

IN THE U.S. PATENT AND TRADEMARK OFFICE

Applicants: Eijiro WATANABE et al.

Serial No.: 08/992,914

Group: 1638

Filed: December 18, 1997

Examiner: D.H.Kruse

For: RAFFINOSE SYNTHASE GENES AND THEIR USE

DECLARATION UNDER 37 CFR 1.132

Honorable Commissioner of Patents and Trademarks
Washington, D.C. 20231

Sir:

I, Akitsu NAGASAWA, citizen of Japan and residing in Kamokogahara 3-28-56, Higashi-Nada-ku, Kobe-shi, Hyogo-ken, Japan, declare and say that:

1. I completed the master's course, with a major in agricultural biology, of the graduate school of Kyoto University and obtained a master's degree in agriculture at Kyoto University in March, 1984.

2. From April, 1984 to the present, I have been an employee of Sumitomo Chemical Company, Limited, the assignee of the above-identified application.

3. From April, 1984 to the present, I have been engaged in research works for plant engineering using recombination and other gene manipulation, such as cloning of plant genes, preparation and evaluation of transgenic plants.

4. I am one of the members of the research project related to the above-identified application and am familiar with the subject matter thereof.

5. I have read the Office Action mailed March 11, 2005 and the reference cited, and am familiar with the subject matter thereof.

6. To demonstrate successful identification of raffinose synthase genes in plant, I have made the following computer analysis.

ANALYSIS

1) The overall sequence homologies (%) among the amino acid sequences of raffinose synthases (RFSs), seed imbibition protein (SIP) and stachyose synthases (STSs) shown in Table 1 attached hereto were calculated based on a global multiple alignment (the alignment of sequences over their entire length) using the gene analysis software GENETYX-SV/RC for Windows version 6.1.0 (GENETYX Corporation; <http://www.sdc.co.jp/genetyx/>) with default parameters. The global multiple alignment was generated using CLUSTAL sequence analysis program. The amino acid sequences of the RFSs, SIP and STSs used to produce the global multiple alignment are as follows:

Sc-02:

MAPP SITKTATLQDVISTIDIGNGNPLFSITLDQSRDFLANGHPFLTQV
PPNITT TTTTASSFLNLKSNKDTIPNNNNTMLLQQGCFVGFnSTEPKSH
HVVPLGKLKGIKFMSIFRFKVWWTTTHWVGTVNGQELQHETQMLILDKNDSL
GRPYVLLLPILENTFRTSLQPGLNDHIGMSVESGSTHVTGSSFKACLYIH
LSNDPYSILKEAVKVIQTQLGTFKTLEEKTAPSIIIDKFGWCTWDAYLK
HPKGVWEGVKSLTDGGCPPGFVII DDGWQSICHDDDDDEDSGMNRTSAGE
QMP CRLVKYEENSKFREYENPENGKKGLGGFVRDLKEEFGSVESVYVWH
ALCGYWGGVRPGVHGMPKARVVVPKVSQGLKMTMEDLAVDKIVENGVGLV
PPDFAHEMF DGLHS HLESAGIDGVKVDVIHLLELLSEEYGGRVELARAYY
KALTSSVKKHFKGNGVIASMEHCNDFFLGTEAISLGRVGDDFWCSDP SG
DPNGTYWLQGCHMVHCAYNSLWMGNFIQPDWDMFQSTHPCAEFHAA SRAI
SGGPIYVSDCVGNHNFKLLKSLVLPDGSILRCQHYALPTRDCLFEDPLHN
GKTM LKIWNLNKYTGVLGLFNCQGGGWCPEARRNKSVSEFSRAVTCYASP
EDIEWCNGKTPMSTKGVDFFAVYFFKEKKLRLMKCSDRLKVSLEPFSFEL
MTVSPVKVFSKRFIQFAPIGLVNMLNSGGAIQSLEFDDNASLVKIGVRGC
GEMSVFASEKPVCCIIDGVKVKFLYEDKMARVQILWPSSSTLSVQFLF

Sc-03:

MAPSF SKENS KTCDEVANHDCNTCP IISLEESNF MVNGHVILSQVPSNI
TAISKMGFDGLFVG FDAPEPKARHVV SVGQLKGIPFMSIFRFKVWWTTHW
TGSNGRDLEHETQILILDKSDEGLGRPYIVILPLIEGPFRASLQPGSVDD
YVDICVESGSTKVGDSFRAVLYIRAGPDFPKLIDKTMKEVQAH LGTFKL
LDDKTPPGIVDKFGWCTWDAYLK VEXYGVWEGVKL VENGVPPGLVLI
DGWQSICHD DDPITDQEGINRTSAGEQMP CRLIKYEENFKFRDYKSPNIM
GHEDHPNMG MRAFVRDLKEE FKTV EH VV WHAFTGYWGGVRPNV PGLXEA
QVVT PKLSPGLEMTMEDLAVDKIVNNNGICLVQPDKAQELYEG LHSHLENC

GIDGVKVDVIHLLEMMAEDYGGRVELAKTYYKAI
TESVRKHFKGNGVIAS
MEQCNDFMLLGTEI CLGRVGDDFWPTDPSGDINGTYWLQGCHMVHCAYN
SLWMGNFIHPDWDMFQSTHPCAEFHAA
SRAISGGPIYVSDVVGKHNIPLL
KRLVLADGSILRCEYHALPTKDCLFVDPLHDGKMLKI
WNLNKYNGVLGV
FNCQGGGWSRESRKNL
CFSEYSKPISCKTSPKDVEWENGHKPFP
IKGVEC
FAMYFTKEKKLILSQLSDTIEISLDPFDYELIVVSPMT
ILPWESIAFAPI
GLVNMLNAGGA
VKSLDISEDNEDKMVQVG
IKGAGEMMVSSEKPKACRVN
GEDMEFEYEESMIKVQVTWNHNSGGFTTVEYL

Sc-04 (truncated) :

MAPSISKTVELNSFGLVNGNLPLSITLEGSNFLANGHPFLTEVPENIIVT
PSPIDAKSSKNNEDDDVVGCFVGFHADEPRSRHVASLGKLRGIKFMSIFR
FKVWWTTHWVGNSNGHELEHETQMMLLDKNDQLGRPVLILPILQASFRAS
LQPGLDDYDVCMESGSTRVC
CGSSFGSCLYVHVGHDPYQLLREATKVVRM
HLGTFKLLEEK
TAPVIIDKFGWCTWD
AFYLVHP
SGVWE
GVKGLVEGGCP
PGMVLIDDGWQAICH
DEDPTIDQEGMKRTSAGEQ
MP
CRLV
KLEEN
YKFRQ
YCS
GK
DSE
KG
GM
GAF
VRDL
KEQFR
SVEQV
YV
WHAL
CGY
WGG
VRPK
VPGMPQ
AKV
VTP
KL
SNG
LKL
TM
KDL
AV
DK
I
V
SNG
VGL
VPP
HL
AH
LY
EGL
HSR
LES
AGIDGVKVDVIHLLEM
LSE
YGGR
VELA
KAY
KALT
ASV
KKH
FK
GNG
VIA
SME
HCN
DF
FLL
GTE
AI
AL
GRV
GDD
FWCT
DPS
GDP
NGTY
WLQ
GCH
MVHCAY
NSLWMGNFIQPD
DWDMFQSTHPCAE
FHAP
LGP
SLVD
QFT
LVI
VLE
STT
SSC
SRASL
CLM
GRFC
CVNT
MHSP
HETV
CLK
TPC
CMM
GRQ
CSK
FGI
STNIQ
VFWV
YLI
AKE
VGG
VP

Sc-05 :

