Instructor(s): Dr. Kenneth Duru First Semester 2019 Mathematical Sciences Institute Australian National University

Assignment 4

This assignment must be submitted by 17th May 5pm. Late submissions will incur a 5% penalty per working day. Assignment submissions will close on the 24th May 5pm. Submissions after this time will be invalid.

Question 1 (General, polynomial) [20pts]

• [5pts] Using only properties of basic real arithmetic show that

$$1 + x + x^2/2 + x^3/6 = ((x/3+1)x/2+1)x + 1.$$

- [5pts] Let $f(x) = \max(1 |2x 1|, 0), x \in [0, 1]$. Can this function be approximated to an error less than 10^{-9} using only polynomials? Justify your answer.
- [5pts] Compute the linear interpolant of f(x) with

$$f(x) = \begin{cases} \frac{1}{|2x-1|}, & x \neq 0.5, \\ 0, & x = 0.5, \end{cases}$$

and the interpolation points $x_0 = 0$ and $x_1 = 1$. What is the largest interpolation error in the interval [0,1]?

• [5pts] How many floating point multiplications do you require to evaluate a Newton inter-polant p(x) of degree 4 and the interpolation points $x_k = k/4$ for k = 0, 1, 2, 3, 4 both for $x = \pi$ and x = -1. Use the Horner-like approach discussed in the lectures and take into account the special values of x_k and x.

Question 2 (Newton form) [20pts]

- [7pts] Use Newton the interpolation method with the interpolation points $x_0 = 0$, $x_1 = 1$, $x_2 = 1/2$ to compute the polynomial interpolant p(x) of the function $f(x) = 1 + x + x^2/2 + x^3/6$. What is the error e(x) = p(x) f(x). Prove your error result without using Taylor's remainder theorem.
- [7pts] What are the Newton interpolants $p_0(x)$, $p_1(x)$, $p_2(x)$ and $p_4(x)$ for the interpolation points $x_0 = 0$, $x_1 = 1$, $x_2 = 0.5$, $x_3 = 0.25$ and

 $x_4 = 0.75$ for any function f(x) with $f(x_k) = y_k$. What is the ratio $(p_2(x) - p_4(x))/(p_1(x) - p_2(x))$? We assume that $p_4(x) = c_0 + c_1 n_1(x) + c_2 n_2(x) + c_3 n_3(x) + c_4 n_4(x)$ where $n_k(x)$ are the basis functions of the Newton interpolant and all $c_k \neq 0$.

• [6pts] Compare the ratio $(p_2(x) - p_4(x))/(p_1(x) - p_2(x))$ from the previous question to the ratio $(p_2(x) - f(x))/(p_1(x) - f(x))$ and we assume that $f^{(k)}(x) \neq 0$ for all k

Question 3 (Error) [20pts]

- [7pts] What is the interpolation error e(x) = p(x) f(x) of the polynomial interpolant p(x) of degree 3 for $x_k = 2k/3 1$ and $f(x) = x^4 1.2356x^2$, where k = 0, 1, 2, 3 and -1 < x < 1.
- [7pts] Give a general formula for all polynomials p(x) of degree 5 for which p(k/4) = 0 for k = 0, 1, 2, 3, 4.
- [7pts] Use the error formulas to get an upper bound (not containing x) for the error of the approximation of a function $f \in C^3[-1,1]$ using
 - the interpolant with points $x_k = -1, 0, 1,$
 - the interpolant of degree 2 with Chebyshev interpolation points,
 - the Taylor polynomial of degree 2 centred at x=0.

Explain why the Chebyshev interpolation points give the best approximation in general, if possible, for any n.

Tutorial (By tutor at the beginning of the tutorial.)

- Revise Horner's formula, example $p(x) = 3x^2 + 2x 1$ and for the general Newton interpolation formula of degree 2.
- Revise Newton's interpolation formula, how it computes degree k interpolants $p_k(x)$ by looking at the recursion $p_{k+1}(x) = p_k(x) + c_k n_k(x)$.
- Apply the error interpolation formula to the polynomial interpolation of f(x) = exp(-x) for the interpolation points $x_0 = 0$, $x_1 = 1.0$ and $x_2 = 0.5$. (Note they are not ordered.)
- Definition of Chebyshev polynomials, Chebyshev interpolation formula and the error formulawhen using 2 Chebyshev interpolation points (say what they are) for the interval [-1,1].
- Theory of polynomials: uniqueness (up to constant factor) of polynomial of degree k with given zeros. Application of this result to show uniquenes of interpolant. Example for degree 2 and $x_0 = 0$, $x_1 = 1$ and $x_2 = 0.5$.