TRAVAUX DIRIGÉS: Réduction

1 Réduction matricielle

Exercice 1: (Solution)

Soit $f \in \mathcal{L}(\mathbb{R}^2)$ l'endomorphisme tel que :

$$E_2 = Vect(1,2)$$
 ; $E_{-3} = Vect(1,1)$ où $E_{\lambda} = \ker(f - \lambda \operatorname{id}_{\mathbb{R}^2})$.

- 1. Montrer que f est diagonalisable et que f est un automorphisme.
- 2. Donner la trace, le déterminant et le polynôme caractéristique de f.
- 3. Calculer f(2,3).
- 4. Déterminer la matrice de f dans la base canonique de deux méthodes différentes.

Exercice 2: (Solution)

Soient E un $\mathbb{R}\text{-espace}$ vectoriel de dimension finie n et $f\in \mathscr{L}(E)$ tel que :

$$(f - 3 \operatorname{id}_E) \circ (f + 2 \operatorname{id}_E) = 0.$$

Montrer que f est diagonalisable.

Exercice 3: (Solution)

Diagonaliser la matrice $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.

Exercice 4: (Solution)

Réduire les matrices suivantes :

$$A = \begin{pmatrix} 5 & 1 & -1 \\ 2 & 4 & -2 \\ 1 & -1 & 3 \end{pmatrix}; \quad B = \begin{pmatrix} 8 & -1 & 2 \\ 7 & 0 & 2 \\ -18 & 3 & -4 \end{pmatrix}; \quad \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}.$$

Exercice 5: (Solution)

Soit
$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ a & 1 & 0 & 0 \\ b & c & 2 & 0 \\ d & e & f & 2 \end{pmatrix}$$
 avec $(a, b, c, d, e, f) \in \mathbb{C}^5$.

Déterminer une condition nécessaire et suffisante sur (a,b,c,d,e,f) pour que A soit diagonalisable.

Exercice 6: (Solution)

On note
$$A = \begin{pmatrix} 2 & 1 & & (0) \\ 1 & \ddots & \ddots & \\ & \ddots & \ddots & 1 \\ (0) & & 1 & 2 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$$

On souhaite montrer que A est diagonalisable.

- 1. On note $\chi_n(X) = \det(XI_n A)$ le polynôme caractéristique de A (il s'agit donc d'un déterminant d'ordre n). Montrer que $\chi_n = (X - 2)\chi_{n-1} - \chi_{n-2}$.
- 2. Calculer $\chi_n(2(1+\cos(\theta)))$ pour tout $\theta \in \mathbb{R}$ à l'aide de l'étude d'une suite récurrente linéaire d'ordre 2.
- 3. Montrer alors que A possède n valeurs propres distinctes et conclure.

Exercice 7: (Solution)

Pour $n \in \mathbb{N}^*$, on considère $A_n = \begin{pmatrix} 1 & \frac{1}{n} & \frac{1}{n} \\ -\frac{1}{n} & \frac{n+2}{n} & \frac{1}{n} \\ \frac{1}{n} & -\frac{1}{n} & 1 \end{pmatrix} \in \mathscr{M}_3(\mathbb{R}).$

- 1. Montrer sans calculer son polynôme caractéristique que 1 et $1 + \frac{1}{n}$ sont des valeurs propres de A_n .
- 2. La matrice A_n est-elle diagonalisable? inversible?
- 3. Pour tout $n \in \mathbb{N}^*$, on note $B_n = A_1 A_2 \dots A_n$. La matrice B_n est-elle diagonalisable? Inversible? Si oui, déterminer B_n^{-1} .

Exercice 8: (Solution)

Soient $A, B \in \mathcal{M}_3(\mathbb{C})$ telles que $B^2 = A$.

1. Montrer que (B diagonalisable $\Longrightarrow A$ diagonalisable). Le réciproque est-elle vraie?

2. Soit
$$A = \begin{pmatrix} 11 & -5 & -5 \\ -5 & 3 & 3 \\ -5 & 3 & 3 \end{pmatrix}$$
.

On cherche les matrices $B \in \mathcal{M}_3(\mathbb{C})$ vérifiant $B^2 = A$.

- (a) Montrer que A est diagonalisable. On note D une matrice diagonale semblable à A.
- (b) Donner quatre matrices $C \in \mathcal{M}_3(\mathbb{R})$ telles que $C^2 = D$. Le but de ce qui suit est de montrer que ces quatre matrices $C \in \mathcal{M}_3(\mathbb{R})$ sont les seules matrices vérifiant $C^2 = D$.
- (c) Soit $C \in \mathcal{M}_3(\mathbb{R})$ telle que $C^2 = D$.
 - i. Montrer que CD = DC.
 - ii. En déduire que C est diagonale.
 - iii. Conclure.
- (d) En déduire toutes les matrices $B \in \mathcal{M}_3(\mathbb{R})$ telles que $B^2 = A$.

Exercice 9: (Solution)

Soit $A \in \mathscr{M}_n(\mathbb{R})$ définie par ses coefficients :

$$a_{i,j} = 1 \text{ si } i + j = n + 1 \text{ et } a_{i,j} = 0 \text{ sinon.}$$

- 1. Écrire la matrice A et calculer A^2 .
- 2. Montrer que si $\lambda \in Sp(A)$ alors $\lambda^2 = 1$. En déduire que $Sp(A) \subset \{-1; 1\}$. Déterminer les espaces propres $E_{-1}(A)$ et $E_1(A)$.
- 3. La matrice A est-elle diagonalisable?

Exercice 10: (Solution)

Soit
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{C}).$$

1. Calculer A^2, A^3 . Montrer que si $\lambda \in \mathbb{C}$ est une valeur propre de A alors $\lambda^3 = 1$. En déduire un ensemble contenant Sp(A).

- 2. Déterminer les valeurs propres de A ainsi que les espaces propres associés.
- 3. Soient $a, b, c \in \mathbb{C}$.

Diagonaliser la matrice $M = \begin{pmatrix} c & b & a \\ a & c & b \\ b & a & c \end{pmatrix}$.

Exercice 11: (Solution)

Soient $u, v, w \in \mathbb{R}^{\mathbb{N}}$ définies par $u_0 = -2, v_0 = 1, w_0 = 5$ et

$$\forall n \in \mathbb{N}, \begin{cases} u_{n+1} = 4u_n - 3v_n - 3w_n \\ v_{n+1} = 3_n - 2v_n - 3w_n \\ w_{n+1} = 3u_n - 3v_n - 2w_n \end{cases}$$

Déterminer le terme général u_n, v_n, w_n en fonction de n.

Exercice 12: (Solution)

Déterminer l'ensemble des suites u, v, w telles que pour tout $n \in \mathbb{N}$,

$$\begin{cases} u_{n+1} = v_n + w_n \\ v_{n+1} = u_n + w_n \\ w_{n+1} = u_n + v_n. \end{cases}$$

Exercice 13: (Solution)

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=u_1=u_2=1$ et

$$u_{n+3} = 45u_n - 39u_{n+1} + 11u_{n+2}.$$

On pose
$$U_n = \begin{pmatrix} u_{n+2} \\ u_{n+1} \\ u_n \end{pmatrix}$$
.

- 1. Déterminer une matrice $A \in \mathcal{M}_3(\mathbb{R})$ telle que $U_{n+1} = AU_n$. Exprimer U_n en fonction de A et U_0 .
- 2. Déterminer les valeurs propres et les espace propres de la matrice A. Est-elle diagonalisable?
- 3. Montrer que A est semblable à la matrice triangulaire $T = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}$.
- 4. Déterminer u_n en fonction de n.

Exercice 14: (Solution)

Soient $p, q \in \mathbb{R}_+^*$. On pose $A = \begin{pmatrix} 1-p & q \\ p & 1-q \end{pmatrix}$.

- 1. Déterminer deux matrices $A, B \in \mathcal{M}_2(\mathbb{R})$ telles que A = B + (1 p q)C et $B + C = I_2$.
- 2. Calculer A^n pour tout $n \in \mathbb{N}$.
- 3. On a programmé une intelligence artificielle IA pour qu'elle dialogue avec deux symboles : 0 et 1.

Mais le réseau neuronale de IA lui a permis de développer d'autres symboles par elle-même, que l'on ne sait pas interpréter.

Lorsqu'à l'instant n l'intelligence IA affiche 0, alors IA affiche 1 à l'instant n+1 avec probabilité $p\in]0;1[$

Lorsqu'à l'instant n l'intelligence IA affiche 1, alors IA affiche 0 à l'instant n+1 avec probabilité $q\in]0;1[.$

On note u_n (resp. v_n) la probabilité qu'à l'instant n, l'intelligence IA affiche 0 (resp. 1).

Quelle est la probabilité qu'à l'instant n, l'intelligence IA affiche autre chose que 0 ou 1?

4. Calculer $\lim_{n\to+\infty} u_n$ et $\lim_{n\to+\infty} v_n$.

Exercice 15: (Solution)

On considère deux urnes.

Initialement, il y a deux boules blanches dans U_1 et deux noires dans U_2 .

A chaque tirage, on prend de manière indépendante une boule dans U_1 , une boule dans U_2 et on les échange.

On note X_k le nombre de boules blanches dans U_1 après le k-ième tirage. On pose $X_0=2$.

- 1. Déterminer $X_k(\Omega)$ pour tout $k \in \mathbb{N}$. On justifiera rigoureusement que $[X_k = x] \neq \emptyset$ pour tout $x \in X_k(\Omega)$.
- 2. On pose $Y_k = \begin{pmatrix} P(X_k = 0) \\ P(X_k = 1) \\ P(X_k = 2) \end{pmatrix}$.

Déterminer une matrice $A \in \mathcal{M}_3(\mathbb{R})$ telle que $\forall k \in \mathbb{N}, Y_{k+1} = AY_k$ En déduire l'espérance de X_k .

- 3. Déterminer trois vecteurs propres de A notés Z_1, Z_2, Z_3 , linéairement indépendants puis décomposer Y_0 dans cette base.
- 4. Montrer que $Y_k = A^k Y_0$. En déduire la loi de X_k .

Exercice 16: (Solution)

Soient A, B des matrices carrées à coefficients réels d'ordre n à coefficients réels. On note f, g les endomorphismes canoniquement associés aux matrices A, B. On suppose que A possède n valeurs propres réelles distinctes et que A et B commutent : AB = BA.

- 1. Montrer que tout vecteur propre de f est vecteur propre de g. En déduire qu'il existe une base de \mathbb{R}^n de vecteurs propres communs à f et g.
- 2. Soit $A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

Déterminer toutes les matrices $M \in \mathcal{M}_3(\mathbb{R})$ telles que $2M^2 + 5M = 3A$.

2 Réduction d'endomorphismes

Exercice 17: (Solution)

Soit $E = \mathbb{R}[X]$.

Pour tout $P \in E$, on pose f(P) = (X+1)(X-3)P' - XP.

- 1. Montrer que $f \in \mathcal{L}(E)$.
- 2. Montrer que si P est un polynôme propre pour f alors P est de degré 1. Déterminer alors les valeurs propres et les vecteurs propres de f.

Exercice 18: (Solution)

Soit $E = \mathbb{R}[X]$

Pour tout $P \in E$, on pose f(P) = (X - 1)(X - 2)P' - 2XP.

- 1. Montrer que f est un endomorphisme de E.
- 2. Montrer que si P est un polynôme propre pour f alors $\deg(P)=2$.
- 3. Déterminer les éléments propres de $\varphi.$

Exercice 19: (Solution)

Soit $n \in \mathbb{N}^*$ et $E = \mathbb{R}_n[X]$. Pour tout $P \in E$, on pose f(P) = X(1-X)P' + nXP.

- 1. Montrer que $f \in \mathcal{L}(E)$.
- 2. Soit $\lambda \in \mathbb{R}$. Résoudre l'équation différentielle $x(1-x)y'(x) + nxy(x) = \lambda y(x)$.
- 3. Déterminer les valeurs propres et les vecteurs propres de f.

4. f est-elle diagonalisable?

Exercice 20: (Solution)

On considère l'application f définie sur $\mathbb{R}_n[X]$, $n \in \mathbb{N}^*$ par :

$$f(P) = nXP - (X^2 - 1)P'.$$

- 1. Montrer que f est un endomorphisme de $\mathbb{R}_n[X]$.
- 2. Montrer que la famille $(1, X 1, ..., (X 1)^n)$ est une base de $\mathbb{R}_n[X]$. Déterminer la matrice de f dans cette base.
- 3. L'endomorphisme f est-il diagonalisable?

Exercice 21: (Solution)

Soient $A=\begin{pmatrix}5&-17&25\\2&-9&16\\1&-5&9\end{pmatrix}$ et $f\in\mathscr{L}(\mathbb{R}^3)$ l'endomorphisme canoniquement

- associé à A.
 - 1. Déterminer le polynôme caractéristique de A et montrer que A n'est pas diagonalisable dans $\mathcal{M}_3(\mathbb{C})$.
 - 2. Le but de ce qui suit est de trigonaliser la matrice A.
 - (a) Soit $u_1 \in E_1(f)$ et $u_2 \in E_2(f)$ non nuls. Déterminer un vecteur u_3 de la base canonique de \mathbb{R}^3 telle que $\mathscr{B} = (u_1, u_2, u_3)$ soit une base de \mathbb{R}^3 . Déterminer alors $Mat_{\mathscr{B}}(f)$.
 - (b) Soit $v_1 \in E_2(A)$ et $v_3 \in E_1(A)$ non nuls. Déterminer $v_2 \in \mathbb{R}^3$ tel que $\mathscr{C} = (v_1, v_2, v_3)$ soit une base de \mathbb{R}^3 telle que $Mat_{\mathscr{C}}(f)$ soit de la forme

$$\left(\begin{array}{ccc}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)$$

Exercice 22: (Solution)

On note
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 3 \\ 1/3 & 0 & 1 \end{pmatrix}$$
. On note $E = \{aI_3 + bA + CA^2 : (a, b, c) \in \mathbb{R}^3\}$.

1. Montrer que E est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ et que $A^3 \in E$.

Montrer que $\mathscr{B} = (I_3, A, A^2)$ est une base de E.

- 2. Déterminer le polynôme caractéristique de A.
- 3. Sans calculer ses valeurs propres, dire si A est diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.
- 4. Même question dans $\mathcal{M}_3(\mathbb{C})$.
- 5. On définit Φ_A en posant $\forall M \in E, \Phi_A(M) = AM$. Montrer que Φ_A est un endomorphisme de E. Donner sa matrice dans \mathscr{B} .
- 6. On souhaite montrer que Φ_A n'est pas diagonalisable. On raisonne par l'absurde et on suppose qu'il existe une base \mathscr{B}' de E dans laquelle la matrice de Φ_A est une matrice diagonale D.
 - (a) Justifier que les coefficients diagonaux de D sont réels.
 - (b) En déduire une contradiction.

Exercice 23: (Solution)

Pour $k \in [0, 4]$ soit la fonction réelle d'une variable réelle $f_k : x \mapsto e^{kx}$.

- 1. On note $E = Vect(f_0, f_1, f_2, f_3, f_4)$. Déterminer la dimension de E.
- 2. Soit $\varphi: f\mapsto f''-3f'+2f$. Vérifier que $\varphi\in\mathscr{L}(E)$ et déterminer les éléments propres de φ .

Exercice 24: (Solution)

Soit $E=\mathscr{C}^0([0;1],\mathbb{R}).$ Pour tout $f\in E,$ on définie la fonction g par

$$\forall x \in [0;1], g(x) = \int_0^1 \inf(x,t) f(t) dt.$$

On note enfin T l'application définie sur E par T(f) = g.

