Galois theory

Jiaheng Zhao

November 15, 2021

Contents 2

\mathbf{C}							
	\mathbf{c}	n.	Г	ום	n.	Г	c
\sim	v	ш	v	U.	LL	U	o

1	Ext	ension of fields	3
	1.1	Fields and field extensions	3
	1.2	Algebraicity	4
	1.3	Algebraic closure	4
	1.4	Normal extensions	5
	1.5	Separable extensions	6
	1.6	Trace and norm	8
	1.7	Purely inseparable extensions	9
	1.8	Transcendental extension	9
2	Gal	ois theory	10
	2.1	Finite Galois correspondence	10
	2.2	Infinite Galois correspondence	13
3	Con	nputation of Galois group	14
	3.1	Galois group of polynomials	14
	3.2	Quartic polynomials	15
4	Арр	olications of Galois theory	16
	4.1^{-}	Finite fields	16
	4.2	Cyclotomic extension	17
	4.3	Hilbert's theorem 90	19
	4.4	Cyclic extensions	20
	4.5	Kummer theory and Artin-Schreier theory	21
	4.6	Solvablity by radicals	22
A	Pro	finite groups	22
	A.1	Topological groups	22
	A.2	Profinite groups	23
В	Möl	bius inversion formula	24
\mathbf{C}	Gro	oup cohomology	25

1 Extension of fields

1.1 Fields and field extensions

Definition 1.1. A field is a commutative ring such that $F^{\times} = F - \{0\}$ form an abelian group under the multiplication operation.

Lemma 1.2. For any ring R, there is a unique ring homomorphism $i_R : \mathbb{Z} \to R$. If R is a field, then $\operatorname{Ker}(i_R)$ is either 0 or $p\mathbb{Z}$ for p a prime.

Proof. The image of i_R must be an integral domain and as a result $Ker(i_R)$ must be a prime ideal.

Definition 1.3. We say that a field F is **of characteristic** 0 if $Ker(i_F) = 0$. We say that F is **of characteristic** p if $Ker(i_F) = p\mathbb{Z}$.

From now on we use char(F) to denote the characteristic of a field.

Theorem 1.4. Let F, E be fields and $f: F \to E$ be a ring homomorphism, then F is injective. In this case we say that E is an **extension** of F, denoted by E/F.

Proof. Ker(f) is an ideal of F and F has no non-trivial ideals. Thus Ker(f) = 0.

Definition 1.5. Let E/F and K/F be two extensions of F. We use $hom_F(E,K)$ to denote the set of field embeddings from E to K which preserves F, and call it the set of F-embeddings from E to K.

Let E/F be a field extension, then we can view E as an F-algebra and in particular an F-vector space. If E is finite dimensional over F, we say that E/F is a **finite extension**. We use [E:F] to denote the dimension and call it the **degree** of the field extension.

Lemma 1.6 (Tower property). Let L/E and E/F be finite extensions, then

$$[L:F] = [L:E][E:F].$$

Proof. Let $\{\alpha_i\}_{i\in I}$ be a basis of E/F and $\{\beta_j\}_{j\in J}$ be a basis of L/E. Then $\{\alpha_i\beta_j\}$ form a basis of L/F. To see this, first note that the set $\{\alpha_i\beta_j\}$ generates F with coefficients in F. Then we show linear independency. Take a family of coefficients $\{c_{i,j} \in F\}$ such that

$$\sum_{i,j} c_{i,j} \alpha_i \beta_j = 0.$$

Let $d_j = \sum_i c_{i,j} \alpha_i \in E$, then $\sum_j d_j \beta_j = 0$. We conclude that $d_j = 0$ for all j, so that $c_{i,j} = 0$ for all i, j.

Definition 1.7. Let E/F be an extension and $S \subset E$ be a set. The **field generated by** S is the minimal subextension K/F such that $S \subset K$, which is denoted by F(S). If S is finite we say that F(S) is **finitely generated** over F.

Definition 1.8. An extension E/F is called **simple** if $E = F(\alpha)$ for some $\alpha \in E$.

1.2 Algebraicity

Definition 1.9 (Algebraic and transcendental elements). Let E/F be a field extension. An element $\alpha \in E$ is called **algebraic over** F if there exists some $R \in F[X]$ such that $R(\alpha) = 0$. Otherwise we say that α is **transcendental over** F.

Definition 1.10. E/F is called an **algebraic extension** if every $\alpha \in E$ is algebraic over F.

Theorem 1.11. Let E/F be an extension and $\alpha \in E$ algebraic over F. Then there exists a unique monic irreducible polynomial P_{α} such that $P_{\alpha}(\alpha) = 0$. We call P_{α} the **minimal polynomial** of α .

Proof. Let $Z_{\alpha} = \{R \in F[X] : R(\alpha) = 0\}$. Choose a monic polynomial P_{α} in Z_{α} such that P_{α} has minimal degree. Then P_{α} must be unique and irreducible. \square

Proposition 1.12. Let $P \in F[X]$ be a irreducible polynomial of degree n, define the F-algebra E := F[X]/(P). Then E/F is a field extension such that [E : F] = n.

Proof. $(P) \subset F[X]$ is a maximal ideal since F[X] is a PID. Let $\pi : F[X] \to F[X]/(P)$, $a \mapsto \overline{a} = a + (P)$ be the quotient map, then $1, \overline{X}, \overline{X^2}, ..., \overline{X^{n-1}}$ form a basis of the extension.

Theorem 1.13. Let $F(\alpha)/F$ be a simple extension with α algebraic over F. Then there is a canonical isomorphism of fields $F[X]/P_{\alpha} \to F(\alpha)$ by sending \overline{X} to α .

Proof. The embedding $F[X]/P_{\alpha} \to F(\alpha)$ is induced by the universal property. We see that it is an isomorphism by counting dimension.

Corollary 1.14. Let α and β be distinct roots of P_{α} , then there is a canonical isomorphism $F(\alpha) \to F(\beta)$ sending α to β .

Theorem 1.15. An extension E/F is finite if and only if it is a finitely generated algebraic extension.

1.3 Algebraic closure

Definition 1.16. We say a field E is **algebraic closed** if any algebraic extension of E is trivial. Equivalently, E is algebraically closed if any non-constant $P \in E[X]$ has a root.

Definition 1.17. Let \overline{F}/F be an algebraic extension. We call \overline{F} the **algebraic closure** of F if \overline{F} is algebraically closed.

Theorem 1.18 (E.Steinitz). For any field F, its algebraic closure \overline{F} exists and is unique up to F-isomorphisms.

Lemma 1.19. Consider a finite extension $F(\alpha)$ generated by a single element α (whose minimal polynomial is denoted by P_{α}) and fix an algebraic closure \overline{F}/F of F. Then there is a bijection

$$hom_F(F(\alpha), \overline{F}) \Leftrightarrow \{\beta \in \overline{F} : P_{\alpha}(\beta) = 0\}$$

Proof. View $F(\alpha)$ as the quotient algebra $F[X]/P_{\alpha}$ and apply its universal property.

Remark 1.20. From the lemma we can see that

$$|\hom_F(F(u), \overline{F})| \le \deg P_\alpha = [F(\alpha) : F]$$
 (1)

The equality holds iff P_{α} has no multiple roots.

Theorem 1.21. Let \overline{F}/F be an algebraic closure and E/F be arbitrary algebraic extension. Then there exists F-embeddings $\iota \in \hom_F(E, \overline{F})$. When E/F is finite we have $|\hom_F(E, \overline{F})| \leq [E:F]$.

