Digital Image Processing Homework 1 Report 109511207 蔡宗儒

1. BMP Format

BMP 為點陣圖 Bitmap 的縮寫,也稱為 DIB,是一種儲存點陣式數位圖像的檔案格式。BMP 檔案包含 4 個部分: bitmap file header(14 bytes)、bitmap information header(40 bytes)、palette(4 * Used Colors bytes)和 bitmap array。

Bitmap File Header

Name	Size (bytes)	Start Address	Description	
Identifier (ID)	2	0x0000	Ox0000 Identify type of bitmap. It is usually 'BM'	
File Size	4	0x0002	Total size of file (unit: byte)	
Reserved	4	0x0006	Reserved	
Bitmap Data Offset	4	0x000A	The offset of the beginning of the bitmap array. It is	
			always 54 bytes in this homework.	

Bitmap Info Header

Name	Size (bytes)	Start Address	Description	
Header Size	4	0x000E	Total size of bitmap info header. It is always 40	
			bytes in this homework.	
Width	4	0x0012	Width of bitmap array in pixels	
Height	4	0x0016	Height of bitmap array in pixels	
Planes	2	0x001A	Number of planes of bitmap array. It is always = 1.	
Bits Per Pixel	2	0x001C	Pixel size	
			1: 1-bit image(使用 2 色調色盤)	
			4: 4-bit image(使用 16 色調色盤)	
			8: 8-bit image(使用 256 色調色盤)	
			16: 16-bit image(不一定使用調色盤)	
			24: 24-bit image(不使用調色盤)	
			32: 32-bit image(不一定使用調色盤)	
Compression	4	0x001E	Type of compression	
			0: uncompressed, without using a palette	
			1: RLE 8-bit/pixel	
			2: RLE 4-bit/pixel	
			3: bit fields	
Bitmap Data Size	4	0x0022	Size of bitmap array (unit: byte). Valid to set this	
			equal 0 if Compression equal 0	
H Resolution	4	0x0026	Horizontal resolution	
V Resolution	4	0x002A	Vertical resolution	
Used Colors	4	0x002E	Palette colors used	
Important Colors	4	0x0032	Important color count	

Palette

Name	Size (bytes)	Start Address	Description
Palette	N * 4	0x0036	Palette data

Bitmap Array

Name	Size (bytes)	Start Address	Description
Bitmap Data			Image data

2. Flip

原本的 BMP 格式是由左下的 pixel 往右上讀取,所以要水平翻轉整張圖的話,只要改成由右下往左上寫入檔案即可,即將 bitmap array 每一個 row 反轉,如下圖。

Result

3. Resolution

對圖像進行 quantization 的話,可以減少一張圖像中所使用的顏色數量。而對於高頻的圖像來說,對比度較高,如果透過 quantization 減少 bit 數的話,人的肉眼較不擅長區別高頻率亮度變化的確切強度,也較不易感受到差異或是失真。所以我們可以透過 quantization 適度減少圖像所需的儲存空間。

而我透過以下的程式碼來實作,我將每個 pixel 往右 shift 要量化的 bit 數(ex. 原先 8bits 變 6bits, factor 即為 8-6=2),再將其往左 shift 回來,就可以簡單地量化為新的 bit 數。

```
// quantization resolution
for(int i=0;i<_height * _width * _channel;i++)
    _out_image[i] = (_out_image[i] >> factor) << factor;</pre>
```

Result

由結果可觀察到,人的肉眼其實感受不太到 8bits 和 6bits 圖像的差別,仔細觀察 6bits 的 input2 的天空的話,可以發現有些許失真。這是因為 input2 較為低頻,並沒有快速或劇烈的變化,人眼也就較容易辨識這些損失,而 input1 較為高頻,可以看到每朵花之間的色彩鮮艷、變化迅速,因此人眼也就較難辨識高頻率亮度的確切強度。若是再觀察兩個的 4bits 圖,便可發現 input2 已產生肉眼明顯可見的失真了,然而 input1 失真效果較不明顯。這個結果也證實了人眼對於圖像中的高頻成分較不敏感的事實。

4. Scaling

在做 Bilinear Interpolation 前,要先計算出 output image 的 size, 並且因為這次作業是使用 BMP Format, 所以要將 width 變成 4 的倍數。最後要把原本 output image 的位置轉換回去原本 input pixel 的位置(x,y),為了對齊和避免超界,我在計算 inverse ratio 的時候將 input/ouput 的 width/height 都-1.0,最後用 floor()和 ceil()找出離此點最近的四個點,如下圖。

```
// get inverse ratio, - 1.0 to avoid x0, x1, y0 and y1 from exceeding the boundaries
xRatio = (_height - 1.0) / ((*(int*) &_out_header[22]) - 1.0);
yRatio = (_width - 1.0) / ((*(int*) &_out_header[18]) - 1.0);

// get the original position where each new pixel point should be on the original image
x = i * xRatio;
y = j * yRatio;

// get 4 nearest pixels of the original position
int x0 = floor(x);
int x1 = ceil(x);
int y0 = floor(y);
int y1 = ceil(y);
```

Bilinear Interpolation 如下圖,先在 y 方向用插值法將 b0 和 b1 求出來,再對 x 方向做一次插值法,插值出(x,y)的 data,即 b0*dx1+b1*dx0。

Result

Result			
Scaling	Down Scaling (÷1.5)	Original	Up Scaling (× 1.5)
input1			
input2			

5. Reference

https://zh.wikipedia.org/zh-tw/BMP#%E6%96%87%E4%BB%B6%E6%A0%BC%E5%BC%8F

https://blog.lusw.dev/posts/bitmap-file-structure.html

https://www.796t.com/content/1549504280.html

https://charlottehong.blogspot.com/2017/11/bilinear.html