Introduction to Pacbio Long reads Full-Length 16S HiFi Sequencing

Presenters: Manh Hùng, Phương Thảo

Table of contents

- 1. Quick overview of Pacbio Hifi sequencing technology
- 2. 16S full-length rRNA sequencing for accurate species-level taxonomic classification
- 3. Case study: Comparison of 16S rRNA Pacbio Long reads vs Illumina Short reads sequencing
- 4. Google Colab code

Pacbio Hifi sequencing produce highly accurate long reads

16S LIBRARY SAMPLE PREPARATION & SEQUENCING WORKFLOW OVERVIEW

Workflow summary for constructing SMRTbell libraries suitable for HiFi sequencing on the Sequel, Sequel II and Sequel IIe Systems for 16S metagenomics applications

16S Amplicon Generation

- Perform 1-Step PCR amplification of full-length 16S genes using recommended barcoded forward / reverse primers (PN 101-599-700)
- Pool up to 192 barcoded 16S amplicon samples to generate a single, pooled sample for SMRTbell library construction

SMRTbell Library Construction (4 hrs)

- Follow Procedure & Checklist Amplification of Full-Length 16S Gene with Barcoded Primers for Multiplexed SMRTbell Library Preparation and Sequencing (PN 101-599-700)
- Purify final SMRTbell library using AMPure PB beads

HiFi Sequencing

- Follow <u>Quick Reference Cards</u> for primer annealing, polymerase binding, complex cleanup and sample loading
- Generate up to 3.5 million HiFi reads per SMRT Cell 8M for a 16S library

Data Analysis

- Demultiplex barcodes using SMRT Link
- Perform 16S Analysis
 Using Third-Party
 Software (DADA2)

PacBio HiFi reads achieve >99.9% accuracy

Full-length 16S sequencing is the only way to resolve all the clades seen in the human gut, without bias

Question: What proportion of data can be re-identified at the species level using different 16S amplicons?

Problem: George Weinstock, leader of the *Human Microbiome Project*, showed that different amplicons show bias in the taxa they can identify

- V4: Consistently poor performance
- V1–V2: poor for Proteobacteria
- V3–V5: poor for Actinobacteria
- V1–V3: good results for Escherichia / Shigella
- V3–V5: good results for Klebsiella
- V6–V9: good results for Clostridium and Staphylococcus

More reads are classified to species and genus level with PacBio full-length 16S sequencing compared to V4 and synthetic long-read full-length 16S

97% sequences assigned to genus level using PacBio vs LoopSeq at 87% and V4 at 44%

99.7% sequences assigned to species level using PacBio vs LoopSeq at ~31% and V4 at ~15%

Small [species] differences really matter as it relates to health and disease

Penicillium roqueforti

Penicillium verrucosum

Being able to call and identify these subtle differences can make something taste good vs something that can be deadly

► Medicine (Baltimore). 2022 Jul 22;101(29):e29826. doi: 10.1097/MD.0000000000029826 🗷

Role of gut microbiota in postoperative complications and prognosis of gastrointestinal surgery: A narrative review

Yong Shi a, Huxiao Cui a, Fangjie Wang a, Yanxia Zhang a, Qingbin Xu a, Dan Liu a, Kunhui Wang a, Sen Hou a,*

► Author information ► Article notes ► Copyright and License information

PMCID: PMC9302249 PMID: 35866808

Abstract

Gastrointestinal surgery is often challenging because of unexpected postoperative complications such as pouchitis, malabsorption, anastomotic leak, diarrhea, inflammatory responses, and life-threatening infections. Moreover, the gut microbiota has been shown to be associated with the complications described above. Major intestinal reconstruction, such as Roux-en-Y gastric bypass (RYGB) and ileal pouch-anal anastomosis surgery, could result in altered gut microbiota, which might lead to some of the benefits of these procedures but could also contribute to the development of postsurgical complications. Moreover, postsurgical reestablishment of the gut microbiota population is still poorly understood. Here, we review evidence outlining the role of gut microbiota in complications of gastrointestinal surgery, especially malabsorption, anastomotic leak, pouchitis, and infections. In addition, this review will evaluate the risks and benefits of live biotherapeutics in the complications of gastrointestinal surgery.

Major change of microbial species during multistep CRC progression.

