PHYS 211X General Physics I

Formulas

Dot Product:

$$\vec{A} \cdot \vec{B} = ||A|| ||B|| \cos(\theta) \tag{1}$$

Cross Product:

$$\vec{A} \cdot \vec{B} = AB\sin(\theta) \tag{2}$$

Position:

$$x, y, s$$
, or $p = \vec{v}\Delta t = \int \vec{v}dt$ (3)

$$x = \left(\frac{v_0 + vf}{2}\right) \Delta t \tag{4}$$

$$x = v_0 t + \left(\frac{1}{2}\right) \vec{a} t^2 \tag{5}$$

Velocity:

$$\vec{v} = \vec{a}\Delta t = \frac{d}{dt}[p] = \int (\vec{a})dt \tag{6}$$

$$\vec{v} = v_0 + \vec{a}t \tag{7}$$

$$\vec{v}_f^2 = v_0^2 + 2\vec{a}\Delta x \tag{8}$$

Acceleration

$$\vec{a} = \frac{d}{dt} [\vec{v}] \tag{9}$$

Projectile Motion:

$$y_f = y_0 + v_0(\Delta t) + \frac{1}{2}a(\Delta t^2)$$
 (10)

Force:

$$\vec{F} = m\vec{a} \tag{11}$$

Friction:

$$f = \mu N \tag{12}$$

Drag:

$$\vec{F_D} \text{ or } D = \frac{1}{2}\rho C_D A v^2 \tag{13}$$

Circular Motion:

$$\vec{v} = r \tag{14}$$

$$a_{cent} = \frac{m\vec{v}^2}{r} \tag{15}$$

$$f = \mu n \tag{16}$$

$$v_{cent/crit} = \sqrt{gr}$$
 (17)

$$N = mr\omega^2 \tag{18}$$

$$N = 3mg \tag{19}$$

$$\omega = \frac{\Delta \theta}{\Delta t} \tag{20}$$

Total Energy:

$$E = K + U \tag{21}$$

$$KE_i + U_i = KE_f + U_f \tag{22}$$

$$\frac{1}{2}mv_i^2 + mgy_i = \frac{1}{2}mv_f^2 + mgy_f \tag{23}$$

PE of a spring:

$$U = 1/2kx^2 \tag{24}$$

$$U_p = \frac{1}{2}k(x - L_0) \tag{25}$$

Potential Energy:

$$U_{tot} = mg + k\Delta y \tag{26}$$

Work:

$$W_{int} = -\frac{F_x}{\Lambda} \tag{27}$$

$$F_x = -\frac{dU}{dx} \tag{28}$$

Momentum:

$$\rho = mv \tag{29}$$

$$\rho_{\theta} = \tag{30}$$

Torque:

$$\tau = r \times F \tag{31}$$

$$\tau = rF\sin(\theta) \tag{32}$$

$$N = I\alpha \tag{33}$$

Inertia:

$$I = \sum_{i} m_i r_i^2 = \int dm r^2 \tag{34}$$

Kinetic Energy of Rotation:

$$KE = \frac{1}{2}I\omega^2 \tag{35}$$

Key

```
v = \text{velocity}, \text{meters/second}
  y = \text{height}, \text{ meters}
  x = distance, meters
  t = time, seconds
 m = {
m mass, \, kilograms}
  a = acceleration, meters/second^2
  \theta = angle, degrees
  g = \text{gravity: } 9.8 \text{ meters/second}^2
  \omega = angular velocity, radians or degrees/second
  F = \text{force}, Newtons, kilogram · meters/second<sup>2</sup>
  \mu = coefficient of friction
 N = normal force, Newtons
  A = area, meters^2
  \rho = volumetric mass density, kilograms/meters ^3
C_D = drag coefficient (geometry dependant)
 K = \text{kinetic energy}
 U = potential energy
  \alpha = angular acceleration, degrees—radians/second<sup>2</sup>
```