Лабораторная работа 2.1.6 Эффект Джоуля — Томсона

Рашковецкий М.М., группа 526т

13 марта 2016 г.

Цель работы: определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку при различных начальных значенях давления и температуры; вычисление по результатам опытов коэффициентов Ван-дер-Ваальса.

Оборудование и материалы: трубка с пористой перегородкой, труба Донера, термостат, термометр, дифференциальная термопара, микровольтметр, балластный баллон, манометр.

Краткая теория

Эффект Джоуля — Томсона — изменение температуры газа, медленно протекающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции.

В работе газ переходит через пористую перегородку из области с давлением P_1 в область с атмосферным давлением P_2 . Рассмотрим стационарный поток между сечениями I и II до и после перегородки. Считая стенки адиабатическими и жёсткими, из закона сохранения энергии получим:

$$A_1 - A_2 = \left(U_2 + \frac{\nu\mu v_2^2}{2}\right) - \left(U_1 + \frac{\nu\mu v_1^2}{2}\right),\tag{1}$$

где $A_1 = P_1V_1$ — работа, совершённая над газом при прохождении через I, $A_2 = P_2V_2$ — работа, совершённая газом при прохождении через II. Тогда

$$H_1 - H_2 = \frac{1}{2}\nu\mu \left(v_2^2 - v_1^2\right). \tag{2}$$

В начале опыта трение в перегородке существенно её нагревает, из-за чего (1) выполняется плохо, но со временем её температура устанавливается и (1) становится верным с хорошей точностью.

Чистый процесс Джоуля — Томсона (дифференциальный эффект для разреженного газа) — когда скорости по обе стороны от перегородки малы, тогда, согласно (2), энтальпию можем считать неизменной. Тогда

$$\mu_{\text{Д}-\text{T}} = \frac{\Delta T}{\Delta P} = -\frac{(\partial H/\partial P)_T}{(\partial H/\partial T)_P}.$$
 (3)

Чтобы вычислить эти производные, запишем первое начало термодинамики:

$$\delta Q = dH - VdP. \tag{4}$$

Считая H = H(T, P), получим

$$\delta Q = \left(\frac{\partial H}{\partial T}\right)_P dT + \left[\left(\frac{\partial H}{\partial P}\right)_T - V\right] dP \tag{5}$$

Полагая dP=0, по определению C_P получаем

$$\left(\frac{\partial H}{\partial P}\right)_T = C_P. \tag{6}$$

Разделим (5) на T, считая процесс квазистатическим, получаем

$$dS = \frac{1}{T} \left(\frac{\partial H}{\partial T} \right)_P dT + \frac{1}{T} \left[\left(\frac{\partial H}{\partial P} \right)_T - V \right] dP \tag{7}$$

Поскольку по второму началу термодинамики dS является полным дифференциалом,

$$\frac{\partial}{\partial P} \left[\frac{1}{T} \left(\frac{\partial H}{\partial T} \right)_P \right] = \frac{\partial}{\partial T} \left\{ \frac{1}{T} \left[\left(\frac{\partial H}{\partial P} \right)_T - V \right] \right\} \tag{8}$$

После упрощения получим

$$\left(\frac{\partial H}{\partial T}\right)_{P} = V - T \left(\frac{\partial V}{\partial T}\right)_{P}.$$
(9)

Подставим (6) и (9) в (3):

$$\mu_{\text{Д-T}} = \left(\frac{\partial T}{\partial P}\right)_{\text{H}} = \frac{T \left(\partial V/\partial T\right)_{P} - V}{C_{P}}.$$
(10)

Для идеального газа $PV = \nu RT$ и коэффициент Джоуля — Томсона нулевой. Найдём коэффициент для газа Ван-дер-Ваальса. Уравнение состояния:

$$\left(P + \frac{a\nu^2}{V^2}\right)\left(\frac{V}{\nu} - b\right) = RT.$$
(11)

Продифференцируем обе части для 1 моля газа:

$$\left(dP - \frac{2adV}{V^3}\right)(V - b) + \left(P + \frac{a}{V^2}\right)dV = RdT.$$
(12)

Преобразуя, получим

$$\left(P - \frac{a}{V^2} + \frac{2ab}{V^3}\right)dV = RdT - (V - b)dP,$$
(13)

откуда

$$\left(\frac{\partial V}{\partial T}\right)_{P} = \frac{R}{P - \frac{a}{V^{2}} + \frac{2ab}{V^{3}}}.$$
(14)

Таблица 1: Критические температуры и температуры инверсии для разных газов

Газ	$T_{\kappa p}$, K	$T_{\text{инв}}, K$
Гелий	5,2	46
Водород	33	205
Азот	126	604
Воздух	132,6	650
Углекислый газ	304	2050

Разложим по Тейлору до первого порядка:

$$\left(\frac{\partial V}{\partial T}\right)_P \approx \frac{R}{P}\left(1 + \frac{a}{PV^2}\right).$$
 (15)

Из (11)

$$\frac{R}{P} = \frac{V}{T} \left(1 + \frac{a}{PV^2} \right) \left(1 - \frac{b}{V} \right). \tag{16}$$

Подставим (16) и (15) в (10), пренебрегая членами выше первого порядка (например, по (11) $PV \approx RT$) и получим

$$\mu_{\text{Д-T}} = \frac{\frac{2a}{RT} - b}{C_P}.\tag{17}$$

Отсюда видно, что для больших a при расширении газ охлаждается, для малых — нагревается. Температура, для которой эффект отсутствует и в которой меняет знак, называют температурой инверсии:

$$T_{\text{инв}} = \frac{2a}{Rb}.\tag{18}$$

Она связана с критической температурой как

$$T_{\text{инв}} = \frac{27}{4} T_{\text{кp}}.\tag{19}$$

В таблице 1 приведены значения критической температуры и температуры инверсии для разных газов. Из неё видно, что предсказания теории Ван-дер-Ваальса для реальных газов выполняются не очень хорошо. Она правильно передаёт их свойства качественно, но не претендует на хорошее количественное описание картины.

При больших разностях давлений необходимо прибегать к более точным разложениям, приведенная теория для этого случая не годится.

Вернёмся к правой части (2), оценим изменение температуры в связи с изменением скорости. Для этого не нужно пользоваться теорией Ван-дер-Ваальса, достаточно соотношений для идеального газа. Тогда (2) в расчёте на 1 моль преобразуется к виду

$$(C_V + R) \Delta T \approx \frac{\mu}{2} \left(v_2^2 - v_1^2 \right) \tag{20}$$

или

$$\Delta T \approx \frac{\mu}{2C_P} \left(v_2^2 - v_1^2 \right). \tag{21}$$

В опыте $Q \le 10 \, \text{cm}^3/\text{c}, \, d = 3 \, \text{мм}$. Тогда

$$v_2 \leqslant \frac{4Q}{\pi d^2} \approx 1.4 \text{m/c.}$$
 (22)

Для углекислого газа $\mu = 44 \, \text{г/моль}, \, C_P = 41 \, \text{Дж/} \, (\text{моль} \cdot \text{K}), \, \text{имеем}$

$$\Delta T \leqslant \frac{\mu}{2C_P} v_2 \approx 10^{-3} \text{K}. \tag{23}$$

В работе изменение температуры порядка 1 К, так что вкладом скорости действительно можно пренебречь.

Установка

Рис. 1: Схема установки

На рис. 1 приведена схема установки. Она состоит из:

- 1. трубки из нержавеющей стали;
- 2. пористой перегородки (стеклянной пробки);
- 3. теплоизолирующей трубы Дьюара, покрытой серебром для уменьшения излучения;
- 4. уплотняющего кольца;
- 5. змеевика, по которому поступает газ;
- 6. балластного баллона;

- 7. цифрового вольтметра;
- 8. спая термопары после перегородки;
- 9. спая термопары перед перегородкой;
- 10. пробки из пенопласта.

Также на схеме отмечены:

- 11. кнопка включения вольтметра;
- 12. кнопка «АВП» (автоматический выбор предела);
- 13. кнопка «U=» (постоянный ток).

Ход работы

- 1. Установили на термостате температуру t = 20°C.
- 2. Включили вольтметр на режим постоянного тока и автоматического выбора предела, записали показание U_0 .
- 3. Открыли регулирующий вентиль до предела, избыточное давление составило около 4 атм.
- 4. Через 10 минут записали показания манометра и вольтметра.
- 5. Снизили давление, через 5 минут записали показания манометра и вольтметра.
- 6. Измерили ещё 5 точек.
- 7. Установили на термостате температуру t = 40°C.
- 8. Подождав, пока температура установится, повторили пп. 3–6.
- 9. Повторили пп. 7–8 для $t = 60^{\circ}$ С.

Обработка результатов

В таблице 2 приведены измеренные величины: $t,\,U$ и ΔP , при этом из U вычтено значение при нулевой разности давлений. Чувствительность $s=U/\Delta T$ для каждой температуры взята из таблицы в лабнике, с её помощью вычислена разность температур 1 .

Затем я построил графики $\Delta T (\Delta P)$ для каждой температуры с помощью библиотеки **matplotlib** и линейно аппроксимировал их с помощью библиотеки **scipy.optimize**. Экспериментальные точки и аппроксимация нанесены на трёх графиках на рис. 2.

Для каждой температуры посчитан угловой коэффициент прямой, который и является коэффициентом Джоуля — Томсона, и его погрешность.

 $^{^{1}}$ Здесь и далее ΔP и ΔT являются не изменениями температуры и давления при прохождении через перегородку, а убылями.

Таблица 2: Результаты эксперимента

t,° C	U, мкВ	s , мк B/K	ΔP , atm	$\Delta T, K$
20	155		4,17	3,968
	130	3,57		3,353
	114		3,18	2,96
	99	40,7	2,88	2,592
	74		2,37	1,977
	49		1,62	1,363
	26		0,99	0,798
40	142		4,17	3,494
	115		3,66	2,858
	99		3,27	2,482
	69	42,5	2,46	1,776
	45		1,86	1,211
	26		1,32	0,764
	11		0,84	0,411
60	16		1,08	0,51
	34		1,77	0,918
	55	44,1	2,4	1,394
	75		3,03	1,848
	90		3,45	2,188
	106		3,9	2,551
	114		4.14	2.732

По двум парам соседних температур посчитаны коэффициенты a и b в соответствии с (17):

$$a = \frac{RC_P}{2} \frac{\mu_1 - \mu_2}{\frac{1}{T_1} - \frac{1}{T_2}} \tag{24}$$

$$b = C_P \frac{\mu_1 T_1 - \mu_2 T_2}{T_2 - T_1} \tag{25}$$

Их погрешности соответственно равны

$$\sigma_a = \frac{RC_P}{2} \frac{\sqrt{\sigma_{\mu_1}^2 + \sigma_{\mu_2}^2}}{\frac{1}{T_1} - \frac{1}{T_2}} \tag{26}$$

$$\sigma_b = C_P \frac{\sqrt{\sigma_{\mu_1}^2 T_1^2 + \sigma_{\mu_2}^2 T_2^2}}{T_2 - T_1} \tag{27}$$

По (18) посчитана температура инверсии, и оценена её погрешность как

$$\sigma_{T_{\text{инв}}} = T_{\text{инв}} \sqrt{\left(\frac{\sigma_a}{a}\right)^2 + \left(\frac{\sigma_b}{b}\right)^2} \tag{28}$$

Эти результаты, а также табличные значения $\mu_{\text{Д-T}}$ при тех же температура, значения параметров a, b при критической температуре и реальная температура инверсии приведены в таблице 3.

Таблица 3: Результаты обработки и табличные данные

t,° C	$\mu_{ m Д-T},~{ m K/aтm}$	$\mu_{\text{Д-Т табл}}, \text{K/атм}$	$a, \frac{\text{H} \cdot \text{M}^4}{\text{MOJIb}^2}$	$b, \frac{\text{см}^3}{\text{моль}}$	$T_{\text{инв}}$, K
20	$1,00 \pm 0,03$	1,105	0.7 ± 0.3	200 ± 200	900 ± 1500
40	0.91 ± 0.03	0,958	, ,		
60	0.737 ± 0.015	0,838	$1,6 \pm 0,3$	800 ± 200	450 ± 40
31	_	_	0,3652	42,792	2053

Значения коэффициентов Джоуля — Томсона отклоняются от табличных приблизтельно на 10%, однако более чем на 3σ . Это может быть связано с тем, что мы недостаточно долго ждали установления показаний вольтметра, с наличием примесей или тем, что погрешности занижены.

Средние значения параметров из уравнения Ван-дер-Ваальса, полученные по паре температур 20° С и 40° С, ближе к табличным, как и ожидалось, поскольку температуры ближе к критической. Однако для коэффициента b и температуры инверсии в этом случае погрешности превысили 100%, это говорит о том, что точности эксперимента не хватает, чтобы уловить их значения. Для пары 40° С и 60° С параметры отличаются от табличных уже очень сильно, из чего можно сделать вывод, что реальный газ достаточно далёк от модели Ван-дер-Ваальса.

Рис. 2: Графики

