Hybrid Binary Networks

A. Prabhu, V. Batchu, R. Gajawada, A. Munagala, A. Namboodiri

Center For Visual Information Technology, KCIS, IIIT Hyderabad, India

Why compress neural networks?

- Reduce Neural Network size
- Lesser memory overhead, faster computation
- Lesser power consumption

Why Binarization?

- Extreme form of Quantization
- Layer weights and activations mapped to {-1, 1}
- Allows XNOR-Popcount operations for convolutional operations
- x58 speedup, x32 compression rate
- High accuracy losses! (Examples - XNOR Net)

Method	Compression
Finetuned SVD 2 [35]	2.6x
Circulant CNN 2 [7]	3.6x
Adaptive Fastfood-16 [35]	3.7x
Collins <i>et al</i> . [8]	4x
Zhou <i>et al</i> . [39]	4.3x
ACDC [27]	6.3x
Network Pruning [14]	9.1x
Deep Compression [14]	9.1x
GreBdec [38]	10.2x
Srinivas <i>et al</i> . [31]	10.3x
Guo <i>et al</i> . [13]	17.9x
Binarization	≈32x

Why binarize the entire network?

- Some convolutional Layers are highly computationally intensive, some others are not as intensive.
- Binarizing high-computation layers with low binarization error is much more useful than low-computation layers with high binarization errors.
- Our Contribution: Analyse *where* in the network it's useful to binarize activations, and binarize only those parts!

Binarization Metric (M)

- Two factors, E and NF $\mathbf{M} = \mathbf{E} + \gamma \cdot \frac{1}{\mathbf{NF}}$
- $\mathbf{E} = \frac{\|\mathbf{I} \mathbf{I_B}\|^2}{n}$ tells us how much informational loss on binarization
- ullet Higher ${\mathbb E}$ -> Binarization there becomes less useful
- NF (Number of Flops) indicates computational contribution of layer
- Higher NF -> Binarization becomes more useful
- All weights are binarized, we choose where to binarize inputs. Weight binarization does not affect accuracies, experimentally

Network Conversion Algorithm

Graphical Flow:

Results on Imagenet

- We perform experiments on Imagenet using AlexNet and ResNet-18 architectures, which are popularly used to benchmark performance of binary networks.
- We see a 4.9% and 3.6% increase in accuracy of our proposed models over the traditional FBin counterparts with a negligible increase in the number of FLOPs.

Model	Method	Accuracy		Memory	EL OD-
		Top-1	Top-5	Savings	FLOPs
	FPrec	57.1%	80.2%	1x	1135 (9.4x)
	WBin (BWN)	56.8%	79.4%	10.4x	780 (6.4x)
AlexNet	FBin (XNOR)	43.3%	68.4%	10.4x	121 (1x)
	Hybrid-1	48.6%	72.1%	10.4x	174 (1.4x)
	Hybrid-2	48.2%	71.9%	31.6x	174 (1.4x)
Increase	Hybrid vs FBin	+4.9%	+3.5%	+21.2x	+53 (+0.4x)
	FPrec	69.3%	89.2%	1x	1814 (13.5x)
ResNet-18	WBin (BWN)	60.8%	83.0%	13.4x	1030 (7.7x)
	FBin (XNOR)	51.2%	73.2%	13.4x	134 (1x)
	Hybrid-1	54.9%	77.9%	13.4x	359 (2.7x)
	Hybrid-2	54.8%	77.7%	31.2x	359 (2.7x)
Increase	Hybrid vs FBin	+3.6%	+4.5%	+17.8x	+225 (+1.7x)

Comparison with other approaches

- Outperforms nearly every binary/ternary network, while preserving almost maximal compression.
- Hybrid-2 records 47.4% accuracy on AlexNet,
 4.9% higher than XNOR-Net, the algorithm that we build upon.
- A 1.2% increase in accuracy as DoReFa-Net (2-bit activations), with hybrid 1-bit activations, with increased compression, similarly 1.6% higher accuracy than HTCBN with similar compression rates.
- Hybrid-2 records 54.8% accuracy on ResNet-18, 3.6% higher than XNOR-Net, 1.2% higher than HTCBN (2-bit activations).

