Operacijska istraživanja

3. predavanje: Metode unutarnje točke. Dualno-primalna metoda centralnog puta.

Sažetak predavanja

- Uvod: Metoda Lagrangeovih multiplikatora, Newtonova metoda
- Primalno-dualna metoda unutarnje točke

Operacijska istraživanja 3. predavanje: Metoda unutarnje točke

Metoda Lagrangeovih multiplikatora

Problem uvjetnog ekstrema

- Zadan je problem traženja uvjetnog ekstrema.
- Neka je zadana funkcija f(x) za koju treba naći ekstreme uz zadane uvjete φ(x, y).
- Ekstremi na stazi su tamo gdje ona dira izohipse, tj. paralelna je s njima.
- Paralelnost krivulja znači paralelnost tangenata, a komponente vektora smjera tangenata su parcijalne derivacije.
- Dakle, tražimo točke u kojima su parcijalne derivacije od f(x, y) i φ(x, y) proporcionalne.

Lagrangeov multiplikator

 Uvodimo veličinu λ koju zovemo Lagrangeov multiplikator (množitelj) i formiramo Lagrangeovu funkciju:

$$F(x,y) = f(x,y) + \lambda \phi(x,y)$$

 Nakon toga tražimo stacionarne točke funkcije F(x, y) koje zadovoljavaju traženi uvjet:

$$\frac{\partial F}{\partial x} = \frac{\partial f}{\partial x} + \lambda \frac{\partial \varphi}{\partial x} = 0$$
$$\frac{\partial F}{\partial y} = \frac{\partial f}{\partial y} + \lambda \frac{\partial \varphi}{\partial y} = 0$$
$$\frac{\partial F}{\partial \lambda} = \varphi(x, y) = 0$$

Ekstremi funkcija više varijabli

- Nađemo λ i koordinate (x_0 , y_0) moguće točke ekstrema.
- Ako je $d^2F < 0$ imamo uvjetni maksimum, ako je $d^2F > 0$ imamo uvjetni minimum.
- Poopćenje za funkciju više varijabli:

$$z = f(x_1, ..., x_n)$$

$$\varphi_1(x_1, ..., x_{n_1}) = 0$$

$$...$$

$$\varphi_m(x_1, ..., x_{n_1}) = 0$$

$$F(x_1, ..., x_n; \lambda_1, ..., \lambda_n) = f(x_1, ..., x_n) + \lambda_1 \varphi_1 + ... + \lambda_m \varphi_m$$

Operacijska istraživanja 3. predavanje: Metoda unutarnje točke

Newtonova metoda

18. listopada 2021.

Newtonova metoda

- Neka je f:[a,b] \rightarrow R klase C² na [a,b], a zadana jenadžba f(x) = 0.
- Newtonova metoda, ili metoda tangente, sastoji se u tome da se (n+1). aproksimacija x_{n+1} odredi kao sjecište tangente na graf funkcije f u točki s apscisom x_n sa osi x.

jednadžba tangente na graf funkcije f u točki $(x_n, f(x_n))$ je $y = f(x_n) + f'(x_n)(x - x_n)$

za y = 0 slijedi
$$x_{n+1} = x_n - f(x_n)/f'(x_n)$$

18. listopada 2021.

Algoritam Newtonove metode

• izabrati x_0 iz [a,b], te računati niz x_n za n=1,2,3,... po formuli

$$x_{n+1} = x_n - f(x_n)/f'(x_n)$$

$$x_{n+1} - x_n = -f(x_n)/f'(x_n)$$

$$\Delta x = -f(x_n)/f'(x_n)$$

$$x_{n+1} = x_n + \Delta x$$

• Ako je $F(x_k) = 0$ za neki k, onda je rješenje x_k . U protivnom nastaviti računanje daljnih članova niza.

Operacijska istraživanja 3. predavanje: Metoda unutarnje točke

Metode unutarnje točke

Metode unutarnje točke

- vrsta algoritama koji se koriste u rješavanju linearnih i nelinearnih konveksnih optimizacijskih problema
- računska složenost im je polinomijalna, a ne eksponencijalna kao kod simpleksne metode
- kod rješavanja problema velikih dimenzija, proračunski su potvrđene kao najefikasnije metode u teoriji linearne optimizacije
- danas su gotovo svi komercijalni softverski paketi opremljeni opcijom za računski izbor s ovim metodama

Princip metoda unutarnje točke

- oslanja se na LP model s funkcijom cilja i ograničenjima koja su kontinuirana i dvostruko derivabilna
- pretpostavlja se da je problem izvediv, te ima optimalni dual koji zadovoljava Karush-Kuhn-Tucker (KKT) uvjete
- problem se rješava ili iterativno rješavajući KKT uvjete ili rješavanjem jednokosti originalnog problema umjesto ograničenja nejednakosti primjenom Newtone metode

