Outliers and Influential Observations

Adam J Sullivan, PhD 02/12/2018

Leverage and Outliers

- · We will now move onto leverage points and outliers.
- Leverage point: is a value of the predictor that is far from the average of the predictor variables.
- Outlier points: is a values of the outcome that is far from the average of the outcome.

Leverage and Outliers

- These two things together help us determine whether certain points have a lot of influence on our regression model.
- For example in Anscombe model 3 it appears that there is one point that not only is an outlier but may be a leverage point as well.
- · Instead of trying to parse both of these concepts out we will focus on a plot that helps us consider influential points as a whole.

Cook's D

* Cook's distance attempts to tell us how much $\hat{\beta}$ changes due to the inclusion of the i^{th} observation.

$$D_i = rac{\sum_{j=1}^n ig(\hat{y}_j - \hat{y}_{j(i)} ig)^2}{(p+1)\hat{\sigma}^2}$$

DFFITS

- This quantity measures how much the regression function changes at the i-th case / observation when the i-th case / observation is deleted.
- · For small/medium datasets: value of 1 or greater is "suspicious" (RABE). For large dataset: value of $2\sqrt{(p+1)/n}$.

$$DFFITS_i = rac{\hat{Y_i} - \hat{Y_{i(i)}}}{\hat{\sigma}_{(i)} \sqrt{h_{ii}}}$$

What is h_{ii} ?

• In regression we have something we call the hat matrix, for a matrix X:

$$H = X(X^T X)^{-1} X^T$$

· We actually solve regression by performing this operation:

$$\hat{y} = Hy$$

What is h_{ii} ?

· This ends up meaning that we have:

$$\hat{y}_i = h_{i1}y_1 + h_{i2}y_2 + \cdots + h_{ii}y_i + \cdots + h_{in}y_n$$

DFBETAS

• This quantity measures how much the coefficients change when the i-th case is deleted.

$$DFBETAS_{j(i)} = rac{{{\hat eta }_j - {{\hat eta }_{j(i)}}}}{{\sqrt {{\hat \sigma }_{(i)}^2 ({X^T}{X})_{jj}^{ - 1}}}}$$

· For small/medium datasets: absolute value of 1 or greater is "suspicious". For large dataset: absolute value of $2/\sqrt{n}$.

Simulating Data

```
set.seed(12345)
X = runif(150, .5, 3.5)
beta0 = 1.0
beta1 = 1.5
sigma = 0.7
Y = beta0 + beta1*X + sigma*rnorm(150) # The regular process
# Contaminated data: Four cases
X.suspect1 = 1.5; Y.suspect1 = 3.3
X.suspect2 = 1.5; Y.suspect2 = 9.7
X.suspect3 = 9.0; Y.suspect3 = 14.5
X.suspect4 = 9.3; Y.suspect4 = 0.6
Y.all1 = c(Y, Y.suspect1); X.all1 = c(X, X.suspect1)
Y.all2 = c(Y, Y.suspect2); X.all2 = c(X, X.suspect2)
Y.all3 = c(Y, Y.suspect3); X.all3 = c(X, X.suspect3)
Y.all4 = c(Y, Y.suspect4); X.all4 = c(X, X.suspect4)
```

Plots of Data

Run the 4 Regressions

```
out1 <- lm(data=data, Y.all1~X.all1 )
out2 <- lm(data=data, Y.all2~X.all2 )
out3 <- lm(data=data, Y.all3~X.all3 )
out4 <- lm(data=data, Y.all4~X.all4 )</pre>
```

Outliers and Influential Points Plots

library(olsrr)
ols_cooksd_barplot(out1)
ols_dfbetas_panel(out1)
ols_dffits_plot(out1)

Outliers and Influential Points Plots: Cook's D

library(olsrr)
ols_cooksd_barplot(out1)

Outliers and Influential Points Plots: DFBETAS

library(olsrr)
ols_dfbetas_panel(out1)

Outliers and Influential Points Plots: DFFITS

library(olsrr)
ols_dffits_plot(out1)

Outliers and Influential Points Plots

library(olsrr)
ols_cooksd_barplot(out4)
ols_dfbetas_panel(out4)
ols_dffits_plot(out4)

Outliers and Influential Points Plots: Cook's D

library(olsrr)
ols_cooksd_barplot(out4)

17/31

Outliers and Influential Points Plots: DFBETAS

library(olsrr)
ols_dfbetas_panel(out4)

18/31

f

Outliers and Influential Points Plots: DFFITS

library(olsrr)
ols_dffits_plot(out4)

What can we do with this point?

· We can decide to remove the point and re-run the regression.

```
library(broom)
out4a <- lm(data=data[-151,], Y.all4~X.all4 )

tidy4a <- tidy(out4a, conf.int = T)
tidy4 <- tidy(out4, conf.int = T)
knitr::kable(bind_rows(tidy4, tidy4a)[-c(3,4)])

glance4a <- glance(out4a)
glance4 <- glance(out4)
knitr::kable(bind_rows(glance4, glance4a))</pre>
```

What can we do with this point?

term	estimate	p.value	conf.low	conf.high
(Intercept)	2.3977868	0	1.9682861	2.827287
X.all4	0.8313212	0	0.6518475	1.010795
(Intercept)	1.2495210	0	0.9491648	1.549877
X.all4	1.4092337	0	1.2773737	1.541094

What can we do with this point?

r.squared	adj.r.squared	sigma	statistic	p.value	df	logLik	AIC	BIC	deviance	df.resi
0.3598977	0.3556017	1.1853180	83.7753	0	2	-238.9247	483.8494	492.9013	209.34182	
0.7508560	0.7491726	0.7272015	446.0339	0	2	-164.0513	334.1026	343.1345	78.26566	

Marginal Model Plots

- · We will consider the next level of plots called Marginal Model Plots.
- · The aim of these plots is to show how well out model fits the data.

```
library(car)
mmps(out4)
```

Marginal Model Plots

What Can we See?

- From the figure we can see that the blue line represents a loess(smoothing) line for the data and the dashed line represents the model which R fitted.
- · We can see that our data is very skewed by the outlier
- · Also we can see that the loess line is more curved than our data model.

What happens when we Delete points?

· When we remove the point the difference is drastic

mmps(out4a)

What happens when we Delete Points??

Outlier Treatment

- · Once the outliers are identified and you have decided to make amends as per the nature of the problem, you may consider one of the following approaches.
 - 1. Imputation
 - 2. Capping
 - 3. Prediction

Imputation

We can impute the value by replacing it with:

- · mean
- median
- · mode
- Other Regression techniques

We will consider this further in missing Data.

Capping

- For missing values that lie outside the 1.5*IQR limits, we could cap it by replacing those observations outside the lower limit with the value of 5th %ile and those that lie above the upper limit, with the value of 95th %ile.
- Below is a sample code that achieves this.

```
x <- dataframe$variable_of)interest
qnt <- quantile(x, probs=c(.25, .75), na.rm = T)
caps <- quantile(x, probs=c(.05, .95), na.rm = T)
H <- 1.5 * IQR(x, na.rm = T)
x[x < (qnt[1] - H)] <- caps[1]
x[x > (qnt[2] + H)] <- caps[2]</pre>
```

Prediction

- In yet another approach, the outliers can be replaced with missing values (NA) and then can be predicted by considering them as a response variable.
- · We will discuss this when considering missing data.