STAT610 Assignment 8 due Friday, 31 October 2025

- 1. Let X and Y be independent random variables with the same cdf F(x). Define $U = \min(X, Y)$ and $V = \max(X, Y)$.
 - (a) Show that $P(u < U \le V \le v) = (F(v) F(u))^2$, if u < v. Hint: think about the event in terms of the values of X and Y.
 - (b) Explain why $P(U \le u, V \le v) = P(V \le v) P(u < U \le V \le v)$, and then deduce the joint cdf for (U, V).
 - (c) What are the marginal cdfs?
 - (d) Now assume F(x) has pdf f(x). What are the joint and marginal pdfs for (U, V)?
- 2. Suppose $R \sim \text{exponential}(2)$ (same as chi-square(2)) and $\Theta \sim \text{uniform}(-\pi, \pi)$, independent.
 - (a) Find the joint pdf for $(X_1, X_2) = (R \sin(\Theta), R \cos(\Theta))$. (This is a 1-1 transformation.)
 - (b) Are X_1 and X_2 dependent or independent? What are their marginal distributions?
- 3. Recall Problem 6 of Assignment 7, where (R, S) has joint pdf $f_{R,S}(r, s) = \frac{8}{3}s^2e^{-2s}$ for $0 \le r \le s$. You may use the solutions from that problem.
 - (a) Find the mean and variance of S.
 - (b) Find E(R|S=s) and $E(R^2|S=s)$. Then use iterated expectation and the variance partition formula to compute the mean and variance of R.
 - (c) Use iterated expectation to find E(RS) = E(E(RS|S)).
 - (d) Now use the above to determine Cov(R, S).
- 4. Suppose $W \sim \text{Poisson}(\lambda)$ and the conditional distribution of X, given W = w, is exponential (w^2) if w > 0 and X = 0 if w = 0. So, in particular, $\mathsf{E}(X|W) = W^2$.

Find the mean and variance of X. You may use (without proof) the following fact: $\mathsf{E}(W(W-1)\times\cdots\times(W-k))=\lambda^{k+1},\,k=1,2\ldots$

- 5. Recall Exercise 4.4 (Problem 5 of Assignment 7). Now do the following.
 - (a) Determine the conditional pdf for Y, given X = x, and the conditional pdf for X, given Y = y.
 - (b) Find $g(x) = \mathsf{E}(Y|X=x)$ and $h(y) = \mathsf{E}(X|Y=y)$. Are either of these linear? Are they inverses of each other?
 - (c) Plot y = g(x) versus x and y versus x = h(y) on the same graph. Comment on what they indicate about predicting one random variable from the other.
 - (d) Compute E(X), E(Y) and E(XY) by whatever method(s) you prefer.
 - (e) Compute Cov(X, Y).
- 6. Assume the random pair (S, T) has joint distribution

$$f_{S,T}(s,t) = (s+t)e^{-(s+t)}, \quad s > 0, t > 0.$$

- (a) Find $\mathsf{E}(S)$, $\mathsf{E}(S^2)$, $\mathsf{E}(T)$, $\mathsf{E}(T^2)$ and $\mathsf{E}(ST)$. Hint: you can express each of these in terms of some gamma function values.
- (b) Determine Corr(S, T).

(continued next page)

7. Suppose X and Y are integer-valued rvs with joint pmf

$$f_{X,Y}(x,y) = \frac{1}{13}$$
, if $|x+y| \le 2$ and $|x-y| \le 2$.

(It may help to graph the possible points (x, y).)

- (a) Are X and Y independent? What are their marginal pmfs?
- (b) What is Cov(X, Y)?
- 8. (a) Use Theorem 4.22 in the notes to prove that if X_1, \ldots, X_k are independent random variables with respective mgfs $M_1(t), \ldots, M_k(t)$ then the mgf for $S = X_1 + \cdots + X_k$ is

$$M_S(t) = \prod_{i=1}^k M_i(t).$$

- (b) Use the result in part (a) to confirm the following.
 - i. If $S \sim \operatorname{binomial}(m,p)$ and $T \sim \operatorname{binomial}(n,p)$, independent, then $S+T \sim \operatorname{binomial}(m+n,p)$. (This was done by use of a convolution in Assignment 6 Problem 4.)
 - ii. If T and U are independent with $T \sim \operatorname{gamma}(\alpha, \gamma)$ and $U \sim \operatorname{gamma}(\beta, \gamma)$ then $T + U \sim \operatorname{gamma}(\alpha + \beta, \gamma)$. (You also showed this in Assignment 7 Problem 8 using a different method.)
 - iii. If $X \sim \text{Poisson}(\lambda)$ and $Y \sim \text{Poisson}(\mu)$, independent, then $X + Y \sim \text{Poisson}(\lambda + \mu)$. (This was also done by convolution in Theorem 4.10 of the notes.)