

LUNG CANCER SCREENING MODELS REPORT

GOITOM HADGU W2064676

JULY 1, 2024

UNIVERSITY OF WESTMINSTER
7BUIS008W Data Mining & Machine Learning
Module leader Dr. Mahmoud Aldraimli

TASK I

Variable Name	Retain or Drop	Brief justification for retention or dropping
Patient ID	Drop	Personal information that is irrelevant to our desired model.
Genomic Sex	Retain	According to the research (May et al., 2023), The influence of biological differences, including the impact of sex hormones and variations in immune response, is high. lung cancer shows sex-specific trends
Age	Retain	Age has a strong relation with lung cancer. According to a study, the chance of developing lung cancer increases with age (Eldridge, 2023)
Blood type	Drop	According to a report, the occurrence of lung cancer was found to be independent of blood type. (Yang et al., 2022)
Siblings	Drop	The risk of lung cancer is unlikely to be directly affected by the number of siblings.
Year of Birth	Drop	This feature is the same age, so it should be dropped.
Month of birth	Drop	No relevant relation with Lung cancer.
Adaption	Drop	Though it is recommended to know family history, It does not directly relate to the risk of lung cancer.
Pregnancy	Drop	The number of missing values is high.
Parent Alive	Drop	The status of parents does not directly impact the risk of lung cancer in patients.

Smoking Status	Retain	One of the most significant risk factors for developing lung cancer is smoking.
Daily Cigarettes	Retain	Highly correlated with lung cancer since smoking is the prime risk factor for cancer.
Yellow Skin	Retain	According to research by (the American Cancer Society, 2019), Unusual skin changes can be related to symptoms of lung cancer progression or side effects of lung cancer.
Anxiety	Retain	Patients with lung cancer are significantly more likely to have had a major stressful life event within the preceding 5 years (Jafri et al., 2017)
Peer Pressure	Drop	Peer pressure can lead to an increase in tobacco smoking, but it's hard to consider it a significant risk factor.
COPD Diagnosis	Retain	Researchers indicate that COPD, particularly the emphysema-dominant type, independently poses a prognostic risk for lung cancer. (Houghton, 2013)
Fatigue	Retain	Studies suggest lung cancer Fatigue is one of the most common and debilitating symptoms experienced by people with lung cancer (Carnio, Di Stefano and Novello, 2016)
Allergy	Drop	There is no strong evidence linking general allergies with the risk of lung cancer.

Wheezing	Retain	It is a Symptom associated with respiratory issues, including lung cancer (National Health Service, 2022)
Alcohol Consumption	Retain	Studies suggest that alcohol may independently contribute to the development of lung cancer, particularly in individuals with a genetic predisposition for the disease (Thompson et al., 2020).
Coughing	Retain	It is a significant risk factor and common symptom of lung cancer. (NHS, 2019)
Shortness of Breath	Retain	Shortness of breath continues to be a distressing symptom associated with lung cancer (John Hopkins Medicine, 2019)
Swallowing Difficulty	Retain	A symptom of advanced lung cancer.
Chest Pain	Retain	As a significant symptom, this could indicate potential lung issues, possibly including cancer.
Lung Cancer	Retain	It is our target variable.

TASK II DATA UNDERSTANDING

#	Column	Non-Null Count	Dtype						
0	GENOMIC SEX	1101 non-null	object						
1	AGE	1117 non-null	object						
2	SMOKING_STATUS	1120 non-null	int64						
3	DAILY_CIGARETTES	617 non-null	object						
4	YELLOW_SKIN	1120 non-null	int64						
5	ANXIETY	1120 non-null	int64						
6	COPD_DIAGNOSES	1102 non-null	float64						
7	FATIGUE	1115 non-null	float64						
8	WHEEZING	1110 non-null	float64						
9	ALCOHOL_CONSUMPTION	1120 non-null	int64						
10	COUGHING	1120 non-null	int64						
11	SHORTNESS_OF_BREATH	1116 non-null	float64						
12	SWALLOWING_DIFFICULTY	1120 non-null	int64						
13	CHEST_PAIN	1120 non-null	int64						
14	LUNG_CANCER	1117 non-null	object						
dtyp	dtypes: float64(4), int64(7), object(4)								
memo	rv usage: 131.4+ KB								

