Data Mining 팀 프로젝트 보고서

과목 교수님	노상욱 교수님			
전공	컴퓨터정보공학부			
학년	4학년			
팀원	201620727 송민아 201621132 이정은 201621504 최윤지			
제출 일자	2020년 12월 03일 (목)			

목 차

- ◈ 주제 및 속성
- ◈ 알고리즘
- Learning Curve
- ANOVA
- Bernoulli Distribution

UNIVERSITY OF KOREA

- ◈ 새로운 시험 데이터
- ◈ 결론 & 고찰
- ◈ 역할 분담

■ 주제

대부분의 사람들은 노트북을 하나 이상씩은 가지고 있다. 노트북은 다양한 용도와 이유로 앞으로도 계속 사용될 것이다. 노트북을 바꾸거나 처음 사는 사람들은 자신에게 어떤 노트북이 맞는 것인지, 유용하게 사용할 수 있을지 가늠하기 어렵다. 따라서 이 주제를 통해 그런 어려움을 겪고 있는 사람들에게 도움이 될 수 있을 것같아 선정하게 되었다.

■ 속성

→ 성별 : 남, 여

→ 연령대 : 10대, 20대, 30대, 40대 이상

→ 문서 작업 : YES, NO

→ 디자인 & 영상 작업: YES, NO

→ 고사양 게임: YES, NO

→ 터치스크린, 펜의 사용여부 : YES, NO

→ 무게 : 1kg 미만, 1kg~1.3kg, 1.3kg이상

→ 예산 : 100만원 미만, 100~160만원, 160만원 이상

→ class : Samsung Galaxy Book Flex, Samsung Always 9, Apple MacBook Pro, Apple MacBook Air, LG gram 14, LG 울트라 PC

■ 데이터의 수집 방법

→ 데이터는 설문조사를 통해 수집하였습니다.

1	gender	age	Documen	t Design &	High-end	Writing	weight	budget	product
2	Male	20~29	YES	YES	NO	NO	1.3kg ~	160~	Apple MacBook
3	Male	20~29	YES	NO	NO	YES	1.1kg ~ 1.	160~	Samsung Galaxy
4	Female	20~29	YES	NO	NO	YES	1.1kg ~ 1.	160~	Samsung Galaxy
5	Female	30~39	NO	NO	YES	NO	1.1kg ~ 1.	~100	LG UltraPC
6	Male	20~29	YES	YES	YES	NO	1.1kg ~ 1.	100~160	Apple MacBook
7	Male	20~29	YES	NO	YES	NO	1.1kg ~ 1.	~100	Samsung Always
8	Female	20~29	YES	YES	NO	NO	1.3kg ~	160~	Apple MacBook
9	Male	20~29	YES	NO	NO	NO	~ 1kg	100~160	LG gram14
10	Female	20~29	YES	NO	NO	YES	1.1kg ~ 1.	160~	Samsung Galaxy
11	Female	40~	YES	NO	NO	YES	1.1kg ~ 1.	160~	Samsung Galaxy
12	Female	20~29	YES	NO	YES	YES	1.1kg ~ 1.	160~	Samsung Galaxy
13	Female	20~29	YES	NO	NO	YES	~ 1kg	100~160	Samsung Always

→ 설문조사를 통해 얻은 데이터들을 .csv파일로 변 환한 후 Weka 실습을 실행하였습니다.

■ 알고리즘

1) 1R

```
=== Classifier model (full training set) ===
weight:
       1.3kg ~ -> Apple MacBook pro
       1.1kg ~ 1.3kg -> Samsung Galaxy Book Flex
       ~ 1kg -> Samsung Always 9
(134/242 instances correct)
Time taken to build model: 0 seconds
=== Stratified cross-validation ===
=== Summary ===
Correctly Classified Instances
                                   134
                                                     55.3719 %
Incorrectly Classified Instances
                                                     44.6281 %
                                    108
→ instances의 개수 : 242개
```

→ 기준이 되는 속성 : 무게 ~1kg : Samsung Always 9

1.1kg ~ 1.3kg : Samsung Galaxy Book Pro

1.3kg~: Apple MacBook Pro

→ 정확도 : 55.3719% VERSITY/OF KOREA

→ 정밀도 : 31.083% → 재현율 : 55.4%

▶ 가장 높은 정확도 = 171개일 때, 55.6%이다.

