INTRODUCTION TO DIFFERENTIAL GEOMETRY

CARSON JAMES

Contents

1. Review of Basic Definitions and Results	1
1.1. Set Theory	1
1.2. Differentiation	1
2. Multilinear Algebra	4
2.1. k -Tensors	4
2.2. (r,s) -Tensors	12
3. Manifolds	13
3.1. Smooth Manifolds	13
3.2. The Tangent Space	16
3.3. Integration on Manifolds	22
3.4. Integration of Differential Forms	28

1. Review of Basic Definitions and Results

1.1. Set Theory.

Definition 1.1.1. Let $\{A_i\}_{i\in I}$ be a collection of sets. The **disjoint union of** $\{A_i\}_{i\in I}$, denoted $\coprod_{i\in I} A_i$, is defined by

$$\prod_{i \in I} A_i = \bigcup_{i \in I} \{i\} \times A_i$$

Note 1.1.2. In these notes, we will identify $\{i\} \times A_i$ and A_i .

Definition 1.1.3. Let $\{A_i\}_{i\in I}$ be a collection of sets and $\sigma: I \to \coprod_{i\in I} A_i$. Then σ is said to be a **section of** $\coprod_{i\in I} A_i$ if for each $i\in I$, $\sigma(i)\in A_i$.

1.2. Differentiation.

Definition 1.2.1. Let $n \ge 1$. For $i = 1, \dots, n$, define $x_i : \mathbb{R}^n \to \mathbb{R}$ by $x_i(a_1, \dots, a_n) = a_i$. The functions $(x_i)_{i=1}^n$ are called the **standard coordinate functions on** \mathbb{R}^n .

Definition 1.2.2. Let $U \subset \mathbb{R}^n$ be open, $f: U \to \mathbb{R}$ and $a \in U$. Then f is said to be differentiable with respect to x_i at a if

$$\lim_{h \to 0} \frac{f(a + he_i) - f(a)}{h}$$

exists. If f is differentiable with respect to x_i at a, we define the **partial derivative of** f with respect to x_i at a, denoted

$$\frac{\partial f}{\partial x_i}(a) \text{ or } \frac{\partial}{\partial x_i}\Big|_a f$$

to be the limit above.

Definition 1.2.3. Let $U \subset \mathbb{R}^n$ be open and $f: U \to \mathbb{R}$. Then f is said to be **differentiable** with respect to x_i if for each $a \in U$, f is differentiable with respect to x_i at a.

Exercise 1.2.4. Let $U \subset \mathbb{R}^n$ be open, $f: U \to \mathbb{R}$ and $a \in U$. Suppose that $\frac{\partial^2 f}{\partial x_i x_j}$ and $\frac{\partial^2 f}{\partial x_j x_i}$ exist and are continuous at a. Then

$$\frac{\partial^2 f}{\partial x_i x_j}(a) = \frac{\partial^2 f}{\partial x_j x_i}(a)$$

Proof.

Definition 1.2.5. Let $U \subset \mathbb{R}^n$ be open and $f: U \to \mathbb{R}$. Then f is said to be **smooth** if for each $i_1, \dots, i_k \in \{1, \dots, n\}$, $\frac{\partial^k f}{\partial i_1 \dots i_k}$ exists and is continuous on U.

Definition 1.2.6. Let $U \subset \mathbb{R}^n$, $f: U \to \mathbb{R}$. Then f is said to be **smooth** if there exists $U' \subset \mathbb{R}^n$ and $f': U' \to \mathbb{R}$ such that $U \subset U'$, U' is open, $f'|_U = f$ and f' is smooth. The set of smooth functions on U is denoted $C^{\infty}(U)$.

Definition 1.2.7. Let $U, V \subset \mathbb{R}^n$ and $F : U \to V$. Then F is said to be a **diffeomorphism** if F is a homeomorphism and F, F^{-1} are smooth.

Exercise 1.2.8. Let $U, V \subset \mathbb{R}^n$ and $F: U \to V$. Then F is a diffeomorphism iff for each $p \in U$, there exists a relatively open neighborhood $N \subset U$ of p such that $F|_N : N \to F(N)$ is a diffeomorphism

Proof. content...

Definition 1.2.9. Let $U \subset \mathbb{R}^n$ and $p \in U$. Then U is said to be **star-shaped** if for each $q \in U$, $\{p + t(q - p) : 0 \le t \le 1\} \subset U$.

Theorem 1.2.10. (Taylor's Theorem) Let $U \subset \mathbb{R}^n$ be open, $p \in U$ and $f \in C^{\infty}(U)$. Suppose that U is star-shaped with respect to p. Then there exist $g_1, \dots, g_n \in C^{\infty}(U)$ such that for each $x \in U$,

$$f(x) = f(p) + \sum_{i=1}^{n} (x_i - p_i)g_i(x)$$

and for each $i \in \{1, \dots, n\}$,

$$g_i(p) = \frac{\partial f}{\partial x_i}(p)$$

Proof. Let $x \in U$. Since U is star-shaped with respect to p, $\{p + t(x - p) : 0 \le t \le 1\} \subset U$. By the chain rule,

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[f(p + t(x - p)) \right] = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (p + t(x - p)) (x_i - p_i)$$

Integrating both sides with respect to t from 0 to 1, we obtain

$$f(x) - f(p) = \sum_{i=1}^{n} (x_i - p_i) \int_0^1 \frac{\partial f}{\partial x_i} (p + t(x - p)) dt$$

For $i \in \{1, \dots, n\}$, define $g_i \in C^{\infty}(U)$ by

$$g_i(x) = \int_0^1 \frac{\partial f}{\partial x_i}(p + t(x - p))dt$$

Then for each $i \in \{1, \dots, n\}$,

$$g_i(p) = \frac{\partial f}{\partial x_i}(p)$$

2. Multilinear Algebra

Note 2.0.1. For the remainder of this section we let V denote an n-dimensional vector space with basis $\{e_1, \dots, e_n\}$ with dual space V^* and dual basis $\{\epsilon_1, \dots, \epsilon_n\}$ defined by $\epsilon_i(e_j) = \delta_{i,j}$.

2.1. k-Tensors.

Definition 2.1.1. Let $\alpha: V^k \to \mathbb{R}$. Then α is said to be **multilinear** or a **k-tensor on** V if for $i \in \{1, \dots, k\}$, $w \in V$, $c \in \mathbb{R}$ and $v_1, \dots, v_k \in V$,

$$\alpha(v_1, \dots, v_i + cw, \dots, v_k) = \alpha(v_1, \dots, v_i, \dots, v_k) + c\alpha(v_1, \dots, w, \dots, v_k)$$

The set of all k-tensors on V is denoted by $T_k(V)$. Define $L_0(V) = \mathbb{R}$.

Exercise 2.1.2. We have that $T_k(V)$ is a vector space.

Proof. Clear.
$$\Box$$

Definition 2.1.3. For $\sigma \in S_k$ and $\alpha \in T_k(V)$, define the $\sigma \alpha : V^k \to \mathbb{R}$ by

$$\sigma\alpha(v_1,\cdots,v_k)=\alpha(v_{\sigma(1)},\cdots,v_{\sigma(k)})$$

The map $\alpha \mapsto \sigma \alpha$ is called the **permutation action** of S_k on $T_k(V)$

Exercise 2.1.4. The permutation action of S_k on $T_k(V)$ is a group action.

Proof.

- (1) Clearly for each $\sigma \in S_k$ and $\alpha \in T_k(V)$, $\sigma \alpha \in T_k(V)$.
- (2) Clearly for each $\alpha \in T_k(V)$, $e\alpha = \alpha$.
- (3) Let $\tau, \sigma \in S_k$ and $\alpha \in T_k(V)$. Then for each $v_1, \dots, v_k \in V$,

$$(\tau\sigma)\alpha(v_1,\dots,v_k) = \alpha(v_{\tau\sigma(1)},\dots,v_{\tau\sigma(k)})$$
$$= \tau\alpha(v_{\sigma(1)},\dots,v_{\sigma(k)})$$
$$= \tau(\sigma\alpha)(v_1,\dots,v_k)$$

Exercise 2.1.5. Let $\sigma \in S_k$. Then $L_{\sigma} : T_k(V) \to T_k(V)$ given by $L_{\sigma}(\alpha) = \sigma \alpha$ is a linear transformation.

Proof. Let $\alpha, \beta \in T_k(V)$, $c \in \mathbb{R}$ and $v_1, \dots, v_k \in V$. Then

$$\sigma(c\alpha + \beta)(v_1, \dots, v_k) = (c\alpha + \beta)(v_{\sigma(1)}, \dots, v_{\sigma(k)})$$

$$= c\alpha(v_{\sigma(1)}, \dots, v_{\sigma(k)}) + \beta(v_{\sigma(1)}, \dots, v_{\sigma(k)})$$

$$= c\sigma\alpha(v_1, \dots, v_k) + \sigma\beta(v_1, \dots, v_k)$$

So $\sigma(c\alpha + \beta) = c\sigma\alpha + \sigma\beta$.

Definition 2.1.6. Let $\alpha \in T_k(V)$. Then α is said to be **symmetric** if for each $\sigma \in S_k$, $\sigma \alpha = \alpha$. and α is said to be **alternating** if for each $\sigma \in S_k$, $\sigma \alpha = \operatorname{sgn}(\sigma)\alpha$. The set of symmetric k-tensors on V is denoted $\Xi_k(V)$ and the set of alternating k-tensors on V is denoted $\Lambda_k(V)$.

