12я лабораторная работа, С++ Университет ИТМО, 3й семестр, Декабрь 2018

В данной лабораторной вам предстоит сдавать задачи в PCMS. Можете использовать логины и пароли, которые вы использовали раньше для лабораторных по АиСД. Длительность лабораторной ровно одна неделя. Перевод этой лабораторной в нашу обычную сисему счисления будет следующий:

- 0. Если в задаче вы использовали самописные структуры данных задача будет аннулирована по окончанию лабораторной.
- 1. Если вы не сдали 3 и более задач лабораторная не засчитывается.
- 2. За каждую несданную задачу вы получаете один Delay.
- 3. За каждую неправильную посылку вы получаете один minus.
- 4. Если вы получили ОК, то за каждую последующую посылку по этой задаче, которая пройдет первый тест, вы получаете minus.

Enjoy!

Задача А. Сбалансированное двоичное дерево поиска

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.1 секунды Ограничение по памяти: 256 мегабайт

Реализуйте сбалансированное двоичное дерево поиска.

Формат входного файла

Входной файл содержит описание операций с деревом, их количество не превышает 10^5 . В каждой строке находится одна из следующих операций:

- \bullet insert x добавить в дерево ключ x. Если ключ x есть в дереве, то ничего делать не надо
- \bullet delete x удалить из дерева ключ x. Если ключа x в дереве нет, то ничего делать не надо
- \bullet exists x если ключ x есть в дереве выведите «true», если нет «false»
- ullet next x выведите минимальный элемент в дереве, строго больший x, или «none» если такого нет
- ullet рrev x выведите максимальный элемент в дереве, строго меньший x, или «none» если такого нет

В дерево помещаются и извлекаются только целые числа, не превышающие по модулю 10^9 .

Формат выходного файла

Выведите последовательно результат выполнения всех операций exists, next, prev. Следуйте формату выходного файла из примера.

стандартный ввод	стандартный вывод
insert 2	true
insert 5	false
insert 3	5
exists 2	3
exists 4	none
next 4	3
prev 4	
delete 5	
next 4	
prev 4	

12я лабораторная работа, C++ Университет ИТМО, 3й семестр, Декабрь 2018

Задача В. Перестановки

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 0.75 секунды Ограничение по памяти: 256 мегабайт

Во входном файле задано число $n\ (1\leq n\leq 9)$. Выведите в выходной файл в лексикографическом порядке все перестановки чисел от 1 до n.

стандартный ввод	стандартный вывод
3	1 2 3
	1 3 2
	2 1 3
	2 3 1
	3 1 2
	3 2 1

Задача С. Очередь

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.4 секунды Ограничение по памяти: 256 мегабайт

Реализуйте работу очереди. Для каждой операции изъятия элемента выведите ее результат.

На вход программе подаются строки, содержащие команды. Каждая строка содержит одну команду. Команда — это либо "+ N", либо "-". Команда "+ N" означает добавление в очередь числа N, по модулю не превышающего 10^9 . Команда "-" означает изъятие элемента из очереди.

Формат входного файла

В первой строке содержится количество команд — M ($1 \le M \le 10^6$). В последующих строках содержатся команды, по одной в каждой строке.

Формат выходного файла

Выведите числа, которые удаляются из очереди, по одному в каждой строке. Гарантируется, что извлечения из пустой очереди не производится.

стандартный ввод	стандартный вывод
4	1
+ 1	10
+ 10	
-	
-	

Задача D. Стек

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.4 секунды Ограничение по памяти: 256 мегабайт

Реализуйте работу стека. Для каждой операции изъятия элемента выведите ее результат.

На вход программе подаются строки, содержащие команды. Каждая строка содержит одну команду. Команда — это либо "+ N", либо "-". Команда "+ N" означает добавление в стек числа N, по модулю не превышающего 10^9 . Команда "-" означает изъятие элемента из стека. Гарантируется, что не происходит извлечения из пустого стека.

