LAB 8_9: HÀM - FUNCTIONS

I. Hàm trả về giá trị

Ví dụ: Viết chương trình tính tổng các ước số của số nguyên dương.

```
#include <stdio.h>
int sumDivisors(int N)
{   int i, S=0;
   for (i=1; i<=N/2; i++)
       if (N%i==0) S+=i;
   return S;
}
int main()
{   int n, sum;
   printf("\nInput n=");
   scanf("%d", &n);
   sum = sumDivisors(n);
   printf("Result:%d\n", sum);
   getchar();
   getchar();
}</pre>
```

II. Hàm void

Ví dụ: Viết chương trình in ra các ước số của một số nguyên dương được nhập từ bàn phím.

```
parameter
#include <stdio.h>
void printDivisors (int N)
                                        Function
   int i;
                                       Implemen
   for (i=1; i<=N/2; i++)
     if (N%i==0) printf("%d, ", i);
                                         tation
int main()
                              argument
   int n, i;
   printf("\nInput n=");
   scanf("%d", &n);∠
   printDivisors(n);
   printf("\nInput n=");
                                          Using
   scanf("%d", &n);
                                        function
   printDivisors(n); <-
   printf("\nInput n=");
   scanf("%d", &n);
   printDivisors(n); <
   qetchar();
   getchar();
  K:\GiangDay\FU\OOP\BaiTap\demo1.exe
           10,
```

III. Hàm kiểm tra

Ví dụ: Viết chương trình in ra n số nguyên tố đầu tiên.

```
1 #include <stdio.h>
 2 int isPrime(int n)
      int result=1, i;
      for (i=2; i*i<=n && result==1; i++)
         if (n%i==0) result=0;
 6
      return result;
 7 }
8 void print n Primes(int n)
      int count = 0; /* count primes printed */
      int value =2; /* current value is considered */
10
11
      while (count<n)
12
        if (isPrime(value)==1)
           { printf("%d ", value);
13
              count++;
14
15
        value++;
16
      }
17
18 }
19 int main()
20 { int n;
    printf("Input number of primes:");
21
22
    scanf("%d",&n);
    print n Primes(n);
23
    getchar();
24
25
    getchar();
26
     return 0;
27 }
```

IV. Bài tập:

Problem	Viết chương trình nhập vào số nguyên dương n (n>=2), in ra các số
	nguyên tố từ 2 đến n.
Analysis	Suggested algorithm (logical order of verbs)
Nouns:	Begin
positive integer	1 ² .
,	Do {
\rightarrow int n	Accept n;
	}
	While (n<2);
	For (i=2 to n)
	If (i is a prime) Print out i; → Function int prime (int i)
	End
Algorithm for	int prime(int n) {
checking	int m = sqrt(n); /* m: square root of n */
whether an	int i; /* variable having value from 2 to m */
integer is a	if (n<2) return 0; /* Condition 1 is not satisfied */
prime or not	for (i=2; i<=m; i++) /* checking the second condition */
prime or not	
	if (n%i==0) return 0; /* n is divided by i → n is not a prime */
	return 1; /* n is a prime */
	}
<u> </u>	

Related knowledge	Năm nhuận (y): (y%400==0 (y%4==0 && y%100!=0))
Problem	Viết chương trình nhập vào ngày/tháng/năm, kiểm tra ngày
	tháng năm đã nhập có hợp lệ hay không.
Analysis	Suggested algorithm (logical order of verbs)
Data of a day	Begin
→ int d, m, y	Accept d, m, y
	If (valid(d,m,y)) print out "valid date"
	Else print out "invalid date"
	End
Algorithm for	int validDate (int d, int m, int y) {
checking whether a	int maxd = 31; /*max day of months 1, 3, 5, 7, 8, 10, 12 */
date is valid or not	/* basic checking */
	if (d<1 d>31 m<1 m>12) return 0;
	/* update maxd of a month */
	if (m==4 m==6 m==9 m=11) maxd=30;
	else if (m==2) {
	/* leap year? */
	if (y%400==0 (y%4==0 && y%100!=0) maxd=29;
	else maxd=28;
	}
	return d<=maxd;
	}

