5 Integrated Circuit Technology

- 5.1 CMOS Manufacturing Process / CMOS Process Modules
- 5.2 Specific Aspects of sub 100 nm CMOS Technology
 - 5.2.1 Strained Silicon & Stressor Technology
 - 5.2.2 High-k / Metal gate (HKMG)
 - 5.2.3 SOI MOSFETs

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 5.1 - 1

Status: 10.06.2015

5.1 CMOS Manufacturing Process

(0.25 µm and below)

Sources:

- Semiconductor Manufacturing Technology, Michael Quirk, Julian Serda, Prentice Hall, 2001
- www.usna.edu/EE/ee452/LectureNotes/02-CMOS_Process_Steps/09_Process_Flow_Overview.ppt
- www.lpm.u-nancy.fr/webperso/nanomag/download/Cours%20Micro-Nano/Techno%20CMOS_Chihiwu/ch13%20rev3.ppt

CMOS Technology

- First proposed in the 1960s. Was not seriously considered until the severe limitations in power density and dissipation occurred in NMOS circuits
- Now the dominant technology in IC manufacturing
- Employs both pMOS and nMOS transistors to form logic elements
- The advantage of CMOS is that its logic elements draw significant current only during the transition from one state to another and very little current between transitions - hence power is conserved.
- In the case of an inverter, in either logic state one of the transistors is off. Since the transistors are in series, nearly no current flows.

Model of Typical Wafer Flow in a Sub-Micron CMOS IC Fab

CHOPATHE UNIVERSALES (BERNALLE Processes: Diffusion, Oxidation, Anneal, Epi

Only for internal use at TU Chemnitz for study purposes.
Unauthorized copying and distribution is prohibited.

Chapter 5.1 - 3

CMOS Manufacturing Steps (0.25 µm and below)

6 ... 8 weeks involve up to 400 process steps

Process Modules

Fraunhofer

- 1. Shallow Trench Isolation (STI)
- 2. Twin-well Implants
- 3. Gate Structure
- Lightly Doped Drain Implants
- 5. Sidewall Spacer
- 6. Source/Drain Implants
- 7. Contact Formation
- 8. Local Interconnect
- Via-1 / Metal 1 Formation
- 10. Via-2 / Metal 2 Formation
- 11. Via-3 / Metal 3 Formation
- 12. Via-4 / Metal 4 Formation
- 13. Bond Pad Metal & Passivation
- 14. Parametric Testing

Full 0.18 µm CMOS Cross Section

STI Trench Etch

- STI = Shallow Trench Isolation (replaces LOCOS at 0.25 μm and below, provides planar surface, no "bird's beak")
- Silicon substrate is p⁺, in order to create a conductive ground plane which establishes the ground zero reference voltage across the chip.
- A thin p- layer ① is epitaxially grown on top to reduce capacitance and also to prevent cross-talk latch-up.
- A thin SiO₂ layer (pad oxide, 15 nm) ② is thermally grown (dry O₂) to protect active areas from excessive damage during ion implantation and to control the depth distribution of dopants.
- Upon the SiO₂, a layer of Si₃N₄ ③ is deposited by LPCVD. Typically ammonia and dichlorosilane are introduced at medium temperature (750°C) and a layer about 150 nm is formed. Si₃N₄ is a <u>high quality masking material</u> in case the photoresist fails during trench etch. The trench etch step is highly energetic, and the Si₃N₄ layer <u>protects</u> the areas where the devices will be formed. Furthermore, the Si₃N₄ layer is used later as a <u>CMP stop</u>.
- Photoresist is deposited and patterned 4 (1st mask). Then plasma etching (5) uses high intensity RF to ionize either fluorine or chlorine based gases. The F or Cl ions react with the exposed Si₃N₄. SiO₂ and silicon, forming gaseous reaction products.

Fraunhofer

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 5.1 - 5

STI Oxide Fill

- Formation of about 15 nm liner oxide ① in the trench by dry thermal oxidation at medium temperature (750 °C) to improve the interface between silicon and trench CVD oxide.
- Next a thick layer of CVD oxide, is deposited ②. This layer will act primarily as a fill
 to the isolation trenches and is similar to the "Field Oxide" in former LOCOS
 processes.

ZfM

STI Formation

- Trench oxide polish (CMP) ①. Nitride acts as the CMP stop layer
- Densification of STI oxide at 900 °C ②
- Nitride strip ③ in hot (150 to 200 °C) phosphoric acid (H₃PO₄) solution (high selectivity to silicon oxide)

Fraunhofer FNAS

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 5.1 - 7

n-well Formation

- Photoresist ① is used as a mask for the ion implantation (2nd mask). The ions do not have enough energy to penetrate through the photoresist. Except for the holes in the photoresist, these implanted ions lodge in the photoresist. When this layer is removed the implanted ions in the photoresist are removed also.
- The thin layer of oxide is left over in the n-well during implantation. This is a "sacrificial oxide", usually only 15 nm thick, which prevents contamination of the region which will hold the gate oxide. The gate oxide must be totally defect free to operate smoothly in an integrated circuit, so its position is always protected until the high quality gate oxide is deposited.
- Chained P-implants @
 - for retrograde n-well (700 850 keV, ~1E13 cm⁻²)
 - for punch through suppression and channel stop
 - for V_{Tp} adjustment

Threshold Voltage Adjustment

$$V_T = V_{FB} + 2\phi_F + \frac{\gamma}{\sqrt{2\phi_F + V_{SB}}}$$

n channel MOSFET

$$\gamma = \left(\frac{t_{OX}}{\epsilon_{OX}}\right) \sqrt{2\epsilon_{S} \rho^{N}}$$

$$\phi_F = \frac{kT}{q} \ln \frac{N}{n_i}$$

 $\begin{array}{lll} V_{SB} & \text{substrate bias voltage} \\ V_{FB} & \text{flat band voltage} \\ \phi_F & \text{surface potential (diffusion potential of Si)} \\ \gamma & \text{body effect parameter} \\ N & \text{dopant concentration in the substrate} \\ t_{ox} & \text{oxide thickness} \\ \epsilon & \text{dielectric constant} \end{array}$

 V_T depends on V_{SB} and a constant γ which depends on substrate doping N

Increasing V_{SB} causes the channel to be depleted of charge carriers and thus the threshold voltage is raised

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 5.1 - 9

p-well Formation

- A new photoresist pattern ① is used for the p-well ion implantation mask (3rd mask).
- The thin layer of oxide is left over in the p-well during implantation, which prevents contamination of the region which will hold the gate oxide.
- Chained B+ implants ②:
 - for retrograde p-well (350 500 keV, ~1E13 cm⁻²)
 - for punch through suppression and channel stop (100 keV, ~4E12 cm⁻²)
 - for V_{Tn} adjustment (30 keV, ~5E12 cm⁻²)
- Resist stripping
- Annealing to repair damage and to drive the dopants deeper (900°C, 30 min or 1100°C, 30 s RTP) ③.
- Oxide removal 4

Poly Gate Structure Process

- Formation of ~2.5 nm highest quality SiO₂ (gate oxide) by dry thermal oxidation at 1000 °C.
- Polysilicon (~300 nm) is then deposited on the wafer by PECVD using silane (SiH₄) ②.
 Since the temperature is moderate (< 500 °C) the silicon forms in poly-crystalline grains.
- Deposition of antireflective coating (ARC)
- Photoresist is applied and the most critical litho is done incl. resist developement ③
 (4th mask, defines poly gates and local poly interconnects). The gate width is the finest dimension which will be required.

ZfM Fraunhofer

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 5.1 - 11

Poly Gate Structure Process

- The ARC, polysilicon and the gate oxide is then dry etched (anisotropic etching)
- Photoresist is stripped
- · ARC is removed by selective wet etch

n-LDD Implant

The concept of <u>Lightly Doped Drain (LDD)</u> is to prevent "punch-through". Because the gate is so narrow, the electric fields of the S/G and G/D junctions are so close that energetic thermal electrons might just jump the gap (S/D leakage). By reducing the doping of the drain (whose field controls the device current) this reduces the number of available electrons with high velocity. The source and drain contacts are typically made using an <u>implantation of arsenic ions</u>. Large mass implant (As instead of P) and surface amorphization helps to maintain a shallow junction. Use of <u>Self-Aligned Gate</u> to form Source/Drain.

- Screening oxide deposition (CVD)
- 5th mask ①, almost identical to that creating the original p-well (3rd mask)
- As implant (3E13 3E14 cm⁻²) 2

ZfM Fraunhofer

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 5.1 - 13

p-LDD Implant

- Photoresist ① is deposited and patterned (6th mask).
- BF₂ is implanted (3E13 3E14 cm⁻²) for the Source and Drain of the pMOS cell ②. Large mass implant (BF₂ instead of B) and surface amorphization helps to to maintain a shallow junction. The implanted F will diffuse out of the wafer at the next heat treatment since silicon crystal is inhospitable to the incorporation of F atoms.

