目次

① 変分自己符号化器

目次

- 1 変分自己符号化器
 - 生成モデル
 - 変分自己符号化器 (VAE) の概要
 - 変分自己符号化器 (VAE) の理論

生成モデル

- 生成モデルの目的
 - \bullet データ x に関する分布 p(x) を推定する
- データ生成過程
 - データ x は一般に高次元である
 - 但し、実際にデータが分布しているのは、ごく限られた一部の低次元の 領域であると考えられる(多様体仮説)
 - データx 自体は高次元だが、本質的には低次元の情報しか持たないと考えられる
 - ullet データ x を、より低次元なベクトル z を使って、表現することを考える
 - データに関する分布 p(x) を、潜在変数 z に関する分布と、うまく組み合わせて記述する
 - 潜在変数からデータが生成されるまでの過程を組み込んで、p(x) を記述する

目次

- 1 変分自己符号化器
 - 生成モデル
 - 変分自己符号化器 (VAE) の概要
 - 変分自己符号化器 (VAE) の理論

- 深層学習における生成モデル
 - 主に以下の2つの手法が存在する
 - 敵対的生成ネットワーク (Generative Adversarial Networks, GAN)
 - 変分自己符号化器 (Variational Auto Encoders, VAE)
 - ここでは変分自己符号化器 (VAE) について扱う
 - VAE を、異常検知 (不良品の検出など) に使った例がある

- VAE におけるグラフィカルモデル
 - 図1のような、潜在変数を含んだグラフィカルモデルを考える
 - \bullet データ x について、ある一つの潜在変数 z が対応しているとする
 - ullet 各データ x は、分布 p(x) から独立にサンプルされるとする
 - ullet 従って、データ $\{oldsymbol{x}_1,\ldots,oldsymbol{x}_N\}$ は $rac{\mathbf{x}_1}{\mathbf{x}_1}$ は $rac{\mathbf{x}_2}{\mathbf{x}_1}$
 - \bullet θ は、 \overline{B} θ な、 \overline{B} θ な からデータ θ を取得する際に使用されるパラメータ
 - ullet ϕ は、 $ec{r}$ ータ x から潜在変数 z を生成する際に使用されるパラメータ
 - N は、データ数である

- データ x の生成過程
 - ullet データx の生成過程は、次のように考える
 - ullet 分布 $p(oldsymbol{z}|oldsymbol{ heta})$ から、潜在変数 z_i がサンプルされる
 - ullet 分布 $p(oldsymbol{x}|oldsymbol{z}_i, heta)$ から、データ $oldsymbol{x}_i$ がサンプルされる
 - ullet これより、データ x の分布を次のように表現できる

$$p(\boldsymbol{x}|\theta) = \int p(\boldsymbol{x}|\boldsymbol{z},\theta)p(\boldsymbol{z}|\theta)d\boldsymbol{z}$$
 (1)

- 潜在変数 z をデータ x から取得する過程
 - ullet 潜在変数 z_i をデータ x_i から得る過程は、次のように考える
 - 分布 $q(z|x_i, \phi)$ から、潜在変数 z_i がサンプルされる

図 1: 変分自己符号化器 (VAE) におけるグラフィカルモデル

- 確率分布のニューラルネットワークによる表現
 - 潜在変数を含む確率モデルについて、パラメータの最尤解を求めるため に、EM アルゴリズムを導出した
 - ullet EM アルゴリズムでは、潜在変数に関する事後分布 $p(oldsymbol{z}|oldsymbol{x}, heta)$ を計算する必要があった
 - この事後分布 $p(z|x,\theta)$ の計算が困難であるとき、p(z|x) を別の分布 $q(z|x,\phi)$ で近似し、変分推論によって $q(z|\phi)$ の最適解を求めた
 - VAE は変分推論の変種であり、近似事後分布 $q(z|x,\phi)$ と、p(x|z) の 2 つをニューラルネットワークで表現する
 - データx を潜在変数z に対応付けるニューラルネットワークを、 Encoder という
 - 潜在変数 z からデータ x を復元するニューラルネットワークを、 $\frac{1}{2}$ Decoder という
 - 分布 $q(m{z}|m{x},\phi)$ は Encoder、分布 $p(m{x}|m{z},\theta)$ は Encoder に相当する

目次

- 1 変分自己符号化器
 - 生成モデル
 - 変分自己符号化器 (VAE) の概要
 - 変分自己符号化器 (VAE) の理論

- 変分自己符号化器 (VAE) の理論
 - 変分下界 $\mathcal{L}(q)$ は次のようであった

$$\mathcal{L}(q) = \int q(\boldsymbol{z}|\boldsymbol{x}) \ln \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q(\boldsymbol{z}|\boldsymbol{x})} d\boldsymbol{z}$$
 (2)

$$= \int q(\boldsymbol{z}|\boldsymbol{x}) \ln \frac{p(\boldsymbol{x}|\boldsymbol{z})p(\boldsymbol{z})}{q(\boldsymbol{z}|\boldsymbol{x})} d\boldsymbol{z}$$
 (3)

