F.M.B

Chapter 4: CONGRUENCES AND THE INTEGERS MODULO *n*

Mphako-Banda

LEARNING OUTCOMES FOR THE LECTURE

By the end of this lecture, students will be able to:

- \clubsuit state 3 equivalent conditions under which an element has an inverse in \mathbb{Z}_n
- prove that these 3 conditions are equivalent
- \clubsuit write out addition and multiplication tables for \mathbb{Z}_n
- apply modular arithmetic to problem of finding remainders when dividing numbers raised to large powers by a natural number
- *

Theorem (4.2.8)

The following are equivalent for $n \ge 2$.

- (i) Every element $\overline{a} \neq \overline{0}$ in \mathbb{Z}_n has an inverse.
- If $\overline{ab} = \overline{0}$ in \mathbb{Z}_n , then either $\overline{a} = \overline{0}$ or $\overline{b} = \overline{0}$.
- (iii n is prime.

(This theorem links the conditions under which an element in \mathbb{Z}_n has an inverse depending on whether or not n is prime.)

PROOF:

Assume (i) prove (ii) (direct proof used here) $\overline{a} \neq \overline{0}$ has inverse \overline{c} in \mathbb{Z}_n so $\overline{ac} = \overline{ca} = \overline{1}$.

$$\overline{a}\overline{b} = \overline{0} \Rightarrow \overline{c}(\overline{a}\overline{b}) = \overline{c}\overline{0}$$
 (Can you state the reasons here?)
 $\Rightarrow (\overline{c}\overline{a})\overline{b} = \overline{0}$
 $\Rightarrow \overline{1}.\overline{b} = \overline{0} \Rightarrow \overline{b} = \overline{0}$ by property of unity: Theorem $\stackrel{4}{\bullet}$.

Therefore (ii) holds.

E.M.B

Assume (ii) prove (iii)

(this part is proved by contradiction)

If $\overline{a}\overline{b} = \overline{0}$ then $\overline{a} = \overline{0}$ or $\overline{b} = \overline{0}$.

Assume *n* not prime, say n = kp where $2 \le k < n$, and

 $2 \le p < n_{-}$

Then $\overline{n} = \overline{kp} = \overline{k}\overline{p} = \overline{0}$.

 $(\overline{n} = \overline{0})$ Why?)

Thus $\overline{k} = \overline{0}$ or $\overline{p} = \overline{0}$.

But $2 \le k < n$, and $2 \le p < n$.

So that is not possible. $\therefore k = 1$ or p = 1 as required. i.e n is prime.

Assume (iii) prove (i)

n is prime so for $\overline{a} \in \mathbb{Z}_n$, the gcd(a, n) = 1.

- $\Rightarrow \exists p, q \text{ such that } pa + qn = 1$
- \Rightarrow $pa \equiv 1 \pmod{n}$.

Thus $\overline{pa} = \overline{1}$. $\therefore \overline{a}$ has inverse (By Thm4.2.6) . \therefore (i) holds.

Since (i) implies (ii)

and (ii) implies (iii)

and (iii) implies (i),

the 3 statements are equivalent.

Example (4.2.9)

Write down the addition and multiplication tables for \mathbb{Z}_5 .

 \mathbb{Z}_5 under multiplication...

$(\mathbb{Z}_5,.)$	0	1	2	3	4
Ō	Ō	Ō	Ō	0	0
1	0	1	2	3	4
2	Ō	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

$$\frac{1}{3} \cdot \frac{1}{2} = \frac{1}{6} = \frac{1}{1}$$

NOTE: We have changed notation. See note below table.

Part 5

Z₉ under addition...

$(\mathbb{Z}_9,+)$	0	1	2	3	4	5	6	7	8
0	0	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8	0
2	2	3	4	5	6	7	8	0	1
3	3	4	5	6	7	8	0	1	2
4	4	5	6	7	8	0	1	2	3
5	5	6	7	8	0	1	2	3	4
6	6	7	8	0	1	2	3	4	5
7	7	8	0	1	2	3	4	5	6
8	8	0	1	2	3	4	5	6	7

Note: The residue class \bar{a} will, from here on, be denoted simply without the bar as a

Z₉ under multiplication

murtipho	atioi									
$(\mathbb{Z}_9,.)$	0	1	2	3	4	5	6	7	8	
0	0	0	0	0	0	0	0	0	0	
1	0	1	2	3	4	5	6	7	8	
2	0	2	4	6	8	1	3	5	7	
3	0	3	6	0	3	6	0	3	6	\leftarrow
4	0	4	8	3	7	2	6	1	5	
5	0	5	1	6	2	7	3	8	4	
6	0	6	3	0	6	3	0	6	3	\longleftrightarrow
7	0	7	5	3	1	8	6	4	2	
8	0	8	7	6	5	4	3	2	1	
				1			1			

Only 0's, 3's and 6's in these columns and rows NOTE: The product of two non-zero numbers gives us a zero here...

3.3=0 3.6=0 6.3=0 6.6=0

E.M.B

Exercises

 $\overline{7}$ in different \mathbb{Z}_n

$$\ln \mathbb{Z}_9 \quad : \quad \overline{\overline{7}} = \{\cdots, -11, -2, 7, 16, 25, \cdots\} = \overline{-2}$$

$$\begin{array}{lll} \text{In } \mathbb{Z}_5 & : & \overline{7} = \{\cdots, -3, 2, 7, 12, 17, \cdots\} = \overline{2} \\ \text{In } \mathbb{Z}_7 & : & \overline{7} = \{\cdots, -14, -7, 0, 7, 14, \cdots\} = \overline{0} \end{array}$$

$$\begin{array}{lll}
\Pi & \mathbb{Z}_7 & : & I = \{\cdots, -14, -7, 0, 7, 14, \\
\Lambda & \text{ddition in } \mathbb{Z}_7
\end{array}$$

Addition in \mathbb{Z}_9

$$\overline{5} = \{ \cdots, -13, -4, 5, 14, 23, \cdots \} = \overline{14}$$

$$\overline{8} = \{\cdots, -19, -10, -1, 8, 17, \cdots\} = \overline{-10}$$

$$\overline{\bf 5} + \overline{\bf 8} = \overline{\bf 13} = \{\cdots, -23, -14, -5, 4, 13, 22, \cdots\} = \overline{\bf 4}$$

Multiplication in \mathbb{Z}_9

$$\overline{5}.\overline{8} = \overline{40} = \{\cdots, 4, 13, 22, 31, 40, 49, \cdots\} = \overline{4}$$

Calculator says 3^1027 = 1.0081579916007541175389913362991e+490 Part 5 **Exercise** {No information on last Unit decimal digit of 3¹⁰²⁷ digit here} Powers of 3 9. 27 243 2187 6561 19683 81 729 etc Look at the pattern of the last digits... 3 9 7 1 3 9 7 3^{4n+1} 3^{4n+2} (mod 10) (mod 10) 3^{4n+3} (mod 10) 3^{4n} (mod 10) 1027 4(256) + 3. 1027 = 4n + ?Therefore last digit is 7.

Exercise

 8^{391} divided by 5 gives remainder? 8=8 $8^2=64$ $8^3=512$ $8^4=4096$ $8^5=32768$ $8^6=262144$ etc

$$8^{4n+1} \equiv 3 \pmod{5}$$

 $8^{4n+2} \equiv 4 \pmod{5}$
 $8^{4n+3} \equiv 2 \pmod{5}$
 $8^{4n} \equiv 1 \pmod{5}$
 $391 = 4(97) + 3$.

Therefore remainder is 2.