Úvod do informatiky

přednáška jedenáctá

Miroslav Kolařík

Zpracováno dle

P. Martinek: Základy teoretické informatiky, http://phoenix.inf.upol.cz/esf/ucebni/zti.pdf

Obsah

Složitost algoritmu

Třídy složitostí P a NP

Obsah

Složitost algoritmu

Třídy složitostí P a NP

Složitost každého algoritmu může být studována buď z hlediska paměťové náročnosti nebo z hlediska časové náročnosti. Paměťovou náročností rozumíme požadavek na velikost paměti počítače, jež je zapotřebí k provedení výpočtu. Podobně časovou náročností rozumíme čas potřebný pro výpočet. Tento čas se obvykle neměří v časových jednotkách, ale počtem provedených elementárních kroků algoritmu.

Poznámka: Dále se budeme věnovat pouze časové složitosti, neboť k paměťové složitosti se přistupuje analogicky.

Poznámka: Složitost je funkce závislá na velikosti vstupních dat algoritmu. U funkcí popisujících časovou složitost budeme uvažovat pouze jejich **řádovou velikost**, tedy například složitosti lišící se konstantním násobkem budeme považovat za stejné.

Definice – řádové porovnávání funkcí

Nechť f,g jsou dvě funkce, které přiřazují přirozeným číslům reálná čísla. Pak řekneme, že funkce f **roste řádově nejvýše** jako funkce g, píšeme f(n) = O(g(n)), právě když existují čísla K > 0 a $n_0 \in \mathbb{N}$ taková, že pro každé přirozené číslo $n \geq n_0$ platí $f(n) \leq K \cdot g(n)$.

Příklad

$$3n^3 - n^2 + 2n = O(n^3)$$
, neboť $3n^3 - n^2 + 2n \le Kn^3 \Leftrightarrow n^3(K-3) + n^2 - 2n \ge 0$, což pro $K = 4$ dává $n^3 + n^2 - 2n \ge 0 \Leftrightarrow n(n+2)(n-1) \ge 0$, což platí $\forall n \ge n_0 = 1$.

Definice

Řekneme, že algoritmus má **polynomickou časovou složitost**, právě když existuje polynom p takový, že $f(n) \le p(n)$ pro všechna $n \in \mathbb{N}$.

Poznámka: Základním kritériem pro určování časové složitosti výpočetních problémů je jejich algoritmická zvládnutelnost. Je třeba si uvědomit, že existují **algoritmicky neřešitelné** problémy, pro které nemá smysl zkoušet algoritmy konstruovat. Příkladem je problém sestrojení algoritmu, který by o každém algoritmu uměl rozhodnout, zda jeho činnost skončí po konečném počtu kroků či nikoliv.

Poznámka: V praxi používané algoritmy mívají většinou některou z následujících složitostí: $O(\log N)$, O(N), O(N), $O(N^2)$, $O(N^2\log N)$, $O(N^3)$, ..., $O(2^N)$, O(N!). Přitom stupeň polynomu bývá poměrně nízký.

Algoritmům se složitostí O(N) říkáme lineární, se složitostí $O(N^2)$ kvadratické, se složitostí $O(N^3)$ kubické.

Příklad

Některé typické příklady časové složitosti (od nejrychlejší po nejpomalejší):

- O(1) konstantní (indexování prvků v poli)
- O(log₂ N) logaritmická (vyhledání prvku v seřazeném poli metodou půlení intervalu)
- O(N) lineární (vyhledání prvku v neseřazeném poli lineárním vyhledáváním)
- O(Nlog N) lineárnělogaritmická (seřazení pole N čísel dle velikosti; třídění sléváním či třídění haldou či quicksort)
- O(N²) kvadratická (třídění N čísel dle velikosti; přímý výběr či bublinkové třídění)
- ...
- O(2^N) exponenciální (Fibonacciho posloupnost řešená pomocí stromové rekurze)
- O(N!) faktoriálová (řešení problému obchodního cestujícího hrubou silou).

