

SKST065N08N, SKSS063N08N

SkyMOS1 N-MOSFET 85V, $5.6m\Omega$, 105A

Features

- Uses CRM(CQ) advanced SkyMOS1 technology
- Extremely low on-resistance R_{DS(on)}
- Excellent Q_qxR_{DS(on)} product(FOM)
- Qualified according to JEDEC criteria

Product Summary

Wafer Code	WCB
VDS	85V
R _{DS(on)}	5.6mΩ
I_{D}	105A

Applications

- Motor control and drive
- Battery management
- UPS (Uninterrupible Power Supplies)

100% Avalanche Tested

Package Marking and Ordering Information

Part #	Marking	Package	Packing	Reel Size	Tape Width	Qty
SKST065N08N	-	TO-220	Tube	N/A	N/A	50pcs
SKSS063N08N	-	TO-263	Tube	N/A	N/A	50pcs

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-source voltage	V_{DS}	85	V
Continuous drain current			
$T_C = 25$ °C (Silicon limit)	I _D	121	Α
$T_C = 25$ °C (Package limit)	₁ D	120	
T _C = 100°C (Silicon limit)		70	
Pulsed drain current ($T_C = 25$ °C, t_p limited by T_{jmax})	I _{D pulse}	480	Α
Avalanche energy, single pulse (L=0.5mH, Rg=25 Ω)	E _{AS(Note 1)}	110	mJ
Gate-Source voltage	V_{GS}	±20	V
Power dissipation ($T_C = 25^{\circ}C$)	P _{tot}	164	W
Operating junction and storage temperature	T_j , T_{stg}	-55+150	°C

[%]. Notes:1.EAS is tested at starting Tj = 25°C, L = 0.5mH, IAS = 21A, VGS = 10V. IAS(max)=42A;EAS(max)=441mJ under above Conditions;

SKST065N08N, SKSS063N08N

SkyMOS1 N-MOSFET 85V, $5.6m\Omega$, 105A

Thermal Resistance

Parameter	Symbol	Max	Unit
Thermal resistance, junction – case.	R_{thJC}	0.76	°C/W
Thermal resistance, junction – ambient(min. footprint)	R_{thJA}	65	3 C/ VV

Electrical Characteristic (at Tj = 25 °C, unless otherwise specified)

Davameter	Value			11	T 10 100		
Parameter	Symbol	min.	typ. max.		Unit	Test Condition	
Static Characteristic							
Drain-source breakdown voltage	BV _{DSS}	85	97	-	V	V _{GS} =0V, I _D =250uA	
Gate threshold voltage	V _{GS(th)}	2	3	4	V	$V_{DS}=V_{GS}$, $I_{D}=250$ uA	
Zero gate voltage drain current	I_{DSS}	-	0.05	1	μΑ	V_{DS} =80V, V_{GS} =0V T_{j} =25°C	
		ı	-	5		T _j =125°C	
Gate-source leakage current	I_{GSS}	ı	10	100	nA	$V_{GS}=\pm 20V, V_{DS}=0V$	
						V_{GS} =10V, I_D =50A	
Drain-source on-state resistance	R _{DS(on)}	-	5.6	6.5	mΩ	TO-220	
		-	5.4	6.3	11122	TO-263	
Transconductance	g _{fs}	-	70	-	S	$V_{DS}=5V,I_{D}=40A$	

Dynamic Characteristic

Input Capacitance	C _{iss}	-	2860	-		
Output Capacitance	C _{oss}	-	790	-	pF	$V_{GS} = 0V, V_{DS} = 42.5V,$
Reverse Transfer Capacitance	C_{rss}	-	19	-	μ.	f=1MHz
Gate Total Charge	Q_{G}	-	47	-		
Gate-Source charge	Q_{gs}	-	13	-	nC	V_{GS} =10V, V_{DS} =42.5V, I_{D} =50A, f=1MHz
Gate-Drain charge	Q_{gd}	-	11	-		
Turn-on delay time	t _{d(on)}	-	16	-		Vds=42.5V
Rise time	t _r	-	31	-	20	Id=10A Rg=3.5Ω Vgs=10V;
Turn-off delay time	t _{d(off)}	-	36	-		
Fall time	t _f	-	19	-		(Note 2,3)
Gate resistance	R_G	-	3.3	-	Ω	V_{GS} =0V, V_{DS} =0V, f =1MHz

