级数

数项级数

级数的敛散性

• 数项级数:

对于数列 $\{u_n\}$, $\sum\limits_{i=1}^{\infty}u_i$ 称为 **数项级数**

• 部分和:

 $S_n = \sum_{i=1}^n u_i$ 称为数项级数的 第 n 个部分和,简称 部分和

• 收敛与和:

若 $\lim_{n o \infty} S_n = S$ 则称数项级数 **收敛**,S 为数项级数的 **和**

级数收敛的柯西准则

数项级数收敛的 充要条件:

任给正数 ϵ , 总存在正整数 N , 使得当 m > N 时, 对任一正整数 p , 都有

$$|u_{m+1}+u_{m+2}+\cdots+u_{m+p}|<\epsilon$$

• 推论: 级数收敛的必要条件为 $\lim_{n\to\infty}u_n=0$

正项级数

比较原则

对于两个正项级数 u_n, v_n ,若存在某正整数 N 对一切 n > N 都有

$$u_n \leq v_n$$

则

- 1. 若级数 $\sum v_n$ 收敛,则级数 $\sum u_n$ 也收敛
- 2. 若级数 $\sum u_n$ 发散,则级数 $\sum v_n$ 也发散

比较原则的推论

$$\lim_{n\to\infty}\frac{u_n}{v_n}=l$$

 $1.0 < l < +\infty$,两级数同敛散

2. $l=0, l=+\infty$, $\sum v_n$ 的敛散决定 $\sum u_n$ 的敛散

比式判别法、根式判别法

$$\lim_{n o\infty}rac{u_{n+1}}{u_n}=q$$

1. q < 1, 收敛

 $2.q > 1, q = +\infty$, 发散

3.q=1,无法判断

$$\lim_{n o\infty}\sqrt[n]{u_n}=l$$

1.1<1,收敛

2.l>1,发散

3. l = 1,无法判断

一般项级数

交错级数

莱布尼茨判别法 若数列 $\{u_n\}$ 单调递减且 $\lim_{n \to \infty} u_n = 0$ 则级数 $\sum u_n$ 收敛

绝对收敛

 $\sum_{i=1}^{\infty} |u_i|$ 收敛,则称 $\sum u_n$ 为 **绝对收敛级数**

- 绝对收敛级数一定收敛
- 收敛但是不绝对收敛的级数称为 条件收敛级数

阿贝尔判别法和狄利克雷判别法对于数列 $\{a_n\}$, $\{b_n\}$,

- 1. $\{a_n\}$ 为单调有界数列, $\sum b_n$ 收敛
- 2. $\{a_n\}$ 单调递减且 $\lim_{n \to \infty}$, $\{b_n\}$ 的部分和数列 $\{S_n\}$ 有界

满足以上条件之一则 $\sum (a_n b_n)$ 收敛

函数项级数

• 函数列:

对于每一个 n 都有一个对应的函数 f_n ,称这样的由函数组成的序列为 **函数 列**

• 收敛域:

$$\lim_{n o\infty}f_n(x)=f(x),\ \ x\in D$$

D 称为函数列 $\{f_n(x)\}$ 的 **收敛域**

函数列的一致收敛性

一致收敛的定义

设函数列 $\{f_n(x)\}$ 与函数 f 定义在同一数集 D 上,若对任给的 $\epsilon>0$,总存在一个正整数 N ,使得当 n>N 是,对一切 $x\in D$,都有

$$|f_n(x) - f(x)| < \epsilon$$

则称函数列在 D 上 **一致收敛** 于 f ,记作

$$f_n(x)
ightrightarrows f(x) \quad (n o\infty), \quad x\in D$$

内闭一致收敛

设函数列 $\{f_n(x)\}$ 与函数 f 定义在同一数集 D 上,若对任一的闭区间 $[a,b]\subset I$, $\{f_n\}$ 在该区间上一致收敛于 f ,则称 $\{f_n\}$ 在 I 上 **内闭一致收敛** 于 f

一致收敛的柯西准则

函数列 $\{f_n(x)\}$ 在数集 D 上一致收敛的 **充要条件**:

对任给的 $\epsilon>0$,总存在正数 N 使得当 n,m>N 时,对一切 $x\in D$,都有

$$|f_n(x) - f_m(x)| < \epsilon$$

一致收敛定理

函数列 $\{f_n(x)\}$ 在数集 D 上一致收敛的 **充要条件**:

$$\lim_{n o\infty}\sup_{x\in D}|f_n(x)-f(x)|=0$$

也可以由此得到不一致收敛的充要条件: 存在 x_n 使得 $|f_n(x_n) - f(x_n)|$ 不收敛于 0

函数项级数

定义

对于函数列 $\{u_n(x)\}$, $u_1(x)+u_2(x)+\cdots+u_n(x)+\ldots$, $x\in E$ 称为定义在 E 上的 **函数项级数**,记为 $\sum u_n(x)$

