Trabalho 2

MEC 2403 - Otimização, Algoritmos e Aplicações na Engenharia Mecânica

Gustavo Henrique Gomes dos Santos gustavohgs@gmail.com

Professor: Ivan Menezes

Departamento de Engenharia Mecânica PUC-RJ Pontifícia Universidade Católica do Rio de Janeiro junho de 2023

Trabalho 2

MEC 2403 - Otimização, Algoritmos e Aplicações na Engenharia Mecânica

Gustavo Henrique Gomes dos Santos

junho de 2023

1 Introdução

1.1 Objetivos

Esse trabalho tem como objetivo a implementação e teste dos seguintes métodos indiretos de otimização com restrição :

- 1. Penalidade
- 2. Barreira

Para a etapa de sequência de otimização sem restrição, da qual esses métodos fazem uso, foram utilizados os métodos implementados no trabalho 1. São eles:

- 1. Univariante
- 2. Powell
- 3. Steepest Descent
- 4. Fletcher-Reeves
- 5. BFGS
- 6. Newton-Raphson

Estes métodos, por sua vez, fazem uso dos seguintes algoritmos de busca unidimensional também implementados em trabalhos anteriores :

- 1. Passo constante
- 2. Seção áurea

2 Implementação

Foi utilizada a linguagem de programação Python para elaboração deste trabalho. A implementação consiste de um arquivo com o código principal, um segundo arquivo com os algoritmos dos métodos de otimização com restrição, um terceiro arquivo que encapsula os métodos e a convergência da otimização sem restrição e um quarto arquivo com os algoritmos da busca unidimensional.

2.1 Código Principal

O código principal trata das definições do ponto inicial, função a ser minimizada e as restrições de igualdade e desigualdade. A escolha de quais métodos OCR e OSR serão utilizados e a definição dos parâmetros numéricos também são feitos no código principal. Além disso, o controle de passos da otimização OC e a verificação de convergência.

Os seguintes pacotes foram utilizados na implementação do código principal, já inclusos os arquivos .py com as implementações dos métodos OSR, busca unidimensional e métodos OCR.

```
import numpy as np
import matplotlib.pyplot as plt
import osr_methods as osr
import line_search_methods as lsm
import ocr_methods as ocr
```

Definição do ponto inicial, que irá variar em cada teste realizado com diferentes funções e método OCR.

```
x = np.array([3., 2.])
```

Escolha dos métodos de OCR e OSR.

```
# Metodos OCR
# 1 - Penalidade
# 2 - Barreira
metodo_ocr = 1
if (metodo_ocr == 1):
    n_met_ocr = "Penalidade"
elif (metodo_ocr == 2):
   n_met_ocr = "Barreira"
# Metodos OSR
# 1 - Univariante
# 2 - Powell
# 3 - Stepest Descent
# 4 - Newton-Raphson
# 5 - Fletcher-Reeves
# 6 - BFGS
metodo_osr = 4
if (metodo_osr == 1):
   n_met = 'Univariante'
elif (metodo_osr == 2):
    n_met = 'Powell'
elif (metodo_osr == 3):
   n_met = 'Steepest Descent'
elif (metodo_osr == 4):
   n_met = 'Newton-Raphson'
elif (metodo_osr == 5):
    n_met = 'Fletcher-Reeves'
elif (metodo_osr == 6):
   n_met = 'BFGS'
```

Controle numérico

```
# numero maximo de iteracoes na OSR
maxiter = 1000
# tolerancia para convergencia do gradiente na OSR
tol_conv = 1E-6
# tolerancia para a busca unidirecional na OSR
tol_search = 1E-7
# delta alpha do passo constante na OSR
line_step = 1E-2
#epsilon da maquina
eps = 1E-10
#parametros ocr
if metodo_ocr == 1:
   #penalidade
   r = 1
   beta = 10
elif metodo_ocr == 2:
   #barreira
    r = 10
   beta = 0.1
#tolerancia OCR
```

```
tol = 1E-6
ctrl_num_osr = [maxiter, tol_conv, tol_search, line_step, eps]
```

Definição de $f(\overrightarrow{x})$, $\overrightarrow{\nabla} f(\overrightarrow{x})$ e $\mathbf{H}(\overrightarrow{x})$. As reticências no código abaixo serão substituiídas pelos valores adequados a cada função.

```
def f(x):
    return ...

def grad_f(x):
    return ...

def hess_f(x):
    hess = np.zeros((2,2), dtype=float)
    hess[0,:] = ...
    hess[1,:] = ...
    return hess
```

Definição das restrições $c_l(\overrightarrow{x})$, $\overrightarrow{\nabla}c_l(\overrightarrow{x})$, $h_k(\overrightarrow{x})$, $\overrightarrow{\nabla}h_k(\overrightarrow{x})$, $\mathbf{W}_{c_l}(\overrightarrow{x})$ e $\mathbf{W}_{h_k}(\overrightarrow{x})$, sendo W a hessiana da restrição. As reticências no código abaixo serão substituídas pelos valores adequados a cada função. Podem ser definidas quantas restrições forem desejadas, apesar do exemplo abaixo estar com apenas uma de desigualdade e uma de igualdade.

```
def h1(x):
 return ...
def grad_h1(x):
 return ...
def hess_h1(x):
 hess = np.zeros((2,2), dtype=float)
  hess[0,:] = \dots
 hess[1,:] = ...
  return hess
def c1(x):
 return ...
def grad_c1(x):
  return ...
def hess_c1(x):
 hess = np.zeros((2,2), dtype=float)
  hess[0,:] = ...
  hess[1,:] = ...
  return hess
```

Agrupamento das restrições em listas (ou arrays) para servirem de input para o restante do programa. E montagem de um array auxiliar para montagem da função ϕ no caso do método OCR de penalidade.

Verificação de convergência.

- 1. Penalidade : $\frac{1}{2}r_p^kp(\overrightarrow{x}^{k+1}) < tol,$ sendo $p(\overrightarrow{x}) = \sum_{k=1}^m h_k^2(\overrightarrow{x}) + \sum_{l=1}^p \{max[0,c_l(\overrightarrow{x})]\}^2$
- 2. Barreira: $r_b^k b(\overrightarrow{x}^{k+1}) < tol$, sendo $b = \sum_{l=1}^p -\frac{1}{c_l(\overrightarrow{x}^l)}$

A cada iteração do loop no código abaixo, o valor de r é atualizado pelo fator β , e os parâmetros necessários para montagem da função ϕ pelos métodos da penalidade e da barreira também são atualizados. Após cada atualização e verificação de convergência, a otimização sem restrição é chamada, e esse processo é repetido até que seja atingido o critério de convergência da otimização com restrição.

Para o método da barreira também é feita uma avaliação se o ponto final da iteração continua dentro das restrições. Caso negativo, o passo é refeito com um passo reduzido no método do passo constante da busca unidimensional.

```
if metodo_ocr == 1:
  parc = (1/2)*r*ocr.p_penal(x, params)
elif metodo_ocr == 2:
 parc = r*ocr.b_bar(x, params)
listP_OCR = []
listP_OCR.append(x)
listResultsOSR = []
passos_OCR = 0
redo = 0
print(n_met)
while(parc > tol):
  passos_OCR = passos_OCR + 1
  if passos_OCR > 1:
     r = beta*r
      if metodo_ocr == 1:
          params[-1] = []
          for c in c_list:
              if c(x) > 0:
                  params[-1].append(1)
                  params[-1].append(0)
 listP_OSR, passos_OSR, conv_OSR, flag_conv_OSR, tempoExec_OSR = osr.osr_ctrl(x, params, r,
                                                     ctrl_num_osr, metodo_ocr, metodo_osr)
  if metodo_ocr == 2:
     redo = 0
      for c in c list:
          if c(listP_OSR[-1]) > 0:
              redo = 1
              break
  if (redo == 0):
      ctrl_num_osr[3] = line_step
      x = listP_OSR[-1]
      listP_OCR.append(x)
      listResultsOSR.append([listP_OSR, params, r, metodo_ocr, metodo_osr])
      if metodo_ocr == 1:
          parc = (1/2)*r*ocr.p_penal(x, params)
      elif metodo_ocr == 2:
          parc = r*ocr.b_bar(x, params)
            \texttt{print}(f'\{passos\_OCR\}: x=\{x\}, r=\{r:.4e\}, passos=\{passos\_OSR\}, conv\_OCR=\{parc:.4e\}, 
                                                        conv_OSR = \{conv_OSR : .4e\}, tempo = \{
                                                        tempoExec_OSR}')
  elif (redo == 1):
      print(f'Refazendo passo {passos_OCR} com delta alpha = {0.1*ctrl_num_osr[3]}')
      passos_OCR = passos_OCR - 1
      r = r/beta
      ctrl_num_osr[3] = 0.1*ctrl_num_osr[3]
```

2.2 Métodos OCR

Os algoritmos referentes ao uso dos métdos OCR da penalidade e da barreira foram implementados em um arquivo denominado ocr_methods.py.

O seguinte pacote é necessário nesse arquivo:

```
import numpy as np
```

2.2.1 Método de Penalidade

Pseudo-Função Objetivo:

$$\phi(\overrightarrow{x},r_p) = f(\overrightarrow{x}) + \tfrac{1}{2}r_p \sum_{k=1}^m h_k^2(\overrightarrow{x}) + \tfrac{1}{2}r_p \sum_{l=1}^p \{max[0,c_l(\overrightarrow{x})]\}^2$$

Cálculo do gradiente:

Sendo
$$p(\overrightarrow{x}) = \sum_{k=1}^{m} h_k^2(\overrightarrow{x}) + \sum_{l=1}^{p} \{max[0, c_l(\overrightarrow{x})]\}^2$$
, temos então que $\overrightarrow{\nabla} \phi(\overrightarrow{x}, r_p) = \overrightarrow{\nabla} f(\overrightarrow{x}) + \frac{1}{2} r_p \overrightarrow{\nabla} p(\overrightarrow{x})$.

$$\overrightarrow{\nabla}p(\overrightarrow{x}) = 2\sum_{k=1}^{m} \{h_k(\overrightarrow{x})\overrightarrow{\nabla}h_k(\overrightarrow{x})\} + 2\sum_{l=1}^{p} \{c_l^f(\overrightarrow{x})c_l(\overrightarrow{x})\overrightarrow{\nabla}c_l(\overrightarrow{x})\}, \text{ sendo } c_l^f(\overrightarrow{x}) = \begin{cases} 1, & \text{se } c_l(\overrightarrow{x}) > 0 \\ 0, & \text{se } c_l(\overrightarrow{x}) \leq 0 \end{cases}$$

Cálculo da Hessiana:

$$H_{\phi}(\overrightarrow{x}) = H_{f}(\overrightarrow{x}) + \frac{1}{2}r_{p}H_{p}(\overrightarrow{x})$$

$$H_{p_{i \times j}} = \frac{\partial^2 p}{\partial x_i \partial x_j} = 2 \sum_{k=1}^m \{\frac{\partial h_k}{\partial x_j} \frac{\partial h_k}{\partial x_i}\} + 2 \sum_{k=1}^m \{h_k \frac{\partial^2 h_k}{\partial x_j \partial x_i}\} + 2 \sum_{l=1}^p \{c_l^f \frac{\partial c_l}{\partial x_j} \frac{\partial c_l}{\partial x_i}\} + 2 \sum_{l=1}^p \{c_l^f c_l \frac{\partial^2 c_l}{\partial x_j \partial x_i}\}$$

Interessante notar que $\frac{\partial c_l}{\partial x_j}$, $\frac{\partial c_l}{\partial x_i}$, $\frac{\partial h_k}{\partial x_j}$ e $\frac{\partial h_k}{\partial x_i}$ são componentes conhecidos de $\overrightarrow{\nabla} h_k$ e $\overrightarrow{\nabla} c_l$. Além disso, $\frac{\partial^2 c_l}{\partial x_j \partial x_i}$ e $\frac{\partial^2 h_k}{\partial x_j \partial x_i}$ são termos das hessianas das restrições e que também são conhecidos. Dessa forma, temos todos os inputs necessários para cálculo da hessiana de $p(\overrightarrow{x})$ e por conseguinte a hessiana de $\phi(\overrightarrow{x}, r)$.

```
#Metodo da Penalidade
def p_penal(x, params):
    #leitura dos parametros
    h_list = params[3]
    c_list = params[6]
    c_mont = params[9]
    for h in h_list:
        p = p + (h(x)) **2
    for i in np.arange(len(c_list)):
        p = p + c_mont[i]*c_list[i](x)**2
    return p
def phi_penal(x, params, r):
    #leitura dos parametros
    f = params[0]
    h_list = params[3]
    c_list = params[6]
c_mont = params[9]
    for h in h_list:
        p = p + (h(x))**2
    for i in np.arange(len(c_list)):
        p = p + c_mont[i]*c_list[i](x)**2
    return f(x) + (1/2)*r*p
def grad_phi_penal(x, params, r):
    #leitura dos parametros
    grad_f = params[1]
    h_list = params[3]
    grad_h_list = params[4]
    c_list = params[6]
    grad_c_list = params[7]
    c_mont = params[9]
    dimens = x.size
```

```
grad_p = np.zeros(dimens, dtype=float)
    for i in np.arange(len(h_list)):
        grad_p = grad_p + 2*h_list[i](x)*grad_h_list[i](x)
    for j in np.arange(len(c_list)):
        grad_p = grad_p + 2*c_mont[j]*c_list[j](x)*grad_c_list[j](x)
    return grad_f(x) + (1/2)*r*grad_p
def hess_phi_penal(x, params, r):
    #leitura dos parametros
    hess_f = params[2]
    h_list = params[3]
    grad_h_list = params[4]
    hess_h_list = params[5]
    c_list = params[6]
    grad_c_list = params[7]
    hess_c_list = params[8]
    c_mont = params[9]
    dimens = x.size
    hessian_p = np.zeros((dimens, dimens), dtype=float)
    for i in np.arange(dimens):
        for j in np.arange(dimens):
             for k in np.arange(len(grad_h_list)):
                 \label{eq:hessian_p[i,j] = hessian_p[i,j] + 2*grad_h_list[k](x)[i]*grad_h_list[k](x)[j]} \\
             for 1 in np.arange(len(grad_cl_list)):
                 hessian_p[i,j] = hessian_p[i,j] + 2*c_mont[1]*grad_c_list[1](x)[j]*
    for k in np.arange(len(h_list)):
        hessian_p = hessian_p + 2*h_list[k](x)*hess_h_list[k](x)
    for k in np.arange(len(c_list)):
        \label{eq:hessian_p + 2*c_mont[k]*c_list[k](x)*hess_c_list[k](x)} \\ \text{hessian_p + 2*c_mont[k]*c_list[k](x)*hess_c_list[k](x)} \\
    return hess_f(x) + (1/2)*r*hessian_p
```

2.2.2 Método de Barreira

Pseudo-Função Objetivo:

$$\phi(\overrightarrow{x}, r_b) = f(\overrightarrow{x}) + r_b \sum_{l=1}^{m} -\frac{1}{c_l(\overrightarrow{x})}$$

Cálculo do gradiente:

Sendo
$$b(\overrightarrow{x}) = \sum_{l=1}^{m} -\frac{1}{c_l(\overrightarrow{x})}$$
, temos então que $\overrightarrow{\nabla}\phi(\overrightarrow{x}, r_b) = \overrightarrow{\nabla}f(\overrightarrow{x}) + r_b\overrightarrow{\nabla}b(\overrightarrow{x})$.

$$\overrightarrow{\nabla} b = \sum_{l=1}^m \frac{\overrightarrow{\nabla} c_l}{c_l^2}$$

Cálculo da Hessiana:

$$\begin{split} H_{\phi}(\overrightarrow{x}) &= H_{f}(\overrightarrow{x}) + r_{b}H_{b}(\overrightarrow{x}) \\ H_{b_{i\times j}} &= -2\sum_{l=1}^{m} \left\{ \frac{1}{c_{l}^{3}} \frac{\partial c_{l}}{\partial x_{i}} \frac{\partial c_{l}}{\partial x_{j}} \right\} + \sum_{l=1}^{m} \left\{ \frac{1}{c_{l}^{2}} \frac{\partial^{2} c_{l}}{\partial x_{i} \partial x_{j}} \right\} \end{split}$$

 $\frac{\partial c_l}{\partial x_j}$ e $\frac{\partial c_l}{\partial x_i}$ são componentes conhecidos de $\overrightarrow{\nabla} c_l$. Além disso, $\frac{\partial^2 c_l}{\partial x_j \partial x_i}$ são termos da hessiana das restrições e que também são conhecidos. Dessa forma, temos todos os inputs necessários para cálculo da hessiana de $b(\overrightarrow{x})$ e por conseguinte a hessiana de $\phi(\overrightarrow{x}, r)$.

```
#### Metodo da Barreira
def phi_bar(x, params, r):
    #leitura dos parametros
    f = params[0]
    c_list = params[6]

b = 0
    for c in c_list:
```

```
b = b - 1/cl(x)
    return f(x) + r*b
def b_bar(x, params):
    #leitura dos parametros
    c_list = params[6]
    b = 0
    for c in c_list:
        b = b - 1/c(x)
    return b
def grad_phi_bar(x, params, r):
    #leitura dos parametros
    grad_f = params[1]
    c_list = params[6]
    grad_c_list = params[7]
    dimens = x.size
    grad_b = np.zeros(dimens, dtype=float)
    for i in np.arange(len(c_list)):
        grad_b = grad_b + (c_list[i](x))**(-2)*grad_c_list[i](x)
    return grad_f(x) + r*grad_b
def hess_phi_bar(x, params, r):
    #leitura dos parametros
    hess_f = params[2]
    c_list = params[6]
    grad_c_list = params[7]
    hess_c_list = params[8]
    dimens = x.size
    hessian_b = np.zeros((dimens, dimens), dtype=float)
    for i in np.arange(dimens):
        for j in np.arange(dimens):
            for k in np.arange(len(c_list)):
                \label{eq:hessian_b[i,j]} \text{hessian_b[i,j]} - 2*((c_list[k](x))**(-3))*grad_c_list[k](x)
                                                                  [i]*grad_c_list[k](x)[j]
    for k in np.arange(len(cl_list)):
        hessian_b = hessian_b + ((c_list[k](x))**(-2))*hess_c_list[k](x)
    return hess_f(x) + r*hessian_b
```

2.3 Métodos e Otimização OSR

Os algoritmos de otimização sem restrição, Univariante, Powell, Steepest Descent, Newton-Raphson, Flecther-Reeves e BFGS foram implementados em um arquivo denominado osr_methods.py. Uma função chamada osr_ctrl também está presente nesse arquivo e faz a interface entre o código principal e os métodos de OSR. O código principal chama essa função a cada iteração OCR, e ela por sua vez faz todo o tratamento da OSR, chamando as funções ϕ do módulo OCR apresentado na seção anterior E retornando os resultados para o código principal. Esses códigos foram discutidos com mais detalhes no trabalho 1.

```
import numpy as np
import osr_methods as osr
import line_search_methods as lsm
import ocr_methods as ocr
from timeit import default_timer as timer

def univariante(passo, dimens):
    #indice do vetor = (resto da divisao do passo pela dimensao) - 1
    #primeira posicao do vetor no python tem indice 0
    indice = passo%dimens - 1

if (indice == -1):
    #indice = -1 indica que se trata da ultima posicao do array
    #no pyton esse indice eh o tamanho do vetor - 1
    indice = dimens - 1
```

```
#define a direcao canonica a ser utilizada
    ek = np.zeros(dimens)
    ek[indice] = 1
    return ek
def powell(P, P0, direcoes, passos, ciclos, dimens):
    #indice do vetor = (resto da divisao do passo pela dimensao) - 1
    #primeira posicao do vetor no python tem indice 0
    indice = passos%(dimens + 1) - 1
    if (indice == -1):
        #indice = -1 indica que se trata da ultima posicao do array
        \#no pyton esse indice eh o tamanho do vetor - 1
        #direcao n + 1 do ciclo = Patual - PO
        dir = P - P0
        direcoes[dimens - 1] = dir
    elif (indice == 0):
        #indice = 0 significa que vamos usar a primeira direcao do conjunto
        #representa o inicio de um novo ciclo
        ciclos = ciclos + 1
        if (ciclos%(dimens+2) == 0):
            #se ciclo for multipl de dimens + 2, conjunto de direcoes = canonicas
            direcoes = np.eye(dimens, dtype=float)
        P0 = P.copy()
        dir = direcoes[indice].copy()
        dir = direcoes[indice].copy()
        direcoes[indice-1] = dir
    return dir, direcoes, PO, ciclos
def newtonRaphson(grad_P, hessian_f):
    return -np.linalg.inv(hessian_f).dot(grad_P)
def steepestDescent(grad):
   return -grad
def fletcherReeves(dir_last, grad, grad_last, passo):
    if passo == 1:
        grad_last = grad.copy()
        return -grad, grad_last
    else:
        beta = (np.linalg.norm(grad)/np.linalg.norm(grad_last))**2
        grad_last = grad.copy()
        return -grad + beta*dir_last, grad_last
def bfgs(P, P_last, grad, grad_last, S_last, passo, dimens):
    if (passo == 1):
       dir = -S_last.dot(grad)
    else:
        delta_x_k = P - P_last
        delta_g_k = grad - grad_last
        #para o numpy, vetor 1-D linha e vetor coluna sao a mesma coisa (nao e necessrio
                                                         transpor)
        #matrizes
        A = np.outer(delta_x_k, np.transpose(delta_x_k))
        B = S_last.dot(np.outer(delta_g_k, np.transpose(delta_x_k)))
        C = np.outer(delta_x_k, np.transpose(S_last.dot(delta_g_k)))
        #Escalares
        d = np.transpose(delta_x_k).dot(delta_g_k)
        e = np.transpose(delta_g_k).dot(S_last.dot(delta_g_k))
        S = S_{last} + (d + e)*A/(d**2) - (B + C)/d
        dir = -S.dot(grad)
S_last = S.copy()
    P_last = P
    grad_last = grad
    return dir, P_last, grad_last, S_last
def osr_ctrl(PO, params, r, ctrl_num, metodo_ocr, metodo_osr):
    #controle numerico
```

```
maxiter = ctrl_num[0]
tol_conv = ctrl_num[1]
tol_search = ctrl_num[2]
line_step = ctrl_num[3]
eps = ctrl_num[4]
metodo = metodo_osr
#inicializacoes auxiliares dos metodos de OSR
passos = 0
dimens = PO.size
Pmin = PO.copy()
listPmin = []
listPmin.append(Pmin)
if metodo_ocr == 1:
   grad = ocr.grad_phi_penal(Pmin, params, r)
elif metodo_ocr == 2:
    grad = ocr.grad_phi_bar(Pmin, params, r)
norm_grad = np.linalg.norm(grad)
flag_conv = True
if (metodo == 2):
    direcoes = np.eye(dimens, dtype=float)
    ciclos = 0
    P1 = P0.copy()
elif (metodo == 5):
    #o metodo recebe a direcao anterior
    #inicializo a direcao com um vetor de zeros mas que nunca e usado
    #uso apenas para enviar como parametro na primeira iteracao do metodo, o qual
                                                    atualiza o valor de dir para a
                                                    iteracao seguinte
    dir = np.zeros((1, dimens))
    grad_last = grad.copy()
elif(metodo == 6):
    S_last = np.eye(dimens)
    grad_last = grad.copy()
    P_last = P0.copy()
#calculo do Pmin
start = timer()
while (norm_grad > tol_conv):
    if (passos == maxiter):
        flag_conv = False
        break
    passos = passos + 1
    if (metodo == 1):
        dir = osr.univariante(passos, dimens)
    elif (metodo == 2):
        dir, direcoes, P1, ciclos = osr.powell(Pmin, P1, direcoes, passos, ciclos, dimens
    elif (metodo == 3):
        dir = osr.steepestDescent(grad)
    elif (metodo == 4):
        if metodo_ocr == 1:
            hess = ocr.hess_phi_penal(Pmin, params, r)
        elif metodo_ocr == 2:
            hess = ocr.hess_phi_bar(Pmin, params,r)
        dir = osr.newtonRaphson(grad, hess)
    elif (metodo == 5):
        dir, grad_last = osr.fletcherReeves(dir, grad, grad_last, passos)
    elif (metodo == 6):
        dir, P_last, grad_last, S_last = osr.bfgs(Pmin, P_last, grad, grad_last, S_last,
                                                         passos, dimens)
    dir = dir/np.linalg.norm(dir)
    intervalo = lsm.passo_cte(dir, Pmin, params, r, metodo_ocr, eps, line_step)
    alpha = lsm.secao_aurea(intervalo, dir, Pmin, params, r, metodo_ocr, tol_search)
    Pmin = Pmin + alpha*dir
    listPmin.append(Pmin)
    if metodo_ocr == 1:
        grad = ocr.grad_phi_penal(Pmin, params, r)
    elif metodo_ocr == 2:
        grad = ocr.grad_phi_bar(Pmin, params, r)
```

```
norm_grad = np.linalg.norm(grad)
end = timer()
tempoExec = end - start
return listPmin, passos, norm_grad, flag_conv, tempoExec
```

2.4 Busca Unidirectional

Os algoritmos dos métodos do Passo Constante e da Seção Áurea foram implementados em um arquivo denominado line_search_methods.py. Códigos discutidos no trabalho 1. Pequena adaptação realizada para trabalhar com as funções ϕ dos métodos OCR.

```
import ocr_methods as ocr
import numpy as np
def passo_cte(direcao, PO, params, r, metodo_ocr, eps = 1E-8, step = 0.01):
    #line search pelo metodo do passo constante
    #define o sentido correto de busca
    if metodo_ocr == 1:
        f1 = ocr.phi_penal(P0 - eps*(direcao/np.linalg.norm(direcao)), params, r)
       f2 = ocr.phi_penal(P0 + eps*(direcao/np.linalg.norm(direcao)), params, r)
    elif metodo ocr == 2:
        f1 = ocr.phi_bar(P0 - eps*(direcao/np.linalg.norm(direcao)), params, r)
        f2 = ocr.phi_bar(P0 + eps*(direcao/np.linalg.norm(direcao)), params, r)
    if (f1 > f2):
        sentido_busca = direcao.copy()
        flag = 0
        sentido_busca = -direcao.copy()
        flag = 1
   P = P0.copy()
   P_next = P + step*sentido_busca
    alpha = 0
    if metodo_ocr == 1:
        f1 = ocr.phi_penal(P, params, r)
        f2 = ocr.phi_penal(P_next, params, r)
    elif metodo_ocr == 2:
        f1 = ocr.phi_bar(P, params, r)
        f2 = ocr.phi_bar(P_next, params, r)
    while (f1 > f2):
        alpha = alpha + step
        P = PO + alpha*sentido_busca
        P_next = P0 + (alpha+step)*sentido_busca
        if metodo_ocr == 1:
            f1 = ocr.phi_penal(P, params, r)
            f2 = ocr.phi_penal(P_next, params, r)
            f_eps = ocr.phi_penal(P - eps*(sentido_busca/np.linalg.norm(sentido_busca)),
        elif metodo_ocr == 2:
            f1 = ocr.phi_bar(P, params, r)
            f2 = ocr.phi_bar(P_next, params, r)
            f_eps = ocr.phi_bar(P - eps*(sentido_busca/np.linalg.norm(sentido_busca)),
                                                            params, r)
        if (f_eps < f1):</pre>
            alpha = alpha - step
    intervalo = np.array([alpha, alpha + step])
    if(flag == 1):
        intervalo = -intervalo
    #retorna o intervalo de busca = [alpha min, alpha min + step]
    return intervalo
def secao_aurea(intervalo, direcao, PO, params, r, metodo_ocr, tol=0.00001):
```

```
#line search pelo metodo da secao aurea
#verifica o sentido da busca
if(intervalo[1] < 0):</pre>
    intervalo = -intervalo
    sentido_busca = -direcao.copy()
   flag = 1
else:
    sentido_busca = direcao.copy()
    flag = 0
#atribui os limites superior e inferior da busca a variaveis internas do metodo
alpha_upper = intervalo[1]
alpha_lower = intervalo[0]
beta = alpha_upper - alpha_lower
#razao aurea
Ra = (np.sqrt(5)-1)/2
# define os pontos de analise de f com base na razao aurea
alpha_e = alpha_lower + (1-Ra)*beta
alpha_d = alpha_lower + Ra*beta
#primeira iteracao avalia f nos 2 pontos selecionados pela razao aurea
if metodo_ocr == 1:
   f1 = ocr.phi_penal(P0 + alpha_e*sentido_busca, params, r)
    f2 = ocr.phi_penal(P0 + alpha_d*sentido_busca, params, r)
elif metodo_ocr == 2:
   f1 = ocr.phi_bar(P0 + alpha_e*sentido_busca, params, r)
    f2 = ocr.phi_bar(P0 + alpha_d*sentido_busca, params, r)
#loop enquanto a convergencia nao for obtida
while (beta > tol):
    if (f1 > f2):
        #caso positivo, define novo intervalo variando de alpha_e ate alpha_upper
        # e aproveita os valores anteriores de alpha_d e f2 como novos alpha_e e f1
        alpha_lower = alpha_e
        f1 = f2
        alpha_e = alpha_d
        #calcula novo alpha_d e f2=f(alpha_d)
        beta = alpha_upper - alpha_lower
        alpha_d = alpha_lower + Ra*beta
        if metodo_ocr == 1:
            f2 = ocr.phi_penal(P0 + alpha_d*sentido_busca, params, r)
        elif metodo_ocr == 2:
            f2 = ocr.phi_bar(P0 + alpha_d*sentido_busca, params, r)
    else:
        #caso negativo, define novo intervalo variando de alpha_lower ate alpha_d
        # e aproveita os valores anteriores de alpha_e e f1 como novos alpha_d e f2
        alpha_upper = alpha_d
        f2 = f1
        alpha_d = alpha_e
        #calcula novo alpha_e e f1=f(alpha_e)
        beta = alpha_upper - alpha_lower
        alpha_e = alpha_lower + (1-Ra)*beta
        if metodo_ocr == 1:
            f1 = ocr.phi_penal(P0 + alpha_e*sentido_busca, params, r)
        elif metodo_ocr == 2:
            f1 = ocr.phi_bar(P0 + alpha_e*sentido_busca, params, r)
# calcula Pmin e alpha min apos convergencia
alpha_med = (alpha_lower + alpha_upper)/2
alpha_min = alpha_med
if (flag == 1):
    alpha_min = -alpha_min
return alpha_min
```

3 Teste da Implementação

3.1 Problema 1

$$\begin{cases} \mathbf{Min} & f(x_1, x_2) = (x_1 - 2)^4 + (x_1 - 2x_2)^2 \\ \mathbf{s.t.:} & x_1^2 - x_2 \le 0 \end{cases}$$

Obs.: Adotar $r_p^0 = 1$, $\beta = 10$ e $x^0 = \{3,2\}$ para o método de penalidade e $r_b^0 = 10$, $\beta = 0.1$ e $x^0 = \{0,1\}$ para o método de barreira.

$$\overrightarrow{\nabla} f(\overrightarrow{x}) = \{4(x_1 - 2)^3 + 2(x_1 - 2x_2), -4(x_1 - 2x_2)\}$$

$$H_{f_{1\times 1}} = 12(x_1 - 2)^2 + 2, \qquad H_{f_{1\times 2}} = -4, \qquad H_{f_{2\times 1}} = -4, \qquad H_{f_{2\times 2}} = 8$$

Definição da função, seu gradiente e sua hessiana, no código principal:

```
def f(x):
    return (x[0]-2)**4 + (x[0] - 2*x[1])**2

def grad_f(x):
    return np.array([4*(x[0]-2)**3 + 2*(x[0] - 2*x[1]), 2*(x[0] - 2*x[1])*(-2)])

def hess_f(x):
    hess = np.zeros((2,2), dtype=float)
    hess[0,:] = np.array([12*(x[0]-2)**2 + 2, -4.])
    hess[1,:] = np.array([-4., 8.])
    return hess
```

$$\begin{split} c(\overrightarrow{x}) &= x_1^2 - x_2 \\ \overrightarrow{\nabla} c(\overrightarrow{x}) &= \{2x_1, -1\} \\ H_{c_{1\mathbf{x}1}} &= 2, \qquad H_{c_{1\mathbf{x}2}} = 0, \qquad H_{c_{2\mathbf{x}1}} = 0, \qquad H_{c_{2\mathbf{x}2}} = 0 \end{split}$$

Definição da restrição, seu gradiente e sua hessiana, no código principal:

```
def c1(x):
    return x[0]**2 - x[1]

def grad_c1(x):
    return np.array([2*x[0], -1.])

def hess_c1(x):
    hess = np.zeros((2,2), dtype=float)
    hess[0,:] = np.array([2., 0.])
    hess[1,:] = np.array([0., 0])
    return hess
```

3.1.1 Penalidade - Prob. 1

Definição do ponto inicial $x^0 = \{3, 2\}$ no código principal :

```
x = np.array([3., 2.])
```

Controle numérico e parâmetros:

- Máximas iterações na OSR: 1000
- $\bullet\,$ Tolerância OSR: 10^{-6}
- $\bullet\,$ Tolerância Seção Áurea: 10^{-7}
- $\Delta \alpha$: 10^{-2}
- ϵ : 10^{-10}
- Tolerância OCR: 10^{-6}
- $r_p^0 = 1$
- $\beta = 10$

Figura 1: Curvas de nível de $f(x_1, x_2)$, restrições e otimização realizada.

Prob. 1 - Penalidade - Univariante

Iter	P_{min}	r	# Passos	Conv_OCR	Conv_OSR	t(s)
1	[1.25174114 0.7304246]	1e+00	27	3.5e-01	9.6e-07	0.028
2	[1.02501305 0.81147611]	1e+01	1000	2.9e-01	3.7e-06	0.230
3	$[0.95576688 \ 0.88122316]$	1e+02	1000	5.2e-02	3.5e-06	0.189
4	$[0.94659013 \ 0.89267782]$	1e+03	1000	5.6e-03	1.6e-03	0.214
5	$[0.94526659 \ 0.89319248]$	1e+04	1000	5.7e-04	1.5e-02	0.190
6	$[0.94513054 \ 0.89323808]$	1e+05	1000	5.7e-05	1.5e-02	0.195
7	$[0.94511456 \ 0.89323814]$	1e+06	1000	5.7e-06	3.3e-02	0.180
8	[0.94511298 0.8932382]	1e+07	1000	6.2e-07	3.0e-01	0.228

Tabela 1: Resultados obtidos para o problema 1, método de penalidade, univariante para $x^0 = \{3, 2\}$

Figura 2: Exemplo com 2 primeiros passos da OCR com método OSR Univariante.

