

Machine Learning

Makine Öğrenmesi – 2

Overall Table of Contents

General Content

- Supervised Learnig Algorithm
- Supervised Algorithm practices Python application
- Projects Solutions

01 01

Where are We? Run Navigation!!

Machine Learning Course Machine Learning Course 03 04 TEST DATA MODEL TRAINING & BUILDING MODEL DEPLOYMENT

Regresyon Kavramını

- Scott'ı tanıyalım, problemini öğrenelim
- 2.el araba alım-satım için değerlendirmeler

Sıra	Fiyat (老)	KM
1	86000	6000
2	82000	8200
3	78000	9000
4	75000	14200
5	70000	16200

Supervised Learning

Regresyon Kavramı

• Grafikleri değerlendirelim

Supervised Learning – Linear Regression

Lineer Regresyon

- Dependent variable Target (Bağımlı değişken – Hedef değişken)
- Independent variable Features (Bağımsız değişken)
- Simple linear regression
- Multiple Linear regression

Simple Linear Regression

Formül -- > Y = a + bx Katsayıların tahmini

Yorumu!?

Simple Linear Regression

Scott'ın almak istediği 9000 km'lik aracın fiyat tahminini de yine bu modelden yapabilir:

Fiyat = 93.048 - 1,385 (9000) = 80.583

Yine bu modele göre yeni ilanda yer alan 12.000 km'lik aracın fiyat tahminini yapabiliriz:

Fiyat = 93.048 - 1,385 (12000) = 76.478

Aynı şekilde Scott'ın 10.000 km'deki aracı için bir satış fiyatı belirleyebiliriz:

Fiyat = 93.048 - 1,385 (10000) = 79.198

 Peki, bu algoritma makine Öğrenmesi ile alternatifler arasından en doğru olanı nasıl belirledi?

Sıra	Fiyat (老)	KM	Tahmin Edilen Fiyat (七)
1	86000	6000	84737
2	82000	8200	81690
3	78000	9000	80582
4	75000	14200	73379
5	70000	16200	70609

Where are We? Run Navigation!!

Machine Learning Course Machine Learning Course DATA ACQUISITION DATA CLEANING MODEL TRAINING & BUILDING MODEL TRAINING & MODEL DEPLOYMENT

Supervised Learning

Error Metrics

Regresyon Modelleri İçin Performans Değerlendirme Ölçütleri (Error Metrics)

Residual - Error

Madem bilgi kaybından kaynaklanan bir maliyet söz konusu, bunu nasıl hesaplarız? Başka bir ifadeyle modelin iyi olup olmadığını nasıl ölçeriz?

Regresyon Modelleri İçin Performans Değerlendirme Ölçütleri

Mean Abslute Error (MAE) Ortalama Mutlak Hata

Mean Squared Error (MSE) Ortalama Kare Hata

Supervised Learning

Regresyon Modelleri İçin Performans Değerlendirme Ölçütleri

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (Predicted_{i} - Actual_{i})^{2}}{N}}$$

 Coefficient of Determination (R Squared-R2) – Adjusted R2 (Belirlilik (Determinasyon) Katsayısı – Düzeltilmiş Belirlilik Katsayısı)

It is time to coding for Linear Regression

Supervised Learning

- Linear Regresyon modelleme sonrası Genel Değerlendirme
 - **⊘** Scott ne alemde şimdi? NE düşünüyor?

 - Test seti için sonuçlar nasıl?
 - **⊘** Sihirli küreye benzeyen model!
 - **⊘** Scoot yeni alım-satımlar peşinde

- Linear Regresyon Test set modelleme sonrası Genel Değerlendirme
 - Test setinin sonuçlarını inceleyelim
 - Scott ın sihirli küresi halen çalışıyor mu?

Supervised Learning

- Overfitting ve Underfitting Sorunları
 - € Ezberleme Eksik Öğrenme (Aşırı uyum – Yetersiz uyum)
- Overfitting nedenleri
 - AŞITI Veri İle öğrenme (Bu matematik ders notlarını iyi ezberleyip hocasının sınavda aynı soruları sorması üzerine iyi not alan ancak yeni problemleri çözemeyen öğrencinin durumu gibidir)
 - AŞITI bilgi yüklemesi (Bu durum, un ve şeker gibi malzemelerle ilgili her şeyi bilen ama helva yapamayan kişinin durumuna benzetilebilir)

- Overfitting ve Underfitting Sorunları
 Ezberleme Tembellik
 - UNDERFITTING

High training error and high test error

OVERFITTING

Low training error and high test error

Supervised Learning

Overfitting ve Underfitting Sorunları
 Ezberleme – Tembellik

OVERFITTING?

