Subtrees with small branching number

Pedro Marun
Carnegie Mellon University

March 23, 2023

▶ Let T be a tree and $x \in T$. The set of *immediate successors* of T is denoted by $I_T(x)$.

- ▶ Let T be a tree and $x \in T$. The set of *immediate successors* of T is denoted by $I_T(x)$.
- Let λ be a cardinal. A tree T is λ -branching [respectively $<\lambda$ -branching] iff for every $x\in T$, $|I_T(x)|=\lambda$ [respectively $|I_T(x)|<\lambda$].

- ▶ Let T be a tree and $x \in T$. The set of *immediate successors* of T is denoted by $I_T(x)$.
- Let λ be a cardinal. A tree T is λ -branching [respectively $<\lambda$ -branching] iff for every $x\in T$, $|I_T(x)|=\lambda$ [respectively $|I_T(x)|<\lambda$].
- ▶ A tree T is *finitely branching* if it is $<\aleph_0$ -branching. It is *infinitely branching* if $|I_T(x)| \ge \aleph_0$ for every $x \in T$.
- A subtree of a tree T is a subset S of T such that for every $s \in S$ and $t \in T$, if t < s, then $t \in S$.

- ▶ Let T be a tree and $x \in T$. The set of *immediate successors* of T is denoted by $I_T(x)$.
- Let λ be a cardinal. A tree T is λ -branching [respectively $<\lambda$ -branching] iff for every $x\in T$, $|I_T(x)|=\lambda$ [respectively $|I_T(x)|<\lambda$].
- A tree T is finitely branching if it is $<\aleph_0$ -branching. It is infinitely branching if $|I_T(x)| \ge \aleph_0$ for every $x \in T$.
- A subtree of a tree T is a subset S of T such that for every $s \in S$ and $t \in T$, if t < s, then $t \in S$.

Lemma

Let T be an \aleph_1 -tree. If T has no uncountable 1-branching subtrees, then T is Aronszajn.

- Let T be a tree and $x \in T$. The set of *immediate successors* of T is denoted by $I_T(x)$.
- Let λ be a cardinal. A tree T is λ -branching [respectively $<\lambda$ -branching] iff for every $x\in T$, $|I_T(x)|=\lambda$ [respectively $|I_T(x)|<\lambda$].
- ▶ A tree T is *finitely branching* if it is $<\aleph_0$ -branching. It is *infinitely branching* if $|I_T(x)| \ge \aleph_0$ for every $x \in T$.
- A subtree of a tree T is a subset S of T such that for every $s \in S$ and $t \in T$, if t < s, then $t \in S$.

Lemma

Let T be an \aleph_1 -tree. If T has no uncountable 1-branching subtrees, then T is Aronszajn.

Proof.

If b is a cofinal branch, then b is an uncountable 1-branching subtree.

An infinitely branching \aleph_1 -tree T is Lindelöf iff every finitely branching subtree of T is countable.

An infinitely branching \aleph_1 -tree T is Lindelöf iff every finitely branching subtree of T is countable.

The previous lemma shows that

 $\{\mathsf{Lindel\"{o}f}\} \subseteq \{\mathsf{Aronszajn}\}$

An infinitely branching \aleph_1 -tree T is Lindelöf iff every finitely branching subtree of T is countable.

The previous lemma shows that

$$\{\mathsf{Lindel\"{o}f}\} \subseteq \{\mathsf{Aronszajn}\}$$

We will show that the inclusion is proper.

An infinitely branching \aleph_1 -tree T is Lindelöf iff every finitely branching subtree of T is countable.

The previous lemma shows that

$$\{\mathsf{Lindel\"{o}f}\} \subseteq \{\mathsf{Aronszajn}\}$$

We will show that the inclusion is proper.

First, we explain the terminology:

An infinitely branching \aleph_1 -tree T is Lindelöf iff every finitely branching subtree of T is countable.

The previous lemma shows that

```
\{\mathsf{Lindel\"{o}f}\} \subseteq \{\mathsf{Aronszajn}\}
```

We will show that the inclusion is proper.

First, we explain the terminology: Trees are Lindelöf if and only if they have they are Lindelöf spaces with respect to a natural topology.

An infinitely branching \aleph_1 -tree T is Lindelöf iff every finitely branching subtree of T is countable.

