

Case Study #4: Long-Term Return-on-Investment at Microsoft via Short-Term Proxy

ALICE Team, MSR New England

Maggie Hei

Session Goals

- Understand the common challenges of learning holistic ROI from both business and technical perspective
- Introduce a unified pipeline to estimate the long-term effect of multiple investments from observational data in a high dimensional manner
- Learn how to use **EconML** Python package to solve this problem in a few lines of code

Outline

- Business Background
- Technical Challenges
- Methodology
- EconML Solution
- Wrap up

Business Background

 Microsoft provides multiple monetary fundings to enterprise customers in support of products adoption. Which of these programs ("investment") are more successful than others?

Issues:

- Different models used to calculate Return on Investment separately for each program.
- We want to estimate long-term success (e.g. two-year effect), but we can't wait that long to evaluate a program.
- Goal: Can we attribute the long-term ROI of multiple programs in a holistic manner with only short-term data?

Why Holistic ROI?

- Holistic ROI model gives us a way to assess the relative impact of multiple investments across accounts, over time.
 - Holistic view
 - Organic growth
 - Causal model
 - Attribution across investments

Technical Challenge: Confounding Effect

Start with simple causal graph

- Hidden Factors that affect both the target investment and the long-term revenue:
 - Larger customers might receive more investments
 - Customers would purchase some products even with no incentives
 - The effect might come from the past incentives

Methodology

Careful causal modeling

- Double Machine Learning
 (DML) nets out effects from confounders by fitting a two stage
 ML model
 - Allow high dimensional dataset
 - Construct confidence intervals

Only direct effect of target investments on future revenue remains!

Double Machine Learning

(Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, and James Robins. "Double/debiased machine learning for treatment and structural parameters")

$$Y = \theta(X) \times T + g(X, W) + \varepsilon$$
$$T = f(X, W) + \eta$$

- 1. Regress Y \sim W, learn $\widehat{\mathbf{Y}}$
 - Predict future revenue using past investments and current customer attributes
- 2. Regress T \sim W, learn \hat{T}
 - Predict current investments using past investments and current customer attributes
- 3. Linear regression on residuals: $(Y \hat{Y}) \sim (T \hat{T}) \otimes \phi(X)$
 - Calculate residual, "surprise" components of current investment and future revenue
- 4. $\theta(X) = \langle \vec{a}, \phi(x) \rangle$ where \vec{a} is the coefficient vector from the final regression Note: for θ constant, θ is the coefficient from $(Y \widehat{Y}) \sim (T \widehat{T})$
 - Correlation of these residuals identifies average causal effect of investments

```
# print data shape
print("Outcome shape: ", panelY.shape)
print("Treatment shape: ", panelT.shape)
print("Controls shape: ", panelX.shape)
Outcome shape: (5000, 4)
Treatment shape: (5000, 4, 3)
Controls shape: (5000, 4, 89)
# imports
from econml.dml import LinearDML
from sklearn.linear_model import LassoCV, MultiTaskLassoCV
# initiate DML estimator
est = LinearDML(
    model_y=LassoCV(max_iter=1000), # nuisance model y
    model t=MultiTaskLassoCV(max iter=1000), # nuiasnce model t
# fit treatment_0 on total revenue
est.fit(np.sum(panelY, axis=1), panelT[:, 0], X=None, W=panelX[:, 0])
# print treatment effect summary
est.summary(alpha=0.05)
Coefficient Results: X is None, please call intercept_inference to learn the constant!
```

CATE Intercept Results

	point_estimate	stderr	zstat	pvalue	ci_lower	ci_upper
cate_intercept T0	2.927	0.206	14.219	0.0	2.523	3.33
cate_intercept T1	1.13	0.038	29.951	0.0	1.056	1.204
cate_intercept T2	0.528	0.058	9.135	0.0	0.415	0.642

In this case, X= None. $cate_intercept$ will be the constant effect θ we want to estimate!

Technical Challenge: Unobserved Outcome

Long-term revenue is not fully observed yet.

Can we find short-term
 observed surrogates that are
 indicative of a customer's long term revenue?

