Comp 480/580 — Assignment #1

Dev Sanghvi - ds221

Rice University Date: 09/30/2025

Constants

- Global seeds: SEED_COEFFS = 580123, SEED_KEYS = 20250916, SEED_BLOOM = 137.
- **Prime** P = 1,048,573.
- **Fixed coefficients** (drawn once with SEED_COEFFS and then *frozen*):

 $a=716{,}663, \quad b=625{,}113, \quad c=32{,}912, \quad d=480{,}811.$

1 Testing Hash Functions

Goal Check for the avalanche behavior: for 31 input bits and 10 output bits, estimate the probability $P[\text{output bit } i \text{ flips} \mid \text{input bit } j \text{ flips}]$ for each of four hash families:

```
h_1(x) = ((ax + b) \mod P) \mod 1024 (2-universal),

h_2(x) = ((ax^2 + bx + c) \mod P) \mod 1024 (3-universal),

h_3(x) = ((ax^3 + bx^2 + cx + d) \mod P) \mod 1024 (4-universal),

h_4(x) = \text{murmurhash3 } 32(x; \text{seed} = 137) \mod 1024.
```

I generated N=5000 independent 31-bit positive integers x, flip each input bit $j \in \{0,\ldots,30\}$ to form $x \oplus 2^j$, compute $y=h(x), y'=h(x \oplus 2^j)$, and mark whether bit $i \in \{0,\ldots,9\}$ changed in $y \oplus y'$. This yields a 10×31 matrix of empirical probabilities for each hash.

Implementation details All random sources (x, coefficients) use fixed seeds noted above. MurmurHash3 uses its scikit-learn implementation.

Summary statistics Let A denote the 10×31 matrix of probabilities for a hash. I got mean(A), the average absolute deviation from 0.5 (AAD), and the min/max entry as follows:

Hash	mean(A)	AAD from 0.5	$\min(A)$	$\max(A)$
2-universal	0.5352	0.2231	0.0612	0.9692
3-universal	0.4997	0.0056	0.4804	0.5224
4-universal	0.5000	0.0055	0.4776	0.5170
MurmurHash3	0.5001	0.0060	0.4772	0.5204

Figure 1: Avalanche heatmaps (10×31). Color scale is centered at 0.5 (black), so lighter indicates deviation from 0.5.

Interpretation As expected, h_2 , h_3 , and MurmurHash3 exhibit near-ideal avalanche (entries close to 0.5 with small spread). The 2-universal linear hash is *not* avalanche: some output bits change almost deterministically for certain input-bit flips, while others rarely change. This is consistent with lower-independence families offering weaker bit-mixing, while higher-degree polynomials and practical non-cryptographic hashes like MurmurHash3 provide better diffusion.

2 Counting Turtle Confidence

Goal Using Chebyshev's inequality, I (i) give an explicit "constant×std" band for the sample mean \bar{M} of overlap counts, (ii) show how to choose R so that the relative error $|\bar{M} - \mathbb{E}[M]| \le f \mathbb{E}[M]$ holds with failure probability at most 0.05, (iii) translate the band into an interval for $\hat{n} = \frac{k_1 k_2}{M}$, and (iv) note when estimation is hard.

Setup I repeat the same experiment R times and observe the i.i.d. counts M_1, \ldots, M_R . Let

$$\bar{M} = \frac{1}{R} \sum_{i=1}^{R} M_i, \qquad \mu \triangleq \mathbb{E}[M] = \frac{k_1 k_2}{n}$$

The usual estimator of population size is $\hat{n} = \frac{k_1 k_2}{\bar{M}}$.

Chebyshev band ("constant \times std") Because $Var(\bar{M}) = Var(M)/R$, Chebyshev gives, for any $\delta \in (0,1)$,

$$\Pr[|\bar{M} - \mu| \ge a] \le \frac{\operatorname{Var}(M)}{R a^2}.$$

Choosing

$$a(\delta, R) = \sqrt{\frac{\operatorname{Var}(M)}{R \, \delta}} = \frac{1}{\sqrt{\delta}} \underbrace{\sqrt{\frac{\operatorname{Var}(M)}{R}}}_{\text{std}(\bar{M})}$$

ensures $\Pr[|\bar{M} - \mu| \le a] \ge 1 - \delta$. For the assignment's $\delta = 0.05$,

$$a = 4.4721 \sqrt{\frac{\operatorname{Var}(M)}{R}}$$

Exact model vs. binomial approximation With sampling *without* replacement, M is hypergeometric:

$$M \sim \text{Hypergeometric}(n, k_1, k_2), \quad \mathbb{E}[M] = k_2 \frac{k_1}{n}, \quad \text{Var}(M) = k_2 \frac{k_1}{n} \left(1 - \frac{k_1}{n}\right) \frac{n - k_2}{n - 1}$$

Since $\frac{n-k_2}{n-1} \le 1$, the binomial variance $k_2p(1-p)$ with $p = \frac{k_1}{n}$ is an upper bound on the true variance. Thus, bands and R-requirements derived under the binomial model are conservative for the exact model.

