

Componentes de un S.O.

- En Particular Minix está dividido en módulos
 - 1) MicroKernel
 - 2) Tareas E/S
 - 3) Procesos Servidores
 - 4) Procesos de Usuarios
- Son módulos independientes
- Para arquitectura FLYNN SISD

4	Init	User process		User process	User process	***		-
3	Memory manager		File system		Network server		•••	
2	Disk task	Tty task		Clock lask	System task	Ethernet task		
1	Process management							

User processes

Server processes

I/O tasks

Funciones de un S.O.

- Administración de Procesador
 - Cambio de Estados para procesos
 - Politica de Asignación de procesador
 - Política de Ordenación de Colas
- Administración de Memoria
 - Simple contigua
 - Paginada / Segmentada
- Administración de la Información
 - Layout en disco
 - Funciones de acceso al sistema de archivos
 - Transparencia
- Administración de Reloj del sistema
 - Fecha, Hora

Funciones de un S.O.

- Administración de Recursos
 - Dedicados
 - Manejo de Deadlocks
 - Compartidos
- Comunicación entre procesos
 - Send/receive
 - Bloqueantes / No
 - Con Buffer / Sin
 - Share memory
 - Pipes
 - Sockets
- Sincronización entre procesos
 - Semáforos, Regiones Críticas, Monitores

System Calls - Servicios

- [PROC] Administración de Procesos
 - fork, waitpid, wait, exit, execve, ...
- [IPC] Señales
 - kill, pause, alarm, sigaction, ...
- [FS] Administración de Archivos
 - creat, mknod, open, close, read, write, dup, pipe, ...
- [FS] Administración del Sistema de Archivos
 - mkdir, rmdir, link, mount, umount, chdir, chroot, ...
- [FS] Protección
 - chmod, getuid, setuid, getgid, setgid, chown, ...
- [TIME] Administración de Tiempo
 - time, stime, utime, times, ...

- Existen dos tipos de arquitecturas MIMD
 - Fuertemente acopladas
 - Multiprocesadores
 - Debilmente acopladas
 - Multicomputadores
- Clementina II SGI (MIMD FA)
 - Arquitectura
 - 40 procesadores
 - Inteconectados por Cray-links (Hipercubo grado 3)
 - Memoria distribuida (NUMA)
 - Función de Ruteo
 - Sistema Operativo IRIX
 - Tiene share-memory y permite el uso de Threads

- Fenix SUN Enterprise (MIMD FA)
 - Arquitectura
 - 16 procesadores
 - Interconectados por Bus
 - Memoria distribuida (UMA)
 - Sistema Operativo SOLARIS
 - Permite el uso de Threads
- Sheldon Cluster Intel Xeon (MIMD DA)
 - Arquitectura
 - 40 nodos dual procesador
 - Interconectados por Red Ethernet 1 Gbit
 - Memoria distribuida (NORMA)

- Sheldon Cluster Intel Xeon (MIMD DA)
 - Sistema Operativo Linux (Varios)
 - Permite uso de Threads dentro de un nodo.
 - Entre nodo por pasaje de mensaje
 - No hay unica visión de sistema operativo
 - Necesidad de JOB SCHEDULER para asignacion de recursos
 - Necesidad de un FS para todos los nodos.
 - File System de Red
 - Autenticación entre los distintos S.O.
 - No existe Share Memory entre nodos.

- IDEAL Cluster (MIMD DA)
 - Sistema Operativo Distribuido
 - Visión única de cola de Procesos
 - Visión única de File System
 - Visión única de Memoria
 - Transparencia en la ubicación de Recursos.
 - Transparencia en la ejecución de Procesos.
 - Migración de Procesos entre los nodos
 - Permite uso de Threads.
 - Módulos cooperativos para brindar servicio
 - Coordinación de módulos
 - Distribuido / Centralizado
 - Coherencia

Temas de Implementación

- Comunicación entre nodos
 - Primitivas Send/Receive
 - Conexión y Confiabilidad
 - Niveles de conectividad y confiabilidad (ACKs)
 - Función de Ruteo
 - Tipo de Medio de Transmisión
- Identificación de nodos
 - Estaticos / Con cambios
- Identificación de servicios
 - Estaticos / Con cambios
- Stacks ISO / TCP-IP
- Modelo Cliente/Servidor
 - Send / Receive / Accept

Temas de Implementación

- Uso de procesadores remotos
 - Ejecución Asincrónica
 - Cliente/Servidor
 - Ejecución Sincrónica
 - Remote Procedure Call
- Remote Procedure Call
 - Simula la llamada a un procedimiento remoto como si fuera local.
 - Exiten herramientas que generan el código fuente
 - RPCGEN $(XDR, SRC) \rightarrow (SRC)$
 - Se generan los stubs cliente y servidor.
 - Existe binding dinámico y registración del servidor.

Temas de implementación

- Remote Procedure Call (Camino Critico)
 - El procedimiento cliente llama al stub cliente de manera transparente.
 Usando Stack.
 - El stub cliente arma el mensaje y se lo envía al kernel.
 - El kernel realiza el send del mensaje al kernel de la máquina remota.
 - El kernel remoto le da el mensaje al stub del server
 - El stub del server desempaqueta los parámetros y se los pasa al server.
 Usan Stack.
 - El server propiamente dicho realiza su trabajo y retorna un resultado al stub.
 - El stub del server empaqueta el valor retornado y se lo manda al kernel.
 - El kernel remoto envía el mensaje al kernel del cliente.
 - El kernel del cliente sube el mensaje al stub del cliente.
 - El stub cliente desempaqueta el resultado y se lo pasa al cliente.

Temas de implementación

- Remote Procedure Call (Semántica de Fallas)
 - El Cliente no puede ubicar al servidor
 - EXCEPCIÓN
 - Se pierde el msg de requerimiento del cliente al servidor
 - Retransmisión al no recibir ACK usando TIMER
 - El msg de respuesta del servidor se pierde
 - Diferenciar esta falla con la anterior. (nro de secuencia)
 - El servidor se cae luego de recibir el requerimiento
 - A) Recibe y procesa, se cae antes de enviar la respuesta
 - B) Se cae antes de procesar el pedido
 - Semántica: At Lest Once At most Once Exactly Once
 - El Cliente se cae
 - Huerfanos :
 - Reencarnación Reencarnación Suave Expiración Exterminación.

Temas de Diseño de S.O.

- Transparencia
 - De Locación / De Migración / De Réplica
 - De Concurrencia / De Paralelismo
- Fexibilidad
 - Monolitico / Microkernel
- Confiabilidad
- Performance
 - Metricas
 - Tiempo de Respuesta / Rendimiento
 - Uso del Sistema / Capacidad consumida de Red
- Escalabilidad
 - NFS no es escalable

Consultas?

- Arquitecturas MIMD
 - Tipos / Performance
- Sistemas Operativos Distribuidos
 - Modulos
- Sistemas Distribuidos
 - Servicios
- Modelo Cliente-Servidor
 - RPC
- Varias.....