三角関数

2019.06.16

弧度法

- ullet 弧の長さ $\,l\,$ と半径 $\,r\,$ の比 $\, heta=rac{\iota}{r}$
- ◆ 半周の角 (180°) = π

$$ullet \left| y = rac{\pi}{180} \ x
ight|$$

$$(x$$
 度 $\Rightarrow y$ ラジアン)

$$x = rac{180}{\pi} \ y$$

(y ラジアン $\Rightarrow x$ 度)

- ullet 弧の長さlと半径rの比 $heta=rac{\iota}{-}$
- 半周の角 (180°) = π

$$ullet$$
 $= \left| \frac{\pi}{180} \; x
ight|$ (x 度 $\Rightarrow y$ ラジアン)

$$(x$$
 度 $\Rightarrow y$ ラジアン)

$$x=rac{180}{\pi}~y$$

$$x = \frac{100}{2}y$$
 $(y ラジアン $\Rightarrow x$ 度)$

例)
$$1(ラジアン) = \frac{180}{\pi} \times 1 = \frac{180}{\pi} = \frac{180}{3.14} = 57.3(度)$$

ラジアンの意味

$$ullet$$
 $egin{aligned} ullet & heta & = rac{l}{r}$ で,半径 $r=1$ とすると $eta = l \end{aligned}$

- ラジアンは弧の長さそのもの
- 1 ラジアン (= 57.3 度)

ラジアンの意味

$$ullet$$
 $egin{aligned} ullet & heta & = rac{l}{r}$ で,半径 $r=1$ とすると $eta = l \end{aligned}$

- ラジアンは弧の長さそのもの
- 1 ラジアン (= 57.3 度)

$$ullet$$
 $egin{aligned} ullet & heta & = rac{l}{r}$ で,半径 $r=1$ とすると $eta = l \end{aligned}$

- ラジアンは弧の長さそのもの
- 1 ラジアン (= 57.3 度)

$$ullet$$
 $egin{aligned} ullet & heta & = rac{l}{r}$ で,半径 $r=1$ とすると $eta = l \end{aligned}$

- ラジアンは弧の長さそのもの
- 1 ラジアン (= 57.3 度)

$$ullet$$
 $egin{aligned} ullet & heta & = rac{l}{r}$ で,半径 $r=1$ とすると $eta = l \end{aligned}$

- ラジアンは弧の長さそのもの
- 1 ラジアン (= 57.3 度)

$$ullet$$
 $egin{aligned} ullet & heta & = rac{l}{r}$ で,半径 $r=1$ とすると $eta = l \end{aligned}$

- ラジアンは弧の長さそのもの
- 1 ラジアン (= 57.3 度)

$$ullet$$
 $egin{aligned} ullet & heta & = rac{l}{r}$ で,半径 $r=1$ とすると $eta = l \end{aligned}$

- ラジアンは弧の長さそのもの
- 1 ラジアン (= 57.3 度)

$$ullet$$
 $egin{aligned} ullet & heta & = rac{l}{r}$ で,半径 $r=1$ とすると $eta = l \end{aligned}$

- ラジアンは弧の長さそのもの
- 1 ラジアン (= 57.3 度)

課題1 (弧度法)

(1),(2) の角度をラジアンで求めよ.

三角関数

$y = \sin x$ のグラフ (正弦曲線)

• 角(ラジアン)をxに $\sin x$ 値yを対応 $y = \sin x$

$y = \sin x$ のグラフ (正弦曲線)

- ullet 角(ラジアン)をxに $\sin x$ 値yを対応 $y = \sin x$
- ・ 半径1の円上の点 P を P(X, Y) と書く $\sin x = \frac{Y}{r} = Y$

課題2($y = \sin x$ の値)

表のyに値を入れよ.

$oldsymbol{x}$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$rac{5\pi}{4}$	$\frac{3\pi}{2}$	2π
y								

課題3($y = \sin x$ の描画)

$y = \sin x$ のグラフの特徴)

■ 周期は 2π (2π で元に戻る)

$y = \sin x$ のグラフの特徴)

- 周期は2π (2π で元に戻る)
- 振幅は1(値の範囲は -1 から 1)

$y = \sin x$ のグラフの特徴)

- 周期は2π (2π で元に戻る)
- 振幅は1(値の範囲は−1から1)
- 原点対称

周期は2π(2πで元に戻る)

- 周期は2π (2π で元に戻る)
- 振幅は1 (値の範囲は -1 から 1)

- 周期は2π(2πで元に戻る)
- 振幅は1 (値の範囲は -1 から 1)
- cos x は y 軸対称

- 周期は2π(2πで元に戻る)
- 振幅は1 (値の範囲は -1 から 1)
- cos x は y 軸対称
- ullet $\cos x$ は $\sin x$ を左に $\frac{\pi}{2}$ 平行移動(位相が $\frac{\pi}{2}$ 進む)

振幅·位相·周期

- $ullet y = \sin x$ の振幅は1,周期は 2π
- $ullet y = A \sin x$ の振幅は ,周期は
- $ullet y = \sin(x + c)$ の位相は、 $y = \sin x$ から
- $ullet y = \sin(bx)$ の振幅は $lacksymbol{0}$,周期は

グラフをかく問題

次のグラフをかけ.

$$(1) y = 3\sin x$$

$$(2) \ y = \sin(x + \frac{\pi}{4})$$

$$(3) y = \sin(2x)$$