ANÁLISIS DIMENSIONAL

Mecánica de fluidos

Adrián Navas Montilla (anavas@unizar.es)

CONTENIDOS

- Motivación
- Teorema Pi de Vaschy-Buckingham
- Homogeneidad dimensional
- Adimensionalización de las ecuaciones y números adimensionales relevantes
- Semejanza

Motivación

Para conocer el movimiento de los fluidos y sus efectos tenemos dos posibilidades:

• Resolución analítica o numérica de las ecuaciones:

$$\begin{cases}
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0 \\
\rho \left(\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \nabla \vec{v} \right) = -\nabla p + \nabla \cdot \tilde{\tau}_v + \rho \vec{f}_m \\
\rho \left(\frac{\partial e}{\partial t} + \vec{v} \cdot \nabla e \right) = \nabla \cdot \vec{q} - p \nabla \cdot \vec{v} + \phi_v + \dot{q}_v
\end{cases}$$

• Experimentación:

Consideremos el siguiente experimento: situamos una esfera de diámetro *D* en un túnel de viento y queremos averiguar cual es la fuerza de arrastre sobre ésta.

La fuerza de arrastre será función de:

$$F_D = f(D, V, \rho, \mu)$$

La fuerza de arrastre será función de:

$$F_D = f(D, V, \rho, \mu)$$

Si queremos entender cómo depende F_D de esos cuatro parámetros, debemos realizar los siguientes ensayos:

- Variar *D*, manteniendo el resto fijos. P. ej: se escogen 10 valores distintos.
- Variar V, manteniendo el resto fijos. P. ej: se escogen 10 valores distintos.
- Variar ρ , manteniendo el resto fijos. P. ej: se escogen 10 valores distintos.
- Variar μ , manteniendo el resto fijos. P. ej: se escogen 10 valores distintos.

Esto da lugar a 10x10x10x10=10000 experimentos independientes (imposible!!!)

El análisis dimensional, basándose solamente en las magnitudes que intervienen en el problema y en sus dimensiones, nos enseñará que para este experimento es posible obtener una única relación entre <u>números adimensionales</u>:

$$\frac{F_D}{1/2\rho V^2 D^2} = f\left(\frac{\rho V D}{\mu}\right)$$

donde:

- El cociente $\frac{F_D}{1/2\rho V^2 D^2}$ es el coeficiente de arrastre, C_D
- El cociente $\frac{\rho VD}{\mu}$ es el número de Reynolds, Re

Necesitando solamente 10 experimentos independientes!

El análisis dimensional, basándose solamente en las magnitudes que intervienen en el problema y en sus dimensiones, nos enseñará que para este experimento es posible obtener una única relación entre <u>números adimensionales</u>:

$$\frac{F_D}{1/2\rho V^2 D^2} = f\left(\frac{\rho V D}{\mu}\right)$$

donde:

- El cociente $\frac{F_D}{1/2\rho V^2 D^2}$ es el coeficiente de arrastre, C_D
- El cociente $\frac{\rho VD}{\mu}$ es el número de Reynolds, Re

Necesitando solamente 10 experimentos independientes!

- -No es necesario modificar el tamaño de la esfera en los 10 experimentos. Podemos jugar con el producto V*D: aumentar la velocidad es equivalente a aumentar el tamaño.
- No es necesario usar 10*10 fluidos distintos (para pareja de viscosidad y densidad). Se puede variar solamente su ratio.

Enunciado: Dada una relación funcional $\sigma_1 = f(\sigma_2, \sigma_3, ..., \sigma_n)$ entre n variables dimensionales, σ_i , es posible expresar esta relación como otra relación $\Pi_1 = F(\Pi_2, \Pi_3, ..., \Pi_{n-m})$ entre n-m variables adimensionales, Π_i , siendo m el número de dimensiones independientes del problema.

Vamos a entenderlo con el ejemplo anterior...

La relación funcional es $F_D = f(D, V, \rho, \mu)$, que relaciona n = 5 variables dimensionales F_D, D, V, ρ, μ y hemos visto que dicha relación se puede expresar como otra función $C_D = F(\text{Re})$ que relaciona n - m = 2 variables adimensionales $C_D = \frac{F_D}{1/2\rho V^2 D^2}$ y $\text{Re} = \frac{\rho V D}{\mu}$.

