2019년 8월 14일 수요일 오후 7:27

If suffices to prove that there exists $(x,y) \Rightarrow$

$$\begin{cases} x^{2} + (y-r)^{2} \leq r^{2} \\ y \leq |x|^{p} & (| 0 \end{cases}$$

We can let (suppose x,y < ()) $y = |x|^q$, p < q < 2 and then $y \le |x|^p$ For the first Inequality, it is $|x|^q - 2|x|^q + |x|^2 \le 0$. Since q < 2, for sufficiently small x, $r|x|^q \ge |x|^2 \ge |x|^2$,