Technique	Acc-Top1	Acc-Top5	W/I	Mem	FLOPs		
AlexNet							
BNN	39.5%	63.6%	1/1	32x	121 (1x)		
XNOR	43.3%	68.4%	1/1	10.4x	121 (1x)		
Hybrid-1	48.6%	71.7%	1/1	10.4x	174 (1.4x)		
Hybrid-2	48.2%	71.5%	1/1	31.6x	174 (1.4x)		
HTCBN	46.6%	71.1%	1/2	31.6x	780 (6.4x)		
DoReFa-Net	47.7%	-	1/2	10.4x	780 (6.4x)		
	Res-Net 18						
BNN	42.1%	67.1%	1/1	32x	134 (1x)		
XNOR	51.2%	73.2%	1/1	13.4x	134 (1x)		
Hybrid-1	54.9%	77.9%	1/1	13.4x	359 (2.7x)		
Hybrid-2	54.8%	77.7%	1/1	31.2x	359 (2.7x)		
HTCBN	53.6%	-	1/2	31.2x	1030 (7.7x)		

Experiments on Sketch datasets

- We also perform experiments on TU-Berlin and Sketchy datasets (one of the largest and most popular sketch datasets) and show significant improvements
- On Sketch-A-Net we observe a 13.5% and 15% improvement on TU-Berlin and Sketchy respectively.
- On ResNet-18 we observe a 5% and 5.1% improvement.

	Method	Accuracy			
Model		TU-Berlin	Sketchy	Memory Savings	FLOPs (in M)
	FPrec	72.9%	85.9%	1x	608 (7.8x)
Cleately A Net	WBin (BWN)	73%	85.6%	29.2x	406 (5.2x)
Sketch-A-Net	FBin (XNOR)	59.6%	68.6%	19.7x	78 (1x)
	Hybrid	73.1%	83.6%	29.2x	85 (1.1x)
Increase	Hybrid vs FBin	+13.5%	+15.0%	+9.5%	+7 (+0.1x)
ResNet-18	FPrec	74.1%	88.7%	1x	1814 (13.5x)
	WBin (BWN)	73.4%	89.3%	31.2x	1030 (7.7x)
	FBin (XNOR)	68.8%	82.8%	31.2x	134 (1x)
	Hybrid	73.8%	87.9%	31.2x	359 (2.7x)
Increase	Hybrid vs FBin	+5.0%	+5.1%	-	+225 (+1.7x)
Sketch-A-Net	FPrec	72.9%	85.9%	1x	1135 (12.3x)
Squeezenet	FPrec	71.2%	86.5%	8x	610 (6.6x)
Squeezenet	WBin	66.7%	81.1%	23.7x	412 (4.5x)
Squeezenet	FBin	56.8%	66.0%	23.7x	92 (1x)
Squeezenet	Hybrid	64.8%	79.6%	23.7x	164 (1.8x)
Improvement	Hybrid vs FBin	+8.0%	+13.6%	-	+72 (+0.8x)

Effects of last layer weight binarization

- XNOR-Nets lose ~10% accuracy on last-layer weight binarization on Sketch-A-Net
- Other approaches too generally avoid last-layer binarization due to accuracy drops
- Our network loses only 1% accuracy on last-layer binarization

Model	BinType	Last Bin? Acc		Mem
Sketch-A-Net	FBin (XNOR)	No	59.6%	19.7x
		Yes	48.3%	29.2x
Sketch-A-Net	Hybrid	No	73.1%	19.7x
		Yes	72.0%	29.2x
Resnet-18	FBin (XNOR)	No	69.9%	13.4x
		Yes	68.8%	31.2x
Resnet-18	Hybrid	No	73.9%	13.4x
		Yes	73.8%	31.2x

Why hybrid models?

 Initially, small increases in the percentage of WeightBinConv layers improves the accuracy significantly in all models without much of an increase in the number of FLOPs.

Conclusions and Take-aways

- Selective binarization by our proposed metric strikes balance between performance, memory-savings and accuracy.
- This also gives a simple and successful way to binarize last-layer weights without significant accuracy drops enabling compression rates of nearly 32x!
- This approach can be used along with other compression techniques, e.g.
 SqueezeNet.
- We hope that this project encourages more investigations into working with binary networks for all the cool applications presented at WACV '18!

Thanks!

(Looking for a 6-12 month RAship/Internship! Please let me know there are any openings)

I'm available in the poster session. ameya.prabhu@research.iiit.ac.in