Corrigé proposé par : M. Afekir - École Royale de l'Air CPGE Marrakech cpgeafek@yahoo.fr

Premier problème : Thermodynamique

Première partie Étude d'un réservoir à gaz

- Pour les gaz diatomiques : $\gamma = \frac{7}{5}$ 1.1.
 - Exemples de gaz diatomiques : H_2 , O_2 , N_2 , Cl_2 ...
 - 1.1.2.

$$c_v = \frac{R}{\gamma-1} \qquad \text{et} \qquad c_p = \frac{\gamma R}{\gamma-1}$$
 Application numérique : $c_v = 20~J~K^{-1}~mol^{-1} \qquad \text{et} \qquad c_p = 29~J~K^{-1}~mol^{-1}$

- 1.2. Le piston ∏ est bloqué
 - 1.2.1.

$$P_oV_1 = N_1RT_o$$
 \Rightarrow $N_1 = \frac{P_oV}{RT_o} = 0,4 \ mol$

1.2.2.

$$P_1 = P_R = 25.10^5 \ Pa$$

Conservation de la quantité de matière :

$$n_t = N_1 + N$$
 avec $P_R V_1 = n_t R T_1$ \Rightarrow $\frac{P_R V_1}{R T_1} = N + \frac{P_o V_1}{R T_o}$

Soit:
$$N = \frac{V_1}{R} \left(\frac{P_R}{T_1} + \frac{P_o}{T_o} \right)$$

1.2.4. Variation de l'énergie interne ΔU :

$$\Delta U = (N_1 + N) c_v (T_1 - T_o) = \left[(N_1 + N) R \frac{T_1 - T_o}{\gamma - 1} \right]$$

- 1.2.5. Travail W reçu par le système :
- ullet État (1) : ouverture de la vanne, le volume accessible pour les $N \, moles$ du gaz G est : $V_N + V_1 = V_i.$
- État (2): le gaz G renferme le volume $V_1 = V_f$.

Le travail :
$$W = -P_R(V_f - V_i) \Rightarrow W = P_RV_N$$

1.2.6. Le cylindre est isolé thermiquement et le piston est athermane \Rightarrow la transformation de G est adiabatique.

 1^{er} principe de la thermodynamique : $\Delta U = Q + W = W$ or $W = P_R V_N = NRT_o$

$$\Rightarrow (N_1 + N)R\frac{T_1 - T_o}{\gamma - 1} = NRT_o \Rightarrow \frac{P_R V_1}{T_1}\frac{T_1 - T_o}{\gamma - 1} = \frac{V_1}{R}\left(\frac{P_R}{T_1} + \frac{P_o}{T_o}\right)RT$$

$$\Rightarrow T_1 = \frac{\gamma T_o P_R}{P_R + (\gamma - 1) P_o} = 413,38 K$$

- 1.3. Le piston Π étant toujours bloqué
 - ${f 1.3.1}$. La transformation est une détente adiabatique .
 - 1.3.2.

$$\Delta U = \underbrace{W}_{=0} + \underbrace{Q_1 + Q_2}_{=0} = 0 = n_t c_v (T_2 - T_1) \Rightarrow \boxed{T_1 = T_2}$$

 ${f 1.3.3.}$ La transformation est irréversible. Au cours d'une transformation élémentaire réversible :

$$dS = \frac{\delta Q}{T} = C_v \frac{dT}{T} + \frac{P}{T} dV = C_v \frac{dT}{T} + nR \frac{dV}{V}$$

C'est une détente isotherme, donc :

$$\Delta S = nR \ln \frac{V_f}{V_i} = nR \ln \frac{V_1 + V_2}{V_1}$$

Or
$$P_R V_1 = nRT_2 = nRT_1 \implies \Delta S = \frac{P_R}{T_1} V_1 \ln(1 + \frac{V_2}{V_1})$$

