1. Descripción del dataset

El dataset a tratar en la práctica es

https://www.kaggle.com/datasets/rashikrahmanpritom/heart-attack-analysis-prediction-dataset.

Se trata de un dataset con 14 variables, las cuales estan asociadas a pancientes con síntomas coronarios y cuyo objetivo es la predicción de la probabilidad (mayor o menor) de tener un ataque al corazón bajo esos síntomas. El dataset es de mucha relevancia, dado que poder entrerar un modelo que anticipe esta circunstancia podría ayudar a salvar muchas vidas.

El dataset consta de las siguientes variables:

- age : Edad del paciente
- sex: Sexo del paciente codificado como 0 o 1. Se desconoce su traducción a Hombre o Mujer.
- cp : Chest Pain type chest pain type. Tipo de dolor en el pecho. Puede tomar los valores:
 - Valor 1: typical angina
 - Valor 2: atypical angina
 - Valor 3: non-anginal pain
 - Valor 4: asymptomatic
- trtbps: resting blood pressure (in mm Hg). Presion sanguinea en reposo.
- chol: cholestoral in mg/dl fetched via BMI sensor. Colesterol en sangre.
- fbs: (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false). Azugar en sangre en ayunas por encima de 129 mg/dl. Codificado como 1 Verdadero, 0 Falso.
- restecg: resting electrocardiographic results. Resultados del electrocardiograma en reposo. Puede tomar los siguientes valores:
 - Valor 0: normal
 - Vaslor 1: having ST-T wave abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV)
 - Valor 2: showing probable or definite left ventricular hypertrophy by Estes' criteria
- thalachh : maximum heart rate achieved. Frecuencia cardiaca máxima.
- exng: "exercise induced angina". Angina inducida por el ejercicio. Codificado como 1 "Si" 0 "No".
- caa: number of major vessels. Numero de vasos sanguineos mayores. Codificado de 0 a 3
- target : Variable objetivo. 0 = menor posibilidad de ataque al corazón 1 = mayor posibilidad de ataque al corazon.

El dataset consta de otras tres variables que no están descritas y no conocemos su significado (oldpoeak, slp y thall) que no utilizaremos por pruedencia.

A continuación, vamos a visualizar los primeros datos del dataset

```
import pandas as pd
In [84]:
           df = pd.read_csv("./datos/heart.csv")
In [86]:
          df.head()
                                                         thalachh
Out[86]:
              age
                        cp trtbps
                                     chol fbs
                                               restecg
                                                                   exng
                                                                          oldpeak
                                                                                   slp
                                                                                        caa
                                                                                             thall output
                    sex
           0
                63
                          3
                                145
                                      233
                                                              150
                                                                               2.3
                      1
                                             1
                                                      0
                                                                       0
                                                                                     0
                                                                                          0
                                                                                                 1
                                                                                                         1
                          2
                                      250
                                                              187
                37
                      1
                                130
                                             0
                                                                       0
                                                                               3.5
                                                                                     0
                                                                                          0
           2
                41
                      0
                          1
                                130
                                      204
                                             0
                                                      0
                                                              172
                                                                       0
                                                                               1.4
                                                                                     2
                                                                                          0
                                                                                                2
                                                                                                         1
                                                                       0
                                                                                     2
                                                                                                2
                56
                                120
                                      236
                                             0
                                                      1
                                                              178
                                                                               8.0
                57
                          0
                                120
                                      354
                                             0
                                                      1
                                                              163
                                                                       1
                                                                               0.6
                                                                                     2
                                                                                          0
                                                                                                2
                                                                                                         1
```

Borramos las columnas que no vamos a utlizar

```
In [87]: df = df.drop(["oldpeak", "slp", "thall"], axis=1)
```

2. Integración y selección

Vamos a integrar los ficheros que contienen las descriciones de los campos categoricos del dataset, de manera que sea más fácil su interpretación y trabajo con los datos.

Después de la integración de cada fichero, borraremos las columnas originales de cruce, para dejar sólo la nueva columna descriptiva

Exang

			\sim 7	
1.1	117	1 4		
\cup	ич	12	_	

	age	sex	trtbps	chol	fbs	restecg	thalachh	caa	output	desc_exang	desc_cp
0	63	1	145	233	1	0	150	0	1	no	non-anginal pain
1	37	1	130	250	0	1	187	0	1	no	atypical angina
2	41	0	130	204	0	0	172	0	1	no	typical angina
3	56	1	120	236	0	1	178	0	1	no	typical angina
4	57	0	120	354	0	1	163	0	1	yes	NaN
•••											
298	57	0	140	241	0	1	123	0	0	yes	NaN
299	45	1	110	264	0	1	132	0	0	no	non-anginal pain
300	68	1	144	193	1	1	141	2	0	no	NaN
301	57	1	130	131	0	1	115	1	0	yes	NaN
302	57	0	130	236	0	0	174	1	0	no	typical angina

303 rows × 11 columns

3. Limpieza de los datos.

4. Análisis de los datos.

5. Representación de los resultados

Se realizará durante toda la práctica

6. Resolución del problema

In []: