Data Mining

Lecture 16

Ananya Jana CS360

Fall 2024

Task

1.Perform two rounds of bagging on the dataset given below. Use entropy as a criterion to create the decision stump.

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
y	1	-1	-1	-1	-1	-1	-1	1	1	1

Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Initially, all N records are assigned equal weights
 - Unlike bagging, weights may change at the end of each boosting round

Boosting

- Records that are wrongly classified will have their weights increased
- Records that are classified correctly will have their weights decreased

Original Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
Boosting (Round 3)	4	4	8	10	4	5	4	6	3	4

- Example 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds

Adaboost

- Base classifiers: C₁, C₂, ..., C_T
- Error rate:

$$\varepsilon_i = \frac{1}{N} \sum_{j=1}^N w_j \delta \left(C_i(x_j) \neq y_j \right)$$

Importance of a classifier:

$$\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

Weight update:

$$w_i^{(j+1)} = \frac{w_i^{(j)}}{Z_j} \begin{cases} \exp^{-\alpha_j} & \text{if } C_j(x_i) = y_i \\ \exp^{\alpha_j} & \text{if } C_j(x_i) \neq y_i \end{cases}$$

where Z_i is the normalization factor

- If any intermediate rounds produce error rate higher than 50%, the weights are reverted back to 1/n and the resampling procedure is repeated
- Classification:

$$C^*(x) = \underset{v}{\arg\max} \sum_{j=1}^{T} \alpha_j \delta(C_j(x) = y)$$

Algorithm 5.7 AdaBoost Algorithm

- 1: $\mathbf{w} = \{w_j = 1/n \mid j = 1, 2, \dots, n\}$. {Initialize the weights for all n instances.}
- Let k be the number of boosting rounds.
- 3: for i = 1 to k do
- Create training set D_i by sampling (with replacement) from D according to w.
- Train a base classifier C_i on D_i.
- Apply C_i to all instances in the original training set, D.
- 7: $\epsilon_i = \frac{1}{n} \left[\sum_j w_j \, \delta(C_i(x_j) \neq y_j) \right]$ {Calculate the weighted error}
 - if $\epsilon_i > 0.5$ then
- 9: $\mathbf{w} = \{w_j = 1/n \mid j = 1, 2, \dots, n\}$. {Reset the weights for all n instances.}
- Go back to Step 4.
- 11: end if 12: $\alpha_i = \frac{1}{2} \ln \frac{1-\epsilon_i}{\epsilon}$.
- 12: Undate the weight of each instance according to equa
- Update the weight of each instance according to equation (5.88).
- 14: end for
- 15: $C^*(\mathbf{x}) = \arg \max_y \sum_{j=1}^{T} \alpha_j \delta(C_j(\mathbf{x}) = y)$.

Consider 1-dimensional data set:

Original Data:

х	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
У	1	1	1	-1	-1	-1	-1	1	1	1

- Classifier is a decision stump
 - Decision rule: $x \le k$ versus x > k
 - Split point k is chosen based on entropy

Training sets for the first 3 boosting rounds:

Boostin	ng Rour	nd 1:								
х	0.1	0.4	0.5	0.6	0.6	0.7	0.7	0.7	0.8	1
У	1	-1	-1	-1	-1	-1	-1	-1	1	1
Boostir	ng Rour	nd 2:								
х	0.1	0.1	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3
у	1	1	1	1	1	1	1	1	1	1
Boostir	ng Rour	nd 3:								
х	0.2	0.2	0.4	0.4	0.4	0.4	0.5	0.6	0.6	0.7
У	1	1	-1	-1	-1	-1	-1	-1	-1	-1

Summary:

Round	Split Point	Left Class	Right Class	alpha
1	0.75	-1	1	1.738
2	0.05	1	1	2.7784
3	0.3	1	-1	4.1195

Weights

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2	0.311	0.311	0.311	0.01	0.01	0.01	0.01	0.01	0.01	0.01
3	0.029	0.029	0.029	0.228	0.228	0.228	0.228	0.009	0.009	0.009

Classification

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	-1	-1	-1	-1	-1	-1	-1	1	1	1
2	1	1	1	1	1	1	1	1	1	1
3	1	1	1	-1	-1	-1	-1	-1	-1	-1
Sum	5.16	5.16	5.16	-3.08	-3.08	-3.08	-3.08	0.397	0.397	0.397
Sign	1	1	1	-1	-1	-1	-1	1	1	1

Predicted Class

Imbalanced Class problem

Class Imbalance Problem

- Lots of classification problems where the classes are skewed (more records from one class than another)
 - Credit card fraud
 - Intrusion detection
 - Defective products in manufacturing assembly line

Class Imbalance Problem

 Evaluation measures such as accuracy is not well-suited for imbalanced class

 Detecting the rare class is like finding needle in a haystack

Confusion Matrix

Confusion Matrix:

	PREDICTED CLASS					
		Class=Yes	Class=No			
ACTUAL	Class=Yes	а	b			
CLASS	Class=No	С	d			

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Accuracy

	PRE	DICTED CL	ASS
		Class=Yes	Class=No
ACTUAL	Class=Yes	a (TP)	b (FN)
CLASS	Class=No	c (FP)	d (TN)

Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Problem with Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10

Problem with Accuracy

- Consider a 2-class problem
 - Number of Class NO examples = 990
 - Number of Class YES examples = 10
- If a model predicts everything to be class NO, accuracy is 990/1000 = 99 %
 - This is misleading because the model does not detect any class YES example
 - Detecting the rare class is usually more interesting (e.g., frauds, intrusions, defects, etc)

