《芯片设计自动化与智能优化》 Legalization

The slides are partly based on Prof. David Z. Pan's lecture notes at UT Austin.

Yibo Lin

Peking University

Typical Placement Flow

WL: 1.05e+6

WL: 1.02e+6

Global placement

Legalization

Detailed Placement

Outline

- What is placement
- History of placement algorithms
- Global placement
 - Quadratic placement: FastPlace & SimPL
 - Nonlinear placement: NTUplace & ePlace

Legalization

- Tetris
- Row-based algorithms: Abacus, DP, LP, MCF
- Integer linear programming

Detailed placement

- Global move & swap
- Independent set matching
- Local reordering
- Row-based algorithms: DP, LP, MCF

Other topics

- Routability-driven placement
- Timing-driven placement
- Macro placement

Legalization – Problem Formulation

- Input
 - Global placement solution
- Output
 - Determine block locations
 - Remove overlaps between blocks
 - Satisfy all design rules
- Objective
 - Minimize total displacement

Tetris – Greedy Approach

- Sort cells from left to right
- Place cells one-by-one

Simple, but effective [NTUplace3, TCAD2018]

Global placement

Region Assignment with Min-Cost Flow

Edge cost $c = \widehat{disp}$

Center-to-center distance? Sensitive to region sizes?

Region Assignment with Min-Cost Flow

A cell may be assigned to multiple regions

- Assume the y coordinates of cells have been determined
 - Keep the **relative order** of cells
 - Only compute the x coordinates of cells
- Consider a row of cells (sorted from left to right)

$$- \min_{x} \sum_{i=1}^{N_r} e_i (x_i - x_i^{gp})^2,$$

$$- s. t. \quad x_i - x_{i-1} \ge w_{i-1}, \quad i = 2, \dots, N_r$$

■ Further simplify \geq to =

 $-x_1e_c-q_c=0 \Leftrightarrow x_1=\frac{q_c}{e_c}$

$$-x_{i} = x_{1} + \sum_{k=1}^{i-1} w_{k}$$

$$-\sum_{i=1}^{N_{r}} e_{i} x_{1} - \left[e_{1} x_{1}^{gp} + \sum_{i=2}^{N_{r}} e_{i} \left(x_{i}^{gp} - \sum_{k=1}^{i-1} w_{k}\right)\right] = 0$$

$$e_{c}$$

$$q_{c}$$

Init	Iteration ($i=1,2,\cdots,N_r$)
$e_c = 0$	$e_c \leftarrow e_c + e_i$
$q_c = 0$	$q_c \leftarrow q_c + e_i(x_i^{gp} - w_c)$
$w_c = 0$	$w_c \leftarrow w_c + w_i$

1	1			
-	4	7		
		1		

Handling inequality constraints with clustering

Place cell 1 at
$$x_1^* = \frac{q_c}{e_c}$$

x_2^* overlaps wit	$h x_1^*$
Merge 1 and 2	as one cluster
$\chi_{\{1,2\}}^*$	$=\frac{q_c}{e_c}$

2

Handling inequality constraints with clustering

 x_4^* does not overlap with $x_{\{1,2,3\}}^*$ Put cell 4 at x_4^*

1	2	3	4	5	
1	2	3	4	5	

 x_5^* overlaps with x_4^* Merge 5 and 4 as one cluster $x_5^* = \frac{q_c}{q_c}$

 x_6^* overlaps with $x_{\{4,5\}}^*$

Merge 6 and {4,5} as one cluster

$$x_{\{4,5,6\}}^* = \frac{q_0}{e_0}$$

 $x^*_{\{4,5,6\}}$ overlaps with $x^*_{\{1,2,3\}}$

Merge {4,5,6} and {1,2,3} as one cluster

$$x_{\{1,2,3,4,5,6\}}^* = \frac{q_c}{e_c}$$

- Extend single-row legalization to multiple rows
- Sort all cells from left to right
- For each cell
 - Try assigning it to each row and legalize that row
 - Choose the best row to assign

Global placement

Tetris
Displacement = 3.752

Abacus
Displacement = 2.915

Row-based Algorithms – Linear Programming (LP)

Pre-assign cells to rows

- Assign {2, 6} to the 1st row
- Assign {1, 4, 7} to the 2nd row
- Assign $\{3, 5\}$ to the 3^{rd} row

Mathematical programming

Keep the **relative order** of cells

$$-\min_{\mathbf{x}} \sum_{i} |x_i - x_i^{gp}|$$

$$-s.t.$$
 $x_6 - x_2 \ge w_2$,

$$- x_4 - x_1 \ge w_1, x_7 - x_4 \ge w_4,$$

$$- x_5 - x_3 \ge w_3,$$

$$- x_1 \ge L, x_2 \ge L, x_3 \ge L, x_5 \le R, x_7 \le R, x_6 \le R$$

Convert $|\cdot|$ to linear constraints Introduce additional variables d_i

$$\min_{x,d} \sum_{i} d_{i}$$
s.t. $x_{i} - x_{i}^{gp} \le d_{i}$,
$$x_{i}^{gp} - x_{i} \le d_{i}$$

Row-based Algorithms – Dual Min-Cost Flow

- LP with differentiable constraints only
 - The duality of this LP is a min-cost flow problem (strong duality)
 - Min-cost flow can be solved with network simplex, much faster than regular simplex solvers for LP

$$\mathcal{P}: \min \quad \sum_{i \in N} b_i \pi_i + \sum_{(i,j) \in E} u_{ij} \alpha_{ij},$$

$$\text{s.t.} \quad \pi_i - \pi_j - \alpha_{ij} \leq c_{ij}, \qquad \forall (i,j) \in E,$$

$$\alpha_{ij} \geq 0, \qquad \forall (i,j) \in E,$$

$$\text{Slack variable}$$

$$\mathcal{D}: \min \sum_{(i,j) \in E} c_{ij} f_{ij},$$

$$\text{s.t.} \sum_{j:(i,j) \in E} f_{ij} - \sum_{j:(j,i) \in E} f_{ji} = -b_i, \forall i \in N,$$

$$0 \leq f_{ij} \leq u_{ij}, \forall (i,j) \in E,$$

Row-based Algorithms – Dual Min-Cost Flow

$$\begin{split} \mathcal{P} : \min \quad & \sum_{i \in N} b_i \pi_i + \sum_{(i,j) \in E} u_{ij} \alpha_{ij}, \\ \text{s.t.} \quad & \pi_i - \pi_j - \alpha_{ij} \leq c_{ij}, \qquad \quad \forall (i,j) \in E, \\ & \alpha_{ij} \geq 0, \qquad \qquad \forall (i,j) \in E, \end{split}$$

More extension with quadratic objective Linear complementary problem (LCP)

[Chen+, DAC2017] Best Paper

 c_{ij},u_{ij}

Site-based Algorithms

- Dynamic programming
 - Taghavi, Taraneh, et al. "New placement prediction and mitigation techniques for local routing congestion." ICCAD 2010.
 - Lin, Yibo, et al. "Stitch aware detailed placement for multiple e-beam lithography." Integration 2017.
 (Best Paper Award)
- Integer linear programming
 - Li, Shuai, and Cheng-Kok Koh. "<u>Mixed integer programming models for detailed placement</u>." ISPD 2012.

Legalization – Summary

- Tackle legalization problem from different angles
- Tetris
- Region assignment
- Row-based legalization
 - Abacus
 - Linear programming
 - Min-cost flow
- Site-based legalization
 - Dynamic programming
 - Integer linear programming

Continuous Problem

Discrete Problem

Typical Placement Flow

Global placement

Legalization

Detailed Placement