# Chapitre 12

Endomorphismerremarquable

N

# 1 Qu'est ce qu'une matrice orthogonale?

#### DÉFINITION 1

On dit qu'une matrice carrée  $A \in \mathcal{M}_n(\mathbb{R})$  est orthogonale si  $A^{\top} \cdot A = I_n$ . L'ensemble des matrices orthogonales de  $\mathcal{M}_n(\mathbb{R})$  est noté  $O_n(\mathbb{R})$  ou O(n), et est appelé le groupe orthogonal d'ordre n.

### Remarque 2:

Le déterminant d'une matrice orthogonale vaut  $\pm 1$ . En effet,  $1 = \det I_n = \det(A^\top \cdot A) = \det A^\top \cdot \det A = [\det A]^2$ . Ainsi, toute matrice orthogonale est inversible :

$$A \in \mathcal{O}_n(\mathbb{R}) \implies \det A = \pm 1 \implies \det A \neq 0 \implies A \in \mathrm{GL}_n(\mathbb{R}).$$

On en déduit que

$$A \in \mathcal{O}_n(\mathbb{R}) \iff A^{\top} \cdot A = I_n \iff A^{\top} \cdot A^{-1} \iff A \cdot A^{\top} = I_n.$$

En effet, 
$$A^{\top} \cdot A = I_n$$
 et donc  $A^{\top} \cdot A \cdot A^{-1} = A^{-1}$ . D'où,  $A^{\top} = A^{-1}$ .

Le sous-ensemble des matrices orthogonales dont le déterminant vaut +1 est noté  $SO_n(\mathbb{R})$ , ou SO(n), et est appelé groupe spécial orthogonal d'ordre n. Ainsi,

$$SO_n(\mathbb{R}) \subset O_n(\mathbb{R}) \subset GL_n(\mathbb{R}).$$

#### Exercice 3:

Montrer que  $SO_n(\mathbb{R})$  est un sous-groupe de  $O_n(\mathbb{R})$ , qui est un sous-groupe de  $GL_n(\mathbb{R})$ . Vérifier, par ailleurs, que ces ensembles sont stables par transposition.

L'ensemble  $O_n(\mathbb{R})$  est non vide. En effet,  $I_n \in SO_n(\mathbb{R})$  car det  $I_n = 1$  et  $I_n^{\top} \cdot I_n = I_n \cdot I_n = I_n$ . De plus, si  $A \in O_n(\mathbb{R})$  et  $B \in O_n(\mathbb{R})$ , alors  $(A \cdot B^{-1})^{-1} = B \cdot A^{-1} = (B^{\top})^{\top} \cdot A^{\top} = (A \cdot B)^{\top}$ , d'où  $A \cdot B \in O_n(\mathbb{R})$ . On en déduit que  $O_n(\mathbb{R})$  est un sous-groupe de  $GL_n(\mathbb{R})$ .

L'ensemble  $\mathrm{SO}_n(\mathbb{R})$  est non vide. En effet,  $I_n \in \mathrm{SO}_n(\mathbb{R})$  car  $\det I_n = 1$  et  $I_n^\top \cdot I_n = I_n \cdot I_n = I_n$ . De plus, si  $A \in \mathrm{SO}_n(\mathbb{R})$  et  $B \in \mathrm{SO}_n(\mathbb{R})$ , alors  $\det(A \cdot B^{-1}) = \det A \cdot \det(B^{-1}) = 1 \times \frac{1}{1} = 1$ , et  $(A \cdot B^{-1})^{-1} = B \cdot A^{-1} = (B^\top)^\top \cdot A^\top = (A \cdot B)^\top$ , d'où  $A \cdot B \in \mathrm{SO}_n(\mathbb{R})$ . On en déduit que  $\mathrm{SO}_n(\mathbb{R})$  est un sous-groupe de  $\mathrm{O}_n(\mathbb{R})$ .

Pour toute matrice  $A \in O_n(\mathbb{R})$ , on a  $A^{-1} = A^{\top}$ , et  $A^{-1} \in O_n(\mathbb{R})$ , d'où  $A^{\top} \in O_n(\mathbb{R})$ . On en déduit que  $O_n(\mathbb{R})$  est stable par transposition. Ce raisonnement reste valide en remplaçant  $O_n(\mathbb{R})$  par  $SO_n(\mathbb{R})$ .

### Proposition 4:

Une matrice est orthogonale si, et seulement si, ses colonnes (ou ses lignes) forment une base orthonormée de  $\mathbb{R}^n$  (muni du produit scalaire canonique). Autrement dit : une matrice est orthogonale si, et seulement si c'est la matrice de passage d'une base orthonormée de E vers une autre base orthonormée de E.

### DÉMONSTRATION:

On note  $C_n, C_2, \ldots, C_n$  les colonnes de  $A \in O_n(\mathbb{R})$ .

$$A^{\top} \cdot A = I_n \iff \forall (i, j) \in [\![1, n]\!]^2, \ \langle C_i \mid C_j \rangle = \delta_{i, j} \\ \iff (C_1, \dots, C_n) \text{ est une base orthonormée.}$$

Et, si A est orthogonale,  $A^{\top}$  l'est aussi. Or, la transposition change les colonnes en lignes.

### Ме́тноре 5:

En particulier, soit A une matrice  $3 \times 3$  de colonnes  $C_1$ ,  $C_2$ , et  $C_3$ . Il suffit de vérifier que

- $(C_1, C_2)$  est une famille orthonormée, et  $C_1 \wedge C_2 = \pm C_3$  pour montrer  $A \in O_3(\mathbb{R})$ ;
- $(C_1, C_2)$  est une famille orthonormée, et  $C_1 \wedge C_2 = +C_3$  pour montrer  $A \in SO_3(\mathbb{R})$ .

Exercice 6:

Soit  $\theta \in \mathbb{R}$ . Étudier les matrices

The matrices 
$$A = \begin{pmatrix} \cos \theta & -\sin \theta & \vec{\imath} \\ \sin \theta & \cos \theta & \vec{\jmath} \end{pmatrix} = \begin{bmatrix} f \end{bmatrix}_{(\vec{\imath}, \vec{\jmath})} \in SO_2(\mathbb{R}),$$

$$f(\vec{\imath}) & f(\vec{\jmath}) \qquad = \begin{bmatrix} g \end{bmatrix}_{(\vec{\imath}, \vec{\jmath})} \in SO_2(\mathbb{R}),$$

$$B = \begin{pmatrix} \cos \theta & \sin \theta & \vec{\imath} \\ \sin \theta & -\cos \theta & \vec{\jmath} \end{pmatrix} = \begin{bmatrix} g \end{bmatrix}_{(\vec{\imath}, \vec{\jmath})} \in O_2(\mathbb{R}),$$

$$g(\vec{\imath}) & g(\vec{\jmath}) \qquad = \begin{bmatrix} g \end{bmatrix}_{(\vec{\imath}, \vec{\jmath})} \in O_2(\mathbb{R}),$$

$$C = \begin{pmatrix} \cos \theta & -\sin \theta & 0 & \vec{\imath} \\ \sin \theta & \cos \theta & 0 & \vec{\jmath} \\ 0 & 0 & 1 & \vec{k} \end{pmatrix} = \begin{bmatrix} h \end{bmatrix}_{(\vec{\imath}, \vec{\jmath}, \vec{k})}$$

$$C = \begin{pmatrix} \cos \theta & -\sin \theta & 0 & \vec{\imath} \\ \sin \theta & \cos \theta & 0 & \vec{\jmath} \\ 0 & 0 & 1 & \vec{k} \end{pmatrix} = \begin{bmatrix} h \end{bmatrix}_{(\vec{\imath}, \vec{\jmath}, \vec{k})}$$

$$D = \begin{pmatrix} 0 & 0 & 1 & \vec{\imath} \\ 0 & 1 & 0 & \vec{\jmath} \\ 1 & 0 & 0 & \vec{k} \end{pmatrix} = \begin{bmatrix} u \end{bmatrix}_{(\vec{\imath}, \vec{\jmath}, \vec{k})}$$

$$u(\vec{\imath}) & u(\vec{\jmath}) & u(\vec{k})$$

La matrice A est la rotation d'angle  $\theta$ . La matrice B est la symétrie orthogonale par rapport à  $\mathrm{Vect}(\vec{a})$ . De plus,  $B^\top=B^{-1}=B$ , et, dans une base adaptée  $(\vec{a},\vec{b})$ , l'endomorphisme g devient

$$\left[ \begin{array}{ccc} g \end{array} \right]_{(\vec{a},\vec{b})} = \left( \begin{array}{ccc} 1 & 0 & \vec{a} \\ 0 & -1 & \vec{b} \end{array} \right) & = B'.$$
 
$$g(\vec{a}) & g(\vec{b})$$

La matrice C est diagonale par blocs, donc triangulaire par blocs, donc det  $C = \det A \times 1 = +1$ . Les colonnes  $C_1$ ,  $C_2$  et  $C_3$  de la matrice C forment une base orthonormée, d'où  $C \in \mathcal{O}_3(\mathbb{R})$ . De plus, det C = +1, donc  $C \in \mathcal{SO}_3(\mathbb{R})$ . On remarque que  $h(\vec{k}) = \vec{k}$ . La matrice C est donc la rotation d'angle  $\theta$  de l'axe  $(O, \vec{k})$ . On remarque que  $u(\vec{\jmath}) = \vec{\jmath}$ ,  $u(\vec{\imath} + \vec{\jmath} + \vec{k}) = \vec{\imath} + \vec{\jmath} + \vec{k}$ ,  $u(\vec{\imath}, \vec{k}) = \vec{\imath} + \vec{k}$  et  $g(\vec{\imath} - \vec{k}) = \vec{k} - \vec{\imath}$ . Ainsi,  $SEP(1) = Vect(\vec{\jmath}, \vec{\imath} + \vec{k})$ , et  $SEP(-1) = Vect(\vec{\imath} - \vec{k})$ . Les colonnes de D forment une base orthonormée, d'où  $D \in \mathcal{O}_3(\mathbb{R})$ . Or, det D = -1 en développant, d'où  $D \notin SO_3(\mathbb{R})$ . Enfin,  $\vec{u}$  est la symétrie de orthogonale par rapport à  $SEP(1) = Vect(\vec{\jmath}, \vec{\imath} + \vec{k})$ . Ainsi,

$$\begin{bmatrix} u \end{bmatrix}_{(\vec{j},\vec{i}+\vec{k},\vec{i}-\vec{k})} = \begin{pmatrix} 1 & 0 & 0 & \vec{j} \\ 0 & 1 & 0 & \vec{i}+\vec{k} \\ 0 & 0 & -1 & \vec{i}-\vec{k} \end{pmatrix}.$$



FIGURE 1 – Représentation des endomorphismes représentés par les matrices A et B de l'exercice précédent



Figure 2 – Représentation de l'endomorphisme représenté par la matrices C de l'exercice précédent

## 2 Isométries vectorielles

#### Définition 7

Soit un espace euclidien E, et soit  $f:E\to E.$  On dit que f est une isométrie vectorielle si f conserve le produit scalaire

$$\forall (u, v) \in E^2, \quad \langle f(u) \mid f(v) \rangle = \langle u \mid v \rangle.$$

L'ensemble des isométries vectorielles de E est noté  $\mathcal{O}(E)$ . Une isométrie vectorielle est aussi appelé un automorphisme orthogonal d'après les propositions suivantes.

### Proposition 8:

Toute isométrie vectorielle de E est linéaire et bijective. Autrement dit, toute symétrie vectorielle de E est un automorphisme de E. Mieux : l'ensemble  $\mathcal{O}(E)$  des isométries de E est un sous-groupe de  $\mathrm{GL}(E)$  des automorphismes de E.

### Démonstration:

Soit  $f \in \mathcal{O}(E)$  une isométrie de E. Soient  $(a,b) \in \mathbb{R}$  et soient  $(\vec{u},\vec{v}) \in E^2$ . On veut montrer que :

$$\begin{split} f(a\,\vec{u}+b\,\vec{v}) &= a\,f(\vec{u}) + b\,f(\vec{v}) \\ \iff f(a\,\vec{u}+b\,\vec{v}) &= \vec{0} \\ \iff \left\| f(a\,\vec{u}+b\,\vec{v}) \right\| &= \|\vec{0}\| = 0_{\mathbb{R}} \\ \iff \left\langle f(a\,\vec{u}+b\,\vec{v}-a\,f(\vec{u}) + b\,f(\vec{v}) \mid f(a\,\vec{u}+b\,\vec{v}-a\,f(\vec{u}) + b\,f(\vec{v}) \right\rangle &= 0 \end{split}$$

Par bilinéarité du produit scalaire, ce grand produit scalaire peut-être décomposé en 9 facteurs, et on n'en traitera qu'un :

$$\big\langle -a\,f(\vec{u})\bigm| -b\,f(\vec{v})\big\rangle = (-a)(-b)\big\langle f(\vec{u})\bigm| f(\vec{v})\big\rangle = (-a)(-b)\big\langle \vec{u}\mid\vec{v}\big\rangle = \langle -a\vec{u}\mid -b\vec{v}\big\rangle.$$

En répétant 9 fois ce calcul, on arrive à l'équivalence

$$\iff \|\underbrace{a\,\vec{u} + b\,\vec{v} - a\,\vec{u} - b\,\vec{v}}_{\vec{0}}\| = 0,$$

ce qui est vrai.

Montrons la bijectivité de f. Mais, comme  $f:E\to E$ , avec E de dimension finie, et f est linéaire, on a donc

$$f$$
 bijective  $\iff f$  injective  $\iff f$  surjective,

d'après le théorème du rang. Soit  $\vec{x} \in E$  :

$$\vec{x} \in \operatorname{Ker} f \iff f(\vec{x}) = \vec{0}$$

$$\implies ||f(\vec{x})|| = 0$$

$$\implies \langle f(\vec{x}) \mid f(\vec{x}) \rangle = 0$$

$$\implies \langle \vec{x} \mid \vec{x} \rangle = 0 \text{ car } f \text{ est une isométrie}$$

$$\implies \vec{x} = \vec{0} \text{ par le caractère défini du produit scalaire.}$$

Réciproquement, on a bien  $f(\vec{0}) = \vec{0}$ , et donc Ker  $f = \{\vec{0}\}$ , d'où f injective, et donc bijective.

La suite de la preuve se trouve sur le poly.

Théorème 9 (3/4 caractérisations d'une isométrie):

Soit E un espace euclidien, et soit  $f:E\to E.$  Il existe 4 manières de caractériser une isométrie, dont 3 sont prouvés ici.

f conserve le produit scalaire



f est linéaire et conserve la norme :

$$\forall \vec{u} \in E, \quad \|f(\vec{u})\| = \|\vec{u}\|$$



f est linéaire et transforme une base orthonormée de E en une base orthonormée de E.

DÉMONSTRATION:

Cette preuve se déroule en trois étapes :



— On suppose f linéaire, et  $\forall \vec{u} \in E$ ,  $||f(\vec{u})|| = ||\vec{u}||$ . On veut montrer que  $\forall (\vec{u}, \vec{v}) \in E^2$ ,  $\langle f(\vec{u}) \mid f(\vec{v}) \rangle = \langle u \mid v \rangle$ . On se rappelle que  $\langle \vec{a} \mid \vec{b} \rangle = \frac{1}{2} \left( ||\vec{a} + \vec{b}||^2 - ||\vec{a}|| - ||\vec{b}||^2 \right)$ . D'où,

$$\begin{split} \langle f(\vec{u}) \mid f(\vec{v}) \rangle &= \frac{1}{2} \left( \|f(\vec{u}) + f(\vec{v})\|^2 - \|f(\vec{u})\|^2 - \|f(v)\|^2 \right) \\ &= \frac{1}{2} \left( \|f(\vec{u} + \vec{v})\|^2 - \|f(\vec{u})\|^2 - \|f(v)\|^2 \right) \\ &= \frac{1}{2} \left( \|\vec{u} + \vec{v}\|^2 - \|\vec{u}\|^2 - \|v\|^2 \right) \\ &= \langle u \mid v \rangle \end{split}$$

- On suppose f une isométrie. Alors f est linéaire d'après la proposition 8, et l'application f transforme une base orthonormée en une autre base orthonormée.
- $\bigwedge$  Tarte à la crème. On suppose f linéaire, et qu'elle transforme une base orthonormée en une autre base orthonormée. On veut montrer f linéaire (vrai par hypothèse), et que  $\forall \vec{u} \in E$ ,  $\|f(\vec{u})\| = \|\vec{u}\|$ . Soit  $\vec{u} \in E$ . On le décompose dans la base orthonormée  $\Re = (\vec{\varepsilon}_1, \vec{\varepsilon}_2, \dots, \vec{\varepsilon}_n)$ :

$$\vec{u} = x_1 \vec{\varepsilon}_1 + x_2 \vec{\varepsilon}_2 + \dots + x_n \vec{\varepsilon}_n.$$

