

计算机网络安全

华中科技大学

第二部分网络安全技术与应用第4讲防火墙技术

第4讲 防火墙技术

防火墙概述

全包过滤防火墙

4 状态检测防火墙

应用代理防火墙

防火墙技术发展

1.1 防火墙的概念

▶原义

- ◆ 建筑设计领域
- ◆ 建筑中防止火灾蔓延至相邻区域 的不燃性墙体
- ◆ 目的:隔离火灾风险

1.1 防火墙的概念

1.1 防火墙的概念

▶引申

- ◆ 网络安全领域, Firewall
- ◆ 内外网络边界上的过滤控制机制
 - ✓ 内部网络:安全、可信赖
 - ✓ 外部网络:安全性未知
- ◆ 功能: 检查进出边界的数据流, 防止未授权通信威胁内部网络安 全

两个安全域之间通信流的唯一通道, 内外网之间的所有数据流都要流经防火墙

根据访问控制规则决定进出网络的行为

1.2 防火墙的基本要求

- ▶必经之路
- > 授权放行
- > 入侵免疫

1.3 防火墙的动作

- ➤ 允许 (ACCEPT)
- ▶ 拒绝 (REJECT) : 有反馈
- ➤ 丢弃 (DROP) : 无反馈 (发送者需等待超时)

1.4 防火墙的默认策略

- ▶默认允许
- ▶ 默认拒绝/丢弃: 更安全

1.5 防火墙的分类

- ▶按形态分类
 - ◆ 硬件防火墙

◆ 软件防火墙

1.6 防火墙的分类

- > 按保护对象分类

1.7 防火墙的性能指标

- ▶ 吞吐量——带宽
 - ◆ 防火墙在不丢失数据包的情况下能达到的最大的转发数据包的速率
- ▶ 时延——快慢
 - ◆ 从防火墙接收接口上输入帧的最后一个比特到达,到发送接口上输出帧的第一个比特发出所用的时间间隔
- ▶ 丢包率——稳定性
 - ◆ 防火墙在不同负载情况下,由于资源不足应转发但丢弃的数据包比例
- ▶ 并发连接数——容量
 - ◆ 防火墙能同时处理的,内外网主机通过防火墙通信的数据连接的最大数量

1.8 防火墙的作用

- ➤ 网络安全的中心"扼制点"
- ▶ 集中强化安全策略
- ▶监视网络安全性
- ➤ 网络通信审计监控

1.9 防火墙的局限性

- > 不能防范不经过它的攻击
- > 不能防范来自内部网络的攻击
- ➤ 不能防范策略配置不当引起的威胁
- > 不能防范物理接触破坏
- > 不能防范对自身漏洞的攻击

1.10 防火墙安全区域

- > 防火墙使用安全区域来区分一个网络是否安全
- ▶ 4个默认安全区域
 - ◆ Local——防火墙自身,凡是防火墙主动发出的报文,均可认为从Local 区域发出
 - ◆ Trust——受信任的区域,位于防火墙之内的可信网络,是防火墙要保护的目标。主要用于连接局域网内部网络。比如企业网络中,通常员工网络设置为Trust区域
 - ◆ Dmz——非军事化区域,作为非信任区域与信任区域之间的缓冲区。一般用于防止企业内部服务器,如: OA服务器、邮件服务器等等

1.10 防火墙安全区域

- ◆ Untrust——不受信任的区域,处于防火墙之外的公开开放网络,由于 Internet非常不安全,所以一般把连接Internet的接口划分到untrust区 域,主要用于连接互联网。大部分情况下,非信任区域无法主动访问可信任区域
- ➤ 每个安全区域都会有一个安全级别,默认级别从高到低为 local>trust>dmz>untrust

▶三种工作模式

- ◆ 路由模式 (网关模式)
 - ✓ 如果防火墙以第三层对外连接(接口具有IP 地址),则防火墙工作在路由模式下;
- ◆ 透明模式 (桥模式)
 - ✓ 若防火墙通过第二层对外连接(接口无IP 地址),则防火墙工作在透明模式下;
- ◆ 混合模式
 - ✓ 若防火墙同时具有工作在路由模式和透明模式的接口(某些接口具有IP 地址,某些接口无IP 地址),则防火墙工作在混合模式下。

