The group G is isomorphic to the group labelled by [48, 32] in the Small Groups library Ordinary character table of $G \cong C2 \times SL(2,3)$:

Trivial source character	table of $G \cong C2 \times S$	L(2,3) at $p=2$:
--------------------------	--------------------------------	-------------------

						_										1							
Normalisers N_i	N_1	L		N_2			N_3			N_4			N_5		N_6	N_7	N_8		N_9			N_{11}	
p-subgroups of G up to conjugacy in G	P_1			P_2			P_3			P_4			P_5		P_6	P_7	P_8		P_9	P_{10}	Į	P_{11}	
Representatives $n_j \in N_i$	1a $3a$	3b	1 <i>a</i>	3a	3b	1 <i>a</i>	3a	3b	1a	3a	3b	1 <i>a</i>	3a	3b	1a	$1a \mid 1a$	3a	3b	1a	1a 1	1a = 3c	a '	3b
$\boxed{1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14}}$		4	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0 0	j	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} $	16 $4*E(3)^2$	4 * E(3)	0	0	0	0	0	0	0	0	0	0	0	0	0	$0 \mid 0$	0	0	0	0	0 0	j	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_1 + 0$	16 $4*E(3)$	$4 * E(3)^2$	0	0	0	0	0	0	0	0	0	0	0	0	0	$0 \mid 0$	0	0	0	0	0 0	j	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14}$	8 2	2	8	2	2	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0 0	j	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{15} 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} 0$	8 2 * E(3)	$2 * E(3)^2$	8	2 * E(3)	$2*E(3)^2$	0	0	0	0	0	0	0	0	0	0	$0 \mid 0$	0	0	0	0	0 0	j	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{19} + 0 \cdot \chi_{19} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0$	$8 2 * E(3)^2$	2 * E(3)	8	$2 * E(3)^2$	2 * E(3)	0	0	0	0	0	0	0	0	0	0	$0 \mid 0$	0	0	0	0	0 0	j	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14}$	8 2	2	0	0	0	8	2	2	0	0	0	0	0	0	0	0 0	0	0	0	0	0 0)	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0$	$8 2 * E(3)^2$	2 * E(3)	0	0	0	8	$2*E(3)^2$	2 * E(3)	0	0	0	0	0	0	0	$0 \mid 0$	0	0	0	0	0 0	j	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} 0$	8 2 * E(3)	$2 * E(3)^2$	0	0	0	8	2 * E(3)	$2 * E(3)^2$	0	0	0	0	0	0	0	$0 \mid 0$	0	0	0	0	0 0	j	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14}$	8 2	2	0	0	0	0	0	0	8	2	2	0	0	0	0	0 0	0	0	0	0	0 0)	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} 0 \cdot \chi_{15} + 0$		2 * E(3)	0	0	0	0	0	0	8	$2*E(3)^2$	2 * E(3)	0	0	0	0	$0 \mid 0$	0	0	0	0	0 0)	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} 0 \cdot \chi_{15} + 0$	8 2 * E(3)	$2 * E(3)^2$	0	0	0	0	0	0	8	2 * E(3)	$2 * E(3)^2$	0	0	0	0	$0 \mid 0$	0	0	0	0	0 0)	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14}$	4 1	1	4	1	1	4	1	1	4	1	1	4	1	1	0	0 0	0	0	0	0	0 0)	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} 0 \cdot \chi_{15} + 0$	4 E(3)	$E(3)^{2}$	4	E(3)	$E(3)^{2}$	4	E(3)	$E(3)^{2}$	4	E(3)	$E(3)^{2}$	4 1	E(3)	$E(3)^{2}$	0	$0 \mid 0$	0	0	0	0	0 0)	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} 0 \cdot \chi_{15} + 0$	$4 E(3)^2$	E(3)	4	$E(3)^{2}$	E(3)	4	$E(3)^{2}$	E(3)	4	$E(3)^{2}$	E(3)	4 E	$Z(3)^2$	E(3)	0	$0 \mid 0$	0	0	0	0	0 0)	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14}$	12 0	0	12	0	0	0	0	0	0	0	0	0	0	0	4	0 0	0	0	0	0	0 0)	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 2 \cdot \chi_{13} + 1 \cdot \chi_{14}$	12 0	0	12	0	0	0	0	0	0	0	0	0	0	0	0	4 0	0	0	0	0	0 0)	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$		2	2	2	2	0	0	0	0	0	0	0	0	0	2	0 2	2	2	0	0	0 0)	0
		2 * E(3)	2	$2*E(3)^2$	2 * E(3)	0	0	0	0	0	0	0	0	0	2	0 2	$2*E(3)^2$	2 * E(3)	0	0	0 0	j	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{15} 0 \cdot \chi_{15} + 0 \cdot \chi_{15} 0$	2 2 * E(3)	$2*E(3)^2$	2	2 * E(3)	$2*E(3)^2$	0	0	0	0	0	0	0	0	0	2	0 2	2 * E(3)	$2*E(3)^2$	0	0	0 0)	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14}$		0	6	0	0	6	0	0	6	0	0	6	0	0	2	2 0	0	0	2	0	0 0)	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14}$		0	6	0	0	0	0	0	0	0	0	0	0	0	2	4 0	0	0	0	2	0 0)	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1 1		1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	_	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1 B	$E(3)^2$	E(3)	1	$1 \mid 1$	$E(3)^{2}$	E(3)	1	1	1 E(3)	$(3)^2 E$	$\mathcal{E}(3)$
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14}$	$1 \qquad E(3)$	$E(3)^2$	1	E(3)	$E(3)^2$	1	E(3)	$E(3)^2$	1	E(3)	$E(3)^2$	1 1	E(3)	$E(3)^2$	1	1 1	E(3)	$E(3)^2$	1	1	1 $E(3)$	(3) E	$(3)^2$

