CNN

RNN不能提取一个span的特征,并且过度关注最后一个状态,但CNN可以关注每个span,适合分类任 务。

1D convolution for text

以word数量为长度, wordvec维数为in channel数量, filter个数为out channel数量:

conv1d, padded with max pooling over time

Ø	0.0	0.0	0.0	0.0
tentative	0.2	0.1	-0.3	0.4
deal	0.5	0.2	-0.3	-0.1
reached	-0.1	-0.3	-0.2	0.4
to	0.3	-0.3	0.1	0.1
keep	0.2	-0.3	0.4	0.2
government	0.1	0.2	-0.1	-0.1
open	-0.4	-0.4	0.2	0.3
Ø	0.0	0.0	0.0	0.0

_			
Ø,t,d	-0.6	0.2	1.4
t,d,r	-1.0	1.6	-1.0
d,r,t	-0.5	-0.1	0.8
r,t,k	-3.6	0.3	0.3
t,k,g	-0.2	0.1	1.2
k,g,o	0.3	0.6	0.9
g,o,Ø	-0.5	-0.9	0.1
max p	0.3	1.6	1.4

max p	0.3	1.6	1.4
-------	-----	-----	-----

Apply 3 filters of size 3

	3	1	2	-3
	-1	2	1	-3
13	1	1	-1	1

1	0	0	1
1	0	-1	-1
0	1	0	1

1	-1	2	-1
1	0	-1	3
0	2	2	1

max pooling over time对时间维度(word)做max pooling,比如表示整句话是否表达polite。average pooling同理,表示整句话总体的polite程度。通常max pooling在分类时效果最好。

在CNN中,如果输入128(channel)x32x32的图片,希望输出512x30x30,则Pytorch生成512个 128x3x3的卷积核。在这里的1d卷积中同理。

```
batch size = 16
word_embed_size = 4
seq len = 7
input = torch.randn(batch_size, word_embed_size, seq_len)
conv1 = Conv1d(in_channels=word_embed_size, out_channels=3,
                kernel size=3) # can add: padding=1
hidden1 = conv1(input)
hidden2 = torch.max(hidden1, dim=2) # max pool
```

压缩特征图的方法

- k-max pooling: 留下每个channel的前k个,按原来顺序排列
- stride: 步长
- dilation: 空洞卷积,在kernel size不变的情况下作用到更大的范围

Single Layer CNN for Sentecne Classification

和上述CNN相比,本文把window size=h的h个wordvec(k维)直接连起来变成一维向量,即输入的in channel=1。

Single layer CNN

- Filter w is applied to all possible windows (concatenated vectors)
- To compute feature (one channel) for CNN layer:

$$c_i = f(\mathbf{w}^T \mathbf{x}_{i:i+h-1} + b)$$

- Sentence: $\mathbf{x}_{1:n} = \mathbf{x}_1 \oplus \mathbf{x}_2 \oplus \ldots \oplus \mathbf{x}_n$
- All possible windows of length h: $\{\mathbf{x}_{1:h}, \mathbf{x}_{2:h+1}, \dots, \mathbf{x}_{n-h+1:n}\}$
- Result is a feature map: $\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}] \in \mathbb{R}^{n-h+1}$

对channel进行max pooling, window size(kernel size)可以有多种。

Pooling and channels

- · Pooling: max-over-time pooling layer
- · Idea: capture most important activation (maximum over time)
- From feature map $\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}] \in \mathbb{R}^{n-h+1}$
- Pooled single number: $\hat{c} = \max\{\mathbf{c}\}$
- · Use multiple filter weights w
- Useful to have different window sizes h
- Because of max pooling $\hat{c} = \max\{\mathbf{c}\}$, length of **c** irrelevant

$$\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}] \in \mathbb{R}^{n-h+1}$$

 So we could have some filters that look at unigrams, bigrams, tri-grams, 4-grams, etc.

activation function

1-max

2 classes

maps for each

Multi-channel CNN

输入的wordvec做两份copy,一份冻结,一份可更新,最后特征合到一起做分类。

From: 3 region sizes: (2,3,4) rs for each req size totally 6 filters **Zhang and Wallace** (2015) A Sensitivity Analysis of (and Practitioners' Guide like to) Convolutional this movie **Neural Networks for** Sentence Classification https://arxiv.org/pdf/ 1510.03820.pdf (follow on paper, not

Some details

- Gated units used vertically (residual block)
- BatchNorm: 减少数据的扰动影响

famous, but a nice picture)

CNN application: translation

在seq2seq之前,有人用CNN作encoder, RNN作decoder做NMT, 这是NMT新世纪的第一篇文章。

Very Deep CNN for Text Classification

2017年ResNet的出现在cv中提了很多分,但nlp中lstm却层数很少,因此本文尝试了在nlp中使用多层网络。

输入1024x16的char-level embedding, 1024个char, 16维特征, 然后经过一个他们设计的ResNet。

在实验中,maxpooling效果最好。29层已经是效果最好的深度了,更深的网络效果变差。在cv中29层并不深,ResNet可以到152层。

Quasi-RNN

RNN不能并行, Quasi-RNN结合CNN和RNN。