Recitation 8

John Chilton

August 1, 2007

MODEXP (1/2)

$$MODEXP = \{a, b, c, p \mid a^b \mod p = c \mod p\}$$

Show $MODEXP \in P$

MODEXP (2/2)

$$a^b \mod p = \begin{cases} 1 & b = 0 \\ ((a^{\frac{b}{2}}) \mod p)^2 \mod p & \text{b is even} \\ (a \mod p)(a^{b-1} \mod p) \mod p & \text{b is odd} \end{cases}$$

MODEXP (2/2)

```
a^b \mod p = \begin{cases} 1\\ ((a^{\frac{b}{2}}) \mod p)^2 \mod p & \text{b is even} \\ (a \mod p)(a^{b-1} \mod p) \mod p & \text{b is odd} \end{cases}
 (define (expmod a b p)
    (cond
       ((= b 0) 1)
       ((even? b)
         (mod (square (expmod a (/ b 2) p)) p))
       (else
         (mod (* (mod a p) (expmod a (- b 1) p)) p))))
```

MODEXP (2/2)

```
a^b \mod p = \begin{cases} 1\\ ((a^{\frac{b}{2}}) \mod p)^2 \mod p & \text{b is even} \end{cases}
(a \mod p)(a^{b-1} \mod p) \mod p \quad \text{b is odd}
 (define (expmod a b p)
    (cond
       ((= b 0) 1)
       ((even? b)
        (mod (square (expmod a (/ b 2) p)) p))
       (else
        (mod (* (mod a p) (expmod a (- b 1) p)) p))))
 (define (in-mod-exp? a b c p)
    (= (expmod a b p) (mod c p)))
```

Problem 7.14

 B_i indicates whether $w_{1...i}$ be decomposed so that $w_{1...i} \in A^*$.

Problem 7.14

 B_i indicates whether $w_{1...i}$ be decomposed so that $w_{1...i} \in A^*$.

i	<i>w</i> ₁	W ₂	W3	W4	W ₅	w ₆	W ₇	<i>W</i> 8	 w_{n-1}	Wn
B_i	0	1	1	0	1	0	?			

Problem 7.14

 B_i indicates whether $w_{1...i}$ be decomposed so that $w_{1...i} \in A^*$.

i	w_1	W ₂	W3	W4	W ₅	W ₆	W ₇	<i>W</i> 8	 W_{n-1}	Wn
Bi	0	1	1	0	1	0	?			

Define *computeB(i)*

```
If w_1 \ldots w_i \in A, return 1
For k from 1 to n-1
If B_k and w_{k+1} \ldots w_i \in A, return 1
return 0
```

 B_i indicates whether $w_{1...i}$ be decomposed so that $w_{1...i} \in A^*$.

i	w_1	W ₂	W3	W4	W ₅	W ₆	W ₇	<i>W</i> 8	 W_{n-1}	Wn
Bi	0	1	1	0	1	0	?			

If $w = \epsilon$, accept.

For i from 1 to n

 $B_i := computeB(i)$

Accept if $B_n = 1$, else reject.

Show UNARYSSUM is in P.

 $A \neq \{\}$ and $A \neq \Sigma^*$. So for any such A there exists strings x, y such that $x \in A$ and $y \notin A$.

 $A \neq \{\}$ and $A \neq \Sigma^*$. So for any such A there exists strings x, y such that $x \in A$ and $y \notin A$.

- ${\it S} = \quad {\rm On \ input} < \phi >$
 - 1. Determine if $\phi \in SAT$
 - 2. If yes, output x. If no, output y.

 $A \neq \{\}$ and $A \neq \Sigma^*$. So for any such A there exists strings x, y such that $x \in A$ and $y \notin A$.

- ${\cal S}={}$ On input $<\phi>$
 - 1. Determine if $\phi \in SAT$
 - 2. If yes, output x. If no, output y.

Hence $SAT \leq_p A$, and $A \in P \subseteq NP$, hence A is NP-complete.

$$S =$$
 On input $< \phi >$

- 1. Let y be variable not in ϕ
- 2. Output $\phi \wedge (y \vee \overline{y})$

Argue that it works.

Hence $SAT \leq_p DOUBLESAT$.

