7 BT - BALANZA DE TORSIÓN

7.1. Precaucións

- Manipular a balanza con moita delicadeza e suavidade. Evitar golpes.
- Non retirar as esferas grandes dos seus pedestais. A masa e o raio destas esferas veñen dadas como datos no guión.

Figura 7.1: Balanza de torsión

7.2. Obxectivos

Determinar a constante de gravitación universal, $G_N = 6,67408 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$, medindo a variación da posición de equilibrio dun péndulo de torsión debido á forza da gravidade exercida por dúas esferas grandes de chumbo.

7.3. Material

- Balanza de torsión

- Dúas esferas externas de chumbo de M=1500 \pm 10 g

- Lámpada de proxección.

- Escala en cm. (ollo, por tramos de 80 cm.)

- Reloxo cronómetro de mesa.

Datos

- Brazo da balanza (distancia do eixo de xiro ao centro da esfera pequena) d = 50 mm.

- Raio medio das esferas: As grandes $r_M=31{,}58~\mathrm{mm}$. As pequenas $r_m=8{,}2~\mathrm{mm}$.

7.4. Introdución

A forza con que se atraen as dúas esfera de chumbo ven dada pola lei de gravitación universal:

$$F = \frac{GMm}{b^2} \,, \tag{7.1}$$

onde b é a distancia entre os centros de gravidade das esferas grande e pequena. Para este caso, a forza de atracción entre as masas é inferior a 5×10^{-10} N. Para medila requírese apantallar forzas de gravidade de varios Newton debidos ao peso, é dicir, dez ordes de magnitude maior. A xenialidade de John Michel, despois utilizada por Henry Cavendish, foi a de aproveitar a diferenza entre forzas de tensión e torsión asociadas a un fío suficientemente delgado, para compensar por separado cada unha das dúas compoñentes gravitacionais, a vertical debida á Terra, e a horizontal, debida ás dúas masas. Neste caso trátase da torsión dunha cinta de bronce (9), de $150 \times 10~\mu m$, da que vai suspendida unha barra con dúas esferas de chumbo (2) nos extremos, cun elevado momento de inercia. As oscilacións desta barra se observan mediante un espello que proxecta a imaxe producida por unha lámpada na parede oposta do laboratorio. Desta forma lógrase unha amplificación visual do movemento de torsión para unha toma de datos máis precisa.

7.5. Procedemento experimental

Comprobar visualmente que o fío de torsión **non roza** coas perforacións centradoras. Esta comprobación facémola **sen tocar a balanza**. En caso de que roze consultar ao profesor ou profesora para o equilibrado da balanza.

Trátase de estudar o movimiento oscilatorio da balanza. Co período establécese a constante de recuperación do sistema. Por outro lado, cambiando as posicións das esferas grandes a un e outro lado do sistema formado pola barra e as esferas pequenas, a atracción gravitatoria entre as masas produce un par de forzas adicional que modifica o punto de equilibrio.

- Coloca as esferas grandes nunha posición extrema (disposición I)
- Afrouxando os parafusos (5) o péndulo comeza a oscilar. Hai que facelo suavemente para evitar o balanceo no plano vertical. Ao principio, na oscilación, o péndulo pode achegarse ás paredes da caixa da balanza. Porén, o amortecemento fai que co paso do tempo isto non aconteza e poidamos empezar a medir.
- Anota a posición do indicador luminoso en función do tempo. Prolonga a toma de datos mentres as oscilacións sexan apreciables (facilmente 45 minutos). No é un problema que as oscilacións teñan pouca amplitude.

Figura 7.2: Posicións de equilibrio.

- Repite o proceso agora na disposición II para as esferas.
- Mide a distancia entre o espello e a escala da parede.
- Mide o grosor da caixa da balanza de Cavendish.

