AERO-423, Spring 2024, Homework 5 (Due date: Thursday April 25, 2024)

NAME:		

Show all work and justify your answer!

For all problems use: $J_2=1.082645\cdot 10^{-3},~\mu=398,600.4415~{\rm km^3/s^2},~{\rm and}$ (Earth radius) $R_\oplus=6,378.135~{\rm km}.$

- 1. (8 pts) A satellite is in a "Molniya" orbit with an apogee altitude of 39,906 km over the Russian territory, with an inclination of 63.435°, and with argument of perigee 270°. The period of this orbit is half a sidereal day. Considering only the J_2 effect, answer the following:
 - a. (1 points) Is Russia toward Northern point of the orbit or is it towards the South?
 - **b.** (3 points) Find the perturbation (rate change) in the argument of perigee (degrees/day). How does the perigee position change over time?
 - c. (2 points) Find the perturbation (rate change) of node line (degrees/day).
 - c. (2 points) Change in orbital period.
- 2. (5 pts) Compute the yearly perigee maintenance cost of a satellite that is almost in a Tundra orbit. The orbital parameters are:

a=42,164 km, e=0.24,~i=70 deg, $\omega=270$ deg. Compute the annual perigee maintenance cost using a radial impulse in terms of percentage $\frac{\Delta m}{m_0}$ using $I_{\rm sp}=300$.

s, $g = 9.81 \text{ m/s}^2$, 1 year = 365.25 days and use $\frac{\Delta m}{m_0} = 1 - e^{-\Delta v/(g I_{\rm sp})}$. Why do you think the perigee maintenance cost is low or high?

Consider only the J_2 effect.

- **3.** (6 points) The following are the estimated attitudes of a spacecraft using three different coordinates (at different instances).
 - i. quaternion

$$\mathbf{q} = \begin{pmatrix} 0.0921, & 0.2306, & 0.4191, & 0.8733 \end{pmatrix}^T$$

ii. Principal axis-angle (e and ϕ)

$$e = \{0.1382, 0.4075, 0.9027\}^T$$
 $\phi = 61.1403^\circ$

iii. Gibbs vector

$$\rho = \{0.0890, 0.2976, 0.4994\}^T$$

If the true attitude quaternion is

$$q_{t} = \{0.0742, 0.2363, 0.4418, 0.8623\}^{T}$$

- a. (3 points) Compute the attitude errors in the estimated attitudes.
- **b.** (3 points) If $\mathbf{r} = \{0.1250, -0.5735, -0.8096\}^{\mathrm{T}}$ is a measured inertial direction, compute the direction errors of \mathbf{r} that is measured using the estimated attitudes (i, ii, iii).

Report all angles in degrees.

4. (3+3 points) Determine the attitude (quaternion and DCM) using the Davenport's q-method and the TRIAD method. The inertial (r) and the observed (b) unit-vectors are as follows:

$$\begin{aligned} & \boldsymbol{r}_1^{\mathrm{T}} = \left\{0.1732, & 0.3293, & -0.9282\right\} \\ & \boldsymbol{r}_2^{\mathrm{T}} = \left\{-0.4056, & -0.5613, & 0.7214\right\} \\ & \boldsymbol{b}_1^{\mathrm{T}} = \left\{-0.3306, & -0.3173, & 0.8888\right\} \\ & \boldsymbol{b}_2^{\mathrm{T}} = \left\{0.5563, & 0.5208, & -0.6475\right\} \end{aligned}$$

Use the weights: $[\alpha_1, \alpha_2] = [1/3, 1/4]$.