Frist for innlevering: Tirsdag 24. mars kl 17.00

## **ØVING 8**

## Oppgåve 1 Elektron i potensial med to $\delta$ -funksjonar



Eit elektron bevegar seg i eit endimensjonalt potensial som består av ein deltabrønn og ein deltabarriere:

$$V(x) = -\frac{\hbar^2}{m_e a_0} g\delta(x) + \frac{\hbar^2}{m_e a_0} f\delta(x - b).$$

Her er g > 0, f > 0 og  $b \ge 0$ .

- a) Kva veg knekkjer ein energiegenfunksjon  $\psi$  ved brønnen (mot aksen eller bort frå den), og kva veg knekkjer den ved barrieren? Hint: Tenk på deltabrønnen som ein veldig djup og veldig trang brønn, og finn ut korleis  $\psi$  må krumme. Kvifor må ein eigenfunksjon  $\psi$  for ein bunden tilstand for dette systemet krumme utover frå aksen unntatt i origo?
- b) La oss halde brønnstyrken g fast. For f=0 følgjer det frå forelesningane at vi har éin bunden tilstand med energien  $E=-g^2\hbar^2/(2m_ea_0^2)$ . For aukande barrierestyrke f ligg det i korta at bindingsenergien til denne tilstanden avtar. Vi skal nå undersøkje om det finnast ein f-verdi som er så stor at energien til tilstanden er E=0. Denne tilstanden,  $\psi_0$ , må vere lineær både for x<0, 0< x< b og x>b sidan  $\psi_0''$  er lik null i desse områda når E=0. Kvifor kan vi like godt sette  $\psi_0=1$  for x<0? Bruk diskontinuitetskravet som du finn nedanfor til å finne  $\psi_0'$  rett til høgre for brønnen, og finn  $\psi_0(x)$  i området 0< x< b.
- c) Vi skal nå sjå på tilfellet  $0 < b < a_0/2g$ . Bruk diskontinuitetskravet i x = b til å finne den f-verdien som gjer at  $\psi_0$  blir lik ein konstant for x > b (slik vi må krevje av ein eigenfunksjon med E = 0). Kall denne f-verdien for  $f_0(b)$ . Sjå på  $f_0(b)$  for tilfella
- (i)  $b \to 0$ ,
- (ii)  $b = a_0/4g$ ,
- (iii)  $b \to a_0/2q$ .
- d) Skissér  $\psi_0$  t.d for tilfellet  $b = a_0/4g$ . Forklar kvifor  $\psi_0$  er grunntilstanden, slik at vi ikke har nokre bundne tilstandar for dette systemet. Hint: Prøv å sette  $\psi = e^{\kappa x}$  for x < 0, og finn ut korleis denne løysinga må ta seg ut samanlikna med  $\psi_0$  når du bruker skjøtekravet

og "jobbar deg mot høgre". Ei skisse som viser korleis  $\psi$  krummar samanlikna med  $\psi_0$  vil vere nyttig.

e) Vi har nå sett at dersom  $0 < b < a_0/2g (\equiv b_0)$ , kan vi "fjerne" den bundne tilstanden ved hjelp av deltabarrieren med styrken  $f_0(b)$ . For b større enn  $b_0$  går ikkje dette. Grunntilstanden blir da bunden sjølv om vi vel ein uendeleg stor barrierestyrke f. La oss rekne på dette tilfellet, som er enklare enn når f er endeleg. Kva seier diskontinuitetskravet

$$\psi'(b^+) - \psi'(b^-) = \frac{2f}{a_0}\psi(b)$$

om  $\psi(b)$  i grensa  $f \to \infty$ ? Kvifor må grunntilstanden da vere på forma  $C \sinh[\kappa(x-b)]$  i området 0 < x < b? . Kva blir forma for x < 0? Vis at  $\kappa$  og dermed energien  $E = -\kappa^2 \hbar^2/(2m_e)$  kan finnast frå kravet

$$\kappa b(\coth(\kappa b) + 1) = \frac{2gb}{a_0} \equiv \frac{b}{b_0}.$$

Dette kravet kan ein omforme til

$$1 - e^{-2\kappa b} = \frac{2\kappa b}{b/b_0}.$$

Skissér venstre - og høgresida i denne likninga i same diagram som funksjonar av  $2\kappa b$ , og forklar kvifor dei to kurvene må skjere kvarandre for eit positivt argument  $2\kappa b$  når  $b > b_0$ . Hint: Sjå på dei deriverte for  $\kappa = 0$ .

Sett  $b = a_0/g = 2b_0$ , rekn ut  $2\kappa b$  numerisk, og finn forholdet mellom energien og grunntilstandsenergien vi har for f = 0.

**Oppgjeven:** Med  $V(x) = \alpha \delta(x - c)$  må ein energieigenfunksjon oppfylle diskontinuitetskravet

$$\psi'(c^+) - \psi'(c^-) = \frac{2m\alpha}{\hbar^2} \psi(c).$$