Формат входного файла

В первой строке входного файла содержится количество команд — M ($1 \le M \le 10^6$). Каждая последующая строка исходного файла содержит ровно одну команду.

Формат выходного файла

Выведите числа, которые удаляются из стека, по одному в каждой строке. Гарантируется, что изъятий из пустого стека не производится.

стандартный ввод	стандартный вывод
6	10
+ 1	1234
+ 10	
-	
+ 2	
+ 1234	
-	

Задача Е. К-ая порядковая статистика

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.4 секунды Ограничение по памяти: 256 мегабайт

Дан массив из n элементов. Какое число k-ое в порядке возрастания в этом массиве.

Формат входного файла

В первую строке входного файла содержится два числа n — размер массива и $k.(1 \le k \le n \le 3 \cdot 10^7)$. Во второй строке находятся числа A, B, C, a_1, a_2 по модулю не превосходящие 10^9 . Вы должны получить элементы массива начиная с третьего по формуле: $a_i = A*a_{i-2} + B*a_{i-1} + C$. Все вычисления должны производится в 32 битном знаковом типе, переполнения должны игнорироваться.

Формат выходного файла

Выведите значение k-ое в порядке возрастания число в массиве a.

Пример

стандартный ввод	стандартный вывод
5 3	13
2 3 5 1 2	
5 3	2
200000 300000 5 1 2	

Во втором примере элементы массива a равны: (1, 2, 800005, -516268571, 1331571109).

Задача F. Двоичный поиск

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.62 секунды Ограничение по памяти: 256 мегабайт

Дан массив из n элементов, упорядоченный в порядке неубывания и m запросов: найти первое и последнее вхождение числа в массив.

Формат входного файла

В первую строке входного файла содержится одно число n — размер массива ($1 \le n \le 500000$). Во второй строке находится n чисел в порядке неубывания — элементы массива. В третьей строке находится число m — количество запросов ($1 \le m \le 500000$). В следующей строке находится m чисел — запросы.

Формат выходного файла

Для каждого запроса выведите в отдельной строке номер первого и последнего вхождения этого числа в массив. Если числа в массиве нет выведите два раза -1.

стандартный ввод	стандартный вывод
5	1 2
1 1 2 2 2	3 5
3	-1 -1
1 2 3	

Задача G. Тестирующая система

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.1 секунды Ограничение по памяти: 256 мегабайт

Юный программист Саша написал свою первую тестирующую систему. Он так обрадовался тому, что она скомпилировалась, что решил пригласить школьных друзей на свой собственный контест.

Но в конце тура выяснилось, что система не умеет сортировать команды в таблице результатов. Помогите Came реализовать эту сортировку.

Команды упорядочиваются по правилам АСМ:

- по количеству решённых задач в порядке убывания;
- при равенстве количества решённых задач по штрафному времени в порядке возрастания;
- при прочих равных по номеру команды в порядке возрастания.

Формат входного файла

Первая строка содержит натуральное число n ($1 \le n \le 100\,000$) — количество команд, участвующих в контесте. В i-й из следующих n строк записано количество решенных задач S ($1 \le S \le 100$) и штрафное время T ($1 \le T \le 100\,000$) команды с номером i.

Формат выходного файла

В выходной файл выведите n чисел — номера команд в отсортированном порядке.

стандартный ввод	стандартный вывод
5	5 2 1 3 4
3 50	
5 720	
1 7	
0 0	
8 500	

12я лабораторная работа, С++ Университет ИТМО, Зй семестр, Декабрь 2018

Задача H. Set

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 0.58 секунды Ограничение по памяти: 256 мегабайт

Реализуйте множество.

