Kernel Methods: Wrapup and Review

David Rosenberg

New York University

February 28, 2017

Kernelization

David Rosenberg (New York University)

DS-GA 1003

February 28, 2017 2 / 27

Linear Models

- So far we've discussed
 - Linear regression
 - Ridge regression
 - Lasso regression
 - Support Vector Machines
 - Perceptrons
- Each of these methods assumes
 - Input space \mathfrak{X} .
 - Feature map $\psi: \mathfrak{X} \to \mathbf{R}^d$.
 - Linear (or affine) hypothesis space:

$$\mathcal{H} = \left\{ x \mapsto w^T \psi(x) \mid w \in \mathbf{R}^d \right\}.$$

What is a Kernelized Method?

Definition

A method is **kernelized** if every reference to an element of the input space $x_1 \in \mathcal{X}$ occurs in an inner product with another element of the input space, such as $\langle \psi(x_1), \psi(x_2) \rangle$ for some $x_2 \in \mathcal{X}$.

• The **kernel function** corresponding to ψ is

$$k(x_1, x_2) = \langle \psi(x_1), \psi(x_2) \rangle$$
.

Is it Kernelized?

- What if $\mathfrak{X} = \mathbb{R}^d$ and we see x's always show up as $x_i^T x_j$. Is that kernelized?
- Yes! Consider the identity feature map $\psi(x) = x$ with the standard inner product.
- What if x's only show up in XX^T ?
- Yes! Every matrix entry is an inner product: $(XX^T)_{ij} = x_i^T x_j$.
- What if x's only show up in X^TX ?
- No! Every matrix entry is inner product between single features:

$$(X^TX)_{ij} = f_i^T f_j,$$

where f_i is the *i*th coordinate for all x's.

A Generalized Linear Objective Function

Generalize from SVM Objective

Featurized SVM objective:

$$\min_{w \in \mathbf{R}^d} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \left(1 - y_i \left[\langle w, \psi(x_i) \rangle \right] \right)_+.$$

• Generalized objective:

$$\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, \psi(x_1) \rangle, \dots, \langle w, \psi(x_n) \rangle),$$

where

- $R: \mathbb{R}^{\geqslant 0} \to \mathbb{R}$ is nondecreasing (**Regularization term**)
- and $L: \mathbb{R}^n \to \mathbb{R}$ is arbitrary. (Loss term)

Generalized Linear Objective Function (Details)

• Generalized objective:

$$\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, \psi(x_1) \rangle, \dots, \langle w, \psi(x_n) \rangle),$$

where

- $w, \psi(x_1), \dots, \psi(x_n) \in \mathcal{H}$ for some Hilbert space \mathcal{H} . (We typically have $\mathcal{H} = \mathbf{R}^d$.)
- $\|\cdot\|$ is the norm corresponding to the inner product of \mathcal{H} . (i.e. $\|w\| = \sqrt{\langle w, w \rangle}$)
- $R: \mathbb{R}^{\geqslant 0} \to \mathbb{R}$ is nondecreasing (**Regularization term**), and
- $L: \mathbb{R}^n \to \mathbb{R}$ is arbitrary (**Loss term**).

Generalized Linear Objective Function

Generalized objective:

$$\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, \psi(x_1) \rangle, \dots, \langle w, \psi(x_n) \rangle),$$

- Why "linear"? $\langle w, \psi(x_i) \rangle$ is a generalization of predictions $w^T \psi(x_i)$
 - a linear function of $\psi(x_i) \in \mathbf{R}^d$.
- Ridge regression and SVM are of this form.
- What if we penalize with $\lambda ||w||_2$ instead of $\lambda ||w||_2^2$? Yes!.
- ullet What if we use lasso regression? No! ℓ_1 norm does not correspond to an inner product.

The Representer Theorem

Theorem (Representer Theorem)

Let

$$J(w) = R(||w||) + L(\langle w, \psi(x_1) \rangle, \dots, \langle w, \psi(x_n) \rangle),$$

where

- $w, \psi(x_1), \dots, \psi(x_n) \in \mathcal{H}$ for some Hilbert space \mathcal{H} . (We typically have $\mathcal{H} = \mathbb{R}^d$.)
- $\|\cdot\|$ is the norm corresponding to the inner product of \mathfrak{R} . (i.e. $\|w\| = \sqrt{\langle w, w \rangle}$)
- $R: \mathbb{R}^{\geqslant 0} \to \mathbb{R}$ is nondecreasing (**Regularization term**), and
- $L: \mathbb{R}^n \to \mathbb{R}$ is arbitrary (Loss term).

