

CEL 610 - Foundation Engineering Department of Civil Engineering Indian Institute of Technology Delhi

Time: 01 Hour

Total marks: 20

(Answer all the questions)

- 1. A 3×3 m square footing ABCD with its CG at E, carrying a UDL of 250 kN/m² is located at ground level (Figure 1). Assuming it as an equivalent circular footing, calculate the vertical stress at a depth of 4 m directly below the following points; (a) Center E of the square ABCDand (b) At corner A.
- 2. Compute the corrected SPT-N value at different depth for bore hole data in Table 1 as per [41] IS 2131 (1981). The water table is located at a depth of 10.5 m below ground level.
- 3. A square footing and a circular footing are to be designed to carry a allowable load of 120 kN at a depth of 2 m below GL in a soil with the following data. $\gamma_{soil} = 18 \text{ kN/m}^3$, $c = 10 \text{ kN/m}^2$, $\phi = 20^{\circ}$ (consider general shear failure and $N_c = 17.69$, $N_q = 7.44$ and $N_{\gamma} = 3.64$). Calculate the dimensions of square and circular footing. Use Terzaghi's Bearing Capacity Theory. Given: Factor of safety, $F_s = (Ultimate load / Allowable load) = 3.$
- 4. A continuous footing of width 2 m is located at a depth of 1.2 m in a stronger sand. A softer clay layer is located at a depth 1.5 m, measured from the bottom of the foundation. For the top sand layer: Friction angle = 40°, Cohesion = 0, Unit weight = 17.5 kN/m³. For the bottom clay layer: Friction angle = 0°, Cohesion = 30 kN/m², Unit weight = 16.5 kN/m³. Determine the gross ultimate load per unit length of foundation.
- Load tests were carried out on a 0.3 m square plate and a 0.3 m diameter circular plate on a dense cohesionless sand having a unit weight of 17 kN/m³. The plates were tested at a depth of 0.6 m below GL. Failure occurred at 10 kN and 7 kN for square and circular plates respectively. Determine the values of bearing capacity factors N_q and N_γ . What would be the failure load per unit area of 0.3×0.3 m square footing.
- Describe with suitable diagram the sequence of operation of the penetrometer used in static

Figure 1

Table 1

Depth (m)	Field SPT-N	% Gravel	% Sand	% Silt	% Clay	Unit weight
1.75	9	8	20	67	5	(kN/m ³)
5.75 9.75	27	2	22	71	5	17.5
11.75	28	0	22	73	5	18.0
15.00	30	10	49	41	0	18.8
			18	71	11	18.8

