LA2 Summary

KYB

Thrn, it's a Fact mathrnfact@gmail.com

December 4, 2020

Overview

Linear Algebra 2

- 6. Orthogonality and best approximation
- 7. The spectral theory of symmetric matrices
- 8. The singular value decomposition
- 9. Matrix factorizations and numerical linear algebra
- 10. Analysis in vector spaces

Ajoint

X,U finite dimensional inner product space over $\mathbb R$ or $\mathbb C$ with basis $\mathcal X=\{x_1,\cdots,x_n\},\ \mathcal U=\{u_1,\cdots,u_m\}.$ For every linear map $T:X\to U$, there is a unique linear map $T^*:U\to x$ such that

$$\langle T(x),u\rangle_U=\langle x,T^*(u)\rangle_U \text{ for all } x\in X,u\in U.$$

How to compute

- 1. Let $M_{ij} = \langle u_j, T(x_i) \rangle_U$ and $G_{ij} = \langle x_j, x_i \rangle_X$.
- 2. $B = G^{-1}M$.
- 3. $[T^*] = B$.

Projection

H is a Hilbert space, S is a closed subspace of H. Let $v \in H$.

▶ Then there is a unique vector $w \in S$ such that

$$||v - w||_2 = \min\{||v - z||_2 : z \in S\}.$$

Denote $w = \operatorname{proj}_S v$.

- $w = \operatorname{proj}_S v$ iff $\langle v w, z \rangle = 0$ for all $z \in S$.
- ▶ If S is finite dimensional, let $\{u_1, \dots, u_n\}$ be a basis for S.
 - 1. $G_{ij} = \langle u_j, u_i \rangle$ and $b_i = \langle v, u_i \rangle$.
 - 2. Let $(x_1, \dots, x_n) = G^{-1}b$. Then $\text{proj}_S v = \sum_{i=1}^n x_i u_i$.

Least square solution

Let $A \in \mathbb{R}^{m \times n}$ (resp. $\mathbb{C}^{m \times n}$) and $y \in \mathbb{R}^m$ (resp. \mathbb{C}^m).

ightharpoonup Then there is a least square solution x, that is,

$$||Ax - y||_2 = \min\{||Az - y||_2 : z \in \mathbb{R}^n \text{ (resp. } \mathbb{C}^n\}.$$

 \blacktriangleright x is a least square solution iff x satisfies $A^TAx = A^Ty(\text{resp.}A^*Ax = A^*y)$.

Minimum norm least square solution

A least square solution \overline{x} to Ax=y is called the minimum norm least square solution if

$$\|\overline{x}\|_2 = \min\{\|x\|_2 : x \text{ is a least square solution to } Ax = y\}.$$

- ► The MNLS is unique.
- \overline{x} is MNLS iff $A^T A \overline{x} = A^T y$ and $\overline{x} \in \operatorname{col}(A^T)$ (resp. $A^* A \overline{x} = A^* y$ and $\overline{x} \in \operatorname{col}(A^*)$).

Orthogonal basis

Let $\{u_1, \cdots, u_n\}$ be an orthogonal basis of X and let $x \in X$. Then

$$x = \sum_{i=1}^{n} \frac{\langle x, u_i \rangle}{\langle u_i, u_i \rangle} u_i.$$

If $\{u_1, \dots, u_n\}$ is orthonormal,

$$x = \sum_{i=1}^{n} \langle x, u_i \rangle u_i.$$

Gram-Schmidt

Given linearly independent set $\{u_1, \dots, u_n\}$, $\{\hat{u}_1, \dots, \hat{u}_n\}$ is orthogonal where

$$\hat{u}_1 = u_1,$$

$$\hat{u}_{k+1} = u_{k+1} - \sum_{i=1}^{k} \frac{\langle u_{k+1}, u_i \rangle}{\langle u_i, u_i \rangle} u_i.$$

If X is a finite inner product space, then there is an orthonormal basis.

