Лабораторная работа 2 МОДЕЛИРОВАНИЕ БИЗНЕС-ПРОЦЕССОВ В НОТАЦИЯХ IDEF0 И DFD

Цель: изучение и системное представление бизнес-процессов, подлежащих программированию, приобретение навыков системного анализа объектов и процессов реального мира на предмет организации программного управления.

Средства: Microsoft Visio, Microsoft Word.

Задание по вариантам: Смоделируйте бизнес-процесс в нотации IDEF0 (используйте Microsoft Visio).

Смоделируйте функцию в нотации DFD (используйте Microsoft Visio).

Теоретические сведения:

1.1. Принцип системного анализа

При системном анализе необходимо определить целевую функцию — результат работы изучаемой системы (например, целевая функция работы фабрики—производство продукции, парикмахерская — выполнение стрижек и причесок, и т. д.).

Сущность системного анализа заключается в том, что система разделяется на ряд подсистем (частей), а каждая подсистема в свою очередь делится на задачи.

Понятие подсистема подразумевает, что выделяется относительно независимая часть системы, обладающая свойствами системы и, в частности, имеющая подцель, на достижение которой ориентирована подсистема, а также другие свойства — целостности, коммуникативности и т.п., определяемые закономерностями систем.

Система (процесс) может быть разделена на элементы (задачи) не сразу, а последовательным расчленением на подсистемы — совокупности элементов. Такое расчленение, как правило, производится на основе определения независимой функции, выполняемой данной совокупностью элементов совместно для достижения некой частной цели, которая обеспечивает достижение общей цели системы, и называется декомпозицией. Подсистема отличается от простой группы элементов, для которой не выполняется условие целостности.

Последовательное разбиение системы в глубину приводит к получению иерархии подсистем, нижним уровнем которых является элемент. С этой концепцией связано понятие структуры системы.

1.2. Системный подход к описанию бизнес-процессов

Разделение бизнес-процесса на подпроцессы (задачи) производится с учетом целевой функции бизнес-процесса, а деление операции — с учетом целевой функции подпроцесса, исходя из целевой функции бизнес-процесса. Такой принцип упрощает изучение сложных бизнес-процессов и является системным подходом.

На рисунке 1 представлен принцип системного анализа.

Рис. 1. Принцип системного анализа

Разделение на системы, подсистемы, задачи является условным и выполняется в зависимости от цели исследований.

Требования к содержанию отчета

В подразделе 1 дается характеристика заданного бизнес-процесса (приложение А, табл. А.1). Для этого выполняются следующие обязательные элементы:

- приводится подробное описание бизнес-процесса;
- определяется состав лиц, задействованных в рассматриваемом процессе;
- определяется входная и выходная информация, строится структурная схема типа "черный ящик" (см. рис. 2).
- производится декомпозиция бизнес-процесса на подпроцессы (задачи);
- дается общая информация о выделенных задачах;
- приводятся правила обработки информации и возможные ограничения;
- определяется нормативно-справочная документация, регламентирующая бизнеспроцесс.

Рис. 2. Реализация принципа «черного ящика»

При выделении задач следует помнить, что задача программы — это формализованная совокупность действий, выполнение которых приводит к результату заданного вида. Поэтому в качестве задач надо выбирать такие, для которых можно четко сформулировать результат. Необходимо выделить такие задачи:

- 1. задача введения входных данных;
- 2. задача сохранения данных в памяти ЭВМ;
- 3. задача формирования выходных данных;
- 4. задача вычисления некоторого итогового показателя;
- 5. задача статистического анализа данных, и др.

Внимание! Обязательно выделить задачу, предполагающую сортировку данных по определенному атрибуту (можно совместить с задачей №3).

В целом описание бизнес-процесса должно давать представление о вычислительных задачах, предполагаемых заданным бизнес-процессом, величине информационного массива, подлежащего обработке, численности персонала, занятого в процессе создания специального ПО для решения выделенных задач.

В подразделе 2 в повествовательной форме простыми предложениями описываются основные операции, которые выполняются при сборе и обработке информации, а также связанные с этим действия персонала предприятия без использования специального программного обеспечения. Указываются те недостатки этой системы, которые приводят к снижению эффективности решения данных задач и бизнес-процесса в целом. В данном подразделе целесообразно привести блок-схему укрупненного алгоритма бизнес-процесса.

