This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

PCT

WORLD INTELLECTU/

INTERNATIONAL APPLICATION PUBLISHED

NO 9602557A1

(51) International Patent Classification 6: C07H 21/00, C12N 15/11, A61K 31/70, C12Q 1/68

A1

(43) International Publication Date:

1 February 1996 (01.02.96)

(21) International Application Number:

PCT/US95/09080 (

(22) International Filing Date:

14 July 1995 (14.07.95)

(30) Priority Data:

08/277,857

19 July 1994 (19.07.94)

US

(71) Applicant: GEN-PROBE INCORPORATED [US/US]; 9880 Campus Point Drive, San Diego, CA 92121 (US).

(72) Inventors: RYDER, Thomas, B.; 1863 Angeles Glen, Hacondido, CA 92029 (US). KWOH, Theodore, J.; 2404 Jacaranda Avenue, Carlsbad, CA 92009 (US).

(74) Agents: HEBER, Sheldon, O. et al.; Lyon & Lyon, First Interstate World Center, Suite 4700, 633 West Fifth Street, Los Angeles, CA 90071-2066 (US). (81) Designated States: AU, CA, JP, KR.

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: COMPOUNDS AND METHODS FOR INHIBITING PROPAGATION OF HUMAN IMMUNODEFICIENCY VIRUS

(57) Abstract

The present invention concerns the use of oligonucleotides to inhibit propagation of human immunodeficiency virus (HIV). Preferred HIV target sites are identified and oligonucleotides designed to hybridize to a target site, or be analogous to a target site, are described. The preferred use of the oligonucleotides is to inhibit HIV propagation in a patient infected with HIV.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Ametria	GD	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Melewi
		GN	Guinea	NE	Niger
88	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	-		NO	Norwey
BF	Berkins, Paso	HU	Hungary	NZ	New Zealand
BG	Bulgaria	IK	Ireland		*
Ŋ	Benin .	ΙT	Italy	PL	Poland
BOR.	Brazil	JP	Japan	PT	Portuga!
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	配り	Russian Federation
CF.	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Coego		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	. 81	Slovenia
a	Côte d'Ivoire	K7	Kezekhatan	SK	Slovakia
CM	Cameroon	, u	Lichtenstein	. S N	Senegal .
CN	China	1.K	Sri Lenka	TD	Ched
CS	Czechoslovakia	ພ	Luxembourg	TG	Togo
ČZ	Casch Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Мопасо	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
n	Finland	ML	Mali .	UZ	Uzbekistan
TR.	Prance	MN	Mongolia	VN	Viet Nam
GA	Gabon				

WO 96/02557 PCT/U895/09080

DESCRIPTION

COMPOUNDS AND METHODS FOR INHIBITING PROPAGATION OF HUMAN IMMUNODEFICIENCY VIRUS

FIELD OF INVENTION

The present invention features compounds and methods for inhibiting propagation of human immunodeficiency virus.

BACKGROUND OF THE INVENTION

Oligonucleotides such antisense as 10 oligonucleotides can hybridize to a target RNA, such as mRNA, and inhibit protein production from that RNA. Numerous mechanisms have been proposed to explain the effects of antisense oligonucleotides. For example, see Helene, C. and Toulme, J. Biochimica et Biophysica Acta 15 1049:99 (1990), and Uhlmann, E. and Peyman, A. Chemical Reviews 90:543 (1990). Proposed mechanisms include forming a DNA:RNA substrate for cellular RNase hybridization of an antisense oligonucleotide to nascent mRNA leading to premature transcription termination and 20 interfering with mRNA processing by hybridizing to a pre-These and several other mRNA intron/exon junction. proposed mechanisms for inhibiting nucleic acid activity by antisense oligonucleotides are based upon the ability of antisense oligonucleotides to hybridize to a target nucleic acid sequence.

Tullis, U.S. Patent No. 5,023,243, provides a general description of using antisense oligonucleotides to Kaji, U.S. Patent No. inhibit protein translation. 4,689,320, provides data showing a decrease in mortality with Herpes Simplex Virus by in mice infected administering an antisense oligonucleotide targeted to herpes simplex virus. Goodchild et al., U.S. Patent No. 4,806,463, provides data concerning the ability of antisense oligonucleotides to inhibit HTLV-III replication and gene expression in cultured cells infected

30

SUBSTITUTE SHEET (RULE 26)

Cantin et al., U.S. Patent. No. 5,110,802, with HIV. methylphosphonate-linked of a use describe the oligonucleotide to inhibit HIV replication. patents are hereby incorporated by reference herein. 5 Matsukura et al., Proc. Natl. Acad. Sci. 86:4244 (1989) expression HIV inhibiting describe phosphorothicate-linked oligonucleotide targeted to a rev nucleotide sequence.

Oligonucleotides having nucleic acid sequences
complementary to HIV nucleic acid regions are mentioned in
references such as Moncany and Montagnier, EPO 0 403 333
A2 (published 1990); Sauvaigo and Fouque EPO 0 516 540 A1
(published 1992); Alizon et al., PCT/EP85/00487; Gingeras
et al., PCT/US92/02037; and Irvine et al., PCT/US92/11168.

SUMMARY OF THE INVENTION

15

30

The present invention features compounds and of human propagation inhibiting methods for immunodeficiency virus (HIV). Preferred HIV target sites are identified and oligonucleotides designed to hybridize 20 to a target site, or be analogous to a target site, are described. The preferred use of the oligonucleotides is as an anti-HIV agent to inhibit HIV propagation in a Other uses of the present patient infected with HIV. invention include detecting the presence of HIV by using 25 the oligonucleotides as detection probes or amplification primers, and measuring the ability of an oligonucleotide to inhibit HIV propagation to evaluate its suitability as an anti-HIV agent for a strain of HIV or to diagnose the presence of HIV in a patient.

The oligonucleotides of the present invention are based on the following preferred anti-HIV nucleic acid sequences:

SEQ. ID. NO. 1: ATTCCTTTGT GTGCTGGTAC CCATGC,

SEO. ID. NO. 2: CCTCCAATTC CTTTGTGTGC TGGTAC,

35 SEO. ID. NO. 3: GCTGGTGATC CTTTCCATCC CTGTGG,

CTCCTTGACT TTGGGGATTG TAGGG. SEC. ID. NO. 4: CTACTACTCC TTGACTTTGG GGATTG. SEO. ID. NO. 5: CCTCTGTTAG TAACATATCC TGCTTTTCC. SEQ. ID. NO. 6: CCCACTCCAT CCAGGTCATG TTATTCC, SEO. ID. NO. 7: GGTTGCTTCC TTCCTCTCTG GTACCC 5 SEC. ID. NO. 8: CCATTCATTG TGTGGCTCCC TCTGTGG, SEO, ID. NO. 9: CTAGCAGTGG CGCCCGAACA GGTTCGCCTG SEQ. ID. NO. 10: TTCGGGCGCC A. CCCCCGCTTA ATACTGACGC TCTCGC, SEQ. ID. NO. 11: CGATCTAATT CTCCCCCGCT TAATACTG, 10 SEQ. ID. NO. 12: CAGTATTAAG CGGGGGAGAA TTAGATCG, SEQ. ID. NO. 13: SEQ. ID. NO. 14: CCTGTACCGT CAGCGTCATT, GTCTGGCCTG TACCGTCAGC GTCATT. SEQ. ID. NO. 15: GCCTCAATAG CCCTCAGCAA ATTGTT, SEQ. ID. NO. 16: ATCTTTCCAC AGCCAGGATT CTT, 15 SEQ. ID. NO. 17: TCCTGGATGC TTCCAGGGCT CTAGTC, SEQ. ID. NO. 18: TCCTGGATGC TTCCAGGGCT C, SEQ. ID. NO. 19: GACTTCCTGG ATGCTTCCAG GGCTC, SEQ. ID. NO. 20: SEQ. ID. NO. 21: CTCTCCTTTC TCCATTATCA TTCTCCCGC, 20 SEQ. ID. NO. 22: CATCACCTGC CATCTGTTTT CCATAATCCC, SEQ. ID. NO. 23: CCTGTCTACT TGCCACACAA TCATCACCTG C, GCTACTATTG CTACTATTGG TATAGGTTGC, and SEQ. ID. NO. 24: ACTATTGCTA TTATTATTGC TACTACTAAT. SEQ. ID. NO. 25: having nucleic acid Oligonucleotides 25 substantially corresponding to a preferred nucleic acid sequence and consisting essentially of the preferred nucleic acid sequence are also covered by the present invention. refers

"Substantially corresponding" refers to an oligonucleotide having a nucleic acid sequence which is identical to, or has no more than a 20% nucleotide base difference (excluding RNA or DNA equivalent nucleotides), from a specified sequence and has the claimed activity (e.g., anti-HIV activity). The nucleotide differences include mismatches, internal additions, internal deletions, and/or outside deletions. In addition, additional nucleotides outside of the specified sequence

WO 96/02557 PCT/US95/09080

4

may be present. The additional nucleotides may be complementary or non-complementary to HIV nucleic acid. Preferably, the substantially corresponding sequence differs by no more than 10%, more preferably no more than 5% from the specified sequence.

"Consisting essentially" of a nucleic acid sequence means the oligonucleotide contains a nucleic acid sequence which has 0 to 10%, preferably 0 to 5% nucleotide difference (excluding RNA or DNA equivalent nucleotides), from the specified nucleotide sequence and has the claimed activity (e.g., anti-HIV activity). Nucleotide differences include mismatches, In addition additions and/or internal deletions. "consisting essentially" of also provides a size limitation of up to 4 additional nucleotides or up to two outside deletions. The additional nucleotides may be complementary, or non-complementary, to HIV nucleic acid.

"RNA and DNA equivalents" refer to RNA and DNA molecules having the same complementary base pair 20 hybridization properties. RNA and DNA equivalents have different sugar groups (i.e., ribose versus deoxyribose), and may differ by the presence of uracil in RNA and The difference between RNA and DNA thymine in DNA. differences in to equivalents not contribute do 25 substantially corresponding nucleic acid sequences because the equivalents have the same degree of complementarity to a particular sequence.

When used as an anti-HIV agent, oligonucleotides of the present invention are preferably made up of deoxy-nucleotides. A DNA oligonucleotide may be more effective in inhibiting HIV than its RNA equivalent, because a DNA oligonucleotide can form a DNA:HIV RNA duplex where the HIV RNA is degraded by a RNase H activity.

Thus, a first aspect of the present invention describes an isolated oligonucleotide able to inhibit propagation of HIV in vivo or in vitro. The oligonucleotide is 18 to 100 nucleotides in length having

a nucleic acid sequence substantially corresponding to a preferred nucleic acid sequence.

"HIV propagation" refers to the overall multiplication of HIV. and includes intracellular 5 multiplication of HIV proteins and nucleic acids and cellular infection by HIV virions and nucleic acids. propagation can occur in vivo (i.e. in a patient), or in vitro (i.e., in cultured cells). HIV propagation can be measured, for example, by determining HIV p24 protein production in cultured cells infected with HIV.

Inhibition of HIV propagation results in a decrease, to some extent, in HIV propagation. Oligonucleotides able to inhibit HIV propagation in vivo or in vitro are useful in different aspects of the present invention. Preferably, the anti-HIV oligonucleotides have an in vitro EC, (concentration required to achieve 90% inhibition), as measured by the techniques described in the examples below, of 1,000 nM or less, more preferably 300 nM or less, more preferably 100 nM or less.

20 More preferred anti-HIV oligonucleotides have a high therapeutic index. The therapeutic index refers to the oligonucleotide concentration which inhibits cell growth divided the oligonucleotide concentration which inhibits HIV propagation. The cytotoxic effect can be 25 expressed in terms of IC₅₀ which is the oligonucleotide concentration required to achieve a 50% inhibition in cell count. The therapeutic index of anti-HIV oligonucleotide can be measured in vitro prior to use in vivo. Preferred anti-HIV oligonucleotides have an IC50/EC90 of greater than 5, more preferably greater than 20, more preferably greater than 35 as measured by the techniques described in the examples below.

An "isolated oligonucleotide" refers to an oligonucleotide in a form not found in nature without human intervention. Such oligonucleotides include oligonucleotides purified, to some extent, and recombined with foreign nucleic acid.

35

The preferred oligonucleotide contains at least 50% phosphorothicate linkages, more preferably more than 95% phosphorothicate linkages, joining the individual described employing Examples are nucleotides. 5 oligonucleotide with 100% phosphorothicate linkages. The presence of phosphorothicate linkages provides for anti-HIV activity which is apparently independent of an antisense inhibitory mechanism.

describes isolated an aspect Another 10 oligonucleotide 20 to 100 nucleotides in length having a nucleic acid sequence selected from the group of preferred nucleic acid sequences SEQ. ID. NOs. 1-18, 20-25 and RNA equivalents thereto, SEQ ID NOs: 26-43 and 45-50; and complements of the DNA and RNA equivalents, SEQ ID NOs: 52-69, 71-76, and 77-94 and 96-101.

therapeutic describes aspect Another composition able to inhibit propagation of HIV in a The composition contains a therapeutically effective amount of an isolated oligonucleotide 18 to 100 20 nucleotides in length having a nucleic acid sequence substantially corresponding to a preferred nucleic acid also contains composition The sequence. pharmacologically compatible carrier.

A "therapeutically effective amount" is one which 25 inhibits propagation of HIV in a patient infected with Preferably, the therapeutically effective amount relieves, to some extent, one or more symptom associated with HIV infection.

A "pharmacologically compatible carrier" is a 30 formulation to which the oligonucleotide can be added to dissolve it or otherwise facilitate its administration to Examples of pharmacologically compatible carriers include water, saline, physiologically buffered saline, cyclodextrins, and cationic liposomes.

Another aspect describes a recombinant nucleic acid containing a transcription site operably linked to an sequence nucleic acid having a. oligonucleotide

substantially corresponding to a preferred nucleic acid sequence. By "operably linked" is meant that transcription of the anti-HIV oligonucleotide is to some extent under control of the transcription site. Uses of the recombinant nucleic acid include producing large quantities of oligonucleotides having a particular nucleic acid sequence, and to deliver oligonucleotides having a particular nucleic acid sequence into a cell infected with HIV.

10 Another aspect describes a method of inhibiting or decreasing propagation of HIV. The method involves contacting a cell with a HIV propagation decreasing effective amount of oligonucleotide. an oligonucleotide has a nucleic acid sequence 18 to 100 nucleotides in length substantially corresponding to a preferred nucleic acid sequence. ۳A propagation decreasing effective amount" refers to an amount sufficient to inhibit propagation of HIV. The method is preferably used to inhibit HIV propagation in a patient.

Another aspect describes a method for treating a patient infected with HIV. The method involves administering to a patient a therapeutically effective amount of an oligonucleotide 18 to 100 nucleotides in length having a nucleic acid sequence substantially corresponding to a preferred nucleic acid sequence.

Other features and advantages of the invention are apparent from the following description of the preferred embodiments and the claims.

BRIEF DESCRIPTION OF THE FIGURES

Figures 1a and 1b, illustrates the ability of phosphorothicate oligonucleotide corresponding to SEQ. ID. NO. 2, to inhibit HIV gene expression in chronically infected cells (8E5 cells).

Figures 2a and 2b, illustrates the ability of phosphorothicate oligonucleotide corresponding to SEQ. ID. NO. 3, to inhibit HIV gene expression in chronically infected cells (8E5 cells).

10

8

Figures 3a and 3b, illustrates the ability of phosphorothicate oligonucleotide corresponding to SEQ. ID. NO. 8, to inhibit HIV gene expression in chronically infected cells (8E5 cells).

Figure 4, shows the protection of infected cells (SupT-1 infected with HIV-1 $_{\rm IBB}$) from cytopathic HIV effects by treatment with a phosphorothicate oligonucleotide corresponding to SEQ. ID. NO. 3 and the corresponding decline in virus reduction.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention concerns oligonucleotides targeted to the HIV genome. The oligonucleotides are designed to hybridize to a particular HIV nucleic acid sequence or to be analogous to a particular HIV nucleic acid sequence, and are preferably used to inhibit HIV propagation. The oligonucleotides have various uses relating to their ability to inhibit HIV propagation and/or hybridize to a HIV nucleic acid sequence. Such uses include use as a therapeutic agent and use in diagnostic assays.

The anti-HIV oligonucleotides can be used to inhibit HIV propagation alone or in combination with other anti-HIV oligonucleotide or anti-HIV treatments. example, a first anti-HIV oligonucleotide can be used in 25 combination with a second anti-HIV oligonucleotide. . second anti-HIV oligonucleotide may be either, 1) a subtargeted oligonucleotide, 2) a second separately 3 } non-targeted oligonucleotide, or а targeted oligonucleotide. À subtargeted phosphorothicate 30 oligonucleotide is designed to hybridize to a smaller region of the first targeted oligonucleotide target region. Thus, the nucleic acid sequence of a subtargeted oligonucleotide contains a truncated version of the nucleic acid of the targeted oligonucleotide. An example 35 of a two separately targeted oligonucleotide combination is the phosphorothicate oligonuclectide of sequence SEQ ID

NO:3 and the phosphorothicate oligonucleotide of SEQ ID NO:51, used in a ratio of about 1:1.

The following nucleic acid sequences are provided:

- 5 SEQ. ID. NO. 1: ATTCCTTTGT GTGCTGGTAC CCATGC,
 - SEQ. ID. NO. 2: CCTCCAATTC CTTTGTGTGC TGGTAC,
 - SEQ. ID. NO. 3: GCTGGTGATC CTTTCCATCC CTGTGG,
 - SEQ. ID. NO. 4: CTCCTTGACT TTGGGGATTG TAGGG,
- SEQ. ID. NO. 5: CTACTACTCC TTGACTTTGG GGATTG,
- 10 SEQ. ID. NO. 6: CCTCTGTTAG TAACATATCC TGCTTTTCC,
 - SEQ. ID. NO. 7: CCCACTCCAT CCAGGTCATG TTATTCC,
 - SEQ. ID. NO. 8: GGTTGCTTCC TTCCTCTG GTACCC,
 - SEQ. ID. NO. 9: CCATTCATTG TGTGGCTCCC TCTGTGG,
 - SEQ. ID. NO. 10: CTAGCAGTGG CGCCCGAACA GGTTCGCCTG
- 15 TTCGGGCGCC A,
 - SEQ. ID. NO. 11: CCCCCGCTTA ATACTGACGC TCTCGC,
 - SEQ. ID. NO. 12: CGATCTAATT CTCCCCCGCT TAATACTG,
 - SEQ. ID. NO. 13: CAGTATTAAG CGGGGGAGAA TTAGATCG,
 - SEQ. ID. NO. 14: CCTGTACCGT CAGCGTCATT,
- 20 SEQ. ID. NO. 15: GTCTGGCCTG TACCGTCAGC GTCATT,
 - SEQ. ID. NO. 16: GCCTCAATAG CCCTCAGCAA ATTGTT,
 - SEQ. ID. NO. 17: ATCTTTCCAC AGCCAGGATT CTT,
 - SEQ. ID. NO. 18: TCCTGGATGC TTCCAGGGCT CTAGTC,
 - SEQ. ID. NO. 19: TCCTGGATGC TTCCAGGGCT C,
- 25 SEQ. ID. NO. 20: GACTTCCTGG ATGCTTCCAG GGCTC,
 - SEQ. ID. NO. 21: CTCTCCTTTC TCCATTATCA TTCTCCCGC,
 - SEQ. ID. NO. 22: CATCACCTGC CATCTGTTTT CCATAATCCC,
 - SEQ. ID. NO. 23: CCTGTCTACT TGCCACACAA TCATCACCTG C,
 - SEQ. ID. NO. 24: GCTACTATTG CTACTATTGG TATAGGTTGC,
- 30 and
 - SEQ. ID. NO. 25: ACTATTGCTA TTATTATTGC TACTACTAAT.
 - Oligonucleotides containing these sequences, and containing sequences substantially corresponding to these sequences, are useful in one or more aspect of the present
- 35 invention.

Preferred anti-HIV oligonucleotides contain the nucleotide sequence of an oligonucleotide which has been

WO.96/02557 PCT/US95/09080

10

shown to have anti-HIV activity. The nucleotide sequence of a preferred anti-HIV oligonucleotide can be changed to obtain other useful anti-HIV oligonucleotides targeted to the same target site. Using present disclosure as a guide one skilled in the art can obtain useful variations of the preferred anti-HIV oligonucleotides.

Various possible mechanisms and examples are presented herein regarding the ability of oligonucleotides to inhibit HIV propagation. Unless otherwise stated in the claims these mechanisms and examples are not intended to limit the present invention but rather further illustrate and explain the present invention. The exact mechanism by which a particular oligonucleotide functions is expected to be a combination of different mechanisms.

15

10

I. INHIBITION OF HIV PROPAGATION

This section describes the design and use of anti-HIV oligonucleotides for treating a patient infected with HIV and for diagnosing the presence of HIV in a After the initial design and testing of an patient. oligonucleotide, additional testing can be carried out in the oligonucleotide evaluate further Tests can also be carried out to evaluate effectiveness. cellular oligonucleotide toxicity before proceeding to 25 therapeutic administration. Thus, the present disclosure provides the necessary guidance to one skilled in the art to obtain oligonucleotides having anti-HIV activity, including oligonucleotides having a nucleic acid sequence substantially corresponding to a preferred nucleic acid 30 sequence as discussed herein.

A. Oligonucleotide Design

Factors affecting an oligonucleotide's ability to inhibit HIV multiplication include oligonucleotide modifications, oligonucleotide size, and nucleic acid sequence. The importance of these factors can be

initially determined in vitro, followed by in vivo studies.

1. Oligonucleotide Modification

Oligonucleotides can be modified to enhance their 5 anti-HIV activity and therapeutic efficacy. Preferred mcdifications enhance oligonucleotide cellular uptake, oligonucleotide stability, and ability to inhibit HIV Modified oligonucleotides propagation. oligonucleotide having a modified internucleotide linkage and/or a modified sugar group. Oligonucleotides can also have modified purine or pyrimidine bases which do not prevent the oligonucleotide from inhibiting HIV. Examples include linkages modified internucleotide methylphosphonates, phosphorothioates, phosphorodithicate. Examples of modified sugar groups 2'-O-methyloligonucleotides. and include α-anomers (Cantin and Woolf, Trends in Microbiology 1:270-276, 1993.)

oligonucleotide preferably contain Anti-HIV Phosphorothioate linkages 20 phosphorothioate linkages. oligonucleotide stability, facilitate increase oligonucleotide uptake, and enable the oligonucleotide to inhibit HIV propagation by a mechanism which appears to be largely sequence independent. Thus, phosphorothicate linked oligonucleotides inhibit HIV by targeting, based on their nucleic acid sequence a specific HIV target site, and inhibit HIV by a mechanism not dependent on a specific sequence.

Oligonucleotides having phosphorothioate linkages inhibit viral reverse transcriptase, and may also inhibit gp120 binding to CD4 receptor and phosphorylating activity of PKC. The viral reverse transcriptase inhibitory effect of the phosphorothicate the size increases as Oligonucleotides having cligonucleotide increases. phosphorothicate linkages are described by Cohen et al.,

U.S. Patent 5,264,423, and Kinchington et al., Antiviral Research, 17:53-62, 1992.

phosphorothicate of association cell The oligonucleotides, in experiments measuring oligonucleotide 5 uptake and stability, was consistently ten times more than for phosphodiester oligonucleotides. Part of this effect appears to be due to greater cellular uptake of phosphorothicate oligonucleotides as compared to that of phosphodiester oligonucleotides, and part of the effect is attributed to increased phosphorothicate oligonucleotide The difference in uptake mechanisms appears stability. have a greater effect on cell association than the differences in oligonucleotide stability.

2. Oligonucleotide Size

The optimal oligonuclectide size should take into account different factors including different anti-HIV mechanisms and cellular uptake. Anti-HIV oligonucleotides are preferably 18 to 100 nucleotides in length and contain a preferred nucleic acid sequence, a nucleic acid sequence 20 substantially corresponding to a preferred nucleic acid sequence, or a nucleic acid consisting essentially of a preferred nucleic acid sequence. Such oligonucleotide are targeted to an HIV target site. Additional nucleotides region complementary target outside complementary to HIV nucleic acid or may be noncomplementary. Anti-HIV oligonucleotides are preferably 18 to 50 nucleotides in length, more preferably, 20-35 nucleotides in length.

Oligonucleotides containing longer nucleic acid 30 sequences of complementarity to a target sequence offer several advantages compared to shorter oligonucleotides, including increased target specificity and increased stability of the oligonucleotide:target duplex. increased stability of the oligonucleotide:target duplex may facilitate the oligonucleotide nucleic acid inhibitory effect in different manners. For example, if the primary WO 96/02557 PCT/US95/09080

13

effect is translation arrest, the increased stability of the duplex could increase translation arrest by preventing a ribosome from displacing the oligonucleotide.

Another example of a possible mechanism involves 5 degradation of the RNA strand of an DNA:RNA HIV duplex with an enzyme having RNase H activity. In this instance, the increased stability of the duplex increases likelihood that duplex the is acted ribonuclease. To be degraded by RNase H activity, the 10 anti-HIV oligonucleotide in the DNA:RNA HIV duplex preferably contains three or more contiguous phosphodiester or phosphorothicate linkages.

Possible disadvantages of longer oligonucleotides include a decrease in oligonucleotide uptake and a possible increase in toxic effect. The degree of these effects are, at least in part, determined by the size of the oligonucleotide and types of oligonucleotide linkages. Possible toxic effects may be more pronounced, for example, using oligonucleotides containing phosphorothicate linkages.

3. Oligonucleotide Nucleic Acid Sequence

The oligonucleotides described herein are targeted to a target site as shown in Table 1.

TABLE 1 ·

25 SEQ. ID. NO. HIV target Site Sense (HIV RNA) 1 Complementary pol 2 Complementary pol 3 pol Complementary 4 pol Complementary 30 5 Complementary pol 6 Complementary pol

CDY

Complementary

7

8	env	Complementary	
9	vpr	Complementary	
10	iys-tRNA	Complementary and Analogous	
11	gag	Complementary	
12	gag	Complementary	
13	gag	Analogous	
	RRE	Complementary	
	tat	Complementary	
	tat	Complementary	
20	tat	Complementary	
21	tev	Complementary	
22	vir	Complementary	
23	vif	Complementary	
24	vpu	Complementary	
25	vpu	Complementary	
	9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	9	

Targeting is achieved by designing the oligonucleotide to
20 be either complementary to an HIV target nucleic acid
region, analogous to an HIV target nucleic acid sequence
region, or both complementary and analogous to an HIV
nucleic acid sequence region.

A complementary oligonucleotide has a nucleotide sequence enabling it to form stable hydrogen bonds with complementary nucleotides in the target sequence. For example, adenine forms hydrogen bonds with thymidine or uracil and guanine forms hydrogen bonds with cytosine. Thus, a complementary oligonucleotide is substantially complementary to its target sequence and preferably perfectly complementary to its target sequence.

WO 96/02557 PCT/US95/09080

15

"Substantially complementary to" a nucleic acid sequence means the oligonucleotide is capable hybridizing to the nucleic acid sequence to form a detectable duplex and preferably has a 0 to 10%, more 5 preferably 0 to 5%, nucleotide base difference (excluding RNA or DNA equivalent nucleotides), from a nucleic acid perfectly complementary to the nucleic acid sequence. Nucleotide base differences include mismatches, internal additions and/or internal deletions.

An analogous oligonucleotide has the same, or a functionally equivalent, nucleic acid sequence as its Functionally equivalent nucleic acid target region. sequences have the same complementary hydrogen bonding For example, thymidine and uracil partners. functionally equivalent for complementary hydrogen bonding 15 purposes.

10

Different target sites are targeted by the anti-HIV oligonucleotides. The different target sites encode different proteins having different functions, such as regulatory. Anti-HIV structural, and enzymatic, oligonucleotide complementary to their target site are expected to inhibit protein production encoded by the targeted nucleic acid.

As shown in Table 1, the following genes are 25 targeted by complementary oligonucleotides: pol, env, vpr, gag, tat, tev, vir, vif, vpu. Additionally, due to the presence of overlapping exons, several genes in the HIV genome contain many of the same nucleic acid sequences in one or more reading frames. Schwartz et al., Journal of 30 <u>Virology</u> 64:2519 (1990). Thus, reference to particular target site is not intended to exclude the possibility that more than one protein can be inhibited by a particular oligonucleotide.

The tev and tat genes code for regulatory The vif gene codes for a protein which is 35 proteins. important for viral infectivity. The vpu gene codes for a protein which is believed to be necessary for normal

availability of envelope proteins for virion assembly. The vpr gene codes for a protein involved in enhancement of gene expression and nuclear localization of HIV nucleic acids in the early stages of infection. The env and gag genes encode virion structural proteins including the receptor for virus-cell binding.

Several of the target sites may be involved in the production of more than one protein. The HIV genome has several open reading frames encoding precursor proteins. Moreover, during translation of some HIV mRNA the ribosome is thought to skip nucleotides thus generating different gene products. (Vaishnav and Wong-Stall Annu. Rev. Biochem. 60:577-630, 1991.)

HIV nucleic acid can encode polyproteins and precursor proteins. For example Pol, is made as a Gag-Pol polyprotein. Precursor proteins are cleaved to produce more than one protein. The pol gene encodes a precursor protein which is cleaved to yield three enzymes: a protease, reverse transcriptase, and an integrase. The gag gene encodes a precursor protein which is cleaved to yield three enzymes: a matrix protein, a capsid protein, and an HIV RNA coating protein. The env gene encodes a precursor glycoprotein which is cleaved into two glycoproteins: the extracellular protein gp120 and the transmembrane protein gp41.

Oligonucleotides targeted to a protein encoded for by mRNA which is part of a precursor protein may also be able to inhibit another protein which is also part of the precursor protein, particularly an downstream proteins. Additionally, any interference with the normal lifetime of an HIV mRNA could disrupt expression of all associated cistrons.

Oligonucleotides containing a nucleic acid sequence of SEQ. ID. NO. 13, or a nucleic acid sequence substantially corresponding to SEQ. ID. NO. 13 have a nucleic acid sequence analogous to an HIV gag nucleic acid

WO 96/02557 PCT/US95/09080

17

sequence. Such oligonucleotides may inhibit HIV nucleic acid packaging into virions.

Oligonucleotides targeted to lys-tRNA may act as competitive inhibitors to lys-tRNA and, thereby, inhibit 5 HIV reverse transcriptase activity and decrease HIV complementary DNA (cDNA) nucleic acid synthesis. lys-tRNA is used as a primer for HIV cDNA nucleic synthesis. Oligonucleotides targeted to lys-tRNA are designed to resemble tRNA annealed to HIV genomic RNA. oligonucleotides contain four regions (5' to 3'): 1) an 10 HIV non-complementary sense region; 2) a "complementary" sense region; 3) a non-complementary loop region; and 4) an HIV complementary region. Regions 2 and 4 are complementary, preferably substantially perfectly complementary to each other and form a based-paired stem The length of the based-paired stem structure structure. should be chosen to optimize the ability of the oligonucleotide to inhibit HIV reverse transcriptase activity. The length of the base-paired stem correlating 20 with strongest inhibition of HIV reverse transcriptase can be determined by routine experimentation. An example, of an oligonucleotide targeted to lys-tRNA is provided by an oligonucleotide consisting of the nucleic acid sequence of SEQ. ID. NO. 10. A SEQ. ID. NO. 10 oligonucleotide has a seven base non-complementary sense region, a 22 base region, a four base non-"complementary" sense complementary loop region, and a 15 base complementary region.

RRE is involved in promoting transport of env and unspliced mRNA by the Rev protein. RRE is the Revresponse element. Oligonucleotides targeted to RRE nucleic acid sequence regions are expected to inhibit such transport.

30

As discussed above, complementary oligonucleotides are designed to hybridize to a target sequence. The necessary degree of complementarity for hybridization will be affected by factors such as the

WQ 96/02557 PCT/U895/09080

18

segment length of contiguous complementary bases, the type of bases involved in hydrogen bonding (e.g., G:C hydrogen bond formation is stronger that A:T), internal additions or deletions, and structural chemical modification of the oligonucleotide.

Oligonucleotides designed to hybridize to a particular sequence should be designed to have an appropriate melting temperature (T_m) (the temperature at which 50% of the oligonucleotide is hybridized to its target nucleic acid). The appropriate T_m can be obtained by varying the probe length and nucleotide composition (percentage of G + C versus A + T). The probe length and nucleotide composition should result in a T_m about 2-10°C higher than physiological temperature (37°C).

The longer the complementary region of 15 oligonucleotide, the more hydrogen bonding to a target sequence, and in general, the higher the T_m . the percentage of G and C also increases the Tm because G-C base pairs exhibit additional hydrogen bonding and 20 therefore greater thermal stability than A-T base pairs. T can be determined using techniques known in the art such as measuring hybridization by the hybridization protection al., according to Arnold et (HPA) "Homogeneous Protection Assay," EPO application number 88308767.8, publication number 309230, and Nelson et al., 25 in Nonisotopic DNA Probe Techniques, p. 275 Academic Press, San Diego (Kricka, ed., 1992) (these references are reference herein). incorporated by hereby Oligonucleotides can be labeled with acridinium ester Arnold, 30 derivatives as described by PCT/US88/03361, entitled "Acridinium Ester Labeling and Purification of Nucleotide Probes, " hereby incorporated by reference herein.

 T_m can be measured using HPA in the following manner. Oligonucleotides are labeled with an acridinium ester. Oligonucleotide:target hybrids are formed in a lithium succinate buffer (0.1 M lithium succinate buffer

WO 96/02557 PCT/US95/09080

(pH 5.0), 2 mM EDTA, 2 mM EGTA, 10% (w/v) lithium lauryl sulfate) using an excess amount of HIV RNA target. Aliquots of the solution containing the nucleic acid hybrids are then diluted in the lithium succinate buffer The aliquots are incubated for five minutes at 5 solution. starting that various temperatures below anticipated T_m and increasing in 2-5°C increments. solution is then diluted with a mild alkaline borate buffer (0.15 M sodium tetraborate, (pH 7.6), 5% (v/v) 10 TRITON® X-100) and incubated at a lower temperature for ten minutes. Under these conditions acridinium esters attached single-stranded oligonucleotides to hydrolyzed, while acridinium esters attached to hybridized oligonucleotides are relatively protected from hydrolysis. 15 Thus, the amount of acridinium esters remaining after hydrolysis treatment is proportional to the number of hybrid molecules present in the sample. The remaining acridinium esters can be measured by monitoring the chemiluminescence produced by addition of hydrogen peroxide and alkali to the solution. Chemiluminescence 20 can be measured in a luminometer (e.g., the Gen-Probe LEADER® I or LEADER® 50). The resulting data is plotted as percent of maximum signal (usually from the lowest temperature) versus temperature. In this assay, the T_m is 25 determined to be the temperature at which 50% of the maximum signal remains. In addition to the method above, $T_{\rm c}$ may be determined by isotopic methods well known to those skilled in the art (see e.g., Hogan et al., supra).

The oligonucleotide can also be screened by an oligonucleotide screening assay designed to mimic physiological conditions to some extent, in order to obtain a measure of the hybridization expected to occur under physiological conditions. Due to the complexity of physiological conditions, the oligonucleotide screening assay provides an approximation, rather than an exact duplication, of actual hybridization behavior in a cell. An oligonucleotide screening assay can be carried out

WO.96/02557 PCT/US95/09080

20

using a DNA oligonucleotide, a corresponding acridinium ester labeled oligonucleotide, and an enzyme having RNase H activity. The assay measures the ability of the DNA oligonucleotide to hybridize to an RNA target forming an DNA:RNA duplex by measuring the subsequent degradation of the target RNA by RNAse H activity. The acridinium ester labeled oligonucleotide is used to detect remaining target nucleic acid sequence.

An oligonucleotide screening assay can be carried out as follows:

15

20

25

30

35

- 1) Hybridize oligonucleotides to their target nucleic acids in a solution, such as an aqueous physiological buffer. An example of a target nucleic acid is purified HIV mRNA. Hybridization can be carried out using 0.9 pmol of target mRNA, 0.1 pmol acridinium ester-labeled probe, in 100 μL of a physiological buffer, at 37°C for 2 hours. The reactions are divided to make duplicates at 1 x final buffer concentration for optimal RNAse H enzyme activity.
- 2) E. coli RNase H (Life Technologies, Gaithersburg, MD, 0.4 U/reaction) is added to one of the two duplicate reactions. The other duplicate reaction lacks RNase H and serves as the (-) RNase H control. The reactions are incubated at 37°C for 1 hour, stopped by denaturing at 95°C for 5 minutes, and placed directly on ice.
- Aliquots of the reactions are hybridized with the appropriate phosphodiester acridinium ester-probe. Appropriate acridinium ester-probes can hybridize to the same nucleic acid sequence as the test oligonucleotide and contain an acridinium ester in the complementary region. The acridinium ester-probe is hybridized at 60°C

PCT/US95/09080

Control hybridizations are for 1 hour. performed using acridinium ester-probes expected to hybridize to a region other than the target nucleic acid sequence.

5

10

4)

Aliquots are diluted in hybridization buffer (0.1 M lithium succinate buffer (pH 5.0), 2 mM EDTA, 2 mM EGTA, 10% (w/v) lithium lauryl sulfate). Fifty microliter replicates are hydrolyzed in 12 x 75 mm luminometer tubes with 300 μ L of 0.15 M sodium tetraborate (pH 7.6), 5% (v/v) TRITON® X-100 at 60°C until non-hybridized labeled probes are fully 6-8 minutes). (usually hydrolyzed Chemiluminescence is brought about using a single injection of 1.5 N NaOH, 0.1% H_2O_2 and measured in a luminometer.

15

20

25

35

As would be appreciated by one skilled in the art, variations of this procedure can be performed. example, the assay can be carried out using different amounts of reagents and incubation times.

B. Therapeutic Use

The preferred use of anti-HIV oligonucleotides is in the treatment of patients infected with HIV. inhibiting the propagation of HIV, symptoms associated eliminated. delayed and/or be AIDS can Considerations for therapeutic use include oligonucleotide pharmacology, mode of administration, disease stage and These considerations are interaction with other drugs. interrelated, for example, the mode of administration 30 affects oligonucleotide pharmacology.

1. Pharmacology

considerations include Pharmacological toxicology, pharmacokinetics, absorption, distribution, metabolism and excretion. These considerations relate to the ability of the anti-HIV oligonucleotide to reach its

25

target site, inhibit HIV propagation and to produce side adversely affecting patients. pharmacological considerations can be evaluated using techniques known in the art and described herein.

Anti-HIV oligonucleotides effectively function as therapeutic agents by inhibiting viral propagation without gravely affecting the patient. In use as a therapeutic, it is possible there will be some adverse side effects. An overall therapeutic effect can 10 be obtained by providing an overall benefit to the patient, such as increased life expectancy or increased responsiveness of the immune system. Adverse side effects can be reduced using standard medical techniques and include considerations such as dosage regime. For 15 example, anti-HIV oligonucleotides having low therapeutic index can be used at lower concentrations over a continuous time period.

Anti-HIV oligonucleotides which inhibit nucleic acid to the same extent that it inhibits essential 20 cellular functions are less preferred embodiments of the present invention. Such oligonucleotides may be able to act as a therapeutic by being delivered to only HIV cells (e.g., using liposomes containing recognition molecules targeted to HIV infected cells).

Oligonucleotide toxicity can be evaluated before therapeutic administration using models such as cellular assays and test animals. Cellular assays can be used to measure the cytotoxic effect of an agent and its ability to inhibit HIV propagation. (For example, see Weislow et 30 al., J Natl Cancer Inst 81:577-586 (1989) and the techniques described in the examples below.) Preferably, test animals are used to measure the toxicity of anti-HIV oligonucleotides.

2. Administration

35 Anti-HIV oligonucleotides may be introduced to the patient in different forms such naked oligonucleotide,

WQ 96/02557 PCT/US95/09080

through expression vectors (encoding such anti-HIV), or included in physiologically acceptable formulations. Pharmacologically suitable methods of delivery include using liposomes, release vehicles, iontophoresis, ionpaired molecules, and covalently attached adducts.

Different types of delivery strategies are useful in the present invention, including oligonucleotide modifications, particle carrier drug delivery vehicles, vectors. expression retroviral 10 oligonucleotides joined by phosphodiester linkages are slowly taken up by cells. To enhance cellular uptake, the anti-HIV oligonucleotide may be modified at. the phosphodiester linkage for example, the individual nucleotides may be joined by phosphorothicate methylphosphonate linkages. Such modifications can also serve to reduce oligonucleotide susceptibility to nuclease degradation.

anti-HIV vector encoding an expression An used to produce the cliqonucleotides can be For example, Rhodes and 20 oligonucleotide inside a cell. James Journal of General Virology 71:1965-1975, 1990 (hereby incorporated by reference herein) describe using a vector to produce RNA which functions as an antisense A possible disadvantage of using an oligonucleotide. 25 expression vector in therapeutic treatment is that the RNA thereby produced would not contain phosphorothicate linkages.

Anti-HIV oligonucleotides can be used to treat HIV patients using different formulations and routes of administration. Suitable routes of administration include intramuscular, aerosol, oral (tablet or pill form), topical, systemic, ocular, intraperitoneal and intrathecal.

Drug delivery vehicles can be chosen for both systemic and topical administration. Such vehicles can be designed to serve as a slow release reservoir or to deliver their contents directly to the target cell. An

WO 96/02557 PCT/US95/09080

advantage of using direct delivery drug vehicles is that multiple molecules are delivered per uptake. Such vehicles can increase the circulation half-life of drugs which would otherwise be rapidly cleared from the blood stream. Examples of specialized drug delivery vehicles are liposomes, hydrogels, cyclodextrins, biodegradable nanocapsules, and bioadhesive microspheres.

Liposomes are hollow spherical vesicles composed of lipids arranged similarly to the lipids making up the cell membrane. They have an internal hydrophilic space for entrapping water soluble compounds and may range in size from 0.05 to several microns in diameter.

The use of liposomes as a drug delivery offers References describing the use of several advantages. 15 liposomes as vehicles to deliver nucleic acids include Sullivan et al., Antisense Research and Development 2:187-197 (1992), and Juliano and Akhtar, Antisense Research and Development 2:165-176 (1992). Liposomes may be useful for increasing intracellular stability, uptake efficiency and 20 biological activity. Other advantages of using liposomes non-toxic and following: they are include the in composition; they display long biodegradable circulation half-lives; and recognition molecules can be readily attached to their surface for targeting to 25 tissues.

Anti-HIV oligonucleotides may be systemically administered. Systemic absorption refers to the accumulation of drugs in the blood stream followed by distribution throughout the body. Administration routes leading to systemic absorption include: intravenous, subcutaneous, intraperitoneal, intranasal, intrathecal and ophthalmic. Each of these administration routes expose accessible diseased cells to anti-HIV oligonucleotides. Subcutaneous administration drains into a localized lymph node which proceed through the lymphatic network into the circulation. The rate of entry into the circulation is principally a function of molecular weight or size. The

use of a liposome or other drug carrier can localize the anti-HIV oligonucleotide at the lymph node. The anti-HIV oligonucleotide can be modified to diffuse into the cell, or the liposome can directly participate in the delivery either the unmodified or modified anti-HIV oligonucleotide to the cell.

A liposome formulation which can associate anti-HIV oligonucleotides with the surface of lymphocytes and macrophages is also useful. This provides enhanced 10 delivery to HIV-infected cells by taking advantage of the specificity of macrophage and lymphocyte recognition of infected cells.

Intraperitoneal administration also leads to entry into the circulation. The molecular weight or size 15 of the oligonucleotide-delivery vehicle complex controls the entry rate.

Establishment of therapeutic levels of anti-HIV oligonucleotides within the cell depends upon competing rates of cellular uptake versus efflux and Decreasing the degree of degradation 20 degradation. prolongs the intracellular half-life of the anti-HIV oligonucleotide. Thus. preferred anti-HIV oligonucleotides are modified to increase their resistance to nuclease degradation and increase cellular uptake.

The exact dosage and number of doses depends upon the efficacy data from clinical trials. Several factors such as the delivery vehicle, disease indication, route of administration, and oligonucleotide stability affect the dosage. The expected dosage is between 0.001-200 mg/kg of 30 body weight/day. The duration of treatment will extend through the course of the disease symptoms. daily doses are anticipated for topical applications, ocular applications and vaginal applications.

C. HIV Protection Assay

Anti-HIV oligonucleotides can also be used in 35 assays measuring the ability of the oligonucleotide to

30

inhibit HIV cytopathic effects. These assays have various uses including use to identify or confirm the presence of HIV as a disease causing agent in a person, use to determine which oligonucleotide to administer to a 5 patient, and use to evaluate the initial effectiveness of an oligonucleotide (see Example 5, infra).

An HIV protection assay can be carried using oligonucleotides and standard anti-HIV measuring cell growth. Techniques measuring cell growth include the use of dyes such as XTT (2,3-bis[2-methoxy-4nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide) measure the cells metabolic state, the use of radioactive such precursors nucleotide modified (bromodeoxyuradine) to measure nucleic acid replication, 15 and the use of oligonucleotides complementary to host nucleic acids to measure production of host nucleic acids.

complementary host involving Assays oligonucleotides to measure cell growth can be carried out using an oligonucleotide containing a detectable label chemiluminescent, fluorescent. such as Oligonucleotides can be designed to radioactive label. hybridize to host nucleic acid sequence regions such as those present in DNA, mRNA or rRNA. Examples of such nucleotide sequence regions are known in the art and can 25 be obtained by standard techniques. The preferred source of host target nucleic acids is rRNA. A nucleic acid having a nucleotide sequence characteristic of rRNA is generally present in a cell in much greater abundance than a nucleic acid sequence present in mRNA.

HIV infects cells containing a CD4 antigen (CD4*). The major target sites are T-helper lymphocytes and cells of the monocyte/macrophage lineage. The HIV-protection assay can be performed on such cells from persons suspected of being infected with HIV. The assay can be preformed directly on such cells, or can be preformed using lysates obtained from CD4° cells. The lysate can be WO 96/02557 PCT/US95/09080

used to infect cells more susceptible to HIV cytopathic effect than the isolated cells.

An HIV protection assay can be carried out as follows:

5

10

15

20

30

Isolate cells CD4° cells from a person.
 Preferred cells are T-lymphocytes.

- 2) Incubate cells under conditions compatible with cell growth in the presence (treated cells) and absence (control cells) of an anti-HIV oligonucleotide. Examples of conditions compatible with cell growth are described by S. Gartner and M. Popovic, 1990, Virus Isolation and Production, pp. 53-70 in Techniques in HIV Research, ed. by A. Alaldocini and B.D. Walker. Stockton Press. N.Y.
- 3) Measure the growth of the treated and control cells at one or more time point after exposure of cells to the anti-HIV oligonucleotide.

Normal growth of control cells indicate the absence of a viral infection such as an HIV infection. Normal growth can be determined by comparing the growth of the control cells to the same type of cells which are known to be healthy.

Less than normal growth of control cells indicates the presence of some cellular disorder, such as HIV. The ability of an anti-HIV oligonucleotide to protect against HIV cytotoxicity in treated cells indicates that the disorder is due to HIV and the tested anti-HIV oligonucleotide can be used to treat the patient.

Due to the variability in nucleic acid sequences of different strains of HIV, the inability of an anti-HIV oligonucleotide to inhibit HIV cell toxicity in this assay may at times fail to indicate correctly the presence of HIV. Thus, an HIV protection assay should be used along with other assays known in the art to detect the presence

of HIV. Patients determined to be infected with HIV by other HIV detection assays, but not by the HIV protection assay, should be retested using the HIV protection assay in conjunction with a different oligonucleotide.

II. DETECTION OF HIV BY OLIGONUCLEOTIDE HYBRIDIZATION 5

Oligonucleotides targeted to HIV nucleic acids can also be used as detection probes to measure the presence of an HIV target sequence and as amplification primers to selectively amplify HIV nucleic 10 Hybridization to either the target nucleic acid or a nucleotide sequence region complementary to the target sequence is useful for detecting the presence of HIV. Production of nucleic acids having nucleotide sequences complementary to a target nucleic acid can be obtained 15 using the target nucleic acid as a template in amplification reactions such as polymerase chain reaction (PCR) or transcription mediated amplification methods Kacian (e.g., and Fultz, entitled "Nucleic Amplification Methods, " EPO application number 90307503.4.

Useful guidelines for designing probes for HIV detection and amplification primers are described herein and include considerations discussed in section I.A. infra, relating to hybridization of an oligonucleotide to its complementary sequence. The considerations in section 25 I.A should be considered in light of the different hybridization conditions under which the oligonucleotides Anti-HIV oligonucleotides are used under physiological conditions. In contrast, amplification and detection probes can be used under a wider range of conditions, and are preferably used under stringent hybridization assay conditions.

A target nucleotide sequence region present on a nucleic acid molecule is amplified using a primer 5' of the target nucleotide sequence region and a primer 3' of 35 the target nucleotide sequence region. The optimal sites for amplifying a nucleic acid sequence are conserved nucleotide sequence regions greater than about 15 bases in length, within about 350 bases, and preferably within 150 bases, of contiguous sequence. Amplification primers are designed to hybridize to these regions. A promoter can be attached to the primer for transcription mediated amplification.

The degree of amplification observed with a set of primers or promotor/primers depend on several factors, including the ability of the oligonucleotide to hybridize 10 to its complementary sequence region and to be extended Because the extent and specificity of enzymatically. hybridization reactions are affected by several factors, manipulation of those factors determines the exact sensitivity and specificity in which a particular 15 oligonucleotide hybridizes to its target, whether or not it is perfectly complementary to its target. importance and effect of various assay conditions are known to those skilled in the art and are described in references such as Hogan et al., EPO Patent Application 20 No. PCT/US87/03009, entitled "Nucleic Acid Probes for Detection and/or Quantitation of Non-Viral Organisms."

amplification detection Oligonucleotide and probes of a variety of lengths and base compositions may be used, however, preferred probes are between 18 to 100 more preferably 18 length, 25 nucleotides in nucleotides in length and are sufficiently complementary to the target nucleic acid to hybridize under stringent hybridization conditions (e.g., conditions where probe oligonucleotide hybridizes to an HIV target sequence 30 region and not to human nucleic acids or nucleic acid from Optimal primers have target-binding other organisms). regions of 18-38 bases, with a predicted T_m (melting temperature) to target of about 65°C.

Oligonucleotide detection probes and amplification primers should be designed to minimize the stability of oligonucleotide:nontarget nucleic acid hybrids. The probes should be able to distinguish between

PCT/US95/09080

target and non-target nucleotide sequence regions under stringent hybridization conditions. In designing probes, the differences in T_m values between oligonucleotide:target and oligonucleotide:non-target duplexes should be as large as possible (e.g., at least 2°C and preferably 5°C).

The secondary structure of the probe and the target region also affects hybridization. The rate at which an oligonucleotide hybridizes to its target partly depends on the thermal stability of the secondary struc-10 ture of the target nucleic acid in the complementary to the probe. Regions of the nucleic acid inhibitory structures internal strong forming hybridization are less preferred target sites. of such structures include hairpin stem-loop structures. 15 Likewise, probes with extensive self-complementarity Intramolecular and intermolecular should be avoided. hybrids can form within a probe if there is sufficient self complementarity. Such structures can be avoided Commercial computer through careful probe design. 20 programs are available to search for these types of Available computer programs interactions. MacDNASIST 2.0 (Hitachi Software Engineering American Ltd.) and OLIGO ver. 4.1 (National Bioscience).

An integrated genomic target nucleotide sequence region naturally occurs in a double stranded form, as does the product of the polymerase chain reaction (PCR). These double-stranded target nucleic acids inhibit probe:target hybridization. Double stranded target can be accessible before the hybridization step using standard techniques such as heat denaturation.

