

Huazhong University of Science & Technology

Electronic Circuit of Communications

School of Electronic Information and Commnications

Jiaqing Huang

Series Resonance

Frequency Selective Circuits

Series Resonant Circuit

 \triangleright Inductor=L with loss resistance R

 \triangleright Capacitor = C with loss resistance $R \sim$

R

Series Resonant Circuit—Impendance $Z{\sim