Ajuste mínimo cuadrático de curvas

Métodos Numéricos

Prof. Juan Alfredo Gómez Conferencia 19

Conferencia 20

Motivación

2 Ajuste lineal

3 Ajuste polinomial

Puntos de una función sujetos a perturbaciones

Polinomio de interpolación de Lagrange

Función linal con perturbaciones aleatorias

Comparación de ambas metodologías

Problema de mínimos cuadrados

Definición en el caso de una recta

Dada una colección de datos $\{(x_i,y_i)\}_{i=1}^m$ encontrar los coeficientes de la recta $y=a_0+a_1x$ que mejor aproxima esos datos de acuerdo a la norma cuadrática:

$$\min \to E_2(a_0, a_1) = \sum_{i=1}^m [y_i - (a_0 + a_1 x_i)]^2$$

Solución

Condiciones de optimalidad de primer orden:

$$0 = \frac{\partial}{\partial a_0} E_2(a_0, a_1) = 2 \sum_{i=1}^m (y_i - (a_0 + a_1 x_i)(-1))$$

$$0 = \frac{\partial}{\partial a_i} E_2(a_0, a_1) = 2 \sum_{i=1}^m (y_i - (a_0 + a_1 x_i)(-x_i))$$

Ecuación Normal

De las condiciones de optimalidad

$$2\sum_{i=1}^{m}(y_i-(a_0+a_1x_i)(-1) = 0$$

$$2\sum_{i=1}^{m}(y_{i}-(a_{0}+a_{1}x_{i})(-x_{i}) = 0$$

obtenemos la ecuación normal

$$\begin{bmatrix} \sum_{i=1}^{m} 1 & \sum_{i=1}^{m} x_i \\ \sum_{i=1}^{m} x_i & \sum_{i=1}^{m} x_i^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{m} y_i \\ \sum_{i=1}^{m} x_i y_i \end{bmatrix}$$

Solución por Cramer

$$a_0 = \frac{\left(\sum_{i=1}^{m} x_i^2\right) \left(\sum_{i=1}^{m} y_i\right) - \left(\sum_{i=1}^{m} x_i y_i\right) \left(\sum_{i=1}^{m} x_i\right)}{m\left(\sum_{i=1}^{m} x_i^2\right) - \left(\sum_{i=1}^{m} x_i\right)^2}$$

$$a_{1} = \frac{m(\sum_{i=1}^{m} x_{i} y_{i}) - (\sum_{i=1}^{m} x_{i})(\sum_{i=1}^{m} y_{i})}{m(\sum_{i=1}^{m} x_{i}^{2}) - (\sum_{i=1}^{m} x_{i})^{2}}$$

Ejemplo

Cálculos asociados

×i	Уi	x_i^2	×iyi	$m(x_i) = 1.538x_i - 0.36$	$[y_i - m(x_i)]^2$
1	1.3	1	1.3	1.18	0.01
2	3.5	4	7.0	2.72	0.61
3	4.2	9	12.6	4.25	0.00
4	5.0	16	20.0	5.79	0.63
5	7.0	25	35.0	7.33	0.11
6	8.8	36	52.8	8.87	0.00
7	10.1	49	70.7	10.41	0.09
8	12.5	64	100.0	11.94	0.31
9	13.0	81	117.0	13.48	0.23
10	15.6	100	156.0	15.02	0.34
55	81.0	385	572.4		$E_2(a_0,a_1)\approx 2.34474$

$$a_0 = \frac{\left(\sum_{i=1}^m x_i^2\right) \left(\sum_{i=1}^m y_i\right) - \left(\sum_{i=1}^m x_i y_i\right) \left(\sum_{i=1}^m x_i\right)}{m \left(\sum_{i=1}^m x_i^2\right) - \left(\sum_{i=1}^m x_i\right)^2} = \frac{385(81) - 55(572.4)}{10(385) - (55)^2} = -0.36$$

$$a_1 = \frac{m\left(\sum_{i=1}^{m} x_i y_i\right) - \left(\sum_{i=1}^{m} x_i\right)\left(\sum_{i=1}^{m} y_i\right)}{m\left(\sum_{i=1}^{m} x_i^2\right) - \left(\sum_{i=1}^{m} x_i\right)^2} = \frac{10(572.4) - 55(81)}{10(385) - (55)^2} = 1.538$$