Technical Challenge: Unobserved Outcome

Long-term revenue is not fully observed yet.

 Can we find short-term observed surrogates that are indicative of a customer's longterm revenue?

Methodology

Estimation of Long-Term Effects with Surrogates

(Prentice, 1989; Begg & Leung, 2000; Frangakis & Rubin, 2002; Freedman et al., 1992; Athey et al., 2020)

Assumption: The treatment effect of investments T on revenue Y could only go through surrogate S.

- Suppose we have a historical dataset (0) contains both long-term revenue Y and surrogates S, and a current dataset (E) contains only surrogates S.
- We can estimate g(S) := E[Y|S] from 0 by running a regression $Y \sim S$ using any ML models.
- Then we could predict the current long-term $\hat{Y} = g(S)$ from E.
- $\hat{\mathbf{r}}$ will be the projected long-term revenue, used as the outcome for DML model.

Updated Casual Graph

Surrogates Index + DML

Historical Data

	Company	Year	Features	C	ontrols/Surrogates	T1	T2	Т3	Revenue
1	Α	2018				\$1,000			\$10,000
2	Α	2019				\$2,000			\$12,000
3	А	2020				\$3,000			\$15,000
4	В	2018				\$0			\$5,000
5	В	2019				\$100			\$10,000
6	В	2020				\$1,200			\$7,000
7	С	2018				\$1,000			\$20,000
8	С	2019				\$1,500			\$25,000
9	С	2020				\$500			\$15,000

train surrogate index
XS_0 = np.hstack([panelX_0[:, 0], panelY_0[:, :1]]) # concatenate controls and surrogates from historical dataset
XS_E = np.hstack([panelX_E[:, 0], panelY_E[:, :1]]) # concatenate controls and surrogates from current dataset
TotalY_0 = np.sum(panelY_0, axis=1) # total revenue from historical dataset
unadjusted_proxy_model = LassoCV().fit(XS_0, TotalY_0) # train proxy model from historical dataset
sindex = unadjusted_proxy_model.predict(XS_E) # predict current long term revenue

	Company	Year	Features	Controls/Surrogates	T1	T2	T3	SurrRev
1	А	2021			\$1,000		→	\$10,000
2	В	2021			\$0		→	\$5,000
3	С	2021			\$2,000		→	\$15,000

Historical Data

	Company	Year	Features	Controls/Surrogates	T1	T2	Т3	Revenue
1	А	2018			\$1,000			\$10,000
2	Α	2019			\$2,000			\$12,000
3	А	2020			\$3,000			\$15,000
4	В	2018			\$0			\$5,000
5	В	2019			\$100			\$10,000
6	В	2020			\$1,200			\$7,000
7	С	2018			\$1,000			\$20,000
8	С	2019			\$1,500			\$25,000
9	С	2020			\$500			\$15,000

Current Data with New Investment

	Company	Year	Features	Controls/Surrogates	T1	T2	T3	SurrRev
1	А	2021			\$1,000			\$10,000
2	В	2021			\$0			\$5,000
3	С	2021			\$2,000			\$15,000

```
# train surrogate index
XS_0 = np.hstack([panelX_0[:, 0], panelY_0[:, :1]]) # concatenate controls and surrogates from historical dataset
XS_E = np.hstack([panelX_E[:, 0], panelY_E[:, :1]]) # concatenate controls and surrogates from current dataset
TotalY_0 = np.sum(panelY_0, axis=1) # total revenue from historical dataset
unadjusted_proxy_model = LassoCV().fit(XS_0, TotalY_0) # train proxy model from historical dataset
sindex = unadjusted_proxy_model.predict(XS_E) # predict current long term revenue
```

```
# Learn treatment effect on surrogate index
from econml.dml import LinearDML

est = LinearDML(model_y=LassoCV(max_iter=1000), model_t=MultiTaskLassoCV(max_iter=1000))
# fit treatment_0 on total revenue from current dataset
est.fit(sindex, panelT_E[:, 0], X=None, W=panelX_E[:, 0])
# print treatment effect summary
est.summary(alpha=0.05)
Coefficient Results: X is None, please call intercept_inference to learn the constant!
```

