CS 353 Fall 2024 Homework 5 Solutions

Q.1 [10 pts, 5 pts each]

- (a) Decomposition is not lossless, because the intersection of ABCD and BE (i.e., B) is not a superkey for any of the relations R1 and R2 ($B^+ = BD$).
- (b) Decomposition is lossless, because the intersection of ABD and ACE (i.e., A) is a superkey for the relation R1 ($A^+ = ABD$).

Q.2 [15 pts, 3 pts each]

- (a) $B^+ = BG$. So, $B \to A$ does not hold on R.
- (b) $A^+ = ABFG$. So, $A \rightarrow D$ does not hold on R.
- (c) $AD^+ = ABDFG$. So, $AD \rightarrow FG$ holds on R.
- (d) $AC^+ = ABCDEFG$. So, $AC \rightarrow D$ holds on R.
- (e) $BC^+ = ABCDEFG$. So, $BC \rightarrow F$ holds on R.

Q.3 [15 pts]

 $E \rightarrow C$ using $E \rightarrow A$, $A \rightarrow C$ (transitivity)

 $ED \rightarrow CD$ using $E \rightarrow C$ (augmentation)

 $BE \rightarrow DE$ using $B \rightarrow D$ (augmentation)

 $BE \rightarrow CD \text{ using } BE \rightarrow DE, ED \rightarrow CD \text{ (transitivity)}$

- **Q.4 [15 pts]** F1 and F2 are not equivalent. To be equivalent we must have $F1^+ = F2^+$ (i.e., functional dependencies in F1 are implied by F2, and functional dependencies in F2 are implied by F1.) However, we have a functional dependency in F2 violating this: $A \rightarrow B$ which is not implied by F1 (A^+ under F1 is AC which does not include B).
- **Q.5 [20 pts]** For A \rightarrow B, A is not a superkey (A⁺ = AB). This is a violation of BCNF. (C \rightarrow E and E \rightarrow G also violate BCNF.)

Using the violation $A \rightarrow B$, R is decomposed into AB and ACDEG.

 $C \rightarrow E$ violates BCNF for ACDEG. We decompose ACDEG into CE and ACDG.

 $C \rightarrow E$ and $E \rightarrow G$ imply $C \rightarrow G$ which violates BCNF for ACDG.

ACDG is decomposed into CG and ACD which are both in BCNF.

As a result, R is replaced by AB, CE, CG and ACD which are all in BCNF.

Q.6 [25 pts]

(a) [10 pts] B \rightarrow C and B \rightarrow D are combined into B \rightarrow CD: {A \rightarrow C, BCD \rightarrow A, C \rightarrow D, B \rightarrow CD}

C is extraneous in BCD \rightarrow A, since A is in (BD)⁺, we replace BCD \rightarrow A by BD \rightarrow A: {A \rightarrow C, BD \rightarrow A, C \rightarrow D, B \rightarrow CD}

D is extraneous in BD \rightarrow A, since A is in (B)⁺, we replace BD \rightarrow A by B \rightarrow A: {A \rightarrow C, B \rightarrow A, C \rightarrow D, B \rightarrow CD}

 $B \rightarrow A$ and $B \rightarrow CD$ are combined into $B \rightarrow ACD$: $\{A \rightarrow C, B \rightarrow ACD, C \rightarrow D\}$

Check if A is extraneous in B \rightarrow ACD:

B⁺ under {A \rightarrow C, B \rightarrow CD, C \rightarrow D} is BCD which doesn't include A, so A is not extraneous. Check if C is extraneous in B \rightarrow ACD:

 B^+ under $\{A \rightarrow C, B \rightarrow AD, C \rightarrow D\}$ is ABCD which includes C, so C is extraneous.

We are left with $\{A \rightarrow C, B \rightarrow AD, C \rightarrow D\}$.

Check if D is extraneous in B \rightarrow AD:

 B^+ under $\{A \rightarrow C, B \rightarrow A, C \rightarrow D\}$ is ABCD which includes D, so D is extraneous.

As a result, $Fc = \{A \rightarrow C, B \rightarrow A, C \rightarrow D\}$

(b) [15 pts] We first find the candidate key(s) of R.

B must be part of any candidate key since it does not appear on the right hand side of any FD. $B^+ = ABCD$. B is both unique and minimal. Therefore, B is the only candidate key.

We now check if R is in 3NF.

For A \rightarrow C, A is not a super key (A⁺ = ACD) and C is not part of a candidate key. Therefore, R is not in 3NF.

Using the lossless and dependency preserving 3NF decomposition algorithm, we add one relation for each FD in Fc which was computed in part (a): AC, BA, CD.

Since the candidate key B is included in one of these 3 relations, we do not add any more relation.

There is no redundant relations.

As a result, R is decomposed into three 3NF relations: AC, BA, CD.