Side Wall Spacer Formation

Polysilicon will be the electrical contact for the Gate. It must be protected from the metallic contacts to the Source and Drain, so a thin "side-wall spacer oxide" (or nitride) is deposited on the side of the Gate to obtain electrical isolation. This spacer will also keep the next implantation (which completes the construction of the source and drain) away from the edge of the Gate. This will also reduce punch-through.

- A thin SiO₂ layer ① (100 nm) is deposited using CVD. Since the CVD is conformal, the oxide will coat both horizontal and vertical surfaces equally.

 reserving the correct angles between
- Without using photoresist, this oxide is immediately removed using a directional anisotropic etch ②. The etch will remove the flat (horizontal) oxide and leave the vertical SiO₂ on the sides of the Gate. This process *omits* a lithography step.

Fraunhofer

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 5.1 - 15

n+ Source/Drain Implant

A second implant is made into the Source and Drain, and also into the Isolation Trench. The S/D implant is slightly narrower than the previous LDD implant because the Gate now includes the "gate side-wall spacer" which was deposited in the previous step. Hence the Source and Drain will be lightly doped next to the Gate, reducing punchthrough, and more heavily doped where the metallic contacts will connect. This implant does double-duty by also forming a heavily doped junction in the isolation well, reducing any communication between this CMOS cell and the adjacent one.

- Photoresist is deposited, exposed, and developed (7th mask) ①.
- A high dose arsenic implant (1 5E15 cm⁻²) is made ② simultaneously doping the poly gate.
- Resist stripping

p+ Source/Drain Implant

- The pMOS device is patterned (8th mask) ①
- and implanted with boron ② (1 5E15 cm⁻²)
- Resist stripping
- After this step, the damage to the wafer from the series of implantation must be annealed ③. This process may be complex, with multiple stages of anneal such as 550 °C for 30 min + 750 °C for 10 min + 1000 °C for 20 min. These <u>multiple anneals</u> are necessary to eliminate the <u>intermediate defect clusters</u> that form as the silicon recrystallizes and places the dopant atoms into substitutional sites of the Si lattice.

RTA can be used to prevent dopant spreading and to control diffusion of dopants.

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 5.1 - 17

Contact Formation

<u>Metal contacts</u> and <u>highly conductive gate lines</u> are formed by using the fact that many metals (e.g. Ti, Co, Pt) will not react with SiO₂, but will easily form silicides with bare silicon. Here Ti metal is used. During a moderate heat treatment, the Ti/Si interface undergoes <u>solid-phase reactions</u> forming TiSi₂. This contact is a perfect ohmic contact with the silicon substrate (no intrinsic fields are present). <u>The Ti which is in contact with the SiO₂, does not react</u>. A a selective metal wet etch will remove this Ti. The already reacted and formed TiSi₂ in the contact areas and on poly lines will not be etched This self-aligned silicide process *omits* a lithography step (self-aligned silicide (salicide) formation)

- Removal of oxide from S/D and poly gate
- Sputtering metal with argon ①
- Anneal to form TiSi₂ (RTP1) ②
- Chemical wet etching to remove unreacted Ti, leaving TiSi₂ (selective etching)
- Anneal to form low resistivity TiSi₂ (RTP2)

Why do we use silicides?

- Doped poly-Si $\rho = 4500 \ \mu\Omega \text{cm}$ $\rho/\text{H} 300 \ \Omega/\text{square}$ $R = \rho/\text{H x W/L}$
- Silicided poly-Si $\rho = 18 \ \mu\Omega \text{cm}$ $\rho/\text{H} = 6 \ \Omega/\text{square}$ $R = \rho/\text{H} \ x \ W/L$

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 5.1 - 19

Why do we use silicides?