Figure 1 Data type

	SMOKING_STATUS	YELLOW_SKIN	ANXIETY	COPD_DIAGNOSES	FATIGUE	WHEEZING	ALCOHOL_CONSUMPTION	COUGHING	SHORTNESS_OF_BREATH	SWALLOWING_DIFFICULTY	CHEST_PAIN
count	1120.000000	1120.000000	1120.000000	1102.000000	1115.000000	1110.000000	1120.000000	1120.000000	1116.000000	1120.000000	1120.000000
mean	1.550893	1.559821	1.491964	1.503630	1.634978	1.544144	1.550893	1.567857	1.624552	1.475000	1.551786
std	0.497625	0.496630	0.500159	0.500214	0.481652	0.498272	0.497625	0.495595	0.484455	0.499598	0.497533
min	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
25%	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
50%	2.000000	2.000000	1.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	1.000000	2.000000
75%	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000
max	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000

Figure 2 Description of the data

Genomic_Sex: Nominal	GENOMIC SEX	19
Age: Ratio	AGE	3
Smoking_Status: Nominal	SMOKING_STATUS	0
Anxiety: Nominal	DAILY_CIGARETTES	503
DAILY CIGARETTE: Numeric	YELLOW_SKIN	0
COPD Diagnosis: Nominal	ANXIETY	0
Fatigue: Nominal	COPD_DIAGNOSES	18
Wheezing: Nominal	FATIGUE	5
	WHEEZING	10
Yellow_skin: Nominal	ALCOHOL_CONSUMPTION	0
Alcohol_Consumption: Ratio	COUGHING	0
Coughing: Nominal	SHORTNESS_OF_BREATH	4
Shortness_of_Breath: Nominal	SWALLOWING_DIFFICULTY	0
Swallowing Difficulty: Nominal	CHEST_PAIN	0
Chest Pain: Nominal	LUNG_CANCER	3
Lung Cancer: Nominal	dtype: int64	

Figure 3 Measurment scale

Figure 4 Sum of missing/ null values

Figure 4 dataframe shape

Figure 5 Distribution of target variable based on count

Task (3) -DATA PREPARATION: Cleaning and Transforming your data

Variable Name	Issue description	Proposed	Justification for
		mitigation	used mitigation
Genomic Sex	-Technical feature	Rename using the	Renaming ensures
	name.	rename function.	consistency and
	-Missing values	Followed by a label	clarity. Normalising
	-Formatting issue.	encoding Male to 1	formats removes
	-Object Data type	and Female to 0. Fill	inconsistency and
	issue.	in the missing values	eases analysis.
	-Categorical labels.	using mode and	Filling missing values
		change the data type	with mode maintains
		to integer.	the most common
			value in the dataset.
			Changing the data
			type to an integer
			ensures correct
			numeric operations.
AGE	-High scale.	By replacing the	To make our dataset
	-Missing values.	outlier age after	suitable for
	-Outliner ages.	capping it at 120 with	processing by some
	-Negative value	the median age,	statistical algorithms
	-string values.	filling the missing	like linear regression
	-Object Data type.	values with the	SVM and KNN, the
		median age, applying	min-max scaler
		the absolute function,	transforms the
		defining a text-to-	dataset for this.
		numeric converter	mapping outliers
		function, then	prevent unrealistic
		changing the data	age values. The
		type to integer.	median is robust to
		additionally by	outliers for filling in
		standardising it with	missing values. The
		min-max scaler.	absolute function

