

## مبانی بینایی کامپیوتر

مدرس: محمدرضا محمدی

## پردازش تصویر در حوزه مکان

Image Processing in Spatial Domain

## ارتقاء محلى

• روشهایی که برای ارتقاء کنتراست اطلاعات محلی را در نظر میگیرند ارتقاء کنتراست سازگار (ACE) نامیده میشوند









## فیلتر در حوزه مکان

- در بسیاری از پردازشها، علاوه بر پیکسل (x,y)، پیکسلهای موجود در یک همسایگی آن نیز مورد استفاده قرار می گیرند
- فیلتر خطی در حوزه مکان معادل به انجام کانولوشن میان تصویر و یک کرنل دوبعدی است

$$g(x,y) = w(-1,-1)f(x-1,y-1) + w(-1,0)f(x-1,y) + \dots + w(0,0)f(x,y) + \dots + w(1,1)f(x+1,y+1)$$

OpenCV

$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

/\*
Various border types, image boundaries are denoted with '|'

\* BORDER\_REPLICATE: aaaaaa|abcdefgh|hhhhhhhh

\* BORDER\_REFLECT: fedcba|abcdefgh|hgfedcb

\* BORDER\_REFLECT\_101: gfedcb|abcdefgh|gfedcba

\* BORDER\_WRAP: cdefgh|abcdefgh|abcdefg

\* BORDER\_CONSTANT: iiiiii|abcdefgh|iiiiii with some specified 'i'

• حاشیه تصویر؟

## کانولوشن و همبستگی

• همبستگی به مفهوم حرکت دادن فیلتر روی تصویر و محاسبه مجموع حاصلضرب در هر مکان است

$$(w \Leftrightarrow f)(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

• مکانزیم کانولوشن هم شبیه به همبستگی است با این تفاوت که ابتدا کرنل به اندازه ۱۸۰ درجه میچرخد

$$(w \star f)(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x - s, y - t)$$

#### Correlation

# Origin f w 0 0 0 1 0 0 0 0 0 1 2 4 2 8 0 0 0 1 0 0 0 0 0 1 2 4 2 8 Starting position alignment



### 1 2 4 2 8 Final position

#### **Correlation result**

0 8 2 4 2 1 0 0

#### **Convolution**



#### **Convolution result**

Final position —

0 1 2 4 2 8 0 0

#### Padded f

#### $\overline{\ }$ Initial position for w

#### Correlation result

$$(w \stackrel{\triangle}{\approx} f)(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x + s, y + t)$$

#### Rotated w

#### Convolution result

$$(w \star f)(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x - s, y - t)$$

### تولید کرنل

- تولید یک فیلتر  $m \times n$  مستلزم تعیین m ضریب در کرنل است
- مثال: میخواهیم مقدار هر پیکسل برابر با میانگین مقدار مقادیر پیکسلهای اطراف آن باشد
  - مثال: میانگین وزندار

| $\frac{1}{9} \times$ | 1 | 1 | 1 |  |  |
|----------------------|---|---|---|--|--|
|                      | 1 | 1 | 1 |  |  |
|                      | 1 | 1 | 1 |  |  |

| $\frac{1}{4.8976} \times$ | 0.3679 | 0.6065 | 0.3679 |  |
|---------------------------|--------|--------|--------|--|
|                           | 0.6065 | 1.0000 | 0.6065 |  |
|                           | 0.3679 | 0.6065 | 0.3679 |  |

## فیلترهای هموارساز

- فیلترهای هموارساز فیلترهایی هستند که به منظور کاهش تغییرات شدید در شدت روشنایی پیکسلهای تصویر به کار میروند
  - یکی از کاربردهای این فیلترها کاهش نویز است
- همچنین برای حذف جزئیات کماهمیت تصویر قبل از پردازشهای پیچیده تری نظیر استخراج شیئ به کار میروند
  - ساده ترین فیلتر هموارساز همان فیلتر متوسط گیر است
  - این فیلترها اصولا از لحاظ فرکانسی فیلترهای پائین گذر هستند









## فیلترهای هموارساز

• لبههای تصویر که در بسیاری از کاربردها نظیر تشخیص اشیاء در تصویر نقش مهمی دارند، توسط فیلترهای هموارساز خاصیت پلهای خود را از دست میدهند و این میتواند اثر نامطلوبی باشد

• می توان متوسط گیری را به صورت وزن دار انجام داد

| $\frac{1}{9} \times$ | 1 | 1 | 1 |  |  |  |
|----------------------|---|---|---|--|--|--|
|                      | 1 | 1 | 1 |  |  |  |
|                      | 1 | 1 | 1 |  |  |  |

| $\frac{1}{16} \times$ | 1 | 2 | 1 |  |  |  |
|-----------------------|---|---|---|--|--|--|
|                       | 2 | 4 | 2 |  |  |  |
|                       | 1 | 2 | 1 |  |  |  |

## فیلتر گاوسی

• می توان با نمونه برداری از توابع پیوسته کاربردی، فیلترهای مناسبی را بدست آورد

• تابع گاوسی:

$$G(s,t) = Ke^{-\frac{s^2+t^2}{2\sigma^2}} = Ke^{-\frac{r^2}{2\sigma^2}}$$



|                           | 0.3679 | 0.6065 | 0.3679 |
|---------------------------|--------|--------|--------|
| $\frac{1}{4.8976} \times$ | 0.6065 | 1.0000 | 0.6065 |
|                           | 0.3679 | 0.6065 | 0.3679 |







## مقایسه فیلتر گاوسی و جعبهای



### حذف سایه

- نورپردازی غیریکنواخت یکی از چالشهای بینایی کامپیوتر است
  - شدت روشنایی محیط معمولا تغییرات کندی دارد
  - با یک فیلتر پائین گذر می توان سایه تصویر را تخمین زد
    - با تقسیم دو تصویر، اثر سایه کاهش می یابد



## نویز نمک و فلفل

- این نوع نویز برخلاف نویزهای بررسی شده، جمعشونده نیست
- فیلترهای هموارساز خطی نمی توانند این نوع نویز را به خوبی برطرف کنند
  - فیلترهای مرتبهای میتوانند عملکرد بهتری داشته باشند







## فيلتر ميانه

• فیلتر میانه یک فیلتر غیرخطی است که بر اساس مرتبسازی پیکسلهای درون کرنل و جایگزینی مقدار میانه بجای پیکسل مرکزی عمل میکند

|    |    |    |    |    | _ |  |    |    |    |  |
|----|----|----|----|----|---|--|----|----|----|--|
| 10 | 11 | 15 | 8  | 7  |   |  |    |    |    |  |
| 7  | 10 | 50 | 12 | 10 |   |  | 11 | 12 | 12 |  |
| 9  | 14 | 12 | 13 | 11 |   |  | 12 | 14 | 13 |  |
| 10 | 16 | 14 | 15 | 14 |   |  | 11 | 13 | 12 |  |
| 8  | 11 | 10 | 10 | 9  | _ |  |    |    |    |  |
|    |    |    |    |    | _ |  |    |    |    |  |