Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 20

Math 237 – Linear Algebra Fall 2017

Version 3

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard S3.

$$\begin{bmatrix}
\begin{bmatrix} 1 \\ -1 \\ 3 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 4 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ -7 \end{bmatrix}
\end{bmatrix}$$
Let $W = \operatorname{span}\left(\left\{\begin{bmatrix} 1 \\ -1 \\ 3 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 4 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ -7 \end{bmatrix}\right\}\right)$. Find a basis of W .

Solution:

$$RREF \left(\begin{bmatrix} 1 & 2 & 3 & 1 \\ -1 & 0 & -1 & 1 \\ 3 & 1 & 4 & 1 \\ -3 & 1 & -2 & -7 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then
$$\left\{ \begin{bmatrix} 1\\-1\\3\\-3 \end{bmatrix}, \begin{bmatrix} 3\\-1\\4\\-2 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\-7 \end{bmatrix} \right\}$$
 is a basis for W .

Standard S4.

Mark:

Let W be the subspace of \mathcal{P}_3 given by $W = \operatorname{span}\left(\left\{x^3-x^2+3x-3,2x^3+x+1,3x^3-x^2+4x-2,x^3+x^2+x-7\right\}\right)$. Compute the dimension of W.

Solution:

$$RREF \begin{pmatrix} \begin{bmatrix} 1 & 2 & 3 & 1 \\ -1 & 0 & -1 & 1 \\ 3 & 1 & 4 & 1 \\ -3 & 1 & -2 & -7 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This has 3 pivot columns so $\dim(W) = 3$.

Standard A1.

Mark:

Let $T: \mathbb{R}^3 \to \mathbb{R}$ be the linear transformation given by

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_2 + 3x_3\end{bmatrix}$$

. Write the matrix for T with respect to the standard bases of \mathbb{R}^3 and \mathbb{R} .

Solution:

 $\begin{bmatrix} 0 & 1 & 3 \end{bmatrix}$

Standard A2.

Mark:

Determine if $D: M_{2,2} \to \mathbb{R}$ given by $D\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = ad - bc$ is a linear transformation or not.

Solution: D(I) = 1 but $D(2I) = 4 \neq 2D(I)$, so D is not linear.

Additional Notes/Marks