Algebra

For questions in the Quantitative Comparison format ("Quantity A" and "Quantity B" given), the answer choices are always as follows:

- (A) Quantity A is greater.
- (B) Quantity B is greater.
- (C) The two quantities are equal.
- (D) The relationship cannot be determined from the information given.

For questions followed by a numeric entry box ______, you are to enter your own answer in the

box. For questions followed by fraction-style numeric entry boxes ______, you are to enter your answer in the form of a fraction. You are not required to reduce fractions. For example, if the answer is 1/4, you may enter 25/100 or any equivalent fraction.

All numbers used are real numbers. All figures are assumed to lie in a plane unless otherwise indicated. Geometric figures are not necessarily drawn to scale. You should assume, however, that lines that appear to be straight are actually straight, points on a line are in the order shown, and all geometric objects are in the relative positions shown. Coordinate systems, such as *xy*-planes and number lines, as well as graphical data presentations such as bar charts, circle graphs, and line graphs, *are* drawn to scale. A symbol that appears more than once in a question has the same meaning throughout the question.

- 1. If 3x + 2(x + 2) = 2x + 16, then x =
 - (A) 3
 - (B) 4
 - (C) 20/3
 - (D) 10
 - (E) 12

$$\frac{3x+7}{x} = 10$$

2. If $x \neq 0$ and X, what is the value of x?

3. If 4(-3x - 8) = 8(-x + 9), what is x^2 ?

4. If 3x + 7 - 4x + 8 = 2(-2x - 6), what is the value of x?

5. If 2x(4-6) = -2x + 12, what is the value of x?

$$\frac{3(6-x)}{2x} = -6$$
, what is the value of x?

$$\frac{13}{7. \text{ If } x \neq -13 \text{ and } \frac{13}{x+13} = 1, \text{ what is the value of } x?}$$

$$8. \text{ If } x \neq 2 \text{ and } \frac{10(-3x+4)}{10-5x} = 2$$
, what is the value of x?

$$\frac{8-2(-4+10x)}{2-x} = 17$$
what is the value of x?

10.

-5 is 7 more than -z.

Quantity A

Quantity B -12

11. If $(x + 3)^2 = 225$, which of the following could be the value of x - 1?

z

- (A) 13
- (B) 12
- (C) 12
- (D) 16
- (E) 19

12.

Quantity A Quantity B $x^2 - 4x + 3$ 1 13. $p = 300c^2 - c$ c = 100Quantity A **Quantity B** 29,000*c* p 14. If 3(7 - x) = 4(1.5), then x =15. 1,200x + 6,000 = 13,20012y + 60 = 132**Quantity A Quantity B** \boldsymbol{x} у 16. $-(x)^3 = 64$ Quantity A **Quantity B** x^4 x^5 17. If $3t^3 - 7 = 74$, what is $t^2 - t$? (A) -3(B) 3 (C) 6(D) 9(E) 1818. If 3x + 7 - 4x + 8 = 2(-2x - 6), what is the value of x?

19. If y = 4x + 10 and y = 7x - 5, what is the value of y?

$$x^2 - 2x = 0$$

Quantity A Quantity B

x 2

28.

Quantity AQuantity B $d(d^2 - 2d + 1)$ $d(d^2 - 2d) + 1$

u(u - 2u -

Quantity A

Quantity B

 $xy^2z(x^2z + yz^2 - xy^2)$ $x^3y^2z^2 + xy^3z^3 - x^2y^4z$

30.

29.

a = 2b = 4c and a, b, and c are integers.

Quantity AQuantity Ba+ba+c

31.

k = 2m = 4n and k, m, and n are nonnegative integers.

Quantity A Quantity B

km kn

32.

For the positive integers a, b, c, and d, a is half of b, which is one-third of c. The value of d is triple that of c.

Quantity A Quantity B $\frac{a+b}{c} \qquad \frac{a+b+c}{d}$

33. If $x^2 - y^2 = 0$ and $xy \neq 0$, which of the following MUST be true?

Indicate <u>all</u> such statements.

