Supplemental Material of "A Multitask Point Process Predictive Model"

1. Key quantities in variational inference

Variational E-step:

$$\begin{split} \frac{d\mathcal{F}_1}{d\boldsymbol{\mu}^u} &= \sum_{u=1}^U \sum_{i=1}^{N^u} \left\{ -\Delta_i^u \Big[2b_i^u \boldsymbol{K}_{MM}^{-1} \boldsymbol{K}_{NM,i}^u \big]^\top \Big] \right. \\ &+ \mathbb{I}(t_i^u \in \mathcal{T}^u) \left[\tilde{G}' \bigg(-\frac{(b_i^u)^2}{2B_{ii}^u} \bigg) \frac{b_i^u}{B_{ii}^u} \boldsymbol{K}_{MM}^{-1} \boldsymbol{K}_{NM,i}^u \big]^\top \right] \right\} \,, \end{split}$$

$$\frac{d\mathcal{F}_{1}}{d\boldsymbol{\Sigma}^{u}} = \sum_{u=1}^{U} \sum_{i=1}^{N^{u}} \left\{ -\Delta_{i}^{u} [\boldsymbol{K}_{MM}^{-1} \boldsymbol{K}_{NM,i}^{u}, \boldsymbol{K}_{NM,i}^{-1}, \boldsymbol{K}_{NM,i}^{u}, \boldsymbol{K}_{MM}^{-1}] \right.$$

$$+ \mathbb{I}(t_{i}^{u} \in \mathcal{T}^{u}) \left[\left(-\tilde{G}' \left(-\frac{(b_{i}^{u})^{2}}{2B_{ii}^{u}} \right) \frac{(b_{i}^{u})^{2}}{2(B_{ii}^{u})^{2}} + \frac{1}{B_{ii}^{u}} \right) \right.$$

$$\left. \boldsymbol{K}_{MM}^{-1} \boldsymbol{K}_{NM,i}^{u}, \boldsymbol{K}_{NM,i}^{-1}, \boldsymbol{K}_{MM}^{-1} \right] \right\},$$

$$\begin{split} \frac{d\mathcal{F}_2}{d\boldsymbol{\mu}^u} &= -\boldsymbol{K}_{MM}^{-1}(\boldsymbol{\mu}^u - \boldsymbol{\mu}_M^0)\,,\\ \frac{d\mathcal{F}_2}{d\boldsymbol{\Sigma}^u} &= -\frac{1}{2}\boldsymbol{K}_{MM}^{-1} + \frac{1}{2}\boldsymbol{\Sigma}^{u-1}\,,\\ \frac{d\mathcal{F}_3}{d\boldsymbol{\mu}^u} &= 0\,,\\ \frac{d\mathcal{F}_3}{d\boldsymbol{\Sigma}^u} &= 0\,. \end{split}$$

Variational M-step:

Updates for μ_M^0 can be derived in closed form as follows,

$$\hat{oldsymbol{\mu}}_{M}^{0} = rac{1}{\xi + U} \left(\xi oldsymbol{g} + \sum_{u=1}^{U} oldsymbol{\mu}^{u}
ight) \,.$$

Gradient methods are needed for updating other parameters (denoted as θ_k), including pseudo input positions and GP hyper-parameters, with key quantities summarized below:

$$\begin{split} &\frac{d\mathcal{F}_1}{d\theta_k} = \sum_{u=1}^{U} \sum_{i=1}^{N^u} \left\{ \mathbb{I}(t_i^u \in \mathcal{T}^u) \bigg[-\tilde{G}' \bigg(-\frac{(b_i^u)^2}{2B_{ii}^u} \bigg) \bigg(-\frac{1}{2(B_{ii}^u)^2} \bigg) \\ &\times \left\{ 2B_{ii}^u b_i^u (\boldsymbol{\mu}^u - \boldsymbol{g})^T \frac{d\boldsymbol{K}_{MM}^{-1} \boldsymbol{K}_{NM,i}^u}{d\theta_k}^\top - (b_i^u)^2 \frac{dB_{ii}^u}{d\theta_k} \right\} \\ &+ \frac{1}{B_{ii}^u} \frac{dB_{ii}^u}{d\theta_k} \bigg] - \Delta_i^u \bigg[2b_i^u (\boldsymbol{\mu}^u - \boldsymbol{g})^T \frac{d\boldsymbol{K}_{MM}^{-1} \boldsymbol{K}_{NM,i}^u}{d\theta_k}^\top + \frac{dB_{ii}^u}{d\theta_k} \bigg] \right\} \,, \end{split}$$

