Totes les respostes de l'examen han de ser raonades

1. (2 punts)

- (a) Calculeu el nombre de solucions enteres no negatives de l'equació $x_1 + x_2 + x_3 + x_4 = 10$ tals que $x_1 \ge 5$ o $x_2 \ge 2$.
- (b) Calculeu quantes seqüències d'ADN de longitud 12 es poden fer amb les lletres de la seqüència TCTAGATATGCA.
- (c) Sigui T = (V, A) un arbre que té exactament n_1 vèrtexs de grau 1, n_2 vèrtexs de grau 2 i n_4 vèrtexs de grau 4. Quina relació han de satisfer n_1, n_2 , i n_4 ?
- (d) Doneu un graf G tal que $\kappa(G)$, $\lambda(G)$ i $\delta(G)$ siguin tots differents.

2. (2,5 punts)

Sigui $k \in \mathbb{Z}$, $k \ge 1$, i sigui $S_k(x)$ la funció generadora dels nombres de Stirling $\binom{n}{k}_{n \ge 0}$, és a dir, $S_k(x) = \sum_{n \ge 0} \binom{n}{k} x^n$. Recordeu que $\binom{n}{k} = 0$ si n < k.

- (a) Doneu fórmules per a $\binom{n}{1}$ i $\binom{n}{2}$, i trobeu $S_1(x)$ i $S_2(x)$.
- (b) Demostreu que ${n+1 \brace k} = {n \brace k-1} + k {n \brace k}$ per a $n \geq 0.$
- (c) Usant els apartats anteriors, demostreu que $S_3(x) = \frac{x^3}{(1-3x)(1-2x)(1-x)}$.

3. (2,5 punts)

Definim el graf G = (V, A) prenent $V = \mathbb{Z}_{13}$ i dos vèrtexs u i v són adjacents si u - v és un quadrat diferent de zero a \mathbb{Z}_{13} .

- (a) Esbrineu si G és regular i calculeu-ne la mida.
- (b) Representeu gràficament un arbre generador de G obtingut mitjançant l'algorisme de recerca en amplada a partir del vèrtex 0.
- (c) Trobeu l'excentricitat del vèrtex 0.
- (d) Esbrineu si el graf G és eulerià i si és hamiltonià.

4. (3 punts)

Considerem el polinomi irreductible $f(x) = x^5 + x^2 + 1 \in \mathbb{F}_2[x]$ i el cos finit que defineix $\mathbb{F}_{32} = \mathbb{F}_2[x]/f(x)$ i sigui $\alpha = \overline{x} \in \mathbb{F}_{32}$.

- (a) Demostreu que el polinomi f(x) és primitiu.
- (b) Completeu la taula on s'expressen els elements del cos com a potència d' α .
- (c) Esbrineu si $\alpha+1$ i $\alpha^4+\alpha^2$ són quadrats; en cas afirmatiu calculeu les seves arreles quadrades.
- (d) Calculeu:

$$\frac{(\alpha^3+\alpha^2+\alpha)^{34}+1}{\alpha^4+\alpha^2+\alpha}+\alpha^2.$$

Taula de l'exercici 4(b).

1	1	α^{16}	
α	α	α^{17}	
α^2	α^2	α^{18}	$\alpha + 1$
α^3	α^3	α^{19}	$\alpha^2 + \alpha$
α^4	α^4	α^{20}	$\alpha^3 + \alpha^2$
α^5		α^{21}	
α^6		α^{22}	
α^7		α^{23}	
α^8		α^{24}	$\alpha^4 + \alpha^3 + \alpha^2 + \alpha$
α^9	$\alpha^4 + \alpha^3 + \alpha$	α^{25}	
α^{10}		α^{26}	$\alpha^4 + \alpha^2 + \alpha + 1$
α^{11}		α^{27}	$\alpha^3 + \alpha + 1$
α^{12}	$\alpha^3 + \alpha^2 + \alpha$	α^{28}	$\alpha^4 + \alpha^2 + \alpha$
α^{13}	$\alpha^4 + \alpha^3 + \alpha^2$	α^{29}	
α^{14}		α^{30}	
α^{15}	$\alpha^4 + \alpha^3 + \alpha^2 + \alpha + 1$	α^{31}	

• **Temps** de 11:30 a 14:30 hores.

