Topology Qualifying Exam Fall 1990

Work 6 of the following problems. Start each problem on a new sheet of paper. Do not turn in more than 6 problems.

- **1.** If (X,τ) and (Y,σ) are topological spaces and $f:X\to Y$ is a function, give a detailed settheoretic proof that the following are equivalent.
 - (i) For each $U \in \sigma, f^{-1}[U] \in \tau$.
 - (ii) For each $A \subseteq X$, $f[\overline{A}^{\tau}] \subseteq \overline{f[A]}^{\sigma}$.
- **2.** Prove that [0,1], with its usual topology, is connected.
- **3.** Show that a space X that has the fixed point properly is connected.
- 4. (a) True-False.
 - (i) An open and closed one-to-one function between topological spaces must be an embedding.
 - (ii) Each space that is locally-Hausdorff (in the sense that each point has neighborhood base of Hausdorff subspaces) must be Hausdorff.
 - (iii) Each quotient of a locally connected space must be locally connected.
 - (iv) Each locally compact Hausdorff space is completely regular.
 - (v) The product of metrizable spaces is metrizable.
 - (b) For each false entry, give a counterexample of other explanation (no proofs).
- **5.** (a) State the Axiom of Choice.
 - (b) Give another statement that is equivalent to the Axiom of Choice.
- **6.** Prove that if A is a compact subset of a regular (not necessarily Hausdorff) space X, then \overline{A} is compact.
- 7. Give an example of two topologies σ and τ on the set of integers \mathbb{Z} for which $\sigma \subsetneq \tau$ and (\mathbb{Z}, σ) is homeomorphic to (\mathbb{Z}, τ) .
- **8.** A continuous map $f:(X,\tau)\to (Y,\sigma)$ is said to be final provided that for each topological space (Z,μ) each set-function $g:Y\to Z$ is continuous whenever $g\circ f:(X,\tau)\to (Z,\mu)$ is continuous. Prove that:
 - (a) The composition of final (continuous) maps is final.
 - (b) The "second factor" of a final map is final, i.e., if $(X, \tau) \xrightarrow{f} (Y, \sigma) \xrightarrow{h} (w, s)$ are continuous maps and $h \circ f$ is final, then h is final.
- **9.** (a) Give an example of topological space X that has both a Stone Čech compactification, βX , and an Alexandorff compactification, αX , but for which αX and βX are not homoemorphic.
 - (b) Give a reason why αX and βX , in part (a), are not homeomorphic.
- **10.** (a) If sequential limits in a space X are unique, must X be Hausdorff?

- (b) Prove that your answer to (a) is correct.
- 11. Show that the Moore Plane (tangent disc space) is not normal.
- **12.** Prove that if A is a connected subset of connected space X and if C is a component of X A, then X C is connected.