数学物理方法 期末考试

周子正 学号: 1810334

2020年6月

1 第一题

2 第二题

$$z = \frac{1 - i \tan x}{1 + i \tan x} = \frac{\cos x - i \sin x}{\cos x + i \sin x} = \frac{-i \left[\cos \left(\frac{\pi}{2} - x\right) + i \sin \left(\frac{\pi}{2} - x\right)\right]}{\exp \left(ix\right)}$$
$$= \exp\left(i\frac{3\pi}{2}\right) \exp\left(i\frac{\pi}{2}\right) \exp\left(-2ix\right) = \exp\left(-2ix\right)$$
$$= \cos 2x - i \sin 2x$$

3 第三题

$$1 + i = \sqrt{2} \exp\left(i\frac{\pi}{4}\right)$$
$$1 - i = \sqrt{2} \exp\left(-i\frac{\pi}{4}\right)$$
$$(1 + i)^{1000} + (1 - i)^{1000} = 2^{500} \left[\exp\left(250\pi i\right) + \exp\left(-250\pi i\right)\right] = 2^{501}$$

4 第四题

二者模长必然相同,若要求二者相等,只需要辐角满足

$$\arg\left(\sqrt{3}+i\right)^n = 2k\pi + \arg\left(\sqrt{3}-i\right)^n, \quad k \in \mathbb{Z}$$

$$\therefore n\frac{\pi}{6} = -n\frac{\pi}{6} + 2k\pi$$
$$\therefore n = 6k, \quad k \in \mathbb{Z}$$

所以只需要 n 是整数且能被 6 整除即可。

5 第五题

5 第五题

将 z = x + yi 代入 ω 展开有:

$$\omega = \frac{x^2 + y^2 - 1}{x^2 + (y+1)^2} - \frac{2x}{x^2 + (y+1)^2}i$$

6 第六题

$$a = \sum_{k=0}^{\infty} \frac{\cos nz}{n!}$$

$$b = \sum_{k=0}^{\infty} \frac{\sin nz}{n!}$$

考虑做一对替换有:

$$c_{+} \equiv a + bi = \sum_{k=0}^{\infty} \frac{\cos nz + i \sin nz}{n!} = \sum_{k=0}^{\infty} \frac{\exp(inz)}{n!} = \exp(\exp(iz))$$

$$c_{-} \equiv a - bi = \sum_{k=0}^{\infty} \frac{\cos nz - i\sin nz}{n!} = \sum_{k=0}^{\infty} \frac{\exp\left(-inz\right)}{n!} = \exp\left(\exp\left(-iz\right)\right)$$

其中

$$\exp(\exp(iz)) = \exp(\cos z + i\sin z) = e^{\cos z}(\cos\sin z + \sin\sin z)$$

$$\exp(\exp(-iz)) = \exp(\cos z - i\sin z) = e^{\cos z}(\cos\sin z - \sin\sin z)$$

于是由替换的关系可以得到:

$$a = \frac{c_+ + c_-}{2} = e^{\cos z} \cos \sin z$$

$$b = \frac{c_+ - c_-}{2i} = -ie^{\cos z} \sin \sin z$$

7 第七题

求

$$f(z) = \frac{1}{e^z - 1}$$

在 z=0 的洛朗级数, 很明显此处不解析, 考察 $n \in N^*$ 时,

$$\lim_{z \to 0} \frac{z^n}{e^z - 1} = \begin{cases} 1 & n = 1\\ 0 & n > 1 \end{cases}$$

8 第八题 3

因此这是一阶极点,考虑求解析函数 a(z)=zf(z) 在 z=0 的泰勒展开,设 其为

$$a\left(z\right) = \sum_{n=0}^{+\infty} a_n z^n$$

这不容易计算,考虑其倒数 b(z) = 1/a,可以展开为

$$b(z) = \sum_{n=0}^{+\infty} \frac{z^n}{(n+1)!}$$

又因为恒等关系 a(z)b(z) = 1

$$\left(\sum_{n=0}^{+\infty} a_n z^n\right) \cdot \left(\sum_{n=0}^{+\infty} \frac{z^n}{(n+1)!}\right) = 1$$

