Sheaves on subanalytic sites セミナーノート

2022年4月4日

目次

0	Preface	1
1	Subanalytic set	1
1.1	Semi-analytic set	1
2	Sheaves on sites	1
2.1	Sites and sheaves	1
2.2	Subanalytic sites and sheaves	3

0 Preface

このノートでは、L. Prelli, Sheaves on Subanalytic Site [4] を参考にして、Subanalytic sites や、その上の層についてまとめる。また、必要に応じて、Kashiwara-Schapira[1]、[3] を参照する.

1 Subanalytic set

この節では、subanalytic set について述べる.

1.1 Semi-analytic set

2 Sheaves on sites

2.1 Sites and sheaves

この節では、Kashiwara-Schapira、Ind-sheaves [2] も合わせて参照して、景 (site) 上の層について述べる.

層は、位相空間 X の開集合の圏 $\operatorname{Op}(X)$ に対して定められる。景 (site) とは、任意の圏に対して抽象的な被覆によって位相を入れたもので、これにより、層の概念を拡張できる。

以降, 考える圏は, U-small であり, 有限の積とファイバー積が存在するものとする. このような圏 C では, 射 $V \to U$ の圏 C_U も有限の積とファイバー積が存在する.

また, C が終対象 (terminal object) を持てば,

 $\mathcal C$ が有限の積とファイバー積を持つ $\iff \mathcal C$ が有限の射影極限を持つ

が成り立つ. さらに、このとき、終対象をTとして、

$$X \times Y = X \times_T Y \quad (\forall X, Y \in \mathcal{C})$$

である.

記号 射 $V \to U$ と $S \subset \mathrm{Ob}(C_U)$ に対して、

$$V \times_U S := \{V \times_U W \to V \mid W \in S\} \subset \mathrm{Ob}(C_V)$$

と定める.

注意 位相空間 X とし, $\mathcal{C} = \operatorname{Op}(X)$ とする. このとき, $V, W \in \mathcal{C}_U = \operatorname{Op}(U)$ に対して,

$$V \times_U W = V \cap W$$

である.

定義 2.1.1 $S_1, S_2 \subset \mathrm{Ob}(C_U)$ に対して, S_1 が S_2 の細分 (refinement) とは, 任意の $V \to U \in S_1$ に対して, ある $V' \to U \in S_2$ が存在して, $V \to V' \to U$ と分解できることを言う. また, これを $S_1 \preceq S_2$ と書く.

定義 2.1.2 \mathcal{C} 上の Grothendieck 位相とは, $\mathrm{Ob}(\mathcal{C}_U)$ の部分集合の族 $\{\mathrm{Cov}(U)\}_{U\in\mathcal{C}}$ で, 次の公理を満たすもの を言う:

- (GT1) $\{id_U: U \to U\} \in Cov(U)$ $\sigma \delta \delta$.
- (GT2) $S_1, S_2 \subset \mathcal{C}_U$ とする. $S_1 \in \text{Cov}(U)$ かつ $S_1 \leq S_2$ ならば, $S_2 \in \text{Cov}(U)$ である.
- (GT3) $S \in Cov(U)$ ならば、任意の $V \to U$ に対して、 $V \times_U S \in Cov(V)$ である.
- (GT4) $S_1, S_2 \subset Ob(\mathcal{C}_U)$ が、 $S_1 \in Cov(U)$ および $V \times_U S_2 \in Cov(V)$ $(\forall V \in S_1)$ を満たせば、 $S_2 \in Cov(U)$ である.

 $S \in \text{Cov}(U)$ を U の被覆 (covering) という. 景 X とは, 圏 \mathcal{C}_X で, 有限の積とファイバー積が定義され, Grothendieck 位相が定められているものを言う.

 C_X に終対象が存在する場合は, C_X を X と書くことにする.

定義 2.1.3 *X*, *Y* を景とする.

- (i) 関手 $f^t: \mathcal{C}_Y \to \mathcal{C}_X$ が連続 (continuous) とは、次の 2 条件が満たされることを言う.
 - (1) ファイバー積と可換である, i.e. 任意の射 $V \to U$, $W \to U$ に対して, $f^t(V \times_U W) \xrightarrow{\sim} f^t(V) \times_{f^t(U)} f^t(W)$ である.
 - (2) 任意の $V \in \mathcal{C}_Y$, $S \in \text{Cov}(V)$ に対し, $f^t(S) \in \text{Cov}(f^t(V))$ である. ただし, $f^t(S) := \{f^t(W) \to f^t(V) \mid W \in S\}$ とする.
- (ii) 景の間の射 $f: X \to Y$ とは、連続な関手 $f^t: \mathcal{C}_Y \to \mathcal{C}_X$ である.
- 例 2.1.4 (i) 位相空間 X に対して, X の開集合に包含射で順序を付けた圏を $\operatorname{Op}(X)$ とする. $U \in \operatorname{Op}(X)$ に対して, $\operatorname{Op}(X)_U = \operatorname{Op}(U)$ である. 通常の被覆で Grothedieck 位相を入れた景を, X と書く (終対象は $X \in \operatorname{Op}(X)$).
- (ii) $f:X\to Y$ を位相空間の間の連続写像とする. 関手 $f^t:\operatorname{Op}(Y)\to\operatorname{Op}(X)$ を $V\mapsto f^{-1}(V)$ として、景の間の射も $f:X\to Y$ と書ける. つまり、位相空間を景とすると、連続写像が景の間の関手となる $(f^{-1}(V\cap W)=f^{-1}(V)\cap f^{-1}(W))$.
- (iii) X を位相空間とする. $\mathrm{Op}(X)$ には、次のような位相も入る. $S\subset \mathrm{Op}(U)$ は, U の被覆で、有限部分被覆を持つとする. このような被覆の集合は、Grothendieck 位相となる. この景を X_f と書く.
- (iv) X を局所コンパクトな位相空間とする. X_{lf} を, $\operatorname{Op}(X)$ に次のような位相を入れた景とする: $S \subset \operatorname{Op}(X)$ が X_{lf} での被覆であるとは, X の任意のコンパクト集合 K に対して, ある有限進ん集合 $S_0 \subset S$ で, $K \cap (\cup_{V \in S_0} V) = K \cap U$ となるものが存在する. このとき, 自然な射 $U_{lf} \to U_{X_{lf}}$ が存在するが, 一般には同型でない事に注意する.

k-加群の層を定義する. ここで, k は, 可換環とする.

定義 2.1.5 *X* を景とする.

(i) F が X 上の k-加群の前層 (presheaf) とは、関手 $\mathcal{C}_X^{\mathrm{op}} \to \mathrm{Mod}(k)$ であり、前層の間の射は関手の射として

定める.

- (ii) $Psh(k_X)$ を X 上の k-加群の前層の圏とする. この圏はアーベル圏である.
- (iii) X 上の k-加群の前層 F と $S \subset \mathcal{C}_U$ に対して,

$$F(S) := \operatorname{Ker} \left(\prod_{V \in S} F(V) \rightrightarrows \prod_{V', V'' \in S} F(V' \times_U V'') \right)$$

と定める. (ただし, 二重矢印の核は, 2 つの射の差で定義される. ここでの 2 つの射は, $F(V') \to F(V' \times_U V'')$ と $F(V'') \to F(V' \times_U V'')$ である.)

- (iv) X 上の k-加群の前層 F が分離的 (separated) (resp. 層 (sheaf) である) とは、任意の $U \in \mathcal{C}_X$ と任意の 被覆 $X \in \mathrm{Cov}(U)$ に対して、自然な射 $F(U) \to F(S)$ が monomorphism(resp. isomorphism) となることである.
- (v) $\operatorname{Mod}(k_X)$ を X 上の k-加群の層の圏とする. $\operatorname{Mod}(k_X)$ は, $\operatorname{Psh}(k_X)$ の加法的な充満部分圏 (full additive subcategory) である. また, $\operatorname{Hom}_{\operatorname{Mod}(k_X)}$ を Hom_{k_X} と略記する.

定義 2.1.6 (層化 (sheafification))

$$F^+(U) := \varinjlim_{S \in \operatorname{Cov}(U)} F(S).$$

定理 2.1.7 (i) 関手 $(\cdot)^+$: $Psh(k_X) \to Psh(k_X)$ は, 左完全である.

