

Project Initialization and Planning Phase

Date	6 JUNE 2024
Team ID	740001
Project Title Online Fraud Detection Using ML	
Maximum Marks	3 Marks

Project Proposal (Proposed Solution) template

This project proposal outlines a solution to address a specific problem. With a clear objective, defined scope, and a concise problem statement, the proposed solution details the approach, key features, and resource requirements, including hardware, software, and personnel.

Project Overviev	v
Objective	Develop a machine learning system to detect and prevent online fraud in real-time.
Scope	Implement a scalable fraud detection system that can analyze large volumes of transaction data to identify and flag potentially fraudulent activities. The project will cover data collection, model training, and integration with existing transaction systems.
Problem Statemo	ent
Description	Online fraud is a significant issue affecting financial institutions and customers, leading to substantial financial losses and undermining trust in online services. Fraudsters continually evolve their tactics, making traditional rule-based systems insufficient
Impact	Solving this problem will reduce financial losses, enhance customer trust, and improve the overall security of online transactions. It will also help in identifying new fraud patterns and adapting to emerging threats more quickly.
Proposed Solution	on

Approach	Utilize supervised machine learning techniques, such as logistic regression, decision trees, and neural networks, to analyze historical	
	transaction data and identify patterns indicative of fraud. The solution will involve data preprocessing, feature engineering, model training,	

	and evaluation. Continuous monitoring and model retraining will be essential to maintain accuracy as fraud patterns evolve.
Key Features	Real-time Analysis: The system will process and analyze transactions in real-time to detect fraudulent activities as they occur. Adaptive Learning: The model will continually learn from new data, improving its accuracy and ability to detect emerging fraud patterns. Scalability: Designed to handle large volumes of transactions without compromising performance.

Resource Requirements

Resource Type	Description	Specification/Allocation		
Hardware				
Computing Resources	CPU/GPU specifications, number of cores	e.g., 2 x NVIDIA V100 GPUs		
Memory	RAM specifications	e.g., 8 GB		
Storage	Disk space for data, models, and logs	e.g., 1 TB SSD		
Software				
Frameworks	Python frameworks	e.g., Flask , sklearn , metrics		
Libraries	Additional libraries	e.g., scikit-learn, pandas, numpy		
Development Environment	IDE, version control	e.g., Jupyter Notebook, Git, Google colab		
Data				

Data	Source, size, format	e.g., Kaggle dataset, 500 images , CSV
------	----------------------	--