

Detección de regiones asentadas en pastilla de freno ferroviaria mediante procesamiento de imágenes

Autor:

Ing. Carlos Strumia

Director:

Nombre del Director (pertenencia)

${\rm \acute{I}ndice}$

1. Descripción técnica-conceptual del proyecto a realizar	٠	٠		•	•	 5
2. Identificación y análisis de los interesados						 6
3. Propósito del proyecto						 6
4. Alcance del proyecto						 7
5. Supuestos del proyecto						 7
6. Requerimientos						 8
7. Historias de usuarios (<i>Product backlog</i>)				•		 8
8. Entregables principales del proyecto				•		 11
9. Desglose del trabajo en tareas				•		 11
10. Diagrama de Activity On Node						 12
11. Diagrama de Gantt						 12
12. Presupuesto detallado del proyecto					•	 15
13. Gestión de riesgos						 15
14. Gestión de la calidad						 16
15. Procesos de cierre			_		_	17

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
0	Creación del documento	22/10/2021
1	Se completa hasta el punto 5 inclusive	04/11/2021
2	Se completa hasta el punto 9 inclusive	11/11/2021
	Se aceptan y se corrigen las observaciones del revisor	

Acta de constitución del proyecto

Buenos Aires, 22 de octubre de 2021

Por medio de la presente se acuerda con el Ing. Ing. Carlos Strumia que su Trabajo Final de la Carrera de Especialización en Inteligencia Artificial se titulará "Detección de regiones asentadas en pastilla de freno ferroviaria mediante procesamiento de imágenes", consistirá esencialmente en la elaboración de un software capaz de reconocer, a partir de un modelo de inteligencia artificial, regiones asentadas en una pastilla de freno como las que utilizan ciertos tipos de vehículos ferroviarios, y tendrá un presupuesto preliminar estimado de 630 hs de trabajo y \$750.000, con fecha de inicio 22 de octubre de 2021 y fecha de presentación pública xx de octubre de 2022.

Se adjunta a esta acta la planificación inicial.

Dr. Ing. Ariel Lutenberg Director posgrado FIUBA Ing. Gabriel Juárez Trenes Argentinos Operaciones

Nombre del Director Director del Trabajo Final

1. Descripción técnica-conceptual del proyecto a realizar

Los vehículos ferroviarios, denominados de forma genérica material rodante, están dotados con sistemas de frenado que les permiten reducir su velocidad de circulación cuando es requerido, contribuyendo a la operación segura de los mismos.

El freno electroneumático es uno de los sistemas de frenos más utilizados y consiste en presionar una serie de pastillas de freno, accionadas mediante un cilindro neumático, sobre discos metálicos de forma tal que la fricción generada reduzca la velocidad de la formación. En la Figura 1 se observa el sistema electroneumático.

Figura 1. Freno electroneumático.

Es importante mencionar que la vida útil de las pastillas es considerablemente menor a la de un disco, es decir, estas se reemplazan varias veces antes de efectuar alguna tarea de mantenimiento sobre el disco, por ejemplo, rectificado. Para evaluar la performance de frenado es fundamental conocer qué porcentaje de la superficie de la pastilla está asentada, ya que representa el apoyo efectivo contra el disco. Si el porcentaje es bajo, se reduce considerablemente la fuerza de fricción y se favorece al calentamiento excesivo de los componentes. En la Figura 2 se aprecia una imagen típica de una pastilla de freno.

Figura 2. Pastilla de freno.

El desafío de este proyecto es estimar, de manera precisa, el grado de asentamiento de dichas pastillas de freno a partir de algún modelo de visión artificial. De esta manera, se satisface la necesidad que plantea Trenes Argentinos Operaciones de reducir los tiempos que demandan los trabajos habituales de inspección visual. Este proyecto se destaca especialmente por automatizar una tarea que en la actualidad requiere un procesamiento manual. Esta innovación agrega

eficiencia en el trabajo de mantenimiento lo que favorece a la operación segura del material rodante, un pilar fundamental en la misión de la empresa.

En la Figura 3 se presenta un diagrama en bloques del sistema a implementar.

Figura 3. Diagrama en bloques del sistema.

2. Identificación y análisis de los interesados

Rol	Nombre y Apellido	Organización	Puesto
Cliente	Ing. Gabriel Juárez	Trenes Argentinos Ope-	Coordinador
		raciones	
Responsable	Ing. Carlos Strumia	FIUBA	Alumno
Orientador	Nombre del Director	pertenencia	Director Trabajo final

• Usuario final: personal perteneciente a la Subgerencia de Desarrollo y Normas Técnicas (Trenes Argentinos Operaciones).

