RANKING US STATES ON A YEARLY BASIS AND ON 10 YEAR AVERAGE FROM 2011 TO 2020

Beatrice & Moreen

3/15/2022

R Markdown

```
library(tidyverse)
## -- Attaching packages -----
                                              ----- tidyverse 1.3.1 --
## v ggplot2 3.3.4
                    v purrr
                             0.3.4
## v tibble 3.1.2
                    v dplyr
                             1.0.7
## v tidyr
           1.1.3
                    v stringr 1.4.0
           1.4.0
## v readr
                    v forcats 0.5.1
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                  masks stats::lag()
```

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

R loading data on infrastructure:

metric Road quality

```
road_quality_data <- read_csv("road_quality_data.csv")</pre>
##
## -- Column specification ------
## cols(
##
    Year = col_double(),
    Class = col character(),
##
    System = col_character(),
##
    `International Roughness Index` = col_logical(),
##
    State = col_character(),
##
     'Pivot Field Names' = col_character(),
##
##
    Value = col_double()
## )
## Warning: 6 parsing failures.
                                              expected
                                 col
                                                                             actual
## 1405 Year
                                     a double
                                                       Year
                                                                                     'road_quality_da
## 1405 International Roughness Index 1/0/T/F/TRUE/FALSE International Roughness Index 'road_quality_da
```

```
## 1405 Value
                                   a double
                                                     Value
                                                                                 'road_quality_da
## 2054 Year
                                   a double
                                                     Year
                                                                                 'road_quality_da
## 2054 International Roughness Index 1/0/T/F/TRUE/FALSE International Roughness Index 'road_quality_da
## See problems(...) for more details.
road_quality_data
## # A tibble: 2,756 x 7
                            `International Rough~ State `Pivot Field Na~
##
      Year Class
                    System
                                                                         Value
                    <chr>
     <dbl> <chr>
                                                                         <dbl>
##
                                                <chr> <chr>
                            <lgl>
##
   1 2020 Acceptab~ Overall NA
                                                Alaba~ Acceptable
                                                                       2.35e+4
  2 2020 Percent ~ Overall NA
##
                                                Alaba~ Percent Accepta~ 9.09e-1
  3 2020 Total (m~ Overall NA
                                                Alaba~ Total
                                                                       2.59e+4
## 4 2019 Acceptab~ Overall NA
                                                Alaba~ Acceptable
                                                                       2.32e+4
## 5 2019 Percent ~ Overall NA
                                                Alaba~ Percent Accepta~ 8.87e-1
## 6 2019 Total (m~ Overall NA
                                                Alaba~ Total
                                                                       2.62e+4
## 7 2018 Acceptab~ Overall NA
                                                Alaba~ Acceptable
                                                                       2.29e+4
## 8 2018 Percent ~ Overall NA
                                                Alaba~ Percent Accepta~ 8.81e-1
## 9 2018 Total (m~ Overall NA
                                                Alaba~ Total
                                                                       2.60e+4
## 10 2017 Acceptab~ Overall NA
                                                Alaba~ Acceptable
                                                                       2.13e+4
## # ... with 2,746 more rows
filtering out unwanted rows
renaming the states
select the required columns
wrangled_data_roads <- road_quality_data %>%
filter(grepl('Percent Acceptable', Class))%>%
rename(International_Roughness_Index = Value) %>%
select(Year,State,International_Roughness_Index )
wrangled_data_roads
## # A tibble: 918 x 3
##
      Year State
                  International_Roughness_Index
##
     <dbl> <chr>
                                         <dbl>
##
  1 2020 Alabama
                                         0.909
   2 2019 Alabama
##
                                         0.887
##
  3 2018 Alabama
                                         0.881
##
  4 2017 Alabama
                                         0.861
## 5 2016 Alabama
                                         0.864
## 6 2015 Alabama
                                         0.976
  7 2014 Alabama
##
                                         0.901
## 8 2013 Alabama
                                         0.891
## 9 2012 Alabama
                                         0.922
## 10 2011 Alabama
                                         0.915
```

... with 908 more rows

Using pivot wider to tidy the data

```
final_road_data1 <- wrangled_data_roads %>%
pivot_wider(names_from = Year, values_from = International_Roughness_Index)
final_road_data1
## # A tibble: 51 x 19
##
              2020` `2019` `2018` `2017` `2016` `2015` `2014` `2013` `2012` `2011`
     State
##
                    <dbl> <dbl>
                                  <dbl>
                                         <dbl>
                                                <dbl>
                                                       <dbl>
                                                             <dbl>
                   0.887 0.881 0.861
                                               0.976
                                                                          0.915
##
   1 Alabama 0.909
                                       0.864
                                                     0.901
                                                            0.891
                                                                   0.922
   2 Alaska 0.809
                    0.830 0.769 0.775
                                        0.767
                                               0.789
                                                     0.767
                                                            0.793
                                                                   0.790
                   0.791 0.814 0.803 0.858
                                               0.852 0.878
                                                            0.921
                                                                   0.932
   3 Arizona 0.775
                                                                          0.854
                                               0.793 0.818
  4 Arkans~ 0.920 0.933 0.797 0.912
                                        0.882
                                                            0.771
  5 Colora~ 0.781
                   0.778 0.781 0.777
                                        0.763
                                               0.792
                                                     0.785
                                                            0.765
                                                                   0.792
                                                                          0.806
   6 Califo~ 0.670  0.648  0.587
                                 0.550
                                        0.563
                                               0.496
                                                     0.630
                                                            0.601
                                                                   0.609
   7 Connec~ 0.670 0.660 0.649 0.656
                                        0.652 0.435 0.555 0.537
                                                                   0.478 0.520
  8 Delawa~ 0.837 0.840 0.817 0.816
                                               0.841 0.810 0.832
                                        0.826
                                                                   0.806 0.798
  9 Distri~ 0.0861 0.0724 0.0676 0.0671 0.0766 0.0463 0.0396 0.0619 0.0374 0.0315
## 10 Florida 0.877 0.871 0.882 0.904 0.900 0.905 0.920 0.834 0.928 0.891
## # ... with 41 more rows, and 8 more variables: 2010 <dbl>, 2009 <dbl>,
      2008 <dbl>, 2007 <dbl>, 2006 <dbl>, 2005 <dbl>, 2000 <dbl>, 1995 <dbl>
```

replacing NA cell

```
final_road_data1 [22, 8] = 0.634656894
```

Deleting unwanted columns using dplyr select using mutate to get the sum and average

... with 41 more rows, and 1 more variable: 10year_mean <dbl>

```
ten_year_roadmean <- final_road_data1 %>%
select(-c(12:19)) %>%
mutate("10year_mean" =rowMeans(select(.,`2011`,`2012`,`2013`,`2014`,`2015`,`2016`,`2017`,`2018`,`2019`,
ten_year_roadmean
## # A tibble: 51 x 12
##
              `2020` `2019` `2018` `2017` `2016` `2015` `2014` `2013` `2012`
     State
##
      <chr>
                     <dbl> <dbl>
                                  <dbl>
                                         <dbl>
                                                <dbl>
                                                      <dbl>
                                                             <dbl>
                                                                    <dbl>
   1 Alabama 0.909 0.887 0.881 0.861 0.864 0.976 0.901 0.891
                                                                   0.922 0.915
  2 Alaska 0.809
                   0.830 0.769 0.775
                                        0.767
                                               0.789
                                                     0.767
                                                            0.793
                   0.791 0.814 0.803
                                        0.858
                                               0.852 0.878 0.921
  3 Arizona 0.775
                                                                   0.932
                                                                          0.854
                    0.933 0.797 0.912
                                        0.882
                                               0.793
                                                     0.818
   4 Arkans~ 0.920
                                                            0.771
                                                                   0.800
                   0.778 0.781 0.777
                                               0.792 0.785 0.765
  5 Colora~ 0.781
                                        0.763
                                                                   0.792
                   0.648 0.587
                                 0.550
                                        0.563
                                               0.496
                                                     0.630
   6 Califo~ 0.670
                                                            0.601
   7 Connec~ 0.670
                    0.660 0.649
                                 0.656
                                        0.652
                                               0.435
                                                     0.555
                                                            0.537
                                                                   0.478
                                                                          0.520
   8 Delawa~ 0.837  0.840  0.817  0.816  0.826
                                               0.841 0.810
                                                            0.832
                                                                   0.806 0.798
  9 Distri~ 0.0861 0.0724 0.0676 0.0671 0.0766 0.0463 0.0396 0.0619 0.0374 0.0315
## 10 Florida 0.877 0.871 0.882 0.904 0.900 0.905 0.920 0.834
                                                                   0.928 0.891
```

using mutate to get the 10yr road data mean

```
rankedroad data 2011to2020 <-ten year roadmean %>%
arrange(desc(`10year mean`)) %>%
mutate('2011_ranking' =min_rank(desc(`2011`))) %>%
mutate('2012_ranking' = min_rank(desc(`2012`) )) %>%
mutate('2013_ranking' = min_rank(desc(`2013`)) ) %>%
mutate('2014_ranking' = min_rank(desc(`2014`)) ) %>%
mutate('2015_ranking' = min_rank(desc(`2015`)) ) %>%
mutate('2016_ranking' = min_rank(desc(`2016`)) ) %>%
mutate('2017_ranking' = min_rank(desc(`2017`)) ) %>%
mutate('2018_ranking' = min_rank(desc(`2018`)) ) %>%
mutate('2019_ranking' = min_rank(desc(`2019`)) ) %>%
mutate('2020_ranking' = min_rank(desc(`2020`)) ) %>%
mutate('10year_ranking' = min_rank(desc(`10year_mean`)) )
rankedroad_data_2011to2020
## # A tibble: 51 x 23
##
     State `2020` `2019` `2018` `2017` `2016` `2015` `2014` `2013` `2012` `2011`
##
     <chr>
              <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
                                                             <dbl>
                                                                    <dbl> <dbl>
              0.902 0.964 0.969 0.964 0.953 0.955 0.952
                                                                    0.887 0.985
## 1 Idaho
                                                             0.949
## 2 Georgia 0.928 0.929 0.968 0.952 0.965 0.964 0.887
                                                             0.867
                                                                   0.995 0.995
## 3 Tennes~ 0.946 0.947 0.946 0.953 0.936 0.916 0.941
                                                             0.926 0.952 0.953
## 4 North ~ 0.941 0.941 0.934
                                  0.901 0.972 0.904 0.951
                                                             0.946 0.964 0.941
   5 Nebras~ 0.929 0.889 0.899
                                  0.923 0.918 0.925 0.947
                                                             0.952 0.938 0.927
## 6 Wyoming 0.943 0.947 0.804 0.920 0.933 0.912 0.918
                                                             0.918 0.917 0.939
## 7 Kentuc~ 0.926 0.901 0.920
                                  0.903 0.899 0.920 0.926
                                                             0.910 0.898 0.921
## 8 Alabama 0.909 0.887 0.881
                                  0.861 0.864 0.976 0.901
                                                             0.891 0.922 0.915
## 9 Montana 0.873 0.883 0.880
                                  0.885 0.883 0.899 0.907
                                                             0.894 0.927 0.929
## 10 Oregon
              0.886 0.899 0.898 0.893 0.880 0.883 0.884 0.895 0.896 0.931
## # ... with 41 more rows, and 12 more variables: 10year_mean <dbl>,
      2011_ranking <int>, 2012_ranking <int>, 2013_ranking <int>,
## #
## #
      2014_ranking <int>, 2015_ranking <int>, 2016_ranking <int>,
## #
      2017_ranking <int>, 2018_ranking <int>, 2019_ranking <int>,
## #
      2020_ranking <int>, 10year_ranking <int>
```

summary of states and their roadranks

```
roadrank_summary <- rankedroad_data_2011to2020 %>%
select(State, c(`2011_ranking`:`10year_ranking`))
roadrank_summary
```

```
## # A tibble: 51 x 12
##
                  `2011_ranking` `2012_ranking` `2013_ranking` `2014_ranking`
      State
##
      <chr>>
                            <int>
                                            <int>
                                                           <int>
                                                                          <int>
## 1 Idaho
                                2
                                               19
                                                               4
                                                                              1
## 2 Georgia
                                1
                                                1
                                                              19
                                                                              14
                                                               7
## 3 Tennessee
                                3
                                                4
                                                                              4
## 4 North Dakota
                                4
                                                2
                                                               6
                                                                              2
## 5 Nebraska
                                                               3
                               10
                                                5
                                                                               3
## 6 Wyoming
                                5
                                               10
                                                              10
```

```
## 7 Kentucky
                               11
                                               14
                                                              12
                                                                              5
## 8 Alabama
                               13
                                               9
                                                              17
                                                                             12
## 9 Montana
                                               8
                                9
                                                              14
                                                                             10
                                8
                                                                             15
## 10 Oregon
                                               16
                                                              13
## # ... with 41 more rows, and 7 more variables: 2015_ranking <int>,
       2016_ranking <int>, 2017_ranking <int>, 2018_ranking <int>,
       2019 ranking <int>, 2020 ranking <int>, 10year ranking <int>
```

Importing electricity data prices per state

```
electricity_price_state <- read_csv("state_electricity_price.csv")</pre>
## -- Column specification -------
## cols(
    state = col_character(),
##
    date = col_date(format = ""),
##
    value = col_double()
electricity_price_state
## # A tibble: 1,061 x 3
##
     state
             date
                       value
##
     <chr>
             <date>
                       <dbl>
## 1 Alabama 2001-01-01 7.01
## 2 Alabama 2002-01-01 7.12
## 3 Alabama 2003-01-01 7.39
## 4 Alabama 2004-01-01 7.62
## 5 Alabama 2005-01-01 8
## 6 Alabama 2006-01-01 8.75
## 7 Alabama 2007-01-01 9.32
## 8 Alabama 2008-01-01 10.4
## 9 Alabama 2009-01-01 10.7
## 10 Alabama 2010-01-01 10.7
## # ... with 1,051 more rows
```

data wrangling to clean up the data separating date column into year,month,day making the tibble wider

splitting the date column into year, month, date

```
electricity_price <- electricity_price_state %>%
separate(date, into = c("year", "month","date"), sep = "-")%>%
select(-c(3:4)) %>%
pivot_wider(names_from = year, values_from = value)
```

```
electricity_price
## # A tibble: 51 x 22
              2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
##
      state
##
      <chr>
                      <dbl>
                              <dbl>
                                     <dbl>
                                            <dbl>
                                                   dbl>
                                                           <dbl>
                                                                  <dbl>
                                                                         <dbl>
##
                7.01
                       7.12
                              7.39
                                      7.62
                                                    8.75
                                                           9.32
                                                                 10.4
                                                                         10.7
                                                                                10.7
   1 Alabama
                                             8
##
   2 Alaska
               NA
                      NA
                             NA
                                     NA
                                            NA
                                                   NA
                                                          NA
                                                                 NA
                                                                         NA
                                                                                NA
                       8.27
                                             8.86
                                                                 10.3
                                                                         10.7
##
   3 Arizona
                8.3
                              8.35
                                      8.46
                                                    9.4
                                                           9.66
                                                                                11.0
   4 Arkans~
                7.72
                       7.25
                              7.24
                                      7.36
                                             8
                                                    8.85
                                                           8.73
                                                                  9.27
                                                                          9.14
                                                                                 8.86
   5 Califo~
               12.1
                      12.6
                              12.2
                                     12.2
                                            12.5
                                                                         14.7
                                                                                14.8
##
                                                   14.3
                                                           14.4
                                                                  13.8
##
   6 Colora~
                7.47
                       7.37
                              8.14
                                      8.42
                                             9.06
                                                    9.02
                                                           9.25
                                                                 10.1
                                                                         10
                                                                                11.0
##
   7 Connec~
               10.9
                      11.0
                              11.3
                                     11.6
                                            13.6
                                                   16.9
                                                          19.1
                                                                  19.5
                                                                         20.3
                                                                                19.2
##
                8.61
                       8.7
                              8.59
                                      8.78
                                             9.01
                                                  11.8
                                                                 13.9
                                                                         14.1
                                                                                13.8
   8 Delawa~
                                                          13.2
##
   9 Distri~
                7.79
                       7.98
                              7.84
                                      8
                                             9.1
                                                    9.88 11.2
                                                                 12.8
                                                                         13.7
                                                                                14.0
## 10 Florida
                8.59
                       8.16
                              8.55
                                      8.99
                                             9.62 11.3
                                                          11.2
                                                                 11.6
                                                                         12.4
                                                                                11.4
## # ... with 41 more rows, and 11 more variables: 2011 <dbl>, 2012 <dbl>,
       2013 <dbl>, 2014 <dbl>, 2015 <dbl>, 2016 <dbl>, 2017 <dbl>, 2018 <dbl>,
       2019 <dbl>, 2020 <dbl>, 2021 <dbl>
deleting unwanted rows
final_electricity_price1 <- electricity_price %>%
select(-c(2:11, 22))
final_electricity_price1
## # A tibble: 51 x 11
              `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020`
      state
##
               <dbl> <dbl>
                             <dbl>
                                    <dbl>
                                            <dbl>
                                                   <dbl>
                                                          <dbl>
                                                                 <dbl>
                                                                         <dbl>
                                                                                <dbl>
      <chr>
##
   1 Alabama 11.1
                       11.4
                             11.3
                                     11.5
                                            11.7
                                                   12.0
                                                           12.6
                                                                 12.2
                                                                          12.5
                                                                                 12.6
##
   2 Alaska
               17.6
                       17.9 18.1
                                            19.8
                                                   20.3
                                                           21.3
                                                                 21.9
                                                                          22.9
                                     19.1
                                                                                 22.6
   3 Arizona 11.1
                       11.3 11.7
                                     11.9
                                            12.1
                                                   12.2
                                                           12.4
                                                                 12.8
                                                                          12.4
                                                                                 12.3
                                                           10.3
##
   4 Arkans~
                9.02
                        9.3
                              9.59
                                      9.51
                                             9.82
                                                    9.92
                                                                  9.81
                                                                          9.8
                                                                                 10.4
##
   5 Califo~
               14.8
                       15.3 16.2
                                     16.2
                                            17.0
                                                   17.4
                                                           18.3 18.8
                                                                          19.2
                                                                                 20.4
                                                           12.2
                                                                 12.2
##
   6 Colora~
              11.3
                       11.5 11.9
                                     12.2
                                            12.1
                                                   12.1
                                                                          12.2
                                                                                 12.4
                                                   20.0
   7 Connec~
               18.1
                       17.3 17.6
                                     19.8
                                            20.9
                                                           20.3
                                                                 21.2
                                                                          21.9
                                                                                 22.7
##
   8 Delawa~
               13.7
                       13.6 13.0
                                     13.3
                                            13.4
                                                   13.4
                                                           13.4
                                                                 12.5
                                                                          12.6
                                                                                 12.6
                                                           12.9 12.8
## 9 Distri~ 13.4
                       12.3 12.6
                                     12.7
                                            13.0
                                                   12.3
                                                                          13.0
                                                                                 12.6
## 10 Florida 11.5
                       11.4 11.3
                                     11.9
                                            11.6
                                                   11.0
                                                           11.6 11.5
                                                                          11.7
                                                                                 11.3
## # ... with 41 more rows
elec_tenyear_mean <- final_electricity_price1 %>%
mutate("10year_mean" =rowMeans(select(.,`2011`,`2012`,`2013`,`2014`,`2015`,`2016`,`2017`,`2018`,`2019`,
elec_tenyear_mean
## # A tibble: 51 x 12
               2011` '2012` '2013` '2014` '2015` '2016` '2017` '2018` '2019` '2020`
##
      state
##
      <chr>
               <dbl>
                     <dbl>
                             <dbl>
                                     <dbl>
                                            <dbl>
                                                   <dbl>
                                                          dbl>
                                                                 <dbl>
                                                                         <dbl>
##
   1 Alabama 11.1
                       11.4 11.3
                                     11.5
                                            11.7
                                                   12.0
                                                           12.6
                                                                12.2
                                                                          12.5
                                                                                 12.6
               17.6
                       17.9
                             18.1
                                     19.1
                                            19.8
                                                   20.3
                                                           21.3
                                                                 21.9
                                                                          22.9
                                                                                 22.6
   2 Alaska
```

