Exercice 1. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$\begin{cases} u_0 &= \frac{1}{2} \\ \forall \ n \in \mathbb{N}, \ u_{n+1} &= u_n(1 - u_n) \end{cases}$$

ainsi que la fonction f définie sur [0,1] par f(t) = t(1-t).

- **1. a)** Établir le tableau de variations de f.
 - **b)** Montrer que pour tout entier naturel $n, u_n \in [0, \frac{1}{2}]$.
 - c) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est monotone et convergente. On note ℓ sa limite.
 - **d**) Justifier que (u_{n+1}) converge à la fois vers ℓ et vers $\ell(1-\ell)$. En déduire $\ell=0$.
- **2.** On définit pour tout entier naturel non nul $n: S_n = \sum_{k=0}^{n-1} u_k^2$
 - a) Pour tout entier naturel k, exprimer $u_k u_{k+1}$ en fonction de u_k .
 - **b)** Montrer que pour tout entier naturel non nul $n: S_n = \frac{1}{2} u_n$.
- **c)** On note pour tout entier naturel $k: p_k = 2u_k^2$. Montrer que la suite $(p_k)_{k \in \mathbb{N}}$ est une loi de probabilité.

Exercice 2. On dispose d'un dé cubique classique équilibré et d'une pièce équilibrée. On lance le dé et on observe le résutlat :

- si celui-ci est un 6, on lance la pièce deux fois.
- dans tous les autres cas, on lance la pièce une seule fois.

On note X la variable aléatoire égale au résultat du dé.

On note Y la variable aléatoire égale au nombre de Piles apparus au cours de cette expérience.

- 1.a) Justifier que X suit une loi uniforme que l'on précisera en détail.
 - **b)** Donner l'espérance $\mathbf{E}[X]$ et la variance $\mathbf{V}(X)$.
- **2.** Montrer que $\mathbf{P}([Y=2]) = \mathbf{P}([Y=2] \cap [X=6]) = \frac{1}{24}$.
- **3. a)** Montrer que pour $k \in \{1, 2, 3, 4, 5\}$, $\mathbf{P}_{[X=k]}([Y=0]) = \frac{1}{2}$.
- **b)** Que vaut $\mathbf{P}_{[X=6]}([Y=0])$? En déduire en utilisant la formule des probabilités totales que $\mathbf{P}([Y=0]) = \frac{11}{24}$.
 - c) Donner finalement la loi de la variable Y et calculer son espérance.
- **4. a)** Recopier et compléter les cases du tableau suivant afin qu'il fournisse la loi du couple (X, Y) (Aucune justification supplémentaire n'est demandée).

Y X	1	2	3	4	5	6
0						
1						
2						

b) Calculer alors la covariance de X et Y.