

COMP 3234B Computer and Communication Networks

2nd semester 2023-2024 Network Layer (III)

Prof. C Wu

Department of Computer Science
The University of Hong Kong

Roadmap

Network layer

- Principles behind network-layer services (ILO1) forwarding vs. routing network service models
- Router (ILO1)
- IP (ILO2,5)
 DHCP
 NAT
- ICMP(ILO2)
- Routing algorithms (ILO3)
- Routing in the Internet (ILO2,3)

application
transport
network
link
physical

Internet network layer

Routing protocols

- Decide the good paths (aka routes) taken by datagrams from sending host to receiving host, through the network of routers
 - decide the forwarding tables at routers
 - path: sequence of routers that datagrams traverse, going from source host to destination host
 - "good": "least cost", "fastest", "least congested"

Graph abstraction of the network

Graph abstraction

- Undirected graph: G = (N,E)
 N = set of nodes (routers) = { u, v, w, x, y, z }
 E = set of edges (links) ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }
- Link cost: the value associated with a link (related to bandwidth, congestion, physical length, delay, etc.)

$$c(x_1, x_2) = cost of link (x_1, x_2), e.g., c(w,z) = 5$$

 $c(x_1, x_2) = \infty$ if (x_1, x_2) does not belong to E

- Path: a sequence of nodes, (x₁, x₂, x₃,..., x_p)
- Cost of path $(x_1, x_2, x_3, ..., x_p)$: $c(x_1,x_2) + c(x_2,x_3) + ... + c(x_{p-1},x_p)$

Routing algorithm

 Given a set of routers with links connecting the routers, finds a least-cost path from source router to destination router (finds the shortest path when link costs represent length)

What's the least-cost path between u and z?

Routing algorithm classification

Centralized or decentralized routing algorithm

Centralized:

algorithm input: complete global knowledge about the network, including node connectivity (topology), link costs

carried out at each router

link-state (LS) algorithms

Decentralized:

with (local) knowledge of connectivity to neighbor routers, link costs to neighbors algorithm carried out at each router by iterative process of computation and exchange of information with neighbor

distance-vector (DV) algorithms

Link-state routing algorithm

Dijkstra's algorithm

- Input: network topology, link costs of all links
- Output: least-cost paths from one node ("source router") to all other nodes (routers) derives forwarding table for that router
- Iterative algorithm executed at one node: after k iterations, the source derives least-cost paths to k destinations with the smallest path costs

each node broadcasts its identity and costs of neighboring links to all other nodes in the network ("link state broadcast")

=>all nodes have same and complete view of the network

Dijkstra's algorithm

1 Initialization:

```
N' = {u}
for all nodes i
if i is a neighbor of u
then D(i) = c(u,i), p(i) = u
else D(i) = ∞
```

8 Loop

- 9 find j not in N' such that D(j) is minimum
- 10 add j to N'
- 11 update D(i) for each neighbor i of j and not in N':
- 12 D(i) = min(D(i), D(j) + c(j,i)); update p(i)
- 13 /* new cost to i is either old cost to i or known
- 14 least path cost to j plus cost from j to i */
- 15 *until N' = N*

of loops=
of nodes in the network
excluding the source

Notation

- c(x,y): link cost from node x to y;= ∞ if not direct neighbors
- D(v): current value of cost of path from source to destination v
- p(v): predecessor node along the current least-cost path from source to v
- N': set of nodes whose least-cost path already known

An example of Dijkstra's algorithm

Example

Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	1,u	∞	∞
1	ux •	2,u	4,x		2,x	∞
2	uxy	2,u	3,y			4,y
3	uxyv		3,y			4,y
4	uxyvw 🗲					4,y
5	uxyvwz	•				

An example of Dijkstra's algorithm (cont'd)

Resulting least-cost-path tree from u:

Resulting forwarding table in u:

destination	link	
v X	(u,v) (u,x)	next-hop node along the
у	(u,x)	least-cost path towards the destination
W	(u,x)	
Z	(u,x)	

Discussions on Dijkstra's algorithm

Algorithm complexity

with n nodes (routers excluding the source)

- each iteration: need to check all nodes, w, not in N'
- \blacksquare n(n+1)/2 comparisons: $O(n^2)$
- more efficient implementations possible: O(nlogn)

Discussions on Dijkstra's algorithm (cont'd)

Potential problem: routing oscillations

Example scenario:

link cost = amount of carried traffic (reflecting delay on the link)

link costs could be asymmetric: c(u,v)=c(v,u) only if traffic on both directions is the same

node D originates a unit of traffic destined to A;

node B originates a unit of traffic destined to A;

node C originates traffic of amount e to A.

Possible solution: have each router run the algorithm at different times

given these costs, find new routing.... resulting in new costs

given these costs, find new routing.... resulting in new costs

Distance-vector routing algorithm

Bellman-Ford algorithm

- Input: connectivity/link costs to neighbors
- Output: least-cost paths from each node to all other nodes
 - derives forwarding table for each router
- Iterative, asynchronous, distributed algorithm executed by all nodes together:
 - each node receives updates from neighbors, recomputes, and distributes its new calculation result to neighbors
 - algorithm terminates (least-cost path from each node to each other node derived) when no more update is exchanged between neighbors

each node updates information to neighbors only

Bellman-Ford equation

Bellman-Ford equation

Define an important relationship among the costs of least-cost paths

d_x(y) := cost of least-cost path from x to y
Then

$$d_x(y) = \min_v \{c(x,v) + d_v(y)\}$$

where min is taken over all neighbors v of x

Bellman-Ford equation (cont'd)

Example

$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

Bellman-Ford equation says:

$$d_{u}(z) = \min \{ c(u,v) + d_{v}(z), \\ c(u,x) + d_{x}(z), \\ c(u,w) + d_{w}(z) \}$$

$$= \min \{ 2 + 5, \\ 1 + 3, \\ 5 + 3 \} = 4$$

Node that achieves minimum is next hop in the least-cost path

→ decides the entry in u's forwarding table

Bellman-Ford algorithm basics

- $D_x(y)$ = estimate of least path cost from x to y
- Node x maintains
 - cost to each neighbor v: c(x,v)
 - distance vector $\mathbf{D}_{x} = [D_{x}(y): y \in \mathbb{N}]$
 - its neighbors' distance vectors

For each neighbor v, x maintains $D_v = [D_v(y): y \in N]$

- Basic idea of Bellman-Ford algorithm
 - From time-to-time, each node sends its updated distance vector (DV) to neighbors
 - When a node x receives new DV estimate from neighbor v, it updates its own DV using Bellman-Ford equation:

```
D_x(y) \leftarrow \min_{v} \{c(x,v) + D_v(y)\} for each node y \in N
```

all nodes continue to exchange their DVs in an asynchronous fashion; each least cost estimate $D_x(y)$ converges to the actual least cost $d_x(y)$

Bellman-Ford algorithm

At each node, x:

19 *forever*

```
Initialization:
     for all destinations y in N:
         D_x(y) = c(x,y)
     for each neighbor w
         D_w(y) = \infty for all destinations y in N
     for each neighbor w
         send distance vector \mathbf{D}_x = [D_x(y): y \in N] to w
 8
 9
     Loop
  10
       wait (until I see a link cost change to some neighbor w or
  11
              until I receive a distance vector from some neighbor
 w)
 12
 13
       for each y in N:
          D_{x}(y) = \min_{v} \{c(x,v) + D_{v}(y)\}
 14
 15
  16
       if D_x(y) changed for any destination y
         send distance vector \mathbf{D}_x = [D_x(y): y \in \mathbb{N}] to all neighbors
  17
  18
```

Each node:

wait for (change in local link cost or msg from neighbor) *recompute* estimates if DV to any dest has changed, *notify* neighbors

An example of Bellman-Ford algorithm

Example

 $D_x(z) = \min\{c(x,y) + D_y(z), c(x,z) + D_z(z)\}$ = $\min\{2+1, 7+0\} = 3$

An example of Bellman-Ford algorithm (cont'd)

node x table

Discussions on Bellman-Ford algorithm I

Link cost change: scenario 1

At time t_0 , x and y detect the link-cost change $(4 \rightarrow 1)$, updates their DV, and inform neighbors.

DV table evolution

node × table Cost to

			У	
Ę	X	0	4	1 1 0
from	У	4	0	1
—	Z	5	1	0

		X	У	Z	_
rom	X	0	4	5	
	У	0	0	1	
—	Z	5	1	0	

node z table Cost to

time to t_1 t₂

DV table evolution

node x table

cost to

		X	У	Z
۳	X	0	4	5-2
rom	× y	4 5	0	1
4	Z	5	1	0

		×	У	Z	
۳	X	0 1 5	1	2	
ron	У	1	0	1	
4	Z	5	1	0	

node y table

cost to

		×	У	Z	
<u> </u>	× y	0	4	5	
rom	У	0 4 5	0	1	
+	Z	5	1	0	

node z table

cost to

DV table evolution

node x table

cost to

		X	У	Z
۳	X	0	4	15-2
from	Y	4 5	0	1
	Z	5	1	0

 X
 Y
 Z

 X
 0
 1
 2

 Y
 1
 0
 1

 T
 0
 0
 0

 X
 Y
 Z

 X
 0
 1
 2

 Y
 1
 0
 1

 Z
 2
 1
 0

node y table

cost to

		X	У	Z	
E	X	0	4	5	
trom	У	0	0	1	
	Z	5	1	0	

node z table

cost to

		X	У	Z	
from	X	0	4 0 1	5	
	У	4	0	1	
	Z	5	1	0	

Discussions on Bellman-Ford algorithm I (cont'd)

Link cost change: scenario 1

- 1 X 50
- At time t_0 , x and y detect the link-cost change $(4 \rightarrow 1)$, updates their DV, and inform neighbors.
- At time t_1 , z receives the updates, computes a new least cost to x (5->2) and informs its neighbors.
- At time t₂, x and y receive z's update and update their DV tables. x and y's least costs do not change and hence do not send any further message to z.

Good news travels fast!

Discussions on Bellman-Ford algorithm II

- ☐ Link cost change: scenario 2
 - At time t_0 , x and y detect the link-cost change $(4 \rightarrow 60)$, update their DV, and notify neighbors

$$D_x(y)=\min\{c(x,y)+D_y(y), D_y(x)=\min\{c(y,x)+D_x(x), c(x,z)+D_z(y)\}\$$
 $=\min\{60+0,50+1\}=51$ $=\min\{60+0,1+5\}=6$

node x table

node y table Cost to

		X	У	Z/
	X	0	4/	5
rom	У	4	0	1
-	Z	5	1	0

node z table Cost to

t₃ t4 to

node x table Cost to

node y table

		C051 10					C051 10			
		×	У	Z				У		_
۳	X	0	4	5	_ 	X	0	51	50 1 0	
from	У	4	0	1	ro	У	6	0	1	
	Z	5	1	0	4	Z	5	1	0	

node z table

	CO	51	10			C051 10			
	X	У	Z	_		X	У	z /	
X	0	4	5		X	0	51/	50	
У	4	0	1	ro	У	6	0	1	
Z	5	1	0	4	Z	7	1	0	
	× y z	X X	X YX 0 4Y 4 0	X Y Z X 0 4 5 Y 4 0 1 Z 5 1 0	X	X Y Z X 0 4 5 E X Y 4 0 1 E Y	X Y Z X 0 4 5 Y 4 0 1 Y 6	X	

t4

$$D_y(x)=min\{c(y,x)+D_x(x), c(y,z)+D_z(x)\}$$

=min{60+0,1+7}=8

node x	tak	ole
--------	-----	-----

		CO	51	10			CC)S I	10			¢()S1	10	
			У				X	У	Z	_		x	У	Z	
َ ہے	X	0	4	51_50	۲				50	۳			51		
ဥ	У	4	0	1	70	У	6	0	1	70	У	6	0	1	
—	7	5	1	\cap	4	7	5	1	Λ	4	7	7	1	Ω	

node y table

		CO	5 1	10) 5 I	10			C	J5 I	10	
		X	У	Z	_		X	У	Z	_		×	У	Z	_
۔	X	0	4	5	_	X	0	51	50	۳	X	0	51	50	_
		0			ror	У	6	0	1	ror			0		
—	Z	5	1	0	4	Z	5	1	0	4	Z	7	1	0	

node z table

		CO	st	to			CC	ost	to			CC	ost	to
		X	У	Z			X	У	Z			X	У	Z
Ę.	X	0	4	5	_ L	X	0	51	50	Ę	X	0	51	50
rof	У	4	0	1	rof	У	ı	0	1	ro	У	6	0	1
4	Z	5	1	0	4	Z	7	1	0	4	Z	7	1	0

.

to

 t_1

 t_2

tз

t₄

cost to

node x	table
--------	-------

 		st '	to		
	X	У	Z		
		E	1	50	

cost to

node y table

from

node z table

from

to

cost to

 t_1

t₂

tз

t4

$$D_y(x)=min\{c(y,x)+D_x(x), c(y,z)+D_z(x)\}$$

= min{60+0,1+9}=10

							50	
<u>node × ta</u>	<u>ble</u> cost to		cost to		cost to	cost to	cost to	
	x y z		x y z		x y z	X Y Z	X Y Z	
€ X	0 4555	e x	0 51 50	ε X	0 51 50	E X 0 51 50 E	× 0 51 50	
from x	4 0 1	from	6 0 1	from x	6 0 1	5 7 8 0 1 5 6 7 8 0 1 5 7 9 9 1 1 1	y 8 0 1	
Z	5 1 0	Z	5 1 0	Z	7 1 0	~ z 7 1 0 ~	z 9 1 0	
node y table								
node y 1d	cost to		cost to		cost to	cost to	cost to	
	x y z		x y z		x y z	x y z	x y z	
_E X	0 4 5	E X	0 51 50	E X	0 51 50	e × 0 51 50 e	× 0 51 50	
from x x	4 0 1	from	6 0 1	from x	8 0 1	토 X 0 51 50 및 및 및 및 및 및 및 및 및 및 및 및 및 및 및 및 및 및	y 10 0 1	
Ţ. Z	5 1 0	<u> </u>		Ψ Z	7 1 0	z 7 1 0	z 9 1 0	
node z ta	1		I		ı	I	ı	
node 2 Ta	cost to		cost to		cost to	cost to	cost to	
	x y z		x y z	_	x y z	X	x y z	
_E X	0 4 5	E X	0 51 50	E X	0 51 50 6 0 1 7 1 0	x 0 51 50 y 8 0 1 z 9 1 0	× 0 51 50	
from x	4 0 1	from	6 0 1	from x	6 0 1	E Y 0 51 50 F Y 8 0 1 1 F Y 0 1 0 1	X 0 51 50Y 8 0 1	
of x	5 1 0	ψ Z	•	ψ z	7 1 0	z 9 1 0	X 0 51 50 Y 8 0 1 Z 9 1 0	
_				_	' ' '			

to

 t_1

t₂

tз

t4

Discussions on Bellman-Ford algorithm II (cont'd)

- ☐ Link cost change: scenario 2
 - At time t₀, x and y detect the link-cost change (4→60), update their DV, and notify neighbors
- 60 x 50
- At time t_1 , z receives updated DVs, computes a new least cost to x of $D_z(x) = \min \{50+0, 1+6\} = 7$, and informs neighbors of its new DV
- At time t_2 , y receives z's update, recomputes $D_y(x) = 8$, and sends it to neighbors
- At time t_{3} , z receives y's update, recomputes $D_z(x) = 9$, and sends it to neighbors
- **...**

44 iterations before algorithm terminates!

Bad news travels slowly => "count to infinity" problem!

But it does not solve general count-to-infinity problem

The problem in this scenario can be avoided by poisoned reverse:

If Z routes through Y to get to X, Z tells Y its (Z's) distance to X is infinite (so Y won't route to X via Z)

Poisoned reverse

					,				50		
node >	x table										
	cost to		cost to		cost to		cost to	cost to	_	cost to	
-	x y z		x y z		x y z		x y z	x y z		x y z	
٤	× 0 4 5 50	E	x 0 51 50	٦	× 0 51 50	E	x 0 51 50 _E	× 0 51 50 g	= ×	0 51 50	
from	y 4 0 1	from	y 6 0 1	from	y 6 0 1	from	ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا	y 60 0 1	5 y	51 0 1	
Ŧ	z 5 1 0	Ŧ	z 5 1 0	Ŧ	z 7 1 0	4	z 7 1 0 -	z 50 1 0	Z	50 1 0	
node y	y table										
•	cost to		cost to		cost to		cost to	cost to		cost to	
	x y z		× y z		x y z	_	x y z	x y z		x y z	
	x 0 4 5	from		× 0 51 50		× 0 51 50	_	× 0 51 50 -	x 0 51 50	_	0 51 50
from	$\mathbf{y} \stackrel{6}{\cancel{\wedge}} 0 1$		y 6 0 1 5 1 0	y 60 0 1	from	y 60 0 1 g	y 51 0 1 5	5 y	51 0 1		
fr	z 5 1 0		z 5 1 0	fr	z ∞ 1 0	fr	z × 1 0	z 50 1 0	z	50 1 0	
node z	z table		•				-	-			
<u></u>	cost to		cost to		cost to		cost to	cost to		cost to	
_	x y z		x y z		x y z		x y z	x y z		x y z	
_	x 0 4 5		x 0 51 50	_	× 0 51 50	_	× 0 51 50 _E	× 0 51 50 6	_ ×	0 51 50	
from	y 4 0 1	from	X 0 51 50 Y 6 0 1	from	X 0 51 50 Y 6 0 1	from	y 60 0 1 50 gg	X 0 51 50 Y 60 0 1	5 y	51 0 1	
fre	z 5 1 0	fı	$z = \begin{pmatrix} 7 \\ 1 \\ 0 \end{pmatrix}$	fr	z 7 1 0	fı	Y 60 0 1 2 z 50 1 0	y 60 0 1 z 50 1 0	Z	50 1 0	
										-	
	to		/ t 1	_	t 2	_	t 3	t 4	t	5	

to /t1 t2 t3 z routes to x through y; suppose it tells y that $Dz(x) = \infty$ in next round

Comparison of LS and DV algorithms

Message complexity

<u>LS:</u> with n nodes, $O(n^2)$ msgs

DV: exchange between neighbors only;

convergence time varies

Convergence

LS: $O(n^2)$ algorithm requires $O(n^2)$ msgs; may have oscillations

DV: convergence time varies; may existing routing loops (count-to-infinity problem)

Both algorithms used in routing protocols in the Internet

LS algorithms used in OSPF, IS-IS.

DV algorithms used in RIP, IGRP.

- Required reading:
 - Computer Networking: A Top Down Approach (8th Edition)
 Ch 5.2

- Acknowledgement:
 - Some materials are extracted from the slides created by Prof. Jim F. Kurose and Prof. Keith W. Ross for the textbook.