$$\underline{X} = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix} \longrightarrow E(\underline{X}) = \begin{pmatrix} E(X_1) \\ E(X_2) \\ \vdots \\ E(X_n) \end{pmatrix} \longrightarrow \text{cov}(\underline{X}) = \begin{pmatrix} \text{var}(X_1) & \text{cov}(X_1, X_2) & \cdots & \text{cov}(X_1, X_n) \\ \text{cov}(X_2, X_1) & \text{var}(X_2) & \cdots & \text{cov}(X_2, X_n) \\ \vdots & \vdots & \ddots & \vdots \\ \text{cov}(X_n, X_1) & \text{cov}(X_n, X_2) & \cdots & \text{var}(X_n) \end{pmatrix}$$

$$\underline{XX}^{T} = \begin{pmatrix}
X_{1}^{2} & X_{1}X_{2} & \cdots & X_{1}X_{n} \\
X_{2}X_{1} & X_{2}^{2} & \cdots & X_{2}X_{n} \\
\vdots & \vdots & \ddots & \vdots \\
X_{n}X_{1} & X_{n}X_{2} & \cdots & X_{n}^{2}
\end{pmatrix}$$

 $cov(\underline{X}) = E[(\underline{X} - E(\underline{X}))(\underline{X} - E(\underline{X}))^T] = E(\underline{X}\underline{X}^T) - E(\underline{X})E(\underline{X})^T$ korelacijski koeficient: $corr(X_1, X_2) = \frac{cov(X_1, X_2)}{\sqrt{var(X_1) var(X_2)}}$

Ce je A deterministična matrika (konstantna), velja: $E(A\underline{X}) = AE(\underline{X})$, $cov(A\underline{X}) = Acov(\underline{X})A^T$ $\operatorname{cov}(\langle \underline{X}, \underline{u} \rangle, \langle \underline{X}, \underline{v} \rangle) = \rangle \operatorname{cov}(\underline{X})\underline{u}, \underline{v} \rangle, \operatorname{cov}(\underline{u}^T \underline{X}, \underline{v}^T \underline{X}) = \underline{v}^T \operatorname{cov}(\underline{X})\underline{u}$

Standardna p-razsežna normalna porazdelitev je porazdelitev slučajnega vektorja (Z_1, Z_2, \dots, Z_n) ,

kjer so $Z_1, \ldots, Z_p \sim N(0,1)$ in neodvisne.

Če je Q ortogonalna matrika in Z standarden normalen vektor, potem je W = QZ tudi standarden normalen. Splošna n-razsežna normalna porazdelitev je vsaka porazdelitev slučajnega vektorja $\underline{W} = A\underline{Z} + \underline{u}$, kjer je \underline{Z} standarden p-razsežni normalni vektor, A matrika $n \times p$ polnega ranga in $u \in \mathbb{R}^n$.

 $E(\underline{Z}) = 0$, $cov(\underline{Z}) = I$, $E(\underline{W}) = \underline{u}$, $cov(\underline{Z}) = AA^T$

Če $A \in \mathbb{R}^{n \times p}$ polnega ranga, je AA^T polnega ranga (in obrnljiva).

$$\sigma > 0, X \sim N(\mu, \sigma^2) \Longrightarrow P(X \le a) = \Phi(\frac{a-\mu}{\sigma})$$

$$\begin{aligned} & \textbf{Pogojna gostota:} \ f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_y(y)} \\ & \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim N \begin{pmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \end{pmatrix} \Longrightarrow X_2|X_1 \sim N(\mu_2 + \Sigma_{21}\Sigma_{11}^{-1}(X_1 - \mu_1), \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}) \\ ||X||^2 = X^T X = sl(XX^T) \end{aligned}$$

Če poznamo porazdelitev slučajne spremenljivke Y in $f_{X|Y}$, potem velja $f_X(x) = E[f_{X|Y}(x)]$.

Pogojne pričakovane vrednosti: $E(X) = E[E(X|Y)], \quad E[Xg(Y)|Y] = E(X|Y)g(X), \text{ v abstraktnem smislu}$ definiramo kot funkcijo $\Psi(x)$, za katero za vsako omejeno zvezno funkcijo g velja $E[Yg(x)] = E[\Psi(x)g(x)]$. cov(X,Y) = cov(E(X|Z), E(Y|Z)) + E(cov(X,Y|Z)), med drugim var(X) = var(E(X|Z)) + E(var(X|Z))Če so X_1, \ldots, X_n neodvisne med seboj in tudi od Y_1, \ldots, Y_n), potem so X_1, \ldots, X_n neodvisne tudi pogojno na Y.

CENTRALNI LIMITNI IZREK

Izrek: Naj bodo X_1, X_2, \ldots neodvisne, enako porazdeljene z $E(X_i^2) < \infty$ in $E(X_i) = \mu_1$ ter $\text{var}(X_i) = \sigma_1^2$. $S_n = X_1 + X_2 + \cdots + X_n$. Tedaj:

$$\frac{S_n - n\mu_1}{\sigma_1 \sqrt{n}} \xrightarrow[n \to \infty]{\text{šibko}} N(0, 1),$$

kjer $n\mu_1 = E(S_n)$ in $\sigma_1\sqrt{n} = \sigma(S_n)$.

