PAU 2005

Pautes de correcció

Tecnologia Industrial

SÈRIE 3

Primera part

Exercici 1

Q1 a

Q2 b

Q3 b **Q4** a

Q5 d

Exercici 2

	а	b	t	c
	0	0	0	1
	0	0	1	X←No es pot donar
	0	1	0	1
a)	0	1	1	1
	1	0	0	1
	1	0	1	1
	1	1	0	1
	1	1	1	0

b) Amb X = 1: $c = \overline{a} + \overline{b} + \overline{t}$;

Amb X = 0: $c = a \cdot \overline{b} + \overline{a} \cdot b + \overline{t}$

c) Amb X = 1

Amb X = 0

Segona part

OPCIÓ A

Exercici 3

a)
$$P_1 = c_1 \cdot p_c = 2450 \text{ W}$$
 $P_2 = c_2 \cdot p_c = 2042 \text{ W}$ $P_t = P_1 + P_2 = 4492 \text{ W}$

$$P_2 = c_2 \cdot p_c = 2042 \text{ W}$$

$$P_1 = P_1 + P_2 = 4492 \text{ W}$$

b)
$$t = \frac{m \cdot p_{\text{C}}}{P_{\text{t}}} = 9,091 \text{ h}$$

Exercici 4

a)
$$\sum M(O) = 0 \rightarrow L_2 \cdot mg - L_1 \cdot F \cos \alpha = 0 \rightarrow F = 5,401 \text{ N}$$

b)
$$\sum \mathbf{F} = 0 \rightarrow F_{V} - F \cos \alpha - mg = 0 \rightarrow F_{V} = 8,944 \text{ N}$$
 cap amunt $F_{h} - F \sin \alpha = 0 \rightarrow F_{h} = 1,398 \text{ N}$ cap a l'esquerra

c) A mesura que s'estira el fil, la barrera puja fins que el fil i la barrera queden alineats. En aquesta configuració, no vertical, el fil ja no pot fer pujar més la barrera perquè el moment respecte a O de la força del fil és nul.

OPCIÓ B

Exercici 3

a)
$$I_{\text{max}} = \frac{U}{R} = 0,5106 \text{ A}$$
 $I_{\text{min}} = \frac{U}{R + R_{\text{p}}} = 0,2474 \text{ A}$

c)
$$P_{R_{\text{max}}} = R \cdot I_{\text{max}}^2 = \frac{U^2}{R} = 12,26 \text{ W} > P_{\text{max}}$$

$$P_{\text{Pmax}} = R_{\text{P}} \cdot I_{\text{min}}^2 = R_{\text{P}} \left(\frac{U}{R + R_{\text{P}}} \right)^2 = \frac{U^2}{4R} = 3,064 \text{ W}$$

Exercici 4

a)
$$P_T = F_T \cdot v = 1,278 \text{ MW}$$

b)
$$P_{\text{motor}} = \frac{P_{\text{T}}}{\eta} = 1,775 \text{ MW}$$

c)
$$c = c_e \cdot P_{\text{motor}} = 128,2 \text{ g/s}$$

d)
$$V = \frac{c \cdot t}{\rho} = 814,4 \text{ I}$$