Dig-In:

The Squeeze Theorem

The Squeeze theorem allows us to compute the limit of a difficult function by "squeezing" it between two easy functions.

In mathematics, sometimes we can study complex functions by relating them for simpler functions. The *Squeeze Theorem* tells us one situation where this is possible.

Theorem 1 (Squeeze Theorem). Suppose that

$$g(x) \le f(x) \le h(x)$$

for all x close to a but not necessarily equal to a. If

$$\lim_{x \to a} g(x) = L = \lim_{x \to a} h(x),$$

then $\lim_{x \to a} f(x) = L$.

Question 1 I'm thinking of a function f. I know that for all x

$$0 \le f(x) \le x^2.$$

What is $\lim_{x\to 0} f(x)$?

Multiple Choice:

- (a) f(x)
- (b) f(0)
- (c) 0 ✓
- (d) impossible to say

Example 1. Consider the function

$$f(x) = \begin{cases} \sqrt[5]{x} \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0, \end{cases}$$

Learning outcomes: Understand the Squeeze Theorem and how it can be used to find limit values. Calculate limits using the Squeeze Theorem.

Author(s):

Is this function continuous at x = 0?

Explanation. We must show that $\lim_{x\to 0} f(x) = \boxed{0}$. First, let's assume that $x\geq 0$ and small. Since

$$-1 \le \sin\left(\frac{1}{x}\right) \le 1$$

by multiplying these inequalities by $\sqrt[5]{x} \geq 0$, we obtain

$$-\sqrt[5]{x} \le \sqrt[5]{x} \sin\left(\frac{1}{x}\right) \le \sqrt[5]{x}$$

which can be written as

$$-\sqrt[5]{x} < f(x) < \sqrt[5]{x}.$$

Now, let's assume that $x \leq 0$ and small. Since

$$-1 \le \sin\left(\frac{1}{x}\right) \le 1$$

by multiplying these inequalities by $\sqrt[5]{x} \le 0$, we obtain

$$\sqrt[5]{x} \le \sqrt[5]{x} \sin\left(\frac{1}{x}\right) \le -\sqrt[5]{x}$$

which can be written as

$$\sqrt[5]{x} \le f(x) \le -\sqrt[5]{x}.$$

Therefore for all small values of x

$$-\left|\sqrt[5]{x}\right| \le f(x) \le \left|\sqrt[5]{x}\right|.$$

Since

$$\lim_{x \to 0} \left(- \left| \sqrt[5]{x} \right| \right) = \underbrace{\mathbb{0}}_{\text{given}} = \lim_{x \to 0} \left| \sqrt[5]{x} \right|$$

we apply the Squeeze Theorem and obtain that

$$\lim_{x\to 0} f(x) = \boxed{0}$$
. Hence $f(x)$ is continuous.

Here we see how the informal definition of continuity being that you can "draw it" without "lifting your pencil" differs from the formal definition.

Example 2. Compute:

$$\lim_{\theta \to 0} \frac{\sin(\theta)}{\theta}$$

Explanation. To compute this limit, use the Squeeze Theorem. First note that we only need to examine $\theta \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ and for the present time, we'll assume that θ is positive. Consider the diagrams below:

From our diagrams above we see that

Area of Triangle $A \leq Area$ of Sector $\leq Area$ of Triangle B and computing these areas we find

$$\frac{\cos(\theta)\sin(\theta)}{2} \leq \frac{\theta}{2} \leq \frac{\tan(\theta)}{2}.$$

Multiplying through by 2, and recalling that $tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$ we obtain

$$\cos(\theta)\sin(\theta) \le \theta \le \frac{\sin(\theta)}{\cos(\theta)}.$$

Dividing through by $\sin(\theta)$ and taking the reciprocals (reversing the inequalities), we find

$$\cos(\theta) \le \frac{\sin(\theta)}{\theta} \le \frac{1}{\cos(\theta)}.$$

Note, $\cos(-\theta) = \cos(\theta)$ and $\frac{\sin(-\theta)}{-\theta} = \frac{\sin(\theta)}{\theta}$, so these inequalities hold for all $\theta \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$. Additionally, we know

$$\lim_{\theta \to 0} \cos(\theta) = \boxed{1}_{\text{given}} = \lim_{\theta \to 0} \frac{1}{\cos(\theta)},$$

and so we conclude by the Squeeze Theorem, $\lim_{\theta \to 0} \frac{\sin(\theta)}{\theta} = \boxed{1}$.

When solving a problem with the Squeeze Theorem, one must write a sort of mathematical poem. You have to tell your friendly reader exactly which functions you are using to "squeeze-out" your limit.

Example 3. Compute:

$$\lim_{x \to 0} \left(\sin(x) e^{\cos\left(\frac{1}{x^3}\right)} \right)$$

Explanation. Let's graph this function to see what's going on:

The function $\sin(x)e^{\cos(\frac{1}{x^3})}$ has two factors:

goes to zero as
$$x \to 0$$

$$\widehat{\sin(x)} \cdot e^{\cos(\frac{1}{x^3})}$$

bounded between e^{-1} and e

Hence we have that when $0 < x < \pi$

$$0 \le \sin(x)e^{\cos\left(\frac{1}{x^3}\right)} \le \sin(x)e^{\cos\left(\frac{1}{x^3}\right)}$$

and we see

$$\lim_{x \to 0^+} 0 = \boxed{0}_{\text{given}} = \lim_{x \to 0^+} \sin(x) \boxed{e}_{\text{given}}$$

and so by the Squeeze theorem,

$$\lim_{x\to 0^+} \left(\sin(x)e^{\cos\left(\frac{1}{x^3}\right)}\right) = \boxed{0}.$$
 given

In a similar fashion, when $-\pi < x < 0$,

$$\sin(x)$$
 e $\sin(x) e^{\cos(\frac{1}{x^3})} \le 0$

and so

$$\lim_{x\to 0^-}\sin(x)\underbrace{e}_{\text{given}} = \underbrace{0}_{\text{given}} = \lim_{x\to 0^-}0,$$

and again by the Squeeze Theorem $\lim_{x\to 0^-} \left(\sin(x)e^{\cos\left(\frac{1}{x^3}\right)}\right) = 0$. Hence we see that

$$\lim_{x \to 0} \left(\sin(x) e^{\cos\left(\frac{1}{x^3}\right)} \right) = \boxed{0}.$$
 given.

