2. Graphical Models

- Undirected graphical models
- Factor graphs
- Bayesian networks
- Conversion between graphical models
- (primarily based on Lauritzen book)

Graphical models

- There are three families of graphical models that are closely related, but suitable for different applications and different probability distributions:
 - Undirected graphical models (also known as Markov Random Fields)
 - Factor graphs
 - Bayesian networks

we will learn what they are, how they are different and how to switch between them.

consider a probability distribution over $x = (x_1, x_2, \dots, x_n) \in \mathcal{X}^n$

$$\mu(x_1, x_2, \ldots, x_n)$$

a **graphical model** is combination of a **graph** and a **set of functions** over a subset of random variables which define the probability distribution of interest

- graphical model is a marriage between probability theory and graph theory that allows compact representation and efficient inference, when the probability distribution of interest has special independence and conditional independence structures
 for example, consider a random vector x = (x₁, x₂, x₃) ∈ X³ and a
- given distribution $\mu(x_1, x_2, x_3)$ • we use (with a slight abuse of notations)

$$\begin{array}{ccc} \mu(x_1) & \triangleq & \displaystyle\sum_{x_2,x_3 \in \mathcal{X}^2} \mu(x_1,x_2,x_3) \;, & \text{ and} \\ \\ \mu(x_1,x_2) & \triangleq & \displaystyle\sum \mu(x_1,x_2,x_3) \end{array}$$

to denote the first order and the second order marginals respectively

 $x_3 \in \mathcal{X}$

• for this 3-variable case, we can list all possible independence structures

$$x_1 \perp (x_2, x_3) \Leftrightarrow \mu(x_1, x_2, x_3) = \mu(x_1)\mu(x_2, x_3)$$
 (1)
 $x_1 \perp x_2 \Leftrightarrow \mu(x_1, x_2) = \mu(x_1)\mu(x_2)$ (2)

 $x_1 \pm x_2 \iff \mu(x_1, x_2) = \mu(x_1)\mu(x_2)$ (2) $x_1 \pm x_2 | x_3 \iff x_1 - x_3 - x_2 \iff \mu(x_1, x_2 | x_3) = \mu(x_1 | x_3)\mu(x_2 | x_3)(3)$

and various permutations and combinations of these

Graphical Models

- warm-up exercise
 - $(1) \Rightarrow (2)$ proof:

$$\mu(x_1, x_2) = \sum_{x_3} \mu(x_1, x_2, x_3) \stackrel{\text{(1)}}{=} \sum_{x_3} \mu(x_1) \mu(x_2, x_3) = \mu(x_1) \mu(x_2)$$

▶ (2) *⇒* (3)

 $X_2 = X_3 + Z_2$

- counter example: $X_1 \perp X_2$ and $X_3 = X_1 + X_2$ • (2) \neq (3)
- this hints that there are different notions of independence, and perhaps we need different types of graphical models to capture them

counter example: Z_1, Z_2, X_3 are independent and $X_1 = X_3 + Z_1$,

- all possible independencies for 3-variable distributions $\mu(x_1,x_2,x_3)$
 - $x_1 \perp (x_2, x_3), \quad x_2 \perp (x_1, x_3), \quad x_3 \perp (x_1, x_2)$
 - $ightharpoonup x_1 \perp x_2, \quad x_1 \perp x_3, \quad x_2 \perp x_3,$
 - $x_1 \perp x_2 | x_3, \quad x_1 \perp x_3 | x_2, \quad x_2 \perp x_3 | x_1,$
- each $\mu(x_1, x_2, x_3)$ possesses a subset of these 9 independencies

