

TUGAS AKHIR - KI141502

RANCANG BANGUN PERANGKAT LUNAK INTERNET ACCESS MANAGEMENT BERBASIS KONTAINER

FOURIR AKBAR NRP 05111440000115

Dosen Pembimbing I Royyana Muslim Ijtihadie, S.Kom, M.Kom, PhD

Dosen Pembimbing II Bagus Jati Santoso, S.Kom., Ph.D

DEPARTEMEN INFORMATIKA Fakultas Teknologi Informasi dan Komunikasi Institut Teknologi Sepuluh Nopember Surabaya, 2018

TUGAS AKHIR - KI141502

RANCANG BANGUN PERANGKAT LUNAK INTERNET ACCESS MANAGEMENT BERBASIS KONTAINER

FOURIR AKBAR NRP 05111440000115

Dosen Pembimbing I Royyana Muslim Ijtihadie, S.Kom, M.Kom, PhD

Dosen Pembimbing II Bagus Jati Santoso, S.Kom., Ph.D

DEPARTEMEN INFORMATIKA Fakultas Teknologi Informasi dan Komunikasi Institut Teknologi Sepuluh Nopember Surabaya, 2018

UNDERGRADUATE THESIS - KI141502

DESIGN AND IMPLEMENTATION OF INTERNET ACCESS MANAGEMENT SOFTWARE USING CONTAINER

FOURIR AKBAR NRP 05111440000115

Supervisor I Royyana Muslim Ijtihadie, S.Kom, M.Kom, PhD

Supervisor II Bagus Jati Santoso, S.Kom., Ph.D

Department of INFORMATICS Faculty of Information Technology and Communication Institut Teknologi Sepuluh Nopember Surabaya, 2018

LEMBAR PENGESAHAN

RANCANG BANGUN PERANGKAT LUNAK INTERNET ACCESS MANAGEMENT BERBASIS KONTAINER

TUGAS AKHIR

Diajukan Guna Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Komputer pada

Bidang Studi Arsitektur dan Jaringan Komputer Program Studi S1 Departemen Informatika Fakultas Teknologi Informasi dan Komunikasi Institut Teknologi Sepuluh Nopember

Oleh : FOURIR AKBAR NRP: 05111440000115

Disetujui olen Dosen Pembimbing Tuga	as Aknir :
Royyana Muslim Ijtihadie, S.Kom, M.K NIP: 197708242006041001	Kom, PhD(Pembimbing 1)
Bagus Jati Santoso, S.Kom., Ph.D NIP: 198611252018031001	(Pembimbing 2)

SURABAYA Juni 2018

RANCANG BANGUN PERANGKAT LUNAK INTERNET ACCESS MANAGEMENT BERBASIS KONTAINER

Nama : FOURIR AKBAR
NRP : 05111440000115
Jurusan : Informatika FTIK

Pembimbing I : Royyana Muslim Ijtihadie, S.Kom,

M.Kom, PhD

Pembimbing II : Bagus Jati Santoso, S.Kom., Ph.D

Abstrak

Seiring dengan perkembangan zaman yang sangat pesat, negara-negara sudah mempunyai teknologi yang sangat maju. Teknologi mempunyai peranan yang sangat penting dalam kehidupan manusia, karena dengan adanya teknologi, manusia bisa saling berhubungan dengan mudah. Sekarang teknologi sudah semakin canggih. Teknologi vang paling populer sekarang ini adalah internet karena dengan adanya internet, banyak informasi-informasi yang dapat kita ambil dengan mudah. Internet merupakan suatu perpustakaan besar yang di dalamnya terdapat sangat banyak informasi yang berupa teks dalam bentuk media elektronik Selain itu internet dikenal sebagai dunia maya, karena hampir seluruh aspek kehidupan di dunia nyata ada di internet, seperti olah raga, politik, hiburan, akademik, bisnis, dan lain sebagainya. Internet juga mempunyai peranan yang sangat penting dalam dunia pendidikan, karena dengan adanya internet bisa menambah ilmu pengetahuan kita dapat menambah motivasi belajar siswa ataupun mahasiswa. Dengan dimanfaatkan itnernet dalam dunia pendidikan agar siswa atau mahasiswa dapat memiliki komitmen untuk belajar secara aktif dan memiliki teknis kemampuan khususnya di bidang pendidikan. Oleh karena itu, internet dapat mempermudah proses belajar mengajar dengan baik.

Dalam dunia pendidikan, internet telah menjadi platform penting, misalnya adalah proses belajar mengajar yang dilakukan secara online dengan e-learning, ataupun ketika pengajar memberikan nilai kepada siswanya dilakukan secara online, dan lain sebagainya. Keamanan menjaga data-data dalam dunia pendidikan, melindungi terhadap penggunaan menerapkan kepatuhan malware. akses internet. menyederhanakan manajemen jaringan menjadi tantangan utama untuk manajemen TI. Maka dari itu dibutuhkan sebuah server yang digunakan sebagai internet access management atau untuk melakukan manajemen akses terhadap user yang menggunakan jaringannya.

Namun akan terjadi permasalahan ketika banyak user yang mengakses internet dengan menggunakan server yang digunakan sebagai internet access management. Dalam pembacaan log history dari setiap user akan tercampur karena hanya melewati satu server saja.

Dalam tugas akhir ini akan dibuat sebuah rancangan sistem pada server yang akan dijadikan sebagai internet access management, yang memungkinkan untuk mencatat setiap log history dari setiap user yang mengakses internet secara detail. Rancangan sistem pada server akan menggunakan kontainer docker. Kontainer docker merupakan operating-system-level virtualization untuk menjalankan beberapa sistem linux yang terisolasi (kontainer) pada sebuah host. Kontainer berfungsi untuk mengisolasi aplikasi atau servis dan dependensinya. Untuk setiap servis atau aplikasi yang terisolasi dibutuhkan satu kontainer pada server host yang ada dan setiap kontainer akan menggunakan sumber daya yang ada pada server host selama kontainer tersebut menyala.

Kata-Kunci: Docker, Internet Access Management, Kontainer

DESIGN AND IMPLEMENTATION OF INTERNET ACCESS MANAGEMENT SOFTWARE USING CONTAINER

Name : FOURIR AKBAR
NRP : 05111440000115
Major : Informatics FTIK

Supervisor I: Royyana Muslim Ijtihadie, S.Kom,

M.Kom, PhD

Supervisor II : Bagus Jati Santoso, S.Kom., Ph.D

Abstract

Along with the rapid development of the era, the countries already have advanced technology. Technology has a very important role in human life, because with technology, humans can interconnect easily. Now, technology is getting more sophisticated. The most popular technology today is internet, because with internet, we can take a lot of information easily. Internet is one of the very many media information that contains text in the form of electronic media. In addition, internet is known as virtual word, because various aspects of life in the world, such as sports, politics, entertainment, educations, business, etc. Internet also has a very important role in the world of education, because internet can increase our knowledge and can increase students motivation to learn. Therefor, internet can help learning process well.

Internet has become a vital platform for most educations, for example is the process of teaching and learning that is done oneline with e-learning, or when teachers / lecturers provide score to their students are done online, etc. Safe guarding data, protecting against malware usages, implementing internet access compliance, simplifying network management become the key

challenges for IT management. Therefore required a server that is used as internet access management or to perform management access to users who use the network.

But there will be problems when many users who access internet by using a server that is used as internet access management. In reading log history of each user will be mixed because only through one server only.

In this final project will be created a system design on the server that will serve as internet access management, which allows to record every log history of each user who access internet in detail. The system design on the server will user docker containers. Docker containers is an operating system level virtualization to run some isolated linux systems (containers) on a host. Containers are used to isolate applications or services and its dependencies. For every service or app that isolated it takes one container on the existing host server and each container will user the existing resources on the host server as long as the container is on.

Keywords: Container, Docker, Internet Access Management

KATA PENGANTAR

بِسُمِ ٱللَّهِ ٱلرَّحُمَّنِ ٱلرَّحِيمِ

Alhamdulillahirabbil'alamin, segala puji bagi Allah SWT, yang telah melimpahkan rahmat dan hidayah-Nya sehingga penulis dapat menyelesaikan Tugas Akhir yang berjudul Rancang Bangun Perangkat Lunak Internet Acces Management Berbasis Kontainer. Pengerjaan Tugas Akhir ini merupakan suatu kesempatan yang sangat baik bagi penulis. Dengan pengerjaan Tugas Akhir ini, penulis bisa belajar lebih banyak untuk memperdalam dan meningkatkan apa yang telah didapatkan penulis selama menempuh perkuliahan di Teknik Informatika ITS. Dengan Tugas Akhir ini penulis juga dapat menghasilkan suatu implementasi dari apa yang telah penulis pelajari. Selesainya Tugas Akhir ini tidak lepas dari bantuan dan dukungan beberapa pihak. Sehingga pada kesempatan ini penulis mengucapkan syukur dan terima kasih kepada:

- 1. Allah SWT atas anugerahnya yang tidak terkira kepada penulis dan Nabi Muhammad SAW.
- Bapak, Mama, dan keluarga Penulis yang selalu memberikan perhatian, dorongan dan kasih sayang yang menjadi semangat utama bagi diri Penulis sendiri baik selama penulis menempuh masa perkuliahan maupun pengerjaan Tugas Akhir ini.
- 3. Bapak Royyana Muslim Ijtihadie, S.Kom., M.Kom., PhD. selaku Dosen Pembimbing yang telah banyak meluangkan waktu untuk memberikan ilmu, nasihat, motivasi, pandangan dan bimbingan kepada Penulis baik selama Penulis menempuh masa kuliah maupun selama pengerjaan Tugas Akhir ini.
- 4. Bagus Jati Santoso, S.Kom., PhD. selaku dosen pembimbing yang telah memberikan ilmu, dan masukan kepada Penulis.

- Seluruh tenaga pengajar dan karyawan Jurusan Teknik Informatika ITS yang telah memberikan ilmu dan waktunya demi berlangsungnya kegiatan belajar mengajar di Jurusan Teknik Informatika ITS.
- 6. Seluruh teman Penulis di Jurusan Teknik Informatika ITS yang telah memberikan dukungan dan semangat kepada Penulis selama Penulis menyelesaikan Tugas Akhir ini.
- 7. Teman-teman, Kakak-kakak dan Adik-adik *administrator* Laboratorium Arsitektur dan Jaringan Komputer yang selalu menjadi teman untuk berbagi ilmu.

Penulis menyadari bahwa Tugas Akhir ini masih memiliki banyak kekurangan. Sehingga dengan kerendahan hati, penulis mengharapkan kritik dan saran dari pembaca untuk perbaikan ke depannya.

Surabaya, Juni 2018

Fourir Akbar

DAFTAR ISI

ABSTR	AK	vii
ABSTR	ACT	ix
Kata Pe	engantar	xi
DAFTA	IR ISI	xiii
DAFTA	AR TABEL	xix
DAFTA	AR GAMBAR	xxi
DAFTA	AR KODE SUMBER	xxiii
BAB I	PENDAHULUAN	1
1.1	Latar Belakang	. 1
1.2	Rumusan Masalah	
1.3	Batasan Masalah	
1.4	Tujuan	. 3
1.5	Manfaat	
1.6	Metodologi	
	1.6.1 Studi literatur	. 4
	1.6.2 Desain dan Perancangan Sistem	. 5
	1.6.3 Implementasi Sistem	
	1.6.4 Uji Coba dan Evaluasi	
1.7	Sistematika Laporan	
BAB II	TINJAUAN PUSTAKA	7
2.1	Python	. 7
2.2	Flask	. 7
2.3	Gunicorn	. 8
2.4	Supervisor	. 8
	2.4.1 Supervisord	
	2.4.2 Supervisorctl	

	2.5	Nginx		10
	2.6	Iptable	s	10
	2.7		L	11
	2.8		roxy	13
	2.9		Box	13
	2.10	Docker		14
		2.10.1	Docker Container	14
			Docker Images	15
			Docker Registry	15
BA	AB III	DESAI	IN DAN PERANCANGAN	17
	3.1	Deskrij	psi Umum Sistem	17
	3.2		Penggunaan	17
	3.3		tur Sistem	20
		3.3.1	Desain Umum Sistem	20
		3.3.2	Pembuatan Halaman Login dari Sebuah	
			Sistem	23
			3.3.2.1 Desain Basis Data	24
			3.3.2.2 Desain Web Service	24
		3.3.3	Perancangan Pembuatan Aturan untuk	
			Mengarahkan Traffic Client ke Halaman	
			Login dari Sistem	26
		3.3.4	Pembuatan Middleware untuk Menerima	
			Permintaan dari <i>Client</i>	27
			3.3.4.1 Desain Basis Data	28
			3.3.4.2 Desain Web Service	29
		3.3.5	Perancangan Pemasangan Kontainer pada	
			Docker Host	29
		3.3.6	Pembuatan Aturan untuk Mengarahkan	
			Traffic Client ke Kontainer Docker dari	
			Tiap-Tiap <i>Client</i>	31
		3.3.7	Pembuatan Halaman Administrator untuk	
			Membaca Log File dari Client	32

BAB IV	IMPLI	EMENTASI	35
4.1	Lingku	ngan Implementasi	35
	4.1.1	Perangkat Keras	35
	4.1.2	Perangkat Lunak	35
4.2	Implen	nentasi Pembuatan Halaman <i>Login</i> dari	
		Sistem	36
	4.2.1	Implementasi Web Service pada Halaman	
		Login	37
		4.2.1.1 Implementasi Tampilan	
		Antarmuka Halaman <i>Login</i>	37
		4.2.1.2 Rute <i>Web Service</i> pada	
		Halaman <i>Login</i>	38
		4.2.1.3 Pseduocode Web Service pada	
		Halaman <i>Login</i>	39
	4.2.2	Implementasi Basis Data pada Halaman	
		Login	40
4.3	Implen	nentasi Pembuatan Aturan untuk	
	Menga	rahkan <i>Traffic Client</i> ke Halaman <i>Login</i>	
	dari Sis	stem	41
4.4	Implen	nentasi Pembuatan Middleware	41
	4.4.1	Implementasi Web Service pada Middleware	42
		4.4.1.1 Rute Web Service pada	
		Middleware	42
		4.4.1.2 Pseduocode Web Service pada	
		Middleware	43
	4.4.2	Implementasi Basis Data pada Middleware	44
4.5	Implen	nentasi Pemasangan Kontainer Docker	
	_	ocker Host	45
	4.5.1	Menambahkan dan Memperbarui	
		Kontainer Docker yang Berisikan	
		Mitmproxy	45
	4.5.2	Menggunakan Image Kontainer Docker	
		yang Sudah Dibuat	48

4.6				latan Aturan untuk	
	_			ient ke Kontainer Docker	40
					48
4.7	-			n Halaman Administrator	49
	4.7.1			<i>ervice</i> pada Halaman	
		Adminis			49
	4.7.2	_		embacaan Log File dari	
					51
	4.7.3			Antarmuka Halaman	
		Adminis	trator		52
DADV	DENC	THAND	ANEV	'ALUASI	55
5.1					55
					60
3.2	5.2.1			ba Fungsionalitas	61
	3.2.1	5.2.1.1		<u> </u>	01
		3.2.1.1	Intern	client dapat Mengakses	61
		5	.2.1.1.1		01
		S	0.2.1.1.1	Login ke Dalam Sistem	62
		5	5.2.1.1.2	0	02
		J	0.4.1.1.4	Mengirimkan	
				Permintaan	
				Penyediaan	
				Kontainer <i>Docker</i> ke	
				Docker Host	63
		5	5.2.1.1.3		05
		٠	7.2.1.1.3	dapat Menerima	
				Permintaan	
				Penyediaan	
				Kontainer <i>Docker</i>	63
		5.2.1.2	Uji		
		2. _	-	asi Halaman <i>Administrator</i>	65
	522	Skenario	-	ba Performa	67

