Assignment Project Exam Help https://pwoodet.combase Add WeChat powcoder DeS191

10 Relational Database Design

Anomalies can be removed from relation designs by decomposing them until they are in a normal form.

Several problems should be investigated regarding a decomposition.

A decomposition of a relation scheme, R_i is a set of relation schemes $\{R_1, \ldots, R_n\}$ such that $R_i \subseteq R$ for each R_i , and $R_i \subseteq R$ are R_i is a set of relation schemes $\{R_1, \ldots, R_n\}$

Note that in a decomposition R_i and R_j does not have to be empty.

Example: $R = \{A, B, C, A, d \}$, $WeChat powcode, R_3 = \{C, D, E\}$

A naive decomposition: each relation has only attribute.

A good decomposition should have the following two properties.

Dependency Preserving

Definition: Two sets F and G of FD's are equivalent if $F^+ = G^+$.

Given a decomposition $\{R_1, \ldots, R_n\}$ of R:

Assignment: Projects Exam; Help. 3.

https://powcoder.com

$$F^+ = \left(\bigcup_{i=1}^{i=n} F_i\right)^+$$

Examples

$$F = \{ A \rightarrow BC, D \rightarrow EG, M \rightarrow A \}, R = (A, B, C, D, E, G, M, A)$$

1) Given $R_1 = (A, B, C, M)$ and $R_2 = (C, D, E, G)$,

$$F_1 = \{ A \rightarrow BC, M \rightarrow A \}, F_2 = \{ D \rightarrow EG \}$$

 $F = F_1 \cup F_2$. thus, dependency preserving

2) Suppose that FA-SSive Mnn ent R motification and elp

Thus, F_1 and F_2 remain the same.

We need to verify if M-https://powcoder.com

Since $M^+ \mid_{F1 \cup F2} = \{M, A, B, C\}, M \rightarrow D$ is not inferred by $F_1 \cup F_2$.

Thus, R_1 and R_2 are not dependency preserving regarding F.

3) $F'' = \{A \rightarrow BC, D \rightarrow EG, M \rightarrow A, M \rightarrow C, C \rightarrow D, M \rightarrow D\}$

$$F_1 = \{A \rightarrow BC, M \rightarrow A, M \rightarrow C\}, F_2 = \{D \rightarrow EG, C \rightarrow D\}$$

It can be verified that $M \rightarrow D$ is inferred by F_1 and F_2 .

Thus,
$$F^{"+} = (F_1 U F_2)^+$$

Hence, R_1 and R_2 are dependency preserving regarding F".

Lossless Join Decomposition

A second necessary property for decomposition:

A decomposition $\{R_1, \ldots, R_n\}$ of R is a lossless join decomposition with respect to a set F of FR's if for every repringer that the first area of FR's if for every repringer that the first area of FR's if for every repringer that the first area of FR's if for every repringer that the first area of FR's if for every repringer that the first area of FR's if for every repringer that the first area of FR's if for every repringer that the first area of FR's if for every repringer that the first area of FR's if for every repringer that the first area of FR's if for every repringer that the first area of FR's if for every repringer that the first area of FR's if for every repringer that the first area of FR's if for every repringer than the first area of FR's if for every repringer than the first area of FR's if for every repringer than the first area of FR's if for every repringer than the first area of FR's if for every repringer than the first area of FR's if for every repringer than the first area of FR's if the firs

https://powepder.com
$$R_n(r)$$
.

If $r \subset \pi R_1(r) \bowtie \cdots \bowtie \pi R_n(r)$, the decomposition is *lossy*.

Lossless Join Decomposition (cont)

Example 2:

Suppose that we decompose the following relation:

With dependencies $\{Name \rightarrow Department, Name \rightarrow Advisor, Advisor \rightarrow Department\}$, into two relations:

Lossless Join Decomposition(cont)

STUDENT_D	EPARTMENT		DEPARTMEN	T_ADVISOR
Name	Department		Department	Advisor
Jones	Comp Sci		Comp Sci	Smith
Ng Ass	igament P	roject	Examulle	lp Turner
Martin	Physics	1	Physics	Bosky
Duke	https://po	wcod	Ebeckion Sci	Hall
Dulles	Degision Sci	hat n	Mathematics	James
James	Decision Sci Add WeC Comp Sci	mai p	Owcoder Comp Sci	Clark
Evan	Comp Sci		English	Bronte
Baxter	English			

