

Including environmental covariates into movement analysis

Animal movement course 8-12 september 2025

Anna Skarin, Bernardo Brandão Niebuhr

Environmental data

Shin et al. 2017

Environmental data – Types of data

- Vector
- Raster

Slide adapted from Mauricio Vancine

Campbell & Shin (2012), ESRI (2019)

Example data class

Environmental data – Types of data

Raster
 Matrix with values – continuous or

National Ecological Observatory Network (NEON), Lovelace et al. (2020)

Environmental data – Types of data

Raster
 Properties – extent and spatial resolution

Slide adapted from Mauricio Vancine

National Ecological Observatory Network (NEON)

Environmental data – Types of data

- Vector
 - Shapefile
 - Geopackage

Structure data class

- Vector data
 - one row per feature with attribute and value
 - coordinates stored separately
 - R stores everything in the same file but with subdivisions
 - For ex. ESRI has 5 files for a .shp-file

Raster data (ascii-format)

ncols 2001 nrows 2001 xllcorner 1599975 yllcorner 7199975

cellsize 50

NODATA_value -9999

Vector to raster or vice versa

- Possible and sometimes necessary for analysis
- Loose information about the attributes only one value per cell in a raster
- Raster to vector possible
- At small scale possible to do manually
 - For example a stakeholder interpreting a satellite image may draw polygons representing different features

Spatial reference systems

- Geographic coordinate system
 - Degrees, minutes, seconds
 - Decimal degrees
- <u>Projections</u> projected coordinate system
- Transverse Mercator (TM) normal for Sweden/Europe
- World Geodetic System 1984 used in GPSes WGS84

Longitude and Latitude

Latitude = 1

 $(0^{\circ} = \text{Equator})$ the angle distance from the equator

Longitude = 2

(Prime meridian) Greenwich

European Petroleum Survey Group (EPSG)

- http://spatialreference.org/
- For example
- WGS84 -> ESPG:4326
- Sweref99 -> ESPG: 3006
- and old system RT90 -> ESPG: 3021

Coordinate Systems Worldwide

Spatial reference system

- Geographic
 - Degrees, minutes, seconds
 - Decimal degrees
- Projected (meters)
 - Universal Transversa de Mercator (UTM)

Zone and coordinates

> X UTM: 706832 m E

> Y UTM: 4344683 m N

> Zone: 10S

Slide adapted from Mauricio Vancine

QGIS 3.16 User Guide

In Sweden

- RT90 (special case in R!!)
- Since 2007 Sweref99 TM based on UTM zone 33N.
- If we would use only UTM we would have to divide the country in three parts.

	Latitude/Northing	Longitude/Easting
Lat/Long	N 63° 31.1714'	E 16° 55.4388'
RT90	7046151	1555690
Sweref99	7044913	595707
UTM- format	7044913	595707

Long, Lat, X-coord, Y-coord...

- Remember that
 - X-coordinates in RT90 = Northing coordinate in Sweref99, i.e. the Latitude
 - Y-coordinates in RT90 = Easting coordinate in Sweref99, i.e. the Longitude
- So Y-coord=x and X-coord=y
- coordinates(data) <-c("x", "y") # in R

The UTM system is in meter scale

Remove one figure and decrease the accuracy

- 588010 7495048 1 m
- 58801 749505 10 m
- 5880 74950 100 m
- 588 7495 1 km

Temporal reference system

- For time the standard reference system is Coordinated Universal Time (UTC)
 atomic time.
- Greenwich Mean Time (GMT) is a time zone mean sun time at the meridian (Greenwich). (<1 sec)
- GMT or UTC never change to daylight saving.
- UTC is used in the Global Positioning System (GPS)
 - Numeric time reformat to time format using 1 January 1970 as reference.

Environmental data – Remote sensing

Slide adapted from Mauricio Vancine

Edusat

Environmental data – Remote sensing

Satellites:

- Landsat (1-9)
- <u>Sentinel (1-5)</u>
- MODIS

Satellite	Sensor	Spatial resolution (pan)	Spatial resolution (multi)	Spatial resolution (thermal)	Swath width	Revisiting time
IKONOS	Ikonos	0.82 m	3.2 m		11 km	1-3 days
QuickBird-2	BGIS 2000	0.61 m	2.4 m		17 km	1-3 days
WorldView-2	IRU	0.46 m	1.85 m		16 km	1-4 days
WorldView-3	IRU	0.31 m	1.24 m		13 km	5 days
SSTL-150	RapidEye		6.5m		77 km	5.5 days
Landsat 1–3	MSS		80 m		185 km	16 days
Landsat 4 & 5	TM		30 m	120 m	185 km	16 days
Landsat 7	ETM+	15 m	30 m	120 m	185 km	16 days
Landsat 8	OLI/TIRS	15 m	30 m	100 m	$185 \mathrm{km}$	16 days
SPOT 1-4	HRV, HRVIR	10 m	20 m		$60 \mathrm{km}$	2-3 days
SPOT 5	HRG, HRS	5 m	10-20 m		60 m	2-3 days
SPOT 4 & 5	VEGETATION		1,000 m		2250 km	1 day
Terra	ASTER		15-30 m	90 m	$60 \mathrm{km}$	1-2 days
Sentinel-2	MSI		10-60 m		290 km	5 days
Terra/Aqua	MODIS		250-1,000 m	1,000 m	2,330 km	1-2 days
NOAA 6-18	AVHRR 2-3		1,090 m	1,090 m	2,000 km	1 day

Slide adapted from Mauricio Vancine

ICT Sensor and Satellite Database

Environmental data – Where?

Vector data

- OpenStreetMap Data Extracts: OpenStreetMap data
- •Ecoregions: data on ecoregions and biomes of the world
- •GADM: limits of administrative areas in the world
- Natural Earth: diverse limits
- •Protected Planet: protected areas
- •UN Biodiversity Lab: Several data bases for the world
- •HydroSHEDS: hydrological information for the world
- •Global Roads Inventory Project (GRIP): roads across the world

Slide adapted from Mauricio Vancine

Environmental data – Where?

Raster data

- USGS: open data for several satellites
- SRTM: elevation data
- Global Forest Watch: land use and land cover change
- Copernicus: multiple products derived from satellite and remote sensing
- Geoservice Maps: elevation and forests
- GlobCover: land use and land cover for the globe
- Global Human Footprint: human footprint data
- Land-Use Harmonization (LUH2): current and predicted land use across the planet
- SoilGrids: soil data
- WorldClim: bioclimatic data
- CHELSA: climate data
- <u>EarthEnv</u>: land cover, clouds, relief, and hydrography
- MARSPEC: ocean conditions and variables
- Bio-ORACLE: ocean conditions and variables

Slide adapted from Mauricio Vancine

Environmental data in R

R packages

- <u>rnaturalearth</u>: data from the world map from Natural Earth
- rworldmap: global data maps
- spData: datasets for spatial analysis
- OpenStreetMap: access to open raster images of streets
- osmdata: download and import OpenStreetMap data
- elevatr: access elevation data from various APIs
- rgee: use Google Earth Engine through R
- copernicus: access and process COPERNICUS Global Land Vegetation products
- oneimpact: tools to compute zones of influence of infrastructure

Data annotation

 Data annotation consists of enriching a data set with other information that provide context to it.

Data annotation

 Data annotation consists of enriching a data set with other information that provide context to it.

```
terra::extract()
amt::extract_covariates()
amt::extract_covariates_along()
amt::extract_covariates_var_time()
```