

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO ESCUELA NACIONAL DE ESTUDIOS SUPERIORES UNIDAD MÉRIDA PLAN DE ESTUDIOS DE LA LICENCIATURA EN

Escudo de Escuela o Facultad

CIENCIAS AMBIENTALES Programa de la asignatura

Modelación Matemática

Clave:	Semestre:	Campo de conocimiento:			No. Créditos:	
	3°	Métodos Analíticos			6	
Carácter: Obligatoria		H	oras	Horas por semana	Horas al semestre	
Tina. Toórico Dráctic	Teoría:	Práctica:				
Tipo: Teórico-Práctic	8	7	15	60		
Modalidad: Curso		Duració	Duración del programa: 4 semanas			

Seriación: No () S i (X) Obligatoria () Indicativa (X)

Asignatura antecedente: Métodos de Investigación Social para las Ciencias Ambientales

Asignatura subsecuente: Modelación Estadística

Objetivo general:

Describir las estrategias básicas de modelaje numérico más frecuentes en ciencias ambientales, emplearlas en el análisis de problemas socioambientales, y crear modelos matemáticos simples de los sistemas sociales y ambientales.

Objetivos específicos:

- 1. Aplicar el concepto de función a diversos procesos ambientales, mediante la comprensión de las principales propiedades de las funciones.
- 2. Aplicar los conceptos del álgebra lineal a diversos procesos ambientales, mediante la comprensión de las principales propiedades de dichas funciones.
- 3. Aplicar los conceptos de derivación e integración a diversos procesos ambientales, mediante la comprensión de las principales propiedades de la derivada y la integral.

Índice Temático				
Unidad	Tomo	Horas		
Unidad	Tema	Teóricas	Prácticas	
1	Primera forma de representar a la naturaleza: modelos determinísticos	10	6	
2	Introducción al álgebra matricial	6	6	
3	Medición de las tasas de cambio en la naturaleza: introducción al cálculo diferencial e integral	16	16	
	Total de horas:	32	28	
Suma total de horas:		60		

Contenido Temático

Unidad	Temas y subtemas
1	Primera forma de representar a la naturaleza: modelos determinísticos 1.1 Funciones básicas y su representación en el plano cartesiano (recta, parábola, cónicas, curva normal). 1.2 Funciones complementarias y su representación en el plano cartesiano y en tres dimensiones (trigonometría plana, periódicas (sen, cos, tan)). 1.3 La línea recta como modelo "universal"; transformaciones logarítmicas y exponenciales. 1.4 Modelación de sistemas sociales y ambientales mediante funciones.
2	Introducción al álgebra matricial 2.1 Sistemas lineales. 2.2 Operaciones matriciales elementales. 2.3 Determinantes, inversas. 2.4 Valores y vectores propios. 2.5 Modelación de sistemas sociales y ambientales mediante modelos matriciales.
3	Medición de las tasas de cambio en la naturaleza: introducción al cálculo diferencial e integral 3.1 Sucesiones. 3.2 Continuidad y límites. 3.3 Derivación. 3.4 Integración. 3.5 Modelación de sistemas sociales y ambientales mediante cálculo diferencial e integral.

Bibliografía básica:

Granville, W.A. (1980). Cálculo diferencial e integral. México: Limusa.

Gutierrez, J.L. y Sánchez-Garduño, F. (1998). *Matemáticas para las ciencias naturales*. México: Sociedad Matemática Mexicana.

Kirk, A. (2016). Data visualisation. Los Angeles: Sage Publications.

Scheiner, S. y Gurevitch, J. (2001). Design and analysis of ecological experiments. Oxford New York: Oxford University Press.

Sokal, R.R. y Rohlf, F.J.. (1995). *Biometry*. New York: W. H. Freeman.

Whitlock, M. y Schluter, D. (2015). *The analysis of biological data*. Greenwood Village, Colorado: Roberts and Company Publishers.

Bibliografía complementaria:

Abbott, P. y Neill, H. (1998). Teach yourself calculus. EEUU: NTC Publishing Group.

Courant, R. y John, F. (1999). Introduction to calculus and analysis. Vol.1. EEUU: Springer-Verlag.

Ellis, R. y Gulick, D. (2001). Calculus with analytic geometry: Student solution manual. (5ª ed.). EEUU: Harcourt Brace College Publishers.

Oman, R. v Oman, D.M. (1998). Calculus for the utterly confused. EEUU: McGraw-Hill Companies

Offian, R. y Offian, D.W. (1996). Calculus for the utterly confused. EEOO. McGraw-fill Companies.				
Sugerencias didácticas: Mecanismos de evaluación del apre		Mecanismos de evaluación del aprendi	zaje:	
Exposición oral	(X)	Exámenes parciales	(X)	
Exposición audiovisual	(X)	Examen final escrito	()	
Ejercicios dentro de clase	(X)	Trabajos y tareas fuera del aula	(X)	
Ejercicios fuera del aula	(X)	Exposición de seminarios por los alumnos	s ()	
Seminarios	()	Participación en clase	()	
Lecturas obligatorias	()	Asistencia	()	
Trabajo de investigación	()	Seminario	()	
Prácticas de taller o laboratorio	(X)	Diálogo, foro de discusión, debate	()	
Prácticas de campo	()	Ensayos, resúmenes, síntesis, reportes	()	
Otras:	()	Estudios de caso	(X)	

Funcacialés audiantama	/ \
Exposición audiovisual	()
Interacción con objetos de aprendizaje (lecturas,	
audios, documentales, etc.)	()
Práctica de campo	()
Práctica de laboratorio	()
Talleres	()
Dramatizaciones	()
Proyecto de investigación	()
Portafolio de evidencias	()
Solución de problemas	()
Trabajo colaborativo	()
Otras:	

Perfil profesiográfico:

Profesionales en matemáticas, física, química, ingeniería, biología, geografía, con experiencia docente de al menos dos años a nivel licenciatura o posgrado. Conocimiento y experiencia en la aplicación de modelos matemáticos a sistemas biológicos, ecológicos, sociales o ambientales.