10/031698 PCT/JPGC/05260

PATENT OFFICE JAPANESE GOVERNMENT

04.08.00

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

1999年 8月 4 日 REC'D 21 SEP 2000

WIPO

PC1

顛 Application Number:

平成11年特許顯第220864号

駬 Applicant (s):

帝人株式会社

JP00105260

PRIORITY

COMPLIANCE WITH RULE 17.1(a) OR (b)

2000年 9月 8日

Commissioner, Patent Office

出証特2000-3070981 出証番号

【書類名】 特許願

【整理番号】 P32703

【提出日】 平成11年 8月 4日

【あて先】 特許庁長官殿

【国際特許分類】 C07D211/58

【発明の名称】 環状アミンCCR3拮抗剤

【請求項の数】 11

【発明者】

【住所又は居所】 東京都日野市旭が丘4丁目3番2号 帝人株式会社 東

京研究センター内

【氏名】 塩田 辰樹

【発明者】

【住所又は居所】 東京都日野市旭が丘4丁目3番2号 帝人株式会社 東

京研究センター内

【氏名】 須藤 正樹

【発明者】

【住所又は居所】 東京都日野市旭が丘4丁目3番2号 帝人株式会社 東

京研究センター内

【氏名】 横山 朋典

【発明者】

【住所又は居所】 東京都日野市旭が丘4丁目3番2号 帝人株式会社 東

京研究センター内

【氏名】 室賀 由美子

【発明者】

【住所又は居所】 東京都日野市旭が丘4丁目3番2号 帝人株式会社 東

京研究センター内

【氏名】 上村 孝

【特許出願人】

【識別番号】 000003001

【氏名又は名称】 帝人株式会社

【代表者】

安居 祥策

【代理人】

【識別番号】

100077263

【弁理士】

【氏名又は名称】

前田 純博

【手数料の表示】

【予納台帳番号】 010250

【納付金額】

21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】

要約書 1

【包括委任状番号】 9701951

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 環状アミンCCR3拮抗剤

【特許請求の範囲】

【請求項1】 下記式(I)

【化1】

$$\begin{array}{c}
R^{1} & \xrightarrow{(CH_{2})_{k}} & \xrightarrow{(CH_{2})_{k}} & \xrightarrow{O} & R^{4} \\
& \xrightarrow{(CH_{2})_{j}} & \xrightarrow{N} & \xrightarrow{(CH_{2})_{m}} & \xrightarrow{N-C} & (CH_{2})_{p} & \xrightarrow{R^{5}} & (CH_{2})_{q} - G - R^{6} & (I)
\end{array}$$

[式中、 R^1 はフェニル基、 C_3 ~ C_8 シクロアルキル基、またはヘテロ原子とし て酸素原子、硫黄原子、および/または窒素原子を1~3個有する芳香族複素環 基を表わし、上記 R^1 におけるフェニル基または芳香族複素環基は、ベンゼン環 、またはヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を1~ 3個有する芳香族複素環基と縮合して縮合環を形成してもよく、さらに上記 ${ t R}^1$ におけるフェニル基、C3~C8シクロアルキル基、芳香族複素環基、または縮合 環は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシ ル基、カルバモイル基、 $C_1 \sim C_6$ アルキル基、 $C_3 \sim C_8$ シクロアルキル基、 C_2 \sim C₆アルケニル基、C₁ \sim C₆アルコキシ基、C₁ \sim C₆アルキルチオ基、C₃ \sim C $_{5}$ アルキレン基、 C_{2} ~ C_{4} アルキレンオキシ基、 C_{1} ~ C_{3} アルキレンジオキシ基 、フェニル基、フェノキシ基、フェニルチオ基、ベンジル基、ベンジルオキシ基 、ベンゾイルアミノ基、 $C_9 \sim C_7$ アルカノイル基、 $C_9 \sim C_7$ アルコキカルボニル 基、 $C_2 \sim C_7$ アルカノイルオキシ基、 $C_2 \sim C_7$ アルカノイルアミノ基、 $C_2 \sim C_7$ N-アルキルカルバモイル基、 $C_4\sim C_9N-$ シクロアルキルカルバモイル基、C $_{1}$ ~ C_{6} アルキルスルホニル基、 C_{3} ~ C_{8} (アルコキシカルボニル)メチル基、Nフェニルカルバモイル基、ピペリジノカルボニル基、モルホリノカルボニル基 、1-ピロリジニルカルボニル基、式:-NH(C=O)O-で表わされる2価 基、式:-NH (C=S) O-で表わされる2価基、アミノ基、モノ ($C_1 \sim C_6$ アルキル)アミノ基、もしくは、ジ($C_1 \sim C_6$ アルキル)アミノ基で置換されて もよく、これらのフェニル基、 $C_3 \sim C_8$ シクロアルキル基、芳香族複素環基、ま

たは縮合環の置換基は、さらに任意個のハロゲン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、 $C_1 \sim C_6$ アルキル基、もしくは $C_1 \sim C_6$ アルコキシ基によって置換されていてもよい。

 R^2 は、水素原子、 $C_1\sim C_6$ アルキル基、 $C_2\sim C_7$ アルコキシカルボニル基、ヒドロキシ基、またはフェニル基を表わし、 R^2 における $C_1\sim C_6$ アルキル基またはフェニル基は、任意個のハロゲン原子、ヒドロキシ基、 $C_1\sim C_6$ アルキル基、もしくは $C_1\sim C_6$ アルコキシ基によって置換されてもよい。ただし、j=0のときは、 R^2 はヒドロキシ基ではない。

うは0~2の整数を表わす。

kは0~2の整数を表わす。

mは2~4の整数を表わす。

nは0または1を表わす。

 R^3 は、水素原子、または(それぞれ同一または異なった任意個のハロゲン原子、ヒドロキシ基、 $C_1 \sim C_6$ アルキル基、もしくは $C_1 \sim C_6$ アルコキシ基によって置換されていてもよい1または2個のフェニル基)によって置換されていてもよい $C_1 \sim C_6$ アルキル基を表わす。

 R^4 および R^5 は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、または $C_1 \sim C_6$ アルキル基を表わし、 R^4 および R^5 における $C_1 \sim C_6$ アルキル基は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモイル基、メルカプト基、グアニジノ基、 $C_3 \sim C_8$ シクロアルキル基、 $C_1 \sim C_6$ アルコキシ基、 $C_1 \sim C_6$ アルキルチオ基、(任意個のハロゲン原子、ヒドロキシ基、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルコキシ基、もしくはベンジルオキシ基によって置換されていてもよいフェニル基)、フェノキシ基、ベンジルオキシ基、ベンジルオキシカルボニル基、 $C_2 \sim C_7$ アルカノイル基、 $C_2 \sim C_7$ アルコキシカルボニル基、 $C_2 \sim C_7$ アルカノイルオキシ基、 $C_2 \sim C_7$ アルコキシカルボニル基、 $C_2 \sim C_7$ アルカノイルオキシ基、 $C_2 \sim C_7$ アルカノイルアミノ基、 $C_2 \sim C_7$ アルカルバモイル基、 $C_1 \sim C_6$ アルキルスルホニル基、アミノ基、モノ($C_1 \sim C_6$ アルキル)アミノ基、ジ($C_1 \sim C_6$ アルキル)アミノ基、もしくは(ヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を $1 \sim 3$ 個有する芳香族複素環基またはそのベンゼン環との縮合により形

成される縮合環)により置換されていてもよく、あるいは、 R^4 および R^5 は、いっしょになって $3\sim6$ 員環状炭化水素を形成してもよい。

pは0または1を表わす。

qは0または1を表わす。

GL, -CO-, $-SO_2-$, -CO-O-, $-NR^7-CO-$, -CO-NR 7 -, -NH-CO-NH-, -NH-CS-NH-, $-NR^{7}-SO_{2}$ -, -S O_2 -NR 7 -、-NH-CO-O-、または-O-CO-NH-で表わされる基 を表わす。ここで、 R^7 は、水素原子または $C_1 \sim C_6$ アルキル基を表わすか、あ るいは、 R^7 は R^5 といっしょになって C_2 ~ C_5 アルキレン基を形成してもよい。 R^6 は、フェニル基、 $C_3 \sim C_8$ シクロアルキル基、 $C_3 \sim C_6$ シクロアルケニル 基、ベンジル基、またはヘテロ原子として酸素原子、硫黄原子、および/または 窒素原子を $1\sim3$ 個有する芳香族複素環基を表わし、上記 R^6 におけるフェニル 基、ベンジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子とし て酸素原子、硫黄原子、および/または窒素原子を1~3個有する芳香族複素環 基と縮合して縮合環を形成してもよく、さらに上記 R 6 におけるフェニル基、 C_3 ~C₈シクロアルキル基、C₃~C₆シクロアルケニル基、ベンジル基、芳香族複 素環基、または縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基 、シアノ基、ニトロ基、チオシアナト基、カルボキシル基、カルバモイル基、ト リフルオロメチル基、 $C_1 \sim C_6$ アルキル基、 $C_3 \sim C_8$ シクロアルキル基、 $C_9 \sim$ C_6 アルケニル基、 $C_1 \sim C_6$ アルコキシ基、 $C_3 \sim C_8$ シクロアルキルオキシ基、 $C_1 \sim C_6$ アルキルチオ基、 $C_1 \sim C_3$ アルキレンジオキシ基、フェニル基、フェノ キシ基、フェニルアミノ基、ベンジル基、ベンゾイル基、フェニルスルフィニル 基、フェニルスルホニル基、 $3-フェニルウレイド基、<math>C_2 \sim C_7$ アルカノイル基 、 $C_2 \sim C_7$ アルコキシカルボニル基、 $C_2 \sim C_7$ アルカノイルオキシ基、 $C_2 \sim C_7$ アルカノイルアミノ基、 $C_2 \sim C_7 N$ - アルキルカルバモイル基、 $C_1 \sim C_6$ アルキ ルスルホニル基、フェニルカルバモイル基、N, N-ジ($C_1 \sim C_6$ アルキル)ス ルファモイル基、アミノ基、モノ($C_1 \sim C_6$ アルキル)アミノ基、ジ($C_1 \sim C_6$ アルキル)アミノ基、ベンジルアミノ基、 $C_2 \sim C_7$ (アルコキシカルボニル)ア ミノ基、 $C_1 \sim C_6$ (アルキルスルホニル)アミノ基、もしくは、ビス($C_1 \sim C_6$

アルキルスルホニル)アミノ基により置換されてもよく、これらのフェニル基、 $C_3 \sim C_8$ シクロアルキル基、 $C_3 \sim C_8$ シクロアルケニル基、ベンジル基、芳香族 複素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、シアノ基、 ヒドロキシ基、アミノ基、トリフルオロメチル基、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルコキシ基、 $C_1 \sim C_6$ アルキルチオ基、モノ($C_1 \sim C_6$ アルキル)アミノ 基、もしくはジ($C_1 \sim C_6$ アルキル)アミノ基によって置換されていてもよい。]

で表わされる化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される $C_1 \sim C_6$ アルキル付加体を有効成分とする、CCR3拮抗作用を有する薬剤。

【請求項2】 上記式(I)においてk=1かつm=2である、請求項1記載のCCR3拮抗作用を有する薬剤。

【請求項3】 上記式(I)においてk=0かつm=3である、請求項1記載のCCR3拮抗作用を有する薬剤。

【請求項4】 上記式(I)においてk=1かつm=3である、請求項1記載のCCR3拮抗作用を有する薬剤。

【請求項5】 上記式(I)においてk=2かつm=2である、請求項1記載のCCR3拮抗作用を有する薬剤。

【請求項6】 上記式(I)においてk=1かつm=4である、請求項1記載のCCR3拮抗作用を有する薬剤。

【請求項7】 上記式(I)で表わされる化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される $C_1 \sim C_6$ アルキル付加体を有効成分とする、CCR3が関与する疾患の治療薬もしくは予防薬。

【請求項8】 疾患がアレルギー性疾患である請求項7記載の治療薬もしくは予防薬。

【請求項9】 疾患が気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、 蕁麻疹、接触皮膚炎、またはアレルギー性結膜炎である請求項8記載の治療薬も しくは予防薬。

【請求項10】 疾患が炎症性腸疾患である請求項7記載の治療薬もしくは

予防薬。

【請求項11】 疾患がエイズである請求項7記載の治療薬もしくは予防薬

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、蕁麻疹、接触皮膚炎、およびアレルギー性結膜炎などのアレルギー性疾患、潰瘍性大腸炎およびクローン病などの炎症性腸疾患、好酸球増加症、好酸球性胃腸炎、好酸球増加性腸症、好酸球性筋膜炎、好酸球性肉芽腫、好酸球性膿疱性毛包炎、好酸球性肺炎、および好酸球性白血病など、好酸球、好塩基球、活性化T細胞などの増加、組織への浸潤が病気の進行、維持に主要な役割を演じている疾患、またはHIV(ヒト免疫不全ウイルス)の感染に起因するエイズ(AIDS:後天性免疫不全症候群)に対する治療薬および/または予防薬として効果が期待できるCCR3拮抗剤に関する。

[0002]

【従来の技術】

近年、気管支喘息などのアレルギー性疾患の本質的な病態は慢性炎症であるという概念が確立され、なかでも好酸球の炎症局所への集積がその大きな特徴の一つとしてとらえられている(例えば、Busse, W.W. J. Allergy Clin. Immunol., 1998, 102, S17-S22; 藤澤隆夫,現代医療,1999,31,1297など参照)。たとえば、サルの喘息モデルにおいて抗接着分子(ICAM-1)抗体を投与することにより、好酸球の集積が抑えられ、遅発型の喘息症状発現が抑制されることからもアレルギー性疾患における好酸球の重要性が強く示唆されている(Wegner, C.D. et al., Science, 1990,247,456)。

[0003]

この好酸球の集積/遊走を引き起こす特異的走化因子としてエオタキシンが同定された(例えば、Jose, P.J., et al., J. Exp. Med., 1994, 179, 881; Garc ia-Zepda, E.A. et al., Nature Med., 1996, 2, 449; P nath, P.D. et al.,

J. Clin. Invest., 1996, 97, 604; Kitaura, M. et al., J. Biol. Chem., 19 96, 271, 7725など参照)。 さらに、エオタキシンは好酸球上に発現しているC CR3レセプターに結合し作用を発現することが解明され、また、エオタキシン-2、RANTES (regulated upon activation normal T-cell expressed and secretedの略称)、MCP-2 (monocyte chemoattractant protein-2の略称)、MCP-3 (monocyte chemoattractant protein-3の略称)、MCP-4 (monocyte chemoattractant protein-4の略称)などの走化性因子もエオタキシンよりも作用強度は弱いもののCCR3を介してエオタキシンと同様の作用を示し得ることが知られている(例えば、Kitaura, M. et al., J. Biol. Chem., 1996, 271, 7725; Daugherty, B.L. et al., J. Exp. Med., 1996, 183, 2349; Ponath, P.D. eta l., J. Exp. Med., 1996, 183, 2437; Hiath, H. etal., J. Clin. Invest., 1997, 99, 178; Patel, V.P. et al., J. Exp. Med., 1997, 185, 1163; Forssmann, U. et al., J. Exp. Med. 185, 2171, 1997など参照)。

[0004]

エオタキシンの好酸球への作用は、遊走惹起のみでなく、接着分子受容体(CD11b)の発現増強(例えば、Tenscher, K. et al., Blood, 1996, 88, 3195など参照)、活性酸素の産生促進(例えば、Elsner, J. et al., Eur. J. Immunol., 1996, 26, 1919など参照)、EDN (eosinophil-derived neurotoxineの略称)の放出促進(El-Shazly, et al., Int. Arch. Allergy Immunol., 1998, 117 (suppl. 1), 55参照)など、好酸球の活性化に関する作用も報告されている。また、エオタキシンは骨髄からの好酸球およびその前駆細胞の血中への遊離を促進する作用を有することも報告されている(例えば、Palframan, R.T. et al., Blood, 1998, 91, 2240など参照)。

[0005]

エオタキシンおよびCCR3が気管支喘息などのアレルギー性疾患において重要な役割を演じていることが、多くの報告により示されている。たとえば、マウス喘息モデルにおいて抗エオタキシン抗体により好酸球浸潤が抑制されること(Gonzalo, J.-A. et al., J. Clin. Invest., 1996, 98, 2332参照)、マウス皮

層アレルギーモデルにおいて抗エオタキシン抗血清により好酸球浸潤が抑制されること(Teixe ira, M.M. et al., J. Clin. Invest., 1997, 100, 1657)、マウスモデルにおいて抗エオタキシン抗体が肺肉芽腫の形成を抑制すること(Ruth, J.H. et al., J. Immunol., 1998, 161, 4276参照)、エオタキシン遺伝子欠損マウスを用いた喘息モデルおよび間質性角膜炎モデルにおいて好酸球の浸潤が抑制されること(Rothenberg, M.E. et al., J. Exp. Med., 1997, 185, 785参照)、喘息患者の気管支では健常者に比べエオタキシンおよびCCR3の発現が、遺伝子レベル、蛋白レベルともに亢進していること(Ying, S. et al., Eur. J. Immunol., 1997, 27, 3507参照)、慢性副鼻腔炎患者の鼻上皮下組織ではエオタキシンの発現が亢進していること(Am. J. Respir. Cell Mol. Biol., 1997, 17, 683参照)などが報告されている。

[0006]

また、炎症性大腸疾患である潰瘍性大腸炎およびクローン病の炎症部位において、エオタキシンが多く発現していることが報告されていることから(Garcia-Zepda, E.A. et al., Nature Med., 1996, 2, 449参照)、これらの疾患においてもエオタキシンが重要な役割を担っていることがわかる。

[0007]

これらのデータから、エオタキシンは、CCR3を介して好酸球を病変部位に 集積、活性化することにより、好酸球が病変の進展に深く関わっていると想定され得る疾患、例えば、気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、蕁麻疹、接触皮膚炎、およびアレルギー性結膜炎などのアレルギー性疾患、潰瘍性大腸炎およびクローン病などの炎症性腸疾患、好酸球増加症、好酸球性胃腸炎、好酸球増加性腸症、好酸球性筋膜炎、好酸球性肉芽腫、好酸球性膿疱性毛包炎、好酸球性肺炎、および好酸球性白血病などの発症、進展、維持に深く関与していることが強く示唆されている。さらに、CCR3レセプターは好酸球のみならず好塩基球、Th2リンパ球上にも発現しており、エオタキシンによりこれらの細胞の細胞内カルシウムイオン濃度上昇および細胞遊走が惹起されることが報告されていることから、エオタキシンおよびCCR3はこれらの細胞を集積させ、活性化することによってもアレルギー性疾患など、これらの細胞が関与する疾患の発 症、進展、維持に関わっていると考えられる(例えば、Sallusto, F. et al., S cience, 1997, 277, 2005; Gerber, B.O. et al., Current Biol., 1997, 7, 8 36; Sallusto, F. et al., J. Exp. Med., 1998, 187, 875; Uguccioni, M. et al., J. Clin. Invest., 1997, 100, 1137; Yamada, H. et al., Biochem Bi ophys. Res. Commun., 1997, 231, 365など参照)。

[0008]

したがって、エオタキシンのCCR3に対する結合を阻害する化合物、すなわち、CCR3拮抗剤は、エオタキシンに代表されるCCR3のリガンドの標的細胞への作用を阻害することにより、アレルギー性疾患、炎症性腸疾患などの疾患の治療薬および/または予防薬として有用であるといえるが、そのような作用を有する薬剤は現在知られてない。

[0009]

また、HIV-1(ヒト免疫不全ウイルス-1)が宿主細胞に感染する際にCR3を利用することも報告されていることから、CCR3拮抗剤はHIVウイルス感染に起因するエイズ(AIDS:後天性免疫不全症候群)の治療薬もしくは予防薬としても有用であると考えられる(例えば、et al., Choe, H. et al., Cell, 1996, 85, 1135; Doranz, B.J. et al., Cell, 1996, 85, 1149参照)

[0010]

最近、キサンテン-9-カルボキサミド誘導体(W09804554参照)、ピペラジンまたはピペリジン誘導体(EP 903349参照)、およびその他の低分子化合物(W09802151参照)が、CCR3レセプターに対する拮抗活性を有することが報告されている。しかしながら、これらの化合物は、本発明で用いる化合物とは異なる。また、本発明で用いる化合物は、W09925686に記載されている化合物と同一のものであるが、これらの化合物がCCR3レセプターに対する拮抗活性を有することは知られていない。

[0011]

【発明が解決しようとする課題】

本発明の目的は、エオタキシンなどのCCR3のリガンドが標的細胞上のCC

[0012]

【課題を解決するための手段】

本発明者らは、鋭意研究を重ねた結果、アリールアルキル基を有する環状アミン誘導体、その薬学的に許容し得る $C_1 \sim C_6$ アルキル付加体、または薬学的に許容され得る酸付加体が、エオタキシンなどのCCR3のリガンドの標的細胞に対する結合を阻害する活性を有することを発見し、さらにはそれらの化合物がCCR3が関与すると考えられる疾患の治療薬もしくは予防薬となり得ることを知見して、本発明を完成するに至った。

[0013]

すなわち、本発明によれば、下記式(I)

[0014]

【化2】

$$\begin{array}{c}
R^{1} & \xrightarrow{(CH_{2})_{k}} & \xrightarrow{(CH_{2})_{k}} & \xrightarrow{O} & R^{4} \\
& \xrightarrow{(CH_{2})_{j}} & \xrightarrow{(CH_{2})_{m}} & \xrightarrow{(CH_{2})_{n}} & \xrightarrow{R^{2}} & (CH_{2})_{p} & \xrightarrow{R^{4}} & (CH_{2})_{q} & -G - R^{6}
\end{array}$$
(I)

[0015]

[式中、 \mathbf{R}^1 はフェニル基、 $\mathbf{C}_3\sim\mathbf{C}_8$ シクロアルキル基、またはヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を $1\sim3$ 個有する芳香族複素環基を表わし、上記 \mathbf{R}^1 におけるフェニル基または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を $1\sim3$ 個有する芳香族複素環基と縮合して縮合環を形成してもよく、さらに上記 \mathbf{R}^1 におけるフェニル基、 $\mathbf{C}_3\sim\mathbf{C}_8$ シクロアルキル基、芳香族複素環基、または縮合環は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモイル基、 $\mathbf{C}_1\sim\mathbf{C}_6$ アルキル基、 $\mathbf{C}_3\sim\mathbf{C}_8$ シクロアルキル基、 $\mathbf{C}_2\sim\mathbf{C}_8$

 $^{\rm CC_6}$ アルケニル基、 $^{\rm C}$ $^{\rm C}$

[0016]

 R^2 は、水素原子、 $C_1\sim C_6$ アルキル基、 $C_2\sim C_7$ アルコキシカルボニル基、ヒドロキシ基、またはフェニル基を表わし、 R^2 における $C_1\sim C_6$ アルキル基またはフェニル基は、任意個のハロゲン原子、ヒドロキシ基、 $C_1\sim C_6$ アルキル基、もしくは $C_1\sim C_6$ アルコキシ基によって置換されてもよい。ただし、j=0のときは、 R^2 はヒドロキシ基ではない。

[0017]

jは0~2の整数を表わす。

[0018]

kは0~2の整数を表わす。

[0019]

mは2~4の整数を表わす。

[0020]

nは0または1を表わす。

[0021]

 R^3 は、水素原子、または(それぞれ同一または異なった任意個のハロゲン原子、ヒドロキシ基、 $C_1 \sim C_6$ アルキル基、もしくは $C_1 \sim C_6$ アルコキシ基によって置換されていてもよい1または2個のフェニル基)によって置換されていてもよい $C_1 \sim C_6$ アルキル基を表わす。

[0022]

 ${
m R}^4$ および ${
m R}^5$ は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、または ${
m C}_1 \sim {
m C}_6$ アルキル基を表わし、 ${
m R}^4$ および ${
m R}^5$ における ${
m C}_1 \sim {
m C}_6$ アルキル基は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモイル基、メルカプト基、グアニジノ基、 ${
m C}_3 \sim {
m C}_8$ シクロアルキル基、 ${
m C}_1 \sim {
m C}_6$ アルコキシ基、 ${
m C}_1 \sim {
m C}_6$ アルコキシ基、 ${
m C}_1 \sim {
m C}_6$ アルコキシ基、 もしくはベンジルオキシ基によって置換されていてもよいフェニル基)、フェノキシ基、ベンジルオキシ基、ベンジルオキシカルボニル基、 ${
m C}_2 \sim {
m C}_7$ アルコキシ基、 ${
m C}_2 \sim {
m C}_7$ アルコキシカルボニル基、 ${
m C}_2 \sim {
m C}_7$ アルコキシカルボニル基、 ${
m C}_2 \sim {
m C}_7$ アルカノイルオキシ基、 ${
m C}_2 \sim {
m C}_7$ アルカルバモイル基、 ${
m C}_1 \sim {
m C}_6$ アルキルスルホニル基、 ${
m P}_1$ フェノ基、 モノ(${
m C}_1 \sim {
m C}_6$ アルキルスルホニル基、 ${
m P}_2$ フェノ基、 モノ(${
m C}_1 \sim {
m C}_6$ アルキル) アミノ基、 もしくは(${
m C}_1 \sim {
m C}_6$ アルキル) アミノ基、 もしくは(${
m C}_1 \sim {
m C}_6$ アルキル) アミノ基、 もしくは(${
m C}_1 \sim {
m C}_6$ アルキル) アミノ基、 もしくは(${
m C}_1 \sim {
m C}_6$ アルキル) アミノ基、 もしくは(${
m C}_1 \sim {
m C}_6$ アルキル) アミノ基、 もしくは(${
m C}_1 \sim {
m C}_6$ アルキル) アミノ基、 もしくは(${
m C}_1 \sim {
m C}_6$ アルキル) アミノ基、 もしくは(${
m C}_1 \sim {
m C}_6$ アルキル) アミノ基、 もしくは(${
m C}_1 \sim {
m C}_6$ アルキル) アミノ基、 もしくは(${
m C}_1 \sim {
m C}_6$ アルキル) アミノ基、 もしくは(${
m C}_1 \sim {
m C}_6$ アルキル) アミノ基、 もしくは(${
m C}_1 \sim {
m C}_6$ アルキル) アミノ基、 もしくは(${
m C}_1 \sim {
m C}_6$ アルキル) アミノ基、 もしくは(${
m C}_1 \sim {
m C}_6$ アルキル) アミノ基、 もしくは(${
m C}_1 \sim {
m C}_6$ アルキルスルホニル ルストン・ の話のは、 ${
m C}_1 \sim {
m C}_1 \sim$

[0023]

pは0または1を表わす。

[0024]

qは0または1を表わす。

[0025]

Gは、-CO-、 $-SO_2-$ 、-CO-O-、 $-NR^7-CO-$ 、 $-CO-NR^7-$ 、-NH-CO-NH-、-NH-CS-NH-、 $-NR^7-SO_2-$ 、 $-SO_2-NR^7-$ 、-NH-CO-O-、または-O-CO-NH-で表わされる基

を表わす。ここで、 R^7 は、水素原子または C_1 \sim C_6 アルキル基を表わすか、あるいは、 R^7 は R^5 といっしょになって C_2 \sim C_5 アルキレン基を形成してもよい。

[0026]

 R^6 は、フェニル基、 C_3 ~ C_8 シクロアルキル基、 C_3 ~ C_6 シクロアルケニル 基、ベンジル基、またはヘテロ原子として酸素原子、硫黄原子、および/または 窒素原子を1~3個有する芳香族複素環基を表わし、上記R⁶におけるフェニル 基、ベンジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子とし て酸素原子、硫黄原子、および/または窒素原子を1~3個有する芳香族複素環 基と縮合して縮合環を形成してもよく、さらに上記 R^6 におけるフェニル基、 C_3 \sim C $_8$ シクロアルキル基、C $_3$ \sim C $_6$ シクロアルケニル基、ベンジル基、芳香族複 素環基、または縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基 、シアノ基、ニトロ基、チオシアナト基、カルボキシル基、カルバモイル基、ト リフルオロメチル基、 $C_1 \sim C_6$ アルキル基、 $C_3 \sim C_8$ シクロアルキル基、 $C_2 \sim$ C_6 アルケニル基、 $C_1 \sim C_6$ アルコキシ基、 $C_3 \sim C_8$ シクロアルキルオキシ基、 $C_1 \sim C_6$ アルキルチオ基、 $C_1 \sim C_3$ アルキレンジオキシ基、フェニル基、フェノ キシ基、フェニルアミノ基、ベンジル基、ベンゾイル基、フェニルスルフィニル 基、フェニルスルホニル基、3-フェニルウレイド基、 $C_2 \sim C_7$ アルカノイル基 、 $C_2 \sim C_7$ アルコキシカルボニル基、 $C_2 \sim C_7$ アルカノイルオキシ基、 $C_2 \sim C_7$ アルカノイルアミノ基、 $C_2 \sim C_7 N$ - アルキルカルバモイル基、 $C_1 \sim C_6$ アルキ ルスルホニル基、フェニルカルバモイル基、N, N - ジ($C_1 \sim C_6$ アルキル)ス ルファモイル基、アミノ基、モノ($C_1 \sim C_6$ アルキル)アミノ基、ジ($C_1 \sim C_6$ アルキル)アミノ基、ベンジルアミノ基、 $C_2 \sim C_7$ (アルコキシカルボニル)ア ミノ基、 $C_1 \sim C_6$ (アルキルスルホニル) アミノ基、もしくはビス ($C_1 \sim C_6$ ア ルキルスルホニル)アミノ基により置換されてもよく、これらのフェニル基、C $_3$ ~ C_8 シクロアルキル基、 C_3 ~ C_8 シクロアルケニル基、ベンジル基、芳香族複 素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、シアノ基、ヒ ドロキシ基、アミノ基、トリフルオロメチル基、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルコキシ基、 $C_1 \sim C_6$ アルキルチオ基、モノ($C_1 \sim C_6$ アルキル)アミノ基、 またはジ(C₁~C₆アルキル)アミノ基によって置換されていてもよい。]

で表わされる化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される $C_1 \sim C_6$ アルキル付加体を有効成分とする、CCR3拮抗作用を有する薬剤が提供される。

[0027]

さらに、本発明によれば、上記式(I)で表わされる化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される $C_1 \sim C_6$ アルキル付加体を有効成分とする、CCR3が関与する疾患の治療薬もしくは予防薬が提供される。

[0028]

ここに、上記式(I)で表わされる化合物は、エオタキシンなどのCCR3レセプターのリガンドが標的細胞に結合することを阻害する活性、およびエオタキシンなどのCCR3のリガンドの標的細胞への生理的作用を阻害する活性を有する。すなわち、上記式(I)で表される化合物はCCR3拮抗剤である。

[0029]

【発明の実施の形態】

上記式(I)において、 \mathbf{R}^1 はフェニル基、 $\mathbf{C}_3 \sim \mathbf{C}_8$ シクロアルキル基、またはヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を $1\sim3$ 個有する芳香族複素環基を表わし、上記 \mathbf{R}^1 におけるフェニル基または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を $1\sim3$ 個有する芳香族複素環基と縮合して縮合環を形成してもよく、さらに上記 \mathbf{R}^1 におけるフェニル基、 $\mathbf{C}_3 \sim \mathbf{C}_8$ シクロアルキル基、芳香族複素環基、または縮合環は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモイル基、 $\mathbf{C}_1 \sim \mathbf{C}_6$ アルキル基、 $\mathbf{C}_3 \sim \mathbf{C}_8$ シクロアルキル基、 $\mathbf{C}_2 \sim \mathbf{C}_6$ アルケニル基、 $\mathbf{C}_1 \sim \mathbf{C}_6$ アルキルチオ基、 $\mathbf{C}_3 \sim \mathbf{C}_6$ アルキレンオキシ基、 $\mathbf{C}_1 \sim \mathbf{C}_6$ アルキレンジオキシ基、フェニル基、スェノキシ基、フェニルチオ基、ベンジル基、ベンジルオキシ基、ベンゾイルアミノ基、 $\mathbf{C}_2 \sim \mathbf{C}_7$ アルカノイルオキシ基、ベンゾイルアミノ基、 $\mathbf{C}_2 \sim \mathbf{C}_7$ アルカノイルアミノ基、 $\mathbf{C}_3 \sim \mathbf{C}_8$ (アルコキシカルボニルルバモイル基、 $\mathbf{C}_4 \sim \mathbf{C}_8$)のコキシカルボニルルバモイル基、 $\mathbf{C}_4 \sim \mathbf{C}_8$ (アルコキシカルボニル

)メチル基、 $N-フェニルカルバモイル基、ピペリジノカルボニル基、モルホリノカルボニル基、<math>1-ピロリジニルカルボニル基、式:-NH(C=O)O-で表わされる 2 価基、式:-NH(C=S)O-で表わされる 2 価基、アミノ基、モノ(<math>C_1\sim C_6$ アルキル)アミノ基、もしくはジ($C_1\sim C_6$ アルキル)アミノ基で置換されてもよい。

[0030]

 R^1 における「 C_3 ~ C_8 シクロアルキル基」とは、例えばシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、および、シクロオクチル基などの環状のアルキル基を意味し、その好適な具体例としては、シクロプロピル基、シクロペンチル基、およびシクロヘキシル基などが挙げられる

[0031]

R¹における、「ヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を1~3個有する芳香族複素環基」とは、例えば、チエニル、フリル、ピロリル、イミダゾリル、ピラゾリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、ピリジル、ピリミジニル、トリアジニル、トリアゾリル、オキサジアゾリル(フラザニル)、チアジアゾリル基などの芳香族複素環基を意味し、その好適な具体例としては、チエニル、フリル、ピロリル、イソオキサゾリル、およびピリジル基などが挙げられる。

[0032]

R¹における「縮合環」とは、上記フェニル基または芳香族複素環基が、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を1~3個有する芳香族複素環基と可能な任意の位置で縮合して形成される2環式芳香族複素環基を意味し、その好適な具体例としては、ナフチル、インドリル、ベンゾフラニル、ベンゾチエニル、キノリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾトリアゾリル、ベンゾオキサジアゾリル(ベンゾフラザニル)、およびベンゾチアジアゾリル基などが挙げられる。

[0033]

なかでも R^1 は、フェニル基、チエニル基、ピラゾリル基、イソオキサゾリル

[0034]

 R^1 におけるフェニル基、 $C_3 \sim C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基としての「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子、ヨウ素原子などを意味し、その好適な具体例としてはフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。

[0035]

 R^1 の置換基としての「 C_1 ~ C_6 アルキル基」とは、例えばメチル、エチル、n-プロピル、n-プチル、n-ペンチル、n-ヘキシル、n-ヘプチル、n-ペンチル、イソプロピル、イソブチル、n-ペンチル、n-0 は n-0 に n-

[0036]

 R^1 の置換基としての「 C_3 ~ C_8 シクロアルキル基」は、前記 R^1 における「 C_3 ~ C_8 シクロアルキル基」の定義と同様であり、その好適な具体例も同じ基を挙げることができる。

[0037]

 \mathbf{R}^1 の置換基としての「 $\mathbf{C}_2 \sim \mathbf{C}_6$ アルケニル基」とは、例えば、ビニル、アリル、1 ープロペニル、2 ーブテニル、3 ーブテニル、2 ーメチルー1 ープロペニル、4 ーペンテニル、5 ーヘキセニル、4 ーメチルー3 ーペンテニル基などの \mathbf{C}_6 の直鎖または分枝状のアルケニル基を意味し、その好適な具体例としては、ビニル基および2 ーメチルー1 ープロペニル基などが挙げられる。

[0038]

 R^1 の置換基としての「 $C_1\sim C_6$ アルコキシ基」とは、前記 $C_1\sim C_6$ アルキル基とオキシ基とからなる基を意味し、その好適な具体例としては、メトキシ基、エトキシ基などが挙げられる。

[0039]

 R^1 の置換基としての「 $C_1 \sim C_6$ アルキルチオ基」とは、前記 $C_1 \sim C_6$ アルキル基とチオ基とからなる基を意味し、その好適な具体例としては、メチルチオ基、エチルチオ基などが挙げられる。

[0040]

 R^1 の置換基としての「 $C_3 \sim C_5$ アルキレン基」とは、例えば、トリメチレン、テトラメチレン、ペンタメチレン、および1-メチルトリメチレン基などの $C_3 \sim C_5$ の2 価のアルキレン基を意味し、その好適な具体例としては、トリメチレン基、テトラメチレン基などが挙げられる。

[0041]

 R^1 の置換基としての「 $C_2 \sim C_4$ アルキレンオキシ基」とは、例えば、エチレンオキシ($-CH_2CH_2O-$)、トリメチレンオキシ($-CH_2CH_2CH_2O-$)、テトラメチレンオキシ($-CH_2CH_2CH_2CH_2CH_2O-$)、1,1-ジメチルエチレンオキシ($-CH_2C$ (CH_3) $_2O-$)基などの、 $C_2 \sim C_4$ の2価アルキレン基とオキシ基とからなる基を意味し、その好適な具体例としては、エチレンオキシ基、トリメチレンオキシ基などが挙げられる。

[0042]

 R^1 の置換基としての「 $C_1 \sim C_3$ アルキレンジオキシ基」とは、例えばメチレンジオキシ($-OCH_2O-$)、エチレンジオキシ($-OCH_2CH_2O-$)、トリメチレンジオキシ($-OCH_2CH_2CH_2O-$)、プロピレンジオキシ($-OCH_2CH_2CH_2O-$)、プロピレンジオキシ($-OCH_2CH_2CH_2O-$)、プロピレンジオキシ($-OCH_2CH_2CH_2O-$)をなどの $C_1 \sim C_3$ の2何アルキレン基と2個のオキシ基とからなる基を意味し、その好適な具体例としては、メチレンジオキシ基、エチレンジオキシ基などが挙げられる。

[0043]

 R^1 の置換基としての「 $C_2 \sim C_7$ アルカノイル基」とは、例えば、アセチル、プロパノイル、ブタノイル、ペンタノイル、ヘキサノイル、ヘプタノイル、イソブチリル、3-メチルブタノイル、2-メチルブタノイル、ピバロイル、4-メチルペンタノイル、3,3-ジメチルブタノイル、5-メチルヘキサノイル基などの $C_2 \sim C_7$ の直鎖または分枝状のアルカノイル基を意味し、その好適な具体例としては、アセチル基などが挙げられる。

 R^1 の置換基としての「 C_2 ~ C_7 アルコキシカルボニル基」とは、前記 C_1 ~ C_6 アルコキシ基とカルボニル基とからなる基を意味し、その好適な具体例としては、メトキシカルボニル基、エトキシカルボニル基などが挙げられる。

[0045]

 R^1 の置換基としての「 $C_2 \sim C_7$ アルカノイルオキシ基」とは、前記 $C_2 \sim C_7$ アルカノイル基とオキシ基とからなる基を意味し、その好適な具体例としてはアセチルオキシキ基などが挙げられる。

[0046]

 R^1 の置換基としての「 $C_2 \sim C_7$ アルカノイルアミノ基」とは、前記 $C_2 \sim C_7$ アルカノイル基とアミノ基とから成る基を意味し、その好適な具体例としては、アセチルアミノ基などが挙げられる。

[0047]

 R^1 の置換基としての「 C_2 ~ C_7 アルキルカルバモイル基」とは、前記 C_1 ~ C_6 アルキル基とカルバモイル基とからなる基を意味し、その好適な具体例としては、N-メチルカルバモイル基、N-エチルカルバモイル基などが挙げられる。

[0048]

 R^1 の置換基としての「 C_4 ~ C_9 N-シクロアルキルカルバモイル基」とは、前記 C_3 ~ C_8 シクロアルキル基とカルバモイル基とからなる基を意味し、その好適な具体例としては、N-シクロペンチルカルバモイル基、N-シクロヘキシルカルバモイル基などが挙げられる。

[0049]

 R^1 の置換基としての「 $C_1 \sim C_6$ アルキルスルホニル基」とは、前記 $C_1 \sim C_6$ アルキル基とスルホニル基とからなる基を意味し、その好適な具体例としては、メチルスルホニル基などが挙げられる。

[0050]

 R^1 の置換基としての「 $C_3 \sim C_8$ (アルコキシカルボニル)メチル基」とは、前記 $C_2 \sim C_7$ アルコキシカルボニル基とメチル基とからなる基を意味し、その好適な具体例としては、(メトキシカルボニル)メチル基、(エトキシカルボニル

)メチル基などが挙げられる。

[0051]

 R^1 の置換基としての「モノ($C_1 \sim C_6$ アルキル)アミノ基」とは、前記 $C_1 \sim C_6$ アルキル基によって置換されたアミノ基を意味し、その好適な具体例としては、メチルアミノ基、エチルアミノ基などが挙げられる。

[0052]

 R^1 の置換基としての「ジ($C_1 \sim C_6$ アルキル)アミノ基」とは、同一または 異なった2つの前記 $C_1 \sim C_6$ アルキル基によって置換されたアミノ基を意味し、 その好適な具体例としては、ジメチルアミノ基、ジエチルアミノ基、N-エチル-N-メチルアミノ基などが挙げられる。

[0053]

上記の中でも、 R^1 におけるフェニル基、 $C_3\sim C_8$ シクロアルキル基、芳香族 複素環基、または縮合環の置換基としては、ハロゲン原子、ヒドロキシ基、 $C_1\sim C_6$ アルキル基、 $C_2\sim C_6$ アルケニル基、 $C_1\sim C_6$ アルコキシ基、 $C_1\sim C_6$ アルキルチオ基、 $C_3\sim C_5$ アルキレン基、 $C_2\sim C_4$ アルキレンオキシ基、メチレン ジオキシ基、フェニル基、N-フェニルカルバモイル基、アミノ基、およびジ($C_1\sim C_6$ アルキル)アミノ基を特に好ましい具体例として挙げることができる。特に好ましくは、ハロゲン原子、ヒドロキシ基、 $C_1\sim C_6$ アルキル基、 $C_1\sim C_6$ アルコキシ基、 $C_1\sim C_6$ アルキルチオ基、メチレンジオキシ基、およびN-フェニルカルバモイル基を挙げることができる。

[0054]

さらに、 \mathbf{R}^1 におけるフェニル基、 $\mathbf{C}_3 \sim \mathbf{C}_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、 $\mathbf{C}_1 \sim \mathbf{C}_6$ アルキル基、もしくは $\mathbf{C}_1 \sim \mathbf{C}_6$ アルコキシ基によって置換されていてもよい。ここで、ハロゲン原子、 $\mathbf{C}_1 \sim \mathbf{C}_6$ アルキル基、および $\mathbf{C}_1 \sim \mathbf{C}_6$ アルコキシ基は、前記 \mathbf{R}^1 におけるフェニル基、 $\mathbf{C}_3 \sim \mathbf{C}_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、同じ基を好適な具体例として挙げることができる。

[0055]

上記式(I)において、 R^2 は、水素原子、 $C_1 \sim C_6$ アルキル基、 $C_2 \sim C_7$ アルコキシカルボニル基、ヒドロキシ基、またはフェニル基を表わし、 R^2 における $C_1 \sim C_6$ アルキル基またはフェニル基は、任意個のハロゲン原子、ヒドロキシ基、 $C_1 \sim C_6$ アルキル基、もしくは $C_1 \sim C_6$ アルコキシ基によって置換されてもよい。ただし、j=0のときは、 R^2 はヒドロキシ基ではない。

[0056]

 R^2 における C_1 ~ C_6 アルキル基および C_2 ~ C_7 アルコキシカルボニル基は、 R^1 におけるフェニル基、 C_3 ~ C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基についてそれぞれ定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

[0057]

 R^2 における $C_1\sim C_6$ アルキル基またはフェニル基の置換基としてのハロゲン原子、 $C_1\sim C_6$ アルキル基および $C_1\sim C_6$ アルコキシ基は、前記 R^1 におけるフェニル基、 $C_3\sim C_8$ シクロアルキル基、芳香族複素環基または縮合環の置換基について定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

[0058]

なかでも R^2 は、水素原子を表わす場合が特に好ましい。

[0059]

上記式(I)において、jは0~2の整数を表わす。jは0である場合が特に 好ましい。

[0060]

上記式(I)において、kは0~2の整数を表わし、mは2~4の整数を表わす。なかでもkが0でmが3である場合の2-置換ピロリジン、kが1でmが2である場合の3-置換ピロリジン、kが1でmが3である場合の3-置換ピペリジン、kが2でmが2である場合の4-置換ピペリジン、またはkが1でmが4である場合の3-置換ヘキサヒドロアゼピンが好ましい。特に好ましくは、kが1でmが2である場合の3-置換ピロリジンおよびkが2でmが2である場合の4-置換ピペリジンを挙げることができる。

[0061]

上記式(I)において、nは0または1を表わす。

[0062]

特に、kが1でmが2でnが0である場合の3-7ミドピロリジン、およびkが2でmが2でnが1である場合の4-(アミドメチル)ピペリジンを特に好ましい例として挙げることができる。

[0063]

上記式(I)において、 R^3 は水素原子、または(それぞれ同一または異なった任意個のハロゲン原子、ヒドロキシ基、 $C_1 \sim C_6$ アルキル基、もしくは $C_1 \sim C_6$ アルコキシ基によって置換されていてもよい1または2個のフェニル基)によって置換されていてもよい $C_1 \sim C_6$ アルキル基を表わす。

[0064]

 R^3 における C_1 ~ C_6 アルキル基は、前記 R^1 におけるフェニル基、 C_3 ~ C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、その好適な具体例としては、メチル基、エチル基、およびプロピル基が挙げられる。

[0065]

 R^3 における $C_1\sim C_6$ アルキル基の置換基としてのフェニル基の置換基としてのハロゲン原子、 $C_1\sim C_6$ アルキル基、および $C_1\sim C_6$ アルコキシ基は、それぞれ、前記 R^1 におけるフェニル基、 $C_3\sim C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、同じ例を好適な具体例として挙げることができる。

[0066]

なかでも、 R^3 は水素原子または無置換の $C_1 \sim C_6$ アルキル基である場合が特に好ましい。

[0067]

上記式(I)において、 R^4 および R^5 は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、または $C_1 \sim C_6$ アルキル基を表わし、 R^4 および R^5 における $C_1 \sim C_6$ アルキル基は、任意個のハロゲン原子、ヒドロキシ基、シアノ基

、ニトロ基、カルボキシル基、カルバモイル基、メルカプト基、グアニジノ基、 $C_3 \sim C_8$ シクロアルキル基、 $C_1 \sim C_6$ アルコキシ基、 $C_1 \sim C_6$ アルキルチオ基、(任意個のハロゲン原子、ヒドロキシ基、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルコキシ基、もしくはベンジルオキシ基によって置換されていてもよいフェニル基)、フェノキシ基、ベンジルオキシ基、ベンジルオキシカルボニル基、 $C_2 \sim C_7$ アルカノイル基、 $C_2 \sim C_7$ アルカノイル基、 $C_2 \sim C_7$ アルカノイル基、 $C_2 \sim C_7$ アルカノイルアミノ基、 $C_2 \sim C_7$ アルカノイルアミノ基、 $C_2 \sim C_7$ アルカルバモイル基、 $C_1 \sim C_6$ アルキルスルホニル基、アミノ基、モノ($C_1 \sim C_6$ アルキル)アミノ基、ジ($C_1 \sim C_6$ アルキル)アミノ基、または(ヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を $1 \sim 3$ 個有する芳香族複素環基またはそのベンゼン環との縮合により形成される縮合環)により置換されていてもよく、あるいは、 R^4 および R^5 は、いっしょになって $3 \sim 6$ 員環状炭化水素を形成してもよい。

[0068]

 R^4 および R^5 における $C_1\sim C_6$ アルキル基は、前記 R^1 におけるフェニル基、 $C_3\sim C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、同じ例を好適な具体例として挙げることができる。

[0069]

 R^4 および R^5 における $C_1 \sim C_6$ アルキル基の置換基としてのハロゲン原子、 $C_1 \sim C_6$ アルコキシ基、 $C_1 \sim C_6$ アルキルチオ基、 $C_2 \sim C_7$ アルカノイル基、 $C_2 \sim C_7$ アルコキシカルボニル基、 $C_2 \sim C_7$ アルカノイルオキシ基、 $C_2 \sim C_7$ アルカノイルアミノ基、 $C_2 \sim C_7$ アルカルバモイル基、 $C_1 \sim C_6$ アルキルスルホニル基、モノ($C_1 \sim C_6$ アルキル)アミノ基、およびジ($C_1 \sim C_6$ アルキル)アミノ基は、前記 R^1 におけるフェニル基、 $C_3 \sim C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

[0070]

 R^4 および R^5 における C_1 ~ C_6 アルキル基の置換基としての C_3 ~ C_8 シクロアルキル基、および、ヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を1~3個有する芳香族複素環基は、前記 R^1 において定義されたものと同

様であり、それぞれ同じ例を好適な具体例として挙げることができる。

[0071]

 R^4 および R^5 における $C_1\sim C_6$ アルキル基の置換基としてのフェニル基の置換基としてのハロゲン原子、 $C_1\sim C_6$ アルキル基、および $C_1\sim C_6$ アルコキシ基は、前記 R^1 においてフェニル基、 $C_3\sim C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

[0072]

 R^4 、 R^5 およびその隣接炭素原子とからなる「 $3\sim 6$ 員環状炭化水素」の好適な具体例としては、シクロプロパン、シクロブタン、シクロペンタン、およびシクロヘキサンなどが挙げられる。なかでも、水素原子と $C_1\sim C_6$ アルキル基を、 R^4 と R^5 の特に好ましい例として挙げることができる。

[0073]

上記式(I)において、pは0または1を表わし、qは0または1を表わす。 pとqがともに0である場合が特に好ましい。

[0074]

[0075]

ここで、-CO-はカルボニル基を、 $-SO_2-$ はスルホニル基を、-CS-はチオカルボニル基をそれぞれ意味する。Gの特に好ましい例としては、例えば $-NR^7-CO-$ および-NH-CO-NH-で表わされる基などが挙げられる

[0076]

 \mathbb{R}^7 における $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル基は、前記 \mathbb{R}^1 におけるフェニル基、 $\mathbb{C}_3 \sim \mathbb{C}_8$ シ

クロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

[0077]

 R^5 と R^7 とからなる「 C_2 ~ C_5 アルキレン基」とは、例えば、メチレン、エチレン、プロピレン、トリメチレン、テトラメチレン、1-メチルトリメチレン、ペンタメチレンなどの C_2 ~ C_5 の直鎖または分枝状アルキレン基を意味し、その好適な具体例としてはエチレン、トリメチレン、テトラメチレン基などが挙げられる。なかでも R^7 としては、水素原子を特に好ましい例として挙げることができる。

[0078]

上記式(I)において、 R^6 はフェニル基、 $C_3 \sim C_8$ シクロアルキル基、 $C_3 \sim$ C₆シクロアルケニル基、ベンジル基、またはヘテロ原子として酸素原子、硫黄 原子、および/または窒素原子を1~3個有する芳香族複素環基を表わし、上記 R^6 におけるフェニル基、ベンジル基、または芳香族複素環基は、ベンゼン環、 またはヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を1~3 個有する芳香族複素環基と縮合して縮合環を形成してもよく、さらに上記 R^6 に おけるフェニル基、C₃~C₈シクロアルキル基、C₃~C₆シクロアルケニル基、 ベンジル基、芳香族複素環基、または縮合環は、任意個のハロゲン原子、ヒドロ キシ基、メルカプト基、シアノ基、ニトロ基、チオシアナト基、カルボキシル基 、カルバモイル基、トリフルオロメチル基、 $C_1 \sim C_6$ アルキル基、 $C_3 \sim C_8$ シク ロアルキル基、 $C_2 \sim C_6$ アルケニル基、 $C_1 \sim C_6$ アルコキシ基、 $C_3 \sim C_8$ シクロ アルキルオキシ基、 $C_1 \sim C_6$ アルキルチオ基、 $C_1 \sim C_3$ アルキレンジオキシ基、 フェニル基、フェノキシ基、フェニルアミノ基、ベンジル基、ベンゾイル基、フ ェニルスルフィニル基、フェニルスルホニル基、 $3-フェニルウレイド基、<math>C_2$ \sim C $_7$ アルカノイル基、C $_2$ \sim C $_7$ アルコキシカルボニル基、C $_2$ \sim C $_7$ アルカノイ ルオキシ基、 $C_2 \sim C_7$ アルカノイルアミノ基、 $C_2 \sim C_7 N$ – アルキルカルバモイ ル基、 $C_1 \sim C_6$ アルキルスルホニル基、フェニルカルバモイル基、 $N, N-\emptyset$ ($C_1 \sim C_6$ アルキル)スルファモイル基、アミノ基、モノ($C_1 \sim C_6$ アルキル)ア ミノ基、ジ($C_1 \sim C_6$ アルキル)アミノ基、ベンジルアミノ基、 $C_9 \sim C_7$ (アル

コキシカルボニル)アミノ基、 $C_1 \sim C_6$ (アルキルスルホニル)アミノ基、もしくはビス($C_1 \sim C_6$ アルキルスルホニル)アミノ基により置換されてもよい。

[0079]

 R^6 における C_3 ~ C_8 シクロアルキル基、ヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を1~3個有する芳香族複素環基、および、縮合環は、前記 R^1 に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

[0080]

 R^6 における「 C_3 ~ C_8 シクロアルケニル基」とは、例えば、シクロプテニル、シクロペンテニル、シクロヘキセニル、シクロヘプテニル、およびシクロオクテニル基など環状アルケニル基を意味し、その好適な具体例としては、1-シクロペンテニル基、1-シクロヘキセニル基などが挙げられる。なかでも、 R^6 としては、フェニル基、フリル基、チエニル基、インドリル基、ベンゾフラザニル基を特に好ましい例として挙げることができる。

[0081]

 R^6 におけるフェニル基、 $C_3\sim C_8$ シクロアルキル基、 $C_3\sim C_8$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基としてのハロゲン原子、 $C_1\sim C_6$ アルキル基、 $C_2\sim C_6$ アルケニル基、 $C_1\sim C_6$ アルコキシ基、 $C_1\sim C_6$ アルキルチオ基、 $C_1\sim C_3$ アルキレンジオキシ基、 $C_2\sim C_7$ アルカノイル基、 $C_2\sim C_7$ アルコキシカルボニル基、 $C_2\sim C_7$ アルカノイルオキシ基、 $C_2\sim C_7$ アルカノイルアミノ基、 $C_2\sim C_7$ アルカノイルアミノ基、 $C_2\sim C_7$ アルカルバモイル基、 $C_1\sim C_6$ アルキルスルホニル基、モノ($C_1\sim C_6$ アルキル)アミノ基、およびジ($C_1\sim C_6$ アルキル)アミノ基は、前記 R^1 におけるフェニル基、 $C_3\sim C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

[0082]

 R^6 の置換基としての C_3 ~ C_8 シクロアルキル基は、前記 R^1 における C_3 ~ C_8 シクロアルキル基に関して定義されたものと同様であり、同じ例を好適な具体例として挙げることができる。

[0083]

 R^6 の置換基としての「 C_3 ~ C_8 シクロアルキルオキシ基」とは、前記 C_3 ~ C_8 シクロアルキル基とオキシ基とからなる基を意味し、その好適な具体例としては、シクロプロピルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基基などを挙げることができる。

[0084]

 R^6 の置換基としての「N,N-ジ($C_1\sim C_6$ アルキル)スルファモイル基」とは、同一または異なった2つの前記 $C_1\sim C_6$ アルキル基によって置換されたスルファモイル基を意味し、その好適な具体例としては、例えばN,N-ジメチルスルファモイル基、N,N-ジエチルスルファモイル基、N-エチルN-メチルスルファモイル基などが挙げられる。

[0085]

 R^6 の置換基としての「 $C_2 \sim C_7$ (アルコキシカルボニル)アミノ基」とは、前記 $C_2 \sim C_7$ アルコキシカルボニル基とアミノ基とからなる基を意味し、その好適な具体例としては、例えば(メトキシカルボニル)アミノ基、(エトキシカルボニル)アミノ基などを挙げることができる。

[0086]

 R^6 の置換基としての「 $C_1 \sim C_6$ (アルキルスルホニル) アミノ基」とは、前記 $C_1 \sim C_6$ アルキルスルホニル基とアミノ基とからなる基を意味し、その好適な具体例としては、(メチルスルホニル)アミノ基などを挙げることができる。

[0087]

 R^6 の置換基としての「ビス($C_1\sim C_6$ アルキルスルホニル)アミノ基」とは、同一または異なった2つの前記 $C_1\sim C_6$ アルキルスルホニル基によって置換されたアミノ基を意味し、その好適な具体例としては、ビス(メチルスルホニル)アミノ基などを挙げることができる。

[0088]

なかでも、 R^6 におけるフェニル基、 $C_3\sim C_8$ シクロアルキル基、 $C_3\sim C_8$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基としては、ハロゲン原子、メルカプト基、ニトロ基、トリフルオロメチル基、 $C_1\sim C_6$

アルキル基、 $C_1 \sim C_6$ アルコキシ基、フェニル基、ベンジルオキシ基、フェニルスルフィニル基、 $C_2 \sim C_7$ アルカノイル基、 $C_2 \sim C_7$ アルカノイルアミノ基、アミノ基などを好ましい例として挙げることができる。特に好ましくは、ハロゲン原子、ニトロ基、トリフルオロメチル基、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルコキシ基、フェニルスルフィニル基、およびアミノ基を挙げることができる。

[0089]

さらに、 R^6 におけるフェニル基、 $C_3 \sim C_8$ シクロアルキル基、 $C_3 \sim C_8$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、シアノ基、ヒドロキシ基、アミノ基、トリフルオロメチル基、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルキルチオ基、モノ($C_1 \sim C_6$ アルキル)アミノ基、またはジ($C_1 \sim C_6$ アルキル)アミノ基によって置換されていてもよい。

[0090]

 R^6 におけるフェニル基、 $C_3\sim C_8$ シクロアルキル基、 $C_3\sim C_8$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基の置換基としてのハロゲン原子、 $C_1\sim C_6$ アルキル基、 $C_1\sim C_6$ アルキル基、 $C_1\sim C_6$ アルキルチオ基、モノ($C_1\sim C_6$ アルキル)アミノ基、およびジ($C_1\sim C_6$ アルキル)アミノ基は、前記 R^1 におけるフェニル基、 $C_3\sim C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

[0091]

上記式(I)で表わされる化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される $C_1 \sim C_6$ アルキル付加体は、その治療有効量を製薬学的に許容される担体および/または希釈剤とともに医薬組成物とすることによって、本発明のエオタキシンなどのCCR3のリガンドが標的細胞上のCCR3に結合することを阻害する医薬、あるいはエオタキシンなどのCCR3のリガンドの標的細胞への生理的作用を阻害する作用をもつ医薬、さらにはCCR3が関与すると考えられる疾患の治療薬もしくは予防薬とすることができる。すなわち上記式(I)で表わされる環状アミン誘導体、その薬学的に許容される酸付加塩体、

[0092]

経口投与の剤形としては、例えば錠剤、丸剤、顆粒剤、散剤、液剤、懸濁剤、 カプセル剤などが挙げられる。

[0093]

錠剤の形態にするには、例えば乳糖、デンプン、結晶セルロースなどの賦形剤 ;カルボキシメチルセルロース、メチルセルロース、ポリビニルピロリドンなど の結合剤;アルギン酸ナトリウム、炭酸水素ナトリウム、ラウリル硫酸ナトリウ ムなどの崩壊剤などを用いて通常の方法により成形することができる。

[0094]

丸剤、散剤、顆粒剤も同様に前記の賦形剤などを用いて通常の方法によって成形することができる。液剤、懸濁剤は、例えばトリカプリリン、トリアセチンなどのグリセリンエステル類、エタノールなどのアルコール類などを用いて通常の方法によって成形される。カプセル剤は、顆粒剤、散剤、あるいは液剤などをゼラチンなどのカプセルに充填することによって成形される。

[0095]

皮下、筋肉内、静脈内投与の剤型としては、水性あるいは非水性溶液剤などの 形態にある注射剤がある。水性溶液剤は、例えば生理食塩水などが用いられる。 非水性溶液剤は、例えばプロピレングリコール、ポリエチレングリコール、オリ ーブ油、オレイン酸エチルなどが用いられ、これらに必要に応じて防腐剤、安定 剤などが添加される。注射剤は、バクテリア保留フィルターを通す濾過、殺菌剤 の配合の処置を適宜行うことによって無菌化される。

[0096]

経皮投与の剤型としては、例えば軟膏剤、クリーム剤などが挙げられ、軟膏剤は、ヒマシ油、オリーブ油などの油脂類、またはワセリンなどを用いて、クリーム剤は、脂肪油、またはジエチレングリコールやソルビタンモノ脂肪酸エステルなどの乳化剤を用いて通常の方法によって成形される。

[0097]

直腸内投与のためには、ゼラチンソフトカプセルなどの通常の座剤が用いられる。

[0098]

本発明の環状アミン誘導体、その薬学的に許容される酸付加体、またはその薬学的に許容される $C_1 \sim C_6$ アルキル付加体の投与量は、疾患の種類、投与経路、患者の年齢と性別、および疾患の程度などによって異なるが、通常成人一人当たり $1\sim500$ m g / H である。

[0099]

上記式(I)の環状アミン誘導体の好適な具体例として、以下のTable1
. 1~1. 201に示される各置換基を含有する化合物を挙げることができる。

[0100]

Tablel.1~1.201において、「Table」は「表」を意味し、「Compd. No.」は「化合物番号」を意味し、「chirality」は「絶対配置」を意味する。「chirality(絶対配置)」とは、環状アミンの環上の不斉炭素の絶対配置を意味する。「R」は、環状アミンの環上の不斉炭素の絶対配置を意味する。「R」は、環状アミンの環上の不斉炭素原子がRの絶対配置を持つこと、「S」は、不斉炭素原子がSの絶対配置を持つこと、「一」はラセミ体であるか、あるいはその化合物が環状アミン上において不斉炭素原子をもたないことを意味する。

[0101]

【表1】

Table 1.1

Compd.	R ² (CH ₂)	k	m	n	chirality	R³	—(CH₂) _p
1	CI-CH ₂ -	1	2	0	-	н	-сн₂- н с-
.2	CI	1	2	o	-	н	-CH ₂ -N-C-CH ₃
3	CH-CH ₂ -	1	2	.0	-	H	-cH₂-N-C-
4	с{	1	2	0	-	н .	-CH2-N-C-CE3
5	сн-{СН ₂	1	2	o .	s	н	-CH ₂ -N-C
6	CI—CH ₂ -	1	2	0	s	Н	-CH ₂ -N-C
7.	Ca-{\bar{\bar{\bar{\bar{\bar{\bar{\bar	1	2	0	s	н	-CH⁵-H-C-C
8	CH	1	2	0	S	н	-CH2-N-C-
9	CHCH2-	,1	2	0	s	н	-CH2-HC-CI
10	а- (}-аң-	1	2	0	S	н	-cH²-Hg-
11	с1—{	1	2	o	s	н	-CH2-H C-CH3
					`		

[0102]

Table 1.2

·abic	1 ,44						
Compd. No.	R ¹ (CH ₂) ₁	k	m	n	chirality	R³	-(CH ₂) _p CH ₂) _q G-R ⁶
12	СН2-	1	2	0	s	н	-CH2-HC
13	CI(CH2-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
	CICH ₂ -					н .	-CH2-N-C-CH3
	CI-CI+2-					н .	-CH ₂ -N-C
16	CHC-CH2-	1	2	0	S	н	-сн²-и с- О
17	CICH ₂ -	1	2	o	s	н.	-CH2-N-C CI
18	CICI+2-	1	2	O	S	н .	-CH2-H-C-CN
19	CI-CI-CI-	1	2	0	s	н	-CH2-HC
20	с⊢С}-сн₂-	1	2	0	S	H .	- CH ₂ -N-C-CF ₃
21	сн-О-сн2-	1	2	0	s	,	-CH2-NC-CF3
22	CICH ₂ -	1	2	0	S	н	-CH ₂ -NC-CF ₃
·			•				

[0103]

Table 1.3

Table	1.0						•
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p +(CH ₂) _q -G-R ⁶
23	CICH2-	1	- 2	0	S	н	-CH2-NC
. 24	сн-Су-сн-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
25	CI{C}-CH2-	1	2	0	· s	н	-CH₂-N-C-CF₃
26	CI	1	2	0	s	H	-CH ₂ -N-C-O ₂ N
27 ·	CI-CH ₂ -	1	2	0	S	н	-CH ² -H-C
28	CI	1	2	0	· S	н	-CH2-HC
29	a-{\bar{\bar{\chi}}_{-1}} \chi_2-	1	2	0	R	H .	-CH ₂ -H _C C-CF ₃
30	a-{\rightarrow}-\cau_2-	1	2	O	R	н .	−CH ₂ −N C− F ₃ C
31	с⊢—Сн₂-	1	2	0	R	н	-CH2-HC-
32	CI(CH ₂ -	1	2	0	R	н	-CH2-NC-CI
33	a-{\right\ri	1	2	0	R ·	н .	-CH*-HC-CI
						·	

[0104]

Table 1.4

Table	1.7					•
Compd. No.	R ¹ (CH ₂) _j	k m	n	chirality	R³	-(CH ₂) p (CH ₂) q G−R⁶
34	CI{	1 2	0	R	н	-cH ₂ -M-c-OcH ₃
35	CH_CH ₂ -	1 2	0	R	н	-CH2-N-C
36	CF	1 2	0	R	H	-сн ₂ -ү с- Осн ₃
37	CICH ₂ -	1 2	0	R	н .	-CH ₂ -N-C-CF ₃
38	CICH2-	1 2	0	R	н	-CH2-N-C-
39	CH2-	1 2	0	R	н	-cH2-HC-CI
40	CI-CH2-	1 2	o .	R	н	-CH2-H C
41	a-{a+₂-	1 2	0	R	Н	-CH²-H C-CI
42	CI(CH ₂	1 2	0	R	н	-CH2-N-C-CN
43	CI	1 2	0 .	R	н	-CH2-HC-C
44	CI-CH ₂ -	1 2	Q.	R	н	-CH ₂ -N-C-CF ₃

.[0105]

Table 1.5

Compd. No.	R ² (CH ₂)	k m	1 10	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
45	CI-CH ₂ -	1 2	0	R	Н	-CH2-N-CCF3
46	а-О-сн-	1 2	0	R	н	-CH ₂ -N-C-CF ₃
47	с⊢С -сн₂-	1 2	0	R	H	-CH2-N-C-CP3
48	CIQCH2-	1 2	0	R	н .	-CH ₂ -M-C-CF ₃
49	с 	1 2	0	R _.	н	-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
. 50	CI	1 2	o	R	н	-CH2-N-C-CF3
51	CI	1 2	0	R.	н	-CH ₂ -N-C
52	a-C-a45-	1 2	0	R	н	-CH2-HC-F
53	С├СН₂-	1 2	0	R .	н	-CH2-HC-
54	с	1 2	0	R	н	-cH2-HC
5 5	a-(-)-a+2-	1 2	0	R	н	-CH ₂ -N-C-CI
				_		

[0106]

Table 1.6

i abic	1.0						
Compd.	R ² (CH ₂);	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
56	CI(CH ₂ -	1	2	o	R	H	-CH2-N-C-
57	CI—CH ₂ -	1	2.	o	R	н	-CH ₂ -N-C
58	CI-CH ₂ -	1	2	o ·	R	н	-CH2-N-C-CI
59	CH-CH ₂ -	1	2	0	R	H	-CH₂-N-CBr
60	с⊢—Сн₂-	1	2	o [·]	R	н .	-сн ₂ - Ŋ с-С
61	с⊢—СН₂-	1	2	0	R	н	-сн ₂ -ү с-Ссг ₃
62	CI—CH₂-	1	2	0	R .	н	-CH ₂ -N-C-CH ₃
63	сн-{	1	2	0	R	н	-сн ₂ - н с-С-сн ₂ сн ₃
	CI					н	-сн₂-н с- С >-сп
65	CH-CH ₂ -	1	2	0	R	н .	-cH2-Hc-
66	CHCH2-	1	2	0	R	н	-CH2-HC-

Table 1.7

Table 1					_
Compd. No.	R ¹ (CH ₂) _j -	k m _j n	chirality	H3	-(CH ₂) _p + (CH ₂) _q G-R ⁴
67	CI—CH ₂ -	1 2 0	R	н	-CH ₂ -N C
68	CI(CI+2-	1 2 0	R	H	-CH ₂ -NC
69	СН-СН2-	1 2 0	R	н	-CH₂-HC-F
70	CI	1 2 0	R	н	-CH ₂ -N-C-F
71	CH ₂	1 2.0	R .	. н	-сн ₂ -и с н ₃ со
72	CH2=1	1 -2 0	R	н	-CH2-N-C-C-OCF3
73	CI-Ç)-CH ₂ -	1 2 0	R	H	-CH ₂ -N-C
74	сі—Ст-	1 2 0	R	н	-сн ₂ - үү с-Су-со ₂ сн ₃
75	с	1 2 0	R	н	~CH₂-N-CF F ₃ C
76	CH ₂ -	1 2 0	R	н	-CH ₂ -N C-F ₃ C
77	CH-CH ₂ -	1 2 0	R	н -	-CH2-NC-F
					•

[0108]

Table 1.8

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
78	с{	1	2	0	R	Н	-CH2-NC-FF
79	CI-CH2-	1	2	0	R	н	-CH ₂ -N C- F ₃ C -CF ₃
80	CH-CH ₂ -	1	2	O	R	н	-CH ₂ -N-C
81	CH-CH ₂ -	1	2	0	R	н	-сн²-н с- Сн³
82	CI	1	ż	0	-	—СH ₃	-CH ₂ -N-C-CF ₃
. 83	с	1	2	o	R	Н	-CH ₂ -N-C-\(\sigma\)
84	CI	1 .	2	0	R	н	-CH2-N-C
85	CI{	1	2	0	-	н	-(CH ₂) ₂ -N-C-
	CI{-}-CH ₂ -			•		н	-(CH ₂) ₂ -N-C
87	сн -СН₂-	1	2	0	s	н	-(CH ²)2-H-C-CF ₃
88	CI	1	2	o .	s	н	-(CH ₂) ₂ -N-C-CF ₃ -(CH ₂) ₂ -N-C-F ₃ F ₃ C
		•					

[0109]

Tabl 1.9

1401	1.5						
Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	R ⁴ -(CH ₂) _p (CH ₂) _q G-R ⁶
89	CH-CH ₂ -	1	2	0	s	н	-(CH ₂) ₂ -N-C-Br
90	CICI+2-	1 .	2	0	s	н	-(CH2)2-H C-
91	CH-CH2-	1	2	0	s	. н	-(CH ₂) ₂ -N-C-CI
92	CH_CH ₂ -	1	2	0	s	Н	-(CH ₂) ₂ -N-C-
93	CH2-CH2-	1 :	2	0	s	н	-(CH3)2-N-C
94	CI—CH2-	1 :	2 .	0	s	н	-(CH ₂) ₂ -N-C-COCH ₃
95	CI—CH2-	1 - 2	2	0	S	.	-(CH ₂) ₂ - N C-CF ₃
96	a-{a+²-	1 2	2	o	s	н	-(CH ₂) ₂ -N-C-CH ₃
97	CICH ₂ -	1 2	2	o .	s	н	-(CH ⁵) ⁵ -H _C
98	с	1 2	2	0	S	. н	-(CH ₂) ₂ -N-C-OCH ₃
99	с	1 2	2	0	s	H	-(CH3)2-H-C

[0110]

Tabl 1.10

Compo	J. R ¹ (CH ₂)	k	m	n	chirality	₽³	-{CH ₂) _p + (CH ₂) _q G-R ⁶
10 0	с{	1	2	0	S	н	-(CH ₂) ₂ -N-C-CN
101	CH-CH2-	1	2	0	S	н	-(CH ⁵) ⁵ - H-C-
102	CH-CH2-	1	2	0	s	н	-(CH ₂) ₂ -N-CCF ₃
103	сСн2-	.1	2	0	s	H	-(CH ₂) ₂ -H-C- CF ₃
104	CI-CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C
105	CH	1 :	2 (0	s	н	-(CH ₂₎₂ -N-C-CF ₃
106	а - Су-ан-	1 :	2 (3	s ·	н	-(CH ₂) ₂ -N-C
107	CH-CH ₂ -	1 2	2 () .	s	н	-(CH ₂) ₂ -N-C
108	CICI12-	1 2	2. C	1	s	н	-(CH ₂) ₂ -N-C-
109	CICH ₂ -	1 2	: 0	•	s	Н	-(CH ₂) ₂ -N-C
110	CICH2-	1 2	0		S	 H	-(CH ₂) ₂ - N-C

Table 1.11

	• • •						
Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	_(CH ₂) _ G-R ⁶
1,11	CI-CH2-	1	2	0	R	н	-(CH ₂) ₂ - H C-CF ₃
112	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
113	Q	1	2	o	R	н	-(CH ₂) ₂ -N-C-Br
114	CICIH ₂ -	1	2	.0	R	н	-(CH ₂) ₂ -N-C-
115	CI-CH ₂ -	1	2	0.	R	н	-(CH ⁵) ² -N-C-CI
116	CI(CH2-	. 1	2	0	R	H	-(CH3)2-H-C-
117	CI(CI	1	2	0	R	н	-(CH ³) ² -N-C-(CH ³)
118	CI—CI+2-	1	2	O	R	н .	(CH2)2-N-C
119	CI{CH ₂ -	1	2	0	R	н	-(CH ²) ² - N- C-CE ³
120	с⊢-{_}-сн₂-	1	2	0	R	н	-(CH ₂) _Z -N-C-CH ₃
121	CI	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI

[0112]

Table 1.12

Compd. No.	R ² (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
122	CI—CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-С-ОСН ₃
123	сн-С-сн _г -	1	2	0	R	н	-(CH ⁵) ⁵ -V+C-CI
124	CI-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-
125	CH-CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
126	cı-{_}-cıi₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
127	CH————————————————————————————————————	1	2	O	R .	H .	-(CH ₂) ₂ -N-C
128 .	cı-()-ciғ-	1	2	0	R	H	-(CH ₂) ₂ -N-C-F ₃
129	CI-CH ₂ -	1	2	Ò	R	Н	-(CH ₂) ₂ -N-C-CF ₃
130	CH- ()-CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
131	CH ₂ -	1	2	0	R .	н	-(CH ₂) ₂ -N-C
132 (>{_}}-CH²-	1	2	0	R	н	-(CH ₂) ₂ -N-C

[0113]

Tabl 1.13

1401	1.13						
Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
133	a-{_}-a+2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-\\ \begin{pmatrix} NO ₂ \\ \end{pmatrix}
134	CI(CI+2-	1	2	0	R	н	-(CH2)2-H-C
135	С-С-С-	1	2	0	R	н	-(CH ₂) ₂ -N C-B
136	CI	1	2	0	R	Н	-(CH ₂) ₂ -HC-F
137	с⊢СУ-сн₂-	. 1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
138	a-Ch-chiz-	1	2	0	R	H .	-(CHP)5- H C-
139	CI—CH ₂ -	i	2	o	R	н • .	-(CH ₂) ₂ -N-C
140	CI-CH2-	1	2	o	R	н	-(CH ²) ² -H ² C-
141	CH2-CH2-	1	2	0	R	Ĥ	-(CH ²) ² - H·C- H·2 H·3 H·3 H·3 H·3 H·3 H·3 H·3 H·3 H·3 H·3
142	CH-CH2-	1	2	0	R	H	-(CH ₂) ₂ -N-C
143	CH-CH2-	1	2	0	Ŕ	н	-(CH ²) ³ -M C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

[0114]

