

Lattice Graphics Examples

Michael Malick

Lattice Graphics Functions

Lattice	Description	Slide
barchart	Bargraph	<u>3</u>
bwplot	Box and whisker plot	4
contourplot	Contour plot	<u>5</u>
xyplot	Scatter plot / conditional plot	<u>6 & 7</u>
dotplot	Cleveland dot chart	<u>8</u>
histogram	Histogram	<u>9</u>
levelplot	High-density image plot	10
splom	All pairwise plots between variables	<u>II</u>
wireframe	3D perspective plot	<u>12</u>
cloud	3D plot	<u>13</u>
qqmath	Normal QQ plot	<u>14</u>
qq	Quantile-Quantile plot	<u>15</u>

barchart()

```
barchart(extra ~ ID | group, data = sleep,
    ylab = "Extra Hours of Sleep", xlab = "Student ID",
    panel = function(x, y, ...) {
        panel.abline(h = 0, col = 2)
        panel.barchart(x, y, ...)
     })
```


bwplot()

contourplot()

```
contourplot(volcano, col = "darkblue",
  main = "Topography of Maunga Whau", ylab = "", xlab = "")
```

Topography of Maunga Whau

xyplot()

```
xyplot(Sepal.Length + Sepal.Width ~ Petal.Length * Petal.Width |
Species, data = iris, scales = "free", layout = c(2, 2),
auto.key = list(x = .6, y = .7, corner = c(0, 0))
```


xyplot() (panel function)

```
xyplot(Sepal.Length ~ Sepal.Width | Species, data = iris,
    panel = function(x, y, ...) {
        panel.loess(x, y, col = 2, lwd = 3)
        panel.xyplot(x, y)
     })
```


dotplot()

histogram()

histogram(~ yield | variety, data = barley)

levelplot()

```
levelplot(volcano, xlab = "", ylab = "",
main = "Elevation at Maunga Whau")
```

Elevation at Maunga Whau

splom()

splom(iris[1:4], main = "Iris Dataset", xlab = "")

wireframe()

wireframe(volcano, shade = TRUE)

cloud()

```
cloud(Sepal.Length ~ Petal.Length * Petal.Width | Species, data = iris, layout = c(3, 1), screen = list(x = -90, y = 70), distance = 0.4, zoom = 0.6)
```


qqmath()

dd()

```
qq(voice.part ~ height, aspect = 1, data = singer,
    subset = (voice.part == "Bass 2" | voice.part == "Tenor 1"))
```

