4. 東とブール代数

2025 秋期「哲学者のための数学」授業資料(大塚淳)

ver. 2025年10月6日

1 関係から代数へ

我々は前章で、一定の公理を満たす二項関係を備えた集合として、順序構造を定義した。順序は整数 $\mathbb N$ や実数 $\mathbb R$ など、様々な数学的集合が持つ基本的な構造でもある。しかし順序だけでは、数の構造は組み尽くせていない。なんとなれば、数は単に順序付けられているだけでなく、その中で足し算や掛け算などの演算が定義されているからだ。そうした演算が定義された数学的構造を、一般に代数 (algebra) という。この章では、そうした代数のプリミティブな形として、 $\mathbf r$ (lattice)、およびその延長線上に定義されるブール代数 (boolean algebra) を紹介する。実は束自体、順序構造の延長線上にあるもので、この意味で本章で扱う対象はすべて半順序でもある。

ブール代数は、とりわけ論理学との関係において非常に重要である。後述するブール代数の 演算子である「交わり」 A と「結び」 V は、その見た目通り論理学における「かつ」と「また は」に対応し、全体として論理計算の代数的構造を示している。またそれ以外にも、本章で見 るように、束は我々の「概念」が持つ階層的構造をモデル化するのにも用いることができる。 このように束は、言ってみれば「順序に毛が生えたもの」に過ぎないにもかかわらず、様々な 可能性を持ち、突き詰めると奥が深い。その本章では、その一部を概観してみよう。

2 束

まず、半順序とは反射的($x \preceq x$)、反対称的($x \preceq y$ かつ $y \preceq x$ なら x = y)、推移的($x \preceq y, y \preceq z$ なら $x \preceq z$)な関係であったことを思い起こそう。さらに前章で、順序の部分集合 A のどれよりも大きい元たちのなかで一番小さい「スレスレの上界」として上限(およびその逆の「スレスレの下界」として下限)を定めた。 \mathbf{x} (lattice) とは、そうした上限・下限がどの元のペアにも存在するような半順序のことである。

定義 2.1: 束

東とは半順序集合 $\langle X, \preceq \rangle$ であり、どの 2 元 $x,y \in X$ に対しても、上限および下限が存在するものである。x,y の上限を**結び** (join) といい、 $x \lor y$ で表す。またその下限を**交わり** (meet) といい、 $x \land y$ で表す。

一般に束は三つ組 $\langle X, \vee, \wedge \rangle$ で表されるが、誤解のないときは単に束Xと表す。

なんてことはない,これだけである.東の定義は,単にどの元 x,y に対してもその上限と下限があって,それらをそれぞれ $x \vee x$ および $x \wedge y$ という表記で表すことにする,と言っているに過ぎない.しかし見方を変えると,この条件を束上の**演算**の定義として捉えることができる.つまり \vee を「2 つの元の結びをとる演算」, $x \vee y$ を「x と y に演算 \vee を施した結果」として見るのである.言い換えれば, y, \wedge を次のような 2 項関数として見るということである.

$$\forall: X \times X \to X, \quad (x,y) \mapsto x \vee y$$

 $\land: X \times X \to X, \quad (x,y) \mapsto x \wedge y$

これは、例えば足し算「+」が二つの数 (n,m) から別の数 n+m への 2 項関数であるのと同様である。そして上の束の定義は、こうした演算が**閉じている** (closed)、つまりどのような二元に適用しても、これらの演算を行った結果がちゃんと同じ束の中に含まれている、ということを保証している。かくして我々は、最初の代数的演算を手に入れた。

半順序同様,東もハッセ図によって図示することができる.図 1 の左側は東の一例である.実際,すべてのペアについて,その上限・下限が一意に定まっている.上の演算を確認すると,例えば $b \lor d = e$ であり, $c \land f = a$ である.一方,右側のハッセ図は半順序であるが束ではない.というのも,ペア (b,c) は上界として d,e,f を持つが,d の e の間には大小関係がないので,最小かは定まらない,つまり上限がないからだ.同様に (d,e) は下限を持たない.よって演算 $b \lor c,d \land e$ が一意に定義されず,束の条件を満たさない.

図 1 束の事例(左)と束でない半順序(右).右側では,一部のペアについて結びと交わりが存在しない.

練習問題 2.1

- 1. 数の順序集合,例えば $\langle \mathbb{R}, \leq \rangle$ は束である.任意の $x,y \in \mathbb{R}$ の結び $x \vee y$ と交わり $x \wedge y$ は何だろうか.
- 2. 2 値順序 $\mathbb{B}=\{ \text{false, true} \}$ は束である. その結びおよび交わりを (f,f),(f,t),(t,f),(t,t) のそれぞれについて計算せよ.
- 3. べき集合の半順序 $\langle \mathcal{P}(X), \subset \rangle$ は束であるか. (ヒント: 束であることを示すには、X の任意の 2 つの部分集合 $A, B \in \mathcal{P}(X)$ が結びと交わりを持つか、それが

何であるかを示せばよい.)

- 4. $x,y \in \mathbb{N}^+, x \leq y$ を「x は y を割り切る」という関係だとしたとき、 $\langle \mathbb{N}^+, \preceq \rangle$ は東であるか
- 5. 因果関係を半順序だとすると、それは束となるだろうか.

我々は上で、結びと交わりを演算として捉え直した。こうした演算子は、足し算や掛け算同様、一定のルールに従う。例えばそれは、足し算や掛け算、あるいは 1 章でみた集合演算のように、結合的かつ可換である。結びについてだけ示すと、 $x,y,z \in X$ に対し

$$(x \lor y) \lor z = x \lor (y \lor z) \tag{1}$$

$$x \lor y = y \lor x \tag{2}$$

が成立するし、また上式の \lor を \land に置き換えたものも成立する.これらはともに上限 \lor の性質から簡単に証明できる、すなわち大げさに言えば「定理」である.ちなみに束においては、ある式が定理として成立する場合、その中に出てくる結び・交わりをすべて入れ替えたものも同様に成立する.

(1) の結合性より,同一の東演算であれば適用順に関わらず同じ結果になるため,カッコを省いて $x \lor y \lor z \lor \ldots$ と書くことができる.さらに東では任意の 2 点が結び・交わりを持つので,そのように連結していけば,任意の有限集合 $A \subset X$ が上限と下限を持つことがわかる.これをそれぞれ $\bigvee A$, $\bigwedge A$ と書く.とくに X 自体が有限の場合,X 全体の上限と下限,つまり最大元と最小元が存在する.束の最大元を 1,最小元を 0 と書く(それぞれ \top , \bot と書く流儀も存在する).こうして有限東では,すべての $x \in X$ について, $0 \le x \le 1$ が成り立ち,図で書くと昔の納豆の藁づつみみたいに上と下がきゅっと縛られた形をしている(これだと少し「東」のイメージがわくだろうか).

注意

ここで「有限」と釘を差していることには理由がある。というのも無限集合の場合,その中の任意のペアが上限・下限を持ったとしても,集合全体の上限や下限は存在しないことがあるからだ。簡単な例として,自然数全体の全順序集合 $\langle \mathbb{N}, \leq \rangle$ を考えてみよ。いかなる 2 整数 $n,m \in \mathbb{N}$ について,その上限・下限は m,n のどちらか(m=n の場合は両方)なので,これは束である(全順序なので「束」っぽさはあまりないが)。しかし明らかに \mathbb{N} 全体ないしその無限部分集合(例えば「423 以上の数」)には上限が存在しない。このように,無限束は必ずしも最小元や最大元を持つとは限らない。有限無限に関わらず,任意の部分集合が上限・下限を持つような束を,完備束 (complete lattice) という*1。有限束は必然的に完備だが,無限だとそうでない場合がある。このように,無限はときにややこしい事態をもたらす。数学的にはそこが面白いところでもあるのだが,とりあえず本授業ではそうしたややこしさを避けるため,以下では主に有限束に話を限って進めることにする。

以上で、東を特徴付ける公理と、そのもとで定まる演算 \lor , \land を見た.こうした公理から、東についての様々な事実が、定理として引き出される.その例として上で (1), (2) を見たが、最後に更に、以下の 3 つをあげておこう:すべての $x,y \in X$ に対し、

$$x \wedge x = x, \quad x \vee x = x \tag{3}$$

$$1 \land x = x, \quad 0 \lor x = x \tag{4}$$

$$x \wedge (y \vee x) = x = (x \wedge y) \vee x. \tag{5}$$

(3) はまあ自明だろう。(4) についても,任意の $x \in X$ について $x \leq 1$ なので,その下限は x となり,また 0 についてはその逆を考えればよい。(5) については視覚的にイメージすると わかりやすい.具体例として図 1 左の束から $b \land (f \lor b)$ を取ると, $f \lor b$ は (f,b) の上限なの で当然 b より上に位置する($b \leq f \lor b$).よってそれと b の下限をとると,b に一致する.同様 に, $b \land f$ は b より下に来るので,それと b の上限は b と一致する.

練習問題 2.2

- 2. 前章で見た,命題論理の論理式を同値になるもので割った L' = L/R を考え,また \lor , \land をそれぞれ命題論理の「または」「かつ」演算子とする(ただし否定は考えない).すると $\langle L', \lor, \land \rangle$ は束となる.この束で 0,1 に対応するものは何か,またそこで (3)-(5) が成立することを確かめよ.

事例 2.1: メレオロジー

メレオロジー (mereology) とは、部分と全体の間の関係を扱う理論である. 「x は y の 部分である」という関係を $x \preceq y$ で表すことすると、これは半順序をなす(確認せよ). ある全体 x と y があるとき、両者を「合体」(fusion)させたものによって結び $x \lor y$ を定義できる. また x と y で重なり合う部分は、当然それぞれの部分なので、これによって交わり $x \land y$ も定義できる. ただし共通部分が存在しない場合、 $x \land y$ は空集合となる.

