

Mark Scheme (Results) January 2008

GCE

GCE Mathematics (6665/01)

January 2008 6665 Core Mathematics C3 Mark Scheme

Question Number	Scheme	Marks
1.	$x^{2}-1$ $2x^{2} -1$ $2x^{4} -3x^{2} + x + 1$ $2x^{4} -2x^{2}$ $-x^{2} + x + 1$ $-\frac{x^{2}}{x} + 1$ x $a = 2 \text{ stated or implied}$ $c = -1 \text{ stated or implied}$ $2x^{2} - 1 + \frac{x}{x^{2} - 1}$ $a = 2, b = 0, c = -1, d = 1, e = 0$ $d = 1 \text{ and } b = 0, e = 0 \text{ stated or implied}$	M1 A1 A1
2.	(a) $\frac{\mathrm{d}y}{\mathrm{d}x} = 2e^{2x}\tan x + e^{2x}\sec^2 x$	M1 A1+A1
	$\frac{dy}{dx} = 0 \implies 2e^{2x} \tan x + e^{2x} \sec^2 x = 0$ $2\tan x + 1 + \tan^2 x = 0$	M1 A1
	$(\tan x + 1)^2 = 0$ $\tan x = -1 \bigstar $ cso	A1 (6)
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_0 = 1$	M1
	Equation of tangent at $(0,0)$ is $y = x$	A1 (2) [8]

Question Number	Scheme	Marks
3.	(a) $f(2) = 0.38 \dots$ $f(3) = -0.39 \dots$ Change of sign (and continuity) \Rightarrow root in $(2,3)$ * cso (b) $x_1 = \ln 4.5 + 1 \approx 2.50408$ $x_2 \approx 2.50498$ $x_3 \approx 2.50518$	M1 A1 (2) M1 A1 A1 A1 (3)
	(c) Selecting [2.5045, 2.5055], or appropriate tighter range, and evaluating at both ends. $f(2.5045) \approx 6 \times 10^{-4}$ $f(2.5055) \approx -2 \times 10^{-4}$ Change of sign (and continuity) \Rightarrow root \in (2.5045, 2.5055) $\Rightarrow \text{root} = 2.505 \text{ to } 3 \text{ dp} * \text{cso}$ Note: The root, correct to 5 dp, is 2.50524	M1 A1 (2) [7]

Question Number	Scheme	Marks
4.	$(a) \qquad \qquad (-5,4) \qquad \qquad (5,4) \qquad \qquad \\ \qquad $	
	Shape $(5,4)$ $(-5,4)$ (b) For the purpose of marking this paper, the graph is identical to (a) Shape $(5,4)$ $(-5,4)$	B1 B1 B1 (3) B1 B1 B1 (3)
	(-6, -8) $(4, 8)$ x	
	General shape – unchanged Translation to left (4,8)	B1 B1 B1
	(-6, -8) In all parts of this question ignore any drawing outside the domains shown in the diagrams above.	B1 (4) [10]

Question Number	Scheme		Marks	6
5.	(a) 1000		B1	(1)
	(b) $1000e^{-5730c} = 500$		M1	
	$e^{-5730c} = \frac{1}{2}$		A1	
	$-5730c = \ln\frac{1}{2}$		M1	
	c = 0.000121	cao	A1	(4)
	(c) $R = 1000 \mathrm{e}^{-22920c} = 62.5$ Accept	62-63	M1 A1	(2)
	(d) R 1000	Shape 1000	B1 B1	(2) [9]

Question Number	Scheme	Marks
6.	(a) $\cos(2x+x) = \cos 2x \cos x - \sin 2x \sin x$ $= (2\cos^2 x - 1)\cos x - (2\sin x \cos x)\sin x$ $= (2\cos^2 x - 1)\cos x - 2(1-\cos^2 x)\cos x \text{ any correct expression}$ $= 4\cos^3 x - 3\cos x$	M1 M1 A1 A1 (4)
	(b)(i) $\frac{\cos x}{1+\sin x} + \frac{1+\sin x}{\cos x} = \frac{\cos^2 x + (1+\sin x)^2}{(1+\sin x)\cos x}$ $= \frac{\cos^2 x + 1 + 2\sin x + \sin^2 x}{(1+\sin x)\cos x}$	M1 A1
	$= \frac{2(1+\sin x)}{(1+\sin x)\cos x}$ $= \frac{2}{\cos x} = 2\sec x *$	M1 A1 (4)
	(c) $\sec x = 2 \text{ or } \cos x = \frac{1}{2}$ $x = \frac{\pi}{3}, \frac{5\pi}{3}$ accept awrt 1.05, 5.24	M1 A1, A1 (3)
7.	(a) $\frac{\mathrm{d}y}{\mathrm{d}x} = 6\cos 2x - 8\sin 2x$	[11] M1 A1
	$\left(\frac{dy}{dx}\right)_0 = 6$ $y - 4 = -\frac{1}{6}x$ or equivalent	B1 M1 A1 (5)
	(b) $R = \sqrt{3^2 + 4^2} = 5$ $\tan \alpha = \frac{4}{3}, \ \alpha \approx 0.927$ awrt 0.927	M1 A1 (4)
	(c) $\sin(2x + \text{their }\alpha) = 0$ x = -2.03, -0.46, 1.11, 2.68 First A1 any correct solution; second A1 a second correct solution; third A1 all four correct and to the specified accuracy or better. Ignore the y-coordinate.	M1 A1 A1 A1 (4) [13]

Question Number	Scheme	Marks
8.	(a) $x = 1 - 2y^3 \implies y = \left(\frac{1 - x}{2}\right)^{\frac{1}{3}} \text{ or } \sqrt[3]{\frac{1 - x}{2}}$	M1 A1 (2)
	$f^{-1}: x \mapsto \left(\frac{1-x}{2}\right)^{\frac{1}{3}}$ Ignore domain	
	(b) $gf(x) = \frac{3}{1 - 2x^3} - 4$	M1 A1
	$=\frac{3-4(1-2x^3)}{1-2x^3}$	M1
	$=\frac{8x^3-1}{1-2x^3} \bigstar $ cso	A1 (4)
	$gf: x \mapsto \frac{8x^3 - 1}{1 - 2x^3}$ Ignore domain	
	(c) $8x^3 - 1 = 0$ Attempting solution of numerator = 0	M1
	$x = \frac{1}{2}$ Correct answer and no additional answers	A1 (2)
	(d) $\frac{dy}{dx} = \frac{(1-2x^3) \times 24x^2 + (8x^3 - 1) \times 6x^2}{(1-2x^3)^2}$	M1 A1
	$=\frac{18x^2}{\left(1-2x^3\right)^2}$	A1
	Solving their numerator = 0 and substituting to find y .	M1
	x = 0, y = -1	A1 (5) [13]