Performans Görevi

Adı	SERBEST DÜŞME
Beklenen Performans	İki farklı hıza sahip cisimlerin serbest düşme hareketine ait rapor hazırlama
Süre	35 + 40 dk.
Değerlendirme	Dereceli Puanlama Anahtarı

Aynı çekim ivmesine sahip bir ortamda bulunan K ve L cisimlerinden ilk hızı sıfır olan K cismi h_1 yüksekliğinden aşağı doğru, ilk hızı sıfırdan farklı olan L cismi h_2 yüksekliğinden serbest bırakılmaktadır. L cisminin ilk hızını 10 m/s alarak cisimlerin

- atıldığı yükseklikleri göstereceğiniz,
- yere çarpma hızlarını belirleyeceğiniz,
- x-t, ϑ -t ve α -t grafiklerini çizerek açıklayacağınız kısa bir rapor hazırlayınız.

Çalışma sırasında dikkat edilecek hususlar şunlardır:

- Raporunuzda cisimlerin zamanlara karşılık gelen hız ve yer değiştirme büyüklüklerini doğru yerde belirtiniz.
- Sınıf içerisinde hazırlayacağınız raporunuzu çizimlerle destekleyiniz.
- Çizim yaparken kâğıdınızı estetik açıdan orantılı kullanmaya dikkat ediniz.
- Yazım ve noktalama kurallarına dikkat ediniz.

Değerlendirme

Yapmış olduğunuz performans görevi öğretmeniniz tarafından "Dereceli Puanlama Anahtarı" ile değerlendirilecektir.

Yandaki karekodu kullanarak "Dereceli Puanlama Anahtarı"na ulaşabilirsiniz.

Kontrol Noktası

Bir cisim belirli bir yükseklikten serbest bırakıldığında \vec{g} yer çekimi ivmesi ile hızlanır. Cismin her bir zaman aralığındaki hız artışı eşit olur.

Serbest Düşme Hareketi İçin Matematiksel Modeller ($\vec{a} = \vec{g}$)			
$\vartheta_0 = 0$ ise	$\theta_0 \neq 0$ ise	Zamana Bağlı Olmayan	
$h = \frac{1}{2} \cdot g \cdot t^2$	$h = \vartheta_0 \cdot t + \frac{1}{2} g \cdot t^2$	$\vartheta^2 = 2 \cdot g \cdot h$	
$\vartheta = g \cdot t$	$\vartheta = \vartheta_0 + g \cdot t$	$\vartheta^2 = \vartheta_0^2 + 2 \cdot g \cdot h$	