Session 4 - Statistical Modeling

Jongbin Jung

January 10, 2016

Dependencies

- ▶ Latest version (≥ 3.1.2) of R
 (free from https://www.r-project.org/)
- ► Latest version of Rstudio (also *free* from https://www.rstudio.com/)
- Packages

```
lm, glm # loaded with R by default
install.packages('glmnet')
install.packages('randomForest')
install.packages('ggplot2') # just for dataset
install.packages('dplyr')
install.packages('caret') # optional
# for evaluating classification models
install.packages('ROCR')
```

► We'll use the diamonds dataset included in ggplot2 for demonstration

Statistical Modeling

- ► In this session, I'll share some statistical modeling techniques I've picked up using R
- ▶ But I won't
 - Go into the theory/details of each (or any) method/model; I assume you know all that already
 - Introduce the whole caret package, which is a great package, but I won't focus on it because:
 - it's pretty well documented here (http://topepo.github.io/caret/index.html), and
 - I (very personally) don't think 'teaching people how to use the caret package' is equivalent to 'teaching people statistical modeling in R'
- ► At the very least, you'll end up with a set of (hopefully useful) R snippets

Basic Framework

- Just to refresh, a basic framework of the statistical modelling process looks something like,
 - 1. Split the data: Train/(Validation/Test) or CV
 - 2. Format the data appropriately (pre-processing)
 - 3. Train a model on the training data
 - 4. Evaluate the performance on validation/test data
- ▶ Would you agree with the order of steps 1 and 2?
- Some considerations in each step, let's discuss a few

Data Splitting

Random Sampling

- Most simple, but often sufficient way of splitting data is to generate random samples
- ► Think of generating a sample of row numbers, and then using the row numbers to actually create each dataset, e.g., for 50/50 split

```
ind <- 1:nrow(diamonds)
train_p <- .5  # proportion of training data
train_ind <- sample(ind, train_p * nrow(diamonds))
diamond_train <- diamonds[train_ind, ]
diamond_test <- diamonds[-train_ind, ]</pre>
```

Stratified Sampling

- Split data while maintaining proportion of certain subgroups
- Use group_by() and sample_frac() in dplyr to select a subset of the data that satisfies the criteria
- ▶ Use setdiff() in dplyr to creat the complement subset

Stratified Sampling: Example

```
diamond_train <- diamonds %>% group_by(cut) %>%
    sample_frac(.5) %>% ungroup()
diamond_test <- setdiff(diamonds, diamond_train)

# check the proportions
cbind(test=summary(diamond_train$cut)/nrow(diamonds),
    train=summary(diamond_test$cut)/nrow(diamonds))</pre>
```

```
## test train
## Fair 0.0149 0.0148
## Good 0.0455 0.0453
## Very Good 0.1120 0.1118
## Premium 0.1278 0.1272
## Ideal 0.1998 0.1988
```

More than One Split

- ► Often, you'll want more than one split, e.g., train/validate/test, cross validation
- One obvious way is to use the previous method recursively
- Let's try this as an Exercise!
- From the diamonds data, create a 50:30:20 split of train:validate:test data. Name the data frames dia_train, dia_valid, and dia_test, respectively.

(solution script is on the next slide)

More than One Split: Exercise Solution

```
ind <- 1:nrow(diamonds)</pre>
train_p <- .5 # proportion of training data
valid_p <- .3 # proportion of validation data</pre>
train ind <- sample(ind, train p * nrow(diamonds))</pre>
dia train <- diamonds[train ind, ]</pre>
dia tmp <- diamonds[-train ind, ]</pre>
ind <- 1:nrow(dia tmp)</pre>
valid ind <- sample(ind, valid p * nrow(diamonds))</pre>
dia valid <- dia tmp[valid ind, ]
dia_test <- dia_tmp[-valid_ind, ]</pre>
```

▶ We'll use these three datasets in the following exercises

More than One Split (cont'd)

- As you can imagine, this starts getting messy for more than two splits
- A good alternative is createFolds() from caret (I know I said I wouldn't cover caret, but this is one exception ...)
- ▶ Also, for more than 3 splits, you might want to manage each split with labels, rather than creating multiple data frames

```
nsplits <- 10 # the number of splits you want
split_ind <- createFolds(diamonds$carat, k=nsplits)

diamonds_split <- diamonds
for (x in 1:nsplits) {
    ind <- split_ind[[x]] # indexing a list
    diamonds_split[ind, 'split_id'] <- x
}</pre>
```

Pre-processing

scale()

