ASSESSING CORRESPONDENCE BETWEEN TWO DATA SOURCES ACROSS CATEGORICAL COVARIATES WITH MISSING DATA: APPLICATION TO ELECTRONIC HEALTH RECORDS

2018 American Statistical Association Conference on Statistical Practice Presenter: Emile Latour

Sooner or later (usually sooner), anyone who does statistical analysis runs into problems with missing data.

-Allison (2002)

Introduction

Missing data complicates any analysis and needs to be addressed

- Ignoring the missing data or editing leads to problems
 - Inefficiency loss of information leading to loss of power,
 - Systematic difference leading to biased results, and
 - Unreliable results

• Values that are not available and that would be meaningful for analysis had they been observed

Introduction

 Electronic health records (EHRs) typically are not collected specifically for the purpose of answering research questions

- Susceptible to issues with missing data which may lead to
 - Bias results
 - Invalid conclusions
- Due to increased use and the increased volume of data, EHR will continue to be a vital source of patient information

Introduction

- Motivating example
 - 2014 study by Heintzman, et al. (the "original study")
 - Assessed agreement of electronic health records (EHR) with Medicaid claims data for documentation of 11 preventive care procedures using kappa statistics
 - Aimed to validate the EHR data in order to ensure quality and accuracy
 - Population of continuously insured adult Medicaid recipients being served by a network of Oregon community health centers (CHCs) during 2011

Measuring agreement

- Compare two data sources
 - EHR
 - Medicaid claims
- Examine the level of agreement
 - How well does the documentation of preventive services agree between EHR and Medicaid claims
 - Medicaid claims billing data used as "gold standard"
- Independent single rating for each subject
 - Yes, received screening/procedure
 - No, did not receive screening/procedure

Measuring agreement

• The 2×2 table

		Claims data		
		Yes	No	Total
EHR data	Yes	a	b	m_1
	No	С	d	m_0
	Total	n_1	n_0	n

Research question

 The original study assessed agreement between the two data sources for all eligible patients

- Does agreement differ when patients are stratified by race and by federal poverty level?
 - Important to ensure the same quality of care is provided across demographic groups
 - Seek to assess any systematic differences among patients to ensure the same quality of care for all

Missing data

- Missing data on Race and Federal Poverty Level (FPL)
 - Opportunity to apply missing data methods
 - Multiple imputation
 - Multivariate imputation by chained equations, MICE (Stef Van Buuren)

Study data

- OCHIN provided all data
 - Nonprofit community health information network of over 300 community health centers (CHCs) in 13 states

• EHR data

- Extracted for the year 2011 from data storage for 43 Oregon CHCs
- Medicaid claims data
 - Oregon's Medicaid program
 - Data for 2011 obtained 18 months after end of year to account for lag in processing

Table 1

	Patients appearing in both EHR and claims (N=13,101)		
	No.	%	
Gender			
Female	8,600	65.6	
Male	4,501	34.4	
Race			
Asian/Pacific Islander	772	5.9	
American Indian/Alaskan native	180	1.4	
Black	1,409	10.8	
White	9,720	74.2	
Multiple Races	143	1.1	
Unknown	877	6.7	
Race, ethnicity			
Hispanic	1,186	9.1	
Non-Hispanic, white	8,943	68.3	
Non-Hispanic, other	2,441	18.6	
Unknown	531	4.1	
Primary Language			
English	10,927	83.4	
Spanish	589	4.5	
Other	1,585	12.1	
Federal poverty level			
≤138% FPL	10,153	77.5	
≥138% FPL	234	1.8	
Missing/Unknown	2,714	20.7	
Age in years (as of January 1, 2011)			
19-34	4,632	35.4	
35-50	5,033	38.4	
51-64	3,436	26.2	
Mean (SD)	40.6 (12.3)		

Variables

- Demographics
- Eligible for screening (Y/N)
- Screened in Medicaid data (Y/N)
- Screened in EHR data (Y/N)
- Primary department code

