Лабораторная работа №5 Маршрутизация в IP сетях

> Выполнили студенты группы М3311 Авсюкевич Анастасия Худашов Богдан

Цель работы: получить представление о работе IP маршрутизатора; получить опыт в составлении таблиц

маршрутизации и работе протоколов внутренней и внешней маршрутизации.

Задание:

Часть 1. Настройка инфраструктуры

Схема модели:

Для всех сетей выберите подсети из сети 192.168.0.0/24

	Количество компьютеров в сети									
IP- адрес сети, маска	Сеть 1	Сеть 2	Сеть 4	Сеть 5						
192.168.0.0/24	1	0	0	1	1					

	LAN1	LAN2	LAN3	LAN4	LAN5
IP сети	192.168.0.0	192.168.0.8	192.168.0.16	192.168.0.24	192.168.0.32
Используем ые IP адреса		192.168.0.9 - router 0 192.168.0.10 - router 1	192.168.0.17 - router 1	- router 3	192.168.0.33 - router 2 192.168.0.34 - PC 1

Настройка адресов и шлюзов по умолчанию для маршрутизаторов и конечных устройств (пример для Router 0):

```
Router>en
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #int fa0/0
Router(config-if) #no shutdown
Router(config-if) #ip address 192.168.0.1 255.255.255.248
Router(config-if) #exit
```

Проверка того, что ближайшие соседи в локальной сети пингуются:

```
Cisco Packet Tracer PC Command Line 1.0
C:\>ping 192.168.0.1

Pinging 192.168.0.1 with 32 bytes of data:

Reply from 192.168.0.1: bytes=32 time<lms TTL=255
Ping statistics for 192.168.0.1:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

Часть 2. Настройка статической маршрутизации

Проверка того, что ПК с разных сетей пингуются (на примере вызова ПК2 от ПК0)

```
C:\>ping 192.168.0.26
Pinging 192.168.0.26 with 32 bytes of data:
Request timed out.
Request timed out.
Reply from 192.168.0.26: bytes=32 time<1ms TTL=125
Reply from 192.168.0.26: bytes=32 time<1ms TTL=125
Ping statistics for 192.168.0.26:
  Packets: Sent = 4, Received = 2, Lost = 2 (50% loss),
Approximate round trip times in milli-seconds:
   Minimum = Oms, Maximum = Oms, Average = Oms
C:\>ping 192.168.0.26
Pinging 192.168.0.26 with 32 bytes of data:
Reply from 192.168.0.26: bytes=32 time<1ms TTL=125
Ping statistics for 192.168.0.26:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

Как можно заметить, при первом пинге часть пакетов была утеряна, можно сказать, что это произошло из-за выстраивания маршрута.

Однако уже при повторном пинге все прошло без потерь (так как маршрут уже был записан в таблицах маршрутизации соответствующих роутеров)

Таблицы маршрутизации всех маршрутизаторов: Router 0:

```
192.168.0.0/29 is subnetted, 5 subnets
C 192.168.0.0 is directly connected, FastEthernet0/0
C 192.168.0.8 is directly connected, FastEthernet1/0
S 192.168.0.16 [1/0] via 192.168.0.10
S 192.168.0.24 [1/0] via 192.168.0.10
S 192.168.0.32 [1/0] via 192.168.0.10
```

Router 1:

```
192.168.0.0/29 is subnetted, 5 subnets

S 192.168.0.0 [1/0] via 192.168.0.9

C 192.168.0.8 is directly connected, FastEthernet1/0

C 192.168.0.16 is directly connected, FastEthernet0/0

S 192.168.0.24 [1/0] via 192.168.0.19

S 192.168.0.32 [1/0] via 192.168.0.18
```

Router 2:

```
192.168.0.0/29 is subnetted, 5 subnets
S 192.168.0.0 [1/0] via 192.168.0.17
S 192.168.0.8 [1/0] via 192.168.0.17
C 192.168.0.16 is directly connected, FastEthernet1/0
S 192.168.0.24 [1/0] via 192.168.0.19
C 192.168.0.32 is directly connected, FastEthernet0/0
```

Router 3:

Часть 3. Настройка динамической маршрутизации

Для всех сетей выберите подсети из сети 192.168.1.0/24

	Количество компьютеров в сети								
IP- адрес сети, маска	Сеть 1 Сеть 2 Сеть 3 Сеть 4 Сеть 5								
192.168.1.0/24	1	0	0	1	1				

