MLP review and development of a simple surrogate mode

Kathy Breen March 22, 2019

Artificial Neural Networks (ANN)

Anatomy of the Brain:

Artificial Neural Network:

Table 1: Data generated using the "known" function.

X	Y	
1	3	
2	5	
3	7	
4	9	
5	11	

KNOWN:

$$y=2x+1$$

TASK: Given the data in Table 1, approximate the "known" function by altering the weight and bias applied to x to get the estimate \hat{y} such that the difference between y and \hat{y} is minimized.

$$\hat{y} = Wx + b$$

Epoch	W	b	RMSE
1	1	0	4.2426
2	3	0.5	2.8723
3	2	1	0

Preprocessing: Why is this important?

- Your data tell a story are you communicating this to your DLM?
- Smaller numbers take up less space in memory
- Features transformed to similar scales aid in smooth optimization

Normalization (i.e., Standardization)

• Change the scale of the data set without distorting the relative range

Simple model: pulse2D

Objective: Read model input files, calculate output over model domain, write model output files

This model is based on Example 6.2 of Bedient et. al (1999):

A tank holding chloride at a concentration of 10,000 mg/L accidentally leaks over an area of 10 m² into an aquifer. Assume the chloride is a completely conservative tracer, that $D_x = 1 \text{ m}^2$ /day and $D_y = 0.1 \text{ m}^2$ /day, and that the seepage velocity (V_w) is 1 m/day.

Creating a surrogate model

- Identify a physical model (pulse2D)
- Create N sets of model inputs
- Run the physical model N times
- Use inputs/outputs from N model runs to create training data
- Preprocess data
- Partition data into train/test sets
- Build a DLM
- Train and test DLM

Visualize Train and Test Loss

Visualize True data and MLP Prediction

Prediction RMSE: 0.006

