

Cryptography

Colacel Alexandru Andrei

Contents

T	Introduction					
	1.1	Perfect secrecy	4			
	1.2	One Time Pad (Vernam's Cipher)	6			
	1.3	Authentication	7			
	1.4	Randomness Extraction	8			
2	Con	nputational Cryptography	9			
	2.1	One Way Functions	9			
	2.2	Computational Indistinguishability	10			
	2.3	Pseudo Random Generators	10			
	2.4	Hard Core Predicates	11			
3	Syn	Symmetric Key Encryption Schemes				
	3.1	Chosen Plaintext Attacks and Pseudo Random Functions	14			
	3.2	Computationally Secure MACs	17			
	3.3	Domain Extension	17			
	3.4	Chosen Cyphertext Attacks and Authenticated Encryption	20			
	3.5	Pseudo Random Permutations	21			
	3.6	Collision Resistant Hash Functions	23			
	3.7	Claw-Free Permutations	25			
	3.8	Random Oracle Model	26			
4	Number Theory 2					
	4.1	Elliptic Curves	29			
	4.2	Diffie-Hellman Key Exchange	30			
	4.3	Pseudo Random Generators	30			
	4.4	Pseudo Random Functions (PRFs): Naor-Reingold	30			
	4.5	Number Theoretic Claw-Free Permutation	31			
5	Public Key Encryption					
	5.1	ElGamal PKE	33			
	5.2	Factoring Assumption and RSA	34			
	5.3	Trapdoor Permutation from Factoring	36			
	5.4	Cramer-Shoup Encryption (1998)	37			
6	Sign	Signature Schemes 4				
	6.1	Waters Signature Scheme	43			
	6.2	Identification Schemes	45			

Introduction

Solomon,

I'm concerned about security; I think, when we email each other, we should use some sort of code.

Confidentiality is our goal. We want to encrypt and decrypt a (plaintext)¹ message m, using a key, to obtain a cyphertext c. As per Kirkoff's principle, only the key is secret.

Figure 1.1: Message exchange between A and B using symmetric encryption. E is the eavesdropper.

Our encryption schemes have the following syntax:

$$\Pi = (Gen, Enc, Dec)$$
.

A and B, the actors of our communication exchange (fig. 1.1), share k, the key, taken from some key space \mathcal{K} . The elements of our encryption scheme play the following roles:

- 1. Gen outputs a random key from the key space \mathcal{K} , and we write this as $k \leftarrow \text{Gen}(1^n)$ where n will quantify the security of the cipher;
- 2. Enc: $\mathcal{K} \times \mathcal{M} \to \mathcal{C}$ is the encryption function, mapping a key and a message to a cyphertext². Given a message to be encrypted $m \in \mathcal{M}$ and the shared key k calculate the cryptotext c = Enc(m);
- 3. Dec: $\mathcal{K} \times \mathcal{C} \to \mathcal{M}$ is the decryption function, mapping a key and a cyphertext to a message. Given a cryptotext c and the shared key k returns the message $m \in \mathcal{M}$ such that m = Dec(c).

We expect an encryption scheme to be at least correct and for each n, for each key $k \leftarrow \text{Gen}(1^n)$ and for every message $m \in \mathcal{M}$ we have:

$$\forall k \in \mathcal{K}, \forall m \in \mathcal{M}. \text{Dec}(k, \text{Enc}(k, m)) = m.$$

An encryption scheme is defined by three algorithms Gen, Enc, and Dec, as well as a specification of a message space \mathcal{M} with $|\mathcal{M}| > 1$.³

¹Plaintext usually means unencrypted information pending input into cryptographic algorithms, usually encryption algorithms.

²In cryptography, ciphertext or cyphertext is the result of encryption performed on plaintext using an algorithm, called a cipher. Ciphertext is also known as encrypted or encoded information because it contains a form of the original plaintext that is unreadable by a human or computer without the proper cipher to decrypt it.

³If |M| = 1 there is only one message and there is no point in communicating, let alone encrypting.

1.1 Perfect secrecy

Shannon defined "perfect secrecy", i.e., we will require that the adversary is not able to obtain any additional information about m. Formally we can express this request through probability theory.

Definition 1 (Perfect secrecy). Let M be a Random Variable (RV) over \mathcal{M} , and K be a uniform distribution over \mathcal{K} .

(Enc, Dec) has perfect secrecy if, $\forall m \in \mathcal{M}$ and $\forall c \in \mathcal{C}$ such that $\Pr[C = c] \geq 0$ 4:

$$\forall M, \forall m \in \mathcal{M}, c \in \mathcal{C}. \Pr[M = m] = \Pr[M = m | C = c]$$

where C = Enc(k, m) is a third RV.

We have equivalent definitions for perfect secrecy.

Theorem 1. The following definitions are equivalent:

1. definition 1: $\forall m \in \mathcal{M} \text{ and } \forall c \in \mathcal{C}$:

$$\Pr\left[M=m\right] = \Pr\left[M=m|C=c\right]$$

- 2. $\forall m \in \mathcal{M} \text{ and } \forall c \in \mathcal{C} \text{ } M \text{ and } C \text{ are independent};$
- 3. $\forall m, m' \in \mathcal{M}, \forall c \in \mathcal{C}$ 5:

$$\Pr[\operatorname{Enc}(k, m) = c] = \Pr[\operatorname{Enc}(k, m') = c]$$

where k is a random key in K chosen with uniform probability.

It is sufficient to show that $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$

We can express the relationship between joint and marginal densities through the concept of *conditional* discrete density. The probability of event \mathcal{E}_1 conditional on event \mathcal{E}_2 is the probability that event \mathcal{E}_1 occurs given that \mathcal{E}_2 occurs. For example, returning to the example of the die, the probability of getting a \spadesuit knowing that the result of the roll will be \spadesuit or \heartsuit is $\frac{1}{3}$. Formally, we have:

$$\Pr\left[\mathcal{E}_1 \mid \mathcal{E}_2\right] = \frac{\Pr\left[\mathcal{E}_1 \land \mathcal{E}_2\right]}{\Pr\left[\mathcal{E}_2\right]}.$$

Two events are said to be *statistically independent* when $\Pr[\mathcal{E}_1 \mid \mathcal{E}_2] = \Pr[\mathcal{E}_1]$ (i.e., when the probability that \mathcal{E}_1 occurs given that \mathcal{E}_2 occurs is equal to the probability that \mathcal{E}_1 occurs a priori). The relationship between $\Pr[\mathcal{E}_1 \mid \mathcal{E}_2]$ and $\Pr[\mathcal{E}_2 \mid \mathcal{E}_1]$ is given by Bayes' theorem, expressed by the following equation:

$$\Pr\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] = \Pr\left[\mathcal{E}_{1} \mid \mathcal{E}_{2}\right] \cdot \frac{\Pr\left[\mathcal{E}_{2}\right]}{\Pr\left[\mathcal{E}_{1}\right]}$$
(A.3)

Switching to densities, given two random variables $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$, the conditional probability of Y = y given X = x is:

Proof.

$$\Pr\left[Y=y\mid X=x\right] = \frac{\Pr\left[X=x \land Y=y\right]}{\Pr\left[X=x\right]} \overset{\text{(A.3)}}{=} \frac{\Pr\left[Y=y\mid X=x\right]\Pr\left[Y=y\right]}{\Pr\left[X=x\right]}$$

⁴This requirement is necessary only to avoid influencing an event with zero probability. In the following we will always assume that $\Pr[M=m]$ and $\Pr[C=c]$ are positive. What has been shown can be generalized to the case of arbitrary distributions on \mathcal{M} and \mathcal{C} .

⁵The encryption algorithm may be probabilistic, so that Enc(m) might output a different ciphertext when run multiple times. To emphasize this, we write $c \leftarrow \text{Enc}(m)$ to denote the possibly probabilistic process by which message m is encrypted using key k to give ciphertext c.

1.1. PERFECT SECRECY 5

Proof of theorem 1. First, we show that $1 \implies 2$.

$$\Pr\left[M=m\right] = \Pr\left[M=m|C=c\right]$$

$$= \frac{\Pr\left[M=m \land C=c\right]}{\Pr\left[C=c\right]}$$

$$\Longrightarrow$$

$$\Pr\left[M=m\right] \Pr\left[C=c\right] = \Pr\left[M=m \land C=c\right]$$
(by Bayes)

which is the definition of independence ⁶.

Now we show that $2 \implies 3$.

$$\Pr\left[\operatorname{Enc}(k,m)=c\right]=\Pr\left[\operatorname{Enc}(k,M)=c|M=m\right] \qquad \text{(we fixed } m)$$

$$=\Pr\left[C=c|M=m\right] \qquad \text{(definition of the RV } C)$$

$$=\Pr\left[C=c\right]. \qquad \text{(by 2)}$$

Since m is arbitrary, we can do the same for m', and obtain

$$\Pr\left[\operatorname{Enc}(k, m') = c\right] = \Pr\left[C = c\right]$$

which gives us 3.

Now we want to show that $3 \implies 1$. Assume that the encryption scheme is perfectly secret and fix messages $m, m' \in \mathcal{M}$ and a ciphertext $c \in \mathcal{C}$. Take any $c \in \mathcal{C}$. By 2 we have:

$$\Pr[C = c | M = m] = \Pr[C = c] = \Pr[C = c | M = m'].$$

completing the proof of the first direction. Assume next that for every distribution over \mathcal{M} , every $m, m' \in \mathcal{M}$, and every $c \in \mathcal{C}$ it holds that $\Pr\left[C = c|M = m\right] = \Pr\left[C = c|M = m'\right]$. Fix some distribution over \mathcal{M} , and an arbitrary $m \in \mathcal{M}$ and $c \in \mathcal{C}$. Define $p \stackrel{\text{def}}{=} \Pr\left[C = c|M = m\right]$. Since $\Pr\left[C = c|M = m\right] = \Pr\left[C = c|M = m'\right] = p$ for all m, we have:

$$\begin{split} \Pr\left[C=c\right] &= \sum_{m' \in \mathcal{M}} \Pr\left[C=c \land M=m'\right] \\ &= \sum_{m' \in \mathcal{M}} \Pr\left[C=c | M=m'\right] \Pr\left[M=m'\right] \\ &= \sum_{m' \in \mathcal{M}} \Pr\left[\operatorname{Enc}(k,M)=c | M=m'\right] \Pr\left[M=m'\right] \\ &= \sum_{m' \in \mathcal{M}} \Pr\left[\operatorname{Enc}(k,m')=c\right] \Pr\left[M=m'\right] \\ &= \Pr\left[\operatorname{Enc}(k,m)=c\right] \underbrace{\sum_{m' \in \mathcal{M}} \Pr\left[M=m'\right]}_{1} \qquad \text{(Enc is indepenendent of M, so we take it out)} \\ &= \Pr\left[\operatorname{Enc}(k,M)=c | M=m\right] = \Pr\left[C=c | M=m\right]. \end{split}$$

We are left to show that $\Pr[M=m] = \Pr[M=m|C=c]$, but this is easy with Bayes.

Theorem 2. (Shannon Theorem) Let $|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|$. A cipher has perfect secrecy if and only if:

- (i) Each key $k \in \mathcal{K}$ is chosen uniformly with probability $\frac{1}{|\mathcal{K}|}$;
- (ii) For every message $m \in \mathcal{M}$ and every ciphertext $c \in \mathcal{C}$, there exists one and only one key k such that c = Gen(m).

 \Diamond

⁶In the context of probability theory: Both \land and \cap serve the purpose of indicating the intersection of events. The choice between \land and \cap may vary based on personal preference or the context in which it's used, but they convey the same meaning in probability theory.

1.2 One Time Pad (Vernam's Cipher)

Now we'll see a perfect encryption scheme, the One Time Pad (OTP).

Construction 1 (One Time Pad). The message space, the cyphertext space, and the key space are all the same, *i.e.*, $\mathcal{M} = \mathcal{K} = \mathcal{C} = \{0,1\}^l$, with $l \in \mathbb{N}^+$.

The One Time Pad encryption scheme by Vernam is defined as follows:

- Fix an integer l > 0. Then the message space \mathcal{M} , key space \mathcal{K} , and ciphertext space \mathcal{C} are all equal to $\{0,1\}^l$ (i.e., the set of all binary strings of length l);
- The key-generation algorithm Gen works by choosing a string from $\mathcal{K} = \{0,1\}^l$ according to the uniform distribution (i.e., each of the 2^l strings in the space is chosen as the key with probability exactly 2^{-l}). Generate a random key $k \stackrel{\$}{\leftarrow} \{0,1\}^l$;
- Enc: to encrypt the message $m \in \{0,1\}^l$, we define:

$$c = \operatorname{Enc}(m) = k \oplus m$$

• Dec: To decrypt the ciphertext $c \in \{0,1\}^l$ with key k compute:

$$m = Dec(c) = c \oplus k$$

\rightarrow

Seeing that this is correct is immediate.

This can actually be done in any finite abelian⁷ group $(\mathbb{G}, +)$, where you just do k + m to encode and c - k to decode.

Theorem 3. OTP is perfectly secure.

Proof of theorem 3. Fix $m \in \mathcal{M}, c \in \mathcal{C}$, and choose a random key.

$$\Pr\left[\operatorname{Enc}(k,m) = c\right] = \Pr\left[k = c - m\right] = \frac{1}{|\mathbb{G}|}.$$

This is true for any m, so we are done.

OTP has two problems:

- 1. the key is long (as long as the message);
- 2. we can't reuse the key:

$$c = k + m$$

$$c' = k + m' \implies k = c - m = c' - m' \implies m' = m - (c - c').$$

Theorem 4 (Shannon, 1949). In any perfectly secure encryption scheme the size of the key space is at least as large as the size of the message space, i.e., $|\mathcal{K}| \geq |\mathcal{M}|$.

Proof of theorem 4. Assume, for the sake of contradiction, that $|\mathcal{K}| < |\mathcal{M}|$. Fix M to be the uniform distribution over \mathcal{M} , which we can do as perfect secrecy works for any distribution. Take a cyphertext $c \in \mathcal{C}$ such that $\Pr[C = c] > 0$, i.e., $\exists m, k$ such that $\operatorname{Enc}(k, m) = c$.

Consider $\mathcal{M}' = \{ \text{Dec}(k, c) : k \in \mathcal{K} \}$, the set of all messages decrypted from c using any key. Clearly, $|\mathcal{M}'| \leq |\mathcal{K}| < |\mathcal{M}|$, so $\exists m' \in \mathcal{M}$ such that $m' \notin \mathcal{M}'$. This means that

$$\Pr[M = m'] = \frac{1}{|\mathcal{M}|} \neq \Pr[M = m'|C = c] = 0$$

in contradiction with perfect secrecy.

⁷An abelian group, also known as a commutative group, is a fundamental concept in abstract algebra where the group's binary operation (commonly denoted as + or multiplication in different contexts) is commutative. This means that the order of elements in the operation does not affect the result. Examples include additive groups of integers (\mathbb{Z}), rational numbers (\mathbb{Q}), and multiplicative groups of non-zero rational numbers (\mathbb{Q}^*), as well as matrix groups with matrix multiplication. Abelian groups play a crucial role in abstract algebra, with many theorems and concepts specifically applying to them.

1.3. AUTHENTICATION 7

Figure 1.2: Message exchange between A and B using symmetric authentication. E is the eavesdropper.

In the rest of the course we will forget about perfect secrecy, and strive for computational security, i.e., bound the computational power of the adversary.

1.3 Authentication

The aim of authentication is to avoid tampering of E with the messages exchanged between A and B (fig. 1.2). A Message Authentication Code (MAC) is defined as a tuple $\Pi = (\text{Gen, Mac, Vrfy})$, where:

- Gen, as usual, outputs a random key from some key space \mathcal{K} ;
- Mac: $\mathcal{K} \times \mathcal{M} \to \Phi$ maps a key and a message to an authenticator in some authenticator space Φ ;
- Vrfy: $\mathcal{K} \times \mathcal{M} \times \Phi \to \{0,1\}$ verifies the authenticator.

As usual, we expect a MAC to be correct, i.e.,

$$\forall m \in \mathcal{M}, \forall k \in \mathcal{K}. Vrfy(k, m, Mac(k, m)) = 1.$$

If the Mac function is deterministic, then it must be that $Vrfy(k, m, \phi) = 1$ if and only if $Mac(k, m) = \phi$. Security for MACs is that *forgery* must be hard: you can't come up with an authenticator for a message if you don't know the key.

Definition 2 (Information theoretic MAC). (Mac, Vrfy) has ε -statistical security if for all (possibly unbounded) adversary \mathcal{A} , for all $m \in \mathcal{M}$,

$$\Pr\left[\text{Vrfy}(k, m', \phi') = 1 \land m' \neq m : \begin{array}{c} k \leftarrow \text{\$KeyGen;} \\ \phi = \text{Mac}(k, m); \\ (m', \phi') \leftarrow \mathcal{A}(m, \phi) \end{array} \right] \leq \varepsilon$$

i.e., the adversary forges a (m', ϕ') that verifies with key k with low probability, even if it knows a valid pair (m, ϕ) .

As an exercise, prove that the above is impossible if $\varepsilon = 0$.

Information theoretic security is also called unconditional security. Later we'll see *conditional* security, based on computational assumptions.

Definition 3 (Pairwise independence). Given a family $\mathcal{H} = \{h_k : \mathcal{M} \to \Phi\}_{k \in \mathcal{K}}$ of functions, we say that \mathcal{H} is pairwise independent if for all distinct m, m' we have that $(h_k(m), h_k(m')) \in \Phi^2$ is uniform over the choice of $k \leftarrow \mathcal{K}$.

We show straight away a construction of a pairwise independent family of function.

Construction 2 (Pairwise independent function). Let p be a prime, the functions in our family \mathcal{H} are defined as

$$h_{a,b}(m) = am + b \mod p$$

 \Diamond

 \Diamond

with $\mathcal{K} = \mathbb{Z}_p^2$, and with $\mathcal{M} = \Phi = \mathbb{Z}_p$.

Theorem 5. Construction 2 is pairwise independent.

Proof of theorem 5. For any m, m', ϕ, ϕ' , we want to find the value of

$$\Pr\left[am + b = \phi \wedge am' + b = \phi'\right]$$

for $a, b \leftarrow \mathbb{Z}_p^2$. This is the same as

$$\Pr_{a,b} \left[\begin{pmatrix} m & 1 \\ m' & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \phi \\ \phi' \end{pmatrix} \right] = \Pr_{a,b} \left[\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} m & 1 \\ m' & 1 \end{pmatrix}^{-1} \begin{pmatrix} \phi \\ \phi' \end{pmatrix} \right] = \frac{1}{|\Phi|^2}.$$

This is true since $\binom{m-1}{m'-1}^{-1}\binom{\phi}{\phi'}$ is just a couple of (constant) numbers, so the probability of choosing (a,b) such that they equal the constant is just $\frac{1}{|\Phi|^2}$.

If h_k is part of a pairwise independent family of functions, then $\operatorname{Mac}(k,m) = h_k(m)$, and $\operatorname{Vrfy}(k,m,\phi)$ is simply computing $h_k(m)$ and comparing it with ϕ , *i.e.*,

$$Vrfy(k, m, \phi) = 1 \iff h_k(m) = \phi.$$

We now prove that this is an information theoretic MAC.

Theorem 6. Any pairwise independent function is $\frac{1}{|\Phi|}$ -statistical secure.

Proof of theorem 6. Take any two distinct m, m', and two ϕ, ϕ' . We show that the probability that $\operatorname{Mac}(k, m') = \phi'$ is exponentially small.

$$\Pr_{k} \left[\operatorname{Mac}(k, m) = \phi \right] = \Pr_{k} \left[h_{k}(m) = \phi \right] = \frac{1}{|\Phi|}.$$

Now look at the joint probabilities:

$$\Pr_{k} \left[\operatorname{Mac}(k, m) = \phi \wedge \operatorname{Mac}(k, m') = \phi' \right] = \Pr_{k} \left[h_{k}(m) = \phi \wedge h_{k}(m') = \phi' \right]$$

$$= \frac{1}{|\Phi|^{2}} = \frac{1}{|\Phi|} \cdot \frac{1}{|\Phi|}.$$
(by definition)

The last steps come from the fact that h_k is pairwise independent. To see that the construction is $\frac{1}{|\Phi|}$ -statistical secure:

$$\begin{split} \Pr_k \left[\operatorname{Mac}(k, m') = \phi' \middle| \operatorname{Mac}(k, m) = \phi \right] &= \Pr_k \left[h_k(m') = \phi' \middle| h_k(m) = \phi \right] \\ &= \frac{\Pr_k \left[h_k(m) = \phi \wedge h_k(m') = \phi' \right]}{\Pr_k \left[h_k(m) = \phi \right]} \\ &= \frac{1}{|\Phi|}. \end{split}$$

Note that Construction 2 $(h_k(m) = am + b \mod p)$ is insecure if the same key k = (a, b) is used for two messages.

Theorem 7. Any t-time $2^{-\lambda}$ -statistically secure MAC has key of size $(t+1)\lambda$.

1.4 Randomness Extraction

X is a random source (possibly not uniform). Ext(X) = Y is a uniform RV.

First, let's see a construction for a binary RV. Let B be a RV such that $\Pr[B=1] = p$ and $\Pr[B=0] = 1-p$, with $p \neq 1-p$. We take two samples, B_1 and B_2 from B, and we want to obtain an unbiased RV B'.

- 1. Take two samples, $b_1 \leftarrow \$B_1$ and $b_2 \leftarrow \$B_2$;
- 2. if $b_1 = b_2$, sample again;
- 3. if $(b_1 = 1 \land b_2 = 0)$, output 1; if $(b_1 = 0 \land b_2 = 1)$, output 0.

It's easy to verify that B' is uniform:

$$\Pr[B' = 1] = \Pr[B_1 = 1 \land B_2 = 0] = p(1 - p)$$

$$\Pr[B' = 0] = \Pr[B_1 = 0 \land B_2 = 1] = (1 - p)p$$

How many trials do we have to make before outputting something? 2(1-p)p is the probability that we output something. The probability that we don't output anything for n steps is thus $(1-2(1-p)p)^n$.

 \Diamond

Computational Cryptography

To introduce computational cryptography we first have to define a computational model. We assume the adversary is efficient, *i.e.*, it is a Probabilistic Polynomial Time (PPT) adversary.

We want that the probability of success of the adversary is tiny, *i.e.*, negligible for some $\lambda \in \mathbb{N}$. A function $\varepsilon : \mathbb{N} \to \mathbb{R}$ is negligible if $\forall c > 0. \exists n_0$ such that $\forall n > n_0. \varepsilon(n) < n^{-c}$.

We rely on computational assumptions, i.e., in tasks believed to be hard for any efficient adversary. In this setting we make conditional statements, i.e., if a certain assumption holds then a certain crypto-scheme is secure.

2.1 One Way Functions

A simple computational assumption is the existence of One Way Functions (OWFs), i.e., functions for which is hard to compute the inverse.

