

BGA24 NAND Specification

2Gb (256M x 8), 3.3v, with ECC controller build-in NAND flash

Revision History:

Rev.	Date	Changes	Remark
A0.0	2016/7/16	Initial version	Preliminary
V0.1	2017/1/5	Random access change from 40us (max) to 40us (typ) on page 3;	Preliminary
V0.2	2017/12/11	Change company name "Paragon" to "XTX"	Revise
V0.3	2019/7/22	Overall reviewing and updating	Revise
V0.4	2019/12/4	Correct the unclear description	Revise

NOTE: INFORMATION IN THIS PRODUCT SPECIFICATION IS SUBJECT TO CHANGE AT ANYTIME WITHOUT NOTICE, ALL PRODUCT SPECIFICATIONS ARE PROVIDED FOR REFERENCE ONLY.TO ANY INTELLECTUAL, PROPERTY RIGHTS IN XTX TECHNOLOGY LIMITED.ALL INFORMATION IN THIS DOCUMENT IS PROVIDED. Home page (http://www.xtxtech.com); Technical Contact: fae@xtxtech.com

General Description

The PN27G02B is a single 3.3v 2Gbit NAND Electrically Erasable and Programmable Read-Only Memory (NAND E2PROM) organized as (2048 + 64) bytes \times 64 pages \times 2048 blocks. The device has two 2112-byte static registers which allow program and read data to be transferred between the register and the memory cell array in 2112-byte increments. The Erase operation is implemented in a single block unit (128 Kbytes + 4 Kbytes: 2112 bytes \times 64 pages).

The PN27G02B is a serial-type memory device which utilizes the I/O pins for both address and data input/output as well as for command inputs. The Erase and Program operations are automatically executed making the device most suitable for applications such as solid-state file storage, voice recording, image file memory for still cameras and other systems which require high-density non-volatile memory data storage.

The PN27G02B has ECC logic on the chip and 8bit read errors for each 528Bytes can be corrected internally.

Features

- Single Level per Cell (SLC) Technology
- ➤ ECC requirement: 0bit/528Bytes, with build-in ECC controller to implement 8 bit/528Bytes internally
- Power Supply Voltage

Voltage range: 2.7V ~ 3.6V

Organization

Page size: x8 (2048 + 64) bytes; 64- bytes spare area

Block size: x8 (128k + 4k) bytes Plane size: 1024 Blocks per Plane 2008 block (min) ~2048 block (max)

Modes

Read, Reset, Auto Page Program, Auto Block Erase, Status Read, Page Copy,

Multi Page Program, Multi Block Erase, Multi Page Copy, Multi Page Read, ECC Status Read

Access time

Cell array to register: 25µs (max)

Serial Read Cycle: 25 ns (min) (CL=50pF)

Program/Erase time

Auto Page Program: 300 μs /page (typ.) Auto Block Erase: 3.5 ms/block(typ.)

Reliability

10 Year Data retention (Typ)

Part number description

I: Industrial (-40'C to 85'C)

Pin Assignments

Ball down , top view

BGA24, 6x8x1mm, ball pitch 1.0

Package Dimension

TOP VIEW

BOTTOM VIEW

DETAIL B(2:1)

SYMBOL	N,	MILUMETER					
	MIN	MOM	MAX				
Α			1.14				
A1	0.25	0.30	0.35				
A2	0.71	0.76	0.81				
A3	0	.50 BASK	C				
С	0.22	0.26	0.30				
D	5.90	6.00	6.10				
D1	3.00 BASIC						
Ε	7.90	8.00	8.10				
E1	5	.00 BASK					
е	1	.00 BASI	С				
b	0.35	0.40	0.45				
L	1.30 REF						
aaa	0.10						
ccc	0.15						
ddd	0.10						
eee		0.15					
fff		0.10					

Dec, 4, 2019 Rev V0.4 Page 6

Logic Diagram

Pin Description

Pin Name	Description
I/O1 - I/O8 (x8)	Inputs/Outputs. The I/O pins are used for command input, address input, data input, and data
	output. The I/O pins float to High-Z when the device is deselected or the outputs are disabled.
CLE	Command Latch Enable. This input activates the latching of the I/O inputs inside the Command
	Register on the rising edge of Write Enable (WE#).
ALE	Address Latch Enable. This input activates the latching of the I/O inputs inside the Address Register
	on the rising edge of Write Enable (WE#).
CE#	Chip Enable. This input controls the selection of the device. When the device is not busy CE# low
	selects the memory.
WE#	Write Enable. This input latches Command, Address and Data. The I/O inputs are latched on the
	rising edge of WE#.
	Read Enable. The RE# input is the serial data-out control, and when active drives the data onto the
RE#	I/O bus. Data is valid tREA after the falling edge of RE# which also increments the internal column
	address counter by one.
WP#	Write Protect. The WP# pin, when low, provides hardware protection against undesired data
	modification (program / erase).
R/B#	Ready Busy. The Ready/Busy output is an Open Drain pin that signals the state of the memory.
vcc	Supply Voltage. The VCC supplies the power for all the operations (Read, Program, Erase). An
	internal lock circuit prevents the insertion of Commands when VCC is less than VLKO.
VSS	Ground.
NC	Not Connected.

