Randomised Algorithms

Winter term 2022/2023, Exercise Sheet No. 3

Hand-out: Mon, 31. Oct. Hand-in: Sun. 6. Nov.

Dr. Duc-Cuong Dang Prof. Dr. Dirk Sudholt

Exercise 1 [4 points]

Consider running the random QUICKSORT algorithm on the following input:

[11, 19, 1, 8, 7, 10, 15, 9, 4, 18]

- (a) Explain what will happen to the comparison between 8 and 15, in the case the pivot is 7? Same question for the pivot being 15, and being 10?
- (b) Overall, what is the probability that 8 and 15 are compared?

Exercise 2 [6 points]

Let \mathcal{A} be a Monte Carlo algorithm with two-sided errors that runs in polynomial time T(n) and outputs a correct result for a decision problem L with probability at least $1/2 + 1/\sqrt{n}$, where n is size of the input.

- (a) Consider the probability amplification with A_t algorithm like in the lecture, ie. run A t times then output the decision based on the majority vote, give an upper bound for the error probability of A_t . You can use the result from the lecture without repeating its arguments in answering this question.
- (b) Find t such that the running time of \mathcal{A}_t remains polynomial while its error probability is reduced to no more than $1/2 \varepsilon$ for some constant $\varepsilon > 0$, and use this to prove that $L \in \text{BPP}$.

 Hint: The inequality $1 + x < e^x$ for all $x \in \mathbb{R}$ might be useful.
- (c) Suppose now that our original algorithm \mathcal{A} only has probability 1/2 + 1/n to output a correct answer, is L still in BPP? Give a short justification for your answer.

Exercise 3 [6 points]

- (a) Outline an algorithm that allows the construction of a worst input for a deterministic algorithm, denoted $\mathcal{A}(T_k)$, to evaluate a complete OR-AND binary tree T_k (the root is an OR) with k levels of \vee operators and k levels of \wedge operators.
- (b) Execute your algorithm on the following tree, on which each bold edge indicates the first child that will be examined by $\mathcal{A}(T_k)$ during the evaluation of a parent node.

Exercise 4 [4 points]

Prove the following inequality for all matrices M of real numbers:

$$\max_{i} \min_{j} M_{ij} \leq \min_{j} \max_{i} M_{ij}.$$