Use of cell_measures and cell methods in a fregrid regridding algorithm.

Below is a summary of the part of the function do_scalar_conserve_interp() used by fregrid.

Algorithm Assumptions and Conventions:

- 1. Algorithm below is for 1st order conservative interpolation regridding; this shortened summary version assumes there is only one elevation and only one tile.
- 2. Desired mapping is from $grid_s$ (source) to $grid_t$ (target), and an exchange grid (xgrid) between the two has been calculated. For every cell of $grid_t$, xgrid will have indices into one or more cells of $grid_s$.
- 3. n_{o} , n_{r} , n_{s} are indices into the exchange, target, and source grids, respectively
- 4. Field/variable field_s is mapped onto grid_t and to be called field_t
- cell_methods are specified as metadata per field. Similarly for cell_measures, but if its specified as *true* for a field, then the input file must also specify an area per grid cell of the corresponding input grid).
- 6. Cell_measures default is *false*; cell_methods default is *cell_methods_mean*, and the alternative is *cell_methods_sum*.
- 7. field_s. area[n] defined as "fraction of cell area"
- 8. nx is the number of cells in the longitudinal (X) coordinate. Algorithm:
 - 1. $loop over n_{\rho}$; $n_{\rho} \equiv 0, 1, 2, ..., (size(xgrid) 1)$
 - $\begin{array}{lll} \text{a.} & i_t \equiv \textit{xgrid.iout}[n_e] \; ; \; j_t \equiv \textit{xgrid.jout}[n_e] \; ; \; n_t = j_t \; * \; nx_t \; + \; i_t \\ & i_s \equiv \textit{xgrid.iin}[n_e] \; ; \; \; j_s \equiv \textit{xgrid.jin}[n_e] \; ; \; \; n_s = j_s \; * \; nx_s \; + \; i_s \\ \end{array}$
 - b. $area = xgrid. area [n_e]$ //(I.e. The area of overlap of cells index by n_s and n_t)
 - i. if $(weight_exist)$ area = area × $grid_s$. weight[n]
 - ii. if (field_s.cell_methods_sum) area = area \div grid_s.cell_area[n_s]

 $elif\ (field_s.\ cell_measures)\ area\ =\ area\ imes\ field_s.\ area[n_{_{s}}]\ \div\ grid_s.\ cell_area[n_{_{s}}]$

- $\text{c. } \textit{field_t.val}[n_{t}] = \textit{field_t.val}[n_{t}] + \textit{field_s.val}[n_{s}] \times \textit{area}$
- 2. End of loop over n_e