ss, Janney, Elstner Associates, Inc. Incers, Architects, Materials Scientists

EVALUATION OF
CRACKED BRIDGE DECKS TREATED
WITH VARIOUS
HIGH MOLECULAR WEIGHT
METHACRYLATE RESINS
FOR THE
MONTANA DEPARTMENT OF TRANSPORTATION
WJE NO. 981825
July 27, 2000

STATE DOCUMENTS COLLECTION

CCT 2023

MONTANA STATE LIBRARY 1515 E. Cth AVE. HELENA, MONTENA 59620

EVALUATION OF CRACKED BRIDGE DECKS TREATED WITH VARIOUS HIGH MOLECULAR WEIGHT METHACRYLATE RESINS

FOR THE

MONTANA DEPARTMENT OF TRANSPORTATION

WJE NO. 981825 July 27, 2000

117.144.844 AACTES (11.7.4 A.)

DATE DUE

Paul D. Krauss, P.E.

Project Manager

WISS, JANNEY, ELSTNER ASSOCIATES, INC. 330 Pfingsten Road Northbrook, Illinois 60062-2095

FAX: 847-291-5189

847-272-7400

July 27, 2000

EVALUATION OF CRACKED BRIDGE DECKS TREATED WITH VARIOUS HIGH MOLECULAR WEIGHT METHACRYLATE RESINS FOR THE MONTANA DEPARTMENT OF TRANSPORTATION WJE NO. 981825

INTRODUCTION

Wiss, Janney, Elstner Associates, Inc. (WJE) was requested to perform condition assessments of selected bridge decks that have been repaired using high molecular weight methacrylate (HMWM) resins. The purpose of the investigation was to determine the effectiveness of the HMWM resins to penetrate and bond cracks in bridge decks. The Montana Department of Transportation (MTDOT) has repaired cracks in many bridge decks over the past ten years using different formulations of HMWM. This study was to determine if the early applications are still effective and to determine if the different formulations are performing similarly.

The field inspections consisted of visual inspections and core sampling at crack locations. Visual inspections were performed of the treated deck surfaces. Special attention was given to identify any new cracks that have occurred since the HMWM treatment. Core sampling was performed at selected locations. Laboratory studies included petrographic examination of the cores to determine the crack characteristics and the depth of resin penetration.

BACKGROUND

Cracking in bridge decks may be caused by plastic shrinkage, drying shrinkage, thermal effects, dead or live loads, reactive aggregates, and aggregates damaged by freezing. Many of these cracks do not pose structural problems and do not need to be repaired.

Some cracks endanger the long-term durability of the deck and should be repaired. HMWM resins can be used to fill bridge deck cracks that do not move significantly. Filling the cracks also helps keep chlorides out of the cracks and away from the embedded steel.

In the monomer form (unpolymerized liquid), HMWM resins have two physical properties that make them good crack fillers. They are low-viscosity materials (flow properties similar to diesel fuel), so they flow readily by gravity into even hairline cracks. Penetration into very fine cracks can be better than penetration into large cracks, possibly due to capillary effects and the excellent surface-wetting properties of the HMWM resin.

HMWM monomers also have relatively low volatility, so they won't evaporate before they polymerize. They differ in this respect from methyl methacrylate resins, which are not suitable for crack filling because the monomer is highly volatile.

HMWM monomers are good solvents, enabling them to bond through minor contamination on surfaces. However, workers should remove curing compounds or asphaltic materials from the deck because the monomer will dissolve them and then thicken, reducing its ability to penetrate fine cracks.

Besides being reasonably clean, the cracks must also be dry. Water prevents crack penetration by the monomer and dilutes the resin, resulting in poor polymerization and bond.

Adding a metallic drier and peroxide to the HMWM monomer initiates polymerization. Workers then sweep, squeegee, or spray the resin on the bridge deck at a rate of about 1 gallon per 100 sq ft. The resin flows into cracks and polymerizes, filling and then bonding the cracks. Broadcasting dry sandblast sand into the resin before it hardens improves skid resistance.

HMWM resins should be applied when the deck and air temperatures are between 55 and 90°F. Special formulations are available to help improve curing during cold or hot weather.

Field Surveys

Mr. Paul D. Krauss of WJE performed the bridge inspections between August 16 to 20, 1999. Local contractors provided the lane protection and coring. Twenty-six bridge decks were examined and

cored. Table 1 shows the list of bridges surveyed, bridge location, deck area, and treatment information. The HMWM resins were applied to the various decks between 1991 and 1998. The treatments utilized different HMWM formulations and suppliers. They were applied under a number of different contracts and by different applicators.

The weather during the surveys was generally warm and sunny. Heavy rains had not occurred during the week prior to the survey. A moderately heavy rain occurred overnight and early morning of August 19, 1999, prior to surveying the St. Regis River Bridges.

Typically two to four cores were removed from each deck. A core log showing the approximate core locations and crack type are shown in Appendix A. Cores were generally taken in areas that represent the typical cracking and existing on each structure. The predominate deck cracking on most decks was transverse (Figs. 1 and 4) with some diagonal deck cracks near skewed abutments. On other decks, the predominate deck cracking was longitudinal or map cracking (Fig. 2). Plastic shrinkage-type cracking was rare. Cores were sometimes taken at cold joints between or in deck patches or joint closure placements (Fig. 3).

Appendix B contains the visual survey comments. Generally, the deck underside was first surveyed to identify through-deck cracks that show evidence of recent water leakage or efflorescence.

New cracks, occurring after the resin treatment, could rarely be found on any of the bridges surveyed. The East Missoula-Bonner bridges (Nos. 22-26) were treated in 1998 and had a very heavy layer of resin and sand on the deck surface, essentially hiding any deck cracks. This made coring at the crack locations more difficult. Cracks often had to be located first from the underside of the deck. Cores from these decks would tend to represent the largest cracks occurring in the deck since medium or smaller cracks could not be located under the heavy resin and sand layer.

Bridges I and 2 (Hardy Creek-Ulm) were also treated in 1998 but had less resin on the surface and the resin was worn off in the wheel paths. The remaining bridges, treated prior to or in 1996, had little or no evidence of resin on the deck. Traffic and aging caused the resin to first wear off of the wheel paths, then lanes, and then shoulders. Small areas of resin and silica sand were often observed close to barrier curbs or in deep cracks or pockets of some decks. Rapid surface wear of

the resin is typical as the resin degrades, due to ultraviolet exposure, weathering and traffic. This loss is normal and should not adversely affect the resin in the cracks. The original surface texture and skid resistance is also maintained due to the loss of the surface resin.

Bridge 13 (I-90 WB, MilePost 143.651) was flooded with water as shown in Figure 5. The through-deck cracks were monitored and no active leakage was noted. Also, new deck cracks in the top surface were not identified as the deck surface dried.

Examination of Cores

A stereo microscope was used to examine each core. Examinations used fluorescent and long-wave ultraviolet lighting. Table 2 shows the individual core results. Table 3 summarizes the resin penetration results for each bridge and resin type. Both sides of each crack in every core were examined. The minimum and maximum depths of resin bridging were recorded. Resin often penetrated deeper into the crack but did not bridge the crack. The average resin penetration for all samples ranged between about 3 to 10 mm. Many samples had essentially no penetration into the cracks. Typical crack widths ranged from hairline (0.01 mm) to 0.8 mm, and averaged near 0.2 mm. Dirt filled most of the cracks. No correlation between crack width and resin penetration was found. However, the deepest resin penetration was typically achieved in narrow cracks (less than 0.4 mm).

The depth of resin penetration varied by contract section. Poor penetration occurred at I-90 Missoula District bridges (Nos. 15 and 16 – Transpo), I-90 Three Forks bridges (Nos. 6 to 11 – Sika), and I-15 Lincoln Road-Sieben (Nos. 2 and 3 – Harris). Moderate average penetrations occurred at the other six test locations.

Table 4 summarizes the sampling and penetration results sorted by resin manufacturer. Each material had an average maximum penetration of over 14-mm, except for Sika Pronto 19 that averaged only 2.8-mm average maximum penetration.

A comparison of the penetration of high elongation (low modulus) versus low elongation (high modulus) resins was performed. Transpo Sealate T70MX-30 and Castek T70MX-30 were

determined to be high (30 percent) elongation resins. Transpo T70-10, Sika Pronto 19, and Transpo T70-X are assumed to be low (less than 10 percent) elongation resins. The elongation of the resins supplied by Harris Specialty Chemicals and American Concrete Systems is uncertain. Table 5 summarizes the range of resin penetration for the various resins. Figure 6 shows plots of the range of resin penetration for various crack widths. Both high and low elongation resin types had a large range of penetration depths. Figure 7 shows the range of resin penetration versus crack widths for all cores and resins. Generally, penetration was deeper in cracks with widths less than 0.4mm than for cracks with widths of 0.5mm to 1.2mm. No significant difference in the penetration of high versus low elongation resins was seen in this study.

SUMMARY

Seventy cores were removed from 26 different bridges that had been treated with HMWM. Crack widths at 6-mm depth ranged from hairline (0.01 mm) to 0.8 mm. Dirt commonly filled the cracks. The average maximum resin penetration was slightly over 14 mm, except for bridges treated with Sika Pronto 19 (one contract) that had only 2.8 mm average maximum penetration. Each contract and material type had areas of near zero penetration into the cracks. No significant differences in penetration were noted between high and low elongation resins.

Very few samples or bridges had evidence of new cracking after the HMWM treatments. The HMWM treatments appear to have stopped leakage through most through-deck cracks, however, some through-deck cracks continue to leak.

Restraint of drying shrinking and thermal contraction typically causes the cracking noted on most of the bridges. Stresses transfer to the reinforcing after concrete cracking so additional movement of the cracks tends to be minimal. Structural bonding of the cracks by the HMWM resin on the bridges surveyed is unlikely due to the large amount of crack contamination and the lack of deep resin penetration. Protection against chloride deicer ingress into cracks has been achieved in many areas.

Revisions to specifications or training of applicators may improve penetration results. However, dirty, aged cracks are very difficult to penetrate and seal. Other treatments, such as several coats of high-solids silanes, may penetrate the contamination in the cracks better. Silanes do not fill or bond

cracks but makes them hydrophobic to resist deicer ingress. HMWM resins may penetrate and achieve better structural bond to cracks in newly constructed bridges that contain cracks without significant contamination. A combination treatment of silane followed by HMWM may improve the deck protection further.

Surface abrasion and weathering removes the resin HMWM from the surface after 3 to 4 years. The resin in the cracks has not been affected by time. Only a few cracks appear to have moved, resulting in new fractures in or adjacent to the resin. Re-application of resin to the decks after 4 to 5 years is possible and would improve the deck's water tightness. Testing of the effectiveness of resin reapplication should be considered at bridges such as I-90 Three Forks (Nos. 6 to 11) or I-90 St. Regis (Nos. 17 to 20) bridges.

May January Elstron Associates Inc.

the control of the time of the control of the contr

AND THE RESIDENCE OF THE PROPERTY OF THE PROPE

TABLE 1 – SURVEY OF BRIDGES

					area		
Bridge No.	Route No.	Feature	Mile point	(sq yd)	(M2)	Year applied	Resin
	c – Ulm (North)						
1	I-15-SB	So. Cascade Int.	254.942	613.3	512.8	1998	Harris Specialty Chemicals CrackSealer ULV
2	I-15-SB	County Rd. Sep.	249.505	567.2	474.3	1998	Harris Specialty Chemicals CrackSealer ULV
incoln Road							
3	t-15-SB	Sieben Int.	216.482	482	403.0	1996	Harris Specialty Chemicals Watson/Bowman
4	I-15-SB	Gates of Mtn. Int.	209.108	503 1	420.7	1996	Harris Specialty Chemicals Watson/Bowman
Boulder Hill -							
5	I-15-SB	Abandoned BNRR	187.079	980.0	819.4	1996	Transpo Sealate T70 - 10
hree Forks -	- Manhattan						
6	1-90-EB	Darlington Ditch	279.534	612	511.7	1993	SikaPronto 19
7	I-90-EB	County Rd. Sep.	280.361	549	459.0	1993	SikaPronto 19
8	I-90-E8	Drainage Ditch	280.1	-	_	1993	SikaPronto 19
9	I-90-WB	County Rd. Sep.	280.361	549	459.0	1993	SikaPronto 19
10	1-90-WB	Drainage Ditch	280.1			1993	SikaPronto 19
11	1-90-WB	Darlington Ditch	279.534	612	511.7	1993	SikaPronto 19
Bearmouth -							
12	I-90-WB	Clark Fork	148.436	1253.9	1048.4	1994	American Concrete Systems-Polytech Perma Seal
13	I-90-WB	Grade Sep.	143.651	586.9	490.7	1994	American Concrete Systems-Polytech Perma Seal
14	I-90-EB	Clark Fork	148.436	1253.9	1048.4	1994	American Concrete Systems-Polytech Perma Seal
Aissoula Dist	. – Br. Rehab.						
15	1-90	Rock Creek Over- pass	126.039	996	832.8	1992	Transpo Sealate T – 70MX-30
16	1-90	Clinton Overpass	120.993	1144	956.5	1992	Transpo Sealate T – 70MX-30
t. Regis Rive	er Bridges						
17	1-90-WB	St. Regis Riv., County Rd.	23.325	3030.5	2533.9	1991	Transpo T 70 – X
18	I-90-WB	St. Regis Riv., County Rd.	23.063	2161 25	1807.1	1991	Transpo T 70 – X
19	I-90-EB	St. Regis Riv., County Rd.	23.063	2161.25	1807.1	1991	Transpo T 70 – X
20	1-90-EB	St. Regis Riv., County Rd.	23.325	3030.5	2533.9	1991	Transpo T 70 – X
t. Regis – Ta							
21	I-90-EB	Clark Fork	49.397	2673.1	2235.1	1994	Transpo Sealate T – 70MX-30
ast Missoula							
22	I-90-WB	Blackfoot River	110.198	1425.3	1191.7	1998	Transpo Castek T – 70MX-30
23	I-90-WB	MRL Railroad	110.033	1510.1	1262.6	1998	Transpo Castek T – 70MX-30
24	1-90-WB	Clark Fork & County. Rd.	109 409	1246.3	1042.1	1998	Transpo Castek T – 70MX-30
25	1-90-WB	Grade Separation	109.224	608.7	509.0	1998	Transpo Castek T – 70MX-30
26	1-90-WB	Clark Fork	108.276	1419.0	1186.5	1998	Transpo Castek T – 70MX-30

TABLE 2 - CORE TEST RESULTS

Bridge No	Core ID	Core Length	Minimum crack width 2 6 mm	Maximum crack width @ 6 mm	Minimum Depth Resin (mm)	Maximum Depth Resin (mm)	Rebar Depth (mm)	Comments
Bridge .vo	A A	160	0.03	0.04	3	15	71, trace corrosion	Dirty crack
		100	0 0 0 0 0 0	004			11, 11400 0011031011	
1 :	В	100	0.33	0.33	2	3	76, trace of corrosion	Very dirty crack
	C	160	0.03	0.03	2	17	90, 108 uncorroded	Moderate dirty
							61, moderate	Crack dirty,
							corrosion, 149	clearly filled with
2	A	149	0.3	0.5	90	90	(impression)	yellow, resin
								Crack not full
								depth Crack
2	В	141	0.001	0 00 1	0	1	62, 81 uncorroded	slightly dirty
								One major crack,
								one minor crack,
								moderate dirty
2	C	120	0 07	0 07	2	9	73 uncorroded	above rebar
3	A	105	0.2	0.3	1	12	35, corroded	Slightly dirty
								Very dirty crack,
							27, uncorroded does	especially in top
3	В	112	0.08	0.1	1	12	not intersect crack	ропіоп
								Top bar deeply
								corroded. Crack
3	С	125	0.08	0.05		0	67,125 (impression)	dirty above rebar
								Small branching
1								crack. Very dirty
4	A	110	0 1	01	0	11	28 trace corrosion, 45	in top section.
1					_		19, moderate	Top section of
4	В	115	0.01	001	2	10	corrosion	crack is dirty
-4	С	125	0.08	0.08		3	None	Crack branches
.			0.01			20	31 10 70	Dirty crack
5	A	92	0.01	0 01	2	20	31, 48,78 uncorroded	Horizontal
								separation at ~20
								mm above
5	В	120	10	02	20	20	20, corroded, 94	corroded rebar
		120	01	- U -	0	~0	20, confoded, 7	Moderately dirty
					1			crack, not full
- 1								
								depth, extends to
5		112	0.004	0.004	20	25	41	depth, extends to 55-70 mm.
5	С	112	0 004	0.004	20	25	41 32. uncorroded, crack	
5	C	112	0 004	0.004	20	25	32, uncorroded, crack	55-70 mm.
			0 004	0.004	20	25		55-70 mm. Top section of
6	C	112					32, uncorroded crack doesn't intersect	55-70 mm. Top section of crack moderate
							32, uncorroded crack doesn't intersect	55-70 mm. Top section of crack moderate dirty
							32, uncorroded crack doesn't intersect	55-70 mm. Top section of crack moderate dirty Dirt in top of
6	Α	115	0.4	0.4	7	7	32, uncorroded, crack doesn't intersect rebar	55-70 mm. Top section of crack moderate dirty Dirt in top of crack Crack
6	Α	115	0.4	0.4	7	7	32, uncorroded, crack doesn't intersect rebar None	55-70 mm. Top section of crack moderate dirty Dirt in top of crack Crack
6	АВ	115	0.4	0.4	7	7	32, uncorroded, crack doesn't intersect rebar None 50, moderate	55-70 mm. Top section of crack moderate dirty Dirt in top of crack Crack barely full depth
6	АВ	115	0.4	0.4	7	7	32, uncorroded, crack doesn't intersect rebar None 50, moderate corroded	55-70 mm. Top section of crack moderate dirty Dirt in top of crack Crack barely full depth Slightly dirty
6 6	A B	115 105 121	0.4	04	7 0 10	7 0 10	32, uncorroded, crack doesn't intersect rebar None 50, moderate corroded 25, moderate	55-70 mm. Top section of crack moderate dirty Dirt in top of crack Crack barely full depth Slightly dirty patch/depth - 60
6 6 7	A B C	115 105 121 116	0 4 0 01 0 t	04	7 0 10	7 0 10 2	32, uncorroded, crack doesn't intersect rebar None 50, moderate corroded 25, moderate corrosion	55-70 mm. Top section of crack moderate dirry Dirt in top of crack Crack barely full depth Slightly dirry patch/depth - 60 mm
6 6 7	A B C	115 105 121 116	0 4 0 01 0 t	04	7 0 10	7 0 10 2	32, uncorroded, crack doesn't intersect rebar None 50, moderate corroded 25, moderate corrosion None 27, uncorroded	55-70 mm. Top section of crack moderate dirry Dirt in top of crack Crack barely full depth Slightly dirry patch/depth - 60 mm Dirty crack
6 6 7 7 7	B C A B	115 105 121 116 124	0 4 0 01 0 1 1.2 0 02	04 005 02 12 003	7 0 10 I	7 0 10 2 0	32, uncorroded, crack doesn't intersect rebar None 50, moderate corroded 25, moderate corrosion None 27, uncorroded 23, uncorroded crack	55-70 mm. Top section of crack moderate dirry Dirt in top of crack Crack barely full depth Slightly dirry patch/depth - 60 mm Dirty crack Two intersecting cracks
6 6 7 7 7	B C A B	115 105 121 116 124	0 4 0 01 0 1 1.2 0 02	04 005 02 12 003	7 0 10 I	7 0 10 2 0	32, uncorroded, crack doesn't intersect rebar None 50, moderate corroded 25, moderate corrosion None 27, uncorroded	55-70 mm. Top section of crack moderate dirry Dirt in top of crack Crack barely full depth Slightly dirry patch/depth - 60 mm Dirty crack Two intersecting cracks Crack slightly
6 6 7 7 7	B C A B	115 105 121 116 124	0 4 0 01 0 1 1.2 0 02	04 005 02 12 003	7 0 10 I	7 0 10 2 0	32, uncorroded, crack doesn't intersect rebar None 50, moderate corroded 25, moderate corrosion None 27, uncorroded 23, uncorroded crack	55-70 mm. Top section of crack moderate dirty Dirt in top of crack Crack barely full depth Slightly dirty patch/depth - 60 mm Dirty crack Two intersecting cracks Crack slightly dirty
6 6 7 7 7 7	A B C A B C	115 105 121 116 124 125	0 4 0 01 0 1 1.2 0 02	0 4 0 05 0 2 1 2 0 03 0 04	7 0 10 1 0	7 0 10 2 0	32, uncorroded, crack doesn't intersect rebar None 50, moderate corroded 25, moderate corrosion None 27, uncorroded 23, uncorroded does not intersect does not intersect	55-70 mm. Top section of crack moderate dirry Dirt in top of crack Crack barely full depth Slightly dirry patch/depth - 60 mm Dirty crack Two intersecting cracks Crack slightly dirry Uncorroded rebar
6 6 7 7 7 7	A B C A B C	115 105 121 116 124 125	0 4 0 01 0 1 1.2 0 02	0 4 0 05 0 2 1 2 0 03 0 04	7 0 10 1 0	7 0 10 2 0	32, uncorroded, crack doesn't intersect rebar None 50, moderate corroded 25, moderate corrosion None 27, uncorroded 23, uncorroded does not intersect does not intersect	55-70 mm. Top section of crack moderate dirry Dirt in top of crack Crack barely full depth Slightly dirry patch/depth - 60 mm Dirty crack Two intersecting cracks Crack slightly dirry Uncorroded rebar dirty crack
6 6 6 7 7 7 8	A B C A B C	115 105 121 116 124 125	0 4 0 01 0 1 1.2 0 02 0 04	04 005 02 12 003 004	7 0 10 1 0	7 0 10 2 0 2	32, uncorroded, crack doesn't intersect rebar None 50, moderate corroded 25, moderate corrosion None 27, uncorroded 23, uncorroded decack does not intersect rebar	55-70 mm. Top section of crack moderate dirry Dirt in top of crack Crack barely full depth Slightly dirry patch/depth - 60 mm Dirty crack Two intersecting cracks Crack slightly dirry Uncorroded rebar dirty crack Patch, bottom
6 6 7 7 7 8	A B C A B C	115 105 121 116 124 125	0 4 0 01 0 1 1.2 0 02 0 04	04 005 02 12 003 004	7 0 10 1 0	7 0 10 2 0 2	32, uncorroded, crack doesn't intersect rebar None 50, moderate corroded 25, moderate corrosion None 27, uncorroded 23, uncorroded decack does not intersect rebar	55-70 mm. Top section of crack moderate dirry Dirt in top of crack Crack barely full depth Slightly dirry patch/depth - 60 mm Dirty crack Two intersecting cracks Crack slightly dirry Uncorroded rebar dirty crack

TABLE 2- CORE TEST RESULTS (Cont'd)

				T				Incipient delam
9	В	70	0.1	0.5	3	5	25, corroded	At 30 mm
								One major crack
								and one minor
10	A	120	0.08	0.08	1	2	47, trace corrosion	erack
		1						Two intesection
		1					33, trace of corrosion	
10	В	120	0.04	0.04	2	3	76 (imprint)	depth Dirty
								Crack not full
								depth. Moderatel
								dirty in top
11	A	110	0.04	0.04	0	0	38	section
							45 (uncorroded) 116	Moderately dirty
1.1	В	125	0.4	0.4	0	2	and 118 (impression)	in top section
								Parital incipient
								spall at 10-15 mm
i								per big flat
12	A	121	0.1	0.2	2	2	41	aggregate
12	В	125	0.1	01	3	5	uncorroded	depth
1.2	В	123	0.1	01		, ,	uncorroded	Crack does not
	С	140	0.01	0.01		3	59, uncorroded	intersect bar
12	-	1-0	0.01	001	1	3	59, uncorroded	
							12	Original crack
						1	42, moderate	barely full depth.
							corroded, 58	Another crack
							uncorroded not	formed, slightly
13	A	115	0 05	0 05	5	25	intersected by crack.	dirty
							35, 115, impression	Crack not full
13	В	120	0.15	0.15	1	2	slightly corroded	depth
		i						3 cracks, Top
}		1						section of cracks
13	С	120	0.1	10	1	2	41, slightly corroded	are very dirty
14	A	118	0.02	0.03	11	44	42, 59 both corroded	Slightly dirty
							36, corroded,	Very dirty above
14	В	106	100	0.05	0	3	impression bottom.	rebar
							41, (Uncorroded, not	
1		1				ĺ	intersected) 57,	Crack slightly
14	С	121	0.01	0.01	41	41	slightly corroded.	dirty
- 1		1-1-1		- 001			July concess.	Rebar corroding
				1				where crack
15	A	110	0.1	10	1	2	45	intersects it
					•			
								Both bars corroded
								at cracks.
				1 1				Moderate diese
		22	0.03	007	0		20 51	Moderate dirty
15	В	75 to 115	0 02	0.05	0	0	38, 54	Moderate dirty cracks
13	В	75 to 115	0.02	0 05	0	0	38, 54	cracks
15	В	75 to 115	0 02	0.05	0	0		eracks New crack in near
							38 rebar corroding at	cracks New crack in near surface zone
15	В	75 to 115	0 02	0 04	0	0		eracks New crack in near
				0 04 NA-core			38 rebar corroding at	cracks New crack in near surface zone Crack very dirty
16	Α	98		0 04 NA-core broke apart	0	0	38 rebar corroding at crack.	cracks New crack in near surface zone Crack very dirty Moderate drity
				0 04 NA-core			38 rebar corroding at crack.	cracks New crack in near surface zone Crack very dirty
16	A B	98	0.01	0 04 NA-core broke apart in lab	0	0	38 rebar corroding at crack. 46, corroded 78,86,157	cracks New crack in near surface zone Crack very dirty Moderate drity
16 16	A B	98 105	0 04	0 04 NA-core broke apart in lab	0	0	38 rebar corroding at crack. 46, corroded 78,36,157 (impression)	cracks New crack in near surface zone Crack very dirty Moderate drity crack
16	A B	98	0.01	0 04 NA-core broke apart in lab	0	0	38 rebar corroding at crack. 46, corroded 78,86,157	cracks New crack in near surface zone Crack very dirty Moderate drity
16 16	A B	98 105	0 04	0 04 NA-core broke apart in lab	0	0	38 rebar corroding at crack. 46, corroded 78,36,157 (impression)	eracks New crack in near surface zone Crack very dirty Moderate drity crack
16 16	A B	98 105	0 04	0 04 NA-core broke apart in lab	0	0	38 rebar corroding at crack. 46, corroded 78,36,157 (impression)	eracks New crack in near surface zone Crack very dirty Moderate drity crack
16 16	A B	98 105	0 04	0 04 NA-core broke apart in lab	0	0	38 rebar corroding at crack. 46, corroded 78,36,157 (impression)	cracks New crack in near surface zone Crack very dirty Moderate drifty crack Slightly dirty
16 16	A B	98 105	0 04	0 04 NA-core broke apart in lab 0 13 0 03	0	0	38 rebar corroding at crack. 46, corroded 78,36,157 (impression) 76, uncorroded	cracks New crack in near surface zone Crack very dirty Moderate drity crack Slightly dirty Crack not bonded Horizontal
16 16 17	A B A B	98 105 157 159	0 04	0 04 NA-core broke apart in lab 0 13 0 03	0 0 0 2	0 0 10 90	38 rebar corroding at crack. 46, corroded 78,36,137 (impression) 76, uncorroded 73 moderate corroded, 96, 168	cracks New crack in near surface zone Crack very dirty Moderate drifty crack Slightly dirty Crack not bonded
16 16	A B	98 105	0 04	0 04 NA-core broke apart in lab 0 13 0 03	0	0	38 rebar corroding at crack. 46, corroded 78,36,157 (impression) 76, uncorroded	cracks New crack in near- surface zone Crack very dirty Moderate drity crack Slightly dirty Crack not bonded Horizontal separation at 73 to

TABLE 2- CORE TEST RESULTS (Cont'd)

