HY119 - [PAMMIKH ANTEBPA

NUGERS 4ns GEIPGS AGKNGEWY

'Mes of ackness είναι από το biblio "Γραμμική 'Allzebpa και Εφαρμοχές" του Gilbert Strang (3n έκδοςη).

4.2.9.

a orthogonal matrix -> QTa = I => det(QTa) = det(I) (=>

$$\frac{\text{def(QT)} \cdot \text{def(Q)} = 1}{\text{def(QT)} \cdot \text{def(Q)}} \Rightarrow (\text{def(Q)}^2 = 1 \text{ end def(QT)} = 1 \text{ def(QT)}$$

Από τις ετήθες του Q εχηματίβεται ένα ορθοχώνιο παραλληθε-

4.2.16

Ţ	1	1	3]		1	1	3		1	1	3	
A =	D	4	6	B=	0	4	6	C =	0	4	6	-
	1	5	8	,	0	0		/		5	9_	

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 0 & 4 & 6 \\ 1 & 5 & 8 \end{bmatrix} \xrightarrow{(-1)} \begin{bmatrix} 1 & 1 & 3 \\ 0 & 4 & 6 \\ 0 & 4 & 5 \end{bmatrix} \xrightarrow{(-1)} \rightarrow$$

4.9.16 (60VEXEIR)

πληθος εναθλαχων δραμμών που χρηδιμοπαηθηκε

bupboliepos opijousas

								K				
	1	1	3		1	1	3		1	1	3	
· det C =	0	4	6	=	0	4	6	+	0	4	6	=
	11	5	9		1	5	8		0	0	1	

Στο ίδιο αποτέλερμα θα φτάνοτε και με απαλοιφή

=> det ATA = (det A) = 16

11	3	11
4	. J.	

a) E67W A = [dij] = 1R4x4 με αί; = το μικρότερο από τα ί,

TOTE :

	T1	1	1	17	N T	[1	1	1	17	e 14 Ti
	0	1	1	1	(-1) (-1)	0	1	1	1	n
7	0		2	2	(H)	0	0	1	1	(-1)
	0		2	3_	(4)	Lo	0	1	2	← (+)

b) E67W A = [aij] e 1R4×4 με aij = min {ni, n; } jac n₁ = 2, n₂=6, n₃ = 8, n₄ = 10, τότε:

	T 9	2	2	2	7		T 2	2	2	2			
0	9	6	6	6		andlown,	0	4	4	4	=	()	_
A =	9	6	8	8			0	0	2	2			
	2	6	8	10			Lo	0	0	2_			_

(4.3.4 (b) 6UVEXEIQ)

Enoperus, det A = (-1)0 detU = 2.4.2.2 = 32

ria kabe n₁ = n₂ = n₃ = n₄ èxaye:

	l na	Na	na	na	(-1)(-1)(-1)	[na	na	n ₁	Na	1
Λ -	na	N2	Ne	Ne	44)	0	N2-N1	n2-n1	na-na	(-1)(-1)
H -	Na	N2	113	N3	(+) →	0	na-na	N3-N1	N3-N1	4(4)
	Ina	Na	113	N4	(+)		N2-N1			

T na	N ₄	n ₁	n ₁		[na	n ₁	na	nı	
0	N2-Nn	Ng-Ng Ng-Ng	N2-N1	\rightarrow	0	N2-N1	N2-N1	n2-na	=()
0	0	N3-N2	N3-N2	(-1)	0	0	N3-N2	N3-N2	
0	D	N3-N2	n4- n2	∠(+)	0	0	0	N4-N3_	

(2000)	Charles .	
11	11	1
7.	7.	

	1	9	3
A=	0	4	0
	LO	0	5

$$C_{11} = de + A_{11} = \begin{vmatrix} 4 & 0 \end{vmatrix} = 20$$

$$C_{12} = (-1) \cdot \det A_{12} = 0 \quad 0 = 0$$

$$C_{13} = de + A_{13} = 0 + 0 = 0$$

$$C_{21} = -de + A_{21} = - \begin{vmatrix} 2 & 3 \end{vmatrix} = -10$$

4.4.1. 6UVEXELQ)

$$C_{32} = (-1) \det A_{32} = - \begin{vmatrix} 1 & 3 \\ 0 & 0 \end{vmatrix} = 0$$

C33 = de+A33 = 0 4 = 4

(avaetpoyos)

Acof

= det(A). I

$$A^{-1} = \frac{1}{\text{det}A} \cdot A \cos F = \frac{1}{20} \begin{bmatrix} 20 & -10 & -19 \\ 0 & 5 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

	1	-1/2	-3/5
=	0	1/4	0
	0	D	1/5

a)
$$ax + by = 1$$
 and $b) x + 4y - 2 = 1$
 $cx + dy = 0$ $x + y + 2 = 0$
 $2x + 3z = 0$

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, B_{x} = \begin{bmatrix} 1 & b \\ 0 & d \end{bmatrix}, B_{y} = \begin{bmatrix} a & 1 \\ c & 0 \end{bmatrix}$$

$$x = \frac{de+Bx}{de+A}$$
, $y = \frac{de+By}{de+A}$

$$x = \frac{d}{\alpha d - bc}$$
, $y = \frac{-c}{\alpha d - bc}$

					1	4	1	
	[1	1	-17	B= =	1	1	0	
Bu =	1	0	1)	_2	0	0	
J	2	0	3					

(GUVEXEL 4.4.5 (6)).

$$def A = 2 \cdot \begin{vmatrix} 4 & -1 \\ 1 & 1 \end{vmatrix} + 3 \cdot \begin{vmatrix} 1 & 4 \\ 1 & 1 \end{vmatrix} = 2 \cdot (4+1) + 3(1-4) = 1$$

(opifacea ws noos 3n aparpin)

$$det B_{x} = 1 \begin{vmatrix} 1 & 1 \\ 0 & 3 \end{vmatrix} = 3 \quad (optfougal ws nos 1n 67n n)$$

$$defBz = 1 \begin{vmatrix} 1 & 1 \\ 2 & 0 \end{vmatrix} = -2 \quad (ws \pi pos 3n 67 in 7ln)$$

$$x = \frac{\text{det Bx}}{\text{det A}} = \frac{3}{1} = 3$$

$$y = \frac{det By}{det A} = -1$$
, $z = \frac{det Bz}{det A} = -2$

