Class109: Finite Fields

Virendra Sule

PRIME FIELDS

Denoted \mathbb{F}_p or GF(p) for a prime p. Is the ring \mathbb{Z}_p of numbers modulo p

$$\mathbb{F}_{p} = \{0, 1, 2, \dots, p-1\}$$

with addition +, multiplication . modulo p. For example

$$\mathbb{F}_7 = \{0, 1, 2, 3, 4, 5, 6\}$$

2+5=0, 2.5=3, 6+6=5, 5.6=2. Every nonzero element has inverse, 2.4=1, 3.5=1, 4.2=1. This follows in general because (a,p)=1 for $a\neq 0$ hence $\exists \ x,y$ such that ax+py=1, ax=1 mod p. Because of this nonzero elements of \mathbb{F}_p denoted \mathbb{F}_p^* form a group $|\mathbb{F}_p|=p$, $|\mathbb{F}_p^*|=p-1$.

FINITE FIELD WITH q ELEMENTS

 \mathbb{F}_q or GF(q). When q is not prime the structure is more complex. Characteristic of \mathbb{F}_q , or char \mathbb{F}_q is the smallest number p such that

$$p=1+1+\ldots+1=0$$
 p times sum of 1

p < q for otherwise q = 0. If p = ab then either a = 0 or b = 0. Hence $a, b \le p$ is possible only when a = 1, b = p or a = p, b = 1. Hence p is prime. The field $\mathbb{F}_p \subset \mathbb{F}_q$. So \mathbb{F}_q is a finite dimensional vector space over \mathbb{F}_p . Let v_1, v_2, \ldots, v_m be a basis of \mathbb{F}_q wrt scalars \mathbb{F}_p , then it follows that $q = p^m$ as every element of \mathbb{F}_q is

$$a_1v_1+\ldots+a_mv_m$$

 \mathbb{F}_q is called *m*-degree extension of \mathbb{F}_p . Similarly if $\mathbb{F}_{q_1} \subset \mathbb{F}_{q_2}$ and $p = \operatorname{char} \mathbb{F}_{q_1}$ then $q_1 = p^{m_1}$, $q_2 = p^{m_2}$ and $q_2 = (q_1)^d$. Hence $m_1 | m_2$.

Tower of Subfields

Draw the tower $\mathbb{F}_{q_1} \subset \mathbb{F}_{q_2}$ of all subfields of $\mathbb{F}_{2^{30}}$. All divisors of 30 are $\{1,2,3,5,6,10,15,30\}$ these can be the degrees of extensions of subfields.

$$\begin{split} \mathbb{F}_2 \subset \mathbb{F}_{2^2} \subset \mathbb{F}_{2^{10}} \subset \mathbb{F}_{2^{30}} \\ \mathbb{F}_2 \subset \mathbb{F}_{2^2} \subset \mathbb{F}_{2^6} \subset \mathbb{F}_{2^{30}} \\ \mathbb{F}_2 \subset \mathbb{F}_{2^5} \subset \mathbb{F}_{2^{10}} \subset \mathbb{F}_{2^{30}} \\ \mathbb{F}_2 \subset \mathbb{F}_{2^5} \subset \mathbb{F}_{2^{15}} \subset \mathbb{F}_{2^{30}} \\ \mathbb{F}_2 \subset \mathbb{F}_{2^3} \subset \mathbb{F}_{2^6} \subset \mathbb{F}_{2^{30}} \\ \mathbb{F}_2 \subset \mathbb{F}_{2^3} \subset \mathbb{F}_{2^{15}} \subset \mathbb{F}_{2^{30}} \end{split}$$

BINOMIAL THEOREM

Let \mathbb{F}_q has char p. Then

$$(x+y)^{p^k} = x^{p^k} + y^{p^k}$$

since scalars in \mathbb{F}_q as a vector space over \mathbb{F}_p are taken modulo p, by standard formula

$$(x+y)^{p^k} = \sum_{i=0}^{i=p^k} \binom{p^k}{i} x^i y^{p^k-i} \mod p$$

For intermediate values of i other than 0 or p^k ,

$$\binom{p^k}{i} \mod p = 0$$

\mathbb{F}_q AS A SPLITTING FIELD

Let S_q denote the set of all roots of the polynomial $f(X) = X^q - X$ i.e. considering

$$f(X) = \prod_{i}^{q} (X - \lambda_{i})$$

and $S_q=\{\lambda_i\}$. $f'(X)=qX^{q-1}-1=-1\mod p$. Hence f'(X) has no roots and hence f(X) has no multiple roots. Since $X^q-X=X(x^{q-1}-1)$ all the roots are 0 and q-1 roots of unity. By the binomial theorem for $x,y\neq 0$

$$x^{q} = x, (x + y)^{q} = x^{q} + y^{q} = x + y$$

similarly S_q is closed under product $(xy)^q = xy$ hence the set S_q is a field with q elements, i.e. \mathbb{F}_q . Inverses exist for all nonzero x as $1 = x^{q-1} = xx^{q-2}$.

