CS 5522: Artificial Intelligence II

Bayes' Nets: Inference

Instructor: Wei Xu

Ohio State University

[These slides were adapted from CS188 Intro to AI at UC Berkeley.]

Bayes' Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values $P(X|a_1 \dots a_n)$

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Example: Alarm Network

P(J|A)

0.9

0.1

0.05

0.95

+a

+a

-a

-a

Е	P(E)
+e	0.002
-e	0.998

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

P(+b, -e, +a, -j, +m) =
P(+b)P(-e)P(+a +b,-e)P(-j +a)P(+m +a) =

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	ę	+a	0.94
+b	ę	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	φ	+a	0.001
-b	-e	-a	0.999

Example: Alarm Network

P(J|A)

0.9

0.1

0.05

0.95

+a

+a

-a

-a

Е	P(E)
+e	0.002
-е	0.998

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

P(+b, -e, +a, -j, +m) =
P(+b)P(-e)P(+a +b,-e)P(-j +a)P(+m +a) =
$0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	ę	+a	0.94
+b	ę	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

Bayes' Nets

- Representation
- Conditional Independences
 - Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Probabilistic inference is NP-complete
 - Sampling (approximate)
 - Learning Bayes' Nets from Data

Inference

 Inference: calculating some useful quantity from a joint probability distribution

• Examples:

Posterior probability

$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

Most likely explanation:

$$\operatorname{argmax}_q P(Q = q | E_1 = e_1 \ldots)$$

Inference by Enumeration

General case:

Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$ Query* variable: Q All variables Hidden variables: $H_1 \dots H_r$

We want:

* Works fine with multiple query variables, too

$$P(Q|e_1 \dots e_k)$$

Step 1: Select the entries consistent with the evidence

Step 2: Sum out H to get joint of Query and evidence

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

$$X_1, X_2, \dots X_n$$

Step 3: Normalize

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$
$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

Inference by Enumeration in Bayes' Net

- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

$$P(B \mid +j,+m) \propto_B P(B,+j,+m)$$

$$= \sum_{e,a} P(B, e, a, +j, +m)$$

$$= \sum P(B)P(e)P(a|B,e)P(+j|a)P(+m|a)$$

$$=P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a) + P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a)$$

$$P(B)P(-e)P(+a|B,-e)P(+j|+a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)$$

Inference by Enumeration?

 $P(Antilock|observed\ variables) = ?$

Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables

- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration

Factor Zoo

Factor Zoo I

- Joint distribution: P(X,Y)
 - Entries P(x,y) for all x, y
 - Sums to 1

- Selected joint: P(x,Y)
 - A slice of the joint distribution
 - Entries P(x,y) for fixed x, all y
 - Sums to P(x)
- Number of capitals = dimensionality of the table

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(cold, W)

Η	W	Р
cold	sun	0.2
cold	rain	0.3

Factor Zoo II

- Single conditional: P(Y | x)
 - Entries P(y | x) for fixed x, a
 - Sums to 1

P(W|cold)

Т	W	Р
cold	sun	0.4
cold	rain	0.6

- Family of conditionals:
 P(X | Y)
 - Multiple conditionals
 - Entries P(x | y) for all x, y
 - Sums to |Y|

P(W|T)

Η	W	Р
hot	sun	0.8
hot	rain	0.2
cold	sun	0.4
cold	rain	0.6

P(W|hot)

P(W|cold)

Factor Zoo III

- Specified family: P(y | X)
 - Entries P(y | x) for fixed y, but for all x
 - Sums to ... who knows!

P(rain|T)

Т	W	Р	
hot	rain	0.2	$rac{1}{2} P(rain hot)$
cold	rain	0.6	$\left igreep P(rain cold) ight $

Factor Zoo Summary

- In general, when we write $P(Y_1 ... Y_N \mid X_1 ... X_M)$
 - It is a "factor," a multi-dimensional array
 - Its values are $P(y_1 ... y_N \mid x_1 ... x_M)$
 - Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array

Example: Traffic Domain

Random Variables

R: Raining

■ T: Traffic

L: Late for class!