$$= \int q(\boldsymbol{z}|\boldsymbol{x}) \ln p(\boldsymbol{x}|\boldsymbol{z}) d\boldsymbol{z} + \int q(\boldsymbol{z}|\boldsymbol{x}) \ln \frac{p(\boldsymbol{z})}{q(\boldsymbol{z}|\boldsymbol{x})} d\boldsymbol{z}$$
 (4)

$$= \int q(\boldsymbol{z}|\boldsymbol{x}) \ln p(\boldsymbol{x}|\boldsymbol{z}) d\boldsymbol{z} - \text{KL}(q(\boldsymbol{z}|\boldsymbol{x})||p(\boldsymbol{z}))$$
 (5)

$$= \mathbb{E}_{\boldsymbol{z} \sim q(\boldsymbol{z}|\boldsymbol{x})} \left[\ln p(\boldsymbol{x}|\boldsymbol{z}) \right] - \text{KL}(q(\boldsymbol{z}|\boldsymbol{x})||p(\boldsymbol{z})) \tag{6}$$

- ullet ここでは、単一のデータ x と、それに対応する潜在変数 z を考えている
- また、パラメータ θ , ϕ は省略している

- 第1項 $\mathbb{E}_{z \sim q(z|x)} [\ln p(x|z)]$ を大きく、また第2項 $\mathrm{KL}(q(z|x)||p(z))$ を小さくすることで、変分下界 $\mathcal{L}(q)$ を大きくできる
- VAE では、変分下界 $\mathcal{L}(q)$ を最大化するパラメータ θ, ϕ を求めるため に、ニューラルネットを使用する (変分推論にニューラルネットをねじ 込んだもの)
- KL ダイバージェンスの項は、後ほど求めることにする (解析的に求められる)
- 第1項は、分布 q(z|x) に関する期待値であり、VAE ではサンプリングで近似する

$$\mathbb{E}_{\boldsymbol{z} \sim q(\boldsymbol{z}|\boldsymbol{x})} \left[\ln p(\boldsymbol{x}|\boldsymbol{z}) \right] \simeq \frac{1}{L} \sum_{l=1}^{L} \ln p(\boldsymbol{x}_{i}|\boldsymbol{z}_{i,l})$$
 (7)

ullet これより、変分下界 $\mathcal{L}(q)$ は以下のように書ける

$$\mathcal{L}(q) \simeq -\operatorname{KL}(q(\boldsymbol{z}|\boldsymbol{x})||p(\boldsymbol{z})) + \frac{1}{L} \sum_{i=1}^{L} \ln p(\boldsymbol{x}_{i}|\boldsymbol{z}_{i,l})$$
(8)

• パラメータ θ, ϕ を含めれば、次のように書ける

$$\mathcal{L}(q) \simeq - \text{KL}(q(\boldsymbol{z}|\boldsymbol{x}, \phi)||p(\boldsymbol{z}|\theta)) + \frac{1}{L} \sum_{i=1}^{L} \ln p(\boldsymbol{x}_i|\boldsymbol{z}_{i,l}, \theta)$$
 (9)

- Encoder のニューラルネットの入出力
 - ullet Encoder は、分布 $q(oldsymbol{z}|oldsymbol{x},\phi)$ を表現するニューラルネット
 - 入力 x に対応する潜在変数 z を得る
 - Encoder の入力は、明らかにデータ x である
 - ullet 変分下界 $\mathcal{L}(q)$ において、項 $\mathbb{E}_{oldsymbol{z}}\left[\ln p(oldsymbol{x}|oldsymbol{z})
 ight]$ は近似する必要があった
 - ullet z を、分布 $q(oldsymbol{z}|oldsymbol{x},\phi)$ から L 回サンプリングした
 - ullet ニューラルネットで、x から z を直接サンプリングするのは困難
 - そこで、Encoder では、サンプルされたデータは出力しないことにする
 - その代わりに、サンプルする分布のパラメータを出力する
 - 例えば、サンプルする分布がガウス分布であれば、平均と分散の2つの パラメータを出力する

- 後述のように、分布 $q(z|x,\phi)$ は<mark>ガウス分布</mark>になるので、Encoder は平 均ベクトル μ と共分散行列 Σ を出力する
- 共分散行列は、実際には対角行列であるため、実際には行列ではなく、 行列の対角成分を要素にもつベクトルを出力する

- Encoder の損失関数
 - VAE では、事前分布として、平均ベクトル 0、共分散行列 I のガウス分布 $\mathcal{N}(z|\mathbf{0},I)$ を仮定する
 - データx は高次元だが、実際にはそのうちの低次元な領域にまとまって存在する (多様体仮説)
 - 従って、データ x の構造を、より低次元な潜在変数 z の空間 $z \sim \mathcal{N}(z|\mathbf{0}, I)$ に押し込めることができる
 - Encoder の損失関数は、KL ダイバージェンス $\mathrm{KL}(q(\pmb{z}|\pmb{x},\phi)||p(\pmb{z}|\theta))$ で 定義できる
 - この KL ダイバージェンスを最小化することは、Encoder の分布 $q(z|x,\phi)$ を、 $p(z|\theta)\sim \mathcal{N}(z|\mathbf{0},\mathbf{I})$ に近づける制約に相当する
 - $p(z|\theta)$ がガウス分布であれば、事後分布 $p(z|x,\theta)$ もガウス分布であり、従って $q(z|x,\phi)$ もガウス分布となる

