# **Analysis of massive data sets**

http://www.fer.hr/predmet/avsp

Prof. dr. sc. Siniša Srbljić

Doc. dr. sc. Dejan Škvorc

Doc. dr. sc. Ante Đerek

Faculty of Electrical Engineering and Computing
Consumer Computing Laboratory

# **Analysis of Massive Data Sets: MapReduce Programming Model**

Marin Šilić, PhD

### **Overview**

- Motivation
- Storage Infrastructure
- Programming Model: MapReduce
- MapReduce: Implementation
- MapReduce: Refinements
- □ Problems Suited for MapReduce
- MapReduce Other Implementations

### Modern Data Mining Applications

- Examples
  - Ranking Web pages by importance
  - Query friends networks on social networking site
- O What is in common?
  - Require processing of large amount of data
  - Data is often regular
  - Idea is to exploit parallelism

- □ Single Node Architecture
  - Most of the computing done on a single node



All the data fits in a RAM of single node

Machine Learning

**Statistics** 

**Data Mining** 

#### Parallelism in the past

- Scientific application
  - Large amount of calculations
  - Done on special purpose computers
  - Multiple processors, specialized hardware etc.

### Parallelism today

- Prevalence of the Web
  - Computing is done on installations of large amount ordinary computing nodes
  - The costs are greatly reduced compared with usage of special purpose parallel machine



16 – 64 nodes in the rack

#### Google Example

- 20+ billion websites x 20KB = 400+ TB
  - It takes ~1000 hard drives to store the Web!
- 1 computer reads 30-35 MB/sec
  - It takes 4 months to read the Web!
- Challenge is to do something useful with the data
- Nowadays, a standard architecture for such computation is used
  - Cluster of commodity Linux nodes
  - Ethernet network to connect them

- Large-scale Computing for data mining on commodity hardware
- Challenges
  - i. How to distribute computing?
  - ii. Make easy to write distributed programs?
  - iii. Incorporate fault-tolerance
    - Machine may operate up to 1000 days
    - Suppose you have 1000 machines, expected lost is 1 per day
    - However, people estimate Google posses more than 1M machines
      - 1000 machines fail every day!

#### □ Key Ideas

- Bring the computation to the data
- Store files multiple times for reliability

### MapReduce addresses the challenges

- Google's computational and data manipulation model
- Very convenient to handle Big Data
- Storage infrastructure File System
  - GFS, HDFS
- Programming model
  - MapReduce

### Distributed File System

- Google: GFS, Hadoop: HDFS
- Provides global namespace
- Specifically designed for Google's needs

### Usage pattern

- Huge files (100s of GB, up to TB)
- Data is rarely updated in place
- The dominant operations are
  - Appends
  - Reads

#### GFS Architecture

- O GFS cluster consists of:
  - Single master, multiple chunkservers and multiple clients



#### □ GFS Architecture

- Chunk Servers
  - File is split into contiguous chunks
  - Chunk size is 64MB
  - Each chunk is replicated (2x or 3x)
  - Replicas in different racks

#### Master Node

- Stores metadata about where files are stored
- Replicated shadow master

#### Client Library

- Contacts master to locate chunk servers
- Directly accesses data from chunk servers

### Reliable Distributed System

- Data is kept in chunks replicated on different machines
  - Easy to recover from disk or machine failure



- Brings the computation to the data
- Chunk Servers are also used as computing nodes

### Motivating example

- Let's imagine a huge document
- Count the number of times each distinct word occurs
- o For example
  - Mining some web server logs, counting URLs
  - File too large to fit in memory
  - All word pairs <word, count> fit in memory
  - Solution on linux: words (doc.txt) | sort | uniq -c
    - words takes a file and outputs each word in a line

### □ The High-level Overview of MapReduce

- Read the data sequentially
- o Map:
  - Identify the entities you care about
- Group entities by key:
  - Sort and Shuffle
- o Reduce:
  - Aggregate, count, filter, transform
- Write the results

#### Map Phase

#### Group Phase

Performed by the framework itself

Intermediate key-value pairs

Key-value groups

```
<key1, value1>
```

<key2, value2> Group Phase

<key3, value3>

. . .