- **1.3.4.** Application numérique : $\Delta S \simeq 11 J.K^{-1}$
- 1.3.5. L'état final du système est indépendant de l'ordre d'ouverture et de fermeture des vannes \mathcal{V}_1 et \mathcal{V}_{12} car P_R est indépendante de N (gaz éjecté) et que la température T_1 ne dépend que de P_R .
- 1.4. Le piston Π étant toujours bloqué
 - **1.4.1**. Quantité de matière du gaz G_o

$$PV_2^i = n_2 RT = \frac{P_R}{x} V_2^i \quad \Rightarrow \quad \boxed{n_2 = \frac{P_R V_o}{RT_o}}$$

1.4.2. Volume V_2 occupé par le gaz de C_2 . Soit P' la pression du gaz de C_2 .

$$P'V_2 = n_2 RT = \frac{P_R V_o}{RT_o} RT = \frac{P_R V_o}{T_o} T$$

A l'équilibre
$$P_R = P' \; \Rightarrow \; \boxed{V_2 = \frac{V_o}{T_o}T}$$

1.4.3. Température de gaz G_o contenu dans C_2 1^{er} principe de la thermodynamique : $\Delta U = n_2 c_{vo}(T - T_o) = W$

$$W = -P_R \Delta V = -P_R (V_f - V_i) = -P_R (V_2 - V_2^i) = -P_R (\frac{V_o}{T_o} T - xV)$$

$$\Delta U = n_2 c_{vo} (T - T_o) = \frac{P_R V_o}{RT_o} c_{vo} (T - T_o) = 3 \frac{P_R V_o}{T_o} (T - T_o)$$
Soit : $x - \frac{T}{T_o} = 3(\frac{T}{T_o} - 1) \Rightarrow \boxed{T = \frac{T_o}{4} (x + 3)}$

1.4.4. Expression de V_2 ; d'après 1.4.2.

$$V_2 = \frac{V_o}{T_o}T = \boxed{\frac{V_o}{4}(3+x)}$$

1.4.5. Variation d'entropie du gaz G_o contenu dans C_2 Pour une transformation élémentaire réversible :

$$dS = \frac{\delta Q}{T} = c_{vo} \frac{dT}{T} + p \frac{dV}{T} = c_{vo} \frac{dT}{T} + n_2 R \frac{dV}{V} = 3R \frac{dT}{T} + \frac{P_R V_o}{T_o} \frac{dV}{V}$$

$$\Rightarrow \quad \Delta S = 3R \ln \frac{T}{T_o} + \frac{P_R V_o}{T_o} \ln \frac{V_2}{V_o^2} \qquad \Longrightarrow \qquad \boxed{\Delta S = 3R \ln \frac{3+x}{4} + \frac{P_R V_o}{T_o} \ln \frac{3+x}{4x}}$$

- 1.4.6. Applications numériques
 - 1.4.6.1.

$$T = 2100K$$
 et $\Delta S(x = 25) = 3.8 J.K^{-1}$

1.4.6.2.

$$\Delta S(x=1) = 0$$
 et $\Delta S(x=0) \rightarrow \infty$

1.4.6.3.

$$x_{max} = 120$$

1.4.7. Graphe de $\Delta S(x)$

Deuxième partie Étude d'un moteur à piston

- 2.1. Première étape :le piston est placé contre la culasse K, et la soupape S_1 est fermée, et on ouvre S_2
- **2.1.1**. La pression à l'intérieur du cylindre est $P_A = P_R$ et la transformation est une détente monobare.
 - **2.1.2**. Quantité de matière n_o admise dan le cylindre

On a:
$$P_R V = n_o R T_1 = P_R \frac{V_A}{\alpha} \quad \Rightarrow \quad \boxed{n_o = \frac{P_R V_A}{\alpha R T_1}}$$

2.1.3. Expression de T_1 en fonction de T_o 1^{er} principe de la thermodynamique :

$$\Delta U = W \ avec \ \Delta U = \frac{n_o R}{\gamma - 1} (T_1 - T_o) \ et \ W = -P_R(V_f - V_i)$$

Or :
$$\begin{cases} V_i = V_N \\ V_f = V_N + V \end{cases} \Rightarrow W = -P_R V = -P_R \frac{V_A}{\alpha}$$