Ejemplo de ajuste lineal

Otro ejemplo con ajuste lineal

Ahora ajustando una parábola

Comparación de los ajustes

Problema de mínimos cuadrados

Definición en el caso de una polinomios

Dada una colección de datos $\{(x_i,y_i)\}_{i=1}^m$ encontrar los coeficientes de una función polinomial

$$P_n(x) = a_0 + a_1 x + \cdots + a_n x^n$$

con grado n < m-1 que mejor aproxima los datos de acuerdo a la norma cuadrática:

$$\min \to E_2 = \sum_{i=1}^m [y_i - P_n(x_i)]^2 = \sum_{i=1}^m y_i - 2 \sum_{i=1}^m P_n(x_i) y_i + \sum_{i=1}^m (P_n(x_i))^2$$

Condiciones de optimalidad de primer orden:

$$0 = \frac{\partial E_2}{\partial a_i} = -2 \sum_{i=1}^m y_i x_i^j + 2 \sum_{k=0}^n a_k \sum_{i=1}^m x_i^{j+k}, \quad j = 0, \dots, n$$

Ecuaciones Normales

Reescribiendo las condiciones de optimalidad

$$-2\sum_{i=1}^{m} y_i x_i^j + 2\sum_{k=0}^{n} a_k \sum_{i=1}^{m} x_i^{j+k} = 0, \quad j = 0, \dots, n$$

obtenemos las Ecuaciones normales

$$\begin{bmatrix} \sum_{i=1}^{m} x_i^0 & \sum_{i=1}^{m} x_i^1 & \cdots & \sum_{i=1}^{m} x_i^n \\ \sum_{i=1}^{m} x_i^1 & \sum_{i=1}^{m} x_i^2 & \cdots & \sum_{i=1}^{m} x_i^{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i=1}^{m} x_i^n & \sum_{i=1}^{m} x_i^{n+1} & \cdots & \sum_{i=1}^{m} x_i^{2n} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{m} y_i x_i^0 \\ \sum_{i=1}^{m} y_i x_i^1 \\ \vdots \\ \sum_{i=1}^{m} y_i x_i^n \end{bmatrix}$$

Observación

Las ecuaciones normales en el caso de ajuste polinomial tienen solución única siempre que los x_i sean distintos.

Ejemplo de ajuste parabólico

Cálculos asociados

	x _i ²	×;³	×i ⁴	Уi	×iyi	$x_i^2 y_i$	$q(x_i)$
0.00	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000	1.0051
0.25	0.0625	0.0156	0.0039	1.2840	0.3210	0.0803	1.2740
0.50	0.2500	0.1250	0.0625	1.6487	0.8244	0.4122	1.6482
0.75	0.5625	0.4219	0.3164	2.1170	1.5878	1.1908	2.1279
1.00	1.0000	1.0000	1.0000	2.7183	2.7183	2.7183	2.7129
2.50	1.8750	1.5625	1.3828	8.7680	5.4514	4.4015	

Ecuaciones normales

$$5a_0 + 2.5a_1 + 1.875a_2 = 8.7680$$

 $2.5a_0 + 1.875a_1 + 1.5625a_2 = 5.4514$
 $1.875a_0 + 1.5625a_1 + 1.3828a_2 = 4.4015$

$$a_0 = 1.0051, \quad a_1 = 0.86468, \quad a_2 = 0.84316$$

 $q(x) = 1.0051 + 0.86468x + 0.84316x^2$

$$E_2 = \sum_{i=1}^{5} (y_i - q(x_i))^2 = 2.74 \cdot 10^{-4}$$

Ejemplo de ajuste polinomial

Ejercicios

Considere la siguiente tabla de valores:

x;	0	1	2	3	4	5	6
y;	-0.31466	-0.247833	-0.165179	-0.060498	0.076007	0.260594	0.521790

- Realice un ajuste lineal, cuadrático y cúbico
- Compare sus resultados.