- $P_2 = Group([(1,6)(2,10)(3,14)(4,16)(5,17)(7,21)(8,23)(9,24)(11,27)(12,29)(13,30)(15,31)(18,34)(19,36)(20,37)(22,38)(25,40)(26,41)(28,42)(32,44)(33,45)(35,46)(39,47)(43,48)]) \cong C2(3,24)(3,24$
- $P_3 = Group([(1,2)(3,7)(4,8)(5,9)(6,10)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23)(17,24)(25,32)(26,33)(27,34)(28,35)(29,36)(30,37)(31,38)(39,43)(40,44)(41,45)(42,46)(47,48)]) \cong C2$
- $P_4 = Group([(1,10)(2,6)(3,21)(4,23)(5,24)(7,14)(8,16)(9,17)(11,34)(12,36)(13,37)(15,38)(18,27)(19,29)(20,30)(22,31)(25,44)(26,45)(28,46)(32,40)(33,41)(35,42)(39,48)(43,47)]) \cong C2$
- $P_5 = Group([(1,6)(2,10)(3,14)(4,16)(5,17)(7,21)(8,23)(9,24)(11,27)(12,29)(13,30)(15,31)(18,34)(19,36)(20,37)(22,38)(25,40)(26,41)(28,42)(32,44)(33,45)(35,46)(39,47)(43,48),(1,2)(3,7)(4,8)(5,9)(6,10)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23)(17,24)(25,32)(26,33)(27,34)(28,35)(29,36)(30,37)(31,38)(39,43)(40,44)(41,45)(42,46)(47,48)]) \\ \cong C_2 \times C_2 \times C_3 \times C_4 \times C$ $P_6 = Group([(1,6)(2,10)(3,14)(4,16)(5,17)(7,21)(8,23)(9,24)(11,27)(12,29)(13,30)(15,31)(18,34)(19,36)(20,37)(22,38)(25,40)(26,41)(28,42)(32,44)(33,45)(35,46)(39,47)(43,48), (1,17,6,5)(2,24,10,9)(3,30,14,13)(4,31,16,15)(7,37,21,20)(8,38,23,22)(11,41,27,26)(12,42,29,28)(18,45,34,33)(19,46,36,35)(25,47,40,39)(32,48,44,43)]) \cong C4$

