

AD-A104 620

CONSOER TOWNSEND AND ASSOCIATES LTD ST LOUIS MO
NATIONAL DAM SAFETY PROGRAM, LOST LAKE DAM (MO10212), MISSISSIPPI-ETC(U)
SEP 79 W G SHIFRIN

F/0 13/13

DACW43-79-C-0075

ML

UNCLASSIFIED

AL
DRAFTED

LEVEL II

0

MISSISSIPPI-SALT-QUINCY RIVER BASIN

LOST LAKE DAM
LINCOLN COUNTY, MISSOURI
MO. 10212

DTIC
ELECTED
SEP. 28 1981
S E D

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

AD A104620

THE DOCUMENT CONTAINS NO INFORMATION WHICH IS UNCLASSIFIED.
IT CONSISTED OF 12 PAGES WHICH DO NOT EXCEED ONE PAGE.

United States Army
Corps of Engineers

... Serving the Army
... Serving the Nation

St. Louis District

81 9 28 114

PREPARED BY: U. S. ARMY ENGINEER DISTRICT, ST. LOUIS

FOR: STATE OF MISSOURI

This document has been approved
for public release and sale; its
distribution is unlimited.

SEPTEMBER 1979

DTIC FILE COPY

DISCLAIMER NOTICE

**THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.**

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
I. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
AD-A104		620
4. TITLE (and Subtitle) Phase I Dam Inspection Report National Dam Safety Program Lost Lake Dam (MO 10212) Lincoln County, Missouri		5. TYPE OF REPORT & PERIOD COVERED Final Report
7. AUTHOR(s) Consoer, Townsend and Associates, Ltd.		6. PERFORMING ORG. REPORT NUMBER
		8. CONTRACT OR GRANT NUMBER(s) DACP43-79-C-0075✓
9. PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Engineer District, St. Louis Dam Inventory and Inspection Section, LMSED-PD 210 Tucker Blvd., North, St. Louis, Mo. 63101		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Engineer District, St. Louis Dam Inventory and Inspection Section, LMSED-PD 210 Tucker Blvd., North, St. Louis, Mo. 63101		12. REPORT DATE September 1979
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES Approximately 90
		15. SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Dam Safety, Lake, Dam Inspection, Private Dams		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report was prepared under the National Program of Inspection of Non-Federal Dams. This report assesses the general condition of the dam with respect to safety, based on available data and on visual inspection, to determine if the dam poses hazards to human life or property.		

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

INSTRUCTIONS FOR PREPARATION OF REPORT DOCUMENTATION PAGE

RESPONSIBILITY. The controlling DoD office will be responsible for completion of the Report Documentation Page, DD Form 1473, in all technical reports prepared by or for DoD organizations.

CLASSIFICATION. Since this Report Documentation Page, DD Form 1473, is used in preparing announcements, bibliographies, and data banks, it should be unclassified if possible. If a classification is required, identify the classified items on the page by the appropriate symbol.

COMPLETION GUIDE

General. Make Blocks 1, 4, 5, 6, 7, 11, 13, 15, and 16 agree with the corresponding information on the report cover. Leave Blocks 2 and 3 blank.

Block 1. Report Number. Enter the unique alphanumeric report number shown on the cover.

Block 2. Government Accession No. Leave Blank. This space is for use by the Defense Documentation Center.

Block 3. Recipient's Catalog Number. Leave blank. This space is for the use of the report recipient to assist in future retrieval of the document.

Block 4. Title and Subtitle. Enter the title in all capital letters exactly as it appears on the publication. Titles should be unclassified whenever possible. Write out the English equivalent for Greek letters and mathematical symbols in the title (see "Abstracting Scientific and Technical Reports of Defense-sponsored RDT/E," AD-667 000). If the report has a subtitle, this subtitle should follow the main title, be separated by a comma or semicolon if appropriate, and be initially capitalized. If a publication has a title in a foreign language, translate the title into English and follow the English translation with the title in the original language. Make every effort to simplify the title before publication.

Block 5. Type of Report and Period Covered. Indicate here whether report is interim, final, etc., and, if applicable, inclusive dates of period covered, such as the life of a contract covered in a final contractor report.

Block 6. Performing Organization Report Number. Only numbers other than the official report number shown in Block 1, such as series numbers for in-house reports or a contractor/grantee number assigned by him, will be placed in this space. If no such numbers are used, leave this space blank.

Block 7. Author(s). Include corresponding information from the report cover. Give the name(s) of the author(s) in conventional order (for example, John R. Doe or, if author prefers, J. Robert Doe). In addition, list the affiliation of an author if it differs from that of the performing organization.

Block 8. Contract or Grant Number(s). For a contractor or grantee report, enter the complete contract or grant number(s) under which the work reported was accomplished. Leave blank in in-house reports.

Block 9. Performing Organization Name and Address. For in-house reports enter the name and address, including office symbol, of the performing activity. For contractor or grantee reports enter the name and address of the contractor or grantee who prepared the report and identify the appropriate corporate division, school, laboratory, etc., of the author. List city, state, and ZIP Code.

Block 10. Program Element, Project, Task Area, and Work Unit Numbers. Enter here the number code from the applicable Department of Defense form, such as the DD Form 1498, "Research and Technology Work Unit Summary" or the DD Form 1634, "Research and Development Planning Summary," which identifies the program element, project, task area, and work unit or equivalent under which the work was authorized.

Block 11. Controlling Office Name and Address. Enter the full, official name and address, including office symbol, of the controlling office. (Equates to funding/sponsoring agency. For definition see DoD Directive 5200.20, "Distribution Statements on Technical Documents.")

Block 12. Report Date. Enter here the day, month, and year or month and year as shown on the cover.

Block 13. Number of Pages. Enter the total number of pages.

Block 14. Monitoring Agency Name and Address (if different from Controlling Office). For use when the controlling or funding office does not directly administer a project, contract, or grant, but delegates the administrative responsibility to another organization.

Blocks 15 & 15a. Security Classification of the Report: Declassification/Downgrading Schedule of the Report. Enter in 15 the highest classification of the report. If appropriate, enter in 15a the declassification/downgrading schedule of the report, using the abbreviations for declassification/downgrading schedules listed in paragraph 4-207 of DoD 5200.1-R.

Block 16. Distribution Statement of the Report. Insert here the applicable distribution statement of the report from DoD Directive 5200.20, "Distribution Statements on Technical Documents."

Block 17. Distribution Statement (of the abstract entered in Block 20, if different from the distribution statement of the report). Insert here the applicable distribution statement of the abstract from DoD Directive 5200.20, "Distribution Statements on Technical Documents."

Block 18. Supplementary Notes. Enter information not included elsewhere but useful, such as: Prepared in cooperation with . . . /translation of (or by) . . . Presented at conference of . . . To be published in . . .

Block 19. Key Words. Select terms or short phrases that identify the principal subjects covered in the report, and are sufficiently specific and precise to be used as index entries for cataloging, conforming to standard terminology. The DoD "Thesaurus of Engineering and Scientific Terms" (TEST), AD-672 000, can be helpful.

Block 20. Abstract. The abstract should be a brief (not to exceed 200 words) factual summary of the most significant information contained in the report. If possible, the abstract of a classified report should be unclassified and the abstract to an unclassified report should consist of publicly-releasable information. If the report contains a significant bibliography or literature survey, mention it here. For information on preparing abstracts see "Abstracting Scientific and Technical Reports of Defense-Sponsored RDT&E," AD-667 000.

IN REPLY REFER TO

DEPARTMENT OF THE ARMY
ST. LOUIS DISTRICT, CORPS OF ENGINEERS
210 NORTH 12TH STREET
ST. LOUIS, MISSOURI 63101

SUBJECT: Lost Lake Dam (Mo. 10212) Phase I Inspection Report

This report presents the results of field inspection and evaluation of the Lost Lake Dam (Mo. 10212).

It was prepared under the National Program of Inspection of Non-Federal Dams.

SIGNED

28 SEP 1979

SUBMITTED BY:

Chief, Engineering Division

Date

APPROVED BY:

Colonel, CE, District Engineer

Date

Accession For	
NTIS GRA&I	
DTIC TAB	
Unannounced	
Justification	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or Special
A	SG

LOST LAKE DAM

LINCOLN COUNTY, MISSOURI

MISSOURI INVENTORY NO. 10212

PHASE I INSPECTION REPORT

NATIONAL DAM SAFETY PROGRAM

Lost Lake Dam (Inventory Number MO 10212),
Mississippi-Salt-Quincy River Basin,
Lincoln County, Missouri.
Phase I Inspection Report.

PREPARED BY

CONSOER, TOWNSEND AND ASSOCIATES LTD.

ST. LOUIS, MISSOURI

AND

ENGINEERING CONSULTANTS, INC.

ENGLEWOOD, COLORADO

A JOINT VENTURE

UNDER DIRECTION OF

ST. LOUIS DISTRICT, CORPS OF ENGINEERS

FOR

GOVERNOR OF MISSOURI

11 SEPTEMBER 1979

PL-53-6

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

Name of Dam: Lost Lake Dam, Missouri Inv. No. 10212
State Located: Missouri
County Located: Lincoln
Stream: Lost Creek
Date of Inspection: June 15, 1979

Assessment of General Condition

Lost Lake Dam was inspected by the engineering firms of Consoer, Townsend and Associates LTD., and Engineering Consultants, Inc. (A Joint Venture) of St. Louis, Missouri using the "Recommended Guidelines for Safety Inspection of Dams". These guidelines were developed by the Chief of Engineers, U.S. Army, Washington, D.C., with the help of Federal and State agencies, professional engineering organizations, and private engineers. The resulting guidelines are considered to represent a consensus of the engineering profession.

The overall structural condition of the dam appears to be good. The dam does not exhibit signs of structural instability. The dam appears adequately maintained.

Based on the criteria in the guidelines, the dam is in the high hazard potential classification, which means that loss of life and appreciable property loss could occur in the event of failure of the dam. The estimated damage zone extends approximately 3.5 miles downstream of the dam. Within the damage zone are three dwellings, two buildings and a quarry and plant which may be subjected to flooding, with possible damage and/or destruction, and possible loss of life. The Lost Lake Dam is in the small size classification since it is less than 40 feet high and impounds less than 1,000 acre-feet of water.

Our inspection and evaluation indicate that the spillway of Lost Lake Dam does not meet the criteria set forth in the guidelines for a dam having the above size and hazard potential. Lost Lake Dam being a small size dam, with a high hazard potential, is required by the guidelines to pass from one-half Probable Maximum Flood to the Probable Maximum Flood without overtopping. Since there is high hazard potential downstream of the dam, the appropriate spillway design flood for this dam is the Probable Maximum Flood. It was determined that the reservoir/spillway system can accommodate 81 percent of the Probable Maximum Flood without overtopping the dam. Our evaluation indicates that the reservoir/spillway system will accommodate the 100-year flood without overtopping the dam.

The Probable Maximum Flood is defined as the flood discharge that may be expected from the most severe combination of critical meteorological and hydrologic conditions that are reasonably possible in the region. The 100-year flood is defined as a flood having a one percent chance of being equalled or exceeded during any given year.

Other conditions noted by the inspection team were: minor seepage at the principal spillway outlet; minor erosion on the upstream slope; tall grass growing around the principal spillway intake; and minor erosion near the crest at the left abutment.

