Xinjie Liu

CONTACT INFORMATION

5.104 Peter O'Donnell Jr. Building (POB), The University of Texas at Austin (UT Austin) Austin, TX 78712, United States +1 (516) 979-6457 https://xinjie-liu.github.io Google Scholar GitHub xinjie-liu@utexas.edu

RESEARCH INTERESTS

To enable intelligent, safe decision-making for autonomous agents in uncertain, interactive environments, my research focuses on (i) efficient model-based learning to align intention uncertainty between robotic systems and interacting agents, and (ii) optimization and learning algorithms that provably converge to performant solutions in smooth, non-cooperative games. My work leverages tools from dynamic game theory, machine learning, numerical optimization, and control theory.

EDUCATION

The University of Texas at Austin, Austin, TX

Ph.D. in Electrical and Computer Engineering Advisors: Ufuk Topcu and David Fridovich-Keil

Aug 2023 - present

Delft University of Technology, Delft, Netherlands

M.Sc. in Robotics, GPA: 9.04/10.0 (top 1.6%, cum laude)

Sep 2021 - Jul 2023

Advisor: Javier Alonso-Mora

Tongji University, Shanghai, China

B.Eng. in Automotive Engineering, GPA: 88.9/100

Sep 2016 - Jul 2021

Graz University of Technology, Graz, Austria

Exchange Program

Jan 2020 - Jun 2020

PUBLICATIONS

- [6] C. Armstrong, R. Park, X. Liu, K. Gupta, and D. Fridovich-Keil. Inferring Short-Sightedness in Dynamic Noncooperative Games, under review, 2024.
- [5] X. Liu, J. Li, F. Fotiadis, M. O. Karabag, J. Milzman, D. Fridovich-Keil, and U. Topcu. Policies with Sparse Inter-Agent Dependencies in Dynamic Games: A Dynamic Programming Approach, under review, 2024.
- [4] K. Gupta, X. Liu, U. Topcu, and D. Fridovich-Keil. Second-Order Algorithms for Finding Local Nash Equilibria in Zero-Sum Games, under review, 2024.
- [3] X. Liu*, L. Peters*, J. Alonso-Mora, U. Topcu, and D. Fridovich-Keil. Auto-Encoding Bayesian Inverse Games, Algorithmic Foundations of Robotics XVI (WAFR), 2024.
- [2] X. Liu*, L. Peters*, and J. Alonso-Mora. Learning to Play Trajectory Games against Opponents with Unknown Objectives, IEEE Robotics and Automation Letters (RA-L), 2023.
- [1] X. Liu. On Game-Theoretic Planning with Unknown Opponents' Objectives, master's thesis, Delft University of Technology, 2023.

TECHNICAL REPORTS

- [2] X. Liu and V. Atanassov. Safe Model Predictive Control Approach for Non-Holonomic Mobile Robots, Delft University of Technology, 2022. (Mentor: Sergio Grammatico)
- [1] X. Liu, R. M. Rodríguez, P. Féry, and Y. Zhang. Planning Algorithm for a Quadrotor Drone, Delft University of Technology, 2022. (Mentor: Javier Alonso-Mora)

^{*}indicates equal contribution.

HONORS AND AWARDS	Cockrell School of Engineering Fellowship, UT Austin	2023-present
	Graduation cum laude, TU Delft (top 1.6% of MSc program)	2023
	First Prize, Franka Emika Robot Hackathon Challenge, European Robotics Forum	2022
	National Scholarship for Undergraduate Exchange Program (1% of department)	2020
	Annual Excellent Student Award, Tongji University (top 5% of department)	2020
	First Prize Academic Scholarship, Tongji University (top 3% of department)	2019
	Winning Prize for Outstanding Innovative Projects, Tongji University Project: Autonomous Flight of UAVs Based on UWB Localization	2019
	Third Prize Academic Scholarship, Tongji University (top 20% of department)	2018

PROJECTS WEB | GITHUB

High-Precision Robot Assembly Challenge

Jun 2022 - Jul 2022

2017, 2019

Team Member, Delft University of Technology (1/6)

Scholarship for Social Activities, Tongji University

- Developed a point cloud-based perception module and interactive imitation learning technique to tackle high-precision robot assembly tasks on a randomly positioned board
- Winner of the Franka Emika Challenge at the European Robotics Forum Hackathon

Autonomous Robotic Field Coverage

Apr 2022 - Jun 2022

Multidisciplinary Project with Lely, Main Contributor (1/5)

- Designed a robotic field coverage system with obstacle avoidance and battery management on a Husky robot, including modules for perception (top-view camera), task planning, path and trajectory planning, and control
- Project graded 9.7/10 (top 1 in the class)

MPC Approach for Non-Holonomic Mobile Robots in Dynamic Scenarios Jan 2022 - Apr 2022 Model Predictive Control Course Project, Main Contributor (1/2)

- Proposed an MPC approach with linearized constraints in velocity space for dynamic obstacle avoidance of mobile robots, proved Lyapunov stability for time-varying regulation problems
- Project graded 10/10 (top 1 in the class)

RNN-Based Event Camera Data Processing

Jan 2022 - Apr 2022

Deep Learning Course Project, Main Contributor (1/3)

Reproduced partial results of "High Speed and High Dynamic Range Video with an Event Camera" using a different dataset, reconstructing intensity images from event data with RNNs

