Tema 1. Lógica Proposicional

1.0. Documentación

Documentos Tema 1

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/8616112c-8861-4676-8070-ebf96c00d0f8/U1_LogicaProposicional.pdf

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/34db986b-6c92-4ade-9047-2eeadd193ad/U1_LogicaProposicional_Enunciados.pdf

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/082c72fc-6518-4ef8-a2a0-8df83eddc201/H1_AlbertoTarrasa.pdf

1.1. Agente Lógico

Un agente lógico tiene una base de conocimiento. Esta se compone de:

- Reglas: conocimiento general (si ... entonces)
- Observaciones de la situación: determina x parámetros (¿si o no?)

Ante una situación se parte de una base de conocimiento \triangle y se quiere comprobar si \square es una consecuencia lógica \models de \triangle .

1.2. Fórmula Bien Formada

Una **fórmula bien formada (FBF)** o proposición es aquella que cuenta con una sintaxis correcta de acuerdo con la gramática de la lógica proposicional.

La base de conocimiento \triangle es una colección de proposiciones, mientras que w es una única FBF. El agente lógico colecciona fórmulas con **valor de verdad** *verdadero* en la situación en la que se encuentra el mismo.

Interpretación A	В	A: la luz del aula está encendida; B: es de día
I1 V	V	El agente lógico se encuentra en una situación en la que la
12 V	F	luz del aula está encendida y es de día, por lo que —coleccionaría la siguiente base: △={A, B}.
13 F	V	
14 F	F	El modelo es la interpretación para la cuál todas las proposiciones de <u>a</u> tienen valor de verdad <i>verdadero</i> .

1.3. Inferencia

La **inferencia o deducción lógica** es el razonamiento mecánico por el que se llega a una conclusión, dando solución a un problema de deducción.

Conjunto de reglas de inferencia:

Sean w_1 , w_2 dos FBFs

(1) Modus ponens:
$$\{w_1, w_1 \Rightarrow w_2\} \vdash_{M.P.} w_2$$

(2) Modus tollens:
$$\{ \neg w_2, w_1 \Rightarrow w_2 \} \vdash_{M.T.} \neg w_1$$

(3) Introducción de
$$\wedge$$
: $\{w_1, w_2\}$ $\vdash_{\wedge INTRO} w_1 \wedge w_2$

(4) Conmutatividad de
$$\wedge$$
: $\{w_1 \land w_2\} \vdash_{\land CONMUTA} w_2 \land w_1$

(5) Eliminación de
$$\wedge$$
: $\{w_1 \wedge w_2\} \vdash_{\wedge ELIMIN} w_1$

(6) Introducción de
$$\vee$$
: $\{w_1\}$ \longrightarrow_{VINTRO} $w_1 \vee w_2$

$$\{w_2\}$$
 \longrightarrow_{VINTRO} $w_1 \lor w_2$

(7) Eliminación de
$$\neg \neg$$
: $\{\neg \neg w_1\}$ $\vdash \neg_{\neg ELIMIN} w_1$

1.4. Equivalencia

Dos proposiciones distintas son equivalentes cuando tienen el mismo valor de verdad en todas las interpretaciones posibles, es decir, tienen la misma **tabla de verdad**.

» Elemento neutro:
$$(w_1 \land V) \equiv w_1$$
; $(w_1 \lor F) \equiv w_1$

» Leyes de absorción:
$$(w_1 \lor (w_1 \land w_2)) \equiv w_1$$
 $(w_1 \land (w_1 \lor w_2)) \equiv w_1$

» Ley de contradicción / ley del medio excluido:

$$(w_1 \land \neg w_1) \equiv F;$$
 $(w_1 \lor \neg w_1) \equiv V$

» Leyes de dominación:

$$(w_1 \land F) \equiv F; \qquad (w_1 \lor V) \equiv V$$

» Idempotencia:
$$(w_1 \wedge w_1) \equiv w_1$$
; $(w_1 \vee w_1) \equiv w_1$

- » Eliminación de la doble negación: ¬¬w₁≡w₁
- » Leyes de De Morgan:

$$\neg (w_1 \lor w_2) \equiv \neg w_1 \land \neg w_2; \quad \neg (w_1 \land w_2) \equiv \neg w_1 \lor \neg w_2$$