		5.2.2.1	Uji I	Performa Penggunaan
				$y \ldots 6$
		5.2.2.2	Uji	Performa Kecepatan
				gani <i>Request</i> 6
		5.2.2.3	Uji P	Performa Keberhasilan
				t 6
5.3	Hasil U	-		nasi 6
	5.3.1	, .		s 6
		5.3.1.1	Uji <i>Cl</i>	lient dapat Mengakses
			Interne	
		5	.3.1.1.1	Uji <i>Client</i> dapat
				Login ke Dalam Sistem 6
		5	.3.1.1.2	Uji <i>Client</i> dapat
				Mengirimkan
				Permintaan
				Penyediaan Kontainer <i>Docker</i> ke
		5	.3.1.1.3	Docker Host 70 Uji Docker Host
		3	.3.1.1.3	dapat Menerima
				Permintaan
				Penyediaan
				Kontainer <i>Docker</i> 7
		5.3.1.2	Uji	Fungsionalitas Menu
			-	si Halaman <i>Administrator</i> 7
	5.3.2	Hasil Uj	-	na 72
		5.3.2.1		ınaan <i>Memory</i> 72
		5.3.2.2		ntan Menangani Request . 72
		5.3.2.3	Keberh	asilan <i>Request</i> 7.
5.4	Hasil U	Uji Coba d	an Evalu	ıasi 7
	5.4.1	-		na 7
		5.4.1.1	Kecepa	ntan Menangani Request . 7
		5.4.1.2	Penggu	ınaan <i>Memory</i> 7

	5.4.1.3 Keberhasilan <i>Request</i>	77
6.1	PENUTUP Kesimpulan	
	Saran	79 81
BAB A	INSTALASI PERANGKAT LUNAK	83
BAB B	Konfigurasi	87
BIODA'	TA PENULIS	91

DAFTAR TABEL

3.1	Daftar Kode Kasus Penggunaan	19
3.1	Daftar Kode Kasus Penggunaan	20
3.2	Atribut basis data nrp-mahasiswa	24
3.3	Atribut basis data kontainer	28
3.3	Atribut basis data kontainer	29
4.1	Daftar Rute Web Service	38
4.2	Daftar Rute Web Service	43
4.3	Daftar Rute Web Service pada Halaman	
	Administrator	50
5.1	Server Untuk Docker Host	56
5.2	Server Untuk Halaman Login	56
5.3	Komputer Penguji 1	57
5.4	Komputer Penguji 2	57
5.5	Komputer Penguji 3	58
5.6	Komputer Penguji 4	58
5.7	Komputer Penguji 5	59
5.8	Komputer Penguji 6	59
5.9	Skenario Uji Client dapat Mengakses Internet	61
5.10	Skenario Uji Client dapat Login ke Dalam Sistem	62
5.11	Skenario Uji Client dapat Login Mengirimkan	
	Permintaan Penyediaan Kontainer <i>Docker</i>	63
5.12	Skenario Uji <i>Docker Host</i> dapat Menerima	
	Permintaan Penyediaan Kontainer <i>Docker</i>	65
5.13	Skenario Uji Fungsionalitas Aplikasi Halaman <i>Administrator</i>	66
5 14	Hasil Uji Coba <i>Client</i> dapat Mengakses Internet .	69
	Hasil Uji Coba <i>Client</i> dapat <i>Login</i> ke Dalam Sistem	69
	Hasil Uji Coba <i>Client</i> dapat Mengirimkan	0)
2.10	Permintaan Penyediaan Kontainer <i>Docker</i> ke	
	Docker Host	70

5.17	Hasıl Uji Coba <i>Docker Host</i> dapat Menerima	
	Permintaan Penyediaan Kontainer <i>Docker</i>	70
5.18	Hasil Uji Fungsionalitas Aplikasi Halaman	
	Administrator	71
5.19	Kecepatan Menangai Request Unduh dan Upload	
	Menggunakan Internet Access Management	
	Berbasis Kontainer	74
5.20	Kecepatan Menangai Request Unduh dan Upload	
	Menggunakan Internet Access Management	
	Konvensional	75
5.21	Penggunaan Memory	76
5.22	Success Ratio Request	78

DAFTAR GAMBAR

3.1	Digram Kasus Penggunaan	18
3.2	Arsitektur Komponen Sistem	22
3.3	Desain Halaman <i>Login</i>	25
3.4	Desain Backend dari Halaman Login	26
3.5	Desain Mengarahkan Traffic Client ke Halaman	
	<i>Login</i>	27
3.6	Alur kerja dari mitmproxy transparent HTTP	30
3.7	Alur kerja dari mitmproxy transparent HTTPS	31
3.8	Desain pembuatan aturan untuk mengarahkan	
	traffic client ke kontainer docker	32
3.9	Desain halaman dashboard administrator traffic	
	client ke kontainer docker	33
3.10	Desain pembuatan aturan untuk mengarahkan	
	traffic client ke kontainer docker	33
4.1	Halaman Login	37
4.2	Halaman Administrator Menu User List	53
4.3	Halaman Administrator Menu History	53
5.1	Arsitektur dari Setiap Komponen Uji Coba	60
5.2	Grafik Kecepatan Menangani Request	74
5.3	Grafik Kecepatan Menangani Request	75
5.4	Grafik Penggunaan Memory	77

DAFTAR KODE SUMBER

4.1	Pseudocode Web Service	40
4.2	Query untuk membuat tabel testing	40
4.3	Command untuk mengarahkan <i>client</i> ke halaman	
	login	41
4.4	Pseudocode Web Service	44
4.5	Query untuk membuat tabel testing	44
4.6	Perintah untuk installasi Ansible	45
4.7	Perintah untuk <i>Pull</i> Ubuntu	45
4.8	Perintah untuk Menjalankan <i>Image</i> Ubuntu	46
4.9	Perintah untuk Pemasangan Mitmrproxy	46
4.10	Perintah untuk Mengaktifkan ipv4.forwarding	47
4.11	Perintah untuk Menghentikan Kontainer Docker .	47
4.12	Perintah untuk <i>Commit</i> Kontainer Docker	47
4.13	Perintah untuk <i>Push Image</i> ke Docker Hub	48
4.14	Perintah untuk <i>Pull Image mitmproxy</i>	48
4.15	Perintah untuk <i>Pull Image mitmproxy</i>	48
4.16	Command untuk mengarahkan <i>client</i> ke halaman	
	login	49
4.17	Perintah untuk Membaca File Log dari Mitmrproxy	51
4.18	Perintah untuk Membaca File Log dari Client	52
2.1	Isi Berkas app.conf	87
2.2	Command untuk Reload Supervisor	88
2.3	Command untuk mengaktifkan konfigurasi Nginx	88
2.4	Command untuk merestart Nginx	88
2.5	Isi Berkas app	88

BAB I

PENDAHULUAN

Pada bab ini akan dipaparkan mengenai garis besar Tugas Akhir yang meliputi latar belakang, tujuan, rumusan dan batasan permasalahan, metodologi pembuatan Tugas Akhir, dan sistematika penulisan.

1.1 Latar Belakang

Seiring dengan perkembangan zaman yang sangat pesat, negara-negara sudah mempunyai teknologi yang sangat maju. Teknologi mempunyai peranan yang sangat penting dalam kehidupan manusia, karena dengan adanya teknologi, manusia bisa saling berhubungan dengan mudah. Sekarang teknologi sudah semakin canggih. Teknologi yang paling populer sekarang ini adalah internet karena dengan adanya internet, banyak informasi-informasi yang dapat kita ambil dengan mudah. Internet merupakan suatu perpustakaan besar yang di dalamnya terdapat sangat banyak informasi yang berupa teks dalam bentuk media elektronik. Selain itu internet dikenal sebagai dunia maya, karena hampir seluruh aspek kehidupan di dunia nyata ada di internet, seperti olah raga, politik, hiburan, akademik, bisnis, dan lain sebagainya. Internet juga mempunyai peranan yang sangat penting dalam dunia pendidikan, karena dengan adanya internet bisa menambah ilmu pengetahuan kita dan dapat menambah motivasi belajar siswa ataupun mahasiswa. Dengan dimanfaatkan internet dalam dunia pendidikan agar siswa atau mahasiswa dapat memiliki komitmen untuk belajar secara aktif dan memiliki teknis kemampuan khususnya di bidang pendidikan. Oleh karena itu, internet dapat mempermudah proses belajar mengajar dengan baik.

Dalam dunia pendidikan, internet telah menjadi *platform* penting, misalnya adalah proses belajar mengajar yang dilakukan secara *online* dengan e-learning, ataupun ketika pengajar

memberikan nilai kepada siswanya dilakukan secara *online*, dan lain sebagainya. Keamanan menjaga data-data dalam dunia pendidikan, melindungi terhadap penggunaan malware, menerapkan kepatuhan akses internet, menyederhanakan manajemen jaringan menjadi tantangan utama untuk manajemen TI. Maka dari itu dibutuhkan sebuah *online* yang digunakan sebagai *internet access management* atau untuk melakukan manajemen akses terhadap *user* yang menggunakan jaringannya.

Namun akan terjadi permasalahan ketika banyak *user* yang mengakses internet dengan menggunakan *server* yang digunakan sebagai *internet access management*. Dalam pembacaan *log history* dari setiap *user* akan tercampur karena hanya melewati satu *server* saja.

Dalam tugas akhir ini akan dibuat sebuah rancangan sistem pada server yang akan dijadikan sebagai internet access management, yang memungkinkan untuk mencatat setiap log history dari setiap user yang mengakses internet secara detail. Rancangan sistem pada server akan menggunakan kontainer docker. Kontainer docker merupakan operating-system-level virtualization untuk menjalankan beberapa sistem linux yang terisolasi (kontainer) pada sebuah host. Kontainer berfungsi untuk mengisolasi aplikasi atau servis dan dependensinya. Untuk setiap servis atau aplikasi yang terisolasi dibutuhkan satu kontainer pada server host yang ada dan setiap kontainer akan menggunakan sumber daya yang ada pada server host selama kontainer tersebut menyala.

1.2 Rumusan Masalah

Berikut beberapa hal yang menjadi rumusan masalah dalam tugas akhir ini:

- 1. Bagaimana cara client untuk melakukan autentifikasi?
- 2. Bagaimana cara membuat sebuah kontainer docker secara

- otomatis ketika terdapat *client* yang akan mengakses internet?
- 3. Bagaimana cara mengarahkan *traffic* dari *client* ke kontainer *docker* yang sesuai?
- 4. Bagaimana cara mencatat aktivitas dari *client*?
- 5. Bagaimana perbandingan performa antara IAM konvensional dengan IAM berbasi kontainer?
- 6. Bagaimana mengevaluasi penggunaan sumber daya dan skalabilitas pada *docker host*?

1.3 Batasan Masalah

Dari permasalahan yang telah diuraikan di atas, terdapat beberapa batasan masalah pada tugas akhir ini, yaitu:

- 1. Satu *client* yang berhasil *login* akan disediakan satu kontainer *docker*.
- 2. Kontainer yang digunakan adalah docker.
- 3. Parameter untuk mengetahui apa saja yang diakses oleh *client* adalah *access log* dari *client* tersebut.
- 4. Setiap *client* mendapatkan IP *private*.
- 5. Performa yang diukur adalah *response time*.
- 6. Bahasa pemrograman yang digunakan adalah *Python*.

1.4 Tujuan

Tugas akhir dibuat dengan beberapa tujuan. Berikut beberapa tujuan dari pembuatan tugas akhir:

- 1. Mengetahui cara bagaimana *client* dapat melakukan *autentifikasi*.
- 2. Mengimplementasikan metode untuk membuat sebuah kontainer terhadap *client* yang telah berhasil *login* ke jaringan ITS.

- 3. Mengetahui cara untuk mengarahkan *traffic* dari *client* ke kontainer *docker* yang sesuai.
- 4. Mengetahui bagaimana cara mencatat aktivitas *client*.
- 5. Mengetahui penggunaan sumber daya dan skalabilitas pada *docker host.*

1.5 Manfaat

Tugas akhir dibuat dengan beberapa manfaat. Berikut beberapa manfaat dari pembuatan tugas akhir:

- 1. Mengetahui cara bagaimana *client* dapat melakukan *autentifikasi*.
- 2. Mengethaui cara untuk mengarahkan *traffic* dari *client* ke kontainer *docker* yang sesuai.
- 3. Mempermudah pencatatan aktivitas dari masing-masing *client* yang mengakses internet.
- 4. Meringankan beban dari penggunaan *server* di ITS karena penggunaan kontainer *docker* lebih ringan.

1.6 Metodologi

Metodologi yang digunakan pada pengerjaan Tugas Akhir ini adalah sebagai berikut:

1.6.1 Studi literatur

Studi literatur merupakan langkah yang dilakukan untuk mendukung dan memastikan setiap tahap pengerjaan tugas akhir sesuai dengan standar dan konsep yang berlaku. Pada tahap studi literatur ini, akan dilakukan studi mendalam mengenai kontainer docker, flask, mitmproxy, dan pembuatan aturan dengan menggunakan iptables. Adapun literatur yang dijadikan sumber berasal dari paper, buku, materi perkuliahan, forum serta artikel dari internet.

1.6.2 Desain dan Perancangan Sistem

Tahap ini meliputi perancangan sistem berdasarkan studi literatur dan pembelajaran konsep. Tahap ini merupakan tahap yang paling penting dimana bentuk awal aplikasi yang akan diimplementasikan didefinisikan. Pada tahapan ini dibuat kasus penggunaan yang ada pada sistem, arsitektur sistem, serta perencanaan implementasi pada sistem.

1.6.3 Implementasi Sistem

Implementasi merupakan tahap membangun implementasi rancangan sistem yang telah dibuat. Pada tahapan ini merealisasikan apa yang telah didesain dan dirancang pada tahapan sebelumnya, sehingga menjadi sebuah sistem yang sesuai dengan apa yang telah direncanakan.

1.6.4 Uji Coba dan Evaluasi

Pada tahapan ini dilakukan uji coba terhadap sistem yang telah dibuat. Pengujian dan evaluasi akan dilakukan dengan melihat kesesuaian dengan perencanaan. Selain itu, tahap ini juga akan melakukan uji performa sistem dan melakukan perbandingan dengan metode lain untuk mengetahui efisiensi penggunaan sumber daya serta evaluasi berdasarkan hasil uji performa tersebut.

1.7 Sistematika Laporan

Buku tugas akhir ini bertujuan untuk mendapatkan gambaran dari pengerjaan tugas akhir ini. Selain itu, diharapkan dapat berguna bagi pembaca yang berminat melakukan pengambangan lebih lanjut. Secara garis besar, buku tugas akhir ini terdiri atas beberapa bagian seperti berikut:

1. Bab I Pendahuluan

Bab yang berisi latar belakang, tujuan, manfaat, permasalahan, batasan masalah, metodologi yang digunakan dan sistematika laporan.

2. Bab II Dasar Teori

Bab ini berisi penjelasan secara detail mengenai dasar-dasar penunjang dan teori-teori yang yang digunakan dalam pembuatan tugas akhir ini.

3. Bab III Desain dan Perancangan

Bab ini berisi tentang analisis dan perancangan sistem yang dibuat, termasuk di dalamnya mengenai analisis kasus penggunaan, desain arsitektur sistem, dan perancangan implementasi sistem.

4. Bab IV Implementasi

Bab ini membahas implementasi dari desain yang telah dibuat pada bab sebelumnya. Penjelasan berupa pemasangan alat dan kode program yang digunakan untuk mengimplementasikan sistem.

5. Bab V Uji Coba dan Evaluasi

Bab ini membahas tahap-tahap uji coba serta melakukan evaluasi terhadap sistem yang dibuat.

6. Bab VI Kesimpulan dan Saran

Bab ini merupakan bab terakhir yang memberikan kesimpulan dari hasil percobaan dan evaluasi yang telah dilakukan. Pada bab ini juga terdapat saran bagi pembaca yang berminat untuk melakukan pengembangan lebih lanjut.

BAB II

TINJAUAN PUSTAKA

2.1 Python

Python adalah bahasa pemrograman interpretatif multiguna dengan prinsip agar sumber kode yang dihasilkan memiliki tingkat keterbacaan yang baik. Python diklaim sebagai bahasa yang menggabungkan kapabilitas, kemampuan, dengan sintaksis kode yang sangat jelas, dan dilengkapi dengan fungsionalitas pustaka standar yang besar serta komprehensif. Python beragam paradigma pemrograman, mendukung seperti pemrograman berorientasi objek, pemrograman imperatif, dan pemrograman fungsional. Python dapat digunakan untuk berbagai keperluan pengembangan perangkat lunak dan dapat berjalan di berbagai platform sistem operasi. [1]

2.2 Flask

Flask adalah sebuah kerangka kerja web. Artinya, Flask menyediakan perangkat, pustaka, dan teknologi yang memungkinkan seorang pengembang untuk membangun aplikasi berbasis web. Aplikasi web yang bisa dibangun bisa berupa sebuah halaman web, blog, wiki, bahkan untuk web komersial. Flask dibangun berbasiskan pada Werkzeug, Jinja 2, dan MarkupSafe yang mana menggunakan bahasa pemrograman Python sebagai basisnya. Flask sendiri pertama kali dikembangkan pada tahun 2010 dan didistribusikan dengan lisensi BSD. [2]

Flask termasuk sebagai perangkat kerja mikro karena tidak membutuhkan banyak perangkat atau pustaka tertentu agar bisa bekerja. Flask tidak menyediakan fungsi untuk melakukan interaksi dengan basis data, tidak mempunya validasi *form* atau fungsi lain yang umumnya bisa digunakan dan disediakan pada

sebuah kerangka kerja web. Meskipun memiliki kemampuan yang minim, tapi Flask mendukung dan memberikan kemudahan bagi pengembang untuk menambahkan pustaka sendiri untuk mendukung aplikasinya. Berbagai pustaka seperti validasi *form*, mengunggah file, berbagai macam teknologi autentifikasi bisa digunakan dan tersedia untuk Flask. Bahkan pustaka-pustaka pendukung tersebut lebih sering diperbarui dibandingkan dengan Flasknya sendiri.