3 procedures

Procedure	n	Карра	Likelihood done in clinic
Cholesterol screening	High (12817)	High (0.80)	High
Chlamydia screening	Low (523)	Medium (0.52)	Medium
Colonoscopy	Medium (3761)	Low (0.26)	Low

Missing data

Missing data

Federal poverty level

n = 13101

Pattern and mechanism

- Working with missing data, need to consider
 - Pattern which values are observed and which are missing
 - Mechanism relationship between missingness and values of the variables in the data

 Pattern and mechanism dictate which missing data methods are appropriate

Pattern

Examples of

Observed

Missing

Examine the missing data

Examine the missing data

Examine the missing data

	All pati	ents	Cholest	terol	Chlam	ydia	Colonos	сору
	n	%	n	%	n	%	n	%
Total observations	13101		12817		523		3761	
Complete	9706	74%	9506	74%	374	72%	2828	75%
Incomplete	3395	26%	3311	26%	149	28%	933	25%
Missing variable								
Any	4122	31%	4014	31%	162	31%	1111	30%
Ethnicity	531	4%	513	4%	8	2%	127	3%
Race	877	7%	841	7%	46	9%	178	5%
FPL	2714	21%	2660	21%	108	21%	806	21%
No. missing columns								
1	2807	21%	2745	21%	136	26%	796	21%
2	449	3%	429	3%	13	2%	96	3%
3	139	1%	137	1%	0	0%	41	1%

Examines the "reason" for missing values

 Tries to determine whether variables that are missing are related to the underlying values of the variables

• Rubin (1976) classified missing data mechanisms into three categories

- Missing completely at random (MCAR)
 - Missing value does not depend on the observed data or the missing data
 - Missing data are a random subset
 - Example: flip a coin before deciding to answer FPL question
- Missing at random (MAR)
 - Missing value may depend on observed data, but it does not depend on the missing data
 - Possible that missingness can be predicted from other available data
 - Example: men are more likely to not answer FPL, but it does not depend on FPL

- Missing not at random (MNAR)
 - Not MCAR and not MAR
 - Probability that a missing value is associated with the missing variable itself and with other variables
 - Example: people with low FPL are less likely to answer questions about their FPL

- Ignorability the missing data mechanism is said to be ignorable if
 - The data are MAR (or MCAR), and
 - The parameters that govern the missing data process are not related to the parameters to be estimated
- This implies that the distribution of the data is the same for the response and non-response groups

• Don't have to include information about the missing data

Ways to handle missing data

- Common approaches
 - Complete case analysis
 - Single imputation (e.g. mean substitution)
 - Missing indicator approach (e.g. add categorical variable missing or not)

- Can be bad
 - Assumes missingness is MCAR
 - Results in many dropped cases
 - Decreased power
 - May lead to biased results

Ways to handle missing data

- Some more appropriate ways
 - Likelihood methods (e.g. full information maximum likelihood)
 - Obtaining alternative sources of information
 - Weighting methods (e.g. inverse probability weighting)
 - Multiple imputation

The goal of multiple imputation is to obtain statistically valid inferences from incomplete data.

-Van Buuren (2012)

A statistical method for analyzing data sets with missing values

 Basic idea is to substitute a reasonable guess (imputation) for each missing value, multiple times

Creates multiple "complete" data sets

 Analyze each data set separately and then combine (or pool) the results

- Joint model of all variables (traditional approach)
 - Multivariate normal distribution
 - Fit using observed cases
 - Used to predict the missing values
 - Sometimes use multivariate normal with categorical variables

Multivariate imputation by chained equations

MICE

- Sometimes called "fully conditional specification" or "sequential regression multiple imputation"
- Specify multivariate imputation model on a variable-by-variable basis
- Iteratively fits a model and imputes each variable
- Model depends on the type of variable (binary, categorical, ordinal, continuous)
- Raghunathan et al. (2001), Van Buuren et al. (2006)

