Parsing: Context-Free Languages and Grammars

CS 4100 Gordon Stewart Ohio University

Lexing and Parsing

Lexers like ocamllex convert concrete source programs (which are really just strings of characters) into sequences of *tokens*

Enabling Formal Language Technology
The reduction of **REs** to **NFAs** to **DFAs**

Parsers convert sequences of tokens into *abstract syntax trees*

Enabling Formal Language Technology
Context-Free Grammars (CFGs)

Lexing

Grumpy

Parsing

Source Program

Lexical Analysis

Syntax Analysis

FRONT-END

BACK-END

Semantic Analysis

IR Code Generation

Intermediate Representation

IR Optimization

Target Code Generation

Target Code Optimization

Target Program

```
for(i=0; i<20; i++) {
   printf("%d\n", i);
}
```

```
i = 0
L6:
    CALL(printf, "%d\n", i)
    i = i + 1
    if(i < 20) GOTO L6</pre>
```

```
.LC0: stringz"%d\n"

    addl r37 = 0, r0
    addl r36 = @ltoff(.LC0), gp
.L6: br.call.sptk.many b0 = printf#
    adds r37 = 1, r37
    cmp4.ge p6, p7 = 19, r37
    (p6) br.cond.dptk .L6
```

- A language is a set of strings over some alphabet
- The regular languages are those recognizable by regular expressions (or equivalently, NFAs or DFAs)
- Some languages are too complex to be recognized by regular expressions / DFAs / NFAs

- A language is a set of strings over some alphabet
- The regular languages are those recognizable by regular expressions (or equivalently, NFAs or DFAs)
- Some languages are too complex to be recognized by regular expressions / DFAs / NFAs

Example

```
Let L = the set of strings with a balanced number of left and right parentheses "(" and ")" L = { "(^n)^n" | n \in \{0, 1, 2, ...\} }
```

A language is a set of strings over some alphabet

Claim:

There is no DFA that matches L. Consequently, L is not regular.

Why:

A DFA with **n** states can remember parenthesis nesting depth no greater than **n**.

Example

Let L = the set of strings with a balanced number of left and right parentheses "(" and ")"

$$L = \{ "(^n)^n" \mid n \in \{0, 1, 2, ... \} \}$$

Another Example

Let L = the set of strings with an equal number of as and bs

```
E.g., "aabb", "", "abaabb", ...
```

Another Example

Let L = the set of strings with an equal number of as and bs

E.g., "aabb", "", "abaabb", ...

Not regular: Intuitively, the corresponding DFA needs to "count" the number of **a**s, **b**s to ensure that they match, but only has a finite number of states...

Another Another Example

Let L = the set of strings with an equal number of occurrences of the substrings **ab** and **ba**

```
E.g., "abba", "", "bab", "baab", ...
```

Another Another Example

Let L = the set of strings with an equal number of occurrences of the substrings **ab** and **ba**

```
E.g., "abba", "", "bab", "baab", ...
```

Regular!

Something to ponder...can you prove it?

The Pumping Lemma

- First proved by Michael Rabin and Dana Scott in 1959
 - http://www.cse.chalmers.se/~coquand/AUTOMATA/rs.pdf
- A general tool for proving that a language is nonregular

Lemma: For any regular language L, there is an integer $p \ge 1$ (called the "pumping length") such that for any string s in L of length at least p, s can be broken up into three parts $s = (x \cdot y \cdot z)$ such that:

- length y >= 1
- length (x.y) <= p
- $\forall i \ge 0. (x.y^i.z) \in L$

Informally: within the first p characters in any string in L, there's a "loopable" substring y such that repeating y any number of times yields a string that's still in L.

Using Pumping Lemma to Prove a Language Nonregular

 Claim: The language that accepts n '('s followed by n ')' is nonregular.

$$- L = \{ (^n)^n \mid n \in [0...] \}$$

Proof:

- Let p = pumping length of L.
- Let s = a string in L of length > 2p (thus s has p or more left parens, followed by p or more right parens)
- By the pumping lemma, s is splittable into (x . y . z) such that length (x . y) <= p.
- Thus y must contain only left parens.
- But now the new string $x \cdot y^i \cdot z$ for any number i > 0 contains an unequal number of left and right parens.

