HS Mainz

Programmieren I für Wirtschaftsinformatik dual

Prof. Dr. Frank Mehler, Jonas Bingel B.Sc., Lars Jung M.Sc.

September 2023

Organisation

- Ziele der Veranstaltung:
 - Grundlagen einer objektorientierten Programmiersprache (hier: Java) im Detail kennenlernen und eigene Programme schreiben
 - Zudem ein paar allgemeine Konzepte von Programmiersprachen und Grundlagen der Informatik
- Ablauf: Mischung aus Präsentation und eigenen Übungen
 - Folien mit Beispielen (z.B. Java-Programmbeispiele)
 - Zusätzliche Abgabeaufgaben zu Hause: Pflichtabgabe
- Eigener Computer mit Admin-Rechten erforderlich
 - Bevorzugt Windows (alle Anleitungen sind nur f
 ür Windows)
 - Mac OS und Linux gehen auch (alle notwendigen Programme frei verfügbar),
 aber selbständiger Aufbau der Umgebung

Durchführung

- Die Vorlesung wird nicht im Vorlesungsraum/Rechnerpool angeboten, sondern ist in OLAT als Screencast (vertonte Folien mit schriftlichen Zusatzerläuterungen) verfügbar, jederzeit abrufbar
- Zu jedem Vorlesungstermin gibt es Fragestunden als Videokonferenz
 - Fragen mitbringen, eigene Lösungen vorstellen, Zusatzaufgaben
- Ablauf der Fragestunden
 - Sie haben die Screencasts zu dem Kapitel vor (!) dem Termin durchgearbeitet und die darin enthaltenen Übungen soweit möglich selbständig durchgeführt;
 - Sie wählen sich in die Videokonferenz ein, Ihr Rechner ist bereit zur Präsentation von selbsterstellten Programmen oder Fragen
 - Bei Fragen/Problemen melden Sie sich per Chat, Handzeichen oder Mikro, evtl. schalten Sie Ihren Bildschirm frei (natürlich freiwillig)
- (Optionale) Zusatztermine zur Einzelberatung: Programmierprobleme bei Abgabeaufgaben oder weitere Fragen

Leistungen zur Scheinvergabe Programmierung I

- Insgesamt sind 100 Punkte durch zwei Leistungen erreichbar:
- 1. Leistung: Selbsterstellte Programmieraufgaben mit vordefinierter Aufgabenstellung werden von jedem Studierenden eingereicht (Aufgabentool in OLAT)
 - Zwei Abgabetermine, Termine und Inhalte siehe OLAT
 - 1. Termin: 2 Aufgaben (je max. 10 Punkte)
 - 2. Termin: 1 Aufgabe (max. 20 Punkte)
 - Insgesamt sind durch die Abgaben maximal 40 Punkte erreichbar
- 2. Leistung:
 Klausur (60 Minuten) über Inhalte von Programmierung I
 - In der Klausur sind maximal 60 Punkte erreichbar
- Beide Leistungen müssen bestanden sein, um das Modul zu bestehen
 - Programme mindestens 20 Punkte erreicht
 - Klausur mindestens 30 Punkte erreicht
- Gesamtnote: Addition aller Punkte

Leistungen zur Scheinvergabe Programmierung I

- Kriterien zur Bewertung der Aufgaben
 - Selbsterstellte Lösung, keine Kopie oder Plagiat anderer Lösung
 - Keine Koproduktion mit anderen (Verhalten wie in einer Klausur)
 - Korrekte Funktionalität (60%), Softwarequalität (40%, siehe Folgeseite)
 - Die Bewertung erfolgt mittels Abzügen von der Maximalpunktzahl, d.h. von den maximal erreichbaren Punkten werden Abzüge vorgenommen, wenn funktionale oder qualitative Anforderungen nicht erfüllt sind.
- Klausur: Schriftlich ohne Computer mit Papier und Stift
 - Klausur-Inhalt: Komplette Vorlesung und Übungsaufgaben
 - Hilfsmittel: Handschriftlich 1 DIN A4-Blatt (Vorder- und Rückseite) mit eigenen Notizen, ohne Hilfsmittel lesbar
 - Beim Aufschreiben eigener Programme in der Klausur können folgende Abkürzungen verwendet werden: sysout (für eine Ausgabe auf den Bildschirm) und main (für den Startpunkt eines Programms),
 - In der Klausur wird nicht die Softwarequalität bewertet, nur die korrekte
 Funktionalität, trotzdem sollen Bezeichner für Variablen selbsterklärend sein

