Design and Analysis of Algorithms

CS3230

Week 2
Asymptotic Analysis

Warut Suksompong

Wordle

Goal: Guess a 5-letter word in as few turns as possible

Green = letter is in correct location

Yellow = letter appears in word but is in wrong location

Gray = letter does not appear in word

https://www.powerlanguage.co.uk/wordle/

Adversarial Wordle

ABSURDLE by qntm

This is an adversarial version of the excellent Wordle.

"Adversarial" means that Absurdle is actively trying to avoid giving you the answer. With each guess, Absurdle reveals as little information as possible, changing the secret word if need be. (Well, sort of: here is a detailed explanation.)

Other than that, the rules are the same as Wordle's, except you have unlimited guesses. You'll need them! The best possible score in Absurdle is 4 guesses.

Adversarial Wordle

Adversarial Wordle

Introduction

What is an algorithm?

A finite sequence of "well-defined" instructions to solve a given computational problem

A prime objective of the course: Design of efficient algorithms

• Focus on running time

Example - Fibonacci Number F(n)

- F(0) = 0
- F(1) = 1
- F(n) = F(n-1) + F(n-2) for n>1

Problem 1: Given n, m, compute F(n) mod m

- Recursive algorithm
- Iterative algorithm

Two algorithms for Fibonacci numbers (mod m)

Recursive Algorithm

```
RFIB(n,m) {
    if n=0 return 0;
    else if n=1 return 1;
    else return((RFIB(n-1) + RFIB(n-2)) mod m);
}
```

Iterative Algorithm

How to analyze running time?

• **Simulation:** Run the algorithm many times and measure the running time

Machine dependent

Input dependent

Mathematical analysis

Model of Computation

How to measure Running Time?

First analyze the Recursive Algorithm

```
RFIB(n,m)
{
    if n=0 return 0;
    else if n=1 return 1;
    else return((RFIB(n-1,m) + RFIB(n-2,m))
mod m);
}
```

Let R(n) be the number of instructions executed by RFIB(n,m) R(0) = 2

First analyze the Recursive Algorithm

```
RFIB(n,m)
{
     if n=0 return 0;
     else if n=1 return 1;
     else return((RFIB(n-1,m) + RFIB(n-2,m))
mod m);
}
```

```
Let R(n) be the number of instructions executed by RFIB(n,m)
R(0) = 2
R(1) = 3
```

First analyze the Recursive Algorithm

```
RFIB(n,m)
{
    if n=0 return 0;
    else if n=1 return 1;
    else return((RFIB(n-1,m) + RFIB(n-2,m))
mod m);
}
```

No. of instructions $\geq 2^{(n-2)/2}$

Exercise: Use induction to show, for all $n \geq 4$

1.
$$R(n) \ge F(n)$$

2.
$$F(n) \ge 2^{(n-2)/2}$$

Now analyze the Iterative Algorithm

IFIB(n,m) {

 if n=0 return 0;

 else if n=1 return 1;

 else {
 a \leftarrow 0; b \leftarrow 1;

 For(i=2 to n) do

 {
 temp \leftarrow b;
 b \leftarrow (a+b) mod m;
 a \leftarrow temp; }
 }

return b;}

No. of instructions =

```
No. of instructions \leq 4 + 5(n-1) + 1
Now analyze the Iterative Algorithm
                                                                        =5n
 IFIB(n,m) {
          if n=0 return 0;
                                                                         Worst-case time
                                                   4 instructions
          else if n=1 return 1;
                    a \leftarrow 0; b \leftarrow 1;
                 For(i=2 to n) do
                                            n-1 iterations
                      temp \leftarrow b;
                      b \leftarrow (a+b) \mod m;
                                                   5 instructions
                      a← temp; }
   return b;}
                                         The final instruction
```

Example: Checking a Number is Prime or not

```
IsPrime(k) { Worst-case time= Best-case time= \{If(k\%i=0) \text{ return "Prime"}; \}
```

Example: Checking a Number is Prime or not

```
IsPrime(k) { Worst-case time \approx k } For(i=2 to k-1) do k-2 iterations Best-case time= 2 { If(k\%i=0) return "Not Prime"; linstruction } return "Prime"; The final instruction }
```

Comparing efficiency of two algorithms

Algorithm 1 T(n) = 10n + 1000

Algorithm 2
$$T(n) = n^2 + 1000$$

Which one is more efficient?

Comparing efficiency of two algorithms

Algorithm 1 T(n) = 10n + 1000

Algorithm 2 $T(n) = n^2 + 1000$

Which one is more efficient?

Algorithm 2 when n < 10Algorithm 1 when n > 10

Time complexity really matters only for large-sized input

Comparing efficiency of two algorithms

Algorithm 1 T(n) = 10n + 1000

is more efficient than

Algorithm 2 $T(n) = n^2 + 1000$

Only compare for asymptotically large values of input size

Asymptotic analysis for running time

- Different machines have different running time.
- We do not measure actual run-time.
- We estimate the rate-of-growth of running time by asymptotic analysis.
 - Example: 0.01n³ grows faster than 1000n²!
- To compare running time of two different algorithms we need to see which is more efficient (or fast) for large inputs

Asymptotic notations

- O-notation (upper bound)
- Ω -notation (lower bound)
- Θ -notation (tight bound)

Formal definition: O-notation [upper bound]

We write f(n) = O(g(n)) if there exist constants c > 0, $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

Graphical explanation of O-notation

We write f(n) = O(g(n)) if there exist constants c > 0, $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

O-notation is an upper-bound notation. It makes no sense to say f(n) is at least $O(n^2)$.

Example

We write f(n) = O(g(n)) if there exist constants c > 0, $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

- Claim: $2n^2 = O(n^3)$
- Proof: Let $f(n)=2n^2$.
 - Note that $f(n)=2n^2 \le n^3$ when $n \ge 2$.
 - Set c=1 and $n_0=2$.
 - We have $f(n)=2n^2 \le c \cdot n^3$ for $n \ge n_0$.
 - By definition $2n^2 = O(n^3)$.

Question 1

- Let $f(n)=3n^2+100n+5$.
- Let $g(n)=n^3+10$.
- We want to prove that f(n) = O(g(n)) by showing that $f(n) \le cg(n)$ for all $n \ge n_0$.
- What should be c and n_0 ? (There may be more than one correct answer.)
- (A) c=2, $n_0=10$
- (B) c=1, $n_0=12$
- (C) c=5, n_0 =2
- (D) c=1, n_0 =10

Answer of Question 1

- Let $f(n)=3n^2+100n+5$.
- Let $g(n)=n^3+10$.
- (C) is false
 - When c=5, $n_0=2$,
 - $f(2)=3\cdot 2^2+100(2)+5=217$ and $g(2)=2^3+10=18$
 - Hence, f(n) > c g(n) when $n=n_0=2$ and c=2.
- (D) is false
 - When c=1, $n_0=10$,
 - $f(10)=3\cdot10^2+100(10)+5=1305$ and $g(10)=10^3+10=1010$
 - Hence, f(n) > c g(n) when $n=n_0=10$ and c=1.

Answer of Question 1

- Let $f(n)=3n^2+100n+5$.
- Let $g(n)=n^3+10$.
- (A) is true

• (B) is true

Question 1

- Let $f(n)=3n^2+100n+5$.
- Let $g(n)=n^3+10$.
- We want to prove that f(n) = O(g(n)) by showing that $f(n) \le cg(n)$ for all $n \ge n_0$.
- What should be c and n_0 ? (There may be more than one correct answer.)
- (A) c=2, $n_0=10$
- (B) c=1, n₀=12
- (C) c=5, $n_0=2$
- (D) c=1, $n_0=10$

Set definition of O-notation

```
O(g(n)) = \{ f(n) : \text{there exist constants} 

c > 0, n_0 > 0 \text{ such} 

\text{that } 0 \le f(n) \le cg(n) 

\text{for all } n \ge n_0 \}
```

- O(g(n)) is actually a set of functions.
- Although we write f(n)=O(g(n)), we mean $f(n)\in O(g(n))$
- Example, $2n^2 = O(n^3)$, $3n+4 = O(n^3)$, etc.

Formal definition: O-notation [upper bound]

We write f(n) = O(g(n)) if there exist constants c > 0, $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

Ω -notation (lower bound)

We write $f(n) = \Omega(g(n))$ if there exist constants c > 0, $n_0 > 0$ such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$.

- Example: $n^2 n = \Omega(n^2)$
 - $0 \le \frac{1}{2}n^2 \le (n^2 n)$ for $n \ge 2$ (i.e. c = 1/2, $n_0 = 2$)
 - Hence, $n^2 n = \Omega(n^2)$

Ω -notation (lower bound)

```
\Omega(g(n)) = \{ f(n) : \text{there exist positive} 
\text{constants } c \text{ and } n_0 \text{ such} 
\text{that } 0 \le cg(n) \le f(n) 
\text{for all } n \ge n_0 \}
```


- Example: $n^2 n = \Omega(n^2)$
 - $0 \le \frac{1}{2}n^2 \le (n^2 n)$ for $n \ge 2$ (i.e. c = 1/2, $n_0 = 2$)
 - Hence, $n^2 n = \Omega(n^2)$

