MATEMATIKA

KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

OKTATÁSI MINISZTÉRIUM

Fontos tudnivalók

Formai előírások:

- A dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal** kell javítani, és a tanári gyakorlatnak megfelelően jelölni a hibákat, hiányokat stb.
- A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott pontszám a mellette levő téglalapba kerül.
- **Kifogástalan megoldás** esetén elég a maximális pontszám beírása a megfelelő téglalapokba.
- Hiányos/hibás megoldás esetén kérjük, hogy az egyes részpontszámokat is írja rá a dolgozatra.
- Az ábrán kívül ceruzával írt részeket a javító tanár nem értékelheti.

Tartalmi kérések:

- Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól **eltérő megoldás** születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- A pontozási útmutató pontjai tovább **bonthatók**. Az adható pontszámok azonban csak egész pontok lehetnek.
- Nyilvánvalóan helyes gondolatmenet és végeredmény esetén maximális pontszám adható akkor is, ha a leírás az útmutatóban szereplőnél **kevésbé részletezett**.
- Ha a megoldásban számolási hiba, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- Elvi hibát követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel, mint kiinduló adattal helyesen számol tovább a következő gondolati egységben vagy részkérdésben, akkor erre a részre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változott meg.
- Ha a megoldási útmutatóban zárójelben szerepel egy **mértékegység**, akkor ennek hiánya esetén is teljes értékű a megoldás.
- Egy feladatra adott többféle megoldási próbálkozás közül **csak egy** (a magasabb pontszámú) **értékelhető**.
- A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- A vizsgafeladatsor II./B részében kitűzött 3 feladat közül csak 2 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha mégsem derül ki egyértelműen, hogy a vizsgázó melyik feladat értékelését nem kéri, akkor automatikusan a kitűzött sorrend szerinti legutolsó feladat lesz az, amelyet nem kell értékelni.

I.

1.		
A legkisebb szög: 20°.	2 pont	A szögösszeg megjelenítéséért már jár 1 pont.
Összesen:	2 pont	

2.		
A sorozat negyedik eleme: 6.	2 pont	A megfelelő képlet felírása 1 pontot ér.
Összesen:	2 pont	

3.	
A két szám egyenlő. $(7.13 = 91)$.	2 pont
Összes	sen: 2 pont

4.		
$\frac{9.8}{7} = 1.4 (^{\circ}C)$	2 pont	A fogalom helyes használata melletti számolási hiba esetén l pont.
Összesen:	2 pont	

5.	
20	2 pont
Összesen:	2 pont

6.		
$V = 42 \cdot 25 \cdot 30 \ (= 31500 \ cm^3 = 31.5 \ dm^3) = 31.5 \ liter.$	2 pon	Ha a mértékegység átváltása hiányzik, vagy nem áttekinthető, maximum 1 pont adható.
Az akvárium nem telik meg.	1 pon	t
Összesen:	3 pon	t

7.		
b)	1 pont	Ha az a)-t is kiválasztja,
(c)	1 pont	maximum 1 pont adható.
Összesen:	2 pont	

8.		
156 000 Ft-ot vehet fel Péter egy év elteltével.	2 pont	
Összesen:	2 pont	

9.		
Mind a négy ember maximum három levelet írhatott egy héten (4·3).	2 pont	
12 vagy b)	1 pont	
Összesen:	3 pont	

10.		
4x + 5y = -13	3 pont	A jól leolvasott normálvektor vagy irányvektor 1 pont; a pont jó behelyettesítése 2 pont.
Összesen:	3 pont	

11.		
Számolásos indoklás vagy helyes Venn-diagram $(6+8)-10=4$	2 pont	
Mindkét nyelvet 4 fő beszéli.	1 pont	
Összesen:	3 pont	

12.		
<i>f</i> legkisebb értéke: −3,	1 pont	
ez az $x = 2$ értékhez tartozik.	1 pont	
f legnagyobb értéke: 7,	1 pont	
ez az $x = 6$ értékhez tartozik.	1 pont	
Összesen:	4 pont	Ha a jó tartalmat hibásan, pl. rendezett számpárokkal fejezi ki, 2 pont adható.