Prob. 1 - Penalidade - Powell

Iter	P_{min}	r	# Passos	Conv_OCR	$\mathbf{Conv}_{-}\mathbf{OSR}$	t(s)
1	[1.25174105 0.73042442]	1e+00	6	3.5e-01	2.2e-07	0.027
2	$[1.02501313 \ 0.81147619]$	1e+01	7	2.9e-01	9.1e-07	0.005
3	$[0.95576689 \ 0.88122318]$	1e+02	53	5.2e-02	5.1e-07	0.023
4	$[0.94663397 \ 0.89276033]$	1e+03	38	5.6e-03	4.8e-07	0.013
5	$[0.94568845 \ 0.89398972]$	1e+04	30	5.7e-04	2.8e-07	0.009
6	$[0.94559354 \ 0.89411344]$	1e+05	78	5.7e-05	3.0e-08	0.019
7	$[0.94558401 \ 0.89412573]$	1e+06	1000	5.8e-06	5.2e-02	0.264
8	$[0.94558315 \ 0.89412714]$	1e+07	1000	5.9e-07	1.4e-01	0.217

Tabela 2: Resultados obtidos para o problema 1, método de penalidade, powell para $x^0 = \{3,2\}$

 ${\bf Figura~3:}~{\bf Exemplo~com~2~primeiros~passos~da~OCR~com~m\'etodo~OSR~Powell.$

Prob. 1 - Penalidade - Steepest Descent

	1105. 1 - 1 chandade - Steepest Descent											
Iter	P_{min}	r	# Passos	Conv_OCR	Conv_OSR	t(s)						
1	[1.2517411 0.73042453]	1e+00	25	3.5e-01	6.2e-07	0.025						
2	[1.02501316 0.81147628]	1e+01	1000	2.9e-01	1.6e-06	0.254						
3	$[0.9557669 \ 0.88122324]$	1e+02	1000	5.2e-02	1.2e-05	0.248						
4	$[0.94663395 \ 0.89276024]$	1e+03	1000	5.6e-03	1.1e-04	0.210						
5	$[0.94568838 \ 0.89398961]$	1e+04	1000	5.7e-04	1.3e-04	0.250						
6	$[0.94556416 \ 0.89405783]$	1e+05	1000	5.7e-05	1.1e-02	0.203						
7	$[0.94555192 \ 0.89406498]$	1e+06	1000	6.0e-06	1.8e-01	0.239						
8	[0.94555068 0.89406568]	1e+07	1000	8.9e-07	1.8e+00	0.212						

Tabela 3: Resultados obtidos para o problema 1, método de penalidade, steepest descent para $x^0 = \{3, 2\}$

Figura 4: Exemplo com 2 primeiros passos da OCR com método OSR Steepest Descent.

Prob. 1 - Penalidade - Newton-Raphson

Iter	P_{min}	r	# Passos	Conv_OCR	Conv_OSR	t(s)
1	$[1.25174109 \ 0.73042445]$	1e+00	3	3.5e-01	2.7e-07	0.035
2	$[1.02501318 \ 0.81147627]$	1e+01	4	2.9e-01	8.9e-08	0.009
3	$[0.95576692 \ 0.88122322]$	1e+02	4	5.2e-02	1.0e-07	0.008
4	$[0.94663397 \ 0.89276032]$	1e+03	1000	5.6e-03	4.6e-06	0.668
5	$[0.94568841 \ 0.89398971]$	1e+04	1000	5.7e-04	1.3e-03	0.422
6	$[0.94559354 \ 0.89411344]$	1e+05	1000	5.7e-05	5.1e-04	0.502
7	$[0.94558405 \ 0.89412582]$	1e+06	1000	5.7e-06	2.0e-04	0.526
8	$[0.9455831 \ 0.89412707]$	1e+07	1000	5.7e-07	4.2e-03	0.401

Tabela 4: Resultados obtidos para o problema 1, método de penalidade, Newton-Raphson para $x^0 = \{3, 2\}$

Figura 5: Exemplo com 2 primeiros passos da OCR com método OSR Newton-Raphson.

Prob. 1 - Penalidade - Fletcher-Reeves

Iter	P_{min}	r	# Passos	Conv_OCR	$Conv_OSR$	t(s)
1	$[1.24978283 \ 0.72770155]$	1e+00	1000	3.5e-01	1.9e-02	0.338
2	[1.0247375 0.81081343]	1e+01	1000	2.9e-01	5.2e-03	0.305
3	$[0.95598843 \ 0.88169493]$	1e+02	1000	5.2e-02	1.0e-02	0.253
4	$[0.94673281 \ 0.89294715]$	1e+03	1000	5.6e-03	2.2e-03	0.292
5	$[0.94569677 \ 0.89400545]$	1e+04	1000	5.7e-04	2.9e-04	0.259
6	$[0.94557152 \ 0.89407169]$	1e+05	1000	5.7e-05	2.0e-02	0.250
7	[0.94555891 0.89407834]	1e+06	1000	5.5e-06	1.4e-01	0.235
8	$[0.94555764 \ 0.89407898]$	1e+07	1000	3.7e-07	1.4e+00	0.244

Tabela 5: Resultados obtidos para o problema 1, método de penalidade, Flecther-Reeves para $x^0 = \{3, 2\}$

 ${\bf Figura~6:~Exemplo~com~2~primeiros~passos~da~OCR~com~m\'etodo~OSR~Fletcher-Reeves}$

Prob. 1 - Penalidade - BFGS

	1100V I Tomanado DI Go											
Iter	P_{min}	r	# Passos	Conv_OCR	Conv_OSR	t(s)						
1	[1.25174106 0.73042443]	1e+00	6	3.5e-01	4.5e-08	0.021						
2	[1.02501318 0.81147628]	1e+01	4	2.9e-01	5.3e-08	0.003						
3	$[0.95576696 \ 0.88122325]$	1e+02	1000	5.2e-02	8.7e-06	0.278						
4	$[0.94663396 \ 0.89276031]$	1e+03	4	5.6e-03	6.6e-07	0.001						
5	[0.94568843 0.8939897]	1e+04	1000	5.7e-04	6.2e-06	0.244						
6	$[0.94559353 \ 0.89411343]$	1e+05	1000	5.7e-05	3.1e-03	0.259						
7	$[0.94558406 \ 0.89412585]$	1e+06	1000	5.7e-06	1.0e-03	0.276						
8	$[0.94558308 \ 0.89412702]$	1e+07	1000	5.7e-07	7.1e-03	0.271						

Tabela 6: Resultados obtidos para o problema 1, método de penalidade, BFGS para $x^0 = \{3,2\}$

Figura 7: Exemplo com 2 primeiros passos da OCR com método OSR BFGS.

3.1.2 Barreira - Prob. 1

Definição do ponto inicial $x^0=\{0,1\}$ no código principal :

```
x = np.array([0., 1.])
```

Controle numérico e parâmetros:

 $\bullet\,$ Máximas iterações na OSR : 1000

 $\bullet\,$ Tolerância OSR: 10^{-6}

• Tolerância Seção Áurea: 10^{-7}

• $\Delta \alpha$: 10^{-2}

• ϵ : 10^{-10}

 $\bullet\,$ Tolerância OCR: 10^{-6}

• $r_b^0 = 10$

• $\beta = 0.1$

Figura 8: Curvas de nível de $f(x_1, x_2)$, restrições e otimização realizada.

Prob. 1 - Barreira - Univariante

Iter	P_{min}	r	$\Delta \alpha$	# Passos	Conv_OCR	Conv_OSR	t(s)
1	$[0.70794442 \ 1.53149922]$	1e+01	1e-02	208	9.7e + 00	9.3e-07	0.051
2	[0.82820088 1.10979838]	1e+00	1e-02	76	2.4e+00	4.2e-07	0.020
3	[0.89886443 0.96384102]	1e-01	1e-02	144	6.4e-01	8.4e-07	0.040
4	$[0.92935334 \ 0.91630707]$	1e-02	1e-02	1000	1.9e-01	5.4e-06	0.357
5	$[0.94027885 \ 0.90115413]$	1e-03	1e-02	1000	5.9e-02	1.2e-05	0.181
6	$[0.94393558 \ 0.89644099]$	1e-04	1e-03	1000	1.8e-02	1.7e-03	0.137
7	$[0.94528564 \ 0.89528469]$	1e-05	1e-03	1000	5.8e-03	8.6e-03	0.135
8	$[0.94574387 \ 0.89497567]$	1e-06	1e-04	1000	1.8e-03	1.2e-02	0.115
9	[0.94589637 0.89489206]	1e-07	1e-04	1000	5.8e-04	1.3e-02	0.102
10	$[0.94593827 \ 0.89485365]$	1e-08	1e-05	1000	1.8e-04	1.5e-02	0.098
11	$[0.94595766 \ 0.89485312]$	1e-09	1e-05	1000	5.8e-05	8.6e-03	0.086
12	$[0.94596395 \ 0.89485321]$	1e-10	1e-06	1000	1.8e-05	7.2e-02	0.065
13	$[0.94596577 \ 0.89485297]$	1e-11	1e-06	1000	5.7e-06	1.6e-01	0.082
14	$[0.94596639 \ 0.89485294]$	1e-12	1e-07	1000	1.9e-06	3.3e-01	0.063
15	[0.94596659 0.89485294]	1e-13	1e-07	1000	6.5e-07	1.8e+00	0.064

Tabela 7: Resultados obtidos para o problema 1, método de barreira, univariante para $x^0 = \{0, 1\}$

Figura 9: Exemplo com 2 primeiros passos da OCR com método OSR Univariante.

Prob. 1 - Barreira - Powell

	2100. 1 Zarona 1 ovon											
\mathbf{Iter}	P_{min}	\mathbf{r}	$\Delta \alpha$	# Passos	Conv_OCR	$Conv_OSR$	$\mathbf{t}(\mathbf{s})$					
1	[0.70794439 1.53149919]	1e+01	1e-02	8	9.7e+00	5.6e-07	0.010					
2	[0.82820086 1.10979833]	1e+00	1e-02	25	2.4e+00	8.4e-07	0.009					
3	[0.89886443 0.963841]	1e-01	1e-02	20	6.4e-01	2.8e-07	0.006					
4	$[0.92935322 \ 0.91630682]$	1e-02	1e-02	9	1.9e-01	9.3e-07	0.002					
5	$[0.94027827 \ 0.90115302]$	1e-03	1e-02	12	5.9e-02	8.0e-07	0.003					
6	[0.9438872 0.8963501]	1e-04	1e-03	44	1.8e-02	4.0e-07	0.013					
7	$[0.9450449 \ 0.89483025]$	1e-05	1e-03	1000	5.8e-03	5.1e-04	0.367					
8	$[0.94541263 \ 0.89434951]$	1e-06	1e-04	54	1.8e-03	5.1e-07	0.007					
9	$[0.94552911 \ 0.89419752]$	1e-07	1e-04	24	5.8e-04	4.1e-07	0.005					
10	[0.94556594 0.89414941]	1e-08	1e-05	393	1.8e-04	4.0e-07	0.065					
11	[0.94557753 0.89413409]	1e-09	1e-05	1000	5.8e-05	4.5e-03	0.154					
12	[0.94558129 0.89412942]	1e-10	1e-06	30	1.8e-05	4.7e-07	0.002					
13	[0.94558246 0.89412794]	1e-11	1e-06	1000	5.7e-06	1.9e-01	0.140					
14	[0.94558283 0.89412746]	1e-12	1e-07	1000	1.8e-06	4.0e-01	0.111					
15	[0.94558288 0.89412715]	1e-13	1e-07	1000	5.7e-07	3.3e-01	0.119					

Tabela 8: Resultados obtidos para o problema 1, método de barreira, Powell para $x^0 = \{0, 1\}$

Figura 10: Exemplo com 2 primeiros passos da OCR com método OSR Powell.

Prob. 1 - Barreira - Steepest Descent

Iter	P_{min}	r	$\Delta \alpha$	# Passos	Conv_OCR	$Conv_OSR$	t(s)
1	[0.70794438 1.53149917]	1e+01	1e-02	52	9.7e+00	4.3e-07	0.033
2	[0.8282009 1.10979841]	1e+00	1e-02	112	2.4e+00	3.5e-07	0.035
3	[0.89886442 0.96384104]	1e-01	1e-02	1000	6.4e-01	6.9e-06	0.219
4	$[0.92935325 \ 0.91630683]$	1e-02	1e-02	1000	1.9e-01	1.5e-05	0.325
5	$[0.94027832 \ 0.90115304]$	1e-03	1e-02	1000	5.9e-02	6.6e-05	0.300
6	[0.94388751 0.89635066]	1e-04	1e-03	1000	1.8e-02	9.5e-05	0.172
7	[0.94504565 0.8948317]	1e-05	1e-03	1000	5.8e-03	3.0e-04	0.145
8	$[0.94549366 \ 0.89450285]$	1e-06	1e-04	1000	1.8e-03	2.3e-03	0.160
9	$[0.94563767 \ 0.89440286]$	1e-07	1e-04	1000	5.8e-04	3.3e-03	0.193
10	[0.94568309 0.89437093]	1e-08	1e-05	1000	1.8e-04	1.2e-02	0.374
11	$[0.94569739 \ 0.89436074]$	1e-09	1e-05	1000	5.8e-05	3.6e-02	0.307
12	$[0.94570181 \ 0.89435729]$	1e-10	1e-06	1000	1.9e-05	1.7e-01	0.150
13	$[0.94570312 \ 0.89435619]$	1e-11	1e-06	1000	5.6e-06	6.0e-01	0.098
14	[0.94570357 0.89435581]	1e-12	1e-07	1000	1.8e-06	3.1e-01	0.062
15	[0.94570374 0.89435569]	1e-13	1e-07	1000	7.8e-07	5.6e + 00	0.063

Tabela 9: Resultados obtidos para o problema 1, método de barreira, Steepest Descent para $x^0 = \{0, 1\}$

Figura 11: Exemplo com 2 primeiros passos da OCR com método OSR Steepest Descent.

