Probability Theory Final Exam Bohao Tang

I: Denote $\ell_{xn}(t)$ be the characteristic function of χ_n . Then recall the tot Continuity theorem, we have that $\chi_n \Rightarrow \chi_\infty \Leftrightarrow \ell_{\chi_n(t)} \to \ell_{\chi_\infty}(t)$ for all t, given that $\ell_{\chi_\infty}(t)$ is a characteristic function.

Proof:

Then we have
$$(2n+2n)(t) = (2n+2n)(t) = (2n+2n)(t) = (2n+2n)(t) = (2n+2n)(t)$$

and $(2n+2n)(t) = (2n+2n)(2n+2n)(t)$

Since $(2n+2n)(2n+2n)(t) = (2n+2n)(2n+2n)(t)$

Ht:
$$\lim_{n} \mathcal{L}_{xn}(t) = \mathcal{L}_{x\infty}(t)$$
 so by the continuity of $\lim_{n} \mathcal{L}_{xn}(t) = \mathcal{L}_{x\infty}(t)$ multiplication in \mathcal{L} , we have

$$\frac{\forall t}{n} \left(\lim_{n \to \infty} V_{xn}(t) \right) = \lim_{n \to \infty} V_{xn}(t) \left(V_{xn}(t) \right) = \left(V_{x\infty}(t) \right) \left(V_{x\infty}(t) \right) = \left(V_{x$$

SC by Continuity theorem

$$X_n + Y_n \Rightarrow X_\infty + Y_\infty$$

20 If You = e a.s.

Then then distribution function of $\chi_{\infty} + \chi_{\infty}$ is $F_{\chi_{\infty} + \chi_{\infty}}$ to =

 $P(x_{\infty}+Y_{\infty} \leq t) = P(x_{\infty} \leq t-c) = F_{x_{\infty}}(t-c)$ there of

So the continuous point of Fxxx is just a shift from Fxx

Then & t be continuous point of Fxx+rx , t-G is the continuus point of Fxx

We have $P(X_n + Y_n \le t) \le P(X_n \le t - C + \varepsilon) + P(|Y_n - C| \ge \varepsilon)$ $\forall \varepsilon = 0$

Since there are at most countable discontinuous point of Fxx,

we can find a sequence of $E_R \downarrow 0$ so that $t-c+E_R$ are all continuous point for $F_{X\infty}$

Then $\lim_{n} p(x_n+x_n \leq t) \leq \lim_{n} p(x_n \leq t-c+\varepsilon_k) + \lim_{n} p(x_n-c) \geq \varepsilon_k$ $\leq p(x_\infty \leq t-c+\varepsilon_k) + \lim_{n} p(x_n \leq c-\varepsilon_k)$

+ lim [1- P(Yn sc+Ek+1)]

Since $f_n \ni C$ and $f_k > 0$, $C - f_k$, $C + f_{k+1}$ will be continuous points for $F_c(t)$, the we have:

im P(Xn+Yn≤t) ≤ p(X∞≤t-C+εκ)+0 ∀κ, since

Since Ex lo and Fxx continuous at t-c., we have

 $\overline{\lim} \ P(x_n + Y_n \le t) \le P(x_\infty \le t - C) = F_{x_\infty + Y_\infty}(t)$

On the other side:

 $P(X_{n}+Y_{n} \leq t) \geq P[|Y_{n}-c| \leq \epsilon; x_{n}+Y_{n} \leq t]$ $\geq P[|Y_{n}-c| \leq \epsilon; x_{n} \leq t-c-\epsilon]$ $\geq P[|X_{n} \leq t-c-\epsilon] - P[|Y_{n}-c| \geq \epsilon]$

For the same reason we chose $E_{\mathbf{k}}$ to $E_{\mathbf{k}}$ 20, t-C- $E_{\mathbf{k}}$ be $F_{\mathbf{x}_{\infty}}$ continuous point. Then we have

 $\lim_{N \to \infty} P(X_n + Y_n \le t) > P(X_\infty \le t - C - E_R) + 0 \quad \forall R$ Since $E_R \downarrow 0$ and t - C be continous to point for F_{X_∞} , we have $\lim_{N \to \infty} P(X_n + Y_n \le t) > P(X_\infty \le t - C) = F_{X_\infty + Y_\infty}(t)$

Therefore $\lim_{n} P(x_n + y_n \le t) = F_{x_\infty + y_\infty}(t)$ It be continuous pointed $F_{x_\infty + y_\infty}(t)$ $\Rightarrow x_n + y_n \Rightarrow x_\infty + y_\infty$

So if $Z_n \rightarrow X$ and $Z_n - X_n \rightarrow 0$, then $X_n = 2 Z_n + X_n - Z_n \rightarrow X + 0 = X$. and if $Z_n - X_n \rightarrow 0$, $X_n \rightarrow X$, then $Z_n = Z_n - X_n + X_n \rightarrow X + 0 = X$.

(Here we use that if $x_n \ni 0$ then $-x_n \ni 0$, it's obvious since in this question we actually proved that $x_n \ni c \rightleftharpoons P(|x_n-c| \ni \varepsilon) \ni 0 \quad \forall \varepsilon > 0$ that is $x_n \ni c \rightleftharpoons x_n \rightleftharpoons = x_n =$

Then notice that $p(|X_n| > \varepsilon) = p(|-X_n| > \varepsilon)$ we got the we need)

2: $\forall n$ is tight so that $\forall \varepsilon > 0$ $\exists M_{\varepsilon} < +\infty$ $P(|\forall n| > M_{\varepsilon}) < \varepsilon$ $\forall n$ In question | part 2 we commented that $\forall n \Rightarrow c \Leftrightarrow \forall n \Rightarrow c$ for constant cSo here we need to prove $\forall \varepsilon > 0$, $P(|\forall n \forall n| > \varepsilon) \to 0$

Proof: $\forall \varepsilon > 0$, $\forall \varepsilon' > 0$ $P(|X_n Y_n| > \varepsilon) \leq P(|X_n| > \frac{\varepsilon}{M_{\varepsilon'}}) + P(|Y_n| > M_{\varepsilon'})$

⇒ lim β(|xn Yn|>ε) < 0 + €'. ∀ ε'>0.

> [im p(|xn in|>E) ≤ 0 → p(|xn in|>E) → 0 > |xn in| = 0 → xn in → 0

3: $(\varphi_{z}(t)) = E e^{it(x-y)} = E e^{itx} E e^{itx} = (\varphi_{x}(t)) \cdot \overline{(\varphi_{y}(t))}$ $= |\varphi_{x}(t)|^{2} \text{ is non-negative and real-valued.}$

Denote U be Uniform [4, 1] random variable, then

 $(u(t) = \int_{-1}^{1} \frac{1}{z} e^{itu} du = \frac{sint}{t} \quad \text{which with negative values}$

So Q U won't be X-Y of it.d X, Y.