Run 2 Trigger Study

João Pela

Imperial College London

2014-04-01

2014-04-01

Today's presentation

Topics

- L1 and HLT efficiencies for 13 TeV for the 3 TSG proposed scenarios
- Comparison between 8 TeV and 13 TeV samples.
- Signal efficiency as a function of L1T seed threshould.

Samples

For comparison I am gonna use the number calculated by me last September 2013 by rerunning a L1+HLT menu from Run D over a signal sample:

8 TeV Dataset

Sample

/VBF_HToZZTo4Nu_M-120_8TeV-pythia6/Summer12-PU_S9_START52_V9-v1/GEN-SIM-RECO

For the 13 TeV study we will use the TSG provided samples. Note that this samples where produced using POWHEG with Higgs mass 125 GeV while the 8 TeV samples were produced using Pythia for Higgs mass of 120 GeV and using a different PU scenario.

13 TeV Dataset

Sample	Events
/VBF_HToInv_M-125_13TeV_powheg-pythia6/Fall13dr-tsg_PU20bx25_POSTLS162_V2-v1/AODSIM	484096
/VBF_HToInv_M-125_13TeV_powheg-pythia6/Fall13dr-tsg_PU40bx50_POSTLS162_V2-v1/AODSIM	482996
/VBF_HToInv_M-125_13TeV_powheg-pythia6/Fall13dr-tsg_PU40bx25_POSTLS162_V2-v1/AODSIM	483696

Lets review our HLT paths and their corresponding seeds:

HLT Paths vs. Seeds

HLT Path	Seeds
HLT_DiPFJet40PFMETnoMu65MJJ600VBFLeadingJets	L1.ETM40
HLT_DiPFJet40PFMETnoMu65MJJ800VBFAIIJets	L1.ETM40
HLT_DiJet20_MJJ650_AllJets_DEta3p5_HT120_VBF	L1_HTT200 OR L1_HTT175 OR L1_ETM40 OR L1_ETM50
HLT_DiJet30_MJJ700_AllJets_DEta3p5_VBF	L1_HTT200 OR L1_HTT175 OR L1_ETM40 OR L1_ETM50
HLT_DiJet35_MJJ650_AllJets_DEta3p5_VBF	L1_HTT200 OR L1_HTT175 OR L1_HTT150 OR L1_ETM40
HLT_DiJet35_MJJ700_AllJets_DEta3p5_VBF	L1_HTT200 OR L1_HTT175 OR L1_ETM40
HLT_DiJet35_MJJ750_AllJets_DEta3p5_VBF	L1_HTT200 OR L1_HTT175 OR L1_ETM40

Even though we only use L1_ETM seeded events parked data paths have L1_HTT seeds too.

Efficiencies

Trigger	8 TeV	PU40bx50	PU20bx25	PU40bx25
L1 ETM40		0.526785	0.48077	0.498313
LI_ETIVI40	-	0.320763	0.46077	0.490313
HLT_DiPFJet40PFMETnoMu65MJJ600VBFLeadingJets	0.104736	0.11675	0.107917	0.10923
HLT_DiPFJet40PFMETnoMu65MJJ800VBFAllJets	0.0766837	0.0919718	0.0849935	0.0878568
HLT_DiJet35MJJ650VBFAllJets	0.12091	0.0792947	0.12493	0.119854
HLT_DiJet35MJJ700VBFAllJets	0.109952	0.0691848	0.114779	0.10998
HLT_DiJet35MJJ750VBFAllJets	0.100287	0.0620005	0.106152	0.102006
HLT_DiJet20MJJ650VBFAllJetsHT120	0.129063	0.105392	0.149766	0.13758
HLT_DiJet30MJJ700VBFAllJets	0.120932	0.0775783	0.127966	0.125002

L1 HTT is the sum of all L1 Jets and the kinks on the plots are most likely due to two effects

- A L1 Jet seed need to have at least 5 GeV
- A L1 Jet to be included in HTT needs to have at least least 10 GeV.

Summary and next steps

Summary:

 Our trigger when applied to 13 TeV samples and various spacing and PU scenarios show some small variations depending of the algorithm

Next Steps:

- HLT study (need some help but Jim Brooke offered to point me in the correct direction)
- Rerun run D HLT on 8 TeV samples so we can compare samples with same generator and Higgs mass (is this worth it?)

Backup Slides