事例 2.2: 概念の束

東は、抽象的概念の間の階層構造を表すためにしばしば用いられてきた。前章事例 2.3 でも見たように、概念の集合を C とすると、「である関係 (is-a relationship)」は C 上の半順序を成す。この半順序上で、 $x,y \in C$ の結び $x \lor y$ は二つの概念を抽象して両者に共通する概念を得る操作だと考えることができる。例えば、human \lor dog = mammal というように。また rational \land animal = human かもしれない。このように、概念間の抽象構造(しばしば「アリストテレス的抽象主義」と呼ばれる)は束によってモデル化できる(cf. 五十嵐涼介 (2023)「情報の哲学史試論—『ポール・ロワイヤル論理学』・ライプニッツ・カント—、『哲學研究』 906)。

練習問題 2.3

上で示唆した概念の束において、(1) 交わりはどのような操作だと考えられるだろうか、 また (2) 最大元 1、最小元 0 は存在するだろうか、するとしたらそれはなんだろうか.

3 フィルターとイデアル

順序に加え、結びと交わりという2つの演算子をもった束を定義できたので、まずはこの束の中の構造を少し見てみたい。特に重要となるのが、次のフィルターとイデアルという2つの

概念である. これらはそれぞれ、東の中のある特殊な部分として定義される.

定義 3.1: フィルターとイデアル

F が東 X の空でない部分集合 $F\subset X$ で、以下の条件を満たすとき、**フィルター** (filter) と呼ばれる.

- F1 交わりで閉じている, つまり $a,b \in F$ ならば $a \land b \in F$.
- F2 上側をすべて含む、つまり $a \in F, b \in X$ であり $a \leq b$ ならば $b \in F$.
- 一方,以下の条件を満たす空でない $I \subset X$ をイデアル (ideal) と呼ぶ.
 - I1 結びで閉じている、つまり $a,b \in I$ ならば $a \lor b \in I$.
 - I2 下側をすべて含む、つまり $a \in X, b \in I$ であり $a \leq b$ ならば $a \in I$.

定義から見て取れるように、この 2 つの概念は互いに対になっている。一つの束のなかにフィルターやイデアルは複数ありえる。特に束全体 X はフィルターであり、同時にイデアルでもある。X 全体ではない、つまりその真部分集合であるようなフィルター/イデアルは、固有ないし真 (proper) であるといわれる。

ハッセ図上で視覚的に表すと,フィルターはケーキの上からシロップをかけたような,だらんと垂れ下がった形をしている.例えば図 2 の束においては, $\{i,f,b\},\{i,f,g,h,d\}$ などはフィルターとなる.一方, $\{i,f,g\}$ はフィルターではない.というのも,そのためにはまず結び $f \land g = d$ を入れなければならない.そして d を入れるとその上の h も入れなければならないので,結局上の二番目のフィルターと同一になる.一方イデアルは,下から湧き上がってくるイメージで,例えば $\{a,b,c,d,f\},\{a,d,e,h\}$ などが該当する.

図 2 東上のフィルター(左)とイデアル(右)の例. それぞれ緑色・青色の枠で囲った部分はフィルター/イデアルになっている.

練習問題 3.1

図2を参考に、上のもの以外の固有フィルターと固有イデアルを一つづつあげよ.

フィルターとイデアルの「ご利益」は一見してあまり明らかではないかもしれないが,様々なところに出てくる概念である.例えば我々は事例 4.1 で,準同型写像 $f:L'\to \mathbb{B}$ が論理式集合 L' 上の真理値関数となることを見た.この逆像 $f^{-1}(\text{true})$ はフィルターであり, $f^{-1}(\text{false})$ はイデアルとなる.しかも両者には明確な意味がある:前者は関数 f のもとで真となる論理式全体であり,後者は偽となる論理式全体である.

事例 3.1: 概念を用いた推論

我々は日常,観察した対象の性質からそれが何であるかを同定し,そこからさらなる性質を引き出すことによって推論を行う.例えば目の前の物体が「硬いH」「光沢があるS」ということから,それが「金属M」であると同定し,それによってその物体は金属に一般的な他の性質,例えば「導電性C」なども持つと推論する a . フィルターを用いることで,こうした推論をモデル化できる(図 3).その推論過程としては,まず対象xがx0000円の人であることから,その交わりx000円の人でもあることが帰結される.次にx100円の人であることが帰結される.次にx10円の人である。導電性x10円の内包に含まれる性質であるため,x20円の人であることが導かる.導電性x20円の内包に含まれる性質であるため,x30円の力に含まれる性質であるとめ、x40円の力に含まれる性質であるため。x50円の力に含まれる性質であるとめ、x50円の力に含まれる性質であるとめ、x50円の力に含まれる大観測の性質x50円の力を取ることに想定し,それによってそのフィルターに含まれる未観測の性質x50円の力を取ることに想定し,それによってそのフィルターに含まれる未観測の性質x50円の力能に対象に帰属させることができるのである.

