Задача 8-2

В таблице приведена растворимость оксида бария в воде при разной температуре:

Температура, °С	20	50
Растворимость, г на 100 г воды	3.84	11.75

При охлаждении насыщенного при 50° С раствора до температуры 20° С в осадок выпадает только продукт **X** (массовая доля $\omega(Ba) = 43.49\%$, $\omega(O) = 50.79\%$).

- 1. Установите формулу Х. Ответ подтвердите расчетами.
- 2. Рассчитайте растворимость Ba(OH)₂ и **X** при 20°C и 50°C.
- 3. Какая масса $\mathbf X$ образуется при охлаждении 100 г насыщенного раствора $\mathrm{Ba}(\mathrm{OH})_2$ от 50°C до 20°C?

Решение

$$\frac{1.}{\frac{\omega(Ba)}{M(Ba)}} : \frac{\omega(O)}{\frac{\omega(O)}{M(O)}} : \frac{\omega(H)}{\frac{\omega(H)}{M(H)}} = \frac{43.49}{137} : \frac{50.79}{16} : \frac{100-43.49-50.79}{1} = 0.3174 : 3.1743 : 5.72 = 1 : 10 : 18. \\ \text{BaO}_{10}\text{H}_{18} \text{ или Ba}(\text{OH})_2 \cdot 8\text{H}_2\text{O}.$$

2. При растворении оксида бария в воде образуется гидроксид: $BaO + H_2O = Ba(OH)_2$, поэтому часть воды переходит в состав гидроксида бария.

Рассмотрим пример расчета для температуры 20°С.
$$n(BaO) = \frac{m(BaO)}{M(BaO)} = \frac{3.84 \ \Gamma}{153 \ \Gamma/\text{моль}} = 0.0251 \ \text{моль};$$

$$n(H_2O) = 0.0251 \ \text{моль}; \qquad m(H_2O) = 0.0251 \ \text{моль} \cdot 18 \frac{\Gamma}{\text{моль}} = 0.452 \ \Gamma;$$

$$m(Ba(OH)_2) = 0.0251 \ \text{моль} \cdot 171 \ \Gamma/\text{моль} = 4.291 \ \Gamma;$$

$$m(H_2O) = 100 - 0.452 \ \Gamma = 99.548 \ \Gamma;$$

$$m(Ba(OH)_2) \cdot 100 = \frac{4.291 \cdot 100}{99.548} = 4.31 \ \Gamma - \text{растворимость Ba}(OH)_2 \ \text{в } 100 \ \Gamma \text{ воды}.$$

$$\text{Для Ba}(OH)_2 \cdot 8H_2O;$$

$$n(H_2O) = 0.0251 \cdot 9 = 0.2259 \ \text{моль}; \qquad m(H_2O) = 0.2259 \ \text{моль} \cdot 18 \frac{\Gamma}{\text{моль}} = 4.066 \ \Gamma;$$

$$m(Ba(OH)_2 \cdot 8H_2O) = 0.0251 \ \text{моль} \cdot 315 \ \Gamma/\text{моль} = 7.9065 \ \Gamma;$$

$$m(H_2O) = 100 - 4.066 \ \Gamma = 95.934 \ \Gamma;$$

$$\frac{m(Ba(OH)_2 \cdot 8H_2O) \cdot 100}{m(H_2O)} = \frac{7.9065 \cdot 100}{95.934} = 8.24 \ \Gamma - \text{растворимость Ba}(OH)_2 \cdot 8H_2O \ \text{в } 100 \ \Gamma \text{ воды}.$$

В целом расчет можно проводить по следующей общей формуле:

$$100 \cdot \frac{\frac{m(BaO \text{ в 100 г } H_2O)}{M(BaO)} \cdot M(Ba(OH)_2)}{100 - \frac{m(BaO \text{ в 100 г } H_2O)}{M(BaO)} \cdot M(H_2O)} - \text{растворимость Ba(OH)}_2 \text{ в 100 г H}_2O;$$

$$100 \cdot \frac{\frac{m(BaO \text{ в 100 г } H_2O)}{M(BaO)} \cdot M(Ba(OH)_2 \cdot 8H_2O)}{100 - \frac{m(BaO \text{ в 100 г } H_2O)}{M(BaO)} \cdot 9 \cdot M(H_2O)} - \text{растворимость Ba}(OH)_2 \cdot 8H_2O \text{ в 100 г H}_2O.$$

Результаты:

Температура, °С	20	50
Растворимость $Ba(OH)_2$, г на 100 г воды	4.31	13.32
Растворимость $Ba(OH)_2$ ·8 H_2O , г на 100 г воды	8.24	27.63

3. $\omega(20^{\circ}\text{C}) = 4.31/104.31 = 0.0413;$ $\omega(50^{\circ}\text{C}) = 13.32/113.32 = 0.1175.$ Для 100 г исходного раствора составим выражение для массовой доли Ва(ОН)₂: $\frac{m(Ba(OH)_2)_{50} - \omega(Ba(OH)_2)_{X'}m}{100-m} = \omega(20^{\circ}\text{C}) \qquad \frac{11.75 - 0.543 \cdot m}{100-m} = 0.0413;$ m(Ba(OH)₂·8H₂O) = 15.19 г.

Разбалловка:

За установление формулы Х	7 6
За расчет растворимости Ba(OH) ₂ и Ba(OH) ₂ ·8H ₂ O (по 2 б)	8 б
За расчет массы выпавшего осадка	10 б
•	TT 25.5

Итого 25 баллов