Soit :
$$\frac{P_R V_A}{\alpha T_1} \frac{T_1 - T_o}{\gamma - 1} = -P_R \frac{V_A}{\alpha} \quad \Rightarrow \quad T_1 - T = -T_1 (\gamma - 1) \quad ou \quad \boxed{T_1 = \frac{T_o}{\gamma}}$$

- **2.1.4**. Application numérique : $n_o = 0.16 \ mol$
- 2.2. Deuxième étape :la soupape S_1 est fermée et S_2 se ferme, le gaz subit une détente adiabatique réversible
- **2.2.1**. Expression de la pression P_2 dans le cylindre Une des lois de Laplace donne :

$$P_2 V_A^{\gamma} = P_R (\frac{V_A}{\alpha})^{\gamma} \Rightarrow \boxed{P_2 = \frac{P_R}{\alpha^{\gamma}}}$$

Application numérique : $P_2 = 2,6.10^5 Pa$

 $\mathbf{2.2.2.}$ Travail W_2 reçu par le gaz

$$W_2 = \frac{P_f V_f - P_i V_i}{\gamma - 1} = \frac{P_2 V_2 - P_R \frac{V_A}{\alpha}}{\gamma - 1}$$

$$\implies W_2 = \frac{P_R V_A}{\gamma - 1} (\frac{1}{\alpha^{\gamma}} - \frac{1}{\alpha})$$

 ${f 2.3.}$ Troisième étape : la soupape S_2 s'ouvre

2.3.1. Diagramme de watt

2.3.2. Travail W_o fourni au gaz par le piston au cours d'un cycle

$$W_{o} = W_{AB} + W_{BC} + W_{CD} + W_{DE} \text{ tels que} \begin{cases} W_{AB} = -P_{R} \frac{V_{A}}{\alpha} \\ W_{BC} = W_{2} \\ W_{CD} = 0 \\ W_{DE} = +P_{o}V_{A} \end{cases}$$

Soit :
$$W_o = \frac{P_R V_A}{\gamma - 1} \left(\frac{1}{\alpha^{\gamma}} - \frac{1}{\alpha} \right) + V_A \left(P_o - \frac{P_R}{\alpha} \right)$$

Application numérique : $W_o \simeq -794 J$

2.3.3. Débit massique D_1 en régime stationnaire

On a :
$$\mathcal{P} = \frac{W_o}{\Delta t}$$
 et $D_1 = \frac{m_o}{\Delta t} = \frac{n_o M}{\Delta t}$ \Rightarrow $D_1 = n_o M \frac{\mathcal{P}}{W_o} = \frac{\gamma M P_R V_A \mathcal{P}}{\alpha R T_o W_o}$

Application numérique : $D_1 \simeq 28,56 \, kgh^{-1}$

2.3.3.1. Durée d'un cycle $\Delta t = 0.8 \ s$

Troisième partie Étude d'un moteur à turbine

- 3.1. Détente adiabatique réversible
 - **3.1.1**. 1^{er} principe de la thermodynamique pour un système ouvert (S)

$$d\mathcal{E}(t) + dt(D_{me} e_{\text{sortie}} - D_{ms} e_{\text{entrée}}) = \delta Q + \delta W$$

Avec :

- $-\mathcal{E}(t)$: Énergie, totale, du système (S) à l'instant t.
- e_{sortie} : Énergie massique, totale, à la sortie de (S).

- $e_{\text{entrée}}$: Énergie massique, totale, à l'entrée de (S).
- D_m :Le débit massique.
- δW et δQ : les transferts d'énergie (travail et énergie thermique respectives) reçus par le système fermé (Σ) constitué à l'instant t du contenu matériel de (S) et de la masse entrée dans (S) pendant dt.
- **3.1.2**. Le bilan énergétique précédent pourra s'écrire sous la forme :

$$d\mathcal{E}(t) + dt \left[D_m(e_c + e_{p,\text{ext}} + h) \right]_{\text{entrée}}^{\text{sortie}} = \delta Q + \delta W_T$$

- $\diamond \ \ e_c$: énergie cinétique massique.
- $\diamond \ e_{ exttt{p,ext}}$: énergie potentielle extérieur massique.
- $\diamond h:$ l'enthalpie massique.

