

UNIVERSIDADE FEDERAL DO PARÁ CAMPUS UNIVERSITÁRIO DE TUCURUÍ FACULDADE DE ENGENHARIA ELÉTRICA

TÍTULO DO TRABALO

OSÉIAS DIAS DE FARIAS

UNIVERSIDADE FEDERAL DO PARÁ CAMPUS UNIVERSITÁRIO DE TUCURUÍ FACULDADE DE ENGENHARIA ELÉTRICA

OSÉIAS DIAS DE FARIAS

TÍTULO DO TRABALHO

Trabalho de conclusão de curso apresentado ao colegiado da Faculdade de Engenharia Elétrica, do Campus Universitário de Tucuruí, da Universidade Federal do Pará, como requisito necessário para obtenção do título de Bacharel em Engenharia Elétrica.

Orientador: Prof. Dr. Rphael Barros Teixeira

UNIVERSIDADE FEDERAL DO PARÁ CAMPUS UNIVERSITÁRIO DE TUCURUÍ FACULDADE DE ENGENHARIA ELÉTRICA

TÍTULO DO TRABALHO

AUTOR: OSÉIAS DIAS DE FARIAS

TRABALHO DE	CONCLUSÃO DE CURSO SUBMETIDO À BANCA EXAMINADORA APR	₹ O-
VADA PELO COL	LEGIADO DA FACULDADE DE ENGENHARIA ELÉTRICA, SENDO JULGAI	Ю
•••••		
BANCA EXAMIN	NADORA:	
_	Prof. Dr. Raphael Barros Teixeira Orientador / UFPA-CAMTUC-FEE	
_	Prof. Dr. NOME PRIMEIRO AVALIADOR Membro 1 / UFPA-CAMTUC-FEE	
	Prof. Dr. NOME PRIMEIRO AVALIADOR Membro 2 / UFPA-CAMTUC-FEE	

Resumo

Resumo aqui

Palavras Chave: .

Abstract

Texto do abstract (inglês)

Keywords: Palavras chave em inglês.

SUMÁRIO

Resumo .		IV
Abstract .		٧
Sumário .		vi
1	INTRODUÇÃO	1
1.1	Justificativa	1
1.2	Objetivos	1
1.3	Escopo do Trabalho	1
2	REVISÃO BIBLIOGRÁFICA	2
2.1	Modelagem e Controle de Sistemas	2
2.1.1	Transformada Laplace	2
2.1.2	Transformada Z	2
2.1.3	Espaço de Estados	2
2.2	Identificação de Sistemas	2
3	SIMULADOR E PROTÓTIPO DO AEROPÊNDULO	3
3.1	Prototipagem	4
3.1.1	Parte estrutural do sistema	4
3.1.2	Parte Elétrica do sistema	4
3.1.3	Montagem do Protótipo	4
3.2	Simulador usando Python	4
3.2.1	Linguagem Python	4
3.2.2	Biblioteca VPython	4
3.2.3	Simulador Gráfico	4
4	DESENVOLVIMENTO	5
4.1	Fundamentação Teórica	5
4.2	Modelagem Matemática	5
4.2.1	Modelo Matemático do Motor CC Série	5
4.2.2	Modelo Matemático do Aeropêndulo	5
4.2.3	Junção dos dois Modelos	5

4.3	Modelo do Aeropêndulo por Identificação de Sistemas	5
5	PROJETO DE CONTROLADORES	6
5.1	Projeto de Controle por LGR	7
5.1.1	Obtendo o Controlador	7
5.1.2	Discretização do controlador Transformada Z	7
5.1.3	Implementação do Controlador usando o Arduino Nano	7
5.2	Projeto de Controle por Espaço de Estados	7
5.2.1	Obtendo o Controlador	7
5.2.2	Discretização do controlador Transformada Z	7
5.2.3	Implementação do Controlador usando o Arduino Nano	7
5.3	Interface Gráfica Plotagem dos Estados do Sistema	7
5.3.1	Obtendo o Controlador	7
5.3.2	Discretização do controlador Transformada Z	7
6	RESULTADOS E DISCUSSÕES	8
7	CONCLUSÃO	9
7.0.1	Considerações Finais	9
7.0.2	Trabalhos Futuros	9
REFERÊ	NCIAS	10

1

INTRODUÇÃO

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

1.1 Justificativa

1.2 Objetivos

1.3 Escopo do Trabalho

2

REVISÃO BIBLIOGRÁFICA

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

2.1 Modelagem e Controle de Sistemas

- 2.1.1 Transformada Laplace
- 2.1.2 Transformada Z
- 2.1.3 Espaço de Estados
- 2.2 Identificação de Sistemas

3

SIMULADOR E PROTÓTIPO DO AEROPÊNDULO

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

3.1 Prototipagem

- 3.1.1 Parte estrutural do sistema
- 3.1.2 Parte Elétrica do sistema
- 3.1.3 Montagem do Protótipo
- 3.2 Simulador usando Python
- 3.2.1 Linguagem Python
- 3.2.2 Biblioteca VPython
- 3.2.3 Simulador Gráfico

4

DESENVOLVIMENTO

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

- 4.1 Fundamentação Teórica
- 4.2 Modelagem Matemática
- 4.2.1 Modelo Matemático do Motor CC Série
- 4.2.2 Modelo Matemático do Aeropêndulo
- 4.2.3 Junção dos dois Modelos
- 4.3 Modelo do Aeropêndulo por Identificação de Sistemas

5

PROJETO DE CONTROLADORES

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

5.1 Projeto de Controle por LGR

- 5.1.1 Obtendo o Controlador
- 5.1.2 Discretização do controlador Transformada Z
- 5.1.3 Implementação do Controlador usando o Arduino Nano
- 5.2 Projeto de Controle por Espaço de Estados
- 5.2.1 Obtendo o Controlador
- 5.2.2 Discretização do controlador Transformada Z
- 5.2.3 Implementação do Controlador usando o Arduino Nano
- 5.3 Interface Gráfica Plotagem dos Estados do Sistema
- 5.3.1 Obtendo o Controlador
- 5.3.2 Discretização do controlador Transformada Z

6

RESULTADOS E DISCUSSÕES

CONCLUSÃO

- 7.0.1 Considerações Finais
- 7.0.2 Trabalhos Futuros

REFERÊNCIAS