Aplicaciones básicas de análisis de algoritmos

Edson Huillca Alarcón

Tiempo de ejecución de un algoritmo

Para medir T(n) usamos el número de operaciones elementales. Una operación elemental puede ser:

- Operacion aritmetica
- Asignación a una variable
- Llamada a una función
- Retorno de una función
- Comparaciones lógicas
- Acceso a una estructura (arreglo, matriz, lista ligada,)

NOTA: se llama tiempo de ejecución, no al tiempo físico, sino al número de operaciones elementales que se llevan a cabo en el algoritmo

Ejemplo

Análisis de operaciones elementales en un algoritmo que busca un número dado dentro de un arreglo ordenado.

```
#include <cstdlib>
#include <iostream>
using namespace std;
int main(int argc, char *argv[])
  int ArregloOrdenado[9]={1,3,7,15,19,24,31,38,40};
  int buscado, j=0;
  cout<<"¿Que numero entero quieres buscar?";
  cin>>buscado;
  while(ArregloOrdenado[j] < buscado && j<9)</pre>
     j=j+1;
  if(ArregloOrdenado[j] == buscado)
      cout<<"El numero buscado esta en el arreglo";</pre>
  else
      cout<<"Numero buscado no encontrado";
  system("PAUSE");
  return EXIT SUCCESS;
```

- 1. Analicemos el número de operaciones elementales del algoritmo anterior tomando en cuenta el *mejor caso*
- 2. Analicemos el número de operaciones elementales del algoritmo anterior tomando en cuenta el *peor caso*

IMPORTANTE

- No vale mucho la pena complicar la metodología estimando las constantes.
- En lugar de calcular T(n) exactamente, queremos sólo cotas superiores (e inferiores) para T(n) ignorando factores constantes.

Cálculo de tiempo de ejecución en un ciclo for

Normalmente se considera el peor caso, cuando se calcula el número de OE.

```
for(int i=0; i<n; i++) {
    // instrucciones ...
}

// Forma equivalente del for:
int i=0;
while(i<n){
    // instrucciones ...
    i=i+1;</pre>
```

$$1+1+\sum_{i=0}^{n-1} (\#OE\ de\ instrucciones+2+1)$$

Análisis de Complejidad

Ejercicios:

I. Indicar si las siguientes afirmaciones son ciertas:

$$1. \quad n^2 \in O(n^3)$$

2.
$$n^3 \in O(n^2)$$

3.
$$(n+1)! \in O(n!)$$

4.
$$3^n \in O(2^n)$$

5.
$$\log_2 n \in O(n^{1/2})$$

II. Determina la complejidad O de las funciones:

1.
$$T(n) = 3n^3 + 2n$$

2.
$$T(n) = 50n^2 + 5n + 1$$

3.
$$T(n) = 5n^3 + 2020n^2 + 1$$

4.
$$T(n) = \log(n) + 1010n + 1$$

5.
$$T(n) = 100nlog(n) + n^2$$

6.
$$T(n) = 6nlog(n) + n$$

Clasificación de algoritmos con la notación O

- La notación O sirve para identificar si un algoritmo tiene un orden de complejidad mayor o menor que otro.
- Un algoritmo es mas eficiente mientras menor sea su orden de complejidad.

Ejercicio: Ordenar de mayor a menor

- 1. $T(n) = 3n^3 + 2n$
- 2. $T(n) = 50n^2 + 5n + 1$
- 3. $T(n) = 5n^3 + 2020n^2 + 1$
- 4. $T(n) = \log(n) + 1010n + 1$
- 5. $T(n) = 100nlog(n) + n^2$
- 6. T(n) = 6nlog(n) + n