Distributions

class - 6 (22.8.24)

LS2103 (Autumn 2024)

Dr. Neelanjana Sengupta Associate Professor, DBS

https://www.iiserkol.ac.in/~n.sengupta/

Figure 2. Distribution of lysosome diameters. (A) Distribution of lysosome diameters measured in control, untreated cells. (B) Incubation with sucrose shifts the distribution of lysosome diameters to greater values. For both plots, n = 50 lysosomes from 3 cells. doi:10.1371/journal.pone.0086847.g002

2

PLOS ONE | www.plosone.org

January 2014 | Volume 9 | Issue 1 | e86847

What should you get when you add the y-axis values?

Diameter Distributions

Yeast cells:

10 μm

 $1 \mu m^3 = 1 \text{ femtoLitre (fL)}$

Cell. Biol. by the Numbers.

Lymphoblast cells:

Diameter Distributions

Distributions aid understanding (model building)

Eg. How do cells maintain their size across cell cycles?

Jia et al, iScience 2020, https://doi.org/10.1016/j.isci.2021.102220

http://rchsbowman.wordpress.com/2009/11/29 /statistics-notes-%E2%80%93-properties-of-normal-distribution-2/

Height distributions of population

Molecular velocity distributions

*Consider an event with 'N' number of outcomes: $\{\chi_1, \chi_2, \ldots, \chi_j, \chi_{j+1}, \ldots, \chi_N\}$ —(1a)

The PROBABILITIES of these outcomes are:

{ P1, P2, ..., P1, P1, PN } - (16)

If this "event" takes place enough (M) number of times,

we can obtain a DISCRETE distribution: -

$$\sum_{j=1}^{N} f_{j} = M$$

$$\sum_{N}^{q=1} \int_{N}^{q} = \sum_{N}^{q=1} \frac{M}{f^{2}}$$

Now, if the possible "events" were:

- i) Placed very close together, ie. 2/11-2/20 ii) 'N' was very large

iii) 'M' was very large

 $\sum_{i} p(x_i) = 1$

Now, if the possible "events" were: class intervals

For vanishingly small

i) Placed very close together, ie. 2/11-2/20)
ii) 'N' was very large

$$\sum_{j} p(x_{j}) = 1$$

$$\int_{\mathbf{X}_{low}} \mathbf{p}(\mathbf{x}) d\mathbf{x} = 1$$

What are the UNITS of p(x) for a continuous probability distribution?

$$\int_{\mathbf{x}_{low}} \mathbf{p}(\mathbf{x}) d\mathbf{x} = 1$$

$$\left[p(x)\right]\left[dx\right] \to dimension kss$$
Units of dimensions of $p(x) \longrightarrow \left[dx\right]^{-1} = \left[x\right]^{-1}$

Q. What are the units of $f(x_i)$ or $P(x_i)$ in a discrete distribution?

M-B Velocity Distribution is a Continuous Disbn.

$$P(v_{x}) = \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(v_{x}-0)^{2}}{2\sigma^{2}}}$$

Considering the velocity magnitude,

$$P(v) = 4\pi \left(\frac{m}{2\pi k_B T}\right)^{3/2} v^2 e^{-\frac{mv^2}{2k_B T}}$$

 $\tau_2 > \tau_1$ Compare the dimensions of $P(v_x)$ and P(v)

The probability of obtaining a value within an interval:

$$\int_{a_{j}}^{a_{k}} b(a) da = P_{jk} < 1$$

Therefore,

$$\chi_{i} = \chi_{k} \qquad \chi_{high}$$

$$\int_{p(x)dx} + \int_{p(x)dx} + \int_{p(x)dx} = 1$$

$$\chi_{low} \qquad \chi_{i} \qquad \chi_{k}$$

Q. What are x_{low} and x_{high} for M-B distribution?

The *mean* value of a measurement,

The variance,
$$\nabla^2 = \langle \chi^2 \rangle - \langle \chi \rangle^2$$

$$= \int_{\chi_{100}}^{\chi_{100}} |\chi(\chi)| d\chi - \left[\int_{\chi_{100}}^{\chi_{100}} |\chi(\chi)| d\chi \right]^{2}$$

Q. Write down the expression for standard deviation of a continuous distribution

Consider a quantity f that depends on the variable x, ie.

The mean value of the f^2 ,

$$\int_{1}^{2} = \int_{1}^{2} \left[f(x) \right]^{2} \phi(x) dx$$

$$f \longrightarrow f(x)$$

The mean value of the f,

$$\overline{f} = \int_{x_{ins}}^{x_{high}} f(x) \, \varphi(x) \, dx$$

The variance,

$$\sigma_{\xi}^{2} = \frac{\overline{\zeta}^{2}}{\zeta} - (\overline{\zeta})^{2}$$

The Gaussian (Normal) Distribution:

$$P(\chi) = \frac{1}{\sqrt{2\pi}} \frac{-(\chi - \bar{\chi})^2/2\sigma^2}{2\sigma^2}$$

Symmetric function:
$$P(\bar{x}+x) = P(\bar{x}-x)$$

If centered at the origin, it becomes an even function

HW. Show that the variance of the function is given by \mathbf{T}^{2}

Why is the full M-B velocity distribution NOT a Normal Distribution?

$$P(v_x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(v_x - 0)^2}{2\sigma^2}}$$

$$P(v_{x}) = \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(v_{x}-0)^{2}}{2\sigma^{2}}} \qquad P(v) = 4\pi \left(\frac{m}{2\pi k_{B}T}\right)^{3/2} v^{2} e^{-\frac{mv^{2}}{2k_{B}T}}$$

Maxwell-Boltzmann Velocity Distribution

Why is the full velocity distribution NOT a Gaussian (Normal) Distribution?

Figure 3.4: (Sketch.) The set of all vectors \mathbf{v} of length u is a sphere. The set of all vectors with length between u and u + du is a spherical shell.

$$P(v) dv = P(v_x) \cdot P(v_y) \cdot P(v_3) \times [v_{ol} \cdot of shen "dv"]$$

$$= P(v_x) \cdot P(v_y) \cdot P(v_3) \times [x_{ol} \cdot of shen "dv"]$$

HW. Derive these relationships

$$J_{m,p} = \sqrt{\frac{2k_BT}{m}}$$

$$V_{rms} = \sqrt{\frac{3k_BT}{m}}$$

$$\frac{k_BT}{m} \equiv \frac{RT}{M}$$
mass of mass

The **GAMMA FUNCTION** is a friendly aid!

(...if you practice a bit)

$$\Gamma(n) = \begin{cases} e^{-x} & x^{n-1} & dx \end{cases}$$

1. For positive *integer n*,

$$\Gamma(n) = (n-1)$$

2. For any positive n,

$$L(\omega + i) = \omega_L(\omega)$$

3. For n = 1/2,

$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$