Proof. Let $E = F(x_1, ..., x_n)$. By repeated use of inequality (1) we have

$$|\hom_F(F(x_1,...,x_n),\overline{F})| \le \prod_{i=1}^n [F(x_1,...,x_i):F(x_1,...x_{i-1})] = [E:F],$$

1.4 Normal extensions

Definition 1.22. Let $\mathcal{P} \subset F[X]$ be a family of non-constant polynomials. If E/F satisfies

- 1. Every $P \in \mathcal{P}$ factors into linear factors over E. That is $P = c_P \prod_{j=1}^{n_P} (X \alpha_{P,j})$ where $c_P \in F^{\times}, \alpha_{P,j} \in E$.
- 2. All roots $\{\alpha_{P,j}: P \in \mathcal{P}, 1 \leq j \leq n_P\}$ generate E over F.

then we call E the splitting fields of \mathcal{P} over F.

Theorem 1.23. Let $\mathcal{P} \subset F[X]$ be a family of non-constant polynomials. Then the spitting field of \mathcal{P} exists. If $P \in F[X]$ is a non-constant polynomial of degree n and E is the splitting field of P, then $[E:F] \leq n!$.

Lemma 1.24. For an algebraic extension L/F, any F-embeddings $\iota: L \to L$ is an isomorphism of fields. That is $\operatorname{End}_F(L) = \operatorname{Aut}_F(L)$.

Proof. If suffices to show that ι is surjective. Take $y \in L$ and $P_y \in F[X]$ be its minimal polynomial. Let $\{y = y_1, ..., y_n\} \subset L$ be the set of roots of P_y in L. Since ι induces a permutation over $\{y_1, ..., y_n\}$, thus $y \in \operatorname{im}(\iota)$.

Definition 1.25. A field extension E/F is called **normal** if it is a splitting field of some $\mathcal{P} \subset F[X]$ consisting of non-constant polynomials.

Theorem 1.26. TFAE:

- 1. E/F is a normal extension,
- 2. If an irreducible polynomial $P \in F[X]$ has a root in E, then it splits into a product of linear factors over E,
- 3. Fix an algebraic closure \overline{F}/E and view E as a subfield of \overline{F} . Then any $\iota \in \hom_F(E, \overline{F})$ satisfies $\iota(E) = E$.

Proposition 1.27. Let L/F be a normal extension, E/F its sub-extension, then any $\iota \in \hom_F(E, L)$ can be extended to some $\tilde{\iota} \in \operatorname{Aut}_F(L)$

Proof. Fix an algebraic closure \overline{F} of F and view L as a subfield of \overline{F} . Then we can always extend a $\iota \in \hom_F(E, L) \subset \hom_F(E, \overline{F})$ to some $\tilde{\iota} \in \hom_F(L, \overline{F})$ by Theorem 1.21. Normality guarantees that $\hom_F(L, \overline{F}) = \operatorname{End}_F(L)$ and Theorem 1.24 guarantees that $\operatorname{End}_F(L) = \operatorname{Aut}_F(E)$.

1.5 Separable extensions

Definition 1.28. An irreducible polynomial $P \in F[X]$ is called **separable** if it has no multiple roots in its splitting field. An algebraic element $\alpha \in E$ in an extension E/F is **separable** if its minimal polynomial is separable.

Definition 1.29. We say that an algebraic extension E/F is **separable** if for all $x \in E$ the minimal polynomial P_x of x is separable.

Lemma 1.30. A non-zero polynomial $P \in F[X]$ has multiple roots (over its splitting field L) if and only if $(P, P') \neq 1$.

Proposition 1.31. If E/F is finite separable, then $|\hom_F(E, \overline{F})| = [E : F]$.

Proof. Similar to the proof of Theorem 1.21. But separability guarantees that the equality holds. $\hfill\Box$

Definition 1.32. Let E/F be an algebraic extension, then its **separable degree** is defined as $[E:F]_s:=|\hom_F(E,\overline{F})|$.

Lemma 1.33. Let F(x)/F be a finite extension and let P_x be the minimal polynomial of x. Then $[F(x):F]_s$ equals the number of roots of P_x (without counting multiplicity) in \overline{F} .

Proof. This is direct from 1.19.

Theorem 1.34. For irreducible $P \in F[X]$, the following statements are equivalent

- 1. P has multiple roots in the algebraic closure \overline{F} ,
- 2. P has multiple roots in its splitting field,
- 3. P' = 0,

4. $\operatorname{char}(F) = p > 0$, and P has the form $\sum_{k>0}^{n} X^{pk}$.

Corollary 1.35. Let F be a field with characteristic p > 0. Then an inseparable irreducible polynomial in $P \in F[X]$ has the form

$$P(X) = P^{\natural}(X^{p^m})$$

where P^{\natural} is separable and of course irreducible.

Theorem 1.36. Let E/F be a finite extension, then $[E:F]_s|[E:F]$

Proof. It suffices to prove this for simple extensions. Let F(x)/F be a finite simple extension and we write P_x as

$$P_x(X) = P_x^{\natural}(X^{p^m})$$

Then by Lemma 1.33 $[E:F]_s = \deg P_x^{\natural}(X)$. So obviously $\deg P_x^{\natural}|\deg P_x$ and the latter is [E:F].

Definition 1.37. The number $\frac{[E:F]}{[E:F]_s}$ is called the **inseparable degree** and is denoted by $[E:F]_i$.

Definition 1.38. We say that a field F is **perfect** if any algebraic extension of F is separable.

Proposition 1.39. The following fields are perfect:

- 1. Fields of characteristic 0,
- 2. Finite fields.

Proof. Fields of characteristic 0 are obviously perfect. For finite fields see Theorem 4.2.

Definition 1.40. We say that a field L is **separably closed** if any separable irreducible polynomial in L[X] has a root in L. If E/F is algebraic and E is separably closed then E is called a **separable closure** of F, which we denote by F^{sep} .

Proposition 1.41. The separable closure F^{sep}/F is a normal extension.

Proof. F^{sep} can be identified with the splitting field of all separable polynomials over F.

1.6 Trace and norm

Let E/F be a finite extension.

Definition 1.42. For $\alpha \in E$, we define the map $m_{\alpha} : E \to E$, $\beta \mapsto \alpha \beta$ which is F-linear. The **trace** of α is defined to be $\operatorname{tr}_{E/F}(\alpha) = \operatorname{tr}(m_{\alpha}) \in F$. The **norm** of α is defined to be $N_{E/F}(\alpha) = \det(m_{\alpha}) \in F$.

Lemma 1.43. Let $E = F(\alpha)$ with α algebraic such that $P_{\alpha}(X) = X^n + a_{n-1}X^{n-1} + ... + a_0$ to be the minimal polynomial of α . Then $\operatorname{tr}_{E/F}(\alpha) = -a_{n-1}$ and $N_{E/F}(\alpha) = (-1)^n a_0$.

Theorem 1.44. For finite extension E/F and $x \in E$, fix an algebraic closure $\overline{F}|F$, then we have

$$N_{E/F}(x) = \prod_{\sigma \in \text{hom}_F(E, \overline{F})} \sigma(x)^{[E:F]_i}$$

$$\operatorname{tr}_{E/F}(x) = [E : F]_i \sum_{\sigma \in \operatorname{hom}_F(E, \overline{F})} \sigma(x)$$

where $[E:F]_i$ is the inseparable degree.

Corollary 1.45. Let E/F be a finite separable extension. Then we have

$$N_{E/F}(x) = \prod_{\sigma \in \text{hom}_F(E,\overline{F})} \sigma(x)$$

$$\operatorname{tr}_{E/F}(x) = \sum_{\sigma \in \operatorname{hom}_F(E, \overline{F})} \sigma(x)$$

These formulas are quite useful in algebraic number theory. We will demonstrate a few applications. First recall Dedekind's theorem on characters:

Theorem 1.46 (Dedekind-Artin). Let Γ be a monoid and R be a commutative domain. Then $hom(\Gamma, (R, \times))$ is R-linearly independent. That is to say, if $\chi_1, ..., \chi_n : \Gamma \to (R, \times)$ are distinct homomorphism and $r_1, ..., r_n \in R$ such that $\sum_{i=1}^n r_i \chi_i(g) = 0$ for all $g \in \Gamma$, then $r_i = 0$ for all i.

