Willingness-to-pay for Warnings: Main Tables

A. Gaduh, P. McGee and A. Ugarov

May 28, 2022

Research Question

- How much do people value alerts (signals) about potential preventable threats?
- How do signal's probabilistic characteristics affect the willingness-to-pay for it and the welfare gains from using it?
- Applications:
 - Natural disaster warnings (tornados, floods, earthquakes)
 - Medical tests for treatable conditions
 - Investing in research on likelihood of catastrophic events (rogue Al, global warming, pandemics)
- Note: most real-life applications provide little practice with using the signal

Overview of the Experiment

- An insurance experiment:
 - ullet Two states of the world: bad $(\omega=1)$ and good $(\omega=0)$
 - Probability of a bad state is $P(\omega = 1) = \pi$
 - Bad state \implies loss of \$L
 - ullet A perfectly protective insurance can be purchased for $\$
- Subject can purchase a signal s before purchasing the insurance:
 - A signal is characterized by its true-positive ($P(s=1|\omega=1)$) and true-negative rates ($P(s=0|\omega=0)$)

Research objective

How do signal characteristics affect the WTP?

- Theoretically, what should be the WTP for a signal?
- If bad states are a priori rare ($\pi L << c$) \implies never protect without a signal
- The theoretical WTP b for an expected utility maximizer given a signal s is a solution b^* to the following:

$$P(s=1)u(Y_0 - b^* - c) + \pi P(s=0|\omega=1)u(Y_0 - b^* - L) +$$
$$+(1-\pi)P(s=0|\omega=0)u(Y_0 - b^*) = (1-\pi)u(Y_0) + \pi u(Y_0 - L)$$

A risk-neutral agent then pays:

$$b^* = \pi(1 - P(s = 0 | \omega = 1))L - P(s = 1)c$$

- The formulas become more complicated if subjects can protect without a signal (bad state are not rare enough)
- The theoretical WTP b for an expected utility maximizer given a signal s is a solution b^* to the following:

$$P(s=1)u(Y_0 - b^* - c) + \pi P(0|1)u(Y_0 - b^* - L) + (1 - \pi)P(0|0)u(Y_0 - b^*) =$$

$$= \min[(1 - \pi)u(Y_0) + \pi u(Y_0 - L), u(Y_0 - c)]$$

A risk-neutral agent then pays:

$$b^* = \min[\pi L, c] - \pi(1 - P(s = 0 | \omega = 1))L - P(s = 1)c$$

Hypotheses

- Conditional on the signal's value for risk-neutral subjects, false positive and false negative rates reduce the perceived value of the signal (WTP)
 - The opposite is true: subjects underreact to false positive and false negative rates and overpay for bad signals
- 2 Conditional on the signal's value for risk-neutral subjects, false positive and false negative rates increase expected costs
 - No: FP and FN rates have no significant effects on costs besides their predicted theoretical effect
- Extra: how much of these disrepancies result from belief updating issues or risk aversion?

Risk Aversion Measurement

- Measure risk aversion based on blind protection choices:
 - Exclude obs from subjects switching back and forth
 - \bullet The lowest probability for which a subject chooses to protect is π^*
 - ullet Calculate their coefficient of relative risk aversion heta as the solution to the following equation:

$$\pi^* u(Y_0 - L; \theta) + (1 - \pi^*) u(Y_0; \theta) = u(Y_0 - c; \theta)$$

• Where u() is the CRRA utility function:

$$u(x;\theta) = \frac{x^{1-\theta} - 1}{1 - \theta}$$

• Note: risk lovers have $\theta < 0$

CRRA Estimates

• Most subjects are moderately risk averse:

Probability (π^*)	θ	N
Always protect	>2	1
0.1	2	2
0.15	1.216	7
0.2	0.573	17
0.25	0	7
0.3	-0.539	5
Never protect	<-0.539	8

Note:

- There are 18 subjects (out of 65) switching multiple times
- Can use more sophisticated methods to measure risk aversion for those

WTP for the Signal

Theoretical value of signal for risk-neutral subject:

$$b^* = \underbrace{\min[\pi L, c]}_{\text{BP costs}} - \underbrace{\pi(1 - P(s = 0 | \omega = 1))L}_{\text{False neg. costs}} - \underbrace{P(s = 1)c}_{\text{Protection costs}}$$

- Two potential approaches:

$$V - b^* = \alpha_0 + \alpha_1 \text{FN costs} + \alpha_2 \text{Prot. costs} + \epsilon$$

Regress WTP directly on its components and account for censoring at 0:

$$V = \min[0, \beta_0 + \beta_1 \mathsf{FN} \; \mathsf{costs} + \beta_2 \mathsf{Prot}. \; \mathsf{costs} - \beta_3 \mathsf{BP} \; \mathsf{costs} + \gamma]$$

Note: protection costs include costs due to false positive signals

WTP for the Signal (Approach 1)

 Coefficient sign. different from zero is an anomaly: people overpay for bad signals

Figure: WTP for Information (Discrepancy)				
	(1)	(2)	(3)	(4)
	All	Risk-averse	Risk-loving	Switchers
False pos. costs	.17	.207	.062	.447
	(1.6)	(1.5)	(0.4)	(1.0)
False neg. costs	.3***	.297***	.329***	.169
	(4.8)	(3.4)	(3.3)	(8.0)
Constant	111	143	139	.289
	(-1.2)	(-1.0)	(-1.0)	(8.0)
N obs.	744	336	354	54
AIC	2814	1243	1361	214
p(coeffs=0)	5.45e-06***	.00125***	.00434***	.468

t statistics in parentheses

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

WTP for the Signal (Approach 2, Tobit Estimation)

 Coefficient should differ from one in abs. value to show an anomaly (ignore stars for now)

Figure: WTP for Information (Tobit Estimation)				
	(1) (2)		(3)	
	All	Risk-averse	Risk-loving	
model				
BP costs	.688***	.625***	.72***	
	(12.0)	(7.9)	(8.2)	
Pos. signal costs	373***	233	486 ^{**}	
	(-3.0)	(-1.4)	(-2.5)	
False neg. costs	587***	569***	578***	
	(-6.7)	(-4.9)	(-4.2)	
N obs.	744	336	354	
AIC	2726	1213	1312	
p(coeff=1)	6.68e-09***	1.04e-06***	.00357***	

t statistics in parentheses

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

WTP for the Signal (Risk Aversion)

 Explaining the discrepancy between WTP and value with risk aversion:
 Figure: WTP for Information (different risk aversion)

	(1)	(2)	(3)	(4)	(5)	(6)
	$\theta = 0$	$\theta = 0.5$	$\theta = 1.0$	$\theta = 1.5$	$\theta = 2.5$	Heterogeneou
FP costs	.295**	.322**	.316**	.271*	.151	.29**
	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)
FN costs	.243***	.346***	.46***	.559***	.69***	.343***
	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)
Constant	.254	146	664***	-1.32***	-1.81***	411
	(0.2)	(0.2)	(0.2)	(0.2)	(0.2)	(0.3)
Prior dummies	Yes	Yes	Yes	Yes	Yes	Yes
Observations	504	504	504	504	504	504
Adjusted \mathbb{R}^2	0.21	0.27	0.28	0.32	0.37	0.19

Standard errors in parentheses

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Actual Costs vs Theoretical Costs

- Calculate actual costs based on decisions made in the Informed Protection treatment and actual posterior probabilities of losses.
- Each reported participant's strategy s is a tuple of numbers (r_w, r_b) representing protection responses correspondingly to white and black hints
- Then the expected cost of each decision are:

$$EC(s) = \pi(P(0|1)(1 - r_w) + P(1|1)(1 - r_b))L + P(s = 1)c$$
$$+ (P(s = 0)r_w + P(s = 1)r_b)c$$

 Regress expected costs on minimal theoretical costs and other signal characteristics

Actual Costs vs Theoretical Costs

Figure: Actual Exp. Costs vs Theoretical Costs					
	(1)	(2)	(3)	(4)	(5)
	OLS	OLS	FE	FE	FE
Optimal exp. costs	.979***	.549***	.987***	.733***	1.06***
	(13.1)	(2.9)	(11.5)	(6.0)	(10.2)
Prior prob.	689	-3.3**	607	-2.15**	18
	(-0.9)	(-2.5)	(-0.8)	(-2.5)	(-0.2)
False neg. rate		-2.48***		-1.88***	
		(-3.4)		(-3.1)	
False pos. rate		-1.04			.71
		(-1.4)			(1.0)
Constant	707***	542***	711***	637***	754***
	(-6.2)	(-4.5)	(-7.4)	(-6.6)	(-6.8)
Observations	743	743	743	743	743
Adjusted R^2	0.38	0.39	0.43	0.44	0.43

t statistics in parentheses

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Additional Complementary Tables

- Factors affecting informed protection responses
- The effect of beliefs on informed protection
- 4 How accurate are their beliefs?
- Oecomposition of belief updating: priors vs signals

Informed Protection: Determinants

Figure: Informed Protection				
	(1)	(2)	(3)	(4)
	All	All	Good quiz	Good quiz
Informed protection				
Posterior prob.	2.15***	.662***	2.26***	.638***
	(19.1)	(3.3)	(17.7)	(3.0)
Prior prob.		1.13***		1.17***
		(4.1)		(3.8)
Gremlin says Black		1.34***		1.46***
		(8.8)		(8.8)
Constant	662***	-1.03***	717***	-1.1***
	(-14.2)	(-11.2)	(-14.2)	(-10.9)
Observations	1487	1487	1259	1259
AIC	1467.25	1394.01	1211.48	1137.59

t statistics in parentheses

 $^{^{\}ast}$ p < 0.10 , ** p < 0.05 , *** p < 0.01

Informed Protection: Do Subject's Beliefs Matter?

Figure: Informed Protection: Response to Reported Beliefs				
	(1)	(2)	(3)	
	All	All	Good quiz	
Informed protection				
Belief	2.18***	2.62***	2.8***	
	(18.5)	(18.2)	(17.0)	
Belief error		1.52***	1.41***	
		(11.5)	(9.3)	
Constant	762***	881***	963***	
	(-14.3)	(-15.7)	(-15.9)	
Observations	1487	1487	1259	
AIC	1566.82	1413.23	1146.78	

t statistics in parentheses

 $^{^{\}ast}$ p < 0.10 , ** p < 0.05 , *** p < 0.01

Belief Updating: Correlation

Figure: Belief Elicitation: Belief vs Posterior				
	(1)	(2)	(3)	
	All	Good quiz	Dishonest greml	
Posterior prob.	.644***	.693***	.524***	
	(37.5)	(39.2)	(21.8) .236***	
Constant	.175***	.15***	.236***	
	(21.7)	(19.8)	(23.4)	
Observations	1488	1260	992	
Adjusted \mathbb{R}^2	0.53	0.60	0.38	

t statistics in parentheses

 $^{^{\}ast}$ p < 0.10 , ** p < 0.05 , *** p < 0.01

Belief Updating: Decomposition

• Posterior probability $\mu = P(B|S=x)$ that the ball is black conditional on a hint S=x can be written as:

$$\ln\left(\frac{\mu}{1-\mu}\right) = \lambda_0 + S_B + S_W$$

- With $\lambda_0 \equiv \ln(p/(1-p))$ representing (transformed) prior beliefs
- And S_B , S_W describing the effect of new evidence:

$$S_B \equiv I(S = B) \ln(P(s = B|B)/P(s = B|W))$$

 $S_W \equiv I(S = W) \ln((1 - P(s = B|B))/(1 - P(s = B|W))$

Belief Updating: Decomposition

Figure: Belief Elicitation: Decomposition				
	(1)	(2)	(3)	
	OLS	FE	Good quiz, FE	
lt_prior	.237***	.182***	.187***	
	(3.9)	(4.0)	(4.0)	
signalB	.426***	.865***	.992***	
	(5.1)	(6.4)	(6.7)	
signalW	.439***	0	0	
	(5.7)	(.)	(.)	
Constant		54***	632***	
		(-6.0)	(-6.6)	
Observations	332	332	288	
Adjusted \mathbb{R}^2	0.29	0.29	0.34	

t statistics in parentheses

 $^{^{\}ast}$ p<0.10, ** p<0.05, *** p<0.01