

UNIVERSITÄT BERN

Using STATA® for Meta-analysis

Peter Francis Raguindin

Institute of Social and Preventive Medicine, Bern, Switzerland Swiss Paraplegic Research, Nottwil, Switzerland

peter.raguindin@ispm.unibe.ch

UNIVERSITÄT BERN

https://stata.ispm.ch/statainstallation/

Lessons learned

- Extremely challenging
- Process oriented
- Organization is key

 Helps develop your future research ideas

Meta-analysis

b UNIVERSITÄT BERN

A statistical analysis which combines the results of several independent studies considered by the analyst to be "combinable"

Stat Methods Med Res. 2012 Aug;21(4):409-26

- You will learn how to run meta-analysis on STATA (basic)
 - To structure your dataset
 - To install meta-analysis packages
 - To import and describe dataset
 - To compute for pooled estimates
- You will interpret the results and apply basic concepts of fixed-effect and random effect

STATA ®

	b
71	
W	

υ	
UN	IVERSITÄT
REI	D NI

Features	SPSS	SAS	Stata	JMP (SAS)	R	Python (Pandas)
Learning curve	Gradual	Pretty steep	Gradual	Gradual	Pretty steep	Steep
User interface	Point-and- click	Programming	Programming/ point-and- click	Point-and- click	Programming	Programming
Data manipulation	Strong	Very strong	Strong	Strong	Very strong	Strong
Data analysis	Very strong	Very strong Very strong Strong		Very strong	Strong	
Graphics	Good	Good	Very good	Very good	Excellent	Good
Cost	Expensive (perpetual, cost only with new version). Student disc.	Expensive (yearly renewal) Free student version, 2014	Affordable (perpetual, cost only with new version). Student disc.	Expensive (yearly renewal) Student disc.	Open source (free)	Open source (free)
Released	1968	1972	1985	1989	1995	2008

STATA ®

STATA ®

Fixed vs. random effect

Fixed effects vs Random effects

UNIVERSITÄT RERN

$$W = \frac{1}{V_i}$$

$$W = \frac{1}{V_i + \tau}$$

Fixed effect

Random effects

New Meta-analysis Interface

- Set-up
- Adjust the setting of your data
- Sets the type of analysis
- Cohen and Hedges (standardized)
- Glass delta (standardized with unequal variance)

New Meta-analysis Interface

b UNIVERSITÄT BERN

· Choosing your model

New Meta-analysis Interface

b UNIVERSITÄT BERN

· Choosing your model

Sample Study

www.nature.com/sc

Check for updates

b UNIVERSITÄT BERN

REVIEW ARTICLE OPEN

The neurological level of spinal cord injury and cardiovascular risk factors: a systematic review and meta-analysis

© The Author(s) 2021

STUDY DESIGN: Systematic review and meta-analysis.

OBJECTIVE: To determine the difference in cardiovascular risk factors (blood pressure, lipid profile, and markers of glucose metabolism and inflammation) according to the neurological level of spinal cord injury (SCI).

METHODS: We searched 5 electronic databases from inception until July 4, 2020. Data were extracted by two independent reviewers using a pre-defined data collection form. The pooled effect estimate was computed using random-effects models, and heterogeneity was calculated using I² statistic and chi-squared test (CRD42020166162).

RESULTS: We screened 4863 abstracts, of which 47 studies with 3878 participants (3280 males, 526 females, 72 sex unknown) were included in the meta-analysis. Compared to paraplegia, individuals with tetraplegia had lower systolic and diastolic blood pressure (unadjusted weighted mean difference, -14.5 mmHg, 95% CI -19.2, -9.9; -7.0 mmHg 95% CI -9.2, -4.8, respectively), lower triglycerides (-10.9 mg/dL, 95% CI -19.7, -2.1), total cholesterol (-9.9 mg/dL, 95% CI -14.5, -5.4), high-density lipoprotein (-1.7 mg/dL, 95% CI -3.3, -0.2) and low-density lipoprotein (-5.8 mg/dL, 95% CI -9.0, -2.5). Comparing individuals with high-vis. low-thoracic SCI, persons with higher injury had lower systolic and diastolic blood pressure (-10.3 mmHg, 95% CI -13.4, -7.1; -5.3 mmHg 95% CI -7.5, -3.2, respectively), while no differences were found for low-density lipoprotein, serum glucose, insulin, and inflammation markers. High heterogeneity was partially explained by age, prevalent cardiovascular diseases and medication use, body mass index, sample size, and quality of studies.

