1. Методом наименьших квадратов найти апроксимирующий полином первой и второй степени:

X	F(x)	
3.0	4.0	
3.2	2.0	
3.4	6.0	
3.6	6.0	
3.8	3.0	
4.0	5.0	

Peшение: Для полинома первой степени ответ будем искать в виде $\varphi(x)=ax+b.$ В этом случае $\frac{\partial \varphi}{\partial a}=x$ и $\frac{\partial \varphi}{\partial b}=1.$ Получаем такую систему:

$$\begin{cases} \sum_{i=0}^{5} (ax_i + b - y_i)x_i = 0\\ \sum_{i=0}^{5} (ax_i + b - y_i) = 0 \end{cases} \Rightarrow$$

$$\begin{cases} a(9+10.24+11.56+12.96+14.44+16)+\\ +b(3.0+3.2+3.4+3.6+3.8+4.0)-\\ -(12+6.4+20.4+21.6+11.4+20)=0\\ a(3.0+3.2+3.4+3.6+3.8+4.0)+5b-\\ -(4.0+2.0+6.0+6.0+3.0+5.0)=0 \end{cases} \Rightarrow$$

$$\begin{cases} 74.2a + 21b - 91.8 = 0 \\ 21a + 5b - 26 = 0 \end{cases} \Rightarrow$$

$$\begin{cases} 74.2a + 21b = 91.8 \\ 21a + 5b = 26 \end{cases}$$

$$\Delta = \begin{vmatrix} 74.2 & 21 \\ 21 & 5 \end{vmatrix} = 74.2 \cdot 5 - 21 \cdot 21 = 371 - 441 = -70.$$

$$\Delta_a = \begin{vmatrix} 91.8 & 21 \\ 26 & 5 \end{vmatrix} = 91.8 \cdot 5 - 21 \cdot 26 = 459 - 546 = -87.$$

$$\Delta_b = \begin{vmatrix} 74.2 & 91.8 \\ 21 & 26 \end{vmatrix} = 74.2 \cdot 26 - 91.8 \cdot 21 = 1929.2 - 1927.8 = 1.4;$$

$$a = \frac{\Delta_a}{\Lambda} = \frac{-87}{-70} \approx 1.24;$$

$$b = \frac{\Delta_b}{\Delta} = \frac{1.4}{-70} \approx -0.02;$$

Omsem: $\varphi(x) = 1.24x - 0.02$.

Теперь найдём апроксимирующий полином второй степени. Ответ будем искать в виде $\varphi(x) = ax^2 + bx + c$.

$$\begin{cases} \sum_{i=0}^{5} (ax_i^2 + bx_i + c - y_i)x_i^2 = 0\\ \sum_{i=0}^{5} (ax_i^2 + bx_i + c - y_i)x_i = 0\\ \sum_{i=0}^{5} (ax_i^2 + bx_i + c - y_i) = 0 \end{cases} \Rightarrow$$

$$\begin{cases} 951.96a + 264.6b + 74.2c = 326.92 \\ 264.6a + 74.2b + 21c = 91.8 \\ 74.2a + 21b + 5c = 26 \end{cases}$$
;

$$\Delta = \begin{vmatrix} 951.96 & 264.6 & 74.2 \\ 264.6 & 74.2 & 21 \\ 74.2 & 21 & 5 \end{vmatrix} = -622.05;$$

$$\Delta_a = \begin{vmatrix} 326.92 & 264.6 & 74.2 \\ 91.8 & 74.2 & 21 \\ 26 & 21 & 5 \end{vmatrix} = 31.92;$$

$$\Delta_b = \begin{vmatrix} 951.96 & 326.92 & 74.2 \\ 264.6 & 91.8 & 21 \\ 74.2 & 26 & 5 \end{vmatrix} = -880.37;$$

$$\Delta_c = \begin{vmatrix} 951.96 & 264.6 & 326.92 \\ 264.6 & 74.2 & 91.8 \\ 74.2 & 21 & 26 \end{vmatrix} = -10.8;$$

$$a = \frac{\Delta_a}{\Delta} = \frac{31.92}{-622.05} \approx -0.05;$$

$$b = \frac{\Delta_b}{\Delta} = \frac{-880.37}{-622.05} \approx 1.42;$$

$$c = \frac{\Delta_c}{\Delta} = \frac{-10.8}{-622.05} \approx 0.02;$$

Omeem: $\varphi(x) = -0.05x^2 + 1.42x + 0.02$.

2. Вычислить определённый интеграл аналитически и численно:

$$\int_{1}^{2} x^{3} \ln x dx. \tag{1}$$

Для численного интегрирования использовать формулу прямоугольников, трапеций и формулу Симпсона. Сравнить результаты.

