Multi-modal Emotion Detection and Classification using Audio-Visual Data

Violet Li, Roxy Rong, Weijie Yang

Problem statement

This project aims to solve the **emotion classification problem** from both **visual** and **audio** data, without having the knowledge of the speaker information.

Dataset: SAVEE Database

- The SAVEE database was recorded from 4 native English male speakers.
- There are **7 categories of emotions**: anger, disgust, fear, happiness, sadness, surprise and neutral.
- It contains videos of their facial expressions and audios of them reading emotion-specific sentences.

Audio Experiments

Audio Features Extraction

* Time period, frequency, amplitude

ML Models - Audio

Audio Feature Selection

- Basic features + PCA on 1 dimensional array features -> 40+ features
- Correlation matrix to reduce it to 16 features
- All inputs are normalized

Model Architecture

- Traditional ML model: LogReg, SVM, RF, KNN
- CNN Model (MFCC -> 2 layers Conv2D, Kernel = (5, 15), (3, 9))
- Dual CNN Model & CNN + other features Model
- Use Early Stopping, Regularization, Kernel Constraints to prevent overfitting with more complicated models

Transfer Learning

Why Transfer Learning

- As we have a **small dataset**, transfer learning allow use start from a well-trained model.
- Reduce computational time & dataset needed dramatically
- Only train the new added dense layers

Steps

- Determine which base model to use.
- Preprocess the dataset so that it is a valid input.
- Train the model

Max Pool (2x2)

Flatten

Dense FC Layer 1

Output Laver

Audio: Model based on VGG19 / YAMNet

MFCC Diagram with VGG19

- convolutional neural network architecture consisting of 19 layers
- Take images as input.
- Test Accuracy: 0.39

Waveform with YAMNet

- A pre-trained neural network that employs the MobileNetV1, classifying audio types.
- Use audio waveform as input.
- Over-fitting as we increase epochs.
- Test Accuracy: 0.21

3.0

validation

Why Transfer Learning is not working so well

- Though transfer learning needs fewer samples, 480 original samples are still too few to train a good model.
- Not ideal base model selection.
 - VGG19 model is more for classifying images
 - YAMNet for classifying types of phonating objects (cars, animals, etc.).
 - Our samples will likely all get 'speech' embeddings without obvious differentiation.

To improve the results

- Extend the dataset.
- Not only use models as embeddings extractor, but fine-tune some existing layers

print(f'The main sound is: {inferred_class}')
print(f'The embeddings shape: {embeddings.shape}')

The main sound is: Speech
The embeddings shape: (10, 1024)

Model Performance Evaluation Overview (audio only)

Model	Accuracy	Precision	Recall	f1_score
Log Reg	0.385	0.37	0.38	0.37
SVM	0.447	0.43	0.45	0.44
RF	0.464	0.43	0.46	0.42
KNN (MFCC)	0.397	0.37	0.40	0.38
CNN	0.505	0.49	0.50	0.49
Dual CNN	0.422	0.48	0.42	0.44
CNN + others	0.552	0.53	0.55	0.53
Transfer Learning (VGG19)	0.389	0.35	0.39	0.39
Transfer Learning (YAMNet)	0.210	0.11	0.21	0.10

Limitations on Audio

Weakness:

- Audio Model can't separate disgust or sad from neutral well, also can't distinguish between fear and surprise well
- Overall performance is still too low, not achieving 80% accuracy goal

Next Steps:

- Add visual data
- Build multimodal fusion

Flowchart

Image Experiments

Video Feature Extraction

Image: Model based on VGG16

VGG16:

- convolutional neural network architecture consisting of 16 layers
- Trained on ImageNet, which contains more than 14 million training images across 1000 object classes.

Test Accuracy achieved after 50 epochs: 0.73

Next Steps:

 Build a model that can make use of the temporal information

ConvLSTM on Visual Inputs

Training Result					
Training Accuracy	0.9417				
Test Accuracy	0.8333				
precision	0.84				
recall	0.81				
f1-score	0.79				

Multimodal Fusion

Concatenate both video and audio extractors into Neural Networks.

Model Input Processing

Video & Audio Feature Processing

- Video Input Size: (6, 64, 64, 3) <6 frames with 64*64 pixels RGB images>
- Audio Input size: (40, 290, 1) <MFCC with 40*290 pixels non-RGB images>
- All inputs are normalized

Train/Test Split Technique

- Audio Dataset is augmented → Split the dataset by group
- Match video input with audio input
- Balance the portion of different emotion inputs → Weights Setting
- Cross Validation → Stratified Group K Fold (K = 4)

MultiModal Architecture

Limitations (1-2mins)

- Dataset Size: Not enough video data (only 4 faces, and all white male) make it harder to generalize
- Tuning: More complicated model structure makes hyper-param tuning much harder
- Al Fairness: All speaker are white males. This means that our sample contains bias on age, race, gender, and education level.

Discussion & Conclusion

Result

- ConvLSTM Multi-modal fusion has the best performance.
- Potential reason: Emotion expression is a temporal behavior with visual and audio outputs. Multi-Modal can better capture temporal info and both features.

Reflections

Sample selections

Future Work

- Add more samples and be more inclusive

Appendix

A list of features:

teo

f0 pitch_mean, pitch_median, pitch_std, pitch_range, pitch_max energy_mean, energy_median, energy_std, energy_range, energy_max jitter, shimmer amplitude_envelope rms zcr ber amplitude_spectrogram dB_spectrogram spec_contrast spec_flux spec_centroid spec_bandwidth spec_flatness power_spectrogram mel-spectrogram mfcc mfcc_delta

Data Augmentation

• Only 480 samples, so we need to augment the dataset.

Original file

- Methods used:
 - a. Add Gaussian noise 🕩
 - b. Pitch Scaling
 - c. Time Stretching
 - d. Random Gain
 - e. Invert Polarity
- Randomly combine these methods to obtain augmented dataset.

Performance Overview - Multimodal Fusion