▶ 가장 낮은 정확도 = 24개일 때, 29.2%이다.

2) Decision Tree

```
budget = 160~
   Writing = NO: Apple MacBook pro (38.0)
   Writing = YES
      weight = 1.3kg ~: Samsung Galaxy Book Flex (2.0)
      weight = 1.1kg ~ 1.3kg: Samsung Galaxy Book Flex (51.0/2.0)
      weight = ~ 1kg: LG gram14 (2.0)
budget = ~100
   Design & media = YES: Apple MacBook Air (2.0)
   Design & media = NO: LG UltraPC (26.0/2.0)
budget = 100~160
  weight = 1.3kg ~: Samsung Always 9 (0.0)
   weight = 1.1 kg \sim 1.3 kg
  | Design & media = YES: Apple MacBook Air (33.0/3.0)
1
       Design & media = NO
          age = 20~29: LG gram14 (3.0/1.0)
      1
          age = 30~39
   1
          | Writing = NO: Apple MacBook Air (2.0)
      | | Writing = YES: Samsung Galaxy Book Flex (2.0)
   | age = 40~: Samsung Galaxy Book Flex (0.0)
1
          age = 10~19: Samsung Always 9 (1.0)
   31
       1
   weight = ~ 1kg
      Writing = NO
       | age = 20~29
         | High-end games = NO
          | gender = Male: Samsung Always 9 (7.0/2.0)
1
   1
       1
          gender = Female: LG gram14 (29.0/11.0)
          1
       1
          age = 30~39: Samsung Always 9 (13.0/5.0)
         age = 40~: Samsung Always 9 (10.0/5.0)
          age = 10~19: Samsung Always 9 (9.0)
       Writing = YES: Samsung Always 9 (4.0)
Number of Leaves :
Size of the tree :
Time taken to build model: 0 seconds
=== Stratified cross-validation ===
=== Summary ===
                                                     76.8595 %
Correctly Classified Instances
                                   186
Incorrectly Classified Instances
                                     56
                                                     23.1405 %
→ instances의 개수 : 242개
```

→ 정확도 : 76.8595%

→ 정밀도 : 76.8% → 재현율 : 76.9%

▶ 가장 높은 정확도 = 122개일 때, 77.9%이다.

▶ 가장 낮은 정확도 = 24개일 때, 58.3%이다.

