LEAD SCORE CASE STUDY

SHANTANU SINGH

Introduction

Objective:

 Develop a predictive model to assign lead scores between 0 and 100 for prioritizing potential leads.

Scope:

- Data cleaning
- Exploratory data analysis(EDA)
- Logistic regression
- Modeling Evaluation

Business Context:

- X Education: Sells online courses to industry professionals
- .Current Challenge: Low lead conversion rate (~30%).
- Goal: Identify 'Hot Leads' to improve conversion rates by focusing sales efforts on potential leads.

Solution Methodology

Steps:

Data cleaning and manipulation

Handle duplicates and missing values

Drop irrelevant columns

Impute necessary values

Manage outliers

EDA

Univariate and bivariate analysis

Data Transformation

Feature scaling and encoding

Model Building

Logistic regression

Model Validation and Presentation.

Data Cleaning

Initial Dataset:

• 9240 rows, 37 columns

Cleaning Steps:

- Removed columns with single values or irrelevant information.
- Dropped columns with over 40% missing values.
- Imputed missing values for key features.

Result:

Clean dataset with essential features retained.

Exploratory Data Analysis (EDA)

Model Building-Logistic Regression

Process:

Split data into training (70%) and testing (30%) sets.

Performed Recursive Feature Elimination (RFE) for feature selection.

Model: Logistic regression to predict the probability of conversion.

Model Evaluation

- Splitting the Data into Training and Testing Sets
- The first basic step for regression is performing a train-test split, we have chosen 70:30

ratio.

- Use RFE for Feature Selection
- Running RFE with 15 variables as output
- Building Model by removing the variable whose p-value is greater than 0.05 and vif

value is greater than 5

- Predictions on test data set
- ② Overall accuracy 81%

ROC Curve

- 1. Finding Optimal Cut off Point
- 2. Optimal cut off probability is that
- 3. probability where we get balanced sensitivity and specificity.
- 4. From the second graph it is visible that the optimal cut off is at 0.35.

Summary:

Successfully navigated through data cleaning, exploratory analysis, outlier handling, and model building stages.

Demonstrated significant correlations between certain features (e.g., Total Time Spent on Website) and lead conversion.

Developed a robust logistic regression model with high predictive accuracy and ROC AUC score.

Final Thoughts:

The project highlights the potential to significantly improve conversion rates and operational efficiency through data-driven lead management strategies.

Continued dedication to innovation and adaptation will ensure sustained improvement in lead conversion and business growth.