2022 年Mathematics Club 初中知识竞赛

数学

本试卷共 2 页, 17 小题, 满分 100 分. 考试用时 120 分钟.

注意事项: 1. 答卷前,考生务必按要求填写好自己的准考证号、姓名等信息.

- 2. 答卷时,若使用答题卡作答,填写好相关个人信息后在指定的区域内用黑色字迹的 钢笔或签字笔作答;若使用白纸作答,则在作答每小题前须在左上角标好题号,然 后使用黑色字迹的钢笔或签字笔作答.每小题作答完毕后,描出该题的答题区域.若 几何题等需要作辅助线的,则需额外画图.
- 3. 考生需注意把握考试时间,若考生提前完成,可提前交卷.建议考生在考试结束前5至10分钟交卷,避免因特殊原因无法提交导致成绩作废.
- 4. 本次考试允许使用计算器,但原则上要求考生独立完成,不得寻求他人帮助,严禁 使用作业帮等搜题软件,一经发现,将取消本次竞赛成绩.
- 一、选择题(一): 本大题共 2 小题,每小题 3 分,共 6 分。在每小题给出的四个选项中,只有 一项是符合题目要求的.

	A. 第一象限	B.	第二象限	C.	第三象限	D.	第四象限
2.	下列各式中y不是x的函数的是						
	A. $y = x^{\pi}$	B.	y = x	C.	$y^3 = x$	D.	$y^2 = x$

- 二、选择题 (二): 本大题共 3 小题,每小题 5 分,共 15 分。在每小题给出的四个选项中,只有一项是符合题目要求的.
- 3. 已知直角三角形的两条直角边分别为a、b,若它斜边上的高为h,则下列结论中一定正确的是

A.
$$a + b = h$$
 B. $ab = \frac{1}{2}h$ C. $\frac{1}{a} + \frac{1}{b} = \frac{1}{h}$ D. $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{h^2}$

4. 记函数 $y = 2^x + \frac{1}{x}$ 沿y轴翻折后的函数为y',则y'的解析式为

A.
$$y' = -\frac{1}{2^x} + \frac{1}{x}$$
 B. $y' = 2^x - \frac{1}{x}$ C. $y' = \frac{1}{2^x} - \frac{1}{x}$ D. $y' = -2^x - \frac{1}{x}$

5. 已知函数y = |x - a| - |x - 4a|,分别记y的最大值为m,最小值为n,若要使 $m - n \le 3$ 恒成立,则a的最大值为

A. $\frac{1}{2}$ B. 1 C. 2 D. 3

- 三、填空题(一): 本大题共5小题,每小题4分,共20分.
- 6. 化简 $-\sqrt{-2xy^3}$ 的结果为 .

1. 函数 $y = \sqrt{x}$ 的图像经过的象限为

- 7. 已知 $x + \frac{1}{x} = 2$,则 $x^2 + \frac{1}{x^2} = _____$.
- 8. 已知在平面直角坐标系中,点(2x + 3, y 1)与点(2 x, 3x)关于原点对称,则 $x + y = ____.$
- 9. 如题 9 图,四边形ABCD为正方形,以BC为边构造等边三角形BCE,则 $\angle AEC$ 的度数为____
- 10. 已知x、y为正整数,且1 < xy < 3,则x + y的值为_____.

四、填空题(二): 本大题共 5 小题, 每小题 7 分, 共 35 分.

- 11. 在 $Rt \triangle ABC$ 中, $\angle A = 60^\circ$, $\angle C = 90^\circ$,AC = 2,点 $P \cdot Q \cdot R$ 分别是 $AB \cdot BC \cdot AC$ 边上的动点,则PQ + PR + QR的最小值是 .
- 12. 如题 12 图,在正方形ABCD中,AB=1,将 $\triangle ADE$ 沿DE折叠得到 $\triangle GDE$,连接AC,AC//EG,则BE的长度为_____.
- 13. 已知点A(4, 2)关于 $y = -\frac{1}{2}x + 2$ 的对称点为点B,则点B的坐标为____

- 14. 已知a、b、c分别为 \triangle ABC的三边长,若 ${2a + 3b = 19 \atop 5a + 2b = 31}$,则c的取值范围是_____
- 15. 如题 15 图,AB = 5,BD = 8, $AE \perp BD$,且 $\frac{BE}{DE} = \frac{1}{3}$. 点C为平面上一动点,AC//BD, $CF \perp BD$,连接CB、CD、AD. 当CB + CD最小时,EF的长度为_____.

五、解答题(一): 本大题共2小题,每小题12分,共24分.

- 16. 已知|x-1|+|x+3|-kx=0,该方程当 $x\neq -3$ 时无解,当x=-3时有且仅有一个解.
 - (1) 求k的取值范围.
 - (2) 求||3k-1|-|k||的最大值.
- 17. 如题 17 图,在平面直角坐标系xOy中,A(0, 6),B(8, 0),点C为OB上一点(不与O、B重合),点D为OC中点, $\angle CED = \angle AOE$.
 - (1) 求直线AB的函数解析式.
 - (2) 求证: OE = CE.
 - (3)已知点H、F均为直线AB上一点,连接CH、OF, $\angle AHO = \angle BHC$, $\angle HCE + \angle FOE = \frac{1}{2} \angle EDC$,若点H的横坐标为 $\frac{32}{5}$,求直线OF的解析式.

