PÓS-GRADUAÇÃO

Projeto em ciência de dados com soluções para processamento paralelo e distribuído de dados

PÓS-GRADUAÇÃO

Introdução a soluções para processamento paralelo e distribuído de dados

Bloco 1

Marcelo Tavares de Lima

Objetivos

- Apresentar conceitos introdutórios de processamento paralelo de dados.
- Apresentar conceitos introdutórios de processamento distribuído de dados.
- Apresentar soluções para processamento paralelo e distribuído de dados e gerenciamento de clusters e grids.

Introdução

- Introdução a soluções para processamento paralelo e distribuído de dados.
- Gerenciamento de *clusters* e *grids*.
- Conceitos fundamentais.
- Diferenciais e outros.

Introdução

- Motivação principal: processamento de grandes bases de dados (Big Data).
- Os sistemas precisam suportar o armazenamento e a execução.
- Os sistemas precisam ser rápidos e ágeis.
- Surgiram os sistemas paralelos e distribuídos de dados.

- Surgiu com a intenção de redução do tempo de processamento de dados.
- Surgiu na década de 90.
- Quanto menor o tempo de resolução dos problemas, mais rapidamente se toma decisões importantes para os negócios.
- O processamento também precisa ser confiável.

- Na prática, é o uso de mais de uma unidade de processamento (CPU) para a execução da resolução conjunta de um problema.
- Divide o problema em problemas (tarefas) menores.
- Exige investimento em hardware e software.
- Processamento de alto desempenho.

Duas métricas avaliam a eficiência de um sistema em paralelo:

- Aceleração linear.
- Crescimento linear.

- Aceleração linear: avalia o tamanho do sistema.
- Exemplo: se o hardware for duplicado, uma tarefa poderá ser executada na metade do tempo utilizado se tivesse sido executada com um processador apenas.
- É medida como a razão entre o tempo de execução com um processador e o tempo de execução com mais de um processador.

- Crescimento linear: utilizada para medir a habilidade de crescimento do sistema e também do problema.
- Exemplo: se o hardware for duplicado, espera-se que o sistema passe a ser capaz de executar um problema, duas vezes mais, considerando o mesmo intervalo de tempo.

Vantagens do processamento paralelo, segundo Navaux, De Rose e Pilla (2011):

- Melhora no desempenho.
- Maior tolerância a falhas.
- Modela modelos mais complexos.
- Aproveita mais os recursos.

Figura 1 – Modelo de processamento paralelo: memória compartilhada

Fonte: Meyer (2006).

Figura 2 – Modelo de processamento paralelo: memória distribuída

Fonte: Meyer (2006).

Clusters e grids

Cluster é um sistema distribuído de computadores independentes e interligados, cujo o objetivo é suprir a necessidade de um grande poder computacional com um conjunto de computadores de forma transparente ao usuário. (BACELLAR, 2010, p. 3)

Figura 3 – Esquema de uma rede distribuída em *cluster*

Fonte: Martins (2019).

Clusters e grids

Segundo Meyer (2006):

 A visão de *Grid* é similar (ou almeja ser) a uma rede de distribuição de energia elétrica, ou seja, diversos recursos computacionais geograficamente distribuídos podem ser agregados para formar um supercomputador virtual. (MEYER, 2006, p. 8)

Figura 4 – Modelo de processamento em grid

Fonte: Meyer (2006).

PÓS-GRADUAÇÃO

Introdução a soluções para processamento paralelo e distribuído de dados

Bloco 2

Marcelo Tavares de Lima

• É crescente o investimento em tecnologias, como os supercomputadores, em todas as áreas do conhecimento, em especial a ciência de dados e áreas especiais, como: a meteorologia (previsão do tempo); a busca por petróleo; área de simulações físicas; e a matemática computacional.

 O processamento de alto desempenho é uma área da ciência da computação que veio para solucionar problemas complexos, como os encontrados nessas áreas, que antes eram resolvidos com a simplificação dos modelos, resultando em respostas menos precisas e com margem de erro considerável (NAVAUX; DE ROSE; PILLA, 2011).

- Muitos recursos utilizam computação paralela, como, por exemplo, aplicações em C ou em Java.
- As redes sociais que utilizamos hoje são exemplos de sistemas distribuídos.
- Sites de pesquisas e plataformas de vídeos on-line, como a Netflix, também são.

Quando se trabalha com sistemas distribuídos, existem os seguintes objetivos:

- Disponibilidade e acesso fácil ao sistema, assim como a todos os seus recursos, por todos os seus componentes, sejam máquinas ou usuários finais.
- Ocultar do usuário final que o sistema é distribuído.
- Facilitação da inclusão de novas máquinas, ou seja, deixar o sistema o mais aberto possível nesse sentido, para que possa expandir facilmente.

- Como já visto, os sistemas distribuídos podem ser classificados em cluster e grid.
- Cluster: conjunto de máquinas com hardwares semelhantes, características homogêneas interligadas por rede local (LAN).
- Grid: conjunto de máquinas com características diferentes. O hardware e os sistemas operacionais podem ser de fabricantes diversos.

Figura 5 – Sistema distribuído em *cluster*

Fonte: Pereira (2019).

Figura 6 – Sistema distribuído em grid - Cinegrid

Fonte: Pereira (2019).

PÓS-GRADUAÇÃO

> Teoria em prática

 Imagine que você trabalha no departamento de pesquisa de mercado em uma empresa. Sua responsabilidade é gerenciar uma equipe de funcionários aptos para lidar com grandes bases de dados, do tipo Big Data.

Teoria em prática

 Os equipamentos tecnológicos que sua equipe utiliza estão ficando obsoletos para lidar com bases de dados tão grandes quanto às que vocês conseguem manipular. Além disso, o sistema de gerenciamento de dados também está se tornando obsoleto.

Teoria em prática

 A partir desse cenário, você reúne sua equipe e começa a planejar estratégias de melhorias do ferramental tecnológico e da rede de dados que fazem uso.

Teoria em prática

- Uma rede com processamento paralelo resolve?
 Caso escolha esse tipo de sistema, é melhor um sistema de memória compartilhada ou distribuída?
- Entretanto, é possível concluir que é melhor um sistema de computação em grids, pois você precisa estar em rede com outras unidades da empresa.

PÓS-GRADUAÇÃO

Indicação de livro

Figura 7 – Dica

Fonte:

https://bv4.digitalpages.com.br/?term=sistemas%2520distribu%25C3%25ADdos&searchpage=1&filtro=todos&from=busca&page= 1§ion=0#/legacy/411. Acesso em: 03 fev. 2020.

Referências

BACELLAR, H. V. **Cluster:** computação de alto desempenho. Campinas: Instituto de Computação, Universidade Estadual de Campinas, 2010. Disponível em: http://www.ic.unicamp.br/~ducatte/mo401/1s2010/T2/107077-t2.pdf. Acesso em: 03 fev. 2020.

MARTINS, S. L. **Sistemas distribuídos**. Departamento de Ciência da Computação. Niterói: Universidade Federal Fluminense, 2019. Disponível em: ic.uff.br/~simone/sd/contaulas/aula2.pdf. Acesso em: 03 fev. 2020.

MEYER, L. A. V. C. Uma visão geral dos sistemas distribuídos de cluster e grid e suas ferramentas para o processamento paralelo de dados. 2006. IBGE [s.d.]. Disponível em https://ww2.ibge.gov.br/confest_e_confege/pesquisa_trabalhos/CD/palestras/36 8-1.pdf. Acesso em: 03 fev. 2020.

Referências

NAVAUX, P. O. A.; de ROSE, C. A. F.; PILLA, L. L. **Fundamentos das arquiteturas para processamento paralelo e distribuído**. 2011. Laboratório de Banco de Dados. Departamento de Ciência da Computação — UFMG. Disponível em: http://www.lbd.dcc.ufmg.br/colecoes/erad-rs/2011/003.pdf. Acesso em: 03 fev. 2020.

PEREIRA, C. S. **Sistemas distribuídos.** Londrina: Editora e Distribuidora Educacional S.A., 2019.

