Die $P \neq NP$ -Vermutung

6. Mai 2015

Adrian Hein, Florian Weber

Einführung

Cook-Levin Theorem

Reduktion * auf SAT

Reduktion SAT auf 3SAT

Wichtige NP-vollständige Probleme

MY HOBBY:
EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

			_
	m	7	
	CHOTCHKIES R	ESTAURANT}	
	~APPETIZERS~		
l	MIXED FRUIT	2.15	
I	FRENCH FRIES	2.75	
۱	SIDE SALAD	3.35	
۱	HOT WINGS	3.55	
	MOZZARELLA STICKS	4.20	
	SAMPLER PLATE	5.80	
	→ SANDWICHES	~	
	RARRECUE	6 55	

Abbildung 1:CC-BY-NC 2.5, Randall Munroe, https://xkcd.com/287/

INDSET

0/1 IPROG

Andere Klassen

EXP und NEXP

Sonstige

Indizien

 $P \neq NP$

$coNP \neq NP$

Implikationen von

Philosophisch

Mathematische Beweise

$$P = NP$$

coNP = NP

Probleme zwischen P und NP

Umgang mit NP-vollständigen Problemen