MAPP
SVIK
SDA
AVNG
IDLS
GKPL
FRL
EGSD
LLA
NGHV
VLT
DVP
VN
VTA
SPY
LAD
KDGE
PV
DAS
AGSF
IG
FNLD
GE
PRSR
HV
AS
IG
KLRD
IR
FMS
IFR
F
KV
WW
TT
HW
VG
SK
GSD
DI
NET
QI
I
I
LE
NS
G
RP
Y
V
L
L
P
G
E
D
D
D
V
A
C
V
E
S
G
S
T
Q
V
T
G
S
E
R
Q
V
V
V
H
A
G
D
D
P
F
K
L
V
K
D
A
M
K
V
V
R
V
H
M
NT
FK
KL
LE
E
K
X
P
P
G
I
V
D
K
F
G
W
C
T
W
D
A
F
Y
L
T
V
N
P
D
G
V
H
K
G
V
K
C
L
V
D
G
G
C
P
P
G
L
V
L
I
D
D
G
W
Q
S
I
G
H
D
S
D
G
I
D
V
E
G
M
S
C
T
V
A
G
E
Q
M
P
C
R
L
K
F
Q
E
N
F
K
R
D
Y
V
S
P
K
D
K
N
E
V
G
M
K
A
F
V
R
D
L
K
E
E
F
S
T
V
D
Y
I
Y
V
W
H
A
L
C
G
Y
W
G
G
L
R
P
G
A
P
T
L
P
P
S
T
I
V
R
P
E
L
S
P
G
L
K
L
T
M
Q
D
L
A
V
D
K
I
V
D
T
G
I
G
F
V
S
P
D
M
A
N
E
F
Y
E
G
L
H
S
H
L
Q
N
V
G
I
D
G
V
K
V
D
V
I
H
I
L
E
M
L
C
E
K
Y
G
G
R
V
D
L
A
K
A
Y
F
K
A
L
T
S
S
V
N
K
H
F
D
G
N
G
V
I
A
S
M
E
H
C
N
D
F
M
F
L
G
T
E
A
I
S
L
G
R
V
G
D
D
F
W
C
T
D
P
S
G
D
I
N
G
T
Y
W
L
Q
G
C
H
M
V
H
C
A
Y
N
S
L
W
M
G
N
F
I
Q
P
D
D
W
M
F
Q
S
T
H
P
C
A
E
F
H
A
A
S
R
A
I
S
G
G
P
I
Y
I
S
D
C
V
G
Q
H
D
F
D
L
L
K
R
L
V
L
P
D
G
S
I
L
R
C
E
H
Y
A
P
T
R
D
R
L
F
E
D
P
L
H
D
G
K
M
L
K
I
W
N
L
N
K
Y
T
G
I
I
G
A
F
N
C
Q
G
G
G
W
C
R
T
R
R
N
Q
C
F
S
Q
C
V
N
L
T
A
T
T
N
P
K
D
V
E
W
N
S
G
N
N
P
I
S
V
E
N
V
E
E
F
A
L
F
L
S
Q
S
K
K
L
V
L
S
G
P
N
D
D
L
E
I
T
L
E
P
F
K
F
E
L
I
T
V
S
P
V
V
T
I
E
G
S
S
V
Q
F
A
P
I
G
L
V
N
M
L
N
T
S
G
A
I
R
S
L
V
Y
H
E
E
S
V
E
I
G
V
R
G
A
G
E
F
R
V
Y
A
S
R
K
P
A
S
C
K
I
D
G
E
V
V
E
F
G
Y
E
E
S
M
V
M
V
Q
P
W
S
A
P
E
G
L
S
S
I
K
Y
E
F

PsRFS:

MAPP SITKTATQQDVISTVDIGNSPLLSISLDQSRNFLVN GHPFLTQVPP
N I TTTTTSTPS PFLDFKS N KDTIANNNTLQQQGCFVG FNTTEAKSHVV
PLGKLKGIKFTSIFRFKVWWTTTHWVGTNGHELQHETQILILDKNISLGRP
YVLLLPILENSFRTS LQPGNDYVDMSVESGSTHVTG STFKACLYLHL SN
DPYRLVKEAVKVIQT KLGTFKTLEEKTPPSIEKFGWCTWD AYLVHPK
GVWEGVKALTDGGCPPGFVII DDGWQSISHDDDPVTERDGMNRTSAGEQ
MPCRLIKYEENYKFREYENG DNGGKKGLVG FVRDLKEEFRS VESVYVWA
LCGYWG GVRPKVCCMPEAKVVVPKLSPGVKMTMEDLA VDKIVENGVL VP
PNLAQEMFDGIHS HLESAGIDGVKVDV IHLLELLSEYGG RVELAKAYYK
ALTSSVNKHFKGN GVIASMEHCNDFFLLGTEAISLRVGDDFWCCDP SGD
PNGTYWLQGCHMVHCAYNSLWMGNFIHPDWDMFQSTHPCAEFHAASRAIS
GGPVYVSDCVGNHNFKLLKSFPVLPDGSILRCQHYALPTRDCLFEDPLHNG
KTM LKIWNLNKYAGV LGFNCQGGGWC PETRRNKSASEF SHAVTCYASPE
DIEWCNGKTPMDIKGVDFAVYFFKEKKLSMKCSRLEVSLEPFSFELM
TVSPLKVFSKRIIQFAPIGLVNMLNSGGAVQSLEFDD SASLVKIGVRGCG
ELSVFASEKPVCC KIDGVSV EFDYEDKMVRVQILWPGSSTLSLVEFLF

