

Machine Intelligence 2 3 Stochastic Optimization

Prof. Dr. Klaus Obermayer

Fachgebiet Neuronale Informationsverarbeitung (NI)

SS 2017

Stochastic Optimization

Simulated Annealing

Mean-Field Annealing

Stochastic optimization

Supervised & unsupervised learning \rightarrow evaluation of cost function E^T

- real-valued arguments: gradient based techniques (e.g. ICA weights)
- discrete arguments: ?? (e.g. for cluster assignment)
- \Rightarrow simulated annealing

Setting

- discrete variables $s_i, i = 1, ..., N$ (e.g. $s_i \in \{+1, -1\}$ or $s_i \in \mathbb{N}$)
- \blacksquare short-hand notation: \underline{s} ("state") often $\{\underline{s}\}$ not a vector space (but called state space)
- \blacksquare cost function: $E:\underline{\mathbf{s}}\mapsto E_{(\underline{\mathbf{s}})}\in\mathbb{R}$ not restricted to learning problems

Goal: find state $\underline{\mathbf{s}}^*$, such that:

$$E \stackrel{!}{=} \min$$
 (desirable global minimum of E)

Optimizing cost functions with local optima

- Deterministic descent may converge to local minima
- Grid-search, random search, multiple initializations
 - → Simulated Annealing

Simulated Annealing

History: "Naturalistic" stochastic optimization

- → mimicking freezing and crystallization

 (atom configurations in crystals often close to global minima of the energy)
- → slow cooling (glass, unordered vs. crystal, ordered) ⇒ annealing
- ⇒ slowly lower temperature while maintaining thermal equilibrium
- \Rightarrow computational temperature T or *noise parameter* $\beta = \frac{1}{T}$

Simulated Annealing

initialization: $\underline{\mathbf{s}}_0$, β_0 small (\sim high temperature)

BEGIN Annealing loop $(t=1,2,\dots)$ $\mathbf{E_T}$ $\mathbf{\underline{s}}_t = \mathbf{\underline{s}}_{t-1}$ (initialization of inner loop)

$${f \underline{s}}_t = {f \underline{s}}_{t-1}$$
 (initialization of inner loop)

BEGIN State update loop (M iterations)

Prob to Go in

- choose a new candidate state <u>s</u> randomly (local to \underline{s}_t e.g. "bitflip"
- \blacksquare calculate difference in cost: $\Delta E = E_{(s)} E_{(s)}$
- \blacksquare switch $\underline{\mathbf{s}}_t$ to $\underline{\mathbf{s}}$ with probability $W_{(\underline{\mathbf{s}}_t \to \underline{\mathbf{s}})} = \frac{1}{1 + \exp(\beta_t \Delta E)}$ otherwise keep the previous state $\underline{\mathbf{s}}_t$

END State update loop

$$\beta_t = \tau \beta_{t-1}$$
 $(\tau > 1 \implies \text{increase of } \beta)$

END Annealing loop

Transition probability

cost function with local optima:

Annealing

limiting cases for high vs. low temperature:

Annealing schedule & convergence

Convergence to the global optimum is guaranteed if: $\beta_t \sim \ln t$

- ⇒ robust optimization procedure
- \Rightarrow but: $\beta_t \sim \ln t$ is **too slow** for practical problems
- \Rightarrow therefore: $\beta_{t+1} = \tau \beta_t$, $\tau \in [1.01, 1.30]$ (exponential annealing)

Examples

- 1. Finding the global optimum of cost function (with continuous variables)
 - > https://www.youtube.com/watch?v=iaq_Fpr4KZc

2. Solving Sudoku with Simulated Annealing

- initially fill columns randomly (without replacement)
- rows/3x3-boxes violate the Sudoku rules
- choose random column and two rows: switch the 2 numbers (stochastically)
- $s_i \in \{1, 2, \dots, 9\} \implies (9!)^9 \ge 10^{50}$ states
- lacksquare cost function $E_{(\mathbf{s})}$ total number of doubles in all rows/boxes (normalized)
- multiple global optima and also local optima
- 1000 steps per State Update loop
- > https://www.youtube.com/watch?v=E8tkpzDne7I (from 2:19)

The Gibbs distribution

- lacksquare for constant eta: noisy state change via Markov process $\mathbf{\underline{s}}_{t'}$
- lacksquare t': iteration count of the State Update loop
- \blacksquare $\Pi_{(\mathbf{s},t')}$: probability distribution across states

$$\Pi_{(\underline{\mathbf{s}},t')} o \underbrace{P_{(\underline{\mathbf{s}})}}_{\substack{\text{stationary} \\ \text{distribution}}} \text{ for } t' o \infty \text{ (and constant } \beta\text{)}$$

 $ightarrow P(\underline{\mathbf{s}})$ can be calculated analytically!

