РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук

Кафедра математического моделирования и искусственного интеллекта

ОТЧЕТ ПО КОНТРОЛЬНОЙ РАБОТЕ № 2

Дисциплина: Методы машинного обучения

Студент: Петров Артем Евгеньевич

Группа: НКНбд-01-21

Москва 2024

Контрольная работа 2 – Вариант 10

- 1. Набор данных: cherry_blossoms
- 2. Независимая переменная: temp
- 3. Зависимая переменная: temp_lower
- 4. Доп. признак: имеющий минимальную корреляцию с независимой переменной
- 5. Визуализация доп. признака эмпирическая плотность распределения
- 6. Показатель качества регрессии MSE (mean squared error)
- 7. Степень полинома: 3
- 8. Параметры глубокой нейронной сети: кол-во скрытых слоев 3, кол-во нейронов в скрытом слое 128, функция активации сигмоида.
- 1. Загрузите заданный в индивидуальном задании набор данных из Tensorflow Datasets, включая указанные в задании независимый признак и зависимый признак (отклик). Оставьте в наборе признаки, принимающие числовые значения.
- 2. Удалите из набора точки с выбросами при помощи стандартизованной оценки (Z-score) таким образом, чтобы точки с выбросами составляли от 5% до 10% всех точек набора данных. Визуализируйте точки исходного набора данных на плоскости в виде диаграммы рассеяния (ось X независимый признак, ось Y –

зависимый признак), показывая оставленные в наборе точки и удаленные точки разными цветами, подписывая оси и рисунок и создавая легенду.

- 3. Выполните стандартизацию независимого признака и масштабирование на интервал [-1, 1] зависимого признака. Решите задачи линейной регрессии и полиномиальной регрессии для степени полинома, указанной в индивидуальном задании, при помощи нейронных сетей с одним нейроном и оцените качество полученных моделей по показателю, указанному в индивидуальном задании. Отследите обучение нейронных сетей, изменяя, при необходимости, гиперпараметры (функцию потерь, оптимизатор, шаг обучения и т.п.) или применяя регуляризацию.
- 4. Постройте кривые обучения для построенных нейронных сетей с зависимостью от количества эпох на одной визуализации. На визуализации создайте легенду.
- 5. Визуализируйте точки набора данных на плоскости в виде диаграммы рассеяния (ось X независимый признак, ось Y зависимый признак), а также линии линейной и полиномиальной регрессий (другими цветами), подписывая оси и рисунок и создавая легенду.
- 6. Определите в исходном наборе данных признак (отличный от независимого и зависимого признаков), принимающий непрерывные значения и имеющий свойства, указанные в индивидуальном задании.
- 7. Стандартизуйте этот признак и визуализируйте его в соответствии с индивидуальным заданием.
- 8. Сформируйте набор входных данных из двух стандартизованных признаков набора данных (независимый признак и определенный признак), постройте нейронную сеть (нелинейный регресор) с количеством скрытых слоев, количеством нейронов и функцией активации, указанными в индивидуальном задании, и одним нейроном в выходном слое и обучите ее на наборе данных из двух признаков и отклика. Отследите обучение нейронной сети, изменяя, при необходимости, гиперпараметры (функцию потерь, оптимизатор, шаг обучения и т.п.) или применяя регуляризацию.
- 9. Визуализируйте набор данных в виде диаграммы рассеяния и прогноз нейронной сети в виде поверхности в трехмерном пространстве, подписывая оси и рисунок.
- 10. Разбейте набор данных из двух признаков и отклика на обучающую и тестовую выборки и постройте кривые обучения для заданного показателя качества в зависимости от количества точек в обучающей выборке, подписывая оси и рисунок и создавая легенду.

Выполнение лабораторной работы:

1. Загрузите заданный в индивидуальном задании набор данных из Tensorflow

Datasets, включая указанные в задании независимый признак и зависимый признак (отклик). Оставьте в наборе признаки, принимающие числовые значения.

```
import pandas as pd
In [436...
In [437...
         df = pd.read_csv('https://raw.githubusercontent.com/rmcelreath/rethinking/master/da
In [438...
          print(df.info())
          df.head()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1215 entries, 0 to 1214
        Data columns (total 5 columns):
                         Non-Null Count Dtype
             Column
         --- -----
                         -----
         0 year
                         1215 non-null int64
         1 doy
                       827 non-null float64
                         1124 non-null float64
            temp
         3 temp_upper 1124 non-null float64
         4 temp_lower 1124 non-null float64
        dtypes: float64(4), int64(1)
        memory usage: 47.6 KB
        None
Out[438...
                  doy temp_temp_upper temp_lower
             year
             801
                  NaN
                        NaN
                                    NaN
                                                NaN
             802 NaN
                        NaN
                                    NaN
                                                NaN
             803 NaN
                        NaN
                                    NaN
                                                NaN
             804 NaN
                        NaN
                                    NaN
                                                NaN
             805 NaN
                        NaN
                                    NaN
                                                NaN
In [439...
          def columns_with_missing_data(df):
              for column in df.columns[df.isnull().any()]:
                  print(f"{column:<20}\t{df[column].isnull().mean():.2f}")</pre>
          print(columns_with_missing_data(df))
        doy
                                0.32
        temp
                                0.07
        temp_upper
                                0.07
        temp_lower
                                0.07
        None
In [440...
          df.isna().sum()
```

```
Out[440...
          year
                          0
                         388
          doy
                         91
          temp
          temp_upper
                         91
          temp_lower
          dtype: int64
```

In [441... df = df.dropna() display(df)

	year	doy	temp	temp_upper	temp_lower
50	851	108.0	7.38	12.10	2.66
63	864	100.0	6.42	8.69	4.14
65	866	106.0	6.44	8.11	4.77
88	889	104.0	6.83	8.48	5.19
90	891	109.0	6.98	8.96	5.00
•••					
1175	1976	99.0	8.20	8.77	7.63
1176	1977	93.0	8.22	8.78	7.66
1177	1978	104.0	8.20	8.78	7.61
1178	1979	97.0	8.28	8.83	7.73
1179	1980	102.0	8.30	8.86	7.74

787 rows × 5 columns

2. Удалите из набора точки с выбросами при помощи стандартизованной оценки (Ż-score) таким образом, чтобы точки с выбросами составляли от 5% до 10% всех точек набора данных. Визуализируйте точки исходного набора данных на плоскости в виде диаграммы рассеяния (ось Х – независимый признак, ось Ү – зависимый признак), показывая оставленные в наборе точки и удаленные точки разными цветами,

подписывая оси и рисунок и создавая легенду.

```
In [442... import matplotlib.pyplot as plt
import numpy as np

In [443... plt.scatter(df['temp'], df['temp_lower'])
    plt.xlabel('temp')
    plt.ylabel('temp_lower')
    plt.title('scatter canvas for dataset values of temp by x and temp_lower by y')

Out[443... Text(0.5, 1.0, 'scatter canvas for dataset values of temp by x and temp_lower by y')
```

scatter canvas for dataset values of temp by x and temp_lower by y


```
In [444...
discarded_df = df[(df['temp_lower'] < 4) & (df['temp'] > 4.5)]
discarded_df.head()
plt.scatter(discarded_df['temp'], discarded_df['temp_lower'])
```

Out[444... <matplotlib.collections.PathCollection at 0x296378ec4a0>


```
In [445... data = df[(df['temp_lower'] > 4)]
    data.head()
    plt.scatter(data['temp'], data['temp_lower'])
```

Out[445... <matplotlib.collections.PathCollection at 0x2963780cec0>


```
plt.scatter(data['temp'], data['temp_lower'], label = 'cleaned data')
plt.scatter(discarded_df['temp'], discarded_df['temp_lower'], c='r', label='discard
plt.xlabel('temp')
plt.ylabel('temp_lower')
plt.title('scatter canvas for dataset values of temp by x and temp_lower by y')
plt.legend()
```

Out[446... <matplotlib.legend.Legend at 0x296403b23c0>

scatter canvas for dataset values of temp by x and temp lower by y


```
In [447...
          def z_score(df):
               # cols = list(df.columns)
               tmp = df.copy()
               tmp['z_temp_lower'] = (tmp['temp_lower'] - tmp['temp_lower'].mean())/tmp['temp_l
               tmp['z_temp'] = (tmp['temp'] - tmp['temp'].mean())/tmp['temp'].std(ddof=0)
               # print(tmp.shape)
               tmp1 = tmp[(tmp['z_temp_lower'] < 2) & (tmp['z_temp_lower'] > -2) & (tmp['z_temp_lower'] > -2)
               tmp2 = tmp[(tmp['z_temp_lower'] > 2) | (tmp['z_temp_lower'] < -2) & (tmp['z_tem</pre>
               # display(tmp2)
               plt.scatter(tmp2['temp'], tmp2['temp_lower'], c='r', label='outliers', s = 50)
               plt.scatter(tmp1['temp'], tmp1['temp_lower'], c='b', label='cleaned data')
               plt.title('outliers and normal data')
               plt.legend()
               plt.show()
               return tmp1
```

In [448... data = z_score(df)
data.shape
print("Процент выборки с z_score от изначальной: ", round(data.shape[0]/df.shape[0]

outliers and normal data

Процент выборки с z_score от изначальной: 93.27

Таким образом, мы избавились от 7 процентов выборки

3. Выполните стандартизацию независимого признака и масштабирование на интервал [-1, 1] зависимого признака. Решите задачи линейной регрессии и полиномиальной регрессии для степени полинома, указанной в индивидуальном задании, при помощи нейронных сетей с одним нейроном и оцените качество полученных моделей по показателю, указанному в индивидуальном задании.

Отследите обучение нейронных сетей, изменяя, при необходимости, гиперпараметры (функцию потерь, оптимизатор, шаг обучения и т.п.) или применяя регуляризацию.

Независимая переменная: temp Зависимая переменная: temp_lower

```
In [449...
train_list = [(2*((data['temp_lower'] - data['temp_lower'].min())/(data['temp_lower']
# train_list = [(2*((data['temp_lower'] - data['temp_lower'].min())/(data['temp_lower']
ds = pd.DataFrame(columns=['temp', 'temp_lower'])
ds['temp_lower'] = train_list[0]
ds['temp'] = train_list[1]

print(train.shape, ds.shape)

train = ds
test = ds.iloc[300:500, :]

plt.scatter(train['temp'], train['temp_lower'], label='data')
display(test.head())
train.tail()
```

(734, 2) (734, 2)

temp_lower

300	0.782793	0.361111
301	0.782793	0.305556
302	0.658285	0.222222
303	0.622711	0.159722
304	0.587137	0.090278

Out[449...

	temp	temp_lower
729	1.921154	0.881944
730	1.974515	0.930556
731	2.099023	0.993056
732	1.992302	0.979167
733	2.081236	1.000000

In [450... import tensorflow as tf

Линейная регрессия

```
In [451...
          # Нормализация не требуется, так как выборка очень хорошо очищена, что видно на гра
          df_normalizer = tf.keras.layers.Normalization(axis = None)
          df_normalizer.adapt(train['temp'].values)
In [452...
          lin_reg = tf.keras.Sequential([
              # df_normalizer,
              tf.keras.layers.Dense(units = 1,
                                     kernel_regularizer = tf.keras.regularizers.L2(12=0.01))
          ])
In [453...
          lin_reg.compile(
              optimizer = tf.optimizers.Adam(learning_rate=0.01),
              loss = 'mse',
              metrics = ['r2_score']
In [454...
          %%time
          hist = lin_reg.fit(
              train['temp'], train['temp_lower'],
              epochs = 100,
              verbose = 1,
              validation_split = 0.4
```

```
Epoch 1/100
                  3s 47ms/step - loss: 3.2319 - r2_score: -15.5275 - val_lo
14/14 ----
ss: 1.8089 - val r2 score: -14.5206
Epoch 2/100
14/14 ---
                    ____ 0s 8ms/step - loss: 2.6630 - r2_score: -13.6352 - val_los
s: 1.5560 - val_r2_score: -12.3597
Epoch 3/100
                ______ 0s 8ms/step - loss: 2.1616 - r2_score: -10.6579 - val_los
14/14 -----
s: 1.3271 - val r2 score: -10.4024
Epoch 4/100
                        - 0s 7ms/step - loss: 1.9041 - r2_score: -8.4323 - val_los
14/14 -
s: 1.1145 - val_r2_score: -8.5820
Epoch 5/100
                       - 0s 8ms/step - loss: 1.5059 - r2_score: -6.5282 - val_los
s: 0.9233 - val r2 score: -6.9427
Epoch 6/100
14/14 ----
                     —— 0s 13ms/step - loss: 1.2098 - r2_score: -5.5763 - val_los
s: 0.7436 - val_r2_score: -5.4009
Epoch 7/100
14/14 -
                     ---- 0s 8ms/step - loss: 0.9810 - r2_score: -4.3440 - val_los
s: 0.5971 - val_r2_score: -4.1430
Epoch 8/100
14/14 -----
             0s 9ms/step - loss: 0.7953 - r2_score: -3.3008 - val_los
s: 0.4695 - val_r2_score: -3.0469
Epoch 9/100
                 ———— 0s 8ms/step - loss: 0.7100 - r2 score: -2.5302 - val los
s: 0.3674 - val_r2_score: -2.1691
Epoch 10/100
                    —— 0s 7ms/step - loss: 0.5056 - r2_score: -1.7808 - val_los
s: 0.2859 - val_r2_score: -1.4680
Epoch 11/100
14/14 ----
                    ——— 0s 7ms/step - loss: 0.4331 - r2 score: -1.1398 - val los
s: 0.2229 - val_r2_score: -0.9252
Epoch 12/100
14/14 -
                    —— 0s 8ms/step - loss: 0.3276 - r2_score: -0.7195 - val_los
s: 0.1724 - val_r2_score: -0.4900
Epoch 13/100
                Os 7ms/step - loss: 0.2730 - r2_score: -0.3656 - val_los
14/14 -----
s: 0.1345 - val_r2_score: -0.1633
Epoch 14/100
              ———— 0s 7ms/step - loss: 0.2228 - r2_score: -0.0910 - val_los
s: 0.1063 - val_r2_score: 0.0803
Epoch 15/100
                  ——— 0s 7ms/step - loss: 0.1703 - r2 score: 0.1136 - val loss:
0.0859 - val_r2_score: 0.2575
Epoch 16/100
                   ____ 0s 7ms/step - loss: 0.1431 - r2_score: 0.2686 - val_loss:
0.0711 - val_r2_score: 0.3863
Epoch 17/100
                    —— 0s 9ms/step - loss: 0.1152 - r2 score: 0.3809 - val loss:
14/14 -----
0.0605 - val_r2_score: 0.4785
Epoch 18/100
14/14 -----
                   ---- 0s 8ms/step - loss: 0.0977 - r2_score: 0.4359 - val_loss:
0.0548 - val_r2_score: 0.5284
Epoch 19/100
14/14 -----
                  ---- 0s 8ms/step - loss: 0.0918 - r2 score: 0.5082 - val loss:
```

```
0.0498 - val_r2_score: 0.5724
Epoch 20/100
                ----- 0s 8ms/step - loss: 0.0803 - r2 score: 0.5910 - val loss:
0.0450 - val r2 score: 0.6147
Epoch 21/100
14/14 -
                     —— 0s 9ms/step - loss: 0.0761 - r2 score: 0.5813 - val loss:
0.0455 - val_r2_score: 0.6120
Epoch 22/100
14/14 ----
                     --- 0s 7ms/step - loss: 0.0770 - r2 score: 0.6197 - val loss:
0.0445 - val_r2_score: 0.6206
Epoch 23/100
                    ---- 0s 9ms/step - loss: 0.0639 - r2 score: 0.6506 - val loss:
14/14 -----
0.0450 - val_r2_score: 0.6170
Epoch 24/100
14/14 -----
                 _____ 0s 7ms/step - loss: 0.0717 - r2 score: 0.6345 - val loss:
0.0454 - val_r2_score: 0.6142
Epoch 25/100
              Os 8ms/step - loss: 0.0610 - r2_score: 0.6827 - val_loss:
14/14 -----
0.0435 - val r2 score: 0.6310
Epoch 26/100
               Os 9ms/step - loss: 0.0716 - r2_score: 0.6243 - val_loss:
14/14 -----
0.0450 - val r2 score: 0.6184
Epoch 27/100
                     — 0s 8ms/step - loss: 0.0682 - r2_score: 0.6411 - val_loss:
0.0443 - val_r2_score: 0.6250
Epoch 28/100
14/14 -
                    ---- 0s 8ms/step - loss: 0.0591 - r2_score: 0.6968 - val_loss:
0.0450 - val_r2_score: 0.6195
Epoch 29/100
14/14 -
              Os 8ms/step - loss: 0.0664 - r2_score: 0.6524 - val_loss:
0.0462 - val r2 score: 0.6091
Epoch 30/100
                0s 9ms/step - loss: 0.0550 - r2_score: 0.7080 - val_loss:
14/14 -----
0.0458 - val r2 score: 0.6125
Epoch 31/100
               Os 9ms/step - loss: 0.0699 - r2_score: 0.6552 - val_loss:
14/14 -----
0.0451 - val r2 score: 0.6184
Epoch 32/100
                     — 0s 8ms/step - loss: 0.0610 - r2_score: 0.6732 - val_loss:
0.0465 - val_r2_score: 0.6071
Epoch 33/100
                   —— 0s 8ms/step - loss: 0.0537 - r2_score: 0.7071 - val_loss:
0.0455 - val_r2_score: 0.6152
Epoch 34/100
14/14 -
                       — 0s 9ms/step - loss: 0.0614 - r2_score: 0.6487 - val_loss:
0.0471 - val_r2_score: 0.6020
Epoch 35/100
14/14 -----
                  Os 9ms/step - loss: 0.0610 - r2_score: 0.6656 - val_loss:
0.0478 - val_r2_score: 0.5957
Epoch 36/100
                 Os 8ms/step - loss: 0.0617 - r2_score: 0.6742 - val_loss:
14/14 -----
0.0459 - val_r2_score: 0.6119
Epoch 37/100
                ______ 0s 9ms/step - loss: 0.0643 - r2_score: 0.6809 - val_loss:
0.0452 - val_r2_score: 0.6186
Epoch 38/100
```

```
—— 0s 9ms/step - loss: 0.0682 - r2_score: 0.6406 - val_loss:
0.0481 - val_r2_score: 0.5933
Epoch 39/100
14/14 -
                        - 0s 8ms/step - loss: 0.0671 - r2_score: 0.6631 - val_loss:
0.0472 - val_r2_score: 0.6010
Epoch 40/100
14/14 -
                       — 0s 7ms/step - loss: 0.0635 - r2_score: 0.6621 - val_loss:
0.0466 - val_r2_score: 0.6063
Epoch 41/100
14/14 ---
                     —— 0s 8ms/step - loss: 0.0639 - r2_score: 0.6607 - val_loss:
0.0467 - val_r2_score: 0.6057
Epoch 42/100
                _____ 0s 7ms/step - loss: 0.0697 - r2_score: 0.6270 - val_loss:
14/14 -----
0.0480 - val r2 score: 0.5945
Epoch 43/100
14/14 -
                        — 0s 8ms/step - loss: 0.0614 - r2 score: 0.6787 - val loss:
0.0462 - val_r2_score: 0.6095
Epoch 44/100
                        — 0s 8ms/step - loss: 0.0674 - r2 score: 0.6370 - val loss:
0.0472 - val_r2_score: 0.6007
Epoch 45/100
14/14 -
                      — 0s 8ms/step - loss: 0.0590 - r2 score: 0.6808 - val loss:
0.0450 - val_r2_score: 0.6201
Epoch 46/100
14/14 -
                       — 0s 7ms/step - loss: 0.0574 - r2 score: 0.7006 - val loss:
0.0481 - val r2 score: 0.5936
Epoch 47/100
                Os 9ms/step - loss: 0.0636 - r2_score: 0.6455 - val_loss:
14/14 -----
0.0489 - val_r2_score: 0.5862
Epoch 48/100
                     —— 0s 9ms/step - loss: 0.0650 - r2 score: 0.6402 - val loss:
14/14 -
0.0454 - val r2 score: 0.6167
Epoch 49/100
                       — 0s 7ms/step - loss: 0.0617 - r2 score: 0.6892 - val loss:
0.0447 - val_r2_score: 0.6225
Epoch 50/100
                      —— 0s 8ms/step - loss: 0.0627 - r2 score: 0.6852 - val loss:
0.0485 - val r2 score: 0.5901
Epoch 51/100
14/14 -
                      — 0s 7ms/step - loss: 0.0624 - r2_score: 0.6765 - val_loss:
0.0466 - val_r2_score: 0.6062
Epoch 52/100
                     Os 8ms/step - loss: 0.0652 - r2_score: 0.6513 - val_loss:
14/14 ----
0.0469 - val r2 score: 0.6037
Epoch 53/100
                 0s 7ms/step - loss: 0.0585 - r2_score: 0.6974 - val_loss:
14/14 -----
0.0465 - val_r2_score: 0.6070
Epoch 54/100
                      — 0s 8ms/step - loss: 0.0580 - r2_score: 0.6877 - val_loss:
0.0464 - val r2 score: 0.6083
Epoch 55/100
                    ____ 0s 8ms/step - loss: 0.0631 - r2_score: 0.6687 - val_loss:
0.0485 - val_r2_score: 0.5900
Epoch 56/100
                        - 0s 8ms/step - loss: 0.0603 - r2_score: 0.6782 - val_loss:
0.0463 - val r2 score: 0.6089
```

```
Epoch 57/100
                  ----- 0s 7ms/step - loss: 0.0587 - r2_score: 0.6767 - val_loss:
14/14 -----
0.0446 - val r2 score: 0.6236
Epoch 58/100
14/14 -----
                  ----- 0s 6ms/step - loss: 0.0617 - r2_score: 0.6867 - val_loss:
0.0468 - val_r2_score: 0.6043
Epoch 59/100
14/14 -----
                ----- 0s 7ms/step - loss: 0.0640 - r2_score: 0.6624 - val_loss:
0.0490 - val r2 score: 0.5856
Epoch 60/100
                      — 0s 7ms/step - loss: 0.0616 - r2_score: 0.6669 - val_loss:
14/14 -
0.0462 - val r2 score: 0.6098
Epoch 61/100
                        - 0s 7ms/step - loss: 0.0639 - r2_score: 0.6384 - val_loss:
0.0466 - val r2 score: 0.6065
Epoch 62/100
                    --- 0s 7ms/step - loss: 0.0525 - r2_score: 0.7353 - val_loss:
14/14 ----
0.0447 - val_r2_score: 0.6225
Epoch 63/100
14/14 ---
                     —— 0s 7ms/step - loss: 0.0574 - r2_score: 0.7073 - val_loss:
0.0490 - val_r2_score: 0.5857
Epoch 64/100
               Os 7ms/step - loss: 0.0656 - r2_score: 0.6844 - val_loss:
14/14 -----
0.0470 - val_r2_score: 0.6033
Epoch 65/100
14/14 -----
                 ----- 0s 8ms/step - loss: 0.0620 - r2 score: 0.6868 - val loss:
0.0457 - val_r2_score: 0.6141
Epoch 66/100
                     —— 0s 7ms/step - loss: 0.0636 - r2_score: 0.6455 - val_loss:
14/14 -----
0.0486 - val_r2_score: 0.5886
Epoch 67/100
14/14 -
                    ---- 0s 8ms/step - loss: 0.0539 - r2 score: 0.7274 - val loss:
0.0451 - val_r2_score: 0.6190
Epoch 68/100
14/14 -
                    Os 8ms/step - loss: 0.0605 - r2_score: 0.6797 - val_loss:
0.0469 - val_r2_score: 0.6040
Epoch 69/100
                Os 7ms/step - loss: 0.0646 - r2_score: 0.6496 - val_loss:
14/14 -----
0.0484 - val_r2_score: 0.5905
Epoch 70/100
14/14 -----
               Os 7ms/step - loss: 0.0634 - r2_score: 0.6649 - val_loss:
0.0466 - val_r2_score: 0.6066
Epoch 71/100
                  ——— 0s 7ms/step - loss: 0.0675 - r2 score: 0.6547 - val loss:
0.0466 - val r2 score: 0.6064
Epoch 72/100
                    —— 0s 7ms/step - loss: 0.0580 - r2 score: 0.6994 - val loss:
0.0460 - val_r2_score: 0.6112
Epoch 73/100
                    —— 0s 8ms/step - loss: 0.0621 - r2 score: 0.6725 - val loss:
14/14 -----
0.0483 - val_r2_score: 0.5913
Epoch 74/100
14/14 -----
                   ——— 0s 8ms/step - loss: 0.0673 - r2_score: 0.6537 - val_loss:
0.0447 - val_r2_score: 0.6232
Epoch 75/100
14/14 -----
                  ----- 0s 7ms/step - loss: 0.0609 - r2 score: 0.6922 - val loss:
```

```
0.0456 - val_r2_score: 0.6152
Epoch 76/100
                 ----- 0s 7ms/step - loss: 0.0666 - r2 score: 0.6643 - val loss:
14/14 -----
0.0478 - val r2 score: 0.5956
Epoch 77/100
14/14 -
                     —— 0s 7ms/step - loss: 0.0632 - r2 score: 0.6947 - val loss:
0.0466 - val_r2_score: 0.6060
Epoch 78/100
14/14 ----
                      — 0s 7ms/step - loss: 0.0665 - r2 score: 0.6395 - val loss:
0.0495 - val_r2_score: 0.5810
Epoch 79/100
                    ---- 0s 7ms/step - loss: 0.0726 - r2 score: 0.6336 - val loss:
14/14 -----
0.0464 - val_r2_score: 0.6084
Epoch 80/100
14/14 -----
                 _____ 0s 6ms/step - loss: 0.0611 - r2 score: 0.6648 - val loss:
0.0453 - val_r2_score: 0.6171
Epoch 81/100
              Os 7ms/step - loss: 0.0615 - r2_score: 0.6830 - val_loss:
14/14 -----
0.0475 - val r2 score: 0.5985
Epoch 82/100
               ----- 0s 7ms/step - loss: 0.0579 - r2_score: 0.6979 - val_loss:
14/14 -----
0.0463 - val r2 score: 0.6094
Epoch 83/100
                      — 0s 7ms/step - loss: 0.0666 - r2_score: 0.6363 - val_loss:
0.0481 - val_r2_score: 0.5932
Epoch 84/100
14/14 -
                    ---- 0s 7ms/step - loss: 0.0657 - r2_score: 0.6852 - val_loss:
0.0472 - val_r2_score: 0.6010
Epoch 85/100
14/14 -
              Os 7ms/step - loss: 0.0642 - r2_score: 0.6579 - val_loss:
0.0477 - val r2 score: 0.5972
Epoch 86/100
                Os 7ms/step - loss: 0.0628 - r2_score: 0.6586 - val_loss:
14/14 -----
0.0462 - val r2 score: 0.6098
Epoch 87/100
               Os 7ms/step - loss: 0.0656 - r2_score: 0.6185 - val_loss:
14/14 -----
0.0486 - val r2 score: 0.5888
Epoch 88/100
                     — 0s 7ms/step - loss: 0.0615 - r2_score: 0.6537 - val_loss:
0.0442 - val_r2_score: 0.6268
Epoch 89/100
                  _____ 0s 7ms/step - loss: 0.0633 - r2_score: 0.6718 - val_loss:
0.0467 - val_r2_score: 0.6056
Epoch 90/100
14/14 -
                      — 0s 20ms/step - loss: 0.0618 - r2_score: 0.6438 - val_los
s: 0.0467 - val_r2_score: 0.6053
Epoch 91/100
14/14 -----
                   ---- 0s 7ms/step - loss: 0.0640 - r2_score: 0.6948 - val_loss:
0.0505 - val_r2_score: 0.5725
Epoch 92/100
                 Os 9ms/step - loss: 0.0614 - r2_score: 0.6667 - val_loss:
14/14 -----
0.0440 - val_r2_score: 0.6289
Epoch 93/100
                 _____ 0s 7ms/step - loss: 0.0619 - r2_score: 0.6671 - val_loss:
14/14 ---
0.0477 - val_r2_score: 0.5971
Epoch 94/100
```

```
—— 0s 7ms/step - loss: 0.0595 - r2_score: 0.6891 - val_loss:
         0.0454 - val_r2_score: 0.6166
         Epoch 95/100
         14/14 -
                                  - 0s 8ms/step - loss: 0.0724 - r2_score: 0.6172 - val_loss:
         0.0485 - val_r2_score: 0.5896
         Epoch 96/100
         14/14 -
                                  — 0s 8ms/step - loss: 0.0614 - r2_score: 0.6796 - val_loss:
         0.0455 - val_r2_score: 0.6157
         Epoch 97/100
         14/14 -
                               —— 0s 9ms/step - loss: 0.0598 - r2_score: 0.6986 - val_loss:
         0.0458 - val_r2_score: 0.6130
         Epoch 98/100
                           _____ 0s 8ms/step - loss: 0.0688 - r2 score: 0.6602 - val loss:
         14/14 -----
         0.0487 - val_r2_score: 0.5879
         Epoch 99/100
         14/14 -
                                  - 0s 8ms/step - loss: 0.0690 - r2_score: 0.6602 - val_loss:
         0.0462 - val_r2_score: 0.6100
         Epoch 100/100
                                  — 0s 7ms/step - loss: 0.0672 - r2 score: 0.6356 - val loss:
         0.0453 - val_r2_score: 0.6175
         CPU times: total: 8.67 s
         Wall time: 20.2 s
In [455... print(hist.history.keys())
         dict_keys(['loss', 'r2_score', 'val_loss', 'val_r2_score'])
In [456...
         def plot loss(history):
              plt.plot(history.history['loss'], label = 'loss')
              plt.plot(history.history['val_loss'], label = 'val_loss')
              # plt.ylim([0, max(history.history['loss'])])
              plt.xlabel('Epochs')
              plt.ylabel('Error')
              plt.title('Error for sequential model')
              plt.legend()
              plt.grid(True)
In [457...
          def plot metrics(history):
              plt.plot(history.history['r2_score'], label = 'r2_score')
              plt.plot(history.history['val_r2_score'], label = 'val_r2_score')
              # plt.ylim([0, max(history.history['r2_score'])*1])
              plt.xlabel('Epochs')
              plt.ylabel('Value')
              plt.title('R2 score for sequential model')
              plt.legend()
              plt.grid(True)
In [458... plot loss(hist)
```


In [459... plot_metrics(hist)

Нелинейная регрессия

```
In [463...
          # tmp = train['temp'].copy()
          x = np.array([train['temp'].values, train['temp'].values**2, train['temp'].values**
          # print(x[0:5])
          x = x.T
          print(x[0:5])
          # def preparePol():
         [[0.7294323  0.53207149  0.38811013]
          [0.76500609 0.58523432 0.44770782]
          [1.45869498 2.12779105 3.10379812]
          [1.7254984 2.97734472 5.13740355]
          [1.95672803 3.82878457 7.49189008]]
In [464...
          pol_reg = tf.keras.Sequential([
              tf.keras.Input(shape=(3, )),
              tf.keras.layers.Dense(units=1,
                                    kernel_regularizer = tf.keras.regularizers.L2(12=0.01))
          ])
In [465...
          pol_reg.summary()
```

Model: "sequential_19"

Layer (type)	Output Shape	
dense_21 (Dense)	(None, 1)	

4

Total params: 4 (16.00 B)

Trainable params: 4 (16.00 B)

Non-trainable params: 0 (0.00 B)

```
In [466...
    pol_reg.compile(
        optimizer=tf.optimizers.Adam(learning_rate=0.01),
        loss='mse',
        metrics=['r2_score']
)
```

```
Epoch 1/100
                 2s 34ms/step - loss: 4.6855 - r2_score: -29.5507 - val_lo
19/19 ----
ss: 1.7879 - val r2 score: -11.3609
19/19 ---
                   ____ 0s 7ms/step - loss: 2.7752 - r2_score: -16.6265 - val_los
s: 0.9629 - val_r2_score: -5.6107
Epoch 3/100
19/19 -----
                Os 6ms/step - loss: 1.2248 - r2_score: -6.6892 - val_los
s: 0.6290 - val r2 score: -3.2813
Epoch 4/100
                       - 0s 7ms/step - loss: 1.0896 - r2_score: -5.0140 - val_los
19/19 -
s: 0.5272 - val_r2_score: -2.5708
Epoch 5/100
                       — 0s 6ms/step - loss: 0.6914 - r2_score: -3.5912 - val_los
s: 0.5041 - val r2 score: -2.4145
Epoch 6/100
19/19 ----
                    Os 6ms/step - loss: 0.5987 - r2_score: -2.6940 - val_los
s: 0.4833 - val_r2_score: -2.2768
Epoch 7/100
19/19 -
                    Os 6ms/step - loss: 0.5567 - r2_score: -2.6199 - val_los
s: 0.4532 - val_r2_score: -2.0758
Epoch 8/100
19/19 -----
             0s 6ms/step - loss: 0.5404 - r2_score: -2.2854 - val_los
s: 0.4205 - val_r2_score: -1.8565
Epoch 9/100
                OS 6ms/step - loss: 0.4690 - r2 score: -1.9349 - val los
s: 0.3851 - val_r2_score: -1.6183
Epoch 10/100
                   Os 6ms/step - loss: 0.4190 - r2_score: -1.5031 - val_los
s: 0.3595 - val_r2_score: -1.4478
Epoch 11/100
19/19 ----
                   ——— 0s 5ms/step - loss: 0.3972 - r2_score: -1.3318 - val_los
s: 0.3296 - val_r2_score: -1.2466
Epoch 12/100
19/19 -
                    Os 6ms/step - loss: 0.3811 - r2_score: -1.4181 - val_los
s: 0.2980 - val_r2_score: -1.0336
Epoch 13/100
                Os 5ms/step - loss: 0.3221 - r2_score: -0.9685 - val_los
19/19 -----
s: 0.2704 - val_r2_score: -0.8480
Epoch 14/100
              ———— 0s 5ms/step - loss: 0.2815 - r2_score: -0.6687 - val_los
19/19 -----
s: 0.2424 - val_r2_score: -0.6582
Epoch 15/100
                 ——— 0s 6ms/step - loss: 0.2745 - r2 score: -0.7090 - val los
s: 0.2313 - val_r2_score: -0.5855
Epoch 16/100
                   Os 4ms/step - loss: 0.2287 - r2_score: -0.4425 - val_los
s: 0.2048 - val_r2_score: -0.4056
Epoch 17/100
                    OS 5ms/step - loss: 0.1947 - r2 score: -0.2813 - val los
19/19 ----
s: 0.1869 - val_r2_score: -0.2849
Epoch 18/100
19/19 ----
                    Os 7ms/step - loss: 0.1804 - r2_score: -0.1861 - val_los
s: 0.1797 - val_r2_score: -0.2381
Epoch 19/100
19/19 -----
                  ———— 0s 5ms/step - loss: 0.1721 - r2 score: -0.0469 - val los
```

```
s: 0.1559 - val_r2_score: -0.0750
Epoch 20/100
                Os 6ms/step - loss: 0.1826 - r2 score: -0.1134 - val los
s: 0.1390 - val_r2_score: 0.0398
Epoch 21/100
                     —— 0s 5ms/step - loss: 0.1290 - r2 score: 0.1462 - val loss:
0.1267 - val_r2_score: 0.1234
Epoch 22/100
19/19 ----
                     —— 0s 6ms/step - loss: 0.1276 - r2 score: 0.1300 - val loss:
0.1211 - val_r2_score: 0.1613
Epoch 23/100
                    ---- 0s 6ms/step - loss: 0.1191 - r2 score: 0.2412 - val loss:
19/19 -----
0.1091 - val_r2_score: 0.2436
Epoch 24/100
19/19 -----
                 _____ 0s 6ms/step - loss: 0.1127 - r2 score: 0.3174 - val loss:
0.1040 - val_r2_score: 0.2781
Epoch 25/100
              Os 7ms/step - loss: 0.0863 - r2_score: 0.4397 - val_loss:
19/19 -----
0.0942 - val r2 score: 0.3454
Epoch 26/100
               ----- 0s 6ms/step - loss: 0.0969 - r2_score: 0.3787 - val_loss:
19/19 -----
0.0867 - val r2 score: 0.3972
Epoch 27/100
                     — 0s 7ms/step - loss: 0.0798 - r2_score: 0.4992 - val_loss:
0.0788 - val_r2_score: 0.4520
Epoch 28/100
                    Os 6ms/step - loss: 0.0734 - r2_score: 0.5250 - val_loss:
19/19 -
0.0823 - val_r2_score: 0.4274
Epoch 29/100
19/19 -----
              Os 7ms/step - loss: 0.0782 - r2_score: 0.5415 - val_loss:
0.0739 - val r2 score: 0.4857
Epoch 30/100
                0s 5ms/step - loss: 0.0722 - r2_score: 0.5618 - val_loss:
19/19 -----
0.0734 - val r2 score: 0.4891
Epoch 31/100
               Os 5ms/step - loss: 0.0633 - r2_score: 0.5743 - val_loss:
19/19 -----
0.0674 - val_r2_score: 0.5315
Epoch 32/100
                     — 0s 5ms/step - loss: 0.0660 - r2_score: 0.5752 - val_loss:
0.0667 - val_r2_score: 0.5363
Epoch 33/100
19/19 ---
                   —— 0s 5ms/step - loss: 0.0569 - r2_score: 0.6124 - val_loss:
0.0631 - val_r2_score: 0.5621
Epoch 34/100
19/19 -
                       — 0s 5ms/step - loss: 0.0678 - r2_score: 0.5329 - val_loss:
0.0597 - val_r2_score: 0.5854
Epoch 35/100
19/19 -----
                  Os 5ms/step - loss: 0.0582 - r2_score: 0.6215 - val_loss:
0.0585 - val_r2_score: 0.5943
Epoch 36/100
                 Os 6ms/step - loss: 0.0526 - r2_score: 0.6633 - val_loss:
19/19 -----
0.0621 - val_r2_score: 0.5697
Epoch 37/100
                _______ 0s 5ms/step - loss: 0.0591 - r2_score: 0.6060 - val_loss:
0.0603 - val_r2_score: 0.5824
Epoch 38/100
```

```
—— 0s 4ms/step - loss: 0.0560 - r2_score: 0.6609 - val_loss:
0.0594 - val_r2_score: 0.5890
Epoch 39/100
19/19 -
                        - 0s 5ms/step - loss: 0.0535 - r2_score: 0.6692 - val_loss:
0.0556 - val_r2_score: 0.6157
Epoch 40/100
19/19 -----
                        — 0s 5ms/step - loss: 0.0491 - r2_score: 0.6908 - val_loss:
0.0585 - val_r2_score: 0.5961
Epoch 41/100
19/19 ----
                     —— 0s 6ms/step - loss: 0.0524 - r2_score: 0.6831 - val_loss:
0.0596 - val_r2_score: 0.5884
Epoch 42/100
                ______ 0s 6ms/step - loss: 0.0567 - r2_score: 0.6480 - val_loss:
19/19 -----
0.0545 - val r2 score: 0.6241
Epoch 43/100
19/19 -
                        — 0s 4ms/step - loss: 0.0511 - r2 score: 0.6765 - val loss:
0.0574 - val_r2_score: 0.6040
Epoch 44/100
                        — 0s 5ms/step - loss: 0.0543 - r2 score: 0.6567 - val loss:
0.0564 - val_r2_score: 0.6114
Epoch 45/100
                      — 0s 5ms/step - loss: 0.0517 - r2 score: 0.6628 - val loss:
19/19 -
0.0541 - val_r2_score: 0.6274
Epoch 46/100
19/19 -
                        — 0s 7ms/step - loss: 0.0515 - r2 score: 0.6816 - val loss:
0.0543 - val r2 score: 0.6268
Epoch 47/100
                Os 4ms/step - loss: 0.0489 - r2_score: 0.6654 - val_loss:
19/19 -----
0.0548 - val_r2_score: 0.6234
Epoch 48/100
                     ---- 0s 5ms/step - loss: 0.0477 - r2 score: 0.6977 - val loss:
19/19 -
0.0537 - val r2 score: 0.6310
Epoch 49/100
                        — 0s 5ms/step - loss: 0.0579 - r2 score: 0.6480 - val loss:
19/19 -
0.0528 - val_r2_score: 0.6378
Epoch 50/100
19/19 -
                      ---- 0s 5ms/step - loss: 0.0494 - r2 score: 0.6860 - val loss:
0.0543 - val_r2_score: 0.6273
Epoch 51/100
19/19 -
                       — 0s 6ms/step - loss: 0.0488 - r2_score: 0.7047 - val_loss:
0.0565 - val_r2_score: 0.6119
Epoch 52/100
                     0s 5ms/step - loss: 0.0494 - r2_score: 0.6783 - val_loss:
19/19 -----
0.0547 - val r2 score: 0.6245
Epoch 53/100
                  _____ 0s 5ms/step - loss: 0.0493 - r2_score: 0.6867 - val_loss:
19/19 -----
0.0539 - val_r2_score: 0.6303
Epoch 54/100
                      — 0s 6ms/step - loss: 0.0526 - r2_score: 0.6643 - val_loss:
0.0576 - val r2 score: 0.6046
Epoch 55/100
                     —— 0s 5ms/step - loss: 0.0597 - r2_score: 0.5960 - val_loss:
0.0540 - val_r2_score: 0.6293
Epoch 56/100
                        — 0s 6ms/step - loss: 0.0522 - r2_score: 0.6712 - val_loss:
0.0509 - val r2 score: 0.6512
```

```
Epoch 57/100
                  _____ 0s 5ms/step - loss: 0.0521 - r2_score: 0.6852 - val_loss:
19/19 -----
0.0563 - val r2 score: 0.6138
Epoch 58/100
19/19 -----
                  _____ 0s 5ms/step - loss: 0.0503 - r2_score: 0.6975 - val_loss:
0.0536 - val_r2_score: 0.6327
Epoch 59/100
19/19 -----
                ----- 0s 4ms/step - loss: 0.0568 - r2_score: 0.6571 - val_loss:
0.0566 - val r2 score: 0.6118
Epoch 60/100
                     — 0s 6ms/step - loss: 0.0537 - r2_score: 0.6515 - val_loss:
19/19 -
0.0515 - val r2 score: 0.6475
Epoch 61/100
                       — 0s 8ms/step - loss: 0.0488 - r2 score: 0.6950 - val loss:
0.0542 - val r2 score: 0.6286
Epoch 62/100
19/19 ----
                    —— 0s 7ms/step - loss: 0.0498 - r2_score: 0.6851 - val_loss:
0.0561 - val_r2_score: 0.6151
Epoch 63/100
19/19 ---
                     —— 0s 6ms/step - loss: 0.0538 - r2_score: 0.6513 - val_loss:
0.0510 - val_r2_score: 0.6506
Epoch 64/100
19/19 -----
               Os 7ms/step - loss: 0.0534 - r2_score: 0.6762 - val_loss:
0.0533 - val_r2_score: 0.6349
Epoch 65/100
                _____ 0s 5ms/step - loss: 0.0510 - r2 score: 0.6528 - val loss:
0.0557 - val_r2_score: 0.6178
Epoch 66/100
                     —— 0s 7ms/step - loss: 0.0544 - r2_score: 0.6628 - val_loss:
19/19 -----
0.0526 - val_r2_score: 0.6400
Epoch 67/100
19/19 -
                    —— 0s 6ms/step - loss: 0.0582 - r2 score: 0.6546 - val loss:
0.0539 - val_r2_score: 0.6309
Epoch 68/100
19/19 -
                    —— 0s 6ms/step - loss: 0.0593 - r2_score: 0.6587 - val_loss:
0.0534 - val_r2_score: 0.6340
Epoch 69/100
                Os 5ms/step - loss: 0.0470 - r2_score: 0.6930 - val_loss:
19/19 -----
0.0510 - val_r2_score: 0.6514
Epoch 70/100
19/19 — Os 17ms/step - loss: 0.0488 - r2 score: 0.7152 - val los
s: 0.0549 - val_r2_score: 0.6239
Epoch 71/100
                  ----- 0s 5ms/step - loss: 0.0539 - r2 score: 0.6656 - val loss:
0.0562 - val_r2_score: 0.6150
Epoch 72/100
                    ——— 0s 5ms/step - loss: 0.0502 - r2 score: 0.6807 - val loss:
0.0514 - val_r2_score: 0.6480
Epoch 73/100
                    —— 0s 6ms/step - loss: 0.0483 - r2 score: 0.6812 - val loss:
19/19 -----
0.0535 - val_r2_score: 0.6338
Epoch 74/100
19/19 -----
                   ---- 0s 5ms/step - loss: 0.0539 - r2_score: 0.6435 - val_loss:
0.0540 - val_r2_score: 0.6301
Epoch 75/100
19/19 -----
                  ----- 0s 6ms/step - loss: 0.0483 - r2 score: 0.6965 - val loss:
```

```
0.0555 - val_r2_score: 0.6198
Epoch 76/100
                ----- 0s 9ms/step - loss: 0.0573 - r2 score: 0.6437 - val loss:
19/19 -----
0.0510 - val_r2_score: 0.6512
Epoch 77/100
19/19 -
                     —— 0s 6ms/step - loss: 0.0453 - r2 score: 0.7025 - val loss:
0.0581 - val_r2_score: 0.6019
Epoch 78/100
19/19 ----
                     --- 0s 5ms/step - loss: 0.0454 - r2 score: 0.7215 - val loss:
0.0558 - val_r2_score: 0.6180
Epoch 79/100
                    --- 0s 6ms/step - loss: 0.0570 - r2 score: 0.6490 - val loss:
19/19 -----
0.0547 - val_r2_score: 0.6255
Epoch 80/100
19/19 -----
                 _____ 0s 6ms/step - loss: 0.0504 - r2 score: 0.6833 - val loss:
0.0538 - val_r2_score: 0.6317
Epoch 81/100
              Os 5ms/step - loss: 0.0579 - r2_score: 0.6779 - val_loss:
19/19 -----
0.0548 - val r2 score: 0.6250
Epoch 82/100
               ----- 0s 4ms/step - loss: 0.0549 - r2_score: 0.6581 - val_loss:
19/19 -----
0.0519 - val r2 score: 0.6447
Epoch 83/100
                      — 0s 5ms/step - loss: 0.0549 - r2_score: 0.6379 - val_loss:
0.0515 - val_r2_score: 0.6475
Epoch 84/100
                    ____ 0s 6ms/step - loss: 0.0442 - r2_score: 0.6974 - val_loss:
19/19 -
0.0531 - val_r2_score: 0.6363
Epoch 85/100
19/19 ---
              Os 4ms/step - loss: 0.0488 - r2_score: 0.6977 - val_loss:
0.0580 - val r2 score: 0.6025
Epoch 86/100
                0s 4ms/step - loss: 0.0563 - r2_score: 0.6569 - val_loss:
19/19 -----
0.0523 - val r2 score: 0.6420
Epoch 87/100
               Os 6ms/step - loss: 0.0456 - r2_score: 0.7216 - val_loss:
19/19 -----
0.0552 - val_r2_score: 0.6219
Epoch 88/100
                     — 0s 5ms/step - loss: 0.0481 - r2_score: 0.6833 - val_loss:
0.0549 - val_r2_score: 0.6236
Epoch 89/100
19/19 ---
                  ----- 0s 6ms/step - loss: 0.0498 - r2_score: 0.6901 - val_loss:
0.0565 - val_r2_score: 0.6127
Epoch 90/100
19/19 -
                       — 0s 6ms/step - loss: 0.0512 - r2_score: 0.6767 - val_loss:
0.0526 - val_r2_score: 0.6401
Epoch 91/100
19/19 -----
                  ----- 0s 5ms/step - loss: 0.0542 - r2_score: 0.6750 - val_loss:
0.0549 - val_r2_score: 0.6240
Epoch 92/100
                 Os 6ms/step - loss: 0.0567 - r2_score: 0.6456 - val_loss:
19/19 -----
0.0532 - val_r2_score: 0.6354
Epoch 93/100
                ______ 0s 5ms/step - loss: 0.0548 - r2_score: 0.6482 - val_loss:
0.0537 - val_r2_score: 0.6326
Epoch 94/100
```

```
--- 0s 5ms/step - loss: 0.0528 - r2_score: 0.6865 - val_loss:
0.0524 - val_r2_score: 0.6416
Epoch 95/100
19/19 -
                         - 0s 6ms/step - loss: 0.0561 - r2_score: 0.6568 - val_loss:
0.0556 - val_r2_score: 0.6190
Epoch 96/100
19/19 -
                         - 0s 5ms/step - loss: 0.0548 - r2_score: 0.6611 - val_loss:
0.0539 - val_r2_score: 0.6309
Epoch 97/100
19/19 -
                       — 0s 5ms/step - loss: 0.0592 - r2_score: 0.6380 - val_loss:
0.0550 - val_r2_score: 0.6229
Epoch 98/100
19/19 -
                     —— 0s 6ms/step - loss: 0.0595 - r2_score: 0.6337 - val_loss:
0.0516 - val_r2_score: 0.6473
Epoch 99/100
19/19 -
                         - 0s 6ms/step - loss: 0.0519 - r2_score: 0.6589 - val_loss:
0.0518 - val_r2_score: 0.6460
Epoch 100/100
                         - 0s 5ms/step - loss: 0.0501 - r2_score: 0.6694 - val_loss:
0.0536 - val_r2_score: 0.6332
CPU times: total: 7.08 s
Wall time: 19.3 s
```

In [468... plot_loss(phist)

Error for sequential model

In [469... plot_metrics(phist)


```
In [470... x_test = np.array([test['temp'].values, test['temp'].values**2, test['temp'].values
x_test = x_test.T
y_pol = pol_reg.predict(x_test)
```

7/7 Os 10ms/step

```
In [471... plt.scatter(test['temp'], test['temp_lower'], c='b', label='Data')
    plt.plot(np.sort(test['temp']), y_pol[np.argsort(test['temp'])], c = 'r', label='pr
    plt.title('prediction')
    plt.legend()
    plt.grid(True)
```


- 4. Визуализируйте точки набора данных на плоскости в виде диаграммы рассеяния (ось X независимый признак, ось Y зависимый признак), а также линии линейной и полиномиальной регрессий (другими цветами), подписывая оси и рисунок и создавая легенду
- !!!. Отдельно посмотреть оценку ошибки и обучаемости можно в третьем задании для каждой из регрессий
- 1. Оценка ошибки и обучаемости линейной регрессии

In [472...

plot_loss(hist)

In [473... plot_metrics(hist)

Epochs

2. Оценка ошибки и обучаемости полиномиальной регрессии

In [474... plot_loss(phist)

In [475... plot_metrics(phist)

5. Визуализируйте точки набора данных на плоскости в виде диаграммы рассеяния (ось X — независимый признак, ось Y — зависимый признак), а также линии линейной и полиномиальной регрессий (другими цветами), подписывая оси и рисунок и создавая легенду

```
In [476...
    y_lin_test = lin_reg.predict(train['temp'].values)
    y_pol_test = pol_reg.predict(x)

plt.scatter(train['temp'], train['temp_lower'], c='b', label='Data')
    plt.plot(np.sort(train['temp']), y_pol_test[np.argsort(train['temp'])], c = 'r', la
    plt.plot(train['temp'], y_lin_test, c = 'g', label='linear regression')

plt.title('Polynomial and linear regression made by cherry_blossom dataset')
    plt.legend()
    plt.grid(True)
```

Polynomial and linear regression made by cherry_blossom dataset

6. Определите в исходном наборе данных признак (отличный от независимого и зависимого признаков), принимающий непрерывные значения и имеющий свойства, указанные в индивидуальном задании.

Доп. признак: имеющий минимальную корреляцию с независимой переменной

In [576...

df

Out[576...

	year	doy	temp	temp_upper	temp_lower
50	851	108.0	7.38	12.10	2.66
63	864	100.0	6.42	8.69	4.14
65	866	106.0	6.44	8.11	4.77
88	889	104.0	6.83	8.48	5.19
90	891	109.0	6.98	8.96	5.00
•••					
1175	1976	99.0	8.20	8.77	7.63
1176	1977	93.0	8.22	8.78	7.66
1177	1978	104.0	8.20	8.78	7.61
1178	1979	97.0	8.28	8.83	7.73
1179	1980	102.0	8.30	8.86	7.74

787 rows × 5 columns

```
In [578...
          df.corr()['temp']
Out[578...
                         0.028033
           doy
                       -0.326976
                        1.000000
           temp
           temp_upper 0.876747
           temp_lower
                       0.858841
           Name: temp, dtype: float64
In [580...
          df.corr()['temp'].min()
Out[580...
           -0.3269757034361482
```

Следовательно, выбираем признак 'doy'

7. Стандартизуйте этот признак и визуализируйте его в соответствии с индивидуальным заданием.

Доп. признак: имеющий минимальную корреляцию с независимой переменной

Визуализация доп. признака – эмпирическая плотность распределения

Out[581... <Axes: ylabel='Density'>

In [582... # df['doy'].mean()
tmp = df.copy()
tmp.reset_index(inplace=True, drop=True)
tmp

Out[582...

	year	doy	temp	temp_upper	temp_lower
0	851	108.0	7.38	12.10	2.66
1	864	100.0	6.42	8.69	4.14
2	866	106.0	6.44	8.11	4.77
3	889	104.0	6.83	8.48	5.19
4	891	109.0	6.98	8.96	5.00
•••					
782	1976	99.0	8.20	8.77	7.63
783	1977	93.0	8.22	8.78	7.66
784	1978	104.0	8.20	8.78	7.61
785	1979	97.0	8.28	8.83	7.73
786	1980	102.0	8.30	8.86	7.74

787 rows × 5 columns

Out[584... <matplotlib.collections.PathCollection at 0x2965800f080>

8. Сформируйте набор входных данных из двух стандартизованных признаков набора данных (независимый признак и определенный признак), постройте нейронную сеть (нелинейный регресор) с количеством скрытых слоев, количеством нейронов и функцией активации, указанными в

индивидуальном задании, и одним нейроном в выходном слое и обучите ее на наборе данных из двух признаков и отклика. Отследите обучение нейронной сети, изменяя, при необходимости, гиперпараметры (функцию потерь, оптимизатор, шаг обучения и т.п.) или применяя регуляризацию.

Показатель качества регрессии – MSE (mean squared error)

Степень полинома: 3

Параметры глубокой нейронной сети: кол-во скрытых слоев – 3, кол-во нейронов в скрытом слое – 128, функция активации – сигмоида.

```
In [636...
          X = np.array(ds[['temp', 'doy']])
          feature_normalizer = tf.keras.layers.Normalization(axis=None, input_shape=(2, ))
          feature_normalizer.adapt(X)
         C:\Python312\Lib\site-packages\keras\src\layers\preprocessing\normalization.py:99: U
         serWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using
         Sequential models, prefer using an `Input(shape)` object as the first layer in the m
         odel instead.
           super().__init__(**kwargs)
In [637...
          uni model = tf.keras.Sequential([
              feature_normalizer,
              # tf.keras.Input(shape=(1, )),
              tf.keras.layers.Dense(units=128, activation='sigmoid',
                                    kernel_regularizer = tf.keras.regularizers.L2(12=0.01)),
              tf.keras.layers.Dense(units=128, activation='sigmoid',
                                    kernel regularizer = tf.keras.regularizers.L2(12=0.01)),
              tf.keras.layers.Dense(units=128, activation='sigmoid',
                                    kernel_regularizer = tf.keras.regularizers.L2(12=0.01)),
              tf.keras.layers.Dense(units=1)
          ])
In [638...
          uni_model.summary()
```

Model: "sequential_37"

Layer (type)	Output Shape
normalization_24 (Normalization)	(None, 2)
dense_88 (Dense)	(None, 128)
dense_89 (Dense)	(None, 128)
dense_90 (Dense)	(None, 128)
dense_91 (Dense)	(None, 1)

Total params: 33,540 (131.02 KB)

Trainable params: 33,537 (131.00 KB)

Non-trainable params: 3 (16.00 B)

```
In [639...
uni_model.compile(
    loss = 'mse',
    optimizer=tf.optimizers.Adam(learning_rate=0.01),
    metrics=['r2_score']
)
```

```
In [640...
uhist = uni_model.fit(
    X, ds['temp_lower'],
    epochs = 100,
    verbose = 1,
    validation_split = 0.2
)
```

```
Epoch 1/100
                 4s 33ms/step - loss: 4.1410 - r2_score: -10.7216 - val_lo
19/19 ----
ss: 1.9583 - val r2 score: -0.0030
Epoch 2/100
19/19 ---
                   Os 8ms/step - loss: 1.7572 - r2_score: -0.5008 - val_los
s: 0.8925 - val_r2_score: 6.4528e-04
Epoch 3/100
                 ______ 0s 7ms/step - loss: 0.8044 - r2_score: -0.1798 - val_los
19/19 -----
s: 0.5105 - val r2 score: -0.2773
Epoch 4/100
                       - 0s 9ms/step - loss: 0.4443 - r2_score: -0.0150 - val_los
19/19 -
s: 0.3257 - val_r2_score: -0.0938
Epoch 5/100
                        - 0s 7ms/step - loss: 0.3026 - r2_score: -0.0509 - val_los
s: 0.2594 - val r2 score: -0.1787
Epoch 6/100
19/19 ---
                    Os 6ms/step - loss: 0.2778 - r2_score: -0.3274 - val_los
s: 0.2234 - val_r2_score: -0.1691
Epoch 7/100
19/19 -
                    ---- 0s 6ms/step - loss: 0.2143 - r2_score: -0.0309 - val_los
s: 0.2631 - val_r2_score: -0.6431
Epoch 8/100
19/19 -----
             0s 8ms/step - loss: 0.2099 - r2_score: -0.1930 - val_los
s: 0.1657 - val_r2_score: -0.0171
Epoch 9/100
                 _____ 0s 11ms/step - loss: 0.2163 - r2 score: -0.2520 - val los
s: 0.1832 - val_r2_score: -0.1833
Epoch 10/100
                    —— 0s 10ms/step - loss: 0.1705 - r2_score: -0.0539 - val_los
s: 0.1645 - val_r2_score: -0.1102
Epoch 11/100
19/19 ----
                    ——— 0s 8ms/step - loss: 0.2580 - r2_score: -0.4662 - val_los
s: 0.3007 - val_r2_score: -0.9537
Epoch 12/100
19/19 -
                    —— 0s 10ms/step - loss: 0.1959 - r2_score: -0.1399 - val_los
s: 0.1966 - val_r2_score: -0.3470
Epoch 13/100
                Os 8ms/step - loss: 0.1780 - r2_score: -0.0714 - val_los
19/19 -----
s: 0.1466 - val_r2_score: -0.0088
Epoch 14/100
              ______ 0s 8ms/step - loss: 0.2001 - r2_score: -0.2301 - val_los
s: 0.2464 - val_r2_score: -0.6849
Epoch 15/100
                  ——— 0s 8ms/step - loss: 0.1916 - r2 score: -0.2338 - val los
s: 0.1540 - val_r2_score: -0.0514
Epoch 16/100
                   Os 8ms/step - loss: 0.1643 - r2_score: -0.0740 - val_los
s: 0.1557 - val_r2_score: -0.0675
Epoch 17/100
                    ____ 0s 7ms/step - loss: 0.2038 - r2 score: -0.1653 - val los
19/19 ----
s: 0.1483 - val_r2_score: -0.0012
Epoch 18/100
19/19 ----
                    Os 8ms/step - loss: 0.1779 - r2_score: -0.1645 - val_los
s: 0.2734 - val_r2_score: -0.8999
Epoch 19/100
19/19 -----
                   ———— 0s 9ms/step - loss: 0.1874 - r2 score: -0.2232 - val los
```

```
s: 0.1507 - val_r2_score: -0.0181
Epoch 20/100
                OS 8ms/step - loss: 0.1732 - r2 score: -0.1309 - val los
s: 0.1522 - val_r2_score: -0.0479
Epoch 21/100
                    Os 9ms/step - loss: 0.2226 - r2_score: -0.2804 - val_los
s: 0.2564 - val_r2_score: -0.7650
Epoch 22/100
                   Os 8ms/step - loss: 0.1706 - r2_score: -0.0955 - val_los
s: 0.1440 - val_r2_score: -1.4865e-04
Epoch 23/100
                    ---- Os 8ms/step - loss: 0.1948 - r2 score: -0.1483 - val los
19/19 ----
s: 0.1797 - val_r2_score: -0.2405
Epoch 24/100
19/19 ----
                 ----- 0s 10ms/step - loss: 0.1623 - r2 score: -0.0653 - val los
s: 0.1645 - val_r2_score: -0.1449
Epoch 25/100
19/19 Os 10ms/step - loss: 0.1591 - r2_score: -0.0169 - val_los
s: 0.1449 - val r2 score: -0.0076
Epoch 26/100
              ———— 0s 9ms/step - loss: 0.1580 - r2_score: -0.0425 - val_los
s: 0.1942 - val_r2_score: -0.3437
Epoch 27/100
                   Os 8ms/step - loss: 0.1674 - r2_score: -0.0439 - val_los
s: 0.2116 - val_r2_score: -0.4736
Epoch 28/100
19/19 ---
                    Os 8ms/step - loss: 0.1677 - r2_score: -0.0379 - val_los
s: 0.2121 - val_r2_score: -0.4770
Epoch 29/100
19/19 -
                Os 10ms/step - loss: 0.1951 - r2_score: -0.1022 - val_los
s: 0.2058 - val r2 score: -0.4141
Epoch 30/100
                Os 9ms/step - loss: 0.2168 - r2_score: -0.2816 - val_los
19/19 -----
s: 0.1513 - val r2 score: -0.0378
Epoch 31/100
19/19 Os 8ms/step - loss: 0.1809 - r2_score: -0.1112 - val_los
s: 0.1531 - val r2 score: -0.0528
Epoch 32/100
                     —— 0s 7ms/step - loss: 0.2016 - r2_score: -0.2018 - val_los
s: 0.1466 - val_r2_score: -0.0146
Epoch 33/100
                  Os 7ms/step - loss: 0.1644 - r2_score: -0.0462 - val_los
s: 0.1960 - val_r2_score: -0.3582
Epoch 34/100
19/19 -
                       - 0s 8ms/step - loss: 0.1856 - r2_score: -0.2288 - val_los
s: 0.2605 - val_r2_score: -0.7641
Epoch 35/100
19/19 -----
                   Os 9ms/step - loss: 0.1879 - r2_score: -0.1497 - val_los
s: 0.1531 - val_r2_score: -0.0621
19/19 -----
                 ——— 0s 8ms/step - loss: 0.1522 - r2_score: -0.0423 - val_los
s: 0.2245 - val_r2_score: -0.5616
Epoch 37/100
               ———— 0s 7ms/step - loss: 0.1688 - r2_score: -0.1072 - val_los
s: 0.1456 - val_r2_score: -0.0074
Epoch 38/100
```

```
Os 8ms/step - loss: 0.1695 - r2_score: -0.0786 - val_los
s: 0.1509 - val_r2_score: -0.0496
Epoch 39/100
19/19 -
                        - 0s 8ms/step - loss: 0.1881 - r2_score: -0.1796 - val_los
s: 0.2287 - val_r2_score: -0.5786
Epoch 40/100
19/19 ---
                        — 0s 8ms/step - loss: 0.1676 - r2_score: -0.0585 - val_los
s: 0.2408 - val_r2_score: -0.6727
19/19 ----
                     --- 0s 8ms/step - loss: 0.1579 - r2_score: -0.0595 - val_los
s: 0.1756 - val_r2_score: -0.2209
Epoch 42/100
                Os 8ms/step - loss: 0.1784 - r2_score: -0.1503 - val_los
19/19 -----
s: 0.1459 - val_r2_score: -2.2614e-04
Epoch 43/100
                        - 0s 10ms/step - loss: 0.1815 - r2 score: -0.1479 - val los
19/19 -
s: 0.1495 - val_r2_score: -0.0313
Epoch 44/100
                        - 0s 8ms/step - loss: 0.1928 - r2 score: -0.2069 - val los
s: 0.1505 - val_r2_score: -0.0123
Epoch 45/100
19/19 -
                        — 0s 8ms/step - loss: 0.2374 - r2 score: -0.5517 - val los
s: 0.1532 - val_r2_score: -0.0167
Epoch 46/100
19/19 -
                        - 0s 8ms/step - loss: 0.1997 - r2_score: -0.2935 - val_los
s: 0.1473 - val r2 score: -0.0015
Epoch 47/100
                 0s 9ms/step - loss: 0.1754 - r2_score: -0.0719 - val_los
19/19 -----
s: 0.2022 - val_r2_score: -0.4023
Epoch 48/100
                     ---- 0s 8ms/step - loss: 0.1646 - r2 score: -0.1244 - val los
19/19 ----
s: 0.2273 - val r2 score: -0.5764
Epoch 49/100
                        - 0s 7ms/step - loss: 0.1560 - r2 score: -0.0206 - val los
s: 0.1780 - val_r2_score: -0.2389
Epoch 50/100
                      —— 0s 9ms/step - loss: 0.1716 - r2 score: -0.0219 - val los
s: 0.2488 - val_r2_score: -0.7327
Epoch 51/100
19/19 -
                        - 0s 7ms/step - loss: 0.1849 - r2_score: -0.1933 - val_los
s: 0.1695 - val_r2_score: -0.1778
Epoch 52/100
                      Os 6ms/step - loss: 0.1717 - r2_score: -0.0382 - val_los
19/19 ---
s: 0.2051 - val r2 score: -0.4280
Epoch 53/100
                  Os 8ms/step - loss: 0.1774 - r2_score: -0.1290 - val_los
19/19 ----
s: 0.1580 - val r2 score: -0.0921
Epoch 54/100
                      — 0s 8ms/step - loss: 0.1972 - r2_score: -0.1933 - val_los
s: 0.1590 - val r2 score: -0.1021
Epoch 55/100
                      —— 0s 9ms/step - loss: 0.1578 - r2_score: -0.0138 - val_los
s: 0.1495 - val_r2_score: -0.0405
Epoch 56/100
                        - 0s 8ms/step - loss: 0.1715 - r2_score: -0.0523 - val_los
s: 0.1498 - val_r2_score: -0.0435
```

```
Epoch 57/100
                 Os 8ms/step - loss: 0.1865 - r2_score: -0.0766 - val_los
19/19 ----
s: 0.1439 - val r2 score: -0.0014
Epoch 58/100
19/19 ----
                   Os 8ms/step - loss: 0.1707 - r2_score: -0.0761 - val_los
s: 0.2040 - val_r2_score: -0.4208
Epoch 59/100
                 ______ 0s 6ms/step - loss: 0.1648 - r2_score: -0.0813 - val_los
19/19 -----
s: 0.1459 - val r2 score: -0.0138
Epoch 60/100
                       - 0s 8ms/step - loss: 0.2097 - r2_score: -0.2194 - val_los
19/19 -
s: 0.1695 - val_r2_score: -0.1752
Epoch 61/100
                       — 0s 7ms/step - loss: 0.1669 - r2_score: -0.0113 - val_los
s: 0.1733 - val r2 score: -0.2063
Epoch 62/100
19/19 ----
                     Os 7ms/step - loss: 0.1607 - r2_score: -0.0456 - val_los
s: 0.1651 - val_r2_score: -0.1501
Epoch 63/100
19/19 -
                     ---- 0s 8ms/step - loss: 0.1590 - r2_score: -0.0334 - val_los
s: 0.1869 - val_r2_score: -0.3020
Epoch 64/100
19/19 -----
              Os 7ms/step - loss: 0.1653 - r2_score: -0.0389 - val_los
s: 0.1792 - val_r2_score: -0.2477
Epoch 65/100
                 OS 8ms/step - loss: 0.1634 - r2 score: -0.0223 - val los
s: 0.1477 - val_r2_score: -0.0253
Epoch 66/100
                    Os 7ms/step - loss: 0.1840 - r2_score: -0.1805 - val_los
s: 0.2033 - val_r2_score: -0.4088
Epoch 67/100
19/19 ----
                    ——— 0s 7ms/step - loss: 0.1683 - r2_score: -0.0265 - val_los
s: 0.1586 - val_r2_score: -0.1032
Epoch 68/100
19/19 -
                    Os 7ms/step - loss: 0.1776 - r2_score: -0.0712 - val_los
s: 0.2206 - val_r2_score: -0.5348
Epoch 69/100
                Os 7ms/step - loss: 0.1830 - r2_score: -0.2172 - val_los
19/19 -----
s: 0.1529 - val_r2_score: -0.0579
Epoch 70/100
              ———— 0s 7ms/step - loss: 0.1625 - r2_score: -0.0505 - val_los
s: 0.1809 - val_r2_score: -0.2593
Epoch 71/100
                 ——— 0s 8ms/step - loss: 0.1729 - r2 score: -0.0950 - val los
s: 0.2039 - val_r2_score: -0.4121
Epoch 72/100
                   Os 8ms/step - loss: 0.1916 - r2_score: -0.1492 - val_los
s: 0.1552 - val_r2_score: -0.0592
Epoch 73/100
                    ____ 0s 6ms/step - loss: 0.2023 - r2 score: -0.2888 - val los
19/19 ----
s: 0.1912 - val_r2_score: -0.2998
Epoch 74/100
19/19 ----
                    —— 0s 10ms/step - loss: 0.1685 - r2_score: -0.0826 - val_los
s: 0.1963 - val_r2_score: -0.3543
Epoch 75/100
19/19 -----
                  ———— 0s 6ms/step - loss: 0.1606 - r2 score: -0.0260 - val los
```

```
s: 0.2010 - val_r2_score: -0.3996
Epoch 76/100
                OS 8ms/step - loss: 0.1619 - r2 score: -0.0819 - val los
s: 0.1527 - val_r2_score: -0.0577
Epoch 77/100
                    Os 9ms/step - loss: 0.1831 - r2_score: -0.1235 - val_los
s: 0.1698 - val_r2_score: -0.1699
Epoch 78/100
                   Os 8ms/step - loss: 0.1555 - r2_score: -0.0250 - val_los
s: 0.2327 - val_r2_score: -0.6199
Epoch 79/100
                    Os 8ms/step - loss: 0.1652 - r2 score: -0.0642 - val los
19/19 ----
s: 0.1653 - val_r2_score: -0.1508
Epoch 80/100
19/19 ----
                 ——— 0s 7ms/step - loss: 0.1578 - r2 score: -0.0080 - val los
s: 0.1499 - val r2 score: -0.0443
Epoch 81/100
19/19 Os 8ms/step - loss: 0.1722 - r2_score: -0.0642 - val_los
s: 0.1576 - val r2 score: -0.0967
Epoch 82/100
             ———— 0s 8ms/step - loss: 0.1584 - r2_score: -0.0953 - val_los
s: 0.1667 - val_r2_score: -0.1570
Epoch 83/100
                  Os 8ms/step - loss: 0.1523 - r2_score: -0.0408 - val_los
s: 0.1468 - val_r2_score: -0.0203
Epoch 84/100
19/19 ----
                    Os 7ms/step - loss: 0.1649 - r2_score: -0.1534 - val_los
s: 0.1812 - val_r2_score: -0.2597
Epoch 85/100
19/19 -
                Os 8ms/step - loss: 0.1759 - r2_score: -0.1133 - val_los
s: 0.1815 - val r2 score: -0.2547
Epoch 86/100
                Os 8ms/step - loss: 0.1672 - r2_score: -0.0359 - val_los
19/19 -----
s: 0.2114 - val r2 score: -0.4709
Epoch 87/100
19/19 Os 8ms/step - loss: 0.1570 - r2_score: -0.0216 - val_los
s: 0.1971 - val r2 score: -0.3736
Epoch 88/100
                    —— 0s 8ms/step - loss: 0.1742 - r2_score: -0.0836 - val_los
s: 0.1729 - val_r2_score: -0.1995
Epoch 89/100
                  Os 7ms/step - loss: 0.1780 - r2_score: -0.0315 - val_los
s: 0.1486 - val_r2_score: -0.0335
Epoch 90/100
19/19 -
                       - 0s 6ms/step - loss: 0.1866 - r2_score: -0.0536 - val_los
s: 0.2329 - val_r2_score: -0.6224
Epoch 91/100
19/19 ----
                   Os 6ms/step - loss: 0.1700 - r2_score: -0.0447 - val_los
s: 0.1708 - val_r2_score: -0.1893
Epoch 92/100
19/19 -----
                 ______ 0s 7ms/step - loss: 0.1623 - r2_score: -0.0309 - val_los
s: 0.1632 - val_r2_score: -0.1352
Epoch 93/100
               ———— 0s 8ms/step - loss: 0.1776 - r2_score: -0.0485 - val_los
s: 0.1604 - val_r2_score: -0.1159
Epoch 94/100
```

```
—— 0s 8ms/step - loss: 0.1660 - r2_score: -0.0125 - val_los
s: 0.1750 - val_r2_score: -0.2196
Epoch 95/100
19/19 -
                         - 0s 8ms/step - loss: 0.1722 - r2_score: -0.0216 - val_los
s: 0.1482 - val_r2_score: -0.0320
Epoch 96/100
19/19 -
                         - 0s 6ms/step - loss: 0.1716 - r2_score: -0.0645 - val_los
s: 0.1622 - val_r2_score: -0.1278
Epoch 97/100
19/19 -
                         - 0s 6ms/step - loss: 0.1677 - r2_score: -0.0535 - val_los
s: 0.1578 - val_r2_score: -0.0985
Epoch 98/100
19/19 ---
                     Os 6ms/step - loss: 0.1653 - r2_score: -0.0436 - val_los
s: 0.1674 - val_r2_score: -0.1652
Epoch 99/100
19/19 -
                         - 0s 8ms/step - loss: 0.1562 - r2_score: -0.0364 - val_los
s: 0.1616 - val_r2_score: -0.1257
Epoch 100/100
19/19 -
                         - 0s 7ms/step - loss: 0.1680 - r2_score: -0.0234 - val_los
s: 0.1470 - val_r2_score: -0.0229
```

In [641... plot_metrics(uhist)

In [642... plot_loss(uhist)

Error for sequential model

9. Визуализируйте набор данных в виде диаграммы рассеяния и прогноз нейронной сети в виде поверхности в трехмерном пространстве, подписывая оси и рисунок.

```
Out[645... (2601, 2)
In [684... z = uni_model.predict(xy_2)
          z.shape
          xy_2.shape
         82/82 -
                                   0s 846us/step
Out[684...
          (2601, 2)
In [647...
          z_mesh = z.reshape((n_plot, n_plot))
          z_mesh.shape
Out[647... (51, 51)
In [649...
          # plt.scatter(ds['temp'], ds['doy'])
          # plt.plot(ds['temp'], y_uhat, c = 'r')
          fig = plt.figure()
          ax = plt.axes(projection='3d')
          xs = X[:, 0]
          ys = X[:, 1]
          zs = ds['temp_lower']
          ax.scatter(xs, ys, zs, s = 100)
          ax.set_xlabel('temp_lower')
          ax.set_ylabel('doy')
          ax.set_zlabel('temp')
          ax.plot_surface(x_mesh, y_mesh, z_mesh, linewidth = 0.25, cstride=1, rstride=1,
                           cmap=cm.winter, antialiased=True, edgecolors='gray')
          ax.scatter( xs, ys, zs, s=100, c='r' )
          ax.view_init(azim = 120, elev = 20)
```


К сожалению, вывод удручающий, так как для такой диаграммы рассеяния(см. решение задания 7) метрика обучаемости R^2 всегда будет находится справа от нуля, так как модель не может найти способа предсказывать лучше графика у = m, что заметно при обучении модели(показатель R2 все время приближается к 0).

10. Разбейте набор данных из двух признаков и отклика на обучающую и тестовую выборки и постройте кривые обучения для заданного показателя качества в зависимости от количества точек в обучающей выборке, подписывая оси и рисунок и создавая легенду.

```
In [655... ds.shape
    train = ds.iloc[:534, :]
```

4/25/24, 9:53 PM

```
HW2 Petrov
          test = ds.iloc[534: , :]
          xy = np.array(train[['temp', 'doy']])
In [669...
          feature_normalizer = tf.keras.layers.Normalization(axis=None)
          feature_normalizer.adapt(xy)
In [670...
          uni_model = tf.keras.Sequential([
              tf.keras.Input(shape=(2, )),
              feature_normalizer,
              tf.keras.layers.Dense(units=128, activation='sigmoid',
                                   kernel_regularizer = tf.keras.regularizers.L2(12=0.01)),
              tf.keras.layers.Dense(units=128, activation='sigmoid',
                                   kernel_regularizer = tf.keras.regularizers.L2(12=0.01)),
              tf.keras.layers.Dense(units=128, activation='sigmoid',
                                   kernel_regularizer = tf.keras.regularizers.L2(12=0.01)),
              tf.keras.layers.Dense(units=1)
          ])
In [671...
          uni_model.summary()
        Model: "sequential 41"
                                                    Output Shape
          Layer (type)
          normalization_27 (Normalization)
                                                    (None, 2)
          dense_104 (Dense)
                                                    (None, 128)
          dense_105 (Dense)
                                                    (None, 128)
          dense_106 (Dense)
                                                    (None, 128)
          dense_107 (Dense)
                                                    (None, 1)
         Total params: 33,540 (131.02 KB)
         Trainable params: 33,537 (131.00 KB)
         Non-trainable params: 3 (16.00 B)
```

```
loss = 'mse',
              optimizer=tf.optimizers.Adam(learning_rate=0.01),
              metrics=['r2_score']
In [694...
          uhist = uni_model.fit(
              xy, train['temp_lower'],
              epochs = 100,
              verbose = 1,
              validation_split = 0.2
```

uni_model.compile(

In [672...

```
Epoch 1/100
                  Os 6ms/step - loss: 0.1937 - r2_score: -0.0364 - val_los
14/14 ----
s: 0.1003 - val r2 score: -0.7649
Epoch 2/100
14/14 ---
                   Os 4ms/step - loss: 0.1904 - r2_score: -0.0194 - val_los
s: 0.0576 - val_r2_score: -0.0151
Epoch 3/100
                _______ 0s 4ms/step - loss: 0.2146 - r2_score: -0.0826 - val_los
14/14 -----
s: 0.0585 - val r2 score: -0.0201
Epoch 4/100
                       - 0s 3ms/step - loss: 0.2286 - r2_score: -0.1739 - val_los
14/14 -
s: 0.1402 - val_r2_score: -1.3926
Epoch 5/100
                       — 0s 3ms/step - loss: 0.2238 - r2_score: -0.1561 - val_los
s: 0.1923 - val r2 score: -2.3554
Epoch 6/100
14/14 ----
                    Os 4ms/step - loss: 0.2108 - r2_score: -0.0824 - val_los
s: 0.0685 - val_r2_score: -0.1988
Epoch 7/100
14/14 -
                    Os 3ms/step - loss: 0.2097 - r2_score: -0.0574 - val_los
s: 0.0576 - val_r2_score: -0.0055
Epoch 8/100
14/14 -----
             0s 3ms/step - loss: 0.2120 - r2_score: -0.0998 - val_los
s: 0.0846 - val_r2_score: -0.4799
Epoch 9/100
                ———— 0s 3ms/step - loss: 0.1900 - r2 score: -0.0608 - val los
s: 0.1776 - val_r2_score: -2.1317
Epoch 10/100
                   Os 3ms/step - loss: 0.2414 - r2_score: -0.1944 - val_los
s: 0.1601 - val_r2_score: -1.7757
Epoch 11/100
14/14 ----
                   ——— 0s 3ms/step - loss: 0.1877 - r2_score: -0.0219 - val_los
s: 0.0714 - val_r2_score: -0.2495
Epoch 12/100
14/14 -
                    Os 3ms/step - loss: 0.2161 - r2_score: -0.0186 - val_los
s: 0.0837 - val_r2_score: -0.4770
Epoch 13/100
                Os 5ms/step - loss: 0.1956 - r2_score: -0.0222 - val_los
14/14 -----
s: 0.0717 - val_r2_score: -0.2658
Epoch 14/100
14/14 Os 3ms/step - loss: 0.1875 - r2_score: -0.0407 - val_los
s: 0.0702 - val_r2_score: -0.2382
Epoch 15/100
                 ——— 0s 3ms/step - loss: 0.1918 - r2 score: -0.0253 - val los
s: 0.0858 - val_r2_score: -0.5152
Epoch 16/100
                  Os 3ms/step - loss: 0.2024 - r2_score: -0.0182 - val_los
s: 0.0813 - val_r2_score: -0.4357
Epoch 17/100
                    OS 3ms/step - loss: 0.1914 - r2 score: -0.0338 - val los
14/14 ----
s: 0.1690 - val_r2_score: -1.9812
Epoch 18/100
14/14 ---
                    Os 2ms/step - loss: 0.2073 - r2_score: -0.0781 - val_los
s: 0.0598 - val_r2_score: -0.0496
Epoch 19/100
14/14 -----
                  ———— 0s 3ms/step - loss: 0.2116 - r2 score: -0.0808 - val los
```

```
s: 0.1036 - val_r2_score: -0.8193
Epoch 20/100
                OS 4ms/step - loss: 0.1966 - r2 score: -0.0430 - val los
s: 0.1256 - val_r2_score: -1.2137
Epoch 21/100
                    Os 4ms/step - loss: 0.2103 - r2_score: -0.0659 - val_los
s: 0.0795 - val_r2_score: -0.3933
Epoch 22/100
                   Os 4ms/step - loss: 0.1960 - r2_score: -0.0152 - val_los
s: 0.0633 - val_r2_score: -0.1162
Epoch 23/100
                    Os 4ms/step - loss: 0.2308 - r2 score: -0.1747 - val los
14/14 ----
s: 0.0635 - val_r2_score: -0.0403
Epoch 24/100
14/14 ----
                 Os 5ms/step - loss: 0.2197 - r2 score: -0.0998 - val los
s: 0.0764 - val_r2_score: -0.3136
Epoch 25/100
             Os 4ms/step - loss: 0.2019 - r2_score: -0.0590 - val_los
14/14 -----
s: 0.0771 - val_r2_score: -0.3565
Epoch 26/100
             ———— 0s 4ms/step - loss: 0.2057 - r2_score: -0.0347 - val_los
s: 0.0969 - val_r2_score: -0.7119
Epoch 27/100
                   Os 5ms/step - loss: 0.1840 - r2_score: -0.0550 - val_los
s: 0.0622 - val_r2_score: -0.0915
Epoch 28/100
14/14 ---
                    Os 4ms/step - loss: 0.1945 - r2_score: -0.0330 - val_los
s: 0.0789 - val_r2_score: -0.3887
Epoch 29/100
14/14 -
                Os 3ms/step - loss: 0.2065 - r2_score: -0.0276 - val_los
s: 0.1142 - val r2 score: -1.0167
Epoch 30/100
                Os 3ms/step - loss: 0.2091 - r2_score: -0.0318 - val_los
14/14 -----
s: 0.1708 - val r2 score: -2.0134
Epoch 31/100
14/14 Os 3ms/step - loss: 0.2197 - r2_score: -0.1337 - val_los
s: 0.0639 - val r2 score: -0.0877
Epoch 32/100
                    Os 3ms/step - loss: 0.2006 - r2_score: -0.0626 - val_los
s: 0.0616 - val_r2_score: -0.0741
Epoch 33/100
                  Os 3ms/step - loss: 0.1923 - r2_score: -0.0531 - val_los
s: 0.0841 - val_r2_score: -0.4837
Epoch 34/100
14/14 -
                       - 0s 4ms/step - loss: 0.1868 - r2_score: -0.0146 - val_los
s: 0.0739 - val_r2_score: -0.3042
Epoch 35/100
14/14 ----
                   Os 4ms/step - loss: 0.1994 - r2_score: -0.0531 - val_los
s: 0.1803 - val_r2_score: -2.1833
14/14 -----
                 ———— 0s 4ms/step - loss: 0.1976 - r2_score: -0.0614 - val_los
s: 0.1719 - val_r2_score: -2.0098
Epoch 37/100
               Os 4ms/step - loss: 0.2221 - r2_score: -0.1103 - val_los
s: 0.1236 - val_r2_score: -1.1712
Epoch 38/100
```

```
Os 4ms/step - loss: 0.2018 - r2_score: -0.0271 - val_los
s: 0.0637 - val_r2_score: -0.1199
Epoch 39/100
14/14 -
                        - 0s 4ms/step - loss: 0.2060 - r2_score: -0.0770 - val_los
s: 0.0937 - val_r2_score: -0.6471
Epoch 40/100
14/14 ---
                        — 0s 4ms/step - loss: 0.1877 - r2_score: -0.0206 - val_los
s: 0.0667 - val_r2_score: -0.1771
14/14 ---
                      —— 0s 5ms/step - loss: 0.1983 - r2_score: -0.0264 - val_los
s: 0.0730 - val_r2_score: -0.2893
Epoch 42/100
                 _______ 0s 4ms/step - loss: 0.1983 - r2_score: -0.0130 - val_los
14/14 -----
s: 0.0715 - val_r2_score: -0.2627
Epoch 43/100
                        - 0s 4ms/step - loss: 0.2131 - r2_score: -0.0512 - val_los
14/14 -
s: 0.1065 - val_r2_score: -0.8802
Epoch 44/100
                        - 0s 4ms/step - loss: 0.1895 - r2 score: -0.0172 - val los
s: 0.1287 - val_r2_score: -1.2737
Epoch 45/100
14/14 -
                        — 0s 4ms/step - loss: 0.2160 - r2 score: -0.0436 - val los
s: 0.0711 - val_r2_score: -0.2485
Epoch 46/100
14/14 -
                        - 0s 4ms/step - loss: 0.2053 - r2_score: -0.1166 - val_los
s: 0.1008 - val r2 score: -0.7476
Epoch 47/100
                 0s 4ms/step - loss: 0.2103 - r2_score: -0.0905 - val_los
14/14 ----
s: 0.1495 - val_r2_score: -1.5980
Epoch 48/100
                     ---- 0s 4ms/step - loss: 0.2097 - r2 score: -0.0917 - val los
14/14 ----
s: 0.0998 - val r2 score: -0.7465
Epoch 49/100
                        - 0s 5ms/step - loss: 0.2006 - r2 score: -0.0337 - val los
s: 0.0585 - val_r2_score: -0.0218
Epoch 50/100
                      —— 0s 4ms/step - loss: 0.2107 - r2 score: -0.0995 - val los
s: 0.0624 - val_r2_score: -0.0720
Epoch 51/100
14/14 -
                        - 0s 5ms/step - loss: 0.1992 - r2_score: -0.0508 - val_los
s: 0.1014 - val_r2_score: -0.7835
Epoch 52/100
                      Os 4ms/step - loss: 0.1961 - r2_score: -0.0511 - val_los
14/14 ---
s: 0.1072 - val r2 score: -0.8730
Epoch 53/100
                  Os 4ms/step - loss: 0.2016 - r2_score: -0.0351 - val_los
14/14 ----
s: 0.1793 - val r2 score: -2.1620
Epoch 54/100
                      — 0s 4ms/step - loss: 0.2248 - r2_score: -0.2706 - val_los
s: 0.1401 - val r2 score: -1.3555
Epoch 55/100
                     ---- 0s 5ms/step - loss: 0.2187 - r2_score: -0.0681 - val_los
s: 0.1367 - val_r2_score: -1.3667
Epoch 56/100
                        - 0s 5ms/step - loss: 0.2035 - r2_score: -0.0064 - val_los
s: 0.1295 - val_r2_score: -1.2817
```

```
Epoch 57/100
                 Os 5ms/step - loss: 0.1952 - r2_score: -0.0376 - val_los
14/14 ----
s: 0.0640 - val r2 score: -0.1293
Epoch 58/100
14/14 ----
                   Os 4ms/step - loss: 0.1948 - r2_score: -0.0194 - val_los
s: 0.1151 - val_r2_score: -1.0272
Epoch 59/100
                 ——— 0s 4ms/step - loss: 0.2241 - r2_score: -0.1385 - val_los
14/14 -----
s: 0.2020 - val r2 score: -2.4605
Epoch 60/100
                       - 0s 4ms/step - loss: 0.2188 - r2_score: -0.1132 - val_los
14/14 -
s: 0.0768 - val_r2_score: -0.3134
Epoch 61/100
                       - 0s 4ms/step - loss: 0.1955 - r2_score: -0.0395 - val_los
s: 0.0712 - val r2 score: -0.2525
Epoch 62/100
14/14 ----
                     Os 5ms/step - loss: 0.2067 - r2_score: -0.0768 - val_los
s: 0.0813 - val_r2_score: -0.4243
Epoch 63/100
14/14 -
                     Os 4ms/step - loss: 0.2063 - r2_score: -0.0323 - val_los
s: 0.1124 - val_r2_score: -0.9805
Epoch 64/100
14/14 -----
              Os 4ms/step - loss: 0.1986 - r2_score: -0.0367 - val_los
s: 0.0956 - val_r2_score: -0.6863
Epoch 65/100
                 Os 4ms/step - loss: 0.1947 - r2 score: -0.0205 - val los
s: 0.1022 - val_r2_score: -0.8012
Epoch 66/100
                    —— 0s 11ms/step - loss: 0.2049 - r2_score: -0.0360 - val_los
s: 0.1128 - val_r2_score: -0.9696
Epoch 67/100
14/14 ----
                   ——— 0s 5ms/step - loss: 0.1997 - r2_score: -0.0342 - val_los
s: 0.0973 - val_r2_score: -0.7133
Epoch 68/100
14/14 -
                   Os 3ms/step - loss: 0.1995 - r2_score: -0.0140 - val_los
s: 0.0951 - val_r2_score: -0.6781
Epoch 69/100
                Os 3ms/step - loss: 0.2076 - r2_score: -0.0308 - val_los
14/14 -----
s: 0.1285 - val_r2_score: -1.2647
Epoch 70/100
              ———— 0s 4ms/step - loss: 0.2150 - r2_score: -0.0279 - val_los
s: 0.0768 - val_r2_score: -0.3544
Epoch 71/100
                 ——— 0s 5ms/step - loss: 0.1896 - r2 score: -0.0086 - val los
s: 0.0743 - val_r2_score: -0.3128
Epoch 72/100
                   Os 4ms/step - loss: 0.2078 - r2_score: -0.0319 - val_los
s: 0.0723 - val_r2_score: -0.2743
Epoch 73/100
                    OS 4ms/step - loss: 0.1980 - r2 score: -0.0624 - val los
14/14 ----
s: 0.1307 - val_r2_score: -1.2829
Epoch 74/100
14/14 ---
                    Os 4ms/step - loss: 0.2206 - r2_score: -0.1286 - val_los
s: 0.1336 - val_r2_score: -1.3173
Epoch 75/100
14/14 -----
                   ----- 0s 3ms/step - loss: 0.2066 - r2 score: -0.0218 - val los
```

```
s: 0.0793 - val_r2_score: -0.3964
Epoch 76/100
                OS 3ms/step - loss: 0.1726 - r2 score: -0.0224 - val los
s: 0.1151 - val_r2_score: -1.0269
Epoch 77/100
                    Os 4ms/step - loss: 0.2224 - r2_score: -0.1004 - val_los
s: 0.1704 - val_r2_score: -1.9930
Epoch 78/100
                    Os 3ms/step - loss: 0.2019 - r2_score: -0.0874 - val_los
s: 0.0968 - val_r2_score: -0.7045
Epoch 79/100
                    ---- 0s 5ms/step - loss: 0.2105 - r2 score: -0.1117 - val los
14/14 ---
s: 0.0588 - val_r2_score: -0.0053
Epoch 80/100
14/14 ----
                 ——— 0s 4ms/step - loss: 0.2099 - r2 score: -0.1187 - val los
s: 0.0597 - val r2 score: -8.0538e-04
             Os 5ms/step - loss: 0.2201 - r2_score: -0.0763 - val_los
14/14 -----
s: 0.0588 - val r2 score: -0.0065
Epoch 82/100
             ———— 0s 4ms/step - loss: 0.2213 - r2_score: -0.0858 - val_los
14/14 ----
s: 0.0575 - val_r2_score: -0.0020
Epoch 83/100
                   Os 4ms/step - loss: 0.1951 - r2_score: -0.0660 - val_los
s: 0.1158 - val_r2_score: -1.0313
Epoch 84/100
14/14 ---
                    Os 5ms/step - loss: 0.2015 - r2_score: -0.0657 - val_los
s: 0.1722 - val_r2_score: -2.0111
Epoch 85/100
14/14 -
                Os 4ms/step - loss: 0.2073 - r2_score: -0.1094 - val_los
s: 0.0848 - val r2 score: -0.4514
Epoch 86/100
                Os 4ms/step - loss: 0.2163 - r2_score: -0.0258 - val_los
14/14 -----
s: 0.0582 - val r2 score: -4.2558e-05
Epoch 87/100
14/14 Os 4ms/step - loss: 0.2106 - r2_score: -0.1599 - val_los
s: 0.0592 - val r2 score: -0.0068
Epoch 88/100
                     — 0s 4ms/step - loss: 0.2209 - r2_score: -0.1469 - val_los
s: 0.0626 - val_r2_score: -0.0060
Epoch 89/100
                   Os 3ms/step - loss: 0.2201 - r2_score: -0.0460 - val_los
s: 0.1190 - val_r2_score: -1.0543
Epoch 90/100
14/14 -
                       - 0s 3ms/step - loss: 0.2055 - r2_score: -0.0217 - val_los
s: 0.0994 - val_r2_score: -0.7404
Epoch 91/100
14/14 ----
                    Os 3ms/step - loss: 0.2184 - r2_score: -0.0183 - val_los
s: 0.0665 - val_r2_score: -0.1696
Epoch 92/100
14/14 ----
                 ———— 0s 3ms/step - loss: 0.1979 - r2_score: -0.0275 - val_los
s: 0.0645 - val_r2_score: -0.1306
Epoch 93/100
               ———— 0s 3ms/step - loss: 0.1951 - r2_score: -0.0184 - val_los
s: 0.0712 - val_r2_score: -0.2554
Epoch 94/100
```

```
— 0s 5ms/step - loss: 0.1979 - r2_score: -0.0165 - val_los
s: 0.0912 - val_r2_score: -0.6047
Epoch 95/100
14/14 -
                         - 0s 3ms/step - loss: 0.1852 - r2_score: -0.0099 - val_los
s: 0.0643 - val_r2_score: -0.1252
Epoch 96/100
14/14 -
                         - 0s 4ms/step - loss: 0.2104 - r2_score: -0.1395 - val_los
s: 0.1076 - val_r2_score: -0.7897
Epoch 97/100
14/14 -
                         - 0s 4ms/step - loss: 0.2099 - r2_score: -0.0946 - val_los
s: 0.1010 - val_r2_score: -0.7426
Epoch 98/100
14/14 ---
                     Os 3ms/step - loss: 0.1947 - r2_score: -0.0103 - val_los
s: 0.1000 - val_r2_score: -0.7641
Epoch 99/100
                         - 0s 3ms/step - loss: 0.1948 - r2_score: -0.0174 - val_los
14/14 -
s: 0.0955 - val_r2_score: -0.6865
Epoch 100/100
14/14 -
                         - 0s 3ms/step - loss: 0.2205 - r2_score: -0.0327 - val_los
s: 0.1280 - val_r2_score: -1.2525
```

In [695... plot_loss(uhist)

In [696... plot_metrics(uhist)


```
In [704...
          # xy_test = np.array(test[['temp', 'doy']])
          # xy_test[:10]
          X = np.array(test[['temp', 'doy']])
          xs = X[:, 0]
          ys = X[:, 1]
          zs = np.array(df['temp_lower'])
In [705...
          n_plot = 51
          x_plot = np.linspace(np.min(xs), np.max(xs), n_plot)
          y_plot = np.linspace(np.min(ys), np.max(ys), n_plot)
          x_mesh, y_mesh = np.meshgrid(x_plot, y_plot)
          x_mesh.shape, y_mesh.shape
Out[705... ((51, 51), (51, 51))
  In [ ]: # x_mesh, y_mesh = np.meshgrid(x_plot, y_plot)
          # x_mesh.shape, y_mesh.shape
In [706...
          x_plot2 = np.reshape(x_mesh, [n_plot**2,1])
          y_plot2 = np.reshape(y_mesh, [n_plot**2,1])
          xy_2 = np.hstack([x_plot2, y_plot2])
          xy_2.shape
Out[706...
          (2601, 2)
In [707...
          z = uni_model.predict(xy_2)
```

```
82/82 -
                                   - 0s 3ms/step
In [708...
          z_mesh = z.reshape((n_plot, n_plot))
          z_mesh.shape
Out[708...
          (51, 51)
In [709...
          fig = plt.figure()
          ax = plt.axes(projection='3d')
          xs = xy_test[:, 0]
          ys = xy_test[:, 1]
          zs = test['temp_lower']
          ax.scatter(xs, ys, zs, s = 100)
          ax.set_xlabel('temp_lower')
          ax.set_ylabel('doy')
          ax.set_zlabel('temp')
          ax.plot_surface(x_mesh, y_mesh, z_mesh, linewidth = 0.25, cstride=1, rstride=1,
                           cmap=cm.winter, antialiased=True, edgecolors='gray')
          ax.scatter( xs, ys, zs, s=100, c='r' )
          ax.view_init(azim = 120, elev = 20)
```


Как мы видим, ситуация не изменилась, ведь признак никак не коррелирует с остальными, что было показано в конце 9ой задачи