

Dense linear algebra : direct methods

P. Amestoy, P. Berger, M. Daydé, F.-H. Rouet (INPT-ENSEEIHT) and J.-Y. L'Excellent (INRIA/LIP-ENS Lyon)

2019-2020

Outline

Linear Algebra Basics

Gaussian Elimination and LU factorization LU Factorization with partial pivoting Symmetric matrices Cholesky Factorization

Linear Algebra Basics

Gaussian Elimination and LU factorization

LU Factorization with partial pivoting Symmetric matrices Cholesky Factorization

System of linear equations?

Example:

$$2 x_1 - 1 x_2 + 3 x_3 = 13$$

 $-4x_1 + 6 x_2 - 5 x_3 = -28$
 $6 x_1 + 13 x_2 + 16 x_3 = 37$

can be written under the form:

$$\mathbf{A}\mathbf{x} = \mathbf{b},$$
 with $\mathbf{A} = \begin{pmatrix} 2 & -1 & 3 \\ -4 & 6 & -5 \\ 6 & 13 & 16 \end{pmatrix}$, $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, and $\mathbf{b} = \begin{pmatrix} 13 \\ -28 \\ 37 \end{pmatrix}$

Gaussian Elimination

Example:

$$2x_1 - x_2 + 3x_3 = 13 (1)$$

$$-4x_1 + 6x_2 - 5x_3 = -28 (2)$$

$$6x_1 + 13x_2 + 16x_3 = 37 (3)$$

With 2 * (1) + (2) \rightarrow (2) and -3*(1) + (3) \rightarrow (3) we obtain:

$$2x_1 - x_2 + 3x_3 = 13 (4)$$

$$0x_1 + 4x_2 + x_3 = -2 (5)$$

$$0x_1 + 16x_2 + 7x_3 = -2 (6)$$

Thus x_1 is eliminated from (5) and (6). With $-4*(5) + (6) \rightarrow (6)$:

$$2x_1 - x_2 + 3x_3 = 13$$

$$0x_1 + 4x_2 + x_3 = -2$$

$$0x_1 + 0x_2 + 3x_3 = 6$$

The linear system is then solved by backward $(x_3 \rightarrow x_2 \rightarrow x_1)$ substitution: $x_3 = \frac{6}{3} = 2$, $x_2 = \frac{1}{4}(-2 - x_3) = -1$, and finally $x_1 = \frac{1}{2}(13 - 3x_3 + x_2) = 3$

LU Factorization

▶ Find **L** unit lower triangular and **U** upper triangular such that:

$$A = L \times U$$

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 3 \\ -4 & 6 & -5 \\ 6 & 13 & 16 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 4 & 1 \end{bmatrix} \times \begin{bmatrix} 2 & -1 & 3 \\ 0 & 4 & 1 \\ 0 & 0 & 3 \end{bmatrix}$$

- Procedure to solve $\mathbf{A}\mathbf{x} = \mathbf{b}$
 - ▶ A = LU
 - Solve Ly = b (forward elimination, down)
 - Solve Ux = y (backward substitution, up)

$$Ax = (LU)x = L(Ux) = Ly = b$$

From Gaussian Elimination to LU Factorization

$$\mathbf{A} = \mathbf{A}^{(1)}, \ \mathbf{b} = \mathbf{b}^{(1)}, \ \mathbf{A}^{(1)}\mathbf{x} = \mathbf{b}^{(1)} :$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \quad 2 \leftarrow 2 - 1 \times a_{21}/a_{11}$$

$$3 \leftarrow 3 - 1 \times a_{31}/a_{11}$$

$$\mathbf{A}^{(2)}\mathbf{x} = \mathbf{b}^{(2)}$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} \\ 0 & a_{32}^{(2)} & a_{33}^{(2)} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2^{(2)} \\ b_3^{(2)} \end{pmatrix} \quad b_2^{(2)} = b_2 - a_{21}b_1/a_{11}$$

$$\mathbf{Finally} \quad 3 \leftarrow 3 - 2 \times a_{32}/a_{22} \text{ gives } \mathbf{A}^{(3)}\mathbf{x} = \mathbf{b}^{(3)}$$

$$\begin{pmatrix} \mathbf{Finally} \\ a_{11} & a_{12} & a_{13} \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} \\ 0 & 0 & a_{33}^{(2)} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2^{(2)} \\ b_3^{(3)} \end{pmatrix} \quad a_{33}^{(3)} = a_{33}^{(2)} - a_{32}^{(2)}a_{32}^{(2)}/a_{22}^{(2)}$$

