Lab 5 Report: Sorting and Efficiency

Lab Group: 8

Name(s): Keerthi Sekar and Grayson Cox

The following table explains the times that were run on both Keerthi and Grayson's laptops.

Sorting					
Method	10 (ns)	100 (ns)	500 (ns)	5000 (ns)	25000 (ns)
Bubble Sort	1000	45700	974800	86638500	2184535900
Insertion Sort	300	23700	270300	20498900	434034800
Merge Sort	1200	10600	77200	763100	3940900
Quick Sort	1200	29100	91200	933800	119614400
Radix Sort	900	28200	34700	321400	1469700

We expected the growth order to be how it is in the table, bubble being the worst case for the larger datasets to Radix being the quickest. Since bubble has a n^2 growth rate it will take the longest like seen in the graph. Radix's growth rate is nk (k = maximum possible value). So, it obviously will be a lot quicker that bubble and the other remaining sorting methods. The values increasing in the magnitudes that it did in nanoseconds, seen in the table, was under our expectations as we assumed the growth of time would match the size of the datasets. (25,000 is a huge array so the time being in the 10^9 is right.)

We did not run into any issues of memory or functions running longer than 4 seconds at the most. We think that the main reason this is not an issue for us is that we both have a powerful processor (i7) capable of computing these sorting algorithms at an efficient rate. From the table it looks like the longest running one is bubble and the shortest method is radix. Radix and Merge both have a relatively linear runtime in comparison to the others.

In graphical form for each sorting algorithm sorting analysis:

