MA1100T - Basic Discrete Mathematics (T) Suggested Solutions

(Semester 1, AY2021/2022)

Written by: Chin Zhe Ning Audited by: Chow Yong Lam

1 True or False

Note that a countable set can be finite or countably infinite.

Problem 1. For any uncountable set A, the power set $\mathcal{P}(A)$ is uncountable.

Ans. True.

Problem 2. For any positive integers a, b, $c \in \mathbb{Z}_{>0}$, if a is relatively prime to b and a is relatively prime to c, ten a is relatively prime to bc.

Ans. True.

Problem 3. For any infinite set A and any infinite set B, the set $A \times B$ is infinite.

Ans. True.

Problem 4. Let I be an uncountable indexing set, and suppose for each $i \in I$, the set X_i is an uncountable set. Then $\bigcup_{i \in I} X_i$ is uncountable.

Ans. True.

Problem 5. For any countable set S and for any map $f: S \to S$ from S to itself, if f is surjective, then f is injective.

Ans. False. Consider $f: \mathbb{N} \to \mathbb{N}$ such that

$$f(n) = \begin{cases} 1 & n = 1 \\ n - 1 & n > 1. \end{cases}$$

for $n \in \mathbb{N}$. Then f is surjective since $\forall y \in \mathbb{N}$, f(y+1) = y. But f is not injective since f(1) = f(2) and $1 \neq 2$.

Problem 6. For any finite set A and any infinite set B, the set $A \times B$ is infinite. Ans. False. Let A be the empty set which is finite. Then $A \times B = \{(a,b) : a \in A \land b \in B\}$ is also empty. **Problem 7.** There exists a countable set A and a countable set B such that the set Maps(A, B) is uncountable. Ans. True. **Problem 8.** Let I be a countable indexing set, and suppose for each $i \in I$, the set X_i is a countable set. Then $\bigcup_{i \in I} X_i$ is countable. Ans. True. Axiom of Choice needed. **Problem 9.** There are only finitely many prime numbers p such that for any positive integer $a \in \mathbb{Z}_{>0}$, one has $p \mid a$. Ans. True. **Problem 10.** There exists a set B such that for any set A, there exists an injective map $f:A\to B.$ Ans. False. $\mathcal{P}(B)$ does not inject into B. **Problem 11.** For any finite set A, the power set $\mathcal{P}(A)$ is finite. Ans. True. **Problem 12.** There exist integers $x, y \in \mathbb{Z}$ such that $15x^2 - 7y^2 = 9$. Ans. False. Note that $9 \equiv 15x^2 - 7y^2 \equiv 3y^2 \pmod{5} \Rightarrow y^2 \equiv 3 \pmod{5}$. It is easy to see that 3 is not a quadratic residue mod 5. **Problem 13.** For any finite set S and for any map $f: S \to S$ from S to itself, if f is injective, then f is surjective. Ans. True. **Problem 14.** For any finite set S and for any map $f: S \to S$ from S to itself, if f is surjective, then f is injective. Ans. True.

2

Problem 15. There exists a set B such that for any set A, every map $f: A \to B$ is

surjective.

