Analyzing the NYC Airbnb Market

Overview

Airbnb is an online marketplace connecting people who want to rent out their homes with people looking for accommodations in that locale. It currently covers more than 100,000 cities and 220 countries worldwide.

Data analysis on thousands of listings provided through Airbnb is a crucial factor for the company. Our main objective is to determine the key metrics influencing the listing of properties on the platform. For this, we will explore and visualize the dataset from Airbnb in NYC using basic exploratory data analysis (EDA) techniques. We have found out the distribution of every Airbnb listing based on their location, including their price range, room type, listing name, and other related factors.

Objective

Understanding the factors that influence Airbnb prices in New York City, or identifying patterns of all variables Our analysis provides useful information for travelers and hosts in the city and some of the best insights for the Airbnb business.

Let's Begin

import all the necessary libraries

```
In [4]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns

# ignored warnings
import warnings
warnings.filterwarnings("ignore")
```

Import the dataset

```
In [5]: dataset = pd.read_csv("Airbnb NYC 2019.csv")
    dataset.head()
```


Out[5]:	id		name host_id		host_name neighbou		rhood_group	neighbour	
	0	2539			2787	Joh	nn	Brooklyn	Kensi
	1	2595	Skylit Mi	dtown Castle	2845	Jennifo	er	Manhattan	Mic
	2	3647	THE VII HARLEM Y	OF	4632	Elisabe	:h	Manhattan	Н
	3	3831		Entire oor of istone	4869	LisaRoxanr	ne	Brooklyn	Clinto
	4	5022	Cn.		7192	Lau	ra	Manhattan	East H
In [6]:	: dataset.tail()								
Out[6]:			id		name	host_id	host_name	neighbourho	od_group
	48	890	36484665	be re	ning one edroom - newly novated owhouse	8232441	Sabrina		Brooklyn
	48	8891	36485057	Bushw	fordable room in vick/East amsburg	6570630	Marisol		Brooklyn
	48	892	36485431	at F	y Studio Iistorical borhood	23492952	llgar & Aysel	1	Manhattan
	48	893	36485609	Squ	St. Time are-cozy ngle bed	30985759	Taz	1	Manhattan
	48	894	36487245	in	y duplex the very of Hell's Kitchen	68119814	Christophe	1	Manhattan

Shape of the dataset

In [7]: dataset.shape

Out[7]: (48895, 16)

Unique Columns in the dataset


```
Out[8]: Index(['id', 'name', 'host id', 'host name', 'neighbourhood group',
                 'neighbourhood', 'latitude', 'longitude', 'room_type', 'price',
'minimum_nights', 'number_of_reviews', 'last_review',
                 'reviews_per_month', 'calculated_host_listings_count',
                 'availability 365'],
               dtype='object')
         Information of the dataset
In [9]: dataset.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 48895 entries, 0 to 48894
       Data columns (total 16 columns):
            Column
                                               Non-Null Count Dtype
            -----
        0
            id
                                               48895 non-null int64
                                               48879 non-null object
        1
            name
        2
                                               48895 non-null int64
            host id
                                               48874 non-null object
        3
            host name
                                              48895 non-null object
            neighbourhood group
            neighbourhood
                                               48895 non-null object
                                               48895 non-null float64
        6
            latitude
        7
                                               48895 non-null float64
            longitude
                                               48895 non-null object
        8
            room type
                                               48895 non-null int64
        9
            price
```

48895 non-null int64 48895 non-null int64

38843 non-null object 38843 non-null float64

48895 non-null int64

15 availability_365 48 dtypes: float64(3), int64(7), object(6)

memory usage: 6.0+ MB

10 minimum nights

12 last review

11 number_of_reviews

13 reviews_per_month

In [8]: dataset.columns

Statistical Description of the dataset

14 calculated_host_listings_count 48895 non-null int64

In [10]: dataset.describe()

Out[10]:		id	host_id	latitude	longitude	price
	count	4.889500e+04	4.889500e+04	48895.000000	48895.000000	48895.000000
	mean	1.901714e+07	6.762001e+07	40.728949	-73.952170	152.720687
	std	1.098311e+07	7.861097e+07	0.054530	0.046157	240.154170
	min	2.539000e+03	2.438000e+03	40.499790	-74.244420	0.000000
	25%	9.471945e+06	7.822033e+06	40.690100	-73.983070	69.000000
	50%	1.967728e+07	3.079382e+07	40.723070	-73.955680	106.000000
	75 %	2.915218e+07	1.074344e+08	40.763115	-73.936275	175.000000
	max	3.648724e+07	2.743213e+08	40.913060	-73.712990	10000.000000