Dans le cas du modèle du moteur à turbine étudié, on a les résultats suivants :

- ⋄ pas de variation de l'énergie potentielle extérieur massique.
- ♦ Pas de variation de l'énergie cinétique massique (vitesses négligeables).
- \diamond Le régime est stationnaire $\implies D_m = \text{constant } et \ d\mathcal{E}(t) = 0$
- $\diamond \ \ Q=0$ pas d'échange de l'énergie thermique avec l'extérieur.

Soit m la masse transférée pendant dt, d'où :

$$m[h]_{ ext{entr\'ee}}^{ ext{sortie}} = W_T = m(h_{ ext{sortie}} - h_{ ext{entr\'ee}}) \Longrightarrow \boxed{W_T = n(h_{sortie}^m - h_{ ext{entr\'ee}}^m)}$$

Où h^m désigne l'enthalpie molaire et la quantité de matière $n=1\,mol$

3.1.3.

$$W_T = \Delta h^m = C_{pm} (T_1 - T_o)$$
 avec :
$$\begin{cases} C_{pm} = \frac{\gamma R}{\gamma - 1} \\ T_1 P^{\frac{1-\gamma}{\gamma}} = T_o P_R^{\frac{1-\gamma}{\gamma}} \end{cases}$$

$$\Rightarrow W_T = \frac{\gamma R T_o}{\gamma - 1} \left(\left(\frac{P_o}{P_R} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right)$$

Application numérique : $W_T \simeq -5,2 \ Jmol^{-1}$

3.1.4. Débit massique D_2

$$D_2 = M \frac{\mathcal{P}}{W_T}$$

Application numérique : $D_2 \simeq 19 \ kgh^{-1}$

3.2. Détente polytropique

3.2.1.

$$W_T^{'} = \frac{kRT_o}{k-1} \left(\left(\frac{P_o}{P_R} \right)^{\frac{k-1}{k}} - 1 \right)$$

Application numérique : $W_T^{'} = -3.1 \ Jmol^{-1}$

3.2.2.

$$D_2' = M \frac{\mathcal{P}}{W_T'}$$

Application numérique : $D_2^{'} \simeq 32 \; kgh^{-1}$

Quatrième partie Étude d'un moteur à réaction

4.1. Le 1^{er} principe $\Longrightarrow \Delta(e_c + h^m) = 0$

$$\implies \frac{1}{2}Mv^2 + \frac{\gamma R}{\gamma - 1}(T_1 - T_o) = 0 \Rightarrow v = \sqrt{\frac{2\gamma RT_o}{M(\gamma - 1)} \left(\left(\frac{P_o}{P_R}\right)^{\frac{k' - 1}{k'}} - 1\right)}$$

Application numérique : $v \simeq 269 \ ms^{-1}$

4.2. Débit massique D_3

$$\mathcal{P} = \frac{1}{2}v^2D_3 \qquad \Rightarrow \qquad \boxed{D_3 = 2\frac{\mathcal{P}}{v^2}}$$

Application numérique : $D_3 \simeq 99,5 \ kgh^{-1}$

Deuxième problème : Mécanique

Première partie Mise en équation

1.1.
$$\overrightarrow{OG} = \overrightarrow{OA} + \overrightarrow{AG} = l \cos \theta \, \vec{u}_x + (y_A + l \sin \theta) \, \vec{u}_y = x \, \vec{u}_x + y \, \vec{u}_y$$

1.1.1.

$$x = l \cos \theta$$

1.1.2.