3) Naive Bayes

=== Classifier model (full training set) ===

Naive Bayer Classifier

	Class	11.00 N. 전 12.00 보다	40.00		1200000	hands make a sta
Attribute	Apple MacRook pro Sansung Galaxy Book Flex		LG UltraPC	Samsung Always 9	16 gran14	Apple ManBook Aix
	(0.17)	(0.22)	(0.1)	(0.2)	(0.17)	(0.14)
gender		.,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Hale	25.0	31.0	16.0	26.0	10.0	15
Funale	15.0	25.0	10.0	24.0	32.0	21
[total]	44.0	56.0	26.0	50.0	42.0	36
13.00001	7937	3557	55850	3555	38.10	
age						
20-25	27.0	17.0	2.0	25.0	25.0	13
30-39	9.0	15,0	0.0	10.0	6.0	0
10-	5.0	13.0	2.0	6.0	8.0	6
10-19	5.0	13.0	14.0	11.0	1,0	11
[total]	46.0	58.0	29.0	52.0	44.0	30
Document						
YES	34.0	46.0	19.0	47.0	40.0	32
NO	10.0	10.0	7.0	3.0	2.0	4
[total]	44.0	56.0	26.0	50.0	42.0	36
Design & media						
YES	41.0	10.0	1.0	5.0	6.0	33
80	3.0	46.0	25.0	45.0	36.0	3
[total]	44.0	56,0	26.0	50.0	42.0	36
Lightend games						
NO.	25.0	28.0	13.0	40.0	35.0	24.
YES	19,0	20.0	13.0	10.0	7.0	12.
(total)	44.0	56.0	26.0	50.0	42.0	36.
Friting						
NO	41.0	1.0	25.0	65.0	39.0	29.
YES	3,0	55.0	1,0	5.0	3.0	7,
[total]	44.0	56.0	26.0	50.0	42.0	36.
200						
eight		20.00	200	9299		140
1.3kg =	35.0	3.6	3.0	1.0	1,0	2.
1.1kg - 1.3kg	5.0	53.0	23.0	5.0	3.0	34.
- 1kg	1.0	1.0	1.0	45.0	39.0	1.
[total]	45.0	57.0	27.0	51.0	43.0	37.
udget						
160-	41.0	52.0	1.0	1.0	3.0	1.
+100	1.0	1.0	25.0	3.0	1.0	3.
100-160	3.0	4.0	1.0	47.0	39.0	33.
[total]	45.0	57.0	27.0	51.0	43.0	37.

Time taken to build model: 0 seconds

ses Stratified cross-validation ses NES DURMARY NAME

Correctly Classified Instances 197 01.405 % Incorrectly Classified Instances 45 18.395 %

→ instances의 개수 : 242개

→ 정확도 : 81.405% → 정밀도 : 81.3% → 재현율 : 81.4%

▶ 가장 높은 정확도 = 146개일 때, 82.2%이다.

▶ 가장 낮은 정확도 = 24개일 때, 54.2%이다.

4) Association Rule

Best rules found:

- 1. Design & media=NO High-end games=NO 106 ==> Document=YES 106 <conf:(1)> lift:(1.14) lev:(0.05) [13] conv:(13.14)
- 2. High-end games=NO budget=100~160 96 ==> Document=YES 92 <conf:(0.96)> lift:(1.09) lev:(0.03) [7] conv:(2.38)
- 3. High-end games=NO Writing=NO 122 ==> Document=YES 116 <conf:(0.95)> lift:(1.09) lev:(0.04) [9] conv:(2.16)
- 4. gender=Female High-end games=NO 98 ==> Document=YES 93 <conf: (0.95)> lift: (1.08) lev: (0.03) [7] conv: (2.02)
- 5. High-end games=NO 159 ==> Document=YES 150 <conf:(0.94)> lift:(1.08) lev:(0.04) [10] conv:(1.97)
- 6. budget=100~160 121 ==> Document=YES 114 <conf: (0.94)> lift: (1.08) lev: (0.03) [8] conv: (1.88)
- 7. Writing=NO budget=100~160 110 ==> Document=YES 103 <conf:(0.94)> lift:(1.07) lev:(0.03) [6] conv:(1.7)
- 8. gender=Female Writing=NO 92 ==> Document=YES 86 <conf: (0.93) > lift: (1.07) lev: (0.02) [5] conv: (1.63)
- 9. Design & media=NO Writing=NO 101 ==> Document=YES 93 <conf:(0.92)> lift:(1.05) lev:(0.02) [4] conv:(1.39)
- 10. gender=Female 125 ==> Document=YES 115 <conf: (0.92) > lift: (1.05) lev: (0.02) [5] conv: (1.41)
- → 242개의 데이터를 적용하여 Association Rule을 구현하였다.
- → 정확도 100%의 연관 규칙은 1가지 디자인 & 영상 작업을 하지 않고 고 사양 게임을 하지 않으면 문서 작업을 한다.
- → 더 높은 정확도를 내는 기계 학습 알고리즘을 사용하는 것이 유리하다.

