TD10: Produit tensoriel

Exercices * : à préparer à la maison avant le TD, seront corrigés en début de TD.

Exercices ** : seront traités en classe en priorité.

Exercices $\star \star \star$: plus difficiles.

Exercice 1: *

Soit K un corps, et soient A et B des K-algèbres.

- a) Définir une structure de K-algèbre sur $A \otimes_K B$.
- b) Montrer que les K-algèbres $K[X] \otimes_K K[Y]$ et K[X,Y] sont isomorphes.
- c) Montrer que le morphisme naturel de K-algèbres de $K(X) \otimes_K K(Y)$ vers K(X,Y) est injectif mais non surjectif.

Exercice 2: *

- a) Notons $M_2(\mathbb{C})$ la \mathbb{C} -algèbre des matrices 2×2 à coefficients dans \mathbb{C} et \mathbf{H} la \mathbb{R} -algèbre des quaternions. Montrer que les \mathbb{C} -algèbres $M_2(\mathbb{C})$ et $\mathbf{H} \otimes_{\mathbb{R}} \mathbb{C}$ sont isomorphes.
- b) Montrer que $\mathbf{H} \otimes_{\mathbb{R}} \mathbf{H}$ est isomorphe à $M_4(\mathbb{R})$.

Exercice 3: **

- a) Soient U et V des espaces vectoriels (sur un corps K). On note $U^* = \operatorname{Hom}_K(U, K)$ le dual de U. Expliciter une application linéaire naturelle injective $\Phi: U^* \otimes_K V \to \operatorname{Hom}_K(U, V)$. Quelles sont les images des tenseurs décomposés (c'est-à-dire les $\lambda \otimes v$ avec $\lambda \in U^*$ et $v \in V$)? Quelle est l'image de l'application Φ ? Quand est-elle un isomorphisme?
- b) Soient E et F deux K-espaces vectoriels de dimension finie. Que vaut

$$\max_{x \in E \otimes F} \min \left\{ n \in \mathbb{N} : \exists (e_1, \dots, e_n) \in E^n \text{ et } (f_1, \dots, f_n) \in F^n, x = \sum_{i=1}^n e_i \otimes f_i \right\}?$$

Exercice 4:

Soit K un corps et soit E un espace vectoriel de dimension finie sur K. Soit $n \ge 1$ un entier. Montrer que le dual $(\bigwedge^n E)^*$ de $\bigwedge^n E$ est canoniquement isomorphe à $\bigwedge^n E^*$.

Exercice 5:

Soit $n \ge 1$ un entier, soit K un corps et soit E un espace vectoriel de dimension n sur K. Montrer que le dual $(\bigwedge^i E)^*$ de $\bigwedge^i E$ est non canoniquement isomorphe à $\bigwedge^{n-i} E$.

Exercice 6: **

Soit K un corps et soient E et F des K-espaces vectoriels de dimension finie. Soit $n \ge 1$ un entier. Montrer que l'on a une bijection entre l'ensemble des applications linéaires $\bigwedge^n E \to F$ et l'ensemble des applications n-linéaires alternées $E^n \to F$.

Exercice 7: **

Soit K un corps et soit E un K-espace vectoriel. Soient u_1, \ldots, u_r des éléments de E.

- a) Montrer que l'on a $u_1 \wedge \cdots \wedge u_r \neq 0$ dans $\bigwedge^r E$ si et seulement si la famille (u_1, \dots, u_r) est libre dans E.
- b) Montrer que l'on a $u_1 \wedge \cdots \wedge u_r \neq 0$ dans $\bigwedge^r E$ si et seulement s'il existe une forme alternée f sur E telle que $f(u_1, \ldots, u_r) \neq 0$.

Exercice 8:

Soit K un corps et soient E et F des K-espaces vectoriels. Soit $n \ge 1$ un entier et soit $u: E \to F$ une aplication linéaire.

- a) Définir une application linéaire "naturelle" $\bigwedge^n u : \bigwedge^n E \to \bigwedge^n F$.
- b) Supposons que le rang de u est fini égal à un entier r. Montrer que si $n \leq r$, alors le rang de $\bigwedge^n u$ est $\binom{n}{r}$, et si n > r, l'application $\bigwedge^n u$ est nulle.

