NIRMA UNIVERSITY

Institute of Technology

Semester End Examination(IR/RPR), May 2022 B.Tech in Computer Science Engineering – Sem VI 2CS601-Theory Of Computation

Roll /				Supervisor's Initial	
Exam No Time: 3				with Date	Max Marks: 100
Instruction	s: 1		ndicate full marks		
			SECTION-	I	
Q:1 [CLO3]	Answ	er the followin	ng questions		[18]
A BL-2	(i) (ii)		e definition for the lan uage from the recursiv		[06]
B BL-4		_	∈ L, xb, xa and bx are $n \ge 0$, using PMI)) $-\frac{n}{n+1}$	e in L.	[06]
			OR		
B BL-4	Prove	[06]			
C BL-4	Find t a.	[06] number of			
Q:2 [CLO1]		1's. The language er the followi	of strings that do not ng questions	end with 01.	[18]
A BL-6	(i) (ii)	identifiers.	OFA to accept the valid Assume L= [a-z, A2 enerated language fro		age [06]
	→ (A 1 0	B O D O,1 C 1 E page	0,1	

BL-5 Let L₁ and L₂ be language represented by the following automata. [06]
Construct DFA representing L2 U L1

C Define \land - closure of a set for NFA- \land . Consider the following transition [06] table and find \land ({3,4})

q	δ (q,a)	δ (q,b)	δ (q, Λ)
1	Ф	Ф	{2}
2	{3}	Ф	{5}
3	Ф	{4}	Ф
4	{4}	Ф	{1}
5	Ф	{6,7}	Ф
6	{5}	Ф	Ф
7	Ф	Ф	{1}

Q:3 Answer the following questions

[14]

[CLO2]

BL-5

Minimize the following DFA.

[07]

B Convert following NFA- \wedge to DFA. BL-5

[07]

OR

B What is an equivalence class in a regular language? What is significance of [07] BL-3 it to prove whether the language is regular or not? Explain with suitable example.

SECTION-II

Q:4	Answer the following questions	[18]
[CLO4] A BL-4	Find the equivalent CFG for following languages. (i) {ai bj ck i < j or i < k} (ii) Set of all (positive or negative) even integer. e.g. +174, -936 (Assume terminals = {+,-,0,1,2,3,4,5,6,7,8,9})	[06]
B BL-4	Convert following CFG to CNF (Chomsky Normal Form). S → AACD A → aAb ∧ C → aC a D → aDa bDb ∧	[06]
	or	
В	Define Following terms:	[06]
BL-4	(i) Regular Grammar	
	(ii) Context Free Grammar	
С	(iii)Language accepted by PDA Do as Directed	[06]
BL-4	 (i) Describe the language generated by following grammar S → aA bC b A → aS bB B → bA aC a C → aB bS (ii) Define an unambiguous grammar. Is following grammar unambiguous? Justify your answer. S → aSb aaSb ∧ 	
Q:5	Answer the following questions	[18]

[CLO1,3]

A Following table shows the DPDA. Find out the language accepted by DPDA [06] where starting state={q0} and accepting state = {qa,qb}

Move	State	Input	Stack	Move(s)
No			Symbol	
1	q0	a	Z0	(qa,Z0)
2	q0	b	Z0	(qb,Z0)
3	qa	а	Z0	(qa,aZ0)
4	qa	а	а	(qa,aa)
5	qa	b	а	(qa, ∧)
6	qa	b	ZO	(q0,Z0)
7	qb	b	ZO	(qb,bZ0)
8	qb	b	b	(qb,bb)
9	qb	а	b	(qb, ^)
10	qb	а	Z0	(q0,Z0)

205601 Design the DPDA for $\{a^i \ b^j \ c^k \mid i, j, k \ge 0, j=i \text{ or } j=k\}$ В [06] BL-6 Design a Top down PDA for the following CFG also trace the string a*a+a C [06] BL-6 $S \rightarrow S + T \mid T$ $T \rightarrow T *a \mid a$ Q:6 Answer the following questions [14][CL02, CLO4] Design the Turing Machine (TM) for calculating following function f for the [07] Α BL-6 string x where $x \in \{a,b\}^*$, F(x) = 0 if x is palindrome F(x) = 1 if x is nonpalindrome Design the TM for deleting the particular symbol initially represented by [07] В BL-6 pointer. (eg:i/p string = aaba o/p string=aaa) OR В Define PDA and TM with all the elements. State the difference between [07]BL-4 both the automata and discuss the real time application of PDA and TM.