- 1. Montrer que T est un endomorphisme de E.
- 2. Soit $f \in E$. Montrer que si T(f) = 0 alors $\int_{x}^{1} f(t)dt = 0$. En déduire que f est nulle et que 0 n'est pas valeur propre pour T.
- 3. Soit $\lambda \neq 0$ et soit $f \in E$ tel que $T(f) = \lambda f$. Montrer que f est solution de l'équation différentielle du second ordre :

$$\lambda y''(x) + y(x) = 0.$$

Montrer que f(0) = 0 et f'(1) = 0.

- 4. Montrer que $\lambda < 0$ n'est jamais valeur propre.
- 5. Déterminer les valeurs propres de T et les vecteurs propres associés.

SOLUTIONS TRAVAUX DIRIGÉS: Réduction

Solution Exercice 1.

1. On a dim $\mathbb{R}^2 = 2 = \dim E_2 + \dim E_{-3}$.

Par le cours on en déduit que $\mathbb{R}^2 = E_2 \oplus E_{-3}$.

Par conséquent, f est diagonalisable et $Sp(f) = \{2, -3\}$.

La matrice de f dans la base de diagonalisation $\mathcal{B} = ((1,2),(1,1))$ est dia-

gonale: $Mat_{\mathscr{B}}(f) = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix}$.

De plus, 0 n'est pas valeur propre donc $\ker(f) = \{0_{\mathbb{R}^2}\}$: f est donc injective donc bijective car \mathbb{R}^2 est de dimension finie : $f \in GL(\mathbb{R}^2)$ est un automorphisme.

2. La trace est la somme des valeurs propres Tr(f) = 2 - 3 = -1.

Le déterminant est le produit des valeurs propres : det(f) = -6.

Le polynôme caractéristique :

$$\chi_f(X) = X^2 - \text{Tr}(f)X + (-1)^2 \det(f) = X^2 + X - 6 = (X - 2)(X + 3).$$

On peut également le retrouver avec la matrice de f dans la base ${\mathscr B}$:

$$\chi_f(X) = \begin{vmatrix} X - 2 & 0 \\ 0 & X + 3 \end{vmatrix} = (X - 2)(X + 3).$$

3. $\mathcal{B} = ((1,2),(1,1))$ est une base de \mathbb{R}^2 .

Il existe un unique $(x,y) \in \mathbb{R}^2$ tel que (2,3) = x(1,2) + y(1,1) = (x+y,2x+y).

On trouve x = y = 1.

Ainsi, f(2,3) = f((1,2) + (1,1)) = f(1,2) + f(1,1) = 2(1,2) - 3(1,1) = (-1,1).

4. Première méthode.

On note $\mathscr{B}_c = ((1,0),(0,1)).$

On calcule

$$-f(1,0) = f(-(1,2)+2(1,1)) = -f(1,2)+2f(1,1) = -2(1,2)+2(-3(1,1))$$

f(1,0) = (-8, -10)

$$-f(0,1) = f((1,2) - (1,1)) = f(1,2) - f(1,1) = 2(1,2) - (-3(1,1))$$

$$f(0,1) = (5,7).$$

Ainsi, $Mat_{\mathcal{B}_c}(f) = \begin{pmatrix} -8 & 5 \\ -10 & 7 \end{pmatrix}$.

Seconde méthode.

On utilise la formule du changement de base.

La matrice de passage $P = P_{\mathscr{B}_c \to \mathscr{B}} = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$ est inversible d'inverse

$$P^{-1} = - \left(\begin{array}{cc} 1 & -1 \\ -2 & 1 \end{array} \right) = \left(\begin{array}{cc} -1 & 1 \\ 2 & -1 \end{array} \right).$$

On a $A = PDP^{-1}$ avec $A = Mat_{\mathscr{B}_c}(f)$ et $D = Mat_{\mathscr{B}}(f)$.

On en déduit :

$$A = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix}$$
$$= \begin{pmatrix} 2 & -3 \\ 4 & -3 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix}$$
$$= \begin{pmatrix} -8 & 5 \\ -10 & 7 \end{pmatrix}$$

Solution Exercice 2. Montrons que $E = \ker(f - 2\operatorname{id}_E) \oplus \ker(f + 3\operatorname{id}_E)$.

- $\ker(f 2 \operatorname{id}_E) \cap \ker(f + 3 \operatorname{id}_E) = \{0_E\}.$ En effet, si $x \in \ker(f - 2 \operatorname{id}_E) \cap \ker(f + 3 \operatorname{id}_E)$ alors f(x) = 2x et f(x) = -3xdonc $2x = -3x \iff 5x = 0_E \iff x = 0_E.$
- Tout vecteur $x \in E$ s'écrit

$$x = \frac{1}{5} \underbrace{(f(x) + 2x)}_{\in \ker(f - 3id_E)} - \frac{1}{5} \underbrace{(f(x) - 3x)}_{\in \ker(f + 2id_E)}$$

car

*
$$(f - 3id_E)(f(x) + 2x) = (f - 3id_E) \circ (f + 2id_E)(x) = 0$$

$$* (f + 2id_E)(f(x) - 3x) = (f + 2id_E) \circ (f - 3id_E)(x) = 0$$

On en déduit que $E = \ker(f - 2 \operatorname{id}_E) \oplus \ker(f + 3 \operatorname{id}_E)$: par conséquent f est diagonalisable.

Il existe une base de vecteurs propres ${\mathcal B}$ dans la quelle la matrice de f est de la forme :

On note $\chi_f(X) = (X+2)^{m(-2)}(X-3)^{m(3)} : m(3) + m(-2) = n.$

Le nombre de valeurs propres -2 est égal à la dimension de E_{-2} et puisque f est diagonalisable dim $E_{-2} = m(-2)$.

De même, le nombre de coefficients 3 est égal à dim $E_3 = m(3)$.

Solution Exercice 3.

$$-\chi_A(X) = \begin{vmatrix} X-1 & 0 & -1 \\ 0 & X-1 & 0 \\ -1 & 0 & X-1 \end{vmatrix} = (X-1) \begin{vmatrix} X-1 & -1 \\ -1 & X-1 \end{vmatrix}$$
$$\chi_A(X) = (X-1)[(X-1)^2 - 1] = X(X-1)(X-2).$$

 $-- Sp(A) = \{1, 2, 3\}.$

A est la matrice représentative de \mathbb{R}^3 , dim $(\mathbb{R}^3) = 3$ et f possède 3 valeurs propres distinctes.

Ainsi, f (donc A) est diagonalisable.

La matrice A est donc semblable à $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ et chaque espace propre

est précisément de dimension 1.

— On détermine maintenant les espaces propres de A.

*
$$E_0(f)=\ker(f)$$
. Pour cela, on résout l'équation $AX=0$. On constante que $X=\begin{pmatrix}1\\0\\-1\end{pmatrix}$ est solution.

Au final, l'espace propre de dimension $1: E_0(A) = Vect \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ et

$$E_0(f) = \ker(f) = Vect(-1, 0, 1).$$

* On trouve de même $E_1(f) = Vect(0, 1, 0)$.

 $* E_2(f) = Vect(1,0,1).$

En conclusion $A = PDP^{-1}$ avec :

$$P = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{array}\right) \quad D = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{array}\right).$$

Solution Exercice 4.

$$\chi_A(X) = (X-2)(X-4) \begin{vmatrix} X-6 & 0 \\ 4-X & 1 \end{vmatrix} = (X-2)(X-4)(X-6).$$

On a donc $Sp(A) = \{2, 4, 6\}.$

La matrice A est diagonalisable car elle possède trois valeurs propres dis-

tinctes.
$$A$$
 est semblable à la matrice $D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{pmatrix}$.

Déterminons la matrice de passage $P=P_{\mathcal{B}_c \to \mathcal{B}}$ de la base canonique une base de vecteurs propres \mathscr{B} .

$$-E_2(A) = \{X \in \mathcal{M}_{3,1}(\mathbb{R}) : AX = 2X\}$$
 est de dimension 1.

On échelonne la matrice
$$A - 2I_2 = \begin{pmatrix} 3 & 1 & -1 \\ 2 & 2 & -2 \\ 1 & -1 & 1 \end{pmatrix}$$
.

On en déduit que
$$E_2(A) = Vect \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
.

— On trouve de même
$$E_4(A) = Vect \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
 car $A - 4I_3 =$

$$\left(\begin{array}{ccc} 1 & 1 & -1 \\ 2 & 0 & -2 \\ 1 & -1 & -1 \end{array}\right).$$

$$-E_6(A) = Vect \begin{pmatrix} 1\\1\\0 \end{pmatrix} car A - 6I_3 = \begin{pmatrix} -1 & 1 & -1\\2 & -2 & -2\\1 & -1 & -3 \end{pmatrix}.$$

On en déduit que $A = PDP^{-1}$ avec

$$P = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \text{ et } D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{pmatrix}.$$

Si l'on note f l'endomorphisme canoniquement associé à A on vient de montrer qu'une base de vecteurs propres pour f est donnée par $\mathcal{B} = ((0,1,1),(1,0,1),(1,1,0))$ et que

$$-\ker(f-2\operatorname{id}_{\mathbb{R}^3}) = Vect(0,1,1): f(0,1,1) = 2(0,1,1).$$

$$-- \ker(f - 4\operatorname{id}_{\mathbb{R}^3}) = Vect(1, 0, 1) : f(1, 0, 1) = 4(1, 0, 1)$$

$$-\ker(f - 4\operatorname{id}_{\mathbb{R}^3}) = Vect(1, 0, 1) : f(1, 0, 1) = 4(1, 0, 1).$$

$$-\ker(f - 6\operatorname{id}_{\mathbb{R}^3}) = Vect(1, 1, 0) : f(1, 1, 0) = 6(1, 1, 0).$$

$$2. B = \begin{pmatrix} 8 & -1 & 2 \\ 7 & 0 & 2 \\ -18 & 3 & -4 \end{pmatrix}$$

$$-\chi_B(X) = \begin{vmatrix} X-8 & 1 & -2 \\ -7 & X & -2 \\ 18 & -3 & X+4 \end{vmatrix}$$

$$\chi_B(X) = \begin{vmatrix} X-9 & 1 & -2 \\ X-9 & X & -2 \\ X+19 & -3 & X+4 \end{vmatrix}$$

$$\chi_B(X) = \begin{vmatrix} X-9 & 1 & -2 \\ 0 & X-1 & 0 \\ X+19 & -3 & X+4 \end{vmatrix}$$

$$\chi_B(X) = (X-1) \begin{vmatrix} X-9 & -2 \\ X+19 & X+4 \end{vmatrix}$$

$$\chi_B(X) = (X-1) \begin{vmatrix} X-9 & -2 \\ X+19 & X+4 \end{vmatrix}$$

$$\chi_B(X) = (X-1) \begin{bmatrix} (X-9)(X+4) + 2(X+19) \end{bmatrix}$$

$$\chi_B(X) = (X-1) \begin{bmatrix} (X-1)(X-2) + (X-1)(X-2) \end{bmatrix}$$

$$\chi_B(X) = (X-1) \begin{bmatrix} (X-1)(X-2) + (X-1) \end{bmatrix}$$

$$\chi_B(X$$

On en déduit que $E_1(B) = Vect \begin{pmatrix} 1 \\ 1 \\ -3 \end{pmatrix}$.

On a $m(1) = 2 > \dim E_1(B)$ donc B n'est pas diagonalisable.

En revanche, χ_B est scindé donc B est trigonalisable sur $\mathcal{M}_n(\mathbb{R})$.

 $- E_2(B) = \{ X \in \mathcal{M}_{3,1}(\mathbb{R}) : BX = 2X \}.$

Puisque m(2) = 1 on a dim $E_2(B) = 1$. On cherche donc un seul vecteur propre de B associé à la valeur propre 2.

On résout pour cela l'équation BX = 2X.

On échelonne la matrice
$$B - 2I_3 = \begin{pmatrix} 6 & -1 & 2 \\ 7 & -2 & 2 \\ -18 & 3 & -6 \end{pmatrix}$$
:

$$B - 2I_2 \iff \begin{pmatrix} 6 & -1 & 2 \\ 7 & -2 & 2 \\ 0 & 0 & 0 \end{pmatrix} (L_3 + 3L_1) \iff \begin{pmatrix} 6 & -1 & 2 \\ 0 & -5 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$

L'équation BX = 2X est donc équivalente à

$$\begin{cases} 6x & - & y & + & 2z & = & 0 \\ & - & 5y & - & 2z & = & 0 \end{cases} \iff \begin{cases} x & & = & -\frac{2z}{5} \\ & y & & = & -\frac{2z}{5} \end{cases}$$

Par conséquent $E_2(B) = \begin{pmatrix} 2 \\ 2 \\ -5 \end{pmatrix}$.

3. On pose $X_1 = \begin{pmatrix} 2 \\ 2 \\ -5 \end{pmatrix}$, $X_2 = \begin{pmatrix} 1 \\ 1 \\ -3 \end{pmatrix}$ et on complète pour obtenir une

base
$$(X_1, X_2, X_3)$$
 de $\mathcal{M}_{3,1}(\mathbb{R})$ avec $X_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

On note (e_1, e_2, e_3) les vecteurs de \mathbb{R}^3 correspondants.

On a
$$BX_3 = \begin{pmatrix} 8 \\ 7 \\ -18 \end{pmatrix} = 3X_1 + X_2 + X_3.$$

Si l'on note g l'endomorphisme canonique associé à B, on a donc $g(e_3) = 3e_1 + e_2 + e_3$.

Dans la base $\mathcal{B} = (e_1, e_2, e_3)$ on a donc

$$Mat_{\mathscr{B}}(g) = \begin{pmatrix} 2 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$4. \ C = \left(\begin{array}{ccc} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{array}\right).$$

$$-\chi_C(X) = \left| \begin{array}{ccc} X & -1 & 0 \\ 1 & X & -1 \\ 0 & 1 & X \end{array} \right| = X \left| \begin{array}{ccc} X & -1 \\ 1 & X \end{array} \right| + \left| \begin{array}{ccc} 1 & -1 \\ 0 & X \end{array} \right|$$

 $\chi_C(X) = X(X^2 + 1) + X = X(X^2 + 2).$

- χ_C n'est pas scindé sur \mathbb{R} donc C n'est pas trigonalisable dans $\mathscr{M}_n(\mathbb{R})$ donc a fortiori n'est pas diagonalisable dans $\mathscr{M}_n(\mathbb{R})$.
- En revanche, χ_C est scindé sur \mathbb{C} : $\chi_C(X) = X(X \sqrt{2}i)(X + \sqrt{2}i)$ et à racines simples.

Par conséquent, C possède trois valeurs propres complexes distinctes donc C est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$.

— Chaque espace propre est de dimension 1.

*
$$E_0(C) = Vect \begin{pmatrix} 1\\0\\1 \end{pmatrix}$$
.
* $E_{i\sqrt{2}}(C) = Vect \begin{pmatrix} 1\\i\sqrt{2}\\-1 \end{pmatrix}$.
En effet, $A - i\sqrt{2}I_3 = \begin{pmatrix} -i\sqrt{2} & 1 & 0\\-1 & -i\sqrt{2} & 1\\0 & -1 & -i\sqrt{2} \end{pmatrix}$ donc $(A - i\sqrt{2}I_3) \begin{pmatrix} 1\\i\sqrt{2}\\-1 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$.

— De manière analogue, $E_{-i\sqrt{2}} = Vect \begin{pmatrix} -1 \\ i\sqrt{2} \\ 1 \end{pmatrix}$

On en déduit que $C = PDP^{-1}$ avec

$$P = \begin{pmatrix} 1 & 1 & -1 \\ 0 & i\sqrt{2} & i\sqrt{2} \\ 1 & -1 & 1 \end{pmatrix} \quad D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & i\sqrt{2} & 0 \\ 0 & 0 & -i\sqrt{2} \end{pmatrix}.$$

Solution Exercice 5. $A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ a & 1 & 0 & 0 \\ b & c & 2 & 0 \\ d & e & f & 2 \end{pmatrix}$.

