Supplementary Handout for Dis 8: Sampling Distributions

1 Motivation

- Prior to this week, we discussed random variables, and the possible probability distributions that such random variables could follow.
- As we learned from Dis 5 and 6,
 - A random variable assign a number to each possible outcome.
 - A discrete probability distribution describes the point probability at all possible values for a discrete random variable.
 - A continuous probability distribution describes the density (PDF) at all possible values for a continuous random variable.

Thus, these measures are related to the population.

- However, in reality, what we get to work with is often the sample data, which means we need to relate statistics obtained from samples to the population (⇒ process of statistical inference).
- This is why we need to look at the distribution of sample statistics, i.e. sampling distributions

2 Examples of Sampling Distribution

2.1 Sampling distribution of the mean

- Statistic of interest: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, obtained from simple random sampling
- How \bar{X} is distributed depends on the distribution of X_i :
 - If each X_i is normally distributed, then $\bar{X} \sim N(\mu_{\bar{X}}, \sigma_{\bar{X}}^2)$ with certainty
 - If each X_i is NOT normally distributed, we might be able to approximate \bar{X} using a normal distribution (i.e. $\bar{X} \stackrel{a}{\sim} N(\mu_{\bar{X}}, \sigma_{\bar{X}}^2)$) based on central limit theorem.

Definition 1 (Central limit theorem (CLT)). The mean of a random variable drawn from any population is approximately normal for a sufficiently large sample size.

In practice, we use $n \ge 30$ as the cutoff:

- * For non-normally distributed X_i , if $n \geq 30$, then CLT can be invoked, and $\bar{X} \stackrel{a}{\sim} N(\mu_{\bar{X}}, \sigma_{\bar{X}}^2)$
- * For non-normally distributed X_i , if n < 30, then CLT cannot be invoked, so the distribution of \bar{X} is undetermined.
- To summarize, for random variable *X*, the sampling distribution of the mean is the following:

	X is normally distributed	X is NOT normally distributed
Sample size is small ($n < 30$)		
Sample size is large ($n \ge 30$)		

- What is $\mu_{\bar{X}}$ and $\sigma_{\bar{X}}^2$?
 - $\mu_{\bar{X}}$ is the expected value of \bar{X} :

$$\mu_{\bar{X}} = E[\bar{X}] = E\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n}\sum_{i=1}^{n}E[X_{i}] = \frac{1}{n} \times n \times \mu_{X} = \mu_{X}$$

- $\sigma_{\bar{X}}^2$ is the variance of \bar{X} , and it depends on the population size:
 - * If population size is infinitely large (in practice, if $N \ge 20n$),

$$\sigma_{\bar{X}}^2 = V(\bar{X}) = V\left(\frac{1}{n}\sum_{i=1}^n X_i\right) = \left(\frac{1}{n}\right)^2 \sum_{i=1}^n V(X_i) = \frac{1}{n^2} \times n \times \sigma_X^2 = \frac{\sigma_X^2}{n}$$

- * If population size is not infinitely large (in practice, if N < 20n), then $\sigma_{\bar{X}}^2$ needs to be adjusted:
 - Finite population correction factor: an adjustment applied to the standard deviation of sample mean (i.e. $\sigma_{\bar{X}}$), where the correction factor equals to

$$\sqrt{\frac{N-n}{N-1}}$$

· Thus, the standard deviation of sample mean is

$$\sigma_{\bar{X}} = \sqrt{\frac{\sigma_X^2}{n}} \cdot \sqrt{\frac{N-n}{N-1}}$$

which means that the variance of the sample mean is

$$\sigma_{\bar{X}}^2 = (\sigma_{\bar{X}})^2 = \frac{\sigma_{\bar{X}}^2}{n} \cdot \frac{N-n}{N-1}$$

(The above part in red color has been adjusted to clarify the definition of finite population correction factor.)

2.2 Sampling distribution of the proportion (from a binomial experiment)

- Say that we have a random variable $X \sim \text{Binomial}(n, p)$ recording the number of successes in n trials where the probability of success in each trial is p.
- Turns out, under certain conditions, *X* can be well approximated by a normal distribution.

Conditions for normal approximation of a binomial random variable *X*:

- 1. $np \ge 5$, and
- 2. $n(1-p) \ge 5$

If the aforementioned conditions are satisfied, then

$$X \stackrel{a}{\sim} N(\mu_X, \sigma_X^2)$$

where, based on binomial distribution properties,

$$\mu_X = E(X) = np$$

$$\sigma_X^2 = V(X) = np(1-p)$$

Aside: A binomial X is a discrete random variable. However, the approximation approximates $X \stackrel{a}{\sim} N(np, np(1-p))$, which is a continuous distribution.

Thus, a **correction factor for continuity** is needed when calculating probability using the normal approximation.

Exercise. Accounting for the correction factor for continuity, how should the following probabilities be expressed for a binomial random variable *X*?

- 1. P(X = 3) =
- 2. $P(X \ge 3) =$
- 3. P(X > 3) =
- 4. $P(X \le 3) =$
- 5. P(X < 3) =
- Why is this needed? ⇒ helps us approximate the sampling distribution of the proportion!
 - As long as a binomial distributed X can be approximated using a normal distribution (i.e. $np \ge 5$ and $n(1-p) \ge 5$), then the proportion of successes (\hat{p}) can be approximated using a normal distribution:

$$\hat{p} = \frac{X}{n} \stackrel{a}{\sim} N(\mu_{\hat{p}}, \sigma_{\hat{p}}^2)$$

- What is $\mu_{\hat{p}}$ and $\sigma_{\hat{p}}^2$?

$$\mu_{\hat{p}} = E(\hat{p}) = E\left(\frac{X}{n}\right) = \frac{1}{n}E(X) = p$$

$$\sigma_{\hat{p}}^2 = V(\hat{p}) = V\left(\frac{X}{n}\right) = \left(\frac{1}{n}\right)^2 V(X) = \frac{p(1-p)}{n}$$

2.3 Sampling distribution of the difference between two means

- Statistic of interest: $\bar{X} \bar{Y}$, where $X \sim N(\mu_X, \sigma_X^2)$, and $Y \sim N(\mu_Y, \sigma_Y^2)$, and X is independent of Y
- From subsection 2.1, assuming that the population sizes are sufficiently large, we know that

$$\bar{X} \sim N(\mu_X, \frac{\sigma_X^2}{n_X})$$
 $\bar{Y} \sim N(\mu_Y, \frac{\sigma_Y^2}{n_Y})$

• Since the sum of two normal distributions is still a normal distribution, we have

$$\bar{X} - \bar{Y} \sim N(\mu_{\bar{X} - \bar{Y}}, \sigma_{\bar{X} - \bar{Y}}^2)$$

where

$$\begin{split} \mu_{\bar{X}-\bar{Y}} &= E(\bar{X}-\bar{Y}) = E(\bar{X}) - E(\bar{Y}) = \mu_X - \mu_Y \\ \sigma_{\bar{X}-\bar{Y}}^2 &= V(\bar{X}-\bar{Y}) = V(\bar{X}) + V(\bar{Y}) - 2\underbrace{Cov(\bar{X},\bar{Y})}_{=0 \text{ by indep}} = \frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y} \end{split}$$