Correction

d'après Ecole de l'Air 1993

Partie 1

1.a $f_0(x) = 1$, $f_1(x) = x$, $f_2(x) = 2x^2 - 1$ et $f_3(x) = 4x^3 - 3x$.

1.c Unicité : Si T_n et U_n sont solutions alors pour tout $x \in [-1,1]$, $T_n(x) = U_n(x) \ \text{ et donc } x \ \text{ est racine de } T_n - U_n \text{ . Ce polynôme ayant une infinité de racines, on peut conclure qu'il est nul et que } T_n = U_n \text{ .}$

Existence : Raisonnons par récurrence double sur $n \in \mathbb{N}$.

Pour n=0 et n=1: $T_0=1$ et $T_1=X$ nous convient à l'extase d'avoir déterminer deux sublimes solutions.

Supposons la propriété établie au rang n et n-1 (avec $n \ge 1$).

 $f_{n+1}(x) = 2xf_n(x) - f_{n-1}(x) = 2xT_n(x) - T_{n-1}(x) = T_{n+1}(x)$ en posant $T_{n+1} = 2XT_n - T_{n-1}$ qui est bien un polynôme. Récurrence établie.

$$T_0 = 1$$
, $T_1 = X$, $T_2 = 2X^2 - 1$, $T_3 = 4X^3 - 3X$ et $T_4 = 8X^4 - 8X^2 + 1$.

2.a Par récurrence double sur $n \in \mathbb{N}$, montrons $\deg T_n = n$.

La propriété est vraie, ô joie, aux rangs n = 0 et n = 1.

Supposons la propriété établie aux rangs n et n-1 (avec $n \ge 1$).

 $T_{n+1}=2XT_n-T_{n-1}$ avec $\deg 2XT_n=n+1$ et $\deg T_{n-1}=n-1$. Par somme de polynôme de degré distincts : $\deg T_{n+1}=\max(\deg(2XT_n),\deg(T_{n-1}))=n+1$. Récurrence établie.

Notons

Les coefficients dominants de T_0 et T_1 valent 1.

Pour $n \ge 1$, on voit par l'étude ci-dessus on voit que le coefficient dominant de T_{n+1} est le double de celui de T_n . On peut donc conclure que le coefficient dominant de T_0 vaut 1 et celui de T_n vaut 2^{n-1} pour $n \ge 1$.

2.b Soit $x \in [-1,1]$ une racine de T_n . Pour $\theta = \arccos x \in [0,\pi]$ on a $x = \cos \theta$ et $T_n(x) = \cos n\theta = 0$ donc il existe $k \in \mathbb{Z}$ tel que $n\theta = \frac{\pi}{2} + k\pi$ puis $\theta = \frac{(2k+1)\pi}{2n}$. Sachant $\theta \in [0,\pi]$, on peut affirmer $k \in \{0,1,\ldots,n-1\}$.

Ainsi
$$x = \cos \frac{\pi}{2n}$$
, $\cos \frac{3\pi}{2n}$,..., ou $\cos \frac{(2n-1)\pi}{2n}$.

Inversement, on vérifie aisément que, ces éléments sont des racines de T_n dans $\left[-1,1\right]$. Ainsi les racines

$$\text{de } T_n \text{ dans } \left[-1,1\right] \text{ sont exactement les } x_0,\dots,x_{n-1} \text{ avec } x_k = \cos\frac{(2k+1)\pi}{2n} \text{ . Pour } k \in \left\{0,\dots,n-1\right\} \text{ les } x_0,\dots,x_{n-1} \text{ avec } x_k = \cos\frac{(2k+1)\pi}{2n} \text{ . Pour } x_0,\dots,x_{n-1} \text{ les } x_0,\dots,x_{n-1} \text{ avec } x_n = \cos\frac{(2k+1)\pi}{2n} \text{ . Pour }$$

 $\frac{(2k+1)\pi}{2n}$ sont des éléments deux à deux distincts de $\left[0,\pi\right]$. La fonction cosinus étant injective sur $\left[0,\pi\right]$,

on peut dire que les x_0,\ldots,x_{n-1} sont deux à deux distincts. Le polynôme T_n possède donc exactement n racines dans l'intervalle [-1,1]. Or $\deg T_n=n$, on peut donc affirmer qu'il n'y a pas d'autres racines et que ces dernières sont simples.