Le polynôme caractéristique de A est $\chi_A(X) = (X-1)^2(X-2)^2$.

La matrice A est diagonalisable si et seulement si dim $E_1(A) = \dim E_2(A) = 2$.

Notons f l'endomorphisme canoniquement associé à A.

On a $E_1(f) = \ker(f - id_{\mathbb{R}^4})$ et $E_2(f) = \ker(f - 2id_{\mathbb{R}^4})$.

Par conséquent A est diagonalisable \iff $\operatorname{rg}(A - I_4) = \operatorname{rg}(A - 2I_4) = 2$.

- On a
$$A - I_2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ a & 0 & 0 & 0 \\ b & c & 1 & 0 \\ d & e & f & 1 \end{pmatrix}$$
 et $\operatorname{rg}(A - I_2) = \operatorname{rg}({}^t(A - I_2))$.

Or la matrice ${}^t(A - I_4) = \begin{pmatrix} 0 & a & b & d \\ 0 & 0 & c & e \\ 0 & 0 & 1 & f \\ 0 & 0 & 0 & 1 \end{pmatrix}$ est échelonnée.

Elle est de rang 2 si et seulement si a = b = c = d = e = 0.

$$--A - 2I_4 = \begin{pmatrix} -1 & 0 & 0 & 0 \\ a & -1 & 0 & 0 \\ b & c & 0 & 0 \\ d & e & f & 0 \end{pmatrix}.$$

$$\operatorname{Or}\ ^t(A-2I_4) = \left(\begin{array}{cccc} -1 & a & b & d \\ 0 & -1 & c & e \\ 0 & 0 & 0 & f \\ 0 & 0 & 0 & 0 \end{array} \right) \text{ est de rang 2 si et seulement si } f = 0.$$

Au final A est diagonalisable si et seulement si a=b=c=d=e=f=0. \square

Solution Exercice 6.
$$A = \begin{pmatrix} 2 & 1 & & (0) \\ 1 & \ddots & \ddots & \\ & \ddots & \ddots & 1 \\ (0) & 1 & 2 \end{pmatrix}$$

$$-\chi_A(X) = \begin{vmatrix} X - 2 & -1 & & (0) \\ -1 & \ddots & \ddots & \\ & \ddots & \ddots & -1 \\ (0) & & -1 & X - 2 \end{vmatrix}_{[n]}$$

On note $A = A_n \in \mathcal{M}_n(\mathbb{R})$ et χ_n le polynôme caractéristique de cette matrice. On développe par rapport à la première colonne :

Ainsi, $\chi_n = (X - 2)\chi_{n-1} - \chi_{n-2}$.

— On calcule $\chi_n(2(1+\cos\theta))$. Notons $u_n = \chi_n(2(1+\cos\theta))$.

Ainsi, $u_{n+2} = (2(1+\cos\theta) - 2)u_{n+1} - u_n = 2\cos\theta u_{n+1} - u_n$.

L'équation caractéristique $r^2-2\cos\theta r+1=0$ a pour discriminant

 $\Delta = 4(\cos^2 \theta - 1) = -4\sin^2 \theta = (2i\sin \theta)^2.$

Les solutions de l'équation caractéristique sont

 $\cos \theta + i \sin \theta = e^{i\theta}$ et $\cos \theta - i \sin \theta = e^{-i\theta}$ de même module égale à 1.

On en déduit qu'il existe $(\alpha, \beta) \in \mathbb{R}^2$ tel que pour tout $n \ge 1$:

$$u_n = \alpha \cos n\theta + \beta \sin n\theta.$$

On a
$$* u_1 = 2(1 + \cos \theta) - 2 = 2 \cos \theta \text{ et}$$

$$* u_2 = \begin{vmatrix} 2(1 + \cos \theta) - 2 & -1 \\ -1 & 2(1 + \cos \theta) - 2 \end{vmatrix} = \begin{vmatrix} 2\cos \theta & -1 \\ -1 & 2\cos \theta \end{vmatrix}$$

$$u_2 = 4\cos^2 \theta - 1.$$

Par conséquent,

$$\begin{cases} \alpha \cos \theta + \beta \sin \theta = 2 \cos \theta \\ \alpha \cos 2\theta + \beta \sin 2\theta = 4 \cos^2 \theta - 1 \end{cases}$$

$$\iff \begin{cases} \alpha \cos \theta + \beta \sin \theta = 2 \cos \theta & (L_1) \\ \alpha \cos 2\theta + 2\beta \sin \theta \cos \theta = 4 \cos^2 \theta - 1 & (L_2) \end{cases}$$

$$\iff \begin{cases} \alpha \cos \theta + \beta \sin \theta = 2 \cos \theta & (L_1) \\ \alpha \cos 2\theta + 2\beta \sin \theta \cos \theta = 4 \cos^2 \theta - 1 & (L_2 - 2 \cos \theta L_1) \end{cases}$$

$$\iff \begin{cases} \alpha \cos \theta + \beta \sin \theta = 2 \cos \theta \\ \alpha (\cos 2\theta - 2 \cos^2 \theta) = -1 \end{cases}$$

$$\iff \begin{cases} \alpha \cos \theta + \beta \sin \theta = 2 \cos \theta \\ -\alpha = -1 \end{cases}$$

$$\iff \begin{cases} \alpha \cos \theta + \beta \sin \theta = 2 \cos \theta \\ \alpha = 1 \end{cases}$$

$$\iff \begin{cases} \beta \sin \theta = \cos \theta \\ \alpha = 1 \end{cases}$$

Si $\theta = 0[\pi]$ alors $u_n = (-1)^n$. On suppose maintenant $\theta \neq 0[\pi]$.

On obtient donc
$$(\alpha, \beta) = \left(1, \frac{\cos \theta}{\sin \theta}\right)$$

Par conséquent, $u_n = \cos n\theta + \frac{\cos \theta}{\sin \theta} \sin n\theta = \frac{\sin n\theta \cos \theta + \sin \theta \cos n\theta}{\sin \theta}$.

Par conséquent, $\forall n \geqslant 1, u_n = \frac{\sin((n+1)\theta)}{\sin \theta}$.

 $-\lambda = 2(1+\cos\theta)$ est valeur propre de $A = A_n$ si et seulement si $\chi_n(\lambda) = 0$ c'est-à-dire :

$$\frac{\sin((n+1)\theta)}{\sin\theta} = 0.$$

En posant pour tout $k \in [1, n]$, $\theta_k = \frac{k\pi}{n+1} \in]0; \pi[$, on obtient

$$\chi_n(2(1+\theta_k)) = \frac{\sin\left((n+1)\frac{k\pi}{n+1}\right)}{\sin\theta_k} = 0.$$

Les scalaires $\lambda_k = 2(1 + \cos \frac{k\pi}{n+1})$ sont distincts et sont tous des valeurs propres de A.

Par conséquent $A \in \mathcal{M}_n(\mathbb{R})$ possède exactement n valeurs propres distinctes : A est donc diagonalisable.

Solution Exercice 7. On considère $A_n=\left(\begin{array}{cccc}1&\dfrac{1}{n}&\dfrac{1}{n}\\-\dfrac{1}{n}&\dfrac{n+2}{n}&\dfrac{1}{n}\\\dfrac{1}{n}&-\dfrac{1}{n}&1\end{array}\right)\in\mathscr{M}_3(\mathbb{R}).$

1. Première version.

$$-A_n - I_3 = \begin{pmatrix} 0 & 1/n & 1/n \\ -1/n & 2/n & 1/n \\ 1/n & -1/n & 0 \end{pmatrix}.$$

En effectuant l'opération $C_1 \leftarrow C_1 + C_2 - C_3$ on obtient la matrice :

$$\begin{pmatrix} 0 & 1/n & 1/n \\ 0 & 2/n & 1/n \\ 0 & -1/n & 0 \end{pmatrix}$$
 qui n'est pas inversible car de rang 2.

(les deux colonnes non nulles de la matrice obtenue ne sont pas propor-

Ainsi, $A - I_3$ n'est pas inversible et par conséquent, $\lambda = 1$ est une valeur propre de A.

Puisque $rg(A - I_3) = 2$ on en déduit par le théorème du rang que

$$-A - \left(1 + \frac{1}{n}\right)I_3 = \begin{pmatrix} -1/n & 1/n & 1/n \\ -1/n & 1/n & 1/n \\ 1/n & -1/n & -1/n \end{pmatrix}.$$

En effectuant les opérations $L_2 \leftarrow L_2 - L_1$ et $L_3 \leftarrow L_3 + L_1$ on obtient

$$\begin{pmatrix} -1/n & 1/n & 1/n \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Ainsi
$$\operatorname{rg}\left(A - \left(1 + \frac{1}{n}\right)I_3\right) = 1.$$

En particulier $A - \left(1 + \frac{1}{n}\right)I_3$ est non inversible donc $\lambda = 1 + \frac{1}{n}$ est une valeur propres de A

Puisque rg $\left(A - \left(1 + \frac{1}{n}\right)I_3\right) = 1$ on en déduit que dim $E_{1 + \frac{1}{n}} = 2$.

Seconde version.

— On pose
$$X_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
.

$$\text{Alors } A_n X_1 = \begin{pmatrix} 1 & 1/n & 1/n \\ -1/n & (n+2)/n & 1/n \\ 1/n & -1/n & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1+1/n \\ 1+1/n \\ 0 \end{pmatrix}$$

$$A_n X_1 = \begin{pmatrix} 1 + \frac{1}{n} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 + \frac{1}{n} \end{pmatrix} X_1.$$

$$- \text{ On pose maintenant } X_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

$$\text{Alors } A_n X_2 = \begin{pmatrix} 1 & 1/n & 1/n \\ -1/n & (n+2)/n & 1/n \\ 1/n & -1/n & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1+1/n \\ 0 \\ 1+1/n \end{pmatrix}$$

$$A_n X_2 = \begin{pmatrix} 1 + \frac{1}{n} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 + \frac{1}{n} \end{pmatrix} X_2.$$

$$- \text{ On note enfin } X_3 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}.$$

$$\text{Alors } A_n X_3 = \begin{pmatrix} 1 & 1/n & 1/n \\ -1/n & (n+2)/n & 1/n \\ 1/n & -1/n & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$

$$A_n X_3 = X_3.$$

2. D'après ce qui précède, $\dim E_1(A) + \dim E_{1+\frac{1}{n}} = 1 + 2 = 3$ donc $A \in \mathcal{M}_3(\mathbb{R})$ est diagonalisable.

De plus 0 n'est pas valeur propre donc $\{X \in \mathcal{M}_{3,1}(\mathbb{R}) : AX = 0\} = \{0\}.$

Par conséquent A est inversible.

3. Pour tout $n \in \mathbb{N}^*$, on note $B_n = A_1 A_2 \dots A_n$.

Chacune des matrices A_1,\dots,A_n est diagonalisable via la même matrice de changement de base $P=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$:

$$\forall k \in [1, n], A_k = PD_k P^{-1} = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{k+1}{k} & 0 \\ 0 & 0 & \frac{k+1}{k} \end{pmatrix} P^{-1}.$$

En effet, les valeurs propres de A_k sont 1 et $1 + \frac{1}{k} = \frac{k+1}{k}$.

On en déduit que

$$B_{n} = A_{1}A_{2} \dots A_{n} = (PD_{1}P^{-1})(PD_{2}P^{-1}) \dots (PD_{n}P^{-1})$$

$$= PD_{1}D_{2} \dots D_{n}P^{-1}$$

$$= P\prod_{k=1}^{n} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{k+1}{k} & 0 \\ 0 & 0 & \frac{k+1}{k} \end{pmatrix} P^{-1}$$

$$= P\begin{pmatrix} 1 & 0 & 0 \\ 0 & \prod_{k=1}^{n} \frac{k+1}{k} & 0 \\ 0 & 0 & \prod_{k=1}^{n} \frac{k+1}{k} \end{pmatrix} P^{-1}$$

$$= P\begin{pmatrix} 1 & 0 & 0 \\ 0 & n+1 & 0 \\ 0 & 0 & n+1 \end{pmatrix} P^{-1}$$

$$= \begin{pmatrix} 1 & n & n \\ -n & 2n+1 & n \\ n & -n & 1 \end{pmatrix}.$$

La matrice B_n est inversible par produit de matrices inversibles. On trouve

$$B_n^{-1} = \left(P \begin{pmatrix} 1 & 0 & 0 \\ 0 & n+1 & 0 \\ 0 & 0 & n+1 \end{pmatrix} P^{-1} \right)^{-1}$$

$$= P \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{n+1} & 0 \\ 0 & 0 & \frac{1}{n+1} \end{pmatrix} P^{-1}$$

$$= \begin{pmatrix} 1 & -1 + \frac{1}{n+1} & -1 + \frac{1}{n+1} \\ 1 - \frac{1}{n+1} & -1 + \frac{2}{n+1} & -1 + \frac{1}{n+1} \\ -1 + \frac{1}{n+1} & 1 - \frac{1}{n+1} & 1 \end{pmatrix}.$$

Solution Exercice 8. Soient $A, B \in \mathcal{M}_3(\mathbb{C})$ telles que $B^2 = A$.

- 1. L'équivalence A diagonalisable $\iff B$ diagonalisable est-elle vraie?
 - Si B est diagonalisable alors il existe une matrice $P\in GL_3(\mathbb{R})$ telle que $B=P\Delta P^{-1}$ avec Δ diagonale.

Alors $A = B^2 = (P\Delta P^{-1})^2 = P\Delta^2 P^{-1}$.

La matrice $D = \Delta^2$ est diagonale.

Ainsi, $A = PDP^{-1}$ avec D diagonale : A est diagonalisable.

On en déduit que (B diagonalisable $\Longrightarrow A=B^2$ est diagonalisable).

— La matrice $B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ n'est pas diagonalisable car $\chi_B(X) = X^3$ mais $E_0(B)$ est de dimension 2 < 3 = m(3).

En revanche $A = B^2 = 0$ est diagonalisable (diagonale). Donc B^2 diagonalisable n'implique pas que B soit diagonalisable.

2. Soit
$$A = \begin{pmatrix} 11 & -5 & -5 \\ -5 & 3 & 3 \\ -5 & 3 & 3 \end{pmatrix}$$
.

On cherche les matrices $B \in \mathcal{M}_3(\mathbb{C})$ vérifiant $B^2 = A$.

(a) Montrons que A est diagonalisable.

$$\chi_A(X) = \begin{vmatrix} X - 11 & 5 & 5 \\ 5 & X - 3 & -3 \\ 5 & -3 & X - 3 \end{vmatrix} = \begin{vmatrix} X - 1 & 5 & 5 \\ X - 1 & X - 3 & -3 \\ X - 1 & -3 & X - 3 \end{vmatrix}$$
 où nous avons effectué l'opération $C_1 \leftarrow C_1 + C_2 + C_3$.

Ainsi:

$$\chi_A(X) = (X-1) \begin{vmatrix} 1 & 5 & 5 \\ 1 & X-3 & -3 \\ 1 & -3 & X-3 \end{vmatrix} = (X-1) \begin{vmatrix} 1 & 5 & 5 \\ 0 & X-8 & -8 \\ 0 & -8 & X-8 \end{vmatrix}$$

$$\chi_A(X) = (X-1)[(X-8)^2 - 64] = (X-1)[(X-8-8)(X-8+8)]$$
 $\chi_A(X) = X(X-1)(X-16).$

 $Sp(A) = \{0, 1, 16\}$: la matrice $A \in \mathcal{M}_3(\mathbb{R})$ possède donc 3 valeurs propres distinctes.

Par conséquent A est diagonalisable semblable à la matrice diagonale

$$D = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 16 \end{array}\right).$$

- (b) Les quatre matrices $\begin{pmatrix} 0 & 0 & 0 \\ 0 & \epsilon & 0 \\ 0 & 0 & 4\epsilon' \end{pmatrix}$ avec $\epsilon, \epsilon' = \pm 1$ conviennent.
- (c) Soit $C \in \mathcal{M}_3(\mathbb{R})$ telle que $C^2 = D$.
 - i. On a $CD = CC^2 = C^3 = C^2C = DC$.
 - ii. On note $C = \begin{pmatrix} a & b & c \\ d & e & f \\ a & b & i \end{pmatrix}$.

On calcule

$$CD = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 16 \end{pmatrix} = \begin{pmatrix} 0 & b & 16c \\ 0 & e & 16f \\ 0 & h & 16i \end{pmatrix}$$

$$DC = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 16 \end{pmatrix} \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ d & e & f \\ 16g & 16h & 16i \end{pmatrix}.$$

Puisque CD = DC, par identification des coefficients, on trouve b=c=d=f=g=h=0: la matrice C est donc diagonale.

iii. Les seules matrices $C \in \mathcal{M}_3(\mathbb{R})$ telles que $C^2 = D$ sont donc diagonales et les coefficients diagonaux vérifient $c_{ii}^2 = d_{ii}$.

Ainsi $c_{11} = 0$, $c_{22} = \pm 1$ et $c_{33} = \pm 4$.

Les seules matrices vérifiant $C^2 = D$ sont donc les matrices décrites à la question 2(b).

(d) Déduisons-en toutes les matrices $B \in \mathcal{M}_3(\mathbb{R})$ telles que $B^2 = A$. Si B convient alors $B^2 = A = PDP^{-1} \iff D = P^{-1}B^2P = (P^{-1}BP)^2$.

Par conséquent $P^{-1}BP$ est l'une des quatre matrices $\begin{pmatrix} 0 & 0 & 0 \\ 0 & \pm 1 & 0 \\ 0 & 0 & \pm 4 \end{pmatrix}$.

Au final, B est l'une des quatre matrices : $P\begin{pmatrix} 0 & 0 & 0 \\ 0 & \pm 1 & 0 \\ 0 & 0 & \pm 4 \end{pmatrix} P^{-1}$.

Les espaces propres de A:

*
$$E_0(A) = Vect \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$
,
* $E_1(A) = Vect \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$,
* $E_4(A) = Vect \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

donnent la matrice de passage de la base canonique à la base de vecteurs propres:

$$P = \left(\begin{array}{rrr} 0 & 1 & -2 \\ -1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right).$$

On obtient les quatre matrices $P\begin{pmatrix} 0 & 0 & 0 \\ 0 & \pm 1 & 0 \\ 0 & 0 & \pm 4 \end{pmatrix} P^{-1}$:

$$\begin{pmatrix}
3 & -1 & -1 \\
-1 & 1 & 1 \\
-1 & 1 & 1
\end{pmatrix}, \frac{1}{3} \begin{pmatrix}
7 & -5 & -5 \\
-5 & 1 & 1 \\
-5 & 1 & 1
\end{pmatrix}$$

$$\frac{1}{3} \begin{pmatrix} -7 & 5 & 5 \\ 5 & -1 & -1 \\ 5 & -1 & -1 \end{pmatrix}, \begin{pmatrix} -3 & 1 & 1 \\ 1 & -1 & -1 \\ 1 & -1 & -1 \end{pmatrix}$$

Solution Exercice 9.

1.
$$A = \begin{pmatrix} (0) & 1 \\ & \ddots & \\ 1 & (0) \end{pmatrix}$$
.

Notons f l'endomorphisme canoniquement associé à f c'est-à-dire : A $Mat_{\mathscr{B}}(f)$ car $\mathscr{B}=(e_1,\ldots,e_n)$ la base canonique de \mathbb{R}^n .

La matrice A donne pour tout $k \in [1, n]$, $f(e_k) = e_{n-(k-1)}$.

Ainsi, pour tout $k \in [1, n]$,

$$f^{2}(e_{k}) = f \circ f(e_{k}) = f(f(e_{k}))$$
$$= f(e_{n-(k-1)}) = e_{n-[(n-(k-1))-1]} = e_{k}$$

Par conséquent $f^2 = \mathrm{id}_{\mathbb{R}^n}$ donc $A^2 = I_n$.

- 2. Soit $\lambda \in Sp(A)$. Il existe $X \neq 0$ tel que $AX = \lambda X$.
 - Alors $X = I_n X = A^2 X = A(AX) = \lambda AX = \lambda^2 X$.

On obtient $(\lambda^2 - 1)X = 0$.

Puisque $X \neq 0$ on obtient $\lambda^2 - 1 = 0$ c'est-à-dire : $\lambda = \pm 1$.

On en déduit que $Sp(A) \subset \{-1, 1\}$.

- Déterminons les espaces propres $E_{-1}(A)$ et $E_1(A)$.
 - $* E_1(A) = \{ X \in \mathscr{M}_n(\mathbb{R}) : AX = X \}.$

On note
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
.
$$AX = X \Longleftrightarrow \begin{cases} x_n &= x_1 \\ x_{n-1} &= x_2 \\ &\vdots \\ x_1 &= x_n \end{cases}$$

— Si n est pair, on obtient un espace de dimension n/2:

$$E_1(A) = Vect \left(egin{array}{c} 1 \ 0 \ 0 \ dots \ 0 \ 0 \ dots \ 0 \ 1 \ 0 \ \end{array}
ight), \left(egin{array}{c} 0 \ 1 \ 0 \ dots \ 0 \ 1 \ 1 \ 0 \ \end{array}
ight), \ldots, \left(egin{array}{c} 0 \ dots \ 0 \ 1 \ 1 \ 0 \ \end{array}
ight).$$

— Si n est impair, on obtient un espace de dimension $\frac{n-1}{2}+1=\frac{n+1}{2}$:

$$E_1(A) = Vect \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 1 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

* $E_{-1}(A) = \{ X \in \mathscr{M}_n(\mathbb{R}) : AX = -X \}.$

On note
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
.
$$AX = -X \iff \begin{cases} x_n &= -x_1 \\ x_{n-1} &= -x_2 \\ \vdots \\ x_1 &= -x_n \end{cases}$$

— Si n est pair, on obtient un espace de dimension $\frac{n}{2}$:

$$E_{-1}(A) = Vect \begin{pmatrix} -1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 0 \\ \vdots \\ 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ \vdots \\ 0 \\ -1 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

— Si n est impair, on obtient un espace de dimension $\frac{n-1}{2}$:

$$E_{-1}(A) = Vect \begin{pmatrix} -1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 0 \\ \vdots \\ 0 \\ 1 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ \vdots \\ -1 \\ 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}.$$

- 3. La matrice A est diagonalisable car

 - Si n est pair dim $E_1(A)$ + dim $E_{-1}(A) = \frac{n}{2} + \frac{n}{2} = n$. Si n est impair, dim $E_1(A)$ + dim $E_{-1}(A) = \frac{n+1}{2} + \frac{n-1}{2} = n$.

Dans les deux cas, dim $E_1(A)$ + dim $E_{-1}(A)$ = n donc A est diagonalisable.

Solution Exercice 10. Soit $A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{C}).$

1.
$$A^2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
 et $A^3 = I_3$.

Soit $\lambda \in \mathbb{C}$ une valeur propre de A: il existe $X \neq 0$ tel que $AX = \lambda X$. $(X \in \mathcal{M}_n(\mathbb{R}))$.

On a $AX = \lambda X$ donc $A^2X = \lambda AX = \lambda^2 X$ et $A^3X = \lambda^3 X$.

Mais $A^3 = I_3$ donc $X = \lambda^3 X \iff (\lambda^3 - 1)X = 0 \iff \lambda^3 = 1$ car $X \neq 0$.

Par conséquent si $\lambda\in\mathbb{C}$ est valeur propre de A alors λ est une racine 3-ième de l'unité.

On en déduit que $Sp(A) \subset \{1, j, j^2\}$.

$$2. - AX = X \iff \begin{cases} x_3 = x_1 \\ x_1 = x_2 \\ x_2 = x_3 \end{cases} . \text{ Ainsi, } E_1(A) = Vect \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} .$$

$$- AX = jX \iff \begin{cases} x_3 = jx_1 \\ x_1 = jx_2 \\ x_2 = jx_3 \end{cases} . \text{ Ainsi, } E_j(A) = Vect \begin{pmatrix} j^2 \\ j \\ 1 \end{pmatrix} .$$

$$- AX = j^2X \iff \begin{cases} x_3 = j^2x_1 \\ x_1 = j^2x_2 \\ x_2 = j^2x_3 \end{cases} . \text{ Ainsi, } E_{j^2}(A) = Vect \begin{pmatrix} j \\ j^2 \\ 1 \end{pmatrix} .$$

Par conséquent $A \in \mathcal{M}_3(\mathbb{R})$ possède 3 valeurs propres complexes distinctes : A est donc diagonalisable dans $\mathcal{M}_3(\mathbb{C})$.

On note $A = PDP^{-1}$ avec

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & j & 0 \\ 0 & 0 & j^2 \end{pmatrix} \quad \text{et} \quad P = \begin{pmatrix} 1 & j^2 & j \\ 1 & j & j^3 \\ 1 & 1 & 1 \end{pmatrix} \in GL_3(\mathbb{C}).$$

3. Soient $a, b, c \in \mathbb{C}$.

On constante que
$$M=\left(\begin{array}{ccc} c & b & a \\ a & c & b \\ b & a & c \end{array}\right)=aA+bA^2+cA^3=aA+bA^2+cI_3.$$

Or $A = PDP^{-1}$ donc $A^2 = (PDP^{-1})^2 = PD^2P^{-1}$.

On obtient $M = aPDP^{-1} + bPD^2P^{-1} + cPP^{-1}$.

Par suite,

$$M = P(aD + bD^2 + cI_3)P^{-1}$$

$$M = P\left(a\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & j & 0 \\ 0 & 0 & j^2 \end{array}\right) + b\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & j^2 & 0 \\ 0 & 0 & j \end{array}\right) + c\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)\right) P^{-1}$$

Finalement,

$$M = P \begin{pmatrix} a+b+c & 0 & 0 \\ 0 & aj+bj^2+c & 0 \\ 0 & 0 & aj^2+bj+c \end{pmatrix} P^{-1}.$$

Solution Exercice 11. $u_0 = -2, v_0 = 1, w_0 = 5$ et

$$\forall n \in \mathbb{N}, \begin{cases} u_{n+1} = 4u_n - 3v_n - 3w_n \\ v_{n+1} = 3_n - 2v_n - 3w_n \\ w_{n+1} = 3u_n - 3v_n - 2w_n \end{cases}$$

On pose $X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$. La suite $(X_n)_{n \in \mathbb{N}}$ de vecteurs de $\mathcal{M}_{3,1}(\mathbb{R})$ vérifie la relation de récurrence :

$$X_{n+1} = AX_n$$
 avec $A = \begin{pmatrix} 4 & -3 & -3 \\ 3 & -2 & -3 \\ 3 & -3 & -2 \end{pmatrix}$.

On obtient alors par récurrence que pour tout $n \in \mathbb{N}$, $X_n = A^n X_0$. On réduit la matrice A pour déterminer A^n .

$$-\chi_{A}(X) = \begin{vmatrix} X-4 & 3 & 3 \\ -3 & X+2 & 3 \\ -3 & 3 & X+2 \end{vmatrix} = \begin{vmatrix} X+2 & 3 & 3 \\ X+2 & X+2 & 3 \\ X+2 & 3 & X+2 \end{vmatrix}$$

$$(C_{1} \leftarrow C_{1} + C_{2} + C_{3})$$

$$\chi_{A}(X) = (X+2) \begin{vmatrix} 1 & 3 & 3 \\ 1 & X+2 & 3 \\ 1 & 3 & X+2 \end{vmatrix} = (X+2) \begin{vmatrix} 1 & 3 & 3 \\ 0 & X-1 & 0 \\ 0 & 0 & X-1 \end{vmatrix}$$

 $\chi_A(X) = (X+2)(X-1)^2.$

Ainsi, $Sp(A) = \{1, 2\}$ avec m(1) = 2 et m(-2) = 1.

 $- E_1(X) = \{X \in \mathcal{M}_3(\mathbb{R}) : AX = X\}.$

On vérifie facilement que
$$\begin{pmatrix} 1\\1\\0 \end{pmatrix} \in E_1(A)$$
 et $\begin{pmatrix} 1\\0\\1 \end{pmatrix} \in E_1(A)$.

Puisque $1 \leq \dim E_1(A) \leq 2 = m(1)$ on en déduit que $E_1(A)$ est de dimension 2.

Une base est donnée par (X_1, X_2) où X_1, X_2 sont les vecteurs propres

non colinéaires
$$X_1 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
 et $X_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$. $E_1(A) = Vect(X_1, X_2)$.

— On sait que dim $E_{-2}(A)$ est de dimension 1 car m(-2) = 1.

De plus
$$AX = -2X$$
 avec $X = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.
Ainsi $E_{-2}(A) = Vect \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. On note $X_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

— La famille (X_1, X_2, X_3) est donc une base de vecteurs propres de $A \in \mathcal{M}_3(\mathbb{R})$ qui est donc diagonalisable.

Ainsi, $A = PDP^{-1}$ avec

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \quad \text{et } D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$

— On en déduit alors que pour tout $n \in \mathbb{N}$,

$$X_n = A^n X_0 = (PDP^{-1})^n X_0 = PD^n P^{-1} X_0$$
 [(*) récurrence.]

Ainsi,

$$X_n = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (-2)^n \end{pmatrix} P^{-1} X_0.$$

Notons qu'il est inutile de calculer P^{-1} . Il suffit de poser $Y_n = P^{-1}X_n$.

Puisqu'on a
$$P^{-1}X_n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (-2)^n \end{pmatrix} P^{-1}X_0$$
, on obtient

$$P^{-1}X_n = Y_n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (-2)^n \end{pmatrix} Y_0 \text{ puis } X_n = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (-2)^n \end{pmatrix} Y_0.$$

Il reste à calculer $Y_0 = P^{-1}X_0 \iff X_0 = PY_0.$

En notant
$$Y_0 = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 on trouve puisque $X_0 = \begin{pmatrix} -2 \\ 1 \\ 5 \end{pmatrix}$:

$$\begin{cases} a + b + c = -2 \\ a + c = 1 \\ b + c = 5 \end{cases} \iff \begin{cases} a = -7 \\ b = -3 : Y_0 = \begin{pmatrix} -7 \\ -3 \\ 8 \end{pmatrix}.$$

Par conséquent

$$X_{n} = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (-2)^{n} \end{pmatrix} Y_{0} = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (-2)^{n} \end{pmatrix} \begin{pmatrix} -7 \\ -3 \\ 8 \end{pmatrix}$$
$$= P \begin{pmatrix} -7 \\ -3 \\ 8(-2)^{n} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} -7 \\ -3 \\ 8(-2)^{n} \end{pmatrix}.$$

Au final,
$$\forall n \in \mathbb{N}, X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix} = \begin{pmatrix} -10 + 8(-2)^n \\ -7 + 8(-2)^n \\ -3 + 8(-2)^n \end{pmatrix}.$$

Solution Exercice 12.

On note
$$X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$$
.

$$\begin{cases} u_{n+1} &= v_n + w_n \\ v_{n+1} &= u_n + w_n \iff AX_{n+1} = X_n & \text{avec } A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}. \end{cases}$$

On obtient par récurrence $X_n = A^n X_0$ pour tout $n \in \mathbb{N}$. On trouve $\chi_A(X) = (X+1)^2(X-2)$.