CONCLUSION: In SCI individuals, the level of injury may be an additional non-modifiable cardiovascular risk factor. Future well-designed longitudinal studies with sufficient follow-up and providing sex-stratified analyses should confirm our findings and explore the role of SCI level in cardiovascular health and overall prognosis and survival.

Spinal Cord; https://doi.org/10.1038/s41393-021-00678-6

Sample Study

ь	
LIBI	VEDCITÄT

/ /						-			, , , , , , ,	K		IVI			-		I N	UNIVERSI	IAI	
Author, year of publicatic	n_tetra	mean_tetr	sd_tetra	n_para	mean_par	d_para	outcome	stratum1	location	stratum2	no_part	stratum3	sex	stratum4	bmi	stratum5	lesiondura	stratum6	injurycom	stratum7 a
Aadriansen 2016	124	119.9	23.5	158	136.4	20.2	sbp, mmhg		Leurope	2	282	2	74.1	1	24.8	1	22	. 2	68.7	1
Akbal 2013	13	112.8	9.1	43	110.7	8.9	sbp, mmhg		l asia	1	56	2	(0	25	1	3.05	1	13	1
Buchholz 2009	26	102.69	18.15	30	124.2	22.84	sbp, mmhg		l northame	3	56	2	78.5	5 1	25.2	2	14.55	2	0	0
Farkas 2018	12	105.42	16.5	35	117.43	12.4	sbp, mmhg		l northame	3	47	2	80.1	1	27.3	2	14.44	. 2	100	2
Grimm 1997	10	109	3.77	10	115	4.18	sbp, mmhg		L northame	3	30	1	100	2	25	1	10.6	1	33.3	1
Heidebreder 1982	10	101	5	10	123	5	sbp, mmhg		Leurope	2	20	1	70	1	0	0	0	0	0	0
Janssen 1997	8	109.3	15.9	29	133.4	11.5	sbp, mmhg		Leurope	2	37	1	100	2	24.9	1	14.7	2	62	1
Katzelnick 2019	72	110	17	41	121.3	13.9	sbp, mmhg		L northame	3	46	2	82.6	5 1	26.9	2	16.9	2	40.7	1
Kim 2016	9	117	13	35	126.6	13.2	sbp, mmhg		L northame	3	44	2	68	3 1	20.3	1	0	0	0	0
King 1994	4	96.5	15.3	16	114.6	16.8	sbp, mmhg		L northame	3	20	1	90	1	0	0	0	0	0	0
Legramante 2001	8	100.1	4.3	8	131.2	6	sbp, mmhg		Leurope	2	16	1	100	2	0	0	0	0	100	2
Matos Souza 2010	18	98.1	3.8	16	120.2	4.4	sbp, mmhg		Southame	4	34	1	100	2	23.6	1	6.7	1	0	0
Miyatani 2014	37	116.7	21.8	50	121.9	17.6	sbp, mmhg	:	L northame	3	87	2	74.7	1	26.4	2	13	1	63.2	1
Raymond 2010	11	99.1	15.9	14	121.6	12.8	sbp, mmhg	:	l asia	1	25	1	80	1	23.5	1	11	. 1	28	1
Sabour 2013	94	112.35	8.9	68	114.06	10.24	sbp, mmhg	:	l asia	1	162	2	80.9	1	23.3	1	8.03	1	29.6	1
Wecht 2001	12	91	14	12	131	15	sbp, mmhg	:	L northame	3	24	1	100	2	25.35	2	13.5	1	30	1
Wecht 2006	7	118	21	7	121	16	sbp, mmhg		L northame	3	14	1	100	2	24.8	1	13.5	1	50	1
Zhou 1997	15	117	12	15	124	10	sbp, mmhg		l asia	1	30	1	83.3	1	0	0	0	0	100	2
Zhu 2013	151	119.75	10.1047	126	128.8	9.33	sbp, mmhg		L northame	3	277	2	98	3 1	26.6	2	18	2	0	0

Exercise 1: Blood pressure study

UNIVERSITÄT BERN

Is there difference in the blood pressure of individuals with spinal cord injury according to the different levels of injury?