MICE

• Flexible approach to multiple imputation

Unnecessary to assume that the variables share a common distribution

 Can more easily work with large data sets with complex data structures

Models more accurately reflect the distribution of each variable

MICE

Theoretically weaker than joint modelling

- Incompatibility of conditionals
 - No joint distribution exists for the specification of conditional distributions

 In simulation and in practice, the method seems to be robust when the conditions are not met

MICE algorithm

MICE algorithm developed by Stef Van Buuren

• Implemented in his R software package mice 2.3

• Other MICE software packages exist and vary somewhat in their exact implementation, but the general strategy is the same

Some notation

• Let Y represent a $n \times p$ matrix with data for n observations (rows) and p variables (columns)

• Define a response matrix, R, as a $n \times p$ matrix of 0-1 values which indicate missingness

$$r_{ij} = \begin{cases} 1, & \text{if } y_{ij} \text{ is observed} \\ 0, & \text{if } y_{ij} \text{ is missing} \end{cases}$$

• The complete data values Y are made in two parts Y^{obs} and Y^{mis}

MICE algorithm

- Step 1
 - The analyst/researcher decides on an imputation model $P(Y_j^{mis}|Y_j^{obs},Y_{-j},R)$ for each variable Y_j with $j=1,\ldots,p$.
 - Default choices for some variables type in mice

Method	Variable type		
Predictive mean matching	Numeric		
Logistic regression	Binary		
Multinomial logit model	Nominal		
Ordered logit model	Ordinal		

• Step 2

- For each j, missing values are filled in with starting imputations Y_j^0 by a simple imputation using the observed values Y_j^{obs} (e.g. random sampling of observed value with replacement or mean substitution).
- This initialization is repeated for t = 1, ..., T and for j = 1, ..., p.

• Step 3

- The values for the variable to be imputed, Y_j , are set back to missing.
- The currently complete data except Y_j is defined $Y_{-j}^t = (Y_1^t, ..., Y_{j-1}^t, Y_{j+1}^{t-1}, ..., Y_p^{t-1})$.

Step 4

- Draw $\phi_j^t \sim P(\phi_j^t | Y_j^{obs}, Y_{-j}^t)$ where ϕ_j represents the unknown parameters of the imputation model.
- The observed values Y_j^{obs} are regressed on the other variables in the imputation model Y_{-j}^t in order to obtain estimates of the regression model parameters ϕ_j^t .

- Step 5
 - Draw imputations $Y_j^t \sim P(Y_j^{mis} | Y_j^{obs}, Y_{-j}^t, \phi_j^t)$, the corresponding posterior predictive distribution of Y_j^t .
 - So missing Y_j^{mis} are replaced with predictions (imputations) from the regression model that was fit in step 4.

- Step 6
 - End and repeat (3–5) for the next variable, j.
 - End and repeat for the next iteration, t.

- Steps 1 through 6 are repeated to create m imputed data sets.
 - After one cycle, all of the missing values have been replaced with predictions from regression models that reflect relationships observed in the data
 - The researcher decides how many cycles to perform so that the results have converged or stabilized (generally 10 to 20) which will produce one imputed data set.
 - This whole process is repeated m times to produce m imputed data sets.

- Decisions and set up prior to running the MICE algorithm
- Van Buuren describes this as the most challenging step
- The model should
 - Account for the process that created the missing data,
 - Preserve the relations in the data, and
 - Preserve the uncertainty about these relations.
- To help, he provides 7 ordered considerations to take

- Step 1
 - Decide if the missing at random (MAR) assumption is reasonable
- Step 2
 - Decide on the form of the imputation model

Variable	Variable Type	Imputation model
Ethnicity	Categorical factor with >2 levels	Multinomial logit regression
Race	Categorical factor with >2 levels	Multinomial logit regression
FPL	Categorical factor with 2 levels	Logistic regression

- Step 3
 - Decide the set of predictors to include in the imputation model
- Step 4
 - Decide whether to impute variables that are function of other (incomplete) variables.
- Step 5
 - Decide the order in which variables should be imputed