• En résolvant AX = -X on trouve

$$E_{-1}(A) = Vect \left(\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right).$$
Air via dim $E_{-1}(A) = Vect \left(\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right).$

Ainsi, dim $E_{-1}(A) = 2 = m(-1)$.

• En résolvant AX = 2X on trouve $E_2(A) = Vect \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

Ainsi, A est diagonalisable:

$$A = P \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} P^{-1}$$

avec

$$P = \left(\begin{array}{rrr} 1 & -1 & -1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right).$$

On en déduit que

$$X_{n} = P \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}^{n} P^{-1} X_{0}$$

$$X_{n} = P \begin{pmatrix} 2^{n} & 0 & 0 \\ 0 & (-1)^{n} & 0 \\ 0 & 0 & (-1)^{n} \end{pmatrix} P^{-1} X_{0}.$$

$$X_{n} = P \begin{pmatrix} 2^{n} & 0 & 0 \\ 0 & (-1)^{n} & 0 \\ 0 & 0 & (-1)^{n} \end{pmatrix} P^{-1} X_{0}.$$

En posant $Y_n = P^{-1}X_n$ on obtient $Y_n = D^nY_0$. En notant $Y_0 = \begin{pmatrix} \alpha \\ \beta \\ \beta \end{pmatrix}$, on trouve

$$Y_n = \begin{pmatrix} \alpha 2^n \\ \beta(-1)^n \\ \gamma(-1)^n \end{pmatrix}.$$
Enfin, $X_n = PY_n = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} Y_n = \begin{pmatrix} \alpha 2^n - \beta(-1)^n - \gamma(-1)^n \\ \alpha 2^n + \gamma(-1)^n \\ \alpha 2^n + \beta(-1)^n \end{pmatrix}$

Puisque P^{-1} est inversible, on en déduit que $Y_0 = P^{-1}X_0$ est un quelconque vecteur de $\mathcal{M}_{3,1}(\mathbb{R})$.

Ainsi, les suites u, v, w satisfaisant à la relation de récurrence $X_{n+1} = AX_n$ vérifient qu'il existe $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ tels que pour tout $n \in \mathbb{N}$:

$$u_n = \alpha 2^n - (\beta + \gamma)(-1)^n$$

$$v_n = \alpha 2^n + \gamma(-1)^n$$

$$w_n = \alpha 2^n + \beta(-1)^n$$

Solution Exercice 13.

1. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=u_1=u_2=1$ et pour tout $n\in\mathbb{N}$: $u_{n+3}=45u_n-39u_{n+1}+11u_{n+2}$.

On note
$$U_n = \begin{pmatrix} u_{n+2} \\ u_{n+1} \\ u_n \end{pmatrix}$$
.
Alors $U_{n+1} = \begin{pmatrix} u_{n+3} \\ u_{n+2} \\ u_{n+1} \end{pmatrix} = \underbrace{\begin{pmatrix} 11 & -39 & 45 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}}_{=A} \begin{pmatrix} u_{n+2} \\ u_{n+1} \\ u_n \end{pmatrix}$.

On montre alors par récurrence que pour tout $n \in \mathbb{N}$, $U_n = A^n U_0$.

2.
$$\chi_A(X) = \begin{vmatrix} X - 11 & 39 & -45 \\ -1 & X & 0 \\ 0 & -1 & X \end{vmatrix} = X[X(X - 11) + 39] - 45$$

$$\chi_A(X) = X^3 - 11X^2 + 39X - 45 = X^3 - (\lambda_1 + \lambda_2 + \lambda_3)X^2 + 39X - \lambda_1\lambda_2\lambda_3$$

où $\lambda_1, \lambda_2, \lambda_3$ sont les racines (éventuellement complexes) de χ_A .

On teste si χ_A possède une racine double : $\chi_A'(X) = 3X^2 - 22X + 39$: 3 est racine.

Mais on vérifie que 3 est également racine de χ_A .

Ainsi, $\lambda_1 = \lambda_2 = 3$ est racine double de χ_A .

La division euclidienne de $\chi_A(X)$ par $(X-3)^2$ donne :

$$\chi_A(X) = (X - 3)^2(X - 5).$$

Ainsi $Sp(A) = \{3, 5\}$ et m(3) = 2, m(5) = 1.

— On résout l'équation AX = 3X:

Ainsi,
$$E_3(A) = Vect \begin{pmatrix} 9\\3\\1 \end{pmatrix}$$
.

— On résout l'équation AX = 5X:

$$\begin{cases} 11x & -39y & +45z & =5x \\ x & =5y \\ y & =5z \end{cases} \iff \begin{cases} x & =25z \\ y & =5z \end{cases}$$

Ainsi,
$$E_5(A) = Vect \begin{pmatrix} 25 \\ 5 \\ 1 \end{pmatrix}$$
.

On a $m(3) = 2 > 1 = \dim E_3(A)$.

Par conséquent, la matrice A n'est pas diagonalisable.

3. On pose $e_1 = (25, 5, 1)$; $e_2 = (9, 3, 1)$ et f l'endomorphisme canoniquement associé à la matrice A.

On cherche à compléter en une base $\mathscr{B}=(e_1,e_2,e_3)$ de \mathbb{R}^3 telle que la matrice de f dans la base \mathscr{B} est

$$T = \left(\begin{array}{ccc} 5 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{array}\right)$$

On note (α, β, γ) les coordonnées de e_3 dans la base canonique.

On exprime les coordonnées de $f(e_3)$ de deux manières différentes :

— Avec la matrice T, on a :

$$f(e_3) = e_2 + 3e_3 = (9, 3, 1) + 3(\alpha, \beta, \gamma).$$

— Avec la matrice A, on a :

$$f(e_3) = (11\alpha - 39\beta + 45\gamma, \alpha, \beta).$$

Par conséquent, (α, β, γ) est solution du système :

$$\begin{cases} 8\alpha - 39\beta + 45\gamma = 9 \\ \alpha - 3\beta = 3 \\ \beta - 3\gamma = 1 \end{cases}$$

On constate aisément que (6,1,0) est solution de ce système.

Ainsi, $e_3 = (6, 1, 0)$ complète la base (e_1, e_2, e_3) de \mathbb{R}^3 dans laquelle la matrice

$$de f est T = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}.$$

Matriciellement, cela se traduit par la relation $A = PTP^{-1}$ avec $P = P_{\mathscr{B}_c \to \mathscr{B}}$ la matrice de passage de la base canonique à la base de trigonalisation (e_1, e_2, e_3) .

4. On a montré à la question 1. que pour tout $n \in \mathbb{N}$, $U_n = A^n U_0$. De plus, on montre classiquement par récurrence que $A^n = PT^nP^{-1}$. Ainsi, $U_n = PT^nP^{-1}U_0$.

Calculons les T^n avec la formule du binôme. En effet, T=D+N avec

$$D = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} \quad \text{et } N = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

et les matrices D,N commutent : $DN=\left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{array}\right)=ND.$

On obtient puisque $N^2 = 0_{\mathcal{M}_3(\mathbb{R})}$

$$T^{n} = D^{n} + \binom{n}{1}D^{n-1}T$$

$$= \begin{pmatrix} 5^{n} & 0 & 0 \\ 0 & 3^{n} & 0 \\ 0 & 0 & 3^{n} \end{pmatrix} + n \begin{pmatrix} 5^{n-1} & 0 & 0 \\ 0 & 3^{n-1} & 0 \\ 0 & 0 & 3^{n-1} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 5^{n} & 0 & 0 \\ 0 & 3^{n} & 0 \\ 0 & 0 & 3^{n} \end{pmatrix} + n \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 3^{n-1} \\ 0 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 5^{n} & 0 & 0 \\ 0 & 3^{n} & n3^{n-1} \\ 0 & 0 & 3^{n} \end{pmatrix}.$$

On trouve donc $\forall n \in \mathbb{N}, U_n = A^n U_0 = PT^n P^{-1} U_0.$

A ce stade, inutile de calculer P^{-1} .

En effet,
$$U_n = \underbrace{\begin{pmatrix} 25 & 9 & 6 \\ 5 & 3 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 5^n & 0 & 0 \\ 0 & 3^n & n3^{n-1} \\ 0 & 0 & 3^n \end{pmatrix}}_{P^{-1}U_0} \underbrace{V_0}_{P^{-1}U_0}$$

On trouve
$$U_n = \begin{pmatrix} 5^{n+2} & 3^{n+2} & 3^{n+1}(n+2) \\ 5^{n+1} & 3^{n+1} & 3^n(n+1) \\ 5^n & 3^n & n3^{n-1} \end{pmatrix} V_0.$$

Il reste à déterminer $V_0 = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = P^{-1}U_0 \iff PV_0 = U_0.$

Ainsi, (α, β, γ) est l'unique (P est inversible) solution du système

$$\begin{cases} 25\alpha + 9\beta + 6\gamma = 1\\ 5\alpha + 3\beta + \gamma = 1\\ \alpha + \beta = 1 \end{cases}$$

On trouve
$$V_0 = \begin{pmatrix} 1 \\ 0 \\ -4 \end{pmatrix}$$
.

En conclusion, pour tout $n \in \mathbb{N}$:

$$\begin{pmatrix} u_{n+2} \\ u_{n+1} \\ u_n \end{pmatrix} = U_n = PT^n V_0 = \begin{pmatrix} * \\ * \\ 5^n - 4n3^{n-1} \end{pmatrix} \text{ i.e. } u_n = 5^n - 4n3^{n-1}.$$

Solution Exercice 14. Soient $p, q \in \mathbb{R}_+^*$. On pose $A = \begin{pmatrix} 1-p & q \\ p & 1-q \end{pmatrix}$.

1. Déterminons deux matrices $A, B \in \mathcal{M}_2(\mathbb{R})$ telles que A = B + (1 - p - q)C et $B + C = I_2$.

Analyse. Si B, C existent alors $A = \underbrace{B+C}_{=I_2} - (p+q)C = -(p+q)C.$

On obtient $(p, q \in \mathbb{R}_+^*)$:

$$C = -\frac{1}{p+q}(A - I_2) = \frac{1}{p+q} \begin{pmatrix} p & -q \\ -p & q \end{pmatrix}$$

et $B = I_2 - C = \frac{1}{p+q} \begin{pmatrix} q & q \\ p & p \end{pmatrix}$.

Synthèse. On vérifie sans difficulté que A = B + (1 - p - q)C et $B + C = I_2$.

2. Soit $n \in \mathbb{N}^*$. Pour calculer A^n , on utilise la relation A = B + (1 - p - q)C et on note que les matrice B, C commutent. Précisément :

$$BC = 0_{\mathcal{M}_2(\mathbb{R})} = CB.$$

La formule du binôme s'applique et donne :

$$A^{n} = (B + (1 - p - q)C)^{n} = \sum_{k=0}^{n} \binom{n}{k} B^{k} + ((1 - p - q)C)^{n-k}$$

$$= \binom{n}{0} B^{0} ((1 - p - q)C)^{n}$$

$$+ \sum_{k=1}^{n-1} \binom{n}{k} B^{k} ((1 - p - q)C)^{n-k} \quad (*)$$

$$+ \binom{n}{n} B^{n} ((1 - p - q)C)^{0}$$

$$= (1 - p - q)^{n} C^{n} + B^{n}.$$

$$(*) \text{ pour tout } k \in [1, n-1], \ B^k C^{n-k} = B \times \cdots \times \underbrace{BC}_{=0_{\mathscr{M}_2(\mathbb{R})}} \times \cdots \times C = 0_{\mathscr{M}_2(\mathbb{R})}.$$

Il suffit donc de calculer B^n et C^n .

Le calcul des premières puissances permet de conjecturer que $B^n=B$ et $C^n=C$ pour tout $n\in\mathbb{N}^*$ ce que l'on démontre sans difficulté par récurrence. On en déduit que pour tout $n\in\mathbb{N}^*$,

$$A^{n} = (1-p-q)^{n}C + B = \frac{1}{p+q} \begin{pmatrix} p(1-p-q)^{n} + q & -q(1-p-q)^{n} + q \\ -p(1-p-q)^{n} + p & q(1-p-q)^{n} + p \end{pmatrix}.$$

Notons au passage que la formule est valable pour n = 0.

3. Notons A_n : "IA affiche 0 à l'instant n" et B_n : "IA affiche 1 à l'instant n". Par la formule des probabilités totales appliquée avec le système complet d'événements $(A_n, B_n) = (A_n, \overline{A_n})$:

$$u_{n+1} = P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(B_n)P_{B_n}(A_{n+1})$$

= $u_n(1-p) + v_nq$.

$$v_{n+1} = P(B_{n+1}) = P(A_n)P_{A_n}(B_{n+1}) + P(B_n)P_{B_n}(B_{n+1})$$

= $u_n p + v_n(1 - q)$.

On en déduit que $X_n=\left(\begin{array}{c}u_n\\v_n\end{array}\right)$ vérifie la relation de récurrence $X_{n+1}=AX_n.$

On montre alors classiquement par récurrence que $X_n = A^n X_0$ et on obtient :

$$\begin{pmatrix} u_n \\ v_n \end{pmatrix} = \frac{1}{p+q} \begin{pmatrix} (1-p-q)^n (pu_0 - qv_0) + q(u_0 + v_0) \\ (1-p-q)^n (-pu_0 + qv_0) + p(u_0 + v_0) \end{pmatrix}.$$

Notons que $u_n + v_n = (p + q)(u_0 + v_0)$.

La probabilité que IA affiche autre chose qu'un 0 ou un 1 est donc égale à

$$w_n = 1 - (u_n + v_n) = 1 - (p+q)(u_0 + v_0).$$

4. Puisque $p, q \in]0;1[$ alors 0 < p+q < 2 et par conséquent, -1 < 1-(p+a) < 1On en déduit que $\lim_{n \to +\infty} (1-p-q)^n = 0$.

En conclusion:

$$\lim_{n \to +\infty} u_n = \frac{q(u_0 + v_0)}{p + q}$$

$$\lim_{n \to +\infty} v_n = \frac{p(u_0 + v_0)}{p + q}$$

Solution Exercice 15.

1. Par hypothèse $X_0(\Omega) = \{2\}.$

Clairement, $X_1(\Omega) = \{1\}.$

En effet, au premier tirage, on retire une boule blanche de l'urne U_1 que l'on remplace par une boule noire venant de l'urne U_2 .

Le nombre de blanche dans U_1 après le premier tirage est donc nécessairement $X_1 = 1$.

Il est clair que pour tout $k \ge 2$, $X_k(\Omega) \subset \{0, 1, 2\}$.

Montrons par récurrence que $X_k(\Omega) = \{0, 1, 2\}$ pour tout $k \ge 2$.

Notons pour tout $k \ge 1$:

 B_k^1 : "on tire une blanche au k-ième tirage dans U_1

 B_k^2 : "on tire une blanche k-ième tirage dans U_2 "

Initialisation:

 $[X_2=0]=B_2^1\cap\overline{B_2^2}$ est un événement possible $([X_2=0]\neq\varnothing)$.

 $[X_2=1]=(B_2^1\cap B_2^2)\cup (\overline{B_2^1}\cap \overline{B_2^2})$ est un événement possible.

 $[X_2=2]=\overline{B_2^1}\cap B_2^2$ est un événement possible.

Hérédité:

On suppose que $X_k(\Omega) = \{0, 1, 2\}$. Alors

$$[X_{k+1}=0]=[X_k=1]\cap (B_k^1\cap \overline{B_k^2})$$
 est un événement possible,

$$[X_{k+1}=1]=\left([X_k=0]\cap(\overline{B_k^1}\cap B_k^2)\right)\cup\left([X_k=2]\cap(B_k^1\cap\overline{B_k^2})\right)$$
 est un événement possible,

 $[X_{k+1}=2]=[X_k=1]\cap (\overline{B_k^1}\cap B_k^2)$ est un événement possible.

