NANOPHYSIQUE INTRODUCTION PHYSIQUE AUX NANOSCIENCES

Ch 5. Carbon Structres

James Lutsko

Lecture 6, 2021-2022

Carbon Structures

- Introduction
 - Histoire
 - Carbone
 - Hybridization
- Tight-binding calculations
 - Principe
 - Example: trans
 - Graphene π-liens
 - Graphene σ-liens
- Structure de carbone nanotubes
- Structure Electronique
- Synthesis
- Transport
- Multi-walled nanotubes

Nanotube structure

réseau

zone de Brillouin

« armchair » (n,n)

 \ll zigzag \gg (n,0)

R. Saito, G. Dresselhaus & M. S. Dresselhaus,

Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

Nanotubes de carbone

- Introduction
 - Histoire
 - Carbone
 - Hybridization
- Tight-binding calculations
 - Principe
 - Example: trans
 - Graphene π -liens
 - Graphene σ-liens
- Structure de carbone nanotubes
- Structure Electronique
- Synthesis
- Transport
- Multi-walled nanotubes

Nanotubes

"High-density integration of carbon nanotubes via chemical self-assembly", Hongsik Park, Ali Afzali, Shu-Jen Han, George S. Tulevski, Aaron D. Franklin, Jerry Tersoff, James B. Hannon & Wilfried Haensch, Nature Nanotechnology (Oct, 2012)

Bandes d'energie du nanotube : zone folding

L'idée:

La géométrie de la CN est un sous-ensemble d'une feuille infinie de graphène avec des frontières périodiques. Par conséquent, les ondes vecteurs de la CN sont un sous-ensemble de ceux pour le graphène et les bandes de l'energie sont:

$$E_{CN}(\boldsymbol{k}_{CN}) = E_{GR}(\boldsymbol{k}_{CN})$$

C'est ce qu'on appelle "pliage de bande" car ce n'est pas necessaire que $k_{CN} \in$ first Brillouin zone of Graphene.

Donc, nous avons besoin de les vecteurs disponible pour le CN.

Théorème de Bloch

$$\psi(\mathbf{r}) = \sum_{j} e^{i\mathbf{k}\cdot\mathbf{R}_{j}} \phi(\mathbf{r} + \mathbf{R}_{j}), \quad \mathbf{R}_{j} \text{ dans le reseaux}.$$

Bohr- von Karman conditions conditions à la limite

<u>Graphene</u>

$$\psi(\mathbf{r}+N_{l}\mathbf{a}_{l})=e^{-i\mathbf{k}\cdot N_{l}\mathbf{a}_{l}}\sum_{j}e^{i\mathbf{k}\cdot \mathbf{R}_{j}}\phi(\mathbf{r}+\mathbf{R}_{j})=\psi(\mathbf{r})$$

$$\rightarrow \mathbf{k}\cdot N_{l}\mathbf{a}_{l}=2n_{l}\pi, \quad n_{l}\in\mathbb{Z}$$

$$\rightarrow \mathbf{k}\cdot \mathbf{a}_{l}=2\pi\frac{n_{l}}{N_{l}}, \quad 0\leq n_{l}\leq N_{l}$$

Nanotube

Reseaux avec unité cellulaire (C_h,T) est base de 2N points.

$$\boldsymbol{K} \cdot \boldsymbol{C}_h = 2 n_C \pi$$
 $\boldsymbol{K} \cdot \boldsymbol{N}_T \boldsymbol{T} = 2 n_T \pi$

(si la tube est un tore de longeur $N_{_{\mathrm{T}}}$)

$$K = n_C K_1 + \frac{n_T}{N_T} K_2, \quad 0 \le n_T \le N_T$$

$$K_1 \cdot C_h = 2\pi \quad K_1 \cdot T = 0 \qquad n_c \in ???$$

$$K_2 \cdot C_h = 0 \quad K_2 \cdot T = 2\pi$$

<u>Graphene</u>

Vecteurs de base du réseau

Vecteurs de base du réseau réciproque

$$a_1 = (\frac{\sqrt{3}a}{2}, \frac{a}{2}), a_2 = (\frac{\sqrt{3}a}{2}, -\frac{a}{2})$$

