Lemma 12.1. Let $a \ b \in R$, then (-a) + (-b) = -(a+b).

Proof.

$$(-a) + (-b) + (a + b)$$

$$= (-a) + (-b) + a + b$$

$$= (-a) + a + (-b) + b$$

$$= e$$

$$= -(a + b) + (a + b)$$

Then by cancellation, (-a) + (-b) = -(a+b).

Exercise 12.14. Let $a \ b \in R$ and $m \in \mathbb{Z}$. Prove that $m \cdot (ab) = (m \cdot a)b = a(m \cdot b)$.

Proof. Induction on m, and using multiplication left/right distributive over addition.

Exercise 12.15. Let $a \ b \in R$ and $m \ n \in \mathbb{Z}$. Prove that $(m \cdot a)(n \cdot b) = (m \times n) \cdot (ab)$.

Proof. Induction on m, and using Exercise 12.14 on n.

Exercise 12.16. Let $a \in R$ and $n \in \mathbb{Z}$. Prove that $n \cdot (-a) = -(n \cdot a)$.

Proof. Induction on n.

- Base: $0 \cdot (-a) = 0 = -0 = -(0 \cdot a)$.
- Induction (Positive Direction): We have the following induction hypothesis:

$$\boxed{(n-1)\cdot(-a) = -((n-1)\cdot a)}.$$

Then

$$n \cdot (-a) = ((n-1) \cdot (-a)) + (-a)$$

$$= -((n-1) \cdot a) + (-a)$$

$$= -((n-1) \cdot a + a) \text{ (by Lemma 12.1)}$$

$$= -(n \cdot a)$$

Same for negative direction.

Exercise 12.17. For any ring R where the group (R, +) is cyclic, show that R is commutative.

Proof. Suppose the generator of (R, +) is r, then for any a b in R, they have form $a = i \cdot r$ and $b = j \cdot r$ where i $j \in \mathbb{N}^+$. Then $ab = (i \cdot r)(j \cdot r) = (i \times j) \cdot rr = (j \times i) \cdot rr = (j \cdot r)(i \cdot r) = ba$.

Exercise 12.18. Let $r \in R$, and $S = \{ x \in R \mid rx = 0 \}$. Show that S is a subring of R.

Proof. By two-steps test:

- 0. S is not empty since r0 = 0.
- 1. For any $a \ b \in S$, r(a b) = ra rb = 0 0 = 0.
- 2. For any $a \ b \in S$, rab = 0b = 0.

Exercise 12.19 (Center of Ring). Let R be a ring, the center of R is the set $\{x \in R \mid \forall a \in R, ax = xa \}$. Prove that the center of R is a subgring of R.

Proof. By two-steps test:

- 0. S is non-empty since x0 = 0x = 0.
- 1. For any $a \ b \in S$, x(a b) = xa xb = ax bx = (a b)x.
- 2. For any $a \ b \in S$, x(ab) = axb = abx = (ab)x.

Definition 12.1 (Nilpotent). Let R a ring, and $a \in R$, if there is a positive integer n such that $a^n = 0$, then a is nilpotent.

Exercise 12.31. Shows that the nilpotent elements of a commutative ring form a subring.

Proof. We denote such set by S. By two-sptes test:

0. S is non-empty since $0^1 = 0$.

2

- 1. For any $a \ b \in S$, there are $m \ n \in \mathbb{N}^+$ such that $a^m = b^n = 0$. Let $k = \max(m, n)$. We claim $(a + b)^{2k} = 0$. We know each term in $(a + b)^k$ has form ca^ib^j where c is the coefficient which is not important, and $i \ j \in \mathbb{N}, i + j = 2k$. In the worst situation, i = j = k, at this moment, $a^ib^j = a^kb^k = 0 \times 0$.
- 2. For any $a \ b \in S$, there are $m \ n \in \mathbb{N}^+$ such that $a^m = b^n = 0$. Let $k = \max(m, n)$, then $(ab)^k = a^k b^k = 0$ (by commutative of ring).

Exercise 12.32. Let R a ring, suppose there is an integer n > 1 such that for any $x \in R$, $x^n = x$. If $a^m = 0$ for some positive integer m and $a \in R$. Prove that a = 0.

Proof. Since $a^m = 0$, there is an smallest integer k such that $a^k = 0$. If $k \le n$, then n = k + r, $a = a^n = a^{k+r} = a^k a^r = 0 a^r = 0$. If k > n, then k = n + r, $0 = a^k = a^{n+r} = a^n a^r = a a^r = a^{r+1}$. Since n > 1, we know r + 1 < r + n, therefore r + 1 < k and $a^{r+1} = 0$, which contradict our assumption of k.

Exercise 12.50. Suppose that there is a positive even integer n such that $a^n = a$ for all $a \in R$. Show that a = -a for all $a \in R$.

Proof. $a = a^n = (-a)^n = -a$, $a^n = (-a)^n$ is valid, since n is even.

Exercise 12.55. Let R be a ring, prove that $a^2 - b^2 = (a + b)(a - b) \iff R$ is commutative.

Proof. Trivial. \Box

Exercise 12.56 (Boolean ring). A Boolean ring is a ring R such that $a^2 = a$ for any $a \in R$, show that Boolean ring is commutative.

Proof. For any $a \in R$, $(2 \cdot a) + (2 \cdot a) = 2^2 \cdot a = 2^2 \cdot a^2 = (2 \cdot a)^2 = 2 \cdot a$, then $2 \cdot a = 0$ and a = -a. Then we know $(a + b)(a - b) = (a + b)(a + b) = a + b = a^2 + b^2 = a^2 - b^2$, by Exercise 12.55, R is commutative.

Exercise 12.61. Let R be a commutative ring with more than one element, if for any non-zero element a, aR = R, then R has a unity and every non-zero element are unit.

Proof. For any non-zero element a, the mapping $f(b) = ab : R \to R$ is onto since f(R) = aR = R. There is an element $1 \in R$ such that f(1) = a1 = a since f is onto, then for any element $c \in R$, there is $b \in R$ such that f(b) = ab = c, then c1 = ab1 = a1b = ab = c, therefore 1 is unity. There is an element $a^{-1} \in R$ such that $f(a^{-1}) = aa^{-1} = 1$ since f is onto, therefore a is unit. \square