How does San Francisco fit with sharing economy? Empirical analysis of Airbnb listing rental prices

Yijun Yang

San Francisco

- Tourists
- Bussiness
- Cultural
- <u>Technology</u>
- <u>2000s</u>

Sharing Economy: What is it?

- Private Ownership
- "Ours"
- peer-to-peer

San Francisco + Sharing Economy

- Early adptoers
- Hub

Sharing Economy: For-profit companies

Peer-to-peer Accomdation: Airbnb

- Founded in 2008 in San Francisco

- 2015 Airbnb Valuation: \$20 Billion
- 2019 Airbnb Valuation: \$38 Billion

- Huge pressure to traditional hotel bussiness

How does sharing economy behave in the SF market? Does traditional commerical power still win?

Visulization

- Data Source: *Inside Airbnb*, *Nov*, 2021

- Size of Data: 6552 listings in San Francisco

- Size of Variables: **29 select fetures**

Neighbourhood

Western Addition

Nob Hill

Hosts with multiple listings posted

- 3397 hosts have more than 1 listings.

- 64 hosts have more than 10 listings

- 9 hosts have over 40 listings

Room types & Bed numbers

Price and Neighbourhood

Top 5 Neighbourdood: Count the listings for each neighbourhoods and slect the top 5 with most counts.

Price and Avaliability

high_ava low ava

High ava: anuual availiability ≥ 90 days

Low ava: anuual availiability < 90 days

Mean review score bed number Nights total

V.S.

Price

Regression: General Linear Model

```
price = \beta_0 + \beta_1 * Neighbourhood + \beta_2 * Room \ type + \beta_3 * Availability \ label 
+ \beta_4 * Nights \ total + \beta_5 * Beds + \beta_6 * Mean \ review \ score 
+ \beta_7 * Nights \ total * Beds + \beta_8 * Nights \ total * Mean \ review \ score 
+ \beta_9 * Beds * Mean \ review \ score 
+ \beta_{10} * Beds * Mean \ review \ score * Nights \ total 
(1)
```

Regression: General Linear Model

β_i Constant Coefficient	Estimate	Std. Error	t value	Pr(> t)	
eta_0	0.10556	0.23862	0.442	0.65824	
eta_1	0.08017	0.02602	3.081	0.00208	
eta_2	0.21163	0.02683	7.887	3.76e-15	
eta_3	-0.02772	0.02672	-1.038	0.29948	
eta_4	0.51988	0.24760	2.100	0.03580	
eta_5	-0.40607	0.12893	-3.150	0.00164	
eta_6	-0.14825	0.04937	-3.003	0.00269	
eta_7	-0.37673	0.14635	-2.574	0.01007	
eta_8	-0.10126	0.05173	-1.958	0.05034	
eta_9	0.13723	0.02681	5.118	3.21e-07	
eta_{10}	0.07238	0.03042	2.380	0.01737	

Reject null hypothesis

RMSE	R^2		
0.08327	0.19314		

Regression: General Lienar Model

```
price = \beta_0 + \beta_1 * Neighbourhood + \beta_2 * Room type + \beta_3 * Availability label 
+ \beta_4 * Nights total + \beta_5 * Beds + \beta_6 * Mean review score 
+ \beta_7 * Nightstotal * Beds + \beta_8 * Nights total * Mean review score 
+ \beta_9 * Beds * Mean review score 
+ \beta_{10} * Beds * Mean review score * Nights total \end{array} (1)
```

Classification: Supervised, Random Froest

Actual Class

Prediction Class

	Cheap	Expensive	Total
Cheap	%65.8	%14.6	%80.4
Expensive	%5.2	%14.4	%19.6
Total	%70.0	%30.0	%100.0

Accuracy	Kappa		
0.80194	0.46858		

Target Varaibel: Expensive/ Cheap

Features: neighbourhood, room types, bed, mean review score

Major featuers that relate to price

neighbourhood

room type

bed

mean review score

Major featuers that not relate to price

nights total

availiability

Classification: Unsupervised, K-means clusering

price

nights total

availiability

cluster name	percent	price	nights total	availability label
Commercial Hosts	36.3%	-0.01767306	1.2736271	0.7445099
Peer Hosts	63.7%	-0.00839774	-0.7816904	0.6327029

Conclusion

The <u>commercial power</u> takes great proportion in this market over the years.

More than <u>1/3</u> of the whole market.

The model of <u>listing price</u> in this market highly <u>follows the traditional economy models</u>. Better neighbourhood, individual room and higher review scores inevitably result to a higher price. The key feature of peer-to-peer accommodation, <u>availability</u> of the listings, has <u>no importance to the price</u>.

Airbnb's sharing economy <u>depends greatly on conventional economy model</u> in <u>San Francisco</u>.

Some Thoughts

- Complexity of San Francisco
- Political subcultures: liberal, environmentalists and populists
- Deregulation
- Political, cultural backlash

 Rethink how individuals consume (and produce) services under the challenges from political and public cultures while constructing a new type of economy of their own.