

Министерство науки и высшего образования Российской Федерации

Калужский филиал федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

 ФАКУЛЬТЕТ
 ИУК «Информатика и управление»

 КАФЕДРА
 ИУК4 «Программное обеспечение ЭВМ, информационные

 технологии»

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе на тему:

Разработка приложения досок Scrum-команды по дисциплине Базы данных Студент гр. ИУК4-62Б Карельский М.К. (подпись) Руководитель Глебов С.А. (подпись) Оценка руководителя баллов 30-50 (дата) баллов Оценка защиты 30-50 (дата) Оценка работы баллов (оценка по пятибалльной шкале) Комиссия: (подпись) <u>Гришунов С.С.</u>
(Ф.И.О.) Гагарин Ю.Е. (подпись)

Калуга, 2023

Калужский филиал федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

	УТВЕРЖДАЮ
Заведующи	ий кафедрой
	()
«»	20г.
ЗАДАНИЕ на выполнение курсовой раб	боты
по дисциплине Базы данных	
Студент Карельский М.К. ИУК4-62Б (фамилия, инициалы, индекс	группы)
Руководитель Глебов С.А. (фамилия, инициалы)	
График выполнения работы: 25% к $\underline{4}$ нед., 50% к $\underline{7}$ нед., 75% к	<u>10</u> нед., 100% к <u>14</u> нед.
1. Тема курсовой работы Разработка приложения досок Scrum-команды	
2. Техническое задание Разработать базу данных, ранние версии клиентской и с	ерверной части приложения
досок Scrum-команды	
3. Оформление курсовой работы 3.1. Расчетно-пояснительная записка на 36 листах формата А4. 3.2. Перечень графического материала КР (плакаты, схемы, чер 1. Структура БД 2. Демонстрационный чертеж	
Дата выдачи задания «09» февраля 2023 г.	
Руководитель курсовой работы/	<u>Глебов С.А</u> (Ф.И.О.)
Задание получил / Карельский М.К. / (подпись) / Ф.И.О.)	« <u>09</u> » февраля 20 <u>23</u> г.

РЕФЕРАТ

Расчетно-пояснительная записка 43 с., 27 рисунков, 3 таблицы, 19 источников.

Разработка веб-сервиса обработки мультимедиа.

Объектом разработки является система, позволяющая проводить простую обработку изображений, аудио и видео без необходимости установки программного обеспечения со стороны пользователя.

Цель проекта — разработка веб-сервиса обработки изображений, видео и аудио с помощью реализации брокера сообщений.

Поставленные задачи решаются путем разработки серверной и клиентских частей, а также организации их взаимодействия.

СОДЕРЖАНИЕ

РЕФЕРАТ		•••••		3
СОДЕРЖАНИЕ	<u> </u>	•••••		4
ВВЕДЕНИЕ				5
1. АНАЛИЗ	ТРЕБОВАНИЙ	И	ТЕХНОЛОГИЙ	РАЗРАБОТКИ
ПРОГРАММНО	ОГО ОБЕСПЕЧЕНІ	R.Г		6
1.1. Основ	вные требования к	разраба	атываемой системе	6
1.2. Анали	из аналогов и прото	типов.		7
1.3. Обос	нование выбора и	инструм	лентов и платфор	мы для разработки
серверной	и́ части			10
1.4. Обос	нование выбора и	инструм	лентов и платфор	мы для разработки
клиентско	ой части			14
2. ПРОЕКТИРС	ВАНИЕ ПРОГРАМ	ИМНО	ГО ОБЕСПЕЧЕНИ	18
2.1. Разра	ботка структуры си	стемы		18
2.2. Струк	тура базы данных.			20
2.3. Описа	ание API			23
3. КОНТРОЛЬ	КАЧЕСТВА	И	ИНТЕГРАЦИЯ	КОМПОНЕНТОВ
ПРОГРАММНО	ОГО ОБЕСПЕЧЕНІ	RI		26
3.1. Интер	офейс клиентской ч	асти		26
3.2. Руков	одство пользовател			28
ЗАКЛЮЧЕНИЕ	3			40
СПИСОК ИСП	ОЛЬЗОВАННЫХ И	І СТОЧ	НИКОВ	41
Основная	литература	•••••		41
Лополнит	ельная литература.			43

ВВЕДЕНИЕ

Актуальность темы курсового проекта обусловлена тем, что множество пользователей ежедневно сталкивается с необходимостью быстрого изменения своих файлов, например, изменение формата изображения или извлечение фрагмента из видео. Для решения подобных задач применяется различное настольное программное обеспечение. Однако описанные задачи могут возникать перед пользователем не так часто, чтобы у того появлялась необходимость в установке на свой ПК дополнительных программ, особенно если сама задача не является сложной, комплексной. В таком случае гораздо удобнее воспользоваться специальным онлайн-сервисом, предоставляющим возможность загрузки личных файлов мультимедиа, их последующей требуемой обработки и скачивания готового результата.

Объектом курсового проекта является разработка клиент-серверного вебприложения.