2.3 Gunicorn

Gunicorn atau 'Green Unicorn' adalah Python WSGI HTTP Server untuk UNIX. Fungsi dari Gunicorn ini adalah sebagai pelayan sebuah aplikasi atau sebagai server dari sebuah perangkat lunak yang dikembangkan oleh pengembang. [3]

Gunicorn sendiri merupakan salah satu dari sekian banyak WSGI Server. Keunggulan dari Gunicorn sendiri adalah, Gunicorn mampu menangani atau kompatibel dengan berbagai macam kerangka kerja web, sangat mudah untuk diimplementasikan, hanya membutuhkan sedikit sumber daya dari server yang terpasang Gunicorn, dan juga kerja dari Gunicorn yang sangat cepat.

Gunicorn mengimplementasikan spesifikasi standar server WSGI PEP3333 sehingga dapat menjalankan perangkat lunak berbasis web yang dikembangkan dengan bahasa pemrograman python. Sebagai contoh, perangkat lunak berbasis web yang digunakan oleh penulis menggunakan kerangka kerja Flask, maka Gunicorn dapat menanganinya.

2.4 Supervisor

Supervisor adalah sistem yang berbasis *client* atau server, yang memungkinkan penggunanya utuk memantau dan juga

mengontrol sejumlah proses pada sistem operasi untuk UNIX. Beberapa faktor terbentuknya Supervisor antara lain adalah, kenyamanan, ketepatan, delegasi, dan proses grup dalam menggunakan perangkat lunak Supervisor. Beberapa keunggulan dari perangkat lunak Supervisor antara lain, konfigurasi yang sederhana, proses yang terpusat, efisien, dapat diperluas penggunaannya, dan juga kompatibel dengan berbagai macam sistem operasi. Komponen dari Supervisor terbagi menjadi dua, antara lain sebagai berikut. [4]

2.4.1 Supervisord

Supervisord merupakan bagian dari Supervisor yang bertanggung jawab untuk memulai *child programs* atas permintaannya sendiri, menanggapi perintah dari *client*, melakukan *restart* secara otomatis ketika terjadi kerusakan pada proses, mencatat bagian dari proses stdout dan stderr *output*, juga menghasilan dan menangani *events* yang berhubungan dengan bagian-bagian yang digunakan selama *subprocess* tersebut berjalan.

2.4.2 Supervisorctl

Supervisoretl merupakan bagian dari *command-line* yang digunakan oleh *client*. Supervisoretl menyediakan antarmuka yang mirip dengan fitur *shell* yang disediakan oleh Supervisord. Dari Supervisoretl, pengguna dapat terhubung dengan proses Supervisord yang berbeda satu per satu, mendapatkan status dari *subprocess* yang telah dikontrol, menghentikan atau memulai *subprocess* yang telah dikontrol, dan juga mendapatkan semua daftar proses yang berjalan pada Supervisord.

Command-line dari client berhubungan ke server melalui socket domain UNIX atau melalui socker internet (TCP). Server dapat menyatakan bahwa client harus memberikan autentifikasi

sebelum mengizinkannya untuk melakukan sebuah perintah. Proses *client* biasanya menggunakan *file* konfigurasi yang sama dengan *server*.

2.5 Nginx

Nginx adalah sebuah perangkat lunak yang bisa digunakan untuk web server, load balancer, dan reverse proxy. Nginx terkenal karena stabil, memiliki tingkat performa tinggi dan konsumsi sumber daya yang minim. Pada kasus saat terjadi koneksi dalam jumlah yang banyak secara bersamaan, penggunaan memory, CPU, dan sumber daya sistem yang lain sangat kecil dan stabil. [5]

Nginx bisa digunakan untuk menyajikan kontent HTTP yang dinamis menggunakan FastCGI, SCGI untuk menangani scripts, aplikasi WSGI, dan bisa juga digunakan sebagai sebuah *load balancer*. Nginx menggunakan *asynchronous event-driven* untuk menangani permintaan. Dengan menggunakan model ini bisa, pengembang bisa melakukan predeksi kinerja Nginx saat terjadi jumlah permintaan yang banyak.

2.6 Iptables

Firewall merupakan sebuah mekanisme wajib access kontrol antar jaringan ataupun antar sistem. Firewall ini sangat penting karena bertujuan untuk memastikan keamanan dari sebuah jaringan. Firewall dapat menjadi filter yang sangat sederhana dan mudah digunakan, tetapi firewall juga dapat menjadi filter yang sangat penting bagi sebuah jalan keluar suatu jaringan. Prinsip dari penggunaan firewall tetaplah sama, dimana penggunaannya untuk monitoring dan filtering semua pertukaran informasi di jaringan internal dan juga di jaringan external.

Netfilter / Iptables merupakan sebuah sistem firewall

berbasis linux yang mempunyai fungsi yang sangat berguna. *Netfilter | iptables kernel* menggunakan sebuah mekanisme baru, bernama Iptables. *Ipbtales* sendiri merupakan sebuah perangkat lunak atau alat yang dapat melakukan manajemen *filter* dari sebuah paket yang ada pada suatu *kernel*. Iptables mempunyai *table* dan juga *chain* dari masing-masing *table*. *Table* pada Iptables terdiri dari tiga, atau juga bisa disebut Iptables memiliki tiga fungsi utama, antara lain menjadi penyaring paket, mentranslasikan suatu alamat, dan melakuakn penghalusan paket seperti TTL, TOS, dan MARK. [6]

Filter table merupakan sebuah konfigurasi default dari Iptables, dimana pada filter table terdapat tiga chain, antara lain chain INPUT, FORWARD, dan OUTPUT. NAT table berfungsi untuk merubah tujuan dari sumber dari sebuah paket. Pada NAT table terdapat dua chain, antara lain chain PREROUTING dan POSTROUTING. Mangle table berfungsi untuk menghaluskan paket atau juga dapat mengubah isi dari sebuah data kecuali IP address dan port address. Pada mangle table terdapat dua chain, antara lain POSTROUTING dan OUTPUT.

2.7 MySQL

MySQL adalah sebuah perangkat lunak terbuka untuk melakukan manajemen basis data SQL atau DBMS. MySQL ditulis dalam bahasa pemrograman C dan C++. MySQL merupakan salah satu perangkat lunak terbuka yang banyak disukai oleh pengembang dan digunakan dalam banyak aplikasi web. Parser SQL yang digunakan ditulis dalam bahasa pemrograman yacc. MySQL bekerja pada banyak *platform*, seperti FreeBSD, HP-UX, Linux, macOS, Microsoft Windows, NetBSD, OpenBSD, OpenSolaris, Oracle Solaris, dan SunOS. MySQL tersedia sebagai perangkat lunak gratis di bawah lesensi *GNU General Public License* (GPL), tetapi juga tersedia lisensi

komersial untuk kasus-kasus dimana penggunanya tidak cocok dengan penggunaan GPL. [7]

Setiap pengguna dapat secara bebas menggunakan MySQL, namun dengan batasan perangkat lunak tersebut tidak boleh dijadikan produk turunan yang bersifat komersial. MySQL sebenarnya merupakan turunan salah satu konsep utama dalam basis data yang telah ada sebelumnya, yaitu SQL (*Structured Query Language*). SQL adalah sebuah konsep pengoperasian basis data, terutama untuk proses pemilihan atau seleksi dan pemasukan data, yang memungkinkan pengoperasian data dikerjakan dengan mudah.

Kehandalan suatu sistem basis data dapat diketahui dari cara pengoptimasiannya melakukan keria dalam proses perintah-perintah SQL yang dibuat oleh pengguna maupun program-program aplikasi yang memanfaatkannya. Sebagai server basis data, MySQL mendukung operasi basis data transaksional maupun operasi basis data non-transaksional. Pada modus operasi non-transaksional, MySQL dapat dikatakan handal dalam hal unjuk kerja dibandingkan server basis data kompetitor lainnya. Namun pada modus non-transaksional tidak ada jaminan atas reliabilitas terhadap data yang tersimpan, karenanya modus non-transaksional hanya cocok untuk jenis aplikasi yang tidak membutuhkan reliabilitas data seperti aplikasi blogging berbasis web (wordpress), CMS, dan sejenisnya. Untuk kebutuhan sistem yang ditujukan untuk bisnis sangat disarankan untuk menggunakan modus basis data transaksional, hanya saja sebagai konsekuensinya unjuk kerja MySQL pada modus transaksional secepat unjuk kerja pada tidak modus non-transaksional.

2.8 Mitmproxy

Mitmproxy adalah sebuah sebuah interception proxy untuk HTTP dengan antarmuka pengguna console yang ditulis dengan bahasa Python. Mitmproxy merupakan sebuah perangkat lunak yang interaktif dimana Mitmproxy memungkinkan dapat memotong dan memodifikasi HTTP requests atau response dengan sangat cepat.

Mitmproxy adalah sebuah *proxy* berkemampuan SSL yang berfungsi sebagai *man-in-the-middle* untuk komunikasi HTTP dan HTTPS. Untuk dapat mengetahui atau memodifikasi komunikasi HTTPS, Mitmproxy berupra-pura menjadi *server* ke *client* dan *client* ke server, sementara itu Mitmproxy diposisikan di tengah-tengah berfungsi untuk menerjemahkan lalu lintas dari keduanya. Mitmproxy menghasilkan sertifikat *on-the-fly* untuk mengetahui *client* agar percaya bahwa mereka berkomunikasi dengan *server*. [8]

Pertama kali Mitmproxy dimulai, maka akan menghasilkan sertifikat SSL yang berada pada /.mitmproxy/cert.pem. Sertifikat ini akan digunakan untuk browser-side. Karena tidak akan cocok dengan domain yang client kunjungi, dan tidak akan terhadap otoritas sertifikasi, memverifikasi client menambahkan pengecualian untuk setiap situs yang client kunjungi. Permintaan SSL dicegat dengan hanya mengamsumsikan bahwa semua permintaan CONNECT adalah HTTPS. Sambungan dari browser dibungkus SSL, dan kita membaca permintaan dengan berpura-pura menjadi server yang menghubungkan.

2.9 VirtualBox

VirtuaBox merupakan salah satu produk perangkat lunak yang sekarang dikembangkan oleh Oracle. Aplikasi ini pertama

kali dikembangkan oleh perusahaan Jerman, Innotek GmbH. Februari 2008, Innotek GmbH diakusisi oleh Sun Micorsystems. Sun Microsystems kemudian juga diakusisi oleh Oracle. VirtualBox berfungsi untuk melakukan virtualisasi sistem operasi. VirtualBox juga dapat digunakan untuk membuat virtualisasi jaringan komputer sederhana. Penggunaan VirtualBox ditargetkan untuk server, desktop, dan penggunaan embedded

Berdasarkan jenis VMM yang ada, VirtualBox merpakan jenis *hypervisor type 2*. VirtualBox sendiri memiliki berbagai macam kegunaan, diantaranya VirtualBox dapat memainkan semua sistem operasi baik itu menggunakan windows, linux, atau turunan linux lainnya. VirtualBox juga dapat dipergunakan untuk mengujicoba OS baru. VirtualBox juga dapat digunakan sebgai media untuk membaut simulasi jaringan.

2.10 Docker

Docker adalah sebuah aplikasi yang bersifat *open source* yang berfungsi sebagai wadah untuk memasukkan sebuah perangkat lunak secara lengkap beserta semua hal yang dibutuhkan oelh perangkat lunak tersebut agar dapat berfungsi sebagaimana mestinya. Docker dapat dijalankan di berbagai sistem operasi, pengembang dapat dengan mudah menggunakan layanan Docker melalui https://hub.docker.com untuk mengunduh *imaes* ataupun membuat *images* yang diinginkan.

2.10.1 Docker Container

Docker container atau kontainer Docker bisa dikatakan sebagai sebuah wadah atau tempat, dimana kontainer Docker ini dibuat dengan menggunakan docker image. [10] Saat kontainer Docker dijalankan, maka akan terbentu sebuah layer di atas

docker image. Contohnya saat menggunakan image Ubuntu, kemudian membuat sebuah kontainer Docker dari image Ubuntu tersebut dengan nama mitmproxy-ubuntu. Setelah itu dilakukan pemasangan sebuah perangkat lunak, misalnya Mitmproxy, maka secara otomatis kontainer Docker mitmproxy-ubuntu akan berada di atas layer image Ubuntu, dan diatasnya lagi merupakan layer mitmproxy berada. Docker Kontainer atau Kontainer Docker ke depannya dapat digunakan untuk menghasilkan sebuah docker images. Docker images yang dihasilkan dari kontainer Docker itu sendiri nantinya dapat digunakan kembali untuk membuat kontainer Docker yang lainnya.

2.10.2 Docker Images

Docker images adalah sebuah blueprint atau rancangan dasar dari sebuah perangkat lunak berbasis Docker yang bersifat read-only. Blueprint ini sendiri merpakan sebuah sistem operasi atau sistem operasi yang telah dipasang berbagai perangkat lunak dan pustaka pendukung. Docker iamges berfungsi untuk membuat kontainer Docker, dimana dengan menggunakan satu docker iamge dapat dibuat lebih dari satu kontainer Docker. Docker image sendiri dapat menyelesaikan permasalahan yang dikenal dengan "dependency hell", dimana sulitnya untuk melengkapi dependensi sebuah perangkat lunak. Permasalahan tersebut dapat diselesaikan karena semua kebutuhan perangkat lunak sudah berada di dalamnya.

2.10.3 Docker Registry

Docker Registry adalah kumpulan dari berbagai macam docker image yang bersifat tertutup maupun terbuka yang dapat diakses di https://hub.docker.com/ atau dapat diakses pada server sendiri. Dengan menggunakan docker registry, seseorang dapat menggunakan docker image yang telah dibuat oleh orang

lainnya. Hal seperti ini dapat mempermudah seseorang untuk melakukan pengembangan dan jugatransfer aplikasi. [11]

BABIII

DESAIN DAN PERANCANGAN

Pada bab ini dibahas mengenai analisis dan perancangan dari sistem.

3.1 Deskripsi Umum Sistem

Sistem yang akan dibuat adalah sebuah sebuah sistem yang dapat membuat sebuah kontainer *docker* secara otomatis untuk setiap satu *client* yang telah *login* ke dalam sistem. Saat *client* belum *login* ke dalam sistem, maka *client* tersebut akan diarahkan ke halaman *login* dari sistem. Saat *client* mencoba untuk *login* ke dalam sistem, maka sistem akan melakukan pengecekan di dalam basis data apakah *username* dan *password* yang di*input*kan sudah benar atau salah.

Setelah *client* berhasil *login* ke dalam sistem, sistem akan mengirimkan perintah untuk membuat kontainer *docker* yang berisikan Mitmproxy ke *docker host*. Setelah berhasil membuat kontainer *docker* untuk client tersebut, maka *traffic* internet dari *client* tersebut akan diarahkan ke kontainer *docker* berisikan Mitmproxy yang baru saja dibuat. Setelah itu client dapat mengakses internet.

3.2 Kasus Penggunaan

Terdapat empat aktor dalam sistem yang akan dibuat yaitu Client, Server Login, Administrator, dan Docker Host. Client adalah aktor yang melakukan proses login ke dalam sistem, server login adalah aktor yang melakukan proses permintaan penyediaan kontainer docker, administrator adalah aktor yang melakukan monitoring kontainer docker yang sedang berjalan, sedangkan docker host adalah aktor yang akan menjadi tempat penyedia kontainer dan menerima perintah penyediaan kontainer. Diagram kasus penggunaan menggambarkan kebutuhan -

kebutuhan yang harus dipenuhi sistem. Diagram kasus penggunaan digambarkan pada Gambar 3.1.

Gambar 3.1: Digram Kasus Penggunaan

Digram kasus penggunaan pada Gambar 3.1 dideskripsikan masing-masing pada Tabel 3.1.