Definition 4 (One Way Function). A function $f: \{0,1\}^* \to \{0,1\}^*$ is a OWF if f(x) can be computed in polynomial time for all x and for all PPT adversaries \mathcal{A} it holds that

$$\Pr\left[f(x') = y : x \leftarrow \$\{0, 1\}^*; \ y = f(x); \ x' \leftarrow \mathcal{A}(1^{\lambda}, y)\right] \le \varepsilon(\lambda).$$

The 1^{λ} given to the adversary \mathcal{A} is there to highlight the fact that \mathcal{A} is polynomial in the length of the input (λ) .

Russel Impagliazzo proved that OWFs are equivalent to One Way Puzzles, *i.e.*, couples (Pgen, Pver) where $\operatorname{Pgen}(1^{\lambda}) \to (y, x)$ gives us a puzzle (y) and a solution to it (x), while $\operatorname{Pver}(x, y) \to 0/1$ verifies if x is a solution of y.

Another object of interest in this classification are average hard NP-puzzles, for which you can only get an instance, *i.e.*, $Pgen(1^{\lambda}) \to y$.

Impagliazzo says we live in one of five worlds:

- 1. Algorithmica, where P = NP;
- 2. Heuristica, where there are no average hard NP-puzzles, i.e., problems without solution;
- 3. Pessiland, where you have average hard NP-puzzles;
- 4. Minicrypt, where you have OWF, one-way NP-puzzles, but no Public Key Cryptography (PKC);
- 5. Cryptomania, where you have both OWF and PKC.

We'll stay in Minicrypt for now.

OWF are hard to invert on average. Two examples:

- factoring the product of two large prime numbers;
- compute the discrete logarithm, *i.e.*, take a finite group (\mathbb{G},\cdot) , and compute $y=g^x$ for some $g\in\mathbb{G}$. The find $x=\log_g(y)$. This is hard to compute in some groups, e.g., \mathbb{Z}_p^* .

2.2 Computational Indistinguishability

Definition 5 (Distribution Ensemble). A distribution ensemble $\mathcal{X} = \{X_n\}_{n \in \mathbb{N}}$ is a sequence of distributions X_i over some space $\{0,1\}^{\lambda}$.

Definition 6 (Computational Indistinguishability). Two distribution ensembles \mathcal{X}_{λ} and \mathcal{Y}_{λ} are computationally indistinguishable, written as $\mathcal{X}_{\lambda} \approx_{c} \mathcal{Y}_{\lambda}$, if for all PPT distinguishers \mathcal{D} it holds that

$$\left| \Pr \left[\mathcal{D}(\mathcal{X}_{\lambda}) = 1 \right] - \Pr \left[\mathcal{D}(\mathcal{Y}_{\lambda}) = 1 \right] \right| \le \varepsilon(\lambda).$$

Lemma 1 (Reduction). If $\mathcal{X} \approx_c \mathcal{Y}$, then for all PPT functions f, $f(\mathcal{X}) \approx_c f(\mathcal{Y})$.

Proof of lemma 1. Assume, for the sake of contradiction, that $\exists f$ such that $f(\mathcal{X}) \not\approx_c f(\mathcal{Y})$: then we can distinguish \mathcal{X} and \mathcal{Y} . Since $f(\mathcal{X}) \not\approx_c f(\mathcal{Y})$, then $\exists p = \text{poly}(\lambda), \mathcal{D}$ such that, for infinitely many λ s

$$\left| \Pr \left[\mathcal{D}(f(\mathcal{X}_{\lambda})) = 1 \right] - \Pr \left[\mathcal{D}(f(\mathcal{Y}_{\lambda})) = 1 \right] \right| \ge \frac{1}{p(\lambda)}.$$

 \mathcal{D} distinguishes \mathcal{X}_{λ} and \mathcal{Y}_{λ} with non-negligible probability. Consider the following \mathcal{D}' , which is given

$$z = \begin{cases} x \leftarrow \$\mathcal{X}_{\lambda}; \\ y \leftarrow \$\mathcal{Y}_{\lambda}. \end{cases}$$

 \mathcal{D}' runs $\mathcal{D}(f(z))$ and outputs whatever it outputs, and has the same probability of distinguishing \mathcal{X} and \mathcal{Y} of \mathcal{D} , in contradiction with the fact that $\mathcal{X} \approx_c \mathcal{Y}$.

Now we show that computational indistinguishability is transitive.

Lemma 2 (Hybrid Argument). Let $\mathcal{X} = \{X_{\lambda}\}$, $\mathcal{Y} = \{Y_{\lambda}\}$, $\mathcal{Z} = \{Z_{\lambda}\}$ be distribution ensembles. If $\mathcal{X}_{\lambda} \approx_{c} \mathcal{Y}_{\lambda}$ and $\mathcal{Y}_{\lambda} \approx_{c} \mathcal{Z}_{\lambda}$, then $\mathcal{X}_{\lambda} \approx_{c} \mathcal{Z}_{\lambda}$.

Proof of lemma 2. This follows from the triangular inequality.

$$\left| \Pr \left[\mathcal{D}(\mathcal{X}_{\lambda}) = 1 \right] - \Pr \left[\mathcal{D}(\mathcal{Z}_{\lambda}) = 1 \right] \right| = \left| \Pr \left[\mathcal{D}(\mathcal{X}_{\lambda}) = 1 \right] - \Pr \left[\mathcal{D}(\mathcal{Y}_{\lambda}) = 1 \right] \right|
+ \Pr \left[\mathcal{D}(\mathcal{Y}_{\lambda}) = 1 \right] - \Pr \left[\mathcal{D}(\mathcal{Z}_{\lambda}) = 1 \right] \right|
\leq \left| \Pr \left[\mathcal{D}(\mathcal{X}_{\lambda}) = 1 \right] - \Pr \left[\mathcal{D}(\mathcal{Y}_{\lambda}) = 1 \right] \right|
+ \left| \Pr \left[\mathcal{D}(\mathcal{Y}_{\lambda}) = 1 \right] - \Pr \left[\mathcal{D}(\mathcal{Z}_{\lambda}) = 1 \right] \right|
\leq 2\varepsilon(\lambda). \tag{negligible}$$

We often prove $\mathcal{X} \approx_c \mathcal{Y}$ by defining a sequence $\mathcal{H}_0, \mathcal{H}_1, \dots, \mathcal{H}_t$ of distributions ensembles such that $\mathcal{H}_0 \equiv \mathcal{X}$ and $\mathcal{H}_t \equiv \mathcal{Y}$, and that for all $i, \mathcal{H}_i \approx_c \mathcal{H}_{i+1}$.

2.3 Pseudo Random Generators

Let's see our first cryptographic primitive. Pseudo Random Generators (PRGs) take in input a random seed and generate pseudo random sequences with some stretch, i.e., output longer than input, and indistinguishable from a true random sequence.

Definition 7 (Pseudo Random Generator). A function $\mathcal{G}: \{0,1\}^{\lambda} \to \{0,1\}^{\lambda+l(\lambda)}$ is a PRG if and only if

- 1. \mathcal{G} is computable in polynomial time;
- 2. $|\mathcal{G}(s)| = \lambda + l(\lambda)$ for all $s \in \{0, 1\}^{\lambda}$;
- 3. $\mathcal{G}(\mathcal{U}_{\lambda}) \approx_c \mathcal{U}_{\lambda+l(\lambda)}$.

 \Diamond

2.4. Hard Core Predicates 11

Figure 2.1: Extending a PRG with 1 bit stretch to a PRG with l bit stretch.

Theorem 8. If $\exists PRG \text{ with 1 bit of stretch, then } \exists PRG \text{ with } l(\lambda) \text{ bits of stretch, with } l(\lambda) = \text{poly}(\lambda).$

Proof of theorem 8. We'll prove this just for some fixed constant $l(\lambda) = l \in \mathbb{N}$.

First, let's look at the construction (fig. 2.1). We replicate our PRG \mathcal{G} with 1 bit stretch l times. The PRG \mathcal{G}^l that we define takes in input $s \in \{0,1\}^{\lambda}$, computes $(s_1,b_1) = \mathcal{G}(s)$, where $s_1 \in \{0,1\}^l$ and $b_1 \in \{0,1\}$, outputs b_1 and feeds s_1 to the second copy of PRG \mathcal{G} , and so on until the l-th PRG.

To show that our construction is a PRG, we define l hybrids, with $\mathcal{H}_0^{\lambda} \equiv \mathcal{G}^l(\mathcal{U}_{\lambda})$, where $\mathcal{G}^l: \{0,1\}^{\lambda} \to \{0,1\}^{\lambda+l}$ is our proposed construction, and \mathcal{H}_i^{λ} takes $b_1, \ldots, b_i \leftarrow \$\{0,1\}, s_i \leftarrow \$\{0,1\}^{\lambda}$, and outputs (b_1, \ldots, b_i, s_l) , where $s_l \in \{0,1\}^{\lambda+l-i}$ is $s_l = \mathcal{G}^{l-i}(s_i)$, *i.e.*, the output of our construction restricted to l-i units.

 \mathcal{H}_l^{λ} takes $b_1, \ldots, b_l \leftarrow \$\{0, 1\}$ and $s_l \leftarrow \$\{0, 1\}^l$ and outputs (b_1, \ldots, b_l, s_l) directly.

We need to show that $\mathcal{H}_i^{\lambda} \approx_c \mathcal{H}_{i+1}^{\lambda}$. To do so, fix some *i*. The only difference between the two hybrids is that s_{i+1}, b_{i+1} are pseudo random in \mathcal{H}_i^{λ} , and are truly random in $\mathcal{H}_{i+1}^{\lambda}$. All bits before them are truly random, all bits after are pseudo random.

Assume these two hybrids are distinguishable, then we can break the PRG. Consider the PPT function f_i defined by $f(s_{i+1}, b_{i+1}) = (b_1, \dots, b_l, s_l)$ such that $b_1, \dots b_i \leftarrow \$\{0, 1\}$ and, for all $j \in [i+1, l]$ $(b_j, s_j) = \mathcal{G}(s_{j-1})$.

By the security of PRGs we have that $\mathcal{G}(\mathcal{U}_{\lambda}) \approx_c \mathcal{U}_{\lambda+1}$. By reduction, we also have that $f(\mathcal{G}(\mathcal{U}_{\lambda})) \approx_c f(\mathcal{U}_{\lambda+1})$. Thus, $\mathcal{H}_i^{\lambda} \approx_c \mathcal{H}_{i+1}^{\lambda}$.

2.4 Hard Core Predicates

Definition 8 (Hard Core Predicate - I). A polynomial time function $h: \{0,1\}^n \to \{0,1\}$ is hard core for $f: \{0,1\}^n \to \{0,1\}^n$ if for all PPT adversaries \mathcal{A}

$$\Pr\left[\mathcal{A}(f(x)) = h(x) : x \leftarrow \$\{0, 1\}^n\right] \le \frac{1}{2} + \varepsilon(\lambda).$$

The $\frac{1}{2}$ in the upper bound tells us that the adversary can't to better than guessing.

Definition 9 (Hard Core Predicate - II). A polynomial time function $h: \{0,1\}^n \to \{0,1\}$ is hard core for $f: \{0,1\}^n \to \{0,1\}^n$ if for all PPT adversaries \mathcal{A}

$$\left| \Pr \left[\begin{array}{c} \mathcal{A}(f(x), h(x)) = 1 : \\ x \leftarrow \$\{0, 1\}^n \end{array} \right] - \Pr \left[\begin{array}{c} \mathcal{A}(f(x), b) = 1 : \\ x \leftarrow \$\{0, 1\}^n; \\ b \leftarrow \$\{0, 1\} \end{array} \right] \right| \le \varepsilon(\lambda).$$

Theorem 9. Definition 8 and definition 9 are equivalent.

Proof of this theorem is left as exercise.

Luckily for us, every OWF has a Hard Core Predicate (HCP). There isn't a single HCP h for all OWFs f. Suppose \exists such h, then take f and let f'(x) = h(x)||f(x). Then, if f'(x) = y||b for some x, it will always be that h(x) = b.

But, given a OWF, we can create a new OWF for which h is hard core.

Theorem 10 (Goldreich-Levin (GL), 1983). Let $f: \{0,1\}^n \to \{0,1\}^n$ be a OWF, and define g(x,r) = f(x)||r| for $r \leftarrow \$\{0,1\}^n$. Then g is a OWF, and

$$h(x,r) = \langle x,r \rangle = \sum_{i=1}^{n} x_i \cdot r_i \mod 2$$

is hardcore for g.

<

 \Diamond

2.4. Hard Core Predicates 12

Definition 10 (One Way Permutation). We say that $f: \{0,1\}^n \to \{0,1\}^n$ is a One Way Permutation (OWP) if f is a OWF, $\forall x. |x| = |f(x)|$, and for all distinct $x, x'. f(x) \neq f(x')$.

Corollary 1. Let f be a OWP, and consider $g: \{0,1\}^n \to \{0,1\}^n$ from the GL theorem. Then $\mathcal{G}(s) = (g(s),h(s))$ is a PRG with stretch 1.

Proof of corollary 1.

$$\mathcal{G}(\mathcal{U}_{2n}) = (g(x,r), h(x,r))
= (f(x)||r, \langle x, r \rangle)
\approx_c (f(x)||r, b)
\approx_c \mathcal{U}_{2n+1}.$$
(GL)

UNCLEAR

Assume instead f is a OWF, and that is 1-to-1 (injective). Consider $\mathcal{X} = g^m(\overline{x}) = (g(x_1), h(x_1), \dots, g(x_m), h(x_m))$, where $x_1, \dots, x_m \in \{0, 1\}^n$ (i.e., $\overline{x} \in \{0, 1\}^{nm}$). You can construct a PRG from a OWF as shown by H.I.L.L.

Fact 1. \mathcal{X} is indistinguishable from \mathcal{X}' such that $\mathcal{H}_{\infty}(\mathcal{X}') \geq k = n \cdot m + m$, since f is injective. \diamond

Now $\mathcal{G}(s,\overline{x})=(s,\operatorname{Ext}(s,g^m(\overline{x})))$ where $\operatorname{Ext}:\{0,1\}^d\times\{0,1\}^{nm}\to\{0,1\}^l,$ and l=nm+1. This works for $m=\omega(\log(n)).$ You get extraction error $\varepsilon\approx 2^{-m}.$

Symmetric Key Encryption Schemes

Definition 11 (Symmetric Key Encryption scheme). We call $\Pi = (Gen, Enc, Dec)$ a Symmetric Key Encryption (SKE) scheme.

- Gen outputs a key $k \leftarrow \mathcal{K}$;
- $\operatorname{Enc}(k, m) = c$ for some $m \in \mathcal{M}, c \in \mathcal{C}$;
- Dec(k, c) = m.

As usual, we want Π to be correct.

We want to introduce computational security: a bounded adversary can not gain information on the message given the cyphertext.

Definition 12 (One time security). A SKE scheme $\Pi = (\text{Gen, Enc, Dec})$ has one time computational security if for all Probabilistic Polynomial Time (PPT) adversaries $\mathcal{A} \exists$ a negligible function ε such that

$$\left| \Pr \left[\mathcal{G}_{\Pi, \mathcal{A}}^{\text{one time}}(\lambda, 0) = 1 \right] - \Pr \left[\mathcal{G}_{\Pi, \mathcal{A}}^{\text{one time}}(\lambda, 1) = 1 \right] \right| \leq \varepsilon(\lambda)$$

where $\mathcal{G}_{\Pi,\mathcal{A}}^{\text{one time}}(\lambda,b)$ is the following "game" (or experiment):

- 1. pick $k \leftarrow \mathcal{K}$;
- 2. A outputs two messages $(m_0, m_1) \leftarrow \mathcal{A}(1^{\lambda})$ where $m_0, m_1 \in \mathcal{M}$ and $|m_0| = |m_1|$;
- 3. $=\operatorname{Enc}(k, m_b)$ with b input of the experiment;
- 4. output $b' \leftarrow \mathcal{A}(1^{\lambda}, c)$, i.e., the adversary tries to guess which message was encrypted.

Let's look at a construction.

Construction 3 (SKE scheme from PRG). Let $\mathcal{G}: \{0,1\}^n \to \{0,1\}^l$ be a Pseudo Random Generator (PRG). Set $\mathcal{K} = \{0,1\}^n$, and $\mathcal{M} = \mathcal{C} = \{0,1\}^l$. Define $\operatorname{Enc}(k,m) = \mathcal{G}(k) \oplus m$ and $\operatorname{Dec}(k,c) = \mathcal{G}(k) \oplus c$.

 \Diamond

 \Diamond

Theorem 11. If \mathcal{G} is a PRG, the SKE in Construction 3 is one-time computationally secure.

Proof of theorem 11. Consider the following experiments:

- $\mathcal{H}_0(\lambda, b)$ is like $\mathcal{G}_{\Pi, \mathcal{A}}^{\text{one time}}$:
 - 1. $k \leftarrow \$\{0,1\}^n$;
 - 2. $(m_0, m_1) \leftarrow \mathcal{A}(1^{\lambda});$
 - 3. $c = \mathcal{G}(k) \oplus m_b$;
 - 4. $b' \leftarrow \mathcal{A}(1^{\lambda}, c)$.
- $\mathcal{H}_1(\lambda, b)$ replaces \mathcal{G} with something truly random:

- 1. $(m_0, m_1) \leftarrow \mathcal{A}(1^{\lambda});$
- 2. $r \leftarrow \$\{0,1\}^l$;
- 3. $c = r \oplus m_b$, basically like One Time Pad (OTP);
- 4. $b' \leftarrow \mathcal{A}(1^{\lambda}, c)$.
- $\mathcal{H}_2(\lambda)$ is just randomness:
 - 1. $(m_0, m_1) \leftarrow \mathcal{A}(1^{\lambda});$
 - 2. $c \leftarrow \$\{0,1\}^l$;
 - 3. $b' \leftarrow \mathcal{A}(1^{\lambda}, c)$.

First, we show that $\mathcal{H}_0(\lambda, b) \approx_c \mathcal{H}_1(\lambda, b)$, for $b \in \{0, 1\}$. Fix some value for b, and assume exists a PPT distinguisher \mathcal{D} between $\mathcal{H}_0(\lambda, b)$ and $\mathcal{H}_1(\lambda, b)$: we then can construct a distinguisher \mathcal{D}' for the PRG.

 \mathcal{D}' , on input z, which can be either $\mathcal{G}(k)$ for some $k \leftarrow \$\{0,1\}^n$, or directly $z \leftarrow \$\{0,1\}^l$, does the following:

- get $(m_0, m_1) \leftarrow \mathcal{D}(1^{\lambda});$
- feed $z \oplus m_b$ to \mathcal{D} ;
- output the result of \mathcal{D} .

Now, we show that $\mathcal{H}_1(\lambda, b) \approx_c \mathcal{H}_2(\lambda, b)$, for $b \in \{0, 1\}$. By perfect secrecy of OTP we have that $(m_0 \oplus r) \approx z \approx (m_1 \oplus r)$, so $\mathcal{H}_1(\lambda, 0) \approx_c \mathcal{H}_2(\lambda) \approx_c \mathcal{H}_1(\lambda, 1)$.

Corollary 2. One-time computationally secure SKE schemes are in Minicrypt.

This scheme is not secure if the adversary knows a (m_1, c_1) pair, and we reuse the key. Take any m, c, then $c \oplus c_1 = m \oplus m_1$, and you can find m. This is called a Chosen Plaintext Attack (CPA), something we will defined shortly using a Pseudo Random Function (PRF).

3.1 Chosen Plaintext Attacks and Pseudo Random Functions

Definition 13 (Pseudo Random Function). Let $\mathcal{F} = \{F_k : \{0,1\}^n \to \{0,1\}^l\}$ be a family of functions, for $k \in \{0,1\}^{\lambda}$. Consider the following two experiments:

- $\mathcal{G}_{\mathcal{F},A}^{\text{real}}(\lambda)$, defined as:
 - 1. $k \leftarrow \$\{0,1\}^{\lambda}$;
 - 2. $b' \leftarrow \mathcal{A}^{F_k(\cdot)}(1^{\lambda})$, where \mathcal{A} can query an oracle for values of $F_k(\cdot)$, without knowing k.
- $\mathcal{G}_{\mathcal{F}}^{\mathrm{rand}}(\lambda)$, defined as:
 - 1. $R \leftarrow \$\mathcal{R}(n \to l)$, i.e., a function R is chosen at random from all functions from $\{0,1\}^n$ to $\{0,1\}^l$;
 - 2. $b' \leftarrow \mathcal{A}^{R(\cdot)}(1^{\lambda})$, where \mathcal{A} can query an oracle for values of $R(\cdot)$.

The family \mathcal{F} of functions is a PRF family if for all PPT adversaries $\mathcal{A} \exists$ a negligible function ε such that

$$\left| \Pr \left[\mathcal{G}^{\text{real}}_{\mathcal{F}, \mathcal{A}}(\lambda) = 1 \right] - \Pr \left[\mathcal{G}^{\text{rand}}_{\mathcal{F}, \mathcal{A}}(\lambda) = 1 \right] \right| \le \varepsilon(\lambda).$$

To introduce CPAs and CPA-secure SKE schemes, we first introduce the game of CPA. As usual, a SKE scheme is a tuple $\Pi = (Gen, Enc, Dec)$.

Definition 14 (CPA-secure SKE scheme). Let $\Pi = (\text{Gen, Enc, Dec})$ be a SKE scheme, and consider the game $\mathcal{G}_{\Pi,A}^{\text{cpa}}(\lambda,b)$, defined as:

- 1. $k \leftarrow \$\{0,1\}^{\lambda}$;
- 2. $(m_0, m_1) \leftarrow \mathcal{A}^{\operatorname{Enc}(k, \cdot)}(1^{\lambda})$. \mathcal{A} is given access to an oracle for $\operatorname{Enc}(k, \cdot)$, so she knows some (m, c) couples, with $c = \operatorname{Enc}(k, m)$;
- 3. $c \leftarrow \operatorname{Enc}(k, m_b)$;

4.
$$b' \leftarrow \mathcal{A}^{\operatorname{Enc}(k,\cdot)}(1^{\lambda}, c)$$
.

 Π is CPA-secure if for all PPT adversaries \mathcal{A}

$$\mathcal{G}_{\Pi,A}^{\text{cpa}}(\lambda,0) \approx_c \mathcal{G}_{\Pi,A}^{\text{cpa}}(\lambda,1).$$

Deterministic schemes cannot achieve this, *i.e.*, when Enc is deterministic the adversary could cipher m_0 and then compare c to $\text{Enc}(k, m_0)$, and output 0 if and only if $c = \text{Enc}(k, m_0)$.

Let's construct a CPA-secure SKE scheme using PRFs.

Construction 4 (SKE scheme from PRF). Let \mathcal{F} be a PRF, we define the following SKE scheme $\Pi = (Gen, Enc, Dec)$:

- Gen takes $k \leftarrow \$\{0,1\}^{\lambda}$;
- Enc $(k, m) = (r, F_k(r) \oplus m)$, with $r \leftarrow \$\{0, 1\}^n$. Note that, since $F_k : \{0, 1\}^n \to \{0, 1\}^l$, we have that $\mathcal{M} = \{0, 1\}^l$ and $\mathcal{C} = \{0, 1\}^{n+l}$;

•
$$\operatorname{Dec}(k,(c_1,c_2)) = F_k(c_1) \oplus c_2.$$

Our construction is both one time computationally secure, and secure against CPAs.

