Sequences and Recurrence Relations





# **SEQUENCES**



#### **Sequences** and **Summations**: Motivation

- Sequences are an ORDERED LIST of elements
  - Can be finite, or infinite
- Used in Discrete Maths and Computer Science in many ways, and in many other disciplines, ranging from botany to music
- Provide solutions to certain "counting problems"
  - (e.g. counting number of steps in an algorithms  $\rightarrow$  Algorithmic Complexity)
- They are an important DATA STRUCTURE
  - In this context sequences are generally referred to as "lists". E.g. Lists in Python
- We often need to work with SUMS OF ELEMENTS IN AN ORDERED LIST
  - Many trigonometric functions, transcendental function, important mathematical constants, are defined in terms of summations over sequence of terms; not our concern in this topic though...



#### **Sequences: Definition**

· Sequences are <u>ordered lists</u> of <u>elements</u>.

```
1, 2, 3, 5, 8
1, 3, 9, 27, 81, ...
order matters (1,2,3 is not the same as 1,3,2)
repetitions are allowed (and are "meaningful", so 1,2,2,3 is not the same sequence as 1,2,3)
```

- sometimes simply called "lists"
- · You can refer to the concept of "Lists" and "Array" data structures, which are very similar to the concept of "Sequences" we are discussing here

## **Sequences: Definition; More Formal**

• Formally, a sequence  $(a_n)_{n=0}^{\infty}$  is a *function* over the natural numbers:

$$a: \mathbb{N} \longrightarrow \mathbb{R}$$

- Examples:
  - If  $a_n$  is the sequence of all odd natural numbers, then  $(a_n) =$

- That is,  $a_n = 2n + 1$
- The powers of 2: (1, 2, 4, 8, 16, ...). That is,  $a_n = 2^n$ .





# Two Special Sequences

Arithmetic Progression

Geometric Progression

## **Arithmetic Progression: Motivating Example**

- Arrays in memory start at a particular address
  - E.g. let's say an Array A starts at address (in decimal): 1000
- Each element in the array is of a particular size
  - Say A is an array of integers, so each element's size is 4 bytes (occupies 4 addresses)
- In this scenario, the starting addresses of the elements in the array will form an arithmetic progression
  - Starting addresses of array:
    - · 1000
    - · 1004
    - · 1008,
    - · 1012, ...
  - Or, equivalently:
    - $\cdot$  1000 + **0** × 4
    - $\cdot \quad 1000 + 1 \times 4,$
    - $1000 + 2 \times 4$
    - $\cdot$  1000 + 3 × 4, ...
  - Direct formula for address of  $n^{th}$  element (where n = 0,1,2,...):  $1000 + n \times 4$

### **Arithmetic Progression**

- An *arithmetic progression* is a sequence with a common, *fixed* difference between *any* two consecutive terms.
- · Therefore, it has the form

$$a_0, a_0 + d, a_0 + 2d, a_0 + 3d, \dots$$

where  $a_0$  is the *initial term* and d is the *difference*.

- That is,  $a_n = a_0 + nd$  for all  $n \in \mathbb{N}$ .
- Examples
  - $a_0 = 1$  and d = 1: (1, 2, 3, 4,...)
  - $a_0 = -1$  and d = -1: (-1, -2, -3, -4, ...)
  - $a_0 = 1/2$  and d = 1/2: (1/2, 1, 3/2, 2, ...)
  - $a_0 = 1000$  and d = 4: (1000, 1004, 1008, 1012, ...)

