Métodos de Passo Simples para um Sistema de EDO

Luís Eduardo dos Santos Lopes ¹

Instituto de Matemática e Estatística, Universidade de São Paulo. MAP5725 - Tratamento Numérico de Equações Diferenciais (2021)

Resumo

Os métodos de passo simples são do tipo $y_{k+1} = y_k + h\phi(t_k, t_{k+1}, y_k, y_{k+1}, h)$. Esses métodos são um algoritmo de um passo para resolução de Equações Diferenciais Ordinárias (EDO) com condição inicial. Neste trabalho, foi analisado o comportamento e convergência dos métodos a partir da implementação usando a linguagem de programação Python.

1. Introdução

Dado o seguinte problema de Cauchy na forma normal:

$$z'(t) = f(t, z(t))$$
 com $z(t_0) = z_0$ (1)

O Método de Euler estima uma solução numérica a partir da noção básica de derivada, i. e., podemos aproximar z'(t) por:

$$z'(t) \approx \frac{z(t+h) - y(t)}{h} \tag{2}$$

Quanto menor h, melhor a aproximação. O primeiro passo, portanto, é discretizar o domínio de definição do problema. Dado um intervalo $I=[t_0,T]\in Dom(z(t))$ e $n\in\mathbb{N}$ o número de passos, define-se $h=\frac{T-t_0}{n}$. Note que o intervalo é igualmente espaçado.

Voltando à ideia da derivada, nota-se que z'(t) é igual a f(t, z(t)), por definição. Podemos então reescrever (2) da seguinte forma:

$$z_{k+1} \approx z_k + h f(t_k, z_k) \tag{3}$$

Ou seja, a partir de um valor incial, temos uma relação de recorrência para obter uma estimativa do valor de $z(t_k) \approx z_k$ a partir do anterior.

O Método de Euler pode ser extendido para EDO's de ordens superiores adotando o modelo

¹luislopes@ime.usp.br

 $^{{}^2}$ Se y_{k+1} não for usado o método é explícito e, em caso contrário, o método é implícito.

n-dimensional. Por exemplo, para n = 2, temos z''(t) = f(t, z(t), z'(t)) e basta introduzir uma variável auxiliar $y_1(t) = z'(t)$. Teremos o seguinte sistema de equações diferenciais:

$$\mathbb{Z}'(t) = \begin{pmatrix} z'(t) \\ y_1(t) \end{pmatrix} = \mathbb{F}(t, \mathbb{Z}) = \begin{pmatrix} y_1(t) \\ f(t, z(t), y_1(t)) \end{pmatrix} \tag{4}$$

O método de Euler acima é chamado de explícito, isto é, não é necessário solucionarmos qualquer tipo de equação algébrica para determinarmos a aproximação z_{k+1} . Quando f em (3) depender de z_{k+1} no tempo t_{k+1} em cada passo de integração, chamaremos o método de implícito e, na maioria dos casos há necessidade de resolvermos uma equação algébrica não linear a cada passo de integração, pois z_{k+1} está presente em f. Para isso, pode-se aplicar o Método das Aproximações Sucessivas, Método de Newton [1] ou qualquer outro método iterativo que determina uma aproximação da raiz z_{k+1} , completando assim o passo de integração.

A partir destes dois métodos de Euler apresentados acima, é possível construir o Método de Euler Aprimorado, também chamado de método do Trapézio explícito ou método de Heun, é um método de passo único e explícito que usa uma média de dois valores da função f como aproximação. Isto é, o método é da forma:

$$\begin{cases}
z_0 = y(t_0) \\
z_{k+1} = z_k + \frac{h}{2} [f(t_k, z_k) + f(t_{k+1}, z_k + h f(t_k, z_k))]
\end{cases}$$
(5)

Neste trabalho, iremos estudar um Problema de Cauchy com solução exata conhecida e também o caso genérico, a partir dos métodos de Euler: Explícito, Implícito e Aprimorado que possuem pelos resultados teóricos (veja em Roma [2]) as ordens de consistência um, um e dois, respectivamente. E com esses métodos numéricos, aplicaremos para $0 \le k \le n-1$ e $t_{k+1} = t_k + h$.

