Nizovi i redovi, 2. dio - Rješenja

1. (a)
$$q = \frac{1}{e} < 1 \Rightarrow \text{ red konvergira};$$

(b)
$$q = +\infty > 1 \Rightarrow \text{ red divergira};$$

(c)
$$q = +\infty > 1 \Rightarrow \text{ red divergira};$$

(d)
$$q = \frac{1}{a} < 1 \Rightarrow \text{ red konvergira.}$$

2. (a)
$$q = 0 < 1 \Rightarrow \text{ red konvergira};$$

(b)
$$q = \frac{3}{\pi} < 1 \Rightarrow \text{ red konvergira};$$

(c)
$$q = \frac{1}{e} < 1 \Rightarrow \text{ red konvergira};$$

(d)
$$q = +\infty > 1 \Rightarrow \text{ red divergira.}$$

6. (a)
$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 0 < 1 \Rightarrow \text{ red konvergira};$$

(b)
$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = +\infty > 1 \Rightarrow \text{ red divergira};$$

(c)
$$\lim_{n\to\infty} \sqrt[n]{a_n} = \frac{1}{e^4} < 1 \Rightarrow \text{ red konvergira};$$

(d)
$$\lim_{n\to\infty} \sqrt[n]{a_n} = e^2 > 1 \Rightarrow \text{ red divergira};$$

- (e) $a_n > \frac{1}{n}$ i $\sum_{i=1}^{\infty} \frac{1}{n}$ divergira \Rightarrow red divergira;
- (f) Prema Leibnizovom kriteriju red konvergira.
- (g) $\sum_{n=0}^{\infty} |a_n| = \sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n$ je geometrijski red za $q = \frac{2}{3} < 1 \Rightarrow$ red apsolutno konvergira \Rightarrow red konvergira;
- (h) $|a_n| \leq \frac{1}{\sqrt{n^3}}$ i $\sum_{1}^{\infty} \frac{1}{\sqrt{n^3}}$ konvergira \Rightarrow red apsolutno konvergira \Rightarrow red konvergira.
- 7. (a) $\frac{11}{18}$; (b) $\frac{1}{4}$; (c) $\frac{1}{3}$; (d) $\frac{1}{2}$; (e) $1 \sqrt{2}$.

- 8. (a) [-3,3];
 - (b) [-1,1];
 - (c) $[-10, 10\rangle$;
 - (d) $[0, +\infty)$;
 - (e) $\langle -\infty, -1 \rangle \cup [1, +\infty \rangle$;
 - (f) [0, 2].