Detekcija i praćenje igrača i lopte na košarkaškoj utakmici

Petar Markovic SW-73/2018, Mateja Ćosović SW-9/2018

Fakultet tehničkih nauka, Univerzitet u Novom Sadu

MOTIVACIJA

Detekcija objekata je tehnika u kompjuterskoj viziji koja nam omogućava da identifikujemo i lociramo objekte na slici ili snimku. Kao bivši košarkaši, uvideli smo da bi se ova tehnika mogla primeniti i u scenariju košarkaške utakmice, te smo odlučili da to isprobamo.

SKUP PODATAKA

Za potrebe ovog projekta nismo uspeli naći adekvatan skup podataka na internetu, samim tim smo morali ručno da prikupljamo podatke. Skrinšotovali smo snimke košarkaških utakmica sa Youtube-a, a potom smo ih ručno labelirali sa dve klase – igrač i lopta.

Ukupno smo prikupili i labelirali 369 slika, a zatim smo ih podelili u odnosu:

- Trening skup (269 slika) ~ 73%
- Test skup (100 slika) ~ 27%

YOLO ALGORITAM

YOLO predstavlja skraćenicu od "You only look once" fraze. Ovo je algoritam koji prepoznaje i detektuje različite objekte na slici ili snimku, u realnom vremenu. Yolo algoritam radi uz pomoć tri tehnike:

- 1. Rezidualni blokovi slika koja se posmatra se deli na gridove, pri čemu je svaki grid dimenzije SxS. Svaka ćelija će detektovati objekte koji se nalaze u njoj.
- 2. Bounding box regresija Bounding box predstavlja jedan labelirani objekat na slici (sadrži širinu, visinu, x i y koordinate centra, i klasu kojoj pripada). Upotrebom regresije yolo algoritam predviđa ove atribute objekta.
- 3. Intersection of Union (IoU) Pomoću ovog pojma YOLO može obezbediti bounding box koji savšeno poklapa objekat, drugim rečima IoU nam omogućava da predviđeni bounding box bude isti kao pravi, i samim tim eliminiše lažne bounding boxove.

Postoje različite verzije unapređenja YOLO algoritma, od toga su najpoznatije YOLOV3 i YOLOV4. Ove dve verzije algoritma smo i mi koristili za naš problem, kao i njihove tiny verzije (kompresovane verzije).

REZULTATI

Nakon treniranja naših modela sa confidence thresholdom od 0.25 i thresholdom od 0.5 za IoU, rezultati su sledeći:

Algoritmi	Igrač			Lopta			Ukupno	
	TP	FP	Preciznost	TP	FP	Preciznost	mAP	avg IOU
YOLO V4	780	42	94.39%	61	14	78.42%	86.41%	72.44%
YOLO V3	739	42	90.47%	56	25	63.02%	76.75%	69.60%
YOLO V4-TINY	742	53	90.77%	53	13	66.29%	78.53%	70.49%
YOLO V3 - TINY	660	67	84.62%	19	21	21.13%	52.88%	64.02%

ZAKLJUČAK

Uzimajući u obzir mali skup podataka, iz rezultata se može zaključiti da je YOLO algoritam veoma moćan alat. Rezultati su otprilike i očekivani, YOLOV4 se pokazao kao najbolji izbor, dok je YOLOV3-tiny imao najgore performanse. Takođe, vidi se da skoro svi modeli dobro detektuju igrače, a znatno slabije detektuju loptu. Razlog tome je veličina same lopte, često je zamagljena na slikama za trening, a i sama boja utiče na to. Naravno, povećanjem samog skupa podataka mogle bi se unaprediti performanse i za detekciju lopte.

Dodatne funkcionalnosti za naš projekat bi mogle biti:

- Dodatna klasifikacija igrača po timovima, ili po akciji (šuter, odbrambeni igrač, skakač...)
- Praćenje događaja postignut koš, izgubljena lopta, praćenje poseda...