Deep Learning

HSE University

Aziz Temirkhanov

Intro

Machine learning is turning things (data) into numbers and finding patterns in those numbers.

The computer does this part.

How?

Code & math.

We're going to be writing the code.

ML vs DL

ML

- Simple
- Explainable
- Less data required
- Feature engineering is required

DL

- Complex
- Unexplainable
- A lot of data is required
- No feature engineering
- Higher quality on complex tasks, but more computation cost

ML vs DL

Feature engineering

Low Level Features Mid Level Features **High Level Features** Lines & Edges Eyes & Nose & Ears Facial Structure

A. Temirkhanov, HSE University

2021

Source: Goodfellow et al., 2014; Radford et al., 2016; Liu & Tuzel, 2016; Karras et al., 2018; Karras et al., 2019; Goodfellow, 2019; Karras et al., 2020; Al Index, 2021; Vahdat et al., 2021

A. Temirkhanov, HSE University

https://developer.nvidia.com/blog/automatically-segmenting-brain-tumors-with-ai/

Text Summarization using NLP

Natural Language Processing

Natural language processing (NLP) is a subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language, in particular how to program computers to process and analyze large amounts of natural language data. The result is a computer capable of "understanding" the contents of documents, including the contextual nuances of the language within them. The technology can then accurately extract information and insights contained in the documents as well as categorize and organize the documents themselves.

Summary

summarize(text, 0.6)

Natural Language Processing

Natural language processing (NLP) is a subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language, in particular how to program computers to process and analyze large amounts of natural language data.

Perceptron

Neuron

Perceptron

A. Temirkhanov, HSE University

Perceptron

Multilayer Perceptron

Deep Networks

Deep Networks

Universal approximation theorem

Theorem 3. (Universal Approximation Theorem for Width-Bounded ReLU Networks). For any Lebesgue-integrable function $f: \mathbb{R}^n \to \mathbb{R}$ and any $\epsilon > 0$, there exists a fully-connected ReLU network A with width $d_m \le n+4$, such that the function F_A represented by this network satisfies

$$\int_{\mathbb{R}^n} |f(x) - F_A(x)| dx < \epsilon$$

How to train NN

Training

- Define a problem (e.g. classification, ranking, etc.)
- Find a dataset
- Prepare data (cleaning, labeling, augmentation, etc.)
- Set an objective function
- Choose an evaluation metric
- Set or choose a baseline model
- Record every experiment

A. Temirkhanov, HSE University