人工智能基础

编程作业2

PB13011058 王悦

实验目的:

本次实验考虑机器学习中传统的监督学习问题与非监督学习,基于两个经典应用:手写数字识别和图片去噪,并结合课上介绍的相应学习算法,在数据集上分别进行实验,以加强对相关算法原理及应用的理解。

Part 2. 图片去噪

在这部分实验中,我们以人脸图片数据为例,通过 PCA 算法对数据进行降维,保留数据中的主要信息,进一步检验 PCA 消除数据中噪音的效果。

在训练过程中通过 PCA 算法来计算投影矩阵。测试时将带有噪音的图片通过投影矩阵 投影至低维空间,保留图片的主要信息,再投影至原空间完成重构,在此过程中会消除噪音 的效果。

数据集介绍:

我们提供的是 YaleFace 中的人脸数据集, 其中训练数据集为 60 张正常情况下的人脸图片, 测试集共 6 个样本, 每张均包含了一定的噪声。每张照片的大小是 50x50 的黑白图, 对于照片中像素中的每一个像素, 用 1 个 8bit 数字(0-255 之间)表示其灰度值。一个 50x50 的图片, 总共有 2500 个像素, 因此对于每张图片, 可以用一个 2500 个元素的向量表示。

在课程主页上下载 YaleFace.mat, 在 Matlab 中 load 数据。有train_data,test_data,ground_truth 三个矩阵,对应训练数据和测试数据和用于对比的无噪声数据,ground_truth和 test_data ——对应。其中数据都已进行归一化(每个元素在 0~1 范围)。

为了实现对于图片的去噪, 我们对于训练数据用 PCA 算法计算得到投影矩阵 proj_matrix, 对于测试样本 y 的重构需要先将其投影至低维空间,从而保留图像中人脸的主要信息,再对原图像进行重构。将重构得到的图像与我们提供的 ground_truth 图片作对比,得到两者之差的平方加和平均得到重构误差 recons_error。例如,A 为重构的图片,B 为 ground_truth,

实验要求

1. 实现一个 PCA 降维算法

提交一个 Matlab 函数 myPCA,函数形式为:

function [proj_matrix, recons_data, recons_error] = reconsPCA (train data ,test data ,ground truth ,threshold)

其中 threshold 表示特征值的累计贡献率。即选择前 m 个特征向量,使得

 $< threshold \le \frac{\text{Sum(first m eigenvalues)}}{c}$ Sum(first m - 1 eigenvalues)Sum(all eigenvalues)

2. 实验验证 PCA 算法效果及实验报告

- a)检验随着 threshold 不同取值,PCA 选择的降维维度以及对应的重构效果会有什么变化, 重构效果可从视觉上即恢复的图片以及重构误差两方面来评价。
- b)讨论为什么 PCA 能够去噪并提出改进方案。
- c)在实验报告中总结以上的实验结果。
- d)当 threshold=0.95 时, 提交对于每个测试样本重构之后的图片, 请按照测试样本的索引进 行命名,例如对于第 1 个测试样本可以保存为 1.jpg。同时提交 recons_error.mat,即测试样 本和 ground truth 之间的 error,长度为 6,元素的顺序也是按照测试样本的顺序排列。

实验记录

首先编写reconsPCA函数并测试通过。

然后编写主程序测试不同 threshold 下的结果, 并在窗口显示图像。保存阈值为 0.95 的 误差。

实验结果:

主程序中测试如下阈值得到的图像:

最左为含噪声的图、右侧为不同阈值得到的图像。

误差值、每行表示一种阈值、与上图阈值对应。

☑ 編辑器 - lab2main.m						
	result ×					
13x6 double						
	1	2	3	4	5	6
1	5.2017e-05	4.0850e-05	4.1998e-05	4.4211e-05	4.2106e-05	3.3308e-05
2	5.2017e-05	4.0850e-05	4.1998e-05	4.4211e-05	4.2106e-05	3.3308e-05
3	5.2017e-05	4.0850e-05	4.1998e-05	4.4211e-05	4.2106e-05	3.3308e-05
4	5.1742e-05	4.0467e-05	4.1948e-05	4.3462e-05	4.2071e-05	3.0749e-05
5	4.8095e-05	3.9808e-05	3.4755e-05	3.3953e-05	3.1232e-05	3.0831e-05
6	3.6068e-05	3.2458e-05	3.3717e-05	3.3332e-05	2.6344e-05	3.0252e-05
7	2.9091e-05	3.2433e-05	2.9744e-05	2.9291e-05	1.9492e-05	2.9329e-05
8	2.8948e-05	3.2397e-05	2.9194e-05	2.5303e-05	1.6701e-05	2.7905e-05
9	2.8630e-05	2.9860e-05	2.9360e-05	2.4571e-05	1.5717e-05	2.1071e-05
10	2.8131e-05	2.7467e-05	2.3405e-05	2.4553e-05	1.6010e-05	1.8736e-05
11	2.6767e-05	2.4528e-05	2.2999e-05	2.3886e-05	1.5441e-05	1.7714e-05
12	2.7115e-05	2.4073e-05	2.3448e-05	2.0888e-05	1.5237e-05	1.7891e-05
13	2.7577e-05	2.4889e-05	2.3679e-05	2.1461e-05	1.5286e-05	1.8535e-05
14						

实验总结:

阈值越接近一,降维后的维度越接近原维度,重构的效果越好,视觉上感觉更能保持细节,区分度更明显,误差数据上更小。

PCA 将高维的数据投影到低维上, 高频的部分被截去, 噪声点属于高频信息, 因此被过滤掉。改进方式是动态调整阈值, 实现更自然的滤波处理。