## CS 4110

## Programming Languages & Logics

Lecture 28
Propositions as Types

Logics = Type Systems

## Inference Rules for Logic

We have used inference rules to build up inductively defined sets of PL concepts: operational steps, valid Hoare triples, associations between terms and types, etc.

Logicians use the same kind of notation to build up the set of true logical formulas.

## Inference Rules for Logic

We have used inference rules to build up inductively defined sets of PL concepts: operational steps, valid Hoare triples, associations between terms and types, etc.

Logicians use the same kind of notation to build up the set of true logical formulas.

Here's a rule from natural deduction, a *constructive* logic invented by logician Gerhard Gentzen in 1935:

$$\frac{\phi \qquad \psi}{\phi \wedge \psi} \wedge \text{-INTRO}$$

Given a proof of  $\phi$  and a proof of  $\psi$ , the rule lets you *construct* a proof of  $\phi \wedge \psi$ .

Let's use our usual 4110 tools to define the set of true formulas ("theorems").

Let's use our usual 4110 tools to define the set of true formulas ("theorems").

We'll start with a grammar for formulas:

$$\begin{array}{cccc} \phi & ::= & \top \\ & | & \bot \\ & | & X \\ & | & \phi \land \psi \\ & | & \phi \lor \psi \\ & | & \phi \to \psi \\ & | & \neg \phi \\ & | & \forall X. \ \phi \end{array}$$

where X ranges over Boolean variables and  $\neg \phi$  is an abbreviation for  $\phi \rightarrow \bot$ .

Let's define a judgment that that a formula is true given a set of assumptions  $\Gamma$ :

$$\Gamma \vdash \phi$$

where  $\boldsymbol{\Gamma}$  is just a list of formulas.

Let's define a judgment that that a formula is true given a set of assumptions  $\Gamma$ :

$$\Gamma \vdash \phi$$

where  $\Gamma$  is just a list of formulas.

If  $\vdash \phi$  (with no assumptions), we say  $\phi$  is a *theorem*.

#### **Examples:**

•  $\vdash A \land B \rightarrow A$ 

Let's define a judgment that that a formula is true given a set of assumptions  $\Gamma$ :

$$\Gamma \vdash \phi$$

where  $\Gamma$  is just a list of formulas.

If  $\vdash \phi$  (with no assumptions), we say  $\phi$  is a *theorem*.

#### **Examples:**

- $\vdash A \land B \rightarrow A$
- $\vdash \neg (A \land B) \rightarrow \neg A \lor \neg B$

Let's define a judgment that that a formula is true given a set of assumptions Γ:

$$\Gamma \vdash \phi$$

where  $\Gamma$  is just a list of formulas.

If  $\vdash \phi$  (with no assumptions), we say  $\phi$  is a *theorem*.

#### Examples:

- $\bullet \vdash A \land B \rightarrow A$
- $\vdash \neg (A \land B) \rightarrow \neg A \lor \neg B$
- $A, B, C \vdash B$



Au B

Let's write the rules for our judgment:

$$\frac{\vdots}{\Gamma \vdash \phi} \quad \frac{\vdots}{\Gamma \vdash \psi} \land \text{-INTRO}$$



#### Let's write the rules for our judgment:

$$\frac{\Gamma \vdash \phi \qquad \Gamma \vdash \psi}{\Gamma \vdash \phi \land \psi} \land \text{-Intro}$$
 
$$\frac{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \phi} \land \text{-elim1} \qquad \frac{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \psi} \land \text{-elim2}$$
 
$$\frac{\Gamma}{\Gamma} \leftarrow \psi \rightarrow \psi$$

(

#### Let's write the rules for our judgment:

$$\begin{split} \frac{\Gamma \vdash \phi \qquad \Gamma \vdash \psi}{\Gamma \vdash \phi \land \psi} \land \text{-Intro} \\ \\ \frac{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \phi} \land \text{-elim1} \qquad \frac{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \psi} \land \text{-elim2} \\ \\ \frac{\Gamma, \phi \vdash \psi}{\Gamma \vdash \phi \to \psi} \to \text{-intro} \end{split}$$

