Práctica: CAPÍTULO 2 - ESPACIOS VECTORIALES (primera parte)

A lo largo de esta práctica $(V, +, \cdot)$ es un espacio vectorial sobre el conjunto de los números reales, salvo que se aclare lo contrario.

- 1. Analizar si los siguientes conjuntos con las operaciones definidas son espacios vectoriales reales. (Obs: cuando no se explicitan las operaciones suma y producto por escalares es porque se consideran las habituales).
 - a) El conjunto de los números reales no negativos \mathbb{R}_+ .
 - b) El conjunto de los números reales positivos, con la suma de dos vectores x, y definida como x.y y el producto por un real c como x^c .
 - c) El conjunto de las funciones pares.
 - d) El conjunto de las funciones continuas con el producto de una función por un escalar c definido como (cf)(x) = f(cx).
 - e) El conjunto de las funciones reales biyectivas con la suma de dos funciones definida como (f+g)(x) = f(g(x)).
 - f) El conjunto de los polinomios a coeficientes reales de grado a lo sumo 3, incluído el polinomio nulo.
 - g) \mathbb{R}^2 con la suma de $x = (x_1, x_2)$ e $y = (y_1, y_2)$ definida como $x + y = (x_1 + y_1 + 1, x_2 + y_2 + 1)$.

Decir en cada caso que no resulte e.v., cuál es la propiedad que se está violando.

- 2. Probar que el conjunto de n-uplas con componentes en \mathbb{Z}_2 es un espacio vectorial sobre \mathbb{Z}_2 (con la suma y el producto de un escalar realizado componente a componente). ¿Es \mathbb{R}^n un espacio vectorial sobre \mathbb{Z}_2 ?
- 3. Sea $(V, +, \cdot)$ un espacio vectorial. En particular, sabemos que existe $\mathbf{0} \in V$ tal que $\mathbf{0} + x = x$ para todo $x \in V$; y que para todo $x \in V$ existe un vector \bar{x} tal que $x + \bar{x} = \mathbf{0}$.

Demostrar los siguientes enunciados.

- a) Unicidad del neutro: si $\mathbf{0}' \in V$ es tal que $\mathbf{0}' + x = x$ para todo $x \in V$, entonces $\mathbf{0}' = \mathbf{0}$.
- b) Unicidad del opuesto: dado $x \in V$, si $\bar{x}' \in V$ es tal que $x + \bar{x}' = \mathbf{0}$, entonces $\bar{x}' = \bar{x}$
- c) $\bar{x} = (-1) \cdot x$ (a partir de ahora, -v es el opuesto de $v, \forall v \in V$).
- d) Propiedad cancelativa: si z + x = z + y entonces x = y.
- *e*) $\alpha \cdot \mathbf{0} = \mathbf{0} \ \forall \alpha \in \mathbb{K}$.
- $f) \ 0 \cdot v = \mathbf{0} \ \forall v \in V.$
- $g(-\alpha) \cdot v = \alpha \cdot (-v) = -(\alpha \cdot v).$
- h) Si $\alpha \cdot v = \mathbf{0}$ entonces $\alpha = 0$ o $v = \mathbf{0}$.
- 4. Sea $(V, +, \cdot)$ un espacio vectorial y $U \subset V$. Entonces, U es un subespacio (vectorial) de V si y solo si toda combinación lineal de elementos de U pertenece a U; i.e. para todo $u_1, u_2 \in U$, $\alpha, \beta \in \mathbb{K}$, resulta $\alpha u_1 + \beta u_2 \in U$.
- 5. Mostrar que las dos propiedades que definen un subespacio vectorial (i.e. que la suma sea cerrada en el conjunto y que el producto por escalar también lo sea) son propiedades independientes una de otra. Para ello buscar un espacio vectorial V y un subconjunto U que sea cerrado bajo la suma pero no bajo el producto por escalar y otro conjunto U' que cumpla lo contrario.
- 6. Determinar cuáles de los siguientes subconjuntos de \mathbb{R}^3 son subespacios.
 - a) $\{(x_1, x_2, x_3) : x_1 = 0\}.$
 - b) $\{(x_1, x_2, x_3) : x_1 = 1\}.$
 - c) $\{(x_1, x_2, x_3) : x_1 \cdot x_2 \cdot x_3 = 0\}.$
 - d) $\{(x_1, x_2, x_3) : x_1 + x_2 2x_3 = 4\}.$
 - e) $\{\alpha(1,4,0) + \beta(2,2,2) : \alpha, \beta \in \mathbb{R}\}.$
 - $f) \{(x_1, x_2, x_3) : x_1 + x_2 + x_3 = 0\}.$

