机智云 - 设备串口通讯协议(v4.0.8)

产品名称:仓鼠管家

生成日期: 2016-07-26

目录

- 1. 设备通讯信息 1.1 MCU与WIFI模组串口连接要求
- 2. 命令格式
- 3. 约定
 - 4. 命令列表
 - 4.1 WiFi模组请求设备信息
 - · 4.2 WiFi模组与设备MCU的心跳
 - 4.3 设备MCU通知WiFi模组进入配置模式
 - 4.4 设备MCU重置WiFi模组
 - 4.5 WiFi模组向设备MCU通知WiFi模组工作状态的变化
 - · 4.6 WiFi模组请求重启MCU
 - 4.7 非法消息通知
 - · 4.8 WiFi模组读取设备的当前状态
 - 4.9 设备MCU向WiFi模组主动上报当前状态
 - 4.10 WiFi模组控制设备
 - · 4.11 MCU请求WiFi模组进入产测模式
 - 4.12 MCU通知WiFi模组进入可绑定模式
 - · 4.13 MCU请求获取网络时间
 - 4.14 大数据下发: 数据发起者请求向数据接收者发送大数据
 - 4.15 大数据下发:数据接收者告知数据发起者可以开始发送数据
 - 4.16 大数据下发: 数据发送者向数据接收者下发数据分片
 - 4.17 大数据下发:数据发起者向数据接收者通知取消数据下发
 - 4.18 MCU获取通讯模组的信息
 - · 4.19 MCU请求通讯模组进行事务处理

设备通讯信息¶

1.1 MCU与WIFI模组串口连接要求¶

通讯方式: UART

波特率: 9600

数据位:

奇偶校验: 无

停止位:

数据流控: 无

给WIFI模组供电电压: 3.3v, 电流 (max): 150mA

如需MCU升级等高级功能,请和Gizwits联系。

2. 命令格式¶

header(2B)=0xFFFF, len(2B), cmd(1B), sn(1B), flags(2B), payload(xB), checksum(1B)

3. 约定¶

- 包头(header)固定为0xFFFF
- 包长度(len)是指从命令开始一直到校验和的字节长度(包括命令和校验和)。因为包头为固定0xFFFF,对于发送方,如检测到出现0xFF的数据内容,需要在0xFF后添加0x55。对于接收方,如检测到非包头部分出现0xFF,需要把紧跟其后的0x55移除。
- 多于一个字节的整型数字以大端字节序编码
- 消息序号(sn)由发送方给出,接收方响应命令时需把消息序号返回给发送方
- 检验和(checksum)的计算方式为把数据包从长度位开始按字节求和得出的结果对256求余
- 除"非法消息通知"外的命令都带有确认,如在200毫秒内没有收到接收方的响应,发送方应重发,最多重发3次。

4. 命令列表¶

4.1 WiFi模组请求设备信息¶

WiFi模组发送:

header (2B)	len(2B)	cmd (1B)	sn (1B)	flags(2B)	checksum(1B)
0xFFFF	0x0005	0x01	0x##	0x0000	0x##

设备MCU回复:

header(2B)	len(2B)	cmd(1B)	sn (1B)	flags(2B)	protocol_ver(8B)
0xFFFF	0x0047	0x02	0x##	0x0000	0x3030303030303034

p0_ver(8B)	hard_ver(8B)	soft_ver(8B)	product_key(32B)	bindable_timeout(2B)	checksum(1B)
0x3030303030303032	硬件版本号	软件版本号	产品标识码	绑定超时(秒)	0x##

注:

绑定超时(bindable_timeout)的值为0时,表示设备随时可在局域网被绑定;当值大于零时,表示当按下绑定按钮后,用户必须在该时间范围内完成绑定操作。

4.2 WiFi模组与设备MCU的心跳¶

WiFi模组发送:

header (2B)	len(2B)	cmd (1B)	sn(1B)	flags(2B)	checksum(1B)
0xFFFF	0x0005	0x07	0x##	0x0000	0x##

设备MCU回复:

header (2B)	len(2B)	cmd (1B)	sn(1B)	flags(2B)	checksum(1B)
0xFFFF	0x0005	0x08	0x##	0x0000	0x##

注:

当设备MCU在180秒内没有收到WiFi模组的心跳请求,则通过硬件引脚重启WiFi模组。

4.3 设备MCU通知WiFi模组进入配置模式¶

设备MCU发送:

header (2B)	len (2B)	cmd (1B)	sn(1B)	flags(2B)	config_method(1B)	checksum(1B)
0xFFFF	0x0006	0x09	0x##	0x0000	配置方式	0x##

注:

配置方式(config_method)是指使用何种方法配置WiFi模组加入网络,可以选择以下的值:

- 1: SoftAp
- 2: Air Link

其它的值为保留值。

WiFi模组回复:

header (2B)	1en(2B)	cmd (1B)	sn(1B)	flags(2B)	checksum(1B)
0xFFFF	0x0005	0x0A	0x##	0x0000	0x##

4.4 设备MCU重置WiFi模组¶

设备MCU发送:

header (2B)	1en(2B)	cmd (1B)	sn(1B)	flags(2B)	checksum(1B)
0xFFFF	0x0005	0x0B	0x##	0x0000	0x##

WiFi模组回复:

header (2B)	len(2B)	cmd(1B)	sn(1B)	flags(2B)	checksum(1B)
0xFFFF	0x0005	0x0C	0x##	0x0000	0x##

注:

被重置后的WiFi模组需要重新配置与绑定。

4.5 WiFi模组向设备MCU通知WiFi模组工作状态的变化¶

WiFi模组发送:

header (2B)	len (2B)	cmd (1B)	sn(1B)	flags(2B)	wifi_status(2B)	checksum(1B)
0xFFFF	0x0007	0x0D	0x##	0x0000	WiFi状态	0x##

注:

1. WiFi状态(wifi_status)用两个字节描述,从右向左依次是bit0, bit1, ...bit15;

bit0: 是否开启SoftAP模式, 0: 关闭, 1: 开启;

bit1: 是否开启Station模式, 0: 关闭, 1: 开启;

bit2: 是否开启配置模式, 0: 关闭, 1: 开启;

bit3: 是否开启绑定模式, 0: 关闭, 1: 开启;

bit4: WiFi模组是否成功连接路由器, 0: 未连接, 1: 连接;

bit5: WiFi模组是否成功连接云端, 0: 未连接, 1: 连接;

bit6 - bit7:预留;

bit8 - bit10:仅当WiFi模组已成功连接路由器(请看上第4位)时值才有效,三个位合起来表示一个整型值,值范围为0~7,表示WiFi模组当前连接AP的信号强度(RSSI),0为最低,7为最高;

bit11:是否有已绑定的手机上线,0:没有,1:有;

bit12:是否处于产测模式中,0:否,1:是;

bit13 - bit15:预留。

2. WiFi模组在当状态发生了变化后立刻通知设备MCU,同时每隔10分钟也会定期向设备MCU发送状态。

设备MCU回复:

header (2B)	len(2B)	cmd (1B)	sn(1B)	flags(2B)	checksum(1B)
0xFFFF	0x0005	0x0E	0x##	0x0000	0x##

4.6 WiFi模组请求重启MCU_■

WiFi模组发送:

header (2B)	len(2B)	cmd (1B)	sn (1B)	flags(2B)	checksum(1B)
0xFFFF	0x0005	0x0F	0x##	0x0000	0x##

设备MCU回复:

header(2B)	len(2B)	cmd (1B)	sn (1B)	flags(2B)	checksum(1B)
0xFFFF	0x0005	0x10	0x##	0x0000	0x##

注:

为了避免WiFi模组没有收到确认而重发指令而造成MCU多次重启,故MCU回复WiFi模组后需等待600毫秒再进行重启。

4.7 非法消息通知¶

WiFi模组回应MCU对应包序号的数据包非法:

header (2B)	len(2B)	cmd(1B)	sn (1B)	flags(2B)	error_code(1B)	checksum(1B)
0xFFFF	0x0006	0x11	0x##	0x0000	错误码	0x##

MCU回应WiFi模组对应包序号的数据包非法:

header (2B)	len (2B)	cmd (1B)	sn (1B)	flags(2B)	error_code(1B)	checksum(1B)
0xFFFF	0x0006	0x12	0x##	0x0000	错误码	0x##

注:

错误码(error_code)可为以下的值:

- 1:校验和错误
- 2:命令不可识别
- 3:其它错误
- 0和4~255保留

4.8 WiFi模组读取设备的当前状态¶

WiFi模组发送:

header(2B)	len (2B)	cmd (1B)	sn(1B)	flags(2B)	action(1B)	checksum(1B)
0xFFFF	0x0006	0x03	0x##	0x0000	0x02	0x##

设备MCU回复:

header (2B)	len(2B)	cmd(1B)	sn(1B)	flags(2B)	action(1B)	dev_status(8B)	checksum(1B)
0xFFFF	0x000E	0x04	0x##	0x0000	0x03	设备状态	0x##

注:

设备状态(dev_status)使用一个或多个字节表示。例如数据包为

0x07 FE FE FE 00 0A 03 03 时, 其格式为:

字节序	位序	数据内容	说明
byte0	bit7 bit6 bit1 bit0	0b00000111	LED_OnOff, 类型为bool, 值为true: 字段bit0, 字段值为0b1; LED_Color, 类型为enum, 值为3: 字段bit2 bit1, 字段值为0b11;
bytel		0xFE	LED_R,类型为uint8,字段值为254; 实际值计算公式y=1.000000*x+(0.000000) x最小值为0,最大值为254
byte2		0xFE	LED_G, 类型为uint8, 字段值为254; 实际值计算公式y=1.000000*x+(0.000000) x最小值为0,最大值为254
byte3		0xFE	LED_B, 类型为uint8, 字段值为254; 实际值计算公式y=1.000000*x+(0.000000) x最小值为0,最大值为254
byte4 byte5		0x00 0A	Motor_Speed, 类型为uint16, 字段值为10; 实际值计算公式y=1.000000*x+(-5.000000) x最小值为0,最大值为10
byte6	bit7 bit6 bit1 bit0	0b0000011	Alert_1,类型为bool,值为true:字段bit0,字段值为0b1; Alert_2,类型为bool,值为true:字段bit1,字段值为0b1;

byte7	bit7 bit6	0ь00000011	Fault_LED,类型为bool,值为true:字段bit0,字段值为0b1; Fault_Motor,类型为bool,值为true:字段bit1,字段值为0b1;
	bit1 bit0		

4.9 设备MCU向WiFi模组主动上报当前状态 \P

设备MCU发送:

hea	nder (2B)	len (2B)	cmd(1B)	sn(1B)	flags(2B)	action(1B)	dev_status(8B)	checksum(1B)
()xFFFF	0x000E	0x05	0x##	0x0000	0x04	设备状态	0x##

注:

1. 设备状态(dev_status)使用一个或多个字节表示。例如数据包为

0x07 FE FE FE 00 0A 03 03 时, 其格式为:

字节序	位序	数据内容	说明
byte0	bit7 bit6 bit1 bit0	0ь0000111	LED_OnOff,类型为bool,值为true:字段bit0,字段值为0b1; LED_Color,类型为enum,值为3:字段bit2~bit1,字段值为0b11;
byte1		0xFE	LED_R, 类型为uint8, 字段值为254; 实际值计算公式y=1.000000*x+(0.000000) x最小值为0,最大值为254
byte2		0xFE	LED_G,类型为uint8,字段值为254; 实际值计算公式y=1.000000*x+(0.000000) x最小值为0,最大值为254
byte3		0xFE	LED_B, 类型为uint8, 字段值为254; 实际值计算公式y=1.000000*x+(0.000000) x最小值为0,最大值为254
byte4 byte5		0x00 0A	Motor_Speed,类型为uint16,字段值为10; 实际值计算公式y=1.000000*x+(-5.000000) x最小值为0,最大值为10
byte6	bit7 bit6 bit1 bit0	0b00000011	Alert_1,类型为bool,值为true:字段bit0,字段值为0b1; Alert_2,类型为bool,值为true:字段bit1,字段值为0b1;

byte7	bit7 bit6	Fault_LED,类型为bool,值为true:字段bit0,字段值为0b1; Fault_Motor,类型为bool,值为true:字段bit1,字段值为0b1;
	bit1 bit0	

- 2. 关于发送频率。当设备MCU收到WiFi模组控制产生的状态变化,设备MCU应立刻主动上报当前状态,发送频率不受限制。但如设备的状态的变化是由于用户触发或环境变化所产生的,其发送的频率不能快于6秒每次。建议按需上报,有特殊上报需求请联系机智云。
- 3. 设备MCU需要每隔10分钟定期主动上报当前状态。