			ensures that all ages
			are positive. Text-to-
			numeric conversion
			ensures consistent
			data type.
			Standardising
			improves model
			performance and
			convergence.
DAILY CIGARETTE	-Missing value.	The missing value	Logical relation
	-Outliners on the	can be fixed by	leverages existing
	number of daily	creating a logical	data for accuracy.
	cigarettes.	relation (if it is a non-	Text-to-numeric
	-Has String value.	smoker 1, then the	conversion ensures
	-Object data type.	daily cigarette is 0)	consistent data type.
	-High scale.	between smoking	Capping outliers
		status and daily	prevents extreme
		cigarettes, converting	values from skewing
		the text to numeric	results. Standardising
		values and capping the number of daily	improves model performance and
			•
		cigarettes to 40 to remove the outliner,	convergence. since our data doesn't
		· ·	follow Gaussian
		additionally, by	
		standardising it min max scaler.	distribution, we used a min-max scaler to
		max scaler.	scale down.
COPD_DIAGNOSES	-Missing values.	Handling the missing	Improves the
B B B B B B B B B B B B B B B B B B B	-Float data type.	values with the most	performance and
	-Non binary label.	frequent value(mode)	interpretability of
	Tron sinary lason	. ,	into protability of
		and ensuring suitable	machine learning
		and ensuring suitable data type.	machine learning models. Numeric
		data type.	models. Numeric
		_	models. Numeric format maintains
		_	models. Numeric format maintains integrity and prevents
		_	models. Numeric format maintains
WHEEZING	-Missing value.	data type.	models. Numeric format maintains integrity and prevents mixed data type
WHEEZING	-Missing value. -Float data type.	data type. Handling the missing	models. Numeric format maintains integrity and prevents mixed data type issues.
WHEEZING	-Missing value. -Float data type. -Non-binary labels.	data type.	models. Numeric format maintains integrity and prevents mixed data type issues.
WHEEZING	-Float data type.	data type. Handling the missing values by replacing	models. Numeric format maintains integrity and prevents mixed data type issues. Improves the performance and
WHEEZING	-Float data type.	Handling the missing values by replacing them with the most	models. Numeric format maintains integrity and prevents mixed data type issues. Improves the performance and interpretability of
WHEEZING	-Float data type.	Handling the missing values by replacing them with the most frequent value	models. Numeric format maintains integrity and prevents mixed data type issues. Improves the performance and interpretability of machine learning
WHEEZING	-Float data type.	Handling the missing values by replacing them with the most frequent value (mode) and	models. Numeric format maintains integrity and prevents mixed data type issues. Improves the performance and interpretability of machine learning models. Numeric
WHEEZING	-Float data type.	Handling the missing values by replacing them with the most frequent value (mode) and converting the data	models. Numeric format maintains integrity and prevents mixed data type issues. Improves the performance and interpretability of machine learning models. Numeric format maintains
WHEEZING	-Float data type.	Handling the missing values by replacing them with the most frequent value (mode) and converting the data type to integer. Using	models. Numeric format maintains integrity and prevents mixed data type issues. Improves the performance and interpretability of machine learning models. Numeric format maintains integrity and prevents
WHEEZING	-Float data type.	Handling the missing values by replacing them with the most frequent value (mode) and converting the data type to integer. Using binary encoding for	models. Numeric format maintains integrity and prevents mixed data type issues. Improves the performance and interpretability of machine learning models. Numeric format maintains integrity and prevents mixed data type
	-Float data typeNon-binary labels.	Handling the missing values by replacing them with the most frequent value (mode) and converting the data type to integer. Using binary encoding for transformation.	models. Numeric format maintains integrity and prevents mixed data type issues. Improves the performance and interpretability of machine learning models. Numeric format maintains integrity and prevents mixed data type issues.
	-Float data typeNon-binary labelsMissing value.	Handling the missing values by replacing them with the most frequent value (mode) and converting the data type to integer. Using binary encoding for transformation. Handling the missing	models. Numeric format maintains integrity and prevents mixed data type issues. Improves the performance and interpretability of machine learning models. Numeric format maintains integrity and prevents mixed data type issues. Mode is appropriate
	-Float data typeNon-binary labels. -Missing valueThe data type is	Handling the missing values by replacing them with the most frequent value (mode) and converting the data type to integer. Using binary encoding for transformation. Handling the missing values with the most	models. Numeric format maintains integrity and prevents mixed data type issues. Improves the performance and interpretability of machine learning models. Numeric format maintains integrity and prevents mixed data type issues. Mode is appropriate for categorical data.
	-Float data typeNon-binary labels. -Missing valueThe data type is float.	Handling the missing values by replacing them with the most frequent value (mode) and converting the data type to integer. Using binary encoding for transformation. Handling the missing values with the most frequent value	models. Numeric format maintains integrity and prevents mixed data type issues. Improves the performance and interpretability of machine learning models. Numeric format maintains integrity and prevents mixed data type issues. Mode is appropriate for categorical data. Correct data type. It
	-Float data typeNon-binary labels. -Missing valueThe data type is float.	Handling the missing values by replacing them with the most frequent value (mode) and converting the data type to integer. Using binary encoding for transformation. Handling the missing values with the most frequent value (mode) and changing	models. Numeric format maintains integrity and prevents mixed data type issues. Improves the performance and interpretability of machine learning models. Numeric format maintains integrity and prevents mixed data type issues. Mode is appropriate for categorical data. Correct data type. It ensures appropriate

