

La chaine d'image est la suivante : $AB \xrightarrow{[L1]} A_1B_1 \xrightarrow{[L2]} A_2B_2$

- > Déterminer (tracer) toutes les images
- > Tracer en couleur, à travers tout le système, le parcours du rayon issu de B représenté

Tracer le rayon incident (RI) : BF1, le RE de L1 est // à l'axe, le RE de L2 passe par F'2.

Tracer le rayon non dévié (RND) : (BO1), l'intersection de RE donne B1.

Tracer le rayon non dévié (RND) : (B1O2), l'intersection des RE donne B2.

Le RI quelconque est issu de B, donc tous les RE passent par les conjugués de B : B1 et B2.

L'objet **AB** est donné. La chaine d'image est la suivante : $AB \xrightarrow{[L1]} A_1B_1 \xrightarrow{[L2]} A_2B_2$

- > Déterminer (tracer) toutes les images
- 1. Tracer en couleur, à travers tout le système, le parcours du rayon issu de B représenté

Même démarche pour les rayons que dans l'exercice précédent. La différence est que l'intersection des premiers RE est dans le premier espace optique, l'espace optique objet, donc les prolongements des RE sont virtuels : en pointillés, et A1B1 est virtuelle. Le raisonnement à tenir pour le RI quelconque rouge qui passe par B, est que quand il arrive sur L1, la direction du RE est donnée par B1, mais il <u>sort</u> de la lentille L1 vers l'espace optique suivant.

- L'objet AB est donné. Ecrire la chaîne d'images et déterminer toutes les images.
 Tracer en couleur, à travers tout le système, le parcours du rayon issu de B représenté

Même démarche que dans l'exercice 1-1 précédent.

- L'objet AB est donné. Ecrire la chaîne d'images et déterminer toutes les images.
 4. Tracer en couleur, à travers tout le système, le parcours du rayon issu de B

Même démarche que dans l'exercice 1-1 précédent.

- ➤ L'objet **AB** est donné. A₁B₁ se situe sur [F2]. Ecrire la chaine d'images et déterminer toutes les images.
- > Tracer de 2 couleurs différentes, à travers tout le système, le parcours des 2 rayons représentés issus de B
- ➤ Indiquer où se trouve A₂ et B₂

Le rayon incident rouge est // à l'axe optique, donc le rayon émergent de L1 passe par F'1. Le rayon non dévié (BO) donne B1 qui appartient à [F2], donc le rayon non dévié (B1O2) donne B2 infini hors axe, et donc tous les rayons émergents de L2 sont // entre eux.

Exercice 1- 6 Cas SYSTEME AFOCAL (qui n'a pas de focale)

- L'objet AB est donné. Ecrire la chaine d'images et déterminer toutes les images.
- > Tracer de 2 couleurs différentes, à travers tout le système, le parcours des 2 rayons issus de B

Le RI rouge est // à l'axe optique, donc le RE de L1 passe par F'1 = F2 donc le RE suivant est // à l'axe optique. Le rayon non dévié (BO1) vert donne B1

Le rayon non dévié (B1O2) marron donne B2

Tous les rayons issus de B, émergent par les conjugués de B : B1 et B2.

Remarques sur ce système afocal:

Le foyer **image**.....de la première lentille est...**confondu**...avec le foyer **objet**......de la deuxième lentille.

ASSOCIATION DE LENTILLES MINCES TRAJET D UN RAYON QUELCONQUE Foyer secondaire

ETSO-1

Méthode des foyers secondaires pour toute la série 2.

Exercice 2-1

- > Tracer en couleur, à travers tout le système, le parcours du rayon
- Méthode des foyers secondaires objets.

- 1. Tracer [F1]
- 2. L'intersection du RI et de [F1] donne \(\phi 1 \)
- 3. Tracer (\$\phi 1,01)
- 4. Le RE est // à (φ1,O1)

Remarque : si on considère \$\phi 1\$ comme un objet situé sur [F1], alors son image est à l'infini, et donc logiquement les RE sont // entre eux, et le RND donne bien la direction de l'image située à l'infini hors axe.

- Tracer en couleur, à travers tout le système, le parcours du rayon.
- Méthode des foyers secondaires images.

- 1. Tracer [F'1]
- 2. Tracer un RND // passant par
 O1
- L'intersection du RND et de
 [F'1] donne φ'1
- 4. Le RE passe par φ'1

Remarque: si on considère \$\phi'1\$ comme une image située sur [F'1], alors son objet est à l'infini, et donc logiquement les RI sont // entre eux, et les RE se croisent tous en \$\phi'1\$

> Tracer en couleur, à travers tout le système, le parcours du rayon

Utilisation des foyers objets.

<u>Exactement</u> la même démarche que dans 2-1, même pour la lentille divergente L2.

[F2], plan focal <u>objet</u>, est virtuel car situé dans l'espace image par conséquent le RI/L2 est virtuel dans cet espace.