WiFi模组回复:

header (2B)	len(2B)	cmd (1B)	sn(1B)	flags(2B)	checksum(1B)
0xFFFF	0x0005	0x06	0x##	0x0000	0x##

4.10 WiFi模组控制设备¶

WiFi模组发送:

header (2B)	len(2B)	cmd (1B)	sn (1B)	flags (2B)	action(1B)	attr_flags(1B)	attr_vals(6B)	checksum(1B)	
0xFFFF	0x000D	0x03	0x##	0x0000	0x01	是否设置标志位	设置数据值	0x##	

注:

1. 是否设置标志位(attr_flags)表示相关的数据值是否为有效值,相关的标志位为1表示值有效,为0表示值无效,从石到左的标志位依次为:

bit0:设置LED_OnOff

bit1: 设置LED_Color

bit2: 设置LED_R

bit3: 设置LED_G

bit4: 设置LED_B

bit5: 设置Motor_Speed

2. 设置数据值($attr_vals$)存放数据值, 只有相关的设置标志位为1时,数据值才有效。例如数据包为 0x07 FE FE FE 00 0A 时,其格式为:

字节序	bit序	数据内容	说明
byte0	bit7 bit6 bit1 bit0	0ь00000111	LED_OnOff,类型为bool,值为true:字段bit0,字段值为0b1; LED_Color,类型为enum,值为3:字段bit2~bit1,字段值为0b11;
bytel		0xFE	LED_R, 类型为uint8, 字段值为254; 实际值计算公式y=1.000000*x+(0.000000) x最小值为0,最大值为254

byte2	0xFE	LED_G, 类型为uint8, 字段值为254; 实际值计算公式y=1.000000*x+(0.000000) x最小值为0,最大值为254
byte3	0xFE	LED_B, 类型为uint8, 字段值为254; 实际值计算公式y=1.000000*x+(0.000000) x最小值为0,最大值为254
byte4 byte5	0x00 0A	Motor_Speed, 类型为uint16, 字段值为10; 实际值计算公式y=1.000000*x+(-5.000000) x最小值为0,最大值为10

设备MCU回复:

header (2B)	len(2B)	cmd(1B)	sn (1B)	flags(2B)	checksum(1B)
0xFFFF	0x0005	0x04	0x##	0x0000	0x##

重要说明:无论设备的状态是否发生变化,MCU需要立即上报一次最新的设备状态,格式和流程参见4.9部分。

4.11 MCU请求WiFi模组进入产测模式¶

设备MCU发送:

header(2B) len(2B)		cmd(1B)	sn (1B)	flags(2B)	checksum(1B)
FF FF	0x05	0x13	0x##	0x0000	0x##

WiFi模组回复:

header (2B)	header (2B) 1en (2B)		sn (1B)	flags(2B)	checksum(1B)
FF FF	0x05	0x14	0x##	0x0000	0x##

4.12 MCU通知WiFi模组进入可绑定模式¶

设备MCU发送:

header(2B) len(2B)		cmd(1B)	cmd(1B) sn(1B)		checksum(1B)
FF FF	0x05	0x15	0x##	0x0000	0x##

WiFi模组回复:

header (2B) len (2B) cmd (1B)		cmd(1B)	sn (1B)	flags(2B)	checksum(1B)
FF FF	0x05	0x16	0x##	0x0000	0x##

注:

可绑定的时间由"获取设备信息"时指定。当可绑定的时间不为0时,设备上电后,自动在可绑定时间的秒数内会处于可绑定模式。

4.13 MCU请求获取网络时间¶

设备MCU发送:

header(2B) 1en(2B)		cmd(1B)	sn (1B)	flags(2B)	checksum(1B)
FF FF	0x05	0x17	0x##	0x0000	0x##

WiFi模组回复:

header (2B)	len (2B)	cmd (1B)	sn(1B)	flags(2B)	time(7B)	checksum(1B)
FF FF	0x0C	0x18	0x##	0x0000		0x##

Time用7个字节表示, 0x07 DF 01 02 03 04 05格式如下:

字节序	位序	数据内容	说明
byte0 byte1		07 DF	年(2015, 网络字节序)
byte2		01	月
byte3		02	日
byte4		03	时
byte5		04	分
byte6		05	秒