$$\mathbf{a}_{33}^{(3)} = a_{33}^{(2)} - a_{32}^{(2)}a_{33}^{(2)}/a_{22}^{(2)}$$

$$\mathbf{a}_{33}^{(3)} = a_{33}^{(2)} - a_{32}^{(2)}a_{33}^{(2)}/a_{22}^{(2)}$$

$$\mathbf{a}_{33}^{(3)} = a_{33}^{(2)} - a_{32}^{(2)}a_{32}^{(2)}/a_{22}^{(2)}$$

$$\mathbf{a}_{33}^{(3)} = a_{33}^{(2)} - a_{32}^{(2)}a_{32}^{(2)}/a_{22}^{(2)}$$

From Gaussian Elimination to LU Factorization

Typical Gaussian elimination at step k:

$$\begin{pmatrix} a_{11}^{(1)} & \dots & \dots & \dots & \dots & a_{1n}^{(1)} \\ 0 & \ddots & & & & \vdots \\ \vdots & \ddots & a_{k-1k-1}^{(k-1)} & \dots & \dots & \dots & a_{k-1n}^{(k-1)} \\ \vdots & 0 & a_{kk}^{(k)} & a_{kk+1}^{(k)} & \dots & a_{kn}^{(k)} \\ \vdots & \vdots & \vdots & a_{k+1k}^{(k)} & a_{k+1k+1}^{(k)} & \dots & a_{k+1n}^{(k)} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & a_{nk}^{(k)} & a_{nk+1}^{(k)} & \dots & a_{nn}^{(k)} \end{pmatrix} \qquad \begin{pmatrix} b_1^{(1)} \\ \vdots \\ b_k^{(k-1)} \\ b_{k-1}^{(k)} \\ b_k^{(k)} \\ b_{k+1}^{(k)} \\ \vdots \\ b_n^{(k)} \end{pmatrix}$$

$$a_{ij}^{(k+1)} = a_{ij}^{(k)} - \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}} a_{kj}^{(k)}$$
, for $i > k$

(and
$$a_{ij}^{(k+1)} = a_{ij}^{(k)}$$
 for $i \leq k$)

From Gaussian Elimination to LU factorization

$$\begin{cases} a_{ij}^{(k+1)} = a_{ij}^{(k)} - \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}} a_{kj}^{(k)}, \text{ for } i > k \\ a_{ij}^{(k+1)} = a_{ij}^{(k)}, \text{ for } i \leq k \end{cases}$$

▶ One step of Gaussian elimination can be written:

$$\mathbf{A}^{(k+1)} = \mathbf{L}^{(k)} \mathbf{A}^{(k)} \quad (\text{and } b^{(k+1)} = \mathbf{L}^{(k)} b^{(k)}), \text{ with}$$

$$\mathbf{L}^{k} = \begin{pmatrix} 1 & & \\ & 1 & \\ & -l_{k+1,k} & \\ & -l_{k} & 1 \end{pmatrix} \text{ and } l_{ik} = \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}}.$$

After n-1 steps, $\mathbf{A}^{(n)} = \mathbf{U} = \mathbf{L}^{(n-1)} \dots \mathbf{L}^{(1)} \mathbf{A}$ gives $\boxed{\mathbf{A} = \mathbf{L} \mathbf{U}}$, with $\mathbf{L} = [\mathbf{L}^{(1)}]^{-1} \dots [\mathbf{L}^{(n-1)}]^{-1} = \begin{pmatrix} 1 & 1 & 0 \\ \frac{1}{21} & 1 & 0 \end{pmatrix}$

$$\begin{pmatrix} 1 & & & & \\ l_{21} & 1 & & & \\ \vdots & & \ddots & & \\ l_{n1} & & & & 1 \end{pmatrix} \cdots \begin{pmatrix} 1 & & & & \\ 1 & & & & & \\ & \ddots & & & & \\ & & & l_{n,n-1} & 1 \end{pmatrix} = \begin{pmatrix} 1 & & 0 & & \\ l_{21} & 1 & & & \\ \vdots & & \ddots & & \\ l_{n1} & \dots & l_{n,n-1} & 1 \end{pmatrix}$$

LU Factorization Algorithm

- lackbox Overwrite matrix f A: we store $a_{ij}^{(k)}, k=2,\ldots,n$ in f A(i,j)
- ▶ In the end, $\mathbf{A} = \mathbf{A}^{(n)} = \mathbf{U}$

```
\begin{array}{l} \mbox{do } k \! = \! 1, \; n \! - \! 1 \\ \mbox{do } i \! = \! k \! + \! 1, \; n \\ \mbox{do } i \! = \! k \! + \! 1, \; n \\ \mbox{L(i,k)} = \! A(i,k) \! / \! A(k,k) \\ \mbox{do } j \! = \! k, \; n \; \; ! \; (\textit{better than: do } j \! = \! 1,n) \\ \mbox{A(i,j)} = \! A(i,j) - \! L(i,k) * A(k,j) \\ \mbox{end do} \\ \mbox{enddo} \\ \mbox{enddo} \\ \mbox{L(n,n)} \! = \! 1 \end{array}
```

Matrix A at each step:

- ► Avoid building the zeros under the diagonal
- Before

```
\begin{array}{l} L(n,n){=}1\\ \textbf{do} \ k{=}1,\ n{-}1\\ L(k,k) = 1\\ \textbf{do} \ i{=}k{+}1,\ n\\ L(i,k) = A(i,k)/A(k,k)\\ \textbf{do} \ j{=}k,\ n\\ A(i,j) = A(i,j) - L(i,k) * A(k,j) \end{array}
```

After

```
\begin{array}{l} L(n,n){=}1\\ \textbf{do} \ k{=}1,\ n{-}1\\ L(k,k) = 1\\ \textbf{do} \ i{=}k{+}1,\ n\\ L(i,k) = A(i,k)/A(k,k)\\ \textbf{do} \ j{=}k{+}1,\ n\\ A(i,j) = A(i,j) - L(i,k) * A(k,j) \end{array}
```

- ▶ Use lower triangle of array **A** to store $L_{i,k}$ multipliers
- Before:

```
\begin{array}{l} \textbf{L(n,n)=1} \\ \textbf{do } k=1, \ n-1 \\  & \textbf{L(k,k)=1} \\ \textbf{do } i=k+1, \ n \\  & \textbf{L(i,k)=A(i,k)/A(k,k)} \\ \textbf{do } j=k+1, \ n \\  & \textbf{A(i,j)=A(i,j)-L(i,k)*A(k,j)} \end{array}
```

After (diagonal 1 of L is not stored):

```
\begin{array}{lll} \mbox{do} & k = 1, \ n - 1 \\ \mbox{do} & i = k + 1, \ n \\ & \mbox{A(i,k)} &= \mbox{A(i,k)} / \mbox{A(k,k)} \\ \mbox{do} & j = k + 1, \ n \\ & \mbox{A(i,j)} &= \mbox{A(i,j)} - \mbox{A(i,k)} * \mbox{A(k,j)} \end{array}
```

More compact array syntax (Matlab, scilab):

$$\begin{array}{l} \mbox{do } k{=}1, \ n{-}1 \\ \mbox{ } A(k{+}1{:}n\,,k\,) \ = \ A(k{+}1{:}n\,,k\,) \ \ / \ \ A(k\,,k\,) \\ \mbox{ } A(k{+}1{:}n\,,k{+}1{:}n\,) \ = \ A(k{+}1{:}n\,,k\,) \ \ * \ \ A(k\,,k{+}1{:}n\,) \\ \mbox{ } - \ \ A(k{+}1{:}n\,,k\,) \ \ * \ \ A(k\,,k{+}1{:}n\,) \end{array}$$
 end do

corresponds to a rank-1 update:

What we have computed

- ▶ we have stored the **L** and **U** factors in **A**:
 - ▶ $\mathbf{A}_{i,j}$, i > j corresponds to I_{ij}
 - ▶ $\mathbf{A}_{i,j}$, $i \leq j$ corresponds to u_{ij}
 - with $I_{ii} = 1, i = 1, n$
- ► Finally,

after factorization: $\mathbf{A} = \mathbf{L} + \mathbf{U} - I$

LU factorization : summary

- Step by step columns of **A** are set to zero and **A** is updated $\mathbf{L}^{(n-1)} \dots \mathbf{L}^{(1)} \mathbf{A} = \mathbf{U}$ leading to $\mathbf{A} = \mathbf{L} \mathbf{U}$ where $\mathbf{L} = [\mathbf{L}^{(1)}]^{-1} \dots [\mathbf{L}^{(n-1)}]^{-1}$
- At each step $\mathbf{A}(k, k)$ is referred to as the pivot
 - zero entries in column of A can be replaced by entries in L
 - row entries of **U** are stored in corresponding locations of **A**