The absence of seepage and stability analyses is a deficiency which should be corrected. Deficiency in the spillway capacity should also be corrected. Periodic inspections by a qualified engineer and establishing a maintenance log are recommended.

Walter G. Shifrin, P.E.

Overview of lost lake dam

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

LOST LAKE DAM, I.D. No. 10212

TABLE OF CONTENTS

<u>Sect. No.</u>	<u>Title</u>	<u>Page</u>
SECTION 1	PROJECT INFORMATION	1
	1.1 General	1
	1.2 Description of Project	3
	1.3 Pertinent Data	7
SECTION 2	ENGINEERING DATA	10
	2.1 Design	10
	2.2 Construction	10
	2.3 Operation	10
	2.4 Evaluation	11
SECTION 3	VISUAL INSPECTION	12
	3.1 Findings	12
	3.2 Evaluation	16

TABLE OF CONTENTS

(Continued)

<u>Sect. No.</u>	<u>Title</u>	<u>Page</u>
SECTION 4	OPERATION PROCEDURES	18
4.1	Procedures	18
4.2	Maintenance of Dam	18
4.3	Maintenance of Operating Facilities	18
4.4	Description of Any Warning System in Effect	19
4.5	Evaluation	19
SECTION 5	HYDRAULIC/HYDROLOGIC	20
5.1	Evaluation of Features	20
SECTION 6	STRUCTURAL STABILITY	24
6.1	Evaluation of Structural Stability	24
SECTION 7	ASSESSMENT/REMEDIAL MEASURES . . .	27
7.1	Dam Assessment	27
7.2	Remedial Measures	30

TABLE OF CONTENTS

(Continued)

LIST OF PLATES

	<u>Plate No.</u>
LOCATION MAP	1
PLAN AND ELEVATION OF DAM	2
DESIGN DRAWINGS	3-16
GEOLOGIC MAP	17
SEISMIC ZONE MAP	18

APPENDICES

APPENDIX A - PHOTOGRAPHS

APPENDIX B - HYDROLOGIC COMPUTATIONS

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

LOST LAKE DAM, Missouri Inv. No. 10212

SECTION 1: PROJECT INFORMATION

1.1 General

a. Authority

The Dam Inspection Act, Public Law 92-367 of August, 1972, authorizes the Secretary of the Army, through the Corps of Engineers, to initiate a national program of dam inspections. Inspection for the Lost Lake Dam was carried out under Contract DACW 43-79-C-0075 to the Department of the Army, St. Louis District, Corps of Engineers, by the engineering firms of Consoer, Townsend & Associates Ltd., and Engineering Consultants, Inc. (A Joint Venture), of St. Louis, Missouri.

b. Purpose of Inspection

The visual inspection of the Lost Lake Dam was made on June 15, 1979. The purpose of the inspection was to make a general assessment as to the structural integrity and operational adequacy of the dam embankment and its appurtenant structures.

c. Scope of Report

This report summarizes available pertinent data relating to the project; presents a summary of visual observations made during the field inspection; presents an assessment of hydrologic and hydraulic conditions at the site; presents an assessment as to the structural adequacy of the various project features; and assesses the general condition of the dam with respect to safety.

Subsurface investigations, laboratory testing, and detailed analyses were not within the scope of this study. The conclusions drawn herein, therefore, are based on the presence of, or absence of, obvious signs of distress. No warranty as to the absolute safety of the project features is implied by the conclusions presented in this report.

It should be noted that reference in this report to left or right abutments is as viewed looking downstream. Where left abutment or left side of the dam is used in this report, this also refers to west abutment or side, and right to the east abutment or side.

d. Evaluation Criteria

Criteria used to evaluate the dam were furnished by the Department of the Army, Office of the Chief of Engineers, in "Recommended Guidelines for Safety Inspection of Dams", Appendix D. These guidelines were developed with the help of several Federal agencies and many State agencies, professional engineering organizations, and private engineers.

1.2

Description of the Project

a. Description of Dam and Appurtenances

The following description is based exclusively on the original design drawings, observations and measurements made during visual inspection. No "as-built" drawings were available during the preparation of this report.

The dam consists of a homogenous earthfill embankment between earthen abutments. The crest is 14 feet wide and 750 feet long as shown on available drawings. Field measurements show the crest length to be 788 feet. The crest elevation, according to the drawings, is 635.0 feet above MSL. From field measurements, the crest elevation was found to be 637.0 feet above MSL. The maximum height of the embankment is 33.5 feet.

The upstream and downstream slopes are 1V to 3H and 1V to 2H, respectively. According to the available drawings, an 8-foot wide berm was constructed on the upstream slope at an elevation of 617.0 feet above MSL.

A cutoff trench, with side slopes of 1V to 1H and a base width of 20 feet, was excavated parallel to the dam axis. According to Mr. Elmer Glosier, one of the owners of the dam, the trench was excavated to the rock foundation.

There are two spillways for the Lost Lake Reservoir. The principal spillway is located 100 feet to the east from the left abutment. The spillway is a 33-inch inside diameter reinforced concrete drop inlet structure which connects to a 24-inch inside diameter reinforced concrete pipe which passes under the embankment. According to the drawings,

the 24-inch reinforced concrete pipe is 148 feet long with a maximum slope of 8.4%. A 28-inch tall by 11-foot long concrete wall was constructed across the center of the drop inlet as an anti-vortex device. The concrete wall was constructed from the outside edge of the drop inlet across the opening of the drop inlet and into the embankment. A metal framework structure over the drop inlet was provided as a trashrack.

The emergency spillway is cut into the left abutment. The spillway is a grass-lined open channel with side slopes of 1V to 4H and a bottom width of 90 feet.

According to the plans, a 1-1/2-inch diameter galvanized steel pipe was provided as a livestock water supply. The intake is a low-water intake. The discharge control is a gate valve located 40 feet from the downstream end of the pipe. The gate valve is housed in a clay pipe.

A 6-inch diameter perforated helical metal pipe was provided in the embankment as an interceptor drain. The outlet of the drain is located 218 feet to the right of the centerline of the outlet to the drop inlet. According to the drawings, the drain was placed parallel to the crest extending 61 feet to the right of the drain outlet and 233 feet to the left of the drain outlet.

b. Location

The Lost Lake Dam is located on the headwaters of Lost Creek, Lincoln County, Missouri. The nearest downstream community is Elsberry, population 1,398, which is approximately 4.5 miles downstream. The dam and reservoir are shown on the Luckett Ridge Quadrangle Sheet (7.5 minute series) in Section 7, Township 50 North, Range 2 East.

c. Size Classification

According to the "Recommended Guidelines for Safety Inspection of Dams", by the U.S. Department of the Army, Office of the Chief Engineer, the dam is classified in the dam size category as being "Small" since its storage is less than 1,000 acre-feet. The dam is also classified as "Small" in dam height category because its height is less than 40 feet. The overall size classification is, accordingly, "Small" in size.

d. Hazard Classification

The dam has been classified as having "High" hazard potential in the National Inventory of Dams, on the basis that in the event of failure of the dam or its appurtenances, excessive damage could occur to downstream property, together with the possibility of the loss of life. Our findings concur with the classification. Within the estimated damage zone, which extends approximately 3.5 miles downstream of the dam, are three dwellings, two buildings, and a quarry and plant. The town of Elsberry is approximately 4.5 miles downstream.

e. Ownership

The Lost Lake Dam is owned privately by the Glosier Brothers. The mailing address is The Glosier Brothers, c/o Elmer Glosier, #5 Briarwood Lane, St. Charles, Missouri, 63301.

f. Purpose of Dam

The purpose of the dam is for flood control.

g. Design and Construction History

The available records show that the dam was designed in April 1955, by the Department of Agriculture, Soil Conservation Service as part of the Lost Creek Watershed Protection Project. The design engineer's name, as listed on the plans, is Mr. Browning. The dam was built in 1955-56 by Ray & Briscoe, a local construction company.

h. Normal Operational Procedures

Normal procedure is to allow the flood control reservoir to remain as full as possible with the water level being controlled by rainfall, runoff, evaporation and the elevation of the spillway crest.

1.3

Pertinent Data*

a.	Drainage Area (square miles):	1.06
b.	Discharge at Damsite	
	Estimated experienced maximum flood (cfs):	60
	Estimated ungated spillway capacity at maximum pool elevation (cfs):	5495
c.	Elevation (Feet above MSL)	
	Top of dam:	637
	Spillway crest:	
	Principal Spillway	617
	Emergency Spillway	630.75
	Normal Pool	617
	Maximum Pool(PMF):	637.69
d.	Reservoir	
	Length of maximum pool (Feet):	2800
e.	Storage (Acre-Feet)	
	Top of dam:	669
	Spillway crest:	
	Principal Spillway	72
	Emergency Spillway	414
	Normal Pool:	72
	Maximum Pool (PMF):	702
f.	Reservoir Surface (Acres)	
	Top of dam:	46
	Spillway crest:	
	Principal Spillway	15
	Emergency Spillway	36

Normal Pool:	15
Maximum Pool(PMF):	46.5
g. Dam	
Type:	Earthfill
Length:	788 feet
Structural Height:	33.5 feet
Hydraulic Height:	33.5 feet
Top width:	14.0 feet
Side slopes:	
Downstream	1V to 2H
Upstream	1V to 3H
Zoning:	Homogeneous
Impervious core:	NA
Cutoff:	Cutoff trench with 20-foot bottom width and 1V to 1H side slopes.
Grout curtain:	Unknown
h. Diversion and Regulating Tunnel	
None	
i. Spillway	
Type:	
Principal Spillway	Drop Inlet, Uncontrolled
Emergency Spillway	Open Channel, Uncontrolled
Length of weir:	
Principal Spillway	12.3 feet (Drop inlet spillway)
Emergency Spillway	90 feet
Crest Elevation (feet above MSL):	
Principal Spillway	617.0
Emergency Spillway	630.75

j. Regulating Outlets

Type:	1 1/2-inch diameter galvanized steel pipe livestock water supply
Length:	204 feet (According to Plans)
Closure:	Gate valve at downstream end
Maximum Capacity:	Unknown

- * The term "maximum pool", as used in this section, refers to pool level at top of dam elevation unless otherwise specified.

SECTION 2 : ENGINEERING DATA

2.1 Design

Design drawings are available from the Department of Agriculture, Soil Conservation Service, and are included as part of this report. The drawings were prepared in April of 1955 by the Department of Agriculture, Soil Conservation Service. No specifications, engineering computations or soil data for this project were available. No "As-Built" drawings were available during the preparation of this report.

2.2 Construction

No data is available concerning the construction of the dam and appurtenant structures, other than the construction history given in Section 1.2g.

2.3 Operation

No operation records are available for the Lost Lake Dam.

Evaluation

a. Availability

The availability of engineering data is poor and consists only of the design drawings mentioned in Section 2.1, State Geological Maps and U.S.G.S. Quadrangle Sheets. "As-built" drawings, geologic and soil mechanics reports for this dam can be obtained from the Department of Agriculture, Soil Conservation Service. However, they were not available during the preparation of this report. No information on design hydrology, or hydraulic design was available, nor were seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams", which is considered a deficiency.

b. Adequacy

The conclusions presented in this report are based on field measurements, the available engineering data, past performance and present condition of the dam. The data available is inadequate to evaluate the hydraulic and hydrologic capabilities of the dam. In the absence of seepage and stability analyses no quantitative evaluation of the structural stability can be made.

c. Validity

Only a set of design drawings was available for review. From field measurements, the dam appears to have been constructed according to the available drawings, except for the discrepancies described in Section 1.2a. Lost Lake Dam was originally Flood Detention Structure No. 1 according to the design drawings provided by the Soil Conservation Service.

SECTION 3: VISUAL INSPECTION

3.1 Findings

a. General

A visual inspection of the Lost Lake Dam was made on June 15, 1979. The following persons were present during the inspection:

Name	Affiliation	D. disciplines
David J. Kerkes	Engineering Consultants, Inc.	Soils
Peter Howard	Engineering Consultants, Inc.	Geology
Mark R. Haynes	Engineering Consultants, Inc.	Civil, Structural and Mechanical
Kenneth L. Bullard	Engineering Consultants, Inc.	Hydraulics and Hydrology
Kevin Blume	Consoer, Townsend & Assoc., Ltd.	Civil and Structural
Elmer Glosier	Owner	
Robert Glosier	Owner	

Specific observations are discussed below.

b. Dam

The crest of the dam is well protected against surface erosion by a well maintained cover of grass. There was no evidence of significant settlement or cracking on the crest. No significant deviations in horizontal or vertical alignment were apparent. According to Mr. Robert Glosier, the water level has never been higher than 8 feet up the slope above the principal spillway. Therefore, the emergency spillway has not been used and the dam has not been overtopped.

The upstream slope had no evidence of riprap protection. Some minor erosion has occurred on the slope near the water surface due to wave action. According to Mr. Robert Glosier, the Glosier Brothers have tried to stop the erosion from doing further damage to the slope by planting canary reed grass along the shoreline. The slope appeared to be well maintained. No depressions or settlements were apparent on the slope.

The downstream slope of the embankment has a heavy grass cover. According to Mr. Elmer Glosier, a slide on the slope occurred shortly after construction. The slide area is located on the upper half of the slope and immediately to the right of the principal spillway outlet. The damaged area was approximately 20 to 25 feet wide and did not extend to the crest. The slide was shallow in depth. Some minor erosion was observed on the downstream embankment near the fence on the left abutment. No other depressions, bulges or settlements were apparent on the downstream slope. No seepage was apparent along the toe of the slope. Materials removed

immediately below the vegetation cover on the embankment appeared to be a clayey silt. The interceptor drain outlet was covered and the drain has not discharged to the best of Mr. Elmer Glosiers' knowledge.

According to the "Missouri General Soil Map and Soil Association Descriptions" published by the Soil Conservation Service, the materials in the general area of the dam are classified as a Lindley silt loam of the Central Mississippi Valley Wooded Slopes family. The Lindley silt may be susceptible to excessive erosion. If the Lindley silt was used in the embankment, the embankment may be susceptible to erosion and failure should overtopping result during a flood.

There are no signs of rodent activity in either the embankment or the abutments, but there is some muskrat activity in the reservoir area. According to Mr. Robert Glosier, the muskrats are trapped annually.

c. Project Geology

The dam is situated in the Dissect Till Plains Section of the Central Lowlands Province (Fenneman, N.M., "Physiography of Eastern United States", 1946). In the area of the dam site, however, much of the till has been removed by erosion. The entire area exhibits a karst topography with frequent sink holes.

The rocks in the area dip regionally to the northeast off the Ozark uplift to the south. Rocks ranging in age from Ordovician to Pennsylvanian occur in the general area.

At the dam site, limestones of the Plattin Formation (Ordivician) (Geologic Map of Missouri, 1979) occur. The rocks outcropping near the downstream toe consist of light gray, crystalline, dense limestone. The rock is massive and often forms escarpments of five feet or more. Higher stratigraphically, at about the elevation of the dam, a dense, gray sub-lithographic limestone crops out. No dip could be measured in the beds in the vicinity of the dam. The entire area exhibits a karst topography with frequent sink holes.

d. Appurtenant Structures

(1) Spillways

The concrete drop inlet structure is in good condition. No spalling or cracking of the concrete was observed. The trashrack was in good condition and unplugged. The concrete anti-vortex device was also in good condition with no spalling or cracking of the concrete observed. Leakage in the 24-inch diameter concrete pipe was detected. The leakage appeared to be in the drop inlet structure because the upstream invert of the structure had standing water in it. A flow of less than 1 gpm was observed at the outlet of the conduit. No spalling or cracking of the concrete in the conduit was observed. The joints of the exposed portion of the conduit showed no sign of misalignment. The area around the intake to the principal spillway was overgrown with tall grass.

The emergency spillway was heavily covered with grass. The emergency spillway channel was not obstructed. No indication of instability in the slopes was apparent. However, the slope on the left side of the spillway is being eroded by grazing cattle.

(2) Outlet Works

No regulated outlet works were provided for the Lost Lake Dam except for a livestock watering system. The inlet and outlet of the system were not located. The gate valve clay pipe housing was located at the toe of the downstream slope approximately 200 feet to the right of the principal spillway outlet. The gate valve was accessible, however, according to Mr. Elmer Glosier, the system is no longer used.

e. Reservoir Area

The water surface elevation was 616.8 feet above MSL on the day of the inspection.

The reservoir rim is gently sloped and no indication of instability or severe erosion were readily apparent. The slopes above the reservoir are heavily grassed. A few houses are built around the reservoir rim.

f. Downstream Channel

The downstream channel of the principal spillway is a well-defined, narrow rock lined channel. The channel was not obstructed. The channel extends for a few hundred feet downstream and then flows into an open grassy pasture.

The downstream channel of the emergency spillway is a well-defined, grass lined channel which was not obstructed. The channel is approximately 220 feet long and then it flows into an open grassy pasture.

3.2 Evaluation

The visual inspection did not reveal any items which are sufficiently significant to indicate a need for immediate remedial action.

The following conditions were observed which could affect the safety of the dam or which will require maintenance within a reasonable period of time.

1. Minor erosion of the upstream slope near the water surface.
2. Eroded area on the embankment near the left abutment.
3. The tall grass around the intake to the principal spillway.

SECTION 4: OPERATIONAL PROCEDURES

4.1 Procedures

Lost Lake Dam was built to impound water for flood control as part of the Lost Creek Watershed Protection Project. The only operating facility is a livestock watering system which, according to Mr. Elmer Glosier, is no longer used. The water level is controlled by rainfall, runoff, evaporation and the spillway crest elevation.

4.2 Maintenance of Dam

The dam is maintained by the owners, the Glosier Brothers. The maintenance of the dam appears to be adequate. The upstream slope and the crest are mowed semiannually, however, due to the steepness of the downstream slope, the downstream slope is not mowed. Trees and bushes are kept off of the embankment. There have not been any major repairs done to the dam itself since its original construction.

4.3 Maintenance of Operating Facilities

The only operational facility at the damsite is the livestock watering system. The livestock watering system is no longer used.

4.4 Description of Any Warning System in Effect

The inspection team was not informed of any warning system in effect for this dam.

4.5 Evaluation

The maintenance for Lost Lake Dam seems to be adequate, however, the remedial measures as described in Section 7 should be undertaken.

SECTION 5: HYDRAULIC/HYDROLOGIC

5.1 Evaluation of Features

a. Design

The watershed area of the Lost Lake Dam upstream from the dam axis consists of approximately 676 acres. Most of the watershed area is wooded and covered with grass. Land gradients in the higher regions of the watershed average roughly 12 percent, and in the lower areas surrounding the reservoir average about 6 percent. The Lost Lake Dam is located on the Lost Creek about 1.3 miles downstream of the extreme headwaters of the creek. At its longest arm the watershed is approximately 1.3 miles long. A drainage map showing the watershed area is presented as Plate 1 in Appendix B.

Evaluation of the hydraulic and hydrologic features of Lost Lake Dam was based on criteria set forth in the Corps of Engineers' "Recommended Guidelines for Safety Inspection of Dams", and additional guidance provided by the St. Louis District of the Corps of Engineers. The Probable Maximum Flood (PMF) was calculated from the Probable Maximum Precipitation (PMP) using the methods outlined in the U.S. Weather Bureau Publication, Hydrometeorological Report No. 33. The probable maximum storm duration was set at 24 hours, and storm rainfall distribution was based on criteria given in EM 1110-2-1411 (Standard Project Storm). The SCS method was used for deriving the unit hydrograph, utilizing the Corps of Engineers' computer program HEC-1 (Dam Safety Version). The unit

hydrograph parameters are presented in Appendix B. The SCS method was also used for determining loss rate. The hydrologic soil group of the watershed was determined by use of published soil maps. The hydrologic soil group of the watershed and the SCS curve number are also presented in Appendix B. The curve number, unit hydrograph parameters, PMP index rainfall and the percentages for various durations were directly input to the HEC-1 (Dam Safety Version) computer program to obtain the PMF hydrograph. The computed peak discharge of the PMF and one-half of the PMF are 10,568 cfs and 5,284 cfs, respectively.

Both the PMF and one-half of the PMF inflow hydrographs were routed through the reservoir by the Modified Pulse Method also utilizing the HEC-1 (Dam Safety Version) computer program. The reservoir level was assumed at the principal spillway crest level at the start of the routing computation. The peak outflow discharges for the PMF and one-half of the PMF are 7,620 and 1,993 cfs, respectively. Only the PMF, when routed through the reservoir, results in overtopping of the dam.

The stage-outflow relation for the spillway was prepared from field notes and sketches prepared during the field inspection and limited design drawings. The reservoir stage-capacity data was based on the U.S.G.S. Luckett Ridge, Missouri Quadrangle topographic map (7.5 minute series). The spillway and overtop rating curve and the reservoir capacity curve are presented in Plates 2 & 3, respectively, in Appendix B.

From the standpoint of dam safety, the hydrologic design of a dam aims at avoiding overtopping. Overtopping is especially dangerous for an earth dam because the downrush of waters over the crest can erode the dam embankment and release all the stored water suddenly into the downstream floodplain. The safe hydrologic design of a dam requires a spillway crest height that can handle a very large and exceedingly rare flood without overtopping.

The Corps of Engineers designs its dams to safely pass the Probable Maximum Flood that is estimated could be generated from the upstream watershed. This is the generally accepted criterion for major dams throughout the world, and is the standard for dam safety where overtopping would pose any threat to human life. According to the Corps' criteria, the hydrologic requirement for safety for this dam is the capability to pass from one-half of the Probable Maximum Flood to the Probable Maximum Flood without overtopping.

b. Experience Data

No records of reservoir stage or spillway discharge are maintained for this site. Nevertheless, according to the owners, the maximum reservoir level was about 8 feet up the slope above the crest of the principal spillway.

c. Visual Observations

Observations made of the spillway during the visual inspecton are discussed in Section 3.1c(1) and evaluated in Section 3.2.

d. Overtopping Potential

As indicated in Section 5.1-a, only the Probable Maximum Flood, when routed through the reservoir, results in overtopping of the dam. The PMF overtopped the dam crest by 0.69 feet. The spillway/reservoir system can accomodate one-half of the PMF with a freeboard of 2.88 feet. The total duration of embankment overflow is 0.42 hours during the PMF. The spillway and the reservoir of Lost Lake Dam are capable of accomodating a flood equal to approximately 81 percent of the PMF just before overtopping the dam. The 100-year flood is equal to approximately 15 percent of the PMF. The spillway/reservoir system will accomodate the 100-year flood without overtopping the dam.