- よって $\mathrm{KL}(q(z|x,\phi)||p(z|\theta))$ は、2 つのガウス分布間の KL ダイバージェンスである
- 一般に、2 つのガウス分布 $p(z)=\mathcal{N}(z|\mu_0,\Sigma_0)$ 、 $q(z)=\mathcal{N}(z|\mu_1,\Sigma_1)$ 間の KL ダイバージェンスは、解析的に計算できる
- KL ダイバージェンス $\mathrm{KL}(p(oldsymbol{z})||q(oldsymbol{z}))$ を順番に求めてみよう

$$KL(p(z)||q(z)) = \int p(z) \ln \frac{p(z)}{q(z)} dz$$
(10)

$$= \int p(z) \left(\ln p(z) - \ln q(z) \right) dz \tag{11}$$

$$= \int p(z) \left(\ln \mathcal{N}(z|\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0) - \ln \mathcal{N}(z|\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) \right) dz \qquad (12)$$

$$= \mathbb{E}_{\boldsymbol{z} \sim p(\boldsymbol{z})} \left[\ln \mathcal{N}(\boldsymbol{z} | \boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0) - \ln \mathcal{N}(\boldsymbol{z} | \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) \right]$$
 (13)

● データを D 次元、潜在変数を K 次元とする

・ここで

$$\ln \mathcal{N}(\boldsymbol{z}|\boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}_{0})$$

$$= \ln \left(\frac{1}{(2\pi)^{\frac{K}{2}}} \frac{1}{|\boldsymbol{\Sigma}_{0}|^{\frac{1}{2}}} \exp \left(-\frac{1}{2} (\boldsymbol{z} - \boldsymbol{\mu}_{0})^{T} \boldsymbol{\Sigma}_{0}^{-1} (\boldsymbol{z} - \boldsymbol{\mu}_{0}) \right) \right)$$

$$= -\frac{K}{2} \ln 2\pi - \frac{1}{2} \ln |\boldsymbol{\Sigma}_{0}| - \frac{1}{2} (\boldsymbol{z} - \boldsymbol{\mu}_{0})^{T} \boldsymbol{\Sigma}_{0}^{-1} (\boldsymbol{z} - \boldsymbol{\mu}_{0})$$
(14)

$$\ln \mathcal{N}(\boldsymbol{z}|\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}) = -\frac{K}{2} \ln 2\pi - \frac{1}{2} \ln |\boldsymbol{\Sigma}_{1}| - \frac{1}{2} (\boldsymbol{z} - \boldsymbol{\mu}_{1})^{T} \boldsymbol{\Sigma}_{1}^{-1} (\boldsymbol{z} - \boldsymbol{\mu}_{1})$$
(15)

であるので

$$\ln \mathcal{N}(\boldsymbol{z}|\boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}_{0}) - \ln \mathcal{N}(\boldsymbol{z}|\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1})$$

$$= -\frac{K}{2} \ln 2\pi - \frac{1}{2} \ln |\boldsymbol{\Sigma}_{0}| - \frac{1}{2} (\boldsymbol{z} - \boldsymbol{\mu}_{0})^{T} \boldsymbol{\Sigma}_{0}^{-1} (\boldsymbol{z} - \boldsymbol{\mu}_{0}) -$$

$$\left(-\frac{K}{2}\ln 2\pi - \frac{1}{2}\ln |\mathbf{\Sigma}_{1}| - \frac{1}{2}(\mathbf{z} - \boldsymbol{\mu}_{1})^{T} \mathbf{\Sigma}_{1}^{-1}(\mathbf{z} - \boldsymbol{\mu}_{1})\right)
= \frac{1}{2}\ln \frac{|\mathbf{\Sigma}_{1}|}{|\mathbf{\Sigma}_{0}|} - \frac{1}{2}(\mathbf{z} - \boldsymbol{\mu}_{0})^{T} \mathbf{\Sigma}_{0}^{-1}(\mathbf{z} - \boldsymbol{\mu}_{0}) + \frac{1}{2}(\mathbf{z} - \boldsymbol{\mu}_{1})^{T} \mathbf{\Sigma}_{1}^{-1}(\mathbf{z} - \boldsymbol{\mu}_{1})$$
(16)

