1

A Decentralized Screenless Mobile: Mesh-First Connectivity, DTN Resilience, and Self-Sovereign Identity

Rohit Rajat

Abstract—This paper presents the design of a decentralized, screenless mobile device that prioritizes proximity mesh links (Wi-Fi Aware/NAN), efficient voice transport (Bluetooth LE Audio/LC3), and long-range, low-power links (LoRa) with Delay/Disruption-Tolerant Networking (DTN) for store-and-forward, secured end-to-end with decentralized identifiers (DIDs) and Matrix-style cryptography. Inspired by mesh telephony deployments (Serval, Village Telco) and recent screenless assistants, the architecture addresses usability and resilience via local-first design, E2E encryption, and opportunistic federation. We detail hardware/software stack, interaction model, security, energy considerations, and an evaluation plan, and include implementable diagrams suitable for IEEE figures.

Index Terms—Decentralized mobile, mesh telephony, Wi-Fi Aware, LE Audio LC3, LoRa, DTN, DIDs, Matrix, wearable HCI.

INTRODUCTION

Screenless wearables illustrate the promise of voice-first mobility and the pitfalls of cloud dependence, motivating a local-first, decentralized rethink of the "phone" without a display. Community mesh telephony projects (Serval, Village Telco) demonstrated infrastructure-free calling and messaging in disasters and underserved regions using adhoc Wi-Fi and mesh relays. DTN and decentralized identity complete the resilience and trust story by enabling eventual delivery across disruptions and portable authentication without centralized accounts.

BACKGROUND AND RELATED WORK

Mesh telephony and Serval / Village Telco

Serval integrated device-to-device calling over Wi-Fi with store-and-forward (Rhizome) and mesh extenders. Village Telco validated VoIP over community WLAN mesh with satisfactory QoS and adoption metrics.

2.2 Delay/Disruption-Tolerant Networking (DTN)

DTN's Bundle Protocol decouples endpoints in space and time and supports store-and-forward across intermittent links.

2.3 Decentralized Identity and Matrix

W3C DIDs enable self-sovereign identifiers and verifiable credentials; Matrix provides decentralized, federated, endto-end encrypted messaging suited for opportunistic federation when IP is available.

3 SYSTEM GOALS

The system goals are:

- Connectivity independent of infrastructure (mesh first).
- Graceful degradation under disruption (DTN store-and-
- Privacy-preserving identity and messaging without centralized accounts (DIDs + Matrix).
- Audio/haptic-first interaction (LE Audio/LC3 for low bitrate voice).
- Modular radios and low energy footprint by omitting a display.

SYSTEM ARCHITECTURE

4.1 Hardware

An always-on low-power MCU handles wake-word and sensor gating; an application SoC runs networking and inference. Audio I/O includes far-field microphones and speaker or bone conduction; haptics provide private feedback. Radios: Wi-Fi Aware (NAN), BLE (LE Audio / LC3), and LoRa for sparse backhaul.

4.2 Software and Protocol Stack

Proximity discovery uses Wi-Fi Aware/NAN; when IP is present Matrix-style E2E messaging is used; DTN bundles provide store-and-forward spanning LoRa and other intermittent links. Identity and authentication rely on DIDs with signed DID Documents.

5 Interaction Model

The device is voice/haptics-first: wake-word, spoken confirmations, and tactile cues. LE Audio/LC3 improves intelligibility at low bitrates, lowering airtime and power. Nonvisual controls use tactile patterns for discreet notifications and mode switching. Context disambiguation leverages wearable HCI techniques for audio-only outputs.

Fig. 1: System block diagram (compact, improved layout to prevent overlapping labels).

Fig. 2: Protocol stack diagram (improved spacing and readability).

Fig. 3: Mode state transitions (compact).

6 SECURITY AND PRIVACY

Identity and trust are anchored in W3C DIDs with signed DID Documents and verifiable credentials; peers verify control and rotate keys without centralized registries. For messaging over IP, Matrix federation with E2E encryption prevents intermediaries from reading content while allowing self-hosted homeservers. Hardware privacy controls include physical mic mute and capture-LED transparency.

7 MODE STATE MACHINE

Prefer mesh (Wi-Fi Aware) for discovery and low-latency sessions; use federated IP via Matrix when reachable; fall back to DTN bundles over LoRa and queue for recontact. Reconciliation happens on recontact.

8 ENERGY CONSIDERATIONS

Displays dominate smartphone power in many modes; omitting the display improves endurance. LE Audio/LC3 reduces bitrate for comparable quality and improves packet loss resilience, lowering radio duty cycle. Opportunistic DTN transfers on LoRa shift background sync to ultra-low-throughput windows, with ADR balancing reliability and energy.