Aj-05:

MAPSFKN GGSNVV SF DGLNDMSSPFAIDGSDFTVN GHSFLSDV PENIVAS
PSPYTSIDKSPVSVGCFVGFDASEPDSRH VVISGKLDIRFMSIFRFK V W
WTTHWVGRNGGDLESETQIVILEKSDSGRPYVFLPIVEGPFR TSIQPGD
DDFVDVCV ESGSSK VVDASFRSMLYLHAGDDPFALVKEAMKIVRTHLGTF
RLLEEKTP PGIVDKFGWCTWD AYLTVHPQGVIEGVRHLVDGGC PPLV L
IDDGWQSIGH DSDPITKEGMN QTVAGEQMP CRLLK FQEN YKFRDYVNPKA
TGPRAGQKGMKAF IDELKGEFKTVEHVYVWHALCGYWGLRPQVPG LPEA
RVIQPVLS PGLQMTMEDLA VDKIVLHKVGLVPPEKAEE MY EGL HAH LEKV
GIDGVKIDV IHLLEM CEDY GGRV DLAKAYYKAMTKSINKHFKGNGVIAS
MEHCNDMF MFLGTEAISLRVGDDFWCTDP SGDPNGTFWLQGCHMVHCAND
SLWMGNFIHPDWDMFQSTHP CAAF HAASRAISGGPIYVSDSVGKHNF DLL
KKLVLPDGSILRSEYYALPTRDCLFEDPLHNGETMLKIWNLNKFTGVIGA
FNCQGGGWC RETRNQCF SQYSKRVTSKTNPKDIEWHSGENPISIEGVKT
FALYLYQAKKLILSKPSQDLDIA LD PFEFELITVSPVTKLI QTSLHF API
GLVNMLNTSGAIQSVDYDDDLSSVEIGVKGC GEMRVFASKKPRACRIDGE
DVGFKYDQDQM VVVQVWPWIDSSSGGISVIEYL F

HvSIP:

MTVTPQITVGDGRLAVRGRTVLSGVPDNVTA AHAAGAGLVDGAFVGATAA
EAKSHHVFTFGTLRDCRFMCLFRFKLWWMTQRMGTS GRDVPLETQFILIE

VPAAAGNDDGDSSDGDSEPVYLVMLPLEGQFRVLQGNDQDELQICIES
GDKAVETEQGMNNVVHAGTNPFDTITQAVKAVEKHTQTFHHREKKTVPS
FVDWFGWCTWDASFYTDVTADGVKQGLRSAEGGAPPRFLIIDDGWQQIGS
ENKDDPGVAVQEGAQFASRLTGIRENTKFQSEHNQEETPGLKRLVDETAKK
EHGVKSYYVWHAMAGYWGGVKPSAAGMEHEYEPALAYPVQSPGVTGNQPDI
VMDSLSVGLGLVHPRRVHRFYDELHAYLAACGVGVKVDVQNI VETLGA
GHGGRVALTRAYHRALEASVARNFPDNGCISCMCHNTDMLYSAKQTAVVR
ASDDFYPRDPASHTVHISSVAYNTLFLGEFMQPDWDMFHSLHPAAEYHGA
ARAIGGCPYVSDKPGNHNFLLRKLVLPDGSVLRALPGRPTRDCLFSD
PARDGASLLKIWNMMNKCAGVVGVFNCQGAGWCRVAKKTRIHDEAPGTLTG
SVRAEDVEIAQAAGTGDWGGEAVVYAHRAGELVRLPRGATLPVTLKRLE
YELFHVCVPRAVAPGVSFAPIGLLHMFNAGGAAVEECTVETGEDGNAVGL
RVRCGRFGAYCSRPAKCSVDSADVEFTYDSDTGLVTADVPVPEKEMYR
CALEIRV

AmSTS:

MAPPYDPIPIPMMSAILNFLSSTVKDNSFELLGTLTSVKNVPILTDIPS
NVSFSFSSIVQSSEAPVPLFQRAQSLSSSGGFLGFSQNEPSSRLMNSLG
KFTDRDFVSIFRFKTWWSTQWVGTGSDIQMETQWIMLDVPEIKSYAVVV
PIVEGKFRSALFPGKDGHILIGAESGSTKVKTNSFDAIAYVHSNPyTL
MRDAYTAVRVHLNTFKLIEEKSAAPLVNKFGWWTWDAFYLTVEPAGIYHG
VQEFAADGLTPRFLIIDDGWQSINNDDNDPNEDAKNLVLGGTQMTARLHR
LDECEKFRKYKGGSMSGPNRPPFDPKPKLISKAIIEVAEKARDKAAQ
SGVTDLARYEAEIEKLTKEQDQMFGGGEETSSGKSCSSCSCKSDNFGMK
AFTKDLRTNFKGDDIYVWHALAGAWGGVRPGATHNAKIVPTNLSPGLD
GTM TD LAVVKIEGSTGLVDPDQAEDFYDSMHSYLSSVGITGVKVDVIHT
LEYI SEDYGGRVELAKAYYKGLSKSLAKNFNGTGLISSMQQCNDFFLLGT
EQISMGRVGDDFWFQDPNGDPMGVYWLQGVHMIHCAYNSWMQF IQPDW
DMFQSDHPGGYFHAGSRAICGGPVYVSDLGGHNFLLKKLVFNDGTIPK
CIHFALPTRDCLFKNPLFDSKTIK IWNFNKYGGVIGAFNCQGAGWDPKE
QRIGYSQCYKPLSGSVHVSGIEFDQKKEASEMGEAEYAVLSEAELKS
LATRDSDPIKITIQSSTFEIFS FVP I KKLGEGVKFAPIGLTNLFNAGGTI
QGLVYNEGIAKIEVKGDGKFLAYSSVVPKKAYVNGAEKVFAWSGNGKLEL
DITWYEECGGISNVTFVY

PsSTS-1:

MAPPLNSTTSNLIKTESIFDL SERKFKVKGPLFHDVPEVNSFRSFSSIC
KPSESNAPPSSLQKVLAYSHKGFFGFSHETPSDRLMNSIGSFNGKDFLS
IFRFKTWWSTQWIGKSGSDLQMETQWILIEVPETKSYVVIIPPIIEKCFRS
ALFPGFNDHVKIIAESGSTKVKESTFNSIAYVHFSENPYDLMKEAYSAIR
VHLNSFRLLEEKTIIPNLVDKFGWCTWDASFYLTVNPIGIFHGLDDFSKGKV

EPRFVIIDDGWQSISFDGYDPNEDAKNLVLGGEQMSGRLHRFDECYKFRK
YESGLLGPNSPPYDPNNFTDLILKGIEHEKLRKKREEAISSKSSDLAEI
ESKIKKVVKEIDDLFGGEQFSSGEKSEMKS EYGLKAFTKDLRTKFGLDD
VYVWHALCGAWGGVRPETTHLDTKIVPCKLSPGLDGTMEDLAVVEISKAS
LGLVHPSQANELYDSMHSYLAESGITGVKVDVIHSLEYVCDEYGRVDA
KVYYEGLTKSIVKNFNGNGMIA SMQHCNDFFLGTKQISMGRVGDDFWFQ
DPNGDPMGSFWLQGVHMIHCSYNSLWMGQMIQPDWDMFQSDHVCASFHAG
SRAICGGPIYVSDNVGSHDFDLIKKLVFPDGTIPKCIYFPLPTRDCLFKN
PLFDHTTVLK IWNFNKYGGVIGAFNCQGAGWDPIMQKFRGFPECYKP IPG
TVHVTVEWDQKEETSHLGKAEEYVVYLNQAEELSLMTLKSEPIQFTIQP
STFELYSFVPVTKLCGGIKFAPIGLTNMFNSGGTVIDLEYVGNGAKIKVK
GGGSFLAYSSES PKKFQLNGCEVDFEWLGDGKLCVNVPWIEACGVSDME
IFF

PsSTS-2:

MAPPLNSTTSNLIKTESIFDL SERKFVKVKGPLFHDVPENVSFRSFSSIC
KPSESNAPPSSLQKV LAYSHKGFFGFSHETPSDR LMNSLGSFNGKDFLS
IFRFKTWWSTQWI GKSGSDLQM ETQWILIEVPETKSYVVIIP IIEKCFRS
ALFPGFNDHVKI IAEGSTKVKESTFNSIAYVHFSEN PYDLMKEAYIAIR
VHLNSFRLLEEKTI PNLDKFGWCTWD AFYLTVNPIGIFHGLDDFSKGGV
EPRFVIIDDGWQSISFDGC DPNEDAKNLVLGGEQMSGRLHRFDECYKFRK
YESGLLGPNSPPYDPKKFTDLILKGIEHEKLRKKREEAISSKSSDLAEI
ESKIKKVVKEIDDLFGGEQFSSVEKSEMKS EYGLKAFTKDLRTKFGLDD
VYVWHALCGAWGGVRPETTHLDTKIVPCKLSPGLDGTMEDLAVVEISKAS
LGLVHPSQANELYDSMHSYLAESGITGVKVDVIHSLEYVCDEYGRVDA
KVYYEGLTKSIVKNFNGNGMIA SMQQCNDFFLGTKQISMGRVGDDFWFQ
DPNGDPMGSFWLQGVHMIHCSYNSLWMGQMIQPDWDMFQSDHVCASFHAG
SRAICGGPIYVSDNVGSHDFDLIKKLVFPDGTIPKCIYFPLPTRDCLFKN
PLFDHTLLK IWNFNKYGGVIGAFNCQGAGWDPIMQKFRGFPECYKP IPG
TVHVTQVEWDQKEETSHFGKAEEYVVYLNQAEELCLMTLKSEPIQFTIQP
STFELYSFVPVTKLCGGIKFAPIGLTNMFNSGGTVIDLEYVGNGAKIKVK
GGGSFLAYSSES PKKFQLNGCEVDFEWLGDGKLCVNVPWIEACGVSDME

SaSTS:

MAPPNDPISSIFSPLISVKKDNAFELVCGKLSVKNVPLLSEIPSNTFKS
FSSICQSSGAPAPLYNRAQSLSNCGGFLGFSQKESADSVTNSLGKFTNRE
FVSIFRFKTWWSTQWVGTSGSDIQMETQWIMLNPEIKSYAVVIPIVEGK
FRSALFPGKDGHVLISAEGSTCVKTTSFTSIAVHVSDNPYTLMDGYT
AVRVHLDTFKLIEEKSAAPPLVNKFGWCTWD AFYLTVEPAGIWNGVKEFSD
GGFS PRFLIIDDGWQSINIDGQDPNEDAKNLVLGGTQMTARLHRFDEC EK
FRKYKGGSMMPKVPYFDPKKPKLLISKAIEIEGVEKARDKAIQSGITDL

SQYEIKLKKLNKELDEMFGGGNDEKSSKGCSDCSCKSQNSGMKAFTND
LRTNFGLDDIYVWHALAGAWGGVKPGATHLNKIEPCKLSPGLDGTMD
LAVVKİLEGSİGLVHPDQAEDFYDSMHYSLSKVGİTGVKVDIHTLEYVS
ENYGGRVELGKAYYKGLSKSLKKNFNGSGLİSSMQQCNDFFLLGTEQISM
GRVGDDFWFQDPNGDPMGVFWLQGVHMIHCAYNSWMGQIIHPDWDMFQS
DHCSAKFHAGSRAICGGPVYVSDSLGGHDFDLLKKLVFNDGTIPKCİHFA
LPTRDCLFKNPLFDSTKILKİWNFNKYGGVVGAFNCQGAGWDPKEQRIKG
YSECYKPLSGSVHSDİEWWDQKVEATKMGEAEYAYVLTESEKLLTTPE
SDPİPFTLKSTTFEİFSFVPİKKLGQGVKFAPİGLTNLFNSGGTİQGVVY
DEGVAKIEVKGDGKFLAYSSVPKRSYLNGEEVEYKWSGNKGVEVDVPWY
EECGGISNITFVF

VaSTS :

MAPPNDPVNATLGLEPSEKVFDSLGDKLTVGVVLLSHVPENVTSSSS
İCVPRDAPSSİLQRVTAASHKGFLGFSHVSPSDRLİNSLGSRGRNFLS
İFRFKTWWSTQWVGNSGSDLQMETQWİLİEVPETESYVVİİPİİEKSFRS
ALHPGSDDHVKİCAESGSTQVRASSFGAİAYVHVAETPYNLREAYSALR
VHLDŞFRLLEEKTVPİRİVDKFGWCTWDAYLTVNPGVWHLKDFSEGKV
APRFVVİDDGWQSVNFDDEDPNEDAKNLVLGGEQMTARLHRFEEGDKFRK
YQKGLLLGPNAŞFPETİKELİSKGİEAELGKQAAAİSAGGSDLAEİE
LMİVKVREEİDDLFGGKGKESNESGGCCCAAECGGMKDFTTDLRTEFKG
LDDVYVWHALCGGWGGVRPGTTHLDISKİİPCKLSPGLVGTMKDLAVDKIV
EGSİGLVHPHQANDLYDSMHSYLAQTGVTGVKİDVİHSLEYVCEYGGRV
EİAKAYYDGLTNSİİKNFNGSGİİASMQQCNDFFFLGTKQİİPFGRVGDDF
WFQDPNGDPMGVFWLQGVHMIHCSYNSLWMGQIIQPDWDMFQSDHECAKF
HAGSRAICGGPVYVSDSVGSHDFDLİKKLVFPDGTVPKCIYFPLPTRDCL
FRNPLFDQKTVLKİİWNFNKYGGVİGAFNCQGAGWDPKGKKFKGFPECYKA
İSCTVHVTEVEWDQKKEAHMGKAEEYVVYLNQAEVLHLMTPVSEPLQLT
İQPSTFELYNFVPVEKLGSNSIKFAPİGLTNMFNSGGTİQELEYIEKDVK
VKVKGGGRFLAYSTQSPKKFQLNGSDAAFQWLPGKLTLNLAWIEENDGV
SDLAIFF

The calculated overall sequence homologies (%) are shown in Table 2 attached hereto. The homologies between RFSs and SIP are less than 40%. The homologies between RFSs and STSs are not higher than 45%. On the other hand, the homologies among RFSs are all 50% or higher. Thus, the homologies among RFSs are higher than those homologies between RFSs and SIP and between RFSs and STSs.

A molecular phylogenetic tree of the RFSs, SIP and STSs shown in Table 1 is

drawn in Figure 1 attached hereto. The molecular phylogenetic tree is drawn by the UPGMA method using the gene analysis software GENETYX-SV/RC for Windows version 6.1.0 (GENETYX Corporation; <http://www.sdc.co.jp/genetyx/>) with default parameters. In the molecular phylogenetic tree, RFSs, SIP and STSs form different groups respectively.

In summary, Table 2 and Figure 1 show that RFSs, SIP and STSs can be distinguished from one another based upon a comparison of their amino acid sequences.

2) Attached Table 3 shows the identities obtained using the BLAST program for the amino acid sequences of RFSs, SIP and STSs shown in Table 1. Among Sc-02, Sc-03, Sc-04 and Sc-05, the identities were obtained by searching the "patent database" provided by NCBI (National Center for Biotechnology Information) with default parameters, using the amino acid sequence of each protein as the "query", and using "Protein query vs. translated database (tblastn)" of the NCBI BLAST program. Also, other identities were obtained by searching the "non-redundant database" provided by NCBI with default parameters, using the amino acid sequence of each protein as the "query", and using "Protein-protein BLAST (blastp)" of the NCBI BLAST program. The above-identified amino acid sequences of the RFSs, SIP and STSs are used as the "query" except that the amino acid sequence of Sc-04 used as the "query" is as follows:

Sc-04 (full-length) :

MAPSISKTVELNSFGLVNGNLPLSITLEGSNFLANGHPFLTEVPENIIVT
PSPIDAKSSKNEDDDVVGCFVGFHADEPRSRHVASLGKLRGIKFMSIFR
FKVWWTTHWVGSGNGHELEHETQMMLLDKNDQLGRPFVILPILQASFRAS
LQPGLDDYVDVCMESGSTRVCGSSFGSCLYHVHGHDYPYQLLREATKVVRM
HLGTFKLLEEKTAAPVIIIDKFGWCTWDASFYLKVHPSGVWEGVKGLVEGGCP
PGMVLIDDGWQAICHDEDPITDQEGMKRTSAGEQMPCRLVKLEENYKFRQ
YCSGKDSEKGGMGAFVRDLKEQFRSVEQYYVWHALCGYWGGVRPKVPGMPQ
AKVVTPKLSNGLKLTMKDLAVDKIVSNGVGLVPPHLAHLLYEGLHSRLES
AGIDGVKVDVIHLLEMSEYYGGRVELAKAYYKALTASVKKHFKGNGVIA
SMEHCNDFFLLGTEAIALGRVGDDFWCTDPSGDPNGTYWLQGCHMVHCAY
NSLWMGNFIQPDWDMFQSTHPCAEFHAAASRAISGGPVYVSDCVGKHNFKL
LKSLALPDGTILRCQHYALPTRDCLFEDPLHDGKMLKIWNLNKYTGVLG

