ECONOMETRICS 2

M.BEN SALEM and C.DOZ

Exercises: session 7

Stationary VAR processes and forecasts.

2022-2023

Exercise 1: stationary VAR process and innovation process

The aim of this exercise is to check, on a very simple example, properties which have been stated and used during the course.

Let us consider the following VAR model which is denoted by (M) and defined by :

$$\left(\begin{array}{c} x_t \\ y_t \end{array}\right) = \left(\begin{array}{cc} 2/3 & -1/6 \\ 1/3 & 1/6 \end{array}\right) \left(\begin{array}{c} x_{t-1} \\ y_{t-1} \end{array}\right) + \left(\begin{array}{c} u_t \\ v_t \end{array}\right)$$

This equation can be also denoted as : $X_t = \Phi X_{t-1} + \varepsilon_t$ or $\Phi(L)X_t = \varepsilon_t$ with $\Phi(L) = I_2 - \Phi L$.

- (ε_t) is supposed to be a white noise, with covariance matrix $\Sigma = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$.
 - 1. Write $\Phi(L)$ explicitly .
 - 2. Denote by $\tilde{\Phi}(L)$ the transposed of $\Phi(L)$'s comatrix. Check that $\tilde{\Phi}(L) = \begin{pmatrix} 1 \frac{1}{6}L & -\frac{1}{6}L \\ \frac{1}{3}L & 1 \frac{2}{3}L \end{pmatrix}$ and that $\tilde{\Phi}(L)\Phi(L) = \det \Phi(L)I_2$.
 - 3. Check that $\det \Phi(L) = (1 \frac{1}{2}L)(1 \frac{1}{3}L)$ so that $(\det \Phi(L))^{-1} = \sum_{k=0}^{\infty} a_k L^k$, with $a_0 = 1$ and $\sum_{k=0}^{\infty} |a_k| < \infty$ (don't compute the a_k 's, k > 0).
 - 4. i) Using (3), prove that X_t can be written as $X_t = \sum_{k=0}^{\infty} A_k \varepsilon_{t-k}$ where the matrices A_k 's can be written as functions of the coefficients a_k 's.
 - ii) If $a_{ij}^{(k)}$, $i, j \in \{1, 2\}$ is the general term of A_k , compute $a_{11}^{(k)}$ as a function of the a_k 's and prove that $\sum_{k=0}^{\infty} |a_{11}^{(k)}| < \infty$.
 - iii) More generally, using the same kind of computations, prove that : $\exists M \ / \ \forall i,j \in \{1,2\}, \ \sum_{k=0}^{\infty} |a_{ij}^{(k)}| < M \sum_{k=0}^{\infty} |a_k|.$
 - iv) If ||A|| is defined by $||A|| = \max_{i,j} |a_{ij}|$, prove that $\sum_{k=0}^{\infty} ||A_k|| < \infty$.
 - v) Explain why $X_t = \sum_{k=0}^{\infty} A_k \varepsilon_{t-k}$ indeed defines a stationary process which is a solution of (M).
 - 5. i) Using the previous results, prove that, for any j > 0, the following results hold:

$$Cov(u_t, x_{t-j}) = 0$$
, $Cov(u_t, y_{t-j}) = 0$, $Cov(v_t, x_{t-j}) = 0$, $Cov(v_t, y_{t-j}) = 0$

- ii) Using (i), compute $BLF(x_t|X_{t-1})$, and $BLF(y_t|X_{t-1})$.
- iii) Prove that (ε_t) is the innovation process of (X_t) .
- iv) Do you think that $BLF(x_t|X_{t-1}) = BLF(x_t|X_{t-1}, y_t)$?

Exercise 2: forecasting with a stationary VAR

In this exercise, we use the same VAR process (X_t) as in #1:

$$\begin{pmatrix} x_t \\ y_t \end{pmatrix} = \begin{pmatrix} 2/3 & -1/6 \\ 1/3 & 1/6 \end{pmatrix} \begin{pmatrix} x_{t-1} \\ y_{t-1} \end{pmatrix} + \begin{pmatrix} u_t \\ v_t \end{pmatrix}$$
 (M)

- 1. In this question, we suppose that $\varepsilon_t \sim \mathcal{N}(0, \Sigma)$ and that $\Sigma = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$.
 - i) Give a confidence region for X_{t+1} at confidence level (1α) , based on the optimal forecast at time t, $X_{t+1|t}^* = BLF(X_{t+1}|\underline{X_t})$.
 - ii) Give a confidence interval for x_{t+1} at confidence level (1α) , based on the optimal forecast at time t, $x_{t+1|t}^* = BLF(x_{t+1}|X_t)$.
 - iii) Compute the best linear forecast of X_{t+2} at time $t: X_{t+2|t}^* = BLF(X_{t+2}|\underline{X_t})$. Compute the associated forecast error, and its covariance matrix: just give the formula of this covariance matrix but don't compute it entirely.
 - iv) Using (iii), give a confidence region for X_{t+2} at confidence level $(1-\alpha)$, based on $X_{t+2|t}^*$.
 - v) Compute explicitly the forecast error $x_{t+2} x_{t+2|t}^*$ associated to x_{t+2} where $x_{t+2|t}^* = BLF(x_{t+2}|\underline{X_t})$, and compute its variance entirely. Give a confidence interval for x_{t+2} at confidence level $(1 - \alpha)$, based on $x_{t+2|t}^*$.
- 2. i) Prove that $(1 \frac{1}{6}L)(1 \frac{2}{3}L)x_t + \frac{1}{18}L^2x_t = (1 \frac{1}{6}L)u_t \frac{1}{6}Lv_t$.

Hint: you can either multiply the first equation by $(1 - \frac{1}{6}L)$ and then use the second equation, or multiply the entire system by $\tilde{\Phi}(L)$: use both methods in order to fix them!

- ii) Let $w_t = (1 \frac{1}{6}L)u_t \frac{1}{6}v_t$. Prove that (w_t) is an MA(1) process. If $w_t = (1 \theta L)\eta_t$ is its canonical representation, how would you compute θ and σ_{η}^2 (don't compute them)? What kind of process is (x_t) and what is its canonical representation?
- iii) How would you compute $BLF(x_t|\underline{x_{t-1}})$ as a function of the x_{t-k} 's (you are not asked to compute it entirely)? Is it equal to $BLF(x_t|\underline{X_{t-1}})$?

 Compare the forecast error variances associated to these two forecasts.
- 3. i) Find $a \in \mathbb{R}$ such that $Cov(u_t, v_t au_t) = 0$.
 - ii) If $A = \begin{pmatrix} 1 & 0 \\ -a & 1 \end{pmatrix}$, explain why the initial model (M) can be equivalently written as

$$AX_t = A\Phi X_{t-1} + \eta_t \tag{\tilde{M}}$$

where $\eta_t = A\varepsilon_t$ is denoted as $\eta_t = (u_t \ w_t)'$.

iii) Use model (\tilde{M}) to compute $BLF(y_t|X_{t-1},x_t)$. Does it coincide with $BLF(y_t|X_{t-1})$?