

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER	CANDIDATE NUMBER		

CHEMISTRY 0620/32

Paper 3 (Extended)

May/June 2011

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 12.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
Total	

This document consists of 12 printed pages.

1	Choos	se a	an element froi	m the list belo	w which be	st fits the d	escription.		
			Rb	Fe	Si	I	Р	Sr	
	(a) A	n e	element which i	reacts with co	ld water				[1]
	(b) It	is	a solid at room	temperature	and exists	as diatomic	molecules,	X ₂	[1]
	(c) It	ca	n form two oxid	des, XO and X	ζ ₂ O ₃				[1]
	(d) T	his	element has a	hydride of th	e type XH ₃ .				[1]
	(e) It	ha	s a macromole	cular structur	e similar to	that of carb	on		[1]
								Γ	Total: 5]
2	Tin is	an	element in Gro	oup IV.					
	(a) T	he	position of tin i	n the reactivit	y series is:				
					zinc iron tin copper				
	(i		For each of the complete the end of the Cu + $Sn^{2+} \rightarrow Cu$	equation, othe	rwise write	'no reactior		f there is a re	eaction,
			Fe + Sn ²⁺ \rightarrow						
			Sn + Zn ²⁺ \rightarrow						[4]
	(ii)	Name the thre	e products fo	rmed when	tin(II) nitrat	te is heated		
									[2]
		•	eous tin(II) sulf at of aqueous					electrolysis is	similar
	(i)	What is the pro	oduct at the n	egative elec	ctrode (cath	ode)?		
									[1]
	(ii)	Write the equa	tion for the re	action at the	e positive e	lectrode (ar	node).	
									[2]
	(iii)	Name the acid	formed in this	s electrolysi	is.			
									[1]

[Total: 14]

(c)	Steel articles can be plated with tin or zinc to prevent rusting. When the zinc layer is damaged exposing the underlying steel, it does not rust, but when the tin layer is broken the steel rusts. Explain.
	[4

[1]

3 The equation for the reaction between sodium thiosulfate and hydrochloric acid is given below.

$$Na_2S_2O_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + S(s) + SO_2(g) + H_2O(l)$$

The speed of this reaction was investigated using the following experiment. A beaker containing 50 cm³ of 0.2 mol/dm³ sodium thiosulfate was placed on a black cross. 5.0 cm³ of 2.0 mol/dm³ hydrochloric acid was added and the clock was started.

Initially the cross was clearly visible. When the solution became cloudy and the cross could no longer be seen, the clock was stopped and the time recorded.

(a) The experiment was repeated with 25 cm³ of 0.2 mol/dm³ sodium thiosulfate and 25 cm³ of water. Typical results for this experiment and a further two experiments are given in the table.

experiment	1	2	3	4
volume of thiosulfate/cm³	50	40	25	10
volume of water/cm ³	0	10	25	40
volume of acid/cm ³	5	5	5	5
total volume/cm³	55	55	55	55
time/s	48	60	96	

(i)	Explain why experiments		necessary	to	keep	the	total	volume	the	same	in	all	the
													[2]
(ii)	Complete the	e table											[1]

© UCLES 2011 0620/32/M/J/11

(i)

(iii)	How and why does the speed of the reaction	vary fro	m experi	iment 1 to 4?
				[3]
	idea of collisions between reacting particles i actions. Use this idea to explain the following			
	volume of sodium thiosulfate/cm³	25	25	
	volume of water/cm ³	25	25	
	volume of acid/cm ³	5	5	
	temperature/°C	20	42	
	time/s	96	40	
				[4]
				[Total: 10]

4 Iron is extracted from its ore, hematite, in the blast furnace.

be the reactions involved in this extraction. Include in your description an equation for a reaction and one for an acid/base reaction.	a redox
[5]	
[Total: 5]	

© UCLES 2011 0620/32/M/J/11

5 The diagram shows a simple cell.

(a)	Write an equation for the overall reaction occurring in the cell.	
	[2]
(b)	Explain why all cell reactions are exothermic and redox.	
	[3]
(c)	Which electrode, zinc or iron, is the negative electrode? Give a reason for your choice	
(d)	Suggest two ways of increasing the voltage of this cell.	2]
()		
	[2]
	[Total:	9]

6	(a)	Methanol	can b	oe made	from a	a mixture	of	carbon	monoxide	and	hydrogen.
---	-----	----------	-------	---------	--------	-----------	----	--------	----------	-----	-----------

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

The forward reaction is exothermic.

