Decision Theory

Sofia Olhede

October 13, 2020

Loss functions

2 Decision Theory

4 Hypothesis Testing

Loss functions IV

The risk is

$$R(\lambda, \widetilde{\lambda}) = \mathbb{E}_{\lambda} \left[\frac{n\lambda \overline{Y}}{n-1} - 1 - \log \left(\frac{n\lambda \overline{Y}}{n-1} \right) \right]$$

$$= \mathbb{E}_{\lambda} \left[\lambda \overline{Y} - 1 - \log(\lambda \overline{Y}) \right] + \frac{\mathbb{E}_{\lambda} \left[\lambda \overline{Y} \right]}{n-1} - \log \left(\frac{n}{n-1} \right)$$

$$= \mathbb{E}_{\lambda} \left[\lambda \overline{Y} - 1 - \log(\lambda \overline{Y}) \right] + g(n). \tag{1}$$

- To derive the simplification we write $\overline{Y} = \frac{n-1}{n}\overline{Y} + \frac{1}{n}\overline{Y}$.
- Note that $\mathbb{E}_{\lambda}(\bar{Y}) = \lambda^{-1}$. Thus

$$g(n) = \frac{1}{n-1} - \log\left(\frac{n}{n-1}\right).$$

• We claim that g(n) > 0 once $n \ge 2$.

Loss functions V

Random variable A has [first-order stochastic] dominance over random variable B if for any outcome x, A gives at least as high a probability of receiving at least x as does B, and for some x, A gives a higher probability of receiving at least x.

• Using that
$$\log(x) = \int_1^x t^{-1} dt$$
 this follows if
$$\frac{1}{x} > \log(x+1) - \log(x), \quad x > 1$$

$$\Leftrightarrow \frac{1}{x} > \int_1^{x+1} t^{-1} dt, \quad x > 1. \tag{2}$$

This inequality holds by a rectangle area bound on the integral, as follows:

$$\frac{1}{x} = [(1+x)-x]\frac{1}{x} = \int_{x}^{x+1} \frac{1}{x} dt > \int_{x}^{x+1} \frac{1}{t} dt,$$

when x > 1.

• It therefore follows $R(\widetilde{\lambda}, \lambda) > R(\widehat{\lambda}, \lambda)$ and so $\widetilde{\lambda}$ dominates $\widehat{\lambda}$.

Decision Theory

- We can push generality even further, and obtain an all encompassing framework.
- Called decision theory, it views inference as a game between nature and the statistician.
- Recall our general framework for statistical inference:

Reminder on things

1 Model phenomenon by distribution $F(y_1,\ldots,y_n;\theta)$ for some $n\geq 1$.

- **2** Distributional form is known but $\theta \in \Theta$ is not known.
- 3 Observe realisation of (Y_1, \ldots, Y_n) from this distribution.
- 4 Use (Y_1, \ldots, Y_n) in order to make assertions concerning the true value of , and quantify the uncertainty associated with these assertions.
- The decision theory framework formalises step (4) to include estimation, testing, and confidence intervals.

Decision Theory II

- In the decision theory framework we usually have these formal constructs:
 - * A family of distributions \mathcal{F} usually assumed to admit densities (frequencies).
 - * A parameter space Θ that is used to parameterize $\mathcal{F} = \{F_{\theta}\}_{\theta \in \Theta}$. This models the possible realizations that may happen.
 - * The space on which observations are taken, the <u>data</u> space \mathcal{Y}^n .
 - * The <u>action space</u> which represents the space of possible actions or decisions or plays/moves available to the statistician.
 - * A loss function $\mathcal{L}: \Theta \times \mathcal{A} \to \mathbb{R}^+$.
 - * A set \mathcal{D} of decision rules. Any $\delta \in \mathcal{D}$ is a (measurable) function $\delta : \mathcal{Y}^n \mapsto \mathcal{A}$. This corresponds to possible strategies.

Decision Theory III

ullet The statistician would pick δ to limit losses. As the losses are random, actions are associated with risk.

- Given a decision rule $\delta: \mathcal{Y}^n \mapsto \mathcal{A}$ the risk is:
- $R(\delta,\theta) = \mathbb{E}\{\mathcal{L}(\delta(Y,\theta))\}$. We compare decision rules in terms of their risk functions. The smaller the risk, the better!
 - Risk is not uniform, but depends on θ the true state of nature.
 - So comparisons can be made

picking - decision rule 1 Uniform comparisons (hard). Seek dominance everywhere in Θ .

- 2 Minimax (relaxed). Compare worst-case risks over Θ .
- 3 Bayes (relaxed). Compare average risk over Θ .

Risk

- ullet Rather than look at risk at every value of heta minimax risk concentrates (focuses) on the maximum risk:
- Definition (Minimax decision rule): Let \mathcal{D} be a class of decision rules for an experiment ($\{f_{\theta}\}_{\theta \in \Theta}, \mathcal{L}$). If

$$\sup_{\theta \in \Theta} R(\delta, \theta) \leq \sup_{\theta \in \Theta} R(\delta', \theta),$$

then δ is a minimax rule.

- Rather than the behaviour at all θ , Bayes risk is a weighted average.
- Definition (<u>Bayes Risk</u>): Let $\pi(\theta)$ be a probability density (or frequency) and let δ be a decision rule for the experiment $(\{f_{\theta}\}_{\theta\in\Theta},\mathcal{L})$. The π -Bayes risk is defined as

$$r(\delta, \pi) = \int_{\Theta} R(\delta, \theta) \pi(\theta) d\theta = \int_{\Theta} \int_{\mathcal{Y}} \mathcal{L}(\delta(\mathbf{y}), \theta) f_{\theta}(\mathbf{y}) \pi(\theta) d\mathbf{y} d\theta.$$

If $\delta \in \mathcal{D}$ is such that $r(\delta, \pi) \leq r(\delta', \pi)$ for all $\delta' \in \mathcal{D}$ then δ is a decision rule wrt π .

Risk II

- The choice of prior $\pi(\theta)$ places different emphasis for different values of θ considering what prior knowledge we have.
- Minimax rules are useful to establish the fundamental inferential complexity or a statistical experiment.
- Using them for more practical purposes requires caution.
- \bullet Motivated as follows: we do not know anything about θ so let us insure ourselves against the worst thing that can happen.
- Minimax is quite a conservative point-of-view.
- Bayes rules are quite attractive as they <u>can nearly never be uniformly</u> dominated.
- Intuitively, if you can show your rule to be Bayes for a nice prior, you know you are doing reasonably well.

Hypothesis Testing

- Model a phenomenon by a distribution $F(y_1, \ldots, y_n; \theta)$ on \mathcal{Y}^n for some $n \ge 1$.
- Distributional form is known but $\theta \in \Theta$ is unknown.
- Observe $(Y_1 \ldots Y_n)^T \in \mathcal{Y}^n$ from this distribution.
- Use the observed data $(Y_1 \ldots Y_n)^T$ to make statements about θ .
- The first assertion we wish to make is hypothesis testing. Given two disjoint regions Θ_0 and Θ_1 , i.e. we have $\Theta_0 \cap \Theta_1 = \emptyset$, which interval
- is more likely to contain the true value of θ ?

 We assume we know $\theta \in \Theta_0 \cup \Theta_1$.

 We need to use $(Y_1 \ldots Y_n)^T \in \mathcal{Y}^n$ to decide between the two possibilities.

Hypothesis Testing II

Often in science two concurrent theories need to be confronted with the empirical evidence.

The <u>null hypothesis</u> H_0 which states that $\theta \in \Theta_0$

$$H_0: \theta \in \Theta_0.$$

The <u>alternative hypothesis</u> that postulates $\theta \in \Theta_1$

$$H_1: \theta \in \Theta_1.$$

- Definition (Test Function): A test function is a map $\delta: \mathcal{Y}^n \mapsto \{0,1\}$.
- Obtaining 0 or 1 must be decided on whether or not the sample satisfies a certain condition:

es a certain condition:
$$\delta(\mathsf{Y}) = \left\{ \begin{array}{ll} 1, & \text{if} & T(Y_1 \dots Y_n) \in \mathsf{C} \\ 0, & \text{if} & T(Y_1 \dots Y_n) \notin \mathsf{C} \end{array} \right.$$

Hypothesis Testing III

- T is a statistic called a <u>test statistic</u> and;
- C is a subset of the range of T and is called the <u>critical region</u>.
- We can write

$$\delta(Y) = I(T(Y_1 \ldots Y_n) \in C).$$

- To choose good test functions we need to quantify the performance of a test function.
- Remark that, obviously, δ has a Bernoulli distribution:

$$\delta = \left\{ \begin{array}{ll} 1, & \text{if} & T(Y_1 \dots Y_n) \in C \\ 0, & \text{if} & T(Y_1 \dots Y_n) \notin C \end{array} \right..$$

- So a good test function must have a sampling distribution concentrated around the right decision.
- The difference from point estimation is that our action space is discrete.
- But how do we compare δ ?

Hypothesis Testing IV

- What possible errors are there?
- Take action 0 when H_1 is true—this is a type II error. Take action 1 when H_0 is true—this is a type I error.
- If we abused terminology we could define

$$\mathrm{MSE}\{\delta,H_{\mathbf{i}}^{\mathbf{i}}\}=\mathbb{E}_{\theta}(\delta-\frac{\mathbf{i}}{\mathbf{i}})^{2}.$$

• We can then deduce that

$$\begin{split} \mathrm{MSE}\{\delta,H_i\} &= \left\{ \begin{array}{l} \mathbb{E}_{\theta}(\delta) & \mathrm{if} \quad \theta \in \Theta_0 \\ \mathbb{E}_{\theta}(1-\delta) & \mathrm{if} \quad \theta \in \Theta_1 \end{array} \right.^{\textcolor{red}{7}} \\ &= \left\{ \begin{array}{l} \mathsf{Pr}_{\theta}(\delta=1) & \mathrm{if} \quad \theta \in \Theta_0 \\ \mathsf{Pr}_{\theta}(\delta=0) & \mathrm{if} \quad \theta \in \Theta_1 \end{array} \right. \\ &= \left\{ \begin{array}{l} \mathsf{Pr}_{\theta}(\delta=1) & \mathrm{if} \quad \theta \in \Theta_0 \\ 1 - \mathsf{Pr}_{\theta}(\delta=1) & \mathrm{if} \quad \theta \in \Theta_0 \end{array} \right. \end{split}$$

Asymmetry of false positive versus false negative.

