Error Control and Detection

Fundamentos de Redes

Mestrado Integrado em Engenharia de Computadores e Telemática DETI-UA

Error Control in a Communication Channel

Causes:

- Corrupted packets (data received with errors);
- Lost packets;
- Packets received out of order.

Solutions:

- Sender and receiver must be able to coordinate between them to retransmit a lost or corrupted packet.
- Retransmit protocols: ARQ (Automatic Repeat reQuest).

Error Control Assumptions

- Errors are always detected;
- Frames/packets may have variable (limited) delays:
- Some frames/packets may be lost.

Stop-and-Wait (SW)

Operation without errors:

Stop-and-Wait (SW)

Operation with error and recover:

Stop-and-Wait (SW)

- Messages have a sequence number and a request number.
 - The sequence number identifies the messages sent.
 - The request number allow the receiver to notify the sender about the received message and next message expected.

Go-Back-N (GB-N)

- The sender is allowed to send more than one message before receiving the confirmation of reception of the previous messages.
 - Window with size N N defines the number of messages that may be sent without confirmation of reception of the first.
- •The sender, after a timeout, resends the first message without confirmation of reception and all of the following.
- •The receiver, after receiving all messages until a sequence number equal to n (SN=n), accepts only the message with SN=n+1.
 - Drops all the others.
- •The receiver, responds with a request number (RN) to identified the next message not received.
 - Implicitly, indicates that all messages up to RN were correctly received.

Selective Repeat (SR)

- The sender is allowed to send more than one message before receiving the confirmation of reception of the previous messages.
 - Window with size N N defines the number of messages that may be sent without confirmation of reception of the first.
- •The sender, after a timeout, resends a message without confirmation of reception.
- •The receiver, after receiving all messages until a sequence number equal to n (SN=n), accepts to receive all messages with SN>n and SN \leq N+n.
- •The receiver, responds with a request number (RN) to identified the next message not received, and the higher payload/message number correctly received (P).

Error Detection

Performed at multiple Layers.

- Nowadays the (new protocols) tendency is to be performed only at the physical/link layer and application layer.
 - Has a performance impact.
 - E.g., IPv4 supports it, IPv6 does not.

Methods

- CRC (Cyclic-Redundancy Check)
 - Based on the theory of cyclic error-correcting codes.
 - Adds a fixed-length check value to messages.
 - Requires of a generator polynomial.
 - The binary message with the CRC field is divided by the generator polynomial.
 - No errors imply remainder equal to zero.
- Checksums and hash/digest values
 - Generated by a predefined function that receives as input all message bits.
 - Value is appended to message.