EQUILÍBRIO IÔNICO

EQUILÍBRIO IÔNICO

Equilíbrio Iônico - 3

Medindo a Força do Ácido

- a) Através da constante
- b) Através do logaritmo da constante
- c) Deslocamento de Equilíbrio

PROFESSOR: THÉ

LIÇÃO: 101

Equilíbrio Iônico 3

1. Força dos ácidos

Comparando a ionização de dois ácidos, HA e HB.

O ácido **HB** é mais forte que o ácido HA, porque mais moléculas se ionizam.

Na mesma concentração o eletrólito mais forte é aquele que

- a) Apresentar maior grau de ionização (α)
- b) Produzir a maior concentração de íons

OBS: Eletrólito é o nome dado a cada íon presente na solução

Experimento

Adiciona-se um ácido em um recipiente contendo água e dois eletrodos separados. Esses fazem parte de um circuito elétrico, com uma lâmpada que acenderá quando o circuito for fechado.

Enquanto houver apenas água, praticamente **não** há corrente elétrica logo a lâmpada permanece apagada.

Quanto maior o número de íons presentes, maior a corrente que passa pela solução e mais brilhante a lâmpada ficará.

Na adição do ácido...

Quanto mais forte ele for, maior o número de íons presentes, maior a condutividade elétrica da solução e maior o brilho da lâmpada.

2. Fórmula de Linus Pauling

A força do ácido é determinada experimentalmente. É possível, entretanto fazer uma estimativa da força dos **oxiácidos** por uma fórmula criada por *Linus Pauling*.

Exemplos:

1) Ácido Sulfúrico: $H_{2}SO_{4}$

$$\begin{pmatrix} \mathbf{O} \end{pmatrix} - \begin{pmatrix} \mathbf{H}^+ \end{pmatrix}$$

$$\stackrel{\downarrow}{\mathbf{4}} - \stackrel{\downarrow}{\mathbf{2}} = \boxed{2} \begin{pmatrix} \mathbf{\acute{A}} \mathbf{\acute{c}ido} \ \mathbf{Forte} \end{pmatrix}$$

2) Ácido nitroso: $H_{1}NO_{2}$

$$\begin{pmatrix}
\mathbf{O} \\
-\begin{pmatrix} \mathbf{H}^+ \\
2 \\
- \\
1 \\
- \\
1
\end{pmatrix} \begin{pmatrix}
\mathbf{A}cido\ Moderado
\end{pmatrix}$$

Observações:

- 1) **Oxiácidos:** são ácidos que apresentam oxigênio em sua fórmula (H₂SO₄, H₃PO₄)
- 2) **Hidrácidos:** são os que **NÃO** apresentam oxigênio em sua fórmula (HCl, HBr, H₂S)
- Existem ácidos que apresentam hidrogênios não-ionizáveis.
 Os mais importantes são:
 - ➤ Ácido fosforoso (H₃PO₃)

⊳ Força: 3-2 = 1 (moderado)

Ácido Hipofosforoso (H₃PO₂)

- Força: 2-1 = 1 (moderado)
- > Ácido Acético (e outros ácidos carboxílicos)

Conclusão: nos oxiácidos são ionizáveis os átomos de hidrogênio ligados aos oxigênios.

4) Exceção importante (H_2CO_3 = fraco)

De acordo com a fórmula ele seria um ácido moderado, <mark>mas não é</mark>.

Para decorar: Ácido carbônico: H₂CO₃ = **fraco**

Exercício Exemplo 1

(FATEC-SP) Considerando os ácidos HNO $_3$ (ácido nítrico), H $_2$ SO $_3$ (ácido sulfuroso) e HClO $_4$ (ácido perclórico), a ordem crescente de força é:

- a) HNO₃, H₂SO₃, HClO₄
- b) H_2SO_3 , HNO_3 , $HCIO_4$
- c) $HCIO_4$, H_2SO_3 , HNO_3
- d) HNO₃, HClO₄, H₂SO₃
- e) H₂SO₃,HClO₄,HNO₃

RESOLUÇÃO:

Efetuando a diferença $(O-H^+)$:

$$H_{\boxed{1}}NO_{\boxed{3}}$$
: 3-1= $\boxed{2}$ \rightarrow (ác. forte)

$$H_{\boxed{2}}SO_{\boxed{3}}: 3-2=\boxed{1} \rightarrow (\acute{ac}. moderado)$$

$$H_{\boxed{1}}$$
 CIO $\boxed{4}$: 4-1 = $\boxed{3}$ \rightarrow (ác. muito forte)

A ordem crescente de acidez é:

$$\begin{array}{ccc}
1 & \rightarrow & 2 & \rightarrow & 3 \\
\downarrow^{\downarrow} & \downarrow^{\downarrow} & \downarrow^{\downarrow} & \downarrow^{\downarrow} \\
H_2SO_3 \rightarrow HNO_3 \rightarrow HCIO_4
\end{array}$$

RESPOSTA: B

3. Comparando a Constante de Acidez (Ki)

Seja o ácido **HA** e sua constante Ki:

$$HA \Longrightarrow H^+ + A^ Ki = \frac{\left[H^+\right]\left[A^-\right]}{\left[HA\right]} = 2.10^{-3}$$

Quanto maior a quantidade de íons (H⁺ e A⁻) maior a **acidez** e a **constante Ki.**

Comparando com um ácido de fórmula HB e sua constante de ionização (Ki)

$$HB \iff H^{+} + B^{-} \qquad Ki = \frac{\left[H^{+}\right]\left[B^{-}\right]}{\left[HB\right]} = 4.10^{-4}$$

▶ Comparando dois ácidos, por exemplo.

