Série 1 : Dipôle RLC forcé

EXERCICE 1:

On applique aux bornes d'un dipôle (L, C) série une tension alternative sinusoïdale, on la note $u(t) = U\sqrt{2}\cos{(2\pi N.t)}$ tel que la bobine a une inductance L et de résistance r.

- 1. Quelle grandeur qui va représenter la réponse du circuit au cours de cette excitation?
- 2. On règle la fréquence N à la valeur :

$$N_0 = \frac{1}{2\pi\sqrt{L\cdot C}}$$

où C est la capacité du condensateur. Quel phénomène obtient-t-on?

3. À l'instant t = 0 l'expression de la tension aux bornes du condensateur est tel que

$$u_C(t) = U_C \sqrt{2} \cos(2\pi N.t)$$

Déduire l'expression de l'intensité instantanée i(t) qui traverse le circuit. Calculer le déphasage $\varphi_{u_C/i}$.

4. Montrer que l'expression de l'énergie emmagasinée dans le circuit (L,C) est de la forme :

$$E = \frac{1}{2}LI_m^2$$

5. Déterminer l'expression de la quotient $\frac{E}{E_j}$ en fonction de Q le facteur de qualité, E_j l'énergie dissipée par effet Joule au cours d'une période T_0 . On donne : $Q = \frac{2\pi N_0 \cdot L}{\tau}$

EXERCICE 2:

Une bobine sans fer de résistance r et d'inductance L=1,20H. On applique aux bornes de cette bobine une tension alternative sinusoïdale de tension efficace U=220 V et de fréquence N=50 Hz. Dans ces conditions, la puissance moyenne consommée par la bobine est \mathcal{P}_T et l'intensité efficace du courant est $I_1=0,50$ A

- 1. Calculer l'impédance Z de la bobine
- 2. Calculer le facteur de puissance cos $\, \varphi_{u/i} \,$ de cette bobine et déduire la valeur de déphasage $\, \varphi_{u/i} \,$
- 3. Calculer la valeur de r

EXERCICE 3:

On réalise le dipôle **RLC série** avec :

- une bobine d'inductance L = 0.5 H et résistance r négligeable,
- un condensateur de capacité $C = 0.5 \,\mu\text{F}$,
- un conducteur ohmique de résistance $R = 100 \Omega$.

On branche le dipôle aux bornes d'un GBF qui délivre une tension sinusoïdale $u(t) = U_m \cos(2\pi Nt + \varphi)$. On donne l'intensité instantanée $i(t) = I_m \cos(2\pi Nt)$.

- 1. Donner le schéma du montage.
- 2. Donner les expressions des impédances :
 - \circ Z_C du condensateur,
 - \circ Z_L de la bobine,
 - o Z du circuit,
 - \circ et de tan φ .
- 3. Calculer la valeur de la fréquence N_0 du GBF pour que $\varphi = 0$.
- 4. Déterminer le domaine des fréquences où le circuit est capacitif et où il est inductif.
- 5. Soit φ_1 la valeur de φ pour la fréquence N_1 avec $N_1 < N_0$ et φ_2 la valeur de φ pour la fréquence N_2 avec $N_2 > N_0$.
 - a. Montrer que si $\varphi_1 = -\varphi_2$, on a $N_1 \cdot N_2 = N_0^2$.
 - b. Calculer N_1 et N_2 pour $|\varphi_1| = |\varphi_2| = \frac{\pi}{4}$.
- 6. On pose $x = \frac{N}{N_0}$.
 - a. Montrer que l'impédance du circuit peut s'écrire sous la forme :

$$Z = R\sqrt{1 + Q^2 \left(x - \frac{1}{x}\right)^2}$$

où Q est le facteur de qualité.

b. Calculer *Q* (facteur de qualité). Y a-t-il une surtension? Justifier.

EXERCICE 4

On réalise le montage suivant qui comporte :

- Un condensateur de capacité $C = 5 \mu F$.
- Une bobine d'inductance $L=0.5~\mathrm{H}$ et de résistance nulle
- Un conducteur ohmique de résistance $R = 10 \Omega$.
- Un voltmètre et un ampèremètre.

Le générateur GBF alimente le circuit par une tension sinusoïdale :

$$u(t) = 20\cos(2\pi Nt).$$

La fréquence N est réglable et on remarque que pour une fréquence N_0 , le voltmètre indique la tension $U_{AB}=0$ et l'ampèremètre indique l'intensité I_0 .

- 1. Étude du circuit à la fréquence N_0
 - a) Donner l'expression de U_{AB} en fonction de L, C, N_0 et I_0 . Justifier l'indication du voltmètre.
 - b) Calculer N_0 .
 - c) Calculer l'intensité maximale du courant I_m et en déduire l'expression de l'intensité instantanée i(t).
 - d) Vérifier que l'expression de la charge pour la fréquence N est :

$$q(t) = \frac{I_0\sqrt{2}}{2\pi N}\sin(2\pi Nt).$$

Montrer que l'énergie totale E de l'oscillateur pour N_0 est constante. Calculer E.

- e) Calculer ΔN , la largeur de la bande passante, et en déduire la valeur du facteur de qualité Q.
- 2. Étude pour une fréquence N_1

La tension efficace reste constante et on ajuste la fréquence sur la valeur N_1 . L'intensité instantanée est donnée par :

$$i(t) = 0.2\sqrt{2}\cos(2\pi N_1 t).$$

- a) Calculer l'impédance Z du circuit.
- b) Calculer N_1 sachant que le circuit est capacitif.
- c) Calculer le facteur de puissance et la puissance moyenne pour N_1 .

