2-factor completely randomized design: $Y_{ijl} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \varepsilon_{ijl}$,

where $i=1,\ldots,a$ indexes factor A, $j=1,\ldots,b$ indexes factor B, and $l=1,\ldots,n$ indexes experimental units for each treatment combination.

$$SSA = bn \sum_{i=1}^{a} (\bar{y}_{i..} - \bar{y}_{...})^{2} \qquad SSB = an \sum_{j=1}^{b} (\bar{y}_{.j.} - \bar{y}_{...})^{2}$$

$$SSAB = n \sum_{i=1}^{a} \sum_{j=1}^{b} (\bar{y}_{ij.} - \bar{y}_{i..} - \bar{y}_{.j.} + \bar{y}_{...})^{2}$$

$$SSError = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{l=1}^{n} (y_{ijl} - \bar{y}_{ij.})^{2}$$

$$SSTotal = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{l=1}^{n} (y_{ijl} - \bar{y}_{...})^{2}$$

Source	df	SS	MS	$\mathbb{E}(MS)$
A	a-1	SSA	MSA	$\sigma_{\varepsilon}^2 + bn \sum \alpha_i^2/(a-1)$
В	b-1	SSB	MSB	$\sigma_{\varepsilon}^2 + an \sum \beta_j^2/(b-1)$
AB	(a-1)(b-1)	SSAB	MSAB	$\sigma_{\varepsilon}^2 + n \sum \sum (\alpha \beta)_{ij}^2 / [(a-1)(b-1)]$
Error	ab(n-1)	SSError	MSError	$\sigma_{arepsilon}^2$
Total	abn-1	SSTotal		

1-factor randomized complete block design: $Y_{ij} = \mu + \alpha_i + \beta_j + e_{ij}$,

where i = 1, ..., a indexes the treatment factor A and j = 1, ..., b indexes blocks.

$$SSA = b \sum_{i=1}^{a} (\bar{y}_{i.} - \bar{y}_{..})^{2} \quad SSBlk = a \sum_{j=1}^{b} (\bar{y}_{.j} - \bar{y}_{..})^{2}$$

$$SSErr = \sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} - \bar{y}_{i.} - \bar{y}_{.j} + \bar{y}_{..})^{2}$$

$$SSTotal = \sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} - \bar{y}_{..})^{2}$$

Source	df	SS	MS	$\mathbb{E}(MS)$
A	a-1	SSA	MSA	$\sigma_{\varepsilon}^2 + b \sum \alpha_i^2/(a-1)$
Block	b-1	SSBlk	MSBlk	$\sigma_{\varepsilon}^2 + a \sum \beta_j^2/(b-1)$
Error	(a-1)(b-1)	SSErr	MSErr	$\sigma_{arepsilon}^2$
Total	ab-1	SSTotal		

Conclusion: the ANOVA for an RCBD with 1 factor is like a CRD with 2 factors, and n = 1.