Example of extension of binary field

Consider \mathbb{F}_2 and a polynomial $f(X)=X^2+X+1$ with \mathbb{F}_2 co-efficients. This polynomial is *irreducible* over \mathbb{F}_2 since factoring would mean having roots 1 or 0 but $f(0) \neq 0$, $f(1) \neq 0$. Hence the symbol θ outside \mathbb{F}_2 can be called a root of f(X). Hence θ must satisfy the relation

$$\theta^2 = \theta + 1$$

The numbers $\{1,\theta\}$ are considered as vectors over \mathbb{F}_2 and form their linear span

$$R = \{a.1 + b.\theta\}$$

The vectors $\{1,\theta\}$ are LI over \mathbb{F}_2 . To see this let $a+b\theta=0$. If $a\neq 0$ then $\theta=ab^{-1}$ is in \mathbb{F}_2 hence a=0 which implies b=0. Hence $|R|=2^2$. Using the rule $\theta^2=\theta+1$, R is closed under multiplication and addition and has inverse of the same kind, $(1+\theta)(\theta^2)=1$, $(\theta)(\theta+1)=\theta^2+\theta=1$. Hence

$$R = \{0, 1, \theta, 1 + \theta\}$$

is a field with $q = 2^2 = 4$ elements.

EXTENSION FIELDS

By analogy with above example we see that if \mathbb{F}_q is a finite field of char p and f(x) is an irreducible polynomial over \mathbb{F}_q of degree m then \mathbb{F}_{q^m} is the set of all elements

$$\{a_1+a_2\theta+\ldots+a_m\theta^m\}$$

where θ is a root of f(X) added to the base field of constants \mathbb{F}_q and completing the field by addition, multiplication and inverse. The extension field is denoted \mathbb{F}_{q^m} and thus is equal to the polynomials $\mathbb{F}_q[\theta]$ where $f(\theta)=0$ is the rule followed for its arithmetic.

EXAMPLE

Consider $f(X) = X^3 + X + 1$ and show that this is irreducible over \mathbb{F}_2 . Let θ be a root of f(X). Then

$$\mathbb{F}_{2^3} = \{a + b\theta + c\theta^2\}$$

Observe that all these elements satisfy the equation $X^{2^3}-X=0$. $\theta^3=\theta+1$. Find inverse of θ , $\theta(\theta^2+1)=\theta^3+\theta=1$. The equation $X^{q-1}=1$ is also equivalent to Lagrange's theorem since the order of $\mathbb{F}_q^*=q-1$. Hence another way to find an inverse is to observe $XX^{q-2}=1$. For example $\theta^2(\theta^2)^{2^3-2}=1$. Hence $(\theta^2)^{-1}=(\theta^2)^6=(\theta^3)^4=(\theta+1)^4=\theta^4+1=(\theta(\theta+1)+1)=\theta^2+\theta$.

EXTENSION OF FINITE FIELD

Briefly understand the concept of extension rigorously. Let \mathbb{F}_q be a finite field of characteristic p, then as observed before, $q=p^m$ for some m>1 and \mathbb{F}_q is the splitting field of the polynomial X^q-X (the set of all its roots) which consists of 0 and q-1 roots of unity. Let f(X) is an irreducible polynomial over \mathbb{F}_q . Denote the ring of polynomials over \mathbb{F}_q by $\mathbb{F}_q[X]$. The Euclidean algorithm holds over $\mathbb{F}_q[X]$. If f,g are polynomials and $g\neq 0$ then there exist unique polynomials h and r such that

- $0 \le \deg r < \deg g$

RESIDUE CLASS RING AND ROOTS

Construct the residue class ring denoted $\mathbb{F}_q[X]/f(X)$ defined as the set $R=\mathbb{F}_q[X]\mod f(X)$ if $\deg f(X)=m$ then R is the vector space of polynomials of degree $\leq (m-1)$ and is generated as span of vectors

$$\{0,1,\bar{x},\bar{x}^2,\ldots,\bar{x}^{(m-1)}\}\$$

by taking linear combinations over \mathbb{F}_q . The element $\bar{x} = X + (f(X))$ is the equivalence class of polynomials with residue X when divided by f(X). Hence clearly

$$f(\bar{x})=0$$

hence \bar{x} is a root of f(X) which did not exist in \mathbb{F}_q and is added to extend \mathbb{F}_q to define the arithmetic in \mathbb{F}_q . Now one shows that the it from the extended Euclidean algorithm show that every non-zero element of R has an inverse modulo f(X). This makes R a field and due to linear independence of the vectors in the above set is a degree m extension field of \mathbb{F}_q .

Consequence of \mathbb{F}_q as splitting field

The Binomial theorem and the observation that \mathbb{F}_q is the splitting field of the polynomial $X^q - X$ shows that

- For every prime p (here it is char of \mathbb{F}_q) and m there is a finite field $\mathbb{F}_q = \mathbb{F}_{p^m}$.
- ② For a prime divisor d of m and any irreducible polynomial of degree p^d the field \mathbb{F}_{p^d} is a subfield of \mathbb{F}_q .
- **3** Every irreducible factor of degree d of $X^q X$ generates a subfield as residue class ring R as above.