Portas Lógicas Básicas

Circuitos Digitais I

Porta NOT (Inversora)

Símbolo ANSI:

Símbolo IEEE

2

Tabela Verdade:

Entrada A	Saída Y
0	1
1	0

• Equação (booleana):

$$Y = \overline{A}$$

Porta AND

Símbolo ANSI:

Tabela verdade

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

Obs.: entradas \geq 1 e saídas = 1.

• Equação: $Y = A \cdot B$

A O B O Q

3

Porta OR

Símbolo ANSI:

Tabela verdade

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

Obs.: entradas \geq 1 e saídas = 1.

• Equação: Y = A + B

Note:

Primeiro Resumo

Name	Graphic symbol	Algebraic function	Truth table	
AND	$A \longrightarrow B$	$x = A \cdot B$ $x = AB$	A B x 0 0 0 0 1 0 1 0 0 1 1 1	<u>&</u>
OR	$A \longrightarrow B$	x x = A + B	A B x 0 0 0 0 1 1 1 0 1 1 1 1	<u></u>
Inverter	A — >>>	x = A'	A x 0 1 1 0	1
Buffer	A —	x = A	A x 0 0 1 1	

Variações

Name	Graphic symbol	Algebraic function	Truth table
			A B x
AND	A -	$ \begin{array}{c} A \\ \end{array} $ $ \begin{array}{c} x = A \cdot B \\ or $	0 0 0
AND	$B \longrightarrow$	x = AB	0 1 0
			1 0 0
			1 1 1
			$A B \mid x$
0.5	$A \longrightarrow$		0 0 0
OR	$B \longrightarrow$	$X = X \times A + B$	0 1 1
			1 0 1
			1 1 1
			A x
Inverter	A	-x x = A'	
			0 1
			1 0
D 66		*	$A \mid x$
Buffer	$A \longrightarrow$	-x x = A	0 0
			1 1

Name	Graphic symbol	Algebraic function		Trut tabl	
			A	В	
NAND	A —	-x x = (AB)'	0	0	
	$B \longrightarrow B$	x x = (111)	0	1	
			1	0	1
			1	1	
			A	В	1
NOR	$A \longrightarrow$	-x x = (A+B)'	0	0	
NOR	$B \longrightarrow$	-x x = (A+B)'	0	1	1
			1	0	
			1	1	

Variações

NAND A B Y AND 0 $Y = \overline{0 \cdot 0} = \overline{0} = 1$ 0 1 $Y = \overline{0 \cdot 1} = \overline{0} = 1$ 0 1 $Y = \overline{1 \cdot 0} = \overline{0} = 1$ 0 1 $Y = \overline{1 \cdot 1} = \overline{1} = 0$ 1

		NOR	
A	В	Y	OR
0	0	$Y = \overline{0+0} = \overline{0} = 1$	0
0	1	$Y = \overline{0+1} = \overline{1} = 0$	1
1	0	$Y = \overline{1+0} = \overline{1} = 0$	1
1	1	$Y = \overline{1+1} = \overline{1} = 0$	1

Tipo	IEEE Std 91/91a 1991	IEC 60617-12 1997	Álgebra Booleana	Tab verd	
Buffer	A — Q	A1Q	A	INPUT A 0 1	OUTPUT Q 0 1
NOT (inverter)	A — Q	A 1 Q	\overline{A} or $ eg A$	INPUT A 0 1	Q 1 0
AND	AQ	AQ	$A\cdot B$ or $A\wedge B$	INPUT A B 0 0 1 1 1 1	OUTPUT Q 0 0 1
OR	AQ	A	$A+B$ or $A \lor B$	INPUT A B 0 0 1 1 1 1	OUTPUT Q 0 1 1

Primeiro Resumo Portas Lógicas Básicas

Tipo	IEEE Std 91/91a 1991	IEC 60617-12 1997	Álgebra Booleana			bela dade
				INF	PUT	OUTPUT
				Α	В	Q
NAND	NAND A B O	A & Q	$\overline{A\cdot B}$ or $A\uparrow B$	0	0	1
MAINE			$A \cdot D \cup A \mid D$	0	1	1
				1	0	1
				1	1	0
				INF	PUT	OUTPUT
				Α	В	Q
NOR	$A \longrightarrow C$	A ≥1	$\frac{1}{A+D}$ or $A+D$	0	0	1
NON		в	$\overline{A+B}$ or $A\downarrow B$	0	1	0
				1	0	0
				1	1	0

Atenção

A	В	X
0	0	$X = \overline{0} \cdot \overline{0} = 1 \cdot 1 = 1$
0	1	X=/A*/B=/0*/1=1*0=0
1	0	X=/A*/B=/1*/0\\ 0*1=0
1	1	X=/A*/B=/1*/1=0*0=0

