AUTOENCODERS

A general principle of generation

- Data is encoded into a different representation
- New data is generated by sampling from the new representation
- GMMs are just one type of encoding-decoding scheme

Image credit (<u>link</u>)

Autoencoders consist of two main parts:

The encoder: Compresses the input data into a lower-dimensional latent space.

The decoder: Reconstructs the original data from this compressed representation.

• Encoder stage : map the input x to z

$$z = \delta(Wx + b)$$

 δ : element-wise activation function

Decoder stage : map z to reconstruction x'

$$x' = \delta'(W'z+b')$$

• Autoencoders are trained to minimise :

$$L(x,x') = ||x-x'||^2$$

Autoencoder

Autoencoders: applications

• Denoising: input clean image + noise and train to reproduce the clean image.

Autoencoders: Applications

 Image colorization: input black and white and train to produce color images

Autoencoders: Applications

Watermark removal

Simple bottleneck layer in Keras

- input_img = Input(shape=(784,))
- encoding_dim = 32
- encoded = Dense(encoding_dim, activation='relu')(input_img)
- decoded = Dense(784, activation='sigmoid')(encoded)
- autoencoder = Model(input_img, decoded)
- Maps 28x28 images into a 32 dimensional vector.

Denoising autoencoders

- Basic autoencoder trains to minimize the loss between x and the reconstruction g(f(x)).
- Denoising autoencoders train to minimize the loss between x and g(f(x+w)), where w is random noise.
- Same possible architectures, different training data.
- Kaggle has a dataset on damaged documents.

Denoising autoencoders

- Denoising autoencoders can't simply memorize the input output relationship.
- Intuitively, a denoising autoencoder learns a projection from a neighborhood of our training data back onto the training data.

https://ift6266h17.files.wordpress.com/2017/03/14_autoencoders.pdf

Sparse autoencoders

- Construct a loss function to penalize activations within a layer.
- Usually regularize the weights of a network, not the activations.

How It Works:

- The autoencoder is trained with an additional **sparsity penalty** (like KL-divergence or L1 regularization) that forces most neurons in the hidden layer to remain inactive for most inputs.
- This encourages the network to learn a **disentangled and meaningful** representation of the input data.

Mathematical Formulation of Sparse autoencoders

Given the activation of the hidden unit j as a_j , the sparsity constraint is applied using KL-divergence:

$$KL(
ho||\hat{
ho}) = \sum_{j}
ho \log rac{
ho}{\hat{
ho}_{j}} + (1-
ho) \log rac{1-
ho}{1-\hat{
ho}_{j}}$$

where:

- ρ is the target sparsity (small value, e.g., 0.05),
- $\hat{
 ho}_j$ is the average activation of neuron j.

Regularization Used:

- •L1 Regularization (Lasso): Adds an absolute value penalty to the activations.
- •KL-Divergence: Ensures that the average activation of hidden neurons stays close to a low desired value.

Contractive autoencoders

How It Works:

- Instead of enforcing sparsity, a **contractive penalty** is added, which minimizes the **sensitivity of the hidden representation to small input variations**.
- This prevents overfitting and makes the autoencoder robust to noise.

$$\mathcal{L}\left(x,\hat{x}\right) + \lambda \sum_{i} \left\| \nabla_{x} a_{i}^{(h)}\left(x\right) \right\|^{2}$$

https://www.jeremyjordan.me/autoencoders/

Mathematical Formulation of Contractive Autoencoders

The contractive loss adds a penalty term:

$$\mathcal{L} = \|x - \hat{x}\|^2 + \lambda \sum_j \|
abla_x h_j\|^2$$

Regularization Used:

Jacobian Regularization: Penalizes large gradients of the encoder output with respect to the input.

where:

- x is the input,
- \hat{x} is the reconstructed output,
- h_j is the activation of neuron j,
- $abla_x h_j$ is the Jacobian matrix of the activations,
- ullet λ controls the weight of the contractive penalty.

Contractive autoencoders

• Contractive autoencoders make the *feature extraction function* (ie. encoder) resist infinitesimal perturbations of the input.

https://ift6266h17.files.wordpress.com/2017/03/14_autoencoders.pdf

Variational Autoencoder

- Key innovation of VAEs lies in their ability to generate new, high-quality data by learning a structured, continuous latent space.
- Traditional autoencoders produce a fixed point in the latent space (the network that maps the input data x to a fixed, lower-dimensional latent space representation z. This process is deterministic, meaning each input is encoded into a specific point in the latent space). The decoder network then reconstructs the original data from this fixed latent representation, aiming to minimize the difference between the input and its reconstruction.

• Encoder in a VAE outputs parameters of a probability distribution—typically the mean and variance of a Gaussian distribution (encoder in a VAE maps the input data to a probability distribution over the latent variables, typically modeled as a Gaussian distribution with mean μ and variance σ^2). During training, we sample a point from this distribution to feed into the decoder.

VAEs concept

Each dimension of z represents a data attribute

This approach encodes each input into a distribution rather than a single point, adding a layer of variability and uncertainty.

Figure 7: Decoupling attribute vectors for smiling (x-axis) and mouth open (y-axis) allows for more flexible latent space transformations. Input shown at left with reconstruction adjacent. (model: VAE from Lamb 16 on CelebA)

Figure 4.4: VAEs can be used for image resynthesis. In this example by White, 2016, an original image (left) is modified in a latent space in the direction of a *smile* vector, producing a range of versions of the original, from smiling to sadness.

VAE outputs

Samples from a VAE trained on MNIST

Samples from a VAE trained on a faces dataset

VAE limitations

- People have mostly moved on from VAEs to use GANs for generating synthetic high-dimensional data
- VAEs are theoretically complex
- Don't generalize very well
- Are pragmatically under-constrained
 - Reconstruction error need not be exactly correlated with realism

Who is real?

Play

https://www.whichfaceisreal.com/index.php