CATE Intercept Results

	point_estimate	stderr	zstat	pvalue	ci_lower	ci_upper
cate_intercept T0	1.415	0.03	46.428	0.0	1.356	1.475
cate_intercept T1	0.662	0.018	37.064	0.0	0.627	0.697
cate_intercept T2	0.261	0.006	44.417	0.0	0.249	0.272

Technical Challenge: Double Counting

Effect coming from future investments lead to upwards biased effect

• In the historical dataset (0), long-term revenue includes the effect from future investment in the past, it will be double attributed to the current investments.

Methodology

• Double Machine Learning for dynamic effects (Lewis, Syrgkanis, "Double/Debiased Machine Learning for Dynamic Treatment Effects")

approach removes the effects of future incentives from the historical outcome to create an adjusted long-term revenue as if those future incentives never happened.

Dynamic Double Machine Learning

- Start with simple 2 periods:
 - Run DML to estimate effect θ_{t+1} of T_{t+1} on Y_{t+1}
 - Subtract that effect to create the adjusted outcome

$$Y_{adj} = Y_t + (Y_{t+1} - \theta_{t+1} * T_{t+1})$$

• Use Y_{adj} as outcome to train surrogate model

Dynamic DML Adjustment in ROI project

- From historical dataset, break the 2-year period into 6-month chunks
- Recursively subtract the effect of future investment from each revenue chunk
- Sum up the revenue chunks to get adjusted revenue, net of predicted effect of later investments
- Train surrogate index using adjusted 2-year revenue

Dynamic DML Adjustment in ROI project

- From historical dataset, break the 2-year period into 6-month chunks
- Recursively subtract the effect of future investment from each revenue chunk
- Sum up the revenue chunks to get adjusted revenue, net of predicted effect of later investments
- Train surrogate index using adjusted 2-year revenue

Dynamic DML Adjustment in ROI project

- From historical dataset, break the 2-year period into 6-month chunks
- Recursively subtract the effect of future investment from each revenue chunk
- Sum up the revenue chunks to get adjusted revenue, net of predicted effect of later investments
- Train surrogate index using adjusted 2-year revenue

EconML Solution for Dynamic DML

```
# print data shape
print("Outcome shape: ", panelY.shape)
print("Treatment shape: ", panelT.shape)
print("Controls shape: ", panelX.shape)
print("Group ID shape: ", panelGroups.shape)
Outcome shape: (5000, 4)
Treatment shape: (5000, 4, 3)
Controls shape: (5000, 4, 89)
Group ID shape: (5000, 4)
# imports
from econml.dml import DynamicDML
# initiate dynamic DML estimator
est = DynamicDML(model_y=LassoCV(max_iter=1000), model_t=MultiTaskLassoCV(max_iter=1000))
# Learn period effect for each period T on Last period revenue
est.fit(
    long(panelY), # reshape the panel data n = n groups * n periods
    long(panelT), # reshape the panel data n = n_groups * n_periods
    W=long(panelX), # reshape the panel data n = n groups * n periods
    groups=long(panelGroups), # reshape the panel data n = n groups * n periods
est.const marginal effect().reshape(-1, n treatments)
array([[0.6897052 , 0.29836498, 0.1234395 ],
       [0.38710883, 0.1940497, 0.09248946],
       [0.23237571, 0.0980073, 0.03435173],
       [0.15665969, 0.05032955, 0.04140905]])
```

Return constant marginal effect for each period T on last period revenue for each treatment with shape (n_periods, d_t).

Updated Causal Graph

Dynamic DML + Surrogate Index + DML

Unified Pipeline

Step 1: Adjust historical revenue by removing effect from future investment Historical Long-

Step 2: Forecast longterm revenue using short-term surrogates

Step 3: Estimate causal effect of investments on Adjusted Surrogate Index

term Revenue

Produces

Adjusted Longterm Revenue

Produces

Adjusted Surrogate Index

Produces

ROI Measure

Recursive **Investment**

ECIF

Short-term Surrogates

- **Azure Consumed Revenue**
- O365 usage data
- Etc.