Deep Reinforcement Learning Library

Jan 2022 - Apr 2022

Deep Reinforcement Learning Course Project

- Implemented a library including main policy gradient (REINFORCE, Actor-Critic, PPO, DDPG, TD3) and value function (DQN, Double DQN, n-step target, semi-gradients) based methods
- Graded 10/10 on the written exam (top 1 in the class)

Autonomous Quadrotor Delivery System

Oct 2021 - Jan 2022

Planning & Decision Making Course Project, Main Contributor (1/4)

- Developed a navigation pipeline for a quadrotor, including global path planning (RRT*), minimum-snap trajectory generation, and nonlinear MPC for tracking and obstacle avoidance
- Project graded 9.5/10 (top 3 in the class)

Multisensor Perception for Autonomous Vehicles

Oct 2021 - Jan 2022

Machine Perception Course Project

- Developed a self-driving car perception module, including pedestrian detection (CNN, SVM) and vehicle ego-motion compensation using iterative closest point (ICP) with LiDAR data
- Project graded 9.4/10 (top 2 in the class)

Learning Autonomous Car Racing from Pixels

Sep 2021 - Nov 2021

Machine Learning for Robotics Course Project, Main Contributor (1/2)

• Developed a pipeline for learning driving policies from pixels, including data augmentation, feature extraction, dimensionality reduction, and control (random forest, SVM, neural networks)

Robot Dynamics & Control

Sep 2021 - Nov 2021

Robot Dynamics & Control Course Project

- Implemented force and impedance controllers with singularity-robust and task-priority control for a 2-DOF robot arm; implemented PD and nonlinear geometric controllers for quadrotor tracking tasks
- Project graded 10/10 (top 1 in the class)

Interactive Imitation Learning in Robotics

Oct 2020 - Jul 2021

Bachelor's Thesis Project

Investigated interactive imitation learning methods using human feedback for various simulated robotic tasks, demonstrating improved task performance and data efficiency compared to reinforcement learning baselines

SOFTWARE

AutoEncodingBayesianInverseGames.jl: Embeds a differentiable Nash game solver into a generative model for amortized inference of continuous distributions in multi-agent interactions

NumericalOptimizationAlgorithms: Numerical optimization algorithms for unconstrained and constrained problems accelerated using JAX

DifferentiableAdaptiveGames.jl: A differentiable Nash equilibrium solver and an inverse game solver for equilibrium-constrained bilevel optimization problems

SafeMPCObstacleAvoidance: MPC planner for non-holonomic robots with linearized dynamic obstacle avoidance constraints in the velocity space

QuadrotorPlanningControl: Navigation pipeline for a quadrotor robot with a global path planner, minimum-snap trajectory generator and MPC controller for obstacle avoidance

MEDIA

Franka Emika Challenge winner at the European Robotics Forum

Franka Robotics, Jun 2022

INVITED TALKS

Center for Autonomy Seminar, UT Austin

2024

Inferring Multimodal Uncertainty for Game-Theoretic Interactions Computing Sparse Policies for Noncooperative Dynamic Games

Texas Robotics Seminar, UT Austin

2023

On Game-Theoretic Planning with Unknown Opponents' Objectives

Lockheed Martin Corporation

2023

On Game-Theoretic Planning with Unknown Opponents' Objectives

Princeton University

2023

Learning to Play Trajectory Games Against Opponents with Unknown Objectives

ACADEMIC MENTORSHIP OUTREACH Ryan Park, Undergraduate student, Computer Science Honors & Aerospace Engineering, UT Austin

STEM Muse Mentorship Program, Austin

Sep 2024 - present

Mentoring to provide individualized professional development and career support for women

Girlstart Texas, Austin

Sep 2023 - present

Organizing innovative workshops to increase girls' interest and engagement in STEM fields

Professional **ACTIVITIES**

Reviewer for Journals

- IEEE Transactions on Robotics (T-RO)
- IEEE Robotics and Automation Letters (RA-L)

Reviewer for Conferences

- International Conference on Learning Representations (ICLR) 2025
- IEEE International Conference on Robotics and Automation (ICRA) 2025
- International Symposium on Robotics Research (ISRR) 2024
- IEEE Conference on Decision and Control (CDC) 2024
- IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2024

COURSES

GRADUATE-LEVEL Analysis: Real Analysis, Functional Analysis (basics) **Probability**: Probability and Stochastic Processes

Optimization: Convex Optimization, Nonlinear Programming

Machine Learning: Deep Reinforcement Learning, Deep Learning, Machine Learning for Robotics Control & Game Theory: Game-Theoretic Modeling of Multi-Agent Systems, Model Predictive

Control

Robotics: Human-Robot Interaction, Machine Perception, Planning & Decision Making, Robot Dy-

namics & Control, Robot Software Practicals

Software: Object-Oriented Scientific Programming with C++

SKILLS

Programming Languages: Python, Julia, C++, Matlab

Version Control: Git

Machine Learning & Numerical Computation: PyTorch, JAX, Zygote.jl, Flux.jl, ChainRules.jl, Ten-

sorFlow, Keras

Optimization: PATH Solver, JuMP; I, YALMIP, CasADi, CVX, FORCES Pro, IPOPT, OSQP

Other: Robot Operating System (ROS), Linux, LaTeX

Languages: Mandarin (native), English (C1, IELTS 7.5), German (B2, DSH 2)

MANAGEMENT EXPERIENCE

Business Consulting Intern, IQVIA Shanghai

Jul 2020 - Aug 2020

Marketing project for rare disease drugs: conducted policy and business analysis to develop strate-

gies for national negotiations and local market entry of orphan drugs