Projection using orthonormal set

Let S be a finite dimensional subspace of an inner product space X. Let $\{u_1,\cdots,u_n\}$ be an orthonormal basis. For $v\in X$,

$$\operatorname{proj}_S v = \sum_{i=1}^n \langle v, u_i \rangle u_i.$$

Orthogonal complements

Let H be a Hilbert space and let S be a nonempty subset of H.

- lacksquare $S^{\perp}=\{v\in V:\langle v,s\rangle=0 \text{ for all }s\in S\}$ is a subspace of V.
- ▶ If S is a closed subspace, then $S^{\perp \perp} = S$.

Fundamental Theory of Linear Algebra

Let X,U finite dimensional inner product spaces and let $T:X\to U$ be linear.

- $ightharpoonup \ker(T)^{\perp} = \mathcal{R}(T^*) \text{ and } \mathcal{R}(T^*)^{\perp} = \ker(T)$
- $ightharpoonup \ker(T^*)^{\perp} = \mathcal{R}(T) \text{ and } \mathcal{R}(T)^{\perp} = \ker(T^*)$
- $ightharpoonup \operatorname{rank}(T) = \operatorname{rank}(T^*)$
- $X = \mathcal{R}(T^*) \oplus \ker(T).$

Spectral Decomposition

Let a matrix $A \in \mathbb{C}^{n \times n}$ be normal $(A^*A = AA^*)$. Then A has a spectral decomposition, i.e. there are n distinct eigenpairs (λ_i, x_i) such that $\{x_1, \cdots, x_n\}$ is an orthonormal basis of \mathbb{C}^n and

$$A = XDX^*$$

where $X = [x_1|\cdots|x_n]$ and $D = \operatorname{diag}(\lambda_1,\cdots,\lambda_n)$.

Hermitian matrices

Let $A \in \mathbb{C}^{n \times n}$ be Hermitian $(A^* = A)$.

- ▶ Then every eigenvalue of A is real and $m.geo(\lambda) = m.alg(\lambda)$ for all eigenvalue λ .
- ▶ If $A \in \mathbb{R}^{n \times n}$, for each eigenvalue, there is a corresponding eigenvector x in \mathbb{R}^n .
- ightharpoonup A is positive definite iff every eigenvalue is positive.

Optimization

Let $q:\mathbb{R}^n \to \mathbb{R}$ of the form

$$q(x) = \frac{1}{2}x \cdot Ax + b \cdot x + c.$$

We can always assume A is symmetric $(A_{sym} = \frac{1}{2}(A + A^T))$.

- ▶ If A is not positive semidefinite, q(x) has no minimizer.
- ▶ If A is positive definite, q(x) has a unique minimizer.
- ▶ Suppose *A* is positive semidefinite but not positive definite.
 - ▶ if $b \in col(A)$, then q(x) has a minimizer.
 - ▶ if $b \notin col(a)$, then q(x) has no minimizer.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a smooth function. If $x^* \in \mathbb{R}^n$

- $ightharpoonup \nabla f(x^*) = 0$ and
- $ightharpoonup
 abla^2 f(x^*)$ is positive semidefinite,

then x^* is a (local) minimizer of f(x).

The SVD

Let $A\in\mathbb{C}^{m\times n}$. An eigenvalue of A^*A is called a singular value of A. Let $\sigma_1\geq\cdots\geq\sigma_{\min\{m,n\}}$. Then there exists unitary matrices $U\in\mathbb{C}^{m\times m}$ and $V\in\mathbb{C}^{n\times n}$ and a diagonal matrix $\Sigma\in\mathbb{C}^{m\times n}$ with $\Sigma_{ii}=\sigma_i$ such that

$$A = U\Sigma V^*$$
.

Let r be a positive integer such that $\sigma_r>0$ but $\sigma_{r+1}=0$. Then ${\rm rank}(A)=r$ and there is a reduced SVD

$$A = U_1 \Sigma_1 V_1^*.$$

Using outer product form

$$A = \sum_{i=1}^{r} \sigma_i u_i \otimes v_i.$$

LU factorization

Let $A \in \mathbb{R}^{n \times n}$.

