The Real Effects of Environmental Activist Investing

S. Lakshmi Naaraayanan (LBS), Kunal Sachdeva (Rice), Varun Sharma (LBS) 2021 SFS North American Cavalcade

Alex von Hafften

UW-Madison

February 8, 2022

• Firms can create negative externalities through environmental impacts.

- Firms can create negative externalities through environmental impacts.
 - ▶ (e.g., toxic chemical release, production emissions, GHG emissions)

- Firms can create negative externalities through environmental impacts.
 - ▶ (e.g., toxic chemical release, production emissions, GHG emissions)
- Environmental activism is shareholders engaging with management about environmental impact of their firm.

- Firms can create negative externalities through environmental impacts.
 - ▶ (e.g., toxic chemical release, production emissions, GHG emissions)
- Environmental activism is shareholders engaging with management about environmental impact of their firm.
- Environmental activism is growing.

- Firms can create negative externalities through environmental impacts.
 - ▶ (e.g., toxic chemical release, production emissions, GHG emissions)
- Environmental activism is shareholders engaging with management about environmental impact of their firm.
- Environmental activism is growing.
- What are the real effects of environmental activism on targeted firms and their environmental impacts?

Approach

• Naaraayanan et al (2021) evaluates the effects of the Boardroom Accountability Project (BAP).

Approach

- Naaraayanan et al (2021) evaluates the effects of the Boardroom Accountability Project (BAP).
- They use a difference-in-differences specification to estimate the effectiveness of climate-focused engagements.

• Targeted firms reduced emissions.

- Targeted firms reduced emissions.
 - ▶ Reduce toxic chemical release by average of 13%.

- Targeted firms reduced emissions.
 - Reduce toxic chemical release by average of 13%.
- Reduced negative externalities on local populations.

- Targeted firms reduced emissions.
 - ▶ Reduce toxic chemical release by average of 13%.
- Reduced negative externalities on local populations.
- Due to improved abatement initiatives not reduced production.

- Targeted firms reduced emissions.
 - ▶ Reduce toxic chemical release by average of 13%.
- Reduced negative externalities on local populations.
- Due to improved abatement initiatives not reduced production.
- Abatement hurts the target firms' financial performance.

• Mature literature on shareholder activism affecting corporate governance, financial performance, and operational performance.

- Mature literature on shareholder activism affecting corporate governance, financial performance, and operational performance.
 - Nesbitt (1994), Smith (1996), Wahal (1996), Huson (1997), Carleton,
 Nelson, and Weisbach (1998), Del Guercio and Hawkins (1999).

- Mature literature on shareholder activism affecting corporate governance, financial performance, and operational performance.
 - Nesbitt (1994), Smith (1996), Wahal (1996), Huson (1997), Carleton,
 Nelson, and Weisbach (1998), Del Guercio and Hawkins (1999).
- Growing literature on investor preferences for socially responsible investments.

- Mature literature on shareholder activism affecting corporate governance, financial performance, and operational performance.
 - Nesbitt (1994), Smith (1996), Wahal (1996), Huson (1997), Carleton,
 Nelson, and Weisbach (1998), Del Guercio and Hawkins (1999).
- Growing literature on investor preferences for socially responsible investments.
 - Atta-Darkua and Dimson (2019), Becht et al (2019), Broccardo et al (2020), Chowdry et al (2018), Hart and Zingales (2017), Morgan and Tumlinson (2019), Oehmke and Opp (2020).

- Mature literature on shareholder activism affecting corporate governance, financial performance, and operational performance.
 - Nesbitt (1994), Smith (1996), Wahal (1996), Huson (1997), Carleton,
 Nelson, and Weisbach (1998), Del Guercio and Hawkins (1999).
- Growing literature on investor preferences for socially responsible investments.
 - Atta-Darkua and Dimson (2019), Becht et al (2019), Broccardo et al (2020), Chowdry et al (2018), Hart and Zingales (2017), Morgan and Tumlinson (2019), Oehmke and Opp (2020).
- This paper fills gap on how shareholders can influence corporate environmental behavior, impacts on local populations, and implications on financial performance.

 The New York City Pension System initiated BAP on November 4th, 2014.

- The New York City Pension System initiated BAP on November 4th, 2014.
- Goal was to hold corporate boards of portfolio companies more accountable to long-term shareholders about certain issues.

