2. Der Integralsatz von Gauss im \mathbb{R}^2

Stets in diesem Paragraphen: $(x_0, y_0) \in \mathbb{R}^2$ sei fest, $R : [0, 2\pi] \to (0, \infty)$ sei stetig und stückweise stetig differenzierbar, $R(0) = R(2\pi)$.

$$\gamma(t) := (x_0 + R(t)\cos t, y_0 + R(t)\sin t) \quad (t \in [0, 2\pi])$$

 γ ist stückweise stetig differenzierbar, also rektifizierbar, $\gamma(0) = \gamma(2\pi)$

$$B := \{(x_0 + r\cos t, y_0 + r\sin t) : t \in [0, 2\pi], 0 \le r \le R(t)\}$$

Sind γ und B wie oben, so heißt B **zulässig**. B ist beschränkt und abgeschlossen, $\partial B = \Gamma_{\gamma} = \gamma([0, 2\pi])$. Analysis II, 17.1 $\Longrightarrow B$ ist messbar.

Beispiel

$$R(t) = 1 \implies \gamma(t) = (x_0 + \cos t, y_0 + \sin t). B = \overline{U_1(x_0, y_0)}$$

Satz 2.1 (Integralsatz von Gauss im \mathbb{R}^2)

B und $\gamma = (\gamma_1, \gamma_2)$ seien wie oben, B also zulässig und $\partial B = \Gamma_{\gamma}$. Weiter sei $D \subseteq \mathbb{R}^2$ offen, $D \supseteq B$ und $f = (u, v) \in C^1(D, \mathbb{R}^2)$. Dann:

- (1) $\int_B u_x(x,y)d(x,y) = \int_{\gamma} u(x,y)dy$
- (2) $\int_B v_y(x,y)d(x,y) = -\int_{\gamma} v(x,y)dx$
- (3) $\int_B div f(x,y)d(x,y) = \int_{\gamma} (udy vdx)$

Anwendung 2.2

B und γ seien wie in 2.1. Mit f(x,y)=(x,y) folgt

$$\lambda_2(B) = \int_{\gamma} x dy = -\int_{\gamma} y dx = \frac{1}{2} \int_{\gamma} (x dy - y dx)$$

Beweis

(nach Lemmert)

Wir zeigen nur (1). ((2) zeigt man Analog, (3) folgt aus (1) und (2).)

OBdA: $(x_0, y_0) = (0, 0)$ und γ stetig db. Also: $\gamma(t) = (R(t) \cos t, R(t) \sin t)$ mit R(t) stetig db. $A := \int_B u_x(x, y) d(x, y)$. Z.z.: $A = \int_0^{2\pi} u(\gamma(t)) \gamma_2'(t) dt$

Polarkoordinaten, Substitution, Fubini $\Longrightarrow A = \int_0^{2\pi} (\int_0^{R(t)} u_x(r\cos t, r\sin t)rdr)dt$. $\beta(r,t) := u(r\cos t, r\sin t)$. Nachrechnen: $u_x(r\cos t, r\sin t)r = r\beta_r(r,t)\cos t - \beta_t(r,t)\sin t \Longrightarrow A = \int_0^{2\pi} (\int_0^{R(t)} (r\beta_r(r,t)\cos t - \beta_t(r,t)\sin t)dr)dt$

2. Der Integralsatz von Gauss im \mathbb{R}^2

$$\int_{0}^{R(t)} r \beta_{r}(r,t) dr = \underbrace{r \beta(r,t)|_{r=0}^{r=R(t)}}_{=R(t)\beta(R(t),t)=R(t)u(\gamma(t))} - \underbrace{\int_{0}^{R(t)} \beta(r,t) dr}_{=:\alpha(t)}$$
AII,21.3 $\Longrightarrow \alpha$ ist stetig db und $\alpha'(t) = R'(t)\beta(R(t),t) + \int_{0}^{R(t)} \beta_{t}(r,t) dr$

$$\Longrightarrow \int_{0}^{R(t)} \beta_{t}(r,t) dr = \alpha'(t) - R'(t)u(\gamma(t))$$

$$\Longrightarrow A = \int_{0}^{2\pi} (R(t)u(\gamma(t))\cos t - \alpha(t)\cos t - \alpha'(t)\sin t + R'(t)u(\gamma(t))\sin t) dt$$

$$= \int_{0}^{2\pi} u(\gamma(t))\underbrace{(R(t)\sin t)'}_{\gamma'_{2}(t)} dt - \underbrace{\int_{0}^{2\pi} (\alpha(t)\sin t)' dt}_{=\alpha(t)\sin t|_{0}^{2\pi}=0}$$