PROOF PORTFOLIO - SPRING 2023

BERNICE YUAN

1. DIRECT PROOF

The sum of the squares of two consecutive integers is odd.

Proof. Let x and y be two consecutive integers. By the definition of consecutive integers, we know that y = x + 1. We can substitute this into the equation $x^2 + y^2$, which gives us

$$x^{2} + (x+1)^{2} = 2x^{2} + 2x + 1 = 2(x^{2} + x) + 1$$

Since $x \in \mathbb{Z}$, $x^2 + x \in \mathbb{Z}$. Thus, the sum of the squares of x and y is always an odd number. So, the statement proved.

Date: April 26, 2023.

2. Contrapositive proof

Let $a, b \in \mathbb{Z}$. Prove that if $a^2(b^2 - 2b)$ is odd, then a and b are odd.

Proof. We will prove by the contrapositive:

If either a or b is even, then $a^2(b^2 - 2b)$ is even.

Suppose $a, b \in \mathbb{Z}$, and a or b is even.

First, assume that a is even. Then we can write a=2k for some $k \in \mathbb{Z}$. Substituting this into $a^2(b^2-2b)$, we get:

$$a^{2}(b^{2}-2b) = (2k)^{2}(b^{2}-2b) = 4k^{2}(b^{2}-2b) = 2(2k^{2})(b^{2}-2b)$$

Since $(2k^2)(b^2-2b) \in \mathbb{Z}$, by definition of even, $a^2(b^2-2b)$ is even.

Next, assume that b is even. Then we can write b = 2m for some $m \in \mathbb{Z}$. Substituting this into $a^2(b^2 - 2b)$, we get:

$$a^{2}(b^{2} - 2b) = a^{2}(4m^{2} - 4m) = 2(a^{2})(2m^{2} - 2m)$$

Since $(a^2)(2m^2-2m) \in \mathbb{Z}$, again, by definition of even, $a^2(b^2-2b)$ is even.

Therefore, if a or b is even, then $a^2(b^2-2b)$ is even. This completes the proof by contrapositive, which shows that if $a^2(b^2-2b)$ is odd, then a and b are odd.

3. Proof by contradiction

Prove that any real-valued solution to $x^3 + x = 1$ must be irrational.

Proof. Assume, for the sake of contradiction, that there exists a real-valued solution of $x^3+x=1$ that is rational. Then there exists integers p and q with $q \neq 0$, such that $x=\frac{p}{q}$ and $\frac{p^3}{q^3}+\frac{p}{q}=1$. We may assume that p,q have no common factors. Times both sides with q^3 , we have $p^3+q^2p=q^3$.

Case (a): Suppose p, q are both even integers;

Since p and q are both even, p and q are both divisible by 2, this case is impossible.

Case (b): Suppose p, q are both odd integers;

Let p = 2m + 1, q = 2n + 1 for some $m, n \in \mathbb{Z}$. Then

$$p^{3} + q^{2}p = (2m+1)^{3} + (2n+1)^{2}(2m+1)$$
$$= 2(2m+1)(2m^{2} + 2m + 2n^{2} + 2n + 1)$$

$$q^{3} = (2n+1)^{3}$$
$$= 8n^{3} + 12n^{2} + 6n + 1$$
$$= 2(4n^{3} + 6n^{2} + 3n) + 1$$

Since $(2m+1)(2m^2+2m+2n^2+2n+1) \in \mathbb{Z}$ and $4n^3+6n^2+3n \in \mathbb{Z}$, p^3+q^2p is even and q^3 is odd. Therefore, we have a contradiction.

Case (c): Suppose p is even and q is odd;

Let p = 2m, q = 2n + 1 for some $m, n \in \mathbb{Z}$. Then

$$p^{3} + q^{2}p = (2m)^{3} + (2n+1)^{2}(2m)$$
$$= 2(4m^{3} + 4mn^{2} + 4mn + m)$$

$$q^{3} = (2n+1)^{3}$$
$$= 2(4n^{3} + 6n^{2} + 3n) + 1$$

Since $4m^3 + 4mn^2 + 4mn + m \in \mathbb{Z}$ and $4n^3 + 6n^2 + 3n \in \mathbb{Z}$, $p^3 + q^2p$ is even and q^3 is odd. Therefore, we have a contradiction.

Case (d): Suppose p is odd and q is even.

Let p = 2m + 1, q = 2n for some $m, n \in \mathbb{Z}$. Then

$$p^{3} + q^{2}p = (2m+1)^{3} + (2n)^{2}(2m+1)$$
$$= 2(4m^{3} + 6m^{2} + 3m + 4mn^{2} + 2n^{2}) + 1$$

$$q^3 = (2n)^3$$
$$= 2(4n^3)$$

Since $4m^3+6m^2+3m+2mn^2+2n^2\in\mathbb{Z}$ and $4n^3\in\mathbb{Z},\ p^3+q^2p$ is odd and q^3 is even. Therefore, we have a contradiction.

We have contradictions for every case, so the real-valued solution to $x^3 + x = 1$ must be irrational.

4. IF AND ONLY IF (EQUIVALENCE) PROOF

Let A, B, and C be sets. Prove that $(A \cap B) \cup C = A \cap (B \cup C)$ if and only if $C \subseteq A$.

Proof. Suppose A, B, C are sets.

- (\Rightarrow) Assume that $(A \cap B) \cup C = A \cap (B \cup C)$, we want to show that $C \subseteq A$. Take an element $x \in C$. Since $x \in C$, we know that $x \in (A \cap B) \cup C$. Since $(A \cap B) \cup C = A \cap (B \cup C)$, we know that $x \in A \cap (B \cup C)$. This means $x \in A$ and $x \in (B \cup C)$. So, for every element $x \in C$, we have $x \in A$, and hence $C \subseteq A$.
- (\Leftarrow) Assume that $C \subseteq A$. Now, let's show that $(A \cap B) \cup C = A \cap (B \cup C)$.

We will prove this by showing the following two inclusions:

- 1. $(A \cap B) \cup C \subseteq A \cap (B \cup C)$
- 2. $A \cap (B \cup C) \subseteq (A \cap B) \cup C$
- 1. Let $x \in (A \cap B) \cup C$. Then, either $x \in (A \cap B)$ or $x \in C$.

If $x \in (A \cap B)$, then $x \in A$ and $x \in B$. Since $x \in A$, we have $x \in A \cap (B \cup C)$ because $x \in B \cup C$ (as $x \in B$). If $x \in C$, then $x \in A$ (since $C \subseteq A$) and $x \in B \cup C$ (since $x \in C$). So, $x \in A \cap (B \cup C)$. In both cases, we have $x \in A \cap (B \cup C)$. Thus, $(A \cap B) \cup C \subseteq A \cap (B \cup C)$.

2. Let $x \in A \cap (B \cup C)$. Then, $x \in A$ and $x \in (B \cup C)$. If $x \in B$, then $x \in A$ and $x \in B$, so $x \in A \cap B$. Thus, $x \in (A \cap B) \cup C$. If $x \in C$, then $x \in (A \cap B) \cup C$ by definition of union.

In both cases, we have $x \in (A \cap B) \cup C$. Thus, $A \cap (B \cup C) \subseteq (A \cap B) \cup C$. Therefore, we can conclude that $(A \cap B) \cup C = A \cap (B \cup C)$ if and only if $C \subseteq A$.

5. A PROOF INVOLVING SETS

Let A,B sets inside a fixed universe U. Prove that $\overline{A\cap B}\subseteq \overline{A}\cup \overline{B}$. Proof. Let $x\in \overline{A\cap B}$, by definition of complement, $x\notin (A\cap B)$. Then, $x\notin A$ or $x\notin B$. Without loss of generality, we assume $x\notin A$, then $x\in \overline{A}$. Since $\overline{A}\subseteq \overline{A}\cup \overline{B}$, $x\in \overline{A}\cup \overline{B}$.

6. AN INDUCTION PROOF

Prove the following by induction: For all $n \in \mathbb{N}$ $1+3+5+...+(2n-1)=n^2$

Proof. Let $n \in \mathbb{N}$, Let P(n) be the statement that

$$1+3+5+...+(2n-1)=n^2$$

Base case: Suppose n = 1. Take note that $1 = 1^2$. So P(1) is true. Inductive step: Now suppose that P(k) is true for some $k \ge 1$, so that

$$1 + 3 + 5 + \dots + (2k - 1) = k^2$$

We'll show that P(k+1) is true.

We want to show that

$$1 + 3 + 5 + \dots + (2k - 1) + (2(k + 1) - 1) = (k + 1)^{2}$$

Adding (2(k+1)-1) to both sides of the induction hypothesis, we get:

$$1+3+5+...+(2k-1)+(2(k+1)-1) = k^2+(2(k+1)-1)$$
$$= k^2+2k+1$$
$$= (k+1)^2$$

So P(k+1) is true. We've shown that P(1) is true and $\forall k \geq 1$, $P(k) \Rightarrow P(k+1)$. So by the principle of mathematical induction, P(n) holds for $n \in \mathbb{N}$.

7. PROOF A RELATION IS AN EQUIVALENCE RELATION

Consider the relation R on $\mathbb{N}^2 = \mathbb{N} \times \mathbb{N}$ defined by (a,b)R(c,d) if $a^b = c^d$. Show that R is an equivalence equation.

