

Department of Electrical Engineering and Electronics

ELEC373

Digital Systems Design
Assignments 1
UAT (Universal Asynchronous Transmitter) - Assignment 1

Module	ELEC373
Coursework name	Assignment 1
Component weight	Assignment 1 = 15%
Semester SSignmo	ent Project Exam Help
HE Level	6
Lab location	EEE Building PC labs 301, 304 as timetabled – Friday 2-5pm
Work nups	Maiting or CS. COM
Timetabled time	15 hours (3 hours per week – Friday 2pm – 5pm)
Suggested private thing	hoppins including temperating
Assessment method	Individual, formal word-processed reports (Block diagrams and ASMs can be hand drawn and scanned into the report)
Submission format	Online via VITAL
Submission deadline	Assignment 1: Probably Friday week 7 12 th November 2021 TBC
Late submission	Standard university penalty applies
Resit opportunity	Students Failing Assignment 1 will have Assignment 2 as the resit opportunity.
Marking policy	Marked and moderated independently
Anonymous marking	Yes
Feedback	Via comments on Vital submission on-line
Learning outcomes	LO1: Ability to design digital systems using the ASM design method LO2: Ability to implement digital systems using the Verilog Hardware Description Language

Marking Criteria

	Moules	Indicative characteristics				
Section	Marks available	Adequate / pass (40%)	Very good / Excellent			
Presentation and structure	10%	 Contains cover page information, table of contents, sections with appropriate headings. Comprehensible language; punctuation, grammar and spelling accurate. Equations legible, numbered and presented correctly. Appropriately formatted reference list. 	 Appropriate use of technical, mathematic and academic terminology and conventions. Word processed with consistent formatting. Pages numbered, figures and tables captioned. All sections clearly signposted. Correct cross-referencing (of figures, tables, equations) and citations. 			
Introduction, Method Aand Design ASS	ignm http:	 Problem background introduced clearly. Evidence of a Top Down Design approach introduced. Design of each module follows a logical sequence. ASMs par espand to designs for required blocks. 	 Appropriate range of references used. Design decisions justified with alternatives given. Cappilations for in full, justifying and explaining any decisions. Correct ASM Syntax used. Well-structured Verilog Code Fully synchronous design 			
Results	30% We(Simulation results present for each block and well annotated. Results of full system in both simulation and experimentally presented. Results for each task accompanied by a commentary. Screen shots of results presented. 	Simulations demonstrate that every pathway in each ASM is			
Discussion	10%	 Discussion on what worked and what didn't. Critical assessment on the design – strength and weaknesses 	Discussion on how the system was fully tested.			

ELEC 373 Verilog Assignment 1 (2021-2022)

Assignment Overview

These assignments have been set to get you familiar with designing digital systems and synthesising them from a Verilog description. You should develop your design using Altera's Quartus II V13.0-SP1.

The first assignment is for you to undertake the full design process i.e. the conceptual design, communicated by block diagrams, and the embodiment design communicated by ASM charts. You should then code in Verilog and test the design on the DE2 boards in the lab. You will use a USB->RS232 cable to connect the DE2 Board to the PC.

Assignment Outline

The DE2 Board has a 9 pin D type connector and associated level shifting circuitry to allow the board to be connected to the RS232 port of another electronic device. Figure 1 shows the circuit on the DE2 board which includes a MAX232 device that performs the voltage conversion and also two LEDs which indicate if there is any activity on the transmit or receive signals.

Figure 1 RS232 Level conversion circuit

Table 1 shows which pins of the FPGA are connected to the MAX232 device. Note that UART_RXD is the input received signal as received on pin 3 of the 9 pin D-Type and UART_TXD is the output transmitted signal sent to pin 2 of the 9 pin D-Type. Pin 5 carries the GND signal between the two systems.

Signal Name	FPGA Pin No.	Description			
UART_RXD PIN_C25		UART Receiver			
UART_TXD PIN_B25		UART Transmitter			

Table 1 FPGA Pin connections

For this first assignment you are to develop a UART transmitter to serially transmit data from the DE2 board via the serial link to a PC running a terminal program. The PC should then display the ASCII value of the data transmitted. For example if 0x41 was transmitted a capital 'A' should be displayed. The data is entered by keying in the binary data on the "inputs" and then transmitted when the "send" key is pressed. You should also display in HEX on the seven segment displays (indicated in Table 2) the value of the data to be transmitted. The data should be transmitted with the baud, parity and number of bits indicated in Table 2.

Make sure that your design is fully synchronous, i.e. all the D type flipflops should be clocked by the system clock.

You should include a top level file to connect your modules together. This top level file can be either a "bdf" or Verilog file.

Remember you need to follow a top-down design methodology.

Report – Assignment 1

Your report should include the following.