Tabel 3.1: Daftar Kode Kasus Penggunaan

Kode Kasus	Nama Kasus	Keterangan
Penggunaan	Penggunaan	
UC-0001	Login	Client dapat login ke
		dalam sistem.
UC-0002	Mengirim	Server login dapat
	Permintaan	mengirimkan
	Penyediaan	permintaan
	Kontainer	penyediaan kontainer
	Docker	docker pada docker
		host.
UC-0003	Menerima	Proses dimana docker
	Perintah	host akan menerima
	Penyediaan	perintah dari sistem,
	Kontainer	untuk menyediakan
	Docker	kontainer secara
		otomatis.
UC-0004	Membuat	Proses dimana
	Aturan untuk	docker host akan
	Mengarahkan	membuat aturan untuk
	Traffic Client	mengarahkan <i>traffic</i>
		<i>client</i> ke halaman
		login dari sistem atau
		untuk membuat aturan
		untuk mengarahkan
		traffic client ke
		kontainer docker dari
		tiap-tiap <i>client</i> .

Kode Kasus	Nama Kasus	Keterangan
Penggunaan	Penggunaan	
UC-0005	Membaca Log File dari Client	Proses dimana administrator dari sebuah jaringan dapat membaca log file dari client sampai pada client terakhir mengakses internet.
UC-0006	Melihat Secara Stream Log File dari Client	Proses dimana administrator dari sebuah jaringan dapat melihat log file dari client secara langsung atau live.

Tabel 3.1: Daftar Kode Kasus Penggunaan

3.3 Arsitektur Sistem

Pada sub-bab ini, dibahas mengenai tahap analisis arsitektur, analisis teknologi dan desain sistem yang akan dibangun.

3.3.1 Desain Umum Sistem

Berdasarkan deskripsi umum sistem yang telah ditulis diatas, dapat diperoleh kebutuhan sistem ini, diantaranya :

- 1. Pembuatan halaman *login* dari sebuah sistem.
- 2. Pembuatan aturan untuk mengarahkan *traffic client* ke halaman *login* dari sistem.
- 3. Pembuatan *middleware* untuk menerima permintaan dari *client*.
- 4. Pembuatan aturan untuk mengarahkan *traffic client* ke kontainer *docker* dari tiap-tiap *client*.

- 5. Pemasangan kontainer pada docker host.
- 6. Pembuatan halaman *administrator* untuk membaca *log file* dari *client*.

Untuk memenuhi kebutuhan sistem tersebut, penulis membagi sistem menjadi beberapa komponen. Komponen yang akan dibangun antara lain:

- 1. Pembuatan halaman *login* dari sebuah sistem.
 - Berfungsi sebagai tampilan antarmuka dari halaman *login* sebuah sistem untuk *client*. Selain itu juga berfungsi untuk mengirimkan permintaan penyediaan kontainer *docker* ke *docker host*
- 2. Pembuatan aturan untuk mengarahkan *traffic client* ke halaman *login* dari sistem.
 - Berfungsi untuk mengarahkan tiap *client* yang belum *login* ke dalam sistem, ke halaman *login* dari sistem. Hal ini dilakukan dengan menjalankan sebuah *script* dengan menggunakan Iptables pada *docker host*.
- 3. Pembuatan *middleware* untuk menerima permintaan dari *client*.
 - Berfungsi untuk menerima permintaan pembuatan kontainer *docker* dari *client*. Selain itu juga berfungsi untuk membuat kontainer *docker* secara otomatis.
- 4. Pembuatan aturan untuk mengarahkan *traffic client* ke kontainer *docker* dari tiap-tiap *client*.
 - Berfungsi untuk mengarahkan *traffic* dari tiap *client* yang telah berhasil *login*, ke kontainer *docker* dari tiap-tiap *client*. Hal ini dilakukan dengan menjalankan sebuah *script* dengan menggunakan Iptables pada *docker host*.
- 5. Pemasangan kontainer pada *docker host*.

 Berfungsi untuk memasangkan kontainer *docker* pada *docker host* secara otomatis. Hal ini dilakukan dengan menjalankan sebuah perintah penyediaan kontainer pada *docker host*.

6. Pembuatan halaman *administrator* untuk membaca *log file* dari *client*.

Berfungsi untuk melihat apa saja yang telak diakses oleh *client. Log* yang tersimpan terdapat *log* HTTP maupun *log* HTTPS. Hal ini dilakukan dengan menjalankan sebuah perintah untuk melihat *log file* dari suatu *client*.

Gambar 3.2: Arsitektur Komponen Sistem

Pada pada Gambar 3.2 ditunjukkan arsitektur sistem secara umum dengan detail-detail dari kompenen yang terdapat didalamnya. Setiap komponen tersebut akan diimplementasikan dengan teknologi pendukung yang dibutuhkan.

Nantinya tiap *client* akan mempunyai satu kontainer *docker* dan satu *port* secara pribadi. *Traffic* dari *client* tersebut akan diarahkan menuju ke kontainer *docker*nya dari tiap-tiap *client*,

setelah itu *client* baru dapat mengakses itnernet.

3.3.2 Pembuatan Halaman Login dari Sebuah Sistem.

Pembuatan halaman *login* dari sebuah sistem adalah komponen yang bertugas untuk menyediakan tampilan antarmuka dari halaman *login* untuk *client*. Awalnya semua *traffic* diarahkan menuju ke halaman *login* dari sebuah sistem, karena diasumsikan bahwa semua *client* diamsumsikan belum *login* ke dalam sistem. Supaya *client* dapat mengakses internet, maka *client* harus *login* ke dalam sistem terlebih dahulu dengan memasukkan *username* dan *password* dari *client* tersebut.

Dikarenakan ada beberapa kebutuhan yang harus dipenuhi, komponen pada pembuatan halaman *login* dari sebuah sistem dibagi lagi menjadi dua sub komponen, yaitu:

1. Basis Data

Basis data pada komponen pembuatan halaman *login* dari sebuah sistem berfungsi sebagai tempat penyimpanan data *username* dan *password* yang digunakan untuk *login* ke dalam sistem. Basis data juga berfungsi sebagai tempat penyimpanan data kontainer *docker* yang sudah dibuat.

2 Web Service

Web service berfungsi sebagai antarmuka untuk client ketika client akan login ke dalam sistem. Selain itu web service juga berfungsi untuk mengirimkan permintaan penyediaan kontainer docker ke docker host ketika terdapat client yang telah berhasil login ke dalam sistem.

Pada tugas akhir ini, bahasa Python dipilih sebagai bahasa pemrograman dan Flask dipilih sebagai kerangka kerja untuk bahasa pemrograman Python yang digunakan untuk mengimplementasikannya. Lalu, pada bagian penyimpanan data atau basis data, MySQL dipilih sebagai RDBMS untuk tugas akhir ini.

3.3.2.1 Desain Basis Data

Komponen basis data berfungsi sebagai tempat penyimpanan data *username* dan *password* yang digunakan untuk *login* ke dalam sistem. Dalam basis data ini terdapat satu entitas dan empat atribut, ditunjukkan pada Tabel 3.2

No	Kolom	Tipe	Keterangan
1	id	int(11)	Sebagai primary key pada
			tabel, nilai awal adalah
			AUTO_INCREMENT.
2	username	varchar(50)	Menunjukkan NRP dari
			mahasiswa yang telah
			terdaftar.
3	password	varchar(50)	Menunjukkan password
			dari NRP mahasiswa yang
			telah terdaftar.
4	isLogin	int(11)	Status apakah nrp tersebut
			sedang digunakan (1), atau
			sedang tidak digunakan
			(0).

Tabel 3.2: Atribut basis data nrp-mahasiswa

3.3.2.2 Desain Web Service

Komponen web service berfungsi untuk menyediakan antar muka halaman login untuk client dan untuk mengirimkan permintaan pembuatan kontainer docker secara otomatis pada docker host setelah terdapat client yang berhasil login ke dalam sistem. Halaman login akan menggunakan Material UI untuk mendapatkan tampilan yang sederhana dan nyaman untuk digunakan. Desain web service untuk halaman login dari sistem dapat dilihat pada Gambar 3.3.

Gambar 3.3: Desain Halaman Login

Lalu untuk desain *backend* dari *web serive* untuk halaman *login* akan menggunakan bahasa pemrograman Python degan kerangka kerja Flask yang akan dijalankan dengan Gunicorn. Kemudian Gunicorn akan dijalankan dengan Supervisor sebagai *service*. Lalu akan digunakan *nginx* sebagai *web server* dari halaman *login* dari sebuah sistem. Desain *backend* dari *web service* untuk halaman *login* dapat dilihat pada Gambar 3.4.

Gambar 3.4: Desain Backend dari Halaman Login

3.3.3 Perancangan Pembuatan Aturan untuk Mengarahkan Traffic Client ke Halaman Login dari Sistem

Pembuatan aturan untuk mengarahkan *traffic client* ke halaman *login* dari sistem adalah komponen yang bertugas untuk membelokkan *traffic* dari *client* yang akan menuju ke internet. Awalnya semua *traffic* dari satu *subnet client* tersebut akan diarahkan ke halaman *login* dari sistem dengan membuat sebuah aturan menggunakan Iptables, karena asumsinya adalah belum ada *client* yang berhasil *login* ke dalam sistem. Desain perancangan pembuatan aturan untuk mengarahkan *traffic client* ke halaman *login* dapat dilihat pada Gambar 3.5.

Gambar 3.5: Desain Mengarahkan Traffic Client ke Halaman Login

3.3.4 Pembuatan *Middleware* untuk Menerima Permintaan dari *Client*

Pembuatan *middleware* untuk menerima permintaan dari *client* adalah komponen yang bertugas untuk menerima permintaan dari *client* yang telah berhasil *login* ke dalam sistem. Permintaan yang dikirimkan oleh *client* adalah permintaan untuk membuat kontainer *docker* secara otomatis. Nantinya setiap satu *client* yang berhasil *login* ke dalam sistem akan dibuatkan satu kontainer *docker*.

Dikarenakan ada beberapa kebutuhan yang harus dipenuhi, komponen pada pembuatan *middleware* untuk menerima permintaan dari *client* dibagi lagi menjadi dua buah komponen, yaitu:

1. Basis Data

Basis data berfungsi sebagai tempat penyimpanan data kontainer *docker* yang sudah dibuat.

2. Web Service

Web service berfungsi sebagai penerima permintaan dari client, yang nantinya akan membuat sebuah kontainer docker secara otomatis pada docker host.

Sama seperti komponen pembuatan halaman *login* dari sebuah sistem, pada tugas akhir ini, bahasa Python dipilih sebagai bahasa pemrograman yang digunakan untuk mengimplementasikannya. Lalu, pada bagian penyimpanan data atau basis data, MySQL dipilih sebagai RDBMS untuk tugas akhir ini.

3.3.4.1 Desain Basis Data

Komponen basis data berfungsi sebagai tempat penyimpanan data kontainer *docker* yang sudah dibuat. Dalam basis data ini terdapat satu entitas dan empat atribut, ditunjukkan pada Tabel 3.3.

No	Kolom	Tipe	Keterangan
1	id	int(11)	Sebagai primary key pada tabel, nilai awal adalah
			AUTO_INCREMENT.
2	username	varchar(50)	Menunjukkan NRP dari
			mahasiswa yang telah
			berhasil dibuatkan satu
			kontainer docker.

Tabel 3.3: Atribut basis data kontainer

No	Kolom	Tipe	Keterangan
3	ip	varchar(50)	Menunjukkan IP dari
			client yang telah berhasil
			dibuatkan satu kontainer
			docker.
4	port	varchar(50)	Menunjukkan <i>port</i> dari
			client yang telah berhasil
			dibuatkan satu kontainer
			docker.
5	createdAt	datetime	Menunjukkan waktu
			pertama kali kontainer
			docker tersebut dibuat.

Tabel 3.3: Atribut basis data kontainer

3.3.4.2 Desain Web Service

Komponen web service berfungsi untuk menerima permintaan dari client untuk membuat satu kontainer docker pada docker host. Kontainer docker yang akan dibuat pada docker host akan dibuat secara otomatis oleh sistem, dan kontainer docker yang dibuat akan memiliki nama sesuai dengan IP dari client yang telah berhasil login ke dalam sistem. Setelah menerima permintaan dari client, maka sistem akan mengirimkan perintah untuk membuat kontainer docker khusus untuk satu client

3.3.5 Perancangan Pemasangan Kontainer pada *Docker Host*

Pemasangan kontainer adalah kompenen yang berfungsi untuk memasang kontainer *docker* yang berisi Mitmproxy pada *docker host* setelah ada permintaan dari *client* yang telah berhasil *login* ke dalam sistem. Proses ini dilakukan secara otomatis, dan nama dari kontainer *docker* tersebut akan sesuai dengan IP dari *client* yang telah berhasil *login* ke dalam sistem.

Saat kontainer *docker* telah berhasil dibuat, maka kontainer *docker* tersebut akan mempunyai satu *port* khusus yang sama dengan *client* yang baru saja *login. Port* khusus nantinya akan digunakan untuk mengarahkan *traffic* dari *client* yang akan mengakses internet.

Image Mitmproxy dipilih sebagai image pada kontainer docker karena Mitmproxy merupakan sebuah perangkat lunak yang interaktif dimana Mitmproxy memungkinkan dapat memotong dan memodifikasi HTTP requests atau response dengan sangat cepat. Mitmproxy sendiri juga dapat berjalan dengan transparent mode sehingga client tidak mengetahui jika traffic dari client tersebut ternyata melalui Mitmproxy. Gambar alur kerja dari Mitmproxy dengan transparent mode untuk HTTP dapat dilihat pada Gambar 3.6.

Gambar 3.6: Alur kerja dari mitmproxy transparent HTTP

Sedangkan gambar alur kerja dari Mitmproxy dengan *transparent mode* untuk HTTPS dapat dilihat pada Gambar 3.7.

Gambar 3.7: Alur kerja dari mitmproxy transparent HTTPS

3.3.6 Pembuatan Aturan untuk Mengarahkan *Traffic Client* ke Kontainer *Docker* dari Tiap-Tiap *Client*

Pembuatan aturan untuk mengarahkan *traffic client* ke kontainer *docker* dari tiap-tiap *client* adalah komponen yang bertugas untuk mengarahkan satu client ke satu kontainer *docker* yang sesuai. Setelah *client* berhasil *login* ke dalam sistem, maka aturan ini akan dibuat menggunakan Iptables. Lalu *client* juga akan diberikan sebuah aturan dengan menggunakan Iptables yang memperbolehkan *client* tersebut mengakses internet. Desain dari pembuatan aturan untuk mengarahkan *traffic client* ke kontainer *docker* dari tiap-tiap *client* dapat dilihat pada Gambar 3.8.

Gambar 3.8: Desain pembuatan aturan untuk mengarahkan *traffic client* ke kontainer *docker*

3.3.7 Pembuatan Halaman *Administrator* untuk Membaca *Log File* dari *Client*

Pembuatan halaman *administrator* untuk membaca *log file* dari *cient* adalah komponen yang bertugas untuk mengunduh *log file* dari *client* dan juga untuk membaca *log file* dari *client* secara langsung atau *live* maupun hanya pada saat *client* terakhir mengakses internet.

Halaman *administrator* akan menggunakan Boostsrap 4 untuk mendapatkan tampilan yang sederhana dan nyaman untuk digunakan. Desain dari halaman *administrator* dapat dilihat pada Gambar 3.9 dan Gambar 3.10 .

	Admin Page			
Dashboard	Thursday, 24 May 2	018		
			Seach	
	No User	Port	IP	Action

Gambar 3.9: Desain halaman dashboard *administrator traffic client* ke kontainer *docker*

	Admin Page
Dashboard	File Location 192.168.99.100
	Username : 5114100001 Stream Log Traffic
	Port : 49000
	IP: 192.168.99.100

Gambar 3.10: Desain pembuatan aturan untuk mengarahkan *traffic client* ke kontainer *docker*

(Halaman ini sengaja dikosongkan)

BAB IV

IMPLEMENTASI

Setelah melewati proses perancangan mengenai sistem yang akan dibuat, maka akan dilakukan implementasi dari sistem tersebut. Bab ini akan membahas mengenai implementasi dari sistem yang meliputi proses pembuatan setiap komponen sehingga sistem dapat berjalan dengan baik. Masing-masing proses pembuat komponen akan dilengkapi dengan *pseudocode* atau konfigurasi dari sistem.

