<u>Ecuación</u>

$$z(u) = \frac{a}{h} + C \cdot e^{-h \cdot u}$$

Donde:

$$a = \frac{k}{f_v}$$

$$h = \frac{k}{f_{y}} (\beta \cdot \operatorname{sgn}(u \cdot z) + \gamma) \cdot \operatorname{sgn}(z)$$

Donde sgn() es la función signum:

sgn(numero mayor que cero) = +1

sgn(numero menor que cero) = -1

$$\beta = 0.9$$

$$\gamma = 0.1$$

$$k = 8.5$$

$$f_y = 25$$

$$p = 0.017$$

 ${\cal C}\,$ es una constante que depende de las condiciones iniciales.

<u>Ejemplo</u>

En la siguiente figura se ve valores extremos de u . Entre 0.0 y +0.5 se tiene valores como 0.01, 0.08, 0.2, 0.48, etc. Estos puntos deben ser evaluados. Como ejemplo evaluaremos el punto +0.25, +0.50, +0.25, -0.5, +0.5.

Que dará como resultado la siguiente gráfica:

+0.25

Para arrancar con la solución se tiene la condición inicial de z(0) = 0

$$a = \frac{8.5}{25} = 0.34$$

$$h = \frac{k}{f_{y}} (\beta \cdot \operatorname{sgn}(u \cdot z) + \gamma) \cdot \operatorname{sgn}(z)$$

Los valores de u serán crecientes hasta +0.5, por lo tanto u>0, z tendrá valores positivos z>0, por lo tanto, tenemos:

$$h = \frac{8.5}{25} (0.9 \cdot \text{sgn}(+1 \cdot +1) + 0.1) \cdot \text{sgn}(+1)$$

$$h = \frac{8.5}{25} (0.9 \cdot 1 + 0.1) \cdot 1 = 0.34$$

La ecuación quedaría:

 $z(u) = 1 + C \cdot e^{-0.34 \cdot u}$, ahora calculamos C con la condición inicial:

$$0 = 1 + C \cdot e^{-0.34 \cdot 0}$$

$$C = \frac{-1}{e^{-0.34 \cdot 0}}$$
 $C = -1$

$$z(u) = 1 - e^{-0.34 \cdot u}$$

La solución de z se reemplaza en la siguiente ecuación:

$$F = p \cdot k \cdot u + (1 - p) \cdot f_y \cdot z$$

$$F = 0.017 \cdot 8.5 \cdot u + (1 - 0.017) \cdot 25 \cdot z$$

u	Z	F
0.00	0.0000	0.0000
0.01	0.0034	0.0849
0.02	0.0068	0.1694
0.03	0.0101	0.2537
0.04	0.0135	0.3377
0.05	0.0169	0.4215
0.06	0.0202	0.5049
0.07	0.0235	0.5881
0.08	0.0268	0.6710
0.09	0.0301	0.7536
0.10	0.0334	0.8360
0.11	0.0367	0.9180
0.12	0.0400	0.9998
0.13	0.0432	1.0813
0.14	0.0465	1.1626
0.15	0.0497	1.2436
0.16	0.0529	1.3243
0.17	0.0562	1.4047
0.18	0.0594	1.4849
0.19	0.0626	1.5648
0.20	0.0657	1.6444
0.21	0.0689	1.7238
0.22	0.0721	1.8029
0.23	0.0752	1.8818
0.24	0.0784	1.9604
0.25	0.0815	2.0387

+0.5

El tramo a evaluar es de +0.25 a +0.50, y como valor inicial es el ultimo punto del tramo anterior z(0.25) = 0.0815

El desplazamiento $\,u$ sigue creciente por lo tanto $\,u>0$, $\,z$ tendrá valores positivos $\,z>0$.

$$h = \frac{k}{f_y} (\beta \cdot \operatorname{sgn}(u \cdot z) + \gamma) \cdot \operatorname{sgn}(z)$$

$$h = \frac{8.5}{25} (0.9 \cdot \text{sgn}(+1 \cdot +1) + 0.1) \cdot \text{sgn}(+1)$$

$$h = \frac{8.5}{25} (0.9 \cdot 1 + 0.1) \cdot 1 = 0.34$$

La ecuación quedaría:

 $z\left(u\right) = 1 + C \cdot e^{-0.34 \cdot u}$, ahora calculamos C con la condición inicial:

$$0.0815 = 1 + C \cdot e^{-0.34 \cdot 0.25} \qquad C = -1$$

$$z(u) = 1 - e^{-0.34 \cdot u}$$

 $F = 0.1445 \cdot u + 24.575 \cdot z$

u	Z	F
0.25	0.0815	2.0387
0.26	0.0846	2.1167
0.27	0.0877	2.1945
0.28	0.0908	2.2721
0.29	0.0939	2.3494
0.30	0.0970	2.4264
0.31	0.1000	2.5032
0.32	0.1031	2.5797
0.33	0.1061	2.6559
0.34	0.1092	2.7319
0.35	0.1122	2.8077
0.36	0.1152	2.8832
0.37	0.1182	2.9584
0.38	0.1212	3.0334
0.39	0.1242	3.1082
0.40	0.1272	3.1827
0.41	0.1301	3.2569
0.42	0.1331	3.3309
0.43	0.1360	3.4047
0.44	0.1389	3.4782
0.45	0.1419	3.5515
0.46	0.1448	3.6245
0.47	0.1477	3.6973
0.48	0.1506	3.7698
0.49	0.1535	3.8421
0.50	0.1563	3.9142

+0.25

El tramo a evaluar es de +0.50 a +0.25, y como valor inicial es el último punto del tramo anterior z(0.50) = 0.1563

El desplazamiento u decrece u < 0, z tendrá valores positivos z > 0.

$$h = \frac{k}{f_{y}} (\beta \cdot \operatorname{sgn}(u \cdot z) + \gamma) \cdot \operatorname{sgn}(z)$$

$$h = \frac{8.5}{25} (0.9 \cdot \text{sgn}(-1 \cdot +1) + 0.1) \cdot \text{sgn}(+1)$$

$$h = \frac{8.5}{25} (0.9 \cdot -1 + 0.1) \cdot 1 = -0.272$$

La ecuación quedaría:

$$z(u) = \frac{a}{h} + C \cdot e^{-h \cdot u}$$

 $z\left(u\right)\!=\!-1.25\!+\!C\cdot\!e^{0.272\cdot u}$, ahora calculamos $\,C\,{\rm con}$ la condición inicial:

$$C = \left(z - \frac{a}{h}\right) \cdot e^{h \cdot u}$$

$$C = \left(0.1563 - \frac{0.34}{-0.272}\right) \cdot e^{(-0.272) \cdot 0.50} \qquad C = 1.2275$$

$$z(u) = -1.25 + 1.2275 \cdot e^{0.272 \cdot u}$$

$$F = 0.1445 \cdot u + 24.575 \cdot z$$

u	Z	F
0.50	0.1563	3.9142
0.49	0.1525	3.8189
0.48	0.1487	3.7238
0.47	0.1449	3.6290
0.46	0.1411	3.5344
0.45	0.1373	3.4401
0.44	0.1336	3.3461
0.43	0.1298	3.2523
0.42	0.1261	3.1587
0.41	0.1223	3.0654
0.40	0.1186	2.9724
0.39	0.1149	2.8796
0.38	0.1112	2.7870
0.37	0.1075	2.6947
0.36	0.1038	2.6026
0.35	0.1001	2.5108
0.34	0.0964	2.4192
0.33	0.0928	2.3279
0.32	0.0891	2.2368
0.31	0.0855	2.1460
0.30	0.0819	2.0554
0.29	0.0783	1.9651
0.28	0.0746	1.8749
0.27	0.0711	1.7851
0.26	0.0675	1.6954
0.25	0.0639	1.6061

-0.25

El tramo a evaluar es de ± 0.25 a ± 0.25 . Como se ve un cambio de signo, entonces se realizará en dos tramos. El primer tramo de ± 0.25 hasta un desplazamiento que produzca z=0 y el segundo tramo desde ese desplazamiento calculado hasta ± 0.25 .

Primer tramo de 0.25 a z=0

$$z(0.25) = 0.0639$$

El desplazamiento u decrece u < 0, z tendrá valores positivos z > 0.

$$h = \frac{k}{f_{y}} (\beta \cdot \operatorname{sgn}(u \cdot z) + \gamma) \cdot \operatorname{sgn}(z)$$

$$h = \frac{8.5}{25} (0.9 \cdot \text{sgn}(-1 \cdot +1) + 0.1) \cdot \text{sgn}(+1)$$

$$h = \frac{8.5}{25} (0.9 \cdot -1 + 0.1) \cdot 1 = -0.272$$

La ecuación quedaría:

$$z(u) = \frac{a}{h} + C \cdot e^{-h \cdot u}$$

 $z(u) = -1.25 + C \cdot e^{0.272 \cdot u}$, ahora calculamos C con la condición inicial:

$$C = \left(z - \frac{a}{h}\right) \cdot e^{h \cdot u}$$

$$C = \left(0.0639 - \frac{0.34}{-0.272}\right) \cdot e^{(-0.272) \cdot 0.25} \qquad C = 1.2275$$