The failure of the dam could cause extensive damage to the property downstream of the dam and possible loss of life. Within 3.1 miles downstream of the dam are three dwellings, two buildings and a quarry and plant. The town of Elsberry lies about 4.5 miles downstream.

SECTION 6: STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability

a. Visual Observations

There were no signs of settlement or distress observed on the embankment or foundation during the visual inspection. The slide area on the downstream slope appears to be stable and is not serious enough to indicate an unsafe condition. According to Mr. Elmer Glosier, a professional engineer viewed the slide area shortly after the slide occurred. The professional engineer determined that the damaged area had no significant effect on the overall stability of the slope and that the slope had stabilized. According to Mr. Elmer Glosier, no other slides have occurred on the slope.

The minor erosion of the upstream slope due to wave action was not serious enough to constitute an unsafe condition. According to Mr. Robert Glosier, canary reed grass has been planted along the shoreline to prevent further erosion of the slope. Nevertheless, the erosion should be monitored and if the erosion continues, steps should be taken to control the problem.

Neither the principal spillway drop inlet nor the 24-inch reinforced concrete discharge pipe exhibited any evidence of misalignment or structural instability. The seepage observed at the outlet of the pipe is felt to have no significant effect on the structural stability of the dam. Nevertheless, the seepage should be monitored and any changes

in quantity or color should be reported and investigated.

The eroded area on the embankment near the left abutment was not serious enough to constitute an unsafe condition. The erosion of the left side slope of the emergency spillway does not constitute an unsafe condition because if the erosion is allowed to continue it will just erode into the natural ground. This condition will not decrease the emergency spillway discharge capacity or affect the stability of the side slopes of the spillway. Also, this condition will not cause any instability in the dam embankment.

b. Design and Construction Data

No design computations were uncovered during the report preparation phase. Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" was not available. No embankment or foundation soil parameters are available for carrying out a conventional stability analysis on the embankment. No construction data or specifications relating to the degree of embankment compaction are available for use in a stability analysis.

c. Operating Records

No operating records are available relating to the stability of the dam or appurtenant structures. The water level on the day of inspection was near the crest of the principal spillway, and it is assumed that the reservoir remains close to full at all times. No regulated outlet works exists at the damsite except for the livestock watering system. The system is no longer used.

d. Post Construction Changes

No post construction changes exist which will affect the structural stability of the dam.

e. Seismic Stability

The dam is located in seismic Zone 1, as defined in "Recommended Guidelines for Safety Inspection of Dams" as prepared by the Corps of Engineers, and therefore, does not require a seismic stability analysis.

SECTION 7: ASSESSMENT/REMEDIAL MEASURES

7.1 Dam Assessment

The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

It should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team.

It is also important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that an unsafe condition could be detected.

a. Safety

The spillway capacity of the Lost Lake Dam was found to be "Inadequate". The spillway/reservoir system will accomodate 81 percent of the PMF without overtopping the dam. The spillway and the reservoir will accomodate the 100-year flood without overtopping the dam.

The dam embankment appears to be in satisfactory structural condition. The minor erosion due to wave action on the upstream embankment slope is not serious at this time, however, the condition should be monitored and repaired as required.

The slide area on the downstream embankment slope has stabilized and was determined by a professional engineer to pose no danger to the stability of the downstream slope. No other signs of distress were observed in the embankment or in the foundation, nor was seepage observed at any location. No seepage and stability analyses were available for review.

The tall grass around the intake to the principal spillway should be cleared and not allowed to grow back. This condition poses an obstacle to the normal operation of the principal spillway. The seepage through the conduit of the principal spillway does not jeopardize the safety of the embankment in its present condition, but it should be monitored for any changes in quantity and color.

The erosion of the left side slope of the emergency spillway does not jeopardize the safety of the embankment in its present location. The erosion of the embankment near the left abutment does not pose any danger to the safety of the embankment in its present condition, but if allowed to continue to erode the embankment it could jeopardize the safety of the embankment.

The muskrat activity in the reservoir area poses no danger to the embankment, but they should be watched and not allowed to burrow into the embankment.

The Platten Formation is relatively competent and is a suitable foundation for the dam. While the possibility exists that leakage through solution channels could occur in such a limestone formation, it is evident that none occurs at this site at this time or that they were sufficiently blanketed during construction.

b. Adequacy of Information

The conclusions presented in this report are based on field measurements, the available engineering data, past performance and present condition of the dam. Information on the design hydrology, hydraulic design, and the operation and maintenance of the dam as well as seepage and stability analyses were not available. To supplement available data and allow for a more definite evaluation of the dam, it is recommended that the following programs be initiated:

1. Periodic inspection of the dam by a professional engineer experienced in the design and construction of earthen dams should be made and this inspection report made a matter of record.
2. Set up a maintenance schedule and log all visits to the dam for operation, repairs and maintenance.
3. Perform seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams".

c. Urgency

The remedial measures recommended in paragraph 7.2 should be accomplished within a reasonable period of time.

d. Necessity for Phase II Inspection

Based on results of the Phase I inspection, a Phase II inspection is not felt to be necessary.

7.2 Remedial Measures

Alternatives:

1. Spillway capacity and/or height of the dam should be increased to accomodate the PMF without overtopping the dam. The overtopping depth during the occurence of the PMF, stated elsewhere in the report is not the required or recommended increase in height of the the dam.

O & M Procedures:

1. The following corrective measures should be undertaken within a reasonable period of time.

- (a) Remove tall grass from around intake to the principal spillway and keep the grass from growing back.
- (b) Repair eroded area on the embankment near the crest at the left abutment and protect the area from further damage.

(c) Seepage and stability analyses should be performed by a professional engineer experienced in the design and construction of dams.

2. The following conditions should be monitored.

(a) Monitor erosion due to wave action on upstream slope, and if the erosion continues, other protective measures should be employed to protect the slope from further damage.

(b) Monitor the seepage through the outlet conduit for changes in quantity or color and report any change.

3. The owner should initiate the following programs:

(a) Periodic inspection of the dam by a professional engineer experienced in the design and construction of earthen dams.

(b) Set up a maintenance schedule and log all visits to the dam for operation, repairs and maintenance.

PLATES

1

SCALE

LOCATION MAP-LOST LAKE DAM

SCALE
1" = 200' (HORIZONTAL)
VERTICAL (NOT TO SCALE)

LOST LAKE DAM (MO. 10212)
PLAN & ELEVATION

U. S. DEPARTMENT OF AGRICULTURE
SOIL CONSERVATION SERVICE

DETAIL PLANS FOR
LOST CREEK WATERSHED PROTECTION PROJECT

THE SOIL SURVEY OF LINCOLN COUNTY, MISSOURI.

PART I OF
MINOR WATERSHED "E"

3

U. S. DEPARTMENT OF AGRICULTURE
SOIL CONSERVATION SERVICE

DETAIL PLANS FOR
ST CREEK WATERSHED PROTECTION PROJECT

THE SOIL CONSERVATION DISTRICT OF LINCOLN COUNTY, MISSOURI.

PART I OF
MINOR WATERSHED "E"

2

4

WORK LOCATION MAP
MARCH WATERSHED "E" PART I
1/2 MILE
1/4 MILE
1 MILE
U.S. DEPARTMENT OF AGRICULTURE
SOIL CONSERVATION SERVICE

Map number: 111-2-62370-2

2

5

	Soil Type	Using either the description number or number or symbol representing the soil type
2	Peat	2
3	S. loam	3
4	Fine clay loam	4
5	Sandy loam	5
6	Clay loam	6
7	Sandy clay	7
8	Clay	8
9	Sand	9
10	Coarse gravel	10
11	Cobble gravel	11
12	Silt and shale	12
13	Coal seam	13
14	Sandstone	14
15	Limestone	15
16	Glac. drift (Impenetrable)	16
17	Glac. drift (Penetrable)	17
	G.W. + Ground Water	

~~BOYS~~ making clowns or girls' bodies with legs or
~~etc.~~

~~BOY'S~~ related primarily to the more locker room
etc. may, may be shown in the class.

GENO

Note: All Points Measured
By Survey

1940 Excavation
Ground Surface
Top of Ground
Bottom of Ground
1940 Excavation
Ground Surface
Top of Ground
Bottom of Ground
1940 Excavation
Ground Surface
Top of Ground
Bottom of Ground

1940 Excavation
Ground Surface
Top of Ground
Bottom of Ground

1940 Excavation
Ground Surface
Top of Ground
Bottom of Ground

1940 Excavation
Ground Surface
Top of Ground
Bottom of Ground

1940 Excavation
Ground Surface
Top of Ground
Bottom of Ground

1940 Excavation
Ground Surface
Top of Ground
Bottom of Ground

1940 Excavation
Ground Surface
Top of Ground
Bottom of Ground

1940 Excavation
Ground Surface
Top of Ground
Bottom of Ground

1940 Excavation
Ground Surface
Top of Ground
Bottom of Ground

1940 Excavation
Ground Surface
Top of Ground
Bottom of Ground

1940 Excavation
Ground Surface
Top of Ground
Bottom of Ground

1940 Excavation
Ground Surface

Ave Depth

6 ft Bottom

5 ft Bottom

4 ft Bottom

3 ft Bottom

Ave Depth

6 ft Bottom

5 ft Bottom

4 ft Bottom

3 ft Bottom

MAP OF SCAFFOLD
REF ID: A6210

Scale

Scale

MAP OF SCAFFOLD

MAP OF TUESDAY PLACE PROPERTY

Soil Test Sample No.