Proof. Let the relation R on $\mathbb{N}^2 = \mathbb{N} \times \mathbb{N}$ defined by (a,b)R(c,d) if $a^b = c^d$. We will show that R is an equivalence equation. Reflexive: Let $(a,b) \in \mathbb{N}^2$, since $a^b = a^b$, R is reflexive. Symmetric: Let $(a,b),(c,d) \in \mathbb{N}^2$, such that (a,b)R(c,d). So we have $a^b = c^d$. Since $c^d = a^b$, we have (c,d)R(a,b). Thus it's symmetric. Transitive: Let $(a,b),(c,d),(e,f) \in \mathbb{N}^2$ such that (a,b)R(c,d),(c,d)R(e,f). Then we have $a^b = c^d, c^d = e^f$. Hence we have the equation that $a^b = c^d = e^f$. Since $a^b = e^f$, (a,b)R(e,f). So it's transitive. As we've shown that R is reflexive, symmetric, and transitive, R is an equivalence relation.

8. INJECTIVITY OR SURJECTIVITY OF A FUNCTION

Let A, B and C be sets, and let $f: A \to B, g: B \to C$ be functions. Prove or disprove each of the following:

(1) If $g \circ f$ is an injection, then g is an injection.

Disprove. Let $A = \{1\}$, $B = \{1, 2\}$, $C = \{1\}$, and $f : A \to B$ by f(1) = 1 and $g : B \to C$ by g(1) = g(2) = 1. Then $g \circ f : A \to C$ is defined by $(g \circ f)(1) = 1$. This map is a bijection from $A = \{1\}$ to $C = \{1\}$, so is injective and surjective. However, g is not injective, since g(1) = g(2) = 1.

(2) If $g \circ f$ is a surjection, then f is a surjection.

Disprove. Using the same example in (1), $g \circ f$ is surjective, but f is not surjective since $2 \notin f(A) = \{1\}$.

(3) If $g \circ f$ is a surjection, then g is a surjection.

Proof. Suppose $g \circ f$ is surjective. Let $c \in C$. Then since $g \circ f$ is surjective, $\exists a \in A$ such that (gf)(a) = g(f(a)) = c. Therefore if we let $b = f(a) \in B$, then g(b) = c. Thus g is surjective. \square

9. AN EPSILON-DELTA PROOF

Prove using the $\epsilon - \delta$ definition of continuity that $f(x) = 2x^2 + 1$ is continuous at x = 2.

Proof. We want to show that $\forall \epsilon > 0$, $\exists \delta > 0$ such that if $|x - 2| < \delta$, then $|f(x) - f(2)| < \epsilon$.

Let $\epsilon > 0$ be given: choose $\delta = min\{2, \frac{\epsilon}{12}\}$. Take note that $\delta \leq 2$ and $\delta \leq \frac{\epsilon}{12}$. Suppose $x \in R$ such that $|x-2| < \delta$. Note that since $\delta \leq 2$, we have $|x-2| < \delta \leq 2$. So -2 < x-2 < 2, which is 0 < x < 4. Thus, 2 < x+2 < 6, or |x+2| < 6.

$$|f(x) - f(2)| = |2x^{2} + 1 - (2 \times 2^{2} + 1)|$$

$$= |2x^{2} - 8|$$

$$= 2|x^{2} - 4|$$

$$= 2|x + 2||x - 2|$$

$$< 12|x - 2|$$

$$< 12\delta$$

$$= 12 \times min\{2, \frac{\epsilon}{12}\}$$

$$\leq 12 \times \frac{\epsilon}{12}$$

$$= \epsilon$$

Since $\epsilon > 0$ is arbitrary, we've shown that $\forall \epsilon > 0, \exists \delta = \min\{2, \frac{\epsilon}{12}\}$ such that if $|x - 2| < \delta$, then $|f(x) - f(2)| < \epsilon$. So f is continuous at x = 2.

10. PIGEONHOLE PRINCIPLE

Given any 4 integers, there is a pair of numbers whose difference is divisible by 3.

Proof. Let set S be a set with any 4 integers.

We want to show that $\exists a, b \in S$ such that $a \equiv b \mod 3$.

 $\forall s \in S$, we can write s = 3k + r where $k \in \mathbb{Z}$ and $r \in \{0, 1, 2\}$. There are exactly 3 possibilities for r. However there are 4 integers in S. So by the Pigeonhole Principle, $\exists a, b \in S$ such that a = 3k + r, b = 3l + r where $k, l \in \mathbb{Z}$ and $r \in \{0, 1, 2\}$. Then a - b = 3k + r - 3l - r = 3(k - l). Since $(k - l) \in \mathbb{Z}$, 3|(a - b). So $a \equiv b \mod 3$.