Numerical Analysis Qualifying Exam Spring 1995

1. Consider the following code on a machine using binary number representations:

$$X = 0.0$$

10
$$X = X + 0.1$$

PRINT *, X, SQRT(X) (SQRT (X) is the square root of X)

The code is trying to print out \sqrt{x} for $x = 0.1, 0.2, \dots, 1.0$. What problem do you expect to happen in running the code and why? Suggest a change in the code to avoid the problem.

2. Determine the linear least square approximation y(x) = a + bx to an arbitrary continuous function f(x) on (-1,1) when the inner product is defined as

$$(f,g) = \int_{-1}^{1} f(x)g(x)dx$$

What trouble may happen if we want to find $a_n, a_{n-1}, \ldots, a_0$ of $y(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ for large n as the lease square approximation? and what is a better way to construct the least square approximation of polynomial of degree less than or equal to n?

3. Suppose we want to find solutions of the equation

$$f(x) = x - \tan x = 0,$$

- (a) Show by using a graph that there are infinite many positive solutions to the equation.
- (b) There is a root near $3\pi/2 \approx 4.71238898$, if we take initial guess as $x_0 = 4.7124$, and use Newton's method, what problem do you expect to happen and why?
- (c) Rearrange terms in the equation so that it is much more easier to find the solutions by Newton's method.
- 4. Suppose a numerical formula I_h (like a numerical integration formula) with step size h is used to approximate a mathematical expression I (like a definite integral). If the error of the formula is given by

$$I_h - I = kh^p + O(h^{p+2})$$
, where k, p are constants

- (a) describe Richarson extrapolation which uses I_h , $I_{h/2}$ to generate a more accurate numerical formula $\tilde{I}_{h/2}$.
- (b) Apply Richarson extrapolation to the trapezoidal rule

$$I(f) = \int_{a}^{b} f(x)dx \approx I_{h}(f) = \frac{h}{2}(f(a) + f(b)), \quad h = b - a$$

to derive a more accurate integration formula. Identify this more accurate integration formula (find the familiar name of the formula). (Hint: $I_{h/2}$ would use two subintervals)

5. Let A be a real $n \times n$ matrix whose eigenvalues satisfy $0 < \lambda_n < \lambda_{n-1} < \cdots < \lambda_1$. State and prove convergence of a numerical method for finding λ_1 and λ_n .

- **6.** Show that if $A \in \mathbb{R}^{m \times n}$ has rank n, the $||A(A^TA)^{-1}A^T||_2 = 1$, where A^T is the transpose of A.
- 7. Suppose $A \in \mathbb{R}^{n \times n}$, A^T (the transpose of A) is diagonally dominant, i.e,

$$|a_{ii}| \ge \sum_{\substack{i=1\\i\neq j}}^{n} |a_{ij}|,$$

and A is nonsingular, show that A = LU with L being a unit lower triangular matrix, i.e., Gauss elimination can be performed without pivoting, and $|l_{ij}| \leq 1$, where l_{ij} are entries in L. (Hint: consider a partition of A of the form:

$$A = \begin{bmatrix} \alpha & w^t \\ v & B \end{bmatrix}$$
, where $B \in R^{(n-1)\times(n-1)}, v, w \in R^{n-1}$.

and consider one step of Gauss elimination)

8. Given $A \in \mathbb{R}^{n \times n}$, a symmetric positive matrix, solving the linear system Ax = b for $x \in \mathbb{R}^n$ is equivalent to minimizing the functional

$$\phi(x) = \frac{1}{2}x^t Ax - x^t b$$
, where x^t is the transpose of x

Suppose

$$P_k = [p_1, p_2, \dots, p_k] \in \mathbb{R}^{n \times k}, p_i \in \mathbb{R}^n, i = 1, 2, \dots, k$$

if $x \in \text{span } \{p_1, p_2, \dots, p_k\}$, then

$$x = P_{k-1}y + \alpha p_k, \quad P_{k-1} = [p_1, \dots, p_{k-1}], \ y \in \mathbb{R}^{k-1}, \alpha \in \mathbb{R}.$$

It can be derived that

$$\phi(x) = \frac{1}{2}\phi(P_{k-1}y) + \alpha y^t P_{k-1}^T A p_k + \frac{\alpha^2}{2} p_k^t A p_k - \alpha p_k^t b$$

The Conjugate Gradient method can be constructed as follows:

$$k = 0; x_0 = 0; r_0 = b, (r = b - Ax \text{ is the residual},$$

while

$$r_k \neq 0$$

$$k = k + 1$$
if $k = 1, p_1 = r_0$

otherwise choose $p_k \in \text{span}\{Ap_1, Ap_2, \dots, Ap_{k-1}\}^{\perp}$, such that $p_k^t r_{k-1} \neq 0$

$$\alpha_k = p_k^t r_{k-1} / p_k^t A p_k$$
$$x_k = x_{k-1} + \alpha_k p_k$$
$$r_k = b - A x_k$$

end

Show that in the algorithm, x_k minimizes the functional $\phi(x)$ over span $\{p_1, p_2, \dots, p_k\}$. Furthermore $p_i^t r_k = 0, i = 1, 2, \dots, k$.