Floup Phase



<key1, [value1, value2, ..., valueN]>

<key2, [value1, value2, ..., valueN]>

<key3, [value1, value2, ..., valueN]>

...

<keyM, valueM>

<keyM, [value1, value2, ..., valueN]>

#### Reduce Phase

Key-value groups

<key1, [value1, value2, ..., valueN]>

<key2, [value1, value2, ..., valueN]>
Reduce Phase

<key3, [value1, value2, ..., valueN]>

...

<key4, value2>

<key3, value3>

...

<key4, value4>

...

Programmer implements two methods:

$$\bigcirc \text{ Map } (k, v) \rightarrow \langle k', v' \rangle *$$

- Input is a key-value pair and out put is a set of key-value pairs
  - Key might the filename and value is a line in the file
- For each input key-value pair (k, v) there is one Map
- $\circ$  Reduce (k'  $\langle v' \rangle *$ )  $\rightarrow \langle k', v'' \rangle *$ 
  - All values v' with the same key k' are processed together
  - There is one Reduce function per each unique key k'

### MapReduce Letter Counting Example

 File containing 4 string lines, count the number of each vowel letter in the file using MapReduce



The programmer needs to provide MAP and REDUCE implementation

#### MapReduce framework deals with

- Partitioning the input data on multiple mappers
- Scheduling the program execution on a set of distributed nodes
- Grouping and aggregating values by key
- Ensuring fault tolerance
- Handling inter-machine communication



#### Execution Overview

#### 1) Split & Fork

- The MapReduce library splits the input files into M pieces typically 16 64 MB.
- Then, it starts a lot of copies of the program on a cluster of machines

### 2) Task assignment

- One copy is special master, the rest are workers
- Master chooses M map and R reduce workers

#### Execution Overview

#### 3) Map

- Each Map worker reads one of the input chunks
- Parses key-value pairs from the input
- Passes each pair to user-defined Map function
- Buffers the Map function output to local memory

#### 4) Local write

- Map output is written to local disk
- Partitioned into R regions via partitioning function
- Location of the partitions is passed to master

#### Execution Overview

- 5) Grouping and sorting
  - Masters notifies reduce worker of partitions locations
  - Reduce worker reads the intermediate data by RPC
  - It sorts the intermediate data by the intermediate key so all the data is grouped by that key
  - Typically, many different keys map to the same reduce worker
  - If the amount of intermediate data is too large, an external sort is used

#### Execution Overview

#### 6) Reduce

- The reduce worker iterates over the sorted intermediate data
- For each unique intermediate key, it passes the key and the corresponding set of intermediate values to user's defined
   Reduce function
- The output of the Reduce function is appended to a final output file for this reduce partition

### 7) Finalizing

- Master wakes up the user program
- At this point, MapReduce call returns back to the user code

#### Master data structures

- Task status (idle, in-progress, completed)
- Identity of worker machines
- The locations and sizes of R intermediate file regions produced by map task
  - The master pushes these locations to reduce tasks
  - The master pings every worker periodically

#### Fault Tolerance

- Worker failure
  - Master pings worker
  - If no response is received, the worker is marked as failed
  - Any completed map task completed by worker is reset to idle
    - The task is rescheduled and assigned to some other worker
  - Any map or reduce task in progress on a failed worker is also reset to idle and it gets rescheduled on some other worker
  - Map tasks that are completed are re-executed since the output is stored on a local disk of the failed worker
  - Completed reduce tasks do not need to be re-executed since their output is stored in a global file system

#### □ Fault Tolerance

- Worker failure
  - $A(Map) \rightarrow B(Map)$ 
    - All reduce workers need to get notified
    - Any reduce task that has not already read the data from worker A will read the data from worker B

#### Master failure

- If the master dies, MapReduce task gets aborted
- The client gets notified and can retry MapReduce operation

#### Locality

- Input data is stored on the local disks of the machines that make up cluster
- The master takes care of the input files locations while attempting to schedule map tasks
  - The idea is to schedule map tasks to nodes where the input data is stored
  - Failing that, it tries to schedule map tasks near the data (on the machine that is on the same network switch)
  - Large MapReduce operations on a significant fraction of the workers in a cluster
    - Most input data is read locally
    - It consumes no network bandwidth

### How many Map and Reduce tasks (granularity)?

- M Map and R Reduce workers
- Ideally, M and R should be much larger than the number of workers
  - Improves dynamic load-balancing and speeds up recovery when a worker fails
- In practice...
  - M is chosen so that each task deals with 16 64MB of the input data (locality!!!) \*M ~ 200k\*
  - R is often constrained by the user (separate output) \*R ~ 5k\*
  - R is a small multiple of the number of workers \*NoW ~ 2k\*
- Physical bounds
  - O(M + R) scheduling decisions, O(M\*R) states

#### Backup Tasks

- Common cause that lengthens the total execution time
- A "straggler" a machine that takes unusually long to complete its task
  - Bad disk, 30MB/s to 1MB/s
  - Lack of CPU, IO, bandwidth due to some other scheduled task
- General mechanism
  - When the MapReduce operation is close to completion, the master schedules backup executions of the remaining tasks
  - The task is marked completed whenever the primary or the backup execution completes.
  - It significantly reduces the completion time

### Backup Tasks

- Sort example
  - 10<sup>10</sup> 100-byte records
  - 1800 machines
  - M = 15000
  - R = 4000
- It takes 44% longer with mechanism disabled!!!





### MapReduce: Refinements

#### Partitioning Function

- User specifies the number of reduce tasks R
- Data gets partitioned using partitioning function on intermediate key
- Default partitioning function: hash (key) mod R
- However, it is not appropriate sometimes
  - For example, output keys are URL and we want all entries on the same host to end up in the same output file
  - To support such needs, user can provide special partitioning function
    - For example: hash (hostname (urlkey)) mod R

### MapReduce: Refinements

### Ordering Guarantees

- Within a given partition, the intermediate key/value pairs are processed in increasing key order
- Easy to generate sorted output per partition

### Skipping Bad Records

- Map and Reduce crash deterministically
  - Bug in the user code
  - Acceptable to ignore some records (statistical analysis)
- Detect records that cause crashes and skip them

### MapReduce: Refinements

#### Combiners

- Significant repetition in the intermediate keys produced by each map: <k, v1>, <k, v2>, ... for the same key
  - Reduce function is commutative and associative
  - Word counting is a good example <the, 1>
- MapReduce framework allows user to specify optional Combiner function
  - It performs partial merging before the data is sent over the network
  - Combiner function is executed on machines that perform map task
  - Typically, the same code is used both for combiner and reduce functions

### MapReduce: Refinements

### □ IO Format Types

- MapReduce library provides support for reading input data in several formats
  - For example, "text" mode treats each line as a key-value pair
  - Another common supported format stores a sequence of key-value pairs sorted by key
  - Each input format knows how to split input data meaningfully
  - Users can provide new additional input types by implementing interface reader
- In a similar way, a set of output formats is supported
  - It is easy for user to add support for new types

### □ Count of URL Access Frequency

- The Map function processes logs of web page requests
  - Outputs (URL, 1)
- Reduce adds together all values for the same URL
  - Emits (URL, total count)

### □ Reverse Web-Link Graph

- Map: (target, source) for each link to a target
   URL found in a page named source
- Reduce: concatenates all source URLs associated with the target URL, (target, list(source))

### Distributed Grep

- Map: emit a line if it matches a pattern
- Reduce: copy the supplied data to output