- we can **categorize** all distributions, according to the independence they possess: e.g. $S = \{\mu(x_1, x_2, x_3) : x_1 \perp x_2, \text{ and } x_2 \perp x_3 | x_1\}$
- or we can also **partition** all distributions, according to the independence they possess: e.g. $S = \{\mu(x_1, x_2, x_3) : x_1 \perp x_2, \text{ and } x_2 \perp x_3 | x_1 \text{ but no other independencies}\}$
- \bullet there are 2^9 such possible combinations of independencies
- not all of them are feasible, e.g. $S=\{\mu(x_1,x_2,x_3):x_1\perp x_2, \text{ but } x_1\not\perp (x_2,x_3)\}$ is an empty set
- in fact, there are exponentially many possible independencies, resulting in doubly exponentially many possible independence structures in a distribution

- we want to use a graph to represent a set of distributions that share some independencies
- perhaps, one graph could represent one subset of independencies (either a inclusive category or a exclusive partition)
- however, there are only 2^{n^2} undirected graphs (4^{n^2} for directed)
- hence, graphical models only capture (important) subsets of possible independence structures

a probabilistic graphical model is a graph G(V, E) representing a family of probability distributions

- 1. that share the same factorization of the probability distribution; and
- 2. that share the same independence structure.

we study 3 types of graphical models

undirected graphical model = Markov Random Field (MRF)

$$\mu(x) = \frac{1}{Z} \prod_{c \in \mathcal{C}(G)} \psi_c(x_c)$$

where $\mathcal{C}(G)$ is the set of all maximal cliques in the undirected graph G(V,E), $\psi_c(x_c)$ is a non-negative function over the variables $x_c = \{x_i : i \in c\}$, and $Z \in \mathbb{R}^+$ is called the partition function which normalizes the distribution to sum to one

- ightharpoonup an **undirected graph** G(V, E) is a collection of nodes $V = \{1, 2, \dots, n\}$ for the variables $\{x_1, \dots, x_n\}$ and undirected edges $E \subseteq V \times V$
- ▶ a **clique** c is a subset of nodes $c \subseteq V$ such that all pairs in c are connected via edges in E
- ightharpoonup a clique c is said to be **maximal** if one cannot add any more node to c to make it a larger clique Graphical Models

2-7

factor graph model (FG)

$$\mu(x) = \frac{1}{Z} \prod_{a \in F} \psi_a(x_{\partial a})$$

where F is the set of factor nodes in the undirected bipartite graph G(V,F,E), ∂a is the set of neighbors of the node a, and $\psi_a(x_{\partial a})$ are no-negative functions called the **factors**

- lacktriangle an undirected graph G(V,F,E) is bipartite if there are no edges between a node in V and a node in F
- a node in F is called a factor node, and a node in V is called a variable node
- each factor node $a \in F$ is associated with a factor $\psi_a(x_{\partial a})$, where ∂a are the variable nodes adjacent to factor a, and $x_{\partial a}$ are the set of corresponding variables

• directed graphical model = Bayesian Network (BN)

$$\mu(x) = \prod_{i \in V} \mu(x_i | x_{\pi(i)})$$

where $\pi(i)$ is the set of parent nodes in the directed acyclic graph (DAG) $G(V\!,E)$

- lacktriangle in a **directed graph**, an edge (i,j) is different from an edge (j,i)
- ▶ an undirected graph is called **acyclic** if it does not have cycles
- ▶ a cycle in a directed graph is a sequence of nodes $c = (i_1, i_2, \dots, i_k)$ such that $i_1 = i_k$ and $(i_\ell, i_{\ell+1}) \in E$ for all $\ell \in [k-1]$
- we use $[N] = \{1, 2, \dots, N\}$ to denote the first N integers
- ▶ **parent nodes** of a node i in a directed graph is the set of nodes $\pi(i)\{j \in V : (j,i) \in E\}$
- note that missing edges represent simpler distributions with more independence structures
- also, factor graphs are strictly more general than MRFs
- FGs cannot represent all BNs and BNs cannot represent all FGs

 warm-up example: Markov Random Fields (MRF) and Factor Graphs (FG)

• warm-up example: Bayesian Network (BN) of ordering $(x_1 \rightarrow x_2 \rightarrow x_3)$

