Programme de colle n°4

Trigonométrie

1) Rappel: fonction cosinus, sinus.

2) Fonction tangente.

3) Formules de duplication, linéarisation, factorisation.

4) Équations et inéquations trigonométriques.

Calcul algébrique

1) Notation \sum , \prod .

2) Sommes classiques (à connaître par coeur) : $\sum_{k=m}^{n} 1$, $\sum_{k=0}^{n} k$, $\sum_{k=0}^{n} k^2$, $\sum_{k=0}^{n} k^3$, $\sum_{k=0}^{n} q^k$.

3) Calcul de sommes, de sommes télescopiques, de sommes doubles, de sommes triangulaires.

Questions de cours

1) Factoriser $f(x) = \cos x + \sqrt{3}\sin x$.

2) Réduction du domaine d'étude de $f(x) = \sin(4x)$ et $g(x) = \cos(\frac{x}{2})$. Expliquer comment obtenir le reste du graphe.

3) Montrer que $\tan'(x) = \frac{1}{\cos^2 x} = 1 + \tan^2 x$.

4) Soit $a \not\equiv \pi$ [2 π]. On pose $t = \tan(\frac{a}{2})$. Montrer que $\cos a = \frac{1-t^2}{1+t^2}$ et donner les formules analogues pour $\sin a$ et $\tan a$.

5) Résoudre : $\sin t = \cos 3t$.

6) Résoudre : $|\sin \theta| < \frac{1}{2}$ pour $\theta \in [0, 2\pi]$.

7) Preuve par récurrence de : $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$

8) Démontrer la formule pour $\sum_{k=0}^{n} q^k$ pour $tout \ q \in \mathbb{R}$.

9) Calculer la somme : $S_n = \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+2}\right)$.

10) Calculer la somme : $S_5 = \sum_{k=0}^{2n} \frac{1+3^{2k}}{2^{k+2}}$.