Cálculo Avanzado

Primer Cuatrimestre 2017

Segundo Parcial - 07/07/2017

Nombre y apellido:

LU:

1. Sea $T:\ell^\infty \to \ell^{1*}$ el operador lineal definido por:

$$T(x)(y) = \sum_{n \geq 1} x_n y_n, \text{ para } x \in \ell^{\infty}, y \in \ell^1.$$

Probar que T es continuo y sobreyectivo.

Resolución. Mostremos en primer lugar que T es continuo. Sean $x \in \ell^{\infty}, y \in \ell^{1}$. Acotemos:

$$|T(x)(y)| \le \sum_{n\ge 1} |x_n||y_n| \le ||x||_{\infty} \sum_{n\ge 1} |y_n| = ||x||_{\infty} ||y||_1.$$

La arbitrariedad de $y \in \ell^1$ muestra que $||T(x)||_{\ell^1*} \leq ||x||_{\infty}$ y en consecuencia T es acotado con norma a lo sumo 1. Para probar que T es sobreyectivo, tomemos $\varphi \in \ell^{1*}$ y notemos que si $y \in \ell^1$ vale $y = \sum_{n \geq 1} y_n e_n^{-1}$. De la linealidad y la continuidad de φ se sigue que

$$\varphi(y) = \varphi\left(\sum_{n \ge 1} y_n e_n\right) = \varphi\left(\lim_{N \to \infty} \sum_{n=1}^N y_n e_n\right) = \lim_{N \to \infty} \sum_{n=1}^N y_n \varphi(e_n).$$

Esto muestra que la serie $\sum_{n>1} y_n \varphi(e_n)$ converge y su valor es

$$\lim_{N \to \infty} \sum_{n=1}^{N} y_n \varphi(e_n) = \sum_{n>1} y_n \varphi(e_n).$$

Por otro lado, notemos que $|\varphi(e_n)| \leq ||\varphi|| ||e_n||_1 = ||\varphi||$ y por lo tanto la sucesión $\varphi(e_n)_{n \in \mathbb{N}} \in \ell^{\infty}$. Por la definición del operador T resulta $T(\varphi(e_n)_{n \in \mathbb{N}}) = \varphi$.

2. Sean E un \mathbb{R} -espacio normado y $S\subseteq E$ un hiperplano cerrado. Probar que $E\setminus S$ tiene exactamente dos componentes conexas.

Resolución. Un poco de experimentación revela que la manera más útil de trabajar con S es verlo como el núcleo de un funcional lineal continuo no nulo φ . Así, si ponemos

$$A := \{x \in E : \varphi(x) > 0\}, B := \{x \in E : \varphi(x) < 0\}$$

resulta $E \setminus S = A \cup B$. Estos conjuntos son los candidatos naturales a ser las componentes conexas de $E \setminus S$. Como son abiertos y disjuntos, alcanza con ver que son conexos. Veamos que A es convexo (la prueba para B se sigue por simetría, tomando $-\varphi$ por ejemplo). Sean $x,y \in A$ y $t \in (0,1)$. Usando la linealidad de φ obtenemos

$$\varphi(tx + (1-t)y) = t\varphi(x) + (1-t)\varphi(y).$$

Como cada sumando es evidentemente positivo, resulta $tx + (1 - t)y \in A$ y en consecuencia todo el segmento entre x e y está contenido en A.

 $^{^1}$ Cuidado: el término de la derecha es un límite. La igualdad sólo tiene sentido en ℓ^1 con su norma.

3. Sean X un espacio métrico compacto y $F\subseteq C(X,\mathbb{R})$. Supongamos que toda $f\in F$ alcanza su máximo en un único $x_f\in X$. Probar que la asignación $f\in F\to x_f\in X$ es continua.

Resolución. Como es usual, para ver la continuidad de la asignación consideraremos una sucesión de funciones $(f_n)_{n\in\mathbb{N}}\subseteq F$ convergente a $f\in F$ y veremos que $(x_n:=x_{f_n})_{n\in\mathbb{N}}$ tiende a x_f . Nos topamos en principio con dos dificultades: probar en primer lugar que la sucesión $(x_n)_{n\in\mathbb{N}}$ es convergente y después que el límite es efectivamente x_f . Eliminemos por un momento la primera de ellas suponiendo que la sucesión converge a cierto $y\in X$. Como la convergencia $f_n\to f$ es uniforme, sabemos que

$$f_n(x_n) \to f(y)$$
.

Por otro lado, tenemos

$$f_n(x_n) \ge f_n(z)$$
 cualquiera sea $z \in X$.

Tomando límite en esta desigualdad vemos que $f(y) \geq f(z)$ para cada $z \in X$, es decir, $y = x_f$. El ejercicio se reduce entonces a establecer la convergencia de $(x_n)_{n \in \mathbb{N}}$. Aquí entra en juego la compacidad. Si no fuera $x_n \to x$, podríamos encontrar una subsucesión $(x_{n_k})_{k \in \mathbb{N}}$ que converge a $y \neq x$ (¡pensar esta afirmación!). Pero esto no puede pasar. Luego $x_n \to x$, lo que concluye el ejercicio.

4. Sea $F:\mathbb{R} \to \mathbb{R}$ una función C^2 . Consideremos la aplicación $J:C[a,b] \to \mathbb{R}$ definida por $J(f):=\int_a^b F(f(t))\,dt$. Probar que J es diferenciable con diferencial dada por

$$DJ(f)(h) = \int_a^b F'(f(t))h(t) dt$$
, para $f, h \in C[a, b]$.

Sugerencia: Recuerde el Teorema de Taylor.