			suitable for our
			classification model.
SHORTNESS OF BREATH	-Missing value	Handling the missing	Mode is appropriate
SHORTNESS OF BREATT	•	values with the most	for categorical data.
	-The data type is		_
	float.	frequent value(mode)	Correct data type
	-Non-binary labels.	and changing the	ensures appropriate
		data type to integer	processing.
		followed by	
		binarising the label.	
LUNG CANCER	-Formatting issue.	Standardise values	Label encoding
	-Object data type	by label	ensures consistency
	-Missing values.	encoding(Yes = 1,	in the binary
	-Categorical Labels.	No = 0), drop the	representation of our
		missing value, and	feature. Since our
		change the data type	feature is a target
		to integer.	variable, the suitable
			way to handle the
			missing values is by
			dropping it. Correct
			data type ensures
			appropriate
			processing.
CHEST PAIN	-Non-binary labels.	Binary encoding.	Maintaining data in
OTIEST TAILS	14011 billary labels.	Billary criocaling.	numeric format
			maintains integrity
			and prevents mixed
COPD DIAGNOSIS	Missing values	Handling the missing	data type issues.
COPD DIAGNOSIS	-Missing values.	Handling the missing	Maintaining data in
	-Non-binary labels.	values with the most	numeric format
		frequent value(mode)	maintains integrity
		and Binary encoding.	and prevents mixed
			data type issues.
YELLOW SKIN	-Non-binary labels.	Binary encoding.	Maintaining data in
			numeric format
			maintains integrity
			and prevents mixed
			data type issues.
ALCOHOL	-Non-binary labels.	Binary encoding.	Maintaining data in
CONSUMPTION			numeric format
			maintains integrity
			and prevents mixed
			data type issues.
COUGHING	-Non-binary labels.	Binary encoding.	Maintaining data in
_	,	,g.	numeric format
			maintains integrity
			and prevents mixed
			data type issues.
			data type issues.

```
[31] df.isnull().sum()

→ GENOMIC SEX

19

[39] df['GENDER'].unique()

→ array(['M', 'F', nan, 'MALE', 'FEMALE'], dtype=object)
```

Figure 6 Info of genomic sex/ Gender before implementation of changes.

Issues resolved:

- · Changed feature name to GENDER.
- Filled missing values with mode.
- Standardized values (Male = 1, Female = 0).
- Changed data type to integer.

```
0 1

1 1

2 0

3 1

4 0

...

1115 0

1116 0

1117 0

1118 0

1119 0

Name: GENDER, Length: 1120, dtype: int64
```

Figure 7 GENDER feature after solution implementation.

Figure 8 AGE feature before implementation of changes.

Issues resolved:

- Capped outlier ages at 120 and replaced with median.
- Filled missing values with a median.
- Applied absolute function to remove negative values from age.
- Converted strings to numeric.
- Scaled down using min max scaler.

```
array([0.73134328, 0.80597015, 0.58208955, 0.64179104, 0.82089552,
→ 0
              0.731343
                                                                   0.47761194, 0.46268657, 0.71641791, 0.49253731, 0.6119403
              0.805970
                                                                   0.7761194 , 0.59701493, 0.56716418, 0.41791045, 0.55223881,
              0.582090
                                                                   0.35820896, 0.65671642, 0.01492537, 0.67164179, 0.52238806,
              0.641791
                                                                   0.62686567, 0.53731343, 0.70149254, 0.85074627, 0.74626866,
              0.641791
                                                                  0.50746269, 0.43283582, 0.79104478, 0.40298507, 0.76119403, 0.68656716, 0.8358209, 0.86567164, 0.91044776, 0.88059701,
              0.552239
     1115
                                                                   0.26865672, 0.28358209, 1.
                                                                                                      , 0.3880597 , 0.2238806 ,
              0.462687
    1116
                                                                                                        , 0.02985075, 0.17910448,
                                                                   0.34328358, 0.11940299, 0.
     1117
              0.671642
                                                                   0.10447761, 0.29850746, 0.25373134, 0.07462687, 0.37313433,
              0.552239
                                                                   0.13432836, 0.1641791 , 0.23880597, 0.32835821, 0.20895522,
     1119
              0.000000
                                                                   0.04477612, 0.14925373, 0.44776119, 0.19402985, 0.31343284,
     Name: AGE, Length: 1117, dtype: float64
```

Figure 9 AGE feature after solution implementation

Figure 10 daily cigarette feature before the implementation of change.

Issues resolved:

- Filled missing values using logical relation (non-smoker = 0 daily cigarettes).
- Converted strings to numeric.
- Capped daily cigarettes at 40 to remove outliers.
- Standardized the scale tomin0 and max 1.

Figure 11 Daily cigarette feature after solution implementation

```
df['LUNG_CANCER'].unique()

array(['YES', 'NO', 'Yes', 'No', 'nan'], dtype=object)

[104] df['LUNG_CANCER'].isnull().sum()
]; 3
```

Figure 12 Lung cancer feature before implementation of changes.

Issues addressed:

- Standardized values (Yes = 1, No = 0).
- Handled the missing values by dropping them.
- Changed data type to integer.

```
0 1
1 1
2 0
3 0
4 0
...
1115 0
1116 0
1117 0
1118 0
1119 0
Name: LUNG_CANCER, Length: 1117, dtype: int64
```

Figure 13 Lung cancer after implementation of changes.

COPD_DIAGNOSES	18
FATIGUE	5
WHEEZING	10
ALCOHOL_CONSUMPTION	0
COUGHING	0
SHORTNESS OF BREATH	4

Figure 14 COPD DIAGNOSES, WHEEZING, FATIGUE, SHORTNESS OF BREATH before implementation of change

Issues addressed:

- Filled missing values with mode.
- Changed data type to integer.

```
GENDER
AGE
SMOKING_STATUS
DAILY_CIGARETTES
YELLOW_SKIN
ANXIETY
COPD_DIAGNOSES
FATIGUE
WHEEZING
ALCOHOL_CONSUMPTION
COUGHING
SHORTNESS_OF_BREATH
SWALLOWING_DIFFICULTY
CHEST_PAIN
LUNG_CANCER

GENDER

0
ACCHOL
COGRETIES
```

Figure 15 features after implementation of changes.

YELLOW_SKIN	ANXIETY	COPD_DIAGNOSES	FATIGUE	WHEEZING	ALCOHOL_CONSUMPTION	COUGHING	SHORTNESS_OF_BREATH	SWALLOWING_DIFFICULTY	CHEST_PAIN I
2	2	1	2	2	2	2	2	2	2
1	1	2	2	1	1	1	2	2	2
1	1	1	2	2	1	2	2	1	2
2	2	1	1	1	2	1	1	2	2
2	1	1	1	2	1	2	2	1	1

Figure 16 The features before binery enoding.

☐ Issues addressed:

Labels changed to binary.

YELLOW_SKIN	ANXIETY	COPD_DIAGNOSES	FATIGUE	WHEEZING	ALCOHOL_CONSUMPTION	COUGHING	SHORTNESS_OF_BREATH	SWALLOWING_DIFFICULTY	CHEST_PAIN
1	1	0	1	1	1	1	1	1	1
0	0	1	1	0	0	0	1	1	1
0	0	0	1	1	0	1	1	0	1
1	1	0	0	0	1	0	0	1	1
1	0	0	0	1	0	1	1	0	0

Figure 17 features after binarization.

Task (4) - Modelling: Create Predictive Classification Models

Algorithm	Algorithm	Learnable	Some Possible	Imported Python
Name	Туре	Parameters	Hyperparameters	package to use the
				algorithm
NB	Parametric	No learnable	var_smoothing	sklearn.naive_bayes
		parameters.		import GaussianNB
ANN (MLP)	Non-	Weights and	hidden_layer_sizes,	from
	parametric	biases,activation	activation, solver,	sklearn.neural_network
		functions	alpha,	import MLPClassifier
			learning_rate,	
			max_iter	
Linear SVM	Parametric	Support vectors,	C, max_iter	from sklearn.svm
		coefficients,		import SVC
		intercepts		·
KNN (K=?)	Non-	There is no	n_neighbors,	from sklearn.neighbors
	parametric	learnable	weights, algorithm,	import
		parameter.	metric, P	KNeighborsClassifier

PART B

I, List of retained categorical features.

Figure 18 Retained columns

```
print(X_train.shape , y_train.shape)
print(X_test.shape , y_test.shape)

(781, 12) (781,)
(336, 12) (336,)
```

Figure 19 Data shapes of the retained variables after a test-train split.

II. The 70-30 training-test split ratio is widely recognised in machine learning for its balanced approach to data allocation. According to the book by Kubat (2018), allocating 70% of the data for training enables the model to effectively learn from a substantial sample size, reducing the risk of

underfitting. The remaining 30% is reserved for testing, ensuring a robust evaluation of the model's performance and a realistic measure of ability to generalise to new data.

`A 30% test set size will provide us with statistically significant performance metrics by reducing variability and minimizing the impact of random fluctuations within the test data. However, it might face challenges like class imbalance and sample representativeness issues (Liu and Cocea, 2017), which can be mitigated by setting the random state and ensuring stratification in our dataset. This approach, involving training on a significant portion and testing on a separate set, reflects the model's real-world performance with new, unseen data.

Furthermore, empirical evidence and practical applications in machine learning have consistently demonstrated the effectiveness of the 70-30 split across various datasets and models. This ratio is frequently recommended in educational materials and empirical research as a starting point for model development, reflecting its wide acceptance and reliability in the field (Raschka & Mirjalili, 2019).

III. The overall purpose of using a training-test approach is to keep a portion of the data separate from the entire model selection and training process to ensure an unbiased evaluation of the model a simple train-test split is computationally efficient as it involves a single split of the data into training and testing sets, making it quicker to implement. The model is then evaluated using the test dataset to ensure its generalisation ability.

On the other hand, K-fold cross-validation is used to evaluate a model's design rather than a specific training set. It involves repeatedly splitting the dataset into K subsets and then training and testing the model K times on different subsets. This type of evaluation helps to average the model's performance across all the subsets, reducing the risk of overfitting. Cross-validation is particularly useful when there is a limited dataset, as it makes the most of the available data by resampling.

In summary, the training-test split is suitable for initial model evaluation on large datasets, providing a straightforward and quick assessment. In contrast, K-fold cross-validation is preferred for smaller datasets or hyperparameter tuning, offering a thorough evaluation by leveraging multiple data splits. The final test set evaluation ensures the model's performance on truly unseen data, simulating real-world applications and confirming the model's generalisation capability.

```
IV.

from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42, test_size = 0.3, stratify= y )
```

Figure 20 Code snippet to ensure the tested on same test dataset and class distribution ratio is used in our model

Part A. Naive Bayes model

KNN classifier model

Support Vector Machine (SVM) with a Linear Kernel

Artifical neural network MLP

Part B.

Metrics	USE or	Justification in relation to the success criteria	Model	Test
	DO		Name	Score