#### **Geometric Progression: Motivating Example**

- Any quantity going by a particular percentage at regular intervals
- E.g., say population of a place is initially 100,000, and grows by 2% every year
- So year-wise population
  - **100,000**
  - 100,000 × 1.02
  - $100,000 \times 1.02 \times 1.02 = 100,000 \times 1.02^{2}$
  - $100,000 \times 1.02 \times 1.02 \times 1.02 = 100,000 \times 1.02^3$
- Population at year = n (where for first year, n = 0)
  - $100,000 \times 1.02^n$

#### **Geometric Progression: Another Motivating Example**





#### **Geometric Progression**

- An *geometric progression* is a sequence with a common, *fixed* ratio between *any* two consecutive terms.
- Therefore, it has the form

$$a_0$$
,  $a_0r$ ,  $a_0r^2$ ,  $a_0r^3$ , ...

where  $a_0$  is the *initial term* and r is the *ratio*.

- That is,  $a_n = a_0 r^n$  for all  $n \in \mathbb{N}$ .
- Examples
  - $a_0 = 1$  and r = 2: (1, 2, 4, 8,...)
  - $a_0 = 1$  and r = -1: (1, -1, 1, -1, ...)
  - $a_0 = 1$  and r = 1/2: (1, 1/2, 1/4, 1/8, ...)
  - $a_0 = 100,000$  and r = 1.02: (100000, 102000, 104040, 106121, ...)

#### What to these progressions look like when plotted?

- · Download this spreadsheet, and experiment with
  - different values of a and d (for arithmetic progression)
  - different values of a and r (for geometric progression)



#### **Representing Sequences**

Sequences can sometimes be arbitrary with no "pattern":

```
E.g. A = \{4, 7, 56, 12312, 3, 1, 0, 1, 2, 2\}
```

We are more interested in Sequences that follow a certain PATTERN, where we can specify the terms by:

- a) defining terms in terms of previous terms(s) (recurrence relation)
  - e.g. Arithmetic and Geometric Progressions, and/or
- b) giving a certain *FORMULA* for a term at any position we wish (i.e the nth term) next subsection

### Representing Sequences: RULES / RECURRENCE RELATION

We can define a Sequences by specifying a RULE to find successive elements.

That is, we *specify the first (or first few elements)*, and then define a *recurrence* relation on how to calculate subsequent terms.

E.g. for the specifying the sequence of even numbers:



### Representing Sequences: RULES / RECURRENCE RELATION

We can define a Sequences by specifying a RULE to find successive elements.

That is, we *specify the first (or first few elements)*, and then define a <u>recurrence relation</u> on how to calculate subsequent terms.

E.g. for the specifying the sequence of even numbers:

$$a_n = a_{n-1} + 2$$
 (kecuwence Relation)  $a_0 = 0$  (Initial Condition) 
$$\{a_n\} = 0,2,4,6,...$$
 (Resulting Sequences i.e. "Solution")



Let  $(a_n)$  be a sequence defined by the recurrence relation

$$a_0 = 2$$
  
$$a_n = a_{n-1} + 3$$

What are the values of the terms  $a_1$ ,  $a_2$  and  $a_3$ ?

#### Let $(a_n)$ be a sequence defined by the recurrence relation

$$a_0 = 2$$
  
$$a_n = a_{n-1} + 3$$

#### What are the values of the terms $a_1$ , $a_2$ and $a_3$ ?

> Solution: We see from the recurrence relation that:

$$a_1 = a_0 + 3 = 2 + 3 = 5$$
  
 $a_2 = a_1 + 3 = 5 + 3 = 8$   
 $a_3 = a_2 + 3 = 8 + 3 = 11$ 

#### Let $(a_n)$ be a sequence defined by the recurrence relation

$$a_0 = 3$$
 $a_1 = 5$ 
 $a_n = a_{n-1} - a_{n-2}$ 

(for n = 2, 3, ...)

What are the values of  $a_2$  and  $a_3$ ?

> Solution:

#### Let $(a_n)$ be a sequence defined by the recurrence relation

$$a_0 = 3$$

$$a_1 = 5$$

$$a_n = a_{n-1} - a_{n-2}$$

(for n = 2, 3, ...)

#### What are the values of $a_2$ and $a_3$ ?

> Solution: We see from the recurrence relation that:

$$a_2 = a_1 - a_0 = 5 - 3 = 2$$

$$a_3 = a_2 - a_1 = 2 - 5 = -3$$

#### Recurrence Relation Example: Fibonacci Sequence

#### The *Fibonacci sequence* $(f_0, f_1, f_2, ...)$ is defined by:

- -Initial conditions:  $f_0 = 0$ ,  $f_1 = 1$
- Recurrence relation:  $f_n = f_{n-1} + f_{n-2}$

$$f_2 = f_1 + f_0 = 1 + 0 = 1$$
  
 $f_3 = f_2 + f_1 = 1 + 1 = 2$   
 $f_4 = f_3 + f_2 = 2 + 1 = 3$   
 $f_5 = f_4 + f_3 = 3 + 2 = 5$   
 $f_6 = f_5 + f_4 = 5 + 3 = 8$ 



# "SOLVING" RECURRENCE RELATIONS

$$a_n = a_{n-1} + 2$$
 (kecurrence Relation)  $a_0 = 0$  (Initial Condition)  $\{a_n\} = 0,2,4,6,...$  (Resulting Sequences i.e. "Solution")

#### **Problem?**

$$a_n=a_{n-1}+2$$
 (kecuwence Relation)  $a_0=0$  (Initial Condition)  $\{a_n\}=0,2,4,6,...$  (Resulting Sequences i.e. "Solution")

- Say that, given a recurrence relation we want to find the  $n^{th}$  element of a sequence (e.g. n = 1 billion)
  - You can consider the sequence of even numbers for illustration
- We *can* find it through the use of recurrence relations, but we will have to compute the previous 999,999,999 elements first before we can compute the 1 billionth element

- In other words, this is an O(n) computation
- Can you tell me, directly, what the 1 billionth even number is?

## Simple Examples to Show we can do it!

• The sequence is: natural numbers

• The sequence is: even numbers

• The sequence is: odd numbers

· Yes, we can do it!

# **Cunning plan?**





#### **Representing Sequences: FORMULAS**

We can specify the terms by giving a certain FORMULA for a DIRECTLY COMPUTING term at any position we wish (i.e the nth term)



#### **Representing Sequences: FORMULAS**

We can specify the terms by giving a certain FORMULA for a term at any position we wish (i.e the  $n^{th}$  term) – O(1)!!

Example: Consider the sequence  $\{a_n\}=0,2,4,6,...$ 

the n<sup>th</sup> term in this sequence can be given <u>directly</u> by this formula

$$a_n = 2n$$

Now compute the 1 billionth term of this sequence: how many *steps* did you take?

# "Solving" Recurrence Relations

#### **Representing Sequences: RULES / RECURRENCE RELATION**

We can also define a Sequences by specifying a RULE to find successive elements.

That is, we specify the first (or first few elements), and then define a recurrence relation on how to calculate subsequent terms.

E.g. for the same sequence as before (even numbers):

$$a_n = a_{n-1} + 2$$
 (kecurence Relation)  $a_0 = 0$  (Initial Condition)  $\{a_n\} = 0,2,4,6,...$  (Resulting Sequences i.e. "Solution")

#### **Representing Sequences: FORMULAS**



Sequences can sometimes be arbitrary with no "formula" that connects their value to their "index": E.g. A = {4, 7, 56, 12312, 3, 1, 0, 1, 2, 2}

We are more interested in Sequences that follow a certain PATTERN, where we can specify the terms by giving a certain FORMULA for a term at any position we wish (i.e the nth term)

Example: Consider the sequence  $\{a_n\}$  where

 $a_n = 2n \qquad \{a_n\} = \{a_1, a_2, a_3, \ldots\}$   $\{a_n\} = \{a_1, a_2, a_3, \ldots\}$ 

Solving Recurrence Relation

Groing from a Recurrence Relation TD a Farmula for the nth term

#### **Solving Recurrence Relations**

- Finding a formula for the *n*<sup>th</sup> term of the sequence generated by a recurrence relation is called *solving* the recurrence relation.
- Such a formula is called a <u>closed formula</u>.
- Various methods for solving recurrence relations.
- Here we illustrate by example the <u>method of iteration</u>.