FLOOD DETENTION STRUCTURE NO 1	
Head Subsurface Explorations	
U.S. DEPARTMENT OF AGRICULTURE	
SOIL CONSERVATION SERVICE	
Location	Creek Watershed Information
Address	State, County, Zip Code
Landowner	Land Use
Dimensions	Soil Type
Permit No. (if any)	Date
	3-843720-4

SEARCHED	INDEXED
SERIALIZED	FILED
APR 12 1968	
FBI - LOS ANGELES	

12-18330-3
 Author, Searle Co.
 Soil Conservation Service
 Period 1960
 12-18330-3
 CEDAR CREEK CENTER 12

PLAN
GENERAL LAYOUT

1. Site selection - 10 acre drainage
 area, 100' elevation, 100' slope
 2. Soil conservation measures
 3. Land leveling
 4. Irrigation system
 5. Water storage

IRRIGATION SYSTEM

ANTI SEEP COLLAR

ELEM OF MATERIAL	
GRAN	1
2	3
3	4
4	5
5	6
6	7
7	8
8	9
9	10
10	11
11	12
12	13
13	14
14	15
15	16
16	17
17	18
18	19
19	20
20	21
21	22
22	23
23	24
24	25
25	26
26	27
27	28
28	29
29	30
30	31
31	32
32	33
33	34
34	35
35	36
36	37
37	38
38	39
39	40
40	41
41	42
42	43
43	44
44	45
45	46
46	47
47	48
48	49
49	50
50	51
51	52
52	53
53	54
54	55
55	56
56	57
57	58
58	59
59	60
60	61
61	62
62	63
63	64
64	65
65	66
66	67
67	68
68	69
69	70
70	71
71	72
72	73
73	74
74	75
75	76
76	77
77	78
78	79
79	80
80	81
81	82
82	83
83	84
84	85
85	86
86	87
87	88
88	89
89	90
90	91
91	92
92	93
93	94
94	95
95	96
96	97
97	98
98	99
99	100
100	101
101	102
102	103
103	104
104	105
105	106
106	107
107	108
108	109
109	110
110	111
111	112
112	113
113	114
114	115
115	116
116	117
117	118
118	119
119	120
120	121
121	122
122	123
123	124
124	125
125	126
126	127
127	128
128	129
129	130
130	131
131	132
132	133
133	134
134	135
135	136
136	137
137	138
138	139
139	140
140	141
141	142
142	143
143	144
144	145
145	146
146	147
147	148
148	149
149	150
150	151
151	152
152	153
153	154
154	155
155	156
156	157
157	158
158	159
159	160
160	161
161	162
162	163
163	164
164	165
165	166
166	167
167	168
168	169
169	170
170	171
171	172
172	173
173	174
174	175
175	176
176	177
177	178
178	179
179	180
180	181
181	182
182	183
183	184
184	185
185	186
186	187
187	188
188	189
189	190
190	191
191	192
192	193
193	194
194	195
195	196
196	197
197	198
198	199
199	200
200	201
201	202
202	203
203	204
204	205
205	206
206	207
207	208
208	209
209	210
210	211
211	212
212	213
213	214
214	215
215	216
216	217
217	218
218	219
219	220
220	221
221	222
222	223
223	224
224	225
225	226
226	227
227	228
228	229
229	230
230	231
231	232
232	233
233	234
234	235
235	236
236	237
237	238
238	239
239	240
240	241
241	242
242	243
243	244
244	245
245	246
246	247
247	248
248	249
249	250
250	251
251	252
252	253
253	254
254	255
255	256
256	257
257	258
258	259
259	260
260	261
261	262
262	263
263	264
264	265
265	266
266	267
267	268
268	269
269	270
270	271
271	272
272	273
273	274
274	275
275	276
276	277
277	278
278	279
279	280
280	281
281	282
282	283
283	284
284	285
285	286
286	287
287	288
288	289
289	290
290	291
291	292
292	293
293	294
294	295
295	296
296	297
297	298
298	299
299	300
300	301
301	302
302	303
303	304
304	305
305	306
306	307
307	308
308	309
309	310
310	311
311	312
312	313
313	314
314	315
315	316
316	317
317	318
318	319
319	320
320	321
321	322
322	323
323	324
324	325
325	326
326	327
327	328
328	329
329	330
330	331
331	332
332	333
333	334
334	335
335	336
336	337
337	338
338	339
339	340
340	341
341	342
342	343
343	344
344	345
345	346
346	347
347	348
348	349
349	350
350	351
351	352
352	353
353	354
354	355
355	356
356	357
357	358
358	359
359	360
360	361
361	362
362	363
363	364
364	365
365	366
366	367
367	368
368	369
369	370
370	371
371	372
372	373
373	374
374	375
375	376
376	377
377	378
378	379
379	380
380	381
381	382
382	383
383	384
384	385
385	386
386	387
387	388
388	389
389	390
390	391
391	392
392	393
393	394
394	395
395	396
396	397
397	398
398	399
399	400
400	401
401	402
402	403
403	404
404	405
405	406
406	407
407	408
408	409
409	410
410	411
411	412
412	413
413	414
414	415
415	416
416	417
417	418
418	419
419	420
420	421
421	422
422	423
423	424
424	425
425	426
426	427
427	428
428	429
429	430
430	431
431	432
432	433
433	434
434	435
435	436
436	437
437	438
438	439
439	440
440	441
441	442
442	443
443	444
444	445
445	446
446	447
447	448
448	449
449	450
450	451
451	452
452	453
453	454
454	455
455	456
456	457
457	458
458	459
459	460
460	461
461	462
462	463
463	464
464	465
465	466
466	467
467	468
468	469
469	470
470	471
471	472
472	473
473	474
474	475
475	476
476	477
477	478
478	479
479	480
480	481
481	482
482	483
483	484
484	485
485	486
486	487
487	488
488	489
489	490
490	491
491	492
492	493
493	494
494	495
495	496
496	497
497	498
498	499
499	500
500	501
501	502
502	503
503	504
504	505
505	506
506	507
507	508
508	509
509	510
510	511
511	512
512	513
513	514
514	515
515	516
516	517
517	518
518	519
519	520
520	521
521	522
522	523
523	524
524	525
525	526
526	527
527	528
528	529
529	530
530	531
531	532
532	533
533	534
534	535
535	536
536	537
537	538
538	539
539	540
540	541
541	542
542	543
543	544
544	545
545	546
546	547
547	

9

PLAN

WORKING SCHEME OF
THE ANC PFTP 1985

~~ANT-SEEP COLLAR DATA~~

STOCK WATERING SYSTEM DETAILS

CONCRETE

Anti-
sense Cognate
2 Octo Base → 0.06 Gc 78

2025 RELEASE UNDER E.O. 14176

R/C D/P C/W	TENSILE FORCES	STEEL QUANTITIES			CONCRETE QUANTITIES		
		Bottom	Total	Bottom	Fractional	Bottom	Support
2	1000	100	100	100	100	100	100
3	1000	100	100	100	100	100	100
4	1000	100	100	100	100	100	100
5	1000	100	100	100	100	100	100

SECTION B-B

SECTION A-A

DETAILS FOR SECTION B-B

DETAILS FOR SECTION A-A

DETAILS FOR SECTION B-B

Dear Guests at 81 To be used only when
shown on signs

PLAN

SECTION A-A

drill holes 3" in dia. and 30' apart by shooting a "red" charge.

**STANDARD DETAILS FOR CANTILEVER
R/C PIPE OUTLET**

U.S. DEPARTMENT OF AGRICULTURE
SOIL CONSERVATION SERVICE

DETAILS OF EXPANSION JOINT AND TYPE II CRADLE

SECTION A-A

PREC

DETAILS OF EXPANSION JOINT AND TYPE III CRADLE

SECTION B-B

ELEVATION OF ANTI-SEEP COLLAR

SECTION ON C

Construction joints allowed
except under roads

STEEL SCHEDULE

11

JOINT AND TYPE II CRADLE

SECTION A-A

QUANTITIES

ANTI-SEEP COLLAR WITH TYPE II CRADLE
P70-00 Lower Foot w/ Snow Cap 1030 10x10
Corduroy 100% Polyester \$ 11.662 24.151

ANTI-SEEP COLLAR WITH TYPE III CRADLE
For 30' Concreted Wall 10' High
Concrete Volume 2,264 cu yds

TYPE II 'CRADLE' (part number A)
Concrete beams 011203 Cu Yds

TYPE III CRADLE (per Amor 114)
#79 Upper foot 96 Standard 70 160
Concrete Number 010135 On 10/10

EXPANSION JOINT (per Exp. Joint)

SECTION ON E

DETAILS OF TYPE II CRADLE

DETAILS OF TYPE III CRADLE
SECTION D-D

**REINFORCED CONCRETE DROP INLET 24" P.D.
DETAILS OF TYPE E.E. CRADLE, ANTI-SEEP COLLAR**

U. S. DEPARTMENT OF AGRICULTURE
SOIL CONSERVATION SERVICE

SECTION ON CENTERLINE

Gauge rail is bolted to structure
by 1/2" bolts through holes 3/8" dia.
Unit 1 is only section bolted to structure

PLAN

REAR ELEVATION

FRONT ELEVATION

121

QUANTITIES

STEEL	%	45.5	100	68	76	mm.
72	16.0	-	-	6.2	-	-
73	22.5	-	-	13.7	-	-
74	21.5	-	-	11.1	-	-

Section 100-100-25-000

BILL OF MATERIAL FOR GUARD RAIL

SAR TYPE DETAILS

straight

119-19

Construction Notes
Metal forms are available at the St. Charles County Soil & Water District Office located at St. Charles, Missouri, and can be rented for a nominal fee.

MODIFICATION NO. 1 28APRIL1953

**CONCRETE CIRCULAR RISER
FOR 24" DIA. R/C PIPE**

U. S. DEPARTMENT OF AGRICULTURE
SOIL CONSERVATION SERVICE

INTERVIEWER	DATE	LOCATION	NAME	ADDRESS
John C. Gandy	1965	Atlanta, GA	John C. Gandy	1000 Peachtree Street, N.E.
CONTINUATION OF STATEMENT			TELEGRAM	ATLANTA, GA
RECORDED	TRANSMITTED	1965	RECORDED	1965

Station - 36000

Approximate 10' depth from water in pits 9-37-27

590

Crust surface & top

Station - 36100

Crust line A

Box A - 36000 D
1. 10' depth
2. crust surface & top
3. surface
4. 10' depth from water in pits
5. crust surface & top
6. surface

Station - 36100

approximate 10' depth from water in pits

Section 2622

Section 2622

paraphrase to cover free soil or fine sand

U.S. DEPARTMENT OF AGRICULTURE
A DEPARTMENT OF AGRICULTURE
SOIL CONSERVATION SERVICE

14

QUARTERNARY — Qal - ALLUVIAN

SILURIAN — S - SILURIAN UNDIVIDED

PENNSYLVANIAN — Pcc - CHEROKEE GROUP

MISSISSIPPAN {
Mm - MERAMECIAN SERIES
Mo - OSAGEAN SERIES
Mk - KINDERHOOKIAN SERIES,
CHOTEAU GROUP

DEVONIAN — DEVONIAN UNDIVIDED

ORDOVICIAN {
Omk { NOIX LIMESTONE
MAQUOKETA SHALE
CAPE LIMESTONE
KIMMSWICK FORMATION
Odp { DECORAH FORMATION
PLATTIN FORMATION
Osp - ST. PETER'S
SANDSTONE

X - LOCATION OF DAM , MO. 10212

REFERENCE :

GEOLOGIC MAP OF MISSOURI ,
MISSOURI GEOLOGIC SURVEY ,
a) 1961 ; b) 1979

GEOLOGIC MAP
OF
LINCOLN COUNTY
AND
ADJACENT AREA

APPENDIX A

PHOTOGRAPHS TAKEN DURING INSPECTION

200
0
200
FEET

PHOTO INDEX
FOR
LOST LAKE DAM

Lost Lake Dam

- Photo 1.** - View of the crest of the embankment.
- Photo 2.** - View of the downstream embankment slope.
- Photo 3.** - View of the upstream embankment slope.
- Photo 4.** - View of the intake to drop inlet structure.
- Photo 5.** - View of the outlet of the 24-inch diameter concrete conduit.
- Photo 6.** - View of the discharge channel of the 24-inch diameter concrete conduit.
- Photo 7.** - View of the emergency spillway on the left abutment.
- Photo 8.** - View of the emergency spillway on the left abutment.
- Photo 9.** - View of the reservoir rim.