Bolj ohlapno:
$$n$$
 velik $\Longrightarrow S_n \sim N(n\mu_1, n\sigma^2)$
 $P(a \leq S_n \leq b) \approx \Phi(\frac{b - n\mu_1}{\sigma_1 \sqrt{n}}) - \Phi(\frac{a - n\mu_1}{\sigma_1 \sqrt{n}})$

 Če slučajna spremenljivka živi v celih številih, lahko namesto \leq vzamemo < in mejo povečamo za 1, ali pa vzamemo sredino.

Natančnost sredine je odvisna od asimetrije, ki jo meri $A(X) = \frac{E[(X - E(X))^3]}{(\text{var}(X))^{\frac{3}{2}}}$. Naj bodo X_1, \dots, X_n neodvisne in identično porazdeljene, $\sigma_1 = \sqrt{\text{var}(X_i)}, \ \gamma_1 = E[|X_i - E(X_i)|^3]^{\frac{1}{3}}, \ S_n = X_1 + \frac{1}{3}$ $\cdots + X_n$. Ko $n \longrightarrow \infty$, $P(a_n \le S_n \le b_n)$ aproksimiramo z ustreznimi normalnimi. Zadosten pogoj, da gre:

- absolutna napaka $\to 0$: $n \gg \frac{\gamma_1^0}{\sigma_1^0}$
- relativna napaka $\to 0$: $n \gg \frac{\gamma_1^6}{\sigma_1^6}$ in $\min\{|a_n E(S_n)|, |b_n E(S_n)|\} \ll \frac{n^{\frac{2}{3}}\sigma_1^2}{\gamma_1}$

$$\mu_1 = E(X_i), \sup_{x \in \mathbb{R}} |P(S_n \le x) - \Phi(\frac{x - n\mu_1}{\sigma_1 \sqrt{n}})| \le \frac{0.4774}{\sqrt{n}} \frac{\gamma_1^3}{\sigma_1^3}$$

Porazdelitev χ^2 :

Če so Z_1, \ldots, Z_n neodvisne standardno normalne, potem je $Z_1^2 + \cdots + Z_n^2 \sim \chi^2(n), \ \chi^2(n) \xrightarrow{n \to \infty} N(0, 1).$ $\chi^2(n) = \Gamma(\frac{n}{2}, \frac{1}{2})$

Če $U \sim \Gamma(a, \lambda)$ in $V \sim \Gamma(b, \lambda)$, potem $U + V \sim \Gamma(a + b, \lambda)$

Če $U_1, \ldots, U_m \sim \Gamma(\frac{n}{2m}, \frac{1}{2})$ neodvisne, potem $U_1 + \cdots + U_m \sim \chi^2(n)$.

Razmerje Ljapunova:

 $S = X_1 + \dots + X_n, \ \mu = E(S), \ \sigma^2 = \text{var}(S), \ X_1, \dots, X_n \text{ neodvisne. } P(a \le S \le b) \approx \Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma})$ $\sup_{x \in \mathbb{R}} |P(S \le x) - \Phi(\frac{x-\mu}{\sigma})| \le \frac{0.5591}{\sigma^3} \sum_{k=1}^n E[|X_k - E(X_k)|^3]$ Če desna stran konvergira k 0, imamo konvergenco k N(0,1).

DEJANSKA STATISTIKA

 \hat{a} je nepristranska cenilka za a, če je $E(\hat{a}) = a$, srednja kvadratična napaka: $q(\hat{a}) = E[(\hat{a} - a)^2]$, standardna napaka: $\sqrt{q(\hat{a})} = se(\hat{a}).$

Slučajne spremenljivke X_1, \ldots, X_n so <u>izmenljive</u>, če velja: $(X_{\pi(1)}, X_{\pi(2)}, \ldots, X_{\pi(n)}) \stackrel{d}{=} (X_1, X_2, \ldots, X_n) \quad \forall \pi \in S_n$. Za izmenljive sl. spr. X_1, \ldots, X_n s pričakovano vrednosti $E(X_i) = \mu$, varianco var $(X_i) = \sigma^2$, korelacijo $\operatorname{corr}(X_i, X_j) = \rho$, za $i \neq j$ je vzorčno povprečje $\bar{X} = \frac{X_1 + \cdots + X_n}{n}$ nepristranska cenilka za μ , var $(\bar{X}) = \frac{\sigma^2}{n}(1 + \rho(n+1))$, nepristranska cenilka za σ^2 pa je $\hat{\sigma}^2 = \frac{1}{(n-1)(1-\rho)} \sum_{i=1}^n (X_i - \bar{X})^2$

Enostavno slučajno vzorčenje

Populacija: $1, 2, \ldots, N$, vzorec: K_1, K_2, \ldots, K_n . Vrednosti spremenljivk na populaciji x_1, x_2, \ldots, x_N (ne poznamo vseh). Poznamo vrednosti na vzorcu: $X_i = x_{K_i}$ (izmenljive, ker je vsaka n-terica enako verjetna)