§2. Hàm số bâc nhất

A. Lý thuyết

- **1.** Hàm số bậc nhất là hàm số có dạng y = ax + b, trong đó a,b là các hệ số, $a \ne 0$.
 - * Tập xác định: $D = \mathbb{R}$.
 - * Chiều biến thiên: Hàm số y = ax + b

 - Đồng biến trên khoảng $(-\infty; +\infty)$ nếu a > 0; Nghịch biến trên khoảng $(-\infty; +\infty)$ nếu a < 0. * Đồ thị: Đồ thị của hàm số y = ax + b $(a \neq 0)$ là một đường thẳng gọi là đường thẳng y = ax + b. Đường thẳng này có hệ số góc bằng a và:
 - Không song song và không trùng với các trục tọa độ;
 - Cắt trục tung tại điểm B(0;b) và cắt trục hoành tại điểm $A\left(\frac{-b}{a};0\right)$.
- **2.** Cho hai đường thẳng (d): y = ax + b và (d'): y = a'x + b', ta có:
 - (d) song song với (d') khi và chỉ khi a = a' và b ≠ b'.
 (d) trùng với (d') khi và chỉ khi a = a' và b = b'.
 (d) cắt (d') khi và chỉ khi a ≠ a'.

B. Các dang toán điển hình

Dang 1

Chiều biến thiên của hàm số bậc nhất

Ví dụ 1: Cho các hàm số sau:

$$y=2x+3$$
; $y=1-0.3x$; $y=(1-\sqrt{2})(x-1)+1$; $y=\frac{2x+5}{3}-\frac{x}{2}$; $y=\frac{1}{2}-\frac{3+x}{5}$.

Trong các hàm số trên, có bao nhiều hàm số đồng biến trên \mathbb{R} ?

A. 1.

D. 4.

STUDY TIP

Chiều biến thiên của hàm số bậc nhất phụ thuộc vào dấu của hệ số a.

STUDY TIP

Nếu biểu thức của hàm số có nhiều số hạng chứa x thì ta cần phải rút gọn về dạng y = ax + b rồi mới xét sự biến thiên.

Hàm số y = 2x + 3 có hệ số góc a = 2 > 0 nên đồng biến trên \mathbb{R} .

Hàm số y=1-0.3x có hệ số góc a=-0.3<0 nên nghịch biến trên \mathbb{R} .

Hàm số $y = (1 - \sqrt{2})(x - 1) + 1$ có hệ số góc $a = 1 - \sqrt{2} < 0$ nên nghịch biến trên \mathbb{R} .

Hàm số $y = \frac{2x+5}{3} - \frac{x}{2} \Leftrightarrow y = \frac{x}{6} + \frac{5}{6}$ có hệ số góc $a = \frac{1}{6} > 0$ nên đồng biến trên \mathbb{R} .

Hàm số $y = \frac{1}{2} - \frac{3+x}{5}$ có hệ số góc $a = \frac{-1}{5} < 0$ nên nghịch biến trên \mathbb{R} .

Vây có tất cả 2 hàm số đồng biến trên \mathbb{R} .

Đáp án B.

Ví dụ 2: Hàm số $y = \frac{5-3x}{5-3m}$ (m là tham số) nghịch biến trên \mathbb{R} khi và chỉ khi:

A. $m \ge \frac{5}{3}$. **B.** $m > \frac{5}{3}$. **C.** $m \le \frac{5}{3}$. **D.** $m < \frac{5}{3}$.

Lời giải

Cách 1: Hàm số $y = \frac{5-3x}{5-3m}$ có hệ số góc $a = \frac{-3}{5-3m}$. Hàm số nghịch biến trên \mathbb{R}

khi và chỉ khi $\frac{-3}{5-3m} < 0 \Leftrightarrow 5-3m > 0 \Leftrightarrow m < \frac{5}{3}$. D là đáp án đúng.