Решение: В начале решим задачу аналитически. Найдём первообразную методом интегрирования по частям:

$$\int x^3 \ln x dx = \int \ln x d\left(\frac{x^4}{4}\right) = \frac{1}{4} \int \ln x dx^4 =$$

$$\frac{1}{4} \left(x^4 \ln x - \int x^4 d(\ln x)\right) = \frac{1}{4} \left(x^4 \ln x - \int x^3 dx\right) =$$

$$\frac{1}{4} \left(x^4 \ln x - \frac{x^4}{4}\right).$$

Теперь вычислим точное значение интеграла:

$$\int_{1}^{2} x^{3} \ln x dx = \frac{1}{4} \left(x^{4} \ln x - \frac{x^{4}}{4} \right) \Big|_{1}^{2} = \frac{1}{4} \left(16 \ln 2 - 4 - 1 \cdot 0 + \frac{1}{4} \right) = \frac{1}{4} \left(16 \ln 2 - \frac{15}{4} \right) = 4 \ln 2 - \frac{15}{16} \approx 4 \cdot 0.69 - 0.94 = 1.83.$$

Omsem: $\int_1^2 x^3 \ln x dx \approx 1.83$.

Теперь подсчитаем значение интеграла (1) с помощью формулы прямоугольников.

Формула прямоугольников имеет вид:

$$I \approx \sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1})$$

где I — вычисляемый интеграл, ξ_i — некоторое значение между x_i и $x_{i-1}, \, i=0,1,...,n.$

Разобьём отрезок [1, 2] на 4 части, получаем такую таблицу:

n	x_i	ξ_i
0	1	
1	1.25	1.125
2	1.5	1.375
3	1.75	1.625
4	2	1.875

Тогда

$$I \approx \sum_{i=1}^{4} f(\xi_i)(x_i - x_{i-1}) = 0.25 \sum_{i=1}^{4} f(\xi_i) =$$

$$= 0.25(1.125^3 \ln 1.125 + 1.375^3 \ln 1.375 + 1.625^3 \ln 1.625 +$$

$$+1.875^3 \ln 1.875) \approx 1.81.$$

Ответ: вычисление интеграла (1) с помощью формулы прямоугольников даёт значение 1.81.

Теперь применяем формулу трапеций:

$$I \approx h\left(\frac{y_0 + y_n}{2} + y_1 + y_2 + \dots + y_{n-1}\right);$$

где $h=\frac{b-a}{n}$, здесь a,b — начальные и конечные точки отрезка, n — количество разбиений, $y_0=f(x_0),\ y_1=f(x_1),\ ...,\ y_n=f(x_n)$. Получаем:

$$\int_{1}^{2} x^{3} \ln x dx \approx 0.25 \left(\frac{0 + 5.52}{2} + 1.31 + 1.39 + 3 \right) \approx 2.12.$$

Ответ: вычисление определённого интеграла (1) с помощью формулы трапеций даёт значение 2.12.

Теперь нахождение значения определённого интеграла с помощью формулы Симпсона.

Формула Симпсона:

$$I \approx \frac{h}{3} (y_0 + y_{2m} + 4\sigma_1 + 2\sigma_2);$$

где $\sigma_1 = y_1 + y_3 + \ldots + y_{2m-1}, \ \sigma_2 = y_2 + y_4 + \ldots + y_{2m-2}.$ Получаем:

$$\int_{1}^{2} x^{3} \ln x dx \approx \frac{0.25}{3} (0 + 5.52 + 4 \cdot (1.31 + 3) + 2 \cdot (1.39)) \approx 2.04.$$

Ответ: вычисление определённого интеграла (1) с помощью формулы Симпсона даёт значение 2.04.

3. Решить задачу Коши для дифференциального уравнения:

 $y'=0,1(x+y^2),\,y(0)=1,$ на отрезке $[0;0,3],\,h=0,1$ методом Эйлера, методом Рунге-Кутта четвёртого порядка. Данные представить в таблине.

Решение:

Метод Эйлера:

$$y_i = y_{i-1} + hf(x_{i-1}, y_{i-1}).$$

Данные представлены в таблице:

x_0	x_1	x_2	x_3
0	0,1	0,2	0,3
y_0	y_1	y_2	y_3
1	1,01	1,02	1,03

Метод Рунге-Кутта четвёртого порядка:

$$\begin{cases} \eta_1^i = f(x_i, y_i), \\ \eta_2^i = f\left(x_i + \frac{h}{2}, y_i + \frac{h}{2}\eta_1^i\right), \\ \eta_3^i = f\left(x_i + \frac{h}{2}, y_i + \frac{h}{2}\eta_2^i\right), \\ \eta_4^i = f\left(x_i + h, y_i + h\eta_3^i\right), \\ \Delta y_i = \frac{h}{6}\left(\eta_1^i + 2\eta_2^i + 2\eta_3^i + \eta_4^i\right), \\ y_{i+1} = y_i + \Delta y_i. \end{cases}$$

Полученные результаты:

x_0	x_1	x_2	x_3
0	0,1	0,2	0,3
y_0	y_1	y_2	y_3
1	1,011	1,023	1,036