3. Propósito del proyecto

En línea con una estrategia de mejora continua e innovacion, el propósito general de este proyecto es elaborar un software capaz de reconocer regiones asentadas en una pastilla de freno como las que utilizan ciertos tipos de vehículos ferroviarios, de esta manera se simplifican los trabajos habituales de inspección visual y los tiempos que éstos demandan. Como base para el desarrollo, el cliente proporciona una serie de imágenes de determinadas pastillas de freno, en donde se aprecian zonas asentadas de colores diferentes a las regiones sin asentar. Adicionalmente, entrega algunos resultados obtenidos por procesamiento manual.

4. Alcance del proyecto

Este proyecto contempla todo el software a desarrollar para el ciclo completo que se observa en la Figura 3, desde el preprocesamiento de la imagen de entrada (similar a la mostrada en la Figura 2) hasta el reporte que se almacena en la base de datos. El reporte contendrá el valor estimado del porcentaje de asentamiento (PA), el cual se define en la Ecuación 1:

$$PA(\%) = \left(1 - \frac{\text{Sup. NO asentada}}{\text{Sup. total de la pastilla}}\right) \cdot 100 \tag{1}$$

El modelo de visión artificial deberá identificar y diferenciar aquellas regiones asentadas y no asentadas, tal como se muestran en la Figura 4, a modo de referencia.

Figura 4. Segmentación de regiones.

Una vez detectadas las superficies, se deberá calcular el área asentada y el área sin asentar para obtener el PA. La precisión admitida para el valor calculado de PA es de $\pm 2.5\,\%$. Se validarán los resultados arrojados por el modelo con los obtenidos por el método manual.

El presente proyecto no incluye el análisis de las zapatas empleadas en el sistema de frenos de las locomotoras y vagones de carga.

5. Supuestos del proyecto

Para el desarrollo del presente proyecto se supone que:

- \blacksquare Se contará con los imágenes necesarias (dataset). Se estima que para entrenar al modelo es necesario un 80 % de las imágenes brindadas por el cliente. El 20 % restante será para la etapa de prueba.
- La calidad de las imágenes será optima.
- Se dispondrá del hardware necesario para el desarrollo y ejecución del proyecto.
- Debido a que las 630 hs de trabajo fueron estimadas de manera conservativa, se presume que el tiempo para desarrollar el proyecto es suficiente.
- Se contará con los recursos económicos necesarios para afrontar el proyecto.

6. Requerimientos

Los requerimientos del proyecto son:

1. Requerimientos funcionales

- 1.1. El sistema debe reconocer regiones asentadas en una pastilla de freno ferroviaria a partir del procesamiento de imágenes.
- 1.2. La base de datos que genera el sistema debe contener el valor estimado del porcentaje de asentamiento (PA).
- 1.3. La precisión de la estimación debe ser $\pm 2,5$
- 1.4. El usuario debe cargar como input del software las imágenes con los respectivos números de identificación de cada pastilla.
- 1.5. La calidad de la imagen a procesar debe ser igual a la utilizada actualmente en las tareas de inspección.

2. Requerimientos de testing

- 2.1. El $20\,\%$ del dataset debe ser empleado en la etapa de validación.
- 3. Requerimientos de la interfaz
 - 3.1. La interfaz gráfica debe indicar las regiones asentadas de la pastilla de freno.
- 4. Requerimientos de docuentación
 - 4.1. Se debe proveer una guía de configuración y operación.
- 5. Requerimientos de diseño/implementación
 - 5.1. El código a desarrollar deber ser preferentemente en Python.
 - 5.2. El diseño debe ser modular.

7. Historias de usuarios (*Product backlog*)

Se identifican los siguientes roles:

Analista: conoce en detalle el alcance de la tarea y cuenta, al menos, con un manejo básico de herramientas para el análisis de datos. Una de sus funciones es confeccionar informes en donde determina la validez de cierto número de pastillas de freno. Puede ser un ingeniero o técnico de la Subgerencia de Desarrollo y Normas Técnicas.

Operario de mantenimiento: se encarga del mantenimiento del mecanismo de frenado de las unidades, entre otros. Una de sus tareas es desmontar la pastilla de freno y tomarle fotografías para analizar el grado de asentamiento.

Desarrollador de software con perfil IA: realiza cambios en el software para cumplir con los requisitos de funcionalidad. Propone modificaciones a los algoritmos existentes e incorpora nuevos, los implementa y pone a prueba. Sus tareas pueden incluir: reentrenar modelos,

modificar y agregar componentes en las cadenas de procesamiento o diagnosticar fallas en un algoritmo. Tiene conocimientos de Python.