9 Proposed Solutions

9.1 Mesh-First Communication

Default to Wi-Fi Aware proximity sessions for discovery, signalling and data; form clusters that maintain calling/messaging functionality without APs.

9.2 DTN Store-and-Forward

Use Bundle Protocol overlay to queue and relay messages and voice snippets across partitions ensuring eventual delivery.

9.3 Sovereign Identity & E2E

Adopt DIDs for authentication and Matrix E2E for confidentiality in federated modes to avoid centralized account dependency.

10 IMPLEMENTATION PLAN

Phase 1: Android-class prototype using Wi-Fi Aware APIs, BLE/LE Audio and external LoRa for DTN validation. **Phase 2:** Integrate DID libraries and Matrix clients for peer auth, E2E messaging and optional federation. **Phase 3:** Field trials mirroring Serval/Village Telco community meshes and disaster exercises.

11 EVALUATION METHODOLOGY

Connectivity: delivery ratio, time-to-deliver, path diversity under induced disruptions comparing mesh-only, DTN-over-mesh, and federated modes. Energy: standby and active power with/without voice sessions; quantify savings from eliminating displays and adopting LC3. Usability: task completion, error rates, and subjective workload for voice/haptic tasks.

12 LIMITATIONS

LoRa's low rate constrains rich media and mandates prioritization of signaling, text and compressed summaries. Wi-Fi Aware support varies by chipset and OEM. Screenless interactions face discoverability challenges.

13 FUTURE WORK

On-device speech and compact edge LLMs for offline NLU/NLG; multi-radio policy learning to select among radios based on context; community deployment toolkits and governance models.

14 Conclusion

Combining mesh-first Wi-Fi Aware, DTN, and sovereign identity with Matrix E2E and a voice/haptics interaction model enables a decentralized, screenless mobile that preserves privacy, degrades gracefully, and improves energy endurance by omitting the display.

ACKNOWLEDGMENT

The authors acknowledge prior community mesh telephony efforts and open standards communities underpinning decentralized connectivity and identity.

REFERENCES

- Android Developers, "Wi-Fi Aware overview," 2025. [Online]. Available: https://developer.android.com/guide/topics/ connectivity/wifiaware
- [2] SoundGuys, "What is LE Audio and LC3," 2024. [Online]. Available: https://www.soundguys.com/le-audio-lc3-19934/
- [3] LoRa Alliance, "LoRaWAN® Specification," 2021.
- [4] K. Scott and S. Burleigh, "Bundle Protocol Specification," RFC 5050, Nov. 2007.
- [5] W3C, "Decentralized Identifiers (DIDs) v1.0," 2022. [Online]. Available: https://www.w3.org/TR/did-core/
- [6] Matrix.org Foundation, "Matrix: an open network for secure, decentralised communication," 2024. [Online]. Available: https://matrix.org/docs/guides/introduction
- [7] Serval Project, "Serval Mesh," (project site), accessed 2024.
- [8] M. J. Smith, A. P. Jardine, and S. R. Smith, "The Village Telco project: community-owned telephony infrastructure," EURASIP JWCN, 2011.
- [9] C. Constine, "Humane AI Pin review," The Verge, 2024.
- [10] A. Carroll and G. Heiser, "An Analysis of Power Consumption in a Smartphone," in *Proceedings of USENIX ATC*, 2010.
- [11] S. K. et al., "TactCube: An Intelligent Device to 'converse' with Smart Environments," Sensors, 2022.
- [12] Y. Zhang et al., "Touch IoT enabled by wireless self-sensing and haptic e-skin," Nature Communications Engineering, 2022.

- [13] R. Doe et al., "GazePointAR: Context-Aware Multimodal Voice Assistant," ACM Proc., 2024.
- [14] A. Editor, Mobile AI: Communication and Mobility After the Smartphone, Springer, 2025.

Rohit Rajat Rohit Rajat is a software developer and researcher focused on decentralized systems, mobile edge computing, and human-centered wearable interfaces. He graduated with a degree in Information Technology from Punjab Technical University (PTU) and holds a diploma in Computer Science from Sant Longowal Institute of Engineering and Technology. Rohit completed a 6-month internship in API integration with the MERN stack during college and has 2.2 years of professional experience at SS&C

Fintech Services Pvt. Ltd., where he worked on system integration and cloud-enabled financial services. His research interests include mesh networking, delay/disruption-tolerant networking (DTN), decentralized identity (DIDs), screenless HCI, and the intersection of decentralized AI, blockchain, and quantum computing for resilient systems.