^a もちろん, ニクロムやアルマイトなど電気抵抗が高い金属が存在するので, こうした推論はあくまで 蓋然的なものに過ぎないが, ここではその点は無視する.

図 3 フィルターを用いた推論. 赤で囲まれた観測された事実 Hx, Sx を証拠として, x が その結び M であることがまず帰結される (赤矢印). 次に, それが M の内包すなわちフィルターに含まれる他の性質, 例えば C を持つことが結論される (青矢印).

図 2 でも明らかなように,同じ東の中に様々なフィルターが存在する.さらにこれらの間には大小がある.例えばフィルター $F=\{i,g\}$ は $F'=\{i,f,g,h,d\}$ にすっぽり収まるので, $F\subset F'$ となっている.このとき,F と F' は比較可能であり,F はより荒い/ F' はより細かいという*2.すべてのフィルターが比較可能であるわけではない.例えば $F''=\{i,f,b\}$ は F より細かいが,F' とは比較可能ではない.

東全体 X は当然すべてのフィルターよりも細かいが,それを除外して,比較可能なすべての固有フィルターよりも細かいような固有フィルターを,**超フィルター** (ultra filter) と呼ぶ.上の F', F'' はそれぞれ超フィルターである.ここから明らかなように,超フィルターは一つとは限らず,複数ありえる.超フィルターは,それよりも何かを一つでも足してフィルターを作ろうとすると,東全体となって固有フィルターではなくなってしまう,そのようなフィルターである.例えば F' に b を足してできるフィルターは, $d \land b = a$ を含むので,最小元より上のすべて.つまり東全体を含んでしまうことになる.

練習問題 3.2

図2上の超フィルターをすべて挙げよ.

 $^{*^2}$ これは東上のフィルターの集合が半順序になっていることを示唆する。それは東だろうか?どんな束だろうか?

事例 3.2: 科学理論と予測の詳細さ

科学理論 T は現実世界について何らかの予測を立てる.ここから理論 T を T によって予測されるすべての命題の集合と同一視しよう.この集合は当然,帰結関係と連言に関して閉じているだろう,つまりある理論 T が「来週いっぱい晴れである」と予測するなら,そこから帰結する「来週月曜は晴れである」とも予測するだろうし,またさらに「来週の最高気温は 30 度である」と予測するなら,「来週いっぱいは晴れで最高気温は 30 度である」も予測するはずだ.よって理論は,命題束上の固有フィルターとして考えることができる.より詳細な予測をする理論ほど,良い理論といえる.「来週月曜は晴れである」と予測する理論より,「来週月曜日は晴れで最高気温は 30 度である」と予測する理論のほうがより「細かく」世界のあり方を規定している.この解釈では,フィルターの細かさは,対応する科学理論の予測の詳細さに対応している.(ではこの解釈において,超フィルターは何を表すだろうか.)

4 準同型写像

我々は前章 4 節で,二つの順序の間の「構造を保つ写像」としての単調写像を見た.同じようにここでは,二つの東X,Yの間の準同型写像を考えたい.東は特殊な半順序なので,当然それはXからYへの単調写像である必要があるが,それに加え東の特徴である結びと交わりを保存する必要がある.具体的には次である

定義 4.1: 束準同型写像

関数 $f: X \to Y$ が次の条件を満たすとき、東 X, Y の間の**準同型写像** (homomorphism) といわれる. すべての $x, x' \in X$ に対して、

$$f(x \lor x') = f(x) \lor f(x')$$
 かつ $f(x \land x') = f(x) \land f(x')$

つまり束の構造を保存するとは、x,x' の結び(交わり)を飛ばしたものが、それぞれを別々に Y に飛ばした f(x), f(x') の結び(交わり)になっている、ということである.これは以下のように図で表すこともできる(ここでは結びのみを書くが、交わりも同様).

$$\begin{array}{ccc}
x, x' & \xrightarrow{f} & f(x), f(x') \\
\downarrow^{\vee_X} & & \downarrow^{\vee_Y} \\
x \lor x & \xrightarrow{f} & f(x) \lor f(x') \\
& = f(x \lor x')
\end{array}$$

反時計回りの矢印は、x,x' という X における 2 つの元が与えられたとき(左上),まずこれらの結び $x \lor x'$ を計算してから,写像 f で Y の元 $f(x \lor x')$ に飛ばすことを表している.一方時計回りの矢印は,x,x' をそれぞれ f(x),f(x') に飛ばしてから,東 Y においてその結び $f(x) \lor f(x')$ を計算することを表している.f が準同型であるとは,このようにどちらの道を通っても,その結果が等しく $f(x \lor x') = f(x) \lor f(x')$ となる,ということを保証している.これを,f と \lor は可換であるといい,こうした図式を可換図式(commutative diagram)という.したがって束の準同型写像とは,東演算 \lor および \land と可換であるような写像 $f: X \to Y$ であるとも言える.これはあらゆる準同型写像に共通する特徴であって,一般に準同型とは当該の

数学的構造が持つ演算と可換であるような構造間の写像にほかならない.この可換性という考えは全数学の様々なところで出てくる超重要な考え方なので.徐々に慣れていってほしい.