比较 z 的各阶系数可以得到 $a_0 = 1, a_1 = -\frac{1}{2}...$ 在 $n \ge 1$ 时,其满足线性齐次方程组方程为:

$$\sum_{k=0}^{n} \frac{a_k}{(n-k+1)!} = 0$$

理论上可以解出任意的 a_n

我试图找到通项公式但是失败了,查阅资料发现这个数列与伯努利数相关, 关系为 $a_n = B_n/n!$ 其被定义为

$$\frac{z}{e^z - 1} = \sum_{n=0}^{\infty} B_n \frac{z^n}{n!}$$

递推关系为

$$B_m = [m = 0] - \sum_{k=0}^{m-1} \binom{m}{k} \frac{B_k}{m-k+1}$$

 $B_0 = 1$, 其中 [m = 0] 表示当 m = 0 时,取 1,其余取 0。 综上可得,

$$f(z) = \sum_{n=-1}^{+\infty} \frac{z^n}{(n+1)!} B_{n+1}$$

8 第八题

由于所有极点都在围道内部,直接考察无穷远的留数,根据引理有:

$$\int_{|z|=200} f\left(z\right) dz = -2\pi i \mathop{\rm Res}_{z \to \infty} f\left(z\right) = 2\pi i \mathop{\rm Res}_{t \to 0} \left[f\left(\frac{1}{t}\right) \frac{1}{t^2} \right]$$

其中

$$f\left(\frac{1}{t}\right)\frac{1}{t^2} = \frac{1}{t^2} \prod_{k=1}^{100} \frac{1}{1 - kt}$$

9 第九题

4

所以可以计算出留数的值

$$\operatorname{Res}_{t \to 0} \left[f\left(\frac{1}{t}\right) \frac{1}{t^2} \right] = \lim_{t \to 0} \frac{d}{dt} \prod_{k=1}^{100} \frac{1}{1 - kt}$$

$$= \lim_{t \to 0} \sum_{n=1}^{100} \prod_{n=1 \land k \neq n}^{100} \frac{n}{1 - kt}$$

$$= \sum_{n=1}^{100} n = 5050$$

$$\therefore \int_{|z| = 200} f(z) \, dz = 10100\pi i$$

9 第九题

10 第十题

直接考察积分, 试图利用柯西公式

$$D_{F}(x-y) = \int_{C_{F}} \frac{d^{4}p}{(2\pi)^{4}} \frac{ie^{-ip\cdot(x-y)}}{p^{2} - m^{2}}$$

$$= \int_{C_{F}} \frac{d^{3}\vec{p}dp_{0}}{(2\pi)^{4}} \frac{ie^{-ip\cdot(x-y)}}{p_{0}^{2} - (\vec{p}^{2} + m^{2})}$$

$$= \int \frac{d^{3}\vec{p}\left[e^{-ip\cdot(x-y)}\right]}{(2\pi)^{4}} \int_{C_{F}} \frac{idp_{0}}{p_{0}^{2} - E_{\vec{p}}^{2}}$$

考察其中的

$$\int_{C_F} \frac{i dp_0}{p_0^2 - E_{\vec{p}}^2} = \int_{C_F} \frac{i dp_0}{(p_0 - E_{\vec{p}}) \left(p_0 + E_{\vec{p}}\right)}$$

注意到在 C_F 的围道内只有一个一阶极点为

$$\underset{p_{0} \to E_{\vec{p}}}{\operatorname{Res}} \frac{i}{\left(p_{0} - E_{\vec{p}}\right)\left(p_{0} + E_{\vec{p}}\right)} = \frac{i}{2E_{\vec{p}}}$$

注意到 C_F 的围道方向为顺时针,因此有

$$\int_{C_F} \frac{idp_0}{p_0^2 - E_{\vec{p}}^2} = 2\pi \frac{1}{2E_{\vec{p}}}$$

代入 Feynman 传播子表示可得到:

$$D_F(x-y) = \int_{C_F} \frac{d^4p}{(2\pi)^4} \frac{ie^{-ip\cdot(x-y)}}{p^2 - m^2} = \int \frac{d^3\vec{p}}{(2\pi)^3 2E_{\vec{p}}} e^{-ip\cdot(x-y)} \bigg|_{p_0 = E_{\vec{p}}}$$