2.c Par récurrence double sur $n \in \mathbb{N}$, montrons que T_n et n ont même parité.

Pour n = 0 ou n = 1: ok

Supposons la propriété établie aux rangs n et n-1 (avec $n \ge 1$)

Si n est pair alors T_n est pair, T_{n-1} impair et $T_{n+1} = 2XT_n - T_{n-1}$ est impair.

Si n est impair alors T_n est impair, T_{n-1} pair et $T_{n+1} = 2XT_n - T_{n-1}$ est pair.

Récurrence établie.

3.a $T_n(\cos\theta) = f_n(\cos\theta) = \cos(n\arccos(\cos\theta)) = \cos(n\theta)$ que $\theta \in [0,\pi]$ ou par parité que $\theta \in [-\pi,0]$ ou encore par périodicité que $\theta \in \mathbb{R}$.

La deuxième relation s'établit par récurrence double sur $n \in \mathbb{N}$.

Pour n = 0 et n = 1 : ok.

Supposons la propriété établie aux rangs n et n-1 (avec $n \ge 1$)

 $T_{n+1}(\operatorname{ch}\theta) = 2\operatorname{ch}\theta\operatorname{ch}n\theta - \operatorname{ch}(n-1)\theta \ \text{ or } \operatorname{ch}(n+1)\theta + \operatorname{ch}(n-1)\theta = 2\operatorname{ch}\theta\operatorname{ch}n\theta \ \text{ donc}$

$$T_{n+1}(\operatorname{ch}\theta) = \operatorname{ch}(n+1)\theta$$
.

Récurrence établie.

3.b Si $|x| \le 1$ alors $T_n(x) = f_n(x) = \cos(n \arccos x) \in [-1,1]$.

Si x > 1 alors il existe $\theta > 0$ tel que $x = \operatorname{ch} \theta$ et alors $T_n(x) = \operatorname{ch} n\theta > 1$ donc $|T_n(x)| > 1$.

Par raison de parité : si x < -1 alors $|T_n(x)| > 1$.

4. L'équation $|T_n(x)| = 1$ ne peut avoir de solution que dans [-1,1].

Soit $x \in [-1,1]$ solution de cette équation.

Il existe un unique $\theta \in [0, \pi]$ tel que $x = \cos \theta$.

 $|T_n(x)| = 1$ donne alors $|\cos n\theta| = 1$ donc $\exists k \in \mathbb{Z}, n\theta = k\pi$ i.e. $\theta = k\pi/n$.

Or $\theta \in [0,\pi]$ donc $k \in \{0,...,n\}$ et finalement x est l'un des $\cos \frac{k\pi}{n}$ avec $k \in \{0,...,n\}$. Inversement,

ces éléments sont bien racines de l'équation $|T_n(x)|=1$. Posons $a_k=\cos\frac{k\pi}{n}$. On observe :

 $-1 = a_n < a_{n-1} < \dots < a_1 < a_0 = 1$. Il y a donc exactement n+1 solutions et les solutions des équations

 $T_n(x)=1$ sont alternées avec les solutions de l'équation $T_n(x)=-1$ car $T_n(a_k)=\cos(k\pi)=(-1)^k$.

5.a Par ce qui précède $||T_n|| = 1$ car $\forall x \in [-1,1], |T_n(x)| \le 1$ et que $T_n(1) = 1$.

Par suite $\|\tilde{T}_n\| = \frac{1}{2^{n-1}}$.

5.b \tilde{T}_n et P sont unitaires et de degré n donc deg D < n.

5.c $D(\cos\frac{k\pi}{n}) = \frac{(-1)^k}{2^{n-1}} - P(\cos\frac{k\pi}{n})$.

Si k est pair alors $D(\cos \frac{k\pi}{n}) = \frac{1}{2^{n-1}} - P(\cos \frac{k\pi}{n}) \ge \frac{1}{2^{n-1}} - \|P\| > 0$.

Si k est impair alors $D(\cos \frac{k\pi}{n}) = \frac{-1}{2^{n-1}} - P(\cos \frac{k\pi}{n}) \le \frac{-1}{2^{n-1}} + ||P|| < 0$.

