Centro Federal de Educação Tecnológica - CEFET-RJ Quarta Aula de Cálculo Numérico

Decomposição LU

Professor da Disciplina

Wagner Pimentel

Decomposição LU

Seja o sistema linear Ax = b. O processo de decomposição ou fatoração LU para resolução de um sistema linear consiste em decompor a matriz de coeficientes A em um produto de dois fatores e, em seguida, resolver os dois sistemas lineares utilizando retro-substituição de variáveis.

A vantagem do processo de fatoração é que podemos resolver qualquer sistema linear que tenha a mesma matriz A como matriz de coeficientes utilizando uma única decomposição, mesmo que o termo independente b sejam diferentes.

Sabemos que "toda matriz não singular admite uma decomposição em duas matrizes triangulares, uma superior e outra inferior". Quem garante esse resultado é o teorema de Gauss.

Teorema de Gauss

Seja A uma matriz quadrada de ordem n, tal que $det(A) \neq 0$. Sejam U uma matriz triangular superior,

$$U = \begin{cases} u_{ij} & se & i \le j \\ 0 & se & i > j \end{cases}$$

e L uma matriz triangular inferior com diagonal unitária,

$$L = \begin{cases} 0 & se \quad i < j \\ 1 & se \quad i = j \\ l_{ij} & se \quad i > j \end{cases}$$

Então existe e é única a decomposição A = LU, onde U é a matriz resultante do processo de eliminação gaussiana e L é uma matriz contendo l_{ij} , os multiplicadores de linha de Gauss.

Resultados da Decomposição LU

Sejam o sistema linear Ax = b e a fatoração LU da matriz A, então

$$Ax = b \equiv (LU)x = b$$

Seja, ainda, y = Ux, então a solução do sistema linear original pode ser obtida da resolução de dois sistemas lineares triangulares: primeiro resolvemos o sistema Ly = b e determinamos a solução y e por

último resolvemos o sistema Ux = y e obtemos a solução do sistema original.

Decomposição LU com Pivoteamento

Sabemos que no método de Gauss com pivoteamento parcial realizamos permutações ou trocas de linhas. Quais seriam os efeitos destas trocas nos sistemas triangulares Ly = b e Ux = y?

Da álgebra, uma matriz de permutação P de ordem n pode ser sempre obtida da matriz identidade I de ordem n permutando-se suas linhas, ou colunas. Nesta aula trataremos apenas matrizes P derivadas de I pela permutação de linhas.

Sejam

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$
, obtida de I trocando L_1 com L_2 e L_2 com L_3 , $A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & -1 \\ -2 & -5 & 3 \end{bmatrix}$

então

$$PA = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & -1 \\ -2 & -5 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 1 & -1 \\ -2 & -5 & 3 \\ 1 & -1 & 2 \end{bmatrix}$$

Sejam o sistema linear Ax = b e a fatoração LU tal que PA = LU, então

$$Ax = b \equiv (PA)x = Pb \equiv (LU)x = Pb$$

Seja, ainda, y = Ux, então a solução do sistema linear original pode ser obtida da resolução de dois sistemas lineares triangulares: primeiro resolvemos o sistema $Ly = \mathbf{Pb}$ e determinamos a solução y e por último resolvemos o sistema Ux = y e obtemos a solução do sistema original.

Aplicação 1:

Considere o sistema linear e use o método de Gauss com pivoteamento para determinar as matrizes LU:

$$\begin{cases} x_1 - x_2 + 2x_3 = 2 \\ 2x_1 - 2x_2 - x_3 = 4 \\ -2x_1 - 5x_2 + 3x_3 = 3 \end{cases}$$

Etapa 1:

A matriz do sistema é

$$[A]^{(0)} = \begin{bmatrix} 1 & -1 & 2 \\ 2 & -2 & -1 \\ -2 & -5 & 3 \end{bmatrix}, P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

Etapa 2:

Fase 1: Zerar todos os elementos da primeira coluna abaixo da diagonal principal. Escolha $a_{21} = 2$ como pivô trocando L_1 com L_2 , assim,

$$[A]^{(0)'} = \begin{bmatrix} 2 & -2 & -1 \\ 1 & -1 & 2 \\ -2 & -5 & 3 \end{bmatrix}, P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Multiplicadores:
$$m_{21} = \frac{a_{21}}{a_{11}} = 1/2$$
 e $m_{31} = \frac{a_{31}}{a_{11}} = -1$

$$[A]^{(1)} = \begin{bmatrix} 2 & -2 & -1 \\ \mathbf{1/2} & 0 & 5/2 \\ -\mathbf{1} & -7 & 2 \end{bmatrix} \quad \begin{array}{c} L_2^{(1)} \leftarrow L_2^{(0)} - 1/2L_1^{(0)} \\ L_3^{(1)} \leftarrow L_3^{(0)} + L_1^{(0)} \end{array}.$$

Fase 2: Zerar todos os elementos da segunda coluna abaixo da diagonal principal. Escolha $a_{32}=-7$ como pivô trocando L_2 com L_3 , assim teremos,

$$[A]^{(1)'} = \begin{bmatrix} 2 & -2 & -1 \\ -\mathbf{1} & -7 & 2 \\ \mathbf{1/2} & 0 & 5/2 \end{bmatrix}, P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Multiplicadores:
$$m_{32} = \frac{a_{32}}{a_{22}} = 0/(-7) = 0$$

$$[A]^{(2)} = \begin{bmatrix} 2 & -2 & -1 \\ -\mathbf{1} & -7 & 2 \\ \mathbf{1/2} & \mathbf{0} & 5/2 \end{bmatrix} \quad L_3^{(2)} \leftarrow L_3^{(1)} - 0L_2^{(1)} .$$

Assim, a matrizes são,

$$L = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1/2 & 0 & 1 \end{bmatrix}, U = \begin{bmatrix} 2 & -2 & -1 \\ 0 & -7 & 2 \\ 0 & 0 & 5/2 \end{bmatrix}$$

Aplicação 2:

Resolva o sistema linear usando as matrizes LU

Primeiro resolvemos o sistema Ly = Pb

Sabemos que
$$Pb = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix},$$

Resolvendo o sistema Ly = Pb por retro-substituição de variáveis.

$$\begin{cases} y_1 & = 4 \\ -y_1 + y_2 & = 3 \\ \frac{1}{2}y_1 & + y_3 = 2 \end{cases}$$

Assim,
$$y_1 = 4$$
; $y_2 = \frac{3 - (-y_1)}{1} = 7$; $y_3 = \frac{2 - (\frac{1}{2}y_1)}{1} = 0$; portanto, $y = \begin{bmatrix} 4 \\ 7 \\ 0 \end{bmatrix}$.

Resolvendo o sistema Ux=y por retro-substituição de variáveis.

$$\begin{cases} 2x_1 - 2x_2 - x_3 = 4 \\ - 7x_2 + 2x_3 = 7 \\ + \frac{5}{2}x_3 = 0 \end{cases}$$

Assim,
$$x_3 = 0$$
; $x_2 = \frac{7 - (2x_3)}{-7} = -1$; $x_1 = \frac{4 - (-2x_2 - x_3)}{2} = 1$; daí, $x = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$.