

Linear Causal Representation Learning from Unknown Multi-node Interventions

Burak Varıcı¹ Emre Acartürk² Karthikeyan Shanmugam³ Ali Tajer²
¹Carnegie Mellon University ²Rensselaer Polytechnic Institute ³Google DeepMind India

We learn causal representations using unknown multi-node interventions on latent space by leveraging score functions

Causal Representation Learning

Generic goal: Inverting the unknown transformation to recover

1) latent factors and 2) the latent causal structure

- Identifiability: (im)possibility of uniquely* recovering Z and \mathcal{G}_Z
- Achievability: provably correct and scalable algorithms

Interventional CRL

- Distribution level info: Multiple datasets, almost unsupervised
- Distr. shifts: changes in causal mechanisms $p_i(z_i|z_{\mathrm{pa}(i)}) o q_i(z_i|z_{\mathrm{pa}(i)})$
- Prior work: single-node interventions

factors

this paper: UNKNOWN MULTI-NODE INTERVENTIONS

Multi-node interventions: $M \ge n$ environments unknown interv. targets $I^m \subset [n]$, for $m \in [M]$

env.
$$\mathcal{E}^m$$
 with I^m : $p^m(z) = \prod_{i \in I^m} q_i(z_i|z_{\mathrm{pa}(i)}) \prod_{i \notin I^m} p_i(z_i|z_{\mathrm{pa}(i)})$

Linear transform: $X = \mathbf{G} \cdot Z$

Score functions

Observational : $s(z) \triangleq \nabla_z \log p(z)$ and $s_X(x) \triangleq \nabla_x \log p_X(x)$ Interventional : $s^m(z) \triangleq \nabla_z \log p^m(z)$ and $s_X^m(x) \triangleq \nabla_x \log p_X^m(x)$

Property: $s(z) = \mathbf{G}^{\top} \cdot s_X(x)$

Why score functions?

$$\log p(z) - \log p^{m}(z) = \log p_{i}(z_{i}|z_{\operatorname{pa}(i)}) - \log q_{i}(z_{i}|z_{\operatorname{pa}(i)})$$

function of only z_i and $z_{\mathrm{pa}(i)}$

$$s(z) - s^{m}(z) = \begin{bmatrix} 0 & 0 & \times & 0 & \times & 0 \end{bmatrix}^{\top}$$

$$coordinates of parents of node i$$

Score functions contain all information about latent DAG

incorrect encoder $\to s_{\hat{Z}}(\hat{z}) - s_{\hat{Z}}^m(\hat{z})$ not a function of only $z_i \& z_{\mathrm{pa}(i)}$ estimated score differences cannot be sparser than true score differences estimate of inverse transform $\mathbf{G}^{\dagger} =$ encoder \mathbf{H} that minimizes score variations

Methodology

Challenges for multi-node interventions

- The intervention targets are fully unknown!
- Latent score differences are not sparse for multi-node:

$$s(z) - s^{m}(z) = \sum_{i \in I^{m}} \nabla_{z} \log \frac{p_{i}}{q_{i}} (z_{i} \mid z_{\text{pa}(i)})$$

$$\|\mathbb{E}[s(z) - s^{m}(z)]\|_{0} = \|\bigcup_{i \in I^{m}} \operatorname{pa}(i) \cup \{i\}\|$$

- 1. Combine multi-node interv. to create sparser interventions
- Idea: if intervention targets are diverse, reduce to single-int. problem
- Example: Given $I^1 = \{1\}, I^2 = \{1,3\}, I^3 = \{2,3\}$ and $I^0 = \emptyset$
- $s^2(z)-s^1(z)$ gives $\tilde{I}^3=\{3\}$, $s^3(z)-\tilde{s}^3(z)$ gives $\tilde{I}^2=\{2\}$
- 2. How to do it with unknown intervention targets?
- Consider $s_X, s_X^1, \ldots, s_X^n$. Iteratively search mixing vectors $\mathbf{w} \in \mathbb{N}^n$ $\dim \Big(\operatorname{proj.image} \Big(\sum \mathbf{w_i} \cdot (s_X s_X^i) \Big) \Big) = 1$
- Why? Single-node root intervention, i-th row of $\mathbf{G}^\dagger = \mathrm{image}(s_X s_X^i)$
- ullet If score difference is not minimized, then dimension of the image >1
- Encoder estimate: choose $\mathbf{H} \in \mathrm{image}(\Delta \mathbf{S}_X \cdot \mathbf{W}) \subset \mathbb{R}^{d \times n}$

Results

Theorem (soft): Using diverse, regular unknown multi-node soft interventions, we have identifiability up to ancestors:

- \hat{Z}_i is a linear function of $Z_i \cup \{Z_j : j \in \text{ancestors}(i)\}$,
- ullet $\hat{\mathcal{G}}_Z$ is transitive closure of \mathcal{G}_Z

Theorem (hard): Using diverse, regular unknown multi-node hard interventions and additive noise, we have perfect identifiability:

• $\hat{Z}_i = c_i imes Z_i$ for a constant scalar c_i , and $\hat{\mathcal{G}}_Z = \mathcal{G}_Z$

Same guarantees as single-node interventions!

Diverse: full-rank intervention matrix $\mathbf{D} \in \{0,1\}^{n imes M}$ with $\mathbf{D}_{i,m} = \mathbb{I}(i \in I^m)$

Regularity (informal): Effect of a multi-node intervention is not the same on the scores associated with different nodes.

Experiments

- Linear Gaussian SEMs with Erdős–Rényi random graphs (100 runs)
- Scores: $s_X(x) = -\Theta \cdot x$, estimate precision matrix Θ with 10^5 samples
- \bullet Sensitivity analysis for quadratic models (ground truth scores + noise)
- Structural Hamming distance (SHD) for latent graph (ideally 0)
- Mean correlation coefficient (MCC) for latent variables (ideally 1)

Latent dim.	Soft SHD	Soft MCC	Hard SHD	Hard MCC
4	0.77	0.96	0.66	0.98
5	1.93	0.93	1.80	0.98
6	3.39	0.92	3.05	0.95
7	4.62	0.91	6.12	0.91
8	8.26	0.90	9.01	0.88

Observed dimension =50

Check out other score-based CRL work!

- **General transformations:** "General identifiability and achievability for causal representation learning". AISTATS 2024.
- **Single-node interventions** (base for this paper): "*Score-based causal representation: Linear and general transformations*". arXiv: 2402.00849
- Finite-sample analysis! "Sample complexity of interventional causal representation learning". NeurIPS 2024

contact: bvarici@andrew.cmu.edu