1116	torward reaction is exotricimic.
(i)	Explain why the concentration of methanol at equilibrium does not change.
(ii)	Suggest conditions, in terms of temperature and pressure, which would give a high yield of methanol.
(iii)	How would the conditions used in practice compare with those given in (ii)? Give an explanation of any differences.
	diesel is made from a vegetable oil by the following reaction.
C ₁ C ₂	$_{7}^{H_{35}}$ — $_{CO_{2}}$ — $_{CH_{2}}$ $_{7}^{H_{35}}$ — $_{CO_{2}}$ — $_{CH}$ $_{7}^{H_{35}}$ — $_{CO_{2}}$ — $_{CH}$ $_{7}^{H_{35}}$ — $_{CO_{2}}$ — $_{CH_{2}}$ $_{CH_{2}}$ $_{CH_{2}}$
(i)	vegetable oil methanol biodiesel glycerol What type of compound are vegetable oil and biodiesel?
(ii)	What other useful product is made from vegetable oil by heating it with aqueous sodium hydroxide?
(iii)	Suggest an explanation why making and using biodiesel has a smaller effect on the percentage of carbon dioxide in the atmosphere than using petroleum-based diesel.

-	_\	Dataslavias based discal	i	, al a a a a	
	C)	Petrolelim-nasen diesel	i is a mixilire of ni	nrocarbons such as	s ociane and ociene
1	$\boldsymbol{\circ}$	Petroleum-based diesel	i io a iiiixtai o oi iij	aroourborio, odorrac	oolane and oolene.

(i) 'Oct' means eight carbon atoms per molecule. Draw a structural formula of an octene molecule.

[1]

(ii)	Describe a	test which	would a	distinauish	hetween	octane	and oc	tene

result with octane

result with octene[3]

[Total: 14]

- 7 Chlorine reacts with phosphorus to form phosphorus trichloride.
 - (a) Draw a diagram showing the arrangement of the **valency** electrons in one molecule of the covalent compound, phosphorus trichloride.

Use x to represent an electron from a phosphorus atom.

Use o to represent an electron from a chlorine atom.

[2]

[1]

- (b) Phosphorus trichloride reacts with water to form two acids.
 - (i) Balance the equation for this reaction.

$$PCl_3 + \dots H_2O \rightarrow \dots HCl + H_3PO_3$$

(ii) Describe how you could show that phosphorus acid, H₃PO₃, is a weaker acid than hydrochloric acid.

.....[3]

(iii) Two salts of phosphorus acid are its sodium salt, which is soluble in water, and its

For
Examiner's
1150

		calcium salt which is insoluble in water. Suggest a method of preparation for each of these salts from aqueous phosphorus acid. Specify any other reagent needed and briefly outline the method.
		sodium salt
		[2]
		calcium salt
		[2]
		[Total: 10]
8	Hydroca	arbons are compounds which contain only carbon and hydrogen.
	Afte was	cm ³ of a gaseous hydrocarbon was burned in 120 cm ³ of oxygen, which is in excess. er cooling, the volume of the gases remaining was 90 cm ³ . Aqueous sodium hydroxide is added to remove carbon dioxide, 30 cm ³ of oxygen remained. All volumes were
	me	asured at r.t.p
	(i)	Explain why it is essential to use excess oxygen.
		Explain why it is essential to use excess oxygen.
		Explain why it is essential to use excess oxygen.
	(i)	Explain why it is essential to use excess oxygen. [2] Carbon dioxide is slightly soluble in water. Why does it dissolve readily in the alkali,
	(i)	Explain why it is essential to use excess oxygen. [2] Carbon dioxide is slightly soluble in water. Why does it dissolve readily in the alkali, sodium hydroxide?
	(i) (ii)	Explain why it is essential to use excess oxygen. [2] Carbon dioxide is slightly soluble in water. Why does it dissolve readily in the alkali, sodium hydroxide? [1]
	(i) (ii)	Explain why it is essential to use excess oxygen. [2] Carbon dioxide is slightly soluble in water. Why does it dissolve readily in the alkali, sodium hydroxide? [1] Complete the following.
	(i) (ii)	Explain why it is essential to use excess oxygen. [2] Carbon dioxide is slightly soluble in water. Why does it dissolve readily in the alkali, sodium hydroxide? [1] Complete the following. volume of gaseous hydrocarbon =cm³
	(i) (ii)	Explain why it is essential to use excess oxygen. [2] Carbon dioxide is slightly soluble in water. Why does it dissolve readily in the alkali, sodium hydroxide? [1] Complete the following. volume of gaseous hydrocarbon =cm³ volume of oxygen used =cm³ volume of carbon dioxide formed =cm³
	(ii)	Explain why it is essential to use excess oxygen. [2] Carbon dioxide is slightly soluble in water. Why does it dissolve readily in the alkali, sodium hydroxide? [1] Complete the following. volume of gaseous hydrocarbon =cm³ volume of oxygen used =cm³ volume of carbon dioxide formed =cm³ [2] Use the above volume ratio to find the mole ratio in the equation below and hence

