

Dual KA 12 L Service-Anleitung

Printed in Germany

Inhalt

920 097 6/274

	Seite
Technische Daten	2
Funktionsbeschreibung	3
Abgleichanleitung	4, 5
Auswechseln der Schieber, Seilschema	6
Schaltbild	7, 8
Ätzschaltplatten	9 - 12
Ersatzteile	13 - 18

Dual Gebrüder Steidinger · 7742 St. Georgen/Schwarzwald

Plattansmieler	Technische Daten		NF-Teil
Name			 ***Label Company of the Company of the
Automatikapiloler Dual 1211 Tonabnehmereystem Kersnik-Tonabnehmereystem Dual COS 650 Empfangabereich FM Empfangabereich SN − 108 MHz Zuischenfraquenz 10.7 MHz Ancennandingang 240 Ω (Symm.) Mono ≤ 3,5 μV Stereo ≤ 18 μV Zf-Trennschärfe bei ± 300 kHz ≥ 45 dB Mah-Selaktion ≥ 80 dB Sepfenzung ± 20 kKz 1 dB Mah-Selaktion ≥ 80 dB Maitz-Selaktion ≥ 80 dB Sepfenzung ≥ 2 μV Acriber-Selaktion ≥ 80 dB Maitz-Selaktion ≥ 80 dB Sepfenzung ≥ 2 μV Acriber-Selaktion ≥ 80 dB Maitz-Selaktion ≥ 80 dB Maitz-Selaktio		•	
Tonabnehmersystem Cost		•	Sinus-Dauertonleistung (1 kHz) 2 x 6 Watt
Seminik-Tonabnaharacystam Dual COS 650 Seminik-Tonabnaharacystam Dual COS 650 Seminik-Tonabnaharacystam Dual COS 650 Seminik-Tonabnaharacystam Dual COS 650 Seminimansinganch	그 경기 이번 사람이 그렇다는 그렇다는 그 살아 있는 것이다.	·	<u>Eingangsempfindlichkeit</u>
Destrayungebraich		ND 650	Tonband 400 mV an 470 kΩ
Captanacheresich Fr	그 사람들 중에 많은 경기를 가는 경기를 가는 것이 없는 것이 없다. 그 살아나는 것이 없는 것이 없다면	DS 650	Übertragungsbereich
Antennanaingang Ausklapphase Ferritantanne Empfindliokkait (bei 22,5 kHz Hub und 25 dB Rauschabstand) Stereo		– 108 MHz	(bei mechanischer Mittenstellung der Klang-
Antenneningang Ausklappbare ferritantenne Empfindlichkeit (bsi 22,5 kHz Hub und 25 dB Rauschabstand) Mono 3 3,5 μV Stereo 3 16 μV ZF-Trennschärfe bei ± 300 kHz 4 12 dB Spisgelselektion 2 0 dB Mah-Selektion 2 10 dB Mattab-Selektion 3 80 dB Mattab-Selektion 4 10 dB Malestab-Selektion 3 80 dB Mattab-Selektion 4 10 dB Malestab-Selektion 3 80 dB Mattab-Selektion 4 10 dB Malestab-Selektion 4 10 dB Ma	·		Ausgänge
Section	Antenneneingang 24 Ausklappbare Ferritantenne	Ο Ω (Symm.)	4 Lautsprecherbuchsen DIN 41 529, 4 Ω
ZF-Tsennschärfa bei ± 300 kHz	(bei 22,5 kHz Hub und 26 dB Raus	≦ 3,5 μV	schluß
Spiegelselsktion	그는 그 살은 그는 살아왔다면 살아 보다는 사람들이 가장 하는 것이 없는 것이 없는 것이 없다면 없다.	•	
Spiegeleaktion	프로토토 시간 한 경찰 환경 등 시간 등을 들었다. 그는 그 그 사람들은 그는 것	-	그
Valtab	그는 그는 그를 모르는 그 얼마나 나는 그 그는 그를 모르는 그 것이 없었다.		
### Transparence 180 kHz 2F-Featigkeit ≥ 60 dB 2F-Beatigkeit	and the control of th		Lautstärkereoler
Begrenzung			
Geräuschspannungsabstand (bei 1 mW, 1 kHz und 40 kHz Hub) ≥ 55 dB Klirrfaktor (DIN 45 500) Klirrfaktor (DIN 45 500) Stereo			Balanceregler Regelbereich ca. 40 dB
Stereo Stereo Stereo Stereo Mono Stereo Mono Stereo Mo	그 그 그를 그 것 같아 없다는 문에 가장하다 그 사람들이 되었다.	≦ 2 μV	Quadroeffektregler
Stereo	(bei 1 mV, 1 kHz und 40 kHz Hub)	≧ 55 dB	
Deamphasis Mono/Stereo-Umschaltung Deamphasis Numpel-Gremuschspannungsabstand So dB Rumpel-Gremuschspannungsabstand So dB Rumpel-Gremuschspannungsabstand So dB Rumpel-Gremuschspannungsabstand So dB Tonband bezogen auf Nennleistung So dB Tuner (bai 1 mV, 1 kHz und 40 kHz Hub) So dB Ubersprechdämpfung Deamphasis Dea		≦ 1 %	Steren/Mono-Schalter
Desembasis D		_ ≦ 2 %	and the control of the second
Bersprechdämpfung Bright	Deemphasis		
Chei 1 kHz und 40 kHz Hub)	Mono/Stereo-Umschaltung	20 μV	
AM—Unterdrückung bei 50 µV ≥ 40 dB Pilotton—Unterdrückung ≥ 40 dB Hilfsträger—Unterdrückung ≥ 40 dB AFC—Fangbereich ± 300 kHz NF—Ausgangsspannung 1 mV, gemessen am Eingang des Regel— verstärkers) Empfangsbereich AM Empfangsbereich AM Empfangsbereich AM Empfangsbereich LW 140 - 360 kHz KW 5,85 - 10,3 MHz Zuischenfrequenz At55 kHz Antenneneingang hochohmig (induktiv) HF—Empfindlichkeit (gemessen über Kunstantenne DIN 45 300 6 dB Rauschabstand) MW = 30 µV KW = 10 µV LW = 40 µV ZF—Trennschärfe ± 9 kHz ≥ 35 dB KW ≥ 10 dB KW ≥ 10 dB KW ≥ 10 dB KW ≥ 26 dB ZF—Bandbreite (-3 dB) Empfangbreich (bei 1 mV, 1 kHz und 40 kHz Hub) ≥ 55 dB (bersprechdämpfung (bei 1000 Hz) Phono Tonband, Tuner ≥ 20 dB Tonband, Tuner ≥ 20 dB Verstämpfung bei 110, 130, 150, 220, 240 V Sicherung bei 110, 130, 150, 220, 240 V Sicherung bei 110, 130, 150 V 315 mA träge bei 220, 240 V 160 mA träge Bestückung 3 Integrierte Schaltkreise (IC) 2 Feldeffekt—Transistoren (FET) 14 Silizium—Transistoren 4 Germanium—Leistungstransistoren 12 Silizium—Dioden 2 Silizium—Dioden 3 Integrierte Schaltkreise (IC) 2 Feldeffekt—Transistoren 4 Germanium—Leistungstransistoren 1 Silizium—Dioden 2 Silizium—Dioden 2 Silizium—Dioden 2 Silizium—Dioden 3 Integrierte Schaltkreise (IC) 3 Feldeffekt—Transistoren 4 Germanium—Leistungstransistoren 4 Germanium—Leistungstransistoren 2 Silizium—Dioden 3 Integrierte Schaltkreise (IC) 3 Feldeffekt—Transistoren 4 Germanium—Leistungstransistoren 4 Germanium—Leistungstransistoren 4 Germanium—Leistungstransistoren 4 G	Übersprechdämpfung	≥ 26 dB	
Pilotton-Unterdrückung			
Hilfsträger-Unterdrückung ≥ 40 dB AFC-Fangbereich ± 300 kHz NF-Ausgangsspannung (99 MHz mdd. 50 % 1 kHz Eingangsspannung 1 mV, gemessen am Eingang des Regel- verstärkers) Empfangsbereich AM Empfangsbereich AM Empfangsbereich & LW 140 - 360 kHz KW 5,85 - 10,3 MHz Zwischenfrequenz Antenneneingang hochohmig (induktiv) HF-Empfindlichkeit (gemessen über Kunstantenne DIN 45 300 6 dB Rauschabstand) MW = 30 µV KW = 10 µV ZF-Trennschärfe ± 9 kHz Spiegelselektion MW ≥ 26 dB KW ≥ 10 dB KW ≥ 10 dB KW ≥ 26 dB Lu ≥ 26 dB ZF-Bandbreite (-3 dB) Englangspannung (bei 1000 Hz) Phono Tonband, Tuner ≥ 20 dB Tonband,		≧ 40 dB	
AFC—Fangbereich ± 300 kHz NF—Ausgangsspannung (99 MHz mod. 50 % 1 kHz Eingangsspannung 1 mV, gemessen am Eingang des Regel- verstärkers) ≥ 0,7 V Leistungsaufnahme Ca. 30 VA		≧ 40 dB	Übersprechdämpfung (bei 1000 Hz)
Sicherung Si		<u>+</u> 300 kHz	Phono ≥ 20 dB
