

Recap:

- ||w|1, > ((w)1, > ... >) |w|(~
- the dual norm of 11.11 is ||x|1 + = sup(x.y)
- 11-11p and 11-11q are dual to each other when $\frac{1}{p} + \frac{1}{q} = 1$

[Definition 29] strong convexity | smoothness.

A function f is α -strongly convex W.r.t. a norm II-II iff for all w, u:

 $D_f(w||u) > \frac{\lambda}{2}||w-u||^2$

A function f is α -strongly smooth w.r.t. a norm 11.11 iff for all w, u:

 $D_{f}(w|lu) \leq \frac{d}{2}|lw-u|l^{2}$

[[emma 8] strong convexity and strong smoothness.

The following two statements are equivalent.

- ① ψ(w) is /η strongly convex w.r.t. 11.11.
- 2 $\psi^*(\theta)$ is η strongly smooth w.r.t. $\|\cdot\|_*$.

Pf: We only need to prove $0 \Rightarrow 0$: (since $0 \Rightarrow 0$ is analogous)

Assume Dy(w||w) > = 1 ||w-u||2 for Yw, u

$$\Rightarrow \qquad \psi(w) - \psi(u) - \nabla \psi(u) \cdot (w - u) \approx \frac{1}{2\eta} ||w - u||^2 \qquad (I)$$

and $\Psi(N) - \Psi(W) - \nabla \Psi(W) \cdot (N - W) \ge \frac{1}{2\eta} \| (N - W)\|^2$ (I) + (I):

$$(\nabla \psi(w) - \nabla \psi(u)) \cdot (w - w) \ge \frac{1}{\eta} ||w - u||^2$$

Let 0, = VY(w), 02 = VY(u),

il ... - utine u sitine im ... la

then $W = V \Psi (\Theta_1)$, $U = V \Psi (O_2)$. (II) can be rewritten: $(\theta_1 - \theta_2) \cdot (\nabla \Psi^*(\theta_1) - \nabla \Psi^*(\theta_2)) \geq \frac{1}{2} ||\nabla \Psi^*(\theta_1) - \nabla \Psi^*(\theta_2)||^2$ take $L_1 - norm$, and divide both sides by $\frac{1}{2} ||\nabla \Psi^*(\theta_1) - \nabla \Psi^*(\theta_2)||$ $||\nabla \Psi^*(\theta_1) - \nabla \Psi^*(\theta_2)|| \leq \eta ||(\theta_1 - \theta_2) \cdot \frac{\nabla \Psi^*(\theta_1) - \nabla \Psi^*(\theta_2)}{||\nabla \Psi^*(\theta_1) - \nabla \Psi^*(\theta_2)||}| \leq \eta ||(\theta_1 - \theta_2)||_* (*)$ Since Ψ^* is convex, $\Psi^*(\theta_1) - \Psi^*(\theta_2) - \nabla \Psi^*(\theta_2) \cdot (\theta_1 - \theta_1) \geq 0$ By (*) we have $\Psi^*(\theta_1) - \Psi^*(\theta_2) - \nabla \Psi^*(\theta_2) \cdot (\theta_1 - \theta_2)$ $= |\int_0^1 ||\nabla \Psi^*(\theta_2) + t(\theta_1 - \theta_2)| \cdot (\theta_1 - \theta_2) dt - \nabla \Psi^*(\theta_2) \cdot (\theta_1 - \theta_2)|$ $\leq \int_0^1 ||\nabla \Psi^*(\theta_2) + t(\theta_1 - \theta_2)| - \nabla \Psi^*(\theta_2) ||\cdot||\theta_1 - \theta_2||_* dt$ (by dwalty) $\leq \int_0^1 ||\nabla \Psi^*(\theta_2) + t(\theta_1 - \theta_2)| - \nabla \Psi^*(\theta_2) ||\cdot||\theta_1 - \theta_2||_* dt$ (by dwalty) $\leq \int_0^1 ||\nabla \Psi^*(\theta_2) - \theta_2||_*^2 dt$ $= \frac{1}{2} ||\theta_1 - \theta_2||_*^2 dt$

[Theorem 32] regret of OMG using norms

Suppose ψ is a $\frac{1}{\eta}$ -strongly convex regularizer

Regret(u) \leq [ψ (u) $-\psi$ (w)] $+\frac{\eta}{2}\sum_{k=1}^{T}||Z_k||_{\star}^{2}$

Pf: By Lemma 8, Ψ^* is η -strongly smooth. Note that $\theta_{t+1} = \theta_t - z_t$, we have $D_{\Psi^*}(\theta_{t+1}||\theta_t) \leq \frac{\eta}{2}||z_t||_{*}^2$.

By Theorem 31, we have Regret (u) $\leq [\psi(u) - \psi(w_i)] + \sum_{i=1}^{n} D_{\psi^*} (\theta_{i+1} || \theta_{i+1})$ $\leq [\psi(u) - \psi(w_i)] + \sum_{i=1}^{n} || \mathcal{E}_{t} ||_{\psi^*}$

*Learning with expert advice. Recall when using quadratic regularizer, we got Regret $\sim \sqrt{dT}$

To reduce it, just use another norm $||Z||_{\infty} \leq 1$, how Regret $\sim \sqrt{7}$ (by Th.32)

but this means ψ should be strongly convex w.r.t. L_1 , which is harder since (11.11, \geq 11.11, \geq). $\psi(w) = \frac{1}{2\eta} ||w||_2^2$ is only $\frac{1}{\eta d}$ -strongly convex w.r.t. L_1 norm. [however, entropy is $\frac{1}{\eta}$ - SC.].

[Example 36] exponentiated gradient (EG) $-\psi(w) = \frac{1}{\eta} \sum_{j=1}^{d} w_j \log w_j \quad \text{for } w \in \Delta_d$ $-\text{Recall } \psi^*(w) = \frac{1}{\eta} \log \frac{d}{j=1} e^{\eta \theta_j} \quad \text{and } \nabla \psi^*(\theta_j) = \frac{e^{\eta \theta_j}}{\sum_{j=1}^{d} e^{\eta \theta_j}}$ $-\text{DMD updates}: \quad \mathcal{W}_{t,j} \propto e^{\eta \theta_{t,j}}$ The equivalent recursive formula: $W_{t+1,j} \propto W_{t,j} e^{-\eta Z_{t,j}}$

[Example 37] EG for learning with expert advise $-f_t(w) = w \cdot Z_t$ $-f_t(w) = w \cdot Z_t$ $-f_t(w) = w \cdot Z_t$