	LAN1	LAN2	LAN3	LAN4	LAN5
IP сети	192.168.1.0	192.168.1.8	192.168.1.16	192.168.1.24	192.168.1.32
Используем ые IP адреса	192.168.1.1 - router 0 192.168.1.2 - PC 0	192.168.1.9 - router 0 192.168.1.10 - router 1	192.168.1.17 - router 1	192.168.1.25 - router 3 192.168.1.26 - PC 2	192.168.1.33 - router 2 192.168.1.34 - PC 1

Проверка того, что ближайшие соседи в локальной сети пингуются:

```
Cisco Packet Tracer PC Command Line 1.0
C:\>ping 192.168.1.25

Pinging 192.168.1.25 with 32 bytes of data:

Reply from 192.168.1.25: bytes=32 time=2ms TTL=255
Reply from 192.168.1.25: bytes=32 time<1ms TTL=255
Reply from 192.168.1.25: bytes=32 time<1ms TTL=255
Reply from 192.168.1.25: bytes=32 time<1ms TTL=255

Ping statistics for 192.168.1.25:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 2ms, Average = 0ms
```

Hастройка Router1:

```
Router#en
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #router rip
Router(config-router) #version 2
Router(config-router) #no auto-summary
Router(config-router) #network 192.168.1.8
Router(config-router) #network 192.168.1.16
Router(config-router) #
Router#
Router#
%SYS-5-CONFIG_I: Configured from console by console

Router#debug ip rip
RIP protocol debugging is on
```

Таблицы маршрутизации всех маршрутизаторов:

Router0:

```
192.168.1.0/29 is subnetted, 5 subnets
C 192.168.1.0 is directly connected, FastEthernet0/0
C 192.168.1.8 is directly connected, FastEthernet1/0
R 192.168.1.16 [120/1] via 192.168.1.10, 00:00:19, FastEthernet1/0
R 192.168.1.24 [120/2] via 192.168.1.10, 00:00:19, FastEthernet1/0
R 192.168.1.32 [120/2] via 192.168.1.10, 00:00:19, FastEthernet1/0
```

Router1:

```
192.168.1.0/29 is subnetted, 5 subnets

R 192.168.1.0 [120/1] via 192.168.1.9, 00:00:09, FastEthernet1/0

C 192.168.1.8 is directly connected, FastEthernet1/0

C 192.168.1.16 is directly connected, FastEthernet0/0

R 192.168.1.24 [120/1] via 192.168.1.19, 00:00:07, FastEthernet0/0

R 192.168.1.32 [120/1] via 192.168.1.18, 00:00:29, FastEthernet0/0
```

Router2:

```
192.168.1.0/29 is subnetted, 5 subnets

R 192.168.1.0 [120/2] via 192.168.1.17, 00:00:19, FastEthernet1/0

R 192.168.1.8 [120/1] via 192.168.1.17, 00:00:19, FastEthernet1/0

C 192.168.1.16 is directly connected, FastEthernet1/0

R 192.168.1.24 [120/1] via 192.168.1.19, 00:00:23, FastEthernet1/0

C 192.168.1.32 is directly connected, FastEthernet0/0
```

Router3:

```
192.168.1.0/29 is subnetted, 5 subnets

R 192.168.1.0 [120/2] via 192.168.1.17, 00:00:22, FastEthernet1/0

R 192.168.1.8 [120/1] via 192.168.1.17, 00:00:22, FastEthernet1/0

C 192.168.1.16 is directly connected, FastEthernet1/0

C 192.168.1.24 is directly connected, FastEthernet0/0

R 192.168.1.32 [120/1] via 192.168.1.18, 00:00:16, FastEthernet1/0
```

Проверка возможности передачи пакетов данных:

Fire	Last Status	Source	Destination	Type	Color	Time(sec)	Periodic	Num	Edit	Delete
	Successful	PC0(1)	PC1(1)	ICMP		0.000	N	0	(edit)	
•	Successful	PC0(1)	PC2(1)	ICMP		0.000	N	1	(edit)	
•	Successful	PC1(1)	PC0(1)	ICMP		0.000	N	2	(edit)	
•	Successful	PC1(1)	PC2(1)	ICMP		0.000	N	3	(edit)	
•	Successful	PC2(1)	PC0(1)	ICMP		0.000	N	4	(edit)	
•	Successful	PC2(1)	PC1(1)	ICMP		0.000	N	5	(edit)	

Часть 4. Создание дополнительных сетей Для всех сетей выберите подсети из сети 192.168.2.0/24

	Количество компьютеров в сети
IP- адрес сети, маска	Сеть 1
192.168.2.0/24	1

	LAN1
ІР сети	192.168.2.0
Используемые IP адреса	192.168.2.1 - router 0 192.168.2.2 - PC 0

Для всех сетей выберите подсети из сети 192.168.3.0/24

	Количество компьютеров в сети				
IP- адрес сети, маска	Сеть 1				
192.168.3.0/24	1				

	LAN1
ІР сети	192.168.3.0
Используемые IP адреса	192.168.3.1 - router 0 192.168.3.2 - PC 0

Часть 5. Объединение сетей

Пример настройки edge-маршрутизатора AS 100:

```
Router(config-if) #router bgp 100
Router(config-router) #neighbor 10.0.1.2 remote-as 101
Router(config-router) #neighbor 10.0.2.2 remote-as 102
Router(config-router) #neighbor 10.0.3.2 remote-as 103
Router(config-router) #network 192.168.0.0 mask 255.255.255.0
```

Информация о пирах (neighbor) с edge-маршрутизатора AS 100:

```
Router#show ip bgp summary
BGP router identifier 192.168.0.17, local AS number 100
BGP table version is 11, main routing table version 6
10 network entries using 1320 bytes of memory
10 path entries using 520 bytes of memory
9/9 BGP path/bestpath attribute entries using 1656 bytes of memory
4 BGP AS-PATH entries using 96 bytes of memory
0 BGP route-map cache entries using 0 bytes of memory
Bitfield cache entries: current 1 (at peak 1) using 32 bytes of memory
BGP using 3624 total bytes of memory
BGP activity 4/0 prefixes, 10/0 paths, scan interval 60 secs

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
10.0.1.2 4 101 21 14 11 0 000:12:44 4
10.0.2.2 4 102 20 14 11 0 000:12:37 4
10.0.3.2 4 103 20 14 11 0 000:12:37 4
```

Артефакты:

1. Команды для настройки маршрутизатора, помеченного звездочкой, из части 2 и 3.

Часть 2.

```
Router(config) #ip route 192.168.0.24 255.255.255.248 192.168.0.19
Router(config) #do show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter as
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     192.168.0.0/29 is subnetted, 4 subnets
       192.168.0.0 [1/0] via 192.168.0.9
        192.168.0.8 is directly connected, FastEthernet1/0
        192.168.0.16 is directly connected, FastEthernet0/0
        192.168.0.24 [1/0] via 192.168.0.19
Router(config) #ip route 192.168.0.32 255.255.255.248 192.168.0.18
```

```
Router(config-if) #exit
Router(config) #ip route 192.168.0.0 255.255.255.248 192.168.0.9
Router(config) #do show up route
```

Часть 3:

```
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #router rip
Router(config-router) #version 2
Router(config-router) #no auto-summary
Router(config-router) #network 192.168.1.8
Router(config-router) #network 192.168.1.16
Router(config-router) #
Router#
%SYS-5-CONFIG_I: Configured from console by console

Router#debug ip rip
RIP protocol debugging is on
```

2. Команды настройки ВGР на этих маршрутизаторах из части 5

```
Router(config-if) #router bgp 100
Router(config-router) #neighbor 10.0.1.2 remote-as 101
Router(config-router) #neighbor 10.0.2.2 remote-as 102
Router(config-router) #neighbor 10.0.3.2 remote-as 103
Router(config-router) #network 192.168.0.0 mask 255.255.255.0
```

3. Итоговые таблицы маршрутизации из части 5.

Router0:

```
10.0.0.0/30 is subnetted, 3 subnets
        10.0.1.0 is directly connected, FastEthernet4/0
        10.0.2.0 is directly connected, Serial2/0
C
        10.0.3.0 is directly connected, Serial3/0
C
     192.168.0.0/24 is variably subnetted, 6 subnets, 2 masks
        192.168.0.0/24 is directly connected, Null0
S
        192.168.0.0/29 [1/0] via 192.168.0.9
S
        192.168.0.8/29 is directly connected, FastEthernet1/0
C
C
        192.168.0.16/29 is directly connected, FastEthernet0/0
S
        192.168.0.24/29 [1/0] via 192.168.0.19
        192.168.0.32/29 [1/0] via 192.168.0.18
S
     192.168.1.0/24 [20/0] via 10.0.1.2, 00:00:00
В
В
     192.168.2.0/24 [20/0] via 10.0.2.2, 00:00:00
     192.168.3.0/24 [20/0] via 10.0.3.2, 00:00:00
В
```

Router1:

```
10.0.0.0/30 is subnetted, 3 subnets
C
        10.0.1.0 is directly connected, FastEthernet4/0
C
        10.0.4.0 is directly connected, Serial3/0
        10.0.5.0 is directly connected, Serial2/0
C
В
     192.168.0.0/24 [20/0] via 10.0.1.1, 00:00:00
     192.168.1.0/24 is variably subnetted, 6 subnets, 2 masks
S
       192.168.1.0/24 is directly connected, Null0
R
       192.168.1.0/29 [120/1] via 192.168.1.9, 00:00:03, FastEthernet1/0
       192.168.1.8/29 is directly connected, FastEthernet1/0
С
С
       192.168.1.16/29 is directly connected, FastEthernet0/0
       192.168.1.24/29 [120/1] via 192.168.1.19, 00:00:22, FastEthernet0/0
R
       192.168.1.32/29 [120/1] via 192.168.1.18, 00:00:08, FastEthernet0/0
R
В
     192.168.2.0/24 [20/0] via 10.0.4.2, 00:00:00
     192.168.3.0/24 [20/0] via 10.0.5.2, 00:00:00
```

Router2:

```
10.0.0.0/30 is subnetted, 2 subnets

C 10.0.2.0 is directly connected, Serial2/0

10.0.4.0 is directly connected, Serial3/0

B 192.168.0.0/24 [20/0] via 10.0.2.1, 00:00:00

B 192.168.1.0/24 [20/0] via 10.0.4.1, 00:00:00

192.168.2.0/24 is variably subnetted, 2 subnets, 2 masks

S 192.168.2.0/24 is directly connected, Null0

192.168.2.0/29 is directly connected, FastEthernet0/0

B 192.168.3.0/24 [20/0] via 10.0.4.1, 00:00:00
```

Router3:

4. Вывод информации о пирах (neighbor) с edge маршрутизатора AS 100

```
Router#show ip bgp summary
BGP router identifier 192.168.0.17, local AS number 100
BGP table version is 11, main routing table version 6
10 network entries using 1320 bytes of memory
10 path entries using 520 bytes of memory
9/9 BGP path/bestpath attribute entries using 1656 bytes of memory
4 BGP AS-PATH entries using 96 bytes of memory
0 BGP route-map cache entries using 0 bytes of memory
0 BGP filter-list cache entries using 0 bytes of memory
Bitfield cache entries: current 1 (at peak 1) using 32 bytes of memory
BGP using 3624 total bytes of memory
BGP activity 4/0 prefixes, 10/0 paths, scan interval 60 secs
Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down Sta
```

Neighbor	V	AS	MsgRcvd	MsgSent	TblVer	InQ	OutQ	Up/Down	State/PfxRcd
10.0.1.2	4	101	21	14	11	0	C	00:12:4	4 4
10.0.2.2	4	102	20	14	11	0	C	00:12:3	7 4
10.0.3.2	4	103	20	14	11	0	C	00:12:3	7 4

Вопросы и задания:

1. Поясните результаты, полученные в Части 5, п.8.

До отключения линии между AS 102 и AS 100 пакеты успешно достигали конечного узла. После отключения узла AS 102 - AS 100 пакеты изменили свой маршрут. Также было замечено, что BGP моментально перестроил маршрут, не затрачивая на это время, так как он хранит все пути, в отличие от RIP, который хранит только самые оптимальные пути.

2. Как, имея доступ к консоли маршрутизатора узнать, что проходят обновления информации bgp?

Можно выполнить следующие команды : show ip bgp summary, show ip bgp (покажет таблицу маршрутизации), debug ip bgp updates (отслеживать обновления bgp в реальном времени)

3. Какие различия в настройке и работе протоколов bgp и rip вы отметили по ходу выполнения работы?

Внешние протоколы (EGP, BGP) переносят маршрутную информацию между автономными системами, а внутренние (RIP, OSPF) применяются только в пределах определенной автономной системы.

BGP - междоменный протокол, позволяет обмениваться маршрутами между различными автономными системами (AS)

RIP - внутридоменный протокол, используется для обмена маршрутами в рамках одной автономной системы

Настраиваются разными командами

Также: rip - это дистанционно-векторный протокол, а bgp - векторно-путевой, то есть в первом вектор расстояний, а во втором вектор путей рассылается