

Mark Scheme (Results)

Summer 2021

Pearson Edexcel International Advanced Level In Statistics S1 Paper WST01/01

Question Number	Scheme	Marks	
1. (a)	First Counter Red Red Yellow Yellow Yellow Yellow Yellow	B1 B1	
(b)	$P(Y) = \frac{7}{12} \times \frac{2}{11} + \frac{3}{12} \times \frac{2}{11} + \frac{2}{12} = \left\{ \frac{42}{132} \text{ or } \frac{7}{22} \right\} \underline{\text{or}}$ $P(\text{Yellow and two counters}) = \frac{7}{12} \times \frac{2}{11} + \frac{3}{12} \times \frac{2}{11} = \left\{ \frac{20}{132} \text{ or } \frac{5}{33} \right\}$	(2) M1	
	$\frac{P([Y \cap R] \cup [Y \cap B])}{P(Y)} = \frac{\frac{20}{132}}{\frac{42}{132}}$	M1	
	$=\frac{20}{42} \text{or} \frac{10}{21} \text{oe}$	A1 (3) [5 marks]	
	Notes	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
(a)	1 st B1 for the remaining probs on first set of branches and at least one on 2 nd set 2 nd B1 for a fully correct tree diagram with all the correct probabilities		
(b)	1st M1 for a correct ft expression for P(Y) or P(Yellow and two counters)ft their tree diagram $eg \ 1 - \frac{7}{12} \times \frac{6+3}{11} - \frac{3}{12} \times \frac{7+2}{11}$ NB: The method is implied by the numbers in curly brackets but we do not need to see them to award the mark.		
	2 nd M1 for a correct ratio formula (symbols or words) <u>and</u> at least one correct fully correct ft ratio. Do not follow through probabilities > 1 or < 0	ft prob or	
	A1 for $\frac{10}{21}$ or exact equivalent. (Allow $0.\dot{4}7619\dot{0}$) NB if an exact correct fraction is not given and an awrt 0.476 is given get M1M1A0 if from correct working Generally if the answer is correct then award full marks (unless from incorrect working) or notes indicate otherwise		

_	stion nber	Scheme	Marks	
2.	(a)	B and C	B1	
	(b)	A and C independent gives:	(1)	
	(6)	P(C)×0.65 = 0.13 or $0.65 \times (r+0.13) = 0.13$ or $0.65 \times (0.48-s) = 0.13$		
		P(C) = 0.2 or $r + 0.13 = 0.2$ or $0.48 - s = 0.2$	A1	
		$r = \{0.2 - 0.13\} = 0.07$ or $s = \{0.48 - 0.2\} = 0.28$	A1	
		P(A) + r + s = 1 or $0.65 + "0.07" + s = 1$ or $0.65 + "0.28" + r = 1$	M1 A1	
		s = 1 - 0.72 = 0.28 and r = 1 - 0.93 = 0.07	$\begin{array}{ c c } \hline & & \\ & & \\ \hline & \\ \hline$	
	(c)	$P[(B \cup C)] = "0.2" + q \text{ or } 0.13 + "0.07" + q$	B1ft	
		$P(A \cap C') = p + q \{= 0.52\}$	B1	
		$\left\{ P\left[(A \cap C') \cap (B \cup C) \right] = q \Rightarrow \right\} "(p+q)" \times "(0.2+q)" = q \text{ or}$		
		" $(p+q)$ "×" $(0.13+"0.07"+q)$ " = q or " $(p+q)$ "×" $(1-s-p)$ " = $0.52-p$	M1	
		[Using $p + q = 0.52$] $0.52 \times "(0.2 + q)" = q \text{ or } 0.52(0.72 - p) = 0.52 - p$	M1	
		$q = \frac{13}{60}$	A1	
		$p = \frac{91}{300}$	A1	
		^P 300		
		Notes	(6) [12 marks]	
	(a)	B1 B and C seen. If they include A then B0	[12 marks]	
	(b)	1^{st} M1 for a correct equation for $P(C)$ using independence.		
		1 st A1 for $P(C) = 0.2$ correct linear equation for r or s		
		2^{nd} A1 for either $r = 0.07$ or $s = 0.28$		
		2^{nd} M1 for using $\sum p = 1$ Allow letter r and s or their values for r and s provid	ed they are	
		probabilities.	·	
		$3^{\text{rd}} \text{ A}1$ for both $s = 0.28$ and $r = 0.07$		
		NB: The quotations around the 0.07 ("0.07") imply that we ft their values	ıe	
	(c)	1 st B1ft for an expression (in q) for $P(B \cup C)$ ft their value of r or their "0.2"		
		eg 0.13 + "their r " + q Implied by 1^{st} or 2^{nd} M1 below. 2^{nd} B1 for a correct expression for $P(A \cap C')$ in terms of p and q or 0.52		
		Implied by 1^{st} or 2^{nd} M1below		
		1 st M1 for a correct use of independence (ft their probabilities), values or letter	rs.	
		Implied by 2 nd M1		
		2^{nd} M1 using $p + q = 0.52$ to gain a linear equation in one variable		
		1 st A1 for a correct fraction for q 2 nd A1 for a correct fraction for p		
		SC: If both p and q are given as equivalent	0.07	
		recurring decimals award A0A1 eg 0.216 and 0.303	0.28	
		-	0.20	

Question Number	Scheme	Marks	
3 (a)	Width = 2.5 (cm)	B1	
- ()	1.5 cm ² for freq of 5 so $6 \times 1.5 = 9$ cm ² for freq of 30 or fd $= \frac{5}{3}$ $w \times h = 9$	M1	
	So $h = 9 \div 2.5$ or $6 \div \frac{5}{3} = 3.6$ (cm)	A1	
	, <u> </u>	(3)	
(b)	$Q_2 = [12] + \frac{16}{25} \times 3$ allow use of $(n+1)$ giving $[12] + \frac{16.5}{25} \times 3$	M1	
	$= 13.92 = \text{awrt } \underline{13.9}$	A1 (2)	
(c)(i)	$\sum fx = 5 \times 6.5 + 13 \times 9 + 16 \times 11 + 25 \times 13.5 + 30 \times 17.5 + 11 \times 24 = 1452$	M1	
	$\bar{x} = 14.52 = \text{awrt } 14.5$	A1	
(ii)	$\sum fx^2 = 6.5^2 \times 5 + 9^2 \times 13 + 11^2 \times 16 + 13.5^2 \times 25 + 17.5^2 \times 30 + 24^2 \times 11 = 23280$	(2) M1	
	$\sigma_x = \sqrt{\frac{"23280"}{100} - ("14.52")^2} \text{ or } \sqrt{21.9696}$	M1	
	$\sigma_{\rm r} = 4.687 = \text{awrt } \underline{\textbf{4.69}}$	A1	
(3)		(3)	
(d)		M1	
	So proportion is 80.25 % or 0.8025 awrt 0.803	A1 (2)	
(e)	Profit = $2.2 \times "0.8025" + 0.8 \times \frac{0.75 \times 11}{100} - 1.2 \times "\left(1 - \left[0.8025 + \frac{0.75 \times 11}{100}\right]\right)"$	M1	
	= 1.6935 awrt <u>1.7 (p)</u>	A1 (2)	
	Notes	[14 marks]	
(a)	B1 for width = 2.5 (cm) M1 for gight of 0.002^2 or 0.002^2 or 0.002^2		
	M1 for sight of 9 cm ² or $w \times h = 9$ or fd $= \frac{5}{3}$ (o.e.)		
(b)	A1 for height = 3.6 (cm) M1 $c = 16$ $c = 9$ $c = m-12$ $c = 16$		
(6)	$ \text{for } \frac{16}{25} \times 3 \text{ or } \frac{9}{25} \times 3 \text{ or } \frac{m-12}{15-m} = \frac{16}{9} $		
	For any correct equation leading to Q_2 or correct fraction as part of Q_2		
	A1 for awrt 13.9 (use of $(n + 1)$ giving 13.98 = awrt 14.0)		
(c)(i)	M1 for attempt at Σfx with at least 3 correct terms or $\underline{or} 900 < \Sigma fx < 1800$		
	for info $\Sigma fx = 32.5 + 117 + 176 + 337.5 + 525 + 264$		
(ii)	A1 for awrt 14.5 (correct answer only 2/2) 1^{st} M1 for attempt at Σfx^2 with at least 3 correct terms or 20 000 $< \Sigma fx^2 < 26$ (000	
(11)	for info $\Sigma fx^2 = 211.25 + 1053 + 1936 + 4556.25 + 9187.5 + 6336$	JUU	
	Γ (0.4 · 50.2 · 6.4 · . 50.2 · 6.4 · . · . · . · . · . · . · . · . · . ·	not allow	
	2^{nd} M1 for a correct expression including $\sqrt{\text{ (ft their } \Sigma tx^2 \text{ if clear it is } \Sigma tx^2 \text{) Do}}$ $(\Sigma tx)^2 \text{ for } \Sigma tx^2$	not anow	
	A1 for awrt 4.69 (allow $s = 4.7107$ awrt 4.71) (correct answer only 3/	3)	
(d)	M1 for attempt at a correct expression (allow 1 error or omission) eg 100 –	, '	
	A1 for awrt 80.3% or 0.803	· -/ '	
(e)	M1 for a correct expression ft their 0.8025 o.e. eg		
	$[2.2 \times (100 - 11.5 - 8.25) + 0.8 \times 8.25 - 1.2 \times 11.5] \div 100$		
	Condone $[2.2 \times "80" + 0.8 \times (8) - 1.2 \times (12)] \div 100$		
	A1 for awrt 1.7 Allow £0.017 (this must have units)		

