3. Из 2.205 г смеси $(NH_4)_2CO_3\cdot H_2O$, K_2CO_3 и $(NH_4)_2HPO_4$ получено 0.622 г углекислого газа и 0.228 г аммиака. Покажите, какими реакциями могут быть получены эти газы из указанной смеси. Рассчитайте состав смеси в массовых процентах.

№ 3

2 вариант

Из 2.205 г смеси $(NH_4)_2CO_3\cdot H_2O$, K_2CO_3 и $(NH_4)_2HPO_4$ получено 0.622 г углекислого газа и 0.228 г аммиака. Покажите, какими реакциями могут быть получены эти газы из указанной смеси. Рассчитайте состав смеси в массовых процентах.

Решение:

1. Реакции получения СО2:

$$(NH_4)_2CO_3\cdot H_2O + 2HCl = NH_4Cl + H_2O + CO_2$$

$$K_2CO_3 + 2HCl = KCl + H_2O + CO_2$$

Может быть и другая кислота. Но термическое разложение не подходит из-за карбоната калия.

2. Реакции получения NH₃:

$$(NH_4)_2CO_3\cdot H_2O + 2NaOH = 2NH_3 + Na_2CO_3 + 3H_2O$$

$$(NH_4)_2HPO_4 + 3NaOH = 2NH_3 + Na_3PO_4 + H_2O$$

Может быть другая щелочь

3. Расчет:

 $M((NH_4)_2CO_3\cdot H_2O)=114$ г/моль; $M(K_2CO_3)=138$ г/моль; $M(NH_4)_2HPO_4=132$ г/моль Пусть в смеси содержится х грамм $(NH_4)_2CO_3*H_2O$, у грамм K_2CO_3 и z грамм $(NH_4)_2HPO_4$ Тогда x+y+z=2.205

$$x: 114 + y: 138 = 0.622: 44 = 0.014$$

$$x: 114 + z: 132 = 0.228: (2.17) = 0.0067$$

Откуда: $x = 0.447 \ \Gamma (NH_4)_2CO_3 \cdot H_2O$ $y = 1.391 \ \Gamma \ K_2CO_3$ $z = 0.367 \ \Gamma (NH_4)_2HPO_4$ $\omega ((NH_4)_2CO_3 \cdot H_2O) = 20.3\%$ $\omega (K_2CO_3) = 63.1\%$ $\omega ((NH_4)_2HPO_4) = 16.6\%$

Рекомендации к оцениванию:

1. Реакции получения СО2 – по 0.5 балла

 $0.5 \times 2 = 1$ балл

2. Реакции получения аммиака – 1 балл

 $0.5 \times 2 = 1$ балл

3. Массовая доля каждого компонента – по 1 баллу

 $1 \times 3 = 3$ балла

ИТОГО: 5 баллов