Rfoot Page 1/?? Rhead

Renewcommand $\vee \wedge$

1. Définition d'une boule ouverte de centre $x \in \mathbb{R}^n$ et de rayon r > 0.

Réponse – Vrai

$$BO(x,r) = \{ y \in \mathbb{R}^n, |y - x| < r \}$$

Réponse – Faux

$$BO(x,r) = \{ y \in \mathbb{R}^n, |y - x| \le r \}$$

Réponse – Faux

$$BO(x,r) = \{x \in \mathbb{R}^n, |y - x| < r\}$$

Réponse – Faux

$$BO(x,r) = \{ y \in \mathbb{R}^n, \ |y - r| < x \}$$

2. Définition d'une fonction $f: \mathbb{R}^n \to \mathbb{R}^p$ continue en $x \in \mathbb{R}^n$.

Réponse – Vrai

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall y \in BO(x, \eta), \ f(y) \in BO(f(x), \varepsilon)$$

Réponse – Faux

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall y \in BO(x, \varepsilon), \ f(y) \in BO(f(x), \eta)$$

 $R\'{e}ponse-Faux$

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall y \in BO(x, \eta), \ f(y) \in BO(f(x), \eta)$$

Réponse – Faux

$$\exists \eta > 0, \ \forall \varepsilon > 0, \ \forall y \in BO(x, \eta), \ f(y) \in BO(f(x), \varepsilon)$$

3. Soit f la fonction définie sur \mathbb{R}^2 par

$$f(x,y) = \frac{xy}{x^2 + y^2}$$
 si $(x,y) \neq (0,0)$ et $f(0,0) = 0$.

est-elle continue en (0,0)?

Réponse – Vrai

Non, car elle n'est pas constante sur une droite passant par (0,0).

Réponse – Faux

Oui, car elle est constante et égale à 0 sur l'axe des abscisses.

Réponse – Faux

Oui, car elle est constante et égale à 0 sur l'axe des ordonnées.

Réponse – Faux

Oui, car elle est constante et égale à 0 sur l'axe des abscisses et sur l'axe des ordonnées.

4. La fonction f définie sur \mathbb{R}^2 par $f(x,y) = \sqrt{1+x^2y^2}$ est-elle de classe C^1 sur \mathbb{R}^2 ?

Réponse – Vrai

Oui, comme somme et composée de fonctions de classes C^1 , et parce que $1 + x^2y^2 > 0$.

Réponse – Faux

Non, car la fonction racine n'est pas définie sur $]-\infty,0[$.

Réponse - Faux

Oui car ses dérivées partielles en (0,0) existent.

Réponse – Faux

Non car une composée de fonctions de classe \mathcal{C}^1 n'est jamais de classe \mathcal{C}^1

5. Pourquoi fait-on du calcul différentiel sur des ouverts?

Réponse – Vrai

C'est plus délicat de travailler sur les bords d'un ensemble quand il n'est pas ouvert.

Réponse – Faux

Personne ne sait vraiment pourquoi. C'est un chercheur qui a copié sur un autre, qui a copié sur autre... et personne ne s'est jamais posé

la question.

Réponse – Faux

Ca rime avec couverts, et ça donne faim.

Réponse - Faux

C'est marrant les ouverts.

6. Comment calcule-t-on une différentielle de f en x_0 ?

Réponse – Vrai

On peut utiliser les règles de calcul (somme, produit, composée, fonction bilinéaire...) de fonctions différentiables, et en dernier recours calculer $f(x_0+h)$ et le décomposer sous la forme terme constant + terme linéaire en h + terme négligeable.

Réponse – Faux

On dérive, comme sur \mathbb{R} .

Réponse – Faux

On calcule les dérivées partielles.

Réponse - Faux

On copie sur un voisin plus intelligent / une voisine plus intelligente.

7. Pour une fonction différentiable sur un ouvert, quel est le lien entre sa dérivée partielle en un point x dans la direction v, et sa dérivée partielle en ce même point x dans la direction 2v?

Réponse - Vrai

Elles sont dans la même direction, et la dérivée partielle dans la direction v est deux fois plus petite que celle dans la direction 2v.

Réponse – Faux

Elles sont dans la même direction, et la dérivée partielle dans la direction v est deux fois plus grande que celle dans la direction 2v.

Réponse – Faux

Elles sont égales.

Réponse - Faux

Elles ne sont pas nécessairement dans la même direction.

8. Soit $f: \mathbb{R} \to \mathbb{R}$ est définie par $f(x) = x^2$, et soit $(h, x) \in \mathbb{R}$. Que vaut $df_x(h)$?

Réponse – Vrai

2xh

Réponse – Faux

 x^2

Réponse – Faux

 h^2

Réponse – Faux

$$x^2 + 2xh + h^2$$

9. Quelle est la matrice jacobienne de la fonction $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par f(x,y) = (x+2xy,4y+1) au point $(a,b) \in \mathbb{R}^2$?

Réponse – Vrai

$$\begin{bmatrix} 1+2b & 2a \\ 0 & 4 \end{bmatrix}$$

Réponse – Faux

$$\begin{bmatrix} 1+2b & 0 \\ 2a & 4 \end{bmatrix}$$

Réponse – Faux

$$\begin{bmatrix} 2a & 4 \\ 1+2b & 0 \end{bmatrix}$$

Réponse – Faux

$$\begin{bmatrix} 2a & 0 \\ 1+2b & 4 \end{bmatrix}$$

10. Pour montrer qu'une fonction à deux variables n'est pas de classe \mathcal{C}^1 sur un ouvert O:

Réponse – Vrai

Il suffit de montrer qu'une de ses dérivées partielles n'est pas continue sur ${\cal O}.$

Réponse – Faux

Il faut montrer qu'elle n'est pas continue.

Réponse – Faux

Il faut impérativement commencer par calculer sa différentielle, et ensuite montrer qu'elle n'est pas continue.

Réponse – Faux

Il faut montrer qu'il existe un point pour lequel est n'a aucune dérivée directionnelle continue.

11. Quelle est la différentielle de la norme euclidienne au point x en h?

Réponse – Vrai

 $\frac{\langle x,h \rangle}{|x|}$

Réponse – Faux

 $|h| \cdot |x|$

Réponse – Faux

 $\langle x, h \rangle$

Réponse – Faux

 $\frac{\langle x, h \rangle}{|h|}$

12. Comment calcule-t-on la différentielle seconde d'une application f?

Réponse – Vrai

On peut appliquer les règles de calculs vues pour la différentielle. On peut aussi calculer df_{x+h} (ou $df_{x+h}(k)$), que l'on sépare en trois termes : un terme constant en h, un terme linéaire en h et un terme négligeable en h.

Réponse – Faux

On saute la question, c'est trop dur.

Réponse – Faux

On peut appliquer les règles de calculs vues pour la différentielle. On calcule $df_x(h)$, que l'on sépare en trois termes : un terme constant en h, un terme linéaire en h et un terme négligeable en h.

Réponse – Faux

On calcule la dérivée de la différentielle.

13. Sur quels points la fonction $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $f(x,y) = \max(x^2,y^2)$ n'est-elle pas différentiable?

Réponse – Vrai

Elle est différentiable partout sauf sur l'ensemble $\{(x,y),\ x\in\mathbb{R},\ y\in\{x,-x\}\}$

Réponse – Faux

Elle est différentiable partout, comme composée de deux fonctions différentiables sur \mathbb{R}^2

Réponse – Faux

Elle est différentiable partout sauf sur l'ensemble $\{(x, x), x \in \mathbb{R}\}$

Réponse – Faux

Elle est différentiable partout sauf sur l'ensemble $\{(x, -x), x \in \mathbb{R}\}\$

14. Soit $n \ge 2$. L'ensemble $\mathcal{C}^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$ est stable par :

Réponse – Vrai

Addition, composition, mais pas par multiplication ni par quotient

Réponse – Faux

Addition, composition, multiplication, mais pas par quotient

Réponse – Faux

Addition, composition, multiplication, quotient

Réponse – Faux

Addition, composition, quotient, mais pas par multiplication