Notes:

^{1.} A 0.1 μF capacitor should be connected between the VCC Supply Voltage pin and the VSS Ground pin to decouple the current surges from the power supply. The PCB track widths must be sufficient to carry the currents required during program and erase operations.

Block Diagram

Array Organization

Schematic Cell Layout and Address Assignment

The Program operation works on page units while the Erase operation works on block units.

2112

A page consists of 2112 bytes in which 2048 bytes are used for main memory storage and 64 bytes are for redundancy or for other uses.

- 1 page = 2112bytes
- $1 \text{ block} = 2112 \text{ bytes} \times 64 \text{ pages} = (128\text{K} + 4\text{K}) \text{ bytes}$
- Capacity = 2112 bytes × 64pages × 2048 blocks

An address is read in via the I/O port over five consecutive clock cycles, as shown in Table 1.

Addressing

	I/O8	1/07	1/06	I/O5	1/04	I/O3	I/O2	I/O1
First cycle	CA7	CA6	CA5	CA4	CA3	CA2	CA1	CA0
Second cycle	L	L	L	L	CA11	CA10	CA9	CA8
Third cycle	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
Fourth cycle	PA15	PA14	PA13	PA12	PA11	PA10	PA9	PA8
Fifth cycle	L	L	L	L	L	L	L	PA16

CA0 to CA11: Column address **PA0 to PA16:** Page address **PA6 to PA16:** Block address

PAO to PA5: NAND address in block

Absolute Maximum Ratings

SYMBOL	RATING	VALUE	UNIT
V _{CC}	Power Supply Voltage	-0.6 to 4.6	V
V _{IN}	Input Voltage	-0.6 to 4.6	V
V _{I/O}	Input /Output Voltage	-0.6 to V _{CC} + 0.3 (≤ 4.6 V)	V
PD	Power Dissipation	0.3	W
T _{SOLDER}	Soldering Temperature (10 s)	260	°C
T _{STG}	Storage Temperature	−55 to 150	°C
T _{OPR}	Operating Temperature	-40 to 85	°C

Capacitance *(Ta = 25°C, f = 1 MHz)

SYMB0L	PARAMETER	CONDITION	MIN	MAX	UNIT
C _{IN}	Input	V _{IN} = 0 V	_	10	pF
C _{OUT}	Output	Vout = 0 V		10	pF

^{*} This parameter is periodically sampled and is not tested for every device.

Valid Blocks

SYMBOL	PARAMETER	MIN	TYP.	MAX	UNIT
N_{VB}	Number of Valid Blocks	2008		2048	Blocks

NOTE: The device occasionally contains unusable blocks. Refer to Application Note (13) toward the end of this document.

The first block (Block 0) is guaranteed to be a valid block at the time of shipment.

The specification for the minimum number of valid blocks is applicable over lifetime.

The number of valid blocks is on the basis of single plane operations, and this may be decreased with two plane operations.

Recommended DC Operating Conditions

SYMBOL	PARAMETER	MIN	TYP.	MAX	UNIT
V _{CC}	Power Supply Voltage	2.7	_	3.6	V
V _{IH}	High Level input Voltage	Vcc x 0.8	-	Vcc + 0.3	V
V _{IL}	Low Level Input Voltage	-0.3*	ı	Vcc x 0.2	٧

BGA24 NAND

DC Characteristics (Ta = -40 to 85°C, VCC = 2.7 to 3.6V)

SYMBOL	PARAMETER	CONDITION	MIN	TYP.	MAX	UNIT
I _{IL}	Input Leakage Current	V _{IN} = 0 V to V _{CC}	_	_	±10	μΑ
I _{LO}	Output Leakage Current	Vout = 0 V to Vcc	_	_	±10	μΑ
I _{CCO1}	Serial Read Current	CE# = VIL, IOUT = 0 mA, tcycle = 25	_		30	mA
I _{CCO2}	Programming Current	_	_		30	mA
I _{CCO3}	Erasing Current	_	_		30	mA
Iccs	Standby Current	CE# = V _{CC} -0.2 V, WP# = 0 V/V _{CC}	_	_	50	μΑ
V _{ОН}	High Level Output Voltage	I _{OH} = -0.1 mA	Vcc – 0.2	_	_	V
VoL	Low Level Output Voltage	I _{OL} = 0.1 mA	_	_	0.2	V
I _{OL} (RY/BY)	Output current of RY/BY pin	V _{OL} = 0.2 V		4	_	mA

^{* -2} V (pulse width lower than 20 ns)