Show 2CNF is in P.

$$(x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor x_1 \lor \overline{x_2}) \land (x_1 \lor \overline{x_2} \lor x_3)$$

$$(x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor x_1 \lor \overline{x_2}) \land (x_1 \lor \overline{x_2} \lor x_3)$$

Replace each x_1 with another new variable.

$$(x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor x_1 \lor \overline{x_2}) \land (x_1 \lor \overline{x_2} \lor x_3)$$

Replace each x_1 with another new variable.

$$(x_{11} \vee x_{12} \vee x_2) \wedge (\overline{x_{13}} \vee x_{14} \vee \overline{x_2}) \wedge (x_{15} \vee \overline{x_2} \vee x_3)$$

$$(x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor x_1 \lor \overline{x_2}) \land (x_1 \lor \overline{x_2} \lor x_3)$$

Replace each x_1 with another new variable.

$$(x_{11} \lor x_{12} \lor x_2) \land (\overline{x_{13}} \lor x_{14} \lor \overline{x_2}) \land (x_{15} \lor \overline{x_2} \lor x_3)$$

Need to ensure x_{11}, \ldots, x_{15} have same truth value.

$$(x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor x_1 \lor \overline{x_2}) \land (x_1 \lor \overline{x_2} \lor x_3)$$

Replace each x_1 with another new variable.

$$(x_{11} \lor x_{12} \lor x_2) \land (\overline{x_{13}} \lor x_{14} \lor \overline{x_2}) \land (x_{15} \lor \overline{x_2} \lor x_3)$$

Need to ensure x_{11}, \ldots, x_{15} have same truth value.

$$(x_{11} \rightarrow x_{12}) \land (x_{12} \rightarrow x_{13}) \land (x_{13} \rightarrow x_{14}) \land (x_{14} \rightarrow x_{15}) \land (x_{15} \rightarrow x_{11})$$

$$(x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor x_1 \lor \overline{x_2}) \land (x_1 \lor \overline{x_2} \lor x_3)$$

Replace each x_1 with another new variable.

$$(x_{11} \lor x_{12} \lor x_2) \land (\overline{x_{13}} \lor x_{14} \lor \overline{x_2}) \land (x_{15} \lor \overline{x_2} \lor x_3)$$

Need to ensure x_{11}, \ldots, x_{15} have same truth value.

$$(x_{11} \rightarrow x_{12}) \land (x_{12} \rightarrow x_{13}) \land (x_{13} \rightarrow x_{14}) \land (x_{14} \rightarrow x_{15}) \land (x_{15} \rightarrow x_{11})$$

Which is equivelent to:

$$(x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor x_1 \lor \overline{x_2}) \land (x_1 \lor \overline{x_2} \lor x_3)$$

Replace each x_1 with another new variable.

$$(x_{11} \lor x_{12} \lor x_2) \land (\overline{x_{13}} \lor x_{14} \lor \overline{x_2}) \land (x_{15} \lor \overline{x_2} \lor x_3)$$

Need to ensure x_{11}, \ldots, x_{15} have same truth value.

$$(x_{11} \rightarrow x_{12}) \land (x_{12} \rightarrow x_{13}) \land (x_{13} \rightarrow x_{14}) \land (x_{14} \rightarrow x_{15}) \land (x_{15} \rightarrow x_{11})$$

Which is equivelent to:

$$\left(\overline{x_{11}} \vee x_{12}\right) \wedge \left(\overline{x_{12}} \vee x_{13}\right) \wedge \left(\overline{x_{13}} \vee x_{14}\right) \wedge \left(\overline{x_{14}} \vee x_{15}\right) \wedge \left(\overline{x_{15}} \vee x_{11}\right)$$

$$(y_1 \vee y_2 \vee y_3)$$

becomes

$$(y_1 \vee y_2 \vee z_i) \wedge (\overline{z_i} \vee y_3 \vee b)$$

Argue the original formula is satisfiable iff reduced formula is \neq satisfiable.

Show 3 COLOR is NP-complete.

If P = NP show how to find a satisfying assignment for ϕ in polynomial time.

If P = NP show how to find a satisfying assignment for ϕ in polynomial time.

BIG IDEA: If ϕ is satisfiable and $\phi \wedge x$ is satisfiable, then x can be true in a satisfying assignment.

If P = NP show how to find a satisfying assignment for ϕ in polynomial time.

BIG IDEA: If ϕ is satisfiable and $\phi \wedge x$ is satisfiable, then x can be true in a satisfying assignment.

- ${\cal S}={\rm On~input}<\phi>$
 - 1. If ϕ is not satisfiable, *reject*.
 - 2. For each x_i in ϕ :
 - 3. Determine x_i can be true in a satisifing assignment.
 - 4. If yes, $\phi := \phi \wedge x_i$ and set x_i as true in assignment
 - 5. If no, $\phi := \phi \wedge \overline{x_i}$ and set x_i as false in assignment