Operator evolution from the similarity renormalization group and the Magnus expansion

A. J. Tropiano¹, S. K. Bogner², R. J. Furnstahl¹

¹Department of Physics, The Ohio State University, Columbus, OH 43210, USA

²National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy,

Michigan State University, East Lansing, MI 48824, USA

(Dated: September 23, 2019)

Abstract

Ideas for Magnus / SRG operator evolution paper

- SRG/Magnus evolution in different potentials (non-local, local, semi-local). Universality. High cutoffs.
- Block-diagonal generator for high cutoff potentials and operator evolution. How the block-diagonal generator handles spurious bound states.
- Testing the Magnus expansion for high cutoff potentials using the potentials from Wendt 2011 for comparison. Spurious bound states and connection to intruder states in IMSRG calculations.
- Operator evolution for different potentials and generators.

I. INTRODUCTION

Background on modern nuclear potentials.

- Wide range of NN potentials.
 - Chiral EFT background.
 - Different potentials but give same S-matrix.
- Implementation to many-body calculations and SRG decoupling.
 - Strong coupling between low- and high-momentum matrix elements in NN potentials.
 - Very difficult to implement these interactions in many-body methods using basis expansions. Matrix dimension becomes too large for accurate calculations.
 - RG transformations are used to soften the interaction to make many-body methods feasible. One such method, the SRG, also preserves observables from unitarity.
 - How do different potentials change under SRG transformations?

SRG formalism

- The SRG decouples low- and high-momentum scales by applying a continuous unitary transformation U(s) where $s=0\to\infty$ is the flow parameter.
- The 'dressed' or evolved operator is given by

$$O(s) = U(s)O(0)U^{\dagger}(s), \tag{1}$$

where O(0) corresponds to the 'bare' operator.

- Because U(s) is unitary, the observables of the operator are preserved.
- In practice, the unitary transformation U(s) is not explicitly solved for; the evolved operator is given by a differential flow equation which is obtained by taking the derivative of Eqn. (1),

$$\frac{dO(s)}{ds} = [\eta(s), O(s)],\tag{2}$$

where $\eta(s) = \frac{dU(s)}{ds}U^{\dagger}(s) = -\eta^{\dagger}(s)$ is the anti-hermitian SRG generator.

– The generator is defined as a commutator, $\eta(s) = [G, H(s)]$, where G specifies the type of flow or form of the decoupled operator.

- By setting $G = H_D(s)$, the diagonal of the Hamiltonian, the operator is driven to banddiagonal form.
- This choice was implemented by Wegner in condensed matter physics [1].
- In a similar option used in nuclear physics, G is set to the relative kinetic energy, T_{rel} , which also drives to band-diagonal form.
- It is convenient to define $\lambda \equiv s^{-1/4}$ which roughly measures the width of the band-diagonal in the decoupled operator.
- For block-diagonal decoupling, denoted $G = H_{BD}(s)$, the operator is split into low- and high-momentum sub-blocks by specifying a separation in momentum Λ_{BD} .
- These transformations are similar to V_{lowk} Lee-Suzuki transformations but keep the high-momentum matrix elements non-zero, although entirely decoupled from the low-momentum sub-block.
- Generally the flow equation (2) is solved up to some finite value of s with a high-order ODE solver.
- For notational convenience, we write the generators without the s dependence in the rest of the paper.

Universality

- The explicit long-range physics should be the same. Decoupling low- and high-energy gives matching low-energy matrix elements. In the NN potential, this means softened NN interactions should have the same low-momentum matrix elements after sufficient decoupling.
- Add takeaways from Dainton: phase shift equivalence implies matrix element equivalence for λ approaching the momenta of phase equivalence. Correct binding energy is critical or the lowest matrix elements will not match.
- Motivate long list of unaddressed questions: regulator, generator dependence, high cutoffs, the Magnus expansion.
 - Regulator. Functional dependence of regulator. Reasons for implementing each.
 - Generators. Band- and block-diagonal transformations.
 - High cutoffs. Cite Nogga, Wendt, and Tews papers.
 - The Magnus expansion. High cutoffs and connection to IMSRG intruder state problem.

