學號:r05922145 系級: 資工碩二 姓名:郁錦濤

1.請比較你實作的 generative model、logistic regression 的準確率,何者較佳? 答:

model	accuracy on public set	accuracy on private set
generative model	0.84203	0.84545
logistic regression	0.85050	0.85429

從兩種模型的在 public 和 private set 上準確率表現來看,logistic regression 的準確率更高。原因我認爲 generative model 是根據機率產生的模型,本來就是假設 data 滿足 Gaussian Distribution,所以會有偏差。

2.請說明你實作的 best model,其訓練方式和準確率爲何?

答:

model	accuracy on public set	accuracy on private set
Gradient Boosting Tree	0.86684	0.86842

我的 best model 採用了 Gradient Boosting Tree,它是一個支持 binary classification 的分類器,實作出來的準確率比較高。它使用 100 個單層的 decision tree 作爲一個弱學習器,通過組合來進行分類。

我主要用了 scikit-learn 套件中的 GradinentBoostingClassifier,通過喂入 X_train 和 Y train,由程式自己生成 model,函式的參數均採用默認值,最後喂入 X test,生成 Y test。

3.請實作輸入特徵標準化(feature normalization),並討論其對於你的模型準確率的影響。

答:

normalization	accuracy on public set	accuracy on private set
No	0.79766	0.79314
Yes	0.85331	0.85124

特徵標準化對於模型的準確率確實有很大的提高,並且加快了 training 的速度。

原本完整的 data 有 32562 筆,我將 data 先 shuffle,抽取 20%的 data 當做 validation set,因此實際用來 訓練的資料有 26000 多筆 ,而 feature 一樣是直接使用助教預先抽好的,訓練次數爲 3000 次,初始學習率爲 0.005,並且使用 adagrad。

可以看到在相同的訓練次數和初始學習率之下,feature normalization 能大幅提升準確 度和效能。另外,若沒有使用 feature normalization ,即使用了 adagrad,初始學習率也 必須好好選擇,否則容易在訓練過程中發散。

4. 請實作 logistic regression 的正規化(regularization),並討論其對於你的模型準確率的影響。

答:

regularization	lamda	accuracy on public set	accuracy on private set
No	0	0.85565	0.84977
L1	0.1	0.85466	0.85087
L1	0.01	0.85393	0.85201
L1	0.001	0.85331	0.85112
L2	0.1	0.77248	0.76992
L2	0.01	0.85589	0.84928
L2	0.001	0.85454	0.85112

我分別採用了 L1 和 L2 兩種正規化方法和不做正規化的情況進行比較,發現在添加正規化以後,對模型的準確率會有一定的提升,但是提升的幅度不大,有時候採用了不合適的 lamda 也會使準確率大幅下降。

因此我們得知,有正規化的模型確實能夠避免 overfitting 情況的產生,能夠在 private set 上的表現和 public 上的大體一致。

5.請討論你認爲哪個 attribute 對結果影響最大? 答:

Removed attribute	accuracy on valid set
none	0.851571
age	0.854232
fnlwgt	0.851824
sex	0.851713
capital_gain	0.838174
capital_loss	0.852032
hours_per_week	0.853721
workclass	0.852323
education	0.844002
marital_status	0.853290
occupation	0.847026
relationship	0.853120
race	0.853307
native country	0.851821

我試著每一次從 attribute 種剔除一列 feature,通過觀察我的 valid set 的 accuracy 來評估每個 attribute 對模型預測的影響。

從上表可以知道,capital_gain 這個 attribute 對結果影響最大。仔細分析發現符合,因爲 capital gain 是從一些資本商品中獲得的收益,必然會直接影響一個人的年收入。