12.1

9.82

12.2

9.92

11.9

9.51

11.3 11.7

9.59

9.3

##

3 Arizona 11.1

9.02

4 Arkans~

12.4

10.3

12.8

9.81

12.4

9.8

12.3

```
## 5 Califo~ 14.8
                      15.3 16.2
                                   16.2
                                          17.0
                                                 17.4
                                                         18.3 18.8
                                                                       19.2
                                                                              20.4
##
   6 Colora~
              11.3
                      11.5 11.9
                                   12.2
                                          12.1
                                                 12.1
                                                         12.2 12.2
                                                                      12.2
                                                                              12.4
                                                         20.3
                                                              21.2
  7 Connec~
              18.1
                      17.3 17.6
                                   19.8
                                          20.9
                                                 20.0
                                                                      21.9
                                                                             22.7
## 8 Delawa~
              13.7
                      13.6 13.0
                                   13.3
                                          13.4
                                                 13.4
                                                         13.4 12.5
                                                                      12.6
                                                                             12.6
## 9 Distri~
              13.4
                      12.3 12.6
                                   12.7
                                          13.0
                                                 12.3
                                                         12.9
                                                              12.8
                                                                      13.0
                                                                             12.6
## 10 Florida 11.5
                      11.4 11.3
                                   11.9
                                          11.6
                                                 11.0
                                                         11.6 11.5
                                                                      11.7
                                                                             11.3
## # ... with 41 more rows, and 1 more variable: 10year mean <dbl>
elec meandata 2011to2020 <- elec tenyear mean %>%
arrange((`10year mean`)) %>%
mutate('2011_ranking' =min_rank((`2011`))) %>%
mutate('2012_ranking' = min_rank((`2012`) )) %>%
mutate('2013_ranking' = min_rank((`2013`)) ) %>%
mutate('2014_ranking' = min_rank((`2014`)) ) %>%
mutate('2015_ranking' = min_rank((`2015`)) ) %>%
mutate('2017_ranking' = min_rank((`2017`)) ) %>%
mutate('2018_ranking' = min_rank((`2018`)) ) %>%
mutate('2019_ranking' = min_rank((`2019`)) ) %>%
mutate('2020_ranking' = min_rank((`2020`)) ) %>%
mutate('10year_ranking' = min_rank((`10year_mean`)) )
elec_meandata_2011to2020
## # A tibble: 51 x 23
              `2011` `2012` `2013` `2014` `2015` `2016` `2017`
                                                              `2018`
##
                                                                     `2019` `2020`
     state
##
      <chr>
              <dbl> <dbl>
                            <dbl>
                                   <dbl>
                                          <dbl>
                                                 <dbl>
                                                        <dbl>
                                                               <dbl>
                                                                     <dbl>
                                                                            <dbl>
##
               8.28
                                           9.09
                                                         9.66
                                                                      9.71
                                                                             9.87
   1 Washin~
                      8.53
                             8.7
                                    8.67
                                                  9.48
                                                                9.75
   2 Louisi~
               8.96
                      8.37
                             9.43
                                    9.57
                                           9.33
                                                  9.34
                                                         9.74
                                                                9.59
                                                                      9.8
                                                                             9.67
                             9.32
                                    9.72
                                                               10.2
                                                                      9.89
##
   3 Idaho
               7.87
                      8.67
                                           9.93
                                                  9.95 10.0
                                                                             9.95
##
   4 North ~
               8.58
                      9.06
                             9.12
                                    9.15
                                           9.62 10.2
                                                        10.3
                                                               10.2
                                                                     10.3
                                                                            10.4
               9.02
                             9.59
                                    9.51
                                          9.82
                                                               9.81
                                                                     9.8
## 5 Arkans~
                      9.3
                                                 9.92 10.3
                                                                            10.4
## 6 Oklaho~
               9.47
                      9.51
                             9.67
                                   10.0
                                          10.1
                                                 10.2
                                                        10.6
                                                               10.3
                                                                     10.2
                                                                            10.1
##
   7 Kentuc~
               9.2
                      9.43
                             9.79
                                   10.2
                                          10.2
                                                 10.5
                                                        10.8
                                                               10.6
                                                                     10.8
                                                                            10.9
##
               8.96
                      9.93 10.4
                                   10.6
                                          10.9
                                                 11.0
                                                               10.4
                                                                     10.4
                                                                            10.4
  8 Utah
                                                        11.0
## 9 Tennes~
               9.98 10.1
                             9.98 10.3
                                          10.3
                                                 10.4
                                                        10.7
                                                               10.7
                                                                     10.9
                                                                            10.8
## 10 Nebras~
               9.32 10.0
                            10.3
                                   10.4
                                          10.6
                                                 10.8
                                                               10.7
                                                                     10.8
                                                                            10.8
                                                        11.0
## # ... with 41 more rows, and 12 more variables: 10year_mean <dbl>,
      2011_ranking <int>, 2012_ranking <int>, 2013_ranking <int>,
      2014_ranking <int>, 2015_ranking <int>, 2016_ranking <int>,
## #
      2017_ranking <int>, 2018_ranking <int>, 2019_ranking <int>,
## #
      2020_ranking <int>, 10year_ranking <int>
```

summary of state and electricity price rankings 2011-2020

<int>

2

##

<chr>

1 Washington

<int>

<int>

1

<int>

1

```
## 2 Louisiana
                                                                                5
                                                1
## 3 Idaho
                                                                3
                                 1
                                                3
                                                                                6
## 4 North Dakota
                                3
                                                4
                                                                2
                                                                                2
## 5 Arkansas
                                 6
                                                5
                                                                6
                                                                                4
   6 Oklahoma
                                12
                                                7
                                                                7
                                                                               7
## 7 Kentucky
                                 8
                                                6
                                                                8
                                                                               8
  8 Utah
                                 4
                                               11
                                                               15
                                                                               16
## 9 Tennessee
                                16
                                               15
                                                               10
                                                                               10
## 10 Nebraska
                                 9
                                               12
                                                               13
                                                                               11
## # ... with 41 more rows, and 7 more variables: 2015_ranking <int>,
       2016_ranking <int>, 2017_ranking <int>, 2018_ranking <int>,
       2019_ranking <int>, 2020_ranking <int>, 10year_ranking <int>
```

loading Crime rate data

1 Tool Title: Corr~ NA

```
Corrections_data <- read_csv("Corrections data.csv")</pre>
## Warning: Missing column names filled in: 'X2' [2], 'X3' [3], 'X4' [4], 'X5' [5],
## 'X6' [6], 'X7' [7], 'X8' [8], 'X9' [9], 'X10' [10], 'X11' [11], 'X12' [12],
## 'X13' [13], 'X14' [14], 'X15' [15], 'X16' [16], 'X17' [17], 'X18' [18],
## 'X19' [19], 'X20' [20], 'X21' [21], 'X22' [22], 'X23' [23], 'X24' [24],
## 'X25' [25], 'X26' [26], 'X27' [27], 'X28' [28], 'X29' [29], 'X30' [30],
## 'X31' [31], 'X32' [32], 'X33' [33], 'X34' [34], 'X35' [35], 'X36' [36],
## 'X37' [37], 'X38' [38], 'X39' [39], 'X40' [40], 'X41' [41], 'X42' [42],
## 'X43' [43], 'X44' [44]
##
##
           .default = col_double(),
           `Bureau of Justice Statistics (www.bjs.gov)` = col_character(),
##
##
          X2 = col_logical(),
##
          X3 = col character(),
##
          X4 = col_character(),
          X5 = col character(),
##
##
          X6 = col_character(),
          X7 = col_character(),
##
##
          X8 = col_character(),
          X9 = col_character(),
          X10 = col_character(),
##
##
          X11 = col_character(),
          X12 = col_character(),
##
##
          X13 = col_character(),
##
          X14 = col_character(),
##
          X15 = col_character(),
##
           X16 = col_character()
## i Use `spec()` for the full column specifications.
Corrections_data
## # A tibble: 742 x 44
##
              `Bureau of Justi~ X2
                                                                   ХЗ
                                                                                Х4
                                                                                              Х5
                                                                                                            Х6
                                                                                                                         Х7
                                                                                                                                       Х8
                                                                                                                                                    Х9
                                                                                                                                                                  X10
                                                     <lgl> <chr> <chr< <chr> <chr< <chr> <chr< <chr> <chr
```

<NA>

<NA> <NA> <NA> <NA> <NA>

<NA>

<NA>

```
2 Data source: Nat~ NA
                                                         <NA>
                                                                     <NA>
                                                                                <NA>
                                                                                           <NA>
                                                                                                       <NA>
                                                                                                                   < NA >
                                                                                                                              <NA>
                                                                                                                                          <NA>
##
                                                         <NA>
                                                                                           <NA>
                                                                                                       <NA>
                                                                                                                   <NA>
                                                                                                                              <NA>
                                                                                                                                          <NA>
       3 Refer questions ~ NA
                                                                     <NA>
                                                                                <NA>
                                                                                                                                                     <NA>
##
       4 <NA>
                                              NA
                                                         <NA>
                                                                     <NA>
                                                                                <NA>
                                                                                           <NA>
                                                                                                       <NA>
                                                                                                                   <NA>
                                                                                                                              <NA>
                                                                                                                                          <NA>
                                                                                                                                                     <NA>
##
       5 <NA>
                                                         <NA>
                                                                     <NA>
                                                                                <NA>
                                                                                           <NA>
                                                                                                       <NA>
                                                                                                                   <NA>
                                                                                                                              <NA>
                                                                                                                                          <NA>
                                                                                                                                                     <NA>
                                             NA
##
       6 Count of total j~ NA
                                                         <NA>
                                                                     <NA>
                                                                                <NA>
                                                                                           <NA>
                                                                                                       <NA>
                                                                                                                   <NA>
                                                                                                                              <NA>
                                                                                                                                          <NA>
                                                                                                                   <NA>
                                                                                                                              <NA>
                                                                                                                                          <NA>
##
       7 <NA>
                                             NA
                                                         <NA>
                                                                     <NA>
                                                                                <NA>
                                                                                           <NA>
                                                                                                       <NA>
                                                         1978~ 1979~ 1980~ 1981~ 1982~ 1983~ 1984~ 1985~ 1986~
       8 Jurisdiction
                                             NA
                                                         3072~ 3144~ 3298~ 3699~ 4138~ 4368~ 4620~ 5025~ 5449~
##
       9 National Statist~ NA
## 10 Federal Institut~ NA
                                                         29803 26371 24363 28133 29673 31926 34263 40223 44408
         ... with 732 more rows, and 33 more variables: X12 <chr>, X13 <chr>,
             X14 <chr>, X15 <chr>, X16 <chr>, X17 <dbl>, X18 <dbl>, X19 <dbl>,
             X20 <dbl>, X21 <dbl>, X22 <dbl>, X23 <dbl>, X24 <dbl>, X25 <dbl>,
## #
             X26 <dbl>, X27 <dbl>, X28 <dbl>, X29 <dbl>, X30 <dbl>, X31 <dbl>,
             X32 <dbl>, X33 <dbl>, X34 <dbl>, X35 <dbl>, X36 <dbl>, X37 <dbl>,
             X38 <dbl>, X39 <dbl>, X40 <dbl>, X41 <dbl>, X42 <dbl>, X43 <dbl>, X44 <dbl>
data_correction <- Corrections_data %>%
slice(-c(1:7))
data_correction
## # A tibble: 735 x 44
##
            `Bureau of Justi~ X2
                                                         ХЗ
                                                                    X4
                                                                                Х5
                                                                                           Х6
                                                                                                       X7
                                                                                                                   X8
                                                                                                                              Х9
                                                                                                                                          X10
                                                                                                                                                     X11
##
                                              <lgl> <chr> <chr< <chr> <chr> <chr> <chr> <chr> <chr< <chr< <chr> <chr< <chr> <chr< <chr> <chr< <chr> <chr< <chr> <chr< <chr< <chr> <chr< <chr< <chr> <chr< <chr> <chr< <chr> <chr< <chr> <chr< <chr> <chr< <chr< <chr> <chr< <chr> <chr< <chr> <chr< <chr> <chr< <chr> <chr< <
                                                         1978~ 1979~ 1980~ 1981~ 1982~ 1983~ 1984~ 1985~ 1986~
##
       1 Jurisdiction
                                                         3072~ 3144~ 3298~ 3699~ 4138~ 4368~ 4620~ 5025~ 5449~
##
       2 National Statist~ NA
                                                         29803 26371 24363 28133 29673 31926 34263 40223 44408
##
       3 Federal Institut~ NA
       4 State Institutio~ NA
                                                         2774~ 2880~ 3054~ 3417~ 3841~ 4049~ 4277~ 4622~ 5005~
                                                                                                      9233
                                                                                                                              10482 11015 11710
##
       5 Alabama/33/34/35~ NA
                                                         5625
                                                                    5464
                                                                                6543
                                                                                           7657
                                                                                                                  9856
##
       6 Alaska/38/39/40/~ NA
                                                         712
                                                                    760
                                                                                822
                                                                                           1024
                                                                                                       1322
                                                                                                                  1631
                                                                                                                              1967
                                                                                                                                         2329
                                                                                                       6069
                                                                                                                  6889
##
       7 Arizona/60/61/62~ NA
                                                         3456
                                                                    3749
                                                                                4372
                                                                                           5223
                                                                                                                              7845
                                                                                                                                         8531
       8 Arkansas/82/83/8~ NA
                                                         2654
                                                                    3042
                                                                                2911
                                                                                           3328
                                                                                                      3922
                                                                                                                  4246
                                                                                                                              4482
                                                                                                                                         4611
##
       9 California/66/91~ NA
                                                         21325 22632 24569 29202 34640 39373 43197 50158 59484
## 10 Colorado/100/101~ NA
                                                                    2668
                                                                               2629 2772
                                                                                                      3042 3244
                                                         2486
                                                                                                                              3231
## # ... with 725 more rows, and 33 more variables: X12 <chr>, X13 <chr>,
             X14 <chr>, X15 <chr>, X16 <chr>, X17 <dbl>, X18 <dbl>, X19 <dbl>,
## #
             X20 <dbl>, X21 <dbl>, X22 <dbl>, X23 <dbl>, X24 <dbl>, X25 <dbl>,
## #
             X26 <dbl>, X27 <dbl>, X28 <dbl>, X29 <dbl>, X30 <dbl>, X31 <dbl>,
             X32 <dbl>, X33 <dbl>, X34 <dbl>, X35 <dbl>, X36 <dbl>, X37 <dbl>,
             X38 <dbl>, X39 <dbl>, X40 <dbl>, X41 <dbl>, X42 <dbl>, X43 <dbl>, X44 <dbl>
## #
```

continuing data deletion

Rename the name of coloumn 1

Separate coloumn 1

using the first row as the header

```
data_correction2 <- data_correction %>%
slice(-c(56:735)) %>%
slice(-c(2:4)) %>%
```

```
rename(State = 1) %>%
separate(State, into = "States", sep = "/", extra = 'drop') %>%
select (-c(2:35)) %>%
purrr::set_names(as.character(slice(., 1))) %>%
slice(-1)
data correction2
## # A tibble: 51 x 10
      Jurisdiction `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019`
##
      <chr>
                     <dbl> <dbl>
                                   <dbl>
                                          <dbl>
                                                 <dbl>
                                                        <dbl>
                                                               <dbl>
                                                                      <dbl>
                                                                             <dbl>
##
   1 Alabama
                     32270
                            32431
                                   32381
                                          31771
                                                 30810
                                                        28883
                                                               27608
                                                                      26841
                                                                             28304
   2 Alaska
                      5597
                             5633
                                           5794
                                                  5338
                                                         4434
                                                                4399
                                                                       4380
                                                                              4475
##
                                    5081
##
   3 Arizona
                     40020 40080 41177
                                          42259 42719
                                                        42320
                                                               42030
                                                                      42005 42441
## 4 Arkansas
                     16108 14654
                                   17235 17874 17707
                                                        17537
                                                               18070
                                                                     17799 17759
## 5 California
                    149569 134534 135981 136085 129593 130084 131039 128625 122687
##
   6 Colorado
                     21978 20462
                                   20371
                                          20646
                                                 20041
                                                        19981
                                                               19946
                                                                      20372 19785
##
   7 Connecticut
                      18324 17530
                                   17563
                                          16636
                                                 15816
                                                        14957
                                                               14040
                                                                      13681
                                                                             12823
##
  8 Delaware
                      6739
                             6914
                                    7004
                                           6955
                                                  6654
                                                         6585
                                                                6443
                                                                       6067
                                                                              5692
## 9 District of C~
                                0
                                       0
                                              0
                                                     0
                                                            0
                                                                   0
                                                                          0
                                                                                 0
                         0
## 10 Florida
                     103055 101930 103028 102870 101424
                                                        99974
                                                               98504
                                                                      97538
                                                                             96009
## # ... with 41 more rows
final_data_correction <- data_correction2 %>%
rename(State = 1)
final_data_correction
## # A tibble: 51 x 10
##
      State
                     `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019`
##
      <chr>
                      <dbl> <dbl>
                                   <dbl>
                                          <dbl>
                                                 <dbl>
                                                        <dbl>
                                                               <dbl>
                                                                      <dbl>
                                                                             <dbl>
##
                     32270
                                   32381
                                          31771
                                                 30810
                                                        28883
                                                               27608
                                                                      26841
                                                                             28304
   1 Alabama
                            32431
##
   2 Alaska
                      5597
                             5633
                                    5081
                                           5794
                                                  5338
                                                         4434
                                                                4399
                                                                       4380
                                                                              4475
##
   3 Arizona
                     40020 40080 41177
                                          42259 42719
                                                        42320
                                                               42030
                                                                      42005 42441
##
  4 Arkansas
                     16108 14654
                                   17235
                                         17874 17707
                                                        17537
                                                               18070
                                                                      17799 17759
##
  5 California
                    149569 134534 135981 136085 129593 130084 131039 128625 122687
##
   6 Colorado
                     21978 20462
                                   20371
                                          20646
                                                 20041
                                                        19981
                                                               19946
                                                                      20372 19785
##
   7 Connecticut
                      18324 17530
                                   17563
                                          16636
                                                 15816
                                                        14957
                                                               14040
                                                                      13681
                                                                             12823
  8 Delaware
                      6739
                             6914
                                    7004
                                           6955
                                                  6654
                                                         6585
                                                                6443
                                                                       6067
                                                                              5692
## 9 District of C~
                                0
                                       0
                                              0
                                                     0
                                                            0
                                                                   0
                                                                          0
                         0
## 10 Florida
                     103055 101930 103028 102870 101424 99974
                                                               98504 97538
                                                                             96009
## # ... with 41 more rows
loading data on population
population <- read_csv("Statespopulation_2011to2020.csv")</pre>
##
## -- Column specification -----
## cols(
    States = col_character(),
```

```
##
            `2011` = col_double(),
##
            `2012` = col_double(),
##
           2013 = col double(),
           `2014` = col_double(),
##
##
            `2015` = col_double(),
##
           2016 = col double(),
##
           2017 = col double(),
            2018 = col double(),
##
##
            `2019` = col_double(),
##
            `2020` = col_double()
## )
## Warning: 3 parsing failures.
                                                                                                                                              file
## row col
                              expected
                                                          actual
                 -- 11 columns 1 columns 'Statespopulation_2011to2020.csv'
                -- 11 columns 1 columns 'Statespopulation_2011to2020.csv'
                -- 11 columns 1 columns 'Statespopulation_2011to2020.csv'
population
## # A tibble: 114 x 11
##
              States `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020`
##
                                   <dbl> 
        1 Alabama 4.68e6 4.70e6 4.71e6 4.71e6 4.73e6 4.83e6 4.74e6 4.86e6 4.77e6 4.89e6
      2 Alaska 6.97e5 7.06e5 7.05e5 7.07e5 7.08e5 7.08e5 7.10e5 7.21e5 7.02e5 7.06e5
      3 Arizona 6.32e6 6.39e6 6.47e6 6.56e6 6.66e6 6.88e6 6.84e6 7.23e6 7.10e6 7.47e6
        4 Arkans~ 2.85e6 2.86e6 2.87e6 2.88e6 2.88e6 2.94e6 2.91e6 2.91e6 2.92e6 2.98e6
##
         5 Califo~ 3.69e7 3.72e7 3.75e7 3.80e7 3.83e7 3.91e7 3.87e7 3.91e7 3.86e7 3.91e7
         6 Colora~ 4.98e6 5.05e6 5.13e6 5.22e6 5.32e6 5.50e6 5.46e6 5.73e6 5.61e6 5.74e6
        7 Connec~ 3.47e6 3.48e6 3.48e6 3.48e6 3.57e6 3.48e6 3.42e6 3.45e6 3.48e6
        8 Delawa~ 8.80e5 8.88e5 8.98e5 9.05e5 9.18e5 9.44e5 9.32e5 9.74e5 9.40e5 9.82e5
      9 Distri~ 5.84e5 5.96e5 6.10e5 6.24e5 6.35e5 6.84e5 6.58e5 6.91e5 6.71e5 7.17e5
## 10 Florida 1.86e7 1.89e7 1.91e7 1.94e7 1.98e7 2.05e7 2.05e7 2.11e7 2.10e7 2.17e7
## # ... with 104 more rows
```