#### **Solving Recurrence Relations**

- Finding a formula for the *n*<sup>th</sup> term of the sequence generated by a recurrence relation is called *solving* the recurrence relation.
- Such a formula is called a <u>closed formula</u>.
- Various methods for solving recurrence relations.
- Here we illustrate, by example, the <u>iterative method</u>.

#### **Iterative Solution Method**

- "Brute force" method of solving a recurrence relation
- Also known as forward substitution:
- 1. Start with initial condition
- 2. Work upwards/forward until you reach  $a_n$  in terms of  $a_0$  (initial condition) and constants *only*
- 3. Try to identify the pattern and derive the formula

## **Iterative Solution Method: Example**

Working upward, forward substitution



- 1. Start with initial condition,
- 2. Work upward until you reach  $a_n$  in terms of  $a_0$  (initial condition) and constants only
- 3. "Deduce" formula

Let  $\{a_n\}$  be a sequence that satisfies the recurrence relation  $a_n = a_{n-1} + 3$ 

for  $n = 1, 2, 3, 4, \dots$  and suppose that  $a_0 = 2$ 

## **Iterative Solution Method 1: Example**

Working upward, forward substitution



- 1. Start with initial condition,
- 2. Work upward until you reach an
- 3. "Deduce" formula

Let  $\{a_n\}$  be a sequence that satisfies the recurrence relation  $a_n = a_{n-1} + 3$ 

for 
$$n = 1, 2, 3, 4, \dots$$
 and suppose that  $a_0 = 2$ 

$$a_1 = a_0 + 3 = 2 + 3$$
  
 $a_2 = a_1 + 3 = (2 + 3) + 3 = 2 + 3 \cdot 2$   
 $a_3 = a_2 + 3 = (2 + 3 \cdot 2) + 3 = 2 + 3 \cdot 3$   
 $a_4 = a_3 + 3 = (2 + 3 \cdot 3) + 3 = 2 + 3 \cdot 4$   
.

 $a_n = a_{n-1} + 3 = 2 + 3(n-1) + 3 = 2 + 3n$ 

# **Iterative Solution Method: Example**

Working upward, forward substitution



- 1. Start with initial condition,
- 2. Work upward until you reach an
- 3. "Deduce" formula

Let  $\{a_n\}$  be a sequence that satisfies the recurrence relation  $a_n = a_{n-1} + 3$ 

for  $n = 1, 2, 3, 4, \dots$  and suppose that  $a_0 = 2$ 

$$a_1 = a_0 + 3 = 2 + 3$$
 $a_2 = a_1 + 3 = (2 + 3) + 3 = 2 + 3 \cdot 2$ 
 $a_3 = a_2 + 3 = (2 + 3 \cdot 2) + 3 = 2 + 3 \cdot 3$ 
 $a_4 = a_3 + 3 = (2 + 3 \cdot 3) + 3 = 2 + 3 \cdot 3$ 
 $a_n = a_{n-1} + 3 = 2 + 3(n-1) + 3 = 2 + 3n$ 

$$a_n = a_{n-1} + 3 = 2 + 3(n-1) + 3 = 2 + 3n$$

# **Some Useful Sequences**

| TABLE 1 Some Useful Sequences. |                                                      |  |
|--------------------------------|------------------------------------------------------|--|
| nth Term                       | First 10 Terms                                       |  |
| $n^2$                          | 1, 4, 9, 16, 25, 36, 49, 64, 81, 100,                |  |
| $n^3$                          | 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000,         |  |
| $n^4$                          | 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000,  |  |
| $2^{n}$                        | 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,            |  |
| $3^n$                          | 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049,    |  |
| n!                             | 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, |  |
| $f_n$                          | 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,                |  |

