LITERATURE SURVEY: "Smartfarmer - Iot Enabled Smart Farming Application"

TEAM LEADER: SAMRITHA S

TEAM MEMBERS:

1. AAKASH J

2. DHEVAKI V

3. JANANIS

4. GOWTHAM S

INTRODUCTION		SURVEY/B	ODY OF REVIEW		CRITICAL AN	
			T	T	PAPI	
YEAR	TITLE	PROBLEM	METHODOLOGY	INPUT	RESULTS	FUTURE
				PARAMETRES		SCOPE
1.	Automated	The author	IBM IoT sensors	Weather	Benefits: The	This project
IEEE	Indoor	examined	and NodeRED,	conditions,	approach	might be
Xplore	Agriculture	indoor and	the flutter	light	suggested by	made much
Part	System	outdoor	framework, IBM	intensity, and	the author	better by
Number:	Built on	farming and	Bluemix, and	soil	performed	adding
CFP21F70-	the	found that	the MQTT	conditions	better than	more
ART;	Internet of	indoor farming	protocol were	were taken	traditional IoT	sensors,
ISBN: 978-	Things	was the most	utilised as tools.	into account	monitoring	drones, and
1-7281-	Using	environmentally	Implementation	as variables.	systems	other
8501-9;	NodeRED	friendly method	These		because it just	devices for
January	and IBM	of producing	procedures		keeps track of	different
2021	Bluemix.	food. Thus, the	were used to		the values and	purposes.
		project's	complete this		keeps the	
		objective was to	project:		farmer	Future work
		automate the	Connecting		informed	may focus
		procedure for	Node-RED to		however, it	on
		indoor	IBM Bluemix;		also automates	predicting
		agriculture.	obtaining		necessary	the local
			sensor data		parameters	climate and
			from Node-RED		leading to	automating
			using MQTT and		healthy plant	farming
			IBM IoT;		growth, were	practises in
			automating		possible.	accordance
			processes using		Disadvantages:	with that
			Node-RED; and		High cost for	information.
			integrating with		installation of	
			mobile		the set-up and	
			applications		high	
					operational	
					costs.	

INTRODUCTION		SURV	EY/BODY OF REVIE	N	CRITICAL ANALYSI	S ON PAPER
YEAR	TITLE	PROBLEM	METHODOLOGY	INPUT	RESULTS	FUTURE
				PARAMETRES		SCOPE
2.	Smart Soil	The goal of	utensils utilised	pH of the soil,	1) This approach	By using a
International	Monitoring	this project	Microcontroller:	soil humidity,	lowers the	Raspberry
Conference	System for	is to	MCP3008	temperature,	farmer's costs	Pi 2 Model
on ICT for	Agricultural	develop an	technologies for	and cropped	Choosing the	В
Agriculture	Production	embedded-	communication:	picture	appropriate crop	processor,
and Rural	based on	based	socket		for the field	which has
Development	the	system for	communication,		might be	eight times
in 2017	Internet of	soil	SPI, and WiFi		challenging.	the
organised by	Things.	monitoring	pH,		2) It enables the	processing
IEEE		and	temperature,		farmer to plant	memory of
		irrigation in	and humidity		appropriate crop	the
		order to	sensors are		by examining	previous
		eliminate	examples of		sensor data.	model, this
		the need	sensors.		3) It boosts	idea might
		for human	Implementation:		agricultural	be further
		field	MCP3008 is used		output and cuts	developed.
		inspections	to digitally		down on the	The use of
		and offer	transform the		time and cost of	weather
		information	analogue		the farmer.	forecasting
		via a	detected value.		DISADVANTAGE:	methods
		mobile	Data are sent			might help
		application.	and the		1) Only effective	this be
			necessary		for short	improved.
			actions are		distances	
			executed using		communication.	
			socket			
			communication.			
			A smartphone			
			app suggests the			
			appropriate crop			
			to the farmer.			