- Step 6
 - Decide the number of iterations
 - 10 to 20 are recommended; we chose 20
- Step 7
 - Decide m, the number of multiply imputed data sets.
 - Rule of thumb from more recent authors
 - The number of imputations should be similar to the percentage of cases that are incomplete (at least 5)
 - Our data set had 26% incomplete cases, so we chose m = 30

Variable selection

- The general advice cited is to include as many variables as possible
 - Tends to make MAR assumption more reasonable
 - Reasonable to include all variables for small to medium data sets (20 to 30 variables)
 - For large data sets, the advice is to select a subset of 15 to 25
 - Avoid multicollinearity issues
 - Avoid computational issues

Additional advice for variable selection

- Include variables
 - In the model of scientific interest
 - Related to occurrence of missing data (i.e. related to non-response)
 - Where distributions differ between response and non-response
 - Correlated with the target variable

Additional advice for variable selection

- Remove variables
 - With too many missing values
 - If missing on same cases as target variable

- Final imputation model
 - 3 planned scenarios
 - Full with 37 variables
 - Reduced with 21
 - QPM (quick predictor matrix chosen by software) with 2 to 3
 - Impute from highest percent missing (FPL, 21%) to lowest (Ethnicity, 4%)
 - 20 iterations
 - m = 30 imputed data sets

Assessing convergence

Models must be reviewed for convergence

Advice is to plot parameters against the iteration number

• mice makes this easy

• Streams should be (1) well mixed, and (2) show no signs of trend

Assessing convergence

- Full scenario
 - 3 imputed variables

Revisit the model

- Full scenario
 - 2 imputed variables

Iteration

- Numerical diagnostics exist
 - Most examples use continuous variables and regression models.
- Data visualization is also recommended to assure that imputed data is
 - Close to the original data,
 - Plausible
 - Within an appropriate range
 - Make common sense
 - e.g. pregnant fathers

- Race
 - Full Scenario

- Ethnicity
 - Full Scenario

- FPL
 - Full Scenario

Analyzing *m* imputed data sets

ullet Software packages have helpful tools for analyzing the m data sets

Tend to be designed to neatly handle models

- We had to do it "by hand"
 - ullet Obtain point estimates and variances for each of the m data sets
 - 11 procedures × 22 strata = 242 2×2 tables
 - 23 statistics, 30 data sets, and 6 scenarios
 - Approx. 1 million estimates and variances

- Rubin's rules (1987)
 - Provide the method to pool m parameter estimates, $\hat{Q}_1,\dots,\hat{Q}_m$ into a single estimate \bar{Q} and to estimate its variance-covariance matrix
 - Accounts for both within- and between- imputation variance
 - Software is available to help, but designed for models
 - mice has some functionality to help "by hand"

• \hat{Q}_l is the complete-data estimate of the scalar quantity of interest (e.g. regression coefficient, kappa statistic) from the lth imputed data set

 The overall estimate is the average of the estimates from the m complete data sets

$$\bar{Q} = \frac{1}{m} \sum_{l=1}^{m} \hat{Q}_{l}$$

ullet The combined within-imputation variance $\overline{\cal U}$ is equal the average of the complete data variances

$$\overline{U} = \frac{1}{m} \sum_{l=1}^{m} U_l$$

 The between-imputation variability reflects the uncertainty due to missing information, i.e. the variance between (among) the m complete data estimates

$$B = \frac{1}{m-1} \sum_{l=1}^{m} (\hat{Q}_l - \bar{Q})^2$$

ullet The total variance of $ar{Q}$ is given by

$$T = \overline{U} + \left(1 + \frac{1}{m}\right)B$$

ullet An additional term B/m is included to reflect the additional variance since ar Q is estimated for finite m

• For multi-parameter inference, approaches are available such as Wald Test, likelihood ratio test, and χ^2 -test

 For single parameter or scalar inference, like kappa statistics and others examined in this thesis, Wald-type significance tests and confidence intervals can be calculated in the usual way