■ Learning Curve

- → 1 Rule, DECISION TREE (J48), NAÏVE BAYES (N.B)의 학습 곡선
- → 1 Rule : 171개의 인스턴스에서 가장 높은 정확도 55.5556%가 나온 것을 확인 할 수 있다.
- → DECISION TREE (J48) : 122개의 인스턴스에서 가장 높은 정확도 77.8689%가 나온 것을 확인할 수 있다.
- → NAÏVE BAYES (N.B) : 146개의 인스턴스에서 가장 높은 정확도 82.1918%가 나 온 것을 확인할 수 있다.

ANOVA

1R	J48	N.B	→ 각각의 Rule에 대해 Learning Curve로 확인한
58.2781	79.4118	80.9524	가장 높은 정확도를 가지는 인스턴스의 주변 값들 _의 정확도
58.3851	75	82.3529	-1 011
55.5556	77.8689	82.1918	
55.8011	78.0303	80.7692	
55.4974	74.6479	81.3253	

→ ANOVA TEST를 하기 위해서 Learning Curve로 확인한 가장 높은 정확도를 보인 인스턴스를 중앙값으로 각 인스턴스의 차이를 10으로 두고 N을 5로 설정하였다. 분산 분석: 일원 배치법을 사용하여 평균 및 분산 값을 확인하고 F 비와 90%, 95%, 99%의 F 기각치를 계산하였다.

분산 분석: 일	원 배치법							
요약표								
인자의 수준	관측수	합	평균	분산				
1R	5	283.52	56.70	2.22				
J48	5	384.96	76.99	4.29				
N.B	5	407.59	81.52	0.52				
분산 분석								
변동의 요인	제곱합	자유도	제곱 평균	F FI	P-값	F 기각치(90)	F 기각치(95)	F 기각치(99)
처리	1746.47	2	873.24	372.54	1.59E-11	2.81	3.89	6.93
잔차	28.13	12	2.34					
계	1774.60	14						

 $\rightarrow X \sim F(k-1,k(n-1),\alpha)$ 인 F 분포를 따라 k = 3, n = 5로 자유도 $X \sim F(2,12)$ 와 F 비 값을 구하였다.

$$F_{0.1}(2,12)=2.81$$
 $F_{0.05}(2,12)=3.89$ $F_{0.01}(2,12)=6.93$

 \rightarrow F 비의 값이 372.54로 F 기각치(90, 95, 99)보다 큰 것으로 보아 유의한 차이 값을 지니고 있다. 따라서 더 높은 정확도를 제공하는 NAÏVE BAYES 알고리즘을 사용하는 것이 더 유리하다.

■ Bernoulli Distribution

$$P = \left(f + \frac{z^2}{2N} \pm Z\sqrt{\frac{f}{N} - \frac{f^2}{N} + \frac{z^2}{4N^2}}\right) / \left(1 + \frac{z^2}{N}\right)$$

→ 다음과 같은 공식을 이용하여 P의 범위 값을 구하였습니다. 이때의 f는 각각의 Rule들의 정확도, N은 instances의 수이므로 242개, z=1.65(90%), z=1.96(95%), z=2.58(99%)로 계산하였습니다.

