

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования.

Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет).

(МГТУ им. Н. Э. Баумана)

Конструирование и визуализация загородного посёлка

Студент: ИУ7-53Б Звягин Даниил Олегович

Руководитель: Вишневская Татьяна Ивановна

Цель и задачи

Цель - разработка программного обеспечения с пользовательским интерфейсом для генерации и визуализации загородного посёлка.

Для достижения цели были поставлены следующие задачи:

- 1) сравнение существующих алгоритмов процедурной генерации сцены;
- 2) сравнение существующих алгоритмов компьютерной графики, использующихся для визуализации трёхмерной модели (сцены);
- 3) выбор подходящих алгоритмов для решения поставленных задач;
- 4) проектирование архитектуры и графического интерфейса ПО;
- 5) выбор средств реализации ПО;
- 6) разработка ПО;
- 7) замер временных характеристик разработанного ПО.

Описание объектов сцены

- Камера
- Источник света
- Модель загородного посёлка, состоящая из:
 - Домов;
 - Дорог;
 - Деревьев.

Для представления объектов сцены была выбрана поверхностная модель, задающаяся полигональной сеткой при помощи списка граней.

Алгоритмы удаления невидимых линий и поверхностей

N – количество граней

W – ширина экрана в пикселях

Н – высота экрана в пикселях

	Алгоритм Варнока	Алгоритм обратной трассировки лучей	Алгоритм, использующий Z- буфер
Необходимость в сортировке	Нет	Нет	Нет
Временная сложность	O(WHN)	O(WHN)	O(WHN)
Возможность реализации оптических эффектов	Нет	Да	Нет

Метод построения теней

Метод теневых карт

Метод теневых карт основывается на построении карты теней методом заполнения Z-буфера с точки зрения источника света и сравнения этого буфера с точки зрения камеры для правильного затенения пикселей.

Метод теневых карт в сочетании с алгоритмом Z-буфера имеет свои преимущества и недостатки. К преимуществам можно отнести:

- высокую производительность для динамических сцен;
- возможность создания реалистичных теней для сложных объектов.

Алгоритм генерации сцены

Алгоритм квантового коллапса волновой функции

Это метод генерации контента, который используется для создания двумерных и трёхмерных структур, таких как уровни в видеоиграх, текстуры и другие элементы. Он был разработан Максимом Гуминым и основан на концепциях из квантовой механики, хотя и не имеет прямого отношения к физике.

Этот алгоритм подходит для выполнения поставленной задачи (генерации загородного посёлка), так как он позволяет нам заполнить заданную плоскость в соответствии с ограничениями, а также предоставляет возможность влиять на результат посредством коэффициентов, которые можно задавать в пользовательском интерфейсе.

Общий алгоритм построения кадра

Алгоритм, использующий Z-буфер

Алгоритм генерации сцены методом коллапса волновой функции

Диаграмма классов

Средства реализации

- Язык: С++
- Среда разработки: Visual Studio Code

Пример интерфейса

Зависимость времени генерации кадра от размеров квадратной сцены

- операционная система EndeavourOS 64бит;
- версия ядра Linux 6.12.3-arch1-1;
- 13th Gen Intel(R) Core(TM) i5-13500Н4.70 ГГц 12 ядер
- оперативная память 16ГБ с частотой 5200МГц.

Зависимость времени генерации сцены от размеров квадратной матрицы

- операционная система EndeavourOS 64бит;
- версия ядра Linux 6.12.3-arch1-1;
- 13th Gen Intel(R) Core(TM) i5-13500Н4.70 ГГц 12 ядер
- оперативная память 16ГБ с частотой 5200МГц.

Заключение

Поставленная цель была достигнута и были выполнены все поставленные задачи:

- были сравнены существующие алгоритмы процедурной генерации сцены;
- были сравнены существующие алгоритмы компьютерной графики, использующихся для визуализации трёхмерной модели (сцены);
- были выбраны подходящие алгоритмы для решения поставленных задач;
- были спроектированы архитектура и графический интерфейс ПО;
- были выбраны средства реализации ПО;
- было разработано ПО;
- были проведены замеры временных характеристик разработанного ПО.