CS 3186 --- Assignment #8

(I) Given the description of L_1 and L_2 as regular in the form of acceptors M_1 and M_2 . Show that the following languages are regular by constructing an automaton using generic descriptions of M below:

(iii) L₁ complement

(iv) L₁*

(v) L₁^R

(II) $\Sigma = \{0, 1\}$

(i) Give a DFA, M_1 , that accepts a Language L_1 = {all strings that contain 00}

(ii) Give a DFA, M_2 , that accepts a Language L_2 = {all strings that end with 01}

(iii) Give acceptor for Reverse of L₁

(iv) Give acceptor for complement of L_2

(v) Give acceptor for L_1 union L_2

(vi) Give acceptor for L₁ intersection L₂

(vii) Give acceptor for L_1 - L_2

(III) Give the DFAs for the two languages $\{w \mid w \text{ has exactly two a's} \}$ and $\{w \mid w \text{ has at least two b's} \}$. Redo exercises (iii) through (vii)

iii)

v)

vi)

viii) $L_{1}-L_{2}$ $L_{1}\overset{\circ}{\square} \overset{\circ}{\square} \overset{\overset{\circ}{\square} \overset{\circ}{\square} \overset$

(IV) Given the automaton below for a language L Construct an automaton for

(i) Reverse of L:

(ii) Complement of L:

Lis a NFA. Convert it to a complete DFA first:

therefore, I is:

