Лабораторная работа №6

Научное программирование

Леонтьева К. А., НПМмд-02-23

03 октября 2023

Российский университет дружбы народов

Москва, Россия

Цель лабораторной работы

Изучить в Octave методы расчета пределов, частичных сумм, суммы ряда, а также методы вычисления интегралов и аппроксимирования суммами

Теоретическое введение

Анонимная функция - особый вид функций, которые объявляются в месте использования и не получают уникального идентификатора для доступа к ним. Обычно при создании анонимные функции либо вызываются напрямую, либо ссылка на функцию присваивается переменной, с помощью которой затем можно косвенно вызывать данную функцию.

В Octave анонимные функции определяются с помощью синтаксиса

@(argument-list) expression.

Любые переменные, которые не найдены в списке аргументов, наследованы от объема включения. Анонимные функции полезны для создания простых функций без имени от выражений или для обертывания вызовов к другим функциям для адаптации их к использованию функциями как quad, которая применяется при вычислении интегралов.

- · Оценили предел: $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$
- \cdot Полученный результат близок к теоретическому значению предела e

Figure 1: Рис.1: Оценка выражения под знаком предела

 \cdot Пусть $\sum_{n=2}^\infty a_n$ - ряд, n-й член равен $a_n=rac{1}{n(n+2)}$. Построили слагаемые и частичные суммы для $2\leq n\leq 11$ на графике

Figure 2: Рис.2: Частичные суммы

 \cdot Нашли сумму первых 1000 членов гармонического ряда: $\sum_{n=1}^{1000} rac{1}{n}$

```
>> n=[1:1:1000];
>> a=1./n;
>> sum(a)
ans = 7.4855
>> |
```

Figure 3: Рис.3: Сумма ряда

 \cdot Вычислили интеграл: $\int\limits_{0}^{\frac{\pi}{2}}e^{x^{2}}cos(x)dx$

Figure 4: Рис.4: Вычисление интеграла

Вычислили указанный ранее интеграл по правилу средней точки для n=100 (классический код)

Figure 5: Рис.5: Аппроксимирование суммами

• Вычислили указанный ранее интеграл по правилу средней точки для n=100 (векторизованный код)

Figure 6: Рис.7: Аппроксимирование суммами - векторизованный код

• Сравнивнили результаты и время выполнения программ

Figure 7: Рис.8: Сравнение кодов

Вывод

• В ходе выполнения данной лабораторной работы я изучила в Octave методы расчета пределов, частичных сумм, суммы ряда, а также методы вычисления интегралов и аппроксимирования суммами