- $g) \{(x_1, x_2, x_3) : x_1 \le x_2 \le x_3\}.$
- 7. Determinar cuales de estos subconjuntos definen subespacios vectoriales.
 - a) $\mathbb{R}^2_+ \subset \mathbb{R}^2$.
 - b) $\mathbb{Z} \subset \mathbb{R}$.
 - c) $\Gamma = \{x \in \mathbb{R}^3 : 4x_1 6x_2 + x_3 = 5\} \subset \mathbb{R}^3$.
 - d) $\{A \in \mathbb{K}^{n \times n} : A \text{ es triangular}\} \subset \mathbb{K}^{n \times n}$.
 - e) $\{A \in \mathbb{R}^{n \times n} : A \text{ es simétrica}\} \subset \mathbb{R}^{n \times n}$.
- 8. Sea **P** el plano de ecuación x + 2y + z = 6 y **P**₀ el plano paralelo a P que pasa por el origen. ¿Son **P** y **P**₀ subespacios de \mathbb{R}^3 ?.
- 9. Para cada uno de los siguientes conjuntos determinar si es un subespacio de $\mathcal{C}(\mathbb{R})$, donde $\mathcal{C}(\mathbb{R})$ es el espacio vectorial de las funciones continuas de \mathbb{R} en \mathbb{R} , o explicar por qué no lo es.
 - a) $\{f \in \mathcal{C}(\mathbb{R}) : f(x) \le 0, \forall x \in \mathbb{R}\}.$
 - b) $\{f \in \mathcal{C}(\mathbb{R}) : f(0) = 0\}.$
 - c) $\{f \in \mathcal{C}(\mathbb{R}) : f(2) = 0\}.$
 - d) El conjunto de funciones constantes.
 - e) $\{\alpha + \beta \operatorname{sen} x : \alpha, \beta \in \mathbb{R}\}.$
- 10. Sea $(V, +, \cdot)$ un espacio vectorial y sean U y W subespacios de V. Probar que

$$U+W=\{u+w\ :\ u\in U,w\in W\}$$

es un subespacio de V.

11. Sean

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{y} \quad B = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}.$$

- a) Describir un subespacio de $\mathbb{R}^{2\times 2}$ que contenga a A y no a B.
- b) Si un subespacio de $\mathbb{R}^{2\times 2}$ contiene a A y a B, ¿debe contener también a I?
- 12. Sea V un espacio vectorial y W_1 y W_2 dos subespacios de V. Demostrar que $W_1 \cup W_2$ es un subespacio de V si y solo si $W_1 \subseteq W_2$ o $W_2 \subseteq W_1$.
- 13. Considerar el espacio vectorial V de todas las funciones con dominio y codominio igual a \mathbb{R} (con la suma y producto por escalar usuales).

Sean $V_I = \{ f \in V : f \text{ es una función impar } \}$ y $V_P = \{ f \in V : f \text{ es una función par } \}$.

Probar que:

- a) V_I y V_P son subespacios de V.
- b) $V_I + V_P = V$.
- c) $V_I \cap V_P = \{ \mathbf{0} \}.$
- 14. Sea $A \in \mathbb{R}^{m \times n}$. Probar que N(A) es un subespacio vectorial real de \mathbb{R}^n y C(A) un subespacio vectorial real de \mathbb{R}^m .
- 15. Dada A una matriz $m \times n$, sea A' la matriz que se obtiene de agregar una columna A^{n+1} a A, donde A^{n+1} es una combinación lineal de las columnas de A. Probar que C(A) = C(A').

16. Explicitar el espacio columna y el espacio nulo de las siguientes matrices:

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}, \ B = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}, \ C = \begin{bmatrix} 1 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \ D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 0 & 0 \end{bmatrix}, \ \mathbf{y} \ E = \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 0 & 0 \end{bmatrix}.$$

- 17. Determinar una matriz A tal que su espacio nulo consista en:
 - a) todas las combinaciones lineales de (2, 2, 1, 0) y (3, 1, 0, 1).
 - b) todos los múltiplos de (4, 3, 2, 1).
- 18. Sean $A \in \mathbb{R}^{m \times n}$ y $B \in \mathbb{R}^{n \times p}$. Probar que el espacio columna de AB está contenido en el espacio columna de A. Dar un ejemplo donde dicha contención sea estricta.

Definición: Sea V un espacio vectorial y U_1, U_2 subespacios vectoriales de V. Entonces V es suma directa de U_1 y U_2 , y se nota $V = U_1 \oplus U_2$, si para todo $v \in V$ existen únicos $u_1 \in U_1$ y $u_2 \in U_2$ tales que $v = u_1 + u_2$.

- 19. *a*) Sean U_1, U_2 subespacios vectoriales de V. Probar que $V = U_1 \oplus U_2$ si y solo si se verifican las siguientes condiciones:
 - $i) V = U_1 + U_2.$
 - $ii) U_1 \cap U_2 = \{0\}.$
 - b) Encontrar un contraejemplo para demostrar que el resultado anterior no puede extenderse a más de dos subespacios, es decir, probar que para $m \geq 3$ NO ES VÁLIDA la siguiente afirmación.

Sean U_i , $i=1,\ldots,m$ subespacios vectoriales de V. Entonces, si se verifican las siguientes dos condiciones:

- i) $V = U_1 + U_2 + \ldots + U_m$,
- $ii) U_1 \cap U_2 \cap \ldots \cap U_m = \{0\},\$
- resulta $V = U_1 \oplus U_2 \oplus \ldots \oplus U_m$.
- 20. Sea $\mathbb{R}[x]$ el espacio vectorial de los polinomios con coeficientes en \mathbb{R} , y sea U el subespacio de $\mathbb{R}[x]$ dado por

$$U = \{ax^2 + bx^5 : a, b \in \mathbb{R}\}.$$

Encontrar un subespacio W de $\mathbb{R}[x]$ tal que $\mathbb{R}[x] = U \oplus W$.

21. En el espacio vectorial de las matrices reales de orden 3, describir el subespacio generado por cada uno de los siguientes conjuntos:

$$a) \left\{ \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\}$$

$$b) \left\{ \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix} \right\}$$

$$c) \left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\}$$

- 22. Recordar que, dado V un espacio vectorial y $S \subset V$, $\langle S \rangle$ denota el subespacio de V generado por S. Demostrar las siguientes proposiciones:
 - a) Si $S \subseteq T \subseteq V$, entonces $\langle S \rangle \subseteq \langle T \rangle$.
 - b) $S \subset \langle S \rangle$.
 - c) Si $S \subseteq T$ y T es un subespacio de V, entonces $\langle S \rangle \subseteq T$. Observar que a partir de esta propiedad sabemos que $\langle S \rangle$ es el menor subespacio de V que contiene a S.
 - d) S es un subespacio de V si y sólo si $\langle S \rangle = S$.
 - e) Si $\langle S \rangle = U$, entonces $\langle U \rangle = U$.

- f) Sea $W \subseteq V$. Entonces:
 - 1) $\langle S \cap W \rangle \subset \langle S \rangle \cap \langle W \rangle$.
 - 2) $\langle S \cup W \rangle \subset \langle S \rangle + \langle W \rangle$.
- g) ¿Valen las contenciones inversas en los items a) y f)?
- 23. Describir el menor subespacio vectorial de $\mathbb{R}^{2\times 2}$ que contenga a:

$$a) \quad \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right] \quad \mathbf{y} \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right].$$

$$b) \left[\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array} \right].$$

$$c) \ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right] y \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right].$$

24. Considerar el espacio vectorial V de los polinomios en $\mathbb{R}[x]$ de grado menor o igual a 3 (junto al polinomio nulo). Sean $p_i \in V$, $i = 1, \ldots, 5$ dados por:

$$p_1(x) = x^3 + 2x^2 + 3x + 4$$
, $p_2(x) = 2x^3 + 5x^2 + 11x + 8$, $p_3(x) = x^2 + 5x^2 + 11x + 8$

$$p_4(x) = 3x^3 + 6x^2 + 9x + 12$$
 y $p_5(x) = x^3 + 3x^2 + 8x + 3$.

Para $j \in \{4, 5\}$, determinar si $p_j \in \langle \{p_1, p_2, p_3\} \rangle$.

EJERCICIOS ADICIONALES

- 1. Determinar cuáles de los siguientes conjuntos son subespacios de las matrices $n \times n$.
 - a) El conjunto de las matrices triangulares.
 - b) El conjunto de las matrices singulares.
 - c) El conjunto de las matrices simétricas.
- 2. Dar un ejemplo de subespacio no vacío de $U \subset \mathbb{R}^2$ tal que U sea cerrado bajo la multiplicación por escalares, pero que no sea un subespacio de \mathbb{R}^2 .
- 3. ¿Cuáles de los siguientes conjuntos son subespacios de \mathbb{R}^{∞} ?
 - a) $\{x \in \mathbb{R}^{\infty} : |\{i \in \mathbb{N} : x_i \neq 0\}| \text{ es finito }\}.$
 - b) $\{x \in \mathbb{R}^{\infty} : \exists i_0 \in \mathbb{N}/x_i = 0 \ \forall i \ge i_0\}.$
 - c) $\{x \in \mathbb{R}^{\infty} : x_i \ge x_{i+1} \ \forall \ i \in \mathbb{N} \}$ (successiones decrecientes).
 - d) $\{x \in \mathbb{R}^{\infty} : \exists \lim_{i \to \infty} x_i\}$ (succesiones convergentes).
 - e) $\{x \in \mathbb{R}^{\infty} : \exists c \in \mathbb{R} / x_{i+1} = c + x_i \ \forall \ i \in \mathbb{N} \}$ (progresiones aritméticas).
 - f) $\{x \in \mathbb{R}^{\infty} : \exists c \in \mathbb{R} \mid x_{i+1} = cx_i \ \forall i \in \mathbb{N}\}$ (progresiones geométricas).
- 4. Determinar si las siguientes proposiciones son verdaderas o falsas, dar un contraejemplo si es falsa.
 - a) Los vectores b que no están en el espacio columna C(A) constituyen un subespacio.
 - b) Si C(A) contiene sólo al vector cero, entonces A es la matriz cero.
 - c) El espacio columna de 2A es igual al espacio columna de A.
 - d) El espacio columna de A I es igual al espacio columna de A.
- 5. Sea V un espacio vectorial sobre \mathbb{R} , y sean W_1, W_2, W_3 son subespacios de V. Determinar si son verdaderas o falsas las siguientes afirmaciones
 - i) Si $W_1 + W_3 = W_2 + W_3$ luego $W_1 = W_2$.
 - ii) Si $W_1 \oplus W_3 = W_2 \oplus W_3$ luego $W_1 = W_2$.