CS4533 Lecture 2 Slides/Notes

Scan Conversion for 2D Line Segments; HW1 Discussion; Introduction to OpenGL (Notes, Ch 1)

By Prof. Yi-Jen Chiang CSE Dept., Tandon School of Engineering New York University

1

Bresenham's Alp. Good: Avoid all floating-pt computations

Assume: slope $M \in (0,1]$ In chease X by I in each chose the best Y in each chose the best Y in each iteration.

Def: $\Delta Y = X_1 - X_1 > 0$. $\Delta X = X_2 - X_1 > 0$. Integers)

(I)

NE

Peding: $D = \Delta X (A - B)$ (II) compute Default (direct D value)

NE = $(X_1 + I, X_2 + I)$ NE = $(X_1 + I, X_2 + I)$ Peding: $D \ge 0$ E

(Note: $\Delta X > 0$)

Peding: $\Delta X = \Delta X (I - M - M) = \Delta X (I - M) = \Delta X$

Incharantal Computation: Compute Dnew from Dold.

(1) If E is chosen (Pold
$$\geq 0$$
)

 $D = 0$:

 $A' - A = -m - 0$
 $A' - A = -m - 0$
 $A' - B' = \Delta X (A - B) - 2m + \Delta X$
 $A' - B' = \Delta X (A - B) - 2m + \Delta X$
 $A' - B' = \Delta X (A - B) - 2m + \Delta X$
 $A' - B' = \Delta X (A - B) - 2m + \Delta X$
 $A' - B' = \Delta X (A - B) - 2m + \Delta X$
 $A' - B' = \Delta X (A - B) - 2m + \Delta X$
 $A' - B' = \Delta X (A - B) - 2m + \Delta X$
 $A' - B' = \Delta X (A - B) - 2m + \Delta X$
 $A' - B' = \Delta X (A - B) - 2m + \Delta X$
 $A' - B' = \Delta X (A - B) - 2m + \Delta X$
 $A' - B' = \Delta X (A - B) - 2m + \Delta X$
 $A' - B' = \Delta X (A - B) - 2m + \Delta X$
 $A' - B' = \Delta X (A - B) - 2m + \Delta X$
 $A' - B' = \Delta X (A - B) - 2m + \Delta X$
 $A' - B' = \Delta X (A - B) - 2m + \Delta X$
 $A' - A = -m - \Delta X - \Delta X$
 $A' - A = -m - \Delta X - \Delta X$
 $A' - A = -m - \Delta X - \Delta X - \Delta X$
 $A' - A = -m - \Delta X - \Delta X - \Delta X$
 $A' - A = -m - \Delta X - \Delta X - \Delta X$
 $A' - A = -m - \Delta X - \Delta X - \Delta X$
 $A' - A = -m - \Delta X - \Delta X - \Delta X$
 $A' - A = -m - \Delta X - \Delta X - \Delta X$
 $A' - A = -m - \Delta X - \Delta X - \Delta X$
 $A' - A = -m - \Delta X - \Delta X - \Delta X - \Delta X$
 $A' - A = -m - \Delta X - \Delta X - \Delta X - \Delta X$
 $A' - A = -m - \Delta X - \Delta X - \Delta X - \Delta X$
 $A' - A = -m - \Delta X - \Delta X - \Delta X - \Delta X$
 $A' - A = -m - \Delta X - \Delta X - \Delta X - \Delta X - \Delta X$
 $A' - A = -m - \Delta X - \Delta X - \Delta X - \Delta X - \Delta X$
 $A' - A = -m - \Delta X - \Delta X - \Delta X - \Delta X - \Delta X$
 $A' - A = -m - \Delta X - \Delta X$
 $A' - A = -m - \Delta X -$