- Decrease the number of parameters
- More training data / Cross Validation
 Regularization (Lasso&Ridge)
 - Underfit Overfit

 Balance

 Walidation Error

 Training Error

- **Underfitting** nedenleri

«Eksik bilgi» kavramını anlamak için bir kitap alıntısı:

«.....Bunun için tek bir siyah kuğu yeterlidir »

Avustralya kıtası keşfedilmesinde önce kuğularla ilgili yazılan tüm araştırma kitapları ile eğitim gören bir zoolog için bir kuğuyu tanımlayan öznitelikleri "kanat ölçüleri", "uzunluğu", "kilosu" ve "beyaz" olmasıdır. Zooloğun bu modeli ile Avustralya'nın siyah kuğularını öngörememesi gayet normaldir

Supervised Learning

Gerçek dünya olaylarını hep lineer ilişki ile modelleyebilir miyiz ? Bazı olaylar eğri ile daha iyi ifade edilebilir miydi?

Simple Polynomial Regression

Simple Polynomial Regression

Supervised Learning

Simple Polynomial Regression

- Polinom derecesini artırırsak ne olur?

%1 X_test_polinom = polinom_derecesi.transform(X_test)

@ Multiple Linear Regression

- € Emlak Piyasasına bir dalsak nasıl olur ?
- Heatmap ..
- ❷ Pairplot..

Supervised Learning

Multiple Linear Regression

- Model Sonuçları ve yorumlanması
 - Parametre tahmininden yola çıkarak eğitim veri seti üzerinden üretilen tahmin modeli aşağıdaki şekildedir:
 - y = 305,35 + 118,35 (Oda Sayısı)+ 1, 133 (Net m2) +7,096 (Katı) 4,665 (Yaşı)
 - R2 için hangi değerler iyi sayılabilir ?
- Modele tahmin yaptıralım

ARAŞTIRMA KONUSU

Python Tkinter kütüphanesi ile Interface (arayüz) oluşturma

BIAS – VARIANCE TRADE OFF (Yanlılık – Varyans ilişkisi) ve Model Complexity

En iyi model ??

Eğitim verisini %90 öngörüp test verisini %60 öngören bir model mi daha iyidir, yoksa eğitim verisini %60 öngörüp test verisini %59 öngören bir model mi daha iyidir?

Bias: Yanlılık (Verileri dengelemek)

Variance: Esneklik

BIAS – VARIANCE TRADE OFF (Yanlılık – Varyans ilişkisi) ve Model Complexity

BIAS VS VARIANCE TRADEOFF

What is Bias vs Variance Tradeoff and Why is it important?

- BIAS VARIANCE TRADE OFF (Yanlılık – Varyans ilişkisi) ve Model Complexity
 - Emlak örneği üzerinden anlayalım

Supervised Learning

BIAS – VARIANCE TRADE OFF (Yanlılık – Varyans ilişkisi) ve Model Complexity

- Bias (Yanlılık) Tanımı
- Variance tanımı

Bias, train set üzerinden üretilen modelin eğitim verisindeki hedef değişkenini ne kadar hatayla öngörebildiği ile ilişkilidir. Varyans ise eğitim verisi üzerinden üretilen modelin test verisindeki hedef değişkenini ne kadar hatayla öngörebildiği ile ilişkilidir. Bu ikisi arasında modelin karmaşıklığı üzerinden bir çeşit alışveriş ya da değiş-tokuş (trade off) ilişkisi vardır

BIAS – VARIANCE TRADE OFF (Yanlılık – Varyans ilişkisi) ve Model Complexity

- Optimumu nedir o zaman?

Supervised Learning

Overfitting var.. Azaltmak istiyoruz ve En baştan neler yapabiliriz ?