gemessen am Eingang des Regel- verstärkers) ≥ 0,7 V Netzspannungen 110, 130, 150, 220, 240 V Sicherung bei 110, 130, 150 V 315 mA träge bei 220, 240 V 160 mA träge Empfangsbereich AM Empfangsbereich LW 140 - 360 kHz MW 500 - 1650 kHz KW 5,85 - 10,3 MHz Zwischenfrequenz 455 kHz Antenneneingang hochohmig (induktiv) HF-Empfindlichkeit (gemessen über Kunstantenne DIN 45 300 6 dB Rauschabstand) MW = 30 µV KW = 10 µV LW = 40 µV ZF-Trennschärfe ± 9 kHz ≥ 35 dB Spiegelselektion MW ≥ 26 dB KW ≥ 10 dB KW ≥ 10 dB LW ≥ 26 dB LW ≥ 26 dB ZF-Bandbreite (-3 dB) ≥ 3,5 kHz Netzspannungen 110, 130, 150, 220, 240 V Sicherung bei 110, 130, 150 V 315 mA träge bei 220, 240 V Sicherung bei 110, 130, 150 V 315 mA träge bei 220, 240 V Sicherung bei 110, 130, 150 V 315 mA träge bei 220, 240 V Sicherung bei 110, 130, 150 V 315 mA träge bei 220, 240 V Sicherung bei 110, 130, 150 V 315 mA träge bei 220, 240 V Sicherung bei 110, 130, 150 V 315 mA träge bei 220, 240 V Sicherung bei 110, 130, 150 V 315 mA träge bei 220, 240 V Sicherung bei 110, 130, 150 V 315 mA träge bei 220, 240 V Sicherung bei 110, 130, 150 V 315 mA träge bei 220, 240 V Sicherung bei 110, 130, 150 V 315 mA träge bei 220, 240 V Sicherung bei 110, 130, 150 V 315 mA träge bei 220, 240 V Sicherung bei 110, 130, 150 V 315 mA träge bei 220, 240 V Sicherung bei 110, 130, 150 V 315 mA träge bei 220, 240 V Sicherung bei 110, 130, 150 V 315 mA träge bei 220, 240 V Sicherung bei 120, 240 V Sicherung bei 220, 240 V	NF—Ausgangsspannung (99 MHz mod. 50 % 1 kHz	•	
Empfangsbereich AM	Eingangsspannung 1 mV, nemassen am Eingang des Regel-		
Empfangsbereich AM Empfangsbereich LW 140 - 360 kHz MW 500 - 1650 kHz KW 5,85 - 10,3 MHz Zwischenfrequenz Antenneneingang hochohmig (induktiv) HF-Empfindlichkeit (gemessen über Kunstantenne DIN 45 300 6 dB Rauschabstand) MW = 30 μV KW = 10 μV LW = 40 μV ZF-Trennschärfe ± 9 kHz Spiegelselektion MW ≥ 26 dB KW ≥ 10 dB KW ≥ 10 dB KW ≥ 10 dB KW ≥ 26 dB LW ≥ 26 dB ZF-Bandbreite (-3 dB) Estückung 3 Integrierte Schaltkreise (IC) 2 feldeffekt-Transistoren (FET) 14 Silizium-Transistoren 4 Germanium-Leistungstransistoren 12 Silizium-Dioden 2 Silizium-Stabilisierungsdioden 2 G-Schmelzeinsätze 0,5 A flink 2 zur Absicherung der Endstufen MD ≥ 26 dB Empfangsbereich MD ≥ 26 dB MD ≥ 26 dB LW ≥ 26 dB LW ≥ 26 dB LW ≥ 26 dB LW ≥ 26 dB Lautsprecher ZF-Bandbreite (-3 dB) Estückung 3 Integrierte Schaltkreise (IC) 2 feldeffekt-Transistoren (FET) 14 Silizium-Transistoren 12 Silizium-Dioden 2 Silizium-Dioden 2 G-Schmelzeinsätze 0,5 A flink 2 zur Absicherung der Endstufen MD ≥ 26 dB Egwicht Ca. 9,6 kg Lautsprecher 2 Lautsprecherboxen mit je einem 6 Watt		≧ 0,7 V	Netzspannungen 110, 130, 150, 220, 240 V
Empfangsbereich LW 140	Emofanosbereich AM		
XW 5,85 - 10,3 MHz Zwischenfrequenz Antenneneingang hochohmig (induktiv) HF-Empfindlichkeit (gemessen über Kunstantenne DIN 45 300 6 dB Rauschabstand) MW = 30 μV ZF-Trennschärfe ± 9 kHz Spiegelselektion KW ≥ 10 dB KW ≥ 10 dB LW ≥ 26 dB ZF-Bandbreite (-3 dB) ZF-Bandbreite (-3 dB) ZI Integrierte Schaltkreise (IC) 2 feldeffekt-Transistoren (FET) 14 Silizium-Transistoren 4 Germanium-Leistungstransistoren 12 Silizium-Stabilisierungsdioden 2 G-Schmelzeinsätze 0,5 A flink 2 zur Absicherung der Endstufen Abmessungen mit Abdeckhaube H 14 355 x 180 x 325 mm Gewicht Ca. 9,6 kg Lautsprecher 2 Lautsprecherboxen mit je einem 6 Watt	Empfangsbereich LW 140 -	360 kHz	Bestückung
Zwischenfrequenz Antenneneingang hochohmig (induktiv) HF-Empfindlichkeit (gemessen über Kunstantenne DIN 45 300 6 dB Rauschabstand) MW = 30 μV ZF-Trennschärfe ± 9 kHz Spiegelselektion MW Empfindlichkeit (gemessen über Kunstantenne DIN 45 300 6 dB Rauschabstand) MW = 30 μV KW = 10 μV LW = 40 μV ZF-Trennschärfe ± 9 kHz Empfindlichkeit (gemessen über Kunstantenne DIN 45 300 6 dB Rauschabstand) MW = 30 μV KW = 10 μV Empfindlichkeit (gemessen über Kunstantenne DIN 45 300 2 G-Schmelzeinsätze 0,5 A flink 2 zur Absicherung der Endstufen Abmessungen mit Abdeckhaube H 14 S55 x 180 x 325 mm Gewicht Ca. 9,6 kg Lutsprecher ZF-Bandbreite (-3 dB) Empfindlichkeit (a Silizium-Transistoren 4 Germanium-Leistungstransistoren 12 Silizium-Dtoden 2 G-Schmelzeinsätze 0,5 A flink 2 zur Absicherung der Endstufen Mt Abmessungen mit Abdeckhaube H 14 S55 x 180 x 325 mm Lutsprecher ZF-Bandbreite (-3 dB) Empfindlichkeit (a Gewicht (a Gewich (a Gewicht (a Gewich (a Gewic	MW 500 -		3 Integrierte Schaltkreise (IC)
HF-Empfindlichkeit (gemessen über Kunstantenne DIN 45 300 6 dB Rauschabstand) MW = 30 μV ZF-Trennschärfe ± 9 kHz Spiegelselektion KW ≥ 10 dB LW ≥ 26 dB LW ≥ 26 dB ZF-Bandbreite (-3 dB) ≥ 3,5 kHz 12 Silizium-Dioden 2	Zwischenfrequenz	455 kHz	14 Silizium-Transistoren
(gemessen über Kunstantenne DIN 45 300 6 dB Rauschabstand) MW = 30 µV ZF-Trennschärfe ± 9 kHz Spiegelselektion KW ≥ 10 dB LW ≥ 26 dB ZF-Bandbreite (-3 dB) ≥ 3,5 kHz 2 G-Schmelzeinsätze 0,5 A flink zur Absicherung der Endstufen Abmessungen mit Abdeckhaube H 14 355 x 180 x 325 mm Gewicht Ca. 9,6 kg Lautsprecher 2 Lautsprecherboxen mit je einem 6 Watt		(induktiv)	12 Silizium-Dioden
MW = 30 μ V	(gemessen über Kunstantenne DIN 6 dB Rauschabstand)	45 300	2 G-Schmelzeinsätze O,5 A flink
Spiegelselektion MW \geq 26 dB mit Abdeckhaube H 14 355 x 180 x 325 mm KW \geq 10 dB Gewicht ca. 9,6 kg LW \geq 26 dB Lautsprecher ZF-Bandbreite (-3 dB) \geq 3,5 kHz 2 Lautsprecherboxen mit je einem 6 Watt	MM = 30 μV	$LW = 40 \mu V$	
Spiegelselektion $KW \cong 20$ dB $KW \cong 10$ dB $KW \cong 26$ dB		≧ 35 dB	
LW \geq 26 dB ZF-Bandbreite (-3 dB) \geq 3,5 kHz 2 Lautsprecher 2 Lautsprecherboxen mit je einem 6 Watt			
ZF-Bandbreite (-3 dB) ≧ 3,5 kHz 2 Lautsprecherboxen mit je einem 6 Watt			Gewicht ca. 9,6 kg
z radcobiechernoven mir le einem o macc			
NF-Ausgangsspannung Spezial-Breitband-Lautsprecher		= J,J KHZ	2 Lautsprecherboxen mit je einem 6 Watt Spezial-Breitband-Lautsprecher
(560 kHz mod. 30 % 1 kHz	(560 kHz mod. 30 % 1 kHz		
Eingangsspannung 1 mV Antenne, Abmessungen der Lautsprecherboxen gemessen am Eingang des Regel- nußbaum 195 x 300 x 105 mm (BxHxT)	Eingangsspannung 1 mV Antenne, gemessen am Eingang des Regel-		
verstärkers) ≧ 0,45 V weiß 195 x 300 x 130 mm		≥ 0,45 V	

Funktionsbeschreibung

Das UKW-Teil ist mit zwei FET (HF Vorstufe T 101, Mischstufe T 102) bestückt. T 103 dient der Erzeugung der Oszillatorspannung.

Durch die Verwendung der beiden FET, einer separaten Oszillatorstufe sowie der Vor-und Nachselektion (Gate- und Drain-Abstim-mung) werden hinsichtlich Empfindlichkeit, Rauschen und Großsignalverhalten optimale Werte erreicht.

Die Verwendung von zwei IC (3 301, 3 302), eines Keramikfilters und eines LC-Bandfil-ters wurde der diskreten Technik vorgezogen.

Das ZF-Signal wird mittels des LC angepaßten Keramikfilters am Drain der Mischstufe ausgekoppelt und an den Eingang des IC 301 (TAA 991, Punkt 2 und 4) geführt. Die Ver-stärkung beträgt ca. 70 dB.

An Punkt 8 verzweigt sich das ZF-Signal. Es wird einerseits zur weiteren Verstärkung einem zweiten IC (J 302) und andererseits der Regelstufe zugeführt. Neben der weiteren Verstärkung von ca. 60 dB wird mit J 302 (TBA 120) eine optimale Begrenzung erreicht. Der im TBA 120 integrierte Koizidenz-Demo-dulator erzeugt das NF-Signal.

Die am Ausgang von J 301 (TAA 991) gewonne-ne FM-ZF-Spannung steuert den Transistor T 301 (BF 254) an, dessen Kollektorkreis auf die Frequenz des Keramikfilters abgestimmt ist.

Die an der Sekundärseite dieses Filters an-geschlossene Diode D 301 dient der Gleichrichtung der HF und der Erzeugung der Regelspannung.

Zum besseren Verständnis dieses Vorganges sind folgende Details erwähnenswert: Die an D 301 erzeugte negative Regelspannung ge-langt an den Transistor T 302 (BC 208 A) der ohne Antennensignal durchgesteuert ist. Bei Einstellung eines Senders mit mehr als 1,5 µV entsteht eine negative Richtspannung an der Basis von T 302, die sich propor-tional zur Feldstärke des eingestellten Senders verhält. T 302 ist ein NPN-Transistor und wird proportional zugeregelt. Am Kollektor entsteht eine entsprechende po-sitive Spannung die der Einstellung der Stereoschwelle dient und das Aufleuchten der Stereo-Anzeigelampe bei Rauschen und zu schwach einfallenden Sendern ausschließt. Der zurückgehende Emitterstrom steuert das Anzeigeinstrument.

D 301 liefert auch die Regelspannung für den integrierten Schaltkreis J 301. Sie wird über Siebglieder dem Anschluß 5 zugeführt.

Stereo-Decoder

Der im Stereo-Decoder verwendete integrier-te Schaltkreis J 401 (TBA 450) arbeitet nach dem Matrix-Prinzip. Die 38 kHz-Schaltfrequenz wird durch Verdoppelung des ausge-filterten Pilottones gewonnen. J 401 bein-haltet noch den Lampentreiber, sowie die beiden Trigger für Mono/Stereo-Umschaltung. Ein Trigger spricht ab 0,9 V an, während der zweite durch den 19 kHz-Pilotton angesteuert wird. An 7 (linker Kanal) und 8 (rechter Kanal) steht das Stereo-Signal zur Verfügung das durch die nachfolgenden Transistoren T 401, T 402 auf ca. 800 mV gebracht wird.

Die NF-Ausgangsspannung, der die Nachstimm-spannung entnommen wird, liegt nicht auf O-Potential, was analog dazu auch auf die Bezugsspannung für AFC zutrifft. Das fiktive 0-Potential wird deshalb einerseits durch den Spannungsteiler R 321, R 341, R 323 und andererseits durch die stabilisierte Spannung an MP 9 bestimmt. Mit R 341 (regelbar) wird die AFC-Spannung, welche die Kapazitäts-Variations-Diode D 101 steuert, eingestellt.

AM-Teil

Das AM-HF-Teil wurde in konventioneller Technik mit separatem Oszillator und geregeltem HF-Transistor aufgebaut.

Die Ankoppelung des HF-Teils an den ZF-Verstärker geschieht mittels eines LC angepaßstärker geschieht mittels eines LC angepaßten Keramikfilters. Die ZF-Verstärkung erfolgt durch J 301 (TAA 991), dessen Eingang umgeschaltet wird. Am Ausgang liegen zwei in Serie geschaltete LC-Filter. Die Signal-Auskoppelung erfolgt selektiv. An der Anode der Diode D 302 steht die Richtspannung zur Verfügung, während die NF-Spannung den Decoder durchläuft und in der nachgeschalteten NF-Verstärkerstufe (T 401, T 402) auf ca. 800 mV gebracht wird. ca. 800 mV gebracht wird.

Anzeigeinstrument

Die beiden Gleichrichter (455 kHz und 10,7 MHz) sind in Serie geschaltet. Die Stromversorgung (negatives Potential) er-folgt über R 315. Dadurch entsteht an R 315 ein Spannungsabfall. R 315 ist zusammen mit R 316, dem Anzeigeinstrument, R 314 und T 302 (BC 238 A) als Brückenschaltung ausgelegt. Ohne Signal befindet sich das Anzeigeinstrument in Ruhestellung. Beim Emp fang eines Senders kommt die Brücke außer Gleichgewicht und am Instrument erfolgt eine der Senderfeldstärke proportionale Anzeige.

Stromversorgung

Das HF-Teil besitzt eine separate Stromversorgung. Die vom Netztrafo kommende Wechsel-spannung wird mit D 501, D 502 gleichge-richtet (Zweiwegschaltung) und mit T 501 und der Z-Diode D 503 stabilisiert.

NF-Teil Regelverstärker

Die Lautstärke ist mit einem Tandem-Potentiometer (logarithmisch) regelbar. Gleichtiometer (logarithmisch) regelbar. Gleichzeitig besitzt dieses Potentiometer Abgriffe für die physiologische Lautstärkeregelung. T 10 dient der Anpassung an den
hochohmigen Lautstärkeregler. Über C 13
wird das Signal ausgekoppelt. Es folgen der
Baßregler P 11, der Höhenregler P 12 und
der Balanceregler P 13.

Über C 30 gelangt das Signal an die Basis von T 30. T 31 übernimmt die Großsignalverstärkung. Die Gegenkopplung, bestehend aus R 35, R 34, R 33, R 43 bestimmt den Grad der Verstärkung. R 33 ist regalbar und dient der Symmetrierung beider Kanäle. Mit R 38, R 41 und D 30 wird der Ruhestrom des komplementären Endtransistorpaares T 32, T 33 stabilisiert. Über C 35 gelangt das NF-Signal an die Kopfhörerbuchse und die Lautsprecher-Ausgänge.

Stromversorgung

Die vier Dioden D 31 – D 35 sind als Brük-kengleichrichter geschaltet und dienen in Verbindung mit dem Ladekondensator C 36 der Stromversorgung.

Abgleichanleitung

AM-ZF 455 kHz

MW-Bereich einschalten, Ferritantenne (gelbe Leitung) auftrennen, Oszillograf an MP 4 A, Empfindlichkeit 100 mV, Wobbler (mit 60 Ω abgeschlossen) über Kondensator 10 nF an MP 2 und ca. 60 mV einspeisen. L 208, L 209, L 302 verstimmen und den Wob-bler auf die Frequenz des Keramikfilters (455 kHz) stellen. Eventuell die Einspeisespannung erhöhen. L 302, L 209, L 208 auf Maximum und Symmetrie abgleichen.

AM-Oszillator und Vorkreis

Gelbe Leitung (Ferritantenne) wieder an-schließen. Skalenzeiger bei eingedrehtem Drehko durch Verschieben über die auf der Skala angebrachte Bündigkeitsmarke stellen. NF-Röhrenvoltmeter an MP 5, oder NF-Ausgang, Meßsender über eine Kunstantenne (200 Ω , 200 pf in Serie) am Antenneneingang anschließen. Oszillator und Vorkreise, wie in der Tabelle angegeben, bei niedrigster Ein-gangssapnnung auf Maximum abgleichen. Rei-henfolge LW, MW, KW einhalten.

FM-ZF 10,7 MHz

L 301 mit 330 Ω bedämpfen, FM-Bereich einschalten, Oszillograf an MP 4 A, Empfindlichkeit 100 mV, Wobbler (mit 60 Ω abgeschlossen) an R 113 (R 113 liegt bis Fabr.-

Nr. 21 500 umgedreht in der Schaltung) MP 10, L 303 verstimmen und Wobbler auf die Frequenz des Keramikfilters stellen. Dämpfungswiderstand (330 Ω) ablöten und das Signal lose (über einen ca. 5 cm langen isolierten Draht) im UKW-Teil einspeisen. L 103, L 105, L 301, L 303, L 304 auf Maximum und Symmetrie abgleichen. Diesen Abgleich wiederholen.

FM-Oszillator und Vorkreis

FM-Oszillator und Vorkreis

AFC ausschalten, NF-Röhrenvoltmeter an MP 5, oder NF-Ausgang, Meßsender an Antenneneingang (240 Ω symm.), Gerät und Sender auf 88 MHz stellen. L 104 (Oszillator), L 101 (Vorkreis), L 102 (Zwischenkreis) auf Maximum abgleichen. Gerät und Generator auf 106 MHz stellen. C 127 (Oszillator), C 128 (Vorkreis), C 129 (Zwischenkreis) auf Maximum abgleichen. Diesen Abgleich 2 bis 3 mal wiederholen. AFC einschalten. 89 MHz 1 mV. wiederholen. AFC einschalten, 89 MHz 1 mV mit 1 kHz 50 % moduliert einspeisen. L 30 (Phasenkreis) auf Maximum abgleichen. AFC ausschalten und mit R 341 gleiche Spannung am Ausgang einstellen.

Stereo-Decoder

AFC einschalten, Oszillograf hochohmig (Tastkopf 10 : 1. 10 M Ω , 7 pF) an MP 6, Stereo-Sender an Antenneneingang (240 Ω symm.) Sender und Empfänger auf 99 MHz, ca. 200 μ V mit 19 kHz (Pilotton) moduliert einspeisen. L 402, L 404 auf Maximum abgleichen. Oszillograf mit Tastkopf an MP 7. L 401 (38 kHz) auf Maximum abgleichen. Reg-

ler R 340 so einstellen, daß die Stereo-Anzeigelampe leuchtet. Oszillograf mit Tastkopf an MP 8, Stereo-Sender mit 300 Hz, 80 % L-R modulieren. L 403 auf max. Amplitude und scharfe Nulldurchgänge abgleichen. Nulldurchgänge müssen auf einer Linie liegen. NF-Röhrenvoltmeter an den linken NF-Ausgang, Stereo-Sender mit 1 kHz, 50 % links modu-lieren. Mit L 401 NF-Maximum (linker Kanal) einstellen. NF-Röhrenvoltmeter an den rechten NF-Ausgang. Mit R 430, R 431 Minimum im rechten Kanal einstellen (Übersprechen). NF-Röhrenvoltmeter an den rechten NF-Aus-gang, Stereo-Sender mit 19 kHz (Pilotton) modulieren, NF-Modulation abschalten. Mit R 432 Restträger (38 kHz) auf Minimum einstellen. Antennenspannung auf 20 µV redu-zieren und mit R 340 den Decodierungsbeginn einstellen.

Bereich	Frequenz	Bezeichnung	Abgleichpositionen
LW	160 kHz	Oszillator	L 205
	160 kHz	Ferritantenne	L 204
	300 kHz	Vorkreis	C 226
MW	560 kHz	Oszillator	L 206
	560 kHz	Ferritantenne	L 203
	1 450 kHz	Oszillator	C 225
	1 450 kHz	Vorkreis	C 224
ΚW	6,5 MHz	Oszillator	L 207
	6,5 MHz	Vorkreis	L 202

Kernstellung äußeres Maximum.

Prüf- und Justierdaten

Stromaufnahme

bei 220 V, im Leerlauf bei 220 V, Vollast (4 V an 4 Ω/Kanal, Front) max. 50 mA und eingeschaltetem Plattenmax. 180 mA wechsler

Betriebsspannungen

17 - 18 V im Leerlauf bei Vollast (4 V an 4 Ω /Kanal, Front) 13 - 14 V

Ruhestrom der Endstufe

nach ca. 5 Minuten Betriebszeit ca. 4 mA

Kurzbezeichnung für Regler, Schalter und Einstellung

Tp = Taste TAPE gedrückt La = Lautstärkeregler

Ba = Balanceregler K1 = Klangregler (Bäse, Höhen) Qu = Quadroeffektregler

1 = Regler offen

2 = Regler in mechanischer Mittenstellung

3 = Regler zurückgedreht

30 = Regler 30 dB unter Vollaussteuerung

40 = Regler 40 dB unter Vollaussteuerung

Ausgangsspannung

Tp, Ba 2, La 1 1000 Hz, 200 mV am Eingang TAPE einspeisen, beide Kanäle ansteuern. Mit R 33 die Verstärkung beider Kanäle symmetrieren. Die Eingangsspannung erhöhen bis am Front-Ausgang 4 V/Kanal an 4 Ω anliegen. Der Klirrgrad darf bei dieser Ausgangsspannung max. 10 % betragen. Am Kopfhörerausgang, mit 400 Ω abgeschlossen, müssen 2,6 – 3,6 V anliegen und an der Tonbandbuchse (Kontaktfedern 1/2 und 4/2) 30 - 40 mV, Abschlußwiderstand 100 k Ω . Den Lautstärkeregler im gesamten Regelbereich auf Parallelität der Reglerbahnen prüfen.

Kanalabweichung K 1/K 2 im Bereich zwischen La 1 und La 2

Kanalabweichung K 1/K 2 im Bereich zwischen La 2 und La 40

Quadro-Ausgang

Tp, Ba 2 1000 Hz, 400 mV am Eingang TAPE einspeisen, beide Kanäle ansteuern, mit dem Lautstärke-regler am Front-Ausgang 3 V an 4 \(\Omega/\text{Kanal} \) einstellen.

Rear-Ausgang mit 4 Ω/Kanal abschließen und die Spannung messen.

bei Qu 2 0,40 - 0,55 V/Kanalbei Qu in Stellung + 0.85 - 1.10 V/Kanalbei Qu in Stellung -0,25 - 0,40 V/Kanal

Spannung am Front-Ausgang 2,10 - 2,60 V/Kanal an 4Ω

Nacheinander die Rear-Ausgänge entlasten. Dabei muß die Ausgangsspannung von Front-links, bzw. Front-rechts jeweils auf den vorher eingestellten Wert (3 V) ansteigen.

Baß- und Höhenanhebung, bzw. Absenkung

Tp, Ba 2, La 1 1000 Hz am Eingang TAPE einspeisen, Ausgangssignal an 4 Ω/Kanal (Front) 100 mV.

Kl 1, Baßanhebung bei 100 Hz 12 dB <u>+</u> 2 dB K1 3, Baßabsenkung bei 100 Hz 12 dB \pm 2 dB Kanalabweichung K 1/K 2 max. 3 dB Kanalabweichung K 1/K 2

Kl 1, Höhenanhebung bei 10 kHz 12 dB \pm 2 dB K1 3, Höhenabsenkung bei 10 kHz12 dB \pm 2 dB Kanalabweichung K 1/K 2 max. 3 dB

Physiologische Lautstärkeregelung

Tp, Ba 2, La 1 1000 Hz, 200 mV am Eingang TAPE einspeisen, Ausgangsspannung 2 V an 4 $\Omega/{\rm Kanal}$ (Front).

K1 1, Baßanhebung bei 100 Hz 24 dB ± 2 ,5 dB Höhenanhebung bei 10 kHz 24 dB ± 2 ,5 dB bezogen auf 1000 Hz.

Balanceregler

Recelbereich

ca. 40 dB

Eingangsempfindlichkeit

Ba 2, Kl 1 Meßfrequenz 1000 Hz. Erforderliche Eingangsspannung für 1 V Ausgangsspannung an 4 Ω/Kanal, Front

Tonband ca. 100 mV

Störspannung

Tp, Ba 2, Kl 1, La 1 Eingang TUNER mit 100 k Ω abschließen, Ausgang Front mit 4 $\Omega/{\rm Kanal}$.

Zulässige Störspannung max. 10 mV/Kanal

Auswechseln der Tastenschieber

Chassis ausbauen und Lichtkasten abnehmen. Druckfeder 1 entfernen, Klammer 2 abnehmen und den Netzschalter 3 ausschwenken (eventuell die neben dem Netzschalter liegende Diode D 303 einseitig auslöten), Feder 4 leicht anheben und Schaltherz 5 herausnehmen, Feder 6 anheben und die Taste 7 zusammen mit dem Schieber 8 herausziehen. Der Zusammenbau erfolgt in entsprechend umgekehrter Reihenfolge. Der Ausbau der sich gegenseitig auslösenden Tasten geschieht folgendermaßen: Druckfeder 1 entfernen, Feder 6 anheben, Schaltstange 9 nach rechts drükken bis der Schieber 8 ausrastet, Taste 7 mit dem Schieber 8 nach vorne herausziehen.

Fig. 3 Anschlußschema der Ferritantenne rt = rot qr = qrau ge = gelb gn = grün ws = weiß

Fig. 4 Seilschema

Fig. 8 Endverstärker 225 473 (Leiterseite)

Fig. 9 Lautsprechermatrix 228 194 (Bestückungsseite)

Fig. 10 Netzanschlußplatte 224 505 (Bestückungsseite)

Ersatzteile

Pos.	ArtNr.	Bezeichnung	Anzahl	Preis- gruppe
1	223 312	Abdeckhaube H 14 kpl.	1	WGr. C
2	231 248	Konsole nußbaum kpl	1	071
_	231 249	Konsole weiß kpl	1	072
3	202 257	Zylinderschraube B 3,9 x 25	1	014
	210 638	Scheibe 4,2 x 10 x 0,5 Ps	1 3	012
4	228 529 225 948	Topfscheibe	3	012 013
	210 641	Scheibe 4,2 x 10 x 1 St	3	012
5	231 250	Frontblende kpl.	1	069
6	228 209	Durchführungstülle	4	012
	211 556	Scheibe 4,3 x 9 x 0,8	4	012
	210 146	Sicherungsscheibe 3,2	4	012
7 8	222 335 225 648	Dual-Schild Reiterleiste	1 1	018 018
. 0	222 354	Satz Reiter	1 1	023
9	225 693	Skalenfenster	1 1	044
10	228 616	Drehknopf	4	027
11.	221 984	Drehknopf	1 1	024
12	222 287	Kopfhörerbuchse kpl	1 1	025
	224 377	Abdeckung	1 .	013
R 1	211 126	Schicht-Widerstand 100 Ω/0,30 W/10 %	1 1	016
13	227 765	Anzeigeinstrument mit Beleuchtung kpl	1 1	.052
, ,	209 438	Glühlampe E 10 10 V/0,05 A	1 1	021
14	210 113	Lampenfassung E 10	4	018
	209 439	Glühlampe E 10 7 V/0,3 A	3	021
15	225 636	Skala Lichtkasten kpl	1 1	037
16	225 620 225 628	Drehknopfachse kpl.		024 021
	210 675	Scheibe 6,2 x 12 x 0,3 Bronze	2	012
17	225 634	Skalenseil kpl.	1	016
• •	225 623	Zugfeder	1, 1	013
18	225 624	Seilrolle	3	014
	228 211	Rohrniet	3	012
19	225 660	Spannsegment Zeiger	1 1	015
20	225 635 225 630	Führungsschnur kpl.		015 015
21	225 633	Drehko-Rolle	1 1 1	017
22	224 505	Netzplatte kpl	1 1	038
23	209 735	G-Schmelzeinsatz 160 mA träge	1 1	018
	209 736	G-Schmelzeinsatz 315 mA träge	1 1	018
C 1	224 886	Papier-Kondensator 47 nF/250 V \sim /20 %	1 1	022
24	220 141	Netzkabel kpl.	1 1	028
25	231 252	Netztrafo kpl.	1 1 1	052
20	210 515	Zylinderschraube M 4 x 6	4	012
26	222 041	Lautsprecherbuchse 2-polig	2	019
27	228 001	Anschluß-Schild (Rückwand)	1 1	021
28	228 321	Lautsprecherbuchse mit Schalter 1-polig	2	018
29 30	209 487 209 488	Antennenbuchse FM	1 1	023 023
30 31	225 650	Ferrit-Antenne kpl.	1 1	058
32	230 364	FTZ-Schild	i	013
33	228 194	Lautsprechermatrix kpl	1 1	033
R 50	211 287	Drahtwiderstand 5 Ω/1 W/10 %	3	020
R 52	211 287	Drahtwiderstand 5 Ω/1 W/10 %	3	020
R 51	228 323	Drahtwiderstand 5 $\Omega/1$ W/10 %	2	019
34	228 195	Halterung	2	015
34 35	210 286	Linsenblechschraube mit Kreuzschlitz	4	012
36	228 189	Bedienungsanleitung	1 1	-
37	227 761	Verpackungskarton nußbaum kpl	1 1	047
	229 098	Verpackungskarton weiß kpl	1	047
38	228 086	Lautsprecherbox CL 114 nußbaum kpl	2	WGr. C
	224 246	Lautsprecherbox CL 111 weiß kpl	2	WGr. C
		Lautsprecherbox CL 114		
	0.50 550		_	
39	230 378	Lautsprechergehäuse nußbaum kpl		065
40	222 449 221 455	Dual-Zeichen Sperrscheibe 5	1 1	023 013
41	203 777	Lautsprecher		013 060
41	210 619	Scheibe 3,7/8/1 St	4	013
43	227 838	Rückwand kpl		032
44	228 083	Linsenblechschraube mit Kreuzschlitz 3,5 x 13	8	012
45	208 811	Lautsprecherkabel kpl	1 1	.WGr. E
	209 433	Lautsprecherstecker	2	022

Pos.	ArtNr.	Bezeichnung	Anzahl	Preis- gruppe
46 47 48 49	227 852 215 954 228 090 228 091	Typenschild	1 1 1	015 018 022
39 40 41 42 43 50 45 46 47 48 49	221 177 215 888 221 455 203 777 210 597 210 361 212 196 203 242 210 335 213 589 208 811 209 433 224 238 215 954 212 197 224 242	Lautsprecherbox CL 111 Lautsprechergehäuse weiß kpl. Dual-Zeichen Sperrscheibe 5 Lautsprecher Scheibe 3,2/8/0,5 St Sechskantmutter M 3 Rückwand kpl. Unterlegscheibe geprägt Linsenholzschraube mit Kreuzschlitz 3 x 20 Lautsprecherbuchse Lautsprecherkabel kpl. Lautsprecherstecker Typenschild Schutzfilz, Satz Verpackungskarton Techn. Datenblatt	1 1 1 4 4 1 4 1 1 2 1 1	072 022 013 060 012 011 029 013 013 020 WGr. E 022 017 018 032
51 52 53 54 55 56	231 254 231 955 231 954 231 954 231 956 231 957 223 774 227 578	HF-Platte HF-Platte kpl. mit Tastenaggregat Kontaktgehäuse kpl. mit Schieber und Taste MONO Kontaktgehäuse kpl. mit Schieber und Taste TAPE, PU, LW, MW, SW, FM Kontaktgehäuse kpl. mit Schieber und Taste AFC Kontaktgehäuse kpl. mit Schieber und Taste POWER Zylinderschraube M 2,6 x 6,0	1 1 6 1 4 4	098 034 033 033 047 012
57 58 I 301 I 302 I 401	222 497 223 904 228 273 228 274 228 275	Antiwärmescheibe Kühlflügel Integrierte Schaltung TAA 991 Integrierte Schaltung TBA 120 Integrierte Schaltung TBA 450	1 1 1 1	013 020 038 032 047
T 101 T 102 T 103 T 201 T 202 T 301 T 302 T 401 T 402 T 501	228 269 228 223 228 270 228 270 228 270 228 270 228 271 228 271 228 271 228 271 228 271	Transistor BF 245 B Transistor BF 245 A Transistor BF 254 Transistor BF 254 Transistor BF 254 Transistor BF 254 Transistor BC 238 A	1 1 4 4 4 4 3 3 3 3 1	WGr. E
D 101 D 202 D 301 D 302 D 303 D 501 D 502 D 503	228 225 228 226 228 227 228 227 228 228 227 344 227 344 228 230	Diode BA 152 A Z-Diode BZY 85 C 2 V 7 Diode SFD 037 Diode SFD 037 Z-Diode BZY 85 C 8 V 7 Diode 1 N 4001 Diode 1 N 4001 Z-Diode BZY 85 C 15 V 0	1 1 2 2 1 2 2 1	WGr. E
F 100 F 200	228 266 228 267	Keramikfilter SFW 10,7 MA Keramikfilter SFD 455 B	1 1	039 026
L 101 L 102 L 103 L 104 L 105 L 201 L 202 L 205 L 206 L 207 L 208 L 209 L 301 L 302 L 303	228 276 228 277 228 335 228 279 228 291 228 291 228 286 228 287 228 288 228 280 228 281 228 289 228 289 228 289	Eingangsspule kpl. HF-Spule kpl. ZF-FM-Spule Oszillatorspule kpl. ZF-FM-Spule Drossel 10 mH KW-Vorkreisspule LW-Oszillatorspule MW-Oszillatorspule KW-Oszillatorspule ZF-AM-Spule ZF-AM-Spule ZF-AM-Spule ZF-AM-Spule ZF-AM-Spule	1 1 1 1 1 1 1 2 1 2	027 024 026 026 026 022 026 027 025 025 026 026

