4.2.1. Метод Ньютона

Метод Ньютона (метод касательных, метод линеаризации, метод Ньютона-Рафсона) является одним из популярнейших итерационных методов решения нелинейных уравнений, т.к. он отличается простотой и быстрой сходимостью. Выражение для итерационного процесса можно получить двумя способами, первый опирается на геометрическое представление, а второй на аналитическое разложение заданной нелинейной функции f(x) в ряд Тейлора.

Получим выражение, для итеративной последовательности исходя из геометрического представления метода (рис. 25). В качестве начального приближения x_0 примем правую границу интервала локализации b. Вычисляем в этой точке значение функции $f(x_0)$ на рис. 25 определенное значение соответствует точке

В. Проводим через точку $B(x_0, f(x_0))$ касательную к кривой y = f(x). Эта касательная пересекается с осью абсцисс в точке x_1 , которая в дальнейшем рассматривается в качестве следующего приближения и является искомым параметром.

Рис. 25 – Визуализация процесса построения решения с помощью метода касательных

Значение новой точки x_1 можно достаточно легко определить, опираясь на математическое выражение для тангенса угла α в прямоугольном треугольнике

$$tg\alpha = \frac{f(x_0)}{x_0 - x_1} = f'(x_0).$$

Данное выражение позволяет определить искомую величину x_1 в следующем виде

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$
.

Для нахождения следующего приближения x_2 вычисляется значение функции в точке x_1 , на рис. 26 это точка $B_1(x_1, f(x_1))$ и

вычисляется первая производная в точке x_1 , т.е. проводится касательная через точку $\mathbfilde{B_1}$ к функции y = f(x).

Рис. 26 – Второе приближение по методу касательных

Математическое выражение для нахождения x_2 имеет вид

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}.$$

Аналогично находятся все последующие приближения x_3 , x_4 , и т.д. Формула для k+1 приближения будет иметь вид

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}.$$

Отсюда вытекает условие применимости метода: функция f(x) должна быть дифференцируемой, и её первая производная f'(x) в окрестности корня не должна менять знак.

Замечание. Если вместо правой границы b для начального приближения x_0 взять левую a, то проводя касательную к функции y = f(x) в точке A(a, f(a)), получаемая точка пересечения

касательной с осью абсцисс x_1 , как видно из рис. 27, находится за пределами интервала локализации корня. Таким образом, процесс выбора начального приближения в методе Ньютона требует особого внимания и будет подробно рассмотрен в дальнейшем.

Рассмотрим второй способ получения выражения для определения x_{k+1} . Для этого предполагается, что заданная функция f(x) является непрерывной и минимум дважды дифференцируемой на отрезке [a, b], внутри которого находится один искомый корень x^* .

На рассматриваемом интервале уже имеется одна точка x_k , являющаяся начальным приближением x_0 , т.е. k=0. В заданной точке наша функция имеет значение $f(x_k)$, а также первую $f'(x_k)$ и вторую производную $f''(x_k)$. Между заданной точкой x_k и искомым решением x^* имеется некоторое малое расстояние, тогда для определения значения функции в точке x^* применяем разложение в ряд Тейлора, ограниченное до членов со второй производной

Рис. 27 — Выбор левой границы интервала в качестве начального приближения в методе касательных

Так как точка x^* является точным решением, то значение функции в этой точке обращается в ноль. В результате получается квадратное уравнение для нахождения корня x^*

$$f(x_k) + f'(x_k)(x^*-x_k) + \frac{1}{2}f''(x_k)(x^*-x_k)^2 = 0$$
.

Поскольку расстояние между точками x_k и x^* мало, то квадратом их разности можно пренебречь и результирующее уравнение будет линейным. Поскольку в процессе получения точного решения x^* от бесконечного ряда Тейлора осталось только два слагаемых, то полученное решение будет отличаться от точного. Определенная таким образом точка обозначается x_{k+1} и определяется с помощью следующего выражения

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}.$$

Следовательно, второе слагаемое с дробью является тем самым приращением, на которое новая точка приближается к точному решению нелинейного уравнения на каждой итерации.

