INDEX

Aggregate objects, 189–192, 296	B-tree index, see Indexing
Anomaly	Business objects, 177–178
addition, 308	
deletion, 307–308	Cardinality, 171, 184–185, 221–226
update, 307	minimum and maximum, 189
API (Application Program Interface), 616–617	optional and mandatory conditions, 221–226
Applications developer, 63–64	CASE tools, use of, 347–348
Application development, approaches for, 20–21	CGI (Common Gateway Interface), 613–616
ARPANET, 599	Clustering, 378
ASP (Active Server Pages), 624	Codd, E. F., 239, 251, 252, 264
Attribute, 170, 179–181, 214–218, 280–281,	ColdFusion, 623
298–299	Communications interface, 64
inheritance of, 196	Computer applications, evolution of, 7
specification, 215–216	Computer systems
types of, 215–218	informational, 79–80
simple and composite, 216–218	operational, 79
single-valued and multivalued, 216	Concurrency
with stored and derived values,	control
218	techniques, optimistic, 479–481
values and domains, 181–182, 215	Thomas's write rule, 478–479
	timestamp ordering, 477–478
Bitmapped index, see Indexing	timestamps, 477
Block addressing, 361–362	problems of, 458–460
Block size, 362	dependency on uncommitted update,
Block usage parameters, 362–363	459

Database Design and Development: An Essential Guide for IT Professionals by Paulraj Ponniah ISBN 0-471-21877-4 Copyright © 2003 by John Wiley and Sons, Inc.

inconsistent summary, 459–460 lost update, 459	two perceptions of, 159–160 Database
Cookies, 619–620	benchmarks, use of, 537-538
Data abstraction 22	centralized, 29–30
Data abstraction, 22	concurrency control, 532
Data access, levels and types, 502–503	deployment tasks, 416–417
Data administration, 432	distributed, 30–31
Data administrator, 435, 436–437	architectural options, 572–574
Data availability, 429	concurrency control, 588–592
Data dictionary, 21, 58–59, 356–358	definition of, 555
Data distribution	network, 566–568
fragmentation, 568–571	recovery, 592–595
horizontal, 568–569	types, 559–561
vertical, 569	three-phase commit, 595
processing	two-phase commit, 593–595
query, 580–585	failures of
transaction, 585–588	checkpoint, 485–486
replication, 571–572	classification, 481–482
Data independence, multilevel, 45	logging, 483–485
Data integrity, 429	formal definition of, 19
Data model	implementation
aids for, 156	centralized architecture, 417–418
as the replica, 146–147	client/server architecture, 418–419
components of, 147–148	methods and procedures, 54-55
description of, 144	monitoring, 534–537
entity-relationship, 155–156, 209	practitioners, 53–54
example of, 174	recovery
generic, 168–169	methods, 528–529
hierarchical, 24–25	restore and reprocess, 529
high-level, 154	rollback, 529
need for, 144–145	rollforward, 529
network, 25–27	system, 527–528
object-based, 154-155, 169	recovery of
object-relational, 28–29	log-based, 486–489
relational, 27–28	deferred update, 486-488
semantic, 273, 278–279	immediate update, 488–489
time-dependent components, 226	shadow paging, 489-491
Data modeling, in logical design, 339–342	schema revisions, 541–542
Data ownership, 108	security
Data partitioning, see Fragmentation	authentication, 512-513
Data redundancy, uncontrolled, 13–14	authorization, 510-512
Data repository, 21	DBA, role of, 513
Data storage, aspects of, 87–88	discretionary control
Data storage devices, evolution of, 6	authorization matrix, 504
Data structure, assembly, 202	SQL examples, 507–508
Data systems	views, use of, 506–507
evolution of, 8	encryption
filed-oriented, 10	DES, 519–520
inadequacy of earlier, 12–16	key, use of, 518
Data views, 156–164	methods, 518–519
definition of, 157–159	public key, 520–522
integration of, 160–164	simple substitution, 517–518
- · · · · · · · · · · · · · · · · · · ·	* ′

mandatory control	version upgrades, 542–543
classes and clearances, 509	DCL (Data Control Language), 47-48. See
objectives, 496–497	also Languages
privacy, 500–501	DDBMS, 556, 561-566
problems, 497–499	Transparency
solution options, 499–500	failure, 579
statistical databases, 513–516	fragmentation, 577
Web security, 501	location, 578
space management, 531–532	naming, 579
system, planning for, 103–109	network, 578
critical issues, 108–109	replication, 578
database plan, 107	DDL (Data Definition Language), 46–47.
impact of business plan, 105–107	See also Languages
scope, 104	DDLC (Database Development Life Cycle
test environment, 539–541	design and development, 96–98
tuning, 543–547	management and control, 101–103
utilities, 64	roles and responsibilities, 99–101
Database administration, 432–433	starting the process, 94–96
Database administrator, 435–436, 437	steps and tasks, 98–99
Database environment	Decision support system, see Databases,
description of, 38	decision support
functions and features, 48–50	Denormalization, 379
organizational context of, 70	Design, informal, pitfalls of, 304–306
overall architecture, 38–40	Design completeness, 337–339
progression to, 37	Design phase, 128–132. See also DDLC
Database industry, brief history of, 31–33	conceptual schema,130–131
Database management system, see DBMS	external schema, 130
Database software, 21, 52. See also DBMS	internal schema, 131–132
Database systems	logical versus physical design, 129–130
benefits of, 16–19	objectives, 129
driving forces, 11–12	Digital certificates, 629
Databases	Digital signatures, 628–629
active, 674–675	Distributed database management system,
commercial, 33	see DDBMS
decision support, 649–671	DML (Data Manipulation Language), 47.
data mining, 667–671	See also Languages
data warehousing, 650–661	See also Languages
OLAP, 661–667	End-users, see Users
deductive, 67	Entities, 210–213. See also Business objects
geographic, 681–683	definition of, 211
how used, 23, 55–56	type of, 211–212
intelligent, 675	weak, 212–213
mobile, 678–681	Entity-relationship diagram, sample,
multimedia, 676–678	230–233
object-oriented, 637–646	Entity type, definition of, 298
object-relational, 646–649 parallel, 672–674	E-R data modeling, see Data model
DBMS	Extranet, 606–607
	Essaibility study 100 117 See Jee DDI C
classifications, 45–46	Feasibility study, 109–117. See also DDLC
compared to database, 42	benefits assessment, 115–117
engine, 56–58	cost estimation, 113–115
need for, 42–43	purpose and extent, 109–110

skills review, 112–113 technological infrastructure, 111–112 File organization, 363–366. <i>See also</i> Physical	domain, 455 referential, 455–456 Intranet, 606
design hash or direct, 365–366 heap or pile, 364 sequential, 364–365	Java, 419 applications of, 620–621 security, 630–633
Firewalls, 626–627. See also Database, security	JDBC, 419, 621–622 Joins, preconstructed, 381–382
Forms Generator, 61–62 Fragmentation, 380. See also Data distribution	Keys, primary, 218–219. <i>See also</i> Indexing Kerberos, 629
Generalization, 171, 192–196, 229–230 hierarchy, 194–196	Language nonprocedural, 265 procedural, 265
Homonyms, 15–16 HTML (HyperText Markup Language),	scripting, 622–623 Languages
600, 603–605 HTTP, 600, 601–602	for the relational model, 389–406 SQL (Structured Query Language), 391–407
Identifier, 170, 182–183, 281–282. See also Keys	data control, 401–403 data definition, 394–397
Implementation and deployment, 132–135. See also DDLC data dictionary, building of, 134–135 DBMS installation, 134 populating the database, 135	data maintenance, 399–401 data retrieval, 397–399 database access, 406–407 features, 392–393 history, 393–394
Indexing, 371–377 bitmapped, 376–377 B-tree index, 374–375 dense index, 371 primary indexes, 372–373 secondary indexes, 375–376 sparse index, 371	queries, 403–406 Quel, 390 Query-by-Example, 390 role of, 387–389 Linking, of related data elements, 366–367 Logical design outputs of, 346–347
Information common asset, 82 demand for, 8–9	phase in DDLC, 335 Logical schema, 344–345 Logical structure, 334–335
major asset, 72–74 requirements at geographic regions, 78–79 at user levels, 76–77 in functional departments, 77–78 real-world, 145–146 representation as data model, 149–150 sharing of, 80–86	Maintenance and growth, 135–138 administration tools, 136–137 managing growth, 138–139 ongoing monitoring, 137 performance tuning, 137–138 Memory buffer management, 380–381 Minimum cardinality, 291–296
major benefits, 82–83 schemes, 84–86 Information technology, waves of evolution, 9–10 Integrity	Model, <i>see also</i> Data model implementation of, 386–387 transformation, 274–279 mapping and transformation, 279 merits of method, 274–276
business rules, 456	steps and tasks, 277

Normal forms	entity integrity, 248–249
fundamental	foreign keys, 244–245
Boyce-Codd, 317	functional dependencies, 250–251
First, 311–312	notation, 245–246
Second, 312–314	primary key, 243–244
Third, 314–317	referential integrity, 249–250
higher	relationships, 244–245
domain-key, 321–322	mandatory, 245
fifth, 320–321	optional, 245
fourth, 319–320	rows as instances, 242–243
Normalization, see also Normal forms	strengths of, 240–241
example, 325–326	Relationship
how to apply, 309–310	association between entities, 219–221
purpose and merits, 309	degrees of, 192, 221
steps and tasks, 310–311	gerund, 228–229
summary, 322–323	identifying and nonindentifying, 226–228
Null values, 181	296–297 inheritance of, 196–197
Object instances, 177–178	many-to-many, 186–187, 286–291
Object instances, 177–178 Object set, 169–170, 177, 279–280	one-to-many, 185, 284–286
Objects, see also Business objects	one-to-one, 185, 282–284
conceptual, 201	recursive, 201–202
•	Report Writer, 62–63
physical, 200–201 ODBC, 419	Requirements, 118–128. See also DDLC
Operating system software, 50–52	definition document, 127–128
Operating system software, 50–52	gathering methods, 119–120
Physical data, access of, 360	observation of processes, 124–125
Physical design, see also DDLC	review of applications, 125-126
components of, 355	study of documents, 126
goals of, 354–355	user interviews, 120-124
logical to, 352–354	JAD methodology, 122–124
Physical structure, 334–335	
Primary key, 299. See also Indexing	Search, binary, 373. See also Indexing
Proxy servers, 628	Security management, 44
	Specialization, 171, 229–230
Query optimizer, 410–415	partial, 198
cost-based, 412–415	total, 198
heuristic approach, 411–412	SQL, see Languages
Query processing, steps of, 409–410	SSI (Server Side Includes), 618–619
Query processor, 59–60	Standards, 428
•	Storage management, 43, 359–360
RAID technology, 367–371	Subsets, 194. See also Specialization
Recovery management, 44–45	exclusive, 197
Relation, 241–242, 343–344	nonexclusive, 197
Relational algebra, 253–262	Supersets, 194. See also Generalization
Relational calculus, 262–264	Synonyms, 16
Relational data model	
basic properties, 247–248	TCP/IP, 599
columns as attributes, 242	Transaction
data integrity, 247	commands
data manipulation languages, 252–253	abort, 449
design approaches, 267–270	commit, 449

INDEX

rollback, 449	recoverable, 465-466
locking	serial, 461
deadlock, 473–476	serializability, 462–465
detection, 475	conflict, 463–465
prevention, 475–476	view, 465
levels, 468	states of, 451–452
management, 468-470	structure of, 452–453
schemes, 467–468	types of, 453
techniques, 470-474	Tuning, 430
simple, 470–471	
two-phase, 472–473	URL (Uniform Resource Locator), 600,
with S- and X-Locks, 471–472	602
management, 43–44	Users
properties of	casual, 52
atomicity, 449	individual, 53
consistency, 450	power, 52
durability, 450	regular, 52
isolation, 450	specialized, 53
schedule	
cascadeless, 461	Wrappers, 627–628
complete, 461	
nonrecoverable, 465-466	XML (eXtensible Markup Language),
nonserial, 461	605–606