» Summary

- * No "one size fits all" choice of step size.
 - * Scaling function e.g. from x^2 to $2x^2$ changes magnitude of derivative and so of steps taken
- Maybe need to change the step size over time
 - If derivative doesn't decrease as get close to minimum then can end up "bouncing around"
 - If derivative decreases too quickly as get close to minimum then can end up with v slow convergence
- Convergence rate can be v sensitive to properties of function being minimised
 - * Quadratic function is "best" case, exponentially fast convergence (jargon: quadratic-like → strongly convex)
 - * Kinks and flat areas in functions can greatly slow convergence (jargon: has kinks →non-smooth)

So far we only looked at functions with scalar input x, let's look at functions where x is a vector with two elements

*
$$f(x) = x_1^2 + x_2^2$$
, $x = [x_1, x_2]$.

- * Its often easier/clearer to use a contour plot instead of a 3D plot
- Each contour line indicates points at which the function has the same value

- * $f(x) = x_1^2 + x_2^2$, $x = [x_1, x_2]$.
- * Starting value x0 = [1, 1], step size alpha = 0.1

- * $\log f(x)$ decreases linearly i.e. f(x) decreases exponentially.
- * On contour plot x follows a path <u>perpendicular</u> to contour lines this is path of <u>steepest descent</u>

- * Now let's "squash" bowl in one direction: $f(x) = x_1^2 + \gamma x_2^2$, $x = [x_1, x_2]$.
- * $\gamma=1$ gives previous example, let's try $\gamma=4$:

- * $f(x) = x_1^2 + \gamma x_2^2$, $x = [x_1, x_2]$. $\gamma = 4$
- * Starting value x0 = [1, 1], step size alpha = 0.1

- * Function initially decreases quickly, then more slowly. But decrease of $\log f(x)$ is still linear-like
- On contour plot x follows a path perpendicular to contour lines – path of steepest descent – but this path is now curved.
 Why?

- * $f(x) = x_1^2 + \gamma x_2^2$, $x = [x_1, x_2]$. $\gamma = 4$
- st Starting value $extbf{ iny 0} = [1,1]$, step size alpha = 0.1

» Machine Learning Cost Functions

Linear Regression/Least Squares

- * Training data: $(x^{(i)}, y^{(i)})$, i = 1, ..., m. $y^{(i)}$ is real-valued.
- * Cost function: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (\theta^T \mathbf{x}^{(i)} \mathbf{y}^{(i)})^2$
- st Cost function is quadratic in heta, so expect nice convergence behaviour
- * Note: we've switched to our ML notation, $J(\theta)$ instead of f(x) i.e. our optimisation task is now

$$\min_{\theta} J(\theta)$$

rather than

$$\min_{\mathbf{x}} f(\mathbf{x})$$

(just a change in variable names)

» Machine Learning Cost Functions

Linear Regression/Least Squares

- $\overline{*}$ Training data: $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$, $i = 1, \dots, m$. $\mathbf{y}^{(i)}$ is real-valued.
- * Cost function: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (\theta^T x^{(i)} y^{(i)})^2$
- * Cost function is quadratic in heta, so expect nice convergence behaviour
- * $y^{(i)} = \theta^T x^{(i)}$, $\theta = [-0.5, 0.2]$, m = 1000 training data points with random $x^{(i)}$, i = 1, ..., n

» Example: Linear Regression/Least Squares

- * $\mathbf{y}^{(i)} = \theta^T \mathbf{x}^{(i)}$, $\theta = [-0.5, 0.2]$, m = 1000 training data points with random $\mathbf{x}^{(i)}$, $i = 1, \dots, n$
- * Starting value x0 = [1, 1], step size *alpha* = 0.1

» Example: Linear Regression/Least Squares

Now add some observation noise

* $\mathbf{y}^{(i)} = \theta^{T} \mathbf{x}^{(i)} + \mathbf{n}^{(i)}$, $\theta = [-0.5, 0.2]$, noise $\mathbf{n}^{(i)}$ is normal with mean 0, std dev 0.1

* Notice that minimum of $J(\theta)$ is now about $0.1^2 = 0.01 = 10^{-2}$. When estimated parameters are [-0.5, 0.2] then

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (\theta^{T} \mathbf{x}^{(i)} - \mathbf{y}^{(i)})^{2} = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{n}^{(i)})^{2}$$

Stop optimisation loop once get close to this noise floor

» Example: Linear Regression/Least Squares

* Impact of varying the amount of measurement noise: $y^{(i)} = \theta^T x^{(i)} + n^{(i)}$, noise $n^{(i)}$ std dev 0, 0.1, 0.5:

* And corresponding effect on cost function:

 See that min value of cost function increases as noise increases.

- * Training data: $(\mathbf{x}^{(i)},\mathbf{y}^{(i)})$, $i=1,\ldots,n$. $\mathbf{y}^{(i)}$ is +1 or -1
- * Cost function: $J(\theta) = \sum_{i=1}^m log(1 + e^{-y^{(i)}\theta^T \chi^{(i)}}) + 0.5C \sum_{i=1}^n \theta_i^2$ (using L2 regularisation)
- $*~y^{(i)}=sign(heta^{ au}\!x^{(i)}),~ heta=[1,-1],~ extbf{ extit{m}}=1000~ ext{training}$ data points with random $x^{(i)},~ extbf{ extit{C}}=0.1$

- * $y^{(i)}=sign(\theta^T x^{(i)})$, $\theta=[1,-1]$, m=1000 training data points with random $x^{(i)}$, C=0.1
- * Starting value x0 = [-1, 1], step size alpha = 0.1

Again, stop once get close to the noise floor - after about 200 iterations

What if we change to using L1 regulariser (LASSO)?

$$*$$
 Cost function: $J(heta) = \sum_{i=1}^m log(1 + e^{-y^{(i)} heta^T\chi^{(i)}}) + C\sum_{i=1}^n | heta_i|$

- * Remember, $|\theta_i|$ is non-smooth.
- * $y^{(i)} = sign(\theta^T x^{(i)})$, $\theta = [1, -1]$, m = 1000 training data points with random $x^{(i)}$, C = 0.1

st Notice the kinks ...

- * L1 regulariser
- * $y^{(i)}=sign(\theta^Tx^{(i)})$, $\theta=[1,-1]$, m=1000 training data points with random $x^{(i)}$, C=0.1
- * Starting value x0 = [-1, 1], step size *alpha* = 0.1

- Despite kinks/non-smoothness, convergence is fast Logistic regression+L1 is well-behaved even if <u>kinks</u> can cause problems in general
- Again, stop once get close to the noise floor after about 50 iterations

» Summary So Far

- Linear and logistic regression (with L2 regulariser) are similar in kind to quadratic examples – can expect fast convergence
- Using L1 regulariser adds kinks, so potentially makes convergence slow/causes "chatter" around minimum, but ok when used with linear and logistic regression.
- * We still have:
 - * No "one size fits all" choice of step size.
 - * Maybe need to change the step size over time

» Machine Learning Cost Functions: Neural Networks

How about neural nets? Recall neural network with one-hidden layer:

$$z_1 = f(\theta_{01}^{[1]} x_0 + \theta_{11}^{[1]} x_1 + \dots + \theta_{n1}^{[1]} x_n)$$

$$z_2 = f(\theta_{02}^{[1]} x_0 + \theta_{12}^{[1]} x_1 + \dots + \theta_{n2}^{[1]} x_n)$$

$$\hat{y} = g(\theta_1^{[2]} z_1 + \theta_2^{[2]} z_2)$$

st f and g are activation and output functions, respectively. Typical choices for f are ReLu and Sigmoid. Typical choice for g is Sigmoid.

» Machine Learning Cost Functions: Neural Networks

 Toy example: one input, one hidden node, one output, two parameters/weights:

$$z = f(\theta_1 x + \theta_2), \hat{y} = g(z)$$

- * ReLU (Rectified Linear Unit) $f(x) = \begin{cases} x & x \ge 0 \\ 0 & x < 0 \end{cases}$
- * Sigmoid $g(x) = \frac{e^x}{1+e^x}$
 - * For classification problems predict +1 when $\frac{e^{x}}{1+e^{x}}>0.5,\,-1$ when $\frac{e^{x}}{1+e^{x}}<0.5$

» Machine Learning Cost Functions: Neural Networks

* Toy example:

$$z = f(\theta_1 x + \theta_2), \hat{y} = g(z)$$

- * $\theta = [1, 5]$, f is ReLu, g is sigmoid, m = 1000 training data points with random $\mathbf{x}^{(i)}$
- * Quadraic loss function (as with linear regression):

- * Observe the complex nature of the cost function: not a simple "bowl" quadratic shape.
- * Flat areas, narrow valleys, kinks \rightarrow might be hard to find θ that minimises cost!

» Convexity vs Non-convexity

The real <u>watershed</u> in optimisation is between <u>minimising convex and</u> <u>non-convex functions</u>.

* Convex function: when draw a line between any two points on function the line lies *above* the function. E.g.

* Sigmoid is not convex:

 Convexity ensures function has a global minimum, and gradient descent will find this (still need to choose step size well, and convergence rate can depend on strong convexity, non-smoothness etc).

» Convexity vs Non-convexity

* Non-convex optimisation - Here be Dragons!

 See https://en.wikipedia.org/wiki/Test_functions_for_optimization for some nasty examples:

- Neural nets are non-convex, so expect optimisation to be harder than for linear/logistic regression.
- But no need to abandon hope while in general non-convex functions
 can be v nasty indeed, we're mostly just interested in the special case of neural nets hopefully the range of possible non-convex functions is more limited (although still large).
- Plus we know that gradient descent will still tend to converge to a local minimum even when function is non-convex ...

» Example: Convergence To Local Minimum

$$(x-1)(x+2)(x-3)^2+32$$

» Example: Convergence To Local Minimum

- * $f(x) = (x-1)(x+2)(x-3)^2 + 32$
- * Starting value x0 = 1, step size *alpha* = 0.02

* Starting value x0 = 2, step size *alpha* = 0.02

* Also observe the different steps taken too - the minimum at x=3 is quite shallow so the gradient is small and steps smaller. But if choose $\alpha>0.02$ then get oscillations around minimum at x=1.

» Example: Rosenbrock Function

*
$$f((\mathbf{x}) = (1.0 - \mathbf{x}_1)^2 + 100.0 * (\mathbf{x}_2 - \mathbf{x}_1^2)^2$$
, $\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2]$

* Starting value x0 = [-1.25, 0.5], step size *alpha* = 0.001 (note small step size, else diverges)

» Example: Rosenbrock Function

* Starting value x0 = [-1.25, 0.5], step size *alpha* = 0.001

- st Need to take many small steps to move around narrow curved valley.
- * If try to take biggers steps, doesn't converge e.g. $\emph{alpha} = 0.005$:

» Example Neural Net

- * Toy example: $\mathbf{z} = \mathbf{f}(\theta_1 \mathbf{x} + \theta_2), \hat{\mathbf{y}} = \mathbf{g}(\mathbf{z}), \theta = [1, 5], \mathbf{f}$ ReLu, \mathbf{g} sigmoid, $\mathbf{m} = 1000$ training data points with random $\mathbf{x}^{(i)}$, quadratic loss
- * Starting value x0 = [7.0, 6.0], step size alpha = 0.75

- Initial convergence v slow due to flat region on cost surface.
 Note use of larger step size to speed up convergence, and more iterations (5000)
- st Flat regions ightarrow "dead neuron" problem

» Example Neural Net

- * Toy example: $\mathbf{z} = \mathbf{f}(\theta_1 \mathbf{x} + \theta_2), \hat{\mathbf{y}} = \mathbf{g}(\mathbf{z}), \, \theta = [1, 5], \, \mathbf{f} \, \text{ReLu}, \, \mathbf{g}$ sigmoid, $\mathbf{m} = 1000$ training data points with random $\mathbf{x}^{(i)}$, quadratic loss
- * Starting value x0 = [1.0, 1.0], step size *alpha* = 0.75

- * <u>Different starting point</u> ightarrow converges to different solution
- * Slower convergence once enter narrow valley with flat bottom