UART 通信

Document Version Control							
Version	Date	Author	Changes				
1.0	2022.5.6	王雨霄	实现了 UART 通信协议				

一、功能概述

本设计对 UART 通信协议进行了 Verilog 实现,能够在不同的系统时钟频率下进行任意波特率通信(本设计中的通信波特率由系统时钟分频而来,使用者需根据波特率选取合适的系统时钟频率),支持数据位、校验位、停止位等数据传输格式的配置,能够与 AXIS 总线进行简单连接(未包含 AXIS 总线的 FIFO 功能)。

二、接口概述

图 1.在 VIVADO 中将设计导出为 IP 核

信号名称	功能				
clk	系统时钟				
rst_n	低电平异步复位信号				
tx_en	发送模块使能信号(高电平有效,tx_en置0时,发送模块不工作)				
data_in[7:0]					
data_in_valid	data_in[7:0]为待发送数据;另外两个信号的功能参考AXIS总线				
data_in_ready					
tx	FPGA端UART协议的TX发送口				
rx_en	接收模块使能信号(高电平有效,rx_en置0时,接收模块不工作)				
data_out[7:0]	data out[7.0]为拉收到的数据:data out valid的形象杂AVIC的统				
data_out_valid	- data_out[7:0]为接收到的数据;data_out_valid的功能参考AXIS总线				
check_flag	校验标志信号(若校验失败,check_flag被拉高,直至rx端有新数据到来;data_out_valid可作为				
rx	check_flag信号的有效性标志) FPGA端UART协议的RX接收口				
TX	T F G A 如何 O A A T I I I I I I A A T A T A T A T A T				

图 2.接口功能表

三、参数配置

1、system_clk

设定系统时钟频率(单位 Hz);例如系统时钟为50M Hz时,该参数设为50000000。

2、band_rate

设定串口通信波特率(单位 bits/s); UART 通信的常用波特率有 9600、115200 等。

3、data_bits

设定数据位的位宽(单位 bits),根据 UART 协议标准,该参数可在 5-8 取值。

本模块的对外数据接口 data_in、data_out 均为 8 bits 位宽, 当实际传输的数据位位宽低于 8 bits 时, data_in、data_out 均采取低位有效的原则, 例如当 data_bits=5 时, data_in、data_out 均按照如下格式传输数据:

bits	7	6	5	4	3	2	1	0	
value	0	0	0	data					

图 3. 数据接口格式

4、check_mode

设定校验模式:

check_mode=0——无校验位;

check_mode=1——偶校验位;

check_mode=2——奇校验位;

check_mode=3——固定 0 校验位;

check_mode=4——固定 1 校验位

5、stop_mode

设定停止位格式:

stop_mode=0——1 位停止位;

stop_mode=1——1.5 位停止位;

stop_mode=2——2 位停止位

图 4. 将设计导出为 IP 核后的参数配置界面