Detection and evolution of repetitive proteins

Aleix Lafita

Bateman Research Group

EMBL-EBI Webinar

27th June 2017

Outline

- Why should we care about protein repeats?
- 2. Detection of protein repeats
- 3. Duplication patterns and evolution
- Example protein throughout the webinar

N

MVNRVDFLSNKLNKYSIRKFTVGTASILIGSLMYLGTQQEAEAAENNIENPTTLKDNVQSKEVKIE EVTNKDTAPQGVEAKSEVTSNKDTIEHEPSVVDFLSNKLNKYSIRKFTVGTASILIGSLMYLGTQQ EAEAAENNIENPTTLKDNVQSKEVKIEEVTNKDTAPQGVEAKSEVTSNKDTIEHKAEDIVDFLSNK LNKYSIRKFTVGTASILIGSLMYLGTQQEAEAAENNIENPTTLKDNVQSKEVKIEEVTNKDTAPQG VEAKSEVTSNKDTIEHSKKEVDFLSNKLNKYSIRKFTVGTASILIGSLMYLGTQQEAEAAENNIEN PTTLKDNVQSKEVKIEEVTNKDTAPQGVEAKSEVTSNKDTIEHDTPKE

MVNRVDFLSNKLNKYSIRKFTVGTASILIGSLMYLGTQQEAEAAENNIENPTTLKDNVQSKEVKIE
EVTNKDTAPQGVEAKSEVTSNKDTIEHEPSVVDFLSNKLNKYSIRKFTVGTASILIGSLMYLGTQQ
EAEAAENNIENPTTLKDNVQSKEVKIEEVTNKDTAPQGVEAKSEVTSNKDTIEHKAEDIVDFLSNK
LNKYSIRKFTVGTASILIGSLMYLGTQQEAEAAENNIENPTTLKDNVQSKEVKIEEVTNKDTAPQG
VEAKSEVTSNKDTIEHSKKEVDFLSNKLNKYSIRKFTVGTASILIGSLMYLGTQQEAEAAENNIEN
PTTLKDNVQSKEVKIEEVTNKDTAPQGVEAKSEVTSNKDTIEHDTPKE

MVNRVDFLSNKLNKYSIRKFTVGTASILIGSLMYLGTQQEAEAAENNIENPTTLKDNVQSKEVKIE
EVTNKDTAPQGVEAKSEVTSNKDTIEHEPSVVDFLSNKLNKYSIRKFTVGTASILIGSLMYLGTQQ
EAEAAENNIENPTTLKDNVQSKEVKIEEVTNKDTAPQGVEAKSEVTSNKDTIEHKAEDIVDFLSNK
LNKYSIRKFTVGTASILIGSLMYLGTQQEAEAAENNIENPTTLKDNVQSKEVKIEEVTNKDTAPQG
VEAKSEVTSNKDTIEHSKKEVDFLSNKLNKYSIRKFTVGTASILIGSLMYLGTQQEAEAAENNIEN
PTTLKDNVQSKEVKIEEVTNKDTAPQGVEAKSEVTSNKDTIEHDTPKE

MVNRVDFLSNKLNKYSIRKFTVGTASILIGSLMYLGTQQEAEAAENNIENPTTLKDNVQSKEVKIE
EVTNKDTAPQGVEAKSEVTSNKDTIEHEPSVVDFLSNKLNKYSIRKFTVGTASILIGSLMYLGTQQ
EAEAAENNIENPTTLKDNVQSKEVKIEEVTNKDTAPQGVEAKSEVTSNKDTIEHKAEDIVDFLSNK
LNKYSIRKFTVGTASILIGSLMYLGTQQEAEAAENNIENPTTLKDNVQSKEVKIEEVTNKDTAPQG
VEAKSEVTSNKDTIEHSKKEVDFLSNKLNKYSIRKFTVGTASILIGSLMYLGTQQEAEAAENNIEN
PTTLKDNVQSKEVKIEEVTNKDTAPQGVEAKSEVTSNKDTIEHDTPKE

How frequent are tandem repeats in proteins?

Functional relevance of protein tandem repeats

- Binding specificity
 - Transcription factors
 - Protein-protein interactions

Tandem protein repeats provide an adaptation advantage

Staphylococcus aureus (GBS) cell surface

~ number of tandem domain repeats

Domain of Unknown Function 1220

DUF1220

From Wikipedia, the free encyclopedia

DUF1220 domain name has recently been changed to the Olduvai domain based on data obtained since initial discovery of the domain. ^[2] The copy number of DUF1220 domains increases generally as a function of a species evolutionary proximity to humans. DUF1220 copy number is highest in human (~289, with some person-to-person variations). ^[3] and shows the largest HLS increase in copy number (an additional 160 copies) of any protein coding region in the human genome. DUF1220 copy number is reduced in African great apes (estimated 125 copies in chimpanzees), further reduced in orangutan (92) and Old World monkeys (35), single-or low-copy in non-primate mammals and absent in non-mammals. DUF1220 domains are approximately 65 amino acids in length and are encoded by a two-exon doublet. In the human genome DUF1220 sequences are located primarily on chromosome 1 in region 1q21.1-q21.2, with several copies also found at 1p36, 1p13.3, and 1p12. Sequences encoding DUF1220 domains show rhythmicity, resonance ^[4] and signs of positive selection, especially in primates, and are expressed in several human tissues including brain, where their expression is restricted to neurons. ^[1]

Neuroblastoma breakpoint family member 14 (NBPF14)

>tr|A0A087WZJ2|A0A087WZJ2_HUMAN Neuroblastoma breakpoint family member 14 OS=Homo sapiens OX=9606 GN=NBPF14 PE=4 SV=1

MWSAGPWSSEKAEMNILEINETLRPQLAEKKQQFRNLKEKCFLTQLAGFLANQQKKYKYEECKDLIKFMLRNERQFKEEKLAEQLKQAEELRQYKVLVHSQERELTQLREKLREGRDASRSLY EHLQALLTPYEPDKSQGQDLQEQLAEGCRLAQHLVQKLSPENDEDEDVQVEEAEKVLESSAPREVQKAEESKVPEDSLEECAITCSNSHGPCDSNQPHKNIKITFEEDEVNSTLVVDRESSH DECQDALNILPVPGPTSSATNVSMVSAGPLSSEKAEMNILEINEKLRPQLAEKKQQFRNLKEKCFLTQLSGFLANQQKKYKYEECKDLIKFMLRNERQFKEEKLAEQLKQAEELRQYKVLVHAQ ERELTQLREKLREGRDASRSLNEHLQALLTPDEPDKSQGQDLQEQLAEGCRLAQHLVQKLSPENDNDDDEDVQVEVAEKVQKSSAPREMQKAEEKEVPEDSLEECAITYSNSHGSYDSNQPH RKTKITFEEDKVDSTLIGSSSHVEWEDAVHIIPENESDDEEEEEKGPVSPRNLQESEEEEVPQESWDEGYSTLSIPPEMLASYQSYSSTFHSLEEQQVCMAVDIGRHRWDQVKKEDQEATGPRLS RELLDEKGPEVLODSLDRCYSTPSGOLELTDSOOPYRSAFYVLEQQRVGLAVDMDEIEKYQEVEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLG LALDVDRIKKDEEFEEDQDPPCPRLSRELLEWEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALFEKHVGFSLDVGEIEKKGKGKKRRGRRSKKERRGRKEGEEDQNPPCPRLSREL LDEKGPEVLQDSLDRCYSTPSGCLELTDSOQPYRSAFYVLEQQRVGLAVDMDEIEKYQEVEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLAL DVDRIKKDEEEEEDQDPPCPRLSRELLEWEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSLDVGEIEKKGKGKKRRGRRSKKERRGRKEGEEDQNPPCPRLSRELLDE KGPEVLODSLDRCYSTPSGCLELTDSOQPYRSAFYVLEQQRVGLAVDMDEIEKYQEVEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLALDVD RIKKDEEEEEDODPPCPRLSRELLEWEPEVLODSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSLDVGEIEKKGKGKKRRGRRSKKERRRGRKEGEEDQNPPCPRLSRELLHEKGP EVLQDSLDRCYSTPSGCLELTDSCQPYRSAFYILEQQRVGLAVDMDEIEKYKEVEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLALDVDRFKK DEEEEEDQDPPCPRLSRELLEVVEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSLDVGEIEKKGKGKKRRGRRSKKERRRGRKEGEEDQNPPCPRLSRELLDEKGPEVLQ DSLDRCYSTPSGCLELTDSCQPYRSAFYVLEQQRVGLAVDMDEIEKYKEVEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLALDVDRIKKDQE EEEDQGPPCPRLSRELLEWEPEYLQDSLDRCYSTPSSCLEQPDSQQPYGSSFYALEEKHVGFSLDVGEIEKKGKGKKRRGRRSKKERRRGRKEGEEDQNPPCPRLSRELLDEKGPEYLQDSL DRCYSTPSGCLELTDSOOPYRSAFYVLEQORVGLAVDMDEIEKYKEVEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGOPYSSAVYSLEEQYLGLALDVDRIKKDQEEEE DQGPPCPRLSRELLEWEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSLDVGEIEKKGKGKKRRGRRSKKERRGRKEGEEDQNPPCPRLSRELLDEKGPEVLQDSLDR CYSTPSGCLELTDSCQPYRSAFYVLEQQRVGLAVDMDEIEKYKEVEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLALDVDRIKKDQEEEEDQ GPPCPRLSRELLEWEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSLDVGEIEKKGKGKKRRGRRSKKERRRGRKEGEEDQNPPCPRLSRELLDEKGPEVLQDSLDRCY STPSGCLELTDSCQPYRSAFYVLEQQRVGLAVDMDEIEKYKEVEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLALDVDRIKKDQEEEEDQGP PCPRLSRELLEWEPEVLODSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSLDVGEIEKKGKGKKRRGRRSKKERRRGRKEGEEDQNPPCPRLSRELLDEKGPEVLQDSLDRCYSTP SGCLELTDSCQPYRSAFYVLEQQRVGLAVDMDEIEKYQEVEEDQDPSCPRLSRELLDEKDPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLALDVDKIEKKGKGKKRRGRRS KKERRGRKEGEEDQNPPCPRLNGVLMEVEEREVLQDSLDRCYSTPSMYFELPDSFQHYRSVFYSFEEQHISFALYVDNRFFTLTVTSLHLVFQMGMFPQ

https://www.uniprot.org/uniprot/A0A087WZJ2

http://pfam.xfam.org/protein/A0A087WZJ2

How can we identify the repeats automatically?

Resources to calculate and visualize sequence dot-plots

Dotter (desktop)

https://www.sanger.ac.uk/science/ tools/seatools

Dotlet JS (web)

https://dotlet.vital-it.ch

Self-dot plot of NBPF14

\$ dotter A0A087WZJ2.fasta A0A087WZJ2.fasta

Methods to extract repeats from protein self-alignments

Tandem repeats as a multiple sequence alignment

Multiple sequence alignment of NBPF14 domains

\$ grep A0A087WZJ2 PF06758_full.sto > PF06758_A0A087WZJ2.sto

A0A087WZJ2_HUMAN/177-240

A0A087WZJ2_HUMAN/449-511

A0A087WZJ2_HUMAN/535-597

A0A087WZJ2_HUMAN/607-672

A0A087WZJ2 HUMAN/682-747

A0A087WZJ2_HUMAN/757-822

A0A087WZJ2_HUMAN/851-916

A0A087WZJ2_HUMAN/926-991

A0A087WZJ2_HUMAN/1001-1066

• • •

• • •

-EEAEKVLESSAP---REVQKAEESKVPEDSLEECAITCSNSHGPCDSNQPHKNIKITFEEDEVNSTL-

VA--EKVQKSSAP---REMQKAEEKEVPEDSLEECAITYSNSHGSYDSNQPHRKTKITFEEDKVDSTL-

--EEEEEKGPVSP---RNLQESEEEEVPQESWDEGYSTLSIPPEMLASYQSYSSTFHSLEEQQVCMA-V

-V-KKEDQEATGPRLSRELLDEKGPEVLQDSLDRCYSTPSGCLELTDSCQPYRSAFYVLEQQRVGLA-V

--EVEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLAL-

--EEEEDQDPPCPRLSRELLEVVEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSL-

--EGEEDONPPCPRLSRELLDEKGPEVLODSLDRCYSTPSGCLELTDSCOPYRSAFYVLEOORVGLA-V

--EVEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLAL-

--EEEEDQDPPCPRLSRELLEVVEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSL-

http://pfam.xfam.org/family/PF06758/alignment/full/format?format=stockholm&alnType=full&order=a&case=l&gaps=default&download=0

Repeat similarity patterns reveal protein duplication events

Sequence similarity matrix and duplication patterns

Sequence identity 0.4 0.6 0.8 1.0									
	1	2	3	4	5				
1		0.5	0.9	0.4	0.8				
2	0.5		0.4	0.9	0.4				
3	0.9	0.4		0.5	0.8				
4	0.4	0.9	0.5		0.4				
5	0.8	0.4	0.8	0.4					

Duplication patterns in NBPF14

The duplication unit in NBPF14

		10	20	30	40	50	60
A0A087WZJ2_HUMAN/177-240	- EEAEKVLI	E S S A P	REVOKAEES	KVPEDSLEECAI	TCSNSHGPCD	SNOPHKNI	KITFEEDEVN <mark>ST</mark> L-
A0A087WZJ2_HUMAN/449-511							KITFEEDKVDSTL-
A0A087WZJ2_HUMAN/535-597							FHSLEEQQVCMA-V
A0A087WZJ2_HUMAN/607-672	- V - K K E DQ	EATGPRLS	RELLDEKGP	EVLQDSLDRCYS	TPSGCLELTD	SCQPYRSA	FYVLEQQRVGLA-V
A0A087WZJ2_HUMAN/682-747	EVEEDQ	DPSCPRLS	RELLDEKEP	EVLQDSLDRCYS	TPSGYLELPD	LGQPYSSA	VYSLEEQYLGLAL-
A0A087WZJ2_HUMAN/757-822	E E E E D Q	OPPCPRLS	RELLEVVEP	EVLQDSLDRCYS	TPSSCLEQPD	SCQPYGSS	FYALEEKHVGFSL-
A0A087WZJ2_HUMAN/851-916	EGEEDQI	NPPCPRLS	RELLDEKGP	EVLQDSLDRCYS	TPSGCLELTD	SCQPYRSA	FYVLEQQRVGLA-V
A0A087WZJ2_HUMAN/926-991	EVEEDQI	DPSCPRLS	RELLDEKEP	EVLQDSLDRCYS	TPSGYLELPD	LGQPYSSA	VYSLEEQYLGLAL-
A0A087WZJ2_HUMAN/1001-1066	EEEEDQ	OPPCPRLS	RELLEVVEP	EVLQDSLDRCYS	TPSSCLEQPD	SCQPYGSS	FYALEEKHVGFSL-
A0A087WZJ2_HUMAN/1095-1160	EGEEDQI	N P P C P R L S	RELLDEKGP	EVLQDSLDRCYS	TPSGCLELTD	SCQPYRSA	FYVL <mark>EQQR</mark> VGLA-V
A0A087WZJ2_HUMAN/1170-1235	EVEEDQI	DPSCPRLS	RELLDEKEP	EVLQDSLDRCYS	TPSGYLELPD	LGQPYSSA	VYSLEEQYLGLAL-
A0A087WZJ2_HUMAN/1245-1310	E E E E D Q	DPPCPRLS	RELLEVVEP	EVLQDSLDRCYS	TPSSCLEQPD	SCQPYGSS	FYAL <mark>EEK</mark> HVGFSL-
A0A087WZJ2_HUMAN/1339-1404	EGEEDQI	N P P C P R L S	RELLHEKGP	EVLQDSLDRCYS	TPSGCLELTD	SCQPYRSA	KFYIL <mark>EQQR</mark> VGLA-V
A0A087WZJ2_HUMAN/1414-1479	EV E E DQ I	DP S CP R L S	RELLDEKEP	EVLQDSLDRCYS	TPSGYLELPD	LGQPYSSA	VYSLEEQYLGLAL-
A0A087WZJ2_HUMAN/1489-1554	E E E E D Q	DPPCPRLS	RELLEVVEP	EVLQDSLDRCYS	TPSSCLEQPD	SCQPYGSS	FYALEEKHVGFSL-
A0A087WZJ2_HUMAN/1583-1648	EGEEDQI	NPPCPRLS	RELLDEKGP	EVLQDSLDRCYS	TP SGCLELTD	S C Q P Y R S A	(FYVL <mark>EQQR</mark> VGLA-V
A0A087WZJ2_HUMAN/1658-1723	EVEEDQI		RELLDEKEP		TPSGYLELPD	LGQPYSSA	VYSLEEQYLGLAL-
A0A087WZJ2_HUMAN/1733-1798	EEEEDQ			EVLQDSLDRCYS	TPSSCLEQPD	SCQPYGSS	FYALEEKHVGFSL-
A0A087WZJ2_HUMAN/1827-1892	EGEEDQI		RELLDEKGP	T. L. C. D. C. L. C. L.	TPSGCLELTD	S C Q P Y R S A	(FYVL <mark>EQQR</mark> VGLA-V
A0A087WZJ2_HUMAN/1902-1967	EVEEDQI	DP S CP R L S		T. L. C. D. L. D. I. C. I.	TPSGYLELPD	Lugi I Duri	VYSLEEQYLGLAL-
A0A087WZJ2_HUMAN/1977-2042	EEEEDQ	GPPCPRLS	RELLEVVEP	EVLQDSLDRCYS	TPSSCLEQPD	SCQPYGSS	FYALEEKHVGFSL-
A0A087WZJ2_HUMAN/2071-2136	EGEEDQI	NPPCPRLS	RELLDEKGP	EVLQDSLDRCYS	TPSGCLELTD	S C Q P Y R S A	(FYVL <mark>EQQR</mark> VGLA-V
A0A087WZJ2_HUMAN/2146-2211				EVLQDSLDRCYS			AVYSLEEQYLGLAL-
A0A087WZJ2_HUMAN/2221-2286	EEEEDQ	GPPCPRLS	RELLEVVEP	EVLQDSLDRCYS	TPSSCLEQPD	SCQPYGSS	FYALEEKHVGFSL-
A0A087WZJ2_HUMAN/2315-2380		NPPCPRLS	RELLDEKGP	EVLQDSLDRCYS	TPSGCLELTD	S C Q P Y R S A	(FYVL <mark>EQQR</mark> VGLA-V
A0A087WZJ2_HUMAN/2390-2455			ME CEP CIVE.	EVLQDSLDRCYS	TPSGYLELPD	LGQPYSSA	VYSLEEQYLGLAL-
A0A087WZJ2_HUMAN/2465-2530	<u>EEEEDQ</u> (GPPCPRLS	RELLEVVEP	EVLQDSLDRCYS	TPSSCLEQPD	SCQPYGSS	FYALEEKHVGFSL-
A0A087WZJ2_HUMAN/2559-2624		NPPCPRLS	RELLDEKGP	EVLQDSLDRCYS	TPSGCLELTD	SCQPYRSA	FYVLEQQRVGLA-V
A0A087WZJ2_HUMAN/2634-2699				EVLQDSLDRCYS			
A0A087WZJ2_HUMAN/2728-2793	EGEEDQ	N P P C P R L N	IGVLMEVEER	EVLQDSLDRCYS	TPSMYFELPD	SFQHYRSV	FYSFEEQHISFAL-

The duplication unit in NBPF14

>A0A087WZJ2/682-916

VEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDL GQPYSSAVYSLEEQYLGLALDVDRIKKDEEEEEDQDPPCPRLSRE LLEVVEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKH VGFSLDVGEIEKKGKGKKRRGRRSKKERRRGRKEGEEDQNPPCP RLSRELLDEKGPEVLQDSLDRCYSTPSGCLELTDSCQPYRSAFYV LEQQRVGLAVDMDEIEKYQE

https://www.ebi.ac.uk/Tools/hmmer/search/phmmer

Summary

- Tandem repeats are important for protein function and evolution.
- Tools for repeat detection and visualization.
- Evolutionary events can be inferred from sequence similarity patterns.
- Identify recurring protein repeat units.

Aleix Lafita

https://www.ebi.ac.uk/about/people/aleix-lafita-masip

aleixlafita@ebi.ac.uk

@alafitamasip