The standard measurement of hybridization rate is the Cots which is measured as moles of nucleotide per liter times the time in seconds it takes for 50% of the nucleic acids to hybridize. Thus, it is the concentration of free probe times the time at which 50% of maximal hybridization occurs at that concentration. This value is determined by hybridizing various amounts of probe to a constant amount

of target for a fixed time. The Cot is found graphically by standard procedure.

The degree of non-specific primer extension (primer-dimer formation or non-target copying) can affect 5 amplification efficiency. Therefore, primers preferably have low self- or cross- complementarity, particularly at the 3' end. Long homopolymer tracts and high GC content should be avoided to reduce spurious primer extension. Commercial computer programs are available to aid in this 10 aspect of the design. Available computer programs include MacDNASIS™ 2.0 (Hitachi Software Engineering American Ltd.) and OLIGO® ver. 4.1 (National Bioscience).

Once synthesized, detection probes may be labeled using well known methods. J. Sambrook, E.F. Fritsch and 15 T. Maniatis, Molecular Cloning, Chapter 11 (2d ed. 1989). labels include fluorescent, chemiluminescent, enzyme and radioactive groups.

III. Synthesis Of Oligonucleotides

Oligonucleotides containing phosphodiester linkages as well as modified linkages can be synthesized by procedures known in the art. For example, in Methods In Enzymology 154:287 (1987), Caruthers, et al. describe a procedure for synthesizing oligonucleotides containing 25 phosphodiester linkages by standard phosphoramidite solidphase chemistry; Bhatt, U.S. Patent No. 5,252,723 describes a procedure for synthesizing oligonucleotides containing phosphorothicate linkages; and Klem, et al., PCT WO92/07864, describe the synthesis of oligonucleotides 30 having different linkages including methylphosphonate linkages.

IV. Examples

illustrating provided below Examples are of different aspects and embodiments the 35 invention. These examples are not intended in any way to limit the disclosed invention. Rather, they illustrate

methodologies which can be used to identify anti-HIV nucleic acid having a oligonucleotides substantially corresponding to a preferred nucleic acid oligonucleotides consisting anti-HIV and 5 essentially of a preferred nucleic acid sequence. illustrate methodologies further to examples also characterize anti-HIV oligonucleotides to facilitate therapeutic use.

Example 1: Measurement of Cell Proliferation

This example describes methods to measure cell 10 proliferation and to measure the cytotoxicity of an Cell health can be monitored using oligonucleotide. different techniques such as microscopically observing the appearance of new cells and viable cell counting using 15 trypan blue exclusion (R.I. Freshney, Culture of Animal Cells, A Manual of Basic Techniques, p. 257 (Wiley-Liss, Metabolic status of the cells can be N.Y. 1994). such determined using different techniques colorometric assay measuring metabolic conversion of XTT 20 to formazan, and a quantitative hybridization assay measuring the amount of rRNA present. Both the XTT assay results and the rRNA levels correlated strongly with of range wide cell number over а concentrations: for XTT assays ranging from at least 104 to 25 10° cells/ml; and for rRNA assays ranging from at least 10° to 10° cells/ml.

The following procedure ("Technique A") was used to determine cell proliferation in some of the examples described below. First, 25 μl of a 1 mg/ml 2,3-bis[2-30 methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT; Sigma Chemical Co.) and 0.025 mM phenazine methosulfate (PMS; Sigma Chemical Co.) solution was added to wells containing 100 μl of infected or uninfected cells. The treated cells were incubated at 37°C for 4 hours in a humidified 5% CO₂ atmosphere. A 5% (v/v) TRITON® X-100 solution was then added to each well

to obtain a final detergent concentration of 0.5%. This concentration of detergent inactivated the virus. The light absorbance of the sample in each well at 450 nm and 650 nm was determined. The absorbance at 650 nm was used to correct for light scattering due to debris in the wells. The absorbance at 450 nm, which measures formazan production due to cellular metabolism of XTT, correlated strongly with the viable cell count. Viable cell count was determined by microscopic examination in the presence of trypan blue.

Oligonucleotide cytotoxicity was determined by seeding wells of 96-well dishes with 10,000 cells/well along with various concentrations of oligonucleotides in a final volume of 0.25 ml RPMI 1640 media supplemented with 10% fetal bovine serum. The cells were incubated at 37°C in a humidified 5% CO₂ atmosphere for 6 days, the contents of each well were then mixed and 100 µl was transferred to a new 96-well dish to measure cell proliferation using the XTT assay. In some experiments cell density of remaining culture was determined by viable cell counting.

The results of cytotoxicity studies using Jurkat Table The tested are summarized in 2. oligonucleotides were phosphorothicate oligonucleotides 25 corresponding to a specified nucleotide sequence (i.e., consisting of the nucleotides denoted by the sequence of the tested identification number). Most oligonucleotides had no cytotoxic effect at concentrations up to 9 μ m (IC₅₀ >9). Phosphorothicate oligonucleotides 30 corresponding to SEQ. ID. NOs. 5 and 13 had some cytotoxic effect at the high end of the tested range.

Table 2: Cytotoxicity of Phosphorothicate Oligonucleotides

Oligonucleotide	IC _{so} (μM)
SEQ ID NO:1	>9
SEQ ID NO:2	>9

	· · · · · · · · · · · · · · · · · · ·	<u> </u>
	SEQ ID NO:3	>9
	SEQ ID NO:5	7
	SEQ ID NO:7	>9
	SEQ ID NO:8	>9
5	SEQ ID NO:9	>9
	SEQ ID NO:11	>9
	SEQ ID NO:12	>9
	SEQ ID NO:13	5
	SEQ ID NO:14	>9
10	SEQ ID NO:15	>9
	SEQ ID NO:16	>9
	SEQ ID NO:17	>9
	SEQ ID NO:18	>9
	SEQ ID NO:19	>9
15	SEQ ID NO:20	>9
	SEQ ID NO:21	>9
	SEQ ID NO:22	>9
	SEQ ID NO:23	>9
	SEQ ID NO:24	>9
20	SEQ ID NO:25	>9

Additional measures of cellular cytotoxicity of anti-HIV agents can be obtained using primary human cells. For example, the colony-forming ability of hematopoietic cells in semi-solid medium has been used to evaluate the cytotoxicity of many anti-neoplastic agents. Cytotoxicity in primary human cells can be carried out, for example, using techniques B and C.

Technique B

Human bone marrow cells are harvested and washed 30 using standard techniques. (See, e.g., Exp. Hematol. (Suppl. 16) 13:16-22, 1985). Cells are incubated for eight days in tissue culture medium containing 0.3% (w/v)

agar, 20% (v/v) FCS (fetal calf serum) and 10 ng/ml human granulocyte-colony stimulating factor, in the presence of varying amounts of oligonucleotides. After the incubation, the number of colonies are counted.

5 Technique C

This method was originally developed to measure the potential for chromosome aberrations in mutagen tests (Evans et al., Mutat. Res. 31:135, 1975). lymphocytes are collected and stimulated in RPMI-1640 10 culture medium supplemented with 20% fetal bovine serum, 50 μ g/ml gentamicin sulfate by exposure to 5 μ g/ml PHA-M (phytohemagglutinin (M)) for 48 hours. concentrations of each oligonucleotide are added to different cultures and the cells are incubated for an 15 additional 24 hours. The ICso values for inhibition of lymphocyte growth are determined and microscopic examination of metaphase chromosomes is carried out.

Example 2: Measuring HIV propagation

This example describes measuring the level of 20 HIV-1 p24 core antigen to measure HIV propagation. As described below, supernatants from cell cultures were typically frozen before assaying the p24 antigen level. Freezing allows p24 antigen level to be determined at a later time.

25 Frozen supernatant cultures were thawed at room temperature and diluted to various levels in fresh media. HIV-1 p24 antigen level was determined using a capture ELISA purchased from Coulter Corporation. The kinetic assay format was used and carried out according to the 30 manufacturer's instructions.

Example 3: Acute Infection Assay

An acute infection assay format involves infection at low virus titer (low multiplicity of infection) combined with extended incubation. Multiple

rounds of infection and virus replication are possible as the cell and virus populations grow concurrently. At a sufficiently low multiplicity of infection (determined by routine experimentation), production of high levels of a virus marker (e.g., p24 antigen) depends not only on virus gene expression in a single generation of infected cells, but also on production of infectious virus and additional cycles of cell infection (and possibly super-infection) during incubation. Thus, the ability of an oligonucleotide to inhibit infectious virus production as evidenced by this method is relevant to predicting therapeutic efficacy.

Oligonucleotides were tested for their ability to block acute HIV-1 infection in T-lymphocyte cell lines.

15 Assays were conducted on Jurkat, clone E6-1 (ATCC TIB 152) and SupT-1 (Advanced BioTechnologies Inc.). Cells were propagated in RPMI 1640 media supplemented with 10% (v/v) fetal bovine serum and 50 mg/ml gentamicin sulfate at 37°C in a humidified 5% CO2 atmosphere. Only cell cultures having viable titers less than 2 x 106 cells/ml and viability in excess of 90%, as gauged by trypan blue exclusion, were used as hosts for acute infection.

Approximately, 3 x 106 cells were diluted with fresh media to a final volume of 25 ml and pelleted by 25 centrifugation at 135 x g for 8 minutes. The media was removed and the cells were gently resuspended in fresh media to a final concentration of 1 x 106 cells/ml. HIV-1, strain IIIB (1 x 10^5 TCID₅₀/ml; TCID = Tissue Culture Infective Dose), was added to the cells to obtain a 30 multiplicity of infection of 0.04 syncytia-forming units (sfu) per cell (0.7 sfu = 1.0 $TCID_{so}$). The virus and cell mixture was incubated for 2 hours at 37°C in a humidified 5% CO2 atmosphere, and then diluted to 25 ml with media and pelleted by centrifugation at 135 x g for 8 minutes. The 35 pelleted cells were washed twice with 25 ml of media and then resuspended in media to a concentration of 8×10^4 cells/ml.

37

Cells were dispensed in 125 μ l volumes to round bottom wells, of 96-well plates, containing an equal volume of media with various oligonucleotide concentrations, or media with no oligonucleotide. Each concentration of oligonucleotide was tested at least twice. The plates were incubated at 37°C in a humidified 5% CO₂ atmosphere.

days, the wells were After microscopically to approximate the total cellular mass and 10 to count the number of syncytia. The contents of each well were then mixed by pipetting, and 100 μ l of each culture was transferred to a well of a flat-bottom 96-well microtiter plate to measure cell proliferation. remaining cells in each culture were pelleted in situ by 15 centrifuging the incubation plate at 135 x g for 8 Eighty microliters of the cleared media were transferred to a new 96-well plate and frozen at -80°C for subsequent determination of p24 core antigen level as described in Example 2 above.

The EC,0 of different anti-HIV oligonucleotides are shown in Table 3. All of the oligonucleotides shown is Table 3 contained only phosphorothicate linkages. EC,0 refers to the concentration of oligonucleotide required to achieve 90% inhibition of p24 antigen production.

20

25

Table 3

Antiviral Potency of Phosphorothicate Oligonucleotides

Oligonucleotide	Average EC, (nM)
SEQ ID NO:1	180
SEQ ID NO:2	190
SEQ ID NO:3	140
SEQ ID NO:4	190
SEQ ID NO:5	160

	<u> </u>	
	SEQ ID NO:6	150
	SEQ ID NO:7	350
•	SEQ ID NO:8	150
	SEQ ID NO:9	280
5	SEQ ID NO:10	60
	SEQ ID NO:11	280
	SEQ ID NO:12	170
	SEQ ID NO:13	280
	SEQ ID NO:14	390
10	SEQ ID NO:15	270
	SEQ ID NO:16	200
	SEQ ID NO:17	190
	SEQ ID NO:18	350
	SEQ ID NO:19	1500
15	SEQ ID NO:20	350
	SEQ ID NO:21	400
	SEQ ID NO:22	150
	SEQ ID NO:23	. 110
	SEQ ID NO:24	220
20	SEQ ID NO:25	` 110

Example 4: Chronic Infection Assay

Oligonucleotides were assayed using the chronically infected human cell line 8E5 (ATCC CRL 8993). This cell line is a T-cell leukemia line containing a single proviral HIV genome (LAV-1 strain) with a single base insertion in the pol gene locus which inactivates

15

30

35

reverse transcriptase production (Folks et al., United States Pat. No. 4,752,565). Since p24 production in this system is not a function of de novo infection events, this system is useful for identifying anti-HIV oligonucleotides 5 able to inhibit HIV gene expression.

Cultures of 8E5 cells were grown in RPMI 1640 media supplemented to 10% (v/v) with fetal bovine serum and 50 mg/ml gentamicin sulfate. The cells were grown at 37°C in a humidified 5% CO2 atmosphere. Cultures having viable titers of less than 2 x 106 cells/ml and having viability in excess of 90%, as gauged by trypan blue exclusion, were used to initiate assays measuring the inhibit HIV-1 ability of an oligonucleotide to propagation.

Assays were carried out by first diluting cultures 1:2 with fresh media and growing overnight at 37°C, in a humidified 5% CO₂ atmosphere. Cells were collected by centrifugation at 135 x g for 8 minutes. media was removed, and the cells were gently resuspended with fresh media and pelleted to wash away free virus in 20 The cells were then resuspended in the culture media. fresh media at a concentration of 8 x 104 cells/ml and 125 μ l aliquots were dispensed to wells of a round-bottom 96well plate containing an equal volume of media. The wells contained various oligonucleotide concentrations or had no added oligonucleotide. Each well usually contained about 10,000 infected cells. Oligonucleotides were tested at least twice at concentrations of 8 μM , 2 μM , 0.5 μM , 125 nM and 31.3 nM.

The microtiter plates were incubated at 37°C in a humidified 5% CO2 atmosphere. After 6 days, the contents of the wells were mixed by pipetting and 100 μ l of each culture was transferred to a flat-bottom 96-well plate to Cell proliferation was measure cell proliferation. determined as described in Example 1, Technique A, supra.

Cells in the remaining culture were pelleted in the 96-well plate by centrifuging the plate at 135 \times g for

8 minutes. Seventy-five microliters of the cleared media was transferred to a new 96-well plate and frozen at -80°C for later p24 core antigen determination. The pelleted cells were resuspended in the remaining media and 50 µl of this cell suspension was also frozen at -80°C for p24 core antigen determination. Antigen level was determined as described in Example 2 supra.

The results of this assay for phosphorothicate oligonucleotides corresponding to SEQ. ID. NOs. 2, 3, and 8 are shown in Figures 1, 2, and 3 respectively. The upper panels of Figures 1, 2, and 3 show the reduction in p24 secretion into the media from 8E5 cells resulting from treatment with anti-HIV oligonucleotides. The lower panels of these figures illustrate the cytotoxic effect.

15 For each of the tested oligonucleotides the HIV inhibitory effect was greater the cytotoxic effect. Thus, these experiments provide further support for the therapeutic use of phosphorothicate oligonucleotide corresponding to SEQ. ID. Nos: 2, 3, and 8.

20 Example 5: HIV Protection Assay

This example describes the measurement of oligonucleotide anti-HIV activity by assaying the ability of the oligonucleotide to inhibit HIV cytopathic effects. Infection of certain cell lines such as SupT-1 with certain strains of HIV-1 such as the IIIB strain leads to death of the infected cells. Treatments preventing HIV growth will rescue the cells from HIV induced cytopathic effects.

Assays were conducted on SupT-1 (Advanced BioTechnologies Inc.) cells propagated in RPMI 1640 media supplemented with 10% fetal bovine serum and 50 μg/ml gentamicin sulfate at 37°C in a humidified 5% CO₂ atmosphere. Only cell cultures having viable titers less than 2 X 10⁶ cells/ml and viability exceeding 90%, as gauged trypan blue exclusion, were used as hosts for acute infection.

Routinely, 3 \times 10 6 cells were diluted with fresh media to a final volume of 25 ml and then pelleted by centrifugation at 135 x g for 8 minutes. After removal of the media, the cells were gently resuspended with fresh 5 media to a final concentration of 1 X 106 cells/ml. HIV-1, strain IIIB (1 X 105 TCID_{so}/ml; TCID = Tissue Culture Infective Dose), was added to the cells to obtain a multiplicity of infection of 0.04 syncytia-forming units (sfu) per cell (0.7 sfu = 1.0 $TCID_{50}$). The virus and cell 10 mixture was incubated for 20 hours at 37°C in a humidified 5% CO2 atmosphere. After this period, the infected cells were diluted to 25 ml with media and pelleted by centrifugation at 135 x g for 8 minutes. The pelleted cells were washed twice more with 25 ml volumes of media 15 and then resuspended in media to a concentration of 8 X 104 cells/ml.

Cells were dispensed in 125 μ l volumes to wells of round-bottom, 96 well plates that previously received containing various equal volume media of The wells contained 20 oligonucleotide concentrations. and the following cells/well infected oligonucleotide concentrations: 0, 9 μM, 3 μM, 1 μM, 333 nM, 111 nM, 37 nM 12.3 nM, 4.1 nM and 1.4 nM. oligonucleotides were tested at least twice for each The plates were incubated at 37°C in a 25 concentration. humidified 5% CO, atmosphere.

examined were days, the wells After microscopically to estimate the total cellular mass and The contents of the wells were then number of syncytia. 30 mixed by pipetting and 100 μl of each culture was transferred to a flat-bottom 96-well plate for assay of cytotoxic effects using Technique A as described in Example 1. Cells in the remaining culture were pelleted in the wells by centrifuging the incubation plate at 135 x g for 8 minutes. Eighty microliters of the cleared media were transferred to a new 96-well plate and frozen at -80°C for later determination of p24 core antigen levels as described in Example 2.

from cytopathic HIV effects by treatment with a phosphorothicate oligonucleotide corresponding to SEQ. ID. NO. 3. At oligonucleotide concentrations below 100 nM, virus production, as judged by the synthesis of p24 core antigen, occurs unabated and cell proliferation, as judged by XTT metabolism, is barely detectable. Increasing oligonucleotide concentration resulted in a 100- to 1000-fold reduction in virus production and in protecting the HIV infected cells so that cell proliferation of HIV infected cells is identical to that of uninfected cells.

