

1. Bag of Words

- 1. Bag of Words
- 2. TF-IDF

Text service was bad meal good service was bad meal was good meal was bad service was good

Bag of Words

Text	service	was	bad	meal	good
service was bad meal was good	1	2	1	1	1
meal was bad service was good	1	2	1	1	1
/ \ /	1/10	IDV	3		

Bag of Words

Text	service	was	bad	meal	good
service was bad meal was good	1	2	1	1	1
meal was bad service was good	1	2	1	1	1

/ V VIdhya Tf-IDF

Text	service	was	bad	meal	good
service was bad meal was good	0	0	0	0	0
meal was bad service was good	0	0	0	0	0


```
array([[-0.01236233, -0.04655259, 0.00508882, ..., -0.00993368, 0.01379246, 0.00122126],
[-0.03087116, -0.02232517, 0.01138248, ..., -0.02389362, 0.02484551, -0.0087585],
[-0.03504547, -0.04104917, 0.00930308, ..., -0.03002032, 0.01539359, -0.00338876],
...,
[-0.03802555, -0.017358, 0.02445563, ..., -0.0131221, 0.02305542, -0.00747857],
[-0.02819404, -0.04432267, 0.01159158, ..., -0.02953893, 0.01612862, -0.0099255],
[-0.0326709, -0.0484228, 0.01606839, ..., -0.03584684, 0.00761068, -0.00948259]], dtype=float32)
```

Word Vectors

Word Vectors: Context / Meaning + Relationships

- I love eating fruits
- I love driving cars

Term	Vector representation
I	[-0.04813035, -0.08041322, 0.02042717, -0.04620057, 0.00856122, 0.02766979]
love	[-0.01097935, 0.0055207, -0.02713158, 0.04876678, 0.01179293, 0.02840331]
eating	[-0.00256152, -0.04594067, -0.02137552, 0.05613157, -0.04852077, 0.05093377]
fruits	[-0.03204666, -0.06197819, 0.02622314, -0.01787718, -0.02552203, 0.07250848]
driving	[0.02127126, -0.00173423, -0.04276158, -0.06915958, 0.03542514, -0.03850113]
cars	[0.02993043, -0.03943288, 0.08275513, -0.06427795, 0.07180958, 0.01986287]

Text	Vector representation
I love eating fruits	[-0.02342947, -0.04570285, -0.0004642, 0.01020515, -0.01342216, 0.04487884]
I love driving cars	[-0.02955485, -0.03744626, -0.0033522, 0.00128311, 0.01017707, 0.02803655]

Text	Vector representation
I love eating fruits	[-0.02342947, -0.04570285, -0.0004642, 0.01020515, -0.01342216, 0.04487884]
I love driving cars	[-0.02955485, -0.03744626, -0.0033522, 0.00128311, 0.01017707, 0.02803655]

Text	Vector representation
I love eating fruits	[1, 1, 1, 0, 0]
I love driving cars	[1, 1, 0, 0, 1, 1]

Training Word embeddings from scratch

- Training Word embeddings from scratch
 - Sparsity of training data

- Training Word embeddings from scratch
 - Sparsity of training data
 - Computationally expensive to train

- Training Word embeddings from scratch
- Use Pre-trained Word embedding models
 - Word2Vec
 - Glove
 - Fastext

- Continuous Bag of Words (CBOW) model
- Skip-gram model

Continuous Bag of Words (CBOW) model

Skip-gram model

<WORD: ???> <Context: ate the food>

<WORD: DOG> <Context: ???>

Context Window

Context Window - Number of words appearing to the left and right of a word

A picture is worth a thousand words

A picture is worth a thousand words

Continuous Bag of Words:

Input = ["picture", "is", "a", "thousand"], Output = "worth"

Skip-gram:

Input = "worth", Output = ["picture", "is", "a", "thousand"]

GloVe

GloVe: Global Vectors for Word Representations

An extensions to word2vec

GloVe

Word2vec disadvantage of local context

"Ice cream is in the fridge"

GloVe

Takes advantage of global statistics and local context (word2vec)

Co-occurrence matrix

- I play cricket
- I love cricket
- I love football

	play	love	football	I	cricket
play	0.0	0.0	0.0	1.0	1.0
love	0.0	0.0	1.0	2.0	1.0
football	0.0	1.0	0.0	0.0	0.0
1	1.0	2.0	0.0	0.0	0.0
cricket	1.0	1.0	0.0	0.0	0.0

P(cricket/play) = 1

P(cricket/love) = 0.5

P(cricket/play) / P(cricket/love) = 2

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

$$F(w_i, w_j, \tilde{w}_k) = \frac{P_{ik}}{P_{jk}} \quad \mathbf{S}$$

GloVe vs Word2Vec

Figure 4: Overall accuracy on the word analogy task as a function of training time, which is governed by the number of iterations for GloVe and by the number of negative samples for CBOW (a) and skip-gram (b). In all cases, we train 300-dimensional vectors on the same 6B token corpus (Wikipedia 2014 + Gigaword 5) with the same 400,000 word vocabulary, and use a symmetric context window of size 10.

Extension of word2vec

- Extension of word2vec
- Complete word and the n-gram character representations of the word

Generate better word embeddings for rare words

- Generate better word embeddings for rare words
- Generate word embeddings for out of vocabulary words

fastText vs Other models

Longer time to train

fastText vs Other models

- Longer time to train
- Larger memory requirement

fastText vs Other models

- Longer time to train
- Larger memory requirement
- Better performance than word2vec and GloVe

Which embedding model to use?

Which embedding model to use?

Right answer - It depends!

Which embedding model to use?

- Right answer It depends!
- Best approach Experiment!

