

Tema 4

Introducción a la Recursión

Introducción a la recursión

- 4.1. Conceptos básicos
- 4.2. Recursión lineal
- 4.3. Recursión múltiple

Objetivos

- Introducir el concepto de recursión.
- Utilizar correctamente la recursividad en el diseño de programas.
- Contrastar soluciones iterativas y recursivas.

4.1 Conceptos básicos

Formas de definir una función

Conceptos básicos

$$4! = 4 \times 3!$$
 = 24
 $3! = 3 \times 2!$ = 6
 $2! = 2 \times 1!$ = 2
 $1! = 1 \times 0!$ = 1
 $0! = 1$

4! = 4 * 3 * 2 * 1 * 1 = 24

U Recurrencia y Recursividad

Recurrencia:

- una función aparece en su propia definición.
- un problema se descompone en subproblemas del *mismo* tipo.
- Realización en Java:
 - subprogramas recursivos.
 - en el cuerpo del subprograma aparece una llamada a sí mismo.

Definiciones

Definición:

Un método es recursivo si se llama a sí mismo, bien directamente o bien a través de otro método.

Aplicación:

- Forma natural de implementar relaciones recurrentes.
- ▲ Técnica de repetición (alternativa al uso de bucles)

Recursión en Java

Sintaxis:

Sintaxis habitual de las llamadas a métodos.

Semántica:

Se deduce del mecanismo habitual de llamada a un método.

Recursión en Java

- Un método es recursivo si contiene llamadas o invocaciones a sí mismo.
- Un método recursivo tendría este aspecto

```
... metodoRecursivo (...) {
  metodoRecursivo (...);
 // llamada recursiva
```

 Este proceso se repite, hasta que se llegue a un caso base (una llamada que devuelve un resultado o no provoca una llamada recursiva).

Factorial recursivo

```
public class Recursion {
   public static void main(String[] args) {
       // TODO code application logic here
        int num:
       num=3;
       System.out.println("El factorial de " + num + " es " + factorial(num));
   static int factorial(int n) {
       if (n > 1) {
            return factorial(n - 1) * n; // caso recursivo
        } else {
           return 1:
                                                               Salida:
                                                                run:
    // caso base
                                                                El factorial de 3 es 6
```


Proceso de llamada

Proceso de llamada

Dartae da un cubaraarama

Caso base:

- dados los parámetros de entrada, la solución del problema es "simple".
- A no se generan llamadas recursivas, y se devuelve directamente una solución.
- ▲ Ejemplo: 0! = 1

Caso recurrente:

- A caso más complejo: *no* hay solución trivial.
- A se reduce a otro caso más simple.
- ▲ Ejemplo: 4! = 4*3!

Recursión infinita

Recursión infinita:

- ▲ Se produce una sucesión infinita de llamadas.
- ▲El control pasa siempre al caso recurrente, nunca se llega al caso base.

▲ Ejemplo:

factorial(-1) produciría una recursión infinita.

Evitar errores comunes

- Evitar la recursión infinita:
 - ✓ Usar una estructura de selección (if o switch), para distinguir entre caso base y caso recurrente.
 - Asegurar que los parámetros de la llamada recursiva sean diferentes de los de entrada (condición necesaria para que "se acerquen" al caso base).
 - Comprobar que entre el caso base y los casos no base, se han cubierto todos los estados posibles.
- En los programas recursivos sencillos, no suele ser necesario usar bucles.
- Cuando se diseña un algoritmo recursivo hay que identificar qué casos se pueden dar, y que solución se aplica a cada

4.2 Recursión lineal

- Recursividad lineal:
 - Acada llamada recursiva genera como máximo otra nueva llamada recursiva.
- Ejemplos:
 - Cálculo recursivo del factorial: factorial.

Ejemplo: Suma lenta recursiva

- Objetivo:
 - Calcular la suma de dos enteros de forma recursiva, utilizando solamente el incremento y decremento en uno.
- Definición recurrente de la suma lenta +_{SL}:

$$a +_{SL} b = \begin{cases} b & si \quad a = 0\\ (a-1) +_{SL} (b+1) & si \quad a \neq 0 \end{cases}$$

Recursión por la cola

Recursividad por la cola:

- Caso especial de la recursividad lineal.
- No se realizan operaciones con el resultado que devuelve una llamada recursiva.
- ▲ El resultado es el que devuelve la última llamada.

• Ejemplos:

- factorial NO es recursivo por la cola, porque se multiplica el resultado de la llamada recursiva por num.
- △ SumaLentaRec SI es recursivo por la cola.