2. Implementação

O algoritmo foi implementado na linguagem Python (arquivo: Metodos de Passo Simples EDO) e pode ser acessado pelo arquivo py ou pelo github.

A implementação do algoritmo estão comentadas no arquivo py acima. Em resumo, foram definidas no programa as funções para cada método numérico e também algumas funções auxiliares, junto com os dados do problema. Além disso, foi usado a biblioteca numpy para realizar cálculos em arrays bidimensionais e matplotlib para gerar os gráficos das soluções numéricas.

Ao executar o arquivo, o programa irá pedir para o usuário informar o valor de n, isto é, a quantidade de subdivisões à serem realizadas no intervalo estudado. Em nosso caso, realizamos

o estudo para $n=4,8,16,\cdots,1024,2048,4096$ que tem referência ao aplicá-los com passos de integração progressivamente menores, isto é, $h=\frac{T-t_0}{2^m}, m=2,3,\cdots,12$ sendo $n=2^m.$

Após informar o comando de entrada, o programa tem como saída as soluções e os erros globais de discretização de cada método numérico, acompanhado dos gráficos das soluções numéricas para (x(t), y(t)). O teste foi realizado individualmente para cada n de interesse. E com essas informações, foram criadas as tabelas que auxiliam na análise de convergência.

Exemplo. Para n = 8192 informado na entrada do programa, obtemos para $t \in [\sqrt{\pi}, 2\pi]$ o seguinte resultado ilustrado na Figura (1) junto com três gráficos referente à cada método numérico, conforme ilustra a Figura (2).

Figura 1: Saída do Programa em Python para n = 8192.

³Podemos aplicar para qualquer $m = 1, \dots, M$ sendo M sufficientemente grande.

Figura 2: Métodos de Euler Explícito, Implícito e Aprimorado, respectivamente, para n = 8192.

3. Problema de Cauchy com Solução Exata

Seja o Problema de Cauchy

$$\begin{cases} x'(t) = y(t) \\ y'(t) = \frac{y(t)}{t} - 4t^2x(t) \end{cases}$$
 (6)

com $t \in [\sqrt{\pi}, T]$ e condições iniciais $x(\sqrt{\pi}) = 0$ e $y(\sqrt{\pi}) = -2\sqrt{\pi}$.

Podemos reescrever o sistema (6) da forma

$$\mathbb{Z}'(t) = \begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix} = \mathbb{F}(t, \mathbb{Z}) = \begin{pmatrix} y(t) \\ \frac{y(t)}{t} - 4t^2 x(t) \end{pmatrix}$$
 (7)

com

$$\mathbb{Z}(\sqrt{\pi}) = \begin{pmatrix} 0\\ -2\sqrt{\pi} \end{pmatrix} \tag{8}$$

A solução exata de (7) pode ser escrita como

$$\mathbb{Z}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} \sin(t^2) \\ 2t\cos(t^2) \end{pmatrix}$$
 (9)

De fato,

$$\mathbb{Z}'(t) = \begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix} = \begin{pmatrix} 2t\cos(t^2) \\ 2\cos(t^2) - 4t^2\sin(t^2) \end{pmatrix} = \begin{pmatrix} y(t) \\ \frac{y(t)}{t} - 4t^2x(t) \end{pmatrix}$$
(10)

$$\mathbb{Z}(\sqrt{\pi}) = \begin{pmatrix} \sin(\pi) \\ 2\sqrt{\pi}\cos(\pi) \end{pmatrix} = \begin{pmatrix} 0 \\ -2\sqrt{\pi} \end{pmatrix} \tag{11}$$

Tomando $T=2\pi$, temos a solução (9) para $t\in[\sqrt{\pi},2\pi]$ como na Figura (3).

Figura 3: Solução Exata do Sistema (7) para $t \in [\sqrt{\pi}, 2\pi]$.

Iremos testar os três métodos de passo único proposto neste trabalho usando o intervalo $[\sqrt{\pi},2\pi]$. Então, o passo de integração é $h=\frac{T-t_0}{n}=\frac{2\pi-\sqrt{\pi}}{n}$. E sabendo que a solução exata em $T=2\pi$ vale $[x(2\pi),y(2\pi)]=[0.97834055,-2.60126196]$.

