ENGINEERING NOTE	SECTION	PROJECT	SERIAL-CATEGORY	PAGE
Physics 2C 2/13		DATE	REVISION D	DATE
O Engines & Refrigero Efficiency 1	dos via Coeffici	Energy of	Transfer [Performance)iagraw K
@ Definitions: Cycle	Reservoir			
3 Connection to PV	diagram	S		
9 Finding Q's and h	by's floor	n graph.	s	
(D) Engines	Q _H	НоТ		
Syst	em:	Wout	energy	conserve
	(5)		Q_{H}^{-W}	'out+Qc
	<u></u>	COLD		
efficiency: $7 = \frac{\text{what we}}{\text{what we}}$	have for it	Wout =	1- Qc	
		1 1.7	. 1 . 1	seful"
· "perfect" engine w	ith 7=1	, Q = C) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	76
"perfect" engine w because Heat is "un	of 2 ⁿ	le Law	of them	no S 20
Work is "o	rferef.	energy		
· Note: there is a book Carnot engine	est" valu (Friday)	e for	efficience	zy.

			1	1	SERIAL-CATE	GORY PAGE
光	FERMILAB		SECTION	PROJECT	SERIALICATE	GON!
FI EN	IGINEERING	NOTE				
SUBJECT				NAME		
				DATE		REVISION DATE
•				DATE		HEVISION DATE
120f1	rigerators		QH			
11-6.	1901001		1 "	HOT		
	-			1.01		nergy cons.
		system :	1	Win	Q	c+Win = QH
		(qus)	A .			
		- · ·	T			
	_					
				COL		
			Qc	Ki	nside \	
			<u> </u>		of idge)	
coefficie	nt	wha-	two want		+riage/	
0f	K	= what	1	- = <u>W</u>	- :	<u> ۷</u>
		wha	t we pay	W;	^	QH-QC
bertolv	rakee		بالجمدين			WH 'C
			slightly			
· Note	: Qc, Q (wrons	HW	have dif	ferent 1	meanin	95.
	Correct	orb	0 000	ite dis	ertion	7 /
	(441 / 0 41 3	0, 6	OPPOS			3
- N/-	" c(a, 1"	c. Cala		ا ما بالنام	< = 00	14/2 - 0
• /٧٥	"perfect"	retrigi	eraton	WITH I		, Win -O
1 1 -	_ •					
	It you	combined	a per	fect enu	ine ~/	a
	If you perfect	refria	erator:	1 7) "	./ 14.0
	4011201	, ,			(1	w/ No
						assistance
				10		impossible!
• (arnot fri	de is	best a	ع اط ۱۶۶۰ د	k	(Friday)
			,			
+						

QH

An engine has an efficiency $\eta = 0.20$. This means that for every 1.0 kJ of "waste heat" produced, we get _____ of work.

A refrigerator has a coefficient of performance K = 4.0. This means that for every 1 kJ that is taken from the wall outlet, _____ of heat energy is taken from the inside of the refrigerator.

Q4=5K

5. A refrigerator requires 200 J of work and exhausts 600 J of heat per cycle. What is the refrigerator's coefficient of performance?

$$K = \frac{Q_c}{W_{in}} = \frac{400J}{200J} \qquad Q_{it} = W_{in} + Q_c$$

$$600J = 200J + Q_c$$

$$Q_c = 400J$$

$$Q_c = 400J$$

An engine consists of:

- 1. isobaric expansion, 2. adiabatic expansion, 3. isobaric compression,
- 4. isochoric heating.
- i) Draw the pV diagram.
- ii) Under which step(s) is heat added to the gas?
- A) Step 1 only
- B) Step 3 only
- C) Step 4 only

Steps 1 and 4 only Steps 3 and 4 only

iii) Give an expression for the efficiency in terms of Whet,by,
$$Q_1$$
, Q_2 , Q_3 , Q_4

$$\mathcal{L} = \frac{W_{\text{Net,by}}}{Q_H} = \frac{W_{\text{Net,by}}}{Q_1 + Q_4}$$

$$Vote W_{\text{Net,by}} = W_{\text{out}} = Q_H - Q_C$$

$$= (Q_1 + Q_4) - |Q_3|$$

$$= Q_1 + Q_4 + Q_3$$

$$Q_1 + Q_4$$

The engine in an automobile can be idealized with the Otto cycle shown below.

- (i) Fill out the table.
- (ii) Give an expression for the efficiency η of the engine in terms of Q_{12} , $W_{by,12}$, ...

25 44	•	
(path)	sign of Q	sign of W _{by}
12	0	_
23	+	0 .
34	O	+
41		Ó

Suppose you have an engine consisting of isobaric and isochoric paths alone (see the following figure). For $\eta = W_{out}/Q_H$, what is the value of Q_H ?

Suppose you have a refrigerator consisting of isobaric and isochoric paths alone (see the following figure). For $K = Q_C/W_{in}$, what is the value of Q_C ?

A) $Q_{21} + Q_{14}$ $Q_{21} + Q_{14}$ $Q_{43} + Q_{32}$ $Q_{43} + Q_{32}$ E) None of the above

6. FIGURE Q21.6 shows the thermodynamic cycles of two heat engines. Which heat engine has the larger thermal efficiency? Or are they the same? Explain.

