Green Polynomials and Singularities of Unipotent Classes

G. Lusztig*

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

TO J. A. GREEN

Let X be an irreducible algebraic variety of dimension d over an algebraically closed field.

Deligne [2] has associated to X a complex ${}^{\pi}\mathbb{Q}_l$ of l-adic sheaves (canonical up to quasi-isomorphism) which has constructible cohomology sheaves $\mathscr{H}(X)$, which is self-dual in the derived category, which is equivalent to the complex reduced to constant sheaf \mathbb{Q}_l in degree 0 over the smooth part of X, and which has the property: $\mathscr{H}^i(X) = 0$ for i < 0, $\mathscr{H}^i(X)$ has support of dimension $\leq d - i - 1$ if i > 0.

His construction, which is sketched in [8, Sect. 3] is an algebraic analogue of the Goresky and Macpherson middle intersection cohomology theory [3, 4]. We shall call $\mathcal{H}^i(X)$ the DGM sheaves of X.

The purpose of this paper is to describe an application of this theory to the study of irreducible characters of the finite group $GL_n(\mathbb{F}_q)$. Let k be an algebraic closure of \mathbb{F}_q . Let $\lambda=(\lambda_1\geqslant\lambda_2\geqslant\cdots\geqslant\lambda_n\ (\geqslant 0))$ be a partition of n: $n=\lambda_1+\lambda_2+\cdots+\lambda_n$. We associate to λ the unipotent class $X_\lambda\subset GL_n(k)$ consisting of the unipotent elements which have Jordan blocks of size $\lambda_1,\lambda_2,...,\lambda_n$. We also associate to λ the irreducible unipotent representation E_λ of $GL_n(\mathbb{F}_q)$: it is the "biggest" component of the representation induced by the identity representation of the stabilizer of a flag of subspaces of dimensions $\lambda_1,\lambda_1+\lambda_2,\lambda_1+\lambda_2+\lambda_3,...$, in \mathbb{F}_q^n . Consider the DGM sheaves $\mathscr{H}(\overline{X}_\lambda)$ of the closure of X_λ . In the following theorem the sheaves $\mathscr{H}(\overline{X}_\lambda)$ will be regarded as sheaves on the whole variety of unipotent elements in $GL_n(k)$, equal to zero on the complement of \overline{X}_λ .

Theorem 1. Let $u \in GL_n(F_a)$ be a unipotent element. Let $n(\lambda)$ be

^{*} Supported in part by the National Science Foundation.

defined by (1.2). We have

$$\operatorname{Tr}(u, E_{\lambda}) = q^{n(\lambda)} \sum_{i \geqslant 0} q^{i} \dim \mathscr{H}_{u}^{2i}(\overline{X}_{\lambda}).$$

Moreover, $\mathcal{H}^i(\overline{X}_{\lambda}) = 0$ if i is odd.

The proof will be given in Sections 1 and 2. The idea of the proof is to show that the singularities of the closure of the unipotent class X_{λ} are a special case of the singularities of a certain generalized Schubert variety (in the sense of [8, Sect. 5]) associated to elements in an affine Weyl group and then to use the results of [8, Sect. 5]. The algebraic formalism we shall use is that of the Hall algebra; an excellent exposition can be found in Macdonald's book [12].

1. THE SPACE OF LATTICES

Let V be a fixed vector space of dimension n over the field k((t)). A k[[t]]-submodule of rank n of V is said to be a lattice. Let $\mathscr L$ be the set of all lattices in V, and let L_0 be a fixed lattice in V. The lattices L such that $L \subset L_0$ form a subset $\mathscr L^+$ of $\mathscr L$. It can be regarded as a countable disjoint union of (finite dimensional) projective varieties $\mathscr L_i^+$ ($i \ge 0$) over k, where $\mathscr L_i^+$ is the set of lattices $L \subset L_0$ such that $\dim(L_0/L) = i$. If $L \in \mathscr L_i^+$, then $t^{nl}L_0 \subset L$, hence $\mathscr L_i^+$ may be identified with the set of all codimension i subspaces of the n^2i -dimensional k-vector space $L_0/t^{ni}L_0$, which are stable under the nilpotent endomorphism t of $L_0/t^{ni}L_0$.

The group $GL(L_0)$ of automorphisms of L_0 acts in a natural way on \mathscr{L}^+ ; its orbits are in 1-1 correspondence with the elements of the set

$$\mathscr{S}_n = \{ \lambda \in \mathbb{N}^n \mid \lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n \};$$

the orbit $\mathscr{O}_{\lambda} \subset \mathscr{L}^+$ corresponding to $\lambda \in \mathscr{P}_n$ consists of the lattices $L \subset L_0$ such that the nilpotent transformation t of L_0/L has Jordan blocks of sizes $\lambda_1, \lambda_2, ..., \lambda_n$. (In particular, $\mathscr{O}_{\lambda} \subset \mathscr{L}^+_{|\lambda|}$, where $|\lambda| = \lambda_1 + \lambda_2 + \cdots + \lambda_n$.) The closure of \mathscr{O}_{λ} is the union of the orbits \mathscr{O}_{μ} ($\mu \leqslant \lambda$), where, for $\mu, \lambda \in \mathscr{P}_n, \mu \leqslant \lambda$ means that $|\mu| = |\lambda|$ and $\mu_1 \leqslant \lambda_1, \mu_1 + \mu_2 \leqslant \lambda_1 + \lambda_2, \mu_1 + \mu_2 + \mu_3 \leqslant \lambda_1 + \lambda_2 + \lambda_3$, etc.

Let $\mu \leq \lambda$ be two elements of \mathcal{S}_n . We wish to compute

$$\Pi_{\mu,\lambda} = \sum_{i \geqslant 0} q^{i/2} \dim \mathscr{H}_x^i (\overline{\mathscr{Q}}_{\lambda}),$$

where $\mathscr{H}_{x}^{i}(\overline{\mathcal{C}}_{\lambda})$ are the stalks of the DGM sheaves of the variety $\overline{\mathcal{C}}_{\lambda}$ at a point $x \in \mathcal{C}_{\mu}$, and $q^{1/2}$ is an indeterminate. Let Λ_{n} be the algebra of symmetric

polynomials in the variables $X=(X_1,X_2,...,X_n)$ with coefficients in $Q(q^{1/2})$. For $\lambda\in\mathscr{P}_n$, we denote by $P_\lambda(X,q)\in \Lambda_n$ the Hall-Littlewood polynomial corresponding to λ [12, III(2.1)]. Then $s_\lambda(X)=P_\lambda(X,0)$ are the Schur functions [12, I(3.1)]. There are well-defined polynomials (in q) $K_{\lambda,\mu}(q)$ defined for all $\mu\leqslant\lambda$ in \mathscr{P}_n such that

$$s_{\lambda}(X) = \sum_{\mu \leq \lambda} K_{\lambda,\mu}(q) P_{\mu}(X,q)$$
 (1.1)

for all $\lambda \in \mathscr{S}_n$ [12, III(2.6)]. For each $\lambda \in \mathscr{S}_n$, we set

$$n(\lambda) = \sum_{i>1} (i-1)\lambda_i; \qquad (1.2)$$

cf. [12, I(1.5)].

THEOREM 2. If $\mu \leqslant \lambda$ are two elements in \mathscr{S}_n , we have

$$\Pi_{\mu,\lambda} = q^{n(\mu)-n(\lambda)} K_{\lambda,\mu}(q^{-1}).$$

Let \mathscr{B} be the set of all sequences $L^0 \supseteq L^1 \supseteq L^2 \supseteq \cdots \supseteq L^n = tL^0$, where L^i are lattices in V, and let $L_0 \supseteq L_1 \supseteq L_2 \supseteq \cdots \supseteq L_n = tL_0$ be such a fixed sequence (with L_0 as above).

Let I be the stabilizer of this sequence in $GL(L_0)$. It is known (see, for example [8, Sect. 5]) that \mathscr{B} is in a natural way an infinite dimensional algebraic variety; more precisely it is an increasing union of (finite dimensional) projective varieties. Each orbit of I on \mathscr{B} is isomorphic to an affine space. There are n distinguished orbits $s_1, s_2, ..., s_n$ of dimension 1: if $1 \le i \le n-1$, s_i consists of all sequences $L_0 \supseteq L_1 \supseteq \cdots \supseteq L_{i-1} \supseteq L^i \supseteq L_{i+1} \supseteq \cdots \supseteq L_n = tL_0$, $L^i \ne L_i$; if i=n, s_n consists of all sequences $L^0 \supseteq L_1 \supseteq \cdots \supseteq L_{n-1} \supseteq L^n = tL^0$, $L^0 \ne L_0$. There is also a distinguished orbit τ of dimension 0: it consists of $L_1 \supseteq L_2 \supseteq \cdots \supseteq L_{n-1} \supseteq tL_0 \supseteq tL_1$. The set \widetilde{W} of orbits of I on \mathscr{B} has a natural group structure; it has generators $s_1, s_2, ..., s_n, \tau$, where $s_1, s_2, ..., s_n$ are the standard generators of an affine Weyl group and τ is an element of infinite order satisfying $\tau s_i = s_{i+1} \tau$ (here i is taken as an integer modulo n). Let $l: \widetilde{W} \to \mathbb{N}$ be the length function: l(w) is the dimension of the corresponding orbit in \mathscr{B} .

Let H_n' be the Hecke algebra corresponding to \tilde{W} : it is an algebra over $Q(q^{1/2})$ with basis T_w ($w \in \tilde{W}$) and multiplication defined by

$$T_w T_{w'} = T_{ww'},$$
 if $l(ww') = l(w) + l(w'),$
 $(T_{s_i} + 1)(T_{s_i} - q) = 0,$ if $i = 1, 2, ..., n.$

There is a canonical involution of the ring H'_n (see [7, Sect. 1]). It is the

unique ring homomorphism $h \to \bar{h}$ of H'_n into itself such that $\overline{q^{V2}} = q^{-1/2}$ and $\overline{T_w} = T_{w-1}^{-1}$.

If y, w are elements of \widetilde{W} such that $y \le w$ (i.e., the orbit defined by y is in the closure of the orbit defined by w) then there is a well-defined polynomial $P_{y,w}$ in q of degree $\le \frac{1}{2}(l(w) - l(y) - 1)$ (if y < w) and such that $P_{w,w} = 1$; it is characterized by the identity

$$\overline{q^{-l(w)/2}} \sum_{y \leqslant w} P_{y,w} T_y = q^{-l(w)/2} \sum_{y \leqslant w} P_{y,w} T_y \qquad (\forall w \in \widetilde{W}); \qquad (1.3)$$

see [7, (1.1.6)]. The polynomial $P_{v,w}$ has the interpretation [8, Sect. 5]

$$P_{y,w} = \sum_{i \geq 0} q^{i/2} \dim \mathscr{H}_{\alpha}^{i}(\bar{w}),$$

where $\mathscr{H}_{\alpha}^{i}(w)$ are the stalks of the DGM sheaves of the closure of the orbit defined w at a point α in the orbit defined by y.

Let \mathscr{B}^+ be the subset of \mathscr{B} consisting of sequences $L^0 \supseteq L^1 \supseteq \cdots \supseteq L^n = tL^0$ such that $L^0 \subset L_0$. There is a natural map $\mathscr{B}^+ \to^\pi \mathscr{L}^+$ taking $L^0 \supset L^1 \supset \cdots \supset L^n$ to L^0 . Its fibres are isomorphic to the flag manifold of an n dimensional vector space over k. The inverse image of $\mathscr{C}_\lambda \subset \mathscr{L}^+$ under this map is a finite union of orbits w of I on \mathscr{B}^+ ; these w form a single double coset with respect to the subgroup $W \subset \widetilde{W}$ generated by s_1, \ldots, s_{n-1} ($W \approx \mathfrak{S}_r$). Among these orbits w, there is a unique one of maximal dimension, say, w_λ . If $\mu \leqslant \lambda$, so that $\mathscr{O}_\mu \subset \overline{\mathscr{O}}_\lambda$, then it is clear that $w_\mu \leqslant w_\lambda$ and that the stalk of $\mathscr{H}^i(\overline{\mathscr{O}}_\lambda)$ at a point of \mathscr{O}_μ is isomorphic to the stalk of $\mathscr{H}^i(\overline{w}_\lambda)$ at a point of w_μ . In particular, we have

$$\Pi_{\mu,\lambda} = P_{w_{\mu},w_{1}},\tag{1.4}$$

so that $\mathscr{H}^i(\overline{\mathcal{O}}_{\lambda})=0$ for odd i (i.e., $\Pi_{\mu,\lambda}$ is a polynomial in q). Next, we note that the elements

$$u_{\lambda} = \frac{1}{\Phi(q)} \sum_{\substack{w \in \mathscr{Y}^+ \\ \pi(w) \in \mathscr{O}_{\lambda}}} T_w \in H'_n \qquad (\lambda \in \mathscr{S}_n), \tag{1.5}$$