rename column 1

```
renamed_population <- population %>%
rename(State = 1) %>%
slice(1:51)%>%
select(-c(11))
renamed_population
```

```
## # A tibble: 51 x 10
##
                  2011
                         `2012`
                                 `2013`
                                         `2014` `2015` `2016` `2017` `2018` `2019`
     State
                                  <dbl>
                                                        <dbl>
##
      <chr>
                  <dbl>
                          <dbl>
                                          <dbl>
                                                <dbl>
                                                              <dbl>
                                                                     <dbl>
##
   1 Alabama
                 4.68e6 4.70e6 4.71e6 4.71e6 4.73e6 4.83e6 4.74e6 4.86e6 4.77e6
                                         7.07e5 7.08e5 7.08e5 7.10e5 7.21e5 7.02e5
   2 Alaska
                 6.97e5 7.06e5 7.05e5
                                         6.56e6 6.66e6 6.88e6 6.84e6 7.23e6 7.10e6
##
   3 Arizona
                 6.32e6 6.39e6 6.47e6
##
   4 Arkansas
                 2.85e6
                         2.86e6 2.87e6
                                         2.88e6 2.88e6 2.94e6 2.91e6 2.91e6 2.92e6
   5 California 3.69e7
                         3.72e7 3.75e7
                                         3.80e7 3.83e7 3.91e7 3.87e7 3.91e7 3.86e7
   6 Colorado
                 4.98e6 5.05e6 5.13e6
                                         5.22e6 5.32e6 5.50e6 5.46e6 5.73e6 5.61e6
                                         3.48e6 3.48e6 3.57e6 3.48e6 3.42e6 3.45e6
                 3.47e6 3.48e6 3.48e6
   7 Connectic~
```

```
## 8 Delaware 8.80e5 8.88e5 8.98e5 9.05e5 9.18e5 9.44e5 9.32e5 9.74e5 9.40e5 ## 9 District ~ 5.84e5 5.96e5 6.10e5 6.24e5 6.35e5 6.84e5 6.58e5 6.91e5 6.71e5 ## 10 Florida 1.86e7 1.89e7 1.91e7 1.94e7 1.98e7 2.05e7 2.05e7 2.11e7 2.10e7 ## # ... with 41 more rows
```

left join population data and correction data

```
combined_correction
## # A tibble: 51 x 19
##
     State `2011.x` `2012.x` `2013.x` `2014.x` `2015.x` `2016.x` `2017.x`
                                                                      `2018.x`
##
     <chr>
              <dbl>
                      <dbl>
                               <dbl>
                                       <dbl>
                                                <dbl>
                                                        <dbl>
                                                                 <dbl>
                                                                         <dbl>
                                                        28883
##
   1 Alab~
              32270
                      32431
                               32381
                                       31771
                                                30810
                                                                 27608
                                                                         26841
                                                                          4380
##
   2 Alas~
              5597
                       5633
                                5081
                                        5794
                                                 5338
                                                         4434
                                                                  4399
   3 Ariz~
              40020
                      40080
                               41177
                                       42259
                                                42719
                                                        42320
                                                                 42030
                                                                         42005
##
##
   4 Arka~
             16108
                      14654
                               17235
                                       17874
                                                17707
                                                        17537
                                                                 18070
                                                                         17799
  5 Cali~
             149569
                     134534
                                      136085
                              135981
                                               129593
                                                       130084
                                                                131039
                                                                        128625
##
   6 Colo~
             21978
                      20462
                               20371
                                       20646
                                                20041
                                                        19981
                                                                 19946
                                                                         20372
   7 Conn~
              18324
                      17530
                               17563
                                       16636
                                                15816
                                                        14957
                                                                 14040
                                                                         13681
##
   8 Dela~
               6739
                       6914
                                7004
                                        6955
                                                 6654
                                                         6585
                                                                  6443
                                                                          6067
   9 Dist~
## 10 Flor~
             103055
                     101930
                              103028
                                      102870
                                               101424
                                                        99974
                                                                 98504
                                                                         97538
## # ... with 41 more rows, and 10 more variables: 2019.x <dbl>, 2011.y <dbl>,
      2012.y <dbl>, 2013.y <dbl>, 2014.y <dbl>, 2015.y <dbl>, 2016.y <dbl>,
      2017.y <dbl>, 2018.y <dbl>, 2019.y <dbl>
```

deleting unwanted columns in the combined data

getting the corrections per population by dividing the two per year

```
## # A tibble: 51 x 28
      State `2011.x` `2012.x` `2013.x` `2014.x` `2015.x` `2016.x` `2017.x`
                                                                               `2018.x`
##
                <dbl>
                         <dbl>
                                   <dbl>
                                             <dbl>
                                                      <dbl>
                                                                <dbl>
                                                                         <dbl>
                                                                                   <dbl>
      <chr>>
##
               32270
                         32431
                                   32381
                                                      30810
                                                                28883
                                                                         27608
                                                                                   26841
   1 Alab~
                                            31771
                          5633
                                    5081
                                                       5338
                                                                 4434
                                                                          4399
                                                                                    4380
   2 Alas~
                5597
                                             5794
## 3 Ariz~
               40020
                         40080
                                   41177
                                            42259
                                                      42719
                                                                42320
                                                                         42030
                                                                                   42005
```

```
## 4 Arka~
               16108
                         14654
                                  17235
                                           17874
                                                     17707
                                                              17537
                                                                        18070
                                                                                 17799
## 5 Cali~
              149569
                       134534
                                 135981
                                          136085
                                                    129593
                                                             130084
                                                                       131039
                                                                                128625
  6 Colo~
               21978
                         20462
                                  20371
                                           20646
                                                     20041
                                                              19981
                                                                        19946
                                                                                 20372
               18324
                         17530
                                                                                 13681
##
  7 Conn~
                                  17563
                                           16636
                                                     15816
                                                              14957
                                                                        14040
    8 Dela~
                6739
                          6914
                                   7004
                                             6955
                                                      6654
                                                               6585
                                                                         6443
                                                                                  6067
## 9 Dist~
                                                                  0
                   0
                                                         0
                                                                            0
                                                                                     0
                       101930
                                                              99974
                                                                        98504
## 10 Flor~
              103055
                                 103028
                                          102870
                                                    101424
                                                                                 97538
## # ... with 41 more rows, and 19 more variables: 2019.x <dbl>, 2011.y <dbl>,
       2012.y <dbl>, 2013.y <dbl>, 2014.y <dbl>, 2015.y <dbl>, 2016.y <dbl>,
       2017.y <dbl>, 2018.y <dbl>, 2019.y <dbl>, correction_2011 <dbl>,
       correction_2012 <dbl>, correction_2013 <dbl>, correction_2014 <dbl>,
## #
       correction_2015 <dbl>, correction_2016 <dbl>, correction_2017 <dbl>,
       correction_2018 <dbl>, correction_2019 <dbl>
```

selecting the correction rate per state

using mutate to get the 10 year mean value

```
combined_correction_data <- data_combined_correction %>%
select(State,correction_2011:correction_2019) %>%
mutate("10year mean" =rowMeans(select(., `correction 2011`, `correction 2012`, `correction 2013`, `correcti
combined_correction_data
## # A tibble: 51 x 11
                    correction_2011 correction_2012 correction_2013 correction_2014
##
##
      <chr>>
                               <dbl>
                                               <dbl>
                                                                <dbl>
                                                                                 <dbl>
                             0.00690
                                             0.00691
                                                              0.00688
                                                                               0.00674
  1 Alabama
## 2 Alaska
                             0.00803
                                             0.00798
                                                              0.00721
                                                                               0.00820
##
   3 Arizona
                             0.00633
                                             0.00628
                                                              0.00637
                                                                               0.00645
## 4 Arkansas
                             0.00565
                                             0.00512
                                                              0.00601
                                                                               0.00621
## 5 California
                             0.00406
                                             0.00361
                                                              0.00363
                                                                               0.00358
## 6 Colorado
                             0.00441
                                             0.00406
                                                              0.00397
                                                                               0.00396
                                             0.00504
                                                              0.00505
   7 Connecticut
                             0.00529
                                                                               0.00478
## 8 Delaware
                             0.00766
                                             0.00779
                                                              0.00780
                                                                               0.00768
## 9 District of ~
                             0
                                             0
                                                              0
## 10 Florida
                             0.00554
                                             0.00540
                                                              0.00540
                                                                               0.00529
## # ... with 41 more rows, and 6 more variables: correction_2015 <dbl>,
       correction 2016 <dbl>, correction 2017 <dbl>, correction 2018 <dbl>,
       correction_2019 <dbl>, 10year_mean <dbl>
```

ranked correction data

```
ranked_correction_data <- combined_correction_data %>%
arrange(desc(`10year_mean`)) %>%
mutate('2011_ranking' =min_rank((`correction_2011`))) %>%
mutate('2012_ranking' = min_rank((`correction_2012`) )) %>%
mutate('2013_ranking' = min_rank((`correction_2013`)) ) %>%
mutate('2014_ranking' = min_rank((`correction_2014`)) ) %>%
mutate('2015_ranking' = min_rank((`correction_2015`)) ) %>%
mutate('2016_ranking' = min_rank((`correction_2016`)) ) %>%
mutate('2017_ranking' = min_rank((`correction_2016`)) ) %>%
```

```
mutate('2018_ranking' = min_rank((`correction_2018`)) ) %>%
mutate('2019_ranking' = min_rank((`correction_2019`)) ) %>%
mutate('10year_ranking' = min_rank((`10year_mean`)) )
ranked_correction_data
## # A tibble: 51 x 21
##
                  correction_2011 correction_2012 correction_2013 correction_2014
      State
##
      <chr>
                             <dbl>
                                             <dbl>
                                                              <dbl>
                                                                              <dbl>
                          0.00896
                                           0.00901
                                                                            0.00844
##
  1 Louisiana
                                                            0.00877
    2 Oklahoma
                          0.00709
                                           0.00684
                                                            0.00739
                                                                            0.00737
##
  3 Delaware
                          0.00766
                                           0.00779
                                                            0.00780
                                                                            0.00768
##
  4 Alaska
                          0.00803
                                           0.00798
                                                            0.00721
                                                                            0.00820
## 5 Mississippi
                          0.00743
                                           0.00774
                                                            0.00760
                                                                            0.00651
                                                            0.00688
## 6 Alabama
                          0.00690
                                           0.00691
                                                                            0.00674
## 7 Arizona
                          0.00633
                                           0.00628
                                                            0.00637
                                                                            0.00645
## 8 Texas
                           0.00689
                                           0.00655
                                                            0.00653
                                                                            0.00632
## 9 Arkansas
                           0.00565
                                           0.00512
                                                            0.00601
                                                                            0.00621
                          0.00588
                                           0.00577
                                                                            0.00541
## 10 Georgia
                                                            0.00557
## # ... with 41 more rows, and 16 more variables: correction_2015 <dbl>,
       correction_2016 <dbl>, correction_2017 <dbl>, correction_2018 <dbl>,
## #
       correction_2019 <dbl>, 10year_mean <dbl>, 2011_ranking <int>,
## #
       2012_ranking <int>, 2013_ranking <int>, 2014_ranking <int>,
       2015_ranking <int>, 2016_ranking <int>, 2017_ranking <int>,
       2018_ranking <int>, 2019_ranking <int>, 10year_ranking <int>
## #
ranked correction data
final_ranked_correction <- ranked_correction_data %>%
select(State, 12:21)
final_ranked_correction
## # A tibble: 51 x 11
##
      State
                  `2011_ranking` `2012_ranking` `2013_ranking` `2014_ranking`
##
      <chr>
                           <int>
                                           <int>
                                                           <int>
                                                                          <int>
##
   1 Louisiana
                               51
                                              51
                                                              51
                                                                             51
    2 Oklahoma
                                                                             48
##
                               47
                                              46
                                                              48
## 3 Delaware
                               49
                                              49
                                                              50
                                                                             49
## 4 Alaska
                                                                             50
                               50
                                              50
                                                              47
## 5 Mississippi
                               48
                                              48
                                                              49
                                                                             46
## 6 Alabama
                               46
                                              47
                                                              46
                                                                             47
## 7 Arizona
                                                                             45
                               44
                                              44
                                                              44
## 8 Texas
                               45
                                              45
                                                              45
                                                                             44
## 9 Arkansas
                               42
                                              39
                                                              43
                                                                             43
## 10 Georgia
                               43
                                              43
                                                                             41
## # ... with 41 more rows, and 6 more variables: 2015_ranking <int>,
       2016_ranking <int>, 2017_ranking <int>, 2018_ranking <int>,
       2019_ranking <int>, 10year_ranking <int>
# Final ranked correction data # renaming columns
final_ranked_correction2 <- final_ranked_correction %>%
```

rename("2011_corrank" = 2)%>%

```
rename("2012_corrank" = 3)%>%
rename("2013_corrank" = 4)%>%
rename("2014_corrank" = 5)%>%
rename("2015_corrank" = 6)%>%
rename("2016_corrank" = 7)%>%
rename("2017_corrank" = 8)%>%
rename("2018_corrank" = 9)%>%
rename("2019_corrank" = 10)%>%
rename("10yr_corrank" = 11)
```

EDUCATION DATA: college graduation

... with 41 more rows

```
#load data
college_graduationrate_data <- read_csv("College_Graduation_Rate_perstate.csv")</pre>
## -- Column specification --------
## cols(
##
    States = col_character(),
##
    `2020` = col_double(),
##
    `2019` = col_double(),
##
    `2018` = col_double(),
##
    `2017` = col_character(),
##
    `2016` = col_character(),
    `2015` = col_character(),
##
##
    `2014` = col_character(),
##
    `2013` = col_character(),
    `2012` = col_character(),
##
##
    `2011` = col_character()
## )
col_conv <- c(5:11)</pre>
college_graduationrate_data[ , col_conv] <- lapply(college_graduationrate_data[ , col_conv], function(x)</pre>
college_graduationrate_data
## # A tibble: 51 x 11
##
     States `2020` '2019` '2018` '2017` '2016` '2015` '2014` '2013` '2012` '2011`
##
     <chr>
              <dbl> <dbl>
                           <dbl> <dbl>
                                        <dbl> <dbl>
                                                     <dbl> <dbl> <dbl>
                                                                         <dbl>
                                                                    21.3
## 1 Alabama 27.8
                     26.3
                            25.5
                                   27.2
                                         26.5
                                                25.2
                                                      24.3
                                                             22.3
                                                                          18
## 2 Alaska
              31.9
                     30.2
                            30.2
                                  75.3
                                         70.7
                                                70.7
                                                       66.4
                                                             67.2
                                                                    68.2
                                                                          72.4
## 3 Arizona 33
                     30.2
                            29.7
                                  31.7
                                         32.4
                                                32.1
                                                      32.6
                                                             33.4
                                                                    32.9
                                                                          30.8
## 4 Arkans~
              24.9 23.3
                            23.3
                                  33
                                         33.4
                                                29.5
                                                      28.7
                                                             27.7
                                                                    25.4
                                                                          23.9
## 5 Califo~ 36.9
                    35
                            34.2
                                  39.4
                                         38.5
                                                37.4
                                                      38.3
                                                             38.7
                                                                    38.8
                                                                          39.9
## 6 Colora~ 44.2
                     42.7
                            41.7
                                   56.4
                                         61.9
                                                54.8
                                                      49.7
                                                             48.2
                                                                    44.7
                                                                          43.5
## 7 Connec~
             42.4
                                   29.1
                                         24.8
                                                23.9
                                                      22
                                                                    15.2
                     39.8
                            39.6
                                                             16.8
                                                                          15
## 8 Delawa~
              34.7
                                         58.4
                                                      59
                                                             71.3
                     33.2
                            31.3
                                   44.2
                                                63.9
                                                                    16.1
                                                                          16.4
                                                      59.1
## 9 Distri~
              63.6
                     59.7
                            60.4
                                   68.9
                                         73.8
                                                73
                                                             61.6
                                                                    66.7
                                                                          82.4
## 10 Florida
             33.7
                            30.4
                                  56.7
                                         56.8
                                                60.6
                                                       60.3
                                                             59.4
                                                                    54.2
                                                                          54.5
                     30.7
```

Ranking the average graduation rate over the years using lapply to change character columns to numeric

```
#graduation_rate2[,2:10] <- lapply(graduation_rate2[,2:10],as.numeric)</pre>
tenyear_graduation <- college_graduationrate_data %>%
mutate("10year_mean" =rowMeans(select(., `2011`, `2012`, `2013`, `2014`, `2015`, `2016`, `2017`, `2018`, `2019`
tenyear_graduation
## # A tibble: 51 x 12
      States `2020` `2019` `2018` `2017` `2016` `2015` `2014` `2013` `2012` `2011`
##
##
      <chr>
                <dbl>
                       <dbl>
                               <dbl>
                                      <dbl>
                                              <dbl>
                                                     dbl>
                                                             <dbl>
                                                                    <dbl>
                                                                            <dbl>
                                                                                   <dbl>
   1 Alabama
                        26.3
                                       27.2
                                                      25.2
                                                                     22.3
                 27.8
                                25.5
                                               26.5
                                                              24.3
                                                                             21.3
                                                                                    18
                 31.9
                        30.2
                                30.2
                                       75.3
                                               70.7
                                                      70.7
                                                              66.4
                                                                     67.2
                                                                             68.2
                                                                                    72.4
##
    2 Alaska
##
    3 Arizona
                 33
                        30.2
                                29.7
                                       31.7
                                               32.4
                                                      32.1
                                                              32.6
                                                                     33.4
                                                                             32.9
                                                                                    30.8
                                               33.4
                                                                             25.4
##
   4 Arkans~
                24.9
                        23.3
                                23.3
                                       33
                                                      29.5
                                                              28.7
                                                                     27.7
                                                                                    23.9
##
   5 Califo~
                36.9
                        35
                                34.2
                                       39.4
                                               38.5
                                                      37.4
                                                              38.3
                                                                     38.7
                                                                             38.8
                                                                                    39.9
##
    6 Colora~
                 44.2
                        42.7
                                41.7
                                       56.4
                                               61.9
                                                      54.8
                                                              49.7
                                                                     48.2
                                                                             44.7
                                                                                    43.5
##
   7 Connec~
                 42.4
                        39.8
                                39.6
                                       29.1
                                               24.8
                                                      23.9
                                                              22
                                                                     16.8
                                                                             15.2
                                                                                    15
##
    8 Delawa~
                 34.7
                        33.2
                                31.3
                                       44.2
                                               58.4
                                                      63.9
                                                              59
                                                                     71.3
                                                                             16.1
                                                                                    16.4
   9 Distri~
                 63.6
                        59.7
                                               73.8
                                                      73
                                                              59.1
                                                                                    82.4
##
                                60.4
                                       68.9
                                                                     61.6
                                                                             66.7
## 10 Florida
                 33.7
                        30.7
                                30.4
                                       56.7
                                               56.8
                                                      60.6
                                                              60.3
                                                                     59.4
                                                                             54.2
                                                                                    54.5
## # ... with 41 more rows, and 1 more variable: 10year_mean <dbl>
```

