FMI, Info, Anul I

Logică matematică și computațională

Seminar 14

(S14.1) Pentru orice \mathcal{L} -structură \mathcal{A} și orice interpretări $e_1, e_2 : V \to A$, pentru orice termen t, dacă $e_1(v) = e_2(v)$ pentru orice variabilă $v \in Var(t)$, atunci $t^{\mathcal{A}}(e_1) = t^{\mathcal{A}}(e_2)$.

Demonstrație: Aplicăm inducția pe termeni. Avem următoarele cazuri:

- $t = v \in V$. Atunci $t^{\mathcal{A}}(e_1) = e_1(v) = e_2(v) = t^{\mathcal{A}}(e_2)$.
- $t = c \in \mathcal{C}$. Atunci $t^{\mathcal{A}}(e_1) = t^{\mathcal{A}}(e_2) = c^{\mathcal{A}}$.
- $t = ft_1 \dots t_m$, cu $f \in \mathcal{F}_m, m \geq 1$ şi t_1, \dots, t_m sunt termeni. Deoarece $Var(t_i) \subseteq Var(t)$, rezultă că pentru orice $i = 1, \dots, m$, avem $e_1(v) = e_2(v)$ pentru orice variabilă $v \in Var(t_i)$. Prin urmare, putem aplica ipoteza de inducție pentru a concluziona că

$$t_i^{\mathcal{A}}(e_1) = t_i^{\mathcal{A}}(e_2)$$
 pentru orice $i = 1, \ldots, m$.

Atunci

$$t^{\mathcal{A}}(e_1) = f^{\mathcal{A}}(t_1^{\mathcal{A}}(e_1), \dots, t_m^{\mathcal{A}}(e_1)) = f^{\mathcal{A}}(t_1^{\mathcal{A}}(e_2), \dots, t_m^{\mathcal{A}}(e_2)) = t^{\mathcal{A}}(e_2).$$

(S14.2) Fie \mathcal{L} un limbaj de ordinul I. Să se arate că:

(i) pentru orice formule φ , ψ și orice variabilă x,

$$\forall x(\varphi \to \psi) \to (\forall x\varphi \to \forall x\psi)$$

este validă;

(ii) pentru orice formulă φ și orice variabilă x cu $x \notin Var(\varphi)$,

$$\varphi \to \forall x \varphi$$

este validă;

(iii) pentru orice variabilă x și orice termen t cu $x \notin Var(t)$,

$$\exists x(x=t)$$

este validă.

Demonstrație: Fie \mathcal{A} o \mathcal{L} -structură și $e: V \to A$ o evaluare.

- (i) Presupunem că $\mathcal{A} \vDash (\forall x(\varphi \to \psi))[e]$. Deci pentru orice $a \in A$, vom avea că are loc $\mathcal{A} \vDash (\varphi \to \psi)[e_{x\leftarrow a}]$ (*). Vrem să arătăm că $\mathcal{A} \vDash (\forall x\varphi \to \forall x\psi)[e]$. Presupunem prin absurd că nu e așa atunci avem că $\mathcal{A} \vDash (\forall x\varphi)[e]$ și $\mathcal{A} \nvDash (\forall x\psi)[e]$. Deci pentru orice $a \in A$, $\mathcal{A} \vDash \varphi[e_{x\leftarrow a}]$ (**) și există un $b \in A$ cu $\mathcal{A} \nvDash \psi[e_{x\leftarrow b}]$ (***). Luând în (*) și (**) a := b, obţinem că $\mathcal{A} \vDash (\varphi \to \psi)[e_{x\leftarrow b}]$ și $\mathcal{A} \vDash \varphi[e_{x\leftarrow b}]$, ceea ce contrazice (***).
- (ii) Presupunem că $\mathcal{A} \vDash \varphi[e]$. Vrem să arătăm $\mathcal{A} \vDash (\forall x\varphi)[e]$, i.e. că pentru orice $a \in A$, $\mathcal{A} \vDash \varphi[e_{x\leftarrow a}]$. Fie $a \in A$. Clar $FV(\varphi) \subseteq Var(\varphi)$. Cum $x \notin Var(\varphi)$, $x \notin FV(\varphi)$. Avem că e și $e_{x\leftarrow a}$ diferă cel mult pe "poziția" x, deci restricționate la $FV(\varphi)$ ele devin egale. Aplicând Propoziția 2.26, rezultă că avem într-adevăr $\mathcal{A} \vDash \varphi[e_{x\leftarrow a}]$.
- (iii) Trebuie arătat, folosind (S12.1).(iv), că există un $b \in A$ astfel încât $\mathcal{A} \models (x = t)[e_{x \leftarrow b}]$, i.e. că există un $b \in A$ astfel încât $b = t^{\mathcal{A}}(e_{x \leftarrow b})$. Cum $x \notin Var(t)$, aplicând Propoziția 2.24, avem $t^{\mathcal{A}}(e_{x \leftarrow b}) = t^{\mathcal{A}}(e)$. Deci trebuie arătat doar că există un $b \in A$ astfel încât $b = t^{\mathcal{A}}(e)$. Dar acum e simplu, luăm $b := t^{\mathcal{A}}(e)$.

