Análisis 2 / Análisis Matematico 2 / Matemática 3 - Primer Parcial

Primer Cuatrimestre 2021 (12/05/2021)

Nombre y Apellido	1	2	3	4	Nota

Justifique todas sus respuestas y explique sus razonamientos. Escriba prolijo. Duración: 4 horas.

Ejercicio 1. Llamamos catenoide a la superficie de ecuación

$$x^2 + y^2 = \cosh^2(z).$$

a. Probar que el trozo de catenoide con $-2 \le z \le 2$, $x \ge 0$, $y \ge 0$ es una superficie suave.

Sugerencia: Considerar la función

$$\Psi(u, v) = (\cosh(u)\cos(v), \cosh(u)\sin(v), u).$$

b. Sea S la superficie dada por el trozo de catenoide

$$x^{2} + y^{2} = \cosh^{2}(z), -2 \le z \le 2, x \ge 0, y \ge 0.$$

Si la densidad de masa de la superficie S es $\rho(x, y, z) = xy|\operatorname{senh}(z)|$, calcular la masa total de la superficie.

Ayuda: Recordar que $cosh^2(x) - senh^2(x) = 1$, $cosh(x) = \frac{e^x + e^{-x}}{2}$, $sinh(x) = \frac{e^x - e^{-x}}{2}$.

Ejercicio 2. Calcular la integral de línea del campo

$$F(x,y) = \left(\frac{-y}{\sqrt{x^2 + y^2}} + y, \frac{x}{\sqrt{x^2 + y^2}} + e^{\cos y}\right)$$

sobre la curva dada por

$$C := \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1, y \ge 0\}$$

orientada de manera tal que empiece en el (1,0) y termine en el (-1,0).

Sugerencia: En caso de ser necesario, puede descomponer F en la suma de dos campos.

Ejercicio 3. Consideremos el hiperboloide de una hoja de ecuación $x^2 + y^2 - z^2 = 1$ orientado de tal manera que la normal en el punto (0,1,0) sea igual a (0,1,0). Observar que el hiperboloide es una superficie de revolución de la curva

$$\sigma(\theta) = (\cosh(\theta), 0, \operatorname{senh}(\theta))$$

alrededor del eje z.

Sea S el trozo de hiperboloide obtenido al acotar $senh(-1) \leq z \leq senh(1), \ y \geq 0,$.

- a. Parametrizar S preservando la orientación. Parametrizar el borde de S, ∂S^+ , de forma compatible con la orientación de S.
- b. Calcular $\int_{\partial S^+} F d\mathbf{s}$, donde

$$F(x,y,z) = \left(\frac{2xe^{\frac{1}{x^2+y^2+z^2}}}{(x^2+y^2+z^2)^2}, \frac{2ye^{\frac{1}{x^2+y^2+z^2}}}{(x^2+y^2+z^2)^2} - \frac{1}{2}z^2, \frac{2ze^{\frac{1}{x^2+y^2+z^2}}}{(x^2+y^2+z^2)^2}\right)$$

Ejercicio 4. Sea S el cono de ecuación $(z+1)^2 = x^2 + y^2$ con $-1 \le z \le 0$ orientado de tal manera que la tercera coordenada de la normal sea negativa en todo punto. Calcular $\int_S F d\mathbf{S}$ donde el campo F esta dado por

$$F(x,y,z) = \left(\frac{y+z}{x^2+y^2+z^2}, \frac{-x-z}{x^2+y^2+z^2}, \frac{-x+y}{x^2+y^2+z^2}\right).$$