ranked_graduation_data

```
ranked_graduation_data <- tenyear_graduation %>%
arrange(desc(`10year_mean`)) %>%
mutate('2011_edurank' =min_rank(desc(`2011`))) %>%
mutate('2012_edurank' = min_rank(desc(`2012`) )) %>%
mutate('2013_edurank' = min_rank(desc(`2013`))) %>%
mutate('2014_edurank' = min_rank(desc(`2014`))) %>%
mutate('2015_edurank' = min_rank(desc(`2014`))) %>%
mutate('2016_edurank' = min_rank(desc(`2016`))) %>%
mutate('2017_edurank' = min_rank(desc(`2016`))) %>%
mutate('2018_edurank' = min_rank(desc(`2018`))) %>%
mutate('2019_edurank' = min_rank(desc(`2019`))) %>%
mutate('2020_edurank' = min_rank(desc(`2020`))) %>%
mutate('10year_edurank' = min_rank(desc(`10year_mean`)))
ranked_graduation_data
```

```
## # A tibble: 51 x 23
##
               `2020`
                       `2019`
                              `2018`
                                      `2017`
                                              `2016`
                                                      `2015`
                                                             `2014`
                                                                     `2013`
                                                                             `2012`
                                                                                    `2011`
      States
##
      <chr>
                <dbl>
                       <dbl>
                                <dbl>
                                       <dbl>
                                               <dbl>
                                                       <dbl>
                                                              <dbl>
                                                                      <dbl>
                                                                              <dbl>
                                                                                     <dbl>
##
    1 Distri~
                 63.6
                         59.7
                                 60.4
                                        68.9
                                                73.8
                                                        73
                                                                59.1
                                                                       61.6
                                                                               66.7
                                                                                       82.4
                 31.9
                         30.2
                                 30.2
                                        75.3
                                                70.7
                                                        70.7
                                                                66.4
                                                                       67.2
                                                                               68.2
                                                                                      72.4
    2 Alaska
                                        60.7
                 28.4
                         29.7
                                 29.2
                                                65.4
                                                        62.4
                                                                60.5
                                                                               60.8
                                                                                       56.5
##
    3 South ~
                                                                       58.3
                         30.7
                                        56.7
                                                56.8
                                                        60.6
                                                                60.3
                                                                       59.4
                                                                                       54.5
##
    4 Florida
                 33.7
                                 30.4
                                                                               54.2
                                                60.9
##
    5 Nevada
                 28
                         25.7
                                 24.9
                                        64.6
                                                        62.4
                                                                57.4
                                                                       56.9
                                                                               59.8
                                                                                       52.8
    6 Colora~
                 44.2
                         42.7
                                 41.7
                                        56.4
                                                61.9
                                                        54.8
                                                                49.7
                                                                       48.2
                                                                               44.7
                                                                                       43.5
```

```
## 7 Washin~ 38.4 37
                         36.7 51.6 50 47.4
                                                  55.7 50.9
                                                              46.7
                                                                    45.9
                                                        71.3 16.1
## 8 Delawa~ 34.7 33.2 31.3 44.2 58.4 63.9
                                                  59
                                                                    16.4
                                                              43.7
## 9 North ~ 31.8 30.4 29.7 44.9 44.6 44.4
                                                  46.9
                                                        45.5
                                                                    41.3
## 10 Wyoming 28.2 29.1
                         26.9 41.4 43.2
                                                  43.3
                                                              47.7 43.3
                                            39.7
                                                        48.9
## # ... with 41 more rows, and 12 more variables: 10year_mean <dbl>,
    2011 edurank <int>, 2012 edurank <int>, 2013 edurank <int>,
     2014 edurank <int>, 2015 edurank <int>, 2016 edurank <int>,
     2017_edurank <int>, 2018_edurank <int>, 2019_edurank <int>,
## #
     2020_edurank <int>, 10year_edurank <int>
```

final_ranked_graduationdata 2011-2020

```
final_ranked_graduation <- ranked_graduation_data %>%
select(States, 13:23)
final_ranked_graduation
## # A tibble: 51 x 12
##
     States
                      `2011 edurank` `2012 edurank` `2013 edurank` `2014 edurank`
                                          <int>
##
     <chr>>
                               <int>
                                                       <int>
                                                                          <int>
## 1 District of Colu~
                                                2
                                  1
## 2 Alaska
                                  2
                                                 1
                                                                2
                                                                              1
## 3 South Dakota
                                                                5
                                                 3
## 4 Florida
                                                 5
                                                               4
                                                                              3
## 5 Nevada
                                  5
                                                 4
                                                               6
                                                                              6
                                  7
                                                               9
                                                                              8
## 6 Colorado
                                                 8
                                                               7
## 7 Washington
                                  6
                                                7
                                                                              7
## 8 Delaware
                                  48
                                                46
                                                                              5
                                                               1
                                                 9
## 9 North Dakota
                                                               10
                                                                              9
## 10 Wyoming
                                   8
                                                 6
                                                                             10
## # ... with 41 more rows, and 7 more variables: 2015_edurank <int>,
      2016_edurank <int>, 2017_edurank <int>, 2018_edurank <int>,
```

Health Data

Used total number of hospitals and total number of insured people per state Loading and wrangling hospitals data for each year

2019_edurank <int>, 2020_edurank <int>, 10year_edurank <int>

```
## Warning: Missing column names filled in: 'X2' [2]
## -- Column specification ------
## cols(
  `Title: Total Hospitals | KFF` = col_character(),
## X2 = col_character()
## )
th 2012 <- th2012 %>%
     slice(-(1:3)) %>%
        rename('2012'= X2,States= `Title: Total Hospitals | KFF`)
th2013 <- read_csv("totalhospitals2013.csv")</pre>
## Warning: Missing column names filled in: 'X2' [2]
## -- Column specification ------
    `Title: Total Hospitals | KFF` = col_character(),
## X2 = col_character()
## )
th_2013 <- th2013 %>%
     slice(-(1:3)) %>%
        rename('2013'= X2,States= `Title: Total Hospitals | KFF`)
th2014 <- read_csv("totalhospitals2014.csv")</pre>
## Warning: Missing column names filled in: 'X2' [2]
## cols(
   `Title: Total Hospitals | KFF` = col_character(),
## X2 = col_character()
## )
th_2014 <- th2014 %>%
     slice(-(1:3)) %>%
        rename('2014'= X2,States= `Title: Total Hospitals | KFF`)
th2015 <- read_csv("totalhospitals2015.csv")</pre>
## Warning: Missing column names filled in: 'X2' [2]
## -- Column specification ------
## `Title: Total Hospitals | KFF` = col_character(),
## X2 = col_character()
## )
th_2015 <- th2015 %>%
      slice(-(1:3)) %>%
        rename('2015'= X2,States= `Title: Total Hospitals | KFF`)
th2016 <- read csv("totalhospitals2016.csv")
## Warning: Missing column names filled in: 'X2' [2]
```

```
`Title: Total Hospitals | KFF` = col_character(),
## X2 = col_character()
## )
th_2016 <- th2016 %>%
     slice(-(1:3)) %>%
        rename('2016'= X2,States= `Title: Total Hospitals | KFF`)
th2017 <- read_csv("totalhospitals2017.csv")</pre>
## Warning: Missing column names filled in: 'X2' [2]
## -- Column specification ------
   `Title: Total Hospitals | KFF` = col_character(),
  X2 = col_character()
## )
th_2017 <- th2017 %>%
     slice(-(1:3)) %>%
        rename('2017'= X2,States= `Title: Total Hospitals | KFF`)
th2018 <- read_csv("totalhospitals2018.csv")</pre>
## Warning: Missing column names filled in: 'X2' [2]
## -- Column specification ------
## cols(
  `Title: Total Hospitals | KFF` = col_character(),
## X2 = col_character()
## )
th 2018 <- th2018 %>%
     slice(-(1:3)) %>%
       rename('2018'= X2,States= `Title: Total Hospitals | KFF`)
th2019 <- read_csv("totalhospitals2019.csv")</pre>
## Warning: Missing column names filled in: 'X2' [2]
## cols(
   `Title: Total Hospitals | KFF` = col_character(),
## X2 = col_character()
## )
th 2019 <- th2019 %>%
     slice(-(1:3)) %>%
        rename('2019'= X2,States= `Title: Total Hospitals | KFF`)
th2020 <- read_csv("totalhospitals2020.csv")</pre>
## Warning: Missing column names filled in: 'X2' [2]
## -- Column specification ------
## cols(
```

Joining the data above to get a single tibble for hospitals data

```
statehospitals_from2011 <- th_2011 %>%
  inner join(th 2012, by='States') %>%
    inner_join(th_2013, by='States') %>%
      inner_join(th_2014, by='States') %>%
        inner_join(th_2015, by='States') %>%
          inner_join(th_2016, by='States') %>%
             inner_join(th_2017, by='States') %>%
               inner_join(th_2018, by='States') %>%
                 inner_join(th_2019, by='States') %>%
                    inner_join(th_2020, by='States') %>%
                      na.omit
statehospitals from 2011
## # A tibble: 51 x 11
      States `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020`
##
      <chr>
              <chr> <chr>
                            <chr> <chr>
                                           <chr>
                                                  <chr>
                                                         <chr>
                                                                <chr>
                                                                        <chr>
                                                                               <chr>>
##
   1 Alabama 102
                     97
                             97
                                    96
                                           95
                                                  95
                                                         102
                                                                 101
                                                                        101
                                                                               101
## 2 Alaska 23
                     23
                            22
                                    22
                                           21
                                                  21
                                                         21
                                                                 21
                                                                        20
                                                                               20
  3 Arizona 70
                     72
                            72
                                    72
                                           71
                                                  70
                                                         83
                                                                 83
                                                                        80
                                                                               81
## 4 Arkans~ 84
                                                                        89
                     83
                            84
                                    81
                                           80
                                                  80
                                                         88
                                                                 88
                                                                               90
## 5 Califo~ 345
                     349
                            347
                                    344
                                           342
                                                  341
                                                         362
                                                                 359
                                                                        359
                                                                               353
  6 Colora~ 82
                     82
                            82
                                    82
                                           81
                                                  79
                                                         89
                                                                 89
                                                                        90
                                                                               91
## 7 Connec~ 35
                            33
                                    32
                                           32
                                                  32
                                                         32
                                                                 32
                                                                        31
                                                                               31
                     34
## 8 Delawa~ 7
                     7
                            7
                                    7
                                           7
                                                  7
                                                         8
                                                                 7
                                                                        7
                                                                               7
## 9 Distri~ 11
                                                  11
                                                                 10
                                                                        10
                                                                               10
                     11
                            11
                                    11
                                           11
                                                         11
## 10 Florida 213
                     216
                             212
                                    211
                                           210
                                                  210
                                                         220
                                                                 217
                                                                        212
                                                                               214
```

Loading and wrangling health insurance data for each year

... with 41 more rows

Insurance entities considered are employer, non-group,medicare,medicaid, and military

```
##
    X3 = col_character(),
##
    X4 = col_character(),
##
    X5 = col character(),
##
    X6 = col_character(),
##
    X7 = col_character(),
    X8 = col_character(),
##
    X9 = col character()
##
## )
hinsurance_2011 <- hi2011 %>%
 slice(-(1:3)) %>%
 rename(States= `Title: Health Insurance Coverage of the Total Population | KFF`) %>%
                                                                                      rename(Employ
hi2012 <- read_csv("insurance_coverage2012.csv")
## Warning: Missing column names filled in: 'X2' [2], 'X3' [3], 'X4' [4], 'X5' [5],
## 'X6' [6], 'X7' [7], 'X8' [8], 'X9' [9]
## -- Column specification -------
##
     `Title: Health Insurance Coverage of the Total Population | KFF` = col_character(),
##
    X2 = col_character(),
    X3 = col_character(),
##
    X4 = col_character(),
##
    X5 = col character(),
##
    X6 = col_character(),
    X7 = col_character(),
##
##
    X8 = col_character(),
    X9 = col_character()
## )
hinsurance_2012 <- hi2012 %>%
 slice(-(1:3)) %>%
 rename(States= `Title: Health Insurance Coverage of the Total Population | KFF`) %>%
                                                                                    rename(Employ
hi2013 <- read_csv("insurance_coverage2013.csv")
## Warning: Missing column names filled in: 'X2' [2], 'X3' [3], 'X4' [4], 'X5' [5],
## 'X6' [6], 'X7' [7], 'X8' [8], 'X9' [9]
## -- Column specification ------
## cols(
    `Title: Health Insurance Coverage of the Total Population | KFF` = col_character(),
    X2 = col_character(),
##
##
    X3 = col_character(),
##
    X4 = col_character(),
##
    X5 = col_character(),
    X6 = col_character(),
##
    X7 = col_character(),
##
##
    X8 = col_character(),
##
    X9 = col_character()
## )
hinsurance_2013 <- hi2013 %>%
slice(-(1:3)) %>%
 rename(States= `Title: Health Insurance Coverage of the Total Population | KFF`) %>% rename(Employ
hi2014 <- read_csv("insurance_coverage2014.csv")
```

```
## Warning: Missing column names filled in: 'X2' [2], 'X3' [3], 'X4' [4], 'X5' [5],
## 'X6' [6], 'X7' [7], 'X8' [8], 'X9' [9]
## -- Column specification ------
## cols(
##
    `Title: Health Insurance Coverage of the Total Population | KFF` = col character(),
##
    X2 = col_character(),
##
    X3 = col character(),
##
    X4 = col_character(),
##
    X5 = col_character(),
    X6 = col_character(),
##
##
    X7 = col_character(),
##
    X8 = col_character(),
    X9 = col_character()
## )
hinsurance_2014 <- hi2014 %>%
slice(-(1:3)) %>%
 rename(States= `Title: Health Insurance Coverage of the Total Population | KFF`) %>%
                                                                               rename(Employ
hi2015 <- read_csv("insurance_coverage2015.csv")
## Warning: Missing column names filled in: 'X2' [2], 'X3' [3], 'X4' [4], 'X5' [5],
## 'X6' [6], 'X7' [7], 'X8' [8], 'X9' [9]
## cols(
##
    `Title: Health Insurance Coverage of the Total Population | KFF` = col character(),
    X2 = col_character(),
##
    X3 = col_character(),
##
##
    X4 = col_character(),
##
    X5 = col_character(),
##
    X6 = col_character(),
    X7 = col_character(),
##
##
    X8 = col_character(),
    X9 = col_character()
##
## )
hinsurance_2015 <- hi2015 %>%
slice(-(1:3)) %>%
 rename(States= `Title: Health Insurance Coverage of the Total Population | KFF`) %>%
                                                                                rename(Employ
hi2016 <- read_csv("insurance_coverage2016.csv")
## Warning: Missing column names filled in: 'X2' [2], 'X3' [3], 'X4' [4], 'X5' [5],
## 'X6' [6], 'X7' [7], 'X8' [8]
## cols(
##
    `Title: Health Insurance Coverage of the Total Population (CPS) | KFF` = col_character(),
    X2 = col_character(),
##
    X3 = col_character(),
##
##
    X4 = col_character(),
##
    X5 = col_character(),
##
    X6 = col_character(),
    X7 = col_character(),
```

```
X8 = col_character()
## )
hinsurance_2016 <- hi2016 %>%
slice(-(1:3)) %>%
rename(States= `Title: Health Insurance Coverage of the Total Population (CPS) | KFF`) %>%
                                                                                    rename (Em
hi2017 <- read_csv("insurance_coverage2017.csv")
## Warning: Missing column names filled in: 'X2' [2], 'X3' [3], 'X4' [4], 'X5' [5],
## 'X6' [6], 'X7' [7], 'X8' [8], 'X9' [9]
## -- Column specification --------
## cols(
##
    `Title: Health Insurance Coverage of the Total Population | KFF` = col_character(),
##
    X2 = col_character(),
    X3 = col_character(),
##
    X4 = col_character(),
##
##
    X5 = col_character(),
##
    X6 = col_character(),
##
    X7 = col_character(),
    X8 = col_character(),
##
    X9 = col_character()
##
## )
hinsurance_2017 <- hi2017 %>%
slice(-(1:3)) %>%
 rename(States= `Title: Health Insurance Coverage of the Total Population | KFF`) %>%
                                                                                rename(Employ
hi2018 <- read_csv("insurance_coverage2018.csv")
## Warning: Missing column names filled in: 'X2' [2], 'X3' [3], 'X4' [4], 'X5' [5],
## 'X6' [6], 'X7' [7], 'X8' [8]
## cols(
    `Title: Health Insurance Coverage of the Total Population (CPS) | KFF` = col_character(),
##
##
    X2 = col_character(),
##
    X3 = col_character(),
##
    X4 = col_character(),
##
    X5 = col_character(),
##
    X6 = col_character(),
    X7 = col_character(),
    X8 = col_character()
##
## )
hinsurance_2018 <- hi2018 %>%
slice(-(1:3)) %>%
rename(States= `Title: Health Insurance Coverage of the Total Population (CPS) | KFF`) %>%
                                                                                    rename (Em
hi2019 <- read_csv("insurance_coverage2019.csv")
## Warning: Missing column names filled in: 'X2' [2], 'X3' [3], 'X4' [4], 'X5' [5],
## 'X6' [6], 'X7' [7], 'X8' [8], 'X9' [9]
## cols(
```

`Title: Health Insurance Coverage of the Total Population | KFF` = col_character(),

```
##
    X2 = col_character(),
##
    X3 = col_character(),
##
    X4 = col character(),
##
    X5 = col_character(),
##
    X6 = col_character(),
    X7 = col character(),
##
    X8 = col character(),
    X9 = col_character()
##
hinsurance_2019 <- hi2019 %>%
slice(-(1:3)) %>%
 rename(States= `Title: Health Insurance Coverage of the Total Population | KFF`) %>%
                                                                                        rename(Employ
hi2020 <- read_csv("insurance_coverage2020.csv")
## Warning: Missing column names filled in: 'X2' [2], 'X3' [3], 'X4' [4], 'X5' [5],
## 'X6' [6], 'X7' [7], 'X8' [8]
## -- Column specification ------
     `Title: Health Insurance Coverage of the Total Population (CPS) | KFF` = col_character(),
##
    X2 = col_character(),
##
    X3 = col_character(),
##
    X4 = col character(),
    X5 = col_character(),
##
    X6 = col character(),
##
    X7 = col_character(),
##
    X8 = col_character()
## )
hinsurance_2020 <- hi2020 %>%
slice(-(1:3)) %>%
rename(States= `Title: Health Insurance Coverage of the Total Population (CPS) | KFF`) %>%
                                                                                             rename (Em
hi2020
## # A tibble: 85 x 8
      `Title: Health Insurance Cov~ X2
                                          ХЗ
                                                 Х4
                                                        Х5
                                                               Х6
                                                                      Х7
                                                                             Х8
##
     <chr>
                                   <chr>
                                          <chr>
                                                 <chr>
                                                        <chr>
                                                               <chr>
                                                                      <chr>
                                                                             <chr>
##
  1 Timeframe: 2020
                                   <NA>
                                          <NA>
                                                 <NA>
                                                        <NA>
                                                               <NA>
                                                                      <NA>
                                                                             <NA>
##
   2 Location
                                   Emplo~ Non-G~ Medic~ Medic~ Milit~ Unins~ Total
## 3 United States
                                   16373~ 17785~ 57920~ 50819~ 74212~ 27957~ 3256~
## 4 Alabama
                                   23852~ 138600 903500 852500 N/A
                                                                      436200 4885~
## 5 Alaska
                                   281900 21700 155600 90200 67900 88800 7061~
## 6 Arizona
                                   33560~ 306100 15302~ 12567~ 215300 803600 7467~
## 7 Arkansas
                                   12159~ 231200 687300 536000 52700 254300 2977~
## 8 California
                                   18985~ 25339~ 91704~ 48851~ 708700 28451~ 3912~
## 9 Colorado
                                   28785~ 330700 951700 742700 238200 595500 5737~
## 10 Connecticut
                                   17280~ 181200 818800 563100 N/A
                                                                      165300 3476~
## # ... with 75 more rows
```