• Puntuació

Exercici 1: tots els apartats valen el mateix.

Exercici 2: 1+0.75+0.75.

Exercici 3: 0.7+0.7+0.4+0.7.

Exercici 4: tots els apartats valen el mateix.

- \bullet La solució i les notes es penjaran al Racó el 2 de juliol a partir de les 17:00 hores.
- La revisió es farà el divendres 4 de juny a les 9:30 hores a l'aula A6101, Campus Nord.

Solució

1.

(a) Calculeu el nombre de solucions enteres no negatives de l'equació $x_1 + x_2 + x_3 + x_4 = 10$ tals que $x_1 \ge 5$ o $x_2 \ge 2$.

Siguin $A = \{(x_1, x_2, x_3, x_4) \in \mathbb{Z}^4 | \sum_{i=1}^4 x_i = 10, \ x_1 \ge 5 \}$ i $B = \{(x_1, x_2, x_3, x_4) \in \mathbb{Z}^4 | \sum_{i=1}^4 x_i = 10, \ x_2 \ge 2 \}$. El nombre que demana l'enunciat és igual al cardinal de $A \cup B$. Calculem:

$$|A| = {\binom{10-5+4-1}{4-1}}, \ |B| = {\binom{10-2+4-1}{4-1}}, \ |A \cap B| = {\binom{10-7+4-1}{4-1}},$$
$$|A \cup B| = |A| + |B| - |A \cap B| = {\binom{8}{3}} + {\binom{11}{3}} - {\binom{6}{3}} = \frac{8!}{3! \cdot 5!} + \frac{11!}{3! \cdot 8!} - \frac{6!}{3! \cdot 3!} = 201.$$

(b) Calculeu quantes seqüències d'ADN de longitud 12 es poden fer amb les lletres de la seqüència TCTA-GATATGCA.

Hi ha 4 T's, 2 C's, 4 A's i 2 G's. El nombre de seqüències és el nombre de permutacions del multiconjunt TTTTCCAAAAGG: $\binom{12}{4,2,4,2} = \frac{12!}{(4!)^2 \cdot (2!)2} = 207\,900$.

(c) Sigui T = (V, A) un arbre que té exactament n_1 vèrtexs de grau 1, n_2 vèrtexs de grau 2 i n_4 vèrtexs de grau 4. Quina relació han de satisfer n_1, n_2 , i n_4 ?

Per ser T un arbre es té |A| = |V| - 1. Atès que $|V| = n_1 + n_2 + n_4$, aplicant el lema de les encaixades es té: $2(n_1 + n_2 + n_4 - 1) = n_1 + 2n_2 + 4n_4$, per tant, $n_1 = 2n_4 + 2$.

- (d) Doneu un graf G tal que $\kappa(G)$, $\lambda(G)$ i $\delta(G)$ siguin tots differents.
 - (d) Sigui G el graf dibuixat. Aquest graf té un vèrtex de tall, el vèrtex 1. Atès que totes les arestes de G són a un cicle, no hi ha cap aresta pont, però el conjunt d'arestes $\{12,13\}$ és de tall. Així $\kappa(G)=1$; $\lambda(G)=2$ i $\delta(G)=3$.

- **2.** Sigui $k \in \mathbb{Z}$, $k \ge 1$, i sigui $S_k(x)$ la funció generadora dels nombres de Stirling $\binom{n}{k}_{n\ge 0}$, és a dir, $S_k(x) = \sum_{n>0} \binom{n}{k} x^n$. Recordeu que $\binom{n}{k} = 0$ si n < k.
- (a) Doneu fórmules per a $\begin{Bmatrix} n \\ 1 \end{Bmatrix}$ i $\begin{Bmatrix} n \\ 2 \end{Bmatrix}$, i trobeu $S_1(x)$ i $S_2(x)$.

El símbol $\binom{n}{k}$ representa el nombre de k-particions d'un n-conjunt. Aleshores, $\binom{n}{1} = 1$. Per a calcular $\binom{n}{2}$, observem que les parts d'una 2-partició són un subconjunt no buit i el seu complementari; per tant n'hi ha tantes com el nombre de subconjunts diferents del buit i del total $(2^n - 2)$ partit per 2, ja que no importa l'ordre de les parts; així $\binom{n}{2} = 2^{n-1} - 1$.

$$\begin{split} S_1(x) &= \sum_{n \geq 0} {n \brace 1} x^n = \sum_{n \geq 1} x^n = x \sum_{r \geq 0} x^r = \frac{x}{1-x}, \\ S_2(x) &= \sum_{n \geq 0} {n \brack 2} x^n = \sum_{n \geq 2} (2^{n-1} - 1) x^n = \sum_{n \geq 2} 2^{n-1} x^n - \sum_{n \geq 2} x^n \\ &= 2x^2 \sum_{n \geq 2} 2^{n-2} x^{n-2} - x^2 \sum_{n \geq 2} x^{n-2} = 2x^2 \sum_{r \geq 0} 2^r x^r - x^2 \sum_{r \geq 0} x^r = \frac{2x^2}{1-2x} - \frac{x^2}{1-x} = \frac{x^2}{(1-2x)(1-x)}. \end{split}$$

(b) Demostreu que $\binom{n+1}{k} = \binom{n}{k-1} + k \binom{n}{k}$ per a $n \ge 0$.

Sigui X un conjunt de cardinal n+1 i sigui $x \in X$ qualsevol. El símbol $\binom{n+1}{k}$ representa el nombre de k-particions del conjunt X; aquestes poden ser de dos tipus:

- (T1) tals que una part sigui $\{x\}$;
- (T2) tals que la part a la que pertany x tingui cardinal ≥ 2 .

Així, $\binom{n+1}{k}$ és la suma del nombre de particions tipus T1 i de les de tipus T2.

Si una partició $X = A_1 \cup A_2 \cup \cdots \cup A_k$ és de tipus T1 vol dir que una de les parts és igual a $\{x\}$. Aleshores si eliminem aquesta part de la partició el que obtenim és una (k-1)-partició del conjunt $X - \{x\}$. I vicerversa, donada una (k-1)-partició de $X - \{x\}$, si li afegim la part $\{x\}$ obtenim una k-partició de X del tipus T1. Per tant, el nombre de particions de tipus T1 com $\{x = x\}$.

Si la partició és de tipus T2 vol dir que l'element x pertany a una de les parts, però que aquesta part també conté altres elements del conjunt X. Si eliminem l'element x de la partició, seguim tenint k parts no buides, per tant obtenim una k-partició del conjunt $X - \{x\}$. Ara bé, si donada una k-partició de $X - \{x\}$ volem construir una k-partició de X, això ho podem fer de k maneres diferents, perquè hem d'escollir a quina de les k parts afegirem l'element x. Per tant, el nombre de k-particions de X del tipus T2 és k n.

(c) Usant els apartats anteriors, demostreu que $S_3(x) = \frac{x^3}{(1-3x)(1-2x)(1-x)}$.

Escrivim l'equació del segon apartat per k=3:

$${n+1 \brace 3} = {n \brace 2} + 3 {n \brace 3} n \ge 0.$$

Si apliquem les regles de manipulació de funcions generadores, obtenim

$$\begin{pmatrix} {n+1 \choose 3} \end{pmatrix}_{n \ge 0} \quad \stackrel{FG}{\longleftrightarrow} \quad \frac{S_3(x) - {0 \choose 3}}{x} = \frac{S_3(x)}{x}$$

$$\begin{pmatrix} {n \choose 2} \end{pmatrix}_{n \ge 0} \quad \stackrel{FG}{\longleftrightarrow} \quad S_2(x)$$

$$\begin{pmatrix} 3{n \choose 3} \end{pmatrix}_{n \ge 0} \quad \stackrel{FG}{\longleftrightarrow} \quad 3S_3(x)$$

Per tant obtenim la següent relació entre les funcions generadores:

$$\frac{S_3(x)}{x} = S_2(x) + 3S_3(x)$$

de la qual es dedueix:

$$S_3(x) = \frac{xS_2(x)}{1 - 3x} = \frac{x^3}{(1 - x)(1 - 2x)(1 - 3x)}$$

usant la fórmula trobada al primer apartat.

