This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

PCT WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE

INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) (51) Internationale Patentklassifikation 7:

C07D 409/14, 409/12, 417/06, 335/06, 413/14, A01N 43/18

(11) Internationale Veröffentlichungsnummer:

WO 00/14087

(43) Internationales Veröffentlichungsdatum:

16. März 2000 (16.63.00)

(21) Internationales Aktenzeichen:

PCT/EP99/06259

A1

- (22) Internationales Anmeldedatum: 26. August 1999 (26.08.99)
- (30) Prioritätsdaten:

198 40 337.2

4. September 1998 (04.09.98) DE

- HOECHST SCHERING AGREVO GMBH [DE/DE]: Miraustrasse 54, D-13509 Berlin (DE).
- (72) Erfinder: VAN ALMSICK, Andreas; Roßkopfweg 9, D-61440 Oberursel (DE). WILLMS, Lothar, Königsteiner Strasse 50, D-65719 Hofheim (DE). AULER, Thomas; Kastanienweg 7, D-65451 Kelsterbach (DE). BIERINGER, Hermann; Eichenweg 26, D-65817 Eppstein (DE). ROSINGER, Christopher, Am Hochfeld 33, D-65719 Hofheim (DE).

(81) Bestimmungsstaaten: AE, AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CR, CU, CZ, DM, EE, GD, GE, HR, HU, ID, IL, IN, IS, JP, KG, KP, KR, KZ, LC, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TM, TR, TT, UA, UZ, VN, YU, ZA, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht.

(54) Title: BENZOYL DERIVATIVES, METHOD FOR PRODUCING THEM AND THEIR USE AS HERBICIDES AND PLANT GROWTH REGULATORS

(54) Bezeichnung: BENZOYLDERIVATE, VERFAHREN ZU IHRER HERSTELLUNG UND IHRE VERWENDUNG ALS HERBIZIDE UND PFLANZENWACHSTUMSREGULATOREN

(57) Abstract

The invention relates to benzoyl derivatives of general formula (I), to a method for producing them and to their use as herbicides and plant growth regulators. In said general formula (I), R¹, R², R³, R⁴ and R⁵ represent different organic radicals, Q represents an isothiazole, isoxazole, cyclohexanedione or β -ketonitrile radical and A, B, E and X represent mono- or polyatomic divalent units.

(57) Zusammenfassung

Es werden Benzoylderivate der allgemeinen Formel (I), Verfahren zu ihrer Herstellung und ihre Verwendung als Herbizide und Pflanzenwachstumsregulatoren beschrieben. In dieser allgemeinen Formel (I) stehen R¹, R², R³, R⁴ und R⁵ für verschiedene organische Reste, Q für Isothiazol, Isoxazol, Cyclohexandion- oder β -Ketronitril-Rest und A, B, E sowie X für ein- oder mehratomige divalente Einheiten.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

		700	Si	LS	Lesotho	SI	Slowenien
AL	Albanien	ES	Spanien	LT	Litauen	SK	Slowakei
` AM	Armenien	FI	Finnland			SN	Senegal
AT	Österreich	FR	Frankreich	LU	Luxemburg	SZ	Swasiland
AU	Australien	GA	Gabun	LV	Lettland		•
ΑZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	ТJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Tarkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
-	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BR		IS	Island	MW	Malawi	US	Vereinigte Staaten von
BY	Belarus	IT	Italien	MX	Mexiko		Amerika
CA	Kanada	JP	· ·	NE	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	_	Japan Kenia	NL	Niederlande	VN	Vietnam
CG	Kongo	KE		NO	Norwegen	ΥU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NZ	Neusceland	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	PL		271	2
CM	Kamerun		Korea		Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumānien		
cz	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SĐ	Sudan		
DK	Dänemark '	LK	Sri Lanka	SE	Schweden		•
EE	Estland	LR	Liberia	SG	Singapur		
1							

1

Beschreibung

Benzoylderivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Herbizide und Pflanzenwachstumsregulatoren

Die Erfindung betrifft das technische Gebiet der Herbizide und Pflanzenwachstumsregulatoren, insbesondere das der Herbizide zur selektiven Bekämpfung von Unkräutem und Ungräsern in Nutzpflanzenkulturen.

Aus verschiedenen Schriften ist bereits bekannt, daß bestimmte Benzoylderivate herbizide Eigenschaften besitzen. So beschreiben EP-A 0 712 853 und EP-A 0 841 335 kondensierte Benzoylderivate, die in α-Position des ankondensierten Ringsystems einen Alkylrest tragen.

EP-A 0 629 623, EP-A 0 810 227 und EP-A 0 819 691 beschreiben kondensierte Benzoylderivate, die in α-Position des ankondensierten Ringsystems durch einen Alkoxyrest substituiert sind. WO 97/23135 offenbart kondensierte Benzoylderivate, die in α-Position des ankondensierten Ringsystems einen Rest aus der Gruppe Alkyl, Alkenyl, Alkinyl, Alkoxy und Alkoxyimino tragen. WO 98/29406 offenbart kondensierte Benzoylderivate, die in α-Position des ankondensierten Ringsystems einen oder zwei Reste aus der Gruppe Alkyl, Alkoxyimino, Alkoxy, Alkylthio und disubstituiertes Amino tragen. Dabei können die drei letztgenannten Reste auch in cyclischer Form vorliegen, so daß sich in α-Position des ankondensierten Ringsystems ein Cycloalkoxy, Cycloalkylthio oder Cycloalkylaminorest befindet. Darüberhinaus nennt WO 98/29406 ein kondensiertes Benzoylderivat, bei dem sich in besagter α-Position ein (2-Tetrahydrofuryl)methyloxy-Rest befindet.

Weiterhin ist aus verschiedenen Schriften bekannt, daß Herbiziden aus der Reihe der Benzoylcyclohexandione als Inhibitoren der para-Hydroxyphenylpyruvat-Dioxygenase derselbe Wirkmechanismus zugrunde liegt, wie denen aus der Reihe der Benzoylisoxazole, vergleiche dazu *J. Pesticide Sci.* 21, 473-478 (1996), *Weed Science* 45, 601-609 (1997), *Pesticide Science* 50, 83-84, (1997) und *Pesticide*

Outlook, 29-32, (December 1996). Darüberhinaus ist aus *Pesticide Science* **50**, 83-84, (1997) bekannt, daß ein Benzoylisoxazol der Formel (A) unter bestimmten Bedingungen zu einem Benzoyl-3-oxopropionitril der Formel (B) umlagern kann.

Die Anwendung der aus diesen Schriften bekannten Benzoylderivate ist jedoch häufig in der Praxis mit Nachteilen verbunden. So ist die herbizide oder pflanzenwachstumsregulierende Wirksamkeit der bekannten Verbindungen nicht immer ausreichend, oder bei ausreichender herbizider Wirksamkeit werden unerwünschte Schädigungen der Nutzpflanzen beobachtet.

Aufgabe der vorliegenden Erfindung ist die Bereitstellung von herbizid und pflanzenwachstumsregulierend wirksamen Verbindungen, die die aus dem Stand der Technik bekannten Nachteile überwinden.

Die Lösung der Aufgabe sind Benzoylderivate der allgemeinen Formel (I),

3

$$Q = \begin{pmatrix} R^{5} \\ R^{1} \\ R^{2} \end{pmatrix}$$

$$R^{3} = \begin{pmatrix} R^{4} \\ R^{2} \\ R^{2} \end{pmatrix}$$

$$R^{4} = \begin{pmatrix} R^{4} \\ R^{4} \\ R^{2} \end{pmatrix}$$

$$R^{2} = \begin{pmatrix} R^{4} \\ R^{4} \\ R^{2} \end{pmatrix}$$

worin

Q einen Rest der Formel (II), (III) oder (IV)

R¹, R², R³ unabhängig voneinander Wasserstoff, Hydroxy, Thio, Amino, Cyano, Nitro, Halogen oder einen gegebenenfalls substituierten Kohlenwasserstoff-Rest, der gegebenenfalls zusätzlich ein oder mehrere, gleiche oder verschiedene Heteroatome aus der Gruppe Sauerstoff, Schwefel, Stickstoff, Fluor, Chlor, Brom und Jod enthält;

R⁴ Wasserstoff, Cyano, Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Alkoxycarbonyl, Phenyl, wobei die sechs letztgenannten Gruppen gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, Nitro, Cyano, Alkyl, Cycloalkyl, Alkenyl, Alkinyl, Alkoxy und Alkylthio substituiert sind;

R⁵ ein gegebenenfalls ein- oder mehrfach durch gleiche oder verschiedene Reste substituiertes Heteroaryl, Heterocyclyl oder Aryl, oder einen Rest aus der Gruppe -O-N=CRⁱR^m, -P(=O)(ORⁱ)(R^j), -P(=O)(ORⁱ)(OR^k) oder

oder, für den Fall, daß E für eine Bindung und I für null steht, kann R⁵ auch für Hydroxy stehen;

A eine divalente Einheit aus der Gruppe O, S, SO, SO₂, NR^a, CHR^a und CR^aR^b;

B eine gesättigte oder eine ein oder mehrere Mehrfachbindungen enthaltende und aus ein bis vier Kohlenstoffatomen bestehende Kette, die gegebenenfalls durch Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy oder durch einen gegebenenfalls durch Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Halogen, Cyano oder Nitro substituierten Phenylrest substituiert ist;

eine Bindung, eine gesättigte oder eine ein oder mehrere Mehrfachbindungen enthaltende ein- bis sechsgliedrige Kette bestehend aus divalenten Einheiten der Gruppe C, CR^c, CR^cR^d, N, NR^c, S, SO, SO₂, O und CO;

X eine divalente Einheit aus der Gruppe O, S und NRe;

R⁶ Alkylthio, Halogenalkylthio, Alkylsulfinyl, Halogenalkylsulfinyl, Alkylsulfonyl, Halogenalkylsulfonyl, Cyano, Cyanato, Thiocyanato, Halogen oder OR^f;

Y eine divalente Einheit aus der Gruppe O, S, NH, N-Alkyl oder CHR⁷;

R⁷ Wasserstoff, Tetrahydropyran-3-yl, Tetrahydropyran-4-yl, Tetrahydrothiopyran-3-yl, Alkyl, Cycloalkyl, Alkoxy, Alkoxyalkyl, Alkylcarbonyl, Alkoxycarbonyl, Alkylthio, Phenyl, wobei der Kohlenwasserstoffteil der acht letztgenannten Reste

gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, Alkylthio und Alkyloxy substituiert ist, oder

zwei an einem gemeinsamen Kohlenstoffatom gebundene Reste R⁷ bilden eine Kette aus der Gruppe OCH₂CH₂O, OCH₂CH₂CH₂O, SCH₂CH₂S und SCH₂CH₂CH₂S, wobei diese gegebenenfalls durch ein bis vier Methylgruppen substituiert ist, oder

zwei an direkt benachbarten Kohlenstoffatomen gebundene Reste R⁷ bilden eine Bindung oder bilden mit dem sie tragenden Kohlenstoffatomen einen gegebenenfalls substituierten 3- bis 6-gliedrigen Ring;

- Z eine Bindung, eine divalente Einheit aus der Gruppe O, S, SO, SO₂, NH, N-Alkyl oder CHR⁷, wobei Y und Z nicht gleichzeitig eine divalente Einheit bedeuten sollen, die als Kettenglied ein Sauerstoff-, Stickstoff- oder Schwefelatom enthält;
- G¹-G² eine divalente Einheit aus der Gruppe OCR⁹, SCR⁹ und NR¹0COR¹¹, wobei die Verknüfung mit dem Ringsystem so erfolgen soll, daß das Kohlenstoffatom dieser divalenten Einheit jeweils über eine Doppelbindung an das Kohlenstoffatom des Ringsystems gebunden ist;
- R⁸ Wasserstoff, Alkyl oder Alkoxycarbonyl;
- R⁹ Wasserstoff, Alkyl, Cycloalkyl, Halogenalkyl oder Halogencycloalkyl;
- R¹⁰ Wasserstoff, Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Phenyl, Benzyl, wobei die sechs letztgenannten Gruppen gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, Cyano, Nitro und Alkoxy substituiert sind;
- R¹¹ Wasserstoff, Formyl, Alkyl, Halogenalkyl, Alkoxyalkyl oder eine Gruppe L-R¹²;

- L eine divalente Einheit aus der Gruppe SO₂, CO, CHR⁹CO oder CR⁹R^h;
- R¹² Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Alkylamino, Dialkylamino, Cycloalkyl oder ein gegegenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Cyano, Nitro, Alkyl, Alkoxy, Halogenalkyl und Halogenalkoxy substituiertes Phenyl;

R^a und R^b unabhängig voneinander Wasserstoff, Halogen, Cyano, Nitro, Formyl, Alkyl, Cycloalkyl, Alkenyl, Alkinyl, Alkylcarbonyl und Alkylsulfonyl, wobei der Kohlenwasserstoffteil der sechs letztgenannten Reste gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, Nitro, Cyano, Alkyl, Cycloalkyl, Alkenyl, Alkinyl, Alkoxy und Alkylthio substituiert ist;

R^c und R^d unabhängig voneinander Wasserstoff, Halogen, Nitro, Cyano, Alkyl, Halogenalkyl, Cycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Halogenalkinyl, Alkoxy, Halogenalkoxy, Alkylthio, Halogenalkylthio, Alkylcarbonyl, Halogenalkylcarbonyl, Alkylaminocarbonyl, Alkylaminocarbonyl, Dialkylaminocarbonyl, Halogenalkylcarbonylamino, Alkylcarbonyl-N-alkylamino, Alkylsulfonyl, Alkylsulfonylamino, Halogenalkylsulfonyl, Halogenalkylsulfonyl, Alkylsulfonylamino und Alkylsulfonyl-N-alkylamino;

- Re Wasserstoff, Formyl, Alkyl, Cycloalkyl, Alkenyl, Alkinyl, Alkylcarbonyl und Alkylsulfonyl, wobei der Kohlenwasserstoffteil der sechs letztgenannten Reste gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, Nitro, Cyano, Alkyl, Cycloalkyl, Alkenyl, Alkinyl, Alkoxy und Alkylthio substituiert sein können;
- R^f Wasserstoff, Alkyl, Halogenalkyl, Alkoxyalkyl, Formyl, Alkylcarbonyl, Alkoxycarbonyl, Alkylaminocarbonyl, Dialkylaminocarbonyl, Alkylsulfonyl, Halogenalkylsulfonyl, Benzoyl oder Phenylsulfonyl, wobei der aromatische Teil der zwei letztgenannten Reste gegebenenfalls durch ein oder mehrere, gleiche oder

verschiedene Reste aus der Gruppe Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Halogen, Cyano und Nitro substituiert ist;

R^g und R^h unabhängig voneinander Wasserstoff oder Alkyl;

Ri und Rk unabhängig voneinander Wasserstoff oder Ri;

R^j Alkyl, Alkenyl, Halogenalkyl, Halogenalkenyl, Phenyl, Benzyl, wobei diese sechs genannten Reste gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, Cyano, Nitro, (C₁-C₄)-Alkyl, (C₁-C₄)-Alkoxy, Halogen-(C₁-C₄)-alkyl oder Halogen-(C₁-C₄)-alkoxy substituiert sind;

R^I und R^m unabhängig voneinander Wasserstoff oder durch ein oder mehrere, gleiche oder verschiedene Reste R¹ substituiertes Alkyl, Alkenyl, Alkinyl, Halogenalkyl, Halogenalkenyl oder Halogenalkinyl, oder R^I und R^m bilden zusammen mit dem Kohlenstoffatom, an dem sie gebunden sind, einen 3-, 4-, 5-, 6-, 7- oder 8-gliedrigen gesättigten oder teilweise ungesättigten Ring, der gegebenenfalls ein bis drei Heteroatome aus der Gruppe Sauerstoff, Schwefel und Stickstoff enthält und der gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste R¹ substituiert ist.

```
I 0 oder 1;
```

m 0, 1 oder 2;

n 0, 1, 2 oder 3;

v 1 oder 2;

w 0, 1, 2, 3 oder 4

bedeuten,

mit der Maßgabe, daß

- a) die Verbindung 4-[2-Tetrahydrofuryl]methyloxy-5,8-dimethyl-6-[(2,6-dioxo-cyclohexyl)carbonyl]-1,2,3,4-tetrahydro-1λ⁶-thiochromen-1,1-dion nicht von obiger Definition umfaßt sein soll, und
- b) in R⁵ Aryl nicht Phenyl bedeuten soll, wenn E für Methylen und G¹ in G¹-G² für Schwefel steht.

Zahlreiche erfindungsgemäße Verbindungen der Formel (I) können in Abhängigkeit von äußeren Bedingungen, wie Lösungsmittel und pH-Wert, in unterschiedlichen tautomeren Strukturen auftreten.

Für den Fall, daß Q einen Rest der Formel (II) bedeutet worin R⁶ für Hydroxy steht, sind folgende tautomeren Strukturen möglich:

$$(R^{7})_{w}^{Z} Y \longrightarrow (R^{7})_{w}^{R^{5}} Y \longrightarrow (R^{7})_$$

Für den Fall, daß Q einen Rest der Formel (IV) bedeutet, sind folgende tautomeren Strukturen möglich:

Diese tautomeren Strukturen sollen ebenfalls durch die allgemeine Formel (I) umfaßt werden.

Je nach Art der Substituenten enthalten die Verbindungen der allgemeinen Formel (I) ein acides Proton, das durch Umsetzung mit einer Base entfernt werden kann. Als Basen eignen sich beispielsweise Alkalimetalle, wie Lithium, Natrium und Kalium, Erdalkalimetalle, wie Calcium und Magnesium, Ammoniak und organische Amine. Solche Salze sind ebenfalls Gegenstand der Erfindung.

Ein Kohlenwasserstoffrest ist ein geradkettiger, verzweigter oder cyclischer, gesättigter, teilgesättigter, ungesättigter oder aromatischer Rest, z.B. Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Cycloalkenyl, Cycloalkinyl oder Aryl. Ebenso sollen zusammengesetzte Begriffe, wie Cycloalkylalkenyl, Cycloalkinylalkyl und Arylalkinyl, von dieser Definition umfaßt sein. Enthält dieser Kohlenwasserstoffrest noch

zusätzlich Heteroatome, so können sich diese grundsätzlich, d.h. sofern es der chemische Aufbau erlaubt, an beliebiger Position des Kohlenwasserstoffrests befinden.

In Formel (I) und allen nachfolgenden Formeln können kettenförmige kohlenstoffhaltige Reste wie Alkyl, Alkoxy, Halogenalkyl, Halogenalkoxy, Alkylamino und Alkylthio sowie die entsprechenden ungesättigten und/oder substituierten Reste im Kohlenstoffgerüst wie Alkenyl und Alkinyl jeweils geradkettig oder verzweigt sein. Wenn nicht speziell angegeben, sind bei diesen Resten die niederen Kohlenstoffgerüste, z.B. mit 1 bis 6 C-Atomen bzw. bei ungesättigten Gruppen mit 2 bis 4 C-Atomen, bevorzugt. Alkylreste, auch in den zusammengesetzten Bedeutungen wie Alkoxy, Halogenalkyl usw., bedeuten z.B. Methyl, Ethyl, n- oder i-Propyl, n-, i-, t- oder 2-Butyl, Pentyle, Hexyle, wie n-Hexyl, i-Hexyl und 1,3-Dimethylbutyl, Heptyle, wie n-Heptyl, 1-Methylhexyl und 1,4-Dimethylpentyl; Alkenyl- und Alkinylreste haben die Bedeutung der den Alkylresten entsprechenden möglichen ungesättigten Reste; Alkenyi bedeutet z.B. Allyl, 1-Methylprop-2-en-1-yl. 2-Methyl-prop-2-en-1-yl, But-2-en-1-yl, But-3-en-1-yl, 1-Methyl-but-3-en-1-yl und 1-Methyl-but-2-en-1-yl; Alkinyl bedeutet z.B. Propargyl, But-2-in-1-yl, But-3-in-1-yl, 1-Methyl-but-3-in-1-yl. Die Mehrfachbindung kann sich in beliebiger Position des ungesättigten Rests befinden.

Cycloalkyl bedeutet ein carbocyclisches, gesättigtes Ringsystem mit drei bis acht C-Atomen, z.B. Cyclopropyl, Cyclopentyl oder Cyclohexyl. Analog bedeutet Cycloalkenyl eine monocyclische Alkenylgruppe mit drei bis acht Kohlenstoffringgliedern, z.B. Cyclopropenyl, Cyclobutenyl, Cyclopentyl und Cyclohexenyl, wobei sich die Doppelbindung an beliebiger Position befinden kann. Im Falle zusammengesetzter Reste, wie Cycloalkylalkenyl, kann sich der erstgenannte Rest an beliebiger Position des zweitgenannten befinden.

Im Falle einer zweifach substituierten Aminogruppe, wie Dialkylamino, können diese beiden Substituenten gleich oder verschieden sein. Halogen bedeutet Fluor, Chlor, Brom oder Iod. Halogenalkyl, -alkenyl und -alkinyl bedeuten durch Halogen, vorzugsweise durch Fluor, Chlor und/oder Brom, insbesondere durch Fluor oder Chlor, teilweise oder vollständig substituiertes Alkyl, Alkenyl bzw. Alkinyl, z.B. CF₃, CHF₂, CH₂F, CF₃CF₂, CH₂FCHCl, CCl₃, CHCl₂, CH₂CH₂Cl; Halogenalkoxy ist z.B. OCF₃, OCHF₂, OCH₂F, CF₃CF₂O, OCH₂CF₃ und OCH₂CH₂Cl; entsprechendes gilt für Halogenalkenyl und andere durch Halogen substituierte Reste.

Unter dem Begriff Heterocyclyl sind drei- bis sechsgliedrige, gesättigte oder partiell ungesättige mono- oder polycyclische Heterocyclen zu verstehen, die ein bis drei Heteroatome ausgewählt aus einer Gruppe bestehend aus Sauerstoff, Stickstoff und Schwefel enthalten. Die Verknüpfung kann, sofern chemisch möglich an beliebiger Position des Heterocyclus erfolgen. Beispiele dafür sind Oxiranyl, 3-Tetrahydrofuranyl, 2-Tetrahydrothienyl, 3-Tetrahydrothienyl, 1-Pyrrolidinyl, 2-Pyrrolidinyl, 3-Pyrrolidinyl, 3-Isoxazoldinyl, 4-Isoxazolidinyl, 5-Isoxoazolidinyl, 3-Isothioazolidinyl, 4-Isothiazolidinyl, 5-Isothiazolidinyl, 1-Pyrazolidinyl, 3-Pyrazolidinyl, 4-Pyrazolidinyl, 5-Pyrazolidinyl, 2-Oxazolidinyl, 4-Oxazolidinyl, 5-Oxazolidinyl, 2-Thiazolidinyl, 4-Thiazolidinyl, 5-Thiazolidinyl, 2-Imidazolidinyl, 4-Imidazolidinyl, 1,2,4-Oxa-diazolidin-3-yl, 1,2,4-Oxadiazolidin-5-yl, 1,2,4-Thiadiazolidin-3-yl, 1,2,4-Thiadiazolidin-5-yl, 1,2,4-Triazolidin-3-yl, 1,3,4-Oxazolidin-2-yl, 1,3,4-Thiadiazolidin-2-yl, 1,3,4-Triazolidin-2-yl, 2,3-Dihydrofur-2-yl, 2,3-Dihydrofur-3-yl, 2,3-Dihydrofur-4-yl, 2,3-Dihydrofur-5-yl, 2,5-Dihydrofur-2-yl, 2,5-Dihydrofur-3-yl, 2,3-Dihydrothien-2-yl, 2,3-Dihydrothien-3-yl, 2,3-Dihydrothien-4yl, 2,3-Dihydrothien-5-yl, 2,5-Dihydrothien-2-yl, 2,5-Dihydrothien-3-yl, 2,3-Dihydropyrrol-2-yl, 2,3-Dihydropyrrol-3-yl, 2,3-Dihydropyrrol-4-yl, 2,3-Dihydropyrrol-5-yl, 2,5-Dihydropyrrol-2-yl, 2,5-Dihydropyrrol-3-yl, 2,3-Dihydroisoxazol-3-yl, 2,3-Dihydroisoxazol-4-yl, 2,3-Dihydroisoxazol-5-yl, 4,5-Dihydroisoxazol-3-yl, 4,5-Dihydro-isoxazol-4-yl, 4,5-Dihydroisoxazol-5-yl, 2,5-Dihydroisothiazol-3-yl, 2.5-Dihydroisothiazol-4-yl, 2.5-Dihydroisothiazol-5-yl, 2,3-Dihydroisopyrazol-3-yl, 2,3-Dihydroisopyrazol-4-yl, 2,3-Dihydroisopyrazol-5-yl, 4,5-Dihydroisopyrazol-3-yl, 4,5-Dihydroisopyrazol-4-yl, 4,5-Dihydroisopyrazol-5-yl, 2,5-Dihydroisopyrazol-3-yl, 2,5-Dihydroisopyrazol-4-yl, 2,5-Dihydroisopyrazol-5-yl, 2,3-Dihydrooxazol-3-yl,

WO 00/14087

12

- 2,3-Dihydrooxazol-4-yl, 2,3-Dihydro-oxazol-5-yl, 4,5-Dihydrooxazol-3-yl,
- 4,5-Dihydrooxazol-4-yl, 4,5-Dihydrooxazol-5-yl, 2,5-Dihydrooxazol-3-yl,
- 2,5-Dihydrooxazol-4-yl, 2,5-Dihydrooxazol-5-yl, 2,3-Dihydrothiazol-2-yl,
- 2,3-Dihydrothiazol-4-yl, 2,3-Dihydrothiazol-5-yl, 4,5-Dihydrothiazol-2-yl,
- 4,5-Dihydrothiazol-4-yl, 4,5-Dihydrothiazol-5-yl, 2,5-Dihydrothiazol-2-yl,
- 2,5-Dihydrothiazol-4-yl, 2,5-Dihydrothiazol-5-yl, 2,3-Dihydroimidazol-2-yl,
- 2,3-Dihydroimidazol-4-yl, 2,3-Dihydroimidazol-5-yl, 4,5-Dihydroimidazol-2-yl,
- 4,5-Dihydroimidazol-4-yl, 4,5-Dihydroimidazol-5-yl, 2,5-Dihydroimidazol-2-yl,
- 2,5-Dihydroimidazol-4-yl, 2,5-Dihydroimidazol-5-yl, 1-Morpholinyl, 2-Morpholinyl,
- 3-Morpholinyl, 1-Piperidinyl, 2-Piperidinyl, 3-Piperidinyl, 4-Piperidinyl,
- 3-Tetrahydropyridazinyl, 4-Tetrahydropyridazinyl, 2-Tetrahydropyrimidinyl,
- 4-Tetrahydropyrimidinyl, 5-Tetrahydropyrimidinyl, 2-Tetrahydropyrazinyl,
- 1,3,5-Tetrahydrotriazin-2-yl, 1,2,4-Tetrahydrotriazin-3-yl, 1,3-Dihydrooxazin-2-yl,
- 1,3-Dithian-2-yl, 2-Tetrahydropyranyl, 1,3-Dioxolan-2-yl, 3,4,5,6-Tetrahydropyridin-
- 2-yl, 4H-1,3-Thiazin-2-yl, 4H-3,1-Benzothiazin-2-yl, 1,3-Dithian-2-yl, 1,1-Dioxo-
- 2,3,4,5-tetrahydrothein-2-yl, 2H-1,4-Benzothiazin-3-yl, 2H-1,4-Benzoxazin-3-yl, 1,3-Dihydrooxazin-2-yl.

Aryl steht für einen aromatischen mono- oder polycyclischen Kohlenwasserstoffrest, z.B. Phenyl, Naphthyl, Biphenyl und Phenanthryl. Die Verknüpfung kann, sofern chemisch möglich, an beliebiger Position von Aryl erfolgen.

Heteroaryl steht für einen aromatischen mono-, bi- oder tricyclischen Rest, der neben Kohlenstoffringgliedem ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und ein Sauerstoff- oder ein Schwefelatom oder ein Sauerstoff- oder ein Schwefelatom enthält. Die Verknüpfung kann, sofern chemisch möglich, an beliebiger Position von Aryl erfolgen. Beispiele für 5-gliedriges Heteroaryl sind 2-Pyrrolyl, 3-Pyrrolyl, 1-Pyrazolyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-Imidazolyl, 4-Imidazolyl, 1,2,4-Triazolyl-3-yl, 1,3,4-Triazol-2-yl, 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, 2-Pyrrolyl, 3-Pyrrolyl, 3-Isoxazolyl, 4-Isoxazolyl, 5-Isoxazolyl, 3-Isothiazolyl, 4-Isothiazolyl, 5-Isothiazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Imidazolyl, 1,2,4-

Oxadiazol-3-yl, 1,2,4-Oxadiazol-5-yl, 1,2,4-Thiadiazol-3-yl, 1,2,4-Thiadiazol-5-yl, 1,2,4-Triazol-3-yl, 1,3,4-Oxadiazol-2-yl, 1,3,4-Thiadiazol-2-yl, 1,3,4-Triazol-2-yl. Beispiele für 6-gliedriges Heteroaryl sind 2-Pyridinyl, 3-Pyridinyl, 4-Pyridinyl, 2-Pyrimdinyl, 4-Pyrimidinyl, 5-Pyrimidinyl, 2-Pyrazinyl, 1,3,5-Triazin-2-yl, 1,2,4-Triazin-3-yl und 1,2,4,5-Tetrazin-3-yl. Beispiele für anneliertes 5-gliedriges Heteroaryl sind Benzothiazol-2-yl und Benzoxazol-2-yl. Beispiele für benzokondensierte 6-gliedriges Heteroaryl sind Chinolin, Isochinolin, Chinazolin und Chinoxalin.

Die Definition einer divalenten Einheit ist so zu verstehen, daß die Absättigung über Einfach-, Doppel- und/oder Dreifachbindungen erfolgen kann. Die divalente Einheit "O" bedeutet demnach ein über zwei Einfachbindungen verknüpftes Sauerstoffatom. Die divalente Einheit "CR" bedeutet ein über eine Einfach- und eine Doppelbindung verknüpftes und einen Rest R° tragendes Kohlenstoffatom. Die divalente Einheit "C" steht für ein Kohlenstoffatom, das über eine Einfach- und eine Dreifachbindung verknüpft ist. Für den Fall, daß eine unsymmetrische divalente Einheit vorliegt, d.h. daß sie zwei Möglichkeiten der Verknüpfung erlaubt, sollen jeweils beide Möglichkeiten der Verknüpfung dieser Einheit und dem Rest des Moleküls durch die allgemeine Formel I umfaßt sein.

Die Verbindungen der allgemeinen Formel (I) können je nach Art und Verknüpfung der Substituenten als Stereoisomere vorliegen. Sind beispielsweise eine oder mehrere Alkenylgruppen vorhanden, so können Diastereomere auftreten. Sind beispielsweise ein oder mehrere asymmetrische Kohlenstoffatome vorhanden, so können Enantiomere und Diastereomere auftreten. Stereoisomere lassen sich aus den bei der Herstellung anfallenden Gemischen nach üblichen Trennmethoden, beispielsweise durch chromatographische Trennverfahren, erhalten. Ebenso können Stereoisomere durch Einsatz stereoselektiver Reaktionen unter Verwendung optisch aktiver Ausgangs- und/oder Hilfsstoffe selektiv hergestellt werden. Die Erfindung betrifft auch alle Stereoisomeren und deren Gemische, die von der allgemeinen Formel (I) umfaßt, jedoch nicht spezifisch definiert sind.

Die Angabe "partiell oder vollständig halogeniert" soll zum Ausdruck bringen, daß in den derart charakterisierten Gruppen die Wasserstoffatome zum Teil oder vollständig durch gleiche oder verschiedene Halogenatome wie vorstehend genannt ersetzt sein können.

lst eine Gruppe mehrfach substituiert, so ist darunter zu verstehen, daß bei der Kombination der verschiedenen Substituenten die allgemeinen Grundsätze des Aufbaus chemischer Verbindungen zu beachten sind, d.h. daß nicht Verbindungen gebildet werden, von denen der Fachmann weiß, daß sie chemisch instabil oder nicht möglich sind.

Von näherem Interesse sind Verbindungen der allgemeinen Formel (I) worin,

unabhängig voneinander Wasserstoff, Alkyl, Alkenyl, Alkinyl, R^1 , R^2 , R^3 Cycloalkyl, Cycloalkenyl, Cycloalkylalkyl, Cycloalkylalkenyl, Cycloalkylalkinyl, Aryl, Arylalkyl, Arylalkenyl, Arylalkinyl, Heteroaryl, Heteroarylalkyl, Heteroarylalkenyl, Heteroarylalkinyl, Heterocyclyl, Heterocyclylalkyl, Heterocyclylalkenyl, Heterocyclylalkinyl, Hydroxy, Alkoxy, Alkenyloxy, Alkinyloxy, Cycloalkoxy, Cycloalkylalkoxy, Cycloalkylalkenyloxy, Cycloalkylalkinyloxy, Cycloalkenyloxy, Aryloxy, Arylalkoxy, Arylalkenyloxy, Arylalkinyloxy, Heteroarylalkoxy, Heteroarylalkenyloxy, Heteroarylalkinyloxy, Heterocyclyloxy, Heterocyclylalkoxy, Heterocyclylalkenyloxy, Heterocyclylalkinyloxy, Thio, Alkylthio, Alkenylthio, Alkinylthio, Cycloalkylthio, Cycloalkylalkylthio, Cycloalkylalkenylthio, Cycloalkylalkinylthio, Cycloalkenylthio, Arylthio, Arylalkylthio, Arylalkenylthio, Arylalkinylthio, Heteroarylthio, Heteroarylalkylthio, Heteroarylalkenylthio, Heteroarylalkinylthio, Heterocyclylthio, Heterocyclylalkylthio, Heterocyclylalkenylthio, Heterocyclylalkinylthio, Amino, gegebenenfalls substituiertes Mono- oder Dialkylamino, gegebenenfalls substituiertes Mono- oder Diarylamino, gegebenenfalls substituiertes Mono- oder Di-Heteroarylamino, gegebenenfalls substituiertes N-Alkyl-N-arylamino, gegebenenfalls substituiertes N-Alkyl-N-Heteroarylamino, Alkenylamino, Alkinylamino, Cycloalkylamino, Cycloalkenylamino, Heterocyclylalkylamino, Heterocyclylalkenylamino, Alkylsulfonyl, Alkenylsulfonyl,

Alkinylsulfonyl, Cycloalkylsulfonyl, Cycloalkylalkylsulfonyl, Cycloalkylalkenylsulfonyl, Cycloalkylalkinylsulfonyl, Arylsulfonyl, Arylsulfonyl, Arylsulfonyl, Arylsulfonyl, Arylalkinylsulfonyl, Heteroarylsulfonyl, Heteroarylalkylsulfonyl, Heteroarylalkenylsulfonyl, Heteroarylalkinylsulfonyl, Heterocyclylsulfonyl, Heterocyclylalkylsulfonyl, Heterocyclylalkenylsulfonyl, Heterocyclylalkinylsulfonyl, Alkylsulfinyl, Alkenylsulfinyl, Alkinylsulfinyl, Cycloalkylsulfinyl, Cycloalkylalkylsulfinyl, Cycloalkylalkenylsulfinyl, Cycloalkylalkinylsulfinyl, Arylsulfinyl, Arylalkylsulfinyl, Arylalkenylsulfinyl, Arylalkinylsulfinyl, Heteroarylsulfinyl, Heteroarylalkylsulfinyl, Heteroarylalkenylsulfinyl, Heteroarylalkinylsulfinyl, Heterocyclylsulfinyl, Arylalkylsulfinyl, Heterocyclylalkenylsulfinyl, Heterocyclylalkinylsulfinyl, Aminosulfonyl, gegebenenfalls substituiertes Mono- oder Dialkylaminosulfonyl, gegebenenfalls substituiertes Mono- oder Diarylaminosulfonyl, gegebenenfalls substituiertes Mono- oder Di-Heteroarylaminosulfonyl, gegebenenfalls substituiertes N-Alkyl-N-arylaminosulfonyl, gegebenenfalls substituiertes N-Alkyl-N-Heteroarylaminosulfonyl, Alkylsulfonyloxy, Alkenylsulfonyloxy, Alkinylsulfonyloxy, Cycloalkylsulfonyloxy, Cycloalkylalkylsulfonyloxy, Cycloalkylalkenylsulfonyloxy, Cycloalkylalkinylsulfonyloxy, Arylsulfonyloxy, Arylalkylsulfonyloxy, Arylalkenylsulfonyloxy, Arylalkinylsulfonyloxy, Heteroarylsulfonyloxy, Heteroarylalkylsulfonyloxy, Heteroarylalkenylsulfonyloxy, Heteroarylalkinylsulfonyloxy, Heterocyclylsulfonyloxy, Heterocyclylalkylsulfonyloxy, Heterocyclylalkenylsulfonyloxy, Heterocyclylalkinylsulfonyloxy, Alkylsulfonylamino, Alkenylsulfonylamino, Alkinylsulfonylamino, Cycloalkylsulfonylamino, Cycloalkylalkylsulfonylamino, Cycloalkylalkenylsulfonylamino, Cycloalkylalkinylsulfonylamino, Arylsulfonylamino, Arylalkylsulfonylamino, Arylalkenylsulfonoamino, Arylalkinylsulfonylamino, Heteroarylsulfonylamino, Heteroarylalkylsulfonylamino, Heteroarylalkenylsulfonoamino, Heteroarylalkinylsulfonylamino, Alkylsulfonyl-N-alkylamino, Alkenylsulfonyl-Nalkylamino, Alkinylsulfonyl-N-alkylamino, Cycloalkylsulfonyl-N-alkylamino, Cycloalkylalkylsulfonyl-N-alkylamino, Cycloalkylalkenylsulfonyl-N-alkylamino, Cycloalkylalkinylsulfonyl-N-alkylamino, Arylsulfonyl-N-alkylamino, Heteroarylsulfonyl-N-alkylamino, Arylalkylsulfonyl-N-alkylamino, Heteroarylalkylsulfonyl-N-alkylamino, Arylalkenylsulfonoamino, Heteroarylalkenylsulfonoamino, Arylalkinylsulfonyl-N-

alkylamino, Heteroarylalkinylsulfonyl-N-alkylamino, Heterocyclylsulfonyl-Nalkylamino, Heterocyclylalkylsulfonylamino, Heterocyclylalkenylsulfonyl-Nalkylamino, Heterocyclylalkinylsulfonyl-N-alkylamino, Alkylcarbonyl, Alkenylcarbonyl, Alkinylcarbonyl, Cycloalkylcarbonyl, Cycloalkylalkylcarbonyl, Cycloalkylalkenylcarbonyl, Cycloalkylalkinylcarbonyl, Arylcarbonyl, Arylalkylcarbonyl, Arylalkenylcarbonyl, Arylalkinylcarbonyl, Heteroarylcarbonyl, Heteroarylalkylcarbonyl, Heteroarylalkenyl, Heteroarylalkinylcarbonyl, Heterocyclylarbonyl, Heterocyclylalkylcarbonyl, Heterocyclylalkenyl, Heterocyclylalkinylcarbonyl, Carboxyl, Alkoxycarbonyl, Alkenyloxycarbonyl, Alkinyloxycarbonyl, Cycloalkoxycarbonyl, Cycloalkylalkoxycarbonyl, Cycloalkylalkenyloxycarbonyl, Cycloalkylalkinyloxycarbonyl, Aryloxycarbonyl, Arylalkoxycarbonyl, Arylalkenyloxycarbonyl, Arylalkinyloxycarbonyl, Heteroaryloxycarbonyl, Heteroarylalkoxycarbonyl, Heteroarylalkenyloxycarbonyl, Heteroarylalkinyloxycarbonyl, Heterocyclyloxycarbonyl, Heterocyclylalkoxycarbonyl, Heterocyclylalkenyloxycarbonyl, Heterocyclylalkinyloxycarbonyl, Aminocarbonyl, gegebenenfalls substituiertes Mono- oder Dialkylaminocarbonyl, gegebenenfalls substituiertes Mono- oder Diarylaminocarbonyl, gegebenenfalls substituiertes Monooder Di-Heteroarylaminocarbonyl, gegebenenfalls substituiertes N-Alkyl-Narylaminocarbonyl, gegebenenfalls substituiertes N-Alkyl-N-Heteroarylaminocarbonyl, gegebenenfalls substituiertes Alkylcarbonylamino, gegebenenfalls substituiertes Alkylcarbonyl-N-alkylamino, gegebenenfalls substituiertes Arylcarbonylamino, gegebenenfalls substituiertes Arylcarbonyl-Narylamino, gegebenenfalls substituiertes Heteroarylcarbonylamino, gegebenenfalls substituiertes Heteroarylcarbonyl-N-Heteroarylamino, gegebenenfalls substituiertes Alkylcarbonyl-N-arylamino, gegebenenfalls substituiertes Arylcarbonyl-N-alkylamino, gegebenenfalls substituiertes Alkylcarbonyl-N-Heteroarylamino, gegebenenfalls substituiertes Heteroarylcarbonyl-N-alkylamino, Alkoxycarbonylamino, Alkenyloxycarbonylamino, Alkinyloxycarbonylamino, Cycloalkoxycarbonylamino, Cycloalkylalkoxycarbonylamino, Cycloalkylalkenyloxycarbonylamino, Cycloalkylalkinyloxycarbonylamino, Aryloxycarbonylamino, Arylalkoxycarbonylamino, Arylalkenyloxycarbonylamino, Arylalkinyoxycarbonylamino, Heteroaryloxycarbonylamino, Heteroarylalkoxycarbonylamino,

