

https之加密算法

2017.03.20

相关加密算法

- 1、散列算法
- 2、对称加密算法
- 3、非对称加密算法

1、散列算法

又称哈希算法(加密)、杂凑算法(加密)、摘要算法、签名算法

常见的散列算法: MD5、SHA-1、SHA-2等

- 1. 通过输入可以容易地计算出输出
- 2. 很难从给定的输出反推出输入,即不可逆性
- 3. 不能修改输入(哪怕是微小的修改)而使得输出不变
- 4. 不能找出2个不同的输入, 使得输出一样

散列算法家族

Comparison	of	SHA	functions	[edit]
------------	----	-----	-----------	--------

Comparison of SHA functions [edit]										
Algorit	hm and variant	Output size (bits)	Internal state size (bits)	Block size	Max message size (bits)	Rounds	Operations	Security (bits)	Example Performance ^[2] (MiB/s)	
MD5 (as reference)		128	128 (4 × 32)	512	2 ⁶⁴ - 1	64	And, Xor, Rot, Add (mod 2 ³²), Or	<64 (collisions found)	335	
SHA-0		160	160 (5 × 32)	512	2 ⁶⁴ - 1	80	And, Xor, Rot, Add (mod 2 ³²),	<80 (collisions found)	_	
	SHA-1	160	160 (5 × 32)	512	2 ⁶⁴ - 1	80	Or	<pre></pre>	192	
SHA-2	SHA-224 SHA-256	224 256	256 (8 × 32)	512	2 ⁶⁴ - 1	64	And, Xor, Rot, Add (mod 2 ³²), Or, Shr	112 128	139	
	SHA-384 SHA-512 SHA-512/224 SHA-512/256	384 512 224 256	512 (8 × 64)	1024	2 ¹²⁸ - 1	80	And, Xor, Rot, Add (mod 2 ⁶⁴), Or, Shr	192 256 112 128	154	
SHA-3	SHA 3-224 SHA 3-256 SHA 3-384 SHA 3-512	224 256 384 512		1152 1088 832 576	∞ 24	And, Xor, Rot, Not	112 128 192 256	_		
	SHAKE128 SHAKE256	d (arbitrary) d (arbitrary)		1344 1088				min (<i>d</i> /2, 128) min (<i>d</i> /2, 256)	_	

SHAttered事件

2017年2月23日,CWI和Google的研究人员公开了2个PDF文件,这是2个不同的PDF文档,但是它们的SHA-1校验值是一样的

SHAttered 和其他方式对比

Shattered compared to other collision attacks

散列算法死亡时间表

SHA-1 现状

- 1、对于SSL证书,Windows已于2017年1月1日起停止支持SHA1证书。
- 2、对于代码签名证书,Windows早在2016年1月1日就停止接受没有时间戳的SHA-1签名的代码和SHA-1证书。
- 3、Chrome浏览器已经逐步地废弃了SHA-1证书支持,现在最新版的Chrome已经彻底不支持了。
- 4、Mozilla自2017年1月1日后不再信任SHA-1证书

2、对称加密

常用的有: DES、3DES、AES、RC2、RC4、RC5和Blowfish

特点:

- 加密解密用的是同一套密钥
- 加密、解密速度较快,可用于大量数据加密

3、非对称加密

又称公开密钥加密算法

常用的有: RSA、ElGamal、ECC 椭圆曲线算法

以RSA算法为例,常见的有:

- RSA-768 (已被破解)
- RSA-1024 (常用,但不推荐)
- RSA-2048 (推荐)

非对称加密特点

- 有公钥和密钥,加密解密用的是不同的钥匙;即公钥加密的数据只有私钥才能解密;反之,私钥加密的数据需要公钥才能解密
- 加密、解密速度较慢,用于少量数据加密
- 公钥可以公开传播, 私钥需要自己保管
- 加密的数据长度不能大于私钥长度

用openss加密解密数据

openssl genrsa -out private.key 2048 //生成私钥

openssl rsa -in private.key -pubout -out pub.key // 从私钥提取公钥

echo -n "123456" | openssl rsautl -encrypt -inkey pub.key -pubin >encode.result //加密数据

cat encode.result | openssl rsautl -decrypt -inkey private.key //解密

生成ssh钥匙对: ssh-keygen -t rsa -f testfile -C "for test" //底层是用openssl的库

参考资料

从SHAttered事件谈安全: https://segmentfault.com/a/1190000008496343

shattered事件官网: http://shattered.io/

RSA密钥长度、明文长度和密文长度: http://www.metsky.com/archives/657.html

SSL常见加密算法: http://www.willrey.com/support/ssl_DES.html

openssl生成钥匙对、加密解密数据,http://blog.chinaunix.net/uid-25063573-id-3700746.html

ssh、openssl key之间的转化: http://www.cnblogs.com/pixy/p/4722381.html

THANKS FOR YOUR WATCHING