### **SUMMATIONS**



# **Summations and product – Examples**

Suppose we have a sequence  $a_1$ ,  $a_2$ ,  $a_3$ , ...

$$\sum_{i=m}^{n} a_{i} = a_{m} + a_{m+1} + a_{m+2} + \cdots + a_{n-1} + a_{n}$$

$$\prod_{i=m}^{n} a_i = a_m \cdot a_{m+1} \cdot a_{m+2} \cdot \cdots \cdot a_{n-1} \cdot a_n$$

"Sigma" for sum and "Pi" for product



### **Summations - Notation**



Suppose we have a sequence  $a_1$ ,  $a_2$ ,  $a_3$ , ...



# **Summations – Examples**



#### The sum of the first hundred positive integers

$$\sum_{i=1}^{100} i = 1 + 2 + 3 + \cdots + 99 + 100$$

What is the answer?

# **Example: Summing up first** *n* **natural numbers**

#### Example 1 · Input: integer n · Output: the sum of the first n numbers Operations SUMS1(n) O(1) i := 0O(1)sum := 0VS. while i < n O(n)increment i O(n) sum := sum + iO(n) return sum O(1)• T(n) = O(1)+O(1)+O(n)+O(n)+O(n)+O(1) = O(n)Can we do better?

#### Example 1: Improved

- · Input: integer n
- Output: the sum of the first n numbers

Summation rule 
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

```
SUMS2(n)

Sum := n * (n+1)/2

return sum

Operations

O(1)

O(1)
```

- T(n) = O(1) + O(1) = O(1)
- No loops!

107





Clever Carl <a href="https://nrich.maths.org/2478">https://nrich.maths.org/2478</a>

# **Summations – Examples**



#### So the sum of the first hundred positive integers

$$\sum_{i=1}^{100} i = 1 + 2 + 3 + \cdots + 99 + 100$$

is:

$$\sum_{i=1}^{n} i = n \cdot (n+1)/2$$

#### **Summations and Sets**

 More generally, we can specify the indices to be used for summation by referring to a set S:

$$\sum_{j \in S} a_j$$

Examples:

If 
$$S = \{2, 5, 7, 10\}$$
 then  $\sum_{j \in S} a_j = a_2 + a_5 + a_7 + a_{10}$ 

#### **Product Notation**

 Product of the terms from the sequence

$$\{a_m, a_{m+1}, \dots, a_n \}$$

• The notation:

$$\prod_{j=m}^n a_j \qquad \prod_{j=m}^n a_j \qquad \prod_{m\leq j\leq n} a_j$$
 represents

 $a_m \times a_{m+1} \times \cdots \times a_n$ 

### **Some Useful Summation Formulae**

| TABLE 2 Some Useful Summation Formulae. |                                        |                            |
|-----------------------------------------|----------------------------------------|----------------------------|
| Sum                                     | Closed Form                            | Geometric Series           |
| $\sum_{k=0}^{n} ar^k \ (r \neq 0)$      | $\frac{ar^{n+1} - a}{r - 1}, r \neq 1$ |                            |
| $\sum_{k=1}^{n} k$                      | $\frac{n(n+1)}{2}$                     | — Sum of n natural numbers |
| $\sum_{k=1}^{n} k^2$                    | $\frac{n(n+1)(2n+1)}{6}$               |                            |
| $\sum_{k=1}^{n} k^3$                    | $\frac{n^2(n+1)^2}{4}$                 |                            |
| $\sum_{k=0}^{\infty} x^k,  x  < 1$      | $\frac{1}{1-x}$                        |                            |
| $\sum_{k=1}^{\infty} kx^{k-1},  x  < 1$ | $\frac{1}{(1-x)^2}$                    |                            |