Чистяков Глеб, группа 167

17 мая 2017 г.

№1

Рассмотрим группы $\mathbb{Z}_3, \mathbb{Z}_4, \mathbb{Z}_6$:

Элементы $\mathbb{Z}_3 - 0, 1, 2$

Элементы $\mathbb{Z}_4 - 0, 1, 2, 3$

Элементы $\mathbb{Z}_6 - 0, 1, 2, 3, 4, 5$

Тогда составим следующую табличку элементов для 2, 3, 4 и 6 - го порядков:

Порядок:	\mathbb{Z}_3	\mathbb{Z}_4	\mathbb{Z}_6
2	0	0, 2	0, 3
3	0, 1, 2	0	0, 2, 4
4	0	0, 1, 2, 3	0, 3
6	0, 1, 2	0, 2	0, 1, 2, 3, 4, 5

Тогда $\mathbb{Z}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_6$ порядка k - всевозможные тройки из элементов каждой ячейки в одной строчке нашей таблички, кроме тройки единичного порядка и троек из элементов кратных порядков, то есть $\mathbb{Z}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_6$

для 2 порядка: (0,2,0),(0,0,3),(0,2,3) - $1\times2\times2-1=3$ - тройки

для 3 порядка: $3 \times 1 \times 3 - 1 = 8$ - троек

для 4 порядка: $1 \times 4 \times 2 - 1 - 3 = 4$ - троек

для 6 порядка: $3 \times 2 \times 6 - 1 - 3 - 8 = 24$ - тройки

№2

Пусть G - это нециклическая абелева группа порядка 45. Из теоремы знаем, что любая конечная абелева группа, есть прямая сумма примарных циклических групп (p^{α}) , p - простое, причем такое разложение единственно с точностью до перестановки. Тогда G представимо в виде $\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_5 \simeq \mathbb{Z}_3 \times \mathbb{Z}_{15}$ - нециклическое, так как $(3,15)=3\neq 1$. Разложение же $\mathbb{Z}_9 \times \mathbb{Z}_5$ - не подходит, так как $\mathbb{Z}_9 \times \mathbb{Z}_5 \simeq \mathbb{Z}_{45}$, которая циклическая.

Рассмотрим группы $\mathbb{Z}_3, \mathbb{Z}_3, \mathbb{Z}_5$:

Элементы $\mathbb{Z}_3 - 0, 1, 2$

Элементы $\mathbb{Z}_5 - 0, 1, 2, 3, 4$

Тогда составим следующую табличку элементов для $3,\ 5$ и 15 - го порядков:

Порядок:	\mathbb{Z}_3	\mathbb{Z}_3	\mathbb{Z}_5
3	0, 1, 2	0, 1, 2	0
5	0	0	0, 1, 2, 3, 4
15	0, 1, 2	0, 1, 2	0, 1, 2, 3, 4

Тогда, аналогично №1, элементов в $\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_5$

для 3 порядка: $3 \times 3 \times 1 - 1 = 8$ - троек для 5 порядка: $1 \times 1 \times 5 - 1 = 4$ - тройки

для 15 порядка: $3 \times 3 \times 5 - 1 - 8 - 4 = 32$ - тройки

Таким образом, в силу того, что подгруппы простого порядка не пересекаются, и известно, что в погруппе k-го порядка $\varphi(k)$ - образующих, то подгрупп порядка 6: 8/2=4, и следовательно в подгруппе порядка 15 $\varphi(15)$ - образующих, то есть $\varphi(15)=2\cdot 4=8\Rightarrow$ всего подгрупп порядка 15: 32/8=4.

№3

Имеем $G=\mathbb{Z}\times\mathbb{Z}$. Тогда найдем такую подгруппу H, что $G/H\simeq\mathbb{Z}_{10}\times\mathbb{Z}_{12}\times\mathbb{Z}_{15}$. Мы знаем, что $\mathbb{Z}_n\simeq\mathbb{Z}_m\times\mathbb{Z}_k$, где n=mk и (m,k)=1. То есть $\mathbb{Z}_{10}\times\mathbb{Z}_{12}\times\mathbb{Z}_{15}\simeq\mathbb{Z}_2\times\mathbb{Z}_5\times\mathbb{Z}_2\times\mathbb{Z}_2\times\mathbb{Z}_3\times\mathbb{Z}_3\times\mathbb{Z}_5\simeq\mathbb{Z}_{30}\times\mathbb{Z}_{60}$. Представим $H=H_1\times H_2$, тогда по теореме о факторизации по сомножителям получаем $(\mathbb{Z}\times\mathbb{Z}_{30})/(H_1\times H_2)\simeq\mathbb{Z}/H_1\times\mathbb{Z}/H_2\simeq\mathbb{Z}_{30}\times\mathbb{Z}_{60}$. Рассмотрим некоторые порождающие элементы $z_1,z_2\in\mathbb{Z}$, что $< z_1>\simeq\mathbb{Z}$ и $< z_2>\simeq\mathbb{Z}$. Тогда возьмем $H_1=< z_1^{30}>$ и $H_2=< z_2^{60}>$. Таким образом, наша искомая подгруппа $H=< z_1^{30}>\times < z_2^{60}>$.