PRINTABLE VERSION

Quiz 3

You scored 60 out of 100

Question 1

Your answer is CORRECT.

Suppose we are told that set A satisfies $\{1, \pi, *\} \cap A = \emptyset$. Of the following options which can be used for the set A?

- $a) \cap \{-1, \clubsuit, \heartsuit\}$
- **b**) \bigcirc {1, π , ♣}
- c) $(\pi, 2)$
- d) \bigcirc Z
- e) On set A will make this true.

Ouestion 2

Your answer is INCORRECT.

The statement $A \cup B = \emptyset$ implies which of the following?

- $a) \bigcirc \forall x \in A, x \in B.$
- \mathbf{b}) $\odot \exists x, x \in A \land x \in B$.
- \mathbf{c}) $\bigcirc \mathbf{A} = \emptyset \land \mathbf{B} = \emptyset$
- d) $\bigcirc \forall x \in B, x \in A$.

Ouestion 3

Your answer is CORRECT.

Suppose |S| = 7 and $|S \times T| = 14$. What is the cardinality of T?

a)
$$|T| = 2$$

b)
$$|T| = 98$$

c)
$$|T| = 5$$

d)
$$|T| = 14$$

e)
$$|T| = 9$$

Question 4

Your answer is INCORRECT.

Suppose |T| = 5 and $|P(S) \times T| = 40$. What is the cardinality of S?

a)
$$|T| = 5$$

b)
$$|S| = 8$$

c)
$$|S| = 3$$

e)
$$|S| = 40$$

Question 5

Your answer is CORRECT.

Is it possible for |P(S)| = 10 ?

- a) \odot This is impossible! It never happens!
- b) This can happen, but it doesn't always happen.
- c) O This is true. It always happens!

Question 6

Your answer is CORRECT.

Consider the set S defined below:

$$S = \{n \in N : 2^{-a} \cdot n = 1 \text{ for some } a \in N\}$$

Which of the following is true?

$$a_i \cap S = \{2i + 1 : i \in N\}$$

$$c) \bigcirc S = N$$

$$\mathbf{d}$$
) \circ $\mathbf{S} = \emptyset$

$$e$$
) \bigcirc S = $\{2m : m \in N\}$

Question 7

Your answer is CORRECT.

Suppose we have two sets S and T, each described in terms of a condition: $S = \{x \in U : P(x)\}$ and $T = \{x \in U : Q(x)\}$. (Here U is a Universal set.) If it is also true that

$$T \nsubseteq S$$

then which of the following statements must be true?

$$a) \bigcirc \forall x \in U, Q(x) \Rightarrow P(x)$$

b)
$$\bigcirc \exists t \in U, P(t) \land Q(t)$$

$$c) \bigcirc \forall x \in U, P(x) \Rightarrow Q(x)$$

$$d$$
) \bigcirc \forall $x \in U$, $Q(x) \Rightarrow P(x)$

$$e) \bigcirc \forall x \in U, P(x) \Rightarrow Q(x)$$

Ouestion 8

Your answer is INCORRECT.

A Venn Diagram or De Morgan's Laws should help you complete this sentence:

$$(A \cap B) =$$

$$a) \odot A \cup \overline{B}$$

$$c) \circ \overline{A} \cap \overline{B}$$

$$_{\mathbf{d)}} \circ \overline{\mathbf{A}} \cup \overline{\mathbf{B}}$$

$$e) \bigcirc \overline{A} \cup B$$

Question 9

Your answer is CORRECT.

Consider the image shown:

Which set of points is depicted in the image above?

a)
$$\bigcirc \{(x, x^2) : x \in Z \land -3 \le x \le 3\}$$

b)
$$\bigcirc$$
 { $(x, 2x) : x \in Z \land -3 \le x \le 3$ }

$$e_{0} \odot \{(x,2) : x \in Z \land -3 \le x \le 3\}$$

d)
$$\bigcirc \{(2, x) : x \in Z \land -3 \le x \le 3\}$$

e)
$$((x, \sin(\pi x)) : x \in Z \land -3 \le x \le 3)$$

$$f_0 = \{(x, \sqrt{9-x^2}) : x \in Z \land -3 \le x \le 3\}$$

Question 10

Your answer is INCORRECT.

$$P({2,8}) \cap P({2,-2,8}) =$$

- a) $\bigcirc \{2, 8, -2\}$
- **b)** \bigcirc { \emptyset , {2}, {8}, {2,8} }
- **c)** \bigcirc { {8} }
- **d)** \bigcirc {2, 8}
- e) { {-2} }
- $f_{1} \odot \{ \{8\}, \{2,8\} \}$