Příklad 1 – Fractional knapsack

Zloděj se vloupá do pekařství a má k dispozici batoh, který unese **N** kilogramů zboží. V pekařství je **K** krabic s pečivem. Každá krabice má odlišnou váhu **w**_i a odlišnou cenu **v**_i. Zloděj může vzít libovolný počet krabic nebo jejich částí. Každou krabici může vzít vždy buď celou nebo její libovolnou část (1/2 krabice, 1/4 krabice, 0.574567 krabice...). Vymyslete algoritmus, který umožní zloději nakrást pečivo o co největší celkové ceně, které zároveň nepřekročí nosnost batohu.

Vstup může být např. následující:

N = 10 kg (nosnost batohu)

K = 5

i (index krabice)	1	2	3	4	5
v _i (cena dané krabice)	14	10	9	6	4
w _i (váha dané krabice)	7	6	5	5	4

Příklad 2 – Mince

Máme k dispozici mince o různých hodnotách. Množinu všech možných hodnot mincí nazvěme **C**. Od každé hodnoty máme vždy k dispozici nekonečné množství mincí a zároveň je vždy k dispozici hodnota 1. Dále máme zadané číslo **s**. Vymyslete algoritmus, který poskládá hodnotu **s** z co nejmenšího počtu mincí.

Vstup může být např. následující:

$$C = \{1, 5, 8, 10\}, s = 13$$

Lze poskládat např. jako $1 \times 10 + 3 \times 1$ (4 mince), lepší je ale $1 \times 5 + 1 \times 8$ (2 mince)

Příklad 3 – Egyptské zlomky

Každý zlomek lze vyjádřit jako sumu různých zlomků s jedničkou v čitateli (a celočíselným jmenovatelem).

Např.

7/32 = 1/8 + 1/16 + 1/32

Jedná se o tzv. Egyptskou reprezentaci. Každý zlomek může mít více než jednu možnou egyptskou reprezentaci. Vymyslete algoritmus, který pro libovolný zadaný zlomek s celočíselným čitatelem i jmenovatelem nalezne jeho Egyptskou reprezentaci skládající se z co nejmenšího počtu zlomků. Algoritmus vyzkoušejte např. na zlomku 87/110.