Stack-Pointer Networks for Dependency Parsing

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Graham Neubig, ...

CMU -- ACL18

AntNLP -- Tao Ji

taoji.cs@gmail.com

Outline

- Motivation
- Architecture
 - Pointer Networks & Biaffine
 - Encoder & Decoder
- Experiments

Motivation

- They introduce a novel architecture: stack-pointer networks.
- Combining pointer networks with an internal stack.

Contribution

- They propose a neural network architecture for dependency parsing that is simple, effective, and efficient.
- Empirical evaluations on benchmark datasets over 20 languages show that their method achieves state-of-the-art performance on 21 different treebanks.
- Comprehensive error analysis is conducted to compare the proposed method to a strong graph-based baseline using biaffine attention (Dozat and Manning, 2017).

Architecture

Pointer Networks

- $ullet e_i^t = score(s_t
 ightarrow h_i)$
- $p^t = softmax(e^t)$
- $ullet \ score(\cdot
 ightarrow \cdot)$ is the attention scoring function

Biaffine Attention Mechanism

$$ullet e_i^t = s_t^ op \mathbf{W} h_i + \mathbf{U}^ op s_t + \mathbf{V}^ op h_i + \mathbf{b}$$

Encoder

BLSTM-CNNs architecture

Decoder

- Order: left-to-right or inside-out
 - o inside-out : utilize second-order sibling information.
- Higher-order Information:

• Input: $eta_t = s_h + s_g + s_s$

Experiments

Main Results

		English		Chinese		German	
System		UAS	LAS	UAS	LAS	UAS	LAS
Chen and Manning (2014)	T	91.8	89.6	83.9	82.4	_	_
Ballesteros et al. (2015)	T	91.63	89.44	85.30	83.72	88.83	86.10
Dyer et al. (2015)	T	93.1	90.9	87.2	85.7	_	_
Bohnet and Nivre (2012)	T	93.33	91.22	87.3	85.9	91.4	89.4
Ballesteros et al. (2016)	T	93.56	91.42	87.65	86.21	_	_
Kiperwasser and Goldberg (2016)	T	93.9	91.9	87.6	86.1	_	_
Weiss et al. (2015)	T	94.26	92.41	_	_	_	_
Andor et al. (2016)	T	94.61	92.79	-	_	90.91	89.15
Kiperwasser and Goldberg (2016)	G	93.1	91.0	86.6	85.1	_	_
Wang and Chang (2016)	G	94.08	91.82	87.55	86.23	_	_
Cheng et al. (2016)	G	94.10	91.49	88.1	85.7	_	_
Kuncoro et al. (2016)	G	94.26	92.06	88.87	87.30	91.60	89.24
Ma and Hovy (2017)	G	94.88	92.98	89.05	87.74	92.58	90.54
BIAF: Dozat and Manning (2017)	G	95.74	94.08	89.30	88.23	93.46	91.44
BIAF: re-impl	G	95.84	94.21	90.43	89.14	93.85	92.32
STACKPTR: Org	T	95.77	94.12	90.48	89.19	93.59	92.06
STACKPTR: +gpar	T	95.78	94.12	90.49	89.19	93.65	92.12
STACKPTR: +sib	T	95.85	94.18	90.43	89.15	93.76	92.21
STACKPTR: Full	T	95.87	94.19	90.59	89.29	93.65	92.11

POS	UAS	LAS	UCM	LCM
Gold	96.12 ± 0.03	95.06 ± 0.05	62.22 ± 0.33	55.74 ± 0.44
Pred	95.87 ± 0.04	94.19 ± 0.04	61.43 ± 0.49	49.68 ± 0.47
None	95.90 ± 0.05	94.21 ± 0.04	61.58 ± 0.39	49.87 ± 0.46

Layer	Hyper-parameter	Value
CNN	window size	3
	number of filters	50
LSTM	encoder layers	3
	encoder size	512
	decoder layers	1
	decoder size	512
MLP	arc MLP size	512
	label MLP size	128
Dropout	embeddings	0.33
	LSTM hidden states	0.33
	LSTM layers	0.33
Learning	optimizer	Adam
	initial learning rate	0.001
	$\mid (eta_1,eta_2)$	(0.9, 0.9)
	decay rate	0.75
	gradient clipping	5.0

Table 5: Hyper-parameters for all experiments.

Thank you!

Q&A