G.S. (HKMO Classified Questions by topics)

1991 HI2

某科學家發現某樣本中細菌的數量每小時增加一倍。

於下午四時,他發現細菌的數量為3.2×10⁸,

若於同日正午該樣本中細菌的數量為 $N \times 10^7$,求N的值。

A scientist found that the population of a bacteria culture doubled every hour. At 4:00 pm, he found that the number of bacteria was 3.2×10^8 . If the number of bacteria in that culture at noon on the same day was $N \times 10^7$, find the value of N.

1994 HI1

設
$$\log_3 p = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$$
 至無窮項,求 p 的值。

Suppose $\log_3 p = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$ to an infinite number of terms.

Find the value of p.

1997 FG1.3

若
$$1+3+3^2+\cdots+3^8=\frac{3^c-1}{2}$$
 , 求 c 的值。

If $1 + 3 + 3^2 + \dots + 3^8 = \frac{3^c - 1}{2}$, find the value of c.

1998 HI2

已知 $8 \cdot a \cdot b$ 形成一等差級數,且 $a \cdot b \cdot 36$ 形成一等比級數。 若 $a \rightarrow b$ 皆為正數,求 $a \cdot b$ 的和。

Given that 8, a, b form an A.P. and a, b, 36 form a G.P.

If a and b are both positive numbers, find the sum of a and b.

1998 FG4.3

圖形 S_0 , S_1 , S_2 , ... 用以下方法構成:把綫段[0,1]的中間三分之一取去,得到 S_0 , 把 S_0 的兩條組成綫段,每段的中間三分之一取去,得到 S_1 , 把 S_1 的四條組成綫段,每段的中間三分之一取去,得到 S_2 , S_3 、 S_4 ... 等用類似方法獲得。求在構成 S_5 的過程中取去的綫段的總長度 c(答案以分數表示)。

A sequence of figures S_0 , S_1 , S_2 , \cdots are constructed as follows. S_0 is obtained by removing the middle third of [0,1] interval; S_1 by removing the middle third of each of the two intervals in S_0 ; S_2 by removing the middle third of each of the four intervals in S_1 ; S_3 , S_4 , \ldots are obtained similarly. Find the total length c of the intervals removed in the construction of S_5 (Give your answer in fraction).

2001 FI3.3

若 $\sin 30^{\circ} + \sin^2 30^{\circ} + \dots + \sin^7 30^{\circ} = 1 - \cos^R 45^{\circ}$,求 R 的值。

If $\sin 30^{\circ} + \sin^2 30^{\circ} + \dots + \sin^7 30^{\circ} = 1 - \cos^R 45^{\circ}$, find the value of R.

2002 FI2.2

已知
$$99Q = \frac{99}{100} \times (1 + \frac{99}{100} + \frac{99^2}{100^2} + \frac{99^3}{100^3} + \cdots)$$
,求 Q 的值。

Given that $99Q = \frac{99}{100} \times (1 + \frac{99}{100} + \frac{99^2}{100^2} + \frac{99^3}{100^3} + \cdots)$, find the value of Q.

2005 FG2.4

設
$$d = \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \dots + \frac{10}{2^{10}}$$
,求 d 的值。

Let $d = \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \dots + \frac{10}{2^{10}}$, find the value of d.

2006 HG3

已知
$$0^{\circ} < \theta < 90^{\circ}$$
 及 $1 + \sin \theta + \sin^2 \theta + \dots = \frac{3}{2}$ 。若 $y = \tan \theta$,求 y 的值。

Given that $0^{\circ} < \theta < 90^{\circ}$ and $1 + \sin \theta + \sin^2 \theta + \dots = \frac{3}{2}$.

If $y = \tan \theta$, find the value of y.

2007 FG2.1

If $R = 1 \times 2 + 2 \times 2^2 + 3 \times 2^3 + \dots + 10 \times 2^{10}$, find the value of R.