 $L = 0.13 \mu m$

 $\begin{aligned} R_{contact}: & \ \rho = 10^{\text{-5}} \text{--} \ 10^{\text{-6}} \ \Omega \ cm^2 \\ R_{series}: & \ R_{sheet} = 100 \ \Omega \ / \text{square} \end{aligned}$

 $\rho \sim 10^{\text{-}7} \ \Omega \ \text{cm}^2$ $R_{\text{sheet}} = 6 \ \Omega \ / \text{square}$

Advanced Integrated Circuit Technology

TiSi₂

Ti/Si reactions: diffusion control nucleation control Si moving structural change

Anneal Phase Resistivity:

RTP1: $700 - 750 \,^{\circ}\text{C}$ C49 phase $80 - 120 \,\mu\,\Omega$ cm

RTP2: 800 - 900 °C C54 phase $20 \mu \Omega$ cm

Si consumption ~ silicide thickness

Selective wet etching: $NH_4OH / H_2O_2 / H_2O$

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 5.1 - 21

Local Interconnect (LI) Dielectric Formation

Following steps for initial oxide coating and patterning:

- Thin layer of Si₃N₄ is deposited (CVD, 100 nm), to protect all active components from contamination ①.
- Thick SiO₂ is deposited (CVD, 1000 nm, ②). This oxide is usually doped with boron or phosphorus (BSG, PSG, BPSG) to obtain better dielectric qualities.
- CMP planarizes the SiO₂ layer, until it is a smooth layer about 800 nm above silicon,
- "Trenches/Holes" 4 are patterned on the SiO₂ layer using lithography (9th mask) and directional plasma etching.

Fraunhofer

Local Interconnect (LI) Metal Formation

- A few nm Ti are deposited (IPVD, CVD) ①, acting as adhesion layer.
- A thin layer of TiN is immediately applied (IPVD, CVD, ~20 nm, ②) acting as a diffusion barrier to prevent the next metal from chemically interacting with the active components. The film should be thin enough to add only little electrical resistance.
- Tungsten is deposited (CVD using WF₆) to fill all trenches and holes ③.
- A CMP polish is finally applied to remove the access metal and planarize the surface ①.
- Thus "W plugs" were formed to connect to upper metal lines.

This concludes the *Front End of Line (FEOL)* wafer processing.

Only for internal use Figue Ch22nnitz for study purposes.
Unauthorized copying and distribution is prohibited.

Chapter 5.1 - 23

Back End of Line (BEOL)

The "Back End of Line" adds all the interconnections between modules to make the final integrated circuit.

Each layer of interconnections is separated by a dielectric layer with holes (vias) which reach down to the IC active components.

Each layer is planarized before the next the next layer is deposited.

Normally, the layers alternate with horizontal and vertical lines.

Metal Layers in a Chip

4 LM after insulator removal (Micrograph courtesy of Integrated Circuit Engineering)

Fraunhofer

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 5.1 - 25

Via-1 Formation (Patterning)

- PECVD of SiO₂ ①
- Lithography (10th mask)
- Reactive ion etching@ to make via holes to LI (S/D and G)

Via-1 Formation (W plug formation)

Plug = Metal core in via hole

- Deposit thin layer of Ti (IPVD, CVD, 5 nm, ①) as adhesion layer at the bottom and sides of the via holes.
- Deposit thin layer of TiN (IPVD, CVD, 20 nm,2) for a diffusion barrier.
- Deposit tungsten (CVD, 800 nm, using WF₆, ③) to fill all the via openings.
- Use tungsten CMP process ④ to polish the tungsten and TiN/Ti down to a planarized surface of W within the SiO₂.

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 5.1 - 27

ZfM

M1 Interconnect Formation (Al subtractive)

As an example of BEOL processing, an Aluminum metallization is formed. The metal stack is a fundamental block which can be reproduced for multiple interconnect layers.

- As before, a thin layer of titanium ① is sputtered onto the wafer (which contains vias plugs and insulator) as adhesion layer (glue) between the Al wires and the underlayers.
- The metallization will be Al (2, 1-3% Cu, 200 nm), deposited using sputtering. The Cu is added to prevent electromigration during device operation.
- A thin TiN (3, 50 nm, sputtered) is deposited to act as an anti-reflective coating (ARC) over the metal. Without this, the next photoresist exposure would be non-uniform with the resist over the metal (since metal reflects light back).
- Photoresist is applied, exposed (11th mask) and patterned, then the 3-layer metal stack (Ti/Al(Cu)/TiN) is etched using a plasma etcher 4.