 $\square x = y$

$$\frac{|x| = |y|}{x^2} = 1$$

$$3x + 6y = 27$$
$$x + 2y + z = 11$$

Quantity A

Quantity B

$$z + 5$$

x + 2y - 2

35. If
$$(x - y) = \sqrt{12}$$
 and $(x + y) = \sqrt{3}$, what is the value of $x^2 - y^2$?

- (A)3
- (B) 6
- (C) 9
- (D)36
- (E) It cannot be determined from the information given.

36.

$$a \neq b$$

Quantity A

Quantity B

1

37.

$$a = \frac{b}{2}$$

$$c = 3b$$

Quantity A

Quantity B С

- (B) $x^2 y^2$ (C) $x^9 y^9$

(D)
$$x^{18} - y^{18}$$

1
(E) $x^{9} - y^{9}$

$$\frac{x^2 + 2xy + y^2}{2(x+y)^2} =$$

- (A) 1
- (B) 1/2

$$(C)$$
 $x + y$

- (D) xy
- (E) 2*xy*

$$\frac{a^8 - b^8}{40. \text{ If } ab \neq 0,} = \frac{a^8 - b^8}{\left(a^4 + b^4\right)\left(a^2 + b^2\right)} = \frac{a^8 - b^8}{a^8 - b^8} = \frac{a^8 - b^8}{a^$$

- (A) 1
- (B) a b
- (C) (a + b)(a b)
- (D) $(a^2 + b^2)(a^2 b^2)$ a - b
- (E) $\overline{a+b}$

$$x > y \\
 xy \neq 0$$

Quantity A

$$\frac{x^2}{y + \frac{1}{y}}$$

Quantity B

$$\frac{y^2}{x + \frac{1}{x}}$$

42. If x + y = -3 and $x^2 + y^2 = 12$, what is the value of 2xy?

43. If x - y = 1/2 and $x^2 - y^2 = 3$, what is the value of x + y?

44. If $x^2 - 2xy = 84$ and x - y = -10, what is the value of |y|?

45. $(x-2)^2 + (x-1)^2 + x^2 + (x+1)^2 + (x+2)^2 =$

- (A) $5x^2$
- (B) $5x^2 + 10$
- (C) $x^2 + 10$
- (D) $5x^2 + 6x + 10$
- (E) $5x^2 6x + 10$

46. If $a = (x + y)^2$ and $b = x^2 + y^2$ and xy > 0, which of the following must be true?

Indicate all such statements.

- $\Box a$ is positive

47. a is directly proportional to b. If a = 8 when b = 2, what is a when b = 4?

- (A) 10
- (B) 16
- (C) 32
- (D) 64
- (E) 128

48. a is inversely proportional to b. If a = 16 when b = 1, what is b when a = 8?

- (A) 2
- (B) -1
- (C) 2
- (D) 4
- (E) 8

49. The time it takes to erect a bonfire is inversely proportional to the number of students doing the work. If it takes 20 students 1.5 hours to do the job, how long will it take 35 students to do the job, to the nearest minute?

- (A) 51
- (B) 52
- (C) 53
- (D) 54
- (E) 55

$$3a + 2b = 20$$
 and $2a + 3b = 5$

Quantity A Quantity B a + ba 51. m + 2n = 10 and m is 50% of n Quantity A **Quantity B** m^2 n 52. For the integers a, b, and c, the sum of a and b is 75% of c. **Quantity A Quantity B** (3/4)(a+b)(4/3)(c)53. If 2a = 4b = 8c = 10, then 64abc =(A) 64,000(B) 16,000 (C) 8,000(D) 4,000(E) 1,00054. If $4m^2 + 6n^3 - 9 = 16$, what is the value of $2m^2 + 3n^3$? 55. If a + b = 8, b + c = 11, and a + c = 5, what is the value of a + b + c?

