# Simple linear regression

## Some important aspects

- Independent variables:
  - Data that can be controlled directly.
- Dependent variables:
  - Data that cannot be controlled directly.
- The data that can't be controlled i.e. dependent variables need to predicted or estimated.
- Model:
  - A model is a transformation engine that helps us to express dependent variables as a function of independent variables.

- Provide a simple approach towards supervised learning.
- They are simple yet effective.
- Linear suggests that the relationship between dependent and independent variable can be expressed in a straight line.
- Recall the geometry lesson from high school. What is the equation of a line?
  - y = mx + c



- y is the dependent variable i.e. the variable that needs to be estimated and predicted.
- x is the independent variable i.e. the variable that is controllable. It is the input.
- $\bullet$  m is the slope. It determines what will be the angle of the line. It is the parameter denoted as  $\beta$ .
- c is the intercept. A constant that determines the value of y when x is 0.









# Linear regression Models

- Linear regression models are not perfect.
- It tries to approximate the relationship between dependent and independent variables in a straight line.
- Approximation leads to errors:
  - Some errors can be reduced.
  - Some errors are inherent in the nature of the problem. These errors cannot be eliminated. They are called as an irreducible error.

$$Y = \beta_0 + \beta_1 X + \epsilon$$

- $\beta 0$  and  $\beta 1$  are two unknown constants that represent the intercept and slope. They are the parameters.
- ε is the error term.

#### **Cost function**

- A cost function is something you want to minimize. For example, your cost function might be the sum of squared errors over your training set.
- Cost function is also called squared error function.

$$error = (guess - actual) = (mx + b) - y$$
  
 $costfunction : J(m, b) = \sum_{i=0}^{n} error^{2}$ 



• You need to predict the price of a new car. You have the following data:

| make <sup>‡</sup> | fuelType | nDoors | engineSize | price ‡ |
|-------------------|----------|--------|------------|---------|
| alfa-romero       | gas      | two    | 130        | 13495   |
| alfa-romero       | gas      | two    | 130        | 16500   |
| alfa-romero       | gas      | two    | 152        | 16500   |
| audi              | gas      | four   | 109        | 13950   |
| audi              | gas      | four   | 136        | 17450   |
| audi              | gas      | two    | 136        | 15250   |
| audi              | gas      | four   | 136        | 17710   |
| audi              | gas      | four   | 136        | 18920   |
| audi              | gas      | four   | 131        | 23875   |

- The following are the data provided to him:
  - make: make of the car.
  - fuelType: type of fuel used by the car.
  - nDoor: number of doors.
  - engineSize: size of the engine of the car.
  - price: the price of the car.

| make        | † fuelType | nDoors | engineSize | price <sup>‡</sup> |
|-------------|------------|--------|------------|--------------------|
| alfa-romero | gas        | two    | 130        | 13495              |
| alfa-romero | gas        | two    | 130        | 16500              |
| alfa-romero | gas        | two    | 152        | 16500              |
| audi        | gas        | four   | 109        | 13950              |
| audi        | gas        | four   | 136        | 17450              |
| audi        | gas        | two    | 136        | 15250              |
| audi        | gas        | four   | 136        | 17710              |
| audi        | gas        | four   | 136        | 18920              |
| audi        | gas        | four   | 131        | 23875              |
| -           |            |        |            |                    |

- You want to evaluate if indeed he can predict car price based on engine size. The first set of analysis seeks the answers to the following questions:
  - Is price of car price related with engine size?
  - How strong is the relationship?
  - Is the relationship linear?
  - Can we predict/estimate car price based on engine size?

- Let's do a correlation analysis.
- Correlation is a measure of how much the two variables are related.



- Following are the answers to the questions:
  - Is price of car price related with engine size?
    - Yes, there is a relationship.
  - How strong is the relationship?
    - There is a strong relationship.
  - Is the relationship linear?
    - Yes.
  - Can we predict/estimate the car price based on engine size?
    - Yes, car price can be estimated based on engine size.

# Equation for price prediction

- price =  $\beta$ 0 +  $\beta$ 1 x engine size
  - estimates βo and β1
  - creates model performance metrics



# Interpretation

One unit increase in engine size will increase the average price of the car by 156.9 units.