7.6. Resultados a presentar no relatorio

- 1. Representa na mesma figura a posición do indicador luminoso na parede en función do tempo para as dúas disposicións I e II.
- 2. Mediante un axuste a unha función sinusoidal amortecida, determina o **período de oscilación** e as **posicións de equilibrio** do péndulo de torsión para as disposicións I e II. Representa gráficamente esta función na mesma figura do apartado 1.
- 3. Representa en función do tempo as diferenzas entre as posicións medidas na parede e as esperados da curva teórica axustada (residuos). Na gráfica inclúe as barras de incerteza. Faino paras a dúas disposicións I e II. Que podes concluir?
- 4. Estima a distancia media entre as masas grande e pequena b.
- 5. Obtén a constante de Newton G_N coa súa incerteza. Compára
a co resultado esperado.
- 6. Identifica as posibles incertezas sistemáticas.
- 7. Determina a contribución das incertezas das distintas magnitudes á incerteza total $u(b), u(d), \dots$. Que parámetro ten a meirande influenza relativa no resultado? Como poderías mellorar a súa estimación?
- 8. Acha o valor da constante de torsión κ .

7.7. Apéndice: desenvolvemento teórico

O sistema formado por unha barra con dúas esferas nos extremos suspendida dun fío polo centro de masas, constitue un péndulo de torsión. O momento ou torque N que act a sobre o sistema é proporcional ao desprazamento angular θ medido respecto da súa posición de equilibrio:

$$N = -\kappa \theta \tag{7.2}$$

onde κ é a constante de recuperación (por torsión). Unha barra lixeira coas esferas nos extremos posee un momento de inercia aproximado $I=2md^2$ e a súa aceleración angular satisface:

$$I\frac{d^2\theta}{dt^2} = -\kappa\theta\tag{7.3}$$

De forma análoga a un péndulo simple, as solucións son oscilacións de frecuencia angular $\omega^2 = \kappa/I$ e o período é $T = 2\pi\sqrt{I/\kappa}$. Con esta relación podemos obter κ a partir de T

$$\kappa = \frac{8\pi^2 m}{T^2} d^2 \,. \tag{7.4}$$

A posición angular do sistema determínase a partir da imaxe que proxecta o sistema óptico na parede. Obsérvese na figura que se a barra xira un ángulo θ , o raio de luz reflectido polo espello faino un ángulo 2θ . Posto que θ é un ángulo moi pequeno pódese relacionar con x, a distancia que percorre o indicador luminoso sobre a escala da parede: $2\theta \simeq tg$ $2\theta = x/L$, onde L é a distancia entre o espello e a parede de proxección.

Figura 7.3: Relación entre ángulos e distancias na parede.

A distancia Δx entre os puntos de equilibrio obtidos para as configuracións das esferas grandes I e II corresponde a un desprazamento angular $\Delta \theta = \Delta x/2L$. O desprazamento angular do punto de equilibrio debido á acción das dúas esferas nunha das posicións é, polo tanto, a metade, $\theta_{eq} = \Delta x/4L$. Usando (7.4), o momento necesario para producir ese desprazamento angular resulta:

$$N_{eq} = \kappa \theta_{eq} = \frac{2\pi^2 m \Delta x}{T^2 L} d^2. \tag{7.5}$$

En equilibrio, dito momento compénsase co torque gravitatorio debido á atracción das masas pequenas polas masas grandes externas:

$$N_{eq} = 2Fd = 2\frac{G_N Mm}{h^2}d. (7.6)$$

O valor de N_{eq} así calculado debe ser correxido para ter en conta a atracción da outra esfera grande máis lonxana.

A forza de atracción producida pola esfera lonxana na dirección perpendicular á variña é:

$$f_{\perp} = \frac{G_N M m}{(b^2 + 4d^2)} \frac{b}{(b^2 + 4d^2)^{1/2}}$$
 (7.7)

onde o primeiro factor é o módulo da forza e o segundo é o seno do ángulo que forma esta forza coa variña, que proxecta a forza na dirección perpendicular. O momento total é polo tanto:

$$N_{eq} = 2d(F - f_{\perp}) = 2\frac{G_N Mm}{b^2} d(1 - \beta)$$
(7.8)

donde

$$\beta = \frac{b^3}{(b^2 + 4d^2)^{3/2}} \tag{7.9}$$

Igualando as dúas expresións (7.5) e (7.8) despéxase G_N

$$G_N = \frac{\pi^2 b^2 d}{ML} \frac{\Delta x}{T^2 (1 - \beta)} \,. \tag{7.10}$$

O factor $(1 - \beta)^{-1}$ representa a corrección debida ao segundo torque.