Задание 7. Выводимость и существование модели.

- 1. Докажите (используя только правило импликации), что:
- из формул p, q выводимы формулы $p \land q, p \lor q, p \to q$;
- из формул $p, \neg q$ выводимы формулы $\neg (p \land q), p \lor q, \neg (p \to q);$
- из формул $\neg p, q$ выводимы формулы $\neg (p \land q), p \lor q, p \to q;$
- из формул $\neg p, \neg q$ выводимы формулы $\neg (p \land q), \neg (p \lor q), p \to q.$
- 2. Докажите, что для любой формулы ЛВ $\varphi = \varphi(p_1, \dots, p_n)$ и любых $\alpha_1, \dots, \alpha_n$ из {И, Л} справедливо $p_1^{\alpha_1}, \dots, p_n^{\alpha_n} \vdash \varphi^{\beta}$, где $\varphi^{\mathrm{II}} = \varphi$, $\varphi^{\mathrm{II}} = \neg \varphi$, и $\beta = \varphi(\alpha_1, \dots, \alpha_n)$.
- 3. Докажите, что любая тавтология выводима из основных тавтологий с использованием только правила импликации.
- 4. Пусть T —теория Хенкина счетной сигнатуры σ_C , $C = \{c_0, c_1, \ldots\}$, M множество всех термов сигнатуры σ_C , не содержащих переменных, и $s \sim t$ означает $T \vdash s = t$. Докажите, что \sim эквивалентность на M такая, что:

если
$$s_1 \sim t_1, \ldots, s_n \sim t_n$$
, и $T \vdash P(s_1, \ldots, s_n)$, то $T \vdash P(t_1, \ldots, t_n)$; если $s_1 \sim t_1, \ldots, s_n \sim t_n$, то $f(s_1, \ldots, s_n) \sim f(t_1, \ldots, t_n)$

5. Докажите, что любое непротиворечивое множество предложений имеет модель.