

Problem 1 is due at class on Monday 30th November 5pm class.

- 1. Consider the matrix formulation of the simple linear regression model $E\{Y\} = X\beta$, where $Y = (Y_1, \dots, Y_n)^T$ is an $n \times 1$ column vector of responses, $\beta = (\beta_0, \beta_1)^T$, and X is the $n \times 2$ design matrix having row t equal to $(1 X_i)$. Find in terms of the X_i :
 - (a) X^T X
 - (b) |X^T X|
 - (c) $(X^T X)^{-1}$

Verify that $\widehat{\beta} = (X^T X)^{-1} X^T Y$ gives the same least squares estimators as we derived in chapter 1 in class. What is the hat matrix in this instance? Does it have a simple form?

2. Suppose we have K regression lines

$$Y_{ki} = \alpha_k + \beta_k X_{ki} + \epsilon_{ki}$$
 $(i = 1, \dots, n_k)$

where the ϵ_{ki} are independently and identically distributed as $N(0, \sigma^2)$. Write the joint model for all data

$$\mathbf{Y} = [Y_{11}, Y_{12}, \dots, Y_{1n_1}, \dots, Y_{K1}, \dots, Y_{Kn_K}]^{\mathrm{T}}$$

$$Y = X\gamma + \varepsilon$$
.

3. Consider a model where observations are time ordered $Y_1,Y_2,\ldots,Y_t,\ldots,Y_n$, where t denotes time. We have observations on p possible predictors. There is a changepoint at time $t=\tau$, so that up to time τ it is reasonable to assume that

$$\mathbb{E}\{Y_t\} = \mathbf{x}_t^{\mathrm{T}} \boldsymbol{\beta}_1, \qquad t = 1, \dots, \tau$$

$$\mathrm{E}\{Y_t\} = \mathbf{x}_t^{\mathrm{T}} \boldsymbol{\beta}_2, \qquad t = \tau + 1, \dots, n$$

where $\mathbf{x}_t = (1, X_{1t}, X_{2t}, \dots, X_{pt})^T$ and the $\boldsymbol{\beta}$'s are $(p+1) \times 1$ parameter vectors for each of the regimes.

- (a) If we assume a constant error variance $var\{\epsilon_i\} = \sigma^2$ over both regimes, find the least squares estimators of $\beta_1, \beta_2, \sigma^2$.
- (b) If we assume a different error variance $\operatorname{var}\{\epsilon_i\} = \sigma_1^2, i = 1, \dots, \tau$ and $\operatorname{var}\{\epsilon_i\} = \sigma_2^2, i = \tau + 1, \dots, n$ find the least squares estimators of $\beta_1, \beta_2, \sigma_1^2, \sigma_2^2$.
- (c) Suggest and approach for determining an estimate of τ if it is not known in advance.
- 4. If H is the hat matrix for a multiple linear regression model, show that $H^T H = H$.
- 5. If H is the hat matrix for a multiple linear regression model, show that $SSE = \mathbf{Y}^{\mathrm{T}} (\mathbf{I} \mathbf{H}) \mathbf{Y}$

6. Suppose that a multiple regression model is mis-specified, so that we have modelled the data as

$$E\{Y\} = X\beta$$

$$E\{Y\} = X\beta + Z\gamma$$

whereas in actual fact $E\{Y\} = X\beta + Z\gamma$ where Z is an $n \times q$ matrix of unobserved predictors and γ is a $q \times 1$ column vector of parameters. The least squares estimator of β is computed as $\widehat{\beta} = (X^T X)^{-1} X^T Y$. What are the actual sampling properties of $\widehat{\beta}$ if we assume normally distributed, uncorrelated errors? Show that the expected value of the residual error vector ε is $(I-H)Z\gamma$.

7. (*) In the set up of question 6, suppose that the estimate

$$\widehat{\sigma}^2 = \frac{\mathbf{Y}^T (\mathbf{I} - \mathbf{H}) \mathbf{Y}}{n - p}$$

$$\mathbb{E}\{\widehat{\sigma}^2\} = \sigma^2 + \frac{\gamma^{\mathsf{T}}\mathbf{Z}^{\mathsf{T}}(\mathbf{I} - \mathbf{H})\mathbf{Z}\gamma}{n - p} > \sigma^2$$

i.e. that the variance is over-estimated. Is it possible to design a test for $\gamma=0$?