3. Definim el graf G = (V, A) prenent $V = \mathbb{Z}_{13}$ i dos vèrtexs u i v són adjacents si u - v és un quadrat diferent de zero a \mathbb{Z}_{13} .

La taula de quadrats diferents de zero de \mathbb{Z}_{13} és la següent:

Els quadrats diferents de zero formen el conjunt $Q = \{1, 4, 9, 3, 12, 10\} = \{1, 3, 4, 9, 10, 12\}$. Notem que $-Q = \{-1, -3, -4, -9, -10, -12\} = \{12, 10, 9, 4, 3, 1\} = Q$, per tant, si si $u - v \in Q$, aleshores $v - u \in Q$.

(a) Esbrineu si G és regular i calculeu-ne la mida.

Cada vèrtex u és adjacent als sis vèrtexs de $u+Q=\{u+1,u+3,u+4,u+9,u+10,u+12\}$. Per tant, G és regular de grau d=6. L'ordre del graf és 13. Segons el lema de les encaixades aplicat a un graf 6-regular, tenim

$$2|A| = 13 \cdot d = 13 \cdot 6,$$

d'on la mida és |A| = 39.

(b) Representeu gràficament un arbre generador de G obtingut mitjançant l'algorisme de recerca en amplada a partir del vèrtex 0.

Visitem primer el vèrtex 0 per on comença la recerca. A continuació visitem els vèrtexs adjacents a 0, que són els de $Q = \{1, 3, 4, 9, 10, 12\}$. Els adjacents a 1 són els de

$$1 + Q = \{2, 4, 5, 10, 11, 0\},\$$

entre els quals els encara no visitats són 2, 5 i 11. A continuació visitem els adjacents a 3 encara no visitats, que són 6 i 7. Finalment, visitem l'únic adjacent a 4 encara no visitat, que és 8. L'arbre és el següent:

(c) Trobeu l'excentricitat del vèrtex 0.

Tal com es veu a l'arbre anterior, els vèrtexs més llunyans de 0 són a distància 2 de 0. Per tant, el vèrtex 0 té excentricitat 2.

(d) Esbrineu si el graf G és eulerià i si és hamiltonià.

Segons (b), G admet un arbre generador. Per tant, G és connex. A més a més, tot vèrtex té grau 6, que és parell. Per tant, G és un graf eulerià.

El graf G també és hamiltonià: les adjacències obtingudes sumant el quadrat 1 donen el cicle hamiltonià: 0-1-2-3-4-5-6-7-8-9-10-11-12-0.

- **4.** Considerem el polinomi irreductible $f(x) = x^5 + x^2 + 1 \in \mathbb{F}_2[x]$ i el cos finit que defineix $\mathbb{F}_{32} = \mathbb{F}_2[x]/f(x)$ i sigui $\alpha = \overline{x} \in \mathbb{F}_{32}$.
- (a) Demostreu que el polinomi f(x) és primitiu.

El polinomi f(x) serà primitiu si és irreductible (ho és segons l'enunciat) i α és un element primitiu del cos $\mathbb{F}_2[x]/f(x)$. Només cal veure que l'ordre d' α és $2^5 - 1 = |\mathbb{F}_{32}^*|$, és a dir, que $\alpha^k \neq 1$ per a tot enter k divisor de 31, $k \neq 31$. Atès que 31 és un nombre primer i $\alpha^1 \neq 1$, l'ordre d' α és 31. (De fet, tots els elements de \mathbb{F}_{32}^* , llevat de 1, tenen ordre 31, és a dir, són elements primitius)

(b) Completeu la taula on s'expressen els elements del cos com a potència d' α .

