→Importing Libraries

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
print('All libraries loaded sucessfully...!')

All libraries loaded sucessfully...!

→Loading a CSV file in our dataframe(df)

In [2]: df = pd.read_csv("C:/Users/OCS/Downloads/shopping_trends.csv")

→To check total number of rows and columns

In [3]: df.shape

Out[3]: (3900, 19)

→To show the top 5 rows of our data

In [4]: df.head()

Out[4]

]:		Customer ID	Age	Gender	Item Purchased	Category	Purchase Amount (USD)	Location	Size	Color	Season	Review Rating	Subscription Status	Payme Metho
	0	1	55	Male	Blouse	Clothing	53	Kentucky	L	Gray	Winter	3.1	Yes	Cre Ca
	1	2	19	Male	Sweater	Clothing	64	Maine	L	Maroon	Winter	3.1	Yes	Ba Trans
	2	3	50	Male	Jeans	Clothing	73	Massachusetts	S	Maroon	Spring	3.1	Yes	Ca
	3	4	21	Male	Sandals	Footwear	90	Rhode Island	М	Maroon	Spring	3.5	Yes	PayF
	4	5	45	Male	Blouse	Clothing	49	Oregon	М	Turquoise	Spring	2.7	Yes	Ca
	4													

→To show the bottom 5 rows of our data

In [5]: df.tail()

Out[5]:		Customer ID	Age	Gender	Item Purchased	Category	Purchase Amount (USD)	Location	Size	Color	Season	Review Rating	Subscription Status	Payn Met
	3895	3896	40	Female	Hoodie	Clothing	28	Virginia	L	Turquoise	Summer	4.2	No	C
	3896	3897	52	Female	Backpack	Accessories	49	Iowa	L	White	Spring	4.5	No	Pa
	3897	3898	46	Female	Belt	Accessories	33	New Jersey	L	Green	Spring	2.9	No	C
	3898	3899	44	Female	Shoes	Footwear	77	Minnesota	S	Brown	Summer	3.8	No	Pa
	3899	3900	52	Female	Handbag	Accessories	81	California	М	Beige	Spring	3.1	No	E Trar
	4													

→DATA CLEANING

Step 1 - Showing all the rows, columns, data_type to see that there is no null values present in our dataset

In [6]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3900 entries, 0 to 3899
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	Customer ID	3900 non-null	int64
1	Age	3900 non-null	int64
2	Gender	3900 non-null	object
3	Item Purchased	3900 non-null	object
4	Category	3900 non-null	object
5	Purchase Amount (USD)	3900 non-null	int64
6	Location	3900 non-null	object
7	Size	3900 non-null	object
8	Color	3900 non-null	object
9	Season	3900 non-null	object
10	Review Rating	3900 non-null	float64
11	Subscription Status	3900 non-null	object
12	Payment Method	3900 non-null	object
13	Shipping Type	3900 non-null	object
14	Discount Applied	3900 non-null	object
15	Promo Code Used	3900 non-null	object
16	Previous Purchases	3900 non-null	int64
17	Preferred Payment Method	3900 non-null	object
18	Frequency of Purchases	3900 non-null	object
d+,,n	oc. $flos+64/1$ in+64/4)	obioc+(14)	

dtypes: float64(1), int64(4), object(14)

memory usage: 579.0+ KB

Step 2(a)- To check Null values in the form of 'True' or 'False'

In [7]: pd.isnull(df)

Out[7]:

:		Customer ID	Age	Gender	Item Purchased	Category	Purchase Amount (USD)	Location	Size	Color	Season	Review Rating	Subscription Status	Payment Method
	0	False	False	False	False	False	False	False	False	False	False	False	False	False
	1	False	False	False	False	False	False	False	False	False	False	False	False	False
	2	False	False	False	False	False	False	False	False	False	False	False	False	False
	3	False	False	False	False	False	False	False	False	False	False	False	False	False
	4	False	False	False	False	False	False	False	False	False	False	False	False	False
	3895	False	False	False	False	False	False	False	False	False	False	False	False	False
	3896	False	False	False	False	False	False	False	False	False	False	False	False	False
	3897	False	False	False	False	False	False	False	False	False	False	False	False	False
	3898	False	False	False	False	False	False	False	False	False	False	False	False	False
	3899	False	False	False	False	False	False	False	False	False	False	False	False	False

3900 rows × 19 columns

(b)- To check Null values in the form of sum of all the values

In [8]: pd.isnull(df).sum()

Out[8]: Customer ID 0 Age 0 Gender Item Purchased 0 Category 0 Purchase Amount (USD) Location 0 Size 0 Color 0 Season 0 Review Rating 0 Subscription Status 0 Payment Method 0 Shipping Type 0 Discount Applied 0 Promo Code Used 0 Previous Purchases 0 Preferred Payment Method 0 Frequency of Purchases 0 dtype: int64