Θ-notation (tight bound)

```
\Theta(g(n)) = \{f(n) : \text{there exist positive} \\ \text{constants } c_1, c_2 \text{ and } n_0 \\ \text{such that} \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \\ \text{for all } n \ge n_0 \}
```


- Example: $n^2 n = \Theta(n^2)$
 - $0 \le \frac{1}{2}n^2 \le (n^2 n) \le n^2$ for $n \ge 2$ (i.e. $c_1 = 1/2$, $c_2 = 1$, $n_0 = 2$)
 - Hence, $n^2 n = \Theta(n^2)$

Θ , Ω and Θ

$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$

Exercise: Prove the above using the definitions.

o-notation and ω -notation

O-notation and Ω -notation are like \leq and \geq . o-notation and ω -notation are like \leq and >.

```
o(g(n)) = \{ f(n) : \text{ for any constant } c > 0,
there is a constant n_0 > 0
such that 0 \le f(n) < cg(n)
for all n \ge n_0 \}
```

- Example: $n = o(n^2)$
 - E.g., $0 \le n < 2n^2$ for $n \ge 1$ (i.e., for c=2, $n_0 = 1$, similarly for any c we can find n_0)
 - Hence, $n = o(n^2)$
- However, $n^2-n \neq o(n^2)$. Why?

o-notation and ω -notation

O-notation and Ω -notation are like \leq and \geq . o-notation and ω -notation are like \leq and >.

```
\omega(g(n)) = \{ f(n) : \text{ for any constant } c > 0,
there is a constant n_0 > 0
such that 0 \le cg(n) < f(n)
for all n \ge n_0 \}
```

- Example: $n^2 n = \omega(n)$
 - E.g., $0 \le n < (n^2 n)$ for $n \ge 3$

(i.e. c=1, $n_0=3$, similarly for any c we can find n_0)

• Hence, $n^2 - n = \omega(n)$

Limit

• Assume f(n), g(n)>0.

•
$$\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = 0 \Rightarrow f(n) = o(g(n))$$

•
$$\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) < \infty \Rightarrow f(n) = O(g(n))$$

•
$$0 < \lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) < \infty \Rightarrow f(n) = \Theta(g(n))$$

•
$$\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) > 0 \Rightarrow f(n) = \Omega(g(n))$$

•
$$\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = \infty \Rightarrow f(n) = \omega(g(n))$$

$$\lim_{n\to\infty} \left(\frac{f(n)}{g(n)}\right) = 0 \to f(n) = o(g(n))$$

Proof:

- Since $\lim_{n\to\infty} \left(\frac{f(n)}{g(n)}\right) = 0$, by definition, we have:
 - For all $\varepsilon>0$, there exists $\delta>0$ such that $\frac{f(n)}{g(n)}<\varepsilon$ for $n>\delta$.
- Set $c = \varepsilon$ and $n_0 = \delta$. We have:
 - For all c>0, there exists $n_0>0$ such that $\frac{f(n)}{g(n)} < c$ for $n>n_0$.
 - Hence, for all c>0, there exists $n_0>0$ such that $f(n) < c \cdot g(n)$ for $n>n_0$.
 - By definition, f(n) = o(g(n)).

o-notation and ω -notation

O-notation and Ω -notation are like \leq and \geq . o-notation and ω -notation are like \leq and >.

```
o(g(n)) = \{ f(n) : \text{ for any constant } c > 0, \\ \text{there is a constant } n_0 > 0 \\ \text{such that } 0 \le f(n) < cg(n) \\ \text{for all } n \ge n_0 \}
```

- Example: $n = o(n^2)$
 - $0 \le n < 2n^2$ for $n \ge 1$ (i.e. c=2, $n_0 = 1$)
 - Hence, $n = o(n^2)$
- However, $n^2-n \neq o(n^2)$. Why?

$$\lim_{n\to\infty} \left(\frac{f(n)}{g(n)}\right) = 0 \to f(n) = o(g(n))$$

Proof:

- Since $\lim_{n\to\infty} \left(\frac{f(n)}{g(n)}\right) = 0$, by definition, we have:
 - For all $\varepsilon>0$, there exists $\delta>0$ such that $\frac{f(n)}{g(n)}<\varepsilon$ for $n>\delta$.
- Set $c = \varepsilon$ and $n_0 = \delta$. We have:
 - For all c>0, there exists $n_0>0$ such that $\frac{f(n)}{g(n)} < c$ for $n>n_0$.
 - Hence, for all c>0, there exists $n_0>0$ such that $f(n) < c \cdot g(n)$ for $n>n_0$.
 - By definition, f(n) = o(g(n)).

