Публикация в Nature

https://www.nature.com/articles/nature08976

The complete mitochondrial DNA genome of an unknown hominin from southern Siberia

Есть Supplementary information

https://www.nature.com/articles/nature08976#Sec2

Там описаны методы https://static-

content.springer.com/esm/art%3A10.1038%2Fnature08976/MediaObjects/41586_2010_BFn ature08976_MOESM327_ESM.pdf

Статья и Supplementary также доступны в папке материалов для семинара

Мы хотим построить филогенетическое дерево - такое, какое изображено на рис. 3 статьи, но для меньшего числа последовательностей.

Митохондриальная ДНК Денисовского человека

Читаем методы в Supplementary:

Phylogenetic analysis

The 54 modern human mtDNAs, 6 Neandertal mtDNAs, the Kostenki early modern human mtDNA, chimpanzee, bonobo and the Denisova mtDNA were aligned using the software Muscle¹⁵. A phylogenetic tree was estimated in a Bayesian framework using MrBayes 3.1.2¹⁶, with a GTR+I+Γ model of substitutions and default parameters for the MCMC, with 5,000,000 generations sampling every 1,000 generations and a burn-in of 1,000,000 generations. We observed stationarity (using Tracer 1.4¹⁷) after 1,000,000 generations. A consensus tree from all 4,000 trees was calculated using TreeAnnotater V.1.4.8¹⁷ (Fig 3). Pairwise nucleotide difference between mtDNAs were calculated using MEGA 4.1¹⁸ (Fig 2).

Собираем данные

Скачиваем митохондриальные ДНК (также доступны в папке семинара):

1 Денисовского человека.

EMBL – accession number FN673705

https://www.ebi.ac.uk/ena/data/view/FN673705

2. Неандертальцев

доступны на UCSC genome browser - https://genome.ucsc.edu/Neandertal/

Сходите, посмотрите, что там есть

В самом конце ссылок есть Neandertal Mitochondrial Sequence

А оттуда есть ссылка на митохондриальный геном и неандертальца, и человека

"DNA was extracted from a 38,000-year-old bone and sequenced using methods described in Green, *et al.* The Neandertal mitochondrial sequence (NC_011137) was downloaded from GenBank and aligned to chrM (NC_001807) using BLAT."

Неандерталец - NC_011137 - https://www.ncbi.nlm.nih.gov/nuccore/196123578 - выбираем формат fasta и скачиваем

3. Человек

Референтная последовательность

https://www.ncbi.nlm.nih.gov/nuccore/251831106

Плюс есть много других – можно поискать митохондриальные геномы других людей

4. Шимпанзе (Pan troglodytes)

https://www.ncbi.nlm.nih.gov/nucleotide/NC_001643.1

5. Bonobo - найти самим

Сделать общий файл, содержащий все геномы

Выравниваем митохондриальные геномы

Для выравнивания можно скачать отдельную программу MUSCLE (работает быстрее, чем MEGA)

http://www.drive5.com/muscle/

Делает выравнивания через командную строку:

Make an alignment and save to a file in FASTA format:

muscle -in seqs.fa -out seqs.afa

Строим дерево –

- разными методами
- бутстрэп
- смотрим матрицу расстояний

Сайт проекта генома неандертальца Института Макса Планка

https://www.eva.mpg.de/genetics/genome-projects/neandertal/index.html

Там есть браузер древних геномов – интересно посмотреть разные участки. В том числе митохондриальную ДНК.

https://bioinf.eva.mpg.de/jbrowse/

Экстра

Ancient mtDNA database

https://academic.oup.com/nar/article/47/D1/D29/5106144 https://amtdb.org/