If we join these decomposed relations we get:

Lossless Join Decomposition(cont)

Name	Department	Advisor	
Jones	Comp Sci	Smith	
Jones	Comp Sci	Clark* ←	
Ng	Chemistry	Turner	
Martin	Physics	Bosky	
Assignme	nt Project E	xam⊪Help	
Duke	Mathematics	James	
James James	//powcoder	Smith* ←	
James	Comp Sci	Clark	
Evan	WeChat pov	Smith	
EvalAdd	wecomati pov	wcoder.	
Baxter	English	Bronte	

This is not the same as the original relation (the tuples marked with * have been added). Thus the decomposition is <u>lossy</u>.

Useful theorem: The decomposition $\{R_1, R_2\}$ of R is lossless iff the common attributes $R_1 \cap R_2$ form a superkey for either R_1 or R_2 .

Lossless Join Decomposition (cont)

Example 3: Given R(A,B,C) and $F = \{A \rightarrow B\}$. The decomposition into $R_1(A,B)$ and $R_2(A,C)$ is lossless because $A \rightarrow B$ is an FD over R_1 , so the common attribute A is a key of R_1 .

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Algorithm TEST_LJ

Step 1: Create a matrix S, each element $s_{i,j} \in S$ corresponds the relation R_i and the attribute A_i , such that:

Assignment, Project Exam Help

- Step 2: Repeat the following process till S has no change or one row is made up entirely of "a" symbols.
 - Step 2.1: For each $X \rightarrow Y$, choose the rows where the elements corresponding to X take the value a.
 - Step 2.2: In those chosen rows (must be at least two rows), the elements corresponding to Y also take the value a if one of the chosen rows take the value a on Y.

The decomposition is *lossless* if one row is entirely made up by "a" values.

The algorithm can be found as the Algorithm 15.2 in E/N book.

Note: The correcting in mental project Exeann Helpsumption that no null values are allowed for the join attributes.com

If and only if exists an order that Power deeps

a superkey of R_i or M_{i-1}, where M_{i-1} is the join on R₁, R₂, ... R_{i-1}

Example: $R = (A, B, C, D), F = \{A \rightarrow B, A \rightarrow C, C \rightarrow D\}.$

Let
$$R_1 = (A, B, C), R_2 = (C, D).$$

Initially, S is

AAssignment Project Exam Help

R₁ a https://powcoder.com

R₂ b b a a Add WeChat powcoder Note: rows 1 and 2 of S agree on $\{C\}$, which is the left hand side of $C \rightarrow D$.

Therefore, change the D value on rows 1 to a, matching the value from row 2.

Now row 1 is entirely a's, so the decomposition is lossless.

(Check it.)

Example 2: R = (A, B, C, D, E),

$$F = \{AB \rightarrow CD, A \rightarrow E, C \rightarrow D\}$$
. Let $R_1 = (A, B, C)$,

 $R_2 = (B, C, D)$ and skip in the project Exam Help

https://powcoder.com

Example 3: R = (A, B, A, dt, E, W)eChat powcoder

$$F = \{A \rightarrow B, C \rightarrow DE, AB \rightarrow G\}.$$
 Let $R_1 = (A, B),$

$$R_2 = (C, D, E)$$
 and $R_3 = (A, C, G)$.

Example 4: R = (A, B, C, D, E, G),

$$F = \{AB \to G, C \to DE, A \to B\}.$$

Let $R_1 = (A, B) Assignmenta Project Exam Help$

https://powcoder.com

Algorithm TO_BCNF

```
D := \{R_1, R_2, ...R_n\}
      While \exists a R_i \in D and R_i is not in BCNF Do
                                   \{ \text{ find a } X \text{ As significant and } As significant and } As significant and $(X) = (R_i - Y) = (
        \cup Y); }
                                                                                                                                         https://powcoder.com
F = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, C \rightarrow E, E \rightarrow D, C \rightarrow G\},
Add WeChat powcoder
 R1 = (C, D, E, G), R2 = (A, B, C, D)
 R11 = (C, E, G), R12 = (E, D) due E \rightarrow D
 R21 = (A, B, C), R22 = (C, D) because of C \rightarrow D
```