- Use scale() to center/scale variables (columns) of your dataset
- scale() only works on numerical columns
- It's up to you to give scale() just the variables you want to manipulate
- ► The general idea is
 - 1. Extract the variable(s) you want to center/scale
 - 2. Use scale() to manipulate those variables
 - Create a copy of your original data with the desired variables manipulated
- Remember to center/scale all partitions of your data, but be aware of where the centering/scaling parameters come from!

scale(): Example

```
# Create a copy of the data
train std <- diamond train
test std <- diamond test
# extract numerical columns and their names
train num <- train std[, sapply(train std, is.numeric)
test_num <- test_std[, sapply(test_std, is.numeric)]</pre>
numcol names <- names(train num)</pre>
# apply scale() to train data and save parameters
train num <- scale(train num)
param center <- attr(train num, 'scaled:center')</pre>
param scale <- attr(train num, 'scaled:scale')</pre>
```

scale(): Example (cont'd)

Some notes:

- Be careful about how you choose 'numeric' variables: binary variables?
- ► There are other ways to do this, but this seems to be the best I've found so far

model.matrix()

- While many models work just fine with data frames, some models require that you provide data in the form of a purely numeric matrix (aka model matrix)
- ▶ This means converting factor variables into multiple binary variables (variables that only have 0 or 1 as values)
- ► The model.matrix() function in R does a good job of generating model matrices catered to the formula of your model
- ▶ The R representation of a model formula such as

$$y_{\text{carat}} = \beta_0 + \beta_{\text{cut}} x_{\text{cut}} + + \beta_{\text{depth}} x_{\text{depth}}$$

would be

carat ~ cut + depth

model.matrix(): Example

▶ To construct a model matrix for the formula

$$y_{\text{carat}} = \beta_0 + \beta_{\text{cut}} x_{\text{cut}} + \beta_{\text{depth}} x_{\text{depth}}$$

levels(train_std\$cut)

```
## [1] "Fair" "Good" "Very Good" ## [4] "Premium" "Ideal"
```

model.matrix(): Example (cont'd)

Note that

- ▶ Orthogonal polynomial coding is used for ordinal variable cut, where .L, .Q, .C, and ^4 stand for Linear, Quadratic, Cubic, and 4th power
- model.matrix() drops one level as the 'base case', c.f., cut has five levels but only four orders in the model.matrix

Some shortcuts in formula

- "." is used to include all variables (except the target, i.e., variable to the left of ~)
- ":" is used to indicate interaction terms
- ▶ "-" (as opposed to +) can be used to exclude certain variables

Exercise

- With the datasets dia_train and dia_test, creat an additional variable expensive, which is a binary variable with value yes if price is greater than the median of price from dia_train, and no otherwise.
- Standardize (scale and center) all numeric columns of the dia_train and dia_test datasets and call them train_std and test_std, respectively.
- 3. Generate model matrices that uses all variables except expensive to predict price for both datasets. Use variable names train_mm and test_mm. Note we can use these datasets to train/test a model to predict expensive as well!

Solution 1

Solution 2

```
train std <- dia train
test std <- dia test
train num <- train std[, sapply(train std, is.numeric)]
test num <- test std[, sapply(test std, is.numeric)]</pre>
numcol names <- names(train num)</pre>
train num <- scale(train num)</pre>
param_center <- attr(train_num, 'scaled:center')</pre>
param_scale <- attr(train_num, 'scaled:scale')</pre>
test_num <- scale(test_num, center=param_center,</pre>
                    scale = param_scale)
train_std[, numcol_names] <- train_num</pre>
test std[, numcol names] <- test num</pre>
```

Solution 3

```
train_mm <-
    model.matrix(price ~ . - expensive, train_std)
test_mm <-
    model.matrix(price ~ . - expensive, test_std)</pre>
```

Training models

(OLS) Linear Regression

Linear regression models can be fitted in R using 1m, with the syntax

```
my_model <- lm(formula, data)</pre>
```

- The data should be a data frame, and the formula should refer to the column names of data as variables
- Explore the model with generic functions summary() and coef(), once trained

```
summary(my_model)
coef(my_model)
```

► Values (e.g., 'risiduals') of the model can be indexed with the \$ operator

(OLS) Linear Regression: Example

► Let's build a linear regression model of price against carat and cut, using the train_std we created earlier

```
fm <- lm(price ~ carat + cut, train_std)</pre>
```

