Outils statistiques pour la détection de nouveauté

Olivier Cappé Télécom ParisTech & CNRS

C.E.S. Data Scientist @ Télécom ParisTech octobre 2014

- Ce cours constitue une introduction aux méthodes statistiques utilisées pour la détection (de nouveauté, d'anomalie, de changement, de rupture, ...)
- On se placera uniquement dans le cadre simplificateur d'observations indépendantes dont la distribution peut être modélisée par une loi de probabilité paramétrique
- A titre d'exemple et du fait de son importance pratique on considérera en particulier la loi gaussienne multivariée
- De nombreuses variantes existent : modélisation plus flexible (modèles de mélange, modèles de Markov cachés, ...), méthodes non paramétriques (tests de rang, estimation de densité...), méthodes à noyaux, ...

Test d'adéquation

• Un échantillon $X_1,...,X_n$ est il compatible avec la loi de probabilité P_0 connue qui caractérise le comportement nominal ?

Dans ce contexte, on suppose que P_0 est parfaitement connue ou que les éventuels paramètres de P_0 ont été estimés au préalable avec suffisamment d'observations pour qu'on puisse négliger l'erreur d'estimation

Test à deux échantillons

■ Les deux échantillons $X_1,...,X_{n_x}$ et $Y_1,...,Y_{n_y}$ sont-il compatibles au sens où il est plausible qu'ils proviennent d'une même loi P_0 , P_0 étant supposée inconnue ?

Cadre proche du précédent mais où n_x et n_y sont comparables, si bien que l'erreur d'estimation ne peut être négligée et que les deux échantillons jouent un rôle symétrique

Détection de changement (ou rupture)

Etant donné un échantillon $X_1,...,X_n$, peut on trouver une position de changement $\tau \in \{1,...,n-1\}$ tel que $X_1,...,X_\tau$ et $X_{\tau+1},...,X_n$ soient compatibles au sens défini précédemment ?

Cadre souvent rencontré dans les cas où les indices d'observations correspondent à des dates consécutives (on parle alors de *série chronologique*)

Variantes

- Détection séquentielle : *n* n'est pas fixé a priori et la décision est remise en cause pour chaque valeur de *n*
- Changement multiples : on cherche à déterminer plusieurs positions de changement $\tau_1, ..., \tau_K$ et éventuellement K (le nombre de changements)

- 1 A propos de ce cours
- 2 Eléments de théorie des tests statistiques
- 3 Tests d'adéquation
- 4 Tests à deux échantillons
- 5 Détection de changements

Test Statistique

En statistique, la problématique de détection est liée à celle des *test* statistique

Test statistique

- Une statistique de test $S(X_1,...,X_n)$ (à valeur réelle)
- Un seuil t

La région $\mathcal{R} = \{S(X_1, ..., X_n) > t\}$ définit la zone de rejet de l'hypothèse de référence (dite parfois "hypothèse nulle" ou H_0)

si $S(X_1,...,X_n) > t$ on valide l'hypothèse alternative (dite H_1) d'un changement par rapport à la situation de référence

Evaluation de la performance d'un test

Niveau du test

Dit également taux de faux alarmes, taux de faux positifs ou probabilité d'erreur de première espèce

■ P(ℛ) sous l'hypothèse de référence

Puissance du test

Dit également taux de vrais positifs

■ P(ℛ) sous l'hypothèse alternative

Test de rapport de vraisemblance (généralisé)

Lorsqu'on dispose d'un modèle statistique des observations

- $\{p_0(x;\theta)\}_{\theta\in\Theta_0}$ sous l'hypothèse de référence H_0
- $\{p_1(x; \theta)\}_{\theta \in \Theta_1}$ sous l'hypothèse de référence H_1 Alternative

Rapport de vraisemblance

La statistique de test du rapport de vraisemblance est définie par

$$S_n^{LR} = \frac{\max_{\theta \in \Theta_1} \prod_{i=1}^n p_1(X_i; \theta)}{\max_{\theta \in \Theta_0} \prod_{i=1}^n p_0(X_i; \theta)}$$

- elle est optimale dans certains cas (par ex., si Θ_0 et Θ_1 sont réduits à une seule valeur de paramètre)
- lacktriangle la loi asymptotique de $\log S_n^{\mathrm{LR}}$ est connue (sous des hypothèses assez générales) et peut être utilisée pour fixer le niveau asymptotique du test

- 1 A propos de ce cours
- 2 Eléments de théorie des tests statistiques
- 3 Tests d'adéquation
- 4 Tests à deux échantillons
- 5 Détection de changements

Rappel sur la loi gaussienne multivariée

Densité gaussienne multivariée

Si $X \in \mathbb{R}^k$ suit une loi gaussienne multivariée non-dégénérée, ce qu'on notera $X \sim \mathcal{N}(\mu, \Sigma)$, sa densité de probabilité est donnée par

$$p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{k/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)\right\}$$