Question Number	Scheme	Marks	
4. (a)	$P(W < 120) = P\left(Z < \frac{120 - 165}{35}\right)$	M1	
	$= P(Z < -1.2857) = 1 - 0.9015 \text{ or } 1 - 0.9007285$ $= 0.09927 = \text{awrt } \mathbf{0.0985 \sim 0.0994}$	M1 A1 (3)	
(b)	e.g. $P(W > x) = \frac{1}{3}$ gives $\frac{x - 165}{35} = \pm 0.43$ (calculator 0.430727)	M1B1	
	Limits 149.9245 to 180.0754 awrt <u>150</u> to <u>180</u>	A1, A1 (4)	
(c)	$P(W < 200 \mid W > "180")$ or $\frac{P("180" < W < 200)}{P(W > "180")}$ or $\frac{1}{3}$	M1	
	$=\frac{0.8413(44739)-\frac{2}{3}}{\frac{1}{3}}$	A1 (num)	
	= 0.52403 (0.523~0.5264)	A1 (3)	
(d)	$\frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times 3!$ $= \frac{2}{9}$	M1;M1	
	$=\frac{2}{9}$	A1	
		(3) [13 marks]	
	Notes		
(a)	1^{st} M1 for standardising with 120 (allow 210), 165 and 35. Accept \pm 2 nd M1 for attempting $1-p$ [where $0.85] A1 for awrt 0.0985 \sim 0.0994 (Correct ans only 3/3)$		
(b)	M1 for standardising with x (o.e.) 165 and 35 and setting equal to a z value, $0.4 < z < 0.5$ $(Accept \frac{165 - x}{35} = \pm z \text{ where } 0.4 < z < 0.5)$		
	B1 for use of $z = 0.43$ or better We must see 0.43 or better. 1 st A1 for lower limit of awrt 150		
SC	2 nd A1 for upper limit of awrt 180 A0A1 for two limits symmetrically placed about 165 provided M1 scored NB: correct answers with no working can score M1B0A1A1		
(c)	M1 for a correct probability statement (either form) ft their 180 or a correct ratio 1st A1 for a correct numerator (awrt 0.175) 2nd A1 for an answer in the range awrt 0.523~0.5264 (use of 180 gives 0.5263869)		
(d)	$1^{\text{st}} M1$ for $\left(\frac{1}{3}\right)^3$ (or equivalent)		
	2^{nd} M1 for $p \times 3!$ (or equivalent) where 0		
	A1 for $\frac{2}{9}$ or any exact equivalent		

Question Number		Scheme	Marks
5. (a)	$\{\mathrm{E}(X)=\}$	$-2a-b+0\times c+b+4a$ or $2a$ { $2a = 0.5 \text{ so }$ } $a = 0.25$	M1 A1
(b)	$\{E(X^2) = \{Var(X^2)\}$	(2) M1 M1	
	,	$A(a) = \frac{1}{2}a + 2b'' - 0.5^2$ $A(b) = \frac{1}{2}a + 2b'' - 0.5^2$ A(b) = 0.25 = 5.01 (o.e.) e.g. "4.75" + 2b = 5.01 $A(b) = \frac{1}{2}a + 2b'' - 0.5^2$	A1 A1
	{Use o	of sum of probs = 1 to calculate a 2^{nd} value $\underline{c} = 0.24$	A1ft (5)
(c)(i)	$\{\mathrm{E}(Y)=$	$=5-8\times0.5$ } = <u>1</u>	B1
(ii)	{Var(}	$(-8)^2 \times 5.01$	M1
, ,		= 320.64 awrt <u>321</u>	A1
			(3)
(d)	$4X^{2} >$	5-8X	M1
		$(2X-1)(2X+5) > 0 \implies X > 0.5$	M1A1
	So need 2	X = 1 or 4 or probability of $a + b$	M1
		= 0.38	A1
			(5)
			[15 marks]
		Notes	
(a)	M1 A1	for any correct expression for $E(X)$ in terms of a (or a , b , c) for $a = 0.25$	
(b)	1 st M1 for attempt at an expression for $E(X^2)$ with at least 3 correct non-zero terms for a correct expression for $Var(X)$ eg"18 $a - c + 1$ " – 0.5 ² Allow with their value of a substituted		
	1 st A1 for a correct equation for b (or possibly c) eg" $18a - c + 1$ " – $0.5^2 = 5.01$ Allow with their value of a substituted		
	2 nd A1	for either $b = 0.13$ or $c = 0.24$ for using $a = 1$, 2×0.25 , 2×0.13 , or $b = (1, 2 \times 0.25)$, 0.24	1) · 2 to gain
	3 rd A1ft	for using $c = 1 - 2 \times "0.25" - 2 \times "0.13"$ or $b = (1 - 2 \times "0.25" - "0.24")$ the correct ft answer for their 2^{nd} value) + 2 to gain
(c)	B1 M1	for $\{E(Y) = \} 1$ for correct use of $Var(aX + b) = a^2 Var(X)$	
	A1	for awrt 321	
(d)	2^{nd} M1 for an attempt to solve or identifying correct X values		
	1st A1 for $X > 0.5$ [may also have $X < -2.5$] 3rd M1 for realising need $X = 1$ and 4 only or answer of their $(a + b)$ 2nd A1 for 0.38 (or exact equivalent) only (correct ans only 5/5)		