Explore the model with

```
coef(fm)
summary(fm)
```

► Note how cut is automatically transformed to an appropriate form

Logistic Regression with glm

We can use glm for generalized linear models, just like we use lm for OLS models

my_model <- glm(formula, data, family)</pre>

- family is a description of the link function to be used
- Recall, a logistic regression is a generalized linear model that uses a logit link function
- ► The logit link function is described in a binomial family object in R (see ?family for other link functions)
- ▶ So, to fit a logistic regression model, we write

my_model <- glm(formula, data, family='binomial')</pre>

► Keep in mind, the target variable in the formula must numeric between 0 and 1

Logistic Regression with glm: Example

- With our test_std dataset, let's fit a logistic regression model of expensive against carat and cut
- ▶ Since expensive is not numeric, we must convert it first

Explore the model with

```
coef(fm)
summary(fm)
```

Regularized Linear Models with glmnet

- There are many packages that deal with regularized linear models
- ▶ I (personally) find glmnet to be most useful and consistent
- ► The objective function for glmnet is

$$\operatorname{glm} \operatorname{objective} - \lambda \times \operatorname{penalty}$$

▶ Where the penalty is defined as

$$(1-\alpha)/2\|\beta\|_2^2 + \alpha\|\beta\|_1$$

Note that $\alpha=1$ is the L1 (lasso) penalty, and $\alpha=0$ is the L2 (ridge) penalty

Regularized Linear Models with glmnet (cont'd)

► The glmnet syntax is

```
my_model <- glmnet(x, y, family, alpha, nlambda)</pre>
```

- x is the model matrix
- y is the target variable vector
- ▶ family determines the link function (Gaussian by default)
- ▶ alpha determines lasso (1), ridge (0), or a mix of the two
- ▶ nlambda controls the number of λ values to try
- Note that glmnet automatically computes its own sequence of λ values based on nlambda, and using a specific value of λ is discouraged (see ?glmnet for details)

Regularized Linear Models with glmnet: Choosing λ

- ▶ The penalty weight λ is a free parameter in regularized linear models, and must be determined somehow
- ▶ A quick and dirty, but pretty reasonable way to choose λ with glmnet is to use cv.glmnet()
- \blacktriangleright cv.glmnet() does k-fold cross-validation for glmnet, and returns values/models for λ
- ▶ In addition to glmnet arguments, in cv.glmnet() we can set the number of folds k to use in k-fold cross validation by supplying the argument nfolds. Default is 10.
- ▶ The plot() function for cv.glmnet() provides some insight on the value of λ and cross-validated model performance

Regularized Linear Models: Example

▶ For L1-regularized model of price against carat and cut

```
y <- train_std$price
x <- model.matrix(price ~ carat + cut, train_std)
price_l1 <- cv.glmnet(x, y, alpha=1)</pre>
```

▶ For L2-regularized model of expensive against carat and cut

Regularized Linear Models: Example (plots)

Regularized Linear Models: Example (plots)

plot(expensive_12)

Random Forests

- The randomForest package in R implements Breiman's random forest algorithm, based on Breiman and Cutler's original Fortran code
- It can be used for classification, regression, or unsepervised learning of proximity between data points
- ► The basic syntax is

randomForest(x, y, ntree)

- x: the model matrix
- y: target variable vector. Classification if y is a factor, regression if y is otherwise, and unsupervised learning if y is omitted.
- ntree: number of trees to include in the forest
- While randomForest will also work for the formula/data frame syntax, a model matrix is considered more efficient

Random Forests: Examples

▶ To fit random forest of price against carat and cut

```
y <- train_std$price
x <- model.matrix(price ~ carat + cut, train_std)
rf_price <- randomForest(x, y, ntree=100)</pre>
```

▶ To fit a random forest expensive against carat and cut

```
y <- factor(train_std$expensive)
x <- model.matrix(expensive ~ carat + cut, train_std)
rf_expensive <- randomForest(x, y, ntree=100)</pre>
```

- randomForest is quite memory intensive
- randomForest classification aggregates *votes* of individual trees (as opposed to probability assessments), hence the floating-point precision is strictly determined by the order of ntree, i.e., 1/ntree

Exercises

- ► Fit the following models, with train_std and train_mm where appropriate, from previous exercises
 - ▶ lm_price: OLS model of price against everything
 - logit_exp: Logistic regression of expensive against everything
 - ▶ 11_price: L1 regularized logistic regression of price against everything
 - rf_exp: Random forest classification model with 50 trees that uses cut, color, and clarity to predict expensive
- When I say "everything", I mean "everything but expensive" for price, and vice versa

