Análise Assintótica de Algoritmos

DCC/FCUP

2021/2022

Introdução e Motivação

O que é um algoritmo?

Um conjunto de instruções executáveis para resolver um problema

- O problema é a motivação para o algoritmo
- As instruções têm de ser executáveis
- Geralmente existem vários algoritmos para um mesmo problema [Como escolher?]
- Representação: descrição das instruções suficiente para que a audiência o entenda

O que é um algoritmo?

Versão "Ciência de Computadores"

- Os algoritmos são as ideias por detrás dos programas
 São independentes da linguagem de programação, da máquina, ...
- Um algoritmo serve para resolver um problema
- Um problema é caracterizado pela descrição do input e output

Um exemplo clássico:

Problema de Ordenação

Input: uma sequência $\langle a_1, a_2, \dots, a_n \rangle$ de *n* números

Output: uma permutação dos números $\langle a_1', a_2', \dots, a_n' \rangle$ tal que

 $a_1' \leq a_2' \leq \ldots \leq a_n'$

Exemplo para Problema de Ordenação

Input: 6 3 7 9 2 4

Output: 2 3 4 6 7 9

O que é um algoritmo?

Como representar um algoritmo

- Vamos usar preferencialmente **pseudo-código** (nos slides)
- Por vezes usaremos C/C++/Java ou frases em português
- O pseudo-código é baseado em linguagens imperativas e é "legível"

Pseudo-Código $a \leftarrow 0$ $i \leftarrow 0$ Enquanto (i < 5) fazer $a \leftarrow a + i$ escrever(a)

```
Código em C
a = 0;
i = 0;
while (i<5) {
    a += i;
}
printf("%d\n", a);</pre>
```

Propriedades desejadas num algoritmo

Correção

Tem de resolver correctamente todas as instâncias do problema

Eficiência

Performance (tempo e memória) tem de ser adequada

- Instância: Exemplo concreto de input válido
- Um algoritmo correto resolve todas as instâncias possíveis
 Exemplos para ordenação: números já ordenados, repetidos, ...
- Nem sempre é fácil provar a correção de um algoritmo e muito menos é óbvio se um algoritmo está correcto

Um problema exemplo

Problema do Caixeiro Viajante (Euclidean TSP)

Input: um conjunto S de n pontos no plano

Output: O caminho mais curto que começa num ponto, visita todos os outros pontos de S, e regressa ao ponto inicial.

Um exemplo:

Um problema exemplo - Caixeiro Viajante

Um 1º possível algoritmo (vizinho mais próximo)

 $p_1 \leftarrow$ ponto inicial escolhido aleatoriamente

$$i \leftarrow 1$$

Enquanto (existirem pontos por visitar) fazer

$$i \leftarrow i + 1$$

 $p_i \leftarrow \text{vizinho não visitado mais próximo de } p_{i-1}$

retorna caminho $p_1 \rightarrow p_2 \rightarrow \ldots \rightarrow p_n \rightarrow p_1$

Um problema exemplo - Caixeiro Viajante - vizinho mais próximo

Parece funcionar...

Um problema exemplo - Caixeiro Viajante - vizinho mais próximo

Mas não funciona para todas as instâncias!

(Nota: começar pelo ponto mais à esquerda não resolveria o problema)

Um problema exemplo - Caixeiro Viajante

Como resolver então o problema? (tentar todos os caminhos possíveis)

Um 2º possível algoritmo (pesquisa exaustiva aka força bruta)

 $P_{min} \leftarrow$ uma qualquer permutação dos pontos de S

Para $P_i \leftarrow$ cada uma das permutações de pontos de S

Se
$$(custo(P_i) < custo(P_{min}))$$
 Então $P_{min} \leftarrow P_i$

retorna Caminho formado por P_{min}

O algoritmo é correto, mas extremamente lento!

- $P(n) = n! = n \times (n-1) \times ... \times 1$
- Por exemplo, P(20) = 2,432,902,008,176,640,000
- Para uma instância de tamanho 20, o computador mais rápido do mundo não resolvia— (quanto tempo demoraria?)

Um problema exemplo - Caixeiro Viajante

- O problema apresentado é uma versão restrita (euclideana) de um dos problemas mais "clássicos", o Travelling Salesman Problem (TSP)
- Este problema tem inúmeras aplicações (mesmo na forma "pura")
 Ex: análise genómica, produção industrial, routing de veículos, ...
- Não é conhecida nenhuma solução eficiente para este problema (que dê resultados ótimos, e não apenas "aproximados")
- A solução apresentada tem complexidade temporal $\mathcal{O}(n!)$ O algoritmo de Held-Karp tem complexidade $\mathcal{O}(2^n n^2)$ (iremos falar deste tipo de análise: big O notation)
- O TSP pertence à classe dos problemas NP-hard
 A versão de decisão pertence à classes dos problemas NP-completos (vão falar disto noutras UCs)

Uma experiência - instruções

Quantas instruções simples faz um computador actual por segundo?
 (apenas uma aproximação, uma ordem de grandeza)

No meu portátil umas 109 instruções

 A esta velocidade quanto tempo demorariam as seguintes quantidades de instruções?