Renaming and subsetting only the required columns for each year

```
hi_2011 <- hinsurance_2011 %>% select(States, Total_Population, Uninsured) %>%
```

```
mutate(Insured = as.numeric(Total_Population) - as.numeric(Uninsured)) %>%
     rename('2011'=Insured) %>%
      select(States, '2011') %>%
        na.omit
hi_2012 <- hinsurance_2012 %>%
  select(States,Total_Population,Uninsured) %>%
    mutate(Insured = as.numeric(Total_Population) - as.numeric(Uninsured)) %>%
     rename('2012'=Insured) %>%
      select(States, '2012') %>%
       na.omit
hi_2013 <- hinsurance_2013 %>%
  select(States,Total_Population,Uninsured) %>%
    mutate(Insured = as.numeric(Total Population) - as.numeric(Uninsured)) %%
     rename('2013'=Insured) %>%
      select(States, '2013') %>%
         na.omit
hi_2014 <- hinsurance_2014 %>%
  select(States,Total_Population,Uninsured) %>%
    mutate(Insured = as.numeric(Total_Population) - as.numeric(Uninsured)) %%
     rename('2014'=Insured) %>%
      select(States, '2014') %>%
        na.omit
hi 2015 <- hinsurance 2015 %>%
  select(States,Total_Population,Uninsured) %>%
    mutate(Insured = as.numeric(Total_Population) - as.numeric(Uninsured)) %>%
     rename('2015'=Insured) %>%
      select(States, '2015') %>%
        na.omit
hi_2016 <- hinsurance_2016 %>%
  select(States,Total_Population,Uninsured) %>%
    mutate(Insured = as.numeric(Total_Population) - as.numeric(Uninsured)) %%
     rename('2016'=Insured) %>%
      select(States, '2016') %>%
        na.omit
hi_2017 <- hinsurance_2017 %>%
  select(States, Total_Population, Uninsured) %>%
    mutate(Insured = as.numeric(Total_Population) - as.numeric(Uninsured)) %>%
     rename('2017'=Insured) %>%
      select(States, '2017') %>%
         na.omit
hi_2018 <- hinsurance_2018 %>%
  select(States,Total_Population,Uninsured) %>%
    mutate(Insured = as.numeric(Total_Population) - as.numeric(Uninsured)) %>%
     rename('2018'=Insured) %>%
      select(States, '2018') %>%
         na.omit
hi_2019 <- hinsurance_2019 %>%
  select(States,Total_Population,Uninsured) %>%
    mutate(Insured = as.numeric(Total_Population) - as.numeric(Uninsured)) %%
     rename('2019'=Insured) %>%
      select(States, '2019') %>%
       na.omit
hi_2020 <- hinsurance_2020 %>%
```

```
select(States,Total_Population,Uninsured) %>%
  mutate(Insured = as.numeric(Total_Population) - as.numeric(Uninsured)) %>%
   rename('2020'=Insured) %>%
    select(States, '2020') %>%
     na.omit
```

Joining yearly health insurance data to get one tibble for all

```
state hinsurance from 2011 <- hi 2011 %>%
  inner_join(hi_2012, by='States') %>%
    inner_join(hi_2013, by='States') %>%
      inner_join(hi_2014, by='States') %>%
        inner_join(hi_2015, by='States') %>%
          inner_join(hi_2016, by='States') %>%
             inner join(hi 2017, by='States') %>%
               inner_join(hi_2018, by='States') %>%
                 inner_join(hi_2019, by='States') %>%
                    inner_join(hi_2020, by='States')
state_hinsurance_from2011
```

```
## # A tibble: 51 x 11
                 States '2011' '2012' '2013' '2014' '2015' '2016' '2017' '2018' '2019' '2020'
##
##
                                           <dbl> 
          1 Alabama 4.01e6 4.07e6 4.06e6 4.15e6 4.25e6 4.41e6 4.29e6 4.40e6 4.31e6 4.45e6
## 2 Alaska 5.58e5 5.63e5 5.74e5 5.83e5 6.05e5 6.20e5 6.11e5 6.36e5 6.21e5 6.17e5
## 3 Arizona 5.24e6 5.27e6 5.34e6 5.66e6 5.92e6 6.15e6 6.15e6 6.66e6 6.31e6 6.66e6
## 4 Arkans~ 2.37e6 2.39e6 2.41e6 2.54e6 2.61e6 2.76e6 2.68e6 2.67e6 2.66e6 2.72e6
## 5 Califo~ 3.02e7 3.06e7 3.11e7 3.32e7 3.50e7 3.65e7 3.59e7 3.62e7 3.56e7 3.63e7
## 6 Colora~ 4.22e6 4.31e6 4.42e6 4.67e6 4.89e6 5.06e6 5.05e6 5.23e6 5.18e6 5.14e6
## 7 Connec~ 3.17e6 3.16e6 3.15e6 3.24e6 3.27e6 3.43e6 3.28e6 3.25e6 3.25e6 3.31e6
## 8 Delawa~ 8.02e5 8.13e5 8.08e5 8.38e5 8.67e5 8.92e5 8.80e5 9.12e5 8.78e5 9
## 9 Distri~ 5.39e5 5.63e5 5.72e5 5.89e5 6.11e5 6.58e5 6.34e5 6.59e5 6.47e5 6.94e5
## 10 Florida 1.47e7 1.51e7 1.53e7 1.62e7 1.72e7 1.81e7 1.79e7 1.81e7 1.82e7 1.90e7
## # ... with 41 more rows
```

Economics Data

##

Used unemployment rates and median income for each state

Loading uemployment rates data

```
unemploymentrates_2011to2018 <- read_csv(here::here("stateunemploymentdata", "stateunemploymentrates_to
## Warning: Missing column names filled in: 'X2' [2], 'X3' [3], 'X4' [4], 'X5' [5],
## 'X6' [6], 'X7' [7], 'X8' [8], 'X9' [9], 'X10' [10], 'X11' [11], 'X12' [12],
## 'X13' [13], 'X14' [14], 'X15' [15], 'X16' [16], 'X17' [17], 'X18' [18],
## 'X19' [19], 'X20' [20], 'X21' [21], 'X22' [22], 'X23' [23], 'X24' [24],
## 'X25' [25], 'X26' [26], 'X27' [27], 'X28' [28], 'X29' [29], 'X30' [30],
## 'X31' [31], 'X32' [32], 'X33' [33], 'X34' [34], 'X35' [35], 'X36' [36],
## 'X37' [37], 'X38' [38], 'X39' [39], 'X40' [40], 'X41' [41]
```

26

```
## -- Column specification -----
## cols(
##
     .default = col double(),
     `Average Annual Unemployment Rates by State (see previous tab for Iowa's counties)` = col_characte
##
##
     X2 = col_character()
## )
## i Use `spec()` for the full column specifications.
#names(unemploymentrates 2011to2018) <- NULL
unemploymentrates_2011to2018
## # A tibble: 66 x 41
##
      `Average Annual Unemp~ X2
                                        ХЗ
                                               Х4
                                                       Х5
                                                              X6
                                                                     X7
                                                                            X8
                                                                                    Х9
##
      <chr>
                                            <dbl>
                                                   <dbl>
                                                           <dbl>
                                                                  <dbl>
                                                                         <dbl>
                                                                                 <dbl>
                              <chr>>
                                     <dbl>
##
    1 U.S. Bureau of Labor ~ <NA>
                                      NA
                                             NA
                                                     NA
                                                            NA
                                                                   NA
                                                                          NA
                                                                                  NA
## 2 Local Area Unemployme~ <NA>
                                      NA
                                             NA
                                                     NA
                                                            NA
                                                                   NA
                                                                          NA
                                                                                  NA
## 3 April 2019 release
                              < NA >
                                      NA
                                             NA
                                                     NA
                                                            NA
                                                                   NA
                                                                          NA
                                                                                  NA
## 4 <NA>
                              <NA>
                                      NA
                                             NA
                                                    NA
                                                            NA
                                                                   NA
                                                                          NA
                                                                                 NA
                                                  1982
                                                                        1985
## 5 Fips
                              Area 1980
                                           1981
                                                          1983
                                                                 1984
                                                                               1986
## 6 00000
                             Unit~
                                              7.6
                                                             9.6
                                                                    7.5
                                                                           7.2
                                       7.1
                                                     9.7
                                                                                   7
## 7 01000
                              Alab~
                                       8.9
                                             10.6
                                                     14.1
                                                            13.8
                                                                   11
                                                                           9.2
                                                                                   9.7
## 8 02000
                              Alas~
                                       9.6
                                              9.4
                                                     9.9
                                                             9.9
                                                                    9.8
                                                                           9.7
                                                                                  10.9
## 9 04000
                              Ariz~
                                       6.6
                                              6.2
                                                     10.1
                                                             8.8
                                                                    5.2
                                                                           6.3
                                                                                   6.9
## 10 05000
                              Arka~
                                       7.6
                                              8.7
                                                     9.9
                                                             9.9
                                                                    8.7
                                                                           8.7
                                                                                   8.6
## # ... with 56 more rows, and 32 more variables: X10 <dbl>, X11 <dbl>,
       X12 <dbl>, X13 <dbl>, X14 <dbl>, X15 <dbl>, X16 <dbl>, X17 <dbl>,
## #
      X18 <dbl>, X19 <dbl>, X20 <dbl>, X21 <dbl>, X22 <dbl>, X23 <dbl>,
## #
       X24 <dbl>, X25 <dbl>, X26 <dbl>, X27 <dbl>, X28 <dbl>, X29 <dbl>,
       X30 <dbl>, X31 <dbl>, X32 <dbl>, X33 <dbl>, X34 <dbl>, X35 <dbl>,
## #
       X36 <dbl>, X37 <dbl>, X38 <dbl>, X39 <dbl>, X40 <dbl>, X41 <dbl>
```

Removing unwanted rows

tibble 3.0.0.

```
States_ur_2011to2018 <- unemploymentrates_2011to2018 %>% slice(-(1:4))
```

removing headers and using first row as headers

```
names(States_ur_2011to2018) <- NULL
#States_ur_2011to2018
names(States_ur_2011to2018) <- States_ur_2011to2018[1,]
## Warning: The `value` argument of `names<-` must be a character vector as of</pre>
```

Final unemployment rates data for 2011 to 2018

```
statesunemploymentrates_2011to2018 <- States_ur_2011to2018 %>%
    slice(-c(1:2)) %>%
    rename(States=Area) %>%
    select(-c("1980":"2010"),-1) %>%
    na.omit
statesunemploymentrates_2011to2018
```

```
## # A tibble: 51 x 9
##
     States
                         `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018`
     <chr>
                                                    <dbl>
##
                          <dbl>
                                 <dbl>
                                       <dbl>
                                             <dbl>
                                                           <dbl>
                                                                  <dbl>
                            9.6
                                   8
##
  1 Alabama
                                         7.2
                                                6.8
                                                       6.1
                                                             5.8
                                                                    4.4
                                                                          3.9
##
   2 Alaska
                            7.6
                                   7.1
                                         7
                                                6.9
                                                       6.5
                                                             6.9
                                                                          6.6
## 3 Arizona
                            9.5
                                   8.3
                                         7.7
                                                6.8
                                                             5.4
                                                                    4.9
                                                                          4.8
                                                       6.1
## 4 Arkansas
                                  7.6
                                                                    3.7
                                                                          3.7
                            8.3
                                         7.2
                                                6
                                                       5
                                                             4
## 5 California
                           11.7
                                  10.4
                                                7.5
                                                             5.5
                                                                          4.2
                                         8.9
                                                       6.2
                                                                    4.8
##
   6 Colorado
                            8.4
                                  7.9
                                         6.9
                                                5
                                                       3.9
                                                             3.2
                                                                    2.7
                                                                          3.3
## 7 Connecticut
                                                       5.7
                            8.8
                                  8.3
                                         7.8
                                                6.6
                                                             5.1
                                                                    4.7
                                                                          4.1
## 8 Delaware
                            7.5
                                  7.2
                                         6.7
                                                5.7
                                                       4.9
                                                             4.5
                                                                    4.5
                                                                          3.8
## 9 District of Columbia
                           10.2
                                   9
                                         8.5
                                                7.8
                                                       6.9
                                                             6.1
                                                                    6.1
                                                                          5.6
                                   8.5
## 10 Florida
                           10
                                         7.2
                                                6.3
                                                       5.5
                                                             4.8
                                                                    4.2
                                                                           3.6
## # ... with 41 more rows
#Loading unemployment data using here package for 2019 and 2020 and joining with the rest
statesur_2019 <- read_csv(here::here("stateunemploymentdata", "statesunemploymentrate_2019.csv"))</pre>
##
## -- Column specification ------
    States = col_character(),
##
    `2019` = col_double()
statesur_2020 <- read_csv(here::here("stateunemploymentdata", "statesunemploymentrate_2020.csv"))</pre>
##
States = col_character(),
##
    `2020` = col double()
## )
statesunemploymentrates_2011to2020 <- statesunemploymentrates_2011to2018 %>%
     inner join(statesur 2019, by = "States") %>%
      inner_join(statesur_2020, by = "States")
statesunemploymentrates 2011to2020
## # A tibble: 51 x 11
##
     States `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020`
##
     <chr>
              <dbl> <dbl> <dbl>
                                  <dbl>
                                        <dbl>
                                              <dbl>
                                                     <dbl>
                                                            <dbl>
                                                                  <dbl> <dbl>
##
  1 Alabama
                9.6
                      8
                             7.2
                                          6.1
                                                 5.8
                                                        4.4
                                                              3.9
                                                                     3.1
                                                                            5.9
                                    6.8
                             7
                                                        7
## 2 Alaska
               7.6
                      7.1
                                    6.9
                                          6.5
                                                 6.9
                                                              6.6
                                                                     5.4
                                                                           7.8
## 3 Arizona
               9.5
                      8.3
                             7.7
                                   6.8
                                          6.1
                                                 5.4
                                                        4.9
                                                              4.8
                                                                     4.6
                                                                           7.9
##
   4 Arkans~
               8.3
                      7.6
                             7.2
                                          5
                                                 4
                                                        3.7
                                                              3.7
                                                                     3.4
                                                                           6.1
                                   6
                                                              4.2
## 5 Califo~
              11.7
                     10.4
                             8.9
                                   7.5
                                          6.2
                                                 5.5
                                                        4.8
                                                                     4
                                                                           10.1
## 6 Colora~
               8.4
                      7.9
                             6.9
                                          3.9
                                                 3.2
                                                        2.7
                                                              3.3
                                                                     2.5
                                                                           7.3
                             7.8
## 7 Connec~
               8.8
                      8.3
                                          5.7
                                                 5.1
                                                        4.7
                                                              4.1
                                                                     3.5
                                                                           7.9
                                   6.6
## 8 Delawa~
               7.5
                      7.2
                             6.7
                                   5.7
                                          4.9
                                                 4.5
                                                        4.5
                                                              3.8
                                                                     3.6
                                                                           7.8
                             8.5
                                                              5.6
                                                                     4.9
## 9 Distri~
              10.2
                      9
                                   7.8
                                          6.9
                                                 6.1
                                                        6.1
                                                                           8
## 10 Florida
                             7.2
                                                 4.8
                                                        4.2
                                                                     3.2
             10
                      8.5
                                   6.3
                                          5.5
                                                              3.6
                                                                           7.7
## # ... with 41 more rows
```

Median Income Data

Loading and wrangling Median Income Data for 2011 to 2018

```
statesmedianincome_to2018 <- read_csv(here::here("Statesmedianincome", "medianstateincome_to2018.csv"))
## Warning: Missing column names filled in: 'X2' [2], 'X3' [3], 'X4' [4], 'X5' [5],
## 'X6' [6], 'X7' [7], 'X8' [8], 'X9' [9], 'X10' [10], 'X11' [11], 'X12' [12],
## 'X13' [13], 'X14' [14], 'X15' [15], 'X16' [16], 'X17' [17], 'X18' [18],
## 'X19' [19], 'X20' [20], 'X21' [21], 'X22' [22], 'X23' [23], 'X24' [24],
## 'X25' [25], 'X26' [26], 'X27' [27], 'X28' [28], 'X29' [29], 'X30' [30],
## 'X31' [31], 'X32' [32], 'X33' [33], 'X34' [34], 'X35' [35], 'X36' [36],
## 'X37' [37], 'X38' [38], 'X39' [39], 'X40' [40], 'X41' [41], 'X42' [42],
## 'X43' [43], 'X44' [44], 'X45' [45], 'X46' [46], 'X47' [47], 'X48' [48],
## 'X49' [49], 'X50' [50], 'X51' [51], 'X52' [52], 'X53' [53], 'X54' [54],
## 'X55' [55], 'X56' [56], 'X57' [57], 'X58' [58], 'X59' [59], 'X60' [60],
## 'X61' [61], 'X62' [62], 'X63' [63], 'X64' [64], 'X65' [65], 'X66' [66],
## 'X67' [67], 'X68' [68], 'X69' [69], 'X70' [70], 'X71' [71], 'X72' [72],
## 'X73' [73], 'X74' [74], 'X75' [75]
##
     .default = col_character()
## )
## i Use `spec()` for the full column specifications.
statesmedianincome_to2018
## # A tibble: 115 x 75
      `Table with row ~ X2
                             ХЗ
                                   Х4
                                         Х5
                                               Х6
                                                     Х7
                                                           Х8
##
      <chr>>
                       <chr> <chr>
##
   1 Table H-8. Medi~ <NA>
                              <NA>
                                    <NA>
                                          <NA>
                                               <NA>
                                                      <NA>
                                                            <NA>
                                                                  <NA>
                                                                        <NA>
   2 (Households as o~ <NA>
                              <NA>
                                    <NA>
                                          <NA>
                                                <NA>
                                                      <NA>
                                                            <NA>
                                                                  <NA>
                                                                        <NA>
##
  3 CURRENT DOLLARS
                        <NA>
                              <NA>
                                    <NA>
                                          <NA>
                                               <NA>
                                                      <NA>
                                                            <NA>
                                                                  <NA>
                                                                        <NA>
                       "201~
                                          <NA> "201~
##
   4 State
                              <NA> "201~
                                                     <NA> "201~
                                                                  <NA> "201~
## 5 <NA>
                       "Med~ "Sta~ "Med~ "Sta~ "Med~ "Sta~ "Med~ "Sta~ "Med~ "Sta~
  6 United States
                       "63,~ "420" "61,~ "322" "61,~ "335" "59,~ "436" "56,~ "321"
##
##
                       "49,~ "2,4~ "50,~ "1,0~ "51,~ "845" "47,~ "2,3~ "44,~ "3,4~
   7 Alabama
                       "68,~ "3,3~ "77,~ "3,7~ "72,~ "2,7~ "75,~ "4,0~ "75,~ "3,4~
##
   8 Alaska
                       "62,~ "2,2~ "59,~ "2,6~ "61,~ "2,6~ "57,~ "1,9~ "52,~ "2,0~
## 9 Arizona
                       "49,~ "2,1~ "49,~ "2,4~ "48,~ "2,6~ "45,~ "2,1~ "42,~ "1,5~
## 10 Arkansas
## # ... with 105 more rows, and 64 more variables: X12 <chr>, X13 <chr>,
      X14 <chr>, X15 <chr>, X16 <chr>, X17 <chr>, X18 <chr>, X19 <chr>,
      X20 <chr>, X21 <chr>, X22 <chr>, X23 <chr>, X24 <chr>, X25 <chr>,
      X26 <chr>, X27 <chr>, X28 <chr>, X29 <chr>, X30 <chr>, X31 <chr>,
      X32 <chr>, X33 <chr>, X34 <chr>, X35 <chr>, X36 <chr>, X37 <chr>,
## #
## #
      X38 <chr>, X39 <chr>, X40 <chr>, X41 <chr>, X42 <chr>, X43 <chr>,
## #
      X44 <chr>, X45 <chr>, X46 <chr>, X47 <chr>, X48 <chr>, X49 <chr>,
      X50 <chr>, X51 <chr>, X52 <chr>, X53 <chr>, X54 <chr>, X55 <chr>,
      X56 <chr>, X57 <chr>, X58 <chr>, X59 <chr>, X60 <chr>, X61 <chr>,
## #
## #
      X62 <chr>, X63 <chr>, X64 <chr>, X65 <chr>, X66 <chr>, X67 <chr>,
## #
      X68 <chr>, X69 <chr>, X70 <chr>, X71 <chr>, X72 <chr>, X73 <chr>,
## #
      X74 <chr>, X75 <chr>
```

