Teorija upodobitev

Urban Jezernik

12. julij 2022

Kazalo

1	Temelji teorije upodobitev					
	1.1	Osnovni pojmi	5			
	1.2	Fundamentalne konstrukcije	8			
2	Upodobitev pod mikroskopom 2					
	2.1	Razstavljanje upodobitve	21			
	2.2	Matrični koeficienti	29			
3	Upodobitve končnih grup					
	3.1	Polenostavnost	35			
	3.2	Karakterji	39			
	3.3	Razširjeni zgledi	64			
	3.4	Aplikacije	1			
4	Upodobitve linearnih grup					
	4.1	Ozaljšane upodobitve	7			
	4.2	Liejeve grupe	7			
	4.3	Kompaktne grupe	78			

Kratek opis predmeta

Avstralski matematik Geordie Williamson je na mednarodnem matematičnem kongresu leta 2018 opisal teorijo upodobitev na naslednji način.

The idea is that groups in mathematics are everywhere, but groups are nonlinear objects and are rather complicated. We attempt to linearize in some way by taking, for example, actions on a space of functions. We understand what can happen in the linear world by representation theory. Then we hope to go back to our original problem.

Teorijo upodobitev v luči povedanega vidimo torej kot orodje, ki *linearizira* in je uporabno križem po matematiki, znanostih in umetnostih. Pri tem predmetu bomo dodobra spoznali to orodje in na koncu znali z njim razrešiti probleme, ki navidez nimajo prav nič skupnega s teorijo upodobitev. Kot vselej v matematiki nas bo vmes zaneslo marsikam, tako da bralki v popotnico ne priporočam, da se preveč osredotoča na ta cilj, temveč naj bo, kot vselej, raje tukaj in zdaj.

Daleč je megleni breg. Vmes so hribi. Vmes so morja.

Literatura

- E. Kowalski, An Introduction to the Representation Theory of Groups, American Mathematical Society, 2014.
- W. Fulton, J. Harris, *Representation Theory: A First Course*, Springer GTM 129, 2004.
- J. P. Serre, *Linear Representations of Finite Groups*, Springer GTM 42, 1977.
- P. Diaconis, *Group representations in probability and statistics*, Lecture notes monograph series 11, i-192, 1988.
- C. J. Bushnell, G. Henniart, *The Local Langlands Conjecture for* GL(2), Springer Grundlehren der mathematischen Wissenschaften **335**, 2006.

Poglavje 1

Temelji teorije upodobitev

V tem poglavju bomo vzpostavili temelje teorije upodobitev. Spoznali bomo koncept upodobitve in si ogledali mnogo primerov. Premislili bomo, kako upodobitve med sabo primerjamo in kako iz danih upodobitev sestavimo nove.

1.1 Osnovni pojmi

Upodobitve grup

Naj bo G grupa in V vektorski prostor nad poljem F. Upodobitev grupe G na prostoru V je delovanje G na množici V, ki upošteva dodatno strukturo množice V, namreč to, da je vektorski prostor. Natančneje, upodobitev (rekli bomo tudi $linearno\ delovanje$) grupe G na prostoru V je homomorfizem grup

$$\rho: G \to \mathrm{GL}(V)$$
.

Pri tem razsežnosti prostora V rečemo stopnja upodobitve in jo označimo z $\deg(\rho)$. Ko v prostoru V izberemo bazo in torej izomorfizem $V \cong F^{\deg(\rho)}$, lahko upodobitev ρ enakovredno zapišemo kot homomorfizem

$$\rho: G \to \mathrm{GL}_{\mathrm{deg}(\rho)}(F)$$

iz grupe G v obrnljive matrike razsežnosti $deg(\rho)$ nad F.

Za element $g \in G$ in vektor $v \in V$ rezultat delovanja elementa g na vektorju v, se pravi $\rho(g)(v)$, včasih pišemo krajše kot $g \cdot v$ ali kar gv.

Zgled.

ullet Opazujmo grupo celih števil ${f Z}$ in vektorski prostor ${f C}$ nad poljem kompleksnih števil. Eksponentna funkcija podaja upodobitev

$$\chi: \mathbf{Z} \to \mathrm{GL}(\mathbf{C}) = \mathbf{C}^*, \quad x \mapsto e^x.$$

Splošneje imamo za vsak parameter $\alpha \in \mathbb{C}$ upodobitev

$$\chi_{\alpha}: \mathbf{Z} \to \mathrm{GL}(\mathbf{C}) = \mathbf{C}^*, \quad x \mapsto e^{\alpha x}.$$

• Opazujmo grupo ostankov $\mathbb{Z}/q\mathbb{Z}$ za poljubno naravno število q. Za vsak parameter $m \in \mathbb{Z}/q\mathbb{Z}$ imamo upodobitev

$$\chi_m: \mathbb{Z}/q\mathbb{Z} \to \mathrm{GL}(\mathbb{C}) = \mathbb{C}^*, \quad x \mapsto e^{2\pi i m x/q}.$$

 Naj bo G grupa in V vektorski prostor nad poljem F. Trivialna upodobitev grupe G je homomorfizem

$$\rho: G \to \mathrm{GL}(V), \quad g \mapsto \mathrm{id}_V.$$

Kadar je vektorski prostor V razsežnosti 1, trivialno upodobitev in vektorski prostor sam označimo kot 1, v primerih višje razsežnosti pa ju označimo kot $\mathbf{1}^{\dim V}$.

• Naj bo V vektorski prostor in naj bo G poljubna podgrupa grupe $\mathrm{GL}(V)$. Tedaj je naravna vložitev $G \to \mathrm{GL}(V)$ upodobitev grupe G na prostoru V.

Za konkreten zgled lahko vzamemo $V = \mathbf{C}^2$ in $G = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \rangle \leq \operatorname{GL}(\mathbf{C}^2)$. Na ta način dobimo upodobitev grupe $G \cong \mathbf{Z}$ na prostoru \mathbf{C}^2 . Na istem prostoru lahko vzamemo tudi $G = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \rangle \leq \operatorname{GL}(\mathbf{C}^2)$. Na ta način dobimo upodobitev neskončne diedrske grupe $G \cong D_{\infty}$ na prostoru \mathbf{C}^2 .

• Naj bo G poljubna grupa, opremljena z delovanjem na neki množici X. Naj bo F[X] vektorski prostor z bazo $\{e_x\}_{x\in X}$. Grupa G deluje na F[X] s homomorfizmom

$$\pi: G \to \mathrm{GL}(F[X]), \quad g \mapsto (e_x \mapsto e_{g,x}),$$

kjer je $x \in X$. To delovanje imenujemo **permutacijska upodobitev** grupe G na F[X].

Za konkreten zgled lahko vzamemo $G = S_n$, ki naravno deluje na množici $X = \{1, 2, ..., n\}$. Na ta način dobimo permutacijsko upodobitev grupe S_n na prostoru $F[\{1, 2, ..., n\}]$ razsežnosti n.

- Naj bo G grupa in F polje. Grupa G vselej deluje na sebi s Cayleyjevim delovanjem. Prirejeni permutacijski upodobitvi grupe G na $F[G]^1$ rečemo **Cayleyjeva upodobitev** grupe G nad F. To delovanje označimo z π_{Cay} .
- Naj bo G grupa in F polje. Naj bo $\operatorname{fun}(G,F)$ množica vseh funkcij iz množice G v F. Te funkcije lahko po točkah seštevamo in množimo s skalarji, na ta način je $\operatorname{fun}(G,F)$ vektorski prostor. Grupa G deluje na $\operatorname{fun}(G,F)$ s homomorfizmom

$$\rho_{\text{fun}}: G \to \text{GL}(\text{fun}(G, F)), \quad g \mapsto (f \mapsto (x \mapsto f(xg))),$$

kjer je $f \in \text{fun}(G,F)$, $x \in G$. To delovanje izhaja iz (desnega) delovanja grupe G na sebi in ga zato imenujemo (**desna**) **regularna upodobitev** grupe G nad F.

Upodobitev ρ grupe G pohvalimo s pridevnikom **zvesta**, kadar je injektivna, se pravi ker $\rho = 1$. Trivialna upodobitev netrivialne grupe ni zvesta, sta pa vselej zvesti Cayleyjeva in desna regularna upodobitev.

Ali tole sploh kje potrebujemo?

Primer kakšne modularne upodobitve. Definiraj modularno in definiraj kompleksno.

 $^{^1}$ Prostor F[G] je vektorski prostor nad F, generiran z množico G. Običajno mu pravimo **grupna algebra**, saj ta prostor na naraven način podeduje operacijo množenja iz grupe G.

Kategorija upodobitev

Naj bo G grupa. Opazujmo neki njeni upodobitvi ρ_1 in ρ_2 nad vektorskima prostoroma V_1 in V_2 , obema nad poljem F. Ti dve upodobitvi lahko *primerjamo* med sabo, in sicer tako, da hkrati primerjamo vektorska prostora in delovanji grupe G na teh dveh prostorih.

Natančneje, **spletična**² med upodobitvama ρ_1 in ρ_2 je linearna preslikava $\Phi: V_1 \to V_2$, za katero za vsak $g \in G$ in $v \in V_1$ velja³

$$\Phi(\rho_1(g)\cdot v) = \rho_2(g)\cdot \Phi(v).$$

Zgled. Opazujmo grupo **Z** in dve njeni upodobitvi, ki smo jih že videli. Prva naj bo upodobitev

$$\rho: \mathbf{Z} \to \mathrm{GL}(\mathbf{C}^2), \quad x \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^x,$$

druga pa naj bo kar trivialna upodobitev 1 na prostoru C. Predpišimo linearno preslikavo $\Phi: \mathbf{C} \to \mathbf{C}^2$ v standardni bazi z matriko $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Tedaj za vsak vektor $v \in \mathbf{C}$ in vsako število $x \in \mathbf{Z}$ velja

$$\Phi(x \cdot v) = \begin{pmatrix} xv \\ 0 \end{pmatrix} = x \cdot \begin{pmatrix} v \\ 0 \end{pmatrix} = x \cdot \Phi(v),$$

zato je Φ spletična med **1** in ρ .

Množica vseh spletičen med ρ_1 in ρ_2 je podmnožica množice linearnih preslikav hom (V_1, V_2) , za katero uporabimo oznako hom $_G(\rho_1, \rho_2)$ ali kar hom $_G(V_1, V_2)$.

Za dano upodobitev ρ grupe G na vektorskem prostoru V je identična preslikava id $_V$ seveda spletična med ρ in ρ . Prav tako lahko vsaki dve spletični Φ_1 med ρ_1 in ρ_2 ter Φ_2 med ρ_2 in ρ_3 skomponiramo do spletične $\Phi_2 \circ \Phi_1$ med ρ_1 in ρ_3 . Množica vseh upodobitev dane grupe G nad poljem F torej tvoji kategorijo upodobitev, katere objekti so upodobitve grupe G nad F, morfizmi pa so spletične med upodobitvami. To kategorijo označimo z Rep_G .

Izomorfnost upodobitev

Naj bo G grupa in F polje. Kadar je spletična $\Phi: V_1 \to V_2$ med ρ_1 in ρ_2 obrnljiva kot linearna preslikava, je tudi njen inverz Φ^{-1} spletična med ρ_2 in ρ_1 . V tem primeru spletični Φ rečemo *izomorfizem* upodobitev ρ_1 in ρ_2 .

Zgled. Opazujmo ciklično grupo $\mathbf{Z}/n\mathbf{Z}$ za poljuben n>1. Ta grupa naravno deluje na množici $\Omega=\left\{1,2,\ldots,n\right\}$, do koder izhaja permutacijska upodobitev

$$\pi: \mathbf{Z}/n\mathbf{Z} \to \mathrm{GL}(\mathbf{C}[\Omega]).$$

Grupa $\mathbf{Z}/n\mathbf{Z}$ ima tudi Cayleyjevo upodobitev,

$$\pi_{\text{Cav}}: \mathbf{Z}/n\mathbf{Z} \to \text{GL}(\mathbf{C}[\mathbf{Z}/n\mathbf{Z}]).$$

²Angleško *intertwiner*.

 $^{^3}$ Z opustitvijo eksplicitnih oznak za delovanja lahko ta pogoj pišemo krajše kot $\Phi(gv)$ = $g\Phi(v)$.

⁴Generator $\bar{1} = 1 + n\mathbf{Z} \in \mathbf{Z}/n\mathbf{Z}$ deluje kot cikel $(1 \ 2 \cdots n)$.

Ti dve upodobitvi sta izomorfni. Vektorska prostora lahko namreč naravno primerjamo z bijektivno linearno preslikavo

$$\Phi: \mathbf{C}[\Omega] \to \mathbf{C}[\mathbf{Z}/n\mathbf{Z}], \quad e_i \mapsto e_{\bar{i}},$$

kjer je $i \in \Omega$. Preslikava Φ je spletična, saj za vsak $\bar{x} \in \mathbb{Z}/n\mathbb{Z}$ in $i \in \Omega$ velja

$$\Phi(\bar{x}\cdot e_i) = \Phi(e_{x+i}) = e_{x+i} = \bar{x}\cdot e_{\bar{i}} = \bar{x}\cdot \Phi(e_i).$$

V to kratko zgodbo lahko vključimo še desno regularno upodobitev

$$\rho_{\text{fun}}: \mathbf{Z}/n\mathbf{Z} \to \text{GL}(\text{fun}(\mathbf{Z}/n\mathbf{Z},\mathbf{C})).$$

Vektorski prostor fun $(\mathbf{Z}/n\mathbf{Z},\mathbf{C})$ lahko na naraven način opremimo z bazo iz karakterističnih funkcij

$$1_{\bar{x}}: \mathbf{Z}/n\mathbf{Z} \to \mathbf{C}, \quad \bar{y} \mapsto \begin{cases} 1 & \bar{y} = \bar{x}, \\ 0 & \text{sicer} \end{cases}$$

za $\bar{x} \in \mathbb{Z}/n\mathbb{Z}$. Predpišimo linearno preslikavo⁵

$$\Phi': \mathbb{C}[\mathbb{Z}/n\mathbb{Z}] \to \text{fun}(\mathbb{Z}/n\mathbb{Z},\mathbb{C}), \quad e_{\bar{x}} \mapsto 1_{-\bar{x}}.$$

Jasno je Φ' bijektivna. Preverimo še, da je res spletična. Za vsaka $\bar{x}, \bar{y} \in \mathbf{Z}/n\mathbf{Z}$ velja

$$\Phi'(\bar{x}\cdot e_{\bar{y}}) = \Phi'(e_{\overline{x+y}}) = 1_{-\overline{x+y}}.$$

Po drugi strani za vsak $\bar{z} \in \mathbf{Z}/n\mathbf{Z}$ velja

$$\left(\bar{x}\cdot\Phi'\left(e_{\bar{y}}\right)\right)\left(\bar{z}\right)=\left(\bar{x}\cdot1_{-\bar{y}}\right)\left(\bar{z}\right)=1_{-\bar{y}}\left(\bar{z}+\bar{x}\right)=\begin{cases}1&\bar{z}=-\overline{x+y},\\0&\text{sicer}.\end{cases}$$

Torej je res $\Phi'(\bar{x} \cdot e_{\bar{y}}) = \bar{x} \cdot \Phi'(e_{\bar{y}})$. S tem je Φ' izomorfizem med Cayleyjevo upodobitvijo in desno regularno upodobitvijo.

Eden pomembnih ciljev teorije upodobitev je razumeti vse upodobitve dane grupe do izomorfizma natančno. Kasneje bomo spoznali, kako lahko to v določenih⁶ primerih *precej dobro* uresničimo.

1.2 Fundamentalne konstrukcije

Naj bo ρ upodobitev grupe G na prostoru V nad poljem F. Premislili bomo, kako lahko prostor, grupo ali polje modificiramo na različne načine in tako dobimo neko drugo, novo upodobitev, oziroma kako lahko dano upodobitev vidimo kot rezultat kakšne od teh fundamentalnih konstrukcij.

Podupodobitve

Naj bo G grupa z upodobitvijo $\rho:G \to \operatorname{GL}(V)$. Denimo, da obstaja vektorski podprostor $W \leq V$, ki je invarianten za delovanje grupe G, se pravi $g \cdot w \in W$ za vsak $g \in G$, $w \in W$. V tem primeru upodobitev ρ inducira upodobitev $\tilde{\rho}:G \to \operatorname{GL}(W)$ in vložitev vektorskih prostorov $\iota:W \to V$ je spletična. Upodobitvi $\tilde{\rho}$ rečemo podupodobitev upodobitve ρ .

 $^{^5}$ Pozor, karakteristična funkcija je zasidrana priinverzuelementa \bar{x} v $\mathbf{Z}/n\mathbf{Z}.$

⁶Na primer, *precej dobro* bomo opisali upodobitve poljubne končne grupe nad poljem kompleksnih števil.

Zgled.

• Naj bo n naravno število. Opazujmo permutacijsko delovanje grupe $\mathbb{Z}/n\mathbb{Z}$ na množici $\Omega = \{1, 2, ..., n\}$, ki porodi permutacijsko upodobitev na prostoru $\mathbb{C}[\Omega]$ z baznimi vektorji e_i za $i \in \Omega$. Naj bo še $e_0 = e_n$.

Naj bo $\zeta \in \mathbb{C}$ primitiven n-ti koren enote. Za $j \in \Omega$ naj bo

$$f_j = \sum_{i \in \Omega} \zeta^{ij} e_i \in \mathbb{C}[\Omega].$$

Za vsak $\bar{x} \in \mathbf{Z}/n\mathbf{Z}$ velja

$$\bar{x} \cdot f_j = \sum_{i \in \Omega} \zeta^{ij} e_{\overline{x+i}} = \sum_{i \in \Omega} \zeta^{(i-\bar{x})j} e_i = \zeta^{-\bar{x}j} \cdot f_j,$$

zato je vsak podprostor $\mathbf{C} \cdot f_j \leq \mathbf{C}[\Omega]$ invarianten za delovanje grupe $\mathbf{Z}/n\mathbf{Z}$ in podupodobitev na tem podprostoru $\mathbf{C} \cdot f_j$ je očividno izomorfna upodobitvi χ_{-j} grupe $\mathbf{Z}/n\mathbf{Z}$. Na ta način smo sestavili n podupodobitev permutacijske in s tem regularne upodobitve ciklične grupe moči n.

• Naj bo G grupa in ρ njena upodobitev na prostoru V. Opazujmo množico vseh fiksnih vektorjev te upodobitve,

$$V^G = \{ v \in V \mid \forall g \in G \colon g \cdot v = v \}.$$

Množica V^G je vektorski podprostor prostora V, ki je invarianten za delovanje grupe G. Torej je $\tilde{\rho}\colon G \to \mathrm{GL}(V^G)$ podupodobitev upodobitve ρ . Na prostoru V^G po definiciji grupa G deluje trivialno, torej je $\tilde{\rho}$ izomorfna trivialni upodobitvi $\mathbf{1}^{\dim V^G}$.

Domača naloga. Naj bo G grupa in F polje. Določi upodobitvi $F[G]^G$ in $\text{fun}(G,F)^G$.

Prostor V^G lahko razumemo še na naslednji alternativen način, ki nam bo prišel zelo prav v nadaljevanju. Iz vsakega vektorja $v \in V^G$ izhaja injektivna spletična

$$\Phi_v: \mathbf{1} \to V, \quad x \mapsto xv$$

med $\mathbf{1}$ in ρ . S tem je določena preslikava $V^G \to \hom_G(\mathbf{1}, V)$. Ta preslikava ima jasen inverz, ki spletični $\Phi \in \hom_G(\mathbf{1}, V)$ priredi $\Phi(\mathbf{1})$. Na ta način lahko identificiramo prostor V^G z množico spletičen $\hom_G(\mathbf{1}, V)$.

• Naj bo G grupa in ρ njena upodobitev na prostoru V. Predpostavimo, da obstaja vektor $v \in V$, ki je lastni vektor vsake linearne preslikave $\rho(g)$ za $g \in G$.

Torej za vsak $g \in G$ obstaja $\chi(g) \in F$, da je $\rho(g) \cdot v = \chi(g)v$. Na ta način dobimo funkcijo $\chi: G \to F$, se pravi element prostora fun(G,F). Ta funkcija ni čisto poljubna; ker je ρ upodobitev, je χ nujno homomorfizem iz grupe G v grupo F^* . Torej je χ pravzaprav upodobitev grupe G na prostoru F razsežnosti 1.7

⁷Kadar je $\chi(g)$ = 1 za vsak $g \in G$, je ta upodobitev izomorfna 1. Kadar je $\chi(g)$ # 1 za vsaj kak $g \in G$, pa ta upodobitev ni trivialna.

Zdaj kot v zadnjem zgledu s predpisom

$$\Phi: F \to V$$
, $x \mapsto xv$

dobimo injektivno spletično med χ in ρ , torej lahko vidimo χ kot enorazsežno podupodobitev upodobitve ρ . Hkrati lahko iz te spletične obnovimo podatek o skupnem lastnem vektorju v in upodobitvi χ .⁸

Torej smo vzpostavili bijektivno korespondenco med množico enorazsežnih podupodobitev upodobitve ρ in skupnimi lastnimi vektorji vseh preslikav $\rho(g)$ za $g \in G$.

Poseben primer te korespondence je zadnji zgled. Množico enorazsežnih trivialnih podupodobitev upodobitve ρ lahko identificiramo z množico neničelnih spletičen $\hom_G(\mathbf{1},V)\backslash\{x\mapsto 0\}$, ta pa ustreza skupnim lastnim vektorjem $\rho(g)$ za $g\in G$ z lastno vrednostjo 1, kar je ravno množica $V^G\backslash\{0\}$.

• Naj bo G grupa in F polje. Opazujmo Cayleyjevo upodobitev π_{Cay} na F[G] in desno regularno upodobitev $\rho_{\operatorname{fun}}$ na $\operatorname{fun}(G,F)$. Trdimo, da je π_{Cay} podupodobitev upodobitve $\rho_{\operatorname{fun}}$.

V ta namen predpišimo linearno preslikavo⁹

$$\Phi: F[G] \to \operatorname{fun}(G,F), \quad e_g \mapsto 1_{g^{-1}}$$

za $g \in G$. Jasno je Φ injektivna preslikava. Hkrati za vse $g,h,x \in G$ velja

$$\Phi(\pi_{\text{Cav}}(g) \cdot e_h) = \Phi(e_{gh}) = 1_{h^{-1}g^{-1}}$$

in

$$(\rho_{\text{fun}}(g) \cdot \Phi(e_h))(x) = 1_{h^{-1}}(xg) = 1_{g^{-1}h^{-1}}(x),$$

zato je Φ tudi spletična.

Kadar je grupa G končna, sta prostora F[G] in fun(G,F) enake razsežnosti, zato sta v tem primeru upodobitvi π_{Cay} in ρ_{fun} izomorfni. Kadar je grupa G neskončna, pa preslikava Φ vsekakor ni bijektivna. 10 V tem primeru upodobitvi nista izomorfni. 11

Domača naloga. Naj bo G grupa z upodobitvijo ρ na prostoru V. Naj bo N podgrupa edinka v G. Premisli, da množica fiksnih točk

$$V^N = \{ v \in V \mid \forall n \in \mathbb{N} \colon \rho(n) \cdot v = v \}$$

tvori podupodobitev upodobitve ρ , ki jo lahko identificiraš z množico $\hom_N(\mathbf{1},V)$.

⁸Namreč, $v = \Phi(1)$ in $\chi(g) = \rho(g) \cdot 1$.

 $^{^9}$ Poseben primer te preslikave smo videli za grupo ${\bf Z}/n{\bf Z}$, kjer smo premislili, da je celo bijektivna.

 $^{^{10}}$ Slika im Φ nam
reč sestoji iz funkcij, ki so neničelne le v končno mnogo elementih grup
eG.

¹¹To sledi na primer iz dejstva, da prostora $F[G]^G$ in fun $(G,F)^G$ nista izomorfna.

Jedro, slika, kvocient

Naj bo G grupa z upodobitvijo ρ na prostoru V. Ogledali smo si že, kako za vsak G-invarianten podprostor $W \leq V$ dobimo podupodobitev upodobitve ρ . Sorodno lahko za vsak G-invarianten podprostor $W \leq V$ tvorimo kvocient V/W, na njem linearno deluje grupa G s predpisom

$$G \to GL(V/W), \quad g \mapsto (v + W \mapsto \rho(g) \cdot v + W)$$

za $v \in V$.

Na vse do zdaj omenjene konstrukcije lahko gledamo na skupen način, in sicer s pomočjo spletične Φ , ki vlaga prostor W v V. Ni težko preveriti, da so standardne konstrukcije, ki jih lahko uporabimo na spletičnah vektorskih prostorov, na naraven način opremljene z linearnim delovanjem grupe G.

Trditev. Naj bo Φ spletična upodobitev grupe G. Tedaj prostori $\ker \Phi$, $\operatorname{im} \Phi$, $\operatorname{coker} \Phi$ podedujejo linearno delovanje grupe G.

Zgled. Naj bo G grupa in ρ njena upodobitev na prostoru V. Podprostor prostora V, na katerem grupa G deluje trivialno, je vselej G-invarianten. Največji tak podprostor je ravno prostor vseh fiksnih vektorjev V^G . Videli smo že, da lahko ta prostor identifiricamo z množico spletičen hom $_G(\mathbf{1}, V)$.

Oglejmo si sedaj še dual zgodnje konstrukcije. Naj bo $V_1 = \langle \rho(g) \cdot v - v | v \in V, g \in G \rangle$. Prostor V_1 je G-invarianten podprostor prostora V, zato kvocient V/V_1 podeduje linearno delovanje grupe G. Po konstrukciji je to delovanje trivialno in prostor V/V_1 je največji kvocient prostora V, na katerem grupa G deluje trivialno. Kvocient V/V_1 označimo z V_G in mu pravimo **prostor koinvariant** upodobitve ρ .

Domača naloga. Izračunaj prostor koinvariant regularne upodobitve ciklične grupe $\mathbf{Z}/n\mathbf{Z}$.

Prostor koinvariant je po konstrukciji dualen prostoru fiksnih vektorjev, zato lahko nanj prenesemo tudi interpretacijo s spletičnami. Opazujmo množico $\hom_G(V,\mathbf{1})$. Spletične iz te množice so ravno homomorfizmi $\lambda\colon V\to F$ z lastnostjo $\lambda(\rho(g)\cdot v)=\lambda(v)$ za vsaka $v\in V,\ g\in G$, kar je ekvivalentno pogoju $\lambda(V_1)=0$. Vsako tako spletično lahko zato interpretiramo kot linearno preslikavo iz $V/V_1=V_G$ v F. Na ta način je vzpostavljena bijektivna korespondenca med množico spletičen $\hom_G(V,\mathbf{1})$ in množico linearnih preslikav $\hom_F(V_G,F)$, slednja množica pa je ravno dual V_G^* prostora koinvariant V_G .

Direktna vsota

Naj ima grupa G družino upodobitev $\{\rho_i\}_{i\in I}$ na vektorskih prostorih $\{V_i\}_{i\in I}$. Tedaj lahko tvorimo direktno vsoto vektorskih prostorov $\bigoplus_{i\in I} V_i$, ki je opremljena z linearnim delovanjem

$$\bigoplus_{i \in I} \rho_i \colon G \to \operatorname{GL}(\bigoplus_{i \in I} V_i), \quad g \mapsto \left(\sum_{i \in I} v_i \mapsto \sum_{i \in I} \rho_i(g) \cdot v_i \right).$$

Na ta način dobimo *direktno vsoto* upodobitev $\bigoplus_{i \in I} \rho_i$. Pri tem je vsaka od upodobitev ρ_i podupodobitev te direktne vsote.

Zgled.

• Opazujmo permutacijsko upodobitev π grupe $\mathbf{Z}/n\mathbf{Z}$ na prostoru $\mathbf{C}[\Omega]$, kjer je $\Omega = \{1, 2, ..., n\}$. Premislili smo že, da ima ta upodobitev n podupodobitev. Za vsak $j \in \Omega$ imamo upodobitev na podprostoru $\mathbf{C} \cdot f_j$, ki je izomorfna upodobitvi χ_{-j} . Ker je množica vektorjev $\{f_j \mid j \in \Omega\}$ linearno neodvisna, 12 lahko permutacijsko upodobitev torej zapišemo kot direktno vsoto $\pi = \bigoplus_{j \in \Omega} \chi_j$.

Domača naloga. Prepričaj se, da so upodobitve χ_j za $j \in \Omega$ grupe $\mathbb{Z}/n\mathbb{Z}$ med sabo paroma neizomorfne.

• Opazujmo permutacijsko upodobitev simetrične grupe S_3 na prostoru $\mathbf{R}[\{1,2,3\}] = \mathbf{R}^3$. Delovanje grupe S_3 ohranja vektor $e_1 + e_2 + e_3$, zato ima ta upodobitev trivialno enorazsežno podupodobitev, dano s podprostorom $\langle e_1 + e_2 + e_3 \rangle$. Eden od komplementov tega podprostora je $\langle e_1 - e_2, e_2 - e_3 \rangle$, ki je hkrati S_3 -invariaten podprostor. Če označimo $u_1 = e_1 - e_2$ in $u_2 = e_2 - e_3$, lahko slednjo upodobitev opišemo s homomorfizmom

$$\rho \colon\! S_3 \to \operatorname{GL}(\langle u_1, u_2 \rangle), \quad (1 \ 2) \mapsto \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}, \quad (1 \ 2 \ 3) \mapsto \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}.$$

Permutacijska upodobitev S_3 je zato direktna vsota enorazsežne podupodobitve $\mathbf{1}$ in dvorazsežne podupodobitve ρ .

Premislimo, da upodobitve ρ ne moremo zapisati kot direktne vsote svojih pravih podupodobitev. V ta namen opazujmo njene morebitne enorazsežne podupodobitve. Premislili smo že, da te ustrezajo skupnim lastnim vektorjem vseh preslikav $\rho(x)$ za $x \in S_3$. Lastna vektorja $\rho((1\ 2))$ sta u_1 in $u_1 + 2u_2$. Noben od teh dveh vektorjev ni hkrati lastni vektor $\rho((1\ 2\ 3))$. Torej je upodobitev ρ stopnje 2, hkrati pa nima enorazsežnih podupodobitev in je torej ne moremo nadalje razstaviti.

Direktna vsota je najbolj preprost način, kako lahko iz danih upodobitev sestavimo novo upodobitev. V nadaljevanju bomo zato veliko časa posvetili obratnemu problemu: dano upodobitev bomo kot v zadnjem zgledu skušali razstaviti na direktno vsoto čim bolj enostavnih podupodobitev.

Tenzorski produkt

Naj ima grupa G upodobitvi ρ_1 in ρ_2 na prostorih V_1 in V_2 . Tedaj lahko tvorimo **tenzorski produkt** vektorskih prostorov $V_1 \otimes V_2$, ki je naravno opremljen z linearnim delovanjem

$$\rho_1 \otimes \rho_2 : G \to \operatorname{GL}(V_1 \otimes V_2), \quad g \mapsto (v_1 \otimes v_2 \mapsto \rho_1(g)v_1 \otimes \rho_2(g)v_2).$$

Zgled. Opazujmo simetrično grupo S_3 . Ogledali smo si že njeno permutacijsko upodobitev na prostoru \mathbb{R}^3 , ki smo jo razstavili na direktno vsoto trivialne upodobitve $\mathbf{1}$ in dvorazsežne upodobitve ρ . Poleg teh dveh

 $^{^{12}}$ Prehodna matrika iz baze e_i v bazo f_j je ravno Vandermondova matrika.

 $^{^{13}}$ Na primer, generator (1 3 2) preslika vektor $e_1 - e_2$ v $e_3 - e_1$, kar lahko zapišemo kot $-(e_1 - e_2) - (e_2 - e_3)$.

ima grupa S_3 še eno zanimivo upodobitev, ki izračuna predznak dane permutacije, se pravi

$$\operatorname{sgn}: S_3 \to \operatorname{GL}(\mathbf{R}) = \mathbf{R}^*, \quad \sigma \mapsto \operatorname{sgn}(\sigma).$$

To je netrivialna enorazsežna upodobitev.

Tvorimo tenzorski produkt upodobitev ρ in sgn. Dobimo upodobitev na vektorskem prostoru $\mathbf{R} \otimes \mathbf{R}^2$, ki ga lahko naravno identificiramo s prostorom \mathbf{R}^2 . V tem smislu je upodobitev sgn $\otimes \rho$ izomorfna dvorazsežni upodobitvi

 $S_3 \to GL(\mathbf{R}^2), \quad \sigma \mapsto (v \mapsto \operatorname{sgn}(\sigma) \cdot \rho(\sigma) \cdot v).$

Domača naloga. Dokaži, da sta upodobitvi ρ in $\operatorname{sgn} \otimes \rho$ izomorfni.

Naj ima grupa G upodobitev na prostoru V. Tedaj lahko tvorimo tenzorske potence $V^{\otimes n}$ za $n \in \mathbb{N}_0$. Vsaka od teh tvori upodobitev grupe G. Na prostoru $V^{\otimes n}$ deluje simetrična grupa S_n , in sicer na dva načina. Prvi način izhaja iz permutacijske upodobitve grupe S_n , in sicer dobimo delovanje

$$\pi: S_n \to \mathrm{GL}(V^{\otimes n}), \quad \sigma \mapsto (v_1 \otimes v_2 \otimes \cdots \otimes v_n \mapsto v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)}).$$

Drugi način delovanja grupe S_n na tenzorski potenci pa je sgn $\otimes \pi$, pri katerem delovanje π še utežimo s predznakom delujoče permutacije. Prostor koinvariant upodobitve π je

$$\operatorname{Sym}^{n}(V) = \frac{V^{\otimes n}}{\langle v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n} - v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)} \mid v_{i} \in V, \ \sigma \in S_{n} \rangle},$$

imenujemo ga **simetrična potenca** upodobitve G na V. Analogno prostor koinvariant upodobitve $\operatorname{sgn} \otimes \pi$ označimo z $\wedge^n(V)$ in imenujemo **alternirajoča potenca**. Obe potenci sta seveda upodobitvi grupe G. Vse potence hkrati zajamemo z direktnima vsotama

$$\operatorname{Sym}(V) = \bigoplus_{n \in \mathbb{N}_0} \operatorname{Sym}^n(V)$$
 in $\bigwedge V = \bigoplus_{n \in \mathbb{N}_0} \bigwedge^n(V)$.

Domača naloga. Naj bo G grupa s kompleksno upodobitvijo ρ na prostoru V razsežnosti $\deg(\rho) < \infty$. Dokaži, da je upodobitev G na alternirajoči potenci $\wedge^{\deg(\rho)} V$ izomorfna enorazsežni upodobitvi $G \to \mathbb{C}^*$, $g \mapsto \det(\rho(g))$.

Dual

Naj bo G grupa z upodobitvijo ρ na prostoru V nad poljem F. Tvorimo lahko **dualen prostor** $V^* = \hom(V, F)$, ki je naravno opremljen z linearnim delovanjem

$$\rho^*: G \to \mathrm{GL}(V^*), \quad g \mapsto \left(\lambda \mapsto \left(v \mapsto \lambda(\rho(g^{-1}) \cdot v)\right)\right)$$

za $\lambda \in V^*$, $v \in V$. Na ta način dobimo **dualno upodobitev** ρ^* upodobitve ρ .

Za funkcional $\lambda \in V^*$ in vektor $v \in V$ včasih uporabimo oznako $\langle \lambda, v \rangle$ za aplikacijo $\lambda(v)$. S to oznako lahko zapišemo definicijo dualne upodobitve kot

$$\langle \rho^*(g) \cdot \lambda, v \rangle = \langle \lambda, \rho(g^{-1}) \cdot v \rangle.$$

Zgled. Opazujmo grupo **Z** in za parameter $a \in \mathbb{C}$ njeno upodobitev

$$\chi_a: \mathbf{Z} \to \mathrm{GL}(\mathbf{C}), \quad x \mapsto e^{ax}.$$

Za dualno upodobitev χ_a^* , funkcional $\lambda \in \mathbb{C}^*$ in vektor $z \in \mathbb{C}$ velja

$$\langle \chi_a^*(x) \cdot \lambda, z \rangle = \langle \lambda, \chi_a(-x) \cdot z \rangle = \lambda(e^{-ax} \cdot z).$$

Funkcionali v dualnem prostoru \mathbb{C}^* so skalarna množenja s kompleksnimi števili. Če funkcionalu λ ustreza število $l \in \mathbb{C}$, dobimo torej

$$\chi_a^*(x) \cdot l = e^{-ax} \cdot l$$
.

Dualna upodobitev χ_a^* je torej enorazsežna upodobitev, ki je izomorfna upodobitvi $\chi_{-a}.$

Domača naloga.

• Naj bosta ρ_1, ρ_2 upodobitvi grupe G. Dokaži, da je

$$(\rho_1 \oplus \rho_2)^* \cong \rho_1^* \oplus \rho_2^*$$
 in $(\rho_1 \otimes \rho_2)^* \cong \rho_1^* \otimes \rho_2^*$.

• Naj bo ρ upodobitev grupe G z deg $(\rho) < \infty$. Tedaj je $(\rho^*)^* \cong \rho$.

Naj bo zdaj G grupa z dvema upodobitvama ρ in σ na prostorih V in W. **Prostor linearnih preslikav** hom(V,W) je naravno opremljen z linearnim delovanjem

$$\hom(\rho,\sigma):G\to \mathrm{GL}(\hom(V,W)),\quad g\mapsto \left(\Phi\mapsto \left(v\mapsto \sigma(g)\cdot\Phi\cdot\rho(g^{-1})\cdot v\right)\right).$$

Invariante tega delovanja sestojijo iz linearnih preslikav, ki so invariantne glede na predpisano delovanje grupe G, se pravi ravno iz spletičen med ρ in σ . S simboli je torej hom $(V,W)^G = \hom_G(V,W)$.

Trditev. Naj bo G grupa z upodobitvama ρ in σ . Predpostavimo, da je $deg(\sigma) < \infty$. Tedaj je $hom(\rho, \sigma) \cong \rho^* \otimes \sigma$.

Dokaz. Naj bo ρ upodobitev na prostoru V in σ upodobitev na prostoru W. Izomorfizem med vektorskima prostoroma $V^* \otimes W$ in hom(V,W) podaja linearna preslikava

$$V^* \otimes W \to \text{hom}(V, W), \quad \lambda \otimes w \mapsto (v \mapsto \lambda(v) \cdot w).$$

Ni težko preveriti, da je ta preslikava spletična.

Skalarji

Naj bo G grupa z upodobitvijo ρ na prostoru V nad poljem F. Naj bo E razširitev polja F. Tedaj je prostor $E\otimes V$ naravno opremljen z linearnim delovanjem

$$E \otimes \rho : G \to GL(E \otimes V), \quad g \mapsto (e \otimes v \mapsto e \otimes \rho(g) \cdot v).$$

Ta postopek konstrukcije prostora $E \otimes V$ imenujemo *razširitev skalarjev*. Dano upodobitev lahko razširimo do ugodnejših skalarjev¹⁴, lahko pa tudi

¹⁴Na primer polja kompleksnih števil.

dano upodobitev nad velikim poljem E gledamo kot razširitev skalarjev neke upodobitve nad preprostejšim poljem F. 15 V tem slednjem primeru rečemo, da je dana upodobitev **definirana nad poljem** F. Včasih nam uspe najti celo preprost podkolobar polja F, nad katerim je definirana dana upodobitev.

Zgled. Opazujmo grupo S_3 in njeno permutacijsko upodobitev na realnem prostoru $\mathbf{R}[\{1,2,3\}]$. Poznamo že njeno dvorazsežno upodobitev ρ na podprostoru $\langle e_1-e_2,e_2-e_3\rangle$, ki nima enorazsežnih podupodobitev. Ta je definirana z matrikami, ki imajo zgolj celoštevilske koeficiente. Upodobitev ρ je zato definirana nad kolobarjem \mathbf{Z} . To upodobitev lahko zato projiciramo s homomorfizmom kolobarjev $\mathbf{Z} \to \mathbf{Z}/p\mathbf{Z}$ za poljubno praštevilo p do upodobitve

$$S_3 \to \operatorname{GL}_2(\mathbf{Z}/p\mathbf{Z}), \quad (1\ 2) \mapsto \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}, \quad (1\ 2\ 3) \mapsto \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix},$$

ki je definirana nad *končnim* poljem $\mathbb{Z}/p\mathbb{Z}$. Pri p=3 ima ta projicirana upodobitev enorazsežen invarianten podprostor $\langle e_1 + e_2 + e_3 \rangle$. Projekcije nam lahko torej dano upodobitev dodatno razstavijo.

Kadar imamo opravka s konkretnim poljem F, lahko dano upodobitev modificiramo tudi z *avtomorfizmi polja*. Te si najlažje predstavljamo po izbiri baze vektorskega prostora. Če je $\sigma \in \operatorname{Aut}(F)$, dobimo iz dane upodobitve $\rho: G \to \operatorname{GL}_n(F)$ modificirano upodobitev

$$\rho^{\sigma}: G \to \mathrm{GL}_n(F), \quad g \mapsto \rho(g)^{\sigma},$$

pri kateri vsak člen matrike $\rho(g)$ preslikamo z avtomorfizmom σ .

Zgled. Naj bo G grupa s kompleksno upodobitvijo ρ . Kompleksno konjugiranje je avtomorfizem polja \mathbb{C} , zato lahko s konjugiranjem členov matrik tvorimo **konjugirano upodobitev** $\overline{\rho}$.

Restrikcija

Naj bo G grupa z upodobitvijo $\rho:G\to \operatorname{GL}(V)$. Kadar je na voljo še ena grupa H s homomorfizmom $\phi:H\to G$, lahko upodobitev ρ sklopimo s ϕ in dobimo upodobitev $\rho\circ\phi$ grupe H na prostoru V. Temu postopku pridobivanja upodobitev grupe H iz upodobitev grupe G pravimo $\operatorname{restrikcija}$, pri tem pa novo upodobitev $\rho\circ\phi$ označimo kot $\operatorname{Res}_H^G(\rho)$. Predstavljamo si, da smo upodobitev ρ potegnili nazaj vzdolž homomorfizma ϕ . Restrikcija je funktor iz kategorije Rep_G v kategorijo Rep_H .

Zgled. Naj bo G grupa s podgrupo edinko N. Tvorimo kvocientni homomorfizem $\phi: G \to G/N$. Vsaki upodobitvi grupe G/N lahko z restrikcijo priredimo upodobitev grupe G. Vsaka taka pridobljena upodobitev grupe G vsebuje podgrupo N v svojem jedru. Na ta način dobimo bijektivno korespondenco med upodobitvami grupe G/N in upodobitvami grupe G, ki so trivialne na N.

Običajno ni res, da je vsaka upodobitev grupe G trivialna na N, se pa to lahko zgodi v kakšnih posebnih primerih. Na primer, enorazsežne upodobitve grupe G nad poljem F so homomorfizmi iz G v F^* , kar

¹⁵Na primer $E = \mathbf{C}$ in $F = \mathbf{Q}$.

ravno ustreza homomorfizmom iz abelove grupe G/[G,G] v F^* . Vsaka enorazsežna upodobitev grupe G je torej trivialna na [G,G].

Za konkreten primer si oglejmo simetrično grupo S_n . Njene kompleksne enorazsežne upodobitve ustrezajo homomorfizmom $S_n \to \mathbb{C}^*$. Ker je $[S_n, S_n] = A_n$, opazujemo torej homomorfizme $S_n/A_n \cong \mathbb{Z}/2\mathbb{Z} \to \mathbb{C}^*$. Na voljo sta le dva taka homomorfizma: trivialen in netrivialen (ki preslika generator grupe $\mathbb{Z}/2\mathbb{Z}$ v $-1 \in \mathbb{C}^*$). Prvi ustreza trivialni upodobitvi 1, drugi pa ustreza predznačni upodobitvi sgn.

Kadar imamo na voljo tri grupe, povezane s homomorfizmoma $\phi_2: H_2 \to H_1$ in $\phi_1: H_1 \to G$, lahko restrikcijo izvedemo dvakrat zaporedoma. Upodobitvi ρ v Rep_G tako priredimo upodobitev $\operatorname{Res}_{H_2}^{H_1}(\operatorname{Res}_{H_1}^G(\rho))$ v Rep_{H_2} . Od grupe H_2 do G imamo neposredno povezavo prek homomorfizma $\phi_1 \circ \phi_2$, s čimer dobimo upodobitev $\operatorname{Res}_{H_2}^G(\rho)$. Ni težko preveriti, da sta dobljeni upodobitvi izomorfni. Tej lastnosti restrikcije pravimo $\operatorname{tranzitivnost}$.

Indukcija

Naj bo kot zgoraj G grupa in H še ena grupa s homomorfizmom $\phi: H \to G$. *Indukcija* je postopek, ki s pomočjo homomorfizma ϕ upodobitvi ρ grupe H priredi upodobitev grupe G. Indukcija torej deluje ravno v obratno smer kot restrikcija in nam omogoča, da upodobitev ρ potisnemo naprej vzdolž homomorfizma ϕ . Ta postopek je nekoliko bolj zapleten kot restrikcija.

Začnimo z upodobitvijo $\rho: H \to \operatorname{GL}(V)$. Konstruirali bomo prostor, na katerem deluje grupa G. Odskočna deska za to bo regularna upodobitev grupe G, katere vektorski prostor je prostor funkcij $\operatorname{fun}(G,F)$. Ta prostor razširimo s prostorom V do prostora funkcij

$$fun(G,V) = \{f \mid f:G \to V\},\$$

na katerem linearno deluje grupa G z analogom regularne upodobitve, in sicer kot

$$g \cdot f = (x \mapsto f(xg))$$

za $g \in G$, $f \in \text{fun}(G,V)$. Po drugi strani na tej množici deluje tudi grupa H, in sicer na dva načina: prvič prek homomorfizma ϕ in pravkar opisanega delovanja grupe G, drugič pa prek svojega delovanja ρ na prostoru V. Ko ti dve delovanji združimo, dobimo delovanje grupe H na prostoru funkcij fun(G,V) s predpisom

$$h \cdot f = (x \mapsto \rho(h) \cdot f(\phi(h^{-1}) \cdot x))$$

za $h \in H$, $f \in \text{fun}(G, V)$. 16 Opazujmo invariantni podprostor

$$\operatorname{fun}(G,V)^{H} = \left\{ f \in \operatorname{fun}(G,V) \mid \forall h \in H, x \in G. \ \rho(h) \cdot f(x) = f(\phi(h) \cdot x) \right\}.$$

Ker grupa G deluje na $\operatorname{fun}(G,V)$ prek množenja z desne , pogoj pripadnosti invariantam $\operatorname{fun}(G,V)^H$ pa je izražen prek množenja z leve , je podprostor $\operatorname{fun}(G,V)^H$ avtomatično G-invarianten. S tem smo dobili upodobitev grupe G na prostoru $\operatorname{fun}(G,V)^H$. To je želena $\operatorname{inducirana\ upodobitev}$. Zanjo uporabimo oznako $\operatorname{Ind}_H^G(\rho)$.

 $^{^{16} \}mathrm{Delovanje} \ H$ na fun(G,V) je konstruirano analogno delovanju grupe na prostoru linearnih preslikav.

Zgled. Naj bo G grupa z vložitvijo $\phi: 1 \to G$ trivialne podgrupe. Vsaka upodobitev trivialne grupe nad poljem F je trivialna. Iz enorazsežne trivialne upodobitve $\mathbf 1$ dobimo prostor funkcij fun(G,F), na katerem grupa G deluje z regularno upodobitvijo. Inducirana upodobitvi je v tem primeru torej kar regularna, se pravi $\mathrm{Ind}_1^G(\mathbf 1) = \rho_{\mathrm{fun}}$.

Inducirano upodobitev $\operatorname{Ind}_H^G(\rho)=\operatorname{fun}(G,V)^H$ smo konstruirali z invariantami grupe H. To pomeni, da vektorji v tem prostoru niso poljubne funkcije v $\operatorname{fun}(G,V)$, temveč zadoščajo določenim restriktivnim pogojem. Te funkcije so določene z vrednostmi, ki jih zavzamejo na predstavnikih desnih odsekov im $\phi\backslash G$, 17 in te vrednosti pripadajo podprostoru $V^{\ker\phi}$. 18

Zgled. Naj bo G grupa z upodobitvijo ρ in naj bo $\phi = \mathrm{id}_G$. Tedaj je vsaka funkcija $f \in \mathrm{fun}(G,V)^G$ določena že z vrednostjo f(1). Dodatnih restrikcij za to vrednost ni, zato dobimo izomorfizem vektorskih prostorov

$$fun(G,V)^G \to V, \quad f \mapsto f(1),$$

ki je spletična glede na regularno delovanje G na fun(G,V). S tem imamo torej izomorfizem upodobitev $\operatorname{Ind}_G^G(\rho) \cong \rho$.

Domača naloga. Naj bo G grupa z upodobitvijo ρ na prostoru V in naj bo $\phi:G\to G/N$ kvocientna projekcija za neko podgrupo edinko N v G. Dokaži, da je $\mathrm{Ind}_G^{G/N}(\rho)$ izomorfna upodobitvi G/N na prostoru V^N , ki izhaja iz upodobitve ρ .

Najpomembnejši primer indukcije, čeravno ne tudi najbolj preprost, je **indukcija iz podgrupe končnega indeksa**. Naj bo G grupa s podgrupo H in naj bo ϕ vložitev H v G. Predpostavimo, da je $|G:H| < \infty$. Naj bo ρ upodobitev grupe G na prostoru V. Premislimo, kako izgleda upodobitev $\operatorname{Ind}_H^G(\rho)$.

Naj bo R neka izbrana množica predstavnikov desnih odsekov H v G. Vsaka funkcija $f \in \text{fun}(G,V)^H$ je določena z vrednostmi f(r) za $r \in R$ in dodatnih restrikcij za te vrednosti ni, zato dobimo izomorfizem vektorskih prostorov 19

$$\Phi: \operatorname{fun}(G, V)^H \to \operatorname{fun}(R, V), \quad f \mapsto (r \mapsto f(r)).$$

Da dobimo spletično, moramo posplošitev regularnega delovanja G na fun(G,V) prenesti prek linearnega izomorfizma Φ na desno stran. V ta namen naj bo $v \in V$ in $f \in \text{fun}(G,V)^H$ z lastnostjo $f(r_0) = v$ in f(r) = 0 za $r \in R \setminus \{r_0\}$. Za vsak $g \in G$ mora tako veljati

$$g \cdot \left(r \mapsto \begin{cases} v & r = r_0, \\ 0 & r \neq r_0 \end{cases} \right) = \Phi \left(g \cdot f \right) = \Phi \left(x \mapsto f(xg) \right).$$

Za $x \in R$ z lastnostjo $xg \in Hr_0$, se pravi $x = hr_0g^{-1}$ za nek $h \in H$, velja $f(xg) = f(hr_0) = \rho(h) \cdot v$. Seveda je $|R \cap Hrg^{-1}| = 1$, torej obstaja natanko

 $^{^{17}}$ Če je Rmnožica predstavnikov desnih odsekov im ϕ v G in če že poznamo vrednosti $f\in \mathrm{fun}(G,V)$ na množici R, potem lahko vsako drugo vrednost fizračunamo kot $f(x\cdot r)=\rho(y)\cdot f(r)$ za $x=\phi(y)\in \mathrm{im}\,\phi.$

¹⁸Če je $f \in \text{fun}(G, V)^H$, potem pogoj H-invariantnosti uporabimo z elementi $h \in \text{ker } \phi$ in dobimo $\rho(h) \cdot f(x) = f(x)$, torej je $f \in V^h$.

 $^{^{19}}$ Množico funkcij fun(R,V) lahko vidimo kot direktno vsoto prostorov V, indeksirano z množico R.

en tak x. Za $x \in R$ z lastnostjo $xg \notin Hr_0$ pa velja f(xg) = 0. S tem je

$$g \cdot \left(r \mapsto \begin{cases} v & r = r_0, \\ 0 & r \neq r_0 \end{cases}\right) = \left(r \mapsto \begin{cases} \rho(h) \cdot v & r = hr_0g^{-1} \text{ za nek } h \in H, \\ 0 & r \notin Hr_0g^{-1} \end{cases}\right).$$

Da bo preslikava Φ spletična, moramo na $\operatorname{fun}(R,V)$ torej uvesti tako delovanje grupe G, ki dan vektor v pri vnosu $r_0 \in R$ preslika tako, da najprej izračuna odsek elementa r_0g^{-1} po H, ta element zapiše kot $r_0g^{-1} = h^{-1}r$ za $h \in H$, $r \in R$, nato pa na vektor v deluje z $\rho(h)$ in ga hkrati prestavi k vnosu r.

Opisan postopek si lahko nekoliko lažje predstavljamo tako, da množico fun(R,V) identificiramo z direktno vsoto $\bigoplus_{r\in R} Vr$, kjer je Vr kopija vektorskega prostora V pri komponenti r. Element $g\in G$ deluje na vektorju $vr_0\in Vr_0$ kot g^{-1} z desne. V teh domačih oznakah izračunamo

$$g \cdot v r_0 = v r_0 g^{-1} = v h^{-1} r = (h \cdot v) r = (\rho(h) \cdot v) r$$
,

kar ravno ustreza bolj zakompliciranemu zapisu zgoraj.

Poseben primer opisane indukcije dobimo z enorazsežnimi upodobitvami grupe H. Vsak homomorfizem $\rho: H \to F^*$ porodi prostor $\mathrm{fun}(G,F)^H$ razsežnosti |G:H|, ki je podprostor prostora funkcij $\mathrm{fun}(G,F)$ in na katerem torej grupa G deluje z regularno upodobitvjo. Inducirana upodobitev je v tem primeru podupodobitev regularne upodobitve ρ_{fun} . Na ta način lahko dobimo mnogo različnih upodobitev grupe G.

Zgled. Opazujmo grupo S_n in njeno podgrupo A_n indeksa 2. Za $n \ge 5$ je grupa A_n enostavna, zato je $A_n = [A_n, A_n]$ in ni netrivialnih enorazsežnih upodobitev. Oglejmo si inducirano upodobitev $\operatorname{Ind}_{A_n}^{S_n}(1)$. A priori vemo, da je to dvorazsežna upodobitev. Za množico predstavnikov odsekov vzamemo $R = \{(), (1\ 2)\}$. V domačih oznakah je vektorski prostor upodobitve enak $F() \oplus F(1\ 2)$, na katerem deluje grupa S_n s predpisom

$$g \cdot x\sigma = x\sigma g^{-1} = \begin{cases} x\sigma & g \in A_n, \\ x((1\ 2)\sigma) & g \notin A_n \end{cases}$$

za $g \in S_n$, $x \in F$, $\sigma \in R$. To delovanje lahko zapišemo še enostavneje. Vektorski prostor identificiramo z dvorazsežnim prostorom F^2 , delovanje pa opišemo kot

$$g \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{cases} \begin{pmatrix} x \\ y \end{pmatrix} & g \in A_n, \\ \begin{pmatrix} y \\ x \end{pmatrix} & g \notin A_n \end{cases}$$

za $x,y\in F,\ g\in S_n$. Alternirajoča grupa A_n je v jedru te upodobitve, ki zato izhaja iz kvocienta $S_n/A_n\cong {\bf Z}/2{\bf Z}$. Opisana upodobitev je natanko permutacijska upodobitev grupe ${\bf Z}/2{\bf Z}$ na prostoru $F[\{1,2\}]$, inducirana upodobitev pa je ravno restrikcija te upodobitve vzdolž kvocientne projekcije $S_n\to S_n/A_n$. Inducirano upodobitev lahko zapišemo kot vsoto dveh enorazsežnih podupodobitev. Prva je podupodobitev z diagonalnim prostorom $\{(x,x)\,|\,x\in F\}\le F^2$, ta je izomorfna trivialni upodobitvi 1. Druga pa je podupodobitev z antidiagonalnim prostorom $\{(x,-x)\,|\,x\in F\}\le F^2$. Ta ni trivialna, saj element $(1\ 2)$ deluje na (1,-1) kot množenje z $-1\in F$. Ta podupodobitev je zato izomorfna predznačni upodobitvi sgn. Nazadnje je torej $\mathrm{Ind}_{A_n}^{S_n}(1)\cong 1\oplus \mathrm{sgn}$.

Naj bosta G,H grupi s homomorfizmom $\phi:H\to G$. Ni težko preveriti, da indukcija naravno presene spletično med dvema upodobitvama grupe H v spletično med induciranima upodobitvama. Indukcija je torej funktor iz kategorije Rep_H v kategorijo Rep_G .

Kadar imamo na voljo tri grupe, povezane s homomorfizmoma $\phi_2\colon H_2 \to H_1$ in $\phi_1\colon H_1 \to G$, lahko indukcijo izvedemo dvakrat zaporedoma. Upodobitvi ρ v Rep_{H_2} tako priredimo upodobitev $\operatorname{Ind}_{H_1}^G(\operatorname{Ind}_{H_2}^{H_1}(\rho))$ v Rep_G . Od grupe H_2 do G imamo neposredno povezavo prek homomorfizma $\phi_1 \circ \phi_2$, s čimer dobimo upodobitev $\operatorname{Ind}_{H_2}^G(\rho)$. Ni težko preveriti, da sta dobljeni upodobitvi izomorfni. Tej lastnosti indukcije pravimo $\operatorname{tranzitivnost}$.

Domača naloga. Dokaži tranzitivnost indukcije.

S tranzitivnostjo indukcije lahko vsako indukcijo vzdolž homomorfizma $\phi\colon H\to G$ razdelimo na tri korake: najprej induciramo vzdolž kvocientne projekcije $H\to H/\ker\phi$, nato vzdolž izomorfizma $H/\ker\phi\to\operatorname{im}\phi$ in nazadnje vzdolž vložitve $\operatorname{im}\phi\to G$. Vsako od teh posameznih indukcij razumemo precej dobro in zato lahko to znanje uporabimo pri razumevanju indukcije vzdolž ϕ . Na primer, iz povedanega in razmiselekov o preprostejših indukcijah, ki smo jih že naredili, sledi, da je razsežnost inducirane upodobitve ρ grupe H na prostoru V enaka

$$\deg(\operatorname{Ind}_H^G(\rho)) = |G:\operatorname{im} \phi| \cdot \dim(V^{\ker \phi}).$$

Adjunkcija restrikcije in indukcije

Indukcija in restrikcija vsekakor nista inverzna funktorja. Na primer, če je $H \leq G$ in ϕ vložitev, potem za upodobitev ρ v Rep_G velja $\operatorname{deg}(\operatorname{Res}_H^G(\rho)) = \operatorname{deg}(\rho)$ in zato $\operatorname{deg}(\operatorname{Ind}_H^G(\operatorname{Res}_H^G(\rho))) = |G:H| \cdot \operatorname{deg}(\rho)$, kar je lahko mnogo večje od $\operatorname{deg}(\rho)$. Sta pa funktorja restrikcije in indukcije vendarle tesno povezana. Tvorita namreč *adjungiran par* funktorjev. 20

Trditev. Naj bosta G,H grupi s homomorfizmom $\phi:H\to G$. Za vsako upodobitev ρ v Rep_G in upodobitev σ v Rep_H velja

$$\hom_H(\mathrm{Res}_H^G(\rho),\sigma) \,{\,\cong\,} \, \hom_G(\rho,\mathrm{Ind}_H^G(\sigma)).$$

Dokaz. Naj bo ρ upodobitev na prostoru V in σ upodobitev na prostoru W. Naj bo

$$\Phi \in \text{hom}_H(\text{Res}_H^G(\rho), \sigma) = \text{hom}_H(V, W).$$

Sestavimo pripadajočo spletično

$$\Psi \in \text{hom}_G(\rho, \text{Ind}_H^G(\sigma)) = \text{hom}_G(V, \text{fun}(G, W)^H).$$

Za vektor $v \in V$ definirajmo

$$\Psi(v) = (x \mapsto \Phi(\rho(x) \cdot v)) \in \text{fun}(G, W).$$

Ni težko (je pa sitno) preveriti, da opisano prirejanje vzpostavi izomorfizem med prostoroma spletičen $\hom_H(V,W)$ in $\hom_G(V, \operatorname{fun}(G,W)^H)$.

 $^{^{20}\}mathrm{V}$ nadaljevanju bomo spoznali presenetljivo uporabnost tega navidez naključnega dejstva.

Zgled. Naj boGgrupa s podgrupo Hkončnega indeksa. Grupa G deluje na množici desnih odsekov $H\backslash G$ s homomorfizmom

$$G \to \operatorname{Sym}(H \backslash G), \quad g \mapsto (Hx \mapsto Hxg^{-1}).$$

Iz tega delovanja izhaja permutacijska upodobitev π grupe G na prostoru $F[H\backslash G]$. Po konstrukciji je $\pi\cong \operatorname{Ind}_H^G(\mathbf{1})$. Iz adjunkcije med restrikcijo in indukcijo za trivialni upodobitvi grup G in H od tod izpeljemo izomorfizem

$$hom_H(\mathbf{1},\mathbf{1}) \cong hom_G(\mathbf{1},\pi) \cong F[H\backslash G]^G$$
.

Prostor $\hom_H(\mathbf{1},\mathbf{1}) = \hom(F,F)$ sestoji zgolj iz skalarnih množenj in je torej enorazsežen. Zato je enorazsežen tudi prostor invariant $F[H\backslash G]^G$. Vektor, ki ga razpenja, lahko dobimo kot sliko $\mathrm{id}_F \in \hom_H(\mathbf{1},\mathbf{1})$. Tej spletični po adjunkciji ustreza spletična

$$\Psi \mathpunct{:} F \to F \big[H \backslash G \big], \quad 1 \mapsto \sum_{Hx \in H \backslash G} e_{Hx},$$

od koder sledi

$$F[H \backslash G]^G = \left(\sum_{Hx \in H \backslash G} e_{Hx} \right).$$

Domača naloga. Naj bosta G,H grupi s homomorfizmom $\phi:H\to G$. Za vsako upodobitev ρ v Rep_G in upodobitev σ v Rep_H velja

$$\operatorname{Ind}_H^G(\operatorname{Res}_H^G(\rho)\otimes\sigma)\cong\rho\otimes\operatorname{Ind}_H^G(\sigma).$$

Domača naloga. Premisli, kako se restrikcija in indukcija ujameta z dualom, direktno vsoto in tenzorskim produktom.

Poglavje 2

Upodobitev pod mikroskopom

V tem poglavju bomo pribili upodobitev dane grupe in se ji tesno približali, kot da bi jo pogledali pod mikroskopom. Pri tem bomo najprej uzrli osnovne kose, iz katerih je sestavljena upodobitev. Ti osnovni kosi ustrezajo celicam, ki jih vidimo pod mikroskopom. Za tem se bomo približali še sestavi teh osnovnih kosov: vsak je dan s homomorfizmom v matrike, zato bomo raziskali koeficiente te matrike. Ti ustrezajo organelom, ki jih v celici vidimo pod mikroskopom. Nazadnje bomo premislili, da so te upodobitvene celice dovolj diferencirane med sabo, da za njihovo identifikacijo zadošča poznavanje le nekaterih njihovih organelov.

2.1 Razstavljanje upodobitve

Pogosto nas zanima, ali lahko dano upodobitev ρ grupe G na prostoru V zapišemo kot direktno vsoto nekih podupodobitev in na ta način upodobitev ρ razstavimo na preprostejše upodobitve, podobno kot razstavimo števila na manjše faktorje.

Nerazcepnost

Naj bo G grupa z upodobitvijo ρ na prostoru $V \neq 0$. Kadar ne obstaja noben G-invarianten podprostor prostora V (razen prostorov 0 in V), tedaj rečemo, da je upodobitev ρ nerazcepna. V tem primeru upodobitve seveda ne moremo razstaviti na enostavnejše v smislu direktne vsote.

Zgled. Opazujmo permutacijsko upodobitev simetrične grupe S_3 na prostoru $\mathbf{R}[\{1,2,3\}] = \mathbf{R}^3$. Premislili smo že, da je ta upodobitev direktna vsota enorazsežne podupodobitve $\mathbf{1}$ in dvorazsežne podupodobitve ρ , pri čemer slednja nima nobene enorazsežne podupodobitve. S tem je permutacijska upodobitev razstavljena kot direktna vsota dveh nerazcepnih upodobitev.

Preverimo, da so nerazcepne upodobitve dane grupe med sabo *neprimerljive*, tudi če so enake razsežnosti. Zatorej si jih lahko predstavljamo kot neodvisne osnovne kose kategorije upodobitev dane grupe.²

 $^{^{1}}$ Rečemo tudi, da je V *enostavna* upodobitev. Te terminologija izhaja iz alternativne obravnave upodobitev kot *modulov nad grupnimi algebrami*.

²Po analogiji s faktorizacijo števil si nerazcepne upodobitve lahko predstavljamo kot praštevila.

Lema (Schurova lema). Naj bo G grupa z upodobitvijo ρ in nerazcepno upodobitvijo π . Tedaj je vsaka spletična v hom $_G(\pi,\rho)$ bodisi injektivna bodisi ničelna in vsaka spletična v hom $_G(\rho,\pi)$ je bodisi surjektivna bodisi ničelna. V posebnem je vsaka spletična med dvema nerazcepnima upodobitvama grupe G bodisi izomorfizem bodisi ničelna.

Dokaz. Naj bo Φ ∈ hom_G(π , ρ). Tedaj je ker Φ podupodobitev π , zato je po nerazcepnosti bodisi ker Φ = 0 bodisi Φ = 0. Prvi primer ustreza možnosti, da je Φ injektivna, v drugem primeru pa je Φ ničelna. Sorođen razmislek dokaže trditev o spletičnah v hom_G(ρ , π).

Nad algebraično zaprtimi polji lahko to neprimerljivost raztegnemo do ene same upodobitve: osnovni kosi nimajo netrivialnih simetrij.

Posledica. Naj bo G grupa z nerazcepno upodobitvijo π končne razsežnosti nad algebraično zaprtim poljem. Tedaj je $\dim \hom_G(\pi,\pi) = 1$. Povedano še drugače: $množica \hom_G(\pi,\pi)$ sestoji le iz skalarnih večkratnikov identitete.

Dokaz. Naj bo $0 \neq \Phi \in \text{hom}_G(\pi, \pi)$. Ker je polje algebraično zaprto, ima linearna preslikava Φ vsaj kakšno lastno vrednost, recimo λ . Preslikava $\Phi - \lambda \cdot \text{id} \in \text{hom}_G(\pi, \pi)$ zato ni injektivna, s čimer mora biti po Schurovi lemi ničelna, se pravi $\Phi = \lambda \cdot \text{id}$.

Množico vseh izomorfnostnih razredov nerazcepnih upodobitev dane grupe G označimo z Irr(G).

Zgled. Naj bo G grupa z nerazcepno upodobitvijo π končne razsežnosti nad poljem kompleksnih števil. Spletične $\hom_G(\pi,\pi) = \hom(\pi,\pi)^G$ so endomorfizmi vektorskega prostora, ki so G-invariatni, se pravi komutirajo z delovanjem grupe G. Zglede takih endomorfizmov lahko dobimo iz delovanj centralnih elementov grupe G; za vsak $z \in Z(G)$ je $\pi(z) \in \hom_G(\pi,\pi)$. Po Schurovi lemi je zato $\pi(z) = \omega(z)$ id za nek skalar $\omega(z)$. Ker je π homomorfizem, je $\omega: Z(G) \to \mathbb{C}^*$ enorazsežna upodobitev centra grupe G. Tej upodobitvi rečemo **centralni karakter** upodobitve π .