- $P_7 = Group([(1,6)(2,10)(3,14)(4,16)(5,17)(7,21)(8,23)(9,24)(11,27)(12,29)(13,30)(15,31)(18,34)(19,36)(20,37)(22,38)(25,40)(26,41)(28,42)(32,44)(33,45)(35,46)(29,47)(43,48), (1,24,6,9)(2,17,10,5)(3,37,14,20)(4,38,16,22)(7,30,21,13)(8,31,23,15)(11,45,27,33)(12,46,29,35)(18,41,34,26)(19,42,36,28)(25,48,40,43)(32,47,44,39)]) \cong C4$ $P_8 = Group([(1,6)(2,10)(3,14)(4,16)(5,17)(7,21)(8,23)(9,24)(11,27)(12,29)(13,30)(15,31)(18,34)(19,46,36,35)(25,47,40,39)(32,48,44,43)(19,20,36,37)(25,26,40,41)(32,33,44,45)]) \\ \cong Q_8 = Group([(1,6)(2,10)(3,14)(4,16)(5,17)(7,21)(8,23)(9,24)(11,27)(12,29)(13,30)(15,31)(18,34)(19,20,36,37)(25,26,40,41)(32,33,44,45)]) \\ \cong Q_8 = Group([(1,6)(2,10)(3,14)(4,16)(5,17)(7,21)(8,23)(9,24)(11,27)(12,29)(13,30)(15,31)(18,34)(19,20,36,37)(25,26,40,41)(32,33,44,45)]) \\ \cong Q_8 = Group([(1,6)(2,10)(3,14)(4,16)(5,17)(7,21)(8,23)(9,24)(11,27)(12,29)(13,30)(15,31)(18,34)(19,20,36,37)(25,26,40,41)(26,31)(18,34)(19,20,36,37)(25,26,40,41)(26,31)(18,34)(19,20,36,37)(25,26,40)(18,34)(19,20,36,37)(25,26,40)(19,20)(18,34)(19,20,36,37)(25,26,40)(19,20)(18,34)(19,20,36,37)(25,26,40)(19,20)(18,34)(19,20$
- $P_9 = Group([(1,6)(2,10)(3,14)(4,16)(5,17)(7,21)(8,23)(9,24)(11,27)(12,29)(13,30)(15,31)(18,34)(19,20,36,37)(25,26,40,41)(28,42)(32,44)(33,45)(35,46)(39,47)(43,48), (1,2)(3,7)(4,8)(5,9)(6,10)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23)(17,24)(25,32)(26,33)(27,34)(28,35)(29,36)(30,37)(21,38)(39,43)(40,44)(41,45)(42,46)(47,48), (1,31,6,15)(2,38,10,22)(3,42,14,28)(4,5,16,17)(7,46,21,35)(8,9,23,24)(11,47,27,39)(12,13,29,30)(18,48,34,43)(19,20,36,37)(25,26,40,41)(32,33,44,45)] \cong C4 \times C2$
- $P_{10} = Group([(1,6)(2,10)(3,14)(4,16)(5,17)(7,21)(8,23)(9,24)(11,27)(12,29)(13,30)(15,31)(18,34)(19,36)(20,37)(25,38,10,22)(3,42,14,28)(4,5,16,17)(7,46,21,35)(8,9,23,24)(11,47,27,39)(12,13,29,30)(18,48,34,43)(19,20,36,37)(25,26,40,41)(32,33,44,45)]) \cong Q8$
- $P_{11} = Group([(1,6)(2,10)(3,14)(4,16)(5,17)(7,21)(8,23)(9,24)(11,27)(12,29)(13,30)(15,31)(18,34)(19,36)(20,37)(22,38)(25,40)(26,31)(17,24)(25,32)(26,33)(27,34)(28,35)(29,36)(30,37)(21,32)(32,34)$

 $N_1 = Group([(1,2)(3,7)(4,8)(5,9)(6,10)(11,20)(3,7)(4,8)(5,9)(6,10)(11,20)(3,7)(4,8)(5,9)(6,10)(11,20)(3,34)(4,4)(20,46,37,35)(26,47,41,39)(3,48,45,43)(1,26,27,41)(12,28,29,42)(13,30)(4,13,14,30)(4,15,16,31)(7,20,21,37)(8,22,23,38)(11,26,27,41)(12,28,29,42)(13,30)(13,14,30)(4,15,16,31)(7,20,21,37)(8,22,23,38)(11,26,27,41)(12,28,29,42)(13,30)(13,14,30)(4,15,16,31)(7,20,21,37)(8,22,23,38)(11,26,27,41)(12,28,29,42)(13,30)(13,14,30)(4,15,16,31)(7,20,21,37)(8,22,23,38)(11,26,27,41)(12,28,29,42)(13,30)(13,14,30)(4,15,16,31)(13,20)(13,14,30)(13,$

 $N_2 = Group([1,2)(3,7)(4,8)(5,9)(6,10)(11,28)(23,12)(13,20)(13,$ $N_3 = Group([(1,2)(3,7)(4,8)(5,9)(6,10)(11,26,27,41)(12,28,29,42)(11,25,27,40)(13,44)(29,41,31)(36,45,38), (1,4,6,16)(2,8,10,23)(3,12,14,29)(5,31,17,15)(7,19,21,36)(9,34,44)(29,41,31)(36,45,38), (1,4,6,16)(2,8,10,23)(3,12,14,29)(5,31,17,15)(7,19,21,36)(9,34,44)(29,41,31)(36,45,38), (1,4,6,16)(2,8,10,23)(3,12,14,29)(5,31,17,15)(7,19,21,36)(9,34,44)(29,41,31)(36,45,38), (1,4,6,16)(2,8,10,23)(3,12,14,29)(5,31,17,15)(7,19,21,36)(9,34,44)(11,27)(12,28,29,42)(11,25,27,40)(13,49,42)(29,41,31)(36,45,38), (1,4,6,16)(2,8,10,23)(3,12,14,29)(5,31,17,15)(7,19,21,36)(9,34,44)(11,27)(12,29,13,14)(12,28,29,42)(11,25,27,40)(13,49,42)(13,49,49,42)(13,49,42)(13,49,42)(13,49,42)(13,49,42)(13,49,42)(13,49,42)(13,49,42)(13,49,42)(13,49,42)(13,49,42)(13,49,42)(13,49,42)(13,49,42)(13,49,42)(13,49,42)(13,49,42)(13,49,42)(13,49,42)(13,49,$ $N_5 = Group([(1,2)(3,7)(4,8)(5,9)(6,10)(11,2)(3,7)(4,8)(5,9)(6,10)(11,18)(12,19)(13,20)(14,21)(25,32)(26,33)(27,34)(28,35)(29,36)(30,37)(31,38)(39,43)(40,44)(41,45)(42,46)(47,48), (1,3,11)(2,7,18)(4,13,39)(5,28,25)(6,14,27)(8,20,43)(13,20)(14,21)(15,22)(16,23)(17,24)(25,32)(26,33)(27,34)(28,35)(29,36)(30,37)(21,38)(39,43)(40,44)(41,45)(42,46)(47,48), (1,3,11)(2,7,18)(4,13,39)(5,28,25)(6,14,27)(8,20,43)(17,24)(25,32)(26,33)(27,34)(28,35)(29,36)(30,37)(21,38)(39,43)(40,44)(41,45)(42,46)(47,48), (1,3,11)(2,7,18)(4,13,29)(5,31,17,15)(7,19,21,36)(9,38,24,22)(11,25,27,40)(13,30)(15,31)(18,34)(19,36)(20,37)(21,38)(21,32)(2$

