Secure Publish Subscribe Compute System

Anonymous Author(s)

ABSTRACT

Your abstract should go here. You will also need to upload a plaintext abstract into the web submission form.

CCS CONCEPTS

• **Security and privacy** → Use https://dl.acm.org/ccs.cfm to generate actual concepts section for your paper;

KEYWORDS

template, formatting, pickling

- 1 INTRODUCTION
- 2 RELATED WORK
- 3 PROTOCOL
- * We minimize the communication with Garbler, using clever tricks, e.g., we don't need to send labels to Garbler for circuit garbling instead they generate it independently using shared seed.
- * publishers and subscribers only talk to the broker. The communication between publishers and subscriber is done through Broker using end-to-end encryption. This ensures that
- * Does the subscriber seed needs to be computation specific? **Initialization.**
- Each new publisher:
 - sends its public key pk to Broker and Garbler and obtains public keys pk_B and pk_C from Broker and Garbler.
 - sends a policy specifying allowed computations on its data.
 - generates a truly random seed s_P and send it to Garbler through authenticated and encrypted channel using Garbler public key pk_C. We use ratcheting for forward security if seed is compromised.
- Each new subscriber:
 - sends its public key pk^{\prime} to Broker and Garbler.

Subscription.

- To subscribe computation c, subscriber sends a subscription request containing c to Broker and requests an output masking seed from Garbler.
- Garbler sends a truly random seed s'_c for computation c; generating a new seed if this is the first subscription for computation

Publication.

• To publish kth value, publisher generates two pseudorandom wire labels, w_0 and w_1 , using seed s_i , for each bit of the value. w_0 is ath and w_1 is (a+1)th numbers in pseudorandom sequence generated using seed s_i ; $2kL \le a < 2(k+1)L$, L being the bitlength of a value.

Computation.

 After Broker has wire labels for all publishers' inputs required for computation c, it requests Garbler to garble circuit for c.

- Garbler independently generates input wire labels using seed s_P and an output mask m using seed s'_c for each bit of output.
- Garbler generates garbled circuit for $M \circ C(.)$, composition of masking function M and computation C, and sends it to Broker.
- Broker evaluates the garbled circuit using wire labels sent by publishers, obtains masked output $o \oplus m$, and send $o \oplus m$ to all subscribers of computation c.
- Subscribers generate the mask m using the seed s'_c and unmask the output o.
- * What if one publisher doesn't send wire labels. After timeout the broker can inform the Garbler and it will use zero for such values in the circuit.
- 4 SYSTEM
- **5 EVALUATION**
- 6 CONCLUSIONS

REFERENCES

1