ASSIGNMENT 1

Xinshi Wang, 661975305

Sunday 18th September, 2022

1 Problem 1

- 1. all string of a's and b's, beginning and ending with one a
- 2. all string of a's and b's
- 3. all string of a's and b's. ending with aaa, aab, aba, or abb
- 4. all string of a's and b's with exactly 3 b's
- 5. all string of a's and b's with even number of a's and b's

2 Problem 2

- 1. 21 is 10101 in binary form
 - $C \rightarrow A1$
 - \rightarrow B01
 - \rightarrow B101
 - \rightarrow A0101
 - $\rightarrow 10101$
- 2. We can prove it using induction.

Base case: $C \to 0$, then $0 \mod 3 \equiv 0$.

Induction hypothesis 1: $C_n \mod 3 = 0$

Induction Step:

Branch 1: $C_{n+1} \to C0 \implies C_{n+1} = C \times 2$ (Property of Binary number) $\implies C_{n+1} \mod 3 \equiv 0$.

Branch 2: $C_{n+1} \to A 1$

Case 1 (branch for A): $A \to 1 \implies C_{n+1} = 11C \implies C_{n+1} \mod 3 \equiv 0$ (difference between 1 at odd and even positions remain unchanged) $\implies A \equiv 1 \pmod 3$

Induction hypothesis: $A_n \equiv 1 \pmod{3}$.

 $\text{Case 2 (branch for A): } A_{n+1} \rightarrow \text{C1} \implies C_{n+1} = \text{C11} \implies C_{n+1} = \text{C} \times 4 + 3 \implies C_{n+1} \mod 3 \equiv 0. \ C_1 = C \times 2 \implies C1 \equiv 1 \pmod 3$

Case 3 (branch for A): $A_{n+1} \to B 0$

Case 1 (branch for B): B \rightarrow A 0 \Longrightarrow $C_{n+1} =$ A 0 0 1 = $A \times 8 + 1$ Since $A_n \equiv 1 \pmod{3}$ in previous case, we have $A \times 8 + 1 = 1 \times 8 + 1 \equiv \mod 3$.

Induction Hypothesis: $B_n = 2 \pmod{3}$

Case 2 (branch for B): $B_{n+1} \to B$ 1 $\implies C_{n+1} = B$ 1 0 1 = $B \times 8 + 5$ Since $B \equiv 2 \pmod{3}$ in previous case, we have $B \times 8 + 5 = 2 \times 8 + 5 \equiv 0 \pmod{3}$. $B_{n+1} = B$ 1 $\implies B_{n+1} \equiv 2 \pmod{3}$.

Case 3 (branch for B): $B \to A$ 0 $\implies C_{n+1} = A$ 0 0 1 = $A \times 8 + 1$ Since $A \equiv 1 \pmod{3}$ in previous case, we have $A \times 8 + 1 = 1 \times 8 + 1 \equiv \mod{3}$. $A_{n+1} = B$ 1 = A = A = B 2 A = A = A = B 1 (mod 3)

Thus all cases hold for B branch

Thus all cases hold for A branch

Thus all cases hold for C branch

3. In problem 2, we prove that C,A,and B could produce numbers equal to 0 mod 3, 1 mod 3, and 2 mod 3, which are a disjoint set of numbers. Then $S \to C \parallel A \parallel B$ will generate any numbers. S-A-B would then equal to C. Thus C must contain all the numbers equal to 0 mod 3. Thus such grammar would generate all the numbers.

3 Problem 3

1. The grammar is ambiguous because there are at least two parse trees for $id\theta_1 id\theta_1 id$.


```
2. We can construct the following:  \expr \rightarrow expr\theta_1 Terms_1 | Terms_1 
Terms_1 \rightarrow Terms_1\theta_2 Terms_2 | Terms_2 
Terms_2 \rightarrow Terms_2\theta_3 Terms_3 | Terms_3 
\dots
Terms_{n-1} \rightarrow Terms_{n-1}\theta_n Terms_n | Terms_n 
Terms_n \rightarrow Terms^* | Terms 
Terms \rightarrow id | (expr)
```

4 Problem 4

- 1. Follow(E_s) = {)} Follow(E) = {',(,), atom, \$\$} Predict($E_s \rightarrow \epsilon$) = {)}
- $2. \ \,$ The parse tree is given as the following diagram

3. $P\rightarrow E\$\$$ $E\rightarrow (EE_s)$ $E_s\rightarrow EE_s$ $E\rightarrow 'E$

5 Problem 5

	LL(1)	Ambiguous
(a)	No	No
(b)	Yes	No
(c)	No	Yes
(d)	No	Yes
(e)	Yes	No