Math H185 Lecture (not sure)

Keshav Balwant Deoskar

April 8, 2024

These are notes taken from lectures on Complex Analysis delivered by Professor Tony Feng for UC Berekley's Math H185 class in the Sprng 2024 semester.

Contents

1	April 8 - The Agument Principle	2
	1.1 Some Consequences the Argument Principle	2

1 April 8 - The Agument Principle

To start, let's recall a lemma from the homework.

Lemma: Let f be meromorphic at z_0 with zero of order $z \in \mathbb{Z}$. Then, f'/f has a simple pole at z_0 if $n \neq 0$ or a removable pole at z_0 if n = 0 with residue n.

Proof: (outline) By the structure theorem,

$$f(z)(z-z_0)^n h(z)$$

where h(z) is holomorphic and non-vanishing at z_0 . Then,

$$\frac{f'}{f} = \frac{n(z-z_0)^{n-1}h(z) + h'(z)(z-z_0)^n}{(z-z_0)^nh(z)}$$
$$= \frac{n}{z-z_0} + \underbrace{\frac{h'(z)}{h(z)}}_{\text{holomorphic}}$$

The Argument Principle arises from combining this observation with the Residue theorem.

Theorem: (The Arguement Principle) Let f be meromorphic on a neighborhood \overline{U} . Then,

$$\frac{1}{2\pi i} \int_{\partial U} \frac{f'(z)}{f(z)} dz = \quad \text{# of zeroes of } f \text{ in } U$$
$$-\text{# of poles of } f \text{ in } U$$

where the zeroes and poles are counted with multiplicity.

Proof: Using the Residue Theorem,

$$\frac{1}{2\pi i} \int_{\partial U} \frac{f'(z)}{f(z)} dz = \sum_{z_j} \operatorname{Res}_{z_j} \left(\frac{f'(z)}{f(z)} \right)$$

where the z_j 's are zeros/poles of f. By the lemma above, $\operatorname{Res}_{z_j}\left(\frac{f'(z)}{f(z)}\right)$ is just the order of each zero (or "minus" the order if it is a pole). So, we have arrived at the desired result.

1.1 Some Consequences the Argument Principle

Rouche's Theorem: Suppose f, g are holomorphic on a neighborhood of $\overline{U} \subseteq \mathbb{C}$. Assume that |f(z)| > |g(z)| for all $z \in \partial U$. Then, the number of zeroes of f in U equals the number of zeroes of f + g in U.

Proof:

Let $f_{\lambda} = f + \lambda g$ for $\lambda \in [0, 1]$.

- f_{λ} is holomorphic around \overline{U} .
- $f_0 = f_1, f_1 = f + g$.

By the argument principle,

of zeroes of
$$f_{\lambda} = \frac{1}{2\pi i} \int_{\partial U} \frac{f_{\lambda}'(z)}{f_{\lambda}(z)} dz$$

The RHS is continuous in λ (why?) and is never zero on the boundary because |f| > |g| on ∂U . The RHS is a continuous function, whereas the LHS is just an integer. So, if the RHS to be a continuous function $[0,1] \to \mathbb{Z}$ then it must be a constant function.

Cor: A polynomial of the form

$$P(z) = z^n + a_{n-1}z^{n-1} + \dots + a_0, \quad n > 0$$

has n roots (with multiplicity).

Proof: Let $f(z) = z^n$ and $g(z) = a_{n-1}z^{n-1} + \cdots + a_0$. Then, P(z) = f(z) + g(z). Let's try to apply Rouche's Theorem. In order to do so let's choose R > 0 such that for all $r \ge R$,

$$r^n > |a_{n-1}|r^{n-1} + \dots + a_0$$

 $\implies |f| > |g| \text{ on } \partial B_r(0) \forall r \ge R$

Then, Rouche's Theorem tells us that n = # of zeros(f) in $B_r(0) = \#$ of zeros(P) in $B_r(0)$.

Another consequence of Rouche's Theorem is the Open Mapping Theorem.

Open maps

Definition: A map $f:U\to V$ between topological spaces U,V is said to be **open** if f(Open set in U) is open in V.

Ex: $V = \mathbb{C}$ and f = constant is an open map.

Ex: [Insert image from lecture.] Idea is that any map that sends an open interval to a single point is not open.

Theorem: Let $f: U \to \mathbb{C}$ be nonconstant and holomorphic. If U is connected, then f is open.

Proof: Let $z_0 \in U$. It suffices to show that \forall sufficiently small $\epsilon > 0$, $f(B_{\epsilon}(z_0))$ is open. Moreover it suffices to show that $f(B_{\epsilon}(z_0))$ contains $B_r(w_0)$ for some r > 0 where $w_0 = f(z_0)$.

[Insert image from lecture]

i.e. we want: $\forall w \in B_r(w_0), \exists z \in B_\epsilon(z_0)$ such that f(z) = w, i.e. f(z) - w = 0.

"Aha! A zero counting problem" - Tony.

Now, since $f(z_0) = w_0 \neq w$ we can pick ϵ small enough so that $f(z) \neq w_0$ on $\partial B_{\epsilon}(z_0)$.

$$\implies |f(z) - w_0| > \delta > 0 \ \forall z \in \partial B_{\epsilon}(z_0)$$
$$\implies |f(z) - w| > \frac{\delta}{2} > 0 \ \forall w \in \partial B_{\delta/2}(w_0)$$

Take $r = \delta/2$ Then,

$$\implies |f_w(z_0)| > 0 \ \forall z \in \partial B_{\epsilon}(z_0)$$

$$\implies \frac{f'_w(z)}{f_w(z)} \text{ is continuous in } z \in \partial B_{\epsilon}(z_0) \text{ i.e. } B_r(w_0)$$

$$\#$$
 zeroes of $f_w=\frac{1}{2\pi i}\int_{\partial B_\epsilon(z_0)}\frac{f_w'(z)}{f_w(z)}dz$ is continuous in w

Then, by the same reasoning as Rouche's Theorem, both sides are constant > 0.