Deloitte.

Book Cover Judger

ML Guild Apprentice Capstone – Grant Tesdahl

September 24, 2020

Contents

1 About Me

2 Problem Statement

3 Methodology

4 Lessons Learned & Next Steps

About Me

Grant Tesdahl
Analyst – CBO CCG
Minneapolis

Education

B.S. in Industrial Engineering from the University of Wisconsin-Madison

Project Experience

Data Modernization at Wells Fargo (rolling off next Friday!)

Interests

Reading, skiing, bouldering, soccer, & Freakonomics podcast

ML Journey

Before Deloitte:

Data Rich Internships at UW Health & ExxonMobil...

...but without the tools to uncover the best insights

Data Mining & Machine Learning Course...

...where I realized that ML enables those insights

At Deloitte:

Building **business cases** for predictive models

Banking Profitability Insights & Diabetes Mobile App

ML Guild Apprentice Program *Training* + *Capstone*

Building **predictive models**Cognitive Guided Tour: Revenue Cycle Modeling

Problem Statement

People Judge Books By Their Covers.

In fact, *Publishers Weekly* found that 75% of booksellers feel that the cover's design is the most important element in book promotion

How can publishers ensure a given cover will maximize a book's popularity?

Methodology

Using book rating data and book cover images from Goodreads, I built a **CNN that predicts book popularity**

- 1. Pull book review data & book cover images
- **2.** Calculate potential target values related to a book's average rating and rating count

- 1. Train a CNN for each potential target value
- 2. Compare models and pick the best target variable
- 3. Run additional training

- 1. Design and code an interactive website
- **2. Integrate the model** into the website

Data: Acquisition

Two types of data required for this computer vision task:

Approach

Book Cover Images + Book Rating Data

Captured 10k of each via Goodreads, which assigns a bookID to each book

Book Rating Data: **Average Rating** (indicates quality) & **Rating Count** (indicates popularity)

bookID = 1

thttps://www.goodreads.com/book/show/1

Example

Data: Transformation

Book Cover Images

Transformed images due to unequal aspect ratios

Image Aspect Ratio

Set aspect ratio to 1.5; Padded images with a reflection; Normalized pixel values

Original Image (Ratio = 1)

Transformed Image (Ratio = 1.5)

Book Rating Data

Transformed data to create 6 potential targets (4 regression, 2 classification)

Average Rating 16 14 12 10 0.8 0.6 0.4 0.2 0.0 0 1 2 3 4 5

Classification Segment Ranges

Segment	Average Rating	
High	4.07 to 5.00	
Medium	3.84 to 4.07	
Low	0.00 to 3.84	

Segment	Rating Count		
High	2,627 to 4,597,666		
Medium	223 to 2,627		
Low	0 to 223		

Modeling: Initial Training

For Each Target Variable:

- Randomly split 20% of the samples for the **validation set**
- Create mini-batches with 12 images of size 192x128 (determined via experimentation)
- Create CNN based on the ResNet34 Architecture to start with a pretrained model rather than from scratch
- Identify a **learning rate** to ensure rapid convergence
- Train for 5-8 epochs depending on whether the loss continued decreasing
- Save validation set **predictions** to compare target variables

learn = cnn_learner(data, models.resnet34, metrics=root_mean_squared_error)

Г	average_rating_actual	average_rating_predicted	average_rating_error
0	3.19	3.869111	-0.679111
1	3.93	3.913237	0.016763
2	3.73	3.861418	-0.131418
3	3.68	3.951411	-0.271411
4	3.78	3.879087	-0.099087

Modeling: Target Variable Selection

Rating Count Classification looks the least bad (42% accuracy); regression models center heavily around the mean

^{9 |} Copyright © 2020 Deloitte Development LLC. All rights reserved.

Modeling: Additional Training

Enhancing the Classification Model:

Unfreeze ResNet34 Layers & Train for 20 Epochs

Recreate Dataset with Larger Images

Refreeze & Train Last Layers for 3 Epochs

Final Architecture & Results:

40 trainable layers with 546,435 trainable parameters ResNet34 (cut at the last convolutional layer)

44% Accuracy on the Validation Set(Compared to 33% Baseline: P-Value < 0.0001)

(Compared to 33% Baseline; P-Value < 0.0001)

Deployment

www.book-cover-judger.com

Lessons Learned & Next Steps

LESSONS LEARNED

NEXT STEPS

Programming in Python

 My previous programming experience mainly consisted of DataCamp exercises, so a full project in Jupyter was a constant learning experience

Determine Most Important Features

- Extract and visualize the feature maps of each CNN block
- Translate activations into importance

Deep Learning

 The Neural Net lecture during the Bootcamp flew way over my head, so I really enjoyed having extra time to learn about CNNs, transfer learning, and other details

Generate Book Covers with a GAN

- Collect more book covers & subset high popularity ones
- Train GAN on subset

Importance of Experimentation

 Looking back, I used the recommended hyperparameters and architecture structures too frequently. In future projects, I plan to experiment with different combinations so I can see what works best for my specific use case

Build in PyTorch from Scratch

- Leverage complex architectures (e.g. ResNet101) & customize
- Transition to an ordinal multi-label problem

