	TP1 Debit - Blanchon Feyrit	Pt		A B C D	Note	
ı	Préparation du travail					
1	Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.	2	Α		2	
2	Quel est le nom de la grandeur réglée ?	1	Α		0,5	
3	Quel est le principe utilisé pour mesurer la grandeur réglée ?	1	D		0,025	
4	Quelle est la grandeur réglante ?	1	Α		0,5	
5	Donner une grandeur perturbatrice.	1	D		0,025	Ve et Vs ne sont pas des grandeurs
6	Etablir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs,	1	Α		1	
_	alimentations, générateurs nécessaires. Faire apparaître les polarités.					
II.	Etude du procédé					
1	Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.	1	Α		1	
2	Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de température et niveau).	1	Α		1	
3	En déduire le gain statique du procédé autour du point de fonctionnement.	1	D		0.05	N'importe quoi !!!!
	En déduire le sens d'action à régler sur le régulateur.	1	D		0,05	• •
	Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.	3	C		,	Echelles mal choisies. C'est trop moche.
	Etude du régulateur	<u> </u>			1,00	Lenenes mar enoisies. e est trop moene.
	Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.	2	D		0,075	
	En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.	2			1,5	
	Performances et optimisation				,-	
1	Programmer votre régulateur pour assurer le fonctionnement de la régulation.	1	Α		1	
•	Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de	2	_		0.535	
2	réponse à 10%, la valeur du premier dépassement et la précision relative.	2	С		0,525	
3	Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des paramètres modifiés.	1	D		0,05	
4	Mesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente.	2	D		0,075	
			No	te sur : 20	10,4	

TP1 Débit

1°

- 2° La grandeur réglée est le débit d'eau en sortie
- 3° Le débit passe par les différentes vannes et le débit passe par la vanne Vc et indique le débit et le régule.
- 4° L'ouverture de la vanne Vc
- 5° Les grandeurs perturbatrices sont Ve et Vs

6°

II. Etude du procédé

1°

Titre : Courbe representant l'évolution du débit par rapport a la commande.

3° =DeltaE/DeltaS=(77-75)/(38-25)=0,15 Le gain statique est de 0,15

4°Le sens d'action est direct car quand X augmente Y augmente

K=0,15 40% de X =32 T1=36,18 28% de X=22,4 T2=36,16

T=2,8(18-15)-1,8(,16-15) T=6,6s

T0=(18-16)5,5 T0=11s

Donc le modèle de broida est $H(p)=(0,15*e^{-6},6p)(1+11p)$

III. Étude du régulateur

 $1^{\circ}\text{C'}\text{est}$ une structure mixte comme tous les tp dans la salle de régulation ,

2°

On fait t/T = 6.6/11 = 0.6

Au dessus de 0,5 donc PID mixte

A=100/Xp=0.83/0.15*(1/0.6+0.4)=11.43

Xp=100/11,43=8,74%

Ti=6,6+0,4*11=11

Td=11/(0,6+2,5)=3,55

IV. Performances et optimisation

1-

Je sais pas

- 3° Je sais pas
- 4° Je sais pas