- ullet Since the total variance of T is not known, $ar{Q}$ follows a t-distribution rather than normal
- So univariate tests are based on the approximation

$$\frac{Q-\bar{Q}}{\sqrt{T}} \sim t_1$$

where t_v is Student's t-distribution with v degrees of freedom

 For degrees of freedom see Van Buuren (2012), Schafer (1997), or Barnard and Rubin (1999)

• The $100(1-\alpha)\%$ confidence interval for Q is calculated as

$$\bar{Q} \pm t_{v,1-\alpha/2} \sqrt{T}$$

• Quantities with non-normal distributions may require transformation

Can be combined	May require sensible				
without	transformation before				
transformation	combination	Cannot be combined			
· mean	· odds ratio	· p -value			
· proportion	· hazard ratio	· likelihood ratio test statistic			
· regression coefficient	· baseline hazard	· model chi-squared statistic			
· linear predictor	\cdot survival probability	· goodness-of-fit test statistic			
· C-index	\cdot standard deviation				
· area under the ROC curve	· correlation				
	· proportion of variance explained				
	·skewness				
	· kurtosis				

Choose a scenario

Select one imputation scenario to represent the results after imputation

- Selected Full Scenario with Race, Ethnicity, and FPL
 - Results seemed robust to suspect convergence
 - Similar results across scenarios suggest that a small number of variables dominate the imputation model
 - Advice from literature is including more variables makes MAR a more reasonable assumption

Reporting results

Suggested guidelines exist for reporting statistical methodology

- Van Buuren (2012) curated well-chosen sources in to a unified list
 - Amount of missing data
 - Reasons for missing
 - Method to handle missing data
 - Software used
 - Number of imputed data sets
 - Complete case analysis

Reporting results

• 3 of 41 variables in the data set had missing values

• Of 13,101 observations, 3,395 (26%) were incomplete

 Reason Race and ethnicity are missing is not known. High rate of missing for FPL is due to a data discrepancy that was left unresolved intentionally for this analysis

Reporting results

Multiple imputation (Rubin 1987) was used to create and analyze 30 multiply imputed data sets

Imputed under fully conditional specification (Van Buuren et al. 2006)

• Calculations were done in R version 3.4.0 (2017-04-21) using the default settings of the mice 2.3 package (Van Buuren et al. 2011), as these were deemed appropriate for our study setting

Cholesterol screening, pre-imputation

	Total eligible patients	EHR (+) p1, %	Claims (+) p2, %	EHR (+), Claims (+) p1+p2, %	Sensitivity	Specificity	1	Kappa statistic [95% CI]
All eligible patients	12817	39.5	42.1	45.5	0.86	0.94	•	0.80 [0.79, 0.81]
Race								
Asian/Pacific Islander	756	50.1	47.5	52.5	0.95	0.90	H	0.85 [0.81, 0.89]
American Indian/Alaskan native	175	33.7	44.0	45.7	0.73	0.97	⊢•	0.71 [0.61, 0.82]
Black	1388	41.8	40.4	44.9	0.92	0.92	=	0.84 [0.81, 0.87]
White	9518	38.4	42.1	45.1	0.84	0.95	•	0.80 [0.79, 0.81]
Multiple Races	139	28.8	36.0	38.9	0.72	0.96	⊢• ⊣	0.71 [0.58, 0.83]
Unknown	841	41.4	41.6	46.2	0.88	0.92	H≡H	0.80 [0.76, 0.84]
Federal poverty level								
<=138% FPL	9930	41.5	43.5	46.9	0.88	0.94	•	0.82 [0.81, 0.83]
>138% FPL	227	35.2	35.2	38.8	0.90	0.95	⊢= -1	0.85 [0.77, 0.92]
Missing/Unknown	2660	32.2	37.8	40.9	0.77	0.95	Ħ	0.74 [0.71, 0.77]
							<u>:</u> 	
						-0.2	0.2 0.6 1	L
						Kap	pa statistic [95% CI]	