where $\Phi(q) = (1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1})$, span a subspace H_n of H'_n which is closed under multiplication and has identity element u_0 . Indeed, H_n could be characterized as the set of elements h in H such that $hu_0 = u_0 h = h$ and such that h is a linear combination of elements T_w ($w \subset \mathcal{B}^+$) (see [1, 2.10]), and hence H_n is an algebra. An argument in [12, V(2.6)] shows that

$$u_{\mu}\cdot u_{\nu}=\sum_{\lambda}g_{\mu\nu}^{\lambda}(q)u_{\lambda},$$

where $g_{\mu\nu}^{\lambda}(q)$ are the Hall polynomials (see [12, II, 2]); note that $g_{\mu\nu}^{\lambda}=0$ unless $|\lambda|=|\mu|+|\mu|$.

The involution $h \to \bar{h}$ of H'_n keeps u_0 fixed:

$$\bar{u}_0 = \frac{1}{\Phi(q^{-1})} \sum_{w \in W} T_{w-1}^{-1} = \frac{q^{-n(n-1)/2}}{\Phi(q^{-1})} \sum_{w \in W} T_w = \frac{1}{\Phi(q)} \sum_{w \in W} T_w;$$

hence it leaves H_n stable. (From $hu_0 = u_0 h = h$, it follows that $\bar{h}u_0 = u_0 \bar{h} = \bar{h}$.)

From (1.3), (1.4), (1.5) and the identity $P_{zw_{\mu}z',w_{\lambda}} = P_{w_{\mu},w_{\lambda}} \ (\forall z, z' \in W)$ (see [7, (2.3.g)]), it follows immediately that the identity

$$\overline{q^{-d(\lambda)/2} \sum_{\mu \leq \lambda} \Pi_{\mu,\lambda} u_{\mu}} = q^{-d(\lambda)/2} \sum_{\mu \leq \lambda} \Pi_{\mu,\lambda} u_{\mu} \qquad (\forall \lambda \in \mathscr{S}_n) \tag{1.6}$$

holds in H_n ; here $d(\lambda) = l(w_{\lambda}) - v$ is the dimension of \mathcal{O}_{λ} .

Next we note that for $1 \leqslant r \leqslant n$, the orbit $\mathscr{O}_{(1r)}$ is just the set of all lattices $L \subset L_0$ of codimension r such that t=0 on L_0/L . These are in 1-1 correspondence with the codimension r subspaces of L_0/tL_0 , hence form a Grassmanian of dimension r(n-r). In particular, this is a closed orbit. It follows that for $\lambda=(1^r)$, we have $\sum_{\mu\leqslant\lambda} \Pi_{\mu,\lambda} u_{\mu}=u_{\lambda}$; hence (1.6) becomes:

$$\overline{q^{-r(n-r)/2}u_{(1)n}} = q^{-r(n-r)/2}u_{(1)n}. \tag{1.7}$$

It is known [12, III(3.4)] that there is a unique isomorphism $\Psi: H_n \to \Lambda_n$ of $Q(q^{1/2})$ algebras such that $\Psi(u_{\lambda}) = q^{-n(\lambda)} P_{\lambda}(X, q^{-1})$ $(\forall \lambda \in \mathcal{P}_n)$.

In particular, $\Psi(u_{1r})=q^{-r(r-1)/2}e_r$, where $e_r\in \Lambda_n$ is the rth elementary symmetric function. Transporting the involution $h\to \bar h$ of H_n to Λ_n , via Ψ , we get a ring involution $p\to \bar p$ of Λ_n such that $\overline{q^{1/2}}=q^{-1/2}$ and $\overline{q^{-r(r-1)/2}}e_r=q^{-r(n-r)}q^{-r(r-1)/2}e_r$, i.e.,

$$\overline{e_r} = q^{-r(n-1)}e_r \qquad (1 \leqslant r \leqslant n). \tag{1.8}$$

Since $P_{\lambda}(X, q^{-1})$ has total degree of homogeneity $|\lambda|$ in X, it is a linear combination of products $e_{r_1}e_{r_2}\cdots e_{r_s}$, $r_1+\cdots+r_s=|\lambda|$, with coefficients in $\mathbb{Z}[q^{-1}]$, and it follows that

$$\overline{P_{\lambda}(X,q^{-1})} = q^{-|\lambda|(n-1)}P_{\lambda}(X,q). \tag{1.9}$$

Thus, applying Ψ to both sides of (1.6) we see that the identity

$$\begin{split} q^{d(\lambda)/2} & \sum_{\mu \leq \lambda} \overline{\Pi}_{\mu,\lambda} q^{n(\mu)} \cdot q^{-|\mu|(n-1)} P_{\mu}(X,q) \\ & = q^{-d(\lambda)/2} \sum_{\mu \leq \lambda} \Pi_{\mu,\lambda} q^{-n(\mu)} P_{\mu}(X,q^{-1}) \qquad (\forall \ \lambda \in \mathscr{S}_n) \end{split}$$

holds in Λ_n . According to [12, V(2.9)] we have

$$n(\lambda) = \frac{|\lambda|(n-1)}{2} - \frac{d(\lambda)}{2}$$

hence

$$\sum_{\mu \leqslant \lambda} q^{n(\mu) - n(\lambda)} \overline{\Pi}_{\mu,\lambda} P_{\mu}(X, q)$$

$$= \sum_{\mu \leqslant \lambda} q^{-n(\mu) + n(\lambda)} \Pi_{\mu,\lambda} P_{\mu}(X, q^{-1}) \qquad (\forall \lambda \in \mathscr{P}_n). \tag{1.10}$$

Now, if $\mu < \lambda$, $\Pi_{\mu,\lambda}$ is a polynomial in q of degree $\leq \frac{1}{2}(d(\lambda) - d(\mu) - 1) = n(\mu) - n(\lambda) - \frac{1}{2}$; hence $q^{n(\mu) - n(\lambda)} \overline{\Pi}_{\mu,\lambda}$ is a polynomial in q without constant term. Thus, the left-hand side of (1.10) is a polynomial in X and in q. This polynomial is invariant under the substitution $q \to q^{-1}$, hence it does not involve q. Hence the left-hand side of (1.10) is equal to its value for q = 0. Thus

$$\sum_{\mu \leq \lambda} q^{n(\mu) - n(\lambda)} \overline{\Pi}_{\mu,\lambda} P_{\mu}(X,q) = P_{\lambda}(X,0) = s_{\lambda}(X) \qquad (\forall \lambda \in \mathscr{S}_n).$$

Comparing with (1.2) it follows that $q^{n(\mu)-n(\lambda)}\overline{\Pi}_{\mu,\lambda}=K_{\lambda,\mu}$ ($\forall \mu \leqslant \lambda$) and Theorem 2 is proved.

Corollary 3. The image of $c_{\lambda}=q^{-d(\lambda)/2}\sum_{\mu\leqslant\lambda}\Pi_{\mu,\lambda}u_{\mu}$ under the isomorphism

$$\Psi: H_n \stackrel{\approx}{\to} \Lambda_n$$

is

$$q^{-|\lambda|(n-1)/2}s_{\lambda}(X).$$

In particular, if $\mu, \nu \in \mathscr{S}_n$, the product $c_{\mu} \cdot c_{\nu}$ is a combination with constant coefficients of elements c_{λ} . The multiplication constants are those which give the product of the corresponding Schur functions.

COROLLARY 4 (see [9; 12, III(6.5)].) The polynomial $K_{\lambda,\mu}(q)$ has $\geqslant 0$ coefficients $(\mu \leqslant \lambda)$.

2. A Compactification of the Variety of Unipotent Elements in $GL_n(k)$

Let \overline{V} be an *n*-dimensional *k*-vector space. Define $E = \overline{V} \oplus \cdots \oplus \overline{V}$ (*n* copies) and let $t: E \to E$ be defined by $t(v_1, ..., v_n) = (0, v_1, v_2, ..., v_{n-1})$. Let

Y be the variety of all *n*-dimensional t-stable subspaces of E and let Y_0 be the open subvariety of Y consisting of those subspaces in Y which are transversal to

$$\underbrace{\overline{V} \oplus \cdots \oplus \overline{V}}_{n-1} \oplus 0.$$

To give a subspace $E' \in Y_0$ is the same as to give linear maps $f_1, f_2, ..., f_{n-1} \colon \overline{V} \to \overline{V}$ such that

$$E' = \{(f_{n-1}(v), f_{n-2}(v), ..., f_1(v), v) \mid v \in \overline{V}\}.$$

The condition for E' to be t-stable is that $(0, f_{n-1}(v), f_{n-2}(v), ..., f_1(v)) \in E'$ for all $v \in \overline{V}$, i.e., that $f_2(v) = f_1^2(v)$, $f_3(v) = f_2 f_1(v)$,..., $f_{n-1} = f_{n-2}(f_1(v))$, $0 = f_{n-1}(f_1(v))$ or equivalently that $f_i = f_1^i$ $(1 \le i \le n-1)$ and $f_1^n = 0$. Thus, the correspondence

$$f_1 \to E' = \{ (f_1^{n-1}(v), f_1^{n-2}(v), \dots, f_1(v), v) \mid v \in V \}$$

gives an isomorphism between the variety X' of nilpotent endomorphisms of \overline{V} and the open subvariety Y_0 of Y.

We shall now identify Y with the variety \mathscr{L}_n^+ defined in the previous section. Note that \mathscr{L}_n^+ can be identified with the set of t-stable codimension n subspaces of the n^2 -dimensional k-vector space L_0/t^nL_0 , hence with the set of t-stable n dimensional subspaces of the dual space $(L_0/t^nL_0)^*$. But this last space is isomorphic to $E = \overline{V} \oplus \cdots \oplus \overline{V}$ as a k[t]-module, and thus we may identify Y and \mathscr{L}_n^+ . In this way, the variety X of unipotent elements in $GL(\overline{V})$ (which is canonically isomorphic to X') appears as an open subset of \mathscr{L}_n^+ . Thus, \mathscr{L}_n^+ may be regarded as a compactification of X. The imbedding of X into \mathscr{L}_n^+ has the property that the unipotent class $X_\lambda \subset X$ is equal to $\mathscr{C}_\lambda \cap X$ for all $\lambda \in \mathscr{P}_n$, $|\lambda| = n$. In particular for such λ , the DGM sheaf $\mathscr{H}^i(\overline{X}_\lambda)$ of \overline{X}_λ (closure in X) is just the restriction of the DGM sheaf $\mathscr{H}^i(\overline{Z}_\lambda)$ of \overline{Z}_λ to \overline{X}_λ . It then follows from Theorem 2 that $\mathscr{H}^i(\overline{X}_\lambda) = 0$ for i odd and that

$$\sum_{i>0} q^{i} \dim \mathscr{H}_{x}^{2i}(\bar{X}_{\lambda}) = q^{n(\mu)-n(\lambda)} K_{\lambda,\mu}(q^{-1}), (x \in X_{\mu})$$
 (2.1)

for all $\mu \leq \lambda$ in \mathcal{S}_n , $|\lambda| = |\mu| = n$. If we specialize q to be a prime power, and if $u \in GL_n(F_q)$ is a unipotent element with Jordan blocks of sizes $\mu_1 \geqslant \mu_2 \geqslant \cdots \geqslant \mu_n$, then, by the results of Green [5],

$$q^{n(\mu)}K_{\lambda,\mu}(q^{-1}) = \text{Tr}(u, E_{\lambda})$$
 (2.2)

for all $\mu \leqslant \lambda$ in \mathscr{S}_n , $|\lambda| = |\mu| = n$; moreover, $\operatorname{Tr}(u, E_{\lambda}) = 0$ if $\mu \leqslant \lambda$. Now Theorem 1 follows from (2.1) and (2.2).

3. Some Problems

Let \mathscr{E} be a locally constant l-adic sheaf on an open smooth subset U of an irreducible variety X. Deligne's definition of the complex ${}^{\pi}\mathbb{Q}_{l}$ is applicable without change to \mathscr{E} instead of the constant sheaf \mathbb{Q}_{l} and leads to a complex ${}^{\pi}\mathscr{E}$ of l-adic sheaves on X which on U is equivalent to the complex reduced to \mathscr{E} in degree zero. (This construction was used recently by Vogan and by Beilinson and Bernstein in connection with the question of describing the characters of a real semisimple Lie group. This section was influenced by their work.) Let $\mathscr{H}^{i}({}^{\pi}\mathscr{E})$ denote the cohomology sheaves of ${}^{\pi}\mathscr{E}$. If we are given a finite group W of automorphisms of \mathscr{E} (inducing identity on X) then, by functoriality, W will act on each of the sheaves $\mathscr{H}^{i}({}^{\pi}\mathscr{E})$, inducing identity on X.

Consider, for example, the case where X = G, a reductive connected algebraic group over k. Let U be the open subset of G consisting of all regular semisimple elements in G. There is a canonical principal bundle $\tilde{U} \to^p U$ with group W (where W is the Weyl group of G): \tilde{U} is the set of pairs (s, B), where $s \in U$ and B is a Borel subgroup of G containing s. Let $\mathscr{E} = p_*(\mathbb{Q}_l)$. This is a locally constant sheaf on V, with a natural action of W. (W acts on each stalk by the regular representation.) It follows that Wacts naturally on each of the sheaves $\mathcal{H}^i({}^n\mathcal{E})$. If $g \in G$, the stalk $\mathcal{H}^i_g({}^n\mathcal{E})$ is naturally isomorphic to $H^i(\mathcal{B}_{\mathfrak{g}},\mathbb{Q}_l)$, where $\mathcal{B}_{\mathfrak{g}}$ is the variety of Borel subgroups containing g. Indeed, let \tilde{G} be the set of pairs (g', B), where $g' \in G$ and $B \in \mathcal{B}_{g}$; and let $p_1 : \tilde{G} \to G$ be the projection $(g', b) \to g'$; then, one can show that ${}^{\pi}\mathscr{E} = (p_1)_* (\mathbb{Q}_l)$. This follows by a general argument of Goresky and Macpherson [4, 4.2] as soon as one checks that there exists a finite partition of G into locally closed, irreducible subsets $G_0, G_1, ..., G_n$ of G such that $G_0 = U$ and dim $p_1^{-1}(g) \leqslant \frac{1}{2}$ (codim $G_i - 1$) for all $g \in G_i$ (i = 1, 2, ..., n). The existence of such a partition follows from the finiteness of the number of unipotent classes in a reductive group and from the known inequality dim $\pi^{-1}(g) \leq \frac{1}{2}$ (dim Z(g) - rank(G)). Thus, we see that there is a natural action of W on $H^i(\mathscr{B}_g, \mathbb{Q}_l)$, for any $g \in G$. (In the case where g is unipotent, and the characteristic of k is not too small this can be identified with Springer's representation [15]; however, our definition seems to be closer to Slodowy's approach [13] to Springer's representation.)

Assume now that G is defined over \mathbb{F}_q ; let $F: G \to G$ be the corresponding Frobenius map. Then, for any $g \in G$, there is a natural map $F: \mathscr{H}^l_g({}^n\mathscr{E}) \to \mathscr{H}^l_{F(g)}({}^n\mathscr{E})$.

Let $w \in W$, and let $\mathscr{B}_{(w)}$ be the variety of Borel subgroup $B \subset G$ such that B, FB are in relative position w; G^F acts on $\mathscr{B}_{(w)}$ by conjugation. In view of [6, 15], it seems natural to state

Conjecture 1.

$$\sum_i (-1)^i \operatorname{Tr}(Fw, \mathscr{H}^i_g(^{\pi}\mathscr{E})) = \sum_i (-1)^i \operatorname{Tr}(g, H^i(\mathscr{B}_{(w)}, \mathbb{Q}_l)), \text{ for all } g \in G^F.$$

Now let ρ be an irreducible representation of W (over \mathbb{Q}_l) and let ρ' be its dual; we define the sheaves $\mathscr{X}^l(^{\pi}\mathscr{E})_{\rho}$ to be $(\mathscr{X}^l(^{\pi}\mathscr{E})\otimes \rho')^W$. We wish to describe the restriction of the sheaf $\mathscr{X}^l(^{\pi}\mathscr{E})_{\rho}$ to the variety \mathscr{U} of unipotent elements in G.

Conjecture 2. Given ρ as above, there is a well-defined unipotent class $C \subset G$ and a locally constant, l-adic sheaf $\mathscr E$ on C associated to an irreducible representation of the group of components of the centralizer of an element $u \in C$ with the following property: The sheaf $\mathscr H(^n\mathscr E)[-b_u]$ on $\overline C$, extended by zero on $\mathscr U-\overline C$ is isomorphic to the restriction of $\mathscr H(^n\mathscr E)_\rho$ to $\mathscr U$ (where $b_u=\dim \mathscr B_u$).

This conjecture, which would make [15, 6.10] more precise, is supported by Theorem 1.

Remarks. (a) According to an unpublished theorem of Deligne, the variety of all unipotent elements in G is rationally smooth (in the sense of [7, 4.1]), at least in sufficiently large characteristic. It follows that, if $\mathscr E$ is the constant sheaf $\mathbb Q_i$ on the regular unipotent class, then $\mathscr M(^*\mathscr E)$ is the constant sheaf $\mathbb Q_i$ for i=0 and it is zero if i>0.

