

INTELIGÊNCIA ARTIFICIAL

Metaheurísticas de Buscas

(Algoritmos Evolutivos – Algoritmos Genéticos)

Contexto de Busca

- ☐ Busca Cega:
 - Largura: estratégia fixa
 - Profundidade: estratégia fixa
 - Custo Uniforme: g(n)
- ☐ Busca Informada: h(n)
 - **A***: g(n) + h(n)
 - Algoritmos de Busca Local: h(n)=fitness
 - Subida de encosta (Hill-climbing)
 - Têmpera Simulada (Simulated Anealing)
 - Feixe Local (Local beam search)
 - Algoritmos Genéticos

Contexto de Busca

- ☐ Busca Clássica:
 - Largura: estratégia fixa
 - Profundidade: estratégia fixa
 - Custo Uniforme: g(n)
 - **A***: g(n) + h(n)
- \square Busca Local: h(n)=fitness
 - Subida de encosta (Hill-climbing)
 - Têmpera Simulada (Simulated Anealing)
 - Feixe Local (Local beam search)
 - Algoritmos Genéticos

Busca Clássica: espaço de estados

Em geral a **solução** é uma <u>sequência de ações</u> (**caminho**) que levam do <u>estado</u> inicial ao <u>objetivo</u>; usada em problemas onde a ordem das ações é importante (<u>permutações nas ações produzem soluções diferentes.</u>)

AG no contexto de Busca em IA

CARACTERÍSTICAS

- Busca informada: utiliza função de fitness (avaliação) que guia o algoritmo
- Busca local: não guarda a informação do caminho para chegar à solução
- Estados sucessores gerados pela combinação de dois estados pais
- Função de adequação ou fitness: f(n) = h(n)
 f(indivíduo) = função de adequação ou fitness (indivíduo)
- Útil quando o espaço de estados é muito grande ou muito complexo para tratamento analítico

método de busca probabilístico de busca e otimização

Busca Local e AG: espaço de estados

Normalmente, em busca local, o espaço de estados é um grafo completo ou totalmente conexo (bidirecional).

Logicamente, a função de transição de estados – que retorna os vizinhos ao(s) estado(s) corrente(s) – pode eliminar algumas arestas (por exemplo estados associados a soluções infactíveis) e isto depende de como a tal função foi construída pelo modelador.

Operadores e configurações específicos do AG podem fazer com que algumas transições entre estados não sejam possíveis (ex. Reparação) ou menos prováveis (ex. Penalização).

Busca Local e AG: espaço de estados

Normalmente, em busca local, o espaço de estados é um grafo completo ou totalmente conexo (bidirecional).

Logicamente, a função de transição de estados – que retorna os vizinhos ao(s) estado(s) corrente(s) – pode eliminar algumas arestas (por exemplo estados associados a soluções infactíveis) e isto depende de como a tal função foi construída pelo modelador.

A <u>função de seleção</u> do próximo estado também pode deixar alguns estados de lado (ex. <u>elitista</u>). Eles são avaliados mas não há mudança de estado (baixo fitness – qualidade).

Busca Local e AG: espaço de estados

Normalmente, em busca local, o espaço de estados é um grafo completo ou totalmente conexo (bidirecional).

Logicamente, a função de transição de estados – que retorna os vizinhos ao(s) estado(s) corrente(s) – pode eliminar algumas arestas (por exemplo estados associados a soluções infactíveis) e isto depende de como a tal função foi construída pelo modelador.

Resumindo, a combinação da função de transição, dos operadores da técnica e da seleção do próximo estado dentre os vizinhos candidatos determina como o espaço de estados (e quanto dele) vai ser explorado.

Em geral, a **solução** consiste em <u>encontrar um estado (não um caminho entre estados)</u> cujo <u>valor da função objetivo (seta em vermelho)</u> seja possivelmente <u>ótimo</u>. Há a valoração da função objetivo (sabe-se que um estado é melhor do que outro) e esta valoração é usada para guiar a busca.

Slide 9

YYYY1

XXXX; 24/03/2013

Em muitos casos não há objetivo explícito/implícito (ex. Problema da mochila) que permita usar um procedimento de decisão para saber se um estado objetivo foi atingido, então, outros critérios devem ser usados para interromper a busca (máximo de gerações ou máximo de avaliações ou estagnação no fitness).

Slide 10

YYYY1 XXXX; 24/03/2013

AG: Computação **Evolutiva** (CE)

- Algoritmos Genéticos (AGs)
 - Programação Genética (PG)
- Programação Evolutiva
- Estratégias Evolutivas

Algoritmos de busca global: busca ampla no espaço de busca (ao invés de restrita à vizinhança de alguma solução)

f(solução) = fitness.

Esquema Geral de um Algoritmo Evolutivo

AG e Computação Natural

AG: Algoritmos Genéticos

- Popularizados por John Holland podem ser considerados os primeiros modelos algorítmicos desenvolvidos para simular os sistemas genéticos.
- Baseados na evolução da população e utilização de operadores de seleção e reprodução

AG: Algoritmos Genéticos

- Evolução da <u>População</u>: Modificação no indivíduo (cromossomo)
- Sobrevivência do melhor: manter a solução (indivíduo) de maior adequabilidade (fitness) no conjunto de soluções
- Reprodução:
 Crossover
 mutação

Exemplo: PROBLEMA DAS 8 RAINHAS

Indivíduo é representado por um cromossomo -> vetor de bits

0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	0	0	0	1	0	0
1	0	0	0	0	0	0	0
0	1	0	0	1	0	0	0
0	0	0	0	0	0	1	1

1ª coluna

Exemplo: PROBLEMA DAS 8 RAINHAS

POPULAÇÃO: conjunto de <u>cromossomos</u> ou de <u>indivíduos</u>.

População de 4 indivíduos ou cromossomos para 8-Rainhas

Cada indivíduo representa uma disposição diferente no tabuleiro

AG: etapas e operadores

SELEÇÃO: Sobrevivência dos melhores entre pais e filhos; manter os <u>indivíduos</u> de maior <u>adequabilidade</u> (<u>fitness</u>) da população.

REPRODUÇÃO: realizada pelos operadores abaixo

operadores probabilísticos

Crossover: cruzamento entre pares de cromossomos

Mutação: modificação de genes de um cromossomo

Inicializa População $Si=\{si_1, si_2, ..., si_N\}$

AG Canônico ou AG Padrão

Calcula Fitness

- Codificação Binária
- Seleção
 - Reprodução (roleta)
- Reprodução
 - Crossover simples
 - Mutação Uniforme
- Sobrevivência
 - Melhores (entre pais e filhos) irão compor a nova população

AG Canônico

- Codificação Binária
- Seleção
 - Reprodução (método da roleta)
- Reprodução
 - Crossover simples (Pc)
 - Mutação Uniforme (Pm)
- Sobrevivência
 - Melhores (entre pais e filhos) irão compor a nova população
- Condição de parada
 - Geração = MaxGer ou
 - Fitness = máximo atingido ou
 - Estagnação do melhor fitness

AG Canônico

Codificação Binária

Cromossomo: cadeia de bits de tamanho L

Cada posição (locus) no cromossomo assume um dos dois possíveis alelos, 0 ou 1.

Exemplo: PROBLEMA DAS 8 RAINHAS

Solução por Codificação binária (matriz binária) -> vetor de bits

0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	0	0	0	1	0	0
1	0	0	0	0	0	0	0
0	1	0	0	1	0	0	0
0	0	0	0	0	0	1	1

1ª coluna

Gene representa uma coluna

Cada locus representa uma posição da coluna (locus gênico)

Alelo: quando vale 1 indica que a posição está ocupada

AG Canônico

 $Si={si_1, si_2, ..., si_N}$

Calcula Fitness

- Codificação Binária
- Seleção
 - Reprodução (roleta)
- Reprodução
 - Crossover simples
 - Mutação Uniforme
- Sobrevivência
 - Melhores (entre pais e filhos) irão compor a nova população

Inicializa População

AG Canônico

Seleção dos pares por roleta

Indivíduo	fitness
Ind 1	2,4
Ind 2	3,1
Ind 3	2,5
Ind 4	0,5
Ind 5	8,3
Ind 6	2,0

AG Canônico: Seleção por roleta

Calcula p(s_i) para i=1,...,N:
$$p(s_i) = \frac{fitness(s_i)}{\sum_{k=1}^{N} fitness(s_k)}$$

Algoritmo de seleção por roleta: sorteia um indivíduo por chamada

```
i=1;
soma = p(s_i)
Sorteia r \in [0, 1]
enquanto soma < r
i=(i+1)
soma = soma + p(s_i)
fim \ enquanto
Retorna s_i
```

INICIALIZAÇÃO

Roleta

soma := p(s1) = 13%

r=30%

13% < 30%

SORTEIO Roleta

SORTEIO Roleta

AG Canônico: Roleta

Algoritmo

Calcula p(si) para i=1,...,N

$$p(s_i) = \frac{fitness(s_i)}{\sum_{k=1}^{N} fitness(s_k)}$$

Para sorteio =1 MaxSorteirosDaRoleta

- i=1; soma = p(si)
- Sorteia r ~ U(0,1);
- enquanto soma < r

$$i=i+1;$$

$$soma = soma + p(si);$$

- fim enquanto
- Retorna(si);

