f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization

Sebastian Nowozin, Botond Cseke, Ryota Tomioka

Machine Intelligence and Perception Group, Microsoft Research, Cambridge, UK

2016

О чем статья

- Обобщили objective function GAN для любых f-дивергенций
- Предложили более простой алгоритм с доказательством локальной сходимости
- Продемонстрировали работу с разными дивергенциями

f-divergence: определение

Для двух распределений P и Q с абсолютно непрерывными плотностями p и q определим f-дивергенцию, также известную как Ali-Silvey distance:

$$D_f(P||Q) = \int_X q(x) f\left(\frac{p(x)}{q(x)}\right) dx,$$

где $f:\mathbb{R}_+ o\mathbb{R}$ - выпуклая, полунепрерывная снизу функция с условием f(1)=0, называемая generator function.

Сопряженная по Фенхелю функция: определение

Для каждой выпуклой, полунепрерывной снизу функции f существует сопряженная функция (convex conjugate), также называемая сопряженная по Фенхелю (Fenchel conjugate), определяемая как:

$$f^*(t) = \sup_{u \in \text{dom}_f} \{ut - f(u)\} dx,$$

также выпуклая и полунепрерывная снизу.

$$f^{**} = f$$

Представим f как сопряженную f^* :

$$D_f(P||Q) = \int_X q(x)f\left(\frac{p(x)}{q(x)}\right) dx =$$

$$= \int_X q(x) \sup_{t \in \text{dom}_{f^*}} \left\{ t \frac{p(x)}{q(x)} - f^*(t) \right\} dx$$

Проблема: как вытащить супремум.

$$D_{f}(P||Q) = \int_{X} q(x)f\left(\frac{p(x)}{q(x)}\right) dx =$$

$$= \int_{X} q(x) \sup_{t \in \text{dom}_{f^{*}}} \left\{ t\frac{p(x)}{q(x)} - f^{*}(t) \right\} dx =$$

$$\geq \sup_{T \in \tau} \left(\int_{X} p(x)T(x) dx - \int_{X} q(x)f^{*}(T(x)) dx \right)$$

au - произвольный класс функций $T:X o\mathbb{R}$

Перейдем к матожиданиям

$$D_{f}(P||Q) = \int_{X} q(x)f\left(\frac{p(x)}{q(x)}\right)dx =$$

$$= \int_{X} q(x)\sup_{t \in \text{dom}_{f^{*}}} \left\{ t\frac{p(x)}{q(x)} - f^{*}(t) \right\} dx =$$

$$\geq \sup_{T \in \tau} \left(\int_{X} p(x)T(x)dx - \int_{X} q(x)f^{*}(T(x))dx \right) =$$

$$= \sup_{T \in \tau} \left(\mathbb{E}_{x \sim P}[T(X)] - \mathbb{E}_{x \sim Q}[f^{*}(T(x))] \right)$$

7 / 25

Name	$D_f(P\ Q)$	Generator $f(u)$	$T^*(x)$
Kullback-Leibler	$\int p(x) \log rac{p(x)}{q(x)} \mathrm{d}x$	$u \log u$	$1 + \log \frac{p(x)}{q(x)}$
Reverse KL	$\int q(x) \log \frac{q(x)}{p(x)} dx$	$-\log u$	$-\frac{q(x)}{p(x)}$
Pearson χ^2	$\int \frac{(q(x)-p(x))^2}{p(x)} dx$	$(u-1)^2$	$2(\frac{p(x)}{q(x)}-1)$
Squared Hellinger	$\int \left(\sqrt{p(x)}-\sqrt{q(x)}\right)^2 \mathrm{d}x$	$(\sqrt{u}-1)^2$	$(\sqrt{\frac{p(x)}{q(x)}} - 1) \cdot \sqrt{\frac{q(x)}{p(x)}}$
Jensen-Shannon	$\frac{1}{2}\int p(x)\log\frac{2p(x)}{p(x)+q(x)}+q(x)\log\frac{2q(x)}{p(x)+q(x)}\mathrm{d}x$	$-(u+1)\log\tfrac{1+u}{2}+u\log u$	$\log \frac{2p(x)}{p(x)+q(x)}$
GAN	$\int p(x) \log \frac{2p(x)}{p(x)+q(x)} + q(x) \log \frac{2q(x)}{p(x)+q(x)} dx - \log(4)$	$u\log u - (u+1)\log(u+1)$	$\log \tfrac{p(x)}{p(x)+q(x)}$

Рис.: Функции-генераторы и оптимальные вариационные функции для различных дивергенций

Постановка задачи f-GAN

Параметризуем Q вектором θ , T вектором ω Генеративная модель Q_{θ} получается при нахождении седловой точки следующей функции:

$$F(\theta,\omega) = \mathbb{E}_{x \sim P}[T_{\omega}(x)] - \mathbb{E}_{x \sim Q_{\theta}}[f^{*}(T_{\omega}(x))]$$

Минимизируем по θ , максимизируем по ω .