Para calcular el puntaje de cada historia de usuario se consideran tres aspectos: tiempo requerido, complejidad y riesgo. A cada uno se le asigna un puntaje de 1 (bajo) a 5 (alto) y el puntaje final es el número de Fibonacci que más se aproxima a la suma parcial. Por ejemplo, la recopilación, procesamiento, y corrección de los datos de entrada es una tarea que insume tiempo pero es sencilla. En cambio, la selección de parámetros de un modelo de red neuronal demanda cierto grado de conocimiento de la arquitectura. Si bien la implementación requiere algunas líneas de código, es una tarea compleja que contiene cierto riesgo.

Historia: estimación confiable

Como analista deseo contar con una estimación del porcentaje de asentamiento (PA) confiable, para automatizar el proceso de inspección. Sugiero una precisión de $\pm 2,5\%$.

■ Esfuerzo: medio. Peso 3

• Complejidad: alta. Peso 5

Riesgo: alto. Peso 5

■ Total: 13

• Puntaje: 13

Historia: consulta de datos

Como analista deseo poder consultar todos el historial de las inspecciones realizadas y obtener los resultados en un formato estándar, para que puedan ser tratados con herramientas específicas como Python, R o Matlab.

■ Esfuerzo: bajo. Peso 1

• Complejidad: baja. Peso 2

Riesgo: bajo. Peso 1

■ Total: 4

■ Puntaje: 5

Historia: interfaz gráfica

Como analista deseo que la interfaz gráfica del software incluya la imagen de la pastilla de freno con las zonas segmentadas, para hacer un chequeo rápido y emplearla como referencia en mis reportes.

■ Esfuerzo: medio. Peso 3

• Complejidad: baja. Peso 1

Riesgo: bajo. Peso 1

■ Total: 5

■ Puntaje: 5

Historia: manual de usuario

Como analista deseo contar con un instructivo breve y conciso para operar el software, usar sus herramientas, etc.

• Esfuerzo: bajo. Peso 1

• Complejidad: baja. Peso 1

• Riesgo: bajo. Peso 1

■ Total: 3

■ Puntaje: 3

Historia: calidad del dataset

Como operario de mantenimiento deseo continuar trabajando con el dispositivo de adquisición de imágenes actual, para mantener la calidad de las imágenes.

• Esfuerzo: bajo. Peso 1

• Complejidad: baja. Peso 1

■ Riesgo: bajo. Peso 1

■ Total: 3

■ Puntaje: 3

Historia: desarrollo del software

Como desarrollador de software con perfil IA deseo que la solución esté implementada de manera modular, con componentes que cumplan funciones específicas, para implementar funcionalidades alternativas.

■ Esfuerzo: alto. Peso 4

■ Complejidad: media. Peso 3

Riesgo: bajo. Peso 1

■ Total: 8

■ Puntaje: 8

8. Entregables principales del proyecto

Los entregables del proyecto son:

- Manual de usuario.
- Código fuente del software.
- Informe de avance.
- Informe final.

9. Desglose del trabajo en tareas

En este apartado se enumeran las tareas que forman parte del proyecto.

- 1. Planificación del proyecto (40 hs)
 - 1.1. Realizar el plan del proyecto (40 hs).
- 2. Investigación preliminar (90 hs)
 - 2.1. Investigar métodos de visión por computadora para detectar regiones (30 hs).
 - 2.2. Buscar información sobre bibliotecas utilizadas en la detección de regiones (20 hs).
 - 2.3. Buscar documentación sobre modelos de datos pre entrenados para detectar regiones (20 hs).
 - 2.4. Investigar las tecnologías y frameworks requeridos para el desarrollo del software (20 hs).
- 3. Selección de bibliotecas y modelos de datos (60 hs)
 - 3.1. Realizar pruebas con las bibliotecas y modelos de datos preseleccionados (40 hs).
 - 3.2. Análisis de los resultados obtenidos (10 hs).
 - 3.3. Elegir las bibliotecas y modelos de datos a utilizar (10 hs).
- 4. Desarrollo del algoritmo de inteligencia artificial (200 hs)
 - 4.1. Desarrollo del algoritmo de visión por computadora (40 hs).
 - 4.2. Desarrollo del algoritmo de detección de regiones (40 hs).
 - 4.3. Desarrollo del algoritmo de gestión de los datos (40 hs).
 - 4.4. Desarrollo del algoritmo de reporte de la información (40 hs).
 - 4.5. Optimización y búsqueda de errores (40 hs).
- 5. Desarrollo del software/aplicación (120 hs)
 - 5.1. Desarrollo del backend (40 hs).
 - 5.2. Desarrollo del frontend (50 hs).
 - 5.3. Optimización y búsqueda de errores (30 hs).

- 6. Procesos de cierre (120 hs)
 - 6.1. Redacción de memoria del trabajo (90 hs).
 - 6.2. Confección de informe de avance (10 hs).
 - 6.3. Elaboración de la presentación final (20 hs).