Fim para

AG Canônico

- $Si={si_1, si_2, ..., si_N}$
- Calcula Fitness

- Codificação Binária
- Seleção
 - Reprodução (roleta)
- Reprodução
 - Crossover simples
 - Mutação Uniforme
- Sobrevivência
 - Melhores (entre pais e filhos) irão compor a nova população

Inicializa População

AG Canônico: Crossover

Crossover Simples (1 ponto)

Crossover de 1 ponto (posição do cruzamento escolhida aleatoriamente)

AG Canônico: Mutação

Mutação Uniforme

Pontos de mutação (posições ecolhidas aleatoriamente)

Inicializa População $Si=\{si_1, si_2, ..., si_N\}$

AG Canônico

Calcula Fitness

- Codificação Binária
- Seleção
 - Reprodução (roleta)
- Reprodução
 - Crossover simples
 - Mutação Uniforme
- Sobrevivência
 - Melhores irão compor a nova população

AG Canônico

- Seleção
 - Sobrevivência dos Melhores (entre originais e filhos) para compor a nova população

P(t+1)= Seleciona_melhores(P(t)+Filhos)

Esquema Geral da evolução de um Agoritmo Genético

Esquema Geral de um Agoritmo Genético

AG Canônico: pseudo-código

```
C:=\{c_1, \ldots, c_n\} população inicial de tamanho N
R tamanho da descendência ou reprodução (normalmente K = N)
Pc: probabilidade de fazer crossover (valor típico 0.8)
Pm: Probabilidade de fazer mutação nos alelos (valor típico 0.05)
AGCanônico (C, N, R, pCROSS, pMUT) {
  Para todo c; de C, calcular fitness(c;);
  geracao:=0;
  do {
     // D = Descendentes = nova geração, calculada a partir de C
     D := selecionar R cromossomos de C pelo método da roleta;
     D' := cruzamento(D); // geração de dois filhos por par (d<sub>1</sub>, d<sub>2</sub>), (d<sub>3</sub>, d<sub>4</sub>),..., (d<sub>k-1</sub>, d<sub>k</sub>)
         de D fazendo crossover com probabilidade Pc
     D":= para todo cromossomo d; de D', para cada alelo a; de d;, mutar aj
         com probabilidade Pm;
     Para todo d; de D", calcular fitness(d;);
     // Selecionar melhores entre pais e filhos
     C := selecionar n melhores cromossomos de <math>C \sqcup D'';
     geracao++;
   } while (geracao<MAX GERACOES and !objetivo-alcançado and
               !melhor-fitness estagnado);
  retornar c; de C com melhor fitness;
```

Solução de Problema por AG

Sabendo que cada botão pode ser colocado em 16 posições distintas, encontre a melhor combinação de posições para os 9 botões disponíveis na superfície da caixa preta de modo que o sinal de saída assuma o valor máximo.

 Codificação: Existem 16 posições possíveis para cada um dos 9 botões. Na codificação binária, 4 bits são suficientes para representar cada uma das 16 posições.

Posição Atual: 0010

Posição	Representação	Posição	Representação 1000		
0	0000	8			
1	0001	9	1001		
2	0010	10	1010		
3	0011	11	1011		
4	0100	12	1100		
5	0101	13	1101		
6	0110	14	1110		
7	0111	15	1111		

Baseado neste tipo de codificação, cada cromossomo associado à solução candidata do problema definido anteriormente é dado por uma sequência de 36 bits (b_1, \dots, b_{36}) , na qual o número de possíveis configurações de botões (soluções candidatas) é $2^{36} \cong 68.72$ bilhões. Neste caso, a solução candidata, mostrada na figura seria codificada por um cromossomo na forma:

 $0010\ 0100\ 1111\ 0110\ 1101\ 1000\ 0000\ 1111\ 1001$.

Baseado neste tipo de codificação, cada cromossomo associado à solução candidata do problema definido anteriormente é dado por uma sequência de 36 bits (b_1, \dots, b_{36}) , na qual o número de possíveis configurações de botões (soluções candidatas) é $2^{36} \cong 68.72$ bilhões. Neste caso, a solução candidata, mostrada na figura seria codificada por um cromossomo na forma:

 $0010\ 0100\ 1111\ 0110\ 1101\ 1000\ 0000\ 1111\ 1001$.

O mapeamento, suposto desconhecido, entre as 2³⁶ posições possíveis dos botões e o sinal de saída é dado por:

Esquema Geral de um Agoritmo Genético

Problema das 8 rainhas

Solução por Codificação binária (matriz binária) -> vetor de bits

0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	0	0	0	1	0	0
1	0	0	0	0	0	0	0
0	1	0	0	1	0	0	0
0	0	0	0	0	0	1	1

Problema das 8 rainhas

Solução por codificação binária (obtida por conversão inteiro-> binário)

Problema das 8 rainhas

Solução por Codificação inteira

Diferentes formulações podem levar o AG a solucionar diferentes problemas:

AG Canônico para Problemas com Codificação binária

Ex. Problema das 8 rainhas com cod binária

AG para Otimização Combinatória

- Ex. Problema de otimização de rotas (permutação de cidades)
- Ex. Problema das 8 rainhas (permutação da posição das rainhas)

AG para Otimização Contínua

Ex. Problema de otimização de funções contínuas

AG em prob. codificação binária

- Indivíduo: Codificação Binária
- Seleção
 - Reprodução (roleta)
- Reprodução
 - Crossover simples
 - Mutação Uniforme
- Sobrevivência
 - Melhores para compor a nova população

Indivíduos que codificam uma permutação

Como realizar o crossover e a mutação?

Crossover de mapeamento parcial (PMX):

Crossover de mapeamento parcial (PMX):

As subsequências entre os pontos de corte são chamadas de seções de mapeamento. No exemplo eles definem os mapeamentos $4 \leftrightarrow 1$, $5 \leftrightarrow 6$ e $6 \leftrightarrow 8$.

Mutação em indivíduos que codificam uma permutação: Operação swap

Codificação Real

$$f(x_1, x_2) = \frac{\text{seno}(x_1)}{x_1} \frac{\text{seno}(x_2)}{x_2}$$

Fitness

Pode ser a própria Função objetivo

$$fitness(s_i) = \frac{\text{seno}(x_1)}{x_1} \frac{\text{seno}(x_2)}{x_2}$$

Crossover aritmético (específico para codificação real) $S'_{12j} = (1-\gamma)s_{1j} + \gamma s_{2j}$

Mutação não-uniforme

$$s'_{ij} = \begin{cases} s_{ij} + \Delta(g, \lim_{y \to 0} \sup_{z \in z}) & \text{se } r \le 0,5 \\ s_{ij} - \Delta(g, s_{ij} - \lim_{z \to 0} \inf) & \text{se } r > 0,5 \end{cases}$$

onde $r \sim U[0,1]$ e $\Delta(g,x)$ Retorna um valor

Retorna um valor No intervalo [0,x] tal que a probabilidade do valor nulo cresce à medidade que g cresce

$$\Delta(g,x) = x \left(1 - r_2^{(1-g/MaxGer)b}\right)$$

onde r_2 ~U[0,1], b parâmetros de uniformidade

Codificação Real

$$f(x_1, x_2) = \frac{\text{seno}(x_1)}{x_1} \frac{\text{seno}(x_2)}{x_2}$$

Programação Genética

 Cada indivíduo representa um programa de computador codificado através de uma árvore

 GP: indivíduos de tamanhos, formatos e complexidade diferentes

 GP:Gramática dependende do problema (qualquer solução deve ser possível)

Programação Genética

- Gramática
 - Conjunto de Terminais (CT)
 - Conjunto de Funções (CF)
 - Regras semânticas (RS)

PG: Codificação em Árvore

 $y = x * \ln(a) + sen(z) / \exp(x) - 3.5$

Esquema Geral de um Algoritmo PG

PG: Inicialização da População

Inicialização Aleatória

Para cada indivíduo um nó raiz (s_{i0}) é selecionado aleatoriamente do conjunto de funções

O número de filhos do nó raiz é determinado pela aridade da função esscolhida

Para cada nó (não raiz) o processo de inicialização define se o elemento (s_{ii}) será escolhido do conjunto CT ou CF

- •Se s_{ij} pertence a CT então o nó s_{ij} é folha e não será mais considerado para expansão
- •Senão, o número de filhos de s_{ij} é determinado pela aridade da função escolhida e o nó será considerado para expansão

PG: Cálculo do Fitness

Fitness: Dependente do Problema

Expressão matemática: distância para o valor esperado

Programa: total de saídas incorretas, loops infinitos, etc...

PG: Operadores de Reprodução

Crossover: troca de material genético entre dois pares

Mutação: introdução de novo material genético

PG: Crossover

PG: Operadores de Reprodução

Crossover: troca de material genético entre dois pares

Mutação: introdução de novo material genético

- Nó do Conjunto de Funções
- Nó Folha
- Nó qualquer

PG: Mutação

PG: Mutação

PG: Mutação em nó do CF

PG: Mutação em nó do CF

PG: Mutação em nó do CF

PG: Mutação

PG: Mutação em nó Folha

PG: Mutação em nó Folha

PG: Mutação

PG: Mutação em nó qualquer

