Classification, Validation and Optimization of Machine Learning Models

Michaël Dell'aiera

ESCAPE Summer School 2022

Laboratoire d'Annecy de Physique des Particules (LAPP) - IN2P3

Support Vector Machine

References

Presentation Outline

- 1 Support Vector Machine
- 2 Train Validation Test
- 3 Performance Metrics
- 4 Hyper-parameter Optimization

Guidelines

Support Vector Machine

0000

I have a classification problem, what should I do?

I know how to classify, but what about the actual training data?

I think I correctly trained my classifier, how do I evaluate it?

How do I optimize my classifier?

Perceptron

Support Vector Machine

0000

- Developed by Rosenblatt in the 1950s.
- Inspired by nature: Mimic a brain neuron behaviour.
- Classifies linearly separable binary data.
- Trainable parameters: w_i and b.
 - Learns a linear projection of the data.
 - Converges toward ONE possible solution.

Figure 1: Brain neuron.

Figure 2: Perceptron.

Perceptron

Support Vector Machine

0000

- Training step: Obtain a decision boundary.
- Test step: Apply on new data.
- Perceptrons are not robust: if the decision boundary is close to the dataset, test samples might be misclassified.
- Doesn't work on non-linearly separable dataset (XOR).
- Improvements → Support Vector Machines (SVM)

Figure 3: Linearly separable dataset and possible decision boundaries.

Figure 4: XOR dataset.

Support Vector Machine (SVM)

 Margin maximization: Find the hyperplane that separates the two sets by the largest margin between the "support vectors".

Support Vector Machine

0000

 Kernel trick: Project to more dimensions which are non-linear functions of the original ones, so that we can now separate linearly.

Figure 5: Margin maximization.

Figure 6: Kernel trick.

Guidelines

Support Vector Machine

I have a classification problem, what should I do?

I know how to classify, but what about the actual training data?

I think I correctly trained my classifier, how do I evaluate it?

How do I optimize my classifier ?

Dataset split

- Classical splitting of the data : Around {0.6, 0.2, 0.2}.
 - × Not always the best strategy (especially small datasets).
 - ✓ How to make use of the validation dataset in the training procedure ?
 - → Cross-validation!
- Shuffling + Random split \rightarrow Independent observations
 - Solar panel data: varies depending on the location, the seasons, ...

Figure 7: Classical dataset split

Cross-validation

Figure 8: Cross-validation principle. Source : scikit-learn.

Cross-validation

Figure 9: Cross-validation principle.

- Each surrogate model sees a part of the training dataset.
- The whole training dataset is used.
- Score = Mean(surrogate₁, ..., surrogate_k)

Under-fitting and Over-fitting

- Under-fitting: Input variables are not significant enough or the model has not trained enough.
- Over-fitting: The model fits exactly the training data.
 - Early-stopping

Support Vector Machine

- Data augmentation (rotation, noise, ...)
- Feature selection
- Regularization (SVM robust to over-fitting)

Figure 10: Under-fitting and over-fitting. Source IMB.

We want **generalization**.

Structured data: example

Support Vector Machine

• Let's consider an image $I \in \{0,1\}^{20 \times 20}$ made of pixel $p_{i,j} \sim \mathcal{U}\{0,1\}$. There are $2^{400} > 10^{80}$ possible outcomes. Image $I \in ([0,255]^3)^{10^6}$: No chance to randomly draw the picture of a dog, bird, scene ...

Figure 11: Examples of some pixel space observations.

• Natural images have structures, so are gathered into clusters.

Statistical Independence

Support Vector Machine

 \times Test cluster \neq Train cluster.

$$0123456789$$
 0123456789 0123456789 0123456789 0123456789 0123456789

Figure 12: On the left: the train digit dataset. On the right: the test digit dataset. The test and train domains are slightly different (look at the "1").

- √ The train dataset must be representative enough to promote generality.
- √ The test dataset must be independent from the train dataset to avoid bias.

Guidelines

Support Vector Machine

I have a classification problem, what should I do?

I know how to classify, but what about the actual training data?

I think I correctly trained my classifier, how do I evaluate it?

How do I optimize my classifier ?

Figures of merit

- Tools to measure model's performances.
- A variety of figures of merit : Accuracy, Sensitivity, Predictive values, MSE. RMSE. R^2
- Usually you will characterize your model's performances using several figures of merit but choose the most relevant ones.
- Figures of merit are measured and then prone to biases and variances.

$$MSE = bias^2 + variance$$

Mean Squared Error

Regression

•
$$MSE = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

- $RMSE = \sqrt{MSE}$ same scale has v
- Classification (Brier's score)

•
$$BS = \frac{1}{N} \sum_{i=1}^{N} (\hat{p}_i - p_i)^2$$

Figure 13: L1 and L2 penalties. L2 penalizes more large deviations.

Confusion matrix

Figure 14: Confusion matrix.

Definitions

- Sensitivity (Recall): of all truly class A cases, which fraction is correctly recognized as class A? If I have covid, what is the probability of being tested +?
- **Specificity**: of all cases truly not belonging to class A, which fraction is correctly recognized as not belonging to class A? If I don't have covid, what is the probability of being detected -?
- Positive Predictive Value (Precision) : of all cases predicted to belong to class A, which fraction does truly belong to class A? If I am tested +, what is the probability of having covid?
- Negative Predictive Value : of all cases predicted not to belong to class A, which fraction does truly not belong to class A? If I am tested -, what is the probability of not having covid?

Confidence Intervals for Sensitivity

• $x \in A$ or $x \notin A$?

- ✓ Bernoulli trial of parameter p
- Sum of independent Bernoulli trials → Binomial distribution
 - ✓ Appropriate only for $np \ge 5$ and n(1-p) > 5
- Uncertainty $var(\hat{p}) = \frac{\hat{p}(1-\hat{p})}{n_{test}}$
- Think about flipping a coin.

Figure 15: Binomial distribution.

Confidence Intervals for Sensitivity

Figure 16: Source [1]. Proportions have bad variance properties.

Receiver Operating Characteristic / Specificity-Sensitivity-Diagram

- Sheds light on the diagnostic ability of a binary classifier at various threshold.
- Plots the True Positive Rate (TPR = sensitivity) against the False Positive Rate (FPR = 1 specificity).
- Allows to compare different tests.

Figure 17: ROC curve.

ROC computation procedure

Figure 18: Scores go through different threshold.

Set of classifiers.

- The best classifier depends on the application.
 - ✓ For a covid test, you may want higher **sensitivity**.

Figure 19: Trade-off between sensitivity and specificity. When the threshold is 0.1, the sensitivity is 0.55 and the specificity is 1.0.

Figure 20: Trade-off between sensitivity and specificity. When the threshold is 0.5, the sensitivity is 0.85 and the specificity is 0.9.

ROC curves: example 1

Figure 21: A perfect test would discriminate between the healthy and sick with a sensitivity of 1 and a specificity of 1.

Figure 22: The ROC curve passes through the upper left corner. The area under the ROC curve is 1.

ROC curves : example 2

Figure 23: Complete overlap between healthy and sick. This is equivalent to flipping a coin.

Figure 24: The ROC curve falls on the diagonal line. The area under the ROC curve is 0.5.

Guidelines

I have a classification problem, what should I do?

I know how to classify, but what about the actual training data?

I think I correctly trained my classifier, how do I evaluate it?

How do I optimize my classifier?

- Parameters vs
 Hyper-parameters
- A search consists in :
 - A parameter space.
 - A searching procedure (Regular grid, Monte Carlo, Pseudo Monte Carlo).
 - A cross-validation scheme.
 - A function to compute the score.

Figure 25: Grid search for two hyper-parameters on a regular grid.

Bias-Variance trade-off

Figure 26: Bias-Variance trade-off.

References

[1] Beleites C et al. "Sample size planning for classification models". In: *Anal Chim Acta* (2012).