Equação NAND:

NAND:

A B Y AND

0 0
$$Y = \overline{0 \cdot 0} = \overline{0} = 1$$
 0

1 $Y = \overline{0 \cdot 1} = \overline{0} = 1$ 0

1 $Y = \overline{1 \cdot 0} = \overline{0} = 1$ 0

1 $Y = \overline{1 \cdot 1} = \overline{1} = 0$ 1

	3 input AND					
	Input			Output		
Α	В	С	W	Q		
0	0	0		0		
0	0	1		0		
0	1	0		0		
0	1	1		0		
1	0	0		0		
1	0	1		0		
1	1	0		0		
1	1	1		1		

Equação?

7411 Triple 3 Input AND

Note: basta uma entrada em nível lógico ALTO para saída comutar para nível lógico ALTO:

Álgebra de Boole:

$$x + 0 = x$$

$$x + 1 = 1$$

Note: TODAS as entradas devem estar em nível lógico ALTO para saída comutar para nível lógico ALTO:

Álgebra de Boole:

$$x \cdot 0 = 0$$

$$x \cdot 1 = x$$

Intro à Algebra de Boole:

Porta AND:

ENABLE

$$x \cdot 1 = x$$

INHIBIT

$$x \cdot 0 = 0$$

A porta AND pode funcionar como uma "chave" com Entrada de "Enable"

Porta OR:

Note:

$$x + 1 = 1$$

$$x + 0 = x$$

Variação

ENABLE

$$\int_{B=1}^{X=\bar{A}} \int_{B}^{X=\bar{A}} \sqrt{1}$$

$$\int_{B=0}^{X=A} \int_{X=-A}^{X=-A} \int_{A}^{X=-A} \int_{A}^{X=-A}$$

$$\int_{B=0}^{X=\bar{A}} \int_{\infty}^{X=\bar{A}} \sqrt{1}$$

INHIBIT

$$\int_{B=0}^{X=1} X = 1$$

$$\int_{B=1}^{X=1} X = 1$$

$$\int_{B=1}^{X=1} \sum_{x=1}^{X=1}$$

Porta AND: Note:

$$x \cdot 0 = 0$$

$$x \cdot 1 = x$$

Porta OR:

Note:

$$x + 0 = x$$

$$x + 1 = 1$$

Ref	A	В	С	A • B	X	
0	0	0	0	0	0	Porta OR:
1	0	0 ($\bigcirc{1}$	0	1	Basta uma
2	0	1	0	0	0	entrada = "1",
3	0	1	1	0	1	Saída = "1"
4	1	0	0	0	0	
5	1	0	1	0	1	
6	1	1	0	1	1	
7	1	1	1	1	1	

16

Saída da AND = "1" apenas Quando TODAS as entradas = "1".

Circuitos Digitais I

Ref	Α	В	C	A • B	X	
0	0	0	0	0	0	P
1	0	0 (\bigcirc	0	1	B
2	0	1	0	0	0	е
3	0	1	1	0	1	S
4	1	0	0	0	0	
5	1	0	1	0	1	
6	1	1	0	1	1	
7	1	1	1	1	1	
			J			

Porta OR:
Basta uma
entrada = "1",
Saída = "1"

 Ref
 A
 B
 C
 A B
 X

 0
 0
 0
 0
 0

 1
 0
 0
 1
 0

 2
 0
 1
 0
 0

 3
 0
 1
 1
 1

 4
 1
 0
 0
 0

 5
 1
 0
 1
 1

 6
 1
 1
 0
 0

 7
 1
 1
 1
 1

Porta AND:
Basta uma
entrada = "0",
Saída = "0"

Saída da AND = "1" apenas

Quando TODAS as entradas = "1".

Circuitos Digitais |

Porta OR:
Basta uma entrada = "1",
Saída = "1"

Exemplo:

- Que porta é esta?

Diagrama de formas de onda

Exemplo:

Últimas portas: XOR e NXOR

XOR: eXclusive OR:

NXOR: Negative eXclusive OR:

Desenhando circuitos:

• a)
$$x = \overline{A}BC\overline{(A+D)}$$

• b)
$$y = AC + B\overline{C} + \overline{A}BC$$

• c)
$$z = \left[D + \overline{(A+B)} C\right] E$$

- Quando Q comuta para nível lógico ALTO?

- Quando F comuta para nível lógico ALTO?

- Quando Y comuta para nível lógico ALTO?

- Complete a forma de onda na saída E (deduza a tabela verdade para E):

- Quando Q comuta para nível lógico ALTO?