Definice

Nechť $f,g:\mathbb{N}\to\mathbb{R}$ jsou funkce. Pak píšeme

- $f(n) = O(g(n)) \Leftrightarrow \exists K > 0, \exists n_0 \in \mathbb{N}, \forall n \geq n_0 : f(n) \leq K \cdot g(n)$ a říkáme, že funkce f roste řádově nejvýše jako funkce g.
- $f(n) = \Omega(g(n)) \Leftrightarrow \exists k > 0, \exists n_0 \in \mathbb{N}, \forall n \geq n_0 : f(n) \geq k \cdot g(n)$ a říkáme, že funkce f roste řádově aspoň jako funkce g.
- f(n) = Θ(g(n)) ⇔ f(n) = O(g(n)) a f(n) = Ω(g(n)) a říkáme, že funkce f roste řádově stejně jako funkce g; nebo, že funkce f a g jsou řádově ekvivalentní (neboli asymptoticky ekvivalentní).

Příklad

Dokažte, že $\frac{n^2-1}{n+1} = \Theta(n)$.

Řešení:

$$k \cdot n \le \frac{n^2 - 1}{n + 1} \le K \cdot n$$
$$k \cdot n \le n - 1 \le K \cdot n$$
$$k \le 1 - \frac{1}{n} \le K$$

Je to splněno např. pro $k = \frac{1}{2}$, K = 1 a pro $\forall n \ge n_0 = 2$.

Příklad

Dokažte, že platí

- a) $5n^3 3n^2 + 7 = O(n^3)$,
- b) $\ln n = O(n)$.

Řešení: Jednoduché.

(Srovnejte s knihou: L. Kučera – Kombinatorické algoritmy, SNTL, Praha 1983.)

Uvažme počítač, u nějž provedení 1 instrukce trvá 1 nanosekundu. Následující tabulka ukazuje délky trvání výpočtu, spustíme-li na takovém počítači algoritmus o řádové složitosti f(n) se vstupními daty velikosti n.

f(n)	n = 20	n = 40	n = 60	n = 80	n = 100	n = 1000
n	20 <i>n</i> s	40 <i>n</i> s	60 <i>ns</i>	80 <i>ns</i>	0,1μs	1μs
nlog n	86 <i>n</i> s	$0,2\mu$ s	0,35μs	0,5μs	0,7µs	10μs
n ²	$0,4\mu$ s	1,6µs	3,6µs	6,4µs	10μs	1 <i>m</i> s
n^4	0,16 <i>m</i> s	2,56 <i>ms</i>	13 <i>ms</i>	41 <i>ms</i>	0,1s	16,8 <i>min</i>
2 ⁿ	1 <i>m</i> s	16,8 <i>min</i>	36,6 <i>let</i>			
<i>n</i> !	77 <i>let</i>					

Předchozí tabulka potvrzuje oprávněnost představy: prakticky použitelný algoritmus je algoritmus s nejvýše polynomickou časovou složitostí.

Nelze to však brát jako dogma. Viz následující dva příklady:

- $f_1(n) = 2^{100} \cdot n$,
- $f_2(n) = 2^{n^{0,0001}} (= 2^{10} \text{ pro } n = 10^{10^4}).$

Předchozí představu rámcově potvrzuje i další tabulka, která popisuje, jak se zvětší rozsah zpracovatelných úloh v případě zvětšení výpočetní rychlosti použitého počítače 100x a 1000x, jestliže původně bylo možno v daném časovém limitu zpracovat vstupní data o velikosti n=100.

f(n)	zrych. výp. 1x	zrych. výp. 100 <i>x</i>	zrych. výp. 1000 <i>x</i>
n	100	10000	100000
nlog n	100	5362	43150
n^2	100	1000	3162
n^4	100	316	562
2 ⁿ	100	106	109
<i>n</i> !	100	100	101

Z tabulek je vidět, že už pro exponenciální algoritmy je typická existence mezní velikosti vstupních dat, nad níž je úloha prakticky neřešitelná i při zvýšení rychlosti počítače o několik řádů.

Obsah

Složitost algoritmu

Třídy složitostí P a NP

Definice

Úlohu (algoritmus) nazveme **řešitelnou v polynomiálním čase**, jestliže její časovou složitost můžeme shora ohraničit polynomem. Třídu úloh s polynomiální složitostí označíme P.

Například třídění na haldě je úloha třídy P, neboť má složitost $n \log n \le n^2$.

Úlohy třídy P považujeme za řešitelné (v přiměřeném čase).

Definice

Úlohu nazveme **nedeterministicky polynomiální**, jestliže existuje nedeterministický algoritmus, který ji řeší v polynomiálním čase. Tuto třídu úloh označíme NP.

Příklad (úloha batohu)

Máme množinu různých přirozených čísel a_1, \ldots, a_n a máme zadáno přirozené číslo A. Úkolem je vybrat z čísel a_1, \ldots, a_n podmnožinu jejíž součet bude A. Tedy $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ je řešením úlohy, jestliže $a_{i_1} + a_{i_2} + \cdots + a_{i_k} = A$.

Nedeterministický algoritmus:

- O Položíme X = 0.
- Pro i = 1, 2, ..., n buď číslo a_i přičteme k X nebo číslo a_i nepřičteme k X.
- 3 Jestliže A = X, máme řešení.

Poznámka: Při řešení úloh třídy NP je jediný známý deterministický způsob řešení postupně projít všechny možnosti připadající v úvahu, což u úlohy batohu je 2ⁿ možností.

Poznámka: Vzhledem k časovým nárokům považujeme NP-úplné problémy za neřešitelné pro $n \ge 70$.

Skutečnost, že r je řešením úlohy U označíme $r \in U$.

Definice

Říkáme, že **úloha** U_1 **je redukovatelná na úlohu** U_2 , jestliže existuje deterministický polynomiální algoritmus M, který řešení úlohy r převádí na výsledek M(r) tak, že $r \in U_1$ právě když $M(r) \in U_2$. Označujeme $U_1 \lhd U_2$.

Definice

Úlohu U nazveme **NP-úplnou**, jestliže na ni lze redukovat libovolnou úlohu z třídy NP, tj. pro každou úlohu $U' \in NP$ platí $U' \triangleleft U$. Třídu NP-úplných úloh označujeme NPC.

Poznámka: NP-úplné problémy patří mezi ty nejsložitější problémy z třídy NP.

Cookova věta

Problém splnitelnosti booleovských formulí je NP-úplný.

Poznámka: NP-úplnost zde byla dokázána jako první.

P-NP problém

Je P = NP nebo je $P \neq NP$?

Poznámka: Nevěříme v platnost P = NP (důkaz však stále chybí). Očekáváme, že $P \neq NP$, tj. $P \subset NP$.

Poznámka: Ten kdo první správně vyřeší P-NP problém dostane (kromě doživotního věhlasu) milión amerických dolarů. (Vyhlašovatelem soutěže je Clay Mathematics Institut, více informací lze nalézt na jeho webových stránkách.)

Některé NP-úplné úlohy

- Problém splnitelnosti booleovských formulí.
- Úloha batohu.
- **Ohromatické číslo grafu**. Určení nejmenšího počtu barev, jimiž lze obarvit vrcholy grafu G tak, že žádné dva sousední vrcholy nemají stejnou barvu; značíme $\chi(G)$.
- Nalezení Hamiltonovy kružnice. Hamiltonova kružnice je kružnice, která obsahuje všechny vrcholy grafu.
- Problém kliky. Klikou v neorientovaném grafu rozumíme takovou podmnožinu vrcholů, jejíž každé dva vrcholy jsou navzájem propojeny hranami. Problémem kliky rozumíme problém stanovení, zda má daný neorientovaný graf kliku o k vrcholech.
- Hledání nejkratší (resp. nejdelší) cesty v orientovaném ohodnoceném grafu z vrcholu x do vrcholu y. (Též odpověď na otázku zda existuje cesta délky |m|.)
- Úloha rozhodnout zda dva konečné automaty rozpoznávají stejný jazyk.

Dalším NP-úplným problémem je tzv. **problém obchodního cestujícího:**

Může obchodní cestující projet všechna města tak, aby každé navštívil právě jednou, na závěr se vrátil do výchozího města a přitom urazil vzdálenost menší než K?

(= Existuje v (úplném) neorientovaném grafu s ohodnocenými hranami hamiltonovská kružnice, v níž je součet ohodnocení jejích hran menší než předem daná hodnota *K*?)

Poznámka: NP-úplných problémů je více než 2000. Víme, že všechny NP-úplné problémy jsou mezi sebou "převoditelné" (tam i zpět) v polynomiálním čase, neboli jsou na sebe redukovatelné.

Poznámka: Typickým představitelem třídy NP je problém, který je řešen algoritmem (s exponenciální časovou složitostí) probírajícím všechny varianty, kde ověření správnosti každé z těchto variant vyžaduje pouze polynomický čas.

Poznámka: K žádnému NP-úplnému problému není znám algoritmus řešící jej v polynomickém čase. Pokud by někdo dokázal příslušnost některého NP-úplného problému k třídě P, dokázal by rovnost P=NP.

Poznámka: V praxi se NP-úplné úlohy (s většími vstupy) obvykle řeší pouze přibližně (heuristickými algoritmy, genetickými algoritmy, ...). Tím se (za cenu vzdání se nároků na nalezení přesného řešení) dosahuje prakticky použitelných časů.

Poznámka: Obtížně řešitelné problémy mají využití například v oblasti šifrování.

Využití výpočetně obtížných úloh v šifrování

Při utajené komunikaci požadujeme "nemožnost" nebo alespoň enormní časovou náročnost odhalení klíče potřebného k dešifrování zašifrované zprávy. Jestliže systém tvorby klíče propojíme s některými ze známých obtížně řešitelných problémů, pak úkol dešifrovat odeslanou zprávu bez znalosti příslušného klíče odpovídá úloze nalézt konkrétní řešení souvisejícího problému. Víme-li, že v současnosti nikdo takový problém efektivně řešit neumí a uvedený problém je výpočetně náročný, pak jsme pro utajení zprávy udělali maximum.

Za typický příklad využití výpočetně obtížné úlohy v šifrování lze považovat metodu RSA používanou při šifrování s veřejným klíčem.

Metoda RSA je založena na využití součinu velkých prvočísel. Poznamenejme, že testování prvočíselnosti zadaného čísla je úloha zvládnutelná v rozumném čase, naproti tomu úloha nalézt rozklad zadaného přirozeného čísla na součin prvočinitelů je výpočetně velmi náročná . Úkol rozšifrovat zasílanou zprávu tak odpovídá úkolu nalézt přijatelně rychlý algoritmus pro rozklad přirozeného čísla na součin prvočinitelů.

ldea šifrování s veřejně přístupným klíčem

Jeden účastník utajené komunikace (např. ústředí banky) vygeneruje dvojici klíčů A_1, A_2 , mezi nimiž je určitá matematická závislost. Klíč A₁ dostačuje k zašifrování posílaných zpráv, klíč A_2 je potřebný k rozšifrování přijatých zpráv. Klíč A2 utají, A1 naproti tomu rozešle ostatním účastníkům utajené komunikace (např. bankovním pobočkám) prostřednictvím veřejně přístupného média (např. telefonní linkou). S pomocí klíče A₁ tedy může každý zašifrovat svou zprávu, ale její rozšifrování lze provést pouze s využitím klíče A_2 , jenž je známý výhradně iniciátoru celé komunikace.