Definition 2.1.7. Define the symmetric operator $S: T_k(V) \to \Xi_k(V)$ by

$$S(\alpha) = \frac{1}{k!} \sum_{\sigma \in S_k} \sigma \alpha$$

Define the alternating operator $A: T_k(V) \to \Lambda_k(V)$ by

$$A(\alpha) = \frac{1}{k!} \sum_{\sigma \in S_k} \operatorname{sgn}(\sigma) \sigma \alpha$$

Exercise 2.1.8.

- (1) For $\alpha \in T_k(V)$, $S(\alpha)$ is symmetric.
- (2) For $\alpha \in T_k(V)$, $A(\alpha)$ is alternating.

Proof.

(1) Let $\alpha \in T_k(V)$ and $\sigma \in S_k$. Then

$$\sigma S(\alpha) = \sigma \left[\frac{1}{k!} \sum_{\tau \in S_k} \tau \alpha \right]$$
$$= \frac{1}{k!} \sum_{\tau \in S_k} \sigma \tau \alpha$$
$$= \frac{1}{k!} \sum_{\tau \in S_k} \tau \alpha$$
$$= S(\alpha)$$

(2) Let $\alpha \in T_k(V)$ and $\sigma \in S_k$. Then

$$\sigma A(\alpha) = \sigma \left[\frac{1}{k!} \sum_{\tau \in S_k} \operatorname{sgn}(\tau) \tau \alpha \right]$$

$$= \frac{1}{k!} \sum_{\tau \in S_k} \operatorname{sgn}(\tau) \sigma \tau \alpha$$

$$= \frac{1}{k!} \sum_{\tau \in S_k} \operatorname{sgn}(\sigma) \operatorname{sgn}(\sigma \tau) \sigma \tau \alpha$$

$$= \operatorname{sgn}(\sigma) \frac{1}{k!} \sum_{\tau \in S_k} \operatorname{sgn}(\sigma \tau) \sigma \tau \alpha$$

$$= \operatorname{sgn}(\sigma) \frac{1}{k!} \sum_{\tau \in S_k} \operatorname{sgn}(\tau) \tau \alpha$$

$$= \operatorname{sgn}(\sigma) A(\alpha)$$

Exercise 2.1.9

- (1) For $\alpha \in \Xi_k(V)$, $S(\alpha) = \alpha$.
- (2) For $\alpha \in \Lambda_k(V)$, $A(\alpha) = \alpha$.

Proof.

(1) Let $\alpha \in \Xi_k(V)$. Then

$$S(\alpha) = \frac{1}{k!} \sum_{\sigma \in S_k} \sigma \alpha$$
$$= \frac{1}{k!} \sum_{\sigma \in S_k} \alpha$$
$$= \alpha$$

(2) Let $\alpha \in \Lambda_k(V)$. Then

$$A(\alpha) = \frac{1}{k!} \sum_{\sigma \in S_k} \operatorname{sgn}(\sigma) \sigma \alpha$$
$$= \frac{1}{k!} \sum_{\sigma \in S_k} \operatorname{sgn}(\sigma)^2 \alpha$$
$$= \alpha$$

Exercise 2.1.10. The symmetric operator $S: T_k(V) \to \Xi_k(V)$ and the alternating operator $A: T_k(V) \to \Lambda_k(V)$ are linear.

Proof. Clear.
$$\Box$$

Definition 2.1.11. Let $\alpha \in T_k(V)$ and $\beta \in T_l(V)$. The **tensor product** of α and β is defined to be the map $\alpha \otimes \beta \in T_{k+l}(V)$ given by

$$\alpha \otimes \beta(v_1, \cdots, v_k, v_{k+1}, \cdots, v_{k+l}) = \alpha(v_1, \cdots, v_k)\beta(v_{k+1}, \cdots, v_{k+l})$$

 $Thus \otimes : T_k(V) \times T_l(V) \to T_{k+l}(V).$

Exercise 2.1.12. The tensor product $\otimes : T_k(V) \times T_l(V) \to T_{k+l}(V)$ is associative.

Proof. Clear.
$$\Box$$

Exercise 2.1.13. The tensor product $\otimes : T_k(V) \times T_l(V) \to T_{k+l}(V)$ is bilinear.

Proof. Clear.
$$\Box$$

Definition 2.1.14. Let $\alpha \in \Lambda_k(V)$ and $\beta \in \Lambda_l(V)$. The **exterior product** of α and β is defined to be the map $\alpha \wedge \beta \in \Lambda_{k+l}(V)$ given by

$$\alpha \wedge \beta = \frac{(k+l)!}{k!l!} A(\alpha \otimes \beta)$$

Thus $\wedge : \Lambda_k(V) \times \Lambda_l(V) \to \Lambda_{k+l}(V)$.

Exercise 2.1.15. The exterior product $\wedge : \Lambda_k(V) \times \Lambda_l(V) \to T_{k+l}(V)$ is bilinear.

Proof. Clear.
$$\Box$$

Exercise 2.1.16. Let $\alpha \in T_k(V)$ and $\beta \in T_l(V)$. Then

- $(1) \ A(A(\alpha) \otimes \beta) = A(\alpha \otimes \beta)$
- $(2) \ A(\alpha \otimes A(\beta)) = A(\alpha \otimes \beta)$

Proof. First note that if we fix $\mu \in S_{k+1}$, then for each $\tau \in S_k$, choosing $\sigma = \mu \tau^{-1}$ yields $\sigma \tau = \mu$. For each $\mu \in S_{k+l}$, the map $\phi_{\mu} : S_k \to S_{k+l}$ given by $\phi_{\mu}(\tau) = \mu \tau^{-1}$ is injective. Thus for each $\mu \in S_{k+l}$, we have that $\#\{(\sigma, \tau) \in S_{k+l} \times S_k : \mu = \sigma \tau\} = k!$

(1) Then

$$A(A(\alpha) \otimes \beta) = \frac{1}{(k+l)!} \sum_{\sigma \in S_{k+l}} \operatorname{sgn}(\sigma) \sigma \left[A(\alpha) \otimes \beta \right]$$

$$= \frac{1}{(k+l)!} \sum_{\sigma \in S_{k+l}} \operatorname{sgn}(\sigma) \sigma \left[\left(\frac{1}{k!} \sum_{\tau \in S_k} \operatorname{sgn}(\tau) \tau \alpha \right) \otimes \beta \right]$$

$$= \frac{1}{(k+l)!} \sum_{\sigma \in S_{k+l}} \operatorname{sgn}(\sigma) \sigma \left[\frac{1}{k!} \sum_{\tau \in S_k} \operatorname{sgn}(\tau) (\tau \alpha) \otimes \beta \right]$$

$$= \frac{1}{(k+l)!} \sum_{\sigma \in S_{k+l}} \operatorname{sgn}(\sigma) \sigma \left[\frac{1}{k!} \sum_{\tau \in S_k} \operatorname{sgn}(\tau) \tau (\alpha \otimes \beta) \right]$$

$$= \frac{1}{k!(k+l)!} \sum_{\sigma \in S_{k+l}} \sum_{\tau \in S_k} \operatorname{sgn}(\sigma \tau) \sigma \tau (\alpha \otimes \beta)$$

$$= \frac{k!}{k!(k+l)!} \sum_{\mu \in S_{k+l}} \operatorname{sgn}(\mu) \mu(\alpha \otimes \beta)$$

$$= \frac{1}{(k+l)!} \sum_{\mu \in S_{k+l}} \operatorname{sgn}(\mu) \mu(\alpha \otimes \beta)$$

$$= A(\alpha \otimes \beta)$$

(2) Similar to (1).

Exercise 2.1.17. The exterior product $\wedge : \Lambda_k(V) \times \Lambda_l(V) \to \Lambda_{k+l}(V)$ is associative.

Proof. Let $\alpha \in \Lambda_k(V)$, $\beta \in \Lambda_l(V)$ and $\gamma \in \Lambda_m(V)$. Then

$$(\alpha \wedge \beta) \wedge \gamma = \left[\frac{(k+l)!}{k!l!} A(\alpha \otimes \beta) \right] \wedge \gamma$$

$$= \frac{(k+l+m)!}{(k+l)!m!} A \left(\left[\frac{(k+l)!}{k!l!} A(\alpha \otimes \beta) \right] \otimes \gamma \right)$$

$$= \frac{(k+l+m)!}{(k+l)!m!} \frac{(k+l)!}{k!l!} A(A(\alpha \otimes \beta) \otimes \gamma)$$

$$= \frac{(k+l+m)!}{m!} \frac{1}{k!l!} A((\alpha \otimes \beta) \otimes \gamma)$$

$$= \frac{(k+l+m)!}{k!(l+m)!} \frac{(l+m)!}{l!m!} A(\alpha \otimes (\beta \otimes \gamma))$$

$$= \frac{(k+l+m)!}{k!(l+m)!} \frac{(l+m)!}{l!m!} A(\alpha \otimes A(\beta \otimes \gamma))$$

$$= \frac{(k+l+m)!}{k!(l+m)!} A(\alpha \otimes \frac{(l+m)!}{l!m!} A(\beta \otimes \gamma))$$

$$= \frac{(k+l+m)!}{k!(l+m)!} A(\alpha \otimes (\beta \wedge \gamma))$$

$$= \alpha \wedge (\beta \wedge \gamma)$$

Exercise 2.1.18. Let $\alpha_i \in \Lambda_{k_i}(V)$ for $i = 1, \dots, m$. Then

$$\bigwedge_{i=1}^{m} \alpha_i = \frac{\left(\sum_{i=1}^{m} k_i\right)!}{\prod_{i=1}^{m} k_i!} A\left(\bigotimes_{i=1}^{m} \alpha_i\right)$$

