



# **Deep Data First Round**

## **Problem Statement**

In the age of disruption, we cannot run away from basic needs. Money is one of them. There are so many ways to make money. Most people earn money on a regular basis via payroll.

Banks are the places for peace of mind to save our money. They are safe and take care of our money. Most of the time, banks know spending activities of their customers via all kinds of services. However, banks only know "income" from registered payroll or declared statements.

With customers' spending behavior and other financial activities, is it possible to determine their *income*? You are data scientists who are eager enough to help Kasikorn Bank estimating customer income.

#### **Given Features**

- 1. ID
- 2. Age
- 3. Gender
- Credit Card number (each person may have more than 1 card)
- 5. Credit card spending
- 6. Aggregated expense via K+
- 7. Number of K+ activities





There are 5 datasets (tables). The data is mocked to represent financial activities during Jan 2018 - Jun 2018.

#### 1. demographics.csv

| Field Name | Data Type | Description                                                                        |
|------------|-----------|------------------------------------------------------------------------------------|
| id         | INTEGER   | Dummy customer<br>ID                                                               |
| cc_no      | INTEGER   | Dummy credit card number                                                           |
| gender     | INTEGER   | Gender<br>1: Male<br>2: Female                                                     |
| ocp_cd     | INTEGER   | Encoded group of occupations.                                                      |
|            |           | We don't give<br>details on this.                                                  |
|            |           | Example of groups of occupations: "students"                                       |
| age        | INTEGER   | Range of ages<br>1:[0-15], 2:[16-25]<br>3:[26-35], 4:[36-45]<br>5:[46-55], 6:[56+] |





### Example:

| id | cc_no | gender | ocp_cd | age |
|----|-------|--------|--------|-----|
| 1  | 98397 | 2      | 9      | 5   |

## 2. cc.csv (credit card spending)

| Field Name | Data Type | Description                                          |
|------------|-----------|------------------------------------------------------|
| cc_no      | INTEGER   | Dummy credit card number                             |
| pos_dt     | STRING    | Date of the<br>transaction<br>Format: yyyy-mm-<br>dd |
| cc_txn_amt | FLOAT     | Spending amount                                      |

## Example:

| cc_no | pos_dt     | cc_txn_amt |
|-------|------------|------------|
| 37069 | 2018-05-10 | 5000       |
| 37069 | 2018-06-04 | 12000      |
| 37069 | 2018-04-03 | 5000       |
| 37069 | 2018-04-22 | 1600       |
| 37069 | 2018-01-21 | 5000       |





## 3. kplus.csv (K+usage)

| Field Name   | Data Type | Description                                                                                                                                |
|--------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|
| id           | INTEGER   | Dummy customer<br>number                                                                                                                   |
| sunday       | STRING    | Aggregated data is represented by the end of each week. *For example, 2018-05-27 represents the aggregate data of 2018-05-21 to 2018-05-27 |
| kp_txn_count | INTEGER   | Frequency of K+<br>usage per week                                                                                                          |
| kp_txn_amt   | FLOAT     | Monetary amount of K+ usage                                                                                                                |

## Example:

| id    | sunday     | kp_txn_count | kp_txn_amt |
|-------|------------|--------------|------------|
| 14802 | 2018-01-14 | 2            | 2400       |
| 14802 | 2018-04-01 | 9            | 33900      |





#### 4. train.csv (Training set with labels)

| Field Name | Data Type | Description                |
|------------|-----------|----------------------------|
| id         | INTEGER   | Dummy customer<br>number   |
| income     | FLOAT     | Income labels for training |

#### Example:

| id | income |
|----|--------|
| 1  | 20000  |
| 2  | 106000 |

#### 5. test.csv (list of customers to predict

| Field Name | Data Type | Description           |
|------------|-----------|-----------------------|
| id         | INTEGER   | Dummy customer number |

#### Example:

| id    |
|-------|
| 50001 |
| 50002 |





The score from the submission engine online might not reflect the real score. It is just a guideline score. Not every row is evaluated.

## **Metric of evaluation**

**Modified SMAPE** (symmetric mean absolute percentage error)

$$Score = 100 - \frac{100}{N} \sum_{i=1}^{N} \frac{|F_i - A_i|^2}{(\min(2|A_i|, |F_i|) + |A_i|)^2}$$

where  $A_i$  = Actual value (answer key),  $F_i$  = Forecast value \*Note, this score can be negative. If your answer is negative, the system will show your score as 0.

\*\* If you get score = -1, this means there is something wrong about your submitted file(s).

## **Output Format**

The output must follow the format:

- 1. Two columns: ID (INTEGER) and Income (FLOAT).
- 2. Must include the header (column names).
- 3. Include every ID and only **ONCE.**

If the format is violated, the predicted income of that ID will be assigned to 0 automatically.





#### **Example of output**

| id    | income   |
|-------|----------|
| 55001 | 21321.32 |
| 55002 | 32293.01 |
| 55003 | 29329.93 |
| 55004 | 12000.00 |

## **Final Submission**

For the *final answer*, please submit .zip file. This zip file **MUST** contain

- 1. Model file(s)
  - Use your team number as filename:

M\_[team\_number].xxx

- 2. Output file
  - Use your team number as filename:

O\_[team\_number].csv

3. Other dependency file(s)

Remark: Some of the data provided maybe incomplete, inconsistent, missing, noisy, erroneous, etc. as can occur in the real-world setting. It is the participants' task to recognize such cases as the challenge intentionally posed by the problem designer.