CONTEXT-FREE LANGUAGES

A context-free grammar matching the language

$$L = \{ "(^n)^n" \mid n \in \{0, 1, 2, ... \} \}$$

A context-free grammar matching the language

$$L = \{ "(^n)^n" \mid n \in \{0, 1, 2, ... \} \}$$

Every grammar is composed of a set of rules (also called productions)

A context-free grammar matching the language

$$L = \{ "(^n)^n" \mid n \in \{0, 1, 2, ... \} \}$$

Every grammar is composed of a set of rules (also called productions)

Every rule has a **nonterminal** symbol on the left...

And a sequence of **terminal** or **nonterminal** symbols on the right

A context-free grammar matching the language

$$L = \{ "(^n)^n" \mid n \in \{0, 1, 2, ... \} \}$$

Rules may be recursive

Every grammar is composed of a set of *rules* (also called *productions)*

Every rule has a **nonterminal** symbol on the left...

And a sequence of **terminal** or **nonterminal** symbols on the right

A context-free grammar matching the language

$$L = \{ "(^n)^n" \mid n \in \{0, 1, 2, ... \} \}$$

Rules may be recursive

Every grammar is composed of a set of rules (also called productions)

One of the nonterminals is always designated the "start" symbol

Every rule has a **nonterminal** symbol on the left...

And a sequence of **terminal** or **nonterminal** symbols on the right

The language of a CFG is defined as the set of strings it derives.

A *derivation* begins from the "start" nonterminal, and at each step unfolds (replaces with RHS) one nonterminal according to the rules of the grammar.

(2) S -> ""

Derivation for "((()))"

By rule 1

The language of a CFG is defined as the set of strings it derives.

A *derivation* begins from the "start" nonterminal, and at each step unfolds (replaces with RHS) one nonterminal according to the rules of the grammar.

The language of a CFG is defined as the set of strings it derives.

A *derivation* begins from the "start" nonterminal, and at each step unfolds (replaces with RHS) one nonterminal according to the rules of the grammar.

(1)
$$S \rightarrow ((S'))''$$

$$S \rightarrow ((S'))''$$

$$S \rightarrow ((S'))''$$
By rule 1
$$((S'))''$$
By rule 1
$$((S'))''$$
By rule 1

The language of a CFG is defined as the set of strings it derives.

A *derivation* begins from the "start" nonterminal, and at each step unfolds (replaces with RHS) one nonterminal according to the rules of the grammar.

(1)
$$S \rightarrow (("S")"]$$
 By rule 1
 $("S")"$ By rule 1
 $("S")"$ By rule 1
 $("S")"$ By rule 1
 $("S")"$ By rule 1

The language of a CFG is defined as the set of strings it derives.

A *derivation* begins from the "start" nonterminal, and at each step unfolds (replaces with RHS) one nonterminal according to the rules of the grammar.

```
S By rule 1

"(" S ")" By rule 1

"((" S "))" By rule 1

"(((" S ")))" By rule 1

"(((( )))" By rule 2
```

$CFL \supset RL$

Def: A language L is **context-free** iff there is a CFG that derives exactly the strings in L.

Thm: Every regular language is derivable by some CFG.

