Financial Econometrics - Part III GARCH Type Models

Li Chen lichen812@xmu.edu.cn

WISE, Xiamen University

October 4, 2024

ARCH effect - the phenomenon of volatility clustering

ARCH: autoregressive conditional heteroskedasticity.

ARCH effect - ACFs of r

ARCH effect - ACFs of r^2

ARCH effect - ACFs of |r|

ARCH models

Let P_t denote the price and $r_t = \log(P_t/P_{t-1})$ be the log-return at time t. Then

$$r_t = \mu_t + e_t, \tag{1}$$

where $\mu_t = E\left[r_t|F_{t-1}\right]$ denotes the conditional mean of the return, e_t is a diffusion term which may be modeled as

$$e_t = \sigma_t \epsilon_t, \quad \epsilon_t \sim i.i.d.(0,1),$$
 (2)

where $\sigma_t = Var\left[r_t|F_{t-1}\right] > 0$ is determined by the information available before time t, and ϵ_t is assumed to be independent of σ_t .

ARCH models

A simple specification for the volatility function σ_t is the autoregressive conditional heteroskedastic (ARCH) model

$$\sigma_t^2 = a_0 + a_1 e_{t-1}^2 + a_2 e_{t-2}^2 + \dots + a_p e_{t-p}^2, \tag{3}$$

where $a_0>0, a_j\geq 0 (1\leq j\leq p)$ are constants, and p is a positive integer.

This model allows for capturing the effect of volatility clustering.

We consider the ARCH(1) model as a special example.

$$e_t = \sigma_t \epsilon_t, \tag{4}$$

$$\sigma_t^2 = a_0 + a_1 e_{t-1}^2, \tag{5}$$

where $a_0 > 0$, $a_1 \ge 0$. In particular, by the law of iterated expectation (LIE), we have

$$E\left[e_{t}\right]=0,\tag{6}$$

$$Var [e_t] = \frac{a_0}{1 - a_1}, \tag{7}$$

where $0 \le a_1 < 1$.

Suppose that $\epsilon_t \sim i.i.d.N(0,1)$, then

$$E(e_t^4|F_{t-1}) = 3[E(e_t^2|F_{t-1})]^2 = 3(a_0 + a_1e_{t-1}^2)^2.$$
 (8)

Therefore,

$$E(e_t^4) = E[E(e_t^4|F_{t-1})] = 3E(a_0 + a_1e_{t-1}^2)^2 = 3E(a_0^2 + 2a_0a_1e_{t-1}^2 + a_1^2e_{t-1}^4)$$
(9)

Assume that $m_4 = E(e_t^4)$ is stationary, then

$$m_4 = \frac{3a_0^2(1+a_1)}{(1-a_1)(1-3a_1^2)}. (10)$$

To ensure that $m_4>0$, we have $0\leq a_1^2<\frac{1}{3}$. Then, the Kurtosis of e_t is

$$\frac{E(e_t^4)}{[Var(e_t)^2]^2} = 3 \frac{a_0^2(1+a_1)}{(1-a_1)(1-3a_1^2)} \times \frac{(1-a_1)^2}{a_0^2} = 3 \frac{1-a_1^2}{1-3a_1^2} > 3.$$
(11)

This result implies that e_t has positive excess kurtosis, and it is more likely to see outliers for e_t .

How to forecast volatility based on an estimated ARCH(1) model? Suppose that we had estimated an ARCH(1) model

$$e_t = \sigma_t \epsilon_t, \tag{12}$$

$$\sigma_t^2 = a_0 + a_1 e_{t-1}^2, \tag{13}$$

using F_T , what are the one-step ahead forecast $E[\sigma_{T+1}^2|F_T]$ and two-step ahead forecast $E[\sigma_{T+2}^2|F_T]$ given the information set F_T ?

