Postgraduate Math

Qi'ao Chen

2020年8月29日

目录

1	函数	与极限	2
	1.1	映射与函数	2
	1.2	数列的极限	2
	1.3	函数的极限	4
		1.3.1 函数极限的定义	4
		1.3.2 函数极限的性质	5
	1.4	无穷大与无穷小	6
	1.5	极限运算法则	6
	1.6	极限存在准则两个重要极限	7

1 函数与极限

1.1 映射与函数

Proposition 1.1. Suppose f(x)'s domain is (-l, l), then there is odd function $f_o(x)$ and even function $f_e(x)$ on (-l, l) s.t.

$$f(x) = g(x) + h(x)$$

证明.

$$f_e(x) = \frac{f(x) + f(-x)}{2}$$
 $f_o(x) = \frac{f(x) - f(-x)}{x}$

基本初等函数

• 幂函数: $y = x^{\mu} (\mu \in \mathbb{R} \text{ is a constant})$

• 指数函数: $y = a^x (a > 0 \text{ and } a \neq 1)$

• 对数函数: $y = \log_a x \ (a > 0 \text{ and } a \neq 1)$

• 三角函数: $y = \sin x, \cos x, \tan x$

• 反三角函数: $y = \arcsin x$, $\arccos x$, $\arctan x$

1.2 数列的极限

Definition 1.2. suppose $\{x_n\}$ is a sequence, if there is a constant a for any positive ϵ , there is a positive integer N s..t if n > N, then

$$|x_n - a| < \epsilon$$

always holds, then a is called the limit of $\{x_n\}$, or $\{x_n\}$ converges to a, written as

$$\lim_{n\to\infty} x_n = a$$

or

$$x_n \to a(n \to \infty)$$

Theorem 1.3 (极限的唯一性). 如果数列 $\{x_n\}$ 收敛,那么它的极限唯一

证明. 假设同时有 $x_n \to a$ 及 $x_n \to b$,且 a < b,取 $\epsilon = \frac{b-a}{2}$,因为 $\lim_{n \to \infty} x_n = a$,故存在正整数 N_1 ,当 $n > N_1$ 时,

$$\left|x_{n}-a\right| < \frac{b-a}{2} \tag{1.2.1}$$

同理有当 $n > N_2$ 时

$$\left|x_n - b\right| < \frac{b - a}{2} \tag{1.2.2}$$

取 $N = \max\{N_1, N_2\}$,由 (1.2.1) 有 $x_n < \frac{a+b}{2}$,由 (1.2.2) 有 $x_n > \frac{a+b}{2}$,矛盾 \square

Theorem 1.4 (收敛数列的有界性). 如果数列 $\{x_n\}$ 收敛,那么数列 $\{x_n\}$ 一定有界

证明. 因为数列 $\{x_n\}$ 收敛,设 $\lim_{n\to\infty}x_n=a$,对于 $\epsilon=1$,存在正整数 N,当 n>N 时有

$$|x_n - a| < 1$$

于是当 n > N 时

$$|x_n| = |x_n - a + a| \le |x_n - a| + |a| < 1 + |a|$$

取 $M = \max\{x_1|,...,|x_N|,1+|a|\}$,那么数列 $\{x_n\}$ 中的一切 x_n 都满足不等式

$$|x_n| \leq M$$

Theorem 1.5 (收敛数列的保号性). 如果 $\lim_{n\to\infty} x_n = a$ 且 a>0 (或 a<0),那么存在正整数 N,当 n>N 时,都有 $x_n>0$ (或 $x_n<0$)

证明. Suppose a > 0, let $\epsilon = \frac{a}{2} > 0$, then there is N for n > N s.t.

$$\left|x_n-a\right|<\frac{a}{2}$$

Hence

$$x_n > a - \frac{a}{2} = \frac{a}{2} > 0$$

Corollary 1.6. 如果数列 $\{x_n\}$ 从某项起有 $x_n \ge 0$ (或 $x_n \le 0$), 且 $\lim_{n\to\infty} x_n = a$, 那么 $a \ge 0$ (或 $a \le 0$)

在数列 $\{x_n\}$ 中任意抽取无限多项并保持这些项在原数列 $\{x_n\}$ 中的先后次序,这样得到的一个数列称为原数列 $\{x_n\}$ 的 **子数列**

Theorem 1.7 (收敛数列与其子数列的关系). 如果数列 $\{x_n\}$ 收敛于 a, 那么它的任一子数列也收敛,且极限也是 a

证明. 设数列 $\{x_{n_k}\}$ 是数列 $\{x_n\}$ 的任一子数列

由于 $\lim_{n\to\infty} x_n = a$, 故对任意 $\epsilon > 0$, 存在正整数 N 当 n > N 时, $|x_n - a| < \epsilon$