Še posebej zanimiv je primer, ko je G abelova grupa. Takrat za vsako nerazcepno upodobitev π končne razsežnosti nad poljem \mathbf{C} velja $\pi(g) = \omega(g) \cdot \mathrm{id}$ za vsak $g \in G$. Vsak enorazsežen podprostor je zato avtomatično podupodobitev. Ker je π nerazcepna, od tod sklepamo $\deg(\pi) = 1$ in s tem $\pi = \omega$. Upodobitev π je tako enorazsežna.

Domača naloga. Poišči kakšno nerazcepno upodobitev ciklične grupe $\mathbb{Z}/3\mathbb{Z}$ nad poljem \mathbb{Q} , ki ni enorazsežna.

Komplementarna podupodobitev

Predpostavimo zdaj, da ima dana upodobitev ρ grupe G na prostoru V neko podupodobitev $\tilde{\rho}$ na podprostoru $W \leq V$. Seveda lahko vselej najdemo vektorski prostor $U \leq V$, za katerega je $V = U \oplus W$, vsekakor pa ni jasno, če lahko najdemo tak podprostor U, ki je celo G-invarianten. Kadar je temu tako, rečemo, da smo našli *komplementarno podupodobitev* podupodobitve $\tilde{\rho}$. Ni vsaka podupodobitev komplementirana.

 $^{^3}$ Če komplementarna podupodobitev obstaja, potem je enolično določena (do izomorfizma upodobitev), saj je izomorfna kvocientu $\rho/\tilde{\rho}$.

Zgled. Naj grupa \mathbf{R} deluje na realnem prostoru \mathbf{R}^2 s homomorfizmom

$$\rho \colon\! \mathbf{R} \to \mathrm{GL}_2(\mathbf{R}), \quad x \mapsto \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}.$$

Oglejmo si enorazsežne podupodobitve. Premislili smo že, da te ustrezajo skupnim lastnim vektorjem vseh preslikav $\rho(x)$ za $x \in \mathbf{R}$. Pri x = 1 imamo linearno preslikavo $\rho(1)$ z enim samim lastnim vektorjem, in sicer $e_1 \in \mathbf{R}^2$. Hkrati je e_1 lastni vektor vseh preslikav $\rho(x)$ za $x \in \mathbf{R}$. Torej ima ρ eno samo enorazsežno podupodobitev, in sicer je to $\mathbf{R} \cdot e_1 \leq \mathbf{R}^2$. Ta vektorski podprostor ima mnogo komplementov v \mathbf{R}^2 , noben od teh pa ni hkrati enorazsežna podupodobitev ρ .

Ni težko preveriti, da obstoj komplementirane podupodobitve vselej izhaja iz *projekcijskih spletičen*.⁴

Trditev. Naj bo G grupa z upodobitvijo ρ na prostoru V in naj bo $\tilde{\rho}$ njena podupodobitev na prostoru $W \leq V$. Tedaj ima $\tilde{\rho}$ komplementirano podupodobitev, če in samo če obstaja spletična $\Phi \in \text{hom}_G(V,V)$, ki je projekcija na W. V tem primeru je $\ker \Phi$ komplementirana upodobitev.

Polenostavnost

Vrnimo se k začetni ideji o razstavljanju dane upodobitve. Kadar lahko dano upodobitev ρ zapišemo kot direktno vsoto nerazcepnih upodobitev $\bigoplus_{i\in I} \rho_i$, tedaj rečemo, da je ρ polenostavna upodobitev. Če so pri tem vse podupodobitve ρ_i izomorfne med sabo, upodobitev ρ imenujemo izoti-pična upodobitev.

Zgled.

- Permutacijska upodobitev grupe S_3 na ${\bf R}^3$ je polenostavna.
- Regularna upodobitev ciklične grupe $\mathbf{Z}/n\mathbf{Z}$ nad \mathbf{C} je polenostavna.

Vseh upodobitev žal ne moremo razstaviti na direktno vsoto nerazcepnih.⁵ Polenostavnost dane upodobitve je namreč tesno povezana z obstojem komplementiranih podupodobitev.

Trditev. Upodobitev grupe G je polenostavna, če in samo če ima vsaka njena podupodobitev komplementirano podupodobitev.

Dokaz. (\Rightarrow): Naj bo najprej $\rho:G \to \operatorname{GL}(V)$ polenostavna upodobitev, pri kateri je $V = \bigoplus_{i \in I} V_i$ in upodobitve G na podprostorih V_i so nerazcepne. Naj bo $W \le V$ poljuben G-invarianten podprostor. Po Zornovi lemi obstaja maksimalen G-invarianten podprostor $U \le V$ z lastnostjo $U \cap W = 0$. Izberimo poljuben $i \in I$. Presek $(U \oplus W) \cap V_i$ je G-invarianten podprostor prostora V_i , zato je po nerazcepnosti bodisi trivialen bodisi enak V_i . Če bi bil trivialen, bi lahko U povečali do prostora $U \oplus V_i$, kar je v nasprotju z maksimalnostjo izbire U. Zatorej je $(U \oplus W) \cap V_i = V_i$ in tako $(U \oplus W) \ge V_i$.

⁴Linearna preslikava $A:X\to X$ je projekcija na podprostor $Y\le X$, če je $A^2=A$ in imA=Y. Projekcijska spletična je torej spletična, ki je hkrati projekcija na nek podprostor.

⁵V nadaljevanju bomo pokazali, da so upodobitve *končnih* grup nad poljem karakteristike 0 vselej poenostavne.

Ker je bil i poljuben, od tod sledi $U \oplus W = V$. Podupodobitev W ima torej komplementirano podupodobitev U. \checkmark

 (\Leftarrow) : Naj bo $\rho: G \to \operatorname{GL}(V)$ upodobitev, v kateri je vsaka podupodobitev komplementirana. Dokazati želimo, da je ρ polenostavna. Uporabili bomo naslednjo pomožno trditev, ki je ni težko preveriti.

Domača naloga. Naj bo ρ upodobitev, v kateri je vsaka podupodobitev komplementirana. Tedaj ima ρ nerazcepno podupodobitev.

Naj bo W vsota vseh G-invariantnih podprostorov v V, ki so nerazcepne upodobitve, se pravi $W = \sum_{i \in I} V_i$, a ta vsota ni nujno direktna. Po pomožni trditvi je $W \neq 0$. Po predpostavki je W komplementirana z G-invariantnim podprostorom U. Po pomožni trditvi ima tudi U nerazcepno podupodobitev, zato je ta vsebovana v W, kar implicira W = V. Dokažimo zdaj še, da je W direktna vsota podprostorov V_i . V ta namen naj bo J maksimalna podmnožica indeksne množice I, za katero je $\sum_{j \in J} V_j$ direktna vsota. Taka podmnožica obstaj po Zornovi lemi. Označimo $\tilde{V} = \bigoplus_{j \in J} V_j$. Če velja $\tilde{V} \neq V$, potem mora za nek $i \in I \setminus J$ po nerazcepnosti veljati $V_i \cap \tilde{V}$, kar pa je v nasprotju z maksimalnostjo množice J. Tako je res $\tilde{V} = V$ in upodobitev V je polenostavna. \checkmark

Zgled. Eničnozgornjetrikotna upodobitev grupe \mathbf{R} na \mathbf{R}^2 ni nerazcepna, hkrati pa njena podupodobitev $\mathbf{R} \cdot e_1 \cong \mathbf{1}$ ni komplementirana. Ta upodobitev zatorej ni polenostavna.

Z uporabo zadnjega kriterija lahko dokažemo, da je polenostavnost zaprta za osnovne konstrukcije z upodobitvami.

Posledica. Podupodobitve, kvocienti in direktne vsote polenostavnih upodobitev dane grupe so polenostavne.

Dokaz. Preverimo le zaprtost za podupodobitve. Naj bo ρ polenostavna upodobitev grupe G na prostoru V in naj bo $W \leq V$ podupodobitev. Naj bo $U \leq W$ poljubna podupodobitev upodobitve na W. Po polenostavnosti obstaja komplementirana podupodobitev $\tilde{U} \leq V$ upodobitve $U \leq V$. Tedaj je $\tilde{U} \cap W$ podupodobitev, ki je komplementirana podupodobitvi $U \vee W$. \square

Nazadnje lahko s pomočjo projekcijskih spletičen naredimo še en korak naprej pri razumevanju simetrij upodobitev. Premislili smo že, da so osnovni kosi brez netrivialnih simetrij. V primeru polenostavnih upodobitev drži tudi obratno.

Posledica. Naj bo G grupa s polenostavno upodobitvijo ρ končne razsežnosti nad algebraično zaprtim poljem. Če je dim $\hom_G(\rho,\rho)=1$, potem je ρ nerazcepna.

Dokaz. Naj ρ upodablja grupo G na prostoru V. Naj bo $W \leq V$ nerazcepna podupodobitev in naj bo U njena komplementirana podupodobitev. Naj bo $\Phi: V \to V$ pripadajoča projekcija na podprostor W z jedrom U. Ker je $\Phi \in \text{hom}_G(\rho, \rho)$, iz predpostavke sledi, da je Φ skalarni večkratnik identitete. To je mogoče le v primeru, ko je V = W in U = 0, torej je ρ nerazcepna.

Kompozicijska vrsta

Vsake upodobitve ne moremo razstaviti kot direktno vsoto nerazcepnih upodobitev. Kljub temu pa je res, da lahko vsako upodobitev (na končno razsežnem prostoru) razstavimo na nerazcepne upodobitve, le da moramo pri tem poseči po nekoliko zahtevnejšem načinu razstavljanja.

Naj bo G grupa z upodobitvijo na prostoru V. Predpostavimo, da obstaja zaporedje G-invariantnih podprostorov

$$0 = V_0 \le V_1 \le V_2 \le \cdots \le V_n = V,$$

pri čemer so vsi zaporedni kvocienti V_i/V_{i-1} za $1 \le i \le n$, gledani kot upodobitve grupe G, nerazcepni. Tako zaporedje imenujemo kompozicijska vrsta upodobitve na prostoru V. Kvocienti V_i/V_{i-1} se pri tem imenujejo kompozicijski faktorji.

Zgled. Naj bo ρ eničnozgornjetrikotna upodobitev grupe \mathbf{R} na $V = \mathbf{R}^2$. Ta upodobitev ima podupodobitev $V_1 = \mathbf{R} \cdot e_1$. Kvocient V/V_1 je enorazsežen in na njem grupa \mathbf{R} deluje trivialno. Dobimo torej kompozicijsko vrsto

$$0=V_0\leq V_1\leq V,$$

katere kompozicijska faktorja sta kot upodobitvi izomorfna 1. Sama upodobitev grupe ${\bf R}$ na V pa seveda ni trivialna.

Izrek (Jordan-Hölder-Noether). Vsaka upodobitev na končno razsežnem prostoru ima kompozicijsko vrsto. Vsaki dve kompozicijski vrsti imata enako število členov in do permutacije natančno enake kompozicijske faktorje.

Dokaz. Naj grupa deluje linearno na končno razsežnem prostoru V. Da kompozicijska vrsta res obstaja, ni težko preveriti. Najprej izberemo neko nerazcepno podupodobitev V_1 . Če je $V_1 < V$, potem izberemo podupodobitev V_2 , ki vsebuje V_1 in je med vsemi takimi minimalne razsežnosti. S tem je V_2/V_1 nerazcepna. Induktivno nadaljujemo z grajenjem kompozicijske vrste. Ker je V končno razsežen, se ta postopek ustavi.

Premislimo še, kako lahko vsaki dve kompozicijski vrsti povežemo med sabo. Opazujmo dve taki vrsti,

$$0 = V_0 \le V_1 \le \cdots \le V_n = V$$
 in $0 = W_0 \le W_1 \le \cdots \le W_m = V$.

S pomočjo druge vrste bomo skušali *pofiniti* prvo vrsto in obratno. ⁶ Za $0 \le i < n$ in $0 \le j \le m$ naj bo

$$V_{i,j} = V_i + (V_{i+1} \cap W_i),$$

S tem dobimo verigo

$$V_i = V_{i,0} \le V_{i,1} \le \cdots V_{i,m} = V_{i+1}$$

med V_i in V_{i+1} . Ker je kvocient V_{i+1}/V_i nerazcepen in je vsak $V_{i,j}$ podupodobitev, mora za natanko en indeks j veljati $V_i = V_{i,j}$ in $V_{i+1} = V_{i,j+1}$. Kompozicijski faktor V_{i+1}/V_i je tedaj izomorfen kvocientu

$$\frac{V_i + (V_{i+1} \cap W_{j+1})}{V_i + (V_{i+1} \cap W_i)}.$$

⁶Ta argument je sorođen premisleku o obstoju Hirschove dolžine v policikličnih grupah iz (Teorija grup).

Zgodbo zdaj ponovimo še za drugo verigo. Pofinimo jo s pomočjo prve, definiramo $W_{j,i} = W_j + (W_{j+1} \cap V_i)$. Kvocient W_{j+1}/W_j je enak

$$\frac{W_j + (W_{j+1} \cap V_{i+1})}{W_j + (W_{j+1} \cap V_i)}.$$

Domača naloga. Prepričaj se, da velja

$$\frac{V_i + (V_{i+1} \cap W_{j+1})}{V_i + (V_{i+1} \cap W_j)} \cong \frac{W_j + (W_{j+1} \cap V_{i+1})}{W_j + (W_{j+1} \cap V_i)}.$$

S tem smo za vsak $0 \le i < n$ našli natanko določen j, da je $V_{i+1}/V_i \cong W_{j+1}/W_j$. Premislimo še, da je to prirejanje injektivno. Indeks j je enolično določen s pogojem, da je $V_{i,j+1}/V_{i,j} \ne 0$, kar je po gornjem izomorfizmu enakovredno pogoju $W_{j,i+1}/W_{j,i} \ne 0$. Ker je W_{j+1}/W_j nerazcepen, je slednji pogoj lahko izpolnjen le za en indeks i.

Iz izreka sledi, da lahko za vsako upodobitev ρ grupe G na končno razsežnem prostoru najdemo bazo prostora, v kateri imajo vse matrike $\rho(g)$ za $g \in G$ bločnozgornjetrikotno obliko. Po drugi strani lahko za polenostavno upodobitev najdemo bazo prostora, v kateri imajo vse matrike bločnodiagonalno obliko.

Izotipične komponente

Po zadnjem izreku je za dano upodobitev ρ in nerazcepno upodobitev π število kompozicijskih faktorjev, ki so izomorfni π , neodvisno od kompozicijske vrste. Temu številu pravimo **večkratnost** π v ρ in ga označimo z mult $_{\rho}(\pi)$.

Kadar je dana upodobitev *polenostavna*, je do izomorfizma natančno enolično določena s svojimi večkratnostmi. Če je $\rho = \bigoplus_{i \in I} \rho_i$, potem je

$$hom_G(\pi, \rho) = \bigoplus_{i \in I} hom_G(\pi, \rho_i).$$

Po Schurovi lemi je (nad algebraično zaprtim poljem) vsak od zadnjih prostorov spletičen bodisi trivialen bodisi enorazsežen. Večkratnost π v ρ lahko zatorej izračunamo kot

$$\operatorname{mult}_{\rho}(\pi) = \dim \operatorname{hom}_{G}(\pi, \rho).$$

Zgled.

- Za eničnozgornjetrikotno upodobitev ρ grupe R na R² je mult_ρ(1) =
 2. Ker ta upodobitev ni trivialna, ne more biti polenostavna, saj bi sicer bila izomorfna 1².
- Opazujmo permutacijsko upodobitev π grupe S₃ na R³. To upodobitev smo že razstavili na direktno vsoto 1 ⊕ ρ, kjer je ρ dvorazsežna nerazcepna upodobitev na podprostoru ⟨u₁ = e₁ e₂, u₂ = e₂ e₃⟩. Premislili smo, kako lahko to upodobitev projiciramo do upodobitve ρ̃ grupe S₃ na prostoru (Z/3Z)² nad končnim poljem Z/3Z.

Upodobitev $\tilde{\rho}$ ni nerazcepna, saj ima invarianten podprostor $\langle u_1 - u_2 = e_1 + e_2 + e_3 \rangle$. Na tem podprostoru grupa S_3 deluje trivialno. V kvocientu $(\mathbf{Z}/3\mathbf{Z})^2/\langle u_1 - u_2 \rangle \cong \mathbf{Z}/3\mathbf{Z}$ generatorja $(1\ 2)$ in $(1\ 2\ 3)$

grupe S_3 preslikata odsek vektorja u_1 v odsek $-u_1$ oziroma u_1 . V tem prepoznamo predznačno upodobitev, interpretirano kot homomorfizem $\operatorname{sgn}: S_3 \to \operatorname{GL}_1(\mathbf{Z}/3\mathbf{Z}) \cong \{1,-1\}$. Nad poljem $\mathbf{Z}/3\mathbf{Z}$ za permutacijsko upodobitev π tako velja $\operatorname{mult}_{\pi}(\mathbf{1}) = 2$ in $\operatorname{mult}_{\pi}(\operatorname{sgn}) = 1$.

Premislimo, da upodobitev π nad $\mathbb{Z}/3\mathbb{Z}$ ni polenostavna. Če bi namreč bila, bi po zgornjem morala biti izmorfna direktni vsoti $1 \oplus 1 \oplus \mathrm{sgn}$. Prostor $(\mathbb{Z}/3\mathbb{Z})^3$ bi zatorej imel bazo, v kateri bi matriki za $\pi((1\ 2))$ in $\pi((1\ 2\ 3))$ bili hkrati diagonalni. Ti dve matriki bi zato komutirali, kar pomeni, da bi morali komutirati tudi linearni preslikavi $\pi((1\ 2))$ in $\pi((1\ 2\ 3))$. Temu pa ni tako, saj na primer velja $\pi((1\ 2\ 3)(1\ 2))e_1 = e_3$ in $\pi((1\ 2\ 3))e_1 = e_1$.

Čeravno so kompozicijski faktorji upodobitve enolično določeni do permutacije natančno, pa ni res, da so enolično določeni tudi členi kompozicijske vrste, niti kadar je dana upodobitev polenostavna. Lahko se namreč zgodi, da neka nerazcepna podupodobitev nastopa z večkratnostjo vsaj 2.7

Oglejmo si tako situacijo še podrobneje. Naj bo G grupa z upodobitvijo ρ na prostoru V. Naj bo π neka nerazcepna upodobitve grupe G. Opazujmo vse G-invariantne podprostore v V, ki so kot upodobitve izomorfni π . Vsota (ne nujno direktna) vseh teh podprostorov

Izotip_{$$\rho$$} $(\pi) = \sum_{W \leq V, W \cong \pi} W$

je π -izotipična komponenta upodobitve ρ . Ta je sicer definirana za vsako upodobitev, a jo je za polenostavne upodobitve še posebej lahko določiti.

Trditev. Naj bo G grupa s polenostavno upodobitvijo $\rho = \bigoplus_{i \in I} \rho_i$ na prostoru $V = \bigoplus_{i \in I} V_i$, kjer je vsak ρ_i nerazcepna podupodobitev. Za vsako nerazcepno upodobitev π grupe G je

Izotip_{$$\rho$$} $(\pi) = \bigoplus_{i \in I: \rho_i \cong \pi} V_i$.

Dokaz. Naj bo W direktna vsota podprostorov V_i , ki so kot upodobitev izomorfni π . Seveda je $W \leq \operatorname{Izotip}_{\rho}(\pi)$. Dokažimo, da velja tudi obratna neenakost. Naj bo U direktna vsota tistih prostorov V_i , ki kot upodobitev niso izomorfni π . Velja $V = W \oplus U$. Opazujmo projekcijo $p: V \to U$ z jedrom W. Naj bo $Z \leq \operatorname{Izotip}_{\rho}(\pi)$ podprostor, ki je kot upodobitev izomorfen π . Zožitev $p|_Z$ je spletična v hom $_G(Z,U)$, ki je po Schurovi lemi ničeln prostor. Torej je p(Z) = 0 in s tem $Z \leq W$. Ker je bil Z poljuben, smo s tem dokazali $\operatorname{Izotip}_{\rho}(\pi) \leq W$.

Naj bo G grupa z upodobitvijo ρ na prostoru V in nerazcepno upodobitvijo π na prostoru W. Vsak G-invarianten podprostor v V, ki je kot upodobitev izomorfen π , lahko dobimo kot sliko prostora W z neko spletično v $\hom_G(\pi,\rho)$. Vsoto vseh takih G-invariatnih podprostorov lahko torej zajamemo kot sliko linearne preslikave

$$\Sigma_{\pi,\rho}$$
: $\hom_G(\pi,\rho) \otimes W \to V$, $\Phi \otimes w \mapsto \Phi(w)$.

S tem je im $\Sigma_{\pi,\rho}$ = Izotip $_{\rho}\pi$. Grupa G deluje na $\hom_G(\pi,\sigma)$ = $\hom(W,V)^G$ trivialno, na W pa prek π . Na ta način je $\Sigma_{\pi,\rho}$ celo spletična upodobitev.

 $^{^7}$ Na primer, kadar je upodobitev trivialna, se pravi $V = \mathbf{1}^k$ za nek k > 1, lahko izberemo poljubno bazo prostora V in prek nje dobimo nek drug izomorfizem $V \cong \mathbf{1}^k$.

 $^{^8}$ Vsaka neničelna spletična v hom $_G(\pi, \rho)$ je namreč injektivna.

Trditev. Naj bo G grupa z upodobitvijo ρ in nerazcepno upodobitvijo π nad algebraično zaprtim poljem. Predpostavimo, da je $\dim \hom_G(\pi, \rho) < \infty$. Tedaj je $\Sigma_{\pi, \rho}$ injektivna.

Dokaz. Naj bo $\{\Phi_i\}_{i\in I}$ baza prostora $\hom_G(\pi,\rho)$. Premislimo, da prostori $\operatorname{im}\Phi_i$ tvorijo notranjo direktno vsoto v V. Injektivnost $\Sigma_{\pi,\rho}$ od tod neposredno sledi.

Dokazujemo s protislovjem. Naj bo $J\subseteq I$ množica najmanjše moči, za katero prostori im Φ_j za $j\in J$ ne tvorijo direktne vsote. Obstaja torej $k\in J$, da je

$$\operatorname{im} \Phi_k \cap \sum_{j \in J \setminus \{k\}} \operatorname{im} \Phi_j \neq 0.$$

Po nerazcepnosti π je spletična Φ_k injektivna, zato je im Φ_k nujno vsebovana v vsoti $\sum_{j\in J\setminus\{k\}}\operatorname{im}\Phi_j$. Po minimalnosti J je zadnja vsota direktna, zato je

$$\Phi_k \in \hom_G\big(W, \bigoplus_{j \in J \setminus \{k\}} \operatorname{im} \Phi_j\big).$$

Slednji prostor je direktna vsota prostorov $\hom_G(W, \operatorname{im} \Phi_j)$. Po Schurovi lemi je vsak od teh bodisi ničeln bodisi enorazsežen. V neničelnem primeru je seveda $\hom_G(W, \operatorname{im} \Phi_j)$ generiran s spletično Φ_j . Od tod sledi, da je Φ_k linearna kombinacija spletičen Φ_j za $j \in J \setminus \{k\}$. To je protislovno z dejstvom, da je $\{\Phi_i\}_{i \in I}$ baza prostora $\hom_G(\pi, \rho)$.

Posledica. Naj bo G grupa z upodobitvijo ρ in nerazcepno upodobitvijo π nad algebraično zaprtim poljem. Predpostavimo, da je $\hom_G(\pi,\rho) < \infty$. Izotipična komponenta Izotip $_{\rho}(\pi)$ je polenostavna, π -izotipična in vsebuje π z večkratnostjo $\dim \hom_G(\pi,\rho)$.

Dokaz. Iz injektivnosti $\Sigma_{\pi,\rho}$ sledi Izotip $_{\rho}(\pi)\cong \hom_G(\pi,\sigma)\otimes W$. Ker grupa G deluje trivialno na $\hom_G(\pi,\sigma)$, je prostor $\hom_G(\pi,\sigma)\otimes W$ kot upodobitev izomorfen direktni vsoti $\dim \hom_G(\pi,\sigma)$ kopij prostora W, na katerem G deluje s π .

Domača naloga. Naj bo G grupa s končnorazsežno upodobitvijo ρ na prostoru V. Premisli, da se izotipične komponente, ki pripadajo paroma neizomorfnim nerazcepnim upodobitvam, sekajo trivialno.

Zgled.

• Naj bo G grupa s polenostavno upodobitvijo $\rho = \bigoplus_{i \in I} \rho_i$ na prostoru $V = \bigoplus_{i \in I} V_i$, v kateri vsaka nerazcepna podupodobitev nastopa z večkratnostjo 1. Upodobitve ρ_i so torej paroma neizomorfne. Izotipične komponente so torej kar enake podprostorom V_i . Ker so te komponente neodvisne od izbire dekompozicije, so torej podprostori V_i polenostavne dekompozicije enolično določeni.

Naj bo $W \leq V$ nek G-invarianten podprostor. Upodobitev G na tem podprostoru je tudi polenostavna. Vsaka njena nerazcepna podupodobitev je hkrati podupodobitev ρ , zato po enoličnosti podprostorov V_i sestoji iz nekaterih teh podprostorov. Prostor W je zato enak $\bigoplus_{i \in J} V_i$ za neko podmnožico $J \subseteq I$.

Za konkreten zgled lahko vzamemo ciklično grupo $\mathbf{Z}/n\mathbf{Z}$ in njeno regularno upodobitev, ki smo jo razcepili na direktno vsoto upodobitev $\bigoplus_{j\in\{1,2,\dots,n\}}\chi_j$. Po zadnjem komentarju je vsaka podupodobitev regularne upodobitve torej enaka direktni vsoti nekaterih od upodobitev χ_j .

• Naj bo G grupa z upodobitvijo ρ na prostoru V in naj bo π neka njena enorazsežna upodobitev. Taka upodobitev je seveda nerazcepna. Vektor $v \in V$ pripada izotipični komponenti Izotip $_{\rho}(\pi)$, če in samo če grupa G na prostoru $\langle v \rangle$ deluje kot s π , se pravi

Izotip_o
$$(\pi) = \{ v \in V \mid \forall g \in G : \rho(g) \cdot v = \pi(g)v \}.$$

Kadar je grupa *G* abelova, je vsaka njena nerazcepna upodobitev nad algebraično zaprtim poljem enorazsežna. Vsaka polenostavna upodobitev take grupe je zato direktna vsota podprostorov, na katerih grupa deluje s skalarnimi množenji prek svojih enorazsežnih upodobitev.

2.2 Matrični koeficienti

Vsaka upodobitev dane grupe je homomorfizem v grupo obrnljivih matrik $\operatorname{GL}(V)$. Do sedaj smo na upodobitve gledali z bolj konceptualnega stališča: govorili smo o strukturi prostora V in o njegovi morebitni dekompoziciji na nerazcepne upodobitve. Zdaj si bomo z vsako od teh umazali roke in jo pogledali še podrobneje.

Predpostavimo, da je prostor V končnorazsežen. Izberimo bazo prostora V in s tem izomorfizem $V \cong F^n$ za nek n, tako da je upodobitev dana s homomorfizmom $\rho: G \to \mathrm{GL}_n(F)$. Vsak tak homomorfizem je po komponentah podan s svojimi **matričnimi koeficienti**; to so funkcije

$$f_{i,j}:G \to F$$
, $g \mapsto \langle e_i^*, \rho(g) \cdot e_j \rangle = \rho(g)_{i,j}$

$$za i, j \in \{1, 2, ..., n\}.$$

O matričnih koeficientih upodobitve ρ lahko abstraktneje govorimo tudi brez izbire baze prostora. Za vsak vektor $v \in V$ in kovektor $\lambda \in V^*$ definiramo $f_{v,\lambda}:G \to F, g \mapsto \langle \lambda, \rho(g) \cdot v \rangle$. To so **posplošeni matrični koeficienti**. Kadar je prostor V končnorazsežen, lahko vsak vektor razvijemo po izbrani bazi in vsak kovektor po dualni bazi, s čimer posplošeni matrični koeficient razvijemo po običajnih matričnih koeficientih.

Matrični koeficienti in regularna upodobitev

Matrične koeficiente lahko vidimo kot elemente vektorskega prostora funkcij fun(G,F) iz G v F. Na tem prostoru deluje grupa G z regularno upodobitvijo ρ_{fun} . Naj bo $\text{MK}(\pi) \leq \text{fun}(G,F)$ podprostor, ki ga razpenjajo matrični koeficienti neke končnorazsežne nerazcepne upodobitve π .

Trditev. $MK(\pi)$ *je G-invarianten podprostor.*

⁹Prostor $MK(\pi)$ je enak prostoru, ki ga razpenjajo posplošeni matrični koeficienti upodobitve π , zato je neodvisen od izbire baze.

Dokaz. Naj bo $g \in G$ in $f_{v,\lambda}$ posplošen matrični koeficient. Velja

$$g \cdot f_{v,\lambda} : x \mapsto f_{v,\lambda}(xg) = \langle \lambda, \pi(xg) \cdot v \rangle = f_{\pi(g) \cdot v,\lambda}(x),$$

zato je
$$g \cdot f_{v,\lambda} = f_{\pi(g)\cdot v,\lambda} \in MK(\pi)$$
.

Matrični koeficienti upodobitve π nam torej dajejo podupodobitve na prostoru $\mathrm{MK}(\pi)$ znotraj regularne upodobitve ρ_{fun} na $\mathrm{fun}(G,F)$. Ni presenetljivo, da je ta podupodobitev v resnici tesno povezana s π .

Izrek. Naj bo G grupa s končnorazsežno nerazcepno upodobitvijo π . Tedaj je

$$MK(\pi) = Izotip_{\rho_{fun}}(\pi)$$

Nad algebraično zaprtim poljem je večkratnost π v slednji upodobitvi enaka $deg(\pi)$.

Dokaz. Naj bo π upodobitev na prostoru W. Spomnimo se, da je π -izotipična komponenta v ρ_{fun} napeta na vektorje oblike $\Phi(w)$ za $\Phi \in \mathrm{hom}_G(\pi, \rho_{\mathrm{fun}})$ in $w \in W$. Regularno upodobitev predstavimo kot inducirano upodobitev $\rho_{\mathrm{fun}} = \mathrm{Ind}_1^G(\mathbf{1})$. Po adjunkciji med restrikcijo in indukcijo je

$$\hom_G(\pi, \rho_{\text{fun}}) \cong \hom_1(\operatorname{Res}_1^G(\pi), \mathbf{1}) \cong \hom(\mathbf{1}^{\deg(\pi)}, \mathbf{1}).$$

Standardna dualna baza $\{e_i^* \mid 1 \le i \le \deg(\pi)\}$ v zadnjem vektorskem prostoru nam po tej adjunkciji porodi bazo

$$\Phi_i: W \to \text{fun}(G, F), \quad w \mapsto (g \mapsto \langle e_i^*, \pi(g) \cdot w \rangle) = f_{e_i^*, w}$$

za $1 \le i \le \deg(\pi)$ prostora spletičen $\hom_G(\pi, \rho_{\mathrm{fun}})$. Ko te bazne spletične evalviramo na neki izbrani bazi $\{f_j \mid 1 \le j \le \deg(\pi)\}$ prostora W, dobimo torej ravno prostor $\mathrm{MK}(\pi)$. Nad algebraično zaprtim poljem te evalvacije tvorijo celo bazo 10

$$\Phi_i(f_i) = f_{i,i}$$

prostora Izotip $_{\rho_{\mathrm{fun}}}(\pi)$. V izbranih bazah torej matrični koeficienti tvorijo bazo za π -izotipično komponento regularne upodobitve. Večkratnost π v njej je enaka $\dim \hom_G(\pi, \rho_{\mathrm{fun}}) = \deg(\pi)$.

Izpostavimo pomembno posledico, ki nam pove, da lahko vse nerazcepne upodobitve najdemo v regularni.

Posledica. Vsaka končnorazsežna nerazcepna upodobitev dane grupe je uresničljiva kot podupodobitev regularne.

V posebnem smo tekom zadnjega dokaza izpeljali, da so po izbiri baze matrični koeficienti končnorazsežne nerazcepne upodobitve nad algebraično zaprtim poljem π vselej linearno neodvisni. Vseh je ravno $\deg(\pi)^2$ in znotraj regularne upodbitve tvorijo podupodobitev $\mathrm{MK}(\pi)$, ki sestoji iz $\deg(\pi)$ mnogo kopij upodobitve π .

Vse podobno velja, kadar imamo namesto ene same nerazcepne upodobitve končno mnogo paroma neizomorfnih nerazcepnih upodobitev $\{\pi_i\}_{i\in I}$ dane grupe G. Vsaka od njih nam po izbiri baze podari svoje matrične koeficiente. Ti razpenjajo prostore, ki so enakim izotipičnim komponentam

 $^{^{10} \}text{Preslikava } \Sigma_{\pi,\rho_{\text{fun}}} \text{ je injektivna, ker je } \dim \text{hom}_{G}(\pi,\rho_{\text{fun}}) = \deg(\pi) < \infty.$

 $^{^{11}\}mathrm{Temu}$ dejstvu včasih pravimo Burnsideov~izrek~o~neracepnosti.

v regularni upodobitvi in te komponente tvorijo notranjo direktno vsoto. Matrični koeficienti vseh teh upodobitev so torej linearno neodvisni med sabo. Vseh skupaj je $\sum_{i \in I} \deg(\pi_i)^2$.

Matrični koeficienti so elementi prostora funkcij fun(G,F). V primeru, ko je grupa končna, lahko po primerjanju dimenzij zato izpeljemo neenakost

$$\sum_{i \in I} \deg(\pi_i)^2 \le \dim \operatorname{fun}(G, F) = |G|.$$

Posledica. Končna grupa ima le končno mnogo končnorazsežnih nerazcepnih upodobitev. Nad algebraično zaprtim poljem je vsaka od njih stopnje kvečjemu $\sqrt{|G|}$.

