PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-156706

(43)Date of publication of application: 06.06.2000

(51)Int.CI.

HO4L 12/56 HO4L 29/08

(21)Application number: 10-329494

(71)Applicant: NIPPON TELEGR & TELEPH CORP <NTT>

(22)Date of filing:

19.11.1998

(72)Inventor: OSADA TAKAHIKO

HOSODA YASUHIRO YAMASHITA HIROYUKI

(54) DATA TRANSMISSION RECEPTION METHOD, MEDIUM WITH DATA TRANSMISSION PROGRAM STORED THEREIN AND MEDIUM DATA RECEPTION PROGRAM STORED THEREIN

(57)Abstract:

PROBLEM TO BE SOLVED: To realize maximum transmission throughput at each occasion, depending on the quality of a channel during communication.

SOLUTION: When a file is transferred using plural connections which are decided based on the window size of a transmission control protocol(TCP), a transmission delay time and a channel transfer rate, the number of times for retransmission of data generated accompanying deterioration in the channel quality is counted for each connection (s22) and when the number of times for retransmission within a prescribed time is increased, the window size is reduced (s23). When the number of times for retransmission within a prescribed time is increased further, the use of the concerned connection is stopped if necessary (s24, s25), untransmitted data in the connection window are recovered and registered again to attain transfer by another connection (s26), and the number of times for retransmission within a fixed time decreases, the window size is extended (s29).

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 ✓ 特開2000-156706 (P2000-156706A)

(43)公開日 平成12年6月6日(2000.6.6)

(51) Int.Cl.⁷ H 0 4 L 12/56

29/08

識別記号

FΙ

テーマコード(参考)

H04L 11/20

102C 5K030

13/00

307Z 5K034

審査請求 未請求 請求項の数3 OL (全 7 頁)

(71) 出顧人 000004226 (21)出顧番号 特願平10-329494 日本電信電話株式会社 東京都千代田区大手町二丁目3番1号 (22)出願日 平成10年11月19日(1998.11.19) (72)発明者 長田 孝彦 東京都新宿区西新宿3丁目19番2号 日本 電信電話株式会社内 (72)発明者 細田 泰弘 東京都新宿区西新宿3丁目19番2号 日本 電信電話株式会社内 (74)代理人 100069981 弁理士 吉田 精孝

最終頁に続く

(54) 【発明の名称】 データ送受信方法並びにデータ送信プログラムを記憶した媒体及びデータ受信プログラムを記憶 した媒体

(57)【要約】

【課題】 通信中の回線品質に応じてその時々の最大の 伝送スループットを実現すること。

【解決手段】 TCPプロトコルのウィンドウサイズ、 伝送遅延時間及び回線速度に基づいて決定した複数のコネクションを用いたファイル転送の際、回線品質の低下に伴って発生するデータの再送回数をコネクション毎に 計数し(s22)、一定時間内の再送回数が増加した場合はウィンドウサイズを縮小し(s23)、さらに増加した時は必要に応じて当該コネクションの使用を停止し(s24, s25)、そのコネクションによる転送を可能とすべく再登録し(s26)、一定時間内の再送回数が減少した場合はウィンドウサイズを拡大する(s29)。

1

【特許請求の範囲】

【請求項1】 TCPプロトコルによりファイル転送を 行うデータ送受信方法において、

TCPプロトコルのウィンドウサイズ、伝送遅延時間及 び回線速度に基づいて使用するコネクションの数を決定 し、

ファイルをデータブロックに分割し、これを複数のコネクションを介して送受信するとともに、データ送受信中の誤り発生に基づくデータブロックの再送回数を複数のコネクション毎に計数し、

一定時間内の再送回数の増減に応じて当該コネクション のウィンドウサイズの縮小/拡大あるいは使用停止/使 用再開を動的に変更することを特徴とするデータ送受信 方法。

【請求項2】 TCPプロトコルによりファイル転送を 行うデータ送受信のためのデータ送信プログラムを記憶 した媒体において、

前記データ送信プログラムはコンピュータに読み取られた際、該コンピュータに、

上位アプリケーションからのTCPコネクション開設要 20 求に応じてデータ受信側との間に1本のコネクションを 設定し、

データ受信側が複数のコネクションによるファイル転送 をサポートしているか否かを確認し、

サポートしていれば伝送遅延時間を算出し、TCPプロトコルのウィンドウサイズ、伝送遅延時間及び回線速度に基づいて使用するコネクションの数を決定してデータ受信側との間に複数のコネクションを設定し、

ファイルをデータブロックに分割してシーケンス番号を 付与し、これを複数のコネクションを介して送受信する とともに、データ送受信中の誤り発生に基づくデータブ ロックの再送回数を複数のコネクション毎に計数し、

一定時間内の再送回数が同一または増加した場合は当該コネクションのウィンドウサイズを縮小しあるいは使用を停止し、再送回数が 0 または減少した場合は当該コネクションのウィンドウサイズを拡大する動作を実行させることを特徴とするデータ送信プログラムを記憶した媒体。

【請求項3】 TCPプロトコルによりファイル転送を 行うデータ送受信のためのデータ受信プログラムを記憶 40 した媒体において、

前記データ受信プログラムはコンピュータに読み取られ た際、該コンピュータに、

データ送信側から要求に応じて該データ送信側との間に 複数のコネクションを設定し、

複数のコネクションにより受信したデータブロックを該 データブロックに付与されたシーケンス番号順に上位ア プリケーションに送る動作を実行させることを特徴とす るデータ受信プログラムを記憶した媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、TCPプロトコルによるファイル転送、特にウィンドウサイズが制限されたファイル転送において、伝送遅延が大きいネットワークにおいても通信中の回線品質に動的に応じて効率的にファイル転送を行うデータ送受信方法並びにデータ送信プログラムを記憶した媒体及びデータ受信プログラムを記憶した媒体に関するものである。

[0002]

10 【従来の技術】通常、インターネット等のネットワークにおけるファイル転送には、TCP/IP(Transmission Control Protocol/Internet Protocol)が使用されている。ファイル転送の際に1本のTCPプロトコルの論理コネクション(以下、コネクションと呼ぶ。)を使用する。

【0003】データを送受信する場合、TCPプロトコルは、相手TCPとの間で1本のコネクションを確立した後、データの送受信を開始する。データの送受信確認の制御は、可変長のバイトサイズ指定のスライディングウィンドウを使用する。スライディングウィンドウとは、あるサイズを持ったウィンドウ内にあるデータブロック(セグメント)を受信側からの確認応答がなくても送信できるようにし、確認応答を受信する毎にウィンドウをその分スライドして、次の未送信ブロックを送信する方法である。ウィンドウサイズは、通常、最大64KB(バイト)である。

【0004】また、TCPプロトコルは、何らかの理由でセグメントがネットワーク上で失われた場合、エラーを回復し、信頼性のある通信を保証するため、一定時間、確認応答を待ち、タイムアウトするとそのセグメントを再送する。

【0005】TCPプロトコルを使用したファイル転送の性能は、TCPプロトコルの転送能力、特にTCPのウィンドウサイズの上限により制限されるところが多く、ネットワークがより高速になり、かつ世界的規模で拡大してきたために伝送遅延時間が大きくなりつつある現状では、ネットワークの帯域幅のうちの一部のスループットしか実現できないという問題がある。この場合のスループットの限界は、ウィンドウサイズ/往復遅延時間で表される。例えば、光ファイバケーブルネットワークにおける日本(東京)一米国(西海岸)の往復遅延時間は約100msであり、TCPの実行スループットは最大64KB*8/100ms=5.12Mbit/sとなる。

【0006】前記課題を解決する方式として、ファイルを転送する際にファイルを分割し、複数のTCPコネクションにより転送を行う(ファイルの分割数及びTCPコネクションの数を、TCPプロトコルのウィンドウサ 50 イズ、ネットワークの往復の伝送遅延時間及び回線速度

3

に基づいて決定する) 方式が提案されている(特開平8 -305643号)。

[0007]

【発明が解決しようとする課題】しかし、前記方式で は、通信開始時に設定したコネクション数そのものは一 定であるため、コネクション全体の伝送回線の品質(以 下、回線品質と呼ぶ。)が低下すると全てのコネクショ ンで再送が発生し、再送による伝送帯域の浪費が多くな るとともに転送スループットも低下してしまうという問 題があった。

【0008】また、ネットワークとして汎用的な公衆ネ ットワークを使用した場合、ファイルの送信側及び受信 側に複数のコネクションが設定されると、各コネクショ ンが別個のネットワークを経由して設定される可能性が ある。この場合、特定のコネクション、例えば衛星通信 回線における回線品質が降雨等のために一時的に悪化す ると、当該コネクションで転送されるデータブロックの 到着が遅れてしまい、結果的に全体の転送スループット が大幅に低下してしまうという問題があった。

【0009】本発明の目的は、複数のコネクションを使 20 用したファイル転送の際、通信中の回線品質に動的に応 じてその時々の最大のスループットでの伝送を実現する データ送受信方法並びにデータ送信プログラムを記憶し た媒体及びデータ受信プログラムを記憶した媒体を提供 することにある。

[0010]

【課題を解決するための手段】前記課題を解決するた め、本発明では、データ送受信中の誤り発生に基づくデ ータブロックの再送回数を複数のコネクション毎に監視 し、一定時間内の再送回数の増減に応じて当該コネクシ ョンのウィンドウサイズの縮小/拡大あるいは使用停止 /使用再開をダイナミックに変更することを特徴とする ものである。

【0011】TCPプロトコルは、使用しているコネク ション上で何らかの理由でデータブロックが失われた場 合、エラーを回復し、信頼性のある通信を保証するた め、ある時間、確認応答を待ち、一定時間内に確認応答 が得られなかった場合、確認未応答のデータブロックを 再送する。

【0012】一定時間内に発生するデータブロックの再 送回数をコネクション毎に監視することにより、当該コ ネクションの回線品質を常時認識しておき、回線品質の 変化(低下/回復)によりウィンドウサイズを縮小/拡 大するとともに、回線品質がさらに低下したような場合 は当該コネクションを一時的に使用停止し、その後、回 線品質が回復した場合に当該コネクションの使用を再開 することにより、複数のコネクションを使用したファイ ル転送した場合においても、回線品質の変化に動的に応 じて効率的なデータ転送を行うことができるようにな る。

[0013]

【発明の実施の形態】以下、図面を参照して本発明によ る複数のコネクションを使用したTCPプロトコルによ るファイル転送の実施の形態を説明する。

【0014】図1は本発明の実施の形態の一例を示すシ ステム構成図であり、図中、10はファイル転送プロト コル (FTP) 等の上位アプリケーション、20は本発 明を実現する処理プロック (Multiple Con nection Procedure:以下、MCPシ 10 ステムと呼ぶ。)、30はインターネットプロトコル (IP) 等のTCP以下の下位プロトコル処理モジュー

ル、40は通信回線である。

【0015】MCPシステム20において、21は転送 に使用するコネクション数を制御するコネクション数制 御モジュール、22は上位アプリケーションから送信さ れる一連のデータにMCP固有のシーケンス番号(通 番)を付加し、送信ウィンドウに空きがあるコネクショ ンへ振り分ける各コネクションへのデータ振分けモジュ ール、23はコネクションから受信したデータをMCP の通番に従って順番に上位アプリケーションへ通知する 各コネクションからのデータ組立てモジュール、24は 個々のコネクション対応に一定時間内の再送回数を計数 する再送回数計数モジュール、25はファイル転送を行 う装置間の遅延時間を計数する遅延時間計数モジュー ル、26はTCP処理モジュールである。

【0016】図2はデータ送信処理アルゴリズムを示す もので、以下、図1と図2を用いて複数のコネクション を設定する手順及びそのコネクションを使用したデータ の送信手順を詳細に説明する。

【0017】今、上位アプリケーション(AP)10か らファイル転送のためのTCPコネクションの開設を要 求される(s1)と、TCP処理モジュール26は通信 相手のTCPとの間で最初に1本のコネクション(以 下、これを基本コネクションと呼ぶ。) の確立を行う が、この時、遅延時間計数モジュール25内の時間監視 タイマを起動する (s2) とともに、MCP使用の可否 をネゴシエーションする情報をTCPヘッダのオプショ ン域に付加したTCPパケットを作成し、下位プロトコ ルモジュール30に送信を要求する(s3)。下位プロ 40 トコルモジュール30は通信回線40ヘデータを送信す る。以降、下位プロトコルモジュール30及び通信回線 40の説明は省略する。

【0018】TCP処理モジュール26は相手TCPか らのTCP開設確認応答パケットを受信すると、相手T CPのMCP使用の可否をチェックし(s4)、MCP 使用不可であれば、以降、1本のコネクションを使用し て通常のTCPによるデータ転送を行い(s5)、ファ イルの転送が終了するとコネクションの閉塞処理を行い (s 6)、上位アプリケーション10へ転送完了を通知

50 する。

5

【0019】一方、MCP使用可能であれば、遅延時間 処理モジュール25を起動し、基本コネクション開設の TCPパケット送信要求からTCP開設応答パケット受 信までの時間(遅延時間)を時間監視タイマから算出し (s7)、コネクション数制御モジュール21へ通知す る。

【0020】コネクション数制御モジュール21は、前 記遅延時間と予め設定されている回線速度及びTCPウィンドウサイズの最大値(64KB)から、新たに設定 可能なコネクション(以降、拡張コネクションと呼 ぶ。)を決定する(s8)。

【0021】拡張コネクション数を決定するための計算式は.

 $N = [D/{(8 \times W)/B + TCP処理時間}]$ ここで、

[]:ガウス記号([]内を越えない最大の整数を 表わす)

N:設定可能な拡張コネクション数

(8×W) / B:1本のコネクションでの最大ウィンド ウサイズ転送時間 (sec)

W: ウィンドウサイズ (64Kbytes)

D:往復の伝送遅延時間 (sec)

B:回線速度(bit/s)

8:バイトからビットへの変換係数

TCP処理時間:確認応答パケット受領後、次のデータパケット送信起動までの時間(sec)である。

【0022】拡張コネクション数を決定すると、相手TCPに対して拡張コネクションの開設要求のパケットを各拡張コネクション毎に行う(s9)。

【0023】一方、基本コネクションの開設確認応答を 受領したTCP処理モジュール26は、遅延時間算出の 起動と並行して、基本コネクションへのデータパケット の送信を開始する。

【0024】データの送信は以下の手順により行う。

【0025】基本コネクションが確立すると、上位アプリケーション10は、ファイルをデータブロック(以下、データと呼ぶ。)に分割して、各コネクションへのデータ振分けモジュール22へ転送する。

【0026】データ振分けモジュール22は、転送されてくるデータの順番にMCP固有の通番を付与し(s10)て、それをモジュール内にキューイングするとともに、送信ウィンドウに空き領域がある基本コネクションあるいは拡張コネクションへ送信を要求する(s11)。

【0027】以降、送信データが無くなるまで、前記送信動作を継続する。

【0028】ファイルの転送が終了すると、基本コネクション及び拡張コネクションの閉塞処理を行い(s12)、上位アプリケーション10へ転送終了を通知する。

【0029】図3は前述した基本コネクション及び拡張コネクションの開設とデータ送信の時間関係を、データパケットと確認応答パケットとのシーケンスにより示したものであり、D1は基本コネクション開設パケット、D3は基本コネクションを使用したデータパケット、D4は複数の拡張コネクションの開設パケット、D6は拡張コネクション開設の確認応答パケット、D7は基本及び拡張コネクションを使用したデータパケット、D8は基本及び拡張コネクションの確認応答パケット、D8は基本及び拡張コネクションの確認応答パケットである。

6

【0030】図4はウィンドウサイズ及びコネクション数制御アルゴリズムを示すもので、以下、図1と図4を用いて本発明の主要点である回線品質が変化した場合のウィンドウサイズ及び使用するコネクション数の制御(変更)手順を詳細に説明する。

【0031】受信側のTCP処理モジュール26は、受信したデータパケットの内容に誤りを検出すると、確認 応答パケットにより、送信側のTCP処理モジュール2 6 へ当該データパケットの再送を要求する。

【0032】送信側のTCP処理モジュール26は、再 送要求の確認応答パケットを受信する(s21)と、再 送回数計数モジュール24に通知する。再送回数計数モ ジュール24はコネクション対応に一定の監視時間内の 再送回数を計数し(s 2 2)、前回の監視時間内の再送 回数と同一または増加していれば、当該コネクションの 送信ウィンドウサイズを縮小し(s23)、その結果に より当該コネクションの使用可否を判断(s24)、例 えばウィンドウサイズが一定数(MCP適用環境に応じ 30 て設定する。例えば0等)以下になり、当該コネクショ ンが使用不可となれば、コネクション数制御モジュール 21に対して当該コネクションの使用停止を通知する (s 2 5)。次に、当該コネクションの送信ウィンドウ 内の未送信データを回収して、データ振分けモジュール 22内の送信キューに再登録する(s 2 6) とともに、 当該コネクションの使用再開待ちタイマを起動し(s2 7)、その後、送信ウィンドウが空いている他のコネク ションへのデータ送信を継続する(s28)。

【0033】一方、送信ウィンドウサイズを縮小しても 40 当該コネクションが使用可能であれば、そのまま送信ウィンドウが空いているコネクションへのデータ送信を継続し(s28)、また、再送回数を計数した結果、前回の監視時間内の再送回数より減少していれば、当該コネクションの送信ウィンドウサイズを拡大して(s29)、送信ウィンドウが空いているコネクションへのデータ送信を継続する(s28)。