- » Conmutatividad: $w_1 \lor w_2 \equiv w_2 \lor w_1$; $w_1 \land w_2 \equiv w_2 \land w_1$
- » Leyes asociativas:

$$\begin{array}{lll} (w_1 \wedge w_2) \wedge w_3 \equiv & w_1 \wedge (w_2 \wedge w_3) & \equiv & w_1 \wedge w_2 \wedge w_3 \text{ [conjunción]} \\ (w_1 \vee w_2) \vee w_3 \equiv & w_1 \vee (w_2 \vee w_3) \equiv & w_1 \vee w_2 \vee w_3 \text{ [disyunción]} \end{array}$$

» Leyes distributivas:

$$\begin{array}{lll} w_1 \wedge (w_2 \vee w_3) & \equiv & (w_1 \wedge w_2) \vee (w_1 \wedge w_3) \\ w_1 \vee (w_2 \wedge w_3) & \equiv & (w_1 \vee w_2) \wedge (w_1 \vee w_3) \end{array}.$$

- » Definición de condicional: $w_1 \Rightarrow w_2 \equiv \neg w_1 \lor w_2$
- » Contraposición: $w_1 \Rightarrow w_2 \equiv \neg w_2 \Rightarrow \neg w_1$
- » Def. de bicondicional: $w_1 \Leftrightarrow w_2 \equiv (w_1 \Rightarrow w_2) \land (w_2 \Rightarrow w_1)$ $\equiv (w_1 \land w_2) \lor (\neg w_1 \land \neg w_2)$

1.5. Tablas de verdad

Una **tabla de verdad**, siguiendo una definición basada en el álgebra booleana, está compuesta por átomos (variables booleanas que solo pueden tomar valores V o F) y fórmulas bien formadas (expresiones booleanas).

▼ Nor

w1	¬w1
V	F
F	V

▼ Or inclusivo

w1	w2	w1 V w2
V	V	V
V	F	V
F	V	V
F	F	F

▼ And

▼ Implica

w1	w2	w1 ∧ w2	w1	w2	w1 ⇒ w2
V	V	V	V	V	V
V	F	F	V	F	F
F	V	F	F	V	V
F	F	F	F	F	V

▼ Doble implica

w1	w2	w1 ⇔ w2
V	V	V
V	F	F
F	V	F
F	F	V

Interpretaciones

Una interpretación es (1) la posible asignación de **valores de verdad** a las **variables booleanas** (átomos); o (2) las posibles situaciones en las que se puede encontrar un agente.

Un **modelo** es una interpretación en la que todas las fórmulas bien formadas de la base de conocimiento tienen valor de verdad V.

Reglas de inferencia

1.6. Interpretaciones

Una interpretación es (1) la posible asignación de **valores de verdad** a las **variables booleanas** (átomos); o (2) las posibles situaciones en las que se puede encontrar un agente.

Un **modelo** es una interpretación en la que todas las fórmulas bien formadas de la base de conocimiento tienen valor de verdad V.

1.7. Satisfacibilidad

Una base de conocimiento puede ser:

- Satisfacible (SAT): cuando algunas de sus interpretaciones son modelos, pero no todas.
- Tautología (SAT): cuando todas sus interpretaciones son modelos.
- Insatisfacible (UNSAT): cuando no tiene ningún modelo, es una contradicción.

Que $\underline{\mathsf{w}}$ sea consecuencia lógica de $\underline{\mathsf{a}}$ implica que todos los modelos $\underline{\mathsf{a}}$ son modelos de $\underline{\mathsf{w}}$. En la tabla de verdad solo compruebo si el valor de verdad de $\underline{\mathsf{w}}$ es V en las interpretaciones que son modelo de $\underline{\mathsf{a}}$. No todos los modelos de $\underline{\mathsf{w}}$ tienen que ser modelos de $\underline{\mathsf{a}}$.