Предметом исследования курсового проекта является различные алгоритмы обработки мультимедиа.

Целью практики является разработка серверной части сервиса обработки изображений, видео и аудио с помощью реализации брокера сообщений, а также разработка клиентской части.

Для достижения поставленной цели решаются следующие задачи:

- 1. Реализовать алгоритмы обработки;
- 2. Создать базу данных;
- 3. Разработать АРІ сервиса;
- 4. Интегрировать брокер сообщений;
- 5. Реализовать клиентскую часть;
- 6. Провести контейнеризацию.

1. АНАЛИЗ ТРЕБОВАНИЙ И ТЕХНОЛОГИЙ РАЗРАБОТКИ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

1.1. Основные требования к разрабатываемой системе

Система путем взаимодействия пользователя с веб-сайтом должна предоставлять ему следующие методы обработки мультимедиа:

- 1. Обработка изображений:
 - Добавление водяных знаков;
 - Сжатие;
 - Конвертация в другой формат;
 - Кадрирование;
 - Отражение по горизонтали или вертикали;
 - Изменение размеров;
 - Поворот на заданный угол;
- 2. Обработка аудио:
 - Извлечение фрагмента;
 - Конвертация в другой формат;
 - Добавление линейных переходов (затуханий);
 - Изменение громкости каналов;
 - Объединение двух аудио;
 - Обратное воспроизведение;
 - Перевод в одноканальный формат (моно);
 - Изменение скорости воспроизведения.
- 3. Обработка видео:
 - Перевод в черно-белое отображение;
 - Извлечение фрагмента;
 - Конвертация в другой формат;
 - Извлечение аудиодорожки;

- Добавление линейных переходов (затуханий);
- Отражение по горизонтали или вертикали;
- Изменение громкости;
- Объединение двух видео;
- Обратное воспроизведение;
- Поворот на заданный угол;
- Изменение скорости воспроизведения.

1.2. Анализ аналогов и прототипов

Рассмотрим различные аналоги системы:

ILoveIMG.com

Рис. 1. Главная страница сайта ILoveIMG.com

ILoveIMG.com (см. рис. 1) предоставляет различные инструменты для редактирования изображений. В их число входит сжатие, кадрирование, поворот, добавление водяных знаков и преобразование в различные форматы.

Основной функционал доступен бесплатно. Имеется платная подписка стоимостью 234 руб./месяц, предоставляющая более широкие возможности и неограниченную обработку. Также предлагаются индивидуальные планы для бизнеса.

Convertio.co

Рис. 2. Главная страница сайта Convertio.co

Convertio.co (см. рис. 2) – онлайн-сервис, предоставляющий возможность преобразовывать изображения, видео и аудио во множество различных форматов.

Бесплатная версия имеет ограничение максимального размера загружаемого файла — 100 МБ. Сервис предоставляет 3 уровня подписки: за 6\$, 9\$ и 16\$ в месяц. Более высокий уровень предоставляет возможность загрузки файлов большего размера, большего количества одновременных конвертаций, а также более высокий приоритет в очереди обработки.

123apps.com

Рис. 3. Главная страница сайта 123 apps.com

Сервис (см. рис. 3) предоставляет широкий спектр веб-приложений для обработки видео и аудио. Среди них: объединение, сокращение, кадрирование, поворот, отражение, изменение громкости и скорости видео, объединение, сокращение, изменение громкости и скорости аудио. Также доступны конвертеры изображений, видео и аудио.

Бесплатная версия накладывает ограничение на максимальный размер файла в 500 МБ и количество доступных обработок в день — 5. Предлагается подписка за 300 руб./месяц, снимающая ограничения на количество обработок в день и увеличивающая максимальный размер загружаемого файла до 4 ГБ.

1.3. Обоснование выбора инструментов и платформы для разработки серверной части

Язык программирования:

PHP

РНР используют около 80% всех сайтов, а самому языку уже более 25 лет. Также обладает широким сообществом, благодаря чему язык прост для обучения и получает постоянные обновления. Его достаточно легко установить и настроить.

Java

Java — один из самых популярных языков программирования. Используется уже более 20 лет и имеет широкую поддержку сообществом. Также обладает хорошей универсальностью, которая обеспечивается с помощью виртуальной машиной Java (JVM).

C#

С# является широко известным и используемым объектноориентированным языком программирования. Для реализации серверной части используется достаточно популярный, стабильный и надежный фреймворк ASP.NET. Поддержку ASP.NET 6.0 обеспечивает среда разработки Visual Studio 2022.

Python

Руthon обладает большой популярностью среди различных сфер разработки, включая разработку серверов. Наиболее популярным фреймворком для этого является Flask, обладающий большим сообществом и позволяющий написать серверную часть достаточно просто. Помимо этого, Python может

применяться для написания самих обработчиков задач, так как имеет для этого множество полезных и удобных библиотек, например, Pillow.

Брокер сообщений:

RabbitMQ

RabbitMQ — это брокер распределенных сообщений, который собирает потоковые данные из нескольких источников и маршрутизирует их в разные пункты назначения для обработки. RabbitMQ обеспечивает легкость разработки, так как имеет библиотеки для множества языков, простое администрирование тонкую настройку.

Kafka

Представляет из себя распределённый программный брокер сообщений с открытым исходным кодом. Ядром функциональности является запись данных, хранение их в течение заданного времени и выдача этих данных по запросу. Предоставляет большую пропускную способность, возможность читать множество сообщений за раз, а также позволяет перечитывать ранее прочитанные сообщения.

SOS

SQS – сервис от Amazon, принимающий очереди сообщений для хранения. Весьма популярен за рубежом, предоставляет высокую безопасность и интеграцию со всеми сервисами компании. Однако в связи с полной зависимостью от Amazon возникают проблемы при появлении необходимости в переходе на другого поставщика.

База данных:

OracleDB

OracleDB – объектно-реляционная система управления базами данных компании Oracle. В связи с поддержкой крупной компании имеет высокую

надежность. Обеспечивает хорошую масштабируемость, безопасность и скорость. Однако также имеет высокую стоимость.

MySQL

MySQL — реляционная система управления базами данных с открытым исходным кодом. Имеет достаточно широкую популярность и сообщество. Предлагает простую установку и использование. Хорошо работает с данными на базовом уровне, однако в процессе масштабирования может потребоваться дополнительная поддержка, также имеющая высокую стоимость.

PostgreSQL

PostgreSQL – реляционная база данных с открытым кодом, является одной из наиболее известных среди всех существующих реляционных баз данных. Предоставляет хорошую масштабируемость, дополнительную защиту посредством использования ролей и прав. Полностью бесплатна, поддерживается сообществом, хорошо справляется с большими нагрузками.

MongoDB

MongoDB — документоориентированная система управления базами данных, не требующая описания схемы таблиц. Считается одним из классических примеров NoSQL-систем, использует JSON-подобные документы и схему базы данных. Написана на языке C++, что позволяет легко портировать ее на различные платформы.

Контейнеризатор:

Docker

Docker — это платформа для контейнеризации приложений с открытым исходным кодом. Она позволяет упаковывать приложения с их окружениями и зависимостями в контейнеры, а затем предоставляет возможность с помощью встроенных команд управлять ими. Предоставляет изолированное окружение

для каждого контейнера, каждый из которых можно легко переносить между различными средами. Обеспечивает эффективное использование ресурсов хостовой системы и возможность быстрого развертывания приложений.

Podman

Podman — это контейнеризатор с открытым исходным кодом, представляет собой утилиту командной строки. Позволяет запускать и управлять контейнерами без наличия демона. Обеспечивает изоляцию каждого контейнера с более высокой безопасностью.

Containerd

Containerd — бывшая часть Docker, реализует исполняемую среду для запуска контейнеров. Предоставляет минимальный набор функций для управления образами, а также для запуска и остановки контейнеров. Предлагает высокую производительность, стабильность и широкую поддержку сообщества.

Итоговый выбор:

В качестве языка программирования был выбран Python, используемый в написании как серверной части посредством фреймворка Flask, так и самих обработчиков задач. Для распределения сообщений был выбран RabbitMQ, предоставляющий легкую интеграцию в проект. Хранение данных производится в PostgreSQL, обладающий полным необходимым функционалом. Для контейнеризации используется наиболее распространенный Docker.

1.4. Обоснование выбора инструментов и платформы для разработки клиентской части

Фреймворк:

Angular

Популярный и весьма востребованный фреймворк, имеющий официальный набор функциональных компонентов для создания пользовательских интерфейсов. Направлен на создание одностраничных приложений, что может привести к трудностям в разработке крупных проектов.

React

Простой фреймворк, направленный на удобную разработку интерфейсов. Имеет большую поддержку сообществом, однако во время работы над крупным проектом неправильный выбор технологий может привести к проблемам с поддержкой и ошибкам.

Vue.js

Vue.js отличается понятной и рациональной архитектурой, которую несложно освоить и просто применять на практике. Фреймворк предоставляет возможность постепенного внедрения в проект.

Dojo

В Dojo большое внимание уделено модульности компонентов платформы, имеет систему интернационализации и шаблоны для обеспечения доступности приложений. Фреймворк нацелен на предоставление структурированного окружения разработки, удобного для программиста.

Ember

Наиболее строго типизированный распространенный фреймворк. Предоставляет продвинутую систему управления версиями своей платформы, инструменты для перехода на новые версии, и чёткие руководства и средства по обходу устаревших АРІ. Имеет чёткую и рациональную архитектуру, подходящую для разработки сложных веб-приложений.

Aurelia

Имеет хорошую структуру и методику создания веб-приложений, использует современные технологии. Тем не менее фреймворку не хватает более обширного сообщества, способного помочь его разработке и развитию.

UI-библиотека:

Ant Design

Предлагаемый набор включает как базовые, так и расширенные компоненты. Сами компоненты обладают приятным дизайном и содержат множество настроек и опций. Благодаря понятному API и документации библиотека достаточно легка в освоении. Однако большой объем Ant Design может привести к проблемам с производительностью.

