Начальные распределения для задачи двух тел

MCMC-sampling

Предположим мы генерируем последовательность случайных величин, $\{X_0, X_1, X_2, \dots\}$, такую что в каждый момент $t \geq 0$ следующее состояние X_{t+1} выбирается исходя из распределения $P(X_{t+1}|X_t)$, которое зависит от текущего состояния X_t , но не от предыдущего набора состояний $\{X_0, X_1, X_2...X_{t-1}\}$. То есть, состояние X_{t+1} определяется исключительно предыдущим X_t . Такая последовательность состояний называется uenbo Mapkoba.

Рассмотрим алгоритм Метрополиса-Гастингса, позволяющий получать последовательность точек — элементов Марковской цепи — распределенную согласно заданной плотности вероятности $\pi(\cdot)$.

Algorithm 1 Metropolis-Hastings algorithm [1]

```
1: Initialize x^{(0)} \sim q(x)
 2: for iteration i = 1, 2, \dots do
         Propose: x^{cand} \sim q(x^{(i)}|x^{(i-1)})
         Acceptance probability:
 4:
             \alpha \left( x^{cand} | x^{(i-1)} \right) = \min \left\{ 1, \frac{q(x^{(i-1)} | x^{cand}) \pi(x^{(cand)})}{q(x^{cand} | x^{(i-1)}) \pi(x^{(i-1)})} \right\}
 5:
         u \sim \text{Uniform}(\mathbf{u}; 0, 1)
 6:
         if u < \alpha then
 7:
             Accept the proposal: x^{(i)} \leftarrow x^{cand}
 8:
 9:
             Reject the proposal: X^{(i)} \leftarrow x^{(i-1)}
10:
         end if
11:
12: end for
```

Первым шагом алгоритма является выбор случайной точки (эта величина выбирается определенным образом на основе распределения; я же выбирал ее совершенно случайным образом, но так, чтобы она не оказалась в какой-то физически маловероятной области). Следующий за ним главный цикл алгоритма состоит из трех частей: (1) Получать следующую точку ("кандидата") x^{cand} исходя из вспомогательного распределения $q(x^{(i)}|x^{(i-1)})$; (2) Рассчитать вероятность перехода в новую точку $\alpha(x^{cand}|x^{(i-1)})$, основываясь на распределении α и функции распределения α ; (3) Принять новую точку с вероятностью α .

Обратим внимание на то, что точка, полученная исходя из вспомогательного распределения $q(\cdot)$, принимается не всегда, а лишь с вероятностью $\alpha(\cdot)$. Рассматривают вспомогательные распределения двух классов — симметричные и асимметричные. Симметричным называется распределение, удовлетворяющее следующему соотношению

$$q(x^{(i)}|x^{(i-1)}) = q(x^{(i-1)}|x^{(i)})$$

К часто используемым симметричным распределениям относятся гауссово и равномерное распределения. В качестве примера рассмотрим вспомогательное распределение Гауссса:

$$x^{cand} = x^{(i-1)} + Normal(0, \sigma)$$

Понятно, что $Normal(x^{cand} - x^{(i-1)}; 0, \sigma) = Normal(x^{(i-1)} - x^{cand}; 0, \sigma)$, то есть Гауссово распределение в действительности задает симметричное вспомогательное распределение.

Среднеквадратичное отклонение σ является параметром модели. Значение этого параметра будет определять динамику Марковской цепи в рассматриваемом пространстве.