- 1. Collecting more data
- 2. ilk madde mümkün değilse data augmentation (veri artırımı)
- 3. Regularization
- 4. Decrease the parameters
- 5. Cross validation

REGULARIZATION

- **@** Multicollinearty problemi
- High variance ve Overfitting problemi

Grafikte, modelin complexity karmaşıklığı arttıkça bias (yanlılık) ve varyans birbirine zıt yönde hareket etmektedir. Optimum nokta ise gerektiği kadar feature (öznitelik) ile target (hedef) değişkenini öngören, veri setinin tamamında (train ve test verisi) hata oranının en aza düştüğü model için varyansın ve biasın (yanlılığın) el sıkışıp anlaştığı yerdir

Supervised Learning

REGULARIZATION

- @ Optimum nokta nasıl belirlenecek o zaman?
 - Multicollinearity ye bak
- Regularization tanımı (regülatör hatırlayalım)
- Regularization tipleri
 - € L1 (Lasso)

REGULARIZATION

Neden regularization

LASSO Regression

- Penalty (Cezalandırma)
- ⊗ Shrinkage (Sıkıştırma)

Types of Regularization in ML

2¹/₁ 01

Supervised Learning

$$RSS_{LASSO} = \sum_{j=1}^{n} (y_j - \hat{y}_j)^2 + L1 \sum_{j=1}^{p} |\beta_j|$$

RIDGE Regression

$$RSS_{RIDGE} = \sum_{j=1}^{n} (y_j - \hat{y}_j)^2 + L2 \sum_{j=1}^{p} (\beta_j)^2$$

Scikit-learn kütüphanesindeki L1 hiperparametresi «alpha> olarak isimlendirilmiştir. Sembolü (alfa) şeklindedir. Kesim parametresi intercept ile karıştırmayın

$$C = \sum_{1=1}^{N} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{F} \mid \beta_j \mid$$

L1 normalleştirme

$$C = \sum_{1=1}^N (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^F eta_j^2$$

L2 normalleştirme

Hyperparameter leri tek tek mi deneyeceğiz?

GRID SEARCH İLE Hyperparameter Optimization

Bir algortimanın en iyi sonucu verecek hiperparametrelerini deneme yanılma yolu yerine, tek seferde bize verecek sihirli değneğin adı **Grid Search**'dür.

- ✓ Grid Search uygulaması (notebook ile)
 - √ Evaluation metrics seçilmelidir (R2 gibi)
 - ✓ Lasso ve Ridge için en iyi modeli oluşturacak Hyperparameters nedir?

Supervised Learning

Hayat zikzaklarla dolu bir yol ve doğrusal regresyon o zikzakları öngörmekten aciz.. bu çerçevede uyguladığımız Lasso, Ridge ve ElastikNet algoritmaları doğrusal regresyonun "ayakları daha yere basan" versiyonlarıydı.

Multi Polynomial Regression

Eğer birden fazla feature değişkeni varsa feature'lerin uygun polinom derecesini nasıl tespit ederiz?

3. dereceden pollnom regresyon oluştursaydık feature'lerin küplerini de modele dahil edecektik.

Üç feature olsaydı bunun da karesini ve diğer iki feature ile etkileşim terimlerini modele ekleyecektik.

uygun polinom derecesini belirlemek için grid search yapıldığında hata skoru ölçütü için RMSE yaygın kullanıma sahiptir.

Uygun Polinom Derecesinin Tespiti

- **RMSE** ile polinom derecesi tespiti
- Polinom regresyonların avantajdezavantajları

Supervised Learning

Uygun Polinom Derecesinin Tespiti

(c)

GRADIENT DESCENT Algoritmaları İle Model

Hatası Minimizasyonu (Dereceli Azalma – Meyilli iniş)

 $\sqrt{y} = F(x) = a + Bx + error$ (en iyi a ve B bulmak)

Maliyet =
$$MSE = \frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2$$

Bu model, gerçekten en düşük hataya sahip olan model midir?

