MATH 494 Jakob Loedding

LINEAR PROGRAMMING, ZERO-FORCING, AND MAXIMALLY DIVERSE OPTIMA

(Progress Documentation)

Zero Forcing Diameter Model/Integer Program 1

Denote the zero forcing diameter model as ZFD (G, s^*) , where $G \in \mathbb{G}$ and s^* is an optimal solution to ZIP(G).

minimize
$$\sum_{v \in V} z_v \tag{1a}$$

subject to
$$s_v + \sum_{e \in \delta^-(v)} y_e = 1, \quad \forall \ v \in V,$$
 (1b)

$$s_{v}^{'} + \sum_{e \in \delta^{-}(v)} y_{e}^{'} = 1, \quad \forall v \in V,$$

$$(1c)$$

$$x_u - x_v + (T+1)y_e \le T, \quad \forall \ e = (u,v) \in E, \tag{1d}$$

$$x_{u}^{'} - x_{v}^{'} + (T+1)y_{e}^{'} \le T, \quad \forall \ e = (u,v) \in E,$$

$$x_{w} - x_{v} + (T+1)y_{e} \le T, \quad \forall \ e = (u,v) \in E, \ \forall \ w \in N(u) \setminus \{v\},$$
(1e)

$$x_w - x_v + (T+1)y_e \le T, \quad \forall \ e = (u,v) \in E, \ \forall \ w \in N(u) \setminus \{v\}, \tag{1f}$$

$$x_{w}^{'} - x_{v}^{'} + (T+1)y_{e}^{'} \leq T, \quad \forall \ e = (u,v) \in E, \ \forall \ w \in N(u) \setminus \{v\}, \tag{1g}$$

$$\sum_{v \in V} s_v = s^*,\tag{1h}$$

$$\sum_{v \in V} s_v^{'} = s^*,\tag{1i}$$

$$s_v + s_v' - z_v \le 1 \quad \forall \ v \in V, \tag{1j}$$

$$s, s', z \in \{0, 1\}^n, \ x, x' \in \{0, \dots, T\}^n, \ y, y' \in \{0, 1\}^m$$
 (1k)

Proposition 1.1. Given an optimal solution to ZFD (G, s^*) , $z_v = 1$ for some $v \in V$ if and only if $s_v =$ $s_{v} = 1.$

Proof. Suppose $z_v = 1$ for some $v \in V$. By way of contradiction, also suppose either $s_v = 0$ or $s_v = 0$. Then constraint (1j) will be true if $z_v = 0$. This contradicts the fact that we have an optimal solution to ZFD (G, s^*) , i.e., the objective function (1a) would not be minimized. Thus, our assumption that $s_v = 0$ or $s'_{v} = 0$ must be false. Hence, $s_{v} = s'_{v} = 1$.

Conversely, let $s_v = s_v' = 1$ for some $v \in V$. Then constraint (1j) holds only when $z_v = 1$. Therefore, given an optimal solution to ZFD (G, s^*) , $z_v = 1$ for some $v \in V$ if and only if $s_v = s_v = 1$.