

加窗方法设计流程

❖加窗方法设计流程

加窗方法设计流程

*加窗方法公式描述

技术指标的使用考虑

- ❖技术指标的相关问题
 - > 等效性与方便性

$$\delta_s = \frac{1}{A}$$
 \Longrightarrow $A = \frac{1}{\delta_s}$

$$\frac{1-\delta_p}{1+\delta_p} = \frac{1}{\sqrt{1+\varepsilon^2}} \qquad \Longrightarrow \qquad \delta_p = \frac{\sqrt{1+\varepsilon^2}-1}{\sqrt{1+\varepsilon^2}+1} \qquad \varepsilon^2 = \frac{4\delta_p}{(1-\delta_p)^2}$$

$$\varepsilon^2 = \frac{4\delta_p}{(1 - \delta_p)^2}$$

典型窗口函数特性

*经典窗口函数

- **>** Rectangle
- > Barlett
- > Hanning
- **Hamming**
- **Blackman**

2019/5/15

数字信号处理 北京航空航天大学

典型窗口函数特性

*矩形窗

$$w[n] = \begin{cases} 1 & 0 \le n \le N - 1 \\ 0 & \text{otherwise} \end{cases}$$

2019/5/15

数字信号处理 北京航空航天大学

典型窗口函数特性

*三角窗

$$w[n] = \begin{cases} \frac{2n}{N-1}, & 0 \le n \le \frac{1}{2}(N-1) \\ 2 - \frac{2n}{N-1}, & \frac{1}{2}(N-1) < n \le N-1 \end{cases}$$

典型窗口函数特性

❖ Hanning窗

$$w[n] = \frac{1}{2} \left[1 - \cos\left(\frac{2\pi n}{N - 1}\right) \right] R_N(n)$$

2019/5/15

数字信号处理 北京航空航天大学

典型窗口函数特性

❖Hamming窗

$$w[n] = \left[0.54 - 0.46 \cos \left(\frac{2\pi n}{N - 1} \right) \right] R_N(n)$$

典型窗口函数特性

❖ Blackman 窗

$$w[n] = \left[0.42 - 0.5 \cos\left(\frac{2\pi n}{N - 1}\right) + 0.08 \cos\left(\frac{4\pi n}{N - 1}\right) \right] R_N(n)$$

典型窗口函数特性

❖窗口参数列表:

▶近似估算长度和形状

Window name	Side lobe level (dB)	Approx. $\Delta \omega$	Exact $\Delta \omega$	$\delta_{\mathrm{p}} pprox \delta_{\mathrm{s}}$	A _p (dB)	A _s (dB)
Rectangular	-13	$4\pi/L$	$1.8\pi/L$	0.09	0.75	21
Bartlett	-25	$8\pi/L$	$6.1\pi/L$	0.05	0.45	26
Hann	-31	$8\pi/L$	$6.2\pi/L$	0.0063	0.055	44
Hamming	-41	$8\pi/L$	$6.6\pi/L$	0.0022	0.019	53
Blackman	-57	$12\pi/L$	$11\pi/L$	0.0002	0.0017	74

窗口函数的影响分析

❖频域的卷积关系

2019/5/15 数字信号

数字信号处理 北京航空航天大学

窗口函数的影响分析

*设计结果影响分析

窗口函数的影响分析

❖窗口函数—矩形窗

窗口函数的影响分析

❖窗口函数—矩形窗

2019/5/15

窗口函数的影响分析

❖窗口函数——Hamming窗

窗口函数的影响分析

2019/5/15

加窗方法的设计实例

*技术指标

- \rightarrow 截至频率: $\omega_c = 0.5\pi$ 。
- ▶ 窗口长度: N= 51;
- ▶窗口形状:

Rectangle, Hanning, Hamming, Blackman

▶表示形式: 归一化分贝(dB)

2019/5/15

数字信号处理 北京航空航天大学

18

加窗方法的设计实例

数字信号处理 北京航空航天大学

基于加窗方法设计

2019/5/15

数字信号处理 北京航空航天大学

20

第17次作业

*补充作业

在Matlab软件仿真环境下,编写出矩形窗和Hamming窗口函数,并基于矩形窗和Hamming窗方法设计通带截止频率 $\omega_p = 0.4\pi$ 、阻带截止频率 $\omega_s = 0.6\pi$ 的FIR数字低通滤波器,给出主要设计过程和Matlab程序代码,并绘制出窗口函数序列、窗口函数幅频响应、FIR数字滤波器的幅频响应(不可直接调用MATLAB下的WVTOOL可视化工具)。

2019/5/15

数字信号处理 北京航空航天大学

21