#### Distributed Sort

- Map: extract the key from each record
  - Emits (key, record)
- Reduce emit all pairs unchanged
  - Ordering guarantee and partitioning function

### □ Term-vector per Host

- A term vector summarizes the most important words
  - A list of <word, frequency> pairs
- o Map function emits a <hostname, term vector> pair for each input document
  - Hostname is extracted from the document URL
- Reduce function is passed all term vectors for a given host
  - It adds these term vectors together
  - It throws away infrequent terms
  - Emits final <hostname, term vector>

#### □ Inverted Index

- The Map parses each document
  - It emits a sequence of <word, document ID>
- The Reduce function accepts all pairs for a given word
  - It sorts document IDs
  - It emits <word, list(document ID)>
- The set of output pairs forms a simple inverted index
  - The solution can be easily enhanced to keep track of word positions

### □ Matrix – Vector Multiplication

- $\circ$  N  $\times$  N matrix M
  - $m_{i,j}$  element in row i and column j
- $\circ$  Vector  $\vec{v}$  of length N with  $j^{th}$  element  $v_j$
- $\circ \vec{x} = M \times \vec{v}$
- $\circ x_i = \sum_{j=1}^N m_{ij} \cdot v_j$
- $\circ$  M and  $\vec{v}$  are stored in DFS
  - Case #1: N is large, but  $\vec{v}$  can be stored in the memory
  - Case #2: N is large and it cannot fit in memory

### □ Matrix – Vector Multiplication Case #1

- Map function
  - Apply to one element of M
  - $\vec{v}$  is read first, to be available to all Map workers
  - For each  $m_{ij}$  map emits  $(i, m_{ij} \cdot v_j)$
- Reduce function
  - Sum all the values associated with the key i
  - The result is a sequence of pairs  $(i, x_i)$

### □ Matrix – Vector Multiplication Case #2

Vector v cannot fit in memory of a single machine



- Split the matrix M into R stripes so each stripe can fit in memory
- There are totally *N* \* *R* stripes combinations
  - Each map gets one combination

### Matrix Multiplication

- Performed in two MapReduce operations
- $\circ P = M \times N$ 
  - $\bullet p_{ik} = \sum_{j} m_{ij} \cdot n_{jk}$

### o Map1

- For each  $m_{ij}$  emit  $(j, (M, i, m_{ij}))$
- For each  $n_{jk}$  emit  $(j, (N, k, n_{jk}))$

#### o Reduce1

- Fer each key j examine the list of values
- For each value from  $(M, i, m_{ij})$  and from  $(N, k, n_{jk})$  produce a key-value pair  $((i, k), (m_{ij} \cdot n_{jk}))$

### Matrix Multiplication

- Performed in two MapReduce operations
- $\circ P = M \times N$ 
  - $\bullet p_{ik} = \sum_{j} m_{ij} \cdot n_{jk}$
- Map2
  - Identity function  $((i,k),v) \rightarrow ((i,k),v)$
- o Reduce2:
  - For each key (i, k) produce a sum of values with that key
  - Result: a sequence of pairs ((i,k),v) where  $v=P_{ik}$

### Iterative Message Passing (Graph Processing)

- General pattern
  - There is a network of entities and relationships between them
    - It is required to calculate a state of each entity
    - The state of each entity is influenced by other entities in its neighborhood
  - The state can be...
    - Distance to other nodes
    - Indication that there is a node with a certain property
  - MapReduce jobs are performed iteratively
    - At each iteration each node sends messages to its neighbors
    - Each neighbor updates its state based on the received messages
  - Iterations are terminated by some condition
    - E.g. max number of iterations, negligible state change, etc.

