```
In [778]: import scipy.stats as sps
import pandas as pd
import numpy as np
```

Task3

In [153]: train3 = pd.read_csv('./hw11t3v0_train.txt', '\t', header=None)
 test3 = pd.read_csv('./hw11t3v0_test.txt', '\t', header=None)
 target3 = pd.read_csv('./hw11t3v0_target.txt', '\t', header=None)

In [779]: train3.head()

Out[779]:

	0	1	2	3	4	5	6
0	61.493	22.774	-31.684	1.864	0.716	-0.809	-0.511
1	60.472	35.267	-40.022	2.306	-3.104	-1.770	-2.169
2	-75.192	-3.148	21.730	1.021	4.874	0.138	2.262
3	-3.592	-31.405	22.565	-0.350	-0.155	-0.646	-3.618
4	-96.133	-2.158	26.496	-0.154	1.581	1.577	1.988

In [13]: test3.head()

Out[13]:

	0	1	2	3	4	5	6
0	-71.330	2.211	17.034	1.842	1.858	-0.117	2.152
1	-63.588	-4.953	19.954	3.100	-1.069	-0.132	2.692
2	38.756	24.093	-26.677	0.372	0.641	-0.157	-0.010
3	-14.522	-33.612	26.929	3.177	-4.449	-0.561	1.284
4	-11.235	-34.898	26.959	0.665	-2.671	-0.199	-0.337

In [14]: target3.head()

Out[14]:

	0
0	-79.404
1	-87.106
2	-458.711
3	100.090
4	-583.253

```
In [15]: len(target3)
Out[15]: 500
In [17]: len(train3)
Out[17]: 500
In [20]: from sklearn.manifold import TSNE
In [21]: tsne = TSNE(n_components=2, n_iter=200)
         X tsne = tsne.fit transform(np.concatenate((train3, test3)))
         X_train_tsne, X_test_tsne = X_tsne[:len(train3)], X_tsne[len(train3)
         import matplotlib.pyplot as plt
In [22]:
         %matplotlib inline
In [26]: plt.scatter(X_train_tsne[:,0], X_train_tsne[:,1])
Out[26]: <matplotlib.collections.PathCollection at 0x10f6822b0>
           20
           10
            0
          -10
          -20
```

После применения T-SNE отчетливо видны 3 кластера

-10

In [27]: import seaborn as sns

10

Ò

20

Взглянем на попарные зависимости признаков

In [29]: sns.pairplot(train3)

Out[29]: <seaborn.axisgrid.PairGrid at 0x10f94a128>

видно, что данные вообще линейно разделимы, если спроецировать на 2 признака

```
In [36]: from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error from sklearn.cross_validation import train_test_split from sklearn.cross_validation import cross_val_score
```

```
In [34]: X_train, X_test, y_train, y_test = train_test_split(train3, target3
)
```

Out[92]: -3249.294337623202

Получаем очень большую ошибку, скорее всего данные не линейные

Попробуем понизить размерность, кластеризовать там данные и внутри каждого кластера запустить свою линейную модель

Out[99]: <matplotlib.collections.PathCollection at 0x10f4b00f0>

РСА отработал очень хорошо

```
In [104]: kmen.labels
Out[104]: array([0, 0, 1, 2, 1, 2, 0, 1, 0, 2, 2, 2, 2, 2, 2, 1, 1, 0, 2, 0,
          2, 1, 0,
                 1, 0, 0, 2, 0, 1, 2, 1, 0, 2, 1, 1, 0, 1, 1, 0, 2, 0, 0, 1,
          1, 2, 1,
                 2, 2, 2, 2, 1, 0, 1, 1, 0, 0, 2, 2, 0, 1, 2, 1, 1, 2, 2, 0,
          2, 0, 0,
                 2, 0, 2, 1, 1, 0, 0, 0, 2, 2, 1, 0, 0, 0, 2, 0, 0, 1, 0, 2,
          2, 2, 0,
                 2, 1, 2, 2, 0, 0, 0, 1, 0, 0, 0, 2, 1, 2, 0, 1, 2, 2, 0, 0,
          2, 1, 1,
                 2, 1, 2, 2, 0, 1, 1, 2, 1, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 2,
          0, 0, 0,
                 0, 2, 1, 1, 1, 0, 1, 2, 2, 2, 2, 1, 2, 0, 2, 0, 0, 1, 1, 0,
          1, 0, 1,
                 0, 2, 2, 1, 2, 1, 2, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 2, 1,
          1, 2, 2,
                 1, 1, 2, 1, 2, 0, 2, 2, 2, 0, 0, 2, 2, 2, 0, 0, 2, 0, 2, 2,
          1, 2, 1,
                 1, 1, 1, 0, 0, 0, 1, 2, 0, 2, 1, 2, 0, 2, 1, 0, 2, 2, 2, 1,
          0, 1, 2,
                 0, 1, 1, 1, 2, 2, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1,
          0, 2, 2,
                 1, 2, 0, 1, 1, 0, 1, 0, 0, 2, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1,
          1, 1, 2,
                 0, 0, 1, 1, 1, 2, 1, 2, 1, 2, 0, 1, 2, 1, 0, 0, 2, 2, 0, 0,
          0, 1, 0,
                 0, 1, 1, 0, 1, 2, 0, 0, 1, 0, 0, 2, 2, 1, 0, 0, 2, 2, 2, 0,
          1, 0, 2,
                 1, 0, 2, 1, 2, 1, 2, 1, 2, 0, 2, 1, 0, 0, 2, 1, 0, 0, 2,
          2, 0, 1,
                 1, 2, 0, 1, 2, 1, 2, 2, 1, 0, 2, 2, 1, 1, 2, 0, 1, 1, 2, 2,
          1, 2, 0,
                 0, 0, 0, 2, 2, 2, 2, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 2, 2, 1,
          0, 0, 0,
                 0, 1, 2, 0, 0, 0, 2, 0, 2, 2, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0,
          1, 2, 0,
                 1, 0, 1, 2, 1, 2, 0, 0, 1, 0, 0, 0, 0, 1, 1, 2, 0, 0, 1, 0,
          2, 0, 0,
                 2, 1, 2, 1, 1, 2, 2, 1, 0, 0, 1, 2, 2, 0, 2, 1, 2, 2, 1, 1,
          2, 2, 1,
                 0, 0, 1, 1, 0, 0, 2, 2, 1, 1, 1, 1, 0, 2, 1, 0, 2, 1, 0, 0,
          2, 0, 1,
                 2, 2, 1, 1, 2, 1, 2, 1, 0, 0, 1, 1, 0, 0, 2, 1, 2], dtype=i
          nt32)
In [110]: predicted for test = kmen.predict(X test pca)
          predicted_for_test
```

```
Out[110]: array([1, 1, 0, 2, 2, 1, 2, 1, 1, 0, 1, 2, 2, 2, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 2, 2, 0, 2, 1, 0, 2, 0, 2, 2, 2, 1, 0, 2, 1, 0, 1, 2, 2, 2, 1, 2, 1, 1, 1], dtype=int32)
```

```
In [113]: XX_tr, XX_te, yy_tr, yy_te = train_test_split(X_train_pca, target3)
In [114]: def split_to_three(data, trgts):
              clus = kmen.predict(data)
              nol = data[clus == 0]
              odin = data[clus == 1]
              dva = data[clus == 2]
              tar 0 = trgts[clus == 0]
              tar_1 = trgts[clus == 1]
              tar_2 = trgts[clus == 2]
              return nol, odin, dva, tar_0, tar_1, tar_2
In [115]: train_splitted = split_to_three(XX_tr, yy_tr)
          test splitted = split to three(XX te, yy te)
In [112]: # train 0 = X train pca[kmen.labels == 0]
          # train 1 = X train_pca[kmen.labels_ == 1]
          # train_2 = X_train_pca[kmen.labels_ == 2]
          # #-----#
          # target_0 = target3[kmen.labels_ == 0]
          # target_1 = target3[kmen.labels_ == 1]
          # target 2 = target3[kmen.labels == 2]
          # #----#
          # test 0 = X_test_pca[predicted_for_test == 0]
          # test 1 = X test pca[predicted for test == 1]
          # test 2 = X test pca[predicted for test == 2]
In [117]: | lr = LinearRegression()
In [136]: preds = []
In [137]: lr.fit(train splitted[0], train splitted[3])
          preds += list(lr.predict(test_splitted[0])[:,0])
In [139]: lr.fit(train splitted[1], train splitted[4])
          preds += list(lr.predict(test_splitted[1])[:,0])
In [140]: | lr.fit(train_splitted[2], train_splitted[5])
          preds += list(lr.predict(test_splitted[2])[:,0])
In [141]: len(preds)
Out[141]: 125
In [143]: len(XX te)
Out[143]: 125
In [107]: len(train_0)
Out[107]: 172
```

```
In [ ]: y_tteeeest = test_splitted[]
In [151]: mean_squared_error(preds, np.concatenate(test_splitted[3:]))
Out[151]: 71.623309201026117
```

Получили намного более вменяемое значение, нежели в самом начале!

Task4 то же самое, что и в предыдущем задании

```
In [154]: train4 = pd.read_csv('./hw11t4v0_train.txt', '\t', header=None)
    test4 = pd.read_csv('./hw11t4v0_test.txt', '\t', header=None)
    target4 = pd.read_csv('./hw11t4v0_target.txt', '\t', header=None)

In [157]: len(train4)

Out[157]: 500

In [176]: from sklearn.svm import SVR

In [182]: cross_val_score(estimator=SVR(), X=train4, y=target4.values.ravel(), scoring='mean_squared_error').mean()
Out[182]: -361215.73056817154
```

Получаем просто гигантскую ошибку

In [156]: sns.pairplot(train4)

Out[156]: <seaborn.axisgrid.PairGrid at 0x112323f28>

кажется, наши данные похожина обычный шум(

```
In [782]: tsne = TSNE(n_components=2, n_iter=200)

X_tsne = tsne.fit_transform(np.concatenate((train4, test4)))
X_train_tsne, X_test_tsne = X_tsne[:len(train3)], X_tsne[len(train3)):]
plt.scatter(X_train_tsne[:,0], X_train_tsne[:,1])
```

Out[782]: <matplotlib.collections.PathCollection at 0x1210d3f28>

Как из pairplot-a, так и из результатов работы t-sne, не выходит получить нормальную визуализацию в двумерном пр-ве. Посмотрим, как работает линейная регрессия на исходных признаках, а далее попробуем уменьшить размерность

Out[165]: -372146.59386070567

Воспользуемся Робастной Линейной Регрессией

Тоже не помогла

Методом Максимальеного правдоподобия получается, что лучше вообще не выкидывать признаки

```
In [168]: from tqdm import tqdm
```

Воспользуемся нами пройденной ядерной регрессией, быть может, она нам поможет

```
for dim in tqdm(dims):
              pca = PCA(n_components=dim)
              X pca = pca.fit transform(np.concatenate((train4, test4)))
              X train pca, X test pca = X pca[:len(train4)], X pca[len(train4
          ):]
              ansas.append(cross val score(estimator=kernel regression.Kernel
          Regression(), X=X train pca, y=target4.values.ravel(), scoring='mea
          n squared error', cv=5))
          100% | 7/7 [00:00<00:00, 84.36it/s]
In [239]:
          ansas
Out[239]: [array([ -55604.12893692, -112289.91619638, -168425.12668202,
                    -82265.49715863, -1431944.03861944]),
                    -55323.63340705, -79778.59355673,
                                                        -146824.15780479,
           array([
                   -148337.28019332, -1385012.74557578]),
           array([ -57463.87608721, -77123.19188435, -141055.07322855,
                    -75950.1320367 , -1442641.70404021<sub>]</sub>),
           array([ -58814.99680759, -83301.15842256, -141766.84609072,
                    -73428.29858537, -1451160.26153275]),
           array([ -61782.49250037, -82346.87966883, -141480.78690932,
                    -70118.06368102, -1463035.28643482]),
           array([ -61506.36850335, -82511.12723661, -142509.80962115,
                    -69215.60737002, -1466009.96510083]),
                    -59560.01969514, -79396.58486618, -143076.52828576,
           array([
                    -71366.68789475, -1467578.07286856])]
Стало получше, но все же все очень плохо еще
In [229]: import kernel regression
In [230]: | qwe = kernel regression.KernelRegression()
```

Out[231]: array([-78489.51576325, -160882.81273417, -929284.2929403])

Стало лучше, может стоит взять другое число компонент?

In []: qwe.fit(X train pca,)

In [201]: len(X_train_pca)

Out[201]: 500

In [238]: dims = range(2, 9)
ansas = []

```
In [213]: XX_tr, XX_te, yy_tr, yy_te = train_test_split(X_train_pca, target4.
          values.ravel())
In [214]: yy tr.ravel().shape
Out[214]: (375,)
In [215]: qwe.fit(XX tr, yy tr)
Out[215]: KernelRegression(gamma=None, kernel='rbf')
In [216]: list(XX_te[0])
Out[216]: [4.0811149129003059, -5.7517575232752005]
In [217]: len(qwe.predict(list(XX_te[0])))
          /usr/local/lib/python3.6/site-packages/sklearn/utils/validation.py
          :386: DeprecationWarning: Passing 1d arrays as data is deprecated
          in 0.17 and willraise ValueError in 0.19. Reshape your data either
          using X.reshape(-1, 1) if your data has a single feature or X.resh
          ape(1, -1) if it contains a single sample.
            DeprecationWarning)
Out[217]: 1
In [218]: qwe.predict(list(XX te[0]))
          /usr/local/lib/python3.6/site-packages/sklearn/utils/validation.py
          :386: DeprecationWarning: Passing 1d arrays as data is deprecated
          in 0.17 and willraise ValueError in 0.19. Reshape your data either
          using X.reshape(-1, 1) if your data has a single feature or X.resh
          ape(1, -1) if it contains a single sample.
            DeprecationWarning)
Out[218]: array([ 21.33802497])
```

Task 5

```
In [409]: train5 = pd.read_csv('./hw11t5v3_train.txt', '\t', header=None)
    test5 = pd.read_csv('./hw11t5v3_test.txt', '\t', header=None)
    target5 = pd.read_csv('./hw11t5v3_target.txt', '\t', header=None)
    target5_test = pd.read_csv('./hw11t5v3_target_test.txt', '\t', head
    er=None)
```

In [410]: train5.head()

Out[410]:

	0	1	2
0	0.895	-2.873	0.504
1	2.856	0.168	1.951
2	-0.576	-0.238	-0.437
3	-0.277	0.205	-0.218
4	3.494	-0.137	1.955

In []:

In [411]: sns.pairplot(train5)

Out[411]: <seaborn.axisgrid.PairGrid at 0x11a2d8a90>


```
In [749]: tsne = TSNE(n_components=2, n_iter=100000, learning_rate=50)

X_tsne = tsne.fit_transform(np.concatenate((train4, test4)))

X_train_tsne, X_test_tsne = X_tsne[:len(train3)], X_tsne[len(train3)):]

plt.scatter(X_train_tsne[:,0], X_train_tsne[:,1], c=[clrs[targ[0]]]

for targ in target5.values])
```

Out[749]: <matplotlib.collections.PathCollection at 0x11e82a748>

С виду сразу не понять, сколько тут будет кластеров, используем алго, окоторый сам определяет их число

```
In [750]: ms = MeanShift()
    ms_preds = ms.fit_predict(X_train_tsne)
In [751]: ms_preds
```

```
Out[751]: array([1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0,
          0, 1, 1,
                 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0,
          0, 0, 0,
                 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0,
          0, 0, 0,
                 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1,
          1, 1, 0,
                 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0,
          1, 0, 0,
                 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,
          0, 0, 0,
                 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1,
          0, 0, 1,
                 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,
          0, 1, 0,
                 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0,
          0, 1, 0,
                 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0,
          0, 0, 0,
                 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1,
          1, 0, 0,
                 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1,
          0, 0, 0,
                 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1,
          1, 0, 1,
                 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
          1, 0, 1,
                 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1,
          1, 0, 0,
                 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0,
          0, 0, 1,
                 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0,
          0, 1, 1,
                 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0,
          0, 0, 0,
                 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0,
          0, 0, 1,
                 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0,
          1, 0, 1,
                 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1,
          1, 1, 0,
                 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1])
```

Нарисуем новые кластера и в каждом из них запустим свой KNN

```
In [752]: test_ms_preds = ms.predict(X_test_tsne)
```

Out[753]: <matplotlib.collections.PathCollection at 0x120edc390>


```
In [761]: knn_0 = KNeighborsClassifier(2)
   knn_0.fit(X_tr_0, trgt_tr_0)
   knn_1 = KNeighborsClassifier(2)
   knn_1.fit(X_tr_1, trgt_tr_1)
```

```
In [762]: preds_0 = knn_0.predict(X_te_0)
preds_1 = knn_1.predict(X_te_1)
```

Out[763]: 0.46000000000000000

```
In [768]: pca = PCA(n components='mle')
          X_pca = pca.fit_transform(np.concatenate((train5, test5)))
          X_train_pca, X_test_pca = X_pca[:len(train5)], X_pca[len(train5):]
In [769]: | clrs = {1:'red', 2:'green', 3:'blue'}
In [770]: colorrrs = [clrs]
In [777]: plt.scatter(X train pca[:,0], X train pca[:,1], c=[clrs[targ[0]] fo
          r targ in target5.values])
Out[777]: <matplotlib.collections.PathCollection at 0x1203ca7b8>
            4
            2
            0
           -2
In [772]: ms = MeanShift()
          ms_preds = ms.fit_predict(X_train_pca)
In [774]: len(np.unique(ms_preds))
Out[774]: 1
Всего один кластер
```

```
In [278]: from sklearn.metrics import accuracy_score

In [775]: knn_pca = KNeighborsClassifier()
   knn_pca.fit(X_train_pca, target5.values.ravel())
   predictions_knn_pca = knn_pca.predict(X_test_pca)
```

```
In [776]: accuracy_score(predictions_knn_pca, target5_test.values.ravel())
Out[776]: 0.6400000000000001
```

Task6

```
In [526]: from sklearn.datasets import fetch_olivetti_faces
In [546]: dataset = fetch_olivetti_faces()
          faces = dataset.images
In [540]: faces[0]
Out[540]: array([ 0.30991736,  0.36776859,  0.41735536, ...,  0.15289256,
                  0.16115703, 0.1570248 ], dtype=float32)
In [545]: dataset.images[0].shape
Out[545]: (64, 64)
In [550]: # set up the figure
          fig = plt.figure(figsize=(6, 6)) # figure size in inches
          fig.subplots adjust(left=0, right=1, bottom=0, top=1, hspace=0.05,
          wspace=0.05)
          # plot the faces: each image is 64x64 pixels
          for i in range(64):
              ax = fig.add_subplot(8, 8, i + 1, xticks=[], yticks=[])
              ax.imshow(faces[i], cmap=plt.cm.bone)
```


Вот так выглядят данные 8х8

```
In [562]: # set up the figure
fig = plt.figure(figsize=(6, 6)) # figure size in inches
fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.05,
wspace=0.05)

# plot the faces: each image is 64x64 pixels
for i in range(64):
    ax = fig.add_subplot(8, 8, i + 1, xticks=[], yticks=[])
    ax.imshow(X_proj[i].reshape((8,8)), cmap=plt.cm.bone)
```


In [554]:	<pre>print(np.cumsum(pca_oliv.explained_variance_ratio_))</pre>							
	[0.23812743 540423	0.37806708	0.45775321	0.50773644	0.54383487	0.57		
	0.59967256 666095	0.62003654	0.63961768	0.65633893	0.67229116	0.68		
	0.69912833 835199	0.71059966	0.72122842	0.73100561	0.74019623	0.74		
	0.75589073 802919	0.76336056	0.77034634	0.77649266	0.78233194	0.78		
	0.79349113 78947	0.79880971	0.80394787	0.80890626	0.81348288	0.81		
	0.82191473 908576	0.82575661	0.8293761	0.83272153	0.83592534	0.83		
	0.84213722 582274	0.84512359	0.84794497	0.85068506	0.85328281	0.85		
	0.8582682 966693	0.86066657	0.86297548	0.86523968	0.86746252	0.86		
	0.87175614 132864	0.87380594	0.87577438	0.87768877	0.87953925	0.88		
	0.88310474 135993	0.88482958	0.88651544	0.88815713	0.88977599	0.89		
	0.89291424	0.89443654	0.89593613	0.89741325]				

In [555]: len(pca_oliv.explained_variance_ratio_)

Out[555]: 64

Круто, сжав в 64 раза изображения сохряняется почти 90% дисперсии

Посмотрим на 8 главных компонент, как они выглядят

```
In [557]: fig = plt.figure(figsize=(8,8))
    fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.05,
    wspace=0.05)
# plot the faces, each image is 64 by 64 pixels
for i in range(10):
    ax = fig.add_subplot(5, 5, i+1, xticks=[], yticks=[])
    ax.imshow(np.reshape(pca_oliv.components_[i,:], (64,64)), cmap=
    plt.cm.bone, interpolation='nearest')
```