Limit

• Assume f(n), g(n)>0.

•
$$\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = 0 \Rightarrow f(n) = o(g(n))$$

• $\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) < \infty \Rightarrow f(n) = O(g(n))$
• $0 < \lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) < \infty \Rightarrow f(n) = O(g(n))$
• $\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) > 0 \Rightarrow f(n) = \Omega(g(n))$
• $\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = \infty \Rightarrow f(n) = \omega(g(n))$

Similar to the first one

Example

• Question: By limit, show that $n^3 + 3n^2 + 4n + 1 = \omega(n^2)$.

• Proof:

•
$$\lim_{n \to \infty} \left(\frac{n^3 + 3n^2 + 4n + 1}{n^2} \right) = \lim_{n \to \infty} \left(n + 3 + \frac{4}{n} + \frac{1}{n^2} \right) = \infty.$$

• Hence, $n^3 + 3n^2 + 4n + 1 = \omega(n^2)$

Properties of big-O

Transitivity

```
f(n) = \Theta(g(n)) \& g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))

f(n) = O(g(n)) \& g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))

f(n) = \Omega(g(n)) \& g(n) = \Omega(h(n)) \Rightarrow f(n) = \Omega(h(n))

f(n) = o(g(n)) \& g(n) = o(h(n)) \Rightarrow f(n) = o(h(n))

f(n) = \omega(g(n)) \& g(n) = \omega(h(n)) \Rightarrow f(n) = \omega(h(n))
```

Reflexivity

$$f(n) = \Theta(f(n))$$
$$f(n) = O(f(n))$$
$$f(n) = \Omega(f(n))$$

Properties of big-O

Symmetry

$$f(n) = \Theta(g(n)) \text{ iff } g(n) = \Theta(f(n))$$

Complementarity

$$f(n) = O(g(n)) \text{ iff } g(n) = \Omega(f(n))$$

 $f(n) = o(g(n)) \text{ iff } g(n) = \omega((f(n)))$

Example: Sorting

- *Input:* sequence $\langle a_1, a_2, ..., a_n \rangle$ of numbers.
- Output: permutation $\langle a'_1, a'_2, ..., a'_n \rangle$ such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$.
- Example:
 - *Input:* 8 2 4 9 3 6
 - Output: 2 3 4 6 8 9

Insertion Sort

INSERTION-SORT(A[1..n])

- **1. for** j = 2 **to** n
- 2. key = A[j]
- 3. // Insert A[j] into sorted seq A[1..j-1]
- 4. i = j 1
- 5. **while** i > 0 and A[i] > key
- 6. A[i+1] = A[i]
- 7. i = i 1
- 8. A[i+1] = key

Example: Step5 (while loop) of Insertion sort

Suppose j=5.

End of while loop

Denote by A' the array A immediately before the while loop (line 5)

Suppose A'=1, 4, 6, 9, 2, 7, 3 (i.e. key=A'[j]=A'[5]=2)

i		
4	1 4 6 9 2 7 3	0 th round of while loop
3	1 4 6 9 9 7 3	1st round of while loop
2	1 4 6 6 9 7 3	2 nd round of while loop
1	1 4 4 6 9 7 3	3 rd round of while loop
	End of while loop	A:

INSERTION-SORT(A[1..n])

1. for
$$j = 2$$
 to n

2.
$$key = A[j]$$

3. // Insert
$$A[j]$$
 into sorted seq $A[1 .. j-1]$

4.
$$i = j - 1$$

5. **while**
$$i > 0$$
 and $A[i] > key$

6.
$$A[i+1] = A[i]$$

7.
$$i = i - 1$$

8.
$$A[i+1] = key$$

Insertion Sort running time

- The inner while loop is iterated at most j-1 times
- Each while loop iteration has constant number of instructions
- Total runtime proportional to $\sum_{j=2}^{n} (j-1) < n^2$. Hence, the running time is $O(n^2)$.

- If the array is in reverse sorted order, then the runtime is also $\Omega(n^2)$.
- Hence, the worst-case runtime is $\Theta(n^2)$.

Acknowledgement

- The slides are modified from
 - the slides from Prof. Erik D. Demaine and Prof. Charles E. Leiserson
 - the slides from Prof. Surender Baswana
 - the slides from Prof. Leong Hon Wai
 - the slides from Prof. Lee Wee Sun
 - the slides from Prof. Ken Sung
 - the slides from Prof. Diptarka Chakraborty
 - the slides from Prof. Arnab Bhattacharyya