P(R)		
+r	0.1	
-r	0.9	

P(T|R)

$I \left(I \mid I l \right)$				
+r	+t	0.8		
+r	-t	0.2		
-r	+t	0.1		
-r	-t	0.9		

$I \left(D I \right)$				
+t	+[0.3		
+t	-	0.7		
-t	+[0.1		
-t	-l	0.9		

P(L|T)

Inference by Enumeration: Procedural Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)

- Any known values are selected
 - ullet E.g. if we know $L=+\ell$, the initial factors are

P(R)		
+r	0.1	
-r	0.9	
. , , , ,		

$$P(T|R)$$
+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

$$P(+\ell|T)$$
+t +l 0.3
-t +l 0.1

 Procedure: Join all factors, then eliminate all hidden variables

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
 - Just like a database join
 - Get all factors over the joining variable
 - Build a new factor over the union of the variables involved

Example: Join on R

Computation for each entry: pointwise products

$$\forall r, t : P(r, t) = P(r) \cdot P(t|r)$$

Example: Multiple Joins

Example: Multiple Joins

P(R)

+r	0.1
-r	0.9

Join R

P(R,T)

-r	+t	0.09
-r	_t	በ ጸ1

Join T

R, *T*, *L*

D	1	T	T	٦)
L	⇃	L	L)

+t	+[0.3
+t	-	0.7
-t	+[0.1
-t	-l	0.9

P(R,T,L)

+r	+t	+[0.024
+r	+t	-l	0.056
+r	-t	+(0.002
+r	-t	-l	0.018
-r	+t	+(0.027
-r	+t	-l	0.063
-r	-t	+(0.081
-r	-t	-l	0.729

+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

+t	+l	0.3
+t	-	0.7
-t	+[0.1
-t	-l	0.9

Operation 2: Eliminate

- Second basic operation: marginalization
- Take a factor and sum out a variable
 - Shrinks a factor to a smaller one
 - A projection operation
- Example:

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

sum R

P(T)

+t	0.17
-t	0.83

Multiple Elimination

Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

Marginalizing Early (= Variable Elimination)

Traffic Domain

$$P(L) = ?$$

Inference by Enumeration

Variable Elimination

$$= \sum_t P(L|t) \sum_r P(r)P(t|r)$$
 Join on r Eliminate r

Marginalizing Early! (aka VE)

0.9

Join R

7	R	T	S
- (I U,	, <i>1</i> , j,	

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

Sum out R

P(T)

+t	0.17
-t	0.83

Join T

Sum out T

+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

D	I	T
1	(L)	1.

+t	+[0.3
+t	-	0.7
-t	+l	0.1
-t	-l	0.9

			_ // //
٠r	+t	0.8	R, I
٠ŗ	-t	0.2	
-r	+t	0.1	
·r	-t	0.9	(L)

P(L|T)

+t	+L	0.3
+t	-	0.7
-t	+l	0.1
-t	-l	0.9

P(L|T)

	_	
+t	+[0.3
+t	-[0.7
-t	+l	0.1
-t	-l	0.9

P(T,L)

+t	+L	0.051
+t	<u> </u>	0.119
-t	+	0.083
-t	-	0.747

P(L)

+l	0.134
- L	0.866

Evidence

If evidence, start with factors that select that evidence

No evidence uses these initial factors:

$$P(R)$$
+r 0.1
-r 0.9

$$P(T|R)$$

+r +t 0.8

+r -t 0.2

-r +t 0.1

$$P(L|T)$$

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

• Computing P(L|+r) , the initial factors become:

$$P(+r)$$

$$\begin{array}{c|cccc} T & T & T \\ \hline +r & +t & 0.8 \\ \hline +r & -t & 0.2 \end{array}$$

$$P(+r)$$
 $P(T|+r)$ $P(L|T)$

+t	+L	0.3
+t	-	0.7
-t	+	0.1
-t	- -	0.9

We eliminate all vars other than query + evidence

Evidence II

Result will be a selected joint of query and evidence

■ E.g. for P(L | +r), we would end up with:

Normalize

P(L|+r)

+l	0.26
- [0.74

To get our answer, just normalize this!

That 's it!