Dokaz. Vsaka končnorazsežna nerazcepna upodobitev je vsebovana v regularni in se zatorej pojavi kot njen kompozicijski faktor. Vseh možnih kompozicijskih faktorjev je končno mnogo, ker je prostor fun(G,F) končnorazsežen. Drugi del posledice sledi neposredno iz neenakosti pred njo. \square

Zgled. Opazujmo grupo S_3 nad poljem ${\bf C}$. Njeno regularno upodobitev smo že razstavili na direktno vsoto ${\bf 1}\oplus \rho$, kjer je ρ dvorazsežna nerazcepna upodobitev. Poleg tega poznamo še enorazsežno predznačno upodobitev sgn. Vsota kvadratov stopenj teh treh upodobitev je $1^2+1^2+2^2=6$, kar je ravno enako moči grupe S_3 . Od tod sledi, da so te tri vse končnorazsežne nerazcepne upodobitve grupe S_3 .

Več o upodobitvah končnih grup si bomo pogledali nekoliko kasneje.

Karakterji

Naj bo G grupa in ρ njena končnorazsežna upodobitev. Po izbiri baze dobimo matrične koeficiente $f_{i,j}$. Te lahko kombiniramo na različne načine, da dobimo funkcije v fun(G,F), ki so nazadnje neodvisne od izbire baze. Najosnovnejša¹² taka funkcija je sled linearnega operatorja, se pravi

$$\chi_{\rho}:G \to F$$
, $g \mapsto \operatorname{tr}(\rho(g)) = \sum_{i=1}^{\operatorname{deg}(\rho)} f_{i,i}(g)$.

To funkcijo imenujemo *karakter* upodobitve ρ . Kadar je upodobitev ρ nerazcepna, tudi njenemu karakterju dodamo pridevnik *nerazcepen*.

Karakter je neodvisen od izbire baze, zato za vsaka $x,g \in G$ velja $\chi_{\rho}(xgx^{-1}) = \chi_{\rho}(g)$. Karakterji so torej funkcije na G, ki so konstantne na konjugiranostnih razredih. Takim funkcijam pravimo **razredne funkcije** in jih označimo s

$$\operatorname{fun}_{\operatorname{cl}}(G,F) = \{ f \in \operatorname{fun}(G,F) \mid \forall x, g \in G : f(xgx^{-1}) = f(g) \}.$$

Za dan konjugiranostni razred \mathcal{C} v grupi G bomo pisali $\chi_{\rho}(\mathcal{C})$ za vrednost karakterja v poljubnem predstavniku tega razreda.

¹²V resnici je sled do skalarja natančno *edina* taka funkcija.

¹³Konjugiranostni razred elementa $g \in G$ je množica $\{xgx^{-1} \mid x \in G\}$. Grupa G je disjunktna unija konjugiranostnih razredov svojih elementov.

	()	$(1\ 2)$	(123)
χ_1	1	1	1
$\chi_{ m sgn}$	1	-1	1
χ_{ρ}	2	0	-1

Tabela 2.1: Tabela karakterjev S_3

Zgled. Opazujmo grupo S_3 nad poljem ${\bf C}$. Poznamo že vse tri njene končnorazsežne nerazcepne upodobitve. Določimo karakterje teh nerazcepnih upodobitev. Karakterji enorazsežnih upodobitev so kot funkcije kar enaki upodobitvam. Za karakter χ_{ρ} velja

$$() \mapsto \operatorname{tr} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 2, \quad (1 \ 2) \mapsto \operatorname{tr} \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} = 0, \quad (1 \ 2 \ 3) \mapsto \operatorname{tr} \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix} = -1.$$

V grupi S_3 je vsak element konjugiran enemu od (), (1 2) ali (1 2 3). S tem so torej vse vrednosti karakterja χ_{ρ} določene.

Vse podatke o vrednostih karakterjev dane grupe ponavadi zložimo v *tabelo karakterjev*. Stolpce indeksiramo s predstavniki konjugiranostnih razredov, vrstice pa z nerazcepnimi karakterji. Vrednosti v tabeli so vrednosti karakterjev v konjugiranostnih razredih.

Že samo imenovanje karakterjev odzvanja, da to niso poljubne funkcije v fun(G,F), temveč da v nekem smislu zajemajo srž upodobitve.

Trditev. Naj bo G grupa s končnorazsežnima nerazcepnima upodobitvama nad algebraično zaprtim poljem. Ti dve upodobitvi sta izomorfni, če in samo če imata enaka karakterja.

Dokaz. Ker so matrični koeficienti različnih nerazcepnih upodobitev linearno neodvisni med sabo, so tudi njihovi karakterji linearno neodvisni kot elementi prostora fun(G,F).

Karakterjev fundamentalnih konstrukcij različnih upodobitev ni težko izračunati.

Trditev. Naj bo G grupa s končnorazsežnimi upodobitvami ρ , ρ_1 , ρ_2 . Tedaj za vse $g \in G$ velja

$$\chi_{\rho}(1) = \deg(\rho), \quad \chi_{\rho_1 \oplus \rho_2} = \chi_{\rho_1} + \chi_{\rho_2}, \quad \chi_{\rho_1 \otimes \rho_2} = \chi_{\rho_1} \cdot \chi_{\rho_2}, \quad \chi_{\rho^*}(g) = \chi_{\rho}(g^{-1}).$$

Za podgrupo $H \leq G$ in poljuben $h \in H$ velja

$$\chi_{\mathrm{Res}_H^G(
ho)}(h)$$
 = $\chi_
ho(h)$.

Kadar je $H \leq G$ končnega indeksa in ρ upodobitev grupe H, za poljubno izbiro predstavnikov desnih odsekov R grupe H v G velja

$$\chi_{\operatorname{Ind}_H^G(\rho)}(g) = \sum_{r \in R: rgr^{-1} \in H} \chi_{\rho}(rgr^{-1}).$$

Dokaz. Netrivialna je le zadnja enakost o indukciji. Naj H deluje na prostoru V prek ρ . Spomnimo se, da lahko induciran prostor identificiramo z direktno vsoto $\bigoplus_{r \in R} Vr$, kjer je Vr kopija prostora V pri komponenti r. Element $g \in G$ deluje na $vr_0 \in Vr_0$ kot

$$g \cdot v r_0 = (\rho(h) \cdot v) r$$
,

kjer je $r = hr_0g^{-1}$ za enolično določena $r \in R$, $h \in H$. Prostori Vr se torej pri delovanju med sabo permutirajo, poleg tega pa grupa deluje netrivialno še na vsaki komponenti posebej. Za izračun sledi so zato relevantne samo komponente, ki so fiksne pri tej permutaciji. To so komponente Vr_0 , za katere je $r = r_0$, se pravi komponente z lastnostjo $Hr_0g^{-1} = Hr_0$, kar je nazadnje enakovredno pogoju $r_0gr_0^{-1} \in H$. Za tako komponento Vr_0 element g deluje na vektorju vr_0 kot

$$g \cdot v r_0 = \left(\rho \left(r_0 g r_0^{-1}\right) \cdot v\right) r_0,$$

zato je sled induciranega delovanja g na Vr_0 enaka $\chi_\rho(r_0gr_0^{-1})$. Ko seštejemo prispevke po vseh relevantnih predstavnikih $r_0 \in R$, dobimo želeno formulo za induciran karakter.

Zgled. Naj bo G končna grupa. V tem primeru je regularna upodobitev ho_{fun} končnorazsežna. Določimo njen karakter najprej na roke. V regularni upodobitvi imamo naravno bazo iz karakterističnih funkcij

$$1_x: G \to F, \quad y \mapsto \begin{cases} 1 & y = x, \\ 0 & \text{sicer.} \end{cases}$$

Na vsaki od teh element grupe $g \in G$ deluje kot $\rho_{\mathrm{fun}}(g) \cdot 1_x = 1_{xg^{-1}}$. Grupa G torej permutira karakteristične funkcije. Sled preslikave $\rho_{\mathrm{fun}}(g)$ je zato enaka številu karakterističnih funkcij, ki jih ta preslikava fiksira. To je mogoče le, če je $x = xg^{-1}$, kar pa se zgodi zgolj pri g = 1, ko je $\rho_{\mathrm{fun}}(1) = \mathrm{id}$ s sledjo dim fun(G,F) = |G|. Torej je karakter regularne upodobitve končne grupe enak

$$\chi_{\rho_{\mathrm{fun}}}{:}G \to F, \quad g \mapsto \begin{cases} |G| & g = 1, \\ 0 & \mathrm{sicer.} \end{cases}$$

Ta karakter bi lahko hitreje izračunali s pomočjo znane identifikacije $ho_{\mathrm{fun}}\cong\mathrm{Ind}_1^G(\mathbf{1})$. V tem primeru je R=G in za $g\neq 1$ je vsota v formuli za induciran karakter prazna, torej se evalvira v 0, za g=1 pa dobimo $\sum_{r\in G}\chi_1(1)=|G|$.

Lastnost karakterjev kot srža upodobitve se prenese na končnorazsežne polenostavne upodobitve, če je le polje ničelne karakeristike. Karakter dane polenostavne upodobitve ρ namreč lahko razvijemo kot

$$\chi_{\rho} = \sum_{\pi \in Irr(G)} mult_{\rho}(\pi) \cdot \chi_{\pi}.$$

Polenostavna upodobitev je enolično določena s svojimi nerazcepnimi komponentami in njihovimi večkratnostmi. Če je torej $\chi_{\rho_1} = \chi_{\rho_2}$ za polenostavni upodobitvi ρ_1 , ρ_2 , potem od tod iz neodvisnosti nerazcepnih karakterjev sledi enakost $\operatorname{mult}_{\rho_1}(\pi) = \operatorname{mult}_{\rho_2}(\pi)$ za vsako nerazcepno upodobitev π . To je enakost v polju F, od koder po predpostavki o ničelni karakteristiki sledi, da ta enakost velja tudi v kolobarju celih števil. S tem je $\rho_1 \cong \rho_2$.

Posledica. Nad algebraično zaprtim poljem ničelne karakteristike je polenostavna upodobitev do izomorfizma natančno določena s svojim karakterjem.

Karakterji so torej funkcije na grupi, s katerimi so v mnogih primerih upodobitve, ki so sicer mnogo bolj kompleksni objekti kot le funkcije na grupi, natančno določene. V nadaljevanju bomo videli, da lahko včasih eksplicitno izračunamo vse nerazcepne karakterje, brez da bi sploh poznali same nerazcepne upodobitve. Na ta način lahko dodobra razumemo kategorijo upodobitev dane grupe zgolj z uporabo karakterjev.

Poglavje 3

Upodobitve končnih grup

V tem poglavju bomo raziskali kategorijo upodobitev končne grupe s posebnim poudarkom na situaciji, ko je karakteristika polja tuja moči grupe. V tem primeru je, kot bomo videli, vsaka upodobitev polenostavna, zato lahko vprežemo karakterje za razumevanje kategorije upodobitev. Ogledali si bomo nekaj konkretnih zgledov in podrobneje analizirali dve pomembni družini grup: linearne grupe nad končnim poljem in simetrične grupe.

3.1 Polenostavnost

Nerazcepne upodobitve

Prepričajmo se najprej, da končne grupe nimajo *prevelikih* nerazcepnih upodobitev.

Trditev. Vsaka nerazcepna upodobitev končne grupe je končnorazsežna.

Dokaz. Naj bo G končna grupa z upodobitvijo ρ na prostoru V. Izberimo poljuben neničeln vektor $v \in V$. Opazujmo podprostor

$$W = \langle \rho(g) \cdot v \mid g \in G \rangle$$

prostora V. Ker je G končna, je W končnorazsežen. Hkrati je po konstrukciji ta podprostor G-invarianten. Vsaka upodobitev končne grupe ima torej končnorazsežno podupodobitev. V posebnem to pomeni, da ni neskončnorazsežne nerazcepne upodobitve. \Box

Iz trditve in razmislekov v prejšnjem poglavju sledi, da je vsaka nerazcepna upodobitev končne grupe vsebovana v regularni upodobitvi. Nad algebraično zaprtim poljem dodatno velja, da je razsežnosti kvečjemu $\sqrt{|G|}$.

Maschkejev izrek

Spoznali smo že, da niso vse upodobitve polenostavne, niti kadar je grupa končna. Videli smo primer grupe S_3 z dvorazsežno upodobitvijo ρ , ki je bila definirana nad kolobarjem ${\bf Z}$ in katere projekcija po modulu 3 ni bila polenostavna. Naslednji izrek razkrije, da je to mogoče le v primeru, ko karakteristika polja deli moč grupe.

Izrek (Maschke). Naj bo G končna grupa in F polje. Tedaj je vsaka upodobitev G nad poljem F polenostavna, če in samo če char(F) + |G|.

Preden dokažemo izrek, pojasnimo, kako in zakaj nam prideta prav končnost grupe G in ustrezna karakteristika polja F. Ti dve predpostavki namreč odpirata vrata orodju **povprečenja po grupi**. Za dano funkcijo $f \in \text{fun}(G,F)$ lahko v tej ugodni situaciji izračunamo njeno povprečno vrednost¹

$$\mathbf{E}(f) = \frac{1}{|G|} \sum_{g \in G} f(g) \in F.$$

Te račune povprečij lahko razširimo na izračun povprečne linearne preslikave upodobitve. Za dano upodobitev ρ grupe G na prostoru V lahko v tej ugodni situaciji izračunamo njeno povprečno vrednost

$$\mathbf{E}(\rho) = \frac{1}{|G|} \sum_{g \in G} \rho(g) \in \text{hom}(V, V).$$

Domača naloga. Preveri, da je $\mathbf{E}(\rho) \in \text{hom}_G(V, V)$ projekcijska spletična na podprostor fiksnih vektorjev V^G .

Dokaz Maschkejevega izreka. (\Leftarrow) : Predpostavimo $\operatorname{char}(F) \nmid |G|$. Naj bo ρ upodobitev grupe G na prostoru V in naj bo W poljuben G-invarianten podprostor. Naj bo $P \in \operatorname{hom}(V,V)$ projektor na W. Grupa G deluje na prostoru linearnih preslikav $\operatorname{hom}(V,V)$. Povprečna vrednost tega delovanja je projekcijska spletična na podprostor spletičen $\operatorname{hom}(V,V)^G = \operatorname{hom}_G(V,V)$. Ko to povprečno vrednost uporabimo na projektorju P, dobimo torej linearno preslikavo

$$Q = \frac{1}{|G|} \sum_{g \in G} g \cdot P \in \text{hom}_G(V, V),$$

za katero velja $Q|_W=\mathrm{id}_W$ in imQ=W. Torej je Q projekcijska spletična na W. Njeno jedro je zato G-invarianten komplement prostora W v V. \checkmark

 (\Rightarrow) : Predpostavimo, da char(F) | |G|. Opazujmo regularno upodobitev ρ_{fun} na prostoru $\mathrm{fun}(G,F)$. Ta prostor ima vselej G-invarianten podprostor

$$\hom_0(G,F) = \left\{ f \in \text{fun}(G,F) \mid \sum_{g \in G} f(g) = 0 \right\}$$

korazsežnosti 1 v fun(G,F). Dokažimo, da upodobitev na tem podprostoru ni komplementirana in da torej vsaka upodobitev ni polenostavna.

Zavoljo protislovja predpostavimo, da komplement obstaja. Imamo torej funkcijo $0 \neq \phi \in \text{fun}(G,F)$, za katero velja $\sum_{g \in G} \phi(g) \neq 0$ in prostor $F \cdot \phi$ je G-invarianten. Torej obstaja enorazsežna upodobitev $\chi \colon G \to F^*$, da pri vsakem $g \in G$ velja $g \cdot \phi = \chi(g) \cdot \phi$, se pravi $\phi(g) = \chi(g) \cdot \phi(1)$. Od tod sledi

$$\sum_{g \in G} \phi(g) = \phi(1) \cdot \sum_{g \in G} \chi(g).$$

 $^{^1}$ Tukaj uporabljamo verjetnostno oznako za povprečno vrednost. Mislimo si, da enakomerno naključno izberemo element X iz grupe G in v njem izračunamo vrednost f. Število $\mathbf{E}(f)$ je pričakovana vrednost slučajne spremenljivke f(X).

²V tem primeru sicer nimamo dostopa do povprečenja v celoti, lahko pa uporabimo delno povprečenje, ki izračuna le vsoto po grupi.

Trdimo, da je zadnja vsota vselej ničelna, kar nas privede v protislovje s predpostavko $\sum_{g \in G} \phi(g) \neq 0$. Če je namreč χ trivialna upodobitev, potem iz predpostavke o karakteristiki izpeljemo

$$\sum_{g \in G} \chi(g) = |G| = 0.$$

Če pa χ ni trivialna, potem za nek $x \in G$ velja $\chi(x) \neq 1$ in v tem primeru izračunamo

$$(\chi(x)-1)\cdot\sum_{g\in G}\chi(g)=\sum_{g\in G}\chi(xg)-\sum_{g\in G}\chi(g)=0,$$

kar zopet implicira $\sum_{g \in G} \chi(g) = 0$. $\sqrt{ }$

Zgled. V ekstremni situaciji, ko je char(F) = p > 0 in $|G| = p^n$ za nek $n \in \mathbb{N}$, kategorija upodobitev izgleda precej nenavadno. V takih neugodnih razmerah *netrivialnih nerazcepnih upodobitev ni*. Poglejmo si, zakaj je temu tako v primeru $F = \mathbb{F}_p$ za neko praštevilo p.

Imejmo netrivialno nerazcepno upodobitev p-grupe G na prostoru V nad poljem \mathbf{F}_p . Vemo že, da je V nujno končnorazsežen, zato je $|V|=p^k$ za nek $k\in \mathbf{N}$. Grupa G permutacijsko deluje na množici neničelnih vektorjev $V\setminus\{0\}$. Po lemi o orbiti in stabilizatorju je velikost orbite vsakega neničelnega vektorja enaka indeksu stabilizatorja, ki je po predpostavki o moči grupe nujno potenca praštevila p. Ker pa moč $|V\setminus\{0\}|$ ni deljiva s p, mora obstajati vektor $0\neq v\in V$ z orbito moči 1. Ta vektor je torej fiksen za delovanje grupe G in zato razpenja enorazsežen podprostor $\mathbf{F}_p\cdot v$, ki je kot upodobitev izomorfen 1. To je seveda sprto s predpostavko o nerazcepnosti upodobitve G na V.

Dekompozicija regularne upodobitve

Naj bo G končna grupa in F algebraično zaprto polje karakteristike tuje |G|. Vsaka nerazcepna upodobitev π grupe G nad F je uresničljiva kot podupodobitev regularne ρ_{fun} . Slednja je po Maschkejevem izreku polenostavna, zato jo lahko zapišemo kot direktno vsoto izotipičnih komponent nerazcepnih upodobitev. Vsaka π -komponenta pri tem sestoji iz $\deg(\pi)$ mnogo kopij upodobitve π . Izpostavimo in povzemimo.

Izrek. Naj bo G končna grupa in F algebraično zaprto polje karakteristike tuje |G|. Velja

$$\rho_{\text{fun}} \cong \bigoplus_{\pi \in \text{Irr}(G)} \underbrace{\pi \oplus \pi \oplus \cdots \oplus \pi}_{\text{deg}(\pi)}.$$

V posebnem iz izreka po primerjavi razsežnosti izpeljemo

$$\sum_{\pi \in \operatorname{Irr}(G)} \deg(\pi)^2 = |G|.$$

Zgled.

³Splošen primer hitro sledi iz tega posebnega. Če je namreč F karakteristike p, ima prapolje \mathbf{F}_p . Upodobitev v tem primeru obravnavamo nad tem prapoljem.

- Opazujmo permutacijsko upodobitev π grupe $\mathbf{Z}/n\mathbf{Z}$ na prostoru $\mathbf{C}[\Omega]$, kjer je $\Omega = \{1,2,\ldots,n\}$. Premislili smo že, da je π izomorfna regularni upodobitvi in da jo lahko razstavimo kot direktno vsoto $\pi = \bigoplus_{j \in \Omega} \chi_j$, kjer je $\chi_j : \mathbf{Z}/n\mathbf{Z} \to \mathbf{C}^*$, $x \mapsto e^{2\pi i j x/n}$, enorazsežna upodobitev. V posebnem od tod sledi, da so $\{\chi_j \mid j \in \Omega\}$ vse neizomorfne nerazcepne upodobitve ciklične grupe $\mathbf{Z}/n\mathbf{Z}$.
- Naj bo A poljubna končna abelova grupa. Strukturni izrek o abelovih grupah nam pove, da A lahko zapišemo kot direktni produkt določenih cikličnih grup, se pravi $A = C_1 \times C_2 \times \cdots \times C_k$. Kategorijo upodobitev vsake od cikličnih kosov nad \mathbf{C} že poznamo. Naj bodo $\{\chi_j^i \mid j \in \Omega_i\}$ nerazcepne upodobitve grupe C_i . Tvorimo lahko **produkt upodobitev**

$$\chi^1_{j_1} \times \chi^2_{j_2} \times \cdots \times \chi^k_{j_k} : \prod_{i=1}^k C_i = A \to \mathbf{C}^*, \quad (c_1, c_2, \dots, c_k) \mapsto \prod_{i=1}^k \chi^i_{j_i}(c_i).$$

Na ta način dobimo $\prod_{i=1}^k |\Omega_i| = \prod_{i=1}^k |C_i| = |A|$ enorazsežnih upodobitev. Vsaki dve od teh sta različni med sabo. Na ta način smo torej našli vse nerazcepne upodobitve abelove grupe A.

Ortogonalnost matričnih koeficientov

Na prostor funkcij fun(G,F) uvedimo **skalarni produkt** s predpisom

$$[f_1, f_2] = \frac{1}{|G|} \sum_{g \in G} f_1(g) f_2(g^{-1})$$

za $f_1, f_2 \in \text{fun}(G, F)$. Ker je polje F v splošnem abstraktno, to sicer ni običajen skalarni produkt, je pa to vendarle nedegenerirana simetrična bilinearna forma na fun(G, F), zato zanjo uporabljamo vso standardno terminologijo iz običajnih skalarnih produktov.

Z uporabo povprečenja na prostoru linearnih preslikav (podobno kot pri dokazu Maschkejevega izreka) bomo nadgradili dekompozicijo regularne upodobitve na *ortogonalno* direktno vsoto.

Trditev. Naj bo G končna grupa z neizomorfnima nerazcepnima upodobitvima π_1 , π_2 nad algebraično zaprtim poljem karakteristike tuje |G|. Tedaj sta prostora $MK(\pi_1)$ in $MK(\pi_2)$ ortogonalna.

Dokaz. Naj upodobitvi π_1 , π_2 delujeta na prostorih V_1 , V_2 . Grupa G deluje na prostoru linearnih preslikav hom (V_1,V_2) . Povprečje tega delovanja je projekcijska spletična na podprostor hom $(V_1,V_2)^G = \hom_G(V_1,V_2)$, ki je po Schurovi lemi trivialen. Za poljubno linearno preslikavo $A \in \hom(V_1,V_2)$ je torej

$$\frac{1}{|G|} \sum_{g \in G} g \cdot A = 0.$$

Konkretizirajmo preslikavo A. Naj bo $\{e_i\}_i$ baza prostora V_1 in $\{f_j\}_j$ baza prostora V_2 . Vzemimo

$$A_{i,l}: V_1 \to V_2, \quad v \mapsto [e_i^*, v] f_l.$$

S to izbiro dosežemo enakost

$$0 = \frac{1}{|G|} \sum_{g \in G} g \cdot A_{i,l}(g^{-1} \cdot e_j) = \frac{1}{|G|} \sum_{g \in G} \left[e_i^*, g^{-1} \cdot e_j\right] g \cdot f_l = \frac{1}{|G|} \sum_{g \in G} f_{i,j}^{\pi_1}(g^{-1}) g \cdot f_l.$$

Na zadnjem uporabimo še f_k^* , pa dobimo

$$0 = \frac{1}{|G|} \sum_{g \in G} f_{i,j}^{\pi_1}(g^{-1}) [f_k^*, g \cdot f_l] = \frac{1}{|G|} \sum_{g \in G} f_{i,j}^{\pi_1}(g^{-1}) f_{k,l}^{\pi_2}(g),$$

kar je enakovredno $[f_{i,j}^{\pi_1},f_{k,l}^{\pi_2}]$ = 0, se pravi ortogonalnosti matričnih koeficientov.

Na soroden način lahko analiziramo skalarne produkte znotraj matričnih koeficientov ene same nerazcepne upodobitve.

Trditev. Naj bo G končna grupa z nerazcepno upodobitvijo π nad algebraično zaprtim poljem karakteristike tuje |G|. Po izbiri poljubne baze za matrične koeficiente velja

$$[f_{i,j}, f_{k,l}] = \begin{cases} 1/\deg(\pi) & (i,j) = (l,k) \\ 0 & sicer. \end{cases}$$

Dokaz. Pristopimo kot pri zadnjem dokazu, pri čemer prostor spletičen $\hom_G(V,V)$ po Schurovi lemi zdaj sestoji le iz skalarnih večkratnikov identitete. Za linearno preslikavo $A \in \hom(V,V)$ je zato

$$\frac{1}{|G|} \sum_{g \in G} g \cdot A = \lambda_A \cdot \mathrm{id}_V$$

za nek $\lambda_A \in F^*$. Velja $g \cdot A = \pi(g)A\pi(g)^{-1}$, zato je $\operatorname{tr}(g \cdot A) = \operatorname{tr}(A)$, od koder izpeljemo

$$\lambda_A = \frac{\operatorname{tr}(A)}{\operatorname{deg}(\pi)}.$$

Kot v zadnjem dokazu dobljeno uporabimo s preslikavo $A_{i,l}(v) = [e_i^*, v]e_l$ za neko izbrano bazo $\{e_i\}_i$ prostora V. Velja $\operatorname{tr}(A_{i,l}) = [e_i^*, e_l] = 1_{i=l}$, od koder kot v zadnjem dokazu izpeljemo

$$[f_{i,j}, f_{k,l}] = [e_k^*, e_j] \frac{1_{i=l}}{\deg(\pi)} = \frac{1_{i=l,j=k}}{\deg(\pi)},$$

kar je natanko želeno.

3.2 Karakterji

Iz rezultatov zadnjega razdelka sledi, da je nad algebraično zaprtim poljem ničelne karakteristike (na primer zelo ugodnim poljem \mathbf{C}) kategorija upodobitev dane končne grupe popolnoma določena z nerazcepnimi upodobitvami, ki jih lahko razumemo s pomočjo karakterjev. V tem razdelku bomo podrobneje razvili to teorijo.

Ortonormiranost karakterjev

Iz ortogonalnosti matričnih koeficientov z lahkoto izpeljemo ortonormiranost karakterjev.

Posledica. Naj bo G končna grupa z nerazcepnima upodobitvama π_1 , π_2 nad algebraično zaprtim poljem karakteristike tuje |G|. Velja

$$\begin{bmatrix} \chi_{\pi_1}, \chi_{\pi_2} \end{bmatrix} = \begin{cases} 1 & \pi_1 \cong \pi_2, \\ 0 & sicer. \end{cases}$$

Dokaz. Izberemo bazo, izrazimo $\chi_{\pi} = \sum_{i} f_{i,i}^{\pi}$ in uporabimo zadnji dve trditvi o skalarnih produktih matričnih koeficientov.

V skladu z običajno terminologijo za funkcijo $f \in \text{fun}(G,F)$ označimo $||f|| = \sqrt{[f,f]}$, to je **norma** funkcije f. Nerazcepni karakterji tvorijo ortonormiran sistem vektorjev v fun(G,F).

Razredne funkcije

Karakterji niso poljubne funkcije v $\operatorname{fun}(G,F)$, temveč vselej pripadajo prostoru $\operatorname{fun}_{\operatorname{cl}}(G,F)$ razrednih funkcij. Vemo že tudi, da so karakterji nerazcepnih upodobitev tudi linearno nedovisni. S pomočjo ortonormiranosti karakterjev bomo sedaj dokazali, da tvorijo celo bazo prostora razrednih funkcij.

Izrek (o bazi razrednih funkcij). Naj bo G grupa in F algebraično zaprto polje karakteristike tuje |G|. Tedaj karakteriji nerazcepnih upodobitev tvorijo ortonormirano bazo prostora $\operatorname{fun}_{\operatorname{cl}}(G,F)$.

Zopet bomo za dokaz uporabili metodo povprečenja po grupi, a bomo to povprečenje še $ute\check{z}ili$. Za dano funkcijo $f\in \mathrm{fun}(G,F)$ definiramo njeno nekomutativno Fourierovo transformacijo \hat{f} kot funkcijo, ki poljubni upodobitvi ρ grupe G na prostoru V priredi

$$\hat{f}(\rho) = \sum_{g \in G} f(g)\rho(g^{-1}) \in \text{hom}(V, V).$$

Fourierova transformacija funkciji f torej priredi njeno uteženo povprečje poljubne upodobitve vzdolž f, pri čemer se zgleduje po skalarnem produktu na prostoru funkcij $\mathrm{fun}(G,F)$. V primeru, ko je f konstantna funkcija 1/|G|, z njeno Fourierovo transformacijo najdemo običajno povprečno vrednost upodobitve $\mathbf{E}(\rho)$.

Zgled.

• Naj bo f poljubna periodična funkcija na množici ${\bf Z}$ s periodo n>1 in vrednostmi v ${\bf C}$. Funkcijo f lahko torej obravnavamo kot funkcijo na ciklični grupi ${\bf Z}/n{\bf Z}$. Nerazcepne kompleksne upodobitve slednje grupe so ravno enorazsežne upodobitve $\chi_j(x)=e^{2\pi i jx/n}$ za $j\in\Omega=\{1,2,\ldots,n\}$. Nekomutativna Fourierova transformacija funkcije f v teh upodobitvah je

$$\hat{f}(\chi_j) = \sum_{x \in \mathbf{Z}/n\mathbf{Z}} f(x) e^{-2\pi i j x/n}.$$

Vektorju števil $(f(1), f(2), ..., f(n)) \in \mathbb{C}^n$ na ta način priredimo vektor števil $(\hat{f}(\chi_1), \hat{f}(\chi_2), ..., \hat{f}(\chi_n)) \in \mathbb{C}^n$. To prirejanje je v numerični matematiki znano pod imenom **diskretna Fourierova transformacija** in je fundamentalno v digitalnem procesiranju signalov.

• Naj bo $f \in \text{fun}(G,F)$ funkcija na G in ρ_{fun} regularna upodobitev grupe G. Vrednost $\hat{f}(\rho_{\text{fun}})$ je linearni endomorfizem prostora funkcij fun(G,F). Pri tem se karakteristična funkcija 1_x za $x \in G$ preslika v

$$\hat{f}(\rho_{\text{fun}}) \cdot 1_x = \sum_{g \in G} f(g) \rho_{\text{fun}}(g^{-1}) \cdot 1_x = \sum_{g \in G} f(g) 1_{xg} = \sum_{g \in G} f(x^{-1}g) 1_g.$$

V posebnem pri x=1 dobimo $\hat{f}(\rho_{\text{fun}}) \cdot 1_1 = f$. Funkcijo f lahko torej rekonstruiramo iz vrednosti njene Fourierove transformacije v regularni upodobitvi.

Regularna upodobitev končne grupe nad ugodnim poljem je direktna vsota nerazcepnih upodobitev grupe, zato je tudi Fourierova transformacija v regularni upodobitvi direktna vsota Fourierovih transformacij v nerazcepnih upodobitvah. Iz zgornjega premisleka sledi, da je vsaka funkcija zatorej enolično določena z vrednostmi svoje Fourierove transformacije v vseh nerazcepnih upodobitvah.

Lema (o Fourierovi transformaciji razredne funkcije). Naj bo G končna grupa in F algebraično zaprto polje karakteristike tuje |G|. Za vsako razredno funkcijo f in nerazcepno upodobitev π na prostoru V je

$$\hat{f}(\pi) = \frac{|G|}{\deg(\pi)} \cdot [f, \chi_{\pi}] \cdot \mathrm{id}_{V}.$$

Dokaz. Za vsak $h \in G$ velja

$$\hat{f}(\pi) \cdot \pi(h) = \sum_{g \in G} f(g) \pi(g^{-1}h) = \sum_{g \in G} f(g) \pi(h) \pi(h^{-1}g^{-1}h).$$

Izpostavimo $\pi(h)$ in na grupi G uporabimo avtomorfizem $g \mapsto hgh^{-1}$, pa lahko zadnjo vsoto zapišemo kot

$$\pi(h) \sum_{g \in G} f(hgh^{-1})\pi(g^{-1}).$$

Ker je f razredna funkcija, je dobljeno ravno enako $\pi(h) \cdot \hat{f}(\pi)$. Vrednost Fourierove transformacije v π je torej spletična v $\hom_G(\pi,\pi)$. Po Schurovi lemi sklepamo, da je $\hat{f}(\pi)$ skalarni večkratnik identitete. Njegova sled je enaka

$$\operatorname{tr}(\hat{f}(\pi)) = \sum_{g \in G} f(g) \chi_{\pi}(g^{-1}) = |G| \cdot [f, \chi_{\pi}].$$

Od tod izračunamo relevantni skalar kot $|G| \cdot [f, \chi_{\pi}] / \deg(\pi)$.

Opremljeni lahko z lahkoto izpeljemo izrek.

 $Dokaz\ izreka\ o\ bazi\ razrednih\ funkcij$. Predpostavimo, da nerazcepni karakterji ne razpenjajo prostora razrednih funkcij. Torej obstaja funkcija $f\in \mathrm{fun}_{\mathrm{cl}}(G,F)$, ki je vsebovana v ortogonalnem komplementu vseh nerazcepnih karakterjev. Za vsak $\pi\in\mathrm{Irr}(G)$ velja torej $[f,\chi_\pi]=0$. Preslikava $\hat{f}(\pi)$ je po lemi zato ničelna. Ker to velja za vsako nerazcepno upodobitev, mora veljati tudi za regularno upodobitev, se pravi $\hat{f}(\rho_{\mathrm{fun}})=0$. Po zadnjem zgledu to implicira f=0.

Vsaka razredna funkcija je enolično določena s svojimi vrednostmi v predstavnikih konjugiranostnih razredov. Če **število konjugiranostnih razredov** označimo s k(G), velja torej dim $\operatorname{fun}_{\operatorname{cl}}(G,F)=k(G)$. Ker karakterji tvorijo bazo prostora razrednih funkcij, lahko število nerazcepnih upodobitev torej izračunamo neposredno iz algebraične strukture grupe.

Posledica. Za končno grupo G nad algebraično zaprtim poljem karakteristike tuje |G| velja $|\operatorname{Irr}(G)| = k(G)$.

V splošnem *ne* poznamo eksplicitne korespondence⁴ med konjugiranostnimi razredi in nerazcepnimi upodobitvami. Vemo le, da njuno število sovpada.

Zgled. Opazujmo simetrično grupo S_n nad poljem ${\bf C}$. Vsako njeno permutacijo $\sigma \in S_n$ lahko zapišemo kot produkt disjunktnih ciklov. Recimo, da so dolžine teh ciklov enake $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k$. Seveda velja $\sum_{i=1}^k \lambda_i = n$. Zaporedju $(\lambda_1, \lambda_2, \ldots, \lambda_k)$ pravimo *ciklični tip* permutacije σ . Kadar so kateri od členov cikličnega tipa enaki, ciklični tip pišemo tudi kot $1^{i_1}2^{i_2}\cdots n^{i_n}$, kjer je i_m število ciklov dolžine m v σ .

Domača naloga. Konjugiranostni razredi v S_n so določeni s cikličnim tipom. Natančneje, če je $(\lambda_1, \lambda_2, ..., \lambda_k)$ ciklični tip permutacije σ , potem konjugiranostni razred σ^{S_n} sestoji natanko iz vseh permutacij s tem cikličnim tipom. Ta konjugiranostni razred ponavadi označimo kot $\mathcal{C}_{(\lambda_1, \lambda_2, ..., \lambda_k)}$.

V teoriji števil in kombinatoriki cikličnim tipom rečemo tudi **razčlenitve** števila n. Število vseh razčlenitev označimo sp(n). Velja torej $p(n) = k(S_n) = |\operatorname{Irr}(S_n)|$. Splošna eksplicitna formula za to število ne obstaja, poznamo pa njeno asimptotsko oceno⁶

$$p(n) \sim \frac{1}{4n\sqrt{3}}e^{\pi\sqrt{\frac{2n}{3}}}$$

 $za n \to \infty$.

V konkretnem primeru n=3 velja p(3)=3, namreč 3=3=2+1=1+1+1. Res smo našli natanko 3 nerazcepne upodobitve grupe S_3 . V primeru n=4 pa velja p(4)=5. Temu ustrezajo konjugiranostni razredi identične permutacije () (4=1+1+1+1), transpozicije (1 2) (4=2+1+1), tricikla (1 2 3) (4=3+1), štiricikla (1 2 3 4) (4=4) in produkta dveh tranzpozicij (1 2) (3 4) (4=2+2). Ti konjugiranostni razredi so zaporedoma velikosti 1, 6, 8, 6, 3.

Ker nerazcepni karakterji tvorijo ortonormirano bazo prostora razrednih funkcij, lahko vsako razredno funkcijo $f \in \mathrm{fun}_{\mathrm{cl}}(G,F)$ razvijemo po tej bazi kot

$$f = \sum_{\pi \in \mathrm{Irr}(G)} [f, \chi_{\pi}] \chi_{\pi}.$$

Alternativna baza prostora razrednih funkcij sestoji iz karakterističnih funkcij konjugiranostnih razredov v G. Razvoj te baze po karakterjih nam podaja še eno relacijo med karakterji, ki je ortogonalna⁷ ortonormiranosti.

Posledica. Naj bo G končna grupa nad algebraično zaprtim poljem karakteristike tuje |G|. Za vsaka elementa $g,h \in G$ velja

$$\sum_{\pi \in \operatorname{Irr}(G)} \chi_{\pi}(g) \chi_{\pi}(h^{-1}) = \begin{cases} |G|/|g^G| & g^G = h^G, \\ 0 & sicer. \end{cases}$$

⁴In najverjetneje taka korespondenca v splošnem *ne* obstaja. Je pa na voljo za kakšne posebne družine grup, kot bomo spoznali kasneje.

⁵Pri tem fiksne točke permutacije obravnavamo kot cikle dolžine 1.

⁶G. H. Hardy in S. Ramanujan, *Asymptotic formulae in combinatory analysis*, Proceedings of the London Mathematical Society, Second Series, **17** (1918) 75–115.

⁷Relaciji sta ortogonalni v smislu tabele karakterjev. Ortonormiranost karakterjev preberemo tako, da fiksiramo vrstice. To drugo relacijo pa preberemo tako, da fiksiramo stolpce. Tej relaciji včasih rečemo *druga ortogonalnostna relacija*.

 $Dokaz.\,$ Karakteristično funkcijo 1_{h^G} razvijemo po nerazcepnih karakterijih kot

$$1_{h^G} = \sum_{\pi \in {\rm Irr}(G)} \left[1_{h^G}, \chi_{\pi} \right] \chi_{\pi} = \sum_{\pi \in {\rm Irr}(G)} \frac{|h^G|}{|G|} \chi_{\pi}(h^{-1}) \chi_{\pi}$$

in dobljeno evalviramo v elementu g.

Razstavljanje upodobitve

S pomočjo ortonormirane baze karakterjev lahko z lahkoto razumemo vsako končnorazsežno upodobitev končne grupe nad ugodnim poljem.

Posledica. Naj bo G končna grupa s končnorazsežno upodobitvijo ρ nad algebraično zaprtim poljem karakteristike 0.

- 1. Za vsako nerazcepno upodobitev π velja $\operatorname{mult}_{\rho}(\pi) = [\chi_{\rho}, \chi_{\pi}].$
- 2. $||\chi_{\rho}||^2 = \sum_{\pi \in Irr(G)} mult_{\rho}(\pi)^2$.
- 3. Upodobitev ρ je nerazcepna, če in samo če $||\chi_{\rho}|| = 1$.

Dokaz.~ Upodobitev ρ je polenostavna, zato lahko njen karakter zapišemo kot

$$\chi_{\rho} = \sum_{\pi \in \operatorname{Irr}(G)} \operatorname{mult}_{\rho}(\pi) \cdot \chi_{\pi}.$$

Skalarno pomnožimo s χ_{π} in uporabimo ortonormiranost, pa dobimo mult $_{\rho}(\pi) = [\chi_{\rho}, \chi_{\pi}]$. Od tod izračunamo

$$||\chi_{\rho}||^2 = [\chi_{\rho}, \chi_{\rho}] = \sum_{\pi \in \operatorname{Irr}(G)} \operatorname{mult}_{\rho}(\pi) \cdot [\chi_{\rho}, \chi_{\pi}] = \sum_{\pi \in \operatorname{Irr}(G)} \operatorname{mult}_{\rho}(\pi)^2.$$

Nazadnje je $||\chi_{\rho}|| = 1$, če in samo če je za natanko eno nerazcepno upodobitev π njena večkratnost v ρ enaka 1, se pravi če je ρ nerazcepna.

Zgled. Opazujmo grupo S_4 nad poljem \mathbb{C} . Vemo že, da za predstavnike konjugiranostnih razredov lahko izberemo elemente $1 = (), (1 \ 2), (1 \ 2 \ 3), (1 \ 2 \ 3 \ 4)$ in $(1 \ 2)(3 \ 4)$. S tem je število nerazcepnih upodobitev enako 5. Določimo jih.

Vemo že, da imamo natanko dve enorazsežni upodobitvi, in sicer $\mathbf{1}$ in sgn. Naj bo π permutacijska upodobitev na prostoru $\mathbf{C}[\Omega]$, kjer je $\Omega = \{1,2,3,4\}$. V standardni bazi je vsaka matrika te upodobitve permutacijska, zato je vrednost karakterja χ_{π} v permutaciji σ ravno število fiksnih točk σ . V izbranih predstavnikih konjugiranostnih razredov ima torej χ_{π} vrednosti 4,2,1,0,0. Od tod izračunamo normo

$$||\chi_{\pi}||^2 = \frac{1}{4!} (1 \cdot 4^2 + 6 \cdot 2^2 + 8 \cdot 1^2) = 2.$$

Upodobitev χ_{π} torej ni nerazcepna. Velja

$$[\chi_{\pi}, \chi_{1}] = \frac{1}{4!} (1 \cdot 4 + 6 \cdot 2 + 8 \cdot 1) = 1,$$

torej π vsebuje $\mathbf 1$ z večkratnostjo 1, kar je povsem analogno temu, kar smo videli pri grupi S_3 . Zapišemo lahko torej $\pi = \mathbf 1 \oplus \rho$ za neko upodobitev ρ . Njen karakter ima vrednosti 3,1,0,-1,-1 in s tem normo

$$||\chi_{\rho}||^2 = \frac{1}{4!} (1 \cdot 3^2 + 6 \cdot 1^2 + 6 \cdot (-1)^2 + 3 \cdot (-1)^2) = 1,$$

	()	$(1\ 2)$	(123)	(1234)	$(1\ 2)(3\ 4)$
χ1	1	1	1	1	1
$\chi_{ m sgn}$	1	-1	1	-1	1
$\chi_{ au}$	2	0	-1	0	2
$\chi_{ ho}$	3	1	0	-1	-1
$\chi_{\mathrm{sgn}\otimes ho}$	3	-1	0	1	-1

Tabela 3.1: Tabela karakterjev S_4

zato je upodobitev ρ nerazcepna.

Zaenkrat imamo tri nerazcepne upodobitve stopenj 1,1,3. Iščemo torej še dve nerazcepni upodobitvi, katerih vsote kvadratov stopenj so enake $24-(1^2+1^2+3^2)=13$. Stopnji teh dveh neznanih upodobitev sta zato nujno enaki 2 in 3. Ker že imamo eno nerazcepno upodobitev stopnje 3, lahko iz nje pridelamo novo s tenzoriranjem z upodobitvijo stopnje 1. Dobimo upodobitev $\operatorname{sgn}\otimes\rho$. Njen karakter ima vrednosti 3,-1,0,1,-1 in s tem normo 1, zato je upodobitev $\operatorname{sgn}\otimes\rho$ res nerazcepna. Nazadnje nam torej manjka le še ena upodobitev stopnje 2. Imenujmo jo τ . Čeprav je ne poznamo, lahko iz ortonormiranosti karakterjev določimo njen karakter χ_{τ} kot natanko tisto razredno funkcijo, ki je ortogonalna na vse poznane neracepne karakterje in je norme 1. Na ta način dobimo vrednosti 2,0,-1,0,2. S tem smo nazadnje določili celotno tabelo karakterjev grupe S_4 nad $\mathbb{C}.^8$

Upodobitve τ ni težko eksplicitno določiti. Vemo, da je stopnje 2. Njena vrednost $\tau((1\ 2)(3\ 4))$ je matrika v $\operatorname{GL}_2(\mathbf{C})$ reda 2 s sledjo 2. Taka matrika je lahko le identiteta. Torej je τ trivialna v konjugiranostnem razredu elementa $(1\ 2)(3\ 4)$ in je zato pravzaprav restrikcija upodobitve kvocientne grupe S_4w po edinki, generirani s tem konjugiranostnim razredom. Slednjo kvocientno grupo identificiramo kot S_3 prek epimorfizma

$$\psi: S_4 \to S_3$$
, $(12) \mapsto (12)$, $(1234) \mapsto (13)$

z jedrom $\{(),(1\ 2)(3\ 4),(1\ 3)(2\ 4),(1\ 4)(2\ 3)\}$. Upodobitev τ torej prepoznamo kot restrikcijo dvorazsežne nerazcepne upodobitve grupe S_3 vzdolž homomorfizma ψ .

Projekcije na izotipične komponente

Dekompozicijo regularne upodobitve smo dobili iz matričnih koeficientov nerazcepnih upodobitev, torej gre za nekakšno *notranjo* dekompozicijo. Obstaja pa tudi *zunanja* dekompozicija, pri kateri iz upodobitve same s pomočjo ustreznih projekcijskih spletičen najdemo izotipične komponente upodobitve.

Naj bo G končna grupa in F algebraično zaprto polje karakteristike tuje |G|. Naj bo ρ podupodobitev regularne upodobitve ρ_{fun} na prostoru $V \leq \text{fun}(G,F)$. Ta prostor lahko predstavimo kot sliko neke projekcijske spletične $\Phi \in \text{hom}_G(\rho_{\text{fun}},\rho)$. Res je tudi obratno, vsaka spletična $\Phi \in \text{hom}_G(\rho_{\text{fun}},\rho_{\text{fun}})$, ki zadošča $\Phi^2 = \Phi$, podaja prek svoje slike podupodobitev regularne upodobitve. Podupodobitve so torej parametrizirane s spletičnami. Izkaže se, da te vselej izhajajo iz Fourierovih transformacij.

⁸Zanimivo je, da smo uspeli določiti tabelo karakterjev, brez da bi eksplicitno poznali vse upodobitve.

Trditev. Naj bo G končna grupa in F algebraično zaprto polje karakteristike tuje |G|. Preslikava

$$\mathcal{F}: \operatorname{fun}(G, F) \to \operatorname{hom}_G(\rho_{\operatorname{fun}}, \rho_{\operatorname{fun}}), \quad f \mapsto (h \mapsto \hat{h}(\rho_{\operatorname{fun}}) \cdot f)$$

je izomorfizem vektorskih prostorov.

Dokaz. Ni težko preveriti, da je \mathcal{F} dobro definirana preslikava. Očitno je linearna. Za $f \in \text{fun}(G,F)$ je $\mathcal{F}(f) \cdot 1_1 = \widehat{1_1}(\rho_{\text{fun}}) \cdot f = f$, zato je \mathcal{F} injektivna. Oba prostora sta enake razsežnosti, namreč |*G*|, zato je \mathcal{F} izomorfizem. □

V posebnem je vsaka endospletična regularne upodobitve enaka evalvaciji Fourierovi transformacije v neki fiksni funkciji. Nekoliko natančneje si poglejmo, kaj je ta evalvacija. Za funkciji $f,g \in \text{fun}(G,F)$ je

$$\hat{h}(\rho_{\text{fun}}) \cdot f = \sum_{g \in G} h(g) \rho_{\text{fun}}(g^{-1}) \cdot f = \left(x \mapsto \sum_{g \in G} h(g) f(xg^{-1}) \right).$$

Zadnjo vsoto prepoznamo kot **konvolucijo** funkcij f in h, se pravi

$$(f * h)(x) = \sum_{g \in G} f(xg^{-1})h(g).$$

Velja torej $\hat{h}(\rho_{\text{fun}}) \cdot f = f * h$. Če dodatno predpostavimo, da je f razredna funkcija, potem se ni težko prepričati, da velja f * h = h * f, torej je v tem primeru

$$\mathcal{F}(f) \cdot h = \hat{h}(\rho_{\text{fun}}) \cdot f = \hat{f}(\rho_{\text{fun}}) \cdot h$$

in zato preslikava $\mathcal F$ ni nič drugega kot običajna Fourierova transformacija razredne funkcije. V posebnem so torej Fourierove transformacije karakterjev endospletične regularne upodobitve. Izkaže se, da so te vselej tesno povezane s projekcijami na izotipične komponente.

Trditev. Naj bo G končna grupa in F algebraično zaprto polje karakteristike tuje |G|. Za vsako končnorazsežno upodobitev ρ in nerazcepno upodobitev π je

$$rac{\deg(\pi)}{|G|}\cdot\widehat{\chi_{\pi}}(
ho)$$

projektor na π -izotipično komponento $v \rho$.

Dokaz. Iz leme o Fourierovi transformaciji razredne funkcije izpeljemo, da za vsaki nerazcepni upodobitvi π_1, π_2 na prostorih V_1, V_2 velja

$$\frac{\deg(\pi_1)}{|G|} \cdot \widehat{\chi_{\pi_1}}(\pi_2) = \begin{cases} \mathrm{id}_{V_2} & \pi_1 \cong \pi_2, \\ 0 & \mathrm{sicer.} \end{cases}$$

Ko upodobitev ρ razstavimo na direktno vsoto nerazcepnih podupodobitev, je linearni endomorfizem $\deg(\pi)/|G|\cdot\widehat{\chi_{\pi}}(\rho)$ torej ničeln na podupodobitvah, ki niso izomorfne π , in identiteta na podupodobitvah, ki so izomorfne π . Ta endomorfizem je torej projektor na direktno vsoto podupodobitev, ki so izomorfne π , torej ravno na π -izotipično komponento.

 $^{^9\}mathrm{V}$ asociativni algebri to izrečemo ponavadi takole: vsak levi ideal v polenostavni algebri je glavni.

Zgled. Naj bo ρ_{fun} regularna upodobitev grupe G. Vemo že, da za vsako funkcijo $f \in \text{fun}(G,F)$ velja $\hat{f}(\rho_{\text{fun}}) \cdot 1_1 = f$. Torej je projekcija funkcije 1_1 na π -izotipično komponento enaka

$$\frac{\deg(\pi)}{|G|} \cdot \widehat{\chi_{\pi}}(\rho_{\mathrm{fun}}) \cdot 1_1 = \frac{\deg(\pi)}{|G|} \cdot \chi_{\pi}.$$

S tem dobimo razvoj

$$1_1 = \frac{1}{|G|} \sum_{\pi \in \operatorname{Irr}(G)} \chi_{\pi}(1) \cdot \chi_{\pi},$$

ki je le poseben primer druge ortogonalnostne relacije.

Oglejmo si še karakteristično funkcijo 1_x za $x \in G$. Njena projekcija na π -izotipično komponento je

$$\frac{\deg(\pi)}{|G|} \cdot \widehat{\chi_{\pi}}(\rho_{\text{fun}}) \cdot 1_x = \frac{\deg(\pi)}{|G|} \cdot (g \mapsto \chi_{\pi}(x^{-1}g)),$$

s čimer dobimo razvoj

$$1_x(g) = \frac{1}{|G|} \sum_{\pi \in Irr(G)} \chi_{\pi}(1) \chi_{\pi}(x^{-1}g).$$

Vsako funkcijo $f \in \text{fun}(G,F)$ lahko razvijemo po karakterističnih funkcijah kot $f = \sum_{x \in G} f(x) 1_x$. Ker že poznamo razvoj vsake od karaterističnih funkcij po π -izotipičnih komponentah, od tod izpeljemo

$$f(g) = \frac{1}{|G|} \sum_{\pi \in \operatorname{Irr}(G)} \sum_{x \in G} f(x) \chi_{\pi}(1) \operatorname{tr}(\pi(x^{-1}) \cdot \pi(g)),$$

kar lahko po upoštevanju linearnosti sledi izrazimo kot

$$f(g) = \frac{1}{|G|} \sum_{\pi \in \operatorname{Irr}(G)} \chi_{\pi}(1) \operatorname{tr}(\hat{f}(\pi) \cdot \pi(g)).$$

Temu razvoju funkcije f po π -izotipičnih komponentah rečemo **Fourie- rova inverzija**, saj nam ekplicitno pove, kako lahko f izračunamo iz njenih Fourierovih transformacij v nerazcepnih upodobitvah.

Zgled. Naj bo A končna abelova grupa. Vemo že, da so vse njene kompleksne upodobitve enorazsežne. V tem primeru so upodobitve kar enake svojim karakterjem. Za dano funkcijo $f \in \text{fun}(A, \mathbb{C})$ lahko Fourierovo inverzijo zapišemo kot

$$f = \frac{1}{|A|} \sum_{\chi \in Irr(A)} \hat{f}(\chi) \cdot \chi,$$

kar je le posledica dejstva $\hat{f}(\chi) = |A| \cdot [f, \chi]$.

Izračunljivost tabele karakterjev

Naj bo G končna grupa in F algebraično zaprto polje karakteristike 0. Kategorijo $\operatorname{Rep}(G)$ v tem primeru razumemo zelo dobro, če le poznamo tabelo karakterjev. Za zdaj smo si pogledali nekaj zgledov, kako to tabelo izračunati za posebne primere grupe. Pri tem smo si sicer res pomagali z razvito teorijo, a je bil večji del izračuna tabele opravljen z metodo

ostrega pogleda. V splošnem se temu lahko izognemo; obstaja namreč več algoritmov, ki le z uporabo linearne algebre izračunajo tabelo karakterjev.

Pogledali si bomo enega takih algoritmov, ki uporablja projekcije na izotipične komponente iz zadnjega razdelka. Algoritem temelji na Fourierovi transformaciji karakteristične funkcije $1_{\mathcal{C}}$ konjugiranostnega razreda \mathcal{C} grupe G v regularni upodobitvi ρ_{fun} . Po lemi o Fourierovi transformaciji razredne funkcije je namreč zožitev $\widehat{1_{\mathcal{C}}}(\rho_{\mathrm{fun}})$ na π -izotipično komponento skalarno množenje s številom

$$\frac{|G|}{\deg(\pi)} \cdot [1_{\mathcal{C}}, \chi_{\pi}] = |\mathcal{C}| \cdot \frac{\chi_{\pi}(\mathcal{C}^{-1})}{\chi_{\pi}(1)}.$$

Vektorji v π -izotipični komponenti so zato hkratni lastni vektorji preslikav $\widehat{1}_{\mathcal{C}}(\rho_{\mathrm{fun}})$, ko \mathcal{C} preteče vse konjugiranostne razrede grupe G. Pokažimo, da je ta opis v resnici karakterizacija π -izotipičnih komponent.

Lema. Naj bo G končna grupa in F algebraično zaprto polje karakteristike tuje |G|. Izotipične komponente regularne upodobitve so natanko netrivialni preseki lastnih podprostorov $\widehat{1}_{\mathcal{C}}(\rho_{\mathrm{fun}})$, ko \mathcal{C} preteče vse konjugiranostne razrede grupe G.

Dokaz. Naj bo

$$W = \bigcap_{\mathcal{C}} \mathcal{E}_{\lambda_{\mathcal{C}}} \left(\widehat{1_{\mathcal{C}}} (\rho_{\text{fun}}) \right) \leq \text{fun}(G, F)$$

presek lastnih podprostorov za neke skalarje $\lambda_{\mathcal{C}}$, kjer presek teče po vseh konjugiranostnih razredih grupe G. Predpostavimo, da je $W \neq 0$. Naj bo $w \in W$. Za $\pi \in \operatorname{Irr}(G)$ naj bo P_{π} projekcija na π -izotipično komponento. Velja

$$P_{\pi} \cdot w = \frac{\chi_{\pi}(1)}{|G|} \widehat{\chi_{\pi}}(\rho_{\text{fun}}) \cdot w = \frac{\chi_{\pi}(1)}{|G|} \sum_{g \in G} \chi_{\pi}(g) \rho_{\text{fun}}(g^{-1}) \cdot w.$$

Vsoto lahko razvijemo po vsakem konjugiranostnem razredu posebej in dobimo

$$\frac{\chi_{\pi}(1)}{|G|} \sum_{\mathcal{C}} \chi_{\pi}(\mathcal{C}) \sum_{g \in \mathcal{C}} \rho_{\text{fun}}(g^{-1}) \cdot w = \left(\frac{\chi_{\pi}(1)}{|G|} \sum_{\mathcal{C}} \chi_{\pi}(\mathcal{C}) \lambda_{\mathcal{C}}\right) w$$

kjer smo v enakosti upoštevali, da je $w \in W$. Od tod sledi

$$W \leq \mathbb{E}_{\frac{\chi_{\pi}(1)}{|G|} \sum_{\mathcal{C}} \chi_{\pi}(\mathcal{C}) \lambda_{\mathcal{C}}}(P_{\pi}).$$

Projektor P_{π} ima seveda le dve možni lastni vrednosti: 0 in 1. Ker je po predpostavki $W \neq 0$, ne mora biti za vse $\pi \in \mathrm{Irr}(G)$ projekcija na π izotipično komponento ničelna na W. Torej je za nek π nujno

$$W \leq \mathrm{E}_1(P_\pi) = \mathrm{Izotip}_{\rho_{\mathrm{fun}}}(\pi).$$

Vemo že, kako deluje $\widehat{1}_{\mathcal{C}}(\rho_{\mathrm{fun}})$ na π -izotipični komponenti, od koder določimo skalarje kot $\lambda_{\mathcal{C}} = |\mathcal{C}| \cdot \chi_{\pi}(\mathcal{C}^{-1})/\chi_{\pi}(1)$. Iz definicije W zdaj sledi, da je π -izotipična komponenta vsebovana v W, s čimer smo nazadnje izpeljali $W = \mathrm{Izotip}_{\rho_{\mathrm{fun}}}(\pi)$.

 ${\bf S}$ to karakterizacijo izotipičnih komponent lahko opišemo algoritem za izračun tabele karakterjev. Najprej oštevilčimo elemente grupe G kot

	()	(12)(34)	(123)	(12345)	(12354)
χ_1	1	1	1	1	1
χ_2	5	1	-1	0	0
χз		0	1	-1	-1
χ_4	l	-1	0	$-\zeta^2-\zeta^3$	$-\zeta-\zeta^4$
χ_5	l	-1	0	$-\zeta-\zeta^4$	$-\zeta^2-\zeta^3$

Tabela 3.2: Tabela karakterjev A_5 , kjer je $\zeta = e^{2\pi i/5}$

 $g_1,g_2,\ldots,g_|G|$ in pripravimo vektorski prostor $F^{|G|}\cong \hom(G,F)$ s standardno bazo e_i , ki ustreza karakteristični funkciji 1_{g_i} . Izračunamo še konjugiranostne razrede grupe G in iz vsakega izberemo predstavnika. Pripravimo funkcijo, ki izračuna matriko regularne upodobitve ρ_{fun} v poljubnem elementu $x\in G$, in za tem še funkcijo, ki izračuna matriko Fourierove transformacije $\widehat{1_C}(\rho_{\mathrm{hom}})$ za konjugiranostni razred C. Izračunamo lastne podprostore vseh teh matrik in za tem vse njihove netrivialne preseke. Te so ravno izotipične komponente. V vsaki komponenti W izberemo bazo, v kateri izračunamo sled zožitve matrike $\rho_{\mathrm{fun}}(x)$ na W. Ker je W kot upodobitev izomorfen direktni vsoti $\deg(\pi)$ kopij neke nerazcepne upodobitve π , velja $\dim(W) = \deg(\pi)^2$ in zato

$$\operatorname{tr}(\rho_{\operatorname{fun}}(x)|_W) = \sqrt{\dim(W)} \cdot \chi_{\pi}(x).$$

Iz izračunane sledi torej lahko določimo vrednost pripadajočega karakterja v predstavnikih konjugiranostnih razredov. Implementacija predstavljenega algoritma za izračun tabele karakterjev nad ${\bf C}$ v programskem jeziku GAP 10 je dostopna tukaj.

Zgled. Opazujmo alternirajočo grupo A_5 nad poljem \mathbb{C} . Z opisanim algoritmom hitro izračunamo njeno tabelo karakterjev.

Iz tabele lahko razberemo kar nekaj lastnosti grupe. Poglejmo si, kako hitro premislimo, da je A_5 enostavna grupa. Če bi namreč A_5 imela kakšno pravo netrivialno edinko N, potem bi kvocient A_5/N imel kakšno netrivialno nerazcepno upodobitev ρ . Restrikcija $\mathrm{Res}_{G/N}^G(\rho)$ je zato netrivialna nerazcepna upodobitev grupe A_5 z netrivialnim jedrom N. Vrednost karakterja χ_ρ v poljubnem elementu N je torej enaka $\chi_\rho(1)$. Iz tabele karakterjev grupe A_5 pa je jasno, da takega karakterja ni. 11

Predstavljeni algoritem ima mnogo pomanjkljivosti. V programskem jeziku GAP je za izračun tabele karakterjev implementiran algoritem (Dixon 1967, Schneider 1990), ki izboljša predstavljenega na naslednja dva načina.

1. S predstavljenim algoritmom bomo težko izračunali tabelo karakterjev kakšne zelo velike grupe, saj moramo v postopku diagonalizirati matrike velikosti $|G| \times |G|$. Algoritem v GAP sicer temelji na enaki ideji iskanja skupnih lastnih podprostorov, a pri tem ne opazuje regularne upodobitve, temveč upošteva abstraktne formule med karakterji in iz njih izpelje matrike velikosti $k(G) \times k(G)$, katerih

¹⁰GAP je programski jezik, ki pride zelo prav pri delu z grupami, saj ima implementiranih veliko standardnih konstrukcij grup in funkcij za delo z njimi. Dostopen je prosto na naslovu https://www.gap-system.org.

 $^{^{11}}$ Iz argumenta vidimo, da velja celo naslednje. Končna grupa G je enostavna, če in samo če je vsaka njena netrivialna nerazcepna upodobitev zvesta.

- skupni lastni vektorji so (bolj ali manj) karakterji. Ker je k(G) bistveno manjše od |G|, je ta izračun mnogo lažji in hitrejši.
- 2. Za izračun natančnih vrednosti karakterjev moramo vse račune izvajati eksaktno in brez približkov. Numerične metode, ki jih sicer lahko uporabimo za hitro računanje lastnih vrednosti velikih matrik, torej odpadejo. Programski jezik GAP zna računati simbolično, a je to lahko precej zamudno. Algoritem v GAP se temu izogne tako, da večino računov opravi nad poljem \mathbf{F}_p za ustrezno izbrano dovolj veliko praštevilo p, potem pa te rezultate prenese nazaj nad \mathbf{C} . Vsi računi so zato hitri in eksaktni.

Kolobar virtualnih karakterjev

Pogosto nas ne zanima le računski aspekt upodobitev, temveč konceptualno razumevanje, od kod prihajajo nerazcepne upodobitve dane grupe. Kot bomo videli, tukaj igra glavno vlogo indukcija.

Naj bo G grupa in F algebraično zaprto polje karakteristike 0. Karakterji upodobitev grupe G so celoštevilske kombinacije nerazcepnih karakterjev. Tvorimo množico vseh takih kombinacij, se pravi

$$R(G) = \bigoplus_{\pi \in \operatorname{Irr}(G)} \mathbf{Z} \cdot \chi_{\pi} \subseteq \operatorname{fun}_{\operatorname{cl}}(G,F).$$

Množica R(G) je najprej očitno abelova podgrupa razrednih funkcij. Za tem je opremljena z množenjem, ki izhaja iz tenzorskega produkta upodobitev. Množica R(G) na ta način postane komutativen podkolobar v fun_{cl}(G,F), ki ga imenujemo *kolobar virtualnih karakterjev*. 12

Naj boH podgrupa vG.Restrikcija vzdolž vložitve H vG porodi $homomorfizem\ kolobarjev$

$$\operatorname{Res}: R(G) \to R(H), \quad \chi_{\pi} \mapsto \operatorname{Res}_{H}^{G}(\chi_{\pi}).$$

Sorodno dobimo z indukcijo preslikavo

$$\operatorname{Ind}: R(H) \to R(G), \quad \chi_{\pi} \mapsto \operatorname{Ind}_{H}^{G}(\chi_{\pi}),$$

ki pa je le homomorfizem abelovih grup. Ob koncu razdelka o indukciji smo za upodobitvi ρ v ${\rm Rep}_G$ in σ v ${\rm Rep}_H$ zapisali izomorfizem

$$\operatorname{Ind}_H^G(\operatorname{Res}_H^G(\rho)\otimes\sigma)\cong\rho\otimes\operatorname{Ind}_H^G(\sigma),$$

ki ga zdaj lahko interpretiramo s karakterji teh upodobitev in skelenemo, da je slika Ind(R(H)) ideal v R(G).

 $\mathbf{Zgled.}$ Naj bo H ciklična grupa. Definirajmo indikatorsko funkcijo generatorjev grupe H kot

$$c_H: H \to F$$
, $h \mapsto \begin{cases} |H| & \langle h \rangle = H, \\ 0 & \text{sicer.} \end{cases}$

Ker je H abelova grupa, je seveda $c_H \in \text{fun}_{cl}(H, F)$.

Premislimo, da je celo $c_H \in R(H)$. Dokazujmo z indukcijo na |H|. Vsaka prava podgrupa $K \leq H$ je tudi ciklična, zato zanjo po indukcijski

 $^{^{12} \}rm{Virtualnih},$ ker vsebuje tudi negativne kombinacije nerazcepnih kolobarjev, ki ne ustrezajo karakterjem upodobitev.

predpostavki velja $c_K \in R(K)$. Naj bo R množica predstavnikov odsekov K v H. S formulo za indukcijo karakterja za $h \in H$ izračunamo

$$\operatorname{Ind}_K^H(c_K)(h) = \sum_{r \in R: h \in K} c_K(h) = \begin{cases} |H:K|c_K(h) & h \in K, \\ 0 & \text{sicer} \end{cases} = \begin{cases} |H| & \langle h \rangle = K, \\ 0 & \text{sicer.} \end{cases}$$

Vsak element $h \in H$ generira neko podgrupo H, bodisi pravo bodisi kar H. Torej lahko zapišemo

$$c_H = |H| - \sum_{K < H} \operatorname{Ind}_K^H(c_K).$$

Konstanta |H| je karakter trivialne upodobitve $\mathbf{1}^{|H|}$ grupe H, torej iz zadnje enakosti sledi želeno $c_H \in R(H)$.

Naj bo C množica vseh cikličnih pogrup grupe G in izberimo $H \in C$. Naj bo R množica predstavnikov desnih odsekov H v G. Zadnji zgled nam pove $c_H \in R(H)$. Ta virtualni karakter lahko induciramo na grupo G in za $g \in G$ dobimo

$$\operatorname{Ind}_H^G(c_H)(g) = \sum_{r \in R: rgr^{-1} \in H} c_H(rgr^{-1}) = \sum_{r \in R: \langle rgr^{-1} \rangle = H} |H| = \sum_{x \in G: \langle xgx^{-1} \rangle = H} 1.$$

Ko torej seštejemo prispevke po vseh cikličnih podgrupah, dobimo

$$\sum_{H \in C} \operatorname{Ind}_H^G(c_H)(g) = \sum_{x \in G} \sum_{H \in C} 1_{\langle xgx^{-1} \rangle = C} = \sum_{x \in G} 1 = |G|.$$

Konstantna funkcija |G| je torej element ideala $\sum_{H \in C} \operatorname{Ind}(R(H))$ v R(G). Od tod seveda sledi enakost

$$|G| \cdot R(G) = \sum_{H \in C} \operatorname{Ind}(R(H)).$$

Vsak virtualni karakter vR(G) je zato linearna kombinacija induciranih virtualnih karakterjev cikličnih podgrup, pri čemer so koeficienti racionalna števila z imenovalcem kvečjemu |G|. Povzemimo to presenetljivo ugotovitev.

Izrek (Artinov izrek). Naj bo G grupa in ρ njena končnorazsežna upodobitev nad algebraično zaprtim poljem karakteristike 0. Tedaj je χ_{ρ} racionalna linearna kombinacija indukcij nerazcepnih karakterjev cikličnih podgrup grupe G.

Racionalnim kombinacijam se lahko izognemo, če razširimo razred podgrup s cikličnih na p-elementarne podgrupe grupe G. To so podgrupe, ki so izomorfne direktnemu produktu ciklične grupe in p-grupe.

Izrek (Brauerjev izrek). Naj bo G grupa in ρ njena končnorazsežna upodobitev nad algebraično zaprtim poljem karakteristike 0. Tedaj je χ_{ρ} celoštevilska linearna kombinacija indukcij nerazcepnih karakterjev pelementarnih podgrup grupe G, ko p preteče vse praštevilske delitelje moči G.

Dokaz Brauerjevega izreka je nekoliko bolj zapleten kot preprost argument, ki nas je pripeljal do Artinovega izreka. Bralec ga lahko najde v (Serre 1977).

Ne spreglejmo ključne lekcije tega razdelka: nerazcepne upodobitve dane končne grupe iščemo s pomočjo indukcije iz preprostih podgrup.

Kompleksne upodobitve

Splošno teorijo upodobitev končnih grup zaključimo z upodobitvami nad najugodnejšim poljem **C**. To polje je daleč od abstraktnega in je opremljeno z mnogo dodatne strukture, ki jo lahko pri upodobitvah izkoristimo.

Vrednosti karakterjev

Najprej si oglejmo nekaj dodatnih lastnosti, ki jih imajo karakterji kompleksnih upodobitev. Njihove vrednosti namreč niso čisto poljubna kompleksna števila, temveč so algebraična cela števila¹³ omejene absolutne vrednosti.

Trditev. Naj bo G končna grupa. Za vsako končnorazsežno kompleksno upodobitev ρ in vsak $g \in G$ je

$$|\chi_{\rho}(g)| \leq \deg(\rho), \quad \chi_{\rho}(g) \in \bar{\mathbf{Z}}, \quad \chi_{\rho}(g^{-1}) = \overline{\chi_{\rho}(g)}.$$

Dokaz. Velja $\rho(g^{|G|}) = \rho(1) = \mathrm{id}$, zato je $\rho(g)$ linearna preslikava končnega reda. Take preslikave so diagonalizabilne. V posebnem je zato vsaka lastna vrednost $\lambda \in \operatorname{Spec}(\rho(g))$ končnega reda v \mathbb{C}^* . S tem je seveda

$$\chi_{\rho}(g) = \sum_{\lambda \in \operatorname{Spec}(\rho(g))} \lambda \in \overline{\mathbf{Z}}, \quad |\chi_{\rho}(g)| \leq \sum_{\lambda \in \operatorname{Spec}(\rho(g))} |\lambda| = \operatorname{deg}(\rho)$$

in hkrati

$$\chi_{\rho}(g^{-1}) = \sum_{\lambda \in \operatorname{Spec}(\rho(g))} \lambda^{-1} = \sum_{\lambda \in \operatorname{Spec}(\rho(g))} \overline{\lambda} = \overline{\chi_{\rho}(g)}.$$

S pomočjo te restriktivne lastnosti vrednosti karakterjev lahko izpeljemo pomembno lastnost stopenj nerazcepnih kompleksnih upodobitev.

Izrek (o stopnjah upodobitev). *Stopnja vsake nerazcepne kompleksne upodobitve končne grupe deli moč grupe.*

Dokaz bomo navezali na edino mesto, kjer smo že videli ulomek $|G|/\deg(\pi)$, in sicer je to lema o Fourierovi transformaciji razredne funkcije. Ko funkcija, vzdolž katere izvedemo transformacijo, slika v kolobar algebraičnih celih števil, lahko lemo o Fourierovi transformaciji razredne funkcije zaostrimo na naslednji način.

Lema. Naj bo G končna grupa. Za vsako funkcijo $f \in \operatorname{fun}_{\operatorname{cl}}(G, \overline{\mathbf{Z}})$ in nerazcepno kompleksno upodobitev π je $\hat{f}(\pi)$ skalarno množenje z algebraičnim celim številom.

Dokaz. Vemo že, da je $\hat{f}(\pi)$ skalarno množenje s številom

$$\frac{|G|}{\deg(\pi)} \cdot [f, \chi_{\pi}].$$

 $^{^{13}}$ Algebraično celo število je kompleksno število, ki je ničla moničnega polinoma s celoštevilskimi koeficienti. Množico algebraičnih celih števil označimo z $\bar{\mathbf{Z}}$. Ni se težko prepričati, da $\bar{\mathbf{Z}}$ tvori kolobar in da velja $\mathbf{Q}\cap\bar{\mathbf{Z}}=\mathbf{Z}$.

 $^{^{14}}$ Diagonalizabilnost sledi iz obravnave Jordanove normalne forme preslikave ho(g).

Preveriti moramo torej, da je to algebraično celo število. Funkcijo f lahko razvijemo kot vsoto karakterističnih funkcij konjugiranostnih razredov s koeficienti v $\bar{\mathbf{Z}}$. Ker $\bar{\mathbf{Z}}$ tvori kolobar, bo torej trditev dovolj preveriti za primer, ko je $f = 1_{\mathcal{C}}$ za nek konjugiranostni razred \mathcal{C} v G.

Vse narazcepne upodobitve lahko obravnavamo v enem zamahu, in sicer tako, da opazujemo regularno upodobitev in s tem linearno preslikavo $\widehat{1}_{\mathcal{C}}(\rho_{\mathrm{fun}})$. Na vsaki od podupodobitev, ki je izomorfna π , ta preslikava deluje kot $\widehat{1}_{\mathcal{C}}(\pi)$, torej kot skalarno množenje z gornjim številom. To število je zato lastna vrednost preslikave $\widehat{1}_{\mathcal{C}}(\rho_{\mathrm{fun}})$.

Vemo že, da $\widehat{1_C}(\rho_{\text{fun}})$ deluje na naravni bazi iz karakterističnih funkcij 1_r za $x \in G$ kot

$$\widehat{1_{\mathcal{C}}}(\rho_{\text{fun}}) \cdot 1_x = \sum_{g \in G} 1_{\mathcal{C}}(x^{-1}g) 1_g \in \text{fun}(G, \{0, 1\}).$$

V tej bazi ima torej $\widehat{1_{\mathcal{C}}}(\rho_{\mathrm{fun}})$ matriko s koeficienti v množici $\{0,1\}$. Karakteristični polinom te matrike ima zato celoštevilske koeficiente, torej so lastne vrednosti preslikave $\widehat{1_{\mathcal{C}}}(\rho_{\mathrm{fun}})$ algebraična cela števila.

 $Dokaz\ izreka\ o\ stopnjah\ upodobitev.$ Naj bo $\pi\in {\rm Irr}(G).$ Uporabimo lemo s funkcijo $f=\chi_\pi$, ki nam pove, da je

$$\frac{|G|}{\deg(\pi)} \cdot [\chi_{\pi}, \chi_{\pi}] = \frac{|G|}{\deg(\pi)} \in \bar{\mathbf{Z}}.$$

Ker je zadnje število hkrati v \mathbf{Q} , je torej v $\mathbf{Q} \cap \overline{\mathbf{Z}} = \mathbf{Z}$.

Skalarni produkti in unitarnost

Polje \mathbf{C} je opremljeno s standardnim skalarnim produktom $\langle z,w\rangle = z\cdot \overline{w}$. Ta produkt lahko razširimo na vsak končnorazsežen kompleksen vektorski prostor. Obravnavali bomo dve taki razširitvi, in sicer na prostor funkcij fun (G,\mathbf{C}) ter na vektorski prostor, na katerem upodabljamo grupo G.

Opazujmo najprej prostor funkcij fun (G, \mathbf{C}) . Vemo že, da ga lahko opremimo s skalarnim produktom $[\cdot, \cdot]$. Ker pa je ta prostor kompleksen, lahko nanj vpeljemo še **standarden kompleksni skalarni produkt**,

$$\langle f, h \rangle = \frac{1}{|G|} \sum_{g \in G} f(g) \overline{h(g)}$$

za $f,h\in \mathrm{fun}(G,\mathbf{C})$. Za vsako končnorazsežno kompleksno upodobitev ρ po zadnji trditvi velja

$$[f,\chi_{\rho}] = \langle f,\chi_{\rho} \rangle$$
,

zato se večina rezultatov, ki smo jih izpeljali za skalarni produkt $[\cdot,\cdot]$, prenese na skalarni produkt $\langle\cdot,\cdot\rangle$. V posebnem karakterji še vedno tvorijo ortonormiran sistem vektorjev v fun (G,\mathbf{C}) in koeficienti razvoja razrednih funkcij po karakterjih se ne spremenijo.

Osredotočimo se sedaj še na upodobitveni prostor. Naj bo ρ kompleksna upodobitev grupe G na končnorazsežnem prostoru V. Izberimo bazo prostora $\{v_i\}_i$ in z njo kompleksen skalarni produkt

$$\left\langle \sum_{i} \alpha_{i} v_{i}, \sum_{i} \beta_{i} v_{j} \right\rangle = \sum_{i} \alpha_{i} \overline{\beta_{i}}.$$

Prostor V je opremljen z linearnim delovanjem grupe G. Zdaj smo na ta prostor dodali strukturo skalarnega produkta in ni jasno, ali je grupa G kompatibilna s to dodatno strukturo. Kadar je temu tako, se pravi

$$\forall g \in G. \ \forall v, w \in V. \ \langle \rho(g) \cdot v, \rho(g) \cdot w \rangle = \langle v, w \rangle,$$

tedaj rečemo, da je ρ *unitarna upodobitev*. V tem primeru ρ slika iz G v grupo unitarnih transformacij U(V) prostora V s skalarnim produktom $\langle \cdot, \cdot \rangle$. Seveda ni vsaka upodobitev končne grupe unitarna, ¹⁵ je pa vsaka upodobitev *unitarizabilna*.

Trditev. Naj bo G končna grupa in ρ njena končnorazsežna kompleksna upodobitev na prostoru V. Tedaj na V obstaja skalarni produkt, glede na katerega je ρ unitarna.

Dokaz. Izberimo poljuben skalarni produkt $\langle \cdot, \cdot \rangle$ na V in ga povprečimo do

$$\langle \cdot, \cdot \rangle_0 : V \times V \to \mathbb{C}, \quad \langle v, w \rangle_0 = \frac{1}{|G|} \sum_{g \in G} \langle \rho(g) \cdot v, \rho(g) \cdot w \rangle.$$

Ni težko preveriti, da je $\langle \cdot, \cdot \rangle_0$ skalarni produkt na V, glede na katerega je ρ unitarna upodobitev.

V kontekstu kompleksnih upodobitev končnih grup lahko torej brez škode predpostavimo, da je prostor opremljen s skalarnim produktom, glede na katerega je dana upodobitev unitarna.

Zgled. Končna grupa deluje z regularno upodobitvijo ρ_{fun} na prostoru funkcij fun (G, \mathbb{C}) . Ta prostor je opremljen s standardnim kompleksnim skalarnim produktom. Glede na ta skalarni produkt je ρ_{fun} unitarna upodobitev, saj za vsaka $f, h \in \text{fun}(G, \mathbb{C})$ in $x \in G$ velja

$$\langle \rho_{\text{fun}}(G, \mathbf{C})(x) \cdot f, \rho_{\text{fun}}(G, \mathbf{C})(x) \cdot h \rangle = \frac{1}{|G|} \sum_{g \in G} f(gx) \overline{h(gx)} = \langle f, h \rangle.$$

Unitarnost upodobitev končne grupe G lahko izkoristimo pri Fourierovi transformaciji. Za unitarno upodobitev ρ je namreč $\rho(g^{-1}) = \rho(g)^*$ za vsak $g \in G$ in s tem

$$\hat{f}(\rho) = \sum_{g \in G} f(g) \rho(g)^*.$$

Opremljeni s tem komentarjem se obrnimo k Fourierovi inverziji. Formula za razvoj funkcije $f \in \text{fun}(G, \mathbb{C})$ po π -izotipičnih komponentah je nekoliko asimetrična. To lahko popravimo tako, da jo uteženo povprečimo z neko drugo funkcijo $h \in \text{fun}(G, \mathbb{C})$. Dobimo

$$\sum_{g \in G} f(g) \overline{h(g)} = \frac{1}{|G|} \sum_{\pi \in \operatorname{Irr}(G)} \sum_{g \in G} \overline{h(g)} \chi_{\pi}(1) \operatorname{tr}(\hat{f}(\pi) \cdot \pi(g)),$$

kar lahko po upoštevanju linearnosti sledi in gornjega komentarja glede unitarnosti upodobitve π zapišemo kot

$$\langle f, h \rangle = \frac{1}{|G|^2} \sum_{\pi \in \operatorname{Irr}(G)} \chi_\pi(1) \operatorname{tr}(\hat{f}(\pi) \cdot \hat{h}(\pi)^*).$$

 $^{^{15}\}mathrm{Skalarni}$ produkt na danem prostoru lahko izberemo na mnogo različnih načinov.

Tej enakosti rečemo *Parsevalov izrek*. Nekoliko pregledneje ga lahko zapišemo z uporabo še enega skalarnega produkta, tokrat na prostoru endomorfizmov danega vektorskega prostora V. Za linearni preslikavi $A,B \in \text{hom}(V,V)$ definiramo

$$\langle A,B\rangle_{\mathrm{HS}} = \mathrm{tr}(A\cdot B^*),$$

to je *Hilbert-Schmidtov skalarni produkt*. Parsevalov izrek nam torej povezuje standarden kompleksni skalarni produkt funkcij s Hilbert-Schmidtovim skalarnim produktom Fourierovih transformacij v nerazcepnih upodobitvah,

$$\langle f, h \rangle = \frac{1}{|G|^2} \sum_{\pi \in \operatorname{Irr}(G)} \chi_{\pi}(1) \langle \hat{f}(\pi), \hat{h}(\pi) \rangle_{\operatorname{HS}}.$$

3.3 Razširjeni zgledi

Kategorijo upodobitev dane končne grupe nad ugodnim poljem razumemo, če imamo na voljo tabelo karakterjev, izračun te pa je končen problem. S tem smo za konkretne končne grupe dosegli ultimativen cilj teorije upodobitev. Biti pa moramo previdni, da zaradi vseh teh čudovitih dreves ne spregledamo gozda. Grupe namreč praviloma ne nastopajo posamično, temveč kot del večjih družin. V tem razdelku si bomo podrobneje pogledali dve temeljni družini grup, in sicer simetrične grupe ter splošne linearne grupe nad končnim poljem. Njuno teorijo upodobitev bomo obravnavali celostno.

Simetrična grupa S_n

Opazujmo simetrično grupo S_n za $n \in \mathbf{N}$ nad poljem \mathbf{C} . Ogledali smo si že tabele karakterjev za $n \leq 4$ in razložili, da je število nerazcepnih upodobitev enako številu konjugiranostnih razredov, to pa je enako številu razčlenitev p(n). Družina simetričnih grup je posebna, saj zanjo presenetljivo obstaja eksplicitna korespondenca med konjugiranostnimi razredi in nerazcepnimi upodobitvami. Iz dane razčlenitve $(\lambda_1, \lambda_2, \ldots, \lambda_k)$ števila n lahko torej konstruiramo nerazcepno upodobitev grupe S_n in za tem z nekoliko več truda določimo vrednosti karakterjev.

Nerazcepne upodobitve

Naj bo $\lambda = (\lambda_1, \lambda_2, ..., \lambda_k)$ razčlenitev n. Nerazcepno upodobitev grupe S_n , prirejeno λ , kot ponavadi iščemo z indukcijo iz podgrup. Razčlenitev λ lahko interpretiramo kot ciklični tip permutacij, zato se naravno ponuja **Youngova** grupa

$$P = S_{\lambda_1} \times S_{\lambda_2} \times \cdots \times S_{\lambda_k}$$
.

Razčlenitev λ si lahko predstavljamo kot zaporedje vrstic diagrama, v katerem je λ_1 škatlic v 1. vrstici, λ_2 škatlic v 2. vrstici, ..., λ_k škatlic v

 $^{^{16}\}rm{Na}$ primer abelove grupe, simetrične grupe, diedrske grupe, splošne linearne grupe, končne enostavne grupe, . . .

¹⁷Vsaka končna grupa je zgrajena iz končnih enostavnih grup, te pa sestojijo iz, grobo rečeno, dveh neskončnih družin, ki so zelo podobne družini simetričnih grup in linearnih grup nad končnim poljem. Zgleda družin, ki si jih bomo ogledali, sta torej do neke mere reprezentativna za razumevanje upodobitev končnih enostavnih grup.

k. vrstici. Pri tem so vrstice poravnane na levo. Takemu shematičnemu prikazu razčlenitve pravimo **Youngov diagram**. Diagram ima n škatlic, v katere poljubno vpišemo števila od 1 do n. Tako izpolnjenemu diagramu pravimo **Youngov tablo**. Vsak Youngov tablo nam pravzaprav ponuja vložitev grupe P v S_n . Fiksirajmo standardno vložitev, ki ustreza temu, da v škatlice vpišemo po vrsti števila od 1 do n, začenši zgoraj levo in hodeč po 1. vrstici, nato po 2. vrstici in tako naprej. Grupa P, standardno vložena v S_n , predstavlja ravno vse permutacije, ki ohranjajo vrstice tabloja.

Inducirajmo trivialno upodobitev iz P na S_n . V razdelku o indukciji smo spoznali, da lahko $\operatorname{Ind}_P^{S_n}(\mathbf{1})$ interpretiramo kot permutacijsko upodobitev S_n na desnih odsekih podgrupe P. To interpretacijo lahko vložimo v prostor funkcij $\operatorname{fun}(S_n,\mathbf{C})$. Namesto množice P lahko namreč opazujemo indikatorsko funkcijo 1_P . Element $g \in S_n$ na njej deluje kot $\rho_{\operatorname{fun}}(g) \cdot 1_P = 1_{Pg^{-1}}$, se pravi kot permutacija desnih odsekov. Na ta način upodobitveni prostor upodobitve $\operatorname{Ind}_P^{S_n}(\mathbf{1})$ vidimo kot

$$\langle \rho_{\text{fun}}(g) \cdot 1_P \mid g \in G \rangle$$
.

Ta prostor lahko izrazimo s pomočjo Fourierove transformacije kot

$$\langle \hat{f}(\rho_{\text{fun}}) \cdot 1_P \mid f \in \text{fun}(S_n, \mathbf{C}) \rangle = \text{im} \mathcal{F}(1_P) = \langle 1_P * f \mid f \in \text{fun}(S_n, \mathbf{C}) \rangle.$$

Upodobitev S_n na tem prostoru gotovo ni nerazcepna, saj na primer vsebuje trivialno z večkratnostjo $\langle \chi_1, \operatorname{Ind}_P^{S_n}(\chi_1) \rangle = \langle \chi_1, \chi_1 \rangle = 1$. Ta prostor bomo zato še dodatno projicirali na nek podprostor.

Do zdaj smo upoštevali le grupo P permutacij, ki ohranjajo vrstice izbranega Youngovega tabloja. Iz tega gledišča je naravno, da obravnavamo tudi grupo permutacij, ki ohranjajo stolpce tabloja. Označimo jo sQ. Ravno ta podgrupa je dodatek, ki nam bo dodatno reduciral upodobitev zgoraj opisano inducirano upodobitev. Pri tem bomo upoštevali, da je Q sestavljena dualno P, zato jo bomo utežili s predznačno upodobitvijo sgn.

Definirajmo funkcijo

$$\sigma_{\lambda} = (\operatorname{sgn} \cdot 1_{Q}) * 1_{P} \in \operatorname{fun}(S_{n}, \mathbb{C}),$$

ki ji pravimo Youngov simetrizator. Njene vrednosti so

$$\sigma_{\lambda}(x) = \sum_{p \in P, q \in Q: qp = x} \operatorname{sgn}(q).$$

Ker velja $P \cap Q = 1$, ima vsak element $x \in S_n$ kvečjemu en zapis v obliki x = qp za $p \in P, q \in Q, ^{18}$ torej ima zadnja vsota kvečjemu en neničeln člen in je torej enaka karakteristični funkciji množice $QP = \{qp \mid q \in Q, p \in P\}$, uteženi s predznakom člena v Q.

Vzdolž Youngovega simetrizatorja dobimo endospletično $\mathcal{F}(\sigma_{\lambda})$ regularne upodobitve, katere slika je vektorski prostor

$$V_{\lambda} = \operatorname{im} \mathcal{F}(\sigma_{\lambda}) = \langle \sigma_{\lambda} * f \mid f \in \operatorname{fun}(S_{n}, \mathbf{C}) \rangle,$$

ki ga imenujemo *Spechtov modul*. Na tem prostoru naravno deluje grupa S_n^{19} , dobljeno upodobitev označimo z ρ_{λ} .

 $[\]overline{\ \ \ }^{18}$ Res, če je $x=q_1p_1=q_2p_2$, potem je $q_2^{-1}q_1=p_2p_1^{-1}\in P\cap Q=1$, zato je $q_1=q_2$ in $p_1=p_2$.

 $p_1=p_2.$ 19 Ker je $\mathcal{F}(\sigma_\lambda)$ spletična, je to res invarianten podprostor. Ni pa težko videti, kako elementi grupe zares delujejo; za $g \in S_n$ element $\rho_{\mathrm{fun}}(g)$ preslika $\sigma_\lambda * f \vee \sigma_\lambda * (\rho_{\mathrm{fun}}(g) \cdot f).$

Izrek (o nerazcepnih upodobitvah simetrične grupe).

- 1. Za vsako razčlenitev λ je ρ_{λ} nerazcepna.
- 2. Za različni razčlenitvi λ, μ je $\rho_{\lambda} \not\equiv \rho_{\mu}$.
- 3. Vsaka nerazcepna upodobitev simetrične grupe je izomorfna ρ_{λ} za neko razčlenitev λ .

Zadnja točka seveda sledi iz prvih dveh, saj je število nerazcepnih upodobitev ravno enako številu razčlenitev n. Pred dokazom izreka si oglejmo nekaj zgledov.

Zgled.

• Naj bo $\lambda = (n)$. Tedaj je $P = S_n$ in Q = 1, zato je $\sigma_{\lambda} = 1$. Za funkcijo $f \in \text{fun}(S_n, \mathbb{C})$ je $\mathcal{F}(1) \cdot f = 1 * f = |G| \cdot \mathbb{E}(f)$ in grupa S_n deluje trivialno na tej funkciji. S tem je

$$V_{\lambda} = \operatorname{im} \mathcal{F}(1) = \mathbf{C}$$

in dobimo trivialno upodobitev.

• Naj bo $\lambda = (1,1,\ldots,1)$. Tedaj je P=1 in $Q=S_n$, zato je $\sigma_\lambda = \mathrm{sgn}$. Za funkcijo $f \in \mathrm{fun}(S_n,\mathbf{C})$ je

$$\mathcal{F}(\operatorname{sgn}) \cdot f = \operatorname{sgn} * f = \left(x \mapsto \sum_{g \in G} \operatorname{sgn}(xg^{-1}) f(g) \right) = (\operatorname{sgn} * f)(1) \cdot \operatorname{sgn},$$

zato je

$$V_{\lambda} = \operatorname{im} \mathcal{F}(\operatorname{sgn}) = \langle \operatorname{sgn} \rangle.$$

Na funkciji sgn grupa S_n deluje kot $\rho_{\text{fun}}(g) \cdot \text{sgn} = \text{sgn}(g) \cdot \text{sgn}$, torej je ρ_{λ} predznačna upodobitev.

• Naj bo $\lambda = (n-1,1)$. Tedaj je $P = S_{n-1}$ in $Q = \{(), (1 n)\}$. Za funkcijo $f \in \text{fun}(S_n, \mathbb{C})$ velja najprej

$$(1_P * f)(x) = \sum_{p \in P} f(p^{-1}x) = \sum_{g \in Px} f(g),$$

torej $1_P * f$ izračuna vsoto funkcije f po odseku Px. Prostor im $\mathcal{F}(1_P)$ lahko zato identificiramo s podprostorom funkcij $\mathrm{fun}_{S \setminus S_n}(S_n, \mathbf{C})$, ki so konstantne na desnih odsekih $S \setminus S_n$. Delovanje S_n na tem prostoru ni nič drugega kot $\mathrm{Ind}_P^{S_n}(\mathbf{1})$, kar prepoznamo kot standardno permutacijska upodobitev grupe S_n njenega delovanja na $\{1,2,\ldots,n\}$. Uporabimo zdaj še konvolucijo s funkcijo $\mathrm{sgn} \cdot 1_Q$. Dobimo linearno preslikavo

$$\operatorname{fun}_{S\backslash S_n}(S_n,\mathbf{C}) \to \operatorname{fun}_{S\backslash S_n}(S_n,\mathbf{C}), \quad \psi \mapsto (x \mapsto \psi(x) - \psi((1\ n) \cdot x)).$$

Njeno jedro sestoji iz funkcij ψ , ki so konstantne na odsekih S in povrhu zadoščajo še enakosti $\psi(x) = \psi((1 \ n) \cdot x)$ za vsak $x \in S_n$. Ko ta pogoj uporabimo s transpozicijami $(i \ n)$ za $1 \le i < n$, sklenemo, da je vsaka taka funkcija ψ nujno konstantna. Nazadnje je torej

$$V_{\lambda} = \operatorname{im} \mathcal{F}(\sigma_{\lambda}) \cong rac{\operatorname{fun}_{S \setminus S_n}(S_n, \mathbf{C})}{\mathbf{C}}.$$

Ta prostor je razsežnosti n-1. Prirejeno upodobitev imenujemo **standardna upodobitev** simetrične grupe S_n . Kot smo videli, jo lahko dobimo tako, da iz standardne permutacijske upodobitve odstanimo trivialno upodobitev.

Dokaz izreka bomo izpeljali s pomočjo naslednje leme, v kateri igra ključno vlogo delovanje Youngovega simetrizatorja $\widehat{\sigma_{\lambda}}(\rho_{\text{fun}})$ na prostoru V_{λ} . V lemi uporabljamo leksikografsko delno urejenost < na množici vseh razčlenitev.

Lema.

- 1. Za vsako razčlenitev λ je $\widehat{\sigma_{\lambda}}(\rho_{\text{fun}}) \cdot V_{\lambda} \subseteq \mathbf{C} \cdot \sigma_{\lambda}$.
- 2. Za razčlenitvi $\lambda > \mu$ je $\widehat{\sigma_{\lambda}}(\rho_{\text{fun}}) \cdot V_{\mu} = 0$.

Dokaz izreka o nerazcepnih upodobitvah simetrične grupe.

1. Naj bo $W \leq V_{\lambda}$ podupodobitev. Po lemi je $\widehat{\sigma_{\lambda}}(\rho_{\text{fun}}) \cdot W$ bodisi $\mathbb{C} \cdot \sigma_{\lambda}$ bodisi 0.

V prvem primeru sledi, da je $\sigma_{\lambda} \in W$, od koder iz nerazcepnosti W sklenemo $W = \operatorname{im} \mathcal{F}(\sigma_{\lambda}) = V_{\lambda}$. \checkmark

Privzemimo zdaj, da je $\widehat{\sigma_{\lambda}}(\rho_{\mathrm{fun}}) \cdot W = 0$, kar lahko zapišemo kot $W * \sigma_{\lambda} = 0$. Od tod sledi $W * V_{\lambda} = 0$ in zato W * W = 0. Naj bo $W = \mathrm{im} P$ za neko projektorsko endospletično P regularne upodobitve. Vemo že, da so vse take preslikave oblike $P = \mathcal{F}(w)$ za neko funkcijo $w \in \mathrm{fun}(S_n, \mathbb{C})$. Ker je $P \cdot 1_1 = \widehat{1_1}(\rho_{\mathrm{fun}}) \cdot w = w$, sledi $w \in W$. Še več, ker je $P^2 = P$, izračunamo $w = P \cdot w = \widehat{w}(\rho_{\mathrm{fun}}) \cdot w = w * w$. Ker je W * W = 0, sledi w = 0 in s tem W = 0. \checkmark

2. Za različni razčlenitvi λ , μ lahko brez škode predpostavimo $\lambda > \mu$, saj je < linearna urejenost. Po lemi je $\widehat{\sigma_{\lambda}}(\rho_{\mathrm{fun}}) \cdot V_{\mu} = 0$. Hkrati je $\widehat{\sigma_{\lambda}}(\rho_{\mathrm{fun}}) \cdot V_{\lambda}$ bodisi $\mathbf{C} \cdot \sigma_{\lambda}$ bodisi 0. V slednjem primeru pristopimo kot zgoraj: velja $V_{\lambda} * V_{\lambda} = 0$ in projektorska endospletična regularne upodobitve na V_{λ} je oblike $\mathcal{F}(v)$ za nek $v \in V_{\lambda}$ z lastnostjo v = v * v, kar implicira v = 0 in s tem $V_{\lambda} = 0$, protislovje. Torej je $\widehat{\sigma_{\lambda}}(\rho_{\mathrm{fun}}) \cdot V_{\lambda} \neq 0$ in zato $V_{\lambda} \not \equiv V_{\mu}$.

Preostane nam še dokaz leme.

Dokaz leme.

1. Za vsaka $p \in P$, $q \in Q$ je sgn $\cdot 1_q * \sigma_{\lambda} * 1_p = \sigma_{\lambda}$. Dokažimo najprej, da je Youngov simetrizator do skalarja natančno edina funkcija s to lastnostjo.

Res, naj funkcija $f \in \text{hom}(S_n, \mathbb{C})$ zadošča sgn $\cdot 1_q * f * 1_p = f$. To pomeni, da za vsak $g \in G$ velja

$$f(g) = \sum_{x \in S_n: qxp=g} sgn(q) \cdot f(g) = sgn(q) \cdot f(q^{-1}gp^{-1}),$$

kar lahko prepišemo v $f(qgp) = \operatorname{sgn}(q) \cdot f(g)$. Od tod sledi $f(qp) = \operatorname{sgn}(q) \cdot f(1)$. Na množici QP se torej do skalarja f(1) natančno funkcija f ujema z Youngovim simetrizatorjem σ_{λ} .

Preverimo še, da je izven množice QP funkcija f ničelna. V ta namen se spomnimo, da P in Q izhajata iz Youngovega tabloja T. Elementi S_n naravno delujejo s permutacijami na množici tablojev. Za $g \in S_n$ naj bo $g \cdot T$ rezultat tega delovanja z elementom g.

Domača naloga. Za vsak $g \in S_n \backslash QP$ obstajata števili, ki sta zapisani v istem stolpcu T in isti vrstici $g \cdot T$.

Naj bo t transpozicija, ki zamenja ti dve števili. Zanjo torej velja $t \in Q$ in $g^{-1}tg \in P$. S tem je

$$f(g) = f(t \cdot g \cdot g^{-1}tg) = \operatorname{sgn}(t) \cdot f(g) = -f(g),$$

zato je f(g) = 0. \checkmark

Dokazano uporabimo z elementom $\sigma_{\lambda} * f * \sigma_{\lambda}$, kjer je f poljubna funkcija. Vrednost $\operatorname{sgn} \cdot 1_q * (\sigma_{\lambda} * f * \sigma_{\lambda}) * 1_p$ izračunamo kot

$$(\operatorname{sgn} \cdot 1_Q * \operatorname{sgn} \cdot 1_Q * 1_P) * f * (\operatorname{sgn} * 1_Q * 1_P * 1_p) = \sigma_{\lambda} * f * \sigma_{\lambda},$$

od koder sledi želeno

$$\widehat{\sigma_{\lambda}}(\rho_{\text{fun}}) \cdot (\sigma_{\lambda} * f) = \sigma_{\lambda} * f * \sigma_{\lambda} \in \mathbb{C} \cdot \sigma_{\lambda}.$$

2. Trdimo, da za vsako funkcijo $f \in \text{fun}(S_n, \mathbb{C})$ velja enakost

$$1_{P_u} * f * (\operatorname{sgn} \cdot 1_{Q_\lambda}) = 0.$$

Zaradi linearnosti te trditve lahko predpostavimo, da je $f = 1_g$ za nek $g \in G$.

Naj bosta T_{λ} , T_{μ} Youngova tabloja razčlenitev λ , μ , s katerima smo dobili grupe P in Q. Tablo T_{λ} zamenjajmo s tablojem $g \cdot T_{\lambda}$; ob tem se Q_{λ} zamenja s $g^{-1}Q_{\lambda}g$. Z novimi tabloji je

$$1_{P_\mu} * \left(\operatorname{sgn} \cdot 1_{g^{-1}Q_\lambda g}\right) = 1_{P_\mu} * 1_{g^{-1}} * \left(\operatorname{sgn} \cdot 1_{Q_\lambda}\right) * 1_g.$$

Če uspemo dokazati, da je leva stran ničelna, bo taka tudi desna, od koder po dodatni konvoluciji z $1_{g^{-1}}$ z desne sledi želena enakost.