Pós.	ArtNr.	Bezeichnung	Anzahl	Preis- gruppe
	000 004	75 5M Saula	T	000
L 304 L 305	228 284 228 290	ZF-FM-Spule ZF-FM-Spule	1 1	026 026
L 401	228 292	Decoder-Spule	1 1	026
L 402	228 293	Decoder-Spule	i i	027
L 403	228 294	Decoder-Spule	1	027
L 404	228 295	Decoder-Spule	1	025
R 101	224 548	Schicht-Widerstand 100 Ω/0,25 W/5 %	4	016
R 102	220 539	Schicht-Widerstand 47 kΩ/0.25 W/5 %	7	016
R 103	220 539	Schicht-Widerstand 47 $k\Omega/0.25$ W/5 %	7	016
R 104	220 547	Schicht-Widerstand 8,2 kΩ/0,25 W/5 % Schicht-Widerstand 100 kΩ/0,25 W/5 %	5	<u>0</u> 16
R 105	224 589	Schicht-Widerstand 100 kΩ/0,25 W/5 %	2 2	016
R 106 R 107	224 589 216 429	Schicht-Widerstand 100 k Ω /0,25 W/5 % Schicht-Widerstand 4,7 k Ω /0,25 W/5 % Schicht-Widerstand 15 k Ω /0,25 W/5 %	3	016 0 16
R 107	216 385	Schicht-Widerstand 15 $k\Omega/0.25$ W/5 %	2	016
R 109	217 861	Schicht-Widerstand 2.2 kΩ/0.25 W/5 %	3	016
R 110	220 548	Schicht-Widerstand 1 $k\Omega/0,25$ $W/5$ %	5	016
R 111	220 548	Schicht-Widerstand 1 $k\Omega/0,25$ W/5 %	5	016
R 112	224 593	Schicht-Widerstand 220 Ω/0,25 W/5 %	2	016
R 113	220 589	Schicht-Widerstand 680 $\Omega/0,25$ W/5 % Schicht-Widerstand 100 $\Omega/0,25$ W/5 %	1 4	016
R 201 R 202	224 548 220 526	Schicht-Widerstand 3,3 k Ω /0,25 W/5 %	7	016
R 202 R 204	220 539	Schicht-Widerstand 47 kΩ/0.25 W/5 %	7	016 016
R 205	220 526	Schicht-Widerstand 3,3 k Ω /0,25 W/5 % Schicht-Widerstand 47 k Ω /0,25 W/5 %	7	016
R 206	220 539	Schicht-Widerstand 47 k Ω/D , 25 W/5 $\%$	7	016
R 207	228 265	Schicht-Widerstand 270 $k\Omega/0,25$ $W/5\%$ Schicht-Widerstand 1 $k\Omega/0,25$ $W/5\%$	2	016
R 208	220 548	Schicht-Widerstand 1 kΩ/0,25 W/5 % Schicht-Widerstand 4,7 kΩ/0,25 W/5 %	5	016
R 209 R 210	216 429 220 526	Schicht-Widerstand 4,7 k Ω /0,25 W/5 $\%$ Schicht-Widerstand 3,3 k Ω /0,25 W/5 $\%$	3 7	016 016
R 210	224 733	Schicht-Widerstand 1 M Ω /0,25 W/5 %	4	016
R 301	220 548	Schicht-Widerstand 1 M Ω /0,25 W/5 % Schicht-Widerstand 1 k Ω /0,25 W/5 % Schicht-Widerstand 150 k Ω /0,25 W/5 %	5	016
R 302	228 264	Schicht-Widerstand 150 $k\Omega/0,25$ $W/5$ %	3	016
R 303	211 202	Schicht-Widerstand 10 $k\Omega/0,25$ $W/5$ % Schicht-Widerstand 15 $k\Omega/0,25$ $W/5$ %	3	016
R 304	216 385	Schicht-Widerstand 15 $k\Omega/0.25 \text{ W/}5\%$	2	016
R 305 R 306	211 202 216 430	Schicht-Widerstand 10 k Ω /0,25 W/5 % Schicht-Widerstand 22 k Ω /0,25 W/5 %	3 3	016 016
R 307	228 235	Schicht-Widerstand 22 $k\Omega/0,25$ $W/5$ % Schicht-Widerstand 560 $k\Omega/0,25$ $W/5$ %	2	016
R 308	216 350	Schicht-Widerstand 1,8 $k\Omega/0$,25 $W/5$ % Schicht-Widerstand 1 $k\Omega/0$,25 $W/5$ %	. 1	016
R 309	220 548	Schicht-Widerstand 1 k $\Omega/0,25$ W/5 %	5	016
R 310	216 345	Schicht-Widerstand 150 $\Omega/0,25$ W/5 % Schicht-Widerstand 10 $k\Omega/0,25$ W/5 % Schicht-Widerstand 820 $\Omega/0,25$ W/5 % Schicht-Widerstand 12 $k\Omega/0,25$ W/5 %	2	016
R 311	211 202 216 326	Schicht-Widerstand 10 k Ω /0,25 W/5 % Schicht-Widerstand 820 Ω /0,25 W/5 %	3	016
R 312 R 313	220 543	Schicht-Widerstand 12 k Ω /0,25 W/5 %	1 2	016 016
R 314	220 543	Schicht-Widerstand 12 $k\Omega/0,25$ $W/5$ %	2	016
R 315	216 345	Schicht-Widerstand 150 Ω/0.25 W/5 %	2	016
R: 316	217 861	Schicht-Widerstand 2,2 k Ω /0,25 W/5 % Schicht-Widerstand 4,7 k Ω /0,25 W/5 %	3	016
R 317	216 429	Schicht-Widerstand 4,7 k Ω /0,25 W/5 % Schicht-Widerstand 27 k Ω /0,25 W/5 %	3	016
R 318 · R 320	220 602 216 838	Schicht-Widerstand 27 k Ω /0,25 W/5 % Schicht-Widerstand 1,5 k Ω /0,25 W/5 %	1 1	016 016
R 321	220 524	Schicht-Widerstand 12D kΩ/D.25 W/5 %	1 1	016
R 322	228 243		i	016
R 323	220 539	Schicht-Widerstand 47 kΩ/0,25 W/5 %	7	016
R 324	228 265	Schicht-Widerstand 270 $k\Omega/0,25$ $W/5$ %	.2	016
R 325 R 326	224 733 220 547	Schicht-Widerstand 270 $\Omega/0,25$ W/5 % Schicht-Widerstand 47 $k\Omega/0,25$ W/5 % Schicht-Widerstand 270 $k\Omega/0,25$ W/5 % Schicht-Widerstand 1 $M\Omega/0,25$ W/5 % Schicht-Widerstand 8,2 $k\Omega/0,25$ W/5 % Schicht-Widerstand 2,7 $k\Omega/0,25$ W/5 % Schicht-Widerstand 2,7 $k\Omega/0,25$ W/5 %	4 5	016
R 327	217 841	Schicht-Widerstand 2,7 k Ω /0,25 W/5 %	1	016 016
R 328	217 861	Schicht-Widerstand 2,2 kΩ/0,25 W/5 %	3	016
R 329	228 235	Schicht-Widerstand 560 kΩ/0,25 W/5 %	2	016
R 340	228 231	Einstellregler 10 k Ω	1	021
R 341	228 232	Einstellregler 47 kΩ	1 7	021
R 402 R 403	220 526 220 547	Schicht-Widerstand 3,3 k Ω /0,25 W/5 %	7 5	016
R 403	228 260	Schicht-Widerstand 39 $k\Omega/0,25$ $W/5$ $\%$	1	016 016
R 406	216 382		1	016
R 407	216 430	Schicht-Widerstand 22 $k\Omega/0.25$ W/5 %	3	016
R 408	228 264	Schicht-Widerstand 150 k Ω /0,25 $\mathbb{W}/5$ %	2	016
R 409	224 979 220 526	Schicht-Widerstand 820 kΩ/0,25 W/5 % Schicht-Widerstand 3,3 kΩ/0,25 W/5 %	1 7	016
R 410 R 411	220 526	Schicht-Widerstand 3,3 kΩ/0,25 W/5 % Schicht-Widerstand 8,2 kΩ/0,25 W/5 %	7	016 016
R 412	220 539	Schicht-Widerstand 47 $k\Omega/0,25$ W/5 %	7	016
R 413	224 979	Schicht-Widerstand 820 kΩ/0,25 W/5 %	. 1	016
R 414	216 430	Schicht-Widerstand 22 $k\Omega/0,25$ W/5 %	3	016
R 415	228 264	Schicht-Widerstand 150 k Ω /0,25 W/5 %	3	016
R 416	224 548	Schicht-Widerstand 47U Ω /U,25 W/5 % Schicht-Widerstand 22 $\kappa\Omega$ /0,25 W/5 % Schicht-Widerstand 150 $\kappa\Omega$ /0,25 W/5 % Schicht-Widerstand 820 $\kappa\Omega$ /0,25 W/5 % Schicht-Widerstand 3,3 $\kappa\Omega$ /0,25 W/5 % Schicht-Widerstand 8,2 $\kappa\Omega$ /0,25 W/5 % Schicht-Widerstand 47 $\kappa\Omega$ /0,25 W/5 % Schicht-Widerstand 820 $\kappa\Omega$ /0,25 W/5 % Schicht-Widerstand 22 $\kappa\Omega$ /0,25 W/5 % Schicht-Widerstand 150 $\kappa\Omega$ /0,25 W/5 % Schicht-Widerstand 150 $\kappa\Omega$ /0,25 W/5 % Schicht-Widerstand 100 $\kappa\Omega$ /0,25 W/5 % Schicht-Widerstand 3,3 $\kappa\Omega$ /0,25 W/5 % Schicht-Widerstand 3,3 $\kappa\Omega$ /0,25 W/5 %	4	016
R 417 R 418	220 526 220 547	Schicht-Widerstand 3,3 k $\Omega/0,25$ W/5 % Schicht-Widerstand 8,2 k $\Omega/0,25$ W/5 % Schicht-Widerstand 47 k $\Omega/0,25$ W/5 %	7 5	016 016
R 419	220 539	Schicht-Widerstand 47 kΩ/0,25 W/5 %	7	016

Pos.	ArtNr.	Bezeichnung	Anzahl	Preis- gruppe
R 420 R 421 R 430 R 431 R 432 R 501 R 502 R 503 R 504	224 733 224 733 228 234 228 233 228 234 220 526 224 548 224 593 222 214	Schicht-Widerstand 1 M Ω /0,25 W/5 % Schicht-Widerstand 1 M Ω /0,25 W/5 % Einstellregler 470 Ω Einstellregler 4,7 k Ω Schicht-Widerstand 3,3 k Ω /0,25 W/5 % Schicht-Widerstand 100 Ω /0,25 W/5 % Schicht-Widerstand 220 Ω /0,25 W/5 % Schicht-Widerstand 33 Ω /0,25 W/5 % Schicht-Widerstand 33 Ω /0,25 W/5 %	4 4 2 1 2 7 4 2	016 016 021 021 021 016 016 016
0 10234467891123456789112345678912322222222222222222222222222222222222	227 903 227 903 227 905 227 905 227 905 227 905 227 905 227 905 227 911 227 905 227 905 227 916 227 918 227 918 227 918 227 918 227 918 227 918 227 918 227 923 227 923 227 923 227 923 227 888 227 888 227 888 227 892 228 229 227 892 227 892 227 892 227 893 227 892 227 892 227 892 227 892 227 892 227 893 227 893 227 894 227 951 227 951 227 951 227 951 227 952 227 953 227 95	Keramik-Kondensator	228814218188114444266112111226131116125421222226321161111138213	4455655556655555666002054665466656660022765764655665 001565665555566600205466546665666002276576467866876655565

Pos.	ArtNr.	Bezeichnung	Anzahl	Preis- gruppe
123456789012345678123456789123456789123456789000000000000000000000000000000000000	227 946 227 967 227 967 227 969 227 971 227 972 227 892 227 892 227 923 227 892 227 923 227 923 227 923 227 923 227 925 227 925 227 925 227 925 227 925 227 925 227 925 227 925 227 925 227 899 227 899	Keramik-Kondensator	23311118611862211323232156645665664665661111	01660001566657666666668556855586886782
59 100123 1101234567 11234567 11234567 11234567 11234567 11234567 11234567 11234567	231 253 209 863 228 203 209 653 209 653 224 516 224 600 224 6005 220 547 220 548 217 861 220 547 216 352 224 607 216 671 222 219 222 499 222 499 222 499 222 498 220 265	Regelverstärker Regelverstärkerplatte kpl. bestückt Transistor BC 173 C Tandem-Potentiometer 2 x 50 kΩ linear Tandem-Potentiometer 2 x 50 kΩ linear Tandem-Potentiometer 2 x 50 kΩ linear Potentiometer 2 x 50 kΩ linear Schicht-Widerstand 39 kΩ/0,30 W/5 % Schicht-Widerstand 4,7 MΩ/0,50 W/5 % Schicht-Widerstand 18 kΩ/0,25 W/5 % Schicht-Widerstand 8,2 kΩ/0,25 W/5 % Schicht-Widerstand 8,2 kΩ/0,25 W/5 % Schicht-Widerstand 8,2 kΩ/0,25 W/5 % Schicht-Widerstand 6,8 kΩ/0,25 W/5 % Schicht-Widers	1 2 1 2 2 2 4 2 2 4 1 2 2 2 2 4 2 2 4 1	074 WGr. E 042 043 029 016 016 016 016 016 016 016 019 019 019 019 019 022
60 61	225 473 213 174	Endverstärker Endverstärkerplatte kpl. bestückt G-Schmelzeinsatz 0,5 A F	1 2	073 018