【0034】なお、コネクション数制御モジュール21 は一定時間毎に各コネクションの再送回数を監視してお り、再送回数が0または減少していれば、ウィンドウサ 50 イズの拡大処理を行う。また、使用停止したコネクショ

ンについては、使用再開待ちタイマのタイムアウト(s 30)を待って、ウィンドウサイズを最小に設定して (s 3 1) 使用を再開する。

【0035】図5は前述した回線品質低下時のウィンド ウサイズの遷移とコネクションの使用停止を説明したも のである。ここでは3本のコネクション α 、 β 及び γ が あり、そのうちコネクションβの回線品質が低下(再送 回数が増加) したため、第1段階としてウィンドウサイ ズを回線品質良好時の64KBから16KBに縮小した たので(例えば再度、ウィンドウサイズを縮小した結 果、ウィンドウサイズが0になったため)、第2段階と してコネクションβの使用を停止した例を示している。 【0036】なお、コネクション使用停止までの遷移の

段階数は任意であり、前述した2段階に制限されるもの ではない。

【0037】図6はデータ受信処理アルゴリズムを示す もので、以下、図1とともにデータ受信処理を詳細に説 明する。

【0038】まず、TCP処理モジュール26は送信側 20 からの基本コネクション開設要求パケットを受信する (s 4 1) と、基本コネクション開設の確認応答パケッ トを送信して(s42)、基本コネクションへのデータ パケット受信待ちになる。

【0039】次に、拡張コネクションの確立処理(拡張 コネクションの開設要求受信と確認応答の送信)を行い (s 4 3)、拡張コネクションへのデータパケット受信 待ちになる。

【0040】TCP処理モジュール26はデータパケッ 応じ再送要求)を送信する(s45)とともに、データ 組立てモジュール23ヘデータを通知する(s46)。

【0041】データ組立てモジュール23は、データパ ケット毎に付加されているMCPの通番をチェックし、 番号の昇順に、データを上位アプリケーション10へ転 送する(s47)。

【0042】データ組立てモジュール23はMCPの通 番が連続しない(途中の番号を有するデータパケットを 未受信)場合は、該当するMCPの通番を有するデータ パケットを受信するまで、その番号以降の番号を有する データを保持する。データの転送が終了するとコネクシ ョンの閉塞処理を行う(s 48)。

8

[0043]

【発明の効果】以上説明したように、本発明によれば、 が、回線品質がさらに低下(再送回数が減少しない)し 10 通信中の回線の品質に応じて動的にTCPのウィンドウ サイズ及びコネクション数を変更するので、全てのコネ クションの回線品質が低下した場合、あるいは特定のコ ネクション、例えば衛星通信回線における回線品質が降 雨等のために一時的に悪化した場合においても、常にそ の時点における最大の伝送スループットを実現すること ができ、効率的なファイル転送を行うことができる。

【図面の簡単な説明】

【図1】本発明の実施の形態の一例を示すシステム構成

- 【図2】データ送信処理アルゴリズムを示す流れ図
- 【図3】データパケットと確認応答パケットとの関係を 示すシーケンス図

【図4】ウィンドウサイズ及びコネクション数制御アル ゴリズムを示す流れ図

【図5】回線品質低下時の動作を示す説明図

【図6】データ受信処理アルゴリズムを示す流れ図 【符号の説明】

10:上位アプリケーション、20:MCPシステム、 21:コネクション数制御モジュール、22:各コネク トを受信する(s 4 4)と、確認応答パケット(必要に 30 ションへのデータ振分けモジュール、2 3:各コネクシ ョンからのデータ組立てモジュール、24:再送回数計 数モジュール、25:遅延時間計数モジュール、26: TCP処理モジュール、30:下位プロトコル処理モジ ュール、40:通信回線。

【図5】

	回線品質良好	コネクション B の 回線品質低下	コネクション&の 回線品質さらに 低下
コネク ション	ウインドウサイズ例	ウインドウサイズ例	ウインドウサイズ例
α	64KB	64KB	64KB
β	64KB	16KB	O K B -> コネクション 使用停止
7	64KB	64KB	64KB

フロントページの続き

(72)発明者 山下 博之

東京都新宿区西新宿3丁目19番2号 日本電信電話株式会社内

Fターム(参考) 5K030 GA03 GA08 HA08 LA01 LB02

LC03

5K034 AA05 EE10 HH01 HH02 HH65 JJ24 MM03 MM16 QQ04