よって

$$KL(p(z)||q(z)) = \mathbb{E}_{z \sim p(z)} \left[\ln \mathcal{N}(z|\boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}_{0}) - \ln \mathcal{N}(z|\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}) \right]$$

$$= \mathbb{E}_{p(z)} \left[\frac{1}{2} \ln \frac{|\boldsymbol{\Sigma}_{1}|}{|\boldsymbol{\Sigma}_{0}|} - \frac{1}{2} (\boldsymbol{z} - \boldsymbol{\mu}_{0})^{T} \boldsymbol{\Sigma}_{0}^{-1} (\boldsymbol{z} - \boldsymbol{\mu}_{0}) + \frac{1}{2} (\boldsymbol{z} - \boldsymbol{\mu}_{1})^{T} \boldsymbol{\Sigma}_{1}^{-1} (\boldsymbol{z} - \boldsymbol{\mu}_{1}) \right]$$

$$= \frac{1}{2} \ln \frac{|\boldsymbol{\Sigma}_{1}|}{|\boldsymbol{\Sigma}_{0}|} - \frac{1}{2} \mathbb{E}_{p(z)} \left[(\boldsymbol{z} - \boldsymbol{\mu}_{0})^{T} \boldsymbol{\Sigma}_{0}^{-1} (\boldsymbol{z} - \boldsymbol{\mu}_{0}) \right] +$$

$$(17)$$

$$\frac{1}{2}\mathbb{E}_{p(\boldsymbol{z})}\left[\left(\boldsymbol{z}-\boldsymbol{\mu}_{1}\right)^{T}\boldsymbol{\Sigma}_{1}^{-1}\left(\boldsymbol{z}-\boldsymbol{\mu}_{1}\right)\right]$$
(18)

- ここで、期待値についての式を導出しておく
- ullet $\mathbb{E}\left[z
 ight]=\mu$ 、 $\mathbb{E}\left[\left(z-\mu
 ight)\left(z-\mu
 ight)^{T}
 ight]=\Sigma$ とする
- z の i 成分を z_i 、 μ の i 成分を μ_i 、 Σ の i,j 成分を Σ_{ij} とする
- このとき

$$\Sigma_{ij} = \mathbb{E}\left[(z_i - \mu_i) (z_j - \mu_j)\right]$$

$$= \mathbb{E}\left[z_i z_j - z_i \mu_j - z_j \mu_i + \mu_i \mu_j\right]$$

$$= \mathbb{E}\left[z_i z_j\right] - \mu_j \mathbb{E}\left[z_i\right] - \mu_i \mathbb{E}\left[z_j\right] + \mu_i \mu_j$$

$$= \mathbb{E}\left[z_i z_j\right] - \mu_j \mu_i - \mu_i \mu_j + \mu_i \mu_j$$

$$= \mathbb{E}\left[z_i z_j\right] + \mu_i \mu_j$$
(19)

であるから

$$\mathbb{E}\left[z_i z_j\right] = \Sigma_{ij} - \mu_i \mu_j \tag{20}$$

• そして、行列 A の i,j 成分を A_{ij} とすれば、以下を得る

$$\mathbb{E}\left[\boldsymbol{z}^{T}\boldsymbol{A}\boldsymbol{z}\right] = \mathbb{E}\left[\sum_{i}\sum_{j}z_{i}A_{ij}z_{j}\right]$$

$$= \sum_{i}\sum_{j}A_{ij}\mathbb{E}\left[z_{i}z_{j}\right]$$

$$= \sum_{i}\sum_{j}A_{ij}\left(\Sigma_{ij} + \mu_{i}\mu_{j}\right)$$

$$= \sum_{i}\sum_{j}A_{ij}\Sigma_{ij} + \sum_{i}\sum_{j}A_{ij}\mu_{i}\mu_{j}$$

$$= \sum_{i}\sum_{j}A_{ij}\Sigma_{ji} + \sum_{i}\sum_{j}\mu_{i}A_{ij}\mu_{j}$$

$$= \sum_{i}\left(\boldsymbol{A}\boldsymbol{\Sigma}\right)_{ii} + \boldsymbol{\mu}^{T}\boldsymbol{A}\boldsymbol{\mu}$$

$$= \operatorname{Tr}\left(\boldsymbol{A}\boldsymbol{\Sigma}\right) + \boldsymbol{\mu}^{T}\boldsymbol{A}\boldsymbol{\mu}$$

(21)

- 上式の変形では、共分散行列 Σ が対称行列ゆえ、 $\Sigma_{ij}=\Sigma_{ji}$ が成立することを用いた
- また、ベクトル a の i 成分を a_i とすれば、以下を得る

$$\mathbb{E} \left[\boldsymbol{a}^{T} \boldsymbol{z} \right] = \mathbb{E} \left[\boldsymbol{z}^{T} \boldsymbol{a} \right]$$

$$= \mathbb{E} \left[\sum_{i} z_{i} a_{i} \right]$$

$$= \sum_{i} a_{i} \mathbb{E} \left[z_{i} \right]$$

$$= \sum_{i} a_{i} \mu_{i}$$

$$= \boldsymbol{a}^{T} \boldsymbol{\mu} = \boldsymbol{\mu}^{T} \boldsymbol{a}$$
(22)

ullet これより、a,B をそれぞれ適当なベクトル、行列とすれば、以下を得る

$$\mathbb{E}\left[(z-a)^{T}B(z-a)\right]$$

$$= \mathbb{E}\left[z^{T}Bz - z^{T}Ba - a^{T}Bz + a^{T}Ba\right]$$

$$= \mathbb{E}\left[z^{T}Bz\right] - \mathbb{E}\left[z^{T}Ba\right] - \mathbb{E}\left[a^{T}Bz\right] + a^{T}Ba$$

$$= \left(\operatorname{Tr}(B\Sigma) + \mu^{T}B\mu\right) - \mu^{T}Ba - a^{T}B\mu + a^{T}Ba$$

$$= \operatorname{Tr}(B\Sigma) + \mu^{T}B\mu - 2\mu^{T}Ba + a^{T}Ba$$
(23)