$$\frac{dB_{ii}^{u}}{d\theta_{k}} = \frac{d\mathbf{K}_{NN,ii}}{d\theta_{k}} - \frac{d\mathbf{K}_{NM,i.}^{u}\mathbf{K}_{MM}^{-1}\mathbf{K}_{NM,i.}^{u}}{d\theta_{k}} + 2(\mathbf{\Sigma}^{u}\mathbf{K}_{MM}^{-1}\mathbf{K}_{NM,i.}^{u}^{\top})^{\top} \frac{d\mathbf{K}_{MM}^{-1}\mathbf{K}_{NM,i.}^{u}}{d\theta_{k}},$$

$$\begin{split} &\frac{d\mathcal{F}_2}{d\theta^k} = -\frac{U}{2}tr\left(\boldsymbol{K}_{MM}^{-1}\frac{d\boldsymbol{K}_{MM}}{d\theta_k}\right) + \frac{1}{2}tr\bigg(\boldsymbol{K}_{MM}^{-1}\\ &\times \sum_{u=1}^{U}\left(\boldsymbol{\mu}^u\boldsymbol{\mu}^{u\top} + \boldsymbol{\Sigma}^u + \boldsymbol{\mu}_{M}^0\boldsymbol{\mu}_{M}^0{}^{\top} - 2\boldsymbol{\mu}^u\boldsymbol{\mu}_{M}^0{}^{\top}\right)\boldsymbol{K}_{MM}^{-1}\frac{d\boldsymbol{K}_{MM}}{d\theta_k}\right)\,, \end{split}$$

$$\begin{split} &\frac{d\mathcal{F}_3}{d\theta^k} = -\frac{1}{2}tr\left(\boldsymbol{K}_{MM}^{-1}\frac{d\boldsymbol{K}_{MM}}{d\theta_k}\right) \\ &+ \frac{1}{2}tr\left(\xi\boldsymbol{K}_{MM}^{-1}(\boldsymbol{\mu}_M^0 - \boldsymbol{g})(\boldsymbol{\mu}_M^0 - \boldsymbol{g})^{\top}\boldsymbol{K}_{MM}^{-1}\frac{d\boldsymbol{K}_{MM}}{d\theta_k}\right) \,. \end{split}$$

2. Confluent hypergeometric functions

When |x| is small, for example $|x| \le 30$, we use the power series to compute the confluent hypergeometric function:

$$_{1}F_{1}(a,b,x) = \sum_{k=0}^{\infty} \frac{(a)_{k}x^{k}}{(b)_{k}k!}$$
,

where $(a)_0 = 1$, $(a)_k = \prod_{j=0}^{k-1} (a+j)$. In practice, the summation can be terminated at a sufficiently large number to achieve a given error tolerance level.

When |x| is large, for example |x| > 30, we use the following computation (Thompson, 1997):

$$_{1}F_{1}(a,b,x) = \frac{\Gamma(b)(-x)^{-a}}{\Gamma(b-1)} \sum_{k=0}^{\infty} \frac{(a)_{k}(a+a-b)_{k}}{k!(-x)^{k}}.$$

Having ${}_1F_1(a,b,x)$, the gradient $\tilde{G}(x)=G(0,\frac{1}{2},z)$ can be numerically computed, where $G(a,b,x)=\frac{\partial_1F_1(a,b,x)}{\partial a}$ (Ancarani & Gasaneo, 2008).

Finally, the expectation needed to compute \mathcal{F}_1 during variational E-step can be estimated as (Lloyd et al., 2014):

$$\mathbb{E}[\log(f_{N,i}^u)^2] = -\tilde{G}(-\frac{b_i^{u^2}}{2B_i^u}) + \log(\frac{B_{ii}^u}{2}) - const.$$

Submission and Formatting Instructions for ICML 2015

References	165
Ancarani, L. U. and Gasaneo, G. Derivatives of any order of the confluent hypergeometric function. <i>Journal of</i>	166 167 168
Mathematical Physics, 49, 2008.	169
Lloyd, Chris, Gunter, Tom, Osborne, Michael A., and	170
Roberts, Stephen J. Variational inference for Gaussian	171
process modulated Poisson processes. arXiv:1411.0254,	172
2014.	173
	174
Thompson, William J. Atlas for Computing Mathematical	175
Functions: An Illustrated Guide for Practitioners with Programs in FORTRAN and Mathematica with Cdrom.	176
John Wiley & Sons, Inc., 1997.	177 178
John Whey & Johns, Inc., 1777.	179
	180
	181
	182
	183
	184
	185
	186
	187
	188 189
	190
	191
	192
	193
	194
	195
	196
	197
	198 199
	200
	201
	202
	203
	204
	205
	206
	207 208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218