tdgaCNN における適応度評価 手法の検討

創発ソフトウェア研究室 B3 平 智隆

目次

- > はじめに
- > 要素技術
- ▶ 提案手法
- > 実験概要
- > 実験結果
- ▶ まとめと今後の課題

目次

- > はじめに
- > 要素技術
- > 提案手法
- > 実験概要
- > 実験結果
- ▶ まとめと今後の課題

はじめに

□近年、機械学習を用いた画像識別に注目

- ■畳み込みニューラルネットワークによる画像識別 (Convolutional Neural Network: CNN)
- □問題の高度化により、CNN の構造が複雑化 → 人手で最適化することは難しい

はじめに

- **□** gaCNN
 - CNN の構造の最適化に遺伝的アルゴリズム (Genetic Algorithm: GA) を利用
 - GA の選択ルールの検討が不十分

多様性を考慮した選択ルールを採用した tdgaCNN

はじめに

- tdgaCNN の探索フェーズ
 - □ 適応度の計算方法 → 従来: 1 エポック

より良い個体が得られる適応度の評価方法を検討

目次

- > はじめに
- > 要素技術
- > 提案手法
- > 実験概要
- > 実験結果
- ▶ まとめと今後の課題

畳み込みニューラルネットワーク

- 畳み込みニューラルネットワーク (Convolutional Neural Network: CNN)
 - □ 画像認識分野で広く利用

野村 泰稔, 村尾 彩希, 阪口 幸広, 古田 均. 深層畳み込みニューラルネットワークに基づくコンクリート表面のひび割れ検出システム. 土木学会論文集F6(安全問題), 2017, 73 巻, 2 号

遺伝的アルゴリズム

遺伝的アルゴリズム (Genetic Algorithm: GA)

- ■生物の進化からヒントを得た最適化手法
- □解の遺伝子を表現する配列に交叉,突然変異, 選択といった操作を繰り返し適用
- ■各個体について適応度を計算し、高いものを 次世代に残し、低いものを淘汰

- ■CNN の構造を遺伝子符号化
- ■GA による探索でより良い CNN 構造を獲得

FashionMNIST, MNIST で競合 16 手法のうち 12 手法の精度を凌駕

熱力学的遺伝アルゴリズム

- 熱力学的遺伝アルゴリズム
 - (Thermodynamical Genetic Algorithm: TDGA)
 - □ GA に熱力学的選択ルールを適用
 - 個体の多様性を維持することがねらい
 - → 初期収束問題の解消

可変長遺伝子型熱力学的選択ルール

□ 自由エネルギー

 $F = \langle E \rangle - HT$

エネルギー最小化 を追求する項

F: 自由エネルギー

 $\langle E \rangle$: システムの平均エネルギー

H: エントロピー

T: 温度

系の多様性維持を 追求する項

多様性を維持しつつエネルギー最小化を追求できる

可変長遺伝子型熱力学的選択ルール

□ エントロピー

$$H = H_D, \quad H_D = \frac{\sum_{s \in S \setminus p} L(p, s)}{|S|}$$

p: 新たに選択する個体

S: 選択済みの個体集合に p を加えた集合

|S|: S の要素数

L(x,y): 個体 x と個体 y における遺伝子配列の層

に対する Levenshtein 距離

可変長遺伝子型熱力学的選択ルール

$$H = H_D, \quad H_D = \frac{\sum_{s \in S \setminus p} L(p, s)}{|S|}$$

 $\square H_D$ の値が大きいほど個体に多様性がある

目次

- > はじめに
- > 要素技術
- ▶ 提案手法
- > 実験概要
- > 実験結果
- ▶ まとめと今後の課題

提案手法

□提案手法: tdgaCNN

■CNN アーキテクチャの探索に TDGA を利用

tdgaCNN の流れ

- 1. 初期母集団を生成
- 2. 母集団の個体の適応度を評価
- 3. 選択, 交叉, 突然変異による次世代の母集団の生成
- 4.2~3を世代回数だけ反復
- 5. 最終世代で最も適応度が高い個体を本学習

tdgaCNN —— 遺伝子符号化

- □遺伝子→層と活性化関数の組
- □層の候補: 畳み込み層,プーリング層,全結合層
- ■活性化関数の候補: ReLU, tanh, Sigmoid

目次

- > はじめに
- > 要素技術
- > 提案手法
- > 実験概要
- > 実験結果
- ▶ まとめと今後の課題

本実験の概要

- □先行研究
 - □適応度評価のために1エポックのみ学習
- □本実験

$$\sum_{i} n_i g_i = c$$

 n_i : i 番目のエポック数

 $n_i g_i = c$ g_i : エポック数が n_i である世代の数

- 計算量が一定になるように設定
- \square 今回は c=80 として実験

初期個体群の作成

- ■1度の実験にかかる時間を短縮する目的
- □ランダムな 100 個体を 20 世代探索

データセット

■使用データセット: FashionMNIST

実験1

□ 探索フェーズでのエポック数を固定

世代数	エポック数
80	1
4020	2
20	4
16	5
10	8
8	10

□6パターンで実験

 \bigcirc

実験 2

□エポック数を変化させながら探索

世代数	エポック数	
16	1	ポーポーポーポーポーポーポーポー
8	2	ククップ
4	4	タ 数 増 数
2	8	カロ ル以
1	16	少

□ エポック数増加と減少の2パターンで実験

実験 1, 2 実験条件

個体数	100		
層数	10		
最小全結合層数	1		
最大全結合層数	3		
選択:交叉:突然変異	4:4:2		
本学習エポック数	100		
探索バッチサイズ	24		
本学習バッチサイズ	16		
学習率	1e-4		
最適化手法	Adam		
温度	0.04		

目次

- > はじめに
- > 要素技術
- > 提案手法
- > 実験概要
- > 実験結果
- ▶ まとめと今後の課題

初期個体群の作成

■ランダムな個体 100 体を初期個体とし 1 エポック 20 世代探索

平均適応度: 63.26 % → 85.64 %

実験1 — 最終的な識別精度

■本学習後の最良個体をテストしたときの 最良識別精度

	識別精度 [%]		識別精度 [%]
80 世代 1 エポック	92.04	16 世代 1 エポック	93.09
40 世代 2 エポック	92.13	10 世代 2 エポック	90.00
20 世代 4 エポック	92.26	8 世代 10 エポック	92.29

■ 16 世代 1 エポックでピークを迎える

実験 1 —— 考察

エポック数を適切に設定し学習

将来的な性能の予測が容易

実験2 — 最終的な識別精度

■本学習後の最良個体をテストしたときの 最良識別精度

	1回目[%]	2回目[%]	平均 [%]
エポック数 増加	91.91	92.39	92.15
エポック数 減少	91.34	91.96	91.65

■探索が進むにつれてエポック数を増やした方が 良い識別精度

実験 2 ―― 適応度の推移

エポック数を増加させた時 エポック数を減少させた時

実験 2 —— 考察

探索終盤にエポック数増加

本学習で良い性能を発揮

- □本学習は100 エポック
 - → 本学習直前に多いエポック数で評価すると 本学習でも良い性能を発揮

目次

- > はじめに
- > 要素技術
- > 提案手法
- > 実験概要
- > 実験結果
- ▶ まとめと今後の課題

まとめ

- □本実験で確認できたこと
 - 1 エポックよりも,適応度評価に 最適なエポック数がある
 - ■探索終盤に適応度評価のための学習 エポック数を増やす方が, より良い個体が得られる

今後の課題

- □試行回数を増やす
 - → 適応度評価手法ごとの信頼区間を調査する
- □様々な条件下で実験するときの適応度評価 のための学習エポック数最適化手法を提案する

ご静聴ありがとうございました