Proof. To see that the statment is true in the case m=3, the proof of the previous exercise tells us that indeed

$$\alpha_1 \wedge \alpha_2 \wedge \alpha_3 = \frac{(k_1 + k_2 + k_3)!}{k_1! k_2! k_3!} A(\alpha_1 \otimes \alpha_2 \otimes \alpha_3)$$

Now, suppose that the statement is true for each $3 \leq m \leq m_0$. Then the proof of the previous exercise tells us the

$$\bigwedge_{i=1}^{m_0+1} \alpha_i = \left(\bigwedge_{i=1}^{m_0-1} \alpha_i \right) \wedge \alpha_{m_0} \wedge \alpha_{m_0+1}
= \frac{\left(\sum_{i=1}^{m_0-1} k_i + k_{m_0} + k_{m_0+1} \right)!}{\left(\sum_{i=1}^{m_0-1} k_i \right)! k_{m_0}! k_{m_0+1}!} A \left(\left[\bigwedge_{i=1}^{m_0-1} \alpha_i \right] \otimes \alpha_{m_0} \otimes \alpha_{m_0+1} \right)
= \frac{\left(\sum_{i=1}^{m_0-1} k_i + k_{m_0} + k_{m_0+1} \right)!}{\left(\sum_{i=1}^{m_0-1} k_i \right)! k_{m_0}! k_{m_0+1}!} A \left(\left[\left(\sum_{i=1}^{m_0-1} k_i \right)! \right] A \left(\left(\bigotimes_{i=1}^{m_0-1} \alpha_i \right) \right) \otimes \alpha_{m_0} \otimes \alpha_{m_0+1} \right)
= \frac{\left(\sum_{i=1}^{m_0+1} k_i \right)!}{\prod_{i=1}^{m_0+1} k_i !} A \left(A \left[\bigotimes_{i=1}^{m_0-1} \alpha_i \right] \otimes \alpha_{m_0} \otimes \alpha_{m_0+1} \right)
= \frac{\left(\sum_{i=1}^{m_0+1} k_i \right)!}{\prod_{i=1}^{m_0+1} k_i !} A \left(\left[\bigotimes_{i=1}^{m_0-1} \alpha_i \right] \otimes \alpha_{m_0} \otimes \alpha_{m_0+1} \right)
= \frac{\left(\sum_{i=1}^{m_0+1} k_i \right)!}{\prod_{i=1}^{m_0+1} k_i !} A \left(\left(\bigotimes_{i=1}^{m_0+1} \alpha_i \right) \right)$$

Exercise 2.1.19. Define $\tau \in S_{k+l}$ by

$$\tau = \begin{pmatrix} 1 & 2 & \cdots & l & l+1 & l+2 & \cdots & l+k \\ 1+k & 2+k & \cdots & l+k & 1 & 2 & \cdots & k \end{pmatrix}$$

Then the inversion number of τ is kl. (Hint: inversion number)

Proof.

$$N(\tau) = \sum_{i=1}^{l} k^{i}$$
$$= kl$$

Since $\operatorname{sgn}(\tau) = (-1)^{N(\tau)}$ we know that $\operatorname{sgn}(\tau) = (-1)^{kl}$.

Exercise 2.1.20. Let $\alpha \in \Lambda_k(V)$, $\beta \in \Lambda_l(V)$. Then

$$\alpha \wedge \beta = (-1)^{kl} \beta \wedge \alpha$$

Proof. Note that For $\sigma \in S_{k+l}$ and $v_1, \dots, v_{k+l} \in V$, we have that

$$\sigma\tau(\beta\otimes\alpha)(v_{1},\cdots,v_{l},v_{l+1},\cdots v_{l+k}) = \beta\otimes\alpha(v_{\sigma\tau(1)},\cdots,v_{\sigma\tau(l)},v_{\sigma\tau(l+1)},\cdots v_{\sigma\tau(l+k)})$$

$$= \beta(v_{\sigma\tau(1)},\cdots,v_{\sigma\tau(l)})\alpha(v_{\sigma\tau(l+1)},\cdots v_{\sigma\tau(l+k)})$$

$$= \beta(v_{\sigma(1+k)},\cdots,v_{\sigma(l+k)})\alpha(v_{\sigma(1)},\cdots v_{\sigma(k)})$$

$$= \alpha(v_{\sigma(1)},\cdots v_{\sigma(k)})\beta(v_{\sigma(1+k)},\cdots,v_{\sigma(l+k)})$$

$$= \alpha\otimes\beta(v_{\sigma(1)},\cdots v_{\sigma(k)},v_{\sigma(1+k)},\cdots,v_{\sigma(l+k)})$$

$$= \sigma(\alpha\otimes\beta)(v_{1},\cdots,v_{k},v_{1+k},\cdots v_{l+k})$$

Thus $\sigma \tau(\beta \otimes \alpha) = \sigma(\alpha \otimes \beta)$. Define τ as in the previous exercise. Then

$$\beta \wedge \alpha = \frac{(k+l)!}{k!l!} A(\beta \otimes \alpha)$$

$$= \frac{(k+l)!}{k!l!} \frac{1}{(k+l)!} \sum_{\sigma \in S_{k+l}} \operatorname{sgn}(\sigma) \sigma(\beta \otimes \alpha)$$

$$= \frac{(k+l)!}{k!l!} \frac{1}{(k+l)!} \sum_{\sigma \in S_{k+l}} \operatorname{sgn}(\sigma\tau) \sigma\tau(\beta \otimes \alpha)$$

$$= \operatorname{sgn}(\tau) \frac{(k+l)!}{k!l!} \frac{1}{(k+l)!} \sum_{\sigma \in S_{k+l}} \operatorname{sgn}(\sigma) \sigma(\alpha \otimes \beta)$$

$$= \operatorname{sgn}(\tau) \frac{(k+l)!}{k!l!} A(\alpha \otimes \beta)$$

$$= \operatorname{sgn}(\tau) \alpha \wedge \beta$$

$$= (-1)^{kl} \alpha \wedge \beta$$

Exercise 2.1.21. Let $\alpha \in \Lambda_k(V)$. If k is odd, then $\alpha \wedge \alpha = 0$.

Proof. Suppose that k is odd. The previous exercise tells us that

$$\alpha \wedge \alpha = (-1)^{k^2} \alpha \wedge \alpha$$
$$= -\alpha \wedge \alpha$$

Thus $\alpha \wedge \alpha = 0$.

Exercise 2.1.22. (Fundamental Example) Let $\alpha_1, \dots, \alpha_m \in \Lambda_1(V)$ and $v_1, \dots, v_m \in V$. Then

$$\left(\bigwedge_{i=1}^{m} \alpha_i\right)(v_1, \cdots, v_m) = \det(\alpha_i(v_j))$$

Proof. The previous exercises tell us that

$$\left(\bigwedge_{i=1}^{m} \alpha_{i}\right)(v_{1}, \dots, v_{m}) = m! A\left(\bigotimes_{i=1}^{m} \alpha_{i}\right)(v_{1}, \dots, v_{m})$$

$$= m! \left[\frac{1}{m!} \sum_{\sigma \in S_{m}} \operatorname{sgn}(\sigma) \sigma\left(\bigotimes_{i=1}^{m} \alpha_{i}\right)\right](v_{1}, \dots, v_{m})$$

$$= \sum_{\sigma \in S_{m}} \operatorname{sgn}(\sigma) \left(\bigotimes_{i=1}^{m} \alpha_{i}\right)(v_{\sigma(1)}, \dots, v_{\sigma(m)})$$

$$= \sum_{\sigma \in S_{m}} \operatorname{sgn}(\sigma) \prod_{i=1}^{m} \alpha_{i}(v_{\sigma(i)})$$

$$= \det(\alpha_{i}(v_{i}))$$

Definition 2.1.23. Define $\mathcal{I}_k = \{(i_1, i_2, \dots, i_k) \in \mathbb{N}^k : i_1 < i_2 < \dots < i_k \leq n\}$. Each element $I \in \mathcal{I}_k$ is called a **multi-index**. Recall that $\#\mathcal{I}_k = \binom{n}{k}$.

Definition 2.1.24. Let $I = \{(i_1, i_2, \dots, i_k) \in I_k\}$

Define $e_I \in V^k$ by

$$e_I = (e_{i_1}, \cdots, e_{i_k})$$

Define $\epsilon_I \in \Lambda_k(V)$ by

$$\epsilon_I = \epsilon_{i_1} \wedge \cdots, \wedge \epsilon_{i_k}$$

Exercise 2.1.25. Let $I=(i_1,\cdots,i_k)$ and $J=(j_1,\cdots,j_k)\in\mathcal{I}_k$. Then $\epsilon_I(e_J)=\delta_{I,J}$.

Proof. Put $A = \begin{pmatrix} \epsilon_{i_1}(e_{j_1}) & \cdots & \epsilon_{i_1}(e_{j_k}) \\ & \vdots & \\ \epsilon_{i_k}(e_{j_1}) & \cdots & \epsilon_{i_k}(e_{j_k}) \end{pmatrix}$. A previous exercise tells us that $\epsilon_I(e_J) = \det A$.

If I = J, then $A = I_{k \times k}$ and therefore $\epsilon_I(e_J) = 1$. Suppose that $I \neq J$. Put $l_0 = \min\{l : 1 \leq l \leq k, i_l \neq j_l\}$. If $i_{l_0} < j_{l_0}$, then all entries on the l_0th row of A are 0. If $i_{l_0} > j_{l_0}$, then all entries on the l_0th column of A are 0.

