INTE 296 Formulae Sheet - Page 1 of 2

Numerical Summaries of Centre and Variation:

• Mean: $\bar{x} = \frac{\sum x}{n}$ Standard deviation: $s = \sqrt{\frac{\sum (x - \bar{x})^2}{n-1}}$ Variance: $s^2 = \frac{\sum (x - \bar{x})^2}{n-1}$

• Note: $\sum (x - \bar{x})^2 = \sum x^2 - n \, \bar{x}^2$

Empirical Rule:

• $\%(\bar{x} \pm s)$: 68% $\%(\bar{x} \pm 2s)$: 95% $\%(\bar{x} \pm 3s)$: Nearly 100%

• z-Score: $z = \frac{x - \bar{x}}{s}$ Interquartile range: $Q_3 - Q_1$ Range: Maximum - Minimum

Correlation and Regression:

• Pearson Correlation: $r = \frac{\sum xy - n\bar{x}\bar{y}}{(n-1)s_xs_y}$

• Regression line: Predicted $y=b_0+b_1x$; slope: $b_1=r\frac{s_y}{s_x}$; intercept: $b_0=\bar{y}-b_1\bar{x}$

Probability Rules:

• Rule 1: $0 \le P(A) \le 1$

• Rule 2: $P(A^c) = 1 - P(A)$

• Rule 3: For equally likely outcomes, $P(A) = \frac{Number\ of\ outcomes\ in\ A}{Number\ of\ possible\ outcomes}$

• Rule 4: P(A OR B) = P(A) + P(B) - P(A AND B)

• Rule 4a: P(A OR B) = P(A) + P(B) if A, B are mutually exclusive

• Rule 5a: $P(A|B) = \frac{P(A \text{ AND } B)}{P(B)}$

• Rule 5b: P(A AND B) = P(A|B)P(B) = P(B|A)P(A)

• Rule 5c: For independent events A and B, P(A AND B) = P(A)P(B)

Central limit theorem: For large *n*

• For sample proportions: \hat{p} is approximately normal with mean = p and

$$SD = \sqrt{\frac{p(1-p)}{n}}$$

• For sample mean: \bar{x} is approximately normal with mean = μ and

$$SD = \frac{\sigma}{\sqrt{n}}$$

INTE 296 Formulae Sheet - Page 2 of 2

Confidence Intervals for proportions and means:

• Proportion: $z = \frac{\hat{p}-p}{SD}$ CI: $\hat{p} \pm z^*SD_{est}$; $SD_{est} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$;

• Mean: $z \text{ or } t = \frac{\bar{x} - \mu}{SD_{est}} \text{ CI: } \bar{x} \pm t^* SD_{est}; SD_{est} = \frac{s}{\sqrt{n}}$

Difference of means:

• CI: $(\bar{x}_1 - \bar{x}_2) \pm t^* \sqrt{\frac{s_1^2 + \frac{s_2^2}{n_1}}{n_1}}$; t^* obtained from a t-table with df = smaller of $(n_1 - 1)$ and $(n_2 - 1)$

Test for proportions:

Single proportion: H_0 : $p=p_0$; Test Statistic: $z=\frac{\hat{p}-p_0}{SD}$ where $SD=\sqrt{\frac{p_0(1-p_0)}{n}}$

• Two Proportions: H_0 : $p_1 = p_2$; Test Statistic: $z = \frac{\hat{p}_1 - \hat{p}_2}{SD}$ where $SD = \sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$; $\hat{p} = \frac{\text{number of successes in sample 1 + number of successes in sample 2}}{n_1 + n_2}$

Test for means:

• Single mean: H_0 : $\mu=\mu_0$; Test Statistic: $z=\frac{\bar{x}-\mu_0}{SD_{est}}$ where $D_{est}=\frac{s}{\sqrt{n}}$; for large samples

• For small samples and normal population, use Test Statistic: $t = \frac{\bar{x} - \mu_0}{SD_{est}}$ where $SD_{est} = \frac{S}{\sqrt{n}}$, df = n-1

• Two means: H_0 : $\mu_1=\mu_2$; for independent samples, Test Statistic: $t=\frac{\bar{x}_1-\bar{x}_2}{SD_{est}}$ where $SD_{est}=\sqrt{\frac{S_1^2}{n_1}+\frac{S_2^2}{n_2}}$

• For dependent sample (Paired), Test Statistic: $t = \frac{\bar{x}_{\text{diffference}}}{SD_{est}}$ where $D_{est} = \frac{s_{\text{diffference}}}{\sqrt{n}}$; df = n-1

Chi-square Test for Testing in Categorical Variable:

• Expected Frequency for a cell = $\frac{(row\ total) \times (Column\ total)}{arcand\ total}$

• $\chi^2_{Obs} = \sum_{all\ cells} \frac{(Observed-Expected)^2}{Expected}$

Degrees of Freedom:

• For goodness of fit, df = No. of categories - 1;

• For a categorical two-way table, $df = (number of rows - 1) \setminus times (number of columns - 1)$

ANOVA

• $SS_{total} = SS_{between} + SS_{within}$; $SS_{total} = \sum (x - \bar{x})^2 = (N - 1)s^2$; $SS_{within} = \sum (n_i - 1)s_i^2$

• $SS_{between} = \sum n_i (\bar{x}_i - \bar{\bar{x}})^2 = SS_{total} - SS_{within}$

• $df_{between} = k - 1$; $df_{within} = N - k$; $df_{total} = df_{beteween} + df_{within} = N - 1$; $MS = \frac{SS}{df}$; $F = \frac{MSB}{MSW}$