Reconstructing Training Data from Model Gradient, Provably

Qi Lei, Courant Math and CDS

With Zihan Wang, Jason Lee

Privacy attacks: infer information about user data/protected model

- Data curation stage
 - Data linkage attack (reidentification)
- Model training phase
 - Data reconstruction attack
- Inference/prediction time
 - Membership inference attack (tracing attack)
 - Data reconstruction attack

Resemblance to inverse problems

Different types of privacy attacks

- Membership Inference Attacks (differential privacy) [Shokri et al 2017]
- Reconstruction Attacks (our target) [Gong&Niu,2016]
- Property Inference Attacks [Ateniese et al 2015]
- Model Extraction Attacks (knowledge distillation) [Papernot et al 2018]

Different types of privacy attacks

- Membership Inference Attacks (differential privacy) [Shokri et al 2017]
- Reconstruction Attacks (our target)

[Gong&Niu,2016]

- Property Inference Attacks [Ateniese et al 2015]
- Model Extraction Attacks (knowledge distillation) [Papernot et al 2018]

Federated learning

[Konečný et al. 2016, McMahan et al. 2017]

Privacy leakage in distributed learning - Data and model not co-located

Privacy leakage in distributed learning

Does local update reveal the training data?

Federated learning

Federated learning, wherein training data never leaves the user's device (only gradients or model parameters), is an effective way to protect the privacy of individual training points.

True
False
I don't know/show me
956 votes · Final results
11:32 PM · Dec 11, 2022

More formal statement

- Local batch of data: $S = \{(x_1, y_1), (x_2, y_2), \dots, (x_B, y_B)\}$
- Prediction function: $x \to f(x; \Theta)$
- Local update: G : = $\frac{1}{B}\nabla_{\Theta}\sum_{i=1}^{B}\ell(f(x_i,\Theta),y_i)$

Fundamental questions

• Is the model gradient G sufficient to identify the training samples?

• If so, is there efficient algorithm to recover the samples?

Prior work

- Attacking methods
 - Learn to generate the training samples from a local user
 - Match the gradient: $\min_{S=\{(x_i,y_i)\}} \left| \left| G \sum_{i=1}^B \nabla \ell(f(x_i;\Theta),y_i) \right| \right|^2$
 - Model inversion at inference time

- Defending methods
 - Quantizing the gradient
 - Add noise

Some folklore from empirical findings

What parameters to query at?

- Moderately trained model
 - Random network hasn't memorized the data,
 - Well-trained model makes gradient vanish

Wrong impressions!

Is gradient alone enough to identify the images?

- Prior work believed not.
 - Introduce prior information of the training data (model by generative models)

Setting

Warm-up: two-layer neural network

$$f(x; \{W, a\}) = \sum_{j=1}^{n} a_j \sigma(w_j^{\mathsf{T}} x) = a^{\mathsf{T}} \sigma(W^{\mathsf{T}} x)$$

• Choose proper w_i , a_i to query the gradient at

$$\nabla_{a_j} L = \sum_{i=1}^B l_i' \sigma(w_j^{\mathsf{T}} x_i)$$

Caveat on linear and quadratic activations:

• Linear setting:

•
$$\nabla_a L = W(\sum_{i=1}^B l_i' x_i); \nabla_W L = a(\sum_{i=1}^B l_i' x_i)^{\mathsf{T}}$$

Can only identify a linear combination of X

Caveat on linear and quadratic activations:

• Linear setting:

•
$$\nabla_a L = W(\sum_{i=1}^B l_i' x_i); \nabla_W L = a(\sum_{i=1}^B l_i' x_i)^{\mathsf{T}}$$

Can only identify a linear combination of X

- Quadratic setting:
- $\nabla_{a_j} L = w_j^{\mathsf{T}} \bar{\Sigma} w_j$; $\nabla_{w_j} L = 2 \bar{\Sigma} w_j$, here $\bar{\Sigma} = \sum_{i=1}^B l_i' x_i x_i^{\mathsf{T}}$
- Can only identify the span of X

Our algorithm: using Stein's lemma

- Stein's lemma: $E_{w \sim N(\mathbb{O},I)} [g(a^{\mathsf{T}}w)H_p(w)] = E[g^{(p)}a^{\bigotimes p}].$
- Hermite function: $H_2(w) = ww^{T} I$, $H_3(w) = w^{\otimes 3} w \otimes I$.

•
$$\widehat{T_p} := \frac{1}{m} \sum_{j=1}^m g(w_j) H_p(w_j) \approx E_{w \sim N(\mathbb{O}, I)} [g(w) H_p(w)]$$

$$\equiv \sum_{j=1}^m E \left[\sigma^{(p)}(w^{\mathsf{T}} x_i) x_i^{\otimes p} \right] =: T_p$$

• $g(w_j) := \nabla_{a_j} L = \sum_{i=1}^B l_i' \sigma(w_j^{\mathsf{T}} x_i)$ is our observation from the model gradient

Tensor decomposition

- Now we can estimate $T_p := \sum_{i=1}^B E\left[\sigma^{(p)}(w^\top x_i)x_i^{\otimes p}\right]$
- Uniquely identify $\{x_1, x_2, \dots, x_B\}$ through tensor decomposition when data is linearly independent for p>=3. [Kuleshov et al. 2015]
- Our strategy: choose $a_j = \frac{1}{m}$, $w_j \sim N(0, I)$, estimate T by $\widehat{T_3} \coloneqq \frac{1}{m} \sum_{j=1}^m g(w_j) H_3(w_j)$, $g(w_j) \coloneqq \nabla_{a_j} L$

Improving the dimension dependence

- First estimate the span of $\{x_1, x_2, \cdots, x_B\}$ by decomposing $T_2 = VV^\top$. $V \in \mathbb{R}^{d \times B}$.
- Find $T_3(V,V,V) \in R^{B \times B \times B}$ and conduct tensor decomposition $\{u_1,u_2,\cdots,u_B\}$.
- Project back to the original space $\widehat{x_i} = Vu_i$.
- Can also use the estimated x as initialization and do gradient matching.

-relevant strategy appeared in [Zhong et al 2017] for optimizing over 2-layer neural network (dual problem)

Theoretical analysis

- Applies when $E\left[\sigma^{(3)}(w)\right]$ or $E\left[\sigma^{(4)}(w)\right] \neq 0$. Applies to sigmoid, tanh, ReLU, leaky ReLU.
- Reconstruction error $\leq \tilde{O}(\sqrt{d/m})$.

Extension to deeper neural networks

- Previous findings: if last two layers are fully connected, can recover the features from the (l-2)-th layer
- Other structured data modalities: recover the embeddings first

Discussions

- Identifiability
 - $E[\sigma^{(3)}(w)]$ or $E[\sigma^{(4)}(w)] \neq 0$ (work for most activation functions)
 - # of hidden nodes m scales at least linearly with d
 - Deeper neural network does not help or hurt

- Distinction to linear case or convex optimization:
 - Linear and neural networks are fundamentally different on whether the gradient leaks data

- Inspiration on defending algorithms:
 - Adding noise does not help

Thank you