Exercice 9:

Soit K un corps et soient A et B des K-algèbres graduées.

a) Montrer qu'il existe sur $A \otimes_K B$ une structure naturelle de K-algèbre graduée telle que

$$(a \otimes b)(a' \otimes b') = (-1)^{(\deg b)(\deg a')}(aa' \otimes bb').$$

On note $A \otimes_K^{\mathrm{su}} B$ l'algèbre ainsi obtenue.

b) Soient V et W des espaces vectoriels sur K. Montrer que l'on a un isomorphisme de K-algèbres

$$\bigwedge (V \oplus W) \simeq \bigwedge V \otimes_K^{\mathrm{su}} \bigwedge W.$$

Exercice 10:

Soit K un corps et soit E un K-espace vectoriel.

- a) Supposons E de dimension finie. On note $\bigwedge E = \bigoplus_n \bigwedge^n E$ et on écrit tout élément $z \in \bigwedge E$ sous la forme $z = \sum_{n>0} z_n$. Montrer que $z \in \bigwedge E$ est inversible si et seulement si $z_0 \neq 0$.
- b) Montrer que tout élément $z \in \bigwedge E$ appartient à un $\bigwedge F$ pour un certain sous-espace $F \subset E$ de dimension finie. En déduire une description des inversibles de $\bigwedge E$.

Exercice 11: **

Soit $n \geq 1$ un entier. Soient $F \subset E$ des corps tels que E est un F-espace vectoriel de dimension n, de base $(1, x_1, \ldots, x_{n-1})$. On suppose l'existence d'un groupe G de cardinal n, composé de F-automorphismes de E, tel que le corps $E^G = \{e \in E \mid \forall g \in G, ge = e\}$ est exactement F.

- a) Montrer que les éléments de G sont linéairement indépendants.
- b) Soit V un E-espace vectoriel, muni d'une action semi-linéaire de G. On définit le sous-F-espace vectoriel des G-invariants par $V^G := \{v \in V \mid \forall g \in G \ gv = v\}$. Prouver que l'application naturelle E-linéaire $\eta : V^G \otimes_F E \to V$ commute à l'action de G.
- c) Montrer que η est un isomorphisme.

Exercice 12: $\star\star$

Soit K un corps.

- a) Définir une notion de suite exacte de K-espaces vectoriels.
- b) Soit $0 \to V_1 \to V_2 \to V_3 \to 0$ une suite exacte de K-espaces vectoriels. Soit également W un K-espace vectoriel.
 - i) Montrer que la suite

$$0 \to \operatorname{Hom}_K(V_3, W) \to \operatorname{Hom}_K(V_2, W) \to \operatorname{Hom}_K(V_1, W) \to 0$$

est une suite exacte.

ii) Montrer que la suite

$$0 \to V_1 \otimes_K W \to V_2 \otimes_K W \to V_3 \otimes_K W \to 0$$

est une suite exacte.

Exercice 13:

Soit V un espace vectoriel hermitien complexe de dimension finie n, de base (e_1, \ldots, e_n) . On ne suppose pas que cette base est orthonormale. Pour $1 \leq i \leq n$, soit s_i une transformation unitaire telle que $s_i(e_i) = c_i e_i$ avec $c_i \neq 1$ et telle que s_i est l'identité sur e_i^{\perp} . On appelle G le sous-groupe de GL(V) engendré par les s_i .

- a) Soit $x \in V$. Exprimer $s_i(x)$ comme combinaison linéaire de x et de e_i .
- b) Soit k un entier supérieur ou égal à 1. Montrer que tout élément de $\bigwedge^k V$ invariant par G est nul (on pourra procéder par récurrence sur n en considérant le sous-espace V' de base (e_1, \ldots, e_{n-1}) et en décomposant V en somme directe de V' et de son supplémentaire orthogonal).
- c) On suppose que G est fini. Montrer que pour tout élément A de End(V) on a :

$$\sum_{g \in G} \det(A - g) = |G| \cdot \det(A) \text{ et } \sum_{g \in G} \det(\operatorname{Id} - Ag) = |G|.$$

d) En déduire que pour tout A de $\operatorname{End}(V)$, il existe $g \in G$ tel que Ag n'a aucun point fixe non nul.

