

Deep Learning based Text Processing

Lec 12: Sequence to Sequence Model with RNN

Overview of Course (III)

Introduction to Recurrent Neural Network

- ✓ Simple RNN, BPTT, Memory Cell
- ✓ Code: Implementing an RNN with Keras

Introduction to Long-Short Term Memroy

- ✓ Cell state, LSTM, and GRU, and Applications
- ✓ A Visual Guide to Recurrent Layers in Keras
- ✓ Code: A simple LSTM layers

Text generation with RNN

- ✓ Tokenizer, Character-Level Language model
- ✓ Code: Alice's Adventures in Wonderland

Sequence to Sequence Learning model with RNN

- ✓ Introduction to Seq2Seq and Attention model
- ✓ Code: Character-Level Neural Machine Translation

Review the last class:

Character-level language model

Last time: Text Generation using RNN

The_quick_br..._dog.

<source> http://www.realworldnlpbook.com/blog/training-a-shakespeare-reciting-monkey-using-rl-and-seqgan.html

Last time: Text Classification Model (IMDB Dataset)

Today: Training Sequence modelling

"Modeling word probabilities is really difficult"

Supervised learning

 $\{x,y\}_i$

Sequence modelling

 $\{x\}_i$

Model

Data

$$y \approx f_{\theta}(x)$$

$$p(x) \approx f_{\theta}(x)$$

Loss

$$\mathcal{L}(\theta) = \sum_{i=1}^{N} l(f_{\theta}(x_i), y_i)$$

$$\mathcal{L}(\theta) = \sum_{i=1}^{N} \log p(f_{\theta}(x_i))$$

Optimisation

$$\theta^* = \arg\min_{\theta} \mathcal{L}(\theta)$$

$$\theta^* = \arg\max_{\theta} \mathcal{L}(\theta)$$

Modeling p(x)

Simplest model:

Assume independence of words

$$p(\mathbf{x}) = \prod_{t=1}^{T} p(x_t)$$

p("modeling") × p("word") × p("probabilities") × p("is") × p("really") × p("difficult")

Word	p(x _i)
the	0.049
be	0.028
really	0.0005

Modeling p(x)

More realistic model:

Assume conditional dependence of words

$$p(x_T) = p(x_T | x_1, ..., x_{T-1})$$

Modeling word probabilities is really

Context

Target	p(x context)
difficult	0.01
hard	0.009
fun	0.005
•••	•••
easy	0.00001

Modeling p(x)

The chain rule

Computing the joint p(x) from conditionals

Modeling

Modeling word

Modeling word probabilities

Modeling word probabilities is

Modeling word probabilities is **really**

Modeling word probabilities is really difficult

$$p(\mathbf{x}) = \prod_{t=1}^{T} p(x_t | x_1, ..., x_{t-1})$$

$$p(x_1)$$

 $p(x_2|x_1)$
 $p(x_3|x_2, x_1)$
 $p(x_4|x_3, x_2, x_1)$
 $p(x_5|x_4, x_3, x_2, x_1)$
 $p(x_6|x_5, x_4, x_3, x_2, x_1)$

Recurrent Neural Networks (RNNs)

Learning to model word probabilities

✓ Vectorising the context

 $\mathbf{f}_{\boldsymbol{\theta}}$ summarises the context in $\boxed{\boldsymbol{h}}$ such that:

$$p(x_t|x_1,...,x_{t-1}) \approx p(x_t|h)$$

Desirable properties for f_{θ} :

- Order matters
- Variable length
- Learnable (differentiable)

Recurrent Neural Network Language Model (RNNLM)

- Persistent state "h" stores information from the context observed so far
- (Example)
 - ✓ Predicts the next word from a word sequence

"What will the fat cat sit on"

RNNLM: Training Process

$$\mathbf{h}_{t} = \tanh(\mathbf{W}_{h}\mathbf{h}_{t-1} + \mathbf{W}_{x}\mathbf{x}_{t})$$

$$p(\mathbf{x}_{t+1}) = softmax(\mathbf{W}_{y}\mathbf{h}_{t})$$

$$\mathcal{L}_{\theta}(\mathbf{y}, \mathbf{\hat{y}})_{t} = -\mathbf{y}_{t}\log\mathbf{\hat{y}}_{t}$$

RNNLM: Teacher Forcing Learning

Sequence to Sequence (Seq2Seq) Neural Machine Translation

What a seq2seq model looks like

Seq2Seq

- ✓ The encoding process is analogous to a teacher explaining to you what an elephant looks like and you create a mental image of that.
- ✓ The decoding process takes place if a friend of yours ask what an elephant looks like.