Table 1.14

Iabic	1.14					
Compd. No.	R ² (CH ₂)	k m	n	chirality	₽3	R ⁴ −(CH ₂) _p
144	CI-CH2-	1 2	0	R	н	-(CH ₂) ₂ -N-C-
145	CH2-CH2-	1 2	o	R	н	-(CH ₂) ₂ -N-C
146	CH-CH ₂ -	1 2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
147	C⊢-(CH²	1 2	0	R	н	-(CH ₂) _Z -N-C
148	CI-CI1 ₂ -	1 2	0	R	н	-(CH ₂) ₂ -N-C-CN
149	CH-CH ₂ -	1 2	. 0	R	н	-(CH ₂)₂-N-C-
150	CI-CH _Z -	1 2	0	R	Н	-(CH2)2-N-C-
151	с⊢—Сн₂-	1 2	0	R	н	-(CH ₂) ₂ -N-C
	с⊢-{С}-сн₂-				н	-(CH ₂) ₂ -N-C
153	CI-CH ₂ -	1 2	0	R	н	-(CH ₂) ₂ -N-C
154	CH	1 2	o .	R	н	-(CH ₂) ₂ -N-C
						<u> </u>

[0115]

Tabi 1.75

·ubi	5				-
Compd.	R ² (CH ₂);-	k m n	chirality	R³	—(CH ₂) q G−R ⁵
155	CH-CH2-	1 2 0	R	H	-(CH ₂) ₂ -N-C
156	CI-CH ₂ -	12 0	R	н	-(CH ²) ² -H-C
157	CH-CH2-	1 2 0	R	н .	-(CH ₂) ₂ -N-C
158	CH2-	1 2 0	R	н	-(СН2)z-N-С- Н С- С- С- С- С- С- С- С- С- С- С- С- С-
159	CI-CH2-	1 2 0	R	н	-(CH ₂) ₂ -N-C
160	а {\}- -сн ₂	1 2 0	R	н 	-(CH ₂) ₂ -N-C- H F ₃ C
161	CICH2-	1 2 0	R	н	-(CH ₂) ₂ -N C F
162	CH2-	1 2 0	. R	· H	-(CH2)2-N-C
163	CI-CH2-	1 2 0	R	Н	-(CH ₂) ₂ -N-C- F ₃ C -CF ₃
164	с⊢—Сн₂-	1 2 0	R ·	н	-(CH2)2-N-C
165	CI	1 2 0	R	н	-(CH ²) ² - H C-CH ³
					•

[0116]

Tabl 1.16

Tabl 7	1.16						
Compd. No.	R ² (CH ₂)-	k	ṁ	ก	chirality	₽³	-(CH ₂) ,
166	CICH ₂ -	1	. 2	0	R	н	(S) P CF ₃ -CH H C CF ₃
167	CI(CI+2-	1.	2	· 0	R	н	(S) P -CH-N-C-Br CH ₃
168	CICH ₂ -	1	2	o	R	H .	CH PC-CI
169	CH-CH ₂ -	1	2	o	R	н	CH3 PCI
170	CH-CH ₂ -	1	2	o	R	Н	CH3 P F
171	CI-CH ₂ -	1	2	o :	R	H .	CH N-C-CH
172	CI	1	2	O	· R	н	(S) -CH-N-C- CH3
173	CI	1	2	0	R	Н	(S) NO ₂
174		1	2	•	. R	н	CH NO CF3
175	CI{CH ₂ -	1	2	0	R	н	CH-N-C-Br
176	CI-CO-CIH ₂ -	1	2	O	R	н	(A) CHACCH

[0117]

Tabl 1.17

I abi	1.17						
Compd. No.	R ¹ (CH ₂)-	k	m	n	chirality	· R³	—(CH ₂) p (CH ₂) q G−R ⁶
177	с{	1	2	0	R	н	(F) P CI -CH-N-C-CI CH ₃
178	CH-CH ₂ -	1	2	0	R	- н	(F) O CF ₃ -CH-N-C-CF ₃ CH ₃ F
179	CI-CH2-	1	2	0	R	н	(F) P -CH-N-C-CI CH ₃
180	CH-CH ₂ -	1	2	0	R	н	CH ₃
181	O	1	2	O	R	H .	CH ₃
182	a-{\bar{\bar{\bar{\bar{\bar{\bar{\bar	.1	2	0	R	н	CH ³ O CE ³
183	CH-CH2-	-1	2	0	R	н .	CH3 CH3 CH3
184	CI	1	2	0	R	н	CH3 CH3 CH
185	CI	1	2	O .	R	н	-¢H, H, Ç- -¢H, H, Ç- CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3
186	CI—CH₂-	1	2	0	R	н	CH ₃ O CF ₃
187	CI————————————————————————————————————	.1	2	0	R	н	СН3 С СН3 С СН3 С С С С I
							•

[0118]

Table 1.18

able	.10 .						
Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH₂) _p
188	CH-CH ₂ -	1	2	0	R	н	CH3 D
189	CICH ₂ -	1	2	O	R	н	-CH-N-C-NO2
190	CH-CH ₂ -	1	2	o	R	н	-CH-N-D-CF3
191	CH-CH ₂ -	1	2	0	R	н	CH PC-CB
192	CICI1 ₂ -	1	2	Ö	R	н	GH-NO-CO
193	CI—CH₂-	1	2	0	R	н .	-CHN 0-Ca
194	CH-CH ₂ -	1	2	O	, Ř	н	(A) HO CF3
195	с⊢О−сн₂-	1	2	0	Ŕ	н	CHN-C-CH
196	CI	1.	2	.0	R	н	CHA C
197	CI—CH₂-	1	2	0	R	H	-GHH-O-C
198	CI	1	2	0	R	н	CHING CHING
							_

Tabl 1.19

Iabi	1.19						
Compd.	R ¹ (CH ₂)-	k	m	п	chirality	₽³	-(CH ₂) _p (CH ₂) _q G-R ⁶
199	CH-2-	1	2	Ó	R	н	CHANG-
200	CIQCH2-	1	2	0	R	н	-c++ 10
201	CH-{-}-CH2-	1	•2	.0	R	н	- G+H-G-C-O
202	CICH2-	1	2	0	R	н	(S) P (CF)
203	CH ₂ -	1	2	0	R	н	CH2 CI
204	CH-CH2-	1	2	0	R	н .	CHA CO
205	с⊢——сн₂-	1	2	0	. R	н	- GALLO COS
206	CI	.1.	2	Ō	R	н	1077 gar 13 H G Q
	CI					н	(orly de car)
208	CI-CH ₂ -	1	2	0	R:	H	(ar) & crr
209	CI—CH ₂ -	1	2	0	R	H	Carting Car

[0120]

Tabl: 1:20

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
210	CI	1	2	0	R	н	(O-1)
211	CI—CH ₂ -	1	2	o	R	н	(ar) - gar - Gr H C - a
212	CI-CH2-	1	2	0	R	н	(C)+5)5-2-CH7
213	C	1	2	o	R ·	н	(or) - S-cH - CH H C-C
214	CI(C)CH ₂ -	1 :	2	o	<u>:</u>	н	-(CH ₂) ₃ -C-
215	с⊢—Сн₂-	1 .	2	0	-	н	-(CH2)3-C-(CH3)
216	сі-{	1 2	2	0	•	Н	, -(CH2)3-C-{5}
217	CI—CH ₂ -	1 2	2	0	-	н	-(CH ₂) ₂ -C-(CH ₃ H ₃ CO
218	CH-CH ₂ -	1 2	?	0	-	н	-(CH ₂) ₂ -C-(CH ₃ H ₃ C
219	а-{_}-сн ₂ -	1 2	?	0	-	н	-(CH ³) ² -C-CH ³
220	СН-СН2-	1 2		0	-	н	-(CH ⁵) ⁵ -C-(CH ³
							•

[0121]

Tabl 1.21

iau:	1.21						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
221	CI-CH2-	1	2	0	-	н	-(CH ₂) ₂ -C-
222	CI	1,	2	0	• •	н	-(CH ₂) ₂ -C-(CH
223	CH-CH2-	1	2	0	-	н	-(CH ₂) ₂ -C(CH ₂) ₃ CH ₃
224	CI{\bigce}-CH2-	1	2	· 0	- i - <u>-</u>	H .	-CH ₂ -\$CH ₃
225	CI	1	2	0	•	н	-(CH ₂) ₃ -C-N-
226	Ci-{	1	2	0	-	H .	-(CH)3-C-N-COCH3
227	CI(C)CH ₂ -	1	2	0	-	н	-(CH ₂) ₃ -C-H
228	CI-{	1.	2	0	•	Н	-(CH ₂) ₃ -C-N
229	CI	1	2	0	-	н	-CH ₂ -C-CH ₂ -C-N-CH ₃
230	CH2-	1	2	0	-	н	-CH ₂ -CH ₂ -C-N
231	CI-CH2-	1	2	0	-	н	-(CH-7)-C-H-

[0122]

Table 1.22

Tubic i							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
232	CI—(1	2	0	-	н	-(CH ⁵) ² - C- H-
233	CI-CH ₂ -	1	2	0	· -	н	-(CH ₂) ₃ -C-N-CH ₂ -C
234	CH-CH ₂ -	1	2	0	-	Ĥ	-(CH ₂) ₃ -C-N-(CH ₃
235	C⊢——CH₂-	1	2	0	-	н	-ar ² -arar ² -c-har ² -a
236	CI-CH ₂ -	1	2	0	-	H	-CH ₂ -N-S- H O CH ₃
237	CH ₂ -	1	2	0	-	н	-CH2-N-C-O-CH2
238	CH-CH ₂ -	1.	2	0	-	н	-c+0-c-N-CI
239	CH2-	1	2	0	s	н	-CH2-N-C-CF3
240	CH ₂ -	1	2	0	S .	н	-CH ₂ -N-C-CF ₃
241	CI CH ₂ -	1	2	0	s	н	-CH2-N-C-CF3
242	a-Char.	1	2	0	s	н	-cH2-N-C-CF3

[0123]

Table 1.23

Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G -R ⁶
243	CH-CHF-	1	2	0	S .	н	-CH2-N-O-CF3
244	CH ²	1	2	0	s	н	-CH2-N-C-CF3
245	CH2-	1	2	0	s	н	-CH2-H-C-CF3
246	CC -CH ² -	1	2	0	S.	н	-CH2-N-0-CF3
247	CICH ₂ -	1	2	0	S	н	-CH2-N-C-CF3
248	H3CO_CH2-	1	2	0	s	н	-cHz-N-C-CE3
249	F ₃ C CH ₂ -	1	ż	0	S	н .	-CH2-N-C-CF3
250	H ₈ C —CH ₂ —	1	2	0	S	н	-CH2-N-C-CF3
251	F-CHg-	1.	2	0	s	н	-CH2-N-C-CF3
252	н,со-С)-сну-	1	2	0	S	н	-CH2-N-0-CF3
253	H3C-(-)-CH2-	1	2	0	s	н	-CH2-N-0-CF3

[0124]

Table 1.24

Table 1	•						
Compd.	R ² (CH ₂);	k	m	n	chirality	R³	-(CH ₂) , (CH ₂) q G-R ⁶
254	CH_CH2-	1	2	0	s	н	-CH ₂ -N-C-CF ₃
255	C ₂ N CH ₂ -	1	2	0	S	H	-CH ₂ -N-C-CF ₃
256	O2N-CH2-	1	2	0	S	. н	-CH ² -M-C-C _{CE³}
257	CF ₃	1	2	0	S	н	-CH ₂ -N-C-CF ₃
258	CO2CH2CH2	1	2	0	S	H	-CH2-N-C-CF3
259	CH4-	1	2	0	S	н	-CHZ-N-O-CF3
260	CH-CH'	1	2	0	s	н	-CH2-HC-CC+3
261	F3C-CH2-	1	2	0	s	н	-сн ₂ - н-с
	CH2-					н	-CH2-N-C-CF3
263	Br-CHr-	1	2	0	s	н	-CH2-N-C-CF3
264	O-O-O-IF	1	2	0	S	н .	-CH2-N-C-CF3
·							

[0125]

Table 1.25

Table	1.2 J						•
Compd.	R ² (CH ₂)j-	k	m	ก	chirality	R³	–(СН ₂) , 1 (СН ₂), G–R ⁶
265	Br—CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
266	CH*	1	2	O	S	н	-CH ₂ -N-C-CF ₃
267	CH ² L	1	2	o	s	H	-CH2-N-C-CF3
268	₩0.0-ÅO013-	1	2	0	s	н	-CH2-N-C-CF3
269	H3C-\$ CH2-	1	2	o	s	н .	-CH2-N-O-CF3
270	H ₃ CO ₂ C —CH ₂ —	1	2	0	s ·	н	-CH2-N-C-CF3
271	CH2-	1	2	0	s	н	-CH2-No-CF3
272	но-О-сн-	. 1	2	0	s	н	-CH2-N-C-CF3
273	CN	. 1	2	0	S	н	-CH2-N-C-CF3
274	NC CH ₂ -	1	2	0	s	н	-сн ₂ -ң-с-С ^{F₃}
275	NO-CH ₂ -	1	2	0	s	н	-CH2-N-C
							·

[0126]

Table 1.26

labic	1.20						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
276	F-CH ₂ -	1	2	0	s	н	-CH ₂ -N-C-CF ₃
277	○ - ○ -o₁₂	1	2	0	s	н	-CH ₂ -N-C-CF ₃
278	н₃∞₂с-{_}-сн₂-	1	2	0	s	н	-сн ₂ -м-с-С ₅ 3
279	F3CO-CH2-	1	2	0	s	н	-CH ₂ -N-C-CF ₃
280	F ₃ CO CH ₂ -	1	2	0	. S	н	-CH ₂ -N-C-CF ₃
281	HO ⁵ C{	, 1	2	0	s	н	-CH2-N-C-CF3
282	(H3C)3C-{}-CH2F	1	2	0	s	H	-CH2-N-C-CF3
283	CH3 CH3	1	2	0	s	н	-CH ₂ -N-C-CF ₃
	CH-CH-					н	-CH ₂ -N-C-CF ₃
285	CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
286	CH _F	1	2	0	R	H .	-CH ₂ -N-C-CF ₃
				-			

[0127]

Tabl 1.27

·us·	1.4					•	
Compd. No.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
287	CH ² -	1	2	0	R	н.	-CH2-N-C-CF3
288	CI-CH ₂ -CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
289	CI CH2-	1	2	0	R.	H	-сн _{г-N} -с-С ^{F₃}
290	CH ²	1	2	0	R	н	-CH2-N-C-CF3
291	CH ₂ -	1	2 .	0	R	Н	-CH2-N-C-CF3
292	CH2-CH2-	1	2 .	0	R	H	-CH2-N-O-CF3
293	CI CH2	1	2	0	R	н ·	-сн <u>-</u> н с-С ^{CF₃}
294	H ₃ CO CH ₂ -	1	2	O	R	н ·	-CHY-N-O-CF3
	F ₃ C —CH ₂ —					H	-CHZ-N-O-CF3
296	H ³ C	1	2	0	R	н	-CHZ-H-C-CF3
297	F-CH ₂ -	1 :	2	0	R	н	-CH2-N-C-CF3

Table 1.28

Table							
Compd.	R ¹ (CH ₂) _j	k	តា	n	chirality	R³	—(CH₂) p 1 R5 (CH₂)q G−R ⁶
298	H3CO-CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
299	H ₃ C-CH ₂ -	.1	2	0	R	н	-CH ₂ -N-C-CF ₃
300	CI-CH ₂ -	1	2	0	R	н.	-CH ₂ -N-C-CF ₃
301	O ₂ N —CH ₂ —	1	2	0	R	н	-CII2-N-C-CF3
302	O ₂ N-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
303 [.]	CF ₃	1	2	O	R	н,	-CH2-N-C-CF3
304	CO2CH2CH3	1	· 2	Ö	R	Н	-CH2-N-C-CF3
305	CH ²	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
	CI CIH ₂ -				•		-CH-N-C-CF3
307	F3C	1	2	0	R	н	-CH2-N-C-CF3
308	. Br	1	2	0	R	н	-CH ₂ -N-C-CF ₃
							· · · · · · · · · · · · · · · · · · ·

[0129]

Table 1.29

table (.23						
Compd. No.	R ¹ /(CH ₂) _j -	k	·m	n	chirality	R³	(CH ₂) _p + (CH ₂) _q G-R ⁶
309	Br CHy-	1	2	0	R	н	-сн ₂ - N-с
310	O-g-our	1	2	0	R	н	-CH2-N-C-CF3
311	BrCH ₂ -	1	2	0	R	н	-CH2-N-CCF3
312	CH2-	1	2	0	R	н	-CH2-N-C-CF3
313	CH2-	1	2	O	R	н	-CH2-N-C-CF3
314	POCH O-CHE.	1	2	0	R	н .	-CH2-N-C-CF3
315	H²C L	1	2	0	R	н	-CH2-N-O-CF3
316	H3CO2C	1	2	0	R	н	-CH ₂ -N-C-CF ₃
317	CH2-	1	2	0	R ·	н	-CH ₂ -N-C
318	HO-CH2-	1	2	0	R	н	-CH2-N-C-CF3
319	CN CH ₂ -	1	2	0	R	н	-сн _{€-Н} ° СБ₃

[0130]

Table 1.30

i abic i							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	H ₃	-(CH ₂) _p + (CH ₂) _q G−R ⁶
	NC CH ₂ -					н	-CH ₂ -N-C
321	NO-CH2-	1	2	0	R	Ĥ	-CH2-N-C
322	F-CH ₂ -	· 1	2	0	R	н	-CH ₂ -N-C-CF ₃
323	○ - ○ -o₁₂-	. 1	2		R	н	-сн ₂ -N-с-С _Б
324	н _в со _х о-СТ-сн _г -	1	2	.0	·R	H	-сн _{2-н} о-С ^С F ₃
325	F3CO-CH2-	1	2	0	R	H	-CH2-N-C-CF3
326	F ₃ CQ —CH ₂ -	1	2	0	R	н	-сн ₂ -N-о-С ^{СF} 3
3 27	HO ₂ C	1	2	0	R	н	-сн _{я-N} -с-С ^{F₃}
	(H3C)3C-(C)-CH2F					н	-сн _{2-N} -о-С ^{F₃}
329	CH2 CH2	1	2	0	R	н	-CH2-H C-CF3
330	CH-CH ₂ -	0	3	1	-	H	-CH ₂ -N-C-

[0131]

Tabl 1.31

	-						
Compd.	R ¹ (CH ₂);	k	m	n	chirality	₽³	-(CH ₂) p 1 (CH ₂) q G -R ⁶
331	CH-CH2-	0	3	1	-	н	-CH ₂ -N-C-CH ₃
332	CH2-CH2-	0	3	1	-	н	-CH ₂ -N-C-CH ₃ OCH ₃ OCH ₃
333	а—(0	3	1	-	Н	-cHz-N c
334	a-C-at-	0	3	1	-	H	-CH2-N-C
335	a-{CH₂-	0	3	1		н	-CH2-N-C-
336	a-{_}-a+₂-	0	3	1	-	н	-CH ₂ -N-C-CF ₃
337	a-Q-at-	0	3	1	-	н	-CH ² -H-C-
338	CI-CI-CI-F	0	3	1	-	н	-сн ₂ -№ сС
339	с	0	3	1	R	н	-CH ₂ -N-C-CF ₃
340	CI—CH2-	0	3	1	s	н	-at-Hc-CF3
341	CI—CH2-	0	3	1	-	н	-(CH ³) ² -N-C-

[0132]

Table 1.32

l able	1.32						
Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
342	CI(CI+ ₂ -	0	3	1	-	н	-c++c- c+³ o
343	CI(CI-2-	0	3	1	-	H	CH(CH³)²
344	CI	0	3	1	-	н	CH2CH(CH3)2
345	CI{	0	3	1	-	н .	-(CH ₂) ₃ -C-
346	CI-CI+2-	0	3	i	-	н	-(CH ₂) ₂ -C
347	CICH ₂	0	3	1	-	н	-(CH ₂) ₂ -C-(CH ₃ H ₃ C
348	CH ₂ -	O	3	1	-	н	-(CH ₂) ₂ -C-CH ₃
349	CI	0	3	1	-	н	-CH ₂ -\$
350	CI(CI+2-	0	3	1	· <u>-</u>	н	-сн ₂ - № \$сн ₃
351	CH-CH ₂ -	0	3	. 1	-	н	-cH₂-N-C-O-CH₂-
352	CICH ₂ -	0	3	1	-	H	-сно-с-й-са сн

[0133]

Tabl 1.33

Iabi					. •		
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
353	a-{}-crtz-	1	2	1		н	-CH2-N-C-
354	CI-{	1	3	0	-	н	-CH2-H-C-
355	CI(CH ₂ -	1	3	0	-	н Н	-CH ₂ -N-C-CH ₃
356	CH2-	1	3	0	-	H .	-CH ² -N-C-
357	CI(CI+2-	1	3	0	-	н -	-CH2-H-C-
358	CI{	1	3	0		н	-CH2-N-C-CF3
·35 9	CH2-CH2-	1	3	0	-	н	-(CH ₂) ₂ -N-C-
360	CI—CH₂-	1	3	0	-	н.	-(CH ₂) ₂ -N-C-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\
361	CI(CH2-	1	3	0	•	н	-(CH2)3-0-(C)
							-(cH ₂) ₃ -c
363	CI{	1	3	0	-	н	-(CH2)2-C-{\$

[0134]

Table 1.34

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
364	сн-О-сн-	1	3	0	-	н	-(CH ₂) ₂ -C
365	с	1	3	0	-	н	-(CH ₂) ₂ -C-CH ₃
366	CI	1	3	Ò	-	н	-(CH ₂) ₂ -C
367	CH-2-	1	3	0	-	н	-(CH ₂) ₂ -C-CH ₃
368	CH-CH ₂ -	1	3	0	.	н	-(CH ₂) ₂ -C-
369	CH-2-	1 ·	3	0	-	н	-(CH ₂) ₂ -C-(CH
370	CH2-	1	3	0	-	н	-(CH2)2-C
371	CH-CH ₂ -	1	3	0	-	н	-(CH ₂) ₂ -C
372	a-€a+²-	1	3	0	-	н	- CH ² - S CH ³
373	CI(CI+2-	1	3	0	-	н	-(CH ₂) ₃ -C-N-
374	CICH2-	1	3	0		н	-(CH ₂) ₃ -C-N-
-							

[0135]

Table 1.35

Table 1	1.35						
Compd.	R ² (CH ₂) _j	k	m	n	chirality	₽3	-(CH ₂) _{р 5} (CH ₂) _q G-R ⁶
375	CI-CI-CI-	1	3	0	-	н	-(CH ₂) ₃ -C-N-CI
376	CH-CH2-	1	3	0	-	н	-(CH ⁵) ² -C-H ² OCH ³
377	CI	1	3	0	-	н	- CH2-C-CH2-C-N-CH
378	CI	1	3	0	-	н	-CH ₂ -C-N-C-F
379	CI	1	3	0	-	H	-(CH2)3-C-N-(C+CH3
380	CH2-	1	3	0	· -	н	-(CH2)3-C-H CH2-
381	CI(CI+2-	1	3	0	- .	н,	-a4-N-8
382	CI	1	3	0	-	⁻ н	-сн ₂ - <mark>н</mark> с- о- сн ₂ -
	CI-CH ₂ -			0	-	н	-сно-с-й- сн
384	CICI+2-	2	2	0	-	н	-CH ₂ -N-O
385	CI(CI+2-	2	2	0	-	н	-CH ₂ -N-O-
-							

[0136]

Table 1.3.5

lable 1	-3.0						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
386	O−cH₂-	2	2	0	-	н	-cH2-N-c-
387	⊘ −cH _Z -	2	2	0	· .	H	-CH ₂ -N-C-
388	-CH ₂ -	2	2	0	•	н	-CH ₂ -N-C-
389	CH₂-	2	2	0	-	. н	-CH ₂ -N-C-CO₂CH₃
390	CH ₂ -	2	2	0	-	н	-CH2-N-C-CF3
391	CH2−	2	2.	0	-	н	-CH2-N-C-CF3
392 .	CH₂-	2	2.	0		н	-CH ₂ -N-C-COCF ₃
393	◯ -cH₂-	2	2	0	-	н	-CHZ-N-CBr
394	◯ -CH ₂ -	2	2	0	-	н	-CHZ-N-C-CI
395	CH ₂ -	2	2	0	-	н.	-CH ₂ -N-CBr
396	О-сн-	2	2	0	-	н	-CH ₂ -N-C

Tabl 1.37

Tabl 1	1.37						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) p (CH ₂) q G-R ⁶
397	Cy-cut₂	2	2	0	-	н	-CH2-HQ-CI
398	O-cH2-	2	2	ο.	· -	н	-(CH ⁵)≤-N-C-
399	CH2-	2	2	0		н	-(CH ₂) _Z -N-C
400	O-cH2-	2	2	.0	-	н	-(CH ₂) ₂ -N-O
401	○ -cH ₂ -	2	2	0		н	-(CH ₂) ₂ -N-C
402	CH-CH2-	2	2	0	-	н	-(CH ₂) ₂ -N-C-CF ₃
403	O-cH2-	2	. 2	0	-	н	-(CH ₃) ₂ -N-C-CF ₃
404	O-cH2-	2	2	0	-	н .	-(CH ₂) ₂ -N-C-C-C-3
405	C)-ate	2	2	0	-	Н	-(CH ₂) ₂ -N-O
406	CH ₂ -	2	2	0		н	-(CH2)2-H-0-CI
407	CH2-	2	2	0	-	H	-(CH2)2-H-C

[0138]

Table 1.38

	1.00						
Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R [€]
408	CH-CH-	2	2	0	•	н	-(CH ₂) ₂ -N-C
. 409	O-cH2-	2	2	0		н	-(CH ₂) ₂ -N-O-Ci
410	CH2-CH2-	2	2	0	-	н	(5) P -CH-N-C-(CH3/2:
411	CH2-	2	2	0	-	Ĥ	(S) P −CH−N−C− CH₂CH(CH₃)₂
412	~ -CH₂-	2	2	0	-	н	(S) P NO ₂ -CH-N-O-CH ₂ CH(CH ₃) ₂
413	CH2-	2.	2	0	-	н	(S) P -CH-N-C
414	CH _Z -	2 ·	2	0	-	н	CH ₂ CH(CH ₃) ₂
415	-CH ₂ -	2	2	0	-	н	CH_CH(CH ₃) ₂ F
416	CH ₂ -	2	2	0	-	н	(S) -CH-N-C- H CH ₂ CH(CH ₃) ₂
417	CH²-	2	2	0	-	Н	CH2CH(CH3)2
41B	(_)-cH₂-	2	2	0	-	н	(S) CI -CH-N-C
					·		

[0139]

Table 1.39

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	—(CH ₂) _p CH₂)_q G−R⁶
419	CH₂-	2	2	0	-	н	(S) 0 -CH-N-C-(S)-Br CH ₂ CH(CH ₃) ₂
420	C)-cH-	2	2	0	-	н.	(S) P F CH-N-C
421	CH2-	2	2	0	-	н	(S) P CI −CH−N-C−←CI CH₂CH(CH3)2
422	CH ₂ -	2	2	0	-	H .	CH ₂ CH(CH ₃) ₂
423	CH ₂ -	. 2	2	0	-	н .	(A) P CH-N-C- I H CH ₂ CH(CH ₃) ₂
424	СН2-	2	2	Ó	-	, Н	(F) -ÇH-N-O- CH₂CH(CH₃)₂
425	CH2-	2 .·	2	0	-	H .	(A) P -CH-N-C-C-CO2CH3 CH2CH(CH3)2
426	○ -cH ₂	2	2	0	-	н	CH2CH(CH3)2
427	СН-сн-г	2	2	0	•	н .	CH ₂ CH(CH ₃) ₂ F
428		2	2	0.	-	Н	CH2CH(CH3)2
429	O-cH2-	2	2	0	-	н	CH2CH(CH3)2

[0140]

Table 1.40

Compd. No.	R1 (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _P (CH ₂) _q G-R ⁶
430	CH ₂ -	2	2	0	- •	н	(F) PCI CH-N-C-CH CH ₂ CH(CH ₃) ₂ .
431	CH2-	2	2	0	-	н	CH2CH(CH3)2 CH2CH(CH3)2
432	CH ₂ -	2	2	0	-		(A) P C F CH2CH(CH3)2
433	⊘ -at _ℓ -	. 2	2	0	-	H .	(F) . P CI -CH-N-C-CI CH ₂ CH(CH ₂) ₂
434	CH-CH-	1	3	1	-	H .	-CH2-N-O-
435	ci—CH2-	1	3	1	- .	н	-cHz-N-C-
436	CI-CH2-CH2-	1	3	1	-	н	-сн ₂ -н-о-
437	CI-CH2-	1	3	1	-	н	-CH2-N-C
438	U					H .	-CH ₂ -N-C-CF ₃
439	CH-CH ₂ -	1	3	1	<u>.</u> .	н .	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
440	CI-CH ₂ -	1	3	1	-	н	-CH2-N-C-C

Table 1.41

Table 1	1.41						
Compd.	R ² (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
441	CI-CH ₂ -CH ₂ -	1	3	1	-	н	-CH ₂ -N-O-Ser
442	CI{CI	1	3	1	-	H ·	-CH2-N-C-C
443	CI-CHE	1	3	1	-	H	-CH2-N-CBr
	CH_CH_			-	-	н	-CH2-NC-CF
445	CI-CH-CH-	1	3	1	-	н	-a+2-H-g-C-a
446	a-{cH	1	3	1	-	Н	-(CIP)2-H Q-
447	CI-CI-CIHE	1	3	1	- -	Н	-(CH ₂) ₂ -N-C-
448	CI-CITY-	1	3	1	- .	н	-(CH2)2-N-C
449	CI-CHI-	1	3	1	- .	н	-(CH ₂) ₂ -N-O
450	сСснұ-	1	3	1	-	H	-(CH)2-H-C-CF3
451	CI—CH-	1	3	1	-	' н	-(CH)2-H-C-CF3

[0142]

Table 1.42

Table 7	1.42			_			
Compd.	R ² /(CH ₂) _i -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
452	с⊢О}-сң-	1	3	1	-	н	-(CH ₂) ₂ -N-C-C-CF ₃
453	с⊢—СН₂-	1	3	1		н	-(CH ₂) ₂ -N-C-
454	CH_CH2-	1	3	1	-	Н	-(CH ₂) ₂ -N-C-CI
455	CICH2-	1	3	1	-	. н	(CH ₂) ₂ -N-C
456	CI—CH ₂ -	1	3	1	-	н	-(CH ₂) ₂ -N-C
457	CH2-CH2-	1	_3	1	. - .	Н	-(cH2)z-N-C-(CH2)z-CI
458 [.]	CH-CH-	2	2	1	. •	н	-CH2-H-C-
459	CH	2	2	1	-	н	-CH ₂ -N-C-CH ₃
460	CI(CH ₂ -	2	2	. 1	-	Н	-CH2-N-C-CH3
461	CICH ₂ -	2	2	1	-	H .	-CH2-N-C-CF3
462	CH	2	2	1	-	н	-CH₂-N-C- H₃C

Tabl 1.43

iaui (1.40						
Compd.	R ² /(CH ₂)	k	m	ກ	chirality	R³	-(CH ₂) _p - (CH ₂) _q G R ⁶
463	a-{\rightarrow}-a1_2-	2	2	1	<u>-</u>	н	-CH ₂ -N-C-C
464	CI	2	2	1	-	н.	-CH3-H-C-CH3 OCH3
465	CI-CH ₂ -	2	2	1	-	н	-CH2-HC-
466	CI(CI+2-	2	2	1,	-	н	-CH ₂ -N-C-
467	с⊢С}-сн₂-	2	2	1	-	н	-CH ₂ -NC-
468	CI-CI-CH ₂ -	2	2	·1	-	н	-CH _Z -N-C-N(CH ₃) ₂
469	CI-CH2-CH2-	2	2	1	-	Ĥ.	-CH2-HC-COCH3
470	CI	2	2	1	-	# H	-CH2-H C-CM
471	CI(CI+2-	2	2	1	•	н	-сн²-й с-О-со³сн²
472	CH-CH2-	2	2	1	-	н	-cH2-Hc
473	a-(-)-,a12-	2	2	1	-	н _.	-ан- н с-С-с-анз
						-	

[0144]

Tabl 1.44

Tabl 1	.44						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	. R³	. —(CH ₂) _p 1 (CH ₂) _q G−R ⁶
474	CI-CH2-	2	2	1	-	н	-CH ₂ -N-C
475	CI-{	2	2 ·	1	-	H	-CH ₂ -N-C
	CI-CI-L2-				-	. н	-CH ₂ -N-C-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\
477	CH-2-	2	2	1	-	н	- CH ² -H C- OCH(CH ³ / ₅
478	CI—CH2-	2	2	1	<u>-</u>	н	-CH₂-N-C-N-1 H₃C
479 _.	CH	2	. 2	1		н	-CH2-N-C-
480	CI-CH ₂ -	2	2	1		н .	-CH ₂ -NC-O: Br
481	CI	2	2	1	-	н	-CH2-NC-(S)
482	. CI	2	2	1	-	Н	-CH2-HC-S
483 ⁻	CH-CH2-	2	. 2	1	-	н	-CH ₂ -NC-S CH ₃
484	CH-CH2-	2	2.	1	-	н	-cHz-Hc-H

Tabl 1.45

labi	1.45						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
485	с	2	2	1	-	н	-CH2-H-C-CF3
486	CI(CH ₂ -	2	2	1	-	н	-CH2-NC-CN
487	CICH2-	2	2	1	-	н	-CH2-HC
488	CI-CH _Z -	2	2	1	•.	н	-CH2-N-C-
489	CI	2	2	1	-	н	-CH ₂ -HC-CF ₃
490	CI(CI-12-	2	2	1	•	H	-CH ₂ -NC-CH ₂ CH ₃
491	CI	ż	2	1	-	н	-CH2-N-C-CF3
492	CH-CH ² -	2	.2	1	-	н .	-CH ₂ -N-C-COCF ₃
493						н	-CH ₂ -N-C-CF ₃
494	CI	2	2	1	-	н	-CH ₂ -HCCF ₃
495	a-O-arf-	2	2	1	<u>-</u>	. н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
							·

[0146]

Tabl 1.46

(abi	.40	•			•		
Compd. No.	R ¹ (CH ₂);	k	m	ก	chirality	R³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
496	с-О-сн2-	2	2	1	-	н	-CH ₂ -N-C
497	сн-С-сн2-	2	2	1	÷	н	-CH2-N-C
498	CI{	2	2	1	-	н	-CH ₂ -N-C-N-C-S
49 9	CI—CH2-	2	2	- 1	. -	н	-CH²-Hc
500	Ct-{C}-CH2-	2	2	1	-	н .	-сн₂-нс
501	CH-CH2-	2	2	1	-	н	-CH ₂ -N-C-NO ₂
502	a-{a+-	2	2	1	-	н	-CH ₂ -N-C
503	CI(CI-)CI+2-	2	2	1	•	Н	-CH ₂ -N-C
504	CI	2	2	1	-	н	-CH₂-N-C-CH₃
505	CICH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
506	CI-CH2-	2	2	1	-	н	-CH ₂ -N-C-ONO ₂ -CH ₂ -N-C-ONO ₂
	· .						

