Human Activity Recognition Dataset - A Comparative Study

Shriya Rai Rachit Jas

Outline

- Introduction
- Data Analysis
- Predictive Models with Feature Extractors
- Standalone Models with Automated Feature Extraction
- Conclusion

Quick Data Overview

- 30 volunteers' activity series data collected from Samsung SII
- **Age bracket** of volunteers: 19-48 years
- Total samples = 7352, Feature Vector = 561
- 6 classes: Walking, Standing, Sitting, Laying, Walking Upstairs, Walking Downstairs
- 2 sensors accelerometer + gyroscope (giving 3 dimensional data)
- Challenging Data
 - Multiclass problem, multivariate time series data for each patient
 - Total activity data for each volunteer non-constant
 - Each activity sequence length for volunteer non-constant
- Useful for:
 - For further health studies (for example, collecting data to detect possible sleeping period of people)

Data Transformations

- 80% of the time went in preparing the data!
- Standardization
- Series Data Interpolation (Order 3 Spline)
- Removing Extra Data
- Cutoff = "juggle" between
 data loss v.s. Interpolation error
 (obs. data) (missing data)
- Cutoff = based on central measures
 of tendency: mean, median
- 280 Activity Sequences, each
 being a (cutoff x 561) 14586 input vec

Activity Sequence Length Problem

4	
Time Lag (Non-constant)	
•	

Volunteer ID	Accelerometer Gyrosc Features		Gyroscope Features		Activity	
	·					
Valuntaar		•	-	-	Sitting	Activity
Volunteer 1						Sequence
		-				\downarrow
					Walking	Activity Sequence
						· · · · · · · · · · · · · · · · · · ·
	•	•	•	•	Sitting	Activity Sequence
Valuntaan		•	•	•	Citaling	Jequence
Volunteer 2					VA/a Ucina	Activity
	•				Walking	Sequence

Cutoff = 2 (Constant Time Lag) Volunteer ID Accelerometer Features Gyroscope Features Activity

Volunteer 1 Sitting

Interpolated a Row of Data

Volunteer ID	Accelerome	ter Features	Gyroscop	e Features	Activity	
Volunteer 1				·	Walking	Activity Sequence
Volunteer				·	g	Sequence

Activity

Sequence

Activity

Sequence

Volunteer 2	Sitting Activity Sequence
	Sequence

Removed Extra Columns

Volunteer ID	Accelerometer Features		Gyroscope Features		Activity
Volunteer 2		·		·	Walking
volunteer 2		·			Truining

Flattened Each Activity Sequence

Volunteer ID	Accele	Accelerometer Features + Gyros Time Lags		Gyrosco	pe Feature Lags	Activity	
Volunteer 1							Sitting

PCA Based Feature Extraction

Variance Threshold

Automated Feature Extraction (based on Neural Networks)

Optimizer: Adam Loss: Cross Entropy

Model	Layers	Architecture	Details
CNN	6 + 1	Conv/Max -> Dropout -> Conv/Max -> Dropout -> Fully Connected -> Fully Connected -> Softmax	Layers = 7 Kernel Size = 5 Stride = 1 Padding = 0 Pool Size = 2
RNN	4 + 1	RNN Unit -> Softmax	Hidden Dimensions = 100 Output Dimensions = 6

Interesting Observations

- CNN with Dropout: 0.95 Accuracy, Slower
- CNN without Dropout: **0.94** Accuracy, Slightly Faster
- RNN with Dropout: **0.98**, Slightly Slower
- RNN: **0.996** Accuracy (1 miss-classified sample from 2947 samples), Fastest and greater than **0.993** (accuracy as claimed in Kaggle!)

Final Conclusions

- Rooms for improvement:
 - Imputation Error needs to be studied more spline order might change with time
 - Still less data for training, (only 7532 samples => 280 sequences)
 - True infinite data distribution could be imbalanced
- Are complex algorithms worth the computational time wait?
 - Penalized Logistic Regression took couple of minutes to train (96% accuracy)!
 - CNN took **2 hours** for training (**95% acc**), RNN took **30 minutes for training** (**99.6% acc**)
- High Dimensional data (14586) => expected SVM to perform better