- (ii) 任意の $F \in Psh(k_X)$ に対して, F^+ は分離的な前層となる.
- (iii) 任意の分離的前層 F に対して, F^+ は層となる.
- (iv) 関手 $(\cdot)^{++}$: $Psh(k_X) \to Mod(k_X)$ は、埋め込み関手 $\iota: Mod(k_X) \to Psh(k_X)$ の左随伴である.
 - (iv) は, ι を省いて, 次のように書かれることも多い:

$$\operatorname{Hom}_{\operatorname{Psh}(k_X)}(F,G) \simeq \operatorname{Hom}_{\operatorname{Mod}(k_X)}(F^{++},G) \ (F \in \operatorname{Psh}(k_X), G \in \operatorname{Mod}(k_X)).$$

2.2 Subanalytic sites and sheaves

定義 2.2.1 (subanalytic site) $Op(X_{sa})$ を X の subanalytic な部分集合の圏とする. この圏には, 次のような位相が入る:

 $S \subset \operatorname{Op}(X_{sa})$ が $U \in \operatorname{Op}(X_{sa})$ の被覆であるとは, X の任意のコンパクト集合 K に対して, ある有限部分集合 $S_0 \subset S$ で, $K \cap (\cup_{V \in S_0} V) = K \cap U$ となるものが存在する.

このような X_{sa} を subanalytic site と言う. また, $U_{X_{sa}}$ を, $\operatorname{Op}(X_{sa})\cap U$ に X_{sa} の位相から誘導される位相を入れたものとする. 一般に, U_{sa} と $U_{X_{sa}}$ は異なる.

例 2.2.2 $X=\mathbb{R}^2, U=\mathbb{R}^2\setminus\{0\}$ とする.このとき, $V_n=\left\{x\in\mathbb{R}^2\;\middle|\;|x|>\frac{1}{n}\right\}$ とすると, $\{V_n\}_{n\in\mathbb{N}}\in\mathrm{Cov}(U_{sa})$ であるが, $\{V_n\}_{n\in\mathbb{N}}
ot\in\mathrm{Cov}(U_{X_{sa}})$ である.

定義 2.2.3 $\operatorname{Mod}(k_{X_{sa}})$ を X_{sa} 上の層の圏とする.

定義 2.2.4 $\operatorname{Op}^c(X_{sa})$ で、X の相対コンパクトな subanalytic 開集合のなす圏とし、 X_{sa} から誘導される位相を入れたものを X_{sa}^c と書く、 X_{sa}^c 上の前層 (resp. 層) の圏を $\operatorname{Psh}(k_{X_{sa}^c})$ (resp. $\operatorname{Mod}(k_{X_{sa}^c})$) と書く.

命題 2.2.5 $\operatorname{Mod}(k_{X_{sa}})$ は、Grothendieck 圏である i.e. 生成元を持ち、small inductive limits と small filtrant inductive limits が完全となる圏である。特に、Grothendieck 圏として、 $\operatorname{Mod}(k_{X_{sa}})$ は、enough injective な対象を持つ。

命題 2.2.6 忘却関手 $\operatorname{Mod}(k_{X_{sa}}) \to \operatorname{Mod}(k_{X_{sa}^c})$ は圏同値を与える.

証明.

命題 2.2.7 $\{F_i\}_{i\in I}$ を $\operatorname{Mod}(k_{X_{sa}})$ の filitrant inductive system とし, $U\in\operatorname{Op}^c(X_{sa})$ とする. このとき,

$$\underbrace{\lim_{i \in I} \Gamma(U; F_i)}_{i \in I} \simeq \Gamma(U; \underbrace{\lim_{i \in I} F_i}_{i \in I})$$

が成り立つ.