ところで上の可換図式において、左側は東Xの世界、右側は東Yの世界を表している。下向き矢印に添え字 \vee_X 、 \vee_Y がしてあるのは、これらの交わりがそれぞれが東X,Yにおける演算であり、よって本来的には異なるものであることを明示するためだ。よって正確には、準同型の条件も $f(x\vee_X x')=f(x)\vee_Y f(x')$ などとする必要がある。しかしこれだと煩雑になりややこしいので、誤解の恐れがないときは添字を省いて表記することにする。

事例 4.1: 真理値関数としての束準同型

問題??で,同値式を同一視した論理式の集合 L' が束を構成することを確認した。 L' への真理値割当とは, L' から 2 値順序 $\mathbb{B}=\{ \mathrm{false}, \mathrm{true} \}$ への準同型写像である. この準同型写像が,結び \vee および交わり \wedge を保存するとはどういうことか,上の束準同型写像の条件をもとに考えよ.

事例 4.2: 命題と可能世界

否定を除く論理演算で閉じた命題の集合 P を考えよう。つまり P には p= ワシントンはアメリカの初代大統領である,q= 日本の首都は京都である,などの原子命題のみならず,それを「かつ」「または」で繋いだ任意の命題が入っている。つまり $\langle P,\lor,\land\rangle$ は束である。いま命題 $p\in P$ に対し,f(p) を命題 p が成立している世界(一般に p-世界 p-worlds と呼ばれる)の集合とする。これら p-世界は様々な可能世界を表しており,例えば現実世界は f(p) には入っているが f(q) には入っていない。また例えば $f(p\land q)$ とは p と q が両方成立している世界であり,これは p-世界と q-世界の共通部分,つまり $f(p)\cap f(q)$ となるはずである。よって任意の $p,q\in P$ に対し

$$f(p \lor q) = f(p) \cup f(q), \quad f(p \land q) = f(p) \cap f(q)$$

が成り立つ。練習問題 2.1-2 より全世界 W の部分集合系は東 $\langle \mathcal{P}(W), \cup, \cap \rangle$ であるので,命題に対応する可能世界を割り当てる写像 f は P から $\mathcal{P}(W)$ への準同型写像となる.

事例 4.3: 概念の外延

上の三つの事例は準同型写像の重要な考え方を示唆している。それはつまり、準同型は代数的体系への意味論を与える、というアイデアである。それぞれの準同型のドメインとなる束は、ある概念(論理式、命題、概念)の間の形式的関係性を示している(例えば論理式間の導出関係)。準同型写像は、それらを何か他のものにマッピングすることで、形式的概念の意味を具体的な形で与えるものだと考えられる。上の事例では、論理式にその真理値、命題に可能世界、概念に外延を与えることで、それぞれの「意味」を確定している。そして写像の準同型性

は、ドメイン側の形式的操作が、コドメインの具体的対象の間の操作としてちゃんと整合的な意味を持っている、ということを保証している。もちろんこれらはすべて、前章で触れた「表現」を、哲学的な観点から言い直したものに過ぎない。一般的に表現の利点は、抽象的な代数的構造をより具体的な物(行列や集合)で表す、ということにある。このスピリットは、数学だけでなく、抽象的な構造を扱う哲学においても重要である。つまりある抽象的問題を代数的にモデリングするときは、その意味論、つまり集合系への準同型写像を同時に考えることが重要なのである。

5 東同型

また単調写像のときと同様, 準同型写像 $f: X \to Y$ が全単射である, つまり $\forall x(g(f(x)) = x)$ となる g が存在するとき,同型写像 (isomorphism) といい,X と Y は(束として)同型であるという.このとき両者は構造的に同じ束として同一視できる.

注意

上の定義を見て、あれ、単調写像という条件はどこに行った?と思った人は鋭い.実は、結びと交わりを保つ写像は、順序も保存することが示せる.よってわざわざ条件に入れ込む必要がないのである.ちなみに正確には、f が単調写像であることと, $f(x) \lor f(x') \preceq f(x \lor x')$ あるいは $f(x \land x') \preceq f(x) \land f(x')$ が同値.準同型写像であれば後者が満たされるので,f は単調となる.

