CS3244 Tutorial 4

Wu Zhaoxuan wu.zhaoxuan @u.nus.edu

Neural Networks

- Properties of neural networks
 - Real vector, high dimensional inputs and outputs
 - Restricted hypothesis space: by the number of hidden units or parameters
 - Long training time
 - Black-box model with almost no interpretability

Perceptron Unit

. In vector form,
$$o(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{w} \cdot \mathbf{x} > 0, \\ -1 & \text{otherwise} \end{cases}$$

- Where both w and x are column vectors,
 - $\mathbf{w} = (w_0, w_1, ..., w_n)^{\mathsf{T}} \text{ and } \mathbf{x} = (1, x_1, x_2, ..., x_n)^{\mathsf{T}}$

Supposing the weights w_1 and w_2 of a perceptron are both set to the value of 0.5, derive the <u>largest</u> possible range of the values of w_0 that can be set for the perceptron to represent the AND gate (i.e., $AND(x_1, x_2)$). Assume that the inputs x_1 and x_2 and output $o(x_1, x_2)$ of the perceptron are Boolean with the values of 1 or -1. Show the steps of your derivation. No marks will be awarded for not doing so.

• Case 1: $x_1 = x_2 = 1$, so we need $o(x_1, x_2) = 1$

$$x_1 + x_2 = 1 + 1$$

$$\Rightarrow w_0 + 0.5x_1 + 0.5x_2 = w_0 + 1$$

We need $o(\cdot) = 1 \Rightarrow w_0 + 1 > 0 \Rightarrow w_0 > -1$.

• Case 2: At least one of x_1 or x_2 is -1, so we need $o(x_1, x_2) = -1$

$$x_1 + x_2 \le -1 + 1$$

$$\Rightarrow w_0 + 0.5x_1 + 0.5x_2 \le w_0$$

We need $o(\cdot) = -1 \Rightarrow w_0 \leq 0$.

• Overall, we have $-1 < w_0 \le 0$.

BL 7 (Final AY17/18)

Supposing the weights w_1 and w_2 of a perceptron are both set to the value of -1, derive the <u>largest</u> possible range of the values of w_0 that can be set for the perceptron to represent the NAND gate (i.e., $NAND(x_1, x_2)$). Assume that the inputs x_1 and x_2 and output $o(x_1, x_2)$ of the perceptron are Boolean with the values of 1 or -1. Show the steps of your derivation. No marks will be awarded for not doing so.

• Case 1: $x_1 = x_2 = 1$, so we need $o(x_1, x_2) = -1$

$$x_1 + x_2 = 1 + 1$$

$$\Rightarrow w_0 - x_1 - x_2 = w_0 - 2$$

We need $o(\cdot) = -1 \Rightarrow w_0 - 2 \le 0 \Rightarrow w_0 \le 2$.

• Case 2: At least one of x_1 or x_2 is -1, so we need $o(x_1, x_2) = 1$

$$x_1 + x_2 \le -1 + 1$$

$$\Rightarrow w_0 - x_1 - x_2 \ge w_0$$

We need $o(\cdot) = 1 \Rightarrow w_0 > 0$.

• Overall, we have $0 < w_0 \le 2$.

- In every multi-layer network of perceptron units described below,
 - There should be only one (Boolean) output unit and an input unit for every (Boolean) input.
 - ◆ A Boolean is -1 if false, and 1 if true.
 - The activation function of every (non-input) unit is a −1 to 1 step function, including that of the output unit (see page 6 of the "Neural Networks" lecture slides).
 - Your weights must be integers and kept small, but possibly negative.
 - Keep your networks as symmetric as possible doing this in questions a and b may help you in question c.
 - You don't have to draw edges with weight 0.

(a) Construct and draw a perceptron network with no hidden layers that implements $(x_1 \ OR \ x_2)$.

Solution

Either $x_1 = 1$ or $x_2 = 1$ for the activation to fire:

(b) Construct and draw a perceptron network with ONE hidden layers (with two units) that implements $(x_1 XOR x_2)$.

Solution

Now there are two conditions: $(x_1 = 1 \land x_2 = -1) \lor (x_1 = -1 \land x_2 = 1)$

Notice that we already know how to construct OR gate, so what is left is to construct the each conjunction as a perception network.

For
$$(x_1 = 1 \land x_2 = -1)$$
,

For
$$(x_1 = -1 \land x_2 = 1)$$
,

(b) Construct and draw a perceptron network with ONE hidden layers that implements $(x_1 XOR x_2)$.

Solution

For $(x_1 = 1 \land x_2 = -1)$,

For $(x_1 = -1 \land x_2 = 1)$,

Append to the *OR* gate:

(c) Construct and draw a perceptron network with TWO hidden layers that implements $(x_1 \ OR \ x_2) \ XOR \ (x_3 \ OR \ x_4)$.

Solution

Building two OR gates on top of XOR gate.

Visualizing Perceptron (and TM 4.1)

- We can visualize learned perceptrons when the number of dimensions is small
- For $\mathbf{x} = (1, x_1, x_2)^{\mathsf{T}}$ and $\mathbf{w} = (w_0, w_1, w_2)^{\mathsf{T}}$, the decision surface (or line in 2D) is just $\mathbf{w}^{\mathsf{T}}\mathbf{x} = \mathbf{w} \cdot \mathbf{x} = 0$.
- Expanding: $x_2 = -(\frac{w_1}{w_2})x_1 \frac{w_0}{w_2}$
- The weight vector $(w_1, w_2)^T$ is perpendicular to the decision surface. Why?
 - Take two points \mathbf{x}^A and \mathbf{x}^B on the line, check $(w_1, w_2)^{\mathsf{T}} (\mathbf{x}^A \mathbf{x}^B) = 0$
 - Because $(w_1, w_2)^T \mathbf{x}^A + w_0 = 0$ and $(w_1, w_2)^T \mathbf{x}^B + w_0 = 0$
- Let us define the weight vector to point towards the +ve points
 - If it points to -ve x_1 axis and +ve x_2 axis, then
 - Smaller x_1 implies larger sum => $w_1 < 0$
 - Larger x_2 implies larger sum => w_2 > 0
- Note that when $w_0 = 0$, the line should pass the origin
 - when $x_1 = x_2 = 0$ and sum is negative => $w_0 < 0$

TM 4.1

What are the values of weights w_0 , w_1 and w_2 for the perceptron whose decision surface is illustrated in Figure (a) on page 7 of the "Neural Networks" lecture slides? Assume the surface crosses the x_1 axis at -1, and the x_2 axis at 2.

Solution

- 1. We know that the decision surface is represented by the line $w_0 + w_1 x_1 + w_2 x_2 = 0$.
- 2. It crosses (-1,0), then $w_0 w_1 = 0$. That is $w_0 = w_1$.
- 3. It crosses (0,2), then $w_0 + 2w_2 = 0$. That is $w_0 = -2w_2$.
- 4. Therefore, $w_0 = w_1 = -2w_2$.
- 5. We know from the previous page that $w_0 < 0$, $w_1 < 0$ and $w_2 > 0$, one possible solution would be $w_0 = w_1 = -2$ and $w_2 = 1$.

TM 4.3

Consider two perceptrons defined by the threshold expression $w_0 + w_1x_1 + w_2x_2 > 0$. Perceptron A has weight values $w_0 = 1, w_1 = 2, w_2 = 1$ and perceptron B has the weight values $w_0 = 0, w_1 = 2, w_2 = 1$. True or false? Perceptron A is **more general than** perceptron B.

Solution

- 1. Choose an arbitrary $\mathbf{x} \in X$ s.t. $o(\mathbf{x}) = 1$ for B.
- 2. Then $2x_1 + x_2 > 0$ and $1 + 2x_2 + x_2 > 0$.
- 3. Therefore, $o(\mathbf{x}) = 1$ for A.
- 4. Therefore, A is *more general than or equal* to B, by definition.
- 5. Let $\mathbf{x} = (1,0,0)^{\mathsf{T}}$.
- 6. For A, $\mathbf{w}_{A}^{\mathsf{T}}\mathbf{x} = 1 + 2(0) + (0) = 1$.
- 7. For B, $\mathbf{w}_{B}^{\mathsf{T}}\mathbf{x} = 2(0) + (0) \ge 0$, so $o(\mathbf{x}) = 0$.
- 8. Therefore, B is not *more general than or equal* to A, by definition.
- 9. Therefore, A is *more general than* B.

Another visual way

A:
$$1 + 2x_1 + x_2 = 0 \Leftrightarrow x_2 = -2x_1 - 1$$

B:
$$2x_1 + x_2 = 0 \Leftrightarrow x_2 = -2x_1$$

Graph for (-(2*x))-1, -(2*x)

More info

Thank you!

Any questions?