Predpostavimo torej lahko, da je g = 1. Kot v dokazu prejšnje točke najdemo transpozicijo $t \in Q_{\lambda} \cap P_{\mu}$. Z njo velja

$$1_{P_{\mu}} * (\operatorname{sgn} \cdot 1_{Q_{\lambda}}) = (1_{P_{\mu}} * 1_{t}) * (1_{t^{-1}} * (\operatorname{sgn} \cdot 1_{Q_{\lambda}})).$$

Ker je $1_{P_{\mu}} * 1_t = 1_{P_{\mu}}$ in $1_{t^{-1}} * (\operatorname{sgn} \cdot 1_{Q_{\lambda}}) = -(\operatorname{sgn} \cdot 1_{Q_{\lambda}})$, je zadnja konvolucija enaka svoji negativni vrednosti, torej je ničelna.

Tekom dokaza izreka smo premislili, da je $\sigma_{\lambda} * \sigma_{\lambda} = n_{\lambda} \cdot \sigma_{\lambda}$ za nek $n_{\lambda} \neq 0$. Od tod sledi, da je V_{λ} slika projektorske spletične $\mathcal{F}(\sigma_{\lambda}/n_{\lambda})$. Youngov simetrizator nam torej prek Fourierove transformacije izdaja nerazcepno upodobitev V_{λ} . Projektor $\mathcal{F}(\sigma_{\lambda}/n_{\lambda})$ lahko zapišemo z matriko z racionalnimi koeficienti, zato v prostoru V_{λ} lahko izberemo bazo, glede na katero ima delovanje vsakega elementa $g \in G$ racionalne matrične koeficiente. Vsaka nerazcepna upodobitev ρ_{λ} je zato definirana nad poljem \mathbf{Q} .

Domača naloga. Naj boG končna grupa z upodobitvijo nad \mathbf{Q} . Dokaži, da obstaja baza vektorskega prostora, v kateri je dana upodobitev definirana nad \mathbf{Z} .

Posledica. Vsaka nerazcepna upodobitev simetrične grupe je definirana nad **Z**.

Vsak Spechtov modul V_{λ} lahko z redukcijo po modulu p za poljubno praštevilo p reduciramo do vektorskega prostora nad končnim poljem \mathbf{F}_{p} . Na ta način dobimo mnogo modularnih upodobitev simetrične grupe. Kot smo videli že v primeru p=3, te upodobitve niso nujno nerazcepne. V takih primerih obstaja enoličen kvocient D_{λ} reducirane upodobitve, ki je nerazcepen nad \mathbf{F}_{p} . Izkaže se, da na ta način dobimo vse nerazcepne modularne upodobitve simetrične grupe. Modularni je mnogo bolj mističen od kompleksnega. Sodobna teorija upodobitev se povečini ukvarja s tem, kako regularna je kategorija upodobitev v odvisnosti od praštevila p. V zvezi s tem obstaja mnogo odprtih problemov.

Odprt problem. Obravnavajmo modularne upodobitve nad \mathbf{F}_p , kjer je $p \le n$. Naj bo λ razčlenitev n. Izračunaj večkratnosti nerazcepnih podupodobitev v redukciji V_{λ} po modulu p.

Ta problem je razrešen le za razčlenitve λ z največ dvema deloma, torej s $k \le 2$. Za k = 3 sodobna bilijardna domneva (Lusztig-Williamson 2018) predvideva, da se te večkratnosti obnašajo po zakonu nekega zakompliciranega dinamičnega sistema.

Vrednosti karakterjev

Premislili smo že, da so vsi Spechtovi moduli definirani nad \mathbf{Z} , zato so vrednosti karakterjev simetrične grupe vselej cela števila. Poznamo pa celo dokaj preprost način, kako lahko eksplicitno določimo vse vrednosti karakterjev nerazcepnih upodobitev. Izrekli ga bomo v jeziku polinomskega kolobarja $\mathbf{C}[\mathbf{x}] = \mathbf{C}[x_1, x_2, \dots, x_k]$. Potrebovali bomo nekaj posebnih polinomov iz tega kolobarja, in sicer *diskriminanto*

$$\Delta(\mathbf{x}) = \prod_{1 \le i < j \le k} (x_i - x_j)$$

ter potenčne vsote

$$P_j(\mathbf{x}) = x_1^j + x_2^j + \dots + x_k^j$$

za $j \in \mathbb{N}$. Za dan polinom $P(\mathbf{x}) \in \mathbb{C}[\mathbf{x}]$ označimo s

$$[P(\mathbf{x})]_{(\ell_1,\ell_2,\ldots,\ell_k)}$$

njegov koeficient pred monomom $x_1^{\ell_1}x_2^{\ell_2} \cdots x_k^{\ell_k}.$

Izrek (Frobeniusova formula). Naj bo $\lambda = (\lambda_1, \lambda_2, ..., \lambda_k)$ razčlenitev n in χ_{λ} pripadajoči karakter. Naj bo $C_{1^{i_1}2^{i_2}...n^{i_n}}$ konjugiranostni razred. Tedaj je

$$\chi_{\lambda}\left(\mathcal{C}_{1^{i_1}2^{i_2}\cdots n^{i_n}}\right) = \left[\Delta(\mathbf{x})\cdot P_1(\mathbf{x})^{i_1}P_2(\mathbf{x})^{i_2}\cdots P_n(\mathbf{x})^{i_n}\right]_{(\ell_1,\ell_2,\dots,\ell_k)},$$

kjer je

$$\ell_1 = \lambda_1 + k - 1$$
, $\ell_2 = \lambda_2 + k - 2$, ..., $\ell_k = \lambda_k$.

Dokaz temelji na poznavanju osnov teorije simetričnih funkcij, ki jih študent-ka ponavadi spozna pri kombinatoričnih predmetih, zato ga brez prehude žalosti izpustimo. Poglejmo pa si nekaj primerov uporabe izreka.

 $^{^{20}}$ Pozor, za nekatere razčlenitve λ je D_{λ} = 0. Izkaže se, da je število modularnih upodobitev enako številu konjugiranostnih razredov elementov, katerih red je tuj p.

²¹Na primer, mnogo dela je osredotočenega na Lusztigovo in Jamesovo domnevo.

Zgled.

• Naj bo n=7 in $\lambda=(4,3)$. Izračunajmo vrednost karakterja v permutaciji $(1\ 2)(3\ 4)$. Velja $i_1=3,\ i_2=2,\ \ell_1=5,\ \ell_2=3$ in s tem

$$\chi_{(4,5)}(\mathcal{C}_{1^32^2}) = \left[(x_1 - x_2) \cdot (x_1 + x_2)^3 (x_1^2 + x_2^2)^2 \right]_{(5,3)} = 2.$$

• Izračunajmo vrednost poljubnega karakterja χ_{λ} v dolgem ciklu $(1\ 2\ \cdots\ n)\in S_n$. Konjugiranostni razred je torej \mathcal{C}_{n^1} in izračunati moramo koeficient

$$\left[\Delta(\mathbf{x})\cdot(x_1^n+x_2^n+\cdots+x_k^n)\right]_{(\ell_1,\ell_2,\ldots,\ell_k)}.$$

Diskriminanta $\Delta(\mathbf{x})$ je enaka Vandermondovi determinanti

$$\Delta(\mathbf{x}) = \sum_{\sigma \in S_k} \operatorname{sgn}(\sigma) \cdot x_1^{\sigma(k)-1} x_2^{\sigma(k-1)-1} \cdots x_k^{\sigma(1)-1}.$$

Opazujmo potence spremenljivke x_1 . Opazimo, da velja $\ell_1 = \lambda_1 + k - 1 \ge k$, zato iščemo monome, katerih potenca pri x_1 je vsaj k. Edina možnost je, da ta monom izhaja iz produkta diskriminante in člena x_1^n . Iščemo torej člen

$$\left[\sum_{\sigma \in S_k} \operatorname{sgn}(\sigma) \cdot x_1^{\sigma(k)-1+n} x_2^{\sigma(k-1)-1} \cdots x_k^{\sigma(1)-1}\right]_{(\ell_1,\ell_2,\dots,\ell_k)}.$$

Oglejmo si zdaj spremenljivko x_2 . Da bo obstajal kak relevanten monom, mora veljati $\ell_2 = \sigma(k-1) - 1$. Ker je $\sigma(k-1) \le k$, sledi $\ell_2 \le k-1$ in od tod $\lambda_2 \le 1$. Edina možnost, da je $\chi_{\lambda}(\mathcal{C}_{n^1}) \ne 0$, je torej, da ima razčlenitev λ vse člene od drugega dalje enake 1 in je zato oblike

$$\lambda = (n - s, 1, 1, \dots, 1)$$

za nek $0 \le s \le n-1$. Taki razčlenitvi pravimo **kljuka**. Zanjo je k = s+1 in $(\ell_1, \ell_2, \dots, \ell_k) = (n, k-1, k-2, \dots, 1)$, od koder ni težko izračunati, da edini relevanten monom izhaja iz permutacije $\sigma = (1 \ 2 \cdots k)$, zato je nazadnje

$$\chi_{\lambda}(C_{n^1}) = \operatorname{sgn}(\sigma) = (-1)^s$$
.

Vrednost karakterja v dolgem ciklu je torej neničelna le za kljuke, v katerih pa ima vrednost ± 1 .

S Frobeniusovo formulo lahko določimo stopnje nerazcepnih upodobitev simetrične grupe. Za to bomo potrebovali koncept kljuke, ki je malo splošnejši od tiste, ki smo jo videli v zadnjem zgledu. Opazujmo Youngov diagram razčlenitve λ . Za vsako celico (i,j) diagrama, kjer i predstavlja vrstico in j stopec, je **kljuka** $H_{\lambda}(i,j)$ množica tistih celic, ki so desno ali pod celico (i,j), vključivši celico (i,j). **Dolžina kljuke** $H_{\lambda}(i,j)$ je enaka številu celic v kljuki, se pravi $|H_{\lambda}(i,j)|$.

Posledica (formula o dolžinah kljuk). $Naj bo \lambda razčlenitev n. Tedaj je$

$$\dim V_{\lambda} = \frac{n!}{\prod_{i,j} |H_{\lambda}(i,j)|}.$$

 $^{^{22}}H_{\lambda}(i,j)$ torej sestoji iz tistih celic (a,b), za katere je a=i in $b\geq j$ ali b=j in $a\geq i$.

Dokaz. Velja

$$\dim V_{\lambda} = \chi_{\lambda}(\mathcal{C}_{1^n}) = \left[\Delta(\mathbf{x}) \cdot (x_1 + x_2 + \dots + x_k)^n\right]_{(\ell_1, \ell_2, \dots, \ell_k)}.$$

Diskriminanto razvijemo kot v zadnjem zgledu, drugi člen pa po binomski formuli kot

$$(x_1 + x_2 + \dots + x_k)^n = \sum_{j_1 + j_2 + \dots + j_k = n} \frac{n!}{j_1! j_2! \dots j_k!} x_1^{j_1} x_2^{j_2} \dots x_k^{j_k}.$$

Ko razviti vsoti zmnožimo, dobimo člen $x_1^{\ell_1}x_2^{\ell_2}\cdots x_k^{\ell_k}$, če in samo če za neko permutacijo $\sigma\in S_n$ in nabor j_1,j_2,\ldots,j_k velja $\sigma(k-i+1)-1+j_i=\ell_i$. Iskani koeficient je torej enak

$$\sum_{\sigma} \operatorname{sgn}(\sigma) \cdot \frac{n!}{(\ell_1 - \sigma(k) + 1)!(\ell_2 - \sigma(k - 1) + 1)! \cdots (\ell_k - \sigma(1) + 1)!},$$

kjer seštevamo po tistih $\sigma \in S_k$, za katere velja $\ell_i - \sigma(k-i+1) + 1 \ge 0$ za vsak i. To vsoto lahko prepišemo v

$$\frac{n!}{\ell_1!\ell_2!\cdots\ell_k!}\cdot\sum_{\sigma}\operatorname{sgn}(\sigma)\cdot\prod_{j=1}^k\ell_j(\ell_j-1)\cdots(\ell_j-\sigma(k-j+1)+2).$$

Zadnjo vsoto lahko seštevamo po vseh $\sigma \in S_k$, saj so členi, v katerih je $\ell_i - \sigma(k-i+1) + 1 < 0$, ničelni. To vsoto zato prepoznamo kot determinanto matrike razsežnosti $k \times k$ z j-tim stolpcem

1,
$$\ell_j$$
, $\ell_j(\ell_j-1)$, ..., $\ell_j(\ell_j-1)\cdots(\ell_j-k+2)$.

Ta determinanta je enaka Vandermondovi determinanti, zato je iskani koeficient enak

$$\frac{n!}{\ell_1!\ell_2!\cdots\ell_k!}\cdot\prod_{1\leq i< j\leq n}(\ell_i-\ell_j).$$

Če ima λ en sam stolpec in je torej $\lambda=(1,1,\ldots,1)$, potem je k=n in $\ell_i=n-i+1$, zato je zadnje število enako

$$\frac{n!}{n!(n-1)!\cdots 1!}\cdot \prod_{1\leq i< j\leq n}(j-i)=\frac{n!}{n!(n-1)!\cdots 1!}\cdot \prod_{1< j\leq n}(j-1)!=1,$$

kot mora biti, saj že vemo, da je v tem primeru $V_{\lambda} \cong \mathbf{1}$. Dolžine kljuk so $|H_{\lambda}(i,1)| = n - i + 1$, zato formula o kljukah za ta trivialen primer drži. Splošnega primera ni težko izpeljati z indukcijo.

Domača naloga. Z indukcijo na število stolpcev Youngovega diagrama λ dokaži, da je

$$\frac{n!}{\ell_1!\ell_2!\cdots\ell_k!}\cdot\prod_{i< j}(\ell_i-\ell_j)=\frac{n!}{\prod_{i,j}|H_\lambda(i,j)|}.$$

S tem je formula o kljukah dokazana.

Zgled. Iz formule o dolžinah kljuk takoj izračunamo stopnjo standardne upodobitve. Usteza ji razčlenitev (n-1,1), torej je njena stopnja enaka

$$\frac{n!}{1 \cdot 2 \cdot \dots \cdot (n-2) \cdot n \cdot 1} = n-1.$$

Domača naloga. Izračunaj vrednost poljubnega karakterja χ_{λ} v konjugiranostnem razredu transpozicij.

V zvezi s tabelo karakterjev simetrične grupe omenimo še sodobnejši presenetljiv rezultat (Miller 2014), v katerem avtor dokaže, da so vrednosti skoraj vseh karakterjev v skoraj vseh grupnih elementih ničelne. Natančneje, če enakomerno naključno izberemo $g \in S_n$ in $\pi \in \operatorname{Irr}(S_n)$, potem je

$$\lim_{n\to\infty}\mathbf{P}_{g,\pi}\left(\chi_{\pi}(g)=0\right)=1.$$

Avtor omeni analogno vprašanje glede same tabele karakterjev.

Odprt problem. Enakomerno naključno izberimo konjugiranostni razred C v S_n in $\pi \in Irr(S_n)$. Kaj lahko povemo o obnašanju zaporedja $\mathbf{P}_{\mathcal{C},\pi}(\chi_{\pi}(\mathcal{C})=0)$, ko gre n čez vse meje?

Splošna linearna grupa $GL_2(\mathbf{F}_p)$

Opazujmo splošno linearno grupo

$$G_p = \operatorname{GL}_2(\mathbf{F}_p) = \left\{ egin{pmatrix} a & b \ c & d \end{pmatrix} | \ a,b,c,d \in \mathbf{F}_p, \ ad-bc
eq 0
ight\}$$

obrnljivih matrik razsežnosti 2×2 nad končnim poljem \mathbf{F}_p , kjer je p praštevilo. Njeno kategorijo upodobitev bomo obravnavali nad \mathbf{C} . Še pred tem pa moramo bolje spoznati to grupo.

Osnovne poteze

Grupo G_p lahko razumemo s pomočjo njenih podgrup

$$egin{aligned} B_p &= \left\{ egin{pmatrix} a & b \ 0 & d \end{pmatrix} \mid a, d \in \mathbf{F}_p^*, \ b \in \mathbf{F}_p
ight\}, \ D_p &= \left\{ egin{pmatrix} a & 0 \ 0 & d \end{pmatrix} \mid a, d \in \mathbf{F}_p^*
ight\}, \ U_p &= \left\{ egin{pmatrix} 1 & b \ 0 & 1 \end{pmatrix} \mid b \in \mathbf{F}_p
ight\}. \end{aligned}$$

Grupa B_p je **Borelova podgrupa**, grupa U_p pa **unipotentna podgrupa**. Seveda je $B_p/U_p = D_p$. Grupa G_p ima torej vrsto podgrup

$$G_p \ge B_p \ge U_p \ge 1$$
.

Borelova podgrupa ni edinka v G_p , ima pa kvocientna množica G_p/B_p odsekov vsekakor pomembno vlogo. Grupa G_p namreč deluje na ravnini \mathbf{F}_p^2 z matričnim množenjem in za tem na množici premic v tej ravnini, se pravi

$$\mathbf{P}^1(\mathbf{F}_p) = \{ \ell \le \mathbf{F}_p^2 \mid \dim \ell = 1 \},$$

čemur pravimo **projektiva premica** nad \mathbf{F}_p . Grupa G_p deluje na tej premici tranzitivno in stabilizator premice e_1 je ravno Borelova podgrupa B_p . Projektivno premico lahko zato enačimo z množico G_p/B_p . V posebnem tako dobimo homomorfizem

$$\Pi: G_p \to \operatorname{Sym}(\mathbf{P}^1(\mathbf{F}_p)) = S_{p+1},$$

o katerem bomo več povedali nekoliko kasneje. Za zdaj ne spreglejmo, da od tod takoj izračunamo $|G_p/B_p| = p+1$ in s tem

$$|G_p| = |G_p/B_p| \cdot |B_p/U_p| \cdot |U_p| = (p+1) \cdot (p-1)^2 \cdot p.$$

Grupa G_p je opremljena tudi z determinantnim homomorfizmom

$$\det: G_p \to \mathbf{F}_p^*$$
.

Jedro tega homomorfizma je specialna linearna grupa

$$\mathrm{SL}_2(\mathbf{F}_p) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | \, a,b,c,d \in \mathbf{F}_p, \, ad-bc = 1 \right\}.$$

Velja $|\operatorname{SL}_2(\mathbf{F}_p)| = |G_p|/(p-1) = (p+1)p(p-1)$. Izpostavimo dva posebna elementa te grupe,

$$S_+ = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad S_- = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$

Levo množenje s tema dvema elementoma ustreza izvajanju vrstičnih operacij na dani matriki,

$$S_+ \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ c & d \end{pmatrix}, \quad S_- \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c+a & d+b \end{pmatrix}$$

Ker lahko vsako matriko v $\operatorname{SL}_2(\mathbf{F}_p)$ z vrstičnimi operacijami pripeljemo do identitete, sklenemo, da elementa S_+, S_- generirata grupo $\operatorname{SL}_2(\mathbf{F}_p)$.

Zgled. Naj bo p = 2. Grupa G_2 v tem primeru enaka $SL_2(\mathbf{F}_2)$ in je moči 6. Naravno deluje z matričnim množenjem na množici treh neničelnih vektorjev $\mathbf{F}_2^2 \setminus \{0\} = \{e_1, e_2, e_1 + e_2\}$. Na ta način dobimo homomorfizem

$$G_2 \to S_3$$
, $S_+ \mapsto (2\ 3)$, $S_- \mapsto (1\ 3)$.

ki je surjektiven, ker zapisani transpoziciji generirata grupo S_3 . Ker imata obe grupi enako moč, je celo izomorfizem, torej je $G_2\cong S_3$.

Trditev. $Za p > 2 je [G_p, G_p] = SL_2(\mathbf{F}_p).$

Dokaz. Ker je $G_p/\mathrm{SL}_2(\mathbf{F}_p)$ komutativna, je $[G_p,G_p] \leq \mathrm{SL}_2(\mathbf{F}_p)$. Za obratno neenakost upoštevamo račun

$$\begin{bmatrix} S_{+}^{-2^{-1}}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{bmatrix} = S_{+}^{2^{-1}} \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot S_{+}^{-2^{-1}} \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = S_{+}$$

in sklenemo $S_+ \in [G_p, G_p]$. Sorodno dobimo $S_- \in [G_p, G_p]$. Ker S_+, S_- generirata $\mathrm{SL}_2(\mathbb{F}_p)$, dobimo še drugo vsebovanost.

Nazadnje upoštevajmo oba posebna homomorfizma, Π in det. Presek njunih jeder sestoji iz skalarnih matrik z determinanto 1, torej je enak $\{I, -I\}$. Ta podgrupa je edinka v $\mathrm{SL}_2(\mathbf{F}_D)$, zato lahko tvorimo kvocient

$$\mathrm{PSL}_2(\mathbf{F}_p) = \frac{\mathrm{SL}_2(\mathbf{F}_p)}{\{I, -I\}}.$$

Zgled. Za p = 2 je $\mathrm{PSL}_2(\mathbf{F}_2) = \mathrm{SL}_2(\mathbf{F}_2) \cong S_3$. Za p = 3 se grupa $\mathrm{PSL}_2(\mathbf{F}_3)$ prek delovanja Π vloži v simetrično grupo S_4 . Ker je $|\mathrm{PSL}_2(\mathbf{F}_3)| = 12$, je slika te vložitve podgrupa indeksa 2 v S_4 , kar pomeni, da gre za alternirajočo podgrupo. Sledi $\mathrm{PSL}_2(\mathbf{F}_3) \cong A_4$.

Domača naloga. Naj bo p = 5. Grupa $\operatorname{PSL}_2(\mathbf{F}_5)$ je moči 60. Poišči njene 2-podgrupe Sylowa. Na množici teh podgrup grupa $\operatorname{PSL}_2(\mathbf{F}_5)$ deluje tranzitivno. Iz tega delovanja izpelji, da je $\operatorname{PSL}_2(\mathbf{F}_5) \cong A_5$.

Izrek (Galois). Za p > 3 je grupa $PSL_2(\mathbf{F}_p)$ enostavna.

Družina grup G_p za praštevila p je torej dobra prijateljica ene od fundamentalnih družin končnih enostavnih grup.

Konjugiranostni razredi

Predpostavimo, da je p>2. Konjugiranostni razredi v G_p so enaki podobnostnim razredom matrik. Te najlažje sistematično obravnavamo prek lastnosti njihovih karakterističnih polinomov, ki so stopnje 2. Bodisi je ta polinom razcepen (z eno dvojno ničlo ali dvema različnima v \mathbf{F}_p) bodisi je nerazcepen. V primeru dvojnih ničel obravnavamo še možnost, da matrika morda ni diagonalizabilna. Na ta način dobimo naslednje konjugiranostne razrede.

1. **Skalarji**. Naj ima element $g \in G_p$ karakteristični polinom z dvojno ničlo $a \in \mathbf{F}_p^*$ in je hkrati diagonalizabilen. Tedaj je g skalarna matrika

$$\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$$
.

Vsak tak element je centralen v G_p , zato je njegov konjugiranostni razred velikosti 1. Vseh takih razredov je p-1.

2. Nediagonalizabilni elementi. Naj ima element $g \in G_p$ karakteristični polinom z dvojno ničlo $a \in \mathbf{F}_p^*$ in hkrati ni diagonalizabilen. Tedaj je po Jordanovi formi g podoben matriki

$$\begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix}$$
.

Centralizator vsakega takega elementa je enak

$$C_p = \left\{ \begin{pmatrix} x & t \\ 0 & x \end{pmatrix} | x \in \mathbf{F}_p^*, \ t \in \mathbf{F}_p \right\} = S_p \times U_p,$$

kjer je S_p množica skalarnih matrik. Velja $|C_p|=(p-1)p$. Konjugiranostni razred je torej velikosti p^2-1 . Vseh takih razredov je p-1.

3. *Razcepni polenostavni elementi*. Naj ima element $g \in G_p$ karakteristični polinom z dvema različnima ničlama $a,b \in \mathbf{F}_p^*$. Tak element je diagonalizabilen in zato podoben

$$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$$
.

Centralizator vsakega takega elementa je enak

$$T_r = D_p = \left\{ \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \mid x, y \in \mathbf{F}_p^* \right\}.$$

in je zato moči $(p-1)^2$. Konjugiranostni razred je torej velikosti p(p+1). Vseh takih razredov je $\binom{p-1}{2}=(p-1)(p-2)/2$.

4. Nerazcepni polenostavni elementi. Naj ima element $g \in G_p$ nerazcepen karakteristični polinom. Ta polinom torej nima ničel v \mathbf{F}_p , ima pa ničle v razširitvi F tega polja z ničlama karakterističnega polinoma. Ker je p > 2, sta ti dve ničli različni. Razširitev F/\mathbf{F}_p je stopnje 2, zato jo lahko predstavimo kot

$$F\congrac{\mathbf{F}_{p}[X]}{(X^{2}-\epsilon)}$$
 = $\mathbf{F}_{p}(\sqrt{\epsilon})$,

kjer $\varepsilon \in \mathbf{F}_p^*$ ni kvadrat v \mathbf{F}_p . To polje je opremljeno z Galoisjevim avtomorfizmom $\sigma : \sqrt{\varepsilon} \mapsto -\sqrt{\varepsilon}$ reda 2. Če je λ lastna vrednost g, je torej tudi λ^{σ} lastna vrednost in pripadajoča lastna vektorja sta v in v^{σ} . Zamenjajmo bazo v $w_2 = v + v^{\sigma}$ in $w_1 = (v - v^{\sigma})/\sqrt{\varepsilon}$. Ta dva vektorja sta invariantna za avtomorfizem σ , zato imata obe komponenti v \mathbf{F}_p . V tej bazi ima element g matriko

$$\begin{pmatrix} a & \epsilon b \\ b & a \end{pmatrix}$$
,

kjer je $a = (\lambda + \lambda^{\sigma})/2 \in \mathbf{F}_p$ in $b = \sqrt{\epsilon}(\lambda - \lambda^{\sigma})/2 \in \mathbf{F}_p^*$. Centralizator vsakega takega elementa je enak

$$T_{nr} = \left\{ \begin{pmatrix} x & \epsilon y \\ y & x \end{pmatrix} \mid x, y \in \mathbf{F}_p, \ (x, y) \neq (0, 0) \right\}.$$

Konjugiranostni razred je torej velikosti p(p-1). Vseh takih razredov je p(p-1)/2. ²⁴

Tabela 3.3: Konjugiranostni razredi v G_p : njihov tip, število razredov določenega tipa in velikost razreda

Za velika praštevila p velja $|G_p| \sim p^4$. Hkrati iz izračunov števila razredov in njihovih velikosti vidimo, da je število polenostavnih elementov asimptotsko primerljivo s p^4 , razdeljeno približno na polovico med razcepnimi in nerazcepnimi elementi. Generični elementi v G_p so za velika praštevila torej polenostavni.

Seštejemo število vseh konjugiranostnih razredov in dobimo

$$k(G_p) = p^2 - 1.$$

 $^{^{23}}$ Ponovljena ničla bi bila ničla odvoda karakterističnega polinoma, ki pa je linearen in ima vse ničle v \mathbf{F}_p .

 $^{^{24}}$ Če zamenjamo v zgornji matriki bz-b, dobimo podobno matriko. To ravno ustreza delovanju $\sigma.$

Grupa G_p ima torej p^2-1 nerazcepnih kompleksnih upodobitev.

Preden nadaljujemo z natančnim določanjem teh upodobitev, se še enkrat ozrimo na klasifikacijo konjugiranostnih razredov. Tekom določanja velikosti razredov smo naleteli na dva posebna centralizatorja polenostavnih elementov, in sicer T_r in T_{nr} . Ta dva centralizatorja bosta igrala pomembno vlogo v teoriji upodobitev grupe G_p . Prvemu pravimo *razcepni torus*, drugemu pa *nerazcepni torus*. Za razcepni torus velja

$$T_r \cong \mathbf{F}_p^* \times \mathbf{F}_p^*$$

nerazcepni torus pa identificiramo kot²⁵

$$T_{nr} \cong \mathbf{F}_p(\sqrt{\epsilon})^*, \quad \begin{pmatrix} x & \epsilon y \\ y & x \end{pmatrix} \mapsto x + \sqrt{\epsilon}y.$$

Tabela karakterjev, 1. del

Predpostavimo, da je p > 2. Določimo najprej enorazsežne upodobitve grupe G_p . Ker je $[G_p, G_p] = \mathrm{SL}_2(\mathbf{F}_p) = \ker(\det)$, vse enorazsežne upodobitve dobimo tako, da najprej uporabimo determinanto $\det: G_p \to \mathbf{F}_p^*$, za tem pa poljubno upodobitev abelove grupe \mathbf{F}_p^* . Za vsak homomorfizem $\chi: \mathbf{F}_p^* \to \mathbf{C}^*$ dobimo torej enorazsežno upodobitev $\chi \circ \det$ grupe G_p in vse enorazsežne upodobitve so take oblike. Vseh teh upodobitev je $|\mathbf{F}_p^*| = p - 1$.

Tabela 3.4: Enorazsežni karakterji G_n

Nadaljujmo s pomočjo homomorfizma $\Pi:G_p \to S_{p+1}$, ki opisuje permutacijsko delovanje G_p na projektivni premici. Od tod dobimo permutacijsko upodobitev G_p na $\mathbf{C}[\mathbf{P}^1(\mathbf{F}_p)]$. Kot smo videli že v primeru simetrične grupe, ta upodobitev ni nerazcepna, saj vedno vsebuje 1. Naj bo St komplement 1 v tej permutacijski upodobitvi. Ta komplement je do izomorfizma natako enolično določen in mu pravimo $Steinbergova\ upodobitev$. 26 Vrednosti karakterjev St ni težko izračunati. Račun pokaže $\langle St, St \rangle = 1$, zato je St nerazcepna upodobitev.

Tabela 3.5: Steinbergov karakter G_p

Steinbergovo upodobitev lahko tenzoriramo s poljubno enorazsežno in dobimo $\operatorname{St} \otimes (\chi \circ \operatorname{det})$, kar označimo krajše kot $\operatorname{St}(\chi)$. Za $\chi = 1$ dobimo običajno Steibergovo upodobitev. Vse te upodobitve so tudi nerazcepne.

Do zdaj smo našteli 2(p-1) nerazcepnih upodobitev, iščemo pa jih p^2-1 . Še veliko jih manjka! Sledeč filozofiji Artina in Brauerja nadaljne

 $^{^{25}}$ Element $x+\sqrt{\epsilon}y$ deluje na $\mathbf{F}_p(\sqrt{\epsilon})$ z množenjem z leve. Če to grupo obravnavamo kot vektorski prostor nad \mathbf{F}_p , potem je matrika tega delovanja v bazi $\{1,\sqrt{\epsilon}\}$ ravno ta, ki je prikazana.

 $^{^{26}}$ Steinbergovo upodobitev dobimo torej tako, da Π podaljšamo s standardno upodobitvijo simetrične grupe S_{D+1} .

Tabela 3.6: Posplošeni Steinbergov karakter G_p

nerazcepne upodobitve iščemo z indukcijo iz podgrup G_p . Opazujmo Borelovo podgrupo B_p . Ta grupa je opremljena s projekcijo na razcepni torus

$$B_p \rightarrow B_p/U_p = D_p = T_r = \mathbf{F}_p^* \times \mathbf{F}_p^*$$
.

Nerazcepne upodobitve razcepnega torusa so ravno produkti $\chi_1 \times \chi_2$, kjer sta χ_1 , χ_2 nerazcepni upodobitvi prvega oziroma drugega faktorja torusa. Na ta način dobimo nerazcepne upodobitve Borelove podgrupe,

$$\rho(\chi_1,\chi_2):B_p\to \mathbf{C}^*, \quad \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mapsto \chi_1(a)\chi_2(d).$$

Vsako od teh upodobitev induciramo na grupo G_p in dobimo upodobitev

$$\pi(\chi_1,\chi_2) = \operatorname{Ind}_{B_p}^{G_p}(\rho(\chi_1,\chi_2))$$

razsežnosti $|G_p/B_p| = p+1$. Karakter take upodobitve lahko izračunamo s formulo za vrednosti karakterjev inducirane upodobitve.

Domača naloga. Izračunaj vrednosti karakterjev upodobitve $\pi(\chi_1,\chi_2)$.

Tabela 3.7: Karakter upodobitve $\pi(\chi_1, \chi_2)$ grupe G_p

Od tod po preprostem računu določimo normo karakterja kot

$$||\chi_{\pi(\chi_1,\chi_2)}||^2 = \begin{cases} 2 & \chi_1 = \chi_2, \\ 1 & \chi_1 \neq \chi_2. \end{cases}$$

Za $\chi_1 \neq \chi_2$ je upodobitev $\pi(\chi_1,\chi_2)$ torej nerazcepna. Iz karakterja opazimo, da je ρ simetrična v svojih argumentih, se pravi $\pi(\chi_1,\chi_2) \cong \pi(\chi_2,\chi_1)$. Na ta način torej dobimo $\binom{p-1}{2} = (p-1)(p-2)/2$ nerazcepnih upodobitev grupe G_p . Tem upodobitvam pravimo **upodobitve glavne vrste**. Y primeru, ko je $\chi_1 = \chi_2$, iz vrednosti karakterjev opazimo izomorfizem $\pi(\chi,\chi) \cong \operatorname{St}(\chi) \oplus (\chi \circ \operatorname{det})$, torej tukaj ne najdemo nobenih novih nerazcepnih upodobitev.

