Computational Semantics

Deep Processing for NLP Ling 571 February 6, 2017

Roadmap

- Motivation: Dialog Systems
- Key challenges
- Meaning representation
 - Representational requirements
 - → First-order logic
 - Syntax & Semantics
 - Representing compositional meaning

Dialogue Systems

User: What do I have on Thursday?

```
Parse:
```

```
    -□ (S
    -□ (Q-WH-Obj
    -□ (Whwd What)
    -□ (Aux do )
    -□ (NP (Pron I))
    -□ (VP/NP (V have)
    -□ (NP/NP *t*)
    -□ (PP (Prep on)
    -□ (NP (N Thursday))))))
```

Dialogue Systems

- Parser:
 - → Yes, it's grammatical!
 - Here's the structure!
- System: Great, but what am I supposed to DO?!

Need to associate meaning with structure

Dialogue Systems

```
    ── (Q-WH-Obj Action: check; cal: USER; Date:Thursday
    ── (Whwd What)
    ── (Aux do )
    ── (NP (Pron I)) Cal: USER
    ── (VP/NP (V have)
    ── (NP/NP *t*)
    ── (PP (Prep on)
    ── (NP (N Thursday)))))) Date: Thursday
```

Natural Language

Syntax: Determine the structure of natural language input

Semantics: Determine the meaning of natural language input

Tasks for Semantics

- Semantic interpretation required for many tasks
 - Answering questions
 - → Following instructions in a software manual
 - → Following a recipe
- Requires more than phonology, morphology, syntax
- Must link linguistic elements to world knowledge

- Sentences have many entailments, presuppositions
- Instead, the protests turned bloody, as anti-government crowds were confronted by what appeared to be a coordinated group of Mubarak supporters.

- Sentences have many entailments, presuppositions
- Instead, the protests turned bloody, as anti-government crowds were confronted by what appeared to be a coordinated group of Mubarak supporters.
 - → The protests became bloody.

- Sentences have many entailments, presuppositions
- Instead, the protests turned bloody, as anti-government crowds were confronted by what appeared to be a coordinated group of Mubarak supporters.
 - → The protests became bloody.
 - → The protests had been peaceful.

- Sentences have many entailments, presuppositions
- Instead, the protests turned bloody, as anti-government crowds were confronted by what appeared to be a coordinated group of Mubarak supporters.
 - → The protests became bloody.
 - The protests had been peaceful.
 - Crowds oppose the government.

- Sentences have many entailments, presuppositions
- Instead, the protests turned bloody, as anti-government crowds were confronted by what appeared to be a coordinated group of Mubarak supporters.
 - → The protests became bloody.
 - The protests had been peaceful.
 - Crowds oppose the government.
 - Some support Mubarak.

- Sentences have many entailments, presuppositions
- Instead, the protests turned bloody, as anti-government crowds were confronted by what appeared to be a coordinated group of Mubarak supporters.
 - → The protests became bloody.
 - The protests had been peaceful.
 - Crowds oppose the government.
 - Some support Mubarak.
 - There was a confrontation between two groups.
 - Anti-government crowds are not Mubarak supporters.
 - Etc...

- Semantic representation:
 - → What is the appropriate formal language to express propositions in linguistic input?

- Semantic representation:
 - → What is the appropriate formal language to express propositions in linguistic input?
 - → E.g. predicate calculus
 - $\exists x (dog(x) \land disappear(x))$

- Semantic representation:
 - → What is the appropriate formal language to express propositions in linguistic input?
 - → E.g. predicate calculus
 - \exists x.(dog(x) \land disappear(x))

Entailment:

→ What are all the valid conclusions that can be drawn from an utterance?

- Semantic representation:
 - → What is the appropriate formal language to express propositions in linguistic input?
 - → E.g. predicate calculus
 - \exists x.(dog(x) \land disappear(x))

Entailment:

- What are all the valid conclusions that can be drawn from an utterance?
 - Lincoln was assassinated' entails

- Semantic representation:
 - → What is the appropriate formal language to express propositions in linguistic input?
 - → E.g. predicate calculus
 - \exists x.(dog(x) \land disappear(x))

Entailment:

- What are all the valid conclusions that can be drawn from an utterance?
 - Lincoln was assassinated entails Lincoln is dead.

- Reference: How do linguistic expressions link to objects/concepts in the real world?
 - → 'the dog' , 'the evening star', 'the Superbowl'

- Reference: How do linguistic expressions link to objects/concepts in the real world?
 - → 'the dog' , 'the evening star', 'the Superbowl'
- Compositionality: How can we derive the meaning of a unit from its parts?
 - How do syntactic structure and semantic composition relate?
 - 'rubber duck' vs 'rubber chicken'

- Reference: How do linguistic expressions link to objects/concepts in the real world?
 - → 'the dog' , 'the evening star', 'the Superbowl'
- Compositionality: How can we derive the meaning of a unit from its parts?
 - How do syntactic structure and semantic composition relate?
 - 'rubber duck' vs 'rubber chicken'
 - 'kick the bucket'

Tasks in Computational Semantics

- Computational semantics aims to extract, interpret, and reason about the meaning of NL utterances, and includes:
 - → Defining a meaning representation

Tasks in Computational Semantics

- Computational semantics aims to extract, interpret, and reason about the meaning of NL utterances, and includes:
 - → Defining a meaning representation
 - Developing techniques for semantic analysis, to convert NL strings to meaning representations

Tasks in Computational Semantics

- Computational semantics aims to extract, interpret, and reason about the meaning of NL utterances, and includes:
 - → Defining a meaning representation
 - Developing techniques for semantic analysis, to convert NL strings to meaning representations
 - Developing methods for reasoning about these representations and performing inference from them

NLP Semantics Tasks

- Tasks:
 - → Semantic similarity: words, texts
 - → Semantic role labeling
 - → Semantic analysis
 - → "Semantic parsing"
 - Recognizing textual entailment
 - Sentiment Analysis

Requires:

Requires:

→ Knowledge of language: words, syntax, relationships
b/t structure and meaning, composition procedures

→ Requires:

- → Knowledge of language: words, syntax, relationships
 b/t structure and meaning, composition procedures
- ── Knowledge of the world: what are the objects that we refer to, how do they relate, what are their properties?

Requires:

- → Knowledge of language: words, syntax, relationships
 b/t structure and meaning, composition procedures
- ── Knowledge of the world: what are the objects that we refer to, how do they relate, what are their properties?
- → Reasoning: Given a representation and a world, what new conclusions bits of meaning can we infer?

Requires:

- Knowledge of language: words, syntax, relationships b/t structure and meaning, composition procedures
- Knowledge of the world: what are the objects that we refer to, how do they relate, what are their properties?
- Reasoning: Given a representation and a world, what new conclusions – bits of meaning – can we infer?

Effectively AI-complete

Need representation, reasoning, world model, etc

Representing Meaning

- All consist of structures from set of symbols
 - Representational vocabulary

- All consist of structures from set of symbols
 - Representational vocabulary
- Symbol structures correspond to:
 - Objects
 - Properties of objects
 - Relations among objects

- All consist of structures from set of symbols
 - Representational vocabulary
- Symbol structures correspond to:
 - Objects
 - Properties of objects
 - Relations among objects
- Can be viewed as:

- All consist of structures from set of symbols
 - Representational vocabulary
- Symbol structures correspond to:
 - Objects
 - Properties of objects
 - Relations among objects
- Can be viewed as:
 - Representation of meaning of linguistic input

- All consist of structures from set of symbols
 - → Representational vocabulary
- Symbol structures correspond to:
 - Objects
 - → Properties of objects
 - → Relations among objects
- Can be viewed as:
 - Representation of meaning of linguistic input
 - Representation of state of world
- Here we focus on literal meaning

- Verifiability
- Unambiguous representations
- Canonical Form
- Inference and Variables
- Expressiveness