GARCH models

Bollerslev (1986) developed the GARCH(p,q) model as

$$r_t = \mu + e_t, \tag{14}$$

$$e_t = \sigma_t \epsilon_t, \quad \epsilon_t \sim i.i.d.(0,1)$$
 (15)

$$\sigma_t^2 = a_0 + \underbrace{a_1 e_{t-1}^2 + \dots + a_p e_{t-p}^2}_{\mathsf{ARCH \ components}} + \underbrace{b_1 \sigma_{t-1}^2 + \dots + b_q \sigma_{t-q}^2}_{\mathsf{GARCH \ components}}, \quad (16)$$

where $a_0 > 0$, $a_i \ge 0$, $b_j \ge 0$, for $1 \le i \le p, 1 \le j \le q$, and

$$\sum_{i=1}^{p} a_i + \sum_{j=1}^{q} b_j < 1. \tag{17}$$

GARCH models

It is easy to show that

$$E[e_t] = 0, (18)$$

$$Var[e_t] = \frac{a_0}{1 - a_1 - \dots - a_p - b_1 - \dots - b_q}$$
 (19)

$$=\frac{a_0}{1-\sum_{i=1}^p a_i - \sum_{j=1}^q b_j},$$
 (20)

which denote the long-run variance.

Residual diagnostics

How to verify that a particular GARCH(p,q) model has captured all the ARCH effects?

We define $\widehat{\epsilon}_t = \frac{\widehat{\epsilon}_t}{\widehat{\sigma}_t}$ as the standardized residuals. If there is no ARCH effects in the standardized residuals, then GARCH(p,q) has captured all the ARCH effects. Otherwise, we still have ARCH effects remained in $\widehat{\epsilon}_t$ and we need to improve our current model.

GARCH-in-Mean

To account for risk premium, we propose a GARCH-in-Mean model

$$r_t = \mu + g(\sigma_t) + e_t, \tag{21}$$

$$e_t = \sigma_t \epsilon_t, \quad \epsilon_t \sim i.i.d.(0,1)$$
 (22)

$$\sigma_t^2 = a_0 + \sum_{i=1}^p a_i e_{t-i}^2 + \sum_{j=1}^q b_j \sigma_{t-j}^2, \tag{23}$$

where g(x) represents the form of compensational return for risks. In particular, $g(x) = \theta_0 + \theta_1 x$ (see Engle, Lilien, and Robins 1987) or $g(x) = \alpha_0 + \alpha_1 \sqrt{x}$.

TGARCH model

Leverage effect: negative shocks are more likely to cause higher volatility than positive shocks.

To account for the leverage effect, we propose a Threshold GARCH (TGARCH) model

$$r_t = \mu + e_t, \tag{24}$$

$$e_t = \sigma_t \epsilon_t, \quad \epsilon_t \sim i.i.d.(0,1)$$
 (25)

$$\sigma_t^2 = a_0 + \sum_{i=1}^p a_i e_{t-i}^2 + \sum_{i=1}^p \gamma_i e_{t-i}^2 \mathbb{1}(e_{t-i} < 0) + \sum_{j=1}^q b_j \sigma_{t-j}^2, \quad (26)$$

where 1(.) is an indicator function, which can also be replaced by a dummy variable.

Dummy variable in Financial Econometrics

Suppose we want to see whether there exists Monday effect in the stock market. We define a dummy variable

$$D_t = \begin{cases} 1 & \text{Mondays;} \\ 0 & \text{Other days.} \end{cases}$$
 (27)

Then we run the regression

$$r_t = \mu + \theta D_t + e_t, \tag{28}$$

and test

$$\mathbb{H}_0: \theta = 0 \quad \text{vs} \quad \mathbb{H}_1: \theta \neq 0.$$
 (29)

IGARCH model

An Integrated GARCH model (IGARCH(p,q)) can be written as

$$r_t = \mu + e_t, \tag{30}$$

$$e_t = \sigma_t \epsilon_t, \quad \epsilon_t \sim i.i.d.(0,1)$$
 (31)

$$\sigma_t^2 = a_0 + \sum_{i=1}^p a_i e_{t-i}^2 + \sum_{j=1}^q b_j \sigma_{t-j}^2,$$
 (32)

where $\sum_{i=1}^{p} a_i + \sum_{j=1}^{q} b_j = 1$.

