CS220 Midsem Cheatsheet

```
Asymptotic Notation
```

f is
$$O(g)$$
 if g overbounds f is $\Omega(g)$ if g underbounds f is $\Theta(g)$ if g exactly bounds f

Limit Rule

```
Suppose that L := \lim_{n \to \infty} \frac{f(n)}{g(n)} exists. Then
 → if L=O then f is O(q)
 \rightarrow if L>0 than f is \Theta(g)
 → if L = as then f is I(g)
```

More Asymptotic Notation Rules

Irrelevance of factors If
$$c > 0$$
 is constant then cf is $\Theta(f)$

Transitivity

If f is $O(g)$ and g is $O(h)$ then f is $O(h)$

Sum Rule

If f_1 is $O(g_1)$ and f_2 is $O(g_2)$ the f_1+f_2 is $O(max \{g_1,g_2\})$

Product Rule

If f_1 is $O(g_1)$ and f_2 is $O(g_2)$ then f_1f_2 is $O(g_1g_2)$

Sorting Algorithms

```
ordered unordered
\frac{1}{10} [71] 87, 37, 43, 39, 55] # 1st pass
5 [71, 87] 37, 43, 39, 55] # 2nd pass
2 [37, 71, 87] 43, 39, 55] # 3rd pass
[37, 43, 71, 87] 39, 55] # Lith pass
[37, 39, 43, 71, 87 | 55] # 5th pass
 [37, 39, 43, 55, 71, 87] # 6th pass
```

MERGE [12, 2, 19, 4, 15, 10, 7] 1. [2, 4, 7, 10, 12, 15, 19] [12, 2, 19, 4, 15, 10, 7] [2, 12, 19] [4, 7, 10, 15] [2, 12, 19]

Tree Traversal

Binary Heap

which fills from left to right

Solving Recurrences

Example: $f(n) = n \times (\sqrt{f(n-1)} + 1)^2$ where f(0) = 0

f(n) 0 1 4 9 16 25 36

This looks like
$$f(n) = n^2 \longrightarrow now$$
 prove by induction

Top-down method

Example:
$$T(n) = 2T(n-1) + 1$$
 where $T(1) = 0$

$$= 2(2T(n-2)+1)+1$$

Hmm... Let k = # iteration +1, we can simplify the pattern as ...

$$T(n) = 2^{k} T(n-k) + 2^{k} - 1$$

$$\Rightarrow T(n) = 2^{n-1} - 1 \longrightarrow now prove with induction$$

Change of Variable Trick

2) Let
$$U(k) = T(n) = T(f(k))$$

Example:
$$T(n) = 2T(n/2) + n$$
 where $T(1) = 0$

let
$$k = \log_2 n \implies n = 2^k$$
 $U(k) = T(n) = T(2^k)$

$$U(k) = 2T(n/2) + n = 2T(2^{k-1}) + 2^{k} = 2U(k-1) + 2^{k}$$

where
$$U(0) = T(1) = 0$$

Induction Proof

- 1) Start with proving base case Does our new definition match the previous?
- 2) Inductive Hypothesis Assume our new definition holds true for all possible inputs "k"
- 3) Inductive Step Prove our statement holds true for "k+1"