PROBLEM SET 6: DUE MONDAY, MAY 15

Definition 1 (Dual spaces). Let V be a vector space and let $\|\cdot\|$ be any norm on V. We define the *dual space* of V to be the vector space of bounded linear functionals,

 $V^* = \{ f \colon V \to \mathbb{R} : f \text{ is a bounded linear functional} \}.$

PROBLEMS

- 1.5.3.7(1)
- 2. 5.4.8 (1)–(3). What happens if $\{u_i\}$ is a complete orthonormal family
- 3. Show that a Hilbert space \mathcal{H} is separable if and only if \mathcal{H} has a complete orthonormal family.

Remark 1. It seems implicit in Franks' text that an orthonormal family is always assumed to be countable. Thus in Problem 3. you should do the following:

- (a) If $\{u_n\}$ is a complete *countable* orthonormal family, show that \mathcal{H} has a countable dense subset. (Use Problem 6.)
- (b) If \mathcal{H} is separable and if $S \subset \mathcal{H}$ is any orthonormal set, then S is countable. You can then argue that there exists a complete (countable) orthonormal family.
- 4. In infinite dimensions, being closed and bounded does not imply being compact.
 - (a) Show the closed unit ball in $C^0[0,1]$ is not compact
 - (b) Show the closed unit ball in $L^2[0,1]$ is not compact
- 5. Let $\mathbb{R}^{\mathbb{Z}} = \{\{x_n\}_{n \in \mathbb{Z}}\}$ be the space of bi-infinite sequences of real numbers. Let $\ell^2 \subset \mathbb{R}^{\mathbb{Z}}$ be the subset of square-integrable sequences:

$$x = \{x_n\}_{n \in \mathbb{Z}} \in \ell^2$$

if and only if

$$\sum_{n\in\mathbb{Z}} (x_n)^2 < \infty.$$

Define the inner product on ℓ^2 as follows: given $x = \{x_n\}_{n \in \mathbb{Z}} \in \ell^2$, and $y = \{y_n\}_{n \in \mathbb{Z}} \in \ell^2$,

$$\langle x, y \rangle = \sum_{n \in \mathbb{Z}} x_n y_n.$$

- (a) Show that the formula defining $\langle x, y \rangle$ converges (absolutely) and that $\langle \cdot, \cdot \rangle$ defines an inner product on ℓ^2 . (In particular, $\langle \cdot, \cdot \rangle$ satisfies Cauchy-Schwarz.)
- (b) Show ℓ^2 is a vector space (with the obvious operations)
- (c) Show ℓ^2 is complete (and so is a Hilbert space)
- (d) Show that ℓ^2 has a complete orthonormal family (and so is a separable Hilbert space)
- 6. Let \mathcal{H} be a Hilbert space and let $\{u_n\}_{n=0}^{\infty}$ be an orthonormal family in \mathcal{H} . Show that the following are equivalent:
 - (a) $\{u_n\}$ is a complete orthonormal family
 - (b) $\overline{\operatorname{span}\{u_n\}} = \mathcal{H}^2$
 - (c) If $x \in \mathcal{H}$ and $\langle x, u_n \rangle = 0$ for every n, then x = 0.

¹recall that a subspace of separable metric space is always separable

 $^{^{2}}$ Recall, that span denotes the set of *finite* linear combinations. The overline indicates taking the closure.

- 7. Let V be a vector space equipped with a norm $\|\cdot\|$.
 - (a) Show that the operator norm

$$||f|| = \sup\{|f(v)| : ||v|| \le 1\}$$

defines a norm on the dual space V^* .

- (b) Suppose $\{f_n\}$ is a Cauchy sequence in V^* (with the above norm).
 - (i) For every $x \in V$ show that $f(x) = \lim_{n \to \infty} f_n(x)$ exists.
 - (ii) Show that $f: V \to \mathbb{R}$ is a linear function
 - (iii) Show that $f_n \to f$ in V^* . (In particular, conclude that V^* is complete with respect to this norm, regardless of whether or not V is complete)
- 8. Let \mathcal{H} be a Hilbert space. Given $x \in \mathcal{H}$, let $f_x \colon \mathcal{H} \to \mathbb{R}$ be

$$f_x(v) = \langle x, v \rangle.$$

Show that the map $x \mapsto f_x$ is an isometry (with respect to the norm from problem 7.) from $\mathcal{H} \to \mathcal{H}^*$.