5. Bipartite graphs & Matching problems

Recall: Relation vs bipartite graphs:

- · Given two (Pinite) sets X, y a relation is a subset
- · This relation give rise to a bipartite graph $G_{R}=(X_{U}Y,E) \quad \text{on the vertex set } X_{U}Y \quad \text{where}$

 $E = \{ \{x,y\} \in X \times Y \mid (x,y) \in R \}$

. And vice-versa, connected bipartite graphs define a relation (or incidence structure).

Examples: 1)

Alice, Bianca, Chloe, David, Elliot and Frederik want to get married after June 30th 2017.

They all have their personal preferences among

Uli, Theresa, Stefany, Willam, Yulia, Zach.

Is it possible to completely match A to F to a partner on the right, while respecting their preferences?

3) Suppose you have 4 employees each able to do some tasks among 5 different "jobs".

What is the <u>maximal</u> matching possible (assign the <u>most</u> employees to jobs)?

Or: Given a relation find the biggest function in it.

Lemma: Given a bipartite graph G=(XvY, E), then $\sum_{x \in X} deg(x) = \sum_{y \in Y} deg(y) = |\pm|.$ Double counting on edges.

Ex: Say that each employee can do k jobs and each job can be done by k employee, then a) # employee = # jobs.

at least n jobs for which some member is qualified.

a) By Lemma: $|X| \cdot k = |Y| \cdot k = |E|$

b) Let A = X and J(A) = { Y = Y | {xy} = E for some x = A}.

. The number of edges ending in A is R. |A| = kn.

Each of these have one vertex in J(A).

The same condition on J(A) says that there are edges who exertex in J(A).

 \Rightarrow $|E_A| = kn \pi k |J(A)| \Leftrightarrow n \pi |J(A)|$

Def: A matching in a bipartite graph G=(XuY,E) is a subset $M \subseteq E$ with the property that no two edges in M have a common vertex.

Ex:

Det: A matching Mis a maximum matching for 6 if no other matching of 6 has greater cardinality.

A matching is complete it IM = IXI. (every employee's gets assigned a job).

For M_{λ} , $\Im(\{x_1,x_2,x_3\}) = \{x_1,y_3\}$ 3 employees can do $\exists jobs$ $\exists f(A) < |A|$ someone will be disappointed.

Hall's condition: If G has a complete matching,

(1935) Then |J(A)| > |A), + A = X.

Hall's condition is sufficient!

(5)

Hall's Theorem: The bipartite graph $G=(X_UV, \pm)$ has a complete matching \Longrightarrow |J(A)| > |A|, $\forall A \in X$.

Proof: Diven the matching, YACX, the vertices in y matched to A form a subset of J(A) of size IAI.

Idea: given a matching M such that |M| = |X| construct a matching M' such that |M'| = |M| + 1.

Step 1: Pick $x_0 \in X$, not matched by M.

· Since $|\Im(x_0,y_1)| \ge |x_0,y_1| = 1$, there is an edge $(x_0,y_1) \in E$.

done ye is unmatched, add [=0,1] to M and we are

Step 2: If 1/2 is matched, say to 2, then

 $|J([x_0,x])| > |[x_0,x]| = 2$

has to have you connected to either 20 or 20.

If yr is ummatched, match it to the neighbor and adapt yr.

Step 3: If x is matched, iterate. Since G is finite (6)
there has to have an unmatched vertex (using IJ(A)) > |A|)

Step 4: Each vertex y_i (orier) is adjacent to at least one x_0, x_1, \dots, x_{i-1} .

NO STATE OF TO, X_{i-1} . $\downarrow^{M} \quad \downarrow^{M} \quad \downarrow^{M}$ $\downarrow^{N} \quad \downarrow^{N} \quad \downarrow^{N}$ $\downarrow^{N} \quad \downarrow^{N} \quad \downarrow^{N}$ $\downarrow^{N} \quad \downarrow^{N} \quad \downarrow^{N}$ $\downarrow^{N} \quad \downarrow^{N}$ $\downarrow^{N} \quad \downarrow^{N}$

we have an alternating path from "≠M", "∈M" that starts with and end with "≠M":

Replace the 'red' edges by the black one to increase the matching.