What is a Seq2Seq model?

- Sequence-to-sequence (Seq2Seq) for machine translation
 - ✓ Encoder is "forced" to send only a single vector, regardless of the length of our input
 - ✓ The last hidden state becomes the content vector that is sent to the decoder.

Word embedding and an example of Seq2Seq

- Decoder is essentially an RNNLM (RNN Language Model)
 - ✓ Teacher Forcing Learning
 - ✓ Softmax for next prediction word

Limitation of Seq2Seq model

A single Context vector

✓ compress all the information into one fixed-size vector results in information loss.

<source> https://bgg.medium.com/seq2seq-pay-attention-to-self-attention-part-1-d332e85e9aad

Attention in RNNs

Seq2seq model & Attention-based model

 The difference between Seq2seq model and attention model is the calculation of context vector

How do I translate the sentence by machine?

- Attention mechanism proposed by Bahdanau et al. (2015)
 - ✓ We compute a "context vector" (weighted average) of the states which correspond to some notion of "importance"

image borrowed from Richard Johansson (Chalmers Technical University and University of Gothenburg)

RNN encoder-decoder architecture

An RNN encoder-decoder architecture

- ✓ we take an architecture with 4 time steps for simplicity
- ✓ a single context vector, c, which can casue information loss

RNNs with an attention mechanism

Attention Mechanism

"importance score",

$$e_{ij} = fc(s_{i-1}, h_j)$$

"attention weight",

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1} \exp(e_{ik})}$$

"context vectors",

$$c_i = \sum_j \alpha_{ij} h_j$$

Attention Mechanism

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1} \exp(e_{ik})}$$

$$e_{ij} = fc(s_{i-1}, h_j)$$

Computing the attention weights and context vectors

- the decoder is first involved by inputting its initial state vector s0
 - ✓ we have the first attention input sequence,
 - [s0, h1], [s0, h2], [s0, h3], [s0, h4]

Computing the attention weights and context vectors

- ❖ The first set of attention weights a11, a12, a13, a14
 - ✓ enabling the computation of the first context vector c1
 - √ The decoder now uses [s0,c1] and computes the first RNN output y1

Computing the attention weights and context vectors

It computes a fourth set of attention weights a41, a42, a43, a44 enabling the computation of the fourth context vector c4

An example task is English-French machine translation

- ✓ Each pixel shows the weight aij of the j-th source word and the i-th target word, in grayscale
- ✓ The larger attention parameters (given by the white pixels) connect corresponding parts of the English and French sentences

Attention Based Model

<source> https://bgg.medium.com/seq2seq-pay-attention-to-self-attention-part-1-d332e85e9aad

Comparing RNNs to Transformers

RNNs

- (+) LSTMs work reasonably well for long sequences.
- (-) Expects an ordered sequences of inputs
- (-) Sequential computation: subsequent hidden states can only be computed after the previous ones are done.

Transformers:

- (+) Good at long sequences. Each attention calculation looks at all inputs.
- (+) Can operate over unordered sets or ordered sequences with positional encodings.
- (+) Parallel computation: All alignment and attention scores for all inputs can be done in parallel.
- (-) Requires a lot of memory: N x M alignment and attention scalers need to be calculated and stored for a single self-attention head. (but GPUs are getting bigger and better)

Character-Level Neural Machine Translation

- Seq2Seq
 - ✓ https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html
- Seq2seq may basically have different lengths of the input sequence and the output sequence
- Corpus with two or more languages in parallel
 - √ http://www.manythings.org/anki
 - fra-eng.zip
 - kor-eng.zip