Cleaning the above median income data

```
states_medianincome_to2018 <- statesmedianincome_to2018 %>%
slice(-(1:3))

names(states_medianincome_to2018) <- NULL
names(states_medianincome_to2018) <- states_medianincome_to2018[1,]

## Warning: The `value` argument of `names<-` can't be empty as of tibble 3.0.0.

## Columns 3, 5, 7, 9, 11, and 32 more must be named.

## Warning: The `value` argument of `names<-` must be a character vector as of
## tibble 3.0.0.</pre>
```

Using select, rename, slice and na.omit to clean and subset the data further

```
states_medianincome_2011to2018 <- states_medianincome_to2018 %>%
    select(State, starts_with(c("2"))) %>%
        select(-c("2010 (37)":"2000 (30)")) %>%
        rename(twentysvtn="2017", twentysvtnt="2017 (40)") %>%
        slice(-c(1:3)) %>%
        na.omit %>%
        slice(-c(52:104))
```

Removing a thousand coma seperator

Then using lapply together with a function to convert charater columns to numeric columns

```
col_conv <- c(2:11)
states_medianincome_2011to2018[ , col_conv] <- lapply(states_medianincome_2011to2018[ , col_conv],funct</pre>
```

Create new columns to replace the other ambiguous columns by taking their averages

And removing the ambiguous columns

```
smi <- states_medianincome_2011to2018 %>%
    mutate("2013" = ((as.numeric(`2013 (38)`) + as.numeric(`2013 (39)`))/2)) %>%
    mutate("2017" = ((as.numeric(twentysvtn) + as.numeric(twentysvtnt))/2)) %>%
    select(-c(twentysvtnt,twentysvtn,`2013 (38)`,`2013 (39)`))
```

Loading and wrangling median income data for 2019 and 2020

```
statesmedianincome_2019 <- read_csv(here::here("Statesmedianincome", "medianstateincome2019.csv"))
## Warning: Missing column names filled in: 'X2' [2]
##
## -- Column specification -------
## cols(
## `Title: Median Annual Household Income | KFF` = col_character(),
## X2 = col_character()
## )</pre>
```

```
statesmedianincome_2020 <- read_csv(here::here("Statesmedianincome", "medianstateincome_2020.csv"))
## Warning: Missing column names filled in: 'X2' [2]
## -- Column specification ------
    `Median household income in the United States by state 2020` = col_character(),
    X2 = col_double()
## )
statesmedianincome_2020
## # A tibble: 54 x 2
      'Median household income in the United States by state 2020'
##
                                                                            <dbl>
## 1 Median household income in the United States in 2020, by state (in cur~
                                                                              NA
## 2 <NA>
                                                                              NA
## 3 Maryland
                                                                           94384
## 4 District of Columbia
                                                                           88311
## 5 New Hampshire
                                                                           88235
## 6 Massachusetts
                                                                           86725
## 7 New Jersey
                                                                           85239
## 8 Utah
                                                                           83670
## 9 Colorado
                                                                           82611
## 10 Virginia
                                                                           81947
## # ... with 44 more rows
smi_2019<- statesmedianincome_2019 %>%
 rename(State = `Title: Median Annual Household Income | KFF`,"2019"=X2)
smi_2020 <- statesmedianincome_2020 %>%
 rename(State = `Median household income in the United States by state 2020`, "2020" = X2)
smi2019_2020 <- smi_2019 %>%
   inner_join(smi_2020, by = "State")
```

Removing dollar sign and a comma from 2019 column using gsub

```
smi2019_2020$`2019` = as.numeric(gsub("[\\$,]", "", smi2019_2020$`2019`))
```

Changing District of Colombia to D.C. in 2019/2020 data to enable smooth join

```
smi2019_2020[10,1] <- "D.C."
```

Joining 2019 and 2020 with the rest of the data

```
2 Alaska
               68734
                     75723 75112
                                   67629
                                          63648
                                                 57431 66804. 75109
                                                                      75463
                                                                             74476
   3 Arizona 62283 57100
##
                            52248
                                   49254
                                          47044
                                                 48621 51606. 60412.
                                                                      62055
                                                                             66628
                            42798
                                                                      48952
##
   4 Arkans~
              49781
                     45907
                                   44922
                                          39018
                                                 41302 39648. 49290
                                                                             50540
              70489 66637
##
   5 Califo~
                            63636
                                   60487
                                          57020
                                                 53367 59161
                                                              69898.
                                                                      80440
                                                                             77358
   6 Colora~
              73034
                     70566
                            66596
                                   60940
                                          57255
                                                 58629 65642. 74578
                                                                      77127
                                                                             82611
              72812 75923
                            72889
                                   70161
                                          64247
                                                 65415 68536
                                                              73542
                                                                      78833 79043
##
   7 Connec~
              65012 58046
                                                                      70176 69132
   8 Delawa~
                            57756
                                   57522
                                          48972
                                                 54660 53155
                                                              63640.
   9 D.C.
               85750
                     70982
                            70071
                                   68277
                                          65246
                                                 55251 60366
                                                              82332
                                                                      92266
                                                                             88311
## 10 Florida 54644 51176
                            48825
                                   46140
                                          46071
                                                 45105 48209
                                                              53384.
                                                                      59227
                                                                             57435
## # ... with 41 more rows
```

###ANALYSIS ## Unemployment rates ## Values are ranked from smallest to largest

Calculating and mutating new column for 10 yr average for unemployment rates

```
averagestateunemploymentrates_2011to2020 <- statesunemploymentrates_2011to2020 %>%
mutate("10 year mean" = (^2011' + ^2012' + ^2013' + ^2014' + ^2015' + ^2016' + ^2017' + ^2018' + ^2019' + ^2020')/10)
averagestateunemploymentrates_2011to2020
## # A tibble: 51 x 12
##
      States
               `2011`
                      `2012` `2013`
                                     `2014`
                                             `2015`
                                                     `2016`
                                                            `2017`
                                                                    `2018`
                                                                            `2019`
                                                                                    2020
##
      <chr>
                <dbl>
                       <dbl>
                               <dbl>
                                       <dbl>
                                              <dbl>
                                                      <dbl>
                                                              <dbl>
                                                                     <dbl>
                                                                             <dbl>
                                                                                    <dbl>
                                                        5.8
##
    1 Alabama
                  9.6
                          8
                                 7.2
                                         6.8
                                                6.1
                                                                4.4
                                                                       3.9
                                                                               3.1
                                                                                       5.9
##
    2 Alaska
                  7.6
                          7.1
                                 7
                                         6.9
                                                6.5
                                                        6.9
                                                                7
                                                                       6.6
                                                                               5.4
                                                                                       7.8
                                                                4.9
##
    3 Arizona
                  9.5
                          8.3
                                 7.7
                                         6.8
                                                6.1
                                                        5.4
                                                                       4.8
                                                                               4.6
                                                                                       7.9
##
    4 Arkans~
                  8.3
                          7.6
                                 7.2
                                         6
                                                5
                                                        4
                                                                3.7
                                                                       3.7
                                                                               3.4
                                                                                       6.1
   5 Califo~
                         10.4
                                                        5.5
                                                                4.8
                                                                       4.2
                                                                               4
                                                                                      10.1
##
                 11.7
                                 8.9
                                         7.5
                                                6.2
                  8.4
                          7.9
                                 6.9
                                                        3.2
                                                                2.7
                                                                       3.3
   6 Colora~
                                         5
                                                3.9
                                                                               2.5
                                                                                       7.3
                  8.8
                          8.3
                                 7.8
                                                5.7
                                                                4.7
                                                                               3.5
                                                                                       7.9
##
    7 Connec~
                                         6.6
                                                        5.1
                                                                       4.1
                                                                                      7.8
    8 Delawa~
                  7.5
                          7.2
                                 6.7
                                         5.7
                                                4.9
                                                        4.5
                                                                4.5
                                                                       3.8
                                                                               3.6
                                         7.8
                                                6.9
                                                                       5.6
##
   9 Distri~
                 10.2
                          9
                                 8.5
                                                        6.1
                                                                6.1
                                                                               4.9
                                                                                       8
## 10 Florida
                 10
                          8.5
                                 7.2
                                         6.3
                                                5.5
                                                        4.8
                                                                4.2
                                                                       3.6
                                                                               3.2
                                                                                       7.7
## # ... with 41 more rows, and 1 more variable: 10year_mean <dbl>
```

Ranking states based on employment rates

```
rankedstateunemploymentrates_2011to2020 <-averagestateunemploymentrates_2011to2020 %>%
    arrange(`10year_mean`) %>%
    mutate('2011_ranking' = min_rank(`2011`) ) %>%
    mutate('2012_ranking' = min_rank(`2012`) ) %>%
    mutate('2013_ranking' = min_rank(`2013`) ) %>%
    mutate('2014_ranking' = min_rank(`2014`) ) %>%
    mutate('2015_ranking' = min_rank(`2015`) ) %>%
    mutate('2016_ranking' = min_rank(`2016`) ) %>%
    mutate('2017_ranking' = min_rank(`2017`) ) %>%
    mutate('2018_ranking' = min_rank(`2018`) ) %>%
    mutate('2019_ranking' = min_rank(`2019`) ) %>%
    mutate('2020_ranking' = min_rank(`2020`) ) %>%
    mutate('10year_ranking' = min_rank(`10year_mean`) )
```

Displaying the rankings only

```
unemploymentrates ranks <- rankedstateunemploymentrates 2011to2020 %>%
     select(States, c(`2011_ranking`:`10year_ranking`))
unemploymentrates_ranks
## # A tibble: 51 x 12
                    `2011_ranking` `2012_ranking` `2013_ranking` `2014_ranking`
##
      States
##
      <chr>
                             <int>
                                             <int>
                                                            <int>
                                                                            <int>
## 1 North Dakota
                                  1
                                                                 1
                                                                                1
## 2 Nebraska
                                  2
                                                 2
                                                                 2
                                                                                2
                                  3
                                                 3
                                                                 2
                                                                                3
## 3 South Dakota
## 4 Vermont
                                 5
                                                 4
                                                                                5
                                                                 4
                                                                                7
## 5 Iowa
                                 5
                                                 4
                                                                 6
                                 4
                                                 9
                                                                                9
## 6 New Hampshire
                                                                10
                                 12
## 7 Utah
                                                 8
                                                                5
                                                                                4
                                 9
                                                                                7
## 8 Minnesota
                                                10
                                                                9
## 9 Kansas
                                  9
                                                11
                                                                11
                                                                               11
                                 8
## 10 Oklahoma
                                                 6
                                                                11
                                                                               11
## # ... with 41 more rows, and 7 more variables: 2015 ranking <int>,
       2016_ranking <int>, 2017_ranking <int>, 2018_ranking <int>,
       2019_ranking <int>, 2020_ranking <int>, 10year_ranking <int>
```

Median income Analysis

Values are ranked from largest to smallest

```
statesmedianincome 2011to2020[,order(colnames(statesmedianincome 2011to2020))]
## # A tibble: 51 x 11
##
     `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020` State
##
      <dbl> <dbl> <dbl> <dbl> <dbl> <
                                       <dbl> <dbl> <dbl> <dbl> <dbl>
                                                                 <dbl> <chr>
  1 42590 43464 44350. 42278 44509 47221 50989
                                                    49936 51734 54393 Alabama
## 2 57431 63648 66804. 67629 75112 75723 75109
                                                    68734 75463 74476 Alaska
   3 48621 47044 51606. 49254 52248
                                       57100 60412.
                                                    62283 62055
                                                                 66628 Arizona
## 4 41302 39018 39648. 44922 42798 45907 49290
                                                    49781 48952 50540 Arkans~
##
  5 53367 57020 59161
                          60487 63636
                                       66637 69898. 70489 80440 77358 Califo~
## 6 58629 57255 65642. 60940 66596
                                       70566 74578
                                                    73034 77127
                                                                 82611 Colora~
   7 65415 64247 68536
                          70161 72889
                                       75923 73542
                                                    72812 78833
                                                                 79043 Connec~
                          57522 57756 58046 63640. 65012 70176 69132 Delawa~
## 8 54660 48972 53155
## 9 55251 65246 60366
                          68277 70071 70982 82332
                                                    85750 92266 88311 D.C.
## 10 45105 46071 48209
                          46140 48825 51176 53384. 54644 59227 57435 Florida
## # ... with 41 more rows
```

Using rowmeans to find 10yr average

```
averagestatesmedianincome_2011to2020 <- statesmedianincome_2011to2020 %>%
mutate("10year_mean" =rowMeans(select(.,`2011`,`2012`,`2013`,`2014`,`2015`,`2016`,`2017`,`2018`,`2019`,
rankedstatesmedianincome_2011to2020 <-averagestatesmedianincome_2011to2020 %>%
    arrange(desc(`10year_mean`)) %>%
    mutate('2011_ranking' = min_rank(desc(`2011`))) %>%
    mutate('2012_ranking' = min_rank(desc(`2012`))) %>%
    mutate('2013_ranking' = min_rank(desc(`2013`))) %>%
```

```
mutate('2014_ranking' = min_rank(desc(`2014`)) ) %>%
   mutate('2015_ranking' = min_rank(desc(`2015`)) ) %>%
   mutate('2016_ranking' = min_rank(desc(`2016`)) ) %>%
   mutate('2017_ranking' = min_rank(desc(`2017`)) ) %>%
   mutate('2018_ranking' = min_rank(desc(`2018`)) ) %>%
   mutate('2019_ranking' = min_rank(desc(`2019`)) ) %>%
   mutate('2020_ranking' = min_rank(desc(`2020`)) ) %>%
   mutate('10year ranking' = min rank(desc(`10year mean`)) )
medianincome ranks <- rankedstatesmedianincome 2011to2020%>%
     select(State, c(`2011_ranking`:`10year_ranking`))
medianincome_ranks
## # A tibble: 51 x 12
##
     State
                    `2011_ranking` `2012_ranking` `2013_ranking` `2014_ranking`
      <chr>>
##
                         <int>
                                          <int>
                                                         <int>
                                                                          <int>
```

```
## 1 Maryland
                                1
                                                             3
## 2 New Hampshire
                                2
                                               2
                                                             1
                                                                            2
## 3 D.C.
                               15
                                               4
                                                            14
                                                                            5
                                               7
## 4 Massachusetts
                                                             9
                                                                           11
## 5 Connecticut
                               3
                                               6
                                                             2
## 6 New Jersey
                               6
                                              3
                                                             8
## 7 Hawaii
                               7
                                              15
                                                             7
                                                                            3
## 8 Alaska
                               10
                                              8
                                                                            6
## 9 Virginia
                                               5
                                                                            8
                               5
                                                             5
                               11
                                               9
## 10 Washington
                                                            11
                                                                           16
## # ... with 41 more rows, and 7 more variables: 2015 ranking <int>,
      2016 ranking <int>, 2017 ranking <int>, 2018 ranking <int>,
      2019_ranking <int>, 2020_ranking <int>, 10year_ranking <int>
```

Loading population data for each state from 2011 to 2020 for analysis

```
statespopulation_2011to2020 <- read_csv("Statespopulation_2011to2020.csv")
```

```
##
## -- Column specification --------
## cols(
##
    States = col_character(),
    `2011` = col_double(),
##
    `2012` = col_double(),
##
    `2013` = col_double(),
##
    `2014` = col_double(),
    `2015` = col_double(),
##
##
    `2016` = col_double(),
##
    `2017` = col_double(),
    `2018` = col_double(),
##
    `2019` = col_double(),
##
##
    `2020` = col_double()
## )
## Warning: 3 parsing failures.
## row col expected
                       actual
## 83 -- 11 columns 1 columns 'Statespopulation_2011to2020.csv'
## 96 -- 11 columns 1 columns 'Statespopulation_2011to2020.csv'
```

```
## 109 -- 11 columns 1 columns 'Statespopulation_2011to2020.csv'
statespopulation_2011to2020
## # A tibble: 114 x 11
     States '2011' '2012' '2013' '2014' '2015' '2016' '2017' '2018' '2019' '2020'
##
##
              <dbl> <
## 1 Alabama 4.68e6 4.70e6 4.71e6 4.71e6 4.73e6 4.83e6 4.74e6 4.86e6 4.77e6 4.89e6
## 2 Alaska 6.97e5 7.06e5 7.05e5 7.07e5 7.08e5 7.08e5 7.10e5 7.21e5 7.02e5 7.06e5
## 3 Arizona 6.32e6 6.39e6 6.47e6 6.56e6 6.66e6 6.88e6 6.84e6 7.23e6 7.10e6 7.47e6
## 4 Arkans~ 2.85e6 2.86e6 2.87e6 2.88e6 2.88e6 2.94e6 2.91e6 2.91e6 2.92e6 2.98e6
## 5 Califo~ 3.69e7 3.72e7 3.75e7 3.80e7 3.83e7 3.91e7 3.87e7 3.91e7 3.86e7 3.91e7
## 6 Colora~ 4.98e6 5.05e6 5.13e6 5.22e6 5.32e6 5.50e6 5.46e6 5.73e6 5.61e6 5.74e6
## 7 Connec~ 3.47e6 3.48e6 3.48e6 3.48e6 3.57e6 3.48e6 3.42e6 3.45e6 3.48e6
## 8 Delawa~ 8.80e5 8.88e5 8.98e5 9.05e5 9.18e5 9.44e5 9.32e5 9.74e5 9.40e5 9.82e5
## 9 Distri~ 5.84e5 5.96e5 6.10e5 6.24e5 6.35e5 6.84e5 6.58e5 6.91e5 6.71e5 7.17e5
## 10 Florida 1.86e7 1.89e7 1.91e7 1.94e7 1.98e7 2.05e7 2.05e7 2.11e7 2.10e7 2.17e7
## # ... with 104 more rows
hospitals_population <- statehospitals_from2011 %>%
    inner_join(statespopulation_2011to2020, by = "States")
#Converting columns to numeric
hospitals_population[,2:21] <- lapply(hospitals_population[,2:21],as.numeric)
```

Finding hospitals per population data for each state

```
hospitalsperpopulation <- hospitals_population %>%

mutate("2011_h/p" = '2011.x'/'2011.y') %>%

mutate("2012_h/p" = '2012.x'/'2012.y') %>%

mutate("2013_h/p" = '2013.x'/'2013.y') %>%

mutate("2014_h/p" = '2014.x'/'2014.y') %>%

mutate("2015_h/p" = '2015.x'/'2015.y') %>%

mutate("2016_h/p" = '2016.x'/'2016.y') %>%

mutate("2016_h/p" = '2016.x'/'2017.y') %>%

mutate("2017_h/p" = '2017.x'/'2017.y') %>%

mutate("2018_h/p" = '2018.x'/'2018.y') %>%

mutate("2019_h/p" = '2019.x'/'2019.y') %>%

mutate("2020_h/p" = '2020.x'/'2020.y')

#Selecting only the 'h/p' columns

h_p_data <- hospitalsperpopulation %>%

select(States,c('2011_h/p':'2020_h/p'))
```

Rank from the highest value

```
averagestatehp_2011to2020 <- h_p_data%>%
mutate("10year_mean" =rowMeans(select(.,^2011_h/p^,^2012_h/p^,^2013_h/p^,^2014_h/p^,^2015_h/p^,^2016_h/g)
rankedstateshp_2011to2020 <-averagestatehp_2011to2020%>%
    arrange(desc(^10year_mean^)) %>%
    mutate('2011_ranking' =min_rank(desc(^2011_h/p^))) %>%
    mutate('2012_ranking' = min_rank(desc(^2012_h/p^))) %>%
    mutate('2013_ranking' = min_rank(desc(^2013_h/p^))) %>%
    mutate('2014_ranking' = min_rank(desc(^2014_h/p^))) %>%
```

```
mutate('2015_ranking' = min_rank(desc(`2015_h/p`))) %>%
mutate('2016_ranking' = min_rank(desc(`2016_h/p`))) %>%
mutate('2017_ranking' = min_rank(desc(`2017_h/p`))) %>%
mutate('2018_ranking' = min_rank(desc(`2018_h/p`))) %>%
mutate('2019_ranking' = min_rank(desc(`2019_h/p`))) %>%
mutate('2019_ranking' = min_rank(desc(`2020_h/p`))) %>%
mutate('10year_ranking' = min_rank(desc(`10year_mean`)))

States_hospitalsperpopulation_ranks <- rankedstateshp_2011to2020%>%
    select(States, c(`2011_ranking`:`10year_ranking`))

States_hospitalsperpopulation_ranks
```

```
## # A tibble: 51 x 12
                    `2011_ranking` `2012_ranking` `2013_ranking` `2014_ranking`
##
     States
##
      <chr>
                                            <int>
                             <int>
                                                           <int>
                                                                           <int>
## 1 South Dakota
                                                               1
                                                                               1
## 2 North Dakota
                                 2
                                                2
                                                               2
                                                                               2
## 3 Montana
                                 3
                                                4
                                                               3
                                                                               3
## 4 Nebraska
                                 4
                                                3
                                                                               4
                                                               4
## 5 Kansas
                                 5
                                                5
                                                                               5
                                                               5
## 6 Wyoming
                                 6
                                                6
                                                               6
                                                                               6
## 7 Iowa
                                 7
                                                7
                                                               7
                                                                               7
## 8 Mississippi
                                 8
                                                8
                                                               8
                                                                              8
## 9 Oklahoma
                                10
                                               10
                                                              10
                                                                              10
## 10 West Virginia
                                11
                                               11
                                                              11
                                                                              11
## # ... with 41 more rows, and 7 more variables: 2015_ranking <int>,
## # 2016 ranking <int>, 2017 ranking <int>, 2018 ranking <int>,
      2019_ranking <int>, 2020_ranking <int>, 10year_ranking <int>
## #
```

