Import libraries and set up the environment

```
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression, Lasso, Ridge
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn import metrics
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
warnings.simplefilter(action='ignore', category=UserWarning)
```

read the csv file

```
In [2]: df = pd.read_csv(r"./data/California_Houses.csv")
df
```

Out[2]:		Median_House_Value	Median_Income	Median_Age	Tot_Rooms	Tot_Bedrooms	Populatio
	0	452600	8.3252	41	880	129	32
	1	358500	8.3014	21	7099	1106	240
	2	352100	7.2574	52	1467	190	49
	3	341300	5.6431	52	1274	235	55
	4	342200	3.8462	52	1627	280	56
	20635	78100	1.5603	25	1665	374	84
	20636	77100	2.5568	18	697	150	35
	20637	92300	1.7000	17	2254	485	100
	20638	84700	1.8672	18	1860	409	74
	20639	89400	2.3886	16	2785	616	138

Data exploration

20640 rows × 14 columns

Histogram for each attribute

```
In [3]: df.hist(bins=50, figsize=(20, 15))
   plt.show()
```


California map

• using the Latitude and Longitude, we are going to visualize the map of California and see the prices in different areas

- we can see that as we approach the ocean side of California which is at the southeastern side of the map (around 34 Latitude and -122 Longitude) the prices are relatively higher, especially in popular places like San Francisco and Los Angeles
- the population per district gets smaller around 41 Latitude and -122 Longitude
- population pre district also gets smaller around 36 Latitude and -121 Longitude
- · As we go in land (far from the ocean) the prices gets lower

what about correlation?

```
In [5]:
        corr matrix =df.corr()
        corr_matrix["Median_House_Value"].sort_values(ascending=False)
        Median House Value
                                     1.000000
Out[5]:
        Median_Income
                                     0.688075
        Tot Rooms
                                     0.134153
        Median Age
                                     0.105623
        Households
                                     0.065843
        Tot_Bedrooms
                                     0.050594
        Population
                                    -0.024650
                                    -0.030559
        Distance_to_SanFrancisco
        Distance to SanJose
                                    -0.041590
        Longitude
                                    -0.045967
        Distance_to_SanDiego
                                    -0.092510
        Distance_to_LA
                                    -0.130678
        Latitude
                                    -0.144160
                                    -0.469350
        Distance_to_coast
        Name: Median_House_Value, dtype: float64
        removed cols = ['Distance to LA', 'Distance to SanJose', 'Distance to SanDie
In [9]:
         sns.pairplot(data=df.drop(removed_cols, axis = 1, inplace=False), diag_kind=
         plt.show()
```

/home/hp/anaconda3/lib/python3.11/site-packages/seaborn/axisgrid.py:118: Us
erWarning: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

Data scaling

```
In [33]: scaler = StandardScaler()
    scaled_data = scaler.fit_transform(df)
    scaled_data = pd.DataFrame(scaled_data, columns=df.columns)
    scaled_data.head()
```

Out[33]:		Median_House_Value	Median_Income	Median_Age	Tot_Rooms	Tot_Bedrooms	Population	Н
	0	2.129631	2.344766	0.982143	-0.804819	-0.970706	-0.974429	
	1	1.314156	2.332238	-0.607019	2.045890	1.348649	0.861439	
	2	1.258693	1.782699	1.856182	-0.535746	-0.825895	-0.820777	
	3	1.165100	0.932968	1.856182	-0.624215	-0.719067	-0.766028	
	4	1.172900	-0.012881	1.856182	-0.462404	-0.612239	-0.759847	

```
In [34]: x = scaled_data.drop(['Median_House_Value'], axis=1)
y = scaled_data['Median_House_Value']
x
```

Out[34]:		Median_Income	Median_Age	Tot_Rooms	Tot_Bedrooms	Population	Households	Latitu
	0	2.344766	0.982143	-0.804819	-0.970706	-0.974429	-0.977033	1.0525
	1	2.332238	-0.607019	2.045890	1.348649	0.861439	1.669961	1.0431
	2	1.782699	1.856182	-0.535746	-0.825895	-0.820777	-0.843637	1.0385
	3	0.932968	1.856182	-0.624215	-0.719067	-0.766028	-0.733781	1.0385
	4	-0.012881	1.856182	-0.462404	-0.612239	-0.759847	-0.629157	1.0385
	20635	-1.216128	-0.289187	-0.444985	-0.389087	-0.512592	-0.443449	1.8016
	20636	-0.691593	-0.845393	-0.888704	-0.920853	-0.944405	-1.008420	1.8063
	20637	-1.142593	-0.924851	-0.174995	-0.125578	-0.369537	-0.174042	1.7782
	20638	-1.054583	-0.845393	-0.355600	-0.305998	-0.604429	-0.393753	1.7782
	20639	-0.780129	-1.004309	0.068408	0.185411	-0.033977	0.079672	1.7501

20640 rows × 13 columns

```
In [35]: #split the data 70:30
x_train, x_validationAndTest, y_train, y_validationAndTest = train_test_spl:
#split the 30 50:50
x_validation, x_test, y_validation, y_test = train_test_split(x_validationAndTest)
```

Model interpretation

- model score: the higher, the better
- . MSE: the closer to zero the more accurate the prediction is
- MAE: same as MSE, closer to zero means more accurate model

helpful resources

- here
- here
- linear regression docs

linear regression

```
In [36]: LR = LinearRegression()
model = LR.fit(x_train, y_train)
```

```
linear_prediction = model.predict(x_validation)
print(f"score: {LR.score(x_validation, y_validation)}")
print(f"MSE: {metrics.mean_squared_error(linear_prediction, y_validation)}")
print(f"MAE: {metrics.mean_absolute_error(y_validation, linear_prediction)}')
score: 0.6373618777908012
MSE: 0.35680430265844376
```

lasso regression

MAE: 0.4304488691848636

```
In [37]: lasso = Lasso(max_iter=500)
lasso.fit(x_train, y_train)

lasso_prediction = lasso.predict(x_validation)
print(f"score: {lasso.score(x_validation, y_validation)}")
print(f"MSE: {metrics.mean_squared_error(y_validation, lasso_prediction)}")
print(f"MAE: {metrics.mean_absolute_error(y_validation, lasso_prediction)}")
score: -0.0009510978129561032
MSE: 0.9848486316734414
MAE: 0.7856244185475799
```

Ridge regression

```
In [38]: ridge = Ridge()
    ridge.fit(x_train, y_train)

    ridge_prediction = ridge.predict(x_validation)
    print(f"score: {ridge.score(x_validation, y_validation)}")
    print(f"MSE: {metrics.mean_squared_error(y_validation, ridge_prediction)}")
    print(f"MAE: {metrics.mean_absolute_error(y_validation, ridge_prediction)}")
    score: 0.6374046889133742
    MSE: 0.35676218024549217
    MAE: 0.4304494187912539
```

Report

```
linear_pred = model.predict(x_test)
In [39]:
         lasso_pred = lasso.predict(x_test)
         ridge pred = ridge.predict(x test)
         print('----\nlinear regression report: \n -
         print(f"Score: {LR.score(x_test, y_test)}")
         print(f"MSE: {metrics.mean squared error(y test, linear pred)}")
         print(f"MAE: {metrics.mean absolute error(y test, linear pred)}")
         print('-----\nLasso regression report: \n -----
         print(f"Score: {lasso.score(x test, y test)}")
         print(f"MSE: {metrics.mean_squared_error(y_test, lasso_pred)}")
         print(f"MAE: {metrics.mean_absolute_error(y_test, ridge_pred)}")
         print('----\nRidge regression report: \n
         print(f"Score: {ridge.score(x test, y test)}")
         print(f"MSE: {metrics.mean squared error(y test, ridge pred)}")
         print(f"MAE: {metrics.mean absolute error(y test, ridge pred)}")
```

MSE: 0.963688879114195
MAE: 0.42092060594815556
Ridge regression report:

Score: 0.6481157358464604 MSE: 0.3387887169362474 MAE: 0.42092060594815556

Conclusion

- Lasso regression has a very low accuracy
- · We can conclude that linear and ridge regressions are more performant than lasso