取 K=N,则当 k>K 时, $n_k>n_K=n_N\geq N$,于是 $\left|x_{n_k}-a\right|<\epsilon$,因此 $\lim_{k\to\infty}x_{n_k}=a$

1.3 函数的极限

1.3.1 函数极限的定义

Definition 1.8. 设函数 f(x) 在点 x_0 的某一去心邻域内有定义,如果存在常数 A 对于任一给定的正数 ϵ 总存在正数 δ 使得当 x 满足不等式 $0 < |x - x_0| < \delta$ 时,对应的函数值 f(x) 都满足不等式

$$|f(x) - A| < \epsilon$$

那么常数 A 就叫做 函数 f(x) 当 $x \to x_0$ 时的极限,记作

$$\lim_{x \to x_0} f(x) = A \quad \text{or} \quad f(x) \to A(\text{when } x \to x_0)$$

Proposition 1.9. $\lim_{x\to 1} (2x-1) = 1$

证明. Since

$$|f(x) - A| = |2x - 2| = 2|x - 1|$$

for any $\epsilon > 0$, let $\delta = \epsilon/2$, then if

$$0 < |x - 1| < \delta$$

we have

$$|f(x) - 1| = 2|x - 1| < \epsilon$$

hence

$$\lim_{x \to 1} (2x - 1) = 1$$

将 $0 < |x - x_0| < \delta$ 改为 $x_0 - \delta < x < x_0$,那么 A 就叫做函数 f(x) 当 $x \to x_0$ 时的 **左极限**,记作

$$\lim_{x \to x_0^-} f(x) = A$$
 or $f(x_0^-) = A$

函数 f(x) 当 $x \to x_0$ 时极限存在的充分必要条件时左极限及右极限各自存在且相等

Definition 1.10. 设函数 f(x) 当|x| 大于某一正数时有定义,如果存在常数 A 对于任意给定的正数 ϵ 总存在正数 X 使得当 x 满足不等式|x| > X 时,对应的函数值满足

$$|f(x) - A| < \epsilon$$

那么常数 A 就叫做 函数 f(x) 当 $x \to \infty$ 时的极限,记作

$$\lim_{x \to \infty} f(x) = A \quad \text{or} \quad f(x) \to A(\text{when } x \to \infty)$$

1.3.2 函数极限的性质

Theorem 1.11 (函数极限的唯一性). 如果 $\lim_{x\to x_0} f(x)$ 存在,那么这极限唯一。

证明. If $\lim_{x\to x_0} f(x) = a$ and $\lim_{x\to x_0} f(x) = b$, let $\epsilon = \frac{b-a}{2}$, there is δ_1 and δ_2 s.t. for $0<|x-x_0|<\delta_1, |f(x)-a|<\frac{b-a}{2}$, and balabala...

Theorem 1.12 (函数极限的局部有界性). 如果 $\lim_{x\to x_0} f(x) = A$,那么存在常数 M>0 和 $\delta>0$ 使得当 $0<|x-x_0|<\delta$ 时,有 $|f(x)|\leq M$

证明. 取 $\epsilon = 1$, then there is δ for $0 < |x - x_0| < \delta$, we have

$$|f(x) - A| < 1 \Rightarrow |f(x)| \le |f(x) - A| + |A| < |A| + 1$$

记
$$M = |A| + 1$$
 \square

Theorem 1.13 (函数极限的局部保号性). 如果 $\lim_{x\to x_0} f(x) = A$,且 A > 0 (或 A < 0),那么存在常数 $\delta > 0$,使得当 $0 < |x - x_0| < \delta$ 时有 f(x) > 0 (或 f(x) < 0)

1.4 无穷大与无穷小

Definition 1.14. 如果函数 f(x) 当 $x \to x_0$ (或 $x \to \infty$)时的极限为 0,那么称 f(x) 为当 $x \to x_0$ (或 $x \to \infty$)时的无穷小

Theorem 1.15. 在自变量的同一变化过程 $x \to x_0$ (或 $x \to \infty$) 中,函数 f(x) 具有极限 A 的充分必要条件是 $f(x) = A + \alpha$,其中 α 是无穷小