Health Insurance Analysis

```
insurance_population <- state_hinsurance_from2011 %>%
    inner_join(statespopulation_2011to2020, by = "States")
#Converting columns to numeric
insurance_population[,2:21] <- lapply(insurance_population[,2:21],as.numeric)</pre>
insuredperpopulation <- insurance_population %>%
   mutate("2011_i/p" = 2011.x'/2011.y') %>%
  mutate("2012_i/p" = 2012.x^2/2012.y^2) \%
  mutate("2013_i/p" = 2013.x^/2013.y) \%
  mutate("2014_i/p" = 2014.x^2/2014.y^2) \%
  mutate("2015_i/p" = 2015.x^2/2015.y^2) \%
  mutate("2016_i/p" = 2016.x'/2016.y') %%
  mutate("2017_i/p" = 2017.x^/2017.y^) %>%
  mutate("2018_i/p" = 2018.x^2/2018.y^2) \%
  mutate("2019_i/p" = 2019.x^2/2019.y^2) %>%
  mutate("2020_i/p" = 2020.x^/2020.y^)
#Selecting only the 'h/p' columns
h_i_data <- insuredperpopulation %>%
    select(States,c(`2011_i/p`:`2020_i/p`))
```

Ranking from the highest value

```
averagestateip 2011to2020 <- h i data%>%
mutate("10year_mean" =rowMeans(select(.,`2011_i/p`,`2012_i/p`,`2013_i/p`,`2014_i/p`,`2015_i/p`,`2016_i/
rankedstatesip_2011to2020 <-averagestateip_2011to2020%>%
  arrange(desc(`10year_mean`)) %>%
   mutate('2011_ranking' =min_rank(desc(`2011_i/p`))) %>%
     mutate('2012_ranking' = min_rank(desc(`2012_i/p`) )) %>%
   mutate('2013_ranking' = min_rank(desc(`2013_i/p`)) ) %>%
   mutate('2014_ranking' = min_rank(desc(`2014_i/p`)) ) %>%
   mutate('2015_ranking' = min_rank(desc(`2015_i/p`)) ) %>%
   mutate('2016_ranking' = min_rank(desc(`2016_i/p`)) ) %>%
   mutate('2017_ranking' = min_rank(desc(`2017_i/p`)) ) %>%
   mutate('2018_ranking' = min_rank(desc(`2018_i/p`)) ) %>%
   mutate('2019_ranking' = min_rank(desc(`2019_i/p`)) ) %>%
   mutate('2020_ranking' = min_rank(desc(`2020_i/p`)) ) %>%
    mutate('10year_ranking' = min_rank(desc(`10year_mean`)) )
States_insuredperpopulation_ranks <- rankedstatesip_2011to2020%>%
     select(States, c(`2011 ranking`:`10year ranking`))
States_insuredperpopulation_ranks
## # A tibble: 51 x 12
                        `2011_ranking` `2012_ranking` `2013_ranking` `2014_ranking`
##
      States
##
      <chr>
                                 <int>
                                                <int>
                                                                <int>
## 1 Massachusetts
                                     1
                                                    1
                                                                   1
                                                                                   1
## 2 District of Colu~
                                     4
                                                    2
                                                                    2
                                                                                   4
## 3 Hawaii
                                     2
                                                    3
                                                                    4
                                                                                   3
## 4 Vermont
                                     3
                                                    4
                                                                    3
                                                                                   2
                                     6
                                                                    5
                                                                                   6
## 5 Minnesota
                                                    5
## 6 Iowa
                                     8
                                                                    6
                                                                                   5
                                                    6
                                                                                   7
## 7 Connecticut
                                     5
                                                    9
                                                                   8
## 8 Rhode Island
                                    14
                                                   18
                                                                  19
                                                                                   8
## 9 Wisconsin
                                    9
                                                    8
                                                                   7
                                                                                  10
## 10 Pennsylvania
                                    12
                                                   10
                                                                                  15
## # ... with 41 more rows, and 7 more variables: 2015_ranking <int>,
      2016_ranking <int>, 2017_ranking <int>, 2018_ranking <int>,
```

Using average of hospitals and insurance rankings to get overall health ranks

2019_ranking <int>, 2020_ranking <int>, 10year_ranking <int>

```
## # A tibble: 51 x 23
##
                `2011_ranking.x` `2012_ranking.x` `2013_ranking.x` `2014_ranking.x`
      States
##
      <chr>
                            <int>
                                             <int>
                                                               <int>
                                                                                 <int>
## 1 South Da~
                                1
                                                                   1
                                                                                     1
                                                  1
    2 North Da~
                                2
                                                  2
                                                                   2
                                                                                     2
                                                 4
                                                                   3
                                                                                     3
## 3 Montana
                                3
## 4 Nebraska
                                                  3
                                                                                     4
## 5 Kansas
                                5
                                                  5
                                                                   5
                                                                                     5
```

```
## 6 Wyoming
                               6
                                                                                   6
## 7 Iowa
                               7
                                                7
                                                                 7
                                                                                   7
## 8 Mississi~
                               8
                                                8
                                                                 8
                                                                                   8
                              10
## 9 Oklahoma
                                               10
                                                                 10
                                                                                  10
## 10 West Vir~
                              11
                                               11
                                                                                  11
## # ... with 41 more rows, and 18 more variables: 2015 ranking.x <int>,
       2016_ranking.x <int>, 2017_ranking.x <int>, 2018_ranking.x <int>,
       2019_ranking.x <int>, 2020_ranking.x <int>, 10year_ranking.x <int>,
## #
## #
       2011_ranking.y <int>, 2012_ranking.y <int>, 2013_ranking.y <int>,
## #
       2014_ranking.y <int>, 2015_ranking.y <int>, 2016_ranking.y <int>,
       2017_ranking.y <int>, 2018_ranking.y <int>, 2019_ranking.y <int>,
       2020_ranking.y <int>, 10year_ranking.y <int>
## #
health_weighted_ranks <- overall_health_ranking_data %>%
     mutate("2011_weighted_rank"=((0.2 * (`2011_ranking.x`))+(0.8*(`2011_ranking.y`)))/2) %>%
     mutate("2012_weighted_rank"=((0.2 * (`2012_ranking.x`))+(0.8*(`2012_ranking.y`)))/2) %>%
     mutate("2013_weighted_rank"=((0.2 * (`2013_ranking.x`))+(0.8*(`2013_ranking.y`)))/2) %>%
     mutate("2014_weighted_rank"=((0.2 * (`2014_ranking.x`))+(0.8*(`2014_ranking.y`)))/2) %>%
     mutate("2015_weighted_rank"=((0.2 * (`2015_ranking.x`))+(0.8*(`2015_ranking.y`)))/2) %>%
     mutate("2016_weighted_rank"=((0.2 * (`2016_ranking.x`))+(0.8*(`2016_ranking.y`)))/2) %>%
     mutate("2017_weighted_rank"=((0.2 * (`2017_ranking.x`))+(0.8*(`2017_ranking.y`)))/2) %>%
     mutate("2018_weighted_rank"=((0.2 * (`2018_ranking.x`))+(0.8*(`2018_ranking.y`)))/2) %>%
     mutate("2019_weighted_rank"=((0.2 * (`2019_ranking.x`))+(0.8*(`2019_ranking.y`)))/2) %>%
     mutate("2020 weighted rank"=((0.2 * (^2020 ranking.x^2))+(0.8*(^2020 ranking.y^2)))/2) %%
     mutate("10yr_weighted_rank"=((0.2 * (`10year_ranking.x`))+(0.8*(`10year_ranking.y`)))/2)
health_ranks_2011to2020 <- health_weighted_ranks %>%
  mutate("2011_overall_hrank" = min_rank(`2011_weighted_rank`)) %>%
  mutate("2012_overall_hrank" = min_rank(\cdot\cdot2012_weighted_rank\cdot)) %>%
  mutate("2013_overall_hrank" = min_rank(`2013_weighted_rank`)) %>%
  mutate("2014_overall_hrank" = min_rank(`2014_weighted_rank`)) %>%
  mutate("2015_overall_hrank" = min_rank(`2015_weighted_rank`)) %>%
   mutate("2016_overall_hrank" = min_rank(`2016_weighted_rank`)) %>%
   mutate("2017_overall_hrank" = min_rank(`2017_weighted_rank`)) %>%
  mutate("2018_overall_hrank" = min_rank(`2018_weighted_rank`)) %>%
   mutate("2019_overall_hrank" = min_rank(`2019_weighted_rank`)) %>%
   mutate("2020_overall_hrank" = min_rank(`2020_weighted_rank`)) %>%
   mutate("10yr_overall_hrank" = min_rank(`10yr_weighted_rank`))
health_ranks2011to2020 <- health_ranks_2011to2020 %>%
  arrange(`10yr_overall_hrank`) %>%
      select(States, c(`2011_overall_hrank`:`10yr_overall_hrank`))
health ranks2011to2020
## # A tibble: 51 x 12
##
      States `2011_overall_hr~ `2012_overall_h~ `2013_overall_h~ `2014_overall_h~
##
      <chr>
                           <int>
                                            <int>
                                                              <int>
                                                                               <int>
## 1 Iowa
                               3
                                                1
                                                                 2
                                                                                   2
                                                3
                                                                 1
## 2 Vermont
                               1
                                                                                   1
## 3 Distric~
                               5
                                                2
                                                                 3
                                                                                   5
## 4 Minneso~
                               4
                                                4
                                                                  4
                                                                                   4
## 5 Hawaii
                               2
                                                5
                                                                  5
                                                                                   3
                               7
                                                                                   6
## 6 Massach~
                                                6
```

```
7
## 7 Wiscons~
                               8
                                                                                   8
## 8 North D~
                               6
                                                8
                                                                  8
                                                                                   7
## 9 Pennsyl~
                              15
                                                12
                                                                 10
                                                                                  18
## 10 Connect~
                              10
                                                14
                                                                                   9
                                                                 11
## # ... with 41 more rows, and 7 more variables: 2015_overall_hrank <int>,
       2016 overall hrank <int>, 2017 overall hrank <int>,
       2018 overall hrank <int>, 2019 overall hrank <int>,
## #
       2020_overall_hrank <int>, 10yr_overall_hrank <int>
```

Economics Analysis

```
medianincome_ranks <- medianincome_ranks %>%
    rename(States = State)

medianincome_ranks[3,1] <- "District of Columbia"</pre>
```

Using average of unemployment ranks and median income rankings to get overall economic ranks

```
overall_economics_ranking_data <- unemploymentrates_ranks %>%
          inner_join(medianincome_ranks, by = "States")
overall_economics_ranking_data
## # A tibble: 51 x 23
##
                `2011 ranking.x` `2012 ranking.x` `2013 ranking.x` `2014 ranking.x`
      States
      <chr>>
                           <int>
                                            <int>
                                                              <int>
                                                                               <int>
## 1 North Da~
                               1
                                                1
                                                                  1
                                                                                   1
## 2 Nebraska
                               2
                                                2
                                                                  2
                                                                                   2
## 3 South Da~
                               3
                                                3
                                                                  2
                                                                                   3
## 4 Vermont
                               5
                                                4
                                                                  4
                                                                                   5
                                                                                   7
## 5 Iowa
                               5
                                                4
                                                                  6
## 6 New Hamp~
                               4
                                                9
                                                                 10
                                                                                   9
## 7 Utah
                              12
                                                8
                                                                  5
                                                                                   4
## 8 Minnesota
                               9
                                               10
                                                                  9
                                                                                   7
                               9
## 9 Kansas
                                               11
                                                                 11
                                                                                  11
                               8
## 10 Oklahoma
                                                6
                                                                                  11
                                                                 11
## # ... with 41 more rows, and 18 more variables: 2015_ranking.x <int>,
## #
       2016_ranking.x <int>, 2017_ranking.x <int>, 2018_ranking.x <int>,
## #
       2019_ranking.x <int>, 2020_ranking.x <int>, 10year_ranking.x <int>,
## #
       2011_ranking.y <int>, 2012_ranking.y <int>, 2013_ranking.y <int>,
       2014_ranking.y <int>, 2015_ranking.y <int>, 2016_ranking.y <int>,
       2017_ranking.y <int>, 2018_ranking.y <int>, 2019_ranking.y <int>,
## #
       2020_ranking.y <int>, 10year_ranking.y <int>
economics_weighted_ranks <- overall_economics_ranking_data %>%
     mutate("2011_weighted_rank"=((0.5 * (`2011_ranking.x`))+(0.5*(`2011_ranking.y`)))/2) %>%
     mutate("2012_weighted_rank"=((0.5 * (`2012_ranking.x`))+(0.5*(`2012_ranking.y`)))/2) %>%
     mutate("2013_weighted_rank"=((0.5 * (`2013_ranking.x`))+(0.5*(`2013_ranking.y`)))/2) %>%
     mutate("2014_weighted_rank"=((0.5* (`2014_ranking.x`))+(0.5*(`2014_ranking.y`)))/2) %>%
     mutate("2015 weighted rank"=((0.5 * (^2015 ranking.x^2))+(0.5*(^2015 ranking.y^2)))/2) %>%
     mutate("2016_weighted_rank"=((0.5 * (`2016_ranking.x`))+(0.5*(`2016_ranking.y`)))/2) %>%
     mutate("2017_weighted_rank"=((0.5 * (`2017_ranking.x`))+(0.5*(`2017_ranking.y`)))/2) %>%
    mutate("2018_weighted_rank"=((0.5 * (`2018_ranking.x`))+(0.5*(`2018_ranking.y`)))/2) %>%
```

```
mutate("2019_weighted_rank"=((0.5 * (`2019_ranking.x`))+(0.5*(`2019_ranking.y`)))/2) %>%
     mutate("2020_weighted_rank"=((0.5 * (`2020_ranking.x`))+(0.5*(`2020_ranking.y`)))/2) %>%
    mutate("10yr_weighted_rank"=((0.5 * (`10year_ranking.x`))+(0.5*(`10year_ranking.y`)))/2)
economics_ranks_2011to2020 <- economics_weighted_ranks %>%
  mutate("2011_overall_erank" = min_rank(`2011_weighted_rank`)) %>%
  mutate("2012 overall erank" = min rank(`2012 weighted rank`)) %>%
  mutate("2013_overall_erank" = min_rank(`2013_weighted_rank`)) %>%
  mutate("2014_overall_erank" = min_rank(`2014_weighted_rank`)) %>%
  mutate("2015_overall_erank" = min_rank(`2015_weighted_rank`)) %>%
   mutate("2016_overall_erank" = min_rank(`2016_weighted_rank`)) %>%
  mutate("2017_overall_erank" = min_rank(`2017_weighted_rank`)) %>%
  mutate("2018_overall_erank" = min_rank(`2018_weighted_rank`)) %>%
  mutate("2019_overall_erank" = min_rank(`2019_weighted_rank`)) %>%
  mutate("2020_overall_erank" = min_rank(`2020_weighted_rank`)) %>%
   mutate("10yr_overall_erank" = min_rank(`10yr_weighted_rank`))
economics_ranks2011to2020 <- economics_ranks_2011to2020 %>%
  arrange(`10yr_overall_erank`) %>%
      select(States, c(`2011_overall_erank`:`10yr_overall_erank`))
economics_ranks2011to2020
## # A tibble: 51 x 12
##
      States `2011_overall_er~ `2012_overall_er~ `2013_overall_e~ `2014_overall_e~
                        <int>
                                          <int>
##
      <chr>
                                                            <int>
                                                                              <int>
## 1 New Ha~
                                                                                  1
                             1
                                                                1
## 2 Hawaii
                             7
                                               12
                                                                                  2
## 3 Utah
                            11
                                                                 3
                                                                                  3
                                               3
## 4 Minnes~
                             6
                                               7
                                                                                  3
                                                                10
## 5 Nebras~
                             3
                                               10
                                                                                  8
## 6 Vermont
                            10
                                               8
                                                                                  6
## 7 North ~
                             2
                                               2
                                                                 8
                                                                                  3
## 8 Virgin~
                                                3
                                                                                  9
                                                3
                                                                                  7
## 9 Maryla~
                              4
                                                                 8
## 10 Massac~
                             7
                                                8
                                                                                 13
## # ... with 41 more rows, and 7 more variables: 2015_overall_erank <int>,
## # 2016_overall_erank <int>, 2017_overall_erank <int>,
      2018_overall_erank <int>, 2019_overall_erank <int>,
## #
      2020_overall_erank <int>, 10yr_overall_erank <int>
```

Wrangling our previous data for use in finding overall rankings

Using average of road_quality ranks and electricity price rankings to get overall infrastructure ranks

```
roadrank_summary1 <- roadrank_summary %>%
  rename(States = State)
elecprice_rank_summary1 <- elecprice_rank%>%
```

```
rename(States = state)
elecprice_rank_summary1[35,1] <- "District of Columbia"</pre>
overall_infrastructure_ranking_data <- roadrank_summary1 %>%
          inner_join(elecprice_rank_summary1, by = "States")
infrastructure_weighted_ranks <- overall_infrastructure_ranking_data %>%
     mutate("2011_weighted_rank"=((0.5 * (`2011_ranking.x`))+(0.5*(`2011_ranking.y`)))/2) %>%
     mutate("2012_weighted_rank"=((0.5 * (`2012_ranking.x`))+(0.5*(`2012_ranking.y`)))/2) %>%
     mutate("2013_weighted_rank"=((0.5 * (`2013_ranking.x`))+(0.5*(`2013_ranking.y`)))/2) %>%
     mutate("2014 weighted rank"=((0.5 * (^2014 ranking.x^2))+(0.5*(^2014 ranking.y^2)))/2) %%
     mutate("2015_weighted_rank"=((0.5 * (`2015_ranking.x`))+(0.5*(`2015_ranking.y`)))/2) %%
     mutate("2016_weighted_rank"=((0.5 * (`2016_ranking.x`))+(0.5*(`2016_ranking.y`)))/2) %%
     mutate("2017_weighted_rank"=((0.5 * (`2017_ranking.x`))+(0.5*(`2017_ranking.y`)))/2) %>%
     mutate("2018_weighted_rank"=((0.5 * (`2018_ranking.x`))+(0.5*(`2018_ranking.y`)))/2) %>%
     mutate("2019_weighted_rank"=((0.5 * (`2019_ranking.x`))+(0.5*(`2019_ranking.y`)))/2) %>%
     mutate("2020 weighted rank"=((0.5 * (`2020 ranking.x`))+(0.5*(`2020 ranking.y`)))/2) %%
infrastructure_ranks_2011to2020 <- infrastructure_weighted_ranks %>%
  mutate("2011_overall_irank" = min_rank(`2011_weighted_rank`)) %>%
  mutate("2012_overall_irank" = min_rank(`2012_weighted_rank`)) %>%
  mutate("2013_overall_irank" = min_rank(`2013_weighted_rank`)) %>%
  mutate("2014_overall_irank" = min_rank(`2014_weighted_rank`)) %>%
  mutate("2015_overall_irank" = min_rank(`2015_weighted_rank`)) %>%
   mutate("2016_overall_irank" = min_rank(`2016_weighted_rank`)) %>%
   mutate("2017_overall_irank" = min_rank(`2017_weighted_rank`)) %>%
  mutate("2018_overall_irank" = min_rank(`2018_weighted_rank`)) %>%
  mutate("2019 overall irank" = min rank(`2019 weighted rank`)) %>%
  mutate("2020_overall_irank" = min_rank(`2020_weighted_rank`)) %>%
   mutate("10yr_overall_irank" = min_rank(`10yr_weighted_rank`))
infrastruture ranks2011to2020 <- infrastructure ranks 2011to2020 %>%
  arrange(`10yr_overall_irank`) %>%
      select(States, c(`2011_overall_irank`:`10yr_overall_irank`))
infrastruture_ranks2011to2020
## # A tibble: 51 x 12
      States `2011_overall_ir~ `2012_overall_ir~ `2013_overall_i~ `2014_overall_i~
##
##
      <chr>
                          <int>
                                            <int>
                                                             <int>
                                                                              <int>
## 1 Idaho
                                                6
                                                                                  2
                                                                 1
                              1
## 2 North ~
                              2
                                                                 2
                                                                                  1
                                                1
## 3 Tennes~
                              4
                                                3
                                                                 5
                                                                                  4
## 4 Kentuc~
                                                5
                                                                 6
                                                                                  3
                              4
## 5 Nebras~
                              4
                                                2
                                                                 4
                                                                                  4
## 6 Wyoming
                                                3
                                                                 7
                              3
                                                                                  8
                              7
                                                                                  9
                                                8
                                                                 8
## 7 Oregon
## 8 Montana
                             9
                                                6
                                                                 9
                                                                                  6
## 9 Georgia
                                                                22
                             11
                                                8
                                                                                 14
```

```
## 10 Arkans~ 16 14 12 10
## # ... with 41 more rows, and 7 more variables: 2015_overall_irank <int>,
## # 2016_overall_irank <int>, 2017_overall_irank <int>,
## # 2018_overall_irank <int>, 2019_overall_irank <int>,
## # 2020_overall_irank <int>, 10yr_overall_irank <int>
```

