Homework 10 Advanced Algebra I

Homework 10

ALECK ZHAO

December 1, 2016

Section 3.4: Homomorphisms

3. Show that a general ring homomorphism $\theta: \mathbb{Z} \to \mathbb{Z}$ is either a ring isomorphism or $\theta(k) = 0$ for all $k \in \mathbb{Z}$.

Proof. A homomorphism is determined entirely by the value of $\theta(1)$. Suppose $\theta(1) = a \in \mathbb{Z}$, so $\theta(k) = ka$ for all $k \in \mathbb{Z}$. If $a \neq =$, then the image θ "(\mathbb{Z}) $\cong a\mathbb{Z}$, but we know that $\mathbb{Z} \cong a\mathbb{Z}$ by the isomorphism $\varphi(n) = an$ for $n \in \mathbb{Z}$. Thus, the image is isomorphic to \mathbb{Z} if $a \neq 0$. Otherwise, a = 0 and $\theta(k) = 0$ for all $k \in \mathbb{Z}$, as desired.

4. Determine all onto general ring homomorphisms $\mathbb{Z}_{12} \to \mathbb{Z}_6$.

Solution. The homomorphism is determined entirely by the value that 1 is mapped to. The homomorphism given by $1\mapsto 1$ is obviously onto and a homomorphism. We can't have $1\mapsto 2$ because then there is no element that maps to 1. Similarly we can't have $1\mapsto 3$ or $1\mapsto 4$ otherwise nothing maps to 1. However, we can have $1\mapsto 5$, and this determines another homomorphism. Finally, $1\mapsto 0$ is obviously not onto. Thus, $1\mapsto 1$ and $1\mapsto 5$ are the only onto general ring homomorphisms.

20. If n > 0 in \mathbb{Z} , describe all the ideals of \mathbb{Z} that contain $n\mathbb{Z}$.

Solution. The only ideals of \mathbb{Z} are of the form $k\mathbb{Z}$. If an ideal $k\mathbb{Z}$ contains $n\mathbb{Z}$, then we must have $k \mid n$, and these are all ideals that contain $n\mathbb{Z}$.

Section 4.1: Polynomials

2. (c) Compute $(1+x)^5$ in $\mathbb{Z}_5[x]$.

Solution. This expands to

$$1 + 5x + 10x^2 + 10x^3 + 5x^4 + x^5 \equiv 1 + x^5$$

in $\mathbb{Z}_5[x]$.

4. (a) Find all roots of (x-4)(x-5) in \mathbb{Z}_6 ; in \mathbb{Z}_7 .

Solution. In \mathbb{Z}_6 , the possibilities are

$$x - \overline{4} = \overline{0} \implies x = \overline{4}$$

$$x - \overline{5} = \overline{0} \implies x = \overline{5}$$

$$(x - \overline{4}) = \overline{2}, (x - \overline{5}) = \overline{3} \implies \text{no solution}$$

$$(x - \overline{4}) = \overline{3}, (x - \overline{5}) = \overline{2} \implies x = \overline{1}$$

Thus, in \mathbb{Z}_6 , the solutions are $x = \bar{1}, \bar{4}, \bar{5}$.

Since \mathbb{Z}_7 is an integral domain, the only possibilities are $x = \overline{4}, \overline{5}$.

Homework 10 Advanced Algebra I

13. Divide $x^3 - 4x + 5$ by 2x + 1 in $\mathbb{Q}[x]$. Why is it impossible in $\mathbb{Z}[x]$?

Solution. We have

$$x^{3} - 4x + 5 = \left(\frac{1}{2}x^{2} - \frac{1}{4}x - \frac{15}{8}\right) \cdot (2x+1) + \frac{55}{8}$$

The division is impossible in $\mathbb{Z}[x]$ because 2x+1 is not monic, and quotients don't make sense in \mathbb{Z} . \square

- 24. If R is a commutative ring, a polynomial f in R[x] is said to **annihilate** R if f(a) = 0 for every $a \in R$.
 - (a) Show that $x^p x$ annihilates \mathbb{Z}_p .

Proof. By Fermat's Little Theorem, we have $x^p \equiv x \pmod{p}$, so $x^p - x \equiv 0 \pmod{p}$, thus $x^p - x$ annihilates \mathbb{Z}_p , as desired.

Section 4.2: Factorization of Polynomials over a Field

5. (a) Determine whether the polynomial x^2-3 is irreducible over each of the fields $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_5, \mathbb{Z}_7$.

Solution. This degree 2 polynomial has no solution in \mathbb{Q} , so it is irreducible over \mathbb{Q} . In \mathbb{R} , it factors as $(x - \sqrt{3})(x + \sqrt{3})$, so it is reducible in \mathbb{R} , and also in \mathbb{C} .

In \mathbb{Z}_2 , if $x = \overline{1}$, then $x^2 - 3 = 0$, so the polynomial has a root and is not irreducible. In \mathbb{Z}_3 , we have $x = \overline{0}$ is a solution, so it is not irreducible. In \mathbb{Z}_5 , the values of x^2 are 0, 1, 4, so we can't have $x^2 - 3 = 0$, thus it is irreducible. In \mathbb{Z}_7 , the values of x^2 are 0, 1, 2, 4, so we can't have $x^2 - 3 = 0$, thus it is irreducible.

9. Show that an odd degree polynomial has a real root.

Proof. By Theorem 4, every polynomial in $\mathbb{R}[x]$ factors as

$$f = a(x - r_1)(x - r_2) \cdots (x - r_m)q_1q_2 \cdots q_k$$

where $r_i \in \mathbb{R}$ and q_i are irreducible quadratics. The degree of the RHS is m + 2k, which is also the degree of f, which is odd. Thus, m must be odd, so it is at least 1, and there is at least 1 real root, as desired.

10. Find all monic irreducible cubics in $\mathbb{Z}_2[x]$.

Solution. Let $f(x) = x^3 + ax^2 + bx + c$ be an irreducible cubic in $\mathbb{Z}_2[x]$. Since f has degree 3, it is irreducible if and only if it has no roots in \mathbb{Z}_2 . That is, $f(\bar{0}) \neq \bar{0}$ and $f(\bar{1}) \neq \bar{0}$, so they must be equal to $\bar{1}$. This means

$$1 + a + b + c = 1$$
$$c = 1$$
$$\implies a + b = 1$$

Thus, either a = 1, b = 0 or a = 0, b = 1, so the irreducible monic cubics in $\mathbb{Z}_2[x]$ are

$$x^3 + x^2 + 1$$
, $x^3 + x + 1$