W4D1

review

Scheduler

- Process/Thread Sched
 - o O(1) SD/RSDL, CFS
 - Unix's Sched Principle
- Higher/lower
 - o User-level
 - o I/O-level

Q1: Perf (system) vs. Fairness (user)

Q2: Timeslice vs. Priority

Prio = static + nice + (CPU / 2)

Memory Management

topic

Process's Memory Space vs. Kernel's Mem Space (i.e mem_map_t)

Example: Buddy System

Memory

No Memory Abstraction

Three simple ways of organizing memory with an operating system and one user process. Other possibilities also exist

Running Multiple Programs Without a Memory Abstraction

Illustration of the relocation problem.

- (a) A 16-KB program.
- (b) Another 16-KB program.
- (c) The two programs loaded consecutively into memory.

Base and Limit Registers

Base and limit registers can be used to give each process a separate address space.

Swapping (1)

Memory allocation changes as processes come into memory and leave it. The shaded regions are unused memory

Swapping (2)

- (a) Allocating space for a growing data segment.
- (b) Allocating space for a growing stack and a growing data segment.

Memory Management with Bitmaps

- (a) A part of memory with five processes and three holes. The tickmarks show the memory allocation units. The shaded regions (0 in the bitmap) are free.
- (b) The corresponding bitmap.
- (c) The same information as a list.