Name: Nima Nasir

Reg No: 19-CP-35

Operating System

Lab: 13 (Examples)

Enamples:

Enample:1

Consider a system with 5 processes, Po through P4 and 3 resources types A, B, C. Resource type A has 10 instances, B has 5 instances and type C has 7 instances. Suppose at time to following snap-shot of the system has been taken:

Process	Allo	cati	on		Ma	M	Available
	A	В	e	A	ß	C	ABC
Po	0	1	0	7	5	3	3 3 2
Pi	2	0	0	3	2	2	TANAMIN TO
P ₂	3	0	2	9	0	2	
P ₃	2	t	1	2	2	2	to the latest
P4	0	0	2	4	3	3	

what will be the content of the Need matrix?

Answer:

Resource type A = 10 instance

Resource type B = 5 instance

Resource type c = 7 instance

(2

formula:

Need [i,j] = Man [i,j] - Allocation [i,j]

Process	Max	Allo	cati	on	Need = Man [i,j] - Allocation[i,j]					
	ABC	A	B	С		A	В	C		
Po	753	0	1	0	SITE	7	4	3		
Pi	3 2 2	2	0	0		1	2	2		
P2	902	3	0	2		6	0	0		
P ₃	2 2 2	2	1	1		0	1	-		
P4	4 3 3	0	0	2	Fig.	4	3	1	camples:	

Example: 2

Is the system in safe state? if yes, then what is the safe

Sequence?

Answer:

Available = m = 3

Processes = n = 5

work = Available

Applying the safety algorithm on the given system: Step 1 of Safety Algorithm.

WOTK = 3 3 2

Finish = False False False False False

Step 2:

For i = 0

Need = 7, 4, 3

Finish [0] is false because Need. > work
7,4,3 3,2,2

so Po must wait.

Because we need : Need & work

Step 3:

For i = 1

Need, = 1,2,2

Finish [1] is false and Need, < work

1,2,2 < 3,3,2

so P, must be kept in safe sequence so, work = work + Allocation,

3,3,2 2,0,0

work = 3+2 , 3+0, 2+0

work = \$, 8 , 2

Finish = Finish True Finish Finish Finish

Step 2:

For 1 = 2

Need, = 6,0,0

Finish [2] is false and Need, > work

6,0,0 5,3,2

so P2 must wait

Step 2:

For i= 3

Need 3 = 0, 1, 1

Finish [3] is false and Need, < work

0,1,1 5,3,2

So P3 must be Kept in safe sequence

Step 3:

so, work = work + Allocation,

5,3,2 2,1,1

work = A B C

9
Finish = False True False True False
Skep 2:
For 1 = 4
Need 4 = 4,3,1
Finish [4] = false and Need , < work
4,3,1 7,4,3
so P4 must be Kept in safe sequence
Step3:
So, work = work + Allocation 4
7,4,3 0,0,2
work = A B &
Finish = false True false True True
0 1 2 3 4
Slep 2:
For i = 0
1,9,3
Maish [0] is false and Need. < work
2 parel by 1, 1
So Po must be kept in safe sequence
Step 3:
50,
work - work + Allocation.
7,4,5 0,1,0
work = 7 8 5
Finish = True True False True True

Step 2:

For 1 = 2

Need = 6,0,0

Finish [2] is false and Need, < work

6,0,0 7,5,5

So P2 must be kept in sofe sequence

Step 3:

work = work + Allocation,

7,5,5 3,0,2

WOTK = 10 B 9

Finish = True True True True

Step 4:

Prinish [i] = true for 0 < i < n

Hence the system is in safe state

The safe sequence is P1, P3, P4, Po, P2

Frample: 3

What will happen if process P, requests one additional instances of resource type A and two instances of resource type c?

Request, = A B C

Answer:

To decide whether the request is granted and we use Resource Request Algorithm

Process	Rea	quest	,	N	ed		Available			
	A	8	C	A	В	C	A	В	C	
P	1	0	2		2	2	3	3	2	

Step1:

1,0,2 1,2,2 Request, < Need,

Step 2:

1,0,2 Request, < Available ~

Step 3:

Available - Available - Request 1

Allocation, = Allocations + Request 1

Need 1 = Need 1 - Request 1

Process	All	امما	lion	Ne	ed		Available			
	A	B	C	A	B	C	A	В	C	
P.	0	1	0	7	4	3	2	3	0	
Pi	3	0	2	0	2	0				
P ₂	3	0	2	6	0	0				
P ₃	2	1	1	0	1	1				
P4	0	0	2	4	3	1				

Enample: 4

we must détermine whether this new system state is safe. To do so, ue again eneule sofety algorithm on the above data structures.