- 1) Description of Architecture(s) and Controller(s) (with block diagram showing interconnections). (Maximum 2 pages A4)
- 2) Description of tach mount to be drong enjoy the topologing information
 - a. ASM Charts for any Algorithmic State Machines and any combinational logic (Remember Combinational Logic can be treated as a single state ASM).

 - b. Commented Yerilog todetfor each module.
 c. Full simulation of each module. (With annotations indicating what the simulation proves).

This information should be grouped together for each module i.e. there should be a single section covering the above for each module. Don't list all the ASMs then all the Verilog, Document each block almost as a stand alone report.

- 3) Schematic of the full system.
- 4) Simulation of the full system. (With annotations and maximum ½ page on any comments)
- 5) Explanation of experimental test results. (Max 1 page)
- 6) Conclusion (Maximum ½ page)
- 7) You should also submit your design via Canvas. Make sure all the files need to compile simulate and test the design are included.

Please format your report in the order indicated above, i.e. fully document each module before describing the next module.

Warning

When marking the reports I will be looking very closely for any signs of collusion, as this is unacceptable. I need to assess your own ability not that of your friend or colleague. If I find any evidence of collusion then the formal University rules will be followed which may result in your suspension.

Assignment 1 Submission Deadline

Bench inspections where you will demonstrate your system 2-5pm Friday 12th November 2021 You only need to submit an Electronic copy: Friday 12th November 2021 @ 11:59pm. You also need to submit a ZIP file of your modules by the same date and time.

Table 2 – Assignment parameters

ID	Student Name	Lev el	Baud Rate	Parity	Data Bits	Inputs	Send	Display
201403467	Afflick, William	3	9600	Odd	7	Sw[6:0]	Key0	Hex7-6
201387721	Al-Kuwari, Saad Nasser Y	3	19200	Odd	7	Sw[7:1]	Key1	Hex6-5
201361177	Ali, Wasif	3	38400	Odd	7	Sw[8:2]	Key2	Hex5-4
201414740	Barraclough, Luke	3	57600	Odd	7	Sw[9:3]	Key3	Hex4-3
201357415	Chan, Alvin John	3	9600	Even	7	Sw[10:4]	Key0	Hex3-2
201608805	Chapman, Kathryn Julia	3	19200	Even	7	Sw[11:5]	Key1	Hex2-1
201521677	Chen, Kaien	3	38400	Even	7	Sw[12:6]	Key2	Hex1-0
201520758	Chen, Yanbing	3	57600	Even	7	Sw[13:7]	Key3	Hex7-6
201520796	Dong, Lizhi	3	9600	Odd	8	Sw[14:7]	Key0	Hex6-5
201521819	Fan, Ye	3	19200	Odd	8	Sw[15:8]	Key1	Hex5-4
201521835	Gao, Chenxi	3	38400	Odd	8	Sw[16:9]	Key2	Hex4-3
201522071	Liang, Xiaotian	3	57600	Odd	8	Sw[17:10]	Key3	Hex3-2
201522104	Liu, Hechen	3	9600	Even	8	Sw[7:0]	Key0	Hex2-1
201522440	Lonemant Pr	3	192 0	Evu	am	S w[8 1	Key.	Hex1-0
201431464	MeNally, Jack	G.	38400	Even	8	Sw[9:2]	k ey2	Hex7-6
201454028	Muralidharan, Sabareesh	3	57600	Even	8	Sw[10:3]	Key3	Hex6-5
201522241	Qin, Xiye	3	9600	Odd	7	Sw[14:8]	Key0	Hex5-4
201521147	sattles '//tilto	130	C 19200	101d	7	Sw[15:9]	Key1	Hex4-3
201522275	Shu, Juryang	3	38400	Odd	7	Sw[16:10]	Key2	Hex3-2
201429869	Tripathi, Roshan	3	57600	Odd	7	Sw[17:11]	Key3	Hex2-1
201521301	Wu Fan	3	9600	Even	7	Sw[10:4]	Key0	Hex1-0
201448613	xi WeeChat : C	S 3	19001	Even	7	Sw[11:5]	Key1	Hex7-6
201522485	Xing, Xiangjing	3	38400	Even	7	Sw[12:6]	Key2	Hex6-5
201521369	Xu, Xiuyuan	3	57600	Even	7	Sw[13:7]	Key3	Hex5-4
201522575	Yin, Yanyang	3	9600	Odd	8	Sw[14:7]	Key0	Hex4-3
201224948	Yuan, Yifei	3	19200	Odd	8	Sw[15:8]	Key1	Hex3-2
201522627	Zhang, Hailong	3	9600	Odd	8	Sw[17:10]	Key2	Hex1-0
201521502	Zhang, Yechengnuo	3	19200	Odd	8	Sw[7:0]	Key3	Hex7-6