Operator evolution

- State how a potential and wave function changes: how does this affect other operators?
- Operator evolution for different potentials (regulators, chiral order, etc.)
- How operators evolve from band- and block-diagonal SRG transformations.

Overview of sections.

II. SRG EVOLUTION OF NN POTENTIALS

General outline of the section

- Comparison of potential evolution with different regulators, orders, generators.
- Universality.
- Discussion of high cutoffs, block-diagonal generator at high cutoffs, and how it handles spurious bound states.
- Use high cutoffs to transition to Magnus test problem.

Analysis of figures

– Fig. 1 illustrates the SRG in a nutshell. Here, we evolve three partial wave channels of RKE N³LO [2] where the cutoff $\Lambda = 450$ MeV to $\lambda = 1.5$ fm⁻¹. We see that the off-diagonal elements of the potential approach zero and the potential is driven to band-diagonal form.

FIG. 1: Matrix elements of the RKE N^3LO potential SRG-evolving in λ right to left under transformations with the Wegner generator in the 1S_0 (a), 3S_1 (b), and 1P_1 (c) channels.

- In Fig. 2 we consider three different SRG-evolved potentials in the 3S_1 channel: EM N 3 LO (500 MeV cutoff) [3], RKE N 3 LO (450 MeV cutoff) [2], and Gezerlis et al. N 2 LO (1 fm cutoff) [4]. The major difference in these three potentials are the regulator functions in the contact and pion-exchange terms. The EM N 3 LO interaction is a non-local potential where both contact and pion-exchange interactions feature a non-local regulator function of the form $\exp[-(p/\Lambda)^{2n} - (p'/\Lambda)^{2n}]$, where Λ is the momentum-space cutoff and n is an integer. However, a non-local regulator function for pion-exchange contributions can introduce regulator artifacts for cutoffs Λ lower than the breakdown scale Λ $_b$. Several semi-local

chiral potentials have been introduced to reduce regulator artifacts, such as the RKE N³LO potential. Here, a local regulator function is applied for the long-range interactions in momentum-space, while a non-local regulator function is used for the short-range interactions. In some instances, non-local interactions are not suitable for *ab initio* approaches such as the quantum Monte Carlo (QMC) method motivating the need for fully local potentials. The Gezerlis et al. N²LO potential is an example of a local interaction where the long-range terms have a local regulator function in coordinate-space and the short-range terms have a local regulator function in momentum-space.

– Takeaways from Fig. 2: completely different at $\lambda = 6$ fm⁻¹ but low-momentum matrix elements are similar at $\lambda = 1$ fm⁻¹. Decoupled, low-momentum matrix elements are necessarily the same since the pion-exchange terms are calculated explicitly. (Cutoff dependence can play a role though for lower cutoffs.)

FIG. 2: Matrix elements of the EM N³LO (a), RKE N³LO (b), and Gezerlis et al. N²LO (c) potentials SRG-evolving in λ right to left under transformations with the Wegner generator in the ³S₁ channel.

- Fig. 3 shows the SRG-evolved RKE N³LO (450 MeV cutoff) potential in the 3 S₁ channel for two SRG generators: the Wegner and block-diagonal generators which drive the potential to band- and block-diagonal form, respectively. We continue to evolve to band-diagonal form with respect to the parameter λ , but for the block-diagonal generator, we label sub-plots with the parameter Λ which characterizes the sharp cutoff in decoupling the low- and high-momentum matrix elements.
- Takeaways from Fig. 3: smooth decoupling for Wegner and sharp for block-diagonal, each

unique generator should have its own type of universality. Check this more quantitatively by comparing matrix element "slices".

FIG. 3: Matrix elements of the RKE N³LO potential SRG-evolving right to left under transformations with Wegner (a) and block-diagonal (b) generators in the 3 S₁ channel. Here, we use λ for Wegner evolution in the top row and Λ for block-diagonal evolution in the bottom row. For block-diagonal evolution, we fix $\lambda = 1.5 \text{ fm}^{-1}$.

