Homework 3

21-238 Mathematical Studies Algebra II

Name: Shashank Singh Email: sss1@andrew.cmu.edu

Due: Wednesday, February 29, 2012

Exercise 11

i) Note that $\forall A \in L(\mathbb{R}^n, \mathbb{R}^n), \forall v \in \mathbb{C}^n, j \in \{1, 2, \infty\},\$

$$\frac{\|Av\|_j}{\|v\|_j} = \frac{\|Av\|_j}{\|v\|_j} \cdot \frac{\|v\|_j}{\|v\|_j} = \frac{\|A\frac{v}{\|v\|_j}\|_j}{\|\frac{v}{\|v\|_j}\|_j},$$

so that, in computing $||A||_j$, we need only consider vectors $v \in B_j$, the unit ball determined by the norm $||\cdot||_j$.

Computing $||A||_1$:

Let $A \in L(\mathbb{R}^n, \mathbb{R}^n)$, and let $v \in B_{\infty}$. Then, letting $M = \max_{i \in \{1, 2, ..., n\}} \sum_{j=1}^n |a_{j,i}|$,

$$||Av||_1 = \sum_{i=1}^n \sum_{j=1}^n |A_{j,i}v_i| = \sum_{i=1}^n |v_i| \sum_{j=1}^n |A_{i,j}| \le \sum_{i=1}^n |v_i| M = M ||v||_1 = M.$$

Furthermore, if $v \in B_1$ is such that, for $i = \arg\max_{i \in 1, 2, ..., n} \sum_{j=1}^{n} A_{j,i}$, $v_i = 1$ and, $\forall j \in \{1, 2, ..., n\} \setminus \{i\}$, $v_j = 0$, then AV = M, so that

$$||A||_1 = \max_{i \in \{1, 2, \dots, n\}} \left(\sum_{j=1}^n |a_{j,i}| \right).$$

Computing $||A||_{\infty}$:

Let $A \in L(\mathbb{R}^n, \mathbb{R}^n)$, let $v \in B_{\infty}$, and let b = Av, with components b_1, b_2, \ldots, b_n . Then, $\forall i \in \{1, 2, \ldots, n\}$, $b_i = A_i \cdot v$, where A_i is the i^{th} row vector of A. b_i is maximized over B_{∞} by the vector v with j^{th} component $v_i = \frac{A_{i,j}}{|A_{i,j}|}$, so that $\max_{v \in B_{\infty}} b_i = \sum_{j=1}^n |A_{i,j}|$. Thus, we find the induced matrix norm by maximizing this sum over $i \in \{1, 2, \ldots, n\}$, so that

$$||A||_{\infty} = \boxed{\max_{i \in \{1,2,\dots,n\}} \left(\sum_{j=1}^{n} |a_{i,j}|\right).}$$

ii)

iii)

Exercise 12

Let V be a Euclidean space.

i) Let $n = \dim V$, and suppose $n \ge 2$. Let $M_1, M_2 \in L(V, V)$ such that $M_1 = 0$ and

$$M_2 = \begin{bmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ -1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 0 \end{bmatrix}.$$

Then, $\forall v = (v_1, v_2, \dots, v_n) \in V$, $(M_1 v, v) = 0 = v_1 v_2 - v_1 v_2 = (M_2 v, v)$, but $M_1 \neq M_2$. Thus, \geq is not antisymmetric L(V, V) when dim $V \geq 2$, so it is not a partial order on L(V, V).

Since $\forall M \in L_s(V,V), \forall v \in V \ (Mv,v) \geq (Mv,v)$, so \geq is reflexive. For $M_1, M_2, M_3 \in L(V,V)$, if, $\forall v \in V, \ (M_1v,v) \geq (M_2v,v)$ and $(M_2v,v) \geq (M_3v,v)$, then, since \geq is transitive on \mathbb{R} , $(M_1v,v) \geq (Mv_3,v)$, so that \geq is transitive on $L_s(V,V)$. Let $M_1, M_2 \in L_s(V,V)$ such that $M_1 \geq M_2$ and $M_2 \geq M_1$. Then, $\forall v \in V$, since the inner product is linear in its first argument, $((M_1 - M_2)v, v) = (M_1v, v) - (M_2v, v) = 0$. Since M_1 and M_2 are symmetric, $(M_1 - M_2)$ is also symmetric, so that it has n eigenvalues, and is diagonalizable, so that $(M_1 - M_2) = SDS^{-1}$ for some invertible S and some diagonal matrix D. Furthermore, since, $\forall v \in V, ((M_1 - M_2)v, v) = 0$, all eigenvalues of $(M_1 - M_2)$ are 0. Since the non-zero entries of D are the eigenvalues of $(M_1 - M_2)$, D = 0. Therefore, $M_1 - M_2 = 0$, so $M_1 = M_2$. Therefore, \geq is antisymmetric on $L_s(V, V)$, so that it is a partial order on $L_s(V, V)$.

ii)

iii)

Exercise 13

i) Since M is diagonalizable, it can be diagonalized on an orthogonal basis, so that $M = SDS^{-1} = SDS^{T}$, where D is diagonal and S is orthogonal. Let $v \in V$, and let w = Sv, so that $v = S^{T}w$. Then, $(Mv, v) = (SDS^{T}v, v) = v^{T}SDS^{T}v = w^{T}Dw$, and, since the identity commutes with all matrices, $(aIv, v) = v^{T}aIv = w^{T}SaIS^{T}w = aw^{T}SS^{T}w = aw^{T}w$. Thus, $aI \leq M$ if and only if $aI \leq D$. Similarly, $M \leq bI$ if and only if $D \leq bI$.

ii) Let n be the degree of P, and, $\forall i \in \{0, 1, ..., n\}$, Suppose $P_i(x) = x^i$, where $a_i \in \mathbb{R}$ is the coefficient of x^i in P. Then, for some $C \in L(V, V)$,

$$\lim_{\epsilon \to 0} \frac{P_i(A + \epsilon B) - P_i(A)}{\epsilon} = \lim_{\epsilon \to 0} \frac{A^i + \epsilon \sum_{j=1}^n A^j B A^{i-j} + \epsilon^2 C - A^i}{\epsilon}$$

$$= \lim_{\epsilon \to 0} \sum_{j=1}^n A^j B A^{i-j} + \epsilon C$$

$$= \sum_{j=1}^n A^j B A^{i-j}.$$

Since the limit is additive and multiplicative where it exists, and $P = \sum_{i=0}^{n} a_i P_i$ for some $a_i \in \mathbb{R}$, $\lim_{\epsilon \to 0} \frac{P(A+\epsilon B)+P(A)}{\epsilon}$ exists.

Exercise 14

- i)
- ii)

Exercise 15

Trivially, $B_0 \in L_s(V, V)$. Suppose, as an induction hypothesis, that, for some $n \in \mathbb{N}$, $B_n \in L_s(V, V)$. Since B_n must commute with itself, B_n^2 is symmetric, so that, since a sum of symmetric matrices and a multiple of symmetric matrices must both be symmetric,

$$B_{n+1} = \frac{A + B^2}{2}$$

must also be symmetric, since A is symmetric. Therefore, by induction on $n, \forall n \in \mathbb{N}, B_n \in L_s(V, V)$.