Quant.	100	1000	10000
N	< 0.01s	< 0.01s	< 0.01s
N^2	< 0.01s	< 0.01s	0.1 <i>s</i>
N^3	< 0.01s	1.00 <i>s</i>	16 min
N^4	0.1 <i>s</i>	16 min	115 dias
2 ^N	10 ¹³ anos	10 ²⁸⁴ anos	10 ²⁹⁹³ anos
n!	10 ¹⁴¹ anos	10 ²⁵⁵¹ anos	10 ³⁵⁶⁴² anos

Uma experiência - permutações

Voltemos à ideia das permutações

```
Exemplo: as 6 permutações de {1,2,3}
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
```

• Recorda que o número de permutações pode ser calculado como: $P(n) = n! = n \times (n-1) \times ... \times 1$

(consegues perceber a fórmula?)

Uma experiência - permutações

 Quanto tempo demora um programa que passa por todas as permutações de n números?

```
(os seguintes tempos são aproximados, no meu portátil)
(o que quero mostrar é a taxa de crescimento)
```

```
n \le 7: < 0.001s

n = 8: 0.001s

n = 9: 0.016s

n = 10: 0.185s

n = 11: 2.204s

n = 12: 28.460s
```

= **12**: 28.400*s*

n = **20**: 5000 anos !

Quantas permutações por segundo?

Cerca de 10⁷

Sobre a rapidez do computador

- Um computador mais rápido adiantava alguma coisa? Não! Se $n = 20 \rightarrow 5000$ anos, hipoteticamente:
 - ▶ 10x mais rápido ainda demoraria 500 anos
 - ▶ 5,000x mais rápido ainda demoraria 1 ano
 - ► 1,000,000x mais rápido demoraria quase dois dias mas n = 21 já demoraria mais de um mês
 - n = 22 já demoraria mais de dois anos!
 - ▶ A taxa de crescimento do algoritmo é muito importante!

Algoritmo vs Rapidez do computador

Um algoritmo melhor num computador mais lento **ganhará sempre** a um algoritmo pior num computador mais rápido, para instâncias suficientemente grandes

Uma metodologia para comparar algoritmos

Perguntas

- Como conseguir prever o tempo que um algoritmo demora?
- Como conseguir comparar dois algoritmos diferentes?

- Vamos estudar uma metodologia para conseguir responder
- Vamos focar a nossa atenção no tempo de execução
 Podíamos por exemplo querer medir o espaço (memória)

Random Access Machine (RAM)

- Precisamos de um modelo que seja genérico e independente da máquina/linguagem usada.
- Vamos considerar uma Random Access Machine (RAM)
 - ► Cada operação simples (ex: +, -, ←, Se) demora 1 passo
 - ► Ciclos e procedimentos, por exemplo, não são instruções simples!
 - ► Cada acesso à memória custa também 1 passo
- Medir tempo de execução... contando o número de passos consoante o tamanho do input: T(n)
- As operações estão **simplificadas**, mas mesmo assim isto é útil Ex: somar dois inteiros não custa o mesmo que dividir dois reais, mas veremos que esses valores, numa visão global, não são importantes.

Random Access Machine (RAM)

Um exemplo de contagem

Um programa simples

```
int count = 0;
for (int i=0; i<n; i++)
   if (v[i] == 0) count++</pre>
```

Vamos contar o número de operações simples:

	· , · · · · · · · · · · · · · · · · · ·
Declarações de variáveis	2
Atribuições:	2
Comparação "menor que":	n+1
Comparação "igual a":	n
Acesso a um array:	n
Incremento:	entre n e $2n$ (depende dos zeros)

Random Access Machine (RAM)

Um exemplo de contagem

Um programa simples

```
int count = 0;
for (int i=0; i<n; i++)
   if (v[i] == 0) count++</pre>
```

Total de operações no pior caso:

$$T(n) = 2 + 2 + (n+1) + n + n + 2n = 5 + 5n$$

Total de operações no melhor caso:

$$T(n) = 2 + 2 + (n+1) + n + n + n = 5 + 4n$$

Tipos de Análises de um Algoritmo

Análise do Pior Caso: (o mais usual)

• T(n) = máximo tempo do algoritmo para um qualquer input de tamanho n

(vamos sempre assumir que é esta a nossa análise excepto se for dito explicitamente o contrário)

Análise Caso Médio: (por vezes)

- T(n) = tempo médio do algoritmo para todos os inputs de tamanho n
- Implica conhecer a distribuição estatística dos inputs

Análise do Melhor Caso: ("enganador")

• Fazer "batota" com um algoritmo que é rápido para alguns inputs

Tipos de Análises de um Algoritmo

Análise Assintótica

Precisamos de ferramenta matemática para comparar funções

Na análise de algoritmos usa-se a Análise Assintótica

- "Matematicamente": estudo dos comportamento dos limites
- CC: estudo do comportamento para input arbitrariamente grande ou
 - "descrição" da taxa de crescimento
- Usa-se uma **notação** específica: $\mathcal{O}, \Omega, \Theta$ (e também o, ω)
- Permite "simplificar" expressões como a anteriormente mostrada focando apenas nas ordens de grandeza

Definições

$$f(n) \in \mathcal{O}(g(n))$$
 (majorante)

Significa que $c \times g(n)$ é um **limite superior** de f(n)

$$\mathsf{f}(\mathsf{n}) \in \Omega(\mathsf{g}(\mathsf{n}))$$
 (minorante)

Significa que $c \times g(n)$ é um **limite inferior** de f(n)

$$f(n) \in \Theta(g(n))$$
 (limite "apertado" - majorante e minorante)

Significa que $c_1 \times g(n)$ é um **limite inferior** de f(n) e $c_2 \times g(n)$ é um **limite superior** de f(n)

Onde c, c_1 e c_2 são constantes

Uma ilustração

As definições implicam um n a partir do qual a função é majorada e/ou minorada. Valores pequenos de n "não importam".

Nota: Alguma bibliografia usa = em vez de ∈

Exemplo: $f(n) = \mathcal{O}(g(n))$ é o mesmo que $f(n) \in \mathcal{O}(g(n))$

Crescimento Assintótico

Desenhando funções com gnuplot

Um programa útil para desenhar gráficos de funções é o gnuplot.

```
(comparando 2n^3 com 100n^2)
gnuplot> plot [1:70] 2*x**3, 100*x**2
gnuplot> set logscale xy 10
gnuplot> plot [1:10000] 2*x**3, 100*x**2
```


Formalização

• $f(n) \in \mathcal{O}(g(n))$ se existem constantes positivas n_0 e c tal que $f(n) \le c \times g(n)$ para todo o $n \ge n_0$

$$f(n) = 3n^2 + 5n + 6$$

 $f(n) \in \mathcal{O}(n^2)$, para $c = 4$, temos que $cn^2 \ge f(n)$ para $n \ge 6$
 $f(n) \in \mathcal{O}(n^3)$, para $c = 1$, temos que $cn^3 \ge f(n)$ para $n \ge 4.5$
 $f(n) \notin \mathcal{O}(n)$, para qualquer c , temos que $cn < f(n)$ para n
suficientemente grande

(experimente usar o gnuplot para desenhar as funções)

Formalização

• $f(n) \in \Omega(g(n))$ se existem constantes positivas n_0 e c tal que $f(n) \ge c \times g(n)$ para todo o $n \ge n_0$

$$f(n)=3n^2+5n+6$$

$$f(n) \in \Omega(n^2)$$
, para $c = 1$, temos que $cn^2 \le f(n)$ para $n \ge 0$

 $f(n) \notin \Omega(n^3)$, para qualquer c, temos que $cn^3 > f(n)$ para n suficientemente grande

$$f(n) \in \Omega(n)$$
, para $c = 1$, temos que $cn^2 \le f(n)$ para $n \ge 0$

(experimente usar o gnuplot para desenhar as funções)

Formalização

• $f(n) \in \Theta(g(n))$ se existem constantes positivas n_0 , c_1 e c_2 tal que $c_1 \times g(n) \le f(n) \le c_2 \times g(n)$ para todo o $n \ge n_0$

$$f(n) = 3n^2 + 5n + 6$$

 $f(n) \in \Theta(n^2)$, porque $f(n) = \mathcal{O}(n^2)$ e $f(n) = \Omega(n^2)$
 $f(n) \notin \Theta(n^3)$, porque $f(n) = \mathcal{O}(n^3)$, mas $f(n) \neq \Omega(n^3)$
 $f(n) \notin \Theta(n)$, porque $f(n) = \Omega(n)$, mas $f(n) \neq \mathcal{O}(n)$

• $f(n) \in \Theta(g(n))$ implica $f(n) \in \mathcal{O}(g(n))$ e $f(n) \in \Omega(g(n))$ (experimente usar o gnuplot para desenhar as funções)

Formalização:

- $f(n) \in \mathcal{O}(g(n))$ se existem constantes positivas n_0 e c tal que $f(n) \le c \times g(n)$ para todo o $n \ge n_0$
- $f(n) \in \Omega(g(n))$ se existem constantes positivas n_0 e c tal que $f(n) \ge c \times g(n)$ para todo o $n \ge n_0$
- $f(n) \in \Theta(g(n))$ se existem constantes positivas n_0 , c_1 e c_2 tal que $c_1 \times g(n) \le f(n) \le c_2 \times g(n)$ para todo o $n \ge n_0$

Algumas Consequências:

- $f(n) \in \Theta(g(n)) \longleftrightarrow f(n) \in \mathbf{O}(g(n)) \in f(n) \in \Omega(g(n))$
- $f(n) \in \Theta(g(n)) \longleftrightarrow g(n) \in \Theta(f(n))$
- $f(n) \in \mathbf{O}(g(n)) \longleftrightarrow g(n) \in \mathbf{\Omega}(f(n))$

Notação: uma analogia

Para ser mais fácil "relembrar", fica aqui uma analogia para se recordarem.

Comparação entre duas funções f e g, e entre dois números a e b:

$$\begin{array}{lllll} f(n) \in \mathbf{O}(g(n)) & \text{\'e como} & a \leq b & \text{limite superior} \\ f(n) \in \mathbf{\Omega}(g(n)) & \text{\'e como} & a \geq b & \text{limite inferior} \\ f(n) \in \mathbf{\Theta}(g(n)) & \text{\'e como} & a = b & \text{"iguais"} & \text{t\~ao bom (ou mau) como} \end{array}$$

Notação: Algumas regras práticas

• Multiplicação por uma constante não altera o comportamento:

$$\Theta(c \times f(n)) \in \Theta(f(n))$$

$$99 \times n^2 \in \Theta(n^2)$$

• Num polinómio $a_x n^x + a_{x-1} n^{x-1} + ... + a_2 n^2 + a_1 n + a_0$) podemos focar-nos na parcela com o **maior expoente**:

$$3\mathbf{n}^3 - 5n^2 + 100 \in \Theta(n^3)$$

 $6\mathbf{n}^4 - 20^2 \in \Theta(n^4)$
 $0.8\mathbf{n} + 224 \in \Theta(n)$

• Numa soma/subtracção podemos focar-nos na parcela dominante:

$$\mathbf{2^n} + 6n^3 \in \Theta(2^n)$$

$$\mathbf{n!} - 3n^2 \in \Theta(n!)$$

$$n \log n + 3\mathbf{n^2} \in \Theta(n^2)$$

Crescimento Assintótico

Quando uma função domina a outra

Quando é que uma função é melhor que outra?

- Se queremos minimizar o tempo, funções "mais pequenas" são melhores
- Uma função domina outra se à medida que n cresce ela fica "infinitamente major"
- Matematicamente: $f(n) \gg g(n)$ se $\lim_{n\to\infty} g(n)/f(n) = 0$

Relações de Domínio

 $1 \ll \log n \ll n \ll n \log n \ll n^2 \ll n^3 \ll 2^n \ll n!$

Crescimento Assintótico

Funções Usuais

Função	Nome	Exemplos	
1	constante	somar dois números	
log n	logarítmica	pesquisa binária, inserir elemento numa heap	
n	linear	1 ciclo para encontrar o máximo	
n log n	linearítmica	ordenação (ex: mergesort, heapsort)	
n ²	quadrática	2 ciclos (ex: verificar pares, bubblesort)	
n ³	cúbica	3 ciclos (ex: Floyd-Warshall)	
2 ⁿ	exponencial	pesquisa exaustiva (ex: subconjuntos)	
n!	factorial	todas as permutações	

n na base \rightarrow função **polinomial** n no expoente \rightarrow função **exponencial**

Crescimento Assintótico

Uma visão prática

Se uma operação demorar 10^{-9} segundos

	log n	n	$n \log n$	n ²	n ³	2 ⁿ	n!
10	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s
20	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	77 anos
30	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	1.07 <i>s</i>	
40	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	18.3 min	
50	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	13 dias	
100	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	10 ¹³ anos	
10^{3}	< 0.01s	< 0.01s	< 0.01s	< 0.01s	1 <i>s</i>		
10^{4}	< 0.01s	< 0.01s	< 0.01s	0.1 <i>s</i>	16.7 min		
10^{5}	< 0.01s	< 0.01s	< 0.01s	10 <i>s</i>	11 dias		
10^{6}	< 0.01s	< 0.01s	0.02 <i>s</i>	16.7 min	31 anos		
10^{7}	< 0.01s	0.01 <i>s</i>	0.23 <i>s</i>	1.16 dias			
10 ⁸	< 0.01s	0.1 <i>s</i>	2.66 <i>s</i>	115 dias			
10^{9}	< 0.01s	1 <i>s</i>	29.9 <i>s</i>	31 anos			

Crescimento Assintótico

Funções menos usuais - Exemplos com gnuplot

Qual cresce mais rápido: √n ou log₂ n?
 gnuplot> plot [1:60] sqrt(x), log(x)/log(2)
 √n cresce mais rápido, logo é pior, ou seja, √n ∈ Ω(log₂ n)

• Qual cresce mais rápido: log₂ n ou log₃ n?
gnuplot> plot [1:100] log(x)/log(2), log(x)/log(3), 2*log(x)/log(3)
crescem ao "mesmo" ritmo, ou seja, log₂ n ∈ Θ(log₃ n)

