Arquitectura del Computador II

Repaso.

Lógica Booleana

- Compuertas lógicas
- Mapas de Karnaugh
- Simplificación de funciones.
- Representación booleana y en forma de circuitos.
- Construcción de compuertas en base a las compuertas básicas.
- Simbología
- Qué es un HDL?

x	Not(x)
0	1
1	0
	l

x	У	And(x,y)
0	0	0
0	1	0
1	0	0
1	1	1
		l

x	У	Or(x,y)
0	0	0
0	1	1
1	0	1
1	1	1

Álgebra de Boole

1. A + 0 = A

2. A. 1=A

3. A+1=1

4. $A \cdot 0 = 0$

5. A + A = A

6. $A \cdot A = A$

7. $A + \overline{A} = 1$

8. A . $\overline{A} = 0$

9. $\overline{\overline{A}} = A$

10. A + B = B + A

11. A.B = B.A

13. X(YZ) = (X.Y)Z

14. $A \cdot (B + C) = AB + AC$

16. $\overline{A+B} = \overline{A}$. \overline{B}

12. A + (B + C) = (A + B) + C

15. A + BC = (A + B).(A+C)

17. $\overline{A \cdot B} = \overline{A} + \overline{B}$

Lei comutativa

Lei associativa

Lei distributiva

DeMorgan

https://slideplayer.com.br/slide/338032/1/images/7/Axiomas+e+Teoremas+da+%C3%81lgebra+Booleana+de+Chaveamento.jpg

Mapas de Karnaugh

la variable que cambia es la que se desecha

NAND

Compuertas básicas con NAND

Theory

Universal Turing Machine

Practice

von Neumann Architecture

Von Neumann Architecture:

Ejercicio rápido:

Cuánto es:

01111101 +

00110110

01111101 +

00110110

10110011

Overflow

Exceder el tamaño de la palabra.

Sumadores:

Medio Sumador – suma de 2 bits.

Sumador complete – Suma de 3 bits.

Sumador - Suma 2 números.

Sample Hack instructions:

D = D-A

@17

M = M+1

Von Neumann Architecture:

One-bit register

One Bit and Multi Bit Register

- Word (16bit, 32 ...)
- Register State (Qué tiene guardado el registro)

Von Neumann Architecture:

Símbolos

Machine Language

Assembly Language

1010000110000001

ADD 1, Mem[129]

Registros

Data Registers

□ Add R1, R2

R1: 10

R2: 25

□ Store R1, @A

132

133

Representaciones

Symbolic:

@17

D+1;JLE

Binary:

0000000000010001 1110011111000110

Display Unit (256 by 512, b/w)

Hack language convention:

- SCREEN: base address of the screen memory map
- KBD: address of the keyboard memory map

To check which key is currently pressed:

- •Read the contents of RAM[24576] (address KBD)
- •If the register contains 0, no key is pressed
- •Otherwise, the register contains the scan code of the currently pressed key.

THANKS!

Any questions?