En este caso, el número de dimensiones independientes es m=3: masa, longitud y tiempo.

Recordamos que las dimensiones fundamentales son:

$$M, L, T, \theta$$

Como regla general:

- En la mayoría de los problemas tendremos: M, L, T, y habitualmente m=3.
- En alguna ocasión, si aparece la temperatura tendremos: M, L, T, θ y habitualmente m = 4.

El proceso se compone de los siguientes pasos:

1. Elegir las n variables relevantes en el fenómeno de estudio

Se escogen las variables (dimensionales): F_D , D, V, ρ , μ , siendo n=5

2. Escribir la relación funcional que relaciona una variable con el resto, $\sigma_1 = f(\sigma_2, \sigma_3, ..., \sigma_n)$.

La relación funcional es: $F_D = f(D, V, \rho, \mu)$

3. Escribir la matriz de dimensiones para cada variable $[\sigma_i] = M^{\alpha_i} L^{\beta_i} T^{\gamma_i}$

	М	L	T	
σ_i	α_1	eta_1	γ_1	
σ_n	α_n	β_n	γ_n	

	М	L	T
F_D	1	1	-2
D	0	1	0
V	0	1	-1
ρ	1	-3	0
μ	1	-1	-1

4. Determinar el rango m de la matriz, que es el número de dimensiones independientes del problema. Seguramente coincidirá con el número de columnas.

En este caso m=3

- 5. Seleccionar las m variables dimensionalmente independientes a eliminar, siguiendo los criterios:
 - No seleccionar las variables que se pidan como solución del problema
 - <u>Seleccionar variables que sean dimensionalmente independientes</u>, es decir, que entre ellas no se puedan adimensionalizar solas. Debemos poder escribir las dimensiones de las variables restantes en función de las dimensiones de las variables a seleccionadas eliminar. El conjunto de las dimensiones de las variables seleccionadas a eliminar debe incluir las dimensiones fundamentales del problema M, L, T, ... El determinante asociado a éstas debe ser $\neq 0$
 - Debemos fijarnos en aquellas <u>variables que "tengan ceros" en su fila</u>; quiere decir que son buenas candidatas para formar una base. P.ej: [D] = L
 - Experiencia: Evitar coger aquellas <u>variables que</u> forman números adimensionales conocidos.

P.ej: μ -> Re

Eliminamos:		М	L	T
D, V, ρ	F_D	1	1	-2
\mathcal{D} , \mathbf{v} , \mathbf{p}	D	0	1	0
	V	0	1	-1
	ρ	1	-3	0
	μ	1	-1	-1

6. Escribir los n-m los números Π_j asociados a las variables no eliminadas, utilizando las variables eliminadas para adimensionalizar las anteriores.

En este caso:
$$\Pi_{\mu} = \frac{\mu}{\rho^a V^b D^c}$$

$$n-m=2$$

$$\Pi_{F_D} = \frac{F_D}{\rho^a V^b D^c}$$

7. Resolver las ecuaciones para los exponentes a, b, c, ... con las que determinar los números Π del punto 6.

Para el número adimensional Π_{μ} , definido en el punto 6, tenemos:

$$(ML^{-3})^a (LT^{-1})^b (L)^c = M^1 L^{-1} T^{-1} \implies \begin{cases} a = 1 \\ -3a + b + c = -1 \\ -b = -1 \end{cases} \Rightarrow \Pi_{\mu} = \frac{\mu}{\rho VD} \equiv 1/\text{Re}$$

Para el número adimensional Π_{F_D} , definido en el punto 6, tenemos:

$$(ML^{-3})^a (LT^{-1})^b (L)^c = M^1 L^1 T^{-2} \implies \begin{cases} a = 1 \\ -3a + b + c = 1 \\ -b = -2 \end{cases} \Rightarrow \Pi_{F_D} = \frac{F_D}{\rho V^2 D^2}$$

8. Escribir la relación de funcional entre números adimensionales $\Pi_1 = F(\Pi_2, \Pi_3, ..., \Pi_{n-m})$

La relación funcional es: $\Pi_{F_D} = F(\Pi_{\mu})$, es decir $C_D = F(Re)$

Análisis del los números adimensionales del ejemplo de la esfera:

¿Qué representa $\Pi_{F_D} = \frac{F_D}{\rho V^2 D^2}$?

Es equivalente al coeficiente de arrastre, C_D , que se suele definir de manera genérica como:

$$C_D = \frac{F_D}{1/2\rho V^2(area\ frontal)}$$

¿Qué representa el número Π_{μ} ? Es la inversa del número de Reynolds $\mathrm{Re} = \frac{\rho VD}{\mu}$

$$Re = \frac{fuerzas \ de \ inercia}{fuerzas \ viscosas}$$

 $Re \uparrow \uparrow$: Flujo turbulento $Re \downarrow \downarrow$: Flujo laminar (viscoso)

Pero... ¿qué significa flujo laminar o turbulento?

Vamos a entenderlo con el experimento de Reynolds:

VER VIDEO

Volviendo al ejemplo de la esfera...

$$F_D = f(D, V, \rho, \mu) \Rightarrow C_D = F(Re)$$

No separation

(A)

Steady separation bubble

(B)

Oscillating Karman vortex street wake

(C)

Laminar boundary layer, wide turbulent wake

Turbulent boundary layer, narrow turbulent wake

(D)

(E)

Volviendo al ejemplo de la esfera...

(un paréntesis)

Volviendo al ejemplo de la esfera... ahora con rugosidad

$$C_D = F\left(\operatorname{Re}, \frac{d}{D}, \frac{\varepsilon}{D}\right)$$

Figure 1. Effect of surface roughness on the drag coefficient of a sphere.

Principio de homogeneidad dimensional

Se dice que una ecuación es dimensionalmente homogénea si todos sus términos tienen las mismas dimensiones. El **principio de homogeneidad dimensional** establece que cualquier ecuación que describe un proceso físico debe ser dimensionalmente homogénea.

Ejemplo del tema 1: comprobar si la siguiente ecuación es dimensionalmente homogénea:

$$V = V_0 + at$$

donde V es la velocidad de un cuerpo en un tiempo t sometido a una aceleración a y con una velocidad inicial VO.

Adimensionalización de las ecuaciones

Motivación: ver la importancia de cada uno de los términos de la ecuación, buscando su magnitud relativa. Vamos a utilizar como ejemplo la ecuación diferencial de cantidad de mov.

$$\left(\rho \frac{\partial u}{\partial t}\right) + \rho u \frac{\partial u}{\partial x} = -\frac{\partial P}{\partial x} + \mu \frac{\partial^2 u}{\partial x^2} + \rho f_m$$

Procedimiento:

Escoger los tamaños característicos σ_0 para hacer el cambio de variable (genérico):

$$\sigma = \sigma_0 \sigma^*$$

Por ejemplo $x = x_0 x^*$ da lugar a la variable adimensional: $x^* = \frac{x}{x_0} \operatorname{con} x_0$ el tamaño car.

2. Aplicar el cambio de variable a la ecuación en cuestión, a todas sus variables y derivadas:

$$\frac{\rho_0 u_0}{t_0} \rho^* \frac{\partial u^*}{\partial t^*} + \frac{\rho_0 u_0^2}{x_0} \rho^* u^* \frac{\partial u^*}{\partial x^*} = -\frac{\Delta P_0}{x_0} \frac{\partial P^*}{\partial x^*} + \frac{\mu_0 u_0}{x_0^2} \mu^* \frac{\partial^2 u^*}{\partial x^{*2}} + \rho_0 g \rho^* f^*_m$$

$$\frac{x_0}{u_0 t_0} \rho^* \frac{\partial u^*}{\partial t^*} + \rho^* u^* \frac{\partial u^*}{\partial x^*} = -\frac{\Delta P_0}{\rho_0 u_0^2} \frac{\partial P^*}{\partial x^*} + \frac{\mu_0 u_0}{\rho_0 u_0 x_0} u^* \frac{\partial^2 u^*}{\partial x^{*2}} + \frac{g x_0}{u_0^2} \rho^* f^*_m$$
Divido por
$$\frac{\rho_0 u_0^2}{x_0} \rho^* \frac{\partial u^*}{\partial t^*} + \rho^* u^* \frac{\partial u^*}{\partial x^*} = -\frac{\Delta P_0}{\rho_0 u_0^2} \frac{\partial P^*}{\partial x^*} + \frac{\mu_0 u_0}{\rho_0 u_0 x_0} u^* \frac{\partial^2 u^*}{\partial x^{*2}} + \frac{g x_0}{u_0^2} \rho^* f^*_m$$