Cantidad total de horas: 630 hs

10. Diagrama de Activity On Node

Armar el AoN a partir del WBS definido en la etapa anterior.

Figura 5. Diagrama en Activity on Node

Indicar claramente en qué unidades están expresados los tiempos. De ser necesario indicar los caminos semicríticos y analizar sus tiempos mediante un cuadro. Es recomendable usar colores y un cuadro indicativo describiendo qué representa cada color, como se muestra en el siguiente ejemplo:

11. Diagrama de Gantt

Existen muchos programas y recursos *online* para hacer diagramas de gantt, entre los cuales destacamos:

- Planner
- GanttProject
- Trello + *plugins*. En el siguiente link hay un tutorial oficial: https://blog.trello.com/es/diagrama-de-gantt-de-un-proyecto
- Creately, herramienta online colaborativa.
 https://creately.com/diagram/example/ieb3p3ml/LaTeX

Se puede hacer en latex con el paquete pgfgantt http://ctan.dcc.uchile.cl/graphics/pgf/contrib/pgfgantt/pgfgantt.pdf

Pegar acá una captura de pantalla del diagrama de Gantt, cuidando que la letra sea suficientemente grande como para ser legible. Si el diagrama queda demasiado ancho, se puede pegar primero la "tabla" del Gantt y luego pegar la parte del diagrama de barras del diagrama de Gantt.

Configurar el software para que en la parte de la tabla muestre los códigos del EDT (WBS). Configurar el software para que al lado de cada barra muestre el nombre de cada tarea. Revisar que la fecha de finalización coincida con lo indicado en el Acta Constitutiva.

En la figura 6, se muestra un ejemplo de diagrama de gantt realizado con el paquete de *pgfgantt*. En la plantilla pueden ver el código que lo genera y usarlo de base para construir el propio.

Figura 6. Diagrama de gantt de ejemplo

Figura 7. Ejemplo de diagrama de Gantt rotado

12. Presupuesto detallado del proyecto

Si el proyecto es complejo entonces separarlo en partes:

- Un total global, indicando el subtotal acumulado por cada una de las áreas.
- El desglose detallado del subtotal de cada una de las áreas.

IMPORTANTE: No olvidarse de considerar los COSTOS INDIRECTOS.

COSTOS DIRECTOS							
Descripción	Cantidad	Valor unitario	Valor total				
SUBTOTAL							
COSTOS INDIRECTOS							
Descripción	Cantidad	Valor unitario	Valor total				
SUBTOTAL							
TOTAL							

13. Gestión de riesgos

a) Identificación de los riesgos (al menos cinco) y estimación de sus consecuencias:

Riesgo 1: detallar el riesgo (riesgo es algo que si ocurre altera los planes previstos de forma negativa)

- Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10).

Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2:

- Severidad (S):
- Ocurrencia (O):

Riesgo 3:

• Severidad (S):

- Ocurrencia (O):
- b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

Riesgo	S	О	RPN	S*	O*	RPN*

Criterio adoptado: Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a...

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 1: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación). Nueva asignación de S y O, con su respectiva justificación: - Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S). - Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10). Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

Riesgo 3: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

14. Gestión de la calidad

Para cada uno de los requerimientos del proyecto indique:

- Req #1: copiar acá el requerimiento.
 - Verificación para confirmar si se cumplió con lo requerido antes de mostrar el sistema al cliente. Detallar
 - Validación con el cliente para confirmar que está de acuerdo en que se cumplió con lo requerido. Detallar

Tener en cuenta que en este contexto se pueden mencionar simulaciones, cálculos, revisión de hojas de datos, consulta con expertos, mediciones, etc. Las acciones de verificación suelen considerar al entregable como "caja blanca", es decir se conoce en profundidad su funcionamiento interno. En cambio, las acciones de validación suelen considerar al entregable como "caja negra", es decir, que no se conocen los detalles de su funcionamiento interno.

15. Procesos de cierre

Establecer las pautas de trabajo para realizar una reunión final de evaluación del proyecto, tal que contemple las siguientes actividades:

- Pautas de trabajo que se seguirán para analizar si se respetó el Plan de Proyecto original:
 Indicar quién se ocupará de hacer esto y cuál será el procedimiento a aplicar.
- Identificación de las técnicas y procedimientos útiles e inútiles que se emplearon, y los problemas que surgieron y cómo se solucionaron: Indicar quién se ocupará de hacer esto y cuál será el procedimiento para dejar registro.
- Indicar quién organizará el acto de agradecimiento a todos los interesados, y en especial al equipo de trabajo y colaboradores: - Indicar esto y quién financiará los gastos correspondientes.