Conversion terms

Mean Available Potential Energy to Mean Kinetic Energy

$$C(P_m, K_m) = -\int_V g\overline{\rho} \,\overline{w}dV$$

Eddy Available Potential Energy to Eddy Kinetic Energy

$$C(P_e, K_e) = -\int_V g \overline{\rho' w'} dV$$

Eddy Kinetic Energy to Mean Kinetic Energy

$$C(K_e, K_m) = \int_{V} (\rho_o \overline{u' u'} \nabla \overline{u} + \rho_o \overline{v' u'} \cdot \nabla \overline{v}) dV$$

Eddy Available Potential Energy to Mean Available Potential Energy

$$C(P_e, P_m) = -\int_V \frac{g}{n_o} \overline{\rho' u'} \cdot \nabla_h \overline{\rho} dV$$

Generation Terms

Generation of Mean Available Potential Energy

$$G(P_m) = -\int_S g \frac{\alpha_{o,1}}{n_o} \overline{J}_s \overline{\rho*} dS - \int_S g \frac{\beta_{o,1}}{n_o} \overline{G}_s \overline{\rho*} dS$$

here J is surface temperature flux

G is surface salinity flux

 $\alpha_{o,1}$ and $\beta_{o,1}$ are coefficient of expansions at the top layer

$$J_s = \frac{H}{\rho_s c}$$
 and H is surface heat flux

$$G_s = S_1(E - P)$$

E is evaporation and P is precipitation

 S_1 is the surface salinity </br>

$$\rho*=\rho-\rho_{ref}$$
 $\rho_{ref}=\langle\overline{\rho}\rangle$ where $\langle\dots\rangle$ refer to area averaging

Generation of mean Kinetic Energy

$$G(K_m) = \int_{S} (\overline{\tau_x} \, \overline{u} + \overline{\tau_y} \, \overline{v}) \, dS$$

Generation of Eddy Kinetic Energy

$$G(K_e) = \int_{S} (\overline{\tau'_x u'} + \overline{\tau'_y v'}) dS$$

Generation of Eddy Available Potential Energy

$$G(P_e) = -\int_S g \frac{\alpha_{o,1}}{n_o} \overline{J_s' \rho'} dS - \int_S g \frac{\beta_{o,1}}{n_o} \overline{G_s' \rho'} dS$$

Energy reservoirs

Mean Potential Energy

$$P_m = -\int_V \frac{g}{2n_0} \overline{\rho*}^2 dV$$

Mean Kinetic Energy

$$K_m = \int_V \frac{1}{2} \rho_0 \left(\overline{u}^2 + \overline{v}^2 \right)$$

Eddy Potential Energy

$$P_e = -\int_V \frac{g}{2n_0} \overline{\rho *'^2} dV$$

Eddy Kinetic Energy

$$K_e = \int_V \frac{1}{2} \rho_0 \left(\overline{u'^2} + \overline{v'^2} \right)$$

Fields to be written from POP2 Output

Primes to be calculated

$$\frac{\rho' u'}{u'u'} = \overline{u'u'} + \overline{u'v'} + \overline{u'w'}$$

$$\frac{v'u'}{v'u'} = \overline{v'u'} + \overline{v'v'} + \overline{v'w'}$$

$$\frac{\rho'w'}{\sigma'w'}$$

$$\frac{\sigma'w'}{\sigma'x'}$$

$$\frac{\sigma'v'}{\sigma'x'}$$

On the value of n_o and Assumptions made for

 ρ , α , and β

$$\frac{d\rho}{dt} = \left(\frac{\partial\rho}{\partial\theta}\right)_{p,S} \frac{d\theta}{dt} + \left(\frac{\partial\rho}{\partial S}\right)_{p,\theta} \frac{dS}{dt} + \left(\frac{\partial\rho}{\partial z}\right)_{\theta,S} w$$

$$\frac{d\theta}{dt} = \frac{\partial J}{\partial z} \text{ and } \frac{dS}{dt} = \frac{\partial G}{\partial z}$$

This gives us

$$\frac{\partial \rho}{\partial t} + \mathbf{u}_{h} \cdot \nabla_{h} \rho + w \left(\frac{\partial \rho}{\partial z} - \left(\frac{\partial \rho}{\partial z} \right)_{S,\theta} \right) = \left(\frac{\partial \rho}{\partial \theta} \right)_{S,p} \frac{\partial J}{\partial z} + \left(\frac{\partial \rho}{\partial S} \right)_{S,\theta} \frac{\partial G}{\partial z}$$

$$\frac{\partial \rho}{\partial t} + \mathbf{u}_{h} \cdot \nabla_{h} \rho + w \left(\frac{\partial \rho}{\partial z} \right) = \alpha_{o}(\lambda, \phi, z) \frac{\partial J}{\partial z} + \beta_{o}(\lambda, \phi, z) \frac{\partial G}{\partial z}$$

$$\frac{\partial \rho}{\partial z} - \left(\frac{\partial \rho}{\partial z} \right)_{S,\theta} = \frac{\partial \rho}{\partial z}$$

is vertial local potential density gradient

$$\frac{\partial \varrho}{\partial z} \approx \frac{\partial \langle \overline{\varrho} \rangle}{\frac{\partial z}{\partial z}} = n_o(z)$$

$$\left(\frac{\partial \rho}{\partial \theta}\right)_{S,p} \approx \left(\frac{\partial \overline{\rho}}{\partial \theta}\right)_{S,p} = \alpha_o(\lambda, \phi, z)$$

$$\left(\frac{\partial \rho}{\partial S}\right)_{\theta,p} \approx \left(\frac{\partial \overline{\rho}}{\partial S}\right)_{\theta,p} = \beta_o(\lambda, \phi, z)$$

The value of α and β used in POP2 in linear Equation of State

$$\alpha_o = \left(\frac{\partial \rho}{\partial T}\right)_{S,p} = 2.55 \times 10^{-4} gr/cm^3/K$$

$$\beta_o = \left(\frac{\partial \rho}{\partial S}\right)_{T,p} = 7.64 \times 10^{-1} gr/cm^3/msu$$

$$1 gram/kg = 0.001 msu$$

Results

Red are for relative wind forcing

Blue are for absolute wind forcing

Black is from paper An Estimate of the Lorenz Energy Cycle for the World Ocean Based on the 1/10 STORM/NCEP Simulation (https://journals.ametsoc.org/doi/full/10.1175/JPO-D-12-079.1? searchText=Complex%2BTerrain%2BMesoscale%2BConvective%2BSystems&af=F

