Announcements

Midterm

- Next Wednesday, 8-9:30 pm
- See Piazza post for location, other details
- If you need DSP accommodations and haven't been contacted, email rich.zhang@eecs.berkeley.edu ASAP

Homework 6

Due Monday 3/13 at 11:59pm

Review sessions

- F 11-1, 306 Soda: Review lecture
- M 12-3, 540AB Cory: Guerrilla section
- Exam-prep next week: each is focused on a different subset of topics
 - Schedule will be announced soon on Piazza

CS 188: Artificial Intelligence

Bayes' Nets

Lecturer: Davis Foote --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.

Conditional Independence

X is conditionally independent of Y given Z

$$X \perp \!\!\! \perp Y | Z$$

if and only if:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

or, equivalently, if and only if

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

Conditional Independence

- What about this domain:
 - Traffic
 - Umbrella
 - Raining

Conditional Independence and the Chain Rule

- Chain rule: $P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$
- Trivial decomposition:

$$P(\text{Traffic}, \text{Rain}, \text{Umbrella}) = P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain}, \text{Traffic})$$

With assumption of conditional independence:

$$P(\text{Traffic}, \text{Rain}, \text{Umbrella}) = P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain})$$

Bayes'Nets: Big Picture

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Unintuitive. Where do these probabilities come from?
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For about 10 min, we'll be vague about how these interactions are specified

Example Bayes' Net: Car

Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence assumptions (more later)

 For now: imagine that arrows mean direct causation (in general, they don't!)

Example: Coin Flips

N independent coin flips

No interactions between variables: absolute independence

Example: Traffic

Variables:

R: It rains

T: There is traffic

Model 1: independence

Model 2: rain causes traffic

Why is an agent using model 2 better?

Example: Traffic II

- Let's build a causal graphical model!
- Variables
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame
 - C: Cavity

Example: Alarm Network

Variables

■ B: Burglary

A: Alarm goes off

M: Mary calls

J: John calls

• E: Earthquake!

Bayes' Net Semantics

Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

CPT: conditional probability table

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Example:

P(+cavity, +catch, -toothache)

Probabilities in BNs

Why are we guaranteed that setting

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

results in a proper joint distribution?

• Chain rule (valid for all distributions):
$$P(x_1,x_2,\ldots x_n)=\prod_{i=1}^n P(x_i|x_1\ldots x_{i-1})$$

• Assume conditional independences:
$$P(x_i|x_1, \dots x_{i-1}) = P(x_i|parents(X_i))$$

$$ightarrow$$
 Consequence:
$$P(x_1,x_2,\ldots x_n)=\prod_{i=1}^n P(x_i|\textit{parents}(X_i))$$

- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

Example: Coin Flips

$$P(h,h,t,h) =$$

Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

Note: Now that we know the true meaning of an edge, we can see that it doesn't necessarily mean causality. We could add an edge between coins and still have a valid BN representing the same distribution; just because X_1 and X_2 are independent doesn't mean we can't write $P(X_2 \mid X_1)$.

Example: Traffic

$$P(+r,-t) =$$

On the point of causality: it's also possible to compute P(T) and $P(R \mid T)$ using Bayes' rule, so we could even have a Bayes' net with the edge reversed to represent this distribution.

Example: Alarm Network

Е	P(E)	
+e	0.002	
-е	0.998	

Α	M	P(MIA)	
+a	+m	0.7	
+a	-m	0.3	
- a	+m	0.01	
-a	-m	0.99	

0.001

0.999

+b

+b

+b

-b

-b

-b

-е

-е

+a

-a

$$P(+b, -e, +a, -j, +m) =$$

Example: Alarm Network

P(JIA)

0.9

0.1

0.05

0.95

+a

+a

-a

-a

Е	P(E)	
+e	0.002	
-е	0.998	

Α	M	P(MIA)	
+a	+m	0.7	
+a	-m	0.3	
-a	+m	0.01	
-a	-m	0.99	

P(+b, -e, +a, -j, +m) =
P(+b)P(-e)P(+a +b,-e)P(-j +a)P(+m +a) =
$0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$

В	Ш	Α	P(AIB,E)	
+b	+e	+a	0.95	
+b	+e	-a	0.05	
+b	φ	+a	0.94	
+b	Ф	-a	0.06	
-b	+e	+a	0.29	
-b	4	-a	0.71	
- b	φ	+a	0.001	
-b	-е	-a	0.999	

Size of a Bayes' Net

- How big is a joint distribution over N Boolean variables?
 - 2N
- How big is an N-node net if nodes have up to k parents?
 - $O(N * 2^{k+1})$

- Both give you the power to calculate $P(X_1, X_2, ..., X_n)$
- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries (coming)

CS 188: Artificial Intelligence

Bayes' Nets: Independence

Lecturer: Davis Foote --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.

Bayes' Nets

- Conditional Independences
- Probabilistic Inference
- Learning Bayes' Nets from Data

Bayes Nets: Assumptions

 Assumptions we are required to make to define the Bayes net when given the graph:

$$P(x_i|x_1\cdots x_{i-1}) = P(x_i|parents(X_i))$$

- Beyond above "chain rule → Bayes net" conditional independence assumptions
 - Often additional conditional independences
 - They can be read off the graph
- Why do we care?
 - Modeling: understand assumptions made when choosing a Bayes net graph
 - Interpretation: see the consequences of your choice of model

 Conditional independence assumptions directly from simplifications in chain rule:

• Additional implied conditional independence assumptions?