Question Number	Scheme	Marks	
6. (a)	${S_{yy} =} 42.63 - \frac{23.7^2}{16} = [7.524375]$	B1	
(b)	Use of $\overline{y} = 3.684 - 0.3242\overline{x}$; so $\sum x = 16 \times \left(\frac{3.684 - \frac{23.7}{16}}{0.3242}\right) = 108.71067.$	(1) M1; A1	
	$\{S_{xx} = \}756.81 - \frac{("108.71")^2}{16}; = 18.18435 \text{ awrt } \underline{18.2}$	M1; A1 (4)	
(c)	$b = \frac{S_{xy}}{S_{xx}} \Rightarrow S_{xy} = "18.1843" \times (-0.3242)[= -5.8953]; r = \frac{"-5.89536"}{\sqrt{"18.184" \times 7.524375}}$ $= -0.50399 = -0.49 \sim -0.51$	M1; M1	
(d)	Sub $x = 2$ in the regression line gives $y = 3.0356$	B1 (3) (1)	
(e)	St.dev = $\sqrt{\frac{S_{xx}}{n}} = \sqrt{\frac{"18.184"}{16}} = 1.066$	M1	
(5)	So limits are: $\frac{"108.71"}{16} \pm 3 \times "1.066" = 3.5965 \sim 9.9929 = awrt 3.6 \sim 10$ The probability of $\underline{x} = 2$ being in the range is very small;	M1, A1 (3) B1ft;	
(f)	so Behrouz's estimate is <u>unreliable</u>	dB1ft (2)	
(g)	Should use regression of x on y to estimate unemployment or equivalent So Andi's suggestion is not suitable or not to be recommended	B1 dB1 (2)	
	Notes	[16 marks]	
(a)	B1 Value given so must see sight of a correct expression – allow 561.69 for 23.7 ²		
(b)	1st M1 for clear use of regression line with \overline{y} or $\sum y$		
	$1^{\text{st}} \text{ A1} \text{for } \sum x = \text{awrt } 109$		
	2^{nd} M1 for a correct expression for S_{xx} ft their Σx		
	2 nd A1 for awrt 18.2		
(c)	1 st M1 for use of gradient to find S_{xy}		
	2 nd M1 for a correct expression for r ft their S_{xy} and S_{xx} A1 for an answer in the range $-0.49 \sim -0.51$		
(d)	B1 for sight of $y = 3.03$ or better. Allow 3.04		
(e)	1st M1 for a correct attempt at st. dev. ft their S_{xx} or $\sqrt{\frac{756.81}{16} - \left(\frac{"108.71"}{16}\right)}$	ft their Σx	
	2 nd M1 for one correct calcft their values		
(f)	A1 for a range awrt 3.6~10 1st B1ft for a correct reason ft their range in part (e) eg $x = 2$ is outside the range	ge. Allow	
	extrapolation 2 nd dB1ft dep on 1 st B1 for stating a correct conclusion for their range		
(g)	for a suitable reason based on reg line, eg regression line $(y \text{ on } x)$ can to estimate wages. Allow x instead of unemployment and y instead of	•	
	2 nd dB1 dep on 1 st B1 for suggesting not suitable (or equivalent)		