さらに、あれ、単調写像のときは、X,Y が同型であるためには単調写像 $f:X\to Y$ が全単射であるだけでなく、さらにその逆写像 $f^{-1}:Y\to X$ も単調である必要があったのに、東同型の場合はその条件が抜けているぞ?と思った人はさらに鋭い、実は全単射な束準同型では、逆写像も自動的に束準同型になることが確認できる。f が全単射なので、任意の $y,y'\in Y$ について y=f(x),y'=f(x') を満たす $x,x'\in X$ が一つだけとれる。よって

$$f^{-1}(y \vee y') = f^{-1}(f(x) \vee f(x'))$$
 : 上の定義より
$$= f^{-1}(f(x \vee x'))$$
 : f 準同型より : f^{-1} は f の逆写像
$$= f^{-1}(y) \vee f^{-1}(y')$$
 : 上の定義より

となり (結び \land も同様), f^{-1} も準同型であることが示された.

6 ブール代数

定義 6.1: ブール代数

最大元 1 と最小元 0 を持つ束 $\langle X, \preceq \rangle$ が以下を満たすとき、ブール代数と呼ばれる

1. **分配則** (distributive law) を満たす, つまりすべての $x, y, z \in X$ に対し,

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z) \tag{6}$$

$$x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z). \tag{7}$$

2. 否定演算 $\neg: X \to X, x \mapsto \neg x$ があり、次の**排中律** (law of excluded middle) を満たす

$$x \vee \neg x = 1, \quad x \wedge \neg x = 0 \tag{8}$$

なお $\neg x$ を x の補元 (complement) と呼ぶ.

分配則 (6), (7) については 1 章の集合演算のところで見覚えがあるだろう。また結びと交わりを + と \times に置き換えれば,これは小学校で習った分配則と全く同じ形をしている *3 . 分配束とは,これら 2 つの演算がどうやって組み合わさるのか,ということを表す法則である.

一方,否定¬はここで登場した新しい演算子である.これは東の中の一つの元 $x \in X$ をとって,これを元¬ $x \in X$ に対応させる 1 項関数である.排中律は,このようにしてできる x,¬x の関係性を規定している.外見から明らかなように,これは明らかに古典論理の否定に 対応している.実際 (8) は,「p または¬p」は常に真 \top ,「p かつ¬p」は常に偽 \bot という論理 学の排中律・矛盾律そのままである.

図 4 は、8 元からなるブール代数(左側)と、ブール代数ではない東(右側)を示している。右側の東では、排中律を満たすような否定演算を定義することはできるが、分配束が満たされない。 実際、 $\neg a = b, \neg c = e, \neg d = f, \neg 0 = 1$ のようにとれば、これらのペアの結びは 1、交わりは 0 となり排中律を満たす(ただし、その取り方は一意ではない。例えば $\neg c = f$ のようにしても同様に成り立つ)。一方、例えば $a \lor (d \land e) = a \lor 0 = a$ であるが、 $(a \lor d) \land (a \lor e) = d \land 1 = d$ となり、両者は一致しない。よってこれはブール代数ではない。

図4 8元からなるブール代数 (左) とそうでない束 (右).

 $^{*^3}$ 実際この類似性は偶然ではなく、 圏論的な観点からいえば、 これらはみな余積 (co-product) および積 (product) という一般的な構造の例である.

練習問題 6.1

図4左において、

- 1. (1) $d \wedge (e \vee f)$, (2) $a \vee (b \wedge c)$, (3) $e \wedge (d \vee f)$ をそれぞれ計算せよ.
- 2. (1) $(d \wedge e) \vee (d \wedge f)$, (2) $(a \vee b) \wedge (a \vee c)$, (3) $(e \wedge d) \vee (e \wedge f)$ をそれぞれ計算 せよ.
- $3. \neg a, \neg b, \neg c$ を求めよ.

我々は 2 節で,束について複数の定理 (1)-(5) が成立することを見た.ブール代数では分配束と排中律が加えられたことにより,さらに多くの定理が成立する.代表的なものを少し挙げておこう.

$$\neg 0 = 1, \quad \neg 1 = 0 \tag{9}$$

$$\neg \neg x = x \tag{10}$$

$$\neg(x \lor y) = \neg x \land \neg y \tag{11}$$

$$\neg(x \land y) = \neg x \lor \neg y \tag{12}$$

特に (10) は二重否定除去, (11-12) はド・モルガン則と呼ばれる.

図 5 単純命題 p,q から構成される命題論理のブール代数のハッセ図. 左右の立方体は、それぞれの否定を含んでいる.

事例 6.1

命題論理の東 $\langle L', \vdash \rangle$ は,ブール代数である.2 つの単純命題 p,q のみからなるブール代数 L' は,図 5 のようになる.見方によっては,2 つの立方体の頂点間が結ばれたように見える.ここにおいて,上で見たブール代数の公理が成立していることを確認してみよう.

まず,分配則の一つ目 $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$ をみる.いま, $x = p, y = p \iff q, z = \neg p$ ととってみる.左辺から見ると, $p \iff q$ と $\neg p$ の結びは $\neg p \vee q$,それと p の交わりは $p \wedge q$ になる.次に右辺を見ると,p と $p \iff q$ の交わりは $p \wedge q$ であり,p と $\neg p$ の交わりは \bot . よってそれらの結びは $p \wedge q$ となり,確かに両辺は一致している.