Heteroarylalkenyloxycarbonylamino, Heteroarylalkinyoxycarbonylamino, Heterocyclyloxycarbonylamino, Heterocyclylalkoxycarbonylamino, Heterocyclylalkenyloxycarbonylamino, Heterocyclylalkinyoxycarbonylamino, Alkoxycarbonyl-N-alkylamino, Alkenyloxycarbonyl-N-alkylamino, Alkinyloxycarbonyl-N-alkylamino, Cycloalkoxycarbonyl-N-alkylamino, Cycloalkylalkoxycarbonyl-Nalkylamino, Cycloalkylalkenyloxycarbonyl-N-alkylamino, Cycloalkylalkinyloxycarbonyl-N-alkylamino, Aryloxycarbonyl-N-alkylamino, Arylalkoxycarbonyl-N-alkylamino, Arylalkenyloxycarbonyl-N-alkylamino. Arylalkinyoxycarbonyl-N-alkylamino, Heteroarylalkoxycarbonyl-N-alkylamino, Heteroarylalkenyloxycarbonyl-N-alkylamino, Heteroarylalkinyloxycarbonyl-Nalkylamino, Heterocyclylalkoxycarbonyl-N-alkylamino, Heterocyclylalkenyloxycarbonyl-N-alkylamino, Heterocyclylalkinyoxycarbonyl-Nalkylamino, Formyl, Halogen, Halogenalkyl, Halogenalkenyl, Halogenalkinyl, Halogenalkoxy, Halogenalkenyloxy, Halogenalkinyloxy, Halogenalkylthio, Halogenalkenylthio, Halogenalkinylthio, Halogenalkylamino, Halogenalkenylamino, Halogenalkinylamino, Halogenalkylsulfonyl, Halogenalkenylsulfonyl, Halogenalkinylsulfonyl, Halogenalkylsulfinyl, Halogenalkenylsulfinyl, Halogenalkinylsulfinyl, Halogenalkylcarbonyl, Halogenalkenylcarbonyl, Halogenalkinylcarbonyl, Halogenalkoxycarbonyl, Halogenalkenyloxycarbonyl, Halogenalkinyloxycarbonyl, Halogenalkylaminocarbonyl, Halogenalkenylaminocarbonyl, Halogenalkinylaminocarbonyl, Halogenalkoxycarbonylamino, Halogenalkenyloxycarbonylamino, Halogenalkinyloxycarbonylamino, Alkoxyalkoxy, Arylalkoxyalkoxy, Cyano, Nitro, oder einen Rest aus der Gruppe Alkyl-NH-N=CH-, Aryl-(CH₂)_n-NH-N=CH-, Alkoxy-N=CH-, Aryl-(CH₂)_n-O-N=CH-, Alkyl-NH-NH-CO- und Arylalkyl-NH-NH-CO- und

ein gegebenenfalls ein- oder mehrfach, gleich oder verschieden durch Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Cycloalkylalkyl, Cycloalkylalkenyl, Cycloalkylalkinyl, Arylalkenyl, Arylalkenyl, Arylalkinyl, Heteroarylalkinyl, Heteroarylalkinyl, Heterocyclyl, Heterocyclylalkyl, Heterocyclylalkenyl, Heterocyclylalkinyl, Hydroxy, Alkoxy, Alkenyloxy, Alkinyloxy, Cycloalkylalkoxy, Cycloalkylalkinyloxy, Cycloalkylalkinyloxy,

Cycloalkenyloxy, Arylalkoxy, Arylalkenyloxy, Arylalkinyloxy, Heteroaryloxy, Heteroarylalkoxy, Heteroarylalkenyloxy, Heteroarylalkinyloxy, Heterocyclyloxy, Heterocyclylalkoxy, Heterocyclylalkenyloxy, Heterocyclylalkinyloxy, Thio, Alkylthio, Alkenylthio, Alkinylthio, Cycloalkylthio, Cycloalkylalkenylthio, Cycloalkylalkinylthio, Cycloalkenylthio, Arylthio, Arylalkylthio, Arylalkenylthio, Arylalkinylthio, Heteroarylthio, Heteroarylalkylthio, Heteroarylalkenylthio, Heteroarylalkinylthio, Heterocyclylthio, Heterocyclylalkenylthio, Heterocyclylalkinylthio, Amino, gegebenenfalls substituiertes Mono- oder Dialkylamino, gegebenenfalls substituiertes Mono- oder Diarylamino, gegebenenfalls substituiertes Mono- oder Di-Heteroarylamino, gegebenenfalls substituiertes N-Alkyl-N-arylamino, gegebenenfalls substituiertes N-Alkyl-N-Heteroarylamino. Alkenylamino, Alkinylamino, Cycloalkylamino, Cycloalkenylamino, Heterocyclylalkylamino, Heterocyclylalkenylamino, Alkylsulfonyl, Alkenylsulfonyl, Alkinyisulfonyl, Cycloalkylsulfonyl, Cycloalkylalkylsulfonyl, Cycloalkylalkenylsulfonyl, Cycloalkylalkinylsulfonyl, Arylalkonyl, Arylalkylsulfonyl, Arylalkenylsulfonyl, Arylalkinylsulfonyl, Heteroarylsulfonyl, Heteroarylalkylsulfonyl, Heteroarylalkenylsulfonyl, Heteroarylalkinylsulfonyl, Heterocyclylsulfonyl, Heterocyclylalkylsulfonyl, Heterocyclylalkenylsulfonyl, Heterocyclylalkinylsulfonyl, Alkylsulfinyl, Alkenylsulfinyl, Alkinylsulfinyl, Cycloalkylsulfinyl, Cycloalkylalkylsulfinyl, Cycloalkylalkenylsulfinyl, Cycloalkylalkinylsulfinyl, Arylsulfinyl, Arylalkylsulfinyl, Arylalkenylsulfinyl, Arylalkinylsulfinyl, Heteroarylsulfinyl, Heteroarylalkylsulfinyl, Heteroarylalkenylsulfinyl, Heteroarylalkinylsulfinyl, Heterocyclylsulfinyl, Arylalkylsulfinyl, Heterocyclylalkenylsulfinyl, Heterocyclylalkinylsulfinyl, Aminosulfonyl, gegebenenfalls substituiertes Mono- oder Dialkylaminosulfonyl, gegebenenfalls substituiertes Mono- oder Diarylaminosulfonyl, gegebenenfalls substituiertes Mono- oder Di-Heteroarylaminosulfonyl, gegebenenfalls substituiertes N-Alkyl-N-arylaminosulfonyl, gegebenenfalls substituiertes N-Alkyl-N-Heteroarylaminosulfonyl, Alkylsulfonyloxy, Alkenylsulfonyloxy, Alkinylsulfonyloxy, Cycloalkylaufonyloxy, Cycloalkylalkylaufonyloxy, Cycloalkylalkenylaufonyloxy, Cycloalkylalkinylsulfonyloxy, Arylsulfonyloxy, Arylalkylsulfonyloxy, Arylalkenylsulfonyloxy, Arylalkinylsulfonyloxy, Heteroarylsulfonyloxy, Heteroarylalkylsulfonyloxy, Heteroarylalkenylsulfonyloxy.

Heteroarylalkinylsulfonyloxy, Heterocyclylsulfonyloxy, Heterocyclylalkylsulfonyloxy, Heterocyclylalkenylsulfonyloxy, Heterocyclylalkinylsulfonyloxy, Alkylsulfonylamino. Alkenylsulfonylamino, Alkinylsulfonylamino, Cycloalkylsulfonylamino, Cycloalkylalkylsulfonylamino, Cycloalkylalkenylsulfonylamino, Cycloalkylalkinylsulfonylamino, Arylsulfonylamino, Arylalkylsulfonylamino, Arylalkenylsulfonoamino, Arylalkinylsulfonylamino, Heteroarylsulfonylamino, Heteroarylalkylsulfonylamino, Heteroarylalkenylsulfonoamino, Heteroarylalkinylsulfonylamino, Alkylsulfonyl-N-alkylamino, Alkenylsulfonyl-Nalkylamino, Alkinylsulfonyl-N-alkylamino, Cycloalkylsulfonyl-N-alkylamino, Cycloalkylalkylsulfonyl-N-alkylamino, Cycloalkylalkenylsulfonyl-N-alkylamino, Cycloalkylalkinylsulfonyl-N-alkylamino, Arylsulfonyl-N-alkylamino, Heteroarylsulfonyl-N-alkylamino, Arylalkylsulfonyl-N-alkylamino, Heteroarylalkylsulfonyl-N-alkylamino, Arylalkenylsulfonyl-N-alkylamino, Heteroarylalkenylsulfononyl-N-alkylamino, Arylalkinylsulfonyl-N-alkylamino, Heteroarylalkinylsulfonyl-N-alkylamino. Heterocyclylsulfonyl-N-alkylamino, Heterocyclylalkylsulfonyl-N-alkylamino, Heterocyclylalkenylsulfonyl-N-alkylamino, Heterocyclylalkinylsulfonyl-N-alkylamino, Alkylcarbonyl, Alkenylcarbonyl, Alkinylcarbonyl, Cycloalkylcarbonyl, Cycloalkylalkylcarbonyl, Cycloalkylalkenylcarbonyl, Cycloalkylalkinylcarbonyl, Arylcarbonyl, Arylalkylcarbonyl, Arylalkenylcarbonyl, Arylalkinylcarbonyl, Heteroarylcarbonyl, Heteroarylalkylcarbonyl, Heteroarylalkenyl, Heteroarylalkinylcarbonyl, Heterocyclylcarbonyl, Heterocyclylalkylcarbonyl. Heterocyclylalkenyl, Heterocyclylalkinylcarbonyl, Carboxyl, Alkoxycarbonyl, Alkenyloxycarbonyl, Alkinyloxycarbonyl, Cycloalkoxycarbonyl, Cycloalkylalkoxycarbonyl, Cycloalkylalkenyloxycarbonyl, Cycloalkylalkinyloxycarbonyl, Aryloxycarbonyl, Arylalkoxycarbonyl, Arylalkenyloxycarbonyl, Arylalkinyloxycarbonyl, Heteroaryloxycarbonyl, Heteroarylalkoxycarbonyl, Heteroarylalkenyloxycarbonyl, Heteroarylalkinyloxycarbonyl, Heterocyclyloxycarbonyl, Heterocyclylalkoxycarbonyl, Heterocyclylalkenyloxycarbonyl, Heterocyclylalkinyloxycarbonyl, Aminocarbonyl, gegebenenfalls substituiertes Mono- oder Dialkylaminocarbonyl, gegebenenfalls substituiertes Mono- oder Diarylaminocarbonyl, gegebenenfalls substituiertes Monooder Di-Heteroarylaminocarbonyl, gegebenenfalls substituiertes N-Alkyl-N-

arylaminocarbonyl, gegebenenfalls substituiertes N-Alkyl-N-Heteroarylaminocarbonyl, gegebenenfalls substituiertes Alkylcarbonylamino, gegebenenfalls substituiertes Alkylcarbonyl-N-alkylamino, gegebenenfalls substituiertes Arylcarbonylamino, gegebenenfalls substituiertes Arylcarbonyl-Narylamino, gegebenenfalls substituiertes Heteroarylcarbonylamino, gegebenenfalls substituiertes Heteroarylcarbonyl-N-Heteroarylamino, gegebenenfalls substituiertes Alkylcarbonyl-N-arylamino, gegebenenfalls substituiertes Arylcarbonyl-N-alkylamino, gegebenenfalls substituiertes Alkylcarbonyl-N-Heteroarylamino, gegebenenfalls substituiertes Heteroarylcarbonyl-N-alkylamino, Alkoxycarbonylamino, Alkenyloxycarbonylamino, Alkinyloxycarbonylamino, Cycloalkoxycarbonylamino, Cycloalkylalkoxycarbonylamino, Cycloalkylalkenyloxycarbonylamino, Cycloalkylalkinyloxycarbonylamino, Aryloxycarbonylamino, Arylalkoxycarbonylamino, Arylalkenyloxycarbonylamino, Arylalkinyoxycarbonylamino, Heteroaryloxycarbonylamino, Heteroarylalkoxycarbonylamino, Heteroarylalkenyloxycarbonylamino, Heteroarylalkinyoxycarbonylamino, Heterocyclyloxycarbonylamino, Heterocyclylalkoxycarbonylamino, Heterocyclylalkenyloxycarbonylamino, Heterocyclylalkinyoxycarbonylamino, Alkoxycarbonyl-N-alkylamino, Alkenyloxycarbonyl-N-alkylamino, Alkinyloxycarbonyl-N-alkylamino, Cycloalkoxycarbonyl-N-alkylamino, Cycloalkylalkoxycarbonyl-Nalkylamino, Cycloalkylalkenyloxycarbonyl-N-alkylamino, Cycloalkylalkinyloxycarbonyl-N-alkylamino, Aryloxycarbonyl-N-alkylamino, Arylalkoxycarbonyl-N-alkylamino, Arylalkenyloxycarbonyl-N-alkylamino, Arylalkinyoxycarbonyl-N-alkylamino, Heteroarylalkoxycarbonyl-N-alkylamino, Heteroarylalkenyloxycarbonyl-N-alkylamino, Heteroarylalkinyoxycarbonyl-Nalkylamino, Heterocyclylalkoxycarbonyl-N-alkylamino, Heterocyclylalkenyloxycarbonyl-N-alkylamino, Heterocyclylalkinyoxycarbonyl-Nalkylamino, Formyl, Halogen, Halogenalkyl, Halogenalkenyl, Halogenalkinyl, Halogenalkoxy, Halogenalkenyloxy, Halogenalkinyloxy, Halogenalkylthio, Halogenalkenylthio, Halogenalkinylthio, Halogenalkylamino, Halogenalkenylamino, Halogenalkinylamino, Halogenalkylsulfonyl, Halogenalkenylsulfonyl, Halogenalkinylsulfonyl, Halogenalkylsulfinyl, Halogenalkenylsulfinyl, Halogenalkinylsulfinyl, Halogenalkylcarbonyl, Halogenalkenylcarbonyl,

Halogenalkinylcarbonyl, Halogenalkoxycarbonyl, Halogenalkenyl-oxycarbonyl, Halogenalkinyloxycarbonyl, Halogenalkylaminocarbonyl, Halogenalkenylaminocarbonyl, Halogenalkinylaminocarbonyl, Halogenalkoxycarbonylamino. Halogenalkenyloxycarbonylamino, Halogenalkinyloxycarbonylamino, Alkoxyalkoxy, Arylalkoxyalkoxy, Cyano, Nitro, oder einen Rest aus der Gruppe Alkyl-NH-N=CH-. Aryl-(CH₂)_n-NH-N=CH-, Alkoxy-N=CH-, Aryl-(CH₂)_n-O-N=CH-, Alkyl-NH-NH-COund Arylalkyl-NH-NH-CO- substituiertes Heteroaryl, Heterocyclyl oder Aryl, oder einen Rest aus der Gruppe -O-N=CRⁱR^m, -P(=O)(ORⁱ)(R^j), -P(=O)(ORⁱ)(OR^k) oder

$$O$$
 O
 $CH_2)_m$

oder, für den Fall, daß E für eine Bindung und I für null steht, kann R⁵ auch für Hydroxy stehen,

bedeuten.

Von besonderem Interesse sind Verbindungen der allgemeinen Formel (I) worin,

 R^{1} , R^{2} , R^{3} unabhängig voneinander Wasserstoff, Halogen, Nitro, Cyano, Alkyl, Cycloalkyl, Alkenyl, Alkinyl, Alkoxy, Alkylthio, Alkylsulfinyl, Alkylsulfonyl, Alkylsulfonyloxy, Alkylsulfonylamino, Alkylsulfonyl-N-alkylamino, Phenyl, Benzyl, wobei die dreizehn letztgenannten Gruppen gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, Nitro, Cyano, Alkyl, Halogenalkyl, Cycloalkyl, Alkenyl, Alkinyl, Alkoxy, Halogenalkoxy und Alkylthio substituiert sind;

R⁴ Wasserstoff, Cyano, Alkyl, Alkenyl, Alkinyl, Cycloalkyl, wobei die vier letztgenannten Gruppen gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, Nitro, Cyano, Alkyl, Cycloalkyl, Alkinyl, Alkoxy, Alkylthio substituiert sind;

 R^5 ein gegebenenfalls ein- oder mehrfach, gleich oder verschieden durch Halogen, Nitro, Cyano, Formyl, Amino, Phenyl, Benzyl, (C1-C6)-Alkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C3-C6)-Cycloalkyl, (C1-C6)-Alkoxy, (C1-C6)-Alkylamino, Di-(C₁-C₆)-alkylamino, (C₁-C₆)-Alkoxycarbonyl, (C₁-C₆)-Alkylaminocarbonyl, Di-(C₁-C₆)alkylaminocarbonyl, (C₁-C₆)-Alkylcarbonyl, (C₁-C₆)-Alkylcarbonylamino, (C₁-C₆)-Alkylcarbonyl-(C₁-C₆)-alkylamino, (C₁-C₆)-Alkylcarbonyl-di-(C₁-C₆)alkylamino, (C₁-C₆) C_6)-Alkylthio, (C_1-C_6) -Alkylsulfinyl, (C_1-C_6) -Alkylsulfonyl, (C_1-C_6) -Alkylsulfonylamino, (C_1-C_6) -Alkylsulfonyl- (C_1-C_6) -alkylamino, (C_1-C_6) -Alkylsulfonyl-di- (C_1-C_6) -alkylamino. wobei die 22 letztgenannten Gruppen gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, Nitro, Cyano, (C1-C6)-Alkyl, (C₃-C₆)-Cycloalkyl, (C₂-C₆)-Alkenyl, (C₂-C₆)-Alkinyl, (C₁-C₆)-Alkoxy, (C₁-C₆)-Alkylthio oder einen drei bis sechsgliedrigen, gesättigten, teilgesättigten oder ungesättigten Heterocyclus, der bis zu vier Heteroatome aus der Gruppe Stickstoff. Sauerstoff und Schwefelatom enthalten kann, substituiert sind, substituierter Phenyl-, drei-, fünf- oder sechsgliedriger Heteroarylrest, der bis zu drei Heteroatome aus der Gruppe Stickstoff, Sauerstoff und Schwefelatom enthalten kann, oder dreibis sechsgliedriger, gesättigter, teilgesättigter oder ungesättigter Heterocyclusrest, der bis zu vier Heteroatome aus der Gruppe Stickstoff, Sauerstoff und Schwefelatom enthalten kann, oder einen Rest aus der Gruppe -O-N=CRIRM, -P(=O)(ORi)(Ri), - $P(=O)(OR^{i})(OR^{k})$ oder

oder, für den Fall, daß E für eine Bindung und I für null steht, kann R⁵ auch für Hydroxy stehen;

A eine divalente Einheit aus der Gruppe S, SO, SO₂, und NR^a;

B eine gesättigte oder eine Doppelbindung enthaltende und aus ein oder zwei Kohlenstoffatomen bestehende Kette, die gegebenenfalls durch Alkyl, Halogenalkyl, Alkoxy oder Halogenalkoxy substituiert ist:

- eine Bindung, CR^cR^d, NR^c, S, SO, SO₂, O und CO;
- R^6 (C₁-C₆)-Alkylthio, (C₁-C₆)-Alkylsulfinyl, (C₁-C₆)-Alkylsulfonyl, Cyano, Cyanato, Thiocyanato, Halogen oder OR^f ;
- Y eine divalente Einheit aus der Gruppe O, S, N-(C₁-C₆)-Alkyl oder CHR⁷;
- R⁷ Wasserstoff, (C₁-C₆)-Alkyl, (C₃-C₈)-Cycloalkyl, (C₁-C₆)-Alkoxy, (C₁-C₆)-Alkoxy, (C₁-C₆)-Alkylcarbonyl, (C₁-C₆)-Alkylcarbonyl, (C₁-C₆)-Alkylcarbonyl, (C₁-C₆)-Alkylthio, Phenyl, wobei der Kohlenwasserstoffteil der acht letztgenannten Reste gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, (C₁-C₃)-Alkylthio und (C₁-C₃)-Alkyloxy substituiert ist;
- Z eine Bindung, CH₂ oder CHR⁷;
- R⁸ Wasserstoff, (C₁-C₆)-Alkyl oder (C₁-C₆)-Alkoxycarbonyl;
- R⁹ Wasserstoff, (C₁-C₆)-Alkyl, (C₃-C₈)-Cycloalkyl oder Halogen-(C₁-C₆)-alkyl;
- R¹⁰ Wasserstoff, (C₁-C₆)-Alkyl, (C₂-C₆)-Alkenyl, (C₁-C₆)-Alkinyl, (C₃-C₈)-Cycloalkyl, Phenyl, Benzyl, wobei die sechs letztgenannten Reste Gruppen gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, Cyano, Nitro und (C₁-C₆)-Alkoxy substituiert sind;
- R^{11} Wasserstoff, Formyl, (C₁-C₆)-Alkyl, Halogen-(C₁-C₆)-alkyl, (C₁-C₆)-Alkoxy-(C₁-C₆)-alkyl oder eine Gruppe L-R¹²;
- L eine divalente Einheit aus der Gruppe SO₂, CO und CHR⁹CO;
- R¹² (C₁-C₆)-Alkyl, Halogen-(C₁-C₆)-alkyl, oder gegegenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Cyano, Nitro, (C₁-C₃)-

Alkyl, (C_1-C_3) -Alkoxy, Halogen- (C_1-C_3) -alkyl und Halogen- (C_1-C_3) -alkoxy substituiertes Phenyl;

 R^a Wasserstoff, Halogen, Cyano, Nitro, Formyl, (C_1-C_6) -Alkyl, (C_3-C_8) -Cycloalkyl, (C_2-C_6) -Alkenyl, (C_2-C_6) -Alkinyl, (C_1-C_6) -Alkylcarbonyl und (C_1-C_6) -Alkylsulfonyl, wobei der Kohlenwasserstoffteil der sechs letztgenannten Reste gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, Nitro, Cyano, (C_1-C_6) -Alkyl, (C_3-C_8) -Cycloalkyl, (C_2-C_6) -Alkenyl, (C_2-C_6) -Alkinyl, (C_1-C_6) -Alkylthio substituiert ist;

 R^c und R^d unabhängig voneinander Wasserstoff, Halogen, Nitro, Cyano, (C_1-C_6) -Alkyl, Halogen- (C_1-C_6) -alkyl, (C_3-C_8) -Cycloalkyl, (C_2-C_6) -Alkenyl, Halogen- (C_2-C_6) -alkenyl, (C_2-C_6) -Alkinyl, Halogen- (C_2-C_6) -alkinyl, (C_1-C_6) -Alkoxy, Halogen- (C_1-C_6) -alkylthio, (C_1-C_6) -Alkylcarbonyl, Halogen- (C_1-C_6) -alkylcarbonyl, Halogen- (C_1-C_6) -alkylcarbonyl, (C_1-C_6) -Alkylcarbonyl, Halogen- (C_1-C_6) -Alkylcarbonyl, (C_1-C_6) -Alkylcarbonyl und (C_1-C_6) -Alkylsulfonyl;

R^e Wasserstoff, Formyl, (C₁-C₆)-Alkyl, (C₃-C₈)-Cycloalkyl, (C₂-C₆)-Alkenyl, (C₂-C₆)-Alkinyl, (C₁-C₆)-Alkylcarbonyl und (C₁-C₆)-Alkylsulfonyl, wobei der Kohlenwasserstoffteil der sechs letztgenannten Reste gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, Nitro, Cyano, (C₁-C₆)-Alkyl, Cycloalkyl, (C₂-C₆)-Alkenyl, (C₂-C₆)- (C₁-C₆)-Alkinyl, (C₁-C₆)-Alkoxy und (C₁-C₆)-Alkylthio substituiert sein können;

 R^f Wasserstoff, (C_1 - C_6)-Alkyl, Halogen-(C_1 - C_6)-alkyl, (C_1 - C_6)-Alkylcarbonyl, (C_1 - C_6)-Alkoxycarbonyl, (C_1 - C_6)-Alkylsulfonyl, Halogen-(C_1 - C_6)-alkylsulfonyl, Benzoyl oder Phenylsulfonyl, wobei der aromatische Teil der zwei letztgenannten Reste gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe (C_1 - C_6)-Alkyl, Halogen-(C_1 - C_6)-alkyl, (C_1 - C_6)-Alkoxy, Halogen-(C_1 - C_6)-alkoxy, Halogen, Cyano und Nitro substituiert ist;

R⁹ und R^h unabhängig voneinander Wasserstoff oder (C₁-C₆)-Alkyl, und

w 0, 1, 2 oder 3

bedeuten.

Bevorzugt sind Verbindungen der allgemeinen Formel I, worin

R¹, R², R³ unabhängig voneinander Wasserstoff, Halogen, Nitro, Cyano, (C₁-C₆)-Alkyl, (C₃-C₈)-Cycloalkyl, (C₂-C₆)-Alkenyl, (C₂-C₆)-Alkinyl, (C₁-C₆)-Alkoxy, (C₁-C₆)-Alkylsulfinyl, (C₁-C₆)-Alkylsulfonyl, (C₁-C₆)-Alkylsulfonyloxy, (C₁-C₆)-Alkylsulfonylamino, (C₁-C₆)-Alkylsulfonyl-N-(C₁-C₆)-alkylamino, Phenyl, Benzyl, wobei die dreizehn letztgenannten Gruppen gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, Nitro, Cyano, (C₁-C₃)-Alkyl, Halogen-(C₁-C₃)-alkyl, Cyclopropyl, (C₂-C₄)-Alkenyl, (C₂-C₄)-Alkinyl, (C₁-C₃)-Alkoxy, Halogen-(C₁-C₃)-alkoxy und Alkylthio substituiert sind;

R⁴ (C₁-C₄)-Alkyl, Wasserstoff, Cyano, (C₂-C₄)-Alkenyl, (C₂-C₄)-Alkinyl, (C₃-C₆)-Cycloalkyl, wobei die drei letztgenannten Gruppen gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, Cyano, (C₁-C₃)-Alkylthio substituiert sind, und die erstgenannte Gruppe gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, Cyano, (C₃-C₆)-Cycloalkyl, (C₁-C₃)-Alkoxy, (C₁-C₃)-Alkylthio substituiert ist;

ein gegebenenfalls ein- oder mehrfach, gleich oder verschieden durch Halogen, Nitro, Cyano, Formyl, Amino, Phenyl, Benzyl, (C_1-C_4) -Alkyl, (C_2-C_4) -Alkenyl, (C_2-C_4) -Alkinyl, (C_3-C_6) -Cycloalkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylamino, Di- (C_1-C_4) -alkylamino, (C_1-C_4) -Alkoxycarbonyl, (C_1-C_4) -Alkylaminocarbonyl, Di- (C_1-C_4) -alkylaminocarbonyl, (C_1-C_4) -Alkylcarbonyl, (C_1-C_4) -Alkylcarbonylamino, (C_1-C_4) -Alkylthio, (C_1-C_4) -Alkylsulfinyl, (C_1-C_4) -Alkylsulfonyl substituierter Phenyl-, drei-, fünfoder sechsgliedriger Heteroarylrest, der bis zu drei Heteroatome aus der Gruppe

Stickstoff, Sauerstoff und Schwefelatom enthalten kann, oder drei bis sechsgliedriger, gesättigter, teilgesättigter oder ungesättigter Heterocyclusrest, der bis zu vier Heteroatome aus der Gruppe Stickstoff, Sauerstoff und Schwefelatom enthalten kann, oder einen Rest aus der Gruppe -O-N=CRⁱR^m, -P(=O)(ORⁱ)(Rⁱ), -P(=O)(ORⁱ)(OR^k) oder

oder, für den Fall, daß E für eine Bindung und I für null steht, kann R⁵ auch für Hydroxy stehen,

A eine divalente Einheit aus der Gruppe S, SO, und SO₂;

B eine gesättigte oder eine Doppelbindung enthaltende und aus ein oder zwei Kohlenstoffatomen bestehende Kette, die gegebenenfalls durch ein oder zwei gleiche oder verschiedene Reste aus der Gruppe (C₁-C₃)-Alkyl, Halogen-(C₁-C₃)-alkyl, (C₁-C₃)-Alkoxy oder Halogen-(C₁-C₃)-alkoxy substituiert ist;

E eine Bindung, CR^cR^d, SO₂ und CO;

R⁶ (C₁-C₃)-Alkylthio, (C₁-C₃)-Alkylsulfonyl, Cyano, Cyanato, Thiocyanato, Halogen oder OR^f;

Y eine divalente Einheit aus der Gruppe O oder CHR⁷;

R⁷ Wasserstoff, (C₁-C₆)-Alkyl, (C₃-C₈)-Cycloalkyl, (C₁-C₆)-Alkoxy-(C₁-C₆)-alkyl, (C₁-C₆)-Alkylcarbonyl, (C₁-C₆)-Alkoxycarbonyl, Phenyl, wobei die sechs letztgenannten Reste gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Halogenatome substituiert sind;

R⁹ (C₁-C₆)-Alkyl, (C₃-C₆)-Cycloalkyl oder Halogen-(C₁-C₆)-alkyl;

R¹⁰ (C₁-C₆)-Alkyl, (C₂-C₆)-Alkenyl, (C₂-C₆)-Alkinyl, (C₃-C₈)-Cycloalkyl, Phenyl oder Benzyl;

R¹¹ Wasserstoff, (C₁-C₆)-Alkyl oder eine Gruppe L-R¹²;

 R^c und R^d unabhängig voneinander Wasserstoff, (C_1-C_3) -Alkyl, Halogen- (C_1-C_3) -alkyl, (C_2-C_6) -Alkenyl, Halogen- (C_2-C_6) -alkenyl, (C_2-C_6) -Alkinyl, Halogen- (C_2-C_6) -alkinyl, (C_1-C_3) -Alkylthio, Halogen- (C_1-C_3) -alkylthio und (C_1-C_3) -Alkylcarbonyl;

R^f Wasserstoff, (C₁-C₆)-Alkyl, (C₁-C₆)-Alkylcarbonyl, (C₁-C₆)-Alkoxycarbonyl, (C₁-C₆)-Alkylsulfonyl, Benzoyl oder Phenylsulfonyl, wobei der aromatische Teil der zwei letztgenannten Reste gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe (C₁-C₆)-Alkyl, Halogen-(C₁-C₆)-alkyl, (C₁-C₆)-Alkoxy, Halogen-(C₁-C₆)-alkoxy, Halogen, Cyano und Nitro substituiert ist, und

w 0, 1 oder 2

bedeuten.

Bevorzugt sind auch Verbindungen der allgemeinen Formel I, worin Q einen Rest der Formel (II) oder (III)

bedeutet.

(II)

Besonders bevorzugt sind Verbindungen der allgemeinen Formel I, worin

R¹ und R² unabhängig voneinander Wasserstoff, (C₁-C₄)-Alkyl, Halogen oder Nitro;

R³ und R⁴ Wasserstoff;

- A SO₂;
- B CH₂-CH₂;
- E eine Bindung oder eine divalente Einheit aus der Gruppe CH₂, CO und SO₂;
- R⁶ OR^f:
- Y CHR⁷;
- $Z CHR^7$;
- G¹-G² eine divalente Einheit aus der Gruppe OCR9 und NR¹0COR¹¹;
- R⁷ Wasserstoff oder (C₁-C₆)-Alkyl;
- R⁸ Wasserstoff;
- R⁹ (C₃-C₆)-Cycloalkyl;
- R^{10} (C₁-C₃)-Alkyl;
- R¹¹ Wasserstoff oder eine Gruppe L-R¹²;

L eine divalente Einheit aus der Gruppe SO₂, CO und CH₂CO;

 R^{12} gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, Cyano, Nitro, (C₁-C₆)-Alkyl, (C₁-C₆)-Alkoxy, (C₁-C₆)-Halogenalkyl und (C₁-C₆)-Halogenalkoxy substituiertes Phenyl;

R^e Wasserstoff, Formyl, (C_1-C_6) -Alkyl, (C_2-C_6) -Alkenyl, (C_2-C_6) -Alkinyl, (C_1-C_6) -Alkylcarbonyl und (C_1-C_6) -Alkylsulfonyl;

R^f Wasserstoff, (C₁-C₆)-Alkylsulfonyl, Benzoyl, Phenylsulfonyl, wobei die zwei letztgenannten Reste gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe (C₁-C₆)-Alkyl, (C₁-C₆)-Halogenalkyl, (C₁-C₆)-Alkoxy, (C₁-C₆)-Halogenalkoxy, Halogen, Cyano und Nitro substituiert sind, und

v 1

bedeuten.

Ganz besonders bevorzugt sind Verbindungen der allgemeinen Formel I, worin Q einen Rest der Formel (II)

(II)

bedeutet.

Ganz besonders bevorzugt sind auch Verbindungen der allgemeinen Formel I, worin

ein gegebenenfalls ein- oder mehrfach, gleich oder verschieden durch Halogen, Nitro, Cyano, Formyl, Amino, Phenyl, Benzyl, (C_1-C_4) -Alkyl, (C_2-C_4) -Alkyl, (C_3-C_4) -Alkinyl, (C_3-C_6) -Cycloalkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylamino, Di- (C_1-C_4) -Alkylamino, (C_1-C_4) -Alkoxycarbonyl, (C_1-C_4) -Alkylaminocarbonyl, Di- (C_1-C_4) -Alkylaminocarbonyl, $(C_1-C_4$

Die erfindungsgemäßen Verbindungen können je nach Bedeutung der Substituenten beispielsweise ausgehend von der bekannten oder nach bekannten Methoden herstellbaren Verbindung der allgemeinen Formel (Ia) nach einem oder mehreren der in den folgenden Schemata angegebenen Verfahren hergestellt werden.

Schema 1 zeigt die säurekatalysierte Umsetzung der Verbindung der Formel (Ic) mit Ethandiol, die zur Verbindung der Formel (Id) führt. Die nachfolgende Reaktion mit n-Butyllithium oder Magnesium, Kohlendioxid und anschließende Säurebehandlung liefert Verbindung der Formel (Ie), in der R für OH steht. Solche Reaktionen sind beispielsweise aus J. Org. Chem. 55, 773 (1990) bekannt. Durch übliche Veresterungsmethoden kann diese Verbindung in die entsprechenden Ester der Formel (Ie) überführt werden, worin R für Alkoxy steht. In allen nachfolgenden Formeln sollen, sofern nicht anders angegeben, die Substituenten dieselben Bedeutungen haben wie für Formel (I) angegeben.

Schema 1:

Verbindungen der Formel (le), worin R für Alkoxy steht, können gemäß Schema 2 durch eine Vielzahl von Reaktionen an der benzokondensierten Carbonylgruppe funktionalisiert werden. Solche Reaktionen sind beispielsweise aus *Houben-Weyl*, "Methoden der organischen Chemie", Band 7, Teil 2b, Georg-Thieme Verlag, Stuttgart, 1965, bekannt.

Schema 2:

- 2.1 Die Umsetzung mit Reduktionsmitteln wie NaBH₄ führt zu Verbindungen der Formel (If) in der X für Sauerstoff und R⁴ für Wasserstoff stehen.
- 2.2 Die Umsetzung mit Grignard-Reagenzien führt zu Verbindungen der Formel (If) in der X für Sauerstoff und R⁴ für Alkyl, Alkenyl, Alkinyl, Cycloalkyl oder Phenyl stehen.
- 2.3 Die Umsetzung mit Me₃SiCN oder Me₃SiCF₃ führt zu Verbindungen der Formel (If) in der X für Sauerstoff und R⁴ für CN oder CF₃.
- 2.4 Die Umsetzung mit Alkalimetallcyaniden in Gegenwart von Ammoniumchlorid führt zu Verbindungen der Formel (If) in der X für NH und R⁴ für CN stehen.
- 2.5 Die Umsetzung mit NaBH₃CN führt in Gegenwart von Ammoniumacetat zu Verbindungen der Formel (If) in der X für NH und R⁴ für Wasserstoff stehen.
- 2.6 Die Umsetzung mit P₄S₁₀ und anschließend mit Grignard-Reagenzien führt zu Verbindungen der Formel (If) in der X für Schwefel und R⁴ für Alkyl, Alkenyl, Alkinyl, Cycloalkyl oder Phenyl stehen.
- 2.7 Die Umsetzung mit H₂N-E-R⁵ und anschließender Reduktion führt zu Verbindungen der Formel (Ig) in der (X)₁ für NH und R⁴ für Wasserstoff stehen.
- 2.8 Die Umsetzung mit H₂N-E-R⁵ und anschließender Umsetzung mit Grignard-Reagenzien führt zu Verbindungen der Formel (Ig) in der (X)₁ für NH und R⁴ für CN stehen.
- 2.9 Die Umsetzung mit H_2N -E- R^5 und KCN führt ebenfalls zu Verbindungen der Formel (Ig), in der (X)_I für NH und R^4 für CN stehen.
- 2.10 Die Umsetzung mit (RⁱO)(R^kO)(O=)PCN in Gegenwart von LiCN in THF führt zu Verbindungen der Formel (Ig), in der I null und E eine Bindung bedeuten, R⁴ für CN und R⁵ für P(=O)(ORⁱ)(OR^k) stehen.

Verbindungen der Formel (Ig) sind, wie in Schema 3 angegeben, auch aus Verbindungen der Formel (If) erhältlich, in der R für Alkoxy steht. Solche Reaktionen sind beispielsweise aus J. Med. Chem. 28, 1817, (1985), Tetrahedron Lett. 1699, (1986) und Acta Chem. Scand. B32, 452 (1978) bekannt.

Schema 3:

- 3.1 Die Umsetzung mit Chlorierungsmitteln, wie Thionylchlorid, und anschließend mit einem Amin der Formel HNR^a-E-R⁵ führt zu Verbindungen der Formel (Ig) in der (X), für NR^a und R⁴ für Wasserstoff stehen.
- 3.2 Die Umsetzung mit Chlorierungsmitteln, wie Thionylchlorid, und anschließend mit einem Alkohol der Formel HO-E-R⁵ führt zu Verbindungen der Formel (lg) in der (X), für Sauerstoff und R⁴ für Wasserstoff stehen.
- 3.3 Die Umsetzung mit Chlorierungsmitteln, wie Thionylchlorid, und anschließend mit einem Thioalkohol der Formel HS-E-R⁵ führt zu Verbindungen der Formel (Ig) in der (X), für Schwefel und R⁴ für Wasserstoff stehen.
- 3.4 Die Umsetzung mit einem Halogenid, Triflat oder Mesylat führt zu Verbindungen der Formel (Ig) in der (X)_i für Sauerstoff und R⁴ für Wasserstoff stehen.
- 3.5 Die Umsetzung mit einer Carbonsäure in Gegenwart wasserentziehender Mittel, wie DCC, führt zu Verbindungen der Formel (lg) in der (X), für Sauerstoff, E für CO und R⁴ für Wasserstoff stehen.
- 3.6 Die Umsetzung mit Chlorierungsmitteln, wie CCl₄/PPh₃ und anschließend mit P(ORⁱ)₃ führt zu Verbindungen der Formel (Ig), in der I null und E eine Bindung bedeuten, R⁴ für Wasserstoff und R⁵ für P(=O)(ORⁱ)(OR^k) stehen.

- 3.7 Die Umsetzung mit Chlorierungsmitteln, wie CCI₄/PPh₃ und anschließend mit NaCN in einem Lösungsmittel wie DMF oder DMSO führt zu einer Verbindung (Ig), in der R⁵ für Cyano steht, die durch dem Fachmann bekannte Derivatisierungen zu weiteren Verbindungen (Ig) umgesetzt werden können, worin R⁵ für -COOH, -COOR, -COCI, -CH=NOH oder -CHO steht. Ausgehend von diesen letztgenannten Verbindungen (Ig) können durch dem Fachmann bekannte Reaktionen erfindungsgemäße Verbindungen der Formel (I) hergestellt werden, in der R⁵ für jeweils über ein Kohlenstoffatom gebundenes Heteraryi oder Heterocyclyl steht.
- 3.8 Die Umsetzung mit Chlorierungsmitteln, wie CCI₄/PPh₃ und anschließend basenkatalysiert mit einem Heteroaromaten oder Heterocyclus, der im Ring ein ein Wasserstoffatom tragendes Stickstoffatom aufweist, führt zu Verbindungen (Ig), worin I null und E eine Bindung bedeuten, R⁴ für Wasserstoff und R⁵ für über ein Stickstoffatom gebundenes Heteroaryl oder Heterocyclyl stehen.
- 3.9 Die Umsetzung mit Chlorierungsmittel, wie Oxalylchlorid oder CCI₄/PPh₃, und anschließend mit einer Verbindung HO-N=R^kR^l in Gegenwart einer Base wie NaH in einem geeigneten Lösungsmittel wie THF, DMF oder DMSO führt zu Verbindungen der Formel (Ig) in der (X)_l-E insgesamt für eine Bindung, R⁴ für Wasserstoff und R⁵ für -O-N=R^kR^l steht.

Durch die in Schema 4 angegebene Umsetzung einer Verbindung der Formel (Ig) mit einer Verbindung der Formel (IIa) erhält man Verbindungen der Formel Ia', in der Q für einen Rest der Formel (II) steht. Dazu wird die Verbindung der Formel (Ig) entweder in Gegenwart wasserentziehender Mittel, wie DCC, oder nach Überführung in ihr Säurechlorid, basenkatalysiert mit (IIa) umgesetzt und schließlich mit einer Cyanid-Quelle behandelt. Diese Methoden sind beispielsweise in EP-A 0 369 803 und EP-B 0 283 261 beschrieben. R steht in diesen und nachfolgenden Formeln für Alkoxy.

Schema 4:

$$(R^{7})_{w} \xrightarrow{Z} Q \qquad R^{3} \qquad R^{4} \qquad (R^{7})_{w} \xrightarrow{Z} Q \qquad R^{3} \qquad R^{2} \qquad R^{3} \qquad R^{4} \qquad R^{4} \qquad R^{5} \qquad R^$$

Durch die in Schema 5 angegebene Umsetzung einer Verbindung der Formel (Ig) mit einem Hydroxypyrazol der Formel (IIIa) erhält man erfindungsgemäße Verbindungen, in der Q für einen Rest der Formel (III) und G¹-G² für NR¹0OCR¹¹ stehen. Dazu wird die Verbindung der Formel (Ig) entweder in Gegenwart wasserentziehender Mittel, wie DCC, oder nach Überführung in ihr Säurechlorid, basenkatalysiert mit (IIIa) umgesetzt und schließlich mit einer Cyanid-Quelle behandelt. Diese Methoden sind beispielsweise in EP-A 0 369 803 beschrieben. Durch bekannte Reaktionen wie Veresterung, Alkylierung oder Acylierung wird der Rest R¹¹ am Pyrazolring eingeführt.

Schema 5:

Durch die in Schema 6 angegebene Umsetzung einer Verbindung der Formel (Ig) mit einem ß-Ketoester und anschließender Säurespaltung erhält man eine Verbindung der Formel (Ih), die durch Reaktion mit einem Orthocarbonsäureester oder einem Carbonsäureamidacetal zu einer Verbindung der Formel (Ii), worin L¹ für eine Abgangsgruppe wie Ethoxy oder N,N-Dimethylamino steht, umgesetzt wird. Schließlich werden durch basenkatalysierte Reaktion mit Hydroxylamin die erfindungsgemäßen Verbindungen (Ib¹), in der Q für einen Rest der Formel (III) und G¹-G² für OCR³ stehen, erhalten.

Schema 6:

$$R^{5}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

$$R^{7}$$

$$R^{5}$$

$$R^{5}$$

$$R^{7}$$

$$R^{7}$$

$$R^{7}$$

$$R^{8}$$

$$R^{9}$$

$$R^{3}$$

$$R^{2}$$

$$R^{4}$$

$$R^{6}$$

$$R^{7}$$

$$R^{8}$$

$$R^{9}$$

$$R^{3}$$

$$R^{2}$$

$$R^{4}$$

$$R^{8}$$

$$R^{9}$$

$$R^{3}$$

$$R^{2}$$

$$R^{4}$$

$$R^{5}$$

$$R^{6}$$

$$R^{7}$$

$$R^{8}$$

$$R^{9}$$

$$R^{3}$$

$$R^{2}$$

$$R^{4}$$

Durch die in Schema 7 angegebene Umsetzung einer Verbindung der Formel (Ig) in Gegenwart von Magnesium, einer magnesiumorganischen Verbindung oder einer lithiumorganischen Verbindung mit einem halogensubstituierten Isothiazol, welches beispielsweise nach Methoden in *Synth. Commun.* 17, 1207 (1987) herstellbar sind, erhält man erfindungsgemäße Verbindungen (Ib"), in der Q für einen Rest der Formel (III) und G¹-G² für SCR⁹ stehen.

Schema 7:

Durch die in Schema 8 angegebene basenkatalysierte Umsetzung einer Verbindung der Formel (Ig), in der R für Chlor steht, mit einem ß-Ketonitril der Formel (IVa) erhält man erfindungsgemäße Verbindungen (Ic), in der Q für einen Rest der Formel (IVI) steht. Die Umsetzung erfogt beispielsweise analog er aus EP-A 0 213 892 und EP-A 0 496 631 bekannten Methoden.

Schema 8:

$$R^{9} \longrightarrow CN \qquad + \qquad R^{3} \longrightarrow R^{4} \longrightarrow R^{4} \longrightarrow R^{3} \longrightarrow R^{2} \longrightarrow R^{3} \longrightarrow R^{2} \longrightarrow R^{4} \longrightarrow R^{$$

Die in Schema 9 angegebene Umsetzung einer Verbindung der Formel (Ia') mit einem Halogenierungsreagenz, wie Oxalylchlorid oder Oxalylbromid, führt zu erfindungsgemäßen Verbindungen der Formel (Ia"), die durch Reaktion, gegebenenfalls unter Basenkatalyse, mit Nukleophilen, wie Alkalimetallcyaniden, Alkalimetallcyanaten, Alkalimetallthiocyanaten, Alkylthioalkoholen und Thiophenolen zu weiteren erfindungsgemäßen Verbindungen der Formel(Ia) umgesetzt werden

können. Solche Reaktionen sind beispielsweise beschrieben in *Synthesis* **12**, 1287 (1992).

Schema 9:

$$(R^7)_w \xrightarrow{Z}_{Q} \xrightarrow{R^1}_{Q} \xrightarrow{R^1}_{Q} \xrightarrow{R^2}_{Q} \xrightarrow{R^1}_{Q} \xrightarrow{R$$

Verbindungen der Formel (If), in der A für Schwefel steht, können gemäß Schema 10 mit geeigneten Oxidationsmitteln wie Peroxyessigsäure, Wasserstoffperoxid, m-Chlorperbenzoesäure und Kaliumperoxymonosulfat zu den entsprechenden Verbindungen oxidiert werden, in denen je nach Menge des

eingesetzten Oxidationsmittels A für SO oder SO₂ steht. Solche Reaktionen sind beispielsweise aus *J. Org. Chem.* **53**, 532 (1988) bekannt und auch auf andere hier genannte Verbindungen anwendbar.

Schema 10:

Gegenstand der Erfindung sind auch Verbindungen der Formel (lg),

worin

R (C_1-C_6) -Alkyl,

R⁴ Wasserstoff,

41

R⁵ COOH, COOR, COCI, CH=NOH, CHO,

E eine Bindung,

0

bedeuten, und R¹, R², R³, A und B die unter der allgemeinen Formel (I) angegebenen Bedeutungen haben.

Die erfindungsgemäßen Verbindungen der Formel (I) weisen eine ausgezeichnete herbizide Wirksamkeit gegen ein breites Spektrum wirtschaftlich wichtiger mono- und dikotyler Schadpflanzen auf. Auch schwer bekämpfbare perennierende Unkräuter, die aus Rhizomen, Wurzelstöcken oder anderen Dauerorganen austreiben, werden durch die Wirkstoffe gut erfaßt. Dabei ist es in der Regel unerheblich, ob die Substanzen im Vorsaat-, Vorauflauf- oder Nachauflaufverfahren ausgebracht werden. Im einzelnen seien beispielhaft einige Vertreter der mono- und dikotylen Unkrautflora genannt, die durch die erfindungsgemäßen Verbindungen kontrolliert werden können, ohne daß durch die Nennung eine Beschränkung auf bestimmte Arten erfolgen soll.

Auf der Seite der monokotylen Unkrautarten werden z.B. Avena, Lolium, Alopecurus, Phalaris, Echinochloa, Digitaria, Setaria sowie Cyperusarten aus der annuellen Gruppe und auf seiten der perennierenden Spezies Agropyron, Cynodon, Imperata sowie Sorghum und auch ausdauernde Cyperusarten gut erfaßt.

Bei dikotylen Unkrautarten erstreckt sich das Wirkungsspektrum auf Arten wie z.B. Galium, Viola, Veronica, Lamium, Stellaria, Amaranthus, Sinapis, Ipomoea, Matricaria, Abutilon und Sida auf der annuellen Seite sowie Convolvulus, Cirsium, Rumex und Artemisia bei den perennierenden Unkräutern.

Unter den spezifischen Kulturbedingungen im Reis vorkommende Schadpflanzen wie z.B. Echinochloa, Sagittaria, Alisma, Eleocharis, Scirpus und Cyperus werden von den erfindungsgemäßen Wirkstoffen ebenfalls hervorragend bekämpft. Werden die erfindungsgemäßen Verbindungen vor dem Keimen auf die Erdoberfläche appliziert, so wird entweder das Auflaufen der Unkrautkeimlinge vollständig verhindert oder die Unkräuter wachsen bis zum Keimblattstadium heran, stellen jedoch dann ihr Wachstum ein und sterben schließlich nach Ablauf von drei

bis vier Wochen vollkommen ab.

Bei Applikation der Wirkstoffe auf die grünen Pflanzenteile im Nachauflaufverfahren tritt ebenfalls sehr rasch nach der Behandlung ein drastischer Wachstumsstop ein und die Unkrautpflanzen bleiben in dem zum Applikationszeitpunkt vorhandenen Wachstumsstadium stehen oder sterben nach einer gewissen Zeit ganz ab, so daß auf diese Weise eine für die Kulturpflanzen schädliche Unkrautkonkurrenz sehr früh und nachhaltig beseitigt wird.

Obgleich die erfindungsgemäßen Verbindungen eine ausgezeichnete herbizide Aktivität gegenüber mono- und dikotylen Unkräutern aufweisen, werden Kulturpflanzen wirtschaftlich bedeutender Kulturen wie z.B. Weizen, Gerste, Roggen, Reis, Mais, Zuckerrübe, Baumwolle und Soja nur unwesentlich oder gar nicht geschädigt. Die vorliegenden Verbindungen eignen sich aus diesen Gründen sehr gut zur selektiven Bekämpfung von unerwünschtem Pflanzenwuchs in landwirtschaftlichen Nutzpflanzungen oder in Zierpflanzungen.

Aufgrund ihrer herbiziden und pflanzenwachstumsregulatorischen Eigenschaften können die Wirkstoffe auch zur Bekämpfung von Schadpflanzen in Kulturen von bekannten oder noch zu entwickelnden gentechnisch veränderten Pflanzen eingesetzt werden. Die transgenen Pflanzen zeichnen sich in der Regel durch besondere vorteilhafte Eigenschaften aus, beispielsweise durch Resistenzen gegenüber bestimmten Pestiziden, vor allem bestimmten Herbiziden, Resistenzen gegenüber Pflanzenkrankheiten oder Erregern von Pflanzenkrankheiten wie bestimmten Insekten oder Mikroorganismen wie Pilzen, Bakterien oder Viren. Andere besondere Eigenschaften betreffen z. B. das Erntegut hinsichtlich Menge, Qualität, Lagerfähigkeit, Zusammensetzung und spezieller Inhaltsstoffe. So sind transgene Pflanzen mit erhöhtem Stärkegehalt oder veränderter Qualität der Stärke oder solche mit anderer Fettsäurezusammensetzung des Ernteguts bekannt.

Bevorzugt ist die Anwendung der erfindungsgemäßen Verbindungen der Formel (I) oder deren Salze in wirtschaftlich bedeutenden transgenen Kulturen von Nutz-und Zierpflanzen, z. B. von Getreide wie Weizen, Gerste, Roggen, Hafer, Hirse, Reis,

Maniok und Mais oder auch Kulturen von Zuckerrübe, Baumwolle, Soja, Raps, Kartoffel, Tomate, Erbse und anderen Gemüsesorten.

Vorzugsweise können die Verbindungen der Formel (I) als Herbizide in Nutzpflanzenkulturen eingesetzt werden, welche gegenüber den phytotoxischen Wirkungen der Herbizide resistent sind bzw. gentechnisch resistent gemacht worden sind.

Herkömmliche Wege zur Herstellung neuer Pflanzen, die im Vergleich zu bisher vorkommenden Pflanzen modifizierte Eigenschaften aufweisen, bestehen beispielsweise in klassischen Züchtungsverfahren und der Erzeugung von Mutanten. Alternativ können neue Pflanzen mit veränderten Eigenschaften mit Hilfe gentechnischer Verfahren erzeugt werden (siehe z. B. EP-A-0221044, EP-A-0131624). Beschrieben wurden beispielsweise in mehreren Fällen

- gentechnische Veränderungen von Kulturpflanzen zwecks Modifikation der in den Pflanzen synthetisierten Stärke (z. B. WO 92/11376, WO 92/14827, WO 91/19806),
- transgene Kulturpflanzen, welche gegen bestimmte Herbizide vom Typ Glufosinate (vgl. z. B. EP-A-0242236, EP-A-242246) oder Glyphosate (WO 92/00377) oder der Sulfonylharnstoffe (EP-A-0257993, US-A-5013659) resistent sind.
- transgene Kulturpflanzen, beispielsweise Baumwolle, mit der Fähigkeit Bacillus thuringiensis-Toxine (Bt-Toxine) zu produzieren, welche die Pflanzen gegen bestimmte Schädlinge resistent machen (EP-A-0142924, EP-A-0193259).
- transgene Kulturpflanzen mit modifizierter Fettsäurezusammensetzung (WO 91/13972).

Zahlreiche molekularbiologische Techniken, mit denen neue transgene Pflanzen mit veränderten Eigenschaften hergestellt werden können, sind im Prinzip bekannt; siehe z.B. Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2. Aufl. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; oder Winnacker

"Gene und Klone", VCH Weinheim 2. Auflage 1996 oder Christou, "Trends in Plant Science" 1 (1996) 423-431).

Für derartige gentechnische Manipulationen können Nucleinsäuremoleküle in Plasmide eingebracht werden, die eine Mutagenese oder eine Sequenzveränderung durch Rekombination von DNA-Sequenzen erlauben. Mit Hilfe der obengenannten Standardverfahren können z. B. Basenaustausche vorgenommen, Teilsequenzen entfernt oder natürliche oder synthetische Sequenzen hinzugefügt werden. Für die Verbindung der DNA-Fragmente untereinander können an die Fragmente Adaptoren oder Linker angesetzt werden.

Die Herstellung von Pflanzenzellen mit einer verringerten Aktivität eines Genprodukts kann beispielsweise erzielt werden durch die Expression mindestens einer entsprechenden antisense-RNA, einer sense-RNA zur Erzielung eines Cosuppressionseffektes oder die Expression mindestens eines entsprechend konstruierten Ribozyms, das spezifisch Transkripte des obengenannten Genprodukts spaltet.

Hierzu können zum einen DNA-Moleküle verwendet werden, die die gesamte codierende Sequenz eines Genprodukts einschließlich eventuell vorhandener flankierender Sequenzen umfassen, als auch DNA-Moleküle, die nur Teile der codierenden Sequenz umfassen, wobei diese Teile lang genug sein müssen, um in den Zellen einen antisense-Effekt zu bewirken. Möglich ist auch die Verwendung von DNA-Sequenzen, die einen hohen Grad an Homologie zu den codiereden Sequenzen eines Genprodukts aufweisen, aber nicht vollkommen identisch sind.

Bei der Expression von Nucleinsäuremolekülen in Pflanzen kann das synthetisierte Protein in jedem beliebigen Kompartiment der pflanzlichen Zelle lokalisiert sein. Um aber die Lokalisation in einem bestimmten Kompartiment zu erreichen, kann z. B. die codierende Region mit DNA-Sequenzen verknüpft werden, die die Lokalisierung in einem bestimmten Kompartiment gewährleisten. Derartige Sequenzen sind dem Fachmann bekannt (siehe beispielsweise Braun et al., EMBO J. 11 (1992), 3219-

3227; Wolter et al., Proc. Natl. Acad. Sci. USA 85 (1988), 846-850; Sonnewald et al., Plant J. 1 (1991), 95-106).

Die transgenen Pflanzenzellen können nach bekannten Techniken zu ganzen Pflanzen regeneriert werden. Bei den transgenen Pflanzen kann es sich prinzipiell um Pflanzen jeder beliebigen Pflanzenspezies handeln, d.h. sowohl monokotyle als auch dikotyle Pflanzen.

So sind transgene Pflanzen erhältlich, die veränderte Eigenschaften durch Überexpression, Suppression oder Inhibierung homologer (= natürlicher) Gene oder Gensequenzen oder Expression heterologer (= fremder) Gene oder Gensequenzen aufweisen.

Vorzugsweise können die erfindungsgemäßen Verbindungen in transgenen Kulturen eingesetzt werden, welche gegen Herbizide aus der Gruppe der Sulfonylhamstoffe, Glufosinate-ammonium oder Glyphosate-isopropylammonium und analoge Wirkstoffe resistent sind.

Bei der Anwendung der erfindungsgemäßen Wirkstoffe in transgenen Kulturen treten neben den in anderen Kulturen zu beobachtenden Wirkungen gegenüber Schadpflanzen oftmals Wirkungen auf, die für die Applikation in der jeweiligen transgenen Kultur spezifisch sind, beispielsweise ein verändertes oder speziell erweitertes Unkrautspektrum, das bekämpft werden kann, veränderte Aufwandmengen, die für die Applikation eingesetzt werden können, vorzugsweise gute Kombinierbarkeit mit den Herbiziden, gegenüber denen die transgene Kultur resistent ist, sowie Beeinflussung von Wuchs und Ertrag der transgenen Kulturpflanzen.

Gegenstand der Erfindung ist deshalb auch die Verwendung der erfindungsgemäßen Verbindungen als Herbizide zur Bekämpfung von Schadpflanzen in transgenen Kulturpflanzen.

Darüberhinaus weisen die erfindungsgemäßen Substanzen hervorragende wachstumsregulatorische Eigenschaften bei Kulturpflanzen auf. Sie greifen regulierend in den pflanzeneigenen Stoffwechsel ein und können damit zur gezielten Beeinflussung von Pflanzeninhaltsstoffen und zur Ernteerleichterung wie z.B. durch Auslösen von Desikkation und Wuchsstauchung eingesetzt werden. Desweiteren eignen sie sich auch zur generellen Steuerung und Hemmung von unerwünschtem vegetativen Wachstum, ohne dabei die Pflanzen abzutöten. Eine Hemmung des vegetativen Wachstums spielt bei vielen mono- und dikotylen Kulturen eine große Rolle, da das Lagem hierdurch verringert oder völlig verhindert werden kann.

Die erfindungsgemäßen Verbindungen können in Form von Spritzpulvern, emulgierbaren Konzentraten, versprühbaren Lösungen, Stäubemitteln oder Granulaten in den üblichen Zubereitungen angewendet werden. Gegenstand der Erfindung sind deshalb auch herbizide und pflanzenwachstumsregulierende Mittel, die Verbindungen der Formel (I) enthalten.

Die Verbindungen der Formel (I) können auf verschiedene Art formuliert werden, je nachdem welche biologischen und/oder chemisch-physikalischen Parameter vorgegeben sind. Als Formulierungsmöglichkeiten kommen beispielsweise in Frage: Spritzpulver (WP), wasserlösliche Pulver (SP), wasserlösliche Konzentrate, emulgierbare Konzentrate (EC), Emulsionen (EW), wie Öl-in-Wasser- und Wasser-in-Öl-Emulsionen, versprühbare Lösungen, Suspensionskonzentrate (SC), Dispersionen auf Öl- oder Wasserbasis, ölmischbare Lösungen, Kapselsuspensionen (CS), Stäubemittel (DP), Beizmittel, Granulate für die Streu- und Bodenapplikation, Granulate (GR) in Form von Mikro-, Sprüh-, Aufzugs- und Adsorptionsgranulaten, wasserdispergierbare Granulate (WG), wasserlösliche Granulate (SG), ULV-Formulierungen, Mikrokapseln und Wachse.

Diese einzelnen Formulierungstypen sind im Prinzip bekannt und werden beispielsweise beschrieben in: Winnacker-Küchler, "Chemische Technologie",

Band 7, C. Hauser Verlag München, 4. Aufl. 1986, Wade van Valkenburg, "Pesticide Formulations", Marcel Dekker, N.Y., 1973; K. Martens, "Spray Drying" Handbook, 3rd Ed. 1979, G. Goodwin Ltd. London.

Die notwendigen Formulierungshilfsmittel wie Inertmaterialien, Tenside,
Lösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und werden
beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and
Carriers", 2nd Ed., Darland Books, Caldwell N.J., H.v. Olphen, "Introduction to Clay
Colloid Chemistry"; 2nd Ed., J. Wiley & Sons, N.Y.; C. Marsden, "Solvents Guide";
2nd Ed., Interscience, N.Y. 1963; McCutcheon's "Detergents and Emulsifiers
Annual", MC Publ. Corp., Ridgewood N.J.; Sisley and Wood, "Encyclopedia of
Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964; Schönfeldt,
"Grenzflächenaktive Äthylenoxidaddukte", Wiss. Verlagsgesell., Stuttgart 1976;
Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag München,
4. Aufl. 1986.

Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, wie z.B. Insektiziden, Akariziden, Herbiziden, Fungiziden, sowie mit Safenern, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix.

Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Tenside ionischer und/oder nichtionischer Art (Netzmittel, Dispergiermittel), z.B. polyoxyethylierte Alkylphenole, polyoxethylierte Fettalkohole, polyoxethylierte Fettamine, Fettalkoholpolyglykolethersulfate, Alkansulfonate, Alkylbenzolsulfonate, ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium, dibutylnaphthalin-sulfonsaures Natrium oder auch oleoylmethyltaurinsaures Natrium enthalten. Zur Herstellung der Spritzpulver werden die herbiziden Wirkstoffe beispielsweise in üblichen Apparaturen wie Hammermühlen, Gebläsemühlen und Luftstrahlmühlen feingemahlen und gleichzeitig oder anschließend mit den Formulierungshilfsmitteln vermischt.

Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen oder Mischungen der organischen Lösungsmittel unter Zusatz von einem oder mehreren Tensiden ionischer und/oder nichtionischer Art (Emulgatoren) hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calzium-Salze wie Ca-dodecylbenzolsulfonat oder nichtionische Emulgatoren wie Fettsäurepolyglykolester, Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propylenoxid-Ethylenoxid-Kondensationsprodukte, Alkylpolyether, Sorbitanester wie z.B. Sorbitanfettsäureester oder Polyoxethylensorbitanester wie z.B. Polyoxyethylensorbitanfettsäureester.

Stäubemittel erhält man durch Vermahlen des Wirkstoffes mit fein verteilten festen Stoffen, z.B. Talkum, natürlichen Tonen, wie Kaolin, Bentonit und Pyrophyllit, oder Diatomeenerde.

Suspensionskonzentrate können auf Wasser- oder Ölbasis sein. Sie können beispielsweise durch Naß-Vermahlung mittels handelsüblicher Perlmühlen und gegebenenfalls Zusatz von Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, hergestellt werden.

Emulsionen, z.B. Öl-in-Wasser-Emulsionen (EW), lassen sich beispielsweise mittels Rührern, Kolloidmühlen und/oder statischen Mischern unter Verwendung von wäßrigen organischen Lösungsmitteln und gegebenenfalls Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, herstellen.

Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in

der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - granuliert werden.

Wasserdispergierbare Granulate werden in der Regel nach den üblichen Verfahren wie Sprühtrocknung, Wirbelbett-Granulierung, Teller-Granulierung, Mischung mit Hochgeschwindigkeitsmischem und Extrusion ohne festes Inertmaterial hergestellt.

Zur Herstellung von Teller-, Fließbett-, Extruder- und Sprühgranulate siehe z.B. Verfahren in "Spray-Drying Handbook" 3rd ed. 1979, G. Goodwin Ltd., London; J.E. Browning, "Agglomeration", Chemical and Engineering 1967, Seiten 147 ff; "Perry's Chemical Engineer's Handbook", 5th Ed., McGraw-Hill, New York 1973, S. 8-57.

Für weitere Einzelheiten zur Formulierung von Pflanzenschutzmitteln siehe z.B. G.C. Klingman, "Weed Control as a Science", John Wiley and Sons, Inc., New York, 1961, Seiten 81-96 und J.D. Freyer, S.A. Evans, "Weed Control Handbook", 5th Ed., Blackwell Scientific Publications, Oxford, 1968, Seiten 101-103.

Die agrochemischen Zubereitungen enthalten in der Regel 0,1 bis 99 Gew.-%, insbesondere 0,1 bis 95 Gew.-%, Wirkstoff der Formel (I).

In Spritzpulvern beträgt die Wirkstoffkonzentration z.B. etwa 10 bis 90 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration etwa 1 bis 90, vorzugsweise 5 bis 80 Gew.-% betragen. Staubförmige Formulierungen enthalten 1 bis 30 Gew.-% Wirkstoff, vorzugsweise meistens 5 bis 20 Gew.-% an Wirkstoff, versprühbare Lösungen enthalten etwa 0,05 bis 80, vorzugsweise 2 bis 50 Gew.-% Wirkstoff. Bei wasserdispergierbaren Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche Granulierhilfsmittel, Füllstoffe usw. verwendet werden. Bei den in Wasser dispergierbaren Granulaten liegt der Gehalt an Wirkstoff beispielsweise zwischen 1 und 95 Gew.-%, vorzugsweise zwischen 10 und 80 Gew.-%.

Daneben enthalten die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Konservierungs-, Frostschutz- und Lösungsmittel, Füll-, Träger- und Farbstoffe, Entschäumer, Verdunstungshemmer und den pH-Wert und die Viskosität beeinflussende Mittel.

Als Kombinationspartner für die erfindungsgemäßen Wirkstoffe in Mischungsformulierungen oder im Tank-Mix sind beispielsweise bekannte Wirkstoffe einsetzbar, wie sie z.B. in Weed Research 26, 441-445 (1986) oder "The Pesticide Manual", 11th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 1997 und dort zitierter Literatur beschrieben sind. Als bekannte Herbizide, die mit den Verbindungen der Formel (I) kombiniert werden können, sind z.B. folgende Wirkstoffe zu nennen (Anmerkung: Die Verbindungen sind entweder mit dem "common name" nach der International Organization for Standardization (ISO) oder mit dem chemischen Namen, ggf. zusammen mit einer üblichen Codenummer bezeichnet): acetochlor; acifluorfen; acionifen; AKH 7088, d.h. [[[1-[5-[2-Chloro-4-(trifluoromethyl)phenoxy]-2-nitropheny[]-2-methoxyethylidene]-amino]-oxy]-essigsäure und essigsäuremethylester; alachlor; alloxydim; ametryn; amidosulfuron; amitrol; AMS, d.h. Ammoniumsulfamat; anilofos; asulam; atrazin; azimsulfurone (DPX-A8947); aziprotryn; barban; BAS 516 H, d.h. 5-Fluor-2-phenyl-4H-3,1-benzoxazin-4-on; benazolin; benfluralin; benfuresate; bensulfuron-methyl; bensulide; bentazone; benzofenap; benzofluor; benzoylprop-ethyl; benzthiazuron; bialaphos; bifenox; bromacil; bromobutide; bromofenoxim; bromoxynil; bromuron; buminafos; busoxinone; butachlor; butamifos; butenachlor; buthidazole; butralin; butylate; cafenstrole (CH-900); carbetamide; cafentrazone (ICI-A0051); CDAA, d.h. 2-Chlor-N,N-di-2-propenylacetamid; CDEC, d.h. Diethyldithiocarbaminsäure-2-chlorallylester. chlomethoxyfen; chloramben; chlorazifop-butyl, chlormesulon (ICI-A0051); chlorbromuron; chlorbufam; chlorfenac; chlorflurecol-methyl; chloridazon; chlorimuron ethyl; chlomitrofen; chlorotoluron; chloroxuron; chlorpropham; chlorsulfuron; chlorthal-dimethyl; chlorthiamid; cinmethylin; cinosulfuron; clethodim; clodinafop und dessen Esterderivate (z.B. clodinafop-propargyl); clomazone; clomeprop; cloproxydim; clopyralid; cumyluron (JC 940); cyanazine; cycloate;

cyclosulfamuron (AC 104); cycloxydim; cycluron; cyhalofop und dessen Esterderivate (z.B. Butylester, DEH-112); cyperquat; cyprazine; cyprazole; daimuron; 2,4-DB; dalapon; desmedipham; desmetryn; di-allate; dicamba; dichlobenii; dichlorprop; diclofop und dessen Ester wie diclofop-methyl; diethatyl; difenoxuron; difenzoquat; diflufenican; dimefuron; dimethachlor; dimethametryn; dimethenamid (SAN-582H); dimethazone, clomazon; dimethipin; dimetrasulfuron, dinitramine; dinoseb; dinoterb; diphenamid; dipropetryn; diquat; dithiopyr; diuron; DNOC; eglinazine-ethyl; EL 77, d.h. 5-Cyano-1-(1,1-dimethylethyl)-N-methyl-1H-pyrazole-4carboxamid; endothal; EPTC; esprocarb; ethalfluralin; ethametsulfuron-methyl; ethidimuron; ethiozin; ethofumesate; F5231, d.h. N-[2-Chlor-4-fluor-5-[4-(3fluorpropyl)-4,5-dihydro-5-oxo-1H-tetrazol-1-yl]-phenyl]-ethansulfonamid; ethoxyfen und dessen Ester (z.B. Ethylester, HN-252); etobenzanid (HW 52); fenoprop; fenoxan, fenoxaprop und fenoxaprop-P sowie deren Ester, z.B. fenoxaprop-P-ethyl und fenoxaprop-ethyl; fenoxydim; fenuron; flamprop-methyl; flazasulfuron; fluazifop und fluazifop-P und deren Ester, z.B. fluazifop-butyl und fluazifop-P-butyl; fluchloralin; flumetsulam; flumeturon; flumiclorac und dessen Ester (z.B. Pentylester, S-23031); flumioxazin (S-482); flumipropyn; flupoxam (KNW-739); fluorodifen; fluoroglycofen-ethyl; flupropacil (UBIC-4243); fluridone; fluroxypyr; flurtamone; fomesafen; fosamine; furyloxyfen; glufosinate; glyphosate; halosafen; halosulfuron und dessen Ester (z.B. Methylester, NC-319); haloxyfop und dessen Ester, haloxyfop-P (= R-haloxyfop) und dessen Ester; hexazinone; imazamethabenz-methyl; imazapyr; imazaquin und Salze wie das Ammoniumsalz; imazethamethapyr; imazethapyr; imazosulfuron; ioxynil; isocarbamid; isopropalin; isoproturon; isouron; isoxaben; isoxapyrifop; karbutilate; lactofen; lenacil; linuron; MCPA; MCPB; mecoprop; mefenacet; mefluidid; metamitron; metazachlor. methabenzthiazuron; metham; methazole; methoxyphenone; methyldymron; metabenzuron, methobenzuron; metobromuron; metolachlor; metosulam (XRD 511); metoxuron; metribuzin; metsulfuron-methyl; MH; molinate; monalide; monocarbamide dihydrogensulfate; monolinuron; monuron; MT 128, d.h. 6-Chlor-N-(3-chlor-2-propenyl)-5-methyl-N-phenyl-3-pyridazinamin; MT 5950, d.h. N-[3-Chlor-4-(1-methylethyl)-phenyl]-2-methylpentanamid; naproanilide; napropamide; naptalam; NC 310, d.h. 4-(2,4-dichlorbenzoyl)-1-methyl-5-benzyloxypyrazol; neburon;

nicosulfuron; nipyraclophen; nitralin; nitrofen; nitrofluorfen; norflurazon; orbencarb; oryzalin; oxadiargyl (RP-020630); oxadiazon; oxyfluorfen; paraguat; pebulate; pendimethalin; perfluidone; phenisopham; phenmedipham; picloram; piperophos; piributicarb; pirifenop-butyl; pretilachlor; primisulfuron-methyl; procyazine; prodiamine; profluralin; proglinazine-ethyl; prometon; prometryn; propachlor: propanil; propaguizafop und dessen Ester; propazine; propham; propisochlor; propyzamide; prosulfalin; prosulfocarb; prosulfuron (CGA-152005); prynachlor; pyrazolinate; pyrazon; pyrazosulfuron-ethyl; pyrazoxyfen; pyridate; pyrithiobac (KIH-2031); pyroxofop und dessen Ester (z.B. Propargylester); quinclorac; quinmerac; quinofop und dessen Esterderivate, quizalofop und quizalofop-P und deren Esterderivate z.B. quizalofop-ethyl; quizalofop-P-tefuryl und -ethyl; renriduron; rimsulfuron (DPX-E 9636); S 275, d.h. 2-[4-Chlor-2-fluor-5-(2-propynyloxy)-phenyl]-4,5,6,7-tetrahydro-2H-indazol; secbumeton; sethoxydim; siduron; simazine; simetryn; SN 106279, d.h. 2-[[7-[2-Chlor-4-(trifluor-methyl)-phenoxy]-2-naphthalenyl]-oxy]propansaure und -methylester; sulfentrazon (FMC-97285, F-6285); sulfazuron; sulfometuron-methyl; sulfosate (ICI-A0224); TCA; tebutam (GCP-5544); tebuthiuron; terbacil; terbucarb; terbuchlor; terbumeton; terbuthylazine; terbutryn; TFH 450. d.h. N,N-Diethyl-3-[(2-ethyl-6-methylphenyl)-sulfonyl]-1H-1,2,4-triazol-1-carboxamid; thenylchlor (NSK-850); thiazafluron; thiazopyr (Mon-13200); thidiazimin (SN-24085); thifensulfuron-methyl; thiobencarb; tiocarbazil; tralkoxydim; tri-allate; triasulfuron; triazofenamide; tribenuron-methyl; triclopyr; tridiphane; trietazine; trifluralin; triflusulfuron und Ester (z.B. Methylester, DPX-66037); trimeturon; tsitodef; vernolate; WL 110547, d.h. 5-Phenoxy-1-[3-(trifluormethyl)-phenyl]-1H-tetrazol; UBH-509; D-489; LS 82-556; KPP-300; NC-324; NC-330; KH-218; DPX-N8189; SC-0774; DOWCO-535; DK-8910; V-53482; PP-600; MBH-001; KIH-9201; ET-751; KIH-6127 und KIH-2023.

Zur Anwendung werden die in handelsüblicher Form vorliegenden Formulierungen gegebenenfalls in üblicher Weise verdünnt z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und wasserdispergierbaren Granulaten mittels Wasser. Staubförmige Zubereitungen, Boden- bzw. Streugranulate sowie versprühbare

WO 00/14087 PCT/EP99/06259

53

Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt.

Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit, der Art des verwendeten Herbizids, u.a. variiert die erforderliche Aufwandmenge der Verbindungen der Formel (I). Sie kann innerhalb weiter Grenzen schwanken, z.B. zwischen 0,001 und 10,0 kg/ha oder mehr Aktivsubstanz, vorzugsweise liegt sie jedoch zwischen 0,005 und 5 kg/ha.

A. Chemische Beispiele

1. Herstellung von 4-{[3-Chloro-5-(trifluoromethyl)-2-pyridyl]oxy}-5,8-dimethyl-6-[(2,6-dioxo-cyclohexyl)carbonyl]-1,2,3,4-tetrahydro- $1\lambda^6$ -thiochromen-1,1-dion

Schritt 1: 3-[(2,5-Dimethylphenyl)thio]propansäure

90 g (2.25 Mol) Natriumhydroxid wurden in 500 ml Wasser gelöst und unter Kühlung bei 10 °C mit 147,59 g 2,5-Dimethylthiophenol versetzt. Unter fortgesetzter Kühlung wurden bei unter 25 °C 180,1 g (1,18 Mol) 3-Brompropionsäure hinzugefügt. Man ließ 4 h bei Raumtemperatur nachrühren und wusch dann mit Diethylether (3 x 500 ml). Die wässrige Lösung wurde mit 1M HCl sauer gestellt, das ausgefallene Produkt abfiltriert und mit Wasser gewaschen.

Ausbeute: 205.88 g (92 % der Theorie)

farblose Kristalle; Fp.: 97-98 °C; R_f = 0.56 (Kieselgel/Essigester)

¹H NMR (CDCl₃): δ 2.3 (s,3H), 2.34 (s,3H), 2.68 (t,2H), 3.1 (t,2H), 6.9 (d,1H), 7.06-

7.14 (2H)

Schritt 2: 5,8-Dimethyl-4-thiochromanon

100 g (0.48 Mol) 3-[(2,5-Dimethylphenyl)thio]propansäure wurden bei –10 °C in 2200 ml konz. Schwefelsäure gelöst. Man ließ 1 h bei Raumtemperatur rühren und gab die Reaktionslösung dann auf gestoßenem Eis. Die wässrige Lösung wurde mit einem Diethylether/Hexan-Gemisch (1:9) extrahiert (6 x 500 ml). Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet und am Rotationsverdampfer vollständig eingeengt.

Ausbeute: 56.63 g (62 % der Theorie) gelbliches ÖI; $R_f = 0.63$ (Kieselgel/Essigester) ¹H NMR (CDCl₃): δ 2.3 (s,3H), 2.6 (s,3H), 2.97 (m,2H), 3.2 (m,2H), 6.9-7.1 (2H)

Schritt 3: 6-Brom-5,8-dimethyl-4-thiochromanon

66,5 g (0,35 Mol) 5,8-Dimethyl-4-thiochromanon wurden zusammen mit 118 g (0,87 Mol) Aluminiumchlorid in 600 ml Methylenchlorid gelöst beziehungsweise suspendiert. Nach 15 min rühren ließ man 62,2 g (0,39 Mol) Brom langsam

zutropfen und die Reaktionsmischung anschließend noch 10 min unter Rückfluß kochen. Die noch warme Reaktionsmischung wurde auf 220 ml konz. Salzsäure auf verstoßenem Eis gegeben. Man ließ 10 min rühren, trennte die Methylenchlorid Phase ab und extrahierte die wässrige Phase mit Diethylether (3 x 400 ml). Die vereinigten organischen Phasen wurden mit Wasser gewaschen, über MgSO₄ getrocknet und am Rotationsverdampfer eingeengt.

Ausbeute: 58.4 g (62 % der Theorie); bräunliche Kristalle

Fp.: 87-88 °C (nach chromatographischer Reinigung)

 $R_f = 0.78$ (Kieselgel/Essigester)

¹H NMR (CDCl₃): δ 2.3 (s,3H), 2.6 (s,3H), 3.0 (m,2H), 3.2 (m,2H), 7.45(2H)

Schritt 4: 6-Brom-5,8-dimethyl-spiro[thiochroman-4,2'-[1,3]dioxolan] 58.4 g (0,22 Mol) 6-Brom-5,8-dimethyl-4-thiochromanon wurden in 380 ml Orthoameisensäuretrimethylester gelöst und mit 555 g (8,9 Mol) Ethandiol und 0,2 g p-Toluolsulfonsäure Monohydrat versetzt und über Nacht bei 80 °C gerührt. Anschließend ließ man abkühlen, verdünnte mit 500 ml Diethylether und wusch mit einer 1:1 Mischung aus 1 M Natronlauge und ges. NaCl-Lösung (2 x 500 ml) und anschließend mit einer ges. NaCl-Lösung (300 ml). Die organische Phase wurde über MgSO₄ getrocknet und am Rotationsverdampfer eingeengt. Der Rückstand wurde in 50 ml Heptan/Diethylether (9:1) aufgenommen und kalt gestellt. Die über Nacht ausgefallenen Kristalle wurden abgesaugt, mit kaltem Heptan gewaschen und getrocknet.

Ausbeute: 46.38 g (68 % der Theorie); bräunliche Kristalle Fp.: 97 °C; R_f = 0.75 (Kieselgel/Essigester) ¹H NMR (CDCl₃): δ 2.2 (s,3H), 2.3 (m,2H), 2.4 (s,3H), 3.0 (m,2H), 4.15 (m,2H), 4.3 (m,2H), 7.3(s,1H)

Schritt 5: 5,8-Dimethyl-4-oxo-6-thiochromancarbonsäure
46.38 g (0.15 Mol) 6-Brom-5,8-dimethyl-spiro[thiochroman-4,2'-[1,3]dioxolan]
wurden in 500 ml Tetrahydrofuran gelöst und auf –65 °C gekühlt. Anschließend ließ
man 80 ml (0.2 Mol) 2.5 M n-Butyllithium in Hexan so langsam zutropfen, daß die
Temperatur nicht über –55 °C stieg. Man ließ 1 h nachrühren und gab dann

portionsweise 90 g Trockeneis hinzu. Anschließend ließ man die Lösung auf Raumtemperatur kommen, gab 500 ml Hexan hinzu und saugte den Niederschlag ab. Dieser wurde in 500 ml Wasser aufgenommen und mit konz. Salzsäure stark sauer gestellt. Man ließ für 1 h unter Rückfluß kochen, ließ abkühlen und saugte das ausgefallenen Produkt ab.

Ausbeute:

26.18 g (75 % der Theorie

farblose Kristalle: Fp.: 146-198 °C

¹H NMR (Me₂SO-d6): δ 2.2 (s,3H), 2.5 (s,3H), 2.9 (m,2H), 3.3 (m,2H), 7.6 (s,1H)

Schritt 6: Methyl 5,8-dimethyl-4-oxo-6-thiochromancarboxylat

26.17 g (0.11 Mol) 5,8-Dimethyl-4-oxo-6-thiochromancarbonsäure wurden in 500 ml Methanol gelöst, mit 3 ml konz. Schwefelsäure versetzt und unter Rückfluß gekocht. Es wurde in regelmäßigen Zeitabständen insgesamt noch einmal 3 ml konz. Schwefelsäure hinzugefügt, bis nach 3 d per Dünnschichtchromatographie (SIO₂,Essigester) kein Edukt mehr nachgewiesen werden konnte. Man ließ abkühlen, zog das Methanol am Rotationsverdampfer ab und nahm den Rückstand in 400 ml Essigester auf. Es wurde mit ges. NaCl-Lösung (2 x 100 ml) und ges. NaHCO₃-Lösung (2 x 100 ml) gewaschen, über MgSO₄ getrocknet und am Rotationsverdampfer eingeengt.

Ausbeute:

24.96 g (90 % der Theorie)

braunes OI; $R_f = 0.7$ (Kieselgel/Essigester)

¹H NMR (CDCl₃): δ 2.2 (s,3H), 2.6 (s,3H), 3.0 (m,2H), 3.2 (m,2H), 3.85 (s,3H), 7.6 (s,1H)

Schritt 7: Methyl 5,8-dimethyl-4-hydroxy-6-thiochromancarboxylat 10.40 g (0.04 Mol) Methyl 5,8-dimethyl-4-oxo-6-thiochromancarboxylat wurden in 200 ml Ethanol gelöst und portionsweise mit 0.89 g (0.023 Mol) Natriumborhydrid versetzt. Anschließend ließ man noch 1 h bei Raumtemperatur rühren und engte anschließend am Rotationsverdampfer ein. Der Rückstand wurde in 200 ml Essigester aufgenommen, mit ges. NaCl-Lösung gewaschen (2 x 100 ml), über MgSO₄ getrocknet und am Rotationsverdampfer eingeengt.

Ausbeute:

10.3 g (98 % der Theorie)

braunes ÖI; R_f = 0.6 (Kieselgel/Essigester) ¹H NMR (CDCl₃): δ 1,8 (m,1H), 2.2 (s,3H), 2.5 (m,1H), 2.6 (s,3H), 2.8 (s,1H), 3.3 (m,1H), 3.85 (s,3H), 5.1 (s, br,1H), 7.6 (s,1H)

Schritt 8: Methyl 5,8-dimethyl-4-hydroxy-1,1-dioxo-1,2,3,4-tetrahydro-1λ⁶-thio-chromen-6-carboxylat

10 g (0.04 Mol) Methyl 5,8-dimethyl-4-hydroxy-6-thiochromancarboxylat und 4.9 g (0.06 Mol) Natriumacetat wurden zusammen in 200 ml Methanol gegeben. Es wurde auf 0 °C gekühlt und langsam mit einer Lösung aus 41.4 g (0.07 Mol) OXONE® (Kalium-peroxymonosulfat) in 200 ml Wasser versetzt. Die Reaktionstemperatur wurde dabei unter 6 °C gehalten. Anschließend ließ man 4 h bei Raumtemperatur rühren und verdünnte anschließend mit 120 ml Wasser. Es wurde mit Methylenchlorid (3 x 200 ml) extrahiert, über MgSO₄ getrocknet und am Rotationsverdampfer eingeengt.

Ausbeute: 10.6 g (94 % der Theorie); farblose Kristalle Fp.: 135 – 136 °C; R_f = 0.55 (Kieselgel/Essigester) ¹H NMR (CDCl₃): δ 2.5 (m,2H), 2.6 (s,3H), 2.7 (s,3H), 3.2 (s,1H), 3.9 (m,1H), 3.9 (s,3H), 5.1 (m, 1H), 7.55 (s,1H)

Schritt 9: Methyl 4-{[3-chloro-5-(trifluoromethyl)-2-pyridyl]oxy}-5,8-dimethyl-1,1-dioxo-1,2,3,4-tetrahydro-1λ⁶-thiochromen-6-carboxylat

0.48 g (1.7 mMol) Methyl 5,8-dimethyl-4-hydroxy-1,1-dioxo-1,2,3,4-tetrahydro- $1\lambda^6$ -thiochromen-6-carboxylat und 0.4 g (1.9 mMol) 2,5-Dichlor-3-(trifluormethyl)-pyridin wurden in 20 ml Tetrahydrofuran gelöst und anschließend mit 0.21 g (1.9 mMol) Kalium-tert.-butylat versetzt. Man ließ 3 h rühren, engte anschließend am Rotationsverdampfer ein. Der Rückstand wurde in 100 ml Essigester aufgenommen, mit ges. NaCl-Lösung gewaschen (2 x 20 ml), über MgSO₄ getrocknet und am Rotationsverdampfer eingeengt. Der Rückstand wurde chromatographisch gereinigt (Kieseigel, Essigester : Heptan = 1 : 3).

Ausbeute: 0.64 g (80 % der Theorie) gelbe Kristalle; R_f = 0.71 (Kieselgel/Essigester)

¹H NMR (CDCl₃): δ 2.35 (s,3H), 2.8 (m,2H), 2.8 (s,3H), 3.25 (s,1H), 3.8 (m,1H), 3.9 (s,3H), 6.6 (m, 1H), 7.7 (s,1H), 7.95 (m,1H), 8.4 (m,1H)

Schritt 10: 4-{[3-Chloro-5-(trifluoromethyl)-2-pyridyl]oxy}-5,8-dimethyl-1,1-dioxo-1,2,3,4-tetrahydro-1λ⁶-thiochromen-6-carbonsäure

0.62 g (1.3 mMol) Methyl 5,8-dimethyl-4-hydroxy-1,1-dioxo-1,2,3,4-tetrahydro-1λ⁶-thiochromen-6-carboxylat wurden in 10 ml Tetrahydrofuran gelöst und anschließend mit 0.17 (4 mMol) Natriumhydroxid in 5 ml Wasser versetzt. Man ließ 3 h unter Rückfluß kochen, zog anschließend Tetrahydrofuran am Rotationsverdampfer ab und stellte mit 5 M HCl sauer. Anschließend wurde mit Essigester extrahiert, über MgSO₄ getrocknet und am Rotationsverdampfer eingeengt.

Ausbeute: 0.56 g (93 % der Theorie)

farblose Kristalle; $R_f = 0.25$ (Kieselgel/Essigester)

¹H NMR (CDCl₃): δ 2.35 (s,3H), 2.8 (m,2H), 2.8 (s,3H), 3.25 (s,1H), 3.8 (m,1H), 6.6 (m, 1H), 7.9 (s,1H), 7.95 (m,1H), 8.4 (m,1H)

Schritt 11: 3-Oxo-1-cyclohexenyl 4-{[3-chloro-5-(trifluoromethyl)-2-pyridyl]oxy}-5,8-dimethyl-1,1-dioxo-1,2,3,4-tetrahydro-1λ⁶-thiochromen-6-carboxylat 0.56 g (1.2 mMol) 4-{[3-Chloro-5-(trifluoromethyl)-2-pyridyl]oxy}-5,8-dimethyl-1,1-dioxo-1,2,3,4-tetrahydro-1λ⁶-thiochromen-6-carbonsäure wurden in 30 ml Methylen-chlorid mit 2 tropfen N,N-Dimethylformamid und 0.48 g (3.8 mMol) Oxalylchlorid hinzugefügt und 3.5 h unter Rückfluß gekocht. Anschließend wurde am Rotationsverdampfer abgezogen, der Rückstand in 100 ml Methylenchlorid aufgenommen und bei 0 °C mit 0.15 g (1.4 mMol) Cyclohexandion und 0.22 g (3.7 mMol) Triethylamin versetzt. Man ließ 4 h bei Raumtemperatur nachrühren. Anschließend wurde am Rotationsverdampfer eingeengt und chromatographisch gereinigt (Kieselgel, Essigester:Hexan = 1:1).

Ausbeute: 0.39 g (58 % der Theorie)

farblose Kristalle; $R_f = 0.69$ (Kieselgel/Essigester)

¹H NMR (CDCl₃): δ 2.1 (m,2H), 2.4 (s,3H), 2.45 (m,2H), 2.65 (m,2H), 2.8 (m,2H), 3.25 (s,1H), 3.8 (m,1H), 6.0 (s,1H), 6.7 (m, 1H), 7.85 (s,1H), 7.95 (m,1H), 8.4 (m,1H)

Schritt 12: 4-{[3-Chloro-5-(trifluoromethyl)-2-pyridyl]oxy}-5,8-dimethyl-6-[(2,6-dioxocyclohexyl)carbonyl]-1,2,3,4-tetrahydro-1λ⁶-thiochromen-1,1-dion 0.31 g (0.57 mMol) 3-Oxo-1-cyclohexenyl 4-{[3-chloro-5-(trifluoromethyl)-2-pyridyl]-oxy}-5,8-dimethyl-1,1-dioxo-1,2,3,4-tetrahydro-1λ⁶-thiochromen-6-carboxylat, 1 Tropfen Acetoncyanhydrin und 0.1 g (1 mMol) Triethylamin wurden in 15 ml Acetonitril gelöst und über Nacht bei Raumtemperatur gerührt. Anschließend wurde am Rotationsverdampfer eingeengt, mit 5 ml Wasser versetzt und mit 5 M HCl sauer gestellt. Das ausgefallene Produkt wurde abgesaugt und getrocknet.

Ausbeute: 0.27 g (87 % der Theorie); farblose Kristalle Fp.: 128-132 °C; $R_f = 0.37$ (Kieselgel/Essigester)

¹H NMR (CDCl₃): δ 2.0 (m,2H), 2.0 (s,3H), 2.4 (m,2H), 2.8 (m,2H), 2.8 (m,2H), 2.8 (s,3H), 3.25 (s,1H), 3.8 (m,1H), 6.6 (m, 1H), 7.0 (s,1H), 7.9 (m,1H), 8.4 (m,1H)

2. Herstellung von 6-[(2,6-Dioxocyclohexyl)carbonyl]-5,8-dimethyl-4-(2-pyrimidinyloxy)-1,2,3,4-tetrahydro- $1\lambda^6$ -thiochromen-1,1-dion 0.38 g (0.86 mMol) 3-Oxo-1-cyclohexenyl 5,8-dimethyl-4-(2-pyrimidinyloxy)-1,1-dioxo-1,2,3,4-tetrahydro- $1\lambda^6$ -thiochromen-6-carboxylat, 1 Tropfen Acetoncyanhydrin und 0.1 g (1 mMol) Triethylamin wurden in 15 ml Acetonitril gelöst und über Nacht bei Raumtemperatur gerührt. Anschließend wurde am Rotationsverdampfer eir geengt, mit 5 ml Wasser versetzt und mit 5 M HCl sauer gestellt. Das ausgefallene Produkt wurde abgesaugt und getrocknet.

Ausbeute: 0.28 g (74 % der Theorie)

beige Kristalle; Fp.: 96 - 99 °C; R_f = 0.1 (Kieselgel/Essigester) 1 H NMR (CDCl₃): δ 2.0 (m,2H), 2.05 (s,3H), 2.55 (m,4H), 2.75 (s,3H), 2.8 (m,2H),

3.2 (m,1H), 3.9 (m,1H), 6.4 (m, 1H), 7.0 (s,1H), 7.05 (t,2H), 8.6 (d,2H)

 Herstellung von 6-[(2,6-Dioxocyclohexyl)carbonyl]-4-benzoyloxy-5,8-dimethyl-1,2,3,4-tetrahydro-1λ⁶-thiochromen-1,1-dion

Schritt 1: 4-Benzoyloxy- 5,8-dimethyl-1,1-dioxo-1,2,3,4-tetrahydro- $1\lambda^6$ -thiochromen-6-carbonsäure

1.0~g~(4.1~mMol)~5,8-Dimethyl-4-hydroxy-1,1-dioxo-1,2,3,4-tetrahydro- $1\lambda^6$ -thiochromen-6-carbonsäure, $0.58~g~(4.1~mMol)~Benzoylchlorid~und~eine~Spatelspitze~N,N-4-Dimethylaminopyridin~wurden~in~10~ml~Pyriden~über~Nacht~gerührt.~Anschließend~wurde~auf~5~M~HCl~auf~gestoßenem~Eis~gegeben~und~mit~Essigester~extrahiert.~Die~organische~Phase~wurde~mit~1m~HCl~(2~x~20~ml)~und~ges.~NaCl-Lösung~(2~x~40~ml)~gewaschen,~über~MgSO_4~getrocknet~und~am~Rotationsverdampfer~eingeengt.$

Ausbeute: 0.81 g (52 % der Theorie)

farblose Kristalle; $R_f = 0.1$ (Kieselgel/Essigester)

¹H NMR (CDCl₃): δ 2.4 (s,3H), 2.7 (m,2H), 2.8 (s,3H), 3.2 (s,1H), 3.9 (m,1H), 6.4 (s,1H), 7.4 (m,2H), 7.6 (m,1H), 7.8 (s,1H), 8.0 (m,2H)

Schritt 2: 3-Oxo-1-cyclohexenyl 4-benzoyloxy-5,8-dimethyl-1,1-dioxo-1,2,3,4-tetrahydro-1λ⁶-thiochromen-6-carboxylat

0.80 g (2.1 mMol) 4-Benzoyloxy-5,8-dimethyl-1,1-dioxo-1,2,3,4-tetra-hydro-1λ⁶-thiochromen-6-carbonsäure wurden in 30 ml Methylenchlorid mit 2 Tropfen N,N-Dimethylformamid und 1.69 g (13.3 mMol) Oxalylchlorid hinzugefügt und 3.5 h unter Rückfluß gekocht. Anschließend wurde am Rotationsverdampfer abgezogen, der Rückstand in 100 ml Methylenchlorid aufgenommen und bei 0 °C mit 0.25 g (2.2 mMol) Cyclohexandion und 0.44 g (7.4 mMol) Triethylamin versetzt. Man ließ 4 h bei Raumtemperatur nachrühren. Anschließend wurde am Rotationsverdampfer eingeengt und chromatographisch gereinigt (Kieselgel, Essigester:Hexan = 1:1).

Ausbeute: 0.37 g (25 % der Theorie)

farblose Kristalle; $R_f = 0.7$ (Kieselgel/Essigester)

¹H NMR (CDCl₃): δ 2.1 (m,2H), 2.4 (s,3H), 2.45 (m,2H), 2.65 (m,2H), 2.8 (m,2H), 3.35 (s,1H), 3.8 (m,1H), 6.0 (s,1H), 6.2 (m, 1H), 7.45 (m,2H), 7.6 (m,1H), 7.8 (s,1H), 8.0 (m,2H)

Schritt 3: 6-[(2,6-Dioxocyclohexyl)carbonyl]-4-benzoyloxy-5,8-dimethyl-1,2,3,4-tetrahydro- $1\lambda^6$ -thiochromen-1,1-dion

0.37 g (0.79 mMol), 3-Oxo-1-cyclohexenyl 4-benzoyloxy-5,8-dimethyl-1,1-dioxo-1,2,3,4-tetrahydro-1λ⁶-thiochromen-6-carboxylat, 1 Tropfen Acetoncyanhydrin und
 0.14 g (1.4 mMol) Triethylamin wurden in 15 ml Acetonitril gelöst und über Nacht bei

Raumtemperatur gerührt. Anschließend wurde am Rotationsverdampfer eingeengt, mit 5 ml Wasser versetzt und mit 5 M HCl sauer gestellt. Das ausgefallene Produkt wurde abgesaugt und getrocknet.

Ausbeute: 0.27 g (73 % der Theorie)

farblose Kristalle; $R_f = 0.1$ (Kieselgel/Essigester)

¹H NMR (CDCl₃): δ 2.0 (m,2H), 2.05 (s,3H), 2.4 (m,4H), 2.8 (s,3H), 2.8 (m,2H), 3.3 (s,1H), 3.9 (m,1H), 6.4 (m, 1H), 7.0 (s,1H), 7.4 (m,2H),7.6 (m,1H), 8.0 (m, 2H)

Die in nachfolgenden Tabellen aufgeführten Beispiele wurden analog oben genannten Methoden hergestellt beziehungsweise sind analog oben genannten Methoden erhältlich.

Die in den Tabellen verwendeten Abkürzungen bedeuten:

Εt Ethyl Methyl Benzoyl Me Bz Ph РΓ Propyl С = cyclo Phenyl = Dublett Multiplett iso m Festpunkt Singulett Quintett Fp. q Retentionswert R

Tabelle 1: Verbindungen der allgemeinen Formel (I), worin die Substituenten und Laufzahlen folgendes bedeuten:

$$A = SO_2$$
 $B = CH_2-CH_2$ $R^3 = H$
 $R^4 = H$ $R^6 = OH$ $Q = Rest derFormel (II)$
 $Y = CH_2$ $Z = CH_2$ $w = 0$
 $v = 1$

Ñr.	R!	ŘŽ.	R\$	E	Physikalische Daten
4	Ме	Ме	OMe N OMe	Bindung	¹ H NMR (CDCl ₃): δ 2.0 (m,2H), 2.05 (s,3H), 2.55 (m,4H), 2.75 (s,3H), 2.8 (m,2H), 3.2 (s,1H), 3.9 (m,1H), 3.9 (s,6H), 5.8 (s,1H) 6.4 (m, 1H), 7.0 (s,1H)
5	Ме	Ме	Me N N Me	Bindung	¹ H NMR (CDCl ₃): δ 2.0 (m,2H), 2.05 (s,3H), 2.4 (s,6H), 2.55 (m,4H), 2.75 (s,3H), 2.8 (m,2H), 3.2 (s,1H), 3.9 (m,1H), 3.9 (s,6H), 6.5 (m,1H), 6.8 (s, 1H), 7.0 (s,1H)
6	Ме	Me	F ₃ C C	Bindung	Fp.: 128-130 °C ¹ H NMR (CDCl ₃): δ 2.0 (m,2H), 2.0 (s,3H), 2.4 (m,2H), 2.75 (s,3H), 2.8 (m,4H), 3.2 (s,1H), 3.75 (m,1H), 6.6 (m, 1H), 7.0 (s,1H) 7.9 (m,1H) 8.35 (m,1H)
7	Ме	Me	NO ₂	Bindung	Fp.: 185-186 °C ¹ H NMR (CDCl ₃): δ 2.0 (m,2H), 2.0 (s,3H), 2.4 (m,2H), 2.75 (s,3H), 2.8 (m,4H), 3.25 (s,1H), 3.75 (m,1H), 6.6 (m, 1H), 6.9 (d,1H), 7.0 (s,1H), 8.4 (m,1H), 9.1 (d,1H)

Nr.	R ¹	R ²	R ⁵	E 2	Physikalische Daten
8	Ме	Ме	F ₃ C	Bindung	Fp.: 190-195 °C
			N CF ₃		¹ H NMR (CDCl ₃): δ 1.95 (m,2H), 2.0 (s,3H), 2.5 (m,4H), 2.75 (s,3H), 2.8 (m,2H), 3.25 (s,1H), 3.7 (m,1H), 6.7 (m, 1H), 7.0 (s,1H), 7.45 (d,1H), 8.1 (d,1H)
9	Ме	Ме	CI	Bindung	¹ H NMR (CDCl ₃): δ 2.0 (m,2H), 2.0 (s,3H), 2.4 (m,2H), 2.75 (s,3H), 2.8 (m,4H), 3.25 (s,1H), 3.7 (m,1H), 6.6 (m, 1H), 6.9 (m,1H), 7.0 (s,1H), 7.65 (m,1H), 8.1 (m,1H)
10	Ме	Me ***	CN	Bindung	¹ H NMR (CDCl ₃): δ 2.0 (m,2H), 2.0 (s,3H), 2.4 (m,2H), 2.75 (s,3H), 2.8 (m,4H), 3.25 (s,1H), 3.8 (m,1H), 6.6 (m, 1H), 6.75 (m,1H), 7.0 (s,1H), 7.8 (m,1H), 8.45 (m,1H)
11	Ме	Me	N_	Bindung	Fp.: 200-201 °C
		·	N		¹ H NMR (CDCl ₃): δ 2.0 (m,2H), 2.0 (s,3H), 2.4 (m,2H), 2.75 (s,3H), 2.8 (m,4H), 3.25 (s,1H), 3.8 (m,1H), 6.4 (m, 1H), 7.0 (s,1H), 8.15 (m,1H), 8.2 (m,1H), 8.25 (m,1H)
12	Me	Ме		CH₂	¹ H NMR (CDCl ₃): δ 2.0 (m,2H), 2.2 (s,3H), 2.4 (m,2H), 2.55 (m,1H), 2.7 (s,3H), 2.8 (m,2H), 2.9 (s,1H), 3.2 (s,1H), 3.9 (m,1H), 4.55 (d,1H), 4.65 (d,1H), 4.8 (s,1H) 6.95 (s,1H), 7.3 (m,5H)
13	Ме	Ме	F	CH₂	¹ H NMR (CDCl ₃): δ 2.0 (m,2H), 2.2 (s,3H), 2.4 (m,2H), 2.55 (m,1H), 2.7 (s,3H), 2.8 (m,2H), 2.9 (s,1H), 3.2 (s,1H), 3.9 (m,1H), 4.65 (m,1H), 4.85 (m,1H), 4.8 (s,1H), 6.95 (s,1H), 7.3 (m,1H), 7.4 (m,1H), 8.4 (m,1H)

Tabelle 1a: Vorprodukte der Verbindungen in Tabelle 1

Nr:	Ri	R ²	R ⁵ .	E	Physikalische Daten:
2a	Ме	Me	N N	Bindung	¹ H NMR (CDCl ₃): δ 2.1 (m,2H), 2.4 (s,3H), 2.45 (m,2H), 2.7 (m,2H), 2.8 (s,3H), 2.85 (m,2H), 3.3 (m,1H), 3.9 (m,1H), 6.0 (s,1H) 6.5 (m,1H), 7.05 (t,1H), 7.8 (s,1H), 8.6 (d,2H)
4a	Me	Ме	OMe N OMe	Bindung	¹ H NMR (CDCl ₃): δ 2.15 (m,2H), 2.4 (s,3H), 2.45 (m,2H), 2.7 (m,2H), 2.75 (m,1H), 2.8 (s,3H), 2.9 (m,1H), 3.3 (m,1H), 3.9 (m,1H), 3.95 (s,6H), 5.8 (s,1H), 6.0 (s,1H) 6.4 (m,1H), 7.8 (s,1H)
5a	Ме	Ме	Me N Me	Bindung	¹ H NMR (CDCl ₃): δ 2.15 (m,2H), 2.4 (s,3H), 2.45 (m,2H), 2.45 (s,6H), 2.65 (m,2H), 2.75 (m,1H), 2.8 (s,3H), 2.9 (m,1H), 3.3 (m,1H), 3.9 (m,1H), 6.0 (s,1H), 6.4 (m,1H), 6.8 (s,1H), 7.8 (s,1H)
6a	Ме	Ме	F ₃ C CI	Bindung	¹ H NMR (CDCl ₃): δ 2.15 (m,2H), 2.4 (s,3H), 2.45 (m,2H), 2.65 (m,2H), 2.8 (s,3H), 2.8 (m,2H), 3.25 (m,1H), 3.95 (m,1H), 6.0 (s,1H), 6.6 (m,1H), 7.8 (s,1H), 7.9 (m,1H), 8.4 (m,1H)
7a	Ме	Ме	NO ₂	Bindung	¹ H NMR (CDCl ₃): δ 2.15 (m,2H), 2.4 (s,3H), 2.45 (m,2H), 2.65 (m,2H), 2.8 (s,3H), 2.85 (m,2H), 3.25 (m,1H), 3.8 (m,1H), 6.0 (s,1H), 6.65 (m,1H), 6.85 (d,1H), 7.8 (s,1H), 8.45 (m,1H), 9.15 (m,1H)

Nr.	R'	R²	R ⁵	E	Physikalische Daten
8a	Me	Ме	F ₃ C N CF ₃	Bindung	¹ H NMR (CDCl ₃): δ 2.15 (m,2H), 2.4 (s,3H), 2.45 (m,2H), 2.65 (m,2H), 2.85 (s,3H), 2.9 (m,2H), 3.25 (m,1H), 3.75 (m,1H), 6.0 (s,1H), 6.75 (m,1H), 7.5 (d,2H), 7.8 (s,1H), 8.15 (d,1H)
9a	Ме	Me	CI	Bindung	¹ H NMR (CDCl ₃): δ 2.15 (m,2H), 2.4 (s,3H), 2.45 (m,2H), 2.65 (m,2H), 2.8 (m,2H), 2.85 (s,3H), 3.25 (m,1H), 3.85 (m,1H), 6.0 (s,1H), 6.6 (m,1H), 7.0 (m,1H), 7.7 (m,2H), 7.8 (s,1H), 8.15 (m,1H)
10a	Ме	Ме	CN	Bindung	¹ H NMR (CDCl ₃): δ 2.15 (m,2H), 2.4 (s,3H), 2.45 (m,2H), 2.65 (m,2H), 2.8 (m,1H), 2.85 (s,3H), 2.95 (m,1H), 3.25 (m,1H), 3.8 (m,1H), 6.0 (s,1H), 6.7 (m,1H), 6.85 (d,1H), 7.8 (s,1H), 8.15 (m,1H), 8.95 (m,1H)
11a	Me	Ме	N N	Bindung	¹ H NMR (CDCl ₃): δ 2.15 (m,2H), 2.4 (s,3H), 2.45 (m,2H), 2.65 (m,2H), 2.8 (m,1H), 2.85 (s,3H), 2.95 (m,1H), 3.25 (m,1H), 3.8 (m,1H), 6.0 (s,1H), 6.55 (m,1H), 7.8 (s,1H), 8.2 (m,1H), 8.25 (m,1H)
12a	Me	Me		CH₂	¹ H NMR (CDCl ₃): δ 2.15 (m,2H), 2.45 (m,2H), 2.55 (s,3H), 2.65 (m,2H), 2.8 (m,1H), 2.75 (s,3H), 2.8 (m,1H), 3.2 (m,1H), 3.85 (m,1H), 4.55 (d,2H), 4.7 (d,2H), 4.8 (s,br,1H), 6.0 (s,1H), 7.3 (m,5H), 7.75 (s,1H)
13a	Ме	Ме	F	CH₂	¹ H NMR (CDCl ₃): δ 2.15 (m,2H), 2.45 (m,2H), 2.55 (s,3H), 2.65 (m,2H), 2.8 (m,1H), 2.75 (s,3H), 2.8 (m,1H), 3.2 (m,1H), 3.85 (m,1H), 4.65 (m,1H), 4.85 (m,1H), 4.8 (s,1H), 6.0 (s,1H), 7.3 (m,1H), 7.4 (m,1H), 7.8 (s,1H), 8.4 (m,1H)

Tabelle 1b: Vorprodukte der Verbindungen in Tabelle 1a

Nr.	R ¹	R ²	R ^e	E	Physikalische Daten =
2b	Me	Ме	N N N N N N N N N N N N N N N N N N N	Bindung	¹ H NMR (CDCl ₃): δ 2.4 (s,3H), 2.8 (s,3H), 2.85 (m,2H), 3.25 (m,1H), 3.9 (m,1H), 6.5 (m,1H), 7.05 (t,1H), 7.8 (s,1H), 8.6 (d,2H)
4b	Ме	Ме	OMe N OMe	Bindung	¹ H NMR (CDCl ₃): δ 2.4 (s,3H), 2.75 (s,3H), 2.75 (m,1H), 2.95 (m,1H), 3.25 (m,1H), 3.9 (m,1H), 3.95 (s,6H), 5.8 (s,1H), 6.4 (m,1H), 7.7 (s,1H)
5b	Ме	Ме	Me N Me	Bindung	¹ H NMR (CDCl ₃): δ 2.35 (s,3H), 2.4 (s,6H), 2.8 (s,3H), 2.85 (m,2H), 3.25 (m,1H), 3.95 (m,1H), 6.45 (m,1H), 6.8 (s,1H), 7.65 (s,1H)
6b	Ме	Ме	F ₃ C Cl	Bindung	¹ H NMR (CDCl ₃): δ 2.35 (s,3H), 2.8 (s,3H), 2.85 (m,2H), 3.25 (m,1H), 3.75 (m,1H), 3.9 (s,3H), 6.6 (s,1H), 7.7 (s,1H), 7.9 (m,1H), 8.35 (m,1H)
7b	Ме	Me	NO ₂	Bindung	¹ H NMR (Me ₂ SO- <i>d6</i>): δ 2.25 (s,3H), 2.7 (s,3H), 2.75 (m,2H), 3.55 (m,1H), 3.7 (m,1H), 6.65 (s,1H), 7.15 (d,1H), 7.7 (s,1H), 8.55 (m,1H), 9.15 (m,1H)

Nr.	R¹-	R2-	R ⁸	E	Physikalische Däten
8b	Me	Me	F ₃ C CF ₃	Bindung	¹ H NMR (CDCl ₃): δ 2.35 (s,3H), 2.8 (s,3H), 2.85 (m,2H), 3.25 (m,1H), 3.75 (m,1H), 6.7 (m,1H), 7.5 (d,2H), 7.75 (s,1H), 8.15 (d,1H)
9b	Me	Ме	CI	Bindung	¹ H NMR (CDCl ₃): δ 2.4 (s,3H), 2.8 (s,3H), 2.8 (m,2H), 3.25 (m,1H), 3.9 (m,1H), 6.6 (m,1H), 6.95 (m,1H), 7.7 (m,1H), 7.85 (s,1H). 8.15 (m,1H)
10b	Me	Ме	CN	Bindung	¹ H NMR (CDCl ₃): δ 2.35 (s,3H), 2.75 (m,1H), 2.8 (s,3H), 2.9 (m,1H), 3.25 (m,1H), 3.8 (m,1H), 6.6 (m,1H), 6.75 (d,1H), 7.75 (s,1H), 8.1 (m,1H), 8.9 (m,1H)
11b	Me	Me	N	Bindung	¹ H NMR (CDCl ₃): δ 2.35 (s,3H), 2.8 (s,3H), 2.8 (m,2H), 3.25 (m,1H), 3.8 (m,1H), 6.5 (m,1H), 7.75 (s,1H), 8.2 (m,1H), 8.25 (m,1H)
12b	Ме	Me		CH₂	¹ H NMR (CDCl ₃): δ 2.45 (s,3H), 2.6 (m,1H), 2.75 (s,3H), 2,75 (m,1H), 3.25 (m,1H), 3.9 (m,1H), 4.55 (d,2H), 4.7 (d,2H), 4.8 (s,br,1H), 7.35 (m,5H), 7.75 (s,1H)
13b	Ме	Ме	F	CH₂	¹ H NMR (CDCl ₃): δ 2.45 (s,3H), 2.6 (m,1H), 2.75 (s,3H), 2,95 (m,1H), 3.25 (m,1H), 3.9 (m,1H), 4.75 (d,2H), 4.85 (d,2H), 4.85 (s,br,1H), 7.3 (m,1H), 7.4 (m,1H), 7.6 (s,1H), 8.4 (m,1H)

Tabelle 1c: Vorprodukte der Verbindungen in Tabelle 1b

Nr.	R ⁽⁻⁾	R ²	R ⁶	E	Physikalische Daten
2c	Ме	Ме	N N N N N N N N N N N N N N N N N N N	Bindung	¹ H NMR (CDCl ₃): δ 2.35 (s,3H), 2.8 (s,3H), 2.85 (m,2H), 3.25 (m,1H), 3.9 (m,1H), 3.9 (s,3H), 6.5 (m,1H), 7.05 (t,1H), 7.8 (s,1H), 8.6 (d,2H)
4c	Ме	Me	OMe N OMe	Bindung	¹ H NMR (CDCl ₃): δ 2.35 (s,3H), 2.8 (s,3H), 2.85 (m,2H), 3.25 (m,1H), 3.9 (m,1H), 3.9 (s,3H), 3.95 (s,6H), 5.8 (s,1H), 6.4 (m,1H), 7.7 (s,1H)
5c	Me	Ме	Me N N Me	Bindung	¹ H NMR (CDCl ₃): δ 2.35 (s,3H), 2.4 (s,6H), 2.8 (s,3H), 2.85 (m,2H), 3.25 (m,1H), 3.9 (s,3H), 3.95 (m,1H), 6.45 (m,1H), 6.8 (s,1H), 7.65 (s,1H)
6c	Me	Me	F ₃ C CI	Bindung	¹ H NMR (CDCl ₃): δ 2.35 (s,3H), 2.8 (s,3H), 2.85 (m,2H), 3.25 (m,1H), 3.75 (m,1H), 3.9 (s,3H), 6.6 (s,1H), 7.7 (s,1H), 7.9 (m,1H), 8.35 (m,1H)

Nr.	R¹ -	R ²	R ^g	E	Physikalische Daten
7c	Ме	Ме	NO ₂	Bindung	¹ H NMR (CDCl ₃): δ 2.35 (s,3H), 2.8 (s,3H), 2.85 (m,2H), 3.25 (m,1H), 3.75 (m,1H), 3.9 (s,3H), 6.65 (m,1H), 6.85 (d,1H), 7.7 (s,1H), 8.45 (m,1H), 9.15 (m,1H)
8c	Me	Me	F ₃ C CF ₃	Bindung	¹ H NMR (CDCl ₃): δ 2.35 (s,3H), 2.8 (s,3H), 2.85 (m,2H), 3.25 (m,1H), 3.75 (m,1H), 3.9 (s,3H), 6.7 (m,1H), 7.5 (d,2H), 7.75 (s,1H), 8.15 (d,1H)
9c	Ме	Ме	CI	Bindung	¹ H NMR (CDCI ₃): δ 2.4 (s,3H), 2.8 (s,3H), 2.8 (m,2H), 3.25 (m,1H), 3.9 (m,1H), 3.9 (s,3H), 6.6 (m,1H), 6.95 (m,1H), 7.7 (s,1H), 7.7 (m,1H), 8.1 (m,2H)
10c	Ме	Ме	CN	Bindung	¹ H NMR (CDCl ₃): δ 2.3 (s,3H), 2.8 (s,3H), 2.8 (m,2H), 3.25 (m,1H), 3.75 (m,1H), 3.9 (s,3H), 6.6 (m,1H), 6.8 (d,1H), 7.7 (s,1H), 8.15 (m,1H), 8.55 (m,1H)
11c	Ме	Ме	N N N N N N N N N N N N N N N N N N N	Bindung	¹ H NMR (CDCl ₃): δ 2.35 (s,3H), 2.8 (s,3H), 2.8 (m,2H), 3.25 (m,1H), 3.8 (m,1H), 3.9 (s,3H), 6.5 (m,1H), 7.7 (s,1H), 8.15 (m,1H), 8.25 (m,1H)
12c	Me	Ме		CH₂	¹ H NMR (CDCl ₃): δ 2.45 (s,3H), 2.6 (m,1H), 2.75 (s,3H), 2,75 (m,1H), 3.25 (m,1H), 3.9 (m,1H), 3.9 (s,3H), 4.55 (d,2H), 4.7 (d,2H), 4.8 (s,br,1H), 7.35 (m,5H), 7.6 (s,1H)
13c	Me	Ме	F	CH₂	¹ H NMR (CDCl ₃): δ 2.45 (s,3H), 2.6 (m,1H), 2.75 (s,3H), 2,95 (m,1H), 3.25 (m,1H), 3.85 (s,3H), 3.9 (m,1H), 4.75 (d,2H), 4.85 (s,br,1H), 7.3 (m,1H), 7.4 (m,1H), 7.6 (s,1H), 8.4 (m,1H)

Tabelle 2: Erfindungsgemäße Verbindungen der Formel (I), worin die Substituenten und Laufzahlen folgendes bedeuten:

$$A = SO_2$$
 $B = CH_2-CH_2$ $E = Bindung$
 $R^1 = CH_3$ $R^2 = CH_3$ $R^3 = H$
 $R^4 = H$ $R^5 = R^5$ R^E $R^6 = OH$
 $R^7 = R^A, R^B$ $(X)_1 = O$ $Y = CH_2$
 $Z = CH_2$ $V = 1$ $Q = Formel(II)$

Nr	RA	R ^B	R ^c	R ^D	RE ==
14	Н	Н	Bz	Н	Н
15	Н	Ме	Bz	Н	Н
16	Ме	Ме	Bz	Н	Н
17	Н	Н	PhC(O)CH ₂	Н	Н
18	Н	Ме	PhC(O)CH ₂	Н	Н
19	. Me	Ме	PhC(O)CH ₂	Н	Н
20	Н	Н	4-Me-PhC(O)	Н	Н
21	Н	Ме	4-Me-PhC(O)	Н	Н
22	Ме	Ме	4-Me-PhC(O)	Н	Н
23	Н	Н	MeSO ₂	Н	Н
24	Н	Ме	MeSO ₂	Н	Н
25	Me	Ме	MeSO ₂	Н	Н
26	Н	Н	EtSO ₂	Н	Н

Nr.	RA	R ^B	R ^c	R ^D	R ^E
27	Н	Me	EtSO ₂	Н	Н
28	Ме	Ме	EtSO ₂	Н	Н
29	Н	Н	PrSO ₂	Н	Н
30	Н	Ме	PrSO ₂	Н	Н
31	Ме	Ме	PrSO ₂	Н	Н
32	Н	Н	PhSO ₂	Н	Н
33	Н	Ме	PhSO ₂	Н	Н
34	Me	Ме	PhSO ₂	H	Н
35	Н	H	4-Me-PhSO ₂	H	Н
36	Н	Ме	4-Me-PhSO ₂	Н	H
37	Ме	Ме	4-Me-PhSO ₂	Н	Н
38	Н	H	Bz	Н	NO ₂
39	H	Ме	Bz	Н	NO ₂
40	Ме	Ме	Bz	Н	NO ₂
41	H	H	PhC(O)CH ₂	Н	NO ₂
42	Н	Ме	PhC(O)CH ₂	Н	NO ₂
43	Me	Ме	PhC(O)CH ₂	Н	NO ₂
44	Н	Н	4-Me-PhC(O)	Н	NO ₂
45	Н	Me	4-Me-PhC(O)	Н	NO ₂
46	Ме	Me	4-Me-PhC(O)	Н	NO ₂
47	Н	Н	MeSO ₂	Н	NO ₂
48	Н	Ме	MeSO ₂	Н	NO ₂
49	Ме	Me	MeSO ₂	Н	NO ₂
50	Н	H	EtSO ₂	Н	NO ₂
51	Н	Me	EtSO ₂	Н	NO ₂
52	Ме	Ме	EtSO ₂	Н	NO ₂
53	Н	H	PrSO ₂	Н	NO ₂
54	Н	Me	PrSO ₂	Н	NO ₂
55	Ме	Me ·	PrSO ₂	Н	NO ₂
56	Н	Н	PhSO ₂	Н	NO ₂
57	Н	Ме	PhSO ₂	Н	NO ₂
58	Ме	Me	PhSO ₂	Н	NO ₂
59	Н	Н	4-Me-PhSO ₂	Н	NO ₂
60	Н	Ме	4-Me-PhSO ₂	Н	NO ₂
61	Ме	Ме	4-Me-PhSO ₂	Н	NO ₂
62	Н	Н	Bz	Н	CN

Nr.	RA	RB	R ^C	RD	RE
63	H	Me	Bz	Н	CN
64	Ме	Me	Bz	Н	CN
65	Н	Н	PhC(O)CH ₂	Н	CN
66	H	Me	PhC(O)CH ₂	Н	CN
67	Me	Me	PhC(O)CH ₂	Н	CN
68	Н	Н	4-Me-PhC(O)	Н	CN
69	Н	Me	4-Me-PhC(O)	Н	CN
70	Ме	Ме	4-Me-PhC(O)	Н	CN
71	Н	Н	MeSO ₂	Н	CN
72	Н	Ме	MeSO ₂	Н	CN
73	Ме	Ме	MeSO ₂	Н	CN
74	Н	Н	EtSO ₂	Н	CN
75	Н	Ме	EtSO ₂	Н	CN
76	Ме	Ме	EtSO ₂	Н	CN
77	Н	Н	PrSO ₂	Н	CN
78	Н	Me	PrSO ₂	Н	CN
79	Ме	Me	PrSO ₂	Н	CN
80	Н	Н	PhSO ₂	Н	CN
81	H	Ме	PhSO ₂	Н	CN
82	Ме	Ме	PhSO ₂	Н	CN
83	Н	Н	4-Me-PhSO ₂	Н	CN
84	Н	Me	4-Me-PhSO ₂	Н	CN
85	Me	Me	4-Me-PhSO ₂	Н	CN
86	Н	Н	Bz	CI	Н
87	Н	Ме	Bz	CI	Н
88	Ме	Ме	Bz	CI	Н
89	Н	Н	PhC(O)CH ₂	CI	Н
90	Н	Ме	PhC(O)CH₂	CI	H .
91	Ме	Ме	PhC(O)CH ₂	CI	Н
92	Н	Н	4-Me-PhC(O)	CI	Н
93	Н	Ме	4-Me-PhC(O)	CI	Н
94	Ме	Ме	4-Me-PhC(O)	CI	Н
95	Н	Н	MeSO ₂	CI	Н
96	Н	Ме	MeSO ₂	CI	Н
97	Ме	Ме	MeSO ₂	CI	Н
98	Н	Н	EtSO ₂	CI	Н

Nr.	RA	R ^B	RC	R ^D	RE
99	Н	Ме	EtSO ₂	CI	Н
100	Me	Ме	EtSO ₂	CI	Н
101	Η	Ι	PrSO ₂	CI	Н
102	I	Ме	PrSO ₂	CI	Н
103	Ме	Ме	PrSO ₂	CI	Н
104	H	Н	PhSO ₂	CI	Н
105	Η	Ме	PhSO ₂	CI	Н
106	Ме	Ме	PhSO ₂	CI	Н
107	Η	Η	4-Me-PhSO ₂	CI	Н
108	I	Ме	4-Me-PhSO ₂	CI	Н
109	Ме	Ме	4-Me-PhSO ₂	CI	Н
110	I	H	Bz	C	CF ₃
111	I	Ме	Bz	C	CF ₃
112	Ме	Ме	Bz	Cī	CF ₃
113	Η	H	PhC(O)CH ₂	C	CF ₃
114	I	Ме	PhC(O)CH ₂	C	CF ₃
115	Ме	Ме	PhC(O)CH ₂	CI	CF ₃
116	Н	Н	4-Me-PhC(O)	C	CF ₃
117	H	Ме	4-Me-PhC(O)	CI	CF ₃
118	Ме	Me	4-Me-PhC(O)	CI	CF ₃
119	Н	Н	MeSO ₂	CI	CF ₃
120	Н	Ме	MeSO ₂	CI	CF ₃
121	Ме	Ме	MeSO ₂	CI	CF ₃
122	Н	Н	EtSO ₂	CI	CF ₃
123	Н	Ме	EtSO ₂	CI	CF ₃
124	Ме	Ме	EtSO ₂	CI	CF ₃
125	Н	Н	PrSO ₂	CI	CF ₃
126	Н	Ме	PrSO ₂	CI	CF ₃
127	Ме	Ме	PrSO ₂	CI	CF ₃
128	Н	Н	PhSO ₂	CI	CF ₃
129	Н	Ме	PhSO ₂	CI	CF ₃
130	Me	Ме	PhSO ₂	CI	CF ₃
131	Н	Н	4-Me-PhSO ₂	CI	CF ₃
132	Н	Ме	4-Me-PhSO ₂	CI	CF ₃
133	Ме	Ме	4-Me-PhSO ₂	CI	CF ₃
134	Н	Н	Bz	Н	CF ₃

Nr.	R ^A	RB	R ^C	RD	RE
135	H	Me	Bz	Н	CF₃
136	Ме	Ме	Bz	Н	CF ₃
137	Н	Н	PhC(O)CH ₂	Н	CF ₃
138	Н	Ме	PhC(O)CH ₂	Н	CF₃
139	Ме	Ме	PhC(O)CH ₂	Н	CF ₃
140	Н	Н	4-Me-PhC(O)	Н	CF ₃
141	Н	Me	4-Me-PhC(O)	Н	CF ₃
142	Ме	Ме	4-Me-PhC(O)	Н	CF₃
143	Н	Н	MeSO ₂	H	CF₃
144	Н	Ме	MeSO ₂	Н	CF ₃
145	Ме	Ме	MeSO ₂	Н	CF ₃
146	Н	H	EtSO ₂	Н	CF ₃
147	Н	Ме	EtSO ₂	Н	CF₃
148	Me	Ме	EtSO ₂	Н	CF ₃
149	Н	H	PrSO₂	H	CF ₃
150	Н	Me	PrSO ₂	Н	CF ₃
151	Ме	Ме	PrSO ₂	Н	CF ₃
152	Н	Н	PhSO ₂	Н	CF ₃
153	Н	Me	PhSO ₂	Н	CF ₃
154	Ме	Ме	PhSO ₂	Н	CF ₃
155	Н	Н	4-Me-PhSO ₂	Н	CF ₃
156	Н	Ме	4-Me-PhSO ₂	Н	CF ₃
157	Ме	Me	4-Me-PhSO₂	Н	CF ₃

	Honon Maken			tert wi	200002.	1 1
	Morp	14. J. 25.	TONE STATE	THE STATE OF THE S	* 193. Sec. 1 (1)	
TOWNS TOWNS OF SEC.	Eng.	24.	MRZ	. 2001)	· Alexandrated
Sylvenie	OWV		- Panty Joseph	Prompte on the publication of the same	The state of the second se	100
artudy.	O able	727	***************************************	****************		Sept.
ر ا	U Ver	MAN VI	231.1	energiaeanna Eile (1971) Ekstertor opsi	andres de la companya de la company La companya de la co	H H H

Tabelle 3: Erfindungsgemäße Verbindungen der Formel (I), worin die Substituenten und Laufzahlen folgendes bedeuten:

$$A = SO_2$$
 $B = CH_2-CH_2$ $R^1 = CH_3$
 $R^2 = CH_3$ $R^3 = H$ $R^4 = H$
 $R^5 = R^0$ R^E $(X)_i = O$ $E = Bindung$

Q = Rest der Formel (III) mit G^1 - G^2 = $NR^{10}COR^{11}$

Ñr.	R ⁸	R ¹⁰	R ¹¹	R ^p	RE
158	Н	Et	Bz	Н	Н
159	Ме	Ме	Bz	H	Ή
160	H	Et	4-Me-PhC(O)	Τ	Н
161	Ме	Ме	4-Me-PhC(O)	Н	Н
162	Н	Et	MeSO ₂	H	H
163	Ме	Ме	MeSO ₂	Н	Н
164	Н	Et	EtSO ₂	Н	H
165	Ме	Ме	EtSO ₂	Н	H
166	Н	Et	PrSO ₂	Н	Н
167	Ме	Ме	PrSO ₂	Н	Н
168	Н	Et	PhSO ₂	Н	Н
169	Ме	Ме	PhSO ₂	Н	Н
170	Н	Et	4-Me-PhSO ₂	Н	H .
171	Ме	Ме	4-Me-PhSO ₂	Н	Н
172	Н	Et	Bz	Н	NO ₂
173	Me	Ме	Bz	Н	NO ₂

Nr.	R ⁸	R ¹⁰	R ¹¹	RD	RE
174	Н	Et	4-Me-PhC(O)	Н	NO ₂
175	Ме	Ме	4-Me-PhC(O)	Н	NO ₂
176	Н	Et	MeSO ₂	Н	NO ₂
177	Ме	Ме	MeSO ₂	Н	NO ₂
178	I	Et	EtSO ₂	Н	NO ₂
179	Me	Ме	EtSO ₂	Н	NO ₂
180	I	Et	PrSO ₂	Н	NO ₂
181	Ме	Ме	PrSO ₂	Н	NO ₂
182	I	Et	PhSO ₂	Н	NO ₂
183	Ме	Ме	PhSO ₂	Н	NO ₂
184	Ι	Et	4-Me-PhSO ₂	Н	NO ₂
185	Ме	Ме	4-Me-PhSO ₂	Н	NO ₂
186	I	Et	Bz	Н	CN
187	Ме	Ме	Bz	Н	CN
188	I	Et	4-Me-PhC(O)	Н	CN
18 9	Ме	Ме	4-Me-PhC(O)	Н	CN
190	Η	Et	MeSO ₂	Н	CN
191	Ме	Ме	MeSO ₂	Н	CN
192	Н	Et	EtSO ₂	Н	CN
193	Ме	Ме	EtSO ₂	Н	CN
194	Н	Et	PrSO ₂	Н	CN
195	Ме	Ме	PrSO ₂	Н	CN
196	Н	Et	PhSO ₂	Н	CN
197	Ме	Ме	PhSO ₂	Н	CN
198	Н	Et	4-Me-PhSO ₂	Н	CN
199	Ме	Ме	4-Me-PhSO ₂	Н	CN
200	Н	Et	Bz	CI	Н
201	Me	Me	Bz	CI	Н
202	Н	Et	4-Me-PhC(O)	CI	Н
203	Ме	Ме	4-Me-PhC(O)	CI	Н
204	Н	Et	MeSO ₂	CI	Н
205	Ме	Ме	MeSO ₂	CI	Н
206	Н	Et	EtSO ₂	CI	Н
207	Ме	Ме	EtSO ₂	CI	Н
208	Н	Et	PrSO ₂	CI	Н
209	Ме	Ме	PrSO ₂	CI	Н

Nr.	R ⁸	R ¹⁰	R ¹¹	R ^D	RE
210	Н	Et	PhSO ₂	CI	Н
211	Me	Ме	PhSO ₂	CI	Н
212	Н	Et	4-Me-PhSO ₂	CI	Н
213	Ме	Ме	4-Me-PhSO ₂	CI	Н
214	Н	Et	Bz	CI	CF ₃
215	Ме	Ме	Bz	CI	CF ₃
216	I	Et	4-Me-PhC(O)	C	CF ₃
217	Ме	Ме	4-Me-PhC(O)	CI	CF₃
218	H	Et	MeSO ₂	CI	CF ₃
219	Ме	Ме	MeSO ₂	CI	CF ₃
220	Ι	Et	EtSO ₂	CI	CF ₃
221	Ме	Ме	EtSO ₂	CI	CF ₃
222	H	Et	PrSO ₂	CI	CF ₃
223	Ме	Ме	PrSO ₂	CI	CF ₃
224	Н	Et	PhSO ₂	CI	CF ₃
225	Ме	Ме	PhSO ₂	CI	CF ₃
226	Н	Et	4-Me-PhSO ₂	CI	CF ₃
227	Ме	Ме	4-Me-PhSO ₂	CI	CF ₃
228	Н	Et	Bz	Н	CF ₃
229	Ме	Ме	Bz	Н	CF ₃
230	Н	Et	4-Me-PhC(O)	H	CF ₃
231	Ме	Me.	4-Me-PhC(O)	Н	CF ₃
232	Н	Et	MeSO ₂	Н	CF ₃
233	Ме	Ме	MeSO ₂	Н	CF ₃
234	Н	Et	EtSO ₂	Н	CF ₃
235	Ме	Ме	EtSO ₂	Н	CF ₃
236	Н	Et	PrSO ₂	Н	CF ₃
237	Ме	Ме	PrSO ₂	Н	CF ₃
238	Н	Et	PhSO ₂	Н	CF ₃
239	Ме	Ме	PhSO ₂	Н	CF ₃
240	Н	Et	4-Me-PhSO ₂	Н	CF ₃
241	Ме	Ме	4-Me-PhSO ₂	Н	CF ₃

Tabelle 4: Erfindungsgemäße Verbindungen der Formel (I), worin die Substituenten folgendes bedeuten:

A =
$$SO_2$$
 B = CH_2 - CH_2 R³ = H
R⁴ = H R⁵ = R⁰ R^E (X)₁ = O
E = Bindung Q = Rest der Formel (III) mit G¹-G² = OCR⁹
R⁹ = c-Pr

Nr.	R ¹	R ²	R ^D	R
242	Н	Н	Н	Н
243	Ме	Н	Н	Н
244	Ме	Ме	н	Н
245	CI	Н	Н	Н
246	CI	Ме	Н	Н
247	CI	CI	Н	Н
248	Ме	CI	Н	Н
249	Н	Н	Н	NO ₂
250	Ме	Н	Н	NO ₂
251	Ме	Ме	Н	NO ₂
252	CI	Н	Н	NO ₂
253	CI	Ме	Н	NO ₂
254	CI	CI	Н	NO ₂
255	Ме	CI	Н	NO ₂
256	Н	Н	Н	CN
257	Ме	Н	Н	CN
258	Ме	Ме	Н	CN

Nr.	R¹-	R ²	RD	RE
259	CI	Н	Н	CN
260	CI	Me	Н	CN
261	CI	CI	H	CN
262	Ме	CI	H	CN
263	H	Н	CI	Н
264	Ме	Н	Cl	Н
265	Ме	Ме	CI	Н
266	CI	Н	CI .	Н
267	CI	Ме	CI	Н
268	CI	CI	CI	Н
269	Ме	CI	CI	Н
270	H	Н	CI	CF₃
271	Ме	H	CI	CF₃
272	Ме	Ме	CI	CF ₃
273	CI	Н	CI	CF ₃
274	CI	Ме	CI	CF₃
275	CI	CI	CI	CF₃
276	Ме	CI	CI	CF₃
277	Н	Н	H	CF₃
278	Ме	H	H	CF ₃
279	Ме	Ме	H	CF ₃
280	CI	Н	Н	CF ₃
281	CI	Ме	Н	CF₃
282	CI	CI	Н	CF ₃
283	Ме	CI	Н	CF₃

Tabelle 5: Erfindungsgemäße Verbindungen der Formel (I), worin die Substituenten folgendes bedeuten:

$$A = SO_2$$
 $B = CH_2-CH_2$ $R^3 = H$ $R^5 = R^0$ R^E $(X)_1 = O$

E = Bindung Q = Rest der Formel (III) mit
$$G^1$$
- G^2 = SCR^9 R^9 = c-Pr

NE	R!	R ²	R ^p	RF-1
284	Н	Н	Н	Н
285	Ме	Н	Н	Н
286	Ме	Me	Н	Н
287	CI	Н	Н	Н
288	CI	Ме	Н	Н
289	CI	CI	Н	Н
290	Ме	CI	Н	Н
291	Н	Н	Н	NO ₂
292	Ме	Н	Н	NO ₂
293	Ме	Ме	Н	NO ₂
294	CI	Н	Н	NO ₂
295	CI	Ме	Н	NO ₂
296	CI	CI	Н	NO ₂
297	Ме	CI	Н	NO ₂
298	Н	H	Н	CN
299	Ме	H	H	CN
300	Ме	Ме	Н	CN
301	CI	H	Н	CN

Nr.	R ¹	R ²	R ^D	RE
302	CI	Ме	Н	CN
303	CI	CI	Н	CN
304	Ме	CI	Н	CN
305	H	H	CI	Н
306	Ме	H	CI	Н
307	Ме	Ме	CI	Н
308	CI	H	CI	Н
309	CI	Ме	CI	Н
310	Cl	CI	CI	Н
311	Ме	CI	CI	Н
312	Н	Н	CI	CF ₃
313	Ме	Н	CI	CF ₃
314	Ме	Ме	CI	CF₃
315	C	I	CI	CF₃
316	Ci	Ме	CI	CF₃
317	CI	CI	CI	CF ₃
318	Ме	CI	CI	CF₃
319	H	H	Н	CF₃
320	Ме	Н	Н	CF₃
321	Ме	Ме	Н	CF ₃
322	CI	Н	Н	CF ₃
323	CI	Ме	Н	CF ₃
324	CI	CI	Н	CF ₃
325	Ме	CI	Н	CF ₃

Tabelle 6: Erfindungsgemäße Verbindungen der Formel (I), worin die Substituenten folgendes bedeuten:

A =
$$SO_2$$
 B = CH_2 - CH_2 R³ = H
R⁴ = H R⁵ = R^0 $(X)_1 = 0$
E = Bindung Q = Rest der Formel (IV) R⁹ = C -F

Nř.	R ¹	R ²	R ^p	RE L
326	Н	Н	Н	Н
327	Ме	Н	Н	Н
328	Ме	Ме	Н	Н
329	CI	Н	Н	Н
330	CI	Ме	Н	Н
331	CI	CI	Н	Н
332	Me	CI	Н	Н
333	I	H	Н	NO ₂
334	Me	Н	Н	NO ₂
335	Ме	Ме	Н	NO ₂
336	CI	I	Н	NO ₂
337	CI	Ме	Н	NO ₂
338	CI	C	Н	NO ₂
339	Ме	CI	Н	NO ₂
340	Η	Н	Н	CN
341	Ме	Н	Н	CN
342	Ме	Ме	Н	CN
343	CI	I	Н	CN

Nr.	R ¹	R ²	RD	RE
344	CI	Me	Н	CN
345	CI	CI	Н	CN
346	Ме	CI	Н	CN
347	Н	Н	CI	Н
348	Ме	Н	CI	Н
349	Ме	Me	CI	Н
350	CI	H	CI /	Н
351	CI	Ме	CI	H
352	CI	C	CI	Н
353	Ме	Ö	CI	Н
354	Н	I	CI	CF ₃
355	Ме	Ι	CI	CF ₃
356	Ме	Ме	CI	CF ₃
357	CI	I	CI	CF ₃
358	CI	Ме	CI	CF ₃
359	CI	C	CI	CF ₃
360	Ме	ō	CI	CF ₃
361	Η	I	Н	CF ₃
362	Ме	I	Н	CF₃
363	Ме	Ме	Н	CF ₃
364	CI	I	Н	CF ₃
365	CI	Ме	Н	CF ₃
366	CI	CI	Н	CF ₃
367	Ме	CI	Н	CF ₃

Tabelle 7: Erfindungsgemäße Verbindungen der Formel (I), worin die Substituenten und Laufzahlen folgendes bedeuten:

$$A = SO_2$$
 $E = Bindung$ $R^1 = CH_3$ $R^2 = CH_3$ $R^3 = H$ $R^4 = H$ $R^5 = R^0$ R^E $Q = Rest der Formel (II) $R^6 = OH$ $R^7 = R^A, R^B$ $(X)_1 = O$ $Y = CH_2$ $Z = CH_2$ $V = 1$$

Nr.	RA	R ^B	R	R ²	3	RP	RE
368	Н	Н	Н	Н	CH ₂ CH ₂	Н	Н
369	Ме	Н	Н	Н	CH ₂ CH ₂	Н	Н
370	Ме	Ме	Н	Н	CH ₂ CH ₂	Н	Н
371	Н	Н	Ме	Н	CH ₂ CH ₂	Н	Н
372	Ме	Н	Ме	Н	CH ₂ CH ₂	Н	Н
373	Ме	Ме	Me	Н	CH ₂ CH ₂	Н	Н
374	Н	Н	CI	Н	CH ₂ CH ₂	Н	Н
375	Ме	Н	CI	Н	CH₂CH₂	Н	Н
376	Ме	Ме	CI	Н	CH ₂ CH ₂	Н	Н
377	Н	Н	Н	Ме	CH ₂ CH ₂	Н	Н
378	Ме	Н	Н	Ме	CH ₂ CH ₂	Н	Н
379	Ме	Ме	Н	Ме	CH ₂ CH ₂	Н	Н
380	Н	Н	Ме	Ме	CH ₂ CH ₂	Н	Н
381	Ме	Н	Ме	Me	CH ₂ CH ₂	Н	Н
382	Ме	Ме	Ме	Ме	CH ₂ CH ₂	Н	Н
383	Н	Н	Ме	CI	CH ₂ CH ₂	Н	Н

Nr.	RA	RB	R¹	R ²	В	R ^D	RE
384	Me	Н	Ме	CI	CH ₂ CH ₂	Н	Н
385	Ме	Ме	Ме	CI	CH ₂ CH ₂	Н	Н
386	Н	Н	CI	Me	CH ₂ CH ₂	Н	Н
387	Ме	Н	CI	Ме	CH ₂ CH ₂	Н	Н
388	Ме	Ме	CI	Ме	CH ₂ CH ₂	Н	Н
389	Н	Н	Н	CI	CH ₂ CH ₂	H	Н
390	Ме	Н	Н	CI	CH ₂ CH ₂	Н	Н
391	Ме	Ме	Н	CI	CH ₂ CH ₂	Н	Н
392	Н	Н	CI	CI	CH ₂ CH ₂	Н	Н
393	Ме	Н	CI	CI	CH ₂ CH ₂	Н	Н
394	Ме	Ме	CI	CI	CH ₂ CH ₂	Н	Н
395	Н	Н	Н	Н	CH ₂ CH ₂	Н	NO ₂
396	Ме	Н	Н	Н	CH ₂ CH ₂	Н	NO ₂
397	Ме	Ме	Н	Н	CH ₂ CH ₂	Н	NO ₂
398	Н	Н	Ме	Н	CH ₂ CH ₂	H	NO ₂
399	Ме	Н	Ме	Н	CH ₂ CH ₂	Н	NO ₂
400	Ме	Ме	Ме	Н	CH ₂ CH ₂	H	NO ₂
401	Н	Н	CI	Н	CH ₂ CH ₂	Н	NO ₂
402	Ме	Н	CI	H	CH ₂ CH ₂	Н	NO ₂
403	Me	Ме	CI	Н	CH ₂ CH ₂	Н	NO ₂
404	Н	Н	Н	Ме	CH ₂ CH ₂	Н	NO ₂
405	Ме	Н	Н	Me	CH ₂ CH ₂	Н	NO ₂
406	Ме	Ме	Н	Me	CH ₂ CH ₂	Н	NO ₂
407	Н	Н	Ме	Ме	CH ₂ CH ₂	Н	NO ₂
408	Ме	Н	Ме	Ме	CH ₂ CH ₂	н	NO ₂
409	Ме	Ме	Ме	Ме	CH ₂ CH ₂	Н	NO ₂
410	Н	Н	Ме	CI	CH ₂ CH ₂	Н	NO ₂
411	Ме	Н	Ме	CI	CH ₂ CH ₂	Н	NO ₂
412	Ме	Me	Ме	CI	CH ₂ CH ₂	Н	NO ₂
413	Н	Н	CI	Ме	CH ₂ CH ₂	Н	NO ₂
414	Ме	Н	CI	Ме	CH ₂ CH ₂	Н	NO ₂
415	Ме	Ме	CI	Ме	CH ₂ CH ₂	Н	NO ₂
416	Н	Н	Н	CI	CH ₂ CH ₂	Н	NO ₂
417	Ме	Н	Н	CI	CH ₂ CH ₂	Н	NO ₂
418	Ме	Ме	Н	CI	CH ₂ CH ₂	Η .	NO ₂
419	Н	Н	CI	CI	CH ₂ CH ₂	Н	NO ₂

Nr.	R ^A	R ^B	R ¹	R ²	В	RD	RE
420	Ме	Н	CI	CI	CH ₂ CH ₂	Н	NO ₂
421	Me	Ме	Cl	CI	CH ₂ CH ₂	Н	NO ₂
422	Н	Н	Н	Н	CH ₂ CH ₂	Н	CN
423	Ме	Н	Н	Н	CH ₂ CH ₂	Н	CN
424	Ме	Ме	Н	Н	CH ₂ CH ₂	Н	CN
425	Н	Н	Ме	Н	CH₂CH₂	Н	CN
426	Me	Н	Me	Н	CH ₂ CH ₂	Н	CN
427	Ме	Me	Ме	Н	CH ₂ CH ₂	Н	CN
428	Н	Н	CI	Н	CH ₂ CH ₂	Н	CN
429	Ме	Н	CI	Н	CH ₂ CH ₂	Н	CN
430	Ме	Ме	CI	Н	CH₂CH₂	Н	CN
431	Н	Н	Н	Ме	CH ₂ CH ₂	Н	CN
432	Me	Н	Н	Ме	CH ₂ CH ₂	Н	CN
433	Ме	Ме	Н	Ме	CH ₂ CH ₂	Н	CN
434	Н	Н	Ме	Ме	CH₂CH₂	Н	CN
435	Ме	Н	Ме	Ме	CH ₂ CH ₂	Н	CN
436	Ме	Ме	Ме	Ме	CH ₂ CH ₂	Н	CN
437	Н	Н	Ме	CI	CH ₂ CH ₂	Н	CN
438	Ме	Н	Ме	CI	CH ₂ CH ₂	Н	CN
439	Ме	Ме	Ме	CI	CH ₂ CH ₂	Н	CN
440	Н	Н	CI	Ме	CH ₂ CH ₂	Н	CN
441	Ме	Н	CI	Ме	CH ₂ CH ₂	Н	CN
442	Ме	Ме	CI	Ме	CH ₂ CH ₂	Н	CN
443	Н	Н	Н	CI	CH ₂ CH ₂	Н	CN
444	Ме	H	Н	CI	CH ₂ CH ₂	Н	CN
445	Ме	Ме	Н	CI	CH ₂ CH ₂	Н	CN
446	Н	Н	CI	CI	CH ₂ CH ₂	Н	CN
447	Ме	Н	CI	CI	CH ₂ CH ₂	Н	CN
448	Ме	Ме	CI	CI	CH ₂ CH ₂	Н	CN
449	Н	Н	Н	Н	CH ₂ CH ₂	CI	Н
450	Ме	Н	Н	Н	CH ₂ CH ₂	CI	H
451	Ме	Ме	Н	Н	CH ₂ CH ₂	CI	Н
452	Н	Н	Ме	Н	CH₂CH₂	CI	Н
453	Ме	Н	Ме	Н	CH ₂ CH ₂	CI	Н
454	Me	Ме	Ме	Н	CH ₂ CH ₂	CI	Н
455	Н	Н	CI	Н	CH₂CH₂	CI	Н

Nr.	R ^A	R ^B	R ¹	R ²	В	RD	RE
456	Ме	Н	CI	Н	CH ₂ CH ₂	CI	Н
457	Ме	Ме	CI	Н	CH ₂ CH ₂	CI	Н
458	Н	Н	Н	Ме	CH ₂ CH ₂	CI	Н
459	Ме	Н	Н	Ме	CH ₂ CH ₂	CI	Н
460	Ме	Ме	Н	Ме	CH ₂ CH ₂	C	Н
461	Н	Н	Me ·	Ме	CH ₂ CH ₂	CI	Н
462	Ме	Н	Me	Ме	CH₂CH₂	CI	Н
463	Ме	Ме	Ме	Ме	CH ₂ CH ₂	CI	Н
464	Н	Н	Ме	CI	CH ₂ CH ₂	CI	Н
465	Ме	H =-	Ме	CI	CH₂CH₂	CI	Н
466	Ме	Ме	Ме	CI	CH ₂ CH ₂	CI	Н
467	Н	Н	CI	Ме	CH ₂ CH ₂	CI	Н
468	Ме	Н	CI	Ме	CH ₂ CH ₂	CI	Н
469	Ме	Ме	Cl	Ме	CH ₂ CH ₂	CI	Н
470	Н	Н	Н	CI	CH ₂ CH ₂	CI	Н
471	Ме	Н	Н	CI	CH ₂ CH ₂	CI	Н
472	Ме	Ме	Н	C	CH ₂ CH ₂	CI	Н
473	Н	Н	CI	CI	CH ₂ CH ₂	C	Н
474	Ме	Н	CI	C	CH ₂ CH ₂	Ci	Н
475	Ме	Ме	CI	CI	CH ₂ CH ₂	CI	Н
476	Н	Н	Н	Н	CH₂CH₂	CI	CF ₃
477	Ме	Н	Н	Н	CH₂CH₂	CI	CF ₃
478	Ме	Ме	H	Н	CH₂CH₂	CI	CF ₃
479	Н	Н	Ме	Н	CH ₂ CH ₂	CI	CF ₃
480	Me	Н	Ме	Н	CH ₂ CH ₂	CI	CF ₃
481	Ме	Me	Ме	Н	CH ₂ CH ₂	CI	CF ₃
482	Н	Н	CI	Н	CH₂CH₂	CI	CF ₃
483	Ме	Н	CI	Н	CH ₂ CH ₂	CI	CF ₃
484	Ме	Ме	CI	Н	CH ₂ CH ₂	CI	CF ₃
485	Н	Н	Н	Ме	CH ₂ CH ₂	CI	CF ₃
486	Ме	Н	Н	Ме	CH ₂ CH ₂	CI	CF ₃
487	Ме	Ме	Н	Ме	CH ₂ CH ₂	CI	CF ₃
488	Н	Н	Ме	Ме	CH ₂ CH ₂	CI	CF₃
489	Ме	Н	Ме	Ме	CH ₂ CH ₂	CI	CF ₃
490	Ме	Ме	Ме	Ме	CH ₂ CH ₂	CI	CF₃
491	Н	Н	Ме	CI	CH ₂ CH ₂	CI	CF₃

WO 00/14087 PCT/EP99/06259

Nr.	R^	R ^B	R ¹	R ²	B	RD	RE
492	Ме	H	Ме	CI	CH ₂ CH ₂	CI	CF ₃
493	Ме	Ме	Ме	CI	CH ₂ CH ₂	CI	CF ₃
494	Н	I	CI	Ме	CH ₂ CH ₂	CI	CF ₃
495	Ме	Н	CI	Ме	CH ₂ CH ₂	CI	CF ₃
496	Ме	Me	CI	Ме	CH ₂ CH ₂	CI	CF ₃
497	Н	Н	H	CI	CH ₂ CH ₂	CI	CF ₃
498	Ме	Н	Н	CI	CH ₂ CH ₂	CI	CF ₃
499	Me	Ме	H	C	CH ₂ CH ₂	CI	CF₃
500	Н	H	CI	CI	CH ₂ CH ₂	CI	CF ₃
501	Ме	Н	CI	CI	CH ₂ CH ₂	C	CF ₃
502	Ме	Ме	C	C	CH ₂ CH ₂	CI	CF ₃
503	Н	Н	Н	H	CH ₂ CH ₂	H	CF ₃
504	Ме	Н	I	I	CH ₂ CH ₂	Н	CF ₃
505	Ме	Ме	H	Ŧ	CH ₂ CH ₂	H	CF ₃
506	Н	Н	Ме	Н	CH ₂ CH ₂	Ι	CF ₃
507	Ме	Н	Me	I	CH ₂ CH ₂	I	CF ₃
508	Ме	Ме	Ме	Н	CH ₂ CH ₂	Ξ	CF ₃
509	Н	Н	CI	Н	CH ₂ CH ₂	H	CF ₃
510	Ме	Н	Cl	Н	CH ₂ CH ₂	Η	CF₃
511	Ме	Ме	CI	Н	CH ₂ CH ₂	H	CF ₃
512	Н	Н	Н	Ме	CH ₂ CH ₂	Н	CF ₃
513	Ме	Н	Н	Ме	CH ₂ CH ₂	Н	CF₃
514	Ме	Me	Н	Ме	CH ₂ CH ₂	Н	CF ₃
515	Н	Н	Ме	Ме	CH ₂ CH ₂	Н	CF ₃
516	Ме	Н	Ме	Ме	CH ₂ CH ₂	Н	CF ₃
517	Ме	Ме	Ме	Ме	CH ₂ CH ₂	Н	CF ₃
518	Н	Н	Ме	CI	CH ₂ CH ₂	Н	CF ₃
519	Ме	Н	Ме	CI	CH ₂ CH ₂	Н	CF ₃
520	Ме	Ме	Ме	CI	CH ₂ CH ₂	Н	CF ₃
521	Н	Н	CI	Ме	CH ₂ CH ₂	Н	CF ₃
522	Ме	Н	CI	Ме	CH ₂ CH ₂	Н	CF ₃
523	Ме	Ме	CI	Ме	CH ₂ CH ₂	Н	CF ₃
524	Н	Н	Н	CI	CH ₂ CH ₂	Н	CF ₃
525	Ме	Н	Н	CI	CH ₂ CH ₂	Н	CF ₃
526	Ме	Ме	Н	CI	CH ₂ CH ₂	Н	CF ₃
527	Н	Н	CI	CI	CH ₂ CH ₂	Н	CF ₃

Nr.	RA	RB	R ¹	R ²	В	R ^D	RE
528	Ме	Н	CI	CI	CH ₂ CH ₂	Н	CF ₃
529	Ме	Ме	CI	C	CH₂CH₂	Н	CF ₃
530	Н	I	Н	H	CH ₂ CH ₂ CH ₂	H	Н
531	Ме	I	Н	H	CH ₂ CH ₂ CH ₂	Н	Н
532	Ме	Ме	H	I	CH ₂ CH ₂ CH ₂	Н	Н
533	Н	Ι	Me ·	Η .	CH ₂ CH ₂ CH ₂	Н	Н
534	Ме	Η	Me	H	CH ₂ CH ₂ CH ₂	Н	Н
535	Ме	Ме	Me	H	CH ₂ CH ₂ CH ₂	Н	Н
536	Н	I	CI	Н	CH ₂ CH ₂ CH ₂	Н	Н
537	Ме	Н	CI	H	CH ₂ CH ₂ CH ₂	Н	Н
538	Ме	Ме	CI	Н	CH ₂ CH ₂ CH ₂	Н	Н
539	Н	Н	Н	Ме	CH ₂ CH ₂ CH ₂	Н	Н
540	Ме	Н	Н	Ме	CH ₂ CH ₂ CH ₂	Н	Н
541	Ме	Ме	Н	Ме	CH ₂ CH ₂ CH ₂	Н	Н
542	Н	Н	Ме	Ме	CH ₂ CH ₂ CH ₂	Н	Н
543	Ме	Н	Ме	Ме	CH ₂ CH ₂ CH ₂	Н	Н
544	Ме	Ме	Ме	Ме	CH ₂ CH ₂ CH ₂	Н	Н
545	Н	Н	Ме	CI	CH ₂ CH ₂ CH ₂	Η	Н
546	Ме	Н	Ме	CI	CH ₂ CH ₂ CH ₂	Н	Н
547	Me	Ме	Ме	CI	CH ₂ CH ₂ CH ₂	Н	Н
548	Н	Н	Cl	Ме	CH ₂ CH ₂ CH ₂	Н	Н
550	Ме	Н	CI	Ме	CH ₂ CH ₂ CH ₂	H	Н
551	Me	Ме	CI	Me	CH ₂ CH ₂ CH ₂	Н	Н
552	Н	H	Н	CI	CH ₂ CH ₂ CH ₂	Н	Н
553	Ме	Н	Н	CI	CH ₂ CH ₂ CH ₂	Н	Н
554	Ме	Ме	Н	CI	CH ₂ CH ₂ CH ₂	Н	Н
555	Н	Н	CI	CI	CH ₂ CH ₂ CH ₂	Н	Н
556	Ме	Н	CI	CI	CH ₂ CH ₂ CH ₂	Н	Н
557	Me	Me	CI	CI	CH ₂ CH ₂ CH ₂	H	Н
558	Н	H	Н	Н	CH ₂ CH ₂ CH ₂	H	NO ₂
559	Ме	Н	Н	Н	CH ₂ CH ₂ CH ₂	Н	NO ₂
560	Ме	Ме	Н	Н	CH ₂ CH ₂ CH ₂	Н	NO ₂
561	Н	H	Ме	Н	CH ₂ CH ₂ CH ₂	Н	NO ₂
562	Ме	H	Ме	Н	CH ₂ CH ₂ CH ₂	Н	NO ₂
563	Ме	Me	Ме	Н	CH ₂ CH ₂ CH ₂	Н	NO ₂
564	Н	Н	CI	Н	CH ₂ CH ₂ CH ₂	Н	NO ₂

WO 00/14087 PCT/EP99/06259

Nr.	R ^A	R ^B	R ¹	R ²	B	R ^D	RE
565	Ме	H	CI	Н	CH ₂ CH ₂ CH ₂	Н	NO ₂
566	Ме	Ме	CI	Н	CH ₂ CH ₂ CH ₂	Н	NO ₂
567	Н	Н	Н	Ме	CH ₂ CH ₂ CH ₂	Н	NO ₂
568	Ме	Н	Н	Ме	CH ₂ CH ₂ CH ₂	Н	NO ₂
569	Ме	Ме	H	Ме	CH ₂ CH ₂ CH ₂	Н	NO ₂
570	Н	Η	Ме	Ме	CH ₂ CH ₂ CH ₂	Н	NO ₂
571	Ме	H	Ме	Ме	CH ₂ CH ₂ CH ₂	Н	NO ₂
572	Ме	Ме	Ме	Ме	CH ₂ CH ₂ CH ₂	Н	NO ₂
573	Н	H	Ме	Cl	CH ₂ CH ₂ CH ₂	Н	NO ₂
574	Ме	H	Ме	CI	CH ₂ CH ₂ CH ₂	Н	NO ₂
575	Ме	Ме	Ме	CI	CH ₂ CH ₂ CH ₂	Н	NO ₂
576	Н	Н	CI	Ме	CH ₂ CH ₂ CH ₂	Н	NO ₂
577	Ме	Н	CI	Ме	CH ₂ CH ₂ CH ₂	Н	NO ₂
578	Ме	Ме	CI	Ме	CH ₂ CH ₂ CH ₂	Н	NO ₂
579	Н	H	Н	CI	CH ₂ CH ₂ CH ₂	Н	NO ₂
580	Ме	H	Н	CI	CH ₂ CH ₂ CH ₂	Н	NO ₂
581	Ме	Ме	Н	CI	CH ₂ CH ₂ CH ₂	Н	NO ₂
582	Н	H	Cl	CI	CH ₂ CH ₂ CH ₂	Н	NO ₂
583	Ме	Н	CI	CI	CH ₂ CH ₂ CH ₂	Н	NO ₂
584	Ме	Ме	CI	CI	CH ₂ CH ₂ CH ₂	Н	NO ₂
585	Н	Н	Н	Н	CH ₂ CH ₂ CH ₂	CI	Н
586	Me	Н	Н	Н	CH ₂ CH ₂ CH ₂	CI ·	H
587	Ме	Ме	Н	Н	CH ₂ CH ₂ CH ₂	CI	Н
588	Н	Н	Me	Н	CH ₂ CH ₂ CH ₂	CI	Н
589	Ме	Н	Ме	H	CH ₂ CH ₂ CH ₂	CI	Н
590	Ме	Ме	Ме	Н	CH ₂ CH ₂ CH ₂	CI	Н
591	Н	Н	CI	Н	CH ₂ CH ₂ CH ₂	CI	Н
592	Me	Н	CI	H	CH ₂ CH ₂ CH ₂	CI	Н
593	Ме	Me	CI	Н	CH ₂ CH ₂ CH ₂	CI	Н
594	Н	Н	Н	Ме	CH ₂ CH ₂ CH ₂	CI	Н
595	Ме	Н	Н	Ме	CH ₂ CH ₂ CH ₂	CI	Н
596	Ме	Me	Н	Me	CH ₂ CH ₂ CH ₂	CI	Н
597	Н	Н	Ме	Ме	CH ₂ CH ₂ CH ₂	CI	Н
598	Ме	Н	Me	Ме	CH ₂ CH ₂ CH ₂	CI	Н
599	Ме	Ме	Ме	Me	CH ₂ CH ₂ CH ₂	CI	Н
600	H	Н	Ме	CI	CH ₂ CH ₂ CH ₂	CI	Н

91

Nr.	R ^A	R ^B	R ¹	R ²	B	R ^D	RE
601	Me	Н	Ме	CI	CH ₂ CH ₂ CH ₂	CI	Н
602	Ме	Ме	Ме	CI	CH ₂ CH ₂ CH ₂	CI	Н
603	Ι	Η	CI	Ме	CH ₂ CH ₂ CH ₂	CI	Н
604	Ме	H	CI	Ме	CH ₂ CH ₂ CH ₂	CI	Н
605	Ме	Ме	CI	Me	CH ₂ CH ₂ CH ₂	CI	Н
606	I	I	H	CI	CH ₂ CH ₂ CH ₂	CI	Н
607	Ме	Τ	Н	CI	CH ₂ CH ₂ CH ₂	CI	Н
608	Ме	Me	Н	CI	CH ₂ CH ₂ CH ₂	CI	Н
609	Ι	I	CI	CI	CH ₂ CH ₂ CH ₂	CI	Н
610	Ме	Τ	CI	CI	CH ₂ CH ₂ CH ₂	CI	Н
611	Ме	Ме	CI	CI	CH ₂ CH ₂ CH ₂	CI	Н
612	I	H	Н	Н	CH ₂ CH ₂ CH ₂	CI	CF ₃
613	Ме	I	Н	H	CH ₂ CH ₂ CH ₂	CI	CF ₃
614	Ме	Ме	Н	H	CH ₂ CH ₂ CH ₂	CI	CF ₃
615	Н	Н	Ме	Н	CH ₂ CH ₂ CH ₂	CI	CF ₃
616	Ме	Н	Ме	Н	CH ₂ CH ₂ CH ₂	CI	CF ₃
617	Ме	Ме	Ме	H	CH ₂ CH ₂ CH ₂	CI	CF ₃
618	Н	Н	CI	H	CH ₂ CH ₂ CH ₂	CI	CF ₃
619	Ме	Н	CI	Н	CH ₂ CH ₂ CH ₂	CI	CF ₃
620	Ме	Ме	CI	H	CH ₂ CH ₂ CH ₂	CI	CF ₃
621	Н	Н	Н	Ме	CH ₂ CH ₂ CH ₂	CI	CF ₃
622	Ме	Н	Н	Ме	CH ₂ CH ₂ CH ₂	CI	CF ₃
623	Ме	Ме	Н	Ме	CH ₂ CH ₂ CH ₂	CI	CF ₃
624	Н	H	Ме	Ме	CH ₂ CH ₂ CH ₂	CI	CF ₃
625	Ме	Н	Ме	Me	CH ₂ CH ₂ CH ₂	CI	CF ₃
626	Ме	Ме	Me	Ме	CH ₂ CH ₂ CH ₂	CI	CF ₃
627	Н	Н	Ме	CI	CH ₂ CH ₂ CH ₂	CI	CF ₃
628	Ме	Н	Ме	CI	CH ₂ CH ₂ CH ₂	CI	CF ₃
629	Ме	Ме	Ме	CI	CH ₂ CH ₂ CH ₂	CI	CF ₃
630	Н	Н	CI	Ме	CH ₂ CH ₂ CH ₂	CI	CF ₃
631	Ме	Н	CI	Ме	CH ₂ CH ₂ CH ₂	CI	CF ₃
632	Ме	Ме	CI	Ме	CH ₂ CH ₂ CH ₂	CI	CF ₃
633	Н	Н	Н	CI	CH ₂ CH ₂ CH ₂	CI	CF ₃
634	Ме	Н	Н	CI	CH ₂ CH ₂ CH ₂	CI	CF ₃
635	Me	Ме	Н	CI	CH ₂ CH ₂ CH ₂	CI	CF ₃
636	Н	Н	CI	CI	CH ₂ CH ₂ CH ₂	CI	CF ₃

Nr.	RA	RB	R ¹	R ²	B .	R ^D	RE
637	Ме	Н	CI	CI	CH ₂ CH ₂ CH ₂	CI	CF ₃
638	Ме	Ме	CI	CI	CH ₂ CH ₂ CH ₂	CI	CF ₃
639	Н	Н	Н	Н	CH ₂ CH ₂ CH ₂	Н	CF ₃
640	Ме	Н	H	Н	CH ₂ CH ₂ CH ₂	Н	CF ₃
641	Ме	Ме	Н	Н	CH ₂ CH ₂ CH ₂	Н	CF ₃
642	Н	Н	Ме	Н	CH ₂ CH ₂ CH ₂	Н	CF ₃
643	Ме	Н	Ме	Н	CH ₂ CH ₂ CH ₂	Н	CF ₃
644	Ме	Ме	Ме	Н	CH ₂ CH ₂ CH ₂	Н	CF ₃
645	Н	Н	CI	Н	CH ₂ CH ₂ CH ₂	Н	CF ₃
646	Ме	Н	CI	Н	CH ₂ CH ₂ CH ₂	Н	CF ₃
647	Ме	Ме	CI	Н	CH ₂ CH ₂ CH ₂	Н	CF ₃
648	Н	Н	Н	Ме	CH ₂ CH ₂ CH ₂	Н	CF₃
649	Ме	Н	Н	Ме	CH ₂ CH ₂ CH ₂	Н	CF ₃
650	Ме	Ме	Н	Ме	CH ₂ CH ₂ CH ₂	Н	CF₃
651	Н	Н	Ме	Ме	CH ₂ CH ₂ CH ₂	Н	CF ₃
652	Ме	Н	Ме	Ме	CH ₂ CH ₂ CH ₂	Н	CF ₃
653	Ме	Ме	Ме	Ме	CH ₂ CH ₂ CH ₂	Н	CF ₃
654	H	Н	Ме	CI	CH ₂ CH ₂ CH ₂	Н	CF ₃
655	Ме	Н	Ме	CI	CH ₂ CH ₂ CH ₂	Н	CF ₃
656	Ме	Ме	Ме	CI	CH ₂ CH ₂ CH ₂	Н	CF ₃
657	Н	Н	CI	Ме	CH ₂ CH ₂ CH ₂	Н	CF ₃
658	Ме	Н	CI	Ме	CH ₂ CH ₂ CH ₂	Н	CF ₃
659	Ме	Ме	CI	Ме	CH ₂ CH ₂ CH ₂	Н	CF ₃
660	Н	Н	Н	CI	CH ₂ CH ₂ CH ₂	Н	CF ₃
661	Ме	Н	Н	CI	CH ₂ CH ₂ CH ₂	Н	CF ₃
662	Ме	Me	Н	CI	CH ₂ CH ₂ CH ₂	Н	CF ₃
663	Н	Н	CI	CI	CH ₂ CH ₂ CH ₂	Н	CF ₃
664	Ме	Н	CI	CI	CH ₂ CH ₂ CH ₂	Н	CF ₃
665	Ме	Me	CI	CI	CH ₂ CH ₂ CH ₂	Н	CF ₃

Tabelle 8: Erfindungsgemäße Verbindungen der Formel (I), worin die Substituenten und Laufzahlen folgendes bedeuten:

$$A = SO_2$$
 $B = CH_2CH_2$ $R^1 = CH_3$
 $R^2 = CH_3$ $R^3 = H$ $Q = Rest der Formel (II)$
 $R^6 = OH$ $Y = CH_2$ $Z = CH_2$
 $V = 1$ $W = 0$

Nr.	(X)	E	R ¹	R ^t	Physikalische Daten
666	0	Bindung	Н	Ph	The state of the s
667	0	Bindung	Н	4-Nitrophenyl	
668	0	Bindung	Н	4-Chlorphenyi	
669	0	Bindung	Н	3-Pyridyl	
670	0	Bindung	Н	5-Trifluormethyl-2-pyridyl	
671	0	Bindung	Н	2-Methyl-1-pyrrolyl	
672	0	Bindung	Н	4-Methyl-2-thienyl	
673	0	Bindung	Н	3-Methylthio-2-pyridyl	
674	0	Bindung	Н	5-Methylaminocarbonyl-2-	
675	0	Bindung	Н	1,2,3-Thiadiazol-4-yl	Fp.: 192-196°C
676	0	Bindung	Н	4,6-Dimethoxy-1,3,5-triazin-2-yl	
677	S	Bindung	Н	Ph	
678	S	Bindung	Н	4-Nitrophenyl	
679	S	Bindung	Н	4-Chlorphenyl	
680	S	Bindung	Н	Pyridyl	Fp.: 212-215°C
681	S	Bindung	Н	5-Nitro-2-pyridyl	
682	S	Bindung	Н	2-Pyrimidinyl	Fp.: 270°C
683	S	Bindung	Н	4,6-Dimethyl-2-pyrimidinyl	

Nr.	(X)i	E	R ⁴	R ⁵	Physikalische Daten
684	S	Bindung	H	4,6-Dimethoxy-2-pyrimidinyl	Daten
685	S	Bindung	Н	2-Pyrazin	
686	S	Bindung	Н	1,2,3-Thiadiazol-4-yl	
687	S	Bindung	Н	4,6-Dimethoxy-1,3,5-triazin-2-yl	
688	ИН	Bindung	Н	Ph	
689	NH	Bindung	Н	4-Nitrophenyl	
690	NH	Bindung	Н	4-Chlorphenyl	
691	NH	Bindung	Н	Pyridyl	
692	NH	Bindung	H	5-Nitro-2-pyridyl	
693	NH	Bindung	Ξ	2-Pyrimidinyl	
694	NH	Bindung	Н	4,6-Dimethyl-2-pyrimidinyl	
695	NH	Bindung	H	4,6-Dimethoxy-2-pyrimidinyl	
696	ИН	Bindung	Н	2-Pyrazin	
697	NH	Bindung	Н	1,2,3-Thiadiazol-4-yl	·
698	NH	Bindung	Н	4,6-Dimethoxy-1,3,5-triazin-2-yl	
699	NMe	Bindung	Н	Ph	
700	NMe	Bindung	I	4-Nitrophenyl	
701	NMe	Bindung	H	4-Chlorphenyl	
702	NMe	Bindung	H	Pyridyl	
703	NMe	Bindung	Н	5-Nitro-2-pyridyl	
704	NMe	Bindung	Н	2-Pyrimidinyl	
705	NMe	Bindung	Н	4,6-Dimethyl-2-pyrimidinyl	
706	NMe	Bindung	Н	4,6-Dimethoxy-2-pyrimidinyl	
707	NMe	Bindung	Н	2-Pyrazin	
708	NMe	Bindung	Н	1,2,3-Thiadiazol-4-yl	
709	NMe	Bindung	Н	4,6-Dimethoxy-1,3,5-triazin-2-yl	
710	NCHO	Bindung	Н	Ph	
711	NCHO		Н	4-Nitrophenyl	
712	NCHO	Bindung	Н	4-Chlorphenyl	
713	NCHO	Bindung	Н	Pyridyl	
714	NCHO	 	H	5-Nitro-2-pyridyl	
715	NCHO		H	2-Pyrimidinyl	
716	NCHO	Bindung	H	4,6-Dimethyl-2-pyrimidinyl	
717	NCHO	 	Н	4,6-Dimethoxy-2-pyrimidinyl	
718	NCHO	Bindung	H_	2-Pyrazin	

Nr.	(X) ₁	E E	R ⁴	R ⁵ .	Physikalische Daten
719	NCHO		Н	1,2,3-Thiadiazol-4-yl	
720	NCHO	Bindung	Н	4,6-Dimethoxy-1,3,5-triazin-2-yl	
721	0	CH ₂	Н	2-Chlor-4-nitro-phenyl	
722	0	CH ₂	Н	4-Nitrophenyl	
723	0	CH ₂	Н	4-Chlorphenyl	
724	0	CH ₂	Н	Pyridyl	
725	0	CH ₂	Н	5-Nitro-2-pyridyl	
726	0	CH ₂	Н	2-Pyrimidinyl	
727	0	CH ₂	Н	4,6-Dimethyl-2-pyrimidinyl	
728	0	CH ₂	Н	4,6-Dimethoxy-2-pyrimidinyl	
729	0	CH ₂	Н	2-Pyrazin	
730	0	CH ₂	Н	1,2,3-Thiadiazol-4-yl	
731	0	CH ₂	Н	4,6-Dimethoxy-1,3,5-triazin-2-yl	
732	S	CH ₂	H	Ph	
733	S	CH ₂	Н	4-Nitrophenyl	
734	S	CH ₂	Н	4-Chlorphenyl	
735	S	CH ₂	Н	Pyridyl	
736	S	CH ₂	Н	5-Nitro-2-pyridyl	
737	S	CH ₂	Н	2-Pyrimidinyl	
738	S	CH ₂	Н	4,6-Dimethyl-2-pyrimidinyl	
739	S	CH ₂	Н	4,6-Dimethoxy-2-pyrimidinyl	·
740	S	CH ₂	Н	2-Pyrazin	
741	S	CH ₂	Н	1,2,3-Thiadiazol-4-yl	
742	s	CH ₂	Н	4,6-Dimethoxy-1,3,5-triazin-2-yl	
743	NH	CH ₂	Н	Ph	
744	NH	CH ₂	Н	4-Nitrophenyl	
745	NH	CH ₂	Н	4-Chlorphenyl	
746	NH	CH ₂	Н	Pyridyl	
747	NH	CH ₂	Н	5-Nitro-2-pyridyl	
748	NH	CH ₂	Н	2-Pyrimidinyl	
749	NH	CH ₂	Н	4,6-Dimethyl-2-pyrimidinyl	
750	NH	CH ₂	Н	4,6-Dimethoxy-2-pyrimidinyl	
751	NH	CH ₂	Н	2-Pyrazin	
752	NH	CH ₂	Н	1,2,3-Thiadiazol-4-yl	
753	NH	CH ₂	Н	4,6-Dimethoxy-1,3,5-triazin-2-yl	

Nr.	(X)i	Evaluation	R ⁴	R ⁵	Physikalische Daten
754	NMe	CH₂	Н	Ph	
755	NMe	CH ₂	Н	4-Nitrophenyl	
756	NMe	CH ₂	Н	4-Chlorphenyl	
757	NMe	CH ₂	Н	Pyridyl	
758	NMe	CH₂	Н	5-Nitro-2-pyridyl	
759	NMe	CH ₂	Н	2-Pyrimidinyl	
760	NMe	CH₂	Н	4,6-Dimethyl-2-pyrimidinyl	
761	NMe	CH ₂	Н	4,6-Dimethoxy-2-pyrimidinyl	
762	NMe	CH ₂	Н	2-Pyrazin	
763	NMe	CH₂	Н	1,2,3-Thiadiazol-4-yl	
764	NMe	CH₂	Н	4,6-Dimethoxy-1,3,5-triazin-2-yl	
765	NCHO	CH₂	H	Ph	
766	NCHO	CH₂	Н	4-Nitrophenyl	
767	NCHO	CH₂	Н	4-Chlorphenyl	·
768	NCHO	CH₂	Н	Pyridyl	
769	NCHO	CH₂	Н	5-Nitro-2-pyridyl	
770	NCHO	CH₂	Н	2-Pyrimidinyl	
771	NCHO	CH ₂	Н	4,6-Dimethyl-2-pyrimidinyl	
772	NCHO	CH ₂	Н	4,6-Dimethoxy-2-pyrimidinyl	
773	NCHO	CH ₂	Н	2-Pyrazin	
774	NCHO	CH ₂	Н	1,2,3-Thiadiazol-4-yl	
775	NCHO	CH ₂	Н	4,6-Dimethoxy-1,3,5-triazin-2-yl	
776	0	C(O)	Н	3-Difluormethoxyphenyl	
777	0	C(O)	Н	4-Nitrophenyl	
778	0	C(O)	Н	4-Chlorphenyl	
779	0	C(O)	Н	Pyridyl	
780	0	C(O)	Н	5-Nitro-2-pyridyl	
781	0	C(O)	Н	2-Pyrimidinyl	
782	0	C(O)	Н	4,6-Dimethyl-2-pyrimidinyl	
783	0	C(O)	Н	4,6-Dimethoxy-2-pyrimidinyl	
784	0	C(O)	Н	2-Pyrazin	
785	0	C(O)	Н	1,2,3-Thiadiazol-4-yl	
786	0	C(O)	Н	4,6-Dimethoxy-1,3,5-triazin-2-yl	
787	S	C(O)	Н	Ph	
788	S	C(O)	Н	4-Nitrophenyl	

Nr.	(X)ı	E C	R ⁴	R ⁵	Physikalische Daten
789	S	C(O)	Н	4-Chlorphenyl	
790	S	C(O)	Н	Pyridyl	
791	S	C(O)	Н	5-Nitro-2-pyridyl	
792	S	C(O)	Н	2-Pyrimidinyl	·
793	S	C(O)	Н	4,6-Dimethyl-2-pyrimidinyl	
794	S	C(O)	Η	4,6-Dimethoxy-2-pyrimidinyl	
795	S	C(O)	H	2-Pyrazin	
796	S	C(O)	H	1,2,3-Thiadiazol-4-yl	
797	S	C(O)	H	4,6-Dimethoxy-1,3,5-triazin-2-yl	
798	NH	C(O)	Τ	Ph	
799	NH	C(O)	Н	4-Nitrophenyl	
800	NH	C(O)	H	4-Chlorphenyi	
801	NH	C(O)	Η	Pyridyl	
802	NH	C(O)	Н	5-Nitro-2-pyridyl	
803	NH	C(O)	H	2-Pyrimidinyl	
804	NH	C(O)	Н	4,6-Dimethyl-2-pyrimidinyl	
805	NH	C(O)	Н	4,6-Dimethoxy-2-pyrimidinyl	
806	NH	C(O)	Η	2-Pyrazin	
807	NH	C(O)	Ι	1,2,3-Thiadiazol-4-yl	·
808	NH	C(O)	I	4,6-Dimethoxy-1,3,5-triazin-2-yl	
809	NMe	C(O)	Ι	Ph	
810	NMe	C(O)	Н	4-Nitrophenyl	
811	NMe	C(O)	Н	4-Chlorphenyl	
812	NMe	C(O)	Н	Pyridyl	
813	NMe	C(O)	Н	5-Nitro-2-pyridyl	
814	NMe	C(O)	Н	2-Pyrimidinyl	
815	NMe	C(O)	Н	4,6-Dimethyl-2-pyrimidinyl	
816	NMe	C(O)	Н	4,6-Dimethoxy-2-pyrimidinyl	
817	NMe	C(O)	Н	2-Pyrazin	
818	NMe	C(O)	Н	1,2,3-Thiadiazol-4-yl	
819	NMe	C(O)	Н	4,6-Dimethoxy-1,3,5-triazin-2-yl	
820	NCHO	C(O)	Н	Ph	
821	ИСНО	C(O)	Н	4-Nitrophenyl	
822	NCHO	C(O)	Н	4-Chlorphenyl	
823	NCHO	C(O)	Н	Pyridyl	

Nr.	(X)i	E =	R ⁴	R ⁵	Physikalische Daten
824	NCHO		Н	5-Nitro-2-pyridyl	
825	NCHO		Н	2-Pyrimidinyl	
826	исно	C(O)	Н	4,6-Dimethyl-2-pyrimidinyl	
827	NCHO		Н	4,6-Dimethoxy-2-pyrimidinyl	
828	NCHO		Н	2-Pyrazin	
829	NCHO	C(O)	Н	1,2,3-Thiadiazol-4-yl	
830	NCHO	C(O)	I	4,6-Dimethoxy-1,3,5-triazin-2-yl	
831	0	SO ₂	H	Ph	
832	0	SO ₂	Н	4-Nitrophenyl	
833	0	SO ₂	Ι	4-Chiorphenyl	
834	0	SO ₂	Н	Pyridyl	
835	0	SO ₂	I	5-Nitro-2-pyridyl	
836	0	SO ₂	Н	2-Pyrimidinyl	
837	0	SO ₂	Н	4,6-Dimethyl-2-pyrimidinyl	·
838	0	SO ₂	Ι	4,6-Dimethoxy-2-pyrimidinyl	
839	0	SO ₂	Н	2-Pyrazin	
840	0	SO ₂	Η	1,2,3-Thiadiazol-4-yl	
841	0	SO ₂	Н	4,6-Dimethoxy-1,3,5-triazin-2-yl	
842	NH	SO ₂	Н	Ph	
843	NH	SO ₂	Н	4-Nitrophenyl	
844	NH	SO ₂	Н	4-Chlorphenyl	
845	NH	SO ₂	Н	Pyridyl	
846	NH	SO ₂	Н	5-Nitro-2-pyridyl	
847	NH	SO ₂	Н	2-Pyrimidinyl	
848	NH	SO ₂	Н	4,6-Dimethyl-2-pyrimidinyl	
849	NH	SO ₂	Н	4,6-Dimethoxy-2-pyrimidinyl	
850	NH	SO ₂	Н	2-Pyrazin	
851	NH	SO ₂	Н	1,2,3-Thiadiazol-4-yl	
852	NH	SO ₂	Н	4,6-Dimethoxy-1,3,5-triazin-2-yl	
853	NMe	SO ₂	Н	Ph	
854	NMe	SO ₂	Н	4-Nitrophenyl	
855	NMe	SO ₂	Н	4-Chiorphenyl	
856	NMe	SO ₂	Н	Pyridyl	
857	NMe	SO ₂	Н	5-Nitro-2-pyridyl	
858	NMe	SO ₂	Н	2-Pyrimidinyl	

WO 00/14087

Nr.	(X) _i	E	R ⁴	R ⁵	Physikalische
050	N. 10.4-	60		4.6 Dimethyl 2 inidiand	Daten
859	NMe	SO ₂	H	4,6-Dimethyl-2-pyrimidinyl	
860	NMe	SO₂	H	4,6-Dimethoxy-2-pyrimidinyl	
861	NMe	SO ₂	H	2-Pyrazin	
862	NMe	SO ₂	H	1,2,3-Thiadiazol-4-yl	
863	NMe	SO ₂	H	4,6-Dimethoxy-1,3,5-triazin-2-yl	
864	0	CH ₂	Ме	Ph	
865	0	CH ₂	Ме	4-Nitrophenyl	
866	0	CH ₂	Me	4-Chlorphenyl	
867	0	CH ₂	Ме	Pyridyl	
868	0	CH ₂	Ме	5-Nitro-2-pyridyl	
869	0	CH ₂	Me	2-Pyrimidinyl	
870	0	CH ₂	Me	4,6-Dimethyl-2-pyrimidinyl	
871	0	CH ₂	Ме	4,6-Dimethoxy-2-pyrimidinyl	
872	0	CH ₂	Ме	2-Pyrazin	·
873	0	CH ₂	Ме	1,2,3-Thiadiazol-4-yl	
874	0	CH ₂	Ме	4,6-Dimethoxy-1,3,5-triazin-2-yl	
875	S	CH ₂	Ме	Ph	
876	S	CH ₂	Ме	4-Nitrophenyl	
877	S	CH ₂	Ме	4-Chlorphenyl	
878	S	CH ₂	Ме	Pyridyl	
879	S	CH ₂	Ме	5-Nitro-2-pyridyl	
880	S	CH ₂	Ме	2-Pyrimidinyl	
881	S	CH ₂	Ме	4,6-Dimethyl-2-pyrimidinyl	
882	S	CH ₂	Ме	4,6-Dimethoxy-2-pyrimidinyl	
883	S	CH ₂	Me	2-Pyrazin	
884	S	CH ₂	Me	1,2,3-Thiadiazol-4-yl	
885	S	CH ₂	Me	4,6-Dimethoxy-1,3,5-triazin-2-yl	
886	NH	CH ₂	Me	Ph .	
887	NH	CH ₂	Ме	4-Nitrophenyl	
888	NH	CH ₂	Ме	4-Chlorphenyl	
889	NH	CH ₂	Ме	Pyridyl	
890	NH	CH ₂	Me	5-Nitro-2-pyridyl	
891	NH	CH ₂	Ме	2-Pyrimidinyl	
892	NH	CH ₂	Ме	4,6-Dimethyl-2-pyrimidinyl	
893	NH	CH ₂	Ме	4,6-Dimethoxy-2-pyrimidinyl	

100

Nr.	(X) _i	E	R ⁴	R ⁶	Physikalische
894	NH	C L	B.A.	2.8	Daten
895	NH	CH ₂	Me Me	2-Pyrazin	
896	NH	CH ₂		1,2,3-Thiadiazol-4-yl	
		CH ₂	Me	4,6-Dimethoxy-1,3,5-triazin-2-yl	
897	NMe	CH ₂	Ме	Ph .	
898	NMe	CH ₂	Ме	4-Nitrophenyl	
899	NMe	CH ₂	Ме	4-Chlorphenyi	
900	NMe	CH ₂	Ме	Pyridyl	
901	NMe	CH ₂	Ме	5-Nitro-2-pyridyl	
902	NMe	CH ₂	Ме	2-Pyrimidinyl	
903	NMe	CH₂	Ме	4,6-Dimethyl-2-pyrimidinyl	
904	NMe	CH ₂	Ме	4,6-Dimethoxy-2-pyrimidinyl	
905	NMe	CH ₂	Ме	2-Pyrazin	
906	NMe	CH ₂	Ме	1,2,3-Thiadiazol-4-yl	
907	NMe	CH ₂	Me	4,6-Dimethoxy-1,3,5-triazin-2-yl	·
908	NCHO	CH₂	Ме	Ph	
909	NCHO	CH₂	Ме	4-Nitrophenyl	
910	NCHO	CH₂	Me	4-Chiorphenyi	
911	NCHO	CH₂	Ме	Pyridyl	
912	NCHO	CH₂	Ме	5-Nitro-2-pyridyl	
913	NCHO	CH ₂	Me	2-Pyrimidinyl	
914	NCHO	CH ₂	Me	4,6-Dimethyl-2-pyrimidinyl	
915	NCHO	CH ₂	Me	4,6-Dimethoxy-2-pyrimidinyl	
916	NCHO	CH ₂	Ме	2-Pyrazin	
917	NCHO	CH ₂	Ме	1,2,3-Thiadiazol-4-yl	
918	NCHO	CH ₂	Ме	4,6-Dimethoxy-1,3,5-triazin-2-yl	
919	0	C(O)	Ме	Ph	
920	0	C(O)	Ме	4-Nitrophenyl	
921	0	C(O)	Me	4-Chlorphenyl	
922	0	C(O)	Ме	Pyridyl	
923	0	C(O)	Me	5-Nitro-2-pyridyl	
924	0	C(O)	Me	2-Pyrimidinyl	
925	0	C(O)	Me	4,6-Dimethyl-2-pyrimidinyl	
926	0	C(O)	Me	4,6-Dimethyi-2-pyrimidinyi	
927	0	C(O)	Me	2-Pyrazin	
928	0	C(O)	Me	1,2,3-Thiadiazol-4-yl	

101

Nr.	(X)i	E	R ⁴	R ⁵	Physikalische
574 G	14. T.				Daten
929	0	C(O)	Ме	4,6-Dimethoxy-1,3,5-triazin-2-yl	
930	S	C(O)	Me	Ph	
931	S	C(O)	Ме	4-Nitrophenyl	
932	S	C(O)	Ме	4-Chlorphenyl	·
933	S	C(O)	Ме	Pyridyl	
934	S	C(O)	Ме	5-Nitro-2-pyridyl	
935	S	C(O)	Ме	2-Pyrimidinyl	
936	S	C(O)	Ме	4,6-Dimethyl-2-pyrimidinyl	
937	S	C(O)	Ме	4,6-Dimethoxy-2-pyrimidinyl	
938	S	C(O)	Ме	2-Pyrazin	
939	S	C(O)	Ме	1,2,3-Thiadiazol-4-yl	
940	S	C(O)	Ме	4,6-Dimethoxy-1,3,5-triazin-2-yl	
941	NH	C(O)	Ме	Ph	·
942	NH	C(O)	Ме	4-Nitrophenyl	
943	NH	C(O)	Ме	4-Chlorphenyl	
944	NH	C(O)	Ме	Pyridyl	
945	NH	C(O)	Ме	5-Nitro-2-pyridyl	•
946	NH	C(O)	Ме	2-Pyrimidinyl	
947	NH	C(O)	Me	4,6-Dimethyl-2-pyrimidinyl	
948	NH	C(O)	Ме	4,6-Dimethoxy-2-pyrimidinyl	
949	NH	C(O)	Ме	2-Pyrazin	
950	NH	C(O)	Ме	1,2,3-Thiadiazol-4-yl	
951	NH	C(O)	Ме	4,6-Dimethoxy-1,3,5-triazin-2-yl	
952	NMe	C(O)	Ме	Ph	
953	NMe	C(O)	Ме	4-Nitrophenyl	·
954	NMe	C(O)	Ме	4-Chlorphenyl	
955	NMe	C(O)	Ме	Pyridyl	
956	NMe	C(O)	Ме	5-Nitro-2-pyridyl	
957	NMe	C(O)	Ме	2-Pyrimidinyl	
958	NMe	C(O)	Ме	4,6-Dimethyl-2-pyrimidinyl	
959	NMe	C(O)	Ме	4,6-Dimethoxy-2-pyrimidinyl	
960	NMe	C(O)	Ме	2-Pyrazin	
961	NMe	C(O)	Ме	1,2,3-Thiadiazol-4-yl	·
962	NMe	C(O)	Ме	4,6-Dimethoxy-1,3,5-triazin-2-yl	
963	NCHO	C(O)	Ме	Ph	·

Nr.	(X) ₁	E	R ⁴	R ⁵	Physikalische Daten
964	NCHO	C(O)	Ме	4-Nitrophenyl	
965	NCHO	C(O)	Ме	4-Chlorphenyl	
966	NCHO	C(O)	Ме	Pyridyl	
967	NCHO	C(O)	Ме	5-Nitro-2-pyridyl	
968	NCHO	C(O)	Ме	2-Pyrimidinyl	
969	NCHO	C(O)	Ме	4,6-Dimethyl-2-pyrimidinyl	
970	NCHO	C(O)	Ме	4,6-Dimethoxy-2-pyrimidinyl	
971	NCHO	C(O)	Ме	2-Pyrazin	
972	NCHO	C(O)	Ме	1,2,3-Thiadiazol-4-yl	
973	NCHO	C(O)	Ме	4,6-Dimethoxy-1,3,5-triazin-2-yl	

Tabelle 9: Erfindungsgemäße Verbindungen der Formel (I), worin die Substituenten und Laufzahlen folgendes bedeuten:

A =
$$SO_2$$
 E = Bindung R^1 = CH_3
 R^2 = CH_3 R^3 = H R^4 = H
 R^5 = N Q = Rest der Formel (II) $(X)_1$ = O
 $Y = CH_2$ $Z = CH_2$ $V = 1$
 $W = 0$

Nr.	R ⁶	A	BANGER
974	OBz	SO ₂	CH ₂ CH ₂
975	SH	SO ₂	CH ₂ CH ₂

Nr.	R ⁶	Ass Single	B
976	SPh	SO ₂	CH ₂ CH ₂
977	CI	SO ₂	CH ₂ CH ₂
978	ОН	so	CH ₂ CH ₂
979	SH	so	CH ₂ CH ₂
980	SPh	so	CH ₂ CH ₂
981	CI	so	CH ₂ CH ₂
982	ОН	S	CH ₂ CH ₂
983	SH	S	CH ₂ CH ₂
984	SPh	S	CH ₂ CH ₂
985	CI	S	CH ₂ CH ₂
986	ОН	CH ₂	CH ₂ CH ₂
987	SH	CH ₂	CH ₂ CH ₂
988	SPh	CH₂	CH ₂ CH ₂
989	CI	CH₂	CH ₂ CH ₂
990	OT	NSO₂Me	CH ₂ CH ₂
991	SH	NSO₂Me	CH₂CH₂
992	SPh	NSO₂Me	CH ₂ CH ₂
993	CI	NSO₂Me	CH ₂ CH ₂
994	ОН	0	CH ₂ CH ₂
995	SH	0	CH ₂ CH ₂
996	SPh	0	CH ₂ CH ₂
997	CI	0	CH ₂ CH ₂
998	ОН	NH	CH ₂ CH ₂
999	SH	NH	CH ₂ CH ₂
1000	SPh	NH	CH ₂ CH ₂
1001	CI	NH	CH ₂ CH ₂
1002	OH	SO ₂	CH ₂ CH ₂ CH ₂
1003	SH	SO ₂	CH ₂ CH ₂ CH ₂
1004	SPh	SO ₂	CH ₂ CH ₂ CH ₂
1005	CI	SO ₂	CH ₂ CH ₂ CH ₂
1006	ОН	so	CH ₂ CH ₂ CH ₂
1007	SH	so	CH ₂ CH ₂ CH ₂
1008	SPh	so	CH ₂ CH ₂ CH ₂
1009	CI	so	CH ₂ CH ₂ CH ₂
1010	ОН	S .	CH ₂ CH ₂ CH ₂
1011	SH	S	CH ₂ CH ₂ CH ₂

Nr.	R ⁶ -	A	B
1012	SPh	S	CH ₂ CH ₂ CH ₂
1013	CI	S	CH ₂ CH ₂ CH ₂
1014	ОН	CH ₂	CH ₂ CH ₂ CH ₂
1015	SH	CH ₂	CH ₂ CH ₂ CH ₂
1016	SPh	CH ₂	CH ₂ CH ₂ CH ₂
1017	Cl .	CH ₂	CH ₂ CH ₂ CH ₂
1018	ОН	NSO₂Me	CH ₂ CH ₂ CH ₂
1019	SH	NSO₂Me	CH ₂ CH ₂ CH ₂
1020	SPh	NSO₂Me	CH ₂ CH ₂ CH ₂
1021	CI	NSO₂Me	CH ₂ CH ₂ CH ₂
1022	ОН	0	CH ₂ CH ₂ CH ₂
1023	SH	0	CH ₂ CH ₂ CH ₂
1024	SPh	0	CH ₂ CH ₂ CH ₂
1025	CI	0	CH ₂ CH ₂ CH ₂
1026	ОН	NH	CH ₂ CH ₂ CH ₂
1027	SH	NH	CH ₂ CH ₂ CH ₂
1028	SPh	NH	CH ₂ CH ₂ CH ₂
1029	CI	NH	CH ₂ CH ₂ CH ₂
1030	ОН	SO ₂	CH=CH
1031	SH	SO ₂	CH=CH
1032	SPh	SO ₂	CH=CH
1033	CI	SO ₂	CH=CH
1034	ОН	so	CH=CH
1035	SH	SO	CH=CH
1036	SPh	SO	CH=CH
1037	CI	SO	CH=CH
1038	ОН	S	CH=CH
1039	SH	S	CH=CH
1040	SPh	S	CH=CH
1041	CI	S	CH=CH
1042	ОН	CH ₂	CH=CH
1043	SH	CH ₂	CH=CH
1044	SPh	CH ₂	CH=CH
1045	CI	CH ₂	CH=CH
1046	ОН	NSO₂Me	CH=CH
1047	SH	NSO₂Me	CH=CH

Nr.	R ⁶	A	B
1048	SPh	NSO₂Me	CH=CH
1049	Cl	NSO₂Me	CH=CH
1050	ОН	0	CH=CH
1051	SH	0	CH=CH
1052	SPh	0	CH=CH
1053	CI	0	CH=CH
1054	ОН	NH	CH=CH
1055	SH	NH	CH=CH
1056	SPh	NH	CH=CH
1057	CI	NH	CH=CH

Tabelle 10: Erfindungsgemäße Verbindungen der Formel (I), worin die Substituenten und Laufzahlen folgendes bedeuten:

$$A = SO_2$$
 $B = CH_2-CH_2$ $R^3 = H$
 $R^4 = H$ $Y = CH_2$ $Z = CH_2$
 $R^7 = R^A, R^B, R^C, R^D$ $Q = Rest der Formel (II)$
 $I = 1$ $V = 1$

Nr.	RA, RB	R ^C , R ^D	R ¹	R ²	X		R ⁵	Physikalische Daten
1058	H, H	н, н	Н	H	S	Bindung		¹ H NMR (CDCl ₃): δ 2.1 (m,2H), 2.4 (m,2H), 2.7 (m,2H), 2.8 (m,1H), 3.05

Nr.	RA, RB	RC, RD	R¹	R ²	X	E	R ⁵	Physikalische Däten
								(m,1H), 3.4 (m,1H), 3.9 (m,1H), 5,62 (m,1H), 7.1 (m,1H), 7.18 (d,1H), 7.65 (m,1H), 7,7 (s,1H), 7,95 (m,1H), 8.5 (m,1H)
1059	H, H	Н, Н	Ме	Ме	S	Bindung	2-Methyl-1,3,4- thiadiazol-5-yl	¹ H NMR (CDCl ₃): δ 2.05 (m,2H), 2.35 (s,3H), 2.45 (m,2H), 2.7 (m,2H), 2,75 (s,3H), 2.8 (s,3H), 2.95 (m,3H), 3.45 (m,1H), 4.15 (m,1H), 5,7 (m,1H), 6.96 (s,1H)
1060	н, н	н, н	Η	Н	S	Bindung	2-Pyrimidinyl	Fp. 133° C
1061	H, H	Н, Н	Ме	Ме	0	Bindung	3-Cyano-2- pyridyl	Fp. 232-238° C
1062	Me, Me	Н, Н	Ме	Ме	0	Bindung	3-Cyano-2- pyridyl	Fp. 141-144° C
1063	н, н	Н, Н	Me	Me	0	Bindung	3-Nitro-2- pyridyl	Fp. 158° C
1064	Ме, Ме	H, H	Ме	Ме	0	Bindung	4,6-Dimethoxy- 2-pyrimidinyl	Fp. 133-136° C
1065	Н, Н	Me, Me	Ме	Ме	0	Bindung	2-Pyrimidinyl	¹ H NMR (CDCl ₃): δ 1.3 (m,2H), 1.9 (m,2H), 2.05 (s,3H), 2.38 (s,3H), 2.8 (m,4H), 3.2 (m,1H), 3.9 (m,1H), 6.45 (m,1H), 6.98 (s,1H), 7.05 (m,1H), 8.6 (m,1H)
1066	Н, Н	н, н	Ме	Ме	0	Bindung	Ph	¹ H NMR (CDCl ₃): δ 1.95 (s,3H), 2.1 (m,2H), 2.6 (m,4H), 2.7 (s,3H), 2.7 (m,2H), 3.15 (m,1H), 3.5 (m,1H), 3.65 (s,2H), 6.1 (m,1H), 6.98 (s,1H), 7.3 (m,5H)
1067	н, н	Н, Н	Me	Me	0	Bindung	3-Fluor-4-nitro- phenyl	Fp. 236-238° C

Tabelle 11: Erfindungsgemäße Verbindungen der Formel (I), worin die Substituenten und Laufzahlen folgendes bedeuten:

$$A = SO_2$$
 $B = CH_2-CH_2$ $R^1 = CH_3$
 $R^2 = CH_3$ $R^3 = H$ $R^4 = H$
 $R^{11} = H$ $Q = Rest der Formel (III)$

Nr.	R	R ¹⁰	X	E	R ⁵	Physikalische Daten
1068	Ме	Ме	0	Bindung	3-Nitro-6-pyridyl	Fp. 149° C
1069	Ме	Ме	0	Bindung	3-Fluor-4-nitrophenyl	Fp. 159° C
1070	Ме	Ме	0	Bindung	2-Nitrophenyl	Fp. 165° C
1071	Ме	Ме	S	Bindung	2-Pyrimidinyl	¹ H NMR (CDCl ₃): δ 1.75 (s,3H), 2.1 (s,3H), 2.8 (s,3H), 2.8 (m,1H), 2.95 (m,1H), 3.4 (m,1H), 3.65 (s,3H), 4.2 (m,1H), 5.45 (m,1H), 7.1 (t,1H), 7.25 (2,1H), 8.6 (d,2H)
1072	Me	Me	0	Bindung	2-Pyrimidinyl	¹ H NMR (CDCl ₃): δ 1.75 (s,3H), 2.12 (s,3H), 2.8 (s,3H), 2.82 (m,2H), 3.3 (m,1H), 3.95 (m,1H), 6.45 (m,1H), 7.05 (t,1H), 7.22 (s,1H), 7.32 (s,1H), 8.6 (d,2H)
1073	Me	Ме	0	Bindung	4,6-Dimethoxy-2- pyrimidinyl	¹ H NMR (CDCl ₃): δ 1.75 (s,3H), 2.12 (s,3H), 2.45 (s,6H), 2.8 (s,3H), 2.82 (m,2H), 3.25 (m,1H), 3.98 (m,1H), 6.45 (m,1H), 6.78 (s,1H), 7.2 (s,1H), 7.45 (s,1H)
1074	Ме	Et	0	Bindung	1,4-Diazinyl	¹ H NMR (CDCl _s): δ 1.45 (t,3H), 2.2 (s,3H), 2.85 (s,3H), 2.85 (m,2H), 3.3 (m,1H), 3.85 (m,1H), 4.05 (quartett,2H), 6.5 (m,1H), 7.35 (s,1H), 7.4 (s,1H), 8.15 (m,1H), 8.25 (m,2H)
1075	H	Me	0	Bindung	2-Pyrimidinyl	¹ H NMR (CDCl ₃): δ 1.45 (t,3H), 2.25 (s,3H), 2.82 (s,3H), 2.85 (m,2H), 3.25 (m,1H), 3.95 (m,1H), 4.05 (quartett,2H), 6.45 (m,1H), 7.05 (m,1H), 7.35 (s,1H), 7.38 (s,1H), 8.6 (m,2H)

Tabelle 12: Erfindungsgemäße Verbindungen der Formel (I), worin die Substituenten und Laufzahlen folgendes bedeuten:

$$A = SO_2$$
 $B = CH_2-CH_2$ $E = Bindung$
 $R^1 = CH_3$ $R^2 = CH_3$ $R^3 = H$
 $R^4 = H$ $R^6 = OH$ $Y = CH_2$
 $Z = CH_2$ $Q = Rest der Formel (II) $I = 0$
 $V = 1$ $W = 0$$

NF.	R ⁸	Physikalische Daten
1076	1-Pyrazolyl	Fp. 213-218° C
1077	1,2,3-Triazol-2-yl	¹ H NMR (CDCl ₃): δ 1.8 (s,3H), 2.05 (m,2H), 2.42 (m,2H), 2.78 (m,3H), 2.8 (s,3H), 3.08 (m,1H), 3.2 (m,1H), 3.6 (m,1H), 6.15 (m,1H), 7.02 (s,1H), 7.65 (s,2H)
1078	1,2,3-Triazol-1-yl	$R_t = 0.05$ (SiO ₂ ; Essigester)
1079	3-Methyl-pyrazol-1-yl	
1080	1,2,4-Triazol-1-yl	R _t = 0.04 (SiO ₂ ; Essigester)
1081	3-Trifluormethyl-pyrazol-1-yl	R _t = 0.33 (SiO ₂ ; Essigester)
1082	3,5-Dimethyl-pyrazol-1-yl	Fp. 176-181° C
1083	4-Methyl-pyrazol-1-yl	Fp. 138-142° C
1084	4-Brom-pyrazol-1-yl	R _t = 0.26 (SiO ₂ ; Essigester)
1085	1-Pyrrolyl	
1086	1-Imidazolyl	
1087	2-Nitro-imidazol-1-yl	
1088	4-Nitro-imidazol-1-yl	Fp. 162-172° C
1089	2-Cyano-pyrrol-1-yl	

Nr.	R ⁵	Physikalische Daten
1090	2-Methyl-2-nitro-imidazol-1-yl	
1091	0-N=	¹ H NMR (CDCl ₃): δ 1.75 (m,4H), 2.05 (m,2H), 2.4 (m,5H), 2.65 (m,2H), 2.75 (s,3H), 2.8 (m,3H), 3.2 (m,1H), 3.75 (m,1H), 5,3 (m,1H), 6.95 (s,1H)
1092	0-N=	R _t = 0.31 (SiO ₂ ; Essigester)
1093	O-N= CH ₃	R _t = 0.25 / 0.33 (cis / trans); (SiO ₂ ; Essigester)
1094	O-N=CH ₃ CH ₃	R _t = 0.36 (SiO ₂ ; Essigester)
1095	O-N=CH ₃	R _t = 0.39 (SiO ₂ ; Essigester)
1096	P(O)(OEt) ₂	¹ H NMR (CDCl ₃): δ 1.2 (t,3H), 1.3 (t,3H), 2.03 (m,2H), 2.35 (s,3H), 2.42 (m,2H), 2.75 (s,3H), 2.75 (m,4H), 3.38 (m,1H), 3.8-4.25 (m,6H), 6.9 (s,1H)
1097	P(O)(OMe) ₂	
1098	P(O)(O-i-Pr) ₂	
1099	P(O)(O-c-Pr) ₂	
1100	ОН	¹ H NMR (CDCl ₃): δ 2.05 (m,2H), 2.25 (s,3H), 2.3 (m,2H), 2.55 (m,2H), 2.65 (s,3H), 2.65 (m,2H), 3.2 (m,1H), 3.85 (m,1H), 5.0 (m,1H), 6.9 (s,1H)

Tabelle 13: Erfindungsgemäße Verbindungen der Formel (I), worin die Substituenten und Laufzahlen folgendes bedeuten:

$$A = SO_2$$
 $B = CH_2-CH_2$ $R^1 = CH_3$ $R^2 = CH_3$ $R^3 = H$ $R^4 = H$ $R^4 = c-Pr$ $Q = Rest der Formel (III) mit $G^1-G^2 = OCR^9$$

Nr.	415	X=	E	R ⁵ /	Physikalische Daten
1101	1	0	Bindung	1,4-Diazinyl	¹ H NMR (CDCl ₃): δ 1.2-1.4 (m,4H), 2.18 (s,3H), 2.61 (m,1H), 2.81 (s,3H), 2.85 (m,2H), 3.35 (m,1H), 3.85 (m,1H), 6.52 (m,1H), 7.35 (s,1H), 8.18 (m,2H), 8.25 (m,2H)
1102	1	0	Bindung	4,6-Dimethoxy-2- pyrimidinyl	¹ H NMR (CDCl ₃): δ 1.2-1.4 (m,4H), 2.25 (s,3H), 2.45 (m,1H), 2.8 (s,3H), 2.8 (m,1H), 2.8-3.2 (m,2H), 3.3 (m,1H), 3.95 (m,1H), 3.95 (s,6H), 6.4 (m,1H), 7.3 (s,1H), 8.2 (s,1H)
1103	1	0	Bindung	2-Pyrimidinyl	
1104	0		Bindung	1-Pyrazolyl	
1105	0		Bindung	1,2,3-Triazol-2-yl	

Tabelle 14: Erfindungsgemäße Verbindungen der Formel (I), worin die Substituenten und Laufzahlen folgendes bedeuten:

$$A = SO_2$$
 $B = CH_2-CH_2$ $R^1 = CH_3$
 $R^2 = CH_3$ $R^3 = H$ $R^4 = H$
 $Q = Rest der Formel (IV)$ $R^9 = c-Pr$

Nr.	L.	X.	E	R ^a	Physikalische Daten
1106	1	0	Bindung	1,4-Diazinyl	¹ H NMR (CDCl ₃): δ 1.3 (m,2H), 1.42 (m,2H), 2.22 (s,3H), 2.38 (m,1H), 2.82 (m,3H), 3.3 (m,1H), 3.8 (m,1H), 6.5 (m,1H), 7.42 (s,1H), 8.2 (m,1H), 8.25 (m,2H), 8.25 (s,1H)
1107	1	0	Bindung	2-Pyrimidinyl	
1108	0		Bindung	1-Pyrazolyl	

Tabelle 15: Erfindungsgemäße Verbindungen der Formel (I), worin die Substituenten und Laufzahlen folgendes bedeuten:

$$A = SO_2$$
 $B = CH_2-CH_2$ $E = Bindung$
 $R^1 = CH_3$ $R^2 = CH_3$ $R^3 = H$
 $R^4 = H$ $R^6 = OH$ $Y = CH_2$
 $Z = CH_2$ $Q = Rest der Formel (II) $I = 0$
 $V = 1$ $W = 0$$

Nr.		X	E	Residence de la lace	R ¹¹
1109	1	0	Bindung	1,4-Diazinyl	Bz
1110	1	0	Bindung	1,4-Diazinyl	4-Me-PhC(O)
1111	1	0	Bindung	1,4-Diazinyl	MeSO ₂
1112	1	0	Bindung	1,4-Diazinyl	EtSO ₂
1113	1	0	Bindung	1,4-Diazinyl	PrSO ₂
1114	1	0	Bindung	1,4-Diazinyl	PhSO ₂
1115	1	0	Bindung	1,4-Diazinyl	4-Me-PhSO ₂
1116	1	0	Bindung	2-Pyrimidinyl	Bz
1117	1	0	Bindung	2-Pyrimidinyl	4-Me-PhC(O)
1118	1	0	Bindung	2-Pyrimidinyl	MeSO ₂
1119	1	0	Bindung	2-Pyrimidinyl	EtSO ₂
1120	1	0	Bindung	2-Pyrimidinyl	PrSO ₂
1121	1	0	Bindung	2-Pyrimidinyl	PhSO ₂

Nr.	1/3	X		R	R ¹¹
1122	1	0	Bindung	2-Pyrimidinyl	4-Me-PhSO ₂
1123	0		Bindung	1-Pyrazolyl	Bz
1124	0		Bindung	1-Pyrazolyl	4-Me-PhC(O)
1125	0		Bindung	1-Pyrazolyl	MeSO ₂
1126	0		Bindung	1-Pyrazolyl	EtSO ₂
1127	0		Bindung	1-Pyrazolyl	PrSO ₂
1128	0		Bindung	1-Pyrazolyl	PhSO ₂
1129	0		Bindung	1-Pyrazolyl	4-Me-PhSO ₂

114

Tabelle 16: Erfindungsgemäße Verbindungen der Formel (I), worin die Substituenten und Laufzahlen folgendes bedeuten:

Α	$= SO_2$	В	=	CH ₂ -CH ₂	R^1	=	CH ₃
\mathbb{R}^2	= CH ₃	R^3	=	н	R ⁴	=	Н
R ⁷	= H	Υ	=	CH ₂			CH ₂
Q	= Rest der Form	nel (II)		v	=	1

Nr.	J.	×	FELS CALL	R's and a second	R ^e
1130	1	0	Bindung	1,4-Diazinyl	MeS
1131	1	0	Bindung	1,4-Diazinyl	EtS
1132	1	0	Bindung	1,4-Diazinyl	PrS
1133	1	0	Bindung	1,4-Diazinyl	MeSO ₂
1134	1	0	Bindung	1,4-Diazinyl	EtSO ₂
1135	1	0	Bindung	2-Pyrimidinyl	MeS
1136	1	0	Bindung	2-Pyrimidinyi	EtS
1137	1	0	Bindung	2-Pyrimidinyl	PrS
1138	1	0	Bindung	2-Pyrimidinyl	MeSO ₂
1139	1	0	Bindung	2-Pyrimidinyl	EtSO ₂
1140	0		Bindung	1-Pyrazolyl	MeS
1141	0		Bindung	1-Pyrazolyl	EtS
1142	0		Bindung	1-Pyrazoiyl	PrS
1143	0		Bindung	1-Pyrazolyl	MeSO ₂
1144	0		Bindung	1-Pyrazolyl	EtSO ₂

115

Tabelle 17: Erfindungsgemäße Verbindungen der Formel (I), worin die Substituenten und Laufzahlen folgendes bedeuten:

$$A = SO_2$$
 $B = CH_2$ $R^3 = H$
 $R^4 = H$ $R^6 = OH$ $Y = CH_2$
 $Z = CH_2$ $v = 1$ $w = 0$

Ñr.	R¹.	R ² ··	مان ا	X	E	R ⁵	Physikalische Daten
1145	Ме	Me	0		Bindung	1-Pyrazolyl	¹ H NMR (CDCl ₃): δ 1.9 (m,3H), 2.05 (m,2H), 2.42 (m,2H), 2.65 (s,3H), 2.8 (m,2H), 3.65 (m,1H), 3.98 (m,1H), 6.25 (m,1H), 6.28 (m,1H), 7.1 (s,1H), 7.2 (m,1H), 7.59 (m,1H)
1146	Me	Ме	0		Bindung	1,2,4-Pyrazol-1-yl	
1147	Me	Ме	1	0	Bindung	Ph	¹ H NMR (CDCl ₃): δ 2.05 (m,2H), 2.18 (s,3H), 2.42 (m,2H), 2.6 (m,2H), 2.8 (m,2H), 3.65 (m,2H), 4.58 (s,2H), 5.38 (m,1H), 7.01 (s,1H), 7.35 (m,5H)
1148	Me	Ме	1	0	Bindung	2-Pyrimidinyl	
1149	Ме	Me	1	0	Bindung	1,4-Diazinyl	
1150	Ме	Ме	1	0	Bindung	3-Cyano-2-pyridyl	
1151	Ме	Н	0		Bindung	1-Pyrazolyl	
1152	Ме	Н	0		Bindung	1,2,4-Pyrazol-1-yl	
1153	Me	Н	1	0	Bindung	Ph	
1154	Me	Н	1	0	Bindung	2-Pyrimidinyl	
1155	Me	Н	1	0	Bindung	1,4-Diazinyl	
1156	Me	Н	1	0	Bindung	3-Cyano-2-pyridyl	
1157	Me	CI	0		Bindung	1-Pyrazolyl	
1158	Ме	CI	0		Bindung	1,2,4-Pyrazoi-1-yi	

Nr.	R ¹	R ²	1	x	E	R ⁵	Physikalische Daten
1159	Ме	CI	1	0	Bindung	Ph	
1160	Me	CI	1	0	Bindung	2-Pyrimidinyl	
1161	Ме	CI	1	0	Bindung	1,4-Diazinyl	
1162	Me	CI	1	0	Bindung	3-Cyano-2-pyridyl	
1163	CI	CI	0		Bindung	1-Pyrazolyl	
1164	CI	CI	0		Bindung	1,2,4-Pyrazol-1-yl	
1165	CI	CI	1	0	Bindung	Ph	
1166	CI	CI	1	0	Bindung	2-Pyrimidinyl	
1167	CI	CI	1	0	Bindung	1,4-Diazinyl	
1168	CI	CI	1	0	Bindung	3-Cyano-2-pyridyl	
1169	CI	Н	0		Bindung	1-Pyrazolyl	
1170	CI	Н	0		Bindung	1,2,4-Pyrazol-1-yl	
1171	CI	Н	1	0	Bindung	Ph	
1172	ō	Н	1	0	Bindung	2-Pyrimidinyl	
1173	CI	Н	1	0	Bindung	1,4-Diazinyl	
1174	CI	Н	1	0	Bindung	3-Cyano-2-pyridyl	

B. Formulierungsbeispiele

1. Stäubemittel

Ein Stäubemittel wird erhalten, indem man 10 Gew.-Teile einer Verbindung der allgemeinen Formel (I) und 90 Gew.-Teile Talkum als Inertstoff mischt und in einer Schlagmühle zerkleinert.

2. Dispergierbares Pulver

Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gewichtsteile einer Verbindung der allgemeinen Formel (I), 64 Gewichtsteile kaolinhaltigen Quarz als Inertstoff, 10 Gewichtsteile ligninsulfonsaures Kalium und 1 Gew.-Teil oleoylmethyltaurinsaures Natrium als Netz- und Dispergiermittel mischt und in einer Stiftmühle mahlt.

3. Dispersionskonzentrat

Ein in Wasser leicht dispergierbares Dispersionskonzentrat wird erhalten, indem man 20 Gewichtsteile einer Verbindung der allgemeinen Formel (I), 6 Gew.-Teile Alkylphenolpolyglykolether (®Triton X 207), 3 Gew.-Teile Isotridecanolpolyglykolether (8 EO) und 71 Gew.-Teile paraffinischem Mineralöl (Siedebereich z.B. ca. 255 bis über 277°C) mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlt.

4. Emulgierbares Konzentrat

Ein emulgierbares Konzentrat wird erhalten aus 15 Gew.-Teilen einer Verbindung der allgemeinen Formel (I), 75 Gew.Teilen Cyclohexanon als Lösemittel und 10 Gew.-Teilen oxethyliertes Nonylphenol als Emulgator.

5. Wasserdispergierbares Granulat

Ein in Wasser dispergierbares Granulat wird erhalten, indem man 75 Gew.-Teile einer Verbindung der allgemeinen Formel(I),

- 10 " ligninsulfonsaures Calcium,
- 5 " Natriumlaurylsulfat,
- 3 " Polyvinylalkohol und
- 7 " Kaolin

mischt, auf einer Stiftmühle mahlt und das Pulver in einem Wirbelbett durch Aufsprühen von Wasser als Granulierflüssigkeit granuliert.

Ein in Wasser dispergierbares Granulat wird auch erhalten, indem man 25 Gew.-Teile einer Verbindung der allgemeinen Formel (I),

- 5 " 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium,
- 2 " oleoylmethyltaurinsaures Natrium,
- 1 " Polyvinylalkohol,
- 17 " Calciumcarbonat und

50 " Wasser

auf einer Kolloidmühle homogensiert und vorzerkleinert, anschließend auf einer Perlmühle mahlt und die so erhaltene Suspension in einem Sprühturm mittels einer Einstoffdüse zerstäubt und trocknet.

C. Biologische Beispiele

1. Unkrautwirkung im Vorauflauf

Samen von mono- und dikotylen Unkrautpflanzen werden in Papptöpfen in sandiger Lehmerde ausgelegt und mit Erde abgedeckt. Die in Form von benetzbaren Pulvern oder Emulsionskonzentraten formulierten erfindungsgemäßen Verbindungen werden dann als wäßrige Suspension bzw. Emulsion mit einer Wasseraufwandmenge von umgerechnet 600 bis 800 l/ha in einer Dosierung von umgerechnet 1 kg Aktivsubstanz oder weniger pro Hektar auf die Oberfläche der Abdeckerde appliziert. Nach der Behandlung werden die Töpfe im Gewächshaus aufgestellt und unter guten Wachstumsbedingungen für die Unkräuter gehalten. Die optische Bonitur der Pflanzen- bzw. Auflaufschäden erfolgt nach dem Auflaufen der Versuchspflanzen nach einer Versuchszeit von 3 bis 4 Wochen im Vergleich zu unbehandelten Kontrollen. Dabei zeigen beispielsweise die Verbindungen der Beispiele Nr. 7 und 11 eine mindestens 80 %ige Wirkung gegen Stellaria media, Avena fatua, Lolium multiflorum und Setaria viridis. Die Verbindungen der Beispiele Nr. 2, 3, 4, 7, 11 und 12 zeigen eine mindestens 90 %ige Wirkung gegen Amaranthus retroflexus, Sinapis arvensis und Setaria viridis. Die Verbindungen der Beispiele Nr. 1, 2, 6, 7 und zeigen eine 100 %ige Wirkung gegen Amaranthus retroflexus und Stellaria media.

2. Unkrauktwirkung im Nachauflauf

Samen von mono- und dikotylen Unkräutern werden in Papptöpfen in sandigem Lehmboden ausgelegt, mit Erde abgedeckt und im Gewächshaus unter guten Wachstumsbedingungen angezogen. Zwei bis drei Wochen nach der Aussaat werden die Versuchspflanzen im Dreiblattstudium behandelt. Die als Spritzpulver bzw. als Emulsionskonzentrate formulierten erfindungsgemäßen Verbindungen

werden in einer Dosierung von umgerechnet 1 kg Aktivsubstanz oder weniger pro Hektar mit einer Wasseraufwandmenge von umgerechnet 600 bis 800 I/ha auf die grünen Pflanzenteile gesprüht. Nach 3 bis 4 Wochen Standzeit der Versuchspflanzen im Gewächshaus unter optimalen Wachstumsbedingungen wird die Wirkung der Präparate im Vergleich zu unbehandelten Kontrollen bonitiert. Die erfindungsgemäßen Mittel weisen auch im Nachauflauf eine gute herbizide Wirksamkeit gegen ein breites Spektrum wirtschaftlich wichtiger Ungräser und Unkräuter auf. Beispielsweise zeigen die Verbindungen der Beispiele Nr. 3, 9, 10, 11 und 12 eine mindestens 90 %ige Wirkung gegen Sinapis arvensis. Die Verbindungen der Beispiele Nr. 1, 4, 7 und 10 zeigen eine mindestens 80 %ige Wirkung gegen Stellaria media und Setaria viridis. Die Verbindungen der Beispiele Nr. 6 und 9 zeigen eine mindestens 80 %ige Wirkung gegen Avena fatua und Amaranthus retroflexus.

3. Wirkung auf Schadpflanzen in Reis

Typische Schadpflanzen in Reiskulturen werden im Gewächshaus unter Paddyreis-Bedingungen (Anstauhöhe des Wassers: 2 – 3 cm) angezogen. Nach der Behandlung mit den formulierten erfindungsgemäßen Verbindungen in einer Dosierung von umgerechnet 1 kg Aktivsubstanz oder weniger pro Hektar werden die Versuchspflanzen im Gewächshaus unter optimalen Wachstumsbedingungen aufgestellt und während der gesamten Versuchszeit so gehalten. Etwa drei Wochen nach der Applikation erfolgt die Auswertung mittels optischer Bonitur der Pflanzenschäden im Vergleich zu unbehandelten Kontrollen. Die erfindungsgemäßen Verbindungen weisen sehr gute herbizide Wirkung gegen Schadpflanzen auf. Dabei zeigen beispielsweise die Verbindungen der Beispiele Nr. 2, 4, 7, 11 und 12 eine mindestens 80 %ige Wirkung gegen Cyperus iria und Echinocioa crus-galli.

4. Kulturpflanzenverträglichkeit

In weiteren Versuchen im Gewächshaus werden Samen einer größeren Anzahl von Kulturpflanzen und Unkräutern in sandigem Lehmboden ausgelegt und mit Erde abgedeckt. Ein Teil der Töpfe wird sofort wie unter Abschnitt 1 beschrieben

behandelt, die übrigen im Gewächshaus aufgestellt, bis die Pflanzen zwei bis drei echte Blätter entwickelt haben und dann wie unter Abschnitt 2 beschrieben mit den erfindungsgemäßen Substanzen der Formel (I) in unterschiedlichen Dosierungen besprüht. Vier bis fünf Wochen nach der Applikation und Standzeit im Gewächshaus wird mittels optischer Bonitur festgestellt, daß die erfindungsgemäßen Verbindungen zweikeimblättrige Kulturen wie z.B. Soja und Zuckerrüben im Vor- und Nachauflaufverfahren in der Regel selbst bei hohen Wirkstoffdosierungen ungeschädigt oder nahezu ungeschädigt lassen. Einige Substanzen schonen darüber hinaus auch Gramineen-Kulturen wie z.B. Gerste, Weizen und Reis. Die Verbindungen der Formel (I) zeigen teilsweise eine hohe Selektivität und eignen sich deshalb zur Bekämpfung von unerwünschten Pflanzenwuchs in landwirtschaftlichen Kulturen.

Patentansprüche:

1. Benzoylderivate der allgemeinen Formel (I),

$$Q = \begin{pmatrix} R^1 & (X) \\ R^2 & R^4 \end{pmatrix}$$

$$R^3 = \begin{pmatrix} R^4 & R^4 \\ R^2 & R^4 \end{pmatrix}$$

$$R^3 = \begin{pmatrix} R^4 & R^4 \\ R^2 & R^4 \end{pmatrix}$$

$$R^4 = \begin{pmatrix} R^4 & R^4 \\ R^2 & R^4 \end{pmatrix}$$

worin

Q einen Rest der Formel (II), (III) oder (IV)

R¹, R², R³ unabhängig voneinander Wasserstoff, Hydroxy, Thio, Amino, Cyano, Nitro, Halogen oder einen gegebenenfalls substituierten Kohlenwasserstoff-Rest, der gegebenenfalls zusätzlich ein oder mehrere, gleiche oder verschiedene

Heteroatome aus der Gruppe Sauerstoff, Schwefel, Stickstoff, Fluor, Chlor, Brom und Jod enthält;

R⁴ Wasserstoff, Cyano, Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Alkoxycarbonyl, Phenyl, wobei die sechs letztgenannten Gruppen gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, Nitro, Cyano, Alkyl, Cycloalkyl, Alkenyl, Alkinyl, Alkoxy und Alkylthio substituiert sind;

ein gegebenenfalls ein- oder mehrfach durch gleiche oder verschiedene Reste substituiertes Heteroaryl, Heterocyclyl oder Aryl, oder einen Rest aus der Gruppe -O-N=CR^IR^m, -P(=O)(ORⁱ)(R^j), -P(=O)(ORⁱ)(OR^k) oder

oder, für den Fall, daß E für eine Bindung und I für null steht, kann R⁵ auch für Hydroxy stehen,

A eine divalente Einheit aus der Gruppe O, S, SO, SO₂, NR^a, CHR^a und CR^aR^b;

eine gesättigte oder eine ein oder mehrere Mehrfachbindungen enthaltende und aus ein bis vier Kohlenstoffatomen bestehende Kette, die gegebenenfalls durch Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy oder durch einen gegebenenfalls durch Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Halogen, Cyano oder Nitro substituierten Phenylrest substituiert ist;

eine Bindung, eine gesättigte oder eine ein oder mehrere Mehrfachbindungen enthaltende ein- bis sechsgliedrige Kette bestehend aus divalenten Einheiten der Gruppe C, CR^c, CR^cR^d, N, NR^c, S, SO, SO₂, O und CO;

X eine divalente Einheit aus der Gruppe O, S und NRe;

- R⁶ Alkylthio, Halogenalkylthio, Alkylsulfinyl, Halogenalkylsulfinyl, Alkylsulfonyl, Halogenalkylsulfonyl, Cyano, Cyanato, Thiocyanato, Halogen oder OR^f;
- Y eine divalente Einheit aus der Gruppe O, S, NH, N-Alkyl oder CHR⁷;
- R⁷ Wasserstoff, Tetrahydropyran-3-yl, Tetrahydropyran-4-yl, Tetrahydrothiopyran-3-yl, Alkyl, Cycloalkyl, Alkoxy, Alkoxyalkyl, Alkylcarbonyl, Alkoxycarbonyl, Alkylthio, Phenyl, wobei der Kohlenwasserstoffteil der acht letztgenannten Reste gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, Alkylthio und Alkyloxy substituiert ist, oder

zwei an einem gemeinsamen Kohlenstoffatom gebundene Reste R⁷ bilden eine Kette aus der Gruppe OCH₂CH₂O, OCH₂CH₂O, SCH₂CH₂S und SCH₂CH₂CH₂S, wobei diese gegebenenfalls durch ein bis vier Methylgruppen substituiert ist, oder

zwei an direkt benachbarten Kohlenstoffatomen gebundene Reste R⁷ bilden eine Bindung oder bilden mit dem sie tragenden Kohlenstoffatomen einen gegebenenfalls substituierten 3- bis 6-gliedrigen Ring;

- Z eine Bindung, eine divalente Einheit aus der Gruppe O, S, SO, SO₂, NH, N-Alkyl oder CHR⁷, wobei Y und Z nicht gleichzeitig eine divalente Einheit bedeuten sollen, die als Kettenglied ein Sauerstoff-, Stickstoff- oder Schwefelatom enthält;
- G¹-G² eine divalente Einheit aus der Gruppe OCR⁹, SCR⁹ und NR¹0COR¹¹, wobei die Verknüfung mit dem Ringsystem so erfolgen soll, daß das Kohlenstoffatom dieser divalenten Einheit jeweils über eine Doppelbindung an das Kohlenstoffatom des Ringsystems gebunden ist;
- R⁸ Wasserstoff, Alkyl oder Alkoxycarbonyl;
- R⁹ Wasserstoff, Alkyl, Cycloalkyl, Halogenalkyl oder Halogencycloalkyl;

- R¹⁰ Wasserstoff, Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Phenyl, Benzyl, wobei die sechs letztgenannten Gruppen gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, Cyano, Nitro und Alkoxy substituiert sind;
- R¹¹ Wasserstoff, Formyl, Alkyl, Halogenalkyl, Alkoxyalkyl oder eine Gruppe L-R¹²;
- L eine divalente Einheit aus der Gruppe SO₂, CO, CHR⁹CO oder CR⁹R^h;
- R¹² Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Alkylamino, Dialkylamino, Cycloalkyl oder ein gegegenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Cyano, Nitro, Alkyl, Alkoxy, Halogenalkyl und Halogenalkoxy substituiertes Phenyl;

R^a und R^b unabhängig voneinander Wasserstoff, Halogen, Cyano, Nitro, Formyl, Alkyl, Cycloalkyl, Alkenyl, Alkinyl, Alkylcarbonyl und Alkylsulfonyl, wobei der Kohlenwasserstoffteil der sechs letztgenannten Reste gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, Nitro, Cyano, Alkyl, Cycloalkyl, Alkenyl, Alkinyl, Alkoxy und Alkylthio substituiert ist;

R^c und R^d unabhängig voneinander Wasserstoff, Halogen, Nitro, Cyano, Alkyl, Halogenalkyl, Cycloalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Halogenalkinyl, Alkoxy, Halogenalkoxy, Alkylthio, Halogenalkylthio, Alkylcarbonyl, Halogenalkylcarbonyl, Alkoxycarbonyl, Halogenalkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl, Dialkylaminocarbonyl, Halogenalkylcarbonylamino, Alkylcarbonyl-N-alkylamino, Alkylsulfonyl, Alkylsulfonylamino, Halogenalkylsulfonyl, Halogenalkylsulfonyl, Alkylsulfonylamino und Alkylsulfonyl-N-alkylamino;

R^e Wasserstoff, Formyl, Alkyl, Cycloalkyl, Alkenyl, Alkinyl, Alkylcarbonyl und Alkylsulfonyl, wobei der Kohlenwasserstoffteil der sechs letztgenannten Reste gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der

Gruppe Halogen, Nitro, Cyano, Alkyl, Cycloalkyl, Alkenyl, Alkinyl, Alkoxy und Alkylthio substituiert sein können;

Rf Wasserstoff, Alkyl, Halogenalkyl, Alkoxyalkyl, Formyl, Alkylcarbonyl, Alkoxycarbonyl, Alkylaminocarbonyl, Dialkylaminocarbonyl, Alkylsulfonyl, Halogenalkylsulfonyl, Benzoyl oder Phenylsulfonyl, wobei der aromatische Teil der zwei letztgenannten Reste gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Halogen, Cyano und Nitro substituiert ist;

R^g und R^h unabhängig voneinander Wasserstoff oder Alkyl;

Ri und Rk unabhängig voneinander Wasserstoff oder Ri;

R^j Alkyl, Alkenyl, Halogenalkyl, Halogenalkenyl, Phenyl, Benzyl, wobei diese sechs genannten Reste gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, Cyano, Nitro, (C₁-C₄)-Alkyl, (C₁-C₄)-Alkoxy, Halogen-(C₁-C₄)-alkyl oder Halogen-(C₁-C₄)-alkoxy substituiert sind;

R^I und R^m unabhängig voneinander Wasserstoff oder durch ein oder mehrere, gleiche oder verschiedene Reste R¹ substituiertes Alkyl, Alkenyl, Alkinyl, Halogenalkyl, Halogenalkenyl oder Halogenalkinyl, oder R^I und R^m bilden zusammen mit dem Kohlenstoffatom, an dem sie gebunden sind, einen 3-, 4-, 5-, 6-, 7- oder 8-gliedrigen gesättigten oder teilweise ungesättigten Ring, der gegebenenfalls ein bis drei Heteroatome aus der Gruppe Sauerstoff, Schwefel und Stickstoff enthält und der gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste R¹ substituiert ist;

- 1 0 oder 1;
- m 0, 1 oder 2;

- n 0, 1, 2 oder 3;
- v 1 oder 2:
- w 0, 1, 2, 3 oder 4

bedeuten,

mit der Maßgabe, daß

- a) die Verbindung 4-[2-Tetrahydrofuryl]methyloxy-5,8-dimethyl-6-[(2,6-dioxo-cyclohexyl)carbonyl]-1,2,3,4-tetrahydro-1λ⁶-thiochromen-1,1-dion nicht von obiger Definition umfaßt sein soll, und
- b) in R⁵ Aryl nicht Phenyl bedeuten soll, wenn E für Methylen und G¹ in G¹-G² für Schwefel steht.
- 2. Benzoylderivate nach Anspruch 1, worin

R¹, R², R³ unabhängig voneinander Wasserstoff, Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Cycloalkylalkenyl, Cycloalkylalkinyl, Aryl, Arylalkyl, Cycloalkylalkinyl, Cycloalkylalkinyl, Aryl, Arylalkyl, Arylalkenyl, Arylalkinyl, Heteroaryl, Heteroarylalkyl, Heteroarylalkenyl, Heteroarylalkinyl, Heterocyclylalkyl, Heterocyclylalkenyl, Heterocyclylalkinyl, Hydroxy, Alkoxy, Alkenyloxy, Alkinyloxy, Cycloalkoxy, Cycloalkoxy, Cycloalkylalkoxy, Cycloalkylalkinyloxy, Cycloalkylalkinyloxy, Aryloxy, Arylalkoxy, Arylalkenyloxy, Arylalkinyloxy, Heteroaryloxy, Heteroarylalkoxy, Heteroarylalkenyloxy, Heterocyclylalkinyloxy, Heterocyclylalkoxy, Heterocyclylalkenyloxy, Heterocyclylalkinyloxy, Thio, Alkylthio, Alkenylthio, Alkinylthio, Cycloalkylalkinylthio, Cycloalkylalkinylthio, Cycloalkylalkinylthio, Arylalkenylthio, Arylalkenylthio, Arylalkinylthio, Heteroarylalkinylthio, Heteroarylalkylthio, Heterocyclylalkenylthio, Heterocyclylalkinylthio, Heterocyclylalkenylthio, Heterocyclylalkinylthio, Heterocyclylalkinylthio, Heterocyclylalkenylthio, Heterocyclylalkinylthio, Amino, gegebenenfalls substituiertes Mono- oder

Dialkylamino, gegebenenfalls substituiertes Mono- oder Diarylamino, gegebenenfalls substituiertes Mono- oder Di-Heteroarylamino, gegebenenfalls substituiertes N-Alkyl-N-arylamino, gegebenenfalls substituiertes N-Alkyl-N-Heteroarylamino, Alkenylamino, Alkinylamino, Cycloalkylamino, Cycloalkenylamino, Heterocyclylalkylamino, Heterocyclylalkenylamino, Alkylsulfonyl, Alkenylsulfonyl, Alkinylsulfonyl, Cycloalkylsulfonyl, Cycloalkylsulfonyl, Cycloalkylsulfonyl, Cycloalkylsulfonyl, Cycloalkylalkinylsulfonyl, Arylsulfonyl, Arylalkylsulfonyl, Arylalkenylsulfonyl, Arylalkinylsulfonyl, Heteroarylsulfonyl, Heteroarylalkylsulfonyl, Heteroarylalkenylsulfonyl, Heteroarylalkinylsulfonyl, Heterocyclylsulfonyl, Heterocyclylalkylsulfonyl, Heterocyclylalkenylsulfonyl, Heterocyclylalkinylsulfonyl, Alkylsulfinyl, Alkenylsulfinyl, Alkinylsulfinyl, Cycloalkylsulfinyl, Cycloalkylsulfinyl, Cycloalkylalkenylsulfinyl, Cycloalkylalkinylsulfinyl, Arylsulfinyl, Arylalkylsulfinyl, Arylalkenylsulfinyl, Arylalkinylsulfinyl, Heteroarylsulfinyl, Heteroarylalkylsulfinyl, Heteroarylalkenylsulfinyl, Heteroarylalkinylsulfinyl, Heterocyclylsulfinyl, Arylalkylsulfinyl, Heterocyclylalkenylsulfinyl, Heterocyclylalkinylsulfinyl, Aminosulfonyl, gegebenenfalls substituiertes Mono- oder Dialkylaminosulfonyl, gegebenenfalls substituiertes Mono- oder Diarylaminosulfonyl, gegebenenfalls substituiertes Mono- oder Di-Heteroarylaminosulfonyl, gegebenenfalls substituiertes N-Alkyl-N-arylaminosulfonyl, gegebenenfalls substituiertes N-Alkyl-N-Heteroarylaminosulfonyl, Alkylsulfonyloxy, Alkenylsulfonyloxy, Alkinylsulfonyloxy, Cycloalkylsulfonyloxy, Cycloalkylalkylsulfonyloxy, Cycloalkylalkenylsulfonyloxy, Cycloalkylalkinylsulfonyloxy, Arylsulfonyloxy, Arylalkylsulfonyloxy, Arylaikenylsulfonyloxy, Arylaikinylsulfonyloxy, Heteroarylsulfonyloxy, Heteroarylalkylsulfonyloxy, Heteroarylalkenylsulfonyloxy, Heteroarylalkinylsulfonyloxy, Heterocyclylsulfonyloxy, Heterocyclylalkylsulfonyloxy, Heterocyclylalkenylsulfonyloxy, Heterocyclylalkinylsulfonyloxy, Alkylsulfonylamino, Alkenylsulfonylamino, Alkinylsulfonylamino, Cycloalkylsulfonylamino, Cycloalkylalkylsulfonylamino, Cycloalkylalkenylsulfonylamino, Cycloalkylalkinylsulfonylamino, Arylsulfonylamino, Arylalkylsulfonylamino, Arylalkenylsulfonoamino, Arylalkinylsulfonylamino, Heteroarylsulfonylamino, Heteroarylalkylsulfonylamino, Heteroarylalkenylsulfonoamino,

Heteroarylalkinylsulfonylamino, Alkylsulfonyl-N-alkylamino, Alkenylsulfonyl-N-

alkylamino, Alkinylsulfonyl-N-alkylamino, Cycloalkylsulfonyl-N-alkylamino, Cycloalkylalkylsulfonyl-N-alkylamino, Cycloalkylalkenylsulfonyl-N-alkylamino, Cycloalkylalkinylsulfonyl-N-alkylamino, Arylsulfonyl-N-alkylamino, Heteroarylsulfonyl-N-alkylamino, Arylaikylsulfonyl-N-alkylamino, Heteroarylaikylsulfonyl-N-alkylamino, Arvialkenylsulfonoamino, Heteroarylalkenylsulfonoamino, Arylalkinylsulfonyl-Nalkylamino, Heteroarylalkinylsulfonyl-N-alkylamino, Heterocyclylsulfonyl-Nalkviamino, Heterocyclylalkylsulfonylamino, Heterocyclylalkenylsulfonyl-Nalkylamino, Heterocyclylalkinylsulfonyl-N-alkylamino, Alkylcarbonyl, Alkenylcarbonyl, Alkinylcarbonyl, Cycloalkylcarbonyl, Cycloalkylalkylcarbonyl, Cycloalkylalkenylcarbonyl, Cycloalkylalkinylcarbonyl, Arylcarbonyl, Arylalkylcarbonyl, Arylalkenylcarbonyl, Arylalkinylcarbonyl, Heteroarylcarbonyl, Heteroarylalkylcarbonyl, Heteroarylalkenyl, Heteroarylalkinylcarbonyl, Heterocyclylcarbonyl, Heterocyclylalkylcarbonyl, Heterocyclylalkenyl, Heterocyclylalkinylcarbonyl, Carboxyl, Alkoxycarbonyl, Alkenyloxycarbonyl, Alkinyloxycarbonyl, Cycloalkoxycarbonyl, Cycloalkylalkoxycarbonyl, Cycloalkylalkenyloxycarbonyl, Cycloalkylalkinyloxycarbonyl, Aryloxycarbonyl, Arvialkoxycarbonyl, Arylalkenyloxycarbonyl, Arylalkinyloxycarbonyl, Heteroaryloxycarbonyl, Heteroarylalkoxycarbonyl, Heteroarylalkenyloxycarbonyl, Heteroarylalkinyloxycarbonyl, Heterocyclyloxycarbonyl, Heterocyclylalkoxycarbonyl, Heterocyclylalkenyloxycarbonyl, Heterocyclylalkinyloxycarbonyl, Aminocarbonyl, gegebenenfalls substituiertes Mono- oder Dialkylaminocarbonyl, gegebenenfalls substituiertes Mono- oder Diarylaminocarbonyl, gegebenenfalls substituiertes Monooder Di-Heteroarylaminocarbonyl, gegebenenfalls substituiertes N-Alkyl-Narylaminocarbonyl, gegebenenfalls substituiertes N-Alkyl-N-Heteroarylaminocarbonyl, gegebenenfalls substituiertes Alkylcarbonylamino, gegebenenfalls substituiertes Alkylcarbonyl-N-alkylamino, gegebenenfalls substituiertes Arylcarbonylamino, gegebenenfalls substituiertes Arylcarbonyl-Narylamino, gegebenenfalls substituiertes Heteroarylcarbonylamino, gegebenenfalls substituiertes Heteroarylcarbonyl-N-Heteroarylamino, gegebenenfalls substituiertes Alkylcarbonyl-N-arylamino, gegebenenfalls substituiertes Arylcarbonyl-N-alkylamino, gegebenenfalls substituiertes Alkylcarbonyl-N-Heteroarylamino, gegebenenfalls substituiertes Heteroarylcarbonyl-N-alkylamino, Alkoxycarbonylamino,

Alkenyloxycarbonylamino, Alkinyloxycarbonylamino, Cycloalkoxycarbonylamino, Cycloalkylalkoxycarbonylamino, Cycloalkylalkenyloxycarbonylamino, Cycloalkylalkinyloxycarbonylamino, Aryloxycarbonylamino, Arylalkoxycarbonylamino, Arylalkenyloxycarbonylamino, Arylalkinyoxycarbonylamino, Heteroaryloxycarbonylamino, Heteroarylalkoxycarbonylamino, Heteroarylalkenyloxycarbonylamino, Heteroarylalkinyoxycarbonylamino, Heterocyclyloxycarbonylamino, Heterocyclylalkoxycarbonylamino, Heterocyclylalkenyloxycarbonylamino, Heterocyclylalkinyoxycarbonylamino, Alkoxycarbonyl-N-alkylamino, Alkenyloxycarbonyl-N-alkylamino, Alkinyloxycarbonyl-N-alkylamino, Cycloalkoxycarbonyl-N-alkylamino, Cycloalkylalkoxycarbonyl-Nalkylamino, Cycloalkylalkenyloxycarbonyl-N-alkylamino, Cycloalkylalkinyloxycarbonyl-N-alkylamino, Aryloxycarbonyl-N-alkylamino, Arylalkoxycarbonyl-N-alkylamino, Arylalkenyloxycarbonyl-N-alkylamino, Arylalkinyoxycarbonyl-N-alkylamino, Heteroarylalkoxycarbonyl-N-alkylamino, Heteroarvialkenyloxycarbonyl-N-alkylamino, Heteroarvialkinyloxycarbonyl-Nalkylamino, Heterocyclylalkoxycarbonyl-N-alkylamino, Heterocyclylalkenyloxycarbonyl-N-alkylamino, Heterocyclylalkinyoxycarbonyl-Nalkylamino, Formyl, Halogen, Halogenalkyl, Halogenalkenyl, Halogenalkinyl, Halogenalkoxy, Halogenalkenyloxy, Halogenalkinyloxy, Halogenalkylthio, Halogenalkenylthio, Halogenalkinylthio, Halogenalkylamino, Halogenalkenylamino, Halogenalkinylamino, Halogenalkylsulfonyl, Halogenalkenylsulfonyl, Halogenalkinylsulfonyl, Halogenalkylsulfinyl, Halogenalkenylsulfinyl, Halogenalkinylsulfinyl, Halogenalkylcarbonyl, Halogenalkenylcarbonyl, Halogenalkinylcarbonyl, Halogenalkoxycarbonyl, Halogenalkenyloxycarbonyl, Halogenalkinyloxycarbonyl, Halogenalkylaminocarbonyl, Halogenalkenylaminocarbonyl, Halogenalkinylaminocarbonyl, Halogenalkoxycarbonylamino, Halogenalkenyloxycarbonylamino, Halogenalkinyloxycarbonylamino, Alkoxyalkoxy, Arylalkoxyalkoxy, Cyano, Nitro, oder einen Rest aus der Gruppe Alkyl-NH-N=CH-, Aryl-(CH₂)_n-NH-N=CH-, Alkoxy-N=CH-,

Aryl-(CH₂)_n-O-N=CH-, Alkyl-NH-NH-CO- und Arylalkyl-NH-NH-CO- und

 R^5 ein gegebenenfalls ein- oder mehrfach, gleich oder verschieden durch Alkyl. Alkenyl, Alkinyl, Cycloalkyl, Cycloalkenyl, Cycloalkylalkenyl, Cycloalkylalkinyl, Aryl, Arylalkyl, Arylalkenyl, Arylalkinyl, Heteroarylalkyl, Heteroarylalkenyl, Heteroarylalkinyl, Heterocyclyl, Heterocyclylalkyl, Heterocyclylalkenyl, Heterocyclylalkinyl, Hydroxy, Alkoxy, Alkenyloxy, Alkinyloxy, Cycloalkoxy, Cycloalkylalkoxy, Cycloalkylalkenyloxy, Cycloalkylalkinyloxy, Cycloalkenyloxy, Aryloxy, Arylalkoxy, Arylalkenyloxy, Arylalkinyloxy, Heteroaryloxy, Heteroarylalkoxy, Heteroarylalkenyloxy, Heteroarylalkinyloxy, Heterocyclyloxy, Heterocyclylalkoxy, Heterocyclylalkenyloxy, Heterocyclylalkinyloxy, Thio, Alkylthio, Alkenytthio, Alkinytthio, Cycloalkythio, Cycloalkytalkenytthio, Cycloalkytalkenytthio. Cycloalkylalkinylthio, Cycloalkenylthio, Arylthio, Arylalkylthio, Arylalkenylthio, Arylalkinylthio, Heteroarylthio, Heteroarylalkylthio, Heteroarylalkenylthio. Heteroarylalkinylthio, Heterocyclylthio, Heterocyclylalkylthio, Heterocyclylalkenylthio, Heterocyclylalkinylthio, Amino, gegebenenfalls substituiertes Mono- oder Dialkylamino, gegebenenfalls substituiertes Mono- oder Diarylamino, gegebenenfalls substituiertes Mono- oder Di-Heteroarylamino, gegebenenfalls substituiertes N-Alkyl-N-arvlamino, gegebenenfalls substituiertes N-Alkyl-N-Heteroarylamino, Alkenylamino, Alkinylamino, Cycloalkylamino, Cycloalkenylamino, Heterocyclylalkylamino, Heterocyclylalkenylamino, Alkylsulfonyl, Alkenylsulfonyl, Alkinylsulfonyl, Cycloalkylsulfonyl, Cycloalkylalkylsulfonyl, Cycloalkylalkenylsulfonyl, Cycloalkylalkinyisulfonyl, Arylalkylsulfonyl, Arylalkenylsulfonyl, Arylalkinylsulfonyl, Heteroarylsulfonyl, Heteroarylalkylsulfonyl, Heteroarylalkenylsulfonyl, Heteroarylalkinylsulfonyl, Heterocyclylsulfonyl, Heterocyclylalkylsulfonyl, Heterocyclylalkenylsulfonyl, Heterocyclylalkinylsulfonyl, Alkylsulfinyl, Alkenylsulfinyl, Alkinylsulfinyl, Cycloalkylsulfinyl, Cycloalkylalkylsulfinyl, Cycloalkylalkenylsulfinyl, Cycloalkylalkinylsulfinyl, Arylsulfinyl, Arylsulfinyl, Arylalkenylsulfinyl, Arylalkinylsulfinyl, Heteroarylsulfinyl, Heteroarylalkylsulfinyl, Heteroarylalkenylsulfinyl, Heteroarylalkinylsulfinyl, Heterocyclylsulfinyl, Arylalkylsulfinyl, Heterocyclylalkenylsulfinyl, Heterocyclylalkinylsulfinyl, Aminosulfonyl, gegebenenfalls substituiertes Mono- oder Dialkylaminosulfonyl, gegebenenfalls substituiertes Mono- oder Diarylaminosulfonyl, gegebenenfalls substituiertes Mono- oder Di-Heteroarylaminosulfonyl, gegebenenfalls substituiertes