Theorem 12. If \mathcal{F} is a PRF, Construction 4 is CPA-secure.

Proof of theorem 12. First, we define the experiment $\mathcal{H}_0(\lambda, b) \equiv \mathcal{G}_{\Pi, A}^{\text{cpa}}(\lambda, b)$ as follows:

- 1. $k \leftarrow \$\{0,1\}^{\lambda}$;
- 2. $(m_0, m_1) \leftarrow \mathcal{A}^{\operatorname{Enc}(k,\cdot)}(1^{\lambda});$
- 3. $c^* \leftarrow (r^*, F_k(r^*) \oplus m_b)$, where $r^* \leftarrow \$\{0, 1\}^n$;
- 4. output $b' \leftarrow \mathcal{A}^{\operatorname{Enc}(k,\cdot)}(1^{\lambda}, c^{\star})$.

Note that in the CPA game the adversary has access to an encryption oracle using the chosen key.

Now, for the first hybrid $\mathcal{H}_1(\lambda, b)$, where we sample a random function R in place of F_k :

- 1. $R \leftarrow \$\mathcal{R}(n \to l)$;
- 2. $(m_0, m_1) \leftarrow \mathcal{A}^{\operatorname{Enc}(R, \cdot)}(1^{\lambda})$, where now $\operatorname{Enc}(R, m) = (r, R(r) \oplus m)$ for some random r;
- 3. $c^* \leftarrow (r^*, R(r^*) \oplus m_b)$, where $r^* \leftarrow \$\{0, 1\}^n$;
- 4. output $b' \leftarrow \mathcal{A}^{\operatorname{Enc}(R,\cdot)}(1^{\lambda}, c^{\star})$.

Our first claim is that $\mathcal{H}_0(\lambda, b) \approx_c \mathcal{H}_1(\lambda, b)$ for $b \in \{0, 1\}$. As usual, we assume that exists an adversary \mathcal{A} which can distinguish the experiments, *i.e.*, that can distinguish the oracles, and use \mathcal{A} to create \mathcal{A}_{PRF} that breaks the PRF.

 \mathcal{A}_{PRF} has access to some oracle $O(\cdot)$, with is one of two possibilities:

$$O(x) = \begin{cases} F_k(x) & \text{for } k \leftarrow \$\{0, 1\}^{\lambda} \\ R(x) & \text{for } R \leftarrow \$\mathcal{R}(n \to l). \end{cases}$$

 \mathcal{A} gives \mathcal{A}_{PRF} some message m. \mathcal{A}_{PRF} picks $r \leftarrow \$\{0,1\}^n$, and queries O(r) to get $z \in \{0,1\}^l$. Then it gives $(r,z \oplus m)$ to \mathcal{A} . This is repeated as long as \mathcal{A} asks for encryption queries.

Then \mathcal{A} gives to \mathcal{A}_{PRF} (m_0, m_1) , which repeats the same procedure using m_0 as a message (to distinguish $\mathcal{H}_0(\lambda, 0)$ from $\mathcal{H}_1(\lambda, 0)$) to compute c^* . \mathcal{A} , after receiving c^* , asks some more encryption queries, and then outputs b'. If b' = 1, \mathcal{A}_{PRF} says $R(\cdot)$, otherwise it says $F_k(\cdot)$.

Now for the third experiment, $\mathcal{H}_2(\lambda)$, which uses $\mathrm{Enc}(m) = (r_1, r_2)$ with $(r_1, r_2) \leftarrow \$\{0, 1\}^{n+l}$, i.e., it outputs just randomness.

Our second claim is that $\mathcal{H}_1(\lambda, b) \approx_c \mathcal{H}_2(\lambda)$ for $b \in \{0, 1\}$. To see this, note that \mathcal{H}_1 and \mathcal{H}_2 are identical as long as collisions don't happen when choosing the rs. It suffices for us to show that collisions happen with small probability.

Call $E_{i,j}$ the event "random r_i collides with random r_j ". The event of a collision is thus $E = \bigvee_{i,j} E_{i,j}$, and its probability can be upper bounded as follows:

$$\Pr\left[E\right] = \sum_{i,j} \Pr\left[E_{i,j}\right] = \sum_{i,j} \operatorname{Coll}\left(\mathcal{U}_n\right) \le \binom{q}{2} 2^{-n} \le \frac{q^2}{2^n}$$

where q is the (polynomial) number of queries that the adversary does, and $\operatorname{Coll}(\mathcal{U}_n)$ is the probability of a collision when using a uniform distribution, which is 2^{-n} .

Figure 3.1: First two levels of a GGM tree.

Theorem 13 (GGM, 1982). PRFs can be constructed from PRGs.

Corollary 3. PRFs are in Minicrypt.

Construction 5 (GGM tree). Assume we have a length doubling PRG $\mathcal{G}: \{0,1\}^{\lambda} \to \{0,1\}^{2\lambda}$. We say that $\mathcal{G}(x) \stackrel{\triangle}{=} (\mathcal{G}_0(x), \mathcal{G}_1(x))$ to distinguish the first λ bits from the second λ bits.

Now, to build the PRF we construct a Goldreich-Goldwasser-Micali (GGM) tree (fig. 3.1) starting with a key $k \in \{0,1\}^{\lambda}$. On input $x = (x_1, \dots, x_n) \in \{0,1\}^n$, with n being the height of the tree, the PRF picks a path in the tree:

$$F_k(x) = \mathcal{G}_{x_n}(\dots \mathcal{G}_{x_1}(k)\dots).$$

Lemma 3. Let $\mathcal{G}: \{0,1\}^{\lambda} \to \{0,1\}^{2\lambda}$ be a PRG. Then for all $t(\lambda) = \operatorname{poly}(\lambda)$ we have that

$$(\mathcal{G}(k_1),\ldots,\mathcal{G}(k_t)) \approx_c \underbrace{(\mathcal{U}_{2\lambda},\ldots,\mathcal{U}_{2\lambda})}_{t \ times}.$$

Proof of lemma 3. We define t hybrids, where $\mathcal{H}_i(\lambda)$ is defined as

$$\mathcal{H}_i(\lambda) = (\mathcal{G}(k_1), \dots, \mathcal{G}(k_{t-i}), \underbrace{\mathcal{U}_{2\lambda}, \dots, \mathcal{U}_{2\lambda}}_{i \text{ times}})$$

thus $\mathcal{H}_0(\lambda) = (\mathcal{G}(k_1), \dots, \mathcal{G}(k_t))$ and $\mathcal{H}_t(\lambda) = (\mathcal{U}_{2\lambda}, \dots, \mathcal{U}_{2\lambda})$. To prove that $\mathcal{H}_1(\lambda) \approx_c \mathcal{H}_t(\lambda)$, we show that for any i it holds that $\mathcal{H}_i(\lambda) \approx_c \mathcal{H}_{i+1}(\lambda)$. This relies on the fact that $\mathcal{G}(k_{t-i}) \approx_c \mathcal{U}_{2\lambda}$: assume that exists a distinguisher \mathcal{D} for $\mathcal{H}_i(\lambda)$ and $\mathcal{H}_{i+1}(\lambda)$, we then break the PRG.

We build \mathcal{D}' , which takes in input some z from either $\mathcal{G}(k_{t-i})$ or $\mathcal{U}_{2\lambda}$. \mathcal{D}' takes $k_1, \ldots, k_{t-(i+1)} \leftarrow \$\{0, 1\}^{\lambda}$, and feeds $(\mathcal{G}(k_1), \ldots, \mathcal{G}(k_{t-(i+1)}), z, \mathcal{U}_{2\lambda}, \ldots, \mathcal{U}_{2\lambda})$ to \mathcal{D} , and returns whatever it returns.

Proof that Construction 5 is a PRF. We'll define a series of hybrids to show that the GGM tree is a PRF. $\mathcal{H}_0(\lambda) \equiv \text{our GGM tree}$.

 $\mathcal{H}_i(\lambda)$, for $i \in [1, n]$, will replace the tree up to depth i with a true random function. $\mathcal{H}_i(\lambda)$ initially has two empty arrays T_1 and T_2 . On input $x \in \{0, 1\}^n$, it checks if $\overline{x} = (x_1, \dots, x_i) \in T_1$. If not, $\mathcal{H}_i(\lambda)$ picks $k_{\overline{x}} \leftarrow \$\{0, 1\}^{\lambda}$ and adds \overline{x} to T_1 and $k_{\overline{x}}$ to T_2 . If $\overline{x} \in T_1$, it just retrieves $k_{\overline{x}}$ from T_2 . Then $\mathcal{H}_i(\lambda)$ outputs the following:

$$\mathcal{G}_{x_n}\left(\mathcal{G}_{x_{n-1}}\left(\ldots\mathcal{G}_{x_{i+1}}\left(k_{\overline{x}}\right)\ldots\right)\right).$$

If i = 0 we have that $\overline{x} = \bot$ and that $k_{\bot} \leftarrow \$\{0,1\}^{\lambda}$, so $\mathcal{H}_0(\lambda) \equiv$ the GGM tree. On the other hand, if i = n, each input x leads to a random output, so $\mathcal{H}_n(\lambda)$ is just a true random function.

Assume now that exists an adversary \mathcal{A} capable of telling apart $\mathcal{H}_i(\lambda)$ from $\mathcal{H}_{i+1}(\lambda)$, we could break the PRG.

3.2 Computationally Secure MACs

A computationally secure Message Authentication Code (MAC) should be hard to forge, even if you see polynomially many authenticated messages.

Definition 15 (UFCMA MAC). Let $\Pi = (\text{Gen}, \text{Mac}, \text{Vrfy})$ be a MAC, and consider the game $\mathcal{G}_{\Pi, \mathcal{A}}^{\text{ufcma}}(\lambda)$ defined as:

- 1. pick $k \leftarrow \$\{0,1\}^{\lambda}$;
- 2. $(m^{\star}, \phi^{\star}) \leftarrow \mathcal{A}^{\operatorname{Mac}(k, \cdot)}(1^{\lambda})$, where the adversary can query an authentication oracle;
- 3. output 1 if $Vrfy(k, (m^*, \phi^*)) = 1$ and m^* is "fresh", *i.e.*, it was never queried to Mac.

We say that Π is Unforgeable Chosen Message Attack (UFCMA) if for all PPT adversaries \mathcal{A} it holds that

$$\Pr\left[\mathcal{G}_{\Pi A}^{\text{ufcma}}(\lambda) = 1\right] \leq \operatorname{negl}(\lambda).$$

As a matter of fact, any PRF is a MAC.

Construction 6 (MAC from PRF). Let $\mathcal{F} = \{F_k : \{0,1\}^n \to \{0,1\}^l\}_{k \in \{0,1\}^{\lambda}}$ be a PRF family, and let $\mathcal{K} = \{0,1\}^{\lambda}$. Define $\operatorname{Mac}(k,m) = F_k(m)$.

Theorem 14. If \mathcal{F} is a PRF, the MAC shown in Construction 6 is UFCMA.

Proof of theorem 14. Consider the game $\mathcal{H}(\lambda)$ where:

- 1. $R \leftarrow \mathcal{R}(n \to l)$ is a random function;
- 2. $(m^*, \phi^*) \leftarrow \mathcal{A}^{R(\cdot)}(1^{\lambda});$
- 3. output 1 if $R(m^*) = \phi^*$ and m^* is "fresh".

Our first claim is that $\mathcal{H}(\lambda) \approx_c \mathcal{G}_{\Pi,\mathcal{A}}^{\text{ufcma}}(\lambda)$ for all PPT adversaries \mathcal{A} . Assume not, then \exists a distinguisher \mathcal{D} for $\mathcal{H}(\lambda)$ and $\mathcal{G}_{\Pi,\mathcal{A}}^{\text{ufcma}}(\lambda)$, and we can construct a distinguisher \mathcal{D}' for the PRF. \mathcal{D}' has access to an oracle $O(\cdot)$ which is either $F_k(\cdot)$ for some random k, or $R(\cdot)$ for some random function R. \mathcal{D}' feeds a game to \mathcal{D} using $O(\cdot)$. Our second claim is that $\Pr[\mathcal{H}(\lambda) = 1] \leq 2^{-\lambda}$, since $R(\cdot)$ is random and the only way to predict it is by

guessing.

Up to this point we have shown that One Way Function (OWF), PRG, PRF and MAC are all in Minicrypt.

3.3 Domain Extension

We look now at domain extension. Suppose we have a PRF family $\mathcal{F} = \{F_k : \{0,1\}^n \to \{0,1\}^l\}$ as above, and we have a message $m = m_1 | \dots | | m_t$, with $m_i \in \{0,1\}^n$, and with t being the number of blocks of m. Let's look at some constructions that won't work.

- 1. $\phi = \operatorname{Mac}\left(k, \bigoplus_{i=1}^{t} m_i\right)$ does not work, since with $m = m_1 || m_2$ we could swap the bits in position i of m_1 and m_2 and have the same authenticator;
- 2. $\phi_i = \text{Mac}(k, m_i)$ and $\phi = \phi_1 || \dots || \phi_t$ does not work, since we could rearrange the blocks of the authenticator and of the message and still get a valid couple. *i.e.*, take $m' = m_1 || m_3 || m_2$ and $\phi' = \phi_1 || \phi_3 || \phi_2$;
- 3. $\phi_i = \text{Mac}(k, \langle i \rangle || m_i)$ and $\phi = \phi_1 || \dots || \phi_t$, where $\langle i \rangle$ is the binary representation of integer i, does not work, since we could cut and paste blocks from different message/authenticator couples and to get a fresh valid couple.

Now, for the real one. To extend the domain of a PRF \mathcal{F} we need a function $h:\{0,1\}^{nt} \to \{0,1\}^n$ for which is hard to find a collision, *i.e.*, two distinct messages m', m'' such that h(m') = h(m''). To do this, we introduce Collision Resistant Hash Functions (CRHs), an object found in Cryptomania. We add a key to the hash function.

Definition 16 (Universal Hash Function). The family of functions $\mathcal{H} = \{h_s : \{0,1\}^N \to \{0,1\}^n\}_{s \in \{0,1\}^{\lambda}}$ is universal (as in Universal Hash Function (UHF)) if for all distinct x, x' we have that

$$\Pr_{s \leftarrow \$\{0,1\}^{\lambda}} \left[h_s(x) = h_s(x') \right] \le \varepsilon.$$

Two cases are possible, depending on what ε is:

- if $\varepsilon = 2^{-n}$, then \mathcal{H} is said to be Perfect Universal (PU);
- if $\varepsilon = \text{negl}(\lambda)$, with $\lambda = |s|$, then \mathcal{H} is said to be Almost Universal (AU).

With UHF we can extend the domain of a PRF.

Theorem 15. If \mathcal{F} is a PRF and \mathcal{H} is a AU family of hash functions, then $\mathcal{F}(\mathcal{H})$, defined as

$$\mathcal{F}(\mathcal{H}) = \left\{ F_k(h_s(\cdot)) : \{0, 1\}^N \to \{0, 1\}^l \right\}_{k' = (k, s)}$$

is a PRF. \diamond

Proof of theorem 15. Consider the following games:

- $\mathcal{G}^{\text{real}}_{\mathcal{F}(\mathcal{H})}$ $_{\boldsymbol{\Delta}}(\lambda)$, defined as:
 - 1. $k \leftarrow \$\{0,1\}^{\lambda}, s \leftarrow \$\{0,1\}^{\lambda};$
 - 2. $b' \leftarrow \mathcal{A}^{F_k(h_s(\cdot))}(1^{\lambda})$.
- $\mathcal{G}^{\mathrm{rand}}_{\$,A}(\lambda)$, defined as:
 - 1. $\overline{R} \leftarrow \$\mathcal{R}(N \to l)$:
 - 2. $b \leftarrow \mathcal{A}^{\overline{R}(\cdot)}(1^{\lambda})$.

Consider also the hybrid $H_{\$,\mathcal{H},\mathcal{A}}(\lambda)$:

- 1. $s \leftarrow \$\{0,1\}^{\lambda}$;
- 2. $R \leftarrow \$R(n \rightarrow l)$;
- 3. $b \leftarrow \mathcal{A}^{R(h_s(\cdot))}(1^{\lambda})$.

The first claim, i.e., that $\mathcal{G}^{\mathrm{real}}_{\mathcal{F}(\mathcal{H}),\mathcal{A}}(\lambda) \approx_c H_{\$,\mathcal{H},\mathcal{A}}(\lambda)$, is left as exercise.

The second claim is that $H_{\$,\mathcal{H},\mathcal{A}}(\lambda) \approx_c \mathcal{G}^{\mathrm{rand}}_{\$,\mathcal{A}}(\lambda)$. Assume the adversary asks q distinct queries. Consider the event $E = \text{``}\exists (x_i, x_j)$ such that $h_s(x_i) = h_s(x_j)$ with $i \neq j$ '', and with $i, j \leq q$. If E doesn't happen, $H_{\$,\mathcal{H},\mathcal{A}}(\lambda)$ and $\mathcal{G}^{\mathrm{rand}}_{\$,\mathcal{A}}(\lambda)$ are the same. This event is the same as getting first all the inputs that the adversary wants to try, and then sampling $s \leftarrow \$\{0,1\}^{\lambda}$, so its probability can be bounded as

$$\Pr\left[E\right] = \Pr\left[\exists i, j : h_s(x_i) = h_s(x_j)\right] \le \binom{q}{2} \varepsilon \le q^2 \varepsilon.$$

Now, let's look at a construction.

Construction 7 (UHF with Galois field). Let \mathbb{F} be a finite field, such as the Galois field over 2^n . In the Galois field, a bit string represents the coefficients of a polynomial of degree n-1. Addition is the usual, while for multiplication an irreducible polynomial p(x) of degree n is fixed, and the operation is carried out modulo p(x). We pick $s \in \mathbb{F}$, and $x = x_1 | \dots | | x_t$ with $x_i \in \mathbb{F}$ for all i. The hash function is defined as

$$h_s(x) = h_s(x_1||\dots||h_t) = \sum_{i=1}^t x_i \cdot s^{i-1} = Q_x(s).$$

A collision is two distinct x, x' such that

$$Q_x(s) = Q_{x'}(s) \iff Q_{x-x'}(s) = 0 \iff \sum_{i=1}^t (x_i - x_i') s^{i-1} = 0.$$

This means that s is a root of $Q_{x-x'}$. So the probability of a collision is:

$$\Pr\left[h_s(x) = h_s(x')\right] = \frac{t-1}{|\mathbb{F}|} = \frac{t-1}{2^n}.$$
 (negligible)

 \Diamond

 \Diamond

Figure 3.2: Construction of the CBC-MAC.

	FIL-PRF	FIL-MAC	VIL-MAC
$\mathcal{F}(\mathcal{H})$	√	✓	
CBC-MAC		✓	
E-CBC-MAC	✓	✓	✓
XOR-MAC		✓	✓

Table 3.1: Constructions for FIL-PRF, FIL-MAC, and VIL-MAC.

We now look at a computational variant of hash functions. We want hash functions for which collisions are difficult to find for any PPT adversary A, *i.e.*, families of functions such that

$$\Pr_{s} \left[h_s(x) = h_s(x') : (x, x') \leftarrow \mathcal{A}(1^{\lambda}) \right] \le \varepsilon.$$

We want to use some PRF family \mathcal{F} to define \mathcal{H} . Enter Cypher Block Chain (CBC)-MAC (fig. 3.2). CBC-MAC is defined as

$$h_s(x_1,\ldots,x_t) = F_s(x_t \oplus F_s(x_{t-1} \oplus \ldots \oplus F_s(x_1))\ldots).$$

Theorem 16. CBC-MAC is a computationally secure AU hash function if \mathcal{F} is a PRF.

There's also the encrypted CBC-MAC, i.e., $F_k(CBC-MAC(s,x))$.

Theorem 17. CBC-MAC is a PRF.

Theorem 18. CBC-MAC is AU.

CBC-MAC is insecure with variable length messages.

XOR-MAC is defined as follows: take η , a random value (nonce), and output $(\eta, F_k(\eta) \oplus h_s(x))$. Note that here the input is shrinked to the output size of the PRF, while before we shrinked to the input size of the PRF.

Suppose the adversary is given a pair $(m, (\eta, v))$ from a XOR-MAC. She could try to output $(m', (\eta, v \oplus a))$, trying to guess an a such that $h_s(m) \oplus a = h_s(m')$, so that this is still a valid tag. If a is hard to find (as should be), we have "almost xor universality". Almost universality is the special case where a = 0.

From a PRF family we can get a MAC for Fixed Input Length (FIL) messages (a FIL-MAC). Table 3.1 compares the constructions we have seen earlier for FIL-MACs and Variable Input Length (VIL)-MACs.

CBC-MAC cannot be extended securely to VIL. As an example, take

$$CBC-MAC(m_1||\dots||m_t) = F_k(m_t \oplus \dots \oplus F_k(m_1)\dots).$$
(3.1)

If we have (m_1, ϕ_1) , with $\phi_1 = F_k(m_1)$. We could then take $m_2 = m_1 || \phi_1 \oplus m_1$, and ϕ_1 would be a valid authenticator for m_2 :

CBC-MAC
$$(m_2) = F_k(m_1 \oplus \phi_1 \oplus F_k(m_1)) = F_k(m_1 \oplus \phi_1 \oplus \phi_1) = F_k(m_1) = \phi_1.$$

3.4 Chosen Cyphertext Attacks and Authenticated Encryption

In Chosen Cyphertext Attack (CCA) security, the adversary is allowed to choose the cyphertext, and to see its decryption.

Definition 17 (CCA-security). Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be a SKE scheme, and consider the following game $\mathcal{G}_{\Pi,\mathcal{A}}^{\text{cca}}(\lambda,b)$:

- 1. $k \leftarrow \$\{0,1\}^{\lambda}$;
- 2. $(m_0, m_1) \leftarrow A^{\operatorname{Enc}(k,\cdot),\operatorname{Dec}(k,\cdot)}(1^{\lambda});$
- 3. $c \leftarrow \operatorname{Enc}(k, m_b);$
- 4. $b' \leftarrow A^{\text{Enc}(k,\cdot),\text{Dec}^{\star}(k,\cdot)}(1^{\lambda},c)$ where Dec^{\star} does not accept c.

 Π is CCA-secure if for all PPT adversaries \mathcal{A} we have that

$$\mathcal{G}_{\Pi,\mathcal{A}}^{\text{cca}}(\lambda,0) \approx_c \mathcal{G}_{\Pi,\mathcal{A}}^{\text{cca}}(\lambda,1).$$

CCA-security implies a property called *malleability*: if you change a bit the cyphertext you don't get similar messages.

Claim 1. The SKE scheme consisting of $\operatorname{Enc}(k,m) = (r, F_k(r) \oplus m)$ (for random r) and $\operatorname{Dec}(k,(c_1,c_2)) = F_k(c_1) \oplus c_2 = m$ is not CCA-secure.

Proof of Claim 1. 1. Output $m_0 = 0^n$ and $m_1 = 1^n$;

- 2. get $c = (c_1, c_2) = (r, F_k(r) \oplus m_b)$;
- 3. let $c_2' = c_2 \oplus 10^{n-1}$;
- 4. query $Dec(k, (c_1, c'_2))$ (which is different from c);
- 5. if you get 10^{n-1} , output 0, else output 1.

