

Budgeted Reinforcement Learning in Continuous State Space

Nicolas Carrara*, Edouard Leurent*, Romain Laroche, Tanguy Urvoy, Odalric-Ambrym Maillard, Olivier Pietquin

Motivation

Markov Decision Process (S, A, P, R_r, γ) :

$$\max_{\pi} \mathbb{E} \sum_{t=0}^{\infty} \gamma^t R_r(s_t, a_t)$$

Single scalar reward for multiple contradictory aspects

Constrained MDP $(S, A, P, R_r, R_c, \gamma, \beta)$

- [Beutler and Ross 1985; Altman 1999]
- ullet Introduce a cost signal R_c and constrained objective

$$\max_{\pi \in \mathcal{M}(\mathcal{A})^{\mathcal{S}}} \mathbb{E}[G_r^{\pi} | s_0 = s] \quad \text{s.t.} \quad \mathbb{E}[G_c^{\pi} | s_0 = s] \leq \beta$$

 \rightarrow The cost budget β cannot be changed after training

Budgeted MDP $(S, A, P, R_r, R_c, \gamma, \mathcal{B})$

- [Boutilier and Lu 2016]
- ullet We seek one general policy $\pi(s,eta)$ that solves every CMDP for any $\beta \in \mathcal{B}$
- \hookrightarrow Can only be solved for finite \mathcal{S} and known P, R_r, R_c .

Setting

Budgeted policies π

- ullet Take a budget eta as an additional input
- Output a next budget β'

$$\pi: \underbrace{(s,\beta)} \to \underbrace{(a,\beta')}$$

2D signals

- 1. Rewards $R = (R_r, R_c)$
- 2. Returns $G^{\pi}=(G^{\pi}_r,G^{\pi}_c)$
- 3. Values $V^{\pi} = (V_r^{\pi}, V_c^{\pi})$ and $Q^{\pi} = (Q_r^{\pi}, Q_c^{\pi})$

Policy Evaluation

The Bellman Expectation equations are preserved, and the Bellman Expectation Operator \mathcal{T}^{π} is a γ -contraction.

Budgeted Optimality

Definition. In that order, we want to:

Respect the budget β :

$$\Pi_a(\overline{s}) \stackrel{\text{def}}{=} \{ \pi \in \Pi : V_c^{\pi}(s, \beta) \le \beta \}$$

Maximise the rewards:

$$V_r^*(\overline{s}) \stackrel{\text{def}}{=} \max_{\pi \in \Pi_a(\overline{s})} V_r^{\pi}(\overline{s}), \quad \Pi_r(\overline{s}) \stackrel{\text{def}}{=} \underset{\pi \in \Pi_a(\overline{s})}{\operatorname{arg}} \max V_r^{\pi}(\overline{s})$$

Minimise the costs:

$$V_c^*(\overline{s}) \stackrel{\text{def}}{=} \min_{\pi \in \Pi_r(\overline{s})} V_c^{\pi}(\overline{s}), \quad \Pi^*(\overline{s}) \stackrel{\text{def}}{=} \underset{\pi \in \Pi_r(\overline{s})}{\min} V_c^{\pi}(\overline{s})$$

We define the budgeted action-value function Q^* similarly

Acknowledgements

This work has been supported by CPER Nord-Pas de Calais/FEDER DATA Advanced data science and technologies 2015-2020, the French Ministry of Higher Education and Research, INRIA, and the French Agence Nationale de la Recherche (ANR).

Budgeted Dynamic Programming

Theorem (Budgeted Bellman Optimality). Q^* verifies:

$$Q^*(\overline{s}, \overline{a}) = \mathcal{T}Q^*(\overline{s}, \overline{a}) \stackrel{\text{def}}{=} R(\overline{s}, \overline{a}) + \gamma \sum_{\overline{s}' \in \overline{S}} \overline{P}(\overline{s'}|\overline{s}, \overline{a}) \sum_{\overline{a'} \in \overline{A}} \pi_{greedy}(\overline{a'}|\overline{s'}; Q^*) Q^*(\overline{s'}, \overline{a'}), \tag{1}$$

where the greedy policy π_{qreedy} is defined by:

$$\pi_{greedy}(\overline{a}|\overline{s};Q) \in \underset{\rho \in \Pi_r^Q}{\operatorname{arg\,min}}_{\rho \in \Pi_r^Q} \underbrace{\mathbb{E}}_{\overline{a} \sim \rho} Q_c(\overline{s}, \overline{a}), \tag{2a}$$

where
$$\Pi_r^Q \stackrel{\text{def}}{=} \operatorname{arg\,max}_{\rho \in \mathcal{M}(\overline{\mathcal{A}})} \mathbb{E}_{\overline{a} \sim \rho} Q_r(\overline{s}, \overline{a})$$
 (2b)

s.t.
$$\mathbb{E}_{\overline{a} \sim \rho} Q_c(\overline{s}, \overline{a}) \leq \beta$$
 (2c)

Proposition. $\pi_{greedy}(\cdot; Q^*)$ is simultaneously optimal in all states $\overline{s} \in \overline{\mathcal{S}}$:

$$\pi_{greedy}(\cdot; Q^*) \in \Pi^*(\overline{s})$$

In particular, $V^{\pi_{greedy}(\cdot;Q^*)} = V^*$ and $Q^{\pi_{greedy}(\cdot;Q^*)} = Q^*$.

$$\forall \varepsilon > 0, \exists Q^1, Q^2 \in (\mathbb{R}^2)^{\overline{SA}} : \|\mathcal{T}Q^1 - \mathcal{T}Q^2\|_{\infty} \ge \frac{1}{\varepsilon} \|Q^1 - Q^2\|_{\infty}$$

We cannot guarantee the convergence of $\mathcal{T}^n(Q_0)$ to Q^* .

Theorem (Contractivity on smooth Q-functions). \mathcal{T} is a contraction when restricted to the subset \mathcal{L}_{γ} of Q-functions such that " Q_r is L-Lipschitz with respect to Q_c ", with $L < \frac{1}{\gamma} - 1$.

✓ We observe empirical convergence.

Budgeted Reinforcement Learning

We address several limitations of Algorithm 1.

- 1. The BMDP is unknown
 - Work with a batch of samples $\mathcal{D} = \{(\overline{s}_i, \overline{a}_i, r_i, \overline{s}'_i\}_{i \in [0, N]}$
- 2. \mathcal{T} contains an expectation $\mathbb{E}_{\overline{s}' \sim \overline{P}}$ over next states \overline{s}'
 - \vdash Replace it with a sampling operator $\hat{\mathcal{T}}$:

$$\hat{\mathcal{T}}Q(\overline{s}_i, \overline{a}_i, r_i, \overline{s}_i') \stackrel{\text{def}}{=} r_i + \gamma \sum_{\overline{a}_i' \in \mathcal{A}_i} \pi_{\mathsf{greedy}}(\overline{a}_i' | \overline{s}_i'; Q) Q(\overline{s}_i', \overline{a}_i').$$

- 3. S is continuous
 - \vdash Employ function approximation Q_{θ} , and minimise a regression loss

$$\mathcal{L}(Q_{\theta}, Q_{\mathsf{target}}; \mathcal{D}) = \sum_{\mathcal{D}} ||Q_{\theta}(\overline{s}, \overline{a}) - Q_{\mathsf{target}}(\overline{s}, \overline{a}, r, \overline{s}')||_{2}^{2}$$

Algorithm 1: Budgeted Value Iteration

Data: P, R_r, R_c Result: Q^*

- $1 Q_0 \leftarrow 0$
- 2 repeat
- $\mathbf{3} \quad | \quad Q_{k+1} \leftarrow \mathcal{T}Q_k$
- 4 until convergence

Theorem (Contractivity). For any BMDP $(S, A, P, R_r, R_c, \gamma)$ with $|A| \geq 2$, \mathcal{T} is not a contraction.

$$\forall \varepsilon > 0, \exists Q^1, Q^2 \in (\mathbb{R}^2)^{\overline{SA}} : \|\mathcal{T}Q^1 - \mathcal{T}Q^2\|_{\infty} \ge \frac{1}{\varepsilon} \|Q^1 - Q^2\|_{\infty}$$

- ✓ We guarantee convergence under some (strong) assumptions.

Algorithm 2: Budgeted Fitted-Q

Iteration Data: \mathcal{D}

Result: Q^*

- 1 $Q_{\theta_0} \leftarrow 0$
- 2 repeat
- $\theta_{k+1} \leftarrow \operatorname{arg\,min}_{\theta} \mathcal{L}(Q_{\theta}, \mathcal{T}Q_{\theta_k}; \mathcal{D})$
- 4 until convergence
 - 4. How to collect the batch \mathcal{D} ?
 - → We propose a risk-sensitive exploration procedure

Scalable Implementation

How to compute the greedy policy?

(Hull policy). π_{greedy} in (2) Proposition computed explicitly, as a mixture of two points that lie on the convex hull of Q.

Function approximation

Parallel computing

Experience collection and computation of π_{greedy} can be distributed over several cores.

Experiments

Risk-sensitive exploration

