Q.11) Take the heart disease dataset & calculate the mean, variance, kurtosis, and skewness. Plot the graph of mean, variance, kurtosis, and skewness for the dataset.

#heart stats_mvks
import pandas as pd
import numpy as np
import scipy.stats as stats
import matplotlib.pyplot as plt

#load the dataset

data = pd.read_csv('C:/Users/HP/OneDrive/Desktop/ml 7th sem codes/datasets/heart.csv')

data
#data.head()

[6]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
	0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
	1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
	2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
	3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
	4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1
	298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	0
	299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0
	300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0
	301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0
	302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	0
	303 rc	ows ×	14 cc	olum	ns										

#drop 'target' column as it is class label & we don't need it in this case

data = data.drop('target', axis=1) # axis=0 is default'=> drop rows; axis=1 => drop cols

data

[7]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal
	0	63	1	3	145	233	1	0	150	0	2.3	0	0	1
	1	37	1	2	130	250	0	1	187	0	3.5	0	0	2
	2	41	0	1	130	204	0	0	172	0	1.4	2	0	2
	3	56	1	1	120	236	0	1	178	0	0.8	2	0	2
	4	57	0	0	120	354	0	1	163	1	0.6	2	0	2
	298	57	0	0	140	241	0	1	123	1	0.2	1	0	3
	299	45	1	3	110	264	0	1	132	0	1.2	1	0	3
	300	68	1	0	144	193	1	1	141	0	3.4	1	2	3
	301	57	1	0	130	131	0	1	115	1	1.2	1	1	3
	302	57	0	1	130	236	0	0	174	0	0.0	1	1	2

303 rows × 13 columns

```
\hbox{\# Calculate mean, variance, kurtosis, and skewness for the entire dataset} \\
```

```
mean = data.mean() #colwise mean
variance = np.var(data)
kurtosis = stats.kurtosis(data)
skewness = stats.skew(data)
```

```
# Print the results for each cols
print("Mean:")
print(mean)
print("\nVariance:")
print(variance)
print("\nKurtosis:")
print(kurtosis)
print("\nSkewness:")
print(skewness)
```

```
#print the overall results
print("\nOverall Mean:")
print(np.mean(mean))
print("\nOverall Variance:")
```

```
print(np.var(variance))
print("\nOverall Kurtosis:")
print(stats.kurtosis(kurtosis))
print("\nOverall Skewness:")
print(stats.skew(skewness))
```

Mean:

age

sex

ср

```
trestbps
           131.623762
chol
           246.264026
fbs
             0.148515
restecg
             0.528053
thalach
          149.646865
            0.326733
exang
oldpeak
            1.039604
slope
            1.399340
            0.729373
thal
            2.313531
dtype: float64
Variance:
            82.212332
age
sex
             0.216449
ср
             1.061617
trestbps
          306.571317
           2677.560653
chol
fbs
             0.126458
             0.275616
restecg
thalach
           522.914899
exang
             0.219978
oldpeak
              1.343646
             0.378481
slope
              1.042273
ca
thal
             0.373645
```

dtype: float64

#plot results

54.366337

0.683168

0.966997

```
plt.figure(figsize=(12, 8))

plt.plot(mean,label='mean', marker='o')

plt.plot(variance,label='variance', marker='o')

plt.plot(kurtosis,label='kurtosis', marker='s')

plt.plot(skewness,label='skewness', marker='x')

plt.title('plotting of mean,variance,kurtosis,skewness')

plt.legend()

plt.grid(True)

plt.show()
```

