

Distributed Database Systems

Content

- General information about distributed database systems
- Architecture of distributed database management systems
- Design of distributed database systems
- Distributed query processing
- Distributed transaction management
- Advance topics

Related Information

References

- 1. TS. Phạm Thế Quế, **Cơ sở dữ liệu phân tán,** Học viện CNBCVT.
- 2. M.Tamer Ozsu And Patricle Valduriez, "Principles of Distributed Database Systems", Third Edition, Prentive Hall Upper Saddle River, New Jersy, 2011.

Course Organization

- Theory: 23 hours (Midterm exam 2 hours)
- Examples and Homework: 6 hours
- Self-study: 1 hour

Evaluation

- In-class attendance: 10%
- Homework/Course project: 20%
- Midterm exam: 10%
- Final exam: 60%

Course Project

- Design and implement a distributed database system:
 - Work in group to design a distributed database system assigned by the lecturer
 - Implement and manage a distributed database system including:
 - Setup fundamental functions for the system
 - Database Input/output
 - Making queries and reports
 - Report all your work in details.

Lecture 1: Introduction to distributed database systems

Scope:

- Concept of distributed systems
- Classification of distributed systems
- > Essential of distributed systems
- Characteristics of distributed systems
- ➤ Goals and objectives in designing a distributed system

File System

Ứng dụng người

semantics)

dùng

Database Management

www.ptit.edu.vn

(Lớp User ở bên trên)

Application
program 1
(with data

Phần tiếp nối Logic,
phần khái niệm. Cho
phép kết nối người dùng
với phần DataBase ở dưới

Về cơ bản là các Meta-data để mô tả các (dữ liệu về mô tả các dữ liệu vật lý ở bên dưới. Khi phân tách cũng là phân tách các DataBase này

Application program 2 (with data semantics)

Application program 3 (with data semantics)

DBMS

description manipulation control

Data1

Data2

Introduction

Hoa Dinh Nguyen, PhD.
Department of Information Technology

Database and Communication Integration

www.ptit.edu.vn

Distributed Systems

A distributed computing system is a collection of autonomous processing elements that are interconnected by a computer network.

What is distributed?

- Processing logic
- Functions
- Database
- Control

What is distributed database?

- A distributed database (DDB) is a collection of multiple, logically interrelated databases distributed over a computer network
- A distributed database management system (D—DBMS) is the software that manages the DDB and provides an access mechanism that makes this distribution transparent to the users.

DDBS = DDB + DDBMS

Assumptions

- Data stored at a number of sites, each site logically consists of a single processor
- Processors at different sites are interconnected by a computer network
- DDB is a database, not a collection of files.
 Data is logically related; structured into multiple files; accessed through common interface
- DDBMS is a collection of DBMSs

Centralized Database Enviroment

Distributed Database Enviroment

Non-distributed Database Systems

Shared Memory

Shared Nothing

Shared Disk

Central Databases

Example

Applications of DDBS

- Manufacturing especially multi-plant manufacturing
- Military command and control
- Electronic fund transfers and electronic trading
- Corporate MIS
- Airline restrictions
- Hotel chains
- Any organization which has a decentralized organization structure

Advantages of DDBS

- Transparency of distributed and replicated data
- Higher reliability
- Improved performance
- Easier system expansion

Advantages of DDBS- Transparency (1)

- Separation of the higher-level semantics of the system from the lower-level implementation issues
- A transparent system "hides" implementation details from users
- A fully transparent DBMS provides high-level support for the development of complex applications.

(a) User wants to see one database

(b) Programmer sees many databases

Advantages of DDBS- Transparency (2)

- The goal of transparency is to provide data independence
- Various forms of transparency can be distinguished for DDBSs:
 - Network transparency (also called distribution transparency)
 - Location transparency
 - Naming transparency
 - Replication transparency
- Fragmentation transparency
 - Horizontal fragmentation
 - Vertical fragmentation

Advantages of DDBS- Reliability

- Higher reliability
- Replication of components and data should make DDBMS more reliable
- No single points of failure (SPOF)
- Distributed transaction processing guarantees the consistency of the database and concurrency

Advantages of DDBS- Performance

Improved performance

- Proximity of data to its points of use
 - Reduces remote access delays
 - Requires some support for fragmentation and replication
- Parallelism in execution
 - Inter-query parallelism
 - Intra-query parallelism
- Update and read-only queries influence the design of DDBSs substantially
 - If mostly read-only access is required, as much as possible of the data should be replicated
 - Writing becomes more complicated with replicated data

Advantages of DDBS- Expansion

Easier system expansion

- Issue is database scaling
- Emergence of microprocessor and workstation technologies
- Network of workstations much cheaper than a single mainframe computer
- Increasing database size

Technical Issues of DDBS (1)

- Distributed database design
 - How to fragment the data?
 - Partitioned data Vs. replicated data?
- Distributed query processing
 - Design algorithms that analyze queries and convert them into a series of data manipulation operations
 - Distribution of data, communication costs, etc. has to be considered
 - Find optimal query plans

Technical Issues of DDBS (2)

- Concurrency Control
 - Synchronization of concurrent accesses
 - Consistency and isolation of transactions' effects
 - Deadlock management
- Reliability
 - How to make the system resilient to failures
 - Atomicity and durability

Technical Issues of DDBS (3)

- Privacy/Security
 - Keep database access private
 - Protect against malicious activities
- Trusted Collaborations (Emerging requirements)
 - Evaluate trust among users and database sites
 - Enforce policies for privacy
 - Enforce integrity

DDBS Architecture

- Defines the structure of the system
 - Components identified
 - Functions of each component defined
 - Interrelationships and interactions between components defined
- Applies both for computer systems as well as for software systems
- There is a close relationship between the architecture of a system, standardization efforts, and a reference model

ANSI/SPARC Architecture

• ANSI-SPARC stands for American National Standards Institute, Standards Planning And Requirements Committee

DDBS Architecture Models

Introduction

Hoa Dinh Nguyen, PhD.

Department of Information Technology

Architectural Dimensions

- Distribution
 - Whether the components of the system are located on the same machine or not
- Heterogeneity
 - Various levels (hardware, communications, operating system)
 - DBMS important one data model, query language, transaction management algorithms
- Autonomy
 - Design autonomy: each individual DBMS is free to use the data models and transaction management techniques that it prefers.
 - Communication autonomy: each individual DBMS is free to decide what information to provide to the other DBMSs
 - Execution autonomy: each individual DBMS can execute the transactions that are submitted to it in any way that it wants to.

DDBS Peer-to-Peer Architecture

ES: External Schema

GCS: Global Conceptual Schema

LCS: Local Conceptual Schema

LIS: Local Internal Schema

Component Peer-to-Peer Architecture

www.ptit.edu.vn

DDBMS Architecture (Data-based)

- GES: Global External Schema
- LES: Local External Schema

- LCS: Local Conceptual Schema
- LIS: Local Internal Schema

DDBMS Architecture (Component-based)

1 Introduc

⁴ Client/Server Architecture (Data-based)

General idea: Divide the functionality into two classes:

- server functions
 - mainly data management, including query processing, optimization, transaction management, etc.
- client functions
 - might also include some data management functions (consistency checking, transaction management, etc.) not just user interface
- Provides a two-level architecture
- More efficient division of work
- Different types of client/server architecture:
 - Multiple client/single server
 - Multiple client/multiple server

Multiclients / Single Server

Multi Clients/ Multi Servers (1)

www.ptit.edu.vn

Multi Clients/ Multi Servers (2)

Introduction

Hoa Dinh Nguyen, PhD.
Department of Information Technology

Advantages of Client/Server Architecture

- More efficient division of labor
- Horizontal and vertical scaling of resources
- Better price/performance on client machines
- Ability to use familiar tools on client machines
- Client access to remote data (via standards)
- Full DBMS functionality provided to client workstations
- Overall better system price/performance

Summarize

- General information of distributed database
- Development of DDB
- Research issues in DDB
- System architecture
- There are three orthogonal implementation dimensions for DDBS: level of distribution, autonomity, and heterogeinity
- Different architectures
 - Client-Server Systems
 - Peer-to-Peer Systems