 $b_1 = (\frac{2\pi}{\sqrt{3}a}, \frac{2\pi}{a}), b_2 = (\frac{2\pi}{\sqrt{3}a}, -\frac{2\pi}{a})$

Nanotube

Vecteurs de base du réseau

$$C_h = n a_1 + m a_2$$
, $T = t_1 a_1 + t_2 a_2$

Vecteurs de base du réseau réciproque

$$K_1, K_2$$
 $C_h \cdot K_1 = 2\pi \quad T \cdot K_1 = 0$
 $C_h \cdot K_2 = 0 \quad T \cdot K_2 = 2\pi$

$$K_1 = K_{11} b_1 + K_{12} b_2$$

$$K_{11}n+K_{12}m=1$$
 $K_{11}t_1+K_{12}t_2=0$
 $t_1K_{11}n+t_1K_{12}m=t_1$
 $K_{12}(-t_2n+t_1m)=t_1$

$$K_{12} = \frac{t_1}{-t_2 n + t_1 m} = \frac{t_1}{N}$$

$$\boldsymbol{K}_{1} = \frac{1}{N} \left(-t_{2} \boldsymbol{b}_{1} + t_{1} \boldsymbol{b}_{2} \right)$$
$$\boldsymbol{K}_{2} = \frac{1}{N} \left(m \boldsymbol{b}_{1} - n \boldsymbol{b}_{2} \right)$$

$$\begin{aligned} \boldsymbol{K}_{1} &= \frac{1}{N} \left(-t_{2} \boldsymbol{b}_{1} + t_{1} \boldsymbol{b}_{2} \right) & |\boldsymbol{K}_{1}| &= \frac{2 \pi}{|\boldsymbol{C}_{h}|} \\ \boldsymbol{K}_{2} &= \frac{1}{N} \left(m \boldsymbol{b}_{1} - n \boldsymbol{b}_{2} \right) & |\boldsymbol{K}_{2}| &= \frac{2 \pi}{|\boldsymbol{T}|} \end{aligned}$$

$$K = n_C K_1 + \frac{n_T}{N_T} K_2, \quad 0 \le n_T \le N_T$$

$$= n_C K_1 + k \frac{K_2}{|K_2|}, \quad 0 \le k \le \frac{2\pi}{|T|}, \text{ si } N_T \gg 1$$

$$n_C \mathbf{K}_1 = \left(-\frac{n_C t_2}{N} \mathbf{b}_1 + \frac{n_C t_1}{N} \mathbf{b}_2 \right)$$

$$\frac{n_C t_2}{N} = r \in \mathbb{Z} \text{ et } \frac{n_C t_1}{N} = s \in \mathbb{Z} \rightarrow n_C t_2 = rN \text{ , } n_C t_1 = sN$$

$$\text{mais } \gcd(t_1, t_2) = 1 \rightarrow N \text{ divise } n_C$$

$$\rightarrow 0 \leq n_C < N$$

$$C_h = (4,2), T = (4,-5), N = 28$$

 $K_1 = (5b_1 + 4b_2)/28$
 $K_2 = (4b_1 - 2b_2)/28$

R. Saito, G. Dresselhaus & M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

vecteurs de base du réseau réciproque:

$$\boldsymbol{K}_1 = \frac{1}{N} \left(-t_2 \boldsymbol{b}_1 + t_1 \boldsymbol{b}_2 \right)$$

$$\boldsymbol{K}_2 = \frac{1}{N} (m \, \boldsymbol{b}_1 - n \, \boldsymbol{b}_2)$$