II./A

13. a)		
Az $a^2 - 2a - 3 = 0$ másodfokú egyenletet kell megoldani.	1 pont	Az új változó bevezetése nélkül is jár a pont.
Ennek az egyenletnek a gyökei:	1 pont	
$a_1 = 3$ és $a_2 = -1$.	1 pont	
$a = 3^x = 3$ esetén, $x = 1$.	1 pont	
$a = 3^x = -1$ egyenlet nem ad megoldást,	1 pont	
mert 3 minden valós kitevőjű hatványa pozitív szám.	1 pont	
Az x = 1 kielégíti az eredeti egyenletet.	1 pont	
Összesen:	6 pont	

13. b)		
Az $a^2 - 2a - 3 = 0$ másodfokú egyenletet kell megoldani. Ennek az egyenletnek a gyökei: $a_1 = 3$ és $a_2 = -1$.	1 pont*	
$a = \sin x = 3$ nem ad megoldást,	1 pont	
mert $\sin x \le 1$.	1 pont	
$a = \sin x = -1$. A $\sin x = -1$ egyenlet gyökei: az $x = \frac{3}{2} \cdot \pi + 2k \cdot \pi$, ahol k tetszőleges egész szám.	2 pont	Az egyenlet gyökének elfogadható a fokokban megadott helyes alakja is: $x = \frac{3}{2} \cdot \pi + 2k \cdot \pi =$ = 270° + $k \cdot 360$ ° Ha a gyök megadásánál hiányzik a periódus, 1 pont adható. Ha vegyesen használ fokot és ívmértéket, akkor is 1 pont jár.
Ezek az x értékek kielégítik az eredeti egyenletet.	1 pont	
Összesen:	6 pont	
* Ha az első egyenletben ezért a részletért nem kaphat	ott pontot,	akkor itt 2 pont adható.

14.		
Az a oldalú szabályos háromszög magassága: $\frac{a \cdot \sqrt{3}}{2} = 4 \cdot \sqrt{3} .$	1 pont	Az 1 pont akkor is jár, ha közvetlenül a területképletet írja fel helyesen.
Az alaplap területe: $\frac{a^2 \cdot \sqrt{3}}{4} = 16 \cdot \sqrt{3} \text{ (cm}^2\text{)}.$	2 pont	
A palást területe: $3 a m_t = 24 m_t$	2 pont	
$24 m_t = 6.16 \cdot \sqrt{3}$ $m_t = 4 \cdot \sqrt{3}$	2 pont	
$V_{has\acute{a}b} = (T_a \cdot m_t =) 16 \cdot \sqrt{3} \cdot 4 \cdot \sqrt{3} = 192 \text{ (cm}^3)$	2 pont	
$A_{has\acute{a}b} = 2 T_a + 3 a \cdot m_t$	1 pont	Akkor is jár az 1 pont, ha közvetlenül a képletbe jól behelyettesítve írja fel a felszínt.
$A_{has\acute{a}b} = 2.16 \cdot \sqrt{3} + 24.4 \cdot \sqrt{3} = 128 \cdot \sqrt{3} \approx 221,7 \text{ (cm}^2)$	2 pont	
Összesen:	12 pont	Következetesen alkalmazott kerekítések esetén teljes pontszám jár.

15. a)		
Az összes képezhető kódok száma 5!	2 pont	
120 tanuló írt dolgozatot.	1 pont	
Összesen:	3 pont	

15. b)	2	3	4	5		Adatokat tartalmazó
jegyek fok fő	45° 15	105° 35	150° 50	60° 20	4 pont	oszloponként 1-1 pont. Ha a tanulói létszámokat kerekítés után adja meg helyesen, 2 pontot kaphat.
fő †	2	3	4	5	2 pont	
				Összesen:	6 pont	

15. c)	
A 4-es és az 5-ös dolgozatok száma összesen: 70.	1 pont
A keresett valószínűség: $\frac{70}{120} = \frac{7}{12} \approx 0,583$.	2 pont
Összesen:	3 pont

II./B

16. b)	
Az (1) egyenlet miatt $y > -1$	1 pont
és $x > -11$.	1 pont
Összesen:	2 pont

16. c)	
$\lg(y+1)^2 = \lg(x+11)$	1 pont
$\lg(2x+1)^2 = \lg(x+11)$	1 pont
A logaritmusfüggvény szigorú monotonitása miatt	1 pont
$(2x+1)^2 = x+11$	1 pont
$4x^2 + 3x - 10 = 0$	2 pont
$x_1 = \frac{5}{4}$ és $x_2 = -2$	1 pont
$y_1 = \frac{5}{2}$ és $y_2 = -4$	1 pont
A másodfokú egyenletrendszer megoldásai: $\left(\frac{5}{4}, \frac{5}{2}\right)$ illetve (-2, -4),	1 pont
amiből a második számpár nem tartozik az eredeti egyenlet értelmezési tartományába,	1 pont
az első számpár kielégíti az eredeti egyenletrendszert.	1 pont
Összesen:	11 pont