If J(w) has a minimizer, then it has a minimizer of the form $w^* = \sum_{i=1}^n \alpha_i \psi(x_i)$. [If R is strictly increasing, then all minimizers have this form. (Proof in homework.)]

The Representer Theorem (Proof)

- Let w* be a minimizer.
- ② Let $M = \text{span}(\psi(x_1), \dots, \psi(x_n))$. [the "span of the data"]
- **3** Let $w = \operatorname{Proj}_{M} w^{*}$. So $\exists \alpha$ s.t. $w = \sum_{i=1}^{n} \alpha_{i} \psi(x_{i})$.
- **1** Then $w^{\perp} := w^* w$ is orthogonal to M.
- **5** Projections decrease norms: $||w|| \leq ||w^*||$.
- **5** Since R is nondecreasing, $R(||w||) \leq R(||w^*||)$.

- Therefore $w = \sum_{i=1}^{n} \alpha_i \psi(x_i)$ is also a minimizer.

Q.E.D.

Using Representer Theorem to Kernelize

Kernelized Predictions

- Consider $w = \sum_{i=1}^{n} \alpha_i \psi(x_i)$. (As representer theorem implies.)
- How do we make predictions for a given $x \in \mathfrak{X}$?

$$f(x) = \langle w, \psi(x) \rangle = \left\langle \sum_{i=1}^{n} \alpha_{i} \psi(x_{i}), \psi(x) \right\rangle$$
$$= \sum_{i=1}^{n} \alpha_{i} \langle \psi(x_{i}), \psi(x) \rangle$$
$$= \sum_{i=1}^{n} \alpha_{i} k(x_{i}, x)$$

Note: f(x) is a linear combination of $k(x_1, x), \ldots, k(x_n, x)$, all considered as functions of x.

Kernelized Regularization

- Consider $w = \sum_{i=1}^{n} \alpha_i \psi(x_i)$.
- What does R(||w||) look like?

$$||w||^{2} = \langle w, w \rangle$$

$$= \left\langle \sum_{i=1}^{n} \alpha_{i} \psi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \psi(x_{j}) \right\rangle$$

$$= \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} \langle \psi(x_{i}), \psi(x_{j}) \rangle$$

$$= \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} k(x_{i}, x_{j})$$

(You should recognize the last expression as a quadratic form.)

The Kernel Matrix (a.k.a. Gram Matrix)

Definition

The **kernel matrix** or **Gram matrix** for a kernel k on a set $\{x_1, \ldots, x_n\}$ is

$$K = (k(x_i, x_j))_{i,j} = \begin{pmatrix} k(x_1, x_1) & \cdots & k(x_1, x_n) \\ \vdots & \ddots & \cdots \\ k(x_n, x_1) & \cdots & k(x_n, x_n) \end{pmatrix} \in \mathbb{R}^{n \times n}.$$

Kernelized Regularization: Matrix Form

- Consider $w = \sum_{i=1}^{n} \alpha_i \psi(x_i)$.
- What does R(||w||) look like?

$$||w||^2 = \sum_{i,j=1}^n \alpha_i \alpha_j k(x_i, x_j)$$
$$= \alpha^T K \alpha$$

• So $R(\|w\|) = R\left(\sqrt{\alpha^T K \alpha}\right)$.

Kernelized Predictions

- Write $f_{\alpha}(x) = \sum_{i=1}^{n} \alpha_{i} k(x, x_{i})$. (Switched from $k(x_{i}, x)$ by symmetry of inner product.)
- Predictions on the training points have a particularly simple form:

$$\begin{pmatrix} f_{\alpha}(x_{1}) \\ \vdots \\ f_{\alpha}(x_{n}) \end{pmatrix} = \begin{pmatrix} \alpha_{1}k(x_{1}, x_{1}) + \dots + \alpha_{n}k(x_{1}, x_{n}) \\ \vdots \\ \alpha_{1}k(x_{n}, x_{1}) + \dots + \alpha_{n}k(x_{n}, x_{n}) \end{pmatrix}$$

$$= \begin{pmatrix} k(x_{1}, x_{1}) & \dots & k(x_{1}, x_{n}) \\ \vdots & \ddots & \dots \\ k(x_{n}, x_{1}) & \dots & k(x_{n}, x_{n}) \end{pmatrix} \begin{pmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{pmatrix}$$

$$= K\alpha$$

Kernelized Objective

Substituting

$$w = \sum_{i=1}^{n} \alpha_i \psi(x_i)$$

into generalized objective, we get

$$\min_{\alpha \in \mathbf{R}^n} R\left(\sqrt{\alpha^T K \alpha}\right) + L(K \alpha).$$

- No direct access to $\psi(x_i)$.
- All references are via kernel matrix K.
- (Assumes R and L do not hide any references to $\psi(x_i)$.)
- This is the kernelized objective function.

