Name ______Period_____

```
1. Write the following for-loops as while loops

(a)

int y;

for(y = 5; y < 10; y+=2)

{

System.out.println(y);

}

/4
```

```
2. What is the output for each code segment below,
(a)
                                             int i = 5, j = 0;
   int m = 0;
                                             do{
   int j = 0;
                                                  for(j = 0; j < i; j++){}
   do{
                                                       System.out.print("*");
   j *= -1;
       if(j \ge 0)
                                                  System.out.println();
       m += 2;
                                                  i--;
   j+=2;
                                             }while(i > 0);
   \}while(m < 4);
   System.out.println(j);
                                                                                  /2
```

3. The Decrypt class below accepts a number from the user and then converts the number to its character representation. Each pair of numbers in the provided number represent the ascii equivalent of a character and therefore can be used to identify the corresponding symbol.

In the example below, each pair of numbers in num map to a different symbol as shown,

num	pairs					4	ascii e	quival	lents o	f pair	S
8773846772	87	73	84	67	72		W	Ι	Τ	С	Н

Write the Decrypt class below. The final string of characters should be stored in String called result,

```
public class Decrypt{
     public static void main(String args[]){
           int num = Integer.parseInt(args[0]);
      }
                                                                            /5
```

- 4. A mathematical sequence is an ordered list of numbers. This question involves a sequence called a *hailstone sequence*. If n is the value of a term in the sequence, then the following rules are used to find the next term, if one exists.
 - If n is 1, the sequence terminates
 - If n is even, then the next term is n/2
 - If n is odd, then the next term is 3n + 1

For this question, assume that when the rules are applied, the sequence will eventually terminate with the term n=1

The following are examples of hailstone sequences,

Example 1: 5, 16, 8, 4, 2, 1

- The first term is 5, so the second term is 5*3 + 1 = 16
- The second term is 16, so the third term is 16/2 = 8
- The third term is 8, so the fourth term is 8/2 = 4
- The fourth term is 4, so the fifth term is 4/2 = 2
- The fifth term is 2, so the sixth term is 2/2 = 1
- The sixth term is 1, so the sequence terminates

Example 2: 8, 4, 2, 1

- The first term is 8, so the second term is 8/4 = 4
- The second term is 4, so the third term is 4/2 = 2
- The third term is 2, so the fourth term is 2/2 = 1
- The fourth term is 1, so the sequence terminates.

The length of a hailstone sequence is the number of terms it contains. For example, the hailstone sequence in example 1 (5, 16, 8, 4, 2, 1) has a length of 6 and the hailstone sequence in example 2 (8, 4, 2, 1) has a length of 4.

In the space below are your algorithm which calculates the length of a hailstone sequence that starts wi n.

5. The CountFlips class below simulates how many flips it takes to achieve a specified streak of heads.	
Below are some examples,	

Streak	Number of flips required to get 10 heads in a row
10	395
12	2648
15	93833

	III a 10 W	
10	395	
12	2648	
15	93833	
Complete the	e CountFlips class b	helow
Complete the	c Counti fips class t	JCIOW.