- The New York City Pension System initiated BAP on November 4th, 2014.
- Goal was to hold corporate boards of portfolio companies more accountable to long-term shareholders about certain issues.
 - Board diversity, climate change risks, employee treatment, and excessive CEO pay.

- The New York City Pension System initiated BAP on November 4th, 2014.
- Goal was to hold corporate boards of portfolio companies more accountable to long-term shareholders about certain issues.
 - Board diversity, climate change risks, employee treatment, and excessive CEO pay.
- Without prior announcement, BAP submitted proposals requesting proxy access bylaws be added to targeted firms' corporate charters.

- The New York City Pension System initiated BAP on November 4th, 2014.
- Goal was to hold corporate boards of portfolio companies more accountable to long-term shareholders about certain issues.
 - Board diversity, climate change risks, employee treatment, and excessive CEO pay.
- Without prior announcement, BAP submitted proposals requesting proxy access bylaws be added to targeted firms' corporate charters.
- These proposals posed a credible threat that long-term shareholders could nominate directors to the boards.

- The New York City Pension System initiated BAP on November 4th, 2014.
- Goal was to hold corporate boards of portfolio companies more accountable to long-term shareholders about certain issues.
 - Board diversity, climate change risks, employee treatment, and excessive CEO pay.
- Without prior announcement, BAP submitted proposals requesting proxy access bylaws be added to targeted firms' corporate charters.
- These proposals posed a credible threat that long-term shareholders could nominate directors to the boards.
- Naaraayanan et al (2021) focus on firms targeted based on environmental reasons.

Data

Description	Source
Targeted firms	BAP
Standard firm-level data	Compustat, CRSP, ISS, ASSET4
Plant-level emissions data	TRI and GHGRP from EPA
Plant ownership	FOIA request
Local pollutant intensity	RSEI from EPA
Outdoor air quality	AQS
Plant-level electric output	EIA

Estimate probability of selection as target firm using logit regression:

$$\begin{split} P(\textit{Environment}_i) &= \Lambda(\beta_1 \mathbb{1}(\textit{FossilFree}_i) + \beta_2 \textit{Firm Size}_{i,t-1} \\ &+ \beta_3 \textit{Market to Book}_{i,t-1} + \beta_4 \textit{Returns}_{i,t-1} \\ &+ \beta_5 \textit{Profitability}_{i,t-1} + \beta_6 \textit{Institutional Ownership}_{i,t-1} \\ &+ \beta_7 \textit{ASSET4 Score}_{i,t-1}) \end{split}$$

• $\mathbb{I}(Environment_i)$ equals one if the BAP targets firm i.

$$\begin{split} P(\textit{Environment}_i) &= \Lambda(\beta_1 \mathbb{1}(\textit{FossilFree}_i) + \beta_2 \textit{Firm Size}_{i,t-1} \\ &+ \beta_3 \textit{Market to Book}_{i,t-1} + \beta_4 \textit{Returns}_{i,t-1} \\ &+ \beta_5 \textit{Profitability}_{i,t-1} + \beta_6 \textit{Institutional Ownership}_{i,t-1} \\ &+ \beta_7 \textit{ASSET4 Score}_{i,t-1}) \end{split}$$

- $\mathbb{1}(Environment_i)$ equals one if the BAP targets firm i.
- $\mathbb{1}(FossilFree_i)$ equals one if firm i within top 100 coal and top 100 oil and gas publicly traded reserve holders.

$$\begin{split} \textit{P}(\textit{Environment}_i) &= \Lambda(\beta_1 \mathbb{1}(\textit{FossilFree}_i) + \beta_2 \textit{Firm Size}_{i,t-1} \\ &+ \beta_3 \textit{Market to Book}_{i,t-1} + \beta_4 \textit{Returns}_{i,t-1} \\ &+ \beta_5 \textit{Profitability}_{i,t-1} + \beta_6 \textit{Institutional Ownership}_{i,t-1} \\ &+ \beta_7 \textit{ASSET4 Score}_{i,t-1}) \end{split}$$

- $\mathbb{1}(Environment_i)$ equals one if the BAP targets firm i.
- $\mathbb{1}(FossilFree_i)$ equals one if firm i within top 100 coal and top 100 oil and gas publicly traded reserve holders.
- Firm Size_{i,t} is log book asset of firm i in year t.