Example 6: Plaque Assay for HIV Infection

describes measuring example This 15 activity of oligonucleotides using a HIV plaque formation assay. HT-6C cells (clone 6C of Hela cells expressing CD4 from a recombinant retroviral vector, NIH AIDS Research and Reference Reagent Program) were maintained in 75 cm2 (GibcoBRL) in DMEM media culture flasks 20 tissue supplemented with 10% fetal bovine serum, 100 units/ml penicillin, 100 μ g/ml streptomycin, 2 mM glutamine at 37°C in a humidified 5% CO2 atmosphere. The cells were detached from the flasks with trypsin-EDTA (GibcoBRL), collected by 25 centrifugation at 230 x g and resuspended in the above medium. These cells were plated at 2.5 X 104 cells/well in 48-well tissue culture dishes and grown overnight at 37°C in a humidified 5% CO2 atmosphere.

To initiate an assay, the media was removed from each well and 200 μl of HIV (100 to 200 plaque forming units) in DMEM media supplemented with 4% fetal bovine serum, 100 units/ml penicillin, 100 μg/ml streptomycin, 2 mM glutamine, 8 μg/ml DEAE dextran, and 0.5 μg/ml polybrene were added to each well. The dishes were incubated at 37°C in a humidified 5% CO₂ atmosphere. After 2 hours, 800 μl of media containing various concentrations

of oligonucleotide was added to the wells and the dishes were incubated at 37°C in a humidified 5% CO2 atmosphere for 3 days. The media from each well was then removed and 1 ml of 100% methanol was added to each well to fix the cells to the dishes. After 15 minutes, the methanol was removed and 0.5 ml of 0.3% crystal violet stain dissolved in phosphate buffered saline was added to each well. After 5 minutes, the wells were rinsed with water, drained and allowed to air dry. The number of plaques (dark staining giant cells) in each well were counted during microscopic examination of each well.

Figure 5 shows the percent reduction in plaque treatment with formation resulting from concentrations of a phosphorothicate oligonucleotide At concentrations greater 15 corresponding to SEQ ID NO:3. than 300 nM, plaque formation is completely suppressed. This reduction declines as oligonucleotide concentrations decrease and plaque formation approaches that of the untreated HIV infected cells at approximately 10 nM. potency the antiviral summarizes phosphorothicate oligonucleotide corresponding to SEQ ID NO:3 against six strains of HIV as determined by the Strains A018 and P022 are plaque formation assay. clinical isolates that were selected for AZT resistance.

TABLE 4
Inhibition of Plaque Formation
by Phosphorothioate SEQ ID NO:3

Virus Strain	EC _{so} (nM)
LAV-1	80
A018 - AZT Sensitive	600
A018 - AZT Resistant	480
P022 - AZT Sensitive	150

25 ·

10

15

P022 - AZT Resistant	350
LAV-2	150

Example 7: Toxicology

In vivo toxicology can be carried out in test animals by examining the ability of an oligonucleotide to cause gross morphological changes in organ or blood tissue. For example, a toxicology study can be carried out as follows:

- Oligonucleotides are injected into a test mouse by the intra-tail vein. A control mouse receives a control solution lacking oligonucleotides.
 - The effect of the tested oligonucleotides on organs, tissues, and blood parameters are measured at different time points (e.g., t=0 and at 24 hours).

Blood parameters indicative of a toxic effect include changes in the number of platelets, red blood cells, white blood cells, and hemoglobin. Examples of important organs and tissues to monitor to gauge toxic effect are spleen, liver, kidney and thymus.

Other embodiments are within the following claims.

SEQUENCE LISTING

(i) APPLICANT: GEN-PROBE INCORPORATED 9880 Campus Point Drive San Diego, California

92121 U.S.A.

(ii) TITLE OF INVENTION:

COMPOUNDS AND METHODS FOR INHIBITING PROPAGATION OF HUMAN IMMUNODEFICIENCY

VIRUS

(iii) NUMBER OF SEQUENCES: 101

(iv) CORRESPONDENCE ADDRESS:

> (A) ADDRESSEE:

Lyon & Lyon

(B) STREET: 633 West Fifth Street

Suite 4700

(C) CITY:

Los Angeles California

STATE: (D)

U.S.A.

COUNTRY: (E) (F) ZIP:

90071-2066

(iv) COMPUTER READABLE FORM:

> (A) MEDIUM TYPE:

3.5" Diskette, 1.44 Mb

storage

(B) COMPUTER: IBM Compatible

(C) OPERATING SYSTEM: IBM P.C. DOS 5.0

(D) SOFTWARE: Word Perfect 5.1

(vi) CURRENT APPLICATION DATA:

- APPLICATION NUMBER: (A)
- (B) FILING DATE:

(vii) PRIOR APPLICATION DATA:

US 08/277,857

APPLICATION NUMBER: (B) FILING DATE:

19 JUL 94 ·

ATTORNEY/AGENT INFORMATION:

(A) NAME:

(A)

Heber, Sheldon O.

(B) REGISTRATION NUMBER: 38,179

(C) REFERENCE/DOCKET NUMBER:

207/147-PCT

(ix) TELECOMMUNICATION INFORMATION:

> (A) TELEPHONE:

(213) 489-1600

(B) TELEFAX: (213) 955-0440

(C) TELEX: 67-3510

(2)	INFO	RMATI	ON FOR SEQ ID NO:	1:		
	(i)	SEQU	JENCE CHARACTERIST	ICS:		
٠.		(B)	Length: Type: Strandedness: Topology:	26 nucleic acid single linear		
	(ii)	SEQU	TENCE DESCRIPTION	: SEQ ID NO: 1:		
ATTO	CTTTG	T GTG	CTGGTAC CCATGC	V .		26
(2)	INFO	RMATI	ON FOR SEQ ID NO:	2:		
	(i)	SEQU	ENCE CHARACTERIST	CS:	·	
	٠.	(A) (B) (C) (D)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	26 nucleic acid single linear		
	(ii)	SEQU	ENCE DESCRIPTION :	SEQ ID NO: 2:		
CCTC	CAATT	C CTT	TGTGTGC TGGTAC			26
(2)	INFO	RMATI	ON FOR SEQ ID NO:	3:		
	(i)	SEQU	ENCE CHARACTERISTI	CCS:		
		(B)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	26 nucleic acid single linear		
	(ii)	SEQU	ENCE DESCRIPTION :	SEQ ID NO: 3:		
GCTG	GTGAT(C CTT	TCCATCC CTGTGG	•		26
(2)	INFO	RMATI	ON FOR SEQ ID NO:	4:		
	(i)	SEQU	ENCE CHARACTERISTI	CS:		
		(B) (C)	Length: Type: Strandedness: Topology:	25 nucleic acid single linear		
	(ii)	SEQU	ENCE DESCRIPTION :	SEQ ID NO: 4:		
CTCC	TTGACT	r ttg	GGGATTG TAGGG			25

(2)	INF	ORMATION FOR SEQ ID NO:	5:	,	
	(i)	SEQUENCE CHARACTERIST	CS:		
		(A) LENGTH: (B) TYPE: (C) STRANDEDNESS: (D) TOPOLOGY:	26 nucleic acid single linear		
	(ii)	SEQUENCE DESCRIPTION :	SEQ ID NO: 5:		
CTA	CTACT(CC TTGACTTTGG GGATTG	6		26
(2)	INF	RMATION FOR SEQ ID NO:	6:		
	(i)	SEQUENCE CHARACTERISTI	CS:		
	· .	(A) LENGTH: (B) TYPE: (C) STRANDEDNESS: (D) TOPOLOGY:	29 nucleic acid single linear		٠.
	(ii)	SEQUENCE DESCRIPTION :	SEQ ID NO: 6:		
CCT	CTGTT	G TAACATATCC TGCTTTTCC	•		29
(2)	INFO	RMATION FOR SEQ ID NO:	7:		
	(i)	SEQUENCE CHARACTERISTI	CS:		
			27 nucleic acid single linear		
	(ii)	SEQUENCE DESCRIPTION :	SEQ ID NO: 7:		
CCC	ACTCCA	T CCAGGTCATG TTATTCC			27
{2}	INFO	RMATION FOR SEQ ID NO:	8:		
	(i)	SEQUENCE CHARACTERISTI	CS:	•	
			26 nucleic acid single linear		
	(ii)	SEQUENCE DESCRIPTION :	SEQ ID NO: 8:		
GGTI	GCTTC	C TTCCTCTCTG GTACCC			26

(2)	TVSC	KIMAT.	ION FOR SEQ ID NO:	9:	
	(i;	SEQ	JENCE CHARACTERIST	ccs:	,
		(B) (C)	STRANDEDNESS:	27 nucleic acid single linear	
	(ii)		JENCE DESCRIPTION :	SEQ ID NO: 9:	
CCAT	TCATI	G TGI	rggctccc tctgtgg	ν.	27
(0)	T 1-70				
(2)	1120	RMATI	ON FOR SEQ ID NO:	10:	
	· (±)	SEQU	JENCE CHARACTERISTI	CS:	
		(B)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	41 nucleic acid single linear	
	(ii)	SEQU	ENCE DESCRIPTION :	SEQ ID NO: 10:	
CTAG	CAGTG	G CGC	CCGAACA GGTTCGCCTG	TTCGGGCGCC A	41
(2)	INFO	RMATI	ON FOR SEQ ID NO:	11:	
•	(±)	SEQU	ENCE CHARACTERISTI	CS:	
		(B) (C)	STRANDEDNESS:	26 nucleic acid single linear	
	(ii)	SEQU	ENCE DESCRIPTION :	SEQ ID NO: 11:	
cccc	CGCTT.	ATA A	CTGACGC TCTCGC		26
(2)	INFO	RMATI	ON FOR SEQ ID NO:	12:	
	(±:	SEQU	ENCE CHARACTERISTI	CS:	
			TYPE: STRANDEDNESS:	28 nucleic acid single linear	
	(ii)	SEQU	ENCE DESCRIPTION :	SEQ ID NO: 12:	
CGAT	'CTAAT'	r ctc	CCCCGCT TAATACTG	•	28

(2)	INF	ORMAT	ION FOR SEQ ID NO	D: 13:	
	(i)	SEQ	UENCE CHARACTERIS	STICS:	
		(A) (B) (C) (D)	TYPE: STRANDEDNESS:	28 nucleic acid single linear	
	(ii)	SEQ	JENCE DESCRIPTION	I : SEQ ID NO: 13:	
CAG	TATTA	AG CGO	GGGAGAA TTAGATCG		28
(2)	INF	ORMATI	ON FOR SEQ ID NO): 14 :	
	(i)	SEQU	JENCE CHARACTERIS	TICS:	
			TYPE: STRANDEDNESS:	20 nucleic acid single linear	
	(ii)	SEQU	ENCE DESCRIPTION	: SEQ ID NO: 14:	
CCT	GTACCO	T CAG	CGTCATT		20
					_ •
(2)	INFO	RMATI	ON FOR SEQ ID NO	: 15:	
	(i)	SEQU	ENCE CHARACTERIS	TICS:	
		(C)	Length: Type: Strandedness: Topology:	26 nucleic acid single linear	
	(ii)	SEQU	ENCE DESCRIPTION	: SEQ ID NO: 15:	
GTCI	GGCCT	G TAC	CGTCAGC GTCATT		26
·					
(2)	INFO	RMATI(ON FOR SEQ ID NO:	16:	
	(i)	SEQUI	ENCE CHARACTERIST	ICS:	
		(B) (C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	26 nucleic acid single linear	
	(ii)	SEQUE	ENCE DESCRIPTION	: SEQ ID NO: 16:	
CCT	CAATA	G CCCI	CCAGCAA ATTGTT		26

(2)	INFO	RMATION FOR SEQ ID NO:	17:	
٠	(i)	SEQUENCE CHARACTERIST	ICS:	
		(A) LENGTH: (B) TYPE: (C) STRANDEDNESS: (D) TOPOLOGY:	23 nucleic acid single linear	
,	(ii)	SEQUENCE DESCRIPTION	: SEQ ID NO: 17:	
ATC:	TTTCCA	C AGCCAGGATT CTT		23
(2)	INFO	RMATION FOR SEQ ID NO:	18:	
	(i)	SEQUENCE CHARACTERIST	ICS:	
		(A) LENGTH: (B) TYPE: (C) STRANDEDNESS: (D) TOPOLOGY:	26 nucleic acid single linear	
	(ii)	SEQUENCE DESCRIPTION	: SEQ ID NO: 18:	
TCC	rggate	C TTCCAGGGCT CTAGTC		26
(2)	INFO	RMATION FOR SEQ ID NO:	19:	
	(i)	SEQUENCE CHARACTERIST	ICS:	
		(A) LENGTH: (B) TYPE: (C) STRANDEDNESS: (D) TOPOLOGY:	21 nucleic acid single linear	
	(ii)	SEQUENCE DESCRIPTION	: SEQ ID NO: 19:	•
TCC	rggate	C TTCCAGGGCT C		. 21
(2)	INFO	RMATION FOR SEQ ID NO:	20:	·
	(i)	SEQUENCE CHARACTERIST	ICS:	
		(A) LENGTH: (B) TYPE: (C) STRANDEDNESS: (D) TOPOLOGY:	25 nucleic acid single linear	
	(ii)	SEQUENCE DESCRIPTION	: SEQ ID NO: 20:	
GAC"	TCCTG	G ATGCTTCCAG GGCTC		. 25

(2)	INF	ORMATION FOR SEQ ID NO: 21:	
	(i)	SEQUENCE CHARACTERISTICS:	
·.		(A) LENGTH: 29 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	SEQUENCE DESCRIPTION : SEQ ID NO: 21:	
CTC	TCCTT	TC TCCATTATCA TTCTCCCGC	29
(2)	INFO	ORMATION FOR SEQ ID NO: 22:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 30 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	SEQUENCE DESCRIPTION : SEQ ID NO: 22:	
CAT	CACCTO	SC CATCTGTTTT CCATAATCCC	30
(2)	INFO	ORMATION FOR SEQ ID NO: 23:	
,_,	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 31 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	•
		SEQUENCE DESCRIPTION : SEQ ID NO: 23:	
CCTG	STCTAC	T TGCCACACAA TCATCACCTG C	31
(2)	INFO	RMATION FOR SEQ ID NO: 24:	•
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 30 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	•
	(ii)	SEQUENCE DESCRIPTION : SEQ ID NO: 24:	
GCTA	CTATT	G CTACTATTGG TATAGGTTGC	30

(2)	INF	RMATIO	n for seq id no	: 25:	
	(i.	SEQUE	NCE CHARACTERIS	TICS:	
		(B) (C)	Length: Type: Strandedness: Topology:	30 nucleic acid single linear	4.
	(ii)	SEQUE	NCE DESCRIPTION	: SEQ ID NO: 25:	
ACT	ATTGCI	A TTAT	IATTGC TACTACTA	AT ·	30
(2)	INFO	RMATIO	N FOR SEQ ID NO	26:	
	(i.	SEQUE	NCE CHARACTERIST	rics:	
		(B) ?	Length: Type: Strandedness: Topology:	26 nucleic acid single linear	
	(ii.	SEQUE	NCE DESCRIPTION	: SEQ ID NO: 26:	
AUU	CCUUUG	U GUGCI	JGGUAC CCAUGC		26
(2)	INFO	RMATIO	N FOR SEQ ID NO:	27:	
	(±	SEQUE	NCE CHARACTERISI	CICS:	
		(B) 7	Length: Type: Strandedness: Topology:	26 nucleic acid single linear	•
	(ii	SEQUEN	NCE DESCRIPTION	: SEQ ID NO: 27:	•
CCU	CAATU	c cuuu	BUGUGC UGGUAC	•	26
(2)	INFO	RMATION	FOR SEQ ID NO:	28:	
	(=	SEQUEN	ICE CHARACTERIST	CICS:	
		(B) I	ENGTH: YPE: STRANDEDNESS: YOPOLOGY:	26 nucleic acid single linear	
	(ii	SEQUEN	ICE DESCRIPTION	: SEQ ID NO: 28:	
GCU	GUGAU	c cooo	CAUCC CUGUGG		26

(2)	INFO	RMATI	ON FOR SEQ ID NO:	29:	•	
	(i)	SEQU	ENCE CHARACTERIST	ICS:	•	
			TYPE: STRANDEDNESS:	25 nucleic acid single linear		
	(ii)	SEQU	ENCE DESCRIPTION	: SEQ ID NO: 29:		
CUCC	UUGAC	u uug	GGGAUUG UAGGG			25
(2)	INFO	RMATI	ON FOR SEQ ID NO:	30:	· · · .	
	(i)	SEQU	ENCE CHARACTERIST	CS:		
		(A) (B) (C) (D)	TYPE: STRANDEDNESS:	26 nucleic acid single linear		
	(ii)	SEQU	ENCE DESCRIPTION :	SEQ ID NO: 30:		
CUAC	UACUC	c uug	ACUUUGG GGAUUG			26
					•	
(2)	INFO	RMATI	ON FOR SEQ ID NO:	31:		
	(i)	SEQU	ENCE CHARACTERISTI	CS:		
		(A) (B) (C) (D)		29 nucleic acid single linear		
	(ii)	SEQU	ENCE DESCRIPTION :	SEQ ID NO: 31:	•	
CCUC	UGUUA	G UAA	CAUAUCC UGCUUUUCC	•		29
(2)	INFO	RMATI	ON FOR SEQ ID NO:	32:	•	
	(i)	SEQU	ENCE CHARACTERISTI	CS:		
		(B) (C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	27 nucleic acid single linear		
	(ii)	SEQU	ENCE DESCRIPTION :	SEQ ID NO: 32:		
CCCA	CUCCA	U CCA	GGUCAUG UUAUUCC			27