Proof. By induction on n. For n=1, it suffices to take g=1. For $n\geq 2$ it suffices to show that $r_n=0$. Choose $h\in \Gamma$ such that $\chi_1(h)\neq \chi_n(h)$. Then

$$\sum_{i=2}^{n} r_i(\chi_i(h) - \chi_1(h))\chi_i(g) = \sum_{i=1}^{n} r_i\chi_i(hg) - \chi_1(h)\sum_{i=1}^{n} r_i\chi_i(g) = 0.$$

By induction hypothesis, $r_n(\chi_n(h) - \chi_1(h)) = 0$ which implies $r_n = 0$.

Theorem 1.47. If L/K is finite separable, then the bilinear form $\operatorname{Tr}: L \times L \to K$, sending (x,y) to $\operatorname{tr}_{L/K}(x,y)$ is non-degenerate.

Proof. If $\forall y \in L$ we have $\operatorname{Tr}_{L/K}(xy) = 0$, then

$$\sum_{i=1}^{n} \sigma_i(xy) = \sum_{i=1}^{n} \sigma_i(x)\sigma_i(y) = 0, \quad \forall y \in L.$$

Apply Theorem 1.46 to $\Gamma = L^{\times}$, we obtain $\sigma_i(x) = 0$ for all i. Hence x = 0.

1.7 Purely inseparable extensions

Definition 1.48. Let E/F be an extension and $x \in E$ be algebraic over F. If the minimal polynomial of x has the form $P_x = X^{p^m} - a \in F[X]$, then we say that x is **purely inseparable** over F.

Definition 1.49. An algebraic extension is **purely inseparable** if it is generated by a family of purely inseparable elements.

Corollary 1.50. A purely inseparable extension is normal.

Lemma 1.51. If an algebraic extension E/F is both separable and purely inseparable, then [E:F]=1.

Example 1.52. If K/F be an extension and $\alpha \in K$ is separable over F, $b \in K$ is purely inseparable over F, then $F(\alpha, \beta) = F(\alpha + \beta)$. This is because the extension $F(\alpha, \beta) = F(\alpha + \beta)(\alpha) = F(\alpha + \beta)(\beta)$ is both separable and purely inseparable over $F(\alpha + \beta)$.

1.8 Transcendental extension

Definition 1.53. Let Ω/F be an extension. A subset $\chi \subset \Omega$ is called **algebraically independent** over F if the following condition is satisfied: for all $n \geq 1$ and distinct n elements $x_1, ..., x_n \in \chi$ and polynomial $P \in F[X_1, ..., X_n]$, we have

$$P(x_1,...,x_n) = 0 \Leftrightarrow P = 0.$$

Lemma 1.54. Any extension Ω/F has maximal algebraically independent subset.

Proof. Any chain of algebraically independent subsets of Ω has an upper bound by taking the union. We conclude by Zorn's lemma.

Definition 1.55. A maximal algebraically independent subset of Ω over F is a transcendental basis of the extension Ω/F .

Let \mathcal{B} be a transcendental basis of Ω/F . From the definition of transcendental basis we see that

- The subextension $F(\mathcal{B})/F$ can be identified with the field of rational functions ober the set \mathcal{B} .
- $\Omega/F(\mathcal{B})$ is an algebraic extension.

 \bullet Conversely, any subset of Ω satisfying the above two properties is a transcendental basis.

Lemma 1.56. Let $\mathcal{B}, \mathcal{B}'$ are transcendental basis of Ω/F . If \mathcal{B} is infinite then $|\mathcal{B}'| \geq |\mathcal{B}|$.

Lemma 1.57 (Exchange property). Let $\mathcal{B}, \mathcal{B}'$ be two finite transcendental basis of Ω/F , $b' \in \mathcal{B}' \setminus \mathcal{B}$, then there exists $b \in \mathcal{B} \setminus \mathcal{B}'$ such that $(\mathcal{B}' \setminus \{b'\}) \cup \{b\}$ is still a transcendental basis.

Theorem 1.58. Let $\mathcal{B}, \mathcal{B}'$ be two transcendental basis of Ω/F , then we have $|\mathcal{B}| = |\mathcal{B}'|$.

Definition 1.59. The cardinality of a transcendental basis of Ω/F is called the **transcendental degree** of Ω/F , which is denoted by $\operatorname{tr.deg}(\Omega/F)$.

Corollary 1.60. Let Ω_1, Ω_2 are extensions of F and are algebraically closed. Then there is an isomorphism of F-algebras $\Omega_1 \cong \Omega_2$ if and only if $\operatorname{tr.deg}(\Omega_1/F) = \operatorname{tr.deg}(\Omega_2/F)$.

Example 1.61. Contrary to \mathbb{R} , whose only endomorphism is Id, \mathbb{C} is isomorphic to infinitely many subfields of itself. Let \mathcal{B} be a transcendental basis of \mathbb{C} over \mathbb{Q} , which must be infinite. Then there is a bijection $\alpha: \mathcal{B} \to \mathcal{B}'$ with \mathcal{B}' is a proper subset of \mathcal{B} . Let \mathbb{C}' be the algebraic closure of $\mathbb{Q}(\mathcal{B}')$ then $\mathbb{C} \cong \mathbb{C}'$.

2 Galois theory

2.1 Finite Galois correspondence

Definition 2.1. An extension E/F is called **Galois** if it is normal and separable. The group $\operatorname{Aut}_F(E)$ is called the **Galois group** of E over F, which is denoted by $\operatorname{Gal}(E/F)$.

Lemma 2.2. Let E/F be a finite Galois extension. Then |Gal(E/F)| = [E : F].

Proof. Separability implies $|\hom_F(E, \overline{F})| = [E : F]$. Normality implies $\hom_F(E, \overline{F}) = \operatorname{Aut}_F(E)$.

For a given extension E/F we introduce a pair of basic operations:

• To each subgroup H of $\operatorname{Aut}_F(E)$ we attach the corresponding fixed field E^H :

$$E^H:=\{\alpha\in E: \forall \tau\in H, \tau(\alpha)=\alpha\}.$$

• To any subextension K/F of E we attach the subgroup ${\rm Aut}_K(E)$ of ${\rm Aut}_F(E)$.

Obviously we have the relation relation:

$$H_1 \subset H_2 \Rightarrow E^{H_2} \subset E^{H_1}$$

$$K_1 \subset K_2 \Rightarrow \operatorname{Aut}_{K_2}(E) \subset \operatorname{Aut}_{K_1}(E).$$

Lemma 2.3. Let E/K/F be a tower a field extension, then for $\sigma \in \operatorname{Aut}_F(E)$ we have

$$\operatorname{Aut}_{\sigma(K)}(E) = \sigma \operatorname{Aut}_K(E)\sigma^{-1}$$

Lemma 2.4. For a Galois extension E/F we have $E^{Gal(E/F)} = F$, and the map $K \mapsto Aut_K(E) = Gal(E/K)$ is injective.

Proof. Obviously $F \subset E^{\operatorname{Gal}(E/F)}$. Take $x \in E^{\operatorname{Gal}(E/F)}$, and denote its minimal polynomial by P_x . Then P_x has no multiple roots and splits into linear factors. Choose a root y of P_x then there is a canonical isomorphism $\iota : F(x) \to F(y)$. We can extend it to some $\sigma \in \operatorname{Gal}(E/F)$ which sends x to y. We immediately conclude that y = x and so P_x is linear.

Lemma 2.5 (E.Artin). Let E be a field, H a finite subgroup of Aut(E), then E/E^H is Galois and $Gal(E/E^H) = H$.

Proof. Take $x \in E$ and let $\mathcal{O} = \{\tau(x) : \tau \in H\}$, i.e. the orbit of x under H. Let $Q_x(X) = \prod_{y \in \mathcal{O}} (X - y)$, then $Q_x \in E^H(X)$ and $Q_x(x) = 0$. Since Q_x splits over E and has no multiple roots, we know that E/E^H is Galois. Moreover $\deg Q_x = |\mathcal{O}| \leq |H|$.

Obviously $H \leq \operatorname{Gal}(E/E^H)$. It suffices to show that $[E:E^H] \leq |H|$. We know that for any $x \in E$, $[E^H(x):E^H] \leq |H|$. Take that $x \in E$ such that $[E^H(x):E^H]$ is maximal, then we must have $E=E^H(x)$. Otherwise take $y \in E-E^H(x)$ then we have

$$E^H(x,y) \supseteq E^H(x) \supset E(H)$$

However, since $E^H(x,y)$ is finite separable we can write it as the form $E^H(z)$ which contradicts with the choice of x.

Theorem 2.6 (Finite Galois correspondence). Let E/F be a finite Galois extension.

1. There are mutually inverse bijections:

$$\begin{aligned} \{intermediate \ fields\} &\stackrel{\sim}{\longleftarrow} \{subgroups \ of \ \mathrm{Gal}(E/F)\} \\ &E/K/F \longmapsto \mathrm{Gal}(E/K) \\ &E^H \longleftarrow H < \mathrm{Gal}(E/F) \end{aligned}$$

which are order-reversing,

2. For any intermediate field K and $\sigma \in Gal(E/F)$, we have

$$Gal(E/\sigma(K)) = \sigma Gal(E/K)\sigma^{-1}$$

the extension K/F is Galois if and only if $Gal(E/K) \triangleleft Gal(E/F)$,

3. Furthermore, we have a bijection

$$\Phi: \operatorname{Gal}(E/F)/\operatorname{Gal}(E/K) \xrightarrow{\sim} \operatorname{hom}_F(K, E)$$
$$\sigma \cdot \operatorname{Gal}(E/K) \longmapsto \sigma|_K$$

between pointed sets. It induces a group isomorphism $\operatorname{Gal}(E/F)/\operatorname{Gal}(E/K) \xrightarrow{\sim} \operatorname{Gal}(K/F)$ when K/F is Galois.

Proof. The first two statements are simple translations of Lemma 2.4, 2.5 and 2.3. For third statement, σ, σ' satisfies $\sigma|_K = \sigma'|_K$ if and only if $\sigma^{-1}\sigma'|_K = \operatorname{Id}_K$ so Φ is injective. Surjectivity follows from Proposition 1.27.

Theorem 2.7. Let $E_1, E_2 \subset \overline{F}$ be subfields and $E_1/F, E_2/F$ be Galois extensions. Then the canonical embedding $\iota : \operatorname{Gal}(E_1E_2/F) \to \operatorname{Gal}(E_1/F) \times \operatorname{Gal}(E_2/F)$ is an isomorphism if and only if $E_1 \cap E_2 = F$.

Proof. \Leftarrow : when $E_1 \cap E_2 = F$, we can construct a reverse map χ : $\operatorname{Gal}(E_1/F) \times \operatorname{Gal}(E_2/F) \to \operatorname{Gal}(E_1E_2/F)$ by sending (σ,τ) to $\tilde{\sigma}\tilde{\tau}$. Here $\tilde{\tau}$ is the unique field automorphism such that $\tilde{\tau}|_{E_2} = \tau$ and $\tilde{\tau}|_{E_1} = \operatorname{Id}$. Such an extension is possible only when $E_1 \cap E_2$ is trivial. $\tilde{\sigma}$ is defined by a similar extension. Obviously $\tilde{\tau}$ and $\tilde{\sigma}$ commute with each other so χ is really a group homomorphism. It is direct to see that χ and ι are reverse to each other.

 \Rightarrow : If (σ, τ) lies in the image of ι , then $\sigma|_{E_1 \cap E_2} = \tau|_{E_1 \cap E_2}$. Since ι is an isomorphism, for all $(\sigma, \tau) \in \operatorname{Gal}(E_1/F) \times \operatorname{Gal}(E_2/F)$ we have $\sigma|_{E_1 \cap E_2} = \tau|_{E_1 \cap E_2}$ and thus $\sigma|_{E_1 \cap E_2} = \tau|_{E_1 \cap E_2} = \operatorname{Id}$. So $\operatorname{Gal}(E_1 E_2/F)|_{E_1 \cap E_2} = \operatorname{Id}$. Therefore $E_1 \cap E_2 = F$.

The converse of the above theorem is also true:

Theorem 2.8. Let E/F be an Galois extension with Galois group G. Suppose that there are subgroups $H_1, H_2 \leq G$ such that $G = H_1 \times H_2$. Let $E_1 = E^{H_1}$, $E_2 = E^{H_2}$ then we have

- 1. E_1/F and E_2/F are Galois extensions such that $Gal(E_1/F) = H_2$, $Gal(E_2/F) = H_1$;
- 2. $E_1E_2 = E$;
- 3. $E_1 \cap E_2 = F$.

Proof. The first statement is obvious since H_1 and H_2 are normal subgroups of G and $G/H_1 \cong H_2$, $G/H_2 \cong H_1$. The second statement follows from the fact that $H_1 \cap H_2 = 1$. The third statement follows from the fact $H_1H_2 = G$.

2.2 Infinite Galois correspondence

Definition 2.9 (Krull topology). For a Galois extension E/F, we can equip Gal(E/F) with a topology structure such that the neighbourhood basis at an arbitrary element σ has the following form:

$$\sigma \text{Gal}(E/K)$$
, K/F : finite Galois subextension

This topology structure is called the **Krull topology** over Gal(E/F).

Lemma 2.10. For any Galois extension E/F, the topological group Gal(E/F) is a profinite group in the sense of Definition A.7. More explicitly, there is an isomorphism of topological groups

$$\operatorname{Gal}(E/F) \xrightarrow{\sim} \varprojlim_{K/F} \operatorname{Gal}(K/F)$$

Here the limit is taken over all finite Galois subextensions K/F.

Lemma 2.11. For any finite subextension K/F with $K \subset E$, the subgroup Gal(E/K) is open.

Proof. Firstly we notice that for every $\alpha \in E$, the stabilizer $\operatorname{Stab}(\alpha)$ is open. Indeed, α lies in some finite Galois extension L/F. For example we may take L to be the normal closure of $F(\alpha)$. So $\operatorname{Stab}(\alpha) \supset \operatorname{Gal}(E/L)$ and $\operatorname{Gal}(E/L)$ is open in $\operatorname{Gal}(E/F)$. So $\operatorname{Stab}(\alpha)$ is still open by Lemma A.5. Since K/F is finite we may write $K = F(x_1, ..., x_n)$ and so $\operatorname{Gal}(E/K) = \bigcap_{i=1}^n \operatorname{Stab}(x_i)$ and so $\operatorname{Gal}(E/K)$ is open.

Lemma 2.12. For any subextension K/F, the subgroup Gal(E/K) is closed.

Proof. Similar to Lemma 2.11. Note that $\operatorname{Stab}(\alpha)$ is also closed by Lemma A.5. Then $\operatorname{Gal}(E/K) = \bigcap_{x \in K} \operatorname{Stab}(x)$.

Lemma 2.13. The topological group G := Gal(E/F) satisfies the following property

- 1. G is a compact Hausdorff space. When E/F is finite then it is equipped with discrete topology,
- 2. Any open subgroup H is also closed such that $(G:H) < \infty$,
- 3. If we equip E with discrete topology, then the action map $\mathrm{Gal}(E/F) \times E \to E$ is continuous.

Lemma 2.14. Let H be a subgroup of G. Then $Gal(E/E^H) = \overline{H}$ is the closure of H.

Proof. The direction $\overline{H} \subset \operatorname{Gal}(E/E^H)$ is easy. Let $\sigma \in \operatorname{Gal}(E/E^H)$, by the definition of Krull topology it suffices to show that for every intermediate field K of E/F such that K/F is finite Galois, $\sigma\operatorname{Gal}(E/K) \cap H \neq \emptyset$. Let $\phi : \operatorname{Gal}(E/F) \to \operatorname{Gal}(K/F)$ be the restriction map. Since $\phi(\sigma)$ fixes $K^{\phi(H)} = K \cap E^H$, we know that $\phi(\sigma) \in \phi(H)$.

