Игра по типу сороконжки

Двое играют в следующую простую разновидность покера.

Сначала первый игрок берёт карту из колоды (карта с равными вероятностями может быть красной или чёрной), смотрит на неё. После чего может вскрыться или удвоить ставку. Если ставка удвоена, то второй либо просит показать карту, либо сбрасывает её обратно в колоду. Если карта чёрная, то первый платит второму (1 до удвоения или 2 после удвоения), если красная, то, наоборот, второй платит первому 1 или 2 в зависимости наличия удвоения. Если карта сброшена, то второй игрок платит первому рубль.

1. Как выглядит дерево этой игры?

Ответ:

Вначале природа выбирает, какая карта выпадет. Первый игрок знает о том, какая кар-

Рис. 1

та ему досталась, и решает, удвоить ставку или нет. В свою очередь, второй игрок не знает, какая карта у первого, и решает, вскрываться или нет. Поэтому у второго есть информационное множество.

Предположим, что оба игрока используют смешанные стратегии в управляемых им вершинах, кроме того, второй игрок верит в то, что находится в верхней вершине с вероятностью ω. Вероятности и веры согласованы между собой. Допустим, что первый игрок с ненулевой вероятностью удваивает в обоих случаях, и данные профили стратегий находятся в равновесии.

Какое соотношение на веру ω второго игрока о нахождении его в верхней вершине выполнено?

Om eem:

$$2\omega - 2(1-\omega) = -1$$

Если второй игрок верит, что он находится в верхней вершине с вероятностью ω , и в нижней с вероятностью $1-\omega$ и использует смешанное равновесие, то ему всё равно, как сходить в этом случае. Ожидаемый выигрыш от применения стратегии "вскрыть карты" равен $2\omega-2(1-\omega)$, от стратегии сбросить - -1.

- 3. Чему равна вера ω второго игрока о нахождении его в верхней вершине? Ответ: из предыдущего $\omega=0.25$.
- 4. Будем считать, что мы находимся в предположениях задачи 2. Пусть вероятность вскрыть карты у второго игрока равна γ , а вероятности повысить удвоить у первого игрока равны α при чёрной карте и β при красной карте (см. рисунок внизу после заданий).

Рис. 2

При каком γ первый игрок будет смешивать свои стратегии при чёрной и красной картах?

Om eem:

Первый игрок будет смешивать свои стратегии, если ожидаемый выигрыш от использования стратегий "удвоить" или "вскрыть" будет одинаковым. Поэтому мы получаем равенства: $-1 = -2\gamma + (1-\gamma)$ для чёрной карты и $1 = 2\gamma + (1-\gamma)$ для красной карты, откуда $\gamma = 2/3$ в первом случае и $\gamma = 0$ во втором.

- 5. Исходя из предыдущей задачи, мы получаем, что первый игрок не будет смешивать свои стратегии в обоих случаях. Так как мы рассматриваем случай, когда он удваивает в каждом из случаев с ненулевой вероятностью логично предположить, что $\gamma = 2/3$. Какие значения принимают α и β (Напоминаем, что вера ω второго игрока должна быть согласована с вероятностями попасть в соответствующую вершину.) Ответ: $\alpha = 1/3$ (объяснение ниже).
- 6. $\beta=1$. Если $\gamma=2/3$, то $\beta=1$, так как первому игроку в случае удачной карты будет выгоднее удвоить ставку. Так как вера $\omega=1/4$, то мы имеем соотношение: $\frac{1/2\alpha}{1/2\beta}=\frac{\omega}{1-\omega}$, откуда $\alpha=1/3$.