

NDT452AP

P-Channel Enhancement Mode Field Effect Transistor

General Description

Power SOT P-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance and provide superior switching performance. These devices are particularly suited for low voltage applications such as notebook computer power management and DC motor control.

Features

- High density cell design for extremely low R_{DS(ON)}.

12

 High power and current handling capability in a widely used surface mount package.

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		NDT452AP	Units
V _{DSS}	Drain-Source Voltage		-30	V
V_{GSS}	Gate-Source Voltage		±20	V
I _D	Drain Current - Continuous	(Note 1a)	-5	А
	- Pulsed		- 15	
P_{D}	Maximum Power Dissipation	(Note 1a)	3	W
		(Note 1b)	1.3	
		(Note 1c)	1.1	
T_J, T_{STG}	Operating and Storage Temperature Range		-65 to 150	°C
THERMA	L CHARACTERISTICS			
R _{ÐJA}	Thermal Resistance, Junction-to-Ambi	ent (Note 1a)	42	°C/W
ω^				

(Note 1)

Thermal Resistance, Junction-to-Case

°C/W

^{*} Order option J23Z for cropped center drain lead.

Symbol	Parameter	Conditions		Min	Тур	Max	Units
OFF CHA	RACTERISTICS	<u> </u>					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = -250 \mu\text{A}$		-30			V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -24 \text{ V}, V_{GS} = 0 \text{ V}$				-1	μA
			T _J = 55°C			-10	μΑ
GSSF	Gate - Body Leakage, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$				100	nA
I _{GSSR}	Gate - Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$				-100	nA
ON CHAR	ACTERISTICS (Note 2)						
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu\text{A}$		-1	-1.6	-2.8	V
			T _J = 125°C	-0.7	-1.2	-2.2	
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = -10 \text{ V}, I_{D} = -5.0 \text{ A}$			0.052	0.065	Ω
			T _J = 125°C		0.075	0.13	
		$V_{GS} = -4.5 \text{ V}, I_{D} = -4.3 \text{ A}$			0.085	0.1	
I _{D(on)}	On-State Drain Current	$V_{GS} = -10 \text{ V}, V_{DS} = -5 \text{ V}$		-15			Α
		$V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$		-5			
g _{FS}	Forward Transconductance	$V_{DS} = -10 \text{ V}, I_{D} = -5.0 \text{ A}$			7		S
DYNAMIC	CHARACTERISTICS						
C _{iss}	Input Capacitance	$V_{DS} = -15 \text{ V}, \ V_{GS} = 0 \text{ V},$			690		pF
C _{oss}	Output Capacitance	f = 1.0 MHz			430		pF
C _{rss}	Reverse Transfer Capacitance				160		pF
SWITCHIN	IG CHARACTERISTICS (Note 2)						
t _{D(on)}	Turn - On Delay Time	$V_{DD} = -10 \text{ V}, I_{D} = -1 \text{ A},$			9	20	ns
ţ,	Turn - On Rise Time	V_{GEN} = -10 V, R_{GEN} = 6 Ω			20	30	ns
$\mathbf{t}_{D(off)}$	Turn - Off Delay Time				40	50	ns
t,	Turn - Off Fall Time				19	40	ns
Q_g	Total Gate Charge	$V_{DS} = -10 \text{ V},$			22	30	nC
Q_{gs}	Gate-Source Charge	$I_{\rm D} = -5.0 \text{A}, \text{V}_{\rm GS} = -10 \text{V}$			3.2		nC
Q_{gd}	Gate-Drain Charge				5.2		nC

Electrical Characteristics (T _A = 25°C unless otherwise noted)									
Symbol	Parameter Conditions		Min	Тур	Max	Units			
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS									
I _s	Maximum Continuous Drain-Source Diode Forward Current				-2.5	Α			
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = -2.5 \text{ A} \text{ (Note 2)}$		-0.85	-1.2	V			
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 \text{ V}, I_F = -2.5 \text{ A}, dI_F/dt = 100 \text{ A/}\mu\text{s}$			100	ns			

Notes:

1. R_{gut} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{gut} is guaranteed by design while R_{gut} is determined by the user's board design.

$$P_D(t) = \frac{T_J - T_A}{R_{\theta JA}(t)} = \frac{T_J - T_A}{R_{\theta JC} + R_{\theta GI}(t)} = I_D^2(t) \times R_{DS(ON)} \Re T_J$$

Typical $R_{\rm gJA}$ using the board layouts shown below on 4.5"x5" FR-4 PCB in a still air environment:

- a. 42°C/W when mounted on a 1 in² pad of 2oz copper.
- b. 95°C/W when mounted on a 0.066 in² pad of 2oz copper.
- c. 110°C/W when mounted on a 0.0123 in² pad of 2oz copper.

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Typical Electrical Characteristics

Figure 1. On-Region Characteristics.

Figure 2. On-Resistance Variation with Gate Voltage and Drain Current.

Figure 3. On-Resistance Variation with Temperature.

Figure 4. On-Resistance Variation with Drain Current and Temperature.

Figure 5. Transfer Characteristics.

Figure 6. Gate Threshold Variation with Temperature.

Typical Electrical Characteristics

Figure 7. Breakdown Voltage Variation with Temperature.

Figure 8. Body Diode Forward Voltage Variation with Current and Temperature.

Figure 9. Capacitance Characteristics.

Figure 10. Gate Charge Characteristics.

Figure 11. Switching Test Circuit.

Figure 12. Switching Waveforms.

Typical Thermal Characteristics

3.5

(S) NOLEY AS TO THE PROPERTY OF THE PROPE

Figure 13. Transconductance Variation with Drain Current and Temperature.

Figure 14. SOT-223 Maximum Steady- tate Power Dissipation versus Copper Mounting Pad Area.

Figure 15. Maximum Steady-State Drain Current versus Copper Mounting Pad Area.

Figure 16. Maximum Safe Operating Area.

Figure 17. Transient Thermal Response Curve.

Note: Thermal characterization performed using the conditions described in note 1c. Transient thermal response will change depending on the circuit board design.