11 第十一题 5

11 第十一题

$$S = \int d^2x \left\{ -\frac{1}{2} \partial_{\mu} \phi(x) \, \partial^{\mu} \phi(x) + \frac{1}{2} \lambda_{\mu\nu}(x) \left[\partial^{\mu} \phi(x) - \epsilon^{\mu\sigma} \partial_{\sigma} \phi(x) \right] \left[\partial^{\nu} \phi(x) - \epsilon^{\nu\rho} \partial_{\rho} \phi(x) \right] \right\}$$

先分别计算其中的积分

$$S_{1} = \int d^{2}x \left[\partial_{\mu}\phi \left(x \right) \partial^{\mu}\phi \left(x \right) \right]$$

$$S_{2} = \int d^{2}x \left\{ \lambda_{\mu\nu} \left(x \right) \left[\partial^{\mu}\phi \left(x \right) - \epsilon^{\mu\sigma}\partial_{\sigma}\phi \left(x \right) \right] \left[\partial^{\nu}\phi \left(x \right) - \epsilon^{\nu\rho}\partial_{\rho}\phi \left(x \right) \right] \right\}$$

$$\therefore \phi \left(x \right) = \mathcal{F} \left(\phi \left(k \right) \right), \lambda_{\mu\nu} \left(x \right) = \mathcal{F} \left(\lambda_{\mu\nu} \left(k \right) \right)$$

换元,令

$$q_{\mu} = -ik_{\mu}\phi\left(k\right), q^{\mu} = -ik^{\mu}\phi\left(k\right)$$

导数定理

$$\therefore \mathcal{F}\left(-ik_{\mu}\phi\left(k\right)\right) = \partial_{\mu}\phi\left(x\right), \mathcal{F}\left(-ik^{\mu}\phi\left(k\right)\right) = \partial^{\mu}\phi\left(x\right)$$

卷积定理

$$S_{1} = \int d^{2}x \mathcal{F}(g_{\mu}) \mathcal{F}(g^{\mu}) = \frac{1}{2\pi} \int d^{2}x \mathcal{F}(g_{\mu} * g^{\mu})$$

$$\therefore S_{1} = (g_{\mu} * g^{\mu})|_{k=0} = \int d^{2}\xi g_{\mu}(\xi) g^{\mu}(0 - \xi) = \int d^{2}k (-ik_{\mu}) \phi(k) (-ik^{\mu}) \phi(k)$$

同理我们设

$$\eta^{\mu} = ik^{\mu}\phi\left(k\right) - \epsilon^{\mu\sigma}ik_{\sigma}\phi\left(k\right), \eta^{\nu} = ik^{\nu}\phi\left(k\right) - \epsilon^{\nu\rho}ik_{\rho}\phi\left(k\right)$$

有

$$S_{2} = \int d^{2}x \mathcal{F}(\lambda_{\mu\nu}(k)) \mathcal{F}(\eta^{\mu}) \mathcal{F}(\eta^{\nu}) = \frac{1}{4\pi^{2}} \int d^{2}x \mathcal{F}(\lambda_{\mu\nu}(k) * \eta^{\mu} * \eta^{\nu})$$

$$S_{2} = \frac{1}{2\pi} \lambda_{\mu\nu}(k) * \eta^{\mu} * \eta^{\nu}|_{k=0} = \frac{1}{2\pi} \int d^{2}\xi \int d^{2}\zeta \lambda_{\mu\nu}(\zeta + \xi) \eta^{\mu}(0 - \xi) \eta^{\nu}(0 - \zeta)$$
即为
$$S_{2} = \frac{1}{2\pi} \int d^{2}k \int d^{2}k' \lambda_{\mu\nu}(-k - k') \left[ik^{\mu}\phi(k) - \epsilon^{\mu\sigma}ik_{\sigma}\phi(k) \right] \left[ik^{\nu}\phi(k') - \epsilon^{\nu\rho}ik_{\rho}\phi(k') \right]$$

$$S_{m} = -\frac{1}{2} \int d^{2}k \left(-ik_{\mu}\right) (ik^{\mu}) \phi(k) \phi(-k)$$

$$+ \frac{1}{4\pi} \int d^{2}k d^{2}k' \lambda_{\mu\nu} \left(-k - k'\right) \left(ik^{\mu} - \epsilon^{\mu\sigma}ik_{\sigma}\right) \left(ik'^{\nu} - \epsilon^{\nu\rho}ik'_{\rho}\right) \phi(k) \phi(k')$$

这就是结果

12 第十二题

6

12 第十二题

12.1

$$g_1(t) = \begin{cases} 2t/T & 0 \le t < T/2\\ 2(1 - t/T) & T/2 \le t \le T \end{cases}$$

根据周期函数

$$\mathcal{L}\left(g\left(t\right)\right) = \frac{1}{1 - e^{-pT}} \int_{0}^{T} e^{-pt} g(t) dt$$

计算得

$$\int_{0}^{T/2} \exp(-pt) \frac{2t}{T} dt = \frac{2}{T} \left[\frac{1}{p^2} - e^{-Tp/2} \left(\frac{T}{2p} + \frac{1}{p^2} \right) \right]$$
$$- \int_{T/2}^{T} \exp(-pt) \frac{2t}{T} dt = \frac{2}{T} e^{-Tp/2} \left[\left(1 - e^{-Tp/2} \right) \left(\frac{T}{2p} + \frac{1}{p^2} \right) \right]$$
$$\int_{T/2}^{T} 2 \exp(-pt) dt = \frac{2}{p} \left(e^{-Tp/2} - e^{-Tp} \right)$$

代入化简得

$$\mathcal{L}\left(g_{1}\left(t\right)\right) = \frac{2}{Tp^{2}} \tan h\left(\frac{Tp}{4}\right)$$

12.2

$$g_{2}(t) = \frac{2}{T} \left[tH(t) + 2 \sum_{n=1}^{\infty} (-1)^{n} \left(t - \frac{1}{2} nT \right) H\left(t - \frac{1}{2} nT \right) \right]$$
$$\mathcal{L}(g_{2}(t)) = \frac{2}{Tp^{2}} \left[1 + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp\left(-\frac{1}{2} nT \right) \right]$$

如果 $g_1(t) = g_2(t)$, 比照系数令 x = Tp/4 换元有

$$\tanh x = 1 + 2\sum_{n=0}^{\infty} (-1)^n e^{-2nx}$$

这正是我们想证明的。因此只需证明 $g_1(t) = g_2(t)$.

下面证明 $g_1(t) = g_2(t)$

我们首先考察区间 [0,T/2), 对于 $t \in [0,T/2]$ 由于全部的 H(t-1/2nT) = 0 因此二者显然相等。

然后考察区间 [T/2,T), 对于 $t \in [0,T/2]$ 求和只保留到 n=1, 有

$$g_2 = \frac{2}{T} \left[t - 2 \left(t - \frac{1}{2} T \right) \right] = 2 - \frac{2t}{T} = g_1$$

综上二者在 $t \in [0,T)$ 上相等。

13 第十三题 7

一般地,对于 n > 0 情形,仅当 $t \ge 1/2nT$ 时,H(t - 1/2nT) = 1,其余情况为 0。如果我们只考察 t 非负半轴情况,求和可以写成:

$$g_2(t) = \frac{2}{T} \left[t + 2 \sum_{n=1}^{\left[\frac{2t}{T}\right]} (-1)^n \left(t - \frac{1}{2} nT \right) \right]$$

其中 $\begin{bmatrix} \frac{2t}{T} \end{bmatrix}$ 表示括号内值向下取整。 接下来证明 $g_2(t)$ 也以 T 为周期,既 $g_2(t) = g_2(t+T)$

$$g_{2}(t+T) = \frac{2}{T} \left[t + T + 2 \sum_{n=1}^{\left[\frac{2t}{T}+2\right]} (-1)^{n} \left(t - \frac{1}{2}nT + T \right) \right]$$

$$= \frac{2}{T} \left[t + T - (2t+T) + 2t + 2 \sum_{n=3}^{\left[\frac{2t}{T}+2\right]} (-1)^{n} \left(t - \frac{1}{2}nT + T \right) \right]$$

$$= \frac{2}{T} \left[t + 2 \sum_{n=1}^{\left[\frac{2t}{T}\right]} (-1)^{n} \left(t - \frac{1}{2}nT \right) \right]$$

$$= g_{2}(t)$$

由于在 [0,T) 区间相等并都具有以 T 为周期的周期性,因此 $g_1(t)=g_2(t)$,这正是我们需要的。于是

$$\tanh x = 1 + 2\sum_{n=0}^{\infty} (-1)^n e^{-2nx}$$

得证

- 13 第十三题
- 14 第十四题