PCT/US95/09080

(2)	INFO	RMATI	ON FOR SEQ ID NO:	33:	
	(i)	SEQU	JENCE CHARACTERIST	CCS:	
		(A) (B) (C) (D)	STRANDEDNESS:	26 nucleic acid single linear	
,	(ii)	SEQU	JENCE DESCRIPTION :	SEQ ID NO: 33:	
GGUT	JGCUUC	כ טטכ	CCUCUCUG GUACCC		26
(2)	INFO	RMATI	ON FOR SEQ ID NO:	34:	
	(i)	SEQU	JENCE CHARACTERISTI	CS:	
		(B) (C)	TYPE: STRANDEDNESS:	27 nucleic acid single linear	
	(ii)	SEQU	ENCE DESCRIPTION :	SEQ ID NO: 34:	
CCAT	JUCAUU	g vgu	GGCUCCC UCUGUGG		27
				· · · · · · · · · · · · · · · · · · ·	•
(2)			ON FOR SEQ ID NO:		
	(i)	SEQU	ENCE CHARACTERISTI	CS:	
		(B) (C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	41 nucleic acid single linear	
	(ii)	SEQU	ENCE DESCRIPTION :	SEQ ID NO: 35:	
CUA	CAGUG	G CGC	CCGAACA GGUUCGCCUG	UUCGGGCGCC A	41
(2)	INFO	RMATI	ON FOR SEQ ID NO:	36:	
	(i)	SEQU	ENCE CHARACTERISTI	CS:	
		(B) (C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	26 nucleic acid single linear	
	(ii)	SEQU	ENCE DESCRIPTION :	SEQ ID NO: 36:	
CCCC	CGCUU	A AUA	CUGACGC UCUCGC		26

(2)	INFO	RMATI	ON FOR SEQ ID NO:	37:		
٠	(i)	SEQU	ENCE CHARACTERIST	cs:		
	•	(B) (C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	28 nucleic acid single linear		
	(ii)	SEQU	ENCE DESCRIPTION :	SEQ ID NO: 37:		
CGAU	JCUAAU	u cuc	CCCCGCU UAAUACUG			28
(2)	INFO	RMATI	ON FOR SEQ ID NO:	38:		
	(i)	SEQU	ENCE CHARACTERISTI	CS:		
		(B) (C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	28 nucleic acid single linear		
	(ii)	SEQU	ENCE DESCRIPTION :	SEQ ID NO: 38:		
CAGU	JAUUAA	G CGG	GGGAGAA UUAGAUCG			28
(2)	INFO	RMATI	ON FOR SEQ ID NO:	39:	•	
	(i)	SEQU	ENCE CHARACTERISTI	CS:		
		(B)	STRANDEDNESS:	20 nucleic acid single linear		
	(ii)	SEQUI	ENCE DESCRIPTION :	SEQ ID NO: 39:		
CCUG	UACCGU	CAG	CGUCAUU			20
(2)	INFOR	ITAMS	ON FOR SEQ ID NO:	40:	,	
	(i)	SEQUE	ence characteristi	CS:		
		(B) (C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	26 nucleic acid single linear		
	(ii)	SEQUE	ENCE DESCRIPTION :	SEQ ID NO: 40:		

26.

GUCUGGCCUG UACCGUCAGC GUCAUU

(2)	INFO	RMATI	ON FOR SEQ ID NO:	41:	
	(i)	SEQU	ENCE CHARACTERISTI	CS:	
		(C)	Type: Strandedness:	26 nucleic acid single linear	
	(ii)	SEQU	ENCE DESCRIPTION :	SEQ ID NO: 41:	·
GCCT	JCAAUA	G CCC	UCAGCAA AUUGUU	N	26
(2)	INFO	RMATI	ON FOR SEQ ID NO:	42:	
	(i)	SEQU	ENCE CHARACTERISTI	CS:	
		(B)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	23 nucleic acid single linear	
	(ii)	SEQU	ENCE DESCRIPTION :	SEQ ID NO: 42:	
AUCT	JUUCCA	C AGC	CAGGAUU CUU		23
(2)	INFO	RMATI	ON FOR SEQ ID NO:	43:	
	(i)	SEQU	ENCE CHARACTERISTI	CS:	
			TYPE: STRANDEDNESS:	26 nucleic acid single linear	
	(ii)	SEQU	ENCE DESCRIPTION :	SEQ ID NO: 43:	
UCCI	JGGAUG	c wc	CAGGGCU CUAGUC	•	26
(2)	INFO	RMATI(ON FOR SEQ ID NO:	44:	
	(i)	SEQU	ENCE CHARACTERISTI	CS:	
		(B) (C)	STRANDEDNESS:	21 nucleic acid single linear	
	(ii)	SEQU	ENCE DESCRIPTION :	SEQ ID NO: 44:	
נזרכי	IGGAIIG	כ שוכי	CAGGGCU C		21

(2)	INFO	RMATI	ON FOR SEQ I	D NO:	45:		
	(i)	SEQU	ENCE CHARACT	ERISTI	CS:		
٠.			LENGTH: TYPE: STRANDEDNES: TOPOLOGY:	S:	25 nucleic acid single linear		
	(11)	SEQU	ENCE DESCRIP	rion :	SEQ ID NO: 45:		
GACU	UCCUG	G AUG	CUUCCAG GGCU	C			25
(2)	INFO	RMATI	ON FOR SEQ II) NO:	46:		
	(±)	SEQU	ENCE CHARACTI	ERISTIC	CS:		
		(B)	LENGTH: TYPE: STRANDEDNESS TOPOLOGY:	3:	29 nucleic acid single linear		
	(ii)	SEQUI	ENCE DESCRIPT	CION:	SEQ ID NO: 46:		
CUCU	CCUUU	C UCC	AUUAUCA UUCU	CCCGC			29
(2)	INFO	RMATI	ON FOR SEQ II	NO:	47:		
	(i)	SEQUI	ENCE CHARACTE	ERISTIC	S:		
		(B)	LENGTH: TYPE: STRANDEDNESS TOPOLOGY:	3:	30 nucleic acid single linear		
	(ii)	SEQUI	ENCE DESCRIPT	CION:	SEQ ID NO: 47:		
CAUC	ACCUGO	CAUC	CUGUUUU CCAUA	AUCCC			30
(2)	INFOR	ITAMS	ON FOR SEQ II	NO:	48:	•	
	(i)	SEQUE	ENCE CHARACTE	ERISTIC			
		(A) (B) (C) (D)	LENGTH: TYPE: STRANDEDNESS TOPOLOGY:		31 nucleic acid single linear		
	(ii)	SEQUE	NCE DESCRIPT	CION:	SEQ ID NO: 48:		
CCUG	UCUACI	J UGCO	CACACAA UCAUC	CACCUG	С		31

(2)	INF	ORMAT	ION FOR SEQ ID NO	: 49:	
	(i)	SEQ	UENCE CHARACTERIS	TICS:	
		(B) (C)	Length: Type: Strandedness: Topology:	30 nucleic acid single linear	
	(ii)	SEQ	JENCE DESCRIPTION	: SEQ ID NO: 49:	
GCU	ACUAU	UG CUZ	ACUAUUGG UAUAGGUU	GC	30
(2)	INFO	ORMAT	ION FOR SEQ ID NO	: 50:	
	(i)	SEQU	JENCE CHARACTERIS	rics:	
		(B) (C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	30 nucleic acid single linear	
	(ii)	SEQU	JENCE DESCRIPTION	: SEQ ID NO: 50:	
ACU	AUUGCU	A UUA	MUUAUUGC UACUACUA	AU .	30
(2)	INFO	RMATI	ON FOR SEQ ID NO	51:	• .
	(i)	SEQU	ENCE CHARACTERIST	CICS:	·
			TYPE: STRANDEDNESS:	26 nucleic acid single linear	
	(ii)	SEQU	ENCE DESCRIPTION	: SEQ ID NO: 51:	
CTT	rgggco	T GTC	GGGTCCC CTCGGG	• *	26
(2)	INFO	RMATI	ON FOR SEQ ID NO:	52:	·
	(i)	SEQU	ENCE CHARACTERIST	ICS:	
		(B) (C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	26 nucleic acid single linear	
	(ii)	SEQU	ENCE DESCRIPTION:	SEQ ID NO: 52:	
GCAT	GGGTA	C CAG	CACACAA AGGAAT		26

(2)	INF	ORMAT	TION FOR SEQ ID NO	: 53:	
	(i)	SEQ	QUENCE CHARACTERIST	rics:	
	٠	(B) (C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	26 nucleic acid single linear	
	(ii)	SEQU	ENCE DESCRIPTION:	SEQ ID NO: 53:	
GTA	CCAGC	AC AC	AAAGGAAT TGGAGG		26
(2)	INF	ORMAT	ION FOR SEQ ID NO:	54:	
	(i)	SEQ	UENCE CHARACTERIST	CICS:	
•		(B) (C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	26 nucleic acid single linear	
	(ii)	SEQ	UENCE DESCRIPTION:	SEQ ID NO: 54:	
CCA	CAGGG	AT GG	AAAGGATC ACCAGC		26
(2)	INFO	RMAT:	ION FOR SEQ ID NO:	55:	٠.
	(i)	SEQ	UENCE CHARACTERIST	ICS:	
		(B) (C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	25 nucleic acid single linear	
	(ii)	SEQU	JENCE DESCRIPTION:	SEQ ID NO: 55:	
CCCI	'ACAAT	'C CCC	CAAAGTCA AGGAG		25
(2)	INFO	RMATI	ON FOR SEQ ID NO:	56:	
	(i)	SEQU	DENCE CHARACTERIST	ICS:	
		(B) (C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	26 nucleic acid single linear	
	(ii)	SEQU	ENCE DESCRIPTION:	SEQ ID NO: 56:	
CAAT	CCCCA	а аст	CAAGGAG TAGTAG	•	26

(2)	INF	ORMAI	TION FOR SEQ ID NO	: 57:		
	(i)	SEC	QUENCE CHARACTERIS	rics:		
				29 nucleic acid single linear		
	(ii)	SEC	UENCE DESCRIPTION	SEQ ID NO: 57:		•
GGA	AAAGC.	ag ga	TATGTTAC TAACAGAGO	3		29
(2)	INF	ORMAT	ION FOR SEQ ID NO:	58:		
	(±:	SEQ	UENCE CHARACTERIST	CICS:		
		(B) (C)	Length: Type: Strandedness: Topology:	27 nucleic acid single linear		
	(ii)	SEQ	UENCE DESCRIPTION:	SEQ ID NO: 58:		-
GGAA	TAAC	AT GA	CCTGGATG GAGTGGG			27
				r.		
(2)			ION FOR SEQ ID NO:	•		·
	(±:	SEQ	UENCE CHARACTERIST	'ICS:		
		(C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	26 nucleic acid single linear		
	(ii)	SEQ	UENCE DESCRIPTION:	SEQ ID NO: 59:		
GGGT	'ACCAC	GA GA	GGAAGGAA GCAACC	• • •	•	26
(2)	INFO	ORMAT:	ION FOR SEQ ID NO:	60:		
	(2)	SEQ	UENCE CHARACTERIST	ICS:		
		(B) (C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	27 nucleic acid single linear		
	(ii)	SEQ	JENCE DESCRIPTION:	SEQ ID NO: 60:		
רכאר	AGLGO	G AG	TCACACAA TGAATGG			27

(2)	INFO	ORMATI	ON FOR SE	Q ID NO:	61:		
•	(i)	SEQU	ENCE CHAR	ACTERIST	ICS:	•	
•			LENGTH: TYPE: STRANDED TOPOLOGY		41 nucleic acid single linear		
	(ii)	SEQU	ENCE DESC	RIPTION:	SEQ ID NO: 61:		
TGGC	GCCC	SA ACA	GGCGAAC C	TGTTCGGG	C GCCACTGCTA G	•	41
(2)	INFO	RMATI(ON FOR SE	Q ID NO:	62:		•
	(±)	SEQU	ENCE CHAR	ACTERIST	ICS:	· .	
		(B) (C)	LENGTH: TYPE: STRANDED TOPOLOGY	NESS:	26 nucleic acid single linear		
	(ii)	SEQ	UENCE DES	CRIPTION	: SEQ ID NO: 62:		
GCGA	GAGCG	T CAG	TATTAAG C	GGGGG			26
(2)	INFO	RMATI	ON FOR SE	Q ID NO:	63:		
	(<u>÷</u>)	SEQUI	ENCE CHAR	ACTERIST	ICS:		
		(C)	LENGTH: TYPE: STRANDED TOPOLOGY	NESS:	28 nucleic acid single linear		
	(ii)	SEQUI	ENCE DESC	RIPTION:	SEQ ID NO: 63:		
CAGT.	ATTAA	re ceed	GGGAGAA T	TAGATCG	•	.	28
(2)	INFO	RMATIC	ON FOR SE	Q ID NO:	64:	•	
	(±)	SEQUE	ENCE CHAR	ACTERIST	ICS:		
		(B) 7 (C) 8	Length : rype : strandedn ropology :	ESS:	28 nucleic acid single linear		
(ii	SEQUE	NCE DESCR	IPTION:	SEQ ID NO: 64:		
CGAT	CTAAT	T CTC	CCCCGCT T	AATACTG	28		

(2)	INF	ORMA'	TION FOR SEQ ID N	0: 65:	
	(i)	SE(QUENCE CHARACTERI	STICS:	
		(B) (C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	20 nucleic acid single linear	
•	(ii)	SEQU	JENCE DESCRIPTION	: SEQ ID NO: 65:	
AATO	BACGC	TG A	CGGTACAGG		20
(2)	INF	ORMAT	TION FOR SEQ ID N	D: 66 :	
	(i)	SEÇ	QUENCE CHARACTERI	STICS:	
•		(B) (C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	26 nucleic acid single linear	
	(ii)	SEQU	JENCE DESCRIPTION	: SEQ ID NO: 66:	
AATO	CACGC	TG AC	CGGTACAGG CCAGAC		26
(2)	INF	ORMAT	TION FOR SEQ ID NO	D: 67 :	
	(i)	SEC	QUENCE CHARACTERIS	STICS:	
		(B)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	26 nucleic acid single linear	
((ii)	SEQU	ENCE DESCRIPTION	: SEQ ID NO: 67:	
AACA	ATTT	GC TG	AGGGCTAT TGAGGC	•	26
(2)	INF	ORMAT	ION FOR SEQ ID NO	D: 68:	
	(i)	SEQ	UENCE CHARACTERIS	STICS:	•
		(B) (C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	23 nucleic acid single linear	
(ii)	SEQU	ENCE DESCRIPTION:	SEQ ID NO: 68:	
ממממ	ልጥሮሮ፣	ומ מר	тстссааа сат		72

(2)	INF	ORMAT	'ION FOR SEQ ID NO	; 69:		
	(i)	SEQ	UENCE CHARACTERIS	TICS:		
		(C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	26 nucleic acid single linear		
(ii}	SEQU	ENCE DESCRIPTION:	SEQ ID NO: 69	:	
GACT	AGAG	CC CT	GGAAGCAT CCAGGA			26
(2)	INF	ORMAT	ION FOR SEQ ID NO	: 70:		
	(i)	SEQ	UENCE CHARACTERIS	TICS:		
		(A) (B) (C) (D)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	21 nucleic acid single linear		
(:	ii)	SEQU	ENCE DESCRIPTION:	SEQ ID NO: 70:	·	
GAGC	CCTG	GA AG	CATCCAGG A		·	21
· (2)	TNF	ገኮለልጥ'	ION FOR SEQ ID NO	. 71.		
(2)	(i)		JENCE CHARACTERIST			
	•	(A)	LENGTH: TYPE: STRANDEDNESS:	25 nucleic acid single linear	· .	
į)	ii)	SEQUE	ENCE DESCRIPTION:	SEQ ID NO: 71:		•
GAGC	CTGC	SA AGO	CATCCAGG AAGTC	·	·	25
(2)	INFO	RMATI	ON FOR SEQ ID NO:	72:	•	
	(i)	SEQU	ENCE CHARACTERIST	ics:		
		(B) (C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	29 nucleic acid single linear		,
_ (i	.i)	SEQUE	NCE DESCRIPTION:	SEQ ID NO: 72:		
GCGGG	AGAA	T GAT	AATGGAG AAAGGAGAG	.		29

