

Stat GR 5205 Lecture 10

Jingchen Liu

Department of Statistics Columbia University

Algorithmic approach

- Forward selection
- Backward deletion
- Stepwise regression

Forward selection

- ► Consider variables that are not in the current model, compute the extra-sum-of-squares by adding each variable.
- ▶ If the largest extra-sum-of-squares is greater than some value (e.g., 4), then add that variable in; otherwise stop.

Backward deletion

- ► Consider variables that are in the current model, compute the extra-sum-of-squares by removing each variable.
- ▶ If the smallest extra-sum-of-squares is less than some value (e.g., 4), then remove that variable; otherwise stop.

Stepwise regression

▶ Do one step forward selection and backward deletion alternatively

Pros and cons

- Easy to implement
- ► Less computation
- ► In consistency

Likelihood-based criteria

► Akaike information criterion (AIC)

$$n\log(\hat{\sigma}^2)+2p.$$

Derive AIC.

Bayesian information criterion

$$n\log(\hat{\sigma}^2) + p\log(n)$$

General form

► Akaike information criterion (AIC)

$$-2\log[L(\hat{\theta})] + 2p \approx 2E[\log L(\theta)]\big|_{\theta=\hat{\theta}}$$

Bayesian information criterion

$$-2\log[L(\hat{\theta})] + p\log(n)$$

Delimma

- ► Too few variables (missing the true predictor) bias.
- ► Too many variables variance.

Delimma

- ► Too few variables (missing the true predictor) bias.
- ► Too many variables variance.

$$\blacktriangleright \text{ Let } \mu_i = E(y|x_i).$$

► Mean squared error

$$E[(\hat{y}_i - \mu_i)^2 | x_i] = E^2(\hat{y}_i - \mu_i | x_i) + Var(\hat{y}_i - \mu_i | x_i)$$

► Total mean squared error

$$\sum_{i=1}^{n} E[(\hat{y}_i - \mu_i)^2 | x_i] = \sum_{i=1}^{n} E^2(\hat{y}_i - \mu_i | x_i) + \sum_{i=1}^{n} Var(\hat{y}_i - \mu_i | x_i)$$

- ▶ Let $\mu_i = E(y|x_i)$.
- Mean squared error

$$E[(\hat{y}_i - \mu_i)^2 | x_i] = E^2(\hat{y}_i - \mu_i | x_i) + Var(\hat{y}_i - \mu_i | x_i)$$

► Total mean squared error

$$\sum_{i=1}^{n} E[(\hat{y}_i - \mu_i)^2 | x_i] = \sum_{i=1}^{n} E^2(\hat{y}_i - \mu_i | x_i) + \sum_{i=1}^{n} Var(\hat{y}_i - \mu_i | x_i)$$

- $\blacktriangleright \text{ Let } \mu_i = E(y|x_i).$
- ► Mean squared error

$$E[(\hat{y}_i - \mu_i)^2 | x_i] = E^2(\hat{y}_i - \mu_i | x_i) + Var(\hat{y}_i - \mu_i | x_i)$$

► Total mean squared error

$$\sum_{i=1}^{n} E[(\hat{y}_i - \mu_i)^2 | x_i] = \sum_{i=1}^{n} E^2(\hat{y}_i - \mu_i | x_i) + \sum_{i=1}^{n} Var(\hat{y}_i - \mu_i | x_i)$$

$$C_p = \frac{SSE}{\hat{\sigma}_{\varepsilon}^2} - (n - 2p) = p + (n - p)\frac{\hat{\sigma}^2 - \hat{\sigma}_f^2}{\hat{\sigma}_{\varepsilon}^2}$$

Comparison

- ► AIC
- ▶ BIC
- ► C₁

Example

- Response variable: log-survival time
- Covariates: blood clotting score, prognostic index, enzyme function test score, living function test score, age, gender, alcohol use (none, moderate, heavy)
- AIC.

Example

Forward

Start: AIC=-75.7 logsurvival ~ 1

		\mathtt{Df}	Sum of Sq	RSS	AIC
+	enzyme	1	5.4762	7.3316	-103.827
+	liver	1	5.3990	7.4087	-103.262
+	progind	1	2.8285	9.9792	-87.178
+	heavy	1	1.7798	11.0279	-81.782
+	score	1	0.7763	12.0315	-77.079
+	gender	1	0.6897	12.1180	-76.692
<none></none>				12.8077	-75.703
+	age	1	0.2691	12.5386	-74.849
+	alcohol	1	0.2052	12.6025	-74.575

Step: AIC=-103.83 logsurvival ~ enzyme

		${\tt Df}$	Sum of Sq	RSS	AIC
+	progind	1	3.01908	4.3125	-130.48
+	liver	1	2.20187	5.1297	-121.11
+	score	1	1.55061	5.7810	-114.66
+	heavy	1	1.13756	6.1940	-110.93
<none></none>				7.3316	-103.83
+	gender	1	0.25854	7.0730	-103.77
+	age	1	0.23877	7.0928	-103.61
+	alcohol	1	0.06498	7.2666	-102.31