INTRODUCTION		SURVEY/BODY OF REVIEW			CRITICAL ANALYSIS ON PAPER	
YEAR	TITLE	PROBLEM	METHODOLOGY	INPUT PARAMETRES	RESULTS	FUTURE SCOPE
3.	Design and IoT-	The primary	ZigBee, ARM7,	soil moisture	Benefits: It	With this
The	based	goal of this	temperature,	content,	was an	project,
Engineering	implementation	research is	humidity, relay	humidity	effective	crop
and	of a	to resolve	driver, and	level, and		protection

Applied	contemporary	problems	solenoid valve	temperature	remedy for	might be
Science	automated	like	were the tools	level.	irrigation issue	installed to
Journal of	real-time	excessive or	employed.		Disadvantages:	safeguard
2017	monitoring	insufficient	NODE		Data storage	the crops
	system for	plant	INITIALIZATION,		was not	from
	agricultural.	irrigation	SENSORS		provided.	animals.
		that have an	INITIALIZATION,		Importance	Using
		impact on	RENSOR VALUES		The soils	cloud
		productivity.	READ, SENT TO		weren't the	computing,
			SERVER USING		right kind.	data might
			IOT, IF		Considered	be stored
			MOISTURE		Weather-wise,	and
			LOW, MOTOR		there was	retrieved.
			ON		omitted along	
					the procedure	

INTRODUCTION		SURVEY/B	ODY OF REVIEW		CRITICAL ANALY	SIS ON PAPER
YEAR	TITLE	PROBLEM	METHODOLOGY	INPUT	RESULTS	FUTURE
				PARAMETRES		SCOPE
4.	IoT-based	Crop protection	HARDWARE	Soil moisture	Advantages:	Utilizing
2018 by	automated	may include	USED:Arduino		decreased the	other
IEEE	irrigation	The goal of this	microcontroller		labour and	sensors,
	systems	project was to	Cloud server:		water waste	such as a
	may be	guarantee that	Web server		The water	temperature
	used for	the crop	Technology for		supplement is	sensor,
	crop	received the	Communication:		controlled by a	might help
	protection.	ideal amount of	Wi-Fi Module		threshold	this idea go
		water without	Sensors:		value.	farther.can
		the need for	Implementation		Disadvantages:	increase the
		physical labour	of a moisture		Resolution of	precision of
		or wastage.	sensor:To		data transport	checking on
			measure the		is not	th plants.
			moisture		disclosed.	This might
			content of farm		No information	be
			soil, soil		about the	expanded
			moisture		weather was	further.
			sensors are		produced.	Using
			attached to an			weather
			Arduino			forecasting
			development			strategies
			kit.			

INTRODUCTION		SURVEY	/BODY OF REVIEW		CRITICAL ANALY	SIS ON PAPER
YEAR	TITLE	PROBLEM	METHODOLOGY	INPUT PARAMETRES	RESULTS	FUTURE SCOPE
5.	India is	This study	The	Crop Images	Benefits	• In the
Journal	implementing	focuses on	following		include cost	future, we
of ISMAC	smart	the sudden	components		efficiency.	may add
(2021),	agriculture	surge in food	were used:		• To meet the	more
Volume	using the	grain demand	zigbee protocol,		challenges,	elements for
3,	Internet of	and how to	Agrirobot, and		the predictive	keeping an
Number	Things (IOT).	address it	security		analysis will	eye on
1		with all	management for		be helpful.	agricultural
		agricultural	all integrating		Increased	fields, such
		solutions	devices, units of		precision.	as humidity,
		using IOT-	culture analysis,		Up the	temperature,
		based smart	predictive		production	soil sensors,
		agriculture.	analysis, IOT		Constraints	water level,
			clouds, IOT		are also built	wind
			devices, and		into the model	direction in
			sensor module.		for platforms	the field, and
			Implementation:		and security,	climate,
			Crop photos		which is a	which can
			were taken,		drawback.	help us
			cultured, and		• The	anticipate
			subjected to		procedure of	difficulties.
			predictive		heterogeneity	 Making use
			analysis; the		property is	of IoT to
			outcome was		quite difficult.	promote
			then presented.			greater e-
						farming.