$$y = y_A + l \sin \theta \Rightarrow y_A = y - l \sin \theta$$

- 1.1.3. Bilan des forces exercées sur la barre :
- Poids:

$$\overrightarrow{P} = m\overrightarrow{g} = m g \overrightarrow{u}_x$$

• Réaction de l'axe sur la barre (Absence de frottements $\implies \overrightarrow{R} \cdot \overrightarrow{u}_y = 0$) :

$$\overrightarrow{R} = -R \overrightarrow{u}_x \; ; \; (R > 0)$$

• L'action du ressort :

$$\overrightarrow{f} = -k y_A \vec{u}_y$$

1.1.4. Théorème de la résultante cinétique (TRC) (On note \mathcal{R} le référentiel de laboratoire d'étude) :

$$m\vec{a}_{G/\mathcal{R}} = m\left(\frac{d^2\overrightarrow{OG}}{dt^2}\right)_{\mathcal{R}} = \overrightarrow{f} + m\overrightarrow{g} + \overrightarrow{R} = -ky_A\vec{u}_y + (mg - R)\vec{u}_x$$

1.1.5.

 \circ Accélération de la barre par rapport à $\mathcal R$:

$$\vec{a}_{G/\mathcal{R}} = \ddot{x} \vec{u}_x + \ddot{y} \vec{u}_y \implies \vec{a}_{G/\mathcal{R}} = -l \left(\dot{\theta}^2 \cos \theta + \ddot{\theta} \sin \theta \right) \vec{u}_x + \ddot{y} \vec{u}_y$$

o Expression de la réaction \overrightarrow{R} : projection du (TRC) suivant \overrightarrow{u}_x

$$R = mg + ml\left(\dot{\theta}^2\cos\theta + \ddot{\theta}\sin\theta\right) \Rightarrow \overrightarrow{R} = -m\left(g + l\left(\dot{\theta}^2\cos\theta + \ddot{\theta}\sin\theta\right)\right)\vec{u}_x$$

o Équation du mouvement : projection du (TRC) suivant \vec{u}_y et résultat de la question 1.1.2.

$$m \ddot{y} = -k y_A \quad \Rightarrow \quad \boxed{\ddot{y} + \omega_1^2 (y - l \sin \theta) = 0}$$

1.1.6. Théorème du moment cinétique en G (TMC):

$$\frac{\left(\overrightarrow{dL}_{G/\mathcal{R}}\right)_{\mathcal{R}} = \overrightarrow{M}_{G}\left(\overrightarrow{P}\right) + \overrightarrow{M}_{G}\left(\overrightarrow{f}\right) + \overrightarrow{M}_{G}\left(\overrightarrow{R}\right)}{\left(\overrightarrow{dL}_{G/\mathcal{R}}\right)_{\mathcal{R}}} \quad tels \; que : \begin{cases} \overrightarrow{L}_{G/\mathcal{R}} = J \dot{\theta} \vec{u}_{z} \\ \overrightarrow{M}_{G}\left(\overrightarrow{f}\right) = k_{A}y \, l \cos \theta \, \vec{u}_{z} \\ \overrightarrow{M}_{G}\left(\overrightarrow{P}\right) = \overrightarrow{0} \\ \overrightarrow{M}_{G}\left(\overrightarrow{R}\right) = -R \, l \sin \theta \, \vec{u}_{z} \end{cases}$$

1.1.7. Par projection du (TMC) suivant \vec{u}_z , on obtient :

$$-R l \sin \theta + k l y_A \cos \theta = J \ddot{\theta} = m \frac{l^2}{2} \ddot{\theta}$$

$$\Rightarrow \qquad \ddot{\theta} = 3\omega_1^2 \frac{y_A}{l} \cos \theta - \omega_2^2 \sin \theta \left(1 + \frac{l}{g} \left(\dot{\theta}^2 \cos \theta + \ddot{\theta} \sin \theta \right) \right)$$

Deuxième partie Étude des petites oscillations de la barre

2.1. Dans le cas des petits mouvements :

$$\sin \theta \approx \theta \ et \ \cos \theta \approx 1 \ \Rightarrow \ y_A \approx y - l\theta$$

Les équations établies en 1.1.5. et 1.1.7. donnent :

$$\Rightarrow \begin{cases} \ddot{y} + \omega_1^2 (y - l\theta) = 0 \\ l\ddot{\theta} = 3\omega_1^2 (y - l\theta) - \omega_2^2 l\theta \end{cases}$$

$$Soient, \ avec \ z = l\theta, \quad : \begin{cases} \ddot{y} + \omega_1^2 y = \omega_1^2 z \\ \ddot{z} + \left(3\omega_1^2 + \omega_2^2\right) z = 3\omega_1^2 y \end{cases}$$

2.2. En notation complexe :

$$\underline{y} = \underline{A} \exp i\Omega t$$
 et $\underline{z} = \underline{B} \exp i\Omega t$
 $\Rightarrow \ddot{y} = -\Omega^2 y$ et $\ddot{\underline{z}} = -\Omega^2 \underline{z}$

2.2.1. En remplaçant chaque expression dans les deux équations établies en 2.1., on aura :

$$\begin{cases} \left(\omega_1^2 - \Omega^2\right)\underline{A} - \omega_1^2\underline{B} = 0\\ -3\omega_1^2\underline{A} + \left(3\omega_1^2 + \omega_2^2 - \Omega^2\right)\underline{B} = 0 \end{cases}$$

- 2.2.2. Condition de solutions non nulles : déterminant du système nul et $\omega_1
 eq \Omega$
- déterminant du système nul, donne : $\Omega^4~-~\left(4\omega_1^2~+~\omega_2^2\right)\Omega^2~+~\omega_1^2\omega_2^2=~0$ 2.2.3.
- 2.2.4. Les solutions (physiques) de l'équation précédente, avec ($\Omega_1 > \Omega_2$), sont :

$$\begin{cases} \Omega_1 = \sqrt{\frac{4\omega_1^2 + \omega_2^2}{2} + \frac{1}{2}\sqrt{16\omega_1^4 + \omega_2^2 + 4\omega_1^2\omega_2^2}} \\ \Omega_2 = \sqrt{\frac{4\omega_1^2 + \omega_2^2}{2} - \frac{1}{2}\sqrt{16\omega_1^4 + \omega_2^2 + 4\omega_1^2\omega_2^2}} \end{cases}$$

Les constantes \underline{A}_1 , \underline{A}_2 , \underline{B}_1 et \underline{B}_2 seront déterminées connaissant les conditions initiales.

2.3. Conditions initiales:

$$y(t=0) = z(t=0) = l\theta_0$$
 et $\ddot{y}(t=0) = \ddot{z}(t=0) = 0$

2.3.1.

$$\underline{\underline{A}}_1 = \underline{B}_1 = \frac{l\theta_o}{1 - \frac{\Omega_1}{\Omega_2}}$$
 et $\underline{\underline{A}}_2 = \underline{\underline{B}}_2 = \frac{l\theta_o}{1 - \frac{\Omega_2}{\Omega_1}}$

$$\underline{\underline{A}}_2 = \underline{\underline{B}}_2 = \frac{l\theta_o}{1 - \frac{\Omega_2}{\Omega_1}}$$

2.3.2.

$$\underline{y}(t) = \frac{l\theta_o}{1 - \frac{\Omega_1}{\Omega_2}} \left(\exp i\Omega_1 t - \frac{\Omega_1}{\Omega_2} \exp i\Omega_2 t \right) \quad \Rightarrow \quad \overline{y}(t) = \frac{l\theta_o}{1 - \frac{\Omega_1}{\Omega_2}} \left(\cos \Omega_1 t - \frac{\Omega_1}{\Omega_2} \cos \Omega_2 t \right)$$

2.3.3.

$$\underline{\theta}(t) = \frac{\underline{z}(t)}{l} = \frac{\theta_o}{1 - \frac{\Omega_1}{\Omega_2}} \left(\exp i\Omega_1 t - \frac{\Omega_1}{\Omega_2} \exp i\Omega_2 t \right) \Rightarrow \overline{\theta(t) = \frac{\theta_o}{1 - \frac{\Omega_1}{\Omega_2}} \left(\cos \Omega_1 t - \frac{\Omega_1}{\Omega_2} \cos \Omega_2 t \right)}$$

Les deux expressions mettent en évidence le phénomène du couplage mécanique.