LFNCQGGGWCPVTRRNKSASEFSQTVTCLASPQDIEWNGKSPICIKGMN
VFAVYLFKDHLKLMKASEKLEVSLEPFTFELLTVSPVIVLSKKLIQFAP
IGLVNMLNTGGAIQSMEFDNHIDVVVK1GVRCGEMKVFASEKPVVSCKLDG
VVVKFDYEDKMLRVQVPWPSASKLSMVEFLF

As shown in Table 3, the identities between RFSs and SIPs are about 40%. The identities between RFSs and STSs range from about 40% to about 50%. On the other hand the identities among RFSs are 60% or higher. The identities among STSs are also 60% or higher. That is, the identities among RFSs or the identities among STSs are higher than the identities between RFSs and SIP or the identities between RFSs and STSs. Thus, RFSs, SIP or STSs can be distinguished based on the results of analysis using BLAST program.

3) Attached Table 4 shows the identities obtained using another BLAST program for the amino acid sequences of RFSs, SIP and STSs shown in Table 1. All possible pair-wised amino acid sequence comparison were made by the "Blast 2 Sequences" program from NCBI (<http://www.ncbi.nlm.nih.gov/blast/bl2seq/bl2.html>). Sequence identities were calculated using default parameters, program; blastp, matrix; BLOSUM62, open gap penalty; 11, extension gap penalty; 1, gap x_dropoff; 50, expect; 10.0, and word size; 3. The amino acid sequences of the RFSs, SIP and STSs used to calculate sequence identities are identical to those used as the "query" to obtain identities shown in Table 3. Results were essentially the same with former two types of comparison.

4) In conclusion, raffinose synthases (RFSs), seed imbibition protein (SIP) and stachyose synthases (STSs) were clearly distinguished from one another based on comparison of their amino acid sequences.

7. I declare further that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the above-identified application or any patent issued thereon.

This 6th day of September, 2005

Akitsu NAGASAWA

Table 1

Code	Protein*	Organism	Accession**	Reference	Author/Assignee
Sc-03	RFS	<i>Beta vulgaris</i>	E37133	09/301,766	Sumitomo Chemical
Sc-05	RFS	<i>Brassica juncea</i>	E36417	09/301,766	Sumitomo Chemical
Sc-02	RFS	<i>Vicia faba</i>	E24423	08/992,914	Sumitomo Chemical
Sc-04	RFS	<i>Glycine max</i>	E24424	08/992,914	Sumitomo Chemical
Aj-05	RFS	<i>Cucumis sativus</i>	AF073744	Family GH36***	Ohsumi et al.
PsRFS	RFS	<i>Pisum sativum</i>	AJ426475	Family GH36	Peterbauer et al.
HvSIP	SIP	<i>Hordeum vulgare</i>	M77475	Family GH36	Heck et al.
PsSTS-1	STS	<i>Pisum sativum</i>	AJ311087	Family GH36	Peterbauer et al.
PsSTS-2	STS	<i>Pisum sativum</i>	AJ512932	Family GH36	Peterbauer et al.
VaSTS	STS	<i>Vigna angularis</i>	Y19024	Family GH36	Peterbauer et al.
AmSTS	STS	<i>Alonsoa meridionalis</i>	AJ487030	Family GH36	Voitsekhovskaja
SsSTS	STS	<i>Stachys affinis</i>	AJ344091	Family GH36	Pesch and Schmitz

* Protein: RFS, Raffinose synthase; SIP, Seed Imbibition Protein; STS, Stachyose synthase.

** Accession: GenBank Accession Number.

*** Family GH36: glycoside hydrolase family 36 (see Carbohydrate-Active Enzymes (CAZy) database: http://afmb.cnrs-mrs.fr/CAZY/GH_36.html)

Table 2

Table 3

Table 4

Fig. 1

[GENETYX : Evolutionary tree]

Date : 2004.2.4

Method: UPGMA