For
Examiner's
Use

[Total: 13]

- **(b)** Alkanes are hydrocarbons and are generally unreactive. Their reactions include combustion, substitution and cracking.
 - (i) Chlorine reacts with butane in a substitution reaction.

$${\rm CH_3-CH_2-CH_2-CH_3} \ + \ {\rm C}l_2 \ \to \ {\rm CH_3-CH_2-CH_2-CH_2-C}l \ + \ {\rm HC}l$$

Give the structural formula of another possible product of this reaction.

	[1	J
(ii)	What is the essential condition for this reaction?	
	[1]
(iii)	Explain what is meant by <i>cracking</i> . Give an example of a cracking reaction and explain why the process is used.	t
	[4]

© UCLES 2011 0620/32/M/J/11

DATA SHEET
The Periodic Table of the Elements

	0	4 He lium 2	20 Neon 10 A 40 A Argon	Krypton 36 Krypton 36 X X X X X X X X X X X X X X X X X X	Radon 86		Lu Lutetium 71	Lr Lawrendur 103
	II/		19 Fluorine 9 35.5 C 1	80 Br Bromine 35 I	At Astatine 85		Yb Ytterbium 70	Nobelium
			16 Oxygen 8 32 Sulfur 16	Selenium 34 128 Te	Poonium 84		169 Tm Thulium 69	Md Mendelevium 101
	>		Nitrogen 7 31 Phosphorus 15		51 209 Bismuth 83		167 Er Erbium 68	Fm Fermium
	2		12 Carbon 6 Silicon 14	Germanium 32 119 Sn			165 Ho Holmium 67	ES Einsteinium 99
	=		11 B Boron 5 A 1 Aluminium 13	70 Ga (Salfum 31 115	19 204 T 1 Thallium		162 Dy Dysprosium 66	Cf Californium 98
				2nc Zinc 30 Zinc 412 Cd	201 Hg Mercury		159 Tb Terbium 65	BK Berkelium
				Cu Copper 29 108 Ag	47 197 Au Gold		157 Gd Gadolinium 64	Cm Curium
				28 Nekel 106 Pd 106	Paladum 46 195 Pt Platinum 78		152 Eu Europium 63	Am Americium
				Cobalt 27 103 Rh	45 192 I r Iridium		Samarium 62	Pu Plutonium
		T Hydrogen		Fe 101 26 Mu	190 Os Osmium		Pm Promethium 61	Neptunium
				Mn Manganese 25 TC	186 Re Rhenium 75		Neodymium 60	238 U Uranium 92
				Cr. Chromium 24 96 Mo	M Tungsten 74		Pr Praseodymium 59	Pa Protactinium 91
					181 Ta Tantalum		140 Cerium 58	232 Th Thorium
				Titanium 22 91 97 Zr	40 178 Hf Hafnium			nic mass ibol nic) number
				_	39 139 139 La Lanthanum 57 *	227 Ac Actinium 89	d series series	 a = relative atomic mass x = atomic symbol b = proton (atomic) number
	=		Be Beryllium 4 24 Mg Magnesium 12	Caa Cabcium 20 88 88	38 137 Ba Barium	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series	е Х
	_		7 Lithium 3 23 Na Sodium 11	39 Potassium 19 Rb 85 Rb	133 Caesium 55	Francium 87	*58-71L 190-103	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.