PHYS 350 Assignment 4

Mihail Anghelici 260928404

October 23, 2020

Question 1

a)

Since

$$U = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} C V^2 = \frac{1}{2} Q V,$$

we have that

$$C = \frac{2U}{V^2} = \frac{2(200)}{1000^2} = \frac{1}{2500} \text{ F}.$$

Similarly,

$$Q = \frac{2U}{V} = \frac{2(200)}{1000} = \frac{2}{5}$$
 C.

b)

Air between the plates so we have natural dielectric

$$U = \frac{A}{2d}\epsilon_0 E^2 d^2 = \frac{1}{2}Ad\epsilon_0 E^2 = \frac{1}{2}\epsilon_0 E^2(\text{Vol})$$

Letting $E = E_{\text{max}} = 3 \times 10^6 \text{ V m}^{-1}$, then

Vol =
$$\frac{2(200)}{\epsilon_0 (3 \times 10^6)^2}$$
 = 5.02 m³.

This volume is much larger than the volume that they use.

c)

Since $U = \epsilon_0 E^2/2$, then integrating over a sphere with respect to r in spherical coordinates yields

$$U = \frac{\pi}{3}\epsilon_0 E^2 r^3 \implies r = \sqrt[3]{\frac{3U}{\pi\epsilon_0 E^2}} = 1.32 \text{ m} \implies d \approx 2.6 \text{ m}.$$

Question 2

Let us consider the rods in the yz quadrant. Let a be the distance from the centre set at (0,0) for each rod. Then as it was found previously the equipotential lines are parametrized by

$$D = a \frac{e^{4\pi\epsilon_0 V_0/\lambda} + 1}{e^{4\pi\epsilon_0 V_0/\lambda} - 1} \quad \text{and } R = 2a \frac{e^{2\pi V_0 \epsilon_0/\lambda}}{e^{4\pi V_0 \epsilon_0/\lambda} - 1}$$

We can perform the following operations, let $a \equiv 2\pi\epsilon_0 V_0/\lambda$

$$D = a\frac{e^{2a} + 1}{e^{2a} - 1} = a\frac{e^a e^a + 1}{e^a e^a - 1} = a\frac{e^a + \frac{1}{e^a}}{e^a - \frac{1}{e^a}} = a\frac{e^a + e^{-a}}{e^a - e^{-a}} = a\coth(a)$$

$$R = 2a\frac{e^a}{e^{2a} - 1} = 2a\frac{1}{e^a - e^{-a}} = 2a\frac{1}{\sinh(a)} = a\operatorname{csch}(a)$$

and so we conclude that

$$D = a \coth(2\pi\epsilon_0 V_0/\lambda)$$
 and $R = a \operatorname{csch}(2\pi\epsilon_0 V_0/\lambda)$.

Diving the two we can solve for λ ;

$$\frac{D}{R} = \cosh(2\pi\epsilon_0 V_0/\lambda) \implies \lambda = \frac{2\pi\epsilon_0 V_0}{\cosh^{-1}(D/R)}.$$

We also concluded that the potential at any point in that quadrant is

$$V = \frac{\lambda}{4\pi\epsilon_0} \ln \left| \frac{(y+a)^2 + z^2}{(y-a)^2 + z^2} \right|,$$

with $a = \sqrt{D^2 - R^2}$.

Question 3

It was seen in the last assignment that the potential and maximal electric field for the log based solution,

$$E_{\text{max}} = \frac{\lambda}{2\pi\epsilon_0 R}$$

$$V = \frac{\lambda}{\pi\epsilon_0} \ln \left| \frac{D - R}{R} \right| \implies \lambda = \frac{V_0 \pi\epsilon_0}{\ln \left| \frac{D - R}{R} \right|}$$

$$\therefore E_{\text{max}} = \frac{V_0 \pi\epsilon_0}{\ln \left| \frac{D - R}{R} \right|} (2\pi\epsilon_0 R)^{-1}$$
(1)

For the new exact solution,

$$V = \frac{\lambda}{4\pi\epsilon_0} \ln \left| \frac{(y+a)^2 + z^2}{(y-a)^2 + z^2} \right|$$

$$\implies E = -\nabla V = \frac{-\lambda}{4\pi\epsilon_0} \left(\frac{2(y-a)}{(y-a)^2 + z^2} - \frac{2(y+a)}{(y+a)^2 + z^2} \right)$$

$$= \frac{\lambda}{2\pi\epsilon_0} \left(\frac{(y-a)}{(y-a)^2 + z^2} - \frac{(y+a)}{(y+a)^2 + z^2} \right)$$

$$= \frac{2\pi\epsilon_0 V_0}{\cosh^{-1}(D/R) 2\pi\epsilon_0} \left(\frac{(y-a)}{(y-a)^2 + z^2} - \frac{(y+a)}{(y+a)^2 + z^2} \right)$$
(2)

Combining (1) and (2) and with R = 0.025 cm and D = 10 m and $V = V_0 = 765kV$ we get

(1):
$$E_{\text{max}} = \frac{(765000)\pi(8.83 \times 10^{-12})}{\ln\left|\frac{10 - 0.025}{0.025}\right| 2\pi(8.83 \times 10^{-12})0.025} = 2.55 \times 10^6 \text{ V m}^{-1}$$

(2):
$$E_{\text{max}} = \frac{2\pi (8.83 \times 10^{-12})(765000)}{\cosh^{-1}(10/0.025)} \left(\frac{2}{5}\right) = 4.6 \times 10^5 \text{ V m}^{-1}$$

The two electric fields differ by about an order of magnitude, suggesting that the electric field or log based potential formulae derived on the last assignment are erroneous.

Remark. No further improvements have been suggested by the TA whom I have contacted and assured me that the correction for this problem shall not be to harsh. Thence the answer is left as is.

Question 4

The average of a potential along a sphere is given by

$$V_{\text{avg}} = \frac{1}{A} \int V \, da = \frac{1}{4\pi R^2} \int V \, da.$$

We show the equality as requested;

$$V_{\rm avg} = \frac{1}{4\pi R^2} \int V \, da$$

Since we're integrating over the surface of a sphere, we parameterize $V = V(R, \theta, \phi)$,

$$= \frac{1}{4\pi} \int V(R, \theta, \phi) R^2 \sin \theta \ d\theta \ d\phi$$

By Leibnitz rule,

$$= \frac{1}{4\pi} \int \frac{\partial V}{\partial R} \sin \theta \ d\theta \ d\phi$$

From spherical coordinates we know that

$$\nabla V = \frac{\partial V}{\partial R}\hat{r} + \frac{1}{r}\frac{\partial V}{\partial \theta}\hat{\theta} + \frac{1}{r\sin\theta}\frac{\partial V}{\partial \phi}\hat{\phi} \implies \hat{r} \cdot \nabla V = (\hat{r} \cdot \hat{r})\frac{\partial V}{\partial R} = \frac{\partial V}{\partial R}$$
$$\therefore \frac{\mathrm{d}V_{\mathrm{avg}}}{\mathrm{d}R} = \frac{1}{4\pi}\int (\hat{r} \cdot \nabla V)\sin\theta \ d\theta \ d\phi$$

We add a factor of R^2 and rearrange

$$= \frac{1}{r\pi R^2} \int (\nabla V) \cdot \hat{r} R^2 \sin \theta d\theta d\phi$$
$$\frac{dV_{\text{avg}}}{dR} = \frac{1}{4\pi R^2} \oint (\nabla V) d\mathbf{a} \quad \checkmark$$

Applying the divergence theorem, we take the gradient and integrate over the volume

$$= \frac{1}{4\pi R^2} \int \nabla \cdot (\nabla V) \ d\tau = \frac{1}{4\pi R^2} \int (\nabla^2 V) \ d\tau.$$

If V satisfies Laplace equation ,i.e., $\nabla^2 V = 0$ over the volume then

$$\frac{\mathrm{d}V_{avg}}{\mathrm{d}R} = 0,$$

Which suggests that regardless of the radius , the potential remains the same. So for a point P at which the ball is centered, it follows $V_{\text{avg}}(0) = V(P) = V_{\text{avg}}(0)$

Question 5

We know that

$$\int_{\mathcal{V}} T \nabla^2 U + (\nabla T) \cdot (\nabla T) \ d\tau = \oint_{S} (T \nabla U) \cdot d\boldsymbol{a},$$

for $T = U = V_3$. Therefore

$$\int_{V} (V_3 \nabla^2 V_3 + (\nabla V_3) \cdot (\nabla V_3)) \ d\tau = \oint_{S} (V_3 \nabla V_3) \cdot d\mathbf{a}$$

Since by construction $E_3=E_1-E_2 \implies V_3=V_1-V_2$. Moreover, we know that $\nabla E=-\rho/\epsilon_0$, and $\nabla V=-E$, thus

$$\int_{V} (V_3(\nabla^2 V_1 - \nabla^2 V_2) + E_3^2) d\tau = -\oint_{S} V_3 E_3 \cdot d\mathbf{a}$$

$$\int_{V} V_3 \left(\frac{-\rho}{\epsilon_0} + \frac{\rho}{\epsilon_0} \right)^0 + E_3^2 d\tau = -\oint_{S} V_3 E_3 \cdot d\mathbf{a}$$

$$\implies \int_{V} E_3^2 d\tau = -\oint_{S} V_3 E_3 \cdot d\mathbf{a}$$

Since V_3 is constant over all surfaces in ν and is 0 at ∞ , we have that

$$\int_{V} E_3^2 d\tau = -V_3 \oint_{S} E_3 \cdot d\mathbf{a} = 0 \text{ since } \oint_{S} E \cdot d\mathbf{a} = 0 \text{ by definition}$$
$$\therefore \int_{V} E_3^2 d\tau = 0 \implies E_3 \equiv 0 \implies E_1 \equiv E_2.$$

