Random Forest Algorithm

Andrew Wang

Background Content

- Random forest comprised of multiple decision trees -> first understand what decision tree is, then understand rand forest
- What is decision tree + what it looks like
 - Why/how it works
 - Idea of entropy + information gain + gini index
- Random forest classifier
 - What is it + what does it look like
 - How does it work?
 - Why "random" and why "forest" in random forest classifier name?
- Misc
 - Difference between random forest regression vs classification

What is a decision tree?

- Flowchart-like tree that is used to model how outputs are predicted from inputs
 - Branches/edges represent result (Ex: True/False) of nodes
 - Nodes represent either
 - Conditions (decision nodes)
 - OR results (end/leaf nodes)
- Models decisions and ALL possible results
- Supervised learning algorithm
- Works for both continuous and categorical output

Visualization of decision tree w/ discrete output

https://williamkoehrsen.medium.com/random-forest-simple-explanation-377895a60d2d

Examples of discrete vs continuous output in decision trees

- "Discrete output example: A weather prediction model that predicts whether or not there'll be rain in a particular day."
- "Continuous output example: A profit prediction model that states the probable profit that can be generated from the sale of a product."

Source: https://www.geeksforgeeks.org/python-decision-tree-regression-using-sklearn/?ref=rp

Continuous output example: A profit prediction model that states the probable profit that can be generated from the sale of a product.

Here, continuous values are predicted with the help of a decision tree regression model.

Let's see the Step-by-Step implementation -

• Step 1: Import the required libraries.

```
# import numpy package for arrays and stuff
import numpy as np

# import matplotlib.pyplot for plotting our result
import matplotlib.pyplot as plt

# import pandas for importing csv files
import pandas as pd
```

• Step 2: Initialize and print the Dataset.

```
# import dataset
# dataset = pd.read_csv('Data.csv')
# alternatively open up .csv file to read data
dataset = np.array(
[['Asset Flip', 100, 1000],
['Text Based', 500, 3000],
['Visual Novel', 1500, 5000],
['2D Pixel Art', 3500, 8000],
['2D Vector Art', 5000, 6500],
['Strategy', 6000, 7000],
['First Person Shooter', 8000, 15000],
['Simulator', 9500, 20000],
['Racing', 12000, 21000],
['RPG', 14000, 25000],
['Sandbox', 15500, 27000],
['Open-World', 16500, 30000],
['MMOFPS', 25000, 52000],
['MMORPG', 30000, 80000]
# print the dataset
print(dataset)
```

```
# print the dataset
  print(dataset)
[['Asset Flip' '100' '1000']
 ['Text Based' '500' '3000']
 ['Visual Novel' '1500' '5000'
 ['2D Pixel Art' '3500' '8000']
 ['2D Vector Art' '5000' '6500']
 ['Strategy' '6000' '7000']
 ['First Person Shooter' '8000' '15000']
 ['Simulator' '9500' '20000']
 ['Racing' '12000' '21000']
 ['RPG' '14000' '25000']
 ['Sandbox' '15500' '27000']
 ['Open-World' '16500' '30000']
 ['MMOFPS' '25000' '52000']
 ['MMORPG' '30000' '80000']]
```

Step 3: Select all the rows and column 1 from dataset to "X".

```
# select all rows by : and column 1
# by 1:2 representing features
X = dataset[:, 1:2].astype(int)

# print X
print(X)
```

```
[[ 100]
  [ 500]
  [ 1500]
  [ 3500]
  [ 5000]
  [ 6000]
  [ 8000]
  [ 9500]
  [12000]
  [14000]
  [15500]
  [15500]
  [25000]
  [30000]]
```

• Step 4: Select all of the rows and column 2 from dataset to "y".

```
# select all rows by : and column 2
# by 2 to Y representing labels
y = dataset[:, 2].astype(int)

# print y
print(y)

[ 1000 3000 5000 8000 6500 7000 15000 20000 21000 25000 27000 30000 52000 80000]
```