$$\begin{split} \textit{P}(\textit{Environment}_i) &= \Lambda(\beta_1 \mathbb{1}(\textit{FossilFree}_i) + \beta_2 \textit{Firm Size}_{i,t-1} \\ &+ \beta_3 \textit{Market to Book}_{i,t-1} + \beta_4 \textit{Returns}_{i,t-1} \\ &+ \beta_5 \textit{Profitability}_{i,t-1} + \beta_6 \textit{Institutional Ownership}_{i,t-1} \\ &+ \beta_7 \textit{ASSET4 Score}_{i,t-1}) \end{split}$$

- $\mathbb{I}(Environment_i)$ equals one if the BAP targets firm i.
- $\mathbb{1}(FossilFree_i)$ equals one if firm i within top 100 coal and top 100 oil and gas publicly traded reserve holders.
- Firm Size_{i,t} is log book asset of firm i in year t.
- Market to Book_{i,t} is market equity plus book debt over book assets.

$$\begin{split} \textit{P}(\textit{Environment}_i) &= \Lambda(\beta_1 \mathbb{1}(\textit{FossilFree}_i) + \beta_2 \textit{Firm Size}_{i,t-1} \\ &+ \beta_3 \textit{Market to Book}_{i,t-1} + \beta_4 \textit{Returns}_{i,t-1} \\ &+ \beta_5 \textit{Profitability}_{i,t-1} + \beta_6 \textit{Institutional Ownership}_{i,t-1} \\ &+ \beta_7 \textit{ASSET4 Score}_{i,t-1}) \end{split}$$

- $\mathbb{I}(Environment_i)$ equals one if the BAP targets firm i.
- $\mathbb{1}(FossilFree_i)$ equals one if firm i within top 100 coal and top 100 oil and gas publicly traded reserve holders.
- Firm Size_{i,t} is log book asset of firm i in year t.
- Market to Book_{i,t} is market equity plus book debt over book assets.
- Returns_{i,t} is stock return in past 12 months.

$$\begin{split} \textit{P}(\textit{Environment}_i) &= \Lambda(\beta_1 \mathbb{1}(\textit{FossilFree}_i) + \beta_2 \textit{Firm Size}_{i,t-1} \\ &+ \beta_3 \textit{Market to Book}_{i,t-1} + \beta_4 \textit{Returns}_{i,t-1} \\ &+ \beta_5 \textit{Profitability}_{i,t-1} + \beta_6 \textit{Institutional Ownership}_{i,t-1} \\ &+ \beta_7 \textit{ASSET4 Score}_{i,t-1}) \end{split}$$

- $\mathbb{I}(Environment_i)$ equals one if the BAP targets firm i.
- $\mathbb{1}(FossilFree_i)$ equals one if firm i within top 100 coal and top 100 oil and gas publicly traded reserve holders.
- Firm Size_{i,t} is log book asset of firm i in year t.
- Market to Book_{i,t} is market equity plus book debt over book assets.
- $Returns_{i,t}$ is stock return in past 12 months.
- Profitability_{i,t} is EBITDA over sales.

$$\begin{split} \textit{P}(\textit{Environment}_i) &= \Lambda(\beta_1 \mathbb{1}(\textit{FossilFree}_i) + \beta_2 \textit{Firm Size}_{i,t-1} \\ &+ \beta_3 \textit{Market to Book}_{i,t-1} + \beta_4 \textit{Returns}_{i,t-1} \\ &+ \beta_5 \textit{Profitability}_{i,t-1} + \beta_6 \textit{Institutional Ownership}_{i,t-1} \\ &+ \beta_7 \textit{ASSET4 Score}_{i,t-1}) \end{split}$$

- $\mathbb{I}(Environment_i)$ equals one if the BAP targets firm i.
- $\mathbb{1}(FossilFree_i)$ equals one if firm i within top 100 coal and top 100 oil and gas publicly traded reserve holders.
- Firm Size_{i,t} is log book asset of firm i in year t.
- Market to Book_{i,t} is market equity plus book debt over book assets.
- *Returns*_{i,t} is stock return in past 12 months.
- Profitability_{i,t} is EBITDA over sales.
- ullet Institutional Ownership $_{i,t}$ is % of shares held by institutional investors.

$$\begin{split} \textit{P}(\textit{Environment}_i) &= \Lambda(\beta_1 \mathbb{1}(\textit{FossilFree}_i) + \beta_2 \textit{Firm Size}_{i,t-1} \\ &+ \beta_3 \textit{Market to Book}_{i,t-1} + \beta_4 \textit{Returns}_{i,t-1} \\ &+ \beta_5 \textit{Profitability}_{i,t-1} + \beta_6 \textit{Institutional Ownership}_{i,t-1} \\ &+ \beta_7 \textit{ASSET4 Score}_{i,t-1}) \end{split}$$