Fraunhofer

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited

Chapter 5.1 - 29

SEM Micrograph of First Metal Layer over First Set of Tungsten Vias

Micrograph courtesy of Integrated Circuit Engineering

TiN cap

Metal 1, Al

Tungsten plug

Via-2 to Via-X Formation (ILD dep + Patterning)

- Deposit SiO₂ ① using HDPCVD tool (300 nm). This will void-free fill the gaps between the metal lines.
- Deposit thick SiO₂ ② using PECVD tool. The oxide is thick to prevent cross-talk between metal layers.
- Polish SiO₂ with CMP ③
- Apply photoresist, expose patterns for the vias (12th mask), etch via holes with plasma etcher 4.

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 5.1 - 31

Via-2 to Via-X Formation (W plug)

- Deposit thin titanium ① layer as glue (30 nm, sputter).
- Deposit thin TiN ② layer (CVD) to act as diffusion barrier between Ti and tungsten plug.
- Deposit thick tungsten layer (CVD using WF₆) to fill the via holes ③.
- Tungsten and TiN/Ti CMP 4 down to the SiO₂ surface between the metal vias.

EMPERIOR COMMITTEE OF THE SECOND COMMITTEE OF THE SECO

Metal-2 to Metal-X Interconnect Formation

The next steps forms further interconnects between layers.

These steps are repeated for as many metallization layers as required.

- Deposit 3-metal stack for conductors Ti/Al(Cu)/TiN. ①
 Pattern and use plasma etch to form lines.
- Use high-density SiO₂ to fill metal gaps (HDPCVD tool).
- Deposit thick SiO₂ with PECVD tool to isolate the metal. Litho for vias and etch via holes.
- Coat via holes with thin Ti/TiN, then fill vias with thick tungsten layer. Polish the metals down to SiO₂.

Full 0.18 mm CMOS Cross Section

- Final layer uses wide thick metals to connect wiring to bonding pads for external connections.
- Passivation layer of Si₃N₄ is used to protect IC from moisture, scratching, and contamination (buffer layer of SiO₂ beneath – ILD-6).

SEM Cross-section of AMD Microprocessor

Fraunhofer

Only for internal use at TU Chemnitz for study purposes Unauthorized copying and distribution is prohibited.

Chapter 5.1 - 35

Summary of Concepts

- Damascene Process (CMP) Process with water, abrasive and oxidizer to planarize mixed oxide-metal surfaces.
- Sacrificial Oxide SiO₂ (10 nm) which protects Gate surface during prior processing.
- CMP Stopper: Si₃N₄ Using Si₃N₄ for a layer, stops the CMP process because this layer can not oxidize.
- Anisotropic Etching Etches "horizontal surfaces" faster than vertical surfaces. Requires plasma, magnetic field and wafer bias.
- Self-Aligned Gate Polycrystalline Gate is used a mask for the source/drain implant. It automatically aligns these to the correct position.
- Gate Side-Wall Spacer Provides insulation between the Gate and Source/Drain contacts, and also alignment of 2nd high-dose S/D implant.
- Silicide Contacts Deposited metal reacts with silicon forming new compound. Makes ohmic contact and also allows etching of deposited metal layer without masking.
- Diffusion Barrier TiN and Si₃N₄ can be used to encapsulate metals to prevent them from diffusing into SiO₂ and causing problems. Must use nonoxide since most metals interact easily with oxides.

Alternative BEOL Concept: Cu Dual Damascene

- It uses two dielectric etch processes, one via etch and one trench etch
- Metal layers are deposited into via holes and trenches.
- A CMP process removes copper and tantalum barrier layer
- Leave copper lines and plugs embedded inside the dielectric layer

Unity for internal use at 10 Chemnitz for study purpose Unauthorized copying and distribution is prohibited.

Chapter 5.1 - 37

PECVD Nitride

PECVD USG

PECVD Etch Stop Nitride

Photoresist Coating

Unauthorized copying and distribution is prohibited

Advanced Integrated Circuit Technology

Via 1 Mask

Via 1 Mask Exposure and Development

Unauthorized copying and distribution is prohibited

Etch USG, Stop on Nitride

Strip Photoresist

temperaturate na inches de la constanta de la

Photoresist Coating

Metal 1 Mask

Unauthorized copying and distribution is prohibited.

Metal 1 Mask Exposure and Development

Etch USG and Nitride

Unauthorized copying and distribution is prohibited

Strip Photoresist

Deposit Barrier/Liner Layer(s) + Seed Layer

e.g. TaN / Ta / Cu

Deposit Copper (ECD)

CMP Copper and Ta/TaN

Unauthorized copying and distribution is prohibited

PECVD Seal Nitride

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 5.1 - 55