Análise Assintótica

Mais alguns exemplos

- Um programa tem dois pedaços de código A e B, executados um a seguir ao outro, sendo que A corre em $\Theta(n \log n)$ e B em $\Theta(n^2)$. O programa corre em $\Theta(n^2)$, porque $n^2 \gg n \log n$
- Um programa chama n vezes uma função $\Theta(\log n)$, e de seguida volta a chamar novamente n vezes outra função $\Theta(\log n)$ O programa corre em $\Theta(n \log n)$
- Um programa tem 5 ciclos, chamados sequencialmente, cada um deles com complexidade Θ(n)
 O programa corre em Θ(n)
- Um programa P₁ tem tempo de execução proporcional a 100 × n log n. Um outro programa P₂ tem 2 × n².
 Qual é o programa mais eficiente?
 P₁ é mais eficiente porque n² ≫ n log n. No entanto, para um n pequeno, P₂ é mais rápido e pode fazer sentido ter um programa que chama P₁ ou P₂ consoante o n.

Previsão do tempo de execução de um algoritmo

Notação Assintótica

Como usar para previsão

Se eu tiver um algoritmo com complexidade assintótica definida pela função f(n) como posso **prever** o tempo que vai demorar?

- **Caso 1** Depois de ter uma implementação a funcionar onde possa testar com um *n* pequeno
- Caso 2 Ainda antes de começar a implementar qualquer algoritmo

Quando tenho uma implementação

Pré-requisitos:

- Uma implementação com complexidade f(n)
- Um caso de teste (pequeno) com input de tamanho n₁
- O tempo que o programa demora nesse input: $tempo(n_1)$

Agora queremos estimar quanto tempo demora para um input (parecido) de tamanho n_2 . Como fazer?

Estimando o tempo de execução

 $f(n_2)/f(n_1)$ é a taxa de crescimento da função (de n_1 para n_2)

$$tempo(n_2) = f(n_2)/f(n_1) \times tempo(n_1)$$

Quando tenho uma implementação

Um exemplo:

• Tenho um programa de complexidade $\Theta(n^2)$ que demora 1 segundo para um input de tamanho 5,000. Quanto tempo demora para um input de tamanho 10,000?

$$f(n) = n^2$$

 $n_1 = 5,000$
 $tempo(n_1) = 1$
 $n_2 = 10,000$
 $tempo(n_2) = f(n_2)/f(n_1) \times tempo(n_1) = 10,000^2/5,000^2 \times 1 = 4$ segundos

Sobre a taxa de crescimento

Vejamos o que acontece quando se **duplica o tamanho do input** para algumas das funções habituais (independentemente da máquina!):

$$tempo(2n) = \frac{f(2n)}{f(n)} \times tempo(n)$$

- \mathbf{n} : 2n/n = 2. O tempo duplica!
- n^2 : $(2n)^2/n^2 = 4n^2/n^2 = 4$. O tempo aumenta 4x!
- n^3 : $(2n)^3/n^3 = 8n^3/n^3 = 8$. O tempo aumenta 8x!
- 2^n : $2^{2n}/2^n = 2^{2n-n} = 2^n$. O tempo aumenta 2^n vezes! Exemplo: Se n = 5, o tempo para n = 10 vai ser 32x mais! Exemplo: Se n = 10, o tempo para n = 20 vai ser 1024x mais!
- $\log_2(\mathbf{n}) : \log_2(2n)/\log_2(n) = 1 + 1/\log_2(n)$. Aumenta $1 + \frac{1}{\log_2(n)}$ vezes!

Exemplo: Se n = 5, o tempo para n = 10 vai ser **1.43x** mais! Exemplo: Se n = 10, o tempo para n = 20 vai ser **1.3x** mais!

Quando não tenho uma implementação

Pré-requisitos:

- A complexidade da minha ideia algorítmica: f(n)
- \bullet O tamanho n do input para o qual quero estimar o tempo

Se eu tivesse o tempo para um dado
$$n_0$$
 podia fazer o seguinte: $tempo(n) = f(n)/f(n_0) \times tempo(n_0) = f(n) \times \frac{tempo(n_0)}{f(n_0)}$ $\frac{tempo(n_0)}{f(n_0)} = op$: tempo para analisar uma "operação"/possível solução

O valor de *op* é dependente do problema e da máquina, mas não deixa de ser apenas um **factor constante**!

Se eu tiver o valor de op, calcular o tempo para n passa a ser apenas:

Estimando o tempo de execução

op é quanto "custa" analisar uma possível solução

$$tempo(n) = f(n) \times op$$

Quando não tenho uma implementação

Precisamos de uma estimativa de *op*, ainda que muito por alto, para ter uma ideia do tempo de execução.

Exemplos (vindos de aulas anteriores, no meu portátil):

- Uma operação simples demorava 10^{-9} segundos
- Cada permutação demorava 10⁻⁷ segundos

Vou dar-vos a regra de usarem $op = 10^{-8}$ para uma estimativa inicial.

No futuro podem ter de actualizar este valor, mas não é assim tão importante, porque é factor constante!