BN factorization independence
$$\mu(x_1)\mu(x_2|x_1)\mu(x_3|x_1,x_2) \quad \text{none}$$

$$\mu(x_1)\mu(x_2|x_1)\mu(x_3|x_1) \qquad x_2 \perp x_3|x_1$$

$$\mu(x_1)\mu(x_2)\mu(x_3|x_1,x_2) \qquad x_1 \perp x_2$$

$$\mu(x_1)\mu(x_2|x_1)\mu(x_3|x_2) \qquad x_1 \perp x_3|x_2$$

$$\mu(x_1)\mu(x_2|x_1)\mu(x_3) \qquad x_3 \perp (x_1,x_2)$$

$$\mu(x_1)\mu(x_2)\mu(x_3) \qquad \text{all indep.}$$

Family #1: Undirected Pairwise Graphical Models

Family #1: Undirected Pairwise Graphical Models

(a.k.a. Pairwise MRF)

 $G=(V,E),\ V=[n]\triangleq\{1,\ldots,n\},\ x=(x_1,\ldots,x_n),\ x_i\in\mathcal{X}$ if we say a joint distribution $\mu(x)$ has the above graphical model, then

• $\mu(x)$ can be decomposed as prescribed by the graph G: $\mu(x) = (1/Z) \prod_{(i,j) \in E} \psi_{i,j}(x_i,x_j)$

Graphical Models

ullet which implies a certain set of independencies encoded in G

Undirected pairwise graphical models are specified by

- Graph G = (V, E)
- ► Alphabet X
- ▶ Compatibility function $\psi_{ij}: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$, for all $(i, j) \in E$

$$\mu(x) = \frac{1}{Z} \prod_{(i,j) \in E} \psi_{ij}(x_i, x_j)$$

▶ pairwise MRF only allow compatibility functions over two variables

Undirected Pairwise Graphical Models

Alphabet \mathcal{X}

- ▶ Typically $|\mathcal{X}| < \infty$
- lacksquare Occationally $\mathcal{X}=\mathbb{R}$ and

$$\mu(dx) = \frac{1}{Z} \prod_{(i,j) \in E} \psi_{ij}(x_i, x_j) dx$$

(all formulae interpreted as densities [it is okay if you don't understand the above notation for now])

Compatibility function $\psi_{ij}: \mathcal{X}^2 \to \mathbb{R}^+$

$$\mu(x) = \frac{1}{Z} \prod_{(i,j) \in E} \psi_{ij}(x_i, x_j)$$

Partition function Z plays a crucial role!

$$Z = \sum_{x \in \mathcal{X}^n} \prod_{(i,j) \in E} \psi_{ij}(x_i, x_j)$$

Graph notation

- $\partial i \equiv \{ \text{neighborhood of node } i \},$
- $\deg(i) = |\partial i|$,
- $x_U \equiv (x_i)_{i \in U}$,

$$\partial 9 = \{5, 6, 7\}$$

 $\deg(9) = 3$
 $x_{\{1,5\}} = (x_1, x_5)$
 $x_{\partial 9} = (x_5, x_6, x_7)$

- Complete graph
- Clique

Example

- Coloring (e.g. ring tone)
- ullet Given graph G=(V,E) and a set of colors $\mathcal{X}=\{R,G,B\}$
- Find a coloring of the vertices such that no two adjacent vertices have the same color
- Fundamental question: Chromatic number
- our goal: translate this into an inference on graphical models, so that we can use the techniques from the mature field of probabilistic

Graphical models

A (joint) probability of interest is uniform measure over all possible colorings:

$$\mu(x) = \frac{1}{Z} \prod_{(i,j) \in E} \mathbb{I}(x_i \neq x_j)$$

 $\mathbb{I}(x_i \neq x_j)$ is an indicator, which is one if $x_i \neq x_j$ and zero otherwise