> 路由模式

- ◆ 当防火墙位于内部网络和外部网络之间时,需要将防火墙与内部网络、外部网络以及DMZ三个区域相连的接口分别配置成不同网段的IP地址,重新规划原有的网络拓扑,此时相当于一台路由器
- ◆ 路由模式下可以完成ACL包过滤、 ASPF动态过滤、NAT转换等
- ◆ 路由模式需要对网络拓扑进行修改 (内部网络用户需要更改网关、路 由器需要更改路由配置等),相当 费事,使用需权衡利弊。

◆ 路由模式工作机制

- ✓ 所有接口都配置IP 地址,各接口所在的安全区域是三层区域,不同三层区域相关的接口连接的外部用户属于不同的子网。当报文在三层区域的接口间进行转发时,根据报文的IP 地址来查找路由表,此时防火墙表现为一个路由器。
- ✓ 防火墙与路由器存在不同,防火墙中IP报文还需要送到上层进行相关过滤等处理,通过检查会话表或访问控制列表(ACL)规则以确定是否允许该报文通过。此外,还要完成其它防攻击检查。路由模式的防火墙支持ACL规则检查、ASPF状态过滤、防攻击检查、流量监控等功能。

> 透明模式

- ◆ 透明模式可以避免改变拓扑结构造成的麻烦,此时防火墙对于子网用户和路由器来说是完全透明的。也就是说,用户完全感觉不到防火墙的存在
- ◆ 采用透明模式时,只需在网络中像放置网桥 (bridge) 一样插入该防火墙设备即可,无需修改任何已有的配置。
- ◆ 与路由模式相同, IP报文同样经过相关的过滤检查(但是IP报文中的源或目的地址不会改变), 内部网络用户依旧受到防火墙的保护

◆ 透明模式工作机制

- ✓ 透明模式(也可以称为桥模式)下所有接口都不能配置IP 地址,接口所在的安全区域是二层区域,和二层区域相关接口连接的外部用户同属一个子网。当报文在二层区域的接口间进行转发时,需要根据报文的MAC 地址来寻找出接口,此时防火墙表现为一个透明网桥
- ✓ 防火墙与网桥存在不同,防火墙中IP报文还需要送到上层进行相关过滤等处理,通过检查会话表或访问控制列表(ACL) 规则以确定是否允许该报文通过
- ✓ 透明模式的防火墙支持ACL规则检查、ASPF状态过滤、防攻击检查、流量监控等功能。工作在透明模式下的 防火墙在数据链路层连接局域网(LAN),网络终端用户无需为连接网络而对设备进行特别配置,就像LAN Switch进行网络连接

- > 路由模式与透明模式对比
 - ◆ 路由模式
 - ✓ 优点:功能相对全面
 - ✓ 缺点:需要对现有网络进行一定调整
 - ◆ 透明模式
 - ✓ 优点:不用重新进行IP划分
 - ✓ 缺点:损失一些功能,如路由、VPN及nat等。
 - ◆ 一般来说, 如果是能用路由模式建议还是用路由模式

▶ 混合模式

- ◆ 如果防火墙既存在工作在路由模式的接口(接口具有IP地址),又存在工作在透明模式的接口(接口无IP地址),则防火墙工作在混合模式下
- ◆ 例如:混合模式可用于透明模式作双机备份的情况,此时启动VRRP (Virtual Router Redundancy Protocol,虚拟路由冗余协议)功能的接口需要配置IP地址,其它接口不配置IP地址

◆ 混合模式工作机制

- ✓ 防火墙工作在混合透明模式下,此时部分接口配置IP 地址,部分接口不能配置IP 地址。
- ✓ 配置IP 地址的接口所在的安全区域是三层区域,接口上启动VRRP功能,用于双机 热备份;
- ✓ 未配置IP地址的接口所在的安全区域是二层区域,和二层区域相关接口连接的外部 用户同属一个子网
- ✓ 当报文在二层区域的接口间进行转发时, 转发过程与透明模式的工作过程完全相同

