

Open MPI: A High-Performance, Heterogeneous MPI

Richard L. Graham, Galen M. Shipman, Brian W. Barrett, Ralph H. Castain, George Bosilca LA-UR-06-3453

Open MPI Collaboration

- The University of Tennessee
- Indiana University
- HLRS
- The University of Huston
- Sandia National Laboratory
- LANL

- Cisco
- Mellanox
- Voltaire
- · Sun Microsystems
- Myricom
- IBM
- QLogic

Contributors

- LANL
 - Ralph Castain
 - David Daniel
 - Tim Woodall
- U. of Tennessee
 - George Bosilca
 - Graham Fagg

- Indiana University
 - Brian Barrett
- Cisco Systems
 - Jeff Squyres

Outline

- Introduction
- Design for automation
 - Run time layer (Open RTE)
 - High performance communications layer (Open MPI)
- Future directions

Goal of Heterogeneous Support

- Focus on library functionality
 - Job startup
 - Communications
- Reliable run-time
- · High performance where required
 - Job initialization/termination
 - Communications

Aspects of Heterogeneity

- Processor
- Network
- · Run-time environment
- Application

Aspects of Heterogeneity in Open MPI

- Run-time library (ORTE)
- High performance communications Library ==> Open MPI

Run-Time

- Processor
- Multi-cell
- Application

A Key Idea

 Wire protocol (network byte order) used to bootstrap the run-time system

General Purpose Registry

- · Distributed data storage/retrieval system
 - All common data types plus user-defined
 - Heterogeneity between storing process and recipient automatically resolved
- Publish/subscribe
 - Support event-driven coordination and notification
 - Subscribe to individual data elements, groups of elements, wildcard collections
 - Specify actions that trigger notifications, information to be returned

Accessible to application programmers

Machine Description

	Wales.	Paradad W
Byte	Bits	Description
	1 - 2	Always 00, allowing recognition of
1		endian encoding
	3 - 4	endian: 00 = little, 01 = big
	5 - 6	reserved: Always 00
	7 - 8	reserved: Always 00
	1 - 2	length of long: $00 = 32$, $01 = 64$
2	3 - 4	reserved for length of long long: Al-
-		ways 00
	5 - 6	length of C/C++ bool: 00 = 8, 01 =
		16, 10 = 32
	7 - 8	length of Fortran LOGICAL: 00 = 8,
		01 = 16, 10 = 32
	1 - 2	length of long double: 00 = 64, 01 =
3		96, 10 = 128
3	3 - 4	number of bits in the exponent of a
		long double: $00 = 01$, $01 = 14$
	5 - 7	number of bits of mantissa in a long
		double: 000 = 53, 001 = 64, 010 =
		105, 011 = 106, 100 = 107,101 =
		113
	8	Intel or SPARC representation of
		mantissa: 0 = SPARC, 1 = Intel
	1 - 2	Always 11, allowing recognition of
		endian encoding
4	3-4	reserved: Always 11
	5 - 6	reserved: Always 11
	7 - 8	reserved: Always 11

Data Conversions

- Endianess
- Size of data type (In progress)
- Data Representation (planned)

Visualization Display Benchmark (Paraview simmulation)

Network	Total time
GM only	24.92 sec
MVAPI only	8.53 sec
GM+MVAPI	6.55 sec

Application Heterogeneity

- Low level communication library does not assume any "symmetry" in the application
- Applications need to use library in a consistent manner

Future Work

- Continue to define/refine the multi-cell run-time environment
- Performance enhancements to the high performance communications library
- Scalability of the data registry
- Alternative implementations of the registry (DB's being investigated)