AC CHARACTERISTICS AND RECOMMENDED OPERATING

BGA24 NAND

(Ta = -40 to 85° C, V_{CC} = 2.7 to 3.6V)

SYMBOL	PARAMETER	MIN	MAX	UNIT
tCLS	CLE Setup Time	12	_	ns
t _{CLH}	CLE Hold Time	5	_	ns
t _{CS}	CE# Setup Time	20	_	ns
t _{CH}	CE# Hold Time	5	_	ns
twp	Write Pulse Width	12	_	ns
t _{ALS}	ALE Setup Time	12	_	ns
t _{ALH}	ALE Hold Time	5	_	ns
t _{DS}	Data Setup Time	12	_	ns
t _{DH}	Data Hold Time	5	_	ns
t _{WC}	Write Cycle Time	25	_	ns
t _{WH}	WE# High Hold Time	10	_	ns
t _{WW}	WP# High to WE# Low	100	_	ns
t _{RR}	Ready to RE# Falling Edge	20	_	ns
t _{RW}	Ready to WE# Falling Edge	20	_	ns
t _{RP}	Read Pulse Width	12	_	ns
t _{RC}	Read Cycle Time	25	_	ns
t _{REA}	RE# Access Time	_	20	ns
tCEA	CE# Access Time	_	25	ns
t _{CLR}	CLE Low to RE# Low	10	_	ns
t _{AR}	ALE Low to RE# Low	10	_	ns
^t RHOH	RE# High to Output Hold Time	25	_	ns
t _{RLOH}	RE# Low to Output Hold Time	5	_	ns
t _{RHZ}	RE# High to Output High Impedance	_	60	ns
t _{CHZ}	CE# High to Output High Impedance	_	20	ns
t _{CSD}	CE# High to ALE or CLE Don't Care	0	_	ns
t _{REH}	RE# High Hold Time	10	_	ns
t _{IR}	Output-High-impedance-to- RE# Falling Edge	0	_	ns
t _{RHW}	RE# High to WE# Low	30	_	ns
t _{WHC}	WE# High to CE# Low	30	_	ns
t _{WHR}	WE# High to RE# Low	60	_	ns
t _{WB}	WE# High to Busy	_	100	ns
t _{RST}	Device Reset Time (Ready/Read/Program/Erase)	_	5/5/10/500	μs

^{*1:} tCLS and tALS can not be shorter than tWP

^{*2:} tCS should be longer than tWP + 8ns.

AC Test Conditions

	CONDITION
PARAMETER	V _{CC} : 2.7 to 3.6V
Input level	V _{CC} - 0.2 V, 0.2 V
Input pulse rise and fall time	3 ns
Input comparison level	Vcc / 2
Output data comparison level	Vcc / 2
Output load	C _L (50 pF) + 1 TTL

Note: Busy to ready time depends on the pull-up resistor tied to the RY/BY# pin.

Programming and Erasing Characteristics

 $(Ta = -40 \text{ to } 85^{\circ}C, V_{CC} = 2.7 \text{ to } 3.6V)$

SYMBOL	PARAMETER	MIN	TYP.	MAX	UNIT	NOTES
	Average Programming Time (Single Page)		330	700	μs	
t _{PROG}	Average Programming Time (Multi Page)	_	350	700	μs	
t _{DCBSYW1}	Data Cache Busy Time in Write Cache (following 11h)	_	0.5	1	μs	
N	Number of Partial Program Cycles in the Same Page		_	4		(1)
t _{BERASE}	Block Erasing Time	-	3.5	10	ms	
+_	Memory cell Array to Starting Address (Single Page)	_	40	120		
t _R	Memory cell Array to Starting Address (Multi Page)	_	55	200	μs	

⁽¹⁾ Refer to Application Note (12) toward the end of this document.

Data Output

When tREH is long, output buffers are disabled by /RE=High, and the hold time of data output depend on tRHOH (25ns MIN). On this condition, waveforms look like normal serial read mode.

When tREH is short, output buffers are not disabled by /RE=High, and the hold time of data output depend on tRLOH (5ns MIN). On this condition, output buffers are disabled by the rising edge of CLE, ALE, /CE or falling edge of /WE, and waveforms look like Extended Data Output Mode.

Mode Selection

The operation modes such as Program, Erase, Read and Reset are controlled by command operations shown in Table 3. Address input, command input and data input/output are controlled by the CLE, ALE, /CE, /WE, /RE and /WP signals as shown in Table 2.