Value at Risk (VaR)

Value at risk (VaR) is a measure of the risk of loss for investments. It estimates how much a set of investments might lose (with a given probability), given normal market conditions, in a set time period such as a day.

$$VaR = \mu - \sigma_t \Phi^{-1}(\alpha). \tag{33}$$

For example, we invest \$10000 in an asset with monthly return $\mu=0.01$ and $\sigma_t=0.05$. What is the 5% VaR for this investment?

ACFs and PACFs of r_t .

Correlogram of R							
Sample: 1/04/2000 Included observation							
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	
•	1 +	1	0.023	0.023	2.3915	0.122	
•	. •	2	-0.023	-0.024	4.7777	0.092	
0		3	0.022	0.023	6.9181	0.075	
ı j ı	1 1	4	0.058	0.056	21.496	0.000	
		5	-0.003		21.525	0.001	
Q		6	-0.049	-0.047		0.000	
ı)	1 1	7	0.028	0.028	35.292	0.000	
•		8	0.011	0.005	35.856	0.000	
1		9	0.002	0.006	35.879	0.000	
ų.		10	-0.003	0.001	35.928	0.000	
•		11	0.016	0.012	36.992	0.000	
1)		12	0.022	0.018	39.109	0.000	
ф	1 0	13	0.052	0.055	51.071	0.000	
•	. •	14	-0.020	-0.023	52.894	0.000	
ф	1 0	15	0.043	0.044	60.936	0.000	
•	1 0	16	0.010	0.002	61.392	0.000	
ų.	1 1	17	0.006	0.004	61.535	0.000	
ıjı	•	18	0.026	0.029	64.583	0.000	
qi.	•	19	-0.025	-0.028	67.329	0.000	
•		20	0.020	0.017	69.135	0.000	

Fitted model:

$$r_t = 0.000172 + 0.0594r_{t-4} - 0.0485r_{t-6} + 0.0536r_{t-13} + \hat{e}_t.$$

Dependent Variable: R Method: Least Squares Date: 03/26/18 Time: 17:01

Sample (adjusted): 1/24/2000 12/15/2017 Included observations: 4335 after adjustments

Variable	Coefficient	Std. Error	Prob.
C R(-4) R(-6) R(-13)	0.000172 0.059365 -0.048464 0.053601	0.000241 0.015131 0.015135 0.015092	0.4757 0.0001 0.0014 0.0004
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.008764 0.008078 0.015877 1.091724 11810.36 12.76440 0.000000	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	0.000185 0.015941 -5.446996 -5.441114 -5.444920 1.957144

ACFs and PACFs of \hat{e}_t : the above model fully describes the serial correlation in r_t .

Date: 03/26/18 Time: 17:07 Sample: 1/24/2000 12/15/2017 Included observations: 4335

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
•	<u> </u>	1	0.021	0.021	1.9794	0.159
•	(2	-0.022	-0.022	4.0616	0.131
•	1)	3	0.023	0.024	6.2942	0.098
		4	-0.000	-0.002	6.2945	0.178
	#	5	-0.004	-0.003	6.3638	0.272
		6	0.002	0.002	6.3805	0.382
- 1	1	7	0.027	0.027	9.6245	0.211
	#	8	0.004	0.003	9.6971	0.287
		9	0.001	0.002	9.6989	0.375
		10	0.003	0.002	9.7321	0.464
•)	11	0.014	0.014	10.564	0.480
•)	12	0.020	0.020	12.385	0.415
		13	0.004	0.003	12.444	0.492
•	•	14	-0.019	-0.020	13.989	0.451
- 0		15	0.040	0.040	21.086	0.134
		16	0.003	0.001	21.137	0.173
	1 1	17	-0.004	-0.002	21.213	0.217
- 4		18	0.028	0.026	24.697	0.133
•	•	19	-0.019	-0.022	26.274	0.123
•	•	20	0.015	0.018	27.300	0.127

ARCH effect test for \widehat{e}_t :

Heteroskedasticity Test: ARCH

F-statistic	67.53716	Prob. F(5,4324)	0.0000
Obs*R-squared	313.6590	Prob. Chi-Square(5)	0.0000

Test Equation:
Dependent Variable: RESID²
Method: Least Squares
Date: 03/26/18 Time: 17:09
Sample (adjusted): 2/14/2000 12/15/2017
Included observations: 4330 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID^2(-1) RESID^2(-2) RESID^2(-3) RESID^2(-4) RESID^2(-5)	0.000135 0.106296 0.076921 0.131147 0.086107 0.064002	1.16E-05 0.015176 0.015206 0.015120 0.015206 0.015176	11.62568 7.004173 5.058687 8.673930 5.662844 4.217325	0.0000 0.0000 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.072439 0.071366 0.000634 0.001737 25744.16 67.53716 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion ion n criter.	0.000252 0.000658 -11.88830 -11.87946 -11.88518 1.976638

ACFs and PACFs of \hat{e}_t^2 .

Correlogram of E2								
Date: 03/26/18 Time Sample: 1/04/2000 1 Included observation	2/15/2017							
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob		
		1	0.162	0.162	113.93	0.000		
–	•	2	0.139	0.116	197.66	0.000		
<u> </u>	•	3	0.181	0.148	340.09	0.000		
i	10	4	0.148	0.093	434.70	0.000		
<u> </u>	•	5	0.126	0.064	503.39	0.000		
•	•	6	0.122	0.055	568.20	0.000		
· P	1	7	0.135	0.069	647.60	0.000		
	•	8	0.121	0.051	711.65	0.000		
10	l •	9	0.087	0.013	744.78	0.000		
· II	1	10	0.146	0.080	838.06	0.000		
·P	1 1	11	0.106	0.027	886.82	0.000		
10	I ∳	12	0.088	0.014	920.21	0.000		
	1	13	0.134	0.063	998.65	0.000		
' P	1 1	14	0.116	0.038	1057.4	0.000		
Ψ.		15	0.084	0.006	1088.4	0.000		
Ψ.	1 1	16	0.111	0.037	1142.5	0.000		
·P	I ∳	17	0.094	0.013	1181.0	0.000		
·P	1 1	18	0.103	0.029	1226.8	0.000		
Ψ.	I ∳	19	0.088	0.014	1260.6	0.000		
i i	1	20	0.128	0.056	1332.4	0.000		

An estimated AR(13)-ARCH(1) model.

Dependent Variable: R
Method: ML - ARCH (Marquardt) - Normal distribution
Date: 03/26/18 Time: 17:20
Sample (adjusted): 1/24/2000 12/15/2017
Included observations: 43/35 after adjustments
Convergence achieved after 9 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(5) + C(6)*RESID(-1)*2

Variable	Coefficient	Std. Error z-Statistic		Prob.
C R(-4) R(-6)	-5.72E-06 0.043504 -0.040643	0.000214 -0.026773 0.009935 4.378838 0.009946 -4.086304		0.9786 0.0000 0.0000
R(-13)	0.065531 Variance	0.009860 Equation	6.646338	0.0000
C RESID(-1)^2	0.000192 0.259946	3.22E-06 0.016300	59.73762 15.94767	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.008175 0.007488 0.015881 1.092373 11941.73 1.956590	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.000185 0.015941 -5.506681 -5.497858 -5.503566

Fitted AR(13)-ARCH(1) model:

$$r_{t} = 0.00000572 + 0.0435r_{t-4} - 0.0406r_{t-6} + 0.0655r_{t-13} + \widehat{e}_{t}$$
(34)

$$\widehat{e}_t = \widehat{\sigma}_t \widehat{z}_t \tag{35}$$

$$\hat{\sigma}_t^2 = 0.000192 + 0.25\hat{e}_{t-1}^2. \tag{36}$$

Time series plot of the standardized residuals $\hat{z}_t = \frac{\hat{\epsilon}_t}{\hat{\sigma}_t}$. Are there any ARCH effects left in z_t ?

ACFs and PACFs of \hat{z}_t^2 .

Date: 03/26/18 Time: 17:37 Sample: 1/04/2000 12/15/2017 Included observations: 4335

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
•	•	1	-0.024	-0.024	2.5599	0.110
•	<u> </u>	2	0.111	0.110	55.962	0.000
–	•	3	0.137	0.144	137.85	0.000
þ	10	4	0.083	0.082	167.88	0.000
•	1	5	0.097	0.076	208.98	0.000
–	•	6	0.105	0.079	256.80	0.000
þ	1	7	0.090	0.063	291.94	0.000
•	·	8	0.097	0.062	332.91	0.000
ı j ı		9	0.040	-0.001	339.86	0.000
–	10	10	0.122	0.075	404.47	0.000
ф	1	11	0.079	0.047	431.71	0.000
ф	•	12	0.063	0.022	448.99	0.000
•	b	13	0.117	0.067	508.20	0.000
•	1	14	0.098	0.061	549.73	0.000
ф	•	15	0.063	0.018	566.74	0.000
ф	1	16	0.087	0.028	599.73	0.000
•	1	17	0.085	0.034	631.40	0.000
ų į	•	18	0.074	0.022	655.40	0.000
ıb	•	19	0.062	0.008	672.32	0.000
ф	•	20	0.082	0.024	701.83	0.000

LM test for ARCH effects in \hat{z}_t .

Heteroskedasticity Test: ARCH

F-statistic	Prob. F(5,4324)	0.0000
Obs*R-squared	Prob. Chi-Square(5)	0.0000

Test Equation:
Dependent Variable: WGT_RESID^2
Method: Least Squares
Date: 03/26/18 Time: 17:22
Sample (adjusted): 2/14/2000 12/15/2017

Sample (adjusted): 2/14/2000 12/15/2017 Included observations: 4330 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3) WGT_RESID^2(-4) WGT_RESID^2(-5)	0.661510 -0.055653 0.093102 0.139554 0.085782 0.075759	0.047550 0.015163 0.015131 0.015048 0.015131 0.015163	13.91186 -3.670228 6.153016 9.273716 5.669350 4.996241	0.0000 0.0002 0.0000 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.045374 0.044270 2.430656 25546.57 -9986.740 41.10445 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		1.000373 2.486314 4.615584 4.624416 4.618702 1.991375

Improve the ARCH(1) model to GARCH(1,1).

Dependent Variable: R
Method: ML - ARCH (Marquardt) - Normal distribution
Date: 03/26/18 Time: 17:38
Sample (adjusted): 1/24/2000 12/15/2017
Included observations: 4335 after adjustments
Convergence achieved after 14 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(5) + C(6)*PRESID(-1)*2 + C(7)*GARCH(-1)

Variable	Coefficient	Std. Error	Std. Error z-Statistic				
C R(-4) R(-6) R(-13)	0.000248 0.023306 -0.048096 0.022440	0.000161 1.547554 0.014816 1.573036 0.015718 -3.059952 0.015302 1.466447		0.1217 0.1157 0.0022 0.1425			
Variance Equation							
C RESID(-1)^2 GARCH(-1)	1.30E-06 0.071911 0.925702	2.11E-07 0.004205 0.003904	6.163245 17.10038 237.1380	0.0000 0.0000 0.0000			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.006466 0.005778 0.015895 1.094255 12473.64 1.955749	Schwarz criterion		0.000185 0.015941 -5.751623 -5.741329 -5.747989			

The fitted GARCH(1,1) model is

$$r_{t} = r_{t} = 0.000248 + 0.0233r_{t-4} - 0.0481r_{t-6} + 0.0224r_{t-13} + \hat{e}_{t},$$
(37)

$$\widehat{\mathbf{e}}_t = \widehat{\sigma}_t \widehat{\mathbf{z}}_t, \tag{38}$$

$$\hat{\sigma}_t^2 = 0.000000130 + 0.0719\hat{e}_{t-1}^2 + 0.9257\hat{\sigma}_{t-1}^2. \tag{39}$$

Standardized residuals of $\widehat{z}_t = \frac{\widehat{e}_t}{\widehat{\sigma}_t}$ for the GARCH(1,1) model.

ACFs and PACFs for \hat{z}_{t}^{2} .

Date: 03/26/18 Time: 17:43 Sample: 1/04/2000 12/15/2017 Included observations: 4335

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
•		1	-0.012	-0.012	0.6533	0.419
•	•	2	0.010	0.010	1.0822	0.582
ų.		3	0.007	0.008	1.3147	0.726
ı ı		4	0.007	0.007	1.5408	0.819
ų.		5	0.001	0.001	1.5432	0.908
•	•	6	-0.011	-0.011	2.0671	0.913
ų.		7	0.004	0.004	2.1518	0.951
ų.		8	0.001	0.001	2.1582	0.976
ı ı		9	-0.007	-0.007	2.3623	0.984
•	•	10	0.011	0.011	2.8543	0.985
•	•	11	-0.013	-0.012	3.5631	0.981
•	•	12	0.014	0.014	4.4662	0.973
ų.		13	0.003	0.003	4.4994	0.985
•	•	14	-0.017	-0.017	5.6943	0.974
¢.	•	15	-0.028	-0.029	9.1562	0.869
•	•	16	-0.017	-0.017	10.348	0.848
ų.	•	17	0.004	0.004	10.403	0.886
•	•	18	-0.017	-0.015	11.601	0.867
•	•	19	-0.009	-0.008	11.933	0.888
•	•	20	0.010	0.010	12.413	0.901

LM test for ARCH effects in \hat{z}_t .

Heteroskedasticity Test; ARCH

F-statistic	Prob. F(5,4324)	0.9068
Obs*R-squared	Prob. Chi-Square(5)	0.9066

Test Equation:
Dependent Variable: WGT_RESID*2
Method: Least Squares
Date: 03/26/18 Time: 17:47
Sample (adjusted): 2/14/2000 12/15/2017
Included observations: 4330 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1) WGT_RESID^2(-2) WGT_RESID^2(-3) WGT_RESID^2(-4) WGT_RESID^2(-5)	0.989804 -0.012402 0.009746 0.007632 0.007316 0.000775	0.046574 0.015207 0.015209 0.015208 0.015209 0.015208	21.25219 -0.815502 0.640814 0.501857 0.481065 0.050974	0.0000 0.4148 0.5217 0.6158 0.6305 0.9593
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000359 -0.000797 2.089489 18878.43 -9331.864 0.310678 0.906797	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		1.002905 2.088657 4.313101 4.321933 4.316219 1.982333

Estimated sequence of $\hat{\sigma}_t^2$.

Upper and lower bounds of $[-\widehat{\sigma}_t,\widehat{\sigma}_t]$.

Descriptive statistics of \hat{z}_t . Does it follow a normal distribution?

Quantile-Quantile (QQ) plot of \hat{z}_t versus normal distribution.

Quantile-Quantile (QQ) plot of \hat{z}_t versus t-distribution.

An estimated Threshold GARCH model to reveal the leverage effects.