証明・ $\operatorname{Mod}(k_{X_{sa}^c})$ で示せば十分である." $\varinjlim_i "F_i$ で, X_{sa}^c 上の前層 $V \mapsto \varinjlim_i \Gamma(U;F_i) = \varinjlim_i (F_i(U))$ を表す. $U \in \operatorname{Op}^c(X_{sa})$ とし,S を U の有限被覆とする.同型(" $\varinjlim_i "F_i$)(S) $\longrightarrow \varinjlim_i (F_i(S))$ が存在し, $F_i \in \operatorname{Mod}(k_{X_{sa}^c})$ より,(" $\varinjlim_i "F_i$)(S) $\longrightarrow \varinjlim_i (F_i(U)) = ("<math>\varinjlim_i "F_i$)(S) が成り立つ.

ここで、U の有限被覆の族 $\mathrm{Cov}^f(U)$ は、 $\mathrm{Cov}(U)$ で cofinal なので、" \varinjlim_i " $F_i \simeq \varinjlim_{S \in \mathrm{Cov}^f(U)}$ (" \varinjlim_i " F_i) $(S) \simeq$

"
$$\lim_{i \to \infty} F_i \xrightarrow{\sim} (\lim_{i \to \infty} F_i)^+ \xrightarrow{\sim} (\lim_{i \to \infty} F_i)^{++}$$

を得る。また,層 $\varinjlim_i F_i$ の定義より,(" $\varinjlim_i "F_i$)⁺⁺ = $\varinjlim_i F_i$ なので," $\varinjlim_i "F_i$ = $\varinjlim_i F_i$ が言える。これに $\Gamma(U; \bullet)$ を施せば, $\varinjlim_i \Gamma(U; F_i) \simeq \Gamma(U; \varinjlim_i F_i)$ となる.

命題 2.2.8 $F \in Psh(X_{sa}^c)$ が、次の 2 条件を満たすとする.

- (i) $F(\emptyset) = 0$,
- (ii) 任意の $U, V \in \operatorname{Op}^c(X_{sa})$ に対して,

$$0 \longrightarrow F(U \cup V) \longrightarrow F(U) \oplus F(V) \longrightarrow F(U \cap V)$$

は完全列である.

このとき, $F \in \operatorname{Mod}(k_{X_{sa}^c}) \simeq \operatorname{Mod}(k_{X_{sa}})$ である.

証明. $U \in \operatorname{Op}^c(X_{sa})$ と U の有限被覆 $\{U_j\}_{j=1}^n$ とする. また, $U_{ij} = U_i \cap U_j$ と略記する. 次の列が完全であることを示せば良い.

$$0 \longrightarrow F(U) \longrightarrow \bigoplus_{1 \le k \le n} F(U_k) \longrightarrow \bigoplus_{1 \le i < j \le n} F(U_{ij}) .$$

ただし、2 番目の射は、 $(s_k)_{1 \leq k \leq n}$ を、 $(s_i|_{U_{ij}} - s_j|_{U_{ij}})_{1 \leq i < j \leq n}$ に対応させる射である.

n についての帰納法で示す. n=1 は明らかで, n=2 は仮定の (ii) そのものである. $1\leq j\leq n-1$ では成り立つと仮定する. また, $U'=\bigcup_{1\leq k\leq n-1}U_k$ と略記する. このとき, 帰納法の仮定から, 完全列による可換図式

$$0 \longrightarrow F(U) \longrightarrow F(U') \oplus F(U_n) \longrightarrow F(U' \cap U_n)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\bigoplus_{1 \le k \le n-1} F(U_k) \oplus F(U_n) \longrightarrow \bigoplus_{1 \le i \le n-1} F(U_{in})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\bigoplus_{1 \le i < j \le n-1} F(U_{ij})$$

を得る. この図式で diagram chasing を行えば, 目的の結果を得る.

参考文献

- [1] Masaki Kashiwara and Pierre Schapira. Sheaves on manifolds. No. 292 in Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1990.
- [2] Masaki Kashiwara and Pierre Schapira. *Ind-sheaves*. No. 271 in Astérisque. Société mathématique de France, 2001.
- [3] Masaki Kashiwara and Pierre Schapira. *Category and Sheaves*. No. 332 in Die Grundlehren der mathematischen Wissenschaften. Springer, 2006.
- [4] Luca Prelli. Sheaves on subanalytic sites. No. 120 in Rendiconti del Seminario Matematico della Università di Padova. 2008.