Pos.	Art.—Nr.	Bezeichnung	Anzahl	Preis- gruppe
T 30 T 31 T32/33	220 535 231 066 209 856	Transistor BC 252 B	2 2 2	WGr. E WGr. E WGr. E
D 30 D 31 D 32 D 33 D 34	216 027 222 759 222 759 222 759 222 759	Diode BZX 62 Diode SE 30	2 4 4 4 4	WGr. E WGr. E WGr. E WGr. E
01234567890123 01234567890123 0123456789000000000000000000000000000000000000	224 590 224 590 224 589 224 591 224 592 216 352 220 264 220 264 220 526 224 594 209 902 224 595 224 593 216 671 220 265 224 596 216 404 224 597 224 597 224 597 224 597 226 551 227 760	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	33112244442222 21222212	016 016 016 018 016 016 016 016 016 023 016 021 021 018 018 022 033 016
C 38	222 760	Keramik-Scheiben-Kondensator 20 nF/ 50 V	2	016
			·	
		Die Ersatzteile, sowie die Funktionsbeschreibung und Fehlersuchtabelle für den Automatikspieler Dual 1211 sind der Service-Anleitung Dual 1211 zu entnehmen.		٠.

Ausgabe September 1976

Dual KA 12 Service-Information Service Information Instructions de service

Dual Gebrüder Steidinger · 7742 St. Georgen/Schwarzwald

Printed in Germany by Dual

+156

182

TBA 810 AS von der Bestückungsseite gesehen as seen from the top side vu du côté elements

TCA 150 C von der Bestückungsseite gesehen as seen from the top side vu du côté elements

- R 21 dient der Verstärkungseinstellung und Symmetrierung der beiden Kanäle.
- R 21 is used to set amplification and symmetrizing both channels.
- R 21 sert à l'amplification et à la symétrie des deux canaux.

Ersatzteile	Replacement Parts	Pièces détachées

Pos. Pos. Pos.	ArtNr. Part. No. Réf.	Bezeichnung	Description	Désignation		Anzahl Oty. Quant.
		IC-Endverstärker	IC Power Amplifier	Amplificateur final IC		
	239 887	IC-Endverstärker kpl.	IC power amplifier compl.	Amplificateur final IC cor	npl.	1
,	227 467	Blechschraube	Sheet metal screw	Vis à tôle	B 2,9 x 6,5 mm	4
	210 584	Scheibe	Washer	Rondelle	6/3,2/0,5 mm	4
	213 174	G-Schmelzeinsatz	Fuse quide blow	Fusible rapide	F 0,5 A	2
C 20	216 671	Folien-Kondensator	Foil capacitor	Condensateur à feuille	0,1 μ F/100 V/20 %	2
C 21	232 338	Keramik-Kondensator	Ceramic capacitor	Condensateur céramique	$0.1 \mu F / 63 V$	4
C 22	220 531	Elyt-Kondensator	Electrolytic capacitor	Condensateur chimique	100 μ F/ 16 V	4
C 23	224 596	Elyt-Kondensator	Electrolytic capacitor	Condensateur chimique	220 μF/ 6 V	2
C 24	227 898	Folien-Kondensator	Foil capacitor	Condensateur à feuille	2,2 nF/ 63 V/10 %	2
C 25	230 826	Keramik-Kondensator	Ceramic capacitor	Condensateur céramique	470 pF/500 V/10 %	2
C 26	220 531	Elyt-Kondensator	Electrolytic capacitor	Condensateur chimique	100 μF/16 V 0,1 μF/63 V	4
C 27	232 338	Keramik-Kondensator	Ceramic capacitor	Condensateur céramique Condensateur chimique	1000 μF/ 16 V	2
C 28	234 828	Elyt-Kondensator	Electrolytic capacitor	Condensateur céramique	20 nF/ 50 V	2
C 29	222 760	Keramik-Kondensator	Ceramic capacitor Ceramic capacitor	Condensateur céramique	20 nF/ 50 V	2
C 30 C 31	222 760 216 651	Keramik-Kondensator Elyt-Kondensator	Electrolytic capacitor	Condensateur chimique	2200 μF/ 20 V	ī
D 1	227 344	Diode	Diode	Diode	1 N 4001	4
D 2	227 344	Diode	Diode	Diode	1 N 4001	4
D 3	227 344	Diode	Diode	Diode	1 N 4001	4
D 4	227 344	Diode	Diode	Diode	. 1 N 4001	4
J 20	239 720	Integrierte Schaltung	Integrated circuit	Circuit intégré	TBA 810 AS	2
R 20	224 589	Schicht-Widerstand	Carbon resistor	Résistance à couche	100 kΩ/0,25 W/ 5 %	
R 21	234 056	Einstellregler	Adjustment control	Résistance ajustable	50 Ω /lin.	2
R 22	216 703	Schicht-Widerstand	Carbon resistor	Résistance à couche	220 Ω/0,25 W/10 %	
R 23	227 375	Schicht-Widerstand	Carbon resistor	Résistance à couche	2,2 Ω /0,50 W/ 5 %	2

Ersatzteile Replacement Parts Pièces détachées

Pos. Pos. Pos.	ArtNr. Part. No. Réf.	Bezeichnung	Description	Désignation	Anzahl Qty. Quant.
	~	IC-Endverstärker	IC Power Amplifier	Amplificateur final IC	
	236 957 213 174 232 270 232 272	IC-Endverstärker kpl. G-Schmelzeinsatz Befestigungswinkel für IC Federblech	IC power amplifier compl. Fuse Connection angle for IC Spring sheet	Amplificateur final IC compl. Fusible rapide F 0,5 A Equerre de fixation pour IC Ressort à lame	1 2 2 2
C 20 C 21 C 22 C 23 C 24 C 25 C 26 C 27 C 28 C 29 C 30 C 31	216 671 232 338 220 531 220 531 220 613 224 607 220 531 232 338 234 828 222 760 222 760 216 651	Folien-Kondensator Keramik-Kondensator Elyt-Kondensator Elyt-Kondensator Folien-Kondensator Keramik-Kondensator Elyt-Kondensator Elyt-Kondensator Elyt-Kondensator Keramik-Kondensator Keramik-Kondensator Keramik-Kondensator	Foil capacitor Ceramic capacitor Electrolytic capacitor Foil capacitor Ceramic capacitor Ceramic capacitor Electrolytic capacitor Ceramic capacitor Ceramic capacitor Ceramic capacitor Ceramic capacitor Ceramic capacitor Ceramic capacitor Electrolytic capacitor Electrolytic capacitor	Condensateur à feuille 0,1 μ F/100 V/20 % Condensateur céramique 0,1 μ F/ 63 V Condensateur chimique 100 μ F/ 16 V Condensateur à feuille 470 pF/160 V/10 % Condensateur céramique Condensateur céramique Condensateur chimique 100 μ F/ 16 V Condensateur chimique 100 μ F/ 16 V Condensateur chimique 20 nF/ 50 V Condensateur céramique 20 nF/ 50 V Condensateur chimique 2200 μ F/ 20 V	4 5 5 2
D 1 D 2 D 3 D 4	227 344 227 344 227 344 227 344 234 055	Diode Diode Diode Diode Integrierte Schaltung	Diode Diode Diode Diode Integrated circuit	Diode 1 N 4001 Diode 1 N 4001 Diode 1 N 4001 Diode 1 N 4001 Circuit intégré TCA 150 C	4 4 4 4 2
R 20 R 21 R 22 R 23	224 590 238 586 216 703 227 375	Schicht-Widerstand Einstellregler Schicht-Widerstand Schicht-Widerstand	Carbon resistor Adjustment control Carbon resistor Carbon resistor	$\begin{array}{llllllllllllllllllllllllllllllllllll$	2 2