Applications in Scientific Computing Assignment 5: Numerical integration

530.390.13

Due: Friday 15 January 2016

Submit all code by committing it to the directory assignments/assignment5 in your 530.390.13 GitHub repository. For a reminder of how to use Git, refer to the repository file notes/using-git.

1. We saw in class the definition of the scalar product:

$$(f,g) \equiv \int_{a}^{b} f(x) g(x) dx.$$

Using the code that we constructed in class, numerically compute the following scalar products in the interval $0 \le x \le 2\pi$:

$$(\sin(x), \sin(x))$$
$$(\sin(x), \sin(2x))$$
$$(\sin(2x), \sin(8x))$$
$$(\sin(8x), \sin(8x))$$

What do you find? As we discussed in class, the what you have seen here is an example of the orthogonality of the sine functions, where

$$(\sin(mx), \sin(nx)) = \begin{cases} \frac{1}{2}L; & m = n \\ 0; & m \neq n \end{cases}.$$

• See the code in integrate.py, which generates the following output using N=100:

 $(\sin(1*x),\sin(1*x) = 3.14159265359$ $(\sin(1*x),\sin(2*x) = -1.59640445774e-17$ $(\sin(2*x),\sin(8*x) = -2.7083827352e-16$ $(\sin(8*x),\sin(8*x) = 3.14159265359$

- Note the typo in the orthogonality rule in the original assignment. The integral should be equal to L/2, not 1.
- We find, to near machine precision, the numerical equivalent of the orthogonality rule.
- 2. In the interval $0 \le x \le 1$, integrate the following functions:

$$y = x$$

$$y = x^{2}$$

$$y = x^{11}$$

$$y = x^{12}$$

$$y = e^{x}$$

Integrate by using the trapezoidal rule with $N = \{10, 100, 1000\}$ and using Gauss-Legendre quadrature for the orders of $n = \{1, 2, 6\}$. Complete the following table and comment on the results. Do you expect the exponential to integrate exactly? Why or why not?

		Trapezoidal rule			Gauss-Legendre quadrature		
Function	Exact result	N = 10	N = 100	N = 1000	n = 1	n=2	n=6
y = x	$\frac{1}{2} = 0.5$	0.5000+	0.5000-	0.5000-	0.5	0.5	0.5
$y = x^2$	$\frac{1}{3} \approx 0.33\overline{3}333333333333333333333333333333333$	0.3354	0.3334	0.3333+	0.25	0.3333	0.3333
$y = x^{11}$	$\frac{1}{12} \approx 0.0833333333333333333333333333333333333$	0.09444	0.0834	0.08333 +	4.8828e-4	0.03672	0.08333
$y = x^{12}$	$\frac{1}{13} \approx 0.07692307692307693$	0.08900	0.07703	0.07692 -	2.4414e-4	0.02896	0.07692 -
$y = e^x$	$e - 1 \approx 1.7182818284590451$	1.7200	1.7183 -	1.7183 +	1.6487	1.7179	1.718

- See the code in integrate.py.
- The table shows that the trapezoidal rule never integrates any of the functions precisely except for y = x (the + and at the end of a number in the table indicates that it is either slightly high or slightly low in the significant digits beyond those listed). Generally, as N grows larger for the trapezoidal rule, the number of matching significant digits increases. For the Gauss-Legendre quadrature, we see that polynomials of order (2n-1) are integrated exactly.
- We do not expect either integration scheme to integrate the exponential exactly because they are both designed to integrate polynomials, but we see that the trapezoidal rule is extremely accurate at N=1000 and the Gauss-Legendre quadrature integrates the exponential to five significant digits for n=6.