Cách 2: Rỗ ràng m phải khác $\frac{5}{2}$. Với $m=1<\frac{5}{2}$, hàm số có dạng $y=\frac{5-3x}{2}$ có hệ

số góc $a = \frac{-3}{2} < 0$ nên nghịch biến trên \mathbb{R} . Từ đó suy ra đáp án đúng là D.

Đáp án D.

Dang 2

Vị trí tương đối, sự tương giao giữa các đường thẳng

Ví du 3: Cho các đường thẳng sau:

$$y = \frac{1}{\sqrt{2}}x + 1$$
; $y = \frac{-1}{\sqrt{2}}x + 3$; $y = \frac{2}{\sqrt{2}}x + 2$;

$$y = \sqrt{2}x - 2$$
; $y = \frac{1}{\sqrt{2}}x - 1$ và $y = -\left(\frac{\sqrt{2}}{2}x - 3\right)$.

Trong các đường thẳng trên, có bao nhiêu cặp đường thẳng song song?

A. 0.

B. 1.

D. 3.

Ta có
$$y = \frac{2}{\sqrt{2}}x + 2 \Leftrightarrow y = \sqrt{2}x + 2$$
; $y = -\left(\frac{\sqrt{2}}{2}x - 3\right) \Leftrightarrow y = \frac{-1}{\sqrt{2}}x + 3$.

Từ đó ta thấy có 2 cặp đường thẳng song song, đó là:

$$y = \frac{1}{\sqrt{2}}x + 1$$
 và $y = \frac{1}{\sqrt{2}}x - 1$; $y = \frac{2}{\sqrt{2}}x + 2$ và $y = \sqrt{2}x - 2$.

Đáp án C.

Ví dụ 4: Cho hai đường thẳng (d): $y = (m^2 - 3m)x + 3$ và (d'): y = -2x + m + 1. Có

bao nhiều giá trị của tham số *m* để hai đường thắng song song với nhau?

A. 0.

B. 1.

D. vô số.

$$(d)//(d')$$
 khi và chỉ khi
$$\begin{cases} m^2 - 3m = -2 \\ 3 \neq m+1 \end{cases} \Leftrightarrow \begin{cases} m^2 - 3m + 2 = 0 \\ m \neq 2 \end{cases} \Leftrightarrow m = 1.$$

Vậy có 1 giá trị của tham số m để hai đường thẳng song song với nhau.

Đáp án B.

Ví dụ 5: Cho đường thẳng (d): y = ax + b. Tìm 4a + b, biết (d) cắt đường thẳng y = 2x + 5 tại điểm có hoành độ bằng -2 và cắt đường thẳng y = -3x + 4 tại điểm có tung độ bằng -2.

A.
$$4a+b=\frac{-7}{2}$$
. **B.** $4a+b=\frac{7}{2}$. **C.** $4a+b=\frac{-5}{2}$. **D.** $4a+b=\frac{5}{2}$.

B.
$$4a + b = \frac{7}{2}$$
.

C.
$$4a+b=\frac{-5}{2}$$

D.
$$4a + b = \frac{5}{2}$$
.

STUDY TIP

Điểm A là giao điểm của hai đường thẳng d và $d' \Leftrightarrow$ tọa độ của A thỏa mãn phương trình của cả d và d'

$$x = -2 \Rightarrow y = 1 \Rightarrow (d)$$
 đi qua điểm $A(-2;1)$;

$$y = -2 \Rightarrow -3x + 4 = -2 \Rightarrow x = 2 \Rightarrow (d)$$
 đi qua điểm $B(2; -2)$.

Từ đó ta có hệ
$$\begin{cases} -2a+b=1 \\ 2a+b=-2 \end{cases} \Leftrightarrow \begin{cases} a=\frac{-3}{4} \\ b=\frac{-1}{2} \end{cases} \Rightarrow 4a+b=\frac{-7}{2}.$$

Đáp án A.

Ví dụ 6: Cho hai đường thẳng (d): y = x + 1 và (d'): y = -x + 3 cắt nhau tại C và cắt Ox theo thứ tự tại các điểm A và B. Tính diện tích S của tam giác ABC.

A.
$$S = 8$$
.

B.
$$S = 6$$
.

C.
$$S = 4$$
.

D.
$$S = 2$$
.

Lời giả

Phương trình hoành độ giao điểm của (d) và (d'): $x+1=-x+3 \Leftrightarrow x=1$.

Với
$$x = 1$$
 thì $y = 1 + 1 = 2$. Ta có $C = (1, 2)$.

Dễ thấy
$$A = (-1,0)$$
 và $B = (3,0)$.

Diện tích tam giác *ABC* là
$$S = \frac{1}{2}AB.CH = \frac{1}{2}.4.2 = 4$$
.

Đáp án C.

Ví dụ 7: Cho số nguyên dương m. Biết ba đường thẳng $y = \frac{2x+m}{3}$, $y = x + \frac{5}{2}$ và y = 4x - 2 đồng quy. Tìm số ước nguyên dương của m.

D. 3.

Lời giải

Ba đường thẳng d_1, d_2, d_3 đồng quy $\Leftrightarrow d_1, d_2, d_3$ cùng đi qua một điểm $\Leftrightarrow d_1$ đi qua giao điểm của d_2 và d_3

STUDY TIP

Xét phương trình hoành độ giao điểm của hai đường thẳng $y = x + \frac{5}{2}$ và y = 4x - 2: $x + \frac{5}{2} = 4x - 2$. Giải phương trình tìm được $x = \frac{3}{2}$.

Suy ra ba đường thẳng đã cho đồng quy tại điểm $I\left(\frac{3}{2};4\right)$.

Đường thẳng
$$y = \frac{2x+m}{3}$$
 đi qua điểm $I\left(\frac{3}{2};4\right) \Leftrightarrow \frac{2\cdot\frac{3}{2}+m}{3} = 4 \Leftrightarrow m = 9.$

Vậy *m* có 3 ước nguyên dương.

Đáp án D.

Dạng 3

Điểm cố định của họ đường thẳng

Ví dụ 8: Cho đường thẳng (d): y = (m-1)x + 2m - 3, trong đó m là tham số. Gọi M là điểm cố định mà (d) luôn đi qua với mọi m. Tính OM.

A.
$$OM = \sqrt{5}$$
.

B.
$$OM = 2$$
.

C.
$$OM = 1$$
.

D.
$$OM = \sqrt{10}$$
.

STUDY TIP

Phương trình am = b thỏa mãn với mọi $m \in \mathbb{R}$ khi và chỉ khi a = b = 0.

Lời giải

Cách 1: Giả sử $M = (x_0; y_0); (d)$ luôn đi qua M với mọi m khi và chỉ khi:

$$y_0 = (m-1)x_0 + 2m - 3 \ \forall m \Leftrightarrow (x_0 + 2)m = y_0 + x_0 + 3 \ \forall m$$

$$\Leftrightarrow \begin{cases} x_0 + 2 = 0 \\ y_0 + x_0 + 3 = 0 \end{cases} \Leftrightarrow \begin{cases} x_0 = -2 \\ y_0 = -1 \end{cases}.$$

STUDY TIP

Với
$$M = (x_0; y_0)$$
 thì
$$OM = \sqrt{x_0^2 + y_0^2}.$$

Vậy
$$M = (-2; -1) \Rightarrow OM = \sqrt{(-2)^2 + (-1)^2} = \sqrt{5}$$
.

Cách 2:
$$(d)$$
: $y = (m-1)x + 2m - 3 \Leftrightarrow y = m(x+2) - x - 3$.

Ta thấy với
$$x = -2$$
 thì $y = -1 \ \forall m$.

Vậy
$$M = (-2; -1) \Rightarrow OM = \sqrt{(-2)^2 + (-1)^2} = \sqrt{5}$$
.

Dang 4

Hàm số y = |ax + b|

Ví dụ 9: Vẽ đồ thị hàm số y = |x|.