特に、 $oldsymbol{a}=oldsymbol{\mu}, oldsymbol{B}=oldsymbol{\Sigma}^{-1}$ とすれば

$$\mathbb{E}\left[\left(\boldsymbol{z}-\boldsymbol{\mu}\right)^{T}\boldsymbol{\Sigma}^{-1}\left(\boldsymbol{z}-\boldsymbol{\mu}\right)\right]$$

$$= \operatorname{Tr}\left(\boldsymbol{\Sigma}^{-1}\boldsymbol{\Sigma}\right) + \boldsymbol{\mu}^{T}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu} - 2\boldsymbol{\mu}^{T}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu} + \boldsymbol{\mu}^{T}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}$$

$$= \operatorname{Tr}\left(\boldsymbol{\Sigma}^{-1}\boldsymbol{\Sigma}\right)$$

$$= \operatorname{Tr}\left(\boldsymbol{I}\right) = K$$
(24)

これを用いれば、KL ダイバージェンスは次のようになる

$$KL(p(z)||q(z))$$

$$= \frac{1}{2} \ln \frac{|\Sigma_1|}{|\Sigma_0|} - \frac{1}{2} \mathbb{E}_{p(z)} \left[(z - \mu_0)^T \Sigma_0^{-1} (z - \mu_0) \right] +$$

$$\frac{1}{2} \mathbb{E}_{p(z)} \left[(z - \mu_1)^T \Sigma_1^{-1} (z - \mu_1) \right]$$

$$= \frac{1}{2} \ln \frac{|\Sigma_1|}{|\Sigma_0|} - \frac{1}{2} K + \frac{1}{2} \left(\text{Tr} \left(\Sigma_1^{-1} \Sigma_0 \right) + \mu_0^T \Sigma_1^{-1} \mu_0 -$$

$$2 \mu_0^T \Sigma_1^{-1} \mu_1 + \mu_1^T \Sigma_1^{-1} \mu_1 \right)$$

$$= \frac{1}{2} \ln \frac{|\Sigma_1|}{|\Sigma_0|} - \frac{1}{2} K + \frac{1}{2} \text{Tr} \left(\Sigma_1^{-1} \Sigma_0 \right) +$$

$$\frac{1}{2} (\mu_0 - \mu_1)^T \Sigma_1^{-1} (\mu_0 - \mu_1)$$

$$= \frac{1}{2} \left(\ln \frac{|\Sigma_1|}{|\Sigma_0|} - K + \text{Tr} \left(\Sigma_1^{-1} \Sigma_0 \right) + \right)$$

$$(\boldsymbol{\mu}_0 - \boldsymbol{\mu}_1)^T \boldsymbol{\Sigma}_1^{-1} (\boldsymbol{\mu}_0 - \boldsymbol{\mu}_1)$$
 (25)

• これで、2 つのガウス分布 $p(z)=\mathcal{N}(z|\mu_0,\Sigma_0)$ 、 $q(z)=\mathcal{N}(z|\mu_1,\Sigma_1)$ 間の KL ダイバージェンスが、次のようになることが分かった

$$KL(p(\boldsymbol{z})||q(\boldsymbol{z})) = \frac{1}{2} \left(\ln \frac{|\boldsymbol{\Sigma}_1|}{|\boldsymbol{\Sigma}_0|} - K + \operatorname{Tr} \left(\boldsymbol{\Sigma}_1^{-1} \boldsymbol{\Sigma}_0 \right) + (\boldsymbol{\mu}_0 - \boldsymbol{\mu}_1)^T \boldsymbol{\Sigma}_1^{-1} \left(\boldsymbol{\mu}_0 - \boldsymbol{\mu}_1 \right) \right)$$
(26)

- ここでは、 $p(z)=\mathcal{N}(z|\pmb{\mu}_0,\pmb{\Sigma}_0)$ は、Encoder のニューラルネットが表現する分布 $q(z|\pmb{x},\phi)$ である
- そして、分布 $q(z|x,\phi)$ はガウス分布であったので、ここでは平均 μ_0 と 共分散行列 Σ_0 を使って、 $q(z|x,\phi)=\mathcal{N}(z|\mu_0,\Sigma_0)$ と表すことにする