Solution

```
lm_price <- lm(price ~ . - expensive, train_std)</pre>
train_std$expensive_num <-
    ifelse(train std$expensive == 'yes', 1, 0)
logit_exp <-
    glm(expensive_num ~ . - price - expensive,
        train std, family='binomial')
11 price <-
    cv.glmnet(x=train mm, y=train std$price, alpha=1,
               standardize=FALSE, intercept=FALSE)
v <- factor(train std$expensive)</pre>
x <- model.matrix(expensive ~ cut + color + clarity, train
rf_exp <- randomForest(x, y, ntree=50)</pre>
```

Prediction/Evaluation

The Generic predict()

- Any decend modeling package in R will provide its own version of the generic predict() function
- ► The generic syntax is

predict(model_object, newdata, type)

- ► The type argument is often optional, and specifies the 'scale' of the predictions, e.g., probabilities v. log-odds for logistic regression models
- ▶ It's best (but not always necessary) for the newdata to have the same variables (columns) as the data that was used to train the model

The Generic predict(): Examples

Using the models from the previous exercise, we can generate predictions for the test_std data

```
lm price pred <- predict(lm price, test std)</pre>
test std$expensive num <-
    ifelse(test std$expensive == 'yes', 1, 0)
logit_exp_pred <- predict(logit_exp, test_std,</pre>
                            type='response')
11_price_pred <- predict(l1_price, test_mm,</pre>
                           s='lambda.min')
rf exp pred <- predict(rf exp, test mm,
                         type='prob')
```

Example Notes

- The s argument for predict.cv.glmnet specifies the criteria for selecting a λ value from those that were fitted (see ?predict.cv.glmnet for details)
- Beware of the column ordering for rf_exp_pred!

head(rf_exp_pred, n=2)

```
## no yes
## 1 0.2 0.8
## 2 0.0 1.0
```

Manual Predictions

 For linear models, generating predictions from new data should be as simple as matrix multiplication (with the help of coef()), e.g.,

```
manual_l1_price <-
    cbind(1, test_mm) %*%
    coef(l1_price, s='lambda.min')
all(manual_l1_price == l1_price_pred)</pre>
```

```
## [1] TRUE
```

- ▶ What might *not* be simple is creating the right matrix
- It's probably safe to stick with predict(), but make sure you read the documentation for new packages!!!!

Evaluation

 Once the predictions on the test set are generated, you should be able to compute any performance measure you're interested in

```
# RMSE for lm_price
sqrt(mean((test_std$price - lm_price_pred)^2))
```

```
## [1] 0.289
```

```
# RMSE for 11
sqrt(mean((test_std$price - l1_price_pred)^2))
```

```
## [1] 0.298
```

Evaluation (cont'd)

```
# Accuracy for logit_exp (for threshold 0.5)
logit_exp_vote <- ifelse(logit_exp_pred >= .5, 1, 0)
mean(logit_exp_vote == test_std$expensive_num)
```

```
## [1] 0.971
```

```
# Accuracy for rf_exp (for threshold 0.5)
rf_exp_vote <- ifelse(rf_exp_pred[,2] >= .5, 1, 0)
mean(rf_exp_vote == test_std$expensive_num)
```

```
## [1] 0.645
```

Evaluating Classifications

► The ROCR package can come in handy when evaluating classification models

```
## [1] 0.686
```

Evaluating Classifications (cont'd)

```
perf <- performance(pred, 'tpr', 'fpr')
plot(perf)</pre>
```


False positive rate

See website https://rocr.bioinf.mpi-sb.mpg.de/ for details and more examples

Bootstrap

The Sledgehammer

- The actual implementation of generating bootstrap sampling distributions is super simple
- What might not be as simple is
 - 1. Truly understanding the theory
 - Finding the right way of constructing measure of interest, e.g., confidence interval
 - 3. Implementing in a concise, reusable, and efficient way
- There are probably entire courses covering the first two
- People tend to gloss over the third
- I'll only focus on the third
- But keep in mind, knowing how to do it is very different from doing it right

Framework

- 1. Write a dummy function that
 - takes a single (dummy) argument
 - creates a single bootstrap sample from the original sample
 - returns the statistic of interest of the boostrap sample (as a scalar)
- Use boot <- sapply(1:B, dummy_function) to create a bootstrap estimation of the sampling distribution
- 3. Compute the measure of interest (e.g., confidence interval) using the original sample and the boot vector created in (2)
- ► To save computation time, let's use a subsample of diamonds for the following examples

diamonds small <- sample n(diamonds, 5000)

Simple Example

▶ Construct a bootstrap estimate of the sampling distribution for the mean of price in the diamonds data, with B=1,000

Histogram of boot and Original Point Estimate

Less Simple Example

 Construct a bootstrap estimate of the sampling distribution for the coefficient of carat for a OLS model fitting price to everything

Histogram of boot and Original Point Estimate