(S14.3) Fie \mathcal{L} un limbaj de ordinul întâi care conține

- două simboluri de relații unare R, S și două simboluri de relații binare P, Q;
- un simbol de funcție unară f și un simbol de funcție binară g;
- două simboluri de constante c, d.

Să se găsească forme normale prenex pentru următoarele formule ale lui \mathcal{L} :

$$\begin{array}{lll} \varphi_1 &=& \forall x (f(x)=c) \land \neg \forall z (g(y,z)=d) \\ \\ \varphi_2 &=& \forall y (\forall x P(x,y) \rightarrow \exists z Q(x,z)) \\ \\ \varphi_3 &=& \exists x \forall y P(x,y) \lor \neg \exists y (S(y) \rightarrow \forall z R(z)) \\ \\ \varphi_4 &=& \exists z (\exists x Q(x,z) \lor \exists x R(x)) \rightarrow \neg (\neg \exists x R(x) \land \forall x \exists z Q(z,x)) \end{array}$$

Demonstraţie:

$$\forall x (f(x) = c) \land \neg \forall z (g(y, z) = d) \quad \exists x (f(x) = c \land \exists z \neg (g(y, z) = d)) \\ \exists x \exists z (f(x) = c \land \neg (g(y, z) = d))$$

```
 \forall y (\forall x P(x,y) \rightarrow \exists z Q(x,z)) \quad \exists \quad \forall y \exists z (\forall x P(x,y) \rightarrow Q(x,z)) \vDash \forall y \exists z (\forall u P(u,y) \rightarrow Q(x,z)) \\ \exists x \forall y P(x,y) \lor \neg \exists y (S(y) \rightarrow \forall z R(z)) \quad \exists \quad \exists x (\forall y P(x,y) \lor \neg \exists y \forall z (S(y) \rightarrow R(z))) \\ \exists \quad \exists x (\forall y P(x,y) \lor \forall y \exists z \neg (S(y) \rightarrow R(z))) \\ \exists \quad \exists x (\forall u P(x,u) \lor \forall y \exists z \neg (S(y) \rightarrow R(z))) \\ \exists \quad \exists x \forall u \forall y \exists z (P(x,u) \lor \neg (S(y) \rightarrow R(z))) \\ \exists \quad \exists x \exists x (Q(x,z) \lor \exists x R(x)) \rightarrow \neg (\neg \exists x R(x) \land \forall x \exists z Q(z,x)) \quad \exists z \exists x (Q(x,z) \lor R(x)) \rightarrow (\exists x R(x) \lor \neg \forall x \exists z Q(z,x)) \quad \exists z \exists x (Q(x,z) \lor R(x)) \rightarrow (\exists x R(x) \lor \exists x \forall z \neg Q(z,x)) \quad \exists z \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x (R(x) \lor \forall z \neg Q(z,x)) \quad \exists x \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall z (R(x) \lor \neg Q(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall z (R(x) \lor \neg Q(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall z (R(x) \lor \neg Q(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall z (R(x) \lor \neg Q(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall z (R(x) \lor \neg Q(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall z (R(x) \lor \neg Q(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall z (R(x) \lor \neg Q(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall z (R(x) \lor \neg Q(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall z (R(x) \lor \neg Q(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall z (R(x) \lor \neg Q(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall z (R(x) \lor \neg Q(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall z (R(x) \lor \neg Q(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall z (R(x) \lor \neg Q(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall z (R(x) \lor \neg Q(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall z (R(x) \lor \neg Q(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall z (R(x) \lor \neg Q(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall z (R(x) \lor \neg Q(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall z (R(x) \lor \neg Q(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall z (R(x) \lor \neg Q(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall z (R(x) \lor \neg Q(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall z (R(x) \lor \neg Q(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall z (R(x) \lor \neg Q(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x (Q
```

3