This always works:

$$Dec(k, (c_1, c'_2)) = F_k(c_1) \oplus c'_2 = F_k(c_1) \oplus c_2 \oplus 10^{n-1}$$
$$= m_b \oplus 10^{n-1} = 10^{n-1} \iff m_b = 0^n.$$

We'll build now Authenticated Encryption. It's both CPA and Integrity (of cyphertext) (INT), *i.e.*, it's hard for the adversary to generate a valid cyphertext not queried to the encryption oracle.

As an exercise, formalise the fact that CPA and INT imply CCA, i.e., reduce CCA to CPA.

Any CPA-secure encryption scheme, together with a MAC, gives you CCA security. This is called an encrypted MAC.

Construction 8 (Encrypted MAC). Consider the encryption scheme $\Pi_1 = (\text{Gen}, \text{Enc}, \text{Dec})$, with key space \mathcal{K}_1 , and the MAC $\Pi_2 = (\text{Gen}, \text{Mac}, \text{Vrfy})$, with key space \mathcal{K}_2 . We build the encryption scheme $\Pi' = (\text{Gen}', \text{Enc}', \text{Dec}')$, with key space $\mathcal{K}' = \mathcal{K}_1 \times \mathcal{K}_2$ as follows:

1. $\operatorname{Enc}'(k',m) = (c,\phi) = c'$, with $c \leftarrow \operatorname{Enc}(k_1,m)$ and $\phi \leftarrow \operatorname{Mac}(k_2,c)$;

Figure 3.3: The Feistel permutation.

2. $\operatorname{Dec}'(k',(c,\phi))$ checks if $\operatorname{Mac}(k_2,c)=\phi$: if not, it outputs \bot , else it outputs $\operatorname{Dec}(k_1,c)$.

Theorem 19. If Π_1 is CPA-secure and Π_2 is strongly UFCMA-secure, then Π' is CPA and INT.

I don't know what I wrote here?

Strong UFCMA security means you output (m^*, ϕ^*) where the couple was never asked. So if you know (m, ϕ) , you can output (m, ϕ') .

Proof of theorem 19. We need to show that Π' is both CPA and INT.

- 1. The proof for CPA is just a reduction to the CPA-security of Π_1 . Assume \mathcal{A}' breaks CPA-security of Π' , we can construct \mathcal{A}_1 which breaks CPA of Π_1 .
 - \mathcal{A}_1 picks a key to impersonate the MAC, then for each message m gets its encryption c from Π_1 , and then does Mac of c to get the authenticator ϕ . Then it returns (c, ϕ) to \mathcal{A}' . When it receives m_0, m_1 from \mathcal{A}' , it receives c^* from Π_1 , computes its Mac, and gives the result to \mathcal{A}' . Then it outputs whatever \mathcal{A}' outputs.
- 2. For INT, assume \mathcal{A}'' breaking INT of Π' , we can build \mathcal{A}_2 which breaks INT of Π_2 .
 - We ask A_2 the encryption of m. A_2 picks a key k, computes $\operatorname{Enc}(k,m) = c$, and gives c to the $\operatorname{Mac}(\cdot)$ oracle. Then it gives (c,ϕ) to A''. Later on, A'' gives A_2 some (c^*,ϕ^*) , which is a valid validator if Π' is not INT, so A_2 has broken Π_2 .

The approach to CCA consisting of Encrypt-then-MAC works. Other approaches don't work in general:

- Encrypt-and-MAC, which is what Secure Shell (SSH) does, i.e., $c \leftarrow \text{Enc}(k_c, m)$ and $\phi \leftarrow \text{Mac}(k_s, m)$;
- MAC-then-Encrypt, which is what Transport Layer Security (TLS) does, i.e., $\phi \leftarrow \text{Mac}(k_s, m)$ and $c \leftarrow \text{Enc}(k_c, m||\phi)$.

3.5 Pseudo Random Permutations

Block cyphers are Pseudo Random Permutations (PRPs), a function family that is a PRF but also a permutation. A PRP family cannot be distinguished from a true permutation. For a *strong* PRP family, the adversary has access to the inverse of the permutation. From PRFs we can build both PRPs and strong PRPs.

Definition 18 (Feistel function). Let $F: \{0,1\}^n \to \{0,1\}^n$, then the Feistel function (fig. 3.3) is defined as

$$\psi_F(\underbrace{x,y}_{2n}) = (y,x \oplus F(y)) = (\underbrace{x',y'}_{2n}).$$

It's easy to see that the Feistel function is invertible:

$$\psi_F^{-1}(x',y') = (F(x') \oplus y',x') = (F(y) \oplus F(y) \oplus x,y) = (x,y)$$

We can "cascade" several Feistel functions, to create a Feistel network. Take F_1, \ldots, F_l , and define the following function:

$$\psi_{\mathcal{F}}[l](x,y) = \psi_{F_l}(\psi_{F_{l-1}}(\dots \psi_{F_1}(x,y)\dots))$$

and its inverse:

$$\psi_{\mathcal{F}}^{-1}[l](x',y') = \psi_{\mathcal{F}_1}^{-1}(\dots \psi_{\mathcal{F}_{l-1}}^{-1}(\psi_{\mathcal{F}_l}^{-1}(x',y'))\dots).$$

Theorem 20 (Luby-Rackoff). If $\mathcal{F} = \{F_k : \{0,1\}^n \to \{0,1\}^n\}_{k \in \{0,1\}^{\lambda}}$ is a PRF, then $\psi_{\mathcal{F}}[3]$ is a PRP and $\psi_{\mathcal{F}}[4]$ is a strong PRP.

We will prove only that $\psi_{\mathcal{F}}[3]$ is a PRP.

Theorem 21. If \mathcal{F} is a PRF, $\psi_{\mathcal{F}}[3]$ is a PRP.

Recall that

$$\psi_{\mathcal{F}}[3] = \psi_{F_{k_3}} \left(\psi_{F_{k_2}} \left(\psi_{F_{k_1}}(x, y) \right) \right).$$

Proof of theorem 21. Consider these experiments:

$$H_0: (x,y) \stackrel{\psi_{F_{k_1}}}{\to} (x_1,y_1) \stackrel{\psi_{F_{k_2}}}{\to} (x_2,y_2) \stackrel{\psi_{F_{k_3}}}{\to} (x_3,y_3)$$

$$H_1: (x,y) \stackrel{\psi_{R_1}}{\to} (x_1,y_1) \stackrel{\psi_{R_2}}{\to} (x_2,y_2) \stackrel{\psi_{R_3}}{\to} (x_3,y_3).$$

 H_2 is just like H_1 , but we stop if y_1 "collides". A collision happens when we have $(x,y) \to (x_1 = y, y_1 = y_1)$ $x \oplus R_1(y)$, and $y_1 = y$.

In H_3 we replace $y_2 = R_2(y_1) \oplus x_1$ with $y_2 \leftarrow \$\{0,1\}^n$, and set $x_2 = y_1$. In H_4 we replace $y_3 = R_3(y_2) \oplus x_2$ with $y_3 \leftarrow \$\{0,1\}^n$, and set $x_3 = y_2$.

In H_5 we directly map $(x,y) \xrightarrow{\overline{R}} (x_3,y_3)$, with $\overline{R} \leftarrow \$\mathcal{R}(2n \to 2n)$ being a random permutation. First claim: $H_0 \approx_c H_1$, since we replaced the PRF with truly random functions. The proof is the usual proof by hybrids.

Second claim: $H_1 \approx_c H_2$. Consider the event E of a collision, defined as " $\exists (x,y) \neq (x',y')$ such that $x \oplus R_1(y) = x' \oplus R_1(y')$, i.e., $x \oplus x' = R_1(y) \oplus R_1(y')$ ". If y = y', there can't be a collision, so we can assume that $y \neq y'$. So the probability of a collision is:

$$\Pr[E] = \Pr[R_1(y) \oplus R_1(y') = x \oplus x'] \le 2^{-n}.$$

Third claim: $H_2 \approx_c H_3$. In H_2 , y_1 is just a stream of independent values. Since y_1 never collides and R_2 is random, all $R_2(y_1)$ are uniform and independent, and so is $y_2 = R_2(y_1) \oplus x_1$.

Fourth claim: $H_3 \approx_c H_4$. Now y_3 is random, and $x_3 = y_2$. It suffices that y_2 never collides, since $R_3(y_2)$ is a sequence of one time pad keys.

$$\Pr[y_2 \text{ collides}] \le \binom{q}{2} 2^{-n}.$$

Fifth claim: $H_4 \approx_c H_5$. Just notice that H_4 is simply a random function from 2n bits to 2n bits, and H_5 is a random permutation. They can only be distinguished if there is a collision in H_4 , which again has negligible probability.

A strong PRP P leads to CCA security with the following construction:

- $\operatorname{Enc}(k, m) = P(k, m | | r)$, with $m, r \in \{0, 1\}^n$;
- $Dec(k,c) = P^{-1}(k,c)$ and take the first n bits.

Domain Extension for Pseudo Random Permutations

Assume we have a message $m = m_1 || \dots || m_t$, with $m_i \in \{0,1\}^n$, and you are given a PRP from n bits to n bits.

- One natural thing to do is Electronic Code Book (ECB). Let $c = c_1 || \dots || c_t$ with $c_i = P_k(m_i)$. This is very fast, parallelisable, but insecure (since it's deterministic).
- Cypher Feed Back (CFB): sample c_0 at random, then let $c_i = P_k(c_{i-1}) \oplus m_i$. This is CPA secure and parallelisable for decryption (but not for encryption).
- CBC: sample c_0 at random, then let $c_i = P_k(c_{i-1} \oplus m_i)$. This is also CPA secure. Note that if you output all c_i this does not work as a MAC (recall that CBC-MAC outputs just c_t).
- Counter (CTR)-mode: sample $r \leftarrow s[N]$, with $N = 2^n$. Let $c_i = P_k(r+i-1 \mod N) \oplus m_i$, and output $c_0||c_1||\dots||c_t|$ with $c_0 = r$. For decryption, compute $m_i = P_k(c_0 + i 1 \mod N) \oplus c_i$.

Theorem 22. If \mathcal{F} is a PRF family, then CTR-mode is CPA-secure for VIL.

Proof of theorem 22. Consider the game $H_0(\lambda, b)$, defined as:

- 1. $k \leftarrow \$\{0,1\}^{\lambda}$;
- 2. the adversary asks encryption queries, for messages $m = m_1 || \dots || m_t$:
 - $c_0 = r \leftarrow \$[N] \text{ (with } N = 2^n);$
 - $c_i = F_k(r+i-1 \mod N) \oplus m_i$;
 - output $c_0||c_1||...||c_t$.
- 3. challenge: the adversary gives $(m_0^{\star}, m_1^{\star})$, and take $m_b^{\star} = m_{b_1}^{\star} || \dots m_{b_t}^{\star}$ (both messages have the same length);
- 4. compute c^* from m_b^* and output to adversary;
- 5. adversary asks more encryption queries, then it outputs b'.

We want to show that $H_0(\lambda, 0) \approx_c H_1(\lambda, 1)$.

First, we define the hybrid $H_1(\lambda, b)$ which samples $R \leftarrow \mathfrak{R}(n \to n)$ and uses $R(\cdot)$ in place of $F_k(\cdot)$. The proof that $H_0(\lambda, b) \approx_c H_1(\lambda, b)$ is a usual proof by reduction to security of the PRF. Assume there exists a distinguisher \mathcal{D} for H_0 and H_1 , we build a distinguisher \mathcal{D}' for the PRF, which has access to some oracle that is either $F_k(\cdot)$ or $R(\cdot)$ for random R. \mathcal{D}' plays the game defined above with \mathcal{D} using the oracle, and outputs whatever it outputs, thus distinguishing the PRF.

Now consider the hybrid $H_2(\lambda)$, which outputs a uniformly random challenge cyphertext $c^* \leftarrow \$\{0,1\}^{n(t+1)}$. We claim that $H_1(\lambda, b) \approx_s H_2(\lambda)$ for $b \in \{0,1\}$, *i.e.*, they are statistically indistinguishable: we accept unbounded adversaries that can only ask a polynomial number of queries.

Consider c^* , and the values of $R(r^*)$, $R(r^*+1)$, ..., $R(r^*+t^*-1)$. Then, consider the *i*-th encryption query, c^i , and the values of $R(r_i)$, $R(r_i+1)$, ..., $R(r_i+t_i-1)$. If $R(r_i+j)$ is always different from $R(r^*+j')$ for any j', this is basically OTP. So, calling E the event " $\exists j_1, j_2$ such that $R(r_i+j_1) = R(r^*+j_2)$ ", it suffices to show that $\Pr[E] \leq \operatorname{negl}(\lambda)$.

Assume there are q queries, and fix a maximum length t of the queried messages, and let E_i , for $i \in [q]$, be the event of an overlap happening at query i. Clearly $\Pr[E] \leq \sum_{i=1}^q \Pr[E_i]$. For E_i to happen, we must have that $r^\star - t + 1 \leq r_i \leq r^\star + t - 1$ (this is not tight!). So the size of the interval in which r_i must be is 2t - 1. Then, $\Pr[E_i] = \frac{2t-1}{2^n}$, and $\Pr[E] \leq q\frac{2t-1}{2^n}$, which is negligible.

3.6 Collision Resistant Hash Functions

When we saw domain extensions for PRFs, we showed that $\mathcal{F}(\mathcal{H})$ is a PRF if \mathcal{F} is a PRF and \mathcal{H} is AU. This doesn't work for MACs: to extend the domain of a MAC we need CRHs.

A hash function is used to compress l bits into n bits, with n << l. A family of hash functions is defined as $\mathcal{H} = \{H_s : \{0,1\}^l \to \{0,1\}^n\}_{s \in \{0,1\}^{\lambda}}$. AU means that it's hard to find a collision for an adversary that does not know s. Collision resistance means that it's hard to find a collision even if the adversary knows s.

Definition 19 (Collision Resistant Hash Function). Let $\mathcal{H} = \{h_s : \{0,1\}^l \to \{0,1\}^n\}_{s \in \{0,1\}^{\lambda}}$ be a family of functions, and consider the game $\mathcal{G}_{\mathcal{H},\mathcal{A}}^{CR}(\lambda)$, defined as

 \Diamond

Figure 3.4: The Merkle-Damgard Collision Resistant Hash Function.

- 1. $s \leftarrow \$\{0,1\}^{\lambda}$;
- 2. $(x, x') \leftarrow \mathcal{A}(1^{\lambda}, s);$
- 3. output 1 if $x \neq x' \wedge h_s(x) = h_s(x')$.

 \mathcal{H} is a CRH if for all PPT adversaries \mathcal{A} there is a negligible function $\varepsilon(\lambda)$ such that

$$\Pr\left[\mathcal{G}_{\mathcal{H},\mathcal{A}}^{\mathrm{CR}}(\lambda) = 1\right] \le \varepsilon(\lambda).$$

We'll show how to construct CRHs in two steps.

- 1. Start with a compression function $h_s: \{0,1\}^{2n} \to \{0,1\}^n$ and obtain a domain extension, *i.e.*, a function $h_s': \{0,1\}^* \to \{0,1\}^n$.
- 2. Build a Collision Resistant (CR) compression function.

There are two famous constructions.

Construction 9 (Merkle-Damgard). It goes from tn bits to n bits, for fixed t. Let $m = x_1 || \dots || x_t$, and define intermediate outputs y_i for $i \in [0, t]$. We define $y_0 = 0^n$, and $y_i = h_s(x_i || y_{i-1})$ (fig. 3.4). The output is $y = y_t$.

Construction 10 (Merkle tree). It goes from $2^d n$ bits to n bits, with d being the height of the tree. \diamond

With the Merkle tree one could give a partially hashed version of a file.

Theorem 23. Merkle-Damgard (MD) (Construction 9) is a CRH $\mathcal{H}' = \{h'_s : \{0,1\}^{tn} \to \{0,1\}^n\}$ if the function $\mathcal{H} = \{h_s : \{0,1\}^{2n} \to \{0,1\}^n\}$ is CR.

Proof of theorem 23. Let \mathcal{A}' be an adversary capable of outputting $x \neq x'$ such that $h'_s(x) = h'_s(x')$. Then we can construct \mathcal{A} breaking \mathcal{H} (which is CR).

If $h'_s(x) = h'_s(x')$ but $x \neq x'$, there must be some $j \in [1,t]$ (with $x = x_1 || \dots || x_t$ and $x' = x'_1 || \dots || x'_t$) such that $(x_j, y_{j-1}) \neq (x'_j, y'_{j-1})$, but after that they are equal. Then $h_s(x_j, y_{j-1}) = h_s(x'_j, y'_{j-1})$, which is a collision.

Construction 11 (Strengthened Merkle-Damgard). Strengthened MD is defined as

$$h'_s(x_1||\ldots||x_t) = h_s(\langle t \rangle ||h_s(x_t||\ldots h_s(x_1||0^n)\ldots)).$$

With the strengthened MD we have suffix-free messages, which give us a VIL MD.

Theorem 24. Strengthened MD (Construction 11) is CR.

Proof of theorem 24. Assume there is a collision $x = x_1 || \dots || x_t \neq x' = x'_1 || \dots || x'_t$, i.e., they are such that $h'_s(x) = h'_s(x')$. Two cases are possible:

- 1. if t = t', we have already shown this in the proof of theorem 23;
- 2. if $t \neq t'$, the collision is on $h_s(\langle t \rangle || y_t)$ and $h_s(\langle t' \rangle || y'_{t'})$.

Construction 12 (Davies-Meyer). $\mathcal{H}_E(s,x) = E_s(x) \oplus x$ where $E_{(\cdot)}(\cdot)$ is a block cypher.

For this construction to be CR, it should be hard to find $(x,s) \neq (x',s')$ such that $E_s(x) \oplus x = E_{s'}(x') \oplus x'$. There's something strange going on: a block cypher is a PRP, and OWF give us PRP, but we know that it's impossible to get CRH from OWF. Furthermore, this is actually insecure for concrete PRPs. Let E be a PRP, and define E' such that $E'(0^n, 0^n) = 0^n$ and $E'(1^n, 1^n) = 1^n$, and otherwise E'(x) = E(x). This is still a PRP, but $E'(0^n, 0^n) \oplus 0^n = E'(1^n, 1^n) \oplus 1^n$.

We must assume that we have no bad keys. This is called the Ideal Cypher Model (ICM).

In the ICM, one has a truly random permutation $E_{(\cdot)}(\cdot)$ for all keys. When the adversary asks for (s_1, x_1) , choose random $y_1 \leftarrow \$\{0,1\}^n$ and set $E_{s_1}(x_1) = y_1$. On later query (s_1,x_i) , pick $y_i \leftarrow \$\{0,1\}^n \setminus \bigcup_{i=1}^i \{y_i\}$, and set $E_{s_1}(x_i) = y_i$.

Theorem 25. Davies-Meyer is CR in ICM.

Proof of theorem 25. As usual, we consider a series of experiments.

$$H_0(\lambda) \equiv \mathcal{G}_{\mathrm{DM},\mathcal{A}}^{\mathrm{CR}}(\lambda).$$

A makes two types of queries: forward queries, in the form (s,x), to get $E_s(x)$, and backward queries, in the form (s,y), to get $E_s^{-1}(y)$. Imagine of keeping the value of $z=x\oplus y$.

Now, we define $H_1(\lambda)$: after picking y for some (s, x), we don't remove y from the range (and the same for backward queries).

The first claim is that, assuming A asks q queries,

$$\left| \Pr[H_0(\lambda) = 1] - \Pr[H_1(\lambda) = 1] \right| \le \frac{q^2}{2} 2^{-n}.$$

To verify this, note that H_0 and H_1 are distinguishable if and only if a collision happens in $E_s(\cdot)$ or in $E_s^{-1}(\cdot)$. $H_2(\lambda)$: check for collisions in $z = x \oplus y$. If not all z values are distinct, abort.

The second claim is that

$$\left| \Pr[H_1(\lambda) = 1] - \Pr[H_2(\lambda) = 1] \right| \le \frac{q^2}{2} 2^{-n}.$$

Verification is as usual.

 $H_3(\lambda)$: when \mathcal{A} outputs (x,s),(x',s') collision, check that (x,s,y,z) and (x',s',y',z') are in the table. If not, define the entries.

Third claim:

$$\left| \Pr\left[H_2(\lambda) = 1 \right] - \Pr\left[H_3(\lambda) = 1 \right] \right| \le \frac{4q}{2^n}.$$

y can collide with q values, with probability $\frac{q}{2^n}$. The same goes for z, y', z', so we get $\frac{4q}{2^n}$. $H_4(\lambda)$: there are no collisions on z. $\Pr[H_4(\lambda) = 1] = 0$ since $(x, s, y, z), (x', s', y', z') \implies z \neq z'$.

 $H_3 \approx_c H_4$, and we're done.

Claw-Free Permutations

We introduce a new assumption: Claw-Free Permutations (CFPs). A claw is a pair of functions (f_1, f_0) and two values (x_1, x_0) such that $f_1(x_1) = f_0(x_0)$, with $f_1 \neq f_0$.

Definition 20 (Claw-Free Permutation). A CFP is a tuple $\Pi = (\text{Gen}, f_0, f_1)$ where $pk \leftarrow \$\text{Gen}(1^{\lambda})$ defines a domain \mathcal{X}_{pk} , and $f_0(pk,\cdot)$ and $f_1(pk,\cdot)$ are permutations over \mathcal{X}_{pk} . Consider the game $\mathcal{G}_{\Pi,\mathcal{A}}^{\mathrm{CF}}(\lambda)$, defined as:

- 1. $pk \leftarrow \$Gen(1^{\lambda});$
- 2. $(x_0, x_1) \leftarrow \mathcal{A}(pk)$;
- 3. output $1 \iff f_0(pk, x_0) = f_1(pk, x_1)$.

 Π is claw-free if for all PPT adversaries \mathcal{A}

$$\Pr\left[\mathcal{G}_{\Pi,\mathcal{A}}^{\mathrm{CF}}(\lambda) = 1\right] \le \varepsilon(\lambda).$$

We can now define a CR compression function.

 \Diamond

Construction 13 (CR Compression Function from CFP). Let $\Pi = (\text{Gen}, f_0, f_1)$, and assume $\mathcal{X}_{pk} = \{0, 1\}^n$, and let $m \in \{0, 1\}^l$. Define H_{pk} as:

$$H_{pk}(x||m) = f_{m_l}(f_{m_{l-1}}(\cdots f_{m_1}(x)\cdots)).$$

Theorem 26. If Π is a CFP, H_{pk} (Construction 13) is collision resistant.

Proof of theorem 26. Assume \mathcal{H} is not CR, we can then find a collision for Π , i.e., we find $(x,m) \neq (x',m')$ such that $H_{pk}(x||m) = H_{pk}(x'||m')$.

Two cases are possible:

1. m = m', so the sequence of permutations is the same, and also x and x' must be the same.

$$x = f_{m_1}^{-1}(\cdots f_{m_l}^{-1}(y)\cdots),$$

$$x' = f_{m'_1}^{-1}(\cdots f_{m'_l}^{-1}(y)\cdots).$$

2. $m \neq m'$, then $\exists i$ such that $m_i \neq m'_i$, and

$$m = m_l \dots m_i \dots m_1,$$

 $m' = m_l \dots m'_i \dots m'_1$

i.e., m and m' are equal from index i + 1 to l.

