

## Deep-Learning Based Predictive Models for Chest X-ray Diagnosis

Hoseinali (Ali) Borhan hborhan@stanford.edu

### ABSTRACT AND OBJECTIVES

Predictive multi-class models are trained for chest x-ray diagnosis of 14 observations using different deep learning architectures and a large dataset of x-ray images (Chexpert).

- VGG-16, ResNet-50, and **DenseNet-121** are trained on an Amazon AWS EC2 GPU instance with Keras.
- For DenseNet-121, both **transfer learning** and **full training** are applied.
- Error analysis of the data indicating unbalance dataset
- **Up-sampling** data to fix unbalance issue leading to significant improvement of F1 scores over test data
- Gradient weighted Class Activation Map application

#### DATA AND FEATURES

- CheXpert, a large public dataset for chest radiograph interpretation, consisting of 224,316 chest radiographs of 65,240 patients.
- Features/Model Inputs: Chest X-Ray Data
- Model Outputs: 14 class observations prediction
- Model Category: Computer Vision for Multi Classification
- Data split: train/development (10%)/test(10%)
- Data distribution:



#### **METHODS**

- Deep Learning Models for Multi-Class Prediction
  - VGG-16
  - ResNet-50
  - DenseNet-121
- Weighted Gradient Class Activation Image Localization







Pleural Other [0]

Support Devices [1]

Fracture [0]



# RESULTS



f1\_gcore



f1\_score

|                            | II-score              | II-score                   |
|----------------------------|-----------------------|----------------------------|
|                            | Baseline DenseNet-121 | DenseNet-121 balanced Data |
| No Finding                 | 0.27                  | 0.77                       |
| Enlarged Cardiomediastinum | 0.00                  | 0.42                       |
| Cardiomegaly               | 0.25                  | 0.64                       |
| Lung Opacity               | 0.47                  | 0.73                       |
| Lung Lesion                | 0.00                  | 0.81                       |
| Edema                      | 0.22                  | 0.71                       |
| Consolidation              | 0.00                  | 0.55                       |
| Pneumonia                  | 0.00                  | 0.52                       |
| Atelectasis                | 0.00                  | 0.66                       |
| Pneumothorax               | 0.00                  | 0.57                       |
| Pleural Effusion           | 0.53                  | 0.77                       |
| Pleural Other              | 0.00                  | 0.73                       |
| Fracture                   | 0.00                  | 0.68                       |
| Support Devices            | 0.74                  | 0.84                       |
| micro avg                  | 0.42                  | 0.70                       |
| macro avg                  | 0.18                  | 0.67                       |
| weighted avg               | 0.34                  | 0.70                       |
| samples avg                | 0.34                  | 0.65                       |
| _                          |                       |                            |

#### CONCLUSIONS

- Best model: DenseNet-121 after balancing training data
- The importance of other indexes like f1-score besides accuracy
- The importance of splitting data into train, development and test
- Localization insights with weighted gradient class activation
- <u>Future steps</u>: combine CheXpert and MIMIC-CXR to further improve unbalance data, apply image segmentation

\* My presentation clip: <a href="https://youtu.be/EFhXO">https://youtu.be/EFhXO</a> mEy5M