Tabelas

$$\begin{array}{c|c} op = 10^{-8} \\ \hline & n \text{ máximo} \\ f(n) & 1s & 1 \text{min} \\ \hline \log_2 n & & \\ n \log_2 n & & \\ n^2 & & \\ n^3 & & \\ 2^n & & \\ n! & & \end{array}$$

$op = 10^{-8}/2$					
	<i>n</i> máximo				
f(n)	1s	1min			
log ₂ n					
n					
n log ₂ n n ²					
n ³					
2 ⁿ					
n!					

. - 0 /-

Tabelas

$$op = 10^{-8}$$

	n máximo					
f(n)	1s	1min				
log ₂ n	$\sim \infty$ 10^8	$\sim \infty$				
n		$6 imes 10^9$				
$n \log_2 n$	$\sim 4 imes 10^6$	$\sim 2 imes 10^8$				
n ²	10,000	77, 459				
n ³	464	1,817				
2 ⁿ	26	32				
n!	11	12				

$$op = 10^{-8}/2$$

	n máximo				
f(n)	1s	1min			
log ₂ n	$\sim \infty$	$\sim \infty$			
n	2×10^8	$\sim 10^{10}$			
$n \log_2 n$	$\sim 9 imes 10^6$	$\sim 4 imes 10^8$			
n ²	14,142	109,544			
n^3	584	2289			
2 ⁿ	27	33			
n!	11	13			

- log n serve "virtualmente" para tudo
- n para "quase" tudo (só ler já demora $\Theta(n)$)
- $n \log n$ pelo até um milhão não dá problemas
- n² para cima de 10,000 já começa a demorar
- n³ para cima de 500 já começa a demorar
- 2ⁿ e n! crescem muito rápido e só podem ser usados para um n (mesmo) muito pequeno

Algumas Considerações

- A constante op não é o (mais) importante, mas sim a taxa de crescimento.
- Notem que isto só dá "estimativas"! Não tempos exactos...
- As "constantes escondidas" podem influenciar muito um programa
 - Ex: ler elementos (scanf/scanner) demora muito mais tempo que operação simples
- O comportamento do programa pode depender do tipo de input
 - Ex: quicksort "naive" é bom num input aleatório, mas mau num quase ordenado

Vamos colocar em prática

Vamos considerar um problema da subsequência máxima

Resumindo o problema:

Problema da subsequência máxima

Input: uma sequência de *n* números

Output: o valor da máxima subsequência de números consecutivos, onde valor deve ser entendido como a soma.

Um exemplo)

Input: -1, 4, -2, 5, -5, 2, -20, 6

Output: 7 (corresponde a 4, -2, 5)

Vamos colocar em prática

Imaginem que este problema está disponível no **Mooshak**, onde cada caso de teste tem normalmente entre 1s a 2s de tempo limite (para ser possível executar os vossos programas em vários testes).

Imaginem que o n máximo é 200,000. Qual a complexidade esperada para ter o problema aceite?

- Quantas subsequências existem no total?
 Seja (a, b) a sequência que começa na posição a e termina na b
 Existem ⊖(n²) sequências!
- Uma solução "força bruta" é testar todas as subsequências.
- ullet Seja soma(a,b) uma função que determina a soma de (a,b)
- Uma primeira aproximação para soma(a, b) seria fazer um ciclo entre a e b, o que demora Θ(n)
 Então para cada par, Θ(n²), faríamos uma soma em Θ(n)
 Esta solução teria complexidade total de Θ(n³)!
 Θ(n³) começaria a dar problemas logo com n = 600!

Vamos colocar em prática

- Como calcular mais rapidamente a soma de uma sequência usando cálculos anteriores? soma(a, b) = soma(a, b 1) + v[b]
- Com esta nova aproximação, soma(a, b) passaria a custar $\Theta(1)$
- A solução final teria para cada par, $\Theta(n^2)$, uma soma em $\Theta(1)$) Isto daria complexidade total de $\Theta(n^2)$ $\Theta(n^2)$ começaria a dar problemas logo com n=15000!

Vamos colocar em prática

- Precisamos de melhor do que $\Theta(n^2)$
- (Provavelmente) $\Theta(n \log n)$ já passaria.
 - usar dividir para conquistar
- \bullet $\Theta(n)$ passaria de certeza
 - Algoritmo de Kadane

Vamos colocar em prática

Problema da partição (versão problema de decisão)

Input: um conjunto S de n números

Output: Existe maneira de dividir S em dois subconjuntos S_1 s S_2 tal que a soma dos elementos em S_1 é igual à soma dos elementos em S_2 ?

Um exemplo)

Input: 1, 2, 5, 6, 8

Output: Sim (1+2+8=5+6)

Vamos colocar em prática

- Uma solução com força bruta (testar todos as partições possíveis) dava até que n, sensivelmente?
- Quantas maneiras diferentes existem de partir?
 Cada número pode ficar na partição 1 ou na partição 2.
 Existem 2ⁿ partições diferentes! ⊖(2ⁿ)
- Para um n = 50, por exemplo, esta solução já não dava!
- Mais para a frente, iremos voltar a uma versão restrita deste problema para o resolver em tempo polinomial...

