IB Complex Analysis

Ishan Nath, Lent 2023

Based on Lectures by Prof. Holly Krieger

January 25, 2023

Page 1 CONTENTS

Contents

1 (Complex Differentiation															2			
1	1.1	Basic No	otions															•	2
Ind	ex																		7

1 Complex Differentiation

Our goal in this course is to study the theory of complex-valued differentiable functions in one complex variable. Example include:

- Polynomials $p(z) = a_d z^d + \cdots + a_1 z + a_0$, with coefficients in $\mathbb{R}, \mathbb{Q}, \mathbb{Z}$ or \mathbb{C} .
- The infinite series

$$\sum_{n=1}^{\infty} \frac{1}{n^z},$$

which we showed convergence for z having real part greater than 1.

• Harmonic functions $u(x,y): \mathbb{R}^2 \to \mathbb{R}, u_{xx} + u_{yy} = 0.$

In this course, we make the convention that $\theta = \arg(z) \in [0, 2\pi)$.

1.1 Basic Notions

• $U \subset \mathbb{C}$ is open if for all $u \in U$, there exists $\varepsilon > 0$ such that

$$\Delta(x,\varepsilon) = \{ z \in \mathbb{C} \mid |z - u| < \varepsilon \} \subset U.$$

- A path in $U \subset \mathbb{C}$ is a continuous map $\gamma : [a, b] \to U$. We say the path is C^1 if γ' exists and is continuous (we take one-sided derivatives at the endpoints). γ is *simple* if it is injective.
- $U \subset \mathbb{C}$ is path-connected if for all $z, w \in U$, there exists a path in U with endpoints at z, w.

Remark. If U is open, and $z, w \in U$ are connected by a path γ in U, then there exists a path γ in U connected z, w consisting of finitely many horizontal and vertical segments.

Definition 1.1. A *domain* is a non-empty, open, path-connected subset of \mathbb{C} .

Definition 1.2.

(i) $f: U \to \mathbb{C}$ is differentiable at $u \in U$ if

$$f'(u) = \lim_{z \to u} \frac{f(z) - f(u)}{z - u}$$

exists.

(ii) $f: U \to \mathbb{C}$ is holomorphic at $u \in U$ if there exists $\varepsilon > 0$ such that f is differentiable at z, for all $z \in \Delta(u, \varepsilon)$. We may also call such a function analytic.

(iii) $f: \mathbb{C} \to \mathbb{C}$ is *entire* if it is holomorphic everywhere.

Remark. All differentiation rules (sum, products, ...) in \mathbb{R} hold, by the same proofs.

Identifying \mathbb{C} with \mathbb{R}^2 , we may write $f: U \to \mathbb{C}$ as f(x+iy) = u(x,y) + iv(x,y), where u, v are the real and imaginary parts of f.

From analysis and topology, recall that $u: U \to \mathbb{R}$ as a function of two real variables if (\mathbb{R}^2) differentiable at $(c,d) \in \mathbb{R}^2$ with $Du|_{(c,d)} = (\lambda,\mu)$ if

$$\frac{u(x,y) - u(c,d) - [\lambda(x-c) + \mu(y-d)]}{\sqrt{(x-c)^2 + (y-d)^2}} \to 0,$$

as $(x,y) \to (c,d)$. However, this is a weaker condition than differentiability over \mathbb{C} .

Proposition 1.1 (Cauchy-Riemann equations). Let $f: U \to \mathbb{C}$ on an open set $U \subset \mathbb{C}$. Then f is differentiable at $w = c + id \in U$ if and only if, writing f = u + iv, we have u, v are \mathbb{R}^2 -differentiable at (c, d), and

$$u_x = v_y, u_y = -v_x.$$

Proof: f is differentiable at w if and only if f'(w) = p + iq exists, so

$$\lim_{z \to w} \frac{f(z) - f(w) - (z - w)(p + iq)}{|z - w| = 0}.$$

Writing f = u + iv and considering the real and imaginary parts in the quotient above, this holds if and only if

$$\lim_{(x,y)\to(c,d)} \frac{u(x,y) - u(c,d) - [p(x-c) - q(y-d)]}{\sqrt{(x-c)^2 + (y-d)^2}} = 0,$$

and

$$\lim_{(x,y)\to(c,d)}\frac{v(x,y)-v(c,d)-[q(x-c)+p(y-d)]}{\sqrt{(x-c)^2+(y-d)^2}}=0.$$

This holds if and only if u, v are \mathbb{R}^2 -differentiable at (c, d), and $u_x = v_y$, $u_y = -v_x$.

Remark. If the partial u_x, u_y, v_x, v_y exist and are continuous on U, then u, v are differentiable on U. So it suffices to check the partials exist and are continuous, and the Cauchy-Riemann equations hold to deduce complex differentiability.

Example 1.1.

- 1. Take $f(z) = \overline{z}$. Then f has u(x,y) = x and v(x,y) = -y, so $u_x = 1$, $v_y = -1$. So $f(z) = \overline{z}$ is not holomorphic or differentiable anywhere.
- 2. Any polynomial $p(z) = a_d z^d + \cdots + a_1 z + a_0$, with $a_i \in \mathbb{C}$ is entire.
- 3. Rational function, which are quotients of polynomials $\frac{p(z)}{q(z)}$ are holomorphic on the open set $\mathbb{C} \setminus \{\text{zeroes of } q\}$.

Note that f = u + iv satisfying the Cauchy-Riemann equations at a point does not mean it is differentiable at that point.

Some proofs in regular analysis have natural extensions to complex analysis. For example, if $f: U \to \mathbb{C}$ on a domain U with f'(z) = 0 on U, then f is constant on U.

Now we ask: why are we interested in complex analysis?

- Unlike \mathbb{R}^2 differentiable functions, holomorphics functions are very constrained. For example, if f is entire and bounded (so |f(z)| < M for all $z \in \mathbb{C}$), then f is constant. Contrast with sin, for example.
- We will see that f holomorphic on a domain U has holomorphic derivative on U. This implies that f is infinitely differentiable, as are u and v.

In particular, we can differentiate the Cauchy-Riemann equations to get

$$u_{xx} = v_{yx} = v_{xy} = -u_{yy},$$

so $u_{xx} + u_{yy} = 0$, and similarly $v_{xx} + v_{yy} = 0$. Hence the real and imaginary parts of a holomorphic function are harmonic.

Let $f: U \to \mathbb{C}$ be a holomorphic function on an open set U_1 and $w \in U$ with $f'f(w) \neq 0$. We want to look at the geometric behaviour of f at w.

In fact, we claim f is conformal at w. Let γ_1, γ_2 be C^1 -paths through w, say $\gamma_1, \gamma_2 : [-1, 1] \to U_1$, such that $\gamma_1(0) = \gamma_2(0) = w$, and $\gamma'_i(0) \neq 0$. If we write $\gamma_j(t) = w + r_j(t) = e^{i\theta_j(t)}$, then we have

$$arg(\gamma_j'(z)) = \theta_j(0),$$

and the argument of the image line is

$$\arg((f \circ \gamma_j)'(0)) = \arg(\gamma_j'(0)f'(\gamma_j(0))) = \arg(\gamma_j'(0)) + \arg(f'(w)) + 2\pi n,$$

where crucially we use $\gamma'_j(0)f'(\gamma_j(0)) \neq 0$, so the direction of γ_j at w under the application of f is rotated by $\arg(f'(w))$. This is independent of γ_j . Since the angle between γ_1 and γ_2 is the difference of the arguments f preserves the angle. This is what it means to be conformal.

Definition 1.3. Let U, V be domains in \mathbb{C} . A map $f: U \to V$ is a conformal equivalence of U and V if f is a bijective holomorphic map with $f'(z) \neq 0$, for all $z \in U$.

Remark.

- 1. Using the real inverse function theorem, one can show if $f: U \to V$ is a holomorphic bijection of open sets with $f'(z) \neq 0$ for all $z \in U$, then the inverse of f is also holomorphic, so also conformal by the chain rule. So conformally equivalent domains are equal from the perspective of the functions f.
- 2. We will later see than being injective and holomorphic on a domain implies $f'(z) \neq 0$ for all $z \in U$, so this requirement is redundant.

Example 1.2.

1. Any change of coordinates: on \mathbb{C} , take f(z) = az + b, for $a \neq 0$ and b, which is a conformal equivalence $\mathbb{C} \to \mathbb{C}$. More generally, a Möbius map

$$f(z) = \frac{az+b}{cz+d},$$

for $ad - bc \neq 0$, is a conformal equivalence from the Riemann sphere to itself. This can eb seen as adding a point at infinity to make a sphere \mathbb{C}_{∞} (or gluing two copies of the unit disc with coordinates z and $\frac{1}{z}$).

If $f: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ is continuous, then

- if $f(\infty) = \infty$, then f is holomorphic at ∞ if and only if $g(z) = \frac{1}{f(\frac{1}{z})}$ is holomorphic at 0.
- If $f(\infty) \neq \infty$, then f is homolorphic at ∞ if and only if $f(\frac{1}{z})$ is holomorphic at 0.
- If $f(a) = \infty$ for $a \in \mathbb{C}$, then f is holomorphic at a if and only if $\frac{1}{f(z)}$ is holomorphic at a.

We can then think of Möbius maps as change of coordinates for the sphere.

Choosing $z_1 \to 0$, $z_2 \to \infty$, $z_3 \to 1$ defined a Möbius map

$$f(z) = \frac{z - z_1}{z - z_2} \cdot \frac{z_3 - z_2}{z_3 - z_1},$$

for distinct $z_1, z_2, z_3 \in \mathbb{C}$.

- 2. For $n \in \mathbb{N}$, $f(z) = z^n$ is a conformal equivalence from the sector $\{z \in \mathbb{C}^\times \mid 0 < \arg z < \frac{\pi}{n}\}$ to the upper half plane $\mathbb{H} = \{z \in \mathbb{C} \mid \Im z > 0\}$.
- 3. The Möbius map $f(z) = \frac{z-i}{z+i}$ is a conformal equivalence between $\mathbb H$ and D(0,1). We can compute $f'(z) \neq 0$ on $\mathbb H$, and

$$z \in \mathbb{H} \iff |z - i| < |z + i| \iff |f(z)| < 1.$$

Note that $f^{-1}(w) = -i \frac{w+1}{w-1}$.

4. We can use these examples to write down conformal equivalences. Let U_1 be the upper half semicircle, and U_2 the lower half plane. Considering $g(z) = \frac{z+1}{z-1}$, we know that sends D(0,1) to the left half-plane, so it sends U_1 to the upper left quadrant.

Then, the upper left quadrant if mapped by the squaring map to U_2 . So $f(z) = (\frac{z+1}{z-1})^2$ is a conformal equivalence from $U_1 \to U_2$.

These are all examples of the deep Riemann mapping theorem:

Theorem 1.1 (Riemann mapping theorem). Let $U \subset \mathbb{C}$ be a proper domain which is simply connected. Then there exists a conformal equivalence between U and D(0,1).

Here, simply connected means a subset $U \subset \mathbb{C}$ which is path-connected, and contractible: any loop in U can be contracted to a point. So any continuous path $\gamma: S^1 \to U$ extends to a continuous map $\hat{\gamma}: D(0,1) \to U_1$ with $\hat{\gamma}|_{S_1} = \gamma$.

In fact any domain bounded by a simple closed curve is simply connected, so all of these are conformally equivalent to D(0,1).

Example 1.3.

We look at a domains in the Riemann sphere, with bounded and connected complement. This is simply connected as a subset of \mathbb{C}_{∞} .

Now, the Mandelbrot set is bounded and connected, so the complement of the Mandelbrot set is simply connected in \mathbb{C}_{∞} .

Index

analytic, 2

Cauchy-Riemann equations, 3 complex differentiable, 2 conformal, 4 conformal equivalence, 5

domain, 2

harmonic function, 2 holomorphic, 2

open, 2

path, 2 path-connected, 2

rational functions, 4 Riemann mapping theorem, 6

simple, 2 simply connected, 6