Для окончания итерационного процесса используются стандартное условие

$$\left|x_{k+1}-x_k\right|\leq \varepsilon.$$

Замечание. В методе Ньютона нет необходимости задавать отрезок [a, b], содержащий корень уравнения, а достаточно задать только точку x_0 являющуюся начальным приближением.

Пример. Найти корень нелинейного уравнения

$$x^3 - \frac{x^2 + x}{5} = 1,2$$

с помощью метода Ньютона на интервале [1; 1,5] с точностью $\varepsilon = \delta = 10^{-3}$.

Решение. Первым действием определяется первая производная заданной функции

$$f'(x) = \left(x^3 - \frac{x^2 + x}{5} - 1, 2\right)' = 3x^2 - \frac{2x + 1}{5}.$$

В качестве начальной точки x_0 выбираем правую границу заданного интервала (в нашем случае это точка b=1,5). Далее в данной начальной точке вычисляется значение функции

$$f(1,5) = 1,5^3 - \frac{1,5^2 + 1,5}{5} - 1,2 = 1,425$$

и ее первой производной

$$f'(1,5) = 3 \cdot 1,5^2 - \frac{2 \cdot 1,5 + 1}{5} = 5,95$$
.

Полученные значения подставляются в выражение для вычисления координаты точки пересечения касательной с осью абсцисс

$$x_1=1,5-\frac{1,425}{5,95}=1,26050$$
 . Полученное значение x_1 сравнивается с начальным x_0 для

проверки достигнутой точности

$$|x_{k+1} - x_k| \le \varepsilon$$
 или $|1,26050 - 1,5| = 0,23950 < 0,001$.

Как видно требуемое условие по точности не выполнено, следовательно, процесс уточнения необходимо продолжить. Для этого проводится повторное вычисление значения функции в точке x_1

$$f(1,26050) = 1,26050^3 - \frac{1,26050^2 + 1,26050}{5} - 1,2 = 0,23290$$

и значение первой производной в этой же точке

$$f'(1,26050) = 3 \cdot 1,26050^2 - \frac{2 \cdot 1,26050 + 1}{5} = 4,06241.$$

Вычисленные значения функции и ее производной в точке x_1 подставляются в выражение для определения координаты следующей точки пересечения касательной $f'(x_1)$ с осью абсцисс

$$x_2 = 1,26050 - \frac{0,23290}{4,06241} = 1,20317$$
.

Используя полученное значение координаты x_2 и предыдущее x_1 , определяется погрешность

$$|1,20317-1,26050| = 0,05733 < 0,001.$$

Таким образом, погрешность уменьшилась, но требуемая точность не достигнута, а следовательно, процедуру нахождения решения необходимо продолжить.

Процесс нахождения решения нелинейного уравнения методом Ньютона представлен в табл. 11. Из табл. 11 видно, что после четвертой итерации получено решение, удовлетворяющее заданной точности

$$|1, 2-1, 200009| = 0,00009 < 0,001.$$

Таблица 11 – Решение нелинейного уравнения методом Ньютона

<i>k</i>	x_k	$f(x_k)$	$f(x_k)$
0	1,5	1,425	5,95
1	1,26050	0,23290	4,06241
2	1,20317	0,01158	3,66161
3	1,200009	3,41E-05	3,64006
4	1,2	2,98E-10	3,64

Также осуществляется проверка условия достижения значением функции во вновь найденной точке заданной точности, т.е. $|f(x_4)| < \delta$. Стоит отметить, что значение функции, определенное после четвертой итерации, отличается от нуля в десятом знаке после запятой.

<u>Ответ.</u> Решение заданного нелинейного уравнения с точностью $\varepsilon = 10^{-3}$ получено методом Ньютона за четыре итерации и соответствует x = 1,2.