Algoritmos e Fundamentos da Teoria de Computação

Lista de Exercícios 01

1 Seja M a máquina de Turing definida pela função δ abaixo.

δ	B	a	b	c
$\overline{q_0}$	q_1, B, R			
q_1	$\begin{vmatrix} q_1, B, R \\ q_2, B, L \end{vmatrix}$	q_1, a, R	q_1, c, R	q_1, c, R
q_2		q_2, c, L		q_2, b, L

- a. Construa o trace da computação de M para a string de entrada aabca.
- b. Construa o *trace* da computação de M para a *string* de entrada *bcbc*.
- c. Apresente o diagrama de estados de M.
- d. Descreva o resultado de uma computação de M.
- 2 Construa uma máquina de Turing que realiza as computações pedidas nos itens abaixo. (Faça uma máquina para cada item.) Todas as máquinas têm alfabeto de entrada $\Sigma = \{a, b\}$. Note que a cabeça da máquina deve sempre estar na posição 0 da fita quanto a computação termina no estado q_f .
 - a. Mover a entrada uma posição para a direita: $q_0BuB \models q_fBBuB$, aonde $u \in \Sigma^*$.
 - b. Concatenar uma cópia invertida à *string* de entrada: $q_0BuB \models q_fBuu^RB$, aonde u^R é o reverso da *string* u.
 - c. Inserir um branco entre cada um dos símbolos da entrada, por exemplo: $q_0BabaB \not\models q_fBaBbBaB$.
 - d. Apagar os b's da entrada, por exemplo: $q_0Bbabaabab \stackrel{*}{=} q_fBaaaaB$.
- 3 Construa uma máquina de Turing que computa as funções especificadas nos itens abaixo. (Faça uma máquina para cada item.) Todas as máquinas têm alfabeto de entrada $\Sigma = \{a,b\}$. Os símbolos u e v representam strings arbitrárias sobre Σ^* .

a.
$$f(u) = aaa$$

$$\text{b. } f(u) = \left\{ \begin{array}{ll} a & \text{se } \mathit{length} \, (u) \not \in \text{par} \\ b & \text{caso contrário} \end{array} \right.$$

c.
$$f(u) = u^R$$

$$\text{d. } f(u,v) = \left\{ \begin{array}{ll} u & \text{se } \mathit{length}\left(u\right) > \mathit{length}\left(v\right) \\ v & \text{caso contrário} \end{array} \right.$$

4 Construa uma máquina de Turing que computa as funções numéricas especificadas nos itens abaixo. (Faça uma máquina para cada item.) Não utilize macros nas construções. Utilize a base de representação que preferir.

a.
$$f(n) = 2n + 3$$

b.
$$eq(n,m) = \begin{cases} 1 & \text{se } n = m \\ 0 & \text{caso contrário} \end{cases}$$

- 5 Use as macros e máquinas definidas entre as seções 9.2 e 9.4 do livro do Sudkamp para projetar uma máquina que computa a função f(n) = 2n + 3.
- 6 Seja F uma máquina de Turing que computa uma função numérica unária e total f. Projete uma máquina M que retorna o primeiro número natural n tal que f(n) = 0. A computação de M deve continuar indefinidamente se tal n não existe. Responda os itens abaixo.

1

a. Apresente M e explique o seu funcionamento.

b. O que aconteceria com a execução de M se a função computada por F não fosse total?

Obs.: Para construir M você pode utilizar qualquer máquina ou macro vista até aqui.

7 Seja F uma máquina de Turing que computa a função numérica unária e total f. Projete uma máquina G que computa a função

$$g(n) = \sum_{i=1}^{n} f(i) \quad .$$

Obs.: Para construir G você pode utilizar qualquer máquina ou macro vista até aqui.

8 Sejam F e G máquinas de Turing que computam, respectivamente, as funções numéricas unárias e totais f e g. Projete uma máquina H que computa a função

$$h(n) = \sum_{i=1}^{n} eq(f(i), g(i)) \quad .$$

Isto é, h(n) é a quantidade de valores entre 1 e n para os quais as funções f e g assumem o mesmo valor. Obs.: Para construir H você pode utilizar qualquer máquina ou macro vista até aqui.