Klasse E versterkers Jan Genoe KULeuven

Jan Genoe jan.genoe@kuleuven.be

Klasse E versterkers

In dit hoofdstuk introduceren we de Klasse E versterker. Dit is een afgestemde versterker met een nog hoger rendement als een klasse C en een klasse D versterker.

Vermogendissipatie in de transistor

- Als er stroom vloeit door de transistor als er spanning over staat: P= I_{door} V_{over}
 - De klasse D versterker herleid tot het minimaal mogelijke
- Als de transistor schakelt als er spanning over staat
 - Intern moeten dan snel alle capaciteiten opgeladen worden
 - Hiervoor moeten ook belangrijke stromen vloeien
 - Klasse D versterker biedt hiervoor geen oplossing

Bovendien biedt de klasse D versterker het nadeel dat indien beide transistors niet helemaal gelijktijdig schakelen er eventjes een geleidend pad kan zijn tussen de voeding en de grond.

Nodig stroomverloop om dissipatie te vermijden

- De stroom door de transistor mag maar lopen als de spanning over de transistor nul is.
- De transistor schakelt van aan naar uit op het moment dat de spanning over de transistor en de stroom door de transistor nul is
- Het nodig stroom en spanningsverloop ziet er ideaal als het volgt uit:

 Het is duidelijk dat dit verloop niet kan bepaald worden door de transistor, de rest van het schema moet zo een stroomverloop opleggen

2

Schema dat het nodige stroomverloop oplevert

- De inductantie L (groot) voert een DC stroom
- De seriekring L_oC_o voert een AC stroom op de gewenste frequentie
- De transistor of de condensator vangen het verschil in stroom op
- De transistor wordt in/uit geleiding gebracht als de spanning over
 C nul is en er ook geen stroom door de transistor vloeit.

Verklaring van het schema

 We veronderstellen dat de transistor er niet staat en we berekenen de stroom naar de condensator C en de spanning over de condensator C

Verklaring van het schema (2)

- Schakel de transistor in geleiding op het moment dat de stroom door de condensator een 2^{de} maal 0 wordt.
 - De spanning over de condensator moet dan ook nul zijn
- Schakel de transistor af zodanig dat de we terug dezelfde situatie bekomen.
 - De spanning zal na het afschakelen niet onmiddellijk stijgen omdat er een grote condensator over de transistor staat.

υηίγετςiteit ▶hasselt κυ LEUVEN

6

Besluit

- Het moment van inschakelen is zeer belangrijk:
 - de spanning over de condensator moet op dat moment 0 zijn.
- Het moment van afschakelen is minder belangrijk:
 - Het moet wel snel genoeg gebeuren, er mag geen spanning opgebouwd worden zolang er nog stroom loopt.
 - We mogen niet te vroeg afschakelen want dan bekomen we geen punt meer om terug is te schakelen.

Referenties:

- [1] N.O. Sokal and A.D. Sokal, "Class E, a new class of high-efficiency single ended switching power amplifiers", IEEE J. Solid-State Circuits 10, 168 (1975)
- [2] N.O. Sokal and A.D. Sokal, "high-efficiency tuned switching power amplifiers", US patent 3 919 656, Nov 11, 1975
- [3] F.H. Raab and N.O. Sokal, "Transistor power losses in the class E tuned power Amplifier", IEEE J. Solid-State Circuits 13, 912 (1978)
- [4] W. Saito et al., "Demonstration of a 13.56-MHz Class-E amplifier using a High-Voltage GaN Power-HEMT", IEEE Electron device letters 27, 326 (2006)