Par linéarité de f, on a  $f(\vec{u}) = x_1 f(\vec{\varepsilon}_1) + x_2 f(\vec{\varepsilon}_2) + \dots + x_n f(\vec{\varepsilon}_n)$ . Ainsi, comme la base  $\mathcal{B}$  est une famille orthogonale, d'après le théorème de Pythagore, on a

$$\|\vec{u}\|^{2} = \|x_{1} \vec{\varepsilon}_{1}\|^{2} + \|x_{1} \vec{\varepsilon}_{2}\|^{2} + \dots + \|x_{1} \vec{\varepsilon}_{n}\|^{2}$$

$$= x_{1}^{2} \|\vec{\varepsilon}_{1}\|^{2} + x_{2}^{2} \|\vec{\varepsilon}_{2}\|^{2} + \dots + x_{n}^{2} \|\vec{\varepsilon}_{n}\|^{2}$$

$$= x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2}$$

La base  $\mathfrak{B}' = (f(\vec{\varepsilon}_1), f(\vec{\varepsilon}_2), \dots, f(\vec{\varepsilon}_n))$  est orthonormée, on a de même,

$$||f(\vec{u})||^2 = x_1^2 + \dots + x_n^2.$$

Proposition 10:

Soit E un espace euclidien de dimension n.

 $f \text{ est une isométrie de } E \iff \text{la matrice de } f, \, \text{dans} \\ \text{une } \underline{\text{base orthonormée}}, \\ \text{est orthogonale}.$ 

Autrement dit,

$$f \in \mathcal{O}(E) \iff [f]_{\mathfrak{B}} \in \mathcal{O}_n(\mathbb{R}),$$

où  ${\mathcal B}$  est une base orthonormée.

# 3 Endomorphismes adjoints

Définition 11:

On dit qu'un endomorphisme  $f: E \to E$  est autoadjoint si

$$\forall (\vec{u}, \vec{v}) \in E^2, \quad \langle f(\vec{u}) \mid \vec{v} \rangle = \langle \vec{u} \mid f(\vec{v}) \rangle.$$

Un endomorphisme autoadjoint est aussi appelé endomorphisme symétrique (c.f. proposition suivante). L'ensemble des endomorphismes autoadjoints est noté  $\mathcal{S}(E)$ .

Proposition 12:

Un endomorphism est autoadjoint si, et seulement si la matrice de F dans une base orthonormée  ${\mathcal B}$  est orthogonale. Autrement dit :

$$f \in \mathcal{S}(E) \iff [f]_{\mathcal{B}} \in \mathcal{S}_n(\mathbb{R}).$$

Démonstration:  $\Longrightarrow$  Soit  $\Re = (\vec{\varepsilon}_1, \dots, \vec{\varepsilon}_n)$  une base orthonormée de E. Ainsi,

$$\forall i, \, \forall j, \quad \langle f(\vec{\varepsilon}_i) \mid \vec{\varepsilon}_j \rangle = \langle \vec{\varepsilon}_i \mid f(\vec{\varepsilon}_j) \rangle.$$

On pose  $[f]_{\mathfrak{B}} = (a_{i,j})$ :

$$\begin{pmatrix} a_{1,j} & & \vec{\varepsilon}_i \\ a_{i,j} & & \vec{\varepsilon}_i \\ & a_{n,j} & & \vec{\varepsilon}_n \end{pmatrix}.$$

$$f(\vec{\varepsilon}_i) \qquad f(\vec{\varepsilon}_j) \qquad f(\vec{\varepsilon}_n)$$

Ainsi,  $f(\vec{e_j}) = a_{1,j}\vec{e_1} + \dots + a_{i,j}\vec{e_i} + \dots + a_{n,j}\vec{e_n}$ . D'où,  $\langle \vec{e_i} \mid f(\vec{e_j}) \rangle = a_{i,j}$  car la base  $\Re$  est orthonormée. De même avec l'autre produit scalaire,  $\langle f(\vec{e_i}) \mid \vec{e_j} \rangle$ , d'où  $a_{i,j} = a_{j,i}$  par symétrie du produit scalaire. On en déduit que  $[f]_{\Re} \in \mathcal{S}_n(\mathbb{R})$ .

 $\iff \text{Si } \left[ f \right]_{\mathfrak{B}} \in \mathcal{S}_n(\mathbb{R}), \text{ alors } \langle f(\vec{\varepsilon_i}) \mid \vec{\varepsilon_j} \rangle = \langle \vec{\varepsilon_i} \mid f(\vec{\varepsilon_j}) \rangle. \text{ Or, on pose } \vec{u} = x_1 \vec{\varepsilon_1} + \dots + x_n \vec{\varepsilon_n}, \text{ et } \vec{v} = y_1 \vec{\varepsilon_1} + \dots + y_n \vec{\varepsilon_n}.$ 

$$\langle f(\vec{u}) \mid \vec{v} \rangle = \langle x_1 f(\vec{\varepsilon}_1) + \dots + x_n f(\vec{\varepsilon}_n) \mid y_1 f(\vec{\varepsilon}_1) + \dots + y_n f(\vec{\varepsilon}_n) \rangle$$

$$= \langle \sum_{i=1}^n x_i f(\vec{\varepsilon}_i) \mid \sum_{j=1}^n y_j \vec{\varepsilon}_j \rangle$$

$$= \sum_{i,j \in [\![1,n]\!]} x_i y_j \langle f(\vec{\varepsilon}_i) \mid \vec{\varepsilon}_j \rangle$$

De même en inversant  $\vec{u}$  et  $\vec{v}$ . On en déduit donc  $\langle f(\vec{u} \mid \vec{v}) = \langle \vec{u} \mid f(\vec{v}) \rangle$ .

EXERCICE 13: 1. Si f est autoadjoint, montrons que  $\operatorname{Ker} f \perp \operatorname{Im} f$ , et  $\operatorname{Ker} f \oplus \operatorname{Im} f$ . On suppose  $\forall \vec{u}, \, \forall \vec{v}, \, \langle f(\vec{u}) \mid \vec{v} \rangle = \langle \vec{u} \mid f(\vec{v}) \rangle$ . Soit  $\vec{u} \in \operatorname{Ker} f$ , et soit  $\vec{v} \in \operatorname{Im} f$ . On sait que  $f(\vec{u}) = \vec{0}$ , et qu'il existe  $\vec{x} \in E$  tel que  $\vec{v} = f(\vec{x})$ . Ainsi,

$$\langle \vec{u} \mid \vec{v} \rangle = \langle \vec{u} \mid f(\vec{x}) \rangle = \langle f(\vec{u}) \mid \vec{x} \rangle = 0.$$

D'où  $\vec{u} \perp \vec{v}$ . Ainsi, Ker  $f \perp \text{Im } f$ .

De plus, E est de dimension finie, d'où, d'après le théorème du rang,

$$\dim \operatorname{Ker} f + \dim \operatorname{Im} f = \dim E.$$

Aussi,  $\operatorname{Ker} f \oplus (\operatorname{Ker} f)^{\perp} = E$ , donc  $\dim(\operatorname{Ker} f) + \dim(\operatorname{Ker} f)^{\perp} = \dim E$ . On en déduit donc que  $\dim(\operatorname{Im} f) = \dim(\operatorname{Ker} f)^{\perp}$ . Or,  $\operatorname{Im} f \subset (\operatorname{Ker} f)^{\perp}$  car  $\operatorname{Im} f \perp \operatorname{Ker} f$ . Ainsi  $\operatorname{Im} f = (\operatorname{Ker} f)^{\perp}$ , on en déduit que

$$\operatorname{Im} f \oplus \operatorname{Ker} f = E.$$

- $\Leftarrow$  Soit p la projection sur F parallèlement à G. Supposons l'endomorphisme P autoadjoint. D'après la question 1., le  $\operatorname{Ker} p \perp \operatorname{Im} p$ . Ainsi,  $F = \operatorname{Im} p$  et  $G = \operatorname{Ker} p$ . D'où,  $F \perp G$ , p est donc une projection orthogonale.
- $\implies \text{R\'eciproquement, supposons } p \text{ une projection orthogonale. Soit } \mathfrak{B} = (\vec{\varepsilon}_1, \dots, \vec{\varepsilon}_q)$  une base orthonorm\'ee de F. Ainsi, pour tout  $\vec{x} \in E$ ,

$$p(\vec{x}) = \sum_{i=1}^{q} \langle \vec{x} \mid \vec{\varepsilon_i} \rangle \ \vec{\varepsilon_i}.$$