4.14 大数据下发:数据发起者请求向数据接收者发送大数据』

大数据发起者发送:

header (2B)	len (2B)	cmd (1B)	sn(1B)	flags(2B)	大数据信息(##B)	checksum(1B)
FF FF	0x##	0x19	0x##	0x0000		0x##

序号	字段名称	字节长度 (B)	内容说明
1	数据大小	4	请求传送的数据字节大小
2	数据校验码长度1en	2	len(数据校验码)
3	数据校验码	len	数据校验码的内容,使用MD5校验算法

大数据接收者回复:

header (2B)	1en(2B)	cmd (1B)	sn(1B)	flags(2B)	checksum(1B)
FF FF	0x05	0x1A	0x##	0x0000	0x##

4.15 大数据下发:数据接收者告知数据发起者可以开始发送数据』

大数据发起者发送:

header (2B)	len (2B)	cmd(1B)	sn (1B)	flags(2B)	大数据信息(##B)	checksum(1B)
FF FF	0x##	0x1B	0x##	0x0000		0x##

大数据信息:

序号	字段名称	字节长度(B)	内容说明

1	数据校验码长度1en	2	len(数据校验码)
2	数据校验码	len	向WiFi模组回传准备接收数据 的数据校验码的内容
3	分片大小	2	大数据需要分片传送。由MCU 指定数据分片的大小,分片 大小建议设为128B

大数据发起者回复:

header (2B)	len(2B)	cmd (1B)	sn (1B)	flags(2B)	checksum(1B)
FF FF	0x05	0x1C	0x##	0x0000	0x##

4.16 大数据下发:数据发送者向数据接收者下发数据分片 1

大数据发起者发送:

header(2B)	len (2B)	cmd (1B)	sn(1B)	flags(2B)	大数据信息(##B)	checksum(1B)
FF FF	0x##	0x1D	0x##	0x0000		0x##

大数据信息:

序号	字段名称	字节长度(B)	内容说明
1	分片序号	2	当前数据包的分片序号,分 片序号从1开始计算
2	总分片数	2	
3	分片数据内容		

大数据接收者回复:

header(2B)	len(2B)	cmd(1B)	sn (1B)	flags(2B)	checksum(1B)
FF FF	0x05	0x1E	0x##	0x0000	0x##

4.17 大数据下发:数据发起者向数据接收者通知取消数据下发

大数据发起者发送:

header (2B)	1en(2B)	cmd (1B)	sn(1B)	flags(2B)	checksum(1B)
FF FF	0x05	0x1F	0x##	0x0000	0x##

大数据接收者回复:

header(2B)	len(2B)	cmd (1B)	sn (1B)	flags(2B)	checksum(1B)
FF FF	0x05	0x20	0x##	0x0000	0x##

4.18 MCU获取通讯模组的信息¶

通讯模组上电后,进入正常工作模式后,MCU可以向通讯模组查询相关信息。 各产品可以根据需要判断是否支持此协议。MCU发出:

header(2B) len(2B) cmd(1B) sn(1B) flags(2B) type(1B) checksum

FF FF	0x06	0x21	0x##	0x0000	0x00	0x##

WiFi模组回复:

header (2B)	len (2B)	cmd (1B)	sn (1B)	flags(2B)	WiFiInfo(65B)	checksum(1B)
FF FF	0x46	0x22	0x##	0x0000		0x##

Wifi Info:

序号	字段名称	字节长度(B)	内容说明
1	ModuleType	1	0x01: WiFi模组
2	通用串口协议版本号	8	字符串,形如"00000004"
3	硬件版本号	8	字符串,形如"HFLPB100"
4	软件版本号	8	字符串,形如"04020100"
5	MAC	16	字符串,形如: 5CF9388AE8F0, 全大写,前对齐,后补零
6	IP	16	字符串,形如: 192.168.100.254
7	设备属性	8	设备属性,预留。

2G/3G/4G模组回复:

header (2B)	len(2B)	cmd (1B)	sn (1B)	flags(2B)	2GInfo(#B)	checksum(1B)
FF FF	0x##	0x22	0x##	0x0000		0x##

2GInfo:

序号	字段名称	字节长度(B)	内容说明
73, 42	于权石你	于中区层(b)	四台见切
1	Туре	1	0x02: 2G/3G/4G模组
2	通用串口协议版本号	8	字符串,形如"00000004"
3	硬件版本号	8	字符串
4	软件版本号	8	字符串
5	设备属性	8	设备属性,预留。
6	IMEI	16	字符串,形如: "355065053311001"
7	IMSI	16	字符串,形如: "355065053311001"
8	MCC移动国家码	8	字符串,形如: "460"
9	MNC移动网络码	8	字符串,形如: "03"
10	CellNum基站数量	1	无符号数字,范围: 0-255
11	基站信息长度	1	无符号数字,范围: 0-255, 目前长度固定为5
12	基站1信息	5	参见下表:基站信息
13		5	参见下表:基站信息
14	基站n信息	5	参见下表:基站信息

基站信息:

序号	字段名称	字节长度(B)	内容说明
1	LAC区域ID	2	无符号数字,范围: 0-65535
2	CellID基站ID	2	无符号数字,范围: 0-65535
3	RSSI信号强度	1	无符号数字,范围: 0-255

4.19 MCU请求通讯模组进行事务处理¶

说明:

- 1、此过程为MCU申请模组做事务处理的通用流程,一共两次交互,每次交互两次通讯,因为事务处理需要一段时间,第一个来回和第二个来回之间不可用阻塞的方式进行等待。
- 2、具体的事务处理数据,参见第4部分的事务附录。

MCU向通讯模组请求事务处理, MCU => 通讯模组。

header (2B)	len (2B)	cmd (1B)	sn(1B)	flags(2B)	infol(#B)	checksum(1B)
FF FF	0x##	0x23	0x##	0x0000		0x##

通讯模组响应MCU,表示收到请求。

header(2B)	len (2B)	cmd (1B)	sn(1B)	flags(2B)	info2(#B)	checksum(1B)
FF FF	0x##	0x24	0x##	0x0000		0x##

在此期间,MCU不可以进行阻塞等待,通常会有秒级的时间间隔。

通讯模组事务处理完成后, 通知MCU处理结果。

header (2B)	len (2B)	cmd (1B)	sn(1B)	flags(2B)	info3(#B)	checksum(1B)
FF FF	0x##	0x25	0x##	0x0000		0x##

MCU响应通讯模组。

header (2B)	len (2B)	cmd (1B)	sn(1B)	flags(2B)	info4(#B)	checksum(1B)
FF FF	0x##	0x26	0x##	0x0000		0x##

事务处理一: MCU请求GAgent进行设备OTA检查

infol: MCU向通讯模组进行子设备OTA检查, MCU => 通讯模组。

序号	字段名称	字节长度(B)	内容说明
1	SubCmd	1	0x01
2	PK	32	字符串
3	DID	32	字符串
4	硬件版本号	8	字符串
5	软件版本号	8	字符串

6	TAG	1	0:不需要GAgent比较结果,仅
			需要传送软件版本号和URL;
			1: 需要GAgent比较结果,如果
			需要升级,直接发送大文件

info2: 空。

info3: 通讯模组通知MCU OTA检查结果。

当TAG为0的时候,不需要GAgent比较结果,仅需要传送软件版本号和URL

序号	字段名称	字节长度(B)	内容说明
1	SubCmd	1	0x02
2	SoftVersion	8	
3	URL Length	2	
4	URL	URL Length	

不判断是否需要升级,不进行大文件发送。

当TAG为1的时候,需要GAgent比较结果,如果需要升级,直接发送大文件

序号	字段名称	字节长度(B)	内容说明
1	SubCmd	1	0x02
2	Result	1	处理结果, 0x00: 不需要升级; 0x01: 需要升级;

当需要升级时,模组在发送本命令并得到MCU的回复后,便立即启动大文件发送info4:空。

事务处理二: MCU请求GAgent进行文件下载

infol: MCU向通讯模组进行文件下载, MCU => 通讯模组。

序号	字段名称	字节长度(B)	内容说明
1	SubCmd	1	0x03
2	URL Length	2	
3	URL	URL Length	

info2: 空。

info3: 通讯模组通知MCU OTA检查结果。

序号	字段名称	字节长度(B)	内容说明
1	SubCmd	1	0x04
2	Result	1	处理结果, 0x00:成功;0x01:失败;

当文件下载成功时,模组会立即启动大文件传输过程。

info4: 空。