Calculation of the stationary distribution

Assumption of detailed balance:

$$\frac{P_{(\underline{\mathbf{s}})}}{P_{(\underline{\mathbf{s}}')}} = \underbrace{\frac{\text{probability of transition } \underline{\mathbf{s}} - \underline{\mathbf{s}}}{P_{(\underline{\mathbf{s}}')} W_{(\underline{\mathbf{s}} - \underline{\mathbf{s}}')}}}_{P_{(\underline{\mathbf{s}}')} W_{(\underline{\mathbf{s}}' - \underline{\mathbf{s}})}} = \underbrace{\frac{P_{(\underline{\mathbf{s}}')} W_{(\underline{\mathbf{s}}' - \underline{\mathbf{s}})}}{P_{(\underline{\mathbf{s}}')} W_{(\underline{\mathbf{s}}' - \underline{\mathbf{s}})}}}_{P_{(\underline{\mathbf{s}}')} W_{(\underline{\mathbf{s}}' - \underline{\mathbf{s}})}} = \underbrace{\frac{P_{(\underline{\mathbf{s}}')} W_{(\underline{\mathbf{s}}' - \underline{\mathbf{s}})}}{P_{(\underline{\mathbf{s}}')} W_{(\underline{\mathbf{s}}' - \underline{\mathbf{s}})}}}_{1 + \exp\left\{\beta\left(E_{(\underline{\mathbf{s}}')} - E_{(\underline{\mathbf{s}}')}\right)\right\}} = \underbrace{\frac{1 + \exp(\beta\Delta E)}{1 + \exp(-\beta\Delta E)}}_{1 + \exp(-\beta\Delta E)}$$
$$= \exp(\beta\Delta E)\underbrace{\frac{1 + \exp(-\beta\Delta E)}{1 + \exp(-\beta\Delta E)}}_{1 + \exp(-\beta\Delta E)} = \exp(\beta\Delta E)$$

this condition is fulfilled for:

$$P_{(\underline{\mathbf{s}})} = \frac{1}{Z} \exp(-\beta E)$$
 (Gibbs-Boltzmann-distribution)

normalization constant / partition function: $Z = \sum_{\mathbf{s}} \exp(-\beta E)$

Cost vs. probability distribution

$$P_{(\underline{\mathbf{s}})} = \frac{1}{Z} \exp(-\beta E) \qquad \text{(Gibbs-Boltzmann-distribution)}$$
Based on local Distribution

 $\beta \downarrow$: broad, "delocalized" distribution

 $\beta \uparrow$: distribution localized around (global) minima

Mean-field annealing

Simulated Annealing

- → stochastic optimization: computationally expensive (sampling!)
- \rightarrow stationary distribution $P_{(s)}$ known (for each β_t), why not evaluate?
- however: maxima of $P_{(s)}$ equally hard to obtain as minima of $E_{(s)}$
- \to moments? for $\beta \to \infty$: $\langle \underline{\mathbf{s}} \rangle_P$ converges to $\underline{\mathbf{s}}^*$ of minimal cost $(P_{(\mathbf{s})})$ singular)
- ightarrow but: moments of $P_{(\mathbf{s})}$ can in general not be calculated analytically

Approximation by Mean-Field Annealing can we do better?