Assume, without loss of generality, that $m_i = 0$ and $m'_i = 1$. Since from i + 1 we apply the same sequence of permutations, the collision must be on i. Consider

$$y' = f_{m_{i+1}}^{-1}(\dots f_{m_l}^{-1}(y)\dots),$$

$$x_0 = f_{m_{i-1}}(\dots f_{m_1}(x)\dots),$$

$$x_1 = f_{m'_{i-1}}(\dots f_{m'_1}(x)\dots).$$

 x_0 and x_1 are a claw, since $f_0(x_0) = y' = f_1(x_1)$.

3.8 Random Oracle Model

The Random Oracle (RO) is an ideal hash function. The only way to compute the hash is to query the oracle. The adversary is given $RO(\cdot) \leftarrow \$\mathcal{R}(l \to m)$.

With RO we can do

- CRH: define $H^{RO}(x) = RO(x)$;
- PRG: $G^{RO}(x) = RO(x||0)||RO(x||1);$
- PRF: $F^{RO}(x) = RO(k||x) = Mac^{RO}(k, x)$.

The last one is not secure with a real hash function.

4

Number Theory

We use modular arithmetic, with modulus some n, in $(\mathbb{Z}_n, +, \cdot)$.

 $(\mathbb{Z}_n, +)$ is a group, *i.e.*, it has an identity (or null) element, it's closed, commutative, associative, and has an inverse for each element. (\mathbb{Z}_n, \cdot) is not a group, as you don't have an inverse for everyone.

Lemma 4. If gcd(a, n) > 1, a is not invertible in (\mathbb{Z}_n, \cdot) .

Proof of lemma 4. We can write $a = b \cdot q + (a \mod b)$. Assume a is invertible, then $a \cdot b = q \cdot n + 1$. But then $\gcd(a,n)$ divides $a \cdot b - q \cdot n = 1$, which is a contradiction.

Operations in \mathbb{Z}_n (at least multiplication and addition) are efficient. The inverse of an element can be computed with the euclidean algorithm.

Lemma 5. Let a, b such that $a \ge b > 0$, then

$$\gcd(a,b) = \gcd(b,a \mod b).$$

 \Diamond

Proof of lemma 5. It suffices to show that a common divisor of a and b also divides $a \mod b$, and that a common divisor of b and $a \mod b$ also divides a.

Write $a = q \cdot b + a \mod b$.

For the first implication, a common divisor of a and b divides $a - q \cdot b = a \mod b$.

For the second implication, a common divisor of b and a mod b divides $b \cdot q + a \mod b = a$.

Theorem 27. Given a, b we can compute gcd(a, b) in polynomial time in $max\{||a||, ||b||\}$. Also, we can find u, v such that $a \cdot u + b \cdot v = gcd(a, b)$.

Proof of theorem 27. We can use lemma 5 recursively:

$$a = b \cdot q_1 + r_1 \qquad (0 \le r_1 < b)$$

$$\gcd(a, b) = \gcd(b, r_1) \qquad (r_1 = a \mod b)$$

$$b = r_1 \cdot q_2 + r_2 \qquad (0 \le r_2 < r_1)$$

$$\gcd(b, r_1) = \gcd(r_1, r_2) \qquad (r_2 = b \mod r_1)$$

$$\cdots$$

$$r_i = r_{i-1} \cdot q_{i+1} + r_{i+1}.$$

Repeat until $r_{t+1} = 0$, we then have that $gcd(a, b) = r_t$.

We prove that $r_{i+2} \leq \frac{r_i}{2}$ for all $0 \leq i \leq t-2$. Clearly, $r_{i+1} < r_i$. If we have that $r_{i+1} \leq \frac{r_i}{2}$, then it's trivial. If $r_{i+1} > \frac{r_i}{2}$, then

$$r_{i+2} = r_i \mod r_{i+1} = r_i - q_{i+2}r_{i+1} < r_i - r_{i-1} < r_i - \frac{r_i}{2} = \frac{r_i}{2}.$$

Take $a \in \mathbb{Z}_n$ such that $\gcd(a, n) = 1$, then there are u, v such that $a \cdot u + n \cdot v = \gcd(a, n) = 1$. But then $a \cdot u \equiv 1 \mod n$, so u is the inverse of a.

Another operation in \mathbb{Z}_n is modular exponentiation, *i.e.*, $a^b \mod n$. The square and multiply algorithm is polynomial.

Write b in binary, as $b_t b_{t-1} \dots b_0$, so $b \in \{0,1\}^{t+1}$. Since $b = \sum_{i=0}^t b_i \cdot 2^i$, we can write

$$a^{b} = a^{\sum_{i=0}^{t} 2^{i} b_{i}} = \prod_{i=0}^{t} a^{2^{i} b_{i}} = \prod_{i=0}^{t} \left(a^{2^{i}}\right)^{b_{i}} = a^{b_{0}} \left(a^{2}\right)^{b_{1}} \left(a^{4}\right)^{b_{2}} \dots \left(a^{2^{t}}\right)^{b_{t}}.$$

We have t multiplications and t squares, so modular exponentiation happens in polynomial time.

Theorem 28 (Prime Number Theorem).

$$\Pi(x) = \text{"# of primes} \le x \text{"} \ge \frac{x}{3\log_2(x)}$$

which is roughly $\frac{x}{\log(x)}$.

Theorem 28 means that

$$\Pr\left[x \text{ is prime}: x \leftarrow \$2^{\lambda - 1}\right] \ge \frac{\frac{2^{\lambda} - 1}{3\log_2(2^{\lambda} - 1)}}{2^{\lambda - 1}} \approx \frac{1}{3\lambda}.$$

Furthermore, primality testing can be done efficiently.

Theorem 29 (Miller-Rabin '80s, Agramal-Kayer-Saxana '02). You can test in polynomial time if x is prime. \diamond We can sample $x \leftarrow \$2^{\lambda} - 1$, test primality, and eventually resample.

$$\Pr\left[\text{no output after } t \text{ samples}\right] \leq \left(1 - \frac{1}{3\lambda}\right)^t \leq \left(\frac{1}{e}\right)^{\lambda} \in \operatorname{negl}\left(\lambda\right)$$

for $t = 3\lambda^2$, since $\left(1 - \frac{1}{x}\right)^x \le \frac{1}{e}$.

Now, for some new number theoretic assumptions.

Assumption. Integer factorisation of the product of two λ -bit primes is a One Way Function (OWF). National Institute of Standards and Technology (NIST) recommendation is $\lambda \approx 2048$.

We need cyclic groups.

Theorem 30 (Lagrange). If H is a subgroup of G, then |H| |G|.

We define the order of a to b e the minimum i such that $a^i \equiv 1 \mod n$.

Consider \mathbb{Z}_n . Note that $|\mathbb{Z}_n| = n$. We define

$$\mathbb{Z}_n^{\star} = \{ a \in \mathbb{Z}_n : a \text{ is invertible} \} = \{ a \in \mathbb{Z}_n : \gcd(a, n) = 1 \}.$$

 $|\mathbb{Z}_n^{\star}| \stackrel{\triangle}{=} \varphi(n)$. If n is a prime p, then $\mathbb{Z}_p^{\star} = \{1, 2, \dots, p-1\}$, and $|\mathbb{Z}_p^{\star}| = \varphi(p) = p-1$.

Corollary 4. For all $a \in \mathbb{Z}_n^{\star}$, we have

- 1. $a^b = a^{b \mod \varphi(n)} \mod n$;
- 2. $a^{\varphi(n)} = 1 \mod n$:

$$3. \ a^{p-1} = 1 \mod p.$$

 $(\mathbb{Z}_p^{\star},\cdot)$ is cyclic, *i.e.*, \exists a generator g such that

$$\mathbb{Z}_p^* = \langle g \rangle = \{ g^0, g^1, \dots, g^{p-2} \}.$$

Can we find a generator for \mathbb{Z}_p^* ? We can do it if we know a factorisation of $p-1=\prod_{i=1}^t p_i^{\alpha_i}$. Since $p_i\geq 2$, we have that $2^t\leq n<2^{\lambda+1}$, thus $t\leq \lambda$. The algorithm requires t steps.

have that $2^t \le p < 2^{\lambda+1}$, thus $t \le \lambda$. The algorithm requires t steps. By theorem 30 we know that the order of any $y \in \mathbb{Z}_p^*$ divides p-1. Thus y is not a generator $\iff \exists 1 \le i \le t$ such that

$$y^{\frac{p-1}{p_i}} \equiv q \mod p.$$

If this is the case, y is a generator of a subgroup of \mathbb{Z}_p^{\star} . This leads us to the next computational assumption.

4.1. ELLIPTIC CURVES 29

Assumption The Discrete Log (DL) problem, that is finding x given $g^x \in \mathbb{G}$, is hard, *i.e.*, for all Probabilistic Polynomial Time (PPT) A,

$$\Pr\left[y = g^{x'}: \begin{array}{l} (\mathbb{G}, g, q) \leftarrow \operatorname{GroupGen}(1^{\lambda}); x \leftarrow \$\mathbb{Z}_q; \\ y = g^x; x' \leftarrow \mathcal{A}(y, \mathbb{G}, g, q, 1^{\lambda}) \end{array}\right] \leq \varepsilon(\lambda).$$

4.1 Elliptic Curves

 \mathbb{G} is a group of points over some cubic curve modulo p, i.e.,

$$y = x^3 + ax^2 + bx + c \mod p.$$

We can define an operation + that makes \mathbb{G} a group.

 $(\mathbb{G}, g, q) \leftarrow \text{GroupGen}(1^{\lambda})$, and take as an example $\mathbb{G} = \mathbb{Z}_p^{\star}$ with \cdot operation (multiplication). q = p - 1. Take $y \in \mathbb{Z}_p^{\star}$, we have that $y = g^x$ for $x \in \mathbb{Z}_{p-1}$.

In the general case, we have $y \in \mathbb{G}$, and that $y = g^x$ for $x \in \mathbb{Z}_q$. q is the order of the group, while g is a generator for \mathbb{G} . Since $y = g^x$ we have that $\log_q(y) = x$ in \mathbb{G} .

 \mathbb{Z}_p^{\star} is a special case, since modular exponentiation is a One Way Permutation (OWP).

Definition 21 (Computational Diffie-Hellman). Intuitively, given (g, g^x, g^y) , it's hard to find g^{xy} . Computational Diffie-Hellman (CDH) holds in \mathbb{G} if \forall PPT \mathcal{A} we have

$$\Pr\left[z = g^{xy}: \begin{array}{l} params = (\mathbb{G}, g, q); x, y \leftarrow \$\mathbb{Z}_q; \\ z \leftarrow \mathcal{A}(params, g^x, g^y) \end{array}\right] \leq \operatorname{negl}(\lambda). \quad \diamond$$

Observation 1. $CDH \implies DL$.

Proof of Observation 1. Assume not, then DL does not hold if CDH holds. But if we can compute $y = \log_g(g^y)$, then it's easy to find $g^{xy} = (g^x)^y$.

Whether DL \implies CDH or not is not known.

Definition 22 (Decisional Diffie-Hellman). Intuitively,

$$\underbrace{(g, g^x, g^y, g^{xy})}_{\text{DDH tuple}} \approx_c \underbrace{(g, g^x, g^y, g^z)}_{\text{non-DDH tuple}}.$$

Decisional Diffie-Hellman (DDH) holds in \mathbb{G} if for all PPT \mathcal{A}

$$\begin{split} & \left| \Pr_{x,y \leftarrow \mathbb{Z}_q} \left[\mathcal{A}(1^{\lambda}, (\mathbb{G}, g, q), g, g^x, g^y, g^{xy}) = 1 \right] \right. \\ & \left. - \Pr_{x,y,z \leftarrow \mathbb{Z}_q} \left[\mathcal{A}(1^{\lambda}, (\mathbb{G}, g, q), g, g^x, g^y, g^z) = 1 \right] \right| \leq \operatorname{negl}(\lambda) \,. \end{split}$$

Observation 2. $CDH \implies DDH$ is true. $DDH \implies CDH$ maybe is not true.

Proposition 1. DDH does not hold in \mathbb{Z}_n^{\star}

Proof of proposition 1. Consider the set

$$\mathbb{QR}_p = \{y \in \mathbb{Z}_p^\star : y = x^2, x \in \mathbb{Z}_p^\star\} = \{y = g^z : z \text{ even}\}.$$

We can test if $y \in \mathbb{QR}_p$ by checking if $y^{\frac{p-1}{2}} \equiv 1 \mod p$, because if $y = g^{2z'}$ then $y^{\frac{p-1}{2}} \equiv (g^{p-1})^{z'} \equiv 1 \mod p$. If not, then it must be that y = 2z' + 1, and as such

$$y^{\frac{p-1}{2}} \equiv (g^{p-1})^{z'} \cdot g^{\frac{p-1}{2}} \equiv -1 \mod p.$$

Clearly,

$$g^{xy} \in \mathbb{QR}_p \iff g^x \in \mathbb{QR}_p \lor g^y \in \mathbb{QR}_p.$$

Thus $g^{xy} \in \mathbb{QR}_p$ with probability $\frac{3}{4}$, but $g^z \in \mathbb{QR}_p$ only with probability $\frac{1}{2}$. So we have a distinguisher.

 $\mathcal{A}_{\text{DDH}}(g, g^x, g^y, g^z)$ outputs 1 if g^x or g^y are in \mathbb{QR}_p , but $g^z \notin \mathbb{QR}_p$, and 0 otherwise. \mathcal{A}_{DDH} distinguishes with probability greater than $\frac{3}{8}$.

This result can be improved by returning 0 if and only if g^x , g^y and g^z are compatible with \mathbb{QR}_p considerations, obtaining a distinguisher operating with probability $\frac{1}{2}$.

If we take $\mathbb{G} = \mathbb{QR}_p$, with $q = \frac{p-1}{2}$, and where both q and p are prime (Sophie Germain primes), maybe DDH holds there. This is not always true.

♦

4.2 Diffie-Hellman Key Exchange

Take $(\mathbb{G}, g, q) \leftarrow \text{GroupGen}(1^{\lambda})$. Alice samples $x \leftarrow \mathbb{Z}_q$, and sends $\mathcal{X} = g^x$ to Bob. Bob samples $y \leftarrow \mathbb{Z}_q$, and sends $\mathcal{Y} = g^y$ to Alice. Alice computes $\mathcal{K}_A = \mathcal{Y}^x$, Bob computes $\mathcal{K}_B = \mathcal{X}^y$. It's easy to see that $\mathcal{K}_A = \mathcal{K}_B$.

CDH implies that an adversary can't compute the key. DDH implies that the keys are indistinguishable from random.

This is not secure against man in the middle attacks. Authentication would be needed, an initial fixed key.

4.3 Pseudo Random Generators

 $(\mathbb{G}, g, q) \leftarrow \text{GroupGen}(1^{\lambda}), x, y \leftarrow \mathbb{Z}_q$. From DDH we know that

$$G_{q,q}(x,y) = (g^x, g^y, g^{xy}) \approx_c \mathcal{U}_{\mathbb{G}^3}$$

so we have a Pseudo Random Generator (PRG) $G_{g,q}: \mathbb{Z}_q^2 \to \mathbb{G}^3$.

Construction 14 (PRG from DDH). We can construct directly from DDH a PRG with polynomial stretch

$$\mathcal{G}_{g,q}: \mathbb{Z}_p^{l+1}: \mathbb{G}^{2l+1}$$

defined as

$$G_{g,q}(x, y_1, \dots, y_l) = (g^x, g^{y_1}, g^{xy_1}, \dots, g^{y_l}, g^{xy_l}).$$

Theorem 31. If DDH holds, Construction 14 is a PRG.

Proof of theorem 31. Using the standard hybrid argument, since DDH is ε -hard, we would use l hybrids, obtaining that the above PRG is $(\varepsilon \cdot l)$ -secure. This proof is not tight, and we want to make a tight one.

We make a direct reduction to DDH. Let \mathcal{A}_{DDH} be an adversary who is given (g, g^x, g^y, g^z) with $z = \beta + xy$, where β is either 0 (so that is a DDH tuple) or $\beta \leftarrow \mathbb{Z}_q$ (non-DDH tuple).

We want to prove that

$$(q^x, q^{y_1}, q^{xy_1}, \dots, q^{y_l}, q^{xy_l}) \approx_c (q^x, q^y, q^z, \dots)$$

by generating exactly the first if the tuple is DDH, and exactly the other one if the tuple is not DDH.

For $j \in [l]$, pick $u_j, v_j \leftarrow \mathbb{Z}_q$, and define $g^{y_j} = (g^y)^{u_j} \cdot g^{v_j}$, and $g^{z_j} = (g^z)^{u_j} \cdot (g^x)^{v_j}$. \mathcal{A}_{DDH} returns the same as

$$\mathcal{A}_{PRG}(g^x, g^{y_1}, g^{z_1}, \dots, g^{y_l}, g^{z_l}).$$

This trick generates many tuples in the correct way: just look at the exponents.

$$\begin{aligned} y_j &= u_j \cdot y + v_j \\ z_j &= u_j \cdot z + v_j \cdot x = u_j \cdot \beta + u_j \cdot x \cdot y + v_j \cdot x \\ &= u_j \cdot \beta + x \cdot (u_j \cdot y + v_j) = u_j \cdot \beta + x \cdot y_j \end{aligned}$$

which is either sampled random from \mathbb{Z}_q if $\beta \leftarrow \mathbb{Z}_q$, or xy_j if $\beta = 0$, with $y_j \leftarrow \mathbb{Z}_q$. So breaking the PRG is equivalent to breaking DDH, since \mathcal{A}_{DDH} can perfectly simulate the PRG, query \mathcal{A}_{PRG} and break DDH.

4.4 Pseudo Random Functions (PRFs): Naor-Reingold

Construction 15 (Naor-Reingold). $(\mathbb{G}, g, q) \leftarrow \text{GroupGen}(1^{\lambda}).$

$$\mathcal{F}_{\mathrm{NR}} = \{ F_{q,g,\overline{a}} : \{0,1\}^n \to \mathbb{G} \}_{\overline{a} \in \mathbb{Z}_q^{n+1}}.$$

 \overline{a} is a vector of exponents.

$$F_{q,q,\overline{a}}(x_1,\ldots,x_n) = (g^{a_0})^{\sum_{i=1}^n a_i x_i}$$
.

DDH $\Longrightarrow \mathcal{F}_{NR}$ is a PRF. The proof can be sketched in a similar way as the proof for Goldreich-Goldwasser-Micali (GGM). Note that this is like an optimised version of GGM.

4.5 Number Theoretic Claw-Free Permutation

Construction 16 (Number Theoretic CFP). 1. $params = (\mathbb{G}, g, q) \leftarrow \text{GroupGen}(1^{\lambda});$

- 2. $y \leftarrow \$\mathbb{G}, pk = (params, y);$
- 3. define $f = (f_0, f_1)$, with:

$$f_0(pk, x_0) = g^{x_0},$$

 $f_1(pk, x_1) = y \cdot g^{x_1}.$

 $\mathbb{G} = \mathbb{Z}_p^{\star}, q = p - 1, \mathcal{X}_{pk} = \mathbb{Z}_q.$ Let (x_0, x_1) be a claw, i.e., $f_0(pk, x_0) = f_1(pk, x_1)$. Then

$$g^{x_0} = y \cdot g^{x_1} \implies y = g^{x_0 - x_1} \implies x_0 - x_1 = \log_g(y).$$

Theorem 32. Under DL Construction 16 is a Claw-Free Permutation (CFP).

Proof of theorem 32. It's a simple simulation.

$$\mathcal{H}_{pk}(x||m) = f_{m_1}(\dots f_{m_1}(x)\dots).$$

If l=1, $\mathcal{H}_{pk}(x||b)=f_b(pk,m)=y^bg^x$. Collision means $(x,b)\neq (x',b')$ such that $y^bg^x=y^{b'}g^{x'}$. Clearly

$$b \neq b' \implies y^{b-b'} = g^{x'-x} \implies y = g^{(x'-x)(b-b')^{-1}}.$$

Take $\mathbb{G} = \mathbb{QR}_p$, p = 2q + 1, with p and q primes. Then $\exists (b - b')^{-1}$.

$$\mathcal{H}_{pk}(x_1, x_2) = y^{x_1} g^{x_2}$$

$$\mathcal{H}_{pk} : \mathbb{Z}_q^2 \to \mathbb{G}.$$

Public Key Encryption

There's also a thing called $Hybrid\ Encryption$: encrypt key k with pk, then use k for something like Advanced Encryption Standard (AES).

Definition 23 (Public Key Encryption Scheme). A Public Key Encryption (PKE) scheme is a tuple $\Pi = (Gen, Enc, Dec)$, where

- 1. $(pk, sk) \leftarrow \$Gen(1^{\lambda});$
- 2. $\operatorname{Enc}(pk, m) = c;$

3.
$$\operatorname{Dec}(sk,c) = m$$
.

We require correctness from a PKE scheme:

$$\Pr\left[\operatorname{Dec}(sk,\operatorname{Enc}(pk,m)) = m : (pk,sk) \leftarrow \operatorname{\$Gen}(1^{\lambda})\right] = 1 - \operatorname{negl}(\lambda).$$

Now we define games for Chosen Plaintext Attack (CPA), Chosen Cyphertext Attack (CCA)1, CCA2 for PKE.

Definition 24 (CPA for PKE). $\mathcal{G}_{A,\Pi}^{\text{CPAone-time}}(\lambda, b)$:

- 1. $(pk, sk) \leftarrow \$Gen(1^{\lambda});$
- 2. $(m_0, m_1) \leftarrow \mathcal{A}(1^{\lambda}, pk)$;
- 3. $c \leftarrow \operatorname{Enc}(pk, m_b);$

$$4. \ b' \leftarrow \mathcal{A}(pk,c).$$

Definition 25 (CCA-1 for PKE). $\mathcal{G}_{A,\Pi}^{\text{CCA1}}(\lambda, b)$:

- 1. $(pk, sk) \leftarrow \$Gen(1^{\lambda});$
- 2. $(m_0, m_1) \leftarrow \mathcal{A}^{\text{Dec}(sk,\cdot)}(1^{\lambda}, pk);$
- 3. $c \leftarrow \operatorname{Enc}(pk, m_b)$;

$$4. b' \leftarrow \mathcal{A}(pk,c).$$

Definition 26 (CCA-2 for PKE). $\mathcal{G}_{\mathcal{A},\Pi}^{\text{CCA2}}(\lambda,b)$:

- 1. $(pk, sk) \leftarrow \$Gen(1^{\lambda});$
- 2. $(m_0, m_1) \leftarrow \mathcal{A}^{\operatorname{Dec}(sk,\cdot)}(1^{\lambda}, pk);$
- 3. $c \leftarrow \operatorname{Enc}(pk, m_b);$
- 4. $b' \leftarrow \mathcal{A}^{\text{Dec}^{\star}(sk,\cdot)}(pk,c)$, where $\text{Dec}^{\star}(sk,c')$ outputs 1 if c'=c, and Dec(sk,c') otherwise.