(2)	INFORMA	TION FOR SEQ ID	NO: 73:				
	(i) SEQUENCE CHARACTERISTICS:						
٠.	(B) (C)	Length: Type: Strandedness: Topology:	30 nucleic acid single linear	•			
(ii) SEQ	UENCE DESCRIPTION	N: SEQ ID NO: 73:				
GGGATI	TATGG A	AAACAGATG GCAGGT	GATG		30		
4-1 -		· .					
(2) I	NFORMA'	TION FOR SEQ ID 1	NO: 74:				
(i; SE	QUENCE CHARACTER	ISTICS:				
	(B) (C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	31 nucleic acid single linear				
(ii	.) SEQ	UENCE DESCRIPTION	N: SEQ ID NO: 74:				
GCAGGT	GATG A	TTGTGTGGC AAGTAGA	ACAG G		31		
(2) I	NFORMA:	rion for seq id n	io: 75:				
(i: SEC	QUENCE CHARACTERI	STICS:				
	(B) (C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	30 nucleic acid single linear		•		
(ii) SEQ	JENCE DESCRIPTION	: SEQ ID NO: 75:				
GCAACC	TATA CO	CAATAGTAG CAATAGT	PAGC		30		
•							
(2) I	NFORMAI	TION FOR SEQ ID N	70: 76: .				
(i) SEQ	QUENCE CHARACTERI	STICS:				
	(C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	30 nucleic acid single linear	•.			
(ii) SEQU	JENCE DESCRIPTION	: SEQ ID NO: 76:				
ATTAGT.	AGTA GO	AATAATAA TAGCAAT	AGT		30		

(2) I	NFORMA	TION FOR SEQ ID N	10: 77:		
(i) SE	QUENCE CHARACTERI	STICS:		
•	(A) (B) (C) (D)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	26 nucleic acid single linear	·	
(ii) SEQ	UENCE DESCRIPTION	: SEQ ID NO: 77:		
GCAUGG	GUAC C	AGCACACAA AGGAAU		•	26
(2) I	nforma:	TION FOR SEQ ID N	O: 78:		
(:	i) SEÇ	QUENCE CHARACTERI	STICS:		
	(B) (C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	26 nucleic acid single linear		
(ii)) SEQU	JENCE DESCRIPTION	: SEQ ID NO: 78:		
GUACCA	GCAC AC	CAAAGGAAU UGGAGG			26
(2) TI	VFORMAT	TION FOR SEQ ID N	n. 79.		
		QUENCE CHARACTERIS			
	(A) (B) (C) (D)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	26 nucleic acid single linear		
(ii)	SEQU	ENCE DESCRIPTION	: SEQ ID NO: 79:		
CCACAGO	GAU GG	AAAGGAUC ACCAGC		,	26
(2) IN	FORMAT	ION FOR SEQ ID NO	D: 80:		
(i	.: SEQ	UENCE CHARACTERIS	STICS:		
	(B) (C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	25 nucleic acid single linear		
(ii)	SEQU	ENCE DESCRIPTION:	SEQ ID NO: 80:		
CCCUACA	AUC CC	CAAAGUCA AGGAG			25

(2)	INF	INFORMATION FOR SEQ ID NO: 81:						
	(i)	SEC	SEQUENCE CHARACTERISTICS:					
		(B) (C)	TYPE:	26 nucleic acid single linear				
	(ii)	SEQU	ENCE DESCRIPTION:	SEQ ID NO: 81:				
ÇAA	UCCCC	AA AG	UCAAGGAG UAGUAG			26		
			·					
(2)	INF	ORMAT	ION FOR SEQ ID NO	: 82:				
	(i)	SEQ	UENCE CHARACTERIS	rics:				
		(B) (C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	29 nucleic acid single linear				
	(ii)	SEQU	ENCE DESCRIPTION:	SEQ ID NO: 82:				
GGA	AAAGC	AG GA	UAUGUUAC UAACAGAG	3		29		
(5)	-		BOD 670 TD WO					
(2)			ION FOR SEQ ID NO					
	(1)	SEQ	UENCE CHARACTERIS	rics:				
		(B) (C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	27 nucleic acid single linear				
	(ii)	SEQU	ENCE DESCRIPTION:	SEQ ID NO: 83:				
GGA	AUAAC	AU GA	CCUGGAUG GAGUGGG	•	•	27		
(2)	INF	ORMAT	ION FOR SEQ ID NO	: 84:				
	(i)	SEQ	UENCE CHARACTERIS	rics:				
		(B) (C)	Length: Type: Strandedness: Topology:	26 nucleic acid single linear				
	(ii)	SEQU	ENCE DESCRIPTION:	SEQ ID NO: 84:				
	TT3	C2 C2	CCAACCAA CCAACC			26		

(2)	INFO	RMAT	ON FOR SEQ ID NO:	85:	
	(i)	SEQU	JENCE CHARACTERIST	ICS:	
		(B)	Length: Type: Strandedness: Topology:	27 nucleic acid single linear	
(i:	i)	SEQUE	ENCE DESCRIPTION:	SEQ ID NO: 85:	
CCACA	GAGG	G AGO	CCACACAA UGAAUGG	C.	27
(2)	INFC	RMAT	ON FOR SEQ ID NO:	86:	
	(i)	SEQU	JENCE CHARACTERIST	CS:	
		(B) (C)	STRANDEDNESS:	41 nucleic acid single linear	
(i:	i)	SEQUE	ENCE DESCRIPTION: S	SEQ ID NO: 86:	
UGGCG	CCCG	A ACA	AGGCGAAC CUGUUCGGG	C GCCACUGCUA G	41
/2\ ·	TNEO	ייי <i>א</i> ם	ON FOR SEQ ID NO:	07.	
			JENCE CHARACTERIST		
		(C)	STRANDEDNESS:	26 nucleic acid single linear	
(i:	i)	SEQUE	NCE DESCRIPTION: S	SEQ ID NO: 87:	
GCGAGI	AGCG	U CAG	UAUUAAG CGGGGG		26
•				,	
(2)	INFO	RMATI	ON FOR SEQ ID NO:	88:	
ı	(i)	SEQU	ENCE CHARACTERIST	CCS:	
		(B) (C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	28 nucleic acid single linear	
(ii)	i}	SEQUE	NCE DESCRIPTION: S	SEQ ID NO: 88:	
CAGUA	JUAA	G CGG	GGGAGAA UUAGAUCG		28

(2)	INF	ORMAT	TION FOR SEQ ID NO	D: 89:	
	(i)	SEQ	UENCE CHARACTERIS	STICS:	
		(B) (C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	28 nucleic acid single linear	٠.
(ii)	SEQU	ENCE DESCRIPTION	SEQ ID NO: 89:	
CGAU	CUAA	טט כט	CCCCCGCU UAAUACUC	3	28
(2)	INF	ORMAT	ION FOR SEQ ID NO	D: 90:	
	(i:	SEQ	UENCE CHARACTERIS	STICS:	
		(B) (C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	20 nucleic acid single linear	
.(ii)	SEQU	ENCE DESCRIPTION	: SEQ ID NO: 90:	
AAUG	ACGC	UG AC	GGUACAGG		20
(2)	INF	ORMAT	ION FOR SEQ ID NO): 91:	
	(i;	SEÇ	UENCE CHARACTERIS	STICS:	
		(A) (B) (C) (D)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	26 nucleic acid single linear	·
((ii)	SEQU	ENCE DESCRIPTION	: SEQ ID NO: 91:	٠.
AAUG	ACGC	UG AC	GGUACAGG CCAGAC	•	26
(2)	INF	ORMAT	TION FOR SEQ ID NO	D: 92:	
	(i)	SEC	UENCE CHARACTERIS	STICS:	
		(C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	26 nucleic acid single linear	
((ii)	SEQU	ENCE DESCRIPTION	: SEQ ID NO: 92:	
**	\	מנו ממ	יאככככוואון וומאכככ		26

WO 96/02557 PCT/US95/09080

(2)	INF	'ORMA'	TION FOR SEQ ID N	10: 93:		
·	(i)	SE	QUENCE CHARACTERI	STICS:		
		(C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	23 nucleic acid single linear		
: :	ii)	SEQU	JENCE DESCRIPTION	: SEQ ID NO: 93:		
AAGA	AUCC	UG GO	CUGUGGAAA GAU	•		23
(2)	INF	ORMAT	TION FOR SEQ ID N	0: 94:	,	•
	(i)	SEC				
	•	(B)	Length: Type: Strandedness: Topology:	26 nucleic acid single linear		٠.,
(:	ii)	SEQU	ENCE DESCRIPTION	: SEQ ID NO: 94:		
GACUZ	AGAG	cc cu	GGAAGCAU CCAGGA			26
(2)	INF	ORMAT	ION FOR SEQ ID NO	D: 95:		
	(i)	SEQ	UENCE CHARACTERIS	STICS:		
			LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	21 nucleic acid single linear		
(i	.i)	SEQU	ENCE DESCRIPTION:	SEQ ID NO: 95:		•
GAGCC	CUGO	GA AG	CAUCCAGG A			21
(2)	INFO	RMAT	ION FOR SEQ ID NO): 96:		
	(i)	SEQ	UENCE CHARACTERIS	TICS:		
		(C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	25 nucleic acid single linear		
(i	i)	SEQUI	ENCE DESCRIPTION:	SEQ ID NO: 96:		
33.C.C.C	MICO	ים אריי	באזורים אינים			

(2)	INF	ORMAT	TION FOR SEQ ID NO	D: 97:	•	
	(i)	SEQ	UENCE CHARACTERIS	STICS:		
		(B)	Length: Type: Strandedness: Topology:	29 nucleic acid single linear		
((ii)	SEQU	ENCE DESCRIPTION	: SEQ ID NO: 97:		
GCGG	GAGA	AU GA	UAAUGGAG AAAGGAG	AG '	29	
(2)	INF	ORMAT	TION FOR SEQ ID N	D: 98:		
	(i)	SEC	UENCE CHARACTERI	STICS:		
		(B) (C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	30 nucleic acid single linear		
. 1	(11)			: SEQ ID NO: 98:		
			AACAGAUG GCAGGUG		30	
(2)	INF	ORMAT	TION FOR SEQ ID N	O: 99:		
	(i)	SEC	UENCE CHARACTERI	STICS:		
		(B)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	31 nucleic acid single linear		
	(ii)	SEQU	JENCE DESCRIPTION	: SEQ ID NO: 99:		
GCA	GUGA	ug at	TUGUGUGGC AAGUAGA	CAG G	31	
(2)	INF	ORMAT	TION FOR SEQ ID N	D: 100:		
	(i)	.) SEQUENCE CHARACTERISTICS:				
		(B) (C)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	30 nucleic acid single linear		
	(ii)	SEQU	JENCE DESCRIPTION	: SEQ ID NO: 100:		
003	י היינוא	TTA 00	יאאוזאפוואפ ראאוואפון	AGC	30	

- (2) INFORMATION FOR SEQ ID NO: 101:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH:

30

(B) TYPE:

nucleic acid

(C) STRANDEDNESS:

single

(D) TOPOLOGY:

linear

(ii) SEQUENCE DESCRIPTION: SEQ ID NO: 101:

AUUAGUAGUA GCAAUAAUAA UAGCAAUAGU

CLAIMS

1. An isolated oligonucleotide 25 to 100 nucleotides in length having a nucleic acid sequence substantially corresponding to an anti-HIV nucleic acid sequence selected from the group consisting of:

SEQ ID NO 1: ATTCCTTTGT GTGCTGGTAC CCATGC,

SEQ ID NO 2: CCTCCAATTC CTTTGTGTGC TGGTAC,

SEQ ID NO 3: GCTGGTGATC CTTTCCATCC CTGTGG,

SEQ ID NO 4: CTCCTTGACT TTGGGGATTG TAGGG,

SEQ ID NO 5: CTACTACTCC TTGACTTTGG GGATTG, and

SEQ ID NO 6: CCTCTGTTAG TAACATATCC TGCTTTTCC,

wherein said oligonucleotide inhibits propagation of HIV in vivo or in vitro.

- 2. The oligonucleotide of claim-1, wherein said oligonucleotide is 25 to 35 nucleotides in length.
- 3. The oligonucleotide of claim 2, wherein said oligonucleotide is DNA.
- 4. The oligonucleotide of claim 3, wherein said oligonucleotide comprises at least 50% phosphorothicate linkages.
- 5. The oligonucleotide of claim 4, wherein said oligonucleotide consists essentially of said anti-HIV nucleic acid sequence.
 - 6. An isolated oligonucleotide 18 to 100 nucleotides in length having a nucleic acid sequence substantially corresponding to an anti-HIV nucleic acid sequence selected from the group consisting of:

SEQ ID NO 7: CCCACTCCAT CCAGGTCATG TTATTCC,

SEQ ID NO 8: GGTTGCTTCC TTCCTCTCTG GTACCC,

SEQ ID NO 9: CCATTCATTG TGTGGCTCCC TCTGTGG,

SEQ ID NO 10: CTAGCAGTGG CGCCCGAACA GGTTCGCCTG
TTCGGGCGCC A,

- SEQ ID NO 11: CCCCCGCTTA ATACTGACGC TCTCGC,
- SEQ ID NO 12: CGATCTAATT CTCCCCCGCT TAATACTG,
- SEQ ID NO 13: CAGTATTAAG CGGGGGAGAA TTAGATCG,
- SEQ ID NO 14: CCTGTACCGT CAGCGTCATT,
- SEQ ID NO 15: GTCTGGCCTG TACCGTCAGC GTCATT,
- SEQ ID NO 16: GCCTCAATAG CCCTCAGCAA ATTGTT,
- SEQ ID NO 17: ATCTTTCCAC AGCCAGGATT CTT,
- SEQ ID NO 18: TCCTGGATGC TTCCAGGGCT CTAGTC,
- SEQ ID NO 20: GACTTCCTGG ATGCTTCCAG GGCTC,
- SEQ ID NO 21: CTCTCCTTTC TCCATTATCA TTCTCCCGC,
- SEQ ID NO 22: CATCACCTGC CATCTGTTTT CCATAATCCC,
- SEQ ID NO 23: CCTGTCTACT TGCCACACAA TCATCACCTG C,
- SEQ ID NO 24: GCTACTATTG CTACTATTGG TATAGGTTGC, and
- SEQ ID NO 25: ACTATTGCTA TTATTATTGC TACTACTAAT,

wherein said oligonucleotide inhibits propagation of HIV in vivo or in vitro.

- 7. The oligonucleotide of claim 6, wherein said oligonucleotide is 20 to 35 nucleotides in length.
- 8. The oligonucleotide of claim 7, wherein said oligonucleotide is DNA.
- 9. The isolated oligonucleotide of claim 8, wherein said oligonucleotide comprises at least 50% phosphorothicate linkages.
- 10. The oligonucleotide of claim 9, wherein said oligonucleotide consists essentially of said anti-HIV nucleic acid sequence.
- 11. An isolated oligonucleotide 20 to 100 nucleotides in length having a nucleic acid sequence selected from the group consisting of:
- SEQ ID NO 1: ATTCCTTTGT GTGCTGGTAC CCATGC,
- SEQ ID NO 2: CCTCCAATTC CTTTGTGTGC TGGTAC,
- SEQ ID NO 3: GCTGGTGATC CTTTCCATCC CTGTGG,

- SEQ ID NO 4: CTCCTTGACT TTGGGGATTG TAGGG,
- SEQ ID NO 5: CTACTACTCC TTGACTTTGG GGATTG,
- SEQ ID NO 6: CCTCTGTTAG TAACATATCC TGCTTTTCC,
- SEQ ID NO 7: CCCACTCCAT CCAGGTCATG TTATTCC,
- SEQ ID NO 8: GGTTGCTTCC TTCCTCTG GTACCC,
- SEQ ID NO 9: CCATTCATTG TGTGGCTCCC TCTGTGG,
- SEQ ID NO 10: CTAGCAGTGG CGCCCGAACA GGTTCGCCTG
 TTCGGGCGCC A,
- SEO ID NO 11: CCCCCGCTTA ATACTGACGC TCTCGC,
- SEQ ID NO 12: CGATCTAATT CTCCCCCGCT TAATACTG,
- SEQ ID NO 13: CAGTATTAAG CGGGGGAGAA TTAGATCG,
- SEQ ID NO 14: CCTGTACCGT CAGCGTCATT,
- SEQ ID NO 15: GTCTGGCCTG TACCGTCAGC GTCATT,
- SEQ ID NO 16: GCCTCAATAG CCCTCAGCAA ATTGTT,
- SEQ ID NO 17: ATCTTTCCAC AGCCAGGATT CTT,
- SEQ ID NO 18: TCCTGGATGC TTCCAGGGCT CTAGTC,
- SEQ ID NO 20: GACTTCCTGG ATGCTTCCAG GGCTC,
- SEQ ID NO 21: CTCTCCTTTC TCCATTATCA TTCTCCCGC,
- SEQ ID NO 22: CATCACCTGC CATCTGTTTT CCATAATCCC,
- SEQ ID NO 23: CCTGTCTACT TGCCACACAA TCATCACCTG C,
- SEQ ID NO 24: GCTACTATTG CTACTATTGG TATAGGTTGC,
- SEQ ID NO 25: ACTATTGCTA TTATTATTGC TACTACTAAT;
- RNA equivalents thereto, SEQ ID NOs: 26-43 and 45-50; and complements of the DNA and RNA equivalents, SEQ ID NOs: 52-69, 71-76, and 78-94 and 96-101.
- 12. The oligonucleotide of claim 11, wherein said oligonucleotide is 20 to 35 nucleotides in length.
- 13. The oligonucleotide of claim 12, wherein said oligonucleotide comprises at least 50% phosphorothioate linkages.
- 14. The oligonucleotide of claim 13, wherein said oligonucleotide consists essentially of said nucleic acid sequence.