Supervised Learning

GRADIENT DESCENT (Model Hatası Minimizasyonu) © Durum tespiti

GRADIENT DESCENT (Model Hatası Minimizasyonu)

- **∀** Vadi örneği

Supervised Learning

GRADIENT DESCENT (Model Hatası Minimizasyonu)

- Temel adımlar
 - e başlangıç noktasının seçimidir
 - e başlangıç noktasındaki eğimini (gradyanını) hesaplama

GRADIENT DESCENT (Model Hatası Minimizasyonu)

Çeşitleri

- Batch Gradient Descent-BGD (tüm eğitim seti için teker teker hataları hesaplayarak optimuma ulasmaya calısır),
- Stochastic Gradient Descent-SGD (Adım boyları belirlenerek tüm eğitim veri seti için değil sadece belirlenen adımlara karşılık gelen veriler için hataları hesaplar.),
- Minibatch Gradient Descent-MGD (Bach ve Stocastic Gradient Decent optimizasyonunun bileşimidir. Eğitim veri setini küçük parçalara ayırır ve her biri için ayrı ayrı hataları hesaplar).

PARAMETERS	BATCH GD ALGORITHM	MINI BATCH ALGORITHM	STOCHASTIC GD ALGORITHM
ACCURACY	нібн	MODERATE	LOW
TIME CONSUMING	MORE	MODERATE	LESS

Supervised Learning

GRADIENT DESCENT (Model Hatası Minimizasyonu)

- Stochastic Gradient Descent-SGD
 - Starting Point
 - Learning rate

Dikkat!!

- Gradient Decent algoritması doğrusal regresyon gibi model oluşturma algoritmaları için optimizasyon yapmaya yarıyor. Yoksa başlı başına bir model oluşturma algoritması değildir.
- Doğrusal regresyon algoritması ile üretilen tahmin modeli gerçekten de en optimal model olabilir. Ancak veri setinin durumuna bağlı olarak bundan bazen emin olamayabiliriz. Bu gibi durumlarda Grad.Desc ile optimizasyon elde ettiğimiz modeli teyit etmemize yardımcı olur

https://medium.com/deep-learning-turkiye/gradient-descent-nedir-3ec6afcb9900

İlave Bilgi olarak Standardizasyon Konusu

❷ Bazı algoritmalar feature'lerin ölçeğine duyarlıdır

Standartlaştırma: Bir değişkenin içindeki her bir gözlemin değeri ni kendi aritmetik ortalamasından farkını alıp standart sapmasına bölersek o gözlemi standartlaştırmış oluruz. Mesela y'nin (hedef değişkeni) gözlemlerini aşağıdaki şekilde standartlaştırırız:

y değişkeninin tüm değerlerinin aritmetik ortalaması.

y değişkeninin standart sapması

Standardization

- To achieve a data which mean = 0 and deviation = 1
- Z-score normalization

$$X_{changed} = \frac{X - \mu}{\sigma}$$

Normalization

 Shrink all data values between 0-1

$$X_{changed} = \frac{X - X_{min}}{X_{max} - X_{min}}$$

Minimum-Maksimum Yöntemiyle Standartlaştırma: Bir değişkenin içindeki her bir göslemin değerini o değişken içindeki en düşük değere sahip göslemden çıkarıp bulunan değeri de değişkenin en yüksek ve en düşük değerleri arasındaki farka bölerek o gözlemi standartlaştırmış oluruz.

y_j (y değişkenindeki j gözlemi) işin minimummak simum yöntemiyle standartlaştırılmış değer.

 $\Rightarrow mms_j = \frac{y_j - y_{min}}{y_{max} - y_{min}}$

y değişkeni içindeki minimum değer

y değişkeni içindeki maksimum değer

Supervised Learning

FEATURE SELECTION

- Çok sayıda faktörü/değişkeni feature olarak kullanmak gerçekten gerekli mi?

FEATURE SELECTION

- © Çok sayıda faktörü/değişkeni feature olarak kullanmak gerçekten gerekli mi?

Supervised Learning

FEATURE SELECTION

- - **②** LassoCV kullanımı

Öznitelik Seçim Tekniği	Seçilen Öznitelik Sayısı	Eğitim Seti Performansı	Test Seti Performansı
Korelasyon (Pearson)	22	0.93	0.84
Hipotez Testi (p-değeri)	36	0.94	0.71
Lasso	19	0.93	0.86
RFE	8	0.90	0.87

Do you have any questions?

Send it to us! We hope you learned something new.