Exercice 14: $\star\star\star$

Soient p un nombre premier impair, $r \ge 1$ et $q = p^r$.

a) On note $V_1, V_2 := (\mathbb{F}_{q^2})^2$, et (e_i, f_i) la base canonique de V_i . On munit $V := V_1 \otimes_{\mathbb{F}_{q^2}} V_2$ de la forme bilinéaire symétrique b définie par $b(v_1 \otimes v_2, v_1' \otimes v_2') := b_1(v_1, v_1')b_2(v_2, v_2')$, où b_i est la forme bilinéaire alternée sur V_i telle que $b_i((1,0),(0,1)) = 1$. On pose enfin

$$V' := \operatorname{Vect}_{\mathbb{F}_p} \{ e_1 \otimes e_2, f_1 \otimes f_2, \lambda e_1 \otimes f_2 + \overline{\lambda} f_1 \otimes e_2 : \lambda \in \mathbb{F}_{g^2} \} \subset V.$$

- i) Montrer que $\dim_{\mathbb{F}_n} V' = 4$.
- ii) Construire un morphisme de groupes $SL_2(\mathbb{F}_{q^2}) \to O(V', b)$.
- iii) En déduire un isomorphisme de groupes $P\Omega_4^-(\mathbb{F}_q) \cong PSL_2(\mathbb{F}_{q^2})$.
- b) On note (e_i) la base canonique de \mathbb{F}_q^4 et on note $W := \bigwedge^2(\mathbb{F}_q^4)$.
 - i) Quelle est la dimension de W comme \mathbb{F}_q -espace vectoriel?
 - ii) Montrer que W est muni d'une forme bilinéaire symétrique non dégénérée naturelle f telle que pour tout $\sigma: \{1,2,3,4\} \to \{1,2,3,4\}, f(e_{\sigma(1)} \land e_{\sigma(2)}, e_{\sigma(3)} \land e_{\sigma(4)}) = \varepsilon(\sigma)$, avec par convention $\varepsilon(\sigma) = 0$ si σ n'est pas bijective.
 - iii) Montrer que $GL_4(\mathbb{F}_q)$ agit naturellement sur W.
 - iv) Construire un morphisme de groupes $SL_4(\mathbb{F}_q) \to O(W, f)$.
 - v) En déduire un isomorphisme $P\Omega_6^+(\mathbb{F}_q) \cong PSL_4(\mathbb{F}_q)$.
- c) On note (e_1, e_2, e_3, e_4) une base orthonormée pour la forme sesquilinéaire naturelle sur $X := (\mathbb{F}_{q^2})^4$, et $X' \subset \bigwedge^2 X$ le sous- \mathbb{F}_q -espace vectoriel engendré par les vecteurs $\lambda e_{\sigma(1)} \wedge e_{\sigma(2)} + \overline{\lambda} e_{\sigma(3)} \wedge e_{\sigma(4)}$, pour tout $\sigma \in \mathfrak{A}_4$ et $\lambda \in \mathbb{F}_{q^2}$.
 - i) Montrer que $\dim_{\mathbb{F}_q} X' = 6$.
 - ii) Montrer que X' est muni d'une forme bilinéaire symétrique f telle que pour tout $\sigma \in \mathfrak{A}_4$, $\lambda, \mu \in \mathbb{F}_{q^2}$,

$$f(\lambda e_{\sigma(1)} \wedge e_{\sigma(2)} + \overline{\lambda} e_{\sigma(3)} \wedge e_{\sigma(4)}, \mu e_{\sigma(1)} \wedge e_{\sigma(2)} + \overline{\mu} e_{\sigma(3)} \wedge e_{\sigma(4)}) = \lambda \overline{\mu} + \overline{\lambda} \mu.$$

- iii) Construire un morphisme de groupes $SU_4(\mathbb{F}_{q^2}) \to O(X', f)$.
- iv) En déduire un isomorphisme de groupes $P\Omega_6^-(\mathbb{F}_q) \cong PSU_4(\mathbb{F}_{q^2})$.

Exercice 15: $\star\star\star$

Soit K un corps de caractéristique $\neq 2$, V un K-espace vectoriel de dimension n et q une forme quadratique sur V.