Problem	Viết chương trình nhập tọa độ của một điểm và bán kính của
	đường tròn có tâm (0,0), xét vị trí trương đối của điểm so với
	đường tròn.
Analysis	Suggested algorithm (logical order of verbs)
Nouns:	Begin
A point → double x,y	Accept x, y;
A circle → double r	Do {
Relative position	Accept r;
→ int result	}
→ -1: (x,y) is out of	While(r<0);
the circle	result = getRelPos(x,y,r);
\rightarrow 0: (x,y) is on the	if (result ==1) Print out "The point is in the circle";
circle	else if (result==0) Print out "The point is on the circle";
\rightarrow 1: (x,y) is in the	else Print out "The point is out of the circle";
circle	End
Algorithm for	int getRelPos (double x, double y, double r) {
getting relative	double d2=x*x + y*y ; /* $d^2 = x^2 + y^2 */$
position of a point	double r2= r*r; /* r ^{2*} /
with a circle	if (d2 <r2) *="" 1;="" <math="" return="">d^2<r2 <math="">\rightarrow the point is in the circle */</r2></r2)>
	else if (d2==r2) return 0; /* $d^2=r^2$ \rightarrow the point is on the circle */
	return -1 ; $/* d^2 > r^2 \rightarrow$ the point is out of the circle */
	}

Problem	Viết chương trình nhập số nguyên dương n, tính giai thừa của n. n! = 1*2*3**n
Analysis	Suggested algorithm (logical order of verbs)
A positive integer	Begin
· → int n	Do {
	Accept n;
	}
	While (n<0);
	Print out factorial(n);
	End.
Algorithm for	double factorial (int n) {
Computing factorial	double p=1;
of an integer	int i;
	for (i=2; i<=n; i++) p *= i;
	return p;
	}

Bài 5

Related knowledge	Fibonacci sequence: 1 1 2 3 5 8 13 21 34
	Two first numbers: 1
	Others: Its value is the sum of 2 previous numbers
Problem	Viết chương trình in ra số hạng thứ n của dãy số Fibonacci
Analysis	Suggested algorithm (logical order of verbs)
A position	Begin
→ int n	Do {
	Accept n;
	}
	While (n<1);
	Print out fibo(n);
	End.
Algorithm for	double fibo (int n) {
Computing the nth	int t1=1, t2=1, f=1, i ;
value of the	for (i= 3, i<=n; i++) {
Fibonacci sequence	f= t1 + t2;
	t1= t2;
	t2=f;
	}
	return f;
	}

Problem	Viết chương trình tính tổng các số hạng của sô nguyên n được nhập.
Analysis	Suggested algorithm (logical order of verbs)
Sum → int S=0	Begin
Accepted integer	Do
→ int n	{ Accept n;
	If (n>=0)

```
Related knowledge
                        Find out the greatest common divisor (gcd) and least common
                        multiple (Icm) of two positive integers:
                        Find out gcd of a and b
                                       b
                               14
                                                      13
                                       21
                                                             8
                               14
                                       7
                                                      5
                                                             8
                                       7
                                                      5
                                                             3
                               7
                                                      2
                                                             3
                                                      2
                                                             1
                                                             1
                          int gcd(int a, int b)
                            while ( a != b )
                               if a>b then a -=b;
                               else b = a;
                            return a;
                          int lcm (int a, int b)
                          {
                               return a*b/ gcd(a,b);
                          }
                        Viết chương trình nhập 2 số nguyên dương, tìm ước số chung lớn
Problem
                        nhất (gcd) và bội số chung nhỏ nhất (lcm) của chúng.
                        Suggested algorithm (logical order of verbs)
Analysis
Two integers
                        Begin
   → int a, b
                           Do
gcd \rightarrow int d
                           { Accept a, b;
lcm → int m
                           While ( a \le 0 OR b \le 0);
                           d = gcd(a,b);
                           m = lcm (a.b);
                           Print out d;
                           Print out m:
                        End
```

Related knowledge	Print out the minimum and the maximum digits of a nonnegative integer integer Example: n= 10293 → Print out 9, 0 void printMinMaxDigits(int n) { int digit; /* Variable for extracting 1 digit */ int min, max; /* Result variables */ digit = n% 10; /* get the first rightmost digit: 3 */ n=n/10; /* 1029, the remainder needs to proceed after*/ min=max=remainder; /* initialize results */ while (n>0) { digit = n%10; /* Get the next digit */ n=n/10; if (min > remainder) min=remainder; /* update results */ if (max < remainder) max=remainder; } Print out min, max; }
Problem	Viết chương trình nhập số nguyên không âm, in ra chữ số nhỏ nhất và lớn nhất.
Analysis Noun: A integer → int n	Suggested algorithm (logical order of verbs) Begin Do { Accept n; printMinMaxDigits(n); } While (n<0); End