Kernelized SVM

• The SVM objective:

$$\min_{w \in \mathcal{H}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^{n} (1 - y_i [\langle w, \psi(x_i) \rangle])_+.$$

Kernelizing yields

$$\min_{\alpha \in \mathbb{R}^n} \frac{1}{2} \alpha^T K \alpha + \frac{c}{n} \sum_{i=1}^n (1 - y_i (K \alpha)_i)_+$$

Kernelized Ridge Regression

• Ridge Regression:

$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n (w^T x_i - y_i)^2 + \lambda ||w||^2$$

Featurized Ridge Regression

$$\min_{w \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \left(\langle w, \psi(x_i) \rangle - y_i \right)^2 + \lambda \|w\|^2$$

Kernelized Ridge Regression

$$\min_{\alpha \in \mathbb{R}^n} \frac{1}{n} ||K\alpha - y||^2 + \lambda \alpha^T K\alpha,$$

where
$$y = (y_1, ..., y_n)^T$$
.

Prediction Functions with RBF Kernel

Radial Basis Function (RBF) / Gaussian Kernel

• Input space $\mathfrak{X} = \mathbf{R}^d$

$$k(w,x) = \exp\left(-\frac{\|w-x\|^2}{2\sigma^2}\right),\,$$

where σ^2 is known as the bandwidth parameter.

- Does it act like a similarity score?
- Why "radial"?
- Have we departed from our "inner product of feature vector" recipe?
 - Yes and no: corresponds to an infinite dimensional feature vector
- Probably the most common nonlinear kernel.

RBF Basis

- Input space $\mathfrak{X} = \mathbf{R}$
- Output space: y = R
- RBF kernel $k(w,x) = \exp(-(w-x)^2)$.
- Suppose we have 6 training examples: $x_i \in \{-6, -4, -3, 0, 2, 4\}$.
- If representer theorem applies, then

$$f(x) = \sum_{i=1}^{6} \alpha_i k(x_i, x).$$

• f is a linear combination of 6 basis functions of form $k(x_i, \cdot)$:

RBF Predictions

Basis functions

• Predictions of the form $f(x) = \sum_{i=1}^{6} \alpha_i k(x_i, x)$:

- When kernelizing with RBF kernel, prediction functions always look this way.
- (Whether we get w from SVM, ridge regression, etc...)

RBF Feature Space: The Sequence Space ℓ_2

- To work with infinite dimensional feature vectors, we need a space with certain properties.
 - an inner product
 - a norm related to the inner product
 - projection theorem: $x = x_{\perp} + x_{\parallel}$ where $x_{\parallel} \in S = \text{span}(w_1, \dots, w_n)$ and $\langle x_{\perp}, s \rangle = 0$ $\forall s \in S$.
- Basically, we need a Hilbert space.

Definition

 ℓ_2 is the space of all real-valued sequences: $(x_0, x_1, x_2, x_3, \dots)$ with $\sum_{i=0}^{\infty} x_i^2 < \infty$.

Theorem

With the inner product $\langle x, x' \rangle = \sum_{i=0}^{\infty} x_i x_i'$, ℓ_2 is a **Hilbert space**.

The Infinite Dimensional Feature Vector for RBF

- Consider RBF kernel (1-dim): $k(w,x) = \exp(-(w-x)^2/2)$
- We claim that $\psi: \mathbf{R} \to \ell_2$ be defined by

$$[\psi(x)]_n = \frac{1}{\sqrt{n!}} e^{-x^2/2} x^n$$

gives the "infinite-dimensional feature vector" corresponding to RBF kernel.

- Is this mapping even well-defined? Is $\psi(x)$ even an element of ℓ_2 ?
- Yes:

$$\sum_{n=0}^{\infty} \frac{1}{n!} e^{-x^2} x^{2n} = e^{-x^2} \sum_{n=0}^{\infty} \frac{\left(x^2\right)^n}{n!} = 1 < \infty$$

.

The Infinite Dimensional Feature Vector for RBF

- Does feature vector $[\psi(x)]_n = \frac{1}{\sqrt{n!}} e^{-x^2/2} x^n$ actually correspond to the RBF kernel?
- Yes! Proof:

$$\langle \psi(w), \psi(x) \rangle = \sum_{n=0}^{\infty} \frac{1}{n!} e^{-(x^2 + w^2)/2} x^n w^n$$

$$= e^{-(x^2 + w^2)/2} \sum_{n=0}^{\infty} \frac{(xw)^n}{n!}$$

$$= \exp(-[x^2 + w^2]/2) \exp(xw)$$

$$= \exp(-[(x - w)^2/2])$$

QED