$$z(u) = -1.25 + 1.2275 \cdot e^{0.272 \cdot u}$$

$$F = 0.1445 \cdot u + 24.575 \cdot z$$

Calculo de u para z = 0

$$u = \frac{1}{h} \ln \left(-\frac{c \cdot h}{a} \right)$$

$$u = \frac{1}{-0.272} \ln \left(-\frac{1.2275 \cdot -0.272}{0.34} \right) = 0.06675$$

u	Z	F
0.25	0.0639	1.6061
0.24	0.0603	1.5169
0.23	0.0568	1.4280
0.22	0.0532	1.3393
0.21	0.0497	1.2509
0.20	0.0461	1.1627
0.19	0.0426	1.0747
0.18	0.0391	0.9870
0.17	0.0356	0.8995
0.16	0.0321	0.8122
0.15	0.0286	0.7252
0.14	0.0252	0.6384
0.13	0.0217	0.5518
0.12	0.0182	0.4655
0.11	0.0148	0.3794
0.10	0.0114	0.2935
0.09	0.0079	0.2079
0.08	0.0045	0.1225
0.07	0.0011	0.0373
0.06675	0.0000	0.0096

Segundo tramo de 0.06675 a -0.25

$$z(0.06675) = 0$$

El desplazamiento $\,u\,$ decrece $\,u<0$, $\,z\,$ tendrá valores negativos $\,z<0$.

$$h = \frac{k}{f_{y}} (\beta \cdot \operatorname{sgn}(u \cdot z) + \gamma) \cdot \operatorname{sgn}(z)$$

$$h = \frac{8.5}{25} (0.9 \cdot \text{sgn}(-1 \cdot -1) + 0.1) \cdot \text{sgn}(-1)$$

$$h = \frac{8.5}{25} (0.9 + 1 + 0.1) - 1 = -0.34$$

La ecuación quedaría:

$$z(u) = \frac{a}{h} + C \cdot e^{-h \cdot u}$$

 $z\left(u\right)\!=\!-1\!+\!C\!\cdot\!e^{0.34\cdot u}$, ahora calculamos $\,C\,{\rm con}\,$ la condición inicial:

$$C = \left(z - \frac{a}{h}\right) \cdot e^{h \cdot u}$$

$$C = \left(0 - \frac{0.34}{-0.34}\right) \cdot e^{(-0.34) \cdot 0.06675} \qquad C = 0.9775$$

$$z(u) = -1 + 0.9775 \cdot e^{0.34 \cdot u}$$

 $F = 0.1445 \cdot u + 24.575 \cdot z$

u	Z	F
0.06675	0.0000	0.0096
0.05	-0.0057	-0.1323
0.04	-0.0091	-0.2167
0.03	-0.0124	-0.3008
0.02	-0.0158	-0.3847
0.01	-0.0191	-0.4682
0.00	-0.0224	-0.5515
-0.01	-0.0258	-0.6344
-0.02	-0.0291	-0.7172
-0.03	-0.0324	-0.7996
-0.04	-0.0356	-0.8817
-0.05	-0.0389	-0.9636
-0.06	-0.0422	-1.0452
-0.07	-0.0454	-1.1266
-0.08	-0.0487	-1.2077
-0.09	-0.0519	-1.2885
-0.10	-0.0551	-1.3690
-0.11	-0.0583	-1.4492
-0.12	-0.0615	-1.5292
-0.13	-0.0647	-1.6090
-0.14	-0.0679	-1.6884
-0.15	-0.0710	-1.7676
-0.16	-0.0742	-1.8465
-0.17	-0.0773	-1.9252
-0.18	-0.0805	-2.0036
-0.19	-0.0836	-2.0818
-0.20	-0.0867	-2.1597
-0.21	-0.0898	-2.2373
-0.22	-0.0929	-2.3146
-0.23	-0.0960	-2.3918
-0.24	-0.0990	-2.4686
-0.25	-0.1021	-2.5452

-0.50

El tramo a evaluar es de -0.25 a -0.50, y como valor inicial es el último punto del tramo anterior $z\left(-0.25\right)=-0.1021$

El desplazamiento $\,u\,$ decrece $\,u<0$, $\,z\,$ tendrá valores negativos $\,z<0$.