Health, Economics, Education, Infrastructure, and Crime_rate ranking combined

```
final_ranks_graduation <- final_ranked_graduation %>%
    rename( States = States)

final_ranked_correction3 <-final_ranked_correction2 %>%
    rename(States = State)

Factor_rankings_combined <- economics_ranks2011to2020 %>%
    inner_join(health_ranks2011to2020, by ="States") %>%
    inner_join(final_ranks_graduation, by = "States") %>%
    inner_join(infrastruture_ranks2011to2020, by = "States") %>%
    inner_join(final_ranked_correction3, by = "States")
```

Calculating overall ranks for each factors combined by using weighted averages of the individual factor rankings

```
Final_rankings <- Factor_rankings_combined %>%

mutate("2011" = (0.3*(`2011_overall_erank`)+0.1*(`2011_overall_hrank`)+0.3*(`2011_edurank`)+0.2*(`2011_mutate("2012" = (0.3*(`2012_overall_erank`)+0.1*(`2012_overall_hrank`)+0.3*(`2012_edurank`)+0.2*(`2012_mutate("2013" = (0.3*(`2013_overall_erank`)+0.1*(`2013_overall_hrank`)+0.3*(`2013_edurank`)+0.2*(`2013_mutate("2014" = (0.3*(`2014_overall_erank`)+0.1*(`2014_overall_hrank`)+0.3*(`2014_edurank`)+0.2*(`2014_mutate("2015" = (0.3*(`2015_overall_erank`)+0.1*(`2015_overall_hrank`)+0.3*(`2015_edurank`)+0.2*(`2015_mutate("2016" = (0.3*(`2016_overall_erank`)+0.1*(`2016_overall_hrank`)+0.3*(`2016_edurank`)+0.2*(`2016_mutate("2017" = (0.3*(`2017_overall_erank`)+0.1*(`2017_overall_hrank`)+0.3*(`2017_edurank`)+0.2*(`2017_mutate("2018" = (0.3*(`2018_overall_erank`)+0.1*(`2018_overall_hrank`)+0.3*(`2018_edurank`)+0.2*(`2018_mutate("2019" = (0.3*(`2019_overall_erank`)+0.1*(`2019_overall_hrank`)+0.3*(`2019_edurank`)+0.2*(`2019_mutate("2020" = (0.3*(`2020_overall_erank`)+0.2*(`2020_overall_hrank`)+0.2*(`2020_overall_irank`)+0.3*(`10year_edurank`)+0.2*(`10yr_overall_hrank`)+0.3*(`10year_edurank`)+0.2*(`10yr_overall_hrank`)+0.3*(`10year_edurank`)+0.2*(`10yr_overall_hrank`)+0.3*(`10year_edurank`)+0.2*(`10yr_overall_hrank`)+0.3*(`10year_edurank`)+0.2*(`10yr_overall_hrank`)+0.3*(`10year_edurank`)+0.2*(`10yr_overall_hrank`)+0.3*(`10year_edurank`)+0.2*(`10year_edurank`)+0.2*(`10year_edurank`)+0.2*(`10year_edurank`)+0.2*(`10year_edurank`)+0.2*(`10year_edurank`)+0.2*(`10year_edurank`)+0.2*(`10year_edurank`)+0.2*(`10year_edurank`)+0.2*(`10year_edurank`)+0.2*(`10year_edurank`)+0.2*(`10year_edurank`)+0.2*(`10year_edurank`)+0.2*(`10year_edurank`)+0.2*(`10year_edurank`)+0.2*(`10year_edurank`)+0.2*(`10year_edurank`)+0.2*(`10year_edurank`)+0.2*(`10year_edurank`)+0.2*(`10year_edurank`)+0.2*(`10year_edurank`)+0.2*(`10year_edurank`)+0.2*(`10year_edurank`)+0.2*(`10year_edurank`)+0.2*(`10year_edurank`)+0.2*(`10year_edurank`)+0.2*(`10year_edurank`)+0.2*(`10year_edurank`)+0.2*(`10year_edurank`)+0.2*(`
```

```
## # A tibble: 51 x 66
      States `2011_overall_er~ `2012_overall_er~ `2013_overall_e~ `2014_overall_e~
##
##
      <chr>>
                           <int>
                                              <int>
                                                               <int>
## 1 New Ha~
                               1
                                                  1
                                                                   1
                                                                                     1
## 2 Hawaii
                               7
                                                 12
                                                                   2
                                                                                     2
## 3 Utah
                                                                                     3
                              11
                                                  3
                                                                   3
                                                  7
                                                                                     3
## 4 Minnes~
                               6
                                                                   4
                                                                                     8
                               3
                                                 10
                                                                  10
## 5 Nebras~
## 6 Vermont
                              10
                                                  8
                                                                   4
                                                                                     6
## 7 North ~
                               2
                                                  2
                                                                   8
                                                                                     3
                               4
                                                  3
                                                                   4
                                                                                     9
## 8 Virgin~
                                                                                     7
                                                  3
## 9 Maryla~
```

```
## 10 Massac~
                              7
                                                                                   13
## # ... with 41 more rows, and 61 more variables: 2015_overall_erank <int>,
       2016_overall_erank <int>, 2017_overall_erank <int>,
       2018_overall_erank <int>, 2019_overall_erank <int>,
## #
## #
       2020_overall_erank <int>, 10yr_overall_erank <int>,
## #
       2011_overall_hrank <int>, 2012_overall_hrank <int>,
       2013_overall_hrank <int>, 2014_overall_hrank <int>,
## #
       2015_overall_hrank <int>, 2016_overall_hrank <int>,
## #
## #
       2017_overall_hrank <int>, 2018_overall_hrank <int>,
## #
       2019_overall_hrank <int>, 2020_overall_hrank <int>,
       10yr_overall_hrank <int>, 2011_edurank <int>, 2012_edurank <int>,
       2013_edurank <int>, 2014_edurank <int>, 2015_edurank <int>,
## #
## #
       2016_edurank <int>, 2017_edurank <int>, 2018_edurank <int>,
## #
       2019_edurank <int>, 2020_edurank <int>, 10year_edurank <int>,
## #
       2011_overall_irank <int>, 2012_overall_irank <int>,
## #
       2013_overall_irank <int>, 2014_overall_irank <int>,
## #
       2015_overall_irank <int>, 2016_overall_irank <int>,
## #
       2017 overall irank <int>, 2018 overall irank <int>,
## #
       2019_overall_irank <int>, 2020_overall_irank <int>,
       10yr_overall_irank <int>, 2011_corrank <int>, 2012_corrank <int>,
## #
## #
       2013_corrank <int>, 2014_corrank <int>, 2015_corrank <int>,
## #
       2016_corrank <int>, 2017_corrank <int>, 2018_corrank <int>,
       2019_corrank <int>, 10yr_corrank <int>, 2011 <dbl>, 2012 <dbl>, 2013 <dbl>,
## #
       2014 <dbl>, 2015 <dbl>, 2016 <dbl>, 2017 <dbl>, 2018 <dbl>, 2019 <dbl>,
## #
## #
       2020 <dbl>, 10_yr <dbl>
Final ranks for each year as well as the 10 year average
Final ranks <- Final rankings %>%
  arrange(`10_yr`) %>%
   mutate("2011" = min rank(`2011`)) %>%
  mutate("2012" = min_rank(`2012`)) %>%
  mutate("2013" = min_rank(`2013`)) %>%
  mutate("2014" = min_rank(`2014`)) %>%
  mutate("2015" = min_rank(`2015`)) %>%
   mutate("2016" = min_rank(`2016`)) %>%
  mutate("2017" = min_rank(\(\cdot\)2017\(\cdot\))) %>%
  mutate("2018" = min_rank(`2018`)) %>%
  mutate("2019" = min_rank(\(^2019\))) %>%
   mutate("2020" = min_rank(\(^2020^\))) %>%
  mutate("10yr" = min_rank(`10_yr`))
Final <- Final_ranks %>%
  select(States, c(`2011`:`10yr`)) %>%
  select(-c("10_yr"))
Final
## # A tibble: 51 x 12
##
      States `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020`
##
               <int> <int> <int> <int> <int> <int> <int> <int>
                                                                         <int>
                                                                     7
## 1 North ~
                   1
                                 1
                                         1
                                                1
                                                              1
                                                                            19
                                                                                   11
                          1
                                                       1
## 2 Nebras~
                          3
                                 4
                                         2
                                                2
                                                       2
                                                              4
```

```
##
    3 South ~
                                                        5
                                                                      28
                                                                              27
                                                                                     19
## 4 Utah
                   5
                           4
                                  5
                                          8
                                                 4
                                                               13
                                                                       7
                                                                               4
                                                                                      9
                                                        11
## 5 Minnes~
                   6
                           7
                                  6
                                         7
                                                 5
                                                        6
                                                                8
                                                                       1
                                                                               5
                                                                                      6
                   3
                           2
                                  2
                                                 3
                                                                              30
                                                                                     23
## 6 Wyoming
                                          4
                                                       13
                                                               12
                                                                      40
                   7
   7 Washin~
                           8
                                  8
                                          6
                                                 6
                                                        7
                                                                5
                                                                      13
                                                                              12
                                                                                     16
## 8 Iowa
                   9
                           6
                                  7
                                         5
                                                 9
                                                        4
                                                                3
                                                                              13
                                                                                     14
                                                                      11
## 9 Distri~
                  11
                           9
                                 10
                                         11
                                                11
                                                        8
                                                                6
                                                                              10
                                                                                      5
                                                                      14
                                                               15
                                                                              15
                                                                                     13
## 10 Kansas
                   8
                           9
                                  9
                                         10
                                                10
                                                        12
                                                                      16
## # ... with 41 more rows, and 1 more variable: 10yr <int>
```

Showing 10 yr rankings for each of the factors

```
## # A tibble: 51 x 7
      States `10yr_overall_er~ `10yr_overall_h~ `10yr_overall_i~ `10year_edurank`
##
##
      <chr>
                           <int>
                                             <int>
                                                              <int>
                                                                                <int>
##
  1 North D~
                               7
                                                 8
                                                                  2
                                                                                    9
                               5
                                                15
                                                                  5
                                                                                   17
## 2 Nebraska
## 3 South D~
                              13
                                                22
                                                                 11
                                                                                    3
## 4 Utah
                               3
                                                38
                                                                 15
                                                                                   16
## 5 Minneso~
                               3
                                                 4
                                                                 25
                                                                                   23
## 6 Wyoming
                              14
                                                35
                                                                  6
                                                                                   10
## 7 Washing~
                              18
                                                25
                                                                 22
                                                                                    7
## 8 Iowa
                              11
                                                 1
                                                                 19
                                                                                   24
## 9 Distric~
                              23
                                                 3
                                                                 44
                                                                                    1
## 10 Kansas
                              15
                                                23
                                                                 20
                                                                                   15
## # ... with 41 more rows, and 2 more variables: 10yr_corrank <int>, 10yr <int>
```

Finding the most Improved States

```
Rank_change <- Final %>%
  mutate(change = `2011`- `2019`)

most_improved_states <- Rank_change %>%
  arrange(desc(change))%>%
  select(States,change,c(`2011`:`2020`))
```

Loading US map library for our map chart

```
library(usmap)
```

Loading state rankings from the web (US News) to compare with our rankings

```
us_news_ranks <- read_csv("us news states ranks.csv")
```

```
##
Ranks = col_double(),
##
   States = col_character()
## )
us_news_ranks
## # A tibble: 51 x 2
##
    Ranks States
    <dbl> <chr>
##
## 1
      1 District of Columbia
## 2
      2 Washington
## 3
      3 Minnesota
## 4
      4 Utah
## 5 5 New Hampshire
## 6
     6 Idaho
## 7
      7 Nebraska
## 8
    8 Virginia
## 9
      9 Wisconsin
## 10
    10 Massachusetts
## # ... with 41 more rows
```

Adding latitude and longitude variables for each state

```
##
## -- Column specification -----
## cols(
## States = col_character(),
## Latitude = col_double(),
## Longitude = col_double()
## )

Final <- Final %>%
    inner_join(states_mapinfo, by = "States")
```

preparing data to pass into map plotting function

```
states_ranks<- Final%>%
#select(States, '10yr')
rename(state = States)

us_states_ranks <- states_ranks %>%
    select(state, '10yr')

usnews_ranks<- us_news_ranks%>%
#select(States, '10yr')
rename(state = States)
```

Plotting US Map showing our overall rankings

2011-2020 US STATES AVERAGE RANKING

Based on five metrics: Health, Education, Infrastructure, Economics, Corrections

Plotting map for US NEWS rankings to compare to our own

```
plot_usmap(data = usnews_ranks, values = "Ranks", color = "red", labels = TRUE) +
    labs(title = "US NEWS STATE RANKINGS FOR 2021",
         subtitle = "Based on six metrics: Health, Education, Infrastructure, Economics , Corrections, Nature theme(legend.position = "right")
```

US NEWS STATE RANKINGS FOR 2021

Based on six metrics: Health, Education, Infrastructure, Economics , Corrections, Natural Environmet

subsetting data for top states based on 10 yr average and plotting their ranks

Top Ranking States as per the 10yr average from 2011 – 2020

subsetting data for most improved states and plotting their ranks

Top Most Improved States

Generating random states and plotting their graphs over time

Randomly Generated States Rankings

loading us news rankings

joining state factor rankings with us news best states rank for modelling and simulation

```
us_news_ranks <- read_csv("us news states ranks.csv")</pre>
##
## -- Column specification -----
## cols(
     Ranks = col_double(),
     States = col_character()
##
## )
state_factor_rankings2 <- States_factor_rankings %>%
  select(-c(7))
regression_rank_data <- state_factor_rankings2 %>%
  inner_join(us_news_ranks, by ='States') %>%
select(-c(1))
regression_rank_data
## # A tibble: 51 x 6
      `10yr_overall_erank` `10yr_overall_hran~ `10yr_overall_iran~ `10year_edurank`
##
                     <int>
                                         <int>
                                                             <int>
                                                                              <int>
##
  1
                                                                 2
```

```
17
##
                           5
                                                15
                                                                       5
                                                22
##
   3
                          13
                                                                      11
                                                                                          3
                                                38
##
   4
                           3
                                                                      15
                                                                                         16
                           3
                                                 4
                                                                      25
                                                                                         23
##
   5
##
    6
                          14
                                                35
                                                                       6
                                                                                         10
##
   7
                          18
                                                25
                                                                      22
                                                                                          7
##
                                                 1
                                                                      19
                                                                                         24
                          11
## 9
                          23
                                                 3
                                                                      44
                                                                                          1
## 10
                          15
                                                23
                                                                      20
                                                                                         15
## # ... with 41 more rows, and 2 more variables: 10yr_corrank <int>, Ranks <dbl>
```

First Multiple Regression model for economics, corrections, education, health, and infrastructure

```
multiple_regression <- lm(Ranks ~. , data = regression_rank_data)
summary(multiple_regression)

##
## Call:
## lm(formula = Ranks ~ ., data = regression_rank_data)
##
## Residuals:
## Min 1Q Median 3Q Max</pre>
```

```
## Coefficients:
##
                       Estimate Std. Error t value Pr(>|t|)
                                   5.01104 -0.746 0.45926
## (Intercept)
                       -3.74061
## `10yr_overall_erank`
                        0.54438
                                   0.11075
                                             4.915 1.22e-05 ***
## `10yr_overall_hrank` -0.06922
                                           -0.567 0.57382
                                   0.12218
## `10yr_overall_irank`
                        0.11276
                                   0.09936
                                             1.135 0.26245
## `10year_edurank`
                        0.17650
                                   0.09503
                                             1.857 0.06981 .
## `10yr_corrank`
                        0.38831
                                   0.11141
                                             3.485 0.00111 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

3.680

21.228

1.122

-20.183 -3.570

Multiple R-squared: 0.6479, Adjusted R-squared: 0.6088 ## F-statistic: 16.56 on 5 and 45 DF, p-value: 2.967e-09

Residual standard error: 9.299 on 45 degrees of freedom

According to the multiple regression model the 5 metrics used have an adjusted R value of 0.6088 implying that the metrics used in the project account for 60% of the weight in determination of a states rank and the remaining factors only account for 40%

At a p_value of 0.1, factors that have the most influence in determining the overall rank of a state from US best news ranks are economics, corrections, and education.

Below is our multiple regression model for these three important factors: economics, corrections, and education

```
regression_rank_data2 <- regression_rank_data %>%
 select(Ranks, 10yr_overall_erank , 10yr_corrank , 10year_edurank )
multiple_regression2 <- lm(Ranks ~. , data = regression_rank_data2)</pre>
summary(multiple_regression2)
##
## Call:
## lm(formula = Ranks ~ ., data = regression_rank_data2)
## Residuals:
       \mathtt{Min}
                 1Q
                    Median
                                  3Q
                                          Max
## -23.6316 -2.6826 0.1326 3.8408 18.8274
##
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
                -1.37807
                                  3.56170 -0.387 0.70057
## (Intercept)
## `10yr_overall_erank` 0.51831
                                  0.10187
                                           5.088 6.24e-06 ***
## `10yr_corrank` 0.32619 0.10011 3.258 0.00209 **
## `10year edurank`
                       0.21609
                                  0.09064 2.384 0.02121 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.313 on 47 degrees of freedom
## Multiple R-squared: 0.6311, Adjusted R-squared: 0.6076
## F-statistic: 26.8 on 3 and 47 DF, p-value: 2.967e-10
```

After our second multiple regression model, we arrived at the following multiple regression equation

We are going to simulate a model using this equation and plot the resulting model simulations below for each factor

e stands for econmics, cor for corrections, and edu for education

y stand for overall ranking

```
e <- sample(1:51, 1) #Based on the 51 rankings for each state
cor <- sample(1:51, 1)
edu <- sample(1:51, 1)</pre>
```

```
y <- -1.378 + 0.518*e + 0.326*cor+ 0.216*edu +3.56170
summary(y)
```

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 17.04 17.04 17.04 17.04 17.04 17.04

 $\textit{\#plotting economics versus overall rank as per the simulated model} \\ \textit{plot(e, y)}$

cor

