Data Structure: B-Tree

m-way search tree

- Binary trees are not quite appropriate for data stored on disks
 - we assumed all data is kept in main memory
 - what if the data is kept in external disk?
 - disk access is much slower than memory access
 - disk is partitioned into blocks (pages) and the access time of a word is the same as that of the entire block containing the word
 - we need to reduce the number of disk access
 - → make each node of the tree wider (m-way search tree)

m-way search tree

- In a tree of degree m and height h
 - the maximum number of nodes is $(m^h I) / (m-I)$ $(m^0 + m^1 + m^2 + ... m^{h-1})$
 - the maximum number of elements in an m-way tree of height h is m^h I
 (since each node has at most m-I elements)

- a binary tree with h=3 has 7 elements in the tree
- a 200-way tree with h=3 has $200^3 1 = 8 * 10^6 1$ nodes

B-Tree

- a B-tree of order m is an m-way search tree with the following properties
 - the root has at least 2 children
 - each node has upto m-1 keys
 - all external nodes are at the same level (perfectly balanced)
 - all internal nodes (except the root) have between \[m/2 \] and m children
 - when m=3, all internal nodes of B-tree have a degree of either 2 or 3 (2-3 tree)
 - when m=4, all internal nodes of B-tree have a degree of 2, 3, or 4 (2-3-4 tree)

B-Tree

- a B-tree of height h
 - best case: the tree is splitting widely

$$n = m^h - I$$

$$h = \lceil \log_m(n+1) \rceil$$

$$\log_m n = \frac{\log n}{\log m} = O(\log n)$$

worst case: the tree is splitting $\lceil m/2 \rceil$ ways

$$\log_{\left\lceil \frac{m}{2} \right\rceil} n = \frac{\log n}{\log \left\lceil \frac{m}{2} \right\rceil} = O(\log n)$$

B-Tree: node structure

search

- When we arrive an internal node with key $k_1 < k_2, ... < k_{m-1}$, search for x in this list (either linearly or by binary search)
 - if you found x, you are done
 - otherwise, find the index i such that $k_i < x < k_{i+1}$, and recursively search the subtree pointed by p_i .
- Complexity = $\log m \cdot \log_m n = O(\log n)$

- find the appropriate leaf into which the node can be inserted
 - if the leaf is not full (< m-I keys), insert it</p>

- find the appropriate leaf into which the node can be inserted
 - if the leaf is not full (< m-I keys), insert it
 - if the node overflows, restore the balance
 - key rotation (if there is a space in the sibling node)
 - node split

■ key rotation: check for siblings for rotation into the B-tree of m=3

■ key rotation: check for siblings for rotation into the B-tree of m=3

■ key rotation: check for siblings for rotation into the B-tree of m=3

node split

- if we have a node with m keys after insertion (overflow), split the node into three groups
 - (a) a node with the keys smaller than the middle key
 - (b) a node with the middle key
 - (c) a node with the keys greater than the middle key
- make (a) and (c) as new nodes and push (b) to the parent
- if the parent overflows, repeat the process
- if the root overflows, create a new node with 2 children

m= 3 (2,3 children, 1,2 keys) insert 30

m= 3 (2,3 children, 1,2 keys) insert 30

find the middle one and push it to the parent node

m= 3 (2,3 children, 1,2 keys) insert 30

find the middle one and push it to the parent node

- find a suitable replacement which is the largest key in the left child (or the smallest in the right) and move it to fill the hole
 - key rotation
 - node merging

key rotation: check for siblings for rotation

m= 3 (2,3 children, 1,2 keys)

node merging

- no sibling that can be rotated
- move down the intermediate node from the parent and put it in the new node
- if this might cause underflow in the parent node, repeat the process

m= 3 (2,3 children, 1,2 keys)

80

20

90

Use of B-tree in database system

- \blacksquare number of disk access is $O(\log_m n)$
- \blacksquare each disk access requires $O(\log m)$ overhead to determine the direction to branch, but this is done in main memory without a hard disk access, thus negligible.
- m can be determined as large as possible, but it must still be small enough so that an internal node can fit into one disk block.
- m is typically between 32 and 256.
- often one or two levels of internal nodes reside in main memory.