5.1. ELGAMAL PKE 33

For $r \in \{\text{CPA}, \text{CCA1}, \text{CCA2}\}\$ we say that Π is SUCCESS if \forall Probabilistic Polynomial Time (PPT) \mathcal{A}

$$\mathcal{G}^r_{\Pi,\mathcal{A}}(\lambda,0) \approx_c \mathcal{G}^r_{\Pi,\mathcal{A}}(\lambda,1).$$

In CCA-1 no decryption queries can be made after receiving the cyphertext, while in CCA-2 decryption queries can be made for cyphertexts different from the challenge cyphertext.

$$CCA-2 \implies CCA-1 \implies CPA$$
.

The other way around is not true in general.

5.1 ElGamal PKE

Construction 17 (ElGamal). Consider $\Pi = (KGen, Enc, Dec)$, where:

- KGen(1 $^{\lambda}$): (\mathbb{G}, g, q) \leftarrow GroupGen(1 $^{\lambda}$), $x \leftarrow \mathbb{Z}_q$, $h = g^x$, pk = g, sk = x. Public keys = (\mathbb{G}, q, g, h) ;
- Enc(pk, m, r): $r \leftarrow \mathbb{Z}_q$, $c = (c_1, c_2) = (g^r, h^r \cdot m)$;
- $\operatorname{Dec}(sk,(c_1,c_2)) = \frac{c_2}{c_1^x}$.

Note that

$$\frac{c_2}{c_1^x} = \frac{h^r \cdot m}{(g^r)^x} = m.$$

Theorem 33. Under Decisional Diffie-Hellman (DDH), ElGamal (Construction 17) is CPA-secure.

Proof of theorem 33. Let $H_0(\lambda, b) = \mathcal{G}_{\Pi, \mathcal{A}}^{\text{CPA}}(\lambda, b)$. Then, let

$$H_1(\lambda, b)$$
: ElGamal $\begin{pmatrix} r, z \leftarrow \mathbb{Z}_q; c = (g^r, g^z \cdot m_b); \\ b' \leftarrow \mathcal{A}(h, (c_1, c_2)) \end{pmatrix}$

i.e., we multiply the message for g^z for random z.

First we claim that $\forall b \in \{0,1\}$, $H_0(\lambda,b) \approx_c H_1(\lambda,b)$. To verify it, note that $(g^x,g^r,g^{xr}) \approx_c (g^x,g^y,g^z)$ by DDH. Assume \mathcal{A}_{H_0,H_1} distinguishes the two, then \mathcal{A}_{DDH} , on input (g^x,g^r,g^z) , with z either random or equal to $x \cdot r$, can forward $h = g^x$ to \mathcal{A}_{H_0,H_1} , receives the two messages m_0 and m_1 , and return her $(g^r,g^z \cdot m_0)$, and output whatever \mathcal{A}_{H_0,H_1} outputs.

The second claim is that $H_1(\lambda,0) \approx_c H_1(\lambda,1)$. Since g^z is random, so $g^z \cdot m_b$ is random, and hides b. \square

A few properties of ElGamal:

1. homomorphic: given $pk, (c_1, c_2), (c'_1, c'_2)$, with $(c_1, c_2) = \text{Enc}(pk, m)$ and $(c'_1, c'_2) = \text{Enc}(pk, m')$, note that

$$(c_1 \cdot c'_1, c_2 \cdot c'_2) = (g^{r+r'}, h^{r+r'}(m \cdot m')) = \operatorname{Enc}(pk, m \cdot m', r + r');$$

- 2. blindness: given $c = (c_1, c_2) = (g^r, h^r \cdot m)$, compute $m' \cdot c_2 = h^r(m \cdot m')$. You have that $(c_1, m' \cdot c_2) = \operatorname{Enc}(pk, m \cdot m', r)$;
- 3. re-randomisability: given a cyphertext $c = (c_1, c_2)$ you can always re-randomise it. Take $r' \leftarrow \mathbb{Z}_q$, and compute

$$(g^{r'} \cdot c_1, h^{r'} \cdot c_2) = \text{Enc}(pk, m, r + r').$$

Property 2 implies that ElGamal is not CCA-2 secure: take (c_1, c_2) challenge, ask for $Dec(sk, (c_1, c_2 \cdot m'))$, and look if the result is $m_0 \cdot m'$ or $m_1 \cdot m'$.

Something cool comes from property 1: fully homomorphic encryption. You can compute the encryption of the product of two messages.

What if we could do it for every function? Assume having $c = \operatorname{Enc}(pk, m)$, and to have some function $\operatorname{Eval}(pk, c, f)$ which outputs $c' = \operatorname{Enc}(pk, f(m))$. If you are in a group, it suffices to have addition and multiplication. You could build a client/server architecture, where the client C wants to compute f(x) without sharing x. Then C computes $c = \operatorname{FHECPK}(x)$, sends c, f to the server S, and obtains $c' = \operatorname{FHCPK}(f(x))$.

5.2 Factoring Assumption and RSA

The factoring assumption will lead us to Rivest-Shamir-Adleman (RSA). But first, we introduce Trapdoor Permutations (TDPs), which can give us PKE.

Definition 27 (Trapdoor Permutation). A TDP is a tuple (Gen, f, f^{-1}), where:

- 1. $(pk, sk) \leftarrow \$Gen(1^{\lambda})$ on some efficiently sampleable domain \mathcal{X}_{pk} ;
- 2. f(pk, x) = y is a permutation over \mathcal{X}_{pk} ;
- 3. $f^{-1}(sk, y) = x$ is the trapdoor.

A TDP has two properties:

1. correctness:

$$\forall x \in \mathcal{X}_{pk}.f^{-1}(sk, f(pk, x)) = x;$$

2. one-way: for all PPT \mathcal{A} ,

$$\Pr\left[x' = x : \begin{array}{c} (pk, sk) \leftarrow \$\mathrm{Gen}(1^{\lambda}); \ x \leftarrow \$\mathcal{X}_{pk}; \\ y = f(pk, x); \ x' \leftarrow \mathcal{A}(pk, y) \end{array}\right] \leq \mathrm{negl}(\lambda).$$

Basically, we are able to invert f if we have sk. Note that f is deterministic! We don't get PKE directly. The problem is that randomness is missing. Recall hardcore functions.

Construction 18 (PKE scheme from TDP). Take (Gen, f, f^{-1}), and let $h(\cdot)$ be hardcore for f. Then do the following:

- 1. $(pk, sk) \leftarrow \$Gen(1^{\lambda});$
- 2. $\operatorname{Enc}(pk,m) = (f(pk,r),h(r) \oplus m) = (c_1,c_2) \text{ for } r \leftarrow \$\mathcal{X}_{pk};$
- 3. $\operatorname{Dec}(sk,(c_1,c_2)) = h(f^{-1}(sk,c_1)) \oplus c_2 = m.$

Theorem 34. If (Gen, f, f^{-1}) is a TDP and $h(\cdot)$ is hardcore for $f(\cdot)$, then the PKE in Construction 18 is CPA-secure.

Since $(f(pk,r),h(r)) \approx_c (f(pk,r),\mathcal{U})$, this works. How many bits can we encrypt?

We know from theorem 10 that we have at least a bit, for any TDP. This can be extended to $O(\log(n))$ bits for any TDP. For specific TDPs we can get some $\Omega(\lambda)$, like for factoring, RSA, Discrete Log (DL). From a Random Oracle (RO) one can get anything in $\{0,1\}^*$.

Let's now look at modular operations modulo n (not necessarily prime). For example, take $m = p \cdot q$ with p, q primes.

Theorem 35 (Chinese Remainder Theorem). Let n_1, \ldots, n_k be pairwise coprime numbers, and any a_1, \ldots, a_k such that $1 \le a_i \le n_i$ for all $i \in [k]$. Then $\exists ! x \text{ such that } 0 \le x < n = \prod_{i=1}^k n_i \text{ and such that } x \equiv a_i \mod n_i \text{ for all } i \in [k]$.

Special case: when k=2, $n_1=p$ and $n_2=q$ are primes, and $n=p\cdot q$. Take any $x\in\mathbb{Z}_n$. To x correspond $x_p\equiv x\mod p$ and $x_q\equiv x\mod q$. This is a bijection: in fact, $\mathbb{Z}_n\simeq\mathbb{Z}_p\times\mathbb{Z}_q$ (i.e., they are isomorphic).

Now, let's look at $f_e(x) = x^e \mod n$, for $0 \le x < n$. Recall that $\mathbb{Z}_n^* = \{x \in \mathbb{Z}_n : \gcd(x, n) = 1\}$, and that $\#\mathbb{Z}_n^* = (p-1)(q-1) = \varphi(n)$.

Fact 2. If $gcd(e, \varphi(n)) = 1$, then $f_e(\cdot)$ is a permutation over \mathbb{Z}_n^{\star} .

We can indeed invert it. Since $gcd(e, \varphi(n)) = 1$, then $\exists d$ such that $d \cdot e = 1 \mod \varphi(n)$. Consider $f_d^{-1}(x) = x^d \mod n$.

$$f_d^{-1}(f_e(m)) = f_e(m)^d \mod n$$
$$= (m^e)^d \mod n$$
$$= m^{e \cdot d} \mod n.$$

Since $d \cdot e \equiv 1 \mod \varphi(n)$, then $d \cdot e = t \cdot \varphi(n) + 1$ for some t.

$$m^{e \cdot d} = m^{t \varphi(n) + 1} = m \cdot (\underbrace{m^{\varphi(n)}}_{1 \mod n})^t = m \mod n.$$

 \Diamond

Figure 5.1: Optimal Asymmetric Encryption Padding.

Assumption (Gen_{RSA}, f_{RSA} , f_{RSA}^{-1}) is a TDP.

- $\bullet \ (n,d,e) \leftarrow \$\mathrm{Gen}_{\mathrm{RSA}}(1^{\lambda}) \text{ with } n = p \cdot q \text{ and } e \cdot e \equiv 1 \mod \varphi(n). \ (n,e) = pk, \ (n,d) = sk;$
- $f_{RSA}(e, x) = x^e \mod n$;
- $f_{\text{RSA}}^{-1}(d, y) = y^d \mod n$.

We have seen that this is correct. The RSA assumption is that, for all PPT \mathcal{A} ,

$$\Pr\left[x = x': \begin{array}{c} (n,d,e) \leftarrow \$\mathrm{Gen}_{\mathrm{RSA}}(1^{\lambda}); \\ x \leftarrow \$\mathbb{Z}_n^{\star}; \ y = x^e; \ x' \leftarrow \mathcal{A}(e,n,y) \end{array}\right] \leq \mathrm{negl}\left(\lambda\right).$$

Under this assumption, we have a 1-bit hardcore predicate, so a 1-bit PKE. This is a different assumption than factoring. If you can factor n you can compute $\varphi(n)$ and thus d. RSA implies factoring, but the other way around is not known.

Textbook RSA, *i.e.*, using (Gen_{RSA}, f_{RSA} , f_{RSA}^{-1}) as is does not work: it's deterministic! To do RSA encryption in practice pick $r \leftarrow \$\{0,1\}^t$ and define $\text{Enc}(e,m) = (\hat{m})^e \mod n$, where $\hat{m} = r||m$.

- This is insecure if t is $O(\log(\lambda))$.
- If $m \in \{0, 1\}$, this is secure under RSA.
- If t is between $\log(\lambda)$ and |m|, we don't actually know.

It's proven to be CCA-secure in the RO model.

Construction 19 (OAEP - PKCS#1 V.2). Optimal Asymmetric Encryption Padding (OAEP), shown in fig. 5.1. This is basically a 2-Feistel (G, H), with G, H hash functions.

 \Diamond

- $\lambda_0, \lambda_1 \in \mathbb{N}$;
- $m' = m||0^{\lambda_1}, r \leftarrow \$\{0, 1\}^{\lambda_0}$:
- $s = m' \oplus G(r), t = r \oplus H(s);$
- $\hat{m} = s||t;$

• $\operatorname{Enc}(pk, m) = \hat{m}^e$. \Diamond

Theorem 36. OAEP (Construction 19) is CCA-2 secure under RSA in the RO model.

Trapdoor Permutation from Factoring 5.3

Let's see how to build a TDP from factoring. We've seen that $f_e(x) = x^e \mod n$ is a TDP. What about e = 2? We have $n = p \cdot q$ and $e \cdot d \equiv 1 \mod n$, but for e = 2, $f_2(x) = x^2 \mod n$ is not a permutation, since the image of $f_2(\cdot)$ is $\mathbb{QR}_n = \{y : y = x^2 \mod n \text{ for some } x \in \mathbb{Z}_n^{\star}\}$, and $\mathbb{QR}_n \subset \mathbb{Z}_n^{\star}$.

For some p and some n, $f_2(\cdot)$ is actually a permutation. By the Chinese Remainder Theorem (CRT) (theorem 35), $x \mapsto (x_p, x_q)$ with $x_p \equiv x \mod p$ and $x_q \equiv x \mod q$. Let us look at $f(x) = x^2 \mod p$.

$$\mathbb{Z}_p^* = \{g^0, g^1, \dots, g^{\left(\frac{p-1}{2}\right)-1}, g^{\frac{p-1}{2}}, \dots, g^{p-2}\}$$

$$\mathbb{QR}_p = \{g^0, g^2, \dots, g^{p-3}, g^0, \dots\}$$

In \mathbb{QR}_p are only even powers of the generator. This means that $|QR| = \frac{p-1}{2}$. Note also that, since $g^{p-1} \equiv g^0 \equiv 1$ mod p, we have that $g^{\frac{p-1}{2}} \equiv -1 \mod p$. There is an easy way to check if a number is a square modulo p. Fix $p,q \equiv 3 \mod 4$, so $p,q \equiv 4t+3$ for some $t \in \mathbb{N}$. Consider $n=p\cdot q$, also called a Bloom integer. If this

condition is met, squaring is a TDP modulo n.

Let $y = x^2 \mod p$, $x = y^{t+1} \mod p$. $(y^{t+1})^2 = y^{2t+2}$. Now, since p = 4t + 3,

$$2t + 2 = \frac{4t + 3 - 3}{2} + 2 = \frac{p - 3}{2} + 2 = \frac{p + 1}{2} = \frac{p - 1}{2} + 1.$$

Now,

$$y^{2t+2} = y^{\frac{p-1}{2}+1} = y^{\frac{p-1}{2}} \cdot y = 1 \cdot y = y.$$

So, $x = \pm y^{t+1} \mod p$. Note that $-1 = g^{\frac{p-1}{2}} \not\in \mathbb{QR}_p$, because $p = 4t + 3 \implies \frac{p-1}{2} = \frac{4t+2}{2} = 2t + 1$, which is odd, and thus -1 is not a square.

Now, let's look at $f_{\text{RABIN}}(x) = x^2 \mod n$ (quadratic residue modulo n, which is in \mathbb{QR}_p).

$$x^2 \mapsto (x_p^2, x_q^2).$$

Note that $f_{\text{RABIN}}^{-1}(y)$ is one of the following:

$$\{(x_p, x_q), (-x_p, x_q), (x_p, -x_q), (-x_p, -x_q)\}.$$

But doing this without knowing p and q is not easy. One can show that $y \in \mathbb{QR}_n \iff x_p^2 \in \mathbb{QR}_n, x_q^2 \in \mathbb{QR}_n$. Then it's easy to see that just one of the above pre-images is a square modulo n, and this is because only one between x_p and $-x_p$ is a square (and same goes for x_q , $-x_q$).

$$|\mathbb{QR}_n| = \frac{\varphi(n)}{4}.$$

With p, q you can invert $f_{RABIN}(x) = x^2 = y \mod n$, without them it's hard as factoring.

Lemma 6. Given x, z such that $x^2 = z^2 = y \mod n$, and $x \neq \pm z$, we can factor n.

Proof of lemma 6. Recall that $f^{-1}(y) \in \{(\pm x_p, \pm x_q)\}$. Thus, if $x = (x_p, x_q)$, then $z \neq (-x_p, -x_q)$, and as such $x + z \in \{(2x_p, 0), (0, 2x_q)\}.$

Assume $x + z = (2x_p, 0)$. Then $x + z = 0 \mod q$, but $x + z \neq 0 \mod p$. This means that $\gcd(x + z, n) = q$, i.e., x+z is a multiple of q, which is a divisor of n. After finding q, we can find $p=\frac{n}{q}$. Done.

Theorem 37. Under factoring over Bloom integers, f_{RABIN} is a TDP.

Proof of theorem 37. Assume not, then $\exists A$ and some $p(\lambda) \in \text{poly}(\lambda)$ such that

$$\Pr\left[z^2 = y: \begin{array}{c} (p,q,n) \leftarrow \$\mathrm{Gen}(1^{\lambda}); \ x \leftarrow \$\mathbb{QR}_n; \\ y = x^2 \mod n; \ z \leftarrow \mathcal{A}(y,n) \end{array}\right] \geq \frac{1}{p(\lambda)}.$$

x is taken from \mathbb{QR}_n because f_{RABIN} is a permutation over \mathbb{QR}_n . Consider $\mathcal{A}^1(n)$, trying to factor n. She chooses x, and lets $y = x^2 \mod n$. Then she runs $\mathcal{A}(y,n)$ to get z. If $z \neq \pm x$, which happens with probability $\frac{1}{2}$, \mathcal{A}^1 can factor n, with probability $\frac{1}{2} \cdot \frac{1}{p(\lambda)}$.

5.4 Cramer-Shoup Encryption (1998)

We will build a simplified version that is CCA-1. We call it Cramer-Shoup (CS) lite.

Construction 20 (Cramer-Shoup lite). Consider $\Pi = (KGen, Enc, Dec)$, where

- KGen(1 $^{\lambda}$): (\mathbb{G}, g, q) \leftarrow GroupGen(1 $^{\lambda}$), then let $g_1 = g$, take $\alpha \leftarrow \mathbb{Z}_q$, and let $g_2 = g_1^{\alpha}$. With high probability g_2 is a generator. Now pick $x_1, x_2, y_1, y_2 \leftarrow \mathbb{Z}_q$. Let $h_1 = g_1^{x_1} \cdot g_2^{y_1}$ and $h_2 = g_1^{x_2} \cdot g_2^{y_2}$. Then, $pk = (h_1, h_2, g_1, g_2)$ and $sk = (x_1, y_1, x_2, y_2)$;
- $\operatorname{Enc}(pk, m)$: pick $r \leftarrow \mathbb{Z}_q$, and output

$$c = (g_1^r, g_2^r, h_1^r \cdot m, h_2^r) = (c_1, c_2, c_3, c_4).$$

 $c_4 = h_2^r$ serves the purpose to ensure that the message is correct;

• $Dec(sk, (c_1, c_2, c_3, c_4))$: if $c_4 \neq c_1^{x_2} \cdot c_2^{y_2}$, return \perp ; else, return

$$\frac{c_3}{c_1^{x_1} \cdot c_2^{y_1}}.$$

To verify correctness of the construction:

$$c_4 = h_2^r = (g_1^{x_2} \cdot g_2^{y_2})^r = (g_1^r)^{x_2} \cdot (g_2^r)^{y_2} = c_1^{x_2} \cdot c_2^{y_2},$$

$$c_3 = h_1^r \cdot m = (g_1^{x_1} \cdot g_2^{y_1})^r \cdot m = (g_1^r)^{x_1} \cdot (g_2^r)^{y_1} \cdot m = (c_1)^{x_1} \cdot (c_2)^{y_1} \cdot m.$$

Theorem 38. Under DDH, CS-lite is CCA-1 secure.

Proof of theorem 38. Start with $H_0(\lambda, b) = \mathcal{G}_{A,\Pi}^{\text{CCA1}}(\lambda, b)$, where $H_0(\lambda, b)$:

- 1. $(\mathbb{G}, g, q) \leftarrow \text{GroupGen}(1^{\lambda}), \ x_1, x_2, y_1, y_2 \leftarrow \mathbb{Z}_q, \ g_1 = g, \ g_2 = g_1^{\alpha}, \ h_1 = g_1^{x_1} \cdot g_2^{y_1}, \ h_2 = g_1^{x_2} \cdot g_2^{y_2}, \ pk = (g_1, g_2, h_1, h_2), \ sk = (x_1, y_1, x_2, y_2);$
- 2. $(m_0^{\star}, m_1^{\star}) \leftarrow \mathcal{A}^{\text{Dec}(sk,\cdot)}(1^{\lambda}, pk)$, where you pick $r \leftarrow \mathbb{Z}_q$, and let

$$c^{\star} = (q_1^r, q_2^r, h_1^r \cdot m_b, h_2^r) = (c_1^{\star}, c_2^{\star}, c_3^{\star}, c_4^{\star});$$

3. $b' \leftarrow \mathcal{A}(pk, c^*)$.

Now consider $H_1(\lambda, b)$, that changes just the way the cyphertext is computed. Pick $r \leftarrow \mathbb{Z}_q$, and let $g_3 = g_1^r$, $g_4 = g_3^\alpha = g_2^r$. Then

$$c^{\star} = (g_3, g_4, g_3^{x_1} \cdot g_4^{y_1} \cdot m_b, g_3^{x_2} \cdot g_4^{y_2}).$$

Clearly, $H_0(\lambda, b) \equiv H_1(\lambda, b)$. Just look at c^* :

$$c^* = (g_1^r, g_2^r, \underbrace{(g_1^r)^{x_1} \cdot (g_2^r)^{y_1}}_{h_1^r} \cdot m_b, \underbrace{(g_1^r)^{x_2} \cdot (g_2^r)^{y_2}}_{h_2^r}).$$

Now, we define $H_2(\lambda, b)$, where instead of using g_4 we use $g_1^{r'} = g_2^{r''}$ for some random r', r''. The next claim is that $H_1(\lambda, b) \approx_c H_2(\lambda, b)$, by reduction to the DDH.

To finish the proof, we introduce a lemma and two technical claims, that imply the theorem.

Lemma 7. b is information theoretically hidden in $H_2(\lambda, b)$ for all \mathcal{A} asking $t = \text{poly}(\lambda)$ Dec queries.

Proof of lemma 7. Remember that $g_3 = g_1^r$ and that $g_4 = g_2^{r'}$, and that $g_2 = g_1^{\alpha}$. For the proof we assume that $\alpha \neq 0$ and that $r \neq r'$.

From $h_1 = g_1^{x_1'} \cdot g_2^{y_1}$, \mathcal{A} knows that

$$\log_{q_1}(h_1) = x_1 + y_1 \log_{q_1}(g_2) = x_1 + \alpha y_1 \mod q. \tag{5.1}$$

There are q possible pairs (x_1, y_1) .

We say that query $c = (c_1, c_2, c_3, c_4)$ is legal if $c_1 = g_1^{r''}$ and $c_2 = g_2^{r''}$, or equivalently if $\log_{g_1}(c_1) = \log_{g_2}(c_2)$.