SKST065N08N, SKSS063N08N

SkyMOS1 N-MOSFET 85V, $5.6m\Omega$, 105A

Body Diode Characteristic

Parameter	Symbol	Value			Unit	Test Condition	
Parameter	Symbol	min.	typ.	max.	Onit	rest condition	
Body Diode Forward Voltage	V_{SD}	ı	0.9	1.4	V	V _{GS} =0V,I _{SD} =50A	
Body Diode Reverse Recovery Time	t _{rr}	-	56	-	ns	IS=30A, VGS=0V, dIF/dt=100A/us;	
Body Diode Reverse Recovery Charge	Q _{rr}	-	54	-	nC		

^{※.} Notes

^{2.}Pulse Test : Pulse Width \leq 300us, duty cycle \leq 2%.

^{3.} Essentially independent of operating temperature.

Typical Performance Characteristics

Fig 1: Output Characteristics 300 Vgs#9V.10V 1. 250µs Pulse Test From Bottom To Top 250 2. T_i=25 °C lo, Drain Current (A) Vgs#8V 200 Vgs=7V 150 100 Vas≕6V 50 Vgs≓5V 0 12 Vps, Drain To Source Voltage (V)

Fig 2: Transfer Characteristics 300 Tj=25° Vps=5V 250 Drain Current (A) 200 T_J=125℃ 150 100 50 0 3 5 10 Gate To Source Voltage (V)

Fig 3: Rds(on) vs Drain Current and Gate Voltage 7.0 6.0 R_{DS(on)} (mΩ) 5.0 V_{GS}=10V 4.0 3.0 2.0 10 40 70 90 100 20 30 50 60 80 $I_D(A)$

Fig 5: Rds(on) vs. Temperature 2.0 V_{GS}=10V 1.8 I_D=50A 1.6 R_{DS(on)}_Normalized 1.4 1.2 1.0 0.8 0.6 0.4 25 75 150 175 Tj - Junction Temperature (°C)

SkyMOS1 N-MOSFET 85V, $5.6m\Omega$, 105A

Fig 7: Gate Charge Characteristics

Fig 8: Body-diode Forward Characteristics

Fig 9: Power Dissipation

Fig 10: Drain Current Derating

Fig 11: Safe Operating Area

SkyMOS1 N-MOSFET 85V, $5.6m\Omega$, 105A

Fig 12: Max. Transient Thermal Impedance

SkyMOS1 N-MOSFET 85V, $5.6m\Omega$, 105A

Test Circuit & Waveform

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

SkyMOS1 N-MOSFET 85V, $5.6m\Omega$, 105A

Package Outline: TO-220-3L

Consolo al	Dimensions In Millimeter		Dimensio	ns In Inches
Symbol	Min.	Max.	Min.	Max.
Α	4.30	4.80	0.169	0.189
A1	1.20	1.45	0.047	0.057
A2	2.20	2.90	0.087	0.114
b	0.69	0.95	0.027	0.037
b2	1.00	1.60	0.039	0.063
С	0.33	0.65	0.013	0.026
D	14.70	16.20	0.579	0.638
D1	8.59	9.65	0.338	0.380
D2	11.75	13.60	0.463	0.535
е	2.54	2.54 BSC.		0 BSC.
E	9.60	10.60	0.378	0.417
E1	7.00	8.46	0.276	0.333
H1	6.20	7.00	0.244	0.276
L	12.60	14.80	0.496	0.583
L1	2.70	3.80	0.106	0.150
L2	12.13	16.50	0.478	0.650
Q	2.40	3.10	0.094	0.122
Р	3.50	3.90	0.138	0.154

(10,50)

Option 2

1.60 MIN.

华润微电子(重庆)有限公司

SkyMOS1 N-MOSFET 85V, 5.6mΩ, 105A

Package Outline: TO-263

Option 1

Detall D

DETAIL D

SKST065N08N, SKSS063N08N

SkyMOS1 N-MOSFET 85V, $5.6m\Omega$, 105A

Revision History

Revison	Date	Major changes
1.2	2018-06-28	modify logo
2.0	2019-05-31	Supplement package outline info.

Disclaimer

Unless otherwise specified in the datasheet, the product is designed and qulified as a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability, such as automotive, aviation/aerospace and life-support devices or systems.

Any and all semicondutor products have certain probability to fail or malfunction, which may result in personal injury, death or property damage. Customer are solely responsible for providing adequate safe measures when design their systems.

SkySiliocn reserves the right to improve product design, function and reliability without notice.