- Verifiability
 - Can compare representation of sentence to KB model
- Unambiguous representations
- Canonical Form
- Inference and Variables
- Expressiveness

- Verifiability
 - Can compare representation of sentence to KB model
- Unambiguous representations
 - Semantic representation itself is unambiguous
- Canonical Form
- Inference and Variables
- Expressiveness

- Verifiability
 - → Can compare representation of sentence to KB model
- Unambiguous representations
 - Semantic representation itself is unambiguous
- Canonical Form
 - → Alternate expressions of same meaning map to same rep
- Inference and Variables
- Expressiveness

- Verifiability
 - ── Can compare representation of sentence to KB model
- Unambiguous representations
 - Semantic representation itself is unambiguous
- Canonical Form
 - → Alternate expressions of same meaning map to same rep
- Inference and Variables
 - Way to draw valid conclusions from semantics and KB
- Expressiveness

- Verifiability
 - Can compare representation of sentence to KB model
- Unambiguous representations
 - → Semantic representation itself is unambiguous
- Canonical Form
 - → Alternate expressions of same meaning map to same rep
- Inference and Variables
 - ── Way to draw valid conclusions from semantics and KB
- Expressiveness
 - Represent any natural language utterance

Meaning Structure of Language

- Human languages
 - → Display basic predicate-argument structure
 - Employ variables
 - Employ quantifiers
 - Exhibit a (partially) compositional semantics

- Represent concepts and relationships
- Words behave like predicates:

- Represent concepts and relationships
- Words behave like predicates:
 - → Verbs, Adj, Adv:
 - Book(John, United); Non-stop(Flight)
- Some words behave like arguments:

- Represent concepts and relationships
- Words behave like predicates:
 - → Verbs, Adj, Adv:
 - Book(John, United); Non-stop(Flight)
- Some words behave like arguments:
 - → Nouns: Book(John, United); Non-stop(Flight)

- Represent concepts and relationships
- Words behave like predicates:
 - → Verbs, Adj, Adv:
 - Book(John, United); Non-stop(Flight)
- Some words behave like arguments:
 - → Nouns: Book(John, United); Non-stop(Flight)
- Subcategorization frames indicate:
 - Number, Syntactic category, order of args

- Meaning representation:
 - Provides sound computational basis for verifiability, inference, expressiveness
- Supports determination of propositional truth
- Supports compositionality of meaning
- Supports inference
- Supports generalization through variables

- → FOL terms:
 - Constants: specific objects in world;
 - \dashv A, B, John
 - Refer to exactly one object; objects referred to by many

- → FOL terms:
 - → Constants: specific objects in world;
 - A, B, John
 - Refer to exactly one object; objects referred to by many
 - → Functions: concepts refer to objects, e.g. SFO's loc
 - ── LocationOf(SFO)
 - Refer to objects, avoid using constants

FOL terms:

- Constants: specific objects in world;
 - A, B, John
 - Refer to exactly one object; objects referred to by many
- Functions: concepts refer to objects, e.g. SFO's loc
 - ── LocationOf(SFO)
 - Refer to objects, avoid using constants

Variables:

— x, e

FOL Representation

Predicates:

- Relations among objects
 - ─ United serves Chicago. → →
 - → Serves(United, Chicago)
 - ─ United is an airline. → →
 - Airline(United)

FOL Representation

Predicates:

- Relations among objects
 - ─ United serves Chicago. → →
 - → Serves(United, Chicago)
 - United is an airline. → →
 - Airline(United)

Logical connectives:

- Allow compositionality of meaning
 - Maharani serves vegetarian food and is cheap.

FOL Representation

Predicates:

- Relations among objects
 - ─ United serves Chicago. → →
 - → Serves(United, Chicago)
 - United is an airline. → →
 - Airline(United)

Logical connectives:

- Allow compositionality of meaning
 - Frontier serves Seattle and is cheap.
 - → Serves(Frontier, Seattle) / Cheap(Frontier)

Variables refer to:

- Variables refer to:
 - Anonymous objects

- Variables refer to:
 - Anonymous objects
 - → All objects in some collection
- Quantifiers:

- Variables refer to:
 - Anonymous objects
 - → All objects in some collection
- Quantifiers:
 - → ¬: existential quantifier: "there exists"
 - ── Indefinite NP, one such object for truth
 - A non-stop flight that serves Pittsburgh

 $\exists xFlight(x) \land Serves(x, Pittsburgh) \land Non-stop(x)$

- Variables refer to:
 - Anonymous objects
 - → All objects in some collection
- Quantifiers:
 - ∃: existential quantifier: "there exists"
 - Indefinite NP, one such object for truth
 - $\exists xFlight(x) \land Serves(x, Pittsburgh) \land Non-stop(x)$
 - → : universal quantifier: "for all"
 - All flights include beverages.

 $\forall xFlight(x) \Rightarrow Includes(x,beverages)$

FOL Syntax Summary

```
Fornzula ---- AtomicFornu!a
                       Formula Connective Formula
                       Quantifier Variable . . . Forrnula
                       -. For.nula
                        (Formula)
AtonzicForrnula ----+ Predicate(Terrn ...)
            Ternz ----+ Function(Ter, n ...)
                       C'onstant
                       Variable
    Connective ---+ I\ | \ \ | \ | ==>
      Quantifier ---+ \setminus I \mid 3
       onstant ---- A | VegetarianFood | lvlaharani · · ·
        Vririable \longrightarrow x \mid y \mid \cdots
      Predicate ---- 5erves | Near | ...
       Function ---- LocationOJ | c-uisine( Jj |
```

Compositionality

- Compositionality: The meaning of a complex expression is a function of the meaning of its parts and the rules for their combination.
 - Formal languages are compositional.
 - → Natural language meaning is largely, though not fully, compositional, but much more complex.
 - How can we derive things like loves(John, Mary) from John, loves(x,y), and Mary?

Lambda Expressions

- \dashv Lambda (λ) notation: (Church, 1940)
 - → Just like lambda in Python, Scheme, etc.
 - Allows abstraction over FOL formulas
 - Supports compositionality

Lambda Expressions

- \dashv Lambda (λ) notation: (Church, 1940)
 - → Just like lambda in Python, Scheme, etc.
 - Allows abstraction over FOL formulas
 - Supports compositionality
 - \dashv Form: λ + variable + FOL expression
 - \dashv E.g. λ x.P(x) "Function taking x to P(x)"

Lambda Expressions

- \dashv Lambda (λ) notation: (Church, 1940)
 - → Just like lambda in Python, Scheme, etc.
 - Allows abstraction over FOL formulas
 - Supports compositionality
 - \neg Form: λ + variable + FOL expression
 - \dashv E.g. λ x.P(x) "Function taking x to P(x)"

 $\dashv \lambda x.P(x) (A) \rightarrow P(A)$

λ-Reduction

- \dashv λ -reduction: Apply λ -expression to logical term
 - → Binds formal parameter to term

 $\lambda x.P(x)$

λ-Reduction

- \dashv λ -reduction: Apply λ -expression to logical term
 - → Binds formal parameter to term

$$\lambda x.P(x)$$

$$\lambda x.P(x)(A)$$

λ-Reduction

- \dashv λ -reduction: Apply λ -expression to logical term
 - → Binds formal parameter to term

$$\lambda x.P(x)$$
 $\lambda x.P(x)(A)$
 $P(A)$

Equivalent to function application

Lambda expression as body of another

 $\lambda x.\lambda y.Near(x, y)$

Lambda expression as body of another

 $\lambda x.\lambda y.Near(x, y)$

 $\lambda x.\lambda y.Near(x, y)(Midway)$

Lambda expression as body of another

 $\lambda x.\lambda y.Near(x, y)$

 $\lambda x.\lambda y.Near(x, y)(Midway)$

 $\lambda y.Near(Midway, y)$

Lambda expression as body of another

 $\lambda x.\lambda y.Near(x, y)$

 $\lambda x.\lambda y.Near(x, y)(Midway)$

 $\lambda y.Near(Midway, y)$

 $\lambda y.Near(Midway, y)(Chicago)$

Lambda expression as body of another

 $\lambda x.\lambda y.Near(x,y)$

 $\lambda x.\lambda y.Near(x, y)(Midway)$

 $\lambda y.Near(Midway, y)$

 $\lambda y.Near(Midway, y)(Chicago)$

Near(Midway, Chicago)

Lambda Expressions

- Currying;
 - Converting multi-argument predicates to sequence of single argument predicates
 - ─ Why?

Lambda Expressions

- Currying;
 - Converting multi-argument predicates to sequence of single argument predicates
 - ─ Why?
 - Incrementally accumulates multiple arguments spread over different parts of parsetree

Semantics of Meaning Rep.

- Model-theoretic approach:
 - → FOL terms (objects): denote elements in a domain
 - Atomic formulas are:
 - → If properties, sets of domain elements
 - → If relations, sets of tuples of elements

Formulas based on logical operators:

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$
False	False	True	False	False	True
False	True	True	False	True	True
True	False	False	False	True	False
True	True	False	True	True	True

Compositionality provided by lambda expressions

Inference

- Standard AI-type logical inference procedures
 - Modus Ponens
 - Forward-chaining, Backward Chaining
 - Abduction
 - Resolution
 - → Etc,...
- We'll assume we have a prover

Representing Events

- Initially, single predicate with some arguments
 - → Serves(United, Houston)
 - → Assume # ags = # elements in subcategorization frame

Representing Events

- Initially, single predicate with some arguments
 - → Serves(United, Houston)
 - → Assume # ags = # elements in subcategorization frame

Example:

- → The flight arrived.
- → The flight arrived in Seattle
- → The flight arrived in Seattle on Saturday.
- → The flight arrived on Saturday.
- → The flight arrived in Seattle from SFO.
- The flight arrived in Seattle from SFO on Saturday.

Events

• Issues?

Events

- Issues?
 - → Arity how can we deal with different #s of arguments?

- Neo-Davidsonian representation:
 - Distill event to single argument for event itself
 - Everything else is additional predication

 $\exists eArriving(e) \land Arrived(e, Flight) \land Location(e, SEA) \land ArrivalDay(e, Saturday)$

- Neo-Davidsonian representation:
 - Distill event to single argument for event itself
 - Everything else is additional predication

 $\exists eArriving(e) \land Arrived(e, Flight) \land Location(e, SEA) \land ArrivalDay(e, Saturday)$

- → No fixed argument structure
 - Dynamically add predicates as necessary

- Neo-Davidsonian representation:
 - Distill event to single argument for event itself
 - Everything else is additional predication

 $\exists eArriving(e) \land Arrived(e, Flight) \land Location(e, SEA) \land ArrivalDay(e, Saturday)$

- → No fixed argument structure
 - Dynamically add predicates as necessary
- No extra roles

- Neo-Davidsonian representation:
 - Distill event to single argument for event itself
 - Everything else is additional predication

 $\exists eArriving(e) \land Arrived(e, Flight) \land Location(e, SEA) \land ArrivalDay(e, Saturday)$

- → No fixed argument structure
 - Dynamically add predicates as necessary
- No extra roles
- Logical connections can be derived

Meaning Representation for Computational Semantics

- Requirements:
 - Verifiability, Unambiguous representation, Canonical Form, Inference, Variables, Expressiveness
- Solution:
 - → First-Order Logic
 - Structure
 - Semantics
 - Event Representation
- Next: Semantic Analysis
 - Deriving a meaning representation for an input

Summary

- First-order logic can be used as a meaning representation language for natural language
- Principle of compositionality: the meaning of a complex expression is a function of the meaning of its parts
- \neg λ -expressions can be used to compute meaning representations from syntactic trees based on the principle of compositionality
- In the next section, we will look at a syntax-driven approach to semantic analysis in more detail