Data	Questão / Solução
2015-11-06 1ªF - Mª Clara Grácio & José Ribeiro & Luís Bicho	• $\sum_{n=1}^{+\infty} (-1)^n (n-\sqrt{n})$ ∴ Divergente. Falha critério do termo geral • $\sum_{n=1}^{+\infty} \frac{1}{(n+2)n}$ ∴ Convergente. Série Mengoli com $k=2$. A soma é $\frac{3}{4}$ • $\sum_{n=1}^{+\infty} \frac{a^n + b^{2n}}{c^n + d^n} c$, $d > 0$; $\max\{ a , b^2\} < \min\{c, d\}$ • $\sum_{n=2}^{+\infty} \frac{(-1)^n}{\log^2 n}$ ∴ Série alternada. Converge simplesmente • Se $\sum a_n$ converge absolutamente então $\sum a_n^2$ converge
2015-07-01 Exame - Luís Bicho & Jorge Salazar	
2015-06-17 Exame - Luís Bicho & Jorge Salazar	
2015-04-08 1ªF - Luís Bicho & Jorge Salazar	
2015-03-28 1ªF - Luís Bicho & Jorge Salazar	
2015-01-05 Exame - Mª Clara Grácio & Feliz Minhós & Luís Bicho	

Data	Questão / Solução
2014-11-07 1ªF - Mª Clara Grácio & Feliz Minhós & Luís Bicho	• $\sum_{n=1}^{+\infty} \left(\frac{n+2}{n+5}\right)^{2n}$ ∴ Divergente. Falha critério do termo geral • $\sum_{n=5}^{+\infty} \frac{(-1)^n}{\sqrt{n-2}}$ ∴ Série alternada. Converge simplesmente • $\sum_{n=1}^{+\infty} \frac{\cos^n 3}{3^n}$ ∴ Convergente. Série geométrica de razão $r = \frac{\cos 3}{3}$. A soma é $\frac{\cos 3}{3 - \cos 3}$
	♦ $\sum_{\substack{n=5\\+\infty}} \frac{(-1)^n}{\sqrt{n}-2}$: Série alternada. Converge simplesmente
	♦ $\sum_{\substack{n=1\\+\infty}} \frac{\cos^n 3}{3^n}$: Convergente. Série geométrica de razão $r = \frac{\cos 3}{3}$. A soma é $\frac{\cos 3}{3 - \cos 3}$
	$ \oint \sum_{n=1}^{n=1} \left(\frac{1}{n!} - \frac{1}{(n+2)!} \right) \therefore \text{ Convergente. Série Mengoli com } k = 2. \text{ A soma \'e } \frac{3}{2} $
	• Sendo $\sum a_n$, $\sum b_n$ séries convergentes de termos positivos, qual a natureza das seguintes séries:
	$\sum \left(rac{1}{a_n} + rac{1}{b_n} ight)$:: Divergente. Falha critério do termo geral $\sum a_nb_n$:: Convergente. Comparar com $\sum b_n$
	$\sum a_nb_n$ \therefore Convergente. Comparar com $\sum b_n$
2014-01-06 Exame - Mª Clara Grácio & Feliz Minhós & Luís Bicho	
	• $\sum_{n=1}^{n-1} \left(\frac{-2}{n}\right)^n$: Converge absolutamente. Usar critério da raiz na série dos módulos
	♦ Considere a adição infinita $1 - 1 + 1 - 1 + 1$ Qual o valor da sua soma?
	$\sum_{n=1}^{\infty} (-1)^n$ é divergente. Não dá para clacular a soma
2013-11-0 2 1ªF - Mª Clara Grácio & Feliz Minhós & Luís Bicho	♦ $\sum_{n=1}^{+\infty} \frac{3^n}{2^{n-1}}$ ∴ Divergente. Série geométrica de razão $r = \frac{3}{2}$ ♦ $\sum_{n=1}^{+\infty} \frac{2n^2 - 3}{5n^2}$ ∴ Divergente. Falha critério do termo geral
	♦ $\sum_{n=1}^{+\infty} \frac{2n^2 - 3}{5n^2}$: Divergente. Falha critério do termo geral
	$ \oint \sum_{n=1}^{+\infty} \frac{1}{2^n + n^2} < \sum_{n=1}^{+\infty} \left(\frac{1}{2}\right)^n = 1 $
	$+\infty$
	• $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^{\alpha}}$, $\alpha > 1$: Converge absolutamente. Comparar séries de Dirichlet