Методы оптимизации в машинном обучении Практическое задание #1

Рожин Андрей

НИУ ВШЭ — 15 мая 2022 г.

Вступление

Решение задач оптимизации, является неотъемлемой частью машинного обучения. В этом документе обсуждаются базовые подходы к решению задач этого типа, а также проведение и анализ экспериментов и аналитический вывод формулы логистической регрессии в матричном виде.

$$L(w) = -\frac{1}{m} \sum_{i=1}^{m} \left[y_i log \left(\frac{1}{1 + e^{-w^T x_i}} \right) + (1 - y_i) log \left(1 - \frac{1}{1 + e^{-w^T x_i}} \right) \right] + \frac{\lambda}{2} ||w||^2$$
 (1)

Рекомендуется ознакомиться с выкладкой ниже.

Ð

Информация:

Документ оформлен согласно этому заданию.

Краткое содержание задания:

- 1. Алгоритм спуска.
 - 1.1 Общая концепция
 - 1.2 Критерий остановки
 - 1.3 Линейный поиск условие Армихо, сильное условие Вульфа.
 - 1.4 Градиентный спуск.
 - 1.5 Метод Ньютона
 - 1.6 Оптимизация вычислений
- 2. Модели
 - 2.1 Двухклассовая логистическая регрессия.
 - 2.2. Разностная проверка градиента и гессиана
- 3. Эксперименты.
 - 3.1 Оценка реализованных алгоритмов.

І. Двухклассовая логистическая регрессия

Прежде чем начать работу, следует ввести некоторые обозначения, которые будут использоваться в дальнейшем. Все они должны быть привычными, используемыми постоянно в теоретических выкладках.

w - вектор весов объекта x - матрица значений признаков объектов y - истинная целевая переменная m - кол-во объектов L(w) - функционал ошибки

і. Градиент

Так как мы решаем задачу бинарной классификации, то множество значений, которые принимает целевая переменная y состоит из 2 цифр — $\{1,0\}$. Это очень важный элемент, которые мы будем использовать в дальнейшем, поэтому стоит его запомнить. В формуле (1) заметим сигмоидную функцию, которая дает вероятность класса. Введем функцию.

$$g(z) = \frac{1}{z + e^{-z}}$$

$$h_w(x) = g(w^T x) = \frac{1}{z + e^{-z}}$$
(2)

Функция (2) обладает следующими свойствами, которые нетрудно доказать.

$$g'(z) = g(z)(1 - g(z))$$
$$g(-z) = 1 - g(z)$$

Перепишем функцию (1), используя новые обозначения

$$L(w) = \frac{1}{m} \sum_{i=1}^{m} \left[y_i log(g(w^T x)) + (1 - y_i) log(1 - g(w^T x)) \right] + \frac{\lambda}{2} ||w||^2$$
(3)

Используя эти обозначения и свойства сигмоидной функции, приступим к нахождению производной. Предположим, что у нас есть только один объект с вектором признаков x_i и одно значение целевой переменной y_i . Продифференцируем функцию (3) по j-тому значению вектора весов w. Дифференцировать будем без члена регуляризации, допишем его позднее.

$$\frac{\partial}{\partial w_j} L(w) = -\left[\frac{y_i}{g(w^T x)} - (1 - y_i) \left(\frac{1}{1 - g(w^T x)}\right)\right] \frac{\partial g(w^T x)}{\partial w_j} =$$

$$= -\left[\frac{y_i}{g(w^T x)} - (1 - y_i) \left(\frac{1}{1 - g(w^T x)}\right)\right] g(w^T x) (1 - g(w^T x)) \frac{\partial w^T x}{\partial w_j} =$$

$$= -\left[y_i - y_i g(w^T x) - g(w^T x) + y_i g(w^T x)\right] x_j =$$

$$= \left[h_w(x) - y_i\right] x_j$$

Для случая из m объектов получим:

$$\frac{\partial}{\partial w_j} L(w) = \frac{1}{m} \sum_{i=1}^m \left[h_w(x_i) - y_i \right] x_{ij} \tag{4}$$

Введем новые обозначения в терминах векторов и матриц.