On conclut par récurrence que pour tout $k \ge 2$, $X_k(\Omega) = \{0, 1, 2\}$.

- 2. On pose $Y_k = \begin{pmatrix} P(X_k = 0) \\ P(X_k = 1) \\ P(X_k = 2) \end{pmatrix}$.
 - On applique la formule des probabilités totales :

$$P(X_{k+1} = 0) = P(X_k = 0) \underbrace{P_{[X_k = 0]}(X_{k+1} = 0)}_{=0}$$

$$+ P(X_k = 1)P_{[X_k = 1]}(X_{k+1} = 0)$$

$$+ P(X_k = 2) \underbrace{P_{[X_k = 2]}(X_{k+1} = 0)}_{=0}$$

$$= \frac{1}{4}P(X_k = 1)$$

car il s'agit de tirer une blanche dans U_1 et une noire dans U_2 : probabilité 1/2 pour chacun de ses événement indépendants.

— De même :

$$\begin{split} P(X_{k+1} = 1) &= P(X_k = 0) P_{[X_k = 0]}(X_{k+1} = 1) \\ &\quad + P(X_k = 1) P_{[X_k = 1]}(X_{k+1} = 1) \\ &\quad + P(X_k = 2) P_{[X_k = 2]}(X_{k+1} = 1) \\ &\quad = P(X_k = 0) + \frac{1}{2} P(X_k = 1) + P(X_k = 2) \end{split}$$

car

- si $X_k = 0$ ou $X_k = 2$ alors nécessairement, après le k + 1-ième tirage il y aura une boule blanche et une boule noire dans chaque urne.
- si $X_k = 1$ alors il s'agit soit :
 - * d'échanger les boules blanches que contiennent U_1, U_2 : proba. 1/4.
 - * d'échanger les boules noires que contiennent U_1, U_2 : proba. 1/4.
- Et enfin:

$$P(X_{k+1} = 2) = P(X_k = 0) \underbrace{P_{[X_k = 0]}(X_{k+1} = 2)}_{=0}$$

$$+ P(X_k = 1) P_{[X_k = 1]}(X_{k+1} = 2)$$

$$+ P(X_k = 2) \underbrace{P_{[X_k = 2]}(X_{k+1} = 2)}_{=0}$$

$$= \frac{1}{4} P(X_k = 1)$$

car il s'agit de tirer une noire dans l'urne U_1 et une blanche dans U_2 : probabilité 1/4.

On en déduit que $\forall k \in \mathbb{N}, Y_{k+1} = AY_k$ avec :

$$A = \left(\begin{array}{ccc} 0 & \frac{1}{4} & 0\\ 1 & \frac{1}{2} & 1\\ 0 & \frac{1}{4} & 0 \end{array}\right).$$

En particulier pour tout $k \in \mathbb{N}$:

$$E(X_{k+1}) = 0P(X_{k+1} = 0) + P(X_{k+1} = 1) + 2P(X_{k+1} = 2)$$

$$= (P(X_k = 0) + \frac{1}{2}P(X_k = 1) + P(X_k = 2)) + \frac{2}{4}P(X_k = 1)$$

$$= P(X_k = 0) + P(X_k = 1) + P(X_k = 2) = 1.$$

Par conséquent $\forall k \geqslant E(X_k) = 1$.

Note: $E(X_0) = 2$.

3.
$$-\chi_A(X) = \begin{vmatrix} X & -\frac{1}{4} & 0 \\ -1 & X - \frac{1}{2} & -1 \\ 0 & -\frac{1}{4} & X \end{vmatrix} = \begin{vmatrix} X - 1 & X - 1 & X - 1 \\ -1 & X - \frac{1}{2} & -1 \\ 0 & -\frac{1}{4} & X \end{vmatrix}$$

(où nous avons effectué $L_1 \leftarrow L_1 + L_2 + L_3$)

$$\chi_A(X) = (X-1) \begin{vmatrix} 1 & 1 & 1 \\ -1 & X - \frac{1}{2} & -1 \\ 0 & -\frac{1}{4} & X \end{vmatrix} = (X-1) \begin{vmatrix} 1 & 0 & 0 \\ -1 & X + \frac{1}{2} & 0 \\ 0 & -\frac{1}{4} & X \end{vmatrix}$$

(où nous avons effectué $C_2 \leftarrow C_2 - C_1$, $C_3 \leftarrow C_3 - C_1$).

 $\chi_A(X) = X(X-1)(X+\frac{1}{2}).$

On en déduit que $Sp(A) = \{0, 1, -\frac{1}{2}\}.$

— On résout l'équation AX = 0.

On constate que $X = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ est solution.

Puisque m(0) = 1 on a dim $E_0(A) = 1$.

Ainsi,
$$E_0(A) = Vect \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$
.

— On résout l'équation AX = X.

On constate que $X = \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix}$ est solution.

Puisque m(1) = 1 on a $\dim E_1(A) = 1$.

Ainsi,
$$E_1(A) = Vect \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix}$$
.

— On résout $AX = -\frac{1}{2}X$.

On constate que $X = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ est solution.

Puisque $m(-\frac{1}{2}) = 1$ on a dim $E_{-\frac{1}{2}}(A) = 1$.

Ainsi,
$$E_{-\frac{1}{2}}(A) = Vect \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$
.

4. On montre par récurrence que $Y_k = A^k Y_0$.

Au rang k = 0, on a effectivement $A^0Y_0 = I_3Y_0 = Y_0$.

Si $Y_k = A^k Y_0$ alors $Y_{k+1} = AY_k = AA^k Y_0 = A^{k+1} Y_0$.

La propriété est donc vraie pour tout $k \in \mathbb{N}$ par principe de récurrence.

On a montré que $Z_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$, $Z_2 = \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix}$ et $Z_3 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ sont des

vecteurs propres de A respectivement associés aux valeurs propres $0, 1, -\frac{1}{2}$. Les espaces propres étant en somme directe, on en déduit que la famille (Z_1, Z_2, Z_3) est libre : c'est donc une base $\mathcal{M}_{3,1}(\mathbb{R})$ (constituée de vecteurs propres de A).

Il existe donc un unique triplet $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ tel que $Y_0 = \alpha Z_1 + \beta Z_2 + \gamma Z_3$.

Puisque $P(X_0 = 0) = P(X_0 = 1) = 0$ et $P(X_0 = 2) = 1$ (la variable X_0 est constante égale à 2), on a :

$$Y_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \alpha Z_1 + \beta Z_2 + \gamma Z_3.$$

On trouve $\alpha = -\frac{1}{2}$, $\beta = \frac{1}{6}$, $\gamma = \frac{1}{3}$: $Y_0 = -\frac{1}{2}Z_1 + \frac{1}{6}Z_2 + \frac{1}{2}Z_3$.

On en déduit que $AY_0 = -\frac{1}{2}AZ_1 + \frac{1}{6}AZ_2 + \frac{1}{3}AZ_3$.

Les vecteurs Z_1, Z_2, Z_3 étant des vecteurs propres pour A, associés aux valeurs propres $0, 1, -\frac{1}{2}$ on obtient

$$AY_0 = 0Z_1 + \frac{1}{6}Z_2 + (\frac{1}{3})(-\frac{1}{2})Z_3.$$

En multipliant à nouveau par A à gauche, on obtient :

$$A^{2}Y_{0} = \frac{1}{6}AZ_{2} + \left(\frac{1}{3}\right)(-\frac{1}{2})AZ_{3} = \frac{1}{6}Z_{2} + \frac{1}{3}\left(-\frac{1}{2}\right)^{2}Z_{3}.$$

On montre alors aisément par récurrence que pour tout $k \ge 1$

$$A^k Y_0 = \frac{1}{6} Z_2 + \frac{1}{3} \left(-\frac{1}{2} \right)^k Z_3.$$

Enfin pour tout $k \in \mathbb{N}^*$:

$$\begin{pmatrix} P(X_k = 0) \\ P(X_k = 1) \\ P(X_k = 2) \end{pmatrix} = Y_k = A^k Y_0 = \frac{1}{6} Z_2 + \frac{1}{3} (-\frac{1}{2})^k Z_3$$

$$\begin{pmatrix} P(X_k = 0) \\ P(X_k = 1) \\ P(X_k = 2) \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix} + \frac{1}{3} (-\frac{1}{2})^k \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{6} + \frac{1}{3} (-\frac{1}{2})^k \\ \frac{2}{3} - \frac{2}{3} (-\frac{1}{2})^k \\ \frac{1}{6} + \frac{1}{3} (-\frac{1}{2})^k \end{pmatrix}.$$

Ceci nous donne bien la loi de X.

Solution Exercice 16.

- 1. Notons en préliminaire que f est diagonalisable car f possède n valeurs propres distinctes, chaque espace propre étant de dimension 1 (ce sont des droites vectorielles).
 - Soit $x \neq 0_E$ un vecteur propre de f associé à la valeur propre $\lambda \in \mathbb{R}$:

Notons que $E_{\lambda}(f) = Vect(x)$ car $E_{\lambda}(f)$ est une droite vectorielle et $x \neq 0$ E.

— La relation $f(x) = \lambda x$ donne puisque f et g commutent :

$$f(q(x)) = q(f(x)) = q(\lambda x) = \lambda q(x).$$

On en déduit que $q(x) \in E_{\lambda}(f) = Vect(x)$.

Par conséquent, il existe $\alpha \in \mathbb{R}$ tel que $g(x) = \alpha x$.

On en déduit comme annoncé que x est un vecteur propre pour q.

- Soit (x_1, \ldots, x_n) une base de \mathbb{R}^n constituée de vecteurs propres pour f. Ce sont également des vecteurs propres pour g par ce qui précède.
- La base (x_1, \ldots, x_n) est donc une base de vecteurs propres communs aux endomorphismes f et g (qui ne possèdent pas nécessairement les mêmes valeurs propres en revanche).

2. Soit
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
.

— Déterminons toutes les matrices $M \in \mathcal{M}_3(\mathbb{R})$ telles que $2M^2 + 5M = 3A$. Si M convient alors:

$$MA = M\left(\frac{1}{3}\right)(2M^2 + 5M) = \left(\frac{1}{3}\right)(2M^2 + 5M)M = AM.$$

Toute matrice vérifiant $2M^2 + 5M = 3A$ commute donc avec A.

Déterminons les éléments propres de A.

$$\chi_A(X) = \begin{vmatrix} X - 1 & -1 & 1 \\ -1 & X - 1 & -1 \\ -1 & -1 & X - 1 \end{vmatrix} = \begin{vmatrix} X - 1 & 0 & 1 \\ -1 & X - 2 & -1 \\ -1 & X - 2 & X - 1 \end{vmatrix}$$

(on a effectué l'opération : $C_2 \leftarrow C_2 + C_3$)

$$\chi_A(X) = \left| \begin{array}{ccc} X - 1 & 0 & 1 \\ X - 2 & X - 2 & 0 \\ X - 2 & X - 2 & X \end{array} \right|$$

(on a effectué les opérations : $L_2 \leftarrow L_2 + L_1, L_3 \leftarrow L_3 + L_1$).

 $\chi_A(X) = X(X-1)(X-2)$ en développant par rapport à la troisième colonne.

On obtient $Sp(A) = \{0, 1, 2\} : A \in \mathcal{M}_3(\mathbb{R})$ possède trois valeurs propres distinctes donc est diagonalisable.

On résout l'équation AX = 0.

Le vecteur
$$X = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
 convient.

Puisque m(0) = 1, on a dim $E_0(A) = 1$ donc $E_0(A) = Vect \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$.

— On résout l'équation AX = X.

Le vecteur
$$X = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$$
 convient.

Puisque m(1) = 1, on a dim $E_1(A) = 1$ donc $E_1(A) = Vect \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$.

— On résout l'équation AX = 2X.

Le vecteur
$$X = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
 convient

Le vecteur
$$X = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
 convient.

Puisque $m(2) = 1$, on a dim $E_2(A) = 1$ donc $E_2(A) = Vect \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$.

Par la question précédente, les matrices A et M commutant, toute base de vecteurs propres pour A est également une base de vecteurs propres pour M.

On note $P = \begin{pmatrix} -1 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ la matrice de passage de la base canonique

à une base de diagonalisation commune aux matrices A, M.

Ainsi, $A = PDP^{-1}$ et $M = P\Delta P^{-1}$ où

$$-D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

$$-\Delta = \begin{pmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{pmatrix}$$
est une matrice diagonale semblable à M .

En multipliant la relation $2M^2 + 5M = 3A$ par P^{-1} à gauche et P

En multipliant la relation $2M^2+5M=3A$ par P^{-1} à gauche et P à droite : $2P^{-1}M^2P+5P^{-1}MP=3P^{-1}AP$ soit $2(P^{-1}MP)^2+5P^{-1}MP=3D$.

Il vient $2\Delta^2 + 5\Delta = 3D$ (*) c'est-à-dire :

$$(*) \left(\begin{array}{ccc} 2x^2 + 5x & 0 & 0 \\ 0 & 2y^2 + 5y & 0 \\ 0 & 0 & 2z^2 + 5z \end{array} \right) = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6 \end{array} \right).$$

On obtient

$$\begin{cases} x(2x+5) &= 0 \\ y(2y+5) &= 3 \\ z(2z+5) &= 6 \end{cases} \iff \begin{cases} x &= 0 \text{ ou } -\frac{5}{2} \\ y &= -3 \text{ ou } \frac{1}{2} \\ z &= -\frac{5}{4} + \frac{\sqrt{73}}{4} \text{ ou } -\frac{5}{4} - \frac{\sqrt{73}}{4} \end{cases}$$

On obtient donc 6 matrices Δ semblables à $M=P\Delta P^{-1}$ satisfaisant à l'équation $2M^2+5M=3A$:

$$M = P\Delta P^{-1} = \begin{pmatrix} y & -x+y & x-y \\ -y+z & x-y+z & -x+y \\ -y+z & -y+z & y \end{pmatrix}.$$

Solution Exercice 17.

1. Si $P \in \mathbb{R}[X]$ alors f(P) = (X+1)(X-3)P'(X) - XP(X) est un polynôme à coefficients réels : $\text{Im}(P) \subset \mathbb{R}[X]$.

Soient $P, Q \in \mathbb{R}[X]$ et $\lambda \in \mathbb{R}$ alors

$$f(\lambda P + Q) = (X + 1)(X - 3)(\lambda P + Q)' - X(\lambda P + Q)$$

$$= [\lambda(X + 1)(X - 3)P' - \lambda XP] + [(X + 1)(X - 3)Q' - XQ]$$

$$= \lambda[(X + 1)(X - 3)P' - XP] + [(X + 1)(X_3)Q' - XQ]$$

$$= \lambda f(P) + f(Q).$$

Par conséquent f est linéaire de E dans $E:f\in\mathscr{L}(E)$ est un endomorphisme de E.

2. Soit λ une valeur propre de f et $P\neq 0$ un vecteur propre associé. Alors :

$$f(P) = \lambda P \iff (X+1)(X-3)P'(X) - XP(X) = \lambda P(X).$$

$$f(P) = \lambda P \iff (X+1)(X-3)P'(X) = (X+\lambda)P(X) \quad (*).$$

Le polynôme P n'est pas constant, sinon la relation (*) donnerait

 $0 = (X + \lambda)P(X)$ ce qui conduirait à P(X) = 0 et contredirait le fait que P est propre pour f.

On note
$$P(X) = a_d X^d + \sum_{k=0}^{d-1} a_k X^k$$
 avec $d = \deg(P) \ge 1 : a_d \ne 0$.

La relation (*) donne :

$$(X+1)(X-3)(da_dX^{d-1} + R'(X)) = (X+\lambda)(a_dX^d + R(X))$$

où l'on a noté
$$R(X) = \sum_{k=0}^{d-1} a_k X^k$$
.