INTRODUCTION		SURVEY/BODY OF REVIEW			CRITICAL ANALYSIS ON PAPER	
YEAR	TITLE	PROBLEM	METHODOLOGY	INPUT	RESULTS	FUTURE
				PARAMETRES		SCOPE
6.	IoT-based	IoT	ELECTRONIC	Temperature,	Benefits:	Installing
2019	smart	technologies	PARTS USED	humidity,	Remote	multiple
November	farming is	will boost	INCLUDE ESP32s	UV/IR, visible	monitoring for	prototypes
4–7	a way to	agricultural	Node MCU,	light index,	farms, water	could
Coimbra,	efficiently	production.	Breadboard,	and soil	conservation,	expand the
Portugal	monitor		DHT11	moisture	and other	project, and
	farming		Temperature		environmental	using the
	conditions.		and Humidity		benefits.	cloud to
			Sensor, Soil			retrieve

Moisture Sensor, S11145 UV/IR and Visible Light Index Sensor, LEDs, KY-006 Passive Buzzer, Power Supply, and Power Bank. Implementation: The sensor utilised in this instance collects the and uploads them to the blynk app cloud to provide the real-time data. When the farmer didn't hear the sound or get the notice on their mobile device, the LEDs continued to be in a different condition with varied colours.		,	
and Visible Light Index Sensor, LEDs, KY-006 Passive Buzzer, Power Supply, and Power Bank. Implementation: The sensor utilised in this instance collects the measurements and uploads them to the blynk app cloud to provide the real-time data. When the farmer didn't hear the sound or get the notice on their mobile device, the LEDs continued to be in a different condition with and better. • These systems could be husbandry. • Excellent and enhanced quality. • Accurate field and crop evaluation allows for the observation of things that are invisible to the human eye. A disadvantage of agriculture is that it is a natural occurrence and heavily depends on the environment.		• effective	
Index Sensor, LEDs, KY-006 Passive Buzzer, Power Supply, and Power Bank. Implementation: The sensor utilised in this instance collects the and uploads them to the blynk app cloud to provide the real-time data. When the farmer didn't hear the sound or get the notice on their mobile device, the LEDs continued to be in a different condition with * These systems could be linked to drones to drones to fleld and crop evaluation allows for the observation of things that are invisible to the human eye. A disadvantage of agriculture is that it is a natural occurrence and heavily depends on the environment.	S11145 UV/IR	management	make it
LEDs, KY-006 Passive Buzzer, Power Supply, and Power Bank. Implementation: The sensor utilised in this instance collects the measurements and uploads them to the blynk app cloud to provide the real-time data. When the farmer didn't hear the sound or get the notice on their mobile device, the LEDs continued to be in a different condition with husbandry. Excellent and enhanced quality. Accurate field and crop evaluation allows for the observation of things that are invisible to the human eye. A disadvantage of agriculture is that it is a natural occurrence and heavily depends on the environment.	and Visible Light	and better	better.
Passive Buzzer, Power Supply, and Power Bank. Implementation: The sensor utilised in this instance collects the and uploads them to the blynk app cloud to provide the real-time data. When the farmer didn't hear the sound or get the notice on their mobile device, the LEDs continued to be in a different condition with * Excellent and enhanced quality. * Accurate field and crop evaluation allows for the observation of the observation of things that are invisible to the human eye. A disadvantage of agriculture is that it is a natural occurrence and heavily depends on the environment.	Index Sensor,	cattle	These
Power Supply, and Power Bank. Implementation: The sensor utilised in this instance collects the measurements and uploads them to the blynk app cloud to provide the real-time data. When the farmer didn't hear the sound or get the notice on their mobile device, the LEDs continued to be in a different condition with Power Supply, and Power Bank. Implementation: • Accurate field and crop evaluation allows for the observation of things that are invisible to the human eye. Accuracy could be improved by applying data mining algorithms;	LEDs, KY-006	husbandry.	systems
and Power Bank. Implementation: The sensor utilised in this instance collects the measurements and uploads them to the blynk app cloud to provide the real-time data. When the farmer didn't hear the sound or get the notice on their mobile device, the LEDs continued to be in a different condition with drones to provide 3D mapping of agricultural lands; • Accuracy could be improved by applying data mining algorithms;	Passive Buzzer,	Excellent and	could be
Implementation: The sensor utilised in this instance collects the measurements and uploads them to the blynk app cloud to provide the real-time data. When the farmer didn't hear the sound or get the notice on their mobile device, the LEDs continued to be in a different condition with * Accurate field and crop evaluation allows for the observation of things that are invisible to the human eye. A disadvantage of agriculture is that it is a natural occurrence and heavily depends on the environment.	Power Supply,	enhanced	linked to
