

# ZipCache: A DRAM/SSD Cache with Built-in Transparent Compression

Rui Xie<sup>1</sup>, Linsen Ma<sup>1</sup>, Alex Zhong<sup>2</sup>, Feng Chen<sup>3</sup>, Tong Zhang<sup>1</sup>

Rensselaer Polytechnic Institute<sup>1</sup>

Harker School<sup>2</sup>

Louisiana State University<sup>3</sup>

10/01/2024



### **Motivation**



Growing demand for larger KV caches



Hardware constraints in expanding cache capacity

Underutilization of compression in current systems

#### Key Challenges:

- 1. Hash index causes random data placement
- 2. Read & Write amplification
- 3. Inefficient decompression
- 4. Heavy computational overhead





### B+ tree vs Hash index

- 2x higher compression ratio than hash index
- Overall data access latency is comparable since decompression latency dominated







### SSD: In-Storage Transparent Compression

- Hardware accelerated compression in SSDs
- SSD controller de/compression at I/O path
- No host CPU intervention



Larger logical storage space



### ZipCache Overview

#### A set of pre-defined objects thresholds:

| Туре        | Size range | Where to store |  |
|-------------|------------|----------------|--|
| Tiny-size   | < 128B     | DRAM and SSD   |  |
| Medium-size | 128B – 2KB | DRAM and SSD   |  |
| Large-size  | > 2KB      | SSD            |  |

- $ightharpoonup BT_{DRAM}$  for DRAM cache
- $\triangleright$   $BT_{SSD}$  for SSD cache
- $\triangleright$   $BT_{LO}$  for indexing large-size objects





### **DRAM Cache Tier**

#### **Key features:**

- 1. Decompression early termination
- 2. Adaptive compression bypassing
- 3. Per-page write buffering



#### **Performance benefits:**

- 1. Reduced latency by minimizing decompression time
- 2. Higher DRAM hit ratio, improving cache performance



### **SSD Cache Tier**

#### **Key features:**

- Intra-page object hashing
- 2. Page-based DRAM-to-SSD eviction
- 3. Sub-page under-filling

## Performance benefits:

- 1. Up to 4x logical storage expansion
- 2. Reduced write amplification by up to 26.2x





### **Major Operations**

- **▶ GET:** Search through order  $BT_{DRAM} \rightarrow BT_{SSD} \rightarrow BT_{LO}$
- > **SCAN:** Range scans over 3 B+ trees
- > PUT:
  - $\succ$  tiny/medium inserted to DRAM cache tier, and search  $BT_{LO}$  for possible deletion (large with same key)
  - $\succ$  Large written to SSD and pointer inserted to  $BT_{LO}$ , (tombstone for same key in DRAM cache tier)
- $\triangleright$  **DELETE**: insert *tombstone* to DRAM cache tier and search  $BT_{LO}$  for possible deletion





### Performance result

#### **Workload locality**

| Strong | Moderate | Weak    | Zero   |
|--------|----------|---------|--------|
| 80%→8% | 80%→20%  | 80%→64% | Random |
|        |          |         |        |

80% cache access requests hit 20% of all cache objects

#### Baseline:

- ✓ Xcache: SSD compression
- ✓ CacheLib: no compression
- ✓ Kangaroo: a variant of CacheLib for reducing SSD write amplification

Experiment setting: 6TB working set size





### SSD Write Amplification











#### Baseline:

- ✓ CacheLib: Hash to 4KB SSD page
- ✓ Kangaroo: Apply write-ahead log to amortize WA
- ✓ Xcache: Log-structure merge tree
- ZipCache and Kangaroo have comparable hostside WA
- ZipCache achieves lower intra-ssd write reduction

Reduce WA up to 26.2x



### Sensitivity Study

#### Compressibility



#### Write buffer size



#### Cache object size (GET latency)





### Thanks for listening!

- **ZipCache** integrates **compression** in key-value caches to improve performance
- Keys:
  - B+ Tree indexing, transparent SSD compression, and early decompression termination
- Performance:
  - Up to 72.4% higher throughput, 42.4% lower latency
  - Reduces write amplification by 26.2x