	z=1.65(90%)	z=1.96(95%)	z=2.58(99%)	
1R(f=0.554)	[0.5071 <p<0.6120]< th=""><th>[0.4997<p<0.6240]< th=""><th>[0.4864<p<0.6490]< th=""></p<0.6490]<></th></p<0.6240]<></th></p<0.6120]<>	[0.4997 <p<0.6240]< th=""><th>[0.4864<p<0.6490]< th=""></p<0.6490]<></th></p<0.6240]<>	[0.4864 <p<0.6490]< th=""></p<0.6490]<>	
NB(f=0.814)	[0.7784 <p<0.8608]< th=""><th>[0.7730<p<0.8708]< th=""><th>[0.7635<p<0.8919]< th=""></p<0.8919]<></th></p<0.8708]<></th></p<0.8608]<>	[0.7730 <p<0.8708]< th=""><th>[0.7635<p<0.8919]< th=""></p<0.8919]<></th></p<0.8708]<>	[0.7635 <p<0.8919]< th=""></p<0.8919]<>	
DT(f=0.769)	[0.7300 <p<0.8191]< th=""><th>[0.7240 < P < 0.8297]</th><th>[0.7134<p<0.8520]< th=""></p<0.8520]<></th></p<0.8191]<>	[0.7240 < P < 0.8297]	[0.7134 <p<0.8520]< th=""></p<0.8520]<>	

■ 새로운 시험 데이터

▶ 첫 번째 시험 데이터

Gender	Age	Document	Design & Media	High-end Game	writing	weight	Budget
Female	20 ~ 29	YES	NO	NO	NO	1.1kg ~ 1.3kg	100 ~ 160

→ 1 Rule의 경우 무게로 class를 추천하기 때문에 Samsung Galaxy Book Flex로 추천하고, Decision Tree는 앞서 보았던 트리 그래프를 참고하면 LG gram14를 추천 한다. Naive Bayes는 Apple Macbook pro를 추천하는 것을 볼 수 있다.

▶ 두 번째 시험 데이터

Gender	Age	Document	Design & Media	High-end Game	writing	weight	Budget
Male	40~	NO	YES	YES	YES	1.1kg ~ 1.3kg	100 ~ 160

알고리즘 선택

1. 1R(OneR)

2. NaiveBayesian 3. Decision Tree

4. auit

Samsung Galaxy Book Flex! 정확도 : 55.3719

알고리즘 선택

1. 1R(OneR)

2. NaiveBayesian 3. Decision Tree 4. quit

Apple MacBook Air! 정확도 : 76.8595

<1 Rule>

<Decision Tree>

Apple Macbook pro 를 추천합니다.

naive bayes의 분류정확도 : 81.4

<Naive Bayes>

→ 1 Rule의 경우 무게로 class를 추천하기 때문에 Samsung Galaxy Book Flex로 추천하고, Decision Tree는 앞서 보았던 트리 그래프를 참고하면 Apple Macbook air를 추천한다. Naive Bayes는 Apple Macbook pro를 추천하는 것을 볼 수 있다.

■ 결론 & 고찰

- → Learing Curve를 통해 1 Rule은 171개의 데이터에서 55.6%, Decision Tree는 122개의 데이터에서 77.9% Naive Bayes는 146개의 데이터에서 82.2%인 가장 높은 정확도를 확인할 수 있었다.
- → 설정한 도메인의 class는 6개인데 속성은 4개가 최대라서 1 Rule에서는 6개의 클래스를 모두 구분할 수 없어서 정확도가 현저히 떨어졌다. 이러한 결과로 인해 1 Rule을 사용하여 class를 구분할 때는 class 개수 이상의 속성값이 필요하다는 것을 깨달았다.
- → ANOVA Test를 통해 1 Rule과 Naive Bayes의 차이가 커서 우연하다는 가설을 기각하고 통계적으로 유의하여 가장 높은 정확도를 보이는 기계학습 알고리즘 사용이 유리하다는 결과를 얻었다.

■ 역할 분담

▶ 최윤지 : 설문조사, 엑셀 작업, Learning Curve, ANOVA Test, 보고서 작성

▶ 송민아 : 설문조사, 엑셀 작업, Naive Bayes 알고리즘 작성, PPT 작성

▶ 이정은 : 설문조사, Bernoulli Distribution, 1 Rule, Decision Tree 알고리즘 작성, 보고서 작성

■ 참고문헌/자료

▶ 데이터 마이닝 강의자료