Exercise 2.1.26. Let $\alpha, \beta \in \Lambda_k(V)$. If for each $I \in \mathcal{I}_k$, $\alpha(e_I) = \beta(e_I)$, then $\alpha = \beta$.

Proof. Suppose that for each $I \in \mathcal{I}_k$, $\alpha(e_I) = \beta(e_I)$. Let $v_1, \dots, v_k \in V$. For $i = 1, \dots, k$, write $v_i = \sum_{j_i=1}^n a_{i,j_i} e_{j_i}$. Then

$$\alpha(v_1, \dots, v_k) = \sum_{j_1, \dots, j_k=1}^n \left(\prod_{i=1}^k a_{i,j_i} \right) \alpha(e_{j_1}, \dots, e_{j_k})$$

$$= \sum_{j_1 \neq \dots \neq j_k}^n \left(\prod_{i=1}^k a_{i,j_i} \right) \alpha(e_{j_1}, \dots, e_{j_k})$$

$$= \sum_{J \in \mathcal{I}_k} \left[\sum_{\sigma \in S_J} \operatorname{sgn}(\sigma) \left(\prod_{i=1}^k a_{i,\sigma(j_i)} \right) \right] \alpha(e_J)$$

$$= \sum_{J \in \mathcal{I}_k} \left[\sum_{\sigma \in S_J} \operatorname{sgn}(\sigma) \left(\prod_{i=1}^k a_{i,\sigma(j_i)} \right) \right] \beta(e_J)$$

$$= \sum_{j_1, \dots, j_k=1}^n \left(\prod_{i=1}^k a_{i,j_i} \right) \beta(e_{j_1}, \dots, e_{j_k})$$

$$= \beta(v_1, \dots, v_k)$$

Exercise 2.1.27. The set $\{\epsilon_I : I \in \mathcal{I}_k\}$ is a basis for $\Lambda_k(V)$ and $\dim \Lambda_k(V) = \binom{n}{k}$.

Proof. Let $(a_I)_{I \in \mathcal{I}_k} \subset \mathbb{R}$. Let $\alpha = \sum_{I \in \mathcal{I}_k} a_I \epsilon_I$. Suppose that $\alpha = 0$. Then for each $J \in \mathcal{I}_k$, $\alpha(e_J) = a_J = 0$. Thus $\{e_I : I \in \mathcal{I}_k\}$ is linearly independent. Let $\beta \in \Lambda_k(V)$. For $I \in \mathcal{I}_k$, put $b_I = \beta(e_I)$. define $\mu = \sum_{I \in \mathcal{I}_k} b_I \epsilon_I$. Then for each $J \in \mathcal{I}_k$, $\mu(e_J) = b_J = \beta(e_J)$. Hence $\mu = \beta$ and therefore $\beta \in \text{span}\{\epsilon_I : I \in \mathcal{I}_k\}$.

2.2. (r, s)-Tensors.

3. Manifolds

3.1. Smooth Manifolds.

Definition 3.1.1. Define the upper half space of \mathbb{R}^n , denoted \mathbb{H}_n , by

$$\mathbb{H}_n = \{(x_1, x_2, \cdots, x_n) \in \mathbb{R}^n : x_n \ge 0\}$$

and define

$$\partial \mathbb{H}_n = \{ (x_1, x_2, \cdots, x_n) \in \mathbb{R}^n : x_n = 0 \}$$

$$(\mathbb{H}^n)^\circ = \{ (x_1, x_2, \cdots, x_n) \in \mathbb{R}^n : x_n > 0 \}$$

Definition 3.1.2. Let M be a topological space.

- (1) Let $n \geq 1$, $U \subset M$, $V \subset \mathbb{H}^n$ open and $\phi : U \to V$. Then (U, ϕ) is said to be a **coordinate chart** on M if ϕ is a homeomorphism.
- (2) Let $\mathcal{A} = ((U_a, \phi_a))_{a \in A}$ be a collection of coordinate charts on M. Then \mathcal{A} is said to be an **atlas** on M if $\bigcup_{i} U_a = M$.
- (3) Let $n \geq 1$. Then M is said to be **locally half Euclidean of dimension** n if there exists an atlas $\mathcal{A} = ((U_a, \phi_a))_{a \in A}$ on M such that for each $a \in A$, $\phi_a(U_a) \subset \mathbb{H}^n$.
- (4) The space M is said to be an n-dimensional manifold if M is Hausdorff, second countable and locally half Euclidean of dimension n.

Note 3.1.3. For the remainder of this section, we assume M is an n-dimensional manifold.

Definition 3.1.4.

(1) Define the **boundary** of M, denoted ∂M , by

 $\partial M = \{ p \in M : \text{ there exists a chart } (U, \phi) \text{ on } M \text{ such that } p \in U \text{ and } \phi(p) \in \partial \mathbb{H}^n \}$

(2) Define the **interior** of M, denoted M° , by

$$M^\circ = M \setminus \partial M$$

Exercise 3.1.5. Let $p \in M$. Then $p \in \partial M$ iff for each chart (U, ϕ) on M, $p \in U$ implies that $\phi(p) \in \partial \mathbb{H}^n$. (Hint: simply connected)

Proof. Supposet that $p \in \partial M$. Then there exists a coordinate chart (V, ψ) on M such that $\psi(p) \in \partial \mathbb{H}^n$. Let (U, ϕ) be a coordinate chart on M. Suppose that $p \in U$. Note that $\phi \circ \psi : \psi(V \cap U) \to \phi(V \cap U)$ is a homeomorphism. Choose open n-balls B_{ϕ} , $B_{\psi} \subset \mathbb{H}^n$ such that $B_{\phi} \subset \phi(V \cap U)$, $B_{\psi} \subset \psi(V \cap U)$, $\phi(p) \in B_{\phi}$ and $\psi(p) \in B_{\psi}$. For the sake of contradiction, suppose that $\phi(p) \notin \partial \mathbb{H}^n$. Put $U' = B_{\phi} \setminus \{\phi(p)\}$ and $V' = B_{\psi} \setminus \{\psi(p)\}$. Define $\lambda : V' \to U'$ by $\lambda = \phi \circ \psi|_{B_{\psi}}$. Then λ is a homeomorphism. Note that V' is simply connected and U' is not. This is a contradiction.

Exercise 3.1.6. If $\partial M \neq \emptyset$, then

- (1) ∂M is an n-1-dimensional manifold
- (2) $\partial(\partial M) = \varnothing$.

Proof. (1) Since subspaces of Hausdorff, second countable spaces are Hausdorff and second countable, we need only show that ∂M is locally half euclidean of dimension n-1. Let $p \in \partial M$. Then there exists a coordinate chart (U, ϕ) on M such that $p \in U$ and $\phi(p) \in \partial \mathbb{H}^n$.

Put $U' = U \cap \partial M$. Note that U' is open in ∂M and $\phi(U) \cap \partial \mathbb{H}^n$ is open in $\partial \mathbb{H}^n$.

Define $\phi': U' \to \phi(U) \cap \partial \mathbb{H}^n$ by $\phi' = \phi|_{U'}$. Then ϕ' is a homeomorphism.

Since $\partial \mathbb{H}^n$ is homeomorphic to \mathbb{R}^{n-1} which is homeomorphic to $(\mathbb{H}^{n-1})^{\circ}$ there exists $\psi : \partial \mathbb{H}^n \to (\mathbb{H}^{n-1})^{\circ}$ such that ψ is a homeomorphism.

Define $V' = \psi(\phi(U) \cap \partial \mathbb{H}^n)$ and $\psi' : \phi(U) \cap \partial \mathbb{H}^n \to V'$ by and $\psi' = \psi|_{\phi(U) \cap \partial \mathbb{H}^n}$. Then V' is open in $(\mathbb{H}^{n-1})^{\circ}$ and ψ' is a homeomrophism.

Define $\lambda: U' \to V'$ by $\lambda = \psi' \circ \phi'$. Then λ is a homeomorhism and (U', λ) is a cooridnate chart on ∂M . So ∂M is locally Euclidean of dimension n-1.

(2) Let $p \in \partial M$. Define $(U \cap \partial M, \lambda \circ \psi)$ as in (1). Since $\lambda \circ \psi(p) \in (\mathbb{H}^{n-1})^{\circ}$, we have that $p \in M^{\circ}$. Thus $\partial M = (\partial M)^{\circ}$ and $\partial(\partial M) = \emptyset$.

Definition 3.1.7.

(1) Let $(U, \phi), (V, \psi)$ be coordinate charts on M. Then (U, ϕ) and (V, ψ) are said to be **smoothly compatible** if

$$\phi \circ \psi^{-1} : \psi(U \cap V) \to \phi(U \cap V)$$
 is a diffeomorphism

- (2) Let $\mathcal{A} = ((U_a, \phi_a))_{a \in A}$ be an atlas on M. Then \mathcal{A} is said to be **smooth** if for each $a, b \in A$, (U_a, ϕ_a) and (U_b, ϕ_b) are smoothly compatible.
- (3) Let \mathcal{A} be a smooth atlas on M. Then \mathcal{A} is said to be **maximal** if for each smooth atlas \mathcal{B} on M, $\mathcal{A} \subset \mathcal{B}$ implies that $\mathcal{A} = \mathcal{B}$. A maximal smooth atlas on M is called a **smooth structure on** M.
- (4) Let A be a smooth structure on M. Then (M, A) is said to be a **smooth** n-dimensional manifold.

Exercise 3.1.8. Let \mathcal{B} be a smooth atlas on M. Then there exists a unique smooth structure \mathcal{A} on M such that $\mathcal{B} \subset \mathcal{A}$.

