Visualization and Analysis of Geographic Information Algorithms and Data Structures

João Valença valenca@student.dei.uc.pt

Departmento de Engenharia Informática Universidade de Coimbra

October 24, 2013

Motivation

 Reduce visual information when displaying large numbers of geographic points

Motivation

- Reduce visual information when displaying large numbers of geographic points
- ► Find a representative subset of a collection of geographic points.

Motivation

- Reduce visual information when displaying large numbers of geographic points
- ► Find a representative subset of a collection of geographic points.

Given a set of points P and an integer $k \leq |P|$

Find a subset of points $S \subseteq P$, |P| = k, that is "representative" of P

Consider the distance between every point in $P \setminus S$ and its closest point in S

Consider the distance between every point in $P\setminus S$ and its closest point in S k-centre problem: Find subset S that minimises the largest distance

Optimal solution

Work Plan

- ▶ 1st Semester
 - ► Literature Review: Geographic Information Systems, OGC Standards WMS, WFS, Map Projections, algorithms and heuristics for clustering and facility-location problems.
 - ▶ Development of a Branch-and-Bound approach.
- 2nd Semester
 - Development of heuristic approaches.
 - Experimental analysis of the algorithms.
 - Comparison between different approaches using Open Street Map data.
 - Integration of the algorithms in the visualisation framework through web-mapping standards (WMS/WFS).

Use a branch-and-bound approach.

- Use a branch-and-bound approach.
- ► For each point, decide if it is a Centroid or not.

- Use a branch-and-bound approach.
- ▶ For each point, decide if it is a Centroid or not.
- ▶ Incrementally update the value of the objective function.

- Use a branch-and-bound approach.
- For each point, decide if it is a Centroid or not.
- ▶ Incrementally update the value of the objective function.
- Use bounds to discard branches that do not contribute to the optimal solution.

Add a point.

Add a non-centroid point (in black).

Assign each non-centroid to the closest centroid.

Adding non-centroid points.

Assign each non-centroid to the closest centroid.

Adding a centroid.

Assign each non-centroid to the closest centroid.

Adding more non-centroid points.

Assign each non-centroid to the closest centroid.

Adding another centroid point.

Assign each non-centroid to the closest centroid.

Finishing the solution branch.

Finishing the solution branch.

- ▶ Implement a planar location data structure to allow Voronoi diagrams to speed insertions and deletions of points to the solutions up from $\mathcal{O}(n)$ to $\mathcal{O}(\log n)$
- Explore bounds to cut the recursive tree.
- Explore heuristic approaches to generate acceptable non-optimal solutions for larger problems.
- Apply and benchmark approaches with real-life data.

The Voronoi diagram partitions the space in cells. Each cell contains all points whose closest centroid is the same.

With the help of additional structures, insertion of a non-centroid point can be done in $\mathcal{O}(\log n)$

Adding n non-centroid points takes $\mathcal{O}(n \log n)$ Better than the naïve $\mathcal{O}(n^2)$

Using an incremental Voronoi algorithm, adding a centroid point also takes $\mathcal{O}(\log n)$, and creates another cell.

Updating the solution only requires a check through each of the new cell's neighbours.

This step can still take $\mathcal{O}(n^2)$ comparisons, but this occurrence is fairly rare.