Random Vectors

Random Vectors

- We are now moving from a univariate random variable to multivariate random variables, also called as random vectors.
- An n-dimensional random vector is a column vector $\mathbf{X} = (X_1, \dots X_n)^T$ whose components X_i are scalar valued random variables defined on the same space (Ω, \mathcal{F}, P) .
- ➤ Since the components are on the same space, they may be correlated with each other.
- Example: $\mathbf{X} = (X_1, X_2)^T$ where $X_1 = Z_1$ ans $X_2 = Z_1 + Z_2$ where Z_1 and Z_2 are independent standard normal.
- What is the pdf, cdf, marginals, mean, variance/covariance of X?

Random Vectors - Notation

► The CDF and pdf of the random vector **X** is denoted as follows :

$$F_{\mathbf{X}}(\mathbf{x}) = F_{X_1,...X_n}(x_1,...x_n)$$

$$f_{\mathbf{X}}(\mathbf{x}) = f_{X_1,...X_n}(x_1,...x_n)$$

- ► The joint CDF/pdf captures the correlation between components.
- ▶ The expected value vector $E[\mathbf{X}] = (E[X_1], \dots, E[X_n])^T$
- Linearity of expectation hold here and so for any deterministic matrix $\bf A$ and vector $\bf b$ and $\bf Y = \bf AX + \bf b$ we have

$$E[Y] = AE[X] + b.$$

Covariance matrix

The covariance matrix $C_{\mathbf{X}}$ captures the covariance between components and is defined by

$$C_{\mathbf{X}} = E[(\mathbf{X} - E[\mathbf{X}])(\mathbf{X} - E[\mathbf{X}])^{T}]$$

$$= \begin{bmatrix} Var(X_{1}) & Cov(X_{1}, X_{2}) & \dots & Cov(X_{1}, X_{n}) \\ Cov(X_{2}, X_{1}) & Var(X_{2}) & \dots & Cov(X_{2}, X_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ Cov(X_{n}, X_{1}) & Cov(X_{n}, X_{2}) & \dots & Var(X_{n}) \end{bmatrix}$$

Covariance matrix: Properties

The covariance matrix $C_{\mathbf{X}}$ is always positive semi-definite, i.e., for any vector $a \neq 0$ we have $a^T C_{\mathbf{X}} a \geq 0$. Why?

Let
$$u = a^T(\mathbf{X} - E[\mathbf{X}])$$
, then $a^T C_{\mathbf{X}} a = E[uu^T] = E[u^2] \ge 0$

- ▶ If $\mathbf{Y} = \mathbf{AX} + \mathbf{b}$, show that $C_{\mathbf{Y}} = AC_{\mathbf{X}}A^{T}$. (HW)
- Now recall how we obtained the pdf of Y from pdf of X when Y = g(X)

Consider Y = g(X) where g is monotone, continuous, differentiable. Then $f_Y(y) = f_X(h(y)) \left| \frac{dh}{dy}(y) \right|$ where h is the inverse function of g.

► How does this generalize to $\mathbf{Y} = G(\mathbf{X})$? How do we get $f_{\mathbf{Y}}$ from $f_{\mathbf{X}}$?

Functions of random vectors

- Let $\mathbf{Y} = G(\mathbf{X})$ where $G : \mathbb{R}^n \to \mathbb{R}^n$, continuous invertible with continuous partial derivatives.
- Then one can write $\mathbf{Y} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} G_1(X_1, \dots, X_n) \\ G_2(X_1, \dots, X_n) \\ \vdots \\ G_n(X_1, \dots, X_n) \end{bmatrix}$
- For example if $\begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} 2X_1 \\ X_1 + X_2 \end{bmatrix}$ then $G_1(X_1, X_2) = 2X_1$ and $G_2(X_1, X_2) = X_1 + X_2$.
- ▶ What does continuity of *G* mean? Continuity of components?

Functions of random vectors

Let *H* denote inverse of *G*. We similarly have

$$\mathbf{X} = \begin{bmatrix} X_1 \\ X_2 \\ \dots \\ X_n \end{bmatrix} = \begin{bmatrix} H_1(Y_1, \dots, Y_n) \\ H_2(Y_1, \dots, Y_n) \\ \vdots \\ H_n(Y_1, \dots, Y_n) \end{bmatrix}$$

For the example we have $X_1 = H_1(Y_1, Y_2) = \text{and}$ $X_2 = H_2(Y_1, Y_2) = Y_2 - \frac{Y_1}{2}$.

Functions of random vectors

Let $\mathbf{Y} = G(\mathbf{X})$ where $G : \mathbb{R}^n \to \mathbb{R}^n$, continuous invertible with continuous partial derivatives. Let H denote its inverse. Then

$$f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{X}}(H(\mathbf{y}))|J|$$

where J is the determinant of the Jacobian matrix given by

$$\begin{bmatrix}
\frac{\partial H_1}{\partial y_1} & \frac{\partial H_1}{\partial y_2} & \cdots & \frac{\partial H_1}{\partial y_n} \\
\frac{\partial H_2}{\partial y_1} & \frac{\partial H_2}{\partial y_2} & \cdots & \frac{\partial H_2}{\partial y_n} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial H_n}{\partial y_1} & \frac{\partial H_n}{\partial y_2} & \cdots & \frac{\partial H_n}{\partial y_n}
\end{bmatrix}$$

Jacobian determinant

- From Vector Calculus: The Jacobian gives the ratio of the incremental areas $dx_1 dx_2 ... dx_n$ and $dy_1, ... dy_n$.
- https://en.wikipedia.org/wiki/Jacobian_matrix_ and_determinant
- ightharpoonup HW1: For the running example, find $f_{\mathbf{Y}}(y)$.
- ightharpoonup HW2: When m Y = AX + b, how that

$$f_{\mathbf{Y}}(\mathbf{y}) = \frac{1}{|det(A)|} f_{\mathbf{X}}(A^{-1}(\mathbf{y} - \mathbf{b}))$$

Standard Normal Vector

- An n length random vector \mathbf{Z} is called as a standard normal vector if its components Z_i are independent and standard normal.
- ightharpoonup What is $E[\mathbf{Z}]$ and $C_{\mathbf{Z}}$?
- Show that the pdf is given by

$$f_{\mathcal{Z}}(\mathbf{z}) = rac{1}{(2\pi)^{n/2}}e^{\{-rac{1}{2}\mathbf{z}^T\mathbf{z}\}}$$

- Now suppose $\mathbf{X} = A\mathbf{Z} + \mu$. What is $E[\mathbf{X}]$ and $C_{\mathbf{X}}$?
- \triangleright $E[X] = \mu$ and $C_X = AA^T$.
- Note that A can have dimension $n \times I$ in which case **Z** is an I length standard normal.

Gaussian Random Vectors

- ▶ Consider $\mathbf{X} = A\mathbf{Z} + \mu$. and $E[\mathbf{X}] = \mu$ and $C_{\mathbf{X}} = AA^T$.
- \triangleright What is $f_{\mathbf{X}}(\mathbf{x})$?

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{|\det(A)|} f_{\mathbf{Z}}(A^{-1}(\mathbf{x} - \mu))$$

$$= \frac{1}{(2\pi)^{n/2} \sqrt{\det(C_{\mathbf{X}})}} e^{\left\{-\frac{1}{2}(\mathbf{x} - \mu)^T C_X^{-1}(\mathbf{x} - \mu)\right\}}$$

A random vector is Gaussian iff for some A and μ , it can be written as $\mathbf{X} = A\mathbf{Z} + \mu$

For equivalent definitions see https://en.wikipedia.org/wiki/Multivariate_normal_distribution