Engineering Optimization Homework

Tai Jiang

January 2024

1 Big M AND The Two-Phase Method

 $\operatorname{Max}_{s,t} z = 2x_1 + 3x_2$

- $x_1 + 2x_2 \le 4$
- $x_1 + x_2 = 3$
- $x_1, x_2 \ge 0$

Initialization

$$z -2x_1 - 3x_2 + M\bar{x}_4 = 0$$

$$x_1 + 2x_2 + x_3 = 4$$

$$x_1 + x_2 + \bar{x}_4 = 3$$
(1)

Iteration 0

$$Z - 2x_1 - 3x_2 + M\bar{x}_4 = 0$$

$$-M(x_1 + x_2 + \bar{x}_4 = 3)$$

$$\mathbf{new} \quad Z - (M+2)x_1 - (M+3)x_2 = -3M$$
(2)

Iteration 1

$$x_2 = 0$$

$$x_3 = 4 - x_1 \ge 0 \Rightarrow x_1 \le 4$$

$$\bar{x}_4 = 3 - x_1 \ge 0 \Rightarrow x_1 \le 3 \quad minimum$$

$$(3)$$

 $x_1 + \bar{x}_4 = 3$

$$-(M+2)x_1 + (M+2)\bar{x}_4 = 6$$

$$2x_2 + x_3 - \bar{x}_4 = 1$$

$$x_1 + \bar{x}_4 = 3$$
(4)

Iteration 2

$$x_1 = 0$$

$$x_3 = 4 - 2x_2 \ge 0 \Rightarrow x_2 \le \frac{4}{2} = 2 \quad minimum$$

$$\bar{x}_4 = 3 - x_2 \ge 0 \Rightarrow x_2 \le 3$$
(5)

 $x_2 + \frac{1}{2}x_3 = 2$

$$z - (M+2)x_1 + \frac{M+3}{2}x_3 = 6 - m$$

$$\frac{1}{2}x_1 + x_2 + \frac{1}{2}x_3 = 2$$

$$x_1 - \frac{1}{2}x_3 + \bar{4}_4 = 1$$
(6)

Iteration	Basis	Eq.	Coefficient of:					Right
	Variable		Z	$ x_1 $	x_2	x_3	\bar{x}_4	Side
0	Z	(0)	1	-(M+2)	-(M+3)	0	0	-3M
	x_3	(1)	0	0	2	1	-1	1
	\bar{x}_4	(2)	0	1	1	0	1	3
1	Z	(0)	1	0	-(M+3)	0	M+2	6
	x_1	(1)	0	1	0	1	0	4
	\bar{x}_4	(2)	0	1	0	0	1	3
2	Z	(0)	1	-(M+2)	0	$\frac{M+3}{2}$	0	6-M
	x_2	(1)	0	$\frac{1}{2}$	1	$\frac{1}{2}$	0	2
	\bar{x}_4	(2)	0	1	0	$-\frac{1}{2}$	1	1