I. Método de Euler Explícito

Iniciaremos com o Método de Euler Explícito fornecido abaixo ao discretizar o sistema (7).

$$\begin{cases}
\mathbb{Z}_{k+1} = \mathbb{Z}_k + h\mathbb{F}(t_k, \mathbb{Z}_k) \\
\mathbb{Z}_0 = \mathbb{Z}(\sqrt{\pi})
\end{cases}$$
(12)

A partir da Tabela (1), iremos ilustrar a convergência do Método de Euler Explícito em (12) usando o erro de discretização global com $(e_x, e_y) = (|x(T) - x_k(h)|, |y(T) - y_k(h)|)$, então usando a norma infinita temos que $|e(t, h)| = max\{|e_x|, |e_y|\}^4$.

Portanto, observamos que para h suficientemente pequeno, temos pela Tabela (1) que à medida que o passo de integração é reduzido pela metade, o erro de discretização global é

⁴Usaremos essas notações nas tabelas para todos os métodos numéricos deste trabalho.

n	(e_x,e_y)	e(t,h)	$q = \frac{ e(t,2h) }{ e(t,h) }$
4	(1227.36522262, 16985.54043963)	16985.54043963	
8	$(39043.3820261,\ 402301.40961039)$	402301.40961039	$\boxed{4.22276\mathrm{e}{+02}}$
16	$(529187.74769576,\ 801478.76632228)$	801478.76632228	5.01948e + 01
:	<u>:</u>	:	:
1024	(1.03476602, 1.19179752)	1.19179752	2.62828e + 00
2048	$(0.42525926,\ 0.67464885)$	0.67464885	$1.76654 \mathrm{e}{+00}$
4096	(0.19343746, 0.34257112)	0.34257112	$1.96936\mathrm{e}{+00}$

Tabela 1: Erros de Discretização Global em $T=2\pi$ e suas razões para o Método de Euler aplicado em (12).

também, aproximadamente, reduzido pela metade. Para ver esse fato, note pela Figura (4) que nos primeiros passos de integração o erro de discretização é muito grande, enquanto para n grande, i. e., para h pequeno, observamos pela Figura (5) a convergência do método. Este é o comportamento esperado para um método de primeira ordem uma vez que para eles o erro é proporcional a h. De fato, basta calcular $\log_2(q)$ com h suficientemente pequeno que encontramos a ordem 1 do método, e. g. para n = 4096 temos $\log_2(1.96936) = 0.9777 \approx 1$.

Figura 4: Método de Euler Explícito para n = 64.

II. Método de Euler Implícito

O Método de Euler Implícito é da forma

$$\begin{cases}
\mathbb{Z}_{k+1} = \mathbb{Z}_k + h\mathbb{F}(t_{k+1}, \mathbb{Z}_{k+1}) \\
\mathbb{Z}_0 = \mathbb{Z}(\sqrt{\pi})
\end{cases}$$
(13)

Figura 5: Método de Euler Explícito para n = 4096.

Para trabalhar com este método, note que (13) é um problema com equações lineares e

$$\mathbb{Z}'(t) = \mathbb{F}(t, \mathbb{Z}) = \begin{pmatrix} y(t) \\ \frac{y(t)}{t} - 4t^2 x(t) \end{pmatrix} = A \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$
(14)

onde
$$A = \begin{bmatrix} 0 & 1 \\ -4t^2 & 1/t \end{bmatrix}$$
.

Então, podemos reescrever o sistema (13) da forma $\mathbb{Z}_{k+1} = \mathbb{Z}_k + hA\mathbb{Z}_{k+1} \Leftrightarrow (I_2 - hA)\mathbb{Z}_{k+1} = \mathbb{Z}_k$, onde I_2 é a matriz identidade de ordem 2. Ou seja, $\mathbb{Z}_{k+1} = (I_2 - hA)^{-1}\mathbb{Z}_k$.

