

Figure 4.13 For Example 4.5.

Find *I* in the circuit of Fig. 4.14 using the superposition principle.

Practice Problem 4.5

Figure 4.14
For Practice Prob. 4.5.

Answer: 375 mA.

4.4 Source Transformation

We have noticed that series-parallel combination and wye-delta transformation help simplify circuits. *Source transformation* is another tool for simplifying circuits. Basic to these tools is the concept of *equivalence*. We recall that an equivalent circuit is one whose *v-i* characteristics are identical with the original circuit.

In Section 3.6, we saw that node-voltage (or mesh-current) equations can be obtained by mere inspection of a circuit when the sources are all independent current (or all independent voltage) sources. It is therefore expedient in circuit analysis to be able to substitute a voltage source in series with a resistor for a current source in parallel with a

resistor, or vice versa, as shown in Fig. 4.15. Either substitution is known as a *source transformation*.

Figure 4.15

Transformation of independent sources.

A source transformation is the process of replacing a voltage source v_s in series with a resistor R by a current source i_s in parallel with a resistor R, or vice versa.

The two circuits in Fig. 4.15 are equivalent—provided they have the same voltage-current relation at terminals a-b. It is easy to show that they are indeed equivalent. If the sources are turned off, the equivalent resistance at terminals a-b in both circuits is R. Also, when terminals a-b are short-circuited, the short-circuit current flowing from a to b is $i_{sc} = v_s/R$ in the circuit on the left-hand side and $i_{sc} = i_s$ for the circuit on the right-hand side. Thus, $v_s/R = i_s$ in order for the two circuits to be equivalent. Hence, source transformation requires that

$$v_s = i_s R$$
 or $i_s = \frac{v_s}{R}$ (4.5)

Source transformation also applies to dependent sources, provided we carefully handle the dependent variable. As shown in Fig. 4.16, a dependent voltage source in series with a resistor can be transformed to a dependent current source in parallel with the resistor or vice versa where we make sure that Eq. (4.5) is satisfied.

Figure 4.16

Transformation of dependent sources.

Like the wye-delta transformation we studied in Chapter 2, a source transformation does not affect the remaining part of the circuit. When applicable, source transformation is a powerful tool that allows circuit manipulations to ease circuit analysis. However, we should keep the following points in mind when dealing with source transformation.

- 1. Note from Fig. 4.15 (or Fig. 4.16) that the arrow of the current source is directed toward the positive terminal of the voltage source.
- 2. Note from Eq. (4.5) that source transformation is not possible when R = 0, which is the case with an ideal voltage source. However, for a practical, nonideal voltage source, $R \neq 0$. Similarly, an ideal current source with $R = \infty$ cannot be replaced by a finite voltage source. More will be said on ideal and nonideal sources in Section 4.10.1.

Use source transformation to find v_o in the circuit of Fig. 4.17.

Example 4.6

Solution:

We first transform the current and voltage sources to obtain the circuit in Fig. 4.18(a). Combining the 4- Ω and 2- Ω resistors in series and transforming the 12-V voltage source gives us Fig. 4.18(b). We now combine the 3- Ω and 6- Ω resistors in parallel to get 2- Ω . We also combine the 2-A and 4-A current sources to get a 2-A source. Thus, by repeatedly applying source transformations, we obtain the circuit in Fig. 4.18(c).

Figure 4.17 For Example 4.6.

Figure 4.18 For Example 4.6.

We use current division in Fig. 4.18(c) to get

$$i = \frac{2}{2+8}(2) = 0.4 \,\text{A}$$

and

$$v_0 = 8i = 8(0.4) = 3.2 \text{ V}$$

Alternatively, since the 8- Ω and 2- Ω resistors in Fig. 4.18(c) are in parallel, they have the same voltage v_o across them. Hence,

$$v_o = (8 \parallel 2)(2 \text{ A}) = \frac{8 \times 2}{10}(2) = 3.2 \text{ V}$$

Find i_o in the circuit of Fig. 4.19 using source transformation.

Practice Problem 4.6

Figure 4.19 For Practice Prob. 4.6.

Answer: 1.78 A.

Example 4.7

Figure 4.20 For Example 4.7.

Find v_x in Fig. 4.20 using source transformation.

Solution:

The circuit in Fig. 4.20 involves a voltage-controlled dependent current source. We transform this dependent current source as well as the 6-V independent voltage source as shown in Fig. 4.21(a). The 18-V voltage source is not transformed because it is not connected in series with any resistor. The two 2- Ω resistors in parallel combine to give a 1- Ω resistor, which is in parallel with the 3-A current source. The current source is transformed to a voltage source as shown in Fig. 4.21(b). Notice that the terminals for v_x are intact. Applying KVL around the loop in Fig. 4.21(b) gives

$$-3 + 5i + v_x + 18 = 0 (4.7.1)$$

Figure 4.21 For Example 4.7: Applying source transformation to the circuit in Fig. 4.20.

Applying KVL to the loop containing only the 3-V voltage source, the 1- Ω resistor, and v_x yields

$$-3 + 1i + v_x = 0 \implies v_x = 3 - i$$
 (4.7.2)

Substituting this into Eq. (4.7.1), we obtain

$$15 + 5i + 3 - i = 0$$
 \Rightarrow $i = -4.5 \text{ A}$

Alternatively, we may apply KVL to the loop containing v_x , the 4- Ω resistor, the voltage-controlled dependent voltage source, and the 18-V voltage source in Fig. 4.21(b). We obtain

$$-v_x + 4i + v_x + 18 = 0 \qquad \Rightarrow \qquad i = -4.5 \text{ A}$$

Thus, $v_x = 3 - i = 7.5 \text{ V}.$

Practice Problem 4.7

Use source transformation to find i_x in the circuit shown in Fig. 4.22.

Figure 4.22 For Practice Prob. 4.7.

Answer: 7.059 mA.