Сравнение objectives GAN и f-GAN

GAN:

$$\min_{\theta} \max_{\omega} (\mathbb{E}_{x \sim P}[\log(D_{\omega}(x))] - \mathbb{E}_{x \sim Q_{\theta}}[\log(1 - D_{\omega}(x))])$$

f-GAN:

$$\min_{\theta} \max_{\omega} (\mathbb{E}_{x \sim P}[T_{\omega}(x)] - \mathbb{E}_{x \sim Q_{\theta}}[f^{*}(T_{\omega}(x))])$$

- ullet GAN частный случай, соответствующий $\log(D_{\omega}(x)) = T_{\omega}(x)$
- GAN минимизируют дивергенцию Йенсена-Шеннона

Представление вариационной функции

Проблема: f* для нек. дивергенций определена не на R, а на части Поэтому на практике нужна вспомогательная функция. Определим

$$T_{\omega}(x) = g_f(V_{\omega}(x)),$$

где $V_\omega:X o\mathbb{R},\ g_f:\mathbb{R} o\mathrm{dom}_{f^*}$ Тогда целевая функция будет

$$F(\theta,\omega) = \mathbb{E}_{\mathsf{x}\sim P}[\mathsf{g}_\mathsf{f}(V_\omega(\mathsf{x}))] - \mathbb{E}_{\mathsf{x}\sim Q_\theta}[f^*(\mathsf{g}_\mathsf{f}(V_\omega(\mathsf{x})))]$$

Представление вариационной функции: примеры

Name	Output activation g_f	dom_{f^*}	Conjugate $f^*(t)$	f'(1)
Total variation	$\frac{1}{2}\tanh(v)$	$-\frac{1}{2} \le t \le \frac{1}{2}$	t	0
Kullback-Leibler (KL)	\tilde{v}	\mathbb{R}^{2}	$\exp(t-1)$	1
Reverse KL	$-\exp(v)$	\mathbb{R}_{-}	$-1 - \log(-t)$	-1
Pearson χ^2	v	\mathbb{R}	$\frac{1}{4}t^2 + t$	0
Neyman χ^2	$1 - \exp(v)$	t < 1	$\frac{1}{2} - 2\sqrt{1-t}$	0
Squared Hellinger	$1 - \exp(v)$	t < 1	$\frac{t}{1-t}$	0
Jeffrey	v	\mathbb{R}	$W(e^{1-t}) + \frac{1}{W(e^{1-t})} + t - 2$	0
Jensen-Shannon	$\log(2) - \log(1 + \exp(-v))$	$t < \log(2)$	$-\log(2-\exp(t))$	0
Jensen-Shannon-weighted	$-\pi \log \pi - \log(1 + \exp(-v))$	$t < -\pi \log \pi$	$(1-\pi)\log\frac{1-\pi}{1-\pi e^{t/\pi}}$	0
GAN	$-\log(1+\exp(-v))$	\mathbb{R}_{-}	$-\log(1-\exp(t))$	$-\log(2$
α -div. ($\alpha < 1, \alpha \neq 0$)	$\frac{1}{1-\alpha} - \log(1 + \exp(-v))$	$t < \frac{1}{1-\alpha}$	$\frac{1}{\alpha}(t(\alpha-1)+1)^{\frac{\alpha}{\alpha-1}}-\frac{1}{\alpha}$	0
α -div. ($\alpha > 1$)	v	\mathbb{R}	$\frac{1}{\alpha}(t(\alpha-1)+1)^{\frac{\alpha}{\alpha-1}}-\frac{1}{\alpha}$	0

Рис.: Функции активации и сопряженные функции, соответствующие разным дивергенциям

Алгоритм: Double-Loop vs Single-Loop

Double-loop алгоритм (Goodfellow et at., 2014):

- Внутренний цикл к шагов по градиенту лосса дискриминатора.
- Внешний цикл отрицательный шаг по градиенту лосса генератора
- На практике во внутреннем цикле выполняется одна итерация (в итоге два бэкпропа)
- Недостаток теоретического анализа алгоритма

Single-loop алгоритм:

- ullet Градиент по heta и ω считается за один бэкпроп, нет внутреннего цикла
- Доказали локальную геометрическую скорость сходимости

Algorithm 1 Single-Step Gradient Method

- 1: **function** SINGLESTEPGRADIENTITERATION($P, \theta^t, \omega^t, B, \eta$)
- Sample $X_P = \{x_1, \dots, x_B\}$ and $X_Q = \{x_1', \dots, x_B'\}$, from P and Q_{θ^t} , respectively. Update: $\omega^{t+1} = \omega^t + \eta \nabla_\omega F(\theta^t, \omega^t)$. Update: $\theta^{t+1} = \theta^t \eta \nabla_\theta F(\theta^t, \omega^t)$.
- 5: end function

- ullet Модель $Q_ heta$ принимает на вход $z \sim \mathit{N}(0,1)$ и возвращает $\mathit{G}_ heta(z) = \mu + \sigma z$
- Вариационная функция двухслойная NN с tanh активациями
- ullet В случае с гауссианами можно непосредственно минимизировать $D_f(P||Q_ heta)$ по heta

Рис.: Приближение смеси гауссиан путем прямой оптимизации дивергенции $D_f(p||q_{\theta^*})$ (пунктир) и оптимизации функции $F(\omega,\theta)$

Рис.: Оптимальная вариационная функция T^* (пунктир) и T_ω (красная линия)

Эксперимент:

- f 0 Обучили T_ω и $Q_ heta$ для определенной дивергенции
- ② Взяли T_ω от другой дивергенции и обучили заново при фиксированной $Q_ heta$

Результаты:

Наименьшие значения целевой функции достигаются при той дивергенции, на которой Q_{θ} была обучена.

train \ test	KL	KL-rev	JS	Jeffrey	Pearson
KL	0.2808	0.3423	0.1314	0.5447	0.7345
KL-rev	0.3518	0.2414	0.1228	0.5794	1.3974
JS	0.2871	0.2760	0.1210	0.5260	0.92160
Jeffrey	0.2869	0.2975	0.1247	0.5236	0.8849
Pearson	0.2970	0.5466	0.1665	0.7085	0.648

Рис.: Значения целевой функции для различных пар дивергенций

- Использовали 168 тыс. фотографий классных комнат из базы LSUN
- ② Оптимизационный алгоритм ADAM (adaptive moment estimation)
- Gradient Clipping для предотвращения exploding gradients problem
- Batch Normalization

```
Algorithm 1 Pseudo-code for norm clipping \hat{\mathbf{g}} \leftarrow \frac{\partial \mathcal{E}}{\partial \theta} if \|\hat{\mathbf{g}}\| \geq threshold then \hat{\mathbf{g}} \leftarrow \frac{threshold}{\|\hat{\mathbf{g}}\|} \hat{\mathbf{g}} end if
```

Рис.: Пример gradient clipping

Взяли за основу DCGAN (Radford et. al), поменяли целевую функцию.

Рис.: Архитектура DCGAN

- Генератор: deconvolutional network, 3М параметров
- Вариационная функция: convnet, 3M параметров

Puc.: Fractionally-strided convolutions or transposed convolutional layers (GOOD NAME) or deconvolutions (BAD NAME)

Рис.: Результаты экперимента с генерацией классных комнат

Влияет ли дивергенция на результат?

Играет ли выбор дивергенции серьезную роль?

- LSUN эксперимент: нет
- Theis et al., (2015), Huszar (2015): да

Почему разница не наблюдается в эксперименте с аудиториями?

Влияет ли дивергенция на результат?

Задача: выбрать наилучшую модель из параметрического семейства согласно выбранной метрике

Влияет ли дивергенция на результат?

Рис.: Выбор модели: разные точки соответствуют разным дивергенциям

Предполагаемая причина отстутствия визуальных различий в эксперименте LSUN: bias семейства генераторов.

Ссылка на статью

f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization https://arxiv.org/abs/1606.00709