

School of Computing

Algorithm Design (Some Old Algorithms) Video 6.3c

Hon Wai <u>Leong</u>

Department of Computer Science National University of Singapore

Email, FB: leonghw@comp.nus.edu.sg

Algorithm is Cool. Learn Algorithms.

(Q-Module: CT, Algorithm Design) Page 1

Outline

Overview:

- **□** Definition of Algorithm
- **□** Algorithms in Everyday Life
- **□** Some Old Algorithms
- **☐** Some Simple Algorithms
- **□** Abstraction & Decomposition

Do you know what's prime?

Yes, those numbers like

2, 3, 5, 7, 11, 13, and so on....

What's so special about them...

they cannot be divided by any smaller number (except for 1)

And yes, there are other ways to define...

Task: Given a number n, find all the prime numbers between 2 and n.

Prime Number Joke...

Input:

- > a Mathematician,
- > a Physicist,
- > an Engineer,
- > a computer scientist...

Mathematician: (pen-and-paper person)

- > 1 is prime, 3 is prime,
- > 5 is prime, 7 is prime,
- **> 9....**

Counter-example (yes, disconfirmation!)

Therefore, Theorem is false...

Physicist: (...does some experiments)

- > 1 is prime, 3 is prime,
- > 5 is prime, 7 is prime,
- > 9.... Hmmm... experimental error
- > 11 is prime, 13 is prime,

Therefore, All odd numbers are prime +

+ subject to tolerable experimental error

Engineer: (...quick and dirty solution)

- > 1 is prime, 3 is prime,
- > 5 is prime, 7 is prime,
- > 9 is prime, 11 is prime, 13 is prime

Therefore, All odd numbers are prime

Computer Scientist:

- take course on Analysis of Algorithm,
- > write algorithm in pseudo-code,
- program in Fortran/Pascal/C/C++/Java/python
- > Debug,
- Debug some more,
- Lots of debugging later,
- Program compiles!!! Eureka!!!

Computer Scientist: (runs the program...)

- 1 is prime,
- 3 is prime,
- 5 is prime,
- 7 is prime,
- > 7 is prime,

Seive of Eratosthenes (200 BC)

A *cool* algorithm for finding all prime numbers between 2 and *n*.

by literally by sieving away all the non-primes (multiples of smaller primes)

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

Seive of Eratosthenes

	_	_	_	_	_	_	_	_	_
	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120

Prime numbers

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

(Q-Module: CT, Algorithm Design) Page 14

Early Algorithms: Sieve

To find all the prime numbers \leq a given integer n: (using Eratosthenes' method)

- 1. Create a list of consecutive integers from 2 through n: (2, 3, 4, ..., n).
- 2. Initially, let *p* equal 2, the smallest prime number.
- 3. Enumerate the multiples of *p* by counting to *n* from 2*p* in increments of *p*, and mark them in the list (these will be 2*p*, 3*p*, 4*p*, ...; the *p* itself should not be marked).
- 4. Find the first number greater than *p* in the list that is not marked. If there was no such number, stop. Otherwise, let *p* now equal this new number (which is the next prime), and repeat from step 3.
- 5. When the algorithm terminates, the numbers remaining not marked in the list are all the primes below n.

Sieve of Eratosthenes

"Correctness Proof of the Algorithm:"

The main idea here is that every value assigned to *p* will be prime, because if it were *composite* it would be marked (and thrown away) as a multiple of some other, smaller prime.

Note that some of the numbers may be marked more than once (e.g., 15 will be marked both for 3 and 5).

Euclid's algorithm, 300 BC (1)

Euclid gave an algorithm for GCD of 2 numbers

GCD = Greatest Common Divisor

Used Cool decomposition idea (based on simple math equation)

Euclid's algorithm, 300 BC (2)

Euclid gave an algorithm for GCD of 2 numbers

GCD = Greatest Common Divisor

If GCD(P, Q) = xthen x divides P, and x divides Q, and x is the greatest number with this property

Example: What is GCD(24, 60)?

D: divisors of 24: 1, 2, 3, 4, 6, 8, 12, 24

D: divisors of 60: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60

CD: common divisors: 1, 2, 3, 4, 6, 12

GCD: greatest common divisor = 12

Q-module. C1, mgommin besign i age i

Euclid's decomposition method (1)

Euclid's idea (extended):

Assume $P \le Q$, then GCD(P, Q) = GCD(P, Q-P)

Example: How to compute GCD(24, 60)?

$$GCD(24, 60) = GCD(24, 36)$$
 [36 = 60-24]
= $GCD(24, 12)$ [12 = 36-24]
= $GCD(12, 12)$ [12 = 24-12]
= 12

Can you "see" the decomposition?

Exercise:

Can you turn the decomposition idea of Euclid into an algorithm?

Write out Euclid's method as an algorithm.

Euclid's decomposition method (2)

Euclid's idea (extended):

```
Assume P \le Q,
then GCD(P, Q) = GCD(P, (Q \mod P))
```

(A **mod** B) = "remainder when A is divided by B"

Example: How to compute GCD(24, 60)?

```
GCD(24, 60) = GCD(24, 12) 12=(60 mod 24)
= GCD(0, 12) 0=(24 mod 12)
= 12
```

References:

One the Sieve of Eratosthenes (200 BC):

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
http://www.geeksforgeeks.org/sieve-of-eratosthenes/
http://primes.utm.edu/glossary/xpage/sieveoferatosthenes.html

Euclid's Algorithm (300 BC)

https://en.wikipedia.org/wiki/Euclidean_algorithm
http://mathworld.wolfram.com/EuclideanAlgorithm.html
http://www.cut-the-knot.org/blue/Euclid.shtml

(End of video 6.3c)

If you want to contact me,

Email: leonghw@comp.nus.edu.sg

School of Computing