参考答案

一、 判断题(10分)

1	×	2	×	3	√	4	√	5	×
6	√	7	✓	8	√	9	√	10	√

二、 选择题(25分)

1	В	2	С	3	В	4	D	5	D
6	C	7	D	8	В	9	A	10	C
11	D	12	D	13	В	14	A	15	A
16	В	17	A	18	A	19	В	20	C
21	В	22	A	23	С	24	C	25	C

三、 填空题(15分)

(1)	让权等待	(2)	无名管道
(3)	有名管道	(4)	已发生
(5)	程序段、数据段和 PCB	(6)	起始地址递增的顺序
(7)	实现逻辑地址到物理地址的转	(8)	段表始址和段表长度
	换		
(9)	在指令执行期间产生和处	(10)	一条指令在执行期间可能产生多
	理中断信号		次缺页中断
(11)	硬链接(共享索引节点方	(12)	软连接 (符号链接)
	式)		
(13)	块设备	(14)	字符设备
(15)	32MB		

四、综合题(45分)

1、系统调用也叫程序接口,是应用程序请求 OS 内核完成某功能时的一种过程调用,是用户程序对 OS 内核功能进行调用的一种手段。

在设置了系统调用功能号和参数后,执行系统调用指令便开始进入系统调用,其一般处理过程如下:

- 1) 系统产生软中断(或陷入),由中断硬件完成部分现场信息保护: PSW 的值和 PC 寄存器的值;并通过中断向量转向系统总控中断处理程序完成其他 CPU 现场信息的保存:如陷入类型、参数表指针、其他 CPU 寄存器的值等
- 2) 然后转向执行系统调用处理程序:使用系统调用功能号查找系统调用入口表,找到相应系统调用的处理子程序的入口地址;
- 3) 执行系统调用处理子程序,完毕后返回执行成功与否以及成功时的执行结果给调用者;恢复被中断进程或新调度进程的 CPU 现场,返回被中断进程或新调度进程执行。

2、(8分)(1)

- (2) CPU 有等待,从 100ms 到 150ms 之间, B 在输入时, A 正在打印,无就绪进程。
 - (3) A 无等待, B 有等待, 从 180ms 到 200ms 之间等待。
- **3、**(1)变迁 1: 进程调度;变迁 2: 运行进程时间片用完;变迁 3: 运行进程阻塞;变迁 4: 阻塞进程等待事情发生。
 - (2) 2→1: 是,当前进程时间片用完变成就绪态后,只要就绪队列有进程就 重新调度另外一个进程运行;
 - 3→1: 是, 当前进程变成阻塞状态后, 只要就绪队列有进程就重新调度 另外一个进程运行;
 - 3→2: 不是
 - 4→1:可能是。如果采用基于优先级抢占的调度算法
 - 4、(8分) 解答: Mutex,Sa,Sb,S: Semaphore;

Mutex =1; S=1; Sa=M; Sb=N;

• Process PA:	• Process PB:
• Begin	• Begin
• Loop:	• Loop:

```
P(Sa);
                                          P(Sb);
       生产 A
                                          生产 B
       V(Sb);
                                          V(Sa);
      P(Mutex);
                                          P(Mutex);
      产品 A 入库;
                                          产品 B 入库;
       V(Mutex);
                                          V(Mutex);
       V(S);
                                          V(S);
      Goto Loop;
                                          Goto Loop;
  End;
                                      End;
Process PC:
  Begin
  Loop:
      P(S);
      P(Mutex);
      出库一个商品;
      V(Mutex);
 Goto Loop;
  End;
```

5、(5分)

- (1) 内核线程没有用户地址空间,只能使用大于 PAGE_OFFSET(3G)的地址空间,这通过将 mm 指针设为 NULL 来实现。也就是说内核线程是没有用户上下文的进程。而普通进程不管在用户态还是内核态,可以使用 4GB 的地址空间。
- (2) 内核线程只工作在内核空间,不会切换至用户空间运行。但是,内核线程同样是可调度的(schedulable)和可抢占的(preemptable)。 而普通进程既可在内核态工作,也可以在用户态工作。
- (3) 内核线程执行内核函数,普通进程只能通过系统调用才能执行内核函数。
- **6. (8分):** (1) 0AC5H=(0000101011000101)₂,页面大小1KB,所以低10位为页内地址,页号为2,查页表,块号为4,所以物理地址为

 $(0000101011000101)_{2}$ =12C5H

1AC5H=(0001101011000101)₂,页号为6,块号为2,物理地址为(0000101011000101)₂,=)0AC5H

(2): (10+10) +10=30ns

