En coordenadas esféricas, W está definida por las desigualdades $\rho_1 \le \rho \le \rho_2, 0 \le \theta \le 2\pi$ y $0 \le \phi \le \pi$, de modo que

$$-V(0,0,R) = \int_{\rho_1}^{\rho_2} \int_0^{\pi} \int_0^{2\pi} \frac{\rho^2 \sin \phi \, d\theta \, d\phi \, d\rho}{\sqrt{\rho^2 \sin^2 \phi (\cos^2 \theta + \sin^2 \theta) + (\rho \cos \phi - R)^2}}$$

Sustituyendo $\cos^2 \theta + \sin^2 \theta$ por 1, de forma que el integrando ya no dependa de θ , podemos integrar en θ y obtener

$$-V(0,0,R) = 2\pi \int_{\rho_1}^{\rho_2} \int_0^{\pi} \frac{\rho^2 \sin \phi \, d\phi \, d\rho}{\sqrt{\rho^2 \sin^2 \phi + (\rho \cos \phi - R)^2}}$$
$$= 2\pi \int_{\rho_1}^{\rho_2} \rho^2 \left(\int_0^{\pi} \frac{\sin \phi \, d\phi}{\sqrt{\rho^2 - 2R\rho \cos \phi + R^2}} \right) d\rho.$$

La integral interior en ϕ puede evaluarse por medio del cambio $u=-2R\rho\cos\phi$. Obtenemos

$$\begin{split} \frac{1}{2R\rho} \int_{-2R\rho}^{2R\rho} (\rho^2 + u + R^2)^{-1/2} \, du &= \frac{2}{2R\rho} (\rho^2 + u + R^2)^{1/2} \Big|_{-2R\rho}^{2R\rho} \\ &= \frac{1}{R\rho} \left[(\rho^2 + 2R\rho + R^2)^{1/2} - (\rho^2 - 2R\rho + R^2)^{1/2} \right] \\ &= \frac{1}{R\rho} \left\{ \left[(\rho + R)^2 \right]^{1/2} - \left[(\rho - R)^2 \right]^{1/2} \right\} \\ &= \frac{1}{R\rho} (\rho + R - |\rho - R|). \end{split}$$

La expresión $\rho+R$ siempre es positiva, pero $\rho-R$ puede no serlo, por lo que debemos mantener el signo de valor absoluto. Sustituyendo en la fórmula de V, obtenemos

$$-V(0,0,R) = 2\pi \int_{\rho_1}^{\rho_2} \frac{\rho^2}{R\rho} (\rho + R - |\rho - R|) d\rho = \frac{2\pi}{R} \int_{\rho_1}^{\rho_2} \rho(\rho + R - |\rho - R|) d\rho.$$

Consideramos para R dos posibilidades, que corresponden al potencial gravitatorio de objetos en el exterior o en el interior de la bola hueca W.

Caso 1. Si $R \ge \rho_2$ [es decir, si (x_1, y_1, z_1) está fuera de W], entonces $|\rho - R| = R - \rho$ para todo ρ en el intervalo $[\rho_1, \rho_2]$, de forma que

$$-V(0,0,R) = \frac{2\pi}{R} \int_{\rho_1}^{\rho_2} \rho[\rho + R - (R - \rho)] d\rho = \frac{4\pi}{R} \int_{\rho_1}^{\rho_2} \rho^2 d\rho = \frac{1}{R} \frac{4\pi}{3} (\rho_2^3 - \rho_1^3).$$

El factor $(4\pi/3)(\rho_2^3-\rho_1^3)$ es igual al volumen de W. Teniendo ahora en cuenta las constantes G,m y la densidad de masa, llegamos a que el potencial gravitatorio es -GmM/R, donde M es la masa de W. Por tanto, V es exactamente igual a lo que sería si toda la masa de W estuviera concentrada en el punto central.