No Strouhal (St)

No Euler (Eu) No Reynolds inverso No Froude

19

Adimensionalización de las ecuaciones

En la diapositiva anterior hemos visto que la ecuación diferencial de conservación del momento lineal:

$$\rho \frac{\partial u}{\partial t} + \rho u \frac{\partial u}{\partial x} = -\frac{\partial P}{\partial x} + \mu \frac{\partial^2 u}{\partial x^2} + \rho f_m$$

se puede escribir de manera adimensional. Vamos a escribir la ecuación adimensional utilizando los números adimensionales que hemos identificado antes:

St
$$\rho^* \frac{\partial u^*}{\partial t^*} + \rho^* u^* \frac{\partial u^*}{\partial x^*} = -\text{Eu} \frac{\partial P^*}{\partial x^*} + \frac{1}{\text{Re}} \mu^* \frac{\partial^2 u^*}{\partial x^{*2}} + \frac{1}{\text{Fr}^2} \rho^* f^*_{m}$$

Esto nos ayuda a ver, por ejemplo, que:

- Si Re $\gg 1$ \Rightarrow modelo de flujo ideal: $\rho \frac{\partial u}{\partial t} + \rho u \frac{\partial u}{\partial x} = -\frac{\partial P}{\partial x} + \rho f_m$
- Si Re $\ll 1 \Rightarrow$ modelo de flujo viscoso: $\rho \frac{\partial u}{\partial t} = -\frac{\partial P}{\partial x} + \mu \frac{\partial^2 u}{\partial x^2} + \rho f_m$

Números adimensionales más relevantes

• Nº de Strouhal: St = L / V t Fenómeno estacionario o no.

St<1 Proceso estacionario

St>1 Proceso no estacionario

• No de Reynolds: Re = ρ V L/ μ Relacionado con el régimen de flujo

Re>>1 Efecto de la viscosidad despreciable

Re<<1 Termino viscosidad relevante

• No de Mach: M = V / c Información sobre compresibilidad del flujo.

Si M>0.3 Flujo compresible

- No de Weber: We = ρ V²L / σ Fuerzas de inercia relativas a tensión superficial.
- No de Euler: Eu = ΔP / (ρV^2) Influencia de las fuerzas de presión.
- No de Froude: $Fr = U / (gh)^{1/2}$ inercia frente a másicas.
- No de Prandtl: Pr = μ_0 Cp / k disipación frente a la convección.
- Nº de Pecklet: Pe = Re. Pr Convección frente a difusión.

Semejanza

<u>Motivación</u>: conseguir en el laboratorio unas condiciones de flujo similares a la realidad pero trabajando, por ejemplo, a otra escala:

Leyes de semejanza

Modelo (laboratorio)

Prototipo (real)

Semejanza

Las ecuaciones adimensionales que gobiernan ambas situaciones (modelo y prototipo) son las mismas en ambos casos. Por lo tanto, las soluciones adimensionales de estas ecuaciones también deben serlo.

Para que exista <u>semejanza completa</u> entre el modelo y el prototipo, en un problema con n variables adimensionales en el que se ha identificado la siguiente relación :

$$\Pi_1 = F(\Pi_2, \Pi_3, \dots, \Pi_n)$$

se debe cumplir que:

$$(\Pi_1)_{\text{modelo}} = (\Pi_1)_{\text{prototipo}}$$

 $(\Pi_2)_{\text{modelo}} = (\Pi_2)_{\text{prototipo}}$

$$(\Pi_n)_{\text{modelo}} = (\Pi_n)_{\text{prototipo}}$$

Nota: Si esto se cumple para los n-1 primeros números Π , también se cumplirá para Π_n .

Si no es posible imponer semejanza completa, impondremos <u>semejanza parcial</u> haciendo:

$$(\Pi_k)_{\text{modelo}} = (\Pi_k)_{\text{prototipo}} \quad \forall k < n.$$

Semejanza – un ejemplo

