$$S(x) = \chi^3 - 31 + 3$$

- 1) At 2 = -1; Rel. max
- 2) At x = 1 , Rel min. met at the temptomet of the temp

$$-\int_{0}^{1}(x) = 3x^{2} - 3$$

$$3(x^2 - 1) = 0$$

$$x^2 = 1$$

to have a

$$\alpha^2 = 1$$

$$3(x^2 - 1)^2$$

$$x^2 = 1$$

$$x = 1 \quad i \quad y = 1$$

is either o on undefined.

I stationary point is where the derivative is and only zoro.

Critical points $\rightarrow \alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$.

Stationary points $\rightarrow \alpha_1, \alpha_2$ and α_5 .

Relative Extruma Math Technique:

First Durivative test:

Suppose f is conts at a childreal point no.

a) If f'(x) > 0 exteending 16ft from x_0 and f'(x) < 0 ext. right from x_0 f has a Rel. max at x_0 .

and f'(x) > 0 extending left from x_0 and f'(x) > 0 ext. right from x_0 of has a Rel. Then at x_0

x cratical point is one where cities or an andefined at statement touch is whose the decorption [] If s'(x) same sign - no Rel. Moblum: -1(x) = 32 5/3 - 15x^{2/3} : Find Rel. extrema of 1 &(x). Now, $f'(x) = (3x\frac{5}{3})x^{\frac{2}{3}} - 10x^{\frac{1}{3}}$ Soln: $\frac{2}{3}$ 5x - 10x = 0 $= 7 \quad 5\pi^{-1/3} \left(\chi - 2 \right) = 0$ $=7 \qquad \frac{5(\chi-2)}{\alpha^{1/3}} = 0$ x = 2 . Suppose x = 2extending 1894 kins one Intervallation the files x >2 cx three xour but OZX ZZ x20 tagin 1x +ve 0 (1) 1 in pet inin at in

At
$$\alpha = 0$$
; $y = 0$ [R11. max]

At
$$x = 2$$
; $y = -14.28$ [Rel-min]

[Ans.]

linobless / head the kelative takems of Second Derivative Test:

at

Suppose that if is twice diff. at

the point
$$x_0$$
.

a) $f(x_0) = 0$ and $f''(x_0) > 0$ then f has a relative min at x_0 .

b) of
$$f'(x_0) = 0$$
 and $f''(x_0) < 0$ then f has a Rel-max at x_0

Rel. max con cave down (1"(2) >0) (-5"(x) <0) Pel min

MBOOK Example >5

Problem:

Find the Relative Extrema of

Sir

WL

poi

 $f(x) = 3x^5 - 5x^3$. Use 2nd D.T.

we have, soln:

AV

 $5'(x) = 15x^4 - 15x^2 = 15 x^2(x^2-1)$ = 15 x2 (x+1) (x-1

 $f'(\alpha) = 0$ Stationary point,

=> 15x2 (x+1) (x-1)=0 x = 0, 1, -1

3"(x) 2nd D.T. S. Point

Rel. max Hoose -VI aret 0 inconclusive x = 0 Rel. min +12

since At x = 0, The test is inconclusive we will try the 15t docivative at that point to 1 to ment of the state of the state

Inturval .f'(x) -1< x <0

No sign change. So, No Rel. extrema at

n = 0.

0 < x < 1

x=0; f(x)=0 Giraph

12 (p2-5)

(Example: 08)

Problem: sketch the graph of ign.

$$y = x^3 - 3x + 2$$

and identify the location of intercepts,

Rel. Extrema and Inflection points.

$$=> (\chi-1)^2 (\chi+2)=0$$

$$x = -2$$
, $x = 1$

Soln: 1)
$$\alpha$$
 intercepts: $1^3 - 3x + 2 = 0$
 $1^3 - 3x + 2 = 0$ = $1^3 - 2x - x + 2 = 0$
= $1^3 - 2x - x + 2 = 0$
= $1^3 - 2x - x + 2 = 0$
= $1^3 - 2x - x + 2 = 0$
= $1^3 - 2x - x + 2 = 0$
= $1^3 - 2x - x + 2 = 0$
= $1^3 - 2x - x + 2 = 0$
= $1^3 - 2x - x + 2 = 0$
= $1^3 - 2x - x + 2 = 0$
= $1^3 - 2x - x + 2 = 0$
= $1^3 - 2x - x + 2 = 0$
= $1^3 - 2x - x + 2 = 0$
= $1^3 - 2x - x + 2 = 0$
= $1^3 - 2x - x + 2 = 0$
= $1^3 - 2x - x + 2 = 0$
= $1^3 - 2x - x + 2 = 0$
= $1^3 - 2x - x + 2 = 0$
= $1^3 - 2x - x + 2 = 0$
= $1^3 - 2x - x + 2 = 0$
= $1^3 - 2x - x + 2 = 0$
= $1^3 - 2x - x + 2 = 0$
= $1^3 - 2x - x + 2 = 0$

NOW,
$$Y'_{*} = 3\chi^{2} - 3$$

NOW, $3(\chi^{2} - 1) = 0$

$$3(x^2-1)=0$$

$$= 7 \alpha^2 - 1 = 0$$

$$(x+1)(x-1)=0$$

A+, x = -1 ;

ecl.max

Giraph

$$y = x^3 - 3x + 2$$

$$x^3 - 3x + 2 = 0$$

$$= 7 (\alpha - 1)^2 (\alpha + 2) = 0$$

$$\therefore \chi = 1, -2$$

[Ans:]

$$\frac{x^{4}-12x^{6}=0}{x=0; y=0} \qquad x=0; y=0$$

$$= \frac{x^{3}(x^{6}-12)=0}{x=0; 12} \qquad y=0; y=12$$

Exencise: 4.2

Problem (39): Find the Relative extrema both first and second durivative tests using

$$f(x) = \chi^4 - 127^3$$

$$\varsigma'(\chi) = 4\chi^3 - 36\chi^2$$

Using 1st durivative test.

$$=74\chi^{3}-36\chi^{2}=0$$

$$= 1 4 x^{2} \left(x - 9 \right) = 0$$

0 42 49

2 40

Jutural +ve

14 6-VZ

Using and der test,

-5"(x)

7 = 0

324 > 0

$$\alpha = 9$$

Relative min at x=9

At 1 x = 9; f(x) = -2187

[Ans.]

Now, $f'(\alpha) = (\alpha-3) e^{\alpha} + e^{\alpha} = o^{\alpha}(\alpha-2)$

Uping 1st Dor. test-

Then, 5'(")=0

$$\ell^{\alpha} = 0 \qquad ; \quad \alpha = 2$$

=, (NO solution)

Interval +VL (10+x120) (1+x) - ve, (1+ 13 M < 2) (1+ E) 1. TYC +VC a - (A Rainmin (1+ 10) or At x = 2; Rel. min Using 2nd der. test. $S''(x) = (x-2)e^{x} + e^{x}$ JV to +ve 3/1/2 1-71-S. Point 1 = 2 Rel. min 50, At x = 2 Minimum value = f(2) [Ans-] Send 1 - 1/3

Broblem: (39)
$$f(x) = -x^3(x+1)^2$$
 $f'(x) = -3x^2(x+1)^2 + 2x^3(x+1)$
 $= -x^2(x+1)(3(x+1)+2x)$
 $= -x^2(x+1)(5x+3)$

NOW, $f'(x) = 0$
 $= -x^2(x+1)(5x+3) = 0$
 $= -x^2(x+1)(x+1)(x+1) = 0$
 $= -x^2(x+1)(x+1)(x+1)(x+1) = 0$
 $= -x^2(x+$

; Rel. min

and 2 = -3/5

Using 2nd derited $5''(7) = 5(x^3 + x^2) + (5x+3)(3x^2 + 2x)$ S. Point 4/25 70 $\alpha = -3/5$; At x = -3/5 ; Rel. min g" (x) >0 ; At n = -1 ; Rel. max f" (x) <0 [Ans-] Graph: (Exercise: 4.1 (9,10,16-20) Exercise: 4.2(33-54) $\int_{1}^{1} x = -1$ $\int_{1}^{1} x = 0$ $\int_{1}^{1} x = 0$