Bandes d'énergie du nanotube à partir de la bande d'énergie du graphène:

$$E_{\rm gr}(k) = \pm t \sqrt{1 + 4\cos\left(\frac{\sqrt{3}k_x a}{2}\right)\cos\left(\frac{k_y a}{2}\right) + 4\cos^2\left(\frac{k_y a}{2}\right)}$$

$$E = E_{gr} \left(n_C K_1 + k \frac{K_2}{|K_2|} \right), \quad 0 \le n_C < N, \quad -\frac{\pi}{|T|} \le k \le \frac{\pi}{|T|}$$

métallique si la point "K" est permi

R. Saito, G. Dresselhaus & M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

vecteurs de base du réseau réciproque:

$$\boldsymbol{K}_1 = \frac{1}{N} \left(-t_2 \boldsymbol{b}_1 + t_1 \boldsymbol{b}_2 \right)$$

$$\boldsymbol{K}_2 = \frac{1}{N} (m \boldsymbol{b}_1 - n \boldsymbol{b}_2)$$

métallique si la point "K" est permi:

$$Y\overline{K} = n K_1, n \in \mathbb{Z}$$

Mais:
$$Y\bar{K} = \frac{2n+m}{3}K_1$$

Alors, métallique si
$$\frac{2n+m}{3} \in \mathbb{Z} \Leftrightarrow \frac{n-m}{3} \in \mathbb{Z}$$

Notez: "armchair" (n,n) toujour métallique.

R. Saito, G. Dresselhaus & M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

Nanotubes Semiconducteurs

Bande d'énergie du graphène

Bandes d'énergie semiconductrices pour le nanotube

sections des conditions aux bords périodiques

 \leftarrow niveau de Fermi : E = 0

Nanotubes Metalliques

Bande d'énergie du graphène

Bandes d'énergie **métalliques** pour le nanotube

sections des conditions aux bords périodiques

 \leftarrow niveau de Fermi : E = 0

Nanotubes « Armchair » (n,n)

$$C_{h} = n \mathbf{a}_{1} + n \mathbf{a}_{2} \equiv (n, n)$$

$$T = \mathbf{a}_{1} - \mathbf{a}_{2}$$

$$N = 2n$$

$$K_{1} = \frac{1}{2n} (\mathbf{b}_{1} + \mathbf{b}_{2}) = \left(\frac{2\pi}{\sqrt{3} a n}, 0\right)$$

$$K_{2} = \frac{1}{2} (\mathbf{b}_{1} - \mathbf{b}_{2}) = \left(0, \frac{2\pi}{a}\right)$$

π bande d'énergie du graphène: $E_{gr} = \pm t \sqrt{1 + 4\cos\left(\frac{\sqrt{3}k_x a}{2}\right)\cos\left(\frac{k_y a}{2}\right) + 4\cos^2\left(\frac{k_y a}{2}\right)}$

π bandes d'énergie du nanotube:

$$E_{q}(k) = E_{gr}\left(k_{x} = \frac{2\pi q}{\sqrt{3}an}, k_{y} = k\right), \quad q = 0, 1, \dots, 2n - 1, \quad -\frac{\pi}{a} \le k \le +\frac{\pi}{a}$$

$$= \pm t\sqrt{1 + 4\cos\left(\frac{\pi q}{n}\right)\cos\left(\frac{ka}{2}\right) + 4\cos^{2}\left(\frac{ka}{2}\right)}$$

$$E_q\left(ka=\pm\frac{2\pi}{3}\right)=\pm t\sqrt{2+2\cos\left(\frac{\pi q}{n}\right)}$$
 métallique car pas de « gap » (q=n)

R. Saito, G. Dresselhaus & M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

Nanotubes « zigzag» (n,0)

$$K_1 = \frac{1}{2n} (2 \boldsymbol{b}_1 + \boldsymbol{b}_2) = \frac{1}{2n} \left(\frac{6\pi}{\sqrt{3} a}, \frac{2\pi}{a} \right)$$

$$K_2 = -\frac{1}{2} \boldsymbol{b}_2 = \frac{1}{2} \left(-\frac{2\pi}{\sqrt{3} a}, \frac{2\pi}{a} \right)$$

$$K_3 = \frac{1}{2n} \left(\frac{6\pi}{\sqrt{3} a}, \frac{2\pi}{a} \right)$$

 π bandes d'énergie du nanotube:

$$E_{q}(k) = E_{gr} \left(\frac{\sqrt{3}\pi q}{n a} - \frac{k}{2}, \frac{\pi q}{n a} + \frac{\sqrt{3}k}{2} \right), \quad -\frac{\pi}{a\sqrt{3}} \le k \le \frac{\pi}{a\sqrt{3}}$$

$$0 \le q < 2n$$

$$+ t\sqrt{1 + 4\cos\left(\frac{\sqrt{3}k a}{2}\right)\cos\left(\frac{q\pi}{n}\right) + 4\cos^{2}\left(\frac{q\pi}{n}\right)}$$

$$E_q(k=0) = \pm t \sqrt{1 + 4\cos\left(\frac{q\pi}{n}\right) + 4\cos^2\left(\frac{q\pi}{n}\right)} = 0 \Leftrightarrow \frac{q\pi}{n} = \frac{2\pi}{3} \Leftrightarrow q = \frac{2n}{3}$$

Possible seulement si n est un multiple de 3.

Si n est un nombre pair $E_{n/2}(k) = \pm t$ "dispersionless"

R. Saito, G. Dresselhaus & M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

Nanotube : bandes d'énergie

R. Saito, G. Dresselhaus & M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

Rappel: Density of states et van Hove singularity

Donc, le nombre des etat avec energie E(k)

$$g(E)dE = \int \delta(e(\mathbf{k}) - E)d\mathbf{k} = \int_{e^{-1}(E)} \frac{1}{|\nabla e(\mathbf{k})|} d\mathbf{S}$$

 $|\nabla e(\mathbf{k})| = 0 \Leftrightarrow van Hove singularity$

Nanotubes: density of states

DOS at Fermi energy

$$g(E_F) = \frac{8}{\sqrt{3}\pi a|t|} L$$

« zigzag » (10,0) semiconducteur

graphène (pointillés)

Gap for CN semiconductor

$$E_{gap} = \frac{|t|a_{cc}}{d_t}$$

« zigzag » (9,0) métallique

R. Saito, G. Dresselhaus & M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

Resume: bandes d'energie du nanotube

vecteurs de base du réseau réciproque:

$$K_1 = \frac{1}{N} \left(-t_2 \boldsymbol{b}_1 + t_1 \boldsymbol{b}_2 \right)$$

$$K_2 = \frac{1}{N} \left(m \boldsymbol{b}_1 - n \boldsymbol{b}_2 \right)$$

Bandes d'énergie du nanotube à partir de la bande d'énergie du graphène:

$$E_{\rm gr}(k) = \pm t \sqrt{1 + 4\cos\left(\frac{\sqrt{3}k_x a}{2}\right)\cos\left(\frac{k_y a}{2}\right) + 4\cos^2\left(\frac{k_y a}{2}\right)}$$

$$E = E_{\rm gr}\left(n_C \mathbf{K}_1 + k \frac{\mathbf{K}_2}{|\mathbf{K}_2|}\right), \quad 0 \le n_C < N \;, \quad 0 \le k \le \frac{2\pi}{|\mathbf{T}|} \;, \text{ si } N_T \gg 1$$

$$\frac{\text{propriét\'e}}{\text{gcd} [n - m, 3]} \frac{d_R \quad \text{multiplicit\'e}}{d_R \quad 0 \quad (\text{gap d'énergie} = |t| a_{C - C}/d_t)}$$

$$m \text{ métal I } \qquad 3 \qquad d \qquad 4 \quad \text{en } k = 0$$

$$m \text{ étal II } \qquad 3 \qquad 3d \qquad 2 \quad \text{en } k = \pm 2\pi/3 \; T$$