Proof. Define \mathcal{A} to be the set of all coordinate charts (U, ϕ) on M such that for each coordinate chart $(V, \psi) \in \mathcal{B}$, (U, ϕ) and (V, ψ) are smoothly compatible. Clearly $\mathcal{B} \subset \mathcal{A}$.

Let $(U,\phi),(V,\psi)\in\mathcal{A}$ and $p\in U\cap V$. Then there exists $(W,\chi)\in\mathcal{B}$ such that $p\in W$. By assumption, $\phi\circ\chi^{-1}:\chi(U\cap W)\to\phi(U\cap W)$ and $\chi\circ\psi^{-1}:\psi(W\cap V)\to\chi(W\cap V)$ are diffeomorphisms. Then $(\phi\circ\chi^{-1})\circ(\chi\circ\psi^{-1})=\phi\circ\psi^{-1}:\psi(U\cap W\cap V)\to\phi(U\cap W\cap V)$ is a diffeomorphism. Since for each $q\in\psi(U\cap V)$, there exits an open neighborhood $N\subset\psi(U\cap V)$ of q on which $\phi\circ\psi^{-1}$ are diffeomorphic, we have that $\phi\circ\psi^{-1}$ is a diffeomorphism on $\psi(U\cap V)$ and therefore (U,ϕ) and (V,ψ) are smoothly compatible. Hence \mathcal{A} is a smooth atlas.

To see that \mathcal{A} is maximal, let \mathcal{B}' be a smooth atlas on M. Suppose that $\mathcal{A} \subset \mathcal{B}'$ and let $(U,\phi) \in \mathcal{B}'$. By definition, for each chart $(V,\psi) \in \mathcal{B}'$, (U,ϕ) and (V,ψ) are smoothly compatible. Since $\mathcal{B} \subset \mathcal{A} \subset \mathcal{B}'$, we have that $(U,\phi) \in \mathcal{A}$. So $\mathcal{A} = \mathcal{B}'$ and \mathcal{A} is a maximal smooth atlas on M.

Exercise 3.1.9. Let \mathcal{A} be a smooth atlas on M. Define $\lambda : \partial \mathbb{H}^n \to \mathbb{R}^{n-1}$ by $\lambda(x_1, \dots, x_{n-1,0}) = (x_1, \dots, x_{n-1})$. Put $\mathcal{A}|_{\partial M} = \{(U \cap \partial M, \lambda \circ \phi_{U \cap \partial M}) : (U, \phi) \in \mathcal{A}\}$. Then

- (1) $\mathcal{A}|_{\partial M}$ is a smooth atlas on ∂M .
- (2) if \mathcal{A} is maximal, then $\mathcal{A}|_{\partial M}$ is maximal.

Proof.

Note 3.1.10. For the rest of this section, we assume that (M, A) is a smooth n-dimensional manifold and we denote the standard coordinate functions on \mathbb{R}^n by u_1, \dots, u_n . For a coordinate chart $(U, \phi) \in A$ and $i \in \{1, \dots, n\}$, we will typically denote the ith coordinate of ϕ by x_i , that is, $x_i = u_i(\phi)$.

Definition 3.1.11. Let $f: M \to \mathbb{R}$. Then f is said to be smooth if for each coordinate chart $(U, \phi) \in \mathcal{A}$, $f \circ \phi^{-1}$ is smooth. The set of all smooth functions on M is denoted $C^{\infty}(M)$.

Exercise 3.1.12. We have that $C^{\infty}(M)$ is a vector space.

Proof. Clear.
$$\Box$$

Definition 3.1.13. Let (N, \mathcal{B}) be a smooth manifold and $F: M \to N$. Then F is said to be **smooth** if for each $(U, \phi) \in \mathcal{A}$ and $(V, \psi) \in \mathcal{B}$,

$$\psi \circ F \circ \phi^{-1} : \phi(U \cap F^{-1}(V)) \to \psi(F(U) \cap V)$$

is smooth and F is said to be a **diffeomorphism** if F is a homeomorphism and F, F^{-1} are smooth.

Exercise 3.1.14. Let (N, \mathcal{B}) be a smooth manifold and $F: M \to N$ a diffeomorphism. Then for each $(U, \phi) \in \mathcal{A}$, $(F(U), \phi \circ F^{-1}) \in \mathcal{B}$.

Proof. Let $(V, \psi) \in \mathcal{B}$. Since F is a diffeomorphism,

$$\phi \circ F^{-1} \circ \psi^{-1} : \psi(F(U) \cap V) \to \phi(U \cap F^{-1}(V))$$

and

$$\psi \circ F \circ \phi^{-1} : \phi(F^{-1}(V) \cap U) \to \psi(V \cap F(U))$$

are smooth. Therefore $(F(U), \phi \circ F^{-1})$ and (V, ψ) are smoothly compatible. Since \mathcal{B} is maximal, $(F(U), \phi \circ F^{-1}) \in \mathcal{B}$.

3.2. The Tangent Space.

Definition 3.2.1. Let $p \in M$. Define the relation \sim_p on $C^{\infty}(M)$ by $f \sim_p g$ iff there exists an open $U \subset M$ such that $f|_U = g|_U$. Clearly \sim_p is an equivalence relation on $C^{\infty}(M)$. We denote $C^{\infty}(M)/\sim_p$ by $C_p^{\infty}(M)$. For $f \in C^{\infty}(M)$, we define the **germ of** f **at** p to be the equivalence class of f under \sim_p .

Exercise 3.2.2. Let $p \in We$ have that $C_p^{\infty}(M)$ is a vector space.

Proof. Clear.
$$\Box$$

Definition 3.2.3. Let $(U, \phi) \in \mathcal{A}$ with $\phi = (x_1, \dots, x_n)$, $p \in U$ and $f \in C_p^{\infty}(M)$. For $i \in \{1, \dots, n\}$, define the partial derivative of f with respect to x_i at p, denoted

$$\frac{\partial f}{\partial x_i}(p), \frac{\partial}{\partial x_i}\Big|_{p} f, \partial_{x_i} f(p) \text{ or } \partial_{x_i}\Big|_{p} f$$

by

$$\frac{\partial}{\partial x_i}\Big|_p f = \frac{\partial}{\partial u_i}\Big|_{\phi(p)} f \circ \phi^{-1}$$

Exercise 3.2.4. Let $(U, \phi) \in \mathcal{A}$ with $\phi = (x_1, \dots, x_n)$ and $p \in U$. Then for each $i, j \in \{1, \dots, n\}$, we have that

$$\frac{\partial x_i}{\partial x_j}(p) = \delta_{i,j}$$

Proof. Let $i, j \in \{1, \dots, n\}$. Then

$$\frac{\partial}{\partial x_j} \bigg|_p x_i = \frac{\partial}{\partial u_j} \bigg|_{\phi(p)} x_i \circ \phi^{-1}$$

$$= \frac{\partial}{\partial u_j} \bigg|_{\phi(p)} u_i \circ \phi \circ \phi^{-1}$$

$$= \frac{\partial}{\partial u_j} \bigg|_{\phi(p)} u_i$$

$$= \delta_{i,j}$$

Exercise 3.2.5. (Change of Coordinates): Let $(U, \phi), (V, \psi) \in \mathcal{A}$ with $\phi = (x_1, \dots, x_n)$ and $\psi = (y_1, \dots, y_n), p \in U \cap V$ and $f \in C_p^{\infty}(M)$. Then for each $i \in \{1, \dots, n\}$, we have

$$\frac{\partial f}{\partial y_i}(p) = \sum_{j=1}^n \frac{\partial f}{\partial x_j}(p) \frac{\partial x_j}{\partial y_i}(p)$$

Proof. Put $h = \phi \circ \psi^{-1}$ and write $h = (h_1, \dots, h_n)$. Then $\phi = h \circ \psi$ and $\psi^{-1} = \phi^{-1} \circ h$. By definition and the chain rule, we have that

$$\frac{\partial}{\partial y_{i_{p}}} \left| f = \frac{\partial}{\partial u_{i}} \right|_{\psi(p)} f \circ \psi^{-1}
= \frac{\partial}{\partial u_{i}} \left|_{\psi(p)} f \circ \phi^{-1} \circ h \right|
= \sum_{j=1}^{n} \left(\frac{\partial}{\partial u_{j}} \right|_{h \circ \psi(p)} f \circ \phi^{-1} \right) \left(\frac{\partial}{\partial u_{i}} \right|_{\psi(p)} h_{j} \right)
= \sum_{j=1}^{n} \left(\frac{\partial}{\partial u_{j}} \right|_{\phi(p)} f \circ \phi^{-1} \right) \left(\frac{\partial}{\partial u_{i}} \right|_{\psi(p)} x_{j} \circ \psi^{-1} \right)
= \sum_{j=1}^{n} \left(\frac{\partial}{\partial x_{j}} \right|_{p} f \right) \left(\frac{\partial}{\partial y_{i}} \right|_{p} x_{j} \right)$$

Exercise 3.2.6. (Taylor's Theorem) Let $(U, \phi) \in \mathcal{A}$ with $\phi = (x_1, \dots, x_n)$, $p \in U$ and $f \in C_p^{\infty}(M)$. Then there exist $g_1, \dots g_n \in C_p^{\infty}(M)$ such that

$$f = f(p) + \sum_{i=1}^{n} (x_i - x_i(p))g_i$$

and for each $i \in \{1, \dots, n\}$,

$$g_i(p) = \frac{\partial}{\partial x_i} \Big|_p f$$

Proof. Since we are interested in the germ of f at p, we may assume that $\phi(U)$ is star-shaped with respect to $\phi(p)$. Let $q \in U$. From Taylor's theorem in section 1, we know that there exist $g'_1, \dots, g'_n \in C^{\infty}(\phi(U))$ such that for each $q \in U$,

$$f \circ \phi^{-1}(\phi(q)) = f \circ \phi^{-1}(\phi(p)) + \sum_{i=1}^{n} [u_i \circ \phi(q) - u_i \circ \phi(p)] g_i'(\phi(q))$$

and for each $i \in \{1, \dots, n\}$,

$$g'_i(\phi(p)) = \left. \frac{\partial}{\partial u_i} \right|_{\phi(p)} f \circ \phi^{-1}$$