Answer:

Available = m = 3

Processes = n = 5

work = Available

step 1 of safety Algo:

Work = 2 3 0

9
Finish = False False False False
0 1 2 3 4
Step 2:
For i = 0
Need. = 7,4,3
finish [o] is false and Need. > work
7,4,3 2,3,0
So Po must wait
Step 2:
Fer 1 = 1
Need, = 0, 2,0
Finish [1] is false and Need, < work
so P, must be Kept in safe sequence
Step 3:
work = work + Allocation 1
2,3,0 3,0,2
work = 8 c 3 2
Finish = False True False False Palse
Step 2:
For 1 = 2
Need2 = 6,0,0
Finish [2] is false and Need: > work
so P2 must wait 6,0,0 5,3,2
Step 2:
Pari=3
Need 3 = 0.1.1

0,1,1 Need 3

and

Finish [3] = false

5,3,2 Wak

so By must be kept in safe stquence Step 3: work = work + Allocation3 5,3,2 2,1,1 Work = A B c 7 4 3 Anish = Palse True Palse True Step 2: For i = 4 Needy = 4,3,1 Finish [4] is false and Needy < work 4,3,1 7,4,3 so P4 must be kept in safe sequence Step 3: work = work + Allocationy 7,4,3 0,0,2 work = A B C 4 5 Finish = false True False True True 0 1 2 3 step 2: For 1 = 0 Need = 7, 4, 3 Finish [0] is false and Needo < work 7,4,3 so Po must be kept in sorte sequence Step 3. work = work + Allocation . 7,4,5 0,1,0 work = 17

Finish = True True false True

Need, = 6,0,0

Finish [2] is false and Need 2 < work

So P2 must be kept in sofe sequence

step3:

work = work + Allocation,

Finish = True True True True True

Step 4:

Finish [i] = true for 0 ≤ i ≤ n

Hence the system is in safe sequence

The safe sequence is P1 P3, P4, Po, P2

Enample: 5

Consider the following system snapshot using data structures in the Banker's Algorithm, with resources A, B, C, D and process Po to Py

	2	lan	,		A	lloc	atio	n	1	Red	0		Av	aila	ble	
	A	B	C	D	A	B	C	D	A	B	C	D	A	B	C	
Po	6	0	1	2	4	0	0	1					3	2	1	1
Pr	1	7	5	0	1	(0	0								
ρ2	2	3	5	6	1	2	5	4								
P ₃	1	6	5	3	0	6	3	3								
Py	1	6	5	6	0	2	1	2					STREET			

using Banker's Algorithm, answer following questions. i) How many resources of type A, B, C, D are there?

(10)			
N. S.		-	14

A	=9			; B	= 13	3		;	C=	10		;	D=					
ii)	wha	t (are	the	C	onte	nts	of	the	N	reed	ma	thin?					
		1	Man				llocat								vailo			
		A	B	C	D	A	B	C	D	A	B	C	D	A	B	C	D	
	Po	6	0	1	2	4	0	0	1	2	0	1	1	3	2	1	1	
	PI	1		5		7.0	1											
	P2	2	3	5	6	1	2	5	4	1	41	0	2					
	P3	1	6	5	3	0	6	3	3	1	0	2	. 0					
	P4	1	6	5	6	0	2	1	2	1	4	4	4					

The system is in a safe state as the processes can be finished in

sequences Po, P2, P4, P1 and P3.

iv) if a request from process P4 arrives for additional resources of (1,2,0,0) can the Banker's algorithm quant the request immediately? show the other criteria.

Answer:

If a request from process Py arrives for additional resources of (1,2,0,0) and if this system request is granted, the new system will be:

	Max	Allocation	Need	Available
	ABCD	ABCD	ABCD	ABCD
Po	6012	4001	2011	2 02: Maken
Pi	1 7 5 0	1100	0 6 50	Del all above
P2	2 3 5 6	1 2 5 4	1 1 0 2	Hart System Breit
P3	1653	0 6 3 3	1020	X2.71
P4	1656	1 4 1 2	0 2 4 4	5 6

After Po completes P3 can be allocated lo20 from released 6012 and available 2011 (Total 8023) and < Po, P3, P4, P2, Pi> is a safe sequence