Version 1 OBJECTIVES:

- To design and implement robust temperature control system initially by bang-bang technique and PID if required
- To design, implement and integrate phase protection circuit that can
 - o Detect Voltage overshoot above threshold
 - o Detect RYB phase order
 - o Supply cutoff incase of voltage overshoot and different phase order
- To push the data to the server
- To create a user interface to set the temperature and show errors after the completion of above tasks

Week 1: Temperature Control System Implementation

Day 1-2: Project Setup and Component Integration

- Task:
 - o Gather all necessary components: microcontroller Arduino mega, ESP32, relays, temperature sensors DS18B20, contractor, compressor, ZMPT101B voltage sensor for phase monitoring, and any additional components.
 - Set up the basic wiring for the temperature sensor and relay connected to the compressor's contractor.
 - Verify that the components are functioning correctly by running basic tests on individual components (e.g., reading temperature values and manually triggering the relay).

Day 3-5: Control System Development

- Task:
 - o Develop the code for the microcontroller to read the temperature from the sensor.
 - o Implement bang-bang control system initially and PID controller later on to control the relay based on the set temperature. This will involve:
 - Setting a desired temperature.
 - Turning the compressor on (via the relay) when the temperature rises above the setpoint.
 - Turning the compressor off when the temperature falls below the setpoint.
 - o Test the control system with varying temperatures to ensure it works as expected.

Day 6-7: Testing and Debugging

- Task:
 - o Integrate the temperature control system with the compressor.

- Perform thorough testing in different conditions to ensure the control logic is reliable and responds correctly to temperature changes.
- o Debug any issues that may be encountered.

0

Week 2: Protection System Implementation

Day 8-9: Phase Protection System Design

• Task:

- Design the phase protection system using the ZMPT101B voltage sensor. Alternative can be using transformer with rectifier circuit.
- Develop the logic to detect phase loss or incorrect phase sequence using the microcontroller.
- o Plan the integration of this protection system with the existing control logic to ensure that the compressor only runs when the phase sequence is correct.

Day 10-11: Phase Protection System Development

• Task:

- o Implement the phase protection system in code, integrating it with the control system developed in Week 1.
- The system should shut down or prevent the compressor from running if a phase issue is detected.
- Test the phase protection system by simulating phase loss or incorrect phase sequence to verify that the system responds correctly.

Day 12-13: Integration and System Testing

• Task:

- o Fully integrate the temperature control and phase protection systems.
- Conduct full system tests to ensure that the refrigerator control system works seamlessly
 with the phase protection logic.
- Test the system under various scenarios, including temperature fluctuations and phase faults, to ensure reliability.

Day 14-15: Final Adjustments and Documentation

• Task:

- o Make any final adjustments or optimizations to the system based on the testing results.
- Document the system design, including wiring diagrams, code explanations, and instructions for use.