UBA-CBC	BIOFÍSICA (53)	2 ^{do} PAR	CIAL	IAL 2 ^{do} C. 2012 23–Nov–12						TEMA 1				
APELLIDO:	PELLIDO:			Reservado para corrección										
NOMBRES:			P1a	P1b	P2a	P2b	Р3	P4	P5	P6	P7	P8	Nota	
D.N.I.:														
Email(optativo):														
Sede:	MaVi 10-13hs	AULA:	COMISIÓN:				CORRECTOR:				Hoja 1 de:			
LEA CON ATENCIÓN: El examen consta de 2 ejercicios con 2 preguntas cada uno, que debe resolver en hoja aparte: y de 6 ejercicios de														

LEA CON ATENCIÓN: El examen consta de 2 ejercicios con 2 preguntas cada uno, que debe resolver en hoja aparte; y de 6 ejercicios de opción múltiple, con una sola respuesta correcta que debe elegir marcando una cruz (X) en el recuadro correspondiente que figura a la izquierda. No se aceptan respuestas en lápiz. Dispone de 2 horas.

GOG-MB

Problemas a desarrollar

Problema 1. En el sistema de la figura, las resistencias son $R_1=80\Omega$, $R_2=100\Omega$ y $R_3=25$ Ω . Si la potencia entregada por la fuente es de 4 W:

a) ¿cuál es el valor de la corriente que circula por cada resistencia? [0.2A sobre R_1 , 0.04A sobre R_2 y 0.16A sobre R_3]

b) ¿cuál es la energía disipada por R_2 al cabo de un minuto? [9.6J]

Problema 2. Un gas ideal monoatómico realiza un proceso cíclico en forma reversible como se indica en la figura.

- a) Calcular el calor intercambiado en la evolución ABC y en el ciclo completo ABCDA, indicando si es cedido o absorbido por el sistema. [87J, 24J]
- b) Calcule la variación de entropía del gas, del medio y del universo en el ciclo ABCDA. Justificar claramente los resultados. [$\Delta S_g = \Delta S_m = \Delta S_U = 0$]

Ejercicios de elección múltiple

Problema 3. Se enfrían 200g de un material completamente fundido que se encuentra a 420°C. La evolución de la temperatura del material en función del calor que entrega se muestra en la figura. Entonces su calor □ latente de fusión es de 13,3 cal/g

- **⊗** latente de fusión es de 28 cal/g
- ☐ latente de fusión es de 0,038 cal/g
- específico es de 0,05 cal/g°C
- específico es de 0,16 cal/g C
- específico es de 0,94 cal/g C

Problema 4. Se reduce de manera reversible el volumen de un gas ideal a la cuarta parte, manteniendo la temperatura constante. En esta evolución se puede afirmar que:

- ☐ La entropía del sistema aumentó.
- ☐ La entropía del medio no varió.
- ☐ La entropía del medio disminuyó.
- ☐ La energía interna del sistema disminuyó.
- **⊗** La entropía del sistema disminuyó.
- ☐ La energía interna del sistema aumentó.

Problema 5. Determinar cuál de las siguientes afirmaciones es la única verdadera.

- ☐ Las líneas de campo generadas en todo punto del espacio por un dipolo eléctrico son rectas.
- Los vectores campo eléctrico y fuerza eléctrica coinciden siempre en módulo, dirección y sentido.
- ☐ Si un electrón está sometido únicamente a una interacción eléctrica, éste se desplaza a lo largo de una línea de campo a velocidad constante.
- ☐ La capacidad de un capacitor plano de placas paralelas depende exclusivamente del área de sus placas.
- La capacidad de un capacitor plano depende exclusivamente del material que se utiliza como dieléctrico.
- 8 Entre las placas de un capacitor plano paralelo, despreciando efectos de borde, el campo eléctrico es uniforme.

Problema 6. Suponga que la temperatura ambiente es de 28°C y la humedad relativa, H _R , es del 15%. Se enfría el aire a presión constante haciendo disminuir su temperatura sin variar su composición. Llamando T _r a la temperatura de rocío, se cumple que:
de rocio, se cumple que:
Problema 7. Una pava eléctrica es un recipiente adiabático cuyo contenido se calienta mediante la energía disipada por una resistencia eléctrica. Sus especificaciones de funcionamiento son las siguientes: Tensión de alimentación: 220V; intensidad de corriente: 5 A. ¿Cuánto tiempo tardará en calentarse un litro de agua, desde 20°C hasta 90°C? □ menos de 1 minuto □ entre 1 y 2 minutos □ entre 2 y 4 minutos □ entre 2 y 4 minutos □ entre 6 y 8 minutos □ más de 8 minutos
De las siguientes preguntas responder SOLO LAS DE SU FACULTAD
Problema 8a (FARMACIA y BIOQUIMICA): La salida de potasio desde la célula durante el potencial de acción: representa la primera parte del potencial de acción y ocurre hasta que el potencial de membrana alcanza el valor del potencial de equilibrio del sodio (+50mV). ocurre a través de canales voltaje-dependientes de cinética rápida. ocurre a través de la bomba de sodio/potasio y da lugar a la fase de despolarización. hace que aumente el potencial de membrana hasta que se alcanzan valores positivos. da lugar a las fases de repolarización y de hiperpolarización postpotencial, debiéndose esta última a que los canales de potasio presentan una cinética lenta. ocurre antes de la entrada de sodio a la célula y, en un primer momento, está impulsada únicamente por gradiente de concentración.
Problema 8b (ODONTOLOGIA): El potencial de acción: ☐ es un cambio permanente en el potencial de membrana de todas las células. ☐ es un cambio permanente en el potencial de membrana de las células excitables. ☐ es un cambio permanente en el potencial de membrana de las células no excitables. ❷ es un cambio transitorio del potencial de membrana en células excitables. ☐ es un cambio transitorio en el potencial de membrana de todas las células. ☐ es un cambio transitorio del potencial de membrana de las células no excitables.
Problema 8c (MEDICINA): Cuando un cuerpo emisor de infrarrojo aumenta su temperatura absoluta al doble entonces: ② la radiación es 16 veces mayor. □ su longitud de onda aumenta. □ su longitud de onda se mantiene constante. □ la radiación es 2 veces menor. □ la radiación disminuye 16 veces. □ la radiación es 2 veces mayor.
Problema 8d (OTRAS) : Un capacitor C_1 se carga con una batería de tensión V. Luego se desconecta la batería y se coloca otro capacitor de capacidad C_2 =2 C_1 en paralelo con el primer capacitor. Entonces, la energía almacenada por C_2 es:
$\begin{array}{ccc} & & & & & & & & & & & & & & & & & &$