> Tracer en couleur, à travers tout le système, le parcours du rayon

Utilisation des foyers objets.

Exactement la même démarche que dans 2-3.

- > Tracer de 2 couleurs différentes, à travers tout le système, le parcours des 2 rayons issus de B
- \triangleright Indiquer où se trouve \mathbf{B}_2

- > Déterminer la chaîne des conjugués.
- > Tracer à travers tout le système, le parcours du rayon issus de B
- ➤ Indiquer où se trouve **B**₂

$$\frac{B}{\infty hors \ axe} \xrightarrow{[L1]} \frac{B_1}{\in [F'1] = [F2]} \xrightarrow{[L2]} \frac{B_2}{\infty hors \ axe}$$

Utiliser la chaîne des conjugués, positionner B1, puis B2. Si on veut raisonner avec les foyers secondaires B1 = ϕ '1= ϕ 2

Déterminer le faisceau issu de B limité par la monture de L1. Méthode par les conjugués de B.

Déterminer les conjugués de façon habituelle.

TRES IMPORTANT : Il faut commencer le tracé des rayons extrêmes (rouge et vert) par le conjugué qui appartient au même espace optique que le diaphragme. Dans ce cas le diaphragme est la monture, et appartient au même espace que B ou B1.

Si on commence par les RI/L1, on applique ensuite la règle optique : si un RI est issu de l'objet B, la direction du RE est donné par le conjugué de B..

Il est obligatoire de représenter les rayons en couleur, de les flécher et de colorier le faisceau.

Exercice 3- 2

➤ Déterminer le faisceau issu de B limité par le diaphragme [D]. Méthode en employant les conjugués de B. Idem que 3-2

Déterminer le faisceau issu de B limité par le diaphragme [D]. Méthode en employant les conjugués de [D]. Repérer [Pe] et [Ps]

Repérer un bord du diaphragme connu [D] : M

Conjuguer M: On obtient M1 bord du diaphragme [D1], puis M2 bord de [D2]. Tracer complètement les diaphragmes, symétriquement par rapport à l'axe optique, respecter la nature réelle ou virtuelle.

Dans le cas d'un unique diaphragme, [Pe] est le conjugué dans l'espace optique 0, [Ps] le conjugué dans le dernier espace.

ATTENTION A EVITER UNE ERREUR FREQUENTE:

Commencer par le RI (rouge) qui limite le faisceau qui est issu de M, puis, <u>immédiatement</u> poursuivre par le RE: Sa direction est donnée par M1, conjugué de M: Dans notre cas, on change donc de bord de diaphragme!

Tracer ensuite l'autre rayon (vert) qui passe par les autres bords de diaphragme.

Déterminer le faisceau issu de B limité par le diaphragme [D]. Méthode par les conjugués de [D].

Même démarche que dans 3-3.

ATTENTION A EVITER UNE ERREUR FREQUENTE:

Commencer dans l'espace optique qui contient le conjugué : Ici : 0, donc utiliser B et [Pe].

Tracer tout le trajet du rayon vert qui passe par M0 et ses conjugués M1 et M2 : On change de bord du diaphragme : le faisceau croise!

Déterminer le faisceau issu de B limité par le diaphragme [D]. Méthode par les conjugués de B.

Même démarche que dans 3-1.

Commencer dans l'espace optique 2, et B2.

Exercice 3- 6
Déterminer le faisceau issu de B limité par le diaphragme [D]. Méthode par les conjugués de [D]. Même démarche que dans 3-3.

Déterminer le faisceau issu de A situé à l'infini sur l'axe et limité par la monture de L1.

$$\frac{A}{\infty sur\ axe} \xrightarrow{[L1]} \frac{A_1}{F'1} \xrightarrow{[L2]} \frac{A_2}{sur\ axe}$$

A étant à l'infini sur l'axe, je peux construire directement le faisceau limité par la monture : il est cylindrique, centré sur l'axe optique : tous les RI sont // à l'axe.

Les RE passent donc tous par F'1 = A1.

Utiliser un foyer secondaire sur un RI/l2 (rouge), on obtient un RE, son intersection avec l'ace optique donne A2, puisque A étant sur l'axe, tous ses conjugués sont sur l'axe.

Le RE bleu passe donc par A2.

Remarque: Dans le cas d'un faisceau issu d'un objet sur l'axe optique, celui-ci doit toujours être symétrique / l'axe.

Déterminer le faisceau issu de B situé à l'infini hors axe limité par la monture de [D]. Ecrire la chaine des conjugués de B.

$$\frac{B}{\infty hors \ axe} \xrightarrow{[L1]} \xrightarrow{[L1]} \frac{B_1}{\in [F'1] = [F2]} \xrightarrow{[L2]} \xrightarrow{B_2} \frac{B_2}{\infty hors \ axe}$$
 Revoir 2-6