Tabela karakterjev, 2. del

Opazujmo zdaj še upodobitve, ki jih dobimo z indukcijo iz nerazcepnega torusa. Te so nekoliko bolj zapletene, zato bomo pristopili bolj previdno. Naj bo

$$\theta: T_{nr} \cong \mathbf{F}_p(\sqrt{\epsilon})^* \to \mathbf{C}^*$$

 $^{^{27}}$ Angleško principal series representaions.

poljubna enorazsežna upodobitev. Izračunajmo karakter indukcije upodobitve θ nerazcepnega torusa. Uporabimo formulo za karakter inducirane upodobitve. Naj bo R množica predstavnikov desnih odsekov T_{nr} v G_p . Za $g \in G_p$ je $rgr^{-1} \in T_{nr}$ za nek $r \in R$, če in samo če je rgr^{-1} bodisi skalar bodisi nerazcepen polenostaven element, kar je enakovredno temu, da je g bodisi skalar bodisi nerazcepen polenostaven element. Za skalarje, ki jih interpretiramo kot elemente $g = a \in \mathbf{F}_p^* \subseteq \mathbf{F}_p(\sqrt{\epsilon})^*$, velja

$$\operatorname{Ind}_{T_{nr}}^{G_p}(\theta)(a) = |G_p:T_{nr}| \cdot \theta(a) = p(p-1)\theta(a).$$

Za nerazcepne polenostavne elemente, ki jih interpretiramo kot elemente $g = a + \sqrt{\epsilon}b \in \mathbf{F}_p(\sqrt{\epsilon})^*$, pa velja $g^{G_p} \cap T_{nr} = \{g, g^{\sigma}\}$, zato sta v formuli za izračun induciranega karakterja relevantna le dva člena in dobimo

$$\operatorname{Ind}_{T_{nr}}^{G_p}(\theta)(a+\sqrt{\epsilon}b)=\theta(a+\sqrt{\epsilon}b)+\theta(a-\sqrt{\epsilon}b).$$

Z avtomorfizmom $\sigma \in \operatorname{Gal}(\mathbf{F}_p(\sqrt{\varepsilon})/\mathbf{F}_p)$ lahko delujemo na upodobitvi s predpisom $\theta^{\sigma}(x) = \theta(x^{\sigma}) = \theta(x^p)$. Torej je zadnja vrednost karakterja enaka $\theta(g) + \theta^{\sigma}(g)$.

$$egin{array}{c|cccc} & \begin{pmatrix} a & 0 \ 0 & a \end{pmatrix} & \begin{pmatrix} a & 1 \ 0 & a \end{pmatrix} & \begin{pmatrix} a & 0 \ 0 & b \end{pmatrix} & \begin{pmatrix} a & \epsilon b \ b & a \end{pmatrix} \ \hline & \mathrm{Ind}_{T_{nr}}^{G_p}(heta) & p(p-1) heta(a) & 0 & 0 & heta(a+\sqrt{\epsilon}b)+ heta(a-\sqrt{\epsilon}b) \end{array}$$

Tabela 3.8: Karakter upodobitve $\operatorname{Ind}_{T_{nr}}^{G_p}(\theta)$ grupe G_p

Iz vrednosti karakterjev lahko izračunamo normo induciranega karakterja. Vrednost $||\operatorname{Ind}_{T_n}^{G_p}(\theta)||^2$ je enaka

$$\frac{1}{|G_p|} \Biggl(\sum_{g \in \mathbf{F}_p^*} (p(p-1)|\theta(g)|)^2 + \sum_{g \in \mathbf{F}_p(\sqrt{\epsilon})^* \setminus \mathbf{F}_p^*} \frac{p(p-1)}{2} \cdot |\theta(g) + \theta^{\sigma}(g)|^2 \Biggr).$$

Zadnjo vsoto lahko po razvoju kvadrata zapišemo kot

$$\frac{p(p-1)}{2} \cdot \left(2(p^2 - p) + 2\operatorname{Re}\left(\sum_{g \in \mathbf{F}_p(\sqrt{\epsilon})^*} \theta(g) \overline{\theta^{\sigma}(g)} - \sum_{g \in \mathbf{F}_p^*} |\theta(g)|^2 \right) \right).$$

Prvo notranjo vsoto prepoznamo kot skalarni produkt upodobitev θ in θ^{σ} v grupi $\mathbf{F}_p(\sqrt{\epsilon})$, ki je enak bodisi 0 bodisi 1 po ortogonalnosti nerazcepnih karakterjev. S tem je norma $\|\mathrm{Ind}_{T_{-n}}^{G_p}(\theta)\|^2$ enaka

$$\frac{1}{|G_p|} \Big(p^2 (p-1)^3 + p^2 (p-1)^2 + p(p-1) \cdot \big((p^2-1) \langle \theta, \theta^{\sigma} \rangle - (p-1) \big) \Big),$$

kar se poenostavi do

$$||\mathrm{Ind}_{T_{nr}}^{G_p}(heta)||^2 = p-1+\langle heta, heta^\sigma
angle = egin{cases} p & heta = heta^\sigma, \ p-1 & heta
otag heta^\sigma. \end{cases}$$

Upodobitev $\operatorname{Ind}_{T_{nr}}^{G_p}(\theta)$ je torej daleč od nerazcepne.

Pred nadaljevanjem postojmo pri pogoju $\theta = \theta^{\sigma}$, ki razdeli inducirane upodobitve na dva naravna razreda. Ta pogoj lahko enakovredno zapišemo kot $\theta(x) = \theta(x^p)$ za vsak $x \in \mathbf{F}_p(\sqrt{\epsilon})^*$, kar je enakovredno $\theta(x^{p-1}) = 1$. Vrednost θ je torej trivialna na množici $\{x^{p-1} \mid x \in \mathbf{F}_p(\sqrt{\epsilon})^*\}$, ki jo prepoznamo

ravno kot jedro determinante $\ker(\det) = \{x \in \mathbf{F}_p(\sqrt{\epsilon})^* \mid x^{p+1} = 1\}$. Pogoj $\theta = \theta^{\sigma}$ je torej enakovreden temu, da se θ faktorizira prek determinante, se pravi da je oblike $\theta = \chi \circ \det$ za nek karakter $\chi \colon \mathbf{F}_p^* \to \mathbf{C}^*$. Vseh takih upodobitev je p-1. Upodobitve θ , ki se ne faktorizirajo prek determinante, torej za katere velja $\theta \neq \theta^{\sigma}$, se imenujejo **regularne**. Regularne upodobitve prihajajo torej v parih $(\theta, \theta^{\sigma})$. Število Galoisjevih orbit regularnih upodobitev je zato enako $((p^2-1)-(p-1))/2 = p(p-1)/2$.

Glede na to, da inducirana upodobitev iz nerazcepnega torusa ni nerazcepna, lahko poskusimo inducirati še iz kakšne druge podgrupe. Naravni kandidat, ki nam še preostane, je centralizator nediagonalizabilnega elementa, se pravi grupa $C_p = S_p \times U_p$. Ta sestoji iz vseh elementov v G_p , katerih karakteristični polinom ima dvojno ničlo v \mathbf{F}_p . Izberimo upodobitvi

$$\chi: S_p \cong \mathbf{F}_p^* \to \mathbf{C}^*, \quad \psi: U_p \cong \mathbf{F}_p \to \mathbf{C}^*$$

in tvorimo produktno upodobitev $\chi \times \psi$ grupe C_p . To upodobitev induciramo na grupo G_p . S formulo za izračun karakterjev inducirane upodobitve ni težko določiti njenega karakterja. Naj bo R množica predstavnikov desnih odsekov C_p v G_p . Za $g \in G_p$ je $rgr^{-1} \in C_p$ za nek $r \in R$, če in samo če je g bodisi skalar bodisi nediagonalizabilen element. Za skalarje velja

$$\operatorname{Ind}_{C_p}^{G_p}(\chi\! imes\!\psi)\!\left(\!\!\begin{pmatrix} a & 0 \ 0 & a \end{pmatrix}\!\!\right)\!=\!|G_p\!:\!C_p|\!\cdot\!\chi(a)\!=\!(p^2\!-\!1)\chi(a).$$

Za nediagonalizabilen element g pa velja $g^{G_p} \cap C_p = gU_p \backslash S_p$, zato je v formuli za induciran karakter relevantnih le p-1 členov in dobimo

$$\operatorname{Ind}_{C_p}^{G_p}(\chi \times \psi) \left(\begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix} \right) = \sum_{t \in \mathbf{F}_p^*} (\chi \times \psi) \left(\begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix} \cdot \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \right) = \sum_{t \in \mathbf{F}_p^*} \chi(a) \psi(t).$$

Zadnjo vsoto lahko prepišemo kot

$$\chi(a) \cdot \left(\sum_{t \in \mathbf{F}_p} \psi(t) - 1\right) = \chi(a) \cdot (p \cdot \langle \psi, \mathbf{1} \rangle - 1) = \begin{cases} (p-1)\chi(a) & \psi = \mathbf{1}, \\ -\chi(a) & \psi \neq \mathbf{1}. \end{cases}$$

Inducirani karakter je torej odvisen od ψ le preko veljavnosti enakosti $\psi = 1$.

Tabela 3.9: Karakter upodobitve $\operatorname{Ind}_{G_p}^{G_p}(\chi \times \psi)$ grupe G_p

Iz vrednosti karakterjev izračunamo normo

$$||\operatorname{Ind}_{C_p}^{G_p}(\chi \times \psi)||^2 = \begin{cases} 2(p-1) & \psi = 1, \\ p & \psi \neq 1. \end{cases}$$

Upodobitev $\operatorname{Ind}_{C_p}^{G_p}(\chi \times \psi)$ je torej spet daleč od nerazcepne.

Primerjajmo obe inducirani upodobitvi. Skalarni produkt njunih karakterjev lahko izračunamo tako, da seštejemo le prispevke po skalarnih elementih, saj so vsi ostali členi ničelni. Dobimo

$$\langle \operatorname{Ind}_{T_{nr}}^{G_p}(\theta), \operatorname{Ind}_{C_p}^{G_p}(\chi \times \psi) \rangle = \frac{1}{|G_p|} \sum_{a \in \mathbf{F}_p^*} p(p-1)\theta(a) \cdot (p^2-1) \overline{\chi(a)},$$

kar prepoznamo kot

$$(p-1)\cdot\langle\theta|_{S_p},\chi\rangle=egin{cases} 0 & \chi\neq\theta|_{S_p},\ p-1 & \chi=\theta|_{S_p}. \end{cases}$$

Če torej izberemo $\chi=\theta|_{S_p}$, je skalarni produkt med obema upodobitvama enak p-1. Izračunali smo tudi že normi obeh upodobitev, obe sta blizu \sqrt{p} . V luči Cauchy-Schwartzove neenakosti sta karakterja obeh induciranih upodobitev kot vektorja torej zelo blizu temu, da bi bila vzporedna in s tem enaka. Najtesnejšo zvezo med njima dobimo, če minimiziramo normi obeh, torej če vzamemo za θ regularen karakter in za ψ poljuben netrivialen karakter. S to izbiro opazujmo virtualen karakter

$$\zeta_{\theta} = \operatorname{Ind}_{C_p}^{G_p}(\theta|_{S_p} \times \psi) - \operatorname{Ind}_{T_{nr}}^{G_p}(\theta) \in R(G_p).$$

Po že opravljenih računih je norma tega virtualnega karakterja res minimalna,

$$\begin{aligned} \langle \zeta_{\theta}, \zeta_{\theta} \rangle &= \left\| \operatorname{Ind}_{C_{p}}^{G_{p}}(\theta |_{S_{p}} \times \psi) \right\|^{2} + \left\| \operatorname{Ind}_{T_{nr}}^{G_{p}}(\theta) \right\|^{2} - 2 \langle \operatorname{Ind}_{T_{nr}}^{G_{p}}(\theta), \operatorname{Ind}_{C_{p}}^{G_{p}}(\chi \times \psi) \rangle \\ &= p + (p-1) - 2(p-1) \\ &= 1. \end{aligned}$$

Torej je bodisi ζ_{θ} bodisi $-\zeta_{\theta}$ nerazcepen karakter. Ker velja $\zeta_{\theta}(1) = p - 1$, je ζ_{θ} nerazcepen karakter.

Tabela 3.10: Karakter upodobitve ζ_{θ} grupe G_{p}

Na ta način za vsak regularen karakter θ nerazcepnega torusa dobimo nerazcepno upodobitev s karakterjem ζ_{θ} . Taki upodobitvi pravimo **ostna upodobitev**. ²⁸ Z izračunom skalarnih produktov se ni težko prepričati, da sta dve taki upodobitvi izomorfni, če in samo če sta regularna karakterja v isti Galoisjevi orbiti. Število ostnih upodobitev je zato enako p(p-1)/2.

Povzemimo. Skupaj smo našli naslednje upodobitve:

- linearne: p-1 upodobitev stopnje 1,
- Steinbergove: p-1 upodobitev stopnje p,
- glavne vrste: (p-1)(p-2)/2 upodobitev stopnje p+1,
- ostne: p(p-1)/2 upodobitev stopnje p-1.

S tem smo našteli p^2-1 nerazcepnih upodobitev in zatorej vse nerazcepne upodobitve grupe G_p .

Izračunano tabelo karakterjev grupe G_p lahko uporabimo, da z njo določimo še tabelo karakterjev grupe $\mathrm{PSL}_2(\mathbf{F}_p)$.

Domača naloga. Izračunaj tabelo karakterjev grupe $SL(\mathbf{F}_p)$ in grupe $PSL_2(\mathbf{F}_p)$. S tabelo se prepričaj, da je grupa $PSL_2(\mathbf{F}_p)$ enostavna za p > 3.

 $^{^{28}{\}rm Angle\check{s}ko}\ cuspidal\ representation.$

	$\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$	$\begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix}$	$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$	$\begin{pmatrix} a & \epsilon b \\ b & a \end{pmatrix}$
$\chi \circ \det$	$\chi(a)^2$	$\chi(a)^2$	$\chi(a)\chi(b)$	$\chi(a^2-\epsilon b^2)$
$\operatorname{St}(\chi)$	$p\chi(a)^2$	0	$\chi(a)\chi(b)$	$-\chi(a^2-\epsilon b^2)$
$\pi(\chi_1,\chi_2)$	(p +	$\chi_1(a)\chi_2(a)$	$\chi_1(a)\chi_2(b)$ +	0
	$1)\chi_1(a)\chi_2(a)$		$\chi_2(a)\chi_1(b)$	
$\zeta_{ heta}$	$(p-1)\theta(a)$	$-\theta(a)$	0	$- heta(a+\sqrt{\epsilon}b)-$
				$ heta(a-\sqrt{\epsilon}b)$

Tabela 3.11: Tabela karakterjev G_p

Onkraj $GL_2(\mathbf{F}_p)$

Argumente, ki smo jih videli v tem razdelku, bi lahko posplošili na matrike večjih razsežnosti in tako (s precej več truda) izračunali generično tabelo karakterjev grupe $\mathrm{GL}_n(\mathbf{F}_q)$, kot je storil (Green 1955). Zopet dobimo glavno vrsto upodobitev, tokrat inducirano induktivno iz podgrup $\mathrm{GL}_m(\mathbf{F}_q)$ za m < n. Pri tem je relevantno, da to lahko naredimo na več načinov, na primer za vsako razčlenitev števila $n = m_1 + m_2 + \cdots + m_k$ lahko v $\mathrm{GL}_n(\mathbf{F}_q)$ vidimo bločnodiagonalni direktni produkt grup

$$\operatorname{GL}_{m_1}(\mathbf{F}_q) \times \operatorname{GL}_{m_2}(\mathbf{F}_q) \times \cdots \times \operatorname{GL}_{m_k}(\mathbf{F}_q).$$

Teorija upodobitev $\operatorname{GL}_n(\mathbf{F}_q)$ zato vključuje nekaj kompleksnosti teorije upodobitev simetrične grupe S_n . Tudi v splošnem primeru dobimo ostne upodobitve, in sicer s pomočjo indukcije iz Galoisjevih razredov regularnih upodobitev nerazcepnega torusa, ki ga lahko predstavimo kot končno polje \mathbf{F}_{q^n} .

Ni pa tako enostavno pridobiti tudi tabele karakterjev družine enostavnih grup $\mathrm{PSL}_n(\mathbf{F}_q)$ ali njene prijateljice $E_8(\mathbf{F}_q)$. Seveda lahko posamezne tabele za specifične vrednosti n in q izračunamo, ²⁹ ampak končni cilj je imeti generične tabele karakterjev, kot smo to dosegli za $G_p = \mathrm{GL}_2(\mathbf{F}_p)$. Za razumevanje teorije upodobitev teh grup imamo na voljo matematično zahtevno Deligne-Lusztigovo teorijo, ki upodobitve končnih grup sestavlja s pomočjo upodobitev prirejenih algebraičnih grup nad algebraično zaprtim poljem, na primer $\mathrm{SL}_n(\overline{\mathbf{F}_p})$, in sicer te upodobitve izhajajo iz delovanja na ℓ -adičnih kohomoloških grupah prirejenih raznoterosti. Iz te teorije lahko razumemo del generične tabele karakterjev, na primer poznamo vse stopnje nerazcepnih upodobitev, ne poznamo pa vseh vrednosti vseh karakterjev.

3.4 Aplikacije

Večina rezultatov v zvezi z upodobitvami končnih grup je temeljila na uteženem povprečju. *Harmonična analiza* v kontekstu končnih grup je teorija, ki se ubada z globljim razumevanjem uteženih povprečij oziroma Fourierove transformacije in z aplikacijami, ki same po sebi niti niso izražene v jeziku teorije upodobitev. V tem razdelku si bomo na dveh primerih pogledali del te zgodbe. Obakrat bomo vzeli problem, ki a priori nima nobene povezave s teorijo upodobitev, in pokazali, kako ga lahko izrazimo in tudi razrešimo s pomočjo karakterjev. Ne bomo zamudili

²⁹Računanje teh tabel specifičnih končnih enostavnih grup je zbrano v ATLAS. Ti izračuni so močno pripomogli k dokazu izreka o klasifikaciji končnih enostavnih grup.

priložnosti, da vzporedno razvijemo še nekaj dodatnih lastnosti Fourierove transformacije.

Aritmetična zaporedja

Roth kot primer za abelove grupe (omeni Bloom etc sodobne rezultate)

Naj bosta $f_1, f_2 \in \text{fun}(G, F)$ funkciji in ρ upodobitev grupe G. Kompozicija Fourierovih transformacij $\widehat{f}_1(\rho) \cdot \widehat{f}_2(\rho)$ je enaka

$$\sum_{g_1,g_2\in G} f_1(g_1)f_2(g_2)\rho(g_1^{-1}g_2^{-1}) = \sum_{g\in G} \left(\sum_{g_1,g_2\in G: g_2g_1=g} f_2(g_2)f_1(g_1)\right)\rho(g^{-1}).$$

Člen v notranji vsoti je **konvolucija** funkcij f_2 in f_1 , se pravi

$$(f_2 * f_1)(g) = \sum_{g_1,g_2 \in G: g_2g_1 = g} f_2(g_2) f_1(g_1).$$

Torej velja

$$\widehat{f_1}(\rho) \cdot \widehat{f_2}(\rho) = \widehat{f_2 * f_1}(\rho)$$

in Fourierova transformacija pretvarja konvolucijo funkcij v produkt linearnih preslikav, pri čemer moramo biti pozorni na vrstni red operacij zaradi morebitne nekomutativnosti grupe.

Podmnožice brez produktov

Gowers kot nekomutativna posplošitev (omeni Babai)

Naj bo G končna grupa in $A \subseteq G$ njena podmnožica. Množica A je podgrupa, če in samo če je zaprta za množenje, se pravi $A \cdot A \subseteq A$. Skrajno diametralno tej strukturi se znajdemo, če predpostavimo, da produkt nobenih dveh elementov iz množice A ne pripada A, se pravi $A \cdot A \cap A = \emptyset$. V tem primeru rečemo, da je množica A brez produktov. Če smo v teoriji grup malodane obsedeni s strukturiranimi množicami, nas mora vsaj malo tudi zanimati tudi druga skrajnost. Kadar množica A vsebuje kakšno podgrupo, seveda ni brez produktov, zato se morajo take množice čim bolj izogniti podgrupam. Osnovno vprašanje v zvezi z množicami brez produktov je, kako velike podmnožice brez produktov dana grupa vsebuje.

Dodaj zgled iz Eberhard (one-sided mixing) o množici brez produktov v S_n .

Lema. Naj bo G končna grupa in C_1 , C_2 konjugiranostna razreda v G. Za vsako nerazcepno kompleksno upodobitev π na prostoru V velja

$$\widehat{1_{\mathcal{C}_1} * 1_{\mathcal{C}_2}}(\pi) = |\mathcal{C}_1| \cdot |\mathcal{C}_2| \cdot \frac{\overline{\chi_{\pi}(\mathcal{C}_1)} \cdot \overline{\chi_{\pi}(\mathcal{C}_2)}}{\chi_{\pi}(1)^2} \cdot id_V.$$

Dokaz. Fourierova transformacija konvolucije je produkt Fourierovih transformacij, ki jih za dani karakteristični funkciji ni težko izračunati po lemi o Fourierovi transformaciji razredne funkcije.

Trditev. Naj bo G končna grupa in C_1 , C_2 konjugiranostna razreda v G. Velja

$$1_{\mathcal{C}_1} * 1_{\mathcal{C}_2} = \frac{|\mathcal{C}_1| \cdot |\mathcal{C}_2|}{|G|} \sum_{\pi \in \operatorname{Irr}(G)} \frac{\overline{\chi_{\pi}(\mathcal{C}_1)} \cdot \overline{\chi_{\pi}(\mathcal{C}_2)}}{\chi_{\pi}(1)} \chi_{\pi}.$$

Dokaz. Uporabimo Fourierovo inverzijo za funkcijo $1_{\mathcal{C}_1}*1_{\mathcal{C}_2}$. Za vsak $g\in G$ dobimo

$$\left(1_{\mathcal{C}_1} * 1_{\mathcal{C}_2}\right)(g) = \frac{1}{|G|} \sum_{\pi \in \operatorname{Irr}(G)} \chi_{\pi}(1) \operatorname{tr}\left(\widehat{1_{\mathcal{C}_1} * 1_{\mathcal{C}_2}}(\pi) \cdot \pi(g)\right).$$

Trditev zdaj sledi iz zadnje leme.

Komutatorji

Oglejmo si še en čisto nekomutativen problem, ki na prvi pogled nima veliko skupnega s teorijo upodobitev, nazadnje pa se izkaže, da ga lahko popolnoma razrešimo, če le poznamo tabelo karakterjev grupe. Izpeljava bo sledila Fourierovi inverziji konvolucij iz zadnjega razdelka.

Naj bo G končna grupa in K(G) njena podmnožica, ki sestoji iz elementov, ki so komutatorji 30 v G, se pravi

$$K(G) = \{ \lceil x, y \rceil \mid x, y \in G \}.$$

Ta množica v splošnem ni podgrupa.

Zgled. V programskem okolju GAP se ni težko prepričati, da je najmanjša³¹ grupa G, v kateri K(G) ne sovpada z izvedeno podgrupo $[G,G] = \langle K(G) \rangle$, moči 96. V GAP je ta grupa dostopna pod imenom SmallGroup(96, 3). Podamo jo lahko v njeni permutacijski obliki kot podgrupo S_{12} , generirano s permutacijama

$$x = (135)(246)(7119)(81210), y = (39410)(57)(68)(1112).$$

Hitro izračunamo, da je |K(G)| = 29, torej K(G) vsekakor ni podgrupa G. Izvedena podgrupa je le nekoliko večja, |[G,G]| = 32. Primer elementa v [G,G], ki ni hkrati v K(G), je permutacija $(5\ 6)(7\ 8)$.

V luči zgleda je teoriji grup vsekakor v interesu, da bi razumela, kdaj dan element $g \in G$ pripada množici K(G). Lahko smo celo bolj natančni in se vprašamo, na koliko načinov lahko g zapišemo kot komutator. V ta namen predpišimo funkcijo

$$N: G \to \mathbf{N}_0$$
, $g \mapsto |\{(x, y) \in G \times G \mid g = [x, y]\}|$.

Funkcijo N obravnavajmo kot element prostora fun (G, \mathbb{C}) .

Vsako razredno funkcijo razumemo s pomočjo močnih orodij teorije upodobitev. Ni se težko prepričati, da je N razredna funkcija. Za vsak $z \in G$ namreč velja $[zxz^{-1},zyz^{-1}]=z[x,y]z^{-1}$, torej vsak par (x,y) z lastnostjo [x,y]=g porodi par (zxz^{-1},zyz^{-1}) z lastnostjo $[zxz^{-1},zyz^{-1}]=zgz^{-1}$. S tem je $N(g)=N(zgz^{-1})$.

Funkcijo N bomo prepisali v malo bolj nenavadno obliko, ki pa nam bo dobro služila v nadaljevanju. Recimo, da za elementa $x,y\in G$ velja [x,y]=g. To enakost interpretiramo kot $x^{-1}\cdot y^{-1}xy=g$, torej je g zapisan kot produkt elementa x^{-1} in elementa, ki je konjugiran x. Vsakemu takemu paru (x,y) lahko zato priredimo konjugiranostni razred $\mathcal{C}=x^G$

³⁰**Komutator** elementov $x, y \in G$ je element $[x, y] = x^{-1}y^{-1}xy$.

³¹Natančneje, obstajata dve taki neizomorfni grupi.

in elementa $a=x^{-1}\in\mathcal{C}^{-1}$ ter $b=y^{-1}xy\in\mathcal{C}$, za katera velja $a\cdot b=g$. S tem smo opisali prirejanje

$$\psi : \{(x,y) \in G \times G \mid g = [x,y]\} \to \{(\mathcal{C},a,b) \mid \mathcal{C} = (a^{-1})^G, b \in \mathcal{C}, a \cdot b = g\}.$$

To prirejanje ni injektivno, saj s trojico (\mathcal{C},a,b) element y ni enolično določen, pač pa le do odseka po centralizatorju $C_G(a^{-1}) = C_G(a)$ natančno. Torej je $|\psi^{-1}(\mathcal{C},a,b)| = |C_G(a)| = |G|/|\mathcal{C}|$. S tem lahko izrazimo

$$N(g) = \sum_{\mathcal{C}} \frac{|G|}{|\mathcal{C}|} \cdot |\{(a,b) \in G \times G \mid a \in \mathcal{C}^{-1}, b \in \mathcal{C}, a \cdot b = g\}|,$$

kjer vsota teče po vseh konjugiranostnih razredih grupe G.

Dobljeni zapis funkcije N je priročen, ker je izražen le s konjugiranostnimi razredi in je neodvisen od izbire njihovih konkretnih predstavnikov. S tem je amenabilen za gnetenje s Fourierovo transformacijo. Najprej opazimo, da lahko drugi faktor zadnje vsote zapišemo kot

$$\sum_{a,b\in G,\ a\cdot b=g} 1_{\mathcal{C}^{-1}}(a)\cdot 1_{\mathcal{C}}(b) = \left(1_{\mathcal{C}^{-1}}*1_{\mathcal{C}}\right)(g),$$

zato je

$$N(g) = \sum_{\mathcal{C}} \frac{|G|}{|\mathcal{C}|} \cdot (1_{\mathcal{C}^{-1}} * 1_{\mathcal{C}})(g).$$

Konvolucijo lahko po Fourierovi inverziji razvijemo po karakterjih in dobimo

$$N(g) = \sum_{\mathcal{C}} \frac{|G|}{|\mathcal{C}|} \cdot \frac{|\mathcal{C}|^2}{|G|} \sum_{\pi \in \operatorname{Irr}(G)} \frac{|\chi_{\pi}(\mathcal{C})|^2}{\chi_{\pi}(1)} \chi_{\pi}(g) = \sum_{\pi \in \operatorname{Irr}(G)} \frac{\chi_{\pi}(g)}{\chi_{\pi}(1)} \sum_{\mathcal{C}} |\mathcal{C}| \cdot |\chi_{\pi}(\mathcal{C})|^2.$$

Zadnja vsota je ravno enaka $|G| \cdot \langle \chi_{\pi}, \chi_{\pi} \rangle = |G|$, zato nazadnje sklenemo

$$N(g) = |G| \cdot \sum_{\pi \in \operatorname{Irr}(G)} \frac{\chi_{\pi}(g)}{\chi_{\pi}(1)}.$$

Dobljen izraz za število načinov, na katere lahko g zapišemo kot komutator vG, se imenuje *Frobeniusova formula*. V posebnem iz nje sklepamo, da za element $g \in G$ velja

$$g \in K(G) \iff \sum_{\pi \in \operatorname{Irr}(G)} \frac{\chi_{\pi}(g)}{\chi_{\pi}(1)} \neq 0,$$

slednji pogoj pa lahko preberemo neposredno iz tabele karakterjev grupe.

Zgled. Naj bo $G=\langle x,y\rangle$ grupa moči 96 iz zadnjega zgleda. S predstavljenim algoritmom lahko hitro izračunamo njeno tabelo karakterjev. Grupa ima sicer 12 razredov za konjugiranje, zato je njena tabela karakterjev kar velika.

Iz tabele lahko razberemo, da je element [x, y] res komutator, saj je

$$\sum_{i=1}^{12} \frac{\chi_i([x,y])}{\chi_i(1)} = 3 - \frac{1}{3} - 2 \cdot \frac{1}{3} + 2 \cdot \frac{1}{3} = \frac{8}{3} \neq 0.$$

Po drugi strani je element $(5\ 6)(7\ 8)$ v jedru vseh linearnih upodobitev, zato pripada izvedeni podgrupi [G,G]. Hkrati pa ta element ne pripada K(G), saj je

$$\sum_{i=1}^{12} \frac{\chi_i((5\ 6)(7\ 8))}{\chi_i(1)} = 3 + 1 + \frac{1}{3} - 4 \cdot \frac{1}{3} - 3 = 0.$$

Njegov konjugiranostni razred vG sestoji iz treh elementov. Ko te elemente dodamo množici K(G), dobimo ravno [G,G].

	()	(5,6)(7,8)	y	[x,y]	\boldsymbol{x}
χ1	1	1	1	1	1
χ_2	1	1	1	1	ζ
X 3	1	1	1	1	ζ^2
χ_4	3	3	-1	-1	0
χ_5	6	2	0	0	0
χ_6	3	-1	1	-1 + 2i	0
χ_7	3	-1	1	-1-2i	0
χ_8	3	-1	-1 + 2i	1	0
χ9	3	-1	-1-2i	1	0
χ_{10}	2	-2	0	0	-1
χ_{11}	2	-2	0	0	$-\zeta^2$
χ_{12}	2	-2	0	0	$-\zeta$

Tabela 3.12: Del tabele karakterjev SmallGroup(96, 3), kjer je $\zeta = e^{2\pi i/3}$

Primer: komutatorji v GL_2 so ravno SL_2 , razberemo iz tabele karakterjev GL_2 .

omeni LOST Ore domneva

Slučajni sprehodi

Fourier diagonalizira matriko sosednosti (Diaconis, str. 48), kakšen konkreten primer: .

 $^{^{32}}$ Velja namreč zveza $b = y^{-1}a^{1}y$.

Poglavje 4

Upodobitve linearnih grup

4.1 Ozaljšane upodobitve

Zvezne upodobitve

Unitarne upodobitve

- topološke grupe (zvezne upodobitve) - unitarne na hilbertovih prostorih (končne, še enkrat se ozremo na Maschkeja in karakterje v luči tega, SU_2)

 S^1

fourier

4.2 Liejeve grupe

 $\mathrm{SL}_2(\mathbf{C})$

 $\mathrm{SL}_2(\mathbf{Z})$

- obravnavamo kot Liejevo grupo - pokažemo povezavo z sl_2 (if you have a lie group, you can also liearize the source:: lahko eksplicitno opišemo vse nerazcepne, pokažemo kako so bijektivno (!) povezane z gladkimi upodobitvami SL_2 , glej Fulton-Harris) - naštejemo upodobitve SL_2 - dokažemo, da so nerazcepne (potrebujemo izotipične komponente) - diferencial teh upodobitve nam da upodobitve sl_2 - dokažemo, da so to vse upodobitve sl_2 (Fulton-Harris) - zvezne upodobitve SL_2 : te plus konjugiranke (samo rezultat, glej Example 2.7.41 za karakter) - abstraktne upodobitve: divji avtomorfizmi $\bf C$ - dokažemo Clebsch-Gordan (najbrž izpustimo ..) - $SL_2(Z)$? (-> https://math.stackexchange.com/questions/786303/the-presentation-of-sl2-mathbbz, glej zadnji odgovor, kjer poda prezentacijo, napiši na primer enačbe za raznoterost dvorazsežnih realnih upodobitev) - random groups, model Gromova https://arxiv.org/abs/1810.01529 - $SL_n(Z)$? (-> The representation theory of SLn(Z), Andrew Putman, povezano s p-adičnimi števili – Lubotzky)

Theorem 2.6.7 Baumslag-Solitar grupa je končno prezentirana, ni pa linearna (ampak za to bi potrebovali končno prezentirane grupe ...) Ta dokaz bi lahko dodali v del o RASTi, kjer že imamo vse potrebno razvito! Dodaj referenco o obstoju grupe, ki nima upodobitve, tukaj. Po tem lahko še omenimo rezultat Lubotzky o random grupah.

4.3 Kompaktne grupe

 $\mathrm{SU}_2(\mathbf{C})$

- lahko bi geometrijsko iz sl_2 , ampak pokažemo alternativen pristop, ker je kompaktna - naštejemo upodobitve, so nerazcepne: isti dokaz kot za SL_2 bolj ali manj deluje tudi tukaj - Clebsch-Gordan je trivialen iz karakterjev - dokažemo, da so to vse zvezne nerazcepne: rabimo karakterje - Peter-Weyl na tem primeru (samo izrek, da smo s tem pokrili vse unitarne upodobitve)

p-adične grupe. Omenimo lahko na primer rezultat Jaikin (representation growth) in Aizenbud-Avni (Representation Growth and Rational Singularities of the Moduli Space of Local Systems).

- ? lastnost (T), dodaj referenco na TGP in expanderje - $\mathrm{SL}_2(\mathbf{R})$: sorodna SU (imata enako kompleksifikacijo Liejevih algeber), ampak hkrati popolnoma drugačna kar se tiče unitarnih upodobitev.