А теперь перейдем от 8х8 обратно в 64х64

```
In [563]: X_inv_proj = pca_oliv.inverse_transform(X_proj)
    X_proj_img = np.reshape(X_inv_proj,(400,64,64))
    fig = plt.figure(figsize=(6,6))
    fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.05,
    wspace=0.05)
    for i in range(64):
        ax = fig.add_subplot(8, 8, i+1, xticks=[], yticks=[])
        ax.imshow(X_proj_img[i], cmap=plt.cm.bone, interpolation='neare st')
```



```
In [566]: pca_oliv.components_.shape
Out[566]: (64, 4096)
  In [ ]: faces[0].dot(pca_oliv.components_)
In [630]: def draw_projected(rooted):
              X,y=dataset.data, dataset.target
              pca_oliv = PCA(n_components=rooted ** 2)
              X_proj = pca_oliv.fit_transform(X)
              print(X proj.shape)
              # set up the figure
              fig = plt.figure(figsize=(6, 6)) # figure size in inches
              fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.
          05, wspace=0.05)
              # plot the faces: each image is 64x64 pixels
              for i in range(64):
                  ax = fig.add_subplot(8, 8, i + 1, xticks=[], yticks=[])
                  ax.imshow(X_proj[i].reshape((rooted,rooted)), cmap=plt.cm.b
          one)
In [625]: datka[0].shape
Out[625]: (4096,)
```

In []:

```
In [626]: | ooo = PCA(n_components=4096)
In [627]: prj = ooo.fit_transform(datka)
In [628]: ooo.components_.shape
Out[628]: (400, 4096)
In [629]: prj.shape
Out[629]: (400, 400)
In [604]: np.sqrt(4096)
Out[604]: 64.0
In [658]: draw_projected(20)
          (400, 400)
```

Теперь применим T-SNE и PCA для размерности 2 и посмотрим, появились ли кластера

```
In [656]: tsne = TSNE(n_components=2, n_iter=10000)

X_tsne = tsne.fit_transform(datka)
plt.scatter(X_tsne[:,0], X_tsne[:,1])
```

Out[656]: <matplotlib.collections.PathCollection at 0x1209e1390>


```
In [675]: ac = AgglomerativeClustering()
    clustered_tsne = ac.fit_predict(X_tsne)
```

```
In [676]: clustered_tsne
```

```
Out[676]: array([1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         0, 0, 0,
               0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0,
         0, 0, 0,
               0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0,
         0, 1, 0,
               1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
         0, 0, 0,
               1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
         0, 0, 0,
               1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0,
         0, 0, 0,
               0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
         1, 1, 0,
               0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1,
         1, 1, 1,
               1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,
         0, 0, 0,
               0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
         0, 0, 0,
               1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
               1, 1, 1,
               0, 0, 0,
               0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 0, 0,
               0, 0, 0,
               0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
         0, 0, 0,
               0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
         0, 0, 0,
               1, 1, 0, 1, 0, 0, 0, 0, 0])
```

```
In [678]: plt.scatter(X_tsne[:,0], X_tsne[:,1], c=[clrs[elem + 1] for elem in clustered_tsne])
```

Out[678]: <matplotlib.collections.PathCollection at 0x1263dda90>

Вот что дал нам T-SNE, вовсе тяжело найти тут какие-либо кластера

Взглянем, что нам дает РСА

In []:	
---------	--

```
In [659]: pca = PCA(n_components=2)

X_pca = pca.fit_transform(datka)
plt.scatter(X_pca[:,0], X_pca[:,1])
```

Out[659]: <matplotlib.collections.PathCollection at 0x12056b4a8>

In [665]: from sklearn.cluster import AgglomerativeClustering

In [672]: ac = AgglomerativeClustering(3)
 clustered_pca = ac.fit_predict(X_pca)

In [673]: clustered_pca

```
2, 2, 2,
               0, 0, 0, 0, 0, 2, 2, 0, 2, 0, 2, 2, 0, 0, 0, 2, 2, 0, 2, 2,
         0, 0, 0,
               0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0,
        2, 2, 0,
               0, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0,
         0, 0, 2,
               2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0,
         0, 2, 0,
               0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0,
        2, 0, 0,
               0, 0, 0,
               0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 2, 0, 2, 0, 0,
         0, 0, 2,
              2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0,
         0, 0, 0,
               0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 0, 2, 0, 0,
         2, 0, 0,
               0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 2, 0, 2, 0, 2, 2,
         2, 0, 2,
               2, 2, 0, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 0,
         0, 2, 0,
               2, 2, 2, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 0, 0, 0,
         0, 0, 0,
               0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
         2, 1, 1,
               1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2,
         0, 2, 0,
               1, 0, 1,
              0, 0, 0, 2, 2, 0, 2, 0, 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 2,
              0, 0, 0, 0, 2, 0, 2, 0, 0]
```

Out[674]: <matplotlib.collections.PathCollection at 0x1204bdb70>

В случае с РСА получилось более-менее отделить кластера. Мы смотрели ранее на главные 8 компонент, например, и они хорошо были похожи на те лица, а их можно разделить на кластера

In []:	
---------	--