Python From Scratch Python Sets

Lesson 8 Content

- Python Sets
- Access Set Items
- Add Set Items
- Remove Set Items
- Loop Sets
- Join Sets
- Python Set Methods
- Python Set Exercises

Python Sets

```
myset = {"apple", "banana", "cherry"}
```

Set

Sets are used to store multiple items in a single variable.

Set is one of 4 built-in data types in Python used to store collections of data, the other 3 are <u>List</u>, <u>Tuple</u>, and <u>Dictionary</u>, all with different qualities and usage.

A set is a collection which is unordered, unchangeable*, and unindexed.

* Note: Set *items* are unchangeable, but you can remove items and add new items.

Sets are written with curly brackets.

Example

```
Create a Set:
thisset = {"apple", "banana", "cherry"}
print(thisset)
```

Note: Sets are unordered, so you cannot be sure in which order the items will appear.

Set Items

Set items are unordered, unchangeable, and do not allow duplicate values.

Unordered

Unordered means that the items in a set do not have a defined order.

Set items can appear in a different order every time you use them, and cannot be referred to by index or key.

Unchangeable

Set items are unchangeable, meaning that we cannot change the items after the set has been created.

Once a set is created, you cannot change its items, but you can remove items and add new items.

Duplicates Not Allowed

Sets cannot have two items with the same value.

Example

```
Duplicate values will be ignored:
thisset = {"apple", "banana", "cherry", "apple"}
print(thisset)
```

Python - Access Set Items

Access Items

You cannot access items in a set by referring to an index or a key.

But you can loop through the set items using a for loop, or ask if a specified value is present in a set, by using the in keyword.

Example

```
Loop through the set, and print the values:
thisset = {"apple", "banana", "cherry"}

for x in thisset:
print(x)

Check if "banana" is present in the set:
thisset = {"apple", "banana", "cherry"}

print("banana" in thisset)
```

Python - Add Set Items

Add Items

Once a set is created, you cannot change its items, but you can add new items.

To add one item to a set use the add() method.

Example

```
Add an item to a set, using the add() method:
thisset = {"apple", "banana", "cherry"}
thisset.add("orange")
print(thisset)
```

Add Sets

To add items from another set into the current set, use the update() method.

Example

```
Add elements from tropical into thisset:

thisset = {"apple", "banana", "cherry"}

tropical = {"pineapple", "mango", "papaya"}

thisset.update(tropical)

print(thisset)
```

Add Any Iterable

The object in the update() method does not have to be a set, it can be any iterable object (tuples, lists, dictionaries etc.).

Example

```
Add elements of a list to at set:
```

```
thisset = {"apple", "banana", "cherry"}
mylist = ["kiwi", "orange"]
thisset.update(mylist)
print(thisset)
```

Python - Remove Set Items

Remove Item

To remove an item in a set, use the remove(), or the discard() method.

Example

```
Remove "banana" by using the remove() method:

thisset = {"apple", "banana", "cherry"}

thisset.remove("banana")

print(thisset)
```

Note: If the item to remove does not exist, remove() will raise an error.

Example

```
Remove "banana" by using the discard() method:
thisset = {"apple", "banana", "cherry"}
thisset.discard("banana")
print(thisset)
```

Note: If the item to remove does not exist, discard() will NOT raise an error.

You can also use the pop() method to remove an item, but this method will remove a random item, so you cannot be sure what item that gets removed.

The return value of the pop() method is the removed item.

Example

Remove a random item by using the pop() method:

```
thisset = {"apple", "banana", "cherry"}
x = thisset.pop()
print(x)
print(thisset)
```

Note: Sets are *unordered*, so when using the pop() method, you do not know which item that gets removed.

Example

```
The clear() method empties the set:

thisset = {"apple", "banana", "cherry"}

thisset.clear()

print(thisset)
```

```
The del keyword will delete the set completely:
thisset = {"apple", "banana", "cherry"}
```

```
print(thisset)
```

del thisset

Python - Loop Sets

Loop Items

You can loop through the set items by using a for loop:

Example

```
Loop through the set, and print the values:
thisset = {"apple", "banana", "cherry"}
for x in thisset:
print(x)
```

Python - Join Sets

Join Two Sets

There are several ways to join two or more sets in Python.

You can use the union() method that returns a new set containing all items from both sets, or the update() method that inserts all the items from one set into another:

Example

The union() method returns a new set with all items from both sets:

```
set1 = {"a", "b", "c"}
set2 = {1, 2, 3}
set3 = set1.union(set2)
print(set3)
```

Example

The update() method inserts the items in set2 into set1:

```
set1 = {"a", "b", "c"}
set2 = {1, 2, 3}
set1.update(set2)
print(set1)
```

Note: Both union() and update() will exclude any duplicate items.

Keep ONLY the Duplicates

The intersection update() method will keep only the items that are present in both sets.

Example

```
Keep the items that exist in both set x, and set y:
```

```
x = {"apple", "banana", "cherry"}
y = {"google", "microsoft", "apple"}
x.intersection_update(y)
print(x)
```

The intersection() method will return a new set, that only contains the items that are present in both sets.

Example

Return a set that contains the items that exist in both set \mathbf{x} , and set \mathbf{y} :

```
x = {"apple", "banana", "cherry"}
y = {"google", "microsoft", "apple"}
z = x.intersection(y)
print(z)
```

Keep All, But NOT the Duplicates

The symmetric difference update() method will keep only the elements that are NOT present in both sets.

Example

Keep the items that are not present in both sets:

```
x = {"apple", "banana", "cherry"}
y = {"google", "microsoft", "apple"}
x.symmetric_difference_update(y)
print(x)
```

The symmetric_difference() method will return a new set, that contains only the elements that are NOT present in both sets.

Example

Return a set that contains all items from both sets, except items that are present in both:

```
x = {"apple", "banana", "cherry"}
y = {"google", "microsoft", "apple"}
z = x.symmetric_difference(y)
print(z)
```

Python - Set Methods

Set Methods

Python has a set of built-in methods that you can use on sets.

Method	Description
add()	Adds an element to the set
clear()	Removes all the elements from the set
copy()	Returns a copy of the set
difference()	Returns a set containing the difference between two or more sets
difference_update()	Removes the items in this set that are also included in another, specified set
discard()	Remove the specified item
intersection()	Returns a set, that is the intersection of two other sets
intersection_update()	Removes the items in this set that are not present in other, specified set(s)
isdisjoint()	Returns whether two sets have a intersection or not
issubset()	Returns whether another set contains this set or not
issuperset()	Returns whether this set contains another set or not
pop()	Removes an element from the set
remove()	Removes the specified element
symmetric_difference()	Returns a set with the symmetric differences of two sets
symmetric difference update()	inserts the symmetric differences from this set and another
union()	Return a set containing the union of sets
update()	Update the set with the union of this set and others

Python - Set Exercises

Test Yourself With Exercises

Now you have learned a lot about sets, and how to use them in Python.

Are you ready for a test?

Try to insert the missing part to make the code work as expected:

Exercise:

```
Check if "apple" is present in the fruits set.

fruits = {"apple", "banana", "cherry"}

if "apple" fruits:

print("Yes, apple is a fruit!")
```