- $N_6 = Group([(1,17,6,5)(2,24,10,9)(3,30,14,13)(4,31,16,15)(7,24,10,13)(13,30)(15,31)(18,34)(19,46,36,35)(25,47,40,39)(32,48,44,43), (1,2)(3,7)(4,8)(1,2)(13,20)(13,30)(15,31)(18,34)(19,46,36,35)(25,47,40,39)(32,48,44,43), (1,2)(3,7)(4,8)(5,9)(6,10)(11,18)(12,19)(13,20)(13,40)(13,42)(13,4$
- $N_7 = Group([(1,24,6,9)(2,17,10,5)(3,37,14,20)(4,38)(25,40)(25,48)(25,40)(25,$
- $N_8 = Group([(1,31,6,15)(2,38,10,2)(13,20)$ $N_9 = Group([(1,31,6,15)(2,38,10,22)(3,42,14,28)(4,5,16,17)(7,21)(8,23)(13,42)(13,42)(13,42)(13,42)(13,42)(13,42)(13,42)(13,43$
- $N_{11} = Group([(1,31,6,15)(2,38,10,22)(3,42,14,28)(4,5,16,17)(7,21)(8,23)(23,44)(33,45)(35,46)(39,47)(43,48)(1,27)(23,24)(23,37,48)(24,46)(47,48)(1,27)(23,24)(23,37,48)(24,46)(47,48)(1,27)(23,24)(23,37,48)(24,46)(47,48)(1,27)(23,24)(23,37,48)(24,46)(47,48)(1,27)(23,24)(23,37,48)(24,46)(47,48)(1,27)(23,24)(23,37,48)(24,46)(47,48)(1,27)(23,24)(23,37,48)(24,46)(47,48)(1,27)(23,24)(23,37,48)(24,46)(47,48)(1,27)(23,24)(23,37,48)(24,46)(47,48)(1,27)(23,24)(23,37,48)(24,46)(47,48)(1,27)(23,24)(23,37,48)(24,46)(47,48)(1,27)(23,24)(23,37,48)(24,46)(47,48)(1,27)(23,24)(23,37,48)(24,46)(47,48)(1,27)(23,24)(23,37,48)(24,46)(47,48)(1,27)(23,24)(23,37,48)(24,46)(47,48)(1,27)(23,24)(23,37,48)(24,46)(47,48)(1,27)(23,24)(23,37,48)(24,46)(47,48)(1,27)(23,24)(23,37,48)(24,46)(2$

 $|\chi_8|$ 2 2 -1 0 -2 -1 0 -2 -1 1 -1 1 1 $|\chi_9|$ 2 -2 -E(3) 0 -2 E(3) 0 2 -E(3)² E(3) E(3)² -E(3) E(3)² -E(3)² $\begin{vmatrix} \chi_{11} \end{vmatrix} = 2 = 2 - E(3) = 0 - 2 - E(3) = 0 - 2 - E(3)^2 = E(3) - E(3)^2 = E(3)^2$ $|\chi_{12}|$ 2 2 $-E(3)^2$ 0 -2 $-E(3)^2$ 0 -2 -E(3) $E(3)^2$ -E(3) $E(3)^2$ E(3) $|\chi_{13}|$ 3 -3 0 -1 3 0 1 -3 0 0 0 0 0 $\chi_{14} \mid 3 \quad 3 \quad 0 \quad -1 \quad 3 \quad 0 \quad -1 \quad 3 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$