Mantine

Новая развивающаяся библиотека с открытым кодом. Обладает универсальностью и предлагает удобные к адаптации под свой проект компоненты.

Material UI

Библиотека позволяет создать адаптивные интерфейсы под разные разрешения экрана, поддерживает все современные браузеры, предоставляет готовые компоненты с настроенным дизайном и позволяет среди них импортировать только необходимые. Тем не менее большой размер библиотеки

снижает скорость загрузки приложения. Material UI довольно сложен для пользования, не всегда успешно интегрируется с другими библиотеками и имеет ограниченную кастомизацию.

Tailwind CSS

Библиотека позволяет создавать сложные адаптивные макеты, имеет собственные служебные шаблоны, обладает легкой настройкой. Однако большое количество классов иногда приводит к трудностям в выборе необходимого.

Bootstrap

Весьма популярный библиотека, позволяющая создавать адаптивные сайты, правильно отображающиеся на разных устройствах и браузерах. Вооtstrap легок в освоении и использовании, однако имеет свои ограничения и приводит к созданию шаблонных сайтов, похожих на множество других.

Веб-сервер:

Apache

Арасhе — это программное обеспечение с открытым исходным кодом, разработанное и поддерживаемое открытым сообществом разработчиков и работающее в самых разных операционных системах. Более прост в использовании, поддерживается всеми операционными системами, предоставляет возможность добавления модулей.

Nginx

Nginx — это программное обеспечение с открытым исходным кодом, которое позволяет создавать веб-сервер. Обеспечивает хорошую производительность для статического и динамического контента, высокую безопасность, имеет хорошую поддержку.

Итоговый выбор:

В качестве фреймворка был выбран удобный и популярный React. Для разработки интерфейса использовалась библиотека Material UI, предлагающая множество готовых настроенных компонентов. Веб-сервером выступает Nginx, предоставляющий такие возможности, как, например, настройку обратного прокси.

Вывод:

Таким образом, был определен предоставляемый пользователю функционал системы, проведен анализ аналогичных проекту сайтов и выбраны инструменты разработки серверной и клиентской части.

2. ПРОЕКТИРОВАНИЕ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

2.1. Разработка структуры системы

Рассмотрим структуру системы (см. рис. 4):

Рис. 4. Структура системы

Взаимодействие между сервером И клиентским приложением предполагается вести через АРІ (см. рис. 4). Обращаясь к нужным методам, требуемый клиент отправляет файлы, указывает ТИП обработки соответствующие параметры, проверяет статус обработки и получает готовый результат.

Часть сервера, отвечающая за обработку API, при получении новой задачи сохраняет загруженные файлы на физическом хранилище, создает соответствующую задаче запись в базе данных, где также указывается местоположение исходных файлов, и заносит сообщение о задаче в очередь брокера сообщений.

Чтобы определить статус выполнения задачи, сервер делает обращение в базу данных. Если задача оказывается завершенной, то появляется возможность возвращения готового результата. Местоположение обработанного файла можно получить из записи соответствующей задачи в базе данных.

Предполагается запуск сразу нескольких обработчиков, количество которых можно увеличить при возникновении необходимости в большей работы Изначально обработчики мощности системы. производят прослушивание очереди брокера сообщений. Во время появления новой задачи один из обработчиков забирает данную задачу. Затем через обращение к базе данных определяется тип алгоритма обработки и необходимые параметры, а местоположение исходного файла. Завершив также непосредственную обработку, обработчик сохраняет результат на физическом хранилище и указывает его в базе данных, а затем возвращается к прослушиванию очереди брокера сообщений.

Кроме того, на протяжении всех этапов работы с задачей обработчик изменяет ее статус в базе данных. Изначально все задачи при своем создании получают статус «pending». Когда задача попадает к обработчику, тот обновляет ее статус до «processing». После успешного завершения обработки устанавливается статус «finished». В случае возникновения ошибок обработчик

указывает статус «error», прекращает обработку задачи и возвращается к брокеру сообщений.

Во избежание возникновения конфликтов имен при сохранении файлов на физическом хранилище предполагается выдавать им уникальные имена. Исходные и итоговые имена будут храниться в соответствующей записи в базе данных.

2.2. Структура базы данных

Рассмотрим структуру базы данных (см. рис. 5):

Рис. 5. Структура базы данных

База данных состоит из следующих таблиц (см. рис. 5):

- files таблица загруженных и готовых обработанных файлов;
- tasks таблица, хранящая созданные задачи на обработку файлов;
- algorithms таблица доступных алгоритмов;
- parameters таблица параметров, необходимых для работы алгоритмов;
- algorithms_parameters таблица реализации связи «многое-ко-многим» между таблицами algorithms и parameters;
- parameters_values таблица, устанавливающая соответствие между задачами на обработку и заданными параметрами;
- status предоставляет этапы обработки задачи:
 - o pending ожидает выполнения,
 - o processing обрабатывается,
 - o finished выполнено,
 - о error закончилось ошибкой;
- type предоставляет доступные для обработки типа мультимедиа:
 - image изображения,
 - o audio аудио,
 - o video видео.

Таблицы имеют следующие столбцы (см. табл. 1):

Табл. 1. Столбцы таблиц базы данных

Таблица	Название	Тип	NN	U	PK	FK	Default
	id	integer	+	+	+		
	Идентификатор						
Φ ω	original_name	string	+				
files	Исходное имя загруженного файла						
	unique_name	string	+				
	Уникальное имя файла, находящегося на физическом хранилище						
	id	integer	+	+	+		
s Xs	Идентификатор						
tasks	uuid	string	+	+			
	Уникальный идентификатор, использующийся в формировании ссылок						лок

		1	I			<u> </u>	1		
	source_file_id	integer	+			files.id			
	Исходный загруженный файл								
	result_file_id	integer				files.id			
	Итоговый обработанный файл								
	additional_file_id	integer				files.id			
	Дополнительный файл,	используем	иый в	нек	оторы	их алгоритмах	1		
	upload_date	datetime	+						
	Дата создания задачи								
	algorithm_id	integer	+			algorithms.id			
	Алгоритм обработки ф	райла		_		<u>, </u>			
	status	status	+				pending		
	Этап выполнения зада	чи							
	error_message	string							
	Сообщение ошибки, пр	ооизошедшей	во вр	ремя	выпо	олнения алгоритм	ra.		
	id	integer	+	+	+				
	Идентификатор								
sw	name	string	+						
ith	Название алгоритма						•		
algorithms	file_type	type	+						
alo	Тип обрабатываемого файла								
	additional_is_used	bool	+				false		
	Необходим ли дополнительный файл для работы алгоритма								
	id	integer	+	+	+				
rs r	Идентификатор								
ithms_ meters_	algorithm_id	integer	+			algorithms.id			
algori param	Алгоритм								
algor param	parameter_id	integer	+			parameters.id			
	Параметр, необходимь	й для выпол	пнения	я ал	горил	тма			
Φ	id	integer	+	+	+				
paramete rs	Идентификатор								
aramers	name	string	+						
Ω	Название параметра	<u>'</u>	1.		•		1		
	id	integer	+	+	+				
10 S	Идентификатор								
alu	Идентификатор								
ĺά	Идентификатор task_id	integer	+			tasks.id			
s va.		integer	+			tasks.id			
ters_va.	task_id	integer	+			tasks.id parameters.id			
ameters_va.	task_id Задача	<u> </u>				I			
parameters_values	task_id Задача parameter_id	<u> </u>				I			

2.3. Описание АРІ

Сервер имеет следующее АРІ (см. табл. 2):

Табл. 2. АРІ сервера

[POST] /proces	sing/process/							
Описание	Создание и запуск новой задачи							
	file	Файл, отданный на обработку						
Формат	algorithm	Метод обработки						
запроса	parameters	Параметры метода обработки						
(form)	additional_file	Дополнительный файл, необходимый для выполнения метода						
Формат ответа (JSON)	id	ID созданной задачи						
[GET] /process	ing/status/ <id></id>							
Описание	Получение информ	ации о задаче						
Формат запроса (строка)	id	ID задачи						
	source_name	Название исходного файла						
	result_name	Название файла результата						
	upload_date	Дата создания задачи						
Формон опроно	type	Тип мультимедиа						
Формат ответа (JSON)	algorithm	Метод обработки файла						
(050N)	parameters	Параметры метода обработки						
	additional_name	Название дополнительного файла						
	status	Статус выполнения задачи						
	error message	Сообщение об ошибке						
[GET] /process	ing/source/ <id></id>							
Описание	Получение исходн	ого файла						
Формат запроса (строка)	id	ID задачи						
Формат ответа (BLOB)		Исходного файл						
[GET] /process	ing/result/ <id></id>							
Описание	Получение итогового обработанного файла							
Формат запроса (строка)	id	ID задачи						
Формат ответа (BLOB)		Итоговый обработанный файл						

[GET] /processing/additional/ <id></id>						
Описание	Получение дополнительного файла					
Формат						
запроса	id	ID задачи				
(строка)						
Формат ответа (BLOB)		Дополнительный файл				

Методы обработки файлов требуют следующие параметры (см. табл. 3):

