

Universidad Nacional de Colombia Facultad de Ciencias

TEORIA DE CODIFICACIÓN

Edgar Santiago Ochoa Quiroga María Alejandra Rodríguez Ríos

Ejercicio 1

Suponga que una fuente genera dígitos binarios con distribución uniforme, los mensajes son enviados a través de un canal cambia los símbolos que genera una fuente binaria con las probalidades que se muestran en la gráfica.

poner foto Responda cada una de las siguientes preguntas justificando su razonamiento:

- a). ¿Cuál es el número más probable de errores que se puede encontrar en un mensaje de 5000 bits que pase por el canal?
- **b).** Si se codifica cada bit que genera la fuente triplicandolo, en qué porcentaje se reduce el número de errores? Suponga que para la decodificación se usa mayoría de bits por tripla.
- c). Si se codifica cada bit que genera la fuente con una n-tupla y se usa mayoría de bit por n tupla en la decodificación, cuál sería la longitud mínima n tupla para obtener por lo menos un 95 % de certeza en la decondificación?

Solución. Hola:p

Ejercicio 2

Se codifican los bits de una fuente de acuerdo a la siguiente función

$$Cod(x_1, x_2, x_3, x_4, x_5) = (x_1, x_2, x_3, x_4, x_5, x_1 + x_2 + x_4, x_1 + x_3 + x_4, x_2 + x_3 + x_4, x_1 + x_3 + x_5, x_3 + x_4 + x_5)$$

Si el mensaje recibido es 1101110101 determine si hay un error en el mensaje y si es posible corregir el error . Use diagramas de Ven o el método de Galager para llegar a la solución. Deje todos los cálculos que le llevan a la solución en su hoja de respuesta.

Solución. Hola :p

Ejercicio 3

Clasifique los siguientes códigos de tal manera que puedan codificar la misma fuente. Luego indique por fuente cuál sería el mejor código. Justifique todas sus afirmaciones.

- $C_1 = \{0, 1\}$
- $C_2 = \{00, 01, 10\}$
- $C_3 = \{000, 111\}$
- $C_4 = \{000, 011, 101, 110, 001, 100\}$
- $C_5 = \{00000, 11111, 22222\}$
- $C_6 = \{001, 010, 012, 021, 100, 221\}$

Solución. Hola:p

Ejercicio 4

Determine justificando, si los códigos $C_1 = \{1, 10, 100, 1000\}$ y $C_2 = \{1, 01, 001, 0001\}$ son univocamente decodificables.

Solución. Hola :p □.□

Ejercicio 5

Pruebe, diseñando un algoritmo (sin usar el algoritmo de SardinasPaterson), que el código triario {aa, b, ba, abc} es univocamente decodificable

Solución. Hola:p

Ejercicio 6

Determine si el código triario $C = \{ab, cb, abbc, cbc, abb\}$ es univocamente decodificable. Existe un código binario instantaneo con las longitudes de palabras de C? Si existe construyalo.

Solución. Hola :p

Ejercicio 7

Una fuente genera símbolos con una distribución de probabilidad

 $\{0,729,0,081,0,081,0,081,0,009,0,009,0,009,0,001\}.$

Determine un código binario que permita calcular la codificación de los símbolos de la fuente con menor longitud promedio. Cálcule la eficiencia del código.

Solución. Hola:p

Ejercicio 8

Diseñe un código de Fano para una fuente con la siguiente distribución de probabilidad

 $\{0,20,0,19,0,18,0,17,0,15,0,10,0,01\}$

Solución. Hola:p

Ejercicio 9

Resuelva el ejercicio 1.5.1 de las notas de clase. Construya un código que no sea instantáneo cuyas longitudes de palabra cumplen la desigualdad de Kraft.

Solución. Hola:p

Ejercicio 10

Resuelva el ejercicio 1.5.2 de la notas de clase, calcule la eficiencia. Construya, en caso de que exista, un código binario instantáneo constituido por 5 palabras de longitudes: 2, 2, 2, 3 y 4.

Solución. Hola :p

Ejercicio 11

Resuelva el ejercicio 2.3.1 de la página 36 de las notas de clase, calcule la eficiencia en cada caso. Considere el alfabeto S con la distribución de probabilidades que se muestra en la tabla:

A	В	С	D	E	F	G	Н
0,02	0,03	0,04	0,04	0,12	0,20	0,20	0,35

Suponga que se ha usado un código de Huffman para codificar los mensajes sobre un alfabeto binario. Si en el árbol de codificación se le asigna 1 a las ramas sobre la izquierda y 0 a las ramas sobre la derecha, ¿qué palabra representa la secuencia 111011111101110? Determine la longitud promedio de palabra para este código. ¿Cuál sería la codificación de los símbolos sobre un código triario?

Solución. Hola:p

Ejercicio 12

Resuelva el ejercicio 3.5.1 de la página 61 de las notas de clase, calcule la eficiencia en cada caso. Considere una fuente que genera símbolos del alfabeto $S = \{0, 1\}$ con probabilidades p(0) = 0.9 y p(1) = 0.1. Diseñe códigos de Huffman y de Shannon-Fano para los alfabetos extendidos S^2 , S^3 y S^4 , en cada caso calcule la eficiencia.

Solución. Hola:p