Using Heatmaps to Visualize Missing Values

```
In [11]: ax = plt.axes()
    sns.heatmap(dataset.isna().transpose(), cbar=False, ax=ax, cmap="viridis")
    plt.title("Missing Values", fontsize=9)
    plt.xlabel("Columns", fontsize = 9)
    plt.ylabel("Missing Values", fontsize = 9)
    plt.show()
```


Replacing the null values with appropriate values

```
In [12]: dataset['name'].replace(np.nan, 'Other Hotel', inplace =True)
dataset['host_name'].replace(np.nan, 'other', inplace = True)
```

```
dataset['last_review'].replace(np.nan, 'Not Reviewed', inplace = True)
dataset['reviews_per_month'].replace(np.nan, '0', inplace = True)
```

Checking for Duplicated Records

```
In [13]: dataset.duplicated().sum()
Out[13]: 0
```

 Now we have performed data cleaning, let's uncover patterns and trends using visualizations —

Which are the top 10 host_id with the highest number of property listings?

```
In [14]: dataset['host_id'].value_counts().reset_index().head(10)

# Plotting the bar graph to visualize the top 10 host ids with the highest r
plt.figure(figsize=(12, 6))
ax = sns.barplot(x=dataset['host_id'].value_counts().iloc[:10].index, y=data
for bars in ax.containers:
    ax.bar_label(bars)

plt.title("Top 10 Host IDs with the Most Property Listings", fontsize=15)
plt.xlabel("Host IDs", fontsize=15)
plt.ylabel("Count of listings", fontsize=15)
plt.show()
```


 The Host id 219517861 has the highest number of bookings with the total bookings of 327

What are the top 10 neighborhoods with the most property listings?

```
In [15]: # Plotting the bar graph to visualize the top 10 neighborhoods with the high
plt.figure(figsize=(12, 6))
ax = sns.barplot(x=dataset['neighbourhood'].value_counts().iloc[:10].index,

for bars in ax.containers:
    ax.bar_label(bars)

plt.title("Top 10 neighbourhoods with the Most Property listings", fontsize=
plt.xlabel("Neighbourhood", fontsize=15)
plt.ylabel("Count of Listings", fontsize=15)
plt.xticks(rotation=45)
plt.show()
```


 Williamsburg is the neighborhood with the most listings in NYC with total 3920 listings

What are the top 10 host_name with the highest number of listings?

```
In [16]: # Plotting the bar graph to visualize the top 10 host names with the highest
plt.figure(figsize=(12, 6))
ax = sns.barplot(x=dataset['host_name'].value_counts().iloc[:10].index, y=dataset
for bars in ax.containers:
    ax.bar_label(bars)
```

```
plt.title("Top 10 Host Names with the Most Property listings", fontsize=15)
plt.xlabel("Host Names", fontsize=15)
plt.ylabel("Count of Listings", fontsize=15)
plt.show()
```


• We can observe that, Michael is the host who is the owner of highest number of property listings with the total of 417 listings

What are the property listing counts for each neighborhood group?

```
In [17]: listings_per_neighborhood_group = sns.countplot(x='neighbourhood_group', dat

for bars in listings_per_neighborhood_group.containers:
    listings_per_neighborhood_group.bar_label(bars)

plt.title("Neighborhood Groups and Their Property Listings Counts")
    plt.xlabel("Neighborhood Groups")
    plt.ylabel("Number of Listings")
    plt.xticks(rotation=45)
    plt.show()
```

Neighborhood Groups and Their Property Listings Counts

• Data shows that, Manhattan is the neighborhood group with the highest number of property listings and Staten Island contributes to the lowest number of listings.

Which neighborhoods belong to each neighborhood group?

