Differential Geometry - Lee

Math 240, UCSB Trevor Klar

October 17, 2019

Contents

1		2
2		2
3	Tangent Vectors	3
	3.1 Tangent Vectors	3

Note: If you find any typos in these notes, please let me know at trevorklar@math.ucsb.edu. If you could include the page number, that would be helpful.

3 Tangent Vectors

3.1 Tangent Vectors

Definition. Let $a \in \mathbb{R}^n$. A geometric tangent vector in \mathbb{R}^n is

$$v_a = (a, v)$$
, for some $v \in \mathbb{R}^n$

(we sometimes use the notation $v|_a$). We interpret v_a as a vector v whose initial point is at a.

Definition. The geometric tangent space to \mathbb{R}^n at a is the set

$$\mathbb{R}_a^n = \{ v_a | v \in \mathbb{R}^n \},$$

where a is a fixed element of \mathbb{R}^n .

Remark. The set \mathbb{R}^n_a is a vector space, with the natural operations of addition and scalar multiplication where a always remains fixed:

$$v_a + w_a = (v + w)_a, c(v_a) = (cv)_a.$$