Corollary 2.15. Let H be a closed subgroup of G, then $Gal(E/E^H) = H$.

Theorem 2.16 (Infinite Galois correspondence). Let E/F be Galois. Then

1. There are mutually inverse bijections:

$$\begin{aligned} \{intermediate \ fields\} &\stackrel{\sim}{\longleftrightarrow} \{closed \ subgroups \ of \ \mathrm{Gal}(E/F)\} \\ &E/K/F \longmapsto \mathrm{Gal}(E/K) \\ &E^H \longleftrightarrow H \leq \mathrm{Gal}(E/F) \end{aligned}$$

which are order-reversing, and G-equivariant. As a result normal closed subgroups correspond to Galois subextensions.

2. For any intermediate fields K there is a bijection

$$\operatorname{Gal}(E/F)/\operatorname{Gal}(E/K) \xrightarrow{\sim} \operatorname{hom}_F(K, E)$$

$$\sigma \cdot \operatorname{Gal}(E/K) \longmapsto \sigma|_K$$

Moreover when K/F is Galois, there is an isomorphism of topological groups

$$\operatorname{Gal}(E/F)/\operatorname{Gal}(E/K) \xrightarrow{\sim} \operatorname{Gal}(K/F)$$

where the LHS is equipped the quotient topology.

3. Open subgroups correspond to finite subextensions.

3 Computation of Galois group

3.1 Galois group of polynomials

Let $f \in F[X]$ be a separable polynomial and E/F be the splitting field of F. Then E/F is Galois. We use G_f to denote its Galois group. Since G permute all roots of f, it can be viewed as a subgroup of S_n where $n = \deg f$.

Theorem 3.1. G_f acts transitively on the set of roots of f if and only if f(X) is irreducible.

Proof. Two elements are in the same orbit if and only if they have the same minimal polynomial. $\hfill\Box$

Definition 3.2. Consider a monic polynomial $f(X) = X^n + a_{n-1}X^{n-1} + ... + a_0$ and $f(X) = \prod_{i=1}^n (X - \alpha_i)$ in some splitting field. Set

$$\Delta(f) = \prod_{1 \le i < j \le n} (\alpha_i - \alpha_j), \qquad D(f) = (\Delta(f))^2 = \prod_{1 \le i < j \le n} (\alpha_i - \alpha_j)^2.$$

D(f) is called the **discriminant** of f.

D(f) is nonzero if and only if f is separable.

Lemma 3.3. Let $f \in f[X]$ be a separable polynomial and let $\sigma \in G_f$. Then:

- 1. $\sigma\Delta(f) = \operatorname{sign}(\sigma)\Delta(f)$, where $\operatorname{sign}(\sigma)$ is the signature of σ .
- 2. $\sigma D(f) = D(f)$.

Theorem 3.4. Let $f(X) \in F[X]$ be separable of degree n. Let E be a splitting field of F and let G_f be the Galois group. Then

- 1. $D(f) \in F$.
- 2. The subfield of E corresponding to $A_n \cap G_f$ is $F[\Delta(f)]$. Hence by finite Galois correspondence (Theorem 2.6) we have $G_f \subset A_n \Leftrightarrow \Delta(f) \in F \Leftrightarrow D(f) \in F^{\times 2}$.

Proof. Obvious from the above lemma.

3.2 Quartic polynomials

Galois group of quadratic and cubic polynomials are easy to compute. We consider quartic polynomials here. In this section we use V to denote the following normal subgroup of S_4 :

$$V = \{1, (12)(34), (13)(24), (14)(23)\}\$$

Let f(X) be a separable quartic polynomial and E be a splitting field of f(X) such that $f(X) = \prod (X - \alpha_i)$ in E. Consider the partially symmetric elements

$$\alpha = \alpha_1 \alpha_2 + \alpha_3 \alpha_4$$
$$\beta = \alpha_1 \alpha_3 + \alpha_2 \alpha_4$$
$$\gamma = \alpha_1 \alpha_4 + \alpha_2 \alpha_3$$

The group S_4 permute $\{\alpha, \beta, \gamma\}$ transitively. The stabilizer of each of α, β, γ must therefore be a subgroup of index 3 in S_4 , and hence has order 8.

Lemma 3.5. The fixed field of $G_f \cap V$ is $F[\alpha, \beta, \gamma]$. Hence $F[\alpha, \beta, \gamma]$ is Galois over F with Galois group $G_f/G_f \cap V$.

Let $M = F[\alpha, \beta, \gamma]$, and let $g(X) = (X - \alpha)(X - \beta)(X - \gamma) \in M[X]$, which is called the **resolvent cubic** of f. Obviously g(X) is fixed by G_f and thus it has coefficients in F.

Theorem 3.6. Let $f \in F[X]$ be an irreducible separable quartic polynomial and $M = F[\alpha, \beta, \gamma]$. Then

- If [M:F] = 1, then $G_f = V$;
- If [M:F] = 2, then G_f is conjugate to C_4 or D_4 ; moreover, in this case, G is conjugate to D_4 if and only if f remains irreducible in M.
- If [M:F] = 3, then $G = A_4$;

• If [M:F] = 6, then $G = S_4$.

Example 3.7. Assume that $\operatorname{char}(F) \neq 2$. Let $P(X) = X^4 + cX^2 + e \in F[X]$ be an irreducible polynomial. Then,

- 1. If e is a square in F, then $G_P = V$.
- 2. If $e(c^2 4e)$ is a square in F, then G is conjugate to C_4 .
- 3. If neither e nor $e(c^2 4e)$ is a square in F, then G is conjugate to D_4 .

Example 3.8. Let $P(X) = X^4 + pX + p$ over $\mathbb Q$ with p a prime. By Eisenstein's criterion we see that P(X) is irreducible. The resolvent cubic is $Q(X) = X^3 - 4pX - p^2$. When $p \neq 3, 5, Q(X)$ is irreducible over $\mathbb Z$, and hence is irreducible over $\mathbb Q$. $\Delta(Q) = p^3(256 - 27p) \notin (\mathbb Q^\times)^2$, thus $G_P = S_4$. When $p = 3, Q(X) = X^3 - 12X - 9 = (X + 3)(X^2 - 3X - 3)$. Then $M = \mathbb Q(\sqrt{21})$ and $[M:\mathbb Q] = 2$. In this case P(X) is irreducible over M and so G_P is conjugate to D_4 . When $p = 5, P(X) = X^4 + 5X + 5$ and $Q(X) = (X - 5)(X^2 + 5X + 5)$. We have $[M:\mathbb Q] = 2$ but this time $P(X) = (X^2 + \sqrt{5}X + \frac{5 - \sqrt{5}}{2})(X^2 - \sqrt{5}X + \frac{5 + \sqrt{5}}{2})$ is reducible over M. Hence G_P is conjugate to C_4 .

4 Applications of Galois theory

4.1 Finite fields

Every finite field must have positive characteristic, otherwise it would contain a copy of \mathbb{Q} . Let us fix a primes number p in what follows.

Theorem 4.1. Every finite fields of characteristic p has cardinality $q = p^m$ for some $m \ge 1$. Moreover, there exits a finite field with q elements for every p-power q, which is unique up to isomorphism.

Proof. As a matter of fact, for a p-power q and |E| = q, E can be identified with the splitting field of $X^q - X$ over \mathbb{F}_p .

We denote a finite field of cardinality q by \mathbb{F}_q . The automorphism $\operatorname{Fr}_q: \mathbb{F}_q \to \mathbb{F}_q, x \mapsto x^q$ is called the **Frobenius automorphism**.

Theorem 4.2. Let E/\mathbb{F}_q be an extension of finite fields with characteristic p. Then E/F is Galois and Gal(E/F) is the cyclic group generated by Fr_q .

Proof. Let [E:F]=n. It suffices to show that $\operatorname{Fr}_q \in \operatorname{Gal}(E/\mathbb{F}_q)$ is an element of order n. We know that any element in E satisfies $x^{q^n}=x$ so $\operatorname{Fr}_q^n=\operatorname{Id}_E$. If there is some d|n such that $x^{q^d}=x$. However there are at most q^d elements satisfying this equation so d=n.

Proposition 4.3. Let F be a finite field and |F| = q. Let l be a prime number. Then there are $\frac{q^l-q}{l}$ distinct monic irreducible polynomials of degree l in F[X].

Proof. View F as a subfield of E with $|E|=q^l$. Introduce the following equivalence relation over $E\setminus F$: $a\sim b$ if and only if a and b share the same minimal polynomial. Then we have

- 1. Each equivalence class has exactly l distinct elements;
- 2. There is a canonical bijection between the quotient set $(E \setminus F)/\sim$ and the set of monic irreducible polynomials in F[X].

Proposition 4.4. Let E/F be an extension of finite fields, then the norm map $N_{E/F}: E^{\times} \to F^{\times}$ is surjective.

Proof. Let |F| = q and [E:F] = l. Then

$$N_{E/F}(a) = \prod_{i=0}^{l-1} a^{q^i} = a^{\frac{q^l-1}{q-1}}.$$

The kernel of $N_{E/F}$ can be identified with the set of roots of the equation $x^{\frac{q^l-1}{q-1}}=1$, and so $|\mathrm{Ker}(N_{E/F})|\leq \frac{q^l-1}{q-1}$. So $|\mathrm{Im}(N_{E/F})|\geq (q^l-1)/\frac{q^l-1}{q-1}=q-1$.

4.2 Cyclotomic extension

Definition 4.5. Fix an algebraic closure \overline{F}/F and $n \in \mathbb{Z}_{\geq 1}$. An element ζ satisfying $\zeta^n = 1$ is called an n-th root of unity. Let $\mu_n(F) \subset F^{\times}$ denote the group of n-th roots of unity in F. We say $\zeta \in F^{\times}$ is a **primitive** n-th root of unity if it has order n.

If ζ is a primitive *n*-th root of unity of *F*, then $char(F) \nmid n$.

Proposition 4.6. Let $F(\zeta_n)/F$ be a field extension with ζ_n a primitive n-th root of unity. Then $F(\zeta_n)/F$ is the splitting field of the separable polynomial $P(X) = X^n - 1$ over F, and thus $F(\zeta_n)/F$ is Galois. Moreover we have a group embedding $G = \text{Gal}(F(\zeta_n)/F) \to (\mathbb{Z}/n\mathbb{Z})^{\times}$.

Proof. $\forall \sigma \in G$, $\sigma(\zeta_n)$ is still a generator of $\mu_n(F)$, so that $\sigma(\zeta_n) = \zeta_n^a$ for some $a \in (\mathbb{Z}/n\mathbb{Z})^{\times}$.

Definition 4.7. The *n*-th cyclotomic polynomial is defined as $\Phi_n(X) = \prod_{\zeta} (X - \zeta)$ where ζ runs over the set of *n*-th primitive root of unity. It is obvious that $\deg(\Phi_n) = \varphi(n)$.

Lemma 4.8. The following equality holds:

$$\prod_{d|n} \Phi_d = X^n - 1.$$

Proof. It follows from the formula $X^n - 1 = \prod_{\zeta \in \mu_n} (X - \zeta)$.

Definition 4.9. We have the following:

$$\Phi_n = \prod_{d|n} (X^d - 1)^{\mu(n/d)}$$

where μ is the Möbius function, see Theorem B.4.

Proof. By applying Möbius inversion formula.

Lemma 4.10. Let F be a field of characteristic 0 or p not dividing n, and let ζ be a primitive n-th root of unity in some extension of F. TFAE

- 1. The n-th cyclotomic polynomial Φ_n is irreducible,
- 2. The degree $[F[\zeta]:F]=\varphi(n)$,
- 3. The injective homomorphism

$$\operatorname{Gal}(F[\zeta]/F) \to (\mathbb{Z}/n\mathbb{Z})^{\times}$$

is an isomorphism.

Theorem 4.11. Φ_n is irreducible over $\mathbb{Q}[X]$.

Corollary 4.12. $Gal(\mathbb{Q}(\zeta_n):\mathbb{Q})\cong (\mathbb{Z}/n\mathbb{Z})^{\times}$.

Example 4.13. Let $E = \mathbb{Q}(\zeta_p)$ with $p \neq 2$ a prime. Then $N_{E/\mathbb{Q}}(1 - \zeta_p) = \prod_{i=1}^{p-1} (1 - \zeta_p^i) = \Phi_p(1) = p$.

Given $m, n \in \mathbb{Z}_+$, let (m, n) denote their greatest common divisor and [m, n] denote their least common multiple.

Proposition 4.14. We have $\mathbb{Q}(\zeta_m)\mathbb{Q}(\zeta_n) = \mathbb{Q}(\zeta_m, \zeta_n) = \mathbb{Q}(\zeta_{[m,n]})$.

Proof. Let ζ_{mn} be a primitive mn-th root of unity, then we choose $\zeta_m = (\zeta_{mn})^n$ and $\zeta_n = (\zeta_{mn})^m$. Therefore,

$$\zeta_m^{\mathbb{Z}}\zeta_n^{\mathbb{Z}} = \zeta_{mn}^{(m,n)\mathbb{Z}} = \zeta_{mn/(m,n)}^{\mathbb{Z}} = \zeta_{[m,n]}^{\mathbb{Z}}.$$

Proposition 4.15. If (m,n) = 1, then $\mathbb{Q}(\zeta_m) \cap \mathbb{Q}(\zeta_n) = \mathbb{Q}$.

Proof. Define $G_N := \operatorname{Gal}(\mathbb{Q}(\zeta_N)/\mathbb{Q})$. Then there is a canonical map $\iota : G_{mn} \cong (\mathbb{Z}/mn\mathbb{Z})^{\times} \to G_m \times G_n \cong (\mathbb{Z}/m\mathbb{Z})^{\times} \times (\mathbb{Z}/n\mathbb{Z})^{\times}$. Since (m,n) = 1 by Chinese remainder theorem ι is an isomorphism. We conclude by Theorem 2.7.

Lemma 4.16. Let F be a field containing a primitive n-th root of unity. Then

$$\sum_{\zeta \in \mu_n^{\text{prim}}} \zeta = \mu(n), \quad \prod_{\zeta \in \mu_n^{\text{prim}}} \zeta = \begin{cases} 1 & n \neq 2, \\ -1 & n = 2. \end{cases}$$

where μ_n^{prim} denotes the set of primitive n-th root of unity in F and $\mu(n)$ is the Möbius function.

Proof. Let $f(n) = \sum_{\zeta \in \mu_n^{\text{prim}}} \zeta$. Then

$$\sum_{d|n} f(d) = \sum_{\zeta \in \mu_n} \zeta = \iota(n)$$

for the definition of ι , see Theorem B.4. We see that $f(n) = \mu(n)$ by the definition of Möbius function.

Theorem 4.17. Let F be a field and $E = F(\zeta_n)$, where ζ_n is a primitive n-th root of unity, satisfying $[E:F] = \varphi(n)$. Then $\mu_n^{\text{prim}}(E)$ is F-linearly independent if and only if n is square-free.

Proof. \Rightarrow : Assume that n is not square-free then $\mu(n) = 0$. By above lemma we see that $\sum_{\zeta \in \mu_n^{\text{Prim}}(E)} \zeta = \mu(n) = 0$, thus $\mu_n^{\text{prim}}(E)$ is not F-linearly independent.

 \Leftarrow : Since n is square-free, decompose n as $n=p_1p_2...p_k$ with $p_i \neq p_j, i \neq j$. We make induction on k. For k=1, that is, n=p is a prime, we know that $[F(\zeta_p):F]=\varphi(p)=p-1$. Since $(1,\zeta_p,\zeta_p^2,...,\zeta_p^{p-2})$ is linearly independent, $(\zeta_p,\zeta_p^2,...,\zeta_p^{p-2},\zeta_p^{p-1})$ must also be linearly independent. Now our conclusion follows from the fact the $\mu_m^{\text{prim}}\mu_n^{\text{prim}}=\mu_m^{\text{prim}}$ if (m,n)=1.

4.3 Hilbert's theorem 90

Lemma 4.18. Let E/F be a finite Galois extension and let G = Gal(E/F). For any $\beta \in E$, $\operatorname{tr}_{E/F}(\sigma(\beta) - \beta) = 0$. For any $\beta \in E^{\times}$, $N_{E/F}(\sigma(\beta)/\beta) = 1$.

Proof. Direct from Corollary 1.45.

A natural question is to ask whether the reverse direction of the lemma is true.

Definition 4.19. Let E/F be a Galois extension. We say that E/F is

- abelian, if Gal(E/F) is an abelian group,
- cyclic, if Gal(E/F) is a cyclic group.

An abelian extension E/F is called of **exponent** n if Gal(E/F) is a group of exponent n.

Theorem 4.20 (Hilbert's Theorem 90). Let E/F be a finite cyclic extension and let $\sigma \in Gal(E/F)$ be a generator.

- 1. If $\alpha \in E$ satisfies $\operatorname{tr}_{E/F}(\alpha) = 0$, then $\alpha = \sigma(\beta) \beta$ for some $\beta \in E^{\times}$.
- 2. If $\alpha \in E^{\times}$ satisfies $N_{E/F}(\alpha) = 1$, then $\alpha = \sigma(\beta)/\beta$ for some $\beta \in E^{\times}$.

We will use some terminology from group cohomology, see Appendix C.

Lemma 4.21. Let $G = \langle \sigma \rangle$ be a cyclic group of order n. Then we have an isomorphism $Z^1(G, M) \xrightarrow{\sim} \operatorname{Ker}(N)$, where $N : M \to M$ is defined by $N(m) = \sum_{g \in G} gm$. The isomorphism moreover induces an isomorphism $H^1(G, M) \cong \operatorname{Ker}(N)/\operatorname{Im}(\sigma - \operatorname{Id})$.

For M=E where E/F is a cyclic Galois extension, then we have $N=\operatorname{tr}_{E/F}$. For $M=E^{\times}$ we have $N=N_{E/F}$. So we have reduced Hilbert's Theorem 90 to the following theorem.

Theorem 4.22. Let E/F be a finite Galois extension and let G = Gal(E/F). Then $H^1(G, E) = 0$ and $H^1(G, E^{\times}) = 1$.

Proof. Let $f: G \to E^{\times}$ be a crossed homomorphism. Note that this means $f(\sigma\tau) = f(\sigma)\sigma(f(\tau))$ for all $\sigma, \tau \in G$. Apply Theorem 1.46 to $\Gamma = E^{\times}$, $\sum_{\tau \in G} f(\tau)\tau : E^{\times} \to E$ is not the zero map. There exists $x \in E^{\times}$ such that $y := \sum_{\tau \in G} f(\tau)\tau(x) \neq 0$. Then, for every $\sigma \in G$,

$$\sigma(y) = \sum_{\tau \in G} \sigma(f(\tau)) \sigma \tau(x) = \sum_{\tau \in G} f(\sigma\tau) f(\sigma)^{-1} \sigma \tau(x) = f(\sigma)^{-1} y.$$

In other words, $f(\sigma) = \sigma(y^{-1})/y^{-1}$.

4.4 Cyclic extensions

Let F be a field containing a primitive n-th root of unity with $n \geq 2$, and write μ_n for the group of n-th roots of unity in F. Then μ_n is a cyclic subgroup of F^{\times} of order n with generator, say, ζ . In this section we classify the cyclic extensions of degree n of F.

Consider a field $E = F(\alpha)$ generated by an element α whose n-th power (but no smaller power) is in F. Then α is a root of $X^n - a$ with $a \notin F^{\times n}$.

Lemma 4.23. The extension $F(\alpha)/F$ is Galois. The Galois group is cyclic and is isomorphic to μ_n .

Proof. The remaining roots are the elements $\zeta^i \alpha$, $1 \le i \le n-1$. Since these all lie in E, E is a Galois extension. For every $\sigma \in G = \text{Gal}(E/F)$, $\sigma(\alpha)$ is also a root of $X^n - a$, and so $\sigma(\alpha) = \zeta^i \alpha$ for some i. Hence $\sigma(\alpha)/\alpha \in \mu_n$. The map

$$G \to \mu_n, \quad \sigma \mapsto \sigma(\alpha)/\alpha$$

is a homomorphism. It is injective because α generates E over F. If it is not surjective then $\alpha^d \in F$ for some d|n,d < n which leads to a contradiction. \square

The converse of the above lemma is also true, thus we have a complete understanding of cyclic extensions:

Proposition 4.24. Let F be a field containing a primitive n-th root of unity with $n \geq 2$. Let E be a Galois extension of F with cyclic Galois group of order n, then $E = F(\alpha)$ for some α with $\alpha^n \in F$ and no smaller powers of α lies in F.

Proof. Let σ generate G and let ζ generate μ_n . As $1, \sigma, ..., \sigma^{n-1}$ are distinct homomorphisms $F^{\times} \to F^{\times}$, Theorem 1.46 shows that $\sum_{i=0}^{n-1} \zeta^i \sigma^i$ are distinct homomorphisms is not the zero function, and so there is a γ such that $\alpha := \sum \zeta^i \sigma^i \gamma \neq 0$. Now $\sigma \alpha = \zeta^{-1} \alpha$.

4.5 Kummer theory and Artin-Schreier theory

Let F be a field containing a primitive n-th root of unity and E/F be a finite Galois extension with Galois group G. From the exact sequence

$$1 \to \mu_n \longrightarrow E^{\times} \longrightarrow E^{\times n} \to 1$$

we obtain a cohomology sequence

$$1 \to \mu_n \longrightarrow F^{\times} \longrightarrow F^{\times} \cap E^{\times n} \to H^1(G, \mu_n) \to 1$$

Thus we obtain an isomorphism

$$F^{\times} \cap E^{\times n}/F^{\times n} \to \text{hom}(G, \mu_n).$$

Theorem 4.25 (Classical Kummer theory). The map

$$E \mapsto F^{\times} \cap E^{\times n}$$

defines a one-to-one correspondence between the sets of

- 1. finite abelian extensions of F of exponent n contained in some fixed algebraic closure Ω of F, and
- 2. subgroups B of F^{\times} containing $F^{\times n}$ as a subgroup of finite index.

The extension corresponding to B is $F[B^{1/n}]$, the smallest subfield of Ω containing F and an n-th root of each element of B.

Let F be a field of characteristic p > 1. Let E/F be a finite Galois extension with Galois group G. Let $P(X) = X^p - X$. We have a short exact sequence of G-modules

$$0 \to \mathbb{F}_p \to E \xrightarrow{P} P(E) \to 0$$

which induces the long exact sequence

$$0 \to \mathbb{F}_p \to F \xrightarrow{P} P(E) \cap F \to H^1(G, \mathbb{F}_p) \to H^1(G, E) = 0.$$

Theorem 4.26 (Artin-Schreier theory). Let F^{sep} be a separable closure of F. Then the map $E \mapsto P(E) \cap F$ induces a bijective correspondence between

- 1. E/F finite separable abelian extension of exponent p
- 2. Subgroups B of F containing P(F).