Cholesterol screening, post-imputation

	Total eligible patients	EHR (+) p1, %	Claims (+) p2, %	EHR (+), Claims (+) p1+p2, %	Sensitivity	Specificity		Kappa statistic [95% CI]
All eligible patients	12817	39.5	42.1	45.5	0.86	0.94	•	0.80 [0.79, 0.81]
Race								
Asian/Pacific Islander	795	49.9	47.5	52.5	0.95	0.90	H■H	0.85 [0.81, 0.89]
American Indian/Alaskan native	190	33.9	43.8	45.5	0.73	0.97	⊢• →	0.72 [0.62, 0.82]
Black	1483	41.9	40.6	45.1	0.92	0.92	A	0.84 [0.81, 0.87]
White	10191	38.6	42.0	45.1	0.84	0.95	-	0.80 [0.79, 0.81]
Multiple Races	155	29.6	35.8	38.9	0.74	0.95	⊢ •─	0.72 [0.60, 0.84]
Federal poverty level								
<=138% FPL	12464	39.7	42.4	45.8	0.86	0.94	•	0.80 [0.79, 0.81]
>138% FPL	352	32.7	34.0	37.4	0.86	0.95	⊢• →	0.82 [0.74, 0.89]
								٦
						-0.2	0.2 0.6	1
						Kapp	pa statistic [95% CI]

Cholesterol screening

Cholesterol screening

Compare results – Race

Compare results – FPL

Discussion

- Similarity between post-imputation results and pre-imputation results
 - Not always the case
- Multiple imputation with non-standard statistics like kappa are not fully developed
 - Rubin's rules
- Further diagnostics are available to
 - Assess MAR assumptions
 - Assess distributions of the imputed data

Conclusions

- By our example, we've shown MICE to be a viable method to address missing data in EHR
 - Flexible approach
 - Adaptable to many different types of variables
 - Suitable for large data sets

Conclusions

 MICE appears to be an approach worth further investigation and application to obtain statistically valid kappa statistics with incomplete EHR data

Further reading and resources

• Software:

- R
 - mice package by Stef Van Buuren
 - visdat and naniar packages by Nicholas Tierney
- SAS
 - PROC MI: FCS statement
 - IVEware callable software
- Stata
 - mi impute chained

Further reading and resources

References

- J. Heintzman, S. Bailey, M. Hoopes, T. Le, R. Gold, J. P. O'Malley, S. Cowburn, M. Marino, A. Krist and J. E. DeVoe, "<u>Agreement of Medicaid claims and electronic health records for assessing preventive care quality among adults</u>," J Am Med Inform Assoc, vol. 24, p. 720–724, 2014
- www.multiple-imputation.com, Stef Van Buuren's website
- S. van Buuren, Flexible Imputation of Missing Data, Boca Raton, FL: CRC Press, 2012
- I. R. White, P. Royston and A. M. Wood, "<u>Multiple imputation using chained equations: Issues and guidance for practice</u>," *Statistics in Medicine*, vol. 30, p. 377–399, 2011
- M. J. Azur, E. A. Stuart, C. Frangakis and P. J. Leaf, "<u>Multiple imputation by chained equations:</u>
 <u>What is it and how does it work?</u>," International Journal of Methods in Psychiatric Research, vol. 20, no. 1, p. 40–49, 2011.
- R. J. Little and D. B. Rubin, <u>Statistical Analysis with Missing Data</u>, Second Edition ed., Hoboken, NJ: Jonh Wiley & Sons, Inc., 2002
- J. L. Schafer, "Multiple Imputation: a primer," Statistical Methods in Medical Research, vol. 8, pp. 3-15, 1999

Sample code on GitHub

emilelatour/csp-2018

Acknowledgments

OHSU Knight Cancer Institute Biostatistics Shared Resource

• John Heintzman, MD, MPH at Department of Family Medicine, OHSU

- Megan Hoopes, Jennifer DeVoe, and rest of team at OCHIN, Inc.
- Miguel Marino, PhD at Department of Family Medicine, OHSU

Questions

latour@ohsu.edu