On identifie alors les coefficients des monômes de plus haut degré (d+1): $da_d = a_d$. Puisque $a_d \neq 0$, on obtient d = 1.

Un polynôme propre est donc nécessairement de degré 1.

Supposons que P(X) soit un tel polynôme propre.

On note $P(X) = \alpha X + \beta$ avec $\alpha \neq 0$.

La relation (*) donne :

$$\alpha(X+1)(X-3) = (\alpha X + \beta)(X+\lambda)$$

$$\iff \alpha X^2 - 2\alpha X - 3\alpha = \alpha X^2 + (\alpha \lambda + \beta)X + \beta \lambda$$

$$\iff \begin{cases} -2\alpha = \alpha \lambda + \beta \\ -3\alpha = \beta \lambda. \end{cases} \iff \begin{cases} -2\alpha = \alpha \lambda + \beta \\ \alpha = -\frac{\beta \lambda}{3} \end{cases}$$

$$\begin{cases} -2\left(-\frac{\beta \lambda}{3}\right) = -\frac{\beta \lambda}{3}\lambda + \beta \end{cases} \qquad \begin{cases} \beta \lambda^2 + 2\beta \lambda - 3\beta \end{cases}$$

$$\iff \begin{cases} -2\left(-\frac{\beta\lambda}{3}\right) &= -\frac{\beta\lambda}{3}\lambda + \beta \\ \alpha &= -\frac{\beta\lambda}{3} \end{cases} \iff \begin{cases} \beta\lambda^2 + 2\beta\lambda - 3\beta &= 0 \\ \alpha &= -\frac{\beta\lambda}{3} \end{cases}$$

Le trinôme $\beta\lambda^2 + 2\beta\lambda - 3\beta$, d'indéterminée λ admet pour discriminant

Notons que $\beta \neq 0$, sinon $\alpha = -\frac{\beta\lambda}{2} = 0$.

Le trinôme $\beta \lambda^2 + 2\beta \lambda - 3\beta$ possède donc deux racines réelles distinctes :

$$\frac{-2\beta + 4\beta}{2\beta} = 1 \text{ et } \frac{-2\beta - 4\beta}{2\beta} = -3.$$

 $\Delta = 4\beta^2 + 12\beta^2 = 16\beta^2 = (4\beta)^2$.

Si $\lambda = 1$, on obtient la relation $\beta = -3\alpha$.

Si $\lambda = -3$, on obtient la relation $\beta = \alpha$.

On vérifie alors sans peine que les polynômes $P(X) = \alpha(X+1), \alpha \in \mathbb{R}$ sont propres associés à la valeur propre $\lambda = -3$.

On vérifie alors sans peine que les polynômes $P(X) = \alpha(X - 3), \beta \in \mathbb{R}$ sont propres associés à la valeur propre $\lambda = 1$.

$$Sp(f) = \{1, -3\} \text{ et } E_1(f) = Vect(X - 3) \text{ et } E_{-3}(f) = Vect(X + 1).$$

Solution Exercice 18.

1. Si $P \in \mathbb{R}[X]$ alors f(P) = (X-1)(X-2)P'-2XP est également un polynôme à coefficients réels : $\text{Im}(f) \subset \mathbb{R}[X]$.

Soient $P, Q \in \mathbb{R}[X]$ et $\lambda \in \mathbb{R}$. Alors :

$$f(\lambda P + Q) = (X - 1)(X - 2)(\lambda P + Q)' - 2X(\lambda P + Q)$$

= $\lambda((X - 1)(X - 2)P' - 2XP) + (X - 1)(X - 2)Q' - 2XQ$
= $\lambda f(P) + f(Q)$.

Par conséquent f est une application linéaire de $\mathbb{R}[X]$ dans lui même : $f \in \mathcal{L}(\mathbb{R}[X])$ est un endomorphisme de $\mathbb{R}[X]$.

2. Soit P un polynôme propre pour f associé à une valeur propre $\lambda \in \mathbb{R}$: $f(P) = \lambda P$.

Cette relation donne:

$$(X-1)(X-2)P'(X) - 2XP(X) = \lambda P(X)$$

$$\iff (X-1)(X-2)P' = (2X+\lambda)P(X) \quad (*).$$

Pn'est pas un polynôme constant, sinon on obtiendrait : $(2X+\lambda)P(X)=0$ ce qui conduirait à P(X)=0 et contredirait le fait que P est un polynôme propre.

On note
$$P(X) = a_d X^d + \sum_{k=0}^{d-1} a_k X^k$$
 avec $d \ge 1$ et $a_d \ne 0$.

En injectant dans la relation (*) et en identifiant les coefficients de plus haut degré dans chaque membre on trouve :

$$da_d = 2a_d \iff d = 2 \text{ car } a_d \neq 0.$$

Un polynôme propre de f est donc nécessairement de degré 2.

3. Soit $P(X) = \alpha X^2 + \beta X + \gamma$ un polynôme de degré 2 : $\alpha \neq 0$. La relation (*) donne

$$(X-1)(X-2)(2\alpha X + \beta) = (2X + \lambda)(\alpha X^2 + \beta X + \gamma)$$

$$\iff X^2(-\alpha\lambda - 6\alpha - \beta) + X(-\beta\lambda + 4\alpha - 3\beta - 2\gamma) + (2\beta - \lambda\gamma) = 0$$

$$\iff \begin{cases} \beta = -\alpha(\lambda + 6) \\ \beta(\lambda + 3) = 4\alpha - 2\gamma \end{cases} (*)$$

$$2\beta = \lambda\gamma$$

Notons que $\lambda \neq 0$ sinon $\beta = \alpha = \gamma = 0$ ce qui donnerait P(X) = 0 et contredirait le fait que P est propre.

On trouve alors $\gamma = \frac{2\beta}{\lambda} = -\frac{2\alpha(\lambda+6)}{\lambda}$.

En injectant dans (*) on trouve :

$$-\alpha(\lambda+6)(\lambda+3) = 4\alpha - 2\left(\frac{2\beta}{\lambda}\right) \Longleftrightarrow -\alpha(\lambda+6)(\lambda+3) = 4\alpha - \frac{4}{\lambda}(-\alpha(\lambda+6))$$
$$\Longleftrightarrow -\alpha\lambda(\lambda+6)(\lambda+3) = 4\lambda\alpha + 4\alpha(\lambda+6)$$

Puisque $\alpha \neq 0$ (P est de degré 2), on en déduit que toute valeur propre de f est solution de l'équation $-\lambda(\lambda+3)(\lambda+6)=4\lambda+4(\lambda+6)$.

On obtient $\lambda \in \{-2, -3, -4\}$.

- Si $\lambda = -2$, alors $\beta = -4\alpha$ et $\gamma = 4\alpha$. On vérifie que les polynômes $P(X) = \alpha(X^2 - 4X + 4), \alpha \in \mathbb{R}$ sont propres pour f, associés à la valeur propre $\lambda = -2$. $E_{-2}(f) = Vect(X^2 - 4X + 4)$.
- Si $\lambda = -3$, alors $\beta = -3\alpha$ et $\gamma = 2\alpha$. On vérifie que les polynômes $P(X) = \alpha(X^2 - 3X + 2)$ sont propres pour f, associés à la valeur propre $\lambda = -3$. $E_{-3}(f) = Vect(X^2 - 3X + 2)$.
- Si $\lambda = -4$, alors $\beta = -2\alpha$ et $\gamma = \alpha$. On vérifie que les polynômes $P(X) = \alpha(X^2 - 2X + 1)$ sont propre pour f, associés à la valeur propre $\lambda = -4$. $E_{-4}(f) = Vect(X^2 - 2X + 1)$.

Solution Exercice 19. Soient $n \in \mathbb{N}^*$ et $E = \mathbb{R}_n[X]$. Pour tout $P \in E$, on pose f(P) = X(1-X)P' + nXP.

1. Soit $P = \sum_{k=0}^{d} a_k X^k$ est un polynôme à coefficients réels de degré $d \leq n$.

Si $d \le n-1$ alors f(P)=X(1-X)P'+nXP est de degré au plus $d+1 \le n$ par somme de tels polynômes.

Si d = n alors

$$f(P) = X(1-X)\sum_{k=1}^{n} ka_k X^{k-1} + nX\sum_{k=0}^{n} a_k X^k$$

$$= -na_n X^{n+1} + na_n X^n + X(1-X)\sum_{k=1}^{n-1} ka_k X^{k-1}$$

$$+ na_n X^{n+1} + nX\sum_{k=0}^{n-1} a_k X^k.$$

$$= na_n X^n + X(1-X)\sum_{k=1}^{n-1} ka_k X^{k-1} + nX\sum_{k=0}^{n-1} a_k X^k.$$

Ainsi, f(P) est de degré au plus n.

2. Soit $\lambda \in \mathbb{R}$.

Résolvons l'équation différentielle $x(1-x)y'(x) + nxy(x) = \lambda y(x)$.

On commence par résoudre l'équation sur chacun des intervalle $I=]-\infty;0[,$ I=]0;1[et $I=]1;+\infty[.$

Sur chacun de ces intervalles l'équation devient :

$$y'(x) = \frac{nx - \lambda}{x(x - 1)}y(x).$$

Ainsi, $y(x) = Ke^{F(x)}, K_I \in \mathbb{R}$ où F est une primitive sur I de :

$$f: x \mapsto \frac{nx - \lambda}{x(x-1)} = \frac{n}{x-1} - \lambda \left(\frac{1}{x-1} - \frac{1}{x}\right) = \frac{n-\lambda}{x-1} + \frac{\lambda}{x}.$$

Sur chacun des intervalle I, une primitive convenable est donnée par :

$$F(x) = (n - \lambda) \ln|x - 1| + \lambda \ln|x| = \ln(|x - 1|^{n - \lambda}|x|^{\lambda})$$

Donc sur chacun des intervalles I, on trouve $y(x) = K_I |x-1|^{n-\lambda} |x|^{\lambda}, K_I \in \mathbb{R}$.

- 3. Si $\lambda=k\in [0,n]$, les n+1 polynômes $P_k(X)=(X-1)^{n-k}X^k$ sont solutions, sur \mathbb{R} , de l'équation différentielle x(1-x)y'(x)+nxy(x)=ky(x).
 - $(\lambda=k$ étant entier, on obtient une solution bien définie sur chaque intervalle, quelque soit le signe des monômes sur ces intervalles).

On obtient pour tout $k \in [0, n]$, $f(P_k) = kP_k$.

Ainsi, Sp(f) = [0, n] chaque espace propre est de dimension $1 : E_k(f) = Vect((X-1)^{n-k}X^k)$.

4. $f \in \mathcal{L}(\mathbb{R}_n[X])$ possède $n+1 = \dim \mathbb{R}_n[X]$ valeurs propres distinctes donc f est diagonalisable.

Solution Exercice 20. On considère l'application f définie sur $\mathbb{R}_n[X]$, $n \in \mathbb{N}^*$ par :

$$f(P) = nXP - (X^2 - 1)P'.$$

1. La linéarité de f ne pose pas de difficulté particulière.

Il faut vérifier que si $P \in \mathbb{R}_n[X]$ alors $f(P) \in \mathbb{R}_n[X]$.

- Si P est de degré $d \leq n-1$ alors f(P) est de degré au plus $d+1 \leq n$.
- Si P est de degré n alors f(P) est de degré au plus n car le coefficient a_{n+1} de X^{n+1} est égal à

$$a_{n+1} = na_n - na_n = 0.$$

2. La famille $\mathscr{B} = (1, X - 1, \dots, (X - 1)^n)$ est une famille libre de $\mathbb{R}_n[X]$ car composée de polynômes non nuls échelonnés en degrés.

De plus, $Card(\mathscr{B}) = n + 1 = \dim \mathbb{R}_n[X]$.

Ainsi, \mathscr{B} est une base de $\mathbb{R}_n[X]$.

Déterminons la matrice de f dans cette base.

- -f(1) = nX = n(X-1) + n
- Pour tout $k \in [1, n]$,

$$f((X-1)^k) = nX(X-1)^k - k(X^2-1)(X-1)^{k-1}$$

$$f((X-1)^k) = (X-1)^k (nX - k(X+1)) = (X-1)^k ((n-k)X - k)$$

$$f((X-1)^k) = (X-1)^k ((n-k)(X-1) + (n-k) - k)$$

$$f((X-1)^k) = (n-k)(X-1)^{k+1} + (n-2k)(X-1)^k.$$

Notons que pour k = n le premier terme est nul.

La matrice f dans la base \mathcal{B} est donc triangulaire inférieure.

3. Les coefficients diagonaux de la matrice de f dans \mathscr{B} sont les n+1 nombres entiers $n-2k, k \in [0, n]$.

Par conséquent
$$\chi_f(X) = \prod_{k=0}^n (X - (n-2k)).$$

 χ_f est scindé, à racines simples donc $f\in \mathscr{L}(\mathbb{R}_n[X])$ possède $n+1=\dim\mathbb{R}_n[X]$ valeurs propres disctinctes.

f est diagonalisable.

Solution Exercice 21. Soient $A = \begin{pmatrix} 5 & -17 & 25 \\ 2 & -9 & 16 \\ 1 & -5 & 9 \end{pmatrix}$ et $f \in \mathcal{L}(\mathbb{R}^3)$ l'endo-

morphisme canoniquement associé à ${\cal A}$

1.
$$-\chi_A(X) = \begin{vmatrix} X-5 & 17 & -25 \\ -2 & X+9 & -16 \\ -1 & 5 & X-9 \end{vmatrix} = \begin{vmatrix} X-5 & 17 & -25 \\ 0 & X-1 & -2(X-1) \\ -1 & 5 & X-9 \end{vmatrix}$$

(on a effectué l'opération $L_2 \leftarrow L_2 - 2L_3$.)

$$\chi_A(X) = \begin{vmatrix} X - 5 & 17 & 9 \\ 0 & X - 1 & 0 \\ -1 & 5 & X + 1 \end{vmatrix}$$

(on a effectué l'opération $C_3 \leftarrow C_3 + 2C_2$.)

$$\chi_A(X) = (X-1)[(X-5)(X+1)+9] = (X-1)(X^2-4X+4)$$

 $\chi_A(X) = (X - 1)(X - 2)^2.$

- $-- Sp(A) = \{1; 2\}.$
- On m(1) = 1 et m(2) = 2.

Le but de cette question étant de montrer que A n'est pas diagonalisable il s'agit donc de montrer que dim $E_2(A) = 1 < 2$.

— On résout l'équation AX = 2X. On trouve $E_2(A) = Vect \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$.

La conclusion s'en suit.

— Déterminons au passage $E_1(A)$.

On résout l'équation AX = X. On trouve $E_1(A) = Vect \begin{pmatrix} 11 \\ 7 \\ 3 \end{pmatrix}$.

- 2. Le but de ce qui suit est de trigonaliser la matrice A.
 - (a) Soit $u_1 = (11,7,3) \in E_1(f)$ et $u_2 = (3,2,1) \in E_2(f)$ non nuls. Soit $u_3 = (1,0,0)$.

On a
$$\begin{vmatrix} 11 & 3 & 1 \\ 7 & 2 & 0 \\ 3 & 1 & 0 \end{vmatrix} = 1 \neq 0$$
. La famille $\mathscr{B} = (u_1, u_2, u_3)$ est donc libre et

constitue donc une base de \mathbb{R}^3

Pour déterminer $Mat_{\mathscr{B}}(f)$ deux possibilités :

— Utiliser la matrice de passage $P = \begin{pmatrix} 11 & 3 & 1 \\ 7 & 2 & 0 \\ 3 & 1 & 0 \end{pmatrix}$ de la base canonique à la base \mathscr{B} .