Como
$$I_2 - hA = \begin{bmatrix} 1 & -h \\ 4t^2h & 1 - h/t \end{bmatrix}$$
, então

$$(I_2 - hA)^{-1} = \begin{bmatrix} \frac{t - h}{t - h + 4h^2t^3} & \frac{ht}{t - h + 4h^2t^3} \\ -\frac{4ht^3}{t - h + 4h^2t^3} & \frac{t}{t - h + 4h^2t^3} \end{bmatrix}$$

Portanto, podemos calcular os passos de integração do Método de Euler Implícito com $\mathbb{Z}_0 = \mathbb{Z}(\sqrt{\pi})$ e $\mathbb{Z}_{k+1} = (I_2 - hA)^{-1}\mathbb{Z}_k$. Assim, vamos analisar a convergência do método com erro de discretização global cometido à medida que o passo de integração decresce.

Pela Tabela (2) observamos o fato semelhante visto para o Método de Euler Explícito, isto é, o comportamento é de um método de primeira ordem para o erro de proporção h. Para isso, podemos calcular $\log_2(q)$ com h suficientemente pequeno que encontramos a ordem 1 do método, e. g. para n=4096 temos $\log_2(1.94422)=0.95919\simeq 1$. O compartamento deste problema é ilustrado pelas Figuras (6) e (7) com diferentes h.

Além disso, como o método é implícito foi preciso avançar a solução no tempo e necessário solucionar uma equação algébrica cuja incógnita era \mathbb{Z}_{k+1} .⁶ Em geral, o Método de Euler

⁵Lembre-se que para a matriz A, o tempo $t = t_{k+1} = t_k + h$ devido a $\mathbb{F}(t_{k+1}, \mathbb{Z}_{k+1})$.

⁶E tornou-se simples pelo fato da linearidade das equações do Problema de Cauchy e não sendo necessário usar um método numérico iterativo para determinar a raiz \mathbb{Z}_{k+1} .

n	(e_x,e_y)	e(t,h)	$q = \frac{ e(t,2h) }{ e(t,h) }$
4	(0.95570054, 1.35696666)	1.35696666	
8	(0.97834008, 2.60133384)	2.60133384	$ \boxed{ 5.21642 {+} \mathrm{e}01 } $
16	(0.97834128, 2.60126329)	2.60126329	$oxed{1.00002 + e00}$
:	<u>:</u>	:	:
1024	(0.50049515, 1.20603637)	1.20603637	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
2048	(0.29550816, 0.65183745)	0.65183745	1.85021 + e00
4096	(0.16122919, 0.33526877)	0.33526877	$oxed{1.94422 + e00}$

Tabela 2: Erros de Discretização Global em $T=2\pi$ e suas razões para o Método de Euler Implícito aplicado em (13).

Implícito apresenta um alto custo computacional devido a esse fato.

Figura 6: Método de Euler Implícito para n = 64.

III. Método de Euler Aprimorado

O Método de Euler Aprimorado é da forma

$$\begin{cases}
\mathbb{Z}_{k+1} = \mathbb{Z}_k + \frac{h}{2} [\mathbb{F}(t_k, \mathbb{Z}_k) + \mathbb{F}(t_k + h, \mathbb{Z}_k + h\mathbb{F}(t_k, \mathbb{Z}_k))] \\
\mathbb{Z}_0 = \mathbb{Z}(\sqrt{\pi})
\end{cases}$$
(15)

Vejamos mais uma vez a análise dos erros globais de discretização com a Tabela (3).

Observe os três últimos resultados apresentado na Tabela (3): para n=1024 temos $\log_2(4.01508)=2.00542\simeq 2$; para n=2048 temos $\log_2(4.00840)=2.00302\simeq 2$; para n=4096 temos $\log_2(4.00478)=2.00172\simeq 2$. Ou seja, obtemos numericamente a ordem de convergência 2 para o Método de Euler Aprimorado.