Pour $k \in \{0,...,n\}$ les $\cos \frac{k\pi}{n}$ sont des valeurs successives entre lesquelles la fonction D change de

signe, or celle-ci est continue donc elle s'annule entre ces valeurs successives : cela fournit au moins n annulations du polynôme D or $\deg D < n$ donc D = 0 et $P = \tilde{T}_n$ ce qui est absurde puisque $\|P\| < \|\tilde{T}_n\|$.

Partie II

1.a
$$\deg L_k = n$$
.

1.b Les racines de L_k sont les $a_0, ..., \hat{a}_k, ..., a_n$ donc $L_k(a_i) = 0$ pour $i \neq k$.

$$L_k(a_k) = \prod_{\substack{j=0 \ i \neq k}}^n \frac{a_k - a_j}{a_k - a_j} = 1.$$

- 1.c Supposons $\lambda_0 L_0 + \dots + \lambda_n L_n = 0$. En évaluant cette en relation en a_k on obtient : $\lambda_k = 0$. La famille (L_0, \dots, L_n) est donc libre or elle est constituée de $n+1 = \dim \mathbb{R}_n[X]$ éléments de $\mathbb{R}_n[X]$, c'est donc une base de $\mathbb{R}_n[X]$.
- 2. $P(a_i) = \sum_{k=0}^n f(a_k) L_k(a_i) = \sum_{k=0}^n f(a_k) \delta_{k,i} = f(a_i) \text{ donc } P \text{ est bien solution du problème posé. Si } Q \text{ en est une autre solution alors } P(a_i) = Q(a_i) \text{ donc } a_i \text{ racine de } P Q \text{ . Cela fournit au moins } n+1 \text{ racines de } P Q \text{ alors que } P Q \in \mathbb{R}_n[X] \text{ donc } P Q = 0 \text{ i.e. } P = Q \text{ .}$
- 3.a Si $x \in \{a_0, ..., a_n\}$ alors $\Pi_{n+1}(x) = 0$ et f(x) = P(x) donc n'importe quel ξ convient.
- 3.b Si $x \notin \{a_0,...,a_n\}$ alors $\Pi_{n+1}(x) \neq 0$ et $K = \frac{P(x) f(x)}{\Pi_{n+1}(x)}$ convient

 $F \text{ s'annule alors en } a_0,\dots,a_n \text{ et aussi en } x \text{ : cela fournit } n+2 \text{ annulations. Par application du théorème de Rolle, } F' \text{ s'annule au moins } n+1 \text{ fois, } F'' \text{ au moins } n \text{ fois,}\dots, F^{(n+1)} \text{ s'annule au moins une fois d'où l'existence d'un } \xi \in [-1,1] \text{ tel que } F^{(n+1)}(\xi) = 0 \text{ . Or } F^{(n+1)}(\xi) = f^{(n+1)}(\xi) - F^{(n+1)}(\xi) - K\Pi_{n+1}^{(n+1)}(\xi) \text{ avec } P^{(n+1)} = 0 \text{ car deg } P \leq n \text{ et } \Pi_{n+1}^{(n+1)} = (n+1)! \text{ car } \Pi_{n+1} \text{ est unitaire et de degré } n+1 \text{ . On conclut alors : } f^{(n+1)}(\xi) = K(n+1)! \text{ puis la relation voulue.}$

- $\begin{aligned} \text{3.c} \qquad \text{Pour tout } x \in \left[-1,1\right], \ \left|f(x) P(x)\right| &\leq \frac{\left|\Pi_{n+1}(x)\right|}{(n+1)!} \left|f^{(n+1)}(\xi)\right| \leq \frac{\left\|\Pi_{n+1}\right\|}{(n+1)!} \left\|f^{(n+1)}\right\| \ \text{t donc} \\ \left\|f P\right\| &= \sup_{[-1,1]} \left|f(x) P(x)\right| \leq \frac{\left\|\Pi_{n+1}\right\|}{(n+1)!} \left\|f^{(n+1)}\right\|. \end{aligned}$
- 4. $\Pi_{n+1} \in P_{n+1}$. Compte tenu de la partie I, $\|\Pi_{n+1}\|$ sera s'il est égal à $\Pi_{n+1} = \tilde{T}_{n+1}$ ce qui est obtenu en prenant a_0, \dots, a_n les racines de T_{n+1} à savoir les $\cos \frac{(2k+1)\pi}{2(n+1)}$ avec $k \in \{0, \dots, n\}$.