X

Call the paths in the proof atternating path for M.	7)
De The theorem shows that if Hall's condition is satisfied and you have an incomplete matching, you can find an alternating path for M.	
hm: If M is a non-maximum matching in a bipartite graph G, then G contains an alternating path for M.	,
Let MX be a maximum matching. Define $F = M \times M^{\times}$ (symmetric difference: TITOMIN)	
The edges and vertices of F form a graph where vertices have degree 1 or 2. => Components are their	•
orapele reages alternate between M and MX. In cycles, their number is equal (M2)	
Since IMX/>/M/ there is at least one component which is a path and alternating path for M.	

Algorithm	to	-get	٩	maximum	matching:
-----------	----	------	---	---------	-----------

- Step 1: Start with one edge $e \in E$.

 Step 2: Search for alternating path

 If found replace current matching and repeat

 Else stop and return current matching.

Search for afternating path: (Breadthfiss) search).

4) Take & unmatched.

4) Take x_0 unmatched.

3) At level 1 put all adjacent vertices y_1, \dots, y_k of x_0 it one is unmatched, stop: $x_0 y_1$ is alternating.

3) If all are matched at level "i" insert all their matched " x_0 "

At level "its" insert all the new y's adjutable is at level "it!" 4) Repeat.

Remark: Maybe this stops because all y's were covered. Then change so.

If not found to un matched > Maximum matching.

F S = Matched

Y = Matched

M= {AU, BS, CW, DZ, EY'S

M= SAU, BS, CW, DZ, EY, FTE

How to show it is maximum?

Det: The deficiency "d" of a bipartite graph

G=(XvY, E) is d:= max { |A| - |J(A)|}.

Td>0: consider the empty set.

Hall's thm: G has a complete matching (=) d=0.

Thm: The size of a maximum matching M in a bipartite graph G=(XUV, E) is

 $|M| = |X| - \delta.$

A Facercise.

6. Connectivity in graphs

Def: The edge -connectivity of a graph is the minimal number of edges whose removal disconnects the graph.

The (vertex)-connectivity of a non-complete graph

Vertices

- · When v-connectivity > k, we say it is k-connected.
- · A <u>cut</u> set is a minimal set of <u>edgen</u> that disconnects the graph.

 · A <u>separating</u> set is a minimal set of <u>vertices</u> that disconnects the graph

Ex:

1-conn. 2-conn. but not 3-connected.

· Trees with 17,3 are 1-connected.

Theorem (Whitney, '27)

A connected graph with at least 3 vertices

is 2-connected > Ytwo vertices xiye V, there is a simple cycle containing both.

Base case: Let u,v be adjacent, and take ZEV/ [4,15]. Because G is 2-connected, IP, a path from u to z in V/SVS, and similarly for v to z.

Take the first common

Z Vertex "x", u -> x -> V -> u.

is a simple cycle.

Induction step: Assume it is true to x, y such that d(x, y) = k Tabe u,v s.t. d(u,v)=k+1.

Let P be a shortest path from u to v with last vertex w

· Since dist(u,w)=k, there is a cycle C containing u and w.
· Removing w does not disconnect u and v, hence there is a path from u to v without w.

- · If C and P have no common votices appoint from n l v
- · Else: If P has only common vertices on one "side" of C, pick the "other side" of C and then come back to u with P.
 - · Else, P has common vertices on both sides of C.

 Let C, be the first side that P touches from V to u. (say at Vertex t) and c, the other side.

 Then u cos W V P + Cs u is a simple cycle.

Theorem (Menger, 1927)

The maximum of vertex olision paths connecting two distinct nonedjacent vertices v and w of a graph

— min. H of vertices in a vw-separating set.

Corollary A graph G with at least k+1 vertices

is k-connected = any two vertices of G

are connected by at least k

Vertex-disjoint paths.

Thm: Menger's Theorem > Hall's theorem

Proof: Let $G = (X \cup Y, E)$ be such that |J(A)| > |A|, $\forall A \in X$. We have to show that it has a complete matching.

Create G' as tollows:

A complete matching in G excists => # of vertex disjoint paths from v to w

= # vertices in X (i.e. IX We show that every VW-separating_setShas IXI vertices. S=AUB, ACX and BCY. Since S is W-sep.

A Can not happen. $\Rightarrow V(X \setminus A) \subseteq B$. $\Rightarrow |X \setminus A| = |V(X \setminus A)| = |B| \Rightarrow |S| = |A| + |B|$