- Meta-analysis of observational studies
- Population: Individuals with Spinal cord injury
- Exposure: Spinal cord injury levels (tetraplegia and paraplegia)
- Outcome: Blood pressure
- Data type: CONTINUOUS
- Data: sci bp sbp.xlsx

Guide Questions

- Do preliminary dataset check
- Is there any difference between the blood pressure of tetraplegia and paraplegia?
 - Compute for mean difference using fixed effect and random effects model
 - Compute for standardized mean difference fixed effect and random effects model
 - Export your forest plot
 - Who has higher systolic blood pressure?
- Bonus question: What are the mean difference according to the location of the study
 - Do a subgroup analysis according to the area
- Bonus question: Is there publication bias?
 - Do a funnel plot

Paraplegia Blood pressure difference Weight SD with 95% CI N Mean (%) -16.50 [-21.70, -11.30] 5.92 9.1 43 110.7 8.9 2.10 [-3.52. 7.72] 5.85 30 124.2 22.84 -21.51 [-32.26, -10.76] 4.77 16.5 35 117.43 12.4 -12.01 [-22.21, -1.81] 4.89 10 -6.00 [-9.49, -2.51] 115 6.17 123 -22.00 [-26.38, -17.62] 6.05 29 133.4 11.5 -24.10 [-35.89, -12.31] 4.54 -11.30 [-17.09, -5.51] 5.82 35 126.6 13.2 -9.60 [-19.15, -0.05] 5.04 16 -18.10 [-35.20, -1.00] 3.43 8 -31.10 [-36.22, -25.98] 5.93 16 120.2 -22.10 [-24.88, -19.32] 6.25 -5.20 [-13.75, 3.35] 50 121.9 17.6 5.26 12.8 14 -22.50 [-34.04, -10.96] 4 59 68 -1.71 [-4.74, 1.32] 6.22 131 15 -40.00 [-51.61, -28.39] 4.58 121 16 -3.00 [-22.56, 16.56] 3.01 15 124 10 -7.00 [-14.90, 0.90] 5.40 151 119.75 10.1047 126 128.8 9.33 -9.05 [-11.34, -6.76] 6.29 -14.53 [-19.19. -9.87] Heterogeneity: $\tau^2 = 88.54$, $I^2 = 92.83\%$, $H^2 = 13.95$ -40 -20

Fixed-effects inverse-variance model

Fixed-effects (WMD)

Random effects (WMD)

Test	Results	Interpretation							
Test for heterogeneit	Test for heterogeneity								
Cochran's Q	p < 0.05	There is heterogeneity							
12	75% to 100%	Considerable heterogeneity							
Tau and Tau2	-	Describes the spread of between study effects							
H2	>1	Ratio (multiplicative factor) There is heterogeneity							
Publication bias (sma	Publication bias (small study effects)								
Funnel plot	Assymetrical	There is publication bias (small studies do not mimic large studies)							
Egger's test	p < 0.05	There is publication bias (small studies do not mimic large studies)							

Exercise 2: Streptokinase study

UNIVERSITÄT BERN

What is the effect of intravenous streptokinase on early mortality in patients with acute myocardial infarction?

- Meta-analysis of randomized controlled trials
- Population: Adults diagnosed with acute myocardial infarction
- Intervention: intravenous streptokinase
- Control: no streptokinase
- *Outcome:* mortality
- Data type: BINARY or DICHOTOMOUS
- Data: strepto.dta

Questions

- Do preliminary dataset check
- Using risk ratio, what is the risk difference between streptokinase and control?
 - WARNING! The command requires to put individuals with and without the outcome.
 - Compute for the risk ratio for each study and pooled effect
 - Compute using fixed effect model using Inverse variance
 - Random effects model using Inverse variance
 - Is streptokinase beneficial?
- Bonus questions
 - Does year of conduct of trials change our results?
 - Does one study influence the whole results?