Primalno-dualna metoda unutarnje točke

• Neka je zadan LP problem u standardnoj formi sa svojim dualom:

max
$$c^{T}x$$

uz ograničenja $Ax = b$
 $x \ge 0$

min
$$b^{T}y$$

uz ograničenja $A^{T}y - s = c$
 $s \ge 0$

gdje su zadani $A \in Z^{mxn}$, $b \in Z^m$, $c \in Z^n$

Pretpostavke algoritma

Komplementarnost (engl. complementary slackness): Ako su x i (y,s)
optimalna rješenja primala i duala, onda su x i s ortogonalni, tj. vrijedi:

$$\mathsf{X}^\mathsf{T}\mathsf{S} = \sum_j x_j s_j = 0.$$

- Neka su X := diag($x_1, ..., x_n$), S := diag($s_1, ..., s_n$), dijagonalne matrice.
- Dualni par x i (y, s) je optimalan ako i samo ako vrijedi:

$$x \ge 0$$
, $s \ge 0$

$$F(x, y, s) = 0$$

gdje je F(x, y, s) :=
$$\begin{bmatrix} A^{T}y - s - c \\ Ax - b \\ XSe \end{bmatrix}$$

Opći primalno-dualni algoritam unutarnje točke

 Neka je zadan X, skup vektora (x, y, s), gdje je x primalno izvediv, (y, s) dualno izvediv te skup X⁰ relativna unutrašnjost od X;

$$X := \{(x, y, s) : A^Ty - s = c, Ax = b, x \ge 0, s \ge 0\}$$

 $X^0 := \{(x, y, s) \in X : x > 0, s > 0\}$

- Koraci algoritma su:
 - započeti s točkom $(x, y, s) \in X^0$
 - generirati novu točku (x, y, s) + $\alpha \cdot (\Delta x, \Delta y, \Delta s)$, gdje se traženi smjer ($\Delta x, \Delta y, \Delta s$) dobije Newtonovom metodom, a $\alpha \le 1$ je duljina koraka.
 - ponavljati prethodni korak
- Nalaženje točke u X⁰ je netrivijalan problem.

Naivni primalno-dualni algoritam unutarnje točke

• posebni slučaj gdje je Newtonova metoda direktno primijenjena na F, a α =1, ima korak pomaka (Δx , Δy , Δs) prema sljedećem izrazu:

$$\begin{bmatrix} 0 & A^T & -I \\ A & 0 & 0 \\ S & 0 & X \end{bmatrix} \begin{bmatrix} \Delta X \\ \Delta Y \\ \Delta S \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -XSe \end{bmatrix}$$

- Koraci algoritma su:
 - započeti točkom $(x, y, s) \in X^0$
 - generirati novu točku (x, y, s) + $\alpha \cdot (\Delta x, \Delta y, \Delta s)$, gdje se traženi smjer ($\Delta x, \Delta y, \Delta s$) dobiven iz gornje jednakosti
 - ponavljati prethodni korak

Centralni put

- Da bi naivni primalno-dualni algoritam radio, potrebno je modificirati F tako da točke iz X⁰ koje zadovoljavaju uvjet F = 0 nisu daleko od trenutne točke.
- Parametrizacijom se dobije:

$$F_{\tau}(x, y, s) := \begin{bmatrix} A^{T}y - s - c \\ Ax - b \\ XSe - \tau e \end{bmatrix} \quad \tau \ge 0$$

što implicira $x_i s_j = \tau$ za $\forall j = 1, ..., n$, što je manje stroga komplementarnost

 Centralni put je skup svih izvedivih rješenja koja zadovoljavaju gornje jednadžbe za neki τ:

$$C:=\{(x,\,y,\,s)\in X^0:\exists \tau\geq 0 \text{ tako da je } x_js_j=\tau \text{ za } \forall j=1,\,...,\,n\}$$

Primalno-dualni algoritam

 za točku (x, y, s) ∈ X⁰ treba izračunati prosječno dualno rastojanje (tzv. average duality gap) da bi se kontroliralo da algoritam slijedi centralni put:

$$\mu(x,s) \coloneqq (\sum_{j} x_{j} s_{j}) / n$$

Ovakav primalno-dualni algoritam primjenjuje Newtonovu metodu na $F_{\sigma\mu(x,s)}$ što rezultira rješavanjem:

$$x_j s_j = \sigma \mu(x, s)$$
 $\forall j = 1, ..., n, 0 \le \sigma \le 1$

Koraci algoritma (σ)

- započeti točkom $(x, y, s) \in X^0$
- generirati novu točku (x, y, s) + (Δ x, Δ y, Δ s), gdje se traženi smjer (Δ x, Δ y, Δ s) dobije Newtonovom metodom za $F_{\sigma\mu(x,s)} = 0$.
- ponavljati prethodni korak
- Ako je σ = 0, algoritam postaje naivni primalno-dual algoritam.
- Ako je $\sigma = 1$, algoritam traži točku C u kojoj su sve $x_j s_j$ jednake prosječnom dualnom rastojanju trenutne točke.
- Algoritam ne garantira da je nova točka (x, y, s) + (Δx, Δy, Δs) dopustiva, ali
 teži ostati u X⁰ jer se pokušava približiti centralnom putu.

Primalno-dualni algoritam za σ = 0.6, 0.4, 0.2

25. listopada 2017.

Operacijska istraživanja 3. predavanje: Metoda unutarnje točke

Implementacija metode unutarnje točke

Logaritamska barijera

 $\max c^T x + \mu \sum_{i=1}^m \ln x$ Uz ograničenja Ax = b

 $\mu = 100$

18. listopada 2021.

Primjena logaritamske barijere

primal

- min. c^Tx uz ograničenja Ax = b $x \ge 0$
- min. $c^Tx \mu \sum_{i=1}^n lnx_i$ uz ograničenja Ax = b

dual

• max. b^Ty uz ograničenja $A^Ty + s = c$ tj. $A^Ty \le c$ $(y,s) \ge 0$

• max. $b^Ty + \mu \sum_{i=1}^n lns_i$ uz ograničenja $A^Ty + s = c$

Lagrangeova funkcija

- min. c^Tx uz ograničenja Ax = b, $x \ge 0$
- $L(x, y) = c^T x \mu \sum_{j=1}^m \ln x_j y^T (Ax b)$ $\frac{\partial L(x,y)}{\partial x_j} = c_j \mu \frac{1}{x_j} A^T_{j} y = c_j \mu \frac{1}{x_j} \sum_{i=1}^n y_i a_{ij}$ $\frac{\partial L(x,y)}{\partial y} = b_i A_i x = b_i \sum_{j=1}^m a_{ij} x_j$

u vektorskoj notaciji:

$$\nabla_x L(x, y) = c - \mu_{\overline{X}}^1 - A^T y = 0$$

$$\nabla_y L(x, y) = b - Ax = 0, x \ge 0$$

Uvjeti optimalnosti

• uvodeći s = $\mu X^{-1}e$ slijedi:

$$c - s - A^{\mathsf{T}} y = 0$$

$$b - Ax = 0, x \ge 0$$

odnosno:

 $A^{T}y + s = c$ dopustivost dualnog rješenja

Ax = b, $x \ge 0$ dopustivost primalnog rješenja

 $Xs = \mu e$ uvjet komplementarnosti

Primjena Newtonove metode

•
$$F_{\tau}(x, y, s) := \begin{vmatrix} Ax-b \\ A^{T}y + s - c \\ XS - \tau \mu e \end{vmatrix}$$
 $\tau \ge 0$, parametar centriranja

Za startnu točku (x⁰,y⁰,s⁰) jedna iteracija Newtonove metode daje:

$$\nabla F_{\tau}(\mathbf{x}^{0}, \mathbf{y}^{0}, \mathbf{s}^{0}) \begin{bmatrix} d_{x} \\ d_{y} \\ d_{s} \end{bmatrix} = -F_{\tau}(\mathbf{x}^{0}, \mathbf{y}^{0}, \mathbf{s}^{0}) , \qquad \nabla F_{\tau}(\mathbf{x}^{0}, \mathbf{y}^{0}, \mathbf{s}^{0}) = \begin{bmatrix} A & 0 & 0 \\ 0 & A^{T} & I \\ S^{0} & 0 & X^{0} \end{bmatrix} \begin{bmatrix} d_{x} \\ d_{y} \\ d_{s} \end{bmatrix} = \begin{bmatrix} r^{0}_{p} \\ r^{0}_{d} \\ X^{0}S^{0} - \tau\mu^{0}e \end{bmatrix} = \begin{bmatrix} b - A\mathbf{x}^{0} \\ c - s - A^{T}y \\ X^{0}S^{0} - \tau\mu^{0}e \end{bmatrix} \begin{bmatrix} \mathbf{x}^{+} \\ \mathbf{y}^{+} \\ \mathbf{s}^{+} \end{bmatrix} = \begin{bmatrix} \mathbf{x}^{0} \\ \mathbf{y}^{0} \\ \mathbf{s}^{0} \end{bmatrix} + \alpha \begin{bmatrix} d_{x} \\ d_{y} \\ d_{s} \end{bmatrix}$$

Primjer

• $\max x_1 + 2x_2$

uz ograničenja:

$$x_1 \ge 2.3$$

$$x_1 + x_2 \le 5$$

$$4x_1 + x_2 \le 10$$

$$2x_1 + x_2 \le 6$$

$$x_1 + 2.2x_2 \le 10$$

$$x_1 \ge 0, x_2 \ge 0$$