Bewertungskriterien zur Beurteilung der Qualität der abgegebenen Aufgaben

Kriterium	Beschreibung
Allgemein	Einhaltung von Java-Code-Konventionen, siehe separates Dokument
Namensgebung	Selbsterklärende Bezeichner für Variablen, Methoden, Klassen etc.
Variablen	Haben alle Variablen einen geeigneten Datentyp? Werden Konstanten
	verwendet wo sinnvoll? Sichtbarkeit von Attributen: Nur so viel wie notwendig
Komplexität	"So komplex wie nötig, so einfach wie möglich"
	Möglichst geringe Komplexität (z.B. einfach verständliche Bedingungen, nur eine
	Anweisung pro Zeile)
Dokumentation	Verständliche Kommentierung von zentralen Stellen
	lst die Dokumentation vollständig für alle Methoden, verwendeten Parameter
	und Rückgabewerte? Sind Sonderfälle und Randbedingungen dokumentiert?
Struktur	Logischer Gesamtaufbau, Bildung von Unterstrukturen (z.B. Hilfsfunktionen),
	Bildet eine Klasse auch nur eine fachliche Funktionalität ab (separation of
	concerns = Trennung von Zuständigkeiten)? Führt eine Funktion/Methode nur
	eine Aufgabe durch und nicht mehrere (z.B. Berechnung und Ausgabe trennen)?
	Vermeidung zu umfangreicher Methoden (max. 20 Anweisungen pro Methode)
Redundanz	Vermeidung von doppeltem oder sehr ähnlichem Code
Robustheit	Fähigkeit, ein stabiles System zu gewährleisten, (auch bei Randwerten oder
	nicht erwarteten Eingaben). Terminiert jede Schleife? Fehlerbehandlung? Sind
	Typkonvertierungen fachlich fehlerfrei implementiert?
Einheitlichkeit	Einheitliche Sprache (sofern nicht durch Aufgabenstellung vorgegeben),
	einheitliche Formatierung, übersichtliche Gestaltung (Einrückung, Klammerung),
	vorgeschriebenes Abgabeformat

Organisation

- Materialien zur Vor- und Nachbereitung
 - Siehe OLAT https://olat.vcrp.de
 Kurs: "Programmierung I // 626-2104 // Mehler 2023"
 im Katalog von OLAT unter:
 HS MZ/Fachbereich Wirtschaft/Kurse nach Lehrenden/Mehler, Frank Prof. Dr. (LB)

☐ Bookmark setzen

- Kennwort: (Kein Kennwort erforderlich)
- Literatur und Informationen:
 - Offizielle Seite zu Java ist https://www.oracle.com/java/technologies/
 - Java-Tutorium: https://docs.oracle.com/javase/tutorial/
 - Zahlreiche Bücher über Java, als Haupt-Quelle für Vorlesung genutzt:
 - R. Schiedermeier, Programmieren mit Java, Verlag: Pearson
 - Ch. Ullenboorn, Java ist auch eine Insel, http://openbook.rheinwerk-verlag.de/javainsel/
 - Sprechstunde, Fragen: <u>f.mehler@th-bingen.de</u>
 - Jonas Bingel jonas.bingel@lba.hs-mainz.de
 - Lars Jung <u>lars.jung@lba.hs-mainz.de</u>

Gliederung

- 1. Kapitel: Grundlagen
 - Arbeitsumgebung, erstes Java-Programm
- 2. Kapitel: Arithmetik
 - Formale Sprachen, Variablen, Datentypen, Berechnungen, Operatoren
- 3. Kapitel: Ablaufstrukturen
 - Anweisung, Sequenz, Alternative, Schleife
 - Danach Abgabeaufgaben 1 und 2
- 4. Kapitel: Klassen
 - Klassen, Attribute und Methoden, Erzeugung von Objekten
- 5. Kapitel: Felder
 - Arrays in Java

- 7. Kapitel: Vererbung
 - Vererbung in Java
 - Danach Abgabeaufgabe 3
- 6. Kapitel: Zeichen und Zeichenketten
 - Zeichensätze, char, String
- 8. Kapitel: Ausnahmen (Exceptions)
 - Behandlung von Fehlersituationen
- 9. Kapitel: Immutable
 - Zusatzthemen: Records, Date/Time, Lambda-Einführung