NETWORK SCIENCE OF ONLINE INTERACTIONS

Joao Neto

ABOUT ME

- BSc and MSc: Physics
 - Statistical mechanics, network theory
- PhD: Computational Neuroscience
 - Spreading models applied to brain activity

PhD: COVID-19 modeling

Science, 369(6500), eabb9789 (2020)

Post-PhD: computational social science

Prof. David Garcia

ABOUT ME

- What I'm most interested in:
 - Understanding the structure and dynamics of different social media platforms
 - Enforceable mechanisms to deal with issues (polarization, fake news, echo chambers)
 - Influence policy-making

- How I approach it:
 - Data-driven modeling of social media
 - Toy models to explore mechanisms
 - Large-scale analysis to provide insight into platforms
 - Current data hoard: I I + platforms, 60+TB

COURSE OBJECTIVES

- You want to understand some very complicated system (say, interactions on a social media platform) and are given some large dataset.
- How do you go about trying to understand it?

(Jan 6 US Capitol attack)

COURSE OBJECTIVES

- Networks are powerful abstractions that can help make sense of large interacting systems
- But:
 - not everything that can be represented as a network should
 - Not all methods are equally valid for all situations

Primary course objectives

- learn network theory to analyze interactions between large groups of agents
- Develop insight of when to use network theory and which parts of it
- Apply this new toolset to understand some aspect of Reddit

(a retweet network during the 2010 US election)

ADMINISTRATIVIA

- Course grading: Reddit project in groups of 3 max
 - 50% from the project presentation
 - 50% from a written report
 - 10% extra by developing the project on Github, publishing a notebook that can generate the figures shown in the report.
- Other information
 - Project needs to be registered by I I/Jun/23
 - Website: https://github.com/joaopn/teaching_networks_2023
 - Project guideline (with suggestions) available at the website.

SCHEDULE

- Book: "A First Course in Network Science" by Menczer et al
 - Very hands-on, uses Python and NetworkX
- Friday lecture schedule
 - Apr 14: Chapter 0 Introduction
 - Apr 21: Chapter 1 Network Elements
 - Apr 28: Chapter 2 Small Worlds
 - May 5: Chapter 3 Hubs
 - May 12: Chapter 4 Directions and Weights
 - May 19: Chapter 5 Network Models
 - May 26: Chapter 6 Communities
 - Jun 2: Chapter 7 Dynamics
 - Jun 16: Critical Phenomena on Networks
 - Jun 23: Polarization Dynamics on Networks
 - Jun 30: Scaling laws and Inequality in Social Media

SCHEDULE

- Wednesdays: short (<30 min) talk on some related topic that may be useful for your project + exercise discussion
 - Apr 19: Python refresh + coding tools (Github, Copilot, chatGPT)
 - Apr 26: Software carpentry
 - May 3: Data gathering: sites, APIs
 - May 10:A primer on Reddit
 - May 17:A primer on Reddit part II
 - May 24: Detecting inorganic dynamics on Social Media
 - May 31: Descriptive vs Inference methods
 - Jun 14: Handling large datasets/databases
 - Jun 21: Sampling bias and social media data
 - Jun 28: Depolarization mechanisms

QUESTIONS SO FAR?

- Networks are abstract representations of systems, made of links and nodes
- What the links and nodes represent depends on the system, and there is no unique way
- Results of your network analysis depends crucially on how you build it
- Example: US flight network
 - Straightforward: nodes are airports, links are routes
 - But what if the layout is not spatial?
 - What if we are interested in the amount of traffic, not only if a route exists?

- Networks can be grouped by type, e.g.
 - Social networks
 - Communication networks
 - Information networks (e.g. the Web, Wikipedia)
 - Transportation networks
 - Biological networks
- Benefits
 - Networks of the same type tend to have more similar properties
 - Example: degree distribution tends to be lighter for social and biological networks

- Social networks
 - Facebook users at Northwestern University
 - Nodes are users
 - Should links have direction and/or weights?

Biological networks

Protein interaction network

C. elegans neural network

Food web in Florida

SUMMARY

- Using networks to understand complex phenomena is a type of modelling, with many (implicit or explicit) design choices
- Applying it as a black box is unlikely to tell you much
- At a large scale, it becomes increasingly useful
- In this course you will
 - Learn the basic tools of networks
 - Use them to understand some slice of Reddit.
- Links:
 - joao.pinheiro-neto@uni-konstanz.de
 - https://github.com/joaopn/teaching_networks_2023

Resources