(

Let's write the rules for our judgment:

$$\begin{split} \frac{\Gamma \vdash \phi \qquad \Gamma \vdash \psi}{\Gamma \vdash \phi \land \psi} \land \text{-Intro} \\ \\ \frac{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \phi} \land \text{-elim1} \qquad \frac{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \psi} \land \text{-elim2} \\ \\ \frac{\Gamma, \phi \vdash \psi}{\Gamma \vdash \phi \to \psi} \to \text{-intro} \end{split}$$

...and so on.

$$\frac{\Gamma,\phi\vdash\psi}{\Gamma\vdash\phi\to\psi} \to \text{-INTRO} \qquad \frac{\Gamma\vdash\phi\to\psi}{\Gamma\vdash\psi} \to \text{-ELIM}$$
 
$$\frac{\Gamma\vdash\phi}{\Gamma\vdash\phi\wedge\psi} \land \text{-INTRO} \qquad \frac{\Gamma\vdash\phi\land\psi}{\Gamma\vdash\phi} \land \text{-ELIM1} \qquad \frac{\Gamma\vdash\phi\land\psi}{\Gamma\vdash\psi} \land \text{-ELIM2}$$
 
$$\frac{\Gamma\vdash\phi}{\Gamma\vdash\phi\lor\psi} \lor \text{-INTRO1} \qquad \frac{\Gamma\vdash\psi}{\Gamma\vdash\phi\lor\psi} \lor \text{-INTRO2}$$
 
$$\frac{\Gamma\vdash\phi\lor\psi}{\Gamma\vdash\phi\lor\psi} \lor \text{-INTRO2}$$
 
$$\frac{\Gamma\vdash\phi\lor\psi}{\Gamma\vdash\psi} \lor \text{-INTRO2}$$
 
$$\frac{\Gamma\vdash\phi\lor\psi}{\Gamma\vdash\psi} \lor \text{-INTRO2}$$
 
$$\frac{\Gamma\vdash\psi\to\psi}{\Gamma\vdash\psi} \lor \text{-ELIM}$$
 
$$\frac{\Gamma,P\vdash\phi}{\Gamma\vdash\forall P\cdotp\phi} \lor \text{-INTRO} \qquad \frac{\Gamma\vdash\forall P\cdotp\phi}{\Gamma\vdash\phi\{\psi/P\}} \lor \text{-ELIM}$$

Let's try a proof! We can write a proof that  $A \wedge B \rightarrow B \wedge A$  is a theorem.

Let's try a proof! We can write a proof that  $A \wedge B \rightarrow B \wedge A$  is a theorem.

| $\frac{\overline{A \wedge B \vdash A \wedge B} \text{ AXIO}}{A \wedge B \vdash B}$ | M<br>— ∧-ELIM2 | $\frac{\overline{A \land B \vdash A \land B}}{A \land B \vdash A} \stackrel{AXIOM}{\wedge} \land -ELIM1$ | ^-INTRO |  |          |
|------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------|---------|--|----------|
| $A \wedge B \vdash B \wedge A$                                                     |                |                                                                                                          |         |  | →-INTRO  |
| $\vdash A \land B \rightarrow B \land A$                                           |                |                                                                                                          |         |  | / INTIKO |

Let's try a proof! We can write a proof that  $A \wedge B \rightarrow B \wedge A$  is a theorem.

$$\frac{\frac{\overline{A \land B \vdash A \land B}}{A \land B \vdash B} \stackrel{\mathsf{AXIOM}}{\land} \land \mathsf{-ELIM2}}{A \land B \vdash A \land B} \stackrel{\mathsf{AXIOM}}{\land} \land \mathsf{-ELIM1}}{\frac{A \land B \vdash B \land A}{\land} \land \mathsf{-INTRO}} \rightarrow \mathsf{-INTRO}$$

Does this look familiar?

Let's try a proof! We can write a proof that  $A \wedge B \rightarrow B \wedge A$  is a theorem.



Every natural deduction proof tree has a corresponding type tree in System F with product and sum types! And vice-versa!

|        | Type Systems          | Formal Logic        |  |  |
|--------|-----------------------|---------------------|--|--|
| $\tau$ | Type                  | $\phi$ Formula      |  |  |
| $\tau$ | is inhabited          | $\phi$ is a theorem |  |  |
| е      | Well-typed expression | $\pi$ Proof         |  |  |

A program with a given type acts as a *witness* that the type's corresponding formula is true.

Every type rule in System F with product and sum types corresponds 1-1 with a proof rule in natural deduction:

| Type Systems  |           | Formal Logic  |             |
|---------------|-----------|---------------|-------------|
| $\rightarrow$ | Function  | $\rightarrow$ | Implication |
| ×             | Product   | $\wedge$      | Conjunction |
| +             | Sum       | V             | Disjunction |
| $\forall$     | Universal | $\forall$     | Quantifier  |

You can even add existential types to correspond to existential quantification. It still works!

Every type rule in System F with product and sum types corresponds 1-1 with a proof rule in natural deduction:

| Type Systems  |           | Formal Logic  |             |  |
|---------------|-----------|---------------|-------------|--|
| $\rightarrow$ | Function  | $\rightarrow$ | Implication |  |
| ×             | Product   | $\wedge$      | Conjunction |  |
| +             | Sum       | V             | Disjunction |  |
| $\forall$     | Universal | $\forall$     | Quantifier  |  |

You can even add existential types to correspond to existential quantification. It still works!

Is this a coincidence? Natural deduction was invented by a German logician in 1935. Types for the  $\lambda$ -calculus were invented by Church at Princeton in 1940.

## Propositions as Types Through the Ages

#### **Natural Deduction**

Gentzen (1935)

## **Type Schemes**

Hindley (1969)

#### System F

Girard (1972)

#### **Modal Logic**

Lewis (1910)

# Classical-Intuitionistic Embedding

Gödel (1933)

# $\Leftrightarrow$ **Typed** $\lambda$ -**Calculus** Church (1940)

 $\Leftrightarrow$  **Polymorphic**  $\lambda$ -**Calculus** Reynolds (1974)

⇔ Monads
 Kleisli (1965), Moggi (1987)

⇔ Continuation Passing Style Reynolds (1972)

## Term Assignment

This all means that we have a new way of proving theorems: writing programs!

## Term Assignment

This all means that we have a new way of proving theorems: writing programs!

To prove a formula  $\phi$ :

- 1. Convert the  $\phi$  into its corresponding type  $\tau$ .
- 2. Find some program v that has the type  $\tau$ .
- 3. Realize that the existence of v implies a type tree for  $\vdash v:\tau$ , which implies a proof tree for  $\vdash \phi$ .



## **Negation and Continuations**

Let's explore one extension. We'd like to use this rule from classical logic:

$$\frac{\Gamma \vdash \neg \neg \phi}{\Gamma \vdash \neg \neg \phi} \leftarrow (\phi \rightarrow \bot) \rightarrow \bot$$

but there's no obvious correspondence in System F.

## **Negation and Continuations**

Let's explore one extension. We'd like to use this rule from classical logic:

$$\frac{\Gamma \vdash \phi}{\Gamma \vdash \neg \neg \phi} \qquad CPS \left[ \prod_{n} \sum_{k=1}^{n} K \right]$$

$$CPS \left[ \prod_$$

but there's no obvious correspondence in System F.

Recall that  $\neg \phi$  is shorthand for  $\phi \to \bot$ . So  $\neg \neg \phi$  corresponds to the System F function type  $(\tau \to \bot) \to \bot$ .

So what we need is a way to take any program of any type  $\tau$  and turn it into a program of type  $(\tau \to \bot) \to \bot$ .

## **Negation and Continuations**

Let's explore one extension. We'd like to use this rule from classical logic:

$$\frac{\Gamma \vdash \phi}{\Gamma \vdash \neg \neg \phi} \qquad \text{int } \neg \neg \text{oid}$$

$$\text{(int } \neg \neg \text{int)} \rightarrow \text{void}$$

but there's no obvious correspondence in System F.

Recall that  $\neg \phi$  is shorthand for  $\phi \to \bot$ . So  $\neg \neg \phi$  corresponds to the System F function type  $(\tau \to \bot) \to \bot$ .

So what we need is a way to take any program of any type  $\tau$  and turn it into a program of type  $(\tau \to \bot) \to \bot$ .

Shockingly, that's exactly what the CPS transform does! A au becomes a function that takes a continuation  $au o \bot$  and invokes it, producing  $\bot$ .