	NOT USE			
Accuracy	Don't use	Our aim is not to evaluate the overall performance of the model. Our success criteria are to prioritise the high-risk and low-risk ones. Because our class distribution is imbalanced, accuracy is suitable for	ANN (MLP)	83
			Linear SVM	82
		balanced distributed classes in the dataset, but it may not be as informative in the case of	KNN (K=?)	84
		imbalanced datasets where the number of negatives outweighs the positives.	NB	82
Recall	Use	Our emphasis is better identification of high-risk patients(true positives) and the importance of high	ANN (MLP)	83
		recall in medical screening, particularly in identifying high-risk patients for undertaking LDCT	Linear SVM	82
		testing. high recall ensures that the majority of high-risk patients, including those with cancer, are	KNN (K=?)	84
		flagged for additional evaluation.	NB	82
Precision	Use	Although our top priority is recall, we should also monitor precision to avoid too many false	ANN (MLP)	82
		positives, which can lead to unnecessary LCDT tests and other expenses.	Linear	79
		·	KNN (K=?)	83
			NB	80
F-Score	Don't use	We don't want the balance between recall and precision. Our desire to minimise false positives	ANN (MLP)	82
		and false negatives is not equally important to our research question.	Linear SVM	79
			KNN (K=?)	83
			NB	80
AUC-	Use	AUC-ROC are useful metrics for evaluating the	ANN	70
ROC		trade-offs between true and false positive rates.	(MLP)	
		These metrics can help determine how well the model separates the high-risk from low-risk	Linear SVM	61
		patients.	KNN	71
			(K=?)	
			NB	65

Part C. Suggest the best classification model or models based on the 'USED' performance metrics scores you identified in (Task 5. b). Briefly describe how well your best model satisfies the needs of your healthcare professionals.

The KNN model stands out as the best classification model based on its high performance in Recall, precision, and AUC-ROC. With a recall rate of 84%, the model effectively identifies 84% of high-risk patients, reducing the occurrence of false negatives and contributing to early diagnosis and treatment. Additionally, the 83% precision rate indicates that 83% of

patients identified as high-risk indeed require further testing, resulting in decreased unnecessary stress and costs.

The AUC-ROC score of 71% demonstrates the model's strong discriminative power, effectively balancing recall and precision to meet clinical needs. Overall, the KNN model's high recall rate supports early detection of lung cancer, while its precise nature optimises resource utilisation and minimises unnecessary procedures.

Part D

- i.Indicate the number of cross-validation K folds used
 - -5 cross-validations k fold used
- ii. For the newly tuned model, document the estimated best hyperparameters,

```
knn_gscv.best_params_

{'algorithm': 'auto', 'n_neighbors': 24, 'p': 1, 'weights': 'distance'}
```

iii Present the test confusion matrix for the best models before and after tuning

Figure 21Best model's test confusion matrix before tuning

Figure 22 Best model's test confusion matric after tuning

iv. Calculate and document the new score/s of the USED performance metric/s to interpret the success criteria identified in (Task 5.b) before and after tuning.

Before Tuning

	precision	recall	f1-score	support
Ø	0.61	0.50	0.55	66
1	0.88	0.92	0.90	270
accuracy			0.84	336
macro avg	0.75	0.71	0.73	336
weighted avg	0.83	0.84	0.83	336

RECALL before tuning: 84

PRECISION before tuning: 83

After Tuning

	precision	recall	f1-score	support
0 1	0.71 0.89	0.52 0.95	0.60 0.92	66 270
accuracy macro avg weighted avg	0.80 0.85	0.73 0.86	0.86 0.76 0.85	336 336 336

RECALL after tuning: 86

PRECISION after tuning: 85

- **v.** Explain your observations on whether the tuning of hyperparameters enhanced the generalisation of your original best model in line with the success criteria.
- -Tuning of the hyperparameters improved our performance metrics values recall from 84% to 86%, the precision of 83% to 85%, and AUC-ROC of 71% to 73%. This means our tuned model has effectively identified high-risk patients, and our model's ability to generalise has improved, meaning it performs better on unseen data and accurately identifies more true positives, additionally reduces false positives, minimising unnecessary stress and additional expenses for patients and making it more effective and reliable for lung cancer screening.
- **Part E,** Based on your best model, draft an answer for the research question, criticise your best-performing model, and state any limitations you may have identified. Research and try to explain why your selected algorithm overtook all other models in no more than 200 words. State any ethical issues your model may raise if used to screen lung cancer.
- -Based on the K-Nearest Neighbors (KNN) model, machine learning shows promise in creating a non-invasive, inexpensive screening tool for predicting those who need LDCT testing for lung cancer. Our best model achieved an impressive recall of 86%, precision of 85%, and an AUC-ROC of 73%, indicating strong performance in identifying high-risk patients. However, the model is not without limitations. The KNN algorithm, while effective, is computationally intensive and sensitive to the choice of K and distance metrics, which can impact performance on larger datasets. The model's reliance on existing data patterns means it may struggle with unseen variations. KNN outperformed other models due to its simplicity and effectiveness in handling medium-sized datasets. Ethical concerns include concerns about data privacy and security, emphasising the need for proper handling of sensitive medical information. Additionally, false positives, though reduced, still pose a risk of unnecessary expense of 1310 £ per false positives, stress and medical procedures for patients. Addressing these limitations and ethical issues is crucial for deploying a reliable and fair screening tool.

Reference list

American cancer society (2019). *Changes in Skin Color* | *Skin Problems*. [online] www.cancer.org. Available at: https://www.cancer.org/cancer/managing-cancer/side-effects/hair-skin-nails/skin-color-changes.html.

Carnio, S., Di Stefano, R. and Novello, S. (2016). Fatigue in lung cancer patients: symptom burden and management of challenges. *Lung Cancer: Targets and Therapy*, 7, p.73. doi:https://doi.org/10.2147/lctt.s85334.

Eldridge, L. (2023). *How Lung Cancer Affects Different Age Groups*. [online] Verywell Health. Available at: https://www.verywellhealth.com/lung-cancer-age-5216079#:~:text=Like%20most%20cancer%20types%2C%20the%20chance%20of%20deve loping.

Houghton, A.M. (2013). Mechanistic links between COPD and lung cancer. *Nature Reviews Cancer*, 13(4), pp.233–245. doi:https://doi.org/10.1038/nrc3477.

Jafri, S.H.R., Ali, F., Mollaeian, A., Hasan, S.M., Hussain, R., Akkanti, B.H., Williams, J.T., Advani, S.M. and El-Osta, H.E. (2017). Major stressful life events and risk of developing lung cancer. *Journal of Clinical Oncology*, 35(15_suppl), pp.1575–1575. doi:https://doi.org/10.1200/jco.2017.35.15 suppl.1575.

John Hopkins Medicine (2019). *Manage Shortness of Breath with Lung Cancer*. [online] John Hopkins Medicine. Available at: https://www.hopkinsmedicine.org/health/conditions-and-diseases/lung-cancer/manage-shortness-of-breath-with-lung-cancer.

Kubat, M. (2018). Introduction To Machine Learning. S.L.: Springer International Pu.

Liu, H. and Cocea, M. (2017). Semi-random partitioning of data into training and test sets in granular computing context. *Granular Computing*, 2(4), pp.357–386. doi:https://doi.org/10.1007/s41066-017-0049-2.

May, L., Shows, K., Nana-Sinkam, P., Li, H. and Landry, J.W. (2023). Sex Differences in Lung Cancer. *Cancers*, [online] 15(12), pp.3111–3111. doi:https://doi.org/10.3390/cancers15123111.

National Health Service (2022). *Overview - Lung cancer*. [online] NHS. Available at: https://www.nhs.uk/conditions/lung-cancer/.

Tam, A. (2021). *Training-validation-test split and cross-validation done right*. [online] Machine Learning Mastery. Available at: https://machinelearningmastery.com/training-validation-test-split-and-cross-validation-done-right/.

Thompson, A., Cook, J., Choquet, H., Jorgenson, E., Yin, J., Kinnunen, T., Barclay, J., Morris, A.P. and Pirmohamed, M. (2020). Functional validity, role, and implications of heavy alcohol consumption genetic loci. *Science Advances*, [online] 6(3), p.eaay5034. doi:https://doi.org/10.1126/sciadv.aay5034.

www.minitab.com. (n.d.). *Data Mining, Machine Learning & Predictive Analytics Software* | *Minitab*. [online] Available at: http://info.salford-systems.com/blog/bid/337783/Why-Data-Scientists-Split-Data-into-Train-and-Test [Accessed 1 Jul. 2024].

Yang, H., Tan, Z., Zhang, Y., Sun, J. and Huang, P. (2022). ABO blood classification and the risk of lung cancer: A meta-analysis and trial sequential analysis. *Oncology Letters*, 24(4). doi:https://doi.org/10.3892/ol.2022.13460.