Tabl 1.47

Tabl 1	.47						
Compd.	R ² (CH ₂)-	k	m	n	chirality	₽Ş	-(CH ₂) _p + (CH ₂) _q G-R ⁶
507	сн-С-сн-	2	2	1	-	н	-сн ₂ -м-с-С
508	CI(CH ₂ -	2	2	1	-	н	-CH2-N-C-
	CI(CI+ ₂ -				-	н	-CH2-HC-S
	CH2-				-	н	-CH ₂ -N-C-OCH ₃
	a-{_}-c+ ₂ -				-	н	-(3/3
512	CI	2	2	1	•		- CH ₂ -N-C-CHCH ₃
513	CH-CH ₂ -	2	2	1	-	н	-CH2-N-C-CH3
514	CI(C)CH2-	2	2	1	-	н .	-CH2-H-C-C(CH3)3
515	CH-CH ₂ -	2	2	1	-	н	-сн₂-N-С- С >-сн₂он
516	H ₂ N	2	2	1	•	. н	-CH2-N-CF3
517	H ₂ N CH ₂ -	2	2	1	-	н	-CH2-N-O-CF3
							·

Table 1.48

iabic .							
Compd.	R ² (CH ₂);	k	m	n	chirality	R³	−(CH ₂) p (CH ₂) q G −R ⁶
518	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
519		2	2	. 1	-	н	-CH2-H-C-CF3
520	CH	2	2	1		-сн ₃	-CH ₂ -N-C-CF ₃
521	CI-CH ₂ -	2	2	1		(CH2)2CH	-CH2-N-C-CF3
522	CH ₂ -CH ₂ -	-2	2	- 1	- .:	-CH ₂ CH-	-CH2-N-C-CF3
523	CI—CH ₂ -	2	2	1		-(CH2)2CH-	-сн _{z-} h-с
524	CI—CH ₂ -	2	2	1		-сн ₂ сн-	-сн ₂₋ н-с-
525	CI—CH ₂ -	2	2	1	-	н	-CH2-N-C-CH3
526	CI-CH2-	2	2	1	-	н	-CH2-H-C-C
527	CI—CH2-	2	2	1	-	. н	-CHI- H-C-CS
528	CI—CH ₂ -	2	2	1	-	н	-CH2-N-C-CH3

Table 1.49

12010	1.4 <i>3</i>						
Compd.	R ² (CH ₂);-	k	m	n	chirality	R³	–(СН ₂) , R⁴ (СН ₂) , G−R ⁶
529	CI(C)CI+2-	2	2	1	-	н	-CH ₂ -N-C NO ₂
530	с⊢—СН₂-	2	2	1	-	н	-CH2-H-C-CM
531	CI-CH ₂ -	2	2.	1	-	н	-CH2-N-C-CS
532	CI	2	2	1	-	н	-CH ₂ -N-C-CH ₃
· 533	CI—CH2-	2	2	1		н	-CH ₂ -N-C-CH ₃ -N-C-C-CH ₃ -N-C-C-C-CH ₃ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
534	CI-CI-CI-	2	2	1	<u>.</u>	н	-CH ₂ -N-C-ONO ₂
535	0-(-)-(01/2-	2	2	1	-	Н	Hac-go -cHa-ld-c-Ca
536	O-(CH2-	2	2	1	-	H	-CH ₂ -N-C-H ₃ H ₃ C CH ₃
537	CI	2	2	1	-	н	-CH ₂ -N-C-C(CH ₃) ₃
538	CI—CH2-	2	2	1	-	H	-CH-H-C
539	CH_CH ₂ -	2	2	1	-	н	-CH ₂ -N-CH ₃ -CH ₂ -N-CH ₃ F ₃ C
							·

Table 1.50

							•
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
540	сі-С-снұ-	2	2	1	-	н	-cH ₂ -N-c-N-c-N-cH₃
541	C├ - CH₂-	2	2	1	~	н	-CH ₂ -N-C
542	CI	2	2	1	-	н	-CH ₂ -N-C- CH ₂ CH ₃
543	CH-CH ₂ -	2	2	1	-	н	-сн ₂ - ү с-сн ₂ сн ₃
544	СН-СН2-	2	2	1	-	н . ·	-cH2-N-C-
545	CH-CH2-	2	2	1.		Н	-CH2-N-C-CI
546	с⊢-{_}-сн₂-	2	2	1		н	-ar-Ho-Ca
547	CI(CI	2	2	1		н	-a+2-N-0-C1
548	CI—CH2-	2	2	1	-	н	-CH ₂ -N-C-CI
549	с⊢С}-сң-	2	2	1	-	н	-CH ₂ -N-O-CI
550	с{	2	2	1	-	н	-CH ₂ -N-C-
			<u>.</u>				

Tabl 1.51

labi	1.5 1			•			
Compd. No.	R ² /(CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
551	CI-CI+2-	2	2	1	-	н	-CH ² -N-C-CH ² CH ³
552	CI—CH₂-	2	2	1	-	н	-CHZ-N-C-CHZ-CF3
553	a-{	2	2	1	-	н	-CH2-N-C-CH2-CF3
554	, a-(-)-a+2-	2	2	1		н	-CH2-HO-NO-F
555	a-()-a12-	2	2	1	-	н	-cH2-HQ-N-CI
556	CI-CH ₂ -	2	2	1	-	Ħ	-CH2-H-O-M-CH3
557	CI	2	2	1	-	.	-(CH ₂) ₂ -N-C-
558	CI—CH2-	2	2	1	-	н	-chhc-C
559	CH-CH2-	2	2	1	-	н	-CH-NC-CF3 CH3 CF3
560	CI	2	2	. 1	-	Н	-CHNC-CH
561	CICH ₂ -	2	2	1	ı -	н	-CHNC-CH2

[0152]

Tabl 1.52

labi							
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p
562	CH-CH ₂ -	2	2	1	-	н	-C++ h-c
563	сн-С-сн-	2	2	1	-	H	-CHN C-CF3
564	CI—CH ₂ -	2	2	1	<u>.</u>	H .	-ch h c-C
565	CH-CH2-	2	2	1	-	н	-CHNC-CF3
566	CH-CH2-	2	2	1	-	н	-CHNC-CCF3
567	C⊢—CH₂-	2	2	1	-	н	-CHNC-CF3
568	C⊢——CH₂-	2	2	1	-	Н	-CHNC-CF3
569	CI—CH ₂ -	2	·2	1	· -	H .	-CHNC-CF3
570	CH-CH2-	2	2	1	-	Н	-CHNC-CF3
	CICH ₂						-CHNC-CHO CF3
572	_CICH ₂ -	2	2	1	-	н	-CH-N-C-S

[0153]

Table 1.53

Table 1							•
Compd.	R ² /(CH ₂)j-	k	m	n.	chirality	R³	-(CH ₂) p . (CH ₂) q G-R⁶
573	сн-С	2	2	1	•	н	-CHNC-S
574	CICH ₂ -	2	2	1	-	н	-CHHC-S Br
575	CI-CH ₂ -	2	2.	1	-	н	-CH NC-(CH3)3
576	CI(CH ₂ -	2	2	1	· <u>-</u>	н	-CH-NC-O SCH ₃
577	CHCH ₂ -	2	2	1	-	н	-chic
578 .	ci-C-cit-	2	2	1	-	H ,	-chhc-s
579	CI(C)-CH2-	2	2	1	<u>-</u>	H	-chhc-h
580	CI-CH2-	2	2	1	•	н	-CH NC-CH3
581	CI-CH2-	2	2	1	-	Н	-chhc-s
582	CH-CH2-	2	2	1	-	н	-ch hc-s]
583	с⊢С-сн₂-	2	2	1	-	н	-ch hc-vi
	<u></u>						

[0154]

Table 1.54

rable	1.54						
Compd.	R ² (CH ₂)	k	m	n	chirality	. R³	
584	CI	2	2	· 1	-	н	-c++ N-c
5 85	CH2-	2	.2	1	-	н -	-CH-M-C-CM
586	CHCH_2-	2	2	1	-	н	-CHNC-CH3
587	CICH ₂ -	2	2	1	-	H	-CHNC-CF3 CH3
588	CI-CH ₂ -	2	2	1		н	-ÇH N C- NH₂ CH₃
589	CI—CH ₂ -	2	2	1	-	н	-CH-N-C-(CH ₂)3
590	CI	2	2	1	-	н	-CH N C- CH(CH ₃) ₂ CH ₃
591	CH-CH ₂ -	2	2	1	-	H	-CH-N-C
592	CH-CH2-	2.	2	1	-	н	-сн и с Снэ Снэ
593	CH-CH2-	2	2	1	-	н	-сн-й с-{сн³он
594	CI-CHy-	2	2	1	-	н	-сн-й-с- сн² -сн-й-с- сн²

[0155]

Tabl 1.55

1801	1.55						
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality.	R ³	-(CH ₂) _р
5 95	CI	2	2	1	<u>-</u>	н	-cH² -cH² cH² cH² co⁵cH²
596	CI-CH ₂ -	2	2	1	-	н	-сн у с-сн ³
597	CI(CH ₂ -	2	2	1		н	-a+no-C
598	CH	2	2	1	-	н	-CH-N-C-OJ
599	CH-CH ₂ -	2	2	1	- ·	н	-ch y ch3
600	CH-CH-	2	2	. 1	-	н	-CHNC-OBr
601	CH2-	2	2	1	-	н .	-ch hc och
· 602	CH-CH2-	2	2	1	-	н	-CH-H-C-CH-3)2
603	a-{				-	н	-CHNC-NH2
604	CI	2	2	1	-	н	-c+Ho-KH
605 ·	CI-CH2-	2	2	1	-	н	-ch-Hg-C

[0156]

Table 1.56

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	H³	-(СН ₂) , С (СН ₂), G-R ⁶
606	CH-CH ₂ -	2	2	1	•	н	-CH-N-C-CS
607	CI-CH2-	2	2	1	-	н.	-CH-N-C-CS CH ₃
608	CI-CH ₂ -	2	2	1	-	н	CH, H ₃ C
.609	CH2−	2	2	1	-	н	-CH-N-CO
610	с⊢С}-сн₂-	2	2	1	-	н	-CH-NC-CH3
611	CI—CH₂-	. 2	2	1	-	H	CH ² H ² C C(CH ²) ²
612	CH2-	2	2	1	-	н	CH3 HaC
613	CI-CH2-	2	2	1	-	· H	CH ₃ F ₃ C
614	с⊢-{	2	2	1	-	н	-CH-N-C-N-CH ₃ CH ₃ F ₃ C CH ₃
615	CICH2-	2	2	1	-	н	-CH-NC-CHH
616	a-√-a+2-	2	2	1	-	н	-CHHIG-CHH

[0157]

Table 1.57

iable	1.3 4						
Compd.	R ² (CH ₂)	k	m	п	chirality	R³	H ³
617	a-(-)-a+z-	2	2	1	-	н	-CH-N-C
618	CI(C)CH ₂ -	2	2	1	-	Н.	- CH H C-
619	CH-CH ₂ -	2	2	1	-	H	-CH-N-C- H H CH(CH3)₂
620	с⊢С}-сн₂-	2	2	1	•	H	CH(CH ²) ⁵ CH(CH ²) ⁵ Bu
621	с⊢О-сн₂-	2	. 2	1	-	Н	-CH-H-CCH
622	CI—{	2	2	1	-	Н	-CH-N-C
623	CI{	2	2	1	-	Н	CH(CH ²⁾⁵ . -CH-N-C-COCH ³
624	CI(CI+2-	2	2	1	-	н	-CH-N-C
625	CI{-}-CH2-	2	2	1	-	н	-CH N-C
626		2	2	1	-	н	-CH-N-C-C CH(CH ₃) ₂ CF ₃
627	CH-CH2-	2	2	1	-	н	CH(CH*)* -CH-N-C-(CH*)CH* OCH*CH*

[0158]

Table 1.58

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	—(CH ₂) _p
628	с(2	2	1.	. -	н	-CH-N-C-CO2CH3
629	CI-CH ₂ -	2	2	1	- .	н	-CHNC-CF3
630	CH_CH2-	2	2	Ť		н	- CH N C-CH(CH ₃) ₂
631	CI	2	2	1	-	Н	-CH N-C- H C- - CH(CH ₃) ₂ CF ₃
632 .	CI-CH2-	2	. 2	1	-	н	
633	CI-CH ₂ -	2	2	1	-	н	-CHNC-CF3 -CH(CH ₃) ₂ F
634	CICH ₂ -	2	2	1	-	н	- CH N C - F CH(CH ₃) ₂
635	CH-CH2-	2	2	1	-	н	-CHNC-CH(CH3)2
636	CH2-	2	2	1	-	н	-CH-N-C-CH ₃
637	CI—CH2-	2	2	1 .	-	н	- CH N C- CF3 CH(CH3)2 :
638	CH2-	2	2	1	-	н ,	сн(сн?)⁵ - сн. й.с-∕о-си
							•

Tabl 1.59

1abi							
Compd. No.	R1 R2 (CH2)j-	k	m	n	chirality	. H ₂	-(СН ₂) _р - (СН ₂) _q G-R ⁶ R ⁵
639	CH-CH ₂ -	2	2	1	•	н.	-CH-N-C
640	CI	2	2	1	-	H.	-CH-N-C- CH(CH³)⁵
641	CICH ₂ -	2	2	1	- .	. н	о -сн-үс- сн(сн _{а}2}
642	CH ₂ -	2	2	1	-	н	-CH(CH ³) ⁵
643	CI-CII ₂ -	2	2	1	÷	Н	- ch n c — cf ₃
644	a-(-)-a12-	2	2	1	-	н	- CH-N-C-(CH3)2 - CH(CH3)2 - CH(CH3)2
645	CI	2	2	1	٠.	Н	-CH-N-C- CH(CH ²) ² -NH ²
646	a-C)-at-	. 2	2	1	-	н	-сн. и с- Сн. и с- Сн. и с- Сн. и с- Сн. о сн. о н
647	CI(CI+2-	2	2	1	-	н	-CH(CH?)5 CH(CH?)5 CH(CH?)5
648	CH-CH2-	2	2	1	-	н	- CH N C - CH(CH ₃) ₂ CH(CH ₃) ₂
649	CICH ₂ -	. 2	2	1	•	н	-сн-И с-С-осн(сна)2 сн(сна)2
							·

[0160]

Table 1.60

Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
650	CI—CH2-	2	2	1	-	н	CHICHTS CONTRACTOR
651	CH-CH2-	2	2	1	-	н	CHCO17F CHCHP
652	Ci—{}-CH²-	2	2	1	-	н	-CH-N-C
653	CICH ₂ -	2	2	1	-	н	-CH-N-C
654	CI-CH2-	2	2	- 1	-	н	-C+NC-C
655	CI-Q-CH2-	. 2	2	1	-	н	CH(CH ⁹) ⁵ CE ²
656	C⊢-(CH₂-	2	2	1	-	н	-cH-N-c-
657	с⊢О-сн₂-	· 2	2	1	-	н	-c++ N-cC2
658	CI—CH ₂ -	2	2	1	-	н	-CH-N-C-NH
659	CI	2	2	1	-	н	-CH-N-C
660	CI-CH ₂ -	2	2	1	-	н	-CH-N-C

[0161]

Table 1.61

Table 1							
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	—(CH ₂) ,
661	a-{\rightarrow}-art-	2	2	. 1	· .	н	-CH-N-C- S H H CH(CH ₃) ₂ OCH ₃
662	CICH ₂ -	2	2	. 1	-	н	CH(CH ³) ⁵ CH ³
663	CI	2	2	1	-	H ·	CH(CH ²) ²
664	CH-CH2-	2	2	1	-	н	-CH-N-C
665	CH-CH ₂ -	2	2	1	-	H .	- ch ho - 2 - ch ho - 2 - ch a - 3
666	CI	2	2	1	-	н	CH(CH3)2 CH3
667	CI-(-)-CH ₂ -	2	2	1	-	н	CH (OPP)
668	CI-CH ₂ -	2	2	1	-	н	CH(CH ₃) ₂ CH ₃
. 669	CICH ₂ -	2	2	1	-	н	CH(CH ₃) ₂ CH ₃
670	CI-CH ₂ -	2	2	1	-	н	-CH-N-Q-(CH ²) ² Br
671	CI—CH2-	- 2	2	1	- •	н	-CH-N-O-O NO2
						•	

[0162]

Table 1.62

					•		•
Compd.	R ² (CH ₂)	k	m	ก	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
672	CI-CH2-	2	2	1	-	н	CH(CH ₃) ₂ H
673	CI————————————————————————————————————	2	2	1	-	н	-CH-NC-S
674	CI	2	2	1	-	н	-CH-N-C-S CH(CH3)2
675	с⊢С}-сн₂-	2	2	1	-	н	C(CH3)2 CH3
676	CICH ₂ -	2	2	1	-	н	CH(CH ₃) ₂ H
677	с⊢С}-сн₂-	2	2	1	· -	н	CH(CH ₃) ₂ CH ₃
678	CH-CH2-	2	2	1	-	н	CH(CH ₃) ₂
679	CICH₂-	2	2	1	-	н	-СH-N-О-SU) СН(СН ₃) ₂
680	CH-CH ₂ -	.2	2	1	-	н	CH(CH ₃) ₂
681	CH-CH ₂ -	2	2	i	-	н	CH(CH3)2 CH3
682	CH-CH ₂ -	2	2	1	•	н	-CH-N-O-C(CH ₃) ₃

[0163]

Table 1.63

· abic							
Compd.	R ² /(CH ₂)j	k	m	n (chirality	₽3	–(СН ₂) ,
683	C├─ੑ_CH²-	2	2	1	-	н	-CH-N-C-S SCH ₃
684	CI-CH ₂ -	2	2	1	:	н	-CH-N-C S S-CH(CH3)2
685	CH-CH ₂ -	2	2	1	-	н	-CH-K-C
686	CI	2	2	1	-	н	- CH N C- CH ₂ CH(CH ₃) ₂
687	CI-CH2-	2	2	1	-	н	-сни c-(
688	CI—CH₂-	2	2	1	- 2	н	-CHN-C
689	CI	2	2	1	-	н	-chi c-C
690	CI{-}-CH ₂ -	2	2	1 -	-	H	-CHNC-
691	CHZ-		2		-	H	-c++ N-C (NCH ₃) ₂
692	CI	2	2	1		н	-CH N-C-COCH3
693	CI	2	2	1	-	н	-CHN-C-CF3
				_			

[0164]

Table 1.64

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	H3	—(CH ₂) p (CH ₂) q G−R ⁶
694	сі-{	2	2	1	-	н	-CH N C-OCH2CH3
695	CH2	2	2	1	-	н	-CH N-C
696	С⊢-СН₂-	2	2	1	. -	н	-CH N C-C
697	CH-CH₂-	2	2	1	-	н	-CH-N-C
698	CI(CI+ ₂ -	2	2	1	-	H ·	-CHN-C
699	CI-()-CI1 ₂ -	2.	2	1	-	н	-CHN-C-OCH3
700	CI-CH ₂ -	2.	2	1	<u>-</u>	Ĥ	-CHN-CCO₂CH₃
701	CH2-	2	. 2	1	-	Н	-CH-N-C(C-CH3
	a-{}-a+2-				-	н	-CHN-C
703	CI(C)CH ₂ -	2	2	1	-	н	-CHN-C-CH(CH ₃)₂
704	CI	2	2	1	-	н	-CHN-C

Tabl 1.65

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(СН ₂) р С СН ₂) д G -R ⁶
705	C⊢-CH₂-	2	2	1	-	н -	-CH-M-C-SI
706	сн-О-сн ₂ -	2	2	1	-	H	-CHN-C-CH3
707	CI(CI+2-	2	2	1	-	н	-CH-N-CC-3
708	CI-CH ₂ -	2	2	1	-	H.	-CH-N-C-S-Br
709	CHCH2-	2	2	1	. .	н	-CH-N-C-STSCH3
710	CH-CH ₂ -	· 2	2	1	-	н	CH-N-C-S Br
711	CI	2	2	1	-	н .	-CH-N-O-CH ₃
712	a—{_}-cн₂-	2	2	1	-	H	-ching- SO
713	CI(CI+2-)	2	2	1	-	н	-CH-NC-C
714	CI—CH2-	2	2	1	-	н	-cH-N-C-CH-3
715	CI-CH ₂ -	2	2	1	-	н .	-ching chia
·				•			

[0166]

Table 1.66

Compd. No.	R ² (CH ₂)-	k	m	n	chirality	R³	—(CH ₂) ,
716	с{	2	2	1	-	н	-chyc-ly
717	CI-CH ₂ -	2	2	1	-	H·	-CH-N-C- NO3
718	CI-CH ₂ -	2	2	1	-	н	-CHN C-
719	CI-CI42-	2	2	1	-	н	-CHN C-C
720	с⊢СН₂-	2	2	1	<u>.</u>	н	-CHN-C-OBr
721	CICH ₂ -	2	2	1	-	н	-CHMC-CH3
722	CI	2	2	1	-	Н	-снис-О-сн₂он
723	сСН2-	2	2	1	-	н	-CHN-C-O-NH ₂
	с⊢-{СН₂-					н	-CH-N-O-(CH ₃) ₃
725	сн-Су-сн-	2	2	1	•	н .	-CHMC - NO CH
726	с⊢{сн₂-	2	2	1	-	н	-CH-N-C-Q-N-C-CH3
_							

[0167]

Tabl 1.67

iabi	1.67					•	·
Compd.	R ² (CH ₂);-	k	m	n	chirality	R³ .	-(CH ₂) _p + (CH ₂) _q G-R ⁶
727	CI-CH ₂ -	2	2	1	•	н	-chiro-co .
728	CI-CH ₂ -	2	2	1	-	н	CH N-C-
729	CI	2	2	1	. •	H,	CH-N-O
730	CI-CH2-	2	2	1	-	H	-CHN C-C
731	CI-CH ₂ -	2	2	1	-	н	- Children Com
732	cı(Ci+2-	. 2	2	1	-	H	-CH-N-C-CF3
733	CI	2	2	1	•	Ĥ	-CH-N-O-CH(CH ₃) ₂
734	CI-CITY-	2	2	1	•	н	-CHHIC F
735	СН-СН2-	2	2	1	-	н	CH-N-C
736	CICH ₂ -	2	2	1	-	_. H	-CH-N-CCF3
737	CICH ₂ -	2	2	1	•	н	-chiho-to-to-

[0168]

Table 1.68

IADIC							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	₽3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
738	СН-СН2-	2	2	1	-	н	-CH-N-C-CH-3 CH-3
739	СН-СН₂-	2	2	1	-	н	-CH-N-C-CNH
740	CH-CH ₂ -	2	2	1	-	н	-CH-N-C
741 .	CI—CH₂-	2	2	1	-	н	-CHN-C- SNO2
742	CH-CH ₂ -	2	2	1	-	н	-CHN C-S
743	CH-CH2-	2	2	1	-	н	-chyo-Co
744	с	2	2	1	- ·	н .	-CH-N-C-CH-3
745	С⊢-СН ₂ -	2	2	1		H	-CHN-C (CH3)3
	a-(-)-a12-					н	-CHN-C-N-CH3
747	CICI12-	2	2	1	•	н	-CHN-C-CS
748	CI	2	2	1	-	· H	-chyc-Cs

[0169]

Tabl 1.69

labi	1.09						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
749	CICI12-	2	2	1	. -	н	-ami-Ro
750	CI{CH ² -	2	2	1	-	н	-CH-N-C
751	CH-CH2-	2	2	1	-	Ħ	-CH-N-C-CH3
752	CH2-	2	2	1	-	н	-CH-N-C-CF ₃ -CH ₂ OH CF ₃
753	CH-CH2-	2	2	1	-	н	-сн-й-с- -сн-й-с- си
754	CI-CH ₂ -	2	2	. 1	*	н	-ch-h-c-CI
755	CI-CH ₂ -	2	2	1	-	H	-CH-N-C- CH²OH
756	сн-Сн-	2	2	1	-	н	-CH-N-C
757	CH-(-)-CH2-	2	2	1	-	н	CH-N-C-CH ₂ CH ₂ CH ₃
758	a-{\(\sigma\)-cH2-	2	2	1	-	Н	-CH-N-C-CO2CH3
759	с{	2	2	1		н	CH ₂ OH CH ₂ OH CH ₂ OH
					·		

[0170]

Table 1.70

Table I							
Compd. No.	R ¹ (CH ₂)-	k	m	ก	chirality	R³ ·	-(CH ₂) _p + (CH ₂) _q G-R ⁶
760	CH-CH ₂ -	2	2	1	-	н	-CH-N-C-CF3
761 ,	с⊢(С)−СН₂-	2	2	1	-	н	-CH-N-C
762	CH-CH ₂ -	2	2	1	-	н	-çн-N-с-С ^{F3} сн₂он
763	с⊢{	2	2	1	-	н	CH-N-C-
764 ⁻	CH-CH ₂ -	. 2	2	1		н	CH3 P
765	CI-CH ₂ -	2	2	1	-	, н	CH ² b CH ³
766	CICH ₂ -	2	2	1	-	н .	CH ₃ P CF ₃
7 67	CH-CH ₂ -	2	2	1	-	H	CH, D CH,
768	C⊢—CH₂-		2	1	-	Ħ	CH ₃ P CH ₃ CH ₃
769	. CICH ₂ -	2	2	1	y) -	н	, CH ₃ P OCF ₃
770	CI(C)CH ₂ -	2	2	1	•	н	CH ₃ P OCF ₃ CH ₃ P CF ₃ CH ₃ P CF ₃ CH ₃ P CF ₃

Table 1.71

Compd. No.	R ¹ (CH ₂)	k	m	п	chirality	₽³	-(CH ₂) p (CH ₂) q G−R ⁶
771	a-{\rightarrow}-cit_2-	2	2	1	-	н	CH ₃ P CF ₃
772	CH-2-	2	2	1	-	н	
773	CH2-	2	2	1	-	н	CH3 0 C(CH3)3
774	CH₂-	2	2	4	-	н	CH ₃ P CH ₃ SCH ₃
775	CHCH ₂ -	2	2	1	-	н	CH3 C(CH3)3
776	CHCH ₂	2	· 2	1	-	Н	
777	CH-CH2-	2	2	1	. <u>-</u>	H	CH ₃ O CF ₃ CH ₃ CH ₃
778	CI	2	2	1	-	н	CH3 P NO2
779	CI	2	2	1	-	н	-6H3 0-0-1
780	CI	2	2	1	-	н	CH3 P
781	CI	2	. 2	1	-	H	CH ² H

[0172]

t 4.

Table 1.72

Table 7	1.72						
Compd.	R ² (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _р
782	CI	2	2	1	-	н	CH3 P CCH3
783	СН-€	. 2	2	1	-	н.	CH ₃ OCH ₂ CH ₃ -CH ₃ OCH ₂ CH ₃ -CH ₃ OCH ₂ CH ₃
784	CH-CH ₂ -	2	2	1	-	н	CH ₃ P
785	CH-CH ₂ -	2	ż	1	<u>.</u> .	н	CH ₃ OCH ₃
786	CH2-	2	2	1	<u>-</u>	н	H ₂ C-CH ₂
787	CH-CH2-	2	2	1	<u>-</u>	н .	H ₂ C CH ₂
788	CI—CH2-	2	2	1		H .	-C-H ₂ C-CH ₂ CF ₃
789	CI—CH2-	2	2	1	-	Н	He C Ord
790	CI—CH2-	2	2	1	-	н	H ₂ C-CH ₂
791	CI—CH ₂ -	2	2	1	-	н	H ₂ C CH ₂ NO ₂ H ₂ C CH ₂ OCF ₃
792	CI-CH ₂ -	2	2	1	•	н	H ₂ C-CH ₂
					,		

[0173]

Ta	bl	1.	7	3

Tabl 1	1.73						· · · · · · · · · · · · · · · · · · ·
Compd.	R ² (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
793	CI	. 2	2	1	-	н	H ₂ C CH ₂
794	CH-CH ₂ -	2	2	1	-	H .	H ₂ C-CH ₂ F
795	CI	2	2	1	-	н	H ₂ C-CH ₂ CF ₃
796	CI-CH ₂ -	2	2	1	-	н	H ₂ C-CH ₂
797	CH-CH2-	2	2	1	-	H	H ₂ C - CH ₂ C(CH ₃) ₃
798	CI(C)-CI12-	2	 2	1	-	H	Ho at
799	CH-CH2-	2	2	1	-	·н	H ₂ C CH ₂ CH ₃
800	CI-CH ₂ -	2	2	1	· -	н	H ₂ C-CH ₂
801	CHCH2-	2	2	1	-	н	H ₂ C-CH ₂
802	CH-CH2-	2	2	1	-	н	H ₂ C CH ₂
803	CI—CI-CI+2-	2	2	1	-	н	H ₂ C-CH ₂ OCH ₃ H ₂ C-CH ₂ OCH ₂ CH ₃ OCH ₂ CH ₃

[0174]

Table 1.74

	1.7 4						
Compd.	R ² (CH ₂)	k	m	'n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁵
804	а - -(Ст ₂ -	2	2	1	-	н	H ₂ C—CH ₂ CF ₃ CF ₃
805	CH-{	2	2	1	-	н	H ₂ C-CH ₂ OCH ₃
806	CI{	2	2	1	-	н .	H ₂ C CH ₂
807	CICH ₂ -	2	2	7	-	. н	(CH-)2-5-NH2
808	CICI12-	2	2	1	· •	н	(CH) 1 C- NH 7
809	a———at-	2	2	1	-	н	(CH2)4C-M42
810	CH-CH ₂ -	2	. 2	. 1	. -	н	Carsh Curr -d+ Ho
811	CI-CH2-	2	2	1	-	н	CH-N-C-N-L2
812	CH-CH2-	2	2	1	• .	н .	-CH-N-C ST SCH3
813	CICH ₂ -	2	2	1	-	н	-CH-N-C
814	CI	2	2	1	-	н	-CH-N-C

[0175]

Tabl 1.75

I abi	5						
Compd. No.	R ¹ (CH ₂);	k	m	n	chirality	H3	-(CH ₂) _p
815	сн₂-	2	2	1	-	н	CHUZ CHIZ F
816	CI————————————————————————————————————	2	2	1	-	н	-C+NC-N+2
817	CI—CH₂-	2	2	1	-	н	-CHNC-10+
818	С1—СН₂-	2	2	1	-	н	COH'NG-MHZ.
819	CI	2	2	1	-	н	CHNC-NIZ CF3
820	CH-CH2-	2	2	1	-	н	-CHHO
· 821	CI-CI-CI-	2	2	1	-	. H	-CH-H-O-CI CH2OCH3
822	a-{}-cH ₂ -	2	2	1	-	н	-CH-N-C-SCH ₃ -CH ₂ OCH ₃
823	CI	2	2	1	-	н	-cH-M-c- CH²OCH²
824	CI	2	2	· 1	-	н	-сн-N-о-си- сн ₂ осн ₃ :
825	CI	2	2	1	-	н	- OH HOUSE

[0176]

Table 1.76

						•	
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p G-R ⁶ (CH ₂) _q G-R ⁶
826	CI-CH2-	2	. 2	1	-	н	-CH-N-C-CH ₃ CH ₂ OCH ₃
827	CICH₂-	2	2	1	-	н	-CH-N-C-NH CH₂OCH3
828	CICH ₂ -	2	2	1	-	н	-CH-N-C-CH ₂ OCF ₃
829	сн-Су-сн ₂ -	2	2	1	-	н -	-CH-N-C-CF3 CH ₂ OCH ₃ F
830	CH-CH2-	2	2	1	-	н	-CH-N-C-F CH₂OCH3
831	CI-()-CH2-	2	2	1	-	н .	-CH-N-C- CH₂OCH₃
832	CI{	2	2	1	-	н .	CH-N-C-CH
833	CH2-CH2-	2	2	1	-	н	-CH-N-C
834	CICH ₂ -	2	2	1	-	н	-CH-N-C-CF ₃
835	с⊢О-сн₂-	2	2	1		н	-CH-N-C- CH2OCH3
836	CI—CH ₂ -	2	2	1		н	-CH-N-CCH3 -CH2OCH3
	•						

[0177]

Tabl 1.77

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p
837	CI	2	2	1	-	н	-сн- N-с-СF3 сн ₂ осн ₃
838	CI	2	2	1	. - .	н	-сн-й-с- сн ⁵ осн ³
839	CICI-12-	2	2	1	-	·H	-CH-N-C
840	CH-(-)-CH2-	2	2	1	-	н	-(CH ₂) ₃ -C-
841	CI(CI-)-CIH ₂ -	2	2	1	· •	н	-(CH ₂) ₂ -C-C
842	CI	2	2	1		н	-(CH ₂) ₂ -C-C-C
843	CI	2	2	1	-	н	-(CH2)2-C-CH3
844	CI	2	2	1	-	Н	-(CH ₂) ₂ -C-CH ₃
845	CI(C)-CIH2-	2	2	1	-	н	-(CH ₂) ₂ -C
846	CI-CH2-	2	2	1	-	н	-(CH ₂) ₂ -C
847	CI	2	2	1	-	н	-(CH ₂) ₂ -C-C-C-OCH ₃
				·			·

[0178]

Table 1.78

Compd.	R ² (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
848	CI	2	2	1	-	н	-(CH ₂) ₂ -C-CH ₃
849	CH-CH2-	2	2	1	-	н	-(CH ₂) ₂ -C- H ₃ CO
850	с⊢С}-сн₂-	2	2	1	-	н	-CH ₂ -\$
851	CH-CH ₂ -	2	2	1	-	н	-CH2-N-C-N-CF3
852	CH-CH ₂ -	2	2	,1	-	н	-CH ₂ -N-C-N-CF ₃
853	CI	2	2	1		Н	-cH2-HC-H-
854	CICH ₂ -	2	.2	1	-	н	- CH ₂ - N- C- N- CH ₃
855	CI-CH ₂ -	2	2	1	-	H	-CH2-HC-H-C-CH3
856	CI	2	2	1	-	н	-CH ² -N-C-N-C-CH ²
857	CI	2	2	1	•	н	-CH2-HC-H-CCH2
858	CI	2	2	1	-	н	-сн⁵-Й-с-Й-Осн³ о
				_	-		

Tabl 1.79

labi	1.79	_					
Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) p
859	CI{	2	2	1	-	н	-CH2-HC-H-C
860	CH-CH2-	2	2	1	-	н	-CH2-HC-HCCN
861	CI	2	2	1	-	н	-CH ₂ -N-C-N-
862	сн-Су-сн-	2	2	1	-	H	-сн₂-й-с-й-С-сн³
863	CI	2	2	1	-	н	-CH2-N-C-N-C-N-C
864	CI(CI-)-CI-12-	2	2	• 1	-	. н	-CH2-N-C-N-C-OCH3
865	CI	2	2	1.	-	H	-CH2-N-S-CH3
866	a-{	2	2	1	-	н	-CH ₂ -N-S-CF ₃
867	CH-CH2-	2	2	1	-	н	-CH ₂ -N-S-CF ₃
							-CH2-H 9-CH2CH3
869	CI(CH ₂ -	2	2	1	•	н	-CH2-N-8-CH(CH2)5

[0180]

Tabl 1.80

iabi 1	1.80						
Compd.	R ¹ (CH ₂);-	k	m	n	chirality	. R³	-(CH ₂) _p
870	с	2	2	1	-	н .	-CH2-N-SCH3
871	с⊢С}-сн₂-	2	2	1	-	н	- CH2-M-2-(CH3)3CH3
872	CI(CH ₂ -	2	2	1	-	н	-CH ₂ -N-S-
873	с⊢— СН₂-	2	2	1	. -	н	-CH2-N-C-OCH2-
874	CI	2	2	1	-	н	-сно-с-й- сн²
875	CH2-	2	2	1		H .	-cH₂-N°C;-CF₃
876	Br————————————————————————————————————	2	2	1	-	н	-сн ₂ -үүс-С ₃
877 .	NC-CH ₂ -	2	2	1	•	н	-CH₂-N-C
	0 ₂ N-(CH ₂ -				-	. н	-сн₂- № С-СЕ3
879	CH2-	2	2	1	- .	н	-CH2-HC-CF3
880	000 CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃

[0181]

Tabl 1.81

labi	1.0 1						
Compd. No.	R ² (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G - R ⁶
881	Br CH ₂ -	2	2	1	-	. н	-CH2-NC-CF3
. 882	O-0-042-	2	2	1	-	н	-CH2-NC-CF3
883	CI CH2-	2	2.	1	-	н	-CH ₂ -N-C
884	HCC-N-CH2	2	2	1	-	н	-CH ₂ -N-C-CF ₃
885	H ₈ C-9-CH ₂ -	2	2	1	-	H	-CH2-N-C-CF3
886	F-CH ₂ -	2	2	1	-	н	-CH2-N-C-CF3
887	F ₃ C-(CH ₂ -	2	2	1	- .	н	-CH2-NC-CF3.
888	HO-CH ₂ -	2	2	1	-	н	-CH2-N-C-CF3
· 88 9	○ - ○ -O+ ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
890	S-CH2-	2	2	. 1	-	н	-CH ₂ -N C-CF ₃
891	CH ₂ -	2	2	1		. н	-CH ₂ -NC-CF ₃
	•					<u> </u>	

[0182]

Tabl 1.82

Compd.	R ² (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
892	H3CQ CH2-	2	2	1	-	н	-CH₂-HC-CF3
89 ³	O ₂ N —CH ₂ -	2	2	1		н	-CH ₂ -N-C-CF ₃
. 894	H ₃ C-CH ₃ CH ₃	. 2	2	1	-	. н	-CH ₂ -NC-CF ₃
895	(CH ₂) ₂ -	2	2	1	-	H	-CH2-HC-CF3
896	CN CH ₂ -	2 ′	2	1	-	н	-CH ₂ -N-C-CF ₃
897	HO ₂ C CH ₂ -	2	2	1	-	н	-CH ₂ -HC-CF ₃
898	HO ₂ C-{}-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
899	CH ₂ -	2	2	1		н	-CH ₂ -N-C-CF ₃
900	н₃∞₂с-{Сн₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
901	O ₂ N — CH ₂ -	2	2	1	-	н	-CH2-NC-CF3
902	O ₂ N CH ₂ -	2	2	i	-	н	-сн ₂ -й с-С _{СЕ3}

[0183]

Tabl 1.83

	1.00						
Compd.	R ² (CH ₂)	k	m	n	chirality	Ft ³	-(CH ₂) _p (CH ₂) _q G-R ⁶
903	H ₃ CQ — CH ₂ - OCH ₃	2	2	1	•	н	-CH ₂ -N-C-CF ₃
904	HQ-CH ₂ -	2		1	-	H	-CH2-N-C-(CF3
905	O ₂ N CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
906	(CH ₂) ₃ -	2	2	1	-	н	-CH2-H-C-CF3
907	O-CH(CH ₂) ₂ -	2	2	1	-	н	-CH2-H-C-CF3
908	Q-#.co,€	2	.2	1	-	н	- CH2-N-C-CF3
909	Q-11°Q-04-	2	2	1	-	н	-CH2-N-C-CF3
910	CH ₂ -	2 .	2	1	-	н	-CH2-N-C-CF3
911	CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-CF ₃
912	Br CH ₂ -	2	2	1	-	. н	-CH2-H-C-CF3
913	H ₃ CO	2	2	1	-	н	-CH2-H-C-CF3

[0184]

Table 1.84

rable	1.04						
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	—(CH ₂) p
914	O-arto-O-cirt-	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
915	OH-CHCH2-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
916	NO-CH₂-	2	2	1	-	н .	-CH ₂ -N-C-CF ₃
917	N − CH ₂ -	2	2	1	· -	н	-CH ₂ -N-C-CF ₃
918	н,со,с аң	2	2	1	-	н	-CH ₂ -N-C-CF ₃
919	н₃с-{Сн₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
920	OCF ₃	2	2	1	-	н	-CH2-H-C-CF3
921	CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
· 922	>-cH₂-					Н	-CH2-H-C-C-C-3
923	CI-O-CI-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
924	H ₂ N-C	2	2	1	-	н	-CH ₂ -N-C-CF ₃
							·

[0185]

Table 1.85

Table '	1.85						
Compd.	R ² /(CH ₂);	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
925	H ₂ N-C-()-CH ₂ -	2	2	1	•	. н	-CH ₂ -N-C-CF ₃
926	- or	2	2	1	-	· н	-CH ₂ -N-C-CF ₃
	F ₃ CQ CH ₂ -					н	-CH2-N-C-CF3
928	F3CO-CH2-	2	2	. 1	-	н	-CH ₂ -N-C-CF ₃
929	н _ғ ся-О-сн _ғ -	2	2	1	.	н	-CH ₂ -N-C
930	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
931	NC CH2-	2	2	1	-	Н	-CH2-N-C-CF3
932	CH-CH ₂ -	2	2	1	-	н Н	-CH2-N-C-CF3
933	○-cH-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
934	CH ₂ -	2	2	1	-	н	-сн ₂ -н-с-С ₃
935	O ₂ N —CH ₂ —	2	2	1	-	H	-CH ₂ -N-C-CF ₃

[0186]