			T	Τ				Crack rec. almost
								separated Very
18	A	75	0.8	0.3	0	1	58, corroded	dirty
								Crack not bonded.
								Horizontal
							57, slightly corroded,	
18	В	160		NA	0	4	156 impression	rebar at ~125
					_	9	54, 76 bot rebars	Manager and
13	С	150	0.8	0.80	3	9	corroded	Very dirty crack. Crack in concrete
								intersects full
		156	0.2	0.2		20	62, corroded	thickness grout
19	A B	160	0.5	0.5	1	0	66, moderate corrosio	Slightly dirty
19	В	100	0.3	0.3		-	61, 31 moderate	Crack dirty above
19	С	158	0 02	0.03	2	60	corrosion	bar
19		138	0.02	003		- 00	COTTOSTOTI	Separated along
20	A	160		NA	1	12	None	key way
-20	A	100		INA	,	12	110110	Crack angles out
								of plane of core
20	В	170	0.5	0.5	1	2	75	Moderate dirty
20	В	170	0.5	0.5			47, Corroded, crack	, roderate ditty
21	A	125	0.2	0.2	2	30	interesects rebar	Branching crack
-1		123	V. <u>2</u>	02		- 50	41, moderate	
							corrosion; 145	
21	В	144	0.03	0.03	1	2	(impression)	Dirty crack.
21	C	122	0.03	0.3	10	20	43, trace corrosion	Dirty
			0.2		10	-		Moderate dirty.
								Resin mixed with
22	A	148	0.02	0.03	1	2	90, epoxy coated	dirt 10 to 15 mm
			0.00	0.00				Crack not full
							68, green bar	depth, dirty in top
22	В	207	0.1	0.1	4	5	uncorroded	section
22	С	159	0.7	I	12	17	82	Dirty crack
								Crack not full
						}	60, 131 epoxy coated.	depth. Moderate
23	A	190	0 03	0.05	0	0	uncorroded	dirty above rebar
							73 green bar,	Dirty in upper part
23	В	153	0.1	0.3	1	2	uncorroded	of crack
23	С	110			5	10	60, 37	Dirty crack
								Significant
	1							unconsolidation
						1		along core. Dirty
24	A	130	0.4	0.4	0	12	None	cracks
24	В	150	0.3	0.4	3	4	None	Very dirty
							87, moderate	Dirty crack Pea
24	С	120	0.2	0.4	7	3	corrosion	gravel overlay
							86, 99, 101, 118	
							(impression) Part	
	1						top of rebar corroded	
							where crack intesects	
25	A	165	0 25	0 25	12	30	it.	Crack dirty
							106, curved moderate	
25	В	160	0 35	0.1	1	15	corrosion	dirty
26	A	155	0.2	0.5	35	55	None	Moderate dity
								Horizontal
								separation from at
							89 uncorroded not	57 mm to level of
26	В	155	0.2	0.2	25	25	intersected by crack	rebar

TABLE 3 - SUMMARY OF RESIN PENETRATIONS

Bridge No.	Route No.	Feature	Range of penetration (min/max)	Average minimum depth of bridging (mm)	Average maximum depth of bridging (mm)	Section average minimum depth (mm)	Section average maximum depth (mm)
	- Ulm (North						
Harris Specia		So. Cascade Int.	7 247 1	2.2	11.7	1	
1	I-15-SB	County Rd. Sep.	0-90	2.3 30.6	33.3	16.4	22.5
2		County Ra. Sep.	0-90	30.6	33.3	10.4	22.5
Lincoln Road		Vatson/Bowman					
	I-15-SB	Sieben Int.	0-12	0.7	8.0		
3 4	I-15-SB	Gates of Mtn. Int.	0-12	2.3	5.3	1.5	6.6
Boulder Hill -		Gales of Milli. Int.	0-10	4.3	3.3	1.3	0.0
Transpo Seala							
5	I-15-SB	Abandoned BNRR	2-25	14.0	21.7	14.0	21.7
Three Forks -		T A Daridoned DIANK	2-23	17.0	41.1	17.0	4a 1 . I
SikaPronto 19							
6	1-90-EB	Darlington Ditch	0-10	5.6	5.6		
7	I-90-EB	County Rd. Sep.	0-2	0.3	1.3		
8	I-90-EB	Drainage Ditch	0-7	0.0	3.5		
9	I-90-WB	County Rd. Sep.	0-5	2.5	2.5		
10	I-90-WB	Drainage Ditch	1-3	1.0	2.5		
11	I-90-WB	Darlington Ditch	0-2	0.0	1.0	1.3	2.8
Bearmouth -		Darnington Diten	0-2	0.0	1.0	1.0	2.0
		-Polytech Perma Seal					
12	I-90-WB	Clark Fork	1-5	2.0	3.3		
13	I-90-WB	Grade Sep.	1-25	2.3	9.7	10.9	14.1
14	I-90-EB	Clark Fork	0-44	28.3	29.3		* * * *
	L - Br. Rehab.	Oldik i Olk	1 0 -1-	20.0	25.5		
	ate, T - 70MX-	30					
15	1-90	Rock Creek	0-2	0.5	1.0		
16	1-90	Clinton Overpass	0-0	0.0	0.0	0.25	0.5
St. Regis Rive							
Transpo, T 70							
17	I-90-WB	St. Regis Riv.,	0-90	0.7	2.60		
18	I-90-WB	St. Regis Riv.,	0-9	1.0	4.7		
19	I-90-EB	St. Regis Riv.,	0-60	1.0	26.7		
20	I-90-EB	St. Regis Riv.,	1-12	1.0	7.0	1.0	17.7
St. Regis – Ta		<u> </u>	1				
	ite, T - 70NX-3	0					
21	I-90-EB	Clark Fork	1-30	4.0	17.3	4.0	17.3
East Missoula	a – Bonner						
Transpo Caste	ek, T – 70MX-30						
22	I-90-WB	Blackfoot River	1-17	5.7	8.0		
23	I-90-WB	MRL Railroad	0-10	2.0	4.0		
24	I-90-WB	Clark Fork	0-12	3.3	8.0		
25	I-90-WB	Grade Separation	1-30	6.5	22.5		
26	I-90-WB	Clark Fork	25-55	30.0	40.0	8.1	14.2

TABLE 4 - MATERIAL SUMMARY BY MANUFACTURER

Manufacturer	Number of contracts	Number of bridges	Number of cores	Range of resin penetration (mm)	Avg. maximum penetration (mm)
American Concrete Systems	1	3	9	0-44	14.1
Harris Specialty Chemicals	2	4	12	0-90	14.5
Sika Corporation	1	6	14	0-10	2.8
Transpo	5	13	35	0-90	14.7

Wise, James, Camer Associates, Inc.