4.1 Lingkungan Implementasi

Dalam mengimplementasikan sistem, digunakan beberapa perangkat pendukung sebagai berikut.

4.1.1 Perangkat Keras

Perangkat keras yang digunakan dalam pengembangan sistem adalah sebagai berikut:

- 1. Komputer dengan *processor* Intel(R) Core(TM) i5-2120 CPU @ 3.30GHz dan RAM 8GB
- 2. Komputer dengan *processor* Intel(R) Core(TM)2 Duo CPU E7200 @ 2.53GHz dan RAM 1GB

4.1.2 Perangkat Lunak

Perangkat lunak yang digunakan dalam pengembangan sistem adalah sebagai berikut:

- 1. Sistem Operasi Linux Mint 18.03 64 Bit sebagai *docker host*.
- 2. Sistem Operasi Ubuntu 14.04 LTS 64 Bit sebagai *client*.
- 3. Sistem Operasi Ubuntu Server 16.04 LTS 64 Bit sebagai server login.
- 4. Python versi 3.5.2 untuk pengembangan web service.
- 5. Flask versi 1.0.2 sebagai kerangka kerja Python.

- 6. Gunicorn versi 19.8.1
- 7. Supervisor versi 3.2.0
- 8. Nginx versi 1.10.3
- 9. Mitmrproxy versi 3.0.4 untuk mencatat semua *traffic* dari *client*.
- 10. MySQL versi 5.7.18 untuk Sistem Manajemen Basis Data.
- 11. Docker versi 1.13.1 sebagai kontainer yang akan di pasangkan pada *server*.
- 12. Iptables versi 1.6.0 untuk membuat aturan terhadap *client*.

4.2 Implementasi Pembuatan Halaman *Login* dari Sebuah Sistem

Halaman *login* dibangun pada sebuah *server* dengan IP 10.151.36.173 dengan menggunakan sistem operasi Ubuntu Server 16.04 LTS 64 Bit. Pada implementasi pembuatan halaman *login* dari sebuah sistem menggunakan perangkat lunak antara lain:

- 1. Python versi 3.5.2.
- 2 Flask versi 1 0 2
- 3. Gunicorn versi 19.8.1.
- 4. Supervisor versi 3.2.0.
- 5. Nginx versi 1.10.3.

Lalu sistem operasi yang digunakan adalah sistem operasi Ubuntu Server 16.04 LTS 64 Bit, yang akan dipasang pada *virtual machine* dengan menggunakan VirtualBox. Python akan berfungsi sebagai komponen dasar pembangunan sistem yang akan dibangun dengan menggunakan kerangka kerja Flask dan dijalankan dengan Gunicorn pada *server* dengan IP 10.151.36.173 dengan *port* 4000. Lalu Supervisor akan berfungsi sebagai sebuah *service* yang akan selalu menajalankan Gunicorn. Sedangkan Nginx akan berfungsi sebagai *web server* untuk perangkat lunak halaman *login* yang dijalankan oleh

Gunicorn pada *server* dengan IP 10.151.36.173 dengan *port* 4000 supaya bisa diakses oleh *client*. Implementasi pembuatan halaman *login* dari sebuah sistem akan terbagi menjadi implementasi *web service* dan implementasi basis data.

4.2.1 Implementasi Web Service pada Halaman Login

Diperlukan beberapa tahap, antara lain pemasangan perangkat lunak dan tahap konfigurasi. Tahap pemasangan perangkat lunak dan tahap konfigurasi pada *server* untuk halaman *login* dijelaskan pada Lampiran A.

Pada sub-bab implementasi web service pada halaman login akan dibagi lagi menjadi tiga bagian, antara lain implementasi tampilan antarmuka halaman login, rute web service pada halaman login dan pseduocode web service pada halaman login.

4.2.1.1 Implementasi Tampilan Antarmuka Halaman Login

Halaman *login* merupakan halaman utama yang menampilkan sebuah *form input* untuk *client*. Pada halaman ini terdapat dua *form input*, yaitu *form input* untuk Username atau NRP dari *client* dan juga *form input* untuk Password dari *client*. Implementasi antarmuka halaman *login* dapat dilihat pada Gambar 4.1.

Gambar 4.1: Halaman Login

4.2.1.2 Rute Web Service pada Halaman Login

Pada halaman *login* diperlukan adanya rute-rute yang bisa diakses untuk melayani *client*, supaya *client* dapat membuka tampilan antar muka dari halaman *login* dan juga supaya *client* dapat mengirimkan permintaan untuk membuat kontainer *docker* pada *docker host*. Daftar rute yang disediakan oleh halaman *loign* tertera pada Tabel 4.1.

Tabel 4.1: Daftar Rute Web Service

HTTP	Rute	Deskripsi
Method		
GET	/	Berfungsi untuk mengarahkan <i>redirect</i>
		ke rute <i>login</i> dengan <i>method</i> GET.
GET	/login	Berfungsi untuk menampilkan tampilan grafis antar muka halaman login ketika client belum login ke dalam sistem dan untuk menampilkan tampilan grafis antar muka halaman sukses login ketika client telah berasil login ke dalam sistem.

Tabel 4.1: Daftar Rute Web Service

HTTP	Rute	Deskripsi
Method		
POST	/login	Berfungsi untuk menyimpan data hasil input dari client dan mengirimkan perintah untuk membuat kontainer docker yang berisikan Mitmproxy secara otomatis pada docker host.
GET	/logout	Berfungsi untuk keluar dari sistem dan kontainer docker yang sudah dibuat untuk client yang telah berhasil login dengan menggunakan username tersebut akan di-destroy. Lalu aturan-aturan yang sudah dibuat dengan menggunakan Iptables untuk client tersebut juga dihapuskan.

4.2.1.3 Pseduocode Web Service pada Halaman Login

Ketika *client* belum *login* ke dalam sistem, maka akan diarahkan ke tampilan grafis antar muka dari halaman *login*. Lalu setelah *client* berhasil *login* ke dalam sistem, maka akan diarahkan ke tampilan grafis antar muka halaman sukses *login*. Pada Kode Sumber 4.1 diperlihatkan bagaimana implementasinya dalam bentuk *pseduocode*.

Kode Sumber 4.1: Pseudocode Web Service

```
Check whether the client is already login or
        not vet
2
3
     if session.get login
4
       open welcome page
5
     else
6
7
       open login page
8
9
       if login success
         session.get login = True
10
         send request to docker host
11
12
13
     return
```

4.2.2 Implementasi Basis Data pada Halaman Login

Berdasarkan hasil desain dan perancangan basis data pada bab 3 terdapat satu entitas yang diimplementasikan menjadi suatu tabel pada basis data MySQL, yaitu entitas nrp-mahasiswa. Detail implementasi *query* untuk membuat basis data dengan entitas nrp-mahasiswa seperti pada Kode Sumber 4.2.

```
CREATE TABLE nrp-mahasiswa (
id int(11) PRIMARY KEY AUTO_INCREMENT,
nrp VARCHAR(50)
password VARCHAR(50)
isLogin int(11)
);
```

Kode Sumber 4.2: Query untuk membuat tabel testing

4.3 Implementasi Pembuatan Aturan untuk Mengarahkan Traffic Client ke Halaman Login dari Sistem

Pada implementasi pembuatan aturan untuk mengarahkan *traffic client* ke halaman *login* dari sistem diasumsikan bahwa belum ada *client* yang telah *login* ke dalam sistem. Karena diasumsikan bahwa belum ada *client* yang telah berhasil *login* ke dalam sistem, maka semua *client* tidak diperbolehkan untuk mengakses internet. Kemudian untuk mengarahkan *traffic* dari *client* dibuatkan beberapa *rules* dengan menggunakan iptables pada *Docker Host* dengan IP 10.151.36.134. seperti Kode Sumber 4.3

Kode Sumber 4.3: Command untuk mengarahkan *client* ke halaman *login*

Rules pertama berfungsi untuk melarang semua *client* untuk melewati *router*. Rules kedua berfungsi untuk mengizinkan semua *client* membuka halaman *login*. Sedangkan *rules* ketiga berfungsi untuk mengarahkan semua *traffic client* ke halaman *login*.

4.4 Implementasi Pembuatan Middleware

Middleware dibangun pada Docker Host dengan IP 10.151.36.134 dengan menggunakan sistem operasi Linux Mint 18.03 64 Bit. Middleware merupakan komponen yang akan menerima permintaan dari client, mengirimkan perintah untuk membuat kontainer docker secara otomatis pada docker host, dan menentukan rute traffic dari client menuju ke internet sesuai kontainer docker masing-masing user. Implementasi middleware akan terbagi menjadi implementasi basis data dan implementasi web service.

Pada implementasi pembuatan *middleware* menggunakan perangkat unak antara lain:

- 1. Python versi 3.5.2.
- 2. Flask versi 1.0.2.
- 3. Docker versi 1.13.1.

Python akan berfungsi sebagai komponen dasar pembangunan sistem, salah satunya adalah sebagai komponen dasar pembuatan *middleware*, sedangkan Flask akan berfungsi sebagai kerangka kerja untuk pembuatan *middleware*. Implementasi pembuatan *middleware* akan terbagi menjadi implementasi *web service* dan implementasi basis data dan.

4.4.1 Implementasi Web Service pada Middleware

Diperlukan beberapa tahap, antara lain pemasangan perangkat lunak dan tahap konfigurasi. Tahap pemasangan perangkat lunak dan tahap konfigurasi pada *middleware* di *Docker Host* dijelaskan pada Lampiran A.

Pada sub-bab implementasi web service pada middleware akan dibagi lagi menjadi dua bagian, antara lain rute web service pada middleware dan juga pseduocode web service pada middleware.

4.4.1.1 Rute Web Service pada Middleware

Middleware tidak memiliki antar muka grafis. Namun tetap diperlukan adanya rute-rute yang bisa diakses untuk melayani permintaan penyediaan kontainer *docker* dari *client*. Daftar rute yang disediakan oleh *middleware* tertera pada Tabel 4.2.

HTTP	Rute	Deskripsi
Method		
POST	/test/endpoint/	Berfungsi untuk menyimpan data hasil input dari client dan mengirimkan perintah untuk membuat kontainer docker yang berisikan mitmproxy secara otomatis pada docker
		host.

Tabel 4.2: Daftar Rute Web Service

4.4.1.2 Pseduocode Web Service pada Middleware

Saat *client* telah memasukkan *input* ke sistem, sistem akan mencocokkan terlebih dahulu dengan basis data kontainer. Jika benar, maka sistem akan mengirimkan data *input* dari *client* ke *middleware*. Lalu *middleware* akan menyimpan data *input* dari *client* ke dalam sebuah *file*. Setelah itu *middleware* akan mengirimkan perintah untuk membuat sebuah kontainer *docker* yang berisikan Mitmproxy pada *docker host*.

Saat *middleware* menyimpan data *input* dari *client* ke dalam sebuah *file*, yang disimpan adalah *username* atau NRP, *IP Address*, dan *port*. Nantinya *port* tersebut akan menjadi *port* khusus untuk kontainer *docker* yang berisikan *mitmproxy* untuk *client* tersebut.

Saat kontainer *docker* yang berisikan *mitmproxy* akan dibuat pada *docker host*, sistem akan membuat kontainer *docker* dengan *mode network=host*, nama sesuai *IP Address* dari *client* tersebut, dan *port* kontainer *docker* sesuai dengan *port* yang sudah disimpan pada *file*.

Setelah kontainer docker yang berisikan mitmproxy berhasil

dibuat, maka sistem akan membuat *rules* yang berfungsi untuk mengarahkan *traffic* dari *client* menuju ke kontainer *docker* milik *client* tersebut, dan memperbolehkan *client* untuk mengakses internet. Pada Kode Sumber 4.4 diperlihatkan bagaimana implementasinya dalam bentuk *pseduocode*.

Kode Sumber 4.4: Pseudocode Web Service

```
Check whether the client is already login or
        not yet
2
3
     if session.get login
       create container
4
5
       add new rules to container
6
7
    else
8
       add new rules to page login
9
10
     return
```

4.4.2 Implementasi Basis Data pada Middleware

Berdasarkan hasil perancangan basis data pada bab 3 terdapat 2 entitas yang diimplementasikan menjadi suatu tabel pada basis data MySQL, yaitu entitas kontainer. Detail implementasi entitas kontainer tertera pada Kode Sumber 4.5.

```
CREATE TABLE kontainer (
id int(11) PRIMARY KEY AUTO_INCREMENT,
username VARCHAR(50)
ip VARCHAR(50)
port VARCHAR(50)
createdAt DATETIME
);
```

Kode Sumber 4.5: *Query* untuk membuat tabel testing

4.5 Implementasi Pemasangan Kontainer Docker pada Docker Host

Setelah berhasil melakukan pemasangan *docker* versi 1.13.1 pada *docker host* dengan IP 10.151.36.134, sekarang lakukan konfigurasi supaya *docker* tidak hanya dapat digunakan oleh *root user* dari sebuah sistem. Hal ini dapat dilakukan dengan menjalankan perintah pada Kode Sumber 4.6.

```
sudo groupadd docker
sudo usermod -aG docker $USER
```

Kode Sumber 4.6: Perintah untuk installasi Ansible

4.5.1 Menambahkan dan Memperbarui Kontainer Docker yang Berisikan Mitmproxy

Setelah berhasil melakukan pemasangan *docker* pada *docker* host dan melakukan konfigurasi supaya *docker* tidak hanya dapat digunakan oleh root user dari sebuah sistem, selanjutnya dapat mencoba membuat sebuah kontainer docker yang berisi aplikasi Mitmproxy. Untuk membuat sebuah kontainer docker yang berisi Mitmproxy, penulis melakukannya dengan sistem operasi Ubuntu dalam format docker yang disediakan oleh Docker Hub. Untuk melakukan unduh, jalankan perintah berikut pada Kode Sumber 4.7.

```
docker pull ubuntu
```

Kode Sumber 4.7: Perintah untuk Pull Ubuntu

Setelah berhasil diunduh, selanjutnya jalankan sistem operasi Ubuntu dengan menggunakan perintah yang tertera pada Kode Sumber 4 8

```
docker run --name testmitmproxy --privileged=True --network=host ubuntu
```

Kode Sumber 4.8: Perintah untuk Menjalankan Image Ubuntu

Parameter --name berguna untuk memberikan nama pada kontainer *docker* agar mudah dikenali dimana lokasi aplikasi saat dijalankan. Pada kasus ini kontainer *docker* diberi nama dengan testmitmproxy. Parameter --privileged=True berguna untuk memberikan kendali hak akses penuh kepada kontainer *docker* tersebut, sama seperti dengan *root user*. Parameter --network=host berguna untuk mendefinisikan jaringan yang akan digunakan oleh kontainer *docker* tersebut. Setelah menjalankannya, kontainer *docker* yang terbentuk dapat digunakan lebih lanjut, misalnya dengan mengubah data yang ada didalamnya, menambahkan fitur baru, atau hanya sekedar mengganti nama dari aplikasi.

