Notes: MS 204 Chapter 4.3

Overview

• Differences in two population means

An example

Is there a difference between the prices of .99 carat diamonds and 1 carat diamonds? They look the same, but does the extra rounding lead towards retailers charging more? We'll investigate using a random sample of the diamonds data set.

```
library(tidyverse)
library(oilabs)
library(mosaic)
set.seed(0)
diamonds.sample <- diamonds %>% filter(carat == 0.99 | carat == 1.00) %>%
  group by(carat) %>%
  sample n(20)
head(diamonds.sample)
## # A tibble: 6 x 10
## # Groups:
               carat [1]
##
                 cut color clarity depth table price
     carat
                                                                      z
                             <ord> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
##
     <dbl>
               <ord> <ord>
                                                6094 6.37
## 1 0.99 Very Good
                                    61.8
                         F
                               VS2
                                             57
                                                             6.39
## 2 0.99 Very Good
                         J
                               SI1
                                    60.3
                                             57
                                                 4002 6.44
                                                             6.49
                                                                   3.90
## 3 0.99
                         F
                                    60.6
             Premium
                               SI2
                                             61
                                                4075
                                                      6.45
                                                             6.38 3.89
## 4 0.99 Very Good
                         G
                               SI1
                                    62.8
                                                4863
                                                      6.34
                                                             6.36 3.99
                                             56
## 5 0.99
             Premium
                         F
                               VS2
                                    62.6
                                             55
                                                 5893
                                                       6.50
                                                             6.35
                                                                  4.02
## 6 0.99
                Fair
                         Ι
                               SI1
                                    60.7
                                             66
                                                 3337
                                                       6.42
                                                             6.34 3.87
diamonds.sample %>%
  group_by(carat) %>%
  summarise(ave.price = mean(price), sd.price = sd(price), sample.size = n())
## # A tibble: 2 x 4
     carat ave.price sd.price sample.size
##
     <dbl>
               <dbl>
                        <dbl>
                                    <int>
## 1 0.99
             4420.50 1235.160
                                        20
## 2 1.00
             5158.35 1296.157
                                        20
qplot(price, data = diamonds.sample, binwidth = 500) + facet_wrap(~carat)
```


Inference for differences in two population means

parameter

point estimate

population

Inference

Central limit theorem for differences in two population means

Assumptions?

Hypothesis test

Do these data provide convincing evidence that there is a difference between the average price of 0.99 carat diamonds and 1.00 carat diamonds?

Confidence interval

p_value = 0.081

```
qt(0.025, df = 19)
## [1] -2.093024
Code
inference(y = price, x = carat, data = diamonds.sample, statistic = "mean",
          type = "ci", method = "theoretical")
## Response variable: numerical, Explanatory variable: categorical (2 levels)
## n_0.99 = 20, y_bar_0.99 = 4420.5, s_0.99 = 1235.1605
## n_1 = 20, y_bar_1 = 5158.35, s_1 = 1296.1569
## 95% CI (0.99 - 1): (-1575.7976 , 100.0976)
    Sample Distribution
  4 -
  3 -
  2 -
  0 -
  4 -
  3 -
  2 -
  0 -
           3000
                       5000
                                   7000
                       price
inference(y = price, x = as.factor(carat), data = diamonds.sample, statistic = "mean",
          type = "ht", alternative = "twosided", method = "theoretical", null = 0)
## Response variable: numerical
## Explanatory variable: categorical (2 levels)
## n_0.99 = 20, y_bar_0.99 = 4420.5, s_0.99 = 1235.1605
## n_1 = 20, y_bar_1 = 5158.35, s_1 = 1296.1569
## H0: mu_0.99 = mu_1
## HA: mu_0.99 != mu_1
## t = -1.843, df = 19
```


0.00100 -0.00075 -0.00050 -

-1000 0

Null Distribution

1000

```
## Response variable: numerical
## Explanatory variable: categorical (2 levels)
## n_0.99 = 20, y_bar_0.99 = 4420.5, s_0.99 = 1235.1605
## n_1 = 20, y_bar_1 = 5158.35, s_1 = 1296.1569
## HO: mu_0.99 = mu_1
## HA: mu_0.99 < mu_1
## t = -1.843, df = 19
## p_value = 0.0405</pre>
```

0.00000