VICENSIAN AND STATE OF BUILDING

A STATE OF THE STA

RESIN COMPARISON Revise Croel Range of Crock Width Avn. Crock Range of Peretration									
Company Name	Product Name	Type of Resin	Bridge #	Core		Crack Width nm)	Avg. Crack Width (mm)		Penetrat nm)
			1	A	003	0.04	0 035	3	15
			1	3	0.33	0.33	0 330	2	3
Hams Specialty	CrackSeater	_	1	С	003	0.03	0.000	2	17
Chemicals	ULV	· ·	2	A.	0.3	0.5	0.400	90	90
CI CITIONS	021			9	0.001	0.001	0.001	0	1
				C	0.07	0.07	0.070	2	9
				I A	0.2	03	0.250	1	12
	141.1			3	0.08	0.1	0.090	1	12
Hams Specialty	Wabo			c	0.08	0.05	0.065		0
Chemicals/Watson	CrackSealer	?		A	0.1	0.1	0 100		1
Bowman	ULV			9	0.01	0.01	0.010	2	10
				-	0.08	0.08	0.000	0	5
				1 4	0.01	0.01	0.010		30
T	Sealate T70-	Lavalanastias		-		0.2	0 150		20
Transpo	10	Low elongation		9	01	0.004	0.004		25
					0.004				
				1	0.4	04	0 400		7
				9	0 01	0.06	0 000		0
			8	C	01	02	0.150		10
			7	A	12	12	1 200	1	2
			7	3	002	003	0 025	0	0
			?	C	0.04	0.04	0.040	0	2
01.	SikaPronto	Lavalence	3	A	0.08	0.08	0.090	100 100	7
Sika	19	Note Low elongation 3	0 15	0 150		0			
	13					0.08	0.080		0
						0.5	0 300		5
									2
				_		0.04	0 040		3
						0.04	0 040		0
							0 400		2
				-		04			2
						02	0 150		5
				9	0.1	01	0 100		
American Concrete				C	0.01	0.01	0 010		3
	Polytech Perma Seal	?	13	A	0.05	0.05	0.050		25
			13	9	0 15	0 15	0.150	1	2
Systems			13	С	0.1	01	0.100	1	2
			14	A	0 02	003	0 025	44	44
			14	3	0.01	0.05	0 000	0	3
				С	0.01	0.01	0.010	41	41
			15	A	0.1	0.1	0 100	1	2
				3	0.02	0.06	0 035		0
				A	0.04	0.04	0 040		0
T	Sealate	Wigh planastics		9	na / broken	0.04	- 00-0		-
transpo	T70MX - 30	riigh eiongalion				02	0 200	2	30
				A	0.2				
				9	0 03	003	0,000		20
				С	0.2	03	0 250		
				A	003	0 13	0.080		10
				3	0.01	003	0 020	2	90
				C	na / broken				
				0	0 005	0.06	0 023		2
				A	0.3	0.8	0 800	0	1
Tonocas	T70 -X	Lawolenantics		9	na / broxen				
Systems Pe	170-4	Low elorgation	16	C	0.8	0.8	0.800		9
			19	A	02	02	0 200	1	20
				9	0.5	0.5	0 500	0	0
				C	0.02	003	0 025	2	60
			20	A	na / broken				
			20	8	0.5	0.5	0.500	1	2
			22	A	0.02	103	0005	1	2
			72	3	012	0.1	0 100	4	5
					0.7	4	0.850	12	17
			22	С		0.74	0 040	0	0
			23	A	003	0.06			2
			23	3	0 1	03	0.200	11	2
	Castek T -		23	С	na / broken				-
Transpo	70MX-30	High elongation	24	A	0.4	0.4	0 400	0	12
	/UIVIX-30		24	3	0.3	0.4	0 350	3	4
			24	С	0.2	0.4	0 300	7	8
			25	A	0.25	0.25	0.250	12	30
			25	9	0.35	0.4	0 375	1	15
			25	A	0.2	0.5	0.350	35	55
			1	_ ^	9.4	02	0.200	25	25

Table 5 - Comparison of High and Low Elongation Resins

Figure 1 – Typical transverse deck cracking, underside (Br. No. 15)

Figure 2 – Longitudinal and map cracking on Bridge Nos. 7 (top), 10 (middle), and 11 (bottom), Three Forks I-90 WB

Figure 3 – Deteriorated pcc patches on Bridge 9, Three Forks 1-90 WB, Core location 9-A shown

Figure 4 – Transverse deck cracks highlighted after rain on Bridge No. 18, St. Regis I-90 WB, Core Location 18A

And the state of t

Figure 5 – Wetting surface of Bridge 13 (1-90 WB, Mile Post 143.651)

High Bongation Resins

Low Bongation Resins

Figure 6 - Depth of penetration versus crack width for high and low elongation resins

Figure 7 – Depth of penetration versus crack width for all cores

APPENDIX A

CORE LOG

APPENDIX A

CORE LOG

Core			Appro	ximate	
No.	Bridge	Date	x (ft)	y (ft)	Crack type
1A	I-15 SB So. Cascade	8/16/99	4	11	Diagonal crack near abutment – sealed
1B	(mile point 254.942)		58	18	Transverse crack over bent – sealed
1C			90	13	Transverse crack near bent – surface resin cracked
2A	I-15 SB County Rd	8/16/99	27	7	Shoulder-short diagonal crack, leaking - black #4 bar bot. clean
28	(mile point 249.505)		60	17	Left wheelpath - typical longitudinal crack - pattern
2C		1	90	13	Right wheelpath – typical transverse crack over bent
3A	I-15 SB Sieben Int.	8/16/99	12	7	Shoulder transverse crack – efflorescence below
38	(mile point 216.482)		54	15	Ç/right wheelpath – typ. large transverse crack - 4-5' long
3C			72	13	Crack in patch/closure over joint/bent
4A	I-15 SB Gates of Mtn. Int.	8/16/99	17	14	Transverse crack – no resin on surface
4B	(mile point 209.108)		27	13	Transverse crack – resin on surface – Transverse bar bottom
_					core clean except for minor corrosion or deformation
4C		-	80	12	Joint between patch/closure right wheelpath - open crack
5A	II-15 SB BNRR	8/16/99	90	15	Diagonal crack over bent
5B	(mile point 187.079)		144	5	Short transverse crack shoulder
5C			184	11	Medium pattern cracking
6A	I-90 EB Darlington Ditch	8/17/99	93	12	Large transverse crack
6B	(mile point 279.534)		70	16	Large transverse crack
6C			63	5	Transverse crack in shoulder
7A	I-90 EB County Rd.	8/17/99	100	10	Joint of pcc patch
78	(mile point 280.361)		75	15	Typical large transverse crack
7C	,		33	11	Area of heavy map cracking
8A	I-90 EB Drainage Ditch	8/17/99	60	15	Transverse crack
8B	(mile ooint 280.1)	0,,,,,,,	48	10	Transverse crack with map cracking
9A	I-90 WB County Rd. Sep.	8/17/99	87	14	Transverse crack in patch
9B	(mile point 280.361)	0.11100	33	13	Transverse crack
	II-90 WB Drainage Ditch	8/17/99	9	11	Longitudinal crack in heavy map cracked area
	(mile point 280.1)	0/1//00	60	10	Area of heavy map cracking
	I-90 WB Darlington Ditch	8/17/99	42	11	Longitudinal map crack
11B	(mile point 279.534)	0.17733	113	15	Transverse crack
12A	I-90 WB Clark Fork	8/18/99	52	13	Transverse crack
12B	(mile point 148.436)	0/10/33	102	10	Longitudinal crack
12C	(mile point 140.430)		215	10	Diagonal crack over pier
	I-90 WB Grade Separation	8/18/99	-	10	Intersection of cracks
13B	(mile point 143.651)	0/10/33	_	_	Transverse crack
13C	(Time point 145.051)		_		Intersection of cracks
	I-90 EB Clark Fork	8/18/99	60	6	Transverse crack - shoulder
14B	(mile point 148.436)	0/10/99	124	13	Transverse crack – shoulder Transverse crack – lane
14C	(Title polit 148.430)		210	8	Diagonal crack over pier
	LOO Book Crook Overses	8/18/99	77	6	Transverse crack
	I-90 Rock Creek Overpass (mile point 126 039)	0/10/99	42	-	Transverse crack Transverse crack over pier
		0/40/00			
	I-90 Clinton Overpass	8/18/99	50		Transverse crack with resin on surface
	(mile point 120.993)	0140:00	30		Transverse crack with efflorescence on underside
	I-90 WB St. Regis River	8/19/99	573	14	Transverse crack appears open
17B	County Rd.		162		Longitudinal crack with fine map cracking when wet
17C	(mile point 23.325)		105	12	Transverse crack, large, appears open
17D		0110100	300		Transverse cracks, appears sealed
	I-90 WB St. Regis River	8/19/99	110		Large transverse crack
18B	County Rd.		304		Longitudinal crack closer to pier with fine longitudinal crack
18C	(mile point 23.325)		396	14	Large transverse crack flooded due to bridge elevation

CORE LOG (cont'd)

Core			Appro	ximate	
No.	Bridge	Date	x (ft)	y (ft)	Crack type
19A 19B 19C	I-90 EB St. Regis River County Rd. (mile point 23.063)	8/19/99	153 195 243	18 13 14	Transverse crack with old core hole patch that cracked Transverse crack looks open in very flexible span of bridge Transverse crack smaller than A, which has old core hole that has not cracked
20A 20B	I-90 EB St. Regis River County Rd. (mile point 23.325)	8/19/99	123 151	13 10	Construction joint (typical) with crack in pcc Transverse crack that appears filled
21A 21B 21C	I-90 EB Clark Fork (mile point 49.397) (main span)	8/19/99	120 58 250	6 5 6	Transverse crack in area of underside efflorescence Transverse crack, no leakage below, shorter crack (typ.) 5' long Transverse crack-sealed, in area to be repaired
22A 22B 22C	I-90 WB Blackfoot River (mile point 110.198)	8/20/99	120 33 77	12 10 8	Transverse crack in right wheelpath Transverse crack in right wheelpath Transverse crack in shoulder
23A 23B 23C	I-90 WB MRL RR (mile point 110.033)	8/20/99	139 145 137	16 17 16	Transverse crack Leaking crack below with efflorescence Transverse crack
24A 24B 24C	I-90 WB Clark Fork (mile point 109.409)	8/20/99	50 113 277	4 5 5	Transverse crack (short 4' long) – honeycombing 2½-3" deep Transverse crack – core broke at 3" during coring Transverse crack – full lane width
	I-90 WB Grade Separation (mile point 109.224)	8/20/99	50 105	12 12	Transverse crack – right wheelpath over pier Transverse crack – right wheelpath
	I-90 WB Clark Fork (mile point 108.276)	8/20/99	106 109	6 5	Transverse crack – right wheelpath (typical) Transverse crack – largest one visible on deck

APPENDIX B

APPENDIX B

Bridge 1	I-15 SB	So. Cascade [5]	MP 254.942	Applied 1998	Harris ULV						
	Precast I-beams. 3 span- simple										
Underside Southbound											
Underside Northbound	transverse of Black steel	pear to have been tr cracks. Note: Northbo exposed and corroded.	ound guard rail po Damage may be	osts in poor con ASR/FT.	dition – lack of cover.						
Top deck Southbound	predominate Cores A-BC	cks throughout trave Looks like ASR. Re- taken in worst areas o	sin has worn off ir	n wheel paths.							
	Cores A-BC resin treatme		f leaking and stair	ns. No new crac	ks on surface s						

BRIDGE SURVEY COMMENTS

Bridge 2	I-15 SB	MP 249.505	Applied 1998	Harris ULV					
Precast I-beams. 3 span- simple (5 girders)									
Underside Span 1: Few random spots of efflorescence. Span 2-3: No visible leakage or efflorescence. Minimal light, pattern cracks, overall good condition.									

Bridge 3	I-15 SB	Sieben Int.	MP 216.482	Applied 1996	Harris Watson/Bowman				
	Precast girders 3 span-simple - continuous deck								
Deck southbound	,								
Deck northbound		Still see resin on surface Concrete replacement over Span 1-2 and, 2-3 joints. New cracks in replacement.							
Underside southbound	Span 1: Patte efflorescence (Span 3: Trans	Span 1: Pattern cracks, no efflorescence; diagonal crack near Abutment 1 with efflorescence (southwest corner). Transverse crack – efflorescence. Span 3: Transverse crack, 6-10 ft north abutment. Leaks over both bents. Diagonal crack Abutment 4 efflorescence (northeast corner).							
Underside northbound		age at both bents							

BRIDGE SURVEY COMMENTS

Bridge 4	I-15 SB	Gates of Mtn. Int.	MP 209.108	Applied 1996	Harris Watson/Bowman					
	Precast pcc girders, simple span, continuous deck									
Underside southbound	3									
Underside northbound	Same as southbound.									
Top deck northbound	Closure/joint pa	tches with crack - Join	nt detail not workir	ig. Same as	s No. 3 bridge.					
Top deck southbound deck	Some AC chip s pockets.	Some AC chip seal (brown) tracked on approach. Resin mostly worn off, except in deep pockets.								

BRIDGE SURVEY COMMENTS

Bridge 5	I-15 SB	Abandoned BNRR	MP 187.079	Applied 1996	Transpo Sealate T70 - 10			
Precast pcc girders - simple span - 5 spans - 5 girders								
Underside southbound		ndom cracks. No throu- cracking – some patter						
Top deck southbound	Thin deck with le	ots of steel. Small bar	s – Core 5-A over	bent.				

Bridge 6	I-90-EB	Darlington Ditch	MP 279.534	Applied 1993	Sika Pronto 19				
Precast I-beams 3 span - simple supports									
Underside	Looks very good. No cracking								
Top deck	Top deck Extensive patching and transverse cracking. Map cracking medium to heavy in right wheelpath (WP); medium to light in left WP. Shoulder in good condition, with some transverse cracks and light map cracks. No evidence of HMWM on surface.								

Bridge 7	I-90-EB	County Rd. Sep.	MP 280.361	Applied 1993	Sika Pro	nto 19			
Precast pcc girders -single span - continuous deck - 5 girders -									
Underside	Underside Some pattern-random cracks. No efflorescence or leaking.								
Top deck	Fop deck Extensive map cracking in travel lane with predominant transverse cracking. Deck has many pcc patches placed prior to HMWM treatment.								

BRIDGE SURVEY COMMENTS

Bridge 8	I-90-EB	Drainage Ditch	MP 280.1	Applied 1993	Sika Pronto 19					
Precast pcc girders – 2 span										
Top deck		Bridge 7; pcc patches a verse cracking. Main cr			ne. Shoulder better					
Cracks look much worse on surface than width suggests. Cracks tend to be ve within the concrete. Rebar in bottom of Core 8-B is not corroded										

BRIDGE SURVEY COMMENTS

Bridge 9	I-90-WB	County Rd. Sep.	MP 280.361	Applied 1993	Sika Pronto 19					
	Precast pcc girders – single span									
Underside										
Top deck										

Bridge 10	I-90-WB	Drainage Ditch	MP 280.1	Applied 1993	Sika Pronto 19				
Precast pcc girders – 2 span									
Underside	Same as eastbound structure – Bridge 8.								
Top deck		hes in travel way. M to be more longitudin							

Bridge 11	1-90-WB	Darlington Ditch	MP 279.534	Applied 1993	Sika Pronto 19					
	Precast I beams – 3 span – simple supports									
Top deck	Many pcc patch	es. Most patches crack	ed. Map cracking	in right whe	eelpath.					

BRIDGE SURVEY COMMENTS

Bridge 12	I-90-WB	Clark Fork	MP 148.436	Applied 1994	Am. Concrete Sys. Polytech Perma Seal			
	Precast I-beams - 4 span – 1, 4, short spans 10 girders wide - Spans 2, 3 long spans with large I-girders							
Underside	Const. 4. Financial and offerences under center median							
Top deck	Resin present in approx. 12 ft.	holes, large cracks, a	nd near curb. Lon-	gitudinal cr	ack over girder No. 2,			

BRIDGE SURVEY COMMENTS

Bridge 13	1-90-WB	Grade Separation	MP 143.651	Applied 1994	Am. Concrete Sys. Polytech Perma Seal				
	3 span pcc I-beams simple support – continuous deck 10 girders								
Underside	Underside Typical random fine cracks on underside of deck. No leaking cracks or efflorescence. Flooded surface with water. No leakage visible.								
Top deck	A few new crack	s in deck. Black patche	s - Percol repairs	s looks good	1.				

Bridge 14	I-90-EB	Clark Fork River	MP 148.436	Applied 1994	Am. Concrete Sys. Polytech Perma Seal				
	Precast I-beams - 4 span - 1, 4, short span								
	10 girde	rs wide - Span 2, 3 Ion	g spans-large l-g	irders					
Underside	No visible leaking cracks or efflorescence. Some fine random cracks but fewer than Three Forks Bridges.								
Top deck	Similar to Bridg map cracking al in travelway.	e 12 (WB) - Longitudin ong shoulder. More tra	al crack intermitte ansverse cracks al	ent along ri long should	ght wheelpath. Light ler. Not many cracks				

Bridge 15	1-90	Rock Creek Overpass	MP 126.039	Applied 1992	Transpo Sealate T-70MX-30I		
pcc I beams 4 span 2 short 2 long spans 2 span continuous deck							
Underside		erse cracks with lots o water on Span 1 to look					
Top deck	Transverse crad	king worse in Span 1 n	ear abutments. No	o map crack	king		

BRIDGE SURVEY COMMENTS

Bridge 16	1-90	Clinton Overpass	MP 126.993	Applied 1992	Transpo Sealate T-70MX-30I				
	pcc I beams, 4 span								
Underside	Underside Similar to Bridge 15 but less visible cracking underneath and much less efflorescence.								

Bridge 17	I-90-WB	St. Regis River Bridges	MP 23.325	Applied 1991	Transpo T 70 - X			
4 span steel girder bridge								
Underside	Many transverse cracks with efflorescence or cracking is scattered with more cracks near mid span. Eastbound structure is similar. No active leaks after rain, paint peeling on steel girders							
Top deck	looks like it is o	cracks and holes. Co pen (Span 4). No ma ongitudinal crack betwe ng.	p cracking noted	on deck, e	xcept near Span 1-2			

Bridge 18	I-90-WB	St. Regis River Bridges	MP 23.063	Applied 1991	Transpo T 70 - X				
	3-span steel girder, continuous deck								
Underside	Underside Transverse cracks with efflorescence. Worse away from the abutments. No active leakage after rain (but difficult to see). Cracks grouped in areas. Abutment and center span areas have no cracking.								
Deck	shoulder, faint le over the piers a cracking due to	cking appears worse of congitudinal cracking in and near the abutmen large steel girders (flest approximately 400-ft lest as 17).	right WP to EP st ts. Good candid kible. The deck ha	ripe. Less ate bridge i as about 47	transverse cracking for transverse deck obvious transverse				

BRIDGE SURVEY COMMENTS

Bridge 19	1-90-EB	St. Regis River County Road	MP 23.063	Applied 1991	Transpo T 70 - X					
	3-span, steel girders, continuous deck Similar to Bridge 18. Resin still present on the shoulder. Some transverse cracks appear to be open. Some									
Underside	Similar to Bridge	Similar to Bridge 18.								
Deck	transverse crack	s appear sealed with re ack in core hole matche er cracks with old core	esin on surface, so es deck crack.	ome not.	'					

Bridge 20	1-90-EB	St. Regis River County Road	MP 23.325	Applied 1991	Transpo T 70 - X
4 span steel girder bridge					
Underside	Same as Bridge	17			
Deck		construction joint keyward wheel path (minor). M			

Bridge 21	I-90-EB	Clark Fork River	MP 49.397	Applied 1994	Transpo Sealate T - 70MX-30					
	Multispan, steel beams and girders									
Underside westbound	Old steel girder/rivets. Lots of cracks with efflorescence and stalactites but dry after morning rain. Main span less cracking than Span 1.									
Deck westbound	Lane passing was closed for pavement crack sealing. Deck has many transverse cracks and old patches. New spalls have occurred next to many of the old patches. Some rebar exposed. Most patching previous to HMWM treatment. Resin is present in most cracks, but surface is cracked.									
Underside eastbound	approach Span Main spans – To cross-trusses. More through cr	larger curved bolted s 1. wo large steel girders of acking and efflorescend much better than top s	utside with three sr							
Deck eastbound	indicated_Bridg	n recently surveyed a e deck has many spalls fine. Candidate deck f	with exposed reb	ar – approx	imately ¾-in. cover.					

BRIDGE SURVEY COMMENTS

Bridge 22	1-90-WB	Blackfoot River	MP 110.198	Applied 1998	Transpo Castek T – 70MX-30					
	4 spa	4 span – steel girders (2 main spans over river)								
Underside	Transverse crac	Transverse cracks with efflorescence (typical). Cracks less severe in short end spans.								
Deck	wear in the whe	l, could not see cracks elpaths. Cracks easier e is about 350 ft long –	to see on west en	d of bridge						

Bridge 23	1-90-WB	MRL Railroad	MP 110.033	Applied 1998	Transpo Castek T = 70MX-30			
	pcc beam end spans with steel beam center spans							
Underside Span 2, 3, 4 steel. Spans 2 and 3 have steel beams and many leaking transvers cracks Span 4 (steel) and spans 5 and 6 (pcc) have only a few short leaking cracks								
Deck	Heavier sand than Bridge 23. Surface of deck covered with resin and sand. Heavy coat. No map cracking. 50-ft expansion joint (west) 300-ft joint 160-ft diagonal bent 354-ft end of bridge 237-ft expansion joint (east)							

BRIDGE SURVEY COMMENTS

Bridge 24	I-90-WB	Clark Fork and County Road	MP 109.409	Applied 1998	Transpo Castek T = 70MX-30
		4 span steel g	irder		
Underside	Only a few smal	I cracks visible with efflo	orescence.		
Deck	Has a heavy coat of resin and sand. Looks good. Typically, only transverse cracks that are raveled are visible through resin treatment. 2½-ft shoulder, 12-ft lane. Deck flexes under heavy truck loads. Core 24A has extens honeycombing at 2½ in. Core 24B broke during coring at 3 in.				
	60-ft expansion joint (west) 192-ft diagonal bent 320-ft expansion joint (east) 370-ft diagonal bent 417-ft end of bridge – expansion joint			xpansion joint	
	Cracking: 0-30 ft near ab 30-60 ft some to 60-90 ft some to	105-300 ft	no cracks transverse very few cra		

BRIDGE SURVEY COMMENTS

Bridge 25	I-90-WB	Grade Separation	MP 109.244	Applied 1998	Transpo Castek T = 70MX-30		
	pcc I beams, 3 span simple supported, continuous deck						
Underside	Looks good with	mınimal visible crackin	g				
Deck	Has heavy layer	of resin and sand. Loo	ks good, 101/2-ft sl	houlder, 12-	ft travel lane.		

Bridge 26	I-90-WB	Clark Fork River	MP 108,276	Applied 1998	Transpo Castek T – 70MX-30		
Bridge 20	1						
	4 span steel girders (2 main center spans)						
Underside	Only an occasional through deck crack with efflorescence						
Deck Has heavy coat of resin and sand hiding most cracks. Some transverse cracks visible in							
	right wheelpath. No map cracking, visible through resin.						