< </p>

 \Diamond

By Claim 2 and Claim 2, before getting c^* , \mathcal{A} knows only that (x_1, x_2) satisfy eq. (5.1).

$$c^{\star} = (g_3, g_4, g_3^{x_1} \cdot g_4^{y_1} \cdot m_b, g_3^{x_2} \cdot g_4^{y_2}).$$

We want to show that $g_3^{x_1} \cdot g_4^{y_1}$ is uniform by $\mathcal A$ point of view. Fix an arbitrary h in $\mathbb G$. If $h = g_3^{x_1} \cdot g_4^{y_1}$, then

$$\log_{g_1}(h) = x_1 \log_{g_1}(g_3) + y_1 \log_{g_1}(g_4).$$

Here $g_3 = g_1^r$ and $g_4 = g_2^{r'}$, thus

$$\log_{q_1}(h) = x_1 r + \alpha y_1 r'. \tag{5.2}$$

Equation (5.1) and eq. (5.2) are independent: consider the system of equations

$$\underbrace{\begin{pmatrix} 1 & \alpha \\ r & \alpha r' \end{pmatrix}}_{B} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} \log_{g_1}(h_1) \\ \log_{g_1}(h). \end{pmatrix}$$

 $det(B) = \alpha r' - \alpha r \neq 0$ since $\alpha \neq 0$ and $r \neq r'$.

Since h is arbitrary,

$$\Pr\left[g_3^{x_1} \cdot g_4^{y_1} = h\right] = \frac{1}{|\mathbb{G}|}.$$

 $g_3^{x_1} \cdot g_4^{y_1}$ is uniform, and thus the message is hidden.

Claim 2. A obtains additional info about x_1, y_1 only if it ever makes a Dec query for $c = (c_1, c_2, c_3, c_4)$ such that

• $\log_{q_1}(c_1) \neq \log_{q_2}(c_2)$, i.e., it's illegal;

•
$$\operatorname{Dec}(sk,c) \neq \bot$$
.

Proof of Claim 2. If $\operatorname{Dec}(sk,c) = \bot$, then $c_4 \neq c_1^{x_2} \cdot c_2^{y_2}$. You learn nothing about x_1, y_1 if you make this query. Assume it's not \bot , but the query is legal. \mathcal{A} learns that

$$\begin{split} m &= \frac{c_3}{c_1^{x_1} \cdot c_2^{y_1}} \\ &\Longrightarrow \\ \log_{g_1}(m) &= \log_{g_1}(c_3) - x_1 \log_{g_1}(c_1) - y_1 \log_{g_1}(c_2) \\ &= \log_{g_1}(c_3) - r'' x_1 - r'' y_1 \alpha. \end{split}$$

Look at the determinant of

$$\begin{pmatrix} 1 & \alpha \\ -r'' & -\alpha r'' \end{pmatrix}$$

which is $-\alpha r'' + \alpha r'' = 0$. This does not tell us anything, so the only way to learn something is a query that is not \perp and that is illegal.

Claim 3.

 $\Pr[A \text{ makes illegal Dec query } c \text{ for which } \operatorname{Dec}(c) \neq \bot] \leq \operatorname{negl}(\lambda).$

Proof of Claim 3. Assume $c = (c_1, c_2, c_3, c_4)$ is illegal, i.e.,

$$r_1 = \log_{g_1}(c_1) \neq \log_{g_2}(c_2) = r_2.$$

For c to be not rejected, we need that $c_4 = c_1^{x_2} \cdot c_2^{y_2}$ A knows that

$$\log_{q_1}(h_2) = x_2 + \alpha y_2 \mod q. \tag{5.3}$$

Fix arbitrary $c_4 \in \mathbb{G}$. We need that $c_4 = c_1^{x_2} \cdot c_2^{y_2}$.

 \mathcal{A} also knows that

$$\log_{q_1}(c_4) = x_2 \log_{q_1}(c_1) + y_2 \log_{q_1}(c_2) = x_2 r_1 + y_2 r_2 \alpha.$$

These, too, are independent, since $\det \begin{pmatrix} 1 & \alpha \\ r_1 & r_2 \alpha \end{pmatrix} = \alpha(r_2 - r_1) \neq 0$. For the first query, \mathcal{A} can guess c_4 with probability less than or equal to $\frac{1}{q}$.

 \Diamond

 \Diamond

But if the query is rejected, \mathcal{A} has excluded one pair. At query i+1, \mathcal{A} can guess c_4 with probability $\frac{1}{q-i}$. The probability that $\exists i$ such that the (i+1)-th query is not rejected is less than or equal to

$$\sum_{i=0}^{p-1} \Pr\left[i\text{-th query is not rejected}\right] \le \frac{p}{q-p} = \operatorname{negl}\left(\lambda\right)$$

with $\lambda \approx \log(q)$.

Since Claim 2 and Claim 3 imply lemma 7, and that in turn implies the thesis, we are done. \Box

Let's see where the proof breaks for CCA-2. After having $c^* = (c_1^*, c_2^*, c_3^*, c_4^*)$, \mathcal{A} knows that

$$\log_{g_1}(c_4^{\star}) = x_2 \log_{g_1}(g_3) + y_2 \log_{g_1}(g_4).$$

This is independent of eq. (5.3), and \mathcal{A} can recover x_2, y_2 . \mathcal{A} constructs

$$c = (g_1^{r_1}, g_2^{r_2}, c_3, (g_1^{r_1})^{x_2}, (g_2^{r_2})^{y_2}).$$

 \mathcal{A} learns $m=\frac{c_3}{c_1^{x_1}\cdot c_2^{y_1}},$ and can recover x_1,y_1 and decrypt to find b.

$$\log_{g_1}\left(\frac{c_3}{m}\right) = x_1 r_1 + \alpha y_1 r_2.$$

Real Cramer-Shoup

Construction 21 (Cramer-Shoup). Consider the CS PKE scheme $\Pi = (KGen, Enc, Dec)$, where

- KGen (1^{λ}) :
 - 1. $(\mathbb{G}, g, q) \leftarrow \text{GroupGen}(1^{\lambda});$
 - 2. let $g_1 = g$, take $\alpha \leftarrow \mathbb{Z}_q$, and let $g_2 = g_1^{\alpha}$;
 - 3. let $\mathcal{H}: \{0,1\}^* \to \mathbb{Z}_q$ be a Collision Resistant Hash Function (CRH);
 - 4. pick $x_1, x_2, y_1, y_2, x_3, y_3 \leftarrow \mathbb{Z}_q$;
 - 5. let $h_i = g_1^{x_i} \cdot g_2^{y_i}$, for $i \in \{1, 2, 3\}$;
 - 6. $pk = (g_1, g_2, h_1, h_2, h_3), sk = (x_1, x_2, x_3, y_1, y_2, y_3);$
- Enc(pk, m): pick $r \leftarrow \mathbb{Z}_q$, and output

$$c = \left(g_1^r, g_2^r, h_1^r \cdot m, \left(h_2 \cdot h_3^{\beta}\right)^r\right) = (c_1, c_2, c_3, c_4)$$

where $\beta = \mathcal{H}(c_1, c_2, c_3)$.

• $Dec(sk, (c_1, c_2, c_3, c_4))$: check that

$$c_1^{x_2+\beta x_3} \cdot c_2^{y_2+\beta y_3} = c_4.$$

If not, output \perp . Otherwise, output

$$m = \frac{c_3}{c_1^{x_1} \cdot c_2^{y_1}}.$$

Correctness:

$$\begin{split} c_1^{x_2+\beta x_3} \cdot c_2^{y_2+\beta y_3} &= (g_1^r)^{x_2} \cdot (g_1^r)^{\beta x_3} \cdot (g_2^r)^{y_2} \cdot (g_2^r)^{\beta y_3} \\ &= (g_1^{x_2} \cdot g_2^{y_2})^r \cdot (g_1^{x_3} \cdot g_2^{y_3})^{\beta r} \\ &= h_2^r \cdot h_3^{\beta r} = \left(h_2 \cdot h_3^{\beta}\right)^r. \end{split}$$

The proof of CCA-2 security looks much similar to the proof for CCA-1 security of CS lite (theorem 38).

Theorem 39. The CS PKE scheme (Construction 21) is CCA-2 under DDH.

Proof of theorem 39. Start with $(g, g^{\alpha}, g^{r}, g^{\alpha r})$.

$$c^{\star} = \left(g^r, g^{\alpha r}, g^{x_1 \alpha r} \cdot g^{y_1 \alpha r} \cdot m, \left(g^{x_2} \cdot g^{x_3} \cdot g^{\alpha \beta y_2} \cdot g^{\alpha \beta y_3}\right)^r\right).$$

These have the same distribution, so the first tuple is indistinguishable from $(g, g^{\alpha}, g^{r}, g^{\alpha r'})$. The first hybrid uses the DDH tuple, the second uses the non-DDH tuple.

From the pk, \mathcal{A} knows that

$$\log_{g_1}(h_2) = x_2 + \alpha y_2,$$

$$\log_{g_1}(h_3) = x_3 + \alpha y_3.$$

Let's analyse the probability of rejecting illegal queries. Let $g_3 = g_1^r$, and let $g_4 = g_2^{r'}$, with $r \neq r'$. Given c^* , \mathcal{A} knows that

$$\log_{q_1}(c_4^{\star}) = (x_2 + \beta^{\star} x_3)r + (y_2 + \beta^{\star} y_3)\alpha r'.$$

Take arbitrary $c=(c_1,c_2,c_3,c_4)\neq c^{\star}$, and assume c is illegal, i.e., $\log_{g_1}(c_1)\neq\log_{g_2}(c_2)$. Three cases are possible:

- 1. $(c_1, c_2, c_3) = (c_1^{\star}, c_2^{\star}, c_3^{\star})$, but $c_4 \neq c_4^{\star}$. It's impossible, so it's always rejected;
- 2. $(c_1, c_2, c_3) \neq (c_1^*, c_2^*, c_3^*)$, but

$$\mathcal{H}(c_1, c_2, c_3) = \beta = \beta^* = \mathcal{H}(c_1^*, c_2^*, c_3^*).$$

It's impossible (highly unlikely) by CRH;

3. as before,
$$(c_1, c_2, c_3) \neq (c_1^{\star}, c_2^{\star}, c_3^{\star})$$
 and $\beta \neq \beta^{\star}$.

6

Signature Schemes

We are still inside Public Key Cryptography, but we stop with encryption, and instead look at a new primitive: Signature Schemes (SSs). Basically, it's a primitive just like Message Authentication Code (MAC), but this time without the two parties sharing a secret.

A big difference between MAC and SS is that in SS the signature is publicly verifiable. What we want from a SS is that it is hard to forge a message together with a valid signature.

Definition 28 (Signature Scheme). A SS is a tuple $\Pi = (KGen, Sign, Vrfy)$ where

- $KGen(1^{\lambda}) \to (pk, sk)$;
- Sign $(sk, m) \to \sigma$, with $m \in \mathcal{M}_{pk}$ (the message space could depend on the public key pk);
- $\operatorname{Vrfy}(pk, (m, \sigma)) \to 0/1$.

As usual, we want correctness, i.e., for all (pk, sk) output of KGen, for all $m \in \mathcal{M}_{pk}$,

$$\Pr\left[\operatorname{Vrfy}(pk, (m, \operatorname{Sign}(sk, m))) = 1\right] \ge 1 - \operatorname{negl}(\lambda).$$

Sometimes "bad things" happen, and the signature does not work: hence the probability.

Definition 29 (UFCMA for SSs). Consider the game $\mathcal{G}_{\Pi,\mathcal{A}}^{\text{ufcma}}(\lambda)$:

- $(pk, sk) \leftarrow \mathrm{KGen}(1^{\lambda});$
- $(m^{\star}, \sigma^{\star}) \leftarrow \mathcal{A}^{\operatorname{Sign}(sk, \cdot)}(1^{\lambda}, pk)$:
- output $1 \iff \text{Vrfy}(pk, (m^*, \sigma^*)) = 1$ and m^* is fresh, *i.e.*, it is not a signature query.

 Π is Unforgeable Chosen Message Attack (UFCMA) if for all Probabilistic Polynomial Time (PPT) $\mathcal{A} \exists$ a negligible $\varepsilon : \mathbb{N} \to [0, 1]$ such that

$$\Pr\left[\mathcal{G}_{\Pi,\mathcal{A}}^{\text{ufcma}}(\lambda) = 1\right] \le \varepsilon(\lambda).$$

Identity Based Encryption (IBE) is an idea of Shamir.

A natural idea is to swap pk and sk in Rivest-Shamir-Adleman (RSA), since they are symmetric.

- 1. $(n, p, q, d, e) \leftarrow \operatorname{Gen}_{RSA}(1^{\lambda}), n = p \cdot q, d \cdot e \equiv 1 \mod \phi(n). pk = (n, e), sk = d);$
- 2. $\operatorname{Sign}(sk, m) = m^d \mod n$;
- 3. $\operatorname{Vrfy}(pk, (m, \sigma)) = 1 \iff \sigma^e = m \mod n$.

But this is not secure.

1. Pick $\sigma \in \mathbb{Z}_n^{\star}$, let $m = \sigma^e \mod n$, output (m, σ) .

 \Diamond

2. Pick $m^* \in \mathbb{Z}_n^*$ such that we can find m_1, m_2 such that $m_1 \cdot m_2 = m^*$. Then $\operatorname{Sign}(sk, m_1) \cdot \operatorname{Sign}(sk, m_2) = \operatorname{Sign}(sk, m^*)$ to the oracle.

$$m_2 = \frac{m^\star}{m_1}, \qquad \sigma_1 = m_1^d, \qquad \sigma_2 = \left(\frac{m^\star}{m_1}\right)^d, \qquad \sigma^\star = \sigma_1 \cdot \sigma_2.$$

If we hash the message before signing it, we get this to work in the Random Oracle (RO) model.

Construction 22 (SS from TDP + RO). We have a Trapdoor Permutation (TDP) (Gen, f, f^{-1}), with \mathcal{X}_{pk} being the domain of the TDP. We assume a function $H: \{0,1\}^* \to \mathcal{X}_{pk}$, i.e., the message space is $\mathcal{M}_{pk} = \{0,1\}^*$.

- 1. $\operatorname{KGen}(1^{\lambda}) = (pk, sk) \leftarrow \operatorname{Gen}(1^{\lambda});$
- 2. Sign $(sk, m) = f^{-1}(sk, H(m)) = \sigma;$
- 3. $\operatorname{Vrfy}(pk, (m, \sigma)) = 1 \iff f(pk, \sigma) = H^{(m)}$.

Theorem 40. The SS in Construction 22 is UFCMA in the RO model if (Gen, f, f^{-1}) is a TDP.

Proof of theorem 40. Assume exists \mathcal{A} capable of forging, i.e., be a PPT adversary such that

$$\Pr\left[\mathcal{G}_{\Pi,\mathcal{A}}^{\mathrm{ufcma}}(\lambda) = 1\right] \ge \frac{1}{\mathrm{poly}(\lambda)}.$$

We use her to break the TDP.

Without loss of generality, we make the following assumptions on A:

- 1. \mathcal{A} never repeats her queries;
- 2. before making signature query m_i , \mathcal{A} asks m_i to the RO.

We describe \mathcal{B} which is given pk and y = f(pk, x) for $x \leftarrow \mathcal{SX}_{pk}$, i.e., $\mathcal{B}(1^{\lambda}, pk, y)$:

- 1. run $\mathcal{A}(1^{\lambda}, pk)$, pick $j \leftarrow \$[q_h]$ (number of queries of \mathcal{A}). With probability $\approx \frac{1}{q_h}$ (one over polynomial) we guess j, the last message;
- 2. upon query $m_i \in [0,1]$
 - (a) if $i \neq j$, sample $x_0 \leftarrow \mathcal{S}\mathcal{X}_{pk}$, and let $y_i = f(pk, x_i)$ and return y_i ;
 - (b) if i = j, return y to A;
- 3. upon seeing query m_i , return x_i as long as $m_i \neq m$, else abort;
- 4. when \mathcal{A} gives (m^*, σ^*) , output σ^* .

 \mathcal{B} perfectly simulates pk, and also signature queries as long as it does not abort.

- 1. y_i are random, since x_i are random and $f(pk,\cdot)$ is a permutation;
- 2. Sign $(sk, m_i) = f^{-1}(sk, H(m_i)) = f^{-1}(sk, f(pk, x_i)) = x_i$.

Additionally, if (m^*, σ^*) is valid it means that $\sigma^* = f^{-1}(sk, H(m^*)) = f^{-1}(sk, y) = x$, and \mathcal{B} inverts the TDP. The probability of breaking the TDP is the probability of not aborting times the probability that \mathcal{A} breaks the scheme.

$$\Pr\left[\text{``\mathcal{B} wins''}\right] = \frac{1}{q_h} \cdot \frac{1}{\operatorname{poly}(\lambda)} \neq \operatorname{negl}(\lambda).$$

Theorem 41. SSs exist \iff One Way Functions (OWFs) exist.

But this is inefficient.

6.1 Waters Signature Scheme

Computational Diffie-Hellman (CDH) in bilinear groups.

Definition 30 (Bilinear Group). $(\mathbb{G}, \mathbb{G}_T, q, g, \hat{e}) \leftarrow \text{Bilin}(1^{\lambda}).$

- 1. \mathbb{G} , \mathbb{G}_T are groups of order q with some efficient operation ".". T stands for target;
- 2. g is a generator of \mathbb{G} ;
- 3. $\hat{e}: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$ is a bilinear map, *i.e.*,
 - (a) bilinearity: $\forall g, h \in \mathbb{G}, \forall a, b \in \mathbb{Z}_q$,

$$\hat{e}(g^a, h^b) = \hat{e}(g, h)^{ab};$$

(b) non-degeneracy: $\hat{e}(g,g) \neq 1$ for generator g.

Observation 3. They are pairing on elliptic curves and CDH is believed to hold in such groups. Decisional Diffie-Hellman (DDH) comes easy in \mathbb{G} with a bilinear map.

Construction 23 (Waters Signature Scheme). Consider $\Pi = (KeyGen, Sign, Vrfy)$, where

- KeyGen(1 $^{\lambda}$): $params = (\mathbb{G}, \mathbb{G}_T, q, g, \hat{e}) \leftarrow \text{$Bilin}(1^{\lambda}), \ a \leftarrow \mathbb{Z}_q, \ g_1 = g^a, \ g_2, \mu_1, \dots, \mu_k \leftarrow \mathbb{G}; \ pk = (params, g_1, g_2, \mu_0, \dots, \mu_k), \ sk = g_2^a.$
- Sign(sk, m): let $m = (m[1], \dots, m[k]) \in \{0, 1\}^k$, and $\alpha(m) = \alpha_{\mu_0, \dots, \mu_k}(m) = \mu_0 \prod_{i=1}^k \mu_i^{m[i]}$. Pick $r \leftarrow \mathbb{Z}_q$, output $\sigma = (g_2^a \cdot \alpha(m)^r, g^r) = (\sigma_1, \sigma_2)$;
- Vrfy $(pk, (m, (\sigma_1, \sigma_2)))$: check that $\hat{e}(g, \sigma_1) = \hat{e}(\sigma_2, \alpha(m)) \cdot \hat{e}(g_1, g_2)$.

Correctness:

$$\hat{e}(g, \sigma_1) = \hat{e}(g, g_2^a \cdot \alpha(m)^r) = \hat{e}(g, g_2^a) \cdot \hat{e}(g, \alpha(m)^r) = \hat{e}(g^a, g_2) \cdot \hat{e}(g^r, \alpha(m)) = \hat{e}(g_1, g_2) \cdot \hat{e}(\sigma_2, \alpha(m)).$$

Security: partitioning argument. $\mathcal{M} = \{0,1\}^k$, and X is some auxiliary information. Given X, one can simulate signature on $m \in \mathcal{M}_1^X$ and moreover with high probability all queries will belong to \mathcal{M}_1^X . Forgery will be in \mathcal{M}_2^X which will allow to break CDH.

Theorem 42. Under CDH, Waters Signature Scheme (WSS) is UFCMA.

Proof of theorem 42. Let \mathcal{A} be a PPT adversary capable of breaking WSS with probability greater than $\frac{1}{p(\lambda)}$, with $p(\lambda) \in \text{poly}(\lambda)$. Consider the adversary \mathcal{B} given $params = (\mathbb{G}, \mathbb{G}_T, q, g, \hat{e}), g_1 = g^a, g_2 = g^b$, and which wants to compute g^{ab} . $\mathcal{B}(params, g_1, g_2)$:

- 1. set $l = kq_s$, with q_s being the number of queries (<< q);
- 2. pick $x_0 \leftarrow \$[-kl, 0]$ and $x_1, \ldots, x_k \leftarrow \$[0, l]$ integers, and $y_0, \ldots, y_k \leftarrow \\mathbb{Z}_q ;
- 3. set $\mu_i = g_2^{x_i} g^{y_i}$ for all $i \in [k]$, and define the functions

$$\beta(m) = x_0 + \sum_{i=1}^k m[i]x_i,$$

$$\alpha(m) = x_0 + \sum_{i=1}^k m[i]x_i$$

$$\gamma(m) = y_0 + \sum_{i=1}^k m[i]y_i;$$

- 4. run $A(params, g_1, g_2, \mu_0, ..., \mu_k)$;
- 5. upon a query $m \in \{0,1\}^k$ from \mathcal{A} :
 - if $\beta = \beta(m) = 0 \mod q$, abort;
 - else $\gamma = \gamma(m), r \leftarrow \mathbb{Z}_q$, and output

$$\sigma = (\sigma_1, \sigma_2) = (g_2^{\beta r} \cdot g_1^{\gamma r} \cdot g_1^{-\gamma \beta^{-1}}, g^r \cdot g_1^{-\beta^{-1}});$$

- 6. when \mathcal{A} outputs $(m^{\star}, (\sigma_1^{\star}, \sigma_2^{\star}))$:
 - if $\beta(m^*) \neq 0 \mod q$, abort;
 - else output

$$\frac{\sigma_1^{\star}}{\left(\sigma_2^{\star}\right)^{\gamma(m^{\star})}}.$$

If $\beta(m) \neq 0$, \mathcal{B} aborts on output, but answers queries. If $\beta(m) = 0$, \mathcal{B} aborts on queries, but outputs result. Public key has random distribution as desired: perfect simulation of pk. Conditioning on \mathcal{B} not aborting, the following two holds:

- 1. signature answers have the right distribution;
- 2. \mathcal{B} breaks CDH.

To verify point 1: $a = \log_g(g_1)$, $b = \log_g(g_2)$. A signature σ on m is $\sigma = (\sigma_1, \sigma_2) = (g_2^a \cdot \alpha(m)^{\bar{r}}, g^{\bar{r}})$ for random $\bar{r} \leftarrow \$\mathbb{Z}_q$. Take now $\bar{r} = r - \alpha\beta^{-1}$ and let $\beta = \beta(m)$, $\gamma = \gamma(m)$.

$$\alpha(m) = \mu_0 \prod_{i=1}^k \mu_i^{m[i]} = g_2^{x_0} g^{y_0} \prod_{i=1}^k (g_2^{x_i} g^{y_i})^{m[i]} = g_2^{\beta} g^{\gamma}.$$

$$\sigma_1 = g_2^a \cdot \alpha(m)^{\bar{r}} = g_2^a \cdot \alpha(m)^{r-\alpha\beta^{-1}}$$

$$= g_2^{\mathscr{C}} \cdot g_2^{\beta r} \cdot g^{\gamma r} \cdot g_2^{\overline{\gamma}} \cdot g^{-\alpha\gamma\beta^{-1}} = g_2^{\beta r} \cdot g^{\gamma r} \cdot g_1^{-\gamma\beta^{-1}}$$

$$\sigma_2 = g^{\bar{r}} = g^r \cdot g^{-\alpha\beta^{-1}} = g^r \cdot g_1^{-\beta^{-1}}$$

Since $\bar{r} = r - \alpha \beta^{-1}$ is random, we get the same distribution.