Dalam kasus ini penulis menambahkan fitur baru, yaitu menambah Mitmproxy. Untuk menambah atau memasang Mitmproxy pada kontainer *docker* yang baru saja dibuat, jalankan perintah berikut pada Kode Sumber 4.9.

```
sudo apt-get update
sudo apt-get install python3 python3-dev python3-pip
sudo pip3 install cryptography
sudo pip3 install mitmproxy
```

Kode Sumber 4.9: Perintah untuk Pemasangan Mitmrproxy

Mitmrproxy versi 3.0.4 membutuhkan Python minimal versi 3.5, maka dari itu penulis memasang Python versi 3.5.2. Mitmrproxy juga membutuhkan modul *cryptography* yang berguna untuk melakukan enkripsi maupun dekripsi ketika Mitmproxy sedang berjalan. Lalu aktifkan ipv4.forwarding dengan menjalankan perintah pada Kode Sumber 4.10.

```
sudo sysctl -w net.ipv4.ip_forward=1
```

Kode Sumber 4.10: Perintah untuk Mengaktifkan ipv4.forwarding

Setelah berhasil melakukan pemasangan Mitmproxy pada kontainer *docker*, jika ingin membuat *images* baru dari kontainer *docker* tersebut, maka hal pertama yang harus dilakukan adalah menghentikan kontainer *docker* yang sedang berjalan dengan menggunakan perintah seperti pada Kode Sumber 4.11.

```
docker stop [nama_container]
```

Kode Sumber 4.11: Perintah untuk Menghentikan Kontainer Docker

Nama *container* ini tergantung dari nama kontainer *docker* yang sudah dibuat. Untuk kasus yang digunakan oleh penulis, penulis menggunakan perintah docker stop testmitmproxy. Setelah itu lakukan *commit* dengan menjalankan perintah seperti pada Kode Sumber 4.12.

```
docker commit [nama_container] [nama_repository]
```

Kode Sumber 4.12: Perintah untuk *Commit* Kontainer Docker

Nama *container* ini tergantung dari nama kontainer *docker* yang sudah dibuat. Sedangkan nama *repository* ini tergantung dari nama *repository* yang telah dibuat di Docker Hub. Untuk kasus yang digunakan oleh penulis, penulis menggunakan perintah docker commit testmitmproxy

fourirakbar/mitmproxy-oing:version1. Pada bagian nama repository ini memiliki tiga bagian dengan pola seperti [URL]/[nama]:[versi]. Artinya membuat image dengan URL repository pada Docker Hub dengan nama fourirakbar. Kemudian nama dari image-nya sendiri adalah mitmproxy-oing dan versinya adalah version1. Setelah

melakukan *commit*, maka *image* baru akan terbentuk. Langkah terakhir adalah melakukan *push image* ke Docker Hub dengan menggunakan perintah seperti Kode Sumber 4.13.

```
docker push [nama_container] [nama_repository]
```

Kode Sumber 4.13: Perintah untuk Push Image ke Docker Hub

4.5.2 Menggunakan *Image* Kontainer Docker yang Sudah Dibuat

Setelah berhasil menambahkan dan memperbarui kontainer *docker* yang berisi Mitmproxy, penulis tidak perlu melakukannya lagi. Penulis hanya perlu memanggil kontainer *docker* dengan menjalankan perintah pada Kode Sumber 4.14.

```
docker pull fourirakbar/mitmproxy-oing:version1
```

Kode Sumber 4.14: Perintah untuk *Pull Image mitmproxy*

Lalu untuk menjalankan kontainer *docker* yang sudah di *pull*, jalankan perintah pada Kode Sumber 4.15.

```
docker run --name [IP_CLEINT] --privileged=True --network=host fourirakbar/mitmproxy-oing:version1
```

Kode Sumber 4.15: Perintah untuk *Pull Image mitmproxy*

4.6 Implementasi Pembuatan Aturan untuk Mengarahkan Traffic Client ke Kontainer Docker dari Tiap-Tiap Client

Pada implementasi pembuatan aturan untuk mengarahkan *traffic client* ke kontainer *docker* dari tiap-tiap client dibuat ketika terdapat *client* yang telah berhasil *login* ke dalam sistem. Setelah *client* berhasil *login* ke dalam sistem, maka akan

dibuatkan beberapa *rules* dengan menggunakan Iptables seperti Kode Sumber 4.16.

Kode Sumber 4.16: Command untuk mengarahkan *client* ke halaman *login*

Pada *rules* pertama berfungsi untuk mengizinkan atau memperbolehkan *traffic* dari *client* melewati *router*. Lalu *rules* kedua dan ketiga berfungsi untuk mengarahkan *traffic cleint* ke kontainer *docker* yang sudah dibuat dengan satu port khusus untuk *client* tersebut. Lalu *rules* keempat berfungsi untuk mengizinkan atau memperbolehkan *client* untuk mengakses internet.

4.7 Implementasi Pembuatan Halaman Administrator

Halaman *administrator* dibangun pada *Docker Host* dengan IP 10.151.36.134 dengan port 5001. Fungsi dari halaman *administrator* adalah untuk melihat siapa saja *client* yang berhasil *login* ke dalam sistem dan megnakses internet, juga untuk melihat rekap *client* yang telah berhasil *login* dan mengakses internet. Pada sub-bab ini akan dibagi lagi menjadi beberapa bagian, antara lain rute *web service* pada halaman *administrator*, implementasi pembacaan *log file* dari *client* dan implementasi antarmuka.

4.7.1 Rute Web Service pada Halaman Administrator

Pada halaman *administrator* diperlukan adanya rute-rute yang bisa diakses untuk melayani permintaan dari *user* yang

sedang membuka hallaman *administrator*, yaitu untuk melihat *log* dari *client*. Daftar rute yang disediakan tertera pada Tabel 4.3.

Tabel 4.3: Daftar Rute Web Service pada Halaman Administrator

HTTP	Rute	Parameter	Deskripsi		
Method	Method				
GET	/table	-	Berfungsi untuk menampilkan halaman dashboard yang menunjukkan siapa saja client yang telah berhasil login ke dalam		
			sistem dan sedang aktif mengakses internet.		
GET	/stream/	id, ip, user, port	Berfungsi untuk melihat log dari client secara langsung atau live dengan memasukkan parameter berupa id, ip, user, dan port.		

HTTP	Rute	Parameter	Deskripsi
Method			_
GET	/lihat/	id, ip,	Berfungsi untuk
		user, port	melihat <i>log</i> dari
			<i>client</i> sampai
			dengan terakhjir
			<i>client</i> mengakses
			internet dengan
			memasukkan
			parameter berupa
			id, ip, user, dan
			port.
GET	/history	-	Berfungsi untuk
			menampilkan
			rekap atau daftar
			<i>client</i> yang telah
			berhasil <i>login</i> ke
			dalam sistem.

Tabel 4.3: Daftar Rute Web Service

4.7.2 Implementasi Pembacaan Log File dari Client

Pada implementasi pembacaan *log file* dari *client* dilakukan dengan membaca *file* hasil *output* dari *mitmproxy*. *File* hasil *output* dari *mitmproxy* berbentuk *binary* dimana yang bisa membacanya hanya komputer saja. Maka dari itu perlu dilakukan pembacaan lagi *file* yang berisi *binary* tersebut dengan menjalankan *command* seperti pada Kode Sumber 4.17.

```
mitmdump -nr [NAMA-FILE] --set flow_detail=2 --showhost > [NAMA-FILE]
```

Kode Sumber 4.17: Perintah untuk Membaca *File Log* dari Mitmrproxy

Sedangkan untuk membaca *log file* dari *client* secara langsung atau *live* dapat dilakukan dengan menjalankan *command* seperti pada Kode Sumber 4.18.

```
tail -f -c +0 [NAMA_FILE] | mitmdump -n -r - --set flow_detail=1 -- showhost
```

Kode Sumber 4.18: Perintah untuk Membaca File Log dari Client

Parameter -nr berfungsi untuk tidak menjalankan *proxy server* dari *mitmproxy* sendiri, dan juga berfungsi untuk melakukan analisa dari *file output mitmproxy* yang berbentuk *binary*. Sedangkan parameter --set flow detail berfungsi untuk menampilkan detail dari analisa yang dilakukan oleh *mitmproxy*. Terdapat tingkat satu sampai dengan tiga, semakin tinggi tingkat yang diberikan maka semakin jelas detail dari *log* yang dianalisa oleh *mitmproxy*. Lalu parameter --showhost berfungsi untuk menampilkan *header* dari URL yang telah diakses oleh *client*.

4.7.3 Implementasi Antarmuka Halaman Administrator

Halaman *administrator* diperuntukkan bagi *User* yang mempunyai akses ke *Docker Host*. Halaman ini berguna sebagai *dashboard* dari *administrator*. Pada halaman ini menampilkan siapa saja *Client* yang telah berhasil *login* ke dalam sistem. Terdapat dua *button*, yaitu *Stream Log* yang berfungsi untuk melihat secara langsung atau *live log* dari *client*. Lalu terdapat *button* Lihat *Log* yang berfungsi untuk melihat *log* dari *client* sampai terakhir *client* tersebut mengakses internet.

Gambar 4.2: Halaman Administrator Menu User List

Pada bagian *sidebar* terdapat dua menu yaitu *User List* dan *History*. Menu *User List* berguna untuk melihat *client* yang telah berhasil *login* ke dalam sistem. Sedangkan menu *history* berguna untuk melihat rekap *client* yang telah berhasil *login* dan mengakses internet pada hari-hari sebelumnya. Implementasi antarmuka halaman *administrator* pada menu *User List* dapat dilihat pada Gambar 4.2. Dan implementasi antarmuka halaman *administrator* oada nenu *History* dapat dilihat pada Gambar 4.3

Gambar 4.3: Halaman *Administrator* Menu *History*

(Halaman ini sengaja dikosongkan)

BAB V

PENGUJIAN DAN EVALUASI

Pada bab ini akan dibahas uji coba dan evaluasi dari sistem yang telah dibuat. Sistem akan diuji coba fungsionalitas dan performanya dengan menjalankan skenario uji coba yang sudah ditentukan. Uji coba dilakukan untuk mengetahui hasil dari sistem ini sehingga dapat menjawab rumusan masalah pada tugas akhir ini.

5.1 Lingkungan Uji Coba

Lingkungan pengujian menggunakan komponen-komponen yang terdiri dari: satu *server docker host*, satu *server login*, dan enam komputer penguji.Semua komputer penguji menggunakan enam buah desktop dengan sistem operasi Ubuntu 16.04 . Pengujian dilakukan di Laboratoriom Arsitektur dan Jaringan Komputer Jurusan Teknik Informatika ITS.

Spesifikasi untuk setiap komponen yang digunakan ditunjukkan pada Tabel 5.1 untuk *docker host*, Tabel 5.2 untuk *server* halaman login, Tabel 5.3 untuk Komputer Penguji 1, Tabel 5.4 untuk Komputer Penguji 2, Tabel 5.5 untuk Komputer Penguji 3, Tabel 5.6 untuk Komputer Penguji 4, Tabel 5.7 untuk Komputer Penguji 5, dan Tabel 5.8 untuk Komputer Penguji 6.

1. Server Untuk Docker Host

Tabel 5.1: Server Untuk Docker Host

Davanglat Vavas	Processor Intel(R) Core(TM)	
Perangkat Keras	i5-2120 CPU @ 3.30GHz	
	RAM 8GB	
	Hard disk 500GB	
Perangkat Lunak	Linux Mint 18.03 64 bit	
	Docker-CE versi 1.13.1.	
	MySQL versi 5.7.18.	
	Python versi 3.5.2.	
	Flask versi 1.0.2.	
Konfigurasi Jaringan	IP address: 10.151.36.134	
	Netmask: 255.255.255.0	
	Gateway: 10.151.36.1	
	Hostname: X450LD	

2. Server Untuk Halaman Login

Tabel 5.2: Server Untuk Halaman Login

Perangkat Keras	Processor Intel(R) Core(TM)2Duo	
i ci angkat Keras	CPU E7200 @ 2.53GHz	
	RAM 1GB	
	Hard disk 20GB	
Perangkat Lunak	Ubuntu 16.04 64 bit	
	Nginx versi 1.10.3.	
	Gunicorn versi 19.9.1.	
	Supervisor versi 3.2.	
Konfigurasi Jaringan	IP address: 10.151.36.173	
	Netmask: 255.255.255.0	
	Gateway: 10.151.36.1	
	Hostname : SERVERLOGIN	

3. Komputer Penguji

(a) Komputer Penguji 1

Tabel 5.3: Komputer Penguji 1

Perangkat Keras	Processor Intel(R) Core(TM)	
	i5-2120 CPU @ 3.30GHz	
	RAM 8GB	
	Hard disk 500GB	
Perangkat Lunak	Ubuntu 16.04 64 bit	
	Firefox Quantum versi 60.0.1.	
Konfigurasi Jaringan	IP address: 10.151.36.33	
	Netmask : 255.255.255.0	
	Gateway: 10.151.36.134	
	Hostname : DRONA	

(b) Komputer Penguji 2

Tabel 5.4: Komputer Penguji 2

Perangkat Keras	Processor Intel(R) Core(TM)	
	i3-2120 CPU @ 3.30GHz	
	RAM 6GB	
	Hard disk 1TB	
Perangkat Lunak	Ubuntu 16.04 64 bit	
	Firefox Quantum versi 60.0.1.	
Konfigurasi Jaringan	IP address: 10.151.36.34	
	Netmask : 255.255.255.0	
	Gateway: 10.151.36.134	
	Hostname : BHISMA	

(c) Komputer Penguji 3

Tabel 5.5: Komputer Penguji 3

Perangkat Keras	Processor Intel(R) Core(TM)	
	i3-2120 CPU @ 3.30GHz	
	RAM 4GB	
	Hard disk 250GB	
Perangkat Lunak	Ubuntu 16.04 64 bit	
	Firefox Quantum versi 60.0.1.	
Konfigurasi Jaringan	IP address: 10.151.36.33	
	Netmask : 255.255.255.0	
	Gateway: 10.151.36.134	
	Hostname : ARJUNA	

(d) Komputer Penguji 4

Tabel 5.6: Komputer Penguji 4

Perangkat Keras	Processor Intel(R) Core(TM)	
	i3-2120 CPU @ 3.30GHz	
	RAM 8GB	
	Hard disk 1TB	
Perangkat Lunak	Ubuntu 16.04 64 bit	
	Firefox Quantum versi 60.0.1.	
Konfigurasi Jaringan	IP address: 10.151.36.38	
	Netmask : 255.255.255.0	
	Gateway: 10.151.36.134	
	Hostname : KRESNA	

(e) Komputer Penguji 5

Tabel 5.7: Komputer Penguji 5

Donangkat Kanas	Processor Intel(R) Core(TM)2Duo	
Perangkat Keras	CPU E7200 @ 2.53GHz	
	RAM 2GB	
	Hard disk 120GB	
Perangkat Lunak	Ubuntu 16.04 64 bit	
	Firefox Quantum versi 60.0.1.	
Konfigurasi Jaringan	IP address: 10.151.36.39	
	Netmask: 255.255.255.0	
	Gateway: 10.151.36.134	
	Hostname: NARASOMA	

(f) Komputer Penguji 6

Tabel 5.8: Komputer Penguji 6

Perangkat Keras	Processor Intel(R) Core(TM)2Duo CPU E7200 @ 2.53GHz	
	RAM 2GB	
	Hard disk 120GB	
Perangkat Lunak	Ubuntu 16.04 64 bit	
	Firefox Quantum versi 60.0.1.	
Konfigurasi Jaringan	IP address: 10.151.36.41	
	Netmask: 255.255.255.0	
	Gateway: 10.151.36.134	
	Hostname : ANGGADA	

Untuk gambar arsitektur dari setiap komponen yang digunakan dapat dilihat pada Gambar 5.1.

Gambar 5.1: Arsitektur dari Setiap Komponen Uji Coba

5.2 Skenario Uji Coba

Uji coba akan dilakukan untuk mengetahui keberhasilan sistem yang telah dibangun. Skenario pengujian dibedakan menjadi 2 bagian, yaitu:

Uji Fungsionalitas

Pengujian ini didasarkan pada fungsionalitas yang disajikan sistem.

· Uji Performa

Pengujian ini untuk menguji ketahanan sistem terhadap sejumlah permintaan ke aplikasi secara bersamaan. Pengujian dilakukan dengan melakukan *benchmark* pada sistem.

5.2.1 Skenario Uji Coba Fungsionalitas

Uji coba fungsionalitas dilakukan dengan cara menjalankan sistem yang telah dibuat, dan melakukan pengujian terhadap fitur yang telah dibuat. Uji coba fungsionalitas akan berfungsi untuk memastikan sistem sudah memenuhi kebutuhan yang tertera pada Bab 3, yaitu meliputi:

- 1. Pengujian *client* dapat mengakses internet.
- 2. Pengujian fungsionalitas menu aplikasi halaman administrator.

5.2.1.1 Uji client dapat Mengakses Internet

Pengujian ini dilakukan untuk mengetahui apakah *client* dapat mengakses internet atau tidak. Pada uji *client* dapat mengakses internet akan dibagi lagi menjadi beberapa bagian, antara lain:

- 1. Pengujian *client* dapat *login* ke dalam sistem.
- 2. Pengujian *client* dapat mengirimkan permintaan penyediaan kontainer *docker* ke *docker host*.
- 3. Pengujian *docker host* dapat menerima permintaan penyediaan kontainer *docker*.

Pengujian menggunakan enam buah komputer penguji. Pengujian ini dapat dilakukan dengan membuka *browser* dan membuka *website* HTTP ataupun juga HTTPS. Daftar uji fungsionalitas *client* dapat mengakses internet dijelaskan pada Tabel 5.9.

No	Uji Coba	Hasil Harapan
1	Client membuka website	Client dapat membuka
	HTTP maupun HTTPS	website HTTP maupun
	dengan menggunakan	HTTPS dengan
	browser.	menggunakan browser
		yang ada.

