

Project Goals:

- ML Library
 - Vector Operations: Vector-Dot Product, Vector Addition, Scalar Multiplication
 - Matrix Operations: Matrix-Vector Product, 1d/2d convolution
 - ► Activation Functions: Tanh, ReLU, ReLU6, LeakyReLU
- Dynamically link ML functions according to specification formats (ONNX)
- Demo of MLP stream processor on MEMS Flow Sensor

ML Stream Processor Library Component Architecture

Generic ML Module Architecture

Example particular module architecture 8-Vector Dot Product with 4 DSPs

Example particular module architecture Vector LeakyReLU 1 DSP Block

Dynamic Model Router and Compiler Architecture

Compiler python script architecture

Project Evaluation

- ► Test bench and in-situ comparison to PyTorch reference implementation
- Network 8-bit quantization efficacy evaluation
- Multi-scale efficiency reports
 - Critical path delay
 - ► Throughput

Timeline

Stretch goals

- Larger library of components
 - Convolution
 - ► Tanh activation
- > Support for Recurrent neural networks
 - **LSTM**
 - ► IIR-Filter

Deliverables

- Minimal:
 - MAST network implementation: matrix-vector mult and ReLU
- Expected:
 - Dynamic model parsing and routing, demonstrated on several networks of varying sizes in simulation
- Stretch:
 - Convolutional networks
 - Recurrent networks
- **A+:**
 - Recurrent conv-nets for image stream-processing