COMPUTER ORGANIZATION (IS F242)

LECT 11: DIVISION, FLOATING POINT

Division

- □ If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
- Otherwise
 - 0 bit in quotient, bring down next dividend bit

Restoring division

- Do the subtract, and if remainder goes
 < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

Reminder	Divisor	Quotient				
0100 1010	1000 0000	0000	Initial Values			
R-D < 0, So Reminder remains same, Shift D right; Shift Q left & Q0 = 0						
0100 1010	0100 0000	0000	Shift D right & Q left, Q0=0			
R-D > 0, So $R = R - D$; Shift D right; Shift Q left & Q0 = 1.						
0000 1010	0010 0000	0001 F	R=R-D; Shift D right & Q left; Q0=1			
R-D < 0, So Reminder remains same, Shift D right; Shift Q left & Q0 = 0						
0000 1010	0001 0000	0010	Shift D right & Q left, Q0=0			
R-D < 0, So Reminder remains same, Shift D right; Shift Q left & Q0 = 0						
0000 1010	0000 1000	0100	Shift D right & Q left, Q0=0			
R-D > 0, So $R = R - D$; Shift D right; Shift Q left & Q0 = 1.						
0000 0010	0000 0100	1001 F	R=R-D; Shift D right & Q left; Q0=1			

Final result is in Quotient register [1001] and Reminder in Reminder register [0010]

Division of Unsigned Binary Integers

More complex than multiplication Negative numbers are really bad! Based on long division

Flowchart for Unsigned Binary Division

A (N+1 bits) 00000 00001	Q 1001 0011 0010 0110	M 1011 1011	Initial Values Shift A,Q left
A-M<0; A remai 00001	ns same; Q0=0 0010 0110	1011	A=A; Q0=0
00010 A-M<0; A remai	0100 1100	1011	Shift A,Q left
00010	0100 1100	1011	A=A; Q0=0
00100 A-M<0: A rema	1001 1000 ains same; Q0=0	1011	Shift A,Q left
00100	1001 1000	1011	A=A; Q0=0
01001 A-M<0; A rema	0011 0000 ains same; Q0=0	1011	Shift A,Q left
01001	0011 0000	1011	A=A; Q0=0

A (N+1 bits)	Q	M			
01001	0011 0000	1011	Initial Values		
10010	0110 0000	1011	Shift A,Q left		
A-M>=0; $A = A - M$; $Q0=1$					
00111	0110 0001	1011	A=A-M; Q0=1		
01110	1100 0010	1011	Shift A,Q left		
A-M>=0; $A = A - M$; $Q0=1$					
00011	1100 0011	1011	A=A-M; Q0=1		
00111	1000 0110	1011	Shift A,Q left		
A-M<0; A remains same; Q0=0					
00111	1000 0110	1011	A=A; Q0=0		
01111	0000 1100	1011	Shift A,Q left		
A-M>=0; A = A	- M; Q0=1		-		
00100	0000 1101	1011	A=A-M; Q0=1		

Final result is in Quotient register [1101] and Reminder in A [0100]

Optimized Divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

```
Divisor
Remainder
(2N+1 bits)
01001
        0011
                         1011
                                  Initial Values
R[4-8] - D < 0; Shift R; R[0]=0
10010 0110
                         1011
                                  Shift R; R[0]=0
R[4-8] - D \ge 0; R[4-8] = R-4-8] - D; Shift R; R[0]=1
00111
                         1011 R[4-8]=R[4-8]-D; R[0]=1
        0111
01110 1110
                         1011
                                  Shift R
R[4-8] - D \ge 0; R[4-8] = R-4-8] - D; Shift R; R[0]=1
                         1011 R[4-8]=R[4-8]-D; R[0]=1
00011
      1111
00111
                         1011
                                  Shift R
        1110
R[4-8] - D < 0; Shift R; R[0]=0
01111
        1100
                         1011
                                  Shift R; R[0]=0
R[4-8] - D >= 0; R[4-8] = R-4-8] - D; Shift R; R[0]=1
00100
        1101
                         1011
                                  R[4-8]=R[4-8]-D; R[0]=1
```

Representation of Number – (Refer CP)

- Binary representation
 - Unsigned
 - Signed
 - Signed Magnitude
 - 1's Complement
 - 2's Complement
- Bit Vector representation
- ASCII representation

Fractions: Fixed-Point

- How can we represent fractions?
 - Use a "binary point" to separate positive from negative powers of two -- just like "decimal point."

Conversion from Binary to Decimal(Fractions)

Convert to decimal: **00101000.101**

Step1: Take integer part and convert to decimal

$$2^3 + 2^5 = 40$$

Step2: Take fraction part and convert to decimal

$$2^{-1}+2^{-3}=.625$$

Step3: Add result of Step1 and Step2

40.625

Arithmetic on Fractions

2's comp addition and subtraction still work.

If binary points are aligned

Example:

$$2^{-1} = 0.5$$

$$2^{-2} = 0.25$$

$$2^{-3} = 0.125$$

00101000.101 (40.625)

+ 111111110.110 (-1.25)

00100111.011 (39.375)

Note: 111111110 = -2 (decimal)

.110 = 0.75

So 11111110.110 gives -2 + 0.75 = -1.25

Representation of Real Numbers

- Numbers with fraction
- Could be done in pure binary
- Where is the binary point?
- Fixed Binary point?
 - Very limited
- Varying Binary point?
 - How do you show where is the binary point?

Floating Point Representation types

■ IBM – 370 Format

■ IEEE – 754 Format

IEEE 754 Floating Point Representation

- Single Precision 4 bytes (32 bits)
- Double Precision 8 bytes (64 bits)
- Extended Double 10 bytes (80 bits)
- Quadruple precision 16 bytes (128 bits)

Floating point representation

- Representation of floating point Number
 - Example: 01110.101 x 2⁻²⁰ (+14.625 * 2⁻²⁰)
- Stored as 3 parts
 - Sign
 - Exponent
 - Mantissa (Significant or fraction)
- More bits for fraction gives more precision
- More bits for exponent increases range