- 1(Environment_i) equals one if the BAP targets firm i.
- $\mathbb{I}(FossilFree_i)$ equals one if firm i within top 100 coal and top 100 oil and gas publicly traded reserve holders.
- Firm Size_{i,t} is log book asset of firm i in year t.
- Market to Book_{i,t} is market equity plus book debt over book assets.
- Returns_{i,t} is stock return in past 12 months.
- Profitability_{i,t} is EBITDA over sales.
- *Institutional Ownership*_{i,t} is % of shares held by institutional investors.
- ASSET4 Score_{i,t} is environmental rating by Thomson Reuters

Target Selection Results

Propensity Score Matching

• Estimate propensity of being targeted by BAP from logit regression.

Propensity Score Matching

- Estimate propensity of being targeted by BAP from logit regression.
- Match each targeted firm in industry *j* and year *t* with the untargeted firm in industry *j* and year *t* with the closest propensity score.

Propensity Score Matching

- Estimate propensity of being targeted by BAP from logit regression.
- Match each targeted firm in industry j and year t with the untargeted firm in industry j and year t with the closest propensity score.
- Within industry matching controls for aggregate industry-level trends (e.g., changes in oil prices).

Use difference-in-differences specification to compare plants of targeted firms to plants of a matched control firm:

$$Y_{i,c,t} = \beta_1 \mathbb{1}(Post_{i,t}) + \beta_2 \mathbb{1}(Post_{i,t}) \mathbb{1}(Environment_i) + \delta_{i,c} + \delta_{c,t} + \varepsilon_{i,c,t}$$

• $Y_{i,c,t}$ is the outcome associated with chemical or gas c emitted by a plant i at time t.

Use difference-in-differences specification to compare plants of targeted firms to plants of a matched control firm:

$$Y_{i,c,t} = \beta_1 \mathbb{1}(\textit{Post}_{i,t}) + \beta_2 \mathbb{1}(\textit{Post}_{i,t}) \mathbb{1}(\textit{Environment}_i) + \delta_{i,c} + \delta_{c,t} + \varepsilon_{i,c,t}$$

- $Y_{i,c,t}$ is the outcome associated with chemical or gas c emitted by a plant i at time t.
- $\mathbb{1}(Post_{i,t})$ equals one for plant-years following BAP targeting.

Use difference-in-differences specification to compare plants of targeted firms to plants of a matched control firm:

$$Y_{i,c,t} = \beta_1 \mathbb{1}(\textit{Post}_{i,t}) + \beta_2 \mathbb{1}(\textit{Post}_{i,t}) \mathbb{1}(\textit{Environment}_i) + \delta_{i,c} + \delta_{c,t} + \varepsilon_{i,c,t}$$

- $Y_{i,c,t}$ is the outcome associated with chemical or gas c emitted by a plant i at time t.
- $\mathbb{1}(Post_{i,t})$ equals one for plant-years following BAP targeting.
- $\mathbb{1}(Environment_i)$ equals one if the BAP targets the firm.

Use difference-in-differences specification to compare plants of targeted firms to plants of a matched control firm:

$$Y_{i,c,t} = \beta_1 \mathbb{1}(Post_{i,t}) + \beta_2 \mathbb{1}(Post_{i,t}) \mathbb{1}(Environment_i) + \delta_{i,c} + \delta_{c,t} + \varepsilon_{i,c,t}$$

- $Y_{i,c,t}$ is the outcome associated with chemical or gas c emitted by a plant i at time t.
- $\mathbb{1}(Post_{i,t})$ equals one for plant-years following BAP targeting.
- $\mathbb{1}(Environment_i)$ equals one if the BAP targets the firm.
- \bullet $\delta_{i,c}$ and $\delta_{c,t}$ are plant-chemical and chemical-time FEs, respectively.

Reduction in Toxic Chemical Release

$$Y_{i,c,t} \equiv \log \left(1 + \frac{Emission_{i,c,t}}{COGS_{i,t}} \right)$$

Reduction in Toxic Chemical Release

	P	anel A: Toxic chemical releas	se
Dependent variable		$Log(1+Release/COGS_{t-1})$	
_	Total	On-site	Off-site
	(1)	(2)	(3)
Post	0.003	0.006	0.005
	(0.043)	(0.038)	(0.011)
Post × Environment	-0.050***	-0.059***	0.005
	(0.019)	(0.015)	(0.007)
Plant × Chemical fixed effects	Yes	Yes	Yes
Chemical × Year fixed effects	Yes	Yes	Yes
R ²	0.82	0.83	0.73
Observations	59,983	59,983	59,983

This estimate represents a decrease of $13\ \%$ relative to the sample mean emission.

Reduction in Pollution

Results generally hold across types of pollutants:

• β_2 is negative for total and on-site chemical release and insignificant for off-site. No evidence of moving chemicals off-site.

Reduction in Pollution

Results generally hold across types of pollutants:

- β_2 is negative for total and on-site chemical release and insignificant for off-site. No evidence of moving chemicals off-site.
- β_2 is negative for stack air (intended release), fugitive emissions (leaks), and surface water discharges.

Reduction in Pollution

Results generally hold across types of pollutants:

- β_2 is negative for total and on-site chemical release and insignificant for off-site. No evidence of moving chemicals off-site.
- β_2 is negative for stack air (intended release), fugitive emissions (leaks), and surface water discharges.
- β_2 is negative for most GHG emissions (methane and nitrous oxide; insignificant for carbon dioxide).

Reduction in Negative Environmental Externalities

 Fewer emissions of chemical associated with respiratory, developmental, nervous system, hematologic (blood-related), and hepatic (liver-related) damage to humans.

Reduction in Negative Environmental Externalities

- Fewer emissions of chemical associated with respiratory, developmental, nervous system, hematologic (blood-related), and hepatic (liver-related) damage to humans.
- Improvements in air quality (less ozone, sulfur dioxide and particulate matter) around plants.

Reduction in Negative Environmental Externalities

- Fewer emissions of chemical associated with respiratory, developmental, nervous system, hematologic (blood-related), and hepatic (liver-related) damage to humans.
- Improvements in air quality (less ozone, sulfur dioxide and particulate matter) around plants.
- Evidence that reductions near population centers are significant.

How are firms reducing pollution?

No evidence of firms reducing production.

Dependent variable is usage of chemical c in t relative to usage of chemical c in first year of the sample.

How are firms reducing pollution?

Firms increased abatement efforts.

	Panel B: Abate	ement efforts	
Dependent variable	Log (1 + Numbe	er of initiatives)	
Initiative	Spill prevention	Operations (2)	
	(1)		
Post	-0.002 (0.002)	-0.009* (0.005)	
Post × Environment	0.006** (0.003)	0.004* (0.002)	
Plant × Chemical fixed effects Chemical × Year fixed effects	Yes Yes	Yes Yes	
R ² Observations	0.92 42,065	0.91 42,065	

These estimates represent a 30% increase in abatement initiatives relative to the sample mean.

Do the increased abatement costs potential financial benefits in the short-run?

Naaraayanan et al (2021) document two financial outcomes for firms targeted by BAP.

Neutral equity response.

Do the increased abatement costs potential financial benefits in the short-run?

Naaraayanan et al (2021) document two financial outcomes for firms targeted by BAP.

- Neutral equity response.
- Negative relationship between environmental improvements and financial performance.

Neutral Equity Response

No change in cumulative abnormal returns around announcement date.

Interpretation: Investor perceive the benefit of increased sustainability balance the higher costs.

Negative Financial Performance

Targeted firms saw

• Lower return on assets

Dependent variable	Return on Assets	Profitability	Altman's Z-score	
	(1)	(2)	(3)	
Post	-0.037* (0.021)	-0.057* (0.033)	-0.353 (0.225)	
Year fixed effects	Yes	Yes	Yes	
Firm fixed effects	Yes	Yes	Yes	
R ²	0.28	0.30	0.69	
Observations	499	499	477	

Negative Financial Performance

Targeted firms saw

- Lower return on assets
- Lower profitability (proxy for financial performance)

Dependent variable	Return on Assets	Profitability	Altman's Z-score	
	(1)	(2)	(3)	
Post	-0.037* (0.021)	-0.057* (0.033)	-0.353 (0.225)	
Year fixed effects	Yes	Yes	Yes	
Firm fixed effects	Yes	Yes	Yes	
R ²	0.28	0.30	0.69	
Observations	499	499	477	

Negative Financial Performance

Targeted firms saw

- Lower return on assets
- Lower profitability (proxy for financial performance)
- No change to Z-score (proxy for distress risk)

Dependent variable	Return on Assets	Profitability	Altman's Z-score
	(1)	(2)	(3)
Post	-0.037* (0.021)	-0.057* (0.033)	-0.353 (0.225)
Year fixed effects	Yes	Yes	Yes
Firm fixed effects	Yes	Yes	Yes
R ²	0.28	0.30	0.69
Observations	499	499	477

• Their approach estimates the treatment effect on the treated.

