Example Find equations in general linear form for the two lines passing through the point (3, -2) such that one is parallel to the line y = 3x + 1 and the other is perpendicular to it.

Solution Let ℓ_1 (respectively ℓ_2) be the line that passes through the point (3, -2) and parallel (respectively perpendicular) to the given line. It is clear that the slope of the given line is 3. Thus the slope of ℓ_1 is 3 and the slope of ℓ_2 is $-\frac{1}{3}$. From these, we get the point-slope forms for ℓ_1 and ℓ_2 :

$$y - (-2) = 3(x - 3)$$
 and $y - (-2) = -\frac{1}{3}(x - 3)$

respectively. Expanding and rearranging terms, we get the following linear forms

$$3x - y - 11 = 0$$
 and $x + 3y + 3 = 0$

for ℓ_1 and ℓ_2 respectively.

Exercise 0.7

- 1. For each of the following, find an equation of the line satisfying the given conditions. Give your answer in general linear form.
 - (a) Passing through the origin and (-2, 3).
 - (b) With slope 2 and passing through (5, -1).
 - (c) With slope -3 and y-intercept (0,7).
 - (d) Passing through (-3, 2) and parallel to 2x y 3 = 0.
 - (e) Passing through (1, 4) and perpendicular to x + 3y = 0.
 - (f) Passing through (1, -1) and perpendicular to the y-axis.

0.8 Pythagoras Theorem, Distance Formula and Circles

Pythagoras Theorem Let a, b and c be the (lengths of the) sides of a right-angled triangle where c is the hypotenuse. Then we have

$$a^2 + b^2 = c^2.$$

Distance Formula Let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$. Then the distance PQ between P and Q is

$$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

Figure 0.3