On veut montrer que l'endomorphisme p est autoadjoint. Soient  $\vec{u}$  et  $\vec{v}$  deux vecteurs de E.

$$\langle p(\vec{u}) \mid \vec{v} \rangle = \left\langle \sum_{i=1}^{q} \langle \vec{u} \mid \vec{\varepsilon}_i \rangle \vec{\varepsilon}_i \mid \vec{v} \right\rangle = \sum_{i=1}^{q} \langle u \mid \vec{\varepsilon}_i \rangle \langle \vec{\varepsilon}_i \mid v \rangle$$
$$= \sum_{i=1}^{q} \langle v \mid \vec{\varepsilon}_i \rangle \langle \vec{\varepsilon}_i \mid u \rangle$$
$$= \langle \vec{u} \mid p(\vec{v}) \rangle$$

Autre méthode, pour tous vecteurs  $\vec{u}$  et  $\vec{v}$  de E,

$$\begin{split} \langle p(\vec{u}) \mid \vec{v} \rangle &= \langle p(\vec{u}) \mid p(\vec{v}) + \vec{v} - p(\vec{v}) \rangle \\ &= \langle p(\vec{u}) \mid p(\vec{v}) \rangle + \langle p(\vec{u}) \mid \vec{v} - p(\vec{v}) \rangle \\ &= \langle p(\vec{u}) \mid p(\vec{v}) \rangle + \langle u - p(\vec{u}) \mid p(\vec{v}) \rangle \\ &= \langle \vec{u} \mid p(\vec{v}) \rangle \end{split}$$

car p est orthogonale.

Proposition – Définition 14:

Si f est un endomorphisme d'un espace euclidien E, alors il existe un unique endomorphisme de E, noté  $f^*$  et appelé l'adjoint de f, tel que

$$\forall (\vec{u}, \vec{v}) \in E^2, \qquad \langle f^{\star}(\vec{u}) \mid \vec{v} \rangle = \langle \vec{u} \mid f(\vec{v}) \rangle.$$

Si A est la matrice f dans une base orthonormée  $\mathcal B$  de E, alors  $A^\top$  est la matrice de  $f^\star$  dans  $\mathcal B$  :

$$[f]_{\mathcal{B}} = [f]_{\mathcal{B}}^{\top}.$$

Démonstration: Soit  $\vec{u} \in E$ . L'application

$$\varphi: E \longrightarrow \mathbb{R}$$

$$\vec{v} \longmapsto \langle \vec{u} \mid f(\vec{v}) \rangle.$$

La forme  $\varphi$  est linéaire car  $\varphi(\alpha_1\vec{v}_1+\alpha_2\vec{v}_2)=\langle \vec{u}\mid f(\alpha_1\vec{v}_1+\alpha_2\vec{v}_2)\rangle=\langle \vec{u}\mid \alpha_1f(\vec{v}_1)+\alpha_2f(\vec{v}_2)\rangle=\alpha_1\langle \vec{u}\mid f(\vec{v})\rangle+\alpha_2\langle \vec{u}\mid f(\vec{v}_2)\rangle=\alpha_1\varphi(\vec{v}_1)+\alpha_2\varphi(\vec{v}_2).$  D'où, d'après le théorème de Riesz, il existe un unique vecteur  $\vec{a}\in E$  tel que  $\varphi(\vec{v})=\langle \vec{a}\mid \vec{v}\rangle$  pour tout  $\vec{v}\in E$ . Ainsi, pour tout vecteur  $\vec{v}\in E$ ,  $\langle \vec{u}\mid f(\vec{v})\rangle=\langle \vec{u}\mid \vec{v}\rangle$ . On note  $\vec{a}=f^*(\vec{u})$ . Soit l'application

$$f^*: E \longrightarrow E$$
  
 $\vec{u} \longmapsto f^*(\vec{u}).$ 

La démonstration telle que  $f^*$  est linéaire est dans le poly. L'application  $f^*$  vérifie :  $\langle \vec{u} \mid f(\vec{v}) \rangle = \langle f^*(\vec{u}) \mid \vec{v} \rangle$ , pour tous vecteurs  $\vec{u}$  et  $\vec{v}$ . Quelle est la matrice de  $f^*$ , dans une base orthonormée ? Soit  $\mathfrak B$  une base orthonormée de E, et soient  $A = [f]_{\mathfrak B}$ ,  $B = [f^*]_{\mathfrak B}$ ,  $U = [\vec{u}]_{\mathfrak B}$ , et  $V = [\vec{v}]_{\mathfrak B}$ . Les matrices U et V sont des vecteurs colonnes, et A et B sont des matrices carrées. Ainsi,

$$U^{\top} \cdot A \cdot V = \langle \vec{u} \mid f(\vec{v}) \rangle = \langle f^{*}(\vec{u}) \mid \vec{v} \rangle = (B \cdot U)^{\top} \cdot V,$$

ce qui est vrai quelque soit les vecteurs colonnes U et V. D'où,  $\forall U, \forall V, U^{\top} \cdot (A \cdot V) = U^{\top} \cdot (B^{\top} \cdot V)$ . Ainsi, pour tous vecteurs U et V,

$$U^{\top} \cdot \left[ (AV) - (B^{\top}V) \right] = 0.$$

En particulier, si  $U = (AV) - (B^{\top}V)$ , le produit scalaire  $\langle \vec{u} \mid \vec{u} \rangle$  est nul, donc U = 0. Ainsi,

$$\forall V, \quad A \cdot V = B^{\top} \cdot V.$$

De même, on conclut que  $A = B^{\top}$ . On en déduit donc que

$$[f^{\star}]_{\mathfrak{B}} = [f]_{\mathfrak{B}}^{\top}.$$

Les propriétés suivantes sont vrais :

$$\begin{split} & - \quad (f \circ g)^\star = g^\star \circ f^\star, \quad (f^\star)^\star = f, \quad \text{et} \quad (\alpha f + \beta g)^\star = \alpha f^\star + \beta g^\star \,; \\ & - \quad (A \cdot B)^\top = B^\top \cdot A^\top, \quad (A^\top)^\top = A, \quad \text{et} \quad (\alpha A + \beta B)^\top = \alpha A^\top + \beta B^\top. \end{split}$$

Des deuxièmes et troisièmes points, il en résulte que les applications  $f \mapsto f^*$ , et  $A \mapsto A^\top$  sont des applications involutives.

On rappelle que  $\langle \vec{u} \mid f(\vec{v}) \rangle = \langle f^{\star}(\vec{u}) \mid \vec{v} \rangle$ , pour tous vecteurs  $\vec{u}$  et  $\vec{v}$ .

Proposition 15:

Soit  $f: E \to E$ , un endomorphisme d'un espace euclidien E.

- 1. f est autoadjoint si, et seulement si,  $f^* = f$ ;
- 2. f est une isométrie si, et seulement si,  $f^* = f^{-1}$ .

Ainsi, on a

$$f$$
 est autoadjoint  $\stackrel{\text{def.}}{\Longleftrightarrow} \langle \vec{u} \mid f(\vec{v}) \rangle = \langle f(\vec{u}) \mid \vec{v} \rangle$  pour tous vecteurs  $\vec{u}$  et  $\vec{v}$   $\iff f^* = f$   $\iff [f]_{\Re}^{\top} = [f]_{\Re}$  dans une base orthonormée  $\Re$ .

Et,

$$f$$
 est une isométrie  $\stackrel{\text{def.}}{\Longleftrightarrow} \langle f(\vec{u}) \mid f(\vec{v}) \rangle = \langle \vec{u} \mid \vec{v} \rangle$  pour tous vecteurs  $\vec{u}$  et  $\vec{v}$   $\iff [f]_{\Re}^{\top} = [f]_{\Re}^{-1}$  dans une base orthonormée  $\Re$   $\iff f^* = f^{-1}$ .

Ce qui prove la proposition précédente.

Exercice 16:

Soit E un espace euclidien, et soit F un sous-espace vectoriel de E. On a  $F \oplus F^{\perp} = E$ . Soit  $\mathcal{S} \in \mathcal{L}(E,E)$ . Montrons que  $\mathcal{S}$ est une symétrie orthogonale si, et seulement si  $\mathcal{S}$ est une symétrie autoadjointe.

- "  $\Leftarrow$ " L'application  $\beta$  est une isométrie donc  $\beta^* = \beta^{-1}$ . L'application  $\beta$  est un endomorphisme autoadjoint donc  $\beta^* = \beta$ . D'où  $\beta = \beta^{-1}$ , donc  $\beta$  est une symétrie. Ainsi  $\operatorname{Ker}(\beta \operatorname{id}) \perp \operatorname{Ker}(\beta + \operatorname{id})$ .
- " ⇒ " L'application  $\beta$  est une symétrie orthogonale, d'où  $E = F + F^{\perp}$  en appelant  $F = \operatorname{Ker}(\beta \operatorname{id})$ . Ainsi, pour tout vecteur  $\vec{x} \in E$ , il existe un unique couple  $(\vec{a}, \vec{b}) \in F \times F^{\perp}$  tel que  $\vec{x} = \vec{a} + \vec{b}$ . D'où,  $\beta(\vec{x}) = \beta(\vec{a}) + \beta(\vec{b}) = \vec{a} \vec{b}$ . D'où  $\|\vec{x}\|^2 = \|\vec{a}\|^2 + \|\vec{b}\|^2$  et  $\|\beta(\vec{x})\|^2 = \|\vec{a}\| + \|\vec{b}\|$ . Ainsi,  $\beta$  conserve la norme, c'est donc une isométrie, donc  $\beta^* = \beta^{-1}$  De plus,  $\beta$  est une symétrie donc  $\beta = \beta^{-1}$ . D'où,  $\beta = \beta^*$ , donc  $\beta$  est autoadjoint.

# 4 Stabilité de l'orthogonal

Proposition 17:

Soit f un endomorphisme autoadjoint de E, et soit f un sous-espace vectoriel de E. Si F est stable par f, alors  $F^{\perp}$  est aussi stable par f.

1

#### DÉMONSTRATION:

On suppose, pour tous vecteurs  $\vec{u}$  et  $\vec{v}$ ,  $\langle f(\vec{u}) \mid \vec{v} \rangle = \langle \vec{u} \mid f(\vec{v}) \rangle$ , et pour tout vecteur  $\vec{x} \in F$ ,  $f(\vec{x}) \in F$ . Soit  $\vec{x} \in F^{\perp}$ . Soit  $\vec{y} \in F$ . On calcule :  $\langle f(\vec{x}) \mid \vec{y} \rangle = \langle \vec{x} \mid f(\vec{y}) \rangle$ . Or,  $\vec{y} \in F$ , et donc  $f(\vec{y}) \in F$  par hypothèse. Comme  $\vec{x} \in F^{\perp}$ . Ainsi,  $\langle \vec{x} \mid f(\vec{y}) \rangle = 0$ , et donc  $\langle f(\vec{x}) \mid \vec{y} \rangle = 0$ . D'où,  $f(\vec{x}) \perp \vec{y}$ . Ainsi,  $f(\vec{x}) \in F^{\perp}$ , d'où  $F^{\perp}$  est stable par f.

#### Proposition 18:

Soit f une isométrie vectorielle de E, et soit f un sous-espace vectoriel de E. Si F est stable par f, alors  $F^{\perp}$  est aussi stable par f.

#### DÉMONSTRATION:

On suppose, pour tous vecteurs  $\vec{u}$  et  $\vec{v}$ ,  $\langle f(\vec{u}) \mid f(\vec{v}-\rangle = \langle \vec{u} \mid \vec{v} \rangle$ , et pour tout vecteur  $\vec{x} \in F$ ,  $f(\vec{x}) \in F$ . Soit  $\vec{x} \in F^{\perp}$ . Soit  $\vec{y}_0 \in F$ . Comme f est bijective, il existe  $\vec{y} \in F$  tel que  $f(\vec{y}_0) = \vec{y}$ . Ainsi  $\langle f(\vec{x}) \mid \vec{y}_0 \rangle = \langle f(\vec{x}) \mid f(\vec{y}) \rangle = \langle \vec{x} \mid \vec{y} \rangle = 0$ . D'où,  $f(\vec{x}) \perp \vec{y}_0$ . Ainsi,  $f(\vec{x}) \in F^{\perp}$ , d'où  $F^{\perp}$  est stable par f.

### Proposition 19:

Un sous-espace vectoriel F de E est stable par f si, et seulement si,  $F^{\perp}$  est stable par  $f^{\star}$ .

Démonstration:  $\Longrightarrow$  On suppose, pour tout  $\vec{x} \in F$ ,  $f(\vec{x}) \in F$ . Soit  $\vec{y} \in F^{\perp}$ , et soit  $\vec{x} \in F$ . Par définition de l'adjoint,  $\langle f^{*}(\vec{y}) \mid \vec{x} \rangle = \langle \vec{y} \mid f(\vec{x}) \rangle$ . Or,  $f(\vec{x}) \in F$  par hypothèse, et  $\vec{y} \in F^{\perp}$ . D'où  $f^{*}(\vec{y}) \perp \vec{x}$ , et donc  $f^{*}(\vec{y}) \in F^{\perp}$ .

# 5 Le théorème spectral

Lemme 20:

Soit  $f: E \to E$  un endomorphisme autoadjoint.

- 1. Les sous-espaces propres de f sont deux à deux orthogonaux. Autrement dit, si deux vecteurs propres sont associés à des valeurs propres distinctes, alors ils sont orthogonaux
- 2. Les valeurs propres de f sont toutes réelles  $\mathrm{Sp}_{\mathbb{C}}(f) \subset \mathbb{R}$ .

Ce lemme reste valide en replaçant l'endomorphisme autoadjoint f par la matrice réelle symétrique A.

 $\bigwedge$  Attention, E doit être un  $\mathbb{R}$ -espace vectoriel; la matrice A doit être à coefficients réels. Sinon, les résultats du cours ne s'appliquent pas.

### DÉMONSTRATION:

On suppose f autoadjoint (H) : pour tous vecteurs  $\vec{u}$  et  $\vec{v}$ ,  $\langle f(\vec{u}) \mid \vec{v} \rangle = \langle \vec{u} \mid f(\vec{v}) \rangle$ . Soient deux vecteurs  $\vec{u}$  et  $\vec{v}$  tels que  $f(\vec{u}) = \lambda \vec{u}$  et  $f(\vec{v}) = \mu \vec{v}$  avec  $\lambda \neq \mu$ . Montrons  $u \perp v$ .

D'où, par différence  $(\lambda - \mu) \langle \vec{u} \mid \vec{v} \rangle = 0$ . Comme  $\lambda \neq \mu$ , on en conclut que  $\langle \vec{u} \mid \vec{v} \rangle = 0$  d'où  $\vec{u} \perp \vec{v}$ .

Pour montrer 2., on utilise les matrices : dans une base  $\mathfrak B$  orthonormée de E, soit  $A \in \mathcal E_n(\mathbb R)$  la matrice de f dans  $\mathfrak B$ . Soit  $X \in \mathcal M_{n,1}(\mathbb C)$  un vecteur propre associé de A, et soit  $\lambda \in \mathbb C$  sa valeur propre (complexe) associée. Ainsi,  $X \neq 0_{\mathcal M_{n,1}(\mathbb C)}$ , et  $A \cdot X = \lambda X$ . Montrons  $\lambda = \bar \lambda$ . On calcule  $\bar X^\top \cdot (A \cdot X) = \bar X^\top \cdot \lambda X = \lambda \bar X^\top \cdot X$  Or,

$$\bar{X}^{\top} \cdot X = \begin{pmatrix} \bar{z}_1 & \bar{z}_2 & \dots & \bar{z}_n \end{pmatrix} \cdot \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix} = |z_1|^2 + |z_2|^2 + \dots + |z_n|^2.$$

C'est un réel strictement positif (en effet, s'il était nul, X serait nul). Autre calcul,

$$\begin{split} \bar{X}^\top \cdot A \cdot X &= \left( \bar{X}^\top \cdot A \cdot X \right)^\top \\ &= X^\top \cdot A^\top \cdot \left( \bar{X}^\top \right)^\top \\ &= X^\top \cdot A \cdot \bar{X} \text{ car } A \in \underline{\mathcal{S}}_n(\mathbb{R}) \\ &= \overline{\bar{X}^\top \cdot \bar{A} \cdot X} \\ &= \overline{\bar{X}^\top \cdot A \cdot X} \text{ car } A \in \mathcal{S}_n(\underline{\mathbb{R}}) \end{split}$$

D'où,  $\bar{X}^{\top} \cdot A \cdot X \in \mathbb{R}$ . Mais,  $\bar{X}^{\top} \cdot A \cdot X = \lambda \left( |z_1|^2 + \dots + |z_n|^2 \right)$ . Comme  $\left( |z_1|^2 + \dots + |z_n|^2 \right) \neq 0$ , d'où  $\lambda \in \mathbb{R}$ .