Table 1.86

Compd.	R ² (CH ₂);	k	m	n	chirality	₽³	-(CH ₂) р 1 (CH ₂) _q G-R ⁶
936	NO ₂	2	2	1	-	н	-CH ₂ -N-C-CF ₃
937	(H³C)⁵N-{	2	2	1	-	н	-CH2-N-C-CF3
938	CH_CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
939	O ₂ N CH ₂ -	. 2	2	1	-	н.	-CH ₂ -N-C-CF ₃
940	CH ₂ -	2	2	1	-	.н 🕙	-CH ₂ -N-C-CF ₃
941	F ₃ C CH ₂ —CH ₂ —	2	2	1	-	н.	-CH ₂ -N-C-CF ₃
942	CH-CH2-	2	2	1	-	н	CH NC-CF3 CH(CH3)2 CF3
943	с⊢——сн₂-	1	4	0	-	. н	-CH ₂ -N-C-CF ₃
	сн-Ст-					н	-CH ₂ -N-C-CH ₃
945	CI-CH ₂ -	1	4	0	-	н	-CH ₂ -N-O-
946	CI—CH₂-	1	4	0	-	н	-CH ₂ -N-C-NO ₂

[0187]

Tabl 1.87

	.07						
Compd.	R ¹ (CH ₂)	k	m	ก	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
947	CI	1	4	0	-	н	-(CH ₂) ₂ -N-C
948	CI—CH2-	1	4	0	-		-(CH2)3-C-H-CI
•	CI(-	н	-(CH ²) ² -C- ^H -CH ² -(C)
950	CI	0	4	1	· _	Н	-cH ₂ -N-C-
951	a-√}-a+₂-	1	2	0	R	н	-CH2-H-C-C-CH3
952	CI-CH2-	1.	2	0	R	Н	-CH ₂ -H-C
953	CI-CH ₂ -	1	2	0	R	H	-(CH2)2-H-C
	CI-CH ₂ -						H ² C-NH
955	a-Q-a4-	1	2	0	R	H	-(CH ₂) ₂ -N-C-NH
956	CI	1	2	0	R	н	-(CH ₂) ₂ -H-C
957	CI-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -H-C-OH

[0188]

Tabl 1.88

Compd.	R ¹ (CH ₂)	k	m	n	chirality	H3	—(CH ₂) p CH₂)q G-R⁶
958	с	1	2	0	R	н	-(CH ₂) ₂ -N-O-OH
. 959	CI-CH ₂ -	1	2	0	R	н	-CH ² -H-C-CH ³
	CI-CI-CI-				R	н	-(CH ⁵) ² - H ₂ -CH ³
961	CI(CI-12-	1	2	0	R	Ħ	-сн⁵-й-с Ь-сн³
962	CI—CH₂÷	1	2	0	R	н	-(CH ₂) ₂ -N-CH ₃
963	CH-CH2-	1	2	0	R	Ή	-(снэ)z-й-с-С>−он
964 ·	сн-С-сн2-	1	2	0	R	н	-CH ₂ -N-C- -CO ₂ CH ₃
965	CH2-	1	2	o	Ŗ	н	-(CH ₂) ₂ -N-C- - αΩ ₂ CH ₃
966	CH-CH ₂ -	1	2	0	R	н	-сн ₂ -N-с-Сн ₃
967	CH⊋-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
968	CH-CH2"	1	2	0	R	н	-CH2-N-C-NH

[0189]

Tabl 1.89

Tabl 1	1.89						•
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	–(СН ₂₎ , С Н ₂ , G−R ⁶
969	сн-О-сн-	1	2	0	R	н	-(CH ₂) _Z -N-C-NH
970	CICH ₂ -	1	2	0	R	н	-CH ₂ -N-C
971	CI-CH ₂ -	1,	2	0	R	н	-(CH ₂) ₂ -N-C-\(\text{N(CH ₃ }\) ₂
972	CI	1	2	o	R	н	-CH ₂ -N-C-NH ₂
973	с⊢-СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-CNH ₂
974	CI	1	2	0	R	н	-CH ₂ -N-C
975	CI—CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-NH ₂
976	с⊢О-сн₂-	1	2	0	R	н	-CH2-N-C-NH
	CI−CH₂−					н	-(CH ₂) ₂ -N-C-NH
978	CI-{	. 1	2	0	R	н	-(CH ²) ² -H-C-NH
979	a-{_}-cH₂	1	2	0	R	н	-(CH ³) ² -H-C-NH

[0190]

Table 1.90

i ubic							
Compd.	R ² (CH ₂) _i	k	m	n	chirality	R³	—(СН ₂) _р
980	CH-CH ₂ -	1	2	0	R	н .	
981	C⊢————————————————————————————————————	1	2	0	R	н	-(CH2)2-N-C-CH3
982	CI	1	2	0	R	. н	-CH ² -H-C
983	CH-CH ₂ -	1	2	0	R ·	н	-(CH ₂) ₂ -N-C- (H ₃ C) ₂ N
984	сн-О-сн-	1	. 2	0	R	· н	-сн _z -N-сСн₂он
985	CI-CH ₂ -	. 1	2	Ο.	R	H	-(CH2)2-14-0
986	CH-CH-	1	2	0	R	н .	-CH2-H-C-CF3
987	CH-CH-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
·988	CICH ₂	1 .	4	0	-	н	-CH ₂ -N-C-CF ₃
989	CICH ₂ -	1	4	0	•	Н	-CH2-N-C-O-CH2-
990	CICIH ₂ -	1	4	0	-	н	-CHZ-H-C-
						·	

Tabl 1.91

Tabl 1						·	
Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
991	CH-CH2-	1	4	0	-	н .	-(CH ₂) ₂ -C-
992	сн-Сн-	1	4	0	-	н .	-(CH ₂) ₂ -C
993	CH-Q-CH ₂ -	1	4	0	-	н	-(CH ₂) ₂ -C
994	CI(CI-12-	1	4	0	-	н .	-(CH ₂) ₃ -C-\(\int\)
995	CH2-	1	4	0	-	н	-(CH ₂) ₃ -C-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-
996	CH-€-	1	4	0	-	н	-(CH3)2-C-H-CH3
997	CI	2	.2	`. 1	• ·	н	CH²CH(CH³)³
998	CH-CH2-	2	2	1	-	H·	-сн. И-с
999	CH-CH2-	2	2	1	-	Н	-CH-N-C
1000	CH-CH ₂ -	2	2	1	-	н .	CH-N-C- CH-N-C- CH-N-C- CH-N-C- CH-3F
1001	CI-()-CH ₂ -	2	2	1	-	н	-CH-H-C

[0192]

Table 1	Ta	ы	le	1	.9	2
---------	----	---	----	---	----	---

lable	.52						
Compd.	R1 (CH ₂);-	k	m	n	chirality	₽3	-(CH ₂) _p -(CH ₂) _q G-R ⁶
1002	CI	2	2	1	-	н	OCF3 -CHNC-COS OH2CH(CH3)2
1003	CI—CH₂-	2	2	1	-	н	CH ² CH(CH ³) ² CH ² CH ² CH ³
1004	CH-CH ₂ -	2	2	1	-	н	-CH-N-C-CH(CH3)2 OCH3
1005	с⊢——сн₂-	2	2	1	-	н	CH ₂ CH(CH ₃) ₂ OCH ₃
1006	CH₂-	2	2	1	•	н	ОСЊСН3 СН-М-С
1007	CH-CH₂-	2	2	í	-	Н	осн ₂ сн ₃ осн ₂ сн ₃ осн ₂ сн ₃
1008	с⊢С СН₂-	2	2	1	•	н	(CAP) - C- NH2
1009	CI	2	2 -	1	-	н	(CH)2-6-M45
1010	CI-CH2-	2	ž	1	-	н	(CI.F)\$-\(\begin{array}{c} -\begin{array}{c} -\b
1011	CI	2	2	1	-	H	(athe-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o
1012	CI{\(\sigma\)-CH2-	2	2	1	-	н	(CHP)3- & -MF CCH ³ -CHH-C-CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
					<u> </u>		

[0193]

Table 1.93

labie	1.53						
Compd.	R ² (CH ₂)	k	m	ก	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
1013	CI(CI+2-	. 2	2	1	-	н	-bth c-cha
1014	CH-CH ₂ -	2	2	1	-	н	(crp)s.d-w43 -d+H-o-Q-ocarcup ocarcar
1015	CI-CH2-	2	2	1	-	н	(af)3-6-1917 oct? ct? -atligo oct? ct? oct? ct?
1016	CI(CI-)-CI-12-	. 2	2	0	<u>-</u> ·	Н	-CH ₂ -N-C-CF ₃
1017	CI-CI12-	2	2	o .	-	Н	-CH2-H-C-
1018	CI(CI+2-	2	.2	1	-	н	-CH ² -NO-OCH ² CH ³
1019	CI	2	2	1	-	н .	OCH2CH3
1020	CH-CH2-	2	2	1	-	н .	-CH2-N-O-CH3-OCH3
1021	CI(C)-CH2-	2	2	1	-	н	-CH2-NO-CH2CF3
1022	CI{CH ⁵ -	2	2	1	-	н	CH3 OCH3
1023	CI-{	2	2	1	-	н	(S) P CH ₂ CH ₃
							

[0194]

Table 1.94

				٠.			
Compd.	R ² (CH ₂)	k	m	n	chirality	R³	-(CH ₂) p 5 (CH ₂) q G-R⁶
1024	сı—(2	2	1			(S) OCH3 CH3 OCH3
1025	с⊢—Сн₂-	2	2,	1	-	. н	(S) POCH ₂ CH ₃ -CH-N-C-OCH ₂ CH ₃
1026	CH2-	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH ₃ OCH ₂ CH ₃
1027	CH ₂ -	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C
1028	CI-CI12-	2	2	1	- ·	н	(S) OCH ₂ CF ₃ -CH-N-C-CH ₃ CH ₃ OCH ₂ CF ₃
1029	CI-CI12-	2	· 2	1	-	н	(S) OCH ₂ CH ₃
1030	CI-CI12-	2	2	1	· -	н	(S) OCF3 -CH-N-C-CH3 CH3
1031	а-{-}-сн₂-	2	2	1	-	н	(S) POCH ₃ CH ₃
1032	CI—CH ₂ -	2	2	1	-	н	CH-N-C-OCH3
1033	CI-CH ₂ -	2	2	1	-	Н	CH ₃ CH ₂ CH ₃
1034	CH-2-	· 2	2	1	-	н	(F) OCH ₃ (F) OCH ₃ CH ₃ CH ₃ OCH ₃ OCH ₃

[0195]

Table 1.95

1 apie	1.3 3						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1035	a-{_}-a+2-	2	2	1	•	н	(F) P OCH ₂ CH ₃ -CH-N-O-OCH ₂ CH ₃ -CH ₃
1036	CI(C)CH ₂ -	. 2	2	1	-	н	(F) OCH ₂ CH ₃ -CH-N-C
1037	CI-\(\sigma\)-CH2-	2	2	1		н	CH-N-C-CH-OCH3.
1038	CH2-	2	2	1	-	н	CH ₃ OCH ₂ CF ₃ OCH ₂ CF ₃
1039	CI(CI+2-	2	2	1.	. <u>.</u>	H	CH-N-O-CH ₂ CH ₃
1040	CI	2	2	1		н	CH POCF3
1041	CI-CH _Z -	2	2	1	-	H .	CH ₃
1042	CH-2-	2	2	1	· -	н	-CH ₂ -N-C-Br
1043	CH-CH2-		2	1	-	н	-CHZ-NO-CI
1044	a-{	2	2	1	-	Н	-CH2-HO-CH3
1045	CH2-	2	2	1	-	н	-CH ₂ -N-C-H ₃ -CH ₂ -N-C-H ₃ -CH ₃

[0196]

Table 1.96

•							
Compd.	R ² (CH ₂)	k	m	ก	chirality		-(CH ₂) _p + (CH ₂) _q G-R ⁶
1046	с {-}- Сн ₂ -	2	2	1	-	н	-CH ² -H-O-CI
1047	CH-CH2-	2	2	1	-	н	-CH2-N-CH3
. 1048	CH-CH ₂ -	. 2	2	1 .	-	н _.	-CH ₂ -N-C
1049	CHCH2-	2	2	1	-	н .	-CH ₂ -N-C-CH ₃
1050	с⊢—Сн₂-	2	2	1	-	н	(S) OCH ₃ CH ₂ CH(CH ₃) ₂ OCH ₃
1051	СН-СН2-	2	2	1	-	. н	(S) CH ₂ CH ₃ -CH ₂ CH(CH ₃) ₂
1052	CH-CH ₂ -	2	2	1	· -	н	CH ² CH(CH ³) ² OCH ³
1053	СН-СН ₂ -	2	2	1	-	Н	(S) OCH ₂ CH ₃ -CH-N-C-OCH ₂ CH ₃ -CH ₂ CH(CH ₃) ₂
1054	CH-2-	2	2	1	-	Н	(5) OCH ₂ CH ₃ -CH ₂ CH(CH ₃) ₂ OCH ₂ CH ₃
1055	CH-CH2	2	2	1	-	н	(S) P OCH ₂ CH ₃ -CH-N-C OCH ₃ -CH ₂ CH(CH ₃) ₂
1056	с⊢С-сн₂-	2	2	1	-	н	(S) OCH ₂ CF ₃ -CH-N-C-C-CH ₂ CH(CH ₃) ₂ OCH ₂ CF ₃
							·

[0197]

Tabl 1.97

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
1057	с {- -сн ₂ -	2	. 2	1	-	-Н	CH ² CH(CH ³) ² CH ² CH ³
1058	CH-CH2-	2	2	1		н	(S) P OCH ₃ -CH-N-C-CH(CH ₃) ₂
1059	a-{	2	2	1	-	H	(S) P OCF ₃ -CH-N-C-CH-CH ₃ CH ₂ CH(CH ₃) ₂
1060	a-{	2	2	1	-	. н	CH ² CH(CH ³) ² -CH-H-O-OCH ³ -CH ² CH ² CH ³
1061	а-О-ан-	2	2	· 1	-	H ´	(A) OCH ₂ CF ₃ -CH-NO-C
1062	а- О -ан ₂ -	2	2	1		н.	(5) P OCH ₂ CH ₃ -CH-NO-CH ₂ CH ₃ CH ₂ CH(CH ₃) ₂
1063	a-Q-at-	2	2	1	-	н	CH_CH(CH ₃) ₂
1064	CI-CI-CI-	2 .	2	1	·-	н .	CH ₂ CH(CH ₃) ₂
1065	CI-CH2-	2	2	1	-	н	(F) OCH ₃ -CH ₂ CH(CH ₃) ₂ OCH ₃
1066	сСсн2-	2	2	1	-	Ħ	(R) CH ₂ CH ₃ -CH-N-C-CH ₂ CH ₃ -CH ₂ CH(CH ₃) ₂
1067	CH-CH ₂ -	2	2	1	•	H	(H) OCH3 -CH-N-C-C-C-OCH3 -CH2CH(CH3)2 OCH3

[0198]

Table 1.98

1 apie	1.90						<u> </u>
Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1068	CI(CI+2-	2	2	1	-	Ĥ	CH2CH(CH3)2 -CH-N-C
1069	CI	2	2	1	-	н	CH2CH(CH3)2 OCH2CH3 -CH-N-C
1070	CH-CH ₂ -	2	2	1	-	H	-ch-Hc-s sch
1071	с⊢—Сн₂-	. 2	2	1	-	н	-c+#c-
1072	CH-{	2	2	1	·	н	oroar Carps
1073	CI-CH2-	2	2	1	-	н	- CH-No-CO
1074	CI-CH2-	2	2 .	1		н	orboar Oga
1075	CI—CH2-	2	2	1	-	н .	ario ari
1076	сСН2-	2	2	1	-	н	-CHNC-C
1077	CI	2	2	1	-	н	-at-HC-CF3
1078	сСн ₂ -	2	2	1	-	Н	-ch Hc-C

[0199]

Tabl 1.99

Iabl 1	.99						•
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1079	CH-CH2-	2	2	1	-	н	- Or- Ho-Cart
1080	CI-CI+2-	2	2	1	•	н	ofocht -artho ochan
1081	с-С-сн-	2	2	1	-	н	orboard och
1082	CI	2	2	1	-	н	(S) P C-C
1.083	CH-CH2	2	2	.1	-	н	CH NO CO
1084	CI-CH2-	1	2	0	R	н	-cH2-H-0-C1
1085	CI—CH2-	1	2	0	R	н	-CH ₂ -N-C
1086	CI	1	2	0	R	н.	-CH2-H-C-
1087	CH-CH2-	1	2	0	. R	Н	-cH2-HC-NC
1088	CICH ₂ -	1	2	0	R	н	-CHZ-HO-C
1089	CI-CH ₂ -	1	2	0	R	н	-OHZ-HO-CO
					•		

[0200]

Tabl 1.100

Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	(CH ₂) _p
1090	с-С-сн-	1	2	0	R	н	-CH ₂ -N-C-CH ₂ CH ₃
1091	сн-О-сн-	1	2	0	R	н	-CH2CH2-N-C-
1092	сн-О-сн-	1	2	0	R	н	-CH ₂ CH ₂ -N-C
1093	CICH ₂ -	1	2	0	R	. н	-CH ₂ CH ₂ -N-C-
1094	с	1	2	0	R	н	-CH ₂ CH ₂ -N ₂ C-N ₃ C-N ₄ C-
1095	CI—{	1	2	0	R	H	-cH2CH2-HC-C3
1096	CI{}-CH₂-	1	2	0	R	н	-CH2CH2-NO-NO-NO-F
1097	CH	1	2	0	R	н	-CH2CH2-HC-C-CH2CH2
	CH-CH ₂ -						-CH ₂ -N-CCH ₃
1099	CH-CH ₂ -	1	2	0	R	. н	-CH ₂ -N-C
1100	CICH ₂ -	1	2	0	R	н	-CH2-HC-CH

Table 1.101

Table 1							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) p (CH ₂) q G- R ⁶
1101	CI-CH ₂ -	1	2	0	R	н	-CH2-N-C-CH3
1102	CICH ₂ -	1	2	o	R	н	-CH ₂ -N-CNO ₂
	H3C-CH2-					н	-CH2-NG-CH3
1104	ньс-Ст-	1	2	o	R	н	-CH ₂ -N-C
1105	H ₃ Q(CH ₂ -	1	2	0	R	н	-CH2-NO-CI-F
1106	H ₂ O-{	1	2	0	R	H .	-сн ₂ -н с-сн ₃
1107	H ² O-{\bigce}-CH ² -	1	2	0	R	н	-CH ₂ -N-O
1108	CH ₃	1	2	0	R.	н	-CH ₂ -N-C-CH ₃
	CH ₂ -CH ₂ -						-CH ₂ -N-C
1110	CH ₂	1	2	Q	Ŗ	Н	-CH2-N-C
1111	CH ₃	,1	2	0	R	н	-CH ₂ -N-C-CH ₃
							·

[0202]

Table 1.102

Compd. No.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
1112	CH3	1	. 2	0	R	Н	-CH ₂ -N-C
1113	СН-СН2-	2	2	1	-	н	-CH ₂ -N-C
1114	CI-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1115	СІ—СН2—	2	2	1	-	н ·	-CH₂-N-C-CI
1116	CI-CH ₂	2	2	1	· -	н	-CH ² -H-O-CH ³
1117	CI-CH2-	2	. 2	1	-	н	-CH ₂ -N-C
1118	O. Hg-O-or-	1	2	0	R	. н	-CH2-HO-CF3
 1119	н,сэ-СЭ-сн,	1	2	0	R	н	-CH2-NO-CF3.
	CCH ²						-CH2-N-C-CF3
1121	O ₂ N-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1122	CHCHOFCH CHA-CHA-	1	2	0	R .	н	-CH ₂ -N-C-CF ₃

[0203]

iabi	.103						
Compd. No.	R ¹ (CH ₂)	k	m m	n c	chirality	R ³	—(CH ₂) p (CH ₂) q G R ⁶
1123	CH ₂ -	1	2	0	R	н	-CH2-NO-CF3
1124	O ₂ N O CH ₂	1	2	0	R	н	-CH2-NC-CF3
1125	CI-CH ₂ -	2	.2	1 ·	-	. н	arbart -b+Hg-Q-a
1126	CH2-	2	2	1		н	Orboors Dec
1127	CI-CH ₂ -	2	2	1	-	н	CH-N-C-LASH OH-OCH-C
1128	CI—CH ₂ -	2	2	1	-	н	-CH HO-CE,
1129	Ci-CH ₂ -	2	2	1	-	Н,	-CH-Hg-CD-F
1130	CI-CH2-	2	2	1	-	н	oroar O
1131						н	oroarr -a+#g-Q
1132	CI-CH2-	2	2	1	-	.· .H	-CH2-HC-CE3
1133	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH2-HC-CF3

[0204]

Table 1.104

142.0							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) p
1134	H3CO - CH2-	1	2	0	R	н	-CH2-N-C-CF3
1135 .	NO ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1136	H3CO CH2-	1	2	0	R·	н	-CH ₂ -N-C-CF ₃
1137	CH2-	1	2	o	R	н	-CH ₂ -N-C-CF ₃
1138	CH ₂	1	. 2	0	R	н	-cH2-NC-CF3
1139	(CH2)2-	. 1	2	0	R	н	-CH ₂ -N-C-CF ₃
· 1140	O ₂ N — CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
.1141	CH ₂ -	1	2	0	R	н	-сн ₂ -м-с-СF ₃
1142	CH2-					н	-CH2-N-CCF3
1143	Q-040-Q-042	1	2	0	R	н	-CH2-N-C-CF3
1144	H ₃ CO .	1	2	0	R	Ĥ	-CH2-NC-CF3

[0205]

Table 1.105

Compd.	R ² (CH ₂)-	k	m	n	chirality	R³	·(CH ₂) _p + (CH ₂) _q G-R ⁶
1145	H ₃ CO CH ₂ -NO ₂	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1146	- aro-O-ar-	1	2	0	R	н	CH2-N-C
•	HOG HOS ONE					н	-CH2-N-C-CE2
1148	CH2-CH2-	1	2	0	R	н	-CH³-M-C-CL3
	CH ₃ CH ₂					Ĥ	-CH2-N-C-C
1150	CH3 CH3	1	2	0	R	H .	-cH²-H°c-CH²cH³
1151	CH ₃				R	·H	-cir-Ho-cir-Ct-3
1152	CH ²				R	н	-CH-NO-NO-F
1153	CH ₃					н	-CH2-HC-NHC-CI
1154	CH ²	1	2	0	R	н	-CH ² -H O-VI CH ³
1155	CH ₃	1	2	0	R	н	-CH ₂ -N-O-CH ₃ -CH ₂ -N-O-CH ₃ F ₃ C
		·					

Table 1.106

Compd.						R³	(CH₂) ,
1156	CH ₃	1	2	0	R	н	-сн- н с С(сн3)3
1157	CH,	1	2	0	R	н	-CH- NC- ST SCH3
1158	CH ₃	1	2	0	R	н	-CH2-N-CH
1159	CH₃ CH₂-	1	2	0	. R	Н	-CH ₂ -N-C-OCH ₃ -CH ₂ -N-C-OCH ₃
1160	CH3 CH3	1	2	0	R	н	-CH ₂ -N-C-CH ₃
•	H₃CO					H	-CHZ-N-C-CF3
1162	H ₃ CO-CH ₂ -	1	2	.0.	R	н	-CH2-N-C-CF3
						н	-CH2-N-C-CF3
	H ₃ CO-CH ₂ -CH ₂ -					н	-CH2-HC-CF3
1165	CH2-	·1	2	0	R	н	-CH ² -H _C -C _C -3
1166	H,CO-CH ₂ -	1	2	0	R R	H	-CH2-HC-CF3

[0207]

Table 1.107

Compd.	R ² /(CH ₂)	k	m	n	chirality	R³	(CH ₂) _P (CH ₂) _q G-R ⁶
1167	CI—CH ₂ -	2	2	1		н.	-cH-Ho-O-O
1168	CI N CHE	1	2	0	R	н .	-CH2-N-C-CF3
1169	Har Har	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1170	Ch. CH.	1	. 2	0	R	H	-CH2-N-C-CF3
.1171	CH-CH2-	1	2	D	R	Н	-CH ₂ -N-C-C-Br
1172	CI-CI-CIL2	. 1	2	0	R	н	-CH2-NC-NHOH
1173	CI-CH ₂ -	1	2	0	R	н	-CH2-HO-N-OCH3
1174	CI-CH ₂ -	1	2	O	R	н	-CH2-H2C-
	H ₉ C—CH ₂ -		•		•	н	CH ² -H-CCH ³
1176	H ² CCH ² -	1	2	O	R	н	-CH ₂ -N-O-N-OH
1177	н,о-С}-сн-	1	2	0	R	н	-CH2-N-O-H-OCH3
		•			·		

[0208]

Table 1.108

Compd. No.	R ² (CH ₂) ₁	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
1178	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1179	H ₃ CCH ₂ -	1	2	o	R	н -	-CH ₂ -N-CNO ₂
1180	H ₃ C-CH ₂ -	1	2	0	R ·	H .	-cH-Ho-H
1181	CH ₃	1	2	0	R	н	-CH ₂ -N-C-Br
1182	CH ₃	. 1	2	o	R	н .	-CH2-N-C-N-OH
1183	CH ² -CH ² -	1	2	0	R	н	-CH ² -M-C-M-OCH ³
1184	CH ₂	1	2	0	R	н	-CH ₂ -N-C
1185	CH3 CH3	1	2	0	Ŗ	н	-CH2-NO2
1186	CH ₃	1	2	0	R	н	-cH-Ho-N
1187	CI-CH ₂ -	2	2	1	-	н	-CH²-N-CCH³
1188	a-Q-at-	2	2	1,	-	н	-CH2-HC-H3-OH

Table 1.109

						•	
Compd. No.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p
1189	CICH2-	2	2	. 1	-	н	-CH2-N-C-N-C-CH3
1190	CI—CH ₂ —	2	2	1	-	н	-CH2-N-C
	CH ² CH ²					H -	CH2-NO
1192	CHP-CHP-	1	2	0	R	н	-CH2-N-0
1193	CH					н	-CH ₂ -N-O-CF ₃
1194	CH ₂					н	-CH2-NC-F3
1195	CH2 CH2					н	-CH ₂ -N-C
1196	CH ² —CH ² —					H	-CH ₂ -N-C-CNO ₂
	CH CH-					н	-CH2-N-CF3
1198	CH, CH,	1	2	0	R	н	-cH2-HC-CH3
1199	CH ³	1	2	0	R	H	-cH²-H c-CH3
							•

[0210]

Table 1.110

• • • • • • • • • • • • • • • • • • • •		•					
	R ¹ (CH ₂);					R³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
1200	CH3	1	2	0	R	н	-cH ² -H-c-C ₁
1201	CH3 CH3	1	2	0	R	н	-CH ₂ -N-CF
1202	CH ³	1	2	o	R	Н	-CH2-N-C-CF3
1203	H3CCH2-	1	2	0	R	н	-CH ₂ -NO-CF ₃
1204	H3O-CH2-	,1	2	0	R	н	-CH ₂ -N-C-S
1205 .	H3C-CH2-	1	2	0	R	н	-CH2-N-O-Br
1206	н₃с-{сн₂-	1	2	0	R	H	-CH2-NO-C
1207	H³C-{	. 1	2	O	R	н	-CH2-H-CCL3
1208	H ₂ O	1	2	0	R	н	-CH ² -H-O-C ₁
1209	H ₃ O-CH ₂ -	1	2	0	R	н	-CH2-N-O-CH3
1210	ньс-О-снг	1	2	0	R	н	-CH2-H-C-CI

Table 1.111

1 abic							
Compd.	R ¹ /(CH ₂)/	k	m	n	chirality	H3	—(CH _{2)p} + (CH ₂) q G−R ⁶
1211	H ₃ O-CH ₂ -	1	2	0	R	н	-CH2-N-C-F
1212	н₃с-Ст-сн-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1213	CI	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1214	CI(CI+2-	2	2	1	-	н	-cH2-N-CCE3
1215	CI-CH2-	2	2	1	-	. н	-CH2-H-O-CI
1216	O-CH2-	2	2	1		н .	-CH2-HC-C-F
1217	O-CH-	1	2	0	R	. н	-CH ₂ -N-CF ₃
1218	а-О-сн-	, 1	2	0	R ·	н	-CH2-H-C-CH2
1219	CH-CH2-	1	2	0	R.	н	-CH2-NO-CH3
1220	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1221	с-О-сн-	1	2	0	R	н	-CH ₂ -N-C-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F

[0212]

Table 1.112

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	₽³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1222	с⊢О-сн₂-	.1	2	0	·R	н	-CH2-H CH3
1223	CI—CH₂-	1	2	0	R	н	-cH ₂ -N-c-Qs-Q
1224	CH-CH _Z -	1	2	0	R	н	-CH2-HC NO2
1225	H ² C{CH ² -	1	2	o	R		-CH ₂ -N-C-CF ₃
1226	H ₃ CCH ₂ -	1	2	0	R	н .	-CH ₂ -N-C
1227	H₃C-{}-CH₂-	. 1	2	O	R	H	-сн₂-N-с-Сн³
						н	-CH ₂ -N-C
1229	H3C-{\bigce}-CH2-	1	2	0	R	н	-CH ₂ -N-C
1230	H3C-{\bigc}-CH2-	1	2	0.	R	н	-CH2-N-C-N-CH3
1231	H3O-CH2-	1	2	0	R	н	-CH2-N-C-C
1232	н₃с-{_}-сн₂-	1	2	0	R	н	-CH ₂ -N-C
_							

[0213]

Table 1.113

lable 1							
Compd.	• •						—(CH ₂) p (CH ₂) q G−R⁶
	CH ₃						" cl
1234	CH3 CH3	1	2	0	R ·	н	-CH2-N-CCH3
1235	CH ₂	1	2	0	R	н	-CH2-N-C-CH3
	CH-CH-					н	-CH ₂ -N-C
1237	CH ₂	1	2	0	R	н	-CH ₂ -N-C
	CH ₃ CH ₂ CH ₃					н	-CH ₂ -N-C-H ₃
1239	CH2-CH2-				•	н .	-CH2-No-C
1240	CH3	1	2	0	R	н	-CH2-N-C
1241	CH-CH2-					н	-CH2-H-O-CG-3
1242	CH-CH2-	2	. 2	1	-	н	-CH2-N-C-FCH3
1243	сн-С-сн-	2	2	1	-	н	-CH2-N-C-CI

[0214]

Tabl 1.114

					·		
Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	—(CH ₂) p (CH ₂) q G −R ⁶
1244	с⊢С сн₂-	2	2	1	-	н	-CH ₂ -N-C
1245 .	сн-Сн-	2	2	1	-	н	-CH ₂ -N-C
1246	CH2-	2	2	1	-	H	-CH₂-N-C-N-CH₃
1247	CI—CH2—	2	2	1	-	н	-CH2-NC-
1248	CI—CH2-	2	2	1	-	Н	-CH2-NO2
1249 [·]	CH_CH _Z -	1	2	0	R	н	-CH₂-NO₂-CI
1250	H ₃ C	1	2	0	R	H	-CH ₂ -NO ₂
1251	CH ₃	1	2	0	R _.	Н	-CH ₂ -N-C-CI
	CI—CH2						-CH2-HO-CH(CH4)2
1253	H3C-CH2-	1	2	0	R	н	-CH ² -H _C CH(CH ²) ⁵
1254	CH ² CH ²	1	2	0	R	н	-CH ² -N-C
							·

[0215]

Tabl 1.115

1001	1.115						•
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1255	CI(C)CH ₂ -	1	2	0	R	н	-CH ₂ -N-CBr
1256	H₃C-{	· 1	2	Ó	R	н	-CH2-H-C-SBr
1257	CH ³	1	2	0	R	н	-CH2-N-C
1258	H ₃ O-CH ₂ -	1	2	0	R	н .	-cH2-H2-CH
.1259	CH ³	1	2	0	R	н	-CH2-N-O-CH
1260	H ³ O-{CH ² -	1	2	0	R	н	-CH2-NO-COCH2CH3
1261	CI-CH2-	1	2	O	R	н	-CH ² -H ₀ -C(CH ³) ³
1262	H-0-(-)CH2-	1	2 .	0	R	Н	-CIF-HO-CC(CH3)3
1263	CH2-CH2-	1	2	0	R	н	-CH2-H-O-C(CH3)3
1264	CHCH2-	1	,2	0	R	н	-CH2-HO-CO
1265	CI	1	2	0	R	н	-CH2-NO-CH
							

Table 1.116

I abic i	.110						
Compd. No.	R ¹ (CH ₂);	k	m	n	chirality	R³	—(CH ₂) , (ĊH ₂), G−R ⁶
1266	CH ₃	1	2	0	R	н	, -cr²-H c C C
1267	CI-CH2-	1	2	0	R	н	-CH2-N-C-N-C-S
1268	с⊢{	1	2	·0	R	н	-CH2-N-C-
1269	с{	1	2	0	Ŕ	н	-cH²-H-c
1270	сн₂-	1	2	0	R	н	-CH2-N-C-
1271	CICH ₂	1	2	0	R ·	н	-CH ₂ -N-C
1272	H ₃ OCH ₂ -	1 .	2	0	R	н	-CH2-NC-NHO-NHOCF3
1273	ньо-Сн-	1	2	0	R	н	-CH2-N-C-CI
	H ₃ CCH ₂ -					н	-CH2-HC HO Br
1275	H3O-CH2-	1	2	0	R .	н	-CH2-N-C
1276	H ₃ O-CH ₂ -	1	2	0	R	H .	-сн ₂ -ң-с

[0217]

Table 1.117

Compd.	R ² (1.2)					R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
1277	CH ²	1	2	0	R	H	-CH2-NC-H2-OCF3
	CH ²				R	н	-CH2-N-C-
	CH ³				R	н	-CH2-HC
. · 1280 :	CH ₃	1	2	0	R	н	-CH ² -H C-CH
1281	CH3 CH5-	1	2	0	R	н	-CH2-NO2
1282	CH-CH2-	2	2	1	-	н,	-CH_NO-NO-OCF3
1283	сі-О-сің-	2	2 .	1	-	н	-CH2-H-CCI
1284	сн-С}-сн₂-	2	2.	1	-	н	-CH-HO-S
1285	а-С-сн-				-	н	-CH2-N-C-CI
1286 H	ię wańro-O-ar-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1287	O ₂ N-CH ₄ -	1	2	0	R	н	-CH2-H-O-CF3

[0218]

Table 1.118

I able	1.110						
Compd.	R ² (CH ₂);-	k	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
1288	HQ H ₃ CO—CH ₂ —	1	2	0	R F	н	-CHE-H-G-CE3
1289	CH³ CH³	1	2	0	R	н	-CH ₂ -N-C
1290	CH3	1	2	0	R	н	-CH ₂ -N-C-H ₃
1291	H ₃ O-CH ₂ -	1	2	0	R	н	-CH2-N-O-N-CH3
1292	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1293	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-CF3
1294	H ₃ C-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-CF ₃
1295	н₃с-О-сн₂-	1	2	0	R	н	-CH2-N-C-(CH3)3
	H ₃ C-CH ₂ -					н	-CH ₂ -N-CSCH ₃
1297	H3C-C)-CH2-	1	2	0	R	н	-CH ₂ -N-C
1298	H ³ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CH ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃

[0219]

Table 1.119

Compd. R	labie	1.119						
1300	Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G -R ⁶
1301 H ₃ CO CH ₂ 1 2 0 R H — CH ₂ N C CF ₃ 1302 H ₃ CO CH ₂ 1 2 0 R H — CH ₂ N C CF ₃ 1303 H ₃ CO CH ₂ 1 2 0 R H — CH ₂ N C CF ₃ 1304 O CH ₂ 1 2 0 R H — CH ₂ N C CF ₃ 1305 H ₃ CO CH ₂ 1 2 0 R H — CH ₂ N C CF ₃ 1306 H ₃ CO CH ₂ 1 2 0 R H — CH ₂ N C CF ₃ 1307 H ₃ CO CH ₂ 1 2 0 R H — CH ₂ N C CF ₃ 1307 H ₃ CO CH ₂ 1 2 0 R H — CH ₂ N C CF ₃	1299	H3CO-CH2-	1	2	0	R	н	-сн ₂ -н сС ^{F3}
1302 $H_{9}CO \longrightarrow CH_{2}$ 1 2 0 R H $-CH_{2} \longrightarrow CF_{3}$ 1303 $H_{9}CO \longrightarrow CH_{2}$ 1 2 0 R H $-CH_{2} \longrightarrow CF_{3}$ 1304 $O \longrightarrow CH_{2}$ 1 2 0 R H $-CH_{2} \longrightarrow CF_{3}$ 1305 $O \longrightarrow CH_{2}$ 1 2 0 R H $-CH_{2} \longrightarrow CF_{3}$ 1306 $O \longrightarrow CH_{2}$ 1 2 0 R H $-CH_{2} \longrightarrow CF_{3}$ 1307 $O \longrightarrow CH_{2}$ 1 2 0 R H $-CH_{2} \longrightarrow CF_{3}$. •				R	н	-CH ₂ -N-C-CF ₃
1303 H_3CO CH_2 1 2 0 R H $-CH_2$ H_1 CH_2 CF_3 1304 CH_2 CH_2 1 2 0 R H $-CH_2$ H_2 CF_3 1305 H_3CO CH_2 1 2 0 R H $-CH_2$ H_2 CF_3 1306 H_4CO CH_2 1 2 0 R H $-CH_2$ H_2 CF_3 1307 H_3CO CH_2 1 2 0 R H $-CH_2$ H_2 CF_3	1 301	H ₃ CO_OCH ₃	1	2	0	R	н	-CHZ-N-C-CF3
1304	1302	H ² C CH ²	1	2	0	R	н	-CHZ-N-C-CF3
1305 H ₃ CO CH ₂ 1 2 0 R H -CH ₂ N CF ₃ 1306 H ₃ CO CH ₂ 1 2 0 R H -CH ₂ N CF ₃ 1307 H ₃ CO CH ₂ 1 2 0 R H -CH ₂ N CF ₃	1303	H ₃ CO—CH ₂ -	1	.2	0	R	H	-ar-Ho-Ct3
1306 H ₂ CCH ₂ O CH ₂ 1 2 0 R H -CH ₂ N CF ₃ 1307 H ₃ CO -CH ₂ 1 2 0 R H -CH ₂ N CF ₃	1304	O are O are	. 1	2	0	R	н	-CH2-NO-CF3
1307 H ₃ CO CH ₂ 1 2 0 R H -CH ₂ N CF ₃	1305	H ₃ CO-CH ₂ -	1	. 2	0	R	н	-CHZ-N-C-CE3
1307 H ₂ CO-CH ₂ 1 2 0 R H -CH ₂ N-C-CH ₂	1306	HPCCHFG CH2	1	2	0	R	Ħ.	-CH2-NO-CF3
1308 PCH ₂ - 1 2 0 R H -CH ₂ -NC-CF ₃ 1309 H ₃ CO-CH ₂ - 1 2 0 R H -CH ₂ -NC-CF ₃		H ₃ CO—CH ₂ —						
1309 H ₃ CO CH ₂ - 1 2 0 R H -CH ₂ -NO-CF ₃	1308	O√_CH²-	1	2	Ò	R	н	-CH2-NC-CF3
	1309	H ₃ CO	1.	2	o	R	н	-CH ₂ -N-C-CF ₃

