Math 217 Worksheet 21B: Elementary Matrices and Determinants

Definition: An **elementary matrix** is an $n \times n$ matrix obtained by performing a *single* elementary row operation on an $n \times n$ identity matrix I_n .

Theorem 1: If E is an elementary matrix obtained by applying an elementary row operation on I_n , then for $A \in \mathbb{R}^{n \times d}$, the matrix EA is obtained by applying the same elementary row operation to A.

Problem 1. Recall and discuss the three different types of elementary row operations.

- (a) Write out three examples of 3×3 elementary matrices, with at least one of each type.
- (b) Let $A = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\ b_1 & b_2 & b_3 & b_4 \\ c_1 & c_2 & c_3 & c_4 \end{bmatrix}$ be an arbitrary 3×4 matrix. Verify Theorem 1 for each of your three elementary row operations (matrices) in (a).
- (c) Do you see why Theorem 1 is true? Without writing out details, discuss a scaffold for its proof.

Problem 2. Suppose $i \neq j$. Find the determinant of the elementary matrix:

- (a) obtained from I_n by scaling row i by non-zero $a \in \mathbb{R}$; [Hint: Use the linearity of the determinant in row i.]
- (b) obtained from I_n by interchanging rows i and j; [HINT: Use the alternating property of determinants.]
- (c) obtained from I_n by adding a times row i to row j; [Hint: Use linearity in row j and alternating prop.]

Problem 3.

- (a) Elementary matrices are invertible, with inverse also an elementary matrix. Explain.
- (b) Prove that an invertible matrix is a product of elementary matrices. [Hint: Use Theorem 1 repeatedly, performing elementary row ops to get rref(A).]

Problem 4. Another way to compute determinants.

- (a) For $A \in \mathbb{R}^{n \times n}$, what is the effect on det A when we apply each type of elementary row operation?
- (b) For a matrix $A \in \mathbb{R}^{n \times n}$, the determinant can be computed by row reducing A, and keeping track of how many row swaps were performed, and all the row scalings performed. Explain.
- (c) Use row ops to compute the determinant of $\begin{bmatrix} \frac{1}{2} & -\frac{3}{2} & -\frac{1}{2} & \frac{5}{2} \\ 2 & -4 & -2 & 8 \\ -1 & 3 & 6 & -1 \\ 1 & -3 & -1 & 2 \end{bmatrix}.$

Problem 5. In this problem, we will prove the multiplicative property of determinants: det(AB) = det A det B. So answer all parts below *without using* the multiplicative property. Fix $A, B \in \mathbb{R}^{n \times n}$.

- (a) Prove that $\det(EA) = \det(E) \det(A)$. [Hint: There are three cases. Use Theorem 1 and Problems 2 and 4.]
- (b) If $A = E_1 E_2 \cdots E_t$, where the E_i are elementary matrices, prove $\det A = \prod_{i=1}^t \det E_i$. [Hint: Induce!]
- (c) Prove that $\det(AB) = \det A \det B$. [Hint: Multiply A by appropriate $E_1 \cdots E_t$ to row reduce; induce on t.]

Math 217 Worksheet 21C: Determinants and Volume

Definition: The standard unit *n*-cube in \mathbb{R}^n is the set $\{t_1\vec{e}_1 + \cdots + t_n\vec{e}_n \mid 0 \leq t_i \leq 1\} \subseteq \mathbb{R}^n$.

Theorem 2: Consider a linear transformation $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$. Let P be the parallelepiped which is the image of the standard unit n-cube under T. Then the n-volume of P is $|\det T|$.

Problem 1. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation with standard matrix $\begin{bmatrix} 7 & 3 \\ 0 & 4 \end{bmatrix}$.

- (a) The image $T[\{t_1\vec{e}_1 + t_2\vec{e}_2 \mid 0 \le t_i \le 1\}]$ of the standard unit square* is a parallelogram. Sketch it.
- (b) Verify Theorem 2 in this example.

Problem 2. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ have standard matrix $A = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \end{bmatrix}$, where $\vec{v}_1, \vec{v}_2 \in \mathbb{R}^2$ are orthogonal.

- (a) The image of the unit square under T is a rectangle with sides of lengths $||\vec{v}_1||$ and $||\vec{v}_2||$. Why? Sketch it. What does Theorem 2 tell us about det A?
- (b) Verify Theorem 2 for this T. [Hint: One way to find det A uses QR factorization; Another writes out $\vec{v}_1 = \begin{bmatrix} a \\ b \end{bmatrix}$.]

Problem 3. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ have standard matrix A, where A has linearly dependent columns \vec{v}_1, \vec{v}_2 .

- (a) The image $T[\{t_1\vec{e}_1 + t_2\vec{e}_2 \mid 0 \le t_i \le 1\}]$ of the standard unit square Q is a line segment. Why?
- (b) Verify Theorem 2 in this example.

Problem 4. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ have standard matrix A, where A has linearly independent columns \vec{v}_1, \vec{v}_2 .

- (a) The image T[Q] of the standard unit square Q is a parallelogram. Sketch it, labelling the vectors \vec{v}_1 and \vec{v}_2 on your sketch. [Protip: Placing \vec{v}_1 and \vec{v}_2 in Quadrant 1 will make the sketch more manageable.]
- (b) Suppose we apply the Gram Schmidt process to $\{\vec{v}_1, \vec{v}_2\}$ and get the vectors $\{\vec{u}_1, \vec{u}_2\}$. Add \vec{u}_1 to your sketch, clearly showing its relationship to \vec{v}_1 . Show also \vec{u}_2 on your sketch.
- (c) Compute that the base length and the height of the parallelogram T[Q] are $\vec{v}_1 \cdot \vec{u}_1$ and $\vec{v}_2 \cdot \vec{u}_2$.
- (d) Prove Theorem 2 in dimension two. [HINT: Compute the determinant of A using its QR factorization.]

Problem 5. Let A be the 3×3 matrix $[\vec{v}_1 \ \vec{v}_2 \ \vec{v}_3]$, and let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be left multiplication by A.

(a) Assuming the columns of A are linearly independent, use the QR-factorization to show that

$$|\det A| = (\vec{v}_1 \cdot \vec{u}_1) (\vec{v}_2 \cdot \vec{u}_2) (\vec{v}_3 \cdot \vec{u}_3),$$

where $\vec{u}_1, \vec{u}_2, \vec{u}_3$ is obtained from $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ by the Gram-Schmidt process.

- (b) The image of the standard unit cube Q_3 under T is a parallelepiped with one vertex at $\vec{0}$ and $\vec{v}_1, \vec{v}_2,$ and \vec{v}_3 as three of its edges. Why?
- (c) The image parallelepiped $T[Q_3]$ has sides that are parallelograms. Explain why one of these sides (let's call it the "base") has area $(\vec{v}_1 \cdot \vec{u}_1)(\vec{v}_2 \cdot \vec{u}_2)$. Explain why the height of the parallelepiped is $(\vec{v}_3 \cdot \vec{u}_3)$.
- (d) Prove Theorem 2 in dimension 3. Do you see how one might construct an inductive proof for Theorem 2 in arbitrary dimension?

^{* &}quot;Unit square" is another name for "unit 2-cube".

Problem 6. The sign of the determinant. Let A be a 2×2 matrix representing a linear transforma-

tion $\mathbb{R}^2 \to \mathbb{R}^2$ in standard coordinates. Investigate the geometric meaning of the *sign of the determinant* by sketching the images \vec{v}_1 and \vec{v}_2 of \vec{e}_1 and \vec{e}_2 in several different cases, some where the determinant of A is negative and some where it is positive. What happens for 3×3 matrices? What general observation can you make?