

planetmath.org

Math for the people, by the people.

sinc is L^2

Canonical name SincIsL2

Date of creation 2013-03-22 15:44:44

Last modified on 2013-03-22 15:44:44

Owner cvalente (11260)

Last modified by cvalente (11260)

Numerical id 9

Author cvalente (11260)

Entry type Result
Classification msc 26A06

Our objective will be to prove the integral $\int_{\mathbb{R}} f^2(x)dx$ exists in the Lebesgue sense when $f(x) = \operatorname{sinc}(x)$.

The integrand is an even function and so we can restrict our proof to the set \mathbb{R}^+ .

Since f is a continuous function, so will f^2 be and thus for every a > 0, $f \in L^2([0, a])$.

Thus, if we prove $f \in L^2([\pi, \infty[))$, the result will be proved.

Consider the intervals $I_k = [k\pi, (k+1)\pi]$ and $U_k = \bigcup_{i=1}^k I_k = [\pi, (k+1)\pi]$. and the succession of functions $f_n(x) = f^2(x)\chi_{U_n}(x)$, where χ_{U_n} is the characteristic function of the set U_n .

Each f_n is a continuous function of compact support and will thus be integrable in \mathbb{R}^+ . Furthermore $f_n(x) \nearrow f^2(x)$ (pointwise) in this set.

In each
$$I_k, 0 \le f^2(x) \le \frac{\sin^2(x)}{(k\pi)^2}$$
, for $k > 0$.

So:
$$\int_{x \ge \pi} f_n(x) dx = \sum_{k=1}^n \int_{k\pi}^{(k+1)\pi} \frac{\sin(x)^2}{x^2} dx \le \sum_{k=1}^n \int_{k\pi}^{(k+1)\pi} \frac{\sin(x)^2}{(k\pi)^2} = \sum_{k=1}^n \frac{1}{2k^2\pi}$$

So: $\lim_{n\to\infty} \int_{x\geq\pi} f_n(x) dx \leq \lim_{n\to\infty} \sum_{k=1}^n \frac{1}{2k^2\pi}$ and since the series on the right side converges² and $f_n \nearrow f^2$ we can use the monotone convergence theorem to state that $f^2 \in L([\pi,\infty[)$.

So we get the result that $\operatorname{sinc} \in L^2(\mathbb{R})$

²asymptotic behaviour as k^{-2}

we have used the well known result $\int_0^{\pi} \sin^2(x) dx = \frac{\pi}{2}$