R. Saito, G. Dresselhaus & M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

Nanotubes de carbone

- Introduction
 - Histoire
 - Carbone
 - Hybridization
- Tight-binding calculations
 - Principe
 - Example: trans
 - Graphene π -liens
 - Graphene σ-liens
- Structure de carbone nanotubes
- Structure Electronique
- Synthesis
- Transport
- Multi-walled nanotubes

Histoire de synthesis

- La découverte de nanotubes de carbone
 - Nanotubes Multifeuillets (Iijima, Nature, 1991)
 - Nanotubes Monofeuillets (Iijima & Ichihashi Nature 1993, Bethune et al Nature 1993)
- La découverte de méthodes efficaces de production des nanotubes monofeuillets (quantité de 1 gramme).
 - Laser vaporisation (Thess et al, Science, 1996).
 - Carbon arc method (Journet et al, Nature 1997).

Je présente seulement deux méthodes - il ya beaucoup d'autres.

Laser vaporisation

Cible: graphite + catalyseur métallique à base de Ni, Co et Fe (pour produit des nanotubes monofeuillets).

R. Saito, G. Dresselhaus & M. S. Dresselhaus, *Physical Properties of Carbon Nanotubes* (Imperial College Press, London, 1998)

Température élevée empêche crystallziation

Le gaz inerte agit pour transporter les tubes au collecteur.

Propriétés très spécifiques: par exemple, presque seulement les nanotubes (10,10), (9,9) et (12,8)

Arc vaporisation

R. Saito, G. Dresselhaus & M. S. Dresselhaus, *Physical Properties of Carbon Nanotubes* (Imperial College Press, London, 1998)

Le graphite se sublime à 3200C

Arc electrique: ~30V, 50-120A avec deux electrode de graphite (plus catalyseur pour faire les nanotubes monofeuillet).

L'anode se consume pour former un plasma.

Le plasma se condense sur la cathode.

Le gaz inerte fonction seulement pour contrôle la température.

Un method qui n'est pas cher, qui est flexible, et qui produit le grand quantitie.

Transport: les échelles

- La moyenne parcours libre: L_m
 - La distance moyenne un électron se déplace avant qu'il répand à partir d'un centre de diffusion.
- La longueur d'onde Fermi: $\lambda_F = 2\pi/k_F$
 - La longueur d'onde de Broglie pour les électrons à le niveau Fermi.
- La longueur de relaxation de phase: L_{ϕ}
 - La distance dans laquelle la phase d'un électron est préservée. Les collisions élastiques ne change pas le phase: seules les collisions qui changent l'énergie de l'électron. Donc, c'est la longueur moyenne entre des collisions inélastiques.

Pour transport, c'est seul les électrons près de l'énergie Fermi qui participes. Donc, on introduit les éschelles de temps

$$L_m = v_F t_m$$
, $L_{\phi} = v_F t_{\phi}$

Le temps de relaxation de la quantité de mouvement et le temps de relaxation de phase: ce sont les temps pour un changement cumulatif de la quantité de mouvement de $\hbar k_F$ et de phase de π .

Vitesse dans l'etats Bloch

États de Bloch sont des états étendus et ont une vitesse typique. En effet,

$$\langle \mathbf{v} \rangle = \hbar^{-1} \frac{\partial E}{\partial \mathbf{k}}$$

Preuve:

L'action de la Hamiltonian sur un état de Bloch est

$$H \psi = E \psi \wedge \psi(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} u(\mathbf{r}) \rightarrow H(\mathbf{k}) u(\mathbf{r}) = E(\mathbf{k}) u(\mathbf{r}) \qquad H(\mathbf{k}) = H + \frac{\hbar^2}{im} \mathbf{k} \cdot \nabla + \frac{\hbar^2}{2m} k^2$$