### □ Iterative Message Passing (Graph Processing)

```
map (key, value):
// key: node id, value: node object
       emit(key, value)
       for each neighbor m in value.neighbors:
              emit(m.id, get message(value))
reduce (key, values):
// key: node id, values: received messages
      M = niil
       messages = []
       for each message v in values:
              if v is Object:
                    M = V
              else:
                    messages.append(v)
       M. state = calculate state (messages)
       emit(key, M)
```

### Iterative Message Passing (Graph Processing)

#### **Iteration**

- 1.) Node passes its state to its neighbors
- 2.) Based on the received states of its neighbors, the node updates its own state
- 3.) The node passes its new state to its neighbors



### Iterative Message Passing (Graph Processing)

#### Example:

Availability propagation through the tree of categories



- □ Iterative Message Passing (Graph Processing)
  - o Example:

Availability propagation through the tree of categories

o Implementation:

```
get_message(node):
// node = {id, availability(initialized true or false)}
    return node.availability

calculate_state(values):
// values = {list of its subcategories availabilities}
    state = false
    for each availability in values:
        state = state or availability
    return state
```

#### Database Queries

- In case queries are too large for common relational databases
- Map task can read input data from database

### □ Relational Algebra Operations

- $\circ$  Selection condition C,  $\sigma_C(R)$
- $\circ$  Projection subset S,  $\pi_S(R)$
- Union, intersection, difference
- $\circ$  Natural join  $R \bowtie S$
- Grouping and aggregation

#### □ Selection

- $\circ$  Condition C,  $\sigma_C(R)$
- o Map: If a touple t ∈ R satisfies C, emit (t, t)
- Reduce: Identity

### Projection

- $\circ$  Subset S,  $\pi_S(R)$
- o Map:
  - $\forall t \in R$  construct a touple t' without components not in S
  - Emit (*t*′, *t*′)
- Reduce: Duplicate elimination
  - Reduce (t', [t', t', ..., t']) into (t', t')

□ Natural Join  $R(A,B) \bowtie S(B,C)$ 



- o Map:
  - For input R(a, b) emit (b, (a, R))
  - For input S(b,c) emit (b,(c,S))
- $\circ$  Reduce: Match (b, (a, R)) with (b, (c, S))
  - Emit (*a*, *b*, *c*)

### Limitations of MapReduce

- Restricted programming framework
  - Tasks written as acyclic stateless dataflow programs
    - Repeated querying of datasets is difficult
    - Difficult to implement iterative algorithms that revisit a single working set multiple times
- In case where computation depends on previously computed values
  - E.g., Fibonacci series, each value is a sum of previous two
  - If the dataset is small enough, compute it on a single machine
- Algorithms that depend on shared global state
  - If task synchronization is required, MapReduce is not a choice
  - E.g. Online learning, Monte Carlo simulation

# **MapReduce Other Implementations**

### Google

Not available outside of Google

### □ Hadoop

- An open source implementation in Java
- Uses HDFS for storage

#### □ Aster Data

 Cluster-optimized SQL Database that implements MapReduce

### **Literature – Further Reading**

- Dean, Jeffrey and Ghemawat, Sanjay; "MapReduce: Simplified Data Processing on Large Clusters",
   Proceedings of the 6th conference on Symposium on Opearting Systems Design & Implementation - Volume 6, Pages 10-10, 2004.
- Rajaraman, Anand, and Jeff Ullman; "Mining of Massive Datasets", New York, NY, USA: Cambridge University Press, 2011.
- Leskovec, Jure, Rajaraman, Anand, and Ullman, Jeff;
   "Mining of Massive Datasets Online Course",
   http://www.mmds.org/

### **Literature – Further Reading**

- Ilya Katsov, "MapReduce Patterns, Algorithms, and Use Cases", Highly Scalable Blog, February 1<sup>st</sup> 2012. <a href="https://highlyscalable.wordpress.com/2012/02/01/mapreduce-patterns/">https://highlyscalable.wordpress.com/2012/02/01/mapreduce-patterns/</a>
- Jon Weissman, "Limitations of Mapreduce where not to use Mapreduce", CSci 8980 Big Data and the Cloud, October 10<sup>th</sup> 2012.
  - http://csci8980-2.blogspot.hr/2012/10/limitations-of-mapreduce-where-not-to.html