MACHINE LEARNING COM AMAZON AWS E SAGEMAKER

CONTEÚDO DO CURSO

- 1. Introdução ao AWS
 - AWS, S3, EC2, IAM e SageMaker
 - Integração do SageMaker com o S3
- 2. Regressão com Linear Learner e XGBoost
 - Previsão do preço de casas e limite do cartão de crédito
 - Tuning
- 3. Classificação com Linear Learner e XGBoost
 - Base de dados do censo

CONTEÚDO DO CURSO

- 4. Séries temporais com DeepAR
 - Base de dados de aluguel de bicicletas e preço das ações
- 5. Outliers com Random Cut Forest
 - Base de dados de aluguel de bicicletas e preço das ações
- 6. PCA e agrupamento com k-means
 - PCA + agrupamento (base cartão de crédito)
 - PCA + classificação (base do censo)

CONTEÚDO DO CURSO

- 7. Redes neurais para classificação de imagens
 - Base de dados Caltech 256
- 8. Integração do SageMaker com o TensorFlow
 - Debug
- 9. Endpoint externo
- 10. Autopilot (aprendizagem automática)
- 11. ANEXOS
 - Redes neurais artificiais
 - Redes neurais convolucionais
 - Redes neurais recorrentes

INFORMAÇÕES ADICIONAIS

- Pré-requisitos: lógica de programação, programação básica em Python e conceitos básicos de Machine Learning
- 2. Intuição básica sobre os algoritmos
- 3. Foco em como utilizar o SageMaker
- 4. Não é um curso sobre certificação!

COMPUTAÇÃO EM NUVEM

• Acesso a serviços na Internet com pagamento de acordo com o uso

AWS – AMAZON WEB SERVICES

- Integração de aplicativos
- Blockchaim
- Computação
- Banco de dados
- IoT
- Machine learning
- Redes
- Segurança
- Armazenamento

Fonte: https://aws.amazon.com/about-aws/global-infrastructure/

• Mais serviços: https://aws.amazon.com/pt/solutions/

AMAZON S3 – SIMPLE STORAGE SERVICE

AMAZON EC2 – ELASTIC COMPUTING CLOUD

AMAZON IAM – IDENTITY AND ACCESS MANAGEMENT

AMAZON SAGEMAKER

REGRESSÃO

- 1. Base de dados de casas
- 2. Configurações do SageMaker
- 3. Linear learner (regressão linear)
- 4. Deploy do modelo
- 5. XGBoost
- 6. Tuning do algoritmo
- 7. Exercício

REGRESSÃO LINEAR

- Modelagem da relação entre variáveis numéricas (variável dependente \mathbf{y} e variáveis explanatórias \mathbf{x})
- Temperatura, umidade e pressão do ar $(x) \rightarrow velocidade do vento (y)$
- Gastos no cartão de crédito, histórico (x) → limite do cartão (y)
- Idade (x) → custo plano de saúde (y)
- Tamanho da casa (x) → preço da casa (y)

Relação linear entre os atributos: quanto maior a idade, maior o custo b_0 e b_1 definem a localização da linha (treinamento)

MEAN SQUARED ERROR

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (f_i - y_i)^2$$

Preço real	Preço calculado	Erro
150	180	$(150 - 180)^2 = 900$
60	55	$(60 - 55)^2 = 25$
220	230	$(220 - 230)^2 = 100$
45	67	$(45 - 67)^2 = 484$

Soma = 1.509

MSE = 1.509 / 4 = 377,25

 $y = b_0 + b_1 * x_1$ Objetivo: ajustar os parâmetros b_0 e b_1 para ter o menor erro!

DESCIDA DO GRADIENTE

min C(B₁, B₂ ... B_n) Taxa de aprendizagem

REGRESSÃO LINEAR MÚLTIPLA

$$y = b_0 + b_1 * x_1$$

$$y = b_0 + b_1 * x_1 + b_2 * x_2 + ... + b_n * x_n$$

XGBOOST (EXTREME GRADIENT BOOSTING)

Fonte: https://didatica.tech/como-funciona-o-algoritmo-arvore-de-decisao/

Árvore de decisão Bagging Random forest Boosting Gradient boosting XGBoost

Random Forest

Artigo: https://iaexpert.academy/2019/04/18/xgboost-a-evolucao-das-arvores-de-decisao/

CLASSIFICAÇÃO

- 1. Base de dados do censo
- 2. Configurações do SageMaker
- 3. Linear learner (regressão logística)
- 4. Deploy do modelo
- 5. Exercício
 - 1. XGBoost
 - 2. Tuning do algoritmo

$$y = b_0 + b_1 * x$$

x = idade

Equação da reta

$$p = \frac{1}{1 + e^{-y}}$$

Função sigmoide

$$\log(\frac{p}{1-p}) = b_0 + b_1 * x$$

Transformação "logit"

SÉRIES TEMPORAIS COM DEEPAR

- 1. Base de dados de aluguel de bicicletas
- 2. Base de dados de ações
- 3. Utiliza redes neurais recorrentes

DETECÇÃO DE OUTLIERS COM RANDOM CUT

- 1. Base de dados de aluguel de bicicletas
- 2. Base de dados de ações

PCA (PRINCIPAL COMPONENT ANALYSIS) E AGRUPAMENTO COM K-MEANS

- 1. Base de dados do cartão de crédito: PCA + agrupamento
- 2. Base de dados do censo: PCA + classificação

REDES NEURAIS ARTIFICIAIS - IMAGE CLASSIFICATION

- 1. Aumento do limite de execução
- 2. Classificação de imagens com Caltech 256
- 3. Deploy e previsões
- 4. Base de dados MNIST tipos de dados para redes neurais
- 5. Exercício

INTEGRAÇÃO TENSORFLOW E SAGEMAKER

- Rede neural clássica com TensorFlow base MNIST
- 2. Criação de script para executar o TensorFlow
- 3. Integração do TensorFlow com o SageMaker
- 4. Exercício

ENDPOINT EXTERNO

- 1. SageMaker SDK
- 2. Boto3 SDK
- 3. Base de dados das casas
- 4. Exercício base MNIST

AUTOPILOT/EXPERIMENT (APRENDIZAGEM DE MÁQUINA AUTOMÁTICA)

- 1. Passos automáticos
 - Pré-processamento dos dados
 - Geração de algoritmos candidatos
 - Feature engineering
 - Tuning
 - Geração de relatórios explicativos
- 2. Base de dados do censo
- 3. Base de dados das casas