- If there is no pivoting when applying Gaussian elimination to A, A has an LU factorization where L is a unit lower triangular matrix and U is an upper triangular matrix.
- If every submatrix $M^{(k)} \in \mathbb{R}^{k \times k}$ from the upper left-hand corner of A for $k=1,\cdots,n-1$ is nonsingular, LU factorization is unique.

The Cholesky factorization

Let $A \in \mathbb{R}^{n \times n}$ be symmetric and positive definite.

- ightharpoonup A has a LU factorization.
- ightharpoonup the diagonal entries of U are all positive.
- $A = LDL^T = R^T R.$

Partial Pivoting

When applying Gaussian elimination to A, we may permute rows so that the leading coefficient is nozero. So

$$U = L_{n-1}P_{n-1}L_{n-2}P_{n-2}\cdots L_1P_1A,$$

where L_i are unit lower triangular matrices and P_i are either I or permuting $e_i \leftrightarrow e_j$ for some j > i. Let $P = P_{n-1} \cdots P_1$ and define

$$\tilde{L}_k = P_{n-1}P_{n-2}\cdots P_{k+1}L_kP_{k+1}P_{k+2}\cdots P_{n-1}.$$

Then

- $ightharpoonup \tilde{L}_i$ is a unit lower triangular matrix.
- $\tilde{L}_{n-1}\tilde{L}_{n-2}\cdots\tilde{L}_1PA=U.$

Proof

Note that $P_i^2 = I$ for all i. Thus the second result is trivial. Each L_i is a unit lower triangular matrix such that

$$L_i e_k = e_k$$
 if $k \neq i$.

Each P_i is a permutation of rows such that

$$P_i e_i = e_j, P_i e_j = e_i, P_i e_k = e_k \ (k \neq i, j)$$

for some $j \geq i$ (if i = j, $P_i = I$). Thus it suffices to show that

- $ightharpoonup \tilde{L}_i e_k = e_k$ for all $k \neq i$,
- $\tilde{L}_i e_i = (0, \cdots, 0, 1, \cdots).$

(continued)

Proof

Let k < i. Then

$$\tilde{L}_i e_k = P_{n-1} P_{n-2} \cdots P_{i+1} L_k P_{i+1} P_{i+2} \cdots P_{n-1} e_k = e_k.$$

Let k>i. Put $k_1=k$ and $e_{k_{j+1}}=P_{n-j}e_{k_j}$ for $j=1,\cdots,n-i-1.$ Since each $k_j>i$,

$$\begin{split} L_k P_{i+1} P_{i+2} \cdots P_{n-1} e_k &= L_k P_{i+1} P_{i+2} \cdots P_{n-2} e_{k_2} \\ &= \cdots \\ &= L_k P_{i+1} e_{k_{n-i-1}} = e_{k_{n-i-1}}. \end{split}$$

Now $P_{n-j}e_{k_{j+1}}=e_{k_j}$ implies $\tilde{L}_ie_k=e_k$. (continued)

Proof

Since P_j permute $e_j \leftrightarrow e_k$ for some k > j, $P_j e_i = e_i$ for all j > i. Thus

$$\begin{split} \tilde{L}_{i}e_{i} &= P_{n-1}P_{n-2}\cdots P_{i+1}L_{i}e_{i} \\ &= P_{n-1}P_{n-2}\cdots P_{i+1}\left(\sum_{k=i}^{n}l_{ik}e_{k}\right) \\ &= e_{i} + \sum_{k=i+1}^{n}l_{ik}P_{n-1}P_{n-2}\cdots P_{i+1}e_{k} \end{split}$$

Since $P_{n-1}P_{n-2}\cdots P_{i+1}e_k=e_j$ for some j>i, $\tilde{L}_ie_i=(0,\cdots,1,\cdots)$. Hence \tilde{L}_i is a unit lower triangular matrix.

Matrix norm

A matrix norm $\|\cdot\|$ satisfies

- $ightharpoonup \|\cdot\|$ is a norm on $\mathbb{R}^{m\times n}$
- $||AB|| \le ||A|| ||B|| \text{ for all } A \in \mathbb{R}^{m \times n}, \ B \in \mathbb{R}^{n \times p}.$

Induced norm

Let $\|\cdot\|_n$ and $\|\cdot\|_m$ be norms on \mathbb{R}^n and \mathbb{R}^m , respectively. Then the induced norm $\|\cdot\|$ on $\mathbb{R}^{m\times n}$ given by

$$||A|| = \{||Ax||_m : x \in \mathbb{R}^n, ||x||_n \le 1\}$$

is a norm. If we define $\|\cdot\|$ for all $m, n, \|\cdot\|$ is a matrix norm.

Euclidean norm

Suppose we give the Euclidean norm on \mathbb{R}^n for all n. Let $\|\cdot\|_2$ the induced matrix norm. For $A\in\mathbb{R}^{m\times n}$, let σ_1 be the largest singular value of A. Then

$$||A||_2 = \sigma_1.$$

The ${\it QR}$ factorization

Suppose $A \in \mathbb{R}^{m \times n}$ has full rank. Then A has the QR factorization where $Q \in \mathbb{R}^{m \times m}$ is orthogonal and $R \in \mathbb{R}^{m \times n}$ is upper triangular.

Householder Transformation

Let $x,y\in\mathbb{R}^n$ be such that $x\neq y$ and $\|x\|_2=\|y\|_2$. Then there is a orthogonal matrix $U\in\mathbb{R}^{n\times n}$ such that Ux=y. This U is given by $U=I-2u\otimes u$ where $u=(x-y)/\|x-y\|_2$.

Computing QR

Using Householder Transformation, we can compute the QR factorization as follows: Let $v_1=A_1$ and $\alpha_1=-\operatorname{sgn}(v_1)\|v_1\|$. Define $x=\alpha_1e_1-v_1$ and $u_1=x_1/\|x_1\|_2$. Compute $Q_1=I_m-2u_1\otimes u_1$ and $A^{(2)}=Q_1A$. Apply this process for the lower right hand submatrix $B^{(2)}$ of $A^{(2)}$. Then we have Q_1,\cdots,Q_n and $Q_nQ_{n-1}\cdots Q_1A=R$.

Finite dimensional

▶ Every norm on \mathbb{R}^n is equivalent, i.e. given two norms $\|\cdot\|, \|\cdot\|_*$, there are $c_1, c_2 > 0$ such that

$$c_1 ||x||_* \le ||x|| \le c_2 ||x||_*$$

 $ightharpoonup \mathbb{R}^n$ is complete under any norm.

Infinite dimensional

- $ightharpoonup l^2$ is an infinite inner product space over \mathbb{R} .
- ▶ In l^2 , the Bolzano-Weierstrass theorem fails.
- ightharpoonup C[a,b] is complete under $L^\infty[a,b]$ norm but is not complete under $L^2(a,b)$ norm.
 - $\{x^k\}$ on [0,1] is a Cauchy sequence under $L^2(0,1)$ but not under $L^\infty[0,1]$.

Funtional analysis

- For any normed vector space V, V^* is complete under the induced norm.
- ightharpoonup Let H be a Hilbert space. If S is a closed subspace of H,
 - the projection theorem holds.
 - $ightharpoonup S^{\perp\perp} = S.$
- ▶ For any $f \in H^*$, there is a unique $u \in H$ such that

$$f(v) = \langle v, u \rangle_H \text{ for all } v \in H.$$

Weak convergence

Let H be a Hilbert space over \mathbb{R} and let $\{x_k\}$ be a sequence in H.

- ▶ Then $x_k \to x$ weakly iff $\langle x_k, u \rangle_H \to \langle x, u \rangle_H$ for all $u \in H$.
- ▶ If $x_k \to x$ weakly and $||x_k|| \to ||x||$, then $x_k \to x$ strongly.

The End