Figura 7: Método de Euler Implícito para n = 4096.

n	(e_x,e_y)	e(t,h)	$q = \frac{ e(t,2h) }{ e(t,h) }$
4	(931312.09281138, 12360879.18190973)	12360879.18190973	
8	$(3.31498323\mathrm{e}{+07}, 1.61255952\mathrm{e}{+08})$	$3.31498323\mathrm{e}{+07}$	$ \boxed{0.37287 \mathrm{e}{+00} } $
16	$(5758776.23774455,\ 30714282.93034732)$	30714282.93034732	$1.07929\mathrm{e}{+00}$
:	:	:	i i
1024	$(0.00144482,\ 0.12461315)$	0.12461315	4.01508e + 00
2048	$(0.0003932,\ 0.03108794)$	0.03108794	$4.00840 \mathrm{e}{+00}$
4096	$(0.00010287 \ 0.0077627)$	0.0077627	4.00478e + 00

Tabela 3: Erros de Discretização Global em $T=2\pi$ e suas razões para o Método de Euler Aprimorado aplicado em (15).

Comparando com métodos anteriores, esse convergiu rapidamente para h suficientemente pequeno, e o tempo de execução foi praticamente instantâneo, assim como os outros. As Figuras (8) e (9) apresentam o compartamento deste problema à medida que o passo de integração decresce.

3.1. Estudo do Intervalo de Tempo para Diferentes Valores de T

Do Problema de Cauchy em (7), trabalhamos a implementação dos métodos numéricos para $T=2\pi$, isto é, no intervalo de tempo $[\sqrt{\pi},2\pi]$. E o que ocorre quando usamos diferentes valores para T? Para entender o comportamento numérico dessa curva parametrizada no tempo (x(t),y(t)), usaremos o Método de Euler Aprimorado que possui uma convergência quadrática e mais rápida entre os Métodos de Euler deste trabalho para apresentar o comportamento dessa função.

Figura 8: Método de Euler Aprimorado para n = 64.

Figura 9: Método de Euler Aprimorado para n = 4096.

Realizando uns testes com n=4096, obtemos para $T=\pi$ e $T=4\pi$ as Figuras (10) e (11), respectivamente. Ou seja, para T suficientemente grande a curva é um espiral rodando cada vez mais rápido e que aumenta seu raio máximo na direção y(t).

Figura 10: Método de Euler Aprimorado para n = 4096 no intervalo $[\sqrt{\pi}, \pi]$.

Figura 11: Método de Euler Aprimorado para n = 4096 no intervalo $[\sqrt{\pi}, 4\pi]$.

4. Problema de Cauchy Genérico

Na seção anterior vimos a solução aproximada para cada método e a partir da solução exata foi possível calcular o erro de discretização global cometido e estimar a ordem de convergência. Agora iremos utilizar a teória da Expansão do Erro de Discretização Global e a Depuração do Código Computacional [2] para estimar a ordem de convergência dos métodos numéricos sem usar a solução exata.

Para um dado passo de integração h > 0 suficientemente pequeno e um instante de tempo fixado t, calcula-se as soluções numéricas $\eta(t,2h), \eta(t,h)$ e $\eta(t,h/2)$ empregando-as passos de integração 2h,h e h/2, respectivamente.

Considerando um Problema de Cauchy que satisfaz as condições de convergência, calculamos o valor absoluto do quociente entre as diferenças $\eta(t, 2h) - \eta(t, h)$ e $\eta(t, h) - \eta(t, h/2)$ (ver [2], p. 40), obtendo

$$r = \left| \frac{\eta(t, 2h) - \eta(t, h)}{\eta(t, h) - \eta(t, h/2)} \right| \approx 2^{\bar{p}}$$

$$\tag{16}$$

Para estimar o valor de \bar{p} , calcularemos o logaritmo na base 2 em (16) e teremos em primeira aproximação o valor de $\log_2 r \approx \log_2(2^{\bar{p}}) = \bar{p}$. E com isso, tem-se uma estimativa para a ordem exibida pelo método.

Este procedimento deve ser executado para várias triplas de passos sucessivamente menores $(2h, h, h/2), (h, h/2, h/4), \dots$, obtendo-se assim uma sequência de aproximações $\bar{p}_1, \bar{p}_2, \dots$, que converge para a ordem \bar{p} que o método apresenta para o Problema de Cauchy em questão.

