Übungen zur Algebraischen Zahlentheorie I

Wintersemester 2021/22

Universität Heidelberg Mathematisches Institut Prof. A. Schmidt Dr. K. Hübner

Blatt 12

Abgabetermin: Freitag, 4.2.2022, 09:30 Uhr

Aufgabe 1 (6 Punkte). Zeigen Sie, dass eine Bewertung $v: K \to \mathbb{R}_{\geq 0}$ auf einem Körper K genau dann nicht-diskret ist, wenn ihr Bild dicht liegt.

Aufgabe 2 (6 Punkte). Sei v eine diskrete Bewertung auf einem Körper K mit separablem Abschluss K^s . Seien L/K und M/K endliche Teilerweiterungen von K^s/K . Zeigen Sie:

- (a) v ist genau dann voll zerlegt in LM, wenn v voll zerlegt in L und M ist.
- (b) v ist genau dann unverzweigt in LM, wenn v unverzweigt in L und M ist.
- (c) Geben Sie ein Beispiel für endliche Körpererweiterungen L/K und M/K wie oben und eine Bewertung v auf K, so dass v in L/K verzweigt, es aber eine Fortsetzung von v nach M gibt, die in LM/M unverzweigt ist.

Aufgabe 3 (6 Punkte). Sei K ein Körper mit einer nicht-archimedischen nicht-diskreten Bewertung v, und seien \mathcal{O}_v und \mathfrak{p}_v der Bewertungsring zu v bzw. dessen Maximalideal. Zeigen Sie: Es gilt $\mathfrak{p}_v = \mathfrak{p}_v^2$. Insbesondere stimmt die \mathfrak{p}_v -adische Vervollständigung $\hat{\mathcal{O}}_v$ von \mathcal{O}_v nicht mit dem Bewertungsring $\mathcal{O}_{\hat{K}_v}$ der Vervollständigung von K bzgl. v überein.

Aufgabe 4 (6 Punkte). Bestimmen Sie alle Primzahlen p, für die $\sqrt[2]{7} \in \mathbb{Q}_p$ existiert.