Inequalities and Absolute Values

For questions in the Quantitative Comparison format ("Quantity A" and "Quantity B" given), the answer choices are always as follows: (A) Quantity A is greater. (B) Quantity B is greater. (C) The two quantities are equal. (D) The relationship cannot be determined from the information given. For questions followed by a numeric entry box , you are to enter your own answer in the box. For questions followed by fraction-style numeric entry boxes , you are to enter your answer in the form of a fraction. You are not required to reduce fractions. For example, if the answer is 1/4, you may enter 25/100 or any equivalent fraction. All numbers used are real numbers. All figures are assumed to lie in a plane unless otherwise indicated. Geometric figures are not necessarily drawn to scale. You should assume, however, that lines that appear to be straight are actually straight, points on a line are in the order shown, and all geometric objects are in the relative positions shown. Coordinate systems, such as xy-planes and number lines, as well as graphical data presentations such as bar charts, circle graphs, and line graphs, are drawn to scale. A symbol that appears more than once in a question has the same meaning

1.

$$|3x - 18| = 9$$

Quantity A

Quantity B
6

x

2. If $2z + 4 \ge -18$, which of the following must be true?

(A) $z \le -11$

throughout the question.

- (B) $z \le 11$
- (C) $z \ge -11$
- (D) $z \ge -7$
- (E) $z \ge 7$

3.

$$7y - 3 \le 4y + 9$$

Quantity A **Quantity B** 4 у 4. $d + \frac{3}{2} < 8$ Quantity A **Quantity B** 2d13 5. $\frac{4x}{7} \le 15 + x$ 2y - 1.5 > 7Quantity A **Quantity B** \boldsymbol{x} у 6. 3|x - 4| = 16Quantity A **Quantity B** 28 \boldsymbol{x} 3 , then which of the following must be true? $\Box a > b$ $\Box b > 0$ $\Box ab > 0$ 8. If 6 < 2x - 4 < 12, which of the following could be a value of x? (A) 4(B) 5 (C)7(D) 8 (E) 9

9. If y < 0 and 4x > y, which of the following could be equal to \mathbf{y} ?

(A) 0 1					
(B) 4 1					
(B) 4 1 (C) 2					
(D) 1 (E) 4					
10.					
ų	c + 6 = 3 $ 2y = 6$				
Quantity A	Quantity B				
The greatest possible value for x	The least possible value for <i>y</i>				
11. If $ 4y + 2 = 18$, which of the following could be the value of y^2 ?					
Indicate two such values.					
□ 2 □ 5 □ 16 □ 25 □ 36					
12.					
$3(x-7) \ge 9 \\ 0.25y - 3 \le 1$					
Quantity A	Quantity B				
x	у				
13. If $ 1 - x = 6$ and $ 2y - 6 = 10$, which of the following could be the value of xy?					
Indicate <u>all</u> such values.					
□ -40 □ -14 □ -10 □ 56					
14. If $2(x-1)^3 + 3 \le 19$, then the value of x must be					
(A) greater than or equal to 3(B) less than or equal to 3					

(D) less than or equal to -3(E) less than -3 or greater than 3	
15. If $3P < 51$ and $5P > 75$, what is the value of the integer P ?	
(A) 15 (B) 16 (C) 24 (D) 25 (E) 26	
16. A bicycle wheel has spokes that go from a center point in the hub to If there are fewer than six spokes, what is the smallest possible an	
(A) 18 degrees(B) 30 degrees(C) 40 degrees(D) 60 degrees(E) 72 degrees	
17.	
$ -x \ge 6$	
$xy^2 < 0$ where y is an integral	er.
Quantity A	Quantity D
Qualitty A	Quantity B
x	-4
	-4
x = x+4	-4
$\frac{\left x+4\right }{2} > 5 \text{ and } x < 0, \text{ which of the following could be the value}$	-4
$\frac{\left x+4\right }{2} > 5 \text{ and } x < 0, \text{ which of the following could be the value}$ Indicate <u>all</u> such values. $\frac{\Box -6}{\Box -14}$	-4
	-4
$ \begin{array}{c c} x \\ \hline & 2 \\ \hline & 2 \\ \hline & 5 \text{ and } x < 0, \text{ which of the following could be the value} \\ \hline & Indicate all such values. \begin{array}{c c} & -6 \\ \hline & -14 \\ \hline & -18 \end{array} $	-4
x + 4 18. If $ x + 4 $ $ x + 4 $ 18. If $ x + 4 $ $ x + 4 $ 19. Indicate all such values. $ x + 4 $	-4 of x?