Algorithm TO_BCNF

$$D := \{R_1, R_2, ...R_n\}$$

While \exists a $R_i \subseteq D$ and R_i is not in BCNF **Do**

{ find a X Assignmentat Project research Help $(R_i - Y)$ and $(X \cup Y)$; }

https://powcoder.com

Since a $X \rightarrow Y$ violating BCNF is not always in F, the main difficulty is to verify if R_i is in BCNF; see the approach below: Add WeChat powcoder

- 1. For each subset X of R_i , computer X^+ .
- 2. $X \rightarrow (X^+|_{Ri} X)$ violates BCNF, if $X^+|_{Ri} X \neq \emptyset$ and $R_i X^+ \neq \emptyset$.

Here, $X^+|_{Ri} - X = \emptyset$ means that each F.D with X as the left hand side is trivial;

 $R_i - X^+ = \emptyset$ means X is a superkey of R_i

Example: (From Desai 6.31)

Find a BCNF decomposition of the relation scheme below:

SHIPPING(Ship, Capacity, Date, Cargo, Value)

F consists of Assignment Project Exam Help

Ship→ Capacity https://powcoder.com

{Ship, Date}→ Cargo
Add WeChat powcoder
{Cargo, Capacity}→ Value

```
Ship, Date\}
\{Ship, Date\} \rightarrow Cargo
\{Cargo, Capacity\} \rightarrow Value
\{Ship, Cargo\} \rightarrow Value
                                                 Ship → Capacity
  R_1(Ship, Date, Cargo, Value)
  {Ship, Cargo} — Nalue://powcoder.com
and
 R<sub>2</sub>(Ship, Capacity) Add WeChat powcoder
  Key: {Ship}
  Only one nontrivial FD in F^+: Ship \rightarrow Capacity
```

R₁ is not in BCNF so we must decompose it further into

```
R_{II}(Ship, Date, Cargo) \\ \text{Key: } \{Ship, Date\} \\ \text{Only one nontrivial point.} \\ \text{Project Example of the right side: } \{Ship, Date\} \\ \text{Only one nontrivial point.} \\ \text{Project Example of the right side: } \{Ship, Date\} \\ \text{Only one nontrivial point.} \\ \text{Project Example of the right side: } \{Ship, Date\} \\ \text{Only one nontrivial point.} \\ \text{Note of the right side: } \{Ship, Date\} \\ \text{Only one nontrivial point.} \\ \text{Note of the right side: } \{Ship, Date\} \\ \text{Only one nontrivial point.} \\ \text{Note of the right side: } \{Ship, Date\} \\ \text{Only one nontrivial point.} \\ \text{Note of the right side: } \{Ship, Date\} \\ \text{Only one nontrivial point.} \\ \text{Note of the right side: } \{Ship, Date\} \\ \text{Only one nontrivial point.} \\ \text{Note of the right side: } \{Ship, Date\} \\ \text{Only one nontrivial point.} \\ \text{Note of the right side: } \{Ship, Date\} \\ \text{Only one nontrivial point.} \\ \text{Note of the right side: } \{Ship, Date\} \\ \text{Only one nontrivial point.} \\ \text{Note of the right side: } \{Ship, Date\} \\ \text{Only one nontrivial point.} \\ \text{Note of the right side: } \{Ship, Date\} \\ \text{Only one nontrivial point.} \\ \text{Note of the right side: } \{Ship, Date\} \\ \text{Only one nontrivial point.} \\ \text{Note of the right side: } \{Ship, Date\} \\ \text{Only one nontrivial point.} \\ \text{Only one nontrivial point.} \\ \text{Note of the right side: } \{Ship, Date\} \\ \text{Only one nontrivial point.} \\ \text{Note of the right side: } \{Ship, Date\} \\ \text{Only one nontrivial point.} \\ \text{Note of the right side: } \{Ship, Date\} \\ \text{Only one nontrivial point.} \\ \text{Note of the right side: } \{Ship, Date\} \\ \text{Only one nontrivial point.} \\ \text{Note of the right side: } \{Ship, Date\} \\ \text{Only one nontrivial point.} \\ \text{Only one
```

Only one nontrivial FD in F⁺ with single attribute on the right side: $\{Ship, Cargo\} \rightarrow Value$

This is in BCNF and the decomposition is lossless but not dependency preserving (the FD {Capacity, Cargo} $\rightarrow Value$) has been lost.

Or we could have chosen $\{Cargo, Capacity\} \rightarrow Value$, which would give us:

```
R_1 (Ship, Capacity, Date, Cargo)

Ship \rightarrow Capacity

Key: {Ship, Date}

A nontrivial Assignment Project ExamChedpCapacity} \rightarrow Value
```

Ship → *Capacity* https://powcoder.com

and

Add WeChat powcoder

 R_2 (Cargo, Capacity, Value)

Key: { Cargo, Capacity}

Only one nontrivial FD in F⁺ with single attribute on the right side: { Cargo, Capacity} \rightarrow Value

and then from $Ship \rightarrow Capacity$,

 $R_{11}(Ship, Date, Cargo)$

Key: {Ship,Date}

Ship \rightarrow Capacity $\{Ship, Date\} \rightarrow Cargo$ $\{Cargo, Capacity\} \rightarrow Value$

Only one nontrivial FD in F⁺ with single attribute

on the right side: $\{Ship, Date\} \rightarrow Cargo$

And

Assignment Project Exam Help

R₁₂(Ship, Capacity)https://powcoder.com

Key: {Ship}

Only one nontrivial FD in F^+ : Ship \rightarrow Capacity

This is in BCNF and the decomposition is both lossless and dependency preserving.

However, there are relation schemes for which there is no lossless, dependency preserving decomposition into BCNF.

Lossless and dependency-preserving decomposition into 3NF

A lossless and dependency-preserving decomposition into 3NF is always possible.

More definitions regarding FD's are needed.

A set F of FD's is minimal if

- 1. Every FD AssignmeintpProjectisExterninHelpibute,
- 2. Every FD $X \rightarrow A$ in F is *left-reduced*: there is no proper subset https://powcoder.com $Y \subset X$ such that $X \rightarrow A$ can be replaced with $Y \rightarrow A$.

that is, there is not all that powcoder

$$((F - \{X \rightarrow A\}) \cup \{Y \rightarrow A\})^{+} = F^{+}$$

3. No FD in F can be removed; that is, there is no FD $X \rightarrow A$ in F

Iff
$$X \rightarrow A$$
 is inferred
From $F - \{X \rightarrow A\}$

$$(F - \{X \to A\})^+ = F^+.$$

Computing a minimum cover

F is a set of FD's.

A minimal cover (or canonical cover) for F is a minimal set of FD's F_{min} such that $F^+ = F^+_{min}$.

Algorithm Min Cover

Input: a set FAssignmenteProject Exam Help

Output: a minimum cover of F.

Step 1: Reduce right to S. Appowerod executing to F.

Step 2: Reduce left side. Apply Algorithm Reduce left to the output of Step 2.

Step 3: Remove reachdat We applat I portwooder_redundency to the output of Step

2. The

output is a minimum cover.

Below we detail the three Steps.

Computing a minimum cover (cont)

Algorithm Reduce_right

INPUT: F.

OUTPUT: right side reduced F'.

For each FD $X \rightarrow Y \in F$ where $Y = \{A_1, A_2, ..., A_k\}$, we use all $X \rightarrow \{A_i\}$ (for $1 \le i \le k$) to replace $X \rightarrow Y$. Assignment Project Exam Help

Algorithm Reduce_left

INPUT: right side reduced F: //powcoder.com

OUTPUT: right and left Addrdd WeChat powcoder

For each $X \to \{A\} \in F$ where $X = \{A_i : 1 \le i \le k\}$, do the following. For i = 1 to k, replace X with $X - \{A_i\}$ if $A \in (X - \{A_i\})^+$.

Algorithm Reduce_redundancy

INPUT: right and left side reduced *F*.

OUTPUT: a minimum cover F' of F.

For each FD $X \to \{A\} \in F$, remove it from F if: $A \in X^+$ with respect to $F - \{X \to \{A\}\}$.

Example:

R = (A, B, C, D, E, G)

 $F = \{A \rightarrow BCD, B \rightarrow CDE, AC \rightarrow E\}$

Step 1: $F' = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, B \rightarrow C, B \rightarrow D, B \rightarrow E, AC \rightarrow E\}$

Step 2: AC \rightarrow E

 $C^+ = \{C\}$; thus $C \rightarrow E$ is not inferred by F'.