Tabel 5.9: Skenario Uji *Client* dapat Mengakses Internet

5.2.1.1.1 Uji *Client* dapat *Login* ke Dalam Sistem

Pengujian ini dilakukan untuk mengetahui apakah *client* sudah bisa *login* ke dalam sistem saat *client* akan mengakses internet. Pengujian menggunakan satu buah *server* yang berperan sebagai *server login* untuk *client* dan menggunakan enam buah Komputer Penguji yang dijalankan dengan VirtualBox berperan sebagai *client*. Pengujian dilakukan oleh *client* dalam keadaan belum *login* ke dalam sistem. Ketika *client* mencoba membuka sebuah web, maka *client* akan diarahkan ke *server login* terlebih dahulu.

Alamat / IP *address* dari *server login* yang digunakan adalah 10.151.36.173. Setelah *client* diarahkan ke *server login*, selanjutnya adalah *client* harus memasukkan *input username* dan *password*. Daftar uji fungsionalitas *client* dapat *login* ke dalam sistem dijelaskan pada Tabel 5.10

Tabel 5.10: Skenario Uji Client dapat Login ke Dalam Sistem

No	Uji Coba	Hasil Harapan
1	Client membuka sebuah	<i>Traffic</i> dari <i>client</i> akan
	website ketika belum	diarahkan ke <i>server</i>
	login ke dalam sistem.	login dan client dapat
		membuka halaman <i>login</i>
		secara otomatis.
2	Client melakukan login	Client berhasil
	ke server login.	melakukan <i>login</i> dengan
		menggunakan <i>username</i>
		dan <i>password</i> yang sudah
		ditentukan.

5.2.1.1.2 Uji *Client* dapat Mengirimkan Permintaan Penyediaan Kontainer *Docker* ke *Docker Host*

Pengujian ini dilakukan untuk memberikan perintah kepada docker host untuk menyediakan kontainer docker ke client yang baru saja berhasil login ke dalam sistem. Pengujian menggunakan satu buah server yang berperan sebagai server login yang akan mengirimkan permintaan penyediaan kontainer docker ke docker host

Pengujian ini dapat dilakukan setelah *client* berhasil memasukkan *username* dan *password* ke sistem, dan berhasil *login* ke dalam sistem. Setelah itu sistem akan mengirimkan permintaan penyediaan kontainer *docker* ke *docker host*. Daftar uji fungsionalitas *client* dapat mengirimkan permintaan penyediaan kontainer *docker* ke *docker* host dijelaskan pada Tabel 5.11

Tabel 5.11: Skenario Uji *Client* dapat *Login* Mengirimkan Permintaan Penyediaan Kontainer *Docker*

No	Uji Coba	Hasil Harapan
1	Client mengirimkan	Client berhasil
	permintaan penyediaan	mengirimkan permintaan
	kontainer docker kepada	penyediaan kontainer
	docker host.	docker kepada docker
		host.

5.2.1.1.3 Uji *Docker Host* dapat Menerima Permintaan Penyediaan Kontainer *Docker*

Pengujian ini dilakukan untuk menerima perintah permintaan penyediaan kontainer *docker* pada *docker host*. Pengujian menggunakan satu buah *server* yang berperan sebagai *docker host* yang akan menerima permintaan penyediaan kontainer *docker*.

Alamat dari *server* yang berperan sebagai *docker host* adalah 10.151.36.134. Setelah berhasil menerima permintaan penyediaan kontainer *docker*, selanjutnya adalah sistem akan menuliskan *username*, IP *address*, dan *port* dari *client* yang telah mengirimkan permintaan penyediaan kontainer *docker* ke basis data yang sudah tersedia.

Setelah selesai menuliskan *username*, IP *address*, dan *port* dari *client* yang telah mengirimkan permintaan penyediaan kontainer *docker* ke basis data yang sudah tersedia, selanjutnya adalah membuat satu buah kontainer *docker* dengan nama kontainer [IP-Username-Port], dimana IP adalah IP *address* dari *client*, Username adalah *username* ketika *client* memasukkan *inputan* kepada sistem saat akan *login*, dan Port adalah sebuah *port* khusus untuk *client* tersebut.

Terakhir, pengujian yang dilakukan adalah membuat sebuah directory pada docker host yang berfungsi untuk menyimpan data log traffic dari client. Directory ini akan dibuat pada /container-data/[Tanggal]/[IP-USERNAME-PORT], dimana Tanggal akan sesuai dengan tanggal ketika client berhasil login ke dalam sistem, dan [IP-USERNAME-PORT] sesuai dengan yang sudah dituliskan pada basis data.

Daftar uji fungsionalitas *docker host* dapat menerima permintaan penyediaan kontainer *docker* dijelaskan pada Tabel 5 12

Tabel 5.12: Skenario Uji *Docker Host* dapat Menerima Permintaan Penyediaan Kontainer *Docker*

No	Uji Coba	Hasil Harapan
1	Sistem menerima permintaan penyediaan kontainer <i>docker</i> dari <i>client</i> pada <i>docker host</i> .	Sistem berhasil menerima permintaan penyediaan kontainer docker dari client dan menuliskannya pada basis data pada docker host.
2	Sistem membuat satu buah kontainer docker untuk client pada docker host.	Sistem berhasil membuat satu buah kontainer docker dengan nama sesuai yang ditulis pada basis data untuk client yang berisi Mitmproxy pada docker host.
3	Sistem membuat sebuah directory pada docker host sesuai dengan tanggal dan informasi dari client.	Sistem berhasil membuat sebuah <i>directory</i> pada <i>docker host</i> sesuai dengan tanggal dan informasi dari <i>client</i> yang sudah dituliskan pada basis data.

5.2.1.2 Uji Fungsionalitas Menu Aplikasi Halaman Administrator

Aplikasi halaman *administrator* digunakan untuk membaca *log traffic* dari *client* yang sedang mengakses internet dan juga untuk melihat rekap *client* yang telah menggunakan internet pada hari-hari sebelumnya. Aplikasi halaman *administraotr* terdiri dari dua bagian utama, yaitu halaman *user list*, dan *history*.

Rancangan pengujian dan hasil yang diharapkan ditunjukkan dengan Tabel 5.13.

Tabel 5.13: Skenario Uji Fungsionalitas Aplikasi Halaman *Administrator*

No	Menu	Uji Coba	Hasil Harapan
1	User List	Menampilkan	Halaman <i>user list</i>
		halaman <i>user list</i>	dapat tampil pada
		pada web.	web.
		Melihat secara <i>live</i>	<i>User</i> yang
		atau langsung <i>log</i>	mempunyai
		traffic dari client.	akses membuka
			halaman
			administrator
			dapat melihat
			secara <i>live</i> atau
			langsung log
			traffic dari client.
		Melihat <i>log traffic</i>	<i>User</i> yang
		terakhir dari <i>client</i> .	mempunyai
			akses membuka
			halaman
			administrator
			dapat melihat <i>log</i>
			<i>traffic</i> terakhir
			dari <i>client</i> .

No	Menu	Uji Coba	Hasil Harapan
2	History	Melihat log	<i>User</i> yang
		traffic dari client	mempunyai
		pada hari-hari	akses membuka
		sebelumnya.	halaman
			administrator
			dapat melihat log
			traffic dari client
			pada hari-hari
			sebelumnya.

Tabel 5.13: Skenario Uji Fungsionalitas Aplikasi Dasbor

5.2.2 Skenario Uji Coba Performa

Uji performa dilakukan dengan menggunakan enam buah desktop yang berperan sebagai *client* untuk melakukan akses ke internet secara bersama-sama. *Client* akan mencoba mengakses internet dengan membuka website HTTP maupun HTTPS.

Percobaan dilakukan dengan dua skenario, yaitu mengakses website HTTP dan mengakses website HTTPS

5.2.2.1 Uji Performa Penggunaan Memory

Pengujian dilakukan dengan menghitung penggunaan *memory* yang terjadi pada *docker host*. Penggunaan *memory* di sini adalah penggunaan dari kontainer aplikasi yang sedang berjalan. Perhitungan dilakukan dengan mengambil nilai rata-rata penggunaan *memory* dari masing-masing kontainer selama proses pengujian dilakukan.

5.2.2.2 Uji Performa Kecepatan Menangani Request

Pengujian dilakukan dengan mengukur jumlah waktu yang diperlukan untuk menyelesaikan request yang dilakukan oleh

komputer penguji. Waktu yang diukur adalah saat *client* berhasil melakukan *login* ke dalam sistem sampai dengan *client* selesai dibuatkan sebuah kontainer *docker*.

Pengujian performa kecepatan menangani *request* juga dilakukan dengan membandingkan performa kecepatan dari *client* ketika *client* melakukan *download* maupun *upload* sebuah file dengan menggunakan *server internet access management* secara konvensional dengan menggunakan *server internet access management* berbasis kontainer.

5.2.2.3 Uji Performa Keberhasilan Request

Pengujian dilakukan dengan menghitung jumlah *request* atau jumlah permintaan penyediaan kontainer *docker* yang gagal dilakukan selama skenario dijalankan. Dari semua jumlah *request* yang dikirimkan selama pengujian, akan didapatkan persen *request* yang gagal dilakukan.

5.3 Hasil Uji Coba dan Evaluasi

Berikut dijelaskan hasil uji coba dan evaluasi berdasarkan skenario yang telah dijelaskan pada subbab 5.2.

5.3.1 Uji Fungsionalitas

Berikut dijelaskan hasil pengujian fungsionalitas pada sistem yang dibangun.

5.3.1.1 Uji Client dapat Mengakses Internet

Pengujian dilakukan sesuai dengan skenario yang dijelaskan pada subbab 5.2.1.1 dan pada Tabel 5.9. Pada hasil uji *client* dapat mengakses internet akan dibagi lagi menjadi beberapa bagian, antara lain

1. Pengujian *client* dapat *login* ke dalam sistem.

- 2. Pengujian *client* dapat mengirimkan permintaan penyediaan kontainer *docker* ke *docker host*.
- 3. Pengujian *docker host* dapat menerima permintaan penyediaan kontainer *docker*.

Setelah melalui hasil uji yang telah disebutkan diatas, hasil pengujian *client* dapat mengakses internet seperti tertera pada Tabel 5.14

Tabel 5.14: Hasil Uji Coba Client dapat Mengakses Internet

No	Uji Coba	Hasil
1	Client membuka sebuah website	OK.
	HTTP maupun HTTPS dengan	
	menggunakan browser.	

Sesuai dengan skenario uji coba yang diberikan pada Tabel 5.9, hasil uji coba menunjukkan semua skenario berhasil ditangani.

5.3.1.1.1 Uji Client dapat Login ke Dalam Sistem

Pengujian dilakukan sesuai dengan skenario yang dijelaskan pada subbab 5.2.1.1.1 dan pada Tabel 5.10. Hasil pengujian seperti tertera pada Tabel 5.15.

Tabel 5.15: Hasil Uji Coba Client dapat Login ke Dalam Sistem

No	Uji Coba	Hasil
1	Client membuka sebuah website	OK.
	ketika belum <i>login</i> ke dalam sistem.	
2	Client melakukan login ke server	OK.
	login.	

Sesuai dengan skenario uji coba yang diberikan pada Tabel 5.10, hasil uji coba menunjukkan semua skenario berhasil

ditangani.

5.3.1.1.2 Uji *Client* dapat Mengirimkan Permintaan Penyediaan Kontainer *Docker* ke *Docker Host*

Pengujian dilakukan sesuai dengan skenario yang dijelaskan pada subbab 5.2.1.1.2 dan pada Tabel 5.11. Hasil pengujian seperti tertera pada Tabel 5.16.

Tabel 5.16: Hasil Uji Coba *Client* dapat Mengirimkan Permintaan Penyediaan Kontainer *Docker* ke *Docker Host*

No	Uji Coba	Hasil
1	Client mengirimkan permintaan	OK.
	penyediaan kontainer docker	
	kepada docker host.	

Sesuai dengan skenario uji coba yang diberikan pada Tabel 5.11, hasil uji coba menunjukkan semua skenario berhasil ditangani.

5.3.1.1.3 Uji *Docker Host* dapat Menerima Permintaan Penyediaan Kontainer *Docker*

Pengujian dilakukan sesuai dengan skenario yang dijelaskan pada subbab 5.2.1.1.3 dan pada Tabel 5.12. Hasil pengujian seperti tertera pada Tabel 5.17.

Tabel 5.17: Hasil Uji Coba *Docker Host* dapat Menerima Permintaan Penyediaan Kontainer *Docker*

No	Uji Coba	Hasil
1	Sistem menerima permintaan	OK.
	penyediaan kontainer <i>docker</i> dari <i>client</i> pada <i>docker host</i> .	

No	Uji Coba	Hasil
2	Sistem membuat satu buah	OK.
	kontainer <i>docker</i> untuk <i>client</i> pada <i>docker host</i> .	
3	Sistem membuat sebuah <i>directory</i> pada <i>docker host</i> sesuai dengan tanggal dan informasi dari <i>client</i> .	OK.

Tabel 5.17: Hasil Uji Coba Mengelola Aplikasi Berbasis Docker

Sesuai dengan skenario uji coba yang diberikan pada Tabel 5.12, hasil uji coba menunjukkan semua skenario berhasil ditangani.

5.3.1.2 Uji Fungsionalitas Menu Aplikasi Halaman Administrator

Pengujian dilakukan sesuai dengan skenario yang dijelaskan pada subbab 5.2.1.2 dan pada Tabel 5.13. Hasil pengujian seperti tertera pada Tabel 5.18

Tabel 5.18: Hasil Uji Fungsionalitas Aplikasi Halaman *Administrator*

No	Menu	Uji Coba	Hasil Harapan
1	User List	Menampilkan	OK.
		halaman <i>user list</i>	
		pada web.	
		Melihat secara live	OK.
		atau langsung <i>log</i>	
		traffic dari client.	
		Melihat log traffic	OK.
		terakhir dari <i>client</i> .	

No	Menu	Uji Coba	Hasil
2	History	Melihat log	OK.
		traffic dari client	
		pada hari-hari	
		sebelumnya.	

Tabel 5.18: Hasil Uji Fungsionalitas Aplikasi Halaman Administrator

Sesuai dengan skenario uji coba yang diberikan pada Tabel 5.13, hasil uji coba menunjukkan semua skenario berhasil ditangani.

5.3.2 Hasil Uji Performa

Seperti yang sudah dijelaskan pada subbab 5.2 pengujian performa dilakukan dengan menggunakan enam buah *desktop* yang berperan sebagai *client* untuk melakukan akses ke internet secara bergantian. *Client* akan mencoba mengakses internet dengan membuka *website* HTTP maupun HTTPS.

5.3.2.1 Penggunaan Memory

Pengujian dilakukan dengan menghitung penggunaan memory yang terjadi pada docker host. Penggunaan memory di sini adalah penggunaan dari kontainer aplikasi yang sedang berjalan. Perhitungan dilakukan dengan mengambil nilai rata-rata penggunaan memory dari masing-masing kontainer selama proses pengujian dilakukan.

5.3.2.2 Kecepatan Menangani Request

Pengujian dilakukan dengan mengukur jumlah waktu yang diperlukan untuk menyelesaikan *request* yang dilakukan oleh komputer penguji. Waktu yang diukur adalah saat *client* berhasil

melakukan *login* ke dalam sistem sampai dengan *client* selesai dibuatkan sebuah kontainer *docker*.

Pengujian juga dilakukan dengan mengukur kecepatan unduh dan juga upload dari *client*. Waktu yang diukur adalah saat *client* mencoba mengunduh beberapa *file* dari salah satu *server*.

5.3.2.3 Keberhasilan Request

Pengujian dilakukan dengan menghitung jumlah *request* atau jumlah permintaan penyediaan kontainer *docker* yang gagal dilakukan selama skenario dijalankan. Dari semua jumlah *request* yang dikirimkan selama pengujian, akan didapatkan persen *request* yang gagal dilakukan.

5.4 Hasil Uji Coba dan Evaluasi

Berikut dijelaskan hasil uji coba dan evaluasi berdasarkan skenario yang telah dijelaskan pada subbab 5.2.

5.4.1 Hasil Uji Performa

Seperti yang sudah dijelaskan pada subbab 5.2 pengujian performa dilakukan dengan menggunakan enam buah desktop yang berperan sebagai *client* untuk melakukan akses ke internet secara bergantian. *Clint* akan mencoba mengakses internet dengan membuka website HTTP maupun HTTPS.

5.4.1.1 Kecepatan Menangani Request

Dari hasil uji coba kecepatan menangani *request*, yaitu kecepatan unduh dan *upload* dari *client*. Uji coba dilakukan dengan melakukan cek kecepatan pada website http://www.speedtest.net/id. Uji coba dilakukan dengan menggunakan satu komputer penguji sampai dengan enam

komputer penguji secara bersamaan. Hasil dari uji coba menangani *request* dapat dilihat pada Tabel 5.19.