Indicate <u>all</u> such values.

27.

x and y are positive numbers such that x + y + z < 1 and xy = 1

Quantity A Quantity B
z -1

|x| > |y| and x + y > 0

Quantity A Quantity B

y x

28.

Quantity A Quantity B

x and y are integers such that |x|(y) + 9 < 0 and $|y| \le 1$.

-9

29. If x + y + z = 0 and z = 8, which of the following must be true?

x

- (A) x < 0
- (B) y < 0
- (C) x y < 0
- (D) z y > 0
- (E) x + y < 0

30.

p + |k| > |p| + k

Quantity A Quantity B

p

k

31.

|x| + |y| > |x + z|

Quantity A Quantity B

y z

32.

$$\frac{|a|}{b} > 1$$

$$a + b < 0$$

Quantity A

Quantity B

a

0

$$\frac{a}{b} > \frac{c}{d}$$

 $\frac{a}{33. \text{ If } b} > \frac{c}{d}$, which of the following statements must be true?

Indicate all such statements.

$$\Box \frac{a}{b} - \frac{c}{d} > 0$$

$$\Box ad < bc$$

$$\Box ad > bc$$

34. If $f^2g < 0$, which of the following must be true?

- (A) f < 0
- (B) g < 0
- (C) fg < 0
- (D) fg > 0
- $(E) f^2 < 0$

$$\frac{x}{35.\sqrt{96}} < x\sqrt{6}$$
 and $\frac{x}{\sqrt{6}} < \sqrt{6}$. If x is an integer, which of the following is the value of x?

- (A) 2
- (B) 3
- (C) 4
- (D) 5
- (E)6

36.

Quantity A

Quantity B

$$(x + y)^2$$

$$(x - y)^2$$

$$4-11x \ge \frac{-2x+3}{2}$$
?

38. If $|x^2 - 6| = x$, which of the following could be the value of x?

- (A) 2
- (B) 0
- (C) 1
- (D) 3
- (E) 5

39.

$$-1 < a < 0 < |a| < b < 1$$

Quantity A

 $\left(\frac{a^2\sqrt{b}}{\sqrt{a}}\right)^2$

Quantity B

$$\frac{ab^5}{\left(\sqrt{b}\right)^4}$$

40.

Quantity A

$$x + y$$

Quantity B

$$|y| + z$$

- 41. The integers *k*, *l*, and *m* are consecutive even integers between 23 and 33. Which of the following could be the average of *k*, *l*, and *m*?
 - (A) 24
 - (B) 25
 - (C) 25.5
 - (D) 28
 - (E) 32

The number line above represents which of the following inequalities?

(A)
$$x < 1$$

(B)
$$-6 < 2x < 2$$

(C)
$$-9 < 3x < 6$$

(D)
$$1 < 2x < 3$$

(E)
$$x > -3$$

43. For a jambalaya cook-off, there will be x judges sitting in a single row of x chairs. If x is greater than 3 but no more than 6, which of the following could be the number of possible seating arrangements for the judges?

Indicate two such numbers.

6
~

☐ 25 ☐ 120

1720

44. If
$$b \neq 0$$
, which of the following inequalities must be equivalent to $\frac{a}{-3b} < c$?

Indicate all such inequalities.

$$\Box \frac{a}{b} > -3c$$

$$\Box \frac{a}{-3} < bc$$

$$\frac{a}{-3} < bc$$

$$\Box a > -3bc$$

45.

46.

$$a-b > a+b+c$$

Quantity A Quantity B 2b + cb+c

$$|x + y| = 10$$
$$x > 0$$
$$z < y - x$$

Quantity A **Quantity B** 10 \boldsymbol{z}

$$0 < a < \frac{b}{2} < 9$$

Quantity A

Quantity B

$$\frac{b}{2} - a$$

48.

For all values of the integer p such that 1.9 < |p| < 5.3, the function $f(p) = p^2$

Quantity A

Quantity B

f(p) for the greatest value of p

f(p) for the least value of p

$$\frac{a}{49. \text{ If }} \left| \frac{a}{b} \right|_{\text{and}} \left| \frac{x}{y} \right|_{\text{are reciprocals and }} \frac{a}{b} \left(\frac{x}{y} \right) < 0$$
which of the following must be true?

(A)
$$ab < 0$$

$$\frac{a}{b} \left(\frac{x}{y} \right) < -1$$

$$\frac{a}{a}$$
 <

$$\frac{a}{a} - y$$

(D)
$$\frac{b}{v} = x$$

(E)
$$\frac{1}{x} > \frac{1}{b}$$

$$\frac{k}{m} + \frac{1}{n} < mn$$
50. If $mn < 0$ and

, which of the following must be true?

$$(A) km + ln < (mn)^2$$

(B)
$$kn + lm < 1$$

(C)
$$kn + lm > (mn)^2$$

(D)
$$k + l > mn$$

(E)
$$kn > -lm$$

51. Which of the following inequalities is equivalent to |m + 2| < 3?

(A)
$$m < 5$$

(B)
$$m < 1$$

(C)
$$-5 < m < 5$$

(D)
$$m > -1$$

(E)
$$-5 < m < 1$$

52. If the reciprocal of the negative integer X is greater than the sum of Y and Z, then which of the following must be true?

(A)
$$X > Y + Z$$

(B)
$$Y$$
 and Z are positive

(C)
$$1 > X(Y + Z)$$

(D)
$$1 < XY + XZ$$

$$\frac{1}{(E)} \frac{1}{X} > Z - Y$$

53. If m + n - 2p , which of the following inequalities must be true?

(A)
$$5m < 3p$$

(B)
$$p > -m$$

(C)
$$3m > 3p + 2n$$

(D)
$$p > 2$$

(E)
$$n < p$$

54. If u and -3v are greater than 0 and $\sqrt{u} < \sqrt{-3v}$, which of the following cannot be true?

(A)
$$u/3 < -v$$

(B)
$$u/v > -3$$

$$\frac{u}{(C)}\sqrt{\frac{u}{-v}} < \sqrt{3}$$

(D)
$$u + 3v > 0$$

(E)
$$u < -3v$$

- 55. In the figure above, an equilateral triangle is inscribed in a circle. If the arc bounded by adjacent corners of the triangle is between 4 π and 6 π long, which of the following could be the diameter of the circle?
 - (A) 6.5
 - (B) 9
 - (C) 11.9
 - (D) 15
 - (E) 23.5

Algebra Answe	er Key	Inequalities and Absolute	Value Answer Key
Question Answer Ques		Question Answer	Question Answer
1 B	45 B	1 D	45 D
2 1	46 II & III only	2 C	46 B
3 676	47 B	3 D	47 A
4 -9	48 C	4 B	48 C
5 -6	49 A	5 D	49 D
6 -2	50 B	6 D	50 C
7 0	51 C	7 III only	51 E
8 1	52 D	8 C	52 D
9 -6	53 E	9 A	53 B
10 A	54 12.5	10 C	54 D
11 E 12 B	55 12	11 16 ó 25 12 D	55 D
12 B 13 A			N.
14 5		13 -40,-14, and 56 or 14 B	щу
15 C		15 B	
16 A		16 E	
17 C		17 B	
18 -9		18 III only	
19 30		19 D	
20 9		20 10, 20, 40, 50, 60	only
21 3		21 D	
22 1		22 B	
23 13		23 C	
24 C		24 B	
25 A		25 A	
26 B		26 B	
27 D		27 B	
28 D		28 D	
29 C		29 E	
30 D		30 A	
31 D 32 C		31 D 32 B	
33 II & III only		33 I only	
34 C		34 B	
35 B		35 D	
36 B		36 B	
37 D		37 A	
38 C		38 D	
39 B		39 A	
40 C		40 D	
41 D		41 D	
42 -3		42 B	
43 6		43 120 and 720 only	
44 4		44 I only	