I esercitazione Testo dell'esercizio

Sommario:

- Agenti e ambienti
 - o Teseo e il labirinto versione base: formulazione PEAS
- Agenti per il problem solving
 - o Teseo e il labirinto versione base: formulazione con ambiente osservabile
- Algoritmi di ricerca: strategie non-informate e informate
- Software python (discusso in aula e/o via la documentazione nella sezione "Codice" della piattaforma e-learning)

1. Teseo e il labirinto:

Teseo deve trovare l'uscita del labirinto in figura (mappa) minimizzando il percorso per trovarla. Assunzioni:

- Teseo ha una mappa e sa dove si trova (ambiente accessibile)
- Teseo può spostarsi in una casella adiacente se non c'è un muro nel mezzo (le azioni sono deterministiche)
- Lo stato iniziale è (2,1) e l'obiettivo è indicato sulla mappa in casella (2,4)
- 1. Proporre una descrizione PEAS, descrivere il tipo di ambiente, il tipo di agente e fornire la formulazione del problema come un problema di ricerca
- 2. Disegnare lo spazio degli stati
- 3. Provare gli algoritmi di ricerca noti (BF a grafo, <u>DF</u> ad albero, DF ricorsiva ad albero, DL, Greedy best first a grafo, <u>A/ A* a grafo</u>, Ricerca locale Hill climbing) mostrando l'albero di ricerca, la lista degli stati nel cammino soluzione e costo e la lista degli "stati esplorati". Discutere sulla loro completezza e ottimalità e sulle proprietà dell'euristica utilizzata (ammissibilità, consistenza).

Note: Per DF provare alcuni ordinamenti diversi delle azioni come $\uparrow \rightarrow \downarrow \leftarrow$, oppure $\uparrow \downarrow \rightarrow \leftarrow$ o altri (e/o diversi ordini di inserimento nodi a pari livello) per vederne l'effetto. Per DL provare valori del limite diversi. Per l'algoritmo A/A* nel caso la strategia non indichi una preferenza si segua una politica FIFO (tra pari valori di f).

Note ulteriori:

• Si richiede ai gruppi che intendano partecipare in modo attivo di usare un tablet/ tavoletta elettronica/virtual board/touch-screen-device per *disegnare in diretta* le soluzioni da esporre in via telematica (su Teams) così da condividerle in aula e da remoto, o in alternativa di preparare delle *soluzioni già pronte* (disegnate) in via grafica, sempre esponendole sul Teams per la discussione in aula e da remoto. Si può partecipare quindi in modo attivo sia dall'aula che da remoto con i propri dispositivi.

Q&A:

 Domanda: Quando si va a fare la formulazione del problema dobbiamo scrivere esplicitamente tutte le azioni che si possono fare per ogni singola casella del labirinto?

Risposta: E' sufficiente per questa soluzione "fatta a mano" una formulazione del modello di transizione come:

Modello di transizione:

- Un solo stato successore.
- Risultato((R, C), \uparrow) = (R-1, C), purché non ci sia un muro*
- o esplicitandolo per le 4 possibili mosse
- (*) Nel codice Python per realizzare questo ci sono rimozioni dalla lista azioni.
- Domanda: che *l* (elle) va messo per DL?

Risposta: Per questa prima esercitazione: Non sono esercizi in cui viene prescritto ad esempio un *l* per la DL ma vi invito a riflettere nei vari casi (valori diversi) cosa succeda.

Lo stesso quando si suggerisce di investigare le differenze con ordinamenti diversi delle azioni o diversi ordini di inserimento nodi a pari livello per comprenderne l'effetto.