• Step 6: Predicting a new value

```
# predicting a new value

# test the output by changing values, like 3750
y_pred = regressor.predict(3750)

# print the predicted price
print("Predicted price: % d\n"% y_pred)

Predicted price: 8000
```

Decision tree implementation details from

geeksforgeeks in Python

. Step 7: Visualising the result

show the plot

plt.show()

```
# arange for creating a range of values
# from min value of X to max value of X
# with a difference of 0.01 between two
# consecutive values
X_{grid} = np.arange(min(X), max(X), 0.01)
# reshape for reshaping the data into
# a len(X_grid)*1 array, i.e. to make
# a column out of the X grid values
X_grid = X_grid.reshape((len(X_grid), 1))
# scatter plot for original data
plt.scatter(X, y, color = 'red')
# plot predicted data
plt.plot(X grid, regressor.predict(X grid), color = 'blue')
# specify title
plt.title('Profit to Production Cost (Decision Tree Regression)')
# specify X axis label
plt.xlabel('Production Cost')
# specify Y axis label
plt.ylabel('Profit')
```


 Step 8: The tree is finally exported and shown in the TREE STRUCTURE below, visualized using http://www.webgraphviz.com/ by copying the data from the 'tree.dot' file.

```
# import export_graphviz

from sklearn.tree import export_graphviz

# export the decision tree to a tree.dot file

# for visualizing the plot easily anywhere
export_graphviz(regressor, out_file ='tree.dot',
feature_names =['Production Cost'])
```


Ok... great... but how does a decision tree really work?

- How to determine which node/attribute cutoff is root?
 - How to determine best cutoff for data (Ex: production cost <= 7000 in previous slide)?
 - Decision trees need to be able to identify + quantify best "cutoffs" in data
- Recall:
 - Each internal node corresponds to an attribute
 - Each leaf node corresponds to class label
- Decision trees need to know which attributes to be considered as root node at each level of tree

Overview of attribute selection

- Popular attribute selection measures:
 - Information gain (attributes assumed to be categorical)
 - Gini index (attributes assumed to be continuous)

Impurity Criterion

Gini Index

$I_G = 1 - \sum_{j=1}^{c} p_j^2$

p_j: proportion of the samples that belongs to class c for a particular node

Entropy

$$I_H = -\sum_{j=1}^c p_j log_2(p_j)$$

p_j: proportion of the samples that belongs to class c for a particular node.

https://dataaspirant.com/how-decision-tree-algorithm-works/

^{*}This is the the definition of entropy for all non-empty classes (p ≠ 0). The entropy is 0 if all samples at a node belong to the same class.

Using info gain to quantify how good "cutoffs" are

Example of using information gain as criterion

- Entropy randomness or uncertainty of random variable X
- Assume binary classification problem (2 classes, + and -)
 - If all examples are + or all then entropy = 0 (low)
 - If $\frac{1}{2}$ of examples are + and $\frac{1}{2}$ are then entropy = 1 (high)
- Calculate entropy measure for each "attribute" -> calculate info gain
 - Information gain expected reduction in entropy due to sorting on the "attribute" selected

Example of using info gain as criterion

- Predictors = columns A, B, C, D = attributes
- Target variable = Column E = class labels

<u>Data</u>

4	Α	В	С	D	E
1	4.8	3.4	1.9	0.2	positive
2	5	3	1.6	0.2	positive
3	5	3.4	1.6	0.4	positive
4	5.2	3.5	1.5	0.2	positive
5	5.2	3.4	1.4	0.2	positive
6	4.7	3.2	1.6	0.2	positive
7	4.8	3.1	1.6	0.2	positive
8	5.4	3.4	1.5	0.4	positive
9	7	3.2	4.7	1.4	negative
10	6.4	3.2	4.5	1.5	negative
11	6.9	3.1	4.9	1.5	negative
12	5.5	2.3	4	1.3	negative
13	6.5	2.8	4.6	1.5	negative
14	5.7	2.8	4.5	1.3	negative
15	6.3	3.3	4.7	1.6	negative
16	4.9	2.4	3.3	1	negative

Let's choose some random values/thresholds to categorize each attribute:

Α	В	C	D
>= 5	>= 3.0	>= 4.2	>= 1.4
< 5	< 3.0	< 4.2	< 1.4

https://dataaspirant.com/how-decision-tree-algorithm-works/

Example of using info gain as criterion

- To calculate info gain for attribute:
 - 1. Calculate entropy of target
 - 2. Calculate entropy for attribute
 - 3. Calculate info gain = Entropy of target Entropy of attribute

Calculating entropy of target

Data

1	Α	В	С	D	E
1	4.8	3.4	1.9	0.2	positive
2	5	3	1.6	0.2	positive
3	5	3.4	1.6	0.4	positive
4	5.2	3.5	1.5	0.2	positive
5	5.2	3.4	1.4	0.2	positive
6	4.7	3.2	1.6	0.2	positive
7	4.8	3.1	1.6	0.2	positive
8	5.4	3.4	1.5	0.4	positive
9	7	3.2	4.7	1.4	negative
10	6.4	3.2	4.5	1.5	negative
11	6.9	3.1	4.9	1.5	negative
12	5.5	2.3	4	1.3	negative
13	6.5	2.8	4.6	1.5	negative
14	5.7	2.8	4.5	1.3	negative
15	6.3	3.3	4.7	1.6	negative
16	4.9	2.4	3.3	1	negative

$$H(X) = \mathbb{E}_X[I(x)] = -\sum_{x \in \mathbb{X}} p(x) \log p(x).$$

The entropy of Target: We have 8 records with negative class and 8 records with positive class. So, we can directly estimate the entropy of target as 1.

Variable E		
Positive	Negative	
8	8	

Calculating entropy using formula:

$$E(8,8) = -1*((p(+ve)*log(p(+ve)) + (p(-ve)*log(p(-ve)))$$

$$= -1*((8/16)*log_2(8/16)) + (8/16) * log_2(8/16))$$

$$= 1$$

Calculating info gain for attribute A

Data

1	Α	В	С	D	E
1	4.8	3.4	1.9	0.2	positive
2	5	3	1.6	0.2	positive
3	5	3.4	1.6	0.4	positive
4	5.2	3.5	1.5	0.2	positive
5	5.2	3.4	1.4	0.2	positive
6	4.7	3.2	1.6	0.2	positive
7	4.8	3.1	1.6	0.2	positive
8	5.4	3.4	1.5	0.4	positive
9	7	3.2	4.7	1.4	negative
10	6.4	3.2	4.5	1.5	negative
11	6.9	3.1	4.9	1.5	negative
12	5.5	2.3	4	1.3	negative
13	6.5	2.8	4.6	1.5	negative
14	5.7	2.8	4.5	1.3	negative
15	6.3	3.3	4.7	1.6	negative
16	4.9	2.4	3.3	1	negative

$$H(X) = \mathbb{E}_X[I(x)] = -\sum_{x \in \mathbb{X}} p(x) \log p(x).$$

Information gain for Var A

Var A has value >= 5 for 12 records out of 16 and 4 records with value <5 value.

- For Var A >= 5 & class == positive: 5/12
- For Var A >= 5 & class == negative: 7/12
 - Entropy(5,7) = -1 * ((5/12)*log2(5/12) + (7/12)*log2(7/12)) = 0.9799
- For Var A <5 & class == positive: 3/4
- For Var A <5 & class == negative: 1/4
 - Entropy(3,1) = -1 * ((3/4)*log2(3/4) + (1/4)*log2(1/4)) = 0.81128

Information Gain(IG) = E(Target) - E(Target, A) = 1 - 0.9337745 = 0.062255

Calculating info gain for attribute B

Data

4	Α	В	С	D	E
1	4.8	3.4	1.9	0.2	positive
2	5	3	1.6	0.2	positive
3	5	3.4	1.6	0.4	positive
4	5.2	3.5	1.5	0.2	positive
5	5.2	3.4	1.4	0.2	positive
6	4.7	3.2	1.6	0.2	positive
7	4.8	3.1	1.6	0.2	positive
8	5.4	3.4	1.5	0.4	positive
9	7	3.2	4.7	1.4	negative
10	6.4	3.2	4.5	1.5	negative
11	6.9	3.1	4.9	1.5	negative
12	5.5	2.3	4	1.3	negative
13	6.5	2.8	4.6	1.5	negative
14	5.7	2.8	4.5	1.3	negative
15	6.3	3.3	4.7	1.6	negative
16	4.9	2.4	3.3	1	negative

$$H(X) = \mathbb{E}_X[I(x)] = -\sum_{x \in \mathbb{X}} p(x) \log p(x).$$

Information gain for Var B

Var B has value >= 3 for 12 records out of 16 and 4 records with value <5 value.

- For Var B >= 3 & class == positive: 8/12
- For Var B >= 3 & class == negative: 4/12
 - Entropy(8,4) = -1 * ((8/12)*log2(8/12) + (4/12)*log2(4/12)) = 0.39054
- For VarB <3 & class == positive: 0/4
- For Var B <3 & class == negative: 4/4
 - Entropy(0,4) = -1 * ((0/4)*log2(0/4) + (4/4)*log2(4/4)) = 0

Entropy(Target, B) =
$$P(>=3) * E(8,4) + P(<3) * E(0,4)$$

= $(12/16) * 0.39054 + (4/16) * 0 = 0.292905$

Information Gain(IG) = E(Target) - E(Target,B) = 1-0.292905 = 0.707095

Calculating info gain for attribute C

Data

1	Α	В	С	D	E
1	4.8	3.4	1.9	0.2	positive
2	5	3	1.6	0.2	positive
3	5	3.4	1.6	0.4	positive
4	5.2	3.5	1.5	0.2	positive
5	5.2	3.4	1.4	0.2	positive
6	4.7	3.2	1.6	0.2	positive
7	4.8	3.1	1.6	0.2	positive
8	5.4	3.4	1.5	0.4	positive
9	7	3.2	4.7	1.4	negative
10	6.4	3.2	4.5	1.5	negative
11	6.9	3.1	4.9	1.5	negative
12	5.5	2.3	4	1.3	negative
13	6.5	2.8	4.6	1.5	negative
14	5.7	2.8	4.5	1.3	negative
15	6.3	3.3	4.7	1.6	negative
16	4.9	2.4	3.3	1	negative

$$H(X) = \mathbb{E}_X[I(x)] = -\sum_{x \in \mathbb{X}} p(x) \log p(x).$$

Information gain for Var C

Var C has value >=4.2 for 6 records out of 16 and 10 records with value <4.2 value.

- For Var C >= 4.2 & class == positive: 0/6
- For Var C >= 4.2 & class == negative: 6/6
 - \circ Entropy(0,6) = 0
- For VarC < 4.2 & class == positive: 8/10
- For Var C < 4.2 & class == negative: 2/10
 - \circ Entropy(8,2) = 0.72193

Entropy(Target, C) =
$$P(>=4.2) * E(0,6) + P(< 4.2) * E(8,2)$$

= $(6/16) * 0 + (10/16) * 0.72193 = 0.4512$

Information Gain(IG) = E(Target) - E(Target, C) = 1 - 0.4512 = 0.5488

Calculating info gain for attribute D

Data

-1	Α	В	С	D	E
1	4.8	3.4	1.9	0.2	positive
2	5	3	1.6	0.2	positive
3	5	3.4	1.6	0.4	positive
4	5.2	3.5	1.5	0.2	positive
5	5.2	3.4	1.4	0.2	positive
6	4.7	3.2	1.6	0.2	positive
7	4.8	3.1	1.6	0.2	positive
8	5.4	3.4	1.5	0.4	positive
9	7	3.2	4.7	1.4	negative
10	6.4	3.2	4.5	1.5	negative
11	6.9	3.1	4.9	1.5	negative
12	5.5	2.3	4	1.3	negative
13	6.5	2.8	4.6	1.5	negative
14	5.7	2.8	4.5	1.3	negative
15	6.3	3.3	4.7	1.6	negative
16	4.9	2.4	3.3	1	negative

$$H(X) = \mathbb{E}_X[I(x)] = -\sum_{x \in \mathbb{X}} p(x) \log p(x).$$

Information gain for Var D

Var D has value >=1.4 for 5 records out of 16 and 11 records with value <5 value.

- For Var D >= 1.4 & class == positive: 0/5
- For Var D >= 1.4 & class == negative: 5/5
 - \circ Entropy(0,5) = 0
- For Var D < 1.4 & class == positive: 8/11
- For Var D < 14 & class == negative: 3/11
 - Entropy(8,3) = -1 * ((8/11)*log2(8/11) + (3/11)*log2(3/11)) = 0.84532

Information Gain(IG) = E(Target) - E(Target, D) = 1 - 0.5811575 = 0.41189

Summary of calculations

		Target	
		Positive	Negative
Α	>= 5.0	5	7
	<5	3	1

Information Gain of A = 0.062255

		Target	
		Positive	Negative
В	>= 3.0	8	4
	< 3.0	0	4

Information Gain of B= 0.7070795

		Target	
		Positive	Negative
С	>= 4.2	0	6
	< 4.2	8	2

Information Gain of C= 0.5488

		Targ	get
		Positive	Negative
D	>= 1.4	0	5
	< 1.4	8	3

Information Gain of D= 0.41189

Constructing decision tree

- Now we know info gain from choosing current cutoffs (previous slide),
 we can build decision tree
- How to construct tree?
 - More info gain -> Better/higher node
 - Entropy == 0 -> Leaf node
 - Entropy > 0 -> Node needs further splitting

Constructing decision tree

		Target			
		Positive Negative			
Α	>= 5.0	5	7		
<5 3 1					
In	formati	on Gain of A = 0	.062255		

		Target		
		Positive	Negative	
В	>= 3.0	8	4	
	< 3.0	0	4	
Information Gain of B= 0.7070795				

	Target		
	Positive Negative		
>= 4.2	0	6	
< 4.2	8	2	
		Positive >= 4.2 0	

Information Gain of C= 0.5488

		Targ	get	
		Positive	Negative	
D	>= 1.4	0	5	
	< 1.4	8	3	
Information Gain of D= 0.41189				

Using gini index to quantify how good "cutoffs" are

Example of using gini index as criterion

- Gini index metric that measures how often a randomly chosen element is correctly identified
 - Means attributes with lower gini index are preferred

Gini Formula

$$I_G = 1 - \sum_{j=1}^{c} p_j^2$$

Example of using gini index as criterion

Let's assume previous set of data and random choice of thresholds

<u>Data</u>

-1	Α	В	С	D	E
1	4.8	3.4	1.9	0.2	positive
2	5	3	1.6	0.2	positive
3	5	3.4	1.6	0.4	positive
4	5.2	3.5	1.5	0.2	positive
5	5.2	3.4	1.4	0.2	positive
6	4.7	3.2	1.6	0.2	positive
7	4.8	3.1	1.6	0.2	positive
8	5.4	3.4	1.5	0.4	positive
9	7	3.2	4.7	1.4	negative
10	6.4	3.2	4.5	1.5	negative
11	6.9	3.1	4.9	1.5	negative
12	5.5	2.3	4	1.3	negative
13	6.5	2.8	4.6	1.5	negative
14	5.7	2.8	4.5	1.3	negative
15	6.3	3.3	4.7	1.6	negative
16	4.9	2.4	3.3	1	negative

Let's choose some random values/thresholds to categorize each attribute:

Α	В	С	D
>= 5	>= 3.0	>= 4.2	>= 1.4
< 5	< 3.0	< 4.2	< 1.4

https://dataaspirant.com/how-decision-tree-algorithm-works/

Calculating gini index for variable A

<u>Data</u>

4	Α	В	С	D	E
1	4.8	3.4	1.9	0.2	positive
2	5	3	1.6	0.2	positive
3	5	3.4	1.6	0.4	positive
4	5.2	3.5	1.5	0.2	positive
5	5.2	3.4	1.4	0.2	positive
6	4.7	3.2	1.6	0.2	positive
7	4.8	3.1	1.6	0.2	positive
8	5.4	3.4	1.5	0.4	positive
9	7	3.2	4.7	1.4	negative
10	6.4	3.2	4.5	1.5	negative
11	6.9	3.1	4.9	1.5	negative
12	5.5	2.3	4	1.3	negative
13	6.5	2.8	4.6	1.5	negative
14	5.7	2.8	4.5	1.3	negative
15	6.3	3.3	4.7	1.6	negative
16	4.9	2.4	3.3	1	negative

Gini Index for Var A

Var A has value >= 5 for 12 records out of 16 and 4 records with value <5 value.

- For Var A >= 5 & class == positive: 5/12
- For Var A >= 5 & class == negative: 7/12

- For Var A <5 & class == positive: 3/4
- For Var A <5 & class == negative: 1/4

By adding weight and sum each of the gini indices:

$$gini(Target, A) = (12/16) * (0.486) + (4/16) * (0.375) = 0.45825$$

Calculating gini index for variable B

<u>Data</u>

A	Α	В	С	D	E
1	4.8	3.4	1.9	0.2	positive
2	5	3	1.6	0.2	positive
3	5	3.4	1.6	0.4	positive
4	5.2	3.5	1.5	0.2	positive
5	5.2	3.4	1.4	0.2	positive
6	4.7	3.2	1.6	0.2	positive
7	4.8	3.1	1.6	0.2	positive
8	5.4	3.4	1.5	0.4	positive
9	7	3.2	4.7	1.4	negative
10	6.4	3.2	4.5	1.5	negative
11	6.9	3.1	4.9	1.5	negative
12	5.5	2.3	4	1.3	negative
13	6.5	2.8	4.6	1.5	negative
14	5.7	2.8	4.5	1.3	negative
15	6.3	3.3	4.7	1.6	negative
16	4.9	2.4	3.3	1	negative

Gini Index for Var B

Var B has value >= 3 for 12 records out of 16 and 4 records with value <5 value.

- For Var B >= 3 & class == positive: 8/12
- For Var B >= 3 & class == negative: 4/12
 - \circ gini(8,4) = 1- ((8/12)2 + (4/12)2) = 0.446
- For Var B <3 & class == positive: 0/4
- For Var B <3 & class == negative: 4/4
 - \circ gin(0,4) = 1- ((0/4)2 + (4/4)2) = 0

gini(Target, B) = (12/16) * 0.446 + (4/16) * 0 = 0.3345

Calculating gini index for variable C

<u>Data</u>

4	Α	В	С	D	E
1	4.8	3.4	1.9	0.2	positive
2	5	3	1.6	0.2	positive
3	5	3.4	1.6	0.4	positive
4	5.2	3.5	1.5	0.2	positive
5	5.2	3.4	1.4	0.2	positive
6	4.7	3.2	1.6	0.2	positive
7	4.8	3.1	1.6	0.2	positive
8	5.4	3.4	1.5	0.4	positive
9	7	3.2	4.7	1.4	negative
10	6.4	3.2	4.5	1.5	negative
11	6.9	3.1	4.9	1.5	negative
12	5.5	2.3	4	1.3	negative
13	6.5	2.8	4.6	1.5	negative
14	5.7	2.8	4.5	1.3	negative
15	6.3	3.3	4.7	1.6	negative
16	4.9	2.4	3.3	1	negative

Gini Index for Var C

Var C has value >=4.2 for 6 records out of 16 and 10 records with value <4.2 value.

- For Var C >= 4.2 & class == positive: 0/6
- For Var C >= 4.2 & class == negative: 6/6

o gini
$$(0,6) = 1 - ((0/8)2 + (6/6)2) = 0$$

- For Var C < 4.2& class == positive: 8/10
- For Var C < 4.2 & class == negative: 2/10

$$\circ$$
 gin(8,2) = 1- ((8/10)2 + (2/10)2) = 0.32

$$gini(Target, C) = (6/16) * 0 + (10/16) * 0.32 = 0.2$$

Calculating gini index for variable D

<u>Data</u>

A	Α	В	С	D	E
1	4.8	3.4	1.9	0.2	positive
2	5	3	1.6	0.2	positive
3	5	3.4	1.6	0.4	positive
4	5.2	3.5	1.5	0.2	positive
5	5.2	3.4	1.4	0.2	positive
6	4.7	3.2	1.6	0.2	positive
7	4.8	3.1	1.6	0.2	positive
8	5.4	3.4	1.5	0.4	positive
9	7	3.2	4.7	1.4	negative
10	6.4	3.2	4.5	1.5	negative
11	6.9	3.1	4.9	1.5	negative
12	5.5	2.3	4	1.3	negative
13	6.5	2.8	4.6	1.5	negative
14	5.7	2.8	4.5	1.3	negative
15	6.3	3.3	4.7	1.6	negative
16	4.9	2.4	3.3	1	negative

Gini Index for Var D

Var D has value >= 1.4 for 5 records out of 16 and 11 records with value < 1.4 value.

- For Var D >= 1.4 & class == positive: 0/5
- For Var D >= 1.4 & class == negative: 5/5
 - \circ gini(0,5) = 1- ((0/5)2 + (5/5)2) = 0
- For Var D < 1.4 & class == positive: 8/11
- For Var D < 1.4 & class == negative: 3/11
 - o gin(8,3) = 1- ((8/11)2 + (3/11)2) = 0.397

gini(Target, D) = (5/16) * 0 + (11/16) * 0.397 = 0.273

Constructing decision tree from gini index

		wTar	rget
		Positive	Negative
Α	>= 5.0	5	7
<5		3	1
Ginin Index of A = 0.45825			

		Target		
		Positive Negative		
В	>= 3.0	8	4	
	< 3.0	0	4	
Gini Index of B= 0.3345				

		Target		
		Positive	Negative	
С	>= 4.2	0	6	
	< 4.2	8	2	
Gini Index of C= 0.2				

		Target			
		Positive	Negative		
D	>= 1.4	0	5		
	< 1.4	8	3		
Gini Index of D= 0.273					

Remember: Lower gini index = better/more desirable

Doing research to predict something by yourself is hard... but doing research with a team of people is easier

One decision tree -> accuracy not great...but multiple decision trees -> higher accuracy

Thus -> use random forests

What's a random forest?

- TLDR: Classification technique that combines/averages results from multiple decision trees where input data for each decision tree comes from random sampling with replacement (bootstrap aggregation/bagging)
 - Why bagging? -> generates data sets that have low variance
 - Why combine results from multiple decision trees? Improves accuracy
- "A random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting" (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html)
 - Meta-estimator combines results of multiple predictions

Visualization of random forest

How does random forest work?

Code

• pIC50 prediction (drug potency prediction) using scikit-learn

References for content

- 1. https://www.geeksforgeeks.org/python-decision-tree-regression-using-sklearn/?ref=rp
- 2. https://dataaspirant.com/how-decision-tree-algorithm-works/
- 3. https://www.quora.com/What-is-difference-between-Gini-Impurity-and-Entropy-in-Decision-Tree
- 4. https://dataaspirant.com/random-forest-algorithm-machine-learing/
- 5. https://www.geeksforgeeks.org/random-forest-regression-in-python/
- 6. https://medium.com/swlh/random-forest-and-its-implementation-71824ced454f
- 7. https://williamkoehrsen.medium.com/random-forest-simple-explanation-377895a60d2d
- 8. https://towardsdatascience.com/random-forest-in-python-24d0893d51c0

References for code

- https://www.youtube.com/watch?v=wGaGm0sj04M&list=PLtqF5YXg7GLIQ JUv9XJ3RWdd5VYGwBHrP&index=4
- https://github.com/dataprofessor/code/blob/master/python/CDD ML Par t 4 Acetylcholinesterase Regression Random Forest.ipynb
- https://scikitlearn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
- https://builtin.com/data-science/random-forest-algorithm
- https://www.collaborativedrug.com/what-is-pic50-2/#:~:text=Simply%20stated%2C%20pIC50%20is%20the,is%20a%20pIC50%20of%209.