World Development Indicators

Which country will develop more?

	CountryName	CountryCode	IndicatorName \$	IndicatorCode	Year ‡	Value
				indicatorcode	Teal .	value
1	Arab World	ARB	Adolescent fertility rate (births per 1,000 women age	SP.ADO.TFRT	1960	1.335609e+02
2	Arab World	ARB	Age dependency ratio (% of working-age population)	SP.POP.DPND	1960	8.779760e+01
3	Arab World	ARB	Age dependency ratio, old (% of working-age populati	SP.POP.DPND.OL	1960	6.634579e+00
4	Arab World	ARB	Age dependency ratio, young (% of working-age pop	SP.POP.DPND.YG	1960	8.102333e+01
5	Arab World	ARB	Arms exports (SIPRI trend indicator values)	MS.MIL.XPRT.KD	1960	3.000000e+06
6	Arab World	ARB	Arms imports (SIPRI trend indicator values)	MS.MIL.MPRT.KD	1960	5.380000e+08
7	Arab World	ARB	Birth rate, crude (per 1,000 people)	SP.DYN.CBRT.IN	1960	4.769789e+01
8	Arab World	ARB	CO2 emissions (kt)	EN.ATM.CO2E.KT	1960	5.956399e+04
	•		•			
•		•		•		
	•		•	*		
565645	5 Zimbabwe	ZWE	Time required to start a business (days)	IC.REG.DURS	PRP.DURS	9.000000e+01
565645	6 Zimbabwe	ZWE	Time to prepare and pay taxes (hours)	IC.TAX.DURS	2015	2.420000e+02
565645	7 Zimbabwe	ZWE	Time to resolve insolvency (years)	IC.ISV.DURS	2015	3.300000e+00
565645	8 Zimbabwe	ZWE	Total tax rate (% of commercial profits)	IC.TAX.TOTL.CP.ZS	2015	3.280000e+0

Dataset

Goal

Which country will develop more?

Dataset

Extract the most interesting features for the main topics

Goal

Which country will develop more?

How we show the results

Growth

Empirical evidences

Explanatory model for 10-year-Growth

Prediction, Evaluation and Comparison

The 10-year-Growth is the 10-year percentage variation of the GDP per capita in local currency. More formally,

$$Growth_t := \frac{GDP_t - GDP_{t-10}}{GDP_{t-10}}$$

where GDP is the Gross Domestic Product per capita

10-year-growth by region

GDP per capita 10-year-growth (annual %)

Differences between decades Differences between regions

Dummy for Asia and Africa

10-year-growth by Income group

GDP per capita 10-year-growth (annual %)

Differences between Income group

Dummy for High Income and Low Income

The Regressors: State and Environmental variables

```
Education := \frac{\text{tot enrolment primary school}}{\text{population}} [%]
Health := \frac{1}{\text{life expectancy at birth}} [year]<sup>-1</sup>

Fertility := average number of births per woman
```

```
Inflation [%]
```

GDP := log(GDP)

Enviromental variables $\underline{\mathsf{v}}_{\underline{\mathsf{t}}}$

FDI := financial capital owned by foreign investors [% of GDP]

Openess := $\frac{Inport + Export}{GDP}$

Consumption := households consumption expenditure [% of GDP]

Investment := government expenditures for goods and services [% of GDP]

$$\implies$$
 Growth_t = $F(\underline{h}_{t-10}, \underline{y}_{t-10})$

C'è la mappa sotto fare latex senza e poi screen DA RIFARE, 1sec...

Complete model

Let
$$\epsilon \sim N(0, \sigma^2)$$

$$\begin{aligned} \textit{Growth}_{\textit{glm}} &= \beta_{0\textit{glm}} + \beta_{1\textit{glm}} \text{fertility} + \beta_{2} \text{FDI} + \beta_{3\textit{glm}} \text{GDP} + \\ & \beta_{4} \text{education} + \beta_{5} \text{consumption} + \beta_{6} \text{inflation} + \\ & \beta_{7} \text{health} + \beta_{8\textit{glm}} \text{investment} + \beta_{9} \text{openess} + \epsilon \end{aligned}$$

```
g \in \{ [1983, 1993], [1993, 2003], [2003, 2013] \}
```

$$l \in \{Asia, Africa, Others\}$$

 $m \in \{\text{High Income}, \text{ Medium Income}, \text{ Low Income}\}\$

Stepwise regressions

Reduced model

Results (1/2)

the following principle is called **conditional convergence**: the lower the initial GDP the higher the growth over the next decade

Results (2/2)

Asia – Middle Income

$$\hat{\beta_1} = -0.0045$$

Europe – High Income

$$\hat{\beta_1} = -0.4729$$

Prediction model

Let $\epsilon \sim N(0, \sigma^2)$

```
\begin{aligned} \textit{Growth}_{\textit{glm}} &= \beta_0 \textit{l}_{\textit{lm}} + \beta_1 \textit{l}_{\textit{lm}} \text{fertility} + \beta_2 \text{FDI} + \beta_3 \textit{l}_{\textit{lm}} \text{GDP} + \\ &\beta_4 \text{education} + \beta_5 \text{consumption} + \beta_6 \text{inflation} + \\ &\beta_7 \text{health} + \beta_8 \textit{l}_{\textit{lm}} \text{investment} + \beta_9 \text{openess} + \epsilon \end{aligned}
```

```
g \in \{[1083, 1003], [1003, 2003], [2003, 2013]\}
I \in \{Asia, Africa, Others\}
```

 $m \in \{\text{High Income}, \text{ Medium Income}, \text{ Low Income}\}$

C'è la mappa sotto fare latex senza e poi screen DA RIFARE, 1sec... Così o in altra maniera? Ma non dovrebbe essere il modello RIDOTTO senza decades?

Predictor evaluation

fitting sample = [1983,2013] test sample = [2003,2013]

 F_t = prediction for the growth in t with our model

 Y_t = realization of growth in t

 $e_t = prediction error$

$$ME = \sum_{t=0}^{n} \frac{1}{n} e_t = \text{mean error}$$

$$MAD = \sum_{t=0}^{n} \frac{1}{n} ||e_t|| = \text{mean absolute deviation}$$

$$RMSE = \sqrt{\sum_{t=0}^{n} \frac{1}{n}e_{t}^{2}} = \text{root mean square error}$$

validation on n = 12 new countries

ME	MAD	RMSE
0.032	0.163	0.211

slightly overestimating

inaccurate out-of-sample

Comparison with OECD predictions

OECD = The Organisation for Economic Co-operation and Development is an intergovernmental economic organisation with 35 member countries, founded in 1960 to stimulate economic progress and world trade

Come attacchiamo i due pezzi?

 Le slide di Mowa sono in formato diverso, più larghe, infatti la palla è in un'altra posizione, quando me le copia fa casi

Tutti tipo di cluster e perché escluse

• 555

Clustering

Stability

k found quantitatively & qualitatively

Real results

Discrimination Analysis

FDA or KNN

	APERCV KNN	APERCV FDA
Agricolture	0.1275	0.2617
Economic indicators	0.0712	0.1905
Ease to start a business	0.0643	0.1462
Natural resources	0.0393	0.0561
Production	0.0559	0.3230
Telecommunication	0.0653	0.0151
Trade	0.1361	0.0651

Sono sicuri i numeri? Ho corretto la prima colonna ed era APERC k.means, non è che c'è stato qualche switch?

Tabella aper

• 555