How many repetitions R for a target relative error f with failure ≤ 0.05 ? Impose $|\bar{M} - \mu| \leq f \mu$ with failure at most δ . Set $a = f \mu$ and solve:

$$\delta \ge \frac{\operatorname{Var}(M)}{R(f\mu)^2} \implies R \ge \frac{\operatorname{Var}(M)}{\delta f^2 \mu^2}$$

Under the binomial upper bound (conservative),

$$R \geq \frac{k_2 p(1-p)}{\delta f^2 (k_2 p)^2} = \frac{1-p}{\delta f^2 k_2 p}, \qquad p = \frac{k_1}{n}$$

At $\delta = 0.05$ this specializes to $R \ge \frac{1-p}{0.05 f^2 k_2 p}$.

Translating to an interval for \hat{n} Since $g(m) = \frac{k_1 k_2}{m}$ is decreasing on $(0, \infty)$, the event $\bar{M} \in [\mu - a, \mu + a]$ with $\mu > a$ implies

$$\hat{n} \in \left[\frac{k_1 k_2}{\mu + a}, \ \frac{k_1 k_2}{\mu - a} \right]$$

Using $\mu = \frac{k_1 k_2}{n}$ this can be written as

$$\hat{n} \in \left[\frac{n}{1 + \frac{an}{k_1 k_2}} , \frac{n}{1 - \frac{an}{k_1 k_2}} \right]$$

In practice n is unknown; I use the plug-in $\hat{\mu} = \bar{M}$ (and $\hat{p} = \bar{M}/k_2$) inside a to produce a data-driven CI.

When is estimation hard? If $p = \frac{k_1}{n}$ is very small (few overlaps), then $\mu = k_2 p$ is small and $1/\bar{M}$ is unstable; Chebyshev is also loose in that regime. Practically, I either increase k_1, k_2 to raise μ or increase R via the formula above (or both).

3 Inequalities: Linear Probing with 5-independence

With load factor $\alpha = m/n = 1/3$, and assuming the following bound for the expected search cost in linear probing (given in the problem):

$$\mathbb{E}[\text{cost}] = \mathcal{O}(1) \sum_{s=1}^{\lfloor \log_2 n \rfloor} 2^s \cdot \Pr\left[B_s \ge 2 \mathbb{E}[B_s]\right],$$

Where B_s counts the number of inserted keys that hash into a fixed interval of length 2^s (a contiguous block of table positions), under a 5-independent hash function.

Goal Prove this sum is bounded by a constant (independent of n).

Setup Fix an interval I_s of length 2^s . Let

$$B_s = \sum_{i=1}^m X_i, \quad X_i = \mathbf{1}\{h(\text{key}_i) \in I_s\}, \quad p_s = \Pr[X_i = 1] = \frac{2^s}{n}$$

Then $\mu_s \triangleq \mathbb{E}[B_s] = mp_s = \alpha 2^s$ and $Var(B_s) = mp_s(1 - p_s) \leq \mu_s$.

Fourth moment under 5-independence (statement & sketch). Statement. Under 5-independence, mixed moments up to order four factorize, and

$$\mathbb{E}\big[(B_s - \mu_s)^4\big] \leq C_1 \,\mu_s + C_2 \,\mu_s^2 = \mathcal{O}(\mu_s + \mu_s^2),$$

for absolute constants C_1, C_2 (when $\mu_s \geq 1$; the $\mu_s < 1$ case is handled separately below).

Sketch. Let $Y_i = X_i - p_s$ so $B_s - \mu_s = \sum_{i=1}^m Y_i$ with $\mathbb{E}[Y_i] = 0$, $\mathbb{E}[Y_i^2] = p_s(1 - p_s)$, and $\mathbb{E}[Y_i^4] \leq C_0 p_s$. Expanding and using that odd mixed moments vanish,

$$\mathbb{E}[(B_s - \mu_s)^4] = \sum_{i} \mathbb{E}[Y_i^4] + 6 \sum_{i < j} \mathbb{E}[Y_i^2 Y_j^2],$$

and 5-independence yields $\mathbb{E}[Y_i^2Y_j^2]=\mathbb{E}[Y_i^2]\mathbb{E}[Y_j^2]=p_s^2(1-p_s)^2$. Hence

$$\mathbb{E}[(B_s - \mu_s)^4] \leq C_0 m p_s + 6 \binom{m}{2} p_s^2 = \mathcal{O}(\mu_s + \mu_s^2), \quad \mu_s = m p_s = \alpha 2^s.$$

Markov on the 4th power gives

$$\Pr[B_s \ge 2\mu_s] \le \frac{\mathbb{E}[(B_s - \mu_s)^4]}{\mu_s^4} \le \frac{C}{\mu_s^2} = \frac{C}{\alpha^2 2^{2s}}$$

where $\mu_s = mp_s = \alpha 2^s$. Markov's inequality on the 4th power then gives $\Pr[B_s \geq 2\mu_s] \leq \mathbb{E}[(B_s - \mu_s)^4]/\mu_s^4 \leq C/\mu_s^2$, yielding the summable bound in the next step.

Summation From the fourth–moment bound we obtained

$$\Pr[B_s \ge 2\mu_s] \ \le \ \frac{C}{\mu_s^2} \ = \ \frac{C}{(\alpha 2^s)^2} \ = \ \frac{C}{\alpha^2 \, 2^{2s}}$$

Plugging into the given sum,

$$\sum_{s=1}^{\lfloor \log_2 n \rfloor} 2^s \cdot \Pr[B_s \ge 2\mu_s] \le \sum_{s=1}^{\infty} 2^s \cdot \frac{C}{\alpha^2 2^{2s}} = \frac{C}{\alpha^2} \sum_{s=1}^{\infty} 2^{-s} = \frac{C}{\alpha^2} \cdot 1 = \mathcal{O}\left(\frac{1}{\alpha^2}\right)$$

Since the load factor $\alpha = m/n$ is fixed by the assignment (here $\alpha = \frac{1}{3}$), the right-hand side is a numerical constant independent of n; in fact it equals 9C when $\alpha = \frac{1}{3}$.

For the very small-mean regime $\mu_s = \alpha 2^s < 1$ (i.e., $2^s < 1/\alpha$), a crude bound $\Pr[B_s \ge 2\mu_s] \le \Pr[B_s \ge 1] \le \mu_s$ gives the partial contribution

$$\sum_{s:\,\mu_s<1} 2^s \cdot \mu_s \, \leq \, \sum_{s\leq s_0} 2^s \cdot (\alpha 2^s) \, = \, \alpha \sum_{s\leq s_0} 2^{2s} \, = \, \alpha \cdot \mathcal{O}\!\big(2^{2s_0}\big) \, = \, \alpha \cdot \mathcal{O}\!\big((1/\alpha)^2\big) \, = \, \mathcal{O}\!\big(\frac{1}{\alpha}\big),$$

where $s_0 = \lfloor \log_2(1/\alpha) \rfloor$ is constant when α is constant. Thus both parts (of large and small μ_s) are bounded by constants depending only on α , and the expected search cost is $\mathcal{O}(1)$ for $\alpha = \frac{1}{3}$.

4 Implement and Test Bloom Filters

Goal

- Warmup: (i) A hash factory mapping integers to a power-of-two range, and (ii) a BloomFilter class that takes (n,c) and stores bits in a packed bitmap (no boolean arrays). Build a 10,000-key membership set and, for targets $c \in \{0.01, 0.001, 0.0001\}$, report Theoretical FP and Real FP together with (R,k).
- Extended: Parse unique URLs, insert all N, and with policy $k = \lfloor 0.7R/N \rfloor$ vary $R \in \{2^{19}, 2^{20}, 2^{21}, 2^{22}\}$ to (i) report empirical FP and memory, (ii) plot FP vs. memory (use R/8 on the x-axis), and (iii) compare memory against a Python set and the theoretical R/8, with a brief comment.

Warmup

Setup Membership: 10,000 unique integers from [10,000..99,999]; test: 1000 non-members + 1000 true members. For each target c, I round R to a power of two; the "Theoretical c" below is computed after rounding R.

Target c	R (bits)	k	Theoretical c	Empirical c	Memory (bytes)
0.01	131,072	9	1.84141×10^{-3}	0.002	16,441
0.001	$262,\!144$	18	3.3908×10^{-6}	0	$32,\!825$
0.0001	$262,\!144$	18	3.3908×10^{-6}	0	$32,\!825$

Table 1: Warmup results (membership 10^4 , test 1000+1000). Theoretical FP is the model prediction after rounding R to a power of two.