The previous lemma shows that

$$\{\mathsf{Lindel\"{o}f}\} \subseteq \{\mathsf{Aronszajn}\}$$

We will show that the inclusion is proper.

First, we explain the terminology: Trees are Lindelöf if and only if they have they are Lindelöf spaces with respect to a natural topology.

Definition (Nyikos)

Let T be a tree. The *fine wedge topology* on T is generated by all sets of the form $\uparrow x$ and their complements, where $\uparrow x = \{y \in T : x \le y\}$ and $x \in T$.

An infinitely branching \aleph_1 -tree T is Lindelöf iff every finitely branching subtree of T is countable.

The previous lemma shows that

$$\{\mathsf{Lindel\"{o}f}\} \subseteq \{\mathsf{Aronszajn}\}$$

We will show that the inclusion is proper.

First, we explain the terminology: Trees are Lindelöf if and only if they have they are Lindelöf spaces with respect to a natural topology.

Definition (Nyikos)

Let T be a tree. The *fine wedge topology* on T is generated by all sets of the form $\uparrow x$ and their complements, where

$$\uparrow x = \{ y \in T : x \le y \} \text{ and } x \in T.$$

If
$$X \subseteq T$$
, write $\uparrow X = \{y \in T : \exists x \in X(x \le y)\}.$

If $x \in T$, the family $\{\uparrow x \setminus \uparrow F : F \in [I(x)]^{<\omega}\}$ is a local basis of open neighbourhoods of x. In particular, the topology is Hausdorff.

If $x \in T$, the family $\{\uparrow x \setminus \uparrow F : F \in [I(x)]^{<\omega}\}$ is a local basis of open neighbourhoods of x. In particular, the topology is Hausdorff.

Proof.

Let
$$x \in W = (\uparrow x_0) \cap \cdots \cap (\uparrow x_{n-1}) \cap (\uparrow y_0)^c \cap \cdots \cap (\uparrow y_{m-1})^c$$
.

If $x \in T$, the family $\{\uparrow x \setminus \uparrow F : F \in [I(x)]^{<\omega}\}$ is a local basis of open neighbourhoods of x. In particular, the topology is Hausdorff.

Proof.

Let
$$x \in W = (\uparrow x_0) \cap \cdots \cap (\uparrow x_{n-1}) \cap (\uparrow y_0)^c \cap \cdots \cap (\uparrow y_{m-1})^c$$
.

If $x \in T$, the family $\{\uparrow x \setminus \uparrow F : F \in [I(x)]^{<\omega}\}$ is a local basis of open neighbourhoods of x. In particular, the topology is Hausdorff.

Proof.

Let $x \in W = (\uparrow x_0) \cap \cdots \cap (\uparrow x_{n-1}) \cap (\uparrow y_0)^c \cap \cdots \cap (\uparrow y_{m-1})^c$. Since T is a tree, $\{x_i : i < n\}$ is a chain, say with maximum x_0 .

If $x \in T$, the family $\{\uparrow x \setminus \uparrow F : F \in [I(x)]^{<\omega}\}$ is a local basis of open neighbourhoods of x. In particular, the topology is Hausdorff.

Proof.

Let
$$x \in W = (\uparrow x_0) \cap (\uparrow y_0)^c \cap \cdots \cap (\uparrow y_{m-1})^c$$
.

If $x \in T$, the family $\{\uparrow x \setminus \uparrow F : F \in [I(x)]^{<\omega}\}$ is a local basis of open neighbourhoods of x. In particular, the topology is Hausdorff.

Proof.

If $x \in T$, the family $\{\uparrow x \setminus \uparrow F : F \in [I(x)]^{<\omega}\}$ is a local basis of open neighbourhoods of x. In particular, the topology is Hausdorff.

Proof.

If $x \in T$, the family $\{\uparrow x \setminus \uparrow F : F \in [I(x)]^{<\omega}\}$ is a local basis of open neighbourhoods of x. In particular, the topology is Hausdorff.

Proof.

Let
$$x \in W = (\uparrow x) \cap (\uparrow y_0)^c \cap \cdots \cap (\uparrow y_{m-1})^c$$
.

If $x \in T$, the family $\{\uparrow x \setminus \uparrow F : F \in [I(x)]^{<\omega}\}$ is a local basis of open neighbourhoods of x. In particular, the topology is Hausdorff.

Proof.

If $x \in T$, the family $\{\uparrow x \setminus \uparrow F : F \in [I(x)]^{<\omega}\}$ is a local basis of open neighbourhoods of x. In particular, the topology is Hausdorff.

Proof.

If $x \in T$, the family $\{\uparrow x \setminus \uparrow F : F \in [I(x)]^{<\omega}\}$ is a local basis of open neighbourhoods of x. In particular, the topology is Hausdorff.

Proof.

Definition

Given $f \in \prod_{x \in T} [I(x)]^{<\omega}$, we will say that $x \in T$ is *safe* iff for every y < x, $x \in \uparrow f(y)$.

Definition

Given $f \in \prod_{x \in T} [I(x)]^{<\omega}$, we will say that $x \in T$ is *safe* iff for every y < x, $x \in \uparrow f(y)$.

Note that the set of safe points is a finitely branching subtree of T.

Definition

Given $f \in \prod_{x \in T} [I(x)]^{<\omega}$, we will say that $x \in T$ is *safe* iff for every y < x, $x \in \uparrow f(y)$.

Note that the set of safe points is a finitely branching subtree of T.

Lemma

Let T be an infinitely branching \aleph_1 -tree and $f \in \prod_{x \in T} [I(x)]^{<\omega}$. The following are equivalent:

Definition

Given $f \in \prod_{x \in T} [I(x)]^{<\omega}$, we will say that $x \in T$ is *safe* iff for every y < x, $x \in \uparrow f(y)$.

Note that the set of safe points is a finitely branching subtree of T.

Lemma

Let T be an infinitely branching \aleph_1 -tree and $f \in \prod_{x \in T} [I(x)]^{<\omega}$. The following are equivalent:

1. f has no countable subcover.

Definition

Given $f \in \prod_{x \in T} [I(x)]^{<\omega}$, we will say that $x \in T$ is *safe* iff for every y < x, $x \in \uparrow f(y)$.

Note that the set of safe points is a finitely branching subtree of T.

Lemma

Let T be an infinitely branching \aleph_1 -tree and $f \in \prod_{x \in T} [I(x)]^{<\omega}$. The following are equivalent:

- 1. f has no countable subcover.
- 2. Every level has a safe point.

Definition

Given $f \in \prod_{x \in T} [I(x)]^{<\omega}$, we will say that $x \in T$ is *safe* iff for every y < x, $x \in \uparrow f(y)$.

Note that the set of safe points is a finitely branching subtree of T.

Lemma

Let T be an infinitely branching \aleph_1 -tree and $f \in \prod_{x \in T} [I(x)]^{<\omega}$. The following are equivalent:

- 1. f has no countable subcover.
- 2. Every level has a safe point.
- 3. The set of $\{ht(x) : x \text{ is safe}\}\$ is uncountable.

Let T be an infinitely branching \aleph_1 -tree. Then T is a Lindelöf tree if and only if it has the Lindelöf property with respect to the fine wedge topology.

Let T be an infinitely branching \aleph_1 -tree. Then T is a Lindelöf tree if and only if it has the Lindelöf property with respect to the fine wedge topology.

Proof.

 \Rightarrow) Let f code a cover with no countable subcover. Let S be the set of safe points. By the previous lemma, S is uncountable.

Let T be an infinitely branching \aleph_1 -tree. Then T is a Lindelöf tree if and only if it has the Lindelöf property with respect to the fine wedge topology.

Proof.

- \Rightarrow) Let f code a cover with no countable subcover. Let S be the set of safe points. By the previous lemma, S is uncountable.
- \Leftarrow) Let S be an uncountable finitely branching subtree of T.

Let T be an infinitely branching \aleph_1 -tree. Then T is a Lindelöf tree if and only if it has the Lindelöf property with respect to the fine wedge topology.

Proof.

- \Rightarrow) Let f code a cover with no countable subcover. Let S be the set of safe points. By the previous lemma, S is uncountable.
- \Leftarrow) Let S be an uncountable finitely branching subtree of T.

Define
$$f(x) = \emptyset$$
 for $x \in T \setminus S$ and $f(x) = I_S(x)$ for $x \in S$.

Let T be an infinitely branching \aleph_1 -tree. Then T is a Lindelöf tree if and only if it has the Lindelöf property with respect to the fine wedge topology.

Proof.

