Mathematical Methods II

Exams:

70% Exam

30% Continuous Assessment (3 parts)

Contents

1	Week 1: Intro to Laplace Transforms	3
	1.1 Preliminary: Exponential Functions	3
	1.2 Laplace Transforms	9

1 Week 1: Intro to Laplace Transforms

1.1 Preliminary: Exponential Functions

Recall the following facts:

1.
$$e^t = \exp(t) = 1 + \frac{t^1}{1!} + \frac{t^2}{2!} + \frac{t^3}{3!} + \dots = \sum_{i=0}^{\infty} \frac{t^i}{i!}$$
.

2.
$$e^0 = 1$$
.

3. As
$$t \to \infty$$
, $e^t \to \infty$; as $t \to -\infty$, $e^t \to 0$.

4.
$$\frac{d}{dt}e^t = e^t$$
, and $\frac{d}{dt}e^{st} = se^{st}$.

5.
$$\int e^t dt = e^t + C$$
, and $\int e^{st} dt = \frac{1}{s} e^{st} + C$.

6.
$$e^{t_1} \cdot e^{t_2} = e^{t_1 + t_2}$$
.

1.2 Laplace Transforms

Definition

Consider a function f(t) for t > 0.

We define the Laplace transform of f(t) as

$$\mathcal{L}\{f(t)\} = \int_0^\infty e^{-st} f(t) dt.$$

Note

We can also write $\mathcal{L}\{f(t)\}$ as F(s).

Alternatively,

$$\mathcal{L}{f(t)} = \lim_{R \to \infty} \int_0^R e^{-st} f(t) dt.$$

Recalling that

$$\int_0^1 st^2 \, dt = s \left[\frac{t^3}{3} \right]_0^1 = \frac{s}{3}$$

3

we see that $\mathcal{L}{f(t)}$ is just a function of s.