A CURIOSITY ABOUT POLYNOMIAL INTERPOLATION

PETRO KOLOSOV

ABSTRACT. Interpolation of cubes expected to be

$$n^{3} = 6\binom{n}{3} + 6\binom{n}{2} + \binom{n}{1} + 0\binom{n}{0}$$

but got

$$n^{3} = \sum_{k=1}^{n} \mathbf{A}_{m,0} k^{0} (n-k)^{0} + \mathbf{A}_{m,1} k^{1} (n-k)^{1}$$

Contents

1.	Introduction	J
2.	Generalizations	5
3.	Discussions	6
3.1.	. Interpolation	6
Ref	erences	7

1. Introduction

Interpolation is a process of finding new data points based on the range of a discrete set of known data points. Interpolation has been well-developed in between 1674–1684 by Issac Newton's fundamental works, nowadays known as foundation of classical interpolation theory [1].

The first time I found interpolation interesting was in 2016 when I observed a table of finite differences of cubes. Back then, I was a first-year mechanical engineering undergraduate. Due to my lack of mathematical knowledge, I started re-inventing interpolation formulas myself, fueled by pure passion and a sense of mystery. All the mathematical laws and relations exist

from the very beginning; we only reveal and describe them, I thought. That mindset truly inspired me, and thus, my own mathematical journey began.

Consider finite differences of cubes n^3

n	n^3	$\Delta(n^3)$	$\Delta^2(n^3)$	$\Delta^3(n^3)$
0	0	1	6	6
1	1	7	12	6
2	8	19	18	6
3	27	37	24	6
4	64	61	30	6
5	125	91	36	
6	216	127		
7	343			

Table 1. Table of finite differences of the polynomial n^3 .

The problem of interpolation of polynomials is a classical problem in mathematics and has been widely studied in literature. For instance, Concrete mathematics [2, p. 190] gives interpolation of cubes by using Newton's interpolation formula

$$n^{3} = 6\binom{n}{3} + 6\binom{n}{2} + \binom{n}{1} + 0\binom{n}{0}$$

because

$$f(x) = \Delta^d f(0) \binom{x}{d} + \Delta^{d-1} f(0) \binom{x}{d-1} + \dots + f(0) \binom{x}{0} = \sum_{r=0}^d \Delta^{d-r} f(0) \binom{x}{d-r}$$

However, interpolation of cubes can be also done in a different way. The key point that interpolation formula above iterates over the order d of finite difference. Alternatively, we can interpolate cubes n^3 as a sum of first order finite difference Δ as follows

$$n^{3} = \Delta 0^{3} + \Delta 1^{3} + \Delta 2^{3} + \dots + \Delta (n-1)^{3} = \sum_{k=0}^{n-1} \Delta k^{3}$$

We know that $\Delta^3 n^3 = 6$ is the constant for each n. The second difference of cubes $\Delta^2 n^3$ is a linear relation in terms of third order finite difference $\Delta^3 n^3$

$$\Delta^2 n^3 = (n+1)\Delta^3 n^3 = 6(n+1) \tag{1}$$

Finally, the first order finite difference Δn^3 is the following relation in terms of second order finite difference

$$\Delta n^3 = \Delta 0^3 + \Delta^2 0^3 + \Delta^2 1^3 + \dots + \Delta^2 (n-1)^3 = 1 + \sum_{k=0}^{n-1} 6(k+1)$$

Altering summation bounds yields

$$\Delta n^3 = 1 + 6 \cdot 0 + 6 \cdot 1 + 6 \cdot 2 + 6 \cdot 3 + \dots + 6 \cdot n = 1 + 6 \sum_{k=0}^{n} k^k$$

Therefore, we are able to express first order finite difference of cubes in form of sums as follows

$$\Delta(0^3) = 1 + 6 \cdot 0$$

$$\Delta(1^3) = 1 + 6 \cdot 0 + 6 \cdot 1$$

$$\Delta(2^3) = 1 + 6 \cdot 0 + 6 \cdot 1 + 6 \cdot 2$$

$$\Delta(3^3) = 1 + 6 \cdot 0 + 6 \cdot 1 + 6 \cdot 2 + 6 \cdot 3$$

Now it is time to assemble all the results above to get the polynomial n^3 . Having the relation in cubes $n^3 = \Delta 0^3 + \Delta 1^3 + \Delta 2^3 + \cdots + \Delta (n-1)^3$ we get

$$n^{3} = [1 + 6 \cdot 0] + [1 + 6 \cdot 0 + 6 \cdot 1] + [1 + 6 \cdot 0 + 6 \cdot 1 + 6 \cdot 2]$$
$$+ \dots + [1 + 6 \cdot 0 + 6 \cdot 1 + 6 \cdot 2 + \dots + 6 \cdot (n-1)]$$