 \Rightarrow) Let f code a cover with no countable subcover. Let S be the set of safe points. By the previous lemma, S is uncountable. \Leftarrow) Let S be an uncountable finitely branching subtree of T. Define $f(x) = \emptyset$ for $x \in T \setminus S$ and $f(x) = I_S(x)$ for $x \in S$. If $x \in S$ and y < x, then $x \in \uparrow f(y)$, so x is safe for S. So $S \subseteq \{x \in T : x \text{ is safe}\}$, hence the latter is uncountable.

Recall that if T is a tree, an *antichain* is a set of pairwise incomparable elements of T. A *Suslin tree* is a tree with no uncountable chains or antichains.

Recall that if T is a tree, an *antichain* is a set of pairwise incomparable elements of T. A *Suslin tree* is a tree with no uncountable chains or antichains. If T is a tree, \mathbb{P}_T is the dual order.

Recall that if T is a tree, an *antichain* is a set of pairwise incomparable elements of T. A *Suslin tree* is a tree with no uncountable chains or antichains.

If T is a tree, \mathbb{P}_T is the dual order.

Lemma (folklore [2])

Let T be a Suslin tree. The poset \mathbb{P}_T has the ccc and is countably distributive. Moreover, if $D \subseteq \mathbb{P}_T$ is dense and open, then there exists $\alpha < \omega_1$ such that $T \upharpoonright [\alpha, \omega_1) \subseteq D$.

Recall that if T is a tree, an *antichain* is a set of pairwise incomparable elements of T. A *Suslin tree* is a tree with no uncountable chains or antichains.

If T is a tree, \mathbb{P}_T is the dual order.

Lemma (folklore [2])

Let T be a Suslin tree. The poset \mathbb{P}_T has the ccc and is countably distributive. Moreover, if $D \subseteq \mathbb{P}_T$ is dense and open, then there exists $\alpha < \omega_1$ such that $T \upharpoonright [\alpha, \omega_1) \subseteq D$.

Lemma (folklore [2])

Let T be a Suslin tree in the universe V. If W is an outer model and $b \in W$ is a cofinal branch through T, then b is \mathbb{P}_T -generic over V.

Let T be an infinitely branching Suslin tree. Then T is Lindelöf.

Let T be an infinitely branching Suslin tree. Then T is Lindelöf.

Proof.

Suppose not. Let $S \subseteq T$ be a finitely branching uncountable subtree. Then S is also Suslin. Force with \mathbb{P}_S to add a branch b. By the previous lemma, b is \mathbb{P}_T -generic over V. But S is finitely branching and T is infinitely branching, so b is disjoint from S above some node of T, by a density argument.

Let T be an infinitely branching Suslin tree. Then T is Lindelöf.

Proof.

Suppose not. Let $S \subseteq T$ be a finitely branching uncountable subtree. Then S is also Suslin. Force with \mathbb{P}_S to add a branch b. By the previous lemma, b is \mathbb{P}_T -generic over V. But S is finitely branching and T is infinitely branching, so b is disjoint from S above some node of T, by a density argument.

 $\{Suslin\} \subseteq \{Lindel\"{o}f\} \subseteq \{Aronszajn\}$

Let $\vec{e} = \langle e_{\alpha} : \alpha < \omega_1 \rangle$ be a coherent sequence of injections, i.e. $e_{\alpha} : \alpha \to \omega$ is injective and $e_{\alpha} = e_{\beta}$.

Let $\vec{e}=\langle e_{\alpha}: \alpha<\omega_{1}\rangle$ be a coherent sequence of injections, i.e. $e_{\alpha}: \alpha\to\omega$ is injective and $e_{\alpha}=^{*}e_{\beta}.$ Use a bijection $f:\omega_{1}\times\omega\to\omega_{1}$ to transfer \vec{e} to a coherent sequence $\langle f[e_{\alpha}]:\alpha<\omega_{1}\rangle$, which is then used to build a binary Aronszajn tree T.

Let $\vec{e} = \langle e_{\alpha} : \alpha < \omega_1 \rangle$ be a coherent sequence of injections, i.e. $e_{\alpha} : \alpha \to \omega$ is injective and $e_{\alpha} = e_{\beta}$.

Use a bijection $f: \omega_1 \times \omega \to \omega_1$ to transfer \vec{e} to a coherent sequence $\langle f[e_\alpha] : \alpha < \omega_1 \rangle$, which is then used to build a binary Aronszajn tree T.

