EGZAMIN Z MATEMATYKI DYSKRETNEJ LUTY 2006, PIERWSZY TERMIN, CZĘŚĆ A, CZAS: 120 MIN.

Zadanie 1

Uporządkuj następujące funkcje od najwolniej do najszybciej rosnącej ($\log x \equiv \log_2 x$).

$$n^3, 3^{\log n}, \log(n!), \binom{2n}{n}, 3^n, n!, \log n, \sqrt{n^{\sqrt{\log n}}}, 3^{\sqrt{\log n}}, \sqrt{\log n}$$

Zadanie 2

Znajdź takie x, że dla każdego naturalnego a zachodzi $(a^{31})^x \equiv a \mod 271$.

Zadanie 3

Ile jest liczb n-cyfrowych w zapisie dziesiętnym, które wśród tych cyfr mają co najmniej jedno 0, 1 i 2?

Zadanie 4

Ile jest liczb n-cyfrowych w zapisie dziesiętnym, które mają wśród tych cyfr parzystą liczbę zer?

POWODZENIA!

EGZAMIN Z MATEMATYKI DYSKRETNEJ LUTY 2006, PIERWSZY TERMIN, CZĘŚĆ B, CZAS: 120 MIN.

Pary zadań 5,6 oraz 7,8 powinny być rozwiązane na osobnych kartkach

Zadanie 5

Zadanie 6

Kandydaci A i B stają do wyborów i obaj uzyskują po n głosów. Wyborcy głosują w pewnej kolejności. Jakie jest prawdopodobieństwo, że w trakcie wyborów tzn. między oddaniem głosu przez pierwszego i ostatniego wyborcę

- 1. kandydat A miał cały czas niewięcej głosów, niż B?
- 2. kandydat A miał cały czas więcej głosów, niż B?

Zadanie 7

Graf prosty G jest samodopełniający wtedy i tylko wtedy, gdy jest izomorficzny ze swym dopełnieniem. Pokaż, że samodopełniający graf n wierzchołkowy istnieje dokładnie wtedy, gdy $n \equiv 0$ lub $n \equiv 1$ modulo 4.

Wsk.: Gdy $n \equiv 0$ możesz oprzeć konstrukcję na podziale zbioru V na cztery części. Gdy $n \equiv 1$ do poprzedniej konstrukcji można dodać jeden wierzchołek.

Zadanie 8

(Grafy Mycielskiego) Graf M_2 to dwa wierzchołki połączone krawędzią. Graf M_{k+1} konstruujemy z M_k w ten sposób, że dokładamy dla każdego $v \in V(M_k)$ wierzchołek v' i łączymy go z wszystkimi sąsiadami v w M_k ; następnie dodajemy jeszcze jeden wierzchołek w i łączymy go z wszystkimi wierzchołkami v'. Pokaż przez indukcję po k, że

- 1. graf M_k nie ma trójkątów (klik K_3);
- 2. graf M_k jest k-kolorowalny;
- 3. graf M_k nie jest (k-1)-kolorowalny.

Powodzenia!