Problem C Hospitals

Input file: testdata.in Time limit: 6 seconds

Problem Description

Country T is a small country on an island. Although there are some prosperous cities, many people still live in remote mountain villages. In order to improve the life qualities of their people, the government decides to build some new hospitals in a region of the mountain villages.

There are n villages in the region, and the government plans to build p hospitals. Because the villages are built around the mountains, there is only one road connecting the villages. Thus, you can regard the villages as a path with n nodes. Now, the government wants to build the p hospitals in p different villages. To balance the loads of the hospitals, the government wants to find an optimal placement of the hospitals so that the maximum load of the hospitals is minimized. You can assume that people will only go to the nearest hospital and a village won't have the same distance to two villages.

Figure 1 shows an example. There are 5 villages, v_1, v_2, v_3, v_4, v_5 , and the government wants to build 2 hospitals, h_1, h_2 . If we place h_1 and h_2 at v_4 and v_5 , respectively, then the people in v_1, v_2, v_3, v_4 will go to h_1 and the people in v_5 will go to h_2 . (See Figure 1(a).) The load of h_1 is 250 and the load of h_2 is 50. Thus, the maximum load of this placement is 250. However, if we build h_1 in v_2 and build h_2 in v_4 , the two hospitals will have equal load 150 and this is the optimal placement. (See Figure 1(b).)

(a) a placement with maximum load 250

(b) a placement with maximum load 150

Figure 1: An example of n = 5 and p = 2

Please write a program to help the government of the Country T.

Technical Specification

- 1. The number of villages n, where $1 \le n \le 100$.
- 2. The number of hospitals p, where $1 \le p \le n$.
- 3. The number w_i of people in the *i*th village, where $1 \leq w_i \leq 10^7$ and $1 \leq i \leq n$.
- 4. The distance d_i between the *i*th and the (i+1)th villages, where each d_i is a nonnegative integer $\leq 10^7$ and $1 \leq i \leq n-1$.

Input Format

There are at most 10 test cases. The first line of each case contains two integers n and p. The following n lines indicate the numbers w_1, w_2, \ldots, w_n . The following n-1 lines indicate the distances $d_1, d_2, \ldots, d_{n-1}$. The input ends with a test case with n=0 and p=0, and this case should not be processed.

Output Format

For each case, print the maximum load of the optimal placement in a single line.

Sample Input

5 2

8 3

_ _

0 0

Sample Output

150

110

Remark: The optimal placement of the second sample case is v_1, v_6 and v_7 .