NAIVE BAYES CLASSIFIERS

ESTIMATION

Class prior

The distribution P(y) is easy to estimate from training data:

$$P(y) = \frac{\text{\#observations in class } y}{\text{\#observations}}$$

Class-conditional distributions

The class conditionals p(x|y) usually require a modeling assumption. Under a given model:

- Separate the training data into classes.
- Estimate p(x|y) on class y by maximum likelihood.

Tree Classifiers

TREES

Idea

- ▶ Recall: Classifiers classify according to location in \mathbb{R}^d
- ▶ Linear classifiers: Divide space into two halfspaces
- What if we are less sophisticated and divide space only along axes? We could classify e.g. according to

$$\mathbf{x} \in \begin{cases} \text{Class} + & \text{if } x_3 > 0.5\\ \text{Class} - & \text{if } x_3 \leq 0.5 \end{cases}$$

► This decision would correspond to an affine hyperplane perpendicular to the *x*₃-axis, with offset 0.5.

Tree classifier

A tree classifier is a binary tree in which

- ▶ Each inner node is a rule of the form $x_i > t_i$.
- ► The threshold values *t_i* are the parameters which specify the tree.
- Each leaf is a class label.

Peter Orbanz · Statistical Machine Learning

TREES

- ▶ Each leaf of the tree corresponds to a region R_m of \mathbb{R}^d .
- ▶ Classes $k \in \{1, ..., K\}$ (not restricted to two classes).
- ightharpoonup Training: Each node is assigned class to which most points in R_m belong,

$$k(m) := \arg\max_{k} \#\{x_i \in R_m \text{ with } y_i = k\}$$

Peter Orbanz · Statistical Machine Learning

TRAINING ALGORITHM

Overall algorithm

- ▶ At each step: Current tree leaves define regions $R_1, ..., R_M$.
- ▶ For each R_m , find the best split.
- ▶ Continue splitting regions until tree has depth *D* (input parameter).

Step of training algorithm

At each step: Current tree leaves define regions R_1, \ldots, R_M . For each region R_m :

1. For each axis j: Compute best splitting point t_j as

$$t_j := \arg\min Q(R_m, t_j)$$

2. Select best splitting axis:

$$j := \arg\min_{j} Q(R_m, t_j)$$

3. Split R_m along axis j at t_j

INFLUENCE OF TREE SIZE

Tree Size

- ▶ Tree of height D defines 2^D regions.
- ▶ *D* too small: Insufficient accuracy. *D* too large: Overfitting.
- ▶ D can be determined by cross validation or more sophisticated methods ("complexity pruning" etc), which we will not discuss here.

DECISION STUMPS

- ► The simplest possible tree classifier is a tree of depth 1. Such a classifier is called a **decision stump**.
- A decision stump is parameterized by a pair (j, t_j) of an axis j and a splitting point t_j .
- ▶ Splits \mathbb{R}^d into two regions.
- Decision boundary is an affine hyperplane which is perpendicular to axis j and intersects the axis at t_i.
- ▶ Often used in Boosting algorithms and other ensemble methods.

Why are decision stumps useful?

ENSEMBLES

A randomly chosen hyperplane classifier has an expected error of 0.5 (i.e. 50%).

ENSEMBLES

A randomly chosen hyperplane classifier has an expected error of 0.5 (i.e. 50%).

ENSEMBLES

A randomly chosen hyperplane classifier has an expected error of 0.5 (i.e. 50%).

- ▶ Many random hyperplanes combined by majority vote: Still 0.5.
- ▶ A single classifier slightly better than random: $0.5 + \varepsilon$.
- \blacktriangleright What if we use m such classifiers and take a majority vote?

VOTING

Decision by majority vote

- ▶ *m* individuals (or classifiers) take a vote. *m* is an odd number.
- ▶ They decide between two choices; one is correct, one is wrong.
- ▶ After everyone has voted, a decision is made by simple majority.

Note: For two-class classifiers f_1, \ldots, f_m (with output ± 1):

majority vote =
$$\operatorname{sgn}\left(\sum_{j=1}^{m} f_j\right)$$

Assumptions

Before we discuss ensembles, we try to convince ourselves that voting can be beneficial. We make some simplifying assumptions:

- ▶ Each individual makes the right choice with probability $p \in [0, 1]$.
- ► The votes are *independent*, i.e. stochastically independent when regarded as random outcomes.

DOES THE MAJORITY MAKE THE RIGHT CHOICE?

Condorcet's rule

If the individual votes are independent, the answer is

$$\Pr\{ \text{ majority makes correct decision } \} = \sum_{j=\frac{m+1}{2}}^m \frac{m!}{j!(m-j)!} p^j (1-p)^{m-j}$$

This formula is known as Condorcet's jury theorem.

Probability as function of the number of votes

Peter Orbanz · Statistical Machine Learning

ENSEMBLE METHODS

Terminology

- An ensemble method makes a prediction by combining the predictions of many classifiers into a single vote.
- ▶ The individual classifiers are usually required to perform only slightly better than random. For two classes, this means slightly more than 50% of the data are classified correctly. Such a classifier is called a **weak learner**.

Strategy

- We have seen above that if the weak learners are random and independent, the prediction accuracy of the majority vote will increase with the number of weak learners.
- Since the weak learners all have to be trained on the training data, producing random, independent weak learners is difficult.
- Different ensemble methods (e.g. Boosting, Bagging, etc) use different strategies to train and combine weak learners that behave relatively independently.

METHODS WE WILL DISCUSS

Boosting

- ▶ After training each weak learner, data is modified using weights.
- ▶ Deterministic algorithm.

Bagging

Each weak learner is trained on a random subset of the data.

Random forests

- Bagging with tree classifiers as weak learners.
- ▶ Uses an additional step to remove dimensions in \mathbb{R}^d that carry little information.

BAGGING AND RANDOM FORESTS

EXAMPLE: BAGGING TREES

- Two classes, each with Gaussian distribution in \mathbb{R}^5 .
- ► Note the variance between bootstrapped trees.

RANDOM FORESTS

Bagging vs. Boosting

- ▶ Bagging works particularly well for trees, since trees have high variance.
- ▶ Boosting typically outperforms bagging with trees.
- The main culprit is usually dependence: Boosting is better at reducing correlation between the trees than bagging is.

Random Forests

Modification of bagging with trees designed to further reduce correlation.

- ▶ Tree training optimizes each split over all dimensions.
- Random forests choose a different subset of dimensions at each split.
- ▶ Optimal split is chosen within the subset.
- ▶ The subset is chosen at random out of all dimensions $\{1, \ldots, d\}$.