Output tables for 1xN statistical comparisons.

January 17, 2017

1 Average rankings of Friedman test

Average ranks obtained by each method in the Friedman test.

			-				-			
Ranking	2.8333	6.4167	5.8958	6.6042	6.4792	7.5208	5.8958	4.8542	4.7917	3.7083
Raı	2.8	6.4	5.8	9.9	6.2	7.		4.8	4.	<u>ښ</u>
Algorithm	CC	m RF	ΕH	Γ S	SC	C	\mathbb{S}^{C}	ERCC	7.	tRC .
Algor	SVRCC	MORF	ST	MLS	MLSC	RC	ERC	ER	SVR	SVRRC

Table 1: Average Rankings of the algorithms (Friedman)

Friedman statistic (distributed according to chi-square with 9 degrees of freedom): 48.843182. P-value computed by Friedman Test: 0.

Iman and Davenport statistic (distributed according to F-distribution with 9 and 207 degrees of freedom): 6.720594. P-value computed by Iman and Daveport Test: 0.00000019399.

2 Post hoc comparison (Friedman)

P-values obtained in by applying post hoc methods over the results of Friedman procedure.

Holm	0.005556	0.00625	0.007143	0.008333	0.01	0.0125	0.016667	0.025	0.02
d	0	0.000016	0.00003	0.000041	0.000458	0.000458	0.02077	0.02505	0.316761
$z = (R_0 - R_i)/SE$	5.363227	4.314418	4.171399	4.099889	3.503975	3.503975	2.312147	2.240637	1.001136
algorithm	RC	$_{ m MLS}$	MLSC	MORF	ERC	$^{ m LS}$	ERCC	$_{ m SVR}$	SVRRC
i	6	∞	7	9	ಬ	4	က	2	П

Table 2: Post Hoc comparison Table for $\alpha = 0.05$ (FRIEDMAN)

Bonferroni-Dunn's procedure rejects those hypotheses that have an unadjusted p-value ≤ 0.005556 . Holm's procedure rejects those hypotheses that have an unadjusted p-value ≤ 0.016667 .

3 Adjusted P-Values (Friedman)

Adjusted P-values obtained through the application of the post hoc methods (Friedman).

p_{Holm}	0.000001	0.000128	0.000212	0.000248	0.002292	0.002292	0.062309	0.062309	0.316761
p_{Bonf}	0.000001	0.000144	0.000272	0.000372	0.004125	0.004125	0.186926	0.225446	2.850851
unadjusted p	0	0.000016	0.00003	0.000041	0.000458	0.000458	0.02077	0.02505	0.316761
algorithm	RC	MTS	MTSC	MORF	ERC	$^{ m LS}$	ERCC	$_{ m SVR}$	SVRRC
	-	2	က	4	ಬ	9	2	∞	6

Table 3: Adjusted p-values (FRIEDMAN) (I)

unadjusted p	0	0.000016	0.00003	0.000041	0.000458	0.000458	0.02077	0.02505	0.316761
i algorithm		MTS	MTSC	MORF	ERC	$^{ m LS}$	ERCC	$_{ m SVR}$	SVRRC
		2	3	4	2	9	2	∞	6

Table 4: Adjusted p-values (FRIEDMAN) (II)