Let $\vec{e}=\langle e_{\alpha}: \alpha<\omega_{1}\rangle$ be a coherent sequence of injections, i.e. $e_{\alpha}: \alpha\to\omega$ is injective and $e_{\alpha}=^{*}e_{\beta}$.

Use a bijection $f: \omega_1 \times \omega \to \omega_1$ to transfer \vec{e} to a coherent sequence $\langle f[e_{\alpha}]: \alpha < \omega_1 \rangle$, which is then used to build a binary Aronszajn tree T.

Let $\vec{e} = \langle e_{\alpha} : \alpha < \omega_1 \rangle$ be a coherent sequence of injections, i.e. $e_{\alpha} : \alpha \to \omega$ is injective and $e_{\alpha} = e_{\beta}^*$.

Use a bijection $f: \omega_1 \times \omega \to \omega_1$ to transfer \vec{e} to a coherent sequence $\langle f[e_{\alpha}]: \alpha < \omega_1 \rangle$, which is then used to build a binary Aronszajn tree T.

Let $\vec{e} = \langle e_{\alpha} : \alpha < \omega_1 \rangle$ be a coherent sequence of injections, i.e. $e_{\alpha} : \alpha \to \omega$ is injective and $e_{\alpha} = {}^*e_{\beta}$.

Use a bijection $f:\omega_1\times\omega\to\omega_1$ to transfer \vec{e} to a coherent sequence $\langle f[e_{\alpha}]:\alpha<\omega_1\rangle$, which is then used to build a binary Aronszajn tree T.

Let $\vec{e} = \langle e_{\alpha} : \alpha < \omega_1 \rangle$ be a coherent sequence of injections, i.e. $e_{\alpha} : \alpha \to \omega$ is injective and $e_{\alpha} = e_{\beta}$.

Use a bijection $f:\omega_1\times\omega\to\omega_1$ to transfer \vec{e} to a coherent sequence $\langle f[e_{\alpha}]:\alpha<\omega_1\rangle$, which is then used to build a binary Aronszajn tree T.

$$\{Suslin\} \subseteq \{Lindel\"{o}f\} \subseteq \{Aronszajn\}$$

Let $\vec{f} = \langle f_{\alpha} : \alpha \in \lim(\omega_1) \rangle$ be such $f_{\alpha} : \alpha \to [\alpha]^{<\omega}$ and \vec{f} guesses any $f : \omega_1 \to [\omega_1]^{<\omega}$ stationarily often.

Let $\vec{f} = \langle f_{\alpha} : \alpha \in \lim(\omega_1) \rangle$ be such $f_{\alpha} : \alpha \to [\alpha]^{<\omega}$ and \vec{f} guesses any $f : \omega_1 \to [\omega_1]^{<\omega}$ stationarily often.

Build an infinitely branching tree T with underlying set ω_1 together with a specializing function $\varphi: T \to \mathbb{Q}$ by recursion on levels, maintaining that if $\varphi(x) < q$ then there is some y > x with $\varphi(y) = q$.

Let $\vec{f} = \langle f_{\alpha} : \alpha \in \lim(\omega_1) \rangle$ be such $f_{\alpha} : \alpha \to [\alpha]^{<\omega}$ and \vec{f} guesses any $f : \omega_1 \to [\omega_1]^{<\omega}$ stationarily often.

Build an infinitely branching tree T with underlying set ω_1 together with a specializing function $\varphi: T \to \mathbb{Q}$ by recursion on levels, maintaining that if $\varphi(x) < q$ then there is some y > x with $\varphi(y) = q$.

At stage $\alpha = \omega \cdot \alpha$, for each pair $(x,q) \in (T \upharpoonright \alpha) \times \mathbb{Q}$ with $\varphi(x) < q$, choose a cofinal branch b through $T \upharpoonright \alpha$ such that $x \in b$, $\sup(\varphi"b) = q$ and the unique point of b immediately above x is not in $f_{\alpha}(x)$. Then put a new node $y \in T_{\alpha}$ above b and let $\varphi(y) = q$.

