

Лекция 6 Линейные модели для классификации и регрессии

Николай Анохин

28 октября 2014 г.

План занятия

Линейная регрессия

Логистическая регрессия

Обобщенные линейные модели

Постановка задачи

Пусть дан набор объектов $\mathcal{D}=\{(\mathbf{x}_i,y_i)\},\;\mathbf{x}_i\in\mathcal{X},\;y_i\in\mathcal{Y},\;i\in 1,\ldots,N,$ полученный из неизвестной закономерности $y=f(\mathbf{x}).$ Необходимо выбрать из семейства параметрических функций

$$H = \{h(\mathbf{x}, \theta) : \mathcal{X} \times \Theta \to \mathcal{Y}\}$$

такую $h^*(\mathbf{x}) = h(\mathbf{x}, \theta^*)$, которая наиболее точно апроксимирует $f(\mathbf{x})$.

Задачи

- ▶ Регрессия: $\mathcal{Y} = [a, b] \subset \mathbb{R}$
- lacktriangle Классификация: $|\mathcal{Y}| < C$

Линейная регрессия

Модель

$$y = h(\mathbf{x}, \theta) + \epsilon,$$

где ϵ — гауссовский шум

$$\epsilon = \mathcal{N}(0, \beta^{-1}),$$

откуда

$$p(y|\mathbf{x},\theta,\beta) = \mathcal{N}(h(\mathbf{x},\theta),\beta^{-1})$$

Линейная модель

простейшая модель

$$y = w_0 + w_1 x_1 + \ldots + w_M x_M = \sum_{j=0}^{M} w_j x_j$$

улучшенная модель

$$y = \sum_{j=0}^{M} w_j \phi_j(\mathbf{x}),$$

 $\phi_j(\mathbf{x})$ — базисная функция, $\phi_0(\mathbf{x})=1$

Логистическая регрессия

Обобщенные линейные модели

Вопросы