Resolución. Entendamos en primer lugar por qué es cierto lo pedido por el enunciado. El diferencial de J en una función $f \in C[a,b]$ es la transformación lineal $C[a,b] \to \mathbb{R}$ que mejor aproxima localmente a J a primer orden. Para entender cómo tiene que ser esta transformación tomemos un incremento $h \in C[a,b]$ y veamos a qué se parece la diferencia J(f+h)-J(f). Usando el teorema de Taylor en cada $t \in [a,b]$, obtenemos

$$J(f+h) - J(f) = \int_{a}^{b} \left(F(f(t) + h(t)) - F(f(t)) \right) dt = \int_{a}^{b} F'(f(t))h(t) + \frac{1}{2} \int_{a}^{b} R_{t,h},$$

donde $R_{t,h}$ es un resto que cumple $\frac{R_{t,h}}{h(t)} \to 0$ cuando $h(t) \to 0$. El término que queda proporcional a h en la última expresión es justamente el diferencial de J en f. La única dificultad del ejercicio radica en acotar para mostrar formalmente que la fórmula propuesta para DJ(f) es correcta. Debemos mostrar que el cociente

$$\frac{|J(f+h) - J(f) - \int_a^b F'(f(t))h(t) \, dt|}{\|h\|_{\infty}}$$

tiende a 0 cuando $\|h\|_{\infty}$ va a 0. Si usamos la forma de Lagrange del resto, podemos acotar el numerador por

$$\frac{1}{2} \int_{a}^{b} |F''(\theta(t))| |h^{2}(t)| dt,$$

donde $\theta(t)$ pertenece al intervalo determinado por f(t) y f(t)+h(t) para cada $t \in [a,b]$. Dado que podemos controlar la parte correspondiente a h^2 por $||h||_{\infty}^2$, lo único que resta hacer es mostrar que $\theta([a,b])$ es un conjunto acotado. Como $|\theta(t)-f(t)| \leq |h(t)|$ para cada $t \in [a,b]$, tenemos

$$|\theta(t)| \le |\theta(t) - f(t)| + |f(t)| \le ||h||_{\infty} + ||f||_{\infty}.$$

De la continuidad de F'' deducimos que si $||h||_{\infty} \le 1$ existe un número M > 0 tal que $F''(\theta(t)) \le M$ cualquiera sea $t \in [a, b]$. Así,

$$\frac{|J(f+h)-J(f)-\int_a^b F'(f(t))h(t)\,dt|}{\|h\|_\infty} \leq \frac{1}{2} \frac{\int_a^b |F''(\theta(t))h^2(t)|\,dt}{\|h\|_\infty} \leq \frac{1}{2} \frac{(b-a)M\|h\|_\infty^2}{\|h\|_\infty},$$

lo que muestra que el límite del cociente incremental tiende a 0 si $||h||_{\infty} \to 0$.

5. Sea X un espacio métrico compacto. Un segmento entre $x,y\in X$ es una función continua $g:[0,1]\to X$ tal que

$$g(0) = x$$
, $g(1) = y$, $d(g(t), g(s)) = d(x, y)|t - s|$, para todo $s, t \in [0, 1]$.

Supongamos que entre cada par de puntos de X hay un **único** segmento. Fijado $x_0 \in X$, definimos $\mathcal{H}: x \in X \mapsto g_x \in C([0,1],X)$, donde g_x es el único segmento que une a x con x_0 . Probar que \mathcal{H} es continua.

Sugerencia: El teorema de Arzelá-Ascoli también vale para C([0,1],X).

Resolución. Sea $(x_n)_{n\in\mathbb{N}}\subseteq X$ una sucesión que converge a $x\in X$. Debemos mostrar que $g_n:=g_{x_n}\to g_x$. Veamos en primer lugar que si $(g_n)_{n\in\mathbb{N}}$ converge a cierta $g\in C([0,1],X)$ es $g=g_x$. Por la hipótesis de unicidad de segmentos, para hacer esto alcanza con verificar

$$g(1) = x_0, g(0) = x \text{ y } d(g(t), g(s)) = d(x, x_0)|t - s| \text{ (para } t, s \in [0, 1]).$$

Como para cada $n \in \mathbb{N}$ vale

$$g_n(1) = x_0, g_n(0) = x_n y d(g_n(t), g_n(s)) = d(x_n, x_0)|t - s| \text{ (para } t, s \in [0, 1]),$$

pasando al límite obtenemos las identidades que queríamos probar. Luego g_x es el único posible punto límite de $(g_n)_{n\in\mathbb{N}}$. De forma análoga a lo hecho en clases, la estrategia para ver que en efecto $g_n\to g_x$ es probar y usar la compacidad del conjunto $\{g_n\}_{n\in\mathbb{N}}$. Por Arzelá-Ascoli, este conjunto es compacto si y sólo si $\{g_n(t)\}_{n\in\mathbb{N}}$ es precompacto en X para cada $t\in[0,1]$ y $\{g_n\}_{n\in\mathbb{N}}$ es equicontinuo. Como X es compacto la primera condición se verifica trivialmente. Fijemos $s,t\in[0,1]$. Dado $n\in\mathbb{N}$ tenemos

$$|g_n(t) - g_n(s)| = d(x_n, x_0)|t - s| \le \operatorname{diam}(X)|t - s|,$$

de donde se sigue que el conjunto $\{g_n\}_{n\in\mathbb{N}}$ es equicontinuo. Luego, cada subsucesión de $(g_n)_{n\in\mathbb{N}}$ tiene una subsucesión convergente. Por lo antes dicho todas estas sucesiones convergen a g_x , lo que nos permite concluir que $g_n \to g_x$.