Let $\vec{f} = \langle f_{\alpha} : \alpha \in \lim(\omega_1) \rangle$ be such $f_{\alpha} : \alpha \to [\alpha]^{<\omega}$ and \vec{f} guesses any $f: \omega_1 \to [\omega_1]^{<\omega}$ stationarily often. Build an infinitely branching tree T with underlying set ω_1 together with a specializing function $\varphi: T \to \mathbb{Q}$ by recursion on levels, maintaining that if $\varphi(x) < q$ then there is some y > x with $\varphi(y) = q$. At stage $\alpha = \omega \cdot \alpha$, for each pair $(x, q) \in (T \upharpoonright \alpha) \times \mathbb{Q}$ with $\varphi(x) < q$, choose a cofinal branch b through $T \upharpoonright \alpha$ such that $x \in b$, $\sup(\varphi^{"}b) = q$ and the unique point of b immediately above x is not in $f_{\alpha}(x)$. Then put a new node $y \in T_{\alpha}$ above b and let $\varphi(y) = q$. Every $y \in T_{\alpha}$ is obtained as above from some (x, q) and $y \in (\uparrow x) \setminus \uparrow f_{\alpha}(x)$, hence $f_{\alpha} \upharpoonright (T \upharpoonright \alpha)$ covers T.

Let $\vec{f} = \langle f_{\alpha} : \alpha \in \lim(\omega_1) \rangle$ be such $f_{\alpha} : \alpha \to [\alpha]^{<\omega}$ and \vec{f} guesses any $f: \omega_1 \to [\omega_1]^{<\omega}$ stationarily often. Build an infinitely branching tree T with underlying set ω_1 together with a specializing function $\varphi: T \to \mathbb{Q}$ by recursion on levels, maintaining that if $\varphi(x) < q$ then there is some y > x with $\varphi(y) = q$. At stage $\alpha = \omega \cdot \alpha$, for each pair $(x, q) \in (T \upharpoonright \alpha) \times \mathbb{Q}$ with $\varphi(x) < q$, choose a cofinal branch b through $T \upharpoonright \alpha$ such that $x \in b$, $\sup(\varphi^{"}b) = q$ and the unique point of b immediately above x is not in $f_{\alpha}(x)$. Then put a new node $y \in T_{\alpha}$ above b and let $\varphi(y) = q$. Every $y \in T_{\alpha}$ is obtained as above from some (x, q) and $y \in (\uparrow x) \setminus \uparrow f_{\alpha}(x)$, hence $f_{\alpha} \upharpoonright (T \upharpoonright \alpha)$ covers T. Therefore, T is Lindelöf and so, under \Diamond ,

 $\{Suslin\} \subsetneq \{Lindel\"{o}f\} \subsetneq \{Aronszajn\}$

Let T be a normal infinitely branching \aleph_1 -tree. Consider the following poset \mathbb{P} : conditions are functions $p \in \prod_{x \in F} [I(x)]^{<\omega}$, where $F \in [T]^{<\omega}$, such that:

$$\forall x,y \in \mathsf{dom}(p) \, \big(x < y \to y \! \upharpoonright \! \big(\mathsf{ht}(x) + 1\big) \in p(x)\big) \, .$$

Let T be a normal infinitely branching \aleph_1 -tree. Consider the following poset \mathbb{P} : conditions are functions $p \in \prod_{x \in F} [I(x)]^{<\omega}$, where $F \in [T]^{<\omega}$, such that:

$$\forall x,y \in \mathsf{dom}(p) \, \big(x < y \to y \! \upharpoonright \! \big(\mathsf{ht}(x) + 1 \big) \in p(x) \big) \, .$$

The order on \mathbb{P} is inclusion, $p \leq q \iff p \supseteq q$.

Let T be a normal infinitely branching \aleph_1 -tree. Consider the following poset \mathbb{P} : conditions are functions $p \in \prod_{x \in F} [I(x)]^{<\omega}$, where $F \in [T]^{<\omega}$, such that:

$$\forall x, y \in \mathsf{dom}(p) \, (x < y \to y \! \upharpoonright \! (\mathsf{ht}(x) + 1) \in p(x)) \, .$$

The order on \mathbb{P} is inclusion, $p \leq q \iff p \supseteq q$.

Let T be a normal infinitely branching \aleph_1 -tree. Consider the following poset \mathbb{P} : conditions are functions $p \in \prod_{x \in F} [I(x)]^{<\omega}$, where $F \in [T]^{<\omega}$, such that:

$$\forall x, y \in \mathsf{dom}(p) \, (x < y \to y \upharpoonright (\mathsf{ht}(x) + 1) \in p(x)) \, .$$

The order on \mathbb{P} is inclusion, $p \leq q \iff p \supseteq q$.

