Reactor Data

Physical

Data	Value	\mathbf{Unit}	Source	Comments
Core diameter	3.4	\mathbf{m}	(Ignatiev et al., 2014)	
Core height	3.6	\mathbf{m}	(Ignatiev et al., 2014)	
Reflector(?)	0.2	\mathbf{m}	(Ignatiev et al., 2014)	Disagrees w/ (Wang et al., 2006)

Material

Salt and Properties

Component	${f Salts}$	Source	Comments
Reflector	$100 \% 15LiF - 58NaF - 27BeF_2$	m	(Ignatiev et al., 2014)

References

Ignatiev, V., Feynberg, O., Gnidoi, I., Merzlyakov, A., Surenkov, A., Uglov, V., Zagnitko, A., Subbotin, V., Sannikov, I., Toropov, A., Afonichkin, V., Bovet, A., Khokhlov, V., Shishkin, V., Kormilitsyn, M., Lizin, A., and Osipenko, A. (2014). Molten salt actinide recycler and transforming system without and with ThU support: Fuel cycle flexibility and key material properties. *Annals of Nuclear Energy*, 64(Supplement C):408–420.

Wang, S., Rineiski, A., and Maschek, W. (2006). Molten salt related extensions of the SIMMER-III code and its application for a burner reactor. *Nuclear Engineering and Design*, 236(14):1580–1588.