Algorithm 1 LU factorization

```
\begin{array}{l} \textbf{for } k=1, n-1 \textbf{ do} \\ \textbf{ if } |\textbf{A}(k,k)| \textbf{ too small then} \\ \textbf{ exit (small pivots are not allowed)} \\ \textbf{ end if} \\ A(k+1:n,k) = A(k+1:n,k) \ / \ A(k,k) \\ A(k+1:n,k+1:n) = A(k+1:n,k+1:n) \ - \ A(k+1:n,k)*A(k,k+1:n) \\ \textbf{ end for} \end{array}
```

When $|\mathbf{A}(k,k)|$ is too small, one could consider other pivots: numerical pivoting strategies will be introduced later.

Existence and uniqueness of LU decomposition

Theorem 1

 $\mathbf{A} \in \mathbf{R}^{n \times n}$ has an LU factorization (where \mathbf{L} is unit lower triangular and \mathbf{U} is upper triangular) if $\det(\mathbf{A}(1:k,1:k)) \neq 0$ for all $k \in \{1\dots n-1\}$. If the $\mathbf{L}\mathbf{U}$ factorization exists, then it is unique and $\det(\mathbf{A}) = u_{11}\dots u_{nn}$.

Theorem 2

For each nonsingular matrix \mathbf{A} , there exists a permutation matrix \mathbf{P} such that $\mathbf{P}\mathbf{A}$ possesses an LU factorization $\mathbf{P}\mathbf{A} = \mathbf{L}\mathbf{U}$.

Definition 1

 $\mathbf{A} \in \mathbf{R}^{n \times n}$ is strictly diagonally dominant iff $|\mathbf{a}_{ii}| > \sum_{j=1, j \neq i}^{n} |\mathbf{a}_{ij}|$ for all $i = 1, \dots, n$

Theorem 3

If ${\bf A}^T$ is strictly diagonally dominant then ${\bf A}$ is non-singular and ${\bf A}$ has an LU factorization and $l_{ij} \leq 1$

Solution phase : Lx = b (Left-Looking and Right-looking)

Algorithm 2 LL (sans report)

```
x = b

for j = 1, n do

for i = 1, j - 1 do

x_j = x_j - l_{ji}x_i

end for

x_j = \frac{X_j}{l_{jj}}

end for
```


Algorithm 3 RL (avec report)

```
x = b

for j = 1, n do

x_j = \frac{x_j}{l_{jj}}

for i = j + 1, n do

x_i = x_i - l_{ij}x_j

end for

end for
```


Blocked **LU** and Schur decomposition

Exercise 1 (Blocked **LU** and Schur decomposition)

Let A be a non singular matrix of order n for which $\exists P$ permutation matrix such that PA can be factored without pivoting and consider the block form

$$PA = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix}.$$
 We define the so called Schur matrix S as
$$S = A_{2,2} - A_{2,1} (A_{1,1})^{-1} A_{1,2}$$

- 1. Explain how to adapt the LU factorisation algorithm to obtain the following decomposition of PA. PA = $\begin{pmatrix} \mathbf{L}_{1,1} & \mathbf{0} \\ \mathbf{L}_{2,1} & I \end{pmatrix} \begin{pmatrix} \mathbf{U}_{1,1} & \mathbf{U}_{1,2} \\ \mathbf{0} & \mathbf{S} \end{pmatrix} = \begin{pmatrix} \mathbf{L}_{1,1} & \mathbf{0} \\ \mathbf{L}_{2,1} & I \end{pmatrix} \begin{pmatrix} I & \mathbf{0} \\ \mathbf{0} & \mathbf{S} \end{pmatrix} \begin{pmatrix} \mathbf{U}_{1,1} & \mathbf{U}_{1,2} \\ \mathbf{0} & I \end{pmatrix}$
- 2. Prove that $det(\mathbf{A}) = det(\mathbf{P})det(\mathbf{A}_{1,1})det(\mathbf{S})$
- 3. We assume that we know how to compute \mathbf{Y} such that $\mathbf{Y} = \mathbf{S}^{-1}\mathbf{Z}$. Describe how to use previous incomplete blocked factorization to solve $\mathbf{AX} = \mathbf{B}$.

