I. Hypothèses et données

I.1. Terminologie

Systèmes de numération :

- Le système binaire est le système de numération utilisant la base 2.
- Le système décimal est le système de numération utilisant la base 10.
- Le système hexadécimal est le système de numération utilisant la base 16.

Binaire	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111
Décimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hexadécimal	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F

On dit de manière rigoureuse :

- · Un nombre en notation binaire.
- Un nombre en notation décimale.
- Un nombre en notation hexadécimale.

On dit plus simplement :

- · Un nombre binaire.
- Un nombre décimal.
- Un nombre hexadécimal.

Attention à la confusion, un nombre décimal peut désigner :

- Un nombre en notation décimale, on dit aussi un nombre écrit en base 10.
- Un nombre réel avec un nombre fini de chiffres après la virgule.

I.2. Conversion binaire-hexadécimal

Elle est très simple à obtenir :

- Les chiffres binaires se regroupent par quatre, en partant de la droite.
- Chaque groupe de quatre chiffres se remplace par le chiffre hexadécimal correspondant.

Par exemple, en notation hexadécimale :

- 100 (ou 0100) s'écrit 4
- 1101 s'écrit D
- 100 1101 (ou 0100 1101) s'écrit 4D

I.3. Conversion binaire-décimal

Elle nécessite d'effectuer un calcul. Par exemple, on convertit 100 1101 en notation décimale à l'aide du schéma :

$$1 \times 2^{6} + 0 \times 2^{5} + 0 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} =$$
 $2^{6} + 2^{3} + 2^{2} + 2^{0} =$
 $64 + 8 + 4 + 1 =$
77

n	0	1	2	3	4	5	6	7	8	9	10
2 ⁿ	1	2	4	8	16	32	64	128	256	512	1024

Codage binaire décimal et hexadécimal

II. Etude demandée

Ecrire les nombres binaires d'abord en notation hexadécimale, puis en notation décimale, en complétant le tableau.

Binaire	Hexadécimal	Décimal
110		
1010		
1 0011		
10 1010		
110 0011		
1010 0010		
1 0010 0101		
10 1000 1001		

III. Conversion décimale – binaire

Principe: division euclidienne

Exemple: