Proposal: Σ-protocols

Stephan Krenn, Michele Orrù

\(\Sigma\)-protocols

\(\Sigma\)-protocols

Special soundness, honest verifier zero-knowledge

In prime fields.

(Some) Z-protocols

Consider $\varphi: \mathbb{Z}_p^n \to \mathbb{G}^m$.

Consider $\varphi: \mathbb{Z}_p^n \to \mathbb{G}^m$.

$$R = \{(w) : Y = \varphi(w)\}$$

$$r \leftarrow \mathbb{Z}_p^n$$

$$T = \varphi(r)$$

$$\boldsymbol{\mathcal{C}}$$

$$\varphi(s) = T + cY.$$

Consider
$$\varphi$$
: Z_p

$$WG$$

$$R = \{(w): Y = \varphi(w)\}$$

$$r \leftarrow \mathbb{Z}_p^n$$

$$T = \varphi(r)$$
 C
 S

$$SG$$

$$\varphi(S) = T + cY.$$

Consider
$$\varphi : \mathbb{Z}_p^n \to \mathbb{G}^m$$
:
$$R = \{(w) : Y = \varphi(w)\}$$

$$r \leftarrow \mathbb{Z}_p$$

$$T = \varphi(r)$$

$$c$$

$$S$$

$$S[G]$$

$$S[H]$$

$$S[H]$$

$$T + cY$$

Non-interactive.

Consider $\varphi: \mathbb{Z}_p^n \to \mathbb{G}^m$.

$$R = \{(w) : Y = \varphi(w)\}$$

$$T = \varphi(r)$$

$$c = H(T)$$

$$S$$

$$c = H(T)$$

$$\varphi(s) = T + cY.$$

Linear Relations

$$R = \{(w) : Y = \varphi(w) \land Aw = b\}.$$

OR-composition

$$R = \{(w) : Y_0 = \varphi(w) \lor Y_1 = \varphi(w)\}.$$

AND-composition

$$R = \{(w_0, w_1) : Y_0 = \varphi(w_0) \land Y_1 = \varphi(w_1)\}.$$

Choosing the group

Disclosure of a Major Bug in CryptoNote Based Currencies

Posted by: luigi1111 and Riccardo "fluffypony" Spagni

May 17, 2017

In Monero we've discovered and patched a critical bug that affects all CryptoNote-based cryptocurrencies, and allows for the creation of an unlimited number of coins in a way that is undetectable to an observer unless they know about the fatal flaw and can search for it.

Choosing the group

- Prime-order groups
- Prime-order group abstractions
- Pairing-friendly groups

Commitment

$$T:=\varphi(r)$$

$$r \leftarrow \mathbb{Z}_p^n$$

$$r=H(w,Y)$$
 [c.f. RFC 6979. This is not the right way to do it. Don't do it in practice.]

More prone to errors

- Incompatible with OR
- Deterministic prover

H(T, Y, gen, curve, ds)

Challenge Challenges

$$H(T, Y, gen, curve, ds) \in \mathbb{Z}_p$$

- Length extension attacks
- "Chop off at 256bits", draft-irtf-cfrg-hash-to-curve, STROBE

Response

Short (C, S)

Batchable (T, s)

Response

Short (c, s)

Batchable
$$(T, s)$$

$$(\Upsilon_1, S_1), \ldots, (\Upsilon_K, S_K)$$
 for \mathcal{F}

$$P(\Sigma_i e_i s_i) = \Sigma_i e_i T_i + (\Sigma_i e_i c_i) Y$$
[for random $e_i' s_i$]

What's out there

Project	Language	AND	OR	INT	FS
Cashlib	C++				√
Emmy	Go			√	
Kyber	Go	√	√	√	√
SCAPI	C++	√	√	√	√
YAZKC	C	√	√	√	√
zkp	Rust				
zksk	Python		√		

Σ-protocols: limits

- When Σ -protocols are useless;
- One thought about post-quantum resistance.

Missing something?

Looking Ahead

- R1CS compatibility;
- Shared proof computation;
- Designated verifier;
- Interactive protocol.

What next?