樹脂種別による金型材選定

工具鋼に及ぼす添加元素の影響

元素	元素名	工具鋼に及ぼす添加の影響
С	炭素	約0.6%まではC量の増加とともに焼入れ硬さを増す。0.6%以上では焼入れ硬さは増さないが炭化物量が増し耐摩 耗性が増大する。
Si	シリコン	低温焼戻しでの衝撃抵抗を増大。低温の焼戻し抵抗性を増大。炭素工具鋼に多量添加すると脆化したり、可鍛性を害する。少量の添加で多少硬さと強度を増す。添加量を増すと耐酸化性を増し、加熱による結晶粒の成長を防止する。
Mn	マンガン	焼入れ性を増し耐摩耗性を高める。Sによる脆化性を防止する。多量に加えると焼割れを起こしたり、残留オーステナイトを生じさせ、脆化させる。
Р	リン	衝撃抵抗を低下させる。
S	硫黄	熱間加工性を害する。Mn,Moと結合して工具の被削性、研磨性を良化させる。ただし、靭性を低下させる。
Cu	銅	赤熱脆性を起こす。黒鉛化を助長する。鍛接性を害する。
Ni	ニッケル	少量添加で靭性を増大させるが、多量に加えると残留オーステナイトを生じ、脆化する。焼入れ性を増す。黒鉛化を助長する。
Cr	クロム	焼入性を増す。炭化物を作り耐摩耗性増す。V.Mo.W等と複合炭化物を作り、焼戻し抵抗を増大さす。炭化物は結晶粒の成長を抑える。耐酸化性を増加し、靭性を改善する。