SYMPACK: A 2D TASK-BASED FACTORIZATION ALGO-RITHM FOR SPARSE SYMMETRIC MATRICES

Mathias Jacquelin mjacquelin@lbl.gov

Esmond Ng

February 27 2019

Scalable Solvers Group Computational Research Department Lawrence Berkeley National Laboratory

CONTEXT & MOTIVATION

Motivations:

- · Sparse matrices arise in many applications:
 - · Optimization problems
 - · Discretized PDEs
 - · Electronic structure theory
 - ٠...
- · Some sparse direct methods require:
 - · Sparse factorizations
 - · Computing some inverse elements

DEDICATED SOLVERS FOR SPARSE SYMMETRIC MATRICES

- · Matrix A is symmetric in many cases
- · Symmetric storage: only lower triangular part of A is stored
 - · Lower memory consumption
 - · Fewer floating point operations
- · Many ways to schedule computations, partition data
- · Challenging problem: irregular computation load
- · Crucial to remove synchronization points

· Only lower triangular part of A is stored

Algorithm 1: Basic Cholesky algorithm

· Basic algorithm:

 $\begin{array}{l} \text{for } column \ k=j+1 \ to \ n \ \text{do} \\ \\ \begin{vmatrix} \text{for } row \ i=k \ to \ n \ \text{do} \\ \\ | \ A_{i,k}=A_{i,k}-\ell_{i,j}\cdot\ell_{k,j} \\ \\ \text{end} \end{vmatrix}$

end

- · Only lower triangular part of A is stored
- · Basic algorithm:

```
Algorithm 1: Basic Cholesky algorithm
for column j = 1 to n do
    \ell_{j,j} = \sqrt{A_{j,j}} for row i = j + 1 to n do \mid \ell_{i,j} = A_{i,j}/\ell_{j,j}
     end
      for column k = j + 1 to n do
          for row i = k to n do
            A_{i,k} = A_{i,k} - \ell_{i,j} \cdot \ell_{k,j}
          end
     end
end
```

- · Only lower triangular part of A is stored
- · Basic algorithm:

```
Algorithm 1: Basic Cholesky algorithm
for column j = 1 to n do
    \ell_{jj} = \sqrt{A_{jj}} for row \, i = j+1 \, to \, n \, do \mid \ \ell_{i,j} = A_{i,j}/\ell_{j,j}
     end
                                                      Update next columns
      for column k = j + 1 to n do
          for row i = k to n do
           A_{i,k} = A_{i,k} - \ell_{i,j} \cdot \ell_{k,j}
and
          end
     end
end
```

- · Only lower triangular part of A is stored
- · Basic algorithm:

```
Algorithm 1: Basic Cholesky algorithm
for column j = 1 to n do
    \ell_{jj} = \sqrt{A_{jj}} for row \, i = j+1 \, to \, n do \mid \; \ell_{ij} = A_{ij}/\ell_{jj}
     end
                                                          Update next columns
      for column k = j + 1 to n do
                                                       and Aggregate updates
          for row i = k to n do
A_{i,k} = A_{i,k} - \ell_{i,j} \cdot \ell_{k,j}
end
     end
end
```

- · Only lower triangular part of A is stored
- · Basic algorithm:

```
Algorithm 1: Basic Cholesky algorithm
for column j = 1 to n do
                                                                                                                                                                                                                                                                                                                                                                                                                                                         Update next columns
                                                            for row i=k to n do for row i=k to n do A_{i,k}=A_{i,k}-\ell_{i,j}\cdot\ell_{k,j} and Aggregate updates for row i=k to n do mather mathematical mathematical mathematical for row <math>mathematical mathematical ma
                                              for column k = j + 1 to n do
                                           end
end
```

ORIGINAL PUSH 2-SIDED MPI CODE

PITFALL: DEADLOCKS CAN HAPPEN

Asynchronous comm. becomes blocking when out of buffer

PITFALL: DEADLOCKS CAN HAPPEN

PITFALL: DEADLOCKS CAN HAPPEN

- · Deadlock prevention is difficult:
 - · Order in operations/messages

- · Deadlock prevention is difficult:
 - · Order in operations/messages

 Potential over-synchronization

- · Deadlock prevention is difficult:
 - Order in operations/messages
 Potential over-synchronization
- · "Pull" strategy (one sided communications)
 - · Signal data when available
 - · Receiver gets data when ready

UPC++ ONE-SIDED PULL STRATEGY

WAS THE SCHEDULE CONSTRAINED?

n=914,898 nnz(A)=20,896,803 nnz(L)=318,019,434

EVENT DRIVEN SCHEDULING

- · Per-task dependency counts
- · Update dependencies as messages are flowing in
- · Maintain a list of tasks ready for execution

IMPACT OF COMMUNICATION STRATEGY AND SCHEDULING

n=914,898 nnz(A)=20,896,803 nnz(L)=318,019,434

2D DATA DISTRIBUTION

- · 2D block cyclic used in many solvers
- · Works well in practice for sparse matrices as well
- · However, nothing is explicitly balanced

2D DATA DISTRIBUTION

- · 2D block cyclic used in many solvers
- · Works well in practice for sparse matrices as well
- · However, nothing is explicitly balanced
- · Can we do better?

2D DATA DISTRIBUTION

- · 2D block cyclic used in many solvers
- · Works well in practice for sparse matrices as well
- · However, nothing is explicitly balanced
- · Can we do better?
- · Can we store mapping information?
 - · Cell: block "delimited" by supernode partition
 - · Block: set of contiguous rows in a given supernode
 - · A cell can hold multiple blocks

· Subtree-to-subcube mapping

· Subtree-to-subcube mapping

· Subtree-to-subcube mapping

- · Subtree-to-subcube mapping
- \cdot Non-empty cells distributed within groups

- · Subtree-to-subcube mapping
- · Non-empty cells distributed within groups

- · Subtree-to-subcube mapping
- \cdot Non-empty cells distributed within groups

- · Subtree-to-subcube mapping
- · Non-empty cells distributed within groups

A NEW 2D DATA DISTRIBUTION, A NEW TASK GRAPH

- · A **Future** is a synchronization object for asynchronous operations:
 - · When the operation is complete, future becomes ready
 - · A callback can be attached to a future
- · A **Promise** can be thought as a counter:
 - · Associated with a future
 - · Future is ready when the count reaches 0.

- A Future is a synchronization object for asynchronous operations:
 - · When the operation is complete, future becomes ready
 - · A callback can be attached to a future
- · A **Promise** can be thought as a counter:
 - · Associated with a future
 - · Future is ready when the count reaches 0.
- · Each task has two **Promise**s (a counter)

n=1,564,794 nnz(L)=1,574,541,576

n=943,695 nnz(L)=1,261,342,196

n=1,391,349 nnz(L)=2,821,178,652

n=512,000 nnz(L)=1,697,433,600

THE FUTURE<T>: UPDATES TO COME

- · Aggregate updates using a tree pattern
- · 1D data distribution at leaves
- Use tasks to implement 3D type of layout at higher levels (multiple tasks on the same cell)
- · Accelerator / GPU support
 - Upcoming UPC++ with seamless local/remote host/device memory accesses
 - · Batched BLAS
- · Acknowledgments:
 - · DOE SciDAC FASTMath, CompCat, ComPASS4
 - · ECP Pagoda