Lost Lake Dam

Photo 1

Photo 2

Lost Lake Dam

Photo 3

Photo 4

Lost Lake Dam

Photo 5

Photo 6

Lost Lake Dam

Photo 7

Photo 8

Lost Lake Dam

Photo 9

APPENDIX B
HYDROLOGIC COMPUTATIONS

PLATE 1, APPENDIX B

SCALE 1:24000

CONTOUR INTERVAL 20 FEET
DATUM IS MEAN SEA LEVEL

DRAINAGE BOUNDARY -----

LOST LAKE DAM (MO 10212)
DRAINAGE BASIN

ECI-4

ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION ~ UTAH

SHEET NO. 1 OF

LOST LAKE DAM # 10212

JOB NO. - 3240

SPILLWAY AND OVERTOP RATING CURVE

BY DNZ BAN

BY DNYZ DATE 6/21/79
418 6-28-79

Y_A	A_A	T_A	$\frac{V_A}{V_{A0}}$	$\frac{V_A^2}{V_{A0}^2}$	$Q_A = A_A Y_A$	$Y_C + \frac{V_A^2}{V_{A0}^2}$	C_C	I_A	H_A	$Q_C = C_C I_A H_A^2$	$Q_T = Q_A + Q_C$
0	0	0	0	0	0	0	-	-	-	-	0
1	94	98	5.6	0.5	522.0	632.25	-	-	-	-	632.25
2	196	106	7.71	0.94	1511.2	633.7	-	-	-	-	1511.2
3	306	114	9.3	1.3	2842.6	635.1	-	-	-	-	2842.6
4	424	122	10.6	1.7	4481.8	636.5	-	-	-	-	4481.8
4.25	454.6	123.9	10.9	1.8	4937.2	636.8	-	-	-	-	4937.2
5	550	130	11.7	2.1	644.4	637.9	2.64	708	.9	1776.2	8191
6.25	718.8	140	12.8	2.6	9234.6	639.6	2.63	708	2.6	8688.4	17923.
5.5	616	134	12.4	2.3	7480.6	638.6	2.63	708	1.6	1194.3	11683

ECI-4 ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION - MISSOURI

SHEET NO. 2 OF

LOST LAKE DAM (10312)

JOB NO. 1340 - 001

PRINCIPAL SPILLWAY RATING CURVE

BY HAB DATE 6-21-82

$$H_f = (1 + K_f + f \frac{L}{D}) \frac{V^2}{2g}$$

ASSUME $C = 0.005$, $\frac{E}{D} = 0.0025 \Rightarrow f = 0.025$; Assume $K_f = 0.5$

ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION - MISSOURI

SHEET NO. 3 OF

LOST LAKE DAM (10212)

JOB NO. 1240-001

PRINCIPAL SPILLWAY DISCHARGE

BY MLD DATE 6-21-79

$$H_T = (1 + 0.5 + 0.025 \frac{148}{2}) \frac{V^2}{2g}$$

$$H_T = 3.35 \frac{V^2}{2g} \Rightarrow V = 438 \sqrt{H_T}$$

$$Q = A \cdot V = \pi \frac{D^2}{4} \times 438 \sqrt{H_T} = \pi \frac{1}{4} \times 4,79 \sqrt{H_T}$$

$$Q = 13.77 \sqrt{H_T}$$

$$H_T = 617.5 - 601.0 = 16.5$$

$$Q = 13.77 \sqrt{16.5} = 56 \text{ cfs.}$$

∴ AT ELEV. 612.5 WEIR FLOW CONTROLS

AND Q = 13 cfs.

$$\text{AT W.L. = 618.0 } H = 618.0 - 617.0 = 1.0$$

a) WEIR FLOW,

$$Q = CLH^{3/2} = 3.03 \times 12.33 \times 1^{3/2} = 37 \text{ cfs.}$$

b) PRESSURE FLOW

$$Q = 13.77 \sqrt{H_T}, H_T = 618 - 601 = 17$$

$$Q = 13.77 \sqrt{17} = 57 \text{ cfs.}$$

∴ AT ELEV 618, WEIR FLOW CONTROLS.

AND Q = 37 cfs.

ECI-4 ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION - MISSOURI SHEET NO. 4 OF _____
LOST LAKE DAM (10212) JOB NO. 1240-001
PRINCIPAL SPILLWAY DISCHARGE BY KLR DATE 6-31-79

AT. W.L. = 619 , $H = 619 - 601 = 18$

a) WEIR FLOW.

$$Q = C_1 H^{3/2} = 3.03 \times 12.33 \times 18^{3/2} = 106 \text{ cfs}$$

b) PRESSURE FLOW , $H_T = 619 - 601 = 18$

$$Q = 13.77 \sqrt{H_T} = 13.77 \sqrt{18} = 58 \text{ cfs}$$

∴ AT W.L. = 619 PRESSURE FLOW CONTROLS

AND $Q = 58 \text{ cfs}$.

ALSO FOR ALL ELEVATIONS ABOVE 619
PRESSURE FLOW WILL CONTROL
AND THE EQUATION

$$Q = 13.77 \sqrt{H_T} \text{ will be used}$$

ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION - MISSOURI

SHEET NO. 5 OF

LOST LAKE DAM (10212)

JOB NO. 1240-001-

SPILLWAY AND OVERTOP RATING CURVE

BY KLB DATE 6-31-79

COMBINED RATING CURVE TABULATION

RESERVOIR WATER SURFACE ELEV.	H. ft.	PRINCIPAL SPILLWAY DISCHARGE $Q = 13477 H^5$	EMERGENCY SPILLWAY DISCHARGE	DISCHARGE OVER TOP OF DAM	COMBINED DISCHARGE
617.0	16.0	-	-	-	0
617.5	16.5	13*	-	-	13
618.0	17.0	37*	-	-	37
619.0	18.0	58	-	-	58
623.0	22.0	65	-	-	65
628.0	27	72	-	-	72
630.75	29.75	75	-	-	75
632.25	31.25	77	522	-	599
633.7	32.7	79	1511	-	1590
635.1	34.1	80	2,843	-	2,923
636.5	35.5	82	4,484	-	4,564
636.8	35.8	82	4,937	-	5,019
637.9	36.9	84	6,914	1776	8,274
638.6	37.6	84	7,489	4194	11,767

* WEIR FLOW CONTROLS

PLATE 2, APPENDIX B

LOST LAKE DAM (MO. 10212)
SPILLWAY & OVERTOP RATING CURVE

ENGINEERING CONSULTANTS, INC.

Dam Safety Inspection - Missouri

SHEET NO. 1 OF

LOST LAKE Dam - #10212

JOB NO. 1240

Reservoir Area Capacity

BY M.R.H. DATE 5-30-
D.N.E.LOST LAKE DamReservoir Area Capacity

Elev. M.S.L. (ft.)	Reservoir Surface Area (Acres)	Incremental Volume (Ac.-ft.)	Total Volume (Ac.-ft.)	Remarks
605	0	0	0	Est. Streambed at Dam
614	11	33.0	33.	U.S.GS shown on Quadrangle.
617	15	38.8	72	PRINCIPAL SPILLWAY CREST EL. AS SHOWN ON PLANS
620	19	50.9	123	AREA MEASURED ON USGS MAP
630.75	36	290.8	414	EMERGENCY SPILLWAY CREST
637	46	255.6	669.1	TOP OF DAM
640	51	145.4	815	AREA MEASURED ON USGS MAP.

PLATE - 3, APPENDIX - B

LOST LAKE DAM (MO. 10212)
RESERVOIR CAPACITY CURVE

SD-A104 620

CONSOER TOWNSEND AND ASSOCIATES LTD ST LOUIS MO

F/0 13/13

NATIONAL DAM SAFETY PROGRAM. LOST LAKE DAM (MO10212), MISSISSIPPI--ETC(U)

DACW43-79-C-0075

SEP 79 W G SHIFRIN

NL

UNCLASSIFIED

20
A
DRAFT

END

DATE
FILED
40 → 81

DTIC

ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION - MISSOURI

SHEET NO. 1 OF

LOST LAKE DAM # MO 10212

JOB NO. 1240

PROBABLE MAXIMUM PRECIPITATION

BY DNZ

DATE

6/9/79

K10

6/22/79

LOST LAKE DAM # MO. 10212

DETERMINATION OF PMP

1. DETERMINE DRAINAGE AREA OF BASIN

$$D.A. = 676 \text{ ACRES}$$

2. DETERMINE PMP INDEX RAINFALL (200 SQ. MI + 24 HRS DUR.)

LOCATION OF CENTROID BASIN

LONG. = $90^{\circ}48'41''$ LAT. = $39^{\circ}06'30''$

$$\Rightarrow PMP = 24.7'' \text{ (From Fig. 1, HMR # 33)}$$

3. DETERMINE BASIN RAINFALL IN TERMS OF PERCENTAGE
OF PMP INDEX RAINFALL FOR VARIOUS DURATIONS:

LOCATION LONG. = $90^{\circ}48'41''$ LAT. = $39^{\circ}06'30''$ \Rightarrow ZONE 7

DURATION (HOURS)	PERCENT OF INDEX RAINFALL	TOTAL RAINFALL (IN.)	RAINFALL INCREMENTS (IN.)	DURATION OF INCREMENTS
6	100	24.7	24.7	6
12	120	29.6	4.9	6
24	130	32.1	2.5	12

DAM NO. 10212
LOCATION OF CENTROID
OF WATERSHED:
LAT. 39° 06' 30" LONG 90° 48' 41"

ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION - MISSOURI

SHEET NO. 1 OF

LOST LAKE DAM # MO. 10212.

JOB NO. 1240

UNIT HYDROGRAPH PARAMETERS

BY DNZ

DATE

6/11/79

MIG

6/22/79

1. DRAINAGE AREA, $A = 676 \text{ ACRES} = 1.06 \text{ SQ MI}$
2. LENGTH OF STREAM, $L = 1.33 \text{ MI} = 7022 \text{ FT}$
3. ELEVATION AT DRAINAGE DIVIDE ALONG LONGEST STREAM.
 $H_1 = 945 \text{ FT}$
4. RESERVOIR ELEVATION AT SPILLWAY CREST, $H_2 = 617 \text{ FT}$
5. DIFFERENCE IN ELEVATION, $\Delta H = 328 \text{ FT}$
6. AVERAGE SLOPE OF STREAM = $\frac{\Delta H}{L} = \frac{328}{7022} = 4.67\%$
7. TIME OF CONCENTRATION:
 - a) BY KIRPICH FORMULA:
 $T_c = \frac{0.385}{(\frac{\Delta H}{L})^{0.585}} = \frac{0.385}{(11.9 \times 1.33)^{0.585}} = 0.39 \text{ HR}$
 - b) BY VELOCITY ESTIMATE: AVG VEL = 4.0 FPS
 $T_c = \frac{L}{V} = \frac{7022}{4(60 \times 60)} = 0.49 \text{ HR}$
 USE $T_c = 0.39$
8. LAG TIME, $h_t = 0.6 \times 0.39 = 0.23$
9. UNIT DURATION, $D \leq \frac{L}{v} - h_t = \frac{7022}{4(60 \times 60)} - 0.23 = 0.077 < 0.083$
 USE $D = 0.083$
10. TIME TO PEAK, $T_p = \frac{D}{2} + h_t = \frac{0.083}{2} + 0.23 = 0.272$
11. PEAK DISCHARGE, $q_p = \frac{484 A}{T_p} = \frac{484 (1.06)}{0.272}$
 $q_p = 1826 \text{ CFS}$

ECI-4 ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION / MISSOURI

SHEET NO. 1 OF _____

LOST LAKE DAM (MO. 10212)

JOB NO. 1240-001

HYDROLOGIC SOIL GROUP & CURVE NUMBER

BY MAS DATE 7/11/78

LOST LAKE DAM (MO. 10212)

DETERMINATION OF HYDROLOGIC SOIL GROUP & SCS CURVE NUMBER

1. Watershed soils consist of group B and C soils. Soil group B seems to be predominant. Assume soil group B for the entire watershed.
2. Most of the watershed is wooded and covered with grass. Assume hydrologic condition of the watershed to be "Fair" for infiltration purpose

Thus CN = 60 for AMC-II & group B soil

⇒ CN = 78 for AMC-III & group B soil.

ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION - MISSOURI

SHEET NO. 1 OF

LOST LAKE DAM - (#10312)

JOB NO. 1240-001

100 YR FLOOD FROM REGRESSION EQUATION

BY KLB

v MAS

DATE 6-22-71

LOST LAKE DAM100 YR FLOOD FROM REGRESSION EQUATION.

REGRESSION EQUATION FOR 100-YR FLOOD

FOR MISSOURI:

$$Q_{100} = 85.1 A^{0.934} S^{-0.576}$$

WHERE

A = DRAINAGE AREA IN SQ. MI.

S = MAIN CHANNEL SLOPE FT/MI
(AUG. SLOPE BETWEEN 0.11 AND 0.36 L.)

FOR LOST LAKE DAM:

A = 1.06 SQ. MI.

S = 142 FT/MI.

$$Q_{100} = 85.1 (1.06)^{0.934(1.06)} (142)^{-0.576} \quad 0.934(1.06) \quad 142 \quad -0.576$$

$$Q_{100} = 1560 \text{ CFS.}$$

HEC1DB INPUT DATA

PREVIEW OF SEQUENCE OF STREAM NETWORK CALCULATIONS

RUNOFF HYDROGRAPH AT
ROUTE HYDROGRAPH TO
END OF NETWORK

INFLOW PMF AND ONE-HALF PMF HYDROGRAPHS

NO.DA	HR.MN	PERIOD	RAIN	EXCS	LOSS	END-OF-PERIOD FLOW			LOSS	EXCS	RAIN	EXCS	LOSS	COMP %	
						NO.DA	COMP O	HR.MN	PERIOD						
1.01	0.05	1	.01	0.00	.01	0	1.01	12.045	151	.01	.19	.02	1440.		
1.01	.15	2	.01	0.00	.01	0	1.01	12.40	152	.01	.19	.02	1478.		
1.01	.14	3	.01	0.00	.01	0	1.01	12.45	153	.01	.16	.02	1504.		
1.01	.25	4	.01	0.00	.01	0	1.01	12.50	154	.01	.19	.02	1522.		
1.01	.16	5	.01	0.00	.01	0	1.01	12.55	155	.01	.19	.02	1535.		
1.01	.30	6	.01	0.00	.01	0	1.01	12.60	156	.01	.19	.02	1545.		
1.01	.35	7	.01	0.00	.01	0	1.01	13.05	157	.01	.25	.01	1568.		
1.01	.40	8	.01	0.00	.01	0	1.01	13.10	158	.01	.25	.02	1624.		
1.01	.45	9	.01	0.00	.01	0	1.01	13.15	159	.01	.25	.02	1702.		
1.01	.50	10	.01	0.00	.01	0	1.01	13.20	160	.01	.25	.01	1773.		
1.01	.45	11	.01	0.00	.01	0	1.01	13.25	161	.01	.25	.01	1825.		
1.01	.35	12	.01	0.00	.01	0	1.01	13.30	162	.01	.25	.01	1857.		
1.01	.35	13	.01	0.00	.01	0	1.01	13.35	163	.01	.25	.01	1879.		
1.01	.35	14	.01	0.00	.01	0	1.01	13.40	164	.01	.25	.01	1894.		
1.01	.35	15	.01	0.00	.01	0	1.01	13.45	165	.01	.25	.01	1904.		
1.01	.20	16	.01	0.00	.01	0	1.01	13.50	166	.01	.25	.01	1912.		
1.01	.25	17	.01	0.00	.01	0	1.01	13.55	167	.01	.24	.01	1914.		
1.01	.15	18	.01	0.00	.01	0	1.01	14.00	168	.01	.14	.01	1924.		
1.01	.15	19	.01	0.00	.01	0	1.01	14.05	169	.01	.14	.01	1951.		
1.01	.15	20	.01	0.00	.01	0	1.01	14.10	170	.01	.14	.01	2031.		
1.01	.15	21	.01	0.00	.01	0	1.01	14.15	171	.01	.14	.01	2146.		
1.01	.15	22	.01	0.00	.01	0	1.01	14.20	172	.01	.14	.01	2251.		
1.01	.15	23	.01	0.00	.01	0	1.01	14.25	173	.01	.14	.01	2327.		
1.01	.15	24	.01	0.00	.01	0	1.01	14.30	174	.01	.14	.01	2371.		
1.01	.15	25	.01	0.00	.01	0	1.01	14.35	175	.01	.14	.01	2401.		
1.01	.15	26	.01	0.00	.01	0	1.01	14.40	176	.01	.14	.01	2420.		
1.01	.15	27	.01	0.00	.01	0	1.01	14.45	177	.01	.14	.01	2432.		
1.01	.15	28	.01	0.00	.01	0	1.01	14.50	178	.01	.14	.01	2441.		
1.01	.15	29	.01	0.00	.01	0	1.01	14.55	179	.01	.14	.01	2448.		
1.01	.15	30	.01	0.00	.01	0	1.01	14.60	180	.01	.14	.01	2453.		
1.01	.15	31	.01	0.00	.01	0	1.01	14.65	181	.01	.14	.01	2458.		
1.01	.15	32	.01	0.00	.01	0	1.01	14.70	182	.01	.14	.01	2463.		
1.01	.15	33	.01	0.00	.01	0	1.01	14.75	183	.01	.14	.01	2468.		
1.01	.15	34	.01	0.00	.01	0	1.01	14.80	184	.01	.14	.01	2473.		
1.01	.15	35	.01	0.00	.01	0	1.01	14.85	185	.01	.14	.01	2478.		
1.01	.15	36	.01	0.00	.01	0	1.01	14.90	186	.01	.14	.01	2483.		
1.01	.15	37	.01	0.00	.01	0	1.01	14.95	187	.01	.14	.01	2488.		
1.01	.15	38	.01	0.00	.01	0	1.01	15.00	188	.01	.14	.01	2493.		
1.01	.15	39	.01	0.00	.01	0	1.01	15.10	189	.01	.14	.01	2508.		
1.01	.15	40	.01	0.00	.01	0	1.01	15.15	190	.01	.14	.01	2513.		
1.01	.15	41	.01	0.00	.01	0	1.01	15.20	191	.01	.14	.01	2518.		
1.01	.15	42	.01	0.00	.01	0	1.01	15.25	192	.01	.14	.01	2523.		
1.01	.15	43	.01	0.00	.01	0	1.01	15.30	193	.01	.14	.01	2528.		
1.01	.15	44	.01	0.00	.01	0	1.01	15.35	194	.01	.14	.01	2533.		
1.01	.15	45	.01	0.00	.01	0	1.01	15.40	195	.01	.14	.01	2538.		
1.01	.15	46	.01	0.00	.01	0	1.01	15.45	196	.01	.14	.01	2543.		
1.01	.15	47	.01	0.00	.01	0	1.01	15.50	197	.01	.14	.01	2548.		
1.01	.15	48	.01	0.00	.01	0	1.01	15.55	198	.01	.14	.01	2553.		
1.01	.15	49	.01	0.00	.01	0	1.01	15.60	199	.01	.14	.01	2558.		
1.01	.15	50	.01	0.00	.01	0	1.01	15.65	200	.01	.14	.01	2563.		
1.01	.15	51	.01	0.00	.01	0	1.01	15.70	201	.01	.14	.01	2568.		
1.01	.15	52	.01	0.00	.01	0	1.01	15.75	202	.01	.14	.01	2573.		
1.01	.15	53	.01	0.00	.01	0	1.01	15.80	203	.01	.14	.01	2578.		
1.01	.15	54	.01	0.00	.01	0	1.01	15.85	204	.01	.14	.01	2583.		
1.01	.15	55	.01	0.00	.01	0	1.01	15.90	205	.01	.14	.01	2588.		
1.01	.15	56	.01	0.00	.01	0	1.01	15.95	206	.01	.14	.01	2593.		
1.01	.15	57	.01	0.00	.01	0	1.01	16.00	207	.01	.14	.01	2598.		
1.01	.15	58	.01	0.00	.01	0	1.01	16.05	208	.01	.14	.01	2603.		
1.01	.15	59	.01	0.00	.01	0	1.01	16.10	209	.01	.14	.01	2608.		
1.01	.15	60	.01	0.00	.01	0	1.01	16.15	210	.01	.14	.01	2613.		
1.01	.15	61	.01	0.00	.01	0	1.01	16.20	211	.01	.14	.01	2618.		
1.01	.15	62	.01	0.00	.01	0	1.01	16.25	212	.01	.14	.01	2623.		
1.01	.15	63	.01	0.00	.01	0	1.01	16.30	213	.01	.14	.01	2628.		
1.01	.15	64	.01	0.00	.01	0	1.01	16.35	214	.01	.14	.01	2633.		
1.01	.15	65	.01	0.00	.01	0	1.01	16.40	215	.01	.14	.01	2638.		
1.01	.15	66	.01	0.00	.01	0	1.01	16.45	216	.01	.14	.01	2643.		
1.01	.15	67	.01	0.00	.01	0	1.01	16.50	217	.01	.14	.01	2648.		
1.01	.15	68	.01	0.00	.01	0	1.01	16.55	218	.01	.14	.01	2653.		
1.01	.15	69	.01	0.00	.01	0	1.01	16.60	219	.01	.14	.01	2658.		
1.01	.15	70	.01	0.00	.01	0	1.01	16.65	220	.01	.14	.01	2663.		
1.01	.15	71	.01	0.00	.01	0	1.01	16.70	221	.01	.14	.01	2668.		
1.01	.15	72	.01	0.00	.01	0	1.01	16.75	222	.01	.14	.01	2673.		
1.01	.15	73	.01	0.00	.01	0	1.01	16.80	223	.01	.14	.01	2678.		
1.01	.15	74	.01	0.00	.01	0	1.01	16.85	224	.01	.14	.01	2683.		
1.01	.15	75	.01	0.00	.01	0	1.01	16.90	225	.01	.14	.01	2688.		
1.01	.15	76	.01	0.00	.01	0	1.01	16.95	226	.01	.14	.01	2693.		
1.01	.15	77	.01	0.00	.01	0	1.01	17.00	227	.01	.14	.01	2698.		
1.01	.15	78	.01	0.00	.01	0	1.01	17.05	228	.01	.14	.01	2703.		
1.01	.15	79	.01	0.00	.01	0	1.01	17.10	229	.01	.14	.01	2708.		
1.01	.15	80	.01	0.00	.01	0	1.01	17.15	230	.01	.14	.01	2713.		
1.01	.15	81	.01	0.00	.01	0	1.01	17.20	231	.01	.14	.01	2718.		
1.01	.15	82	.01	0.00	.01	0	1.01	17.25	232	.01	.14	.01	2723.		
1.01	.15	83	.01	0.00	.01	0	1.01	17.30	233	.01	.14	.01	2728.		
1.01	.15	84	.01	0.00	.01	0	1.01	17.35	234	.01	.14	.01	2733.		
1.01	.15	85	.01	0.00	.01	0	1.01	17.40	235	.01	.14	.01	2738.		
1.01	.15	86	.01	0.00	.01	0	1.01	17.45	236	.01	.14	.01	2743.		
1.01	.15	87	.01	0.00	.01	0	1.01	17.50	237	.					