For each $i \in \{1, \dots, n\}$, define $g_i = g'_i \circ \phi$. Then for each $q \in U$,

$$f(q) = f(p) + \sum_{i=1}^{n} [x_i(q) - x_i(p)]g_i(q)$$

and for each $i \in \{1, \dots, n\}$,

$$g_i(p) = \left. \frac{\partial}{\partial x_i} \right|_p f$$

Definition 3.2.7. Let $D: C_p^{\infty}(M) \to \mathbb{R}$ and $p \in M$. Then D is said to be a **derivation** at p if for each $f, g \in C_p^{\infty}(M)$ and $a \in \mathbb{R}$,

- (1) D(f+cg) = D(f) + cD(g) (D is linear)
- (2) D(fg) = D(f)g(p) + f(p)D(g) (D is Leibnizian)

Definition 3.2.8. Let $p \in M$. The set of derivations at p, denoted T_pM is called the tangent space of M at p.

Exercise 3.2.9. Let $f \in C_p^{\infty}(M)$ and $D \in T_pM$. If f is constant, then Df = 0.

Proof. Suppose that $f \equiv 1$. Then $f^2 = f$ and $D(f^2) = 2D(f)$. So D(f) = 2D(f) which implies that D(f) = 0. If $f \not\equiv 1$, then there exists $c \in \mathbb{R}$ such that $f \equiv c$. Since D is linear, D(f) = cD(1) = 0.

Exercise 3.2.10. Let $(U, \phi) \in \mathcal{A}$ with $\phi = (x_1, \dots, x_n)$ and $p \in U$. Then

$$\left\{ \left. \frac{\partial}{\partial x_1} \right|_p, \cdots, \left. \frac{\partial}{\partial x_n} \right|_p \right\}$$

is a basis for T_pM and dim $T_pM = n$.

Proof. Clearly $\frac{\partial}{\partial x_1}\Big|_p, \cdots, \frac{\partial}{\partial x_n}\Big|_p \in T_pM$. Let $a_1, \cdots, a_n \in \mathbb{R}$. Suppose that

$$D = \sum_{i=1}^{n} a_i \left. \frac{\partial}{\partial x_i} \right|_p = 0$$

Then

$$0 = Dx_j$$

$$= \sum_{i=1}^n a_i \frac{\partial}{\partial x_i} \Big|_p x_j$$

$$= a_i$$

Hence $\left\{ \left. \frac{\partial}{\partial x_1} \right|_p, \cdots, \left. \frac{\partial}{\partial x_n} \right|_p \right\}$ is independent.

Now, let $D \in T_pM$ and $f \in \mathbb{C}_p^{\infty}(M)$. By Taylor's theorem, there exist $g_1, \dots, g_n \in C_p^{\infty}(M)$ such that

$$f = f(p) + \sum_{i=1}^{n} (x_i - x_i(p))g_i$$

and for each $i \in \{1, \dots, n\}$,

$$g_i(p) = \left. \frac{\partial}{\partial x_i} \right|_p f$$

Then

$$D(f) = \sum_{i=1}^{n} D(x_i - x_i(p))g_i(p) + \sum_{i=1}^{n} (x_i(p) - x_i(p))D(g_i)$$

$$= \sum_{i=1}^{n} D(x_i)g_i(p)$$

$$= \sum_{i=1}^{n} D(x_i) \frac{\partial}{\partial x_i} \Big|_{p} f$$

$$= \left[\sum_{i=1}^{n} D(x_i) \frac{\partial}{\partial x_i} \Big|_{p} \right] f$$

So

$$D = \sum_{i=1}^{n} D(x_i) \left. \frac{\partial}{\partial x_i} \right|_p$$

and

$$D \in \operatorname{span} \left\{ \left. \frac{\partial}{\partial x_1} \right|_p, \cdots, \left. \frac{\partial}{\partial x_n} \right|_p \right\}$$

Definition 3.2.11. Let (N, \mathcal{B}) be a smooth manifold, $F: M \to N$ smooth and $p \in M$. We define the **push forward of** F **at** p, denoted $(F_*)_p: T_pM \to T_{F(p)}N$, by

$$\left[(F_*)_p(D) \right] (f) = D(f \circ F)$$

for $D \in T_pM$ and $f \in C^{\infty}_{F(p)}(N)$.

Exercise 3.2.12. Let (N, \mathcal{B}) be a smooth manifold, $F: M \to N$ smooth and $p \in M$. Then $(F_*)_p$ is well defined.

Proof. Let $D \in T_pM$, $f, g \in C^{\infty}_{F(p)}(N)$ and $c \in \mathbb{R}$. Then

(1)

$$(F_*)_p(D)(f+cg) = D((f+cg) \circ F)$$

$$= D(f \circ F + cg \circ F)$$

$$= D(f \circ F) + cD(g \circ F)$$

$$= (F_*)_p(D)(f) + c(F_*)_p(D)(g)$$

(2)

$$(F_*)_p(D)(fg) = D(fg \circ F)$$

$$= D((f \circ F) * (g \circ F))$$

$$= D(f \circ F) * (g \circ F)(p) + (f \circ F)(p) * D(g \circ F)$$

$$= (F_*)_p(D)(f) * g(F(p)) + f(F(p)) * (F_*)_p(D)(g)$$

So that $(F_*)_p(D) \in T_{F(p)}N$

Exercise 3.2.13. Let (N, \mathcal{B}) be a smooth manifold, $F: M \to N$ a diffeomorphism and $p \in M$. Then $(F_*)_p$ is an isomorphism.

Proof. Choose $(U, \phi) \in \mathcal{A}$ such that $p \in U$. A previous exercise tells us that $(F(U), \phi \circ F^{-1}) \in \mathcal{B}$. Write $\phi = (x_1, \dots, x_n)$ and $\phi \circ F^{-1} = (y_1, \dots, y_n)$. Let $f \in C^{\infty}_{F(p)}(N)$ Then

$$\frac{\partial}{\partial y_i}\Big|_{F(p)} f = \frac{\partial}{\partial u_i}\Big|_{\phi \circ F^{-1}(F(p))} f \circ (\phi \circ F^{-1})^{-1}$$

$$= \frac{\partial}{\partial u_i}\Big|_{\phi(p)} f \circ F \circ \phi^{-1}$$

$$= \frac{\partial}{\partial x_i}\Big|_{p} f \circ F$$

Therefore

$$\left[(F_*)_p \left(\left. \frac{\partial}{\partial x_i} \right|_p \right) \right] (f) = \left. \frac{\partial}{\partial x_i} \right|_p f \circ F$$

$$= \left. \frac{\partial}{\partial y_i} \right|_{F(p)} f$$

Hence

$$(F_*)_p \left(\left. \frac{\partial}{\partial x_i} \right|_p \right) = \left. \frac{\partial}{\partial y_i} \right|_{F(p)}$$

Since $\left\{ \frac{\partial}{\partial x_1} \Big|_p, \cdots, \frac{\partial}{\partial x_n} \Big|_p \right\}$ is a basis for $T_p M$ and $\left\{ \frac{\partial}{\partial y_1} \Big|_{F(p)}, \cdots, \frac{\partial}{\partial y_n} \Big|_{F(p)} \right\}$ is a basis for $T_{F(p)} N$, $(F_*)_p$ is an isomorphism.

Definition 3.2.14. Let (N, \mathcal{B}) be a smooth manifold, $F: M \to N$ a diffeomorphism. Define the **push forward of** F, denoted

$$F_*: M \to \coprod_{p \in M} \operatorname{Iso}(T_p M, T_{F(p)} N)$$

by

$$p \mapsto (F_*)_p$$

Definition 3.2.15. We define the tangent bundle of M, denoted TM, by

$$TM = \coprod_{p \in M} T_p M$$

and we define the **cotangent bundle of** M, denoted T^*M , by

$$T^*M = \coprod_{p \in M} T_p^*M$$

Definition 3.2.16. Let $X: M \to TM$. Then X is said to be a **vector field on** M if for each $p \in M$, $X_p \in T_pM$.

For $f \in \mathbb{C}^{\infty}(M)$ we define $Xf : M \to \mathbb{R}$ by

$$(Xf)_p = X_p(f)$$

Finally, X is said to be **smooth** if for each $f \in \mathbb{C}^{\infty}(M)$, Xf is smooth. We denote the set of smooth vector fields on M by $\Gamma(M)$.