Blocked factorization and null space

Exercise 2 (Null space)

of the null space.

We suppose that after n-r steps of LU factorization we have $\mathbf{PA} = \begin{pmatrix} \mathbf{L}_{1,1} & \mathbf{0} \\ \mathbf{L}_{2,1} & I_r \end{pmatrix} \begin{pmatrix} \mathbf{U}_{1,1} & \mathbf{U}_{1,2} \\ \mathbf{0} & \mathbf{S}_r \end{pmatrix}$ where \mathbf{S}_r is the Schur complement matrix of order r. We also suppose that $\mathbf{S}_r = 0$ (in practice one could also assume that $\|\mathbf{S}_r\| \leq \varepsilon \|\mathbf{A}\|$ for some matrix norm). Finally we assume that $\det(\mathbf{U}_{11}) \neq 0$. Prove that the dimension of the null-space is r and compute a basis

Number of floating-point operations (flops)

▶ In forward elimination (Ly = b), computing the k^{th} unknown

$$y_k = b_k - \sum_{j=1}^{k-1} L_{kj} y_j$$

leads to (k-1) multiplications and (k-1) additions, for $1 \le k \le n$ $n^2 - n$ flops overall

- ▶ Idem for Ux = y and at worst n divisions $(U_{kk} \neq 1)$.
- Number of flops during factorization:
 - \triangleright n-k divisions
 - $(n-k)^2$ multiplications, $(n-k)^2$ additions
 - k = 1, 2, ..., n 1
 - ▶ total: $\approx \frac{2 \times n^3}{3}$ (Strassen's algorithm can reduce this to $\Theta(n^{\log_2 7}) \simeq \Theta(n^{2.8})$)

Computational complexity

Exercise 3 (How to compute \mathbf{x} such that $\mathbf{x} = (\mathbf{A}^2)^{-1} \mathbf{b}$)

Let **A** be a non singular matrix of order n (i.e. it exists **L**, **U** and **P** such that PA = LU (note that A^2 is also non singular).

- 1. Compare the computational complexity of solving $\mathbf{A}^2\mathbf{x} = \mathbf{b}$ with the following two algorithms:
 - 1.1 Compute $\mathbf{B} = \mathbf{A}^2$, factor \mathbf{B} and solve $\mathbf{B}\mathbf{x} = \mathbf{b}$
 - 1.2 Factor **A** and use the factored form to solve $\mathbf{A}^2\mathbf{x} = \mathbf{b}$
- 2. Explain why computing directly $\mathbf{C} = (\mathbf{A}^2)^{-1}$ and performing $\mathbf{x} = \mathbf{C}\mathbf{b}$ is not a method of choice.

Linear Algebra Basics

Gaussian Elimination and LU factorization

LU Factorization with partial pivoting

Symmetric matrices

Cholesky Factorization

Consider
$$A = \begin{bmatrix} \varepsilon & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \frac{1}{\varepsilon} & 1 \end{bmatrix} \times \begin{bmatrix} \varepsilon & 1 \\ 0 & 1 - \frac{1}{\varepsilon} \end{bmatrix}$$

$$\kappa_2(A) = \frac{\lambda_{max}}{\lambda_{min}} = \frac{1 + \varepsilon + \sqrt{5 + \varepsilon^2 - 2\varepsilon}}{-1 - \varepsilon + \sqrt{5 + \varepsilon^2 - 2\varepsilon}} \simeq 2.6$$

If one solves:

$$\left[\begin{array}{cc} \varepsilon & 1 \\ 1 & 1 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 1+\varepsilon \\ 2 \end{array}\right]$$

Exact solution $x^* = (1, 1)$.

$$A = \left[\begin{array}{cc} \varepsilon & 1 \\ 1 & 1 \end{array} \right] = \left[\begin{array}{cc} 1 & 0 \\ \frac{1}{\varepsilon} & 1 \end{array} \right] \times \left[\begin{array}{cc} \varepsilon & 1 \\ 0 & 1 - \frac{1}{\varepsilon} \end{array} \right]$$

$ $ ε	$\frac{\ x^*-x\ }{\ x^*\ }$	$\kappa_2(A)$
10^{-3}	$6 imes 10^{-16}$	2.621
10^{-6}	2×10^{-11}	2.618
10^{-9}	$9 imes 10^{-8}$	2.618
10^{-12}	$9 imes 10^{-5}$	2.618
10^{-15}	7×10^{-2}	2.618

Table: Relative error as a function of ε .

► Even if *A* is well conditioned, Gaussian elimination may introduce errors

$$A = \begin{bmatrix} \varepsilon & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \frac{1}{\varepsilon} & 1 \end{bmatrix} \times \begin{bmatrix} \varepsilon & 1 \\ 0 & 1 - \frac{1}{\varepsilon} \end{bmatrix}$$

ε	$\frac{\ x^*-x\ }{\ x^*\ }$	$\kappa_2(A)$
10^{-3}	$6 imes 10^{-16}$	2.621
10^{-6}	2×10^{-11}	2.618
10^{-9}	$9 imes 10^{-8}$	2.618
10^{-12}	$9 imes 10^{-5}$	2.618
10^{-15}	7×10^{-2}	2.618

Table: Relative error as a function of ε .

- ► Even if *A* is well conditioned, Gaussian elimination may introduce errors
- Explanation: pivot ε is too small and leads to a large element growth (growth factor) in L and U: $\frac{1}{\varepsilon}$ in L leads to a loss of information/accuracy in $1 \frac{1}{\varepsilon}$

$$A = \left[\begin{array}{cc} \varepsilon & 1 \\ 1 & 1 \end{array} \right] = \left[\begin{array}{cc} 1 & 0 \\ \frac{1}{\varepsilon} & 1 \end{array} \right] \times \left[\begin{array}{cc} \varepsilon & 1 \\ 0 & 1 - \frac{1}{\varepsilon} \end{array} \right]$$

▶ Let us try to exchange rows 1 and 2 of A and b:

$$\left[\begin{array}{cc} 1 & 1 \\ \varepsilon & 1 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 2 \\ 1 + \varepsilon \end{array}\right]$$

$$\left[\begin{array}{cc} 1 & 1 \\ \varepsilon & 1 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ \varepsilon & 1 \end{array}\right] \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 - \varepsilon \end{array}\right]$$

- \rightarrow Multipliers are bounded: $\forall i = k+1: n, \quad \frac{|a_{i,k}^{(k)}|}{|a_{k,k}^{(k)}|} \leq 1$
- ightarrow terms of original matrix remain significant in $\dot{L}U$ factors
- \rightarrow perfect accuracy obtained !

Partial Pivoting

- Partial pivoting: choose at each step the largest element of the column as the pivot
- → avoids large elements in factors matrix (growth factor)
 - ▶ Then (*P*: permutation), PA = LU, Ly = Pb, Ux = y
 - ► LU with partial pivoting is practically backward stable

$$\frac{\|Ax - b\|}{\|A\| \times \|x\| + \|b\|} \approx \varepsilon \tag{1}$$

$$\frac{\|x - x^*\|}{\|x^*\|} \approx \varepsilon \times \kappa(A) \qquad (2)$$

- (1) small backward error (and small residual) independently of the conditioning
- (2) accuracy depends on conditioning if $\varepsilon \approx 10^{-q}$ et $\kappa(A) \approx 10^p$ then x has approximatively (q-p) correct digits

LU factorization with partial pivoting

Next algorithm computes L and U such that PA = LU, and computes Pb.

Algorithm 4 LU factorization with partial pivoting

```
for k=1,n-1 do

Pivot search: Find index i of largest entry in \mathbf{A}(k:n,k)

if |A(i,k)| \leq \varepsilon \|A\| then
exit since \mathbf{A} is numerically singular
end if

Swap rows i and k of \mathbf{A} and \mathbf{b}
A(k+1:n,k) = A(k+1:n,k) / A(k,k)
A(k+1:n,k+1:n) = A(k+1:n,k+1:n) - A(k+1:n,k)*A(k,k+1:n)
end for
```

Extensions to **LU** factorization with partial pivoting

Exercise 4 (LU with pivoting)

- 1. Explain how to modify algorithm 4 to factor singular matrices in the form proposed at exercice 2 (so that using exercice 2 one could then also compute the null-space of **A**)
- 2. Let us suppose then that in algorithm 4, we want at each step of Pivot search step to find the largest entry not only in the column $(\mathbf{A}(k:n,k))$ both also $(\mathbf{A}(k:n,k:n))$, so called total pivoting. Describe how algorithm 4 should be modified.
- 3. Compare algorithm proposed at questions 1 and 2.

Linear Algebra Basics

Gaussian Elimination and LU factorization LU Factorization with partial pivoting

Symmetric matrices

Cholesky Factorization

Symmetric matrices

- Assumption: A has a LU factorization
- ► A symmetric: only store lower or upper triangle
- ▶ A = LU and $A^T = A \Rightarrow LU = U^TL^T$, thus $LU(L^T)^{-1} = U^T \Rightarrow (U)(L^T)^{-1} = L^{-1}U^T = D$ diagonal and $U = DL^T$, finally $A = L(DL^T) = LDL^T$, with D = Diag(U) and
- Example:

$$\begin{bmatrix} 4 & -8 & -4 \\ -8 & 18 & 14 \\ -4 & 14 & 25 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 3 & 1 \end{bmatrix} \times \begin{bmatrix} 4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \times \begin{bmatrix} 1 & -2 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

- ▶ Solution of Ax = b: with $A = LDL^T$:
 - 1. Ly = b then Dz = y followed by
 - 2. $L^T x = z$

Properties of *LDL*^T Algorithm

We have shown that if **A** symmetric and A = LU exists then $\exists L$ and D(= Diag(U)) such that $A = LDL^T$. **LU** Algorithm 1 thus already computes all we need: L and D.

Proposition 1 (LDL^T Algorithm)

Given a symmetric matrix A for which an LU factorisation exists, the LU algorithm 1 can be adapted to compute LDL^T factorization.

Proposition 2 (Complexity of LDL^{T} factorization)

If only the lower triangular part of the matrix (including diagonal) is used/updated and if only L and D matrices are stored, then the cost of LDL^T factorisation is $\approx \frac{n^3}{3}$

LDL[™] Algorithm for symmetric matrices

▶ let I_k be column k of L and u_k be row k of U then in Algorithm 1,

$$A(k+1:n,k+1:n) = A(k+1:n,k+1:n) - I_k * u_k^T$$

▶ since $l_k = u_k/u_{kk}$, when U is not stored, one must temporarily save u_k to perform the update.

Algorithm 5 LDT^T factorization

```
for k = 1, n - 1 do

if |\mathbf{A}(k, k)| too small exit (small pivots

\mathbf{v}_k = \mathbf{A}(\mathbf{k}+1:\mathbf{n},\mathbf{k}) (corresponds to u_k in LU Agorithm)

\mathbf{A}(\mathbf{k}+1:\mathbf{n},\mathbf{k}) = \mathbf{A}(\mathbf{k}+1:\mathbf{n},\mathbf{k}) / \mathbf{A}(\mathbf{k},\mathbf{k})

for j = k + 1, n do

\mathbf{A}(j:\mathbf{n},j) = \mathbf{A}(j:\mathbf{n},j) - \mathbf{A}(j:\mathbf{n},\mathbf{k})^*\mathbf{v}_k(j)

end for

end for
```

Complexity of LDL^T factorization

```
for k = 1, n - 1 do
   if |\mathbf{A}(k, k)| too small exit (small pivots
   \mathbf{v}_k = A(k+1:n,k) (corresponds to u_k in LU Agorithm)
   A(k+1:n,k) = A(k+1:n,k) / A(k,k)
   for i = k + 1, n do
     A(j:n,j) = A(j:n,j) - A(j:n,k) * \mathbf{v}_k(j)
   end for
end for
• flops(LDL^T) = 2\sum_{k=1}^{n-1} \left(\sum_{i=1}^{n-k} i\right) = 2\sum_{i=1}^{n-1} \left(\frac{(n-k)(n-k+1)}{2}\right)
   flops(LDL^T) \approx \sum_{n=1}^{n-1} (n-k)^2 (thus \frac{1}{2}flops(LU))
                        LDL^T \approx \frac{n^3}{2} floating point operations
```

Symmetric matrices and pivoting

- Diagonal pivoting preserves symmetry but is insufficient for stability
- ▶ In general one looks for a permutation *P* such that:

$$PAP^{T} = LDL^{T} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ x & 1 & 0 & 0 \\ x & 0 & 1 & 0 \\ x & x & x & 1 \end{bmatrix} \times \begin{bmatrix} x & 0 & 0 & 0 \\ 0 & x & x & 0 \\ 0 & x & x & 0 \\ 0 & 0 & 0 & x \end{bmatrix} \times \begin{bmatrix} 1 & x & x & x \\ 0 & 1 & 0 & x \\ 0 & 0 & 1 & x \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

