	Branch	Sales_X1	Advertising_X2	Years_X3
1	1	3.4	120	4
2	2	4.1	150	7
3	3	2.8	90	3
4	4	5	200	10
5	5	3.7	110	5
6	6	4.5	175	6
7	7	3	95	2
8	8	4.9	185	9
9	9	3.2	105	4
10	10	2.5	80	1
11	11	3.9	130	5
12	12	4.2	140	7
13	13	2.7	100	3
14	14	3.6	125	4
15	15	4.8	190	8
16	16	3.3	115	5
17	17	4	135	6
18	18	5.1	210	12
19	19	3.8	145	6

Boxplot of Sales


```
4. > summary(branch_data$Advertising_X2)
    Min. 1st Qu. Median Mean 3rd Qu. Max.
    80.0 101.2 132.5 134.8 158.8 210.0
    > IQR(branch_data$Advertising_X2)
    [1] 57.5
```

5. The Outlier Factor was reduced from 1.5 to 0.5 to increase the sensitivity

```
> find_outliers <- function(x) {
+    Q1 <- quantile(x, 0.25)
+    Q3 <- quantile(x, 0.75)
+
+    iqr <- Q3 - Q1
+
+    lower_bound <- Q1 - 0.5 * iqr
+    upper_bound <- Q3 + 0.5 * iqr
+
+    outliers <- x[x < lower_bound | x > upper_bound]
+    return(outliers)
+ }
> outliers_years <- find_outliers(branch_data$Years_X3)
> outliers_years
[1] 12 11
```

IT24100345 | Wijethunge H A M L T

IT24100345 | Wijethunge H A M L T