Exercise 3.2.17. Let $X \in \Gamma(M)$ and $(U, \phi) \in \mathcal{A}$ with $\phi = (x_1, \dots, x_n)$. Then there exist $f_1, \dots, f_n \in C^{\infty}(U)$ such that for each $p \in U$,

$$X_p = \sum_{i=1}^n f_i(p) \left. \frac{\partial}{\partial x_i} \right|_p$$

Proof. Let $p \in M$. Then $X_p \in T_pM$ and $\left\{ \left. \frac{\partial}{\partial x_1} \right|_p, \cdots, \left. \frac{\partial}{\partial x_n} \right|_p \right\}$ is a basis of T_pM . So there exist $f_1(p), \cdots, f_n(p) \in \mathbb{R}$ such that $X_p = \sum_{i=1}^n f_i(p) \left. \frac{\partial}{\partial x_i} \right|_p$. Let $j \in \{1, \cdots, n\}$. Since X is smooth, the map

$$p \mapsto X_p(x_j) = \sum_{i=1}^n f_i(p) \frac{\partial x_j}{\partial x_i}(p)$$
$$= f_j(p)$$

is smooth. \Box

3.3. Integration on Manifolds.

Definition 3.3.1. We define

$$\Lambda_k(TM) = \coprod_{p \in M} \Lambda_k(T_pM)$$

Definition 3.3.2. Let $\omega : M \to \Lambda_k(TM)$. Then ω is said to be a k-form on M if for each $p \in M$, $\omega_p \in \Lambda_k(T_pM)$.

For each $X_1, \dots, X_k \in \Gamma(M)$, we define $\omega(X_1, \dots, X_k) : M \to \mathbb{R}$ by

$$\omega(X_1,\cdots,X_k)_p=\omega_p(X_{1p},\cdots,X_{kp})$$

Finally, ω is said to be **smooth** if for each $X_1, \dots, X_k \in \Gamma(M)$, $\omega(X_1, \dots, X_k)$ is smooth. The set of smooth k-forms on M is denoted $\Omega_k(M)$.

Note 3.3.3. Observe that $\Omega_0(M) = C^{\infty}(M)$.

Definition 3.3.4. Define the exterior product

$$\wedge: \Omega_k(M) \times \Omega_l(M) \to \Omega_{k+l}(M)$$

by

$$(\alpha \wedge \beta)_p = (\alpha)_p \wedge (\beta)_p$$

Define the **permutation action of** S_k **on** $\Omega_k(M)$ by

$$(\sigma\omega)_p = \sigma\omega_p$$

Note 3.3.5. All of the results from multilinear algebra apply here.

Note 3.3.6. For $f \in \Omega_0(M)$ and $\alpha \in \Omega_k(M)$, we have that $f \wedge \alpha = f\alpha$.

Definition 3.3.7. We define the **exterior derivative** $d : \Omega_k(M) \to \Omega_{k+1}(M)$ inductively by

- (1) df(X) = Xf for $f \in \Omega_0(M)$
- (2) $d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^p \alpha \wedge d\beta$ for $al \in \Omega_p(M)$ and $\beta \in \Omega_q(M)$
- (3) extending linearly

Exercise 3.3.8. Let (U, ϕ) be a chart on M with $\phi = (x_1, \dots, x_n)$. Then on U, for each $i, j \in \{1, \dots, n\}$,

$$dx_i \left(\frac{\partial}{\partial x_j} \right) \equiv \delta_{i,j}$$

Proof. Let $p \in U$ and $i, j \in \{1, \dots, n\}$. Then

$$(dx_i)_p \left(\left. \frac{\partial}{\partial x_j} \right|_p \right) = \left. \frac{\partial}{\partial x_j} \right|_p x_i$$

$$= \delta_{i,j}$$

Note 3.3.9. The previous exercise tells us that for each $p \in U$, $\{(dx_1)_p, \dots, (dx_n)_p\}$ is the dual basis to $\left\{\frac{\partial}{\partial x_1}\Big|_p, \dots, \frac{\partial}{\partial x_n}\Big|_p\right\}$.

Exercise 3.3.10. Let $f \in C^{\infty}(M)$ and (U, ϕ) be a chart on M with $\phi = (x_1, \dots, x_n)$. Then on U, $df = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i$

Proof. Let $p \in U$. Since $\{dx_1, \dots, dx_n\}$ is a basis for $\Lambda(T_pM)$, for each there exist $a_1(p), \dots, a_n(p) \in \mathbb{R}$ such that $(df)_p = \sum_{i=1}^n a_i(p)(dx_i)_p$. Therefore, we have that

$$(df)_p \left(\left. \frac{\partial}{\partial x_j} \right|_p \right) = \sum_{i=1}^n a_i(p) (dx_i)_p \left(\left. \frac{\partial}{\partial x_j} \right|_p \right)$$

$$= a_j(p)$$

By definition, we have that

$$(df)_p \left(\left. \frac{\partial}{\partial x_j} \right|_p \right) = \left. \frac{\partial}{\partial x_j} \right|_p f$$
$$= \frac{\partial f}{\partial x_j}(p)$$

So

$$(df)_p = \sum_{i=1}^n \frac{\partial f}{\partial x_j}(p)(dx_i)_p$$

and therefore on U, we have that

$$df = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i$$

Definition 3.3.11. Let (U, ϕ) be a chart on M with $\phi = (x_1, \dots, x_n)$ and $I = (i_1, \dots, i_k) \in \mathcal{I}_k$. We define

$$dx_I = dx_{i_1} \wedge \dots \wedge dx_{i_k} \in \Omega_k(M)$$

and we define

$$\frac{\partial}{\partial x_I} = \left(\frac{\partial}{\partial x_{i_1}}, \cdots, \frac{\partial}{\partial x_{i_k}}\right)$$

Exercise 3.3.12. Let $\omega \in \Omega_k(M)$ and (U, ϕ) be a chart on M with $\phi = (x_1, \dots, x_n)$. Then there exists $(f_I)_{I \in \mathcal{I}_k} \subset C^{\infty}(U)$ such that for each $p \in U$,

$$\omega_p = \sum_{I \in \mathcal{I}_k} f_I(p) (dx_I)_p$$

Proof. Let $p \in U$. For each $I \in \mathcal{I}_k$, put

$$f_I(p) = \omega_p \left(\left. \frac{\partial}{\partial x_I} \right|_p \right) \in \mathbb{R}$$

Since $\{(dx_I)_p : I \in \mathcal{I}_k\}$ is a basis for $\Lambda_k(T_pM)$, we have that $\omega_p = \sum_{I \in \mathcal{I}_k} f_I(p)(dx_I)_p$. Since ω is smooth, we have that for each $J \in \mathcal{I}_k$,

$$\omega\left(\frac{\partial}{\partial x_J}\right) = \sum_{I \in \mathcal{I}_k} f_I dx_I \left(\frac{\partial}{\partial x_J}\right)$$
$$= f_J$$

is smooth.

Exercise 3.3.13. Let $\omega \in \Omega_k(M)$ and (U, ϕ) be a chart on M with $\phi = (x_1, \dots, x_n)$. If $\omega = \sum_{I \in \mathcal{I}_k} f_I dx_I$, then

$$d\omega = \sum_{I \in \mathcal{I}_L} \sum_{i=1}^n \frac{\partial f_I}{\partial x_i} dx_i \wedge dx_I$$

.

Proof. First we note that

$$d(f_I dx_I) = df_I \wedge dx_I + (-1)^0 f d(dx_I)$$

$$= df_I \wedge dx_I$$

$$= \left(\sum_{i=1}^n \frac{\partial f_I}{\partial x_i} dx_i\right) \wedge dx_I$$

$$= \sum_{i=1}^n \frac{\partial f_I}{\partial x_i} dx_i \wedge dx_I$$

Then we extend linearly.

Definition 3.3.14. Let (N, \mathcal{B}) be a smooth manifold and $F: M \to N$ be a diffeomorphism. Define the **pullback of** F, denoted $F^*: \Omega_k(N) \to \Omega_k(M)$ by

$$(F^*\omega)_p(D_1,\cdots,D_k) = \omega_{F(p)}((F_*)_p(D_1),\cdots,(F_*)_p(D_k))$$

for $\omega \in \Omega_k(N)$, $p \in M$ and $D_1, \dots, D_k \in T_pM$

.

Definition 3.3.15. When working in \mathbb{R}^n , we introduce the formal objects dx_1, dx_2, \dots, dx_n . Let $I = (i_1, i_2, \dots, i_k) \in \mathcal{I}_{k,n}$ and $\phi : \mathbb{R}^k \to \mathbb{R}^n$. Write $\phi = (\phi_1, \phi_2, \dots, \phi_n)$. We formally define $dx_I = dx_{i_1} \wedge dx_{i_2} \wedge \dots \wedge dx_{i_k}$ and $\phi_I = (\phi_{i_1}, \phi_{i_2}, \dots, \phi_{i_k})$.

Definition 3.3.16. Let $k \in \{0, 1, \dots, n\}$. We define a $C^{\infty}(\mathbb{R}^n)$ -module of dimension $\binom{n}{k}$, denoted $\Gamma^k(\mathbb{R}^n)$ to be

$$\Phi_k(\mathbb{R}^n) = \begin{cases} C^{\infty}(\mathbb{R}^n) & k = 0\\ \operatorname{span}\{dx_I : I \in \mathcal{I}_{k,n}\} & k \ge 1 \end{cases}$$

For each $\omega \in \Phi_k(\mathbb{R}^n)$ and $\chi \in \Gamma^l(\mathbb{R}^n)$, we may form their **exterior product**, denoted by $\omega \wedge \chi \in \Gamma^{k+l}(\mathbb{R}^n)$. Thus the exterior product is a map $\wedge : \Phi_k(\mathbb{R}^n) \times \Gamma^l(\mathbb{R}^n) \to \Gamma^{k+l}(\mathbb{R}^n)$. The exterior product is characterized by the following properties:

- (1) the exterior product is bilinear
- (2) for each $\omega \in \Phi_k(\mathbb{R}^n)$ and $\chi \in \Gamma^l(\mathbb{R}^n)$, $\omega \wedge \chi = -\chi \wedge \omega$
- (3) for each $\omega \in \Phi_k(\mathbb{R}^n)$, $\omega \wedge \omega = 0$
- (4) for each $f \in C^{\infty}(\mathbb{R}^n)$ and $\omega \in \Phi_k(\mathbb{R}^n)$, $f \wedge \omega = f\omega$

We call $\Phi_k(\mathbb{R}^n)$ the differential k-forms on \mathbb{R}^n . Let ω be a k-form on \mathbb{R}^n . If $k \geq 1$, then for each $I \in \mathcal{I}_{k,n}$, there exists $f_I \in C^{\infty}(\mathbb{R}^n)$ such that $\omega = \sum_{I \in \mathcal{I}_{k,n}} f_I dx_I$

Note 3.3.17. The terms dx_1, dx_2, \dots, dx_n are are a sort of place holder for the coordinates of a point $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$. When we work with functions $\phi : \mathbb{R}^k \to \mathbb{R}^n$, we will have different coordinates and to avoid confusion, we will write $\{du_1, du_2, \dots, du_k\}$ when referencing the coordinates on \mathbb{R}^k and $\{dx_1, dx_2, \dots, dx_n\}$ when referencing the coordinates on \mathbb{R}^n .