Extended

Setup I parsed the AOL file to unique URLs, inserted all N into a Bloom filter, and varied $R \in \{2^{19}, 2^{20}, 2^{21}, 2^{22}\}$ with the required policy $k = \lfloor 0.7R/N \rfloor$. Then it was evaluated on 1000 sampled members and 1000 random strings as negatives. For each (R, k), I report the *empirical* FPR and Bloom bitmap size (via sys.getsizeof), alongside the theoretical bit budget R/8. I also measured a Python set containing the same universe (constant across R).

R (bits)	k	Emp. FPR	BF bytes (measured)	Theory $R/8$ (bytes)
524,288	1	0.503	65,593	65,536
1,048,576	1	0.301	131,129	131,072
2,097,152	3	0.081	$262,\!201$	262,144
4,194,304	7	0.006	524,345	524,288

Table 2: Extended memory comparison.

Python set footprint (independent of R): 16,777,432 bytes.

Measurement note (Python set). For the Bloom bitmap, I reported the exact container size via sys.getsizeof(bytearray), which equals R/8 plus a small fixed overhead. For the Python set, I intentionally reported the *container-only* size taken from sys.getsizeof(set), which does *not* include the memory of the stored elements (e.g. strings) orheir internal allocations. This choice is conservative *in favor of the set*; the true deep footprint (for example, by pimpler.asizeof or summing sys.getsizeof over all elements) is much larger for

 $N\!\approx\!3.78\times10^5$ URLs. However, the Bloom vs. theory comparison is exact because it concerns only the bitmap bits.

Memory Usage Comparison

- Bloom vs theory: Measured bitmap size matches R/8 up to a small constant overhead of ≈ 57 bytes in every setting (measured -R/8 = 57).
- Bloom vs Python hashtable: At R=4,194,304 the Bloom bitmap uses 524,345 bytes vs. set at 16,777,432 bytes ($\sim 32 \times$ smaller); the ratio widens further at smaller R.
- Accuracy–memory tradeoff: With $k = \lfloor 0.7R/N \rfloor$, empirical FPR falls from 0.503 to 0.006 as R increases, while memory scales linearly with R (the R/8 line).

Figure 2: Extended evaluation with policy $k = \lfloor 0.7 R/N \rfloor$.

Conclusions Empirical FP decreases rapidly as R grows and tracks theory. The packed bitmap's measured size agrees with R/8 up to small object overhead, while a Python set is orders of magnitude larger for this N.

Appendix A: How to Run

Environment (Python ≥ 3.9).

1. (Recommended) Create a virtual environment

```
python3 -m venv env
# This is MacOS Command. Do equivalent if on windows.
source env/bin/activate
```

2. Install dependencies

```
python -m pip install --upgrade pip
pip install -U numpy pandas matplotlib scikit-learn
```

Dataset If you have the AOL file, place user-ct-test-collection-01.txt in the working directory (or a data/ subfolder). The Q4 script will attempt to detect it automatically when --extended is used. If the file is absent, the extended run is skipped.

Commands.

- All results: python3 main.py --all
- Only Q1 (hash avalanche): python3 main.py --q1
- Only Q4 (Bloom tests): python3 main.py --q4 (add --extended to run the AOL dataset sweep if the file is present)

Outputs (where to find things).

- Q1: outputs/q1/
 - Heatmaps: 2univ_linear_heatmap.png, 3univ_quadratic_heatmap.png, 4univ_cubic_heatmap.png, murmurhash3_heatmap.png
 - Deviation heatmaps: corresponding *_dev_heatmap.png
 - CSVs: *_avalanche.csv; summary: summary.txt
- Q4: outputs/q4/
 - Warmup table dump: Results.txt and results.csv
 - Memory reports: memory.txt (warmup), extended_memory.txt (AOL)
 - Extended sweep: extended.csv (AOL metrics)
 - Plots: fpr_vs_memory.png

Reproducibility. All scripts are deterministic given the fixed seeds listed in the paper's "Constants" section. Running the commands above will regenerate the CSVs and figures in the same paths.

Appendix B: Submitted Code Artifacts

Per the instructions, all code is provided as compressed archives rather than embedded listings here.

- Source zip: src.zip containing the files main.py, q1_avalanche.py, q4_bloom.py, q1_heatmaps.py, q4_plots.py.
- Outputs zip: outputs.zip containing all CSVs, text summaries, and figures produced by running the scripts.