- 1. (40 points)Let B_t be a standard Brownian motion.
 - (a) show that

$$\int_0^t B_s ds = \int_0^t (t - s) dB_s$$

and then prove that $\int_0^t B_s ds \sim \mathcal{N}\left(0, \frac{t^3}{3}\right)$.

(b) Is

$$X_t = \begin{cases} 0 & t = 0\\ \frac{\sqrt{3}}{t} \int_0^t B_s ds & t > 0 \end{cases}$$

a standard Brownian motion? Justify you assertion.

2. (60 points) Let B_t be a standard Brownian motion. Suppose X_t follows the Brownian bridge process with SDE

$$\begin{cases} dX_t = \frac{y - X_t}{1 - t} dt + dB_t \\ X_1 = y \end{cases}$$

where the end value of X_t at t = 1 is y.

(a) Show that under the condition $X_0 = x$, we have for $0 \le t < 1$,

$$X_t = yt + (1-t)\left(x + \int_0^t \frac{1}{1-s} dB_s\right)$$

- (b) Using the above expression, find the mean and variance of X_t , given $X_0 = x$.
- (c) Show X_t follows a normal distribution.