N-Alkyl-N-arylaminosulfonyl, gegebenenfalls substituiertes N-Alkyl-N-Heteroarylaminosulfonyl, Alkylsulfonyloxy, Alkenylsulfonyloxy, Alkinylsulfonyloxy, Cycloalkylsulfonyloxy, Cycloalkylalkylsulfonyloxy, Cycloalkylalkenylsulfonyloxy, Cycloalkylalkinylsulfonyloxy, Arylsulfonyloxy, Arylalkylsulfonyloxy, Arylalkenylsulfonyloxy, Arylalkinylsulfonyloxy, Heteroarylsulfonyloxy, Heteroarylalkylsulfonyloxy, Heteroarylalkenylsulfonyloxy, Heteroarylalkinylsulfonyloxy, Heterocyclylsulfonyloxy, Heterocyclylalkylsulfonyloxy, Heterocyclylalkenylsulfonyloxy, Heterocyclylalkinylsulfonyloxy, Alkylsulfonylamino. Alkenylsulfonylamino, Alkinylsulfonylamino, Cycloalkylsulfonylamino, Cycloalkylalkylsulfonylamino, Cycloalkylalkenylsulfonylamino, Cycloalkylalkinylsulfonylamino, Arylsulfonylamino, Arylalkylsulfonylamino, Arylalkenylsulfonoamino, Arylalkinylsulfonylamino, Heteroarylsulfonylamino. Heteroarylalkylsulfonylamino, Heteroarylalkenylsulfonoamino, Heteroarylalkinylsulfonylamino, Alkylsulfonyl-N-alkylamino, Alkenylsulfonyl-Nalkylamino, Alkinylsulfonyl-N-alkylamino, Cycloalkylsulfonyl-N-alkylamino, Cycloalkylalkylsulfonyl-N-alkylamino, Cycloalkylalkenylsulfonyl-N-alkylamino, Cycloalkylalkinylsulfonyl-N-alkylamino, Arylsulfonyl-N-alkylamino, Heteroarylsulfonyl-N-alkylamino, Arylałkylsulfonyl-N-alkylamino, Heteroarylalkylsulfonyl-N-alkylamino, Arylalkenylsulfonyl-N-alkylamino, Heteroarylalkenylsulfononyl-N-alkylamino, Arylalkinylsulfonyl-N-alkylamino, Heteroarylalkinylsulfonyl-N-alkylamino, Heterocyclylsulfonyl-N-alkylamino, Heterocyclylalkylsulfonyl-N-alkylamino, Heterocyclylalkenylsulfonyl-N-alkylamino, Heterocyclylalkinylsulfonyl-N-alkylamino, Alkylcarbonyl, Alkenylcarbonyl, Alkinylcarbonyl, Cycloalkylcarbonyl, Cycloalkylalkylcarbonyl, Cycloalkylalkenylcarbonyl, Cycloalkylalkinylcarbonyl, Arylcarbonyl, Arylalkylcarbonyl, Arylalkenylcarbonyl, Arylalkinylcarbonyl, Heteroarylcarbonyl, Heteroarylaikylcarbonyl, Heteroarylalkenyl, Heteroarylalkinylcarbonyl, Heterocyclylcarbonyl, Heterocyclylalkylcarbonyl, Heterocyclylalkenyl, Heterocyclylalkinylcarbonyl, Carboxyl, Alkoxycarbonyl, Alkenyloxycarbonyl, Alkinyloxycarbonyl, Cycloalkoxycarbonyl, Cycloaikylalkoxycarbonyl, Cycloaikylalkenyloxycarbonyl, Cycloalkylalkinyloxycarbonyl, Aryloxycarbonyl, Arylalkoxycarbonyl, Arylalkenyloxycarbonyl, Arylalkinyloxycarbonyl, Heteroaryloxycarbonyl,

Heteroarylalkoxycarbonyl, Heteroarylalkenyloxycarbonyl, Heteroarylalkinyloxycarbonyl, Heterocyclyloxycarbonyl, Heterocyclylalkoxycarbonyl, Heterocyclylalkenyloxycarbonyl, Heterocyclylalkinyloxycarbonyl, Aminocarbonyl, gegebenenfalls substituiertes Mono- oder Dialkylaminocarbonyl, gegebenenfalls substituiertes Mono- oder Diarylaminocarbonyl, gegebenenfalls substituiertes Monooder Di-Heteroarylaminocarbonyl, gegebenenfalls substituiertes N-Alkyl-Narylaminocarbonyl, gegebenenfalls substituiertes N-Alkyl-N-Heteroarylaminocarbonyl, gegebenenfalls substituiertes Alkylcarbonylamino, gegebenenfalls substituiertes Alkylcarbonyl-N-alkylamino, gegebenenfalls substituiertes Arylcarbonylamino, gegebenenfalls substituiertes Arylcarbonyl-Narylamino, gegebenenfalls substituiertes Heteroarylcarbonylamino, gegebenenfalls substituiertes Heteroarylcarbonyl-N-Heteroarylamino, gegebenenfalls substituiertes Alkylcarbonyl-N-arylamino, gegebenenfalls substituiertes Arylcarbonyl-N-alkylamino, gegebenenfalls substituiertes Alkylcarbonyl-N-Heteroarylamino, gegebenenfalls substituiertes Heteroarylcarbonyl-N-alkylamino, Alkoxycarbonylamino, Alkenyloxycarbonylamino, Alkinyloxycarbonylamino, Cycloalkoxycarbonylamino, Cycloalkylalkoxycarbonylamino, Cycloalkylalkenyloxycarbonylamino, Cycloalkylalkinyloxycarbonylamino, Aryloxycarbonylamino, Arylalkoxycarbonylamino, Arylalkenyloxycarbonylamino, Arylalkinyoxycarbonylamino, Heteroaryloxycarbonylamino, Heteroarylalkoxycarbonylamino, Heteroarylalkenyloxycarbonylamino, Heteroarylalkinyoxycarbonylamino, Heterocyclyloxycarbonylamino, Heterocyclylalkoxycarbonylamino, Heterocyclylalkenyloxycarbonylamino, Heterocyclylalkinyoxycarbonylamino, Alkoxycarbonyl-N-alkylamino, Alkenyloxycarbonyl-N-alkylamino, Alkinyloxycarbonyl-N-alkylamino, Cycloalkoxycarbonyl-N-alkylamino, Cycloalkylalkoxycarbonyl-Nalkylamino, Cycloalkylalkenyloxycarbonyl-N-alkylamino, Cycloalkylalkinyloxycarbonyl-N-alkylamino, Aryloxycarbonyl-N-alkylamino, Arylalkoxycarbonyl-N-alkylamino, Arylalkenyloxycarbonyl-N-alkylamino, Arylalkinyoxycarbonyl-N-alkylamino, Heteroarylalkoxycarbonyl-N-alkylamino, Heteroarylalkenyloxycarbonyl-N-alkylamino, Heteroarylalkinyoxycarbonyl-N-

Heterocyclylalkenyloxycarbonyl-N-alkylamino, Heterocyclylalkinyoxycarbonyl-N-

alkylamino, Heterocyclylalkoxycarbonyl-N-alkylamino,

alkylamino, Formyl, Halogen, Halogenalkyl, Halogenalkenyl, Halogenalkinyl, Halogenalkoxy, Halogenalkenyloxy, Halogenalkenyloxy, Halogenalkylthio, Halogenalkenylthio, Halogenalkenylthio, Halogenalkenylthio, Halogenalkenylamino, Halogenalkenylamino, Halogenalkylsulfonyl, Halogenalkenylsulfonyl, Halogenalkinylsulfonyl, Halogenalkylsulfinyl, Halogenalkenylsulfinyl, Halogenalkinylsulfinyl, Halogenalkylsulfinyl, Halogenalkenylcarbonyl, Halogenalkinylcarbonyl, Halogenalkoxycarbonyl, Halogenalkenyl-oxycarbonyl, Halogenalkinyloxycarbonyl, Halogenalkylaminocarbonyl, Halogenalkenyl-aminocarbonyl, Halogenalkinylaminocarbonyl, Halogenalkoxycarbonylamino, Halogenalkenyloxycarbonylamino, Halogenalkinyloxycarbonylamino, Alkoxyalkoxy, Arylalkoxyalkoxy, Cyano, Nitro, oder einen Rest aus der Gruppe Alkyl-NH-N=CH-, Aryl-(CH₂)_n-NH-N=CH-, Alkoxy-N=CH-, Aryl-(CH₂)_n-O-N=CH-, Alkyl-NH-NH-CO- und Arylalkyl-NH-NH-CO- substituiertes Heteroaryl, Heterocyclyl oder Aryl, oder einen Rest aus der Gruppe -O-N=CR^lR^m, -P(=O)(ORⁱ)(ORⁱ), -P(=O)(ORⁱ)(ORⁱ) oder

oder, für den Fall, daß E für eine Bindung und I für null steht, kann \mathbb{R}^5 auch für Hydroxy stehen,

bedeuten.

3. Benzoylderivate nach Anspruch 1 oder 2, worin

R¹, R², R³ unabhängig voneinander Wasserstoff, Halogen, Nitro, Cyano, Alkyl, Cycloalkyl, Alkenyl, Alkinyl, Alkoxy, Alkylthio, Alkylsulfinyl, Alkylsulfonyl, Alkylsulfonyloxy, Alkylsulfonylamino, Alkylsulfonyl-N-alkylamino, Phenyl, Benzyl, wobei die dreizehn letztgenannten Gruppen gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, Nitro, Cyano, Alkyl, Halogenalkyl, Cycloalkyl, Alkenyl, Alkinyl, Alkoxy, Halogenalkoxy und Alkylthio substituiert sind;

R⁴ Wasserstoff, Cyano, Alkyl, Alkenyl, Alkinyl, Cycloalkyl, wobei die vier letztgenannten Gruppen gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, Nitro, Cyano, Alkyl, Cycloalkyl, Alkinyl, Alkoxy, Alkylthio substituiert sind;

R⁵ ein gegebenenfalls ein- oder mehrfach, gleich oder verschieden durch Halogen, Nitro, Cyano, Formyl, Amino, Phenyl, Benzyl, (C1-C6)-Alkyl, (C2-C6)-Alkenyl, (C₂-C₆)-Alkinyl, (C₃-C₆)-Cycloalkyl, (C₁-C₆)-Alkoxy, (C₁-C₆)-Alkylamino, Di- (C_1-C_6) -alkylamino, (C_1-C_6) -Alkoxycarbonyl, (C_1-C_6) -Alkylaminocarbonyl, Di- (C_1-C_6) alkylaminocarbonyl, (C₁-C₆)-Alkylcarbonyl, (C₁-C₆)-Alkylcarbonylamino, (C₁-C₆)-Alkylcarbonyl-(C₁-C₆)-alkylamino, (C₁-C₆)-Alkylcarbonyl-di-(C₁-C₆)alkylamino, (C₁- C_6)-Alkylthio, (C_1-C_6) -Alkylsulfinyl, (C_1-C_6) -Alkylsulfonyl, (C_1-C_6) -Alkylsulfonylamino. (C₁-C₆)-Alkylsulfonyl-(C₁-C₆)-alkylamino, (C₁-C₆)-Alkylsulfonyl-di-(C₁-C₆)-alkylamino. wobei die 22 letztgenannten Gruppen gegebenenfalls durch ein oder mehrere. gleiche oder verschiedene Reste aus der Gruppe Halogen, Nitro, Cyano, (C₁-C₆)-Alkyl, (C_3-C_6) -Cycloalkyl, (C_2-C_6) -Alkenyl, (C_2-C_6) -Alkinyl, (C_1-C_6) -Alkoxy, (C_1-C_6) -Alkylthio oder einen drei bis sechsgliedrigen, gesättigten, teilgesättigten oder ungesättigten Heterocyclus, der bis zu vier Heteroatome aus der Gruppe Stickstoff, Sauerstoff und Schwefelatom enthalten kann, substituiert sind, substituierter Phenyl-, drei-, fünf- oder sechsgliedriger Heteroarylrest, der bis zu drei Heteroatome aus der Gruppe Stickstoff, Sauerstoff und Schwefelatom enthalten kann, oder drei bis sechsgliedriger, gesättigter, teilgesättigter oder ungesättigter Heterocyclusrest, der bis zu vier Heteroatome aus der Gruppe Stickstoff, Sauerstoff und Schwefelatom enthalten kann, oder einen Rest aus der Gruppe -O-N=CRIRM, -P(=O)(ORI)(RI), -P(=O)(ORi)(ORk) oder

$$\begin{array}{c} O \\ - \\ - \\ O \\ O \\ \end{array} (CH_2)_m$$

oder, für den Fall, daß E für eine Bindung und I für null steht, kann R⁵ auch für Hydroxy stehen,

- A eine divalente Einheit aus der Gruppe S, SO, SO₂, und NR^a;
- B eine gesättigte oder eine Doppelbindung enthaltende und aus ein oder zwei Kohlenstoffatomen bestehende Kette, die gegebenenfalls durch Alkyl, Halogenalkyl, Alkoxy oder Halogenalkoxy substituiert ist;
- eine Bindung, CR^cR^d, NR^c, S, SO, SO₂, O und CO;
- R^6 (C₁-C₆)-Alkylthio, (C₁-C₆)-Alkylsulfinyl, (C₁-C₆)-Alkylsulfonyl, Cyano, Cyanato, Thiocyanato, Halogen oder OR^f ;
- Y eine divalente Einheit aus der Gruppe O, S, N-(C₁-C₆)-Alkyl oder CHR⁷;
- R⁷ Wasserstoff, (C₁-C₆)-Alkyl, (C₃-C₈)-Cycloalkyl, (C₁-C₆)-Alkoxy, (C₁-C₆)-Alkoxy-(C₁-C₆)-Alkyl, (C₁-C₆)-Alkylcarbonyl, (C₁-C₆)-Alkoxycarbonyl, (C₁-C₆)-Alkylthio, Phenyl, wobei der Kohlenwasserstoffteil der acht letztgenannten Reste gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, (C₁-C₃)-Alkylthio und (C₁-C₃)-Alkyloxy substituiert ist;
- Z eine Bindung, CH₂ oder CHR⁷;
- R⁸ Wasserstoff, (C₁-C₆)-Alkyl oder (C₁-C₆)-Alkoxycarbonyl;
- R⁹ Wasserstoff, (C₁-C₆)-Alkyl, (C₃-C₈)-Cycloalkyl oder Halogen-(C₁-C₆)-alkyl;
- R¹⁰ Wasserstoff, (C₁-C₆)-Alkyl, (C₂-C₆)-Alkenyl, (C₁-C₆)-Alkinyl, (C₃-C₈)-Cycloalkyl, Phenyl, Benzyl, wobei die sechs letztgenannten Reste Gruppen gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, Cyano, Nitro und (C₁-C₆)-Alkoxy substituiert sind;
- R¹¹ Wasserstoff, Formyl, (C₁-C₆)-Alkyl, Halogen-(C₁-C₆)-alkyl, (C₁-C₆)-Alkoxy-(C₁-C₆)-alkyl oder eine Gruppe L-R¹²;

- L eine divalente Einheit aus der Gruppe SO₂, CO und CHR⁹CO;
- R^{12} (C₁-C₆)-Alkyl, Halogen-(C₁-C₆)-alkyl, oder gegegenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Cyano, Nitro, (C₁-C₃)-Alkyl, (C₁-C₃)-Alkoxy, Halogen-(C₁-C₃)-alkyl und Halogen-(C₁-C₃)-alkoxy substituiertes Phenyl;
- R^a Wasserstoff, Halogen, Cyano, Nitro, Formyl, (C_1-C_6) -Alkyl, (C_3-C_8) -Cycloalkyl, (C_2-C_6) -Alkenyl, (C_2-C_6) -Alkinyl, (C_1-C_6) -Alkylcarbonyl und (C_1-C_6) -Alkylsulfonyl, wobei der Kohlenwasserstoffteil der sechs letztgenannten Reste gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, Nitro, Cyano, (C_1-C_6) -Alkyl, (C_3-C_8) -Cycloalkyl, (C_2-C_6) -Alkenyl, (C_2-C_6) -Alkinyl, (C_1-C_6) -Alkylthio substituiert ist;

 R^c und R^d unabhängig voneinander Wasserstoff, Halogen, Nitro, Cyano, (C_1-C_6) -Alkyl, Halogen- (C_1-C_6) -alkyl, (C_3-C_8) -Cycloalkyl, (C_2-C_6) -Alkenyl, Halogen- (C_2-C_6) -alkenyl, (C_1-C_6) -Alkinyl, Halogen- (C_2-C_6) -alkinyl, (C_1-C_6) -Alkoxy, Halogen- (C_1-C_6) -alkylthio, (C_1-C_6) -Alkylthio, Halogen- (C_1-C_6) -alkylthio, (C_1-C_6) -Alkylcarbonyl, Halogen- (C_1-C_6) -alkylcarbonyl, (C_1-C_6) -Alkylcarbonyl, Halogen- (C_1-C_6) -Alkylcarbonyl, Aminocarbonyl, (C_1-C_6) -Alkylcarbonyl und (C_1-C_6) -Alkylsulfonyl;

- Re Wasserstoff, Formyl, (C_1-C_6) -Alkyl, (C_3-C_6) -Cycloalkyl, (C_2-C_6) -Alkenyl, (C_2-C_6) -Alkinyl, (C_1-C_6) -Alkylcarbonyl und (C_1-C_6) -Alkylsulfonyl, wobei der Kohlenwasserstoffteil der sechs letztgenannten Reste gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, Nitro, Cyano, (C_1-C_6) -Alkyl, Cycloalkyl, (C_2-C_6) -Alkenyl, (C_2-C_6) -Alkinyl, (C_1-C_6) -Alkinyl, (C_1-C_6) -Alkoxy und (C_1-C_6) -Alkylthio substituiert sein können;
- R^f Wasserstoff, (C₁-C₆)-Alkyl, Halogen-(C₁-C₆)-alkyl, (C₁-C₆)-Alkylcarbonyl, (C₁-C₆)-Alkoxycarbonyl, (C₁-C₆)-Alkylsulfonyl, Halogen-(C₁-C₆)-alkylsulfonyl, Benzoyl oder Phenylsulfonyl, wobei der aromatische Teil der zwei letztgenannten Reste

gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe (C_1 - C_6)-Alkyl, Halogen-(C_1 - C_6)-alkyl, (C_1 - C_6)-Alkoxy, Halogen-(C_1 - C_6)-alkoxy, Halogen, Cyano und Nitro substituiert ist;

R^g und R^h unabhängig voneinander Wasserstoff oder (C₁-C₆)-Alkyl, und

w 0, 1, 2 oder 3

bedeuten.

4. Benzoylderivate nach einem der Ansprüche 1 bis 3, worin

 R^1 , R^2 , R^3 unabhängig voneinander Wasserstoff, Halogen, Nitro, Cyano, (C₁-C₆)-Alkyl, (C₃-C₈)-Cycloalkyl, (C₂-C₆)-Alkenyl, (C₂-C₆)-Alkinyl, (C₁-C₆)-Alkylsulfonyl, (C₁-C₆)-Alkylsulfonyloxy, (C₁-C₆)-Alkylsulfonylamino, (C₁-C₆)-Alkylsulfonyl-N-(C₁-C₆)-alkylsulfonyloxy, (C₁-C₆)-Alkylsulfonylamino, Phenyl, Benzyl, wobei die dreizehn letztgenannten Gruppen gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, Nitro, Cyano, (C₁-C₃)-Alkyl, Halogen-(C₁-C₃)-alkyl, Cyclopropyl, (C₂-C₄)-Alkenyl, (C₂-C₄)-Alkinyl, (C₁-C₃)-Alkoxy, Halogen-(C₁-C₃)-alkoxy und Alkylthio substituiert sind;

R⁴ (C₁-C₄)-Alkyl, Wasserstoff, Cyano, (C₂-C₄)-Alkenyl, (C₂-C₄)-Alkinyl, (C₃-C₆)-Cycloalkyl, wobei die drei letztgenannten Gruppen gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, Cyano, (C₁-C₃)-Alkylthio substituiert sind, und die erstgenannte Gruppe gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, Cyano, (C₃-C₆)-Cycloalkyl, (C₁-C₃)-Alkoxy, (C₁-C₃)-Alkylthio substituiert ist;

ein gegebenenfalls ein- oder mehrfach, gleich oder verschieden durch Halogen, Nitro, Cyano, Formyl, Amino, Phenyl, Benzyl, (C_1-C_4) -Alkyl, (C_2-C_4) -Alkinyl, (C_3-C_6) -Cycloalkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylamino, Di- (C_1-C_4) -alkylamino, (C_1-C_4) -Alkoxycarbonyl, (C_1-C_4) -Alkylaminocarbonyl, Di- (C_1-C_4) -Alkoxycarbonyl, (C_1-C_4) -Alkylaminocarbonyl, Di- (C_1-C_4) -Alkoxycarbonyl, (C_1-C_4) -Alkylaminocarbonyl, Di- (C_1-C_4) -

alkylaminocarbonyl, (C_1-C_4) -Alkylcarbonyl, (C_1-C_4) -Alkylcarbonylamino, (C_1-C_4) -Alkylsulfinyl, (C_1-C_4) -Alkylsulfonyl substituierter Phenyl-, drei-, fünfoder sechsgliedriger Heteroarylrest, der bis zu drei Heteroatome aus der Gruppe Stickstoff, Sauerstoff und Schwefelatom enthalten kann, oder drei bis sechsgliedriger, gesättigter, teilgesättigter oder ungesättigter Heterocyclusrest, der bis zu vier Heteroatome aus der Gruppe Stickstoff, Sauerstoff und Schwefelatom enthalten kann, oder einen Rest aus der Gruppe -O-N=CR[†]R^m, -P(=O)(OR[†])(R[†]), -P(=O)(OR[†])(OR^k) oder

oder, für den Fall, daß E für eine Bindung und I für null steht, kann R^5 auch für Hydroxy stehen,

A eine divalente Einheit aus der Gruppe S, SO, und SO₂;

B eine gesättigte oder eine Doppelbindung enthaltende und aus ein oder zwei Kohlenstoffatomen bestehende Kette, die gegebenenfalls durch ein oder zwei gleiche oder verschiedene Reste aus der Gruppe (C₁-C₃)-Alkyl, Halogen-(C₁-C₃)-alkyl, (C₁-C₃)-Alkoxy oder Halogen-(C₁-C₃)-alkoxy substituiert ist:

E eine Bindung, CR^cR^d, SO₂ und CO;

R⁶ (C₁-C₃)-Alkylthio, (C₁-C₃)-Alkylsulfonyl, Cyano, Cyanato, Thiocyanato, Halogen oder OR^f;

Y eine divalente Einheit aus der Gruppe O oder CHR⁷;

 R^7 Wasserstoff, (C_1-C_6) -Alkyl, (C_3-C_8) -Cycloalkyl, (C_1-C_6) -Alkoxy- (C_1-C_6) -alkyl, (C_1-C_6) -Alkylcarbonyl, (C_1-C_6) -Alkoxycarbonyl, Phenyl, wobei die sechs

¥

letztgenannten Reste gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Halogenatome substituiert sind;

R⁹ (C₁-C₆)-Alkyl, (C₃-C₆)-Cycloalkyl oder Halogen-(C₁-C₆)-alkyl;

 R^{10} (C₁-C₆)-Alkyl, (C₂-C₆)-Alkenyl, (C₂-C₆)-Alkinyl, (C₃-C₈)-Cycloalkyl, Phenyl oder Benzyl;

R¹¹ Wasserstoff, (C₁-C₆)-Alkyl oder eine Gruppe L-R¹²;

 R^c und R^d unabhängig voneinander Wasserstoff, (C_1-C_3) -Alkyl, Halogen- (C_1-C_3) -alkyl, (C_2-C_6) -Alkenyl, Halogen- (C_2-C_6) -alkenyl, (C_2-C_6) -Alkinyl, Halogen- (C_2-C_6) -alkinyl, (C_1-C_3) -Alkoxy, Halogen- (C_1-C_3) -alkoxy, (C_1-C_3) -Alkylthio, Halogen- (C_1-C_3) -alkylthio und (C_1-C_3) -Alkylcarbonyl;

R^f Wasserstoff, (C₁-C₆)-Alkyl, (C₁-C₆)-Alkylcarbonyl, (C₁-C₆)-Alkoxycarbonyl, (C₁-C₆)-Alkylsulfonyl, Benzoyl oder Phenylsulfonyl, wobei der aromatische Teil der zwei letztgenannten Reste gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe (C₁-C₆)-Alkyl, Halogen-(C₁-C₆)-alkyl, (C₁-C₆)-Alkoxy, Halogen-(C₁-C₆)-alkoxy, Halogen, Cyano und Nitro substituiert ist, und

w 0, 1 oder 2

bedeuten.

- 5. Benzoylderivate nach einem der Ansprüche 1 bis 4, worin
- Q einen Rest der Formel (II) oder (III)

bedeutet.

6. Benzoylderivate nach einem der Ansprüche 1 bis 5, worin

R¹ und R² unabhängig voneinander Wasserstoff, (C₁-C₄)-Alkyl, Halogen oder Nitro;

R³ und R⁴ Wasserstoff;

- A SO₂;
- B CH₂-CH₂;
- E eine Bindung oder eine divalente Einheit aus der Gruppe CH₂, CO und SO₂;
- R⁶ OR^f;
- Y CHR⁷;
- Z CHR⁷;
- G¹-G² eine divalente Einheit aus der Gruppe OCR9 und NR¹0COR¹¹;
- R⁷ Wasserstoff oder (C₁-C₆)-Alkyl;

141

- R⁸ Wasserstoff;
- R⁹ (C₃-C₆)-Cycloalkyl;
- R^{10} (C₁-C₃)-Alkyl;
- R¹¹ Wasserstoff oder eine Gruppe L-R¹²;
- L eine divalente Einheit aus der Gruppe SO₂, CO und CH₂CO;
- R¹² gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe Halogen, Cyano, Nitro, (C₁-C₆)-Alkyl, (C₁-C₆)-Alkoxy, (C₁-C₆)-Halogenalkoxy substituiertes Phenyl;
- R^e Wasserstoff, Formyl, (C_1 - C_6)-Alkyl, (C_2 - C_6)-Alkenyl, (C_2 - C_6)-Alkinyl, (C_1 - C_6)-Alkylcarbonyl und (C_1 - C_6)-Alkylsulfonyl;
- R^f Wasserstoff, (C₁-C₆)-Alkylsulfonyl, Benzoyl, Phenylsulfonyl, wobei die zwei letztgenannten Reste gegebenenfalls durch ein oder mehrere, gleiche oder verschiedene Reste aus der Gruppe (C₁-C₆)-Alkyl, (C₁-C₆)-Halogenalkyl, (C₁-C₆)-Alkoxy, (C₁-C₆)-Halogenalkoxy, Halogen, Cyano und Nitro substituiert sind, und

v 1

bedeuten.

7. Benzoylderivate nach einem der Ansprüche 1 bis 6, worin Q den Rest der Formel (II)

$$\begin{array}{c}
R^6 \\
V - Z \\
\end{array}$$
(II)

bedeutet.

- 8. Benzoylderivate nach einem der Ansprüche 1 bis 7, worin
- R⁵ ein gegebenenfalls ein- oder mehrfach, gleich oder verschieden durch Halogen, Nitro, Cyano, Formyl, Amino, Phenyl, Benzyl, (C₁-C₄)-Alkyl, (C₂-C₄)-Alkenyl, (C₂-C₄)-Alkinyl, (C₃-C₆)-Cycloalkyl, (C₁-C₄)-Alkoxy, (C₁-C₄)-Alkylamino, Di-(C₁-C₄)-Alkylamino, (C₁-C₄)-Alkylamino, (C₁-C₄)-Alkylaminocarbonyl, Di-(C₁-C₄)-alkylaminocarbonyl, (C₁-C₄)-Alkylaminocarbonyl, Di-(C₁-C₄)-Alkylaminocarbonyl, Di-(C₁-C₄)-Alkylaminoca
- 9. Herbizide Mittel, gekennzeichnet durch einen Gehalt an mindestens einer Verbindung der allgemeinen Formel (I) gemäß einem der Ansprüche 1 bis 8.
- 10. Herbizide Mittel nach Anspruch 9 in Mischung mit Formulierungshilfsmitteln.
- 11. Verfahren zur Bekämpfung unerwünschter Pflanzen, dadurch gekennzeichnet, daß man eine wirksame Menge mindestens einer Verbindung der

allgemeinen Formel (I) nach einem der Ansprüche 1 bis 8 oder eines herbiziden Mittels nach Anspruch 9 oder 10 auf die Pflanzen oder auf den Ort des unerwünschter Pflanzenwachstums appliziert.

- 12. Verwendung von Verbindungen der allgemeinen Formel (I) nach einem der Ansprüche 1 bis 8 oder von herbiziden Mitteln nach Ansprüch 9 oder 10 zur Bekämpfung unerwünschter Pflanzen.
- 13. Verwendung nach Anspruch 12, dadurch gekennzeichnet, daß die Verbindungen der allgemeinen Formel (I) zur Bekämpfung unerwünschter Pflanzen in Kulturen von Nutzpflanzen eingesetzt werden.
- 14. Verwendung nach Anspruch 13 dadurch gekennzeichnet, daß die Nutzpflanzen transgene Nutzpflanzen sind.
- 15. Verbindungen der allgemeinen Formel (lg),

worin

R (C_1-C_6) -Alkyl,

R⁴ Wasserstoff,

R⁵ COOH, COOR, COCI, CH=NOH, CHO,

E eine Bindung,

- 0 bedeuten, und R¹, R², R³, A und B nach einem der Ansprüche 1 bis 8 definiert sind.
- 16. Verwendung der Verbindungen nach Anspruch 15 zur Herstellung von Benzoylderivaten nach einem der Ansprüche 1 bis 8.

Inte onal Application No PCT/EP 99/06259

A CLASSIF IPC 7	CO7D409/14 A01N43/18	C07D409/12	C07D417/06	C07D335/06	CO7D413/14
According to	International Patent Clas	ssification (IPC) or to both	national classification an	nd IPC	

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 CO7D A01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUM	C. DOCUMENTS CONSIDERED TO BE RELEVANT						
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.					
A	WO 95 25099 A (RHONE-POULENC AGRICULTURE LTD.) 21 September 1995 (1995-09-21) claims 1-12	1-16					
Α	WO 97 13765 A (IDEMITSU KOSAN CO., LTD.) 17 April 1997 (1997-04-17) claims 1-13	1-16					
A	WO 97 08164 A (E.I. DU PONT DE NMOURS AND COMPANY) 6 March 1997 (1997-03-06) claims 1-6	1-16					
A	WO 96 31507 A (IDEMITSU KOSAN CO., LTD.) 10 October 1996 (1996–10–10) claims 1–13 ———————————————————————————————————	1-16					

Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document reterring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
3 December 1999	10/12/1999
Name and mailing address of the ISA	Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Herz, C

1

Inte onal Application No PCT/EP 99/06259

		/EP 99/06259
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 96 25413 A (IDEMITSU KOSAN CO., LTD.) 22 August 1996 (1996-08-22) claims 1-31	1-16
A	EP 0 636 622 A (RHONE POULENC AGRICULTURE LTD.) 1 February 1995 (1995-02-01) claims 1-14	1-16
A	WO 95 13275 A (IDEMITSU KOSAN CO., LTD.) 18 May 1995 (1995-05-18) claims 1-24	1-16
A	WO 97 43270 A (NOVARTIS AG) 20 November 1997 (1997-11-20) claims 1-12	1-16
Α	WO 97 44340 A (IDEMITSU KOSAN CO., LTD.) 27 November 1997 (1997-11-27) claims 1-20	1-16
A	WO 97 23135 A (IDEMITSU KOSAN CO., LTD.) 3 July 1997 (1997-07-03) claims 1-20	1-16
A	WO 96 00008 A (IDEMITSU KOSAN CO., LTD.) 4 January 1996 (1996-01-04) claims 1-	1-16
A	WO 93 18031 A (IDEMITSU KOSAN CO., LTD.) 16 September 1993 (1993-09-16) claims 1-11	1-16
А	WO 97 12885 A (IDEMITSU KOSAN CO., LTD.) 10 April 1997 (1997-04-10) claims 1-22	1-16
·	·	
		·

1

information on patent family members

Intt onal Application No PCT/EP 99/06259

ited i	ent document in search report		Publication date		tent family ember(s)	Publication date
40 S	9525099	Α	21-09-1995	AU	1894295 A	03-10-1995
WO S	9713765	Α	17-04-1997	AU	7227296 A	30-04-1997
WO S	9708164	Α	06-03-1997	AU	6777896 A	19-03-1997
				EP	0846112 A	10-06-1998
WO S	9631507	Α	10-10-1996	AU	5120596 A	23-10-1996
			•	BR	9604847 A	16-06-1998
			,	CA EP	2215057 A 0819691 A	10-10-1996 21-01-1998
				ŪS	5863866 A	26-01-1999
WO !	9625413	Α	22-08-1996	AU	4634096 A	04-09-1996
				BR	9607396 A	30-06-1998
				CA	2213078 A	22-08-1996
				CN	1181756 A	13-05-1998
				EP	0810227 A	03-12-1997
EP (636622	Α	01-02-1995	AU	676576 B	13-03-1997
	-			AU	6876894 A	09-02-1995
				BR CA	9402331 A 2117413 A	14-03-1995 31-01-1995
				CN	1104212 A,B	28-06-1995
				FI	943561 A	31-01-1995
				HŪ	68000 A	29-05-1995
				IL	110493 A	16-08-1998
				JP	71 49 742 A	13-06-1995
				ūs	5489570 A	06-02-1996
				ZA 	9405654 A	13-04-1995
WO	9513275	Α	18-05-1995	JP	7309869 A	28-11-1995
				AU	685868 B	29-01-1998
				AU BR	8067594 A 9408026 A	29-05-1995 17-12-1996
			•	CA	2175675 A	18-05-1995
				CN	1139433 A	01-01-1997
				EP	0728756 A	28-08-1996
	•			HU	74306 A	30-12-1996
				JP	8041055 A	13-02-1996
				US US	5849926 A 5756759 A	15-12-1998 26-05-1998
				_		
WO	9743270	A	20-11-1997	AU	2953897 A	05-12-1997
				CN EP	1211976 A 0901479 A	24-03-1999 17-03-1999
				~~~~		
<u>MO</u>	9744340	A	27-11-1997 	AU	2791097 A	09-12-1997
WO	9723135	Α	03-07-1997	NONE		
WO	9600008	Α	04-01-1996	AU	2753695 A	19-01-199
				BR	9508191 A	12-08-199
				CA	2193212 A	04-01-199
				EP US	0768033 A 5723408 A	16-04-199 03-03-199
	9318031	Α	16-09-1993	AT	180257 T	15-06-199

information on patent family members

Inte onat Application No PCT/EP 99/06259

Patent document cited in search report	t	Publication date	Patent family member(s)		Publication date	
WO 9318031	Α		BR	9306011 A	21-10-1997	
			CA	2131191 A	04-09-1993	
			DE	69325018 D	24-06-1999	
			DE	69325018 T	16-09-1999	
			EP	0629623 A	21-12-1994	
			ES	2134257 T	01-10-1999	
			us	5468722 A	21-11-1995	
			US	5587484 A	24-12-1996	
WO 9712885	Α	10-04-1997	AU	7145296 A	28-04-1997	

onales Aktenzeichen PCT/EP 99/06259

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C07D409/14 C07D409/12 C07D417/06 C07D335/06 CO7D413/14 A01N43/18

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

#### B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole )  $IPK\ 7\ C07D\ A01N$ 

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

A	WO 95 25099 A (RHONE-POULENC AGRICULTURE LTD.) 21. September 1995 (1995-09-21) Ansprüche 1-12	1-16
Α	WO 97 13765 A (IDEMITSU KOSAN CO., LTD.) 17. April 1997 (1997-04-17) Ansprüche 1-13	1-16
A	WO 97 08164 A (E.I. DU PONT DE NMOURS AND COMPANY) 6. März 1997 (1997-03-06) Ansprüche 1-6	1-16
Α	WO 96 31507 A (IDEMITSU KOSAN CO., LTD.) 10. Oktober 1996 (1996-10-10) Ansprüche 1-13/	1-16

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	X Siehe Anhang Patentfamilie				
* Besondere Kategorien von angegebenen Veröffentlichungen :	"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der				
"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist	Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden				
"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist	Theorie angegeben ist  "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung				
"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweitelhaft er- scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer	kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf				
anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)  "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstelltung oder andere Maßnahmen bezieht  "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem baanspruchten Prioritätsdatum veröffentlicht wörden ist	n "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfind kann nicht als auf erfinderischer T\u00e4tigkeit beruhend betrachtet werden, wenn die Ver\u00f6fentlichung mit einer oder mehreren anderen Ver\u00f6ffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung f\u00fcr einen Fachmann naheliegend ist "&" Ver\u00f6ffentlichung, die Mitglied derselben Patentfamilie ist				
Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts				
3. Dezember 1999	10/12/1999				
Name und Postanschrift der Internationalen Recherchenbehörde	Bevollmächtigter Bediensteter				
Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk					
Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Herz, C				

1

Inte onales Aktenzeichen
PCT/EP 99/06259

ategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
	WO 96 25413 A (IDEMITSU KOSAN CO., LTD.) 22. August 1996 (1996-08-22) Ansprüche 1-31	1-16
	EP 0 636 622 A (RHONE POULENC AGRICULTURE LTD.) 1. Februar 1995 (1995-02-01) Ansprüche 1-14	1-16
•	WO 95 13275 A (IDEMITSU KOSAN CO., LTD.) 18. Mai 1995 (1995-05-18) Ansprüche 1-24	1-16
1	WO 97 43270 A (NOVARTIS AG) 20. November 1997 (1997-11-20) Ansprüche 1-12	1-16
<b>\</b>	WO 97 44340 A (IDEMITSU KOSAN CO., LTD.) 27. November 1997 (1997-11-27) Ansprüche 1-20	1–16
1	WO 97 23135 A (IDEMITSU KOSAN CO., LTD.) 3. Juli 1997 (1997-07-03) Ansprüche 1-20	1-16
1	WO 96 00008 A (IDEMITSU KOSAN CO., LTD.) 4. Januar 1996 (1996-01-04) Ansprüche 1-	1-16
1	WO 93 18031 A (IDEMITSU KOSAN CO., LTD.) 16. September 1993 (1993-09-16) Ansprüche 1-11	1–16
<b>A</b>	WO 97 12885 A (IDEMITSU KOSAN CO., LTD.) 10. April 1997 (1997-04-10) Ansprüche 1-22	1–16
	<del></del>	

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Inte males Aktenzeichen
PCT/EP 99/06259

	cherchenberich tes Patentdokur		Datum der Veröffentlichung		glied(er) der stentfamilie	Datum der Veröffentlichung
WO	9525099	Α	21-09-1995	AU	1894295 A	03-10-1995
WO	9713765	Α	17-04-1997	AU	7227296 A	30-04-1997
WO	9708164	A	06-03-1997	AU	6777896 A	19-03-1997
				EP	0846112 A	10-06-1998
WO	9631507	Α	10-10-1996	AU	5120596 A	23-10-1996
				BR	9604847 A	16-06-1998
			,	CA EP	2215057 A 0819691 A	10-10-1996 21-01-1998
				บร	5863866 A	26-01-1999
WO	9625413	Α	22-08-1996	AU	4634096 A	04-09-1996
				BR	9607396 A	30-06-1998
				CA	2213078 A	22-08-1996
				CN	1181756 A	13-05-1998
				EP	0810227 A	03-12-1997
ΕP	636622	Α	01-02-1995	AU	676576 B	13-03-1997
				AU	6876894 A	09-02-1995
				BR	9402331 A	14-03-1995
				CA CN	2117413 A 1104212 A,B	31-01-1995 28-06-1995
				FI	943561 A	31-01-1995
				หน	68000 A	29-05-1995
				IL	110493 A	16-08-1998
				JP	7149742 A	13-06-1995
				US	5489570 A	06-02-1996
				ZA 	9405654 A	13-04-1995
WO	9513275	Α	18-05-1995	JP	7309869 A	28-11-1995
				AU	685868 B	29-01-1998
				AU BR	8067594 A 9408026 A	29-05-1995 17-12-1996
				CA	2175675 A	18-05-1995
				CN	1139433 A	01-01-1997
				EP	0728756 A	28-08-1996
				HU	74306 A	30-12-1996
				JP	8041055 A	13-02-1996
				US	5849926 A	15-12-1998
		, <del></del> ,		US 	5756759 A	26-05-1998
WO	9743270	Α	20-11-1997	AU	2953897 A	05-12-1997
				CN	1211976 A	24-03-1999
				EP	0901479 A	17-03-1999 
WO	9744340	A	27-11-1997	AU	2791097 A	09-12-1997
WO	9723135	A	03-07-1997	KEIN	E	
WO	9600008	Α	04-01-1996	AU	2753695 A	19-01-1996
				BR	9508191 A	12-08-1997
				CA	2193212 A 0768033 A	04-01-1996 16-04-1997
				EP US	5723408 A	03-03-1998

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Inte inales Aktenzeichen
PCT/EP 99/06259

Im Recherchenbericht ingeführtes Patentdokument WO 9318031 A		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie			Datum der Veröffentlichung	
		Α	<u> </u>	BR 9306011		A 21-10-19	
				CA	2131191	A	04-09-1993
				DE	69325018	D	24-06-1999
				DE	69325018	T	16-09-1999
				EP	0629623	Α	21-12-1994
				ES	2134257	T	01-10-1999
				US	5468722	Α.	21-11-1995
				US	5587484	A	24-12-1996
WO 971	2885	Α	10-04-1997	AU	7145296	<del></del> А	28-04-1997

