RAZVRŠČANJE Z DOMINANTNIMI MNOŽICAMI

Grupiranje (ang. Clustering) je postopek razvrščanja predmetov znotraj razreda v podrazrede (cluster) tako da so si predmeti znotraj istega podrazreda bolj podobni med sabo kot so si podobni z elementi iz ostalih podrazredov.

Problem združevanja lahko opišemo z uteženim grafom, ki ga definiramo kot trojico G=(V,E,w), kjer je $V=\{1,...,n\}$ končna množica vozlišč, $E\subseteq V\times V$ množica usmerjenih povezav in $\omega:E\to\mathbb{R}$ funkcija, ki vsakemu vozlišču dodeli neko vrednost(težo). Vozlišča grafa G ustrezajo predmetom, ki jih je potrebno združevati.

Povezave predstavljajo kateri predmeti so med seboj povezani, utežene povezave pa odražajo podobnosti med povezanimi predmeti. Poleg tega matrika $A_{ij}=\omega(i,j)za\ vse\ i,j\in V$ predstavlja podobnost med vozlišči. Imenujemo jo matrika podobnosti.

Osnovni lastnosti, ki morata zadostovati gruči sta

- Notranja homogenost: elementi, ki pripadajo gruči si morajo biti med seboj podobni
- Maksimalnost: gruče ne moremo dodatno razširiti z uvedbo zunanjih elementov

DEFINICIJE

Naj graf G predstavlja primer združevanja množic in naj bo C ⊆V neprazna podmnožica. Povprečna utežena vhodna stopnja glede na C je definirana kot

$$awindeg_{C}(i) = \frac{1}{|C|} \sum_{i \in C} A_{ij}$$

kjer |C| predstavlja velikost množice C. Za $j \in C$ definiramo

$$\phi_c(i,j) = A_{ij} - awindeg_c(j)$$

Funkcija $\phi_c(i,j)$ je mera relativne podobnosti elementa i z elementom j glede na povprečno povezanost elementa i z elementi iz C.

Težo predmeta i glede na množico C definiramo kot

$$W_c(i) = \begin{cases} \sum_{j \in C \setminus \{i\}} 1; & \text{\'e} \ |C| = 1 \\ \phi_{c\{i\}}(i,j) W_{C \setminus \{i\}}(j); & \text{sicer} \end{cases}$$

Vrednosti $W_c(i)$ nam pove koliko podpore prejme element i od elementov $C\setminus\{i\}$ glede na skupno podobnost z elementi iz $C\setminus\{i\}$. Pozitivne vrednosti nam povedo da je i močno koleriran z $C\setminus\{i\}$.

Skupna teža množice C pa je definirana z

$$W(C) = \sum_{i \in C} W_C(i)$$

Definicija 1 (dominantna množica)

Neprazni množici $C \subseteq V$ za katero je W(T) > 0 za vsako neprazno množico $T \subseteq C$ pravimo dominantna množica, če velja:

- 1. $W_c(i) > 0$ za vse $i \in C$
- 2. $W_{c \cup \{i\}}(i) < 0$ za vse $i \notin C$

POVEZAVA S TEORIJO OPTIMIZACIJE

Če se omejimo na simetrične povezanosti, torej A je simetrična matrika, potem lahko dominantno množico zapišemo kot rešitev naslednjega standardnega kvadratičnega programa

$$\max f(x) = x^T A x$$
$$p. p. x \in \Delta \subset \mathbb{R}^n$$

Kjer je $\Delta = \{x \in \mathbb{R}^n : \sum_{j \in V} x_j = 1 \text{ in } x_j \ge 0 \text{ za } vsak j \in V\}$ standardni simpleks iz \mathbb{R}^n .

Pravimo, da je x rešitev zgornjega problema če obstaja soseščina x-a $U \subseteq \Delta$ za katero je f(x) > f(z) za vsak $z \in U \setminus \{x\}$. Podpora $\sigma(x)$ za $x \in \Delta$ je definirana kot indeksna množica pozitivnih komponenta vektorja x, torej $\sigma(x) = \{i \in V : x_i > 0\}$.

<u>Definicija2 (otežen vektor)</u>

Za neprazno podmnožico C množice V lahko definiramo otežen vektor $x^C \in \Delta$ če ima množica C pozitivno skupno težo W(C). V tem primeru je

$$x_i^C = \begin{cases} \frac{W_c(i)}{W(C)} & \text{\'e } i \in C \\ 0 & \text{sicer} \end{cases}$$

Za dominantno množico lahko torej vedno definiramo otežen vektor.

Izrek1

Če je C dominantna množica A, potem je njen otežen vektor x^C rešitev zgornjega problema. Obratno, če je x^* rešitev zgornjega problema potem je njegova podpora $\sigma = \sigma(x*)$ dominantna množica od A pri pogoju da je $W_{\sigma \cup \{i\}}(i) \neq 0$ za vse $i \notin \sigma$.

POVEZAVA S TEORIJO GRAFOV

Naj bo G=(V,E) neusmerjen graf, kjer je $V=\{1,2,..,n\}$ množica vozlišč in $E\subseteq V\times V$ množica povezav v grafu. Dve vozlišči $u,v\in V$ sta sosednju če $(u,v)\in E$. Podmnožici vozlišč $C\subseteq V$ pravimo klika, če so si vsa vozlišča iz te množice med seboj sosednja.

Klika C na neusmerjenem grafu F je največja (maximal), če ne obstaja klika D na grafu G, tako da $C \subseteq D$ in $C \ne D$. Kliko C imenujemo maksimalna (maximum) klika, če ne obstaja

klika na grafu G, ki bi vsebovala več vozlišč kot največja klika C. Število vozlišč v maksimalni kliki imenujemo klično število (clique number) in ga označimo z $\omega(G)$.

Matrika sosednosti grafa G je kvadratna matrika A_G , kjer je $(A_G)_{i,j}=1$, če $(i,j)\in E$, sicer pa $(A_G)_{i,j}$.

Na matriko sosednosti v neusmrejnem grafu lahko gledamo kot na matriko podobnosti v problemu razvrščanja in posledično lahko uporabimo dominantno množico da najdemo združbe znotraj grafa.

Glede na povezavo z teorijo optimizacije, upoštevamo naslednji kvadratični program

$$\max f_{\alpha}(x) = x^{T} (A_{G} + \alpha I) x$$

$$p. p. \quad x \in \Delta \subset \mathbb{R}^{n}$$

Kjer je I identična matrika, α realno število in Δ simpleks.

Izrek2

naj bo graf G neusmerjen z matriko sosednosti A_G in naj bo $0<\alpha<1$. Vsaka največja klika C grafa G je dominantna množica od $A_\alpha=A_G+\alpha I$. Obratno, če je C dominantna množica od A_α potem je C največja klika v G.