Let T be a normal infinitely branching \aleph_1 -tree. Consider the following poset \mathbb{P} : conditions are functions $p \in \prod_{x \in F} [I(x)]^{<\omega}$, where $F \in [T]^{<\omega}$, such that:

$$\forall x, y \in \mathsf{dom}(p) \, (x < y \to y \upharpoonright (\mathsf{ht}(x) + 1) \in p(x)) \, .$$

The order on \mathbb{P} is inclusion, $p \leq q \iff p \supseteq q$.

The generic subtree will be $\dot{S} = \bigcup \{ dom(p) : p \in \dot{G} \}.$

Let T be a normal infinitely branching \aleph_1 -tree. Consider the following poset \mathbb{P} : conditions are functions $p \in \prod_{x \in F} [I(x)]^{<\omega}$, where $F \in [T]^{<\omega}$, such that:

$$\forall x, y \in \mathsf{dom}(p) \, (x < y \to y \upharpoonright (\mathsf{ht}(x) + 1) \in p(x)) \, .$$

The order on \mathbb{P} is inclusion, $p \leq q \iff p \supseteq q$.

The generic subtree will be $\dot{S} = \bigcup \{ \text{dom}(p) : p \in \dot{G} \}$. If $p \in \mathbb{P}$ and $x \in \text{dom}(p)$, then p is a promise that $p(x) = I_{\dot{S}}(x)$.

If T is a normal, infinitely branching Aronszajn tree, then \mathbb{P} has the ccc and $\Vdash_{\mathbb{P}} \dot{S}$ is a finitely branching normal subtree of T.

If T is a normal, infinitely branching Aronszajn tree, then $\mathbb P$ has the ccc and $\Vdash_{\mathbb P} \dot{S}$ is a finitely branching normal subtree of T.

Is T still Aronszajn in $V^{\mathbb{P}}$?

If T is a normal, infinitely branching Aronszajn tree, then \mathbb{P} has the ccc and $\Vdash_{\mathbb{P}} \dot{S}$ is a finitely branching normal subtree of T. Is T still Aronszajn in $V^{\mathbb{P}}$?

Corollary

Let $\mathbb S$ be Baumgartner's poset for specializing T with finite conditions. Then $\mathbb S \times \mathbb P$ is a ccc poset which forces that T is a special non-Lindelöf Aronszajn tree.

If T is a normal, infinitely branching Aronszajn tree, then \mathbb{P} has the ccc and $\Vdash_{\mathbb{P}} \dot{S}$ is a finitely branching normal subtree of T.

Is T still Aronszajn in $V^{\mathbb{P}}$?

Corollary

Let $\mathbb S$ be Baumgartner's poset for specializing T with finite conditions. Then $\mathbb S \times \mathbb P$ is a ccc poset which forces that T is a special non-Lindelöf Aronszajn tree.

Corollary

If MA_{\aleph_1} holds, then there are no Lindelöf trees.

Other ways of adding subtrees?

Theorem (M.)

Let T be an infinitely branching \aleph_1 tree. Suppose $\mathbb P$ is a poset, G is $\mathbb P$ -generic over V and $S \in V[G]$ is a finitely branching subtree of T.

Other ways of adding subtrees?

Theorem (M.)

Let T be an infinitely branching \aleph_1 tree. Suppose $\mathbb P$ is a poset, G is $\mathbb P$ -generic over V and $S \in V[G]$ is a finitely branching subtree of T. Suppose that $\mathbb P$ is either

- countably closed
- ▶ strongly proper for a stationary set of countable elementary substructures of some (large) H_{λ} .

Then $S \in V$.

Thank you:)

References

- [1] Tomek Bartoszyński and Haim Judah. Set Theory. A K Peters, Ltd., Wellesley, MA, 1995. xii+546.
- [2] Keith J. Devlin and Håvard Johnsbråten. The Souslin Problem. Lecture Notes in Mathematics 405. Springer, 1974. 132 pp.
- [3] Pedro E. Marun. "Square Compactness and Lindelöf Trees". In: *In preparation* (2023).
- [4] Peter J. Nyikos. "Various Topologies on Trees". In:

 Proceedings of the Tennessee Topology Conference (Nashville,
 TN, 1996). 1997.