第4讲 防火墙技术

防火墙概述

| 包过滤防火墙

4 状态检测防火墙

应用代理防火墙

防火墙技术发展

2.1 基本概念

- ➤ 包过滤——Packet Filtering
- ▶ 处理对象——数据包
- ▶最基础的防火墙技术

2.2 包过滤工作机制

- ▶组成
 - ◆ 条件
 - ◆ 动作
- ▶ 检查原则
 - ◆ 顺序逐条检查
 - ◆ 首条命中
 - ◆ 每个数据包单独检查

动作	源	端口	目 的	端口	标 志	解释	
allow	secondary	*	our-dns	53	ТСР	allow secondary nameserver access	
block	*	*	*	53	TCP	no other DNS zone transfers	
allow	*	*	*	53	UDP	permit UDP DNS queries	
allow	ntp.outside	123	ntp.inside	123	UDP	ntp time access	
block	*	*	*	69	UDP	no access to our tftpd	
block	*	*	*	87	TCP	the link service is often misused	
block	*	*	*	111	TCP	no TCP RPC and	
block	*	*	*	111	UDP	no UDP RPC and no	
block	*	*	*	2049	UDP	NFS. This is hardly a guarantee	
block	*	*	*	2049	TCP	TCP NFS is coming: exclude it	
block	*	*	*	512	TCP	no incoming "r" commands	
block	*	*	*	513	TCP		
block	*	*	*	514	TCP		
block	*	*	*	515	TCP	no external lpr	
block	*	*	*	540	TCP	uucpd	
block	*	*	*	6000-6100	TCP	no incoming X	
allow	*	*	adminnet	443	TCP	encrypted access to transcript mgr	
block	pclab-net	*	adminnet	*	TCP	nothing else	
block	pclab-net	*	*	*	TCP	anon. students in pclab can't go outside	
block	*	*	*	*	UDP	not even with TFTP and the like!	
allow	*	*	*		TCP	all other TCP is OK	
block		*	*		UDP	suppress other UDP for now	

> 检查对象

- ◆ 源IP地址
- ◆ 目的IP地址
- ◆ 传输层协议
- ◆ 源端口
- ◆ 目的端口
- ◆ TCP ACK标志
- ➤ 关于IP分片的检查

- ➤ TCP ACK控制连接方向
 - ◆ 外网→内网
 - ✓ ACK=0,禁止
 - ✓ ACK=1, 允许
 - ◆ 内网→外网
 - ✓ ACK=0或1, 允许
 - ◆ 效果: 外网向内网的连接企图被 阻止

> 规则制定的策略

- ◆ 按地址过滤:源IP、目的IP
- ◆ 按服务过滤:协议、源端口、目的端口
- ◆ 按连接方向过滤: ACK位
- ◆ 按时间、用户等过滤
- ◆ 对数据包做日志记录

> 设置规则的步骤

- ◆ 建立安全策略(分析并列出所有允许的和禁止的任务)。
- ◆ 将安全策略转化为分组字段的逻辑表达式。
- ◆ 用防火墙提供的过滤规则句法重写逻辑表达式并设置。

> 网络拓扑

> 安全策略

- ◆ 任何时间,内网 → 邮件服务器:允许
- ◆ 任何时间,内网 → web服务器:允许
- ◆ 上班时间,内网 → Internet: 允许
- ◆ 任何时间, Internet → 内网: 禁止
- ◆ 任何时间, Internet → 邮件服务器: 允许
- ◆ 任何时间, Internet → web服务器: 允许
- ◆ 任何时间, Internet → 数据库服务器: 禁止
- ◆ 其它:禁止

▶逻辑表达式

- Sip=192.168.1.0/24 and dip=192.168.3.3 and (dport=25 or dport=110), action=permit
- Sip=any and dip=192.168.1.0/24, action=reject
- ◆ Sip=any and dip=192.168.3.4 and dport=80, action=permit
- ◆ Sip=any and dip=192.168.3.2 and dport=1358, action=reject
- **♦**
- Default=reject

> 规则列表

源地址	源端口	协议	目的地址	目的端口	时间	动作
ANY	ANY	TCP	192.168.3.3	25,110	ANY	Permit
ANY	ANY	ANY	192.168.1.0/24	ANY	ANY	Reject
ANY	ANY	TCP	192.168.3.2	1358	ANY	Reject
ANY	ANY	TCP	192.168.3.4	80	ANY	Permit
192.168.1.0/24	ANY	ANY	ANY	ANY	WORK	Permit
ANY	ANY	ANY	ANY	ANY	ANY	Reject

