Міністерство освіти і науки України Харківський фаховий радіотехнічний коледж

3BIT

з практичної роботи № 1

з теми «ДОСЛІДЖЕННЯ КАДРУ ПРОТОКОЛУ ETHERNET TA ПРОПУСКНОЇ ЗДАТНОСТІ FAST ETHERNET»

Виконав студент групи КІ-419 Варіч Дмитро Перевірила викладач Архипцева Н. О.

Мета: Вивчення формату кадру Ethernet, призначень його полів та адресування в локальних мережах, дослідження залежності пропускної здатності мережі Fast Ethernet від розміру кадру.

Хід Виконання Роботи

Завдання 1. Визначити МАС-адресу мережної плати комп'ютера.

Завдання 2. Запустити програму Wireshark і отримати мережну статистику тривалістю в кілька хвилин.

Завдання 3. Виконати «ping» на сусідні вузли та шлюз і зупинити захват.

```
C:\WINDOWS\system32\cmd.exe
                                                                                                                                        сброшены, если используется этот заголовок.
  -S <адрес_источника> Задает адрес источника.
                           Идентификатор секции маршрутизации.
                           Проверяет связь с сетевым адресом поставщика
                           виртуализации Hyper-V.
                            Задает принудительное использование протокола IPv4.
                           Задает принудительное использование протокола IPv6.
 :\Users\admin>ping 147.232.184.1
Обмен пакетами с 147.232.184.1 по с 32 байтами данных:
Ответ от 147.232.184.1: число байт=32 время<1мс TTL=255
Ответ от 147.232.184.1: число байт=32 время=1мс TTL=255
Ответ от 147.232.184.1: число байт=32 время<1мс TTL=255
Ответ от 147.232.184.1: число байт=32 время=1мс TTL=255
 татистика Ping для 147.232.184.1:
    Пакетов: отправлено = 4, получено = 4, потеряно = 0
    (0% потерь)
 |риблизительное время приема-передачи в мс:
Минимальное = Омсек, Максимальное = 1 мсек, Среднее = О мсек
```

Завдання 4. Отримати відомості про МАС-адреси в заголовках кадрів Ethernet, які були захоплені Wireshark, на відповідній вкладці вікна Endpoints (рис. 1) через меню Statistics->Endpoints.

Завдання 5. Визначити, які типи MAC-адрес були захоплені Wireshark – відфільтрувати MAC-адреси широкомовної розсилки.

Завдання 6. У вікні захоплених пакетів вибрати будь-який широкомовний пакет і розглянути значення основних полів його заголовку Ethernet II (рис. 3). Визначити адреси, на які надходять дані кадри і пакети, для канального і мережного рівня.

Завдання 7. Відфільтрувати МАС-адреси багатоадресної розсилки, якщо вони були захоплені Wireshark. Вибрати будь-який пакет і розглянути значення основних полів його заголовку Ethernet II. Визначити адреси, на які надходять дані кадри і пакети, для канального і мережного рівня.

Завдання 8.

- 1) Побудувати графік затримки передачі файлу розміром 10*N Мбайт в одному сегменті мережі Fast Ethernet, якщо довжина корисних даних кадру $L=128,\,512,\,1000,\,1500,\,4096$ байт (N номер за списком в групі).
- 2) Побудувати графік залежності пропускної здатності мережі Fast Ethernet від довжини корисних даних кадру L = 128, 512, 1000, 1500, 4096 байт;

Таблиця розрахунків

Довжина файлу,	20	20	20	20	20
мбайт					
Довжина файлу,	20 971 520				
байт					
L кадри	128	512	1000	1 500	4 096
Кількість кадрів у	163 840	40 960	20 972	13 981	5 120
файлі					
Розмір кадру	154	538	1 026	1 526	4 122
(байт)					
Розмір кадру (біт)	1 232	4 304	8 208	12 208	32 976
Пропускна					
здатність Fast	104 857 600				
Ethernet, біт					
Довжина					
проходження 1	1 328	4 400	8 304	12 304	33 072
кадру					
Час проходження	12,66	41,96	79,19	117, 34	315,40
1 кадру (мкс)					
Час передачі	2,075	1,72	1,66	1,64	1,61
всього файлу, с					
Частота					
слідування	78959,03	23831,27	12627,36	8522,23	3170,58
кадрів, F					
(кадрів/с)					
Пропускна					
здатність мережі	80854053	97612893	101018882	102266840	103893742
(бiт/c)					
Пропускна					
здатність мережі,	77,10	93,1	96,33	97,52	99,1
(Мбіт/с)					

Графіки

Контрольні питання

- **1. Чому дорівнюють максимальний та мінімальний розміри кадру Ethernet?** Підсумовуючи, Ethernet має мінімальний розмір кадру 64 байти, що включає 18-байтовий заголовок і корисне навантаження 46 байтів. Він також має максимальний розмір кадру 1518 байт, у цьому випадку корисне навантаження становить 1500 байт. (Та якщо повідомлення, яке потрібно надіслати, призводить до розміру кадру, меншого за мінімальний 64-байт, додаткові байти доповнюються).
- **2.** Яка частина в MAC-адресі відображає виробника мережної карти? Перші шість цифр MAC-адреси називаються OUI та позначають виробника мережного інтерфейсу. Також якщо ви хочете дізнатися, хто зробив мережеву карту, то можете звернутися до IEEE (Інститут інженерів з електротехніки та електроніки) на сайті Асоціації стандартів IEEE і вставте перші цифри MAC-адреси ПК, щоб виконати пошук та знайти виробника.

3. Які типи кадрів Ethernet бувають, в чому їх відмінності?

Так як існує кілька типів кадрів, то для того, щоб зрозуміти один одного, відправник та одержувач повинні використовувати один і той же тип кадрів. Кадри можуть бути чотирьох різних форматів, які дещо відрізняються один від одного. Базових форматів кадрів (raw formats) існує лише два - Ethernet II та Ethernet 802.3. Ці формати відрізняються призначенням лише одного поля.

Для того, щоб робочі станції мали можливість взаємодіяти із сервером в одному сегменті мережі, вони повинні підтримувати єдиний формат кадру. Тому існує чотири основні різновиди кадрів Ethernet:

- 1. Ethernet Type II
- 2. Ethernet 802.3
- 3. Ethernet 802.2
- 4. Ethernet SNAP (SubNetwork Access Protocol).

4. Який механізм управління доступом до середовища використовується в Ethernet?

Найбільш характерна особливість мережі Ethernet - це механізм керування доступом до середовища, який називається множинним доступом з контролем несучої та виявлення колізій (CSMA/CD, Carrier Sense Multiple Access / Collision Detection).

5. Як записується широкомовний MAC-адрес Ethernet?

IPv4-адреса призначення (192.168.1.255) - це широкомовна адреса. Якщо IPv4-пакет широкомовних адрес інкапсульований у кадрі Ethernet, MAC-адреса призначення є широкомовною MAC-адресою в шістнадцятковому форматі FF-FF-FF-FF-FF (48 одиниць у двійковому форматі).

Висновки: В цій Практичній роботі ми дізналися про формат кадру Ethernet, призначень його полів та адресування в локальних мережах, дослідили залежності пропускної здатності мережі Fast Ethernet від розміру кадру. У ході практичної роботи зрозумів, що чим більше довжина поля кадру даних, тим менше витрачається часу на його передачу, але через це збільшується навантаження на пропускну спроможність даної мережі.