By rearranging the terms of the equation above, we get summation in terms of k(n-k)

$$n^{3} = n + [(n-0) \cdot 6 \cdot 0] + [(n-1) \cdot 6 \cdot 1] + [(n-2) \cdot 6 \cdot 2]$$
$$+ \dots + [(n-k) \cdot 6 \cdot k] + \dots + [1 \cdot 6 \cdot (n-1)]$$
(2)

By applying compact sigma sum notation yields an identity for cubes n^3

$$n^{3} = n + \sum_{k=0}^{n-1} 6k(n-k)$$

The term n in the sum above can be moved under sigma notation, because there is exactly n iterations, therefore

$$n^3 = \sum_{k=0}^{n-1} 6k(n-k) + 1$$

By inspecting the expression 6k(n-k)+1 we iterate under summation, we can notice that it is symmetric over k, let be T(n,k)=6k(n-k)+1, then T(n,k)=T(n,n-k). This symmetry allows us to alter summation bounds again, so that

$$n^3 = \sum_{k=1}^{n} 6k(n-k) + 1$$

Curiously enough that although $\sum_{k=0}^{n-1} 6k(n-k) + 1$ and $\sum_{k=1}^{n} 6k(n-k) + 1$ both simplify to n^3 , they produce different closed forms. Let be $P(n,q) = \sum_{k=0}^{q-1} 6k(n-k) + 1$ and $Q(n,q) = \sum_{k=1}^{q} 6k(n-k) + 1$, then

$$P(n,q) = \begin{cases} q = 1 : & 1 \\ q = 2 : & -4 + 6n \\ q = 3 : & -27 + 18n \end{cases}$$

$$Q(n,q) = \begin{cases} q = 1 : & -5 + 6n \\ q = 2 : & -28 + 18n \\ q = 3 : & -81 + 36n \end{cases}$$

2. Generalizations

Assume that our previously obtained identities $n^3 = \sum_{k=0}^{n-1} 6k(n-k) + 1$ and $n^3 = \sum_{k=1}^{n} 6k(n-k) + 1$ have explicit form as follows

$$n^{3} = \sum_{k} \mathbf{A}_{1,1} k^{1} (n-k)^{1} + \mathbf{A}_{1,0} k^{0} (n-k)^{0}$$

where $\mathbf{A}_{1,1} = 6$ and $\mathbf{A}_{1,0} = 1$, respectively. Therefore, let be a conjecture

Conjecture 2.1. For every $n \geq 1$, $n, m \in \mathbb{N}$ there are coefficients $\mathbf{A}_{m,0}, \mathbf{A}_{m,1}, \dots, \mathbf{A}_{m,m}$ such that

$$n^{2m+1} = \sum_{k=1}^{n} \mathbf{A}_{m,0} k^{0} (n-k)^{0} + \mathbf{A}_{m,1} (n-k)^{1} + \dots + \mathbf{A}_{m,m} k^{m} (n-k)^{m}$$

Note that conjecture above assumes the convention $0^0 = 1$, reader may found a comprehensive discussion of it in [3].

Long story short, above conjecture is true, so that real coefficients $\mathbf{A}_{m,r}$ are following

m/r	0	1	2	3	4	5	6	7
0	1							
1	1	6						
2	1	0	30					
3	1	-14	0	140				
4	1	-120	0	0	630			
5	1	-1386	660	0	0	2772		
6	1	-21840	18018	0	0	0	12012	
7	1	-450054	491400	-60060	0	0	0	51480

Table 2. Coefficients $A_{m,r}$. See OEIS sequences [4, 5].

These coefficients $\mathbf{A}_{m,r}$ are defined via a recurrence relation involving Binomial coefficients and Bernoulli numbers

Definition 2.2. (Definition of coefficient $A_{m,r}$.)

$$\mathbf{A}_{m,r} = \begin{cases} (2r+1)\binom{2r}{r} & \text{if } r = m \\ (2r+1)\binom{2r}{r} \sum_{d \ge 2r+1}^{m} \mathbf{A}_{m,d} \binom{d}{2r+1} \frac{(-1)^{d-1}}{d-r} B_{2d-2r} & \text{if } 0 \le r < m \\ 0 & \text{if } r < 0 \text{ or } r > m \end{cases}$$

where B_t are Bernoulli numbers [6]. It is assumed that $B_1 = \frac{1}{2}$. Properties of the coefficients $\mathbf{A}_{m,r}$