Do problema dado por (7) em $[\sqrt{\pi}, 2\pi]$, analisaremos cada método numérico. Para o Método de Euler, podemos observar pelos resultados apresentados na Tabela (4) que $\log_2 r$ se aproxima de 1 quando h é reduzido pela metade e se aproxima de zero, isto é, o método tende assintoticamente para 1 à medida que $h \to 0$, conforme previsto pela teoria.

Analogamente, podemos observar o fato para o Método de Euler Implícito com os resultados

n	$\eta(t,h)$	$r = \left \frac{\eta(t,2h) - \eta(t,h)}{\eta(t,h) - \eta(t,h/2)} \right $	$\log_2 r$
:	:	:	:
1024	3.79305	:	:
2048	3.27591	1.55731	0.63905
4096	2.94383	1.93921	0.95546
8192	2.77258	1.99618	0.99724
16384	2.68680	:	:

Tabela 4: Determinação da Ordem de Convergência do Método de Euler aplicado em (12).

mostrados na Tabela (5). Note que à medida que o passo de integração se aproxima de zero, tem-se que $\log_2 r \approx 1$. Ou seja, o método é de primeira ordem à partir da estimativa numérica.

n	$\eta(t,h)$	$r = \left \frac{\eta(t,2h) - \eta(t,h)}{\eta(t,h) - \eta(t,h/2)} \right $	$\log_2 r$
:	:	:	;
1024	1.39522	:	:
2048	1.94942	1.75064	0.80788
4096	2.26599	1.90857	0.93249
8192	2.43186	1.96647	0.97560
16384	2.51620	:	:

Tabela 5: Determinação da Ordem de Convergência do Método de Euler Implícito aplicado em (13).

Com base nas observações feitas acima, será que para o Método de Euler Aprimorado iremos obter numéricamente a ordem de convergência 2 de acordo com a teoria? Para responder essa questão, basta observar a Tabela (6) com $h \to 0$ concluímos $\log_2 r \approx 2$. Logo, obtemos também numericamente a ordem de convergência 2 para o método.

Portanto, sem precisar saber a solução exata conseguimos encontrar a solução numérica que se aproxima da solução do problema quando h é suficientemente pequeno e as ordens estimadas coincidem com as ordens de convergência dos métodos previstos pela teoria.

n	$\eta(t,h)$	$r = \left \frac{\eta(t,2h) - \eta(t,h)}{\eta(t,h) - \eta(t,h/2)} \right $	$\log_2 r$
:	:	:	:
1024	2.72587	:	:
2048	2.63234	4.00961	2.00346
4096	2.60902	4.00551	2.00198
8192	2.60320	4.00299	2.00107
16384	2.60174	:	:

Tabela 6: Determinação da Ordem de Convergência do Método de Euler Aprimorado aplicado em (15).

5. Considerações Finais

Neste trabalho, estudamos o comportamento e a convergência dos Métodos de Passo Simples usando a implementação em Python. Na seção 1 trabalhamos resumidamente a parte conceitual dos métodos numéricos, baseado em Roma [2]. Em seguida, vimos como funciona a implementação dos métodos que foi base no estudo deste projeto.

Ao testar os métodos com um Problema de Cauchy obtivemos numericamente a convergência de primeira ordem dos Métodos de Euler Explicíto e Implícito, enquanto ao Método de Euler Aprimorado encontramos a ordem dois de convergência. Esses resultados numéricos coincidiram com os resultados teóricos, convergindo para h suficientemente pequeno, como apresentado nas tabelas.

Por fim, observamos que para diferentes T a curva parametrizada pelo tempo (x(t), y(t)), com $t \in [\sqrt{\pi}, T]$ é um espiral que roda cada vez mais rápido em cada passo de integração. A implementação dos métodos mostrou-se eficiente para encontrar uma solução aproximada e o erro global de discretização de um Problema de Cauchy, sabendo ou não sua solução exata.

Referências

- [1] BURDEN, R. L.; FAIRES, J. D. Numerical analysis. [S.l.]: Brooks/Cole Publishing Company, 1997.
- [2] ROMA, A. L.; BEVILACQUA, J. S.; NÓS, R. L. Métodos para a Solução Numérica de Equações Diferenciais Ordinárias a Valores Iniciais. Notas de aula em construção. São

Paulo: IME-USP, ed. dez-2020.