Investments

- **ECIF**
- ACO
- Etc.

Historical Data

	Company	Year	Features	Controls/Surrogates	T1	T2	Т3	Revenue
1	А	2018			\$1,000			\$10,000
2	Α	2019			\$2,000			\$12,000
3	Α	2020			\$3,000			\$15,000
4	В	2018			\$0			\$5,000
5	В	2019			\$100			\$10,000
6	В	2020			\$1,200			\$7,000
7	С	2018			\$1,000			\$20,000
8	С	2019			\$1,500			\$25,000
9	С	2020			\$500			\$15,000

	Company	Year	Features	Controls/Surrogates	T1	T2	ТЗ	Revenue
1	А	2021			\$1,000			\$10,000
2	В	2021			\$0			\$5,000
3	С	2021			\$2,000			\$15,000

Historical Data

	Company	Year	Features	Controls/Surrogates	T1	T2	T3	AdjRev
1	А	2018			\$1,000			\$10,000
2	А	2019			\$2,000			\$12,000
3	А	2020			\$3,000			\$15,000
4	В	2018			\$0			\$5,000
5	В	2019			\$100			\$10,000
6	В	2020			\$1,200			\$7,000
7	С	2018			\$1,000			\$20,000
8	С	2019			\$1,500			\$25,000
9	С	2020			\$500			\$15,000

	Company	Year	Features	Controls/Surrogates	T1	T2	T3	Revenue
1	А	2021			\$1,000			\$10,000
2	В	2021			\$0			\$5,000
3	С	2021			\$2,000			\$15,000

Historical Data

	Company	Year	Features	Controls/Surrogates	T1	T2	T3	AdjRev
1	Α	2018			\$1,000			\$10,000
2	Α	2019			\$2,000		*	\$12,000
3	Α	2020			\$3,000			\$15,000
4	В	2018			\$0			\$5,000
5	В	2019			\$100		1	\$10,000
6	В	2020			\$1,200			\$7,000
7	С	2018			\$1,000			\$20,000
8	С	2019			\$1,500		1	\$25,000
9	С	2020			\$500			\$15,000

	Company	Year	Features	Controls/Surrogates	T1	T2	T3	Revenue
1	Α	2021			\$1,000			\$10,000
2	В	2021			\$0			\$5,000
3	С	2021			\$2,000			\$15,000

```
# train surrogate index
XS_0 = np.hstack([panelX_0[:, 0], panelYadj_0[:, :1]]) # concatenate controls and surrogates from historical dataset
TotalYadj_0 = np.sum(panelYadj_0, axis=1) # total revenue from historical dataset
adjusted_proxy_model = LassoCV().fit(XS_0, TotalYadj_0) # train proxy model from historical dataset
```


Historical Data

	Company	Year	Features	Controls/Surrogates	T1	T2	Т3	AdjRev
1	Α	2018			\$1,000			\$10,000
2	Α	2019			\$2,000		*	\$12,000
3	Α	2020			\$3,000			\$15,000
4	В	2018			\$0			\$5,000
5	В	2019			\$100		1	\$10,000
6	В	2020			\$1,200			\$7,000
7	С	2018			\$1,000			\$20,000
8	С	2019			\$1,500		1	\$25,000
9	С	2020			\$500			\$15,000

	Company	Year	Features	Controls/Surrogates	T1	T2	T3	AdjSurrRev
1	А	2021			\$1,000			\$10,000
2	В	2021			- \$0			\$5,000
3	С	2021			\$2,000			\$15,000

```
# train surrogate index
XS_0 = np.hstack([panelX_0[:, 0], panelYadj_0[:, :1]]) # concatenate controls and surrogates from historical dataset
TotalYadj_0 = np.sum(panelYadj_0, axis=1) # total revenue from historical dataset
adjusted_proxy_model = LassoCV().fit(XS_0, TotalYadj_0) # train proxy model from historical dataset
```

```
# predict current long term revenue
XS_E = np.hstack([panelX_E[:, 0], panelY_E[:, :1]]) # concatenate controls and surrogates from current dataset
sindex_adj = adjusted_proxy_model.predict(XS_E)
```

Historical Data

	Company	Year	Features	Controls/Surrogates	T1	T2	Т3	AdjRev
1	А	2018			\$1,000			\$10,000
2	А	2019			\$2,000			\$12,000
3	А	2020			\$3,000			\$15,000
4	В	2018			\$0			\$5,000
5	В	2019			\$100			\$10,000
6	В	2020			\$1,200			\$7,000
7	С	2018			\$1,000			\$20,000
8	С	2019			\$1,500			\$25,000
9	С	2020			\$500			\$15,000

	Company	Year	Features	Controls/Surrogates	T1	T2	Т3	П	AdjSurrRev
1	А	2021			\$1,000				\$10,000
2	В	2021			\$0				\$5,000
3	С	2021			\$2,000				\$15,000

```
        CATE Intercept Results

        point_estimate
        stderr
        zstat
        pvalue
        ci_lower
        ci_upper

        cate_intercept|T0
        1.284
        0.024
        52.626
        0.0
        1.236
        1.332

        cate_intercept|T1
        0.603
        0.011
        53.221
        0.0
        0.581
        0.626

        cate_intercept|T2
        0.242
        0.005
        46.863
        0.0
        0.232
        0.253
```

```
# train surrogate index
XS_0 = np.hstack([panelX_0[:, 0], panelYadj_0[:, :1]]) # concatenate controls and surrogates from historical dataset
TotalYadj_0 = np.sum(panelYadj_0, axis=1) # total revenue from historical dataset
adjusted_proxy_model = LassoCV().fit(XS_0, TotalYadj_0) # train proxy model from historical dataset
```

```
# predict current long term revenue
XS_E = np.hstack([panelX_E[:, 0], panelY_E[:, :1]]) # concatenate controls and surrogates from current dataset
sindex_adj = adjusted_proxy_model.predict(XS_E)
```

```
# Learn treatment effect on surrogate index
from econml.dml import LinearDML
est = LinearDML(model_y=LassoCV(max_iter=1000), model_t=MultiTaskLassoCV(max_iter=1000))
# fit treatment_0 on total revenue from current dataset
est.fit(sindex_adj, panelT_E[:, 0], X=None, W=panelX_E[:, 0])
# print treatment effect summary
est.summary(alpha=0.05)
```

Wrap Up

- Surrogate index approach is a widely useful technique for measuring long-term effects from short-term data (healthcare, business, marketing)
- Typical assumptions for the method to work can be severely violated if historical data contain other treatments
- Adaptivity and auto-correlation of the historical treatment policy can severely bias effects
- These biases can be corrected by combining techniques from estimation of treatment effects in the dynamic treatment regime with the surrogate approach
- If careful in the estimation method (Neyman orthogonal moments + sample splitting), Machine learning can be used to enable estimation with highdimensional surrogates or controls

Applying EconML to Your Causal Problem

- Jupyter notebooks for similar use cases:
 - https://github.com/microsoft/EconML/tree/master/notebooks/CustomerScenarios
- Learn more about all the uses of EconML on our website
 - https://aka.ms/econml
- Github and Doc link:
 - https://github.com/Microsoft/EconML
 - https://econml.azurewebsites.net/
- Get started with EconML in Python: pip install econml

Reference

- [2] Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, and James Robins. Double/debiased machine learning for treatment and structural parameters. The Econometrics Journal, 21(1):C1–C68, 01 2018.
- [3] Greg Lewis and Vasilis Syrgkanis. Double/debiased machine learning for dynamic treatment effects, 2020.
- [4] Keith Battocchi, Eleanor Dillon, Maggie Hei, Greg Lewis, Miruna Oprescu, Vasilis Syrgkanis. Estimating the long-term effects of novel treatments, 2021.
- [5] Daniel Yehdego, Jane Huang, Saurabh Kumar, and Siddharth Kumar. An application ofcausal modeling for azure investment attribution, 2020.

QA

