STANCU STELA

CLASA a VI-a

TEMA: SUME DE NUMERE RAȚIONALE

1. Să se arate că:
$$\frac{1}{k \cdot (k+1)} = \frac{1}{k} - \frac{1}{k+1}$$
.

2. a) Verificați egalitatea
$$\frac{1}{(3n+1)\cdot(3n+4)} = \frac{1}{3}\cdot\left(\frac{1}{3n+1} - \frac{1}{3n+4}\right)$$
, $\forall n \in \mathbb{N}$

b) Aflați
$$n \in N$$
 din egalitatea $\frac{1}{1 \cdot 4} + \frac{1}{4 \cdot 7} + \dots + \frac{1}{(3n+1)(3n+4)} = \frac{2010}{3033}$

3. Fie numerele
$$A = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}$$
 și $B = \frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \dots + \frac{n-1}{n}$, $n \in \mathbb{N}^*$

Determinați n > 1 pentru care media aritmetică a numerelor A și B este 1006,5.

4. a) Arătați că
$$S_n = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \dots + \frac{1}{n(n+1)} < 2$$
, $\forall n \in \mathbb{N}^*$.

b) Determinați
$$n \in N^*$$
 dacă $S_n = \frac{4019}{2010}$

5. Fie
$$a = \frac{2^5}{31} + 2^5 + 2^{10} + 2^{15} + ... + 2^{2015}$$
 şi

$$b = \frac{1}{1+2+\ldots+64} + \frac{1}{1+2+\ldots+65} + \frac{1}{1+2+\ldots+66} + \ldots + \frac{1}{1+2+\ldots+2047}.$$

Arătați că $a \cdot b$ este pătrat perfect.

6.

a) Efectuați suma:
$$S = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{2013 \cdot 2014}$$
.

b) (Extindere). Efectuați suma:
$$S = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + ... + \frac{1}{n \cdot (n+1)}, n \in \mathbb{N}^*.$$

c) (Generalizare). Efectuați suma:

$$S = \frac{1}{a \cdot (a+1)} + \frac{1}{(a+1) \cdot (a+2)} + \frac{1}{(a+2) \cdot (a+3)} + \dots + \frac{1}{(a+k) \cdot (a+k+1)}, \ a \in \mathbb{N}^*, \ k \in \mathbb{N}.$$

7.

a) Efectuați suma:
$$S = \frac{1}{1 \cdot 7} + \frac{1}{7 \cdot 13} + \frac{1}{13 \cdot 19} + \dots + \frac{1}{2011 \cdot 2017}$$
.

b) (O extindere). Efectuați suma:
$$S = \frac{1}{1 \cdot 7} + \frac{1}{7 \cdot 13} + \frac{1}{13 \cdot 19} + \dots + \frac{1}{(6k+1)[6(k+1)+1]}, k \in \mathbb{N}.$$

c) (Generalizare). Efectuați suma:

$$S = \frac{1}{1 \cdot a} + \frac{1}{a \cdot (2a-1)} + \frac{1}{(2a-1) \cdot (3a-2)} + \dots + \frac{1}{\left[k \cdot (a-1) + 1\right] \cdot \left[(k+1) \cdot (a-1) + 1\right]}, \ a,k \in \mathbb{N}, \ a \ge 2.$$