On demande le développement de l'énergie comme:

$$E(\mathbf{k}+\mathbf{q})=E(\mathbf{k})+\mathbf{q}\cdot\frac{\partial E}{\partial \mathbf{k}}+\frac{1}{2}\mathbf{q}\mathbf{q}\cdot\frac{\partial^2 E}{\partial \mathbf{k}\partial \mathbf{k}}+\dots$$

Notez que la Hamiltonian peut être écrit comme

$$H(\mathbf{k}+\mathbf{q}) = H(\mathbf{k}) + \frac{\hbar^2}{m} \mathbf{q} \cdot \left(\frac{1}{i} \nabla + \mathbf{k}\right) + \frac{\hbar^2}{2m} q^2$$

Donc, on peut developper l'effet de "q" avec la theorie de perturbation

Vitesse dans l'etats Bloch

Alors, il suit que

$$E(\mathbf{k}+\mathbf{q})=E(\mathbf{k})+\int \overline{u}(\mathbf{r})\left(\mathbf{q}\cdot\frac{\hbar^{2}}{m}\left(\frac{1}{i}\nabla+\mathbf{k}\right)\right)u(\mathbf{r})d\mathbf{r}+O(q^{2})$$

On prende la limite $q \rightarrow 0$ de sorte que

$$\frac{\partial E}{\partial \mathbf{k}} = \lim_{\mathbf{q} \to 0} \frac{\partial E(\mathbf{k} + \mathbf{q})}{\partial \mathbf{q}} = \int \bar{u}(\mathbf{r}) \left(\frac{\hbar^2}{m} \left(\frac{1}{i} \nabla + \mathbf{k} \right) \right) u(\mathbf{r}) d\mathbf{r}$$

$$= \int \bar{\psi}(\mathbf{r}; \mathbf{k}) \left(\frac{\hbar^2}{m} \frac{1}{i} \nabla \right) \psi(\mathbf{r}; \mathbf{k}) d\mathbf{r}$$

$$= \langle \psi_k | \frac{\hbar^2}{im} \nabla | \psi_k \rangle$$

Mais, l'opérateur de vitesse est défini par

$$\mathbf{v} = \frac{d\mathbf{r}}{dt} = (1/i\hbar)[\mathbf{r}, H] = \mathbf{p}/m = \hbar \nabla/mi$$

Donc, on voit que

$$\frac{\partial E}{\partial \mathbf{k}} = \hbar \langle \mathbf{v} \rangle_{\mathbf{k}}$$

Ballistic transport ↔ pas le diffusion des électrons; le libre mouvement des électrons.

Le courant est transporté par des électrons ayant des énergies entre les deux resevoirs: $\mu_1 > E_q(k) > \mu_2$

$$L\!\ll\!L_{m}$$
 , $L_{\scriptscriptstyle \Phi}$

$$\mu_2 - \mu_1 = eV$$

$$I = \sum_{\substack{\mu_1 > E_q(k) > \mu_2}} \frac{e}{\underbrace{t(q,k)}} \left(\underbrace{\underbrace{f(E_q(k) - \mu_1)(1 - f(E_q(k) - \mu_2))}_{\text{prob. qu'il y a un electron dans 1 et un trou dans 2 avec } \underbrace{E_q(k)}_{\text{prob. pour la courant inverse}} - \underbrace{\underbrace{f(E_q(k) - \mu_2)(1 - f(E_q(k) - \mu_1))}_{\text{prob. pour la courant inverse}} \right)$$

$$= \sum_{\substack{\mu_1 > E_q(k) > \mu_2}} \frac{e}{L/v(q,k)} \left[f(E_q(k) - \mu_1) - f(E_q(k) - \mu_2) \right]$$

$$= \frac{e}{L} \sum_{\mu_1 > E_q(k) > \mu_2} v(q, k) \left(f(E_q(k) - \mu_1) - f(E_q(k) - \mu_2) \right)$$