- \bullet Z= total number of colorings
 - Sampling from this distribution is equivalent to finding a coloring
 - similarly, independent set problem [HW1.3, 1.4]

(General) Undirected Graphical Model

Undirected graphical models are specified by

- Graph G = (V, E)
- ▶ Alphabet X
- Compatibility function $\psi_c: \mathcal{X}^c \to \mathbb{R}_+$, for all maximal cliques $c \in \mathcal{C}$

$$\mu(x) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \psi_c(x_c)$$

undirected graphical model is more general than pairwise UGMs, but the encoded independence is mutually exclusive $$_{2-19}$$

Family #2: Factor Graph Models

Family #2: Factor graph models

Factor graph G = (V, F, E)

- ▶ Variable nodes $i, j, k, \dots \in V$
- ▶ Function nodes $a, b, c, \dots \in F$

Variable node $x_i \in \mathcal{X}$, for all $i \in V$

Function node $\psi_a: \mathcal{X}^{\partial a} \to \mathbb{R}_+$, for all $a \in F$

$$\mu(x) = \frac{1}{Z} \prod_{a \in F} \psi_a(x_{\partial a})$$

Factor graph models

Factor graph model is specified by

- Factor graph G = (V, F, E)
- ▶ Alphabet X

Compatibility function
$$\psi_a:\mathcal{X}^{\partial a}\to\mathbb{R}_+$$
, for $a\in F$
$$\mu(x)=\frac{1}{Z}\prod_{a\in F}\psi_a(x_{\partial a})$$

Partition function: $Z = \sum_{x \in \mathcal{X}^V} \prod_{a \in F} \psi_a(x_{\partial a})$

Conversion between factor graphs and pairwise models

From pairwise model to factor graph

A pairwise model on G(V,E) with alphabet $\mathcal X$ can be represented by a factor graph G'(V',F',E') with V'=V, $F'\simeq E$, |E'|=2|E|, $\mathcal X'=\mathcal X$.

• Put a factor node on each edge

From factor graph to a general undirected graphical model

A factor model on G(V,F,E) with alphabet $\mathcal X$ can be represented by a UGM on G'(V',E') with V'=V, $E'\simeq \sum_{a\in F}|\partial a|^2$, $\mathcal X'=\mathcal X$.

A factor node is turned into a clique

From factor graph to a pairwise model

A factor model on G(V,F,E) can be represented by a pairwise model on G'(V',E') with $V'=V\cup F$, E'=E, $\mathcal{X}'=\mathcal{X}^{\Delta}$, $\Delta=\max_{a\in F}\deg(a)$.

A factor node is represented by a large variable node

Family #3: Bayesian Networks

Family #3: Bayesian networks

DAG: Directed Acyclic Graph G=(V,D) Variable nodes $V=[n],\ x_i\in\mathcal{X},$ for all $i\in V$ Define $\pi(i)\equiv\{\text{parents of }i\}$ Set of directed edges D

$$\mu(x) = \prod_{i \in V} \mu_i(x_i | x_{\pi(i)})$$

Bayesian network is specified by

- directed **acyclic** graph G = (V, D)
- ightharpoonup alphabet \mathcal{X}
- conditional probability $\mu_i(\cdot|\cdot): \mathcal{X} \times \mathcal{X}^{\pi(i)} \to \mathbb{R}_+$, for $i \in V$

$$\mu(x) = \prod_{i \in V} \mu_i(x_i | x_{\pi(i)})$$

• we do not need normalization (1/Z) since

$$\sum_{\pi \in \mathcal{X}} \mu_i(x_i|x_{\pi(i)}) = 1 \quad \Rightarrow \quad \sum_{\pi \in \mathcal{X}} \mu(x) = 1$$

2-26

Conversion between Bayes networks and factor graphs

from Bayes network to factor graph

A Bayes network G=(V,D) with alphabet $\mathcal X$ can be represented by a factor graph model on G'=(V',F',E') with V'=V, |F'|=|V|, |E'|=|D|+|V|, $\mathcal X'=\mathcal X$.

