Comptage variationnel quantique

par

Julien Drapeau

Mémoire présenté au département de physique en vue de l'obtention du grade de maître ès science (M.Sc.)

FACULTÉ des SCIENCES UNIVERSITÉ de SHERBROOKE

Sherbrooke, Québec, Canada, 4 octobre 2024

Le			
LÆ			
LC			

le jury a accepté le mémoire de M. Julien Drapeau dans sa version finale.

Membres du jury

Professeur Stefanos Kourtis Directeur de recherche Département de physique

Professeur André-Marie Tremblay Membre interne Département de physique

> Professeur Baptiste Royer Président rapporteur Département de physique

À _____

Sommaire

Remerciements

Ma mère et mes soeurs,

Justin, Léanne, Thibault, Thomas, Philippe et William,

Sovannie,

Antoine, Benjamin, Jérémie, Martin, Pierre-Alexandre et tous les membres du groupe,

Stefanos,

Table des matières

So	omm	aire	iii			
In	trod	uction	1			
1		Γhéorie de la complexité 1.1 Classes de complexité				
	1.2	Problème de satisfaisabilité booléenne	3			
	1.3	Intractabilité et approximations	4			
	1.4	Complexité et bornes sur le comptage	4			
	1.5	Transitions de phase	5			
2	Éch	Échantillonage quasi-aléatoire et comptage approximatif				
	2.1		6			
	2.2	Échantillonage quasi-aléatoire	7			
	2.3	Comptage approximatif	7			
	2.4	Algorithme de Jerrum-Valiant-Vazirani	8			
3	Alg	Algorithmes variationnels quantiques				
	3.1	Algorithme quantique d'optimisation approximative	10			
		3.1.1 Description de l'algorithme	10			
		3.1.2 Initialisation des paramètres	11			
		3.1.3 Encodage du problème	12			
		3.1.4 Choix du forçage	12			
	3.2	11 1 1 1	13			
	3.3	Échantillonage et biais	14			
4	Cor	omptage variationnel quantique				
	4.1	Auto-réductibilité des algorithmes variationnels quantiques	15			
	4.2		15			
	4.3	Module VQCount	16			
5	Rés	Résolution de problèmes #P-difficile				
	5.1	Biais d'échantillonage des problèmes #P-difficile	17			

Liste des figures

Introduction

Chapitre 1

Théorie de la complexité

1.1 Classes de complexité

Plan

- 1. Introduire les problèmes algorithmiques difficiles
- 2. Décrire le but des classes de complexité
- 3. Expliquer les propriétés des classes de complexité et leur relations
- 4. Définir comment quantifier la complexité d'un problème (temps contre espace)
- 5. Expliquer la notation de la complexité (O notation) et les machines de Turing
- 6. Décrire la tour de complexité (hiérarchie polynomiale)
- 7. Comparer les classes importantes : P et NP et #P
- 8. Établir la conjecture P!= NP
- 9. Mentionner le théorème de Toda

- 1. Moore, Cristopher, and Stephan Mertens, The Nature of Computation (Oxford, 2011; online edn, Oxford Academic, 17 Dec. 2013), https://doi.org/10.1093/acprof:oso/9780199233212.001 accessed 19 July 2024.
- 2. Arora, S. and Barak, B. Computational Complexity: A Modern Approach. (Cambridge University Press, Cambridge, 2009). doi:10.1017/CBO9780511804090.

1.2 Problème de satisfaisabilité booléenne

Plan

- 1. Introduire SAT
- 2. Énumérer certaines applications de ce problème
- 3. Faire le lien entre le problème de décision SAT et le problème de comptage SAT
- 4. Introduire NAE3SAT et 1in3SAT
- 5. Énoncer la réduction entre NAE3SAT/1in3SAT et 3SAT
- 6. Introduire la transition de phase critique de ces problèmes
- 7. Expliquer pourquoi prendre la version positive de ces problèmes n'est pas un problème

- Moore, Cristopher, and Stephan Mertens, The Nature of Computation (Oxford, 2011; online edn, Oxford Academic, 17 Dec. 2013), https://doi.org/10.1093/acprof:oso/9780199233212.001 accessed 19 July 2024.
- 2. Arora, S. and Barak, B. Computational Complexity: A Modern Approach. (Cambridge University Press, Cambridge, 2009). doi:10.1017/CBO9780511804090.

3. Achlioptas, D., Chtcherba, A., Istrate, G. and Moore, C. The phase transition in 1-in-k SAT and NAE 3-SAT. Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (2001) doi:10.1145/365411.365760.

1.3 Intractabilité et approximations

Plan

- 1. Expliquer le concept d'intractabilité
- 2. Montrer la difficulté de résoudre des problèmes computationnels de manière exacte
- 3. Expliquer les advantages des méthodes approximatives (temps polynomial, applications réelles)
- 4. Introduire rigoureusement le concept d'approximation

Références

1.4 Complexité et bornes sur le comptage

Plan

- 1. Décrire les résultats actuels en terme de comptage exact et approximatif
- 2. Énumérer les algorithmes et les solveurs modernes (DPLL, survey propagation, belief propagation)
- 3. Mentionner les meilleurs bornes sur les problèmes de comptage

- 1. Wahlström, M. A Tighter Bound for Counting Max-Weight Solutions to 2SAT Instances. in Parameterized and Exact Computation (eds. Grohe, M. and Niedermeier, R.) 202–213 (Springer, Berlin, Heidelberg, 2008). doi:10.1007/978-3-540-79723-419.
- 2. Sinclair, A. and Jerrum, M. Approximate counting, uniform generation and rapidly mixing Markov chains. Information and Computation 82, 93–133 (1989).

1.5 Transitions de phase

Plan

- 1. Expliquer les différentes transitions de phase et leurs intuitions
- 2. Décrire l'objectif des algorithmes classiques locaux et globaux, comme le "belief propagation" ou le "survey propagation"
- 3. Expliquer brièvement où se situe VQCount par rapport à ça

- 1. Watrous, J. Quantum Computational Complexity. Preprint at https://doi.org/10.48550/arXiv.0804.5 (2008).
- 2. Mézard, M. and Montanari, A. Information, Physics, and Computation. (Oxford University Press, Oxford, New York, 2009).
- 3. Survey propagation: An algorithm for satisfiability Braunstein 2005 Random Structures amp; Algorithms Wiley Online Library. https://onlinelibrary.wiley.com/doi/abs/10.1002/

Chapitre 2

Échantillonage quasi-aléatoire et comptage approximatif

Plan

- 1. Énoncer brièvement l'algorithme de JVV pour introduire la section
- 2. Rementionner l'importance du comptage approximatif (en autres en comparaison avec le comptage exact)
- 3. Mentionner les concepts nécessaires pour l'algorithme de JVV (auto-réductibilité, échantillonage quasi-aléatoire, comptage approximatif)

Références

2.1 Auto-réductibilité

Plan

1. Introduire les concepts d'auto-réductibilité

1. Hemaspaandra, L. A. The Power of Self-Reducibility: Selectivity, Information, and Approximation. Preprint at https://doi.org/10.48550/arXiv.1902.08299 (2019).

Brouillon

Introduction de "Autoreducibility" par Trakhtenbrot.

Introduction de "Self-reducibility" par Schnorr et Meyer/Paterson.

Survey paper de Balcázar, Selke, Allender.

Explication simple par Hemaspaandra.

2.2 Échantillonage quasi-aléatoire

Plan

- 1. Introduire les FPAUS
- 2. Introduire la distance en variation totale et la non-uniformité

Références

2.3 Comptage approximatif

Plan

- 1. Introduire les FPRAS
- 2. Introduire les algorithmes de comptage classique connus (ex. : Stockmeyer et JVV)

1. Stockmeyer, L. The complexity of approximate counting. in Proceedings of the fifteenth annual ACM symposium on Theory of computing 118–126 (Association for Computing Machinery, New York, NY, USA, 1983). doi:10.1145/800061.808740.