Question 6

a)

We place a charge q' at the right of the centre with value q' = -Rq/a. We also place a second image charge q'' at the centre of the sphere such that the potential inside the sphere is no longer 0 but $V_0 = 4\pi\epsilon_0 q''/a$. Then since the sphere is neutral we have that q' + q'' = 0. It then follows by definition of the force for image charge configurations that The potential super posed is

$$V = \frac{q''}{4\pi e p_0 a} + \frac{q''}{4\pi \epsilon_0 (a - b)} \implies E = -\nabla V = \frac{1}{4\pi \epsilon_0} \left(\frac{q''}{a^2} + \frac{q'}{(a - b)^2} \right),$$

So then the force is F = qE,

$$F = \frac{1}{4\pi\epsilon_0} q \left(\frac{q''}{a^2} + \frac{q'}{(a-b)^2} \right).$$

Now since q'' = -q' we can perform some rearrangement

$$F = \frac{1}{4\pi\epsilon_0} qq' \left(\frac{-1}{a^2} + \frac{1}{(a-b)^2} \right)$$
$$= \frac{1}{4\pi\epsilon_0} qq' \left(\frac{-(a-b)^2 + a^2}{a^2(a-b)^2} \right)$$
$$= \frac{1}{4\pi\epsilon_0} qq' \frac{(2a-b)b}{a^2(a-b)^2}$$

Since q' = -Rq/a and $b = R^2/a$ by definition, it follows that through substitution

$$= \frac{1}{4\pi\epsilon_0} \frac{q\left(\frac{-R^2q}{a}\right)(2a - R^2/a)R^2/a}{a^2(a - R^2/a)^2}$$
$$= \frac{1}{4\pi\epsilon_0} q^2 \left(\frac{-R}{a}\right)^3 \frac{(2a^2 - R^2)}{(a^2 - R^2)^2}$$

We drop the minus sign since the force is attractive so we care about the magnitude

$$F = \frac{1}{4\pi\epsilon_0} q^2 \left(\frac{R}{a}\right)^3 \frac{(2a^2 - R^2)}{(a^2 - R^2)^2}.$$
 (3)

We now look for an expression for the leading order in a and R. Let $R \sim a$ since for the order it doesn't matter if one is larger or smaller than the other, then

$$F = \frac{1}{4\pi\epsilon_0} q^2 \left(\frac{R}{a}\right)^3 \frac{a^2 \left(2 - \left(\frac{R}{a}\right)^2\right)}{a^4 \left(1 - 2\left(\frac{R}{a}\right)^2 + \left(\frac{R}{a}\right)^4\right)}$$

$$= \frac{1}{4\pi\epsilon_0} q^2 \frac{2 - \left(\frac{R}{a}\right)^2}{a^2 \left(1 - 2\left(\frac{R}{a}\right)^2 + O\left(\frac{R}{a}\right)^2\right)}^0$$

$$\approx \frac{1}{4\pi\epsilon_0} q^2 \frac{2 - \left(\frac{R}{a}\right)^2}{a^2 \left(1 - 2\left(\frac{R}{a}\right)^2\right)}^0,$$

we see that the leading order between a and R is a with the second order magnitude. We conclude that the force for that leading order is approximatively

$$F \approx \frac{1}{4\pi\epsilon_0} q^2 \frac{2 - \left(\frac{R}{a}\right)^2}{a^2 \left(1 - \left(\frac{R}{a}\right)^2\right)}.$$

b)

Since the charge is *placed* on the conductor and is brought all the way from infinity, the work would blow up to infinity as well since V = 0 on the surface of the conductor, since it's an equipotential.

c)

We use $E = E_{\text{max}} = 3 \times 10^6$ for an estimate since it's the ambient electric field around the ball given the corona discharge presence around the van der graph. For a spherical conductor,

$$E = \frac{Q}{4\pi\epsilon_0 r^2} \implies Q = E4\pi\epsilon_0 R^2 = (3 \times 10^6) 4\pi (8.83 \times 10^{-12}) (0.05)^2 = 8.32 \times 10^{-7} \text{ C}.$$

Then, we use (3) to find the force but replace q with Q;

$$F = \frac{Q^2}{4\pi\epsilon_0} \left(\frac{R}{a}\right)^3 \frac{(2a^2 - R^2)}{(a^2 - R^2)^3}$$

$$= \frac{(8.32 \times 10^{-7})^2}{4\pi(8.83 \times 10^{-12})} \left(\frac{0.05 \text{ m}}{0.1 \text{ m}}\right)^3 \frac{(2(0.1)^2 - 0.05^2)}{(0.1^2 - 0.05^2)^2}$$

$$= 0.273 \text{ N}.$$