```
import numpy as np import
   pandas as pd import
   matplotlib.pyplot as plt import
   seaborn as sns
  df=pd.read_csv('bmi.csv')
   df.head()
   <del>-</del>-
                                           Gender Height Weight Index
                                           ıl.
         0
                      174
                               96
             Male
                                       4
     Male 189
                  87
                           2
2
                  185
    Female
                            110
                                     4
    Female
                  195
                            104
                                     3
    Male 149
                  61
                           3
    Next steps: (Generate code with df)
                                     (  View recommended plots )
                                                                 New interactive sheet
   import warnings
   warnings.filterwarnings('ignore')
  df.shape
  ₹ (500, 4)
  df.info()
  <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 500 entries, 0 to 499
        Data columns (total 4 columns):
        # Column Non-Null Count Dtype
            ----- ----------
        0 Gender 500 non-null
                                  object
           Height 500 non-null
                                   int64
           Weight 500 non-null
                                  int64 3 Index 500
            non-null
                      int64 dtypes: int64(3), object(1)
            memory usage: 15.8+ KB
  # Finding unique value count of the target column
   df['Index'].value_counts()
   ₹
               count
         Index
           5
                 198
           4
                  130
          2
                  69
          3
                  68
                  22
           0
                   13
        dtype: int64
       4
  # we use balancing technique in this case index 5 is highest so 0 to 4 are minority therefore we use oversampling of minorty data (all m
  # we observe that
  # Encoding catogorical column Gender
   from sklearn import preprocessing LE
   = preprocessing.LabelEncoder()
  new_df = df.copy()
  new_df['Gender']=LE.fit_transform(new_df['Gender'])
   new_df.head()
```

```
\blacksquare
         Gender Height Weight Index
                                           11.
       0
                     174
               1
                              96
                                      4
      1
              1
                      189
                             87
                                     2
      2
              0
                      185
                             110
                                     4
      3
              0
                      195
                            104
                                     3
      4
                      149
              1
                             61
                                     3
     4
 Next steps: ( Generate code with new_df )
                                        New interactive sheet
#Imbalancing handling Technique
import imblearn
#We observe that count for index = 5 is the largest (Majority Class)
#All the other index = 0,1,2,3,4 are therefore minority classes
x = new_df.drop(columns=['Index'])
y = new_df['Index']
from imblearn.over sampling import RandomOverSampler
over = RandomOverSampler() x_os,y_os =
over.fit_resample(x, y)
y_os.value_counts()
             count
      Index
        4
               198
        2
               198
        3
               198
        5
               198
        1
                198
        0
                198
     dtype: int64
     4
\verb|#Data Splitting from sklearn.model_selection import train\_test\_split x\_train, x\_test, y\_train,\\
y_test = train_test_split(x_os, y_os, test_size=0.2, random_state=4)
#model training from sklearn.linear_model import
LogisticRegression
model = LogisticRegression(multi_class='ovr')
model.fit(x_train, y_train)
\overline{\Rightarrow}
                                       (i) (?)
             LogisticRegression
      LogisticRegression(multi_class='ovr')
x_train.shape
₹ (950, 3)
y_train.shape
至 (950,)
x_test.shape
₹ (238, 3)
```

```
y_test.shape (238,)
```

 $y_pred_train = model.predict(x_train) \# Prediction on training data <math>y_pred_test = model.predict(x_test) \# Prediction on testing data$

pred_prob_test = model.predict(x_test)

from sklearn.metrics import accuracy_score,classification_report,confusion_matrix

print(classification_report(y_train,y_pred_train)) # Performance on training data =

precision	recall	f1-score	support		
0	0.90	0.95	0.92	38	
1	0.94	0.71	0.81	48	
2	0.40	0.71	0.52	35	
3	0.64	0.36	0.46	39	
4	0.77	0.75	0.76	36	
	5	0.95	0.98	0.96	42
accuracy				0.74	238
	o avg hted avg	0.77 0.78	0.74 0.74	0.74 0.75	238 238

			precision	recall	f1-score	support
	0	0.90	0.95	0.92	38	
	1	0.94	0.71	0.81	48	
	2	0.40	0.71	0.52	35	
	3	0.64	0.36	0.46	39	
	4	0.77	0.75	0.76	36	
		5	0.95	0.98	0.96	42
accuracy		uracy			0.74	238
macro avg		ıvg	0.77	0.74	0.74	238
weighted avg		d avg	0.78	0.74	0.75	238

#Calculating confusion confusion_matrix cm1

- = confusion_matrix(y_train,y_pred_train) cm2
- = confusion_matrix(y_test,y_pred_test)

cm1

```
array([[150, 0, 10, 0, 0, 0],

[ 21, 108, 21, 0, 0, 0],

[ 0, 36, 98, 29, 0, 0],

[ 0, 0, 52, 73, 34, 0],

[ 0, 0, 40, 1, 118, 3],

[ 0, 0, 0, 0, 0, 1, 155]])
```

cm2

```
array([[36, 0, 2, 0, 0, 0],

[4, 34, 10, 0, 0, 0],

[0, 2, 25, 8, 0, 0],

[0, 0, 18, 14, 7, 0],

[0, 0, 7, 0, 27, 2],

[0, 0, 0, 0, 0, 1, 41]])
```

Plotting confusion matrix

```
sns.heatmap(cm1,annot= True, linewidths=0.3,linecolor='black',cmap='Pastel1',fmt='d')
plt.xlabel('Predicted BMI classes') plt.ylabel('Actual BMI classes')
plt.title('Confusion matrix for training Data',fontsize= 9) plt.show()
```


[#] Conclusion

Could not connect to the reCAPTCHA service. Please check your internet connection and reload to get a reCAPTCHA challenge.

[#] The training accuracy is = 67%

[#] The testing accuracy is = 70%

[#] As the training accuracy of the model is closely equal to testing accuracy we conclude that classifier model is good fit