Exercise 3.3.18. Let $B_{n\times n}=(b_{i,j})\in [C^{\infty}(M)]^{n\times n}$ be an $n\times n$ matrix. Then

$$\bigwedge_{i=1}^{n} \left(\sum_{j=1}^{n} b_{i,j} dx_j \right) = (\det B) dx_1 \wedge dx_2 \wedge \dots \wedge dx_n$$

Proof. Bilinearity of the exterior product implies that

$$\bigwedge_{i=1}^{n} \left(\sum_{j=1}^{n} b_{i,j} dx_{j} \right) = \left(\sum_{j=1}^{n} b_{1,j} dx_{j} \right) \wedge \left(\sum_{j=1}^{n} b_{2,j} dx_{j} \right) \wedge \dots \wedge \left(\sum_{j=1}^{n} b_{n,j} dx_{j} \right)$$

$$= \sum_{j_{1}, \dots, j_{n}=1}^{n} \left(\prod_{i=1}^{n} b_{i,j_{i}} \right) dx_{j_{1}} \wedge dx_{j_{2}} \wedge \dots \wedge dx_{j_{n}}$$

$$= \sum_{j_{1} \neq \dots \neq j_{n}} \left(\prod_{i=1}^{n} b_{i,j_{i}} \right) dx_{j_{1}} \wedge dx_{j_{2}} \wedge \dots \wedge dx_{j_{n}}$$

$$= \left[\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \left(\prod_{i=1}^{n} b_{i,\sigma(i)} \right) \right] dx_{1} \wedge dx_{2} \wedge \dots \wedge dx_{n}$$

$$= \left(\det B \right) dx_{1} \wedge dx_{2} \wedge \dots \wedge dx_{n}$$

Definition 3.3.19. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a 0-form on \mathbb{R}^n . We define a 1-form, denoted df, on \mathbb{R}^n by

$$df = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i$$

Let $\omega = \sum_{I \in \mathcal{I}_{k,n}} f_I dx_I$ be a k-form on \mathbb{R}^n . We can define a differential k+1-form, denoted $d\omega$, on \mathbb{R}^n by

$$d\omega = \sum_{I \in \mathcal{I}_{k,n}} df_I \wedge dx_I$$

Exercise 3.3.20. On \mathbb{R}^3 , put

- (1) $\omega_0 = f_0$,
- (2) $\omega_1 = f_1 dx_1 + f_2 dx_2 + f_2 dx_3$,
- (3) $\omega_2 = f_1 dx_2 \wedge dx_3 f_2 dx_1 \wedge dx_3 + f_3 dx_1 \wedge dx_2$

Show that

(1)
$$d\omega_0 = \frac{\partial f_0}{\partial x_1} dx_1 + \frac{\partial f_0}{\partial x_2} dx_2 + \frac{\partial f_0}{\partial x_3} dx_3$$

$$(1) \ d\omega_0 = \frac{\partial f_0}{\partial x_1} dx_1 + \frac{\partial f_0}{\partial x_2} dx_2 + \frac{\partial f_0}{\partial x_3} dx_3$$

$$(2) \ d\omega_1 = \left(\frac{\partial f_3}{\partial x_2} - \frac{\partial f_2}{\partial x_3}\right) dx_2 \wedge dx_3 + \left(\frac{\partial f_3}{\partial x_1} - \frac{\partial f_1}{\partial x_3}\right) dx_1 \wedge dx_3 + \left(\frac{\partial f_2}{\partial x_1} - \frac{\partial f_1}{\partial x_2}\right) dx_1 \wedge dx_2$$

(3)
$$d\omega_2 = \left(\frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} + \frac{\partial f_3}{\partial x_3}\right) dx_1 \wedge dx_2 \wedge dx_3$$

Proof. Straightforward.

Exercise 3.3.21. Let $I \in \mathcal{I}_{k,n}$. Then there is a unique $I_* \in \mathcal{I}_{n-k,n}$ such that $dx_I \wedge dx_{I_*} =$ $dx_1 \wedge dx_2 \wedge \cdots \wedge dx_n$.

Definition 3.3.22. We define a linear map $*: \Phi_k(\mathbb{R}^n) \to \Gamma^{n-k}(\mathbb{R}^n)$ called the **Hodge** *-operator by

$$* \sum_{I \in \mathcal{I}_{k,n}} f_I dx_I = \sum_{I \in \mathcal{I}_{k,n}} f_I dx_{I_*}$$

Definition 3.3.23. Let $\phi: \mathbb{R}^k \to \mathbb{R}^n$ be smooth. Write $\phi = (\phi_1, \phi_2, \cdots, \phi_n)$. We define $\phi^*: \Phi_k(\mathbb{R}^n) \to \Phi_k(\mathbb{R}^k)$ via the following properties:

- (1) for each 0-form f on \mathbb{R}^n , $\phi^*f = f \circ \phi$
- (2) for $i = 1, \dots, n, \ \phi^* dx_i = d\phi_i$
- (3) for an s-form ω , and a t-form χ on \mathbb{R}^n , $\phi^*(\omega \wedge \chi) = (\phi^*\omega) \wedge (\phi^*\chi)$
- (4) for l-forms ω, χ on \mathbb{R}^n , $\phi^*(\omega + \chi) = \phi^*\omega + \phi^*\chi$

Exercise 3.3.24. Let $M \subset \mathbb{R}^n$ be a k-dimensional smooth submanifold of \mathbb{R}^n , $\phi: U \to V$ a smooth parametrization of M, $\omega = \sum_{I \in \mathcal{I}_{k,n}} f_I dx_I$ an k-form on \mathbb{R}^n . Then

$$\phi^*\omega = \left(\sum_{I \in \mathcal{I}_{k,n}} (f_I \circ \phi)(\det D\phi_I)\right) du_1 \wedge du_2 \wedge \dots \wedge du_k$$

Proof. Using the definitions, we see that

$$\phi^* \omega = \phi^* \sum_{I \in \mathcal{I}_{k,n}} f_I dx_I$$
$$= \sum_{I \in \mathcal{I}_{k,n}} (\phi^* f_I) \phi^* dx_I$$
$$= \sum_{I \in \mathcal{I}_{k,n}} (f_I \circ \phi) d\phi_I$$

A previous exercise tells us that for each $I \in \mathcal{I}_{k,n}$,

$$d\phi_{I} = d\phi_{i_{1}} \wedge d\phi_{i_{2}} \wedge \dots \wedge d\phi_{i_{n}}$$

$$= \left(\sum_{j=1}^{n} \frac{\partial \phi_{i_{1}}}{\partial u_{j}} du_{j}\right) \wedge \left(\sum_{j=1}^{n} \frac{\partial \phi_{i_{2}}}{\partial u_{j}} du_{j}\right) \wedge \dots \wedge \left(\sum_{j=1}^{n} \frac{\partial \phi_{i_{k}}}{\partial u_{j}} du_{j}\right)$$

$$= \left(\det D\phi_{I}\right) du_{1} \wedge du_{2} \wedge \dots \wedge du_{k}$$

Therefore

$$\phi^* \omega = \sum_{I \in \mathcal{I}_{k,n}} (f_I \circ \phi) d\phi_I$$

$$= \sum_{I \in \mathcal{I}_{k,n}} (f_I \circ \phi) (\det D\phi_I) du_1 \wedge du_2 \wedge \dots \wedge du_k$$

$$= \left(\sum_{I \in \mathcal{I}_{k,n}} (f_I \circ \phi) (\det D\phi_I) \right) du_1 \wedge du_2 \wedge \dots \wedge du_k$$

3.4. Integration of Differential Forms.

Definition 3.4.1. Let $U \subset \mathbb{R}^k$ be open and $\omega = f dx_1 \wedge dx_2 \wedge \cdots \wedge dx_k$ a k-form on \mathbb{R}^k . Define

$$\int_{U} \omega = \int_{U} f dx$$

Definition 3.4.2. Let $M \subset \mathbb{R}^n$ be a k-dimensional oriented smooth submanifold of \mathbb{R}^n , ω a k-form on \mathbb{R}^n and $\phi: U \to V$ a local smooth, orientation-preserving parametrization of M. Define

$$\int_{V} \omega = \int_{U} \phi^* \omega$$

Exercise 3.4.3.

Theorem 3.4.4. (Stokes Theorem) Let $M \subset \mathbb{R}^n$ be a k-dimensional oriented smooth submanifold of \mathbb{R}^n and ω a k-1-form on \mathbb{R}^n . Then

$$\int_{\partial M} \omega = \int_{M} d\omega$$