4. Comparando o pK

Símbolo p \rightarrow significa: o **expoente** com o sinal trocado ou o **-log** $\boxed{\rho Ka = -\log Ka}$

Os químicos imaginando estar simplificando o exame das constantes, criaram o **símbolo "pê" (p)** para informar o expoente

Ki	log Ki	рКі
10^{-2}	-2	2
10 ⁻³	-3	3
10 ⁻⁸	-8	8

Dessa maneira...

Quanto menor pK mais forte é o ácido

OBS₁: para ácidos : pKi = pKa para bases : pKi = pKb

OBS₇: todo estudo feito para os ácidos, serve também para as bases

Exemplo 2

Calcular pKa de cada ácido e descobrir qual é o ácido mais forte.

Ácido	Ка	$\log 2 = 0.3$
HA	2.10^{-3}	$\log 4 = 0.6$
НВ	4.10^{-4}	

RESOLUÇÃO:

1)
$$HA - Ka = 2.10^{-3}$$

$$pKa = -\log 2 \cdot 10^{-3}$$

$$pKa = -(\log 2 + \log 10^{-3})$$

$$pKa = -(0,3-3) = \boxed{2,7} \text{ (mais forte)}$$

2)
$$HB - Ka = 4.10^{-4}$$

$$pKa = -\log 4 \cdot 10^{-4}$$

$$pKa = -\left(\log 4 + \log 10^{-4}\right)$$

$$pKa = -\left(0,6 - 4\right) = \boxed{3,4}$$

5. Deslocamento de Equilíbrio:

Considere o equilíbrio do ácido acético em água

A esse equilíbrio acionam-se separadamente:

a) NaCl (s)

$$NaCl \rightarrow Na^{+} + Cl^{-}$$

Não há deslocamento porque:

- > Não há íon comum (no equilíbrio)
- ➤ Não há nenhum íon do equilíbrio que reage com o Na⁺ e Cl⁻
- b) $NaAc_{(s)}$ (Acetato de sódio)

 $NaAc \rightarrow Na^+Ac^-$

O equilíbrio é deslocado para a **esquerda**, devido ao íon comum, Ac^- .

$$NaAc \rightarrow Na^{+} + Ac^{-}$$
 $HAc \rightleftharpoons H^{+} + Ac^{-}$

Efeito do íon comum

A adição de um íon comum diminui o grau de ionização

c) $NaOH_{(s)}$

$$NaOH \rightarrow Na^+ + OH^-$$

O equilíbrio é deslocado para a **direita**, por causa da reação de $\underline{\mathsf{H}^+}$ com \mathbf{OH}^-

HAc
$$\longrightarrow$$
 H⁺+ Ac⁻
NaOH \rightarrow Na⁺+OH⁻ \rightarrow H₂O

Qualquer espécie adicionada ao equilíbrio que **reage** com um componente do equilíbrio, retira esse componente deslocando o equilíbrio

RESUMO

1) Força:

É o nome empregado para informar o quanto ionizado se encontra o ácido.

OBS: O termo *força* é usado no mesmo sentido para as bases.

2) Grau de Ionização (α)

Expressa a porcentagem de moléculas ionizadas, isto é, a fração de moléculas que se ioniza.

$$\alpha = \frac{1}{D} \begin{cases} I = n^{\circ} \text{ de moléculas ionizadas} \\ D = n^{\circ} \text{ de moléculas dissolvidas} \end{cases}$$

3) Escala de força baseada no α

Classificação:

FORÇA	α
Fraco	0 a 5 %
Moderado ou semiforte	5% a 50%
Forte	50% a 100%

Como o grau de ionização varia com a concentração, geralmente usa-se a concentração 0,1 molar (mol/L)

Constante de ionização (Ki), Ka (para ácidos), Kb (para bases).

Escala:

Classificação:

FORÇA	α
Fraco	0 a 10 ⁻⁴
Moderado ou semiforte	$10^{-4} a 10^{-2}$
Forte	10 ⁻² a ∞

A constante de equilíbrio não varia com a concentração, daí, ela é um parâmetro melhor que o α para medir a força.

5) pKi (pKa ou pKb)

CUIDADO!

Quanto **maior** Ki mais forte é o ácido, logo, Quanto **menor** o pKi mais forte é o ácido.

6) Deslocamento de Equilíbrio

O princípio de Le Châtelier se aplica aos equilíbrios iônicos da mesma maneira que se aplica a qualquer outro equilíbrio.

▶ Para aumentar a concentração de um íon, adicionase um sal (ácido ou base) que contenha aquele íon.

Ex: Para aumentar a concentração de cloreto, Cl^- , adiciona-se o sal, NaCl ou o ácido clorídrico, HCl.

▶ Para **retirar** um **íon** do equilíbrio, adiciona-se uma substância que reaja com aquele íon.

Ex: Para retirar H^+ , adiciona-se NaOH, ou outra base qualquer.

 O aumento de temperatura favorece o sentido endotérmico da reação

- O aumento ou diminuição da pressão só tem importância para aquelas soluções iônicas obtidas pela dissolução de gases ou pela formação de gases na reação.

$$\underbrace{1\,AB_{\;(aq)}}_{1\;f\acute{o}rmula} \underbrace{1\,A^{^{+}}_{\;(aq)} + 1B^{^{-}}_{\;\;(aq)}}_{2\;f\acute{o}rmulas}$$

 $\,\,\vartriangleright\,\,$ A adição de água nesse exemplo desloca o equilíbrio para a direita $\left(\longrightarrow\right)$