2.4 包过滤配置实例

> 新的需求

◆ 上班时间, 内网 → 数据库服务器: 允许

源地址		源端口	协议	目的地址	目的端口	时间	动作
ANY		ANY	TCP	192.168.3.3	25,110	ANY	Permit
ANY		ANY	ANY	192.168.1.0/24	ANY	ANY	Reject
ANY		ANY	TCP	192.168.3.2	1358	ANY	Reject
ANY		ANY	TCP	192.168.3.4	80	ANY	Permit
192.168.1.	/24	ANY	ANY	ANY	ANY	WORK	Permit
ANY		ANY	ANY	ANY	ANY	ANY	Reject
192.168.1.0/24		ANY	TCP	192.168.3.2	1358	WORK	Permit

2.5 包过滤的优缺点

▶ 优点

- ◆ 对网络性能影响较小
- ◆ 成本较低
- ◆ 对用户透明

➤缺点

- ◆ 访问控制规则配置较复杂
- ◆ 易受IP欺骗攻击
- ◆ 缺乏状态感知能力

2.6 Linux Netfilter架构

2.6 Linux Netfilter架构

➤ Netfilter hook 点

Hook点	调用的时机		
NF_INET_PRE_ROUTING	刚刚进入网络层的数据包通过此点(刚刚进行完版本号、校验和等检测),目的地址转换在此点进行。		
NF_INET_LOCAL_IN	经路由查找后,送往本机的通过此检查点,INPUT包过滤在此 点进行		
NF_INET_FORWARD	要转发的包经过此检测点,FORWARD包过滤在此点进行		
NF_INET_LOCAL_OUT	本机进程发出的包通过此检测点, OUTPUT包过滤在此点进行		
NF_INET_POST_ROUTING	所有马上便要通过网络设备出去的包通过此检测点,内置的源 地址转换功能(包括地址伪装)在此点进行		

2.6 Linux Netfilter架构

➤ Hook函数返回值:在hook函数完成了对数据包的操作之后,必须返回一个预定义的Netfilter返回值

返回值	含义
NF_DROP	丢弃该数据包
NF_ACCEPT	保留该数据包
NF_STOLEN	告知netfilter忽略该数据包
NF_QUEUE	将该数据包插入到用户空间
NF_REPEAT	请求netfilter再次调用该 HOOK函数

第4讲 防火墙技术

防火墙概述

全包过滤防火墙

5 状态检测防火墙

应用代理防火墙

防火墙技术发展

3.1 包过滤的问题

- > 效率低
 - ◆ 规则列表顺序匹配
 - ◆ 一个数据流的每个数据包特征相同重复检查
- > 易用性
 - ◆ 一个数据流的正反方向要配一对规则
 - ◆ 协商端口的动态数据流没法预先配规则,若放开所有端口安全性下降
 - ✓ FTP数据连接
 - ✓ 流媒体协议H.323、SIP
 - ✓ 数据库协议SQLNET
- > 安全性低
 - ◆ 只检查数据包首部,不检查数据

3.2 解决思路——状态检测

- > 一个数据流的所有数据包有内在联系 > 连接 > 状态表
- > 效率
 - ◆ 数据流的第一个数据包,检查规则表,新建连接
 - ◆ 后续数据包,检查状态表
- ▶易用性
 - ◆ 单向配置规则,双向检查状态表
 - ◆ 配置主连接规则,追踪分析数据流,为动态端口自动创建连接
- > 安全性
 - ◆ 追踪连接数据流,可对数据检查

3.3 状态检测表 (连接表)

- > 状态检测表包括所有通过防火墙的连接
- ▶ 连接的信息 (状态)
 - ◆ 源、目的IP地址
 - ◆ 协议类型
 - ◆ 传输层信息: TCP/UDP端口、ICMP ID号
 - ◆ 连接状态: TCP连接状态
 - ◆ 超时时间

3.4 TCP状态检测

▶基本流程

3.4 TCP状态检测

➤ 简化的TCP状态机

3.5 非TCP状态检测

- > 防火墙建立虚拟连接
 - UDP
 - ✓ 一方发出UDP包,如DNS请求,建立连接
 - ✓ UDP应答的源和目的反向匹配连接,允许通过
 - ICMP
 - ✓ 信息查询报文, 如ping (echo request) 包, 建立连接
 - ✓ 源和目的IP反向匹配的echo reply包,允许通过
- > 这些状态的超时时间比较短

