The Laplace Transform

Martin Wafula Multimedia University of Kenya Outline

Definitions and Basics

Region of Convergence Properties

Properties

Inverse Laplace Transform

LTI System Analysis and Applications

Conclusion

Definitions and Basics

Bilateral Laplace Transform

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt \quad s = \sigma + j\omega$$

Unilateral Version

$$X(s) = \int_0^\infty x(t)e^{-st}dt$$

Eigenfunction Property

For LTI system $h(t): e^{st} \to H(s)e^{st}$ where $H(s) = \mathcal{L}\{h(t)\}$

Relation to Fourier When $\sigma = 0$:

$$X(j\omega) = \mathcal{F}\{x(t)\}$$

Laplace transform of x(t) equals Fourier transform of $x(t)e^{-\sigma t}$

Region of Convergence Properties

Convergence Condition

$$\int_{-\infty}^{\infty} |x(t)e^{-\sigma t}| dt < \infty$$

ROC Properties

- ▶ Strip parallel to $j\omega$ -axis
- ► No poles in ROC
- ightharpoonup ROC must be specified with X(s)
- ► ROC determines causality and stability

Given $x(t) = e^{-at}u(t)$:

$$X(s) = \int_0^\infty e^{-(s+a)t} dt = -\frac{1}{s+a} e^{-(s+a)t} \Big|_0^\infty = \frac{1}{s+a}, \quad \underbrace{\text{Re}\{s\} > -a}_{ROC}$$

Given
$$x(t) = -e^{-at}u(-t)$$
:

$$X(s) = -\int_{-\infty}^{0} e^{-(s+a)t} dt = \frac{1}{s+a} e^{-(s+a)t} \Big|_{-\infty}^{0} = \frac{1}{s+a}, \quad \underbrace{\text{Re}\{s\} < -a}_{ROC}$$

Given
$$x(t) = 3e^{-2t}u(t) - 2e^{-t}u(t)$$
:

$$X(s) = \frac{3}{s+2} - \frac{2}{s+1} = \frac{s-1}{(s+2)(s+1)}, \quad \underbrace{\text{Re}\{s\} > -1}_{ROC}$$

Given
$$x(t) = e^{-b|t|}$$
:

$$x(t) = e^{-bt}u(t) + e^{bt}u(-t), \quad X(s) = \frac{1}{s+b} - \frac{1}{s-b}, \quad \underbrace{-b < \Re\{s\} < b}_{ROC}$$

- 1. Strip Property: ROC is parallel to $j\omega$ -axis
- 2. Pole Exclusion: ROC cannot contain poles

- 3. Finite Duration: Entire plane if absolutely integrable
- 4. **Right-Sided**: Right of rightmost pole

- 5. **Left-Sided**: Left of leftmost pole
- 6. **Two-Sided**: Strip between poles

Properties

Linearity

$$ax(t) + by(t) \leftrightarrow aX(s) + bY(s)$$

Time Shifting

$$x(t-t_0) \leftrightarrow e^{-st_0}X(s)$$

Frequency Shifting

$$e^{at}x(t) \leftrightarrow X(s-a)$$

Differentiation in Time

$$\frac{d^n x(t)}{dt^n} \leftrightarrow s^n X(s)$$

Integration

$$\int_{-\infty}^{t} x(\tau)d\tau \leftrightarrow \frac{1}{s}X(s)$$

Inverse Laplace Transform

- ightharpoonup Recover x(t) from X(s) and ROC
- ► Three common methods:
 - 1. Inspection
 - 2. Partial Fraction Expansion
 - 3. Complex Contour Integration

Heaviside Cover-up Method

For $X(s) = \frac{N(s)}{(s+p_1)\cdots(s+p_n)}$ with distinct poles:

$$X(s) = \sum_{i=1}^{n} \frac{k_i}{s + p_i}$$

where
$$k_i = (s + p_i)X(s)\big|_{s=-p_i}$$

Example (Example 8.8 Detailed)