	PEAK	4-HOUR	24-HOUR	72-HOUR	T0
CFS	10568*	2701.	525.	742.	
C+C	259.	70.	55.	22.	
INCHES	—	23.70	20.5	20.96	
MM	—	600.00	715.50	715.50	
AC-FT	—	25326.	16366.	16366.	
AC-FT	—	25326.	16366.	16366.	

CFS	105	2
C _{4c}			
INCHES			
			AC-FT
			CU-FT

	PEAK	6-7-29	24-HOUR	72-HOUR	TOTAL VOLUME
-	CFS	13565	2771.	125.	27773.
-	CMS	274.	71.	22.	6127.
-	INCHES	...	0.7.	28.96	56.95
-	MM	...	18.30	745.50	115.50
EFF					16.66
THUS	CJ N				20.14

HYDROGRAPH AT STA 10012 FOR PLAN 10 FT:0 2

PEAK	6-HOUR	24-HOUR	72-HOUR	TOTAL VOLUME
77° S	1484.	412.	396.	11586.
CUS	150.	356.	12.	3564.
INCHES		11.	14.	14.45
MM.		10.	48.	567.75
AC-FIT		391.	367.75	367.75
THD, S CUS		176.	319.	818.
CUS		226.	1099.	1063.
MM.		226.	1099.	1063.

HYDROGRAPHY 2011

HYDROGRAPH "POLTING

	STAGE	FLOW	CAPACITY	ELEVATION	REL	SPWID	EXPL	ELEV	COEF	CAREA	EXPL
0.0	617.00 +356.50	617.00 536.60	510.00 537.00	619.00 637.90	521.00 535.40	424.00 437.90	424.00 437.90	632.25 636.75	635.70 635.10	0	0
1.0	4564.00	2019.00	11.00	37.00	51.00	8274.00	11767.00	75.30	1590.00	2923.00	2
2.0	300.	300.	33.0	124.	123.	414.	649.	815.			
3.0	605.	605.	614.	617.	620.	631.	637.	640.			
4.0	617.0	617.0	0.0	0.0	0.0	0.0	0.0	0.0			

STATION 102120 PLAN 10 RATIO 1

SUMMARY OF PMF AND ONE-HALF PMF FLOOD ROUTING

PEAK FLOW AND STORED FLOOD SUMMARY FOR MULTIPLE PLANT ECONOMIC COMPUTATIONS
FLOOD IN CUBIC FEET PER SECOND (Cubic Meters per second)
AREA IN SQUARE FEET (SQUARE METERS)

OPERATION	STATION	APEA	PEAK FLOW RATIO		RATIOS APPLIED TO FLOWS
			1	2	
HYDROGRAPH AT	15212	1.036	1	1.068	1.025%
		2.750	1	2.950	1.095%
ROUTE TO	15212	1.076	1	1.120	1.035%
		2.750	1	2.750	1.000%

SUMMARY OF DAM SAFETY ANALYSIS

PLAN	ELEVATION STORAGE OVERFLOW	INITIAL VALUE 72.	STILLWATER CREST 517.00	TOP OF DAM A37.00	TIME OF MAX DRAWDOWN HOURS 669.0	TIME OF FAILURE HOURS 547.0
RATIO OF PMF P.S.ELFV	MAXIMUM RESERVOIR OVER JAW	MAXIMUM CLFVN ACFT	MAXIMUM STORAGE ACFT	DURATION OVER TOP HOURS	MAX DRAWDOWN CFS	MAX DRAWDOWN CFS
1.00	637.00	.060	702.	760.	.42	16.00
.50	634.02	0.00	702.	1593.	0.00	16.25

PERCENT OF PMF FLOOD ROUTING
EQUAL TO SPILLWAY CAPACITY

PREVIEW OF SEQUENCE OF STARLAN NETWORK CALCULATIONS

PUNOFF HYDROGRAPH AT 10212
ROUTE HYDROGRAPH TO 10212
END OF NETWORK

FLOOD HYDROGRAPH PACKAGE (HEC-1)
DAW SAFETY VERSION
LAST MODIFICATION: JULY 1977
0900

NUN DATE: 79/07/15
TIME: 15.07.15.

- DAW SAFETY INSPECTOR - MISSOURI

- LOST LAKE DAM (LOC121)
PERCENT OF DWF DETERMINATION AND POUTING

NG	YHR	MM	DAY	CON SPECIFICATION	IMR	MTR	RTT	INSTN
3.0	0	5	5	JAPAN	0	0	0	0
				NET	LEADY	TRAIL		
				0	0	0		

- MULTI-PLAN ANALYSIS TO BE PERFORMED

INPUT = 1 RTTIN = 9 RTPTIN = 1
R70 = .70 R74 = .77 R80 = .80 R82 = .83

SURFACE RUNOFF COMPUTATION

- INPUT PRECIPITATION INDEX, RATINGS, AND UNIT HYDROGRAPH PARAMETERS

IS740	ICOMP	IFCON	ITYPE	JPLT	JPT	IVME	IVAGE	TAUVC
1C712	9	0	2	0	0	0	0	0

HYDRC HUNG TAPCA SHAP TRSDA TSPEC RATIO ISH00 ISH01 LOCAL

1 1.00 0.00 1.00 1.00 0.00 0.00 0 0

PRECIP DATA

R96

0.00 0.00 0.00 0.00 0.00 0.00 0.00

LOSS DATA

GNSTL ALSMX RTIND

0.00 0.00 0.00 0.00 0.00 0.00 0.00

UNIT HYDROGRAPH DATA

TC= 0.00 LAG= .23

RECEDITION DATA

STRTS= 0.00 4.00 CSNE= 0.00 RTIOR= 1.00

END-OF-OPERATION FLOW

0 H2O HR.MN PERIOD RAIN EXCS LOSS COMP C

Sum 32.11 28.96 30.15 297690
(816.3) (736.0) 80.91 6728.65)

HYDROGRAPH ROUTING

ROUTED HYDROGRAPH THROUGH LOST LAKE LAG (10212)

	STIAQ	ICDTP	TECON	TRAPK	JFLT	JPRF	INAME	IStage	IAUTO
	10212	1	0	0	0	0		0	0
ALCS	CLASS	Avg	ROUTING DATA						
C.C.	Coing	6.03	1	1	1	1	LSTP	0	0
	NSTPS	NSTOL	LAG	AMTN	X	X	TSK	ISPP41	
	1	6	0	0.000	0.000	0.000	-617.	-1	
STAGE	617.00	617.90	616.00	615.00	625.00	628.00	630.75	632.25	633.70
	636.50	636.90	637.00	637.90	638.60				635.10
FLOW	54.00	13.37	5.00	5.938	45.00	72.00	75.00	59.00	15.00
	4564.00	5119.00	5495.00	5274.00	11767.00				2923.00
CAPACITY	—	—	55.	72.	125.	414.	669.	815.	
ELEVATION	—	605.	614.	617.	620.	631.	637.	640.	
			25EL	25W10	25W4	ELVFL	CGRL	CGFL	EPL
			617.0	6.0	0.0	0.0	0.0	0.0	0.0
						DATA	DATA	DATA	
						TOPFL	COND	EXPO	JAWID
						637.0	0.0	0.0	0.

PEAK OUTFLOW IS 4705. AT TIME 16:00 HOURS

PEAK OUTFLOW IS 4015. AT TIME 16:00 HOURS

PEAK OUTFLOW IS 4925. AT TIME 16:00 HOURS

PEAK OUTFLOW IS 5080. AT TIME 16:00 HOURS

PEAK OUTFLOW IS 5170. AT TIME 16:00 HOURS

PEAK OUTFLOW IS 5320. AT TIME 16:00 HOURS

PEAK OUTFLOW IS 5460. AT TIME 16:00 HOURS

PEAK OUTFLOW IS 5596. AT TIME 16:10 HOURS

REF ID: A657326 AT TIPF 1600 HOURS
1941

PEAK FLOW AND DURATION OF PULSE SUMMARY FOR MULTIPLE PLATEAU ECONOMIC COMPUTATIONS
FLUXES IN CFS PER SECURE CYCLES OTHERS IN CFS PER SECOND
AREA IN SQUARE MILES (SIGNIFICANT FIGURES)

OPERATION	STATION	TIME	PLATE	DEPTH	1	2	3	4	5	6	7	8	9
					RATIO	RATIO							
HYDROGRAPH AT	1:212	1:04	1	745.4	.75	.75	.75	.75	.75	.75	.75	.75	.75
		(2:75)	(226.84)(227.62)(235.62)(233.41)(236.41)(239.40)(242.39)(245.38)(248.63)(
ROUTED TO	1:212	1:05	1	679.1	.75	.75	.75	.75	.75	.75	.75	.75	.75
		(2:75)	(135.64)(156.53)(145.63)(145.63)(145.63)(145.63)(150.64)(150.64)(150.64)(

SUMMARY OF DAM SAFETY ANALYSIS

PLAN & FLOW	ELEVATION STORAGE OUTFLOW	INITIAL VALUE 0.117, 0. 72, 0.	SPILLWAY CREST 17.00 7.0, 0.	TOP OF DAM 637.00 66, 547.	MAXIMUM DEPTHS OVER DAM	MAXIMUM DEPTHS OUTLET TCS	DURATION OVER TOP HOURS	TIME OF MAX OUTLET HOURS	TIME OF FAILURE HOURS
RATIO OF RESERVOIR TO F.	RESERVOIR 7.5•ELFV								
•75	6.76•0.5	0.36	652.	4705.	6.00	16.00	0.00	0.00	0.00
•76	6.76•0.7	0.36	655.	4715.	0.00	17.00	0.00	0.00	0.00
•77	6.76•0.7	0.36	658.	4720.	0.00	16.00	0.00	0.00	0.00
•78	6.76•0.7	0.36	661.	4724.	0.00	16.00	0.00	0.00	0.00
•79	6.76•0.7	0.36	664.	4724.	0.00	16.00	0.00	0.00	0.00
•80	6.76•0.7	0.36	666.	5323.	0.00	16.00	0.00	0.00	0.00
•81	6.76•0.7	0.36	668.	5431.	0.00	16.00	0.00	0.00	0.00
•82	6.76•0.7	0.36	671.	5566.	0.00	16.00	0.00	0.00	0.00
•83	6.76•0.7	0.36	673.	5732.	0.08	16.00	0.08	0.08	0.08

