

Projeto de Sistemas de Comunicação Sem Fios e Móveis

Realizado por:

Afonso Taveira 99198

Pedro Cruz 99379

Grupo 18

Professor Américo Correia

Índice

1.	Intro	duçã	ão	2
2.	Simu	ılaçã	io	2
	2.1.	Perc	das de Propagação	3
	2.2.	Fato	or de Geometria	3
	2.3.	Cob	pertura	4
	2.3.1	۱.	Ritmo binário 898kbps	4
	2.3.2.		Ritmo binário 2464kbps	5
	2.3.3	3.	Ritmo binário 3996kbps	6
	2.3.4	1.	Conclusões Cobertura	7
	2.4.	Thro	oughput	8
	2.4.1	۱.	Ritmo binário 898kbps	8
	2.4.2	2.	Ritmo binário 2464kbps	9
	2.4.3	3.	Ritmo binário 3996kbps1	0
	2.4.4	1.	Conclusões Throughput1	1
3.	Zona	as Mo	ortas e de Bloqueio1	1
	3.1.	Zona	as Mortas1	2
	3.2.	Zona	as de Bloqueio1	3
4.	Con	clusã	io1	13

1. Introdução

Neste trabalho vamos projetar um sistema de comunicações sem fios e móvel usando rede 5G. O local do nosso estudo é a zona ao redor do ISCTE e iremos fazê-lo usando 9 antenas, tentando que a região em questão receba o máximo de cobertura possível.

Segundo os dados fornecidos, iremos utilizar os seguintes valores de ritmo binário 898, 2464 e 3996 kbps. Foi-nos também fornecida uma tabela com os valores de SNR.

Canal (Rb)	898kbps	2462kbps	3996kbps
Pedestre B 3km/h	-6.76dB	-2.71dB	0.13dB
Veicular A 30km/h	-8.26dB	-4.21dB	-1.37dB

Tabela 1 - Dados fornecidos

2. Simulação

Começámos por correr o simulador LTE, de forma a escolher a localização das 9 estações base (função "**Setup BTSs Location**" do simulador), e, tal como já foi referido, sempre com o objetivo de cobrir a maior região possível. Assim, obtivemos o seguinte mapa com a devida colocação das estações.

Figura 1 - Mapa com estações base

2.1. Perdas de Propagação

Depois de escolhidos os locais das estações, recorremos à função "**Propagation Losses / Geometry Factor**", para conferir se a maior parte da área estaria coberta, obtendo assim o seguinte mapa.

Figura 2 – Perdas de Propagação

Através da análise da Figura 2, concluímos que quanto mais clara a cor de uma região, melhor a cobertura na mesma, ou seja, grande parte do mapa está coberto, verificando-se apenas perdas mais significativas nos cantos, algo que não muito relevante, visto que o nosso foco seria cobrir principalmente as regiões mais interiores.

2.2. Fator de Geometria

O fator de geometria é calculado através da fórmula abaixo, sendo que I_{or} representa a interferência na própria célula, I_{oc} a interferência total pelas células que estão em redor e P_n a potência do ruído branco gaussiano.

$$G = \frac{I_{or}}{I_{oc} + P_n}$$

Assim, quanto maior o valor de G, melhor a cobertura, por sua vez, quanto menor pior a qualidade do serviço.

Deste modo, utilizando o MatLab, obtivemos a Figura 3, que representa o gráfico do fator de geometria.

Figura 3 - Fator de Geometria

2.3. Cobertura

O passo seguinte consistiu em efetuar simulações, com o objetivo de obter os gráficos de cobertura, tendo em conta os 3 valores de ritmo binário já referidos anteriormente e também TTI = 80ms, Nu = 900 utentes, Tempo = 600s e os devidos valores de SNR. Começámos por utilizar 898kbps.

2.3.1. Ritmo binário 898kbps

Figura 4 - Cobertura do Sistema para 898kbps

Figura 5 - Cobertura das Estações Base para 898kbps

2.3.2. Ritmo binário 2464kbps

Figura 6 - Cobertura do Sistema para 2464kbps

Figura 7 - Cobertura das Estações Base para 2464kbps

2.3.3. Ritmo binário 3996kbps

Figura 8 - Cobertura do Sistema para 3996kbps

Figura 9 - Cobertura das Estações Base para 3996kbps

2.3.4. Conclusões Cobertura

Através da análise dos gráficos, concluímos que para o valor 898kbps de ritmo binário obtivemos uma melhor cobertura, em relação a um gasto de energia reduzido, sendo possível verificar que esta tendência vai piorando quando o ritmo binário aumenta, isto é, a cobertura vai reduzindo com maior gasto e energia. Podemos comprovar pela análise da tabela 2.

$\frac{E_c}{I_{or}}$ (%)	898kbps	2462kbps	3996kbps
20	42.557	0	0
40	74.683	27.335	0
60	87.987	51.631	4.782
80	93.800	65.134	29.518
100	96.638	74.105	42.898

Tabela 2 – Resultados da Cobertura do Sistema

2.4. Throughput

O Throughput corresponde à quantidade de dados processados num espaço de tempo. De seguida apresentamos os gráficos referentes aos diferentes valores de ritmo binário.