- a) On note I(q) l'idéal bilatère de T(V) engendré par les éléments de la forme $v \otimes v q(v)$ pour $v \in V$. On pose C(q) := T(V)/I(q). Montrer que C(q) est une K-algèbre, canoniquement isomorphe à $\bigwedge V$ comme K-espace vectoriel, et admettant une décomposition $C(q) = C(q)^+ \oplus C(q)^-$ définie par le degré des éléments de T(V).
- b) Vérifier $C(q)^+$ est une sous-algèbre de C(q).
- c) Montrer que $\dim_K C(q) = 2^n$ et donner une base de C(q) comme K-espace vectoriel.
- d) Montrer que V se plonge naturellement dans C(q).
- e) Calculer C(q) lorsque $K=\mathbb{R},$ $\dim_{\mathbb{R}}(V)\leq 2.$ Généraliser au cas où K est quelconque et $\dim_K(V)\leq 1.$
- f) Calculer le centre de C(q).
- g) On note $\alpha := \mathrm{id}_{C(q)^+} \oplus -\mathrm{id}_{C(q)^-} \in \mathrm{GL}_K(C(q))$ et pour tout $x \in C(q)^{\times}$, $\rho_x \in \mathrm{End}_K(C(q))$ défini par $\rho_x : z \mapsto \alpha(x)zx^{-1}$. Montrer que cela définit un morphisme de groupes $\rho : C(q)^{\times} \to \mathrm{GL}_K(C(q))$.
- h) On note $\Gamma(V,q) := \{x \in C(q)^{\times} : \rho_x(V) \subset V\}$. Montrer que $\Gamma(V,q)$ contient les vecteurs non isotropes de (V,q).
- i) On suppose q non dégénérée. Montrer que $Ker(\rho) = K^*$.
- j) Montrer qu'il existe un unique $t \in GL_K(C(q))$ tel que $t_{|V|} = id_V$ et t(xy) = t(y)t(x) pour tout $x, y \in C(q)$.
- k) Pour tout $x \in C(q)$, on pose $\overline{x} := t(\alpha(x))$. Montrer que la formule $N(x) := x\overline{x}$ définit une application $N: C(q) \to C(q)$ induisant un morphisme de groupes $N: \Gamma(V,q) \to K^*$.
- l) On suppose q non dégénérée. Montrer que $\operatorname{Im}(\rho) = \operatorname{O}(V, q)$.
- m) On suppose q non dégénérée. Montrer que l'on dispose d'un morphisme naturel $\theta: \mathcal{O}(V,q) \to K^*/(K^*)^2$.
- n) On suppose q non dégénérée et isotrope. Montrer que $\theta: \mathrm{SO}(V,q) \to K^*/(K^*)^2$ est surjectif.
- o) On suppose q non dégénérée. On note $\text{Pin}(V,q) := \text{Ker}(N) = \{g \in \Gamma(V,q) : N(g) = 1\}$ et $\text{Spin}(V,q) := \{g \in \text{Pin}(V,q) : \det(\rho(g)) = 1\}$. Montrer que l'on a des suites exactes de groupes :

$$1 \to \{\pm 1\} \to \operatorname{Pin}(V, q) \xrightarrow{\rho} \operatorname{O}(V, q) \xrightarrow{\theta} K^*/(K^*)^2$$

 et

$$1 \to \{\pm 1\} \to \operatorname{Spin}(V, q) \xrightarrow{\rho} \operatorname{SO}(V, q) \xrightarrow{\theta} K^*/(K^*)^2$$
.

- p) On suppose $K=\mathbb{R}$ et q non dégénérée et non définie. Montrer que $\theta: \mathrm{SO}(V,q) \to K^*/(K^*)^2$ est surjective.
- q) Montrer les isomorphismes suivants : $\operatorname{Spin}_2(\mathbb{C}) \cong \mathbb{C}^*$, $\operatorname{Spin}_3(\mathbb{C}) \cong \operatorname{SL}_2(\mathbb{C})$, $\operatorname{Spin}_4(\mathbb{C}) \cong \operatorname{SL}_2(\mathbb{C}) \times \operatorname{SL}_2(\mathbb{C})$, $\operatorname{Spin}_5(\mathbb{C}) \cong \operatorname{Sp}_4(\mathbb{C})$, $\operatorname{Spin}_6(\mathbb{C}) \cong \operatorname{SL}_4(\mathbb{C})$, ainsi que $\operatorname{Spin}_2(\mathbb{R}) \cong \operatorname{U}_1(\mathbb{C})$, $\operatorname{Spin}_3(\mathbb{R}) \cong \operatorname{SU}_2(\mathbb{C})$, $\operatorname{Spin}_4(\mathbb{R}) \cong \operatorname{SU}_2(\mathbb{C}) \times \operatorname{SU}_2(\mathbb{C})$.