SVM non-linéaire, et méthodes à noyaux

29 novembre 2019

Rappel SVM linéaire

Le modèle

- Données d'apprentissage {xi, vi}
- Formulation du problème primal

$$\begin{aligned} & \min_{\mathbf{w},b,\{\xi_i\}} & & \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i \\ & \text{s.c.} & y_i(\mathbf{w}^\top \mathbf{x}_i + b) \geq 1 - \xi_i & \forall i = 1, \cdots, n \\ & & \xi_i \geq 0 & \forall i = 1, \ldots, n \\ & & & \downarrow (\mathbf{x}) = c_i \mathbf{x} + b \end{aligned}$$
 du problème dual

Formulation du problème dual

$$\max_{\{\alpha_i\}} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^{\top} \mathbf{x}_j$$
s.c.
$$0 \le \alpha_i \le C, \quad \forall i = 1, \dots, n$$

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

$$\int_{\{\alpha_i\}} (\mathbf{x}) = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i^{\top} \mathbf{x}_i \mathbf{x}_i$$

► La fonction de décision $f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i^{\top} \mathbf{x}$

Non-linéarité?

Exemples de cas d'usage des SVM

 problème linéaire non-séparable

problème séparable mais non-linéaire?

Quelles solutions?

► transformation non-linéaire

Exemples de transformation non-linéaire

Coordonnées polaires

- Les données sont linéairement séparables dans l'espace en coordonnées polaire
- ▶ agit comme une transformation non-linéaire de l'espace original

$$\Phi(\mathbf{x}) = \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) \to \left(\begin{array}{c} r \\ \theta \end{array}\right)$$

Exemples de transformation non-linéaire

Projection dans un espace de plus haute dimension

les données sont séparables dans un espace 3D.

on peut utiliser un SVM linéaire dans un autre espace.

SVM dans un espace transformé

lacktriangle Apprendre un classifieur linéaire dans le nouvel espace \mathbb{R}^D

$$f(\mathbf{x}) = \mathbf{w}^{\top} \Phi(\mathbf{x}) + b$$

où $\Phi(\mathbf{x})$ est la fonction de transformation des données avec $\Phi: \mathbb{R}^d \mapsto \mathcal{F}$ (dans l'exemple $\mathcal{F} = \mathbb{R}^D$)

Principes de la non-linéarisation

- ▶ On projette les données x grâce à une transformation Φ dans un espace \mathcal{F} . La fonction de décision devient $f(\mathbf{x}) = \mathbf{w}^{\top} \Phi(\mathbf{x}) + b$
- ightharpoonup On applique l'algorithme linéaire dans l'espace \mathcal{F} .

$$\begin{array}{ll} \min_{w,b,\{\xi_i\}} & \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i \\ \text{s.c.} & y_i(\mathbf{w}^\top \Phi(\mathbf{x}_i) + b) \geq 1 - \xi_i \quad \forall i = 1, \cdots, n \\ & \xi_i \geq 0 & \forall i = 1, \dots, n \end{array}$$

avec $\mathbf{w} \in \mathcal{F}$.

La fonction de transfert obtenue est non-linéaire dans l'espace original.

Problème dual et fonction de décision transformée

Fonction de décision duale

La fonction de décision pour les SVMs

$$f(x) = \sum_{i=1}^{n} \alpha_i x^{\top} x_i + b \quad \Rightarrow \quad f(x) = \sum_{i=1}^{n} \alpha_i \Phi(x)^{\top} \Phi(x_i) + b$$

Problème dual

$$\max_{\{\alpha_i\}} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \Phi(\mathbf{x}_i)^\top \Phi(\mathbf{x}_j)$$

s.c.
$$0 \le \alpha_i \le C, \quad \forall i = 1, \cdots, n$$
$$\sum_{i=1}^n \alpha_i y_i = 0$$

Astuce du noyau

Constat

- La fonction $\Phi(\mathbf{x})$ intervient toujours sous la forme $\Phi(\mathbf{x}_i)^{\top}\Phi(\mathbf{x}_i)$
- \triangleright dans le problème dual, une fois que tout les produits scalaires $\Phi(\mathbf{x}_i)^{\top}(\Phi(\mathbf{x}_i))$ ont été calculés, on n'a besoin que résoudre le problème dual en $\alpha \in \mathbb{R}^n$.
- ightharpoonup On n'a pas besoin de calculer $\mathbf{w} \in \mathbb{R}^D$. c'est avantageux si D est très grand.

Transformation implicite par un noyau $k(x, y) = \langle \Phi(x), \Phi(y) \rangle$

Fonction de décision

$$f(x) = \sum_{i=1}^{\ell} \alpha_i k(x, x_i) + b$$

problème dual

$$\begin{array}{ll} \text{ the din} & \max_{\{\alpha_i\}} & \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \mathbf{k}(\mathbf{x}_i, \mathbf{x}_j) \\ \text{ s.c.} & 0 \leq \alpha_i \leq C, \quad \forall \ i=1,\cdots,n \\ & \sum_{i=1}^n \alpha_i y_i = 0 \end{array}$$

Kernel Ridge Regression > regression with 11.112 regularization

Formulation regression ridge

- $\mathcal{D} = \{(x_i, y_i)\} \in \mathcal{X} \times \mathbb{R}, \quad i = 1 \cdots n : \text{ ensemble de points étiquetés }.$
- ► Modele linéaire : $f(\mathbf{x}) = \mathbf{w}^{\top}\mathbf{x}$
- ightharpoonup Cout ℓ_2 penalité ℓ_2

$$\mathbf{X} = \begin{bmatrix} -x_{1} \\ -x_{N} \end{bmatrix} \in \mathbb{R}^{N \times d}$$

$$\mathbf{y} = \begin{pmatrix} y_{1} \\ \vdots \end{pmatrix} \in \mathbb{R}^{N}$$

Apprentissage du modèle

Optimisation

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

Condition d'optimalité _ √⁷ (¼ - χω*) + λω* = ○

$$-\mathbf{X}^{\top}\mathbf{y} + \mathbf{X}^{\top}\mathbf{X}\mathbf{w}^{*} + \lambda I\mathbf{w}^{*} = 0$$

$$(\chi^{\top}\chi_{+}\lambda I)\omega = \chi^{\top}\varphi_{+}$$

Solution

$$\mathbf{w}^{\star} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})^{-1}(\mathbf{X}^{\top}\mathbf{y})$$

Ici $\mathbf{X}^{\top}\mathbf{X}$ représente <u>une matrice</u> de covariance $\in \mathbb{R}^{d \times d}$

Kernel Ridge regression: reformulation

La condition d'optimalité se réécrit :

lacktriangle on peut donc dire qu'il existe un vecteur $a\in\mathbb{R}^n$ tel que consider the a vector it.

$$\mathbf{w}^{\star} = \mathbf{X}^{\top} \alpha = \sum_{i} \mathbf{x}_{i} \alpha_{i} \qquad (\text{T} \in \mathcal{L} \times \mathbb{X}^{\top}) \hat{\alpha} = \frac{1}{\lambda} \mathcal{G}$$

$$\mathbf{x}) = \sum_{i} \alpha_{i} \mathbf{x}_{i}^{\top} \mathbf{x} \qquad (\hat{\lambda} \text{T} + \mathbf{x} \mathbb{Y}^{\top}) \hat{\alpha} = \mathcal{G}$$

- ▶ Dans ce contexte, on a $f(\mathbf{x}) = \sum_i \alpha_i \mathbf{x}_i^\top \mathbf{x}$
- les variables α s'obtiennent par $\alpha = \frac{1}{\lambda}(\mathbf{y} \mathbf{X}\mathbf{w}^{\star}) = \frac{1}{\lambda}(\mathbf{y} \mathbf{X}\mathbf{X}^{\top}\alpha)$ donc

$$\alpha = (\lambda I + \mathbf{X}\mathbf{X}^{\top})^{-1}\mathbf{y} \qquad \hat{\lambda}_{=} \alpha = (\lambda \mathbf{I} + \mathbf{X}\mathbf{X}^{\top})^{-1}\mathbf{y}$$
ici, $(\mathbf{X}\mathbf{X}^{\top})_{i,j} = \mathbf{x}_{i}^{\top}\mathbf{x}_{j}$

$$\Rightarrow \text{ the gram matrix } \in \mathbb{R}^{n \times n}$$

Kernel Ridge Regression: reformulation

la fonction de décision :

▶ le problème d'apprentissage

sion:
$$f(\mathbf{x}) = \sum_{i} \alpha_{i} \mathbf{x}_{i}^{\top} \mathbf{x}$$
 entissage
$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{X} \mathbf{X}^{\top} \alpha\|_{2}^{2} + \frac{\lambda}{2} \alpha^{\top} \mathbf{X} \mathbf{X}^{\top} \alpha + \sum_{i=1}^{N} \alpha_{i} \alpha_{i} k(\mathbf{x}_{i}, \mathbf{x}_{i})$$

Kernelized

 \triangleright l'ensemble du problème se reformule en fonction des produits scalaires $\mathbf{x}_i^{\top}\mathbf{x}_i$ If we only the charge of representation $x \mapsto \phi(x)$ then we replace X by $\begin{bmatrix} -\phi(x_1) - \\ -\phi(x_n) - \end{bmatrix}$ So $K = \begin{bmatrix} b(x_i, x_j) \end{bmatrix}$,

Kernel Kmeans

Principe

remplacer la distance euclidienne par la distance dans l'espace transformée

$$d(\mathbf{x}_i, \mu_k)^2 = \|\Phi(\mathbf{x}_i) - \Phi(\mu_k)\|^2 = k(\mathbf{x}_i, \mathbf{x}_i) + k(\mu_k, \mu_k) - 2k(\mathbf{x}_i, \mu_k)$$

où $\Phi(\cdot)$ est la transformation implicite et $k(\cdot,\cdot)$ le produit scalaire dans l'espace transformée

Détail

- \triangleright μ_k moyenne des Φ(x_i) du cluster
- $k(x_i, \mu_k) = \frac{1}{|J|} \sum_{jinJ} \Phi(\mathbf{x}_i)^\top \Phi(\mathbf{x}_j)$