 $S_n(x) = \sum_{k=1}^n u_k(x)$ 称为 $\sum u_n(x)$ 的部分和函数列

$$\lim_{n o\infty}S_n(x)=S(x),\quad x\in D$$

D 称为级数 $\sum u_n(x)$ 的收敛域 这也说明了函数项级数的收敛性 就是 其部分和函数列的收敛性

函数项级数的一致收敛

若函数项级数的部分和函数列一致收敛,则该函数项级数 **一致收敛** 若函数项级数在闭区间内一致收敛,则称它在该区间上 **内闭一致收敛**

一致收敛的柯西准则

函数项级数 $\sum u_n(x)$ 在数集 D 上一致收敛的 **充要条件**:

任给 $\epsilon > 0$, 总存在某正整数 N ,

使得当 n > N 时,对一切 $x \in D$ 和一切正整数 p > 2,都有

$$|S_{n+p}(x) - S_n(x)| < \epsilon$$

若 p=1 , 则该条件为必要条件

推论:

函数项级数在数集 D上一致收敛的必要条件是 其函数列在 D上一致收敛于零

一致收敛定理

函数项级数 $\sum u_n(x)$ 在数集 D 上一致收敛的 **充要条件**:

$$\lim_{n o\infty}\sup_{x\in D}|S_n(x)-S(x)|=0$$

魏尔斯特拉斯 M 判别法

设函数项级数 $\sum u_n(x)$ 定义在数集 D 上, $\sum M_n$ 为收敛的正项级数,若对一切 $x\in D$ 有

$$|u_n(x)| \leq M_n, n=1,2,\ldots$$

则该函数项级数在 D 上收敛

阿贝尔判别法

- 1. $\sum u_n(x)$ 在区间 I 上一致收敛
- 2. 对于每一个 $x \in I$, $\{v_n(x)\}$ 单调
- 3. $\{v_n(x)\}$ 在 I 上一致有界

则 $\sum u_n(x)v_n(x)$ 收敛

狄利克雷判别法

- 1. $\sum u_n(x)$ 的部分和函数列 $S_n(x)$ 在 I 上一致有界
- 2. 对于每一个 $x \in I$, $\{v_n(x)\}$ 单调
- 3. 在 I 上函数列 $v_n(x)$ 一致收敛于零

则 $\sum u_n(x)v_n(x)$ 收敛

一致函数列于函数项级数的性质

省流:

在一定条件下,求和可以于求极限、求积、求导运算交换

幂级数

幂级数

定义

$$\sum_{n=0}^{\infty}a_n(x-x_0)^n$$

这样的函数项级数称为 **幂级数** (仅讨论 $x_0=0$ 的情况)

收敛区间 收敛半径

幂级数的收敛域是以原点为中心的区间,若以 2R 表示区间的长度,则 R 称为幂级数的 **收敛半径**,区间 (-R,R) 称为 **收敛区间**

• 在 $x = \pm R$ 处,幂级数可能收敛也可能发散

收敛半径的求解

对于

$$\lim_{n o\infty}\sqrt[n]{|a_n|}=
ho$$

1.
$$0 < \rho < +\infty$$
, $R = \frac{1}{\rho}$

2.
$$\rho = 0, R = +\infty$$

3.
$$\rho = +\infty, R = 0$$

也可以使用比式判别法:

$$\lim_{n o\infty}rac{|a_{n+1}|}{|a_n|}=
ho$$

若该极限存在,则有 $\lim_{n o \infty} \sqrt[n]{|a_n|} =
ho$

一致收敛

幂级数在收敛区间 (-R,R) 内的任一闭区间 [a,b] 上都一致收敛

幂级数展开

泰勒级数

$$f(x_0) + \sum_{n=1}^{\infty} rac{f^{(n)}(x_0)}{n!} (x-x_0)^n$$

该级数称为 **泰勒级数**

函数的泰勒级数的收敛

设 f 在点 x_0 具有任意阶导数,

则 f 在区间 (x_0-r,x_0+r) 上等于它的泰勒级数的和函数的 **充要条件** 是:对一切满足不等式 $|x-x_0|< r$ 的 x ,有

$$\lim_{n o\infty}R_n(x)=0$$

其中 $R_n(x)$ 为 f 在 x_0 处的泰勒公式余项,即

$$R_n(x) = rac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1}, \quad x < \xi < x_0$$

对于函数在 $x_0 = 0$ 处的展开式

$$f(0) + \sum_{n=1}^{\infty} rac{f^{(n)}(0)}{n!} x^n$$

这称为 f 的 **麦克劳林级数**

各种余项

$$egin{align} R_n(x) &= rac{1}{n!} \int_0^x f^{(n+1)}(t) (x-t)^n dt \ R_n(x) &= rac{1}{(n+1)!} f^{(n+1)}(\xi) x^{n+1}, \quad x < \xi < x_0 \ R_n(x) &= rac{1}{n!} f^{(n+1)}(heta x) (1- heta)^n x^{n+1}, 0 \leq heta \leq 1 \ \end{align}$$