– Fig. 4 shows the NN phase shifts of EM N³LO, RKE N³LO, and Gezerlis et al. N²LO potentials in the 1 S₀, 3 S₁, and 1 P₁ channels. In [5], it was found that phase equivalence up to some value of momentum k implies matrix element equivalence up to the same value of k in SRG-evolved potentials. We verify this conclusion by checking the matrix elements in Fig. 5 where we see a collapse of the different potential matrix elements to the same line in the last column ($\lambda = 1$ fm⁻¹). Note, Figs. 5-7 show both Wegner and block-diagonal evolution where the solid lines correspond to the Wegner generator and dash-dotted to block-diagonal evolution. We see each generator collapses the potential to a different form because the lowand high-momentum matrix elements decouple in a different manner.

– In the 3S_1 channel, we see a slight deviation in the lowest momentum potential matrix element from EM ${\rm N}^3{\rm LO}$ and the other two potentials. This is due to a minor difference in

the deuteron binding energy ($\approx 1\%$ difference).

– The bottom row of Fig. 7 shows V(k, 0.5) instead of V(k, 0) because the far off-diagonal matrix elements in the ${}^{1}P_{1}$ channel are all zero.

FIG. 4: $^{1}S_{0}$ (a), $^{3}S_{1}$ (b), and $^{1}P_{1}$ (c) phase shifts for the EM N 3 LO (solid black), RKE N 3 LO (red dash-dotted), and Gezerlis et al. N 2 LO (blue dashed) potentials.

FIG. 5: Diagonal (a) and far off-diagonal (b) matrix elements of the EM N³LO (black), RKE N³LO (red) and Gezerlis et al. N²LO (blue) potentials SRG-evolving right to left under transformations with Wegner (solid) and block-diagonal (dash-dotted) generators in the 1 S₀ channel. Here, we use λ for Wegner evolution and Λ for block-diagonal evolution. For block-diagonal evolution, we fix $\lambda = 1 \text{ fm}^{-1}$.

FIG. 6: Same as Fig. 5 but in the $^3\mathrm{S}_1$ channel.

FIG. 7: Same as Figs. 5 and 6 but in the ${}^{1}P_{1}$ channel.

High cutoffs

- Cutoff dependence in non-local LO (Wendt) potential.
- Band- and block-diagonal evolution and universality. Add figure analogous to Fig. 6 but for $\Lambda = 4$, 9, and 20 fm⁻¹.
- Spurious bound state(s).
- Discussion on how the block-diagonal generator handles spurious bound states. Where they are "decoupled" in the matrix compared to Wegner.
- Transition to Magnus expansion.

FIG. 8: Diagonal (a) and far off-diagonal (b) matrix elements of the non-local LO potential at cutoffs $\Lambda=4$ (black), 9 (red) and 20 (blue) fm⁻¹ SRG-evolving right to left under transformations with Wegner (solid) and block-diagonal (dash-dotted) generators in the 3S_1 channel. Here, we use λ for Wegner evolution and Λ for block-diagonal evolution. For block-diagonal evolution, we fix $\lambda=1.2~{\rm fm}^{-1}$.

III. THE MAGNUS EXPANSION

- Connection to IMSRG intruder state.

A. Formalism

- Motivation: simplifies computational problem for evolving multiple operators, exact unitarity.
- We now consider the Magnus implementation.
- Mathematically speaking, the Magnus expansion is a method for solving an initial value problem associated with a linear ordinary differential equation (ODE).

- Formal details of the Magnus expansion are discussed in [6].
- We will introduce the Magnus expansion in the context of SRG evolving any operator.
- In an intermediate step in deriving Eqn. (2), we have a linear ODE for U(s),

$$\frac{dU(s)}{ds} = \eta(s)U(s). \tag{3}$$

- Magnus showed that one can solve the following equation with a solution $U(s) = e^{\Omega(s)}$ where $\Omega(s)$ is expanded as a power series, $\sum_{n=0}^{\infty} \Omega_n$ (referred to as the Magnus expansion or Magnus series).
- The terms of the series are given by integral expressions involving $\eta(s)$ (again, see [6, 7] for details).
- For our case, we focus on the formally exact derivative of $\Omega(s)$,

$$\frac{d\Omega(s)}{ds} = \sum_{k=0}^{\infty} \frac{B_k}{k!} a d_{\Omega}^k(\eta), \tag{4}$$

where B_k are the Bernoulli numbers, $ad_{\Omega}^0(\eta) = \eta(s)$, and $ad_{\Omega}^k(\eta) = [\Omega(s), ad_{\Omega}^{k-1}(\eta)]$.

