Exercises for the course Higher Category Theory (return: 10.02.21, 10:00) WS 2020-21

Sheet 12

Exercise 1 (3+3+3+3=12 points). We consider a small category A as well as the category of small categories Cat. A *local isomorphism of categories* is a functor $p: X \to Y$ such that, for any object x of X, the induced functor $X_{/x} \to Y_{/p(x)}$, $(a, u: a \to x) \mapsto (p(a), p(u): p(a) \to p(x))$, is an isomorphism of categories.

- 1. Let $F: A^{op} \to Set$ be a presheaf and $\pi_F: A_{/F} \to A$ be the canonical projection. Prove that π_F is a local isomorphism of categories.
- 2. Let $F, G: A^{op} \rightarrow Set$ be two presheaves. Show that there is a canonical bijection

$$\operatorname{Hom}(F,G) \cong \{\varphi \colon A_{/F} \to A_{/G} \mid \pi_G \circ \varphi = \pi_F \}.$$

3. Let p: X → A be a local isomorphism of categories (with X small). We define a presheaf F on A as follows. For an object a of A, the set F(a) simply is the set of objects x of X such that p(x) = a. Given a a morphism u: a → b in A, and an object y of X with p(y) = b, we denote by ũ: : u*(y) → y the unique morphism in X with p(ũ) = u determined through the isomorphism X/y ≅ A/b. This defines a map

$$u^*: F(b) \to F(a)$$
.

Show that this construction determines a presheaf F on A. Construct an isomorphism of categories $A_{/F} \cong X$ identifying π_F and p.

4. Prove that there is a well defined functor

$$\Phi: Cat_{/A} \to \widehat{A}$$

sending a pair $(X, p: X \to A)$ to the colimit of the diagram

$$X \xrightarrow{p} A \xrightarrow{\text{Yoneda}} \widehat{A}$$
,

left adjoint to the functor defined by $F \mapsto (A_{/F}, \pi_F)$. Show that the category of presheaves on A is equivalent to the full subcategory of $Cat_{/A}$ which consists of pairs (X, p) with $p: X \to A$ a local isomorphism.

Exercise 2 (8 points). Let A be an ∞ -category and $p: X \to A$ a right fibration. Prove that there is a well defined functor

$$ho(A)^{op} \to ho(sSet)$$
, $a \mapsto X_a$

with values in the localization of sSet by the class of weak homotopy equivalences. Hint. Construct a functor

$$ho(A)^{op} \to sSet$$
, $a \mapsto \pi_0(X_a)$

following the pattern of Exercise 2 from Sheet 10; then, for each simplicial set W, construct a functor

$$ho(A)^{op} \to sSet$$
, $a \mapsto \pi_0(\underline{\operatorname{Hom}}(W, X_a))$,

and use the Yoneda lemma.

Exercise 3 (4 bonus points). Let $p: X \to Y$ be a morphism of simplicial sets. Prove that p is a right fibration if and only if it is an inner fibration such that, for each object $x: \Delta^0 \to X$, the induced morphism $X_{/x} \to Y_{/p(x)}$ is a trivial fibration. *Hint*. Compare commutative squares of the form

$$\begin{array}{ccc}
\partial \Delta^n & \longrightarrow & X_{/x} \\
\downarrow & & \downarrow \\
\Delta^n & \longrightarrow & Y_{/p(x)}
\end{array}$$

with suitable commutative squares of the form

$$\begin{array}{cccc} \partial \Delta^n * \Delta^0 & \longrightarrow & X \\ & & & \downarrow^p \\ \Delta^n * \Delta^0 & \longrightarrow & Y \end{array}$$

and describe $\partial \Delta^n * \Delta^0$ explicitely. Show that the nerve functor sends local isomorphisms to right fibrations.