Lời giải

Ta có
$$y = |x| = \begin{cases} x \text{ khi } x \ge 0 \\ -x \text{ khi } x < 0 \end{cases}$$
.

Từ đó ta có đồ thị hàm số là đường nét liền gấp khúc như trong hình dưới đây.

* Tổng quát:

Xét hàm số $y = |ax + b| (a \neq 0)$.

Ta có
$$y = |ax + b| = \begin{cases} ax + b \text{ khi } ax + b \ge 0 \\ -(ax + b) \text{ khi } ax + b < 0 \end{cases}$$

Cách vẽ đồ thị hàm số y = |ax + b| $(a \neq 0)$:

- Vẽ đường thẳng y = ax + b;
- Lấy đối xứng phần nằm dưới trục hoành của đường thẳng $y=ax+b\,$ qua trục hoành rồi xóa phần nằm dưới trục hoành đó đi.

Ví dụ ta có đồ thị của hàm số y = |2x - 3| là đường nét liền gấp khúc như trong hình bên.

- * Nhận xét: Hàm số y = |ax + b| $(a \ne 0)$:
- Có đồ thị là một đường gấp khúc, đối xứng qua đường thẳng $x = \frac{-b}{a}$ và cắt trục

hoành tại điểm $I\left(-\frac{b}{a};0\right)$;

- Nghịch biến trên khoảng
$$\left(-\infty; \frac{-b}{a}\right)$$
, đồng biến trên khoảng $\left(\frac{-b}{a}; +\infty\right)$.

Đặc biệt, hàm số y = |x| là một hàm số chẵn, có đồ thị đối xứng qua trục tung, nghịch biến trên khoảng $(-\infty;0)$, đồng biến trên khoảng $(0;+\infty)$.

STUDY TIP

Đồ thị hàm số y = |ax+b| $(a \neq 0)$ luôn có hình dạng là một chữ V với đáy nhọn (điểm thấp nhất) thuộc trục hoành (giá trị nhỏ nhất luôn bằng 0).

Ví dụ 10: Hàm số y = |-x-3| + |2x+1| + |x+1| đồng biến trong khoảng nào dưới đây?

A.
$$(-\infty;+\infty)$$
.

B.
$$\left(-3;+\infty\right)$$

C.
$$\left(-1;+\infty\right)$$
.

A.
$$(-\infty; +\infty)$$
. B. $(-3; +\infty)$. C. $(-1; +\infty)$. D. $\left(-\frac{1}{2}; +\infty\right)$.

Ta có
$$y = |-x-3| + |2x+1| + |x+1| = |x+3| + |2x+1| + |x+1|$$
. Lại có:

$$|x+3| = \begin{cases} x+3 \text{ khi } x \ge -3 \\ -x-3 \text{ khi } x < -3 \end{cases}; |x+1| = \begin{cases} x+1 \text{ khi } x \ge -1 \\ -x-1 \text{ khi } x < -1 \end{cases}; |2x+1| = \begin{cases} 2x+1 \text{ khi } x \ge -1/2 \\ -2x-1 \text{ khi } x < -1/2 \end{cases}.$$

Từ đó ta có bảng sau:

х	-∞ - `	3 –		$\frac{1}{2}$ $+\infty$
x+3	-x-3	<i>x</i> + 3	<i>x</i> + 3	<i>x</i> + 3
x+1	-x-1	-x-1	<i>x</i> +1	<i>x</i> + 1
2x+1	-2x-1	-2x-1	-2x-1	2x + 1
у	-4x-5	-2x+1	3	4 <i>x</i> + 5

Từ bảng trên suy ra hàm số đã cho đồng biến trong khoảng $\left(-\frac{1}{2};+\infty\right)$.

Lưu ý: Có thể dùng máy tính cầm tay (chức năng TABLE) để tìm khoảng đồng biến của hàm số (xem lại Bài 1 – Đại cương về hàm số).

Đáp án D.