I - Exercice 1

I.A -

Soit $x \in \overset{\circ}{\overline{U}} \cap \overset{\circ}{\overline{V}} = \widehat{\overline{U} \cap \overline{V}}$, alors il existe r > 0, tel que $BO(x,r) \subset \overline{U} \cap \overline{V}$, Soit $y \in BO(x,r) \cap U$, car elles sont ouverts de (E,d), alors il exister' > 0 tel que $BO(y,r') \subset BO(x,r) \cap U$. Mais comme $U \cap V = \emptyset$, donc $y \in V \subset \overline{V}$, c'est absurde.

Finalement, on a $x \in \emptyset$, donc $\boxed{\overset{\circ}{\overline{U}} \cap \overset{\circ}{\overline{V}} = \emptyset}$

I.B -

Par exemple, on se place dans $(\mathbb{R}, |\cdot|)$, on pose $U = \mathbb{Q}, V = \mathbb{R} \setminus \mathbb{Q}$ On a $U \cap V = \emptyset$, mais $\dot{\overline{U}} = \mathbb{R}, \dot{\overline{V}} = \mathbb{R}$. Donc $\dot{\overline{U}} \cap \dot{\overline{V}} = \mathbb{R} \neq \emptyset$

I.C -

Soit $a \in \partial U$, alors il existe r > 0 tel que $BO(a,r) \subset \partial U = \overline{U} \setminus U$ car U est un ouvert de (E,d). Donc $BO(a,r) \cap U = \emptyset$, donc $a \notin \overline{U}$, c'est l'absurde car $BO(a,r) \subset \overline{U}$. On en déduit que $|\partial U = \emptyset|$

I.D -

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de A+B, alors pour tout $n\in\mathbb{N}$, il existe $a_n\in A$, $b_n\in B$ tels que $u_n=a_n+b_n$. On obtient donc une suite $(a_n)_{n\in\mathbb{N}}$ de A, et $(b_n)_{n\in\mathbb{N}}$ une suite de B. On considère la fonction

$$f: \left\{ \begin{array}{ccc} E & \to & \mathbb{R} \\ x & \mapsto & \|x\| \end{array} \right.$$

Car A et B sont compacts, donc ils sont bornés. Donc les suites $(f(a_n))_{n\in\mathbb{N}}$ et $(f(b_n))_{n\in\mathbb{N}}$ sont bornés. Soit $n\in\mathbb{N}$, on a

$$f(u_n) = ||u_n|| \le ||a_n|| + ||b_n||$$

Donc $(f(u_n))_{n\in\mathbb{N}}$ est borné.

D'après le théorème de Weierstrass, il existe $l \in \mathbb{R}$ et une extraction φ tels que

$$f(u_{\phi(n)}) \xrightarrow[n \to +\infty]{} l$$

On sait que f est continue sur E, on a donc

$$\forall \epsilon > 0, \exists N \in \mathbb{N}^*, \forall n > N \Rightarrow f(u_{\phi(n)}) \in BO(l, \epsilon)$$

Donc

$$\forall \epsilon > 0, \exists N \in \mathbb{N}^*, \forall n > N \Rightarrow u_{\phi(n)} \in f^{-1}(BO(l, \epsilon))$$

Finalement, on a $u_{\phi(n)} \xrightarrow[n \to +\infty]{} f^{-1}(l)$, on a donc A+B est compact

II - Exercice 2

II.A -

Soit $((x_n, y_n))_{n \in \mathbb{N}}$ une suite de (E^2, δ) , on a

$$((x_n, y_n))_{n \in \mathbb{N}} \text{ converge vers}(x, y)$$

$$\Leftrightarrow \delta((x_n, y_n), (x, y)) \xrightarrow[n \to +\infty]{} 0$$

$$\Leftrightarrow \max(d(x_n, x), d(y_n, y)) \xrightarrow[n \to +\infty]{} 0$$

$$\Leftrightarrow d(x_n, x) \xrightarrow[n \to +\infty]{} 0, d(y_n, y) \xrightarrow[n \to +\infty]{} 0$$

$$\Leftrightarrow x_n \xrightarrow[n \to +\infty]{} x, y_n \xrightarrow[n \to +\infty]{} y$$

II.B -

Si on prend $u_1 \in K_1$, alors il existe $v_1 \in K_2$ tel que $d(u_1, v_1) = d(u_1, K_2)$ car K_2 est un compact de (E, d).

De même, il existe $u_2 \in K_1$ tel que $d(v_1, u_2) = d(v_1, K_1) \leq d(v_1, u_1)$. Par récurrence, on peut construire $(u_n)_{n \in \mathbb{N}}$ une suite de K_1 , $(v_n)_{n \in \mathbb{N}}$ une suite de K_2 tels que $(d(u_n, v_n))_{n \in \mathbb{N}}$ est décroissante, avec la borne inférieure $d(K_1, K_2)$, donc on a

$$d(u_n, v_n) \xrightarrow[n \to +\infty]{} d(K_1, K_2)$$

Comme K_1 et K_2 sont des compacts de (E, d), alors il existe deux extractions ϕ et ψ , et $x_1 \in K_1$, $x_2 \in K_2$ tels que

$$u_{\phi(n)} \xrightarrow[n \to +\infty]{} x_1, v_{\phi \circ \psi(n)} \xrightarrow[n \to +\infty]{} x_2$$

On a aussi

$$d(u_{\phi \circ \psi(n)}, v_{\phi \circ \psi(n)}) \xrightarrow[n \to +\infty]{} d(x_1, x_2)$$

Par l'unicité des limites, on a donc $d(x_1, x_2) = d(K_1, K_2)$

II.C -

- ▶ Soit $x \in K$, alors $d(x, F) \ge d(K, F)$. On peut passer a la limite, donc $\inf(\{d(x, F), x \in K\}) \ge d(K, F)$
- ▶ Soient $x \in K$, $f \in F$, alors $d(x, F) \leq d(x, f)$. Ceci est vraie pour tout $x \in K$, on peut passer a la limite, donc

$$inf(\{d(x,F), x \in K\}) \le inf(\{d(x,f), x \in K, f \in F\}) = d(K,F)$$

On obtient donc $inf(\{d(x, F), x \in K\}) = d(K, F)$

On considère la fonction

$$f: \left\{ \begin{array}{ccc} K & \to & \mathbb{R} \\ x & \mapsto & d(x, F) \end{array} \right.$$

On sait que f est continue sur K. D'après le cours, comme K est un compact de (E, d), donc f atteint ses bornes.

Donc il existe $x_m \in K$ tel que

$$f(x_m, F) = \inf(\{d(x, F), x \in K\})$$

Supposons que d(K, F) = 0, Donc il existe $x_m \in K$, tel que $d(x_m, F) = \inf\{\{d(x, F), x \in K\}\}$ = 0. Car F est un fermé de (E, d), donc $x_m \in F$. Mais comme $F \cap K = \emptyset$ d'après l'hypothèse, c'est absurde.

On a donc $d(K, F) \neq 0$

II.D -

On se place dans $E = \mathbb{R} \setminus \{0\}$ muni de la distance $|\cdot|$, avec K = [-1, 0[, F =]0, 1] deux fermés de $(E, |\cdot|)$. On a $F \cap K = \emptyset$, mais d(K, F) = 0.

(On peut prendre $(2^{-n})_{n\in\mathbb{N}}$ une suite de F, $(-2^{-n})_{n\in\mathbb{N}}$ une suite de K, $inf(\{2^{-n}-(-2^{-n}), n\in\mathbb{N}\})=0$)