Matematika 4 — Logika pre informatikov 4. sada teoretických úloh

Riešenie hodnotenej časti tejto úlohy **odovzdajte** najneskôr v pondelok **15. marca 2021 o 11:30** cez odovzdávací formulár pre tu04¹. Riešenia odovzdané po termíne sa považujú za opravy neodovzdaných riešení s príslušnými dôsledkami podľa pravidiel².

Odovzdávajte jeden dokument vo formáte PDF s dodatočnými obmedzeniami uvedenými vo formulári. Dokument musí obsahovať **celé riešenie** v textovej forme. Odovzdané riešenia musia byť **čitateľné** a mať primerane **malý** rozsah. Na riešenie sa vzťahujú všeobecné **pravidlá**².

Čísla úloh v zátvorkách odkazujú do zbierky³, kde nájdete riešené príklady a ďalšie úlohy na precvičovanie.

Cvičenie 4.1. (4.3.1) Nech \mathcal{L}_1 je jazyk výrokovologickej časti logiky prvého rádu s množinami indivíduových konštánt $\mathcal{C}_{\mathcal{L}_1} = \{\text{Fero, Mara, BT333XY}\}$ a predikátových symbolov $\mathcal{P}_{\mathcal{L}_1} = \{\text{zelené}^1, \text{špinavé}^1, \text{lúbi}^2\}.$

Dokážte, že existuje jazyk \mathcal{L}_2 výrokovologickej časti logiky prvého rádu s množinou indivíduových konštánt $\mathcal{C}_{\mathcal{L}_2}=\{\mathbf{z}\}$ a vhodne zvolenou množinou predikátových symbolov $\mathcal{P}_{\mathcal{L}_2}$ taký, že pre ľubovoľnú výrokovologickú formulu A v jazyku \mathcal{L}_1 existuje výrokovologická formula B v jazyku \mathcal{L}_2 taká, že

- a) A je výrokovologicky splniteľná vtt B je výrokovologicky splniteľná (teda výrokové ohodnotenie v_1 také, že $v_1 \models_p A$, existuje vtt existuje výrokové ohodnotenie v_2 také, že $v_2 \models_p B$).
- b) Štruktúra \mathcal{M}_1 taká, že $\mathcal{M}_1 \models A$, existuje *vtt* existuje štruktúra \mathcal{M}_2 taká, že $\mathcal{M}_2 \models B$.

Cvičenie 4.2. (4.3.5) Nech X, Y a Z sú ľubovoľné formuly, nech T je ľubovoľná teória. Dokážte alebo vyvráťte:

a) Ak
$$T \vDash_{p} (X \to Y)$$
, tak $T \nvDash_{p} X$ alebo $T \vDash_{p} Y$.

b) Ak
$$\{X, Y\} \models_{p} Z$$
, tak $(X \rightarrow (Y \rightarrow Z))$ je tautológia.

¹ https://forms.gle/yqLKxoJSJ4qr7x139

² https://dai.fmph.uniba.sk/w/Course:Mathematics_4/sk#pravidla-uloh

³ https://github.com/FMFI-UK-1-AIN-412/lpi/blob/master/teoreticke/zbierka.pdf

Cvičenie 4.3. (4.1.1) O každej z nasledujúcich formúl nad jazykom \mathcal{L} , kde $\mathcal{P}_{\mathcal{L}} = \{ \text{l'úbi}^2 \}$ a $\mathcal{C}_{\mathcal{L}} = \{ \text{P, L} \}$, pričom P značí Peter a L značí Lucia rozhodnite, či je i. tautológia, ii. splniteľná, iii. falzifikovateľná, iv. nesplniteľná. Pri každej formule rozhodnite o *všetkých* uvedených vlastnostiach a rozhodnutia zdôvodnite.

- a) $((\neg l'úbi(P, L) \rightarrow \neg l'úbi(L, P)) \land (l'úbi(P, L) \lor l'úbi(L, P)))$
- b) $\neg \big(\neg (\text{l'ubi}(P,L) \land \text{l'ubi}(L,P)) \leftrightarrow (\neg \text{l'ubi}(P,L) \lor \neg \text{l'ubi}(L,P)) \big)$

Hodnotená časť

Úloha 4.4. (0,5 b., 4.2.1) Zistite, či sú nasledujúce formuly výrokovologicky ekvivalentné v zmysle def. 4.9 z prednášky:

$$\neg \big(i(E) \rightarrow (r(E) \wedge b(E)) \big) \quad \text{a} \quad \big(\neg (i(E) \rightarrow r(E)) \vee (i(E) \wedge \neg b(E)) \big).$$

Úloha 4.5. (1,5 b., 4.3.2, 4.3.1) Nech \mathcal{L}_1 je jazyk výrokovologickej časti logiky prvého rádu s množinami indivíduových konštánt $\mathcal{C}_{\mathcal{L}_1} = \{\text{prof_Mráček, doc_Uhladená, Kiki, Veve, študent}_1, \dots, študent}_7, Mat_1, \dots, Mat_4, Prog_1, Prog_2, null, A, B, \dots, FX, riadny, 1.opravný, 2.opravný} a predikátových symbolov <math>\mathcal{P}_{\mathcal{L}_1} = \{\text{milý}^1, \text{prísny}^1, \text{študent}^1, \text{učiteľ}^1, \text{usilovný}^1, školiteľ}^2, \text{učiteľ_predmetu}^2, \text{hodnotenie}^5\}.$

Dokážte, že existuje jazyk \mathcal{L}_2 výrokovologickej časti logiky prvého rádu s vhodne zvolenou množinou indivíduových konštánt $\mathcal{C}_{\mathcal{L}_2}$ a množinou predikátových symbolov $\mathcal{P}_{\mathcal{L}_2} = \{\text{platí}^2\}$ taký, že pre ľubovoľnú výrokovologickú formulu A v jazyku \mathcal{L}_1 existuje výrokovologická formula B v jazyku \mathcal{L}_2 , pre ktorú platí:

- a) Výrokové ohodnotenie v_1 také, že $v_1 \models_p A$, existuje vtt existuje výrokové ohodnotenie v_2 také, že $v_2 \models_p B$.
- b) Štruktúra \mathcal{M}_1 taká, že $\mathcal{M}_1 \models A$, existuje vtt existuje štruktúra \mathcal{M}_2 taká, že $\mathcal{M}_2 \models B$.