Evaluation/Performance Metrics

Rayid Ghani and Kit Rodolfa

Carnegie Mellon University

Reminders

Coming up next week:

- Monday: Project Update 2
- Tuesday: Weekly Feedback Form
- Wednesday: Deep Dive Session on Modeling and Validation Plans

Project Update 1 Review

- Formulation first of every month?
- Base rate definition and keeping parallel with label
- Commonsense Baselines what makes sense here?

Discussion Question

What validation strategy is your group using for the Donors Choose project?

How to solve a prediction problem

- Define and Create Rows (unit of prediction)
- Define and Create Label (outcome/target variable what event and when?)
- Define and Create Features (features/predictors)
- Create Training and Validation/Test Sets
- Train model(s) on Training Set(s)
- Validate model(s) on Validation/Test Set(s)
- Select "best" model

What is the goal of model selection?

What is the goal of model selection?

- You've run a large number of different types of models varying ...
- You need to understand what types of models are effective under what circumstances, and
- You need to decide which one(s) to use in the future

What do we need our selected model to do?

What do we need our selected model to do?

- Perform well
 - O What metric?
 - Compared to what?
- Generalize
 - To what?

Performance Metrics

Score Distribution on the Test Set

Evaluation - Metrics

- Predictions are often scores between 0 and 1
- We need to first turn them into 0 or 1 by selecting a threshold

Predicted Class

Actual Class

	Yes	No	
Yes	True Positives	False Negatives	
	(TP)	(FN)	
No	False Positives (FP)	True Negatives (TN)	

Evaluation – Metrics (at a threshold k)

- Accuracy = (TP + TN) / (TP + TN + FP + FN)
- Precision (aka PPV: Positive Predictive Value) = TP / (TP + FP)
- Recall (aka Sensitivity, TPR) = TP / (TP + FN)
- Specificity = **TNR**

Predicted

		Yes	No
Actual	Yes	True Positives (TP)	False Negatives (FN)
	No	False Positives (FP)	True Negatives (TN)

Confusion Matrix-based Metrics Cheatsheet

		True condition			
	Total population	Condition positive	Condition negative	$\frac{\text{Prevalence}}{\Sigma \text{ Total population}} = \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Accuracy (ACC) = $\frac{\Sigma \text{ True positive} + \Sigma \text{ True negative}}{\Sigma \text{ Total population}}$
Predicted condition	Predicted condition positive	True positive, Power	False positive, Type I error	Positive predictive value (PPV), Precision $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Predicted condition positive}}$	False discovery rate (FDR) = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Predicted condition positive}}$
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Predicted condition negative}}$	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative
		True positive rate (TPR), Recall, Sensitivity, probability of detection = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = $\frac{TPR}{FPR}$	Diagnostic odds F ₁ score =
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate $(TNR) = \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR–) = $\frac{FNR}{TNR}$	ratio (DOR) = $\frac{LR+}{LR-}$ $\frac{2}{\frac{1}{Recall} + \frac{1}{Precision}}$

Source: https://en.wikipedia.org/wiki/Sensitivity_and_specificity

Varying the Threshold

ROC Curve

Receiver Operator Characteristic Curve

AUC (Area Under Curve)

- Overall measure of performance
 - 1 if all 1s are ranked above all 0s
 - 0 if all 0s are above all 1s

AUC – Area Under Curve

If you care about the entire space

Evaluation - Baselines

- Random according to the base rate/class prior
- What they do today
- What they could easily do today (without much if any ML)

Discussion Question

What would be some potential strategies for integrating considerations around fairness in the process of model evaluation and selection?

Reminders

Coming up next week:

- Monday: Project Update 2
- Tuesday: Weekly Feedback Form
- Wednesday: Deep Dive Session on Modeling and Validation Plans