3.5 非TCP状态检测

▶ 虚拟UDP状态机

3.6 连接表的组织

- ▶ 非线性数据结构——hash表
- > 快速匹配
- > 可用硬件加速进一步加快

3.7 状态检测防火墙优缺点

▶ 优点

- ◆ 速度更快, 性能更强
- ◆ 安全性提升
- ◆ 配置更简单
- ◆ 对用户透明

➤缺点

- ◆ 主要在协议栈中工作,对病毒等威胁防护不足
- ◆ 用户的C/S连接得到保持,存在内网信息泄露风险

第4讲 防火墙技术

4.1 应用代理的提出

- ▶ 面向数据包的技术不足
 - ◆ 内核协议栈实现,功能受限
 - ◆ 数据在客户端和服务器之间直传,存在风险
- > 解决思路
 - ◆ 数据过滤提升到应用层实现
 - ◆ 断开客户端和服务器的直接连接
- ▶ 应用代理防火墙 (应用级网关)

4.2 应用代理工作机制

4.2 应用代理工作机制

4.3 应用代理的功能

- ▶基本访问控制
 - ◆ 源是否允许访问
 - ◆ 目的是否允许被访问
 - **•** • •
- > 应用数据检查
 - ◆ 检查通信是否符合协议
 - ◆ 检查应用级的用户合法性
 - ◆ 深度检查和审计传输的数据内容
 - ◆ 数据对象缓存传输

4.4 透明代理

- ▶普通代理
 - ◆ 客户端专门设置
 - ◆ 客户端专门功能
- ▶透明代理
 - ◆ 客户端无感知
 - ◆ 协议栈包过滤配合实现
 - ✓ 记录客户端消息的真实服务器地址,通知代理程序
 - ✓ 修改消息的目的地址为代理程序的监听地址
 - ✓ 服务器代理的应答消息,源地址改回真实服务器地址

4.5 应用代理的优缺点

▶ 优点

- ◆ 按协议进行内容过滤
- ◆ 可以调用其他安全功能
- ◆ 屏蔽保护内网信息

→缺点

- ◆ 只支持特定服务,可扩展性不高
- ◆ 性能较低

第4讲 防火墙技术

防火墙概述

全包过滤防火墙

应用代理防火墙

防火墙技术发展

5.1 防火墙技术发展历程

5.2 统一威胁管理UTM

▶ 定义

◆ 由IDC提出的UTM是指由硬件、软件和网络技术组成的具有专门用途的设备,将多种安全功能和特性集成于一个硬设备里,构成一个标准的统一管理平台

▶ 功能

◆ FW、IDS、IPS、AV等**串行连接**

▶ 特点

◆ 把应用网关和IPS等设备在状态检测防火墙的基础上 进行整合和统一

▶ 优点

◆ 整合所带来的成本降低、降低信息安全工作强度、 降低技术复杂度

> 缺点

◆ 模块串联检测效率低,性能消耗大

5.3 下一代防火墙 NG Firewall

- ➤ Next Generation Firewall, 简称NG Firewall, 全面应对应用层威胁的高性能防火墙
- ▶ 工作范围: 2-7层
- > 核心处理
 - ◆ 会话管理、**应用识别**、内容检测
- > 功能
 - FW、IDS、IPS、AV、WAF
- ▶ 优点
 - ◆ 与UTM相比增加的web应用防护功能,功能 更全
 - ◆ UTM是串行处理机制,NGFW是**并行处理**机制,效率更高
 - ◆ NGFW的性能更强,管理更高效

5.4 WEB应用防火墙WAF

- ▶ 工作范围:应用层(7层)
- ➤ 目的: 防止基于应用层的攻击影响 Web应用系统
- ▶ 主要技术原理:
 - ◆ 判断信息: HTTP协议数据的request 和response
 - ◆ 代理服务:会话双向代理,用户与服务器不产生直接链接,对于DDOS攻击可以抑制
 - ◆ 特征识别:通过正则表达式的特征库 进行特征识别
 - ◆ 算法识别:针对攻击方式进行模式化识别,如SQL注入、DDOS、XSS等

5.4 WEB应用防火墙WAF

➤ WAF常见功能

恶意扫描防护 资源盗链防护 C S R F 防护 非法上传防护 智能补丁防护 服务器 - 插件漏洞防护 网络层 - 访问控制 慢速攻击防护 自学习白名单防护 暴力破解防护 内容过滤防护 自定义策略防护 非法下载防护 信息泄漏防护 XML防火墙 P封禁检测 息 过滤 - 访问控制 13 14 15 16 17
 24
 25
 26
 27
 28
 29
 30
22 23

网络层检测

HTTP请求检测

HTTP响应检测