Tabel 5.19: Kecepatan Menangai *Request* Unduh dan *Upload* Menggunakan *Internet Access Management* Berbasis Kontainer

Jumlah Client	Kecepatan unduh	Kecepatan <i>Upload</i>
1	± 13,04 Mbps	± 13,62 Mbps
2	± 10,16 Mbps	± 9,27 Mbps
3	± 4,73 Mbps	± 4,47 Mbps
4	± 4,45 Mbps	± 5,61 Mbps
5	± 3,93 Mbps	± 4,55 Mbps
6	± 2,82 Mbps	± 2,73 Mbps

Hasil uji coba kecepatan menangani *request* dengan menggunakan *Internet Access Management* berbasis kontainer ditunjukkan dalam grafik pada Gambar 5.2.

Gambar 5.2: Grafik Kecepatan Menangani Request

Lalu untuk uji coba dilakukan dengan enam komputer penguji dan dengan menggunakan *internet access management* konvensional dapat dilihat pada Tabel 5.20

Tabel 5.20: Kecepatan Menangai *Request* Unduh dan *Upload* Menggunakan *Internet Access Management* Konvensional

Jumlah Client	Kecepatan unduh	Kecepatan <i>Upload</i>
1	± 91,58 Mbps	\pm 91,27 Mbps
2	± 47,97 Mbps	± 51,49 Mbps
3	± 36,11 Mbps	\pm 35,28 Mbps
4	± 23,09 Mbps	\pm 29,88 Mbps
5	± 22,50 Mbps	\pm 26,20 Mbps
6	± 19,70 Mbps	\pm 21,12 Mbps

Hasil uji coba kecepatan menangani *request* dengan menggunakan *Internet Access Management* konvensional ditunjukkan dalam grafik pada Gambar 5.3.

Gambar 5.3: Grafik Kecepatan Menangani Request

Dari Tabel 5.19 dan Tabel 5.20 dapat dilihat bahwa semakin banyak jumlah *client*, maka semakin berkurang kecepatan unduh maupun *upload* dari masing-masing *client*. Hal tersebut dikarenakan *bandwith* dari *server* yang digunakan sebagai *docker host* juga terbatas. Jika semakin besar bandwith yang dapat diterima oleh *server* yang akan digunakan sebagai *docker host*, maka semakin cepat pula kecepatan unduh maupun *upload* dari masing-masing *client*.

Dari Tabel 5.19, uji coba menggunakan server sebagai internet access management berbasis kontainer dengan menggunakan Kabel UTP Cat 5 100Mb/s dan Tabel 5.20, uji coba menggunakan server sebagai internet access management konvensional dengan menggunakan Kabel UTP Cat 5 1Gb/s. Hal tersebut sangat mempengaruhi kecepatan saat uji coba berlangsung.

5.4.1.2 Penggunaan Memory

Dari hasil uji coba penggunaan *memory*, semakin banyak *request* yang diterima, semakin banyak *memory* ynag diperlukan. Perhitungan penggunaan *memory* adalah jumlah penggunaan dari masing-masing kontainer *docker* dari *client*. Dari hasil uji coba ini, dapat dilihat pada Tabel 5.21.

Jumlah	Jumlah Memory
Client	yang Digunakan
1	145 MB
2	213 MB
3	254 MB
4	421 MB
5	571 MB
6	786 MB

Tabel 5.21: Penggunaan Memory

Dari Tabel 5.21 dapat dilihat bahwa semakin banyak jumlah *client* yang menggunakan *internet access management* berbasis kontainer, maka semakin meningkat pula penggunaan *memory* dari *server* yang digunakan sebagai *docker host*. Rata-rata penggunaan *memory* dari tiap kontainer *docker* adalah sebesar \pm 131 MB. Semakin besar jumlah *memory* yang ada di *docker host*, maka semakin banyak pula jumlah *client* yang dapat ditampung.

Penggunaan *memory* dari tiap kontainer juga dapat dibatasi oleh sistem jika *docker host* yang digunakan hanya mempunyai *memory* yang tidak terlalu besar. Hasil uji coba penggunaan *memroy* ditunjukkan dalam grafik pada Gambar 5.4.

Gambar 5.4: Grafik Penggunaan Memory

5.4.1.3 Keberhasilan Request

Pada uji coba ini, dilakukan perhitungan seberapa besar jumlah *request* yang berhasil dilakukan. Untuk jumlah *client*, dapat dilihat pada Tabel 5.22.

Tabel 5.22: Success Ratio Request

Client	Persen Sukses
Client 1	100%
Client 2	100%
Client 3	100%
Client 4	100%
Client 5	100%
Client 6	100%

Dari Tabel 5.22 dapat dilihat bahwa semua *request* dari *client* sukses dijalankan dan tidak ada *error* sama sekali. Hasil uji coba tersebut berdasarkan keberhasilan *client* untuk mengakses internet, mulai dari *client* login ke dalam sistem sampai dengan sistem menyediakan sebuah kontainer *docker* untuk *client tersebut* dan berdasarkan keberhasilan *client* untuk mengakses website HTTP maupun HTTPS.

BAB VI

PENUTUP

Bab ini membahas kesimpulan yang dapat diambil dari tujuan pembuatan sistem dan hubungannya dengan hasil uji coba dan evaluasi yang telah dilakukan. Selain itu, terdapat beberapa saran yang bisa dijadikan acuan untuk melakukan pengembangan dan penelitian lebih lanjut.

6.1 Kesimpulan

Dari proses perancangan, implementasi dan pengujian terhadap sistem, dapat diambil beberapa kesimpulan berikut:

- 1. Sistem dapat mengarahkan *client* ke halaman *login* dari sistem
- 2. Sistem dapat membuatkan kontainer *docker* yang berisi *mitmproxy* secara otomatis ketika terdapat *client* yang berhasil *login* ke dalam sistem.
- 3. Sistem dapat mengarahkan *traffic* dari *client* ke kontainer *docker* yang sudah dibuat dan digunakan sebagai internet *access management* bagi *client* dan memperbolehkan atau mengijinkan *client* tersebut untuk mengakses internet.

6.2 Saran

Berikut beberapa saran yang diberikan untuk pengembangan lebih lanjut:

- 1. Sistem dapat dikembangkan dengan menggunakan *server* lebih dari satu untuk meringankan beban kerja dari *server* itu sendiri.
- 2. Sistem dapat dikembangkan dengan menentukan beban dari setiap *server*, dengan menambahkan kriteria-kriteria yang sesuai dengan lingkungan sistem yang ada, seperti jarak antara *docker host* dengan *middleware* atau

kecepatan bandwith dari setiap *docker host* merupakan kriteria yang baik.

DAFTAR PUSTAKA

- [1] "Welcome to Python.org," 29 Mei 2018. [Daring]. Tersedia pada: https://www.python.org/. [Diakses: 29 Mei 2018].
- [2] "Welcome | Flask (A Python Microframework)," 29 Mei 2018. [Daring]. Tersedia pada: http://flask.pocoo.org/. [Diakses: 29 Mei 2018].
- [3] D. I. Fernandez., J. M. Atencia., O. Q. Gamboa., dan O. E. H. Bedoya., "Design and Implementation of an "Web API" for the Automatic Translation Colombia's Language Pairs: Spanish-Wayuunaiki Case," *IEEE Transactions on Cloud Computing*, Jul. 2013.
- [4] "Supervisor: A Process Control System," 29 Mei 2018. [Daring]. Tersedia pada: https://http://supervisord.org/. [Diakses: 29 Mei 2018].
- [5] X. Chi, B. Liu, Q. Niu, dan Q. Wu, "Web Load Balance and Cache Optimization Design Based Nginx under High-Concurrency Environment," in *2012 Third International Conference on Digital Manufacturing Automation*, Jul. 2012, hal. 1029–1032.
- [6] L. fei Xuan. dan P. fei Wu., "The Optimization and Implementation of Iptables Rules Set on Linux," *IEEE Transactions on Cloud Computing*, Jun. 2015.
- [7] Y. Ping, H. Hong-Wei, dan Z. Nan, "Design and implementation of a MySQL database backup and recovery system," in *Proceeding of the 11th World Congress on Intelligent Control and Automation*, Jun. 2014, hal. 5410– 5415.
- [8] "Welcome to Mitmproxy.org," 29 Mei 2018. [Daring]. Tersedia pada: https://mitmproxy.org/. [Diakses: 29 Mei 2018].

- [9] "What is Docker?" 2016, 29 Mei 2018. [Daring]. Tersedia pada: https://www.docker.com/what-docker. [Diakses: 29 Mei 2018].
- [10] C. Boettiger, "An introduction to Docker for reproducible research, with examples from the R environment," *ACM SIGOPS Operating Systems Review*, vol. 49, no. 1, hal. 71–79, Jan. 2015, arXiv: 1410.0846.
- [11] "Docker Registry," Jun. 2017, 29 Mei 2018. [Daring]. Tersedia pada: https://docs.docker.com/registry/. [Diakses: 29 Mei 2018].

LAMPIRAN A

INSTALASI PERANGKAT LUNAK

Instalasi Pustaka Python

Dalam pengembangan sistem ini, digunakan berbagai pustaka pendukung. Pustaka pendukung yang digunakan merupakan pustaka untuk bahasa pemrograman Python. Berikut adalah daftar pustaka yang digunakan dan cara pemasangannya:

- Python Pip
 - \$ sudo apt-get install python-pip
- Python Dev
 - \$ sudo apt-get install python-dev
- Setuptools
 - \$ sudo apt-get install python-setuptools
- MySQLd
 - \$ sudo apt-get install python-mysqldb

Pemasangan kerangka kerja Flask

Dalam pengembangan sistem ini, digunakan Flask karena Flask merupakan kerangka kerja yang menggunakan bahasa pemrograman Python. Untuk memasang Flask, jalankan perintah sudo pip3 install flask.

Pemasangan perangkat lunak Gunicorn

Dalam pengembangan sistem ini, digunakan Gunicorn untuk menangani servis dari halaman *login*. Untuk memasang Gunicorn, jalankan perintah sudo pip3 install gunicorn.

Pemasangan perangkat lunak Supervisor

Dalam pengembangan sistem ini, digunakan Supervisor supaya servis pada halaman *login* dapat langsung berjalan ketika

server dinyalakan. Untuk memasang Supervisor, jalankan perintah sudo apt-get install supervisor.

Pemasangan perangkat lunak Nginx

Dalam pengembangan sistem ini, digunakan Nginx sebagai web *server* untuk halaman *login*. Untuk memasang Nginx, jalankan perintah sudo apt-get install nginx.

Instalasi Lingkungan Docker

Proses pemasangan Docker dpat dilakukan sesuai tahap berikut:

Menambahkan repository Docker
 Langkah ini dilakukan untuk menambahkan repository
 Docker ke dalam paket apt agar dapat di unduh oleh
 Ubuntu. Untuk melakukannya, jalankan perintah berikut:

```
sudo apt-get -y install \
    apt-transport-https \
    ca-certificates \
    curl

curl -fsSL https://download.docker.com/linux/
    ubuntu/gpg | sudo apt-key add -

sudo add-apt-repository \
    "deb [arch=amd64] https://download.docker.com/
    linux/ubuntu \
    $ (lsb_release -cs) \
    stable"

sudo apt-get update
```

- · Mengunduh Docker
 - Docker dikembangkan dalam dua versi, yaitu CE (*Community Edition*) dan EE (*Enterprise Edition*). Dalam pengembangan sistem ini, digunakan Docker CE karena merupakan versi Docker yang gratis. Untuk mengunduh Docker CE, jalankan perintah sudo apt-get -y install docker-ce.
- Mencoba menjalankan Docker
 Untuk melakukan tes apakah Docker sudah terpasang dengan benar, gunakan perintah sudo docker run hello-world.

(Halaman ini sengaja dikosongkan)

LAMPIRAN B

KONFIGURASI

Konfigurasi Supervisor

Supaya servis pada halaman *login* dapat langsung berjalan, penulis menambahkan konfigurasi perangkat lunak Supervisor pada /etc/supervisor/conf.d/app.conf sepert pada Kode Sumber 2 1

```
command = /home/fourirakbar/flask-loginpage
   /flask-loginpageenv/bin/python/home/
   fourirakbar / flask - loginpage / flask -
   loginpageenv/bin/gunicorn -b
   0.0.0.0:4000 app:app
directory = /home/fourirakbar/flask-
   loginpage
user = fourirakbar
stdout logfile = /home/fourirakbar/flask-
   loginpage/logs/app stdout.log
stderr logfile = /home/fourirakbar/flask-
   loginpage/logs/app stderr.log
redirect stderr = True
autostart = True
environment = PATH = "/home/fourirakbar/
   flask-loginpage/flask-loginpageenv/bin",
PRODUCTION=1
```

Kode Sumber 2.1: Isi Berkas app.conf

Perlu diperhatikan ketika menambahkan atau mengubah

konfigurasi Supervisor pada /etc/supervisor/conf.d/ yang telah di *server* untuk halaman *login*, perlu dilakukan *reload Supervisor* dengan menjalankan *command* pada terminal seperti pada Kode Sumber 2.2.

```
sudo supervisorctl reread
sudo supervisorctl reload
sudo supervisorctl status
```

Kode Sumber 2.2: Command untuk Reload Supervisor

Perlu diperhatikan pula ketika menambahkan atau mengubah konfigurasi Nginx pada /etc/nginx/sites-available/ yang telah di *server* untuk halaman *login*, perlu dilakukan aktifasi konfigurasi Nginx dengan menjalankan *command* pada terminal seperti pada Kode Sumber 2.3.

```
sudo ln -s /etc/nginx/sites-available/app
/etc/nginx/sites-enabled/app
```

Kode Sumber 2.3: Command untuk mengaktifkan konfigurasi Nginx

Setelah itu, jalankan Kode Sumber 2.4 supaya konfigurasi yang baru saja diaktifkan dapat digunakan.

```
sudo service nginx restart
```

Kode Sumber 2.4: Command untuk merestart Nginx

Konfigurasi Nginx

Supaya web *server* untuk halaman *login* dapat dijalankan, penulis menambahkan konfigurasi perangkat lunak Nginx pada /etc/nginx/sites-available/app seperti pada Kode Sumber 2.5

```
server {
listen 80;
```

```
server name 10.151.36.173;
add header X-Frame-Options SAMEORIGIN;
add header X-Content-Type-Options nosniff
add header X-XSS-Protection "1; mode=
   block";
access log /home/fourirakbar/flask-
   loginpage/logs/app_access.log;
location / {
  proxy pass
                   http://127.0.0.1:4000;
  proxy_set header Host
                                $host;
  proxy set header X-Real-IP
     $remote addr;
  proxy set header X-Forwarded-For
     $proxy add x forwarded for;
location ^~ / static / {
include
            /etc/nginx/mime.types;
            /home/fourirakbar/flask-
alias
   loginpage/static/;
}
```

Kode Sumber 2.5: Isi Berkas app

(Halaman ini sengaja dikosongkan)

BIODATA PENULIS

Akbar, Fourir akrab dipanggil Oing, lahir pada tanggal 25 April 1996 di Surabaya. Penulis merupakan seorang mahasiswa sedang menempuh yang Departemen Informatika studi di Institut Teknologi Sepuluh Nopember. Memiliki beberapa hobi antara lain futsal dan DOTA. Pernah menjadi asisten dosen pada mata kuliah sistem operasi dan mata kuliah jaringan komputer pada semester 2016/2017 dan 2017/2018. Lalu iuga pernah menjadi asisten dosen pada mata

kuliah sistem terdistribusi pada tahun ajaran 2017/2018. Penulis juga pernah menjadi asisten dosen pendidikan informatika dan komputer terapan (PIKTI) ITS pada tahun ajaran 2016/2017 dan 2017/2018. Selama menempuh pendidikan di kampus, penulis juga aktif dalam organisasi kemahasiswaan, antara lain sebagai Staff Departemen Hubungan Luar Himpunan Mahasiswa Teknik Computer-Informatika pada tahun ajaran 2015/2016. Penulis juga aktif dalam kepanitiaan Schematics, antara lain sebagai Staff Biro Revolutionary Entertainment and Expo with Various Arts pada tahun ajaran 2015/2016 dan menjadi Badan Pengurus Harian (BPH) Biro Perlengkapan dan Transportasi pada tahun 2016/2017. Penulis juga merupakan salah satu administrator aktif pada Laboratorium Arsitektur dan jaringan Komputer di Departemen Informatika ITS.