$$h = \frac{k}{f_{y}} (\beta \cdot \operatorname{sgn}(u \cdot z) + \gamma) \cdot \operatorname{sgn}(z)$$

$$h = \frac{8.5}{25} (0.9 \cdot \text{sgn}(-1 \cdot -1) + 0.1) \cdot \text{sgn}(-1)$$

$$h = \frac{8.5}{25} (0.9 + 1 + 0.1) - 1 = -0.34$$

La ecuación quedaría:

$$z(u) = \frac{a}{h} + C \cdot e^{-h \cdot u}$$

 $z\left(u\right) = -1 + C \cdot e^{0.34 \cdot u}$, ahora calculamos C con la condición inicial:

$$C = \left(z - \frac{a}{h}\right) \cdot e^{h \cdot u}$$

$$C = \left(-0.1021 - \frac{0.34}{-0.34}\right) \cdot e^{(-0.34) - 0.25} \qquad C = 0.9775$$

$$z(u) = -1 + 0.9775 \cdot e^{0.34 \cdot u}$$

$$F = 0.1445 \cdot u + 24.575 \cdot z$$

u	Z	F
-0.25	-0.1021	-2.5452
-0.26	-0.1051	-2.6216
-0.27	-0.1082	-2.6976
-0.28	-0.1112	-2.7735
-0.29	-0.1142	-2.8491
-0.30	-0.1172	-2.9244
-0.31	-0.1202	-2.9995
-0.32	-0.1232	-3.0743
-0.33	-0.1262	-3.1489
-0.34	-0.1292	-3.2232
-0.35	-0.1321	-3.2973
-0.36	-0.1351	-3.3711
-0.37	-0.1380	-3.4447
-0.38	-0.1409	-3.5181
-0.39	-0.1438	-3.5912
-0.40	-0.1467	-3.6640
-0.41	-0.1496	-3.7366
-0.42	-0.1525	-3.8090
-0.43	-0.1554	-3.8812
-0.44	-0.1583	-3.9531
-0.45	-0.1611	-4.0247
-0.46	-0.1640	-4.0961
-0.47	-0.1668	-4.1673
-0.48	-0.1696	-4.2383
-0.49	-0.1725	-4.3090
-0.50	-0.1753	-4.3794

+0.5

El tramo a evaluar es de -0.50 a +0.50. Como se ve un cambio de signo, entonces se realizará en dos tramos. El primer tramo de -0.50 hasta un desplazamiento que produzca z=0 y el segundo tramo desde ese desplazamiento calculado hasta +0.50.

Primer tramo de -0.50 a z=0

Condiciones iniciales

$$z(-0.50) = -0.1753$$

El desplazamiento u crece u > 0, z tendrá valores negativos z < 0.

$$h = \frac{k}{f_{y}} (\beta \cdot \operatorname{sgn}(u \cdot z) + \gamma) \cdot \operatorname{sgn}(z)$$

$$h = \frac{8.5}{25} (0.9 \cdot \text{sgn}(+1 \cdot -1) + 0.1) \cdot \text{sgn}(-1)$$

$$h = \frac{8.5}{25} (0.9 \cdot -1 + 0.1) \cdot -1 = 0.272$$

La ecuación quedaría:

$$z(u) = \frac{a}{h} + C \cdot e^{-h \cdot u}$$

 $z(u) = 1.25 + C \cdot e^{-0.272 \cdot u}$, ahora calculamos C con la condición inicial:

$$C = \left(z - \frac{a}{h}\right) \cdot e^{h \cdot u}$$

$$C = \left(-0.1753 - \frac{0.34}{0.272}\right) \cdot e^{(0.272) - 0.50} \qquad C = -1.244$$

$$z(u) = 1.25 - 1.244 \cdot e^{-0.272 \cdot u}$$

$$F = 0.1445 \cdot u + 24.575 \cdot z$$

Cálculo de u para z=0

$$u = \frac{1}{h} \ln \left(-\frac{c \cdot h}{a} \right)$$

$$u = \frac{1}{0.272} \ln \left(-\frac{-1.244 \cdot 0.272}{0.34} \right) = -0.01758$$