16. d)		
A $P\left(\frac{5}{4}; \frac{5}{2}\right)$ pont bejelölése.	2 pont	Ha a c) részre adott válaszát jól ábrázolja, akkor jár a 2 pont.
Összesen:	2 pont	

17. a)					
1. megoldá	ís				
		gyes fordulókba	an megtett		
téteket és a	nyeremények	ret			
forduló	tét	a forduló	Öggzog		
ll lordulo	iei		összes		
		végén	pénz a		
		visszakapott	forduló		2. fordulótól soronként
		pénz	végén		1-1 pont.
1.		40 000	40 000	4 pont	Bármilyen logikusan
2.	40 000	80 000	80 000		felépített, helyes
3.	80 000	160 000	160 000		megjelenítés elfogadható.
4.	160 000	320 000	320 000		
5.	320 000	640 000	640 000		
A bátor ver	rsenyző 640 0	00 Ft-ot nyerhet	, ha minden		
fordulóban	jól válaszol.	-			
			Összesen:	4 pont	

2. megoldás		
Az első nyereménye 40 000 forint, a további négy		
fordulóban a pénze mindig megduplázódik, így a	4 pont	
végén $40\ 000 \cdot 2^4 = 640\ 000$ forint a nyeremény.	r	
Összesen:	4 pont	

1	7	•	b)

1. megoldás

forduló	tét	a forduló	összes		
		végén	pénz a		
		visszakapott	forduló		
		pénz	végén		2. fordulótól soronként
1.		40 000	40 000		1-1 pont.
2.	20 000	40 000	60 000	4 pont	Bármilyen logikusan
3.	30 000	60 000	90 000		felépített, helyes
4.	45 000	90 000	135 000		megjelenítés elfogadható.
5.	67 500	135 000	202 500		
A z óvotos) 500 Et at nyarl			
	Az óvatos versenyző 202 500 Ft-ot nyerhet, ha				
minden for	minden fordulóban jól válaszol.				
	Összesen:				

2. megoldás		
Az első nyereménye 40 000 forint, a további négy		
fordulóban a pénze mindig másfélszereződik, így a	4 pont	
végén $40\ 000 \cdot 1,5^4 = 202\ 500\ forint a nyeremény.$		
Összesen:	4 pont	

17. c)

 05 000 83 750	210 000 0 t nyerhet.	245 000 61 250		megjelenítés elfogadható.
		Összesen:	5 pont	

2. megoldás		
Az első nyereménye 40 000 forint, a további négy forduló végére 40 $000 \cdot 2^1 \cdot 1,75^2 \cdot 0,25 = 61250$ forint a nyeremény.	5 pont	
Összesen:	5 pont	

17. d)	
1. megoldás	
A kockáztatás 4 fordulón keresztül történik, és a	
játékos minden fordulóban $\frac{1}{3}$ valószínűséggel vállal	1 pont
100%-ot.	
A maximális nyereményhez jutás	
valószínűsége: $\left(\frac{1}{3}\right)^4 = \frac{1}{81} \approx 0,012.$	3 pont
Összesen:	4 pont

2. megoldás	
Az összes esetek száma a 4 utolsó fordulóban $3^4 = 81$.	2 pont
A kedvező esetek száma 1.	1 pont
A keresett valószínűség (a klasszikus modell szerint):	
$\frac{1}{81} \approx 0.012.$	1 pont
Összesen:	4 pont

Megjegyzés: Ha a vizsgázó a leírt játékszabályokat nem jól értelmezi (pl. a feltett pénzt nem kiadásként kezeli), és a saját modelljében újabb hibát nem követ el, az a) kérdésre járó 4 pontot nem kaphatja meg. Megoldása így legfeljebb 13 pontot ér.

18. b)		
$y = \frac{4}{\cos 70^{\circ}}$	3 pont	
$\approx 11.7 \text{ (m)}$	1 pont	
Összesen:	4 pont	

18. c)		
A legtávolabbi megvilágított pont a talajon a rúd		
aljától:	2 pont	
$x = 4 \cdot tg \ 70^{\circ}$ távolságra van,	1	
$x \approx 11 (m)$,	1 pont	
így a 15 méterre levő pont már nincs megvilágítva.	1 pont	
Összesen:	4 pont	

18. d)		
$r^2\pi \le 100$	1 pont	
$r \le \sqrt{\frac{100}{\pi}} \approx 5,64 \ (m) ,$	2 pont	
$h \le \frac{5,64}{tg \ 70^{\circ}} \approx 2,05 \ (m) ,$	2 pont	
tehát az első vagy a második kampóra kell akasztani az érzékelőt.	2 pont	
Összesen:	7 pont	Egyenlettel számolva is járnak a pontok.