The sensor utilised in this instance collects the measurements and uploads them to the blynk app cloud to provide the real-time data. When the farmer didn't hear the sound or get the notice on their mobile device, the LEDs continued to be in a different condition with field and crop evaluation allows for the observation of things that are invisible to the human eye. A disadvantage of agriculture is that it is a natural occurrence and heavily depends on the environment.	and Power Bank.	quality.	drones to
utilised in this instance collects the measurements and uploads them to the blynk app cloud to provide the real-time data. When the farmer didn't hear the sound or get the notice on their mobile device, the LEDs continued to be in a different condition with evaluation allows for the observation of things that are invisible to the improved by applying data mining agricultural lands; Accuracy could be improved by applying data mining algorithms;	Implementation:	Accurate	provide 3D
instance collects the the observation of things that are invisible to the human eye. blynk app cloud to provide the real-time data. When the farmer didn't hear the sound or get the notice on their mobile device, the LEDs condition with lands; ● Accuracy could be improved by applying data mining algorithms;	The sensor	field and crop	mapping of
the measurements and uploads them to the blynk app cloud to provide the real-time data. When the farmer didn't hear the sound or get the notice on their mobile device, the LEDs continued to be in a different condition with Accuracy could be improved by applying data mining algorithms; Accuracy could be improved by applying data mining algorithms;	utilised in this	evaluation	agricultural
measurements and uploads them to the blynk app cloud to provide the real-time data. When the farmer didn't hear the sound or get the notice on their mobile device, the LEDs condition with things that are invisible to the human eye. A disadvantage of agriculture is that it is a natural occurrence and heavily depends on the environment.	instance collects	allows for the	lands; •
and uploads them to the blynk app cloud to provide the real-time data. When the farmer didn't hear the sound or get the notice on their mobile device, the LEDs continued to be in a different condition with invisible to the human eye. A disadvantage of agriculture is that it is a natural occurrence and heavily depends on the environment.	the	observation of	Accuracy
them to the blynk app cloud to provide the real-time data. When the farmer didn't hear the sound or get the notice on their mobile device, the LEDs continued to be in a different condition with	measurements	things that are	could be
blynk app cloud to provide the real-time data. When the farmer didn't hear the sound or get the notice on their mobile device, the LEDs continued to be in a different condition with A disadvantage of agriculture is that it is a natural occurrence and heavily depends on the environment.	and uploads	invisible to the	improved
to provide the real-time data. When the farmer didn't hear the sound or get the notice on their mobile device, the LEDs continued to be in a different condition with	them to the	human eye.	by applying
real-time data. When the farmer didn't hear the sound or get the notice on their mobile device, the LEDs continued to be in a different condition with is that it is a natural occurrence and heavily depends on the environment.	blynk app cloud	A disadvantage	data mining
When the farmer didn't occurrence and heavily depends on on their mobile device, the LEDs continued to be in a different condition with	to provide the	of agriculture	algorithms;
farmer didn't hear the sound or get the notice on their mobile device, the LEDs continued to be in a different condition with	real-time data.	is that it is a	
hear the sound or get the notice depends on on their mobile device, the LEDs continued to be in a different condition with	When the	natural	
or get the notice on their mobile device, the LEDs continued to be in a different condition with	farmer didn't	occurrence	
on their mobile device, the LEDs continued to be in a different condition with	hear the sound	and heavily	
device, the LEDs environment. continued to be in a different condition with	or get the notice	depends on	
continued to be in a different condition with	on their mobile	the	
in a different condition with	device, the LEDs	environment.	
condition with	continued to be		
	in a different		
varied colours.	condition with		
	varied colours.		

References:

- 1) V. David, H. Ragu, R. K. Duraiswamy and S. P, "IoT based Automated Indoor Agriculture System Using Node-RED and IBM Bluemix," 2021 6th International Conference on Inventive Computation Technologies (ICICT), 2021, pp. 157-162, doi: 10.1109/ICICT50816.2021.9358672.
- 2) Ananthi N., Divya J., Divya, M., and Janani, V. (2017). IoT based smart soil monitoring system for agricultural production. IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR). doi: 10.1109/tiar.2017.8273717
- 3) Nalajala, P. Kumar, D.H. Ramesh, P. & Godavarthi, B. 2017. Design and implementation of modern automated real time monitoring system for agriculture using internet of things (IoT). J. Eng. Appl. Sci, 12.
- 4) Mishra D., Khan A., Tiwari R., and Upadhay S. (2018). "Automated Irrigation System-IoT Based Approach". 3rd International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU).