Homework 2

PH 431

Prof. Ren Guo

John Waczak

Date: October 16, 2017

4.4.8

List all of the cyclic subgroups of U(30).

Recall that U(30) is the set of elements in \mathbb{Z}_{30} that are relatively prime to 30. Thus:

$$U(30) = \{1, 7, 11, 13, 17, 19, 23, 29\}$$

We have that 1 = id for U(30) but $\langle 1 \rangle$ is a trivial subgroup. We can calculate the other cyclic subgroups by analyzing powers of each element of U(30). We have that:

$$7$$
 $7^2 \mod (30) = 19$
 $7^3 \mod (30) = 13$
 $7^4 \mod (30) = 1$
 11
 $11^2 \mod (30) = 1$
 13
 $13^2 \mod (30) = 19$
 $13^3 \mod (30) = 7$
 $13^4 \mod (30) = 1$
 17
 $17^2 \mod (30) = 19$
 $17^3 \mod (30) = 23$
 $17^4 \mod (30) = 1$
 23
 $23^2 \mod (30) = 1$
 23
 $23^2 \mod (30) = 17$
 $23^4 \mod (30) = 1$
 29
 $29^2 \mod (30) = 1$

Thus from this information we can conclude that the cyclic subgroups of U(30) are:

$$\langle 7 \rangle = \langle 13 \rangle = \{1, 7, 13, 19\}$$

 $\langle 11 \rangle = \{1, 11\}$
 $\langle 17 \rangle = \langle 23 \rangle = \{1, 17, 19, 23\}$
 $\langle 29 \rangle = \{1, 29\}$

4.4.25

Let p be prime and r be a positive integer. How many generators does \mathbb{Z}_{p^r} have?

Note that \mathbb{Z}_{p^r} has exactly p^r elements. Now, an element g of \mathbb{Z}_{p^r} is a generator if $1 \leq g < p^r$ and $gcd(g, p^r) = 1$. Since p is prime, the only possible values of $gcd(g, p^r)$ are $p, p^2, p^3, ..., p^r$. The only way $gcdg, p^r \neq 1$ is if g = mp for some integer m. This set is:

$$\{p, 2p, 3p...pp, 2pp, 3pp...p^3, 2p^3, 3p^3...p^{r-1}, 2p^{r-1}, ...pp^{r-1}\}$$

We can see this set has p^{r-1} elements and so the set of values with $gcd(g, p^r) = 1$ has $p^r - p^{r-1}$ elements. Thus by definition, \mathbb{Z}_{p^r} has $p^r - p^{r-1}$ elements.

4.3.2.d

evaluate (1423)(34)(56)(1324).

To evaluate this composition of cycles, I will first name each one and then list out the full mapping for each cycle as I'm still getting used to cycle notation.

$$\delta = (1432)$$
 $\gamma = (34)$ $\beta = (56)$ $\alpha = (1324)$

And the mappings are:

$$\delta(1) = 4 \quad \gamma(1) = 1 \quad \beta(1) = 1 \quad \alpha(1) = 3$$

$$\delta(2) = 3 \quad \gamma(2) = 2 \quad \beta(2) = 2 \quad \alpha(2) = 4$$

$$\delta(3) = 1 \quad \gamma(3) = 4 \quad \beta(3) = 3 \quad \alpha(3) = 2$$

$$\delta(4) = 2 \quad \gamma(4) = 3 \quad \beta(4) = 4 \quad \alpha(4) = 1$$

$$\delta(5) = 5 \quad \gamma(5) = 5 \quad \beta(5) = 6 \quad \alpha(5) = 5$$

$$\delta(6) = 6 \quad \gamma(6) = 6 \quad \beta(6) = 5 \quad \alpha(6) = 6$$

Thus we have that the following is the mapping for the composition of cycles $\delta \gamma \beta \alpha$:

$$\begin{split} \delta\gamma\beta\alpha(1) &= \delta\gamma\beta(3) = \delta\gamma(3) = \delta(4) = 2\\ \delta\gamma\beta\alpha(2) &= \delta\gamma\beta(4) = \delta\gamma(4) = \delta(3) = 1\\ \delta\gamma\beta\alpha(3) &= \delta\gamma\beta(2) = \delta\gamma(2) = \delta(2) = 3\\ \delta\gamma\beta\alpha(4) &= \delta\gamma\beta(1) = \delta\gamma(1) = \delta(1) = 4\\ \delta\gamma\beta\alpha(5) &= \delta\gamma\beta(5) = \delta\gamma(6) = \delta(6) = 6\\ \delta\gamma\beta\alpha(6) &= \delta\gamma\beta(6) = \delta\gamma(5) = \delta(5) = 5 \end{split}$$

From this mapping we can see that 3 and 4 are fixed and therefore this cycle is equivalent to:

$$\delta \gamma \beta \alpha = (12)(56)$$

5.3.3.d

Express the following permutation as a product of transpositions and identify then as even or odd

To begin we will first simplify the cycle as much as possible.

$$\rho = (17254) \quad \tau = (1423) \quad \sigma = (154632)$$

$$\rho(1) = 7 \quad \tau(1) = 4 \quad \sigma(1) = 5$$

$$\rho(2) = 5 \quad \tau(2) = 3 \quad \sigma(2) = 1$$

$$\rho(3) = 3 \quad \tau(3) = 1 \quad \sigma(3) = 2$$

$$\rho(4) = 1 \quad \tau(4) = 2 \quad \sigma(4) = 6$$

$$\rho(5) = 4 \quad \tau(5) = 5 \quad \sigma(5) = 4$$

$$\rho(6) = 7 \quad \tau(6) = 6 \quad \sigma(6) = 3$$

$$\rho(7) = 2 \quad \tau(7) = 7 \quad \sigma(7) = 7$$

$$\rho\tau\sigma(1) = \rho\tau(5) = \rho(5) = 4$$

$$\rho\tau\sigma(2) = \rho\tau(1) = \rho(4) = 1$$

$$\rho\tau\sigma(3) = \rho\tau(2) = \rho(3) = 3$$

$$\rho\tau\sigma(4) = \rho\tau(6) = \rho(6) = 6$$

$$\rho\tau\sigma(5) = \rho\tau(4) = \rho(2) = 5$$

$$\rho\tau\sigma(6) = \rho\tau(3) = \rho(1) = 7$$

$$\rho\tau\sigma(7) = \rho\tau(7) = \rho(7) = 2$$

Now that we have one cycle, we can easily decompose it as follows:

$$(14672) = (12)(17)(16)(14)(31)(13)(51)(15)$$

Counting the number of 2-cycles gives that the original cycle must be an even permutation.

5.3.4

Find $(a_1a_2a_3...a_{n-1}a_n)^{-1}$.

Let $\sigma=(a_1a_2a_3...a_{n-1}a_n)$. I claim that $\sigma^{-1}=(a_na_{n-1}...a_3a_2a_1)=(a_1a_na_{n-1}...a_3a_2)$ is the inverse to σ . Let $x=a_i$ then $\sigma(a_{i-1})=a_i$ and so $\sigma^{-1}(a_i)=a_{i-1}$ hence, the 'reverse order' of σ^{-1} . For $x=a_1$ we have the special case of $\sigma(a_k)=a_1$ and so by definition $\sigma^{-1}(a_1)=a_k$ if $x\neq a_i$ then $\sigma(x)=x$ which implies $\sigma^{-1}(x)=x$. Thus σ^{-1} is the inverse for σ because:

$$\sigma^{-1}\sigma(a_{i-1}) = \sigma^{-1}(a_i) = a_{i-1}$$
$$\sigma\sigma^{-1}(a_i) = \sigma(a_{i-1}) = a_i$$

So every element maps to itself, i.e. $\sigma \sigma^{-1} = \sigma^{-1} \sigma = id$

5.3.18

Show A_n is non-Abelian for $n \geq 4$.

Note that it is sufficient to find two examples from A_4 that do not commute because if they are in A_4 they must also be in every A_n with $r \ge 4$. Let us examine the even permutations $\alpha = (123) = (13)(12)$ and $\beta = (234) = (24)(23)$.

$$\alpha\beta = (123)(234) = (12)(34)$$

 $\beta\alpha = (234)(123) = (13)(24)$
 $\Rightarrow \alpha\beta \neq \beta\alpha$

Thus since $\alpha, \beta \in A_n, n \geq 4$ we have that A_n is non-Abelian.