BAZI ÖNEMLİ SÜREKLİ DEĞİŞKEN DAĞILIMLARI

Yrd.Doç.Dr. Emre YALAMAÇ

BAZI SÜREKLİ OLASILIK DAĞILIMLARI

- 1. SÜREKLİ DÜZGÜN (UNIFORM) DAĞILIM
- 2. NORMAL DAĞILIM
- 3. BİNOM DAĞILIMINA NORMAL YAKLAŞIM
- 4. POISSON DAĞILIMINA NORMAL YAKLAŞIM
- 5. ÜSTEL DAĞILIM
- 6. GAMMA DAĞILIMI
- 7. WEIBULL DAĞILIMI
- 8. LOGNORMAL DAĞILIMI

SÜREKLİ DÜZGÜN (UNIFORM) DAĞILIM

En basit sürekli dağılım, düzgün kesikli dağılıma benzerlik gösterir.

$$f(x) = 1/(b - a), \qquad a \le x \le b$$

$$\mu = E(X) = \frac{(a+b)}{2}$$
 and $\sigma^2 = V(X) = \frac{(b-a)^2}{12}$

C Yrd.Doç.Dr. Emre YALAMAÇ

Yrd.Doç.Dr. Emre YALAMAÇ

SÜREKLİ DÜZGÜN (UNIFORM) DAĞILIM

X ince bir bakır teldeki miliamper akımı sürekli değişken değerdir ve X değerleri aralığı [0, 20 mA] dir. Ve olasılık yoğunluk fonksiyonu f(x)=0.05, 0 <= x <= 20

Soru: Ölçülen akımın 5 ile 10 miliamper aralığında olma olasılığı nedir?

$$P(a \le X \le b) = \int_{a}^{b} f(x) \, dx$$

$$P(a \le X \le b) = \int_{a}^{b} f(x) \, dx \qquad P(5 < X < 10) = \int_{5}^{10} f(x) \, dx$$

$$= 5(0.05) = 0.25$$

NORMAL DAĞILIM

Normal dağılım tüm olasılık dağılımlarının en çok kullanılanıdır. Dağılımı ilk kez 1733'de De Moivre, sonra 1809'da Gauss tarafından bulundu dolayısıyla ayrıca Gauss dağılımı olarakta adlandırılır.

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}} \qquad -\infty < x < \infty$$

C Yrd.Doç.Dr. Emre YALAMAÇ

Yrd.Doç.Dr. Emre YALAMAÇ

NORMAL DAĞILIM

Örnek A: bir teldeki akım akışı normal dağılım göstermektedir ve ortalama 10 miliamper ve 4 miliamper² varyansa sahiptir. Yapılan bir ölçümün 13 mA üzerinde olma olasılığı nedir?

$$X > 13$$

 $\mu = 10$
 $\sigma^2 = 4$
 $P(\mu - \sigma < X < \mu + \sigma) = 0.6827$
 $P(\mu - 2\sigma < X < \mu + 2\sigma) = 0.9545$
 $P(\mu - 3\sigma < X < \mu + 3\sigma) = 0.9973$

STANDART NORMAL DAĞILIM

Normal rasgele değişken aşağıdaki değerler ile ifade ediliyorsa buna standart normal rasgele değişken denir ve Z ile ifade edilir.

$$\mu = 0$$
 and $\sigma^2 = 1$

Bir standart normal rasgele değişkenin kümülatif dağılım fonksiyonu aşağıdaki şekilde ifade edilir:

$$\Phi(z) = P(Z \le z)$$

$$Z = \frac{X - \mu}{\sigma} \qquad E(Z) = 0 \qquad V(Z) = 1$$

Yrd.Doç.Dr. Emre Y	Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
Tra.Doç.Dr. Ellire 17	0.0	0.500000	0.503989	0.507978	0.511967	0.515953	0.519939	0.532922	0.527903	0.531881	0.535856
$\int_{-\infty}^{z} 1 = -\frac{1}{2}n^{2}$	0.1	0.539828	0.543795	0.547758	0.551717	0.555760	0.559618	0.563559	0.567495	0.571424	0.575345
$\Phi(z) = P(Z \le z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2} du$	0.2	0.579260	0.583166	0.587064	0.590954	0.594835	0.598706	0.602568	0.606420	0.610261	0.614092
	0.3	0.617911	0.621719	0.625516	0.629300	0.633072	0.636831	0.640576	0.644309	0.648027	0.651732
Φ (2)	0.4	0.655422	0.659097	0.662757	0.666402	0.670031	0.673645	0.677242	0.680822	0.684386	0.687933
	0.5	0.691462	0.694974	0.698468	0.701944	0.705401	0.708840	0.712260	0.715661	0.719043	0.722405
	0.6	0.725747	0.729069	0.732371	0.735653	0.738914	0.742154	0.745373	0.748571	0.751748	0.754903
0 2	0.7	0.758036	0.761148	0.764238	0.767305	0.770350	0.773373	0.776373	0.779350	0.782305	0.785236
DAĞLIM	0.8	0.788145	0.791030	0.793892	0.796731	0.799546	0.802338	0.805106	0.807850	0.810570	0.813267
₹	0.9	0.815940	0.818589	0.821214	0.823815	0.826391	0.828944	0.831472	0.833977	0.836457	0.838913
	1.0	0.841345	0.843752	0.846136	0.848495	0.850830	0.853141	0.855428	0.857690	0.859929	0.862143
20	1.1	0.864334	0.866500	0.868643	0.870762	0.872857	0.874928	0.876976	0.878999	0.881000	0.882977
7	1.2	0.884930	0.886860	0.888767	0.890651	0.892512	0.894350	0.896165	0.897958	0.899727	0.901475
S)	1.3	0.903199	0.904902	0.906582	0.908241	0.909877	0.911492	0.913085	0.914657	0.916207	0.917736
7	1.4	0.919243	0.920730	0.922196	0.923641	0.925066	0.926471	0.927855	0.929219	0.930563	0.931888
#	1.5	0.933193	0.934478	0.935744	0.936992	0.938220	0.939429	0.940620	0.941792	0.942947	0.944083
4	1.6	0.945201	0.946301	0.947384	0.948449	0.949497	0.950529	0.951543	0.952540	0.953521	0.954486
₹	1.7	0.955435	0.956367	0.957284	0.958185	0.959071	0.959941	0.960796	0.961636	0.962462	0.963273
<u>~</u>	1.8	0.964070	0.964852	0.965621	0.966375	0.967116	0.967843	0.968557	0.969258	0.969946	0.970621
Q	1.9	0.971283	0.971933	0.972571	0.973197	0.973810	0.974412	0.975002	0.975581	0.976148	0.976705
<u> </u>	2.0	0.977250	0.977784	0.978308	0.978822	0.979325	0.979818	0.980301	0.980774	0.981237	0.981691
TANDART NI APPENDIX	2.1	0.982136	0.982571	0.982997	0.983414	0.983823	0.984222	0.984614	0.984997	0.985371	0.985738
<i>Q Q</i>	2.2	0.986097	0.986447	0.986791	0.987126	0.987455	0.987776	0.988089	0.988396	0.988696	0.988989
4 5	2.3	0.989276	0.989556	0.989830	0.990097	0.990358	0.990613	0.990863	0.991106	0.991344	0.991576
$S = \mathcal{U}$	2.4	0.991802	0.992024	0.992240	0.992451	0.992656	0.992857	0.993053	0.993244	0.993431	0.993613
\$ L	2.5	0.993790	0.993963	0.994132	0.994297	0.994457	0.994614	0.994766	0.994915	0.995060	0.995201
4 7	2.6	0.995339	0.995473	0.995604	0.995731	0.995855	0.995975	0.996093	0.996207	0.996319	0.996427
\mathcal{K}	2.7	0.996533	0.996636	0.996736	0.996833	0.996928	0.997020	0.997110	0.997197	0.997282	0.997365
\sim	2.8	0.997445	0.997523	0.997599	0.997673	0.997744	0.997814	0.997882	0.997948	0.998012	0.998074
.4	2.9	0.998134	0.998193	0.998250	0.998305	0.998359	0.998411	0.998462	0.998511	0.998559	0.998605
	3.0	0.998650	0.998694	0.998736	0.998777	0.998817	0.998856	0.998893	0.998930	0.998965	0.998999
-	3.1	0.999032	0.999065	0.999096	0.999126	0.999155	0.999184	0.999211	0.999238	0.999264	0.999289
3	3.2	0.999313	0.999336	0.999359	0.999381	0.999402	0.999423	0.999443	0.999462	0.999481	0.999499
8	3.3	0.999517	0.999533	0.999550	0.999566	0.999581	0.999596	0.999610	0.999624	0.999638	0.999650
	3.4	0.999663	0.999675	0.999687	0.999698	0.999709	0.999720	0.999730	0.999740	0.999749	0.999758
KÜNÜLATIF STANDART NORMAL D. APPENDIX	3.5	0.999767	0.999776	0.999784	0.999792	0.999800	0.999807	0.999815	0.999821	0.999828	0.999835
.2	3.6	0.999841	0.999847	0.999853	0.999858	0.999864	0.999869	0.999874	0.999879	0.999883	0.999888
*	3.7	0.999892	0.999896	0.999900	0.999904	0.999908	0.999912	0.999915	0.999918	0.999922	0.999925
	3.8	0.999928	0.999931	0.999933	0.999936	0.999938	0.999941	0.999943	0.999946	0.999948	0.999950
	3.9	0.999952	0.999954	0.999956	0.999958	0.999959	0.999961	0.999963	0.999964	0.999966	0.999967

STANDART NORMAL DAĞILIM

 $\ddot{\text{Ornek}}: P(Z \leq z)$

$$P(Z \le 1.5) \quad P(Z \le 1.53)$$

(1)
$$P(Z > 1.26)$$

(3)
$$P(Z > -1.37)$$

(2)
$$P(Z < -0.86)$$

(4)
$$P(-1.25 < Z < 0.37)$$

STANDART NORMAL DAĞILIM

Örnek A: bir teldeki akım akışı normal dağılım göstermektedir ve ortalama 10 miliamper ve 4 miliamper² varyansa sahiptir. Yapılan bir ölçümün 13 mA üzerinde olma olasılığı nedir?

$$X > 13$$
 $Z = (X - 10)/2$ $Z > 1.5$

$$P(X > 13) = P(Z > 1.5) = 1 - P(Z \le 1.5)$$

= 1 - 0.93319 = 0.06681

Yrd.Doç.Dr. Emre YALAMAÇ

STANDART NORMAL DAĞILIM

Bir olasılığı hesaplamak için standardizasyon

$$P(X \le x) = P\left(\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\right) = P(Z \le z)$$

Örnek A

$$P(X > 13) = P\left(\frac{(X - 10)}{2} > \frac{(13 - 10)}{2}\right) = P(Z > 1.5)$$

$$= P(Z > 1.5) = 0.06681$$

STANDART NORMAL DAĞILIM

Örnek AB: bir teldeki akım akışı normal dağılım göstermektedir ve ortalama 10 miliamper ve 4 miliamper² varyansa sahiptir.

a)Yapılan bir ölçümün 9 ile 11 miliamper arasında olma olasılığı nedir? b)Bir ölçümün sonucunun %98 olasılık sınırını altında olduğunu belirleyen akım değer nedir?

Yrd.Doç.Dr. Emre YALAMAÇ

Cevap:

$$P(9 < X < 11) = P((9 - 10)/2 < (X - 10)/2 < (11 - 10)/2)$$

$$= P(-0.5 < Z < 0.5) = P(Z < 0.5) - P(Z < -0.5)$$

$$= 0.69146 - 0.30854 = 0.38292$$

$$P(X < x) = 0.98$$
 $P(Z < z) = 0.98$
 $(x - 10)/2 = 2.05$ $P(Z < 2.05) = 0.97982$
 $P(X < x) = P((X - 10)/2 < (x - 10)/2)$
 $= P(Z < (x - 10)/2)$
 $= 0.98$

$$x = 2(2.05) + 10 = 14.1$$
 miliamper

ELAL BAYAR WNIMERSITES

STANDART NORMAL DAĞILIM

Örnek: Bir hard disk okuyucusunun şaft çapı normal dağılım ile 0,2508 inç ortalama değere ve 0,0005 standart sapmaya sahiptir. Şarft üreticisi tarafından tanımlanan şartnamede şaft çap ölçüleri 0,2500±0,0015 inç olarak tanımlanmaktadır.

a)Buna göre üretilen şaftların ne kadarı şartnameyi sağlar?

b)Üretimin ortalaması hedef değeri bulursa şartname ne kadar oranda sağlanır?

SANAR UNITED STORY

Yrd.Doç.Dr. Emre YALAMAÇ

STANDART NORMAL DAĞILIM

Örnek : Bir hard disk okuyucusunun şaft çapı normal dağılım ile 0,2508 inç ortalama değere ve 0,0005 standart sapmaya sahiptir. Şarft üreticisi tarafından tanımlanan şartnamede şaft çap ölçüleri 0,2500±0,0015 inç olarak tanımlanmaktadır.

a)Buna göre üretilen şaftların ne kadarı şartnameyi sağlar?

b) Üretimin ortalaması hedef değeri bulursa şartname ne kadar oranda sağlanır?

Cevap:

$$P(0.2485 < X < 0.2515) = P\left(\frac{0.2485 - 0.2508}{0.0005} < Z < \frac{0.2515 - 0.2508}{0.0005}\right)$$

$$= P(-4.6 < Z < 1.4) = P(Z < 1.4) - P(Z < -4.6)$$

$$= 0.91924 - 0.0000 = 0.91924$$

$$P(0.2485 < X < 0.2515) = P\left(\frac{0.2485 - 0.2500}{0.0005} < Z < \frac{0.2515 - 0.2500}{0.0005}\right)$$

$$= P(-3 < Z < 3)$$

$$= P(Z < 3) - P(Z < -3)$$

$$= 0.99865 - 0.00135$$

$$= 0.9973$$

BİNOM DAĞILIMINA NORMAL YAKLAŞIM

Yüksek sayıda deneme içeren binom olasılıklarının dağılımında normal dağılım kullanılabilinir.

Yandaki şekilde herbir sütun altında kalan alan x değeri için binom olasılığıdır. Sütunların alanları, nornal yoğunluk fonksiyonu altında kalan alana yaklaştırılabilinir.

Örneğin P(3<=X<=7) olasılığı normal eğri de 2,5 ile 7,5 arasındaki alana yaklaştırılır. Buna süreklilik düzeltmesi denir.

$$Z = \frac{X - np}{\sqrt{np(1 - p)}}$$

$$np > 5 \quad \text{and} \quad n(1 - p) > 5$$

$$np > 5$$
 and $n(1 - p) > 5$

Yrd.Doç.Dr. Emre YALAMAÇ

BİNOM DAĞILIMINA NORMAL YAKLAŞIM

ÖRNEK SORU:

Örnek olarak alınan suda organik kirlilik olma olasılığı %10'dur. 50 adet alınan örnekte iki veya daha az örneğin kirlilik içerme olasılığı kaçtır?

Cevap:

$$P(X \le 2) = {50 \choose 0} 0.9^{50} + {50 \choose 1} 0.1(0.9^{49}) + {50 \choose 2} 0.1^2(0.9^{48}) = 0.112$$

BİNOM DAĞILIMINA NORMAL YAKLAŞIM

$$P(X \le 2) = P\left(\frac{X-5}{2.12} < \frac{2-5}{2.12}\right) = P(Z < -1.42) = 0.08$$

Her nekadar n=50 test az sayıda deneme olasada binom dağılımına normal yaklaşım tutarlıdır.

BİNOM DAĞILIMINA NORMAL YAKLAŞIM

ÖRNEK SORU:

Örnek olarak alınan suda organik kirlilik olma olasılığı %10'dur. 10 adet alınan örnekte birinin, beşinin ve dokuzunun kirlilik içerme olasılığı kaçtır?

np ya da n(1-p) küçükse binom dağılımı biraz çarpıktır ve bu da simetrik normal dağılımla iyi bir yaklaşım olmaz. Fakat bir düzeltme faktöriyle daha çok yaklaşım yapılabilinir.

Hipergeometrik Dağılım

$$\frac{n}{N} < 0.1$$

Binom Dağılım

C Yrd.Doç.Dr. Emre YALAMAÇ

Yrd.Doc.Dr. Emre YALAMAÇ

POISSON DAĞILIMINA NORMAL YAKLAŞIM

$$f(x) = \frac{e^{-\lambda} \lambda^x}{x!} \quad x = 0, 1, 2, \dots$$
 Poisson dağılımı

$$E(X) = \lambda$$
 and $V(X) = \lambda$ $Z = \frac{X - \lambda}{\sqrt{\lambda}}$ Standart normal rasgele değişken

ÖRNEK SORU: Bir metre kare asfalt yüzeyinde asbest tane miktarı ortalama 1000 adet ile poisson dağılımı gösterir. Bir metre kare asfalt incelendiğinde 950 ve aşağısında asbest tanesi bulma olasılığı nedir?

$$P(X \leq 950) = \sum_{x=0}^{950} \frac{e^{-1000} \frac{x}{1000}}{x!} \qquad \text{Hesaplama oldukça zor olduğu için Poisson dağılımı aşağıdaki şekilde normal yaklaşım yapılır.}$$

$$P(X \le x) = P\left(Z \le \frac{950 - 1000}{\sqrt{1000}}\right) = P(Z \le -1.58) = 0.057$$

ÜSTEL DAĞILIM

Rasgele değişken N, x milimetre telde geçen akım sayısını gösterir.

Eyer λ her milimetrede gecen ortalama akım sayısı ise N, $x\lambda$ ortalama ile bir Poisson dağılımına sahiptir.

Tel x'den büyük ise;

$$P(X > x) = P(N = 0) = \frac{e^{-\lambda x}(\lambda x)^0}{0!} = e^{-\lambda x}$$

$$F(x) = P(X \le x) = 1 - e^{-\lambda x}, \quad x \ge 0$$

Kümülatif dağılım fonksiyonu F(x) tarafından differensiyali alınırsa olasılık yoğunluk fonksiyonu x,

$$f(x) = \lambda e^{-\lambda x}, \quad x \ge 0$$

X dağılımının derivasyonu sadece tel içindeki akımın bir poisson işlemi izlediği varsayımına bağlıdır.

C Yrd.Doç.Dr. Emre YALAMAÇ

Yrd.Doç.Dr. Emre YALAMAÇ

ÜSTEL DAĞILIM

Bilgisayar ağ sistemine kullanıcı girişleri Poisson işlemiyle modellenebilinir ve saatte 25 giriş ortalamasıdır. 6 dakika içinde hiç giriş olmama olasılığı nedir?

X : ilk giriş yapılana kadar geçen zaman

X, λ=25 giriş/saat ortalama ile üstel dağılıma sahiptir.

Ve biz x>6 dk olasılığını araştırıyoruz f(x)

$$P(X > 0.1) = \int_{0.1}^{\infty} 25e^{-25x} dx = e^{-25(0.1)} = 0.082$$

GAMMA DAĞILIMI

Bir üstel rasgele değişken bir poisson işlem içinde ilk değer elde edilene kadarki mesafedir. Üstel dağılımın bir genellemesi bir poisson işlem içinde r kadar değer elde edilene kadar ki mesafedir. Rasgele değişken bir poisson işlem içinde r kadar değer oluncaya kadar ki mesafe aralığı gamma dağılımına sahiptir.

Gamma Fonksiyonu

$$\Gamma(r) = \int_{0}^{\infty} x^{r-1} e^{-x} dx, \quad \text{for } r > 0 \quad f(x) = \frac{\lambda^{r} x^{r-1} e^{-\lambda x}}{\Gamma(r)}, \quad \text{for } x > 0$$

 $\mu = E(X) = r/\lambda$ and $\sigma^2 = V(X) = r/\lambda^2$

 $\lambda > 0$ and r > 0

Introduction to the Gamma Function

Pascal Sebah and Xavier Gourdon $numbers. computation. free. fr/Constants/constants. html \\ {\it February 4, 2002}$

Some special values of $\Gamma(x)$

Except for the integer values of x = n for which

$$\Gamma(n) = (n-1)!$$

some non integers values have a closed form. The change of variable $t = u^2$ gives

$$\Gamma(1/2) = \int_0^\infty \frac{e^{-t}}{\sqrt{t}} dt = 2 \int_0^\infty e^{-u^2} du = 2 \frac{\sqrt{\pi}}{2} = \sqrt{\pi}.$$

The functional equation entails for positive integers n

$$\begin{split} &\Gamma\left(n+\frac{1}{2}\right)=\frac{1.3.5...(2n-1)}{2^n}\sqrt{\pi},\\ &\Gamma\left(n+\frac{1}{3}\right)=\frac{1.4.7...(3n-2)}{3^n}\Gamma\left(\frac{1}{3}\right),\\ &\Gamma\left(n+\frac{1}{4}\right)=\frac{1.5.9...(4n-3)}{4^n}\Gamma\left(\frac{1}{4}\right), \end{split}$$

and for negative values

$$\Gamma\left(-n+\frac{1}{2}\right) = \frac{(-1)^n 2^n}{1.3.5...(2n-1)} \sqrt{\pi}.$$

GAMMA DAĞILIMI

Gençip lamı hazırlama saatte 0.0001 adet ortalama hata ile poisson işlemidir.

- X rasgele değişkeni 4 adet hatalı lam hazırlanana kadar geçen zamandır.
- X rasgele değişkeninin 40000 saati aşma olasılığı nedir?

N, 40000 saat içindeki hata sayısı olsun.

- 4 hatanın 40000 saat üzerinde gecen bir zamanda olması için, 40000 saat içinde
- 3 veya daha az hatanın olması gerekir.

$$P(X > 40,000) = P(N \le 3)$$

E(N) = 40,000(0.0001) = 4 failures per 40,000 hours

$$P(X > 40,000) = P(N \le 3) = \sum_{k=0}^{3} \frac{e^{-4}4^k}{k!} = 0.433$$

Yrd.Doç.Dr. Emre YALAMAÇ

WEIBULL DAĞILIMI

Bir çok fiziksel sistemin hataya uğrayana kadar geçen zamanını modellemek için sıkça kullanılan bir dağılım şeklidir. Dağılımdaki parametreler model sistemler için büyük bir esneklik sağlar örneğin: parçalardaki işgöremezlik sayısının zamanla artması (yatak aşınması), zamanla azalması

(bazı yarıiletkenler) ve ya zaman ile sabit kalması(sisteme dış bir şokun sonucu işgöremezlik).

X rasgele değişkeni,olasılık yoğunluk fonksiyonu ile

$$f(x) = \frac{\beta}{\delta} \left(\frac{x}{\delta}\right)^{\beta - 1} \exp\left[-\left(\frac{x}{\delta}\right)^{\beta}\right], \quad \text{for } x > 0$$

Skala parametresi, δ >0 ve şekil parametresi β >0

WEIBULL DAĞILIMI

X rasgele değişkeni Skala parametresi (δ) ve şekil parametresi (β) ile Weibull dağılımına sahipse;

$$\mu = \mathit{E}(x) = \delta\Gamma\left(1 + \frac{1}{\beta}\right) \ \ \text{and} \ \ \sigma^2 = \mathit{V}(x) = \delta^2\Gamma\left(1 + \frac{2}{\beta}\right) - \delta^2\left[\Gamma\left(1 + \frac{1}{\beta}\right)\right]^2$$

ÖRNEK:

Bir mekanik şaftaki bir yatağın İşgöremezlige kadar gecen zaman Weibull rasgele değişken modeli β =1/2 ve δ =5000 saat ile uygun olarak modellenebilmektedir. İşgöremezlik ortalama zamanı nedir?

$$E(X) = 5000\Gamma[1 + (1/0.5)] = 5000\Gamma[3] = 5000 \times 2! = 10,000 \text{ hours}$$

En az 6000 saat sonuna kadar ki olasılığı nedir?

$$P(x > 6000) = 1 - F(6000) = \exp\left[\left(\frac{6000}{5000}\right)^{1/2}\right] = e^{-1.095} = 0.334$$

Sonuç olarak tüm yatak parçalarının sadece %33,4'ü 6000 saat sonuna kada

Yrd.Doç.Dr. Emre YALAMAÇ

LOGNORMAL DAĞILIMI

Bir sistem içindeki değişkenler bazen bir üstsel ilişki takip edeler yani x=exp(w) gibi. Şayet üst W bir rasgele değişken ise, X=exp(W) da bir rasgele değişkendir ve X dağılımı ilgimizdir. Önemli bir durum W normal bir dağılım sergilediğinde X dağılımına lognormal dağılım denir.

İsmini In(X)=W transformasyonundan alır.

X olasılıkları W'ya transformasyonundan elde edilir. X için eklenik dağılım fonksiyonu:

$$F(x) = P[X \le x] = P[\exp(W) \le x] = P[W \le \ln(x)]$$
$$= P\left[Z \le \frac{\ln(x) - \theta}{\omega}\right] = \Phi\left[\frac{\ln(x) - \theta}{\omega}\right]$$

Z standart normal rasgele değişkeni olduğu için olasılık eklenik standart olasılık dağılımı tablosundan bulunur.

LOGNORMAL DAĞILIMI

W, ortalama θ ve varyans ω^2 ile bir normal dağılımlıdır dolayısıyla X=exp(W) aşağıdaki olasılık yoğunluk fonksiyonlu bir lognormal rasgele değişkendir.

$$f(x) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left[-\frac{(\ln x - \theta)^2}{2\omega^2}\right] \qquad 0 < x < \infty$$

X'in ortalama ve varyansı

$$E(X) = e^{\theta + \omega^2/2} \quad \text{and} \quad V(X) = e^{2\theta + \omega^2} (e^{\omega^2} - 1)$$

Yrd.Doç.Dr. Emre YALAMAÇ

LOGNORMAL DAĞILIMI

ÖRNEK:

Yarıiletken bir lazerin ömrü θ=10 saat ve ω=1,5 saat ile lognormal dağılımlıdır. 10000 saat ömrün üzerinde olma olsılığı nedir?

Lazerlerin %99'nun ömür uzunluğu ne kadardır?

$$F(x) = P[X \le x] = P[\exp(W) \le x] = P[W \le \ln(x)]$$

$$P(X > 10,000) = 1 - P[\exp(W) \le 10,000] = 1 - P[W \le \ln(10,000)]$$

$$= \Phi\left(\frac{\ln(10,000) - 10}{1.5}\right) = 1 - \Phi(-0.52) = 1 - 0.30 = 0.70$$

$$P(X > x) = 0.99$$

$$P(X > x) = 0.99$$

$$P(X > x) = P[\exp(W) > x] = P[W > \ln(x)] = 1 - \Phi\left(\frac{\ln(x) - 10}{1.5}\right) = 0.99$$

$$1 - \Phi(z) = 0.99 \qquad z = -2.33$$

$$\frac{\ln(x) - 10}{1.5} = -2.33$$
 and $x = \exp(6.505) = 668.48$ hours

