KTO GA – Transistoreak

1.) Analiza ezazu irudiko zirkuitua, hots, kalkula ezazu transistorearen operazio-puntua: $Q(V_{BE},I_B,V_{CE},I_C)$. Zenbatekoa da P eta T puntuen arteko potentzial-diferentzia?

2.) Analiza ezazu irudiko zirkuitua egoera egonkorrean:

3.) Ebatz ezazu irudiko zirkuitua.

4.) Irudiko zirkuiturako, kalkula itzazu V_C , V_B eta V_E tentsioak. Zein funtzionamendu-egoeran dago transistorea?

5.) Analiza ezazu irudiko zirkuitua:

$$\beta$$
 = 100
3,3 kΩ
 γ = 10 V

6.) Analiza ezazu irudiko zirkuitua:

$$200 \text{ k}\Omega$$

$$\beta = 100$$

$$100 \Omega$$

7.) Irudiko zirkuituan:

- a) Azter ezazu zein funtzionamendu-zonatan dagoen transistorea.
- b) Zein egoeratan dago LED diodoa?
- c) Zenbatekoa da LED diodoak xurgatutako potentzia?
- d) LED diodoa R erresistentzia batez ordezkatuz gero, kalkula ezazu zenbatekoa izan behar duen R-ren balioak, transistorearen kolektoreko tentsioa 2,5 V-ekoa izan dadin.

8.) Irudiko zirkuituan:

- a) Kalkula ezazu R erresistentziaren balioa, transistorearen oinarriko tentsioa 1,71 Vekoa izan dadin.
- b) Esan ezazu zein funtzionamendu-zonatan egongo den transistorea R-ren balio horretarako, eta lor ezazu operazio-puntua.
- c) Zenbatekoak dira, kasu horretan, kolektoreko tentsioa, V_C, eta igorlekoa, V_E?

9.) Analiza ezazu irudiko zirkuitua:

10.) Analiza ezazu irudiko zirkuitua:

11.) Irudiko zirkuituan:

- a) Zenbatekoa izan behar du R erresistentziaren balioak, transistorea eroaten has dadin, hots, etenduratik atera eta zona aktibo arruntean sar dadin?
- b) Zein funtzionamendu-zonatan dago transistorea, R = 600Ω baldin bada?
- 12.) Ezkerreko irudiko zirkuiturako, aurki ezazu zein funtzionamendu-egoeratan dagoen transistorea. Horrez gain, kalkula itzazu transistorearen korapilo guztietako tentsioak (V_B , V_C eta V_E) eta korronteak (I_B , I_C eta I_E).

Ondoren, korronte-sorgailua tentsio-sorgailu batez ordezkatu eta, eskuineko irudian ageri den legez, bi diodo sartzen badira, kalkula ezazu R erresistentziaren muga-balioa, transistorea zona aktibo arruntean egon dadin. Zer da balio hori, maximoa ala minimoa? Justifika ezazu erantzuna. (Suposatu diodoak siliziozkoak direla eta erabili 2. hurbilketa.)

13.) Analiza ezazu irudiko zirkuitua V_{BB} =0 V denean eta 10 V denean. Zenbatekoak dira V_{BB} tentsioaren muga-balioak, T_1 transistorea zona aktibo arruntean egoteko?

14.) Kalkula ezazu zein balio-tartetan egon daitekeen R erresistentzia (maximoa eta minimoa) irudiko zirkuituan, transistorea asetasunean eta Zener diodoa Zener eskualdean alderantziz polarizatuta egon daitezen.

15.) Irudiko zirkuituan:

- a) Bila ezazu zenbatekoa izan behar duen R erresistentziaren balioak, Zener diodoa korrontea eroaten has dadin. Nolakoa da balio hori, maximoa ala minimoa?
- b) Aurki ezazu zein funtzionamendu-zonatan dagoen transistorea, aurreko atalean lortutako R-ren balio horretarako.

16.) Irudiko zirkuiturako marraz ezazu (v_o, v_i) transferentzia-kurba. Horretarako, azter ezazu sarrera-tentsioaren aldaketak (v_i -renak) irteera-tentsioaren gainean (v_o -ren gainean) duen eragina.

17.) Irudiko zirkuiturako, marraz ezazu ($I_{\scriptscriptstyle C}, v_{\scriptscriptstyle i}$) kurba.

18.) Irudiko zirkuiturako, marraz ezazu (v_o, v_i) transferentzia-kurba.

19.) Irudiko zirkuituan dagoen transistorearen irteera-kurbak esperimentalki ezagunak dira (hurrengo orrian). Marraz ezazu kurba horien gainean zirkuituaren irteerako karga-zuzena eta ondoren kalkula ezazu transistorearen irteerako operazio-puntua (I_C , V_{CE}).

20.) Irudiko zirkuituan dagoen transistorearen irteera-kurbak esperimentalki ezagunak dira (hurrengo orria ikusi). Bestalde, zirkuituaren irteerako karga-zuzena ere ezaguna da, honako hauek izanik ardatzekiko ebakidura-puntuak: $I_{CO} = 12$ mA; $V_{CEO} = 9$ V.

Datu horiek oinarritzat hartuz, kalkula itzazu honako balio hauek: zirkuituko V_{CC} eta R_C balioak, transistorearen operazio-puntua (I_B , V_{BE} , I_C , V_{CE}) eta β .