Prob. 1 - Barreira - Newton-Raphson

Iter	P_{min}	r	$\Delta \alpha$	# Passos	Conv_OCR	Conv_OSR	t(s)
1	[0.7079444 1.5314992]	1e+01	1e-02	4	9.7e + 00	1.2e-07	0.014
2	[0.8282009 1.10979841]	1e+00	1e-02	6	2.4e+00	1.0e-07	0.011
3	[0.89886444 0.96384105]	1e-01	1e-02	1000	6.4e-01	3.0e-06	0.395
4	$[0.9293532 \ 0.91630686]$	1e-02	1e-02	1000	1.9e-01	2.3e-05	0.344
5	$[0.94027832 \ 0.90115304]$	1e-03	1e-02	1000	5.9e-02	6.9e-05	0.389
6	$[0.94388719 \ 0.89635012]$	1e-04	1e-03	1000	1.8e-02	1.4e-04	0.295
7	$[0.9450449 \ 0.89483025]$	1e-05	1e-03	1000	5.8e-03	4.7e-04	0.327
8	$[0.94541264 \ 0.89434953]$	1e-06	1e-03	23	1.8e-03	5.0e-07	0.004
9	$[0.9455291 \ 0.8941975]$	1e-07	1e-04	1000	5.8e-04	5.7e-05	0.319
10	$[0.94556593 \ 0.89414939]$	1e-08	1e-04	1000	1.8e-04	1.8e-04	0.330
11	$[0.94557761 \ 0.89413424]$	1e-09	1e-05	1000	5.8e-05	2.1e-05	0.241
12	[0.94558128 0.8941294]	1e-10	1e-05	1000	1.8e-05	3.8e-04	0.276
13	$[0.94558246 \ 0.89412791]$	1e-11	1e-06	1000	5.8e-06	1.8e-03	0.192
14	[0.94558281 0.8941274]	1e-12	1e-06	1000	1.8e-06	1.1e-02	0.173
15	$ [0.94558294 \ 0.89412727] $	1e-13	1e-07	1000	5.8e-07	1.5e-03	0.149

Tabela 10: Resultados obtidos para o problema 1, método de barreira, Newton-Raphson para $x^0 = \{0, 1\}$

Figura 12: Exemplo com 2 primeiros passos da OCR com método OSR Newton-Raphson.

Prob. 1 - Barreira - Fletcher-Reeves

\mathbf{Iter}	P_{min}	r	$\Delta \alpha$	# Passos	Conv_OCR	$Conv_OSR$	$\mathbf{t}(\mathbf{s})$				
1	[0.7083677 1.53228399]	1e+01	1e-02	1000	9.7e+00	1.2e-02	0.272				
2	[0.82771558 1.10882661]	1e+00	1e-02	1000	2.4e+00	1.1e-02	0.255				
3	$[0.89923489 \ 0.96456733]$	1e-01	1e-02	1000	6.4e-01	7.5e-03	0.164				
4	[0.92959411 0.9167657]	1e-02	1e-02	1000	1.9e-01	4.3e-03	0.174				
5	$[0.94042115 \ 0.90142408]$	1e-03	1e-02	1000	5.9e-02	2.6e-03	0.192				
6	[0.94385431 0.89628806]	1e-04	1e-03	1000	1.8e-02	6.6e-04	0.157				
7	[0.94502008 0.89478343]	1e-05	1e-03	1000	5.8e-03	6.4e-04	0.199				
8	[0.94541561 0.8943552]	1e-06	1e-04	1000	1.8e-03	1.5e-03	0.132				
9	$[0.94556948 \ 0.89427382]$	1e-07	1e-04	1000	5.8e-04	4.4e-03	0.171				
10	[0.94561808 0.89424809]	1e-08	1e-05	1000	1.8e-04	1.9e-02	0.123				
11	[0.94563354 0.89423997]	1e-09	1e-05	1000	5.8e-05	4.8e-02	0.137				
12	[0.94563835 0.89423743]	1e-10	1e-06	1000	1.8e-05	2.3e-01	0.073				
13	$[0.94563992 \ 0.89423665]$	1e-11	1e-06	1000	5.6e-06	5.8e-01	0.127				
14	[0.94564043 0.89423638]	1e-12	1e-07	1000	1.8e-06	2.2e-01	0.085				
15	$[0.94564061 \ 0.89423629]$	1e-13	1e-07	1000	8.0e-07	6.4e+00	0.101				

Tabela 11: Resultados obtidos para o problema 1, método de barreira, Fletcher-Reeves para $x^0 = \{0, 1\}$

Figura 13: Exemplo com 2 primeiros passos da OCR com método OSR Fletcher-Reeves

Prob. 1 - Barreira - BFGS

Iter	P_{min}	r	$\Delta \alpha$	# Passos	Conv_OCR	$Conv_OSR$	t(s)
1	$[0.7079444 \ 1.5314992]$	1e+01	1e-02	11	9.7e + 00	1.4e-07	0.017
2	[0.82820084 1.10979841]	1e+00	1e-02	1000	2.4e+00	7.2e-06	0.368
3	[0.89886439 0.96384104]	1e-01	1e-02	1000	6.4e-01	1.3e-05	0.346
4	$[0.92935323 \ 0.91630685]$	1e-02	1e-02	4	1.9e-01	7.5e-07	0.003
5	[0.94027829 0.90115306]	1e-03	1e-02	4	5.9e-02	3.8e-07	0.001
6	[0.94388719 0.89635009]	1e-04	1e-02	1000	1.8e-02	7.6e-06	0.301
7	[0.94504488 0.89483027]	1e-05	1e-03	1000	5.8e-03	1.4e-05	0.358
8	[0.94541264 0.89434954]	1e-06	1e-04	1000	1.8e-03	3.6e-04	0.152
9	$[0.94552912 \ 0.89419753]$	1e-07	1e-04	1000	5.8e-04	3.1e-04	0.290
10	[0.94556597 0.89414946]	1e-08	1e-04	1000	1.8e-04	1.5e-03	0.195
11	[0.94557758 0.89413418]	1e-09	1e-05	1000	5.8e-05	3.1e-04	0.194
12	$[0.94558126 \ 0.89412937]$	1e-10	1e-05	1000	1.8e-05	3.6e-04	0.211
13	$[0.94558245 \ 0.89412789]$	1e-11	1e-06	1000	5.8e-06	3.7e-04	0.206
14	[0.94558281 0.8941274]	1e-12	1e-06	1000	1.8e-06	6.4e-04	0.190
15	$ [0.94558295 \ 0.89412729] $	1e-13	1e-07	1000	5.8e-07	2.3e-03	0.151

Tabela 12: Resultados obtidos para o problema 1, método de barreira, BFGS para $x^0 = \{0,1\}$

Figura 14: Exemplo com 2 primeiros passos da OCR com método OSR BFGS.