Табл. 3. Параметры алгоритмов обработки

			Параметры					
Название	Тип	Доп.	Название		Описание			
add watermark	image	+	alpha	Непрозрачность водяного знака				
compress image	image	_	quality	Качество итогового изображения				
convert image	image	_	format	Итоговый формат изображения				
			left	Координата левого верхнего у фрагмента по оси Х				
crop image	image		upper	Координата левого верхнего угла Φ рагмента по оси Y				
crop_image	Image		right	Координата фрагмента п	о оси Х			
			lower	Координата правого нижнего уго фрагмента по оси Y				
					отражения:			
flip_image	image	_	method	left_right	=			
					Сверху вниз			
			width		рина изображения			
			height		сота изображения			
			resample	Способ интерполяции:				
resize_image		-		nearest	Ближайший сосед			
	image			box	Бокс-средний			
				bilinear	Билинейный			
				hamming	Хэммингово окно			
				bicubic	Бикубический			
				lanczos	Ланцош			
			angle	Угол поворс	та против часовой стрелки			
				Способ инте	рполяции:			
rotate image	image	_		nearest	Ближайший сосед			
_			resample	bilinear	Билинейный			
				bicubic	Бикубический			
spread image	image	-	distance	Расстояние	рассеивания пикселей			
alin audia	21144		start	Время начал	а фрагмента			
clip_audio	audio	_	end	Время окончания фрагмента				
convert_audio	audio	_	format	Итоговый фо	рмат аудио			
fada andia	م المراد م		fade in	Длительност	ъ затухания в начале			
fade_audio	audio	_	fade_out	Длительность затухания в конце				
anin nudio	1.	_	left_gain	Изменение г	ромкости в левом канале			
gain_audio	audio	_	right_gain	Изменение громкости в правом канале				
join_audio	audio	+	crossfade	Длительность перехода между файлами				
reverse_audio	audio	-						
set mono	audio	-						
speed audio	audio	_	multiplier	Коэффициент ускорения аудио				
blackwhite video	video	-	_	1 2 3 1				

			start	Время начала фрагм	ента			
clip_video	video	_	end	Время окончания фрагмента				
convert video	video	ı	format	Итоговый формат ви	део			
			left.	Координата левог	о верхнего угла			
			Telc	фрагмента по оси Х				
			upper	Координата левог	о верхнего угла			
crop video	video	_	upper	фрагмента по оси Ү				
Clob_video	VIGEO		right	Координата право:	го нижнего угла			
			Tigit	фрагмента по оси Х				
			lower	Координата право:	го нижнего угла			
	Iowei		фрагмента по оси Ү					
extract_audio	video	-						
fade video	video	_	fade_in	Длительность затухания в начале				
rade_video	video		fade_out	Длительность затухания в конце				
				Направление отражения:				
flip_video	video	_	method	left_right	Слева направо			
_				top_bottom	Сверху вниз			
gain_video	video	_	multiplier	Коэффициент усиления громкости				
join_video	video	+	crossfade	Длительность перехода между файлами				
reverse_video	video	_						
rotate_video	video	_	angle	Угол поворота против часовой стрелки				
speed video	video	_	multiplier	Коэффициент ускорения видео				

Вывод:

Таким образом, была разработана структура системы проекта, ее базы данных, а также описан API, необходимый для взаимодействия серверной и клиентской части.

3. КОНТРОЛЬ КАЧЕСТВА И ИНТЕГРАЦИЯ КОМПОНЕНТОВ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

3.1. Интерфейс клиентской части

Рассмотрим интерфейс клиентской части:

Рис. 6. Главная страница сайта

Главная страница сайта (см. рис. 6) состоит из трех секций, разделенных по типу обрабатываемых файлов: изображения, аудио и видео. Каждая секция содержит внутри себя доступные методы обработки мультимедиа.

Рис. 7. Пример страницы метода обработки файла

Каждая страница выбранного метода обработки файла (см. рис. 7) имеет поле для загрузки требуемого типа мультимедиа. Различные алгоритмы имеют разный набор параметров, среди которых может встречаться задание числового значения, выбор значения из списка, отправка дополнительного файла. Для некоторых алгоритмов вследствие отсутствия необходимости секция с параметрами может отсутствовать.

Рис. 8. Пример страницы ожидания окончания обработки

Страница ожидания окончания обработки файла (см. рис. 8) содержит сообщение о том, что выбранный файл в данный момент находится в обработке. Также указывается название отправленного файла.

Рис. 9. Страница результата обработки

Страница результата обработки (см. рис. 9) отображает итоговый файл. Данный файл можно скачать с помощью нижерасположенной соответствующей кнопки.

3.2. Руководство пользователя

Общая последовательность взаимодействия с сайтом выглядит следующим образом. На главной странице (см. рис. 6) необходимо выбрать из представленных методов обработки мультимедиа.

После этого произойдет переход на страницу выбора требуемых параметров (см. рис. 7). Пользователь должен отправить исходный файл нужного формата в указанное окно, а затем указать желаемые настройки обработки.

После подтверждения произойдет следующий переход на страницу ожидания обработки (см. рис. 8). Пользователь не обязан держать данную страницу открытой. При необходимости она может быть закрыта и восстановлена по уникальной ссылке.

Когда обработка будет завершена, произойдет автоматический переход на страницу с результатом обработки (см. рис. 9). На ней пользователь может просмотреть итоговый файл и скачать его путем нажатия на соответствующую кнопку.

Каждый метод обработки мультимедиа имеет свой набор параметров:

Рис. 10. Добавление водяного знака

Алгоритм добавления водяного знака (см. рис. 10) требует указания степени непрозрачности водяного знака. Данное значение указывается соответствующим ползунком. Крайнее левое положение — ноль — означает, что водяной знак будет полностью прозрачным, то есть не будет виден. Крайнее правое положение — единица — означает полную видимость знака. Сам водяной знак отправляется с помощью нижерасположенной соответствующей секции.

