

CONTENIS

분석 배경/목표

- 세계 축구 시장의 성장
- 스포츠 마케팅의 활성화
- 축구 구단 운영과 선수 영입

B 알고리즘 개발

- 회귀 성능 지표(RMSE)
- 축구 시장의 동향
- 산업의 잠재시장 파악

OP EDA

- 데이터 이해
- 데이터 전처리
- 데이터 EDA

4 프로세스 결과

- 활용 방안 / 기대 효과
- 개선 방향

01

분석배경/목표

- 세계 축구 시장의 성장
- 스포츠 마케팅의 활성화
- 축구 구단 운영과 선수 영입

세계축구시장의성장

'호황' 유럽 축구시장 규모 32조 돌파...잉글랜드 6조로 1위

송고시간 | 2017-07-12 14:52

2015-2016시즌 기준, 전년 대비 12.8%↑증가...5대 빅리그가 54% 스페인, 2017-2018시즌 독일 따라잡고 2위 올라설 듯

유럽 5대 국가 축구시장 규모 증가 추이.[딜로이트 보고서 캡처]

스포츠 마케팅의 활성화

(단위'파운드)

17억600만

2007~10

10억2400만

2004~07

프리미어리그 TV중계권료 증가 추이

1억7000만

1억9100만

1992~97

스포츠 마케팅의 활성화

축구 성적과 직결되는 구단 수입

'상금만 1066억+α' 첼시...이래서 챔스는 돈 방석

첼시, 맨시티 꺾으며 구단 통산 두 번째 우승 우승 상금 및 중계권료 배분 등 2000억 수익

리버풀, 토트넘 꺾고 통산 6번째 챔스 우승 우승상금 252억...대회 총수익만 약 1000억

UCL 우승 상금은 얼마? 본선 진출만 해도 215억

기하급수적으로 상승하는 선수 몸값

축구구단 운영과 선수영입

Total	1.816,3
Osasuna	15,6
Sporting de Gijón	21,3
SD Eibar	23,5
Las Palmas UD	24,6
Deportivo de la Coruña	24,7
Alavés	28,6
Leganés	30,2
Granada CF	31,9
Celta de Vigo	39,3
Málaga CF	43,1
Real Betis	44,6
RCD Espanyol	47,4
Real Sociedad	56,7
Athletic Club	61,4
Villarreal	76,9
Sevilla FC	123,8
Valencia CF	129,7
Atlético de Madrid	182,8
FC Barcelona	390,7
Real Madrid	419,3
	2016-2017

구단 수입이 좋은 선수들의 몸값을 따라가지 못하고 있다.

구단 운영을 위한 전략적인 영입정책이 필요

분석을 통한 선수 가격 예측 ML

02

EDA

- 데이터 이해
- 데이터 전처리
- 데이터 EDA

데이터소개

- 범주형 데이터

- 1. id
- 2. name
- 3. continent
- 4. contract_until
- 5. position
- 6. prefer_foot
- 7. reputation
- 8. stat_skill_moves

- 연속형 데이터

1. value

선수가치그래프

선수 가치 그래프

log 정규화를 이용

선수나이그래프

대륙별 선수 그래프

계약기간별선수가치

포지션 별 선수 가치

주발 별 선수 가치

명성별선수가치

개인 스탯 별 선수 가치

선수 스탯과 국가별 선수 가치

명성과 잠재능력 사이의 선수 가치

잠재 능력과 개인 스탯 사이의 선수 가치

선수스킬별가치

03

알고리즘개발

- 회귀 성능 지표(RMSE)
- 축구 시장의 동향
- 산업의 잠재시장 파악

RMSE 회귀모델성능지표

1 best=compare_models(sort='RMSE')

	Model	МАЕ	MSE	RMSE	R2	RMSLE	MAPE	II (Sec)
gbr	Gradient Boosting Regressor	2.372584e+05	6.188890e+11	7.588892e+05	0.9820	0.3105	0.2304	0.628
et	Extra Trees Regressor	1.788255e+05	8.348724e+11	8.641612e+05	0.9747	0.1100	0.0575	2.074
knn	K Neighbors Regressor	2.379928e+05	9.391368e+11	8.711445e+05	0.9749	0.1263	0.0884	0.082
rf	Random Forest Regressor	1.823307e+05	9.305258e+11	8.882605e+05	0.9728	0.1037	0.0577	2.003
lightgbm	Light Gradient Boosting Machine	1.880413e+05	1.221815e+12	1.006854e+06	0.9646	0.1518	0.0949	0.134
dt	Decision Tree Regressor	2.371025e+05	1.725184e+12	1.257910e+06	0.9480	0.1293	0.0626	0.044
ada	AdaBoost Regressor	1.740430e+06	4.582206e+12	2.129471e+06	0.8588	1.5708	5.1230	0.436
lasso	Lasso Regression	1.851095e+06	1.156727e+13	3.361485e+06	0.6608	1.3561	4.9596	0.202
ridge	Ridge Regression	1.854057e+06	1.156986e+13	3.361941e+06	0.6607	1.3607	4.9758	0.040
llar	Lasso Least Angle Regression	1.851109e+06	1.157079e+13	3.361991e+06	0.6607	1.3556	4.9595	0.626
br	Bayesian Ridge	1.853414e+06	1.157140e+13	3.362154e+06	0.6606	1.3631	4.9720	0.032
lr	Linear Regression	1.851543e+06	1.157738e+13	3.363002e+06	0.6604	1.3559	4.9598	0.728
omp	Orthogonal Matching Pursuit	1.880502e+06	1.256965e+13	3.514480e+06	0.6273	1.3457	4.9237	0.019
en	Elastic Net	2.113650e+06	1.494127e+13	3.816823e+06	0.5640	1.4750	6.4946	0.174
huber	Huber Regressor	1.706364e+06	1.898068e+13	4.303276e+06	0.4466	1.0339	2.1844	0.302
par	Passive Aggressive Regressor	2.008029e+06	2.935585e+13	5.367762e+06	0.1357	1.0277	1.5908	0.173
dummy	Dummy Regressor	3.081626e+06	3.375861e+13	5.767832e+06	0.0014	1.7502	5.9142	0.016

RMSE 란?