- Their approach estimates the treatment effect on the treated.
- They discuss effects on "local economies" a lot, but they're focus is pollution effects on local populations. Not evaulating at local economic outcome...

- Their approach estimates the treatment effect on the treated.
- They discuss effects on "local economies" a lot, but they're focus is pollution effects on local populations. Not evaulating at local economic outcome...
- Need model to evaluate the net benefits (how to evaluate non-pecuniary benefits).

- Their approach estimates the treatment effect on the treated.
- They discuss effects on "local economies" a lot, but they're focus is pollution effects on local populations. Not evaulating at local economic outcome...
- Need model to evaluate the net benefits (how to evaluate non-pecuniary benefits).
- Robustness: Try synthetic control instead of propensity score matching.

Weaknesses (con't)

Some skepticism about applicability of propensity score matching.

	Panel A: Plant and firm characteristics, pooled sample			
_	N	N Mean	Median	Std. dev
	(1)	(2)	(3)	
$Log(1+Release/COGS_{t-1})$	59,983	0.391	0.001	0.886
$Log(1+ On-site release/COGS_{t-1})$	59,983	0.342	0.000	0.833
$Log(1+ Off-site release/COGS_{t-1})$	59,983	0.048	0.000	0.264
$Log(1+ Methane/Output_{t-1})$	11,039	0.001	0.000	0.043
$Log(1+ Nitrous oxide/Output_{t-1})$	11,039	0.002	0.000	0.040
$Log(1+ Carbon dioxide/Output_{t-1})$	11,039	0.099	0.000	0.379
Log (Firm assets)	921	9.498	9.453	1.109
Profitability	921	0.098	0.098	0.137
Market-to-book	921	0.994	0.822	0.545
Environment score	921	0.002	-0.024	0.918

$$Median(log(1 + Release/COGS)) = 0$$
 $\implies Median(Release) = 0$
 \implies Half the sample has no emissions

Weaknesses (con't)

- Some skepticism about applicability of propensity score matching.
- Summary statistics from appendix:

	Panel A: Plant and firm characteristics, pooled sample			
_	N	N Mean	Median	Std. dev
	(1)	(2)	(3)	(4)
$Log(1+Release/COGS_{t-1})$	59,983	0.391	0.001	0.886
$Log(1+ On-site release/COGS_{t-1})$	59,983	0.342	0.000	0.833
$Log(1+ Off-site release/COGS_{t-1})$	59,983	0.048	0.000	0.264
$Log(1+ Methane/Output_{t-1})$	11,039	0.001	0.000	0.043
$Log(1+ Nitrous oxide/Output_{t-1})$	11,039	0.002	0.000	0.040
$Log(1+ Carbon dioxide/Output_{t-1})$	11,039	0.099	0.000	0.379
Log (Firm assets)	921	9.498	9.453	1.109
Profitability	921	0.098	0.098	0.137
Market-to-book	921	0.994	0.822	0.545
Environment score	921	0.002	-0.024	0.918

$$Median(log(1 + Release/COGS)) = 0$$
 $\implies Median(Release) = 0$
Half the sample has no emissions

• All results (pollution, financial performance) are all short-term. What are longer-term effects?

- All results (pollution, financial performance) are all short-term. What are longer-term effects?
- How to evaluate net benefits of environmental activism?

- All results (pollution, financial performance) are all short-term. What are longer-term effects?
- How to evaluate net benefits of environmental activism?
- How to think about agency conflicts regarding environmental impacts between shareholders and management?

- All results (pollution, financial performance) are all short-term. What are longer-term effects?
- How to evaluate net benefits of environmental activism?
- How to think about agency conflicts regarding environmental impacts between shareholders and management?
- What are the impacts on firms targeted for non-environment reason by the BAP?

- All results (pollution, financial performance) are all short-term. What are longer-term effects?
- How to evaluate net benefits of environmental activism?
- How to think about agency conflicts regarding environmental impacts between shareholders and management?
- What are the impacts on firms targeted for non-environment reason by the BAP?
 - ▶ E.g. Did board diversity change at firms targeted for a lack of diversity?