Corrigé

Autour de la conjecture de Syracuse

Temps de vol et altitude maximale

Question 1.

Question 2.

Observez la similitude de la construction de ces deux fonctions, qui partagent un même invariant : à l'entrée de la $(k+1)^e$ boucle conditionnelle, u est égal à u_k .

Dans la fonction temps devol, on utilise un second invariant : n est égal à k, dans la fonction altitude on utilise l'invariant : a est égal à l'altitude maximale observée entre 0 et k.

Vérification expérimentale de la conjecture

Question 3. Cette fonction est presque identique à tempsdevol; il suffit de modifier la condition d'arrêt de la boucle conditionnelle.

On importe la fonction time par la commande :

```
from time import time
```

On définit ensuite :

```
>>> verification1(1000000)
durée de la vérification : 1.7752561569213867
```

Si c = 2n est pair alors $u_0 = 2n$ et $u_1 = n < u_0$ donc le temps d'arrêt est égal à 1.

Si c = 4n + 1 alors $u_0 = 4n + 1$, $u_1 = 12n + 4$, $u_2 = 6n + 2$ et $u_3 = 3n + 1 < u_0$ donc le temps d'arrêt est égal à 3. Il suffit donc de vérifier la conjecture pour les entiers de la forme 4n + 3.

On obtient un gain de performance (peu visible ici, la valeur de *m* étant un peu faible compte tenu des performances de mon ordinateur) :

```
>>> verification2(1000000)
durée de la vérification : 1.167517900466919
```

Ceci permet d'envisager de vérifier la conjecture pour de plus grandes valeurs de m:

```
>>> verification2(10000000):
durée de la vérification : 12.00194787979126
```

Expérience faite, il faudrait 18 secondes pour effectuer cette même vérification avec la première des deux fonctions.

Records

Question 4.

On obtient:

```
>>> altitudemax(1000000)
altitude max = 56991483520, atteinte pour c = 704511
```

```
def tdvamax(m):
    d, x = 0, 1
    for c in range(2, m + 1):
        u, n = c, 0
        while u >= c:
        n += 1
        if u % 2 == 0:
            u = u // 2
        else:
            u = 3 * u + 1
        if n > d:
            d, x = n, c
    print('durée de vol en altitude max = {}, atteinte pour c = {}'.format(d, x))
```

On obtient:

```
>>> tdvamax(1000000)
durée de vol en altitude max = 287, atteinte pour c = 626331
```

Question 5. On définit la fonction :

```
def dureerecord(m):
    d = 0
    for c in range(2, m):
        n, u = 0, c
    while u > 1:
        n += 1
        if u % 2 == 0:
            u = u // 2
        else:
            u = 3 * u + 1
    if n > d:
        d = n
        print('pour c = {}, record de durée = {}'.format(c, d))
```

qui produit les résultats suivants :

```
>>> dureerecord(1000000)
pour c = 2, record de durée = 1
pour c = 3, record de durée = 6
pour c = 7, record de durée = 11
pour c = 27, record de durée = 96
pour c = 703, record de durée = 132
pour c = 10087, record de durée = 171
pour c = 35655, record de durée = 220
pour c = 270271, record de durée = 267
pour c = 362343, record de durée = 269
pour c = 381727, record de durée = 282
pour c = 626331, record de durée = 287
```

Affichage du vol

Question 6.

On trouvera figure 1 un exemple d'utilisation de cette fonction.

Figure 1 – Le résultat de la fonction graphique pour c = 27.

Et pour ceux qui s'ennuient

Reprenons l'étude des entiers de la forme 4n + 1 et 4n + 3.

Si c = 4n + 1, $u_1 = 12n + 4$, $u_2 = 6n + 2$, $u_3 = 3n + 1 < c$ donc le temps d'arrêt est fini et les entiers de la forme 4n + 1 peuvent être éliminés de l'étude.

Si c = 4n + 3, $u_1 = 12n + 10$, $u_2 = 6n + 5$, $u_3 = 18n + 16$, $u_4 = 9n + 8$ et faute de pouvoir déterminer la parité de u_4 on ne peut poursuivre.

Poser n=2p puis n=2p+1 scinde ce dernier cas en deux : les entiers de la forme 8p+3 ou de la forme 8p+7. Malheureusement aucun des deux ne peut être éliminé car :

$$8p+3 \longrightarrow 24p+10 \longrightarrow 12p+5 \longrightarrow 36p+16 \longrightarrow 18p+8 \longrightarrow 9p+4$$

$$8p+7 \longrightarrow 24p+22 \longrightarrow 12p+11 \longrightarrow 36p+34 \longrightarrow 18p+17 \longrightarrow 54p+52 \longrightarrow 27p+26$$

et dans les deux cas la valeur finale (c'est-à-dire quand on ne peut plus déterminer la parité de l'entier) est supérieure à c. La fonction suivante détermine si les entiers de la forme $2^p n + k$ peuvent être éliminés :

```
def elimine(p, k):
    u, v = 2**p, k
    while u % 2 == 0 and u >= 2**p:
        if v % 2 == 0:
            u, v = u // 2, v // 2
        else:
            u, v = 3 * u, 3 * v + 1
    return u < 2**p and v <= k</pre>
```

L'étude des entiers de la forme $2^p n + k$ se scinde en deux suivant la parité de n: ceux de la forme $2^{p+1} n + k$ et $2^{p+1} + (k+2^p)$. Basé sur ce principe, la fonction suivante calcule les différentes réductions du problème :

Voici par exemple la liste des valeurs de k à garder pour l'étude des entiers de la forme 256n + k:

```
>>> liste(8)
[27, 155, 91, 251, 71, 167, 103, 231, 207, 47, 111, 239, 31, 159, 223, 63, 191, 127, 255]
```

ceci permet de réduire l'étude de la conjecture à 7,4 % des entiers.

Enfin le nombre de cas à considérer pour les entiers de la forme 65536n + k est égal à :

```
>>> len(liste(16))
2114
```

ce qui réduit l'étude de la conjecture à 3,2 % des entiers.

Avec cette méthode, on vérifie la conjecture jusqu'à 10 000 000 en 5 secondes, et jusqu'à 100 000 000 en 52 secondes.