Multi-core Programming

Assignment 2

Ali Gholami

Department of Computer Engineering & Information Technology
Amirkabir University of Technology

https://aligholamee.github.io aligholami7596@gmail.com

Abstract

A tree has many analogies in real life, and turns out that it has influenced a wide area of machine learning, covering both classification and regression. In decision analysis, a decision tree can be used to visually and explicitly represent decisions and decision making. As the name goes, it uses a tree-like model of decisions. Though a commonly used tool in data mining for deriving a strategy to reach a particular goal, its also widely used in machine learning, which will be the main focus of this article.

Keywords. Heterogeneous Programming, OpenMP, C Programming, C++ Programming, Parallelization, Multi-thread Programming.

1 Matrix Multiplication

1.1 What's the goal?

In this assignment, we'll be parallelizing the matrix multiplication using OpenMP. The goal is to speed up the matrix multiplication by implementing the parallelization in two axis (1D & 2D). Below the serial code for the matrix multiplication. Sources for this assignment is available in the repository merged with this report.

1.2 1D Parallelization

The following figures are provided from the problem description by *Dr. Ahmad Siavashi*. Each of the highlighted areas show a job for a thread. Figure 1.1 shows how the multiplication is done by each thread.

Assuming each integer as 4 bytes, we'll be filling the table 1.1 using the average time computed after

Figure 1.1: Matrix Multiplication Parallelization on Horizontal Axis.

Total Size of Each Matrix					
Num of Threads	1 MB	10 MB	100 MB	1 GB	Speedup
1	AF	AFG	004	004	004
2	AF	AFG	004	004	004
4	AF	AFG	004	004	004
8	AF	AFG	004	004	004

Table 1.1: Results of 1-Dimensional Parallelization.

6 times of running the program.

References

[1] Prashant Gupta, Cross-Validation in Machine Learning. Towards Data Science, Jun 5, 2017.