2009 FI1.3

設
$$F = 1 + 2 + 2^2 + 2^3 + \dots + 2^{120}$$
 及 $T = \sqrt{\frac{\log(1+F)}{\log 2}}$,求 T 的值。

Let
$$F = 1 + 2 + 2^2 + 2^3 + \dots + 2^{120}$$
 and $T = \sqrt{\frac{\log(1+F)}{\log 2}}$, find the value of T .

2010 FG2.1

若
$$p=2-2^2-2^3-2^4-\cdots-2^9-2^{10}+2^{11}$$
, 求 p 的值。

If
$$p = 2 - 2^2 - 2^3 - 2^4 - \dots - 2^9 - 2^{10} + 2^{11}$$
, find the value of p .

2012 HI5

已知
$$\log_4 N = 1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \cdots$$
 , 求 N 的值。

Given that $\log_4 N = 1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \cdots$, find the value of N.

2015 FI1.4

若 n 為正整數及 $f(n)=2^n+2^{n-1}+2^{n-2}+\cdots+2^2+2^1+1$, 求 $\delta=f(10)$ 的值。

If n is a positive integer and $f(n) = 2^n + 2^{n-1} + 2^{n-2} + \cdots + 2^2 + 2^1 + 1$, determine the value of $\delta = f(10)$.

2017 FI3.4

若
$$f(x) = 2^0 + 2^1 + 2^2 + \dots + 2^{x-2} + 2^{x-1}$$
, 求 $d = f(10)$ 的值。

If $f(x) = 2^0 + 2^1 + 2^2 + \dots + 2^{x-2} + 2^{x-1}$, determine the value of d = f(10).

2019 HI4

設 n 為正整數。若 $a_n = 1 + 2 + \dots + 2^n$ 及 $b = a_{10} - a_5 + a_1$, 求 b 的值。

Let *n* be a positive integer. If $a_n = 1 + 2 + \dots + 2^n$ and $b = a_{10} - a_5 + a_1$, find the value of *b*.

2023 FI2.2

 C_1 是正方形 S_1 的外接圓,它的半徑為 9 , C_2 是正方形 S_1 的內切圓; 同時也是正方形 S_2 的外接圓,如此類推。求正方形 S_6 的面積 β 。

A circle C_1 of radius 9 circumscribes a square S_1 which inscribes a circle C_2 .

 C_2 circumscribes square S_2 and so forth indefinitely.

Find the area β of the square S_6 .

C_1 S_1 C_2 S_2

2024 HI13

求
$$S = \frac{1}{2024} - \frac{3}{2024^2} + \frac{5}{2024^3} - \frac{7}{2024^4} + \frac{9}{2024^5} - \cdots$$
 的值。

Find the value of
$$S = \frac{1}{2024} - \frac{3}{2024^2} + \frac{5}{2024^3} - \frac{7}{2024^4} + \frac{9}{2024^5} - \cdots$$
.

如果
$$A > 1$$
 且 $1 + \frac{1}{A} + \frac{1}{A^2} + \frac{1}{A^3} + \dots = \frac{A}{3}$, 求 A 的值。

If
$$A > 1$$
 and $1 + \frac{1}{A} + \frac{1}{A^2} + \frac{1}{A^3} + \dots = \frac{A}{3}$, find the value of A.

Answers

1991 HI2 2	1994 HI1 9	1997 FG1.4 9	1998 HI2 40	1998 FG4.3 <u>665</u> 729
2001 FI3.3 14	2002 FI2.2 1	2005 FG2.4 509 256	$\frac{2006 \text{ HG3}}{\frac{\sqrt{2}}{4}}$	2007 FG2.1 18434
2009 FI1.3 11	2010 FG2.1 6	2012 HI5 8	2015 FI1.4 2047	2017 FI3.4 1023
2019 HI4 1987	$2023 \text{ FI2.2} \\ \frac{81}{16} = 5\frac{1}{16}$	2024 HI13 2023 4100625	2024 FI4.1 4	