WHAT IS CLAIMED IS:

1	1. A method for calibrating laser pulses from a laser eye surgery system
2	using an image capture device, the method comprising:
3	imaging a known object with an image capture device;
4	directing a pulsed laser beam onto a calibration surface so as to leave a mark
5	on the calibration surface;
6	imaging the mark on the calibration surface with the image capture device;
7	and .
8	calibrating the laser eye surgery system by comparing the image of the mark
9	on the calibration surface to the image of the known object.
1	2. The method of claim 1, wherein the imaged object comprises a circular
2	shape having a known diameter.
1	3. The method of claim 2, wherein the known object comprises a circular
2	chrome layer on a glass plate.
1	4. The method of claim 1, further comprising removing the known object
2	prior to directing the pulsed laser beam onto the calibration surface.
1	5. The method of claim 1, wherein the imaging of the known object and
2	of the mark on the calibration surface is carried out in the same position.
1	6. The method of claim 1, wherein the directing and imaging are carried
2	out in the same plane.
1	7. The method of claim 1, wherein the directing and imaging are carried
2	out in at least one of a laser focus plane or a treatment plane, and wherein imaging of the
3	known object and imaging of the mark on the calibration surface are performed along an
4	imaging optical path coaxial with a laser optical path.
1	8. The method of claim 1, wherein the calibration surface comprises
2	photosensitive material, silkscreen material, Zapit paper, luminescent material, or
3	photographic material.

- 9. The method of claim 8, wherein the mark on the calibration surface comprises a permanent change in color or a luminescent glow.

 1 10. The method of claim 1, wherein the calibration surface comprises
- 1 11. The method of claim 10, wherein the mark on the calibration surface 2 comprises an ablation.

photoreactive material or polymethylmethacrylate material.

2

- 1 12. The method of claim 1, wherein the mark on the calibration surface has 2 a diameter setting in a range from about 0.65 mm to about 6.7 mm.
- 1 13. The method of claim 1, further comprising increasing the pulsed laser 2 beam diameter setting over time so as to form a plurality of marks, imaging the marks, and 3 comparing the marks to the known object.
- 1 14. The method of claim 13, further comprising decreasing the pulsed laser 2 beam diameter setting over time.
- 1 15. The method of claim 14, further comprising determining a hysteresis 2 of a variable aperture.
- 1 16. The method of claim 1, further comprising determining a relationship 2 between laser beam diameter and motor counts associated with an iris setting.
- 1 The method of claim 1, further comprising determining a shape of the laser beam.
- 1 18. The method of claim 1, further comprising determining a center 2 position of the laser beam.
- 1 19. The method of claim 1, further comprising determining a drift of the laser eye surgery system by monitoring a variance in center positions for each scanned and imaged laser pulse.
- 1 20. The method of claim 1, further comprising determining a laser beam 2 deflection.

1	21. The method of the claim 1, further comprising rotating an optical
2	element along a laser delivery path and identifying a rotation-induced laser induced wobble
3	from a plurality of marks.
1	The method of claim 1, further comprising ablating a patient's cornea
2	with the calibrated system.
1	23. A method for calibrating laser pulses from a laser eye surgery system
2	using a microscope camera, the method comprising:
3	imaging a known object with a microscope camera;
4	scanning a pulsed laser beam across a photosensitive material so as leave an
5	ablation on the photosensitive material;
6	imaging the ablation on the photosensitive material with the microscope
7	camera;
8	determining an iris calibration of a laser eye surgery system by comparing the
9	image of the ablation on the photosensitive material to the image of the known object; and
10	ablating a patient's cornea with the calibrated system.
1	24. A system for calibrating laser pulses from a laser beam delivery system
2	comprising:
3	an image capture device orientated toward a treatment plane;
4	a known object positionable for imaging by the image capture device;
5	a pulsed laser beam delivery system;
6	a calibration surface supportable in an optical path of the pulsed laser beam so
7	as to result in a mark on the calibration surface and for imaging of the mark on the calibration
8	surface by the image capture device; and
9	a processor coupled to the image capture device, the processor determining a
10	calibration of the laser beam delivery system by comparing the image of the mark on the
11	calibration surface to the image of the known object.
1	25. The system of claim 24, wherein the image capture device comprises a
2	microscope camera.
1	26. The system of claim 24, wherein the known object comprises a circular

chrome layer of known diameter on a glass plate.

- 1 27. The system of claim 24, wherein the known object and calibration 2 surface are imaged in the same position.
- 1 28. The system of claim 24, wherein the known object and calibration 2 surface are positioned in at least one of a laser focus plane or the treatment plane.
- 1 29. The system of claim 24, wherein the laser beam delivery system 2 comprises a laser eye surgery system.
- 1 30. The system of claim 24, wherein the calibration surface comprises 2 photosensitive material, silkscreen material, Zapit paper, luminescent material, photoreactive 3 material, polymethylmethacrylate material, or photographic material.
- 1 31. The system of claim 30, wherein the mark on the calibration surface comprises an ablation, a permanent change in color, or a luminescent glow.
- 1 32. The system of claim 24, wherein the mark on the calibration surface 2 has an iris setting in a range from about 0.65 mm to about 6.7 mm.