2010 Putnam A6

Tristan Shin

20 July 2019

Let $f:[0,\infty)\to\mathbb{R}$ be a strictly decreasing continuous function such that $\lim_{x\to\infty}f(x)=0$. Prove that $\int_0^\infty \frac{f(x)-f(x+1)}{f(x)}dx$ diverges.

First note that f(x) > 0 for all $x \in [0, \infty)$. Indeed, assume $f(t) \le 0$ for some $t \in [0, \infty)$. Then for all x > t + 1, $f(x) < f(t + 1) < f(t) \le 0$. Thus

$$\lim_{x \to \infty} f(x) \le f(t+1) < 0,$$

contradiction. So f(x) > 0 for all $x \in [0, \infty)$. This means we can freely divide and manipulate inequalities with f(x). In addition, the integrand $\frac{f(x) - f(x+1)}{f(x)}$ is positive because f(x) > f(x+1).

Suppose that $\int_0^\infty \frac{f(x) - f(x+1)}{f(x)} dx$ converges. Let $\epsilon > 0$. By the Cauchy criterion, there exists R > 0 such that b > a > R implies $\int_a^b \frac{f(x) - f(x+1)}{f(x)} dx < \frac{\epsilon}{2}$.

Fix a > R. Since $\lim_{x \to \infty} f(x) = 0$, there exists T > 0 such that b > T implies $f(b) < \frac{f(a)\epsilon}{2}$. Then if $b > \max\{a, T\}$,

$$\frac{\epsilon}{2} > \int_{a}^{b} \frac{f(x) - f(x+1)}{f(x)} dx$$

$$\geq \frac{1}{f(a)} \int_{a}^{b} f(x) - f(x+1) dx$$

$$= \frac{1}{f(a)} \int_{a}^{a+1} f(x) dx - \frac{1}{f(a)} \int_{b}^{b+1} f(x) dx$$

$$\geq \frac{f(a+1)}{f(a)} - \frac{f(b)}{f(a)}$$

$$> \frac{f(a+1)}{f(a)} - \frac{\epsilon}{2}$$

so $1 > \frac{f(a) - f(a+1)}{f(a)} > 1 - \epsilon$.

Thus for all $\epsilon > 0$, there exists an R > 0 such that a > R implies $\left| \frac{f(a) - f(a+1)}{f(a)} - 1 \right| < \epsilon$, so $\lim_{x \to \infty} \frac{f(x) - f(x+1)}{f(x)} = 1$. But $\int_0^\infty \frac{f(x) - f(x+1)}{f(x)} dx$ converges, so $\lim_{x \to \infty} \frac{f(x) - f(x+1)}{f(x)} = 0$, contradiction. Thus $\int_0^\infty \frac{f(x) - f(x+1)}{f(x)} dx$ does not converge. Since the integrand is positive, the integral diverges.