On trouve alors

$$Mat_{\mathscr{B}}(f) = P^{-1}Mat_{\mathscr{B}_c}(f)P$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

- Mieux, on déterminer les images $f(u_1)$, $f(u_2)$, $f(u_3)$ dans la base (u_1, u_2, u_3) .
 - Puisque u_1 et u_2 sont des vecteurs propres associés respectivement aux valeurs propres 1 et 2, on a $f(u_1) = u_2$ et $f(u_2) = 2u_2$.

De plus, $f(u_3) = (5, 2, 1) = 0(11, 7, 3) + 1(3, 2, 1) + 2(1, 0, 0)$.

On retrouve
$$Mat_{\mathscr{B}}(f) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
.

Note:

Avec
$$u_3 = (0, 1, 0)$$
 on trouve la matrice $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & -2 \\ 0 & 0 & 2 \end{pmatrix}$
Avec $u_3 = (0, 0, 1)$ on trouve la matrice $\begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$

La première matrice est plus agréable à manipuler.

On tente dans la question suivante de systématiser la rechercher d'une matrice de cette forme.

(b) Soit $v_1=(3,2,1)\in E_2(A)$ et $v_3=(11,7,3)\in E_1(A)$ non nuls. On détermine $v_2=(\alpha,\beta,\gamma)\in\mathbb{R}^3$ tel que $\mathscr{C}=(v_1,v_2,v_3)$ soit une base de \mathbb{R}^3 telle que $f(v_2)=v_1+2v_2$. On résout le système :

$$\begin{cases} 5\alpha & -17\beta & +25\gamma & = 3+2\alpha \\ 2\alpha & -9\beta & +16\gamma & = 2+2\beta \\ \alpha & -5\beta & +9\gamma & = 1+2\gamma \end{cases}$$

$$\iff \begin{cases} 3\alpha & -17\beta & +25\gamma & = 3 \\ 2\alpha & -11\beta & +16\gamma & = 2 \\ \alpha & -5\beta & +7\gamma & = 1 \end{cases}$$

$$\iff \begin{cases} \alpha & -5\beta & +7\gamma & = 1 \\ 3\alpha & -17\beta & +25\gamma & = 3 \\ 2\alpha & -11\beta & +16\gamma & = 2 \end{cases}$$

$$\iff \begin{cases} \alpha & -5\beta & +7\gamma & = 1 \\ \beta & +2\gamma & = 0 \end{cases}$$

Avec $\gamma = 0$ on trouve $\beta = 0$ et $\alpha = 1$.

Dans cette la base (v_1, v_2, v_3) avec $v_2 = (1, 0, 0)$ la matrice de f a la forme souhaitée.

Solution Exercice 22. On note $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 3 \\ 1/3 & 0 & 1 \end{pmatrix}$.

On note $E = \{aI_3 + bA + CA^2 : (a, b, c) \in \mathbb{R}^3\}$

1. $E = Vect(I_3, A, A^2)$ est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.

On a
$$A^2 = \begin{pmatrix} 0 & 0 & 3 \\ 1 & 0 & 3 \\ \frac{1}{3} & \frac{1}{3} & 1 \end{pmatrix}$$
.

On vérifie sans peine que la famille (I_3,A,A^2) est libre.

Ainsi, (I_3, A, A^2) est une base de E qui est de dimension 3.

On
$$A^3 = \begin{pmatrix} 1 & 0 & 3 \\ 1 & 1 & 3 \\ \frac{1}{3} & \frac{1}{3} & 2 \end{pmatrix} = I_3 + A^2 \in E$$

- 2. Il suffit de déterminer le polynôme caractéristique de $A: \chi_A(x) = x^3 x^2 1$. Les valeurs propres de A sont précisément les racines de χ_A c'est-à-dire solution de l'équation $x^3 - x^2 - 1 = 0$.
- 3. La fonction $x \mapsto x^3 x^2 1$ est
 - strictement croissante sur] $-\infty$; 0] (et on a f(0) = -1 < 0),
 - strictement décroissante sur $[0; \frac{2}{3}]$ (f ne s'annule pas sur ce segment car $f(\frac{2}{3}) < 0 < -1$),
 - strictement croissante sur $\left[\frac{2}{3}; +\infty\right[$.

On a de plus f(1) = 1 - 1 - 1 = -1 < 0.

Donc f s'annule $(\lim_{+\infty} f = +\infty)$ une unique fois sur $[1; +\infty[$.

On en déduit que A possède une unique valeur propre réelle λ .

Si A était diagonalisable dans $\mathcal{M}_3(\mathbb{R})$, il existerait $P \in GL_3(\mathbb{R})$ telle que $A = PDP^{-1}$ avec $D = \lambda I_3$.

Il viendrait $A = \lambda I_3$ ce qui n'est pas.

4. Dans $\mathcal{M}_3(\mathbb{C})$, A est diagonalisable car A possède une valeur propre réelle et deux valeurs propres complexes conjuguées : au total A possède donc $3 = \dim \mathcal{M}_{3,1}(\mathbb{R})$ valeurs propres complexes distinctes.

A est donc diagonalisable dans $\mathcal{M}_n(\mathbb{C})$.

5. On définit Φ_A en posant $\forall M \in E, \Phi_A(M) = AM$.

Montrons que Φ_A est un endomorphisme de E.

— Φ_A est linéaire car pour tout $M, M' \in E$, et $\lambda \in \mathbb{R}$, on a

$$\Phi_A(\lambda M + M') = A(\lambda M + M') = \lambda AM + AM' = \lambda \Phi_A(M) + \Phi_A(M').$$

— $\operatorname{Im}(\Phi_A) \subset E$.

En effet, $\Phi_A(I_3) = A \in E$, $\Phi_A(A) = A^2 \in E$, et $\Phi_A(A^2) = A^3 \in E$ d'après la question 1.

Puisque (I_3, A, A^2) est une base de E, on en déduit que $\operatorname{Im}(\Phi_A) = \Phi_A(E) \subset E$.

Par conséquent, Φ_A est un endomorphisme de E.

Pour donner sa matrice dans \mathcal{B} il suffit d'exprimer l'image des vecteurs de la base $\mathcal{B}=(I_3,A,A^2)$ dans cette même base :

$$Mat_{\mathscr{B}}(\Phi_A) = \left(egin{array}{ccc} 0 & 0 & 1 \ 1 & 0 & 0 \ 0 & 1 & 1 \end{array}
ight)$$

 $\operatorname{car} \Phi_A(I_3) = A, \Phi_A(A) = A^2, \Phi_A(A^2) = I_3 + A^2.$

On calcule $\chi_{\Phi_A}(x) = x^3 - x^2 - 1 = \chi_A(x)$.

 Φ_A n'est donc pas diagonalisable : sinon sa matrice D dans une base $\mathscr{B}' = (M_1, M_2, M_3)$ de vecteurs propres de $E \subset \mathscr{M}_3(\mathbb{R})$ serait diagonale.

Les coefficients diagonaux de ${\cal D}$ sont des valeurs propres.

Les valeurs propres λ_i apparaissant sur la diagonale sont nécessairement réelles car M_i est une matrice à coefficients réels et Φ_A est à valeurs dans $\mathcal{M}_3(\mathbb{R})$, $\underbrace{\Phi_A(M_i)}_{\in\mathcal{M}_3(\mathbb{R})} = \lambda_i$ $\underbrace{M_i}_{\in\mathcal{M}_3(\mathbb{R})}: \lambda_i$ ne peut pas être complexe.

On en déduit que $D=\lambda I_3$ avec λ l'unique valeur propre réelle de Φ_A c'està-dire l'unique racine réelle λ de $\chi_{\Phi_A}=\chi_A$.

En notant P la matrice de passage de \mathscr{B} à \mathscr{B}' cela donnerait :

$$Mat_{\mathscr{B}}(\Phi_A) = PMat_{\mathscr{B}'}(f)P^{-1} = P(\lambda I_3)P^{-1} = \lambda I_3$$

ce qui n'est pas le cas.

Conclusion : Φ_A n'est pas diagonalisable.

Solution Exercice 23.

On considère pour tout $k \in [0,4]$ la fonction $f_k : x \mapsto e^{kx}$. On note $E = Vect(f_0, f_1, f_2, f_3, f_4)$.

1. On a dim E = 5.

En effet, par définition la famille $(f_i, i \in [0, 4])$ est génératrice de E. Elle est également libre.

En effet, soient $\lambda_0, \lambda_1, \lambda_2, \lambda_3, \lambda_4 \in \mathbb{R}$ des scalaires tels que $\sum_{k=0}^4 \lambda_k f_k = 0$ c'est-à-dire

$$\forall x \in \mathbb{R}. \, e^{kx} = 0 \quad (*).$$

Le but est alors de montrer que $\lambda_0 = \lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = 0$.

Pour cela, plusieurs possibilités :

— Une première possibilité est d'écrire la relation (*) pour 5 nombres réels x et de résoudre le système carré obtenu.

On choisit (arbitrairement) x = 0, 1, 2, 3, 4 et on obtient l'équation

$$AX = 0 \text{ avec } A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & e & e^2 & e^3 & e^4 \\ 1 & e^2 & e^4 & e^6 & e^8 \\ 1 & e^3 & e^6 & e^9 & e^{12} \\ 1 & e^4 & e^8 & e^{12} & e^{16} \end{pmatrix} \text{ et } X = \begin{pmatrix} \lambda_0 \\ \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \end{pmatrix}.$$

La matrice A admet pour déterminant, le Vandermonde :

$$V(1, e, e^2, e^3, e^4) = \prod_{0 \le i < j \le 4}^4 (e^j - e^i) \ne 0.$$

La matrice A est donc inversible et l'équation AX = 0 admet une unique solution X = 0: $\lambda_0 = \lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = 0$.

— Une autre possibilité est de dériver la relation (*), k fois $k \in [0, 4]$ et de calculer en 0.

On obtient:

- Pour
$$i = 0 : \sum_{i=0}^{4} \lambda_i = 0$$
.

- Pour
$$i = 0$$
: $\sum_{i=0}^{i-0} i\lambda_i = 0$.

- Pour
$$i = 0$$
: $\sum_{i=0}^{4} i^2 \lambda_i = 0$.

- Pour
$$i = 0$$
: $\sum_{i=0}^{4} i^3 \lambda_i = 0$.

- Pour
$$i = 0$$
: $\sum_{i=0}^{4} i^4 \lambda_i = 0$.

On obtient l'équation
$$BX = 0$$
 avec $B = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 \\ 0^2 & 1^2 & 2^2 & 3^2 & 4^2 \\ 0^3 & 1^3 & 2^3 & 3^3 & 4^3 \\ 0^4 & 1^4 & 2^4 & 3^4 & 4^4 \end{pmatrix}$.

 $\det(B) = V(0,1,2,3,4) \neq 0$. La conclusion est similaire à celle du premier point.

2. Soit $\varphi: f \mapsto f'' - 3f' + 2f$.

Il est clair que les dérivées de tous ordres des fonctions dans E sont encore de E car $f_k^{(p)}=k^pf_k\in E.$

Ainsi, $\forall f \in E, \varphi(f) \in E$.

La linéarité découle de la linéarité de la dérivation (d'ordre 0, 1, 2).

3. On écrit la matrice de φ dans la base $\mathscr{B} = (f_i : i \in [0, 4])$ de E.

Notons que $f'_k = kf_k$ et $f''_k = k^2f_k$. On obtient :

$$--\varphi(f_0)=2f_0.$$

$$--\varphi(f_1)=0.$$

$$--\varphi(f_2) = 4f_2 - 6f_2 + 2f_2 = 0.$$

$$--\varphi(f_3) = 9f_3 - 9f_3 + 2f_3 = 2f_3.$$

$$--\varphi(f_4) = 16f_4 - 12f_4 + 2f_4 = 6f_4.$$

Ainsi,

Ainsi, $Sp(\varphi) = \{0, 2, 6\}$ avec

$$- E_0(\varphi) = Vect(f_1, f_2).$$

$$-E_2(\varphi) = Vect(f_0, f_3).$$

$$-E_6(\varphi) = Vect(f_4).$$

Solution Exercice 24. Soit $E = \mathcal{C}^0([0;1],\mathbb{R})$. Pour tout $f \in E$, on définie la fonction g par

$$\forall x \in E, g(x) = \int_0^x \inf(x, t) f(t) dt.$$

On note enfin T l'application définie sur E par T(f)=g.

1. La linéarité est claire par linéarité de l'intégrale. Montrons que T est à valeurs dans E, autrement dit montrons que si $f \in E$ est continue sur [0; 1] alors T(f) = g est continue sur [0; 1]. On peut écrire pour tout $x \in [0;1]$, $g(x) = \int_0^x t f(t) dt + x \int_x^1 f(t) dt$.

Il apparaît alors que g est continue (et même dérivable) sur [0;1] par le théorème fondamental de l'intégration.

2. Déterminons les éléments propres de E.

Soit $f \in E$ et $\lambda \in \mathbb{R}$ tels que $T(f) = \lambda f$.

Si
$$\lambda = 0$$
, on obtient $\int_0^x tf(t)dt + x \int_x^1 f(t)dt = 0$.

En dérivant, il vient $xf(x) + \int_{x}^{1} f(t)dt - xf(x) = 0$.

En dérivant à nouveau il vient f(x) = 0 pour tout $x \in [0; 1]$. Ainsi, f = 0 et $\lambda = 0$ n'est pas valeur propre.

3. On suppose maintenant $\lambda \neq 0$.

La relation $T(f)(0) = \lambda f(0)$ donne f(0) = 0.

La relation $T(f)=\lambda f$ montre également que λf est dérivable et que pour tout $x\in[0;1],$ $\int_x^1f(t)dt=\lambda f'(x).$

En particulier f'(1) = 0.

En dérivant encore, il vient $\lambda f''(x) + f(x) = 0$.

— Premier cas : $\lambda < 0$.

L'équation caractéristique $\lambda X^2+1=0 \iff X=\pm \frac{1}{\sqrt{-\lambda}}$ possède deux racines réelles distinctes.

Il existe donc $(A, B) \in \mathbb{R}^2$ tel que $f(x) = A \exp \frac{x}{\sqrt{\lambda}} + B \exp \frac{-x}{\sqrt{\lambda}}$.

Avec f(0) = 0, il vient B = -A et finalement $f(x) = A \operatorname{sh} \frac{\sqrt{\lambda}}{\sqrt{-\lambda}}$.

Puisque f'(1) = 0 on obtient $0 = \frac{A}{\sqrt{-\lambda}} \operatorname{ch} \frac{x}{\sqrt{-\lambda}}$ puis A = 0.

On obtient à nouveau f = 0 donc $\lambda < 0$ n'est pas valeur propre.

— Deuxième cas : $\lambda > 0$.

L'équation caractéristique $\lambda X^2 + 1 = 0 \iff X = \pm \frac{i}{\sqrt{\lambda}}$ possède deux racines réelles conjuguées.

Avec f(0) = 0, il vient $f(x) = A \sin \frac{x}{\sqrt{\lambda}}$

f est vecteur propre de T (associé à la valeur propre $\lambda > 0$) si et seulement si $f \neq 0$ si et seulement si $A \neq 0$.

La condition f'(1) = 0 donne $0 = \frac{A}{\sqrt{\lambda}} \cos \frac{1}{\sqrt{\lambda}}$.

Ainsi, f est vecteur propre de T associé à la valeur propre λ si et seulement si

$$\frac{1}{\sqrt{\lambda}} = \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \iff \lambda = \left(\frac{1}{\frac{\pi}{2} + k\pi}\right)^2, k \in \mathbb{N}.$$

Par conséquent $\lambda_k = \left(\frac{1}{\frac{\pi}{2} + k\pi}\right)^2$ est valeur propre de T et $E_{\lambda_k} = Vect\left(x \mapsto \sin\frac{x}{\sqrt{\lambda}}\right)$.