Per completar la taula tenim en compte que $2\beta=0$, per a tot $\beta\in\mathbb{F}_{32}$, i que α és una arrel del polinomi f(x), és a dir, $\alpha^5+a^2+1=0$ i per tant $\alpha^5=\alpha^2+1$.

1	1	α^{16}	4 . 3
1	1		$\alpha^4 + \alpha^3 + \alpha + 1$
α	α	α^{17}	$\alpha^4 + \alpha + 1$
α^2	α^2	α^{18}	$\alpha + 1$
α^3	α^3	α^{19}	$\alpha^2 + \alpha$
α^4	α^4	α^{20}	$\alpha^3 + \alpha^2$
α^5	$\alpha^2 + 1$	α^{21}	$\alpha^4 + \alpha^3$
α^6	$\alpha^3 + \alpha$	α^{22}	$\alpha^4 + \alpha^2 + 1$
α^7	$\alpha^4 + \alpha^2$	α^{23}	$\alpha^3 + \alpha^2 + \alpha + 1$
α^8	$\alpha^3 + \alpha^2 + 1$	α^{24}	$\alpha^4 + \alpha^3 + \alpha^2 + \alpha$
α^9	$\alpha^4 + \alpha^3 + \alpha$	α^{25}	$\alpha^4 + \alpha^3 + 1$
α^{10}	$\alpha^4 + 1$	α^{26}	$\alpha^4 + \alpha^2 + \alpha + 1$
α^{11}	$\alpha^2 + \alpha + 1$	α^{27}	$\alpha^3 + \alpha + 1$
α^{12}	$\alpha^3 + \alpha^2 + \alpha$	α^{28}	$\alpha^4 + \alpha^2 + \alpha$
α^{13}	$\alpha^4 + \alpha^3 + \alpha^2$	α^{29}	$\alpha^3 + 1$
α^{14}	$\alpha^4 + \alpha^3 + \alpha^2 + 1$	α^{30}	$\alpha^4 + \alpha$
α^{15}	$\alpha^4 + \alpha^3 + \alpha^2 + \alpha + 1$	α^{31}	1

(c) Esbrineu si $\alpha + 1$ i $\alpha^4 + \alpha^2$ són quadrats; en cas afirmatiu calculeu les seves arreles quadrades.

Sabem que en un cos de característica 2 tots els elements són quadrats. Mirant la taula es té $\alpha+1=\alpha^{18}=(\alpha^9)^2$; per tant, l'arrel és α^9 (només n'hi ha una ja que $\beta=-\beta$ a \mathbb{F}_{32}). Atès que estem en característica 2, $\alpha^4+\alpha^2=(\alpha^2+\alpha)^2$; per tant l'arrel és $\alpha^2+\alpha$. D'una altra manera, tenint que $\alpha^4+\alpha^2=\alpha^7=\alpha^{7+31}=(\alpha^{19})^2$, per tant l'arrel és $\alpha^{19}=\alpha^2+\alpha$.

(d) Calculeu:

$$\frac{(\alpha^3 + \alpha^2 + \alpha)^{34} + 1}{\alpha^4 + \alpha^2 + \alpha} + \alpha^2.$$

Usant la taula i el fet que $\beta^{31}=1$ i $\beta^{-k}=\beta^{31-k}$, per a tot $\beta\in\mathbb{F}_{32}$ i $1\leq k\leq 30$, es té

$$\frac{(\alpha^3 + \alpha^2 + \alpha)^{34} + 1}{\alpha^4 + \alpha^2 + \alpha} + \alpha^2 = \frac{(\alpha^{12})^3 + 1}{\alpha^{28}} + \alpha^2 = (\alpha^{36} + 1)\alpha^{-28} + \alpha^2$$

$$= (\alpha^5 + 1)\alpha^3 + \alpha^2 = \alpha^2\alpha^3 + \alpha^2 = \alpha^5 + \alpha^2 = 1.$$