Isomorphism Theorems

Daniel Rostovtsev Date: October 30, 2017

Kernel Subgroup Lemma

Let $\varphi: G \to H$ be a homomorphism. $\ker \varphi$ is a subgroup of G.

Proof. $\ker \varphi$ is a subgroup of G if $\ker \varphi$ contains the identity, and is closed under both multiplication and inverses. $e \in \ker \varphi$ since $\varphi(e) = \varphi(e)\varphi(e) \equiv \varphi(e) = e'$. $\ker \varphi$ is closed under multiplication since if $g, h \in \ker \varphi$, then $\varphi(gh) = \varphi(g)\varphi(h) = e'$. Lastly, if $g \in \ker \varphi$, then $g^{-1} \in \ker \varphi$ since if $g \in \ker \varphi$, then $\varphi(g^{-1}g) = \varphi(g^{-1})\varphi(g) = e'$ and $\varphi(g) = e'$, so $\varphi(g^{-1}) = e$.

Kernel Bijection Lemma

Let $\varphi: G \to H$ be a homomorphism. If $\ker \varphi = \{e\}$, then φ is an isomorphism between G and $\varphi[G] \subseteq H$.

Proof. To show that φ is one to one, it must be shown that $\forall h \in \varphi[G], \varphi(g_1) = \varphi(g_2) = h \implies g_1 = g_2$.

$$\varphi(g_1) = \varphi(g_2) \implies \varphi(g_1)\varphi(g_2)^{-1} = e' \implies \varphi(g_1g_2^{-1}) = e' \implies g_1g_2^{-1} \in \ker \varphi$$

Since $\ker \varphi = \{e\}$, it must follow that $g_1g_2^{-1} = e$, and thus $g_1 = g_2$. φ is onto $\varphi[G]$ by definition so φ is an isomorphism between G and $\varphi[G]$ when $\ker \varphi = \{e\}$.

First Isomorphism Theorem

Let $\varphi: G \to G'$ be a homomorphism, and $H \leq G$. If $\ker \varphi = H$, then $G/H \cong G'$.

Proof. Let the map $\mu: G/H \to G'$ be defined by $\mu(gH) = \varphi(g)$. μ is a homomorphism:

$$\mu(g_1H)\mu(g_2H) = \varphi(g_1)\varphi(g_2) = \varphi(g_1g_2) = \mu(g_1g_2H) : \varphi$$
 is a homomorphism

If ker μ is equal to the identity in G/H, or eH, then μ is an isomorphism since it is defined for all $gH \in G/H$. By definition, ker $\mu = \{gH \in G/H : \mu(gH) = \mu(eH) = \varphi(e)\}$, so ker $\mu = \{gH \in G/H : g \in \ker \varphi\}$. Since it is given that ker $\varphi = H$, ker $\mu = gH \in G/H : g \in H = \{eH\}$. Thus G' and G/H are isomorphic. \square

Second Isomorphism Theorem

If
$$H, K \leq G$$
, and $K \leq G$, then $\frac{HK}{K} \cong \frac{H}{H \cap K}$.

Proof. Let $\varphi: H \to HK/K$ be a map defined by $\varphi(h) = hK$. Then, because K is normal in G, φ is a homomorphism, as $\varphi(h_1h_2) = h_1h_2K = (h_1K)(h_2K) = \varphi(h_1)\varphi(h_2)$. Furthermore, if $\ker \varphi = H \cap K$, then by the first isomorphism theorem, $HK/K \cong H/(H \cap K)$.

$$\ker \varphi = \{h \in H : \varphi(h) = \varphi(e)\} = \{h \in H : hK = H\} = \{h \in H : h \in K\} = H \cap K$$

Third Isomorphism Theorem

Let
$$H, K \leq G$$
 and $K \leq H$. Then $\frac{G}{H} \cong \frac{G/K}{H/K}$.

Proof. Let $\varphi:G/K\to G/H$ be the map $\varphi(gK)=gH$. By the first isomorphism theorem, if φ is a homomorphism and $\ker\varphi$ is equal to H/K, then $G/H\cong \frac{G/K}{H/K}$.

$$\varphi(g_1 K g_2 K) = \varphi(g_1 g_2 K) = g_1 g_2 H = g_1 H g_2 H = \varphi(g_1 K) \varphi(g_2 K)$$

$$\ker \varphi = \{ gK : \varphi(gK) = H \} = \{ gK \in G/K : h \in H \} = \{ hK : h \in H \} = H/K$$

Homomorphism Subgroup Lemma

Let $\varphi: G \to G'$ be a homomorphism, $H \leq G$ and $H' \leq G'$. Then $\varphi[H] \leq G'$ and $\varphi^{-1}[H'] \leq G'$.

Proof. For a subset to be a subgroup, that subgroup must contain the identity, and be closed under both multiplication and inverses. To show that $\varphi[H] \leq G'$:

$$e' \in \varphi[H] : \varphi[H] \ni \varphi(e) = e'$$

$$g', h' \in \varphi[H] \implies g'h' \in \varphi[H]$$
:

$$g',h'\in\varphi[H]\equiv\varphi(g),\varphi(h)\in\varphi[H] \implies g,h\in H \implies gh\in H \ :: \ H \ \text{is a group}$$

$$\implies \varphi(gh)\in\varphi[H]\equiv\varphi(g)\varphi(h)\in\varphi[H] \ :: \ \varphi \ \text{is a homomorphism}$$

$$\implies g'h'\in\varphi[H]$$

$$g' \in \varphi[H] \implies g'^{-1} \in \varphi[H]$$
:

$$g' \in \varphi[H] \equiv \varphi(g) \in \varphi[H] \implies g \in H \implies g^{-1} \in H$$
$$\implies \varphi(g^{-1}) \in \varphi[H] \implies \varphi(g)^{-1} \in \varphi[H]$$
$$\implies g'^{-1} \in \varphi[H]$$

Now to show that $\varphi^{-1}[H'] \leq G$. Note that if $\varphi(g) = g'$, then $\varphi^{-1}(g') = g \ker \varphi$.

$$e \in \varphi^{-1}[H'] :: \varphi^{-1}[H'] \ni \varphi^{-1}(e') = \ker \varphi$$

$$g,h \in \varphi^{-1}[H'] \implies gh \in \varphi^{-1}[H']$$

$$g, h \in \varphi^{-1}[H'] \implies \varphi(g), \varphi(h) \in H' \implies \varphi(g)\varphi(h) \in H' \implies \varphi(gh) \in H'$$

$$\implies gh \in \varphi^{-1}[H']$$

$$g\in\varphi^{-1}[H']\implies g^{-1}\in\varphi[H']\colon$$

$$\begin{split} g \in \varphi^{-1}[H'] \implies \varphi(g) \in H' \implies \varphi(g)^{-1} \in H' \implies \varphi(g^{-1}) \in H' \\ \implies g^{-1} \in \varphi^{-1}[H'] \end{split}$$

Fourth Isomorphism Theorem

Let G be a group and let N be a normal subgroup of G. Then there is a bijection from the set of subgroups A of G which contain N onto the set of subgroups $\overline{A} = A/N$ of G/N. In particular, every subgroup of \overline{G} is of the form A/N for some subgroup A of G containing N. (statement but not proof from Dummit and Foote III)

Proof. Let $\varphi: G \to G/N$ such that $\varphi(g) = gN$ and $N \subseteq G$. Consider the set of subgroups of G containing N, denoted \mathbb{A} , and the subgroups of G/N, $\overline{\mathbb{A}}$, such that:

$$\mathbb{A} = \{A \in G : N \le A \le G\} \text{ and } \overline{\mathbb{A}} = \{\overline{A} \in G/N : A \le G/N\}$$

Then φ induces a bijection between \mathbb{A} and $\overline{\mathbb{A}}$. However simply showing that φ is one-to-one and onto is not enough to show that φ is a bijection, because it is not clear that $\varphi[A] \in \overline{\mathbb{A}}$ for all $A \in \mathbb{A}$.

Showing that φ is one to one, or that $\varphi[A] = \varphi[A'] \iff A = A'$:

$$\varphi^{-1}\varphi[A] = \bigcup_{a \in A} \varphi^{-1}\varphi(a) = \bigcup_{a \in A} a \ker \varphi = A \ker \varphi = A : \ker \varphi = N \le A$$

$$\implies \varphi^{-1}\varphi[A] = A' \iff A = A'$$

$$\implies \varphi[A] = \varphi[A] \iff A = A'$$

For φ to be onto, there must be some $A \in \mathbb{A}$ such that $\varphi[A] = \overline{A}$ for all $\overline{A} \in \overline{\mathbb{A}}$. By the homomorphism subgroup lemma below, this A is just $\varphi^{-1}[\overline{A}]$ for any $\overline{A} \in \overline{\mathbb{A}}$. Lastly, the homomorphism subgroup lemma below also shows that $\varphi[A] \in \overline{\mathbb{A}}$ for all $A \in \mathbb{A}$.

This bijection has the following properties: for all $A, B \leq G$, with $N \leq A$ and $N \leq B$:

(i)
$$A \leq B \iff \overline{A} \leq \overline{B}$$

Proof. Showing that $A \leq B \iff \overline{A} \leq \overline{B}$ is the same as showing that $A \leq B \iff \varphi[A] \leq \varphi[B]$.

$$A \leq B \iff A \subseteq B :: A \text{ and } B \text{ are subgroups of } G$$

$$\iff \{aN : a \in A\} \subseteq \{bN : b \in B\}$$

$$\iff \varphi[A] \subseteq \varphi[B]$$

$$\iff \varphi[A] \leq \varphi[B] \text{because } \varphi[A] \text{ and } \varphi[B] \text{ are subgroups of } G/N$$

$$\iff \overline{A} < \overline{B}$$

(ii)
$$A \leq B \implies [B:A] = [\overline{B}:\overline{A}]$$

Proof. By explicitly counting the cosets in G and G/N:

$$\begin{split} [\overline{B}:\overline{A}] &= |\{(\overline{b})\overline{A}:\overline{b}\in\overline{B}\}| \\ &= |\{bN\bigcup_{a\in A}aN:b\in B\}| \\ &= |\{bNAN:b\in B\}| = |\{bAN:b\in B\}| = |\{bA:b\in B\}| \\ &= [B:A] \end{split}$$

(iii)
$$\overline{\langle A, B \rangle} = \langle \overline{A}, \overline{B} \rangle$$

Proof. By direct computation:

$$\overline{\langle A,B\rangle} = \overline{AB} = \{abN: a,b \in A,B\} = \{(aN)(bN): a,b \in A,B\} = \overline{A}\,\overline{B} = \langle \overline{A},\overline{B}\rangle \qquad \Box$$

(iv) $\overline{A \cap B} = \overline{A} \cap \overline{B}$

 ${\it Proof.}$ By direct computation:

$$\overline{A} \cap \overline{B} = \{aN : a \in A\} \cap \{bN : b \in B\} = \{xN : x \in A, x \in B\} = \{xN : x \in A \cap B\} = \overline{A \cap B}$$

(v) $A \subseteq G \iff \overline{A} \subseteq \overline{G}$

Proof. Showing $A \subseteq G \implies \overline{A} \subseteq \overline{G}$ and $\overline{A} \subseteq \overline{G} \implies A \subseteq G$ separately:

$$\begin{array}{cccc} A \unlhd G \implies \overline{A} \unlhd \overline{G} :: A \unlhd G \implies gag^{-1} \in A \\ & \Longrightarrow (gN)(aN)(g^{-1}N) \subseteq gag^{-1}N \in \overline{A} \\ & \Longrightarrow \overline{A} \lhd \overline{B} \end{array}$$

$$\overline{A} \unlhd \overline{G} \implies A \unlhd G :: \overline{A} \unlhd \overline{G} \implies (gN)(aN)(g^{-1}N) \in \overline{A}$$

$$\implies gag^{-1} \in A$$

$$\implies A \unlhd G$$