The other direction of this correspondence is given by

$$B \mapsto F(P^{-1}(\Delta)).$$

Example 4.27. For any $a \in \mathbb{F}_p^{\times}$, $P(X) = X^p - X - a$ is irreducible in $\mathbb{F}_p(X)$. If α is a root of P, then $\alpha, \alpha + 1, ..., \alpha + p - 1$ are p distinct roots of P(X), and so $\mathbb{F}_p(\alpha)$ is the splitting field of P(X). The Galois group $\operatorname{Gal}(\mathbb{F}_p(\alpha)/\mathbb{F}_p)$ is cyclic which is generated by $\sigma : \alpha \mapsto \alpha + 1$.

4.6 Solvablity by radicals

Recall that a group G is **solvable** if there exists a composition series $G = G_0 > G_1 > ... > G_m = 1$ such that $G_{i+1} \triangleleft G_i$ has abelian quotient.

Definition 4.28. Let E/F be a finite separable extension.

- 1. We say that E/F is a **radical** extension if there exists a tower of extensions $F = E_0 \subset E_1 \subset ... \subset E_m$ such that $E \subset E_m$ and that for each $0 \le i \le m-1$, $E_{i+1} = E_i(\alpha)$, where one of the following holds
 - (a.) α is a root of $X^n a$, $a \in E_i^{\times}$ and $\operatorname{char}(F) \nmid n$;
 - (b.) α is a root of $X^p X a$, $a \in E_i$ and $p = \operatorname{char}(F) > 0$.
- 2. We say that E/F is a **solvable** extension if Gal(K/F) is a solvable group, where K/F denote the Galois closure of E/F.

Theorem 4.29 (É.Galois). A finite separable extension E/F is solvable if and only if it is radical.

A Profinite groups

A.1 Topological groups

Definition A.1. A **topological group** G is a group G equipped with a topological structure such that the multiplication map $m: G \times G \to G$ and the inverse map $i: G \to G$ are both continuous.

Definition A.2. Let TopGrp be the category of topological groups and continuous group homomorphisms.

Lemma A.3. The left translation $l_g: h \mapsto gh$ and the right translation map $r_g: h \mapsto hg$ are both auto-homeomorphisms of G for each $g \in G$.

By the lemma, the topology structure of G is completely determined by a neighbourhood basis of the neutral element 1.

Lemma A.4. Let G be a topological group, TFAE

- 1. G is Hausdorff,
- 2. $\{1\} \subset G$ is a closed subset,
- 3. $\bigcap_{1 \in U, U \text{ open}} U = \{1\}.$

Lemma A.5. Let G be a topological group. Then

- 1. If $H \leq G$ is a topological subgroup and $U \subset H$ with U open, then H is open.
- 2. Any open subgroup of G is closed and any closed subgroup of G of finite index is open.
- 3. Any open subgroup H of a compact topological group G has finite index.

Let I be a category and $I^{\text{op}} \to \text{TopGrp}$ be a functor. Denote the limit of the functor by $\varprojlim_i G_i$. Since any limit is an equalizer of a product, we can view $\varprojlim_i G_i$ as a sub-topological group of the product $\prod_{i \in I} G_i$. We denote the projections $\varprojlim_i G_i \to G_k$ by p_k .

Lemma A.6. The topological group $\varprojlim_i G_i$ has a neighbourhood basis at 1 of the following form:

$$\mathcal{U}_{I_0} = \bigcap_{i \in I_0} p_i^{-1}(U_i)$$

where $I_0 \subset I$ is a finite subset and $1 \in U_i$ is open in G_i . If I is filtered, it suffices to take the upper bound j of I_0 .

Proof. This is simply the definition of product topology.

A.2 Profinite groups

Definition A.7. A topological group is called **profinite** if it has the form $\lim_{i \in I} G_i$ such that I is a filtered category and G_i is a finite group equipped with the discrete topology.

Proposition A.8. A group is profinite if and only if it is compact Hausdorff and totally disconnected.

Proof. " \Rightarrow " is easy. Each G_i is compact, Hausdorff, and totally disconnected. Thus so is $\prod_{i \in I} G_i$ and its closed subset $\varprojlim_{i \in I} G_i$.

"\(\in \)" is much more difficult. Since G is totally disconnected and locally compact, the open subgroups of G form a base of neighbourhoods of 1. Such a subgroup U has finite index in G since G is compact; hence its conjugates gUg^{-1} are finite in number and their intersection V is both normal and open in G. Such V's are thus a base of neighbourhoods of 1; the map $G \to \varprojlim G/V$ is injective, continuous and its image is dense; a compactness argument then shows that it is an isomorphism.

B Möbius inversion formula

Definition B.1. An arithmetic function is a function $f: \mathbb{N} \to \mathbb{C}$.

Definition B.2. Let f, g be arithmetic functions. Their **convolution** f * g is defined as

$$(f * g)(n) := \sum_{ij=n} f(i)g(j)$$

Theorem B.3. The set of arithmetic functions form an commutative monoid with convolution being the multiplication map.

Proof. Commutativity and associativity are direct to check. The unit is defined as

$$\iota(n) := \begin{cases} 0, & \text{if } n \neq 1\\ 1, & \text{if } n = 1 \end{cases}$$

Now let u be the constant arithmetic function valued at 1, i.e. u(n) = 1 for all $n \in \mathbb{N}$.

Theorem B.4. u is an invertible arithmetic function. Its inverse is called the *Möbius function*, which is denoted by μ .

Proof. Let $n = p_1^{k_1} ... p_m^{k_m}$ be the prime decomposition of n. Define μ as follows:

$$\mu(n) = \begin{cases} 1 & \text{if } n = 1, \\ (-1)^m & \text{if } k_i = 1 \ \forall i, \\ 0 & \text{otherwise.} \end{cases}$$

Now we show that $u*\mu=\iota$. That is $\sum_{d|n}\mu(d)=\iota(n)$. When n=1 this is obvious. When n>1 we write n as $n=p_1^{k_1}...p_m^{k_m}$ then we have

$$\begin{split} \sum_{d|n} \mu(d) &= \mu(1) + (\mu(p_1) + ...\mu(p_m)) + \sum_{i < j} \mu(p_i p_j) + ... + \mu(p_1 ... p_m) \\ &= C_m^0 + (-1)C_m^1 + ... + C_m^m (-1)^m \\ &= (1-1)^m = 0. \end{split}$$

Corollary B.5 (Möbius inversion formula). Let f, g be arithmetic functions then $f = g * u \Leftrightarrow g = f * \mu$. More explicitly we have $f(n) = \sum_{d|n} g(d) \Leftrightarrow g(n) = \sum_{d|n} f(d)\mu(n/d)$.

Proof. It is a simple translation of the above theorem.

C Group cohomology

Let G be a group, and A a left G-module. Let $C^n(G,A)$ be the abelian group of set maps $\hom_{\operatorname{Set}}(G^n,A)$ and $C^0(G,A)=A$, with coface maps $d^n:C^n(G,A)\to C^{n+1}(G,A)$ defined by

$$(d^n f)(g_1, ..., g_{n+1}) = g_1 f(g_2, ..., g_{n+1}) + \sum_{i=1}^n (-1)^{i+1} f(g_1, ..., g_i g_{i+1}, ..., g_{n+1}) + (-1)^{n+1} f(g_1, ..., g_n)$$

It can be easily checked that $d^{i+1} \circ d^i = 0$. Thus we can talk about its cohomology group. For our purpose we only consider $H^1(G,A)$. Let $Z^1(C,A) = \operatorname{Ker}(d^1)$ and $B^1(C,A) = \operatorname{Im}(d^0)$. Elements of $Z^1(C,A)$ are called **crossed homomorphisms**. They satisfy

$$f(\sigma\tau) = f(\sigma) + \sigma f(\tau)$$

for all $\sigma, \tau \in G$. A crossed homomorphism f is called **principal** if it lies in $B^1(C,A)$, i.e. it has the form $f(\tau) = \tau m - m$ for some $m \in A$. The first cohomology group $H^1(G,A)$ is simply $Z^1(C,A)/B^1(C,A)$.