Complexidade de programas em concetro

Analisando complexidade de programas

Vamos agora ver um pouco de como calcular a complexidade de pedaços de código em concreto.

• Caso 1 Ciclos (e somatórios)

Caso 2 Funções Recursivas (e recorrências)

Um ciclo habitual

```
contador \leftarrow 0

Para i \leftarrow 1 até 1000 fazer

Para j \leftarrow i até 1000 fazer

contador \leftarrow contador + 1

escrever(contador)
```

O que escreve o programa?

$$1000 + 999 + 998 + 997 + \ldots + 2 + 1$$

Progressão aritmética: é uma sequência numérica em que cada termo, a partir do segundo, é igual à soma do termo anterior com uma constante r (a razão dessa sequência numérica). Ao primeiro termo chamaremos a_1 .

- $1, 2, 3, 4, 5, \ldots$ $(r = 1, a_1 = 1)$
- $3, 5, 7, 9, 11, \ldots$ $(r = 2, a_1 = 3)$

Como fazer um somatório de uma progressão aritmética?

$$1+2+3+4+5+6+7+8 = (1+8)+(2+7)+(3+6)+(4+5) = 4 \times 9$$

Somatório de a_p a a_q

$$S(p,q) = \sum_{i=p}^{q} a_i = \frac{(q-p+1)\times(a_p+a_q)}{2}$$

Somatório dos primeiros n termos

$$S_n = \sum_{i=1}^n a_i = \frac{n \times (a_1 + a_n)}{2}$$

Um ciclo habitual

```
contador \leftarrow 0

Para i \leftarrow 1 até 1000 fazer

Para j \leftarrow i até 1000 fazer

contador \leftarrow contador + 1

escrever(contador)
```

O que escreve o programa?

$$1000 + 999 + 998 + 997 + \ldots + 2 + 1$$

Escreve
$$S_{1000} = \frac{1000 \times (1000 + 1)}{2} = 500500$$

Um ciclo habitual

$$contador \leftarrow 0$$

Para $i \leftarrow 1$ até n fazer

Para $j \leftarrow i$ até n fazer

 $contador \leftarrow contador + 1$

escrever($contador$)

Qual o tempo de execução?

Vai fazer S_n passos:

$$S_n = \sum_{i=1}^n a_i = \frac{n \times (1+n)}{2} = \frac{n+n^2}{2} = \frac{1}{2}n^2 + \frac{1}{2}n.$$

O programa faz $\Theta(n^2)$ passos

Quem quiser saber mais sobre somatórios interessantes para CC, pode espreitar o *Appendix A* do *Introduction to Algorithms*.

Notem que c ciclos não implicam $\Theta(n^c)!$

Ciclos

Para $i \leftarrow 1$ até n fazer Para $j \leftarrow 1$ até 5 fazer

 $\Theta(n)$

Ciclos

Para $i \leftarrow 1$ até n fazer

Para $j \leftarrow 1$ até $i \times i$ fazer

$$\Theta(n^3)$$
 $(1^2 + 2^2 + 3^2 + \ldots + n^2 = \sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$

Muitos algoritmos podem ser expressos de forma recursiva,

Vários destes algoritmos seguem o paradigma de dividir para conquistar:

Dividir para Conquistar

Dividir o problema num conjunto de subproblemas que são instâncias mais pequenas do mesmo problema

Conquistar os subproblemas resolvendo-os recursivamente. Se o problema for suficientemente pequeno, resolvê-lo diretamente

Combinar as soluções dos problemas mais pequenos numa solução para o problema original

Alguns Exemplos - MergeSort

Algoritmo **MergeSort** para ordenar um array de tamanho *n*

MergeSort

Dividir: partir o array inicial em 2 arrays com metade do tamanho inicial

Conquistar: ordenar recursivamente as 2 metades. Se o problema for ordenar um array de apenas 1 elemento, basta devolvê-lo.

Combinar: fazer uma junção (*merge*) das duas metades ordenadas para um array final ordenado.

Alguns Exemplos - MergeSort

Dividir:

Alguns Exemplos - MergeSort

Alguns Exemplos - MergeSort

Qual o tempo de execução deste algoritmo?

- D(n) Tempo para partir um array de tamanho n em 2
- M(n) Tempo para fazer um *merge* de 2 arrays de tamanho n/2
- ullet T(n) Tempo total para um MergeSort de um array de tamanho n

Para simplificar vamos assumir que n é uma potência de 2.

(as contas são muito parecidas nos outros casos)

$$T(n) = \begin{cases} \Theta(1) & \text{se } n = 1\\ D(n) + 2T(n/2) + M(n) & \text{se } n > 1 \end{cases}$$

Alguns Exemplos - MergeSort

 $\mathbf{D}(\mathbf{n})$ - Tempo para partir um array de tamanho n em 2

Não preciso de criar uma cópia do array!