- $\bullet \ \mathbf{A}_{m,m} = \binom{2m}{m}$
- $\mathbf{A}_{m,r} = 0$ for m < 0 and r > m
- $\mathbf{A}_{m,r} = 0 \text{ for } r < 0$
- $\mathbf{A}_{m,r} = 0 \text{ for } \frac{m}{2} \le r < m$
- $\mathbf{A}_{m,0} = 1 \text{ for } m \ge 0$
- $\mathbf{A}_{m,r}$ are integers for $m \leq 11$
- Row sums: $\sum_{r=0}^{m} \mathbf{A}_{m,r} = 2^{2m+1} 1$

Proof of conjecture (2.1) as well as other discussions on topics above can be found in literature [7, 8, 9, 10, 11]. Few OEIS sequences were contributed as well [12, 13, 14, 15, 16]. Very well, let's wrap up this technical section and move on to the more engaging discussions.

3. Discussions

3.1. **Interpolation.** Current manuscript starts from certain interpolation technique shown on base case of cubes, where the key identity is the tricky rearrangement terms of the sum $\sum_k \Delta k^3$ in (2). This rearrangement was done instead of applying Faulhaber's formula on $\Delta n^3 = 1 + 6 \sum_{k=1}^n k$ which leads to well-known result involving Binomial theorem: $(n+1)^3 - n^3 = 1 + 6 \sum_{k=1}^n k = 1 + 6 \frac{1}{2}(n+n^2) = 1 + 3n^3 + 3n$.

References

- [1] Meijering, Erik. A chronology of interpolation: from ancient astronomy to modern signal and image processing. *Proceedings of the IEEE*, 90(3):319–342, 2002. https://infoscience.epfl.ch/record/63085/files/meijering0201.pdf.
- [2] Graham, Ronald L. and Knuth, Donald E. and Patashnik, Oren. Concrete mathematics: A foundation for computer science (second edition). Addison-Wesley Publishing Company, Inc., 1994. https://archive.org/details/concrete-mathematics.
- [3] Knuth, Donald E. Two notes on notation. The American Mathematical Monthly, 99(5):403-422, 1992. https://arxiv.org/abs/math/9205211.
- [4] Petro Kolosov. Entry A302971 in The On-Line Encyclopedia of Integer Sequences. Published electronically at https://oeis.org/A302971, 2018.
- [5] Petro Kolosov. Entry A304042 in The On-Line Encyclopedia of Integer Sequences. Published electronically at https://oeis.org/A304042, 2018.
- [6] Harry Bateman. Higher transcendental functions [volumes i-iii], volume 1. McGRAW-HILL book company, 1953.
- [7] Alekseyev, Max. MathOverflow answer 297916/113033. Published electronically at https://mathoverflow.net/a/297916/113033, 2018.
- [8] Kolosov, Petro. History and overview of the polynomial P(m,b,x), 2024. https://github.com/kolosovpetro/HistoryAndOverviewOfPolynomialP.
- [9] Kolosov, Petro. On the link between binomial theorem and discrete convolution. arXiv preprint arXiv:1603.02468, 2016. https://arxiv.org/abs/1603.02468.
- [10] Kolosov, Petro. 106.37 An unusual identity for odd-powers. The Mathematical Gazette, 106(567):509–513, 2022. https://doi.org/10.1017/mag.2022.129.
- [11] Petro Kolosov. Polynomial identity involving Binomial Theorem and Faulhaber's formula. Published electronically https://kolosovpetro.github.io/pdf/ at PolynomialIdentityInvolvingBTandFaulhaber.pdf, 2023.
- [12] Petro Kolosov. Numerical triangle, row sums give third power, Entry A287326 in The On-Line Encyclopedia of Integer Sequences. Published electronically at https://oeis.org/A287326, 2017.
- [13] Petro Kolosov. Numerical triangle, row sums give fifth power, Entry A300656 in The On-Line Encyclopedia of Integer Sequences. Published electronically at https://oeis.org/A300656, 2018.
- [14] Petro Kolosov. The coefficients u(m, l, k), m = 3 defined by the polynomial identity, 2018. https://oeis.org/A316387.

- [15] Petro Kolosov. The coefficients u(m, l, k), m=2 defined by the polynomial identity, 2018. https://oeis.org/A316349.
- [16] Petro Kolosov. The coefficients u(m, l, k), m = 1 defined by the polynomial identity, 2018. https://oeis.org/A320047.

Version: Local-0.1.0