Step: AIC=-130.48

logsurvival ~ enzyme + progind

		${\tt Df}$	Sum of Sq	RSS	AIC
+	heavy	1	1.46961	2.8429	-150.99
+	score	1	1.20395	3.1085	-146.16
+	liver	1	0.69836	3.6141	-138.02
+	${\tt alcohol}$	1	0.22632	4.0862	-131.39
+	age	1	0.16461	4.1479	-130.59
<none></none>				4.3125	-130.48
+	gender	1	0.08245	4.2300	-129.53

. . .

```
Step: AIC=-163.83
logsurvival ~ enzyme + progind + heavy + score
+ gender + age
```

```
Df Sum of Sq RSS AIC

<none> 2.0052 -163.83

+ alcohol 1 0.033193 1.9720 -162.74

+ liver 1 0.002284 2.0029 -161.90
```


Example

Backward

```
Start: ATC=-160.77
logsurvival ~ score + progind + enzyme + liver
             + age + gender + alcohol + heavy
          Df Sum of Sq RSS
                                 AIC
- liver 1
              0.00129 \ 1.9720 \ -162.74
- alcohol 1 0.03220 2.0029 -161.90
          1 0.07354 2.0443 -160.79
- age
                       1.9707 -160.77
<none>
              0.08415 \ 2.0549 \ -160.51
- gender
- score
              0.31809 2.2888 -154.69
              0.84573 \ 2.8165 \ -143.49
heavy
- progind
          1 2.09045 4.0612 -123.72
```

1 2.99085 4.9616 -112.91

- enzyme

```
AIC=-162.74
Step:
logsurvival ~ score + progind + enzyme
           + age + gender + alcohol + heavy
         Df Sum of Sq RSS
                                 AIC
- alcohol 1
               0.0332 \ 2.0052 \ -163.834
                      1.9720 - 162.736
<none>
        1 0.0876 2.0596 -162.389
- age
- gender
               0.0971 2.0691 -162.141
- score 1
              0.6267 2.5988 -149.833
- heavy 1
            0.8446 2.8166 -145.486
            2.6731 4.6451 -118.471
progind
              5.0986 7.0706 -95.784
enzyme
```

```
Step: AIC=-163.83
logsurvival ~ score + progind + enzyme
              + age + gender + heavy
         Df Sum of Sq RSS
                                 AIC
                      2.0052 - 163.834
<none>
               0.0768 2.0820 -163.805
- age
               0.0977 2.1029 -163.265
- gender
               0.6282 2.6335 -151.117
- score
               0.9002 2.9055 -145.809
heavy
progind
          1 2.7626 4.7678 -119.064
               5.0801 7.0853 -97.672
enzyme
```

Example

Figure: 1. score, 2. progind, 3. enzyme, 4. liver, 5. age, 6. gender, 7. alcohol, 8. heavy

Least Absolute Shrinkage and Selection Operator(LASSO) Tibshirani (1996, JRSS B)

- Observation: soft-thresholding
- ► The LASSO estimator

$$\hat{\beta} = \arg\min_{\beta} \sum_{i} (y_i - x_i^{\top} \beta)^2 + \lambda \|\beta\|_1$$

Least Absolute Shrinkage and Selection Operator(LASSO) Tibshirani (1996, JRSS B)

- Observation: soft-thresholding
- ► The LASSO estimator

$$\hat{\beta} = \arg\min_{\beta} \sum_{i} (y_i - x_i^{\top} \beta)^2 + \lambda \|\beta\|_1$$

Figure: $(\beta - 1)^2 + \lambda \|\beta\|_1$

Figure: $(\beta - 1)^2 + \lambda \|\beta\|_1$

Figure: $(\beta - 1)^2 + \lambda \|\beta\|_1$

Figure: $(\beta - 1)^2 + \lambda \|\beta\|_1$

Figure: $(\beta - 1)^2 + \lambda \|\beta\|_1$

The penalized estimator

► The penalized likelihood

$$(\beta - \hat{\beta})^{\top} X^{\top} X (\beta - \hat{\beta}) + \lambda \|\beta - \hat{\beta}\|_{1}$$

Simplified situation

$$(\beta - \hat{\beta})^2 + \lambda \|\beta\|_1$$

The penalized estimator

► The penalized likelihood

$$(\beta - \hat{\beta})^{\top} X^{\top} X (\beta - \hat{\beta}) + \lambda \|\beta - \hat{\beta}\|_{1}$$

Simplified situation

$$(\beta - \hat{\beta})^2 + \lambda \|\beta\|_1$$

Figure: LS estimator versus LASSO estimator

Figure: LS estimator, LASSO estimator, and ridge regression