Table 2. Logic Table

	CLE	ALE	CE WE		RE	WP *1	
Command Input	Н	L	L	7	Н	*	
Data Input	L	L	L	F	Н	Н	
Address input	L	Н	L	<u></u>	Н	*	
Serial Data Output	L	L	L	Н	7	*	
During Program (Busy)	*	*	*	*	*	Н	
During Erase (Busy)	*	*	*	*	*	Н	
During Read (Busy)	*	*	Н	*	*	*	
During Read (Busy)	*	*	L	H (*2)	H (*2)	*	
Program, Erase Inhibit	*	*	*	*	*	L	
Standby	*	*	Н	*	*	0 V/V _{CC}	

H: V_{IH} , L: V_{IL} , *: V_{IH} or V_{IL}

^{1. *1:} Refer to Application Note (10) toward the end of this document regarding the WP signal when Program or Erase Inhibit

^{2. *2 :} If \overline{CE} is low during read busy, \overline{WE} and \overline{RE} must be held High to avoid unintended command/address input to the device or read to device. Reset or Status Read command can be input during Read Busy.

Table 3. Command table (HEX)

	First Cycle	Second Cycle	Acceptable while Busy
Serial Data Input	80	_	
Read	00	30	
Column Address Change in Serial Data Output	05	E0	
Auto Page Program	80	10	
Column Address Change in Serial Data Input	85	_	
Multi Dana Duanyan	80	11	
Multi Page Program	81	10	
Read for Copy back without Data Out	00	35	
Copy back Program without Data Out	85	10	
Auto Block Erase	60	D0	
ID Read	90	_	
Status Read	70	_	0
Status Read for Multi-Page Program or Multi Block Erase	71	_	0
ECC Status Read	7A	_	
Reset	FF		0

Table 4. Read mode operation states

	CLE	ALE	CE	WE	RE	I/O1 to I/O8	Power
Output select	L	L	L	Н	L	Data output	Active
Output Deselect	L	L	L	Н	Н	High impedance	Active

H: V_{IH}, L: V_{IL}

Device Operation

Read Mode

N

Read mode is set when the "00h" and "30h" commands are issued to the Command register. Between the two commands, a start address for the Read mode needs to be issued. After initial power on sequence, "00h" command is latched into the internal command register. Therefore read operation after power on sequence is excuted by the setting of only five address cycles and "30h" command. Refer to the figures below for the sequence and the block diagram (Refer to the detailed timing chart.).

Cell array

I/O1 to 8: m = 2111

After the transfer period, the device returns to Ready state.

Serial data can be output synchronously with the \overline{RE} clock from the start address designated in the address input cycle.

Random Column Address Change in Read Cycle

Multi Page Read Operation

The device has a Multi Page Read operation.

The sequence of command and address input is shown below.

Same page address (PAO to PA5) within each district has to be selected.

The data transfer operation from the cell array to the Data Cache via Page Buffer starts on the rising edge of $\overline{\text{WE}}$ in the 30h command input cycle (after the 2 Districts address information has been latched). The device will be in the Busy state during this transfer period.

After the transfer period, the device returns to Ready state. Serial data can be output synchronously with the $\overline{\text{RE}}$ clock from the start address designated in the address input cycle.

Internal addressing in relation with the Districts

To use Multi Page Read operation, the internal addressing should be considered in relation with the District.

- The device consists from 2 Districts.
- Each District consists from 1024 erase blocks.
- The allocation rule is follows.

District 0: Block 0, Block 2, Block 4, Block 6,..., Block 2046

District 1: Block 1, Block 3, Block 5, Block 7,..., Block 2047

Address input restriction for the Multi Page Read operation

There are following restrictions in using Multi Page Read;

(Restriction)

Maximum one block should be selected from each District.

Same page address (PAO to PA5) within two districts has to be selected.

For example;

- (60) [District 0, Page Address 0x00000] (60) [District 1, Page Address 0x00040] (30)
- (60) [District 0, Page Address 0x00001] (60) [District 1, Page Address 0x00041] (30)

(Acceptance)

There is no order limitation of the District for the address input.

For example, following operation is accepted;

- (60) [District 0] (60) [District 1] (30)
- (60) [District 1] (60) [District 0] (30)

It requires no mutual address relation between the selected blocks from each District.

Operating restriction during the Multi Page Read operation

Make sure WP is held to High level when Multi Page Read operation is performed

ECC & Sector definition for ECC

Internal ECC logic generates Error Correction Code during busy time in program operation. The ECC logic manages 9bit error detection and 8bit error correction in each 528Bytes of main data and spare data. A section of main field (512Bytes) and spare field (16Bytes) are paired for ECC. During read, the device executes ECC of itself. Once read operation is executed, Read Status Command (70h) can be issued to check the read status. The read status remains until other valid commands are executed.

To use ECC function, below limitation must be considered.

- A sector is the minimum unit for program operation and the number of program per page must not exceed 4.

