Mouvement TR ★

C2-09

Pas de corrigé pour cet exercice.

L'objectif est d'obtenir les lois de mouvement.

Question 1 Appliquer le théorème du moment dynamique au solide **2** au point B en projection sur $\overline{k_0}$.

- ▶ On isole 2.
- ► BAME:
 - actions de la liaison pivot $\{\mathcal{T}(1 \to 2)\}$;
 - action de la pesanteur $\{\mathcal{T} \text{ (pes } \to 2)\}\$. On a $\overline{\mathcal{M}(B,2\to 0)} \cdot \overrightarrow{k_0} = \overline{\mathcal{M}(G_2,2\to 0)} \cdot \overrightarrow{k_0} + \left(\overline{BG_2} \wedge \left(-m_2g\overrightarrow{j_0}\right)\right) \cdot \overrightarrow{k_0} = \left(R\overrightarrow{i_2} \wedge \left(-m_2g\overrightarrow{j_0}\right)\right) \cdot \overrightarrow{k_0} = -m_2gR\overrightarrow{i_0} \cdot \overrightarrow{i_2} = -m_2gR\cos\theta(t)$.
- ► **Théorème**: on applique le théorème du moment dynamique en B au solide $\mathbf{2}$ en projection sur $\overrightarrow{k_0}: C_m + \overline{\mathcal{M}}(B, \operatorname{pes} \to 2) \cdot \overrightarrow{k_0} = \overline{\delta(B, 2/0)} \cdot \overrightarrow{k_0}$. On a $\overline{\delta(B, 2/0)} \cdot \overrightarrow{k_0}$ = $\left(C_1 \overrightarrow{\theta} \overrightarrow{k_1} + R \left(-\sin\theta \ddot{\lambda}(t) \overrightarrow{k_0} + R \overrightarrow{\theta} \overrightarrow{k_2}\right)\right) \cdot \overrightarrow{k_0} = C_1 \ddot{\theta} + R \left(-\sin\theta \ddot{\lambda}(t) + R \ddot{\theta}\right)$. Au final, $C_m m_2 gR \cos\theta(t) = C_1 \ddot{\theta} + R \left(-\sin\theta \ddot{\lambda}(t) + R \ddot{\theta}\right)$.

Question 2 Appliquer le théorème de la résultante dynamique à l'ensemble **1+2** en projection sur $\overrightarrow{i_0}$

- ▶ On isole 1+2.
- ► BAME:
 - actions de la liaison glissière $\{\mathcal{T}(0 \to 1)\}$;
 - action de la pesanteur $\{\mathcal{T}(pes \to 1)\}$;
 - action de la pesanteur $\{\mathcal{T} (pes \rightarrow 2)\};$
 - action du vérin $\{\mathcal{T} \text{ (ver } \to 1)\}$.
- ► Théorème : on applique le théorème de la résultante dynamique à l'ensemble 1+2 en projection sur $\overrightarrow{i_0}$: \overrightarrow{R} (ver \rightarrow 1) \cdot $\overrightarrow{i_0}$ = $\overrightarrow{R_d}$ (1 + 2/0) \cdot $\overrightarrow{i_0}$. Au final, F_{ver} = $m_1 \ddot{\lambda}(t) + m_2 \left(\ddot{\lambda}(t) R \left(\ddot{\theta} \sin \theta(t) + \dot{\theta}^2 \cos \theta \right) \right)$.