(b) Assume that G is simple and split over \mathbb{F}_q . There is a unique unipotent class $C \subset G$ of dimension 2(h-1), where h is the Coxeter number. When all root lengths are the same this is the minimal unipotent class not containing the neutral element e; according to an unpublished theorem of Kostant, the number of \mathbb{F}_q -rational points of C is given by

$$(q^{h}-1)(q^{e_{1}-1}+q^{e_{2}-1}+\cdots+q^{e_{l}-1}), (3.1)$$

where $e_1,...,e_l$ are the exponents of G.

When there are roots of different lengths, C is no longer the minimal unipotent class not containing e. However, one can check, using a case by case analysis, that $\overline{C} - \{e\}$ is rationally smooth (in the sense of [7, A1]) and that the number of \mathbb{F}_{e} -rational points of $\overline{C} - \{e\}$ is again given by (3.1).

Let \mathscr{E} be the constant sheaf \mathbb{Q}_l on C; we consider the corresponding sheaves $\mathscr{H}^l({}^n\mathscr{E})$ on \overline{C} . Using the method of ([7, Appendix]) it follows that, in general, its stalks at e are described by

$$\sum_{i>0} q^{i/2} \dim \mathscr{H}_e^i(^{\pi}\mathscr{E}) = \sum_{i=1}^l q^{e_i-1}.$$
 (3.2)

(c) Let ρ be a special representation of W (in the sense of [10, 11]), and let C_{ρ} be the unipotent class in G corresponding to ρ by Conjecture 2. Such a unipotent class is said to be special. This concept was introduced in [10] in a slightly different way, which is however, equivalent to the present definition.

Another definition for special unipotent classes was proposed by Spaltenstein [14]. Following Spaltenstein, we associate to a special unipotent class, C, the subset $\tilde{C} \subset U$ consisting of all elements g in the closure of C which are not in the closure of any special unipotent class $C' \neq C$, $C' \subset \bar{C}$. For example, if C is as in (b), then C is the minimal special unipotent class other than $\{e\}$ and we have $\tilde{C} = \bar{C} - \{e\}$. The results in (b) suggest

Conjecture 3. If C_{ρ} is any special unipotent class in G, then \tilde{C}_{ρ} is rationally smooth. If, moreover, G is simple and split over F_q , then the number of F_q -rational points of \tilde{C} is given by a polynomial in q which depends only on ρ (i.e., it is independent of characteristic and is the same for types B_n and C_n).

REFERENCES

- C. W. Curtis, N. IWAHORI, AND R. KILMOYER, Hecke algebras and characters of parabolic type of finite groups with BN pairs, Inst. Hautes. Études Sci. Publ. Math. 40 (1972), 81-116.
- 2. P. Deligne, letter to D. Kazhdan and G. Lusztig, 20 April 1979.
- 3. M. Goresky and R. Macpherson, Intersection homology theory. I. Topology.
- 4. M. Goresky and R. Macpherson, Intersection homology theory, II, preliminary version.
- J. A. Green, The characters of the finite general linear groups, Trans. Amer. Math. Soc. 80 (1955), 402-447.
- 6. D. KAZHDAN, Proof of Springer's hypothesis, Israel J. Math. 28 (1977), 272-286.
- 7. D. KAZHDAN AND G. LUSZTIG, Representations of Coxeter groups and Hecke algebras, *Invent. Math.* 53 (1979), 165–184.
- 8. D. KAZHDAN AND G. LUSZTIG, "Schubert Vareties and Poincaré Duality," Proc. Symp. Pure Math. Vol. 36, Amer. Math. Soc., Providence, R.I., 1980.
- A. LASCOUX AND M. P. SCHUTZENBERGER, Sur une conjecture de H. O. Foulkes, C. R. Acad. Sci. Paris Ser. A 285 (1978), 323-324.
- G. Lusztig, A class of irreducible representations of a Weyl group, Proc. Kon. Ned. Akad. Wetensch. Ser. A 82, No. 3 (1979), 323-335.
- G. Lusztig, Some problems in the representation theory of a finite Chevalley group, in "Proceedings, Symposium Pure Mathematics," Vol. 37, Amer. Math. Soc., Providence, R.I., 1980.
- 12. I. G. MACDONALD, "Symmetric Functions and Hall Polynomials," Oxford Univ. Press (Clarendon), Oxford, 1979.
- P. Slodowy, "Four Lectures on Simple Groups and Singularities," Communications of the Mathematical Institute, Utrecht, 1980.
- 14. N. SPALTENSTEIN, forthcoming book on unipotent classes.
- T. A. SPRINGER, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, *Invent. Math.* 36 (1976), 173-207.