Задача 1. (2014-07-15 КН) Даден е неориентиран граф G(V,E), в който всеки връх има степен поне $d\geq 2$.

- а) Докажете, че в G има цикъл.
- б) Докажете по-силното твърдение: в G има цикъл с дължина поне d+1.

Решение.

а) Нека $p=u_1\dots u_k$ е произволен най-дълъг прост път в G с дължина |p|=k. Нека ω е един от краищата му (тоест $\omega=u_1$ или $\omega=u_k$). Той има един известен съсед (предхождащия или следващия го в p).

От $d \ge 2 \Rightarrow$ има поне още един съсед. Нека един такъв съсед е u.

- 1) Ако $u \in p$ (и е различен връх от вече известния съсед предхождащия или следващия), то имаме цикъл.
- 2) Ако $u \notin p$, то имаме по-дълъг прост път $p' = u_1 u_2 \dots u_k u$ с дължина |p'| = k+1, което е противоречие с избора на p като най-дълъг прост път. Следователно само 1) е валидно и има цикъл в G.
- б) Нека p е произволен най-дълъг прост път в G: $p=u_1u_2\dots u_k$. Тъй като $\deg(u_1)\geq 2$, то u_1 има поне един съсед различен от u_2 . Всички тези съседи на u_1 трябва да са в p (от избора на u за най-дълъг прост път това следва от разсъжденията в а)). Тоест u_1 има поне d съседа, които са от p.

Нека j е най-големия индекс, за който $(u_1, u_i) \in E$, като $j \ge d+1$.

Следователно имаме цикъл от вида $q=u_1u_2u_3\dots u_ju_1$. Дължината на q е $\mid q\mid =j\geq d+1$, което искахме да докажем.

П