[0220]

Table 1.120

				_			·
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	–(СН ₂) р (СН ₂) _q G−R ⁶
1310	HO-CH2-	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1311	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1312	CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1313	-CH ₂ -	1	2	0	R	н	-CH₂-N-CCF3
1314	O ₂ N CH ₂ -	1	2	0	R	.	-CH ₂ -N-O-CF ₃
1315	H3C O-CH2-	1	2	0	R	н	-CH2-N-C-CF3
1316	F ₃ C CH ₂ CH ₂	1	2	0	R	н	-CH2-HC-CF3.
1317	CH2-CH2-	i	2	0	R ·	н	-CH ₂ -N-C-CF ₃
	CI-CH ₂ -					н _.	-CH ₂ -N-C-CF ₃
1319	CHF-CHF	1	2	0	R	н	-CH2-N-C-CF3
1320	Br-CHz-	1	2	0	R	н	-CH2-N-C-CF3
						•	

[0221]

Table 1.121

Compd.	R ¹ (CH ₂) _[k	m	n	chirality	R³	-(CH ₂) p CH₂)q G-R⁶
1321	CI(C)-CH2-	1	2	0	R	н	-CH ₂ -N-C-CI
1322	CI(C)CH2-	1	2	0	R	н	-сн ₂ - N-с
	CI-CI12-					н	-CH2-N-C-CI
1324	a-Q-au	1	· 2	0	R	н	-CH ² -N-C-CH ³
1325	a-Q-au-	1	2	0	R	н	-ar-Ho-O-o-O
1326	a-Q-ar-	1	2	0	R	н .	-cH-Ho-
1327	CI	1	2	0	R	- H	-CH2-N-O-CH3
1328	H3C-()-CH2-	1	2	0	R	н	-CH2-NO-CI
1329	H ₃ C-CH ₂ -	1	2	0	R	н	-сн-йо-Сп
1330	н²с-Су-сн²-	1	2	0	R	н	-cH-Hc-C-a
1331	H³O-Ó-ĊH2-	1	2	0	R	н	-cH²-H°c-CH³

[0222]

Table 1.122

							•
Compd. No.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
1332	н ^д с-Сн ₂ -	. 1	2	0	R	н	-cH2-HC-C-C-C
1333	H ₃ C-CH ₂ -	1	2	. 0	R	н	-CH2-N-C
1334	н₃с-О-сн₂-	1	2	0	·R	н .	-CH ² -N-C-CH ³
	CH ³				R .	н	-CH2-N-C-Br
	CH ₃ CH ₃ -					H	-CH2-N-O-CH3
1337	CH ₃				R	Ħ, ···	-сн- но-С
1338	CH ₃				R .	н .	-CH2-HC-CH3
1339	CH ₃				R	н	-CH2-N-O-O-O-O
1340	CH3 CH3				R	н	-CH2-N-C
1341	CH3 CH3	1	2	0	R	н	-CH ₂ -N-C
1342	CI—CH _Z	2	2	1	-	H	-CH ₂ -N-CCH ₃ -CH ₂ -N-CCH ₂ -CH ₃

[0223]

Table 1.123

Compd. No.	R ¹ (CH ₂)-	k	m	n	chirality	R³	–(CH₂) p (CH₂) q G−R⁶
1343	CH-CH2-	2	2	-1	-	н	-CH2-H-C-CH3
1344	CI—	2	2	1	-	н	-cH ₂ -N-C-Ci
	CI-CH2-			•		Ħ	-cH²-H-c
1346	сн-О-снұ-	2	2	1	-	н	-CH2-N-C
1347	CH_CH_	1	2	0	R	н	-CH2-NO-STCH3
1348	H3O-CH2-	1	2	0	R .	н	-CH2-NO-STCH3
1349	CH ₃	1	2	.0	R	н ,	-CHE-HO-STCH3
1350	CI-CH2-	2	2	1.	-	н	-CH2-N-C-S CH3
1351	CHCH_2-	1	2	0	R	н	- a+ - H c- C- B.
1352	H ₃ C-CH ₂ -	1	2	0	R ·	Н	-crit.H.cC.
1353	H ₃ C-CH ₂ -CH ₂ -CH ₂ -CH ₃ -	1	2	0	R	н	-01-11-01-1

[0224]

Table 1.124

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1354	CI-CH _Z -	. 2	2	1	-	· н	-on-He-
1355	CH	. 1	2	0	R	н	-cH ² -M-c-
1356	H ₃ C-CH ₂ -	1	2	O	R	н	-CH ₂ -N-C-
1357.	CH ₃	1	2	0	R	н	-CH ₂ -N-O-CN
1358	CI	2	2	1	• ·	н .	-CH ₂ -N-C-CN
1359	CH ₃ . CH ₂ -	.1	. 2	o	R	н	-chr-Hg-
1360	CH3 CH3	1	2	0	R	. H	-CH2-N-C-CH3 CH3
1361	H ₃ C-CH ₂ -	1	2	0	R	Н	-сн ₂ -и-о- Р
1362	CH ₃						-сн₂-й-с-{Сн³
1363	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH ² -N-C-CH ³ -CH ³ -N-C-CH ³ -CH ³ -CH ³
1364	H ₃ O-CH ₂ -	1	2	O	R	н ,	-CH ₂ -N-C

[0225]

Table 1.125

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
	CH ₃					н	-CH2-H-C-
1366	CH ₃	1	2	0	R	н	-сн-H ₀ С-снз
1367	H ² O-CH ² -	1	2	0	R	н	-cHz-Ho-Cy-cH3
1368	CI—CH _Z -	1	2	0	R	Н	-CH2-HO-CF3
1369	с-С-сну-	1	2	0	R	н	-CH ₂ -N-O-CH ₂ CF ₃ F ₃ CCH ₂ O
1370	CI-CH ₂ -	1	2 .	0	R	H	-CH2-N-CST Br
1371	CH-CH-	1	2	0	R	н	-CHZ-HO-CYPE
1372	a-{}-a+-	1	2	0	R	н	-015-HO-C
1373	H3O-CH2-	1	2	. 0	R	н	-CH2-HC-CF3
1374	H ₂ C	1	2	0	R	н	-CH ₂ -N-O-OCH ₂ CF ₃
1375	н³с-{С-сн ^і -	1	2	0	R	н	-CH2-NC-S

[0226]

Tabl 1.126

labi	1.120						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _р (CH ₂) _q G-R ⁶
1376	H ₃ C-\(\sigma\)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C
1377	H ₃ CCH ₂ -	1	2	0	R	н	-orts-Ho-C
1378	CH ₃ CH ₂ -				•		-CH2-N-C-CI
1379	CH ₃	1	2	0	R	н .	CH ₂ -NO-CH ₂ CF ₃ F ₃ CCH ₂ O
1380	CH ₃	1	2	O	,R	н	-CH2-NC-STBr
1381	CH ₃	1	2	0	R	н	-CH-NO-OS
1382	CH ₃	1	2 .	0	R	н .	-ai-lig-
1383	CI-CH2-	2	2	1	<u>.</u> .	Н	-CH2-HC-CF3
1384	CH-CHy-	2	2	1	-	н	-CH ₂ -N-C-S Br
1385	CI	2	2	1	-	н	-CH2-HO-O
1386	CI—CH2-	2	2	1	-	н	-cHz-Hg-
							· · · · · · · · · · · · · · · · · · ·

[0227]

Table 1.127

•					•		
Compd.	R ² (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) ₇ + (CH ₂) ₇ G −R ⁵
1387	CH ₂ -	1	2	0	R	. Н	-ch- No A
	CH ³				R	н	-CH2-N-C-(CH3)3
1389	CH ³					н	-CH ⁵ -H ₀ -Ch ⁰
1390	H ₃ C CH ₃	1	2	0	, R	н	-CH2-NC-CF3
1391	H ₂ C CH ₂ -	1	2	0	R	н	-CH2-NC-CF3
1392	HPO-CH ⁵ -CH ⁵ -	1	2	o	R	н	-CH2-HO-CF3
1393	н _а ссн _е —СН-сн-	1	2	0	R .	т н э	-CH2-HO-CF3
1394	O ₂ N CH ₂	1	2	0	R	н	-CH2-N-C-CF3
•	н с₌сн-С}−сн ₂ −		2		•	н	-CH2-N-C-CF3
1396	H ^o -CH ² -	1	2	0	R	н	-CH2-HC-CF3
1397	Br—CH2	1	2	0	R	н	-CH2-HC-CF3

[0228]

Table 1.128

table	. 1,20						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1398	CI CH3	1	2	0	R	н .	-CH ₂ -N-CCF ₃
1399	CH-CH-CH-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1400	CI—CH—CH-	1	2	0	R _.	н	-CH ₂ -N-C-CF ₃
1401	H ₃ O-CH ₂ -	1	2	0	R	н	-CH2-HC-NHC-CI
1402	H ₂ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-CH3 H2N OCH3
1403	H ₃ C	1	2	0	R ·	H .	-cH²-Hc-CN
1404	H ₀ O-CH ₂ -CH ₂ -	1	2	0	R	н	-CH2-N-C-
1405	H3O-CH2-	1	2	0	R	н	-CH ₂ -N-C-N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
1406	H ₃ C-CH ₂ -	1	2	.0	R	н	-CH₂-N-C
1407	H ₃ O-{	1	2	0	R	н	-CH ₂ -N-C-N H ₃ CCH ₂ S
1408	H ₃ C-{}-CH ₂ -	1	2	0	R	н	-cH2-H-c-
	·						

Tabl 1.129

1410								
1410 CH ₂ 1 2 0 R H CH ₂ 1 1 2 0 R H CH ₂ N C CH ₂ 1 2 0 R H CH ₂ N C CH ₂ 1 2 0 R H CH ₂ N C CH ₂ 1 2 0 R H CH ₂ N C CH ₂ 1 2 0 R H CH ₂ N C CH ₂ 1 2 0 R H CH ₂ N C CH ₂ 1 1 2 0 R CH ₂ N C CH ₂ 1 1 2 0 R CH ₂ N C CH ₂ 1 1 2 0 R CH ₂ N C CH ₂ 1 1 2 0 R CH ₂ N C CH ₂ N C CH ₂ 1 1 2 0 R CH ₂ N C C CH ₂ N C C CH ₂ N C C C C C C C C C C C C C C C C C C	Compd. No.	R ¹ /(CH ₂)	k	m	·n	chirality	Ьş	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1411 CH_CH_F 1 2 0 R H — CH_F N C — CH_F 1 2 0 R H — CH_F N C — CH_F 1 2 0 R H — CH_F N C — CH_F N	1409	H ₃ O	1	2	0	R	н	-CH2-N-C-CH3
1412 H ₃ O-C-CH ₂ - 1 2 0 R HCH ₂ -N-C-C-NH 1413 CH ₃ - CH ₂ - 1 2 0 R HCH ₂ -N-C-NH 1414 CH ₃ - CH ₂ - 2 2 1 HCH ₂ -N-C-NH 1415 CH ₃ - CH ₂ - 1 2 0 R HCH ₂ -N-C-NH 1416 H ₃ O-C-CH ₂ - 1 2 0 R HCH ₂ -N-C-N-C-NH 1417 CH ₃ - CH ₂ - 1 2 0 R HCH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-	1410	CH ₃	1	2	, O	R	Ή	-сн₂-й-с- С
1413 CH ₂ 1 2 0 R H CH ₂ 1 1 2 0 R H CH ₂ NC CH ₂ 1 1 2 0 R H CH ₂ NC CH ₂ 1 2 0 R H CH ₂ NC CH ₂ 1 2 0 R H CH ₂ NC CH ₂ 1 2 0 R H CH ₂ NC CH ₂ 1 2 0 R H CH ₂ NC CH ₂ 1 2 0 R H CH ₂ NC CH ₂ NC CH ₂ 1 2 0 R H CH ₂ NC CH ₂ NC CH ₃ SCN CH ₄ N C CH ₂ N C CH ₃ N C CH ₄ N C CH ₄ N C CH ₄ N C CH ₅ N C C C C C C C C C C C C C C C C C C	1411	с	1	2	0	R	н	-a4-40-
1414 CH CH 2 2 2 1 - H - CH2-NC CH2 1 2 0 R H - CH2-NC CH2 1 2 0 R H - CH2-NC CH2 1 1 2 0 R H - CH2-NC CH2 1 1 2 0 R H - CH2-NC CH2 CH2 1 2 0 R H - CH2-NC CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH	1412	H ² C-CH ² -	1	2	0	R	н	HC-C-NH -OH-NG-C
1415 CH_CH_F 1 2 0 R H -CH_F NC SCN 1416 H_SC CH_F 1 2 0 R H -CH_F NC SCN 1417 CH_F 1 2 0 R H -CH_F NC SCN 1417 CH_F 1 2 0 R H -CH_F NC SCN 1417 CH_F 1 2 0 R H -CH_F NC SCN 1417 CH_F 1 2 0 R H -CH_F NC SCN 1417 CH_F 1 2 0 R H	1413	CH3	· 1	2	0	R	н	-01-HO-0
1416 H ₈ 0-CH ₂ - 1 2 0 R H -CH ₂ -N-C-H ₂ N H ₂ N	1414	CH-CHE-	2	2	1	-	Н	-a1-40-€-vit .
1417 CH ₂ 1 2 0 R H -CH ₂ -N-C-H ₂ N CH ₃	1415	CH-CH _Z -	1	2	0	R	н	-CH ₂ -N-C-SCN
CH ₃ H ₂ N	1416	H ₉ C	1	2	0	R	н	-CH ₂ -N-C-SCN H ₂ N
1418 CH ₂ -CH ₂ - 2 2 1 - H - CH ₂ -N-C- SCN 1419 CH ₂ - 1 2 0 R H - CH ₂ -N-C- SH		CH ₃						H ₂ N
1419 CH ₂ 1 2 0 R H -CH ₂ N C SH	1418	CI—CH2-	2	2	1	-	н	-CH2-N-C-SCN
H ₂ Ń	1419	CI-CH ₂ -	1	2	0	R	н	-CH ₂ -H ₂ N

[0230]

Tabl 1.130

Compd. No.	R ¹ (CH ₂);-	k 	m ·	n	chirality	₽³	—(CH₂) p (CH₂) q G−R ⁶
1420	H ₂ O-{	1	2	0	R	н	-CH ₂ -N-C-SH H ₂ N
1421	CH₃ N — CH₂- CH₃	1	2	o	R	н	-CH ₂ -N-C-SH
1422	CI-CH2-	2	2	1	. -	н	-CH₂-N-C-SH H₂N
1423	CH-CH2-	1	2	0	R	н	-CH2-N-C-C
1424	H ₃ C	1	2	0	R	н	-CH ₂ -N-C-
1425	CH ₃	1 .	2	0	R	н .	-CH2-N-C
1426	CI-CH ₂ -	2	2	1		H	-CH2-NC-C
1427	CI	2	2	1	-	н	-CH ₂ -N-C-SH H ₃ C-NH
1428	ci	2	2	- 1	-	. н	-CH₂-N-C
1429	ньсан ₂ о-О-ан-	2	2	1	-	н	-CH ₂ -N-C-
1430	Hocation—Char-	2	2	1	-	н	-CH ₂ -N-C

Tabl 1.131

					•		
Compo	d. R ² (CH ₂)	- k	m	n	chirality	R³	R ⁴ -(CH ₂) _p + (CH ₂) _q G−R ⁶ R ⁵
1431	н₀сан₂о-{С}-а	મ - 2	2	1		В	-CH ₂ -N-C
1432	CH2-CH2	- 2	2	1	-	н	-CH ₂ -N-CBr
1433	ifocu³o-{a	t- 2	2	1	•	н	-ch-Hc-Ch-cchch
1434	н•ссяч≈о-{С}-сн	⊌- 2	2	1	-	Ħ	-ar-ling
1435	н,сон,—О—он	kr 2 _.	2	1	-	. н	-CH ₂ -N-CCH
1436	(HbC)2CH- AH	z 2	2	1	-	н	-CH2-N-C-CH
1437	н скан ³⁵ о-О-ан	<u>√</u> 2	2	1	-	H	-CH2-N-CH
1438	ңсаң С-аң	r 2	2	1	-	н	-CH ₂ -N-C
1439	(ньсьсн-С)-сн	æ 2	2	1	-	н	-CH ₂ -N-C-Shr
1440	HachPo-()-of	z- 2	2	1	-	н	-CH ₂ -N-C
1441	H ₃ CS-CH ₂	- 2	2	1	-	н	-CH2-H-C

Table 1.132

Compd.	R ² (CH ₂);-	. k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1442	н _е ссн _е —С—сн _е -	2	2	1	-	н	-CH2-HC-CH2CH9
1443	(HbC)2CH	2	2	1	-	н	-CHE-NO-CHE-CHICO-13/2
1444	н²сісн²ўо-⟨С}−сн³-	2	2	1		н	-crf-No-
1445	ңсанұ-С-снұ-	2	2	1	-	н	-CHT-NCCH2CH
1446	(нисьсн-С)-анг	2	· 2	1		н	-cht-Hc-Cht-Cht-Cht-hc-Cht-Hc-Cht-Cht-Cht-Cht-Cht-Cht-Cht-Cht-Cht-Cht
1447	HCCHPTO-CO-CH-	2	2	1	-	. н	-art-lice
1448	Hycs-Cy-CH ₂ -	2	2	1	-	H .	-artho-sar
1449	ң оснұ-Су-снұ-	2	2	1	. -	н	-CH ₂ -N-C-CF ₃
1450	(HGC)≥CH-CH2-	2	2	1,	-	н	-CH2-N-CCF3
1451	(i-r²co:r}*u()-ci-r̂-	2	2	1	-	н	-CH2-N-C-CF3
1452	HO CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃

Tabl 1.133

·ub·	1.100						
Compd No.	· R ² (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
1453	HOLCH YO - OI'-	2	2	. 1	-	н	-CH2-N-C
1454	нсандо-О-анг	2	2	1	-	н	-CH ₂ -N-C
1455	H0-CH ₂ -	2	2	1	-	н	-CH2-NC-CF3
1456	CH2-CH2-	2	2	1	-	н	-CH ₂ -N-C
1457	(CH ₃) ₂ N	2 .	2	1	-	н	-CH ₂ -N-O-CH
1458	HO-CHZ-	2	2	1	-	н	CH ₂ -N-C-
1459	(HCFH-C)-OHE	2	2	1	•	H	-CH2-N-C-SBr
1460	H0-CH2-	2	2	1	-	н .	-CH ₂ -N-C-SBr
1461	H0-CH2-	2	2	1	-	H	-crt-Hg-Cart
1462	H0-CH2-CH2-	2	2	1	-	н	-CH2-NO-CF3
1463	a-()-al-	2	1	1	•	н	-сн ₂₋ Но-Сед
							<u> </u>

[0234]

Table 1.134

						•		
_	Compd. No.	R ¹ (CH ₂)-	k	; m	n	chirality	R³	-(CH ₂) _P + (CH ₂) _q -G-R ⁶
-	1464	CI—CH2-	2	1	1	-	н	-CH ₂ -N-C-C-C-C-S
	1465	CH-CH ₂	2	1	1	-	н	-CH ₂ -N-O-CF ₃
	1466	CH-CH2-	2	1	1	-	н	-CH₂-N-C-
-	1467	с⊢(_}-сн₂-	2	1	1	· 4 · ·	н	-CH2-HC-C
	1468	a-{}-a+z-	2	1	-1	-	H	-CH ₂ -N-C-\(\sigma\).
1	469 ·	с⊢О-сн₂-	2	1	1	-	H _.	-CH ₂ -N-O
1	<u>4</u> 70	сн-О-сн-	2	1	1	•	н	-CHZ-N-Q-CI
		сн-{_}сн₂-				-	н	-CH ₂ -N-C
		CH2-CH2-					н	-CH2-N-C-CF3
1	473	Br S-CH-	1	2	0	R	н	-CH2-N-C-CF3
1	474	CIP CIP	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
								

[0235]

Tabl 1.135

Tabi	1.133							
Compd No.	· R ¹	-(CH ₂);	k	m	n	chirality	R³	—(СН ₂) _р Н ⁴ (СН ₂) _q G−R ⁶
1475	0	CH ₂	1	2	0	R	н	-CH ₂ -N-C
1476	Br	S-CH2-	1	2	0	R	н	-CH2-N-C-CF3
1477	B	СУ-сн ₂ -	1	2	0	R	H .	-CH ₂ -N-C
1478	в	D-ane	1	2	0	R	H .	-CH ₂ -N-C
1479	H₃O- √	CH ₃	1	2	0	R :	н	-CH2-N-C
1480	. H •o- √	CH ²	1	2	0	R +	н	-OHE-HO-CE3
1481 -	њо-{ њо	CH ²	1	2	0	R	Ĥ	-CH2-HC-CF3
1482	Br	S-CH ₂ -	1	2 .	0	R	н.	-CHz-II C-CF3
1483	H ₃ C	ў -сн _ў -	1	2	0	R	н	-CH2-H-C-CF3
1484	0	D-ar-	1	2	0	R	н	-CH2-NO-STF
1485	њо-{		1	2	0	R	н	-CH2-NO-STF

[0236]

Tabl 1.136

r ani	1.130						
Compd.	R1 (CH2)	k	m	ก	chirality	R³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} + G-R^6$
1486	Н ₃ 0-СН ₂ -	. 1	2	0	R	н	-CH ² -N-C-CH ³
1487	н,с-С-сн-	1	2	o	R	н	-CH ₂ -N-C-CI
1488	H ₃ O-CH ₂ -	.1	2	0	R	н	-сн⁵-й-о-Д Ь сн³
1489	н₃с-{Сн₂-	1	2	.0	R	н	-cH ₂ -N-C
1490	н³С-Сн²-	1	2	0	R	н	-CH2-N-C-CH3
1491	H ₂ O-CH ₂ -	1	2	O	R	н	-сн ₂ -й-с-О Ь с-О Мн ³
1492	HPO-CHF-	1	2	0	R	Н	-CH ₂ -N-C-\ N-\ NO ₂
1493	CH ₃	1	2	0	[°] R	н	محالو حي
	CH ³					Н	-CH2-NO-H
1495	CH ₃	1	2	0	R	н	-CH ₂ -N-CN-CN-C-H ₃ -CH ₂ -N-CN-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N
.1,496	CH ₃ CH ₂ CH ₂ - CH ₃	1	2	0	R	н	-CH2-N-CN-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N
				-			

[0237]

Table 1.137

Compd. No.	R ² (CH ₂) _j					R³	–(CH ₂) p CH₂)q G−R⁶
1497	CH ₃	1	2	0	R	н	-CH ₂ -N-O-CH ₃ CH ₃ CH ₃
1498	CH ₃					н	-CH ₂ -N-C
1499	CH2-CH2-	1	2	.0	. R	н	-c+ H o<
1500	CH ²	1	2	0	R .	н	-cH₂-N-C CH₃
1501	CH ₃	1	2	0	R	H .	-ch*-Ho
1502	CH ₃	1	ź,	Ò	R	н	-CH2-N-O-CF3
1503	CH ³	. 1	2	0	R	н	-CH2-N-C-CHF2
1504	H ₂ N-CH ₂ -	1	2	0	R	н	-CH2-N-C-CF3
1505	O-año -ar-	1	2	0	R	H	-CH2-N-C-CF3
1506	а-О-сн₂-	2	1	1	-	н	-CH ₂ -N-C
1507	сі—С-снұ-	2	1	1	-	н	-CH ₂ -N-C

[0238]

Table 1.138

Compd.	R ² (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1508	сн-Су-сн-	2	1	1	-	н	-CH ₂ -N-C
1509	a-D-av-	. 2	1	1	-	н	-012-H 0-0
1510	CI—CH ₂ -	2	. 1	1	-	н	-CH2-NO
1511	CI————————————————————————————————————	2	. 1	1	-	н	-CH₂-N-C-STBr
1512	с⊢О-сн₂-	2	1	1	-	н	-CH ₂ -N-C
1513	CH-CH2-	2	1	1	-	н	-CH2-N-C-O-S-C-O
1514	tericarin⁵w-{_}-ari-	2	2	1	- ·	н	-CH2-H-C-CI
1515	HO CH2-	··2	2	1	· -	H	-CH ₂ -N-C
	(Hircarithin—C)—chir-:		2		-	Н	-CH2-H-C
1517	HQ.	2	2	1	-	н	-CH ₂ -H-C
1518	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
							•

[0239]

Table 1.139

Compd.	R ¹ (CH ₂)	k	រា	n	chirality	R³	-(CH ₂) _P (CH ₂) _q G-R ⁶
1519	HQ -CH2-	2	2	1	-	н	-cH-Hc-CH-OH
1520	Br—CH _Z -	1	2	0	R ·	н	-CH ₂ -N-CBr
	H3CO-Q-CH2-				R	Н	-CH2-N-C-
1522	CH2-CH2	1	2	.0	R	н	-CH2-HC-C
	H³CO-{				R ·	H .	-CH2-HC-CBr
1524	HO-CH2-	1	· 2	0	R	H	-CH ₂ -N-C-S ^B r
1525	Br-CHg-	1	2	0	R	н	CH2-N-C
1526	H ₉ CO	1	2	0	R	н	-CH2-NO-COCF3
	5 CH	•				н	-CH ₂ -NO-OCF ₃
1528	H ₃ CO CH ₂ -	1	2	O	R	н	-CH2-HO-COCF3
1529	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -NO-CF ₃

Table 1.140

labic	40						
Compd.	R ² (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p 15 (CH ₂) _q G-R ⁶
1530	Br—CH ₂ -	1	2	0	R	н	-сн₂-н°с-(СF ₃
1531	H3CO-CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1532	СН	1	2	0	R	н	-сн ₂ -N-с-С _{F3}
1533	H3COCH2-	1	2	0	R	н	-CH₂-N-C CF₃
1534	H0-CH2-	1	2	0	R	н	-CH2-N-C-CF3
1535	Br-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1536	H ₃ CO	1	2	0	Ŗ	н	-CH ₂ -N-C-F ₃
1537	CH2-	1	2	0	R	н .	-CH2-N-C
1538	H ² CO CH ² -	1	2	0	R .	н	-CH2-N-C
1539	HO-CH ₂ -	1	2	0	R	н	-CH2-N-C-CF3
1540	Br-CH2-	1	2	0	R	н	-CHZ-NC-CE3

[0241]

Table 1.141

							·
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	R ⁴ −(CH ₂) _p † (CH ₂) _q G−R ⁶
1541	H ₃ 00-CH ₂	- 1	2	0	R	Н	-CH2-NC-CF3
1542	CH ₂	1	.2	O	R	н	-CH2-HC-CF3
	H ₃ CO C C C C C C C C C C C C C C C C C C					• н	-CH2-HC-CF3
1544	HO-CH _Z	1	2	0	R .	н	-CH ₂ -N-C
1545	CL S-CH-	1	2	0	R	Н.	-CH2-N-CCF3
1546	H ₃ CO F CH ₂ -	1	2	0	R	н	-CH ² -N-C-C _C -C _C -3
1547	H ₃ CO	. 1	2	0	R	H	-cir-Ho-Ceta
1548	H3O-CH2-	1	2	0	R	н	-CH2-HO-CH3-CH3
1549	H ² O-{\infty}-CH ₂ -	1	2	0	R	н	-CH2-N-C
1550	H ² O-CH ²	1	2	0	R ,	н	-or-lig-Charge Hamp-ont
1551	H ₃ O-CH ₂ -	1	2	0	R	н	-or-He Hron

[0242]

Table 1.142

Compd. No.	R ² (CH ₂);	k ——	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
1552	H3C-{	1	2	o	R	H	-ch2-N-C-
1553	H₃C- ()-CH ₂ -	1	2	0	R	н	-or-Ho-C;
15 5 4	H ₃ C-CH ₂ -	1	2	O	R	н	· -CH2-N-C
1555	H3O-CH2-	1	2	0	R .	н	-CH ² -N-C-N O CH ³ CH ³
1556	н ₃ с-С>-сн ₂ -	1 .	2	0	R	н	-CH2-N-C-CH3
1557	H3O-CH2-	1	2	0	R	н	-CH ₂ -N-C-N H ₃ C
1558	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-N-CH3
1559	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1560	H ₃ C	1	2	0	R	H .	-CH2-N-C-NN
1561	н₃с-{С}-сн₂-	1	2	0	R	Н	-CH2-N-C-CH3 -CH3-CH3 -CH3-CH3
1562	H ₃ C	1	2	0	R	н	-CH ₂ -N-C

[0243]

Table 1.143

						•	
Compd. No.	R ¹ (CH ₂)	k	m	ก	chirality	Ft³	-(CH ₂) , CH₂), G-R⁶
1563	н₃с-{}-сн₂-	1	2	0	Ħ	н	-01-40-
1564	H3C-CH2-	1	2	0	R	н	-or-Hc-
1565	CH ² -CH ² -	1	2	0	R	н	-ar- No-Co
1566	CH ² CH ²	1	2	0	R	н .	-CH2-NO-CH3
1567	CH ² CH ²				R	н	
1568	cht Cht					H.	-ar-Ho
1569	CHP CHP	1	2	0	R	. Н	
1570	ньсэ-Сон-	2	2	1	-	H	-CH2-H2-C1
1571	нуса-Су-сил		2	1	-	H	-ar-Ho C
1572	Cho-Cy-one	2	·2	1	-	н	-CH ₂ -H ₂ -CF ₃
1573	noo O llg O o n≥	~ 2	2	1	-	н	-CH4-H-O-C-F3

[0244]

Table 1.144

. 45.0							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
1574	40€ Ho-Ch-a4-	2	2	1	-	н	-CH2-N-C(CF3 .
1575	c-〇-#ç-〇-ar-	2	2	1	-	. н	-СH ₂ -N-С-СF ₃
1576	~~~~	2	. 2	1	-	н	-CH2-N-C-CF3
1577	HOCCHÀT-HC	2	2	1	-	н	-CH ₂ -N-C-CF ₃
	H'c C-cH'				•	н	-CH2-N-C-CF3
1579		2	2	1	-	н	-CH2-H-C-CF3
1580	()-#c-{\}-crt-	2	- 2	1	-	H .	-сн ₂ - N-сС _{F3}
1581	CH-CH2-	2	2	1	-	н	-ar-Ho-2-
	CH-CH2-				-	H .	HC-F-HC-H-CH,
1583	CI-CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1584	a-Carr	1	2	0	R	н	-CH ₂ -N-C

Tabl 1.145

Idbi	40						
Compd. No.	R ¹ (CH ₂)	k	m	п	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1585·	CHCH_2-	1	2	0	R	H	-CH2-N-O-SP
1586	с⊢—Сн₂-	1	2	0	R	н	-cH ₂ -H-C-N
1587	CH-CH2-	1	2	0	R	н	-CH3-N-C-C
1588	сн-С-сн-	1	2	0	R	H .·	-cH ₂ -N-C-H ₃
1589	H ² O-{	1	2	0	R .	.	-CH ₂ -N-C
1590	H ₃ O	1	2	0	R	н.	-CH ₂ -N-C
1591	H-0-CH2-	1	2	0 .	R	H	-CH2-NO-CN
1592	HO-CH2-CH2-	1	2	0	R	н	-CH2-H 0-N
	H3O-CH2-					H	-cH2-H o-C
1594	CH3 CH3	1	2	0	R	н .	-CH ₂ -N-O-CF ₃ -CH ₂ -N-O-CF ₃ -CH ₂ -N-O-CF ₃
1595	CH ₃	1	2	O	R	н	-CH2-NOCF3

[0246]

Table 1.146

						R³	—(CH ₂) , H ⁴ (CH ₂), G−R ⁶
	CH ₃					н	-CH ₂ -N-C-S
	CH ³					н .	-cH2-V-C-
1598	CH ₃	1	2	0	R	н	-CH ² -H-C-\
1599	CH3	1	2	0	R	н .	-CH ₂ -N-C-CH ₃
1600	CI-CH ₂	2	2 .	1	- -	н	-CH ₂ -N-C
1601	CH-CH2-	2	2	.1	-	H	-CH ₂ -N-O-CF ₃
1602	CI—CH _Z —	2	2	1	-	H	-CH2-N-O-CN
1603·	CI-CH2-	2	2	1	-	н	-CH2-H-O-N-CI
1604	с⊢СН₂-					н	-CH2-H-Q-
1605	CH-CH2-	2	2	1	-	н	-CH ₂ -N-C
1606	CI-CH2-	1	2	0	R	н	-CH2-N-C-SCF3
	•						

[0247]

Tabl 1.147

Compd.	R ² (CH ₂) _j	k	m	л	chirality	₽³	-(CH ₂) , С (CH ₂) - G-R ⁶
1607	H ₂ O(CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1608	CH ₃	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1609	CH-CH2-	2	2	1	-	Н	-CH2-N-CSCF3
1610	Q#;\O~	2	2	1	-	н	-CH2-N-C-CF3
1611		2	2	1	-	н	-CH2-N-C-CF3
1612	ircoloit Ho-O-or	. 2	2	1	-	· н	-CH ₂ -N-C-CF ₃
-1613	~∙Q [‡] çΩ ⊶	2	2	1	-	н	-CH2-NO-CF3
1614	F3C9-CH2-	1	2	0	R	H	-CH2-N-C-CF3
1615	F ₂ C9-CH ₂ -CH ₂ -	2	2	1	-	н	-CH2-N-C-CL3
1616	F ₃ CS-O-CH ₂ -	2	2	1	-	· н	-CH ₂ -N-C-
1617	F ₂ CS-C)-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-I H ₂ N-Br -CH ₂ -N-C-I H ₃ N-A

Table 1.148

I abic	1.140						
Compd.	R ² (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1618	.HQ H ₃ CO—CH ₂ -	1	2	o	R	н	-CH2-N-C-S
1619	HQ CH ₂ -	1	2	Ó	R	н ,	-CH2-N-C
1620	H3CO-CH2-	1	2	0	R	.н	-CH2-H-C-CF3
1621	H ₃ CO—CH ₂	1	2	0	R	н	-CH ₂ -N-C
1622	H ² CO−CH ² −	1	2	o	R	Н	-CH ₂ -N-C
1623	но-С-сну-	1	2	0	R	н	-CH2-NO-Br
1624	HO-{}-CH ₂ -	1	2	O	R	н	-CH2-NC-C
1625	HO	1	2	O	R	н .	-CH2-NO-CF3
	HO-CH ₂ -					Н	-CH ₂ -N-C-F ₃
1627	но-СН ₂ -	1	2	O	R	н	-CH ₂ -N-CF
1628	н,сэ-СТ-снұ-	1	2	0	R	н	-CH2-N-C-F3

Table 1.149

Table	40						
Compd.	R ² (CH ₂)	k	m	n	chirality	Ft3	-(CH ₂) _{р 15} (CH ₂) _q G-R ⁶
1629	н _ғ ся-О-сн _ғ -	1	2	0	R	н	CH2-N-C
1630	H ² C CH ² -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
. 163 1	HENCHY—CHY-	1	2	o	R ·	н	-CH2-NC-CF3
1632	CF ₃ -CH ₂ -	1	2	0	R	н	-CH2-HO-CF3
1633	H ₂ CS N CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C-CF ₃
1634 .	(н,с)₂сн О}-сн.г	1	,2	0	R	н	-chf-Ho-Ct-3
1635	H ₀ O	.1	2	0	R	н	-CH2-HC-C(CH3)3
	H ² C						H₃C CH₃ P H₃C -CH₂-N-C
1637	CHP-CHP-	1	2	0	R	- н	-сн ₂ -й-с-(сн ₂)4сн ₃
1638	CH ³ CH ² - CH ² -	1	2	0	R	н	-ariz-11,0-(CH2)3CH9
1639	CH ² -CH ² -	1	2	0	R	н	-CH-Ho-O-CH2)3CH

[0250]

Table 1.150

					•	•	
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
	CH ²					н	-c+2-Hc-(CH3)2cH3
	CH³- CH³-					н	-CH ₂ -N-C
	CH ₃					н	-CH ₂ -N-C-N
1643	CH3	1	2	0	R	H	-CH ₂ -N-C-
1644	CH ₃	1	2	0	R.	н	-ch²-lhg-Q-g-Q
1645	CH ² -CH ² -	1	2	Ο.	R	н	-сн _{г-н} с-С _{F3}
1646	Br O-CH2-	· 1	. 2	0	R	н	-сн ₂ -№с-С _{F3}
1647	Hickorinaari-	2	2	1	-	H .	-сн ₂ -ү-с
1648	Hickariya———ariz-	1	. 2	0	R	н	-CH ₂ -N-O-CF ₃
1649	H°C(CH)S————————————————————————————————————	2	2	1	-	н .	-CH ₂ -N-C-CF ₃
1650	Hickari) i—C)—ari~	1	2	0	R	н	-сн ₂ -м-с-С _{Б3}
•	<u></u> _						

Table 1.151

Compd No.	R ² (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1651	HC(CH)1CH2-	2	2	1	-	н	-ch-ho-ch-chpch
1 6 52	Hclarit——ar-	2	2	1	-	н	-CH ₂ -N-C-SBr
1653	Hc(at)=	2	2	1	-	н	-art-Hg-
1654	Helaf)*	2	2	1	-	Н	-CH2-NCBr
1655	H-clafi) 2—CJ-caf2-	2	2	1	-	н	-ar-Ho-C
1656	H'c(CH)²-(C)-CH²-	2	2	1	-	н -	-CH ₂ -N-C
1657	Hearth F—C)—cHF-	2	2	1	•	н	-cirtic C
1658	H'ClarP³	2	2	1	<u>.</u>	н	-CH ₂ -N-C
1659	CH-CHE-	2	2	1	-	н	-CH₂-N-C- H₂N CI
1660	Br-CH ₂ -	1	2 ·	0	R	н	-CH2-N-C-CF3
1661	Br-CH ₂ -	1	2	0	R	н	-CH ₂ -N-O-CF ₃ -CH ₂ -N-O-CF ₃ -CH ₂ -N-O-CF ₃
							·

[0252]

Tabl 1.152

Compd No.	R ² (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1662	8r-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1663	Br-CH2-	1	2	0	R ·	H·	CH ₂ -N-C-I
1664	н ₃ сэ-Ст ₂ -сн ₂ -	2	2	1	-	н	-CH ₂ -N-CF ₃ H H ₂ N
1665	нусэ-О-снұ-	2	2	1	-	н	-CH ₂ -N-C
1 666	H ₃ CS-CH ₂ -	2	2	1	-	H s	-CH ₂ -N-C
1 667	н,сан,—С—сн,-	.	2	1	· •	Н	-CH ₂ -N-C-OBr
1668	н°ссн²-О−сін²-	2	2	1	-	H .	-CH ₂ -N-C F
1669	насана-О-сіна-	2	2	1	-	н	-CH ₂ -N-C
1670	ньсанг-О-анг-	2	2	1	-	н	-CH ₂ -N-C-
1671			2	1	-	н	-CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃
1672	ньосн _я —Сон _я -	2	. 2	1	-	H	-CH2-HC-CF3

[0253]

Table 1.153

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	—(CH ₂) ₀ CH₂)₀ G−R⁶
1673	н _а ссн _а —Сн _а -	2	2	1	-	н	-CH2-N-C-CI
1674	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-OT _{Br}
1675	F-C-CH2-	2	2	1	•	н	-CH ₂ -N-C-F-F
1676	F	2	2	-1	-	н .	-CH ₂ -N-C
1677	E-CH ² -	2	2	1	-	н	-CH ₂ -NO-SBr
1678	F-CH ₂ -	2	2	1 .		н	-CH₂-N-C
1679	F-CH-CH-	2	2	1	-	Н	-CH₂-NC-CI H₂N .
1680	F-CH2-	2	2	1	-	Ĥ	-CH2-N-C-CP3
1681	F	2	2		-	н	-CH ₂ -N-C
1682	F-CH-CH-	2	2	. 1	-	н	-CH2-N-C-CI
1683	○ # ₈ •○ •••	2	2	1	-	н	-CH2-N-O-Br

[0254]

Table 1.154

1 abic							<u> </u>
Compd.	R ¹ -(CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
1684	O #g-O-or-	2	2	1	-	н	-CH ₂ -N-C
1685	○ -# ₈ - ○ -o-*-	2	. 2	1	-	н	-cH2-N-C-F
	O-#g-O-art			•	-	н	-CH ₂ -N-CBr
1687	O-Ho-O-ort-	. 2	2	1	-	н -	-CH ₂ -N-C
1688	O-Ho-O-oriz-	2	2	1		н	-CH2-H2H2N
1689	O-Hg-O-ar-	2	2	1	. -	н .	-CH ₂ -N-C
1690	O-No-O-ar-	2	2	1		н	-CH ₂ -N-C-F ₃
1691	O-Ho-O-art	2	2	1	· _	H	-CH2-N-C-Br
1692	H ₂ C-CH ₂ -	. 1	2	0	R	н	-CH2-N-C-OBr
1693	H ₃ O-CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F-F
1694	H ₂ O-CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F H ₂ N

[0255]

Table 1.155

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1695	H3C-CH2-	1	2	0	R	н	-CH ₂ -N-C
1696	H ³ O-CH ² -	1	2	0	R	н	-CH ₂ -N-C
1697	H³C-CH²-	1	2	0	R .	. н	-CH ₂ -N-C-CI
1698	H3C-CH2-	1	2	0	R	H	-CH2-N-O-CF3
1699	н _г о-Сн-сн _г -	1	2	.	R	. H	-CH2-NC-CF3
1700	H2C-CH2-CH2-	1	2	0	R.	н	-ch-Hc-Ca
1701 ·	HECTOH CHE	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1702	H³CO-{	1	2	0	R	н	-CH ₂ -N-C
1703	CH2-CH2-	1	2	0	R	н	-CH ₂ -NO-3CF ₃
1704	HO-CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1705	HO-CH _Z -CH _Z -	1	2	0	R	н	-CH2-N-C-GF3 -CH2-N-C-GF3 -CH2-N-C-GF3

[0256]

Table 1.156

Table 1	1.156						
Compd.	R ¹ (CH ₂)	k	m	n ·	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1706	CH2-	1	.2	0	R	н	-CH ₂ -N-C- H ₂ N
1707	H ₃ CS-CH ₂ -	1	2	O	R	H·	-CH ₂ -N-C-CF ₃
1708	ньсан _я —С)—сн _я -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1709	64cFcH-CH-CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1710	H ₃ C Br-CH ₂ -CH ₂ -	1	2	O	R	н	-CH2-HC-CF3
1711	CH ₂	1	2	0	R	н	CHZ-N-O-CE3
1712	Ho-CH ₂ O	1	2	0	R	. н	-CH ₂ -N-C-CF ₃
1713	H ₃ C HO—CH ₂ —	1	2	0	R	Н,	-CH ₂ -N-C CF₃
	HO CH ₂ -					н	-CH ₂ -N-C-CF ₃
1715	·ND-CH2-	1	2	0	R	н	-CH2-H-CCL3
1716	CH ₂ -	1	2	0	R	н .	-CH2-HC-CF3
			<u> </u>				

Tabl 1.157

Tabi	1.107						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1717	H ₂ CO-N-CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -NC-CF ₃
-1718	C Str.	1	2	0	R	н	-CH ² -HC-CE ²
	EN CH					н	-CH2-N-C-CF3
1720	Ho-N-air-	1	.2	0	R	н	-CH2-H-O-CF3
1721	н _е ссн _е —Су-сн _е -	. 1	2	o	R	Н	-CH2-N-CF3
1722	6 Cart	1	2	0	. R	Н -	-CH_N-O-CF3
1723	CH ₂ -	1	2	0.	R	н	-CH2-H-O-CF3
	H ₃ O-CH ₂ -CH ₂ -					н	-CH ₂ -N-C-CF ₃
1725	H ₃ C CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1726	ньосня—О—сня	1	2	0	R	н	-CH2-N-C-F3
1727	COL-CH ^E	1	2	0	R	н	-CH2-NO-CF3

Table 1.158

Compo	I. R ¹ (CH ₂);	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1728	CH ₂ -	1	2	O	R	н	-CH₂-N-CF
1729	n ₃ 0					н	-CH2-N-C
1730	"N ar-	1	2	o	R	H	-CH ₂ -N-C-CF ₃
1731	" OF OF	1	2	0	R	H	-CH2-H-C-CF3
1732	носну-О-сну-	1	2	0	R	н	-CHI_NCCF3
1733	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1734	H ₂ CS-{\bigce}-CH ₂ -	1.	2	0.	R	н	-CH ₂ -N-C-CF ₃
1735	ңсай-О-аң-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	CH2-					Н	-CH ₂ -H C-CF ₃
1737	H ₂ C-{-}CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-F
1738	H ₃ C-CH ₂ -CH ₂ -	1	2 ·	0	R	н [*]	-CH2-HC-FF

Table 1.159

Compd No.	I. R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p CH ₂) _q G-R ⁶
1739	(нысъсн-О ан₂-	1	2	0	R	н	-CH ₂ -N-CF
1740	CH2-	1	2	0	R	н	-CH2-N-CBr
1741	н _э сѕСн ₂ -	1	2	o	R	н	-CH2-HC-Q
1742	н,сан,	1	2	0	R	н	-CH2-N-CBr
1743	5-CH2-	1	2	0	R	н	-CH ₂ -NO-SBr
	H ₃ C-CH ₂ -CH ₂ -				R	н	-CH2-H-O-CHBr
1745	H³C CH²-	1	2	0	R	H	-CH2-N-C-SBr
1746	(HC)aCH-CHE.	1	2	0	R	Н	-CH ₂ -N-C-
	CH ²					н	-CH ₂ -N-C
1748	ңсаң-О-аң-	1	2	0	R	н	-CH ₂ -N-C
1749	HPO-CHF- CHP.	1	2	0	R	н	-CH ₂ -N-C

Tabl 1.160

Comp No.	R1 (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1750	CH ₂ -	1	2	0	R	н	-CH2-NC-CF3
1751	н³са-{∑−сн⁵-	1	2	O	·R	н	-CH2-NC-CCF3
1752	ң сснұ — Снұ-	. 1	2	o	R.	н	-CH2-N-C-COCF3
1753	O-CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	H ₃ C-CH ₂ -					н	-CH ₂ -N-C-C-C-3
1755	H ₃ C CH ₃	1	2	0	R.	н	-CH ₂ -N-C-CF ₃
1756	(HC)2CH-C)-CH2-	í .	2	0	R	H	-CH ₂ -N-C-CF ₃
1757	Br Br CH2-	1	2	0	R .	н.	-CH2-N-C
1758	H ₃ CO-Br CH ₂ -	.1	2	.0	R	н	-CH2-HC-CF3
1759	H3O-CH2-	1	2	0	R	н	-01-High
1760	H ₃ C-()-CH ₂ -	1	2	O .	R	н	-CH2-N-C
		-					

Table 1.161

Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1761	H₃C-CH₂-	1	2	0	R	н	-cH-Hc-CH-CI
1762	CH ²	1	2	0	R	н	-04-HC-C1
1.763	C H ₂ -	2	2	0	-	н	-cH2-MC-C
1764	CH ₂ -	2	2	o	-	н	-cheche Ho-Ocheche
1765	CH ₂ -	2	2	0	. -	н	(S) P OCH ₂ CH ₃ -CH-N-O-CH ₂ CH(CH ₃)2
1766	CH ₂	2.	. 2	0	-	н	CH, CH(CH3)2
1767	a-Q-ari-	1	3	1	-	H -	-CH2-HC-CH2CH3
1768	CI-CI-CI-L	1	3	1	-	н	-снан-й-с-
1769	CH3 CH3	1	2	0	R	н	-arrice -ook
1770	CH ₃	1	2	0	R		
1771	OH2 OH3 OH3 OH3	1	2	0	R	н	OPEROCHAGE OPEROC

[0262]

Tabl 1.162

							•
Compd No.	· R ² (CH ₂)	k	m	ภ	chirality	R³	$-(CH_2)_{P}^{R^4}$ $+(CH_2)_{q}^{-}G-R^6$
1772	CH ₃ CH ₃ CH ₃		2	0	R	н	He He He
1773	CH ₃	1	2	0	R	н	H3C
1774	CH ³	1	2	0	R	H .	-CH2-HC-QCH2
1775	H0- C H ₂ - H ₃ CC	1	2	0	R	н	-CH ₂ -N-C
1776	H ₃ CO-CH _Z -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1777	a———aн₂-	2	2 :	1	-	н	-CH2-N-C
1778	H6C	2	2	1	-	. н	-CH ₂ -N-C
1779	- CH2-	2	2	1	-	H .	-CH ₂ -N-C
1780	Br-CH2-	2	2	1	-	н	-CH ₂ -H-C
1781	HO	2	2	1	-	H	-CH ₂ -N-C
1782	H ₂ O=CH-()-CH ₂ -	2	2	1	<u>-</u>	н	-CH ₂ -N-C

[0263]

Table 1.163

1able	1.105						
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	. R ³	—(CH _{2)p} + (CH _{2)q} G−R ⁶
1783	NC-C-CH2-	2	2	1	-	н	-CH ₂ -N-C
1784	OH_OH_	2	2	1	-	. н	-CH ₂ -N-C
1785	CH1/CH1)1(C)-CH1-	2	2	1	-	.н	-CH ₂ -N-C
1786	CH2-CH2-	2	2	1	-	H	-CH ₂ -N-O
1787	O-14(C147)4—(O-14	1	2	0	R	н	-CH2-N-C
1788	H3C-C CH3	2	2	1	-	H	-CH2-N-O-CF3
1789	H300	2	2	1	-	н	-CH ₂ -N-O-CF ₃
1790	α ΟΗ ₂	1	2	0	\$	н	-CH2-N-C
1791	•					н	-CH ₂ -N-C
1792	H3C-CH2-	2	2	1	-	н	-CH ₂ -N-C
1793	a-CoH₂-	2	2	1	-	н	-CH ₂ -N-C
				-			

[0264]

Table 1.164

Compd.	R ² (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1794	H3C{	2	2	1	-	н	-CH ₂ -N-C
1795	CH2-CH2-	2	2	1	-	н	-CH ₂ -N-C
1796	Br-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1797	. HO-{	2	2	1	-	Н	-CH ₂ -N-C-F
1798	н₃∞-{_}-сн₂-	2	2	1	-	н	-CH ₂ -N-C-F-F
17 9 9	ньо-си-О-си-	2	2	1	-	н	-CH ₂ -N-C
1800	NO-CH2-	2	2	1	-	н	-CH _Z -N-C
1801	Ō-αι _z -	2	2	1	-	н	-CH ₂ -N-O-F H ₂ N
1802	HO-CH ₂ -CH ₂ -			0	R	н	-CH ₂ -N-C-F ₃
1803	H0-CH2-	1	2	0	R	н	-CH ₂ -N-CF ₃
1804	HPC CHPIT CO-CH-	2	2	1	-	H	-CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₄ H ₂ N

[0265]

Tabl 1.165

							•
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	H3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1805	Br	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1806	H ₃ ∞-(∑;-CH ₂ -	1	2	0	Ħ	н	-CH ₂ -N-C-SCF ₃
1807	H3-CO H0-CH2-CH2-	1	2	O	R	н	-CH ₂ -N-C-SCF ₃
1808	H0 -CH2-	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1809	HO-CH ₂ -:	1	2	0	R	н	-CH ₂ -N-C-
1810	CHE	1	2	0	R	H =	-CH₂-N-C-
1811	CH ₂ -	. 1	2	0	R	н	-CH2-N-C-CSCF3
1812	н⁴са-{ан⁵-	1	2	0	R R	H	-CH2-N-C-SCF3
1813	нуссия—О—сия—	1	2	0	R	н	-CH2-N-C-SCF3
1814	CO-CH ² -	1	2	0	R	н	-CH ₂ -N-CSCF ₃
1815	CH3-CH2-CH2-	1	2	0	R	н	-CH2-N°C-CSCF3

[0266]

Table 1.166

Compd No.	· R ² (CH ₂)j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
1816	кандусн-О-сну-	1	2	0	R	н.	-CH ₂ -N-C
1817	(CH3/2) C{	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1818	Br-CHg-	1	2	0	R	н	-CH ₂ -N-C-CHF ₂
1819	н₃∞-{}-ан₂-	1	2	0	R	Н	-CH ₂ -N-C-CHF ₂
1820	H0-C-CH2-	1	2	0	R	н	-CH ₂ -N-C-CHF ₂
1821	H ₀ CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CCHF ₂
1822	HO-{-CH ₂ -	1	2	o	R	н	-CH ₂ -N-C-CHF ₂
1823	€	1	2	·o	R	н	-CH ₂ -N-C-CHF ₂
1824	CH2-	1	2	0	R	н	-CH ₂ -N-C-CHF ₂
1825	H³C8-{	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1826	нассна-С-сна-	1	2	0	R	Н	-CH ₂ -N-C-CHF ₂

[0267]

Tabl 1.167

Compd. No.	R ¹ (CH ₂)	k	m	'n	chirality	R³	-(CH ₂) _р (CH ₂) _q G-R ⁶
1827	OHE CHE	1	2	0	R	н	-CH ₂ -N-C-C
1828	H ³ CCH ² -CH ³	1	2	0	R	H	-CH ₂ -N-C-CHF ₂
1829	H ₃ C CH ₂ -CH ₂ -	1	2	,0	R	н'	-CH ₂ -N-C-CHF ₂
1830	(сн ^{аў} сн-О-сн ^х -	1	2	0	R	н	-CH2-N-O-CHF2
1831 ·	Br-CH2-11	1	2	0	R	н	-CH2-H-Q-(CH3)3
1832	H3CO	1	2 *	0	R	H *.	-CH2-H-CCH9)
1833	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1834	H ₃ co-CH ₂ -CH ₂ -	1	2	0	R	н	-CH2-N-O-C(CH3)3
1835	H0-Q-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-(CH ₃) ₃
1836	6-CHE-CHE	1	2	0	R	н	-CH2-N-C-(CH3)3
1837	OH2-	1	2	0	R	н	-CH2-H-O-(CH3)3

[0268]

Table 1.168

Compd.	R ² (CH ₂)	k	m	n	chirality	R³	—(CH ₂) p C CH ₂) q G R⁶
1838	H ₂ CS-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1839	н,сан,-О-сн,-	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1840	COH-CHI	1	2	o	R	н	-CH2-N-C-(CH3)3
1841	H₃C-(CH₃	1	2	O	R	н	-CH2-NO-(CH3)3
1842	H ₃ C CH ₂ -	1	2	0	R	н	-CH2-N-C-()-(CH3)3
1843	(сн.усн-С)-сн	1	2	ο	R	н	-CH2-N-C-(CH3)3
1844	(CHPP C	1	2	0	R	. Н	-cH2-N-C-(CH3)3
	HCCH2-{				•	·H	-artho-Derror
1846	H ₃ C CH ₃	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1847	(CH7°C-(CH ² -	1	2	0	R-	H	-CH2-N-C-CHF2
1848	HD-CH2-	1	2	0	R	н	-CH2-HC-CHF2

[0269]

Tabl 1.169

Compd.	R ¹ (CH ₂)-	k	m	ก	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1849	-CH ₂ -	1	2	0	R	н	-ch²-lic-
1850	н,ссн_—С}-сн,-	1	2	0	R	н	-CH2-NC-C
1851	H ³ C-CH ² -CH ² -	1	2	0	R	н	-cHz-Hc-C
	CH ₂					н	-cH2-H2-C
1853	H0-CH2-CH2-	1	2	0	R	н	-CH2-NC-C
1854	CH2	1	2	0	R	н	-cH²-Hc-O
1855	ньосну—О—сну-	1	2	0	R	н	-cH ₂ -N-c-
1856	H3C-CH3-CH3	1	2	0	R	н	-cH2-HC-C
	OP-CH2			·		н	-CH2-NC-C
1858	Br-CH ₂ -	1	2	0	Ŗ	н	-CH2-N-C-Br
1859	н,∞-О-сн₂-	1	2	0	R	н .	-CH ₂ -N-C-Br -CH ₂ -N-C-Br H ₂ N H ₂ N

[0270]

Table 1.170

	•						
Compd.	R ² (CH ₂)-	k	m	n	chirality	H3	-(CH ₂) , G (CH ₂) G-R ⁶
1860	H3CQ H0—CH2-	1	2	0	R	н	-CH ₂ -N-C-SBr
1861	H ₃ CO-CH ₂ -	1	2	0	R	'n	-CH2-N-C-
1862	HO-CH ₂ -	1	2	O	R	н	-CH ₂ -N-CBr
1863	CH ₂ -	1	2	0	R	н	-CH2-H-C-Br
1864	н,сэ-Ст-	1	2	0	R	Н	-CH ₂ -N-C
186 5	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1866	H ₃ C CH ₃	.1	2	0	R	н	-CH ₂ -N-C-Sr H ₂ N
1867	(CH3)2CH	1.	2	0	·R*	н	-CH ₂ -N-C
1868	(CH7) C-CH2-	1	2	0	R	н	-CH2-N-C-Br
1869	. Br	1	2	0	R	н	-CH ₂ -N-C
1870	H200-CD-CH2-	1	2	0	R	н	-CH2-N-C

[0271]

Table 1.171

Compd.	R ² (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _р (CH ₂) _q G-R ⁶
1871	HD-CH2-	1	2	0	R	н	-CH ₂ -N-C
1872	H ₃ co-CH ₂ -	1	2	0	R	['] H	-CH ₂ -N-C
1873	· HO	1	2	0	Ŕ	н	-CH ₂ -N-C
1874	. 60 − CH²-	1	2	0	R	н	-CH2-N-C-
1875	OH-OHE	1	2	0	R	Н.	-CH ₂ -N-C
1876	H*cs-{_}-CH*-	1	2	0	R	н	-CH2-N-C
1877	ньсан-Су-сн-	1	2	0	R	н	-CH2-N-C-
1878	-CH ² -				R	H	-CH2-N-C-
	H ₃ C CH ₃					H	-CH2-N-C-
1880	(онужен-С-снг-	1	2	0	R	н ·	-CH2-N-C-
1881	(CHP) O-(C)-CH ² -	1	2	0	R	н .	-CH ₂ -N-C

Table 1.172

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
1882	Br-CH ₂ -	1	2	o	R	н	-CH ₂ -N-C
1883	н ₃ со-Ст-сн ₂ -	1	2	O	R	н	-CH ₂ -N-C
1884	HO-CH ² -	1	2	o	R	н	-CH ₂ -N-C
1885	HQ H ₃ 00-CH ₂ -	1	2	0	R ·	н	-CH ₂ -N-C
1886	HO-CH2-	1	2	o	Ŗ	H .	-CH ₂ -N-C
1887	CH2-CH2-	1	2	0	R	н	-CH ₂ -N-C
1888	CHZ	1	2	0	R	Н	-CH2-N-C
1889	н₀ся—СН₂-	1	2	0	R	н	-CH2-N-C
1890	н,ссн,—О-сн,-	1	2	0	R	, Н	-CH ₂ -N-C
1891	OCH2-	11	2	0	R	Н	CH ₂ -N-C
1892	H ₂ C	1	2	0	R	н	

[0273]

Table 1.173

							•
Compd.	R ² / (5.12)					₽³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
1893	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1894	(снэ)эсн-СУ-сну-	1	2	0	R	н	-CH ₂ -N-C
1895	(CH3)3 C-(CH2-	1	2	0	R	н	-OH2-N-C
1896	H ₃ ∞-CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1897	ньсэ-СУ-снг	1	2	0	·R	н	-CH ₂ -N-C-CF ₃
1898	нусснұ-{}-снұ-	1	2	0	R	н	-CH2-N-C-CF3
1899	(сн _{аў} сн-С)-сн _а -	1	2	0	R .	н	-CH ₂ -N-C
1900	HO-CH2-CH2-	1	2	0	R	н	-CH ₂ -N-C
1901	н _а сқсң _{уғ} —С—сң _ғ -	1	2	0	R	н	-CH ₂ -N-C
1902	o Charle	1	2	0	R	н	-CH ₂ -N-C
1903	(CH3)±CH	2	2	1	-	н	-CH ₂ -N-C

[0274]

Table 1.174

(44.0							
Compd. No.	R ² (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1904	н _ь скон _ы — Сн _я -	2	2	1	<u>-</u>	н	-CH ₂ -N-C-CF ₃
1905	G	1	2	0	R	н.	QOCF3
1906	CHZ	1	2	0	R	Н	-CH ₂ -N-C
1907	HO	1	2	0	R	н	-CH2-N-C
1908 ·	H3CO-CO-CH2F	1	2	0	R	н	-CH ₂ -N-C
1909	H ₂ C=CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1910	B-CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃ H ₂ N
1911	a—Cda+2-	2	2	1		н	-CH ₂ -N-C-CF ₃
1912	HO	•			-	н	-CH ₂ -N-C
1913	H ₃ C-CH ₃	2	2	1	-	н	-CH ₂ -N-C
1914	H3C-(-)-CH2-	2	2.	1	-	н	-CH ₂ -N-C

Table 1.175

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	Ŗ³	—(CH ₂) _p + (CH ₂) _q -G−R ⁶ R ⁵
1915	но-Су-сну-	1	2	0	R	н	-CH ₂ -N-C
1916	Ho-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
1917	HO-CH-CH-	2	2	. 1	•	H	-CH2-N-C-COCF3
1918	HO-CH2-CH2-	2	2	1	• •	Ĥ	-CH ₂ -N-C-CCF ₃
1919	C	2	2	1	-	н	-CH ₂ -N-C
1920	CI-CIH ₂ -CIH ₂ -	2	2	.1	-	. н	-CHZ-N-C-F
1921	CI-CH2-	· 1	2	0	R	H ' .	-CH ₂ -N-C
1922	0-CH ₂ -	2	2	1	-	н .	-atz-N-c
1923	Br-CH ₂ -	2	2	1	•	н	-CH ₂ -N-C-SCF ₃
1924	H ₂ CO-COH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1925	F-C-CH _E -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃

[0276]

Table 1.176

							•
Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1926	F-CH _Z -	2	2	1	-	н	-CH2-N-C-
1927	HO-{	2	2	1		н	-CH2-N-C-SCF3
1928	CH2-	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1929	CH2-	2	2	1	-	Ħ	-CH ₂ -N-C-SCF ₃
1930	н,сэ-С-сн,-	2	2	1	-	H ,	-CH ₂ -N-C-CSCF ₃
1931	нассня—Ст-	2	2	1	-	H .	-CH2-N-C-SCF3
1932	CH2-CH2-	· 2	2	1	-	H.	-CH ₂ -N-C-CSCF ₃
193 <u>3</u>	H ₂ C-CH ₂ -CH ₂ -				•	Н	-CH2-N-C-SCF3
	H ₃ C CH ₂ -				-	н	-CH ₂ -N-C-SCF ₃
1935	O ₂ N-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-CSCF ₃
1936	H ₃ C-\(\sigma\)-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-CSCF ₃

[0277]

Table 1.177

Campd. No.	R ¹ (CH ₂)-	k	m	n	chirality	Н³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1937	(CH3)2CH	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1938	Br-CH2-	2	2	1	-	н	-CH2-HC-SCH3
1939	H300-()-CH2-	2	2	1	-	H	-CH2-HC-(-)-CH3
1940	F-QH ₂ -	2	· 2	1	-	н	-CH2-H-C
1941	F-CH ₂ -	2	2	1	-	H	-CH2-H-C
1942	HO-Q-CH2-	2	2	1	•	н	-CH ₂ -N-C-CH ₃
1943	CH ^E	2	2	1	•	H	-CH ₂ -N-C
1944	CH2F	2	2	1	-	н	-CH2-NC-CH3
1945	H2C3-{	2	2	1	-	н	-CH2-HC-CH3
1946	нусснұ-О-снұ-	2	2	1	-	н	-CH2-HC-CH3
1947	O-CHE	2	2	1	•	н	-CH ₂ -N-C-CH ₃

[0278]

* \$\bar{q}_{i}^{\bar{t}}\$

Table 1.178

							•
Compd.	R ² (CH ₂) _j	k	m	ก	chirality	R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
1948	H ₃ C-CH ₂ -CH ₂ -	2	2	1	:	н	-сн²-й-с- Вг Сн³
1949	H ₃ C CH ₂ -	_ 2	2	1	-	н	-CH ₂ -N-CCH ₃
1950	O ₂ N-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C
1951	H ₀ C-{}-CH ₂ -	. 2	2	1	-	н .	-CH2-N-C
1952	Br—CH₂-	2	2	1	-	н	-CH₂-N-CF
1953	H300-()-CH2-	2	. 2	1	-	H	-CH ₂ -N-C
1954	F—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F
1.955	F-OHz-	2	2	1	-	μ	-CH _Z -N-C
	HO-CH ₂ -				-	н	-CH ₂ -N-CF
1957	CH2-CH2-	2	2	1	•	н	-CH ₂ -N-C-Sr
1958	CH2-CH2-	2	2	1	-	н	-CH ₂ -N-C

Table 1.179

			•				•
Compd.	H2 (CH2)-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
1959	ньсэ-О-снг-	2	2	1	-	н	-CH ₂ -N-C-Br
1960	ңсснұ-О-снұ-	2	2	1	-	н	-CH2-N-C
1961	CH2-	2	2	1	-	н	-CH ₂ -N-C
1962	H2C-CH2-CH3	2	2	1	-	н	-CH ₂ -N-C
1963	H ₃ C CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C
1964	O ₂ N-()-CH ₂ -	2	2	1	- -	н .	-CH2-N C-F
1965	H ₃ O-{\(\sigma\)-(2H ₂ -	2	2	1	-	Ħ	-CH ₂ -N-CF
1966	(CH ²⁾² CH-\CH ² -	2	2	1	-	н .	-CH ₂ -N-C
1967	Br	2	2	1	•	н	-CH ₂ -N-C
1968	H ₀ ∞-√ -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F
1969	HO	2	2	1	-	н	-CH2-N-C

[0280]

Table 1.180

		-					
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1970	CH-CH _F	2	2	1	-	н	-CH2-N-C-
1971	CH-CHE	2	2	1	-	н	-CH2-N-C
1972	н₃сэ-С:}-сн₂-	2	2	1	-	н	-CH ₂ -N-C
1973	нусснұ-О-снұ-	2	2	1	-	н	-CH ₂ -N-C
1974	H ₃ C-CH ₃	2	2	1	-	Н	-CH2-N-0
1975	O₂N-CH₂-	2	2	1	-	н	-CH ₂ -N-C
1976	H ₃ C-{}-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1977	NO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
	(сн.у.сн-С)—сн.г-				-	н	-CH ₂ -N-C
1979	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F
1980	P√CH _E -	2	2 .	1	-	н	-CH ₂ -NC-F H ₂ N -CH ₂ -NC-F H ₂ N -CH ₂ -NC-F

Table 1.181

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	—(CH ₂) , (CH ₂) , G−R ⁶
1981	02N-CH2-	2	2	1	-	н	-CH _Z -N-C
1982	NC-CH2-	2	2	1	-	н	-CH ₂ -N-C
1983	(сн ^{лу} сн-О-сн _г -	2	2	1	•	н	-CH ₂ -N C-F
1984	Br{	2	2	1	٠.	H	-CH2-N-C
1985	H300-()CH2-	2	2	1	-	н	-CH2-N-O
1986	HO	2	2	1	-	H	-art-Ho-
1987	CH ₂	2	2	1	-	н	-CH2-N-0
1988	CHE	2	2	1	-	Н	
1989	HPCQ-CHI-	2	2	1	-	н	-OHE-H-O-
1990	нуссяй—О—сяй-	2	2	1	•	н	-a+2-H 0-1
1991	600 −cH ^E .	2	2	1	-	н	-art H c

[0282]

Table 1.182

							•
Compd.	R ² /(CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1992	H ₃ C-CH ₂ -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1993	0 ₂ N-CH ₂ -	2	2	1	-	н	-CH2-N-C
1994	H3C	2	2	1	<u>.</u>	н .	-CH2-H
1995	NC-C-CH ₂ -	2	2	1	-	н	-CH2-N-C
1996	(андусн-С)-сну-	2	2	1	-	н	-CH ₂ -N-C
1997	H ₃ C CH ₃	2	2	1	-	н.	-CH ₂ -N-C
1998	Br	2	2	1	• ·	н	-arta H o-Ca
1999	H ₃ CO-CD-CH ₂ -	2	2	1	-	H .	-at-Ho-Q
2000	F-CH2-	2		1	<u>.</u>	н	-a12-Hc-C
2001	HO-Q-CH2-	2	2	1	-	н	-CH2-HC-C
2002	C-CH2-	2	2	1	-	н	-a+2-H c-C

[0283]

Table 1.183

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	—(CH ₂) , (CH ₂) , G R ⁶
2003	CH _E -	2	2	1	-	н	-a+5-H-cQ
2004	н₀сэ-СУ-сн₂-	2	2	1	-	н	-ort-Hc-Q
2005	нуссну{Су-сну-	2	2	1	-	н	-CH2-HC-C
•	H ₂ C-CH ₂ -CH ₂ -				-	н	-atz-H-c-
2007	O ₂ N-CH ₂ -CH ₂ -	2	2	1	-	н	-012-N-C-
2008	H3C-(2	2	1	-	H	-arta-H.c.
2009	NO-CH ² -CH ² -	2	2	1	-	н	-a+2-H c-Q
•	(CH ³) ² CH CH ² -				-	н	-a12-11-c-
2011	H ₃ C CH ₂ -	2	2	1	•	н	-ats-Ho-Q
2012	BI-CH2-	2	2	1	-		-aH₂-N-c-(Br
2013	H3CO-{	2	2	1	-	н	-a+= H c-(-a

[0284]

Table 1.184

							•
Compd.	R ² -(CH ₂)-	k	m	n	chirality	H3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2014	HO	2	2	1	<u>.</u>	н	-CH ₂ -N-C
2015	CH2-CH2	2	2	1	-	н	-CH ₂ -N-C
2016	CH-CH ₂ -	2	. 2	1	-	н	-CH2-N-C
2017	H²C3-CH²-	2	2	1	•	н	-at-nc-a
2018	нфсоня—С—сня—	.2	2	. 1		н	-a+2-N-c
	OCH2-			•		н	-ai-No-Br
·2020	H ₈ C CH ₃	2	2	1	-	н	-CHENO-COB
2021	0 ₂ N-(-)-CH ₂ -	2	2	1	· -	н	-all-H-a
2022	HO-CH2-CH2-	2	2	1	-	Н	-CH2-N-C-(Sar
2023	NO-CH2-	2	2	1.	-	н	-CH2-N-C
2024	(CH ₃) ₂ CH	2	2	1	- -	н	-CH2-N-C

[0285]

Tabl 1.185

, Tabi	1.100						•
	R ² (CH ₂)				chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2025	H ₃ C CH ₃ - CH ₂ -	2	2	1	-	Н	-a12-N-c- Br
2026	F-CH2-	2	2	1	-	H	-cH2-N-C
2027	BrCH2-	2	2	1	-	Н	-CH ₂ -N-CBr
2028	H ₃ 00-{\(\sigma\)-\(\sigma\)-\(\sigma\)	2	2	1	-	н	-CH ₂ -N-C-S ^B r H ₂ N
2029	HO-CH2-	2	2	1	-	н	-CH ₂ -N
2030	CH2-CH2-	2	2	1	· _	. H	-CH2-N-O-Br
2031	Chair.	2	2	1	-	н .	-CH2-N-O-BI
2032	O-CHE	2 .	2	1	æ	H	-CH ₂ -N-CH ₂
2033	H3C-CH3-CH3-	2	2	1	-	н	-CH ₂ -N-C
2034	O₂N-{\bigcirc}-CH₂-	2	2	1	-	н	-CH ₂ -N-C
2035	Ho-Cotz-	2	2	1	-	н	-CH ₂ -N-C

[0286]

Table 1.186

							•
Compd.	R ² (CH ₂) _j	k	m	n	chirality	₽³	-(CH ₂) p (CH ₂) q G-R ⁶
2036	NO-CH2-	2	2.	1	-	н [.]	-CH ₂ -N-CBr
2037	H ₃ C CH ₃	2	2	1	-	Н	-CH ₂ -N-C-Br
2038	F-CH _Z -	2	2	. 1	-	н	-CH ₂ -N-CBr
2039	H2C-(C)-CH2-	2	2	1	-	H	-042-N-0-KJ
2040	H ₃ C	,1	2	0	R	н	-CH2-H-C-CH-COH
2041	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	н -	-a12-11-0-01-
2042	H3C	1	2	0	R	н	-CH2-NO H3C CH3
2043	H ₃ C()-CH ₂ -	1	2	0	R	н	-CH2-N-C-CH2-CH3
2044	CH ² CH ² CH ³	1	2	0	R	н	-CH2-H-C
2045	CH3 CH2	1	2	0	R	н .	-ar-H-C
2046	CH3 CH3 CH3 CH3-	1	2	· 0	R	. н	-CH2-H-C-CH2 HN C-H-C-CH3
							

[0287]

Table 1.187

Compd.	R ² (CH ₂);	k	m	n	chirality	H3	-(CH ₂) _p + (CH ₂) _q G−R ⁶
2047	CH3 CH3					н	~#\$ `
2048	CH ₃					н	-CH ₂ -NC-C-OCH ₂ CH ₃
2049	CH ³ CH ³	1	2	0	R	н	
2050	HaC S-CH2-	1,	2	0	R	н	-CH ₂ -N-O-CF ₃
2051	H ^a C	1	2	0	R	н	-CH2-N-O-CF3
2052	OCH ² CH ²	2	2	1	-	н	-CH ₂ -N-C
2053	O-aro-or-	2	2	1	-	н	-CH ₂ -N-C-F-F
2054	H ₀ co-Ch ₂ -ch ₂ -				÷	н	-CH ₂ -N-C
2055	OH OH				-	н	-CH ₂ -N-C
2056	BY CH2"	2	2	1	-	н	-CH ₂ -N-C
2057	H ₃ CO-CH ₂	2	2	1	·•	н	-CH2-N-C

Table 1.188

	3						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2058	H ₃ CO_OCH ₃	. 2	2	1		н	-CH ₂ -N-C
2059	О-о-О-сн₂	2	2	1	-	н	-CH ₂ -N-0
2060	H ₂ CO H ₃ CO CH ₃ -CH ₂ - CCH ₃	2	2	1	-	н	-CH ₂ -N-C
2061	CH ₃	2	2	1	-	н	-CH ₂ -N-C-F-F
2062	H3CO-CH2-				-	н	-CH ₂ -N-C
2063	H ₃ CO CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2064	Bt_CH2-	2	2	1	-	н	-CH ₂ -N-O
2065	несено——сн-	2	2	1	-	н	-CH ₂ -N-C
	OCH ₂ -CH ₂ -				-	H	CH ₂ -N-C
2067	(нсжонон-С-сн-	2	2	1	-	н	-CH ₂ -N-C
2068	F-CH ₂ -	2	2	1	<u>-</u>	н	-CH ₂ -N-C