Hypothesis Testing V

- In decision theory terms, the action space is $A = \{0,1\}$ and the loss function is the so-called "0–1" loss,
- The loss is then

$$\mathcal{L}(a,\theta) = \left\{ egin{array}{ll} 1 & ext{if} & heta \in \Theta_0 \& a = 1 ext{ (Type I error)} \ 1 & ext{if} & heta \in \Theta_1 \& a = 0 ext{ (Type II error)} \ 0 & ext{o/w} \end{array} \right.$$

- Thus, we lose 1 unit whenever committing a type I or type II error.
- The risk function is

$$\mathcal{R}(\delta,\theta) = \left\{ \begin{array}{ll} \Pr\{\delta=1\} & \mathrm{if} & \theta \in \Theta_0 \ (\mathrm{Prob} \ \mathrm{type} \ \mathit{I} \ \mathrm{error}) \\ \Pr\{\delta=0\} & \mathrm{if} & \theta \in \Theta_1 \ (\mathrm{Prob} \ \mathrm{type} \ \mathit{II} \ \mathrm{error}) \end{array} \right. .$$
 • Thus

 $\mathcal{R}(\delta, \theta) = \Pr{\delta = 1} I(\theta \in \Theta_0) + \Pr{\delta = 0} I(\theta \in \Theta_1).$

Can we simultaneously control both errors??? NO :(.

Hypothesis Testing VI

- Let us understand why.
- Let $\delta(Y_1 \ldots Y_n) = I(T(Y_1 \ldots Y_n) \in C)$.
- Suppose we wish to reduce the type I error probability $Pr_{\theta}(\delta=1)$ if as we have - lower threshold for being of $\theta \in \Theta_0$.
- To do this, we would replace C by a subset $C^* \subset C$. This gives (20 minuted of C= 8 colors a mac = [300] $\delta_*(Y_1 \ldots Y_n) = I(T(Y_1 \ldots Y_n) \in C^*).$
- Observe that for $\theta \in \Theta_0$ we have

$$\Pr_{\theta}\{\delta_*=1\}=\Pr\{\mathcal{T}\in\mathcal{C}^*\}\leq \Pr\{\mathcal{T}\in\mathcal{C}\}=\Pr_{\theta}\{\delta=1\}.$$
 adult it call to in the hold again

• Whilst for $\theta \in \Theta_1$ we have

$$\Pr_{\theta}\{\delta_*=0\}=\Pr\{T\notin C^*\}\geq \Pr\{T\notin C\}=\Pr_{\theta}\{\delta=0\}.$$

 By reducing the type I error probability we increased the type II error probability! - devines but a good cominder

Hypothesis Testing VII

- We have to make a philosophical choice regarding the importance of different errors.
- In applications, one type of error (false positive or negative) is typically more severe.
- Say this is the type I error, and exploit the asymmetry: fix a tolerance ceiling for the probability of this error.
- Given this ceiling, consider only test functions that respect it, and focus on minimising type II error (i.e. maximising power).

Hypothesis Testing VIII

• The Neyman-Pearson Framework

- We declare that we only consider test functions $\delta: \mathcal{X} \mapsto \{0,1\}$ such that

$$\delta \in \mathcal{D}(\Theta_0, \alpha) = \{\delta: \sup_{\theta \in \Theta_0} \Pr\{\delta = 1\} \leq \alpha\}. \quad \text{in substitute in the substitute of the substit$$

- i.e. rules for which prob of type I error is bounded above by α .
- Jargon: we fix a significance level for our test.
- Within this restricted class of rules, choose δ to minimize prob of type II error:

$$\Pr\{\delta(\mathbf{X}) = 0\} = 1 - \Pr\{\delta(\mathbf{X}) = 1\}.$$

Equivalently, maximize the power

Hypothesis Testing IX

- Neyman-Pearson setup naturally exploits any asymmetric structure.
- But, if natural asymmetry absent, need judicious choice of H_0 .
- Consider simplest situation: $\Theta_0 = \{\theta_0\}$ and $\Theta_1 = \{\theta_1\}$.
- The Neyman Pearson Lemma: Let Y have joint density/frequency f where $f \in \{f_0, f_1\}$. We wish to test

$$H_0: f = f_0 \text{ and } f = f_1.$$

If $\Lambda(Y) = f_1(Y)/f_0(Y)$ is a continuous random variable, then there exists a k > 0 such that $\Pr{\Lambda(Y) \ge k | H_0} = \alpha$ and the test whose test function is given by $\delta(Y) = I(\Lambda(Y) \ge k)$ is a most powerful (MP) test of H_0 versus H_1 at significance level α .