- \Rightarrow idea: approximate $P_{(\mathbf{s})}$ by a computationally tractable distribution $Q_{(\mathbf{s})}$
- this distribution is then used to calculate the first moment $\langle \mathbf{s} \rangle_O$
- \Rightarrow the first moment is tracked during the annealing schedule eta_t

hope: $\langle \mathbf{s} \rangle_O \to \mathbf{s}^*$ for $\beta_t \to \infty$

Factorizing distribution

Distribution $Q_{(\mathbf{s})}$ to approximate $P_{(\mathbf{s})}$ simple for Computing Moments

$$Q_{(\underline{\mathbf{s}})} = \frac{1}{Z_Q} \exp\left\{-\beta E_Q\right\} = \frac{1}{Z_Q} \exp\left\{-\beta \sum_{k \text{ parameters}} e_k \operatorname{s}_k\right\}$$

- lacksquare Gibbs distribution with costs E_Q linear in the state variable $\mathbf{\underline{s}}_k$
- \blacksquare factorizing distribution $Q_{(\underline{\mathbf{s}})} = \Pi_k Q_k(s_k)$ with $Q_k(s_k) = \frac{1}{Z_{Q_k}} \exp(-\beta e_k s_k)$

- ightarrow family of distributions parametrized by the *mean fields* e_k
- \rightarrow determine e_k such that this approximation is as good as possible

Mean-field approximation

Quantities

$$\begin{array}{ll} P_{(\underline{\mathbf{s}})} &= \frac{1}{Z_p} \exp(-\beta E_p) & \text{true distribution} \\ \\ Q_{(\underline{\mathbf{s}})} &= \frac{1}{Z_Q} \exp\left(-\beta \sum_{k} e_k s_k\right) & \text{approximation: family of factorizing distributions} \end{array}$$

 e_k : mean fields

parameters to be determined

Good approximation of P by Q

ightarrow minimization of the KL-divergence:

$$\mathrm{D_{KL}}(Q||P) = \sum_{\mathbf{s}} Q_{(\underline{\mathbf{s}})} \ln \frac{Q_{(\underline{\mathbf{s}})}}{P_{(\underline{\mathbf{s}})}} \stackrel{!}{=} \min_{\underline{\mathbf{e}}}$$

Minimization of KL-divergence

k: Number of variables

$$\mathrm{D_{KL}}(Q||P) = \sum_{\text{Sum of states}} Q_{(\underline{\mathbf{s}})} \ln \frac{Q_{(\underline{\mathbf{s}})}}{P_{(\underline{\mathbf{s}})}} \stackrel{!}{=} \min_{\underline{\mathbf{e}}} P_{(\underline{\mathbf{s}})} = \frac{1}{Z_p} \exp(-\beta E_p) \\ Q_{(\underline{\mathbf{s}})} = \frac{1}{Z_Q} \exp\left(-\beta \sum_k e_k s_k\right)$$

$$\frac{\partial}{\partial e_{l}} D_{KL} = \frac{\partial}{\partial e_{l}} \left\{ \beta \sum_{\underline{\mathbf{s}}} Q_{(\underline{\mathbf{s}})} E_{p} - \beta \sum_{\underline{\mathbf{s}}} Q_{(\underline{\mathbf{s}})} E_{Q} + \ln Z_{p} - \ln Z_{Q} \right\}_{\substack{\text{Auch Summe} \\ (\text{gesamt})}}$$

$$= \beta \frac{\partial}{\partial e_{l}} \left\langle E_{p} \right\rangle_{Q} - \beta \frac{\partial}{\partial e_{l}} \left(\sum_{\underline{\mathbf{s}}} Q_{(\underline{\mathbf{s}})} \sum_{k} e_{k} s_{k} \right) - \frac{1}{Z_{Q}} \sum_{\underline{\mathbf{s}}} \frac{\partial}{\partial e_{l}} \exp(-\beta \sum_{k} e_{k} s_{k})$$

$$-\beta \sum_{k} e_{k} \frac{\partial}{\partial e_{l}} \left\langle s_{k} \right\rangle_{Q} - \beta \left\langle s_{l} \right\rangle_{Q}$$

$$+\beta \left\langle s_{l} \right\rangle_{Q}$$

$$= \beta \frac{\partial}{\partial e_l} \langle E_p \rangle_Q - \beta \sum_k e_k \frac{\partial}{\partial e_l} \langle s_k \rangle_Q \qquad \stackrel{!}{=} \qquad 0,$$

 $l=1,\ldots,N$

Result

$$\frac{\partial}{\partial e_l} \langle E_p \rangle_Q - \sum_k e_k \frac{\partial}{\partial e_l} \langle s_k \rangle_Q = 0$$

 s_k are independent under Q:

$$\begin{split} \frac{\partial}{\partial e_l} \big\langle E_p \big\rangle_Q - e_l \frac{\partial}{\partial e_l} \big\langle s_l \big\rangle_Q &= 0 \\ \big\langle s_k \big\rangle_Q &= \frac{\sum\limits_{s_k} s_k \exp(-\beta e_k s_k)}{\sum\limits_{s_k} \exp(-\beta e_k s_k)} \end{split}$$

