Bio Review

Exam 1

- Least to most complex:
 - Individual, population, community, ecosystem, biosphere
- Evolution is best defined as changein allele frequency over time
- Rabbits eat their own fecal matter:
 - As herbivores they maximize nutrient uptake from difficult to digest plant material
- Deep root systems are a sign of periods of little rainfall and soils that erode easily
- Ectotherm: dependent on external sources of heat (usually have slow metabolic rate as a result)
- Endotherm: maintains its body at a metabolically favorable temperature
- Only marine fish "drink"
- Analogous structures: structures in different species having similar or corresponding function but not from the same evolutionary origin
- Homologous structures: structures derived from a common ancestor or same evolutionary or developmental origin
- "Aspect" is the direction that a slope faces

Population growth

r: rate of natural increase

k: carrying capcity of a population

Exam 2

- Morphological Species Concept: subjective, classified by appearance
- Ecological Species Concept: filling a niche.

- Phylogenetic Species Concept: Smallest group of individuals with a common ancestor
- Sympatric speciation: new species evolve from a single ancestral species while inhabiting the same geographic region
- Order of events that may have led to an abiotic origin of living organisms
 - 1. Formation of organic molecules from inorganic precursors
 - 2. Formation of macromolecules
 - 3. Formation of self-replicating molecules
- Eucaryota contain nuclei
- Punctuated equilibrium: evolutionary change happens in rapid bursts
- RNA can:
 - Self-replicate
 - Have catalytic activity like an enzyme
- The theory of endosymbiosis has been proposed to explain how some organelles came to exist in eukaryotes

Hardy-Weinberg example

Genotype	#
100/100	65
100/200	35
200/200	50

$$p = feq of 100 = ((65 * 2) + 35) / 300 = .55$$

$$q = freq of 200 = ((50 * 2) + 35) / 300 = .45$$

Expected frequencies:

$$100/100 = p^2 = 0.303$$

$$100/200 = 2pq = 2(.55)(.45) = .495$$

$$200/200 = q^2 = .2025 = .203$$

Expected numbers:

100/100 = 0.303 * 150 = 45.45 100/200 = .495 * 150 = 74.25 200/200 = .203 * 150 = 30.45

Post-exam 2

Plants

- Bryophytes:
 - Types of plants:
 - Liverworts
 - Hornworts
 - Mosses
 - Non-vascular
 - Have flagellated sperm (Require water for fertilization as a result)
 - Haploid gametophyte is the dominant life stage
 - Have macrophylls (small, simple leaves on some ferns)
 - Seedless
- Bryophytes produce sporangia which have the advantages of:
 - Tolerant dessication (they can survive in arid periods)
 - Allow dispersal to new environments
- Angiosperms:
 - Monocots
 - Eudicots
- Fungi:
 - Have the mycota and mycetes suffix sometimes (usually)

- Heterosporous: produce two types of spores (micro/macro)
- Gynosperms and agiosperms are heterosporous
- Angiosperms flower
- Gynosperms/angiosperms produce seeds and gametophyte are typically microscopic
- Pteridophytes, gynosperms, angiosperms all are sporophyte dominant and have vascular tissue
- Seed plant lifecycle: sporophyte leads to meiosis, megametophyte produces egs while the microgametophyte proces sperm, fertilization occurs, go back to sporphyte
- Seed/sporophyte are diploid (2n), sperm/eggs/megaspores/microspores are haploid (1n).

Plant structures:

- Gametangia
- Archigonium
- Antherdium
- Apical meristerms
- Gametophyte
- Sporophyte
- Microphylls and megaphylls
- Xylem and phloem
- Microspores and megaspores
- Microgametophytes
- Seeds

Fungi structures:

- Hyphae or Mycelia
- Sporocarp
- Mycorrhizal fungi

Animals

• Porifera (sponges):

- Lack of specialized tissues
- Asymmetric
- Ctneophora and Cnideria (comb jellies/jellies)
 - Specialized tissues present
 - Radially symmetric
- Lophotrochozoa:
 - Most bilaterally symmetric
 - Two discrete groups joined based on molecular evidence
 - One group has a lophophore (crown of cilia used in feeding)
 - Other group has a distinctive developmental stage, trochophore larave
 - Some members of the group lack both of this distinctive features
 - Phylum Platyhelminthe (flatworms)
 - Acoelomate
 - Gas exchange and elimination of wastes by diffusion
 - Most with single opening associated with gastrovascular system
 - Free living and parasitic forms
 - Phylum Mollusca (snails, slugs, oysters, claims, octopuses, and squids)
 - Simple nervous system present
 - Body has three main parts
 - 1. Muscular foot used for movement
 - 2. Visceral mass with internal organs
 - 3. Mantle that secretes shell
 - Cephalopods (octopuses and squids) have a closed circulatory system
 - Phylum Annelida (segmented worms)
 - Digestive system with mouth and anus
 - Closed circulatory system
 - Simple nervous system with simple "brain"
- Ecdysozoans:
 - · Most posess a tough outer covering or cuticle which they shed as they grow

(molting is called ecdysis)

- Phylum Nematoda (round worms)
 - Widespread in water, soils, plant tissues, animal tissues
 - Extremely abundant
 - Free living and parasitic forms
- Phylum Arthropoda (insects, spiders, crustaceans)
 - Most diverse
 - Segmented bodies and jointed appendages
 - Some appendages specialized
 - Exoskeleton layers of protein and chitin
 - Open circulatory system
 - Respiration through tracheal tubes

Deuterostomes

- Phylum Echinodermata (sea stars/urchins)
 - Unique water vascular system
- Phylum Chordata (chordates: fishes, amphibians, reptiles, mammals)
 - Notochord -- flexible rod for support (may be replaced by vertebrae)
 - Dorsal, Hollow nerve cord
 - Pharyngeal slits or clefts
 - Muscular post-anal tail