TOWARDS POLYNOMIAL LOWER BOUNDS FOR DYNAMIC PROBLEMS

Gilad Hoch by an article of Mihai Pătrașcu

25.3.2014

- dynamic reachability: maintain a data structure representing a directed graph which supports the following actions:
 - \bullet insert (u, v) insert an edge between u and v
 - \bigcirc delete (u, v) delete the edge between u and v
 - \bullet reachability (u, v) is there a directed path from u to v?
- dynamic shortest paths: maintain a data structure representing an undirected graph which supports the following actions:
 - \bigcirc insert (u, v) insert an edge between u and v
 - 2 delete(u, v) delete the edge between u and v
 - 1 length (u, v) what is the length of the shortest path from u to v?
- subgraph connectivity: preprocess undirected graphs to support the actions:
 - toggle(u) turn node u on/off
 - 2 connectivity (u, v) is there a path between u and v that passes only in "on" nodes?
- Langerman's problems: maintain an array A[1, ..., n] of integers, under the following actions:
 - update(i, x) $A[i] \leftarrow x$
 - ② zeroSum is there a k such that $\sum_{i=1}^{k} A[i] = 0$?
- Pagh's problem: preprocess a family of sets $X_1, X_2, \dots \subseteq [n]$ to support the following actions:
 - **1** create (i,j) create a new set $X_{new} \leftarrow A_i \cap A_i$
 - 2 query (i, z) determine if $z \in A_i$
- Erickson's problem: preprocess an integers matrix M to support:
 - incrementRow(M, i) increment all values in row i
 - 2 incrementCol(M, i) increment all values in column i
 - max(M) return the maximum value in the matrix

THE MULTIPHASE PROBLEM

```
phase I pre-process an input of k sets, S_1, \ldots, S_k \subset [n] in time O(nk \cdot \tau)
           (build a data structure for the next phases)
phase II process yet another input of a set T \subseteq [n] in time O(n \cdot \tau)
```

(update the data structure from phase I)

phase III answer query: given an index $i \in [k]$, determine if $S_i \cap T = \emptyset$ in time $O(\tau)$

THE MULTIPHASE PROBLEM

```
\begin{array}{l} \textit{phase I} \text{ pre-process an input of } \textit{k} \text{ sets, } S_1, \dots, S_k \subset [n] \text{ in time } O(nk \cdot \tau) \\ \text{ (build a data structure for the next phases)} \\ \textit{phase II} \text{ process yet another input of a set } T \subseteq [n] \text{ in time } O(n \cdot \tau) \\ \text{ (update the data structure from phase I)} \\ \textit{phase III} \text{ answer query: given an index } i \in [k], \text{ determine if } S_i \cap T = \emptyset \text{ in time } O(\tau) \\ \end{array}
```

Conjecture (1)

```
\exists constants \gamma > 1, and \delta > 0 such that: k = \Theta(n^{\gamma}) \Longrightarrow \tau = \Omega(n^{\delta})
```

THE MULTIPHASE PROBLEM

```
phase I pre-process an input of k sets, S_1,\ldots,S_k\subset [n] in time O(nk\cdot\tau) (build a data structure for the next phases) phase II process yet another input of a set T\subseteq [n] in time O(n\cdot\tau) (update the data structure from phase I) phase III answer query: given an index i\in [k], determine if S_i\cap T=\varnothing in time O(\tau)
```

Conjecture (1)

```
\exists constants \gamma > 1, and \delta > 0 such that: k = \Theta(n^{\gamma}) \Longrightarrow \tau = \Omega(n^{\delta})
```

THEOREM (2)

if the multiphase problem is hard (in the sense of the conjecture) \Longrightarrow for every problem we saw previously $\exists \epsilon > 0$ such that the problem cannot be solved with $O(N^{\epsilon})$ per operation and $O(N^{1+\epsilon})$ pre-processing time.

THE 3SUM PROBLEM

input: a set S of n numbers

output: find distinct $x, y, z \in S$ such that x + y = z

6 / 1

THE 3SUM PROBLEM

input: a set S of n numbers

output: find distinct $x, y, z \in S$ such that x + y = z

THEOREM (3)

Under the 3SUM conjecture, the multiphase problem with $k = \Theta(n^{2.5})$ requires $\tau \geq n^{0.5-o(1)}$ on the word RAM.

THE 3SUM PROBLEM

input: a set S of n numbers

output: find distinct $x, y, z \in S$ such that x + y = z

CONJECTURE (6: 3SUM-HARDNESS)

 $\forall S \subset \{-n^3, \dots, n^3\}, |S| = n$

 \forall algorithm A for 3SUM,

To determine whether $\exists x, y, z \in S$ such that x + y = z and x, y, z are distinct,

 $O(n^{2-o(1)})$ time is needed in expectation for A with the input S.

input: an Array A[1..n] of n integers

output: find 2 indexes $i \neq j$ such that A[i] + A[j] = A[i+j]

9 / 1

input: an Array A[1..n] of n integers

output: find 2 indexes $i \neq j$ such that A[i] + A[j] = A[i+j]

THEOREM (10)

If 3SUM requires $\Omega(n^2/f(n))$ expected time, convolution-3SUM requires $\Omega(n^2/f^2(n \cdot f(n)))$ expected time.

input: an Array A[1..n] of n integers

output: find 2 indexes $i \neq j$ such that A[i] + A[j] = A[i+j]

THEOREM (10)

If 3SUM requires $\Omega(n^2/f(n))$ expected time, convolution-3SUM requires $\Omega(n^2/f^2(n \cdot f(n)))$ expected time.

LEMMA (11)

Assume Convolution-3SUM requires $\Omega(n^2/f(n))$ expected time, and let R be:

$$\omega(\sqrt{n\cdot f(n)}) < R < o(n/f(n))$$

- . Then, $\Omega(n^2/f(n))$ expected time is needed to report $O(n^2/R)$ triangles in a tripartite graph where:
 - the three parts are A, B, C, of sizes $|A| = |B| = R\sqrt{n}$ and |C| = n;
 - each vertex in $A \cup B$ has O(n/R) neighbors in C;
 - there are O(nR) edges in $A \times B$.

15 / 1

24 / 1