평균 제곱근 편차 또는 평균 제곱근 오차로서,

추정 값 또는 모델이 예측한 값과 실제 환경에서 관찰되는 값의 차이를 다룰 때 흔히 사용되는 척도 입니다.

하이퍼파라미터튜닝

- 1 #하이퍼파라미터 튜닝
- 2 tuned_gbr = tune_model(gbr, optimize = 'RMSE', n_iter = 3)
- 3 tuned_lightgbm = tune_model(lightgbm, optimize = 'RMSE', n_iter = 3)
- 4 tuned_knn = tune_model(knn, optimize = 'RMSE', n_iter = 3)

	ИАЕ	MSE	RMSE	R2	RMSLE	MAPE	1%
Fold							
0	244199.1544	7.605253e+11	8.720810e+05	0.9791	0.1321	0.0866	
1	224243.7640	1.324847e+12	1.151020e+06	0.9591	0.1127	0.0806	
2	217186.4962	4.477635e+11	6.691513e+05	0.9828	0.1194	0.0815	
3	223847.3562	5.533085e+11	7.438471e+05	0.9770	0.1246	0.0824	
4	180533.3617	1.778199e+11	4.216870e+05	0.9918	0.1283	0.0895	
5	214004.5260	4.506237e+11	6.712851e+05	0.9872	0.1288	0.0849	
6	252256.8436	9.433645e+11	9.712695e+05	0.9690	0.1202	0.0813	
7	234012.8628	5.695207e+11	7.546659e+05	0.9861	0.1180	0.0800	
8	316614.7881	4.724456e+12	2.173581e+06	0.9041	0.1260	0.0843	
9	214765.3587	5.232783e+11	7.233798e+05	0.9871	0.1116	0.0766	
Mean	232166.4512	1.047551e+12	9.151968e+05	0.9723	0.1222	0.0828	
Std	33672.4598	1.261345e+12	4.582200e+05	0.0246	0.0066	0.0035	

02 하이퍼 파라미터

사용자의 입력값, 혹은 설정 가능한 옵션입니다. 모든 데이터와 문제에 대해 가장 좋은 하이퍼 파라미터 값이 있으면 좋겠으나, 데이터에 따라 좋은 하이퍼 파라미터의 값은 다릅니다.

아사트 하습

1 # 앙상블 2 3 blender = blend_models(estimator_list=compare_models(n_select=3 4 sort='RMSE'))

	MAE	MSE	RMSE	R2	RMSLE	MAPE	1.
Fold							
0	190420.2136	4.433436e+11	6.658405e+05	0.9878	0.1848	0.1051	
- 1	174058.2397	6.008064e+11	7.751170e+05	0.9814	0.1374	0.0834	
2	189711.1296	3.121025e+11	5.586614e+05	0.9880	0.1798	0.1018	
3	201537.6036	8.338475e+11	9.131525e+05	0.9654	0.1608	0.1046	
4	150936.6570	1.398294e+11	3.739377e+05	0.9936	0.1748	0.1083	
5	173958.6480	3.409053e+11	5.838710e+05	0.9903	0.1270	0.0918	
6	214821.9587	6.938727e+11	8.329902e+05	0.9772	0.1778	0.1022	
7	184867.0927	5.325901e+11	7.297877e+05	0.9870	0.2220	0.0943	
8	244449.6231	2.335068e+12	1.528093e+06	0.9526	0.1549	0.0917	
9	165746.4269	3.228595e+11	5.682072e+05	0.9921	0.2406	0.1217	
Mean	189050.7593	6.555224e+11	7.529658e+05	0.9815	0.1760	0.1005	
Std	25213.5853	5.925195e+11	2.975986e+05	0.0125	0.0331	0.0102	

03____

앙상블 학습

앙상블 학습(Ensemble Learning)은 여러 개의 분류기를 생성하고, 그 예측을 결합함으로써 보다 정확한 예측을 도출하는 기법을 말합니다.

강력한 하나의 모델을 사용하는 대신 보다 약한 모델 여러개를 조합하여 더 정확한 예측에 도움을 주는 방식입니다.

XGBoost, LightGBM과 같은 앙상블 알고리즘이 머신러닝의 선도 알고리즘으로 인기를 모으고 있습니다.

앙상블 학습은 일반적으로 보팅(Votting), 배깅(Bagging), 부스팅(Boosting) 세 가지의 유형으로 나눌 수 있습니다.

Residuals for VotingRegressor Model

Prediction Error for VotingRegressor

Learning Curve for VotingRegressor

선수이적시장의동향

산업의 잠재시장 파악

04 프로세스결과

- 활용 방안 / 기대 효과
- 개선 방향

활용 방안 / 기대효과

71년 년 병등

노트북 이슈로 인해 좋은 모델들을 다양하게 앙상블 학습 하지 못하였습니다.

훨씬 많은 양의 데이터가 필요합니다.