Dependent Variable: R
Method: ML - ARCH (Marquardt) - Normal distribution
Date: 03/26/18 Time: 18:05
Sample (adjusted): 12/42/000 12/15/2017
Included observations: 4335 after adjustments
Convergence achieved after 15 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = 0(5) + 0(6)*RESID(-1)*2 + C(7)*RESID(-1)*2*(RESID(-1)<0) +

5(0) 5/11(5/1(1)				
Variable	Coefficient	Std. Error	z-Statistic	ı
C R(-4)	0.000160 0.025209	0.000171 0.014896	0.931907 1.692313	0
r(-4)	0.025209	0.014690	1.092313	

R(-4)	0.025209	0.014896	1.692313	0.0906
R(-6)	-0.047172	0.015791	-2.987199	0.0028
R(-13)	0.024038	0.015287	1.572456	0.1158
Variance Equation				
С	1.37E-06	2.17E-07	6.348414	0.0000
RESID(-1) ²	0.059776	0.004970	12.02695	0.0000
RESID(-1)^2*(RESID(-1)<0)	0.023809	0.006027	3.950193	0.0001
GARCH(-1)	0.925154	0.003875	238.7735	0.0000
R-squared	0.006710	Mean depend	ient var	0.000185
Adjusted R-squared	0.006022	S.D. depende	ent var	0.015941
S.E. of regression	0.015893	Akaike info cr	iterion	-5.753061
Sum squared resid	1.093987	Schwarz crite	rion	-5.741297
Log likelihood	12477.76	Hannan-Quin	in criter.	-5.748908
Durbin-Watson stat	1.955901			

Proh

The fitted TGARCH model is

$$r_{t} = 0.00000160 + 0.0252r_{t-4} - 0.0472r_{t-6} + 0.0240r_{t-13} + \widehat{e}_{t},$$

$$(40)$$

$$\widehat{e}_{t} = \widehat{\sigma}_{t}\widehat{z}_{t},$$

$$\widehat{\sigma}_{t}^{2} = 0.000000137 + 0.0578\widehat{e}_{t-1}^{2} + 0.0238\widehat{e}_{t-1}^{2}1(\widehat{e}_{t-1} < 0) + 0.925\widehat{\sigma}_{t-1}^{2}.$$

$$(42)$$

An estimated GARCH-in-Mean model to detect risk premium.

Dependent Variable: R
Method: ML - ARCH (Marquardt) - Normal distribution
Date: 03/26/18 Time: 18:07
Sample (adjusted): 1/24/2000 12/15/2017
Included observations: 4335 after adjustments
Convergence achieved after 19 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = 0(6) + 0(7)*RESID(-1)*2 + 0(8)*GARCH(-1)

Variable	Coefficient	Std. Error	z-Statistic	Prob.		
GARCH C R(-4) R(-6) R(-13)	1.111361 9.34E-05 0.023693 -0.047769 0.022747	1.272002 0.000242 0.014878 0.015721 0.015315	0.873710 0.385995 1.592454 -3.038506 1.485288	0.3823 0.6995 0.1113 0.0024 0.1375		
Variance Equation						
C RESID(-1)*2 GARCH(-1)	1.30E-06 0.072061 0.925579	2.17E-07 0.004215 0.003924	5.999042 17.09705 235.8831	0.0000 0.0000 0.0000		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.005848 0.004929 0.015902 1.094937 12474.03 1.953118	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.000185 0.015941 -5.751340 -5.739576 -5.747187		

The fitted GARCH-M model is

$$r_t = 0.00000934 + 0.0237r_{t-4} - 0.0478r_{t-6} + 0.0227r_{t-13} + 1.11\widehat{\sigma}_t^2 + \widehat{e}_t$$
(43)

$$\widehat{\mathbf{e}}_t = \widehat{\sigma}_t \widehat{\mathbf{z}}_t, \tag{44}$$

$$\widehat{\sigma}_t^2 = 0.000000130 + 0.0721\widehat{e}_{t-1}^2 + 0.9258\widehat{\sigma}_{t-1}^2. \tag{45}$$