Math 116: Problem Set 6

Owen Jones

2/27/2024

1. (a) If $\gcd(e,24)=1$, then $\gcd(e,3)=1$ and e is odd. By Fermat's Little Theorem, $e^2\equiv 1\pmod 3$ $\begin{cases} e^2\equiv 16m^2+24m+9\equiv 1\pmod 8 & \text{if }e\equiv 3\pmod 4\\ e^2\equiv 16m^2+8m+1\equiv 1\pmod 8 & \text{if }e\equiv 1\pmod 4\\ & \text{Because }e^2=1\pmod 24 \text{ satisfies the system of conguences} \end{cases}$

$$e^2 \equiv 1 \pmod{3}$$

 $e^2 \equiv 1 \pmod{8}$

the CRT states $e^2 \equiv 1 \pmod{24}$ must be the unique solution to the system.

- (b) $\phi(35) = \phi(5) \cdot \phi(7) = 24$. Thus, $ed \equiv 1 \pmod{24}$. However, we know from part (a) that if e and 24 are coprime, $e^2 \equiv 1 \pmod{24}$. Thus, $c^e \equiv (m^e)^e \equiv m^{e^2} \equiv m^{\phi(35)k} \cdot m \equiv m \pmod{35}$
- 2. gcd(e, (p-1)(q-1)(r-1)) = 1 and gcd(d, (p-1)(q-1)(r-1)) = 1.
- 3. No. It is equivalent to using a single encryption exponent $e^* = e_1 \cdot e_2$. It is not any more difficult to find a d s.t $de^* \equiv 1 \pmod{\phi(n)}$ i.e it still only depends on how difficult it is to factor n.
- 4. From the information given $n \mid (516107 \cdot 187722 14)(516107 \cdot 187722 + 14)$. It follows $\gcd(n, 516107 \cdot 187722 14) = 1129$ which is a non-trivial factor of n, the other being 569.

$$(516107 \cdot 187722 - 14) = 642401 \cdot 150816 + 289024$$

 $642401 = 2 \cdot 289024 + 64353$
 $289024 = 4 \cdot 64353 + 31612$
 $64353 = 2 \cdot 31612 = 1129$
 $31612 = 28 \cdot 1129$

5. $m_B - m_A \equiv p \cdot p^{-1} \pmod{n}$ by the CRT where $p \cdot p^{-1} \equiv 1 \pmod{q}$. $0 because <math>0 < p^{-1} < q$. It follows $\gcd(p \cdot p^{-1}, n) = p$ gives one of the non-trivial factors of n.

- 6. (a) If α is a primitive root, then $\alpha^{L_{\alpha}(\beta_{1}\cdot\beta_{2})}\equiv\alpha^{L_{\alpha}(\beta_{1})+L_{\alpha}(\beta_{2})}$ (mod p) iff $L_{\alpha}(\beta_{1}\cdot\beta_{2})\equiv L_{\alpha}(\beta_{1})+L_{\alpha}(\beta_{2})$ (mod p-1). Because α is a primitive root, L_{α} is onto. $\alpha^{L_{\alpha}(\beta_{1}\cdot\beta_{2})}\equiv\beta_{1}\cdot\beta_{2}\equiv\alpha^{L_{\alpha}(\beta_{1})}\cdot\alpha^{L_{\alpha}(\beta_{2})}\equiv\alpha^{L_{\alpha}(\beta_{1})+L_{\alpha}(\beta_{2})}$ (mod p).
 - (b) Since α is not necessarily a primitive root, $k \leq p-1$ where k is the smallest integer s.t $\alpha^k \equiv 1 \pmod{p}$. Let $x = L_{\alpha}(\beta_1 \cdot \beta_2), y = L_{\alpha}(\beta_1),$ and $z = L_{\alpha}(\beta_2)$ for $0 \leq x, y, z < k$. It follows $\alpha^x \equiv \beta_1 \cdot \beta_2 \equiv \alpha^y \cdot \alpha^z \pmod{p}$. Because $a^{x-y-z} \equiv 1 \equiv \alpha^k \pmod{p} \Rightarrow x \equiv y+z \pmod{k}$. Thus, $L_{\alpha}(\beta_1 \cdot \beta_2) \equiv L_{\alpha}(\beta_1) + L_{\alpha}(\beta_2) \pmod{k}$.
- 7. (a) $L_2(24) \equiv 3L_2(2) + L_2(3) \pmod{100}$. $L_2(2) = 1 \Leftrightarrow 2^1 \equiv 2 \pmod{101}$ trivially. Thus, $L_2(24) \equiv 72 \pmod{100}$.
 - (b) Given $5^3 \equiv 24 \pmod{101}$, it follows $2^{L_2(24)} \equiv 2^{3L_2(5)} \pmod{101}$. Thus, $L_2(24) \equiv 3L_2(5) \equiv 3 \cdot 24 \equiv 72 \pmod{100}$.
- 8. Given $3^6 \equiv 44 \pmod{137}$ and $3^{10} \equiv 2 \pmod{137}$, it follows $L_3(44) = 6$ and $L_3(2) = 10 \ L_3(44) 2L_3(2) \equiv L_3(11) \equiv -14 \pmod{136}$. Thus, $L_3(11) \equiv 122 \pmod{136}$.
- 9. (a) Discrete logarithms are an example of a one way function. Computing $b^y \pmod{p}$ to check password against the list of encrypted passwords is computationally easy. However, given the list of encrypted passwords, it is computationally difficult to deduce the password, x, from $b^x \pmod{p}$ because checking every x between 0 and p-1 would take centuries to compute when p is of the order of magnitude 10^{499} .
 - (b) The system in part (a) would not be secure if p was a 5 digit number because an exhaustive search of every x between 0 and p-1 is feasible with a sufficiently fast computer. Thus, this system would be weak to a brute force attack.
- 10. If $r = 7 \Rightarrow r^{-1} \equiv 5 \pmod{17}$. Thus, $(r^{-1})^a \beta^k m \equiv m \equiv 5^6 \cdot 6 \equiv 12 \pmod{17}$. Hence, m = 12.
- 11. (a) If $0 \le m < n_i$ for $i = 1, 2, 3, 0 \le m^2 < mn_1 < n_1n_2$ $\Rightarrow 0 \le m^3 < m^2n_3 < n_1n_2n_3$. Thus, $0 \le m^3 < n_1n_2n_3$.
 - (b) Let $N=n_1n_2n_3$, $z_i=\frac{N}{n_i}$, $y_i\equiv z_i^{-1}\pmod{n_i}$ Thus, $c_1y_1z_1+c_2y_2z_2+c_3y_3z_3$ satisfies the system of conguences. Let $m^3\equiv c_1y_1z_1+c_2y_2z_2+c_3y_3z_3\pmod{n_1n_2n_3}$ be the smallest positive integer that satisfies the congruence relation.
 - (c) m = 230520182119202018051420 WETRUSTTRENT Found using bisection method.
- 12. (a) p = 3994211774931437561721507289q = 771813803019901406912522267

- (b) m = 805250221040425 HEYBUDDY
- 13. $3^{1234} \equiv 8576 \pmod{53047}$
- 14. (a) $2^{2000} \equiv 3925 \pmod{3989}, 2^{3000} \equiv 1046 \pmod{3989}$
 - (b) $L_2(3925 \cdot 1046) \equiv L_2(3925) + L_2(1046) \equiv 5000 \equiv 1012 \pmod{3988}$. Thus, $L_2(3925 \cdot 1046) = 1012$.

```
In [93]:
          import numpy as np
           import math116
           import scipy
          from scipy import optimize
           import math
In [94]:
            n \ 1 = 1067630413187841523694537298073305552274776079802902672351039 
            n \ 2 = 741591202370072789953706745485666075004784174022368180242037 \\
           n 3=667336142291948937637980407048251181747364391891428340555141
          N=n_1*n_2*n_3
In [95]:
          c 1=529845560668797629400939585461719431833561498816920423702247
           c 2=169291735293877329351269953081439652585988812455417922505176
           c 3=642418962414073836488116737694096521023718712673159264182195
In [96]:
          v 1=N//n 1
          y_2=N//n_2
          y_3=N//n_3
In [97]:
           z_1=math116.inverse(y_1,n_1)
           z_2=math116.inverse(y_2,n_2)
           z_3=math116.inverse(y_3,n_3)
In [98]:
          m_3 = (c_1 * y_1 * z_1 + c_2 * y_2 * z_2 + c_3 * y_3 * z_3) %N
In [84]:
          f = lambda x: x**3-m_3
In [99]:
           m 3
Out [99]: 12249739749784771985364504924805398662123078918189011371891240923288000
In [110...
           def bisection(f,a,b,tol=1):
               if np.sign(f(a))==np.sign(f(b)):
                   print('a and b do not bound a root')
               m = (a+b)//2
               if abs(f(m))<tol:</pre>
                   return m
               elif np.sign(f(a))==np.sign(f(m)):
                   return bisection(f,m,b,tol=1)
               elif np.sign(f(b))==np.sign(f(m)):
                   return bisection(f,a,m,tol=1)
In [111...
          bisection(f,m_0,m_3)
Out [111... 230520182119202018051420
```

```
In [112...
          math116.num_to_text(230520182119202018051420)
          'WETRUSTTRENT'
Out [112...
In [102...
          m=int(pow(m_3,1/3))
Out[102... 2.305201821192013e+23
In [33]:
          a=2
           i=2
          n=3082787780076703322597022112433309015881410588015304163
          while True:
               a=pow(a,i,n)
               p=math116.gcd(a-1,n)
               if p>1:
                   print(p)
                   break
               i+=1
          3994211774931437561721507289
In [34]:
           q=n//p
In [35]:
           phi_n=(p-1)*(q-1)
In [36]:
           d=math116.inverse(65537,phi_n)
In [39]:
           c=1409434396818034663404225667133198898377678131865927114
          pow(c,d,n)
Out[39]: 805250221040425
In [46]:
           pow(3,1234,53047)
Out [46]: 8576
In [48]:
          pow(2,2000,3989)
Out[48]: 3925
In [50]:
          pow(2,3000,3989)
Out[50]: 1046
In [51]:
          pow(2,1012,3989)
```

Out[51]:	869
In [52]:	(3925*1046)% 3989
Out[52]:	869
In [17]:	math116.num_to_text(805250221040425)
Out[17]:	'HEYBUDDY'
In []:	