2KByte Page Assignment

1'st	2'nd	3'rd	4'th	1'st	2'nd	3'rd	4'th
Main	Main	Main	Main	Spare	Spare	Spare	Spare
512B	512B	512B	512B	16B	16B	16B	16B

Note) The Internal ECC manages all data of Main area and Spare area

Definition of 528Byte Sector

Sector	Column Address (Byte)	
	Main Field	Spare Field
1'st Sector	0 ~ 511	2,048 ~ 2,063
2'nd Sector	512 ~ 1,023	2,064 ~ 2,079
3'rd Sector	1,024 ~ 1,535	2,080 ~ 2,095
4'th Sector	1,536 ~ 2,047	2,096 ~ 2,111

Auto Page Program Operation

The device carries out an Automatic Page Program operation when it receives a "10h" Program command after the address and data have been input. The sequence of command, address and data input is shown below. (Refer to the detailed timing chart.)

The data is transferred (programmed) from the Data Cache via the Page Buffer to the selected page on the rising edge of \overline{WE} following input of the "10h" command. After programming, the programmed data is transferred back to the Page Buffer to be automatically verified by the device. If the programming does not succeed, the Program/Verify operation is repeated by the device until success is achieved or until the maximum loop number set in the device is reached.

Random Column Address Change in Auto Page Program Operation

The column address can be changed by the 85h command during the data input sequence of the Auto Page Program operation.

Two address input cycles after the 85h command are recognized as a new column address for the data input. After the new data is input to the new column address, the 10h command initiates the actual data program into the selected page automatically. The Random Column Address Change operation can be repeated multiple times within the same page.

Multi Page Program

The device has a Multi Page Program, which enables even higher speed program operation compared to Auto Page Program. The sequence of command, address and data input is shown bellow. (Refer to the detailed timing chart.)

Although two planes are programmed simultaneously, pass/fail is not available for each page when the program operation completes. Status bit of I/O 0 is set to "1" when any of the pages fails. Limitation in addressing with Multi Page Program is shown below.

Multi Page Program

NOTE: Any command between 11h and 81h is prohibited except 70h and FFh.

The 71h command Status description is as below.

	STATUS	OU	TPUT	
I/O1	Chip Status : Pass/Fail	Pass: 0	Fail: 1	
1/02	District 0 Chip Status : Pass/Fail	Pass: 0	Fail: 1	
I/O3	District 1 Chip Status : Pass/Fail	Pass: 0 Fail: 1		
1/04	Not Used	Invalid		
1/05	Not Used	In	valid	
1/06	Ready/Busy	Ready: 1	Busy: 0	
1/07	Ready/Busy	Ready: 1	Busy: 0	
1/08	Write Protect	Protect: 0 Not Protect:		

I/O1 describes Pass/Fail condition of district 0 and 1(OR data of I/O2 and I/O3). If one of the districts fails during multi page program operation, it shows "Fail".

I/O2 to 3 shows the Pass/Fail condition of each district..

Internal addressing in relation with the Districts

To use Multi Page Program operation, the internal addressing should be considered in relation with the District.

- The device consists from 2 Districts.
- Each District consists from 1024 erase blocks.
- The allocation rule is follows.

District 0: Block 0, Block 2, Block 4, Block 6,..., Block 2046 District 1: Block 1, Block 3, Block 5, Block 7,..., Block 2047

Address input restriction for the Multi Page Program

There are following restrictions in using Multi Page Program with Data Cache; (Restriction)

Maximum one block should be selected from each District.

Same page address (PAO to PA5) within two districts has to be selected.

For example;

(80) [District 0, Page Address 0x00000] (11) (81) [District 1, Page Address 0x00040] (15 or 10)

(80) [District 0, Page Address 0x00001] (11) (81) [District 1, Page Address 0x00041] (15 or 10)

(Acceptance)

There is no order limitation of the District for the address input.

For example, following operation is accepted;

(80) [District 0] (11) (81) [District 1] (15 or 10)

(80) [District 1] (11) (81) [District 0] (15 or 10)

It requires no mutual address relation between the selected blocks from each District.

Operating restriction during the Multi Page Program with Data Cache operation

(Restriction)

The operation has to be terminated with "10h" command.

Once the operation is started, no commands other than the commands shown in the timing diagram is allowed

to be input except for Status Read command and reset command

Auto Block Erase

The Auto Block Erase operation starts on the rising edge of WE# after the Erase Start command "D0h" which follows the Erase Setup command "60h". This two-cycle process for Erase operations acts as an extra layer of protection from accidental erasure of data due to external noise. The device automatically executes the Erase and Verify operations.

Multi Block Erase

The Multi Block Erase operation starts by selecting two block addresses before D0h command as in below diagram. The device automatically executes the Erase and Verify operations and the result can be monitored by checking the status by 71h status read command. For details on 71h status read command, refer to section "Multi Page Program with Data Cache".

Internal addressing in relation with the Districts

To use Multi Block Erase operation, the internal addressing should be considered in relation with the District.

- The device consists from 2 Districts.
- Each District consists from 1024 erase blocks.
- The allocation rule is follows.

District 0: Block 0, Block 2, Block 4, Block 6,..., Block 2046 District 1: Block 1, Block 3, Block 5, Block 7,..., Block 2047

Address input restriction for the Multi Block Erase

There are following restrictions in using Multi Block Erase (Restriction)

Maximum one block should be selected from each District.

For example; (60) [District 0] (60) [District 1] (D0) (Acceptance)

There is no order limitation of the District for the address input.

For example, following operation is accepted;

(60) [District 1] (60) [District 0] (D0)

It requires no mutual address relation between the selected blocks from each District.

Make sure to terminate the operation with D0h command. If the operation needs to be terminated before D0h command input, input the FFh reset command to terminate the operation.

READ FOR COPY-BACK WITH DATA OUTPUT TIMING GUIDE

Copy-Back operation is a sequence execution of Read for Copy-Back and of copy-back program with the destination page address. A read operation with "35h" command and the address of source page moves the whole 2112byte data into the internal data buffer. Bit errors are checked by sequential reading the data or by reading the status in read after read busy time(tR) to check if uncorrectable error occurs. In the case where there is no bit error or no uncorrectable error, the data don't need to be reloaded. Therefore Copy-Back program operation is initiated by issuing Page-Copy Data-Input command (85h) with destination page address. Acutual programming operation begins after Program Confirm command (10h) is issued. Once the program process starts, the Read Status Register command (70h) may be enterd to read the status register. The system contoller can detect the completion of a program cycle by monitoring the RY /BY output, or the Status Bit (I/O7) of the Status Register. When the Copy-Back Program is complete, the Write Status Bit (I/O1) may be checked. The command register remains in Read Status command mode until another valid command is written to the command register. During copy-Back program, data modification is possible using randam data input command (85h) as shown below.

Page Copy-Back Program Operation

NOTE: 1. Copy-Back Program operation is allowed only within the same district.

Page Copy-Back Program Operation with Random Data Input

ID Read

The device contains ID codes which can be used to identify the device type, the manufacturer, and features of the device. The ID codes can be read out under the following timing conditions:

Table 5. Code table

	Description	1/08	1/07	1/06	1/05	I/O4	I/O3	I/O2	I/O1	Hex Data
1st Data	Maker Code	1	0	0	1	1	0	0	0	98h
2nd Data	Device Code	1	1	0	1	1	0	1	0	DAh
3rd Data	Chip Number, Cell Type	1	0	0	1	0	0	0	0	90h
4th Data	Page Size, Block Size, I/O Width	0	0	0	1	0	1	0	1	15h
5th Data	Plane Number	1	1	1	1	0	1	1	0	F6h

PN27G02B

3rd Data

7天芯

	Description	1/08	1/07	1/06	I/O5	I/O4	1/03	I/O2	I/O1
	1							0	0
Internal Chip Number	2	Cell 0 0 1 Cell 0 1 Cell 1 0 1	1						
	4							1	0
	8							1	1
	2 level cell					0	0		
Cell Type	4 level cell					0	1		
	8 level cell					1	0		
	16 level cell					1	1		
Reserved		1	0	0	1				

4th Data

	Description	1/08	1/07	I/O6	I/O5	I/O4	I/O3	I/O2	I/O1
Page Size	1 KB							0	0
	2 KB							0	1
(without redundant area)	4 KB							1	0
	8 KB							1	1
Block Size	64 KB			0	0				
	128 KB			0	1				
(without redundant area)	256 KB			1	0				
	512 KB			1	1				
I/O Width	x8		0						
	x16		1						
Reserved		0				0	1		

5th Data

	Description	1/08	I/O7	I/O6	I/O5	I/O4	I/O3	I/O2	I/O1
	1 Plane					0	0		
Plane Number	2 Plane					0	1		
	4 Plane					1	0		
	8 Plane					1	1		
ECC engine on chip	With ECC engine	1							
Reserved			1	1	1			1	0

Status Read

The device automatically implements the execution and verification of the Program and Erase operations. The Status Read function is used to monitor the Ready/Busy status of the device, determine the result (pass /fail) of a Program or Erase operation, and determine whether the device is in Protect mode. The device status is output via the I/O port using RE# after a "70h" command input. The Status Read can also be used during a Read operation to find out the Ready/Busy status.

The resulting information is outlined in Table 6.

Table 6. Status output table

	Definition	Page Program	Block Erase	Read
1/01	Chip Status Pass: 0 Fail: 1	Pass/Fail	Pass/Fail	Pass/Fail(Uncorerctable)
I/O2	Not Used	Invalid	Invalid	Invalid
I/O3	Not Used	0	0	0
1/04	Chip Read Status Normal or uncorrectable: 0 Recommended to rewrite: 1	0	0	Normal or uncorrectable / Recommended to rewrite
1/05	Not Used	0	0	0
1/06	Ready/Busy Ready: 1 Busy: 0	Ready/Busy	Ready/Busy	Ready/Busy
1/07	Ready/Busy Ready: 1 Busy: 0	Ready/Busy	Ready/Busy	Ready/Busy
1/08	Write Protect Not Protected :1 Protected: 0	Write Protect	Write Protect	Write Protect

The Pass/Fail status on I/O1 and I/O2 is only valid during a Program/Erase operation when the device is in the Ready state.

ECC Status Read

The ECC Status Read function is used to monitor the Error Correction Status.

Internal ECC circuit works for the NAND Flash main and spare areas. The ECC Status Read function can also show the number of errors in a sector as a result of ECC check in during a read operation.

8	7	6	5	4	3	2	I/O1
Se	ector Inform	mation			ECC Sta	tus	

ECC Status

I/O4 to I/O1	ECC Status
0000	No Error
0001	1bit error(Correctable)
0010	2bit error(Correctable)
0011	3bit error(Correctable)
0100	4bit error(Correctable)
0101	5bit error(Correctable)
0110	6bit error(Correctable)
0111	7bit error(Correctable)
1000	8bit error(Correctable)
1111	Uncorrectable Error

Sector Information

I/O8 to I/O5	Sector Information
0000	1st Sector (Main and Spare area)
0001	2nd Sector (Main and Spare area)
0010	3rdSector (Main and Spare area)
0011	4th Sector (Main and Spare area)
Other	Reserved

Reset

The Reset mode stops all operations. For example, in case of a Program or Erase operation, the internally generated voltage is discharged to 0 volt and the device enters the Wait state.

Reset during a Cache Program/Page Copy may not just stop the most recent page program but it may also stop the previous program to a page depending on when the FF reset is input.

The response to a "FFh" Reset command input during the various device operations is as follows:

When a Reset (FFh) command is input during programming

When a Reset (FFh) command is input during erasing

When a Reset (FFh) command is input during Read operation

When a Reset (FFh) command is input during Ready

When a Status Read command (70h) is input after a Reset

When two or more Reset commands are input in succession

Timing Diagrams

Latch Timing Diagram for Command/Address/Data

Command Input Cycle Timing Diagram

Address Input Cycle Timing Diagram

Data Input Cycle Timing Diagram

Serial Read Cycle Timing Diagram

Status Read Cycle Timing Diagram

^{*: 70}h/71h represents the hexadecimal number

ECC Status Read Cycle Time Diagram

Read Cycle Timing Diagram

Read Cycle Timing Diagram: When Interrupted by /CE

Column Address Change in Read Cycle Timing Diagram (1/2)

Continues from 1 of next page

Column Address Change in Read Cycle Timing Diagram (2/2)

Continues from 1 of last page

Data Output Timing Diagram

Auto-Program Operation Timing Diagram

Multi-Page Program Operation Timing Diagram (1/2)

Multi-Page Program Operation Timing Diagram (2/2)

Auto Block Erase Timing Diagram

Multi Block Erase Timing Diagram

Copy Back Program with Random Data Input

ID Read Operation Timing Diagram

Application Notes and Comments

(1) Power-on/off sequence:

The timing sequence shown in the figure below is necessary for the power-on/off sequence.

The device internal initialization starts after the power supply reaches an appropriate level in the power on sequence. During the initialization the device Ready/Busy signal indicates the Busy state as shown in the figure below. In this time period, the acceptable commands are FFh or 70h.

The WP signal is useful for protecting against data corruption at power-on/off.

(2) Power-on Reset The following sequence is necessary because some input signals may not be stable at power-on.

(3) Prohibition of unspecified commands

The operation commands are listed in Table 3. Input of a command other than those specified in Table 3 is prohibited. Stored data may be corrupted if an unknown command is entered during the command cycle.

(4) Restriction of commands while in the Busy state

During the Busy state, do not input any command except 70h(71h) and FFh.

(5) Acceptable commands after Serial Input command "80h"

Once the Serial Input command "80h" has been input, do not input any command other than the Column Address Change in Serial Data Input command "85h", Auto Program command "10h", Multi Page Program command "11h", Auto Program with Data Cache Command "15h", or the Reset command "FFh".

If a command other than "85h", "10h", "11h", "15h" or "FFh" is input, the Program operation is not performed and the device operation is set to the mode which the input command specifies.

(6) Addressing for program operation

Within a block, the pages must be programmed consecutively from the LSB (least significant bit) page of the block to MSB (most significant bit) page of the block. Random page address programming is prohibited.

(64)

(7) Status Read during a Read operation

The device status can be read out by inputting the Status Read command "70h" in Read mode. Once the device has been set to Status Read mode by a "70h" command, the device will not return to Read mode unless the Read command "00h" is inputted during [A]. If the Read command "00h" is inputted during [A], Status Read mode is reset, and the device returns to Read mode. In this case, data output starts automatically from address N and address input is unnecessary

Dec, 4, 2019 Rev V_{0.4} Page 51

(8) Auto programming failure

(9) RY / BY#: termination for the Ready/Busy pin (RY / BY#)

A pull-up resistor needs to be used for termination because the RY / BY# buffer consists of an open drain circuit.

We recommend that you use this data as a reference when selecting a resistor value.

(10) Note regarding the WP# signal

The Erase and Program operations are automatically reset when WP# goes Low. The operations are enabled and disabled as follows:

Enable Programming

Disable Programming

Enable Erasing

Disable Erasing

(11) When six address cycles are input

Although the device may read in a fifth address, it is ignored inside the chip. Read operation

Program operation

 $\left(12\right)$ Several programming cycles on the same page (Partial Page Program)

Each segment can be programmed individually as follows:

1st programming	Data Pattern 1	All 1 s			
2nd programming	All 1 s	Data Pattern 2	A	All 1s	
			!		
			i		
4th programming		All 1	3		Data Pattern 4
Result	Data Pattern 1	Data Pattern 2			Data Pattern 4

(13) Invalid blocks (bad blocks)

The device occasionally contains unusable blocks. Therefore, the following issues must be recognized:

Please do not perform an erase operation to bad blocks. It may be impossible to recover the bad block information if the information is erased

Check if the device has any bad blocks after installation into the system. Refer to the test flow for bad block detection. Bad blocks which are detected by the test flow must be managed as unusable blocks by the system.

A bad block does not affect the performance of good blocks because it is isolated from the bit lines by select gates.

The number of valid blocks over the device lifetime is as follows:

	MIN	TYP.	MAX	UNIT
Valid (Good) Block Number	2008	-	2048	Block

Bad Block Test Flow

Regarding invalid blocks, bad block mark is in whole pages.

Please read one column of any page in each block. If the data of the column is 00(Hex), define the block as a bad block.

*1: No erase operation is allowed to detected bad blocks

BGA24 NAND PN27G02B

(14) Failure phenomena for Program and Erase operations

The device may fail during a Program or Erase operation.

The following possible failure modes should be considered when implementing a highly reliable system.

FAILURE MODE		DETECTION AND COUNTERMEASURE SEQUENCE		
Block	Erase Failure	Status Read after Erase → Block Replacement		
Page	Programming Failure	Status Read after Program → Block Replacement		
Read	Bit Error	ECC Correction / Block Refresh		

- ECC: Error Correction Code. 8 bit correction per 512 Bytes is necessary.
- · Block Replacement

Program

When an error happens in Block A, try to reprogram the data into another Block (Block B) by loading from an external buffer. Then, prevent further system accesses to Block A (by creating a bad block table or by using another appropriate scheme).

Erase

When an error occurs during an Erase operation, prevent future accesses to this bad block (again by creating a table within the system or by using another appropriate scheme).

- (15) Do not turn off the power before write/erase operation is complete. Avoid using the device when the battery is low. Power shortage and/or power failure before write/erase operation is complete will cause loss of data and/or damage to data.
- (16) The number of valid blocks is on the basis of single plane operations, and this may be decreased with two plane operations.

(17) Reliability Guidance

This reliability guidance is intended to notify some guidance related to using NAND flash with 8 bit ECC for each 512 bytes. For detailed reliability data, please refer to XTX's reliability note. Although random bit errors may occur during use, it does not necessarily mean that a block is bad. Generally, a block should be marked as bad when a program status failure or erase status failure is detected. The other failure modes may be recovered by a block erase.

ECC treatment for read data is mandatory due to the following Data Retention and Read Disturb failures.

• Write/Erase Endurance

Write/Erase endurance failures may occur in a cell, page, or block, and are detected by doing a status read after either an auto program or auto block erase operation. The cumulative bad block count will increase along with the number of write/erase cycles.

· Data Retention

The data in memory may change after a certain amount of storage time. This is due to charge loss or charge gain. After block erasure and reprogramming, the block may become usable again. Here is the combined characteristics image of Write/Erase Endurance and Data Retention.

BGA24 NAND PN27G02B

Read Disturb

A read operation may disturb the data in memory. The data may change due to charge gain. Usually, bit errors occur on other pages in the block, not the page being read. After a large number of read cycles (between block erases), a tiny charge may build up and can cause a cell to be soft programmed to another state. After block erasure and reprogramming, the block may become usable again.

BGA24 NAND PN27G02B

深圳市芯天下技术有限公司 XTX Technology Limited

Tel: (86 755) 28229862 Fax: (86 755) 28229847

Web Site: http://www.xtxtech.com/ Technical Contact: fae@xtxtech.com

^{*} Information furnished is believed to be accurate and reliable. However, XTX Technology Limited assumes no responsibility for the consequences of use of such information or for any infringement of patents of other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of XTX Technology Limited. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. XTX Technology Limited products are not authorized for use as critical components in life support devices or systems without express written approval of XTX Technology Limited. The XTX logo is a registered trademark of XTX Technology Limited. All other names are the