Teoria de Números Computacional

 teste de avaliação -	 29 de maio de 2019 ———	

A duração da prova é de 120 minutos. Justifique todas as suas respostas convenientemente.

- 1. Seja n=943. Encontre um divisor não trivial de n usando o algoritmo de factorização de Fermat. Sabe-se que $\sqrt{n}\approx 30.708$.
- 2. Use o algoritmo de factorização ρ -Pollard para encontrar um factor não trivial de n=143, usando a sucessão pseudo-aleatória dada por $x_0=2$ e $f(x)=x^2+1$. 2 valores
- 3. Considere o número primo p = 17. Sabe-se que ind₃2 = 14 módulo 17.
 - (a) Mostre que 3 é uma raiz primitiva módulo 17, sabendo que 17 $/(3^8 1)$. 2 valores
 - (b) Resolva $9^x \equiv 2 \mod 17$.
 - (c) Usando o sistema de chave pública Elgamal, com chave pública (p,3,2), decifre a mensagem interceptada (2,5).
- 4. Calcule o símbolo de Jacobi $\left(\frac{68}{129}\right)$.
- 5. Sejam p, q primos distintos e n = pq. Mostre que a probabilidade de $(x, n) \neq 1$ com $0 \leq x < n$ é $\frac{1}{p} + \frac{1}{q} \frac{1}{pq}$.
- 6. Mostre, detalhadamente, que qualquer primo ímpar passa o teste de primalidade probabilístico Solovay-Strassen. 2 valores