		PREDICTED CLASS						
			Class=Yes	Class=No				
ACTU	AL	Class=Yes	а	b				
CLAS		Class=No	С	d				

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$

F-measure (F) =
$$\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$$

	PREDICTED CLASS						
		Class=Yes	Class=No				
ACTUAL	Class=Yes	10	0				
CLASS	Class=No	10	980				

Precision (p) = $\frac{10}{10+10}$ = 0.5
Recall (r) = $\frac{10}{10+0}$ = 1
F-measure (F) = $\frac{2*1*0.5}{1+0.5}$ = 0.62
$Accuracy = \frac{990}{1000} = 0.99$

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	1	9
CLASS	Class=No	0	990

Precision (p) =
$$\frac{1}{1+0}$$
 = 1
Recall (r) = $\frac{1}{1+9}$ = 0.1
F - measure (F) = $\frac{2*0.1*1}{1+0.1}$ = 0.1
Accuracy = $\frac{991}{1000}$ = 0.991

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	40	10
	Class=No	10	40

Precision (p) = 0.8Recall (r) = 0.8F - measure (F) = 0.8Accuracy = 0.8

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	40	10
	Class=No	10	40

Precision (p) = 0.8Recall (r) = 0.8F - measure (F) = 0.8Accuracy = 0.8

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	40	10
	Class=No	1000	4000

Precision (p) = ~ 0.04 Recall (r) = 0.8 F - measure (F) = ~ 0.08 Accuracy = ~ 0.8

Measures of classification performance

	PREDICTED CLASS		
ACTUAL CLASS		Yes	No
	Yes	TP	FN
	No	FP	TN

 α is the probability that we reject the null hypothesis when it is true. This is a Type I error or a false positive (FP).

β is the probability that we accept the null hypothesis when it is false. This is a Type II error or a false negative (FN).

$$Accuracy = \frac{TP + TN}{TP + FN + FP + TN}$$

ErrorRate = 1 - accuracy

$$Precision = Positive \ Predictive \ Value = \frac{TP}{TP + FP}$$

$$Recall = Sensitivity = TP Rate = \frac{TP}{TP + FN}$$

$$Specificity = TN Rate = \frac{TN}{TN + FP}$$

$$FP\ Rate = \alpha = \frac{FP}{TN + FP} = 1 - specificity$$

$$FN\ Rate = \beta = \frac{FN}{FN + TP} = 1 - sensitivity$$

$$Power = sensitivity = 1 - \beta$$

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	40	10
	Class=No	10	40

Precision (p) = 0.8TPR = Recall (r) = 0.8FPR = 0.2F - measure (F) = 0.8Accuracy = 0.8

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	40	10
CLASS	Class=No	1000	4000

TPR = Recall (r) = 0.8FPR = 0.2F - measure (F) = ~ 0.08 Accuracy = ~ 0.8

Precision (p) = ~ 0.04

	PREDICTED CLASS		
		Class=Yes	Class=No
AOTUAL	Class=Yes	10	40
ACTUAL CLASS	Class=No	10	40

Precision $(p) = 0.5$
TPR = Recall(r) = 0.2
FPR = 0.2

	PREDICTED CLASS		
		Class=Yes	Class=No
	Class=Yes	25	25
ACTUAL CLASS	Class=No	25	25

Precision (p) =
$$0.5$$

TPR = Recall (r) = 0.5
FPR = 0.5

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	40	10
ACTUAL CLASS	Class=No	40	10

Precision (p) = 0.5 TPR = Recall (r) = 0.8 FPR = 0.8

ROC (Receiver Operating Characteristic)

- A graphical approach for displaying trade-off between detection rate and false alarm rate
- Developed in 1950s for signal detection theory to analyze noisy signals
- ROC curve plots TPR against FPR
 - Performance of a model represented as a point in an ROC curve
 - Changing the threshold parameter of classifier changes the location of the point

ROC Curve

(TPR,FPR):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

ROC Curve

- To draw ROC curve, classifier must produce continuous-valued output
 - Outputs are used to rank test records, from the most likely positive class record to the least likely positive class record
- Many classifiers produce only discrete outputs (i.e., predicted class)
 - How to get continuous-valued outputs?
 - Decision trees, rule-based classifiers, neural networks,
 Bayesian classifiers, k-nearest neighbors, SVM

Using ROC for Model Comparison

- No model consistently outperform the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC curve
 - Ideal:
 - Area = 1
 - Random guess:
 - Area = 0.5

How to construct ROC curve

Instance	Score	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	=
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- Use a classifier that produces a continuous-valued score for each instance
 - The more likely it is for the instance to be in the + class, the higher the score
- Sort the instances in decreasing order according to the score
- Apply a threshold at each unique value of the score
- Count the number of TP, FP, TN, FN at each threshold
 - TPR = TP/(TP+FN)
 - FPR = FP/(FP + TN)

How to construct ROC curve

	Class	+	-	+	-	_	<u> </u>	+	-	+	+	
Threshold >=		0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
\rightarrow	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
\rightarrow	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

Tasks

1. Calculate the metrics Accuracy, Precision, Recall, F1 score, Specificity, False Positive Rate for the following tables

	Predicted Class Yes	Predicted Class No
Actual Class Yes	200	200
Actual Class No	200	200

	Predicted Class Yes	Predicted Class No
Actual Class Yes	0	10
Actual Class No	0	790

Tasks

2. Draw the ROC curve for the following table

Instance	Score	True Class
1	0.95	+
2	0.35	
3	0.85	+
4	0.25	+