Формат входного файла

Входной файл содержит описание операций, их количество не превышает 1000000. В каждой строке находится одна из следующих операций:

- insert x добавить элемент x в множество. Если элемент уже есть в множестве, то ничего делать не надо.
- \bullet delete x удалить элемент x. Если элемента x нет, то ничего делать не надо.
- \bullet exists x если ключ x есть в множестве выведите «true», если нет «false».

В множество помещаются и извлекаются только целые числа, не превышающие по модулю 10^9 .

Формат выходного файла

Выведите последовательно результат выполнения всех операций exists. Следуйте формату выходного файла из примера.

стандартный ввод	стандартный вывод
insert 2	true
insert 5	false
insert 3	false
exists 2	
exists 4	
insert 2	
delete 2	
exists 2	

12я лабораторная работа, С++ Университет ИТМО, Зй семестр, Декабрь 2018

Задача І. Мар

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1.15 секунды Ограничение по памяти: 256 мегабайт

Реализуйте ассоциативный массив.

Формат входного файла

Входной файл содержит описание операций, их количество не превышает 1000000. В каждой строке находится одна из следующих операций:

- \bullet put $x\ y$ поставить в соответствие ключу x значение y. Если ключ уже есть, то значение необходимо изменить.
- delete x удалить ключ x. Если элемента x нет, то ничего делать не надо.
- get x если ключ x есть в ассоциативном массиве, то выведите соответствующее ему значение, иначе выведите «none».

Ключи и значения — строки из латинских букв длинной не более 20 символов.

Формат выходного файла

Выведите последовательно результат выполнения всех операций get. Следуйте формату выходного файла из примера.

стандартный ввод	стандартный вывод
put hello privet	privet
put bye poka	poka
get hello	none
get bye	
delete hello	
get hello	

Задача J. K-й максимум

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.15 секунды Ограничение по памяти: 256 мегабайт

Напишите программу, реализующую структуру данных, позволяющую добавлять и удалять элементы, а также находить k-й максимум.

Формат входного файла

Первая строка входного файла содержит натуральное число n — количество команд $(n \le 100\,000)$. Последующие n строк содержат по одной команде каждая. Команда записывается в виде двух чисел c_i и k_i — тип и аргумент команды соответственно $(|k_i| \le 10^9)$. Поддерживаемые команды:

- +1 (или просто 1): Добавить элемент с ключом k_i .
- 0: Найти и вывести k_i -й максимум.
- -1: Удалить элемент с ключом k_i .

Гарантируется, что в процессе работы в структуре не требуется хранить элементы с равными ключами или удалять несуществующие элементы. Также гарантируется, что при запросе k_i -го максимума, он существует.

Формат выходного файла

Для каждой команды нулевого типа в выходной файл должна быть выведена строка, содержащая единственное число — k_i -й максимум.

стандартный ввод	стандартный вывод
11	7
+1 5	5
+1 3	3
+1 7	10
0 1	7
0 2	3
0 3	
-1 5	
+1 10	
0 1	
0 2	
0 3	

Задача К. Переместить в начало

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2.2 секунды Ограничение по памяти: 256 мегабайт

Вам дан массив $a_1 = 1, a_2 = 2, \ldots, a_n = n$ и последовальность операций: переместить элементы с l_i по r_i в начало массива. Например, для массива 2,3,6,1,5,4, после операции (2,4) новый порядок будет 3,6,1,2,5,4. А после применения операции (3,4) порядок элементов в массиве будет 1,2,3,6,5,4.

Выведите порядок элементов в массиве после выполнения всех операций.

Формат входного файла

В первой строке входного файла указаны числа n и m ($2 \le n \le 100\,000$, $1 \le m \le 100\,000$) — число элементов в массиве и число операций. Следующие m строк содержат операции в виде двух целых чисел: l_i и r_i ($1 \le l_i \le r_i \le n$).

Формат выходного файла

Выведите n целых чисел — порядок элементов в массиве после применения всех операций.

стандартный ввод	стандартный вывод
6 3	1 4 5 2 3 6
2 4	
3 5	
2 2	