- represent by a factor node each conditional probability
- moralization for conversion from BN to MRF

from factor graph to Bayes network

A factor model on G=(V,F,E) with alphabet $\mathcal X$ can be represented by a Bayes network G'=(V',D') with V'=V and $\mathcal X'=\mathcal X.$

- take a topological ordering, e.g. x_1, \ldots, x_n
- for each node i, starting from the first node, find a minimal set $U\subseteq\{1,\ldots,i-1\}$ such that x_i is conditionally independent of $x_{\{1,\ldots,i-1\}\setminus U}$ given x_U . (we will learn how to do this)
- in general the resulting Bayesian network is dense

Because MRF and BN are incomparable, some independence structure is lost in conversion

$$\mu(x) = \psi(x_1, x_2)\psi(x_1, x_3)\psi(x_2, x_4)\psi(x_3, x_4)$$

$$x_1 \perp x_4|(x_2, x_3)$$

$$x_2 \perp x_3|(x_1, x_4)$$

$$\mu(x) = \mu(x_2)\mu(x_3)\mu(x_1|x_2, x_3) x_2 \perp x_3$$

$$x_2 \perp x_3 | (x_1, x_4)$$

no independence

Factor graphs are more 'fine grained' than undirected graphical models

all three encodes same independencies, but different factorizations (in particular the degrees of freedom in the compatibility functions are $3|\mathcal{X}|^2$ vs. $|\mathcal{X}|^3$)

- set of independencies represented by MRF is the same as FG
- but FG can represent a larger set of factorizations

- undirected graphical models can be represented by factor graphs
 - we can go from MRF to FG without losing any information on the independencies implies by the model
- Bayesian networks are not compatible with undirected graphical models or factor graphs
 - if we go from one model to the other, and then back to the original model, then we will not, in general, get back the same model as we started out with
 - we lose any information on the independencies implies by the model, when switching from one model to the other

Bayes networks with observed variables

$$V = H \cup O$$

Hidden variables: $x = (x_i)_{i \in H}$

Observed variables: $y = (y_i)_{i \in O}$

$$\mu(x,y) = \prod_{i \in H} \mu(x_i | x_{\pi(i) \cap H}, y_{\pi(i) \cap O}) \prod_{i \in O} \mu(y_i | x_{\pi(i) \cap H}, y_{\pi(i) \cap O})$$

Typically interested in $\mu_y(x) \equiv \mu(x|y)$ and

$$\operatorname{arg} \max_{x} \ \mu_{y}(x)$$

Example

Forensic Science

[Kadane, Shum, A probabilistic analysis of the Sacco and Vanzetti evidence, 1996] [Taroni et al., Bayesian Networks and Probabilistic Inference in Forensic Science, 2006]

Example

Medical Diagnosis [M. Shwe, et al., Methods of Information in Medicine, 1991]

Roadmap

Cond. Indep.	Factorization	Graphical	Graph	Cond. Indep.
$\mu(x)$	$\mu(x)$	Model	G	implied by ${\cal G}$
$x_1 - \{x_2, x_3\} - x_4;$	$\frac{1}{Z} \prod \psi_a(x_{\partial a})$	FG	Factor	Markov
$x_4-\{\}-x_7;$	$\frac{1}{Z} \prod \psi_C(x_C)$	MRF	Undirected	Markov
:	$\prod \psi_i(x_i x_{\pi(i)})$	BN	Directed	Markov

- A $\mu(x)$ can be represented by multiple {FG,MRF,BN} with multiple graphs (but same $\mu(x)$)
- We want a 'simple' graph representation (sparse, small alphabet size)
 - Memory to store the graphical model
 - Computations for inference
- $\mu(x)$ with some conditional independence structure can be represented by simple {FG,MRF,BN}