What are the different Types of rooms available in the dataset?

```
In [19]: dataset['room_type'].unique()
```

Out[19]: array(['Private room', 'Entire home/apt', 'Shared room'], dtype=object)

 As we can see, there are mainly 3 categories of rooms available in the Airbnb NYC listings

Which room type contributes to the highest number of listings in Airbnb NYC?

```
In [20]: room_type_listings = sns.countplot(x='room_type', data=dataset, palette="coc
for bars in room_type_listings.containers:
    room_type_listings.bar_label(bars)

plt.title("Room types and their listing counts")
plt.xlabel("Room Type")
plt.ylabel("Number of Listings")
plt.show()
```


We can observe clearly that "Entire home/apt" room type has the highest number of listings in NYC

The most common room type is "Entire home/apt" room type

What is the Average price for all listings?

```
In [21]: average_price = dataset['price'].mean()
    print("Average price for all listings:", average_price)
```

Average price for all listings: 152.7206871868289

• The average price for all listings in the dataset is approximately \$152.72.

How many hosts have more than one listing?

```
In [22]: hosts_listings = dataset['host_id'].value_counts()
   hosts_multiple_listing = (hosts_listings > 1).sum()
   print("Number of hosts with more than one listing:", hosts_multiple_listing)
```

Number of hosts with more than one listing: 5154

Which neighborhood has the highest average price?

```
In [23]: highest_avg_price_neighborhood = dataset.groupby('neighbourhood')['price'].m
highest_avg_price = dataset.groupby('neighbourhood')['price'].mean().max()
highest_avg_price_neighborhood, highest_avg_price
```

Out[23]: ('Fort Wadsworth', 800.0)

How many listings are available throughout the entire year?

```
In [24]: listings_available_all_year = dataset[dataset['availability_365'] == 365]
listings_365 = listings_available_all_year.shape[0]
print("Number of listings available throughout the entire year:", listings_3
```

Number of listings available throughout the entire year: 1295

What is the average minimum nights required for a stay?

```
In [25]: avg_minimum_nights = dataset['minimum_nights'].mean()
    print("Average minimum nights required for a stay is:", avg_minimum_nights)
```

Average minimum nights required for a stay is: 7.029962163820431

How many listings have never been reviewed?


```
In [26]: listings_never_reviewed = dataset[dataset['number_of_reviews'] == 0]
    zero_reviews_count = listings_never_reviewed.shape[0]
    zero_reviews_count
```

Out[26]: 10052

• As per data, 10052 listings have never been reviewed

Analyzing Price Attribute

Third quartile (Q3)

IQR = Q3 - Q1

Interquaritle range (IQR)

```
In [27]: plt.figure(figsize = (15,6))
    sns.boxplot(x = dataset['price'])
    plt.show()
```



```
In [28]: # Getting the mathematical answers for the price column
         dataset['price'].describe()
                   48895.000000
Out[28]: count
                    152.720687
         mean
                    240.154170
         std
         min
                       0.000000
         25%
                     69.000000
         50%
                    106.000000
         75%
                     175.000000
         max
                  10000.000000
         Name: price, dtype: float64
In [29]: # Calculating Interquartile Ranges
         Q1 = np.percentile(dataset['price'], 25, interpolation = 'midpoint')
```

Kshitija Chilbule

Q3 = np.percentile(dataset['price'], 75, interpolation = 'midpoint')

```
lower fence = Q1 - (1.5 * IQR)
          upper fence = Q3 + (1.5 * IQR)
          print('The IQR is:', IQR)
          print('The Minimum value (Lower Fence) is:', lower fence)
          print('The Maximum value (Upper Fence) is:', upper fence)
        The IOR is: 106.0
        The Minimum value (Lower Fence) is: -90.0
        The Maximum value (Upper Fence) is: 334.0
In [30]: # Filter dataset to include only values within the fences
          filtered data = dataset[(dataset['price'] >= lower fence) & (dataset['price
In [31]: filtered data.head()
               id
                           name host_id host_name neighbourhood_group neighbour
Out[31]:
                     Clean & quiet
          0 2539
                                     2787
                                                  John
                                                                      Brooklyn
                                                                                    Kensi
                     apt home by
                         the park
                    Skylit Midtown
          1 2595
                                     2845
                                               Jennifer
                                                                    Manhattan
                                                                                      Mic
                           Castle
                     THE VILLAGE
                              OF
          2 3647
                                     4632
                                              Elisabeth
                                                                    Manhattan
                                                                                       Н
                   HARLEM....NEW
                          YORK!
                       Cozy Entire
          3 3831
                                     4869 LisaRoxanne
                          Floor of
                                                                     Brooklyn
                                                                                    Clinto
                      Brownstone
                       Entire Apt:
                         Spacious
          4 5022
                                     7192
                                                 Laura
                                                                    Manhattan
                                                                                   East H
                    Studio/Loft by
                      central park
```

In [32]: filtered data.shape

Out[32]: (45923, 16)

What is the average price for each neighborhood group, and which neighborhood group has the highest average price?

In [33]: filtered data.groupby(['neighbourhood group'])['price'].describe().T

Out[33]:	neighbourhood_group	Bronx	Brooklyn	Manhattan	Queens
	count	1070.000000	19415.000000	19506.000000	5567.000000
	mean	77.365421	105.699614	145.952835	88.904437
	std	47.110940	60.937808	70.473076	53.536041
	min	0.000000	0.000000	0.000000	10.000000
	25%	45.000000	60.000000	90.000000	50.000000
	50%	65.000000	90.000000	135.000000	74.000000
	75%	95.000000	140.000000	199.000000	108.000000
	max	325.000000	333.000000	334.000000	325.000000

The data shows that Manhattan has the highest average property prices, making it the most expensive area to live in NYC. In contrast, the Bronx has the lowest average property prices, making it the most affordable area in the city.

Queens and Staten Island appear to have similar property prices.

What is the average number of listings per host?

```
In [34]: total_listings = dataset.shape[0]
    unique_hosts = dataset['host_id'].nunique()

In [35]: average_listings_per_host = total_listings / unique_hosts

In [36]: print("Average Listings per host: ", average_listings_per_host)

Average Listings per host: 1.3053634834610353
```

How many listings are there per neighborhood group by room type?

```
In [37]: listings_per_neighborhood_group_by_room_type = dataset.groupby('neighbourhoot
listings_per_neighborhood_group_by_room_type
```

Out[37]:	neighbourhood_group	room_type	
	Bronx	Private room	652
		Entire home/apt	379
		Shared room	60
	Brooklyn	Private room	10132
		Entire home/apt	9559
		Shared room	413
	Manhattan	Entire home/apt	13199
		Private room	7982
		Shared room	480
	Queens	Private room	3372
		Entire home/apt	2096
		Shared room	198
	Staten Island	Private room	188
		Entire home/apt	176
		Shared room	9
	Name: count, dtype:	int64	

What are the top 10 most reviewed listings?

What is the average price for listings with availability less than 100 days?

```
In [39]: listings_available_lessthan100_days = dataset[dataset['availability_365']<16
listings_available_lessthan100_days['price'].mean()</pre>
```

Out[39]: 138.74156660949114

Summary of Insights

We analyzed the top 10 hosts to identify the one with the most property listings on Airbnb. Our findings show that Michael holds the top spot with 417 listings, making him the host with the highest number of properties. He is followed by David, who has the second-highest number of listings at 403. Additionally, our data reveals that 5,154 hosts have more than one listing on Airbnb.

The data shows that only 1,295 listings were available year-round, indicating a limited number of consistently accessible properties. Additionally, the average number of listings per host is just one, suggesting that most hosts manage only a single property.

The dataset includes five distinct neighborhood groups: Brooklyn, Manhattan, Queens, Staten Island, and the Bronx. It was found that Manhattan has the highest number of property listings on Airbnb, with a total of 21,661 listings, while Staten Island has the fewest property listings.

Our dataset includes 221 unique neighborhoods, with Williamsburg standing out as the neighborhood with the most property listings, totaling 3,920 listings. It is followed by Bedford-Stuyvesant and Harlem, with 3,714 and 2,658 listings, respectively. Fort Wadsworth has the highest average price, at \$800.

The Airbnb NYC listings primarily consist of three room categories: Private room, Entire home/apt, and Shared room. Among these, Entire home/apt has the highest number of listings, making it the most common room type, while the Shared room has the fewest listings. The average price for all listings is \$152.72.

According to the dataset, there are a total of 10,052 property listings on Airbnb that have not received a single review. This means that these listings have either not been booked by guests or, if they have been, no feedback has been provided by those who stayed. This lack of reviews could impact the visibility and attractiveness of these listings to potential guests, as reviews often play a significant role in helping users decide on accommodations.

On average, Airbnb listings in this dataset require a minimum stay of 7 nights. This indicates that, generally, hosts prefer longer bookings, possibly to reduce the frequency of turnover and related maintenance tasks.