Théorème 21 (Théorème spéctral – endomorphismes):

Un endomorphisme f d'un espace euclidien E est autoadjoint si, et seulement s'il est diagonalisable dans une base orthonormée. Autrement dit, si, et seulement s'il existe une base orthonormée de E formée de vecteurs propres de f. Ou encore, si, et seulement si E est la somme orthogonale des sous-espaces propres de f.

Démonstration (Par récurrence sur  $n = \dim E$ ):

Initialisation Pour n=1, soit  $\vec{v} \in E$  un vecteur non nul, alors la base  $\left(\frac{\vec{v}}{\|\vec{v}\|}\right)$  convient.

Hérédité Soit  $n \geqslant 1$ . On suppose le théorème vrai en dimension n. Soit  $f: E \to E$  un endomorphisme autoadjoint d'un espace euclidien E de dimension n+1. Soit  $\chi_f(X)$  le polynôme caractéristique de f. Il est de degré n+1, il a donc au moins une racine complexe  $\lambda$ . D'où, l'endomorphisme f a au moins une valeur propre  $\lambda \in \mathbb{C}$ . D'après le lemme précédent, on sait maintenant que  $\lambda \in \mathbb{R}$ . Il existe  $\vec{u} \in E$  un vecteur non nul tel que  $f(\vec{u}) = \lambda \vec{u}$ . La droite Vect $(\vec{u})$  est stable par f. Par stabilité de l'orthogonal,  $\operatorname{Vect}(\vec{u})^\perp$  est aussi stable par f. Or, on a dim $[\operatorname{Vect} \vec{u}]^\perp = n$ . On s'intéresse alors à l'endomorphisme induit à  $\operatorname{Vect}(\vec{u})^\perp : f|_{\operatorname{Vect}(\vec{u})^\perp} = g$ . Or, pour tous vecteurs  $\vec{x}$  et  $\vec{y}$  de  $\operatorname{Vect}(\vec{u})^\perp$ ,  $\langle g(\vec{x}) \mid \vec{y} \rangle = \langle f(\vec{x}) \mid \vec{y} \rangle = \langle \vec{x} \mid f(\vec{y}) \rangle = \langle \vec{x} \mid g(\vec{y}) \rangle$ . D'où, l'endomorphisme g est autoadjoint, on applique l'hypothèse de récurrence (i.e. le théorème spectral) à g. Ainsi,  $\begin{pmatrix} \vec{u} \\ | \vec{u} | \end{pmatrix}$ ,  $\vec{\varepsilon}_1, \dots, \vec{\varepsilon}_n$  est une base orthonormée de E formée de vecteurs propres de f, où  $(\vec{\varepsilon}_1, \dots, \vec{\varepsilon}_n)$  est une base orthonormée de Vect $(\vec{u})^\perp$  formée de vecteurs propres de f.

Le théorème spectral est donc vrai pour tout espace vectoriel de dimension finie n.

Corollaire 22 (Théorème spéctral – matrices):

Si une matrice  $A \in \mathcal{S}_n(\mathbb{R})$  est symétrique réelle, alors il existe une matrice orthogonale  $P \in \mathcal{O}_n(\mathbb{R})$  telle que  $P^{-1} \cdot A \cdot P = P^\top \cdot A \cdot P$  est diagonale. Autrement dit, toute matrice symétrique réelle est orthogonalement diagonalisable :

$$A \in \mathcal{S}_n(\mathbb{R}) \implies \exists P \in \mathcal{O}_n(\mathbb{R}), \ P^{-1} \cdot A \cdot P \text{ diagonale.}$$

Démonstration:

Soit f l'endomorphisme représenté par A dans une base orthonormée  $\mathfrak B$ . La matrice A étant symétrique, d'où l'endomorphisme f est autoadjoint. On applique le théorème précédent à f: soit  $\mathfrak B'$  une base orthonormée dans laquelle f est diagonal. Soit alors P la matrice de passage de  $\mathfrak B$  à  $\mathfrak B'$ : la matrice  $D = P^{-1} \cdot A \cdot P$  est diagonale, et la matrice P est orthogonale car c'est la matrice de passage d'une base orthonormée  $\mathfrak B$  vers une autre base orthonormée  $\mathfrak B'$ .

### Définition 23:

On dit d'un endomorphisme autoadjoint  $f \in \mathcal{S}(E)$  qu'il est :

- 1. positif si  $\forall \vec{x} \in E, \langle \vec{x} \mid f(\vec{x}) \rangle \geqslant 0;$
- 2. défini positif s'il est positif, et que  $\forall \vec{x} \in E,$  si  $\langle \vec{x} \mid f(\vec{x}) \rangle = 0,$  alors  $\vec{x} = \vec{0}.$  Autrement dit, si

$$\forall \vec{x} \in E \setminus \{\vec{0}\}, \quad \langle \vec{x} \mid f(\vec{x}) \rangle > 0.$$

De même, on dit d'une matrice  $A \in \mathcal{S}_n(\mathbb{R})$ , qu'elle est :

- 1. positive si  $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), X^{\top} \cdot M \cdot X \geq 0$ ;
- 2. définie positive si elle est positive, et que  $\forall X \in \mathcal{M}_{n,1}(\mathbb{R})$ , si  $X^{\top} \cdot M \cdot X = 0$ , alors

X = 0. Autrement dit, si

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0_{\mathcal{M}_{n,1}(\mathbb{R})}\}, \quad X^{\top} \cdot M \cdot X > 0.$$

On note  $\mathcal{S}^+(E)$  l'ensemble des endomorphismes autoadjoints positifs, et  $\mathcal{S}^{++}(E)$  l'ensemble des endomorphismes autoadjoints définis positifs De même, on note  $\mathcal{S}^+_n(\mathbb{R})$  l'ensemble des matrices symétriques positives, et  $\mathcal{S}^{++}_n(\mathbb{R})$  l'ensemble des matrices symétriques définies positives.

#### Théorème 24:

Un endomorphisme autoadjoint est :

- 1. positif, si, et seulement si toutes ses valeurs propres sont positives;
- 2. défini positif si, et seulement si toutes ses valeurs propres sont strictement positives.

Ainsi, on a

$$\begin{array}{llll} f \in \mathcal{S}^+(E) & \Longleftrightarrow & f \in \mathcal{S}(E) & \text{et} & \operatorname{Sp}(f) \subset \mathbb{R}^+, \\ f \in \mathcal{S}^{++}(E) & \Longleftrightarrow & f \in \mathcal{S}(E) & \text{et} & \operatorname{Sp}(f) \subset \mathbb{R}^+_*, \\ M \in \mathcal{S}^+_n(\mathbb{R}) & \Longleftrightarrow & M \in \mathcal{S}_n(\mathbb{R}) & \text{et} & \operatorname{Sp}(M) \subset \mathbb{R}^+, \\ M \in \mathcal{S}^{++}_n(\mathbb{R}) & \Longleftrightarrow & M \in \mathcal{S}_n(\mathbb{R}) & \text{et} & \operatorname{Sp}(M) \subset \mathbb{R}^+_*. \end{array}$$

Tarte à la double crème

DÉMONSTRATION: 1".  $\Longrightarrow$  " On suppose  $f \in \delta^+$ , *i.e.* pour tout vecteur  $\vec{x}$ ,  $\langle \vec{x} \mid f(\vec{x}) \rangle \geqslant 0$ . Soit  $\lambda \in \operatorname{Sp}(f)$ : il existe un vecteur  $\vec{u}$  non nul tel que  $f(\vec{u}) = \lambda \vec{u}$ . D'où, par hypothèse,

$$0 \leqslant \langle \vec{u} \mid f(\vec{u}) \rangle = \langle \vec{u} \mid \lambda \vec{u} \rangle = \lambda \, \langle \vec{u} \mid \vec{u} \rangle \, .$$

Or,  $\langle \vec{u} \mid \vec{u} \rangle > 0.$  D'où,  $\lambda \geqslant 0.$ 

"  $\Leftarrow$ " Supposons  $\operatorname{Sp}(f) \subset \mathbb{R}_+$  et  $f \in \mathscr{S}(E)$ . On veut montrer que  $f \in \mathscr{S}^+(E)$ , *i.e.* pour tout vecteur  $\vec{x}$ ,  $\langle \vec{x} \mid f(\vec{x}) \rangle \geqslant 0$ . On se place dans une base adaptée, grâce à la seconde hypothèse. En effet, d'après le théorème spectral, il existe une base orthonormée  $\mathscr{B}$  de E formée de vecteurs propres de f. On pose  $\mathscr{B} = (\vec{\varepsilon}_1, \dots, \vec{\varepsilon}_n)$ , cette base. Soit  $\vec{x} \in E$ : on pose  $\vec{x} = x_1 \vec{\varepsilon}_1 + x_n \vec{\varepsilon}_2 + \dots + x_n \vec{\varepsilon}_n$ . Ainsi,

$$f(\vec{x}) = x_1 f(\vec{\varepsilon}_1) + x_2 f(\vec{\varepsilon}_2) + \dots + x_n f(\vec{\varepsilon}_n) = x_1 \lambda_1 \vec{\varepsilon}_1 + x_2 \lambda_2 \vec{\varepsilon}_2 + \dots + x_n \lambda_n \vec{\varepsilon}_n.$$

D'où, $\langle \vec{x} \mid f(\vec{x}) \rangle = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \dots + \lambda_n x_n^2$ . Or,  $\forall i \in [\![1,n]\!], \ \lambda_i \geqslant 0$  par hypothèse. D'où  $\langle \vec{x} \mid f(\vec{x}) \rangle \geqslant 0$ .

2."  $\Longrightarrow$  " On suppose  $f \in \S^{++}$ , i.e. pour tout vecteur  $\vec{x}$ ,  $\langle \vec{x} \mid f(\vec{x}) \rangle > 0$ . Soit  $\lambda \in \operatorname{Sp}(f)$ : il existe un vecteur  $\vec{u}$  non nul tel que  $f(\vec{u}) = \lambda \vec{u}$ . D'où, par hypothèse,

$$0 < \langle \vec{u} \mid f(\vec{u}) \rangle = \langle \vec{u} \mid \lambda \vec{u} \rangle = \lambda \langle \vec{u} \mid \vec{u} \rangle.$$

Or,  $\langle \vec{u} \mid \vec{u} \rangle > 0.$  D'où,  $\lambda > 0.$ 

"  $\Leftarrow$ " Supposons  $\operatorname{Sp}(f) \subset \mathbb{R}_+^*$  et  $f \in \mathcal{S}(E)$ . On veut montrer que  $f \in \mathcal{S}^{++}(E)$ , *i.e.* pour tout vecteur  $\vec{x}$  non nul,  $\langle \vec{x} \mid f(\vec{x}) \rangle > 0$ . On se place dans une base adaptée, grâce à la seconde hypothèse. En effet, d'après le théorème spectral, il existe une base orthonormée  $\mathfrak{B}$  de E formée de vecteurs propres de f. On pose  $\mathfrak{B} = (\vec{\varepsilon}_1, \dots, \vec{\varepsilon}_n)$ , cette base. Soit  $\vec{x} \in E$  un vecteur non nul : on pose  $\vec{x} = x_1 \vec{\varepsilon}_1 + x_n \vec{\varepsilon}_2 + \dots + x_n \vec{\varepsilon}_n$ . Ainsi,

$$f(\vec{x}) = x_1 f(\vec{\varepsilon}_1) + x_2 f(\vec{\varepsilon}_2) + \dots + x_n f(\vec{\varepsilon}_n) = x_1 \lambda_1 \vec{\varepsilon}_1 + x_2 \lambda_2 \vec{\varepsilon}_2 + \dots + x_n \lambda_n \vec{\varepsilon}_n.$$

D'où, $\langle \vec{x} \mid f(\vec{x}) \rangle = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \dots + \lambda_n x_n^2$ . Or,  $\forall i \in [\![1,n]\!]$ ,  $\lambda_i > 0$  par hypothèse, et il existe  $i \in [\![1,n]\!]$ , tel que  $x_i \neq 0$  car  $\vec{x} \neq \vec{0}$ . D'où  $\langle \vec{x} \mid f(\vec{x}) \rangle > 0$ .

# 6 Rotations et réflexions

Définition 25:

Soit E un  $\mathbb{R}$ -espace vectoriel de dimension finie. On dit que deux bases  $\mathcal{B}_0$  et  $\mathcal{B}$  de E ont la même orientation si le déterminant de la matrice P de passage de  $\mathcal{B}_0$  à  $\mathcal{B}$  est positif :

$$\det P = \det_{\mathfrak{B}_0}(\mathfrak{B}) > 0.$$







Figure 3 – Aire d'un parallélogramme

#### Exemple 26:

On oriente le plan  $\mathbb{R}^2$  en décidant que la base canonique  $\mathfrak{B}_0=(\vec{\imath},\vec{\jmath})$  est directe, puis on munit  $\mathbb{R}^2$  du produit canonique :  $\mathfrak{B}_0$  est alors une base orthonormée directe de  $\mathbb{R}^2$ . Soient deux vecteurs  $\vec{u} = a\vec{i} + b\vec{j}$  et  $\vec{v} = c\vec{i} + b\vec{j}$ . Le déterminant

$$\det(\vec{u}, \vec{v}) = \begin{vmatrix} a & c \\ b & d \end{vmatrix} = ad - bc$$

possède

- un signe (s'il est strictement positif, alors  $(\vec{u}, \vec{v})$  est une base directe, s'il est strictement négatif, alors  $(\vec{u}, \vec{v})$  est une base indirecte, s'il est nul alors  $(\vec{u}, \vec{v})$  n'est pas une base car  $\vec{u}$  et  $\vec{v}$  sont liés);
- une valeur absolue, égale à l'aire du parallélogramme construit sur les vecteurs  $\vec{u}$  et  $\vec{v}$ . Les trois parallélogrammes de la figure précédente ont la même aire :

$$\left| \det(\vec{u}, \vec{v}) \right| = |ad - bc|.$$

### Exemple 27:

On oriente l'espace  $\mathbb{R}^3$  en décidant que la base canonique  $\mathfrak{B}_0=(\vec{\imath},\vec{\jmath},\vec{k})$  est directe.

Soit E un espace euclidien de dimension n. Soit  ${\mathcal B}$  une base orthonormée de E. On dit

- f est une rotation si f est une isométrie de déterminant +1, autrement dit, si  $[f]_{\Re} \in SO_n(\mathbb{R})$ ;
   f est une  $r\acute{e}flexion$  si f est une symétrie orthogonale par rapport à un hyperplan

Remarque 29: 1. D'après la définition et les théorèmes précédents, on a les équivalences :

> f est une rotation  $\iff f$  est une isométrie et  $\det f = +1$  $\iff f \in \mathcal{O}(E) \text{ et } \det f = +1$  $\Longleftrightarrow f \text{ conserve } \left\{ \begin{array}{l} \text{le produit scalaire} \\ \text{et l'orientation} \end{array} \right.$

 $\Longleftrightarrow f$  transforme une base orthonormée directe en une base orthonormée directe.

- 2. Les rotations de E forment un groupe, noté SO(E); c'est un sous-groupe de O(E) des isométries de E.
- 3. Si f est une réflexion par rapport à un hyperplan H de E, alors sa matrice dans une base adaptée à la somme directe  $H \oplus H^{\perp}$  s'écrit

$$\begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & 1 & 0 \\ 0 & \dots & 0 & -1 \end{pmatrix}.$$

Ainsi, le déterminant d'une réflexion est donc toujours égal à -1. Et, la composée de deux réflexions est donc une rotation.

### Théorème 30:

Une matrice appartient à  $O_2(\mathbb{R})$  si, et seulement si elle est de la forme

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \qquad \text{ou} \qquad S_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}.$$

Son déterminant vaut +1 dans le premier cas, -1 dans le second

La première matrice représente une rotation d'angle  $\theta$ ; la seconde représente une symétrie par rapport à la droite d'angle  $\theta/2$ .

DÉMONSTRATION:  $\Longrightarrow$  "Les colonnes des deux matrices forment une base de  $\mathbb{R}^2$ . D'où,  $R_\theta \in \mathcal{O}_2(\mathbb{R})$ et  $S_{\theta} \in \mathcal{O}_2(\mathbb{R})$ .

La matrice A est dans le groupe  $\mathcal{O}_2(\mathbb{R}),$  d'où

$$\begin{cases} a^2 + b^2 = 1 & (1) \\ c^2 + d^2 = 1 & (2) \\ ac + bd = 0. & (3) \end{cases}$$

Il existe donc  $\theta \in \mathbb{R}$  tel que  $(a,b) = (\cos \theta, \sin \theta)$ , d'après (1). De même, il existe  $\varphi \in \mathbb{R}$ , tel que  $(c, d) = (\cos \varphi, \sin \varphi)$ , d'après (2).

$$\begin{aligned} &\text{(3) d'où } ab + cd = 0 \\ &\text{d'où } \cos\theta\cos\varphi + \sin\theta\sin\varphi = 0 \\ &\text{d'où } \cos(\theta - \varphi) = 0 \\ &\text{d'où } \theta - \varphi \equiv \frac{\pi}{2} \ [\pi] \end{aligned}$$
 
$$\begin{cases} \exists k \in \mathbb{Z}, \ \theta - \varphi = 2k\pi + \frac{\pi}{2} \\ \text{ou bien} \\ \exists k \in \mathbb{Z}, \ \theta - \varphi = 2k\pi - \frac{\pi}{2} \end{cases}$$
 
$$\begin{cases} \exists k \in \mathbb{Z}, \ \theta - \varphi = 2k\pi - \frac{\pi}{2} \\ \text{ou bien} \\ \exists k \in \mathbb{Z}, \ \theta = \varphi + \frac{\pi}{2} + 2k\pi \\ \text{ou bien} \\ \exists k \in \mathbb{Z}, \ \theta = \varphi - \frac{\pi}{2} + 2k\pi. \end{cases}$$
 
$$\begin{cases} A = R_{\theta} \\ \text{ou bien} \\ A = S_{\theta} \end{cases}$$

### Corollaire 31:

Les isométries du plan sont les rotations (autour de l'origine) et les réflexions (par rapport à une droite passant par l'origine).

### Remarque 32:

Pour tout  $(\theta, \varphi) \in \mathbb{R}^2$ ,  $R_{\theta} \cdot R_{\varphi} = R_{\theta + \varphi} = R_{\varphi} \cdot R_{\theta}$ . Le groupe  $SO_2(\mathbb{R})$  est donc commutatif. De plus, l'application

$$\Phi: \mathbb{R} \longrightarrow SO_2(\mathbb{R})$$

$$\theta \longmapsto R_{\theta}$$

$$\varphi \longmapsto R_{\varphi}$$

$$\theta + \varphi \longmapsto R_{\theta + \varphi}$$

est un morphisme du groupe  $(\mathbb{R},+)$  vers le groupe  $(\mathrm{SO}_2(\mathbb{R}),\,\,\cdot\,\,)$ . Ce morphisme est surjectif, mais pas injectif (car son noyau est  $2\pi \mathbb{Z}$ ) :  $\Phi(0) = \Phi(2\pi) = I_2$ .

De plus, au lieu de repérer un point du plan par ses coordonnées  $(x,y) \in \mathbb{R}^2$ , on peut le repérer par son affixe  $z=x+iy\in\mathbb{C}.$ 

(a) Après une rotation, la position du point  $M^\prime$  sera repérée par les coordonnées

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = S_{\theta} \cdot \begin{pmatrix} x \\ y \end{pmatrix} \qquad \Longleftrightarrow \qquad z' = e^{i\theta} \cdot z.$$

 $\begin{pmatrix} x' \\ y' \end{pmatrix} = S_{\theta} \cdot \begin{pmatrix} x \\ y \end{pmatrix} \qquad \Longleftrightarrow \qquad z' = \mathrm{e}^{i\theta} \cdot z.$  En effet,  $z' = \mathrm{e}^{i\theta} \cdot z \iff x' + iy' = (\cos\theta + i\sin\theta)(x + iy) = (x\cos\theta - y\sin\theta) + i(x\sin\theta + y\cos\theta)$ , et

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = R_{\theta} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \end{pmatrix}.$$

Ainsi, l'application

$$\Psi: \mathbb{U} \longrightarrow SO_2(\mathbb{R})$$

$$e^{i\theta} \longmapsto R_{\theta}$$

est un isomorphisme de groupes (i.e. un morphisme de groupe bijectif).

(b) Après une symétrie, la position du point  $M^\prime$  sera repérée par les coordonnées

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = R_{\theta} \cdot \begin{pmatrix} x \\ y \end{pmatrix} \qquad \Longleftrightarrow \qquad z' = e^{i\theta} \cdot \bar{z}.$$

En effet,  $z' = e^{i\theta} \cdot \bar{z} \iff x' + iy' = (\cos\theta + i\sin\theta)(x - iy) = (x\cos\theta + y\sin\theta) + i(x\sin\theta - y\cos\theta)$ , et

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = S_{\theta} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \cos \theta + y \sin \theta \\ x \sin \theta - y \cos \theta \end{pmatrix}.$$

D'où,

$$S_{\theta} = \underbrace{\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}}_{R_{\theta}} \cdot \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}}_{S_{0}}.$$

Théorème 33:

Une application f est une isométrie de l'espace si, et seulement s'il existe un angle  $\theta \in \mathbb{R}$  et une base orthonormée directe  $\mathcal{B} = (\vec{u}, \vec{v}, \vec{w})$  tels que

$$[f]_{\mathfrak{B}} = \begin{pmatrix} \cos\theta & -\sin\theta & 0 & \vec{u} \\ \sin\theta & \cos\theta & 0 & \vec{v} \\ 0 & 0 & 1 & \vec{w} \end{pmatrix}$$
 
$$f(\vec{u}) \quad f(\vec{v}) \quad f(\vec{w})$$

ou

$$[f]_{\mathcal{B}} = \begin{pmatrix} \cos \theta & -\sin \theta & 0 & \vec{u} \\ \sin \theta & \cos \theta & 0 & \vec{v} \\ 0 & 0 & -1 & \vec{w} \end{pmatrix}$$

$$f(\vec{u}) \quad f(\vec{v}) \quad f(\vec{w})$$

Une isométrie f est, ou bien une rotation d'un angle  $\theta$  autour de l'axe  $\mathrm{Vect}(\vec{w})$ , ou bien la composée d'une rotation d'angle  $\theta$  autour de l'axe  $\mathrm{Vect}(\vec{w})$  et d'une symétrie par rapport au plan  $\mathrm{Vect}(\vec{u}, \vec{v})$ .

Démonstration (tarte à la crème):

Comme f est une isométrie, on a, pour tout vecteur  $\vec{x} \in E$ ,  $||f(\vec{x})|| = ||\vec{x}||$ . Or, il existe un vecteur  $\vec{x}$  non nul tel qu'il existe  $\lambda \in \mathbb{R}$  tel que  $f(\vec{x}) = \lambda \vec{x}$ , d'où  $||\lambda \vec{x}|| = ||\vec{x}||$ , donc  $|\lambda| \cdot ||\vec{x}|| = 1 \cdot ||\vec{x}||$ . On en déduit que  $\lambda \in \{-1,1\}$  car  $||\vec{x}|| \neq 0$ . La suite de la démonstration est dans le poly.

Théorème 34:

Soit E un espace euclidien, et soit f une isométrie : E est la somme directe et orthogonale de  $\operatorname{Ker}(\operatorname{id}_E-f)$ , de  $\operatorname{Ker}(-\operatorname{id}_E-f)$ , et/ou de plans  $P_i$  stables par f sur lesquels f induit une rotation.

Corollaire 35:

Si f est une isométrie d'un espace euclidien E, alors il existe  $(p,q) \in \mathbb{N}^2$ , des réels

 $\theta_1,\dots,\theta_k,$  et une base  ${\mathcal B}$  orthonormée de E tels que

$$[\,f\,]_{\mathcal{B}} = \begin{pmatrix} R_{\theta_1} & & & & \\ & \ddots & & & \\ & & R_{\theta_k} & & \\ & & & I_p & \\ & & & & -I_q \end{pmatrix}.$$