Table 1.189

Compd.	R ² (CH ₂)-	k	m	ก	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
2069	H ₂ CO—CH ₂ —CH ₂ —	2	2	1	-	н	-CH ₂ -N-C
2070	Bt OCH2-	2	2	1	-	н	-CH ₂ -N-C
2071	H³CO	2	2	1	-	н	-CH2-N-C
2072	еңо₃сно-{С}-сң-	2	2	1	-	н	-CH2-N-C-F
2073	O-ara	2	2		-	н	-CH ₂ -N-C
2074	HPCC O-CONT.	2	2	1	•	н	-CH_NC-F
2075	H ₈ CQ FCH ₂ -	2	2	1	-	н	-CH2-N-CF
2076	F-CH _F -CH _F -	2	2	1	-	н .	-CH ₂ -N-C
	CH.				-	н	-CH ₂ -N-C
2078	HPCCH ^S O OH	2	2	1	-	н	-CH ₂ -N-C
2079	H ₂ co-CH ₂ -CH ₂ -	2	2	1	<u>-</u>	н	-CH ₂ -N-C-F H ₂ N -CH ₂ -N-C-F H ₂ N

[0290]

Table 1.190

				•			
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q -G-R ⁶
2080	H ₃ 00	2	2	1	-	н	-CH ₂ -N-C
2081	HO-CH _Z	2	2	1		н	-CH ₂ -N-CF H ₂ N
2082	H ² CO-CH ² -				-	н	-CH ₂ -N-C
2083	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2084	H²∞ H0→CH²-	1	2	0	R	н	-CH ₂ -N-C
2085	H³co-{	1	2	0	R	н	-CH ₂ -N-C-S
2086	HO	1	2	0	R	H	-CH2-N-C-S
2087	(H3C)2N-C)-CH2-	1	2	0	R	н	-CH ₂ -N-C
- 2088	813CC312)2N-(1	2	0	R	н	-CH ₂ -N-C
2089	F	1	2	0	R	н	-CH ₂ -N-C-3 -CH ₂ -N-C-3 -CH ₂ -N-C-3 -CH ₂ -N-C-3
2090	O-o-O-cute	1	2	0	R	н	-CH ₂ -N-C

[0291]

Table 1.191

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p
2091	a-{_}-a+ ₂ -	2	2	1	-	н	CH- CH- R
2092	0-Q-0H2-	2	2	1	•	н	of Chi
2093	a-{	2	2	1	-	н	CHN-C-COCH,CH3 CH_CH_SCH3
2094	a—€a+2-	2	2	1	-	H	CH-NO-COCHECHS .
2095	a———aH₂-	2	. 2	1	-	н	C(CH ₃) ₃
2096	a-Ci-algrid	2	2	1	-	н	CH2-CH2CH3
2097	a-€}-a+ ₂ -	2	2	1	-	н	CHECHECHS CHECHECHS CHECHS CHECHS
2098	Q{	2	2	1	-	Н	CH ₂ —COH ₂ CH ₃
2099	a	2	2	1	-	Н	CHILC COCHECH
2100	a-C-atz	2	2	i	-	н	CHY
2101	a-{}-a+ ₂ -	2	2	1	-	н .	CHE COCHECHS

[0292]

Tabl 1.192

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2102	a-Q-a+2-	2	2	1	•	н	CH'CH'-C-OCH'-(1)
2103	G-CH2-	2	2	1	-	н	HICCHOCHE T
2104	G	2	2	1	-	н	CH ² CH ² C-OCH ² CH ² CH ² CH ² CH ² CH ³
2105	HPCC OH	2	2	1	-	н	-CH ₂ -N-C
2106	H ^a C OH	2	2	1	-	н	-CH ₂ -N-CF H H ₂ N·
2107	BK CH2-	2	2	.1	-	н	-CH _Z -N-C-F H H ₂ N
2108	CH ₃ CH ₂	2	2	1	-	н	-CH ₂ -N-C-F-F
2109	BK CS-CH2-	2	2	1	-	н	-CH ₂ -N-C
	Hocaris 13-art				-	н	-OH ₂ -N-C-F-F
2111	a-CH2-	2	2	1	•	н	-CH ₂ -N-C-F-F
2112	H ₂ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F

[0293]

Tabl 1.193

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	Ŕ³	-(CH ₂) p
2113	H ₂ N CH ₂ -	2	2	1	•	Н	-CH ₂ -N-C
2114	H ₂ N CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2115		2	2	1	-	н	(<i>F</i>) − CH-N-C- CH(CH ₃) ₂ CH(CH ₃) ₂
2116	О— С Э—СН ₂ -	2	2	1	-	н	CH(CH3)CH2CH3
2117	Q-Q-Q12-	2	2	1	-	н	-CH-N-O-CH-CH-8
2118	HO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
2119	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-O-CF ₃
2120	Br—CH ₂ -	1	2	0	R	н	-CH2-H-O-CF3
2121	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F ₃
2122	a-Q-aiz-	1	2	0	R	н	-CH ₂ -N-C
2123	NO ₂	1	2	0	Ŗ	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ H ₂ N

[0294]

Table 1.194

Compd.	R1 (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2124	0 ₂ N a-\	1	2	0	R	н	-CH ₂ -N-C
2125	O ₂ N H ₃ CO-CH ₂ -	1	2	0	R	н	-CH2-N-C
2126	O ₂ N H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
2127	O CH ₂ -	1	2	0	R	н	-CH _Z -N-C
2128	H2W COH2-	1	2	0	R	н	-CH ₂ -N-C-S
2129	H ₂ N CH ₂ -	1	2	٥	R	н	-CH ₂ -N-C
2130	ON CHE	2	2	1	-	н	-CH ₂ -N-C
2131	CH ₃ CH ₂ CH ₃	2	2	1	-	н	-CH ₂ -N-C
	H ₂ N a————————————————————————————————————				R	H .	-CH ₂ -N-C
2133	(H ₃ C) ₂ N CH ₂ - CH ₂ - N(CH ₃) ₂	1	2	0	R	н	-CH ₂ -N-C-S
2134	CH ₂ - N(CH ₃) ₂	1	2	0	R	н	-CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃
							

Tabl 1.195

Tabi	1.133						
Compd.	R ¹ (CH ₂)j-	k	m	ก	chirality	R³	-(CH ₂) _p CH ₂) _q G-R ⁶
2135	(H3C)2N H3CO-CH2-	1	2	0	R	н	-CH ₂ -N-C
2136	(H ₃ C) ₂ N H ₃ C-CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2137	CH3-CH2-	1	2	0	R	н	-CHZ-N-C
2138	CH ² CH ²	1 ,	2	0	R	н	-CH2-H-C
2139	Hac Mander	1	2	0	R	н	-CH2-H-C-CF3
2140	CH ₂ -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F
2141	HO-CH2-	2	2	1	-	н	-at-N-c-F
2142	H ₂ N CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C
	HNG-CH-					• н	-CH _{2-N} -C
2144	H2N -CH2-	2	2	1	-	н .	-CH ₂ -N-C
2145	HO-CH2-	2	2	1	-	H	-CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃

[0296]

Tabl 1.196

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	(CH ₂) _p + (CH ₂) _q G−R ⁶
2146	O-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2147	щ со- н₃со- сн ₂ -	2	2	1	-	н	-CH ₂ -N-C
2148	40-€-ИН НО-€-ИН	2	2	1	-	н	-CH ₂ -N-C
2149	O ₂ N HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F ₃
2150	CH	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2151	HING-CH ²	1	2	0	A	н	-CH ₂ -N-C-CF ₃
2152	н₃с-с-ин н₃с-с-ин	1	2	0	R	н	-CH2-N-C
2153	H3C-CH3-CH3-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2154	н²с-с-ин о о	2	2	1	-	н	-CH ₂ -N-C-CF ₃
2155	н ₃ С-С-NH НО- С Т-СН2-	2	.2	1	-	н	-CH2-NC-CF3
2156	HO ← CH2-	2	2	1	-	н	-CH2-HC-CF3

[0297]

Tabl 1.197

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
2157	HO-CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-O
2158	HO-CH2-	1	2	0	R	н	-CH2-H-C-CE3
2159	H³CO-V8H H³CO-V8H	2	2	1	-	н	-CH ₂ -N-C
21 <u>6</u> 0	H0-C-NH	2	2	1	-	н	-CH ₂ -N-C
2161	CCH2-CH2-	2	2	1	-	н	-CH ₂ -N-C
2162	H3C0-VH	2	2	1	•	н	-CH ₂ -N-O-CF ₃
2163	HO-CH2-	2	2	1	•	н	-CH2-H2N CF3
2164	CH2-CH2-	1	2	0	R	н	-CH ₂ -N-C
2165	() - CH2-				R	н	-CH2-H-C-CF3
2166	CH [₹]	1	2	0	R .	н	-CH ₂ -N-C-F ₃
2167	Q H atr	1	2	0	R	H	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃

[0298]

Table 1.198

Compd. No.	R1 (CH ₂)-					R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶ R ⁵ ·
2168	H ₃ C CH ₃	1	2	0	· R	н	-CH ₂ -N-C-F ₃
2169	H ₃ C-(CH ₃ CH ₃ CH ₃	1	2	0	R	н	-CH ₂ -N-C
2170	C)-cn-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2171	HNZ CH2-	1.	2	0	R	н	-CH ₂ -N-CCF ₃
2172	F ₃ C CH ₃	1	2	0	R	н	-CH2-H-0-CF3
2173	CH3	1	2 .	0	R	н	-CH2-N-O-CF3
2174	H ₃ C CH ₃ Br S CH ₂	1	2	0	R	н	-CH2-N-C
2175	H₃ CO ← CH₂ − CH₂ −	1	2	0	R	н	-CH2-N-O-CF3
2176	H ₃ C N CH ₂ -	1	2	0	R	Н	-CH _Z -N-C
2177	H3C OH OH2OH	1	2	0	R	н	-CH2-N-C
2178	CH ₂ OH	1 .	2	0	R	H .	-CH ₂ -N-CCF ₃ -CH ₂ -N-CCF ₃ -CH ₂ -N-CCF ₃

[0299]

Table 1.199

						 	
Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	–(СН _{2)p}
2179	HC FN CH	1	2	0	R	н	-CH _Z -N-C-F ₃
2180	Q-(QH ₂) ₂ -	1	2	0	R	н	-CH ₂ -N-C
2181	H ² CO N COH ₂ -	1	2	0	R	н .	-cH ₂ -H-C-CF ₃
2182	HoC N CHI-	1	2	0	R	н	-CH ₂ -H-C-CF ₃
2183	S.N. OHE	1	2	0	R	н	-cH2-H-C-CF3
2184	M-CH2-CH2-	2	2	1	-	н	-CH _{2-N} CF H ₂ N
2185	S.N.—OH.	2	2	1	-	н	-CH2-H-C-CF3
2186	CH2-	2	2	1		н	-CH2-H-C-CF3
2187	HO-CH ₂ -					н	-CH2-H-C-CF3
2188	o-Ch-CHF	2	2	1	-	н	-atz-H-CF3
2189	erri-	1	2	0	R	н	-CH2-N-C-F3 -CH2-N-C-F3 -CH2-N-C-F3

[0300]

Table 1.200

Compd. No.	R ¹ (CH ₂);	k	m	n	chirality	R³	-(CH ₂) _q -(CH ₂) _q -G-R ⁶
2190	Q H	2	2	1	-	н	-CH ₂ -N-C
2191	a H	2	2	1	-	н	-CH ₂ -N-C-CF ₃
2192	O CHE	2	2	.1	-	н	-CH ₂ -N-C-CF ₃
2193	CH ₂	2	2	1	-	, н	-CH ₂ -N-C
2194	H ₂ N H ₃ O-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2195	H ₂ N CI—CH ₂ —	2	2	1	-	н	-CH ₂ -N-C-F ₃
2196	H ₃ O-NH H ₃ O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F ₃
2197	H3CO-NH	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
2198	G-V2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2199	H3C-NH H3C-NH	2	2	1	-	н	-CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃
2200	H ₂ C-NH	2	2	1	-	н	-CH ₂ -N-C-CF ₃

[0301]

Table 1.201

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	—(CH _{2)p} H ⁴ (CH ₂)q G−R ⁶
2201	H ₃ O-NH H ₃ O-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F-F
2202	S-CH2-CH2-	1	2	0	R	н	-CH ₂ -N-C
2203	O-CH2-	2	2	1	-	н	-CH ₂ -N-C
2204	a—CH ₃	2	2	1	-	н	-CH ₂ -N-C
2205	a-€2-412-	2	2	1	-	н	-CH ₂ -N-C
2206	HO-CH ₂ -CH ₂ -	2	2	1	-	н	-CH2-NC-CF3
2207	HO-CH3	2	2	1	-	н	-CH ₂ -N-C
2208	CI-CH3-CH3-	2	. 2	1	-	н	-CH2-N-O-CF3
2209	a	2	2	1	-	н	-CH ₂ -N-C-F-F

[0302]

本発明においては、環状アミン化合物の酸付加体も用いられる。かかる酸として、例えば塩酸、臭化水素酸、硫酸、リン酸、炭酸などの鉱酸;マレイン酸、ク

エン酸、リンゴ酸、酒石酸、フマル酸、メタンスルホン酸、トリフルオロ酢酸、 蟻酸などの有機酸が挙げられる。

[0303]

さらに、本発明においては、例えばヨウ化 $1-(4-\rho \Box \Box x)$) -1-メチル $-4-[\{N-(3-h) \Box z)$ アミノメチル] ピペリジニウムのような、環状アミン化合物の C_1 $\sim C_6$ アルキル付加体も用いられる。ここで、アルキル基としては、例えばメチル、エチル、n-プロピル、n-ブチル、n-ペンチル n-ペンチル、n-ペル、n-ペン・n-ペン・n-ペン・n-ペン・n-ペン・n-ペン・n-ペン・n-ペン・n-ペン・n-ペン・n-ペン・n-ペン・n-ペン・

[0304]

本発明においては、上記式(I)で表わされる化合物のラセミ体、および可能なすべての光学活性体も用いることができる。

[0305]

上記式(I)で表わされる化合物は、国際公開WO9925686号パンフレットに記載されているように、下記に示すいずれかの一般的な製造法を用いることにより合成可能である。

(製造法1)

下記式(II)

[0306]

[化3]

$$\begin{array}{c}
R^{1} \\
 \longrightarrow (CH_{2})_{j} - N \\
R^{2} \\
 (CH_{2})_{m}
\end{array}$$

$$\begin{array}{c}
(CH_{2})_{h} \\
 \longrightarrow (CH_{2})_{n} - NH \\
 \downarrow 3
\end{array}$$

$$\begin{array}{c}
(II)
\end{array}$$

[0307]

[式中、 R^1 、 R^2 、 R^3 、j、k、m、およびnは、上記式(I)におけるそれぞれの定義と同じである。]

で表わされる化合物1当量と、下記式(III)

【化4】

[0309]

[式中、 R^4 、 R^5 、 R^6 、G、p、およびqは、上記式(I) におけるそれぞれの定義と同じである。]

で表わされるカルボン酸、またはその反応性誘導体の 0. 1~10 当量を無溶媒 下、または溶媒存在下に反応させることによる製造方法。

[0310]

上記式(III)で表わされるカルボン酸の「反応性誘導体」とは、例えば酸ハロゲン化物、酸無水物、混合酸無水物などの合成有機化学分野において通常使用される反応性の高いカルボン酸誘導体を意味する。

[0311]

 レート (TBTU)、2-(5-ノルボルネン-2,3-ジカルボキシイミド)-1,1,3,3-テトラメチルウロニウム=テトラフルオロボレート (TNTU)、O-(N-サクシニミジル)-1,1,3,3-テトラメチルウロニウム=テトラフルオロボレート (TSTU)、プロモトリス (ピロリジノ) ホスホニウム=ヘキサフルオロホスフェート (PyBroP) などの縮合剤;炭酸カリウム、炭酸カルシウム、炭酸水素ナトリウムなどの無機塩基、トリエチルアミン、ジイソプロピルエチルアミン、ピリジンなどのアミン類、(ピペリジノメチル)ポリスチレン、(モルホリノメチル)ポリスチレン、(ジメチルアミノメチル)ポリスチレン、ポリ(4ービニルピリジン)などの高分子支持塩基などの塩基を適宜用いることにより、より円滑に進行させることができる。

(製造法2)

下記式 (IV)

[0312]

【化5】

$$\begin{array}{c}
R^1 \\
 \longrightarrow (CH_2)_j -X
\end{array} (IV)$$

[0313]

[式中、 R^1 、 R^2 、および」は、上記式(I)におけるそれぞれの定義と同じであり、Xはハロゲン原子、アルキルスルホニルオキシ基、またはアリールスルホニルオキシ基を表わす。]

で表わされるアルキル化試薬1当量と、下記式(V)

[0314]

【化6】

$$\begin{array}{c} \begin{pmatrix} (CH_{2})_{k} \\ HN \\ (CH_{2})_{m} \end{pmatrix} - (CH_{2})_{n} - N - C \\ R^{3} \\ R^{3} \\ R^{5} \\ \end{array} + (CH_{2})_{q} - G - R^{6} \\ (V)$$

[0315]

[式中、 R^3 、 R^4 、 R^5 、 R^6 、G、k、m、n、p、および q は、上記式 (I) におけるそれぞれの定義と同じである。]

で表わされる化合物 $0.1\sim10$ 当量を無溶媒下、または溶媒存在下に反応させることによる製造方法。

[0316]

かかる反応は、上記製造法1と同様の塩基を適宜用いることにより、より円滑 にに進行させることができる。さらに、本製造方法において、ヨウ化カリウム、 ヨウ化ナトリウムなどのヨウ化物を共存させることにより、反応を促進できる場 合がある。

[0317]

上記式(IV)において、Xはハロゲン原子、アルキルスルホニルオキシ基、アリールスルホニルオキシ基を表わす。かかるハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子が好ましく挙げられる。アルキルスルホニルオキシ基の好適な具体例としては、メチルスルホニルオキシ基、トリフルオロメチルスルホニルオキシ基などが挙げられる。アリールスルホニルオキシ基の好適な具体例としては、トシルオキシ基を挙げることができる。

(製造法3)

下記式 (VI)

[0318]

【化7】

$$R^1$$
 \rightarrow $(CH_2)_{j-1}$ \rightarrow (VI) R^2

[0319]

[式中、 R^1 および R^2 は、上記式(I)におけるそれぞれの定義と同じであり、jは1または2を表わす。]

または、下記式 (VII)

$$R^1$$
-CHO (VII)

[式中、 R^1 は、上記式(I)における R^1 の定義と同じであり、jは0を表わす場合に相当する。]

で表わされるアルデヒド1当量と、上記式(V)で表わされる化合物0.1~1 0当量を、無溶媒下、または溶媒存在下に反応させることによる製造方法。

[0320]

かかる反応は、一般に還元的アミノ化反応と呼ばれ、還元条件としては、パラジウム、白金、ニッケル、ロジウムなど金属を含む触媒を用いる接触水素添加反応、水素化リチウムアルミニウム、水素化ホウ素ナトリウム、シアノ水素化ホウ素ナトリウム、トリアセトキシ水素化ホウ素ナトリウムなどの複合水素化物およびボランを用いる水素化反応、または電解還元反応などを用いることができる。

(製造法4)

下記式 (VIII)

[0321]

【化8】

$$\begin{array}{c}
R^{1} \\
 \longrightarrow (CH_{2})_{j} - N \\
R^{2} \\
\end{array}
\begin{array}{c}
(CH_{2})_{k} \\
 \longrightarrow (CH_{2})_{n} - N - C \\
 \longrightarrow (CH_{2})_{n} - N - C \\
 \longrightarrow (CH_{2})_{p} - N \\
 \longrightarrow (CH_{2})_{p} - N + C \\
 \longrightarrow (CH_{2})_{q} - N + C \\
 \longrightarrow (CH$$

[0322]

[式中、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^7 、j、k、m、n、p、および q は、上記式 (I) におけるそれぞれの定義と同じである。]

で表わされる化合物1当量と、下記式 (IX)

$$HO-A-R^6 \qquad (IX)$$

[式中、 R^6 は、上記式(I)における R^6 の定義と同じであり、Aはカルボニル基またはスルホニル基を表わす。]

で表わされるカルボン酸またはスルホン酸、またはそれらの反応性誘導体 0.1 ~10 当量を、無溶媒下、または溶媒存在下に反応させることによる製造方法。

上記式(IX)で表わされるカルボン酸またはスルホン酸の反応性誘導体とは、 例えば酸ハロゲン化物、酸無水物、混合酸無水物などの、合成有機化学分野で一 般に使用される反応性の高いカルボン酸またはスルホン酸誘導体を意味する。

[0324]

かかる反応は、上記製造法1と同様の脱水剤、縮合剤、または塩基を適宜用いることにより、より円滑に進行させることができる。

(製造法5)

上記式(VIII)で表わされる化合物1当量と、下記式(X)

$$Z = C = N - R^6 \tag{X}$$

[式中、 R^6 は上記式(I)における R^6 の定義と同じであり、Zは酸素原子または硫黄原子を表わす。]

で表わされるイソシアネートまたはイソチオシアネート 0. 1~10当量を、無溶媒下または溶媒存在下に反応させることによる製造方法。

(製造法6)

下記式(XI)

[0325]

【化9】

$$\begin{array}{c}
R^{1} & \nearrow (CH_{2})_{j} - N \\
R^{2} & (CH_{2})_{m} & R^{3} & R^{4} \\
(CH_{2})_{m} & R^{3} & R^{5}
\end{array}$$
(CH₂)_n - N - C - (CH₂)_p - R⁴ (CH₂)_q - A - OH (XI)

[0326]

[式中、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、j、k、m、n、p、および q は、上記式 (I) におけるそれぞれの定義と同じであり、A はカルボニル基またはスルホニル基を表わす。

で表わされる化合物1当量と、下記式(XII)

$$R^6 - NH_2$$
 (XII)

[式中、 R^6 は、上記式(I)における R^6 の定義と同じである。] で表わされるアミン 0. $1 \sim 1$ 0 当量を、無溶媒下または溶媒存在下に反応させることによる製造方法。

[0327]

かかる反応は、上記製造法1と同様の脱水剤、縮合剤、または塩基を適宜用いることにより、より円滑に進行させることができる。

[0328]

上記製造法1~6において、各反応に供する基質が、一般に有機合成化学において各反応条件において反応するか、あるいは反応に悪影響を及ぼすことが考えられる置換基を有する場合には、その官能基を既知の適当な保護基で保護して反応に供した後、従来既知の方法を用いて脱保護することにより、目的の化合物を得ることができる。

[0329]

さらに、本発明で用いられる化合物は、例えばアルキル化反応、アシル化反応、還元反応などの、一般に有機合成化学において使用される既知の反応を用いて、上記製造法6により製造される化合物の(単数または複数の)置換基をさらに変換することによっても得ることができる。

[0330]

上記各製造法において、反応溶媒としてはジクロロメタン、クロロホルムなどのハロゲン化炭化水素、ベンゼン、トルエンなどの芳香族炭化水素、ジエチルエーテル、テトラヒドロフランなどのエーテル類、酢酸エチルなどのエステル類、ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリルなどの非プロトン性極性溶媒、メタノール、エタノール、イソプロピルアルコールなどのアルコール類などが、反応に応じて適宜用いられる。

[0331]

いずれの製造方法においても、反応温度は-78 \mathbb{C} ~+150 \mathbb{C} 、好ましくは0 \mathbb{C} ~100 \mathbb{C} 0 範囲である。反応完了後、通常の単離、精製操作、すなわち濃縮、濾過、抽出、固相抽出、再結晶、クロマトグラフィーなどを行うことにより、目的とする上記式(I)で表わされる環状アミン化合物を単離することができる。また、それらは通常の方法により、薬学的に許容される酸付加体または \mathbb{C}_1 ~ \mathbb{C}_6 アルキル付加体に変換することができる。

[0332]

【実施例】

本発明を以下、実施例に基づいて説明する。しかしながら、本発明はこれらの 実施例に記載された化合物に限定されるものではない。以下の実施例において各 化合物に付された化合物番号(Compd. No.)は、Table1.1~1 .201において好適な具体例として挙げた化合物に付された化合物番号(Compd. No.)と対応している。

[0333]

[参考例1] <u>(R)-1-(4-クロロベンジル)-3-[{N-(3,4</u> -ジフルオロベンゾイル) グリシル} アミノ] ピロリジン(化合物番号69) の 合成

本発明の化合物はWO9925686号パンフレット記載の製造法により合成したが、例えば化合物番号69の(R)-1-(4-クロロベンジル)-3-[N-(3,4-ジフルオロベンゾイル)グリシル}アミノ]ピロリジンは以下のように合成した。

[0334]

4-クロロベンジルクロリド (4. 15g、25, 8mmol) とⁱPr₉NE t (6.67g, 51.6mmol) を、3-{(tert-ブトキシカルボニ ル) アミノ} ピロリジン (4.81g, 25.8mmol) のDMF溶液 (50 mL) に加えた。反応混合物を70℃で15時間攪拌し、溶媒を減圧下に除去し た。再結晶 (CH₃CN, 50mL) により目的とする3-{(tert-ブト キシカルボニル) アミノ} -1-(4-クロロベンジル) ピロリジン(6.43 g, 80%) を黄白色固体として得た: 1 H NMR(CDCl $_{3}$, 300 MHz) δ 1.37 (s, 9 H), 1.5-1.7 (br, 1 H), 2.1-2.4 (m, 2 H), 2.5-2.7 (m, 2 H), 2.83 (br, 1 H)), 3.57 (s, 2 H), 4.1-4.3 (br, 1 H), 4.9-5.1 (br, 1 H), 7.15-7.35 (br, 4 H); 純度はRPLC/MSで求めた(98%); ESI/MS m/e 311.0 (M+H, C₁₆H₂₄ClN₂O₂) 3-{(tert-ブトキシカルボニル)アミノ}-1-(4-クロロベンジ ル) ピロリジン (6.38g, 20.5mmol) のCH3OH (80mL) 溶 液に1N HC1-Et₂O (100mL) を加え、25℃で15時間攪拌した 。溶媒を減圧下に除去し、固体を得、再結晶(1:2 CH₃OH-CH₃CN, 130mL)で精製することにより、3-アミノ-1-(4-クロロベンジル) ピロリジン・二塩酸塩(4. 939g,85%)を白色粉末として得た: 1 H 1 H 1 M R (d_6 -DMSO, 300 MHz) δ 3.15 (br, 1 H), 3.3-3.75 (br-m, 4 H), 3.9 (br, 1 H), 4.05 (br, 1 H), 4.44 (br, 1 H), 4.54 (br, 1 H), 7.5-7.7 (m, 4 H), 8. 45 (br, 1 H), 8.60 (br, 1 H); 純度はRPLC/MSで求めた(>99%); ESI/MS m/e 21 1.0 $(M^{+}+H, C_{11}H_{16}CIN_{2})$

光学活性(R)-3-アミノー1-(4-クロロベンジル)ピロリジン・二塩酸塩と(S)-3-アミノー1-(4-クロロベンジル)ピロジジン・二塩酸塩を、それぞれ対応する原料を用いて上記の方法により合成した。生成物は、上記ラセミ体と同じ¹H NMRを示した。

[0335]

- 2) $(R) 3 \{ (N t e r t ブトキシカルボニル) グリシル } アミ$ <math>J - 1 - (4 - クロロベンジル) ピロリジン
 - (R) -3-アミノ-1-(4-クロロベンジル) ピロリジン・二塩酸塩 (4

. 54g, 16.0mmol)、2N NaOH溶液(80mL)、および、酢酸エチル(80mL)の混合物を攪拌し、有機層を分離し、水層を酢酸エチル(80mLx2)で抽出した。有機層をあわあせて無水硫酸ナトリウムで乾燥、濾過、濃縮することにより遊離の(R)-3-アミノ-1-(4-クロロベンジル)ピロリジン(3.35g,99%)を得た。

[0336]

(R) -3-Pミノー1ー(4-Dロロベンジル)ピロリジン(3.35g、16mmo1)のCH₂Cl₂(<math>80mL)溶液に、 Et_3N (2.5mL,17.6mmo1)、N-tert-ブトキシカルボニルグリシン(<math>2.79g,16.0mmo1)、EDCI(3.07g,16.0mmo1)およびHOBt(12.16g,16mmo1)を加えた。反応混合物を25でで16時間攪拌した後、2N NaOH溶液(80mL)を加えた。有機層を分離し、水層をジクロロメタンで抽出した(100mLx3)。有機層をあわせて水(100mLx2)と食塩水(100mL)で洗浄し、無水硫酸ナトリウムで乾燥、濾過、濃縮した。カラムクロマトグラフィー(SiO_2 ,酢酸エチル)により、目的とする(R) $-3-\{N-(tert-ブトキシカルボニル)グリシル\}$ アミノー1-(4-D)00でに、ピロリジン(100m0、100m0、100m0、100m0 と得た。

[0337]

3) (R) -1-(4-クロロベンジル) -3-(グリシルアミノ) ピロリ ジンの合成

(R) $-3-\{N-(tert-ブトキシカルボニル) グリシル\}$ アミノー1 $-(4-\rho \Box \Box \Delta)$ ピロリジン(5.39g,14.7mmol)のメタノール(60mL)溶液に、4N HClジオキサン(38mL)溶液を加えた。この溶液を室温で2時間攪拌した。反応混合物を濃縮し、2N NaOH溶液(80mL)を加えた。混合液をジクロロメタン(80mLx3)で抽出し、抽出液をあわせて無水硫酸ナトリウムで乾燥、濃縮した。カラムクロマトグラフィー(SiO2, AcOEt/EtOH/Et3N=90/5/5)により、(R) $-3-(\mathcal O)$ ルアミノ) $-1-(4-\rho \Box \Delta)$ ピロリジン(3.374g,86%)を得た: 1 H NMR(CDCl3,270 MHz) δ 1.77(dd, J=1.3および

6.9 Hz, 1 H), 2.20-3.39 (m, 2 H), 2.53 (dd, J = 3.3および9.6 Hz, 1 H), 2 .62 (dd, J = 6.6および9.6 Hz, 1 H), 2.78-2.87 (m, 1 H), 3.31 (s, 2 H), 3 .57(s, 2 H), 4.38-4. 53 (br, 1 H), 7.18-7.32 (m, 4 H), 7.39(br, s, 1 H)

- 4) $(R) 1 (4 クロロベンジル) 3 [{N (3, 4 ジフル オロベンゾイル) グリシル} アミノ] ピロリジン (化合物番号69)$
- 3,4ージフルオロベンゾイルクロリド(0.060mmol)のクロロホルム溶液(0.4mL)を、(R)ー1ー(4ークロロベンジル)ー3ー(グリシルアミノ)ピロリジン(0.050mmol)とトリエチルアミン(0.070mmol)のクロロホルム(1.0mL)溶液に加えた。この反応混合物を室温で2.5時間攪拌した後、(アミノメチル)ポリスチレン樹脂(1.04mmol/g,50mg,50mmol)を加え、混合物を室温で12時間攪拌した。反応混合物を濾過し、樹脂をジクロロメタン(0.5mL)で洗浄した。濾液と洗液とを合わせ、ジクロロメタン(4mL)を加え、溶液を2N NaOH水溶液(0.5mL)にて洗浄し、濃縮することにより、(R)ー1ー(4ークロロベンジル)ー3ー[{Nー(3,4ージフルオロベンゾイル)グリシル}アミノ]ピロリジン(化合物番号69)を得た(7.8mg,38%):純度はRPLC/MSで求めた(>99%); ESI/MS m/e 408.0 (M+H, C20H20CIF2N302)

[実施例1] エオタキシンにより惹起されるCCR3発現細胞の細胞内カルシウム濃度上昇に対する被験化合物の阻害能の測定

CCR3レセプターを安定して発現するK562細胞を用いて、細胞内カルシウム濃度上昇に対する本発明による化合物の阻害能を次の方法にて測定した。

[0338]

CCR3発現K562細胞を10mM HEPES含有HBSS溶液に懸濁したものに1mM Fura2アセトキシメチルエステル(同仁化学社製)を加え、37℃にて30分間インキュベートした。これを340nmと380nmで励起し、340/380比をモニターすることにより、細胞内カルシウム濃度を測定した。アゴニストとしてヒトエオタキシン(0.5μg/m1)を用い、被験化合物の阻害能はエオタキシンで刺激する5分前にCCR3発現K562細胞を被験化合物で処理したときの細胞内カルシウム濃度を測定し、下記の式により抑

[0339]

抑制率 (%) = {1-(A-B)/(C-B)} x 100

(A:被験化合物で処理した後エオタキシンで刺激したときの細胞内カルシウム 濃度、B:無刺激のときの細胞内カルシウム濃度、C:被験化合物で処理せずに エオタキシンで刺激したときの細胞内カルシウム濃度)

本発明で用いる環状アミン誘導体の阻害能を測定したところ、例えば、下記の化合物は、 10μ Mの濃度おいて、それぞれ $20\sim50\%$ 、 $50\%\sim80\%$ 、および、>80%の阻害能を示した。

[0340]

10μMの濃度において20%~50%の阻害能を示した化合物:
化合物番号11,156,234,330,392,424,481,523,525,533,558,567,582,602,613,630,646,649,701,738,741,754,767,814,816,833,839,873,902,909,945,1002,1159,1170,1258,1315,1352,1357,1407,1417,1448,1472,1504,1508,1531,1558,1562,1569,1661,1670,1686,1719,1751,1756,1769,1775,1783,1797,1802,1803,1815,1834,1841,1846,1883,1887,1889,1892,1913,1924,1928,1960,2006,2013,2035,2052,2083,2113,2127,2136,2189

10μMの濃度において50%~80%の阻害能を示した化合物: 化合物番号83,115,146,150,216,294,297,322, 405,440,459,461,466,482,484,487,490, 492,503,526,528,550,562,570,578,620, 623,659,685,687,703,716,730,733,755, 770,850,856,867,876,998,1015,1024,12

0, 1485, 1519, 1550, 1560, 1595, 1601, 1650, 1701, 1725, 1754, 1836, 1856, 1870, 1912, 1923, 1929, 2095, 2120, 2138, 2179

 $10 \mu M$ の濃度において> 80%の阻害能を示した化合物:

化合物番号7, 32, 68, 169, 173, 203, 209, 215, 520, 544, 547, 851, 852, 855, 874, 910, 1003, 1012, 1032, 1038, 1042, 1043, 1046, 1114, 1190, 1244, 1247, 1384, 1441, 1513, 1527, 1545, 1582, 1673, 1687, 1689, 1705, 1850, 1869, 1871, 1876, 1877, 1899, 2027

[実施例2] <u>CCR3発現細胞膜画分へのエオタキシンの結合に対する阻害</u> 能の測定

ヒトCCR3発現K562細胞より調製した細胞膜画分を0.5mg/mLになるようにアッセイバッファー (25mM HEPES、pH7.6、1mM CaCl₂、5mM MgCl₂、0.5%BSA) に懸濁し膜画分懸濁液とした。被験化合物をアッセイバッファーで希釈した溶液を被験化合物溶液とした。[125 I] 標識ヒトエオタキシン (アマシャム社製) を 1μ Ci/mLになるようにアッセイバッファーで希釈した溶液を標識リガンド溶液とした。0.5%BSAで被覆した96ウェルマイクロプレートに、1ウェルあたり被験化合物溶液25 μ L、標識リガンド溶液25 μ L、膜画分懸濁液50 μ Lの順番に分注し撹拌後 (反応溶液100 μ L)、25 Γ Cで90分インキュベートした。

[0341]

反応終了後、あらかじめ 0. 5%ポリエチレンイミン溶液にフィルターを浸漬した 9 6 ウェルフィルタープレート (ミリポア社製)で反応液をフィルター濾過し、フィルターを冷洗浄バッファー (アッセイバッファー+ 0. 5 M NaCl) 150μLで4回洗浄した (冷洗浄バッファー150μLを加えた後、濾過)。フィルターを風乾後、液体シンチレーターを1ウェルあたり25μLずつ加え、フィルター上の膜画分が保持する放射能をトップカウント (パッカード社製)にて測定した。

[0342]

被験化合物の代わりに非標識ヒトエオタキシン 100ngを添加した時のカウントを非特異的吸着として差し引き、被験化合物を何も添加しない時のカウントを100%として、ヒトエオタキシンのCCR3膜画分への結合に対する被験化合物の阻害能を算出した。

[0343]

阻害率 (%) = $\{1 - (A-B) / (C-B)\} \times 100$

 $(A: 被験化合物添加時のカウント、B: 非標識ヒトエオタキシン 100 ng 添加時のカウント、C: <math>[^{125}I]$ 標識ヒトエオタキシンのみ添加した時のカウント)

[0344]

【発明の効果】

本発明の環状アミン化合物、その薬学的に許容される酸付加体、またはその薬学的に許容されるC₁~C₆アルキル付加体を有効成分とする薬剤、もしくは、CCR3が関与する疾患の治療薬もしくは予防薬は、CCR3拮抗剤として、エオタキシンなどのCCR3のリガンドの標的細胞に対する作用を抑制する作用を有するので、気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、蕁麻疹、接触皮膚炎、およびアレルギー性結膜炎などのアレルギー性疾患、ならびに潰瘍性大腸炎およびクローン病などの炎症性腸疾患など、好酸球、好塩基球、活性化T細胞などの組織への浸潤が病気の進行、維持に主要な役割を演じている疾患に対する治療薬および/または予防薬として有用である。また、CCR3拮抗作用に基づくHIV-1の感染を阻害する作用により、エイズの治療薬および/または治療薬としても有用である。

【書類名】

要約書

【要約】

【課題】 CCR3が関与する疾患の治療薬もしくは予防薬を提供する。

【解決手段】 下記式(I)で表わされる環状アミン誘導体、その薬学的に許容される酸付加体、またはその薬学的に許容される $C_1 \sim C_6$ アルキル付加体を有効成分として含有する、喘息、アレルギー性鼻炎などのCCR3が関与する疾患を治療および/または予防する作用を有する医薬。

【化1】

$$\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{k} \longrightarrow (CH_{2})_{n} - N - C - (CH_{2})_{p} - H - (CH_{2})_{q} - G - R^{6} \\
R^{2} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{m} - N - C - (CH_{2})_{p} - H - (CH_{2})_{q} - G - R^{6}
\end{array}$$
(I)

【選択図】

なし

出願人履歴情報

識別番号

[000003001]

1. 変更年月日

1990年 8月28日

[変更理由]

新規登録

住 所

大阪府大阪市中央区南本町1丁目6番7号

氏 名

帝人株式会社