Рис. 11. Сжатие изображения

Алгоритм сжатия изображения (см. рис. 11) требует единственный параметр – число от 0 до 100, задаваемое соответствующим ползунком. Данный параметр влияет на то, каким будет итоговое качество обработанного изображения, например, наилучшим (100%) или наихудшим (0%).

Рис. 12. Конвертация изображения

Для работы данного алгоритма (см. рис. 12) в качестве итогового формата изображения предлагаются на выбор следующие форматы: JPG (JPEG), PNG, BMP, GIF, WEBP.

Рис. 13. Кадрирование изображения

Перед тем, как начать задавать параметры алгоритма, сперва следует отправить исходное изображение (см. рис. 13). После этого файл отобразится на сайте и появится возможность выделения требуемого фрагмента.

Рис. 14. Отражение изображения

Алгоритм отражения изображения (см. рис. 14) запрашивает один из двух направлений отражения: слева направо или сверху вниз. Аналогичным образом работает соответствующий алгоритм для видео.

Рис. 15. Изменение размера изображения

Данный алгоритм (см. рис. 15) требует указания новой высоты и ширины изображения, а также способ интерполяции: nearest, box, bilinear, hamming, bicubic, lanczos.

Рис. 16. Поворот изображения

Алгоритм поворота изображения (см. рис. 16) запрашивает угол поворота против часовой стрелки и способ интерполяции: nearest, bilinear, bicubic.

Рис. 17. Извлечение фрагмента из аудио

Алгоритм извлечения фрагмента из аудио (см. рис. 17) требует указания времени начала и окончания нужного фрагмента.

Рис. 18. Конвертация аудио

Алгоритм конвертации аудио (см. рис. 18) предлагает следующие форматы итогового файла: MP3, WAV, OGG, FLAC, OPUS, AAC.

Рис. 19. Добавление затуханий в аудио

Метод добавления затуханий (см. рис. 19) требует указания длительности затухания в начале и в конце. Добавление затуханий в видео происходит аналогичным образом.

Рис. 20. Изменение громкости аудио

Для работы алгоритма изменения громкости аудио (см. рис. 20) нужно указать, на сколько увеличить (или уменьшить — зависит от знака указанного числа) громкость левого и правого каналов соответственно.

Рис. 21. Объединение аудиофайлов

Метод объединения аудиофайлов (см. рис. 21) запрашивает дополнительный аудиофайл, который будет добавлен после основного, и длительность линейного перехода между ними. Аналогичным образом происходит работа с вариантом алгоритма для видеофайлов.

Рис. 22. Изменение скорости аудио

Алгоритм изменения скорости аудио (см. рис. 22) требует указания, во сколько раз следует ускорить (замедлить) воспроизведение файла. Так же происходит работа с аналогичным алгоритмом для обработки видео.

Рис. 23. Извлечение фрагмента из видео

Для работы алгоритмы извлечения фрагмента из видео (см. рис. 23) нужно задать временные точки начала и окончания требуемого фрагмента.

Рис. 24. Конвертация видео

Метод конвертации видео (см. рис. 24) предлагает следующие форматы итогового файла: MP4, AVI, WEBM.

Рис. 25. Кадрирование видео

В методе кадрирования видео (см. рис. 25) для открытия доступа к параметрам также необходимо сначала отправить исходный файл. После этого появится возможность выделить на отображенном файле нужный фрагмент.

Рис. 26. Изменение громкости видео

Алгоритм изменения громкости видео (см. рис. 26) в качестве единственного параметра принимает значение, означающее, во сколько раз сделать громкость видео громче (тише).

Рис. 27. Поворот видео

Метод поворота видео (см. рис. 27) запрашивает угол поворота против часовой стрелки.

Алгоритмы обратного воспроизведения аудио и видео, перевода аудио в одноканальный звуковой режим, перевода видео в черно-белое отображение и извлечения аудиодорожки из видео не требуют каких-либо параметров. Для их работы достаточно лишь отправить исходный файл и запустить работу метода.

Вывод:

Таким образом, был подробно описан общий принцип взаимодействия с сервисом, а также способы создания задач с различными методами обработки мультимедиа.

ЗАКЛЮЧЕНИЕ

В результате выполнения курсового проекта был определен предоставляемый пользователю функционал системы, проведен анализ аналогичных проекту сайтов и выбраны инструменты разработки серверной и клиентской части, была разработана структура системы проекта, ее базы данных, а также описан АРІ, необходимый для взаимодействия серверной и клиентской части, был подробно описан общий принцип взаимодействия с сервисом, а также способы создания задач с различными методами обработки мультимедиа

Данный сервис удобен для удобен для быстрого выполнения простой обработки файлов и освобождает пользователя от необходимости устанавливать на свой ПК дополнительное настольное программное обеспечение.

Сервис можно улучшить путем реализации и интеграции новых алгоритмов обработки файлов, создания клиентов на других платформах, внедрения системы пользователей, открывающей возможность интеграции платных подписок для более продвинутого использования сайта, расширения количества обработчиков для роста производительности.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Основная литература

- 1. Базы данных : учебно-методическое пособие / Г. И. Ревунков, Н. А. Ковалева, Е. Ю. Силантьева [и др.]. Москва : МГТУ им. Н.Э. Баумана, 2020. 28 с. ISBN 978-5-7038-5381-8. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/205187
- 2. Годзурас, Э. Docker Compose для разработчика : руководство / Э. Годзурас ; перевод с английского А. Н. Киселева. Москва : ДМК Пресс, 2023. 220 с. ISBN 978-5-93700-203-7. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/348110
- 3. Гринберг, М. Разработка веб-приложений с использованием Flask на языке Python / М. Гринберг. Москва : ДМК Пресс, 2014. 272 с. ISBN 978-5-97060-138-9. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/90103
- 4. де, Й. Д. NGINX. Книга рецептов : руководство / Й. Д. де ; перевод с английского Д. А. Беликова. Москва : ДМК Пресс, 2020. 176 с. ISBN 978-5-97060-790-9. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/140590
- 5. Елисеев, А. И. Разработка веб-приложений с использованием фреймворка Flask: учебное пособие: в 2 частях / А. И. Елисеев, Ю. В. Минин, В. А. Гриднев. Тамбов: ТГТУ, 2020 Часть 1 2020. 82 с. ISBN 978-5-8265-2188-5. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/320318
- 6. Копырин, А. С. Программирование на Python : учебное пособие / А. С. Копырин, Т. Л. Салова. Москва : ФЛИНТА, 2021. 48 с. ISBN 978-

- 5-9765-4753-7. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/182960
- 7. Кузниченко, М. А. Основы баз данных : учебно-методическое пособие / М. А. Кузниченко. 2-е изд., стер. Москва : ФЛИНТА, 2022. 102 с. ISBN 978-5-9765-5139-8. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/266339
- 8. Лоре, А. Проектирование веб-АРІ : руководство / А. Лоре ; перевод с английского Д. А. Беликова. Москва : ДМК Пресс, 2020. 440 с. ISBN 978-5-97060-861-6. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/179498
- 9. Моуэт, Э. Использование Docker / Э. Моуэт ; научный редактор А. А. Маркелов ; перевод с английского А. В. Снастина. Москва : ДМК Пресс, 2017. 354 с. ISBN 978-5-97060-426-7. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/93576
- 10. Осипов, Д. Л. Технологии проектирования баз данных / Д. Л. Осипов. Москва : ДМК Пресс, 2019. 498 с. ISBN 978-5-97060-737-4. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/131692
- 11. Разработка серверной части веб-ресурса / В. В. Никулин, А. А. Олейников, А. А. Сорокин, А. В. Олейникова. Санкт-Петербург: Лань, 2023. 132 с. ISBN 978-5-507-47868-2. Текст: электронный // Лань: электроннобиблиотечная система. URL: https://e.lanbook.com/book/356102
- 12. Рогов, Е. В. PostgreSQL 15 изнутри : руководство / Е. В. Рогов. Москва : ДМК Пресс, 2023. 662 с. ISBN 978-5-93700-178-8. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/348089
- 13. Сейерс, Э. X. Docker на практике / Э. X. Сейерс, А. Милл ; перевод с английского Д. А. Беликов. Москва : ДМК Пресс, 2020. 516 с. —

- ISBN 978-5-97060-772-5. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/131719
- 14. Сергеев, А.Н. Основы локальных компьютерных сетей [Электронный ресурс]: учебное пособие / А.Н. Сергеев. Санкт-Петербург: Лань, 2016.
 184 с. Режим доступа: URL: https://e.lanbook.com/book/87591
- 15. Топорков, С.С. Компьютерные сети для продвинутых пользователей [Электронный ресурс]: учебное пособие / С.С. Топорков. Москва : ДМК Пресс, 2009. 192 с. Режим доступа: URL: https://e.lanbook.com/book/1170
- 16. Хортон, А. Разработка веб-приложений в ReactJS / А. Хортон, Р. Вайс ; перевод с английского Р. Н. Рагимова. Москва : ДМК Пресс, 2016. 254 с. ISBN 978-5-94074-819-9. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/97339
- 17. Янцев, В. В. Web-программирование на Python / В. В. Янцев. 2-е изд., стер. Санкт-Петербург : Лань, 2023. 180 с. ISBN 978-5-507-46546-0. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/310289

Дополнительная литература

- 18. Ачилов, Р.Н. Построение защищенных корпоративных сетей [Электронный ресурс]: учебное пособие / Р.Н. Ачилов. Москва : ДМК Пресс, 2013. 250 с. Режим доступа: URL: https://e.lanbook.com/book/66472
- 19. Ибе, О. Компьютерные сети и службы удаленного доступа [Электронный ресурс]: справочник / О. Ибе. Москва : ДМК Пресс, 2007. 336 с. Режим доступа: URL: https://e.lanbook.com/book/1169