Electrónica digital Laboratorio 4

EJERCICIO 1

BICDIY	- co }	00	01	11	10	x 1545
0 0 0 ½ × × 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00	X.	0	1	1	
1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01	N	X	1	U	
0 1 0 2	11	0	X	1	1	-
	10	X	0	×	\propto	

EJERCICIO 2

(1) y = A·B·C	D+A·B·G·D+(A+B+C+D)			
A B G D 1 1	2 3 . 9	AB 00	01	11	10
0 0 1 0 0		CD 1	0	1	1
0 1 0 0 0	0 0 0 0	01 0	0	1	1
	1 0 1	11 0	O	0	1
4 0 1 1 0	1 0 1	10 0	ن	1	1
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 1	y= B	CD + AC+	AB + A(,0'
Co			x 10	00	7 1 0 1
2) $y = \overline{A \cdot B \cdot C} + \overline{B} \cdot$	C+B.C	c AB 00 01	4.4	10	
A B C 1 0 0 0 0 0 0 1 0 0 1 0 0	2 3 y 1 0 1 1 0 1 0 0 0 1 1	0 1 0	0		
1 0 0 0	1 0 1 0 0 1	y = B + C	J		
1 1 1 1 0		$ \begin{array}{c cccc} A & B \\ \chi & O \\ \chi & \chi \end{array} $	20 1	y 1	

EJERCICIO 3 y 4

Código TABLA_1 y TABLA_2

```
000
         1 1
    1
 0
         0 1
0
         1
 1
    0
           0
0
 1
    1
         0
           0
 0
    0
         1
           1
 0
         1
    1
  1 0
         0
          0
  1
    1
         10
```



```
B C D
0000
          1
Ю
 0 0 1
          0
0
 0 1 0
          0
0
 0 1 1
          1
0
 100
          0
 101
          1
0
 1 1 0
          1
0
 1 1 1
          0
 000
          0
 001
          1
1
 0 1 0
          1
 0 1 1
          0
 100
          1
 101
          0
1
 1 1 0
          0
 1 1 1
          1
```

```
37
38 module TABLA_3(input wire A, B, C, D, output wire Y);
39
40 assign Y = (~A & ~B & ~C & ~D) | (A & B & ~C & ~D) | (~A & B & ~C & D) | (A & ~B & C & D) | (A & B & C & D) | (A & B & C & ~D) | (A & B & C & ~D);
41
42 endmodule
43
```


Α	В	C	D	Υ
-				
0	0	0	0	0
0	0	0	1	0
0 0	0	1		0
0	0	1 1		0
0	1	0	1 0	
0	1 1 1	0	1	1 1 1 1
0	1	1	1 0	1
0	1	1	1	1
1	0	0	1 0	0
1	0	0	1	1
1	0	1		0
1	0	1		1
1	1	0	1 0	1
1	1 1 1	0	1 0	1
000011111111	1	1		1 1 1 1 1
1	1	1	1	1

```
86 // Ecuación a implementar Y = B + AD
87
88 module TABLA_7(input wire A, B, C, D, output wire Y);
89
90 assign Y = (B) | (A & D);
91
92 endmodule
93
```



```
95 // Ecuación a implementar Y = A'C' + AB
96 module TABLA_8(input wire A, B, C, output wire Y);
97
98 assign Y = (~A & ~C) | (A & B);
99
100 endmodule
```

```
АВС
        1
0 0 0
        0
0 0 1
0
 1 0
        1
0
  1 1
        0
  0 0
        0
 0 1
        0
  1 0
        1
  1
    1
         1
```

```
153

154  //TABLA_8

155  reg al, a2, a3;

wire led8;

157

158  TABLA_8  G8(al,a2,a3, led8);

159

160  initial begin

161  #63

162  $display("\n");

163  $display("A B C | Y");

$display("-----");

165  $monitor("%b %b %b | %b", al,a2,a3, led8);

166

167  al = 0; a2 = 0; a3 = 0;

168  #1 al = 0; a2 = 0; a3 = 1;

169  #1 al = 0; a2 = 1; a3 = 0;

170  #1 al = 1; a2 = 0; a3 = 0;

171  #1 al = 1; a2 = 0; a3 = 0;

172  #1 al = 1; a2 = 0; a3 = 0;

173  #1 al = 1; a2 = 1; a3 = 0;

174  #1 al = 1; a2 = 1; a3 = 1;

175

176  end

177

endmodule
```

DIAGRAMA DE TIMING

EJERCICIO 5

TAB	LA F	POS
А В	С	Y
9	0 1	0 0
9 1 9 1 1 9	0 1 a	0 0 1
A B 0 0 0 1 1 0 1 1 1 1 1	0 1 0 1 0	Y 0 0 0 1 0 1
1 1	1	1
A B	С	Y 0 0 0 1 0 1
9 9	0	0
0 0	1	0
0 1	0	0
0 1	1	0
0 0 0 1 0 1 1 0 1 1 1 1	0 1 0 1 0 1	0 0 0 1 0 1
1 0	1	0
1 1	0	1
1 1	1	1

Diagrama de Timing

Código BM Y GLM de la tabla SOP

Código BM y GLM de la tabla POS

```
//Tabla Pos con Behavioral modelling
module TABLA_SOP_BM(input wire A, B, C, output wire Y);

assign Y = (A & -B & -C) | (A & B & -C) | (A & B & C);

endmodule

**TABLA_POS_GLM G3(c1,c2,c3, led3);

**TABLA_POS_GLM G3(c1,c2,c3, led3);

**TABLA_POS_BM G4(d1,d2,d3, led4);

**TABLA_POS_GLM G3(c1,c2,c3, led3);

**TABLA_POS_GLM G3(c1,c2,c3, l
```

Códigos BM y GLM de la tabla con ecuación minimizada

Link al repositorio https://github.com/valeelorraine/Laboratorios_Digital