- We integrate this differential equation to find $\Omega(s)$ and evaluate the unitary transformation directly.
- Then the evolved operator can be evaluated with the BCH formula:

$$O(s) = e^{\Omega(s)} O e^{-\Omega(s)} = \sum_{k=0}^{\infty} \frac{1}{k!} a d_{\Omega}^{k}(O).$$
 (5)

- As $k \to \infty$ in both sums in Eqns. (4) and (5) the Magnus transformation matches the SRG transformation exactly.
- We investigate several truncations k_{max} in Eqn. (4) and take many terms, $k_{max} \sim 25$, in Eqn. (5).
- Here or earlier (for the following bullets)? Better to motivate the Magnus in the introduction or easier to explain given mathematical detail?
- There are significant advantages in the Magnus implementation.
- In the typical approach, the numerical error associated with solving the flow equation affects the accuracy of the observables for the evolved operator.
- Therefore, one must use a high-order ODE solver in integrating the flow equation (2).
- In the Magnus implementation, unitarity is guaranteed by the form of U(s); in fact, one could solve Eqn. (4) with a simple first-order Euler step-method keeping the same observables while decoupling the operator as desired.

- This offers a decent computational speed-up by avoiding a high-order solver.
- In this paper, we demonstrate this advantage by applying the Magnus implementation using the first-order Euler step-method.
- The second major advantage involves the evolution of multiple operators.
- In many other situations, one may be interested in evolving several operators at a time.
- In the SRG procedure, we would have another set of coupled equations in Eqn. (2), drastically increasing memory usage.
- Each additional operator increases the set of equations say N equations by another factor of N.
- In the Magnus, one only needs $\Omega(s)$ to consistently evolve several operators.
- We avoid the cost in memory by directly constructing $U(s) = e^{\Omega(s)}$.
- This is especially useful in IMSRG calculations where the model space can be very large.
- In the next section, we discuss results from Magnus-evolved large-cutoff potentials focusing on the flow of the potential, observables, and operator evolution.

B. Results

- Comparison to Wendt problem.
- Implications for IMSRG.
- Use discussion of operator evolution to transition to next section.

IV. EVOLUTION OF OTHER OPERATORS

- SRG operator evolution for different potentials and generators.
- General questions to address: universality for operators, different generators.
- Momentum projection operator.
 - Contours and general behavior: SRG transformation shifts strength of operator to low-momentum.
 - Deuteron momentum distributions. Why does this make sense with the transformed operators?
 - Diagonals and far off-diagonals. Universality.
 - Same questions but with figures of the integrand.

 $^{-\}hat{r}^2$ operator.

V. CONCLUSION

– Summary.		
– Outlook.		

- [1] F. Wegner, Annalen der Physik **506**, 77 (1994).
- [2] P. Reinert, H. Krebs, and E. Epelbaum, Eur. Phys. J. A 54, 86 (2018), arXiv:1711.08821 [nucl-th].
- [3] D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001 (2003), arXiv:nucl-th/0304018 [nucl-th].
- [4] A. Gezerlis, I. Tews, E. Epelbaum, M. Freunek, S. Gandolfi, K. Hebeler, A. Nogga, and A. Schwenk, Phys. Rev. C 90, 054323 (2014), arXiv:1406.0454 [nucl-th].
- [5] B. Dainton, R. J. Furnstahl, and R. J. Perry, Phys. Rev. C 89, 014001 (2014), arXiv:1310.6690 [nucl-th].
- [6] S. Blanes, F. Casas, J. A. Oteo, and J. Ros, Phys. Rep. 470, 151 (2009), arXiv:0810.5488 [math-ph].
- [7] W. Magnus, Commun. Pure Appl. Math. 7, 649 (1954).