Pre-LAB: Dehnbare Stoffe, Team 4

Justus Weyers, Milena Mensching

16. November 2022

1 Hookesches Gesetz

Beschreiben Sie das Hookesches Model

Das Hookesche Gesetz beschreibt die elastische Verformung dehnbarer Stoffe durch eine Kraft. Bei dem Körper/ Stoff handelt es sich beispielsweise um eine Feder. Die Spannkraft F ist dabei proportional zur Längenänderung Δx . Die Proportionalitätskonstante heißt Federkonstante D.

$$\Rightarrow \Delta F \sim \Delta x$$

$$\Delta F = -D * \Delta x \tag{1}$$

2 Annahmen beim Hookeschen Modell

Welche Annahmen werden beim Hookeschen Modell vorausgesetzt?

- Vernachlässigung von Energieumwandlung (z.B.: durch Reibung, $W = F_s * s$)
- Lineare Kraft-Auslenkungs-Beziehung
- Der Stoff muss dehnbar sein, die Elastizitätsgrenze darf jedoch nicht überschritten werden.

3 Experimentelle Ermittlung der Federkonstante

Wie kann man die Federkonstante einer idealen Feder durch ein Experiment ermitteln?

Die Federkonstante einer idealen Feder kann durch einen Zugversuch ermittelt werden. Dabei wird ein (im besten Fall geeichtes) Gewicht ($m_{Gewicht}$) an eine befestigte, senkrecht hängende Feder gehangen (mit m_{Feder} , Gewichtskraft F_G wirkt). Die Auslenkung x gegenüber der Nullauslenkung x_0 durch die Zugkraft F_{Zug} wird mit Hilfe einer geeigneten Skala (wiederholt) gemessen.

Mit Gleichung 1 ergibt sich für die Federkonstante D:

$$D = -\frac{\Delta F}{\Delta x}$$

$$\Rightarrow = -\frac{F_{Zug} - F_G}{x - x_0}$$

$$= -\frac{g * (m_{Gewicht} - m_{Feder})}{x - x_0}$$
(2)

g: Erdbeschleunigung $9,81\frac{m}{s^2}$

4 Messunsicherheiten

Wie wird die dazugehörige Messunsicherheit (der Federkonstante) berechnet?

Mehrere Messungen	Einmalige Messung
Standardabweichung des Mittelwerts $(\sigma_{\bar{x}})$	Ablesefehler (u_{skala})
evtl. Unsicherheit aus Gewichtsmessung (u_G)	evtl. Unsicherheit aus Gewichtsmessung (u_G)
Formeln:	
u_G abhängig von Art der Messung	u_G abhängig von Art der Messung
Mittelwert: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	$u_{skala} = \frac{a}{2\sqrt{6}}$
Standardabweichung: $\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$	
Standardabweichung des Mittelwerts: $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$	

5 Gummiband Kraftsensor

Wie könnte man mit einem Gummiband ein Kraftsensor bauen?

Der Prozess der Ausdehnung eines Gummibandes lässt sich nicht unbedingt (oder nur für bestimmte Dehnungsgrade) durch das Hooksche Gesetz beschreiben. Die Auslenkungs-Kraft-Beziehung ist anders als zum Beispiel bei einer Feder nicht linear, es lässt sich also keine Proportionalitätskonstante (Federkonstante) festlegen.

Für einen Kraftsensor, welcher ein Gummiband verwendet, muss die Auslenkungs-Kraft-Beziehung beispielsweise als Schaubild, idealerweise als mathematische Funktion, bekannt sein. Dann ließe sich dieses Gerät analog zu einem Messgerät mit Feder verwenden. Zum Bestimmen der Kraft müsste dann auf dem Schaubild die der Auslenkung entsprechende Zugkraft abgelesen werden.

Typischerweise beruht allerdings bei Kraftsensoren oder auch bei Waagen die Messung auf der Verwendung von Federn. Dies ist praktischer als die Verwendung eines Gummibandes und durch das Hooksche Gesetz beschreibbar.