$$L\!\ll\!L_{m}$$
 , $L_{\scriptscriptstyle \Phi}$

$$\mu_2 - \mu_1 = eV$$

$$\begin{split} I &= \frac{e}{L} \sum_{\mu_{1} > E_{q}(k) > \mu_{2}} v(q, k) \big(f(E_{q}(k) - \mu_{1}) - f(E_{q}(k) - \mu_{2}) \big) \\ &= \frac{e}{L} \sum_{\mu_{1} > E_{q}(k) > \mu_{2}} \hbar^{-1} \frac{\partial E_{q}(k)}{\partial k} \big(f(E_{q}(k) - \mu_{1}) - f(E_{q}(k) - \mu_{2}) \big) \end{split}$$

Repellez-vous que $\Delta k = \frac{2\pi}{L}$ donc

$$\begin{split} I = & \frac{e}{L} \times \sum_{\text{dégénérescence spin}} \times \frac{L}{2 \, \pi} \times \sum_{q} \int_{k>0} \hbar^{-1} \frac{\partial \, E_q(k)}{\partial \, k} \big(\, f \, \big(E_q(k) - \mu_1 \big) - f \, \big(E_q(k) - \mu_2 \big) \big) dk \\ = & \frac{2 \, e}{h} \int \big(\, f \, \big(E - \mu_1 \big) - f \, \big(E - \mu_2 \big) \big) M \, (E) \, dE \end{split}$$

$$L\!\ll\!L_m$$
 , L_ϕ

$$\mu_2 - \mu_1 = eV$$

$$I = \frac{2e}{h} \int \left(f(E - \mu_1) - f(E - \mu_2) \right) M(E) dE$$

$$\sim \frac{2e}{h} M(\mu_1 - \mu_2)$$

$$\sim \frac{2e^2}{h} M V_C$$

$$R_C = \frac{h}{2e^2} \frac{1}{M} = R_0 \frac{1}{M} = \frac{12.9}{M} \text{ k } \Omega$$
 resistence sans diffuseur

$$G_C = G_0 M = M \times 77.5 \times 10^{-6} \Omega^{-1}$$

"Contact resistence":

"Contact conductance"

$$L_{\phi} \ll L_{m} \ll L$$

Limite incohérentes: grande changement de phase dans le moyenne parcours libre

$$\mu_2 - \mu_1 = eV$$

Avec un seul diffuseur $(L \sim L_m)$

$$G = \frac{2e^2}{h} M \mathcal{T} = \frac{2e^2}{h} \sum_{ij}^{M} |t_{ij}|^2$$
 "Landauer formula" $\mathcal{T} = \text{transmission probability}$

$$R = R_0 \frac{1}{M \mathcal{T}}$$
 $R_{fil} = R - R_c = R_0 \frac{1 - \mathcal{T}}{M \mathcal{T}} = R_0 \frac{\mathcal{R}}{M \mathcal{T}}$ $\mathcal{R} = 1 - \mathcal{T} = \text{reflection probability}$

 $(L\gg L_m)$

$$L_{\phi} \ll L_m \ll L$$

$$\mu_2 - \mu_1 = eV$$

$$R_{fil} = R_c \frac{1 - T}{T}$$

Avec deux diffuseur

$$T_1$$

$$T_{12} = T_1 T_2 \Big[1 + R_1 R_2 + (R_1 R_2)^2 + ... \Big]$$

$$+$$
 T_1
 R_2
 $+$
 T_2

$$T_1$$
 R_2
 R_1
 R_2
 R_2

$$\mathcal{T}_{12} = \frac{\mathcal{T}_{1}\mathcal{T}_{2}}{1 - \mathcal{R}_{1}\mathcal{R}_{2}}$$

$$\frac{1 - \mathcal{T}_{12}}{\mathcal{T}_{12}} = \frac{1 - \mathcal{T}_{1}}{\mathcal{T}_{1}} + \frac{1 - \mathcal{T}_{2}}{\mathcal{T}_{2}}$$

