(1), (2), (3), (4), (5) See Answer Key.

(6)

$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

= $(1 - 1/3) + 1/2 - 1/4 = 11/12$

(7) The sum of the probabilities for art, geology, and psychology should add up to 1.

$$p + p + 2p = 1$$
$$p = 1/4$$

So, Pr(art) = 1/4, Pr(psychology) = 1/4, Pr(geology) = 1/2.

(8) Assuming that order doesn't matter:

Number of ways to place two rooks,
$$|\Omega| = \binom{64}{2}$$

Number of ways to place two attacking rooks, $|E| = \frac{64 \times 14}{2!}$
Then, $Pr(E) = \frac{(64 \times 14)/2!}{\binom{64}{2}} = \frac{2}{9}$

Assuming that order does matter:

Number of ways to place two rooks,
$$|\Omega|=64\times63$$

Number of ways to place two attacking rooks, $|E|=64\times14$
Then, $Pr(E)=\frac{64\times14}{64\times63}=\frac{2}{9}$

Both yield the same probability.

(9)

$$\begin{array}{rcl} \text{Sample Space, } \Omega & = & \{S,O\}^9 \\ \text{Number of ways to achieve 9-tuple strings, } |\Omega| & = & 2^9 \\ \text{Number of ways to spell SOS, } |E| & = & 1 \\ \text{Then, } Pr(E) & = & \frac{1}{2^9} = \frac{1}{512} \end{array}$$

(10) First, compute the probability of rolling each face of the die:

$$p + 2p + 3p + 4p + 5p + 6p = 1$$

 $p = 1/21$

So, Pr(Rolling 1) = 1/21, Pr(Rolling 2) = 2/21, etc. Then, sum the probabilities of the events of interest:

$$Pr(Even) = Pr(Rolling 2) + Pr(Rolling 4) + Pr(Rolling 6)$$
$$= 2/21 + 4/21 + 6/21 = 4/7$$

(11)

Number of ways for 5 people to line up, $|\Omega|=5!$ Number of ways for 5 people to line up in correct order, |E|=1Then, $Pr(E)=\frac{1}{5!}=\frac{1}{120}$

(12)

Number of ways for 5 people to get off at 5 floors, $|\Omega|=5^5$ Number of ways for 5 people to all get off at different floors, |E|=5!Then, $Pr(E)=\frac{5!}{5^5}=\frac{24}{625}$

(13)

Part a: Number of ways to deal first two cards, $|\Omega|=52\times51$ Number of ways that first two cards have same suit, $|E|=52\times12$ Then, $Pr(E)=\frac{52\times12}{52\times51}=\frac{4}{17}$ Part b: Number of ways to deal 13 cards, $|\Omega|=\begin{pmatrix}52\\13\end{pmatrix}$ Number of ways for 13-card hand to all have same suit, |E|=4 Then, $Pr(E)=\frac{4}{\begin{pmatrix}52\\13\end{pmatrix}}$

(14)

Number of ways to choose 10 apples, $|\Omega| = \begin{pmatrix} 100 \\ 10 \end{pmatrix}$ Number of ways 10 apples to be good, $|E| = \begin{pmatrix} 90 \\ 10 \end{pmatrix}$ Then, $Pr(E) = \frac{\begin{pmatrix} 90 \\ 10 \end{pmatrix}}{\begin{pmatrix} 100 \\ 10 \end{pmatrix}}$ (15)

Number of ways to schedule jobs, $|\Omega| = 3^n$

Part a: Number of ways to schedule all jobs with one processor, |E| = 3

Then,
$$Pr(E) = \frac{3}{3^n} = \frac{1}{3^{n-1}}$$

Part b: Number of ways to schedule all jobs with exactly one processor, $|E| = {3 \choose 2} (2^n - 2)$

Then,
$$Pr(E) = \frac{\binom{3}{2}(2^n - 2)}{3^n} = \frac{2^n - 2}{3^{n-1}}$$

In part b, it is easier to compute the number of ways to schedule exactly two jobs, which is $2^{n}\binom{3}{2}$. However, this also includes two cases in which only one of the two processors are scheduled for all jobs, which we must subtract.