Usemos uma função com 2 argumentos:

mergesort(a,b): (ordenar desde a posição a até posição b)

No início, mergesort(0, n-1) (com arrays começados em 0)

Seja $m = \lfloor (a+b)/2 \rfloor$ a posição do meio.

Chamadas a mergesort(a,m) e mergesort(m+1,b)

Só preciso de fazer uma conta (soma + divisão) Consigo fazer divisão em $\Theta(1)$ (tempo constante!)

Alguns Exemplos - MergeSort

 $\mathbf{M}(\mathbf{n})$ - Tempo para fazer um *merge* de 2 arrays de tamanho n/2

Em tempo constante não é possível. E em tempo linear?

Alguns Exemplos - MergeSort

No final fiz n comparações+cópias. Gasto $\Theta(n)$ (tempo linear!)

Alguns Exemplos - MergeSort

Qual é então o tempo de execução do MergeSort?

Para simplificar vamos assumir que n é uma potência de 2. (as contas são muito parecidas nos outros casos)

$$T(n) = \left\{ egin{array}{ll} \Theta(1) & ext{se } n=1 \ 2T(n/2) + \Theta(n) & ext{se } n>1 \end{array}
ight.$$

Como resolver esta recorrência?

Alguns Exemplos - MergeSort

Vamos desenhar a árvore de recorrência:

O total é o somatório disto tudo: MergeSort é $\Theta(n \log n)$!

Alguns Exemplos - MáximoD&C

Nem sempre um algoritmo recursivo tem complexidade linearítmica!

Vamos ver um outro exemplo. Imagine que tem um array de n elementos e quer **descobrir o máximo**.

Uma simples **pesquisa linear** chegava, mas vamos desenhar um algoritmo seguindo as ideias do dividir para conquistar.

Descobrir o máximo

Dividir: partir o array inicial em 2 arrays com metade do tamanho inicial

Conquistar: calcular recursivamente o máximo de cada uma das metades

Combinar: comparar o máximo de cada uma das metades e ficar com o

maior deles

Alguns Exemplos - MáximoD&C

Qual o tempo de execução deste algoritmo?

Para simplificar vamos assumir que n é uma potência de 2. (as contas são muito parecidas nos outros casos)

$$T(n) = \left\{ egin{array}{ll} \Theta(1) & ext{se } n=1 \ 2T(n/2) + \Theta(1) & ext{se } n>1 \end{array}
ight.$$

O que tem esta recorrência de diferente da do MergeSort? Como a **resolver**?

Alguns Exemplos - MáximoD&C

No total gasta
$$1 + 2 + 4 + \ldots + n = \sum_{i=0}^{\log_2(n)} 2^i$$

- O que domina a soma? Note que $2^k = 1 + \sum_{i=0}^{k-1} 2^i$.
- O último nível domina o peso da árvore e logo, o algoritmo é $\Theta(n)$!

Recursões

Complexidade

Nem todas as recorrências de um algoritmo de **dividir para conquistar** dão origem a complexidades **logarítmicas** ou **linearítmicas**.

Na realidade, temos tipicamente três tipos de casos:

- O tempo é repartido de maneira mais ou menos uniforme por todos os níveis da recursão (ex: mergesort)
- O tempo é dominado pelo último nível da recursão (ex: máximo)
- O tempo é dominado pelo primeiro nível da recursão (ex: multiplicação de matrizes "naive")

(para saber mais podem espreitar o Master Theorem)

Recorrências

Notação

É usual assumir que $T(1) = \Theta(1)$. Nesses casos podemos escrever apenas a parte de $\mathcal{T}(n)$ para descrever uma recorrência.

- MergeSort: $T(n) = 2T(n/2) + \Theta(n)$
- MáximoD&C: $T(n) = 2T(n/2) + \Theta(1)$

Diminuir e Conquistar

Algumas recorrências

Por vezes temos um algoritmo que reduz um problema a um único subproblema.

Nesses casos podemos dizer que usamos diminuir e conquistar (decrease and conquer).

• Pesquisa Binária:

Num array ordenado de tamanho n, comparar com o elemento do meio e procurar na metade correspondente

$$T(n) = T(n/2) + \Theta(1) [\Theta(log n)]$$

 Máximo com "tail recursion": Num array de tamanho n, recursivamente descobrir o máximo do array excepto o primeiro elemento e depois comparar com o primeiro elemento.

$$T(n) = T(n-1) + \Theta(1) [\Theta(n)]$$

Um Puzzle

Até "manualmente" se pode usar esta técnica de desenho algorítmico.

Imagine que tem uma grelha (ou matriz) de $2^n \times 2^n$ e quer **preencher** todas as quadrículas com peças com o formato de um L.

As peças podem ser rodadas e a grelha inicial tem um casa "proibida".

Uma ideia é dividir em 4 quadrados mais pequenos... e colocar uma peça!