▶ D: matrix of diagonal 1×1 and 2×2 blocks

Examples of 2x2 pivots:
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
, $\begin{bmatrix} \varepsilon_1 & 1 \\ 1 & \varepsilon_2 \end{bmatrix}$

▶ Pivot choice more complex: 2 columns at each step Let

$$PAP^{T} = \begin{bmatrix} E & C^{T} \\ C & B \end{bmatrix}. \text{ If } E \text{ is a 2x2 pivot, form } E^{-1} \text{ to get:}$$

$$PAP^{T} = \begin{bmatrix} I & 0 \\ CE^{-1} & I \end{bmatrix} \begin{bmatrix} E & 0 \\ 0 & B - CE^{-1}C^{T} \end{bmatrix} \begin{bmatrix} I & E^{-1}C^{T} \\ 0 & I \end{bmatrix}$$

Linear Algebra Basics

Gaussian Elimination and LU factorization LU Factorization with partial pivoting Symmetric matrices

Cholesky Factorization

Cholesky Factorization

- ▶ **A** positive definite if $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0 \quad \forall \mathbf{x} \neq \mathbf{0}$
- ▶ **A** symmetric positive definite \Rightarrow Cholesky factorization $\mathbf{A} = \mathbf{L}\mathbf{L}^T$ with L lower triangular, \mathbf{L} is unique
- By identification :

$$\begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{21} & a_{22} & a_{32} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \times \begin{bmatrix} l_{11} & l_{21} & l_{31} \\ 0 & l_{22} & l_{32} \\ 0 & 0 & l_{33} \end{bmatrix}$$

► It follows: $\begin{array}{lll} a_{11} = l_{11}^2 & a_{21} = l_{21} \times l_{11} & a_{31} = l_{31} \times l_{11} \\ a_{22} = l_{21}^2 + l_{22}^2 & a_{32} = l_{31} \times l_{21} + l_{32} \times l_{22} & a_{33} = l_{31}^2 + l_{32}^2 + l_{33}^2 \end{array}$

Thus:
$$\begin{split} I_{11} &= \sqrt{a_{11}} & \quad I_{21} = a_{21}/I_{11} & \quad I_{31} = a_{31}/I_{11} \\ a_{22}^{(1)} &= a_{22} - I_{21}^2 & \quad a_{32}^{(1)} = a_{32} - I_{31} \times I_{21} & \quad a_{33}^{(1)} = a_{33} - I_{31}^2 \\ I_{22} &= \sqrt{a_{22}^{(1)}} & \quad I_{32} = a_{32}^{(1)}/I_{22} & \quad a_{33}^{(2)} = a_{33}^{(1)} - I_{32}^2 \\ I_{33} &= \sqrt{a_{33}^{(2)}} & \quad a_{33}^{(2)} & \quad a_{33}^{$$

Cholesky Factorization

Cholesky Factorization

```
\begin{array}{lll} \mbox{do } k\!=\!1, & n \\ & A(k\,,k)\!=\!\mbox{sqrt} \left(A(k\,,k\,)\right) \\ & A(k\!+\!1\!:\!n\,,k\,) = A(k\!+\!1\!:\!n\,,k\,)/A(k\,,k\,) \\ & \mbox{do } j\!=\!k\!+\!1, & n \\ & A(j\!:\!n\,,j\,) = A(j\!:\!n\,,j\,) - A(j\!:\!n\,,k\,) \ A(j\,,k\,) \\ & \mbox{end do} \\ \mbox{end do} \end{array}
```

- Cholesky is backward stable (without pivoting)
- ▶ Factorization: $\approx \frac{n^3}{3}$ flops
- ▶ Similar to LU, but only on the lower triangle. **LU** factorization:

$$\begin{array}{l} A(\,k\,+\,1:\,n\,,\,k\,) \;=\; A(\,k\,+\,1:\,n\,,\,k\,)\,/\,A(\,k\,,\,k\,) \\ A(\,k\,+\,1:\,n\,,\,k\,+\,1:\,n\,) \;=\; A(\,k\,+\,1:\,n\,,\,k\,+\,1:\,n\,) \;-\; \& \\ A(\,k\,+\,1:\,n\,,\,k\,) \;*\; A(\,k\,,\,k\,+\,1:\,n\,) \end{array}$$