D-separation

Independence in a BN

- Question of the day: are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counterexample
 - Let's look at some examples
 - (turns out any larger example can be reduced to these smaller ones we are about to cover)

Causal Chains

This configuration is a "causal chain"

X: Low pressure Traffic

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

Y: Rain

- Guaranteed X independent of Z? No!
 - Counterexample:
 - Low pressure causes rain causes traffic, high pressure causes no rain causes no traffic
 - In numbers:

$$P(+y | +x) = 1, P(-y | -x) = 1,$$

 $P(+z | +y) = 1, P(-z | -y) = 1$

Causal Chains

Z:

This configuration is a "causal chain"

Y: Rain

X: Low pressure Traffic

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

Guaranteed X independent of Z given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

$$= \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$

$$= P(z|y)$$
Yes!

 Evidence along the chain "blocks" the influence

Common Cause

This configuration is a "common cause"

Z: Lab full

$$P(x, y, z) = P(y)P(x|y)P(z|y)$$

Guaranteed X independent of Z? No!

- Counterexample:
 - Project due causes both forums busy and lab full
 - In numbers:

$$P(+x | +y) = 1, P(-x | -y) = 1,$$

 $P(+z | +y) = 1, P(-z | -y) = 1$

Common Cause

This configuration is a "common cause"

$$P(x, y, z) = P(y)P(x|y)P(z|y)$$

Guaranteed X and Z independent given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

$$= \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$

$$= P(z|y)$$
Yes!

 Observing the cause blocks influence between effects.

Common Effect

 Last configuration: two causes of one effect (v-structures)

- Are X and Y independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - Still need to prove they must be (try it!)
- Are X and Y independent given Z?
 - *No*: seeing traffic puts the rain and the ballgame in competition as explanation.
 - Can be shown with numbers (try it!)
- This is backwards from the other cases
 - Observing an effect activates influence between possible causes.
 - Also true if we observe an effect of Z (such as a traffic report) but not Z itself

The General Case

The General Case

General question: in a given BN, are two variables independent (given evidence)?

Solution: analyze the graph

Reachability

 Recipe: shade evidence nodes, look for paths in the resulting graph

Attempt 1:

- if two nodes are connected by an undirected path not blocked by a shaded node, call them "connected"
- If variables are **not** connected, i.e. "separated," they can't influence each other through any path in the graph
- Hence they are conditionally independent given the shaded nodes!
- Almost works, but not quite
 - Where does it break?
 - Answer: the v-structure at T doesn't count as a link in a path unless "active"
 - How can we fix this?

Fixing Reachability

 Recipe: shade evidence nodes, look for paths in the resulting graph

Attempt 2:

- if two nodes are connected by an undirected path not blocked by a shaded node...
- ...except for v-structures, where the rules are reversed and the node must be shaded...
- ... call them "d-connected."
- If variables are **not** connected, i.e. "d-separated," they can't influence each other through any path in the graph
- Hence they are conditionally independent given the shaded nodes!
- Let's formalize this into an algorithm

D-Separation

Goal: determine whether tw nodes es X and Y d-separated and ident given a set of conditional variables Z

Steps:

- 1. Shade all nodes corresponding to variables in set Z
- 2. Enumerate all candidate paths (ignoring direction of edges) from X to Z
- 3. For each path, check if it "d-connects" X and Y
- 4. If no path d-connects them, they are d-separated!

$$Z = \{Z_1, Z_2\}$$

Active / Inactive Paths

- Question: How can we formalize the "check if this path d-connects X and Y" step?
 - Call a path that d-connects X and Y an "active path"
 - Any path in a graph can be decomposed into triples of variables
- A path is active if and only if each triple is active
 - A triple is active or not depending on the middle node (see table)

D-Separation: Full picture

 Goal: determine whether two variables X and Y are conditionally independent given a set of conditional variables Z

Steps:

- 1. Shade all nodes corresponding to variables in set Z
- 2. Enumerate all candidate paths (ignoring direction of edges) from X to Z
- 3. For each path:
 - 1. Decompose the path into triples
 - 2. If all triples are active, this path is active and d-connects them
- 4. If no path is active, they are d-separated

$$Z = \{Z_1, Z_2\}$$

 $R \bot\!\!\!\bot B$ Yes

$L \! \perp \! \! \perp \! \! T'$	T	Yes
-----------------------------------	---	-----

 $L \perp \!\!\! \perp B$ Yes

 $L \! \perp \! \! \! \perp \! \! B | T$

 $L \! \perp \! \! \! \perp \! \! B | T'$ No

 $L \! \perp \! \! \perp \! \! B | T, R$ Yes

Variables:

R: Raining

■ T: Traffic

D: Roof drips

S: I'm sad

• Questions:

Structure Implications

 Given a Bayes net structure, can run dseparation algorithm to build a complete list of conditional independences that are necessarily true of the form

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

 This list determines the set of probability distributions that can be represented

Topology Limits Distributions

- Given some graph topology
 G, only certain joint
 distributions can be
 encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution

Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

Bayes' Nets

- Representation
- ✓ Conditional Independences
 - Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Probabilistic inference is NP-complete
 - Sampling (approximate)
 - Learning Bayes' Nets from Data