В случае симметричных вспомогательных распределений выражение для вероятности выбора новой точки $\alpha(\cdot)$ существенно упрощается:

$$\alpha\left(x^{cand}|x^{(i-1)}\right) = \min\left\{1, \frac{\pi\left(x^{cand}\right)}{\pi\left(x^{(i-1)}\right)}\right\}$$

Заметим, что если плотность вероятности (точнее говоря, величина, пропорциональная плотности вероятности) в новой точке $\pi\left(x^{cand}\right)$ больше, чем плотность вероятности в текущей $\pi\left(x^{(i-1)}\right)$, то их отношение будет больше 1, а значит вероятность перехода в новую точку будет равна 1: $\alpha\left(x^{cand}|x^{(i-1)}\right)=1$. Другими словами, если новая точка выбрана таким образом, что плотность вероятности в ней больше, чем в текущей, то в нее осуществляется переход. Устройство алгоритма таково, что Марковская цепь "склонна" посещать те точки пространства, в которых моделируемая плотность вероятности выше. Однако, если новая точка была выбрана таким образом, что плотность вероятности в ней меньше, чем в текущей, то тогда вероятность перейти в нее будет определяться отношением плотностей вероятности:

$$\alpha\left(x^{cand}|x^{(i-1)}\right) = \frac{\pi\left(x^{cand}\right)}{\pi\left(x^{(i-1)}\right)}$$

То есть, если вероятность в новой точке будет мала по сравнению с текущей, то и переход в нее будет маловероятен.

Вид вероятности перехода в новую точку из текущей определяется условием детального баланса [2]. Последнее гарантирует, что полученная Марковская цепь в действительности будет удовлетворять заданной плотности вероятности.

Точные формулы для двухатомной системы

Рассмотрим вектор, соединяющий центры атомов. Обозначим ${\bf r}$ его координаты в лабораторной системе координат, ${\bf R}$ – в молекулярной системе координат. Производные ${\bf r}$ и ${\bf R}$ связаны при помощи матрицы эйлеровых углов ${\bf S}$ и угловой скорости ${\bf \Omega}$:

$$\dot{\mathbf{r}} = \mathbb{S}^{-1} \left(\dot{\mathbf{R}} + [\mathbf{\Omega} \times \mathbf{R}] \right). \tag{1}$$

Пусть атомы в молекулярной системе координат расположены на оси Z, в таком случае правая часть выражения (1) превращается в

$$\dot{\mathbf{r}} = \mathbb{S}^{-1} \left\{ \begin{bmatrix} 0 \\ 0 \\ \dot{R} \end{bmatrix} + \begin{bmatrix} \Omega_y R \\ -\Omega_x R \\ 0 \end{bmatrix} \right\}$$

$$\mathbb{S}\dot{\mathbf{r}} = \begin{bmatrix} \Omega_y R \\ -\Omega_x R \\ \dot{R} \end{bmatrix}. \tag{2}$$

Лагранжиан в молекулярной системе координат имеет следующий вид:

$$\mathcal{L} = \frac{1}{2}\mu \dot{R}^2 + \frac{1}{2}\mathbf{\Omega}^{\top} \begin{bmatrix} \mu R^2 & 0 & 0\\ 0 & \mu R^2 & 0\\ 0 & 0 & 0 \end{bmatrix} \mathbf{\Omega}$$

Используя теорему Донкина, находим связь гамильтоновых переменных ${\bf J}$ и ${\bf p}=[p_R]$ с лагранжевыми переменными ${\bf \Omega}$ и ${\bf q}=[R]$:

$$\mathbf{J} = \frac{\partial \mathcal{L}}{\partial \mathbf{\Omega}} = \mathbf{\Omega} \qquad J_x = \mu R^2 \Omega_x
\mathbf{p} = \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}} = \dot{\mathbf{q}} \qquad \Longrightarrow \qquad J_y = \mu R^2 \Omega_y
p_R = \mu \dot{R}$$
(3)

Выкладка в приложении A показывает, что каждая компонента $\dot{\mathbf{r}}$ имеет нормальное распределение $\dot{\mathbf{r}} \sim \mathcal{N}\left(0, \frac{kT}{\mu}\right)$. Таким образом,

Литература

- 1. Yildirim I. Bayesian Inference: Metropolis-Hastings Sampling. MIT Online Library
- 2. Gilks, W.R., Richardson, S., & Spiegelhalter, D.J. (1996). *Markov Chain Monte Carlo in Practice*. London: Chapman and Hall.

Appendices

Приложение А. Распределения в лабораторной системе координат