Definition 1.16. 设函数 f(x) 在 x_0 的某一去心邻域内有定义(或 absx 大于某一正数时有定义),如果对于任一给定的正数 M,总存在正数 δ ,如果 $0 < |x - x_0| < \delta$ 则|f(x)| > M 那么称函数 f(x) 是当 $x \to x_0$ (或 $x \to \infty$)时的无穷大记作

$$\lim_{x \to x_0} f(x) = \infty$$

Theorem 1.17. 在自变量的同一变化过程中,如果 f(x) 为无穷大,那么 $\frac{1}{f(x)}$ 为无穷小;反之亦然

1.5 极限运算法则

Theorem 1.18. 两个无穷小的和是无穷小

Theorem 1.19. 有界函数与无穷小的乘积是无穷小

Corollary 1.20. 常数与无穷小的乘积时无穷小

Corollary 1.21. 有限个无穷小的乘积是无穷小

Theorem 1.22. 如果 $\lim f(x) = A, \lim g(x) = B$, 那么

- 1. $\lim [f(x) \pm g(x)] = \lim f(x) \pm \lim g(x) = A \pm B$
- 2. $\lim [f(x) \cdot g(x)] = \lim f(x) \cdot \lim g(x) = A \cdot B$
- 3. 如果 B ≠ 0, 则

$$\lim \frac{f(x)}{g(x)} = \frac{\lim f(x)}{\lim g(x)} = \frac{A}{B}$$

Corollary 1.23. *If* $\lim f(x)$ *exists, and c is a constant, then*

$$\lim[cf(x)] = c\lim f(x)$$

Corollary 1.24. *if* $\lim f(x)$ *exists, and n is a positive integer, then*

$$\lim[f(x)]^n = [\lim f(x)]^n$$

Theorem 1.25. 设有数列 $\{x_n\}$ 和 $\{y_n\}$, 如果

$$\lim_{n\to\infty} x_n = A, \quad \lim_{n\to\infty} y_n = B$$

那么

- 1. $\lim_{n\to\infty}(x_n\pm y_n)=A\pm B$
- 2. $\lim_{n\to\infty} (x_n \cdot y_n) = A \cdot B$
- 3. 当 $y_n \neq 0 (n = 1, 2, ...)$ 且 $B \neq 0$ 时, $\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{A}{B}$

Theorem 1.26. 如果 $\varphi(x) \ge \psi(x)$,而 $\lim \varphi(x) = A$, $\lim \psi(x) = B$,那么 $A \ge B$

Theorem 1.27 (复合函数的极限运算法则). 设函数 y = f[g(x)] 是由函数 u = g(x) 与函数 y = f(u) 复合而成,f[g(x)] 在点 x_0 的某去心邻域内有定义,若 $\lim_{x \to x_0} g(x) = u_0$, $\lim_{u \to u_0} f(u) = A$,且存在 $\delta_0 > 0$,当 $x \in U^0(x_0, \delta_0)$ 时,有 $g(x) \neq u_0$,则

$$\lim_{x \to x_0} f[g(x)] = \lim_{u \to u_0} f(u) = A$$

1.6 极限存在准则两个重要极限

Proposition 1.28. 如果数列 $\{x_n\}, \{y_n\}, \{z_n\}$ 满足

1. 存在 $n_0 \in \mathbb{N}$, 当 $n > n_0$ 时, 有

$$y_n \le x_n \le z_n$$

2. $\lim_{n\to\infty} y_n = a$, $\lim_{n\to\infty} x_n = a$ 那么数列 $\{x_n\}$ 的极限存在,且 $\lim_{n\to\infty} x_n = a$

Proposition 1.29. if

1. when $x \in U^{0}(x_{0}, r) \ (or|x| > M)$

$$g(x) \le f(x) \le h(x)$$

Proposition 1.30. 单调有界数列必有极限

Corollary 1.31. $\lim_{x\to\infty} (1+\frac{1}{x})^x$

证明. let
$$x_n = (1 + \frac{1}{n})^n$$

$$x_n = \left(1 + \frac{1}{n}\right)^n$$

$$= 1 + \frac{n}{1!} \cdot \frac{1}{n} + \frac{n(n-1)}{2!} \cdot \frac{1}{n^2} + \frac{n(n-1)(n-2)}{3!} \cdot \frac{1}{n^3} + \dots + \frac{n(n-1)\dots(n-n+1)}{n!} \cdot \frac{1}{n^n}$$

$$= 1 + 1 + \frac{1}{2!}(1 - \frac{1}{n}) + \frac{1}{3!}(1 - \frac{1}{n})(1 - \frac{2}{n}) + \dots + \frac{1}{n!}(1 - \frac{1}{n})(1 - \frac{2}{n}) \dots (1 - \frac{n-1}{n})$$