次に否定の例も見てみよう. $p \land q$ を例にとると、その否定は $\neg p \lor \neg q$ である. 両者の上側の合流点つまり結びは \top であり、下側の合流点つまり交わりは \bot であるので、排中律 (8) が成立している。ちなみにこの図では、一方の立方体に属する元の否定が他方の立方体の、それもちょうど対称的な頂点に位置していることに注意せよ。これ以外にも適当な元を選んで、上の公理が成立していることを確認してみよう。

練習問題 6.2

- 1. 2 値順序 $\mathbb{B} = \{\text{false, true}\}$ は、ブール代数である. それぞれの補元は何か.
- 2. $X = \{a, b, c\}$ として、ブール代数 $\langle \mathcal{P}(X), \subset \rangle$ のハッセ図を書け、任意の元 $A \in \mathcal{P}(X)$ の補元は何か、また分配束・排中律が満たされることを確認せよ、

東を用いたモデリングにおいて、否定は必ずとも存在するとは限らない。例えば事例 2.1 で見たメレオロジーにおいて、一般にその東の要素は「個物」であると解釈されている(つまりメレオロジーとは個物の間の部分全体関係を扱うものである)。そう考えたとき、ある個物の「否定」が何であるかは必ずしも明らかではない。例えば「エッフェル塔の否定」とはなんだろうか。それはエッフェル塔以外のすべての「部分」と言って良いのか。そうだとして、それは「個物」なのだろうか。もしこれが否であるなら、メレオロジー束をブール代数として扱うことは適当ではない。

事例 6.2: スコトゥスと「正反対のモノ」

ドゥンス・スコトゥスは以下のような議論をしたといわれている a . ある具体的な黒いモノ、例えばこの黒猫に正反対なものを考えてみよ. 少なくともそれは白いものでなければならないが、しかし白いものはいくらでもあるので、そうした反対物が一意に定まることはない. よって個物の「反対物」を実在するものとして考えることはできない. これは、概念の束(事例 2.2)では、少なくともそれが具体的な個体を含む限り、否定が定義できず、よってブール代数ではない、という議論だと解釈できる.

 a マレンボン『哲学がわかる 中世哲学』(周藤多紀訳,岩波書店, p. 108)

練習問題 6.3

- 1. では、具体的な個体を含まないような概念の束は、ブール代数たりえるだろうか.
- 2. 可能世界の束(事例 4.2) はブール代数だろうか.

6.1 ブール代数上のフィルター

我々は前節でフィルターとイデアルの概念を見た. さらに超フィルターを,最も細かい(つまり比較可能な固有フィルターをすべて含む)フィルターとして定義した. ブール代数は束なので,当然そこにもこれらはそのままの定義で妥当する. さらにブール代数では,超フィルターは「すべての元につき,それかその否定のどちらかが含まれている」フィルターとしても定義できる. つまり次が成り立つ.

命題 6.1

F がブール代数 B 上の超フィルターである \iff すべての $x \in B$ について, $x \in F$ あるいは $\neg x \in F$.

これは命題論理のブール代数 $\langle L', \vdash \rangle$ を例に取れば,超フィルターとはすべての式について その式かその否定のどちらかが含まれている論理式の集合だといえる.我々は後に,これが命 題論理の真理値割当に一致することを確認する.

練習問題 6.4

図5において,

- 1. $p \iff q$ を含む最小のフィルターおよびイデアルは何か.
- 2. p および $p \iff q$ を含む最小のフィルターは何か.
- 3. このブール代数からは何個の異なる超フィルターを取れるか.

事例 6.3: 完全な理論

事例 3.2 で,科学理論を命題論理の東上のフィルターと同一視した.この解釈では,超フィルターとは,すべての事態 p について,その肯定か否定が理論によって予測されるような,完全な理論であるといえる.

事例 6.4: 汎通的規定

概念の東(事例 2.2)がブール代数をなすと仮定しよう.これはつまり,あらゆる概念につきその否定概念,例えば「赤い」という概念に対し「赤くない」も概念だと認めるということだ.この概念の東における超フィルターとは,すべての概念につき,その肯定か否定かどちらかが必ず含まれるようなものである.カントはこれを汎通的規定と呼んだ.そしてカントによれば,個体とは全ての概念について汎通的に規定されているものである:つまり我々は,すべての概念について,それが属するか属さないかを完全に(汎通的に)定めることで,個体概念にたどり着くのである.よって概念東Cがすべての概念を含むという仮定のもとで,個体とはC上の超フィルターである.

