High Throughput sequencing for Monitoring Eukaryotic Pathogens in Castellana WWTP: Insights from the AWARE Project

P11 - Introducing AptaCom - A centralized aptamer database

This work received financial support from the PT national funds (FCT/MECI, Fundação para a Ciência e Tecnologia and Ministério da Educação, Ciência e Inovação) through the project UID/50006 -Laboratório Associado para a Química Verde - Tecnologias e Processos Limpos. This work received financial support from the European Union (FEDER funds POCI/01/0145/FEDER/007265) and national funds from Fundação para a Ciência e a Tecnologia and Ministério da Educação para a Ciência (FCT/MEC - SFRH/BD/137844/2018, IF01310/2013, IF/00052/2014, and PTDC/QUI-QFI/31689/2017), under the partnership agreement PT2020-UID/QUI/50006/2013, and co-financed by the ERD under the PT2020 Partnership Agreement (POCI-01-0145-FEDER-007728).

	oploring the			Macroalgae:	A	Bioinformatics
			#10 H			
ntt	:ps://github.com	/Monamedem	a/ICulture			

P13 - Evaluating the Viability of BEAST Software for Accurate Phylogenetic Dating

P14 - Enhancing the simulation of anaerobic flux distributions in Saccharomyces cerevisiae using genome-scale metabolic models

P15 - Structural Dynamics of H5N1 Hemagglutinin Globular Head: Insights from Molecular Dynamics Simulations

P16 - Characterization of tissue immunity in metastatic breast cancer by single-cell RNA-sequencing

P17 - Akna as a novel RNA-binding protein: uncovering its role in immune cell function through iCLIP-seq analysis

P18 - Understanding lactoferrin multifunctionality by analyzing the full spectrum of its interacting partners and its evolutionary history

P19 - Understanding lactoferrin multifunctionality by analyzing the full spectrum of its interacting partners and its evolutionary history

P20 - Characterizing the Heterogeneity and Differentiation of Murine T Follicular Cells using Single-Cell

P21 - Characterizing the Heterogeneity and Differentiation of Murine T Follicular Cells using Single-Cell

P22	-	The	molecular	regulatory	mechanisms	behind	the	vegetative-to-
reproductive transition in Cynara cardunculus								

ana.paulino@cebal.pt

P23 - Plastic Biodegradation by Microalgae: Database Development and Sequence Retrieval

P24 - Comprehensive multi-omics database for highly infectious viruses: a focus on HIV, Ebola and SARS-CoV-2

P25 - Structural Bioinformatics insights into the stability of a promising RSV-targeting nanobody

P26 - Molecular Dynamics Simulations of Glycan Shielding on Prefusion RSV F Protein: Implications for Epitope Accessibility and Vaccine Design P27 - Developing a Repository for the Storage and Analysis of Novel Computationally Designed Proteins

P28 - Behaviour of Infective Stages (L3) of *Anisakis simplex* in Water Mass and Fish-waste: Transcriptomic Contribution to understanding the Parasite Life Cycle

P29 - Developing Genomic Models to Predict Breast Cancer Metastatic Progression

SPONSORS AND COLLABORATORS

Universidade do Minho

XIV EDITION

ABSTRACT BOOK

XIV EDITION University of Minho 26 - 28 MARCH Gualtar Campus

Bioinformatics Open Days 2025