4.3 Recursión múltiple

- Recursividad múltiple (ó no lineal)
 - Alguna llamada genera dos o más nuevas llamadas recursivas.
- Ejemplos:
 - Números de Fibonacci.
 - ▲ Algoritmo recursivo para las Torres de Hanoi.

4.3 Recursión múltiple

Sucesión de Fibonacci:

$$(fib_i)_{i \in \mathbb{N}} = 1,1,2,3,5,8,13,21,34,...$$

U 4.3 Fibonacci codificación

```
static int fib (int n) {
    // siendo n un número entero no negativo
    if (n > 1) {
        return fib(n - 1) + fib(n - 2); // caso recursivo: para n>1
    } else {
        return n:
        // caso base: par n 00 0 n=1;
```


Nº de Fibonacci: Árbol de llamadas

Torres de Hanoi

- Juego de sencilla solución recursiva.
- Situación inicial:
 - △3 agujas verticales A, B y C
 - ←en una de ellas hay n discos de tamaño creciente.

Torres de Hanoi

Objetivo:

Pasar los *n* discos en el mismo orden a otra aguja.

Restricciones:

- los discos se pasan de uno en uno.
- un disco NUNCA debe descansar sobre otro de menor tamaño.

Torres de Hanoi: Algoritmo

- Caso n=1:
 - \wedge Pasar 1 disco de A \rightarrow B

- Caso n=2:
 - \triangle Pasar 2 discos de A \rightarrow B
 - \checkmark mover disco de A \rightarrow C
 - \downarrow mover disco de A \rightarrow B
 - \checkmark mover disco de C \rightarrow B

ü

Torres de Hanoi: Algoritmo

Caso n=3:

A Pasar 3 discos de A → B

Torres de Hanoi: Algoritmo

- Caso general:
 - \wedge Pasar *n* discos de A \rightarrow B

 - \checkmark Mover disco de A \rightarrow B

ü

Torres de Hanoi: Algoritmo

```
MoverDiscos(4,'A','B','C')
   MoverDiscos(3,'A','C','B')
       MoverDiscos(2,'A','B','C')
              MoverDiscos(1,'A','C','B')
                     MoverDiscos(0,'A','B','C')
                      Se pasa el disco 1 de A a C
                     MoverDiscos(0,'B','C','A')
             Se pasa el disco 2 de A a B
              MoverDiscos(1,'C','B','A')
                    MoverDiscos(0,'...)
                     Se pasa el disco 1 de C a B ...
```


Torres de Hanoi: Traza

- Ejemplo de funcionamiento:
 - ▲Llamada: MoverDiscos(4,'A','B','C')
 - ▲ Resultado:

Se pasa el disco 1 de A a C
Se pasa el disco 2 de A a B
Se pasa el disco 1 de C a B
Se pasa el disco 3 de A a C
Se pasa el disco 1 de B a A
Se pasa el disco 2 de B a C
Se pasa el disco 1 de A a C
Se pasa el disco 1 de A a C
Se pasa el disco 4 de A a B

Se pasa el disco 1 de C a B
Se pasa el disco 2 de C a A
Se pasa el disco 1 de B a A
Se pasa el disco 3 de C a B
Se pasa el disco 1 de A a C
Se pasa el disco 2 de A a B
Se pasa el disco 1 de C a B

Iteración y Recursión

Iteración y Recursión

Equivalencia de Iteración y Recursión:

Cualquier cómputo recursivo puede expresarse de forma iterativa *y viceversa*.

• Ejemplos:

- Factorial: fac y factorial.
- ∧ Nº de Fibonacci: fib y fiblter.

Claridad vs. Eficiencia

Claridad:

- muchos problemas se resuelven de forma "elegante" mediante recursión, requiriendo programas complejos y/o poco intuitivos en su versión iterativa.
- Ejemplo: las Torres de Hanoi.

• Eficiencia:

- hay que tener en cuenta también la complejidad añadida por la recursión.
- Ejemplo: los números de Fibonacci.

Fibonacci: Llamadas repetidas

• Ejemplo: fib(5)

Recomendaciones técnicas

Utilizar recursividad:

- cuando clarifique el algoritmo y el programa que soluciona un problema.
- Cuando no haya fuertes restricciones de memoria o tiempo de ejecución.

4.4. Recursión mutua

- Recursión simple (directa)
 - ▲ un subprograma llama a sí mismo.
- Recursión mutua (indirecta):
 - ▲ Definición de dos o más subprogramas basándose recíprocamente en ellos mismos.
 - ▲ La recursividad en el subprograma se produce indirectamente.