Case study

Comparison of taxonomy resolution 16S rRNA Pacbio Long reads vs Illumina Short reads sequencing

Searc

BMC Genomics

Home About Articles Submission Guidelines Collections Join The Board

Submit manuscript 👍

Research | Open access | Published: 25 March 2024

Full-length 16S rRNA gene sequencing by PacBio improves taxonomic resolution in human microbiome samples

Elena Buetas, Marta Jordán-López, Andrés López-Roldán, Giuseppe D'Auria, Llucia Martínez-Priego, Griselda De Marco, Miguel Carda-Diéguez [™] & Alex Mira

BMC Genomics 25, Article number: 310 (2024) Cite this article

3946 Accesses | 8 Citations | 6 Altmetric | Metrics

Abstract

Background

Sequencing variable regions of the 16S rRNA gene (~300 bp) with Illumina technology is commonly used to study the composition of human microbiota. Unfortunately, short reads are unable to differentiate between highly similar species. Considering that species from the same genus can be associated with health or disease it is important to identify them at the lowest possible taxonomic rank. Third-generation sequencing platforms such as PacBio SMRT, increase read lengths allowing to sequence the whole gene with the maximum taxonomic resolution. Despite its potential, full length 16S rRNA gene sequencing is not widely used yet. The aim of the current study was to compare the sequencing output and taxonomic annotation performance of the two approaches (Illumina short read sequencing and PacBio long read sequencing of 16S rRNA gene) in different human microbiome samples. DNA from saliva, oral biofilms (subgingival plaque) and faeces of 9 volunteers was isolated. Regions V3-V4 and V1-V9 were amplified and sequenced by Illumina Miseq and by PacBio Sequel II sequencers, respectively.

DOI: 10.1186/s12864-024-10213-5

NCBI SRA under accession number PRJNA933120

Summary of study design

Qiime 2 pipeline

Summary of sequencing pipeline

Feature table

SHORT READS

Frequency per sample

	Frequency
Minimum frequency	27,021
1st quartile	85,401
Median frequency	120,829
3rd quartile	138,614.2
Maximum frequency	144,066
Mean frequency	103,186.2

Frequency per feature

	Frequency
Minimum frequency	2
1st quartile	16
Median frequency	60
3rd quartile	256
Maximum frequency	15,771
Mean frequency	510.2

LONG READS

rview Interactive Sample Detail Feature Detail

Table summary

Summary Statistic	Value
Number of samples	4
Number of features	616
Total frequency	32,889

Frequency per sample

	Frequency
Minimum frequency	7,718
1st quartile	8,027.8
Median frequency	8,233.5
3rd quartile	8,428
Maximum frequency	8,704
Mean frequency	8,222.2

Frequency per feature

	Frequency
Minimum frequency	2
1st quartile	11
Median frequency	23
3rd quartile	47
Maximum frequency	1,472
Mean frequency	53.4

Taxa barplots

SHORT READS

Download Color Palette Taxonomic Level SVG (bars) SVG (legend) Level 7 schemeAccent Bar Width Hover over the plot to learn more d Bacteria;p Bacteroidota;c Bacteroidia;o Bacteroidales;f Prevotellaceae;g Prevotella; d Bacteria;p Bacteroidota;c Bacteroidia;o Bacteroidales;f Bacteroidaceae;g Bacteroides; d Bacteria;p Firmicutes;c Negativicutes;o Veillonellales-Selenomonadales;f Veillonellaceae;g Dialister; d Bacteria;p Firmicutes;c Negativicutes;o Acidaminococcales;f Acidaminococcaceae;g Phascolarctobacterium; d Bacteria;p Firmicutes;c Bacilli;o Erysipelotrichales;f Erysipelotrichaceae;q Holdemanella; d Bacteria;p Proteobacteria;c Gammaproteobacteria;o Aeromonadales;f Succinivibrionaceae;g Succinivibrio; d Bacteria;p Firmicutes;c Clostridia;o Lachnospirales;f Lachnospiraceae;g Dorea; d Bacteria;p Firmicutes;c Clostridia;o Oscillospirales;f Ruminococcaceae;g uncultured;s gut metagenome d Bacteria;p Firmicutes;c Clostridia;o Lachnospirales;f Lachnospiraceae;g Coprococcus; 70% d Bacteria;p Firmicutes;c Clostridia;o Lachnospirales;f Lachnospiraceae;g [Eubacterium] ruminantium group; d_Bacteria;p_Firmicutes;c_Clostridia;o_Lachnospirales;f_Lachnospiraceae;g_Fusicatenibacter;_ d_Bacteria;p_Firmicutes;c_Bacilli;o_Erysipelotrichales;f_Erysipelatoclostridiaceae;g_Catenibacterium;_ d Bacteria;p Firmicutes;c Clostridia;o Christensenellales;f Christensenellaceae; ; d Bacteria;p Firmicutes;c Clostridia;o Lachnospirales;f Lachnospiraceae;g [Ruminococcus] torques group; d Bacteria;p Firmicutes;c Clostridia;o Oscillospirales;f Oscillospiraceae;g UCG-005; d Bacteria;p Firmicutes;c Clostridia;o Christensenellales;f Christensenellaceae;g Christensenellaceae R-7 group;s uncultured spirochete d Bacteria;p Firmicutes;c Clostridia;o Monoglobales;f Monoglobaceae;g Monoglobus; d Bacteria;p Bacteroidota;c Bacteroidia;o Bacteroidales;f Prevotellaceae;q Alloprevotella; d_Bacteria;p_Firmicutes;c_Bacilli;o_Erysipelotrichales;f_Erysipelatoclostridiaceae;g_Erysipelotrichaceae_UCG-003;_ d Bacteria;p Firmicutes;c Clostridia; ; ; ; d Bacteria;p Firmicutes;c Clostridia;o Lachnospirales;f Lachnospiraceae;g Roseburia; d Bacteria;p Bacteroidota;c Bacteroidia;o Bacteroidales;f Rikenellaceae;g Alistipes; d Bacteria;p Firmicutes;c Clostridia;o Oscillospirales;f Ruminococcaceae;g Ruminococcus; d Bacteria;p Firmicutes;c Clostridia;o Christensenellales;f Christensenellaceae;g Christensenellaceae R-7 group;s uncultured prokaryote d Bacteria;p Verrucomicrobiota;c Verrucomicrobiae;o Verrucomicrobiales;f Akkermansiaceae;q Akkermansia; d Bacteria;p Proteobacteria;c Gammaproteobacteria;o Enterobacterales;f Enterobacteriaceae; ; d Bacteria;p Firmicutes;c Clostridia;o Lachnospirales;f Lachnospiraceae;g [Eubacterium] eligens group; d Bacteria;p Actinobacteriota;c Coriobacteriia;o Coriobacteriales;f Coriobacteriaceae;g Collinsella; d Bacteria;p Desulfobacterota;c Desulfovibrionia;o Desulfovibrionales;f Desulfovibrionaceae;g Desulfovibrio;s metagenome d_Bacteria;p_Firmicutes;c_Clostridia;o_Oscillospirales;f_Oscillospiraceae;g_NK4A214_group;_ d_Bacteria;p_Firmicutes;c_Clostridia;o_Lachnospirales;f_Lachnospiraceae;g_[Eubacterium]_hallii_group;_ d_Bacteria;p_Bacteroidota;c_Bacteroidia;o_Bacteroidales;f_Tannerellaceae;g_Parabacteroides;_ d Bacteria;p Firmicutes;c Negativicutes;o Veillonellales-Selenomonadales;f Selenomonadaceae;g Mitsuokella; d Bacteria;p Firmicutes;c Clostridia;o Lachnospirales;f Lachnospiraceae;g Anaerostipes; d Bacteria;p Firmicutes;c Bacilli;o Lactobacillales;f Streptococcaceae;g Streptococcus; Sample d Bacteria;p Firmicutes;c Clostridia;o Oscillospirales;f Oscillospiraceae; ; d Bacteria;p Firmicutes;c Bacilli;o Lactobacillales;f Lactobacillaceae;g Lactobacillus;s Lactobacillus ruminis d Bacteriam Firmicutesic Clostridiam Oscillospiralesif Ruminococcaceaem Ruminococcusis dut metadenome

LONG READS

Number of classified taxon at Genus and species levels of 2 difference sequencing methods

Number of identified taxon at Genus and species levels of 2 difference sequencing methods

Confidence scores of final identified taxon

Phylogenetic trees

SHORT READS

LONG READS

Alpha diversity

Alpha Diversity Boxplots

Kruskal-Wallis (all groups)

 H
 0.333333333215

 p-value
 0.5637028616507738

Kruskal-Wallis (pairwise)

Download CSV

			"	p-value	q-raido
	Group 1	Gro	up 2		
long (n=4)		short (n=4)	0.333333	0.563703	0.563703

Beta diversity

- Long reads
- Short reads

Beta diversity

Overview

method name	PERMANOVA
test statistic name	pseudo-F
sample size	8
number of groups	2
test statistic	1.786113
p-value	0.028

Group significance plots

Download raw data as TSV

number of permutations

PERMANOVA results

Rarefaction curves

SHORT READS

LONG READS

Thanks for your attention!