2.4.1. Ritmo binário 898kbps

Figura 10 - Throughput do Sistema para 898kbps

Figura 11 - Throughput das Estações Base para 898kbps

2.4.2. Ritmo binário 2464kbps

Figura 12 - Throughput do Sistema para 2464kbps

Figura 13 - Throughput das Estações Base para 2464kbps

2.4.3. Ritmo binário 3996kbps

Figura 14 - Throughput do Sistema para 3996kbps

Figura 15 - Throughput das Estações Base para 3996kbps

2.4.4. Conclusões Throughput

Através da análise dos gráficos, concluímos que para o valor 898kbps de ritmo binário obtivemos o melhor resultado, visto que o valor esperado seria, neste caso, 898kbps, correspondente ao ritmo binário e o resultado final foi 821.448kbps para o sistema e 858.012kbps para as estações base. Por outro lado, para 3996kbps, mais uma vez, este seria o valor esperado, no entanto o valor máximo obtido foi 1781.726kbps para o sistema e 2118.575kbps para as estações base, o que demonstra que aumentando o ritmo binário, a interferência também aumenta significativamente. Abaixo apresentamos na tabela 3 os resultados obtidos para o sistema.

$\frac{E_c}{I_{or}}$ (%)	898kbps	2462kbps	3996kbps
20	397.878	0	0
40	652.045	742.688	0
60	753.267	1293.635	255.344
80	798.760	1584.463	1288.625
100	821.448	1773.215	1781.726

Tabela 3 – Resultados do Throughput do sistema

3. Zonas Mortas e de Bloqueio

De seguida vamos estudar a existência de zonas mortas e de bloqueio para serviços de voz com ritmos binários de 386kbps. Para tal consideramos que metade das estações base são da nossa operadora e as restantes pertencem a uma outra, visto que no total são 9 estações, assumimos que 5 são nossas e 4 dos concorrentes.

Figura 16 - Mapa sem estações base da concorrência

3.1. Zonas Mortas

As zonas mortas correspondem a regiões que não estão cobertas, ou seja, se um dispositivo estiver numa destas zonas a transmitir com a sua potência máxima, mesmo assim não chega para estabelecer uma ligação. O principal fator criador de uma zona morta é a distância, isto é, se o dispositivo em questão estiver muito afastado da antena mais próxima, mesmo assim pode não consegui estabelecer comunicação.

Iremos agora calcular as zonas mortas:

- Ritmo binário: 386kbps
- 10log (Pn) = -92dBm (UL)
- 10log (Pn) = -89dBm (DL)
- Largura de Banda 5GNR, Bt = 50MHz
- 10log (Eb/No) = 0dB
- Filtragem 10log (ACL) = -40dB
- (UE) 10log (Pt) = 24dBm
- (BS) 10log (Pt) = 46dBm
- Margem de interferência 10log (Mi) = 16dB

10log (Rb/Bt) = 10log (386000/50000000) = - 21dB

 $10\log (S/N) = 10\log (Eb/No) + 10\log (Rb/Bt) = 0 - 21 = -21dB$

 $10\log(S) = 10\log(N) + 10\log(S/N) = -100dBm - 21dB = -121dBm$

Lprop (dB) = $10\log (Pt) - 10\log (N) = 24dBm - (-121dBm) = 144dB$

Depois de efetuados os cálculos, as zonas mortas representam as regiões onde Lprop (dB) é superior a 144dB, ou seja, o que está colorido a azul na figura seguinte.

Figura 17 - Zonas Mortas

3.2. Zonas de Bloqueio

As zonas de bloqueio correspondem a regiões onde um dispositivo pode estar a emitir com a sua potência máxima, mas, por estar demasiado perto de uma antena de outra operadora, acaba por ser bloqueado.

Iremos agora calcular as zonas de bloqueio:

$$10\log{(Pi)} = 10\log{(Pt)} + 10\log{(ACL)} = 24dBm + (-40dB) = -16dBm$$

Depois de efetuados os cálculos, as zonas de bloqueio representam as regiões onde Lprop (dB) é inferior a 68dB, ou seja, o que está colorido a azul na figura seguinte.

Figura 18 - Zonas de Bloqueio

4. Conclusão

Este projeto consistiu no planeamento de uma rede de rádio para a zona de Lisboa em torno do ISCTE.

Primeiramente, começámos por escolher a localização de 9 antenas, de forma a cobrir o máximo da área pretendida, para tal verificámos as perdas de propagação e fator de geometria com a ajuda do simulador fornecido pelo docente e do Matlab. De seguida, ainda com a ajuda destas ferramentas, obtivemos os gráficos de cobertura e throughput, tanto para o sistema com para cada uma das estações base e para cada um dos ritmos binários, chegando à conclusão de que, para ambos o valor de 898kbps seria o mais favorável.

Concluídas as simulações, avançámos para uma segunda parte do projeto em que calculámos as zonas mortas e de bloqueio e percebemos como estas podem interferir.