В подразделе 3 дается обоснование необходимости создания специального ПО для автоматизации бизнес-процесса. В этом подпункте, с учетом специфики заданного бизнес-процесса и выделенных в подразделе 2 недостатков излагаются причины, вследствие которых создание программ для решения задач бизнес-процесса является необходимым.

В целом из материала отчета должно быть видно, что представляет собой заданный бизнес-процесс, какие задачи при этом решаются, какие из них выполняются не достаточно эффективно, почему и на каком уровне необходима программная реализация указанных задач.

Методические указания:

IDEF0 – методология функционального моделирования.

Любая IDEF0 диаграмма состоит из прямоугольников, называемых функциями, и стрелок. По требованиям стандарта название каждой функции должно быть выражено глаголами или глагольными оборотами (например, «Изготовить деталь», «Оформить заказ» и т. д.). Каждая стрелка должна быть помечена существительным или оборотом существительного (например, «Методика испытаний», «Инженер», «Бюджет» и т. д.).

Каждая из четырех сторон функции имеет свое определенное значение (рис. 2):

- Вход это потребляемая или изменяемая функцией информация или материал;
- Выход информация или материал, которые производятся функцией;
- Управление процедуры, правила, стратегии или стандарты, кото- рыми руководствуется функция;
- Механизмы ресурсы, которые выполняют функцию (например, со-трудники, оборудование, устройства и т. д.).

Пример для проектирования информационной программы приведен на рис. 3.

Рис. 3. Пример IDEF0 диаграммы

Методология DFD (Data Flow Diagrams) – диаграммы потоков данных – это стандарт представления процессов обработки информации. Подобно IDEF0, DFD представляет систему как сеть процессов, связанных между собой с помощью стрелок. В отличие от стрелок IDEF0, которые представляют собой жесткие взаимосвязи, стрелки DFD (потоки данных) показывают, как объекты (включая и данные) реально перемещаются от одной функции к другой. Это представление потока данных обеспечивает отражение в модели DFD таких физических характеристик системы, как движение объектов, хранение объектов, распространение объектов (рис.4).

Рис. 4. Пример DFD диаграммы

Элементы нотации представлены в табл. 1.

Таблица 1 Элементы нотации DFD

Элемент	Описание	Нотация Йордона- Де Марко	Нотация Гейна- Сарсона
Функция	Работа.	Имя функции Номер	Имя функции Номер
Поток данных	Объект, над которым выполняется работа. Может быть логическим ил и управляющим. (Управляющие потоки обозначаются пунктирной линией со стрелкой).	Имя объекта ————————————————————————————————————	Имя объекта (Понятие управляющего потока отсутствует)
Хранилище данных	Структура для хранения информационных объектов.	Имя объекта ————————————————————————————————————	Имя объекта
Внешняя сущность	Внешний по отношению к системе объект, обменивающийся с нею потоками.	Имя внешнего объекта	Имя внешнего объекта

Контрольные вопросы и упражнения

1. Что такое декомпозиция бизнес-процесса?

- 2. Какова типовая структура декомпозиции бизнес-процесса?
- 3. Что такое схема типа "черный ящик"?
- 4. Что такое документооборот бизнес-процесса?
- 5. Чем определяется эффективность решения задач программы?
- 6. В чем различия между задачей бизнес-процесса и задачей программы?
- 7. Каковы могут быть основания для создания специального ПО для автоматизации бизнес-процесса?
- 8. Какие задачи выбранного бизнес-процесса решаются не достаточно эффективно и почему?
- 9. Какие критерии эффективности могут быть использованы для оценивания эффективности реализации бизнес-процесса?
- 10. Перечислите задачи в структуре заданного бизнес-процесса. Дайте краткую характеристику одной из задач, включая задействованные документы.
- 11. Насколько целесообразным является решение об автоматизации выделенных задач бизнес-процесса?
- 12. Укажите несколько недостатков, которые приводят к снижению эффективности решения задач бизнес-процесса.

Задание

- 1. Смоделируйте процесс «Увольнение» в нотации IDEF0 (используйте Microsoft Visio).
- 2. Функцию «Оформление и выдача трудовой книжки» смоделируйте в нотации DFD (используйте Microsoft Visio).
- 3. Разработанные модели, их описание оформить в виде отчета в соответствии с ГОСТ 7.32-2017. Требования по выполнению моделей соответствие рекомендациям по стандартизации Р 50.1.028-2001.
- 4. Отчет представить к защите и выложить в LMS (во вкладке текущего задания) в виде pdf-файла.