Limite incohérentes: pas d'interférence donc, les probabilités somme.

$$L_{\phi} \ll L_m \ll L$$

$$\mu_2 - \mu_1 = eV$$

Avec deux diffuseur $(L \gg L_m)$

$$\frac{1-\mathcal{T}_{12}}{\mathcal{T}_{12}} = \frac{1-\mathcal{T}_{1}}{\mathcal{T}_{1}} + \frac{1-\mathcal{T}_{2}}{\mathcal{T}_{2}}$$

$$R_{fil} = R_{0} \frac{1-\mathcal{T}}{M \,\mathcal{T}}$$
(M constante)
$$R_{2 \, scatterer_{2}} = R_{scatterer_{1}} + R_{scatterer_{2}}$$
(N diffuseur)

$$R_N = R_0 \frac{1}{M} \times \sum_{j=1}^N \frac{1 - \mathcal{T}_j}{\mathcal{T}_i} = R_0 \frac{1}{M} \frac{L}{L_m} \frac{1 - \mathcal{T}}{\mathcal{T}}$$
, $\mathcal{T} = \text{transmission probabilite per } L_m$

$$R_{fil} = \frac{R_0}{M L_m} \frac{1 - \mathcal{T}}{\mathcal{T}} L$$
, $\mathcal{T} = \text{transmission probabilite per } L_m$

Résultat classique: constante résistance pour unité de longueur

"Ohm's law"

Localization

$$L_m \ll L_\phi \ll L$$

Limite cohérentes: l'interférence est importante donc, les amplitudes somme.

$$\mu_2 - \mu_1 = eV$$

$$t_{12} = \frac{t_1 t_2}{1 - r_1 r_2 e^{i\theta}}$$

 $t_{12} = \frac{t_1 t_2}{1 - r_1 r_2 e^{i\theta}}$ ou θ est le décalage de phase

$$\begin{split} \mathcal{T}_{12} &= |t_{12}|^2 = \frac{\mathcal{T}_1 \mathcal{T}_2}{1 - 2\sqrt{\mathcal{R}_1 \mathcal{R}_2} \cos \theta + \mathcal{R}_1 \mathcal{R}_2} \\ R_{12} &= \frac{R_0}{M} \langle \frac{1 - \mathcal{T}_{12}}{\mathcal{T}_{12}} \rangle_{\theta} = \frac{R_0}{M} \frac{1 + \mathcal{R}_1 \mathcal{R}_2 - \mathcal{T}_1 \mathcal{T}_2}{\mathcal{T}_1 \mathcal{T}_2} \\ R_{12} &= R_1 + R_2 + 2R_1 R_2 (M/R_0) \end{split}$$

Localization

$$L_m \ll L_\phi \ll L$$

Limite cohérentes: l'interférence est importante donc, les amplitudes somme.

$$\mu_2 - \mu_1 = eV$$

$$R_{12} = R_1 + R_2 + 2R_1 R_2 (M/R_0)$$

Soit partie 1 a longueur L est partie 2 longueur $\Delta L \sim L_m \ll L_{\phi}$

$$R(L+\Delta L)=R(L)+R(\Delta L)+2R(L)R(\Delta L)(M/R_0)$$

$$\rightarrow \Delta L \frac{dR(L)}{dL}=R(\Delta L)+2R(L)R(\Delta L)(M/R_0)$$

$$\rightarrow \Delta L \frac{dR}{dL}=(R_0/M)+2R$$

$$\Rightarrow R(L)=(R_0/2M)(e^{2L/\Delta L}-1)$$
"Localization"

Résumé: Types de Transport

$$L \ll L_m, L_{\phi}$$
 Ballistique

$$L_{\phi} \ll L_{m} \ll L$$
 Classique

$$L_m \ll L_{\phi} \ll L$$
 Localization

 L_m diminue par rapport de la concentration d'impurities.

 L_{ϕ} diminue par rapport de la concentration de phonons (e g la température).