

ITERA

APLIKASI FIREFLY ALGORITHM UNTUK '-PEMECAHAN MASALAH TRAVELING SALESMAN PROBLEM:

GEDUNG KAMPUS INSTITUT TEKNOLOGI SUMATERA

Alfian Dwi Kurnia Alfa Khoirin Dimas Wahyu Saputro Rezki P.Manullang

Kelompok 7

Table of contents

1

2

3

Latar Belakang

Masalah

Deskripsi Data

4

5

6

Metode

Pemodelan Individu

Hasil dan Analisis

7

Kesimpulan

Travelling Salesman Problem (TSP) merupakan masalah matematika untuk menemukan jarak terpendek untuk mengunjungi seluruh kota, tepat hanya sekali. Salah satu algoritma yang bisa digunakan yaitu Firefly Algorithm (FA). FA merupakan salah satu contoh komputasi yang terinspirasi dari alam untuk mencari solusi optimisasi baru. Contoh penerapan TSP menggunakan FA, adalah kasus mencari rute terpendek untuk mengunjungi seluruh gedung yang ada di ITERA. Dengan menggunakan TSP melalui pendekatan Firefly Algorithm, dapat dicari solusi paling optimal mengenai hal ini.

24 Titik275 Ha

Deskripsi Data

Dengan menggunakan Google Maps kami melakukan penandaan sebanyak 24 titik yang tersebar dari gerbang, masjid, gedung perkuliahan, laboratorium, dan gedung lainnya. Setelah dilakukan didapatkan data Latitude dan Longitude masing-masing titik dan dilakukan data dari .kml menjadi .csv .

Deskripsi Data

	212562	0.179391	0.018479	Mosque	Mosque						ITERA	ITERA			
	212562	0.179391	0.018479												
				0.168656	0.544826	0.213063	0.335797	0.246667	0.401103		0.756409	0.917457	0.291970	0.792995	0.2010
562 0.0	000000	0.039762	0.205152	0.075938	0.757345	0.425110	0.548052	0.458784	0.613644		0.968041	1.129832	0.503702	1.005080	0.1346
391 0.0	039762	0.000000	0.170212	0.076850	0.722972	0.392444	0.515077	0.426027	0.579937		0.932355	1.094956	0.471360	0.969811	0.1051
479 0.2	205152	0.170212	0.000000	0.167377	0.552772	0.223295	0.345375	0.256673	0.409808	err.	0.762890	0.924915	0.302326	0.799989	0.1846
656 0.0	075938	0.076850	0.167377	0.000000	0.707505	0.373170	0.495626	0.406651	0.562672		0.921649	1.080464	0.450103	0.957203	0.1778
lumns															
13	391 0. 479 0. 556 0.	0.039762 479 0.205152 556 0.075938	391 0.039762 0.000000 479 0.205152 0.170212 556 0.075938 0.076850	391 0.039762 0.000000 0.170212 479 0.205152 0.170212 0.000000 556 0.075938 0.076850 0.167377	391 0.039762 0.000000 0.170212 0.076850 479 0.205152 0.170212 0.000000 0.167377 556 0.075938 0.076850 0.167377 0.000000	391 0.039762 0.000000 0.170212 0.076850 0.722972 479 0.205152 0.170212 0.000000 0.167377 0.552772 556 0.075938 0.076850 0.167377 0.000000 0.707505	391 0.039762 0.000000 0.170212 0.076850 0.722972 0.392444 479 0.205152 0.170212 0.000000 0.167377 0.552772 0.223295 556 0.075938 0.076850 0.167377 0.000000 0.707505 0.373170	391 0.039762 0.000000 0.170212 0.076850 0.722972 0.392444 0.515077 479 0.205152 0.170212 0.000000 0.167377 0.552772 0.223295 0.345375 356 0.075938 0.076850 0.167377 0.000000 0.707505 0.373170 0.495626	391 0.039762 0.000000 0.170212 0.076850 0.722972 0.392444 0.515077 0.426027 479 0.205152 0.170212 0.000000 0.167377 0.552772 0.223295 0.345375 0.256673 356 0.075938 0.076850 0.167377 0.000000 0.707505 0.373170 0.495626 0.406651	391 0.039762 0.000000 0.170212 0.076850 0.722972 0.392444 0.515077 0.426027 0.579937 479 0.205152 0.170212 0.000000 0.167377 0.552772 0.223295 0.345375 0.256673 0.409808 556 0.075938 0.076850 0.167377 0.000000 0.707505 0.373170 0.495626 0.406651 0.562672	391 0.039762 0.000000 0.170212 0.076850 0.722972 0.392444 0.515077 0.426027 0.579937 479 0.205152 0.170212 0.000000 0.167377 0.552772 0.223295 0.345375 0.256673 0.409808 456 0.075938 0.076850 0.167377 0.000000 0.707505 0.373170 0.495626 0.406651 0.562672	391 0.039762 0.000000 0.170212 0.076850 0.722972 0.392444 0.515077 0.426027 0.579937 0.932355 479 0.205152 0.170212 0.000000 0.167377 0.552772 0.223295 0.345375 0.256673 0.409808 0.762890 556 0.075938 0.076850 0.167377 0.000000 0.707505 0.373170 0.495626 0.406651 0.562672 0.921649	0.039762 0.000000 0.170212 0.076850 0.722972 0.392444 0.515077 0.426027 0.579937 0.932355 1.094956 0.205152 0.170212 0.000000 0.167377 0.552772 0.223295 0.345375 0.256673 0.409808 0.762890 0.924915 0.075938 0.076850 0.167377 0.000000 0.707505 0.373170 0.495626 0.406651 0.562672 0.921649 1.080464	0.039762 0.000000 0.170212 0.076850 0.722972 0.392444 0.515077 0.426027 0.579937 0.932355 1.094956 0.471360 0.205152 0.170212 0.000000 0.167377 0.552772 0.223295 0.345375 0.256673 0.409808 0.762890 0.924915 0.302326 0.075938 0.076850 0.167377 0.000000 0.707505 0.373170 0.495626 0.406651 0.562672 0.921649 1.080464 0.450103	0.039762 0.000000 0.170212 0.076850 0.722972 0.392444 0.515077 0.426027 0.579937 0.932355 1.094956 0.471360 0.969811 0.205152 0.170212 0.000000 0.167377 0.552772 0.223295 0.345375 0.256673 0.409808 0.762890 0.924915 0.302326 0.799989 0.075938 0.076850 0.167377 0.000000 0.707505 0.373170 0.495626 0.406651 0.562672 0.921649 1.080464 0.450103 0.957203

Metode

```
Initialize all the parameters (\alpha, \beta, \gamma, n);
Initialize randomly a population ofnfirefies;
Evaluate the fitness of the initial population atxibyf(xi) fori= 1, ..., n;
while (t < MaxGeneration) do
         for All fireflies (i= 1:n) do
                  for All other fireflies (j= 1:n) (inner loop) do
                           if Fireflyjis better/brighter than i then
                                     Move firefly i towards j according to Eq. (1);
                           end
                  end
                  Evaluate the new solution and accept the new solution if better;
         end
         Rank and update the best solution found so far;
         Update iteration countert←t+ 1;
         Reduce α (randomness strength) by a factor;
end
```


Pemodelan Individu

Inisialisasi individu merupakan individu yang di generate secara random untuk mendapatkan populasi yang dibutuhkan pada pembuatan TSP. Pada progress kali ini kami mengenerate individu dengan range 1 sampai dengan 10 secara random berdimensi 24 atau n=24 yang selanjutnya kami gunakan untuk mengenerate populasi.

Hasil dan Analisis

a.Solusi terbaik

Solusi terbaik terjadi ketika parameter $\gamma=20\gamma=20$. Visualisasi gambar dapat dilihat pada tabel 3.1.

Setelah dijalankan, hasilnya tidak sesuai dengan perkiraan penulis. Jarak yang didapatkan adalah 7.842114. Nilai parameter gamma ketika 20 masih lebih besar dari pada jika menggunakan parameter gabungan.

Urut	Nama Titik	Kode Titik
1	Galeri	6
2	Gedung FITERA	12
3	GKU1	17
4	Gedung Labtek 1 ITERA	13
5	Poliklinik ITERA	22
6	At Tanwir Mosque	4
7	Gedung B ITERA	8
8	Rumah Ibadah Multi Agama	23
9	Gedung EITERA	11
10	Gedung Labtek 2 ITERA	14
11	Gedung Labtek 3 ITERA	15
12	Baitul Ilmi Mosque	5
13	Gedung D ITERA	10
14	Gedung C ITERA	9
15	Gedung A ITERA	7
16	GSG Itera	18
17	Asrama 4	3
18	Asrama 1	0
19	Kantin Rumah Kayu	21
20	Wisma	19
21	Asrama 3	2
22	Asrama 2	1
23	Gerbang Utama	16
24	Kantin BKL ITERA	20

Tabel 3.1 Solusi Terbaik

Setelah parameter pada tabel 3.3 digunakan, akan menghasilkan solusi yang bervariasi. Hasil setiap parameter dapat dilihat pada analasis nomor 2. Hasil terbaik setiap parameter sebagai berikut:

Nama Parameter	Nilai Parameter	Jarak (KM)
Alpha (α)	30	7.644359388
Beta0 (β ₀)	20	7.585667705
Gamma (γ)	20	7.462324779

Tabel 3.4 Hasil Terbaik dari Parameter Metode

c.Iterasi Berhenti

Dari percobaan memvariasikan parameter maksimal generasi, penulis mencoba memvisualisasikan, dan didapatkan kesimpulan bahwa generasi tidak terlalu mempengaruhi jarak TSP. Terlihat meskipun kami memvariasikan maksimal generasi, jarak terendah selalu pada jarak 7.842114 KM.

Gambar 3.3 Visualisasi Parameter Maksimal Generasi

2. Visualisasi hubungan antara parameter dan solusi terbaik.

a.Parameter

(i). Alpha (randomization rate) Pada visualisasi diatas kami mendaptkan solusi terbaik pada TSP kunang – kunang dengan merubah/ memvariasikan parameter alpha 0.01,0.1,1,10,20,30,50 dan 100 didapatkankan variasi dengan solusi terbaik pada Alpha ke-6 dengan nilai alpha sebesar 30 dengan jarak 7.644359.

(ii). Betao (attractive firefly when n)

Jika dilihat pada visualisasi diatas didapatkan solusi terbaik pada TSP kunang-kunang dengan merubah parameter Betao 0.01, 0.1, 1, 2, 10, 20, 30, dan 50 di dapatkan variasi dengan solusi terbaik terdapat pada Betao ke-6 dengan nilai Betao sebesar 20 dengan jarak 7.58566.

(iii). Gamma (coefficient of light) Jika dilihat pada visualisasi diatas didapatkan solusi terbaik pada TSP kunang-kunang dengan merubah parameter Gamma 0.01, 0.1, 1, 2, 10, 20, 30, dan 50 di dapatkan variasi dengan solusi terbaik terdapat pada Gamma ke-6 dengan nilai Gamma sebesar 20.

b. Jumlah Individu

Jika dilihat pada visualisasi diatas didapatkan solusi terbaik pada TSP kunang-kunang dengan merubah parameter Jumlah Individu 5, 10, 15, 20, 30, 50, 75 dan 100 di dapatkan variasi dengan solusi terbaik terdapat pada Jumlah Individu ke-8 dengan nilai individu sebesar 100.

c. Maksimal Generasi

Jika dilihat pada visualisasi diatas didapatkan solusi terbaik pada TSP kunang-kunang dengan merubah parameter Jumlah maksimal generasi 1, 2, 3, 5, 10, 15, 20 dan 50 di dapatkan variasi dengan solusi terbaik terdapat pada Jumlah maksimal generasi 1-7 dengan nilai maksimal generasi sebesar 20.

Kesimpulan

- 1. Penerapan Firefly Algorithm dalam Travelling Salesman Problem berhasil diterapkan pada kasus Gedung Kampus Institut Teknologi Sumatera.
- 2. Pada percobaan, didapatkan **solusi optimal** ketika parameter nilai gamma sebesar 20 dengan jarak 7.462324779 KM.
- 3. Dari hasil analisis parameter r jumlah iterasi, jumlah populasi, maupun penentuan nilai gamma, didapatkan suatu kecenderungan Kecepatan pemrosesan data pada firefly algorithm berbanding terbalik dengan meningkatnya nilai parameter firefly. Semakin kecil nilai parameter yang dipakai, maka kecepatan pemrosesan data akan jauh lebih cepat. Begitu pula sebaliknya.