To verify point 2: let $(\sigma_1^{\star}, \sigma_2^{\star})$ be the forgery such that $\beta(m^{\star}) = 0 \mod q$.

$$\frac{\hat{e}(g, \sigma_1^{\star})}{\hat{e}(\sigma_2^{\star}, \alpha(m^{\star}))} = \hat{e}(g_1, g_2)$$

because it's valid. Since $\hat{e}(g_1, g_2) = \hat{e}(g, g)^{ab}$ we have

$$\hat{e}(g,g)^{ab} = \frac{\hat{e}(g,\sigma_1^{\star})}{\hat{e}(\sigma_2^{\star},\alpha(m^{\star}))} = \frac{\hat{e}(g,\sigma_1^{\star})}{\hat{e}(\sigma_2^{\star},\underbrace{g_1^{\beta(m^{\star})}}_{1}\cdot g^{\gamma(m^{\star})}))} = \frac{\hat{e}(g,\sigma_1^{\star})}{\hat{e}((\sigma_2^{\star})^{\gamma(m^{\star})},g)}$$

$$\implies \hat{e}(g,g^{ab}) = \hat{e}\left(g,\frac{\sigma_1^{\star}}{(\sigma_2^{\star})^{\gamma(m^{\star})}}\right) \implies g^{ab} = \frac{\sigma_1^{\star}}{(\sigma_2^{\star})^{\gamma(m^{\star})}}$$

Next, we claim that \mathcal{B} aborts with negligible probability.

To verify it, we see that \mathcal{B} aborts if the following happens:

$$E = \beta(m^*) \neq 0 \lor (\beta(m^*) = 0 \land \beta(m_1) = 0) \lor \cdots \lor (\beta(m^*) = 0 \land \beta(m_{q_s}) = 0).$$

Since $|\beta(m)| \le kl$ by definition of $\beta(\cdot) \implies |\beta(m)| < q \implies$ we drop the modulus. By the union bound

$$\Pr[E] \le \Pr[\beta(m^*) \ne 0] + \sum_{i=1}^{q_s} \Pr[\beta(m^*) = 0 \land \beta(m_i) = 0].$$

• Fix x_1, \ldots, x_k and m^* , there is a single x_0 such that $\beta(m^*) = 0$, thus

$$\Pr\left[\beta(m^*) \neq 0\right] = \frac{kl}{kl+1};$$

• fix $i \in [q_s]$, and let $\bar{m} = m_i$. Since $m^* \neq m_i$, $\exists j : m^*[j] \neq \bar{m}[j]$. Assume without loss of generality that $m^*[j] = 1 \land \bar{m}[j] = 0$. Given arbitrary $x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_k$ then

$$(\beta(m^*) = \wedge \beta(\bar{m}) = 0) \iff \begin{pmatrix} x_0 + x_j = -\sum_{i \neq j} x_i m^*[i] \\ x_0 = -\sum_{i \neq j} x_i \bar{m}[i] \end{pmatrix}$$

 \exists ! solution.

$$\Pr[\beta(m^*) = 0 \land \beta(m_i) = 0] = \frac{1}{kl+1} \cdot \frac{1}{l+1}.$$

So the probability of aborting is:

$$\Pr\left[E\right] \le \frac{kl}{kl+1} + q_s \cdot \frac{1}{kl+1} \cdot \frac{1}{l+1}$$

which gives us the probability of not aborting:

$$\Pr\left[\bar{E}\right] \ge 1 - \frac{kl}{kl+1} - q_s \cdot \frac{1}{kl+1} \cdot \frac{1}{l+1}$$

$$= \frac{1}{kl+1} \left(\mathcal{K} + 1 - \mathcal{K} - \frac{q_s}{l+1} \right) = \frac{1}{kl+1} \left(1 - \frac{q_s}{l+1} \right)$$

$$= \frac{1}{kl+1} \left(1 - \frac{l}{(l+1)k} \right) \ge \frac{1}{4kq_s+2} = \frac{1}{p'(\lambda)}$$

$$(l = kq_s)$$

with $p'(\lambda) \in \text{poly}(\lambda)$.

Finally, the probability that \mathcal{B} breaks CDH:

$$\Pr\left[\mathcal{B} \text{ breaks CDH}\right] = \underbrace{\frac{1}{p(\lambda)}}_{\text{breaks WSS}} \cdot \underbrace{\frac{1}{p'(\lambda)}}_{\text{pot abort}} \in \text{poly}(\lambda)$$

6.2 Identification Schemes

An Identification Scheme (IDS) is an interactive protocol between a prover \mathcal{P} and a verifier \mathcal{V} , both PPT.

Definition 31 (Identification Scheme). An IDS is a tuple $\Pi = (\text{Gen}, \mathcal{P}, \mathcal{V})$. τ is the message exchange between \mathcal{P} and \mathcal{V} , denoted as $\tau \leftarrow \$(\mathcal{P}(pk, sk) \rightleftharpoons \mathcal{V}(pk))$, with $(pk, sk) \leftarrow \$\text{Gen}(1^{\lambda})$. $\text{out}_{\mathcal{V}}(\mathcal{P}(pk, sk) \rightleftharpoons \mathcal{V}(pk))$ is a random variable, and decides if \mathcal{P} knows sk or not.

Correctness requirement: for all $\lambda \in \mathbb{N}$, for all (pk, sk) output by $\text{Gen}(1^{\lambda})$,

$$\Pr\left[\operatorname{out}_{\mathcal{V}}(\mathcal{P}(pk,sk)\rightleftarrows\mathcal{V}(pk))=1\right]=1.$$

This is called *perfect correctness*.

We also have a security requirement. It should be hard to impersonate \mathcal{P} without knowing the secret key. This does not capture the fact that one transcript could work always. The security requirement is that it should be hard to impersonate \mathcal{P} even after seeing many τ s from honest executions.

Definition 32 (Passively secure IDS). Consider the game $\mathcal{G}_{\Pi,\mathcal{A}}^{id}(\lambda)$, with $\mathcal{A} = (\mathcal{A}_1,\mathcal{A}_2)$, defined by:

- 1. $(pk, sk) \leftarrow \$Gen(1^{\lambda});$
- 2. $s \leftarrow \mathcal{A}_1^{\operatorname{Trans}(pk,sk)}(pk)$, where $\operatorname{Trans}(pk,sk)$ upon empty input outputs $\tau \leftarrow \$(\mathcal{P}(pk,sk) \rightleftarrows \mathcal{V}(pk))$, and s is some "state";
- 3. return $\operatorname{out}_{\mathcal{V}}(\mathcal{A}_2(s, pk) \rightleftharpoons \mathcal{V}(pk))$.

 $\Pi = (Gen, \mathcal{P}, \mathcal{V})$ is passively secure if for all PPT \mathcal{A}

$$\Pr\left[\mathcal{G}_{\Pi,\mathcal{A}}^{\mathrm{id}}(\lambda)=1\right] \leq \operatorname{negl}(\lambda).$$

It's natural to build IDSs using SSs. The idea is to sign random messages from \mathcal{V} .

- 1. \mathcal{V} samples $m \leftarrow \mathcal{M}$, and sends it to \mathcal{P} :
- 2. \mathcal{P} computes $\sigma = \operatorname{Sign}(sk, m)$ and sends it to \mathcal{V} ;
- 3. V outputs $Vrfy(pk, (m, \sigma))$.

 \Diamond

Active security is when the IDS resists to an adversary that replaces \mathcal{V} , and thus chooses what to send to \mathcal{P} . The proposed scheme is both passively secure and actively secure. Encrypting and decrypting random messages also works as an IDS.

Definition 33 (Canonical IDS). In a canonical IDS we have that $\mathcal{P} = (\mathcal{P}_1, \mathcal{P}_2)$ and that $\mathcal{V} = (\mathcal{V}_1, \mathcal{V}_2)$. Just three messages are exchanged:

- 1. $\alpha \leftarrow \mathcal{P}_1(pk, sk)$ is sent to \mathcal{V} ;
- 2. $\beta \leftarrow \mathcal{B}_{\lambda,pk} = \mathcal{V}_1$, the challenge, is sent to \mathcal{P} ;
- 3. $\gamma \leftarrow \mathcal{P}_2(pk, sk, \alpha, \beta)$ is sent to \mathcal{V} ;
- 4. \mathcal{V} outputs $\mathcal{V}_2(pk, \alpha, \beta, \gamma) \in \{0, 1\}$.

The verifier is randomised: this is called a (three-move) "public coins" verifier. Sometimes \mathcal{P}_1 and \mathcal{P}_2 share a state, i.e., $(\alpha, a) \leftarrow \mathcal{P}_1(pk, sk)$ and $\gamma \leftarrow \mathcal{P}_2(pk, sk, \alpha, \beta, a)$.

From a canonical IDS we want non-degeneracy, i.e., it's hard to predict the first message of the prover:

$$\forall \hat{\alpha}. \Pr\left[\alpha = \hat{\alpha} : \alpha \leftarrow \$\mathcal{P}_1(pk, sk)\right] \leq \operatorname{negl}(\lambda).$$

 \Diamond

 \Diamond

We can construct a SS using an IDS.

Construction 24 (Fiat-Shamir Transform). Let $\Pi = (Gen, \mathcal{P}, \mathcal{V})$ be an IDS. Consider the SS $\Pi' = (KGen, Sign, Vrfy)$ defined as:

- $\operatorname{KGen}(1^{\lambda}) = \operatorname{Gen}(1^{\lambda});$
- $\operatorname{Sign}(sk, m)$:
 - 1. $\alpha \leftarrow \mathcal{P}_1(pk, sk)$;
 - 2. $\beta = H(\alpha, m)$ with $H: \{0, 1\}^* \to \mathcal{B}_{pk}$;
 - 3. $\gamma \leftarrow \mathcal{P}_2(pk, sk, \alpha, \beta)$;
 - 4. $\sigma = (\alpha, \gamma)$;
- Vrfy $(pk, (m, \sigma))$ computes $\beta = H(\alpha, m)$, then returns $\mathcal{V}_2(pk, \alpha, \beta, \gamma)$.

Theorem 43. If Π is passively secure, Π' as defined in Construction 24 is UFCMA.

Proof of theorem 43. We do a reduction from \mathcal{A}' forging in $\mathcal{G}^{\text{ufcma}}_{\Pi',\mathcal{A}'}(\lambda)$ into \mathcal{A} winning $\mathcal{G}^{\text{id}}_{\Pi,\mathcal{A}}(\lambda)$, both PPT. Assumptions we make: \mathcal{A}' does not repeat hash queries, and if $(m^{\star}, \sigma^{\star})$ is the forgery, with $(\sigma^{\star}, \gamma^{\star})$, then \mathcal{A}' queried $H(\alpha^{\star}, m^{\star})$ to the RO.

The reduction to $\mathcal{A}^{\text{Trans}(pk,sk)}(pk)$ is as follows:

- 1. forward pk to \mathcal{A}' . Pick $i^* \leftarrow \$q_h$, where q_h is the number of RO queries;
- 2. query $\operatorname{Trans}(pk, sk)$ and get $\tau_i = (\alpha_i, \beta_i, \gamma_i)$ for $i \in [q_s]$, with q_s being the number of signature queries;
- 3. upon (α_i, m_i) RO query from \mathcal{A}' :
 - (a) if $j = i^*$ send a_j to the verifier \mathcal{V} in $\mathcal{G}^{\mathrm{id}}_{\Pi,\mathcal{A}}$, receive β^* from \mathcal{V} and send β^* to \mathcal{A}' , with $\beta^* \leftarrow \mathcal{B}_{pk,\lambda}$;
 - (b) else, return random $\beta_j \leftarrow \mathcal{B}_{pk,\lambda}$
- 4. upon m_i signature query from \mathcal{A}' :
 - (a) check if α_i in $\tau_i = (\alpha_i, \beta_i, \gamma_i)$ is such that (α_i, m_i) is already queried to the RO. If it is, abort;
 - (b) else return (α_i, γ_i) and set $H(\alpha_i, m_i) = \beta_i$ in the RO;
- 5. when \mathcal{A}' outputs $(m^{\star}, (\alpha^{\star}, \gamma^{\star}))$, forward γ^{\star} to the verifier.

If we didn't abort, and \mathcal{A}' is successful, and we guessed i^* , we have

$$\Pr\left[\mathcal{A} \text{ wins}\right] \ge \underbrace{\Pr\left[\mathcal{A}' \text{ wins}\right]}_{\frac{1}{\text{poly}(\lambda)}} \cdot \underbrace{\Pr\left[\alpha^{\star} = \alpha_{i^{\star}}\right]}_{\frac{1}{q_{b}}} \cdot \Pr\left[\text{not abort}\right].$$

Let E_i be the event that we abort in the *i*-th signature query. By the non-degeneracy property of Π we have that $\Pr[E_i] \in \operatorname{negl}(\lambda)$, and thus

$$\Pr[\text{abort}] \le \sum_{i=1}^{q_s} \Pr[E_i] \le q_s \cdot \varepsilon(\lambda).$$

Thus $\exists \mu \in \text{negl}(\lambda)$ such that

$$\Pr\left[\mathcal{A} \text{ wins}\right] \ge \frac{1}{\text{poly}(\lambda)} \cdot (1 - \mu(\lambda)) \cdot \frac{1}{q_s}$$

which is non negligible.

Two properties are sufficient for an IDS to have passive security.

Definition 34 (Honest Verifier Zero Knowledge). An IDS is Honest Verifier Zero Knowledge (HVZK) if exists PPT simulator S such that

$$\left\{ \begin{array}{l} (pk,sk) \leftarrow \$\mathrm{KGen}(1^{\lambda}): \\ (pk,sk),\mathrm{Trans}(pk,sk) \end{array} \right\} \approx_{c} \left\{ \begin{array}{l} (pk,sk) \leftarrow \$\mathrm{KGen}(1^{\lambda}): \\ (pk,sk),S(pk) \end{array} \right\}.$$

HVZK says you don't learn anything from a transcript. It's called the simulation paradigm: if a protocol is HVZK, then exists a simulator capable of simulating the transcripts.

Definition 35 (Special Soundness). Consider the game $\mathcal{G}_{\Pi,\mathcal{A}}^{\mathrm{SP}}$, defined as:

- 1. $(pk, sk) \leftarrow \text{\$KGen}(1^{\lambda});$
- 2. $(\alpha, \beta, \gamma, \beta', \gamma') \leftarrow \mathcal{A}(pk)$;
- 3. output 1 if $\beta \neq \beta'$ and

$$\mathcal{V}_2(pk,(\alpha,\beta,\gamma)) = \mathcal{V}_2(pk,(\alpha,\beta',\gamma')) = 1.$$

Special Soundness (SP) is about canonical IDS: it's hard to have two transcripts (α, β, γ) and $(\alpha, \beta', \gamma')$. A canonical IDS II satisfies special soundness if for all PPT \mathcal{A} exists a negligible ε such that

$$\Pr\left[\mathcal{G}_{\Pi,\mathcal{A}}^{\mathrm{SP}}(\lambda)=1\right] \leq \varepsilon(\lambda).$$

Theorem 44. Let Π be a canonical IDS, if Π satisfies SP and HVZK, and the size of \mathcal{B}_{pk} is $\omega(\log(\lambda))$, then Π is passively secure.

Proof of theorem 44. We want a reduction from Passive Security (PS) to SP. We do one step first.

Let $H_0 = \mathcal{G}_{\Pi,\mathcal{A}}^{\mathrm{id}}$, and consider hybrid H_1 where the oracle $\mathrm{Trans}(pk,sk)$ is replaced by S(pk). By HVZK, $H_0 \approx_c H_1$. Proof of this is left as exercise.

Second step: we claim that $\Pr[H_1(\lambda) = 1]$ is negligible. Assume we have an adversary for PS, we want to break SP. Assume $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2)$ breaks H_1 with probability $\varepsilon(\lambda) \geq \frac{1}{\operatorname{poly}(\lambda)}$, and consider \mathcal{A}' breaking SP:

- 1. recover pk from $\mathcal{G}_{\Pi,\mathcal{A}'}^{\mathrm{SP}}(\lambda)$;
- 2. run $\mathcal{A}_1(pk)$. Upon input an oracle query from \mathcal{A}_1 , return $(\alpha, \beta, \gamma) \leftarrow \$S(pk)$. Let s be the output of $\mathcal{A}_1(pk)$;
- 3. run $\mathcal{A}_2(pk,s)$ and receive α , reply $\beta \leftarrow \mathcal{B}_{pk,\lambda}$ and obtain γ ;
- 4. rewind $A_2(pk, s)$ to the point it already sent α , get a new β' and receive some γ' ;
- 5. output $(\alpha, \beta, \gamma, \beta', \gamma')$.

Denote by z the state of A_2 after it sent α , and call $p_z = \Pr[Z = z]$, where Z is the Random Variable (RV) corresponding to the state.

Write $\delta_z = \Pr[H_1(\lambda) = 1 | Z = z]$. By definition,

$$\varepsilon(\lambda) = \sum_{z \in Z} p_z \delta_z = E[\delta_z].$$

Let "Good" be the event $\beta \neq \beta'$. Then

$$\begin{split} \Pr\left[\mathcal{G}_{\Pi,\mathcal{A}'}^{\mathrm{SP}}(\lambda) = 1\right] &= \Pr\left[\mathcal{G}_{\Pi,\mathcal{A}'}^{\mathrm{SP}}(\lambda) = 1 \land \mathrm{Good}\right] \\ &\geq \Pr\left[\mathcal{G}_{\Pi,\mathcal{A}'}^{\mathrm{SP}}(\lambda) = 1 |\mathrm{Good}\right] - \Pr\left[\neg\mathrm{Good}\right] \\ &= \Pr\left[\mathcal{G}_{\Pi,\mathcal{A}'}^{\mathrm{SP}}(\lambda) = 1 |\mathrm{Good}\right] - |\mathcal{B}_{pk,\lambda}|^{-1} \\ &= \sum_{z \in Z} p_z \delta_z^2 - |\mathcal{B}_{pk,\lambda}|^{-1} = E(\delta_z^2) - |\mathcal{B}_{pk,\lambda}|^{-1} \\ &\geq (E(\delta_z))^2 - |\mathcal{B}_{pk,\lambda}|^{-1} = \underbrace{\varepsilon(\lambda)^2}_{\mathrm{non\ negligible}} - \underbrace{|\mathcal{B}_{pk,\lambda}|^{-1}}_{\mathrm{negligible}} \\ &\geq \frac{1}{\mathrm{poly}(\lambda)} - \mathrm{negl}\left(\lambda\right) \approx \frac{1}{\mathrm{poly}(\lambda)}. \end{split}$$

So we break SP with non negligible probability.

Construction 25 (Schnorr Protocol). Schnorr protocol is defined as follows:

- KGen(1 $^{\lambda}$): (\mathbb{G}, g, q) \leftarrow GroupGen(1 $^{\lambda}$), $sk = x \leftarrow \mathbb{Z}_q$, $pk = y = g^x$;
- \mathcal{P} samples $a \leftarrow \mathbb{Z}_q$ and computes $\alpha = g^a$, and sends α to \mathcal{V} ;
- \mathcal{V} samples $\beta \leftarrow \mathbb{Z}_q = \mathcal{B}_{pk,\lambda}$, and sends β to \mathcal{P} ;
- \mathcal{P} computes $\gamma = \beta x + a \mod q$, and sends γ to \mathcal{V} ;
- \mathcal{V} checks that $g^{\gamma} \cdot y^{-\beta} = \alpha$.

Completeness:

$$q^{\gamma} \cdot y^{-\beta} = q^{\beta x + a} \cdot q^{-\beta x} = q^{\beta x - \beta x + a} = q^{a}.$$

Schnorr protocol has a simulator: pick β, γ at random, let $\alpha = g^{\gamma} \cdot y^{-\beta}$, and output (α, β, γ) . In a real execution, $\gamma = \beta x + a$ is uniform regardless of β , and α is the unique value such that $\alpha = g^{\gamma} \cdot y^{-\beta}$.

SP holds under Discrete Log (DL) assumption. Assume \mathcal{A} breaks SP with non negligible probability. \mathcal{A}' gets $y = g^x$ for random $x \leftarrow \mathbb{SZ}_q$, and sets pk = y in a game with \mathcal{A} . \mathcal{A} outputs $(\alpha, \beta, \gamma, \beta', \gamma')$, with $\beta \neq \beta'$ and $g^{\gamma} \cdot y^{-\beta} = \alpha = g^{\gamma'} \cdot y^{-\beta'}$. We get that

$$g^{\gamma}y^{-\beta} = g^{\gamma'}y_{-\beta'} \implies g^{\gamma-\gamma'} = y^{\beta-\beta'} \implies y = g^{(\gamma-\gamma')(\beta-\beta')^{-1}}$$

so
$$x = (\gamma - \gamma')(\beta - \beta')^{-1}$$
.

AES Advanced Encryption Standard

AU Almost Universal

DL Discrete Log

CBC Cypher Block Chain

CCA Chosen Cyphertext Attack

CDH Computational Diffie-Hellman

CFB Cypher Feed Back

CFP Claw-Free Permutation

CPA Chosen Plaintext Attack

CR Collision Resistant

CRH Collision Resistant Hash Function

CRT Chinese Remainder Theorem

CS Cramer-Shoup

CTR Counter

DDH Decisional Diffie-Hellman

DH Diffie-Hellman

ECB Electronic Code Book

FIL Fixed Input Length

GGM Goldreich-Goldwasser-Micali

 ${f GL}$ Goldreich-Levin

HCP Hard Core Predicate

HVZK Honest Verifier Zero Knowledge

IBE Identity Based Encryption

ICM Ideal Cypher Model

IDS Identification Scheme

INT Integrity (of cyphertext)

 ${f MAC}$ Message Authentication Code

MD Merkle-Damgard

 ${\bf NIST}\,$ National Institute of Standards and Technology

OAEP Optimal Asymmetric Encryption Padding

OTP One Time Pad

OWF One Way Function

OWP One Way Permutation

PKC Public Key Cryptography

PKE Public Key Encryption

 \mathbf{PPT} Probabilistic Polynomial Time

 \mathbf{PRF} Pseudo Random Function

PRG Pseudo Random Generator

PRP Pseudo Random Permutation

PS Passive Security

 ${f PU}$ Perfect Universal

RO Random Oracle

RSA Rivest-Shamir-Adleman

RV Random Variable

SKE Symmetric Key Encryption

 ${f SP}$ Special Soundness

 ${f SS}$ Signature Scheme

SSH Secure Shell

TDP Trapdoor Permutation

TLS Transport Layer Security

 ${f UFCMA}$ Unforgeable Chosen Message Attack

 \mathbf{UHF} Universal Hash Function

VIL Variable Input Length

 \mathbf{WSS} Waters Signature Scheme