οù

- $\mu \in \mathbb{R}^k$ est l'espérance de X
- Σ est la matrice de covariance (ou matrice de variances-covariances) de X (matrice $k \times k$ définie positive)

Densité gaussienne en 2D

Densité de

$$\mathcal{N}\left(\begin{bmatrix} 0.5\\1 \end{bmatrix}, \begin{bmatrix} 1 & -0.7\\-0.7 & 1.3 \end{bmatrix}\right)$$

Densité gaussienne en 2D

Densité de

$$\mathcal{N}\left(\begin{bmatrix} 0.5\\1 \end{bmatrix}, \begin{bmatrix} 1 & -0.7\\-0.7 & 1.3 \end{bmatrix}\right)$$

 $F(X-\mu)$, où $F^TF = \Sigma^{-1}$ (décomp. de Cholevski de Σ^{-1}) est de loi

$$\mathcal{N}\left(\begin{bmatrix}0\\0\end{bmatrix},\begin{bmatrix}1&0\\0&1\end{bmatrix}\right)$$

Test d'adéquation à moyennes connues

Modèle statistique

 $H_0: \mathcal{N}(\mu_0, \Sigma)$

 $H_1: \mathcal{N}(\mu_1, \Sigma)$

où μ_0 et μ_1 sont supposés connus

Test du rapport de vraisemblance à moyennes connues

Le rapport de vraisemblance est équivalent à la statistique

$$\sqrt{n}(\overline{X}_n-\mu_0)^T\Sigma^{-1}(\mu_1-\mu_0)$$

où
$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

→ La région de rejet est un hyperplan

Requiert des connaissances fortes concernant l'hypothèse alternative

Test d'adéquation à μ_1 inconnue

Modèle statistique

 $H_0: \mathcal{N}(\mu_0, \Sigma)$

 $H_1: \mathcal{N}(\mu_1, \Sigma)$

où μ_1 est inconnue

"'Distance" de Mahalanobis

Le rapport de vraisemblance est équivalent à la statistique

$$n(\overline{X}_n - \mu_0)^T \Sigma^{-1}(\overline{X}_n - \mu_0)$$

On peut fixer le niveau du test en utilisant une loi du khi-deux à k degrés de liberté

$$\hookrightarrow n(\overline{X}_n - \mu_0)^T \Sigma^{-1}(\overline{X}_n - \mu_0)$$
 suit la loi χ_k^2 sous H_0

Loi du khi-deux

Définition χ_k^2 est la loi de $X^TX = \|X\|^2 = \sum_{j=1}^k X^2(j)$ lorsque $X \sim \mathcal{N}(0, \mathrm{Id}_k)$

Figure: Densité de probabilité de la loi χ_k^2 pour k=2,...,6

Loi du khi-deux

Définition χ_k^2 est la loi de $X^TX = \|X\|^2 = \sum_{j=1}^k X^2(j)$ lorsque $X \sim \mathcal{N}(0, \mathrm{Id}_k)$

Figure: Densité de probabilité de la loi χ^2_k pour k=2,...,6

Propriété C'est aussi la loi de $(X-\mu)^T \Sigma^{-1} (X-\mu)$ quand $X \sim \mathcal{N}(\mu, \Sigma)$)

Preuve : $F(X-\mu) \sim \mathcal{N}(0, \mathrm{Id}_k)$ où $F^T F = \sum_{k=0}^{-1} F(x-k)$

Détermination du seuil du test

Si $S_n \sim \chi_k^2$ sous H_0 , on fixe le seuil t de façon à ce que

$$P(Z > t) = \alpha$$
 pour $Z \sim \chi_k^2$

où α est le niveau souhaité du test

Figure: Seuil de niveau 5% pour différentes valeurs de k

Cas d'observations discrètes

Le cas d'observations catégorielles est très important (traitement du langage naturel, traitement d'images, etc.)

Dans le cas où l'observation X_i correspondent à une catégorie discrète parmi k on définit \overline{X}_n comme le vecteur des fréquences empiriques des différentes catégories

$$\overline{X}_n = \frac{1}{n} \begin{pmatrix} \text{nombre d'observations de la catégorie 1} \\ \vdots \\ \text{nombre d'observations de la catégorie k} \end{pmatrix}$$

lci il n'est pas approprié de supposer que les X_i sont gaussiennes $(\overline{X}_n \ge 0 \text{ et } \sum_{i=1}^k \overline{X}_n(j) = 1)$

Cas d'observations discrètes (suite)

Test de Pearson (dit également du khi-deux)

Sous l'hypothèse H_0 que les probabilités des k catégories sont données par p_1,\ldots,p_k , le test du rapport de vraisemblance est asymptotiquement équivalent à

$$n\left(\overline{X}_n - \begin{bmatrix} p_1 \\ \vdots \\ p_k \end{bmatrix}\right)^T \begin{pmatrix} p_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & p_k \end{pmatrix}^{-1} \left(\overline{X}_n - \begin{bmatrix} p_1 \\ \vdots \\ p_k \end{bmatrix}\right) = n\sum_{j=1}^k \frac{(\overline{X}_n(j) - p_j)^2}{p_j}$$

On peut fixer le niveau asymptotique du test en utilisant une loi du khi-deux à k-1 degrés de liberté

- 1 A propos de ce cours
- 2 Eléments de théorie des tests statistiques
- 3 Tests d'adéquation
- 4 Tests à deux échantillons
- 5 Détection de changements

On dispose dorénavant de deux échantillons de tailles comparables

- X_1,\ldots,X_{n_x}
- Y_1,\ldots,Y_{n_v}
- → on souhaite tester leur compatibilité de façon symétrique

Modèle statistique

 $H_0: X_i, Y_i \sim \mathcal{N}(\mu, \Sigma)$

 H_1 : $X_i \sim \mathcal{N}(\mu_x \text{ et } \Sigma)$ $Y_i \sim \mathcal{N}(\mu_y, \Sigma)$

avec $\mu_x \neq \mu_y$

où μ, μ_x, μ_y sont supposés inconnus

Test gaussien à deux échantillons

La statistique du rapport de vraisemblance est donnée par

$$\frac{n_x n_y}{n_x + n_y} \left(\overline{X}_{n_x} - \overline{Y}_{n_y} \right)^T \Sigma^{-1} \left(\overline{X}_{n_x} - \overline{Y}_{n_y} \right)$$

où
$$\overline{X}_{n_x} = \frac{1}{n} \sum_{i=1}^{n_x} X_i, \overline{Y}_{n_y} = \frac{1}{n} \sum_{i=1}^{n_y} Y_i$$

Sous H_0 elle suite une loi du khi-deux à k degrés de liberté

Si Σ est inconnu on peut la remplacer par un estimateur comme

$$\hat{\Sigma}_n = \frac{\sum_{i=1}^{n_x} \left(X_i - \overline{X}_{n_x}\right) \left(X_i - \overline{X}_{n_x}\right)^T + \sum_{i=1}^{n_y} \left(Y_i - \overline{Y}_{n_y}\right) \left(Y_i - \overline{Y}_{n_y}\right)^T}{n_x + n_y}$$

(Test d'Hotelling)

- 1 A propos de ce cours
- 2 Eléments de théorie des tests statistiques
- 3 Tests d'adéquation
- 4 Tests à deux échantillons
- 5 Détection de changements

Modèle statistique

$$H_O: X_1, ..., X_n \sim \mathcal{N}(\mu, \Sigma)$$

 $H_1: X_1, ..., X_\tau \sim \mathcal{N}(\mu_1, \Sigma)$
et $X_{\tau+1}, ..., X_\tau \sim \mathcal{N}(\mu_2, \Sigma)$ avec $\mu_1 \neq \mu_2$

où μ , μ_1 , μ_2 et τ sont inconnus.

Test de détection à un changement

$$\max_{\boldsymbol{\tau} \in \{1, \dots, n-1\}} \underbrace{\frac{\boldsymbol{\tau}(n-\boldsymbol{\tau})}{n} \left(\overline{X}_1(\boldsymbol{\tau}) - \overline{X}_2(\boldsymbol{\tau}) \right)^T \boldsymbol{\Sigma}^{-1} \left(\overline{X}_1(\boldsymbol{\tau}) - \overline{X}_2(\boldsymbol{\tau}) \right)}_{S_n(\boldsymbol{\tau})}$$

οù

$$\begin{cases} \overline{X}_1(\tau) &= \frac{1}{\tau} \sum_{i=1}^{\tau} X_i \\ \overline{X}_2(\tau) &= \frac{1}{n-\tau} \sum_{i=\tau+1}^{n} X_i \end{cases}$$

→ Si le test est significatif l'arg max donne une estimation de la position du changement

en l'absence de changement

Le fait d'optimiser sur la position de changement τ implique de relever le seuil de détection, par rapport au test à τ connu

en l'absence de changement

avec un changement d'amplitude $0.5\sigma \ a \ t = 150$

Extensions

- Il existe une théorie permettant de fixer le seuil de façon plus précise dans le modèle à un changement
- Il existe un algorithme de programmation dynamique efficace (de complexité quadratique en *n*) permettant de rechercher la position de plus de un changement

- 1 A propos de ce cours
- 2 Eléments de théorie des tests statistiques
- 3 Tests d'adéquation
- 4 Tests à deux échantillons
- 5 Détection de changements