1.8. Métodos de mecanización

1. Tablas de verdad

	Átomos			Base de conocimiento Δ				w	
	Α	В	D	Р	(A∧B∧P)⇒D	Α	В	¬ D	٦P
I ₁	v	v	V	v	V	v	v	F	
l ₂	V	V	V	F	V	V	V	F	
l ₃	V	V	F	v	F	V	V	V	
I ₄	V	٧	F	F	V	٧	V	٧	٧
I ₅	V	F	٧	v	V	V	F	F	
I ₆	V	F	V	F	V	V	F	F	
I ₇	v	F	F	v	V	V	F	V	
I ₈	V	F	F	F	V	V	F	V	
l ₉	F	٧	V	V	V	F	V	F	
I ₁₀	F	٧	V	F	V	F	V	F	
I ₁₁	F	V	F	V	V	F	V	V	
I ₁₂	F	V	F	F	V	F	V	V	
I ₁₃	F	F	V	V	V	F	F	F	
I ₁₄	F	F	V	F	V	F	F	F	
I ₁₅	F	F	F	v	V	F	F	V	
I ₁₆	F	F	F	F	V	F	F	V	

2. Inferencia directa

3. Refutación por inferencia: Se plantea un conclusión negando la demostración esperada y se intenta llegar a una contradicción.

$$\dot{\epsilon}\Delta \models w$$
?

- Sí. $\Delta \models w \Rightarrow \alpha \equiv \{\Delta, \neg w\}$ es UNSAT.
- No. $\Delta \models w \Rightarrow \alpha \equiv \{\Delta, \neg w\}$ es SAT.

1.9. Estructuras lógicas

- Átomos simbólicos.
- Literales: pueden ser positivos (átomos) o negativos (negaciones de átomos).
- Cláusula: es la disyunción de literales.
- Forma normal conjuntiva: es la conyunción o conjunto de cláusulas.

Las cláusulas pueden contener varios literales, un único literal (cláusula unitaria) o ningún literal (cláusula vacía \square).

1.9.1. Resolución entre cláusulas (regla de inferencia)

Sea λ un literal positivo.

Sean K₁ y K₂ dos cláusulas de la forma

$$\begin{aligned} \mathsf{K}_1 &= (\lambda \vee \lambda_{11} \vee \lambda_{21} \dots \vee \lambda_{i1}) \\ \mathsf{K}_2 &= (\neg \lambda \vee \lambda_{12} \vee \lambda_{22} \dots \vee \lambda_{i2}), \end{aligned}$$

La derivación

$$\{K_1, K_2\} \models_{[RES \text{ en } \lambda]} \lambda_{11} \lor \lambda_{21} \ldots \lor \lambda_{i1} \lor \lambda_{12} \lor \lambda_{22} \ldots \lor \lambda_{j2}$$
 es una regla de inferencia correcta

1.10. Demostraciones por inferencia

R: conjunto de reglas de inferencia.

- Correcto. Si $\forall \Delta, w \ \Delta \vdash_{R^+} w$, entonces $\Delta \models w$.
- Completo. Si $\forall \Delta, w \ \Delta \models w$, entonces es posible que $\Delta \vdash_{R^+} w$.

La secuencia de FBFs es una prueba de w_n a partir de un conjunto de FBFs Δ si mediante el uso de reglas de inferencia, cada w_i está en Δ o puede deducirse a partir de $\{w_1, w_2, ..., w_{i-1}\}$.

1.11. Algoritmo para resolución

Se intenta llegar a la cláusula vacía a través de :

1.11.1. Inferencia con NFC

$$egin{aligned} \Delta &\equiv \Delta_{FNC} dash_{_{RES^*}} \ w_{_{FNC}} \ & \ ext{Ej.} \left(egin{aligned} \lambda ee k_1 \ -\lambda ee k_2 \end{aligned}
ight) dash_{_{RES\lambda}} \ k_1 ee k_2 \end{aligned}$$

1.11.2. Refutación + Resolución

$$\Delta \models w$$
?

• Sí. $\Delta \models w \Rightarrow lpha_{_{FNC}} \equiv \{\Delta_{_{FNC}}, (\lnot w)_{_{FNC}}\}$ es UNSAT. Se puede derivar la cláusula vacía.

• No. $\Delta \not\models w \Rightarrow lpha_{_{FNC}} \equiv \{\Delta_{_{FNC}}, (\lnot w)_{_{FNC}}\}$ es SAT. No se puede derivar la cláusula vacía.