Examples

$$(a.b)+$$

E -> integer ------ A terminal symbol matching integers *n*

 $E \rightarrow E + E$

E -> E * E

*Derivation for "3 + 4 * 5\$"*

<u>S</u>

S -> E \$ ———— "\$": A terminal symbol matching end-of-file

E -> integer ------ A terminal symbol matching integers *n*

 $E \rightarrow E + E$

E -> E * E

*Derivation for "3 + 4 * 5\$"*

<u>S</u> <u>E</u>\$

S -> E \$ ———— "\$": A terminal symbol matching end-of-file

E -> integer

A terminal symbol matching integers *n*

 $E \rightarrow E + E$

E -> E * E

*Derivation for "3 + 4 * 5\$"*

<u>S</u> <u>E</u>\$ <u>E</u> * E\$

S -> E \$ ———— "\$": A terminal symbol matching end-of-file

E -> integer

A terminal symbol matching integers *n*

 $E \rightarrow E + E$

E -> E * E

*Derivation for "3 + 4 * 5\$"*

<u>S</u><u>E</u>\$<u>E</u> * E\$<u>E</u> + E * E\$

E -> integer ------ A terminal symbol matching integers *n*

 $E \rightarrow E + E$

E -> E * E

*Derivation for "3 + 4 * 5\$"*

S
 E\$
 E * E\$
 E + E * E\$
 3 + E * E\$

E -> integer

A terminal symbol matching integers *n*

 $E \rightarrow E + E$

E -> E * E

*Derivation for "3 + 4 * 5\$"*

S
E\$
E * E\$
E + E * E\$
3 + E * E\$
3 + 4 * E\$

E -> integer ------ A terminal symbol matching integers *n*

 $E \rightarrow E + E$

E -> E * E

*Derivation for "3 + 4 * 5\$"*

S
E\$
E * E\$
E + E * E\$
3 + E * E\$
3 + 4 * E\$
3 + 4 * 5\$

PARSE TREES

Parse Trees

$$E \rightarrow E + E$$

*Derivation for "3 + 4 * 5\$"*

<u>S</u> <u>E</u>\$

E * E\$

E + E * E\$

3 + E * E\$

3 + 4 * E\$

3 + 4 * 5\$

Every derivation corresponds to a parse tree, by connecting the terminal and nonterminal symbols to the nonterminals from which they were derived.

$$E \rightarrow E + E$$

Every derivation corresponds to a parse tree, by connecting the terminal and nonterminal symbols to the nonterminals from which they were derived.

Derivation for "3 + 4 * 5\$" S E\$ E * E\$ E + E * E\$ 3 + E * E\$ 3 + 4 * E\$ 3 + 4 * 5\$

$$E \rightarrow E + E$$

*Derivation for "3 + 4 * 5\$"*

<u>S</u>

E\$

E * E

E + E * E\$

3 + E * E\$

3 + 4 * E\$

3 + 4 * 5\$

$$E \rightarrow E + E$$

*Derivation for "3 + 4 * 5\$"*

<u>S</u>

E\$

$$E + E * E$$

$$3 + E * E$$

$$3 + 4 * E$$$

$$E \rightarrow E + E$$

*Derivation for "3 + 4 * 5\$"*

S

E\$

E * E

E + E * E\$

3 + F * F

3 + 4 * E\$

3 + 4 * 5\$

$$E \rightarrow E + E$$

*Derivation for "3 + 4 * 5\$"*

<u>s</u> E\$

E * E\$

E + E * E\$

3 + E * E\$

3 + 4 * E\$

3 + 4 * 5\$

$$E \rightarrow E + E$$

*Derivation for "3 + 4 * 5\$"*

<u>s</u> <u>E</u>\$

E * E\$

E + E * E\$

3 + E * E\$

3 + 4 * E\$

3 + 4 * 5\$

$$E \rightarrow E + E$$

Derivation for *"*3 + 4 * 5\$"

<u>E</u>\$

E * E\$

E + E * E\$

3 + E * E\$

3 + 4 * E\$

Leftmost Derivations

$$E \rightarrow E + E$$

In the derivation at bottom-left, we always expanded the leftmost nonterminal symbol at each step.

This is a so-called *leftmost derivation*.

E -> integer

 $E \rightarrow E + E$

E -> E * E

E -> integer

 $E \rightarrow E + E$

E -> E * E

E -> integer

 $E \rightarrow E + E$

E -> E * E

E -> integer

 $E \rightarrow E + E$

E -> E * E

E -> integer

 $E \rightarrow E + E$

E -> E * E

E -> integer

 $E \rightarrow E + E$

E -> E * E

AMBIGUITY

Ambiguous Grammars

$$E \rightarrow E + E$$

A grammar is ambiguous if it permits distinct parse trees for the same string.

Alternatively: The grammar admits two *leftmost* (or rightmost) derivations of the same string.

Disambiguating Grammars

An ambiguous grammar can often (but not always!) be reformulated as an equivalent unambiguous grammar.

