GRAFOS

•Consideramos um grafo planar caso ele possa ser desenhado em um plano de forma com que nenhuma aresta cruze com um vértice ou outra aresta.

•O grafo K4 é planar?

•O grafo K4 é planar?

•O grafo K4 é planar?

- •Jogo sobre isso:
 - https://www.jasondavies.com/planarity/

Teorema de Kuratowski

Um grafo é planar se, e somente se, ele não contém um subgrafo que é um subdivisão de K_5 ou $K_{3,3}$

Grafo Homeomorfo

Grafo Homeomorfo

Grafo Homeomorfo

Outros critérios

- Normalmente verificar a existência de subgrafos específicos pode ser um processo muito custoso.
- Para isto existem formas alternativas para determinar a planaridade de um grafo

Outros critérios

- Para um grafo conectado(conexo) simples n\u00e3o direcionado com V v\u00e9rtices e A arestas.
- •Ele é planar caso
 - V ≤ 2
- •Senão, podemos verificar se ele **pode ser planar** (não podemos garantir que ele é planar)
 - \circ V \geq 3 e A \leq 3V 6 e ele contém ciclos de tamanho 3

ou

 \circ V \geq 3 e A \leq 2V – 4 e ele não contém ciclos de tamanho 3

- •V ≤ 2
- •2 ≤ 2

•O grafo é Planar

- •V ≤ 2
- **•**4 ≤ **2**

- •V ≤ 2
- **•**4 ≤ **2**

- Contém ciclo de tamanho 3?
- •Sim

- •V ≤ 2
- •4≤**2**
- •Contém ciclo de tamanho 3?
- Sim
- •A ≤ 3V − 6
- **●**6 ≤ (3 * 4) − 6
- **●**6 ≤ 12 − 6
- **•6** ≤ **6**
- •O grafo pode ser planar

- •V ≤ 2
- **•**6 ≤ **2**

- •V ≤ 2
- **•**6 ≤ **2**

- Contém ciclo de tamanho 3?
- Não

•V ≤ 2

•6 ≤ **2**

• Contém ciclo de tamanho 3?

Não

• A ≤ 2V − 4

●9 ≤ (2 * 6) **–** 4

●9 ≤ 12 **-** 4

●9 ≤ 8

O Grafo não é planar

 Dado um grafo planar simples e conexo, com V vértices e A arestas. A sua representação sem o cruzamentos de arestas apresentará F faces de acordo com a fórmula abaixo:

$$\circ$$
 V – A + F = 2

- Cada aresta tem contato, e com isso ajuda a formar duas faces
- Cada face é formada por pelo menos 3 aresta, com exceção da área externa
- •A área externa ao gráfo é considerada como uma face de extensão infinita

$$\bullet V - A + F = 2$$

$$\bullet F = 2 - 4 + 6$$

- Cada face F em um grafo planar simples tem pelo menos 3 arestas A, para grafos com 3 vértices ou mais, logo:
 - 3F ≤ A
- •Porém, cada aresta A ajuda a formar duas faces, corrigindo:
 - o 3F ≤ 2A
 - o F ≤ (2A)/3
- •Voltando a fórmula de Euler:
 - \circ V A + F = 2
 - \circ F = 2 V + A
- •Substituímos o valor de **F** que não podemos sempre contar por sua equivalência em **A**, porém o valor de **A** é maior ou igual a F e não somente igual, o que muda a igualdade também:
 - \circ (2A)/3 \geq 2 V + A
 - \circ 2A \geq 6 3V + 3A
 - -A ≥ 6 3V
 - A ≤ 3V 6

Exercício

•Os grafos a seguir são planares?

Função TemCicloTres

```
Para cada vértice i do grafo{
Para cada vizinho j do vértice i {
Para cada vizinho k do vértice j {
Se k é vizinho de i {
Retorne Verdadeiro
}
}
```

Retorne Falso