General Variable Elimination

- Query: $P(Q|E_1 = e_1, \dots E_k = e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize

$$i \times \mathbf{r} = \mathbf{r} \times \frac{1}{Z}$$

Example

$$P(B|j,m) \propto P(B,j,m)$$

P(E)

P(A|B,E)

P(j|A)

P(m|A)

Choose A

P(m|A)

P(j,m,A|B,E) \sum P(j,m|B,E)

P(E)

P(j,m|B,E)

Example

P(B)

P(E)

P(j,m|B,E)

Choose E

P(j,m|B,E)

P(j,m,E|B) \sum P(j,m|B)

Finish with B

Same Example in Equations

$$P(B|j,m) \propto P(B,j,m)$$

P(B) P(E)

P(E) P(A|B,E)

P(j|A)

P(m|A)

$$P(B|j,m) \propto P(B,j,m)$$

$$= \sum_{e,a} P(B,j,m,e,a)$$

$$= \sum_{e,a} P(B)P(e)P(a|B|e)P(i|a)P(m|e)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(j|a)P(m|a)$$

$$= \sum_{e} P(B)P(e) \sum_{a} P(a|B,e)P(j|a)P(m|a)$$

$$= \sum_{e} P(B)P(e)f_1(B, e, j, m)$$

$$= P(B) \sum_{e} P(e) f_1(B, e, j, m)$$

$$= P(B)f_2(B,j,m)$$

marginal can be obtained from joint by summing out

use Bayes' net joint distribution expression

use
$$x^*(y+z) = xy + xz$$

joining on a, and then summing out gives f₁

use
$$x^*(y+z) = xy + xz$$

joining on e, and then summing out gives f₂

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!

Another Variable Elimination Example

Query:
$$P(X_3|Y_1 = y_1, Y_2 = y_2, Y_3 = y_3)$$

Start by inserting evidence, which gives the following initial factors:

$$p(Z)p(X_1|Z)p(X_2|Z)p(X_3|Z)p(y_1|X_1)p(y_2|X_2)p(y_3|X_3)$$

Eliminate X_1 , this introduces the factor $f_1(Z, y_1) = \sum_{x_1} p(x_1|Z)p(y_1|x_1)$, and we are left with:

$$p(Z)f_1(Z,y_1)p(X_2|Z)p(X_3|Z)p(y_2|X_2)p(y_3|X_3)$$

Eliminate X_2 , this introduces the factor $f_2(Z, y_2) = \sum_{x_2} p(x_2|Z)p(y_2|x_2)$, and we are left with:

$$p(Z)f_1(Z,y_1)f_2(Z,y_2)p(X_3|Z)p(y_3|X_3)$$

Eliminate Z, this introduces the factor $f_3(y_1, y_2, X_3) = \sum_z p(z) f_1(z, y_1) f_2(z, y_2) p(X_3|z)$, and we are left:

$$p(y_3|X_3), f_3(y_1, y_2, X_3)$$

No hidden variables left. Join the remaining factors to get:

$$f_4(y_1, y_2, y_3, X_3) = P(y_3|X_3)f_3(y_1, y_2, X_3).$$

Normalizing over X_3 gives $P(X_3|y_1,y_2,y_3)$.

Computational complexity critically depends on the largest factor being generated in this process. Size of factor = number of entries in table. In example above (assuming binary) all factors generated are of size 2 --- as they all only have one variable $(Z, Z, and X_3 \text{ respectively})$.

Variable Elimination Ordering

For the query $P(X_n | y_1,...,y_n)$ work through the following two different orderings as done in previous slide: $Z, X_1, ..., X_{n-1}$ and $X_1, ..., X_{n-1}$, Z. What is the size of the maximum factor generated for each of the orderings?

- Answer: 2ⁿ⁺¹ versus 2² (assuming binary)
- In general: the ordering can greatly affect efficiency.

VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
 - E.g., previous slide's example 2ⁿ vs. 2
- Does there always exist an ordering that only results in small factors?
 - No!

Worst Case Complexity?

3-SAT

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_2 \lor x_4) \land (\neg x_3 \lor \neg x_4 \lor \neg x_5) \land (x_2 \lor x_5 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (\neg x_5 \lor x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (x_4 \lor x_6) \lor (x_4 \lor x_6)$$

- If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.
- Hence inference in Bayes' nets is NP-hard. No known efficient probabilistic inference in general.

Polytrees

- A polytree is a directed graph with no undirected cycles
- For poly-trees you can always find an ordering that is efficient
 - Try it!!

Bayes' Nets

- **✓** Representation
- ✓ Conditional Independences
- Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - √Variable elimination (exact, worst-case exponential complexity, often better)
 - ✓Inference is NP-complete
 - Sampling (approximate)
- Learning Bayes' Nets from Data