- \rightarrow coupled deterministic system of equations for $\{e_k\}$
- → iterative solution procedure (usually no analytic result)

Mean-field annealing

Algorithm

initialization: $\langle \mathbf{s} \rangle_0, \beta_0$ BEGIN Annealing loop

Repeat

- \blacksquare calculate mean-fields: $e_k, k=1,\ldots,N$
- \blacksquare calculate moments: $\langle s_k \rangle_{\mathcal{O}}, k=1,\ldots,N$

Until
$$|e_k^{\mathrm{old}} - e_k^{\mathrm{new}}| < \varepsilon$$
 mccuracy increase β

END Annealing loop

$$\Rightarrow$$
 deterministic (fast) rather than stochastic (slow) optimization method (given that mean-field equations can be easily evaluated, dep. on E_p)

 \Rightarrow moments $\langle s_k \rangle$ in general not from state space but $\langle s_k \rangle \to s_k^*$ for $\beta \to \infty$

Example (Ising model) – Setting and first Moments

Quadratic cost function $E(\underline{\mathbf{s}})$ with binary variables $s_k \in \mathcal{S} = \{+1, -1\}$,

$$\Pr_{(\underline{\mathbf{s}})} \sim \exp\left(-\beta \mathbf{E}_{\rho}\right) \quad E_{p}(\underline{\mathbf{s}}) = -\frac{1}{2} \sum_{\substack{i=1,j=1\\i\neq j}}^{N} W_{ij} s_{i} s_{j},$$

real symmetric matrix W, no self-coupling

Expressions required for the mean-field algorithm can be calculated:

$$\langle s_k \rangle_Q = \frac{\sum_{s_k \in \mathcal{S}} s_k \exp(-\beta e_k s_k)}{\sum_{s_k \in \mathcal{S}} \exp(-\beta e_k s_k)} = \frac{(+1) \exp(-\beta e_k) + (-1) \exp(\beta e_k)}{\exp(-\beta e_k) + \exp(\beta e_k)}$$

$$= \tanh(-\beta e_k)$$

Example (Ising model) - Mean-fields

$$0 = \frac{\partial}{\partial e_k} \langle E_p \rangle_Q - e_k \frac{\partial}{\partial e_k} \langle s_k \rangle_Q$$

$$= \frac{\partial}{\partial e_k} \left\langle -\frac{1}{2} \sum_{\substack{i=1,j=1\\i \neq j}}^N W_{ij} s_i s_j \right\rangle_Q - e_k \frac{\partial}{\partial e_k} \langle s_k \rangle_Q$$

$$= -\frac{1}{2} \frac{\partial}{\partial e_k} \sum_{\substack{i=1,j=1\\i \neq j}}^N W_{ij} \langle s_i \rangle_Q \langle s_j \rangle_Q - e_k \frac{\partial}{\partial e_k} \langle s_k \rangle_Q$$

$$= -\sum_{\substack{i=1\\i \neq k}}^N W_{ik} \langle s_i \rangle_Q \frac{\partial}{\partial e_k} \langle s_k \rangle_Q - e_k \frac{\partial}{\partial e_k} \langle s_k \rangle_Q$$

$$\Longrightarrow e_k = -\sum_{\substack{i=1\\i \neq k}}^N W_{ik} \langle s_i \rangle_Q$$
(will be applied in exercise sheet 9)

Example (Ising model) – Fixed point iteration

Inner loop in mean-field annealing algorithm:

Repeat

- \blacksquare calculate mean-fields: $e_k = -\sum\limits_{\substack{i=1\\i\neq k}}^N W_{ik} \langle s_i \rangle_Q, \quad k=1,\dots,N$
- \blacksquare calculate moments: $\langle s_k \rangle_Q = \tanh(-\beta e_k), \quad k = 1, \dots, N$

$$\text{Until } |e_k^{\text{old}} - e_k^{\text{new}}| < \varepsilon$$

→ fixed-point iteration for mean-fields will converge