1 Последовательность.

$$f: \mathbb{N} \to \mathbb{R}$$
$$f(n) =: f_n$$

Опр. Последовательность называется ограниченной сверху, если $\exists M: |f_n| \leqslant M$. Снизу, если $\exists m: f_n \geqslant m$. f_n ограниченная, если ограничена сверху и снизу.

Опр. $M_0 = supf_n$, если M_0 — верхняя грань и $\forall \varepsilon > 0$ $\exists n_0 : f_{n0} > M_0 - \varepsilon$. $m_0 = inff_n$, если m_0 — нижняя грань и $\forall \varepsilon > 0 \ \exists n_0 : f_{n_0} < m_0 + \varepsilon.$

Аксиома вещественных чисел. Если множество X ограничено сверху, то $\exists sup X$. Если f_n неограничено сверху, то $supf_n =: +\infty$. Если снизу, то $inff_n =: -\infty$.

Опр. f_n — бесконечно большая (бб), если $\forall \varepsilon > 0 \ \exists N = N(\varepsilon) : |f_n| > \frac{1}{\varepsilon} \ \forall n \geqslant N. \ f_n$ — не бб, $\exists \varepsilon > 0 : \forall N \exists n > N : |f_n| \leqslant \frac{1}{\varepsilon}$. Опр. f_n — бесконечно малая (бм), если $\forall \varepsilon > 0 \; \exists N = N(\varepsilon) : |f_n| < \varepsilon \; \forall n \geqslant N$.

Лемма. $f_n -$ бм $\Rightarrow f_n -$ ограничена.

Доказательство:

Пусть $\varepsilon = 1$, тогда $\exists N : |f_n| \leqslant 1 \ \forall n \geqslant N$

 $M := max|f_1|, \ldots, |f_{N-1}|, 1$, тогда $|f_n| \leq M \ \forall n \in N$.

Лемма.

a)
$$f_n - 66 \Rightarrow \frac{1}{f_n} - 6M$$

b)
$$f_n - \delta_M (f_n \neq 0) \Rightarrow \frac{1}{f_n} - \delta\delta$$

Лемма. f_n — неограниченная последовательность, тогда существует бб подпоследовательность f_{nk} . Доказательство:

$$\exists n_1 : |f_{n1} > 1|, \exists n_2 > n_1 : |f_{n2} > 2|, \exists n_3 > n_2 : |f_{n3}| > 3, \vdots, \exists n_1 < n_2 < \dots < n_k < \dots |f_{nk}| > k \Rightarrow f_{nk} - 66.$$

Лемма.

a)
$$6M + 6M = 6M$$

b)
$$6m \cdot C = 6m$$

c)
$$6m \cdot 6m = 6m$$

d)
$$66 \cdot C = 66, C \neq 0$$

e)
$$66 \cdot 66 = 66$$

Предел последовательности.

 a_n — последовательность.

Опр. $a = \lim a_n$, если $\forall \varepsilon > 0 \ \exists N : |a_n - a| < \varepsilon \ \forall n \geqslant N$.

Опр. Эпсилон окрестность: $U_{\varepsilon}(a) := (a - \varepsilon; a + \varepsilon)$. Выколотая эпсилон окрестность: $U_{\varepsilon}^{\circ}(a) := U_{\varepsilon}(a) \setminus \{a\}$. $\varepsilon_1 < \varepsilon_2 \Rightarrow U_{\varepsilon_1}(a) \subset U_{\varepsilon_2}(a), a \in \mathbb{R}.$

Опр. $\mathbb{R} \cup \{\pm \infty\} = \overline{\mathbb{R}}$ — расширенная числовая прямая.

Onp.
$$\varepsilon > 0$$
 $U_{\varepsilon}(+\infty) = (\frac{1}{\varepsilon}; +\infty); U_{\varepsilon}(-\infty) = (-\infty; -\frac{1}{\varepsilon}).$

$$\lim |a_n| = +\infty \Leftrightarrow \forall \varepsilon > 0 \ \exists N(\varepsilon) : |a_n| > \frac{1}{\varepsilon}.$$

Если a_n — бб $\Leftrightarrow \lim |a_n| = +\infty$.

Если $a_n -$ бм $\Leftrightarrow \lim |a_n| = 0$.

Утв. $\lim a_n = a \Leftrightarrow \exists$ бм последовательность d_n , такая что $a_n = a + d_n$.

Утв. Если предел последовательности существует, то он единственный.

Доказательство:

$$\exists a < b$$
 и $a = \lim a_n, \ b = \lim a_n.$ Тогда $\varepsilon := \frac{b-a}{42}:$ $\exists N_1: a_n \in U_\varepsilon(a) \forall n \geqslant N_1$

$$\exists N_i : a \in H(a) \forall n > N_i$$

$$\exists N_2 : a_n \in U_{\varepsilon}(b) \forall n \geqslant N_2 \Rightarrow a_n \in (U_{\varepsilon}(a) \cap U_{\varepsilon}(b)) = \emptyset \ \forall n \geqslant \max\{N_1, N_2\}!?!.$$

Предельный переход в неравенства. $a_n \leqslant b_n \ \forall n \geqslant N_0$.

Пусть $\exists \lim a_n = a; \lim b_n = b, a, b \in \overline{\mathbb{R}}$

Тогда $a \leq b$.

Доказательство:

```
Пусть a>b. Тогда \varepsilon:=\frac{a-b}{42}: \exists N_1:a_n\in U_\varepsilon(a)\forall n\geqslant N_1 \exists N_2:a_n\in U_\varepsilon(b)\forall n\geqslant N_2 \Rightarrow a_n>b_n\;\forall n\geqslant \max\{N_1,N_2\}!?!.
```

Лемма о сжатых последовательностях. Пусть $a_n \leqslant b_n \leqslant c_n \ \forall n \geqslant N_0$ и $\exists \lim a_n = \lim c_n = a \in \overline{\mathbb{R}}$, тогда $\exists \lim b_n = a$. Доказательство:

$$arepsilon>0$$
: $\exists \ a_n\in U_arepsilon,\ n\geqslant N_1$ $\exists \ c_n\in U_arepsilon,\ n\geqslant N_2$ $\Rightarrow b_n\in U_arepsilon: \forall n\geqslant \{N_1,N_2,N_0\}=:N\Rightarrow a=\lim b_n$ по определению.

Лемма об отделимости от нуля. Пусть $\exists \lim a_n = a > 0$. Тогда $\exists N : a_n > \frac{a}{2} > 0, \forall n \geqslant N$. Следствие. Если $\lim a_n \neq 0 \Rightarrow \frac{1}{a_n}$ ограничена $(a_n \neq 0)$.

Доказательство:

$$\lim a_n = a > 0 \exists N_1 : a_n > \frac{a}{2} \Rightarrow 0 < \frac{1}{a_n} < \frac{2}{a} \ \forall n \geqslant N_1 \min\{a_1, \dots, a_{N-1}, \frac{a}{2}\} \leqslant \frac{1}{a_n} \leqslant \max\{a_1, \dots, a_{N-1}, \frac{2}{a}\}$$

Теорема. Арифметические свойства предела. Пусть $\lim a_n=a, \lim b_n=b; \ a,b\in\overline{\mathbb{R}}.$ Тогда:

- 1. $\lim(a_n+b_n)=a+b$, кроме случаев $+\infty+(-\infty), -\infty+(+\infty)$
- 2. $\lim(ka_n) = ka$, кроме случая $0 \cdot (\pm \infty)$
- 3. $\lim(a_n \cdot b_n) = ab$, кроме случая $0(\pm \infty)$
- 4. $\lim \frac{a_n}{b_n} = \frac{a}{b}$, кроме случаев $\frac{0}{0}, \frac{\infty}{\infty}$

Доказательство:

$$a,b\in\mathbb{R}$$
 $a_n=a+lpha_n,\ b_n=b+eta_n;\ lpha_n,eta_n-$ бм.

- 1. $a_n + b_n = (a+b) + (\alpha_n + \beta_n) \Leftrightarrow \lim(a_n + b_n) = a + b$
- 2. Аналогично
- 3. $a_n b_n = (a + \alpha_n)(b + \beta_n) = ab + \alpha_n b + \beta_n a + \alpha_n + \beta_n$
- 4. Если $b \neq 0$ $\frac{1}{b_n}$ ограниченна $\frac{a_n}{b_n} \frac{a}{b} = \frac{a + \alpha_n}{b + \beta_n} \frac{a}{b} = \frac{\alpha_n b \beta_n a}{b_n b} = \frac{1}{b} \cdot \frac{1}{b_n} \cdot (\alpha_n b \beta_n a)$ Если $b = 0 \Rightarrow b_n$ бм $\Rightarrow \frac{1}{b_n}$ бб $\Rightarrow a_n \cdot \frac{1}{b_n}$ = ограниченная бб

Опр. Линейное пространство — множество, сумма двух элементов которого лежит в этом множестве и элемент с коэффициентом лежит в этом множестве.

Опр. Последовательность называется возвратной, если $a_n = \beta_{n-1}a_{n-1} + \beta_{n-2}a_{n-2} + \cdots + \beta_{n-k}a_{n-k}$; βi — фиксированные коэффициенты.

$$a_n^{(1)}, a_n^{(2)} \Rightarrow \forall \lambda, \mu \in \mathbb{R} \ \lambda a_n^{(1)} + \mu a_n^{(2)}$$
 тоже удовлетворяет (x) . $a_n := t^n$ $t^k = \beta_{n-1} t^{k-1} + \dots + \beta_{n-k}$ t_0 — простой корень, то t_0^n t_0 — корень $(m) \Rightarrow t_0^n; nt_0^n; n^2t_0^n; \dots; n^{m-1}t_0^n$