Problem Introduction

Background:

- Pests, Water, and Weed abatement are grower's biggest problems
- Between 2007 and 2013, weeds resulted in \$27 Billion crop loss for corn farms and \$16
 Billion for soy farmers (around 50% loss for each crop) [1]
- Labor is becoming scarce and expensive, encouraging automation

Project Goal:

- Train a classifier to distinguish between sugar beet crop and 9 weeds using the Sugar Beets
 Dataset [2][3]
- Quantify classifier performance (Precision, Recall, F1-Score)

Related Work

Data Paper

Agricultural robot dataset for plant classification, localization and mapping on sugar beet fields

The International Journal of Robotics Research 2017, Vol. 36(10) 1045–1052 © The Author(s) 2017 Reprints and permissions: sagepub.co.uk/journals/Permissions.nav DOI: 10.1177/02783/491/7720510 journals.sagepub.com/home/jir

(\$)SAGE

Nived Chebrolu¹, Philipp Lottes¹, Alexander Schaefer², Wera Winterhalter², Wolfram Burgard² and Cyrill Stachniss¹

Stachniss Lab, University of Bonn, Germany

FarmWise, California, USA

Technical Approach: Overview

Technical Approach: Dataset Manipulation

1032 Images

NOTE: classifier selects data with weighted random sampling

OpenCV

Technical Approach: Classification

ResNet18

batch size = 32

epochs = 100

eta = 0.01

imgDim = 224

step_size = 25

gamma = 0.01

cross entropy loss

$$l_n = -\sum_{c=1}^{C} \log \frac{\exp x_{n,c}}{\exp(\sum_{i=1}^{C} x_{n,i})} y_{n,c}$$

DEMO

Data Preprocessing Scripts, Training Notebook, Performance Test

Results: 10 Class Dataset

Labels	Precision	Recall	F1 Score
Crop	0.42	0.45	0.43
Weed1	0.57	0.71	0.63
Weed2	0.00	0.00	0.00
Weed3	0.17	0.10	0.13
Weed4	0.00	0.00	0.00
Weed5	0.11	0.02	0.04
Weed6	0.00	0.00	0.00
Weed7	0.00	0.00	0.00
Weed8	0.00	0.00	0.00
Weed9	0.00	0.00	0.00

Results: 3 Class Dataset

Labels	Precision	Recall	F1 Score
Crop	0.52	0.52	0.52
Weed (Big)	0.56	0.59	0.57
Weed (Small)	0.50	0.48	0.49

Conclusions

Summary:

- Classifiers performed poorly on the Sugar Beets data set
- Weighted random sampling improved the performance of the 10-class classifier, the results still showed a heavy bias
- The 3-class classifier showed the best results

Future Work:

- Masking Improvements: several regions have crops and weeds are growing next to each other, creating a two-class image
- <u>Data Augmentation:</u> either creating new synthetic data based upon the original samples or by duplicating existing samples with added noise and transforms (rotations, flips, skews, etc.)
- Additional Tuning: only a small selection of network architectures and parameters were tested

References

[1] "Crop Loss." Weed Science Society of America. https://wssa.net/wssa/weed/croploss-2/

[2] Lu, Yuzhen, and Sierra Young. "A survey of public datasets for computer vision tasks in precision agriculture." Computers and Electronics in Agriculture 178 (2020): 105760.

[3] "2016 Sugar Beets Dataset" http://www.ipb.uni-bonn.de/data/sugarbeets2016/

Questions?