

TỔ CHỨC VÀ CẦU TRÚC MÁY TÍNH II Chương 5 Ứng dụng Mạch số

11/7/2020

Nội dung

Hiện thực chức năng máy tính

- ALU
- Bộ chọn (Mux)
- Bộ cộng
- Bộ so sánh
- Tập thanh ghi
- Bộ giải mã
- Bài tập

11/7/2020

Hiện thực chức năng máy tính

- Hiện thực chức năng:
 - ☐ Xử lý dữ liệu
 - ☐ Số học và luận lý
 - ☐ So sánh
 - ☐ Lưu trữ dữ liệu
 - □ Bộ nhớ
 - ☐ Truyền/Nhận dữ liệu
 - ☐ Địa chỉ
 - ☐ Dữ liệu
 - ☐ Điều khiển

ALU (Arithmetic & Logic Unit)

Opcode[2:0]	Phép toán
000	A + B
001	A + 1
010	A – B
011	A - 1
100	A & B
101	A B
110	
111	

Bộ chọn (1/3)

■ Bộ chọn là một mạch tổ hợp có chức năng **lựa chọn** một trong **những ngõ vào dữ liệu** để gửi tới **một ngõ ra duy nhất** dựa trên các ngõ vào điều khiển.

S	D1	D0	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

S	Y
0	D0
1	D1

■ Thiết kế bộ chọn bên dưới, sau đó điều chỉnh các ngõ vào để hiện thực hàm Boolean F = A + B

S	D 1	D0	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Bộ chọn (2/3) – Mux4

S1	S0	Y
0	0	D0
0	1	D1
1	0	D2
1	1	D3

Thiết kế Mux8 từ Mux4 và Mux2

Bộ chọn (3/3) - Bus

S	Y[7]	Y[6]	Y[5]	Y[4]	Y[3]	Y[2]	Y[1]	Y[0]
0	D0[7]	D0[6]	D0[5]	D0[4]	D0[3]	D0[2]	D0[1]	D0[0]
1	D1[7]	D1[6]	D1[5]	D1[4]	D1[3]	D1[2]	D1[1]	D1[0]

Bộ cộng (1/3)

■ Bộ cộng là một mạch tổ hợp có chức năng thực hiện phép toán cộng số học.

$$S = A + B$$

• Ví dụ:

$$\Box$$
 A = 5, B = 7 -> S = 5 + 7 = 12

$$\Box$$
 A = -5, B = -9 -> S = -5 + -9 = -14

$$\Box$$
 A = -100, B = 79 -> S = -100 + 79 = -21

Bộ cộng (2/3) – Cấu tạo

Bộ cộng (3/3) – Full Adder

Cin	A	В	Cou	S
			t	
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0

Thiết kế bộ cộng toàn phần theo bảng chân trị bên dưới

Cin	A	В	Cou	S
			t	
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0

Bộ so sánh (1/2)

$$\bullet$$
 A == 0

Bộ so sánh (2/2)

■ A?B

$$\square Y = A - B$$

$$Y = 0 - A = B$$

$$\square$$
 Y[MSB] = 1 -> A < B

- Việc thiết kế bộ so sánh 2 số bất kỳ tốn rất nhiều tài nguyên
 □ Bảng chân trị có 2²n hàng!!!
- Gải pháp: Kết hợp bộ so sánh và ALU có sẵn

Tập thanh ghi (1/2)

- Tập thanh ghi là một bộ nhớ dùng để lưu trữ dữ liệu tạm để được xử lý bởi các đơn vị xử lý (chẳng hạn như ALU)
- Cấu tạo: Mảng 1 chiều của các thanh ghi

Tập thanh ghi (2/2) – Thanh ghi cải tiến

- Tách riêng địa chỉ ghi dữ liệu và địa chỉ đọc dữ liệu cho tập thanh ghi
- Đề xuất cách đọc dữ liệu cùng lúc 2 thanh ghi trong tập thanh ghi

Bộ giải mã

Bộ giải mã là một mạch tổ hợp có chức năng chuyển thông tin nhị phân từ các ngô vào tới từng ngô ra

E	I1	I0	Z3	Z2	Z 1	Z 0
N						
0	X	X	0	0	0	0
1	0	0				1
1	0	1			1	
1	1	0		1		
1	1	1	1			

Thiết kế bộ giải mã bên dưới, sau đó điều chỉnh các ngô vào và bổ sung cổng luận lý OR để hiện thực hàm Boolean:

$$F = A(B + C)$$

Bài tập (1/2)

- Thiết kế bộ chọn (Mux2)
- Thiết kế bộ trừ 2 số 8 bit
- Thiết kế bộ giải mã 2:4
- Thiết kế bộ giải mã 2:4 với ngõ vào EN
- Bộ giải mã địa chỉ có 4 ngõ vào thì có tối đa bao nhiều ngõ ra?
- Tập thanh ghi có 32 thanh ghi, mỗi thanh ghi 32 bit thì độ rộng bit của các trường ADDR, DATA_IN, DATA_OUT, WE là bao nhiêu?

Bài tập (1/2)

- Sử dụng Mux để hiện thực các hàm Boolean sau:
 - \square F = AB
 - \Box $F = \sim A$
- Thiết kế bộ giải mã 3:8 từ các bộ giải mã 2:4 và cổng NOT

THẢO LUẬN