Hence, $AC \rightarrow E$ cannot be replaced by $A \rightarrow E$. Assignment Project Exam Help $A^+ = \{A, B, C, D, E\}$; thus, $A \rightarrow E$ is inferred by F'.

Hence, AC→ E can be replatepsy/Apowcoder.com

 $F'' = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, A \rightarrow E, B \rightarrow C, B \rightarrow D, B \rightarrow E\}$ Add WeChat powcoder $Step 3: A+|_{F''-\{A \rightarrow B\}} = \{A, C, D, E\}; thus A \rightarrow B is not inferred by F''-\{A \rightarrow B\}.$

That is, $A \rightarrow B$ is not redundant.

 $A+|_{F''-\{A \rightarrow C\}}=\{A, B, C, D, E\}$; thus, $A \rightarrow C$ is redundant.

Thus, we can remove $A \rightarrow C$ from F" to obtain F".

Iteratively, we can $A \rightarrow D$ and $A \rightarrow E$ but not the others.

Thus, $F_{min} = \{A \rightarrow B, B \rightarrow C, B \rightarrow D, B \rightarrow E\}$.

3NF decomposition algorithm

Algorithm 3NF decomposition

- 1. Find a minimum cover F' of F.
- 2. For each left side X that appears in F, do:
 Assignment Project Exam Help
 create a relation schema $X \cup A_1 \cup A_2 ... \cup A_m$ where $X \rightarrow \{A_1\}, ..., X \rightarrow \{A_m\}$ are all the https://powcoder.com

3. if none of the relation schemas contains a key of *R*, create one more relation schema that contains attributes that form a key for *R*. See E/N Algorithm 15.4.

Example:

$$R = (A, B, C, D, E, G)$$

 $F_{min} = \{A \rightarrow B, B \rightarrow C, B \rightarrow D, B \rightarrow E\}.$
Candidate key: (A, G)
 $R_1 = (A, B), R_2 = (B, C, D, E)$
 $R_3 = (A, G)$ https://powcoder.com
Add WeChat powcoder

3NF decomposition algorithm(cont)

Example: (From Desai 6.31)

Beginning again with the *SHIPPING* relation. The functional dependencies already form a canonical cover.

- From Ship Assignituderity Profess (Programme) Help
- From $\{Ship, Date\} \rightarrow Cargo$, derive https://powcoder.com $R_2(\underline{Ship}, \underline{Date}, Cargo)$,
- From $\{Capacity, Cargo\}$ We Chat powcoder $R_3(Capacity, Cargo, Value)$.
- There are no attributes not yet included and the original key $\{Ship, Date\}$ is included in R_2 .

3NF decomposition algorithm(cont)

Another Example: Apply the algorithm to the LOTS example given earlier.

A minimal cover is

```
{ Property_Id→Lot_No,

Property_Id → Area, {City,Lot_No} → Property_Id,

Assignment Project Exam Help

Area → Price, Area → City, City → Tax_Rate }.
```

This gives the decomplate s://powcoder.com

```
R_1(\underbrace{\textit{Property\_Id}}, \underbrace{\textit{Lot\_No}}, \underbrace{\textit{Area}}, \underbrace{\textit{Area}}, \underbrace{\textit{City}}, \underbrace{\textit{Lot\_No}}, \underbrace{\textit{Property\_Id}})
R_2(\underbrace{\textit{City}}, \underbrace{\textit{Lot\_No}}, \allowbreak Property\_Id)
R_3(\underbrace{\textit{Area}}, \allowbreak Price, \allowbreak City)
R_4(\underbrace{\textit{City}}, \allowbreak Tax\_Rate)
```

Exercise 1: Check that this is a lossless, dependency preserving decomposition into 3NF.

Exercise 2: Develop an algorithm for computing a key of a table R with respect to a given F of FDs.

Summary

Data redundancies are undesirable as they create the potential for update anomalies,

One way to remove such redundancies is to normalise a design, guided by FD's.

Assignment Project Exam Help
BCNF removes all redundancies due to FD's, but a dependency
preserving decomposition cannot always be found

A dependency preserving, lossless decomposition into 3NF can always be found, but some readdla Wie Chastronaw, coder

Even where a dependency preserving, lossless decomposition that removes all redundancies can be found, it may not be possible, for efficiency reasons, to remove all redundancies.