CS 349: Artificial Intelligence

Probabilistic Inference

Example: Alarm Network

A	7	P(J A)
+a	+j	0.9
+a	ij	0.1
−a	+j	0.05
−a	Γj	0.95

A	M	P(M A)
+a	+m	0.7
+a	$\neg m$	0.3
¬а	+m	0.01
⊸а	\neg m	0.99

Е	P(E)
+e	0.002
¬е	0.998

В	ш	Α	P(A B,E)
+b	+e	+a	0.95
+ b	e +	−a	0.05
b	e 「	+a	0.94
+ b	e 「	−a	0.06
−b	+e	+a	0.29
−b	+e	−a	0.71
b √	e 「	+a	0.001
$\neg b$	−е	¬a	0.999

Causation and Correlation

Probabilistic Inference

- Probabilistic Inference: calculating some quantity from a joint probability distribution
 - Posterior probability:

$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

• Most likely explanation: $argmax_q P(Q = q | E_1 = e_1...)$

In general, partition variables into Query (Q or X), Evidence (E), and Hidden (H or Y) variables

- Given unlimited time, inference in BNs is easy
- Recipe:
 - State the unconditional probabilities you need
 - Enumerate all the atomic probabilities you need
 - Calculate sum of products
- Example:

$$P(+b|+j,+m) = \frac{P(+b,+j,+m)}{P(+j,+m)}$$

$$P(+b, +j, +m)$$
= $\sum_{e} \sum_{a} P(+b, +j, +m, e, a)$
= $\sum_{e} \sum_{a} P(+b) P(e) P(a|+b,e) P(+j|a) P(+m|a)$

$$= P(+b)P(+e)P(+a|+b,+e)P(+j|+a)P(+m|+a)+$$

$$P(+b)P(+e)P(-a|+b,+e)P(+j|-a)P(+m|-a)+$$

$$P(+b)P(-e)P(+a|+b,-e)P(+j|+a)P(+m|+a)+$$

$$P(+b)P(-e)P(-a|+b,-e)P(+j|-a)P(+m|-a)$$

An optimization

$$P(+b, +j, +m)$$

$$=\sum_{e}\sum_{a}P(+b,+j,+m,e,a)$$

$$= \sum_{e} \sum_{a} P(+b) P(e) P(a|+b,e) P(+j|a) P(+m|a)$$

$$= P(+b) \sum_{e} P(e) \sum_{a} P(a|+b,e) P(+j|a) P(+m|a)$$

$$= P(+b) \sum_{a} P(+j|a) P(+m|a) \sum_{e} P(e) P(a|+b,e)$$

or

Problem?

Not just 4 rows; approximately 10¹⁶ rows!

Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables

$$(\sum_{e}\sum_{a}P(+b)P(e)P(a|+b,e)P(+j|a)P(+m|a))$$

- You end up repeating a lot of work!
- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration
 - Requires an algebra for combining "factors"

Factor Zoo I

- Joint distribution: P(X,Y)
 - Entries P(x,y) for all x, y
 - Sums to 1

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Selected joint: P(x,Y)
 - A slice of the joint distribution
 - Entries P(x,y) for fixed x, all y
 - Sums to P(x)

P(cold, W)

Т	W	Р
cold	sun	0.2
cold	rain	0.3

Factor Zoo II

- Family of conditionals: P(X | Y)
 - Multiple conditionals
 - Entries P(x | y) for all x, y
 - Sums to |Y|

P(W	T)
•			/

Т	W	Р	
hot	sun	8.0	
hot	rain	0.2	ight] P(W hot)
cold	sun	0.4	
cold	rain	0.6	$\left iggr_{} ight. P(W cold)$

- Single conditional: P(Y | x)
 - Entries P(y | x) for fixed x, all y
 - Sums to 1

Т	W	Р
cold	sun	0.4
cold	rain	0.6

Factor Zoo III

- Specified family: P(y | X)
 - Entries P(y | x) for fixed y, but for all x
 - Sums to ... who knows!

P(rain|T)

Т	W	Р	
hot	rain	0.2	P(rain hot)
cold	rain	0.6	$\left ight. ight. P(rain cold)$

- In general, when we write P(Y₁ ... YN | X₁ ... XM)
 - It is a "factor," a multi-dimensional array
 - Its values are all P(y₁ ... y_N | x₁ ... x_M)
 - Any assigned X or Y is a dimension missing (selected) from the array

Example: Traffic Domain

Random Variables

R: Raining

■ T: Traffic

L: Late for class!

	1 2	
+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

P(T|R)

+t	+	0.3
+t	7	0.7
-t	+	0.1
-t	-	0.9

P(L|R)

Variable Elimination Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)

$$P(T|R)$$
 $P(L|T)$

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

 $P(L|T)$

+t +l 0.6
+t -l 0.6
-t +l 0.6

- Any known values are selected
 - ullet E.g. if we know $L=+\ell$, the initial factors are

$$P(R)$$
+r 0.1
-r 0.9

$$P(T|R)$$
 $P(+\ell|T)$

+r +t 0.8
+r -t 0.2
-t +l 0.1

VE: Alternately join factors and eliminate variables

Operation 1: Join Factors

- Combining factors:
 - Just like a database join
 - Get all factors that mention the joining variable
 - Build a new factor over the union of the variables involved
- Example: Join on R

Computation for each entry: point wise products

$$\forall r, t : P(r,t) = P(r) \cdot P(t|r)$$

Example: Multiple Joins

+r	0.1
-r	0.9

P(T|R)

+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

P(L|T)

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

Join R

P(R,T)

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

P(L|T)

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

Example: Multiple Joins

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

Join T

P(L|T)

+t	+	0.3
+t	-	0.7
-t	7	0.1
-t	-	0.9

P(R,T,L)

+r	+t	+	0.024
+r	+t	-	0.056
+r	-t	+	0.002
+r	-t	-1	0.018
-r	+t	+	0.027
-r	+t	7	0.063
-r	-t	+	0.081
-r	-t	-1	0.729

Operation 2: Eliminate

- Second basic operation: marginalization
- Take a factor and sum out a variable
 - Shrinks a factor to a smaller one
 - A projection operation
- Example:

Multiple Elimination

+r	+t	+	0.024
+r	+t	1	0.056
+r	-t	+	0.002
+r	-t	-	0.018
-r	+t	+	0.027
-r	+t	-	0.063
-r	-t	+	0.081
-r	-t	-1	0.729

P(T	,	1
	•	/	

+t	+	0.051
+t	-	0.119
-t	+	0.083
-t	-	0.747

P(L)

P(L): Marginalizing Early!

+r	0.1
-r	0.9

P(T|R)

+t

+r

+r

-r

8.0

0.2

0.9

Join R

Sum out R

R, T

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

P(T)

+t	0.17
-t	0.83

P(L|T)

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-1	0.9

P(L|T)

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

P(L|T)

+t	+	0.3
+t	7	0.7
-t	+	0.1
-t	-	0.9

20

Marginalizing Early

Early marginalization is variable elimination

Evidence

- If evidence, start with factors that select that evidence
 - No evidence uses these initial factors:

$$P(R)$$
+r 0.1
-r 0.9

$$P(T|R)$$
+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

$$P(L|T)$$

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9

Computing P(L|+r) , the initial factors become:

$$P(+r)$$

$$\begin{array}{c|cccc} P(+r) & P(T|+r) \\ \hline +r & 0.1 & & +r & +t & 0.8 \\ \hline & +r & -t & 0.2 & & \end{array}$$

$$P(L|T)$$
 $\begin{array}{c|cccc} +t & +I & 0.3 \\ +t & -I & 0.7 \\ -t & +I & 0.1 \\ -t & -I & 0.9 \end{array}$

- We eliminate all vars other than query + evidence
- Compute P(+r, T) \rightarrow P(+r, T)*P(L|T) \rightarrow Sum on T

Evidence II

- Result will be a selected joint of query and evidence
 - E.g. for P(L | +r), we'd end up with:

- To get our answer, just normalize this!
- That's it!

General Variable Elimination

- Query: $P(Q|E_1 = e_1, \dots E_k = e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize

Variable Elimination Bayes Rule

Start / Select

$\begin{array}{c|c} P(B) & B \\ \hline B & P \\ \hline +b & 0.1 \\ \hline -b & 0.9 \end{array}$

$P(A|B) \rightarrow P(a|B)$

В	Α	Р
+b	+a	8.0
la		0
ט	٦a	0.2
¬b	+a	0.1
h		0.0
ב	Па	0.0

Join on B

P(a,B)

Α	В	Р
+a	+b	0.08
+a	¬b	0.09

Normalize

Α	В	Р
+a	+b	8/17
+a	¬b	9/17

Bayes Network presentation

Example

$$P(B|j,m) \propto P(B,j,m)$$

P(B) P(E) P(A|B,E) P(j|A) P(m|A)

Choose A

P(B) P(E) P(j,m|B,E)

Example

Choose E

$$P(j, m, E|B)$$
 \sum $P(j, m|B)$

Finish with B

$$P(B)$$
 $P(j,m|B)$

Approximate Inference

- Sampling / Simulating / Observing
- Sampling is a hot topic in machine learning, and it's really simple
- Basic idea:
 - Draw N samples from a sampling distribution S
 - Compute an approximate posterior probability
 - Show this converges to the true probability P

S A

- Why sample?
 - Learning: get samples from a distribution you don't know
 - Inference: getting a sample is faster than computing the right answer (e.g. with variable elimination)

Prior Sampling

Prior Sampling

This process generates samples with probability:

$$S_{PS}(x_1 \dots x_n) = \prod_{i=1}^n P(x_i | \mathsf{Parents}(X_i)) = P(x_1 \dots x_n)$$

...i.e. the BN's joint probability

- Let the number of samples of an event be $N_{PS}(x_1 \dots x_n)$
- Then $\lim_{N\to\infty} \widehat{P}(x_1,\ldots,x_n) = \lim_{N\to\infty} N_{PS}(x_1,\ldots,x_n)/N$ = $S_{PS}(x_1,\ldots,x_n)$ = $P(x_1\ldots x_n)$
- i.e., the sampling procedure is consistent

Example

We'll get a bunch of samples from the BN:

- If we want to know P(W)
 - We have counts <+w:4, -w:1>
 - Normalize to get P(W) = <+w:0.8, -w:0.2>
 - This will get closer to the true distribution with more samples
 - Can estimate anything else, too
 - What about P(C| +w)? P(C| +r, +w)? P(C| -r, -w)?
 - Fast: can use fewer samples if less time (what's the drawback?)

Rejection Sampling

- Let's say we want P(C)
 - No point keeping all samples around
 - Just tally counts of C as we go

- Let's say we want P(C|+s)
 - Same thing: tally C outcomes, but ignore (reject) samples which don't have S=+s
 - This is called rejection sampling
 - It is also consistent for conditional probabilities (i.e., correct in the limit)

- Problem with rejection sampling:
 - If evidence is unlikely, you reject a lot of samples
 - You don't exploit your evidence as you sample
 - Consider P(B|+a)

-b, -a

-b, -a

-b, -a

-b, -a

+b, +a

Idea: fix evidence variables and sample the rest

- -b +a
- -b, +a
- -b, +a
- -b, +a
- +b, +a

- Problem: sample distribution not consistent!
- Solution: weight by probability of evidence given parents

-W

Sampling distribution if z sampled and e fixed evidence

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | \mathsf{Parents}(Z_i))$$

Now, samples have weights

$$w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i | \mathsf{Parents}(E_i))$$

Together, weighted sampling distribution is consistent

$$S_{\text{WS}}(z, e) \cdot w(z, e) = \prod_{i=1}^{l} P(z_i | \text{Parents}(z_i)) \prod_{i=1}^{m} P(e_i | \text{Parents}(e_i))$$
$$= P(\mathbf{z}, \mathbf{e})$$
₃₆

- Likelihood weighting is good
 - We have taken evidence into account as we generate the sample
 - E.g. here, W's value will get picked based on the evidence values of S, R
 - More of our samples will reflect the state of the world suggested by the evidence
- Likelihood weighting doesn't solve all our problems
 - Evidence influences the choice of downstream variables, but not upstream ones (C isn't more likely to get a value matching the evidence)
- We would like to consider evidence when we sample every variable

Markov Chain Monte Carlo

- Idea: instead of sampling from scratch, create samples by making random change to the preceding event
- Procedure: resample one variable at a time, conditioned on all the rest, but keep evidence fixed. E.g., for P(b|c):

- Properties: Now samples are not independent (in fact they're nearly identical), but sample averages are still consistent estimators!
- What's the point: both upstream and downstream variables condition on evidence.