In this exercise, we want to show that the subgraph isomorphism problem is NP-complete. The subgraph isomorphism problem takes two undirected graphs G_1 and G_2 as input and asks whether G_1 is isomorphic to a subgraph of G_2 .

Theorem 1. The subgraph isomorphism problem is NP-complete.

Proof. A problem is NP-complete if and only if it is in NP and it is NP-hard. First, we show that the subgraph isomorphism problem is in NP, i.e. we can verify a proposed solution in polynomial time. Given graphs G_1 and G_2 and a mapping $f: V_{G_1} \to V_{G_2}$, we must determine the following in polynomial time:

- 1. Whether f is an injection.
- 2. Whether for all edges $(u,v) \in E_{G_1}$, $(f(u),f(v)) \in E_{G_2}$.

The function f is an injection if and only if for all $u, v \in V_{G_1}$, f(u) = f(v) implies u = v. A simple algorithm to verify this is as follows:

Algorithm 1: Verify Injection

```
Input: Graphs G_1 and G_2, mapping f:V_{G_1} \to V_{G_2}
Output: Whether f is an injection
Initialize hash map H;
for u \in V_{G_1} do

if H[f(u)] is defined then

return false;
end

H[f(u)] = u;
end
return true;
```

The runtime of this algorithm is bounded solely by the number of vertices in G_1 , i.e. $O(|V_{G_1}|)$, so it runs in polynomial time. To verify the second condition, we simply iterate over all edges in G_1 and check whether the corresponding edges exist in G_2 . A simple algorithm to verify this is as follows:

Algorithm 2: Verify Edge Mapping

```
Input: Graphs G_1 and G_2, mapping f:V_{G_1} \to V_{G_2}

Output: Whether f maps edges of G_1 to edges of G_2

Initialize hash set S from E_{G_2};

for (u,v) \in E_{G_1} do

| if (f(u),f(v)) \notin S then

| return false;

| end

end

return true;
```

The runtime of this algorithm is bounded by the number of edges in G_1 , i.e. $O(|E_{G_1}|)$, so it runs in polynomial time. Therefore, the subgraph isomorphism problem is in NP.

Next, to show that the subgraph isomorphism problem is NP-hard, we reduce the clique problem to the subgraph isomorphism problem. The clique problem takes an undirected graph G and an integer k as input and asks whether G contains a clique of size k, where a clique is a complete subgraph. Given an instance of the clique problem (G, k), we construct the following instance of the subgraph isomorphism problem (G_1, G_2) :

Algorithm 3: Construct Subgraph Isomorphism Instance

```
Input: Graph G, integer k
Output: Graphs G_1, G_2
Initialize graph G_1;
for i = 1 to k do

Add vertex v_i to G_1;
end
for i = 1 to k do

for j = 1 to k do

for j = 1 to k do

for j = 1 to k do

end

and

end

Initialize graph G_2 as a copy of G;
return (G_1, G_2);
```

This construction algorithm runs in polynomial time due to the following factors:

- 1. Creating G_1 (a complete graph with k vertices) takes $O(k^2)$ time.
- 2. G_2 is just a copy of the original graph G, so copying it takes $O(|V_G| + |E_G|)$ time.

Now, we need to show that this reduction is correct, i.e., G has a clique of size k if and only if G_1 is isomorphic to a subgraph of G_2 . First we show the forward direction:

(\Rightarrow) Assume that G contains a clique of size k. That means there exists some subgraph of G that is a complete graph on k vertices. By construction, G_1 is a complete graph on k vertices, so G_1 is isomorphic to this subgraph of G. Since G_2 is a copy of G, G_1 is isomorphic to a subgraph of G_2 . This proves that this reduction preserves the answer in the forward direction.

And now the backward direction:

(\Leftarrow) Now assume that G_1 is isomorphic to a subgraph of G_2 . By construction, G_1 is a complete graph on k vertices. By our initial assumption, there then exists a clique of size k in G_2 . Since G_2 is a copy of G, there exists a clique of size k in G, and thus the reduction preserves the answer in both directions.

At this point we have proven the following:

- 1. There exists a polynomial-time checking algorithm for the subgraph isomorphism problem.
- 2. The reduction from the clique problem to the subgraph isomorphism problem is correct.
- 3. The reduction runs in polynomial time.

Therefore, the subgraph	ısomorphısm	problem 1	ıs ın NP	and is NP-	-hard, so 11	$_{\rm 5}$ 1S
NP-complete.						