Ans. True. Let $B=\emptyset$. If $f:A\to B$ is a function, then $A=\emptyset$. Hence, f is vacuously surjective. \Box
Problem 16. Let $a \in \mathbb{Z}_{>0}$ be a positive integer with the following property: $(\forall d \in \mathbb{Z}_{>0}) [(d \mid a) \Leftrightarrow ((d = 1) \lor (d = a))]$. Then a is a prime number.
Ans. False. This holds for $a=1$.
Problem 17. There exists a set B such that for any set A , every map $f:A\to B$ is injective.
Ans. True. Let $B=\emptyset$. If $f:A\to B$ is a function, then $A=\emptyset$. Therefore, f is vacuously injective. \Box
Problem 18. There exists an integer $n \in \mathbb{Z}$ such that $17 \mid (n^2 + 1)$.
Ans. True. It holds for $n = 4$.
Problem 19. Let I be a finite indexing set, and suppose for each $i \in I$, the set X_i is a finite set. Then $\bigcup_{i \in I} X_i$ is finite.
Ans. True. \Box
Problem 20. Let $a \in \mathbb{Z}_{>0}$ be a prime number. Then a has the following property: $(\forall d \in \mathbb{Z}_{>0}) [(d \mid a) \Leftrightarrow ((d = 1) \lor (d = a))].$
Ans. True. \Box
Problem 21. For any infinite set A, the power set $\mathcal{P}(A)$ is infinite.
Ans. True. \Box
Problem 22. For any integers $a, b, c \in \mathbb{Z}$, if $a \mid b$ and $a \mid c$, then for any integers $m, n \in \mathbb{Z}$, one has $a \mid (bm + cn)$.
Ans. True. \Box
Problem 23. For any finite set A and any infinite set B , the set Maps (A, B) is countable.
Ans. False. Pick A to be non-empty and B to be uncountable. \Box
Problem 24. Let $a \in \mathbb{Z}_{>0}$ be a prime number. Then a has the following property: $(\forall b, c \in \mathbb{Z}_{>0}) [(a \mid bc) \Leftrightarrow ((a \mid b) \lor (a \mid c)].$
Ans. True. \Box

Problem 25. There exist integers $x, y \in Z$ such that 15x - 7y = 9.

Ans. True. Pick $x=2, y=3$.
Problem 26. There are only finitely many prime numbers p for which there exists a positive integer $a \in \mathbb{Z}_{>0}$ such that $p \mid a$.
Ans. False. For each prime number p , choose $a = p$.
Problem 27. For any positive integers $a, b, c \in \mathbb{Z}_{>0}$, if a is relatively prime to bc , then a is relatively prime to b and a is relatively prime to c .
Ans. True. \Box
Problem 28. For any integers $m, n \in \mathbb{Z}$, if $5 \mid (m^2 + n^2)$, then $5 \mid m$ and $5 \mid n$.
Ans. False. Pick $m = 1$ and $n = 2$.
Problem 29. For any positive integers $a,b,d\in\mathbb{Z}_{>0}$, if $d\mid\gcd(a,b)$, then for any integers $m,n\in\mathbb{Z}$, one has $d\mid am+bn$.
Ans. True. \Box
Problem 30. For any countable set A and any countable set B, the set $A \times B$ is countable.
Ans. True. \Box
Problem 31. For any infinite set A and any finite set B , the set $Maps(A, B)$ is countable.
Ans. False. Pick A to be uncountable and B to be non-empty. \Box
Problem 32. For any $n \in \mathbb{Z}$, there exists $k \in \mathbb{Z}$ such that $n^2 = 4k$ or $n^2 = 4k - 1$.
Ans. False. Pick $n = 1$. Then $4 \nmid n^2 = 1$ and $4 \nmid n^2 + 1 = 2$.
Problem 33. For any $n \in \mathbb{Z}$, there exists $k \in \mathbb{Z}$ such that $n^2 = 8k$ or $n^2 = 8k + 1$ or $n^2 = 8k + 4$.
Ans. True. \Box
Problem 34. There are only finitely many positive integers $a \in \mathbb{Z}_{>0}$ for which there exists a prime numbers p such that $p \mid a$.
Ans. False. All even positive integers are divisible by $p=2$ and there are infinitely many even positive integers.
Problem 35. For any countable set A , the power set $\mathcal{P}(A)$ is countable.
Ans. False. Cantor's Theorem. \Box

Problem 36. There exists a countable set A and an uncountable set B such that the set $\mathrm{Maps}(A,B)$ is uncountable.
Ans. True. \Box
Problem 37. Let I be an uncountable indexing set, and suppose for each $i \in I$, the set X_i is a countable set. Then $\bigcup_{i \in I} X_i$ is uncountable.
Ans. False. All the X_i could be equal to each other, and the union would be countable. \Box
Problem 38. Let I be an infinite indexing set, and suppose for each $i \in I$, the set X_i is an infinite set. Then $\bigcup_{i \in I} X_i$ is infinite.
Ans. True. \Box
Problem 39. There exists a set B such that for any set A , there exists a surjective map $f:A\to B$.
Ans. False. If A is empty, then all elements in the codomain (nonempty) will not be reached by f. If the codomain is empty, then for $A \neq \emptyset$ there exist no map $f: A \to B$.
Problem 40. For any integer $n \in \mathbb{Z}$ with $n > 4$, if n is prime, then n does not divide $(n-1)!$.
Ans. True. \Box
Problem 41. There exists an uncountable set A and a countable set B such that the set $Maps(A, B)$ is uncountable.
Ans. True. \Box
Problem 42. For any integer $n \in \mathbb{Z}$ with $n > 4$, if n is not prime, then n divides $(n-1)!$.
Ans. True. \Box
Problem 43. For any integers $l, m, n \in \mathbb{Z}$, if $7 \mid (l^2 + m^2 + n^2)$, then $7 \mid l$ or $7 \mid m$ or $7 \mid n$.
Ans. False. Pick $l=1,\ m=2,$ and $n=3.$ Then $7\mid 1^2+2^2+3^2=14$ however $7\nmid 1,2,3.$
Problem 44. For any finite set A and finite set B, the set $A \times B$ is finite.
Ans. True. \Box
Problem 45. For any integers $m, n \in \mathbb{Z}$, if $7 \mid (m^2 + n^2)$, then $7 \mid m$ and $7 \mid n$.
Ans. True. \Box

Problem 46. Let $a \in \mathbb{Z}_{>0}$ be a positive integer with the following property: $(\forall b, c \in \mathbb{Z}_{>0}) [(a \mid bc) \Leftrightarrow (a \mid b) \lor (a \mid c)]$. Then a is a prime number.
Ans. False. This also holds for $a=1$.
Problem 47. There exists an uncountable set A and an uncountable set B such that the set $Maps(A, B)$ is uncountable.
Ans. True.
Problem 48. There are only finitely many positive integers $a \in \mathbb{Z}_{>0}$ such that for any prime numbers p , one has $p \mid a$.
Ans. True.
Problem 49. There exists an integer $n \in \mathbb{Z}$ such that $19 \mid (n^2 + 1)$.
Ans. False. Note that 18 is not a quadratic residue modulo 19. $\hfill\Box$
Problem 50. For any uncountable set A and any uncountable set B , the set $A \times B$ is uncountable.
Ans. True.
Problem 51. For any countable set A and any uncountable set B , the set $A \times B$ is uncountable.
Ans. False. This will not hold when A is the empty set. \Box
Problem 52. Let I be a finite indexing set, and suppose for each $i \in I$, the set X_i is an infinite set. Then $\bigcup_{i \in I} X_i$ is infinite.
Ans. False. If I is empty, $\bigcup_{i \in I} X_i$ is empty.
Problem 53. For any finite set A and any finite set B , the set $Maps(A, B)$ is countable.
Ans. True.
Problem 54. For any integers $l, m, n \in \mathbb{Z}$, if $5 \mid (l^2 + m^2 + n^2)$, then $5 \mid l$ or $5 \mid m$ or $5 \mid n$.
Ans. True.
Problem 55. For any infinite set A and any infinite set B , the set $\mathrm{Maps}(A,B)$ is uncountable.
Ans. True. \Box

Problem 56. Let I be an infinite indexing set, and suppose for each $i \in I$, the set X_i is a finite set. Then $\bigcup_{i \in I} X_i$ is infinite.
Ans. False. $X_i = \emptyset$ for all $i \in I$ means that $\bigcup_{i \in I} X_i = $ is finite.
Problem 57. For any integers $a, b, c \in \mathbb{Z}$, if for any integers $m, n \in \mathbb{Z}$, one has $a \mid (bm + cn)$, then $a \mid b$ and $a \mid c$.
Ans. True. \Box
Problem 58. For any countable set S and for any map $f: S \to S$ from S to itself, if f is injective, then f is surjective.
Ans. False. Consider $f: \mathbb{N} \to \mathbb{N}$ defined by $f(n) = 2n$.
Problem 59. Let I be a countable indexing set, and suppose for each $i \in I$, the set X_i is an uncountable set. Then $\bigcup_{i \in I} X_i$ is uncountable.
Ans. False. This will not hold when the index set I is empty. \Box
Problem 60. For any positive integers $a, b, d \in \mathbb{Z}_{>0}$, if for any integers $m, n \in \mathbb{Z}$, one has $d \mid am + bn$, then $d \mid \gcd(a, b)$.
Solution. True. Direct application of Bezout's Identity. $\hfill\Box$

2 Prove or Disprove/Proving Questions

Problem 1. [10 points] Prove or disprove: For any sets A and B, there exists a unique set X with the following property:

For any set T, one has $T \subseteq X$ if and only if $T \cup B \subseteq A$

Solution. Disprove by counterexample. Take $A = \{1\}$ and $B = \{1,2\}$ and suppose there exists such a set X. If T is the empty set, then $T \subseteq X$ is true. It follows from the property of X that $T \cup B \subseteq A$. But $T \cup B = \{1,2\} \not\subseteq A$ which is a contradiction. \square

Problem 2. [10 points] Prove or disprove: For any sets A and B, there is a unique set X with the following property:

For any set T, one has
$$T \supseteq X$$
 if and only if $T \cup B \supseteq A$

Solution. The statement is true, let X = A - B. We will show that X has the desired properties.

- (⇒) Suppose $T \supseteq A B$. Let $x \in A$. If $x \in B$ then $x \in T \cup B$. Else, $x \notin B \Rightarrow x \in A B \subseteq T \subseteq T \cup B$. This shows that $T \cup B \supseteq A$.
- (\Leftarrow) Suppose $T \cup B \supseteq A$. Let $x \in A B$, then $x \in A$ and $x \notin B$. Since $T \cup B \supseteq A$, $x \in A \Rightarrow x \in T \lor x \in B$. But $x \notin B$ hence $x \in T$. This shows that $T \supseteq A B$.

To show that X is unique, suppose that another set Y satisfies the given conditions. Then $T \supseteq X$ if and only if $T \cup B \supseteq A$ if and only if $T \supseteq Y$. Then picking T = X and T = Y yields $X \supseteq Y$ and $Y \supseteq X$. Therefore, we must have X = Y.

Problem 3. [10 points] Let X be any set such that $\emptyset \in X$ and such that for any $x \in X$, one has $\{x\} \in X$. The sequence $A_1, A_2, ...$ of elements of X is defined recursively as follows:

$$A_1 := \emptyset$$
, and for each $n \in \mathbb{N}$, we let $A_{n+1} := \{A_n\}$.

Show that for any $i, j \in \mathbb{N}$ with $i \neq j$ one has $A_i \neq A_j$.

Solution. Let P(n) be the proposition that for any $i, j \in \mathbb{N}$ with $i, j \leq n$ and $i \neq j$, $A_i \neq A_j$. We shall prove P(n) for all n via induction.

(Base case) If n = 1, then the proposition is vacuously true as i and j must both be equal to 1. If n = 2 then i = 1 and j = 2 without loss of generality. Then $A_1 = \emptyset$ and $A_2 = \{\emptyset\}$ so $A_1 \neq A_2$. This proves the base case.

(Inductive Step) Suppose that P(n) is true for some positive integer $n \geq 2$. We will prove P(n+1) is true. Let $i, j \leq n+1$. Note if $i, j \leq n$ then by assumption, $A_i \neq A_j$. Hence, i or j must be n+1. Without loss of generality, let i=n+1. Since $j=n+1 \Rightarrow i=j$, we must have $j \leq n$. If j=1 then $A_{n+1} \neq A_1$ since A_1 is empty and A_{n+1} is not. Otherwise, j>1. Suppose toward a contradiction that $A_{n+1}=A_j$. Since A_n and A_{j-1} are the only elements of the sets A_{n+1} and A_j respectively, $A_n=A_{j-1}$. But $n, j-1 \in \mathbb{N}$ and $n, j-1 \leq n$ with $n \neq j-1$ therefore by assumption $A_n \neq A_{j-1}$. This is a contradiction, hence, $A_{n+1} \neq A_j$. We have shown that P(n+1) is true which completes the inductive step.

Now for any $i, j \in \mathbb{N}$, take $n = \max i, j$. Since $i, j \leq n$ and $i \neq j$, P(n) witnesses $A_i \neq A_j$ as desired.

Problem 4. [10 points] Let X, Y be sets and let $f: X \to Y$ be a map. Prove or disprove: f is injective if and only if for any set T, the "post-composition with f" map

$$\Phi_T: \operatorname{Maps}(T, X) \longrightarrow \operatorname{Maps}(T, Y), \quad \phi \longmapsto f \circ \phi, \quad \text{is injective.}$$

Solution. True.

- (\Rightarrow) Suppose f is injective. Let $\phi_1, \phi_2 \in \operatorname{Maps}(T, X)$ such that $\Phi_T(\phi_1) = \Phi(\phi_2)$. This implies that $f \circ \phi_1 = f \circ \phi_2$. Hence, for all $t \in T$, $f(\phi_1(t)) = f(\phi_2(t))$. Since f is injective, $\phi_1(t) = \phi_2(t)$ for all $t \in T$. Therefore, ϕ_1 and ϕ_2 are the same function. This proves that Φ_T is injective.
- (\Leftarrow) Suppose Φ_T is injective for any set T. Pick $T = \{0\}$, then Φ_T is injective. For all $x, y \in X$ such that f(x) = f(y), choose functions $\phi_x, \phi_y \in \text{Maps}(T, X)$ such that $\phi_x(0) = x$ and $\phi_y(0) = y$. Then $f(x) = f(y) \Rightarrow f(\phi_x(t)) = f(\phi_y(t))$ for all $t \in T = \{0\}$, i.e. $f \circ \phi_x = f \circ \phi_y$. But then $\Phi_T(\phi_x) = f \circ \phi_x = f \circ \phi_y = \Phi_T(\phi_y)$. Since Φ_T is injective, it follows that $\phi_x = \phi_y$. Hence, $x = \phi_x(0) = \phi_y(0) = y$. We conclude that f is injective.

Problem 5. [10 points] Let X, Y be sets and let $f: X \to Y$ be a map. Prove or disprove: f is surjective if and only if for any set T, the "pre-composition with f" map

$$\Psi_T: \operatorname{Maps}(Y,T) \longrightarrow \operatorname{Maps}(X,T), \quad \psi \longmapsto \psi \circ f, \quad \text{is surjective.}$$

Solution. False. Consider the sets $X = \{1, 2\}$, $Y = \{3\}$. We will prove that for set T = X, Ψ_T is not surjective. Define the function $f: X \to Y$ by f(x) = 3. Since $f(X) = \{3\} = Y$, so f is surjective. For any $\psi \in \operatorname{Maps}(Y,T)$, note that $\psi(f(1)) = \psi(3) = \psi(f(2))$ but $1 \neq 2$. Hence, $\psi \circ f$ is not injective, and is therefore not the identity function, id_X . This proves that $\operatorname{id}_X \notin \operatorname{Range}(\Psi_T)$. Since, T = X, $\operatorname{id}_X \in \operatorname{Maps}(X,T)$ hence, Ψ_T is not surjective. We conclude that the forward direction does not hold, hence the statement is false.