→To see all the columns

```
In [9]: df.columns
Out[9]: Index(['Customer ID', 'Age', 'Gender', 'Item Purchased', 'Category',
                   'Purchase Amount (USD)', 'Location', 'Size', 'Color', 'Season',
                  'Review Rating', 'Subscription Status', 'Payment Method', 'Shipping Type', 'Discount Applied', 'Promo Code Used',
                  'Previous Purchases', 'Preferred Payment Method',
                  'Frequency of Purchases'],
                 dtype='object')
```

→This method returns description of the data in the DataFrame (i.e. count, mean, std, etc)

```
In [10]: df.describe()
```

Out[10]:

	Customer ID	Age	Purchase Amount (USD)	Review Rating	Previous Purchases
count	3900.000000	3900.000000	3900.000000	3900.000000	3900.000000
mean	1950.500000	44.068462	59.764359	3.749949	25.351538
std	1125.977353	15.207589	23.685392	0.716223	14.447125
min	1.000000	18.000000	20.000000	2.500000	1.000000
25%	975.750000	31.000000	39.000000	3.100000	13.000000
50%	1950.500000	44.000000	60.000000	3.700000	25.000000
75%	2925.250000	57.000000	81.000000	4.400000	38.000000
max	3900.000000	70.000000	100.000000	5.000000	50.000000

EXPLORATORY DATA ANALYSIS

```
Step 3 - To find Unique values in each columns
In [11]: for col in df.describe(include="object"):
              print(col)
             print(df[col].unique())
        Gender
        ['Male' 'Female']
        Item Purchased
        ['Blouse' 'Sweater' 'Jeans' 'Sandals' 'Sneakers' 'Shirt' 'Shorts' 'Coat'
         'Handbag' 'Shoes' 'Dress' 'Skirt' 'Sunglasses' 'Pants' 'Jacket' 'Hoodie'
         'Jewelry' 'T-shirt' 'Scarf' 'Hat' 'Socks' 'Backpack' 'Belt' 'Boots'
        Category
        ['Clothing' 'Footwear' 'Outerwear' 'Accessories']
        Location
        ['Kentucky' 'Maine' 'Massachusetts' 'Rhode Island' 'Oregon' 'Wyoming'
          'Montana' 'Louisiana' 'West Virginia' 'Missouri' 'Arkansas' 'Hawaii'
         'Delaware' 'New Hampshire' 'New York' 'Alabama' 'Mississippi'
         'North Carolina' 'California' 'Oklahoma' 'Florida' 'Texas' 'Nevada'
         'Kansas' 'Colorado' 'North Dakota' 'Illinois' 'Indiana' 'Arizona' 'Alaska' 'Tennessee' 'Ohio' 'New Jersey' 'Maryland' 'Vermont'
         'New Mexico' 'South Carolina' 'Idaho' 'Pennsylvania' 'Connecticut' 'Utah'
         'Virginia' 'Georgia' 'Nebraska' 'Iowa' 'South Dakota' 'Minnesota'
         'Washington' 'Wisconsin' 'Michigan']
        Size
        ['L' 'S' 'M' 'XL']
        Color
        ['Gray' 'Maroon' 'Turquoise' 'White' 'Charcoal' 'Silver' 'Pink' 'Purple'
          'Olive' 'Gold' 'Violet' 'Teal' 'Lavender' 'Black' 'Green' 'Peach' 'Red'
         'Cyan' 'Brown' 'Beige' 'Orange' 'Indigo' 'Yellow' 'Magenta' 'Blue']
        Season
        ['Winter' 'Spring' 'Summer' 'Fall']
        Subscription Status
        ['Yes' 'No']
        Payment Method
        ['Credit Card' 'Bank Transfer' 'Cash' 'PayPal' 'Venmo' 'Debit Card']
        Shipping Type
        ['Express' 'Free Shipping' 'Next Day Air' 'Standard' '2-Day Shipping'
         'Store Pickup']
        Discount Applied
        ['Yes' 'No']
        Promo Code Used
        ['Yes' 'No']
        Preferred Payment Method
        ['Venmo' 'Cash' 'Credit Card' 'PayPal' 'Bank Transfer' 'Debit Card']
        Frequency of Purchases
        ['Fortnightly' 'Weekly' 'Annually' 'Quarterly' 'Bi-Weekly' 'Monthly'
         'Every 3 Months']
```

```
In [12]: df.describe(include="all")
```

Out[12]:

:		Customer ID	Age	Gender	Item Purchased	Category	Purchase Amount (USD)	Location	Size	Color	Season	Review Rating	Subsc
	count	3900.000000	3900.000000	3900	3900	3900	3900.000000	3900	3900	3900	3900	3900.000000	
	unique	NaN	NaN	2	25	4	NaN	50	4	25	4	NaN	
	top	NaN	NaN	Male	Blouse	Clothing	NaN	Montana	М	Olive	Spring	NaN	
	freq	NaN	NaN	2652	171	1737	NaN	96	1755	177	999	NaN	
	mean	1950.500000	44.068462	NaN	NaN	NaN	59.764359	NaN	NaN	NaN	NaN	3.749949	
	std	1125.977353	15.207589	NaN	NaN	NaN	23.685392	NaN	NaN	NaN	NaN	0.716223	
	min	1.000000	18.000000	NaN	NaN	NaN	20.000000	NaN	NaN	NaN	NaN	2.500000	
	25%	975.750000	31.000000	NaN	NaN	NaN	39.000000	NaN	NaN	NaN	NaN	3.100000	
	50%	1950.500000	44.000000	NaN	NaN	NaN	60.000000	NaN	NaN	NaN	NaN	3.700000	
	75%	2925.250000	57.000000	NaN	NaN	NaN	81.000000	NaN	NaN	NaN	NaN	4.400000	
	max	3900.000000	70.000000	NaN	NaN	NaN	100.000000	NaN	NaN	NaN	NaN	5.000000	

==> Bar chart for the Gender Distribution

```
In [13]: plt.figure(figsize=(7,6))
  plt.title("Gender Distribution", fontsize = 15, fontweight = 'bold')
  plt.bar(["Male", "Female"], df["Gender"].value_counts())
  plt.xlabel('Gender', fontweight = 'bold')
  plt.ylabel('Count', fontweight = 'bold')
  plt.show()
```


==> Making a dataframe - 'age_groups'

```
In [14]: df["age_groups"] = np.where(df["Age"] >= 21, "Adult", "Teenager")
print(df["age_groups"].value_counts())
age_groups
```

Adult 3688
Teenager 212
Name: count, dtype: int64

==> Bar chart distribution for the age groups - 'Teenagers' and 'Adults'

```
In [15]: print("\nNumber of teenagers and adult who bought clothes")
   plt.figure(figsize=(8, 6))
   plt.title("Age group Count", fontsize = 15, fontweight = 'bold')
   plt.bar(["Adult", "Teenager"],df["age_groups"].value_counts())
   plt.xlabel("Age-Group",fontweight = 'bold')
   plt.ylabel("Count",fontweight = 'bold')
   plt.show()
```

Number of teenagers and adult who bought clothes

==> Pie chart for the Top 10 items purchased by males

```
In [16]: print("\nTop 10 Items Purchased by Males")
         males = df[df["Gender"] == "Male"]
         top_10_items_purchased = males['Item Purchased'].value_counts()[:10]
         print(top_10_items_purchased)
         plt.figure(figsize=(10,6))
         plt.title("Top 10 Items Purchased by Males", fontsize = 15, fontweight = 'bold')
         plt.pie(top_10_items_purchased, autopct='%.1f%%', labels = top_10_items_purchased.index,shadow = True)
         plt.show()
        Top 10 Items Purchased by Males
        Item Purchased
        Pants
                   123
        Jewelry
                   119
                   114
        Coat
        Dress
                   114
        Sweater
                   114
        Scarf
                   112
                   110
        Shirt
        Shorts
                   109
        Jacket
                   109
        Skirt
                   109
        Name: count, dtype: int64
```

Top 10 Items Purchased by Males

==> Pie chart for the Top 10 items purchased by females

```
In [17]: print("\nTop 10 Items Purchased by Females")
         females = df[df["Gender"] == "Female"]
         top_10_items_purchased = females['Item Purchased'].value_counts()[:10]
         print(top 10 items purchased)
         plt.figure(figsize=(10,6))
         plt.title("Top 10 Items Purchased by Females", fontsize = 15, fontweight = 'bold')
         plt.pie(top_10_items_purchased, autopct='%.1f%%', labels = top_10_items_purchased.index,shadow = True)
        Top 10 Items Purchased by Females
        Item Purchased
        Blouse
                      66
        Sandals
                      59
                      59
        Shirt
        Socks
        Handbag
                      58
        Sunglasses
                      56
        Belt
                      55
        Jacket
                      54
                      52
        Dress
        Jewelry
                      52
        Name: count, dtype: int64
```

Top 10 Items Purchased by Females


```
In [18]: print("\nDistribution of Purchases in each season")
           count_season= df['Season'].value_counts()
           print(count_season)
         Distribution of Purchases in each season
         Season
                     999
         Spring
                     975
         Fall
         Winter
                     971
         Summer
                     955
         Name: count, dtype: int64
In [19]: plt.figure(figsize=(7,6))
           plt.title("Count of Purchases in each season", fontsize = 15, fontweight = 'bold')
plt.plot(count_season,linewidth = 3.0, marker = "o", markerfacecolor = "r", markersize = 8)
           plt.xlabel('Seasons', fontweight = 'bold')
           plt.ylabel('Sum of Purchases in USD', fontweight = 'bold')
           plt.grid(True)
           plt.show()
```

Count of Purchases in each season


```
In [20]: print("\nDistribution of Purchases by Category")
           count_category= df['Category'].value_counts()
           print(count_category)
         Distribution of Purchases by Category
          Category
          Clothing
                            1737
                            1240
          Accessories
          Footwear
                             599
          Outerwear
                             324
          Name: count, dtype: int64
In [21]: plt.figure(figsize=(10,6))
           plt.title("Distribution of Purchases by Category", fontsize = 15, fontweight = 'bold')
plt.pie(count_category, autopct='%.1f%%', labels = count_category.index, shadow = True)
```

Distribution of Purchases by Category


```
In [22]: print("\nReview Rating Distribution by Gender")
    count_rating= df['Review Rating'].value_counts().sort_values(ascending = False).head()
    print(count_rating)
```

```
3.4
                 182
         4.0
                 181
         4.6
                 174
         4.2
                 171
         2.9
                 170
         Name: count, dtype: int64
In [23]: plt.figure(figsize = (10,10))
          df.boxplot(column = "Review Rating", by = "Gender")
plt.xlabel("Gender", fontweight = 'bold')
          plt.ylabel("Review Rating", fontweight = 'bold')
          plt.title("Review Rating distribution by Gender", fontsize = 15, fontweight = 'bold')
          plt.show()
```


→ Pie chart for the Subscription Status

Review Rating Distribution by Gender

<Figure size 1000x1000 with 0 Axes>

Review Rating

```
In [24]: plt.figure(figsize = (10,6))
    df["Subscription Status"].value_counts().plot(kind = "pie",autopct='%.1f%',shadow = True)
    plt.title("Pie chart distribution of Subscription Status", fontsize = 15, fontweight = 'bold')
    plt.show()
```

Pie chart distribution of Subscription Status


```
In [25]:
    plt.figure(figsize = (8,6))
    ax = df.groupby("Color")["Review Rating"].median().head().plot(kind = "bar")
    for bars in ax.containers:
        ax.bar_label(bars)
    plt.xlabel("Colors", fontweight = 'bold')
    plt.ylabel("Median Review Rating", fontweight = 'bold')
    plt.title("Median Review Rating of each Color", fontsize = 15, fontweight = 'bold')
    plt.show()
```


⇒Sum of Purchase Amount by Payment Method

```
In [26]: plt.figure(figsize = (8,6))
    df.groupby("Payment Method")["Purchase Amount (USD)"].sum().plot(kind = "pie",autopct='%.1f%%',shadow = True)
    plt.title("Sum of Purchase Amount by Payment Method",fontsize = 15, fontweight = 'bold')
    plt.ylabel("")
    plt.show()
```

Sum of Purchase Amount by Payment Method

→Review Rating distribution by Season

```
In [27]:
    plt.figure(figsize = (8,6))
        ax= df.groupby('Season')["Review Rating"].median().plot(kind= "bar")
        for bars in ax.containers:
            ax.bar_label(bars)
    plt.xlabel("Seasons", fontweight = 'bold')
    plt.ylabel("Review Rating", fontweight = 'bold')
    plt.title("Review Rating distribution by Season", fontsize = 15, fontweight = 'bold')
    plt.show()
```

Review Rating distribution by Season

→ OBSERVATION

The dataset reflects a diverse consumer demographic, allowing for targeted marketing strategies tailored to specific age groups and genders. —Seasonal trends in shopping behavior highlight opportunities for targeted promotions and inventory adjustments to align with customer preferences. —The insights gained emphasize the importance of data-driven decision-making in navigating the dynamic

landscape of shopping trends. —In all the seasons their is less review ratings. —Subscription status is very less only 73% consumers subscribe to the website they visit.

→ SOLUTION

—Develop targeted marketing campaigns based on demographic insights, tailoring messages and promotions to specific age groups and genders. —Implement inventory optimization strategies, aligning stock levels with the popularity of key products and seasonal fluctuations. —Time promotions strategically, capitalizing on identified seasonal trends and maximizing impact during peak purchasing periods. —Design customer engagement tactics informed by correlation insights, aiming to enhance satisfaction levels and drive repeat purchases. —Develop employee training programs based on identified correlations, enhancing skills that contribute to improved customer service and operational efficiency. —Establish a feedback loop mechanism to continuously gather insights from stakeholders and customers, fostering a culture of continuous improvement.

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js