- また $q(z)=\mathcal{N}(z|\mu_1,\Sigma_1)$ は、潜在変数に関する事後分布 $p(z|\theta)=\mathcal{N}(z|\mathbf{0},I)$ である
- 結局、KL ダイバージェンス $\mathrm{KL}(q(z|x,\phi)||p(z|\theta))$ は、先程の式に $\mu_1=\mathbf{0}$ と $\Sigma_1=\mathbf{I}$ を代入すれば得られる

$$KL(q(\boldsymbol{z}|\boldsymbol{x},\phi)||p(\boldsymbol{z}|\theta))$$

$$= KL(\mathcal{N}(\boldsymbol{z}|\boldsymbol{\mu}_{0},\boldsymbol{\Sigma}_{0})||\mathcal{N}(\boldsymbol{z}|\boldsymbol{0},\boldsymbol{I}))$$

$$= \frac{1}{2}\left(-\ln|\boldsymbol{\Sigma}_{0}| - K + \operatorname{Tr}(\boldsymbol{\Sigma}_{0}) + \boldsymbol{\mu}_{0}^{T}\boldsymbol{\mu}_{0}\right)$$
(27)

- この KL ダイバージェンスが、Encoder の損失関数として定義される
- Encoder のニューラルネットは、入力としてデータ x を取り、平均 μ_0 と共分散行列 Σ_0 を出力する
- 従って、Encoder の出力と、潜在変数の次元 K を上式に代入すれば、損失関数を容易に計算できる

- Σ_0 は対称行列であるため、実際に出力されるのは、 Σ_0 の対角成分を並べたベクトルである
- 一般的な VAE の Encoder は次の図 2 のように表せる

図 2: VAE の Encoder の概要

- Encoder のニューラルネットの構造
 - VAE が最初に提案された論文では、隠れ層は1層となっている
 - ullet 最終層は、 $oldsymbol{\mu}_0$ と $\sqrt{oldsymbol{\Sigma}_0}$ を出力する 2 つのユニットから成る
 - \bullet $\sqrt{\Sigma_0}$ とは、行列 Σ_0 の各要素の平方根を取った行列である
 - ullet 隠れ層の重みを $oldsymbol{W}_h$ 、バイアスを $oldsymbol{b}_h$ 、活性化関数を $f(\cdot)$ 、層の出力を $oldsymbol{h}$ とする
 - 隠れ層で行う処理は、次の式で表される

$$\boldsymbol{h} = f(\boldsymbol{W}_h \boldsymbol{x} + \boldsymbol{b}_h) \tag{28}$$

ullet $oldsymbol{\mu}_0$ は、重み $oldsymbol{W}_m$ とバイアス $oldsymbol{b}_m$ を使って、以下のように計算される

$$\boldsymbol{\mu}_0 = \boldsymbol{W}_m \boldsymbol{h} + \boldsymbol{b}_m \tag{29}$$

ullet $\sqrt{oldsymbol{\Sigma}_0}$ は、重み $oldsymbol{W}_s$ とバイアス $oldsymbol{b}_s$ から、以下のように計算される

$$\sqrt{\Sigma_0} = W_s h + b_s \tag{30}$$

- Decoder のニューラルネットの入出力
 - Decoder は、分布 $p(x|z,\theta)$ を表現するニューラルネット
 - 潜在変数 z から元のデータ x を復元する
 - Decoder の入力は、Encoder によってサンプリングされた z となる
 - もう少し正確に表現すると、Encoder から出力されるのは、分布のパラメータ μ, Σ である
 - そして、そのパラメータを使って分布 $\mathcal{N}(z|\pmb{\mu},\pmb{\Sigma})$ を構成し、分布から z をサンプリングする
 - Decoder の出力は、復元されたデータ y である

- Decoder の損失関数
 - 画像データでは通常、各ピクセルの値が 0 から 1 までになるようにスケーリングされている
 - このとき、p(x|z) はベルヌーイ分布と仮定していることになる
 - 出力層のユニット j は、 $y_i = p(x_i = 1|z)$ を出力しているとみなせる
 - ullet y_j は、再構成 $m{y}$ の j 番目の要素であり、元のデータ $m{x}$ の j 番目の要素 x_j と対応する
 - VAE が最初に提案された論文では、隠れ層は1層のみである
 - ullet 再構成 y は、次のように計算される

$$y = f_{\sigma} \left(\mathbf{W}_{o} \tanh \left(\mathbf{W}_{h} \mathbf{z} + \mathbf{b}_{h} \right) + \mathbf{b}_{o} \right)$$
(31)

- $ullet f_{\sigma}(\cdot)$ は、行列の各要素にシグモイド関数 $\sigma(\cdot)$ を適用する活性化関数
- ullet W_h, b_h は隠れ層の重みとバイアス、 W_o, b_o は出力層の重みとバイアス

• このとき $\ln p(x|z)$ は次のように記述できる

$$\ln p(\boldsymbol{x}|\boldsymbol{z}) = \ln \prod_{j=1}^{D} (p(x_j = 1|\boldsymbol{z}))^{x_j} (p(x_j = 0|\boldsymbol{z}))^{1-x_j}$$

$$= \ln \prod_{j} (p(x_j = 1|\boldsymbol{z}))^{x_j} (1 - p(x_j = 1|\boldsymbol{z}))^{1-x_j}$$

$$= \ln \prod_{j} y_j^{x_j} (1 - y_j)^{1-x_j}$$

$$= \sum_{j} (x_j \ln y_j + (1 - x_j) \ln (1 - y_j))$$
(32)

- ullet z は、分布 $q(oldsymbol{z}|oldsymbol{x},\phi)$ からサンプリングされている
- 従って、上記を最大化することは、 $\mathbb{E}_{q(m{z})}\left[\ln p(m{x}|m{z})
 ight]$ を最大化すること に等しい

- 上記は、 x_j と y_j のいずれもベルヌーイ分布に従う (二値変数) ときの、 \mathbf{g} の交差エントロピーとなっていることが分かる
- 従って、 $\mathbb{E}_{q(z)}\left[\ln p(x|z)\right]$ を最大化することは、交差エントロピーを最小化することに相当
- Decoder の損失関数は、以下の交差エントロピー誤差として定義できる

$$E = -\sum_{j} (x_j \ln y_j + (1 - x_j) \ln (1 - y_j))$$
(33)

- \bullet 元データ x_j と、その再構成 y_j との差が大きければ大きいほど、上記の誤差は増大する
- これより、上記の誤差は再構成誤差 (Reconstruction Error) とよばれる
- これより、VAE の Encoder と Decoder は次の図 3 のように表せる

図 3: VAE の Encoder と Decoder の概要

- Reparameterization Trick
 - VAE が先程の図3のようであるとき、大きな問題が生じる
 - サンプリングを行うと、計算グラフが途中で途切れるため、<mark>誤差逆伝播</mark> 法を実行できない
 - そこで、次の図4のように構成する
 - ullet $z \sim \mathcal{N}(z|\mu, \Sigma)$ として、z を分布から直接サンプリングするのではない
 - ullet z を、決定論的な関数 $g(oldsymbol{\epsilon},oldsymbol{x}|\phi)$ から決定する
 - ullet 但し、 ϵ は、分布 $p(\epsilon)$ からサンプリングされる
 - ニューラルネットの最適化には無関係な項 ϵ と、Encoder のパラメータ ϕ で z を表現することで、誤差逆伝播法を実行可能にする
 - このテクニックを、Reparameterization Trick という
 - $oldsymbol{\epsilon} \sim (oldsymbol{\epsilon} | oldsymbol{0}, oldsymbol{I})$ とすれば、 $oldsymbol{z}$ は次のように計算できる

$$z = g(\epsilon, x | \phi) = \mu + \Sigma^{\frac{1}{2}} \epsilon$$
 (34)

- 共分散行列 Σ が対角行列であれば、上記の $\Sigma^{\frac{1}{2}}\epsilon$ は、単なる要素ごとの 積 (対角行列の各要素を並べたベクトルと、 ϵ の要素ごとの積) として書ける
- zの式は以下のように導出できる
- ullet 確率変数 z,ϵ 間の関係が、次のようになっているとする

$$z = \mu + U\Lambda^{\frac{1}{2}}\epsilon \tag{35}$$

- 但し、正定値対称行列 $oldsymbol{\Sigma}$ が、固有値分解によって $oldsymbol{\Sigma} = oldsymbol{U}oldsymbol{\Lambda}oldsymbol{U}^T = oldsymbol{U}oldsymbol{\Lambda}^{rac{1}{2}}\left(oldsymbol{U}oldsymbol{\Lambda}
 ight)^T$ と表せるとする
- ullet U は固有ベクトルを並べた行列、 Λ は対角成分に固有値をもつ対角行列とする

• 確率分布 p(z) と $p(\epsilon)$ との関係は、ヤコビ行列 ${m J}=\partial\epsilon/\partial z$ により次のように記述できる

$$p(z) = p(\epsilon) |\det(J)| = p(\epsilon) \left| \det\left(\frac{\partial z}{\partial \epsilon}\right) \right|$$
 (36)

 \bullet ヤコビ行列 J を計算すると次のようになる

$$J = \frac{\partial \epsilon}{\partial z} = \frac{\partial}{\partial z} \left(\left(U \Lambda^{\frac{1}{2}} \right)^{-1} (z - \mu) \right) = \left(\left(U \Lambda^{\frac{1}{2}} \right)^{-1} \right)^{1}$$
(37)

ヤコビ行列 J の行列式は次のようになる

$$\det(\boldsymbol{J}) = \left| \left(\left(\boldsymbol{U} \boldsymbol{\Lambda}^{\frac{1}{2}} \right)^{-1} \right)^{T} \right|$$

$$= \left| \left(\boldsymbol{U} \boldsymbol{\Lambda}^{\frac{1}{2}} \right)^{-1} \right| \quad (\because |\boldsymbol{A}^{T}| = |\boldsymbol{A}|)$$

$$= \frac{1}{\left| \boldsymbol{U} \boldsymbol{\Lambda}^{\frac{1}{2}} \right|} \quad \left(\because |\boldsymbol{A}^{-1}| = \frac{1}{|\boldsymbol{A}|} \right)$$

• Σ の行列式は次のように表せる

$$|\Sigma| = \left| U \Lambda^{\frac{1}{2}} \left(U \Lambda^{\frac{1}{2}} \right)^{T} \right| = \left| U \Lambda^{\frac{1}{2}} \right| \left| \left(U \Lambda^{\frac{1}{2}} \right)^{T} \right| = \left| U \Lambda^{\frac{1}{2}} \right|^{2}$$
(39)

ullet 従って $\left|oldsymbol{U}oldsymbol{\Lambda}^{rac{1}{2}}
ight|=\left|oldsymbol{\Sigma}
ight|^{rac{1}{2}}$ である

(38)

- ullet Σ は正定値である $(|oldsymbol{\Sigma}|>0)$ から、 $|oldsymbol{\Sigma}|^{rac{1}{2}}=\left|oldsymbol{U}oldsymbol{\Lambda}^{rac{1}{2}}
 ight|>0$ が成立し、 $oldsymbol{U}oldsymbol{\Lambda}^{rac{1}{2}}$ も正定値行列となる
- ullet これより、逆行列 $\left(U\Lambda^{rac{1}{2}}
 ight)^{-1}$ が存在するので、ヤコビ行列 J は計算できることが確認される
- \bullet ヤコビ行列 J の行列式の絶対値は、次のようになる

$$|\det(\boldsymbol{J})| = \left| \frac{1}{\left| \boldsymbol{U} \boldsymbol{\Lambda}^{\frac{1}{2}} \right|} \right| = \left| \frac{1}{\left| \boldsymbol{\Sigma} \right|^{\frac{1}{2}}} \right| = \frac{1}{\left| \boldsymbol{\Sigma} \right|^{\frac{1}{2}}}$$
 (40)

• $p(\epsilon)$ がガウス分布 $\mathcal{N}(\epsilon|\mathbf{0}, \mathbf{I})$ であるとすると、p(z) は次のようになる

$$p(z) = p(\epsilon) \left| \det \left(\frac{\partial z}{\partial \epsilon} \right) \right|$$

$$= \frac{1}{(2\pi)^{\frac{K}{2}}} \exp \left(-\frac{1}{2} \epsilon^T \epsilon \right) \frac{1}{|\Sigma|^{\frac{1}{2}}}$$
(41)

• ここで、指数関数の中身は次のように書ける

$$(z - \mu)^{T} \Sigma^{-1} (z - \mu)$$

$$= \left(U\Lambda^{\frac{1}{2}}\epsilon\right)^{T} \left(U\Lambda U^{T}\right)^{-1} \left(U\Lambda^{\frac{1}{2}}\epsilon\right)$$

$$= \epsilon^{T} \left(\Lambda^{\frac{1}{2}}\right)^{T} U^{T} \left(U^{T}\right)^{-1} \Lambda^{-1} U^{-1} U\Lambda^{\frac{1}{2}}\epsilon$$

$$= \epsilon^{T} \left(\Lambda^{\frac{1}{2}}\right)^{T} \Lambda^{-1} \Lambda^{\frac{1}{2}}\epsilon$$

$$= \epsilon^{T} \Lambda^{\frac{1}{2}} \Lambda^{-1} \Lambda^{\frac{1}{2}}\epsilon$$

$$= \epsilon^{T} \epsilon$$

$$(42)$$

ullet これより、 $p(oldsymbol{z})$ は平均 $oldsymbol{\mu}$ 、共分散行列 $oldsymbol{\Sigma}$ のガウス分布である

$$p(\mathbf{z}) = \frac{1}{(2\pi)^{\frac{K}{2}}} \exp\left(-\frac{1}{2}\boldsymbol{\epsilon}^{T}\boldsymbol{\epsilon}\right) \frac{1}{|\mathbf{\Sigma}|^{\frac{1}{2}}}$$

$$= \frac{1}{(2\pi)^{\frac{K}{2}}} \frac{1}{|\mathbf{\Sigma}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{z} - \boldsymbol{\mu})^{T} \mathbf{\Sigma}^{-1}(\mathbf{z} - \boldsymbol{\mu})\right) \quad (43)$$

$$= \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}, \mathbf{\Sigma}) \quad (44)$$

 $oldsymbol{z}\sim\mathcal{N}(z|oldsymbol{\mu},oldsymbol{\Sigma})$ について、共分散行列 $oldsymbol{\Sigma}$ が既に対角行列であれば、 $oldsymbol{U}=oldsymbol{I}$ 、 $oldsymbol{\Lambda}=oldsymbol{\Sigma}$ であるので、結局以下が言える

$$z = \mu + U\Lambda^{\frac{1}{2}}\epsilon = \mu + \Sigma^{\frac{1}{2}}\epsilon$$
 (45)

図 4: VAE の構造