2.4 Algorithme de Jerrum-Valiant-Vazirani

Plan

- 1. Introduire le but de l'algorithme de JVV
- 2. Vulgariser l'algorithme de JVV
- 3. Introduire rigoureusement l'algorithme de JVV

Références

1. Jerrum, M. R., Valiant, L. G. and Vazirani, V. V. Random generation of combinatorial structures from a uniform distribution. Theoretical Computer Science 43, 169–188 (1986). 2. Huber, M. Exact sampling and approximate counting techniques. in Proceedings of the thirtieth annual ACM symposium on Theory of computing 31–40 (Association for Computing Machinery, New York, NY, USA, 1998). doi:10.1145/276698.276709.

Chapitre 3

Algorithmes variationnels quantiques

Plan

- 1. Décrire les algorithmes variationels en général
- 2. Expliquer les objectifs de ces algorithmes
- 3. Expliquer les avantages (exemple : algorithmes à court-terme, qubits bruités)
- 4. Expliquer la chronologie avec les QAOA
- 5. Expliquer comment est-ce qu'on peut utiliser ceux-ci comme générateur pour l'algorithme JVV.

- 1. Cerezo, M. et al. Variational quantum algorithms. Nat Rev Phys 3, 625–644 (2021).
- 2. Bharti, K. et al. Noisy intermediate-scale quantum (NISQ) algorithms. Rev. Mod. Phys. 94, 015004 (2022).

3.1 Algorithme quantique d'optimisation approximative

Plan

1. Expliquer l'histoire et le lien avec le recuit quantique

Références

- 1. Farhi, E., Goldstone, J. and Gutmann, S. A Quantum Approximate Optimization Algorithm. Preprint at https://doi.org/10.48550/arXiv.1411.4028 (2014).
- 2. Kadowaki, T. and Nishimori, H. Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355–5363 (1998).
- 3. Finnila, A. B., Gomez, M. A., Sebenik, C., Stenson, C. and Doll, J. D. Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994).
- 4. Farhi, E. et al. A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292, 472–475 (2001).
- 5. Farhi, E., Goldstone, J., Gutmann, S. and Sipser, M. Quantum Computation by Adiabatic Evolution. Preprint at https://doi.org/10.48550/arXiv.quant-ph/0001106 (2000).

3.1.1 Description de l'algorithme

Plan

1. Décrire le Quantum Approximate Optimization Algorithm

1. Farhi, E., Goldstone, J. and Gutmann, S. A Quantum Approximate Optimization Algorithm. Preprint at https://doi.org/10.48550/arXiv.1411.4028 (2014).

3.1.2 Initialisation des paramètres

Plan

- 1. Décrire l'importance d'une bonne initialisation des paramètres (barren plateau)
- 2. Énumérer les principales méthodes
- 3. Expliquer l'initialisation aléatoire par grille
- 4. Expliquer TQA

Références

- 1. Bittel, L. and Kliesch, M. Training Variational Quantum Algorithms Is NP-Hard. Phys. Rev. Lett. 127, 120502 (2021).
- 2. Anschuetz, E. R. and Kiani, B. T. Beyond Barren Plateaus: Quantum Variational Algorithms Are Swamped With Traps. Nat Commun 13, 7760 (2022).
- 3. Akshay, V., Philathong, H., Morales, M. E. S. and Biamonte, J. D. Reachability Deficits in Quantum Approximate Optimization. Phys. Rev. Lett. 124, 090504 (2020).
- 4. Cain, M., Farhi, E., Gutmann, S., Ranard, D. and Tang, E. The QAOA gets stuck starting from a good classical string. Preprint at https://doi.org/10.48550/arXiv.2207.05089 (2022).

Peut-être une référence de plus qui traite directement des barrens plateau?

3.1.3 Encodage du problème

Plan

- 1. Introduire la fonction de coût
- 2. Introduire le modèle d'Ising et le modèle QUBO
- 3. Décrire la transformation d'Ising pour NAE3SAT et 1in3SAT
- 4. Prouver la transformation d'Ising pour NAE3SAT et 1in3SAT

Références

1. Lucas, A. Ising formulations of many NP problems. Frontiers in Physics 2, (2014).

3.1.4 Choix du forçage

Plan

- 1. Expliquer le but du forçage
- 2. Expliquer forçage en X
- 3. Expliquer le forçage de Grover
- 4. Énumérer les forçages populaires

3.2 Approche quantique des opérateurs alternants avec forçage de Grover

Plan

- 1. Décrire le Quantum Alternating Operator Ansatz
- 2. Décrire Grover-Mixer Quantum Alternating Operator Ansatz

- 1. Hadfield, S. et al. From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz. Algorithms 12, 34 (2019).
- 2. Bärtschi, A. and Eidenbenz, S. Grover Mixers for QAOA: Shifting Complexity from Mixer Design to State Preparation. in 2020 IEEE International Conference on Quantum Computing and Engineering (QCE) 72–82 (2020). doi:10.1109/QCE49297.2020.00020.

3.3 Échantillonage et biais

Plan

- 1. Expliquer l'importance de l'échantillonnage non-biaisé
- 2. Expliquer le problème d'échantillonage associé au recuit quantique
- 3. Expliquer le problème d'échantillonage associé à QAOA
- 4. Expliquer pourquoi GM-QAOA résout ce problème (ne pas oublier d'expliquer les inconvénients de cette méthode)

Références

- 1. Zhang, Z. et al. Grover-QAOA for 3-SAT: Quadratic Speedup, Fair-Sampling, and Parameter Clustering. Preprint at https://doi.org/10.48550/arXiv.2402.02585 (2024).
- 2. Mandrà, S., Zhu, Z. and Katzgraber, H. G. Exponentially Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians. Phys. Rev. Lett. 118, 070502 (2017).
- 3. Matsuda, Y., Nishimori, H. and Katzgraber, H. G. Ground-state statistics from annealing algorithms: quantum versus classical approaches. New J. Phys. 11, 073021 (2009).

Plus de sources sur le fair sampling pour QAOA?

Chapitre 4

Comptage variationnel quantique

Plan

1. Expliquer que cette section ne concerne que GM-QAOA

4.1 Auto-réductibilité des algorithmes variationnels quantiques

Plan

1. Faire la preuve de l'auto-réductibilité des algorithmes variationnels quantiques

Références

4.2 Algorithme VQCount

Plan

1. Vulgariser l'algorithme de manière général

- 2. Expliquer rigoureusement l'algorithme
- 3. Faire le lien entre la notation utilisée dans les algorithmes de comptage classique
- 4. Faire la comparaison avec les travaux précédents
- 5. Rajouter l'algorithme complet en pseudo-code

4.3 Module VQCount

Plan

- 1. Expliquer les librairies python dévelopées
- 2. Décrire qaoa-quimb
- 3. Décrire VQCount

Chapitre 5

Résolution de problèmes #P-difficile

Plan

- 1. Mentionner les problèmes étudiés
- 2. Mentionner les méthodes utilisées (réseaux de tenseurs)
- 3. Décrire les paramètres de l'étude (nombre d'instances, régimes de complexité, etc.)
- 4. Expliquer les principaux résultats (compromis entre QAOA et GM-QAOA)

Références

5.1 Biais d'échantillonage des problèmes #P-difficile

Plan

1. Décrire le comportement de la non-uniformité pour les différents problèmes (ne pas oublier 2SAT)

5.2 Performance et comportement de l'algorithme VQCount

Plan

- 1. Décrire le taux de réussite et le nombre d'échantillons requis
- 2. Décrire la performance de l'algorithme en fonction de la profondeur du circuit
- 3. Décrire l'efficacité d'échantillonage et la précision du compte
- 4. Présenter brièvement le ratio d'approximation

Références

5.3 Transitions de phase observées par l'algorithme VQCount

Plan

1.

Conclusion

Annexe A

Réseaux de tenseurs

A.1 Simulation de circuits quantiques

Plan

- 1. Décrire le lien entre les circuits quantiques et les réseaux de tenseurs
- 2. Décrire les différentes méthodes de simulation (MPS-MPO et réseau de tenseurs général)
- 3. Décrire la méthode d'échantillonage

- 1. Gray, J. quimb: A python package for quantum information and many-body calculations. Journal of Open Source Software 3, 819 (2018).
- 2. Ferris, A. J. and Vidal, G. Perfect Sampling with Unitary Tensor Networks. Phys. Rev. B 85, 165146 (2012).