generate alive1=pop1-deaths1
generate alive0=pop0-deaths0

			Disp	lay meta settings	Modify meta setting
Setup			es not require any se	tup. Proceed to the	Multivariate pane.
	Declare meta-ana	-			
			es for two-group cor		
Summary			es for two-group cor effect sizes (in the m		
	O Declare generi	ic, precomputed t	enect sizes (in the in	etric closest to norn	ianty)
	Main	if/in	Model	Options	
Forest plot	Meta-analysis mo	del			
	 Random effects 		Method: DerSimonian-Li	aird v	1
	O Common effec	t t	Dersimonian-Li	aliu v	
	O Fixed effects				
Heterogeneity					
Regression					
Publication bias					

			Di	splay meta settings	Modify meta setting
Setup	Note: Multivariate me	eta-analysis do	es not require any	setup. Proceed to the N	Multivariate pane.
	Declare meta-analy	sis data			
	Compute and de	clare effect siz	zes for two-group o	comparison of continuo	ous outcomes
Summary				comparison of binary o	
Summary	O Declare generic,	precomputed	effect sizes (in the	metric closest to norm	ality)
	Main	if/in	Model	Options	
	Specify group 1 (tre	atment) variah	Nes	·	
Forest plot	Number of successe		Number of fail	ures:	
	deaths1	~ ·	alive1	with the second	
Heterogeneity	Specify group 2 (cor				
	Number of successed	es:	Number of fail alive0	ures:	
	deatiso		aliveo		
Regression	Specify effect size				
Regression	Effect size:				
	Log risk-ratio		~		
Publication bias					
					Submit
Multivariate					

	Strept	okinase		cebo		Risk ratio	Weight
Study	Yes	No	Yes	No		with 95% CI	(%)
Fletcher	1	11	4	7 -		0.23 [0.03, 1.7	5] 0.18
Dewar	4	17	7	14		0.57 [0.20, 1.6	6] 0.30
1st European	20	63	15	69	-	1.35 [0.74, 2.4	5] 0.64
Heikinheimo	22	197	17	190		1.22 [0.67, 2.2	4] 0.75
Italian	19	145	18	139	-	1.01 [0.55, 1.8	5] 0.78
2nd European	69	304	94	263	-	0.70 [0.53, 0.9	2] 4.10
2nd Frankfurt	13	89	29	75		0.46 [0.25, 0.8	3] 1.22
1st Australian	26	238	32	221	-	0.78 [0.48, 1.2	7] 1.39
NHLBI SMIT	7	46	3	51		2.38 [0.65, 8.7	1] 0.13
Valere	11	38	9	33		1.05 [0.48, 2.2	B] 0.41
Frank	6	49	6	47		0.96 [0.33, 2.8	0.26
UK Collab	48	254	52	241	+	0.90 [0.63, 1.2	8] 2.25
Klein	4	10	1	8		— 2.57 [0.34, 19.4i	0.05
Austrian	37	315	65	311		0.61 [0.42, 0.8	9] 2.68
Lasierra	1	12	3	8 -		0.28 [0.03, 2.3	4] 0.14
N German	63	186	51	183	-	1.16 [0.84, 1.6	0] 2.24
Witchitz	5	27	5	21		0.81 [0.26, 2.5	1] 0.24
2nd Australian	25	87	31	87	-	0.85 [0.54, 1.3	4] 1.29
3rd European	25	131	50	109		0.51 [0.33, 0.7	B] 2.11
ISAM	54	805	63	819	+	0.88 [0.62, 1.2	5] 2.65
GISSI-1	628	5,232	758	5,094		0.83 [0.75, 0.9	1] 32.34
ISIS-2	791	7,801	1,029	7,566		0.77 [0.70, 0.8	4] 43.86
Overall					•	0.80 [0.75, 0.8	5]
Heterogeneity: I	1 ² = 30.9	5%, H ² :	= 1.45				
Test of $\theta_i = \theta_j$: C	2(21) = 3	30.41, p	= 0.08				
Test of $\theta = 0$: z	= -7.75,	p = 0.00					
				1/3	2 1/4 2	16	
ived-offects Mar	ntol_Ha	onezol m	nodel		_		

Fixed-effects Mantel-Haenszel model

Random-effects DerSimonian-Laird model

Fixed-effect (RR)

Random-effects (RR)

Cumulative meta-analysis according to trial year

Leave-one-out analysis (Influence analysis)