Computer Architecture Courses

- Multicore Computer Architecture John Jose
- Advanced Computer Architecture Smruti Sarangi
- High Performance Computing Ajit Pal
- Parallel Computer Architecture Hemangee Kapoor
- GPU Architectures and Programming –
- Digital Design and Computer Architecture Onur Mutlu
- Computer Architecture Onur Mutlu

Motivation

Many Difficult Problems

3D Stacked Chips

- Power/Energy/Thermal constraints
- Complexity of DesignDifficulties in Technology scaling

DRAM RowHammer Meltdown and spectre

Memory bottleneck

Non-Volatile Main Memory

- Reliability problems
- Programmability problems

Bit flips and Silent data corruption

- Security and Privacy issues
 - Huge hunger for data and new data-intensive Applications (AI, ML, Genomics, ...)

Main memory access consumes
~100-1000X the energy of
complex addition

90% of total energy spent on memory

Specialized Accelerators

(GPU, TPU, NPU, ML, Video codec, ...)

62.7% of the total system energy is spent on data movement

Four Key Current Directions

- Fundamentally Secure/Reliable/Safe Architectures
- Fundamentally Energy-Efficient Architectures
- Fundamentally Low Latency and Predictable Architectures
- Architectures for AI/ML, Genomics, Medicine, Health care, ...

Research Areas

- Computer architecture
- Interconnects, Memory and Storage systems
- Hardware security, safety and predictability
- Fault tolerance, robust systems
- Hardware and software cooperation
- Architectures for bioinformatics, health, medicine and intelligent decision making

A request made through ChatGPT, an AI-based virtual assistant, consumes 10 times the electricity of a Google Search

Motivation

10-Day Battery Life Supports Magnetic Charging

With a built-in 345mAh battery and a low-power chipset, the realme Watch 3 Pro can achieve 10 days of long battery life with standard daily use of GPS and Bluetooth calling.*

Motivation

Problem

Algorithms

Program/Language

System Software

HW/SW Interface

Micro-architecture

Logic

Devices

Electrons

We need more denser memory so we will get bigger memory in size with smaller area. But this leads to rowhammer problem.

Heterogeneous Computing Systems

Compute

Flynn's Taxonomy

SISD – Single Instruction Single Data	SIMD – Single Instruction Multiple Data		
Simple Processor	 Array Processor Vector Processor GPU 		
MISD – Multiple Instruction Single Data	MIMD – Multiple Instruction Multiple Data		
 Systolic Array Processors Streaming Processors 	 Multi-Processors Multi-Threaded Processors 		

SIMD

Why SIMD?

- Some modern software particularly media codec and graphics accelerators, operates on large amount of data that is less than word sized.
 - 16 bit data is common in Audio applications
 - 8 bit data is common in Graphics and Video applications

• When performing this operations on 64-bit Microprocessor, parts of the computation units are unused. But continue to consume same power

- SIMD technology uses single instruction to perform same operation in parallel
 - Single addition latency = Multiple parallel addition latency Improves Performance
- SIMD was first introduced in ARMv6 Architecture
- In ARMv7 ARM introduced Advanced SIMD (Neon) as an optional extension
 - SIMD was 32-bit wide Neon extended it to 64-bit and 128-bit wide
- Coprocessor 10 and 11 used for Neon and Vector Floating Point (VFP) extension

Advanced SIMD - Neon

- Neon unit uses 128bit registers for SIMD processing
- Neon register file supports 8-bit, 16-bit, 32-bit, 64-bit or 128-bit wide data types
- Usually each Neon instruction results in N instruction executing in parallel, where N is the number of lanes
- There cannot be an carry or overflow from one lane to another lane

DRAM Timings

Name	Expansion	Description	DDR5	LPDDR 1	GDD R	HB M
CL	Column Address Strobe (CAS) Latency	Time from read command to data being ready	16			
tRP	Row Precharge Time	Time to close (Precharge) a row before opening another				
tRCD	Row to Column Delay	Time to Row activation and column delay				

Case Study - Nvidia Ampere Architecture

Why Low Power?

4 performance cores

Improved branch prediction
Wider decode and execution engines
Next-generation ML accelerators

6 efficiency cores

Neural Engine

16-core design
Faster and more efficient

10-core GPU

Next-generation architecture

Dynamic Caching

Mesh shading

Ray tracing

Display engine

Tandem OLED support Brightness and color compensation 10Hz-120Hz ProMotion support

