Algoritmos de Muestreo

El/los problema/s

- 1) Generar *muestras* de $p(\mathbf{x})$
- 2) Estimar el valor esperado de funciones bajo $p(\mathbf{x})$

$$\Phi = \int \phi(\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

Si resolvemos el primero... $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(R)}\}$

Estimador
$$\hat{\Phi} = \frac{1}{R} \sum_{r} \phi(\mathbf{x}^{(r)})$$

¿Por qué es difícil?

iiTenemos $p(\mathbf{x})!!$

Dos dificultades:

- 1) Normalización: $p(\mathbf{x}) = p^*(\mathbf{x})/Z$
 - Muchas veces, tenemos sólo $p^*(\mathbf{x})$
 - Ej. Bayes: $p(H|D) \propto p(D|H)p(H)$
- 2) Aun con Z, podemos evaluar $p(\mathbf{x})$ en **cualquier** punto, pero no en **todo** punto \mathbf{x}

Las muestras deberían venir principalmente de dónde $p(\mathbf{x})$ es grande, pero, ¿cómo saber dónde es grande sin evaluarla en todos lados?

Analogía: medir la concentración de plankton en un lago

Problema 1: tomar muestras de agua

Problema 2: estimar la concentración media de plankton

Algunos números

Modelo de predictibilidad de palabras: $n_w + 1$ dimensiones

20 sujetos, eligen en total 30 palabras distintas, tomamos un *grid* de 50 pasos para cada dimensión, y una computadora de 10 GHz que evalúa la posterior 10^10 veces por segundo...

50^30 evaluaciones / 10^10 (evaluaciones/s) ~ 2^132 s Edad del universo: 2^58 s

Rejection Sampling

Tenemos Q(x) de la que **sí** podemos tomar muestras, y c tal que:

$$c Q^*(x) > P^*(x)$$

Algoritmo:

- 1) Tomamos muestra x de Q(x)
- 2) Evaluamos $cQ^*(x)$ y tomamos muestra u de $Uniforme(0, cQ^*(x))$
- 3) Si $u > P^*(x)$, rechazamos x, si no, la aceptamos

Rejection Sampling

Funciona bien si Q es una buena aproximación a P

Si no, c va a tener que ser grande, y habrá muchos rechazos

En muchas dimensiones: por lo general, difícil incluso *hallar c*

Rejection Sampling

Ej. dos gaussianas, una con desvio 1% mayor

$$p(x) = \frac{1}{(2\pi\sigma^2)^{N/2}} e^{-\frac{x^2}{2\sigma^2}}$$

$$c = \frac{(2\pi\sigma_Q^2)^{N/2}}{(2\pi\sigma_P^2)^{N/2}} = \exp\left(N\ln\frac{\sigma_Q}{\sigma_P}\right)$$

c crece exponencialmente con la dimensión N aquí $c\sim 1.35$ para N=30 pero $c\sim 20000$ para N=1000

Útil para distribuciones unidimensionales, pero no para dimensiones altas

Importance Sampling

Técnica para el problema 2, estimar valores esperados de funciones, no para tomar muestras.

Nuevamente, podemos evaluar $P^*(x)$ pero no tomar muestras de P(x), y contamos con Q(x) de la que podemos tomar muestras y podemos evaluar $Q^*(x)$

Queremos estimar el valor esperado de $\phi(x)$

Importance Sampling

Queremos estimar el valor esperado de $\phi(x)$

$$\hat{\Phi} = \frac{1}{R} \sum_{r} \phi(\mathbf{x}^{(r)})$$

Algoritmo:

- 1) Generar R muestras de Q(x): $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(R)}\}$
- 2) Computar los *pesos* de las distintas muestras: $w_r \equiv \frac{P^*(x^{(r)})}{Q^*(x^{(r)})}$
- 3) Estimar el valor esperado como: $\hat{\Phi} \equiv \frac{\sum_{r} w_{r} \phi(x^{(r)})}{\sum_{r} w_{r}}$

Importance Sampling

$$w_r \equiv \frac{P^*(x^{(r)})}{Q^*(x^{(r)})} \qquad \hat{\Phi} \equiv \frac{\sum_r w_r \phi(x^{(r)})}{\sum_r w_r}$$

Difícil estimar cuán confiable es el estimador: si Q(x) es chica en un lugar donde $|\phi(x)P^*(x)|$ es grande, estimamos mal sin enterarnos..

Tamaño efectivo de muestra

Pesos normalizados

$$S_{\text{eff}} = \frac{1}{\sum_{r} (\tilde{w}(x^{(r)}))^2}$$

$$\tilde{w}(x^{(r)}) = \frac{R w(x^{(r)})}{\sum_{r'} w(x^{(r')})}$$

En muchas dimensiones, difícil "embocar" la región típica de probabilidad de P(x), luego gran variación en los pesos.. Incluso en la región típica, los pesos difieren por factores de orden $\exp(\sqrt{N})$

Entonces.. ¿qué hacemos?

MCMC

Markov Chain Monte Carlo

Cadenas de Markov: la probabilidad del siguiente estado depende del estado en que estamos

Monte Carlo: Proceso Aleatorio

Algoritmo de Metropolis

Nuevamente, somos capaces de evaluar $P^*(x)$ en cualquier x

Densidad de propuestas Q(x;x'), que depende del estado actual x', y es simétrica en x, x'

Algoritmo:

- 1) Elegir valor inicial $x^{(0)}$
- 2) Para t=1..., repetir:
 - a) Tomar muestra de $Q(x'; x^{(t-1)})$
 - b) Calcular la razón de densidades $r = \frac{P^*(x')}{P^*(x^{(t-1)})}$
 - c) Tomar: (x', cc)

$$x^{(t)} = \begin{cases} x' & \text{con probabilidad } \min(r, 1) \\ x^{(t-1)} & \text{en otro caso} \end{cases}$$

Las muestras repetidas *no se descartan*, son muestras válidas

Algoritmo de Metropolis

Normal bivariada

Aquí: saltos pequeños, comportamiento random walk.. ineficiente

¡Método útil en altas dimensiones!

Algoritmo de Metropolis ¿Por qué funciona?

Esquema de la prueba, en dos pasos:

1) Probar que la secuencia simulada es una cadena de Markov con una distribución estacionaria única (paso técnico, usando propiedades de estas cadenas)

$$\Pi(x)Q(x';x)=\Pi(x')Q(x;x')$$
 Balance detallado, condición suficiente para estacionareidad

2) Probar que la distribución estacionaria de la cadena es la distribución deseada

Tomamos
$$x_a, x_b : P^*(x_b) \ge P^*(x_a)$$

$$x_a \to x_b \ P^*(x_a)Q(x_b; x_a) \qquad \swarrow^{r = \frac{P^*(x')}{P^*(x^{(t-1)})}}$$

$$x_b \to x_a \ P^*(x_b)Q(x_a; x_b) \frac{P^*(x_a)}{P^*(x_b)} = P^*(x_a)Q(x_b; x_a)$$

Algoritmo de Metropolis-Hastings

Similar a Metropolis, sin imponer simetría en la densidad Q(x;x')

Algoritmo:

- 1) Elegir valor inicial $x^{(0)}$
- 2) Para t=1..., repetir:
 - a) Tomar muestra de $Q(x'; x^{(t-1)})$
 - b) Calcular la razón de densidades $r = \frac{P^*(x')}{P^*(x^{(t-1)})} \frac{Q(x^{(t-1)};x')}{Q(x'\cdot x^{(t-1)})}$

$$r = \frac{P^*(x')}{P^*(x^{(t-1)})} \frac{Q(x^{(t-1)}; x')}{Q(x'; x^{(t-1)})}$$

 $r = \frac{P'(x')}{P*(x(t-1))}$

c) Tomar:

$$x^{(t)} = \begin{cases} x' & \text{con probabilidad } \min(r, 1) \\ x^{(t-1)} & \text{en otro caso} \end{cases}$$

Las muestras repetidas *no se descartan*, son muestras válidas

Prueba idéntica, ahora los factores Q en r compensan la falta de simetría

Algoritmo de Gibbs

No podemos muestrear de $P(\mathbf{x})$, pero sí de las condicionales $P(x_i|\{x_i\}_{j\neq i})$

Muestreamos una a una...

$$x_1^{(t+1)} \sim P(x_1 | x_2^{(t)}, x_3^{(t)}, \dots, x_K^{(t)})$$
 $x_2^{(t+1)} \sim P(x_2 | x_1^{(t+1)}, x_3^{(t)}, \dots, x_K^{(t)})$
 $x_3^{(t+1)} \sim P(x_3 | x_1^{(t+1)}, x_2^{(t+1)}, \dots, x_K^{(t)}), \text{ etc.}$

Prueba de convergencia: cada paso es un método Metropolis en el que se aceptan todas las propuestas

Algoritmo de Gibbs

Normal bivariada con corr=0.8

Random walk "cuadrado"

Otras técnicas

- Hamiltonian Monte Carlo (HMC)
 Inspirado en física, usa el momento de las muestras además de la posición. Método robusto y de uso general (STAN).
- Sequential Monte Carlo (SMC)
 En lugar de acumular muestras en la historia (MCMC), a cada paso llevamos una estimación de la distribución.
 Ejemplos: particle filters.
 - En general, buenos modelos cognitivos, ya que demandan menos, por lo que son más plausibles como mecanismo psicológico.