Given
$$X(s) = \frac{s+5}{(s+1)(s-2)(s+4)}$$
:

$$k_1 = \frac{s+5}{(s-2)(s+4)} \Big|_{s=-1} = \frac{4}{(-3)(3)} = -\frac{4}{9}$$

$$k_2 = \frac{s+5}{(s+1)(s+4)} \Big|_{s=2} = \frac{7}{(3)(6)} = \frac{7}{18}$$

$$k_3 = \frac{s+5}{(s+1)(s-2)} \Big|_{s=2} = \frac{1}{(-3)(-6)} = \frac{1}{18}$$

LTI System Analysis and Applications

Recall: Convolution Property

- $y(t) = h(t) * x(t) \Leftrightarrow Y(s) = H(s)X(s)$
- ▶ ROC contains $R_H \cap R_X$

Transfer function of the system:

$$H(s) = \frac{Y(s)}{X(s)}$$
$$= \frac{\sum_{k=0}^{M} b_k s^k}{\sum_{k=0}^{N} a_k s^k}$$

Causality and Stability

- ► Causal: ROC is right of rightmost pole
- ▶ Stable: ROC includes $j\omega$ -axis
- ► Causal and stable: All poles in left-half plane

Differential equation

$$\sum_{k=0}^{N} a_{k} \frac{d^{k} y(t)}{dt^{k}} = \sum_{k=0}^{M} b_{k} \frac{d^{k} x(t)}{dt^{k}}$$

Transfer Function of System

$$H(s) = \frac{Y(s)}{X(s)} = \frac{\sum_{k=0}^{M} b_k s^k}{\sum_{k=0}^{N} a_k s^k}$$

Example (Example 8.10 Complete)

Given $h(t) = e^{-2t}u(t)$ and $x(t) = e^{-3t}u(t)$:

$$H(s) = \frac{1}{s+2}, \operatorname{Re}\{s\} > -2$$

$$X(s) = \frac{1}{s+3}, \operatorname{Re}\{s\} > -3$$

$$Y(s) = \frac{1}{(s+2)(s+3)} = \frac{1}{s+2} - \frac{1}{s+3}$$

$$y(t) = (e^{-2t} - e^{-3t})u(t)$$

Differentiation Property

$$\mathcal{L}\left\{\frac{d^n x}{dt^n}\right\} = s^n X(s)$$

Example (Example 8.12 Full Solution)

Given:
$$\frac{d^3y}{dt^3} + 2\frac{d^2y}{dt^2} - \frac{dy}{dt} - 2y = x(t)$$

Laplace transform:

$$(s^{3} + 2s^{2} - s - 2)Y(s) = X(s)$$

$$H(s) = \frac{Y(s)}{X(s)} = \frac{1}{(s-1)(s+1)(s+2)}$$

Partial fraction expansion:

$$H(s) = \frac{1/6}{s-1} - \frac{1/2}{s+1} + \frac{1/3}{s+2}$$

For causal system:

$$h(t) = \left(\frac{1}{6}e^t - \frac{1}{2}e^{-t} + \frac{1}{3}e^{-2t}\right)u(t)$$

Given
$$x(t) = e^{-b|t|}$$
:

$$x(t) = e^{-bt}u(t) + e^{bt}u(-t)$$

$$X(s) = \frac{1}{s+b} - \frac{1}{s-b} \quad \text{for } -b < \text{Re}\{s\} < b$$

Given
$$X(s) = \frac{1}{s(s+1)}$$
:

Possible ROCs:

1. Re{s} > 0

$$\Rightarrow x(t) = (1 - e^{-t})u(t)$$

2.
$$-1 < \text{Re}\{s\} < 0$$

 $\Rightarrow x(t) = -u(-t) - e^{-t}u(t)$

3.
$$\operatorname{Re}\{s\} < -1$$

 $\Rightarrow x(t) = (-1 + e^{-t})u(-t)$

- ► Laplace transform extends Fourier analysis to broader signal classes
- ▶ ROC is crucial for proper inverse transformation
- ightharpoonup System analysis becomes algebraic in s-domain
- ▶ Differential equations convert to polynomial equations
- ▶ Pole-zero plots provide visual system characterization

Applications

- ► Circuit analysis
- ► Control systems
- Signal processing
- ► Communication systems