Ambiguous

$$E \rightarrow E + E$$

$$E \rightarrow (E)$$

$$E \rightarrow E + T$$
T stands for term
 $E \rightarrow T$

$$T \rightarrow T * F$$
F stands for factor
 $T \rightarrow F$

Unambiguous

What's the result of the following arithmetic expression?

$$4 + 5 * 3 - 2$$

What's the result of the following arithmetic expression?

$$4+5*3-2$$
Ans: $4+(5*3)-2=4+15-2=17$

Multiplication has higher precedence ("binds tighter") than addition and subtraction.

What's the result of the following arithmetic expression?

$$4+5*3-2$$
Ans: $4+(5*3)-2=4+15-2=17$

Multiplication has higher precedence ("binds tighter") than addition and subtraction.

What about...

What's the result of the following arithmetic expression?

$$4+5*3-2$$
Ans: $4+(5*3)-2=4+15-2=17$

Multiplication has higher precedence ("binds tighter") than addition and subtraction.

What about...

$$27 - 27 + 27$$
Ans: $(27-27) + 27 = 0 + 27 = 27$

Addition and subtraction have the same precedence (by convention) but are *left associative*.

Disambiguating Grammars

Intuitively: Introduce a new **nonterminal** symbol for each precedence level (* has **higher precedence/binds tighter** than +)

E -> T

A new nonterminal **T** for binary operators with higher precedence than (+)

T -> F

A new nonterminal **F** for operators that have higher precedence than (*)

F -> integer

Unambiguous

Disambiguating Grammars

$$T \rightarrow T * F$$

Leftmost Derivation for "3 + 4 * 5\$"

Controlling Associativity

Controlling Associativity

Ambiguous Grammars

Another classic example:

```
S -> if E then S else S
S -> if E then S
                                    if E then (if E then ...) else ...
                                    if E then (if E then ... else ...)
S -> ...
E -> ...
         This grammar is ambiguous for the string
                if E then if E then ... else ...
                                          if E then S
           if E then S else ...
                                              if E then ... else ...
               if E then ...
```

Disambiguating

```
(* for "matched" *)
S -> M
                            (* for "unmatched" *)
S -> U
M -> if E then M else M
U -> if E then S
U -> if E then M else U
                                         if E then S
if E then if E then ... else ...
                                                 M
                                            if E then ... else ...
```

PUSHDOWN AUTOMATA

Pushdown Automata

- Pushdown automaton (PDA): An NFA-like machine for recognizing whether strings are in a language which in addition has access to a stack
 - In addition to reading symbols from the input and moving from state to state, PDA can also *push* and *pop* values onto an unbounded stack
- PDAs have equivalent power to CFGs:
 - The set of languages generatable by context-free grammars is exactly the set of languages recognizable by PDAs

Stack	Input
	000111

Stack	Input
	000111
\$	000111

Stack	Input
	000111
\$	000111
\$ \$0	00111

Stack	Input
	000111
\$	000111
\$0 \$00	00111
\$00	0111

Stack	Input
	000111
\$	000111
\$0	00111
\$00	0111
\$000	111

Stack	Input
	000111
\$	000111
\$0	00111
\$00	0111
\$000	111
\$00	11

Stack	Input
	000111
\$	000111
\$0	00111
\$00	0111
\$000	111
\$00	11
\$0	1

Stack	Input
	000111
\$	000111
\$0	00111
\$00	0111
\$000	111
\$00	11
\$0	1
\$	

Stack	Input
	000111
\$	000111
\$0	00111
\$00	0111
\$000	111
\$00	11
\$0	1
\$	

PDAs Formally

- A PDA consists of:
 - A finite set of states Q
 - An alphabet $\Sigma \cup \{\epsilon\}$ of possible input characters
 - An alphabet $\Gamma \cup \{\epsilon\}$ of possible stack characters
 - An initial state INIT (drawn from Q)
 - A set of FINAL states (a subset of Q)
- together with a transition function δ
 - δ 's inputs:
 - The current state $q \in Q$
 - The symbol to read, if any, drawn from $\Sigma \cup \{\epsilon\}$
 - The top symbol on the stack
 - δ 's outputs:
 - $P(Q \times (\Gamma \cup \{\epsilon\}))$

PDAs Formally

- $Q = \{INIT, 1, 2, 3\}$
- $\Sigma = \{0, 1\}$
- $\Gamma = \{0,\$\}$
- INIT = INIT, FINAL = {INIT, 3}