4

Die zweistellige Verknüpfung * auf \mathbb{R} sei für alle $a,b\in\mathbb{R}$ definiert als a*b=b. Beweisen Sie nacheinander die folgenden vier Aussagen:

• Die Verknüpfung * ist assoziativ.

zu zeigen: $\forall a, b, c \in \mathbb{R} : (a * b) * c = a * (b * c)$

$$(a*b)*c = b*c = c$$

$$a * (b * c) = a * c = c$$

• $\exists e \in \mathbb{R} \forall a \in \mathbb{R} : e * a = a$.

ekann beliebig gewählt werden, da $\forall e, a \in \mathbb{R} : e * a = a$

• $\forall a \in \mathbb{R} \exists a' \in \mathbb{R} : a * a' = e$.

Wähle a' = e

• (R,*) ist keine Gruppe.

Angenommen, (R, *) wäre es eine Gruppe, dann müsste es ein neutrales Element geben. Dann würde gelten: $\exists a' \in \mathbb{R} \forall a \in \mathbb{R} : a' * a = e$. (A)

Generell gilt: $\forall a, a' \in \mathbb{R} : a' * a = a$

Seien m = 1 und n = 2.

Dann ergibt sich $a' * m = 1 \neq a' * n = 2$.

Das ist ein Widerspruch zu A!

 \Rightarrow (R,*) hat kein neutrales Element.

 $\Rightarrow (R,*)$ ist keine Gruppe.