 $X \in \mathbb{R}^{m imes n}$ — матрица объекты-признаки

 $y \in \mathbb{R}^{m \times 1}$ — вектор целевых переменных

 $w \in \mathbb{R}^{1 \times n}$ — вектор весов

Используя эти обозначения введем матричное представление функции (4)

$$\nabla L(w) = \frac{1}{m} X^T [g(Xw) - y]$$

Добавим член регуляризации и получим формулу (5).

$$\nabla L(w) = \frac{1}{m} X^T \left[g(Xw) - y \right] + \lambda w \tag{5}$$

Сам функционал логистической регрессии, формула (1), можно представить в такой матричной форме.

$$L(w) = -\frac{1}{m}(1, 1, ..., 1)log(-(2y - 1) \circ g(Xw)) + \frac{\lambda}{2}||w||^2$$
(6)

іі. Гессиан

Выше мы получили функцию (4). Теперь снова продифференцируем ее, в предположении, что у нас один объект в выборке и нет регуляризации.

$$\frac{\partial}{\partial w_j \partial w_j^T} L(w) = \frac{\partial}{\partial w_j^T} \left[g(w^T x_i) - y_i \right] x_i = x_i x_i^T g(w^T x_i) (1 - g(w^T x_i))$$
(7)

Для m объектов и регуляризации формула(7) выглядит так:

$$\nabla^2 L(w) = \frac{1}{m} \sum_{i=1}^m \left[x_i x_i^T g(w^T x_i) (1 - g(w^T x_i)) \right] - \lambda I$$
 (8)

Заметим, что матрицу $g(w^Tx_i)(1-g(w^Tx_i))$ можно заменить диагональной матрицей, на главной диагонали которой, будут располагаться элементы $g(w^Tx_i)(1-g(w^Tx_i))$. Назовем эту диагональную матрицу буквой Z.

Таким образом, мы получаем матричную форму функции (8).

$$\nabla^2 L(w) = \frac{1}{m} X^T Z X - \lambda I \tag{9}$$

II. Эксперименты

В этой главе мы приступим к оценке реализованных алгоритмов градиентного спуска. Начнем с анализа вариантов линейного поиска шага и закончим логистической регрессией.

і. Траектория градиентного спуска на квадратичной функции

Начнем с двумерной квадратичной функции $f(x)=\frac{1}{2}\langle Xw,w\rangle-\langle y,w\rangle$, где $X\in\mathbb{S}^n_{++}$, $b\in\mathbb{R}^n$. Придумаем 4 функции, поведения спуска на которых, будет отличаться.

Обусловленность функции. Проанализируем график обусловленности матрицы ниже.

Рис. 1: Обусловленность матрицы

Можно заметить, что, чем ниже обусловленность матрицы, тем больше итераций делает спуск с постоянной длиной шага, а спуску методом Армихо, наоборот, требуется в 3 раза меньше операций. Также траектория спуска с постоянным шагом стала более плавной, на Рис.1 (а), мы видим, как направление спуска резко сменилось на 90° , а на том же рисунке с литерой (b), траектория меняется более плавно. Траектория Армихо в среднем не изменилась, также видны резкие изменения траектории, но ближе к точке минимума траектория становится более плавной и совпадает со спуском с постоянным шагом. Траектория Вульфа стала более криволинейной, каждый шаг делается практически с разворотом на 90° , но благодаря подбору шага этому методу требуется меньше итераций, чем двум другим.

Рис. 2: Выбор начальной точки

На Рис.2 ищется локальный минимум функции $f(x)=\frac{1}{2}x^2-\frac{1}{2}y^2$ — так называемая, седловая функция. Ее особенность заключается в том, что найти ее минимум можно тогда и только тогда, когда начинаем с точки $w_{init}=(1.0,0.0)$, это можно легко доказать теоретически. Также заметим, что на Рис.2 (а) константный метод дошел до предела итераций, но так и не достиг $-\infty$ по значению функции. Армихо и Вульф достигли этого нижнего предела, сработал критерий останова, причем метод Вульфа снова обогнал другие методы спуска. На Рис. 2 (b) все 3 метода сходятся в одну точку, но спуску с постоянным шагом требуется куда больше итераций для этого.