Applicant : Mayer, et al. Attorney's Docket No.: 14219-0107US1 / P2003,0432

Serial No.: 10/563,890 Filed: August 2, 2006

Page : 2 of 7

Amendments to the Claims:

This listing of claims replaces all prior versions and listings of claims in the application:

Listing of Claims:

1-3. (Cancelled)

4. (Previously Presented) An acoustic wave transducer comprising:

an acoustic track comprising electrode fingers for different electrodes, the electrode fingers engaging to form exciting finger pairs, the acoustic track comprising marginal areas and an excitation area, the electrode fingers engaging in the excitation area, the marginal areas and the excitation area being located along a transverse direction of the acoustic wave transducer;

wherein a longitudinal phase speed of an acoustic wave in the acoustic track is less in a marginal area than in the excitation area;

wherein the acoustic wave is excitable and has a transversal basic mode;

wherein the following applies in the transversal basic mode for a wave number ky:

(ky)2 > 0 in a marginal area, and

(k_y)² < 0 in an exterior area outside the acoustic track; and

wherein k_y is smaller in the excitation area than in the marginal areas and in the exterior

area;

Attorney's Docket No.: 14219-0107US1 / P2003,0432 US N

Applicant: Mayer, et al. Serial No.: 10/563,890 Filed: August 2, 2006

Page : 3 of 7

wherein the excitation area comprises partial tracks in the transverse direction, the partial

tracks corresponding to partial transducers that are interconnected in series and/or in parallel;

wherein the partial tracks are substantially identical in a longitudinal direction, and at

least two of the partial tracks have different widths; and

wherein the partial tracks have widths that adapt a transversal profile Ψ_{y} of an excitation

strength in the excitation area to a shape Φ_{ν} of the transversal basic mode.

5. (Previously Presented) The acoustic wave transducer of claim 4, in which the

following applies for adapting the transversal profile Ψ_v of the excitation strength to the shape

Φ_v of the transversal basic mode, where "y" corresponds to the transverse direction:

$$\int \Psi_y \Phi_y \; dy \; \left/ \sqrt{\int \! \Psi_y^2 \; dy \; \cdot \int \! \Phi_y^2 \; dy} \; \ge 0.9 \; . \right.$$

6. (Previously Presented) An acoustic wave transducer comprising:

an acoustic track comprising electrode fingers for different electrodes, the electrode

fingers engaging to form exciting finger pairs, the acoustic track comprising marginal areas and

an excitation area, the electrode fingers engaging in the excitation area, the marginal areas and

the excitation area being located along a transverse direction of the acoustic wave transducer;

wherein a longitudinal phase speed of an acoustic wave in the acoustic track is less in a

marginal area than in the excitation area;

wherein the acoustic wave is excitable and has a transversal basic mode;

Applicant: Mayer, et al. Attorney's Docket No.: 14219-0107US1 / P2003,0432

Serial No. : 10/563,890 Filed : August 2, 2006

Page : 4 of 7

wherein the following applies in the transversal basic mode for a wave number ky:

 $(k_y)^2 > 0$ in a marginal area, and

(k_v)² < 0 in an exterior area outside the acoustic track; and

wherein k_y is smaller in the excitation area than in the marginal areas and in the exterior area;

wherein the excitation area comprises partial tracks in the transverse direction, the partial tracks corresponding to partial transducers that are interconnected in series and/or in parallel; wherein the partial tracks comprise a center partial track and marginal partial tracks; wherein the marginal partial tracks are interconnected in series and form a series circuit; wherein the series circuit is connected in parallel to the center partial track; and wherein a width of the center partial track is greater than a width of a marginal partial track by at least a factor of five.

7-15. (Cancelled)

- 16. (Previously Presented) The acoustic wave transducer of claim 4, wherein the marginal areas each comprise a continuous metal strip in a longitudinal direction and have a transverse width of $\lambda_y/4$, where λ_y is a wavelength of the transversal basic mode in a corresponding marginal area.
- 17. (Previously Presented) The acoustic wave transducer of claim 4, wherein a number of electrode fingers per unit of length is greater in the marginal areas than in the excitation area.

Applicant : Mayer, et al. Attorney's Docket No.: 14219-0107US1 / P2003.0432 US N

Serial No.: 10/563,890 : August 2, 2006 Filed

Page : 5 of 7

18. (Previously Presented) The acoustic wave transducer of claim 4, wherein the electrode fingers for different electrodes define a periodic grid in the excitation area.

- 19. (Previously Presented) The acoustic wave transducer of claim 6, wherein the marginal areas each comprise a continuous metal strip in a longitudinal direction and have a transverse width of $\lambda_y/4$, where λ_y is a wavelength of the transversal basic mode in a corresponding marginal area.
- 20. (Previously Presented) The acoustic wave transducer of claim 6, wherein a number of electrode fingers per unit of length is greater in the marginal areas than in the excitation area.