15. A therapeutic composition able to inhibit propagation of HIV in a patient, comprising a therapeutically effective amount of an isolated oligonucleotide 25 to 100 nucleotides in length having a nucleic acid sequence region substantially corresponding to an anti-HIV nucleic acid sequence selected from the group consisting of:

SEQ ID NO 1: ATTCCTTTGT GTGCTGGTAC CCATGC,

SEQ ID NO 2: CCTCCAATTC CTTTGTGTGC TGGTAC,

SEQ ID NO 3: GCTGGTGATC CTTTCCATCC CTGTGG,

SEQ ID NO 4: CTCCTTGACT TTGGGGATTG TAGGG,

SEQ ID NO 5: CTACTACTCC TTGACTTTGG GGATTG, and

SEQ ID NO 6: CCTCTGTTAG TAACATATCC TGCTTTTCC,

and

- a pharmacological compatible carrier; wherein said oligonucleotide inhibits propagation of HIV in vivo or in vitro.
- 16. The therapeutic composition of claim 15, wherein said oligonucleotide is 25 to 35 nucleotides in length.
- 17. The therapeutic composition claim 16, wherein said oligonucleotide is DNA.
- 18. The therapeutic composition of claim 17, wherein said oligonucleotide comprises at least 50% phosphorothicate linkages.
- A therapeutic composition able to inhibit propagation of HIV in comprising patient, therapeutically effective amount of isolated oligonucleotide 18 to 100 nucleotides in length having a nucleic acid sequence region substantially corresponding to an anti-HIV nucleic acid sequence selected from the group consisting of:

SEQ ID NO 7: CCCACTCCAT CCAGGTCATG TTATTCC,

```
SEQ ID NO 8: GGTTGCTTCC TTCCTCTG GTACCC,
              CCATTCATTG TGTGGCTCCC TCTGTGG,
SEQ ID NO 9:
SEQ ID NO 10: CTAGCAGTGG CGCCCGAACA GGTTCGCCTG
              TTCGGGCGCC A,
SEQ ID NO 11: CCCCCGCTTA ATACTGACGC TCTCGC,
SEQ ID NO 12: CGATCTAATT CTCCCCCGCT TAATACTG,
SEQ ID NO 13: CAGTATTAAG CGGGGGAGAA TTAGATCG,
SEQ ID NO 14: CCTGTACCGT CAGCGTCATT,
SEQ ID NO 15: GTCTGGCCTG TACCGTCAGC GTCATT,
SEQ ID NO 16: GCCTCAATAG CCCTCAGCAA ATTGTT,
SEQ ID NO 17: ATCTTTCCAC AGCCAGGATT CTT,
SEQ ID NO 18: TCCTGGATGC TTCCAGGGCT CTAGTC,
SEQ ID NO 20: GACTTCCTGG ATGCTTCCAG GGCTC,
SEQ ID NO 21: CTCTCCTTTC TCCATTATCA TTCTCCCGC,
SEQ ID NO 22: CATCACCTGC CATCTGTTTT CCATAATCCC,
SEQ ID NO 23: CCTGTCTACT TGCCACACAA TCATCACCTG C,
SEQ ID NO 24: GCTACTATTG CTACTATTGG TATAGGTTGC,
SEQ ID NO 25: ACTATTGCTA TTATTATTGC TACTACTAAT,
and
```

- a pharmacological compatible carrier, wherein said oligonucleotide inhibits propagation of HIV in vivo or in vitro.
- 20. A recombinant nucleic acid comprising a transcription recognition site operably linked to a nucleic acid sequence region substantially corresponding to an anti-HIV nucleic acid sequence selected from the group consisting of:
- SEQ ID NO 1: ATTCCTTTGT GTGCTGGTAC CCATGC,
- SEQ ID NO 2: CCTCCAATTC CTTTGTGTGC TGGTAC,
- SEQ ID NO 3: GCTGGTGATC CTTTCCATCC CTGTGG,
- SEQ ID NO 4: CTCCTTGACT TTGGGGATTG TAGGG,
- SEQ ID NO 5: CTACTACTCC TTGACTTTGG GGATTG,
- SEQ ID NO 6: CCTCTGTTAG TAACATATCC TGCTTTTCC,
- SEQ ID NO 7: CCCACTCCAT CCAGGTCATG TTATTCC,
- SEQ ID NO 8: GGTTGCTTCC TTCCTCTG GTACCC,
- SEQ ID NO 9: CCATTCATTG TGTGGCTCCC TCTGTGG,

- SEQ ID NO 10: CTAGCAGTGG CGCCCGAACA GGTTCGCCTG
 TTCGGGCGCC A,
- SEQ ID NO 11: CCCCCGCTTA ATACTGACGC TCTCGC,
- SEO ID NO 12: CGATCTAATT CTCCCCCGCT TAATACTG,
- SEQ ID NO 13: CAGTATTAAG CGGGGGAGAA TTAGATCG,
- SEQ ID NO 14: CCTGTACCGT CAGCGTCATT,
- SEQ ID NO 15: GTCTGGCCTG TACCGTCAGC GTCATT,
- SEQ ID NO 16: GCCTCAATAG CCCTCAGCAA ATTGTT,
- SEQ ID NO 17: ATCTTTCCAC AGCCAGGATT CTT,
- SEQ ID NO 18: TCCTGGATGC TTCCAGGGCT CTAGTC,
- SEQ ID NO 20: GACTTCCTGG ATGCTTCCAG GGCTC,
- SEQ ID NO 21: CTCTCCTTTC TCCATTATCA TTCTCCCGC,
- SEQ ID NO 22: CATCACCTGC CATCTGTTTT CCATAATCCC,
- SEQ ID NO 23: CCTGTCTACT TGCCACACAA TCATCACCTG C,
- SEQ ID NO 24: GCTACTATTG CTACTATTGG TATAGGTTGC, and
- SEQ ID NO 25: ACTATTGCTA TTATTATTGC TACTACTAAT,
- wherein said anti-HIV nucleic acid sequence encodes an oligonucleotide which inhibits propagation of HIV in vivo or in vitro.
- 21. A method of inhibiting or decreasing propagation of HIV comprising the step of contacting a cell infected with HIV with an HIV propagation decreasing effective amount of an oligonucleotide 18-100 nucleotides in length having a nucleic acid sequence region substantially corresponding to an anti-HIV nucleic acid sequence selected from the group consisting of:
- SEQ ID NO 7: CCCACTCCAT CCAGGTCATG TTATTCC,
- SEQ ID NO 8: GGTTGCTTCC TTCCTCTCTG GTACCC,
- SEO ID NO 9: CCATTCATTG TGTGGCTCCC TCTGTGG,
- SEQ ID NO 10: CTAGCAGTGG CGCCCGAACA GGTTCGCCTG
 TTCGGGCGCC A,
- SEQ ID NO 11: CCCCCGCTTA ATACTGACGC TCTCGC,
- SEO ID NO 12: CGATCTAATT CTCCCCCGCT TAATACTG,
- SEQ ID NO 13: CAGTATTAAG CGGGGGAGAA TTAGATCG,
- SEQ ID NO 14: CCTGTACCGT CAGCGTCATT,
- SEQ ID NO 15: GTCTGGCCTG TACCGTCAGC GTCATT,

- SEQ ID NO 16: GCCTCAATAG CCCTCAGCAA ATTGTT,
- SEQ ID NO 17: ATCTTTCCAC AGCCAGGATT CTT,
- SEQ ID NO 18: TCCTGGATGC TTCCAGGGCT CTAGTC,
- SEQ ID NO 20: GACTTCCTGG ATGCTTCCAG GGCTC,
- SEQ ID NO 21: CTCTCCTTTC TCCATTATCA TTCTCCCGC,
- SEQ ID NO 22: CATCACCTGC CATCTGTTTT CCATAATCCC,
- SEQ ID NO 23: CCTGTCTACT TGCCACACAA TCATCACCTG C,
- SEQ ID NO 24: GCTACTATTG CTACTATTGG TATAGGTTGC, and
- SEQ ID NO 25: ACTATTGCTA TTATTATTGC TACTACTAAT,
- wherein said oligonucleotide inhibits propagation of HIV.
- 22. The method of claim 21, wherein said oligonucleotide is 20 to 35 nucleotides in length.
- 23. The method of claim 22, wherein said oligonucleotide is DNA.
- 24. The method of claim 23, wherein said oligonucleotide comprises at least 50% phosphorothicate linkages.
- 25. The method claim 24, wherein said cligonucleotide consists essentially of said anti-HIV nucleic acid sequence.
- propagation of HIV comprising the step of contacting a cell infected with HIV with an HIV propagation decreasing effective amount of an oligonucleotide 25-100 nucleotides in length having a nucleic acid sequence region substantially corresponding to an anti-HIV nucleic acid sequence selected from the group consisting of:
- SEQ ID NO 1: ATTCCTTTGT GTGCTGGTAC CCATGC,
- SEQ ID NO 2: CCTCCAATTC CTTTGTGTGC TGGTAC,
- SEQ ID NO 3: GCTGGTGATC CTTTCCATCC CTGTGG,
- SEQ ID NO 4: CTCCTTGACT TTGGGGATTG TAGGG,
- SEQ ID NO 5: CTACTACTCC TTGACTTTGG GGATTG,

SEQ ID NO 6: CCTCTGTTAG TAACATATCC TGCTTTTCC,

- 27. The method of claim 26, wherein said oligonucleotide is 20 to 35 nucleotides in length.
- 28. The method of claim 27, wherein said oligonucleotide is DNA.
- 29. The method of claim 28, wherein said oligonucleotide comprises at least 50% phosphorothioate linkages.
- 30. The method of claim 29, wherein said oligonucleotide consists essentially of said anti-HIV nucleic acid sequence.
- 31. A method for treating a patient infected with HIV comprising the step of administering to said patient a therapeutically effective amount of an cligonucleotide 18 to 100 nucleotides in length having a nucleic acid sequence region substantially corresponding to an anti-HIV nucleic acid sequence selected from the group consisting of:
- SEO ID NO 1: ATTCCTTTGT GTGCTGGTAC CCATGC,
- SEQ ID NO 2: CCTCCAATTC CTTTGTGTGC TGGTAC,
- SEQ ID NO 3: GCTGGTGATC CTTTCCATCC CTGTGG,
- SEQ ID NO 4: CTCCTTGACT TTGGGGATTG TAGGG,
- SEQ ID NO 5: CTACTACTCC TTGACTTTGG GGATTG,
- SEQ ID NO 6: CCTCTGTTAG TAACATATCC TGCTTTTCC,
- SEQ ID NO 7: CCCACTCCAT CCAGGTCATG TTATTCC,
- SEO ID NO 8: GGTTGCTTCC TTCCTCTG GTACCC,
- SEQ ID NO 9: CCATTCATTG TGTGGCTCCC TCTGTGG,
- SEQ ID NO 10: CTAGCAGTGG CGCCCGAACA GGTTCGCCTG
 TTCGGGCGCC A.
- SEQ ID NO 11: CCCCCGCTTA ATACTGACGC TCTCGC,
- SEQ ID NO 12: CGATCTAATT CTCCCCCGCT TAATACTG,
- SEO ID NO 13: CAGTATTAAG CGGGGGAGAA TTAGATCG,

- SEQ ID NO 14: CCTGTACCGT CAGCGTCATT,
- SEQ ID NO 15: GTCTGGCCTG TACCGTCAGC GTCATT,
- SEQ ID NO 16: GCCTCAATAG CCCTCAGCAA ATTGTT,
- SEQ ID NO 17: ATCTTTCCAC AGCCAGGATT CTT,
- SEQ ID NO 18: TCCTGGATGC TTCCAGGGCT CTAGTC,
- SEQ ID NO 20: GACTTCCTGG ATGCTTCCAG GGCTC,
- SEQ ID NO 21: CTCTCCTTTC TCCATTATCA TTCTCCCGC,
- SEQ ID NO 22: CATCACCTGC CATCTGTTTT CCATAATCCC,
- SEQ ID NO 23: CCTGTCTACT TGCCACACAA TCATCACCTG C,
- SEQ ID NO 24: GCTACTATTG CTACTATTGG TATAGGTTGC, and
- SEQ ID NO 25: ACTATTGCTA TTATTATTGC TACTACTAAT, wherein said oligonucleotide inhibits propagation of HIV in said patient.
- 32. The method of claim 31, wherein said oligonucleotide is 20 to 35 nucleotides in length.
- 33. The method of claim 32, wherein said oligonucleotide is DNA.
- 34. The method of claim 33, wherein said oligonucleotide comprises at least 50% phosphorothicate linkages.
- 35. The method claim 34, wherein said oligonucleotide consists essentially of said anti-HIV nucleic acid sequence.

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

nM Oligonucleotide

104

105

102

0.0 L 10 l

SUBSTITUTE SHEET (RULE 26)

p24 Antigen (pg/ml)

F16. 4.

SUBSTITUTE SHEET (RULE 26)

Inter onal Application No PC I/US 95/09080

PCI/US 95/09080 CLASSIFICATION OF SUBJECT MATTER C12N15/11 IPC 6 A61K31/70 C12Q1/68 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N C07H A61K C120 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, tearch terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant pastages Relevant to claim No. Y EP,A,O 300 687 (CITY OF HOPE) 25 January 1-35 1989 see the whole document Y WO, A, 94 08004 (HYBRIDON, INC.) 14 April 1-35 1994 see the whole document WO, A, 87 07300 (WORCESTER FOUNDATION FOR 1-35 EXPERIMENTAL BIOLOGY) 3 December 1987 see the whole document US, A, 5 144 019 (ROSSI ET AL.) 1 September 1-35 1992 see the whole document Further documents are listed in the continuation of box C. X X Patent (amily members are listed in annex. Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but oned to understand the principle of theory underlying this "A" document defining the general state of the art which is not considered to be of particular relevance 'E' earlier document but published on or after the international "X" document of particular relevance; the daimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken above. filing date document which they throw doubts on priority claim(s) or which is cited to establish the publication date of another catabon or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person didled "O" document referring to an oral disclosure, use, exhibition or in the art. document published prior to the international filing date but later than the priority date claimed "A" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 04.12.95 28 November 1995 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiasn 2 NL - 2220 HV Rigwrijk Tel. (~31-70) 340-2040, Tx. 31 651 epo nl, Faz: (~31-70) 340-3016 Scott, J

Insertional Application No PC (/US 95/09080

C.(Continu	IRON) DOCUMENTS CONSIDERED TO BE RELEVANT	
		Relevant to claim No.
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Minary or community
Υ .	WO,A,92 16180 (SISKA DIAGNOSTICS, INC.) 1 October 1992 see the whole document	1-35
Y	WO,A,88 10300 (MEDICO LABS AG) 29 December 1988 see the whole document	1-35
Y	EP,A,O 339 569 (PHILLIPS PETROLEUM COMPANY) 2 November 1989 see the whole document	1-35
P,X	EP,A,O 617 132 (GEN-PROBE, INC.) 28 September 1994 see the whole document	1-35
Υ .	WO,A,85 05636 (DANA-FARBER CANCER INSTITUTE) 19 December 1985 see the whole document	1-35
		· .
•		
		·
	· ·	
	<u>'</u>	
	·	
		·

In ational application No.
PCT/US.95/09080

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet) U 6 1.2. 155 5
This inte	rmational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: 1-35 because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claims 1-35 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alieged effects of the compound/composition.
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
J	Claims Noz.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(2).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inc	ernational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

.oformation on patent family members

Inter total Application No PCI/US 95/09080

Patent document cited in search report	Publication date	Patent family member(r)		Publication date
EP-A-300687		US-A- 5110802		
WO-A-9408004	14-04-94	AU-B-	5402894	26-04-94
		EP-A-	0664833	02-08-95
*		F1-A-	951600	10-05-95
		NO-A-	951307	01-06-95
	, ·	PL-A-	308261	24-07-95
WO-A-8707300	03-12-87	US-A-	4806463	21-02-89
		AT-T-	112310	15-10-94
		AU-B-	7487787	22-12-87
		DE-D-	3750615	03-11-94
		DE-T-	3750615	04-05-95
		EP-A-	0412964	20-02-91
		US-A-	5194428	16-03-93
US-A-5144019	01-09-92	US-A-	5272262	21-12-93
WO-A-9216180	01-10-92	AU-A-	1741692	21-10-92
WD-A-8810300	29-12-88	AU-B-	1985588	19-01-89
MO V SPISSO	E3 12 00	AU-B-	1995888	19-01-89
• •		WO-A-	8810301	29-12-88
		EP-A-	0299242	18-01-89
	,	EP-A-	0304578	01-03-89
		EP-A-	0300213	25-01-89
•		JP-T-	2501186	26-04-90
		JP-T-	2501187	26-04-90
 EP-A-339569	02-11-89	AU-B-	3327789	26-10-89
	11 V	JP-A-	2020286	23-01-90
EP-A-617132	28-09-94	AU-B-	6551594	24-10-94
		WO-A-	9423069	13-10-94
WO-A-8505636	19-12-85	US-A-	4738922	19-04-88
	+-	AU-B-	4430885	31-12-85
		DE-D-	3587899	15-09-94
		DE-T-	3587899	30-03-95
		EP-A-	0181929	28-05-86

Patent document	Publication	Paten	family	95/09080 Publication
cited in search report	date		iber(s)	date
WO-A-8505636		JP-T- US-A-	61502793 4981790	04-12 - 86 01-01 - 91
	,, ,,			
				•
			•	•
	•			
•			V .	
		•		
	•		•	
. •				
•				
		r		
		•		•
•		•, •,		
			•	
	•			
•				
		•		
			•	
				-

THIS PAGE BLANK (USPTO)