事例 6.5: 反証可能性

再び事例 3.2 の科学理論フィルターを考える.このフィルターを部分として含む全命題はブール代数 X を構成するとする.ポパーによれば,理論 T はその予測に反する観測が得られたとき,反証される.T を反証する観測の集合を反証集合 I(T) とすると, $I(T) = \{x \in X | \exists t \in T(x = \neg t)\}$ である.これは X 上のイデアルとなる(確認せよ).また, $T \subset T'$ であれば, $I(T) \subset I(T')$ である(確認せよ).よって理論が細かくより詳細な予測を行うほど,より反証集合が大きく,反証されるリスクが高いといえる.一方ポパーによれば,疑似科学とは決して反証できない理論,すなわち $I(T_0) = \{\emptyset\}$ であるような理論 T_0 である.この予測集合は $T_0 = \{1\}$ となる,つまり疑似科学は何の具体的予測も行わない.

6.2 ブール準同型

最後にブール代数間の準同型写像を、以下のように定義する.

定義 6.2: ブール準同型

ブール代数 X,Y 間の東準同型 $f:X\to Y$ が、さらに以下の条件を満たすとき、**ブール準同型** (Boolean homomorphism) と呼ぶ:

すべての
$$x \in X$$
 について, $f(\neg x) = \neg f(x)$.

つまりブール準同型は、東準同型として順序、結び、交わりを保存するだけでなく、さらに最大/最小元および否定を保存するような写像である。実際、これらがブール代数を構成するすべてのアイテムなので、これらを保存する写像は、確かにブール代数の構造をしっかりと写し取っているといえる。また以前と同様、f が全単射であるとき、ブール同型写像であるといわれる。

命題 6.2

ブール準同型写像 $f:X\to Y$ は最大元および最小元を保存する,つまり $f(1_X)=1_Y$ かつ $f(0_X)=0_Y$ が成り立つ.(ただし $1_X,1_Y$ は X および Y の最大元, $0_X,0_Y$ は最小元).最大元だけ示すと:

事例 6.6

命題論理ブール代数 $\langle L', \vdash \rangle$ から 2 値順序 $\mathbb{B} = \{ \text{true}, \text{false} \}$ への準同型写像は,真理値関数にほかならない.条件 $f(\neg p) = \neg f(p)$ は否定演算子の真理値表に対応していることを確認せよ.また任意の真理値関数 f について, $F = f^{-1}(\text{true})$ はそのもとで真になる論理式全体である.このとき,任意の $p \in L$ について,f(p) = true ならば逆像の定義より $p \in F$ であり,f(p) = false であれば否定の保存条件より $f(\neg p) = \neg f(p) = \neg \text{false} = \text{true}$ となるため, $\neg p \in F$ である.つまり $F = f^{-1}(\text{true})$ は超フィルターである.

事例 6.7

事例 4.2 で見た命題から可能世界の集合への写像は、ブール準同型になる. また 4.3 で見た概念からその外延への写像も、概念束がブール代数になるという仮定のもとでブール準同型となる.

6.3 ブール代数の表現*

最後に発展的な話題を少し、我々はこれまで、任意のブール代数(命題、概念、等々)はべき集合のブール代数(可能世界の集合、外延の集合、等々)と密接に関連していることを見てきた。これは偶然ではない、実際のところ、あらゆるブール代数はなんらかのべき集合と同一視できる―つまり任意のブール代数について、それと同型のべき集合代数があり、またべき集合代数があれば、それとブール同型なブール代数を作ることができる。ストーンの表現定理(Stone's representation theorem)として知られるこの結果は、統語論的構造(ブール代数)と意味論的構造(集合族)の結びつきを示すものとして非常に重要である。任意のブール代数についてこれを示すのは大変だが、有限の場合であれば比較的簡単なので、以下に素描しよう。

まず B を有限ブール代数とする. B の元 a で,最小元 0 スレスレのもの,すなわち $0 \leq a, a \neq 0$ だが a 未満のものは 0 しかない,そんな元を B の**原子** (atom) と呼ぶ(視覚的には原子は最小元の「直上の層」にくる:図 6 参照).B のすべての原子の集合を A(B) で表そう.すると B の任意の元 $b \in B$ は,その下にある原子の和になることが示せる,つまり

$$b = \bigvee \{x \in \mathcal{A}(B) | x \leq b\}.$$

このことは、図6でも確認できる(図ではこれを明示するため、元自体をその下にある構成原子によって示している).

ここまで来たら,あとは任意の $b \in B$ をその「素材」となる原子の集合に飛ばす写像 η を考えればよい

$$\eta: b \mapsto \{x \in \mathcal{A}(B) | x \leq b\}$$

この写像は B からアトム集合のべき集合 $\mathcal{P}(\mathcal{A}(B))$ へのブール同型になっている.逆写像は,任意のアトム集合 $S\subset\mathcal{A}(B)$ に対しその和としてのブール元を返す $\eta^{-1}:S\mapsto\bigvee S$ である.このようにして,任意の有限ブール代数はべき集合として表現できることがわかった.

図 6 図 5 と同じ 16 元ブール代数の構成. 原子集合 $\mathcal{A}(B) = \{a_1, a_2, a_3, a_4\}$ である. すべての元が原子集合の部分集合として表せていることを確認しよう.