u	Z	F
-0.50	-0.1753	-4.3794
-0.49	-0.1714	-4.2828
-0.48	-0.1675	-4.1865
-0.47	-0.1637	-4.0905
-0.46	-0.1598	-3.9946
-0.45	-0.1560	-3.8991
-0.44	-0.1522	-3.8038
-0.43	-0.1484	-3.7087
-0.42	-0.1446	-3.6139
-0.42	-0.1440	-3.5194
-0.41	-0.1408	-3.4251
-0.40	-0.1370	-3.3311
-0.39	-0.1333	-3.2373
	-0.1258	-3.2373
-0.37 -0.36	-0.1236	-3.1438
-0.35		
-0.35	-0.1183 -0.1146	-2.9575 -2.8647
-0.34	-0.1146	
-0.32	-0.1109	-2.7721 -2.6799
-0.31	-0.1035	-2.5878
-0.30	-0.0998	-2.4960
-0.29	-0.0961	-2.4045
-0.28	-0.0925	-2.3132
-0.27	-0.0888	-2.2221
-0.26	-0.0852	-2.1313
-0.25	-0.0816	-2.0407
-0.24	-0.0780	-1.9504
-0.23	-0.0743	-1.8603
-0.22	-0.0707	-1.7705
-0.21	-0.0672	-1.6808
-0.20	-0.0636	-1.5915
-0.19	-0.0600	-1.5023
-0.18	-0.0565	-1.4134
-0.17	-0.0529	-1.3248
-0.16	-0.0494	-1.2364
-0.15	-0.0458	-1.1482
-0.14	-0.0423	-1.0602
-0.13	-0.0388	-0.9725
-0.12	-0.0353	-0.8851
-0.11	-0.0318	-0.7978
-0.10	-0.0283	-0.7108
-0.09	-0.0249	-0.6240
-0.08	-0.0214	-0.5375
-0.07	-0.0179	-0.4512
-0.06	-0.0145	-0.3651
-0.05	-0.0111	-0.2792
-0.04	-0.0076	-0.1936
-0.03	-0.0042	-0.1082
-0.02	-0.0008	-0.0230
-0.01759	0.0000	-0.0025

Segundo tramo de -0.01759 a +0.50

$$z(-0.01759) = 0$$

El desplazamiento u crece u > 0, z tendrá valores positivos z > 0.

$$h = \frac{k}{f_{v}} (\beta \cdot \operatorname{sgn}(u \cdot z) + \gamma) \cdot \operatorname{sgn}(z)$$

$$h = \frac{8.5}{25} (0.9 \cdot \text{sgn}(+1 \cdot +1) + 0.1) \cdot \text{sgn}(+1)$$

$$h = \frac{8.5}{25} (0.9 + 0.1) \cdot +1 = 0.34$$

La ecuación quedaría:

$$z(u) = \frac{a}{h} + C \cdot e^{-h \cdot u}$$

 $z(u) = 1 + C \cdot e^{-0.34 \cdot u}$, ahora calculamos C con la condición inicial:

$$C = \left(z - \frac{a}{h}\right) \cdot e^{h \cdot u}$$

$$C = \left(0 - \frac{0.34}{0.34}\right) \cdot e^{(0.34) - 0.01759} \qquad C = -0.9940$$

$$z(u) = 1 - 0.9940 \cdot e^{-0.34 \cdot u}$$

$$F = 0.1445 \cdot u + 24.575 \cdot z$$

u	Z	F
-0.01759	0.0000	-0.0025
0.00	0.0060	0.1465
0.01	0.0093	0.2309
0.02	0.0127	0.3150
0.03	0.0127	0.3988
0.03	0.0101	0.4823
0.04	0.0194	0.4823
0.05	0.0227	0.5055
0.00	0.0200	0.7312
	0.0293	
0.08	0.0326	0.8136
		0.8957
0.10	0.0392	0.9776
0.11	0.0425	1.0592
0.12	0.0457	1.1405
0.13	0.0489	1.2215
0.14	0.0522	1.3023
0.15	0.0554	1.3828
0.16	0.0586	1.4631
0.17	0.0618	1.5430
0.18	0.0650	1.6227
0.19	0.0681	1.7022
0.20	0.0713	1.7813
0.21	0.0745	1.8603
0.22	0.0776	1.9389
0.23	0.0807	2.0173
0.24	0.0839	2.0954
0.25	0.0870	2.1733
0.26	0.0901	2.2509
0.27	0.0932	2.3282
0.28	0.0962	2.4053
0.29	0.0993	2.4821
0.30	0.1024	2.5587
0.31	0.1054	2.6350
0.32	0.1084	2.7111
0.33	0.1115	2.7869
0.34	0.1145	2.8625
0.35	0.1175	2.9378
0.36	0.1205	3.0129
0.37	0.1235	3.0877
0.38	0.1264	3.1622
0.39	0.1294	3.2365
0.40	0.1324	3.3106
0.41	0.1353	3.3844
0.42	0.1382	3.4580
0.43	0.1412	3.5313
0.44	0.1441	3.6044
0.45	0.1470	3.6772
0.46	0.1499	3.7498
0.47	0.1528	3.8222
0.48	0.1556	3.8943
0.49	0.1585	3.9662
0.50	0.1614	4.0378

Este ciclo se repite n veces.

Graficando tenemos

Como otro ejemplo si ingreso los siguientes valores:

Tendríamos unos valores de salida para graficar lo siguiente:

