We claim:

5

- A monocyclopentadienyl complex comprising the structural feature of the formula Cp-(Z-A)_mM^A (I), where the variables have the following meanings:
 - Cp is a cyclopentadienyl system,

10

- A is an uncharged donor comprising at least one atom of group 15 or 16 of the Periodic Table,
- Is a bridge between A and Cp comprising at least one atom of group 14 of the Periodic Table and at least one atom of group 15 or 16 of the Periodic Table,
 - M^A is titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum or tungsten or an element of group 3 of the Periodic Table and the lanthanides and

20

m is 1, 2 or 3.

2. A monocyclopentadienyl complex as claimed in claim 1 which has the formula Cp-(Z-A)_mM^AX^{1A}_n (V), where the variables have the following meanings:

25

- Cp is a cyclopentadienyl system,
- A is an uncharged donor comprising at least one atom of group 15 or 16 of the Periodic Table,

30

- Z is a bridge between A and Cp comprising at least one atom of group 14 of the Periodic Table and at least one atom of group 15 or 16 of the Periodic Table,
- is titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium,
 molybdenum or tungsten or an element of group 3 of the Periodic Table and the
 lanthanides and
 - m is 1, 2 or 3,

10

15

20

25

30

35

40

 X^{1A} are each, independently of one another, fluorine, chlorine, bromine, iodine, hydrogen, C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl, C_6 - C_{20} -aryl, arylalkyl having 1-10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, $NR^{18A}R^{19A}$, OR^{18A} , SR^{18A} , SO_3R^{18A} , $OC(O)R^{18A}$, CN, SCN, β-diketonate, CO, BF_4 , PF_6 or bulky noncoordinating anions or two radicals X^{1A} may form a substituted or unsubstituted diene ligand, in particular a 1,3-diene ligand, and the radicals X^{1A} may also be joined to one another,

R^{18A}-R^{19A} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, SiR^{20A}₃, where the organic radicals R^{18A}-R^{19A} may also be substituted by halogens or nitrogen- and oxygen-containing groups and two radicals R^{18A}-R^{19A} may also be joined to form a five- or six-membered ring,

 R^{20A} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^{20A} may also be joined to form a five- or six-membered ring and

n is 1, 2 or 3.

3. A monocyclopentadienyl complex as claimed in claim 1 or 2 comprising the structural element of the formula Cp–Z-A-M^A (II), where the variables have the following meanings:

Cp-Z-A is

$$A \longrightarrow Z \longrightarrow E^{5A} \longrightarrow E^{2A} \times R^{2A}$$

$$A \longrightarrow Z \longrightarrow E^{5A} \longrightarrow E^{3A} \times R^{3A}$$

$$R^{4A} \longrightarrow R^{4A}$$

where the variables have the following meanings:

E^{1A}-E^{5A} are each carbon or not more than one E^{1A} to E^{5A} is phosphorus,

 R^{1A} - R^{4A} are each, independently of one another, hydrogen, C_1 - C_{22} -alkyl, C_2 - C_{22} -alkenyl, C_6 - C_{22} -aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20

10

15

25

30

40

carbon atoms in the aryl part, NR^{5A}₂, N(SiR^{5A}₃)₂, OR^{5A}, OSiR^{5A}₃, SiR^{5A}₃, BR^{5A}₂,

where the organic radicals R^{1A}-R^{4A} may also be substituted by halogens and two vicinal radicals R^{1A}-R^{4A} may also be joined to form a five-, six- or seven-membered ring, and/or two vicinal radicals R^{1A}-R^{4A} are joined to form a five-, six- or seven-membered heterocycle containing at least one atom from the group consisting of N, P, O and S,

the radicals R^{5A} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two geminal radicals R^{5A} may also be joined to form a five- or six-membered ring,

Z is a divalent bridge between A and Cp and is

20 where

L^{1A} is carbon, silicon or germanium, in particular silicon,

D^{1A} is an atom of group 15 or 16 of the Periodic Table, in particular oxygen, sulfur, nitrogen or phosphorus,

n is 0 when D^{1A} is an atom of group 16 and is 1 when D^{1A} is an atom of group 15,

 R^{6A} - R^{8A} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{9A}_{3} , where the organic radicals R^{6A} - R^{8A} may also be substituted by halogens and two geminal or vicinal radicals R^{6A} - R^{8A} may also be joined to form a five- or six-membered ring and

are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl or arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, C_1 - C_{10} -alkoxy or C_6 - C_{10} -aryloxy and two radicals R^{9A} may also be joined to form a five- or six-membered ring, and

- A is an uncharged donor group containing one or more atoms of group 15 and/or 16

 of the Periodic Table of the Elements or a carbene, preferably an unsubstituted, substituted or fused, heteroaromatic ring system, and
- 5 M^A is a metal selected from the group consisting of titanium in the oxidation state 3, vanadium, chromium, molybdenum and tungsten.
 - 4. A monocyclopentadienyl complex as claimed in any of claims 1 to 3, wherein A is a group of the formula (IV):

$$\begin{array}{c|c} R_{p}^{14A} & \\ R_{p}^{13A} & E^{7A} & \\ R_{p}^{15A} & E^{7A} & \\ R_{p}^{15A} & E^{15A} & \\ R_{p}^{16A} & E^{16A} & \\ R_{p}^{16A} & \\ R_{p}^{16A} & \\ \end{array}$$

15

, where

E^{6A}-E^{9A} are each, independently of one another, carbon or nitrogen,

20

 R^{13A} - R^{16A} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{17A} ₃, where the organic radicals R^{13A} - R^{16A} may also be substituted by halogens or nitrogen and further C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{17A} ₃ groups and two vicinal radicals R^{13A} - R^{16A} or R^{13A} and Z may also be joined to form a five- or six-membered ring and

30

25

R^{17A} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl or arylalkyl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^{17A} may also be joined to form a five- or six-membered ring and

р

is 0 when E^{6A}-E^{9A} is nitrogen and is 1 when E^{6A}-E^{9A} is carbon.

35

40

- 5. A monocyclopentadienyl complex as claimed in claim 3 or 4, wherein –Z- is -SiR^{6A}R^{7A}-O-.
- 6. A catalyst system for olefin polymerization comprising
 - A) at least one monocyclopentadienyl complex as claimed in any of claims 1 to 5,

- B) optionally, an organic or inorganic support,
- C) optionally, one or more activating compounds,
- D) optionally, further catalysts suitable for olefin polymerization and
- E) optionally, one or more metal compounds containing a metal of group 1, 2 or 13 of the Periodic Table.
- A prepolymerized catalyst system comprising a catalyst system as claimed in claim 6 and one or more linear C₂-C₁₀-1-alkenes polymerized onto it in a mass ratio of from 1:0.1 to 1:1000 based on the catalyst system.
- The use of a catalyst system as claimed in claim 6 or 7 for the polymerization or copolymerization of olefins.
 - 9. A process for preparing polyolefins by polymerization or copolymerization of olefins in the presence of a catalyst system as claimed in claim 6 or 7.

5

10