Tema 2. Conjuntos

2.0. Contenido y documentación

- 2.0. Contenido y documentación
- 2.1. Formas de especificar un conjunto
- 2.2. Relaciones de inclusión
- 2.3. Operaciones con conjuntos
 - 2.4.1. Propiedades básicas
 - 2.4.2. Producto cartesiano entre dos conjuntos
 - 2.4.3. Propiedades del producto cartesiano
- 2.5. Partes de un conjunto
 - 2.5.1. Cardinalidad
- 2.6. Números combinatorios
 - 2.6.1. Propiedades
 - 2.6.2. Fórmula del binomio de Newton
 - 2.6.3. Principio de inclusión-exclusión (P.I.E.)
- 2.7. Conjunto universal
 - 2.7.1. Propiedades
- 2.8. Álgebra de Boole

H2_Conjuntos.pdf

2.1. Formas de especificar un conjunto

Definición. Un **conjunto** es una colección claramente definida de "objetos" que llamaremos **elementos del conjunto**.

Hay dos formas de especificar un conjunto.

- Explicativa o explícita. Decimos exactamente cuáles son los elementos de conjunto (se admiten colecciones infinitas siempre que el patrón esté claro (N)).
- Especificativa. Se da una propiedad que cumplen todos los elementos del conjunto.

Si s es un elemento del conjunto S, escribimos $s \in S$ (s pertenece a S) ó $r \notin S$ (si r no pertenece a S).

Definición. Decimos que dos conjuntos A y B coinciden o **son iguales** si tienen exactamente los mismos elementos, es decir $\forall (x \in A \Leftrightarrow x \in B)$.

Notación. A=B.

Definición. Definimos el **conjunto vacío** como aquel que no contiene ningún elemento. Notación. \emptyset

2.2. Relaciones de inclusión

Definición. Decimos que un conjunto A está contenido en un conjunto B o que A es un subconjunto de B si todos los elementos de A son también elementos de B, es decir, $\forall x \in A \Rightarrow x \in B$.

Notación. $A \subset B$.

Nota. $\forall A$ se tiene que $\emptyset \subset A$.

También podemos decir que dos conjuntos son iguales, A=B, si ambos están contenidos en el otro simultáneamente, es decir, $(A \subset B) \land (B \subset A)$.

2.3. Operaciones con conjuntos

Dados dos conjuntos A y B cualesquiera, podemos definir las siguiente operaciones:

- 1. Unión. $A \cup B = \{x : x \in A \lor x \in B\}$.
- 2. Intersección. $A\cap B=\{x:x\in A\wedge x\in B\}.$
- 3. Diferencia. $A \setminus B = \{x : x \in A \land x \notin B\}$.

Podemos visualizar estos conjuntos con los diagramas de Venn.

2.4.1. Propiedades básicas

Dados los conjuntos A, B y C cualesquiera, podemos definir las siguientes popiedades.

- 1. Propiedad conmutativa. $A \cap B = B \cap A$ y $A \cup B = B \cup A$.
- 2. Propiedad asociativa. $(A \cap B) \cap C = A \cap (B \cap C)$ y $(A \cup B) \cup C = A \cup (B \cup C)$.
- 3. Propiedad distributiva. $A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$ y $A\cup (B\cap C)=(A\cup B)\cap (A\cup C)$.
- 4. Elementos neutros. $A\cap A=A\cup A=A$, $A\cap\emptyset=\emptyset$ y $A\cup\emptyset=A$.
- 5. Unión e intersección de la inclusión. $A \subset B \Leftrightarrow A \cap B = A \Leftrightarrow A \cup B = B$.
- 6. Inclusión de la unión y la intersección. $A \cap B \subset A$, $A \cap B \subset B$, $A \subset A \cup B$ y $B \subset A \cup B$.

2.4.2. Producto cartesiano entre dos conjuntos

Definición. Llamamos **par ordenado** a un par de elementos en el que distinguimos el primero del segundo, el orden importa.

Notación. (a, b).

Nota. $(a,b) \neq (b,a)$.

Definición. Llamamos **producto cartesiano** entre los conjuntos A y B al conjunto de todos los pares ordenados (a,b) con $a \in A$ y $b \in B$.

Notación. $A \times B$.

2.4.3. Propiedades del producto cartesiano

A partir de un producto cartesiano entre dos conjuntos se pueden definir las siguientes propiedades:

1. Producto cartesiano del conjunto vacío. $A imes \emptyset = \emptyset$

Demostración.

Suponemos que $A \times \emptyset \neq \emptyset$, por lo que debe existir algún elemento $(a,b) \in A \times \emptyset$, con $a \in A$ y $b \in \emptyset$. Pero b no puede pertenecer al conjunto vacío, llegando a una contradicción. \square

2. Propiedad distributiva. $A \times (B \cup C) = (A \times B) \cup (A \times C)$ y $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

Demostración.

 $\forall (x,y): (x,y) \in A \times (B \cup C) \Leftrightarrow x \in A \land y \in B \cup C \Leftrightarrow x \in A \land (y \in B \lor y \in C) \Leftrightarrow (x \in A \land y \in B) \lor (x \in A \land y \in C) \Leftrightarrow ((x,y) \in A \times B) \lor ((x,y) \in A \times C \Leftrightarrow (x,y) \in (A \times B) \cup (A \times C). \ \Box$

2.5. Partes de un conjunto

Definición. Dado un conjunto A. Definimos el conjunto "partes de A" con conjunto formado por todos los subconjunto de A, es decir, todos los conjuntos $S:S\subset A$. Notación. $\mathcal{P}(A)$.

Nota. Los elementos de $\mathcal{P}(A)$ son los elementos de A si no los subconjuntos que los contienen.

Ejemplo 1. Dado el conjunto $A = \{1, \{2\}, \{2,3\}\}$, vemos que A está formado por tres elementos: 1, $\{2\}$ y $\{2,3\}$. Podemos hacer algunas apreciaciones:

- $1 \in A$
- 2
 otin A, ya que $2
 otin \{2\}$, pero $\{2\}\in A$
- $\{2,3\}\in A$
- $-\{1\} \subset A$
- $\{2,3\}
 ot\subset A$, ya que $2,3
 ot\in A$, pero $\{\{2,3\}\} \subset A$
- $\{2\}\subset\{2,3\}$, ya que $2\in\{2\}$ y $2\in\{2,3\}$

Ejemplo 2. Sea $A = \emptyset$, entonces $\mathcal{P}(A) = {\emptyset}$.

Ejemplo 3. Sea $A = \{a\}$, entonces $\mathcal{P}(A) = \{\emptyset, \{a\}\} = \{\emptyset, A\}$.

Ejemplo 4. Sea $A = \{a, b\}$, entonces $\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\} = \{\emptyset, \{a\}, \{b\}, A\}$.

Ejemplo 5. Sea
$$A = \{a, b, c\}$$
, entonces $\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, A\}$.

En el Ejemplo 5 vemos que A tiene 3 elementos, mientras que $\mathcal{P}(A)$ tiene 8 elementos. Así, vemos que A tiene n elementos, entonces $\mathcal{P}(A)$ tiene 2^n elementos.

2.5.1. Cardinalidad

Definición. Sea A un conjunto finito de n elementos, $A=\{a_1,a_2,...,a_n\}$. Definimos el **cardinal** de A como dicho número de elementos, es decir, n.

Notación. card (A) = |A|.

Proposición. Sea A un conjunto finito de n elementos, es decir |A|=n. Entonces $|\mathcal{P}(A)|=2^n$.

2.6. Números combinatorios

Dado un conjunto A de n elementos, para cada número entero k con $0 \le k \le n$, se define $\binom{n}{k}$, como la cantidad de subconjuntos de k elementos distintos en un conjunto con n elementos. Dicho de otra forma, el número de combinaciones de n elementos tomados de k en k.

Veremos que
$$\binom{n}{k}=C^n_k=rac{n!}{(n-k)!\cdot k!}.$$
 Tener en cuenta que $\binom{0}{0}=0!=1!=1.$

Ejemplo 6. $\binom{n}{0}$ es el número de subconjuntos con 0 elementos: solo 1, el conjunto vacío, de forma que $\binom{n}{0}=1$.

Ejemplo 7.
$$\binom{n}{1}$$
 es el número de subconjuntos con 1 elemento, de forma que $\binom{n}{1}=n$.

Ejemplo 8.
$$\binom{n}{n}$$
 es el número de subconjuntos con n elementos, de forma que $\binom{n}{n}=1$.

Ejemplo 9.
$$\binom{120}{3} = \frac{120!}{(120-3)! \cdot 3!}$$

2.6.1. Propiedades

Algunas de las propiedades más relevantes de los números combinatorios son:

1.
$$\binom{n}{k}=\binom{n}{n-k} ext{con } 0 \leq k \leq n$$
.

2.
$$\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$$
 con $n\geq 2 \wedge 1\leq k\leq n-1$.

2.6.2. Fórmula del binomio de Newton

A partir de los número combinatorios se define la fórmula del **binomio de Newton** como $(a+b)^n=\sum_{k=0}^n \binom{n}{k}a^kb^{n-k}$.

Demostración.

Demostramos por inducción.

$$egin{split} &[inom{n}{n-2}+inom{n}{n-1}]a^{n-1}b^2+[inom{n}{n-1}+inom{n}{n}]a^nb+a^{n+1}+b^{n+1}=inom{n+1}{1}ab^n+b^n+1 \ &(n+1)a^2b^{n-1}+...+inom{n+1}{n}a^nb+a^{n+1}+n^{n+1}=\sum_{k=0}^{n+1}inom{n+1}{k}a^kb^{n+1-k}.\ \Box \end{split}$$

2.6.3. Principio de inclusión-exclusión (P.I.E.)

Definición. Sean A y B dos conjuntos finitos. Decimos que son **disjuntos** si $A \cap B = \emptyset$.

Principio de inclusión-exclusión. Sean A y B dos conjuntos finitos:

- si son disjuntos, entonces $|A \cup B| = |A| + |B|$.
- si no son disjuntos, entonces $|A \cup B| = |A| + |B| |A \cap B|$.

Demostración.

 $A \cap B = \emptyset \Rightarrow A \cup B = A \cup B \setminus A$, donde A y $B \setminus A$ son disjuntos. Luego, $|A \cup B| = |A| + |B \setminus A|$. Podemos definir B como $B=(B\backslash A)\cup (A\cap B)$. Luego, $|B|=|B\backslash A|+|A\cap B|$. De forma que $|A \cup B| = |A| + |B| - |A \cap B|$.

Ejemplo 10. De un grupo de 60 estudiantes, 29 estudian matemáticas, 37 estudian informática y 10 estudian ambas. ¿cuántos estudiantes no estudian ni matemáticas ni informática?

- Estudiantes de matemáticas: |A|=29
- Estudiantes de informática: |B|=37
- Estudiantes de informática y matemáticas: $|A \cap B| = 10$
- Estudiantes de informática o matemáticas: $|A \cup B| = |A| + |B| |A \cap B| = 29 + 37 10 = 56$. Luego, hay 4 estudiantes que no estudian ni matemáticas ni informática.

Ejemplo 11. ¿Cuántos números naturales menores o iguales que 60 son divisibles por 2, 3 o 5? ¿Cuántos no tienen divisores comunes con 60?

Definimos el conjunto de números menores o iguales que 60 divisibles por 2, 3 y 5 como A, B y Crespectivamente.

- Números divisibles por 2: $|A|=rac{60}{2}=30.$ Números divisibles por 3: $|B|=rac{60}{3}=20.$
- Números divisibles por 5: $|C|=rac{60}{5}=12.$
- Números divisibles por 6 (2 y 3): $|A\cap B|=\frac{60}{6}=10.$ Números divisibles por 10 (2 y 5): $|A\cap C|=\frac{60}{10}=6.$
- Números divisibles por 15 (3 y 5): $|B \cap C| = \frac{60}{15} = 4$.
- Números divisibles por 30 (2, 3 y 5): $|A\cap B\cap C|=rac{60}{30}=2.$

Luego, el número total de números menores que 60 divisibles por 2, 3 o 5 es: $|A \cup B \cup C| = |A| + |A|$ 2 = 44.

Luego, el número total de números menores que 60 no divisibles por 2, 3 o 5 es 16.

2.7. Conjunto universal

Definición. Dado un conjunto universal U y un subconjunto $C\subset U$. Definimos el **conjunto complementario** de C relativo a U como $U\backslash C=\{x\in U:x\notin C\}$. Notación. C^c .

2.7.1. Propiedades

Dado el conjunto universal U y $C \subset U$, tenemos:

- 1. Relación con el vacío. $\emptyset^c = U$ y $U^c = \emptyset$.
- 2. Unión e intersección con el complementario. $C \cap C^c = \emptyset$ y $C \cup C^c = U$.
- 3. Complementario del complementario. $(C^c)^c = C$.
- 4. Leyes de De Morgan. $(A \cup B)^c = A^c \cap B^c$ y $(A \cap B)^c = A^c \cup B^c$.

2.8. Álgebra de Boole

En el Álgebra de Boole se definen las siguientes propiedades y relaciones:

- 1. Existencia de un elemento neutro. $C \cup \emptyset = C$ y $C \cap U = C$.
- 2. Conmutatividad. $A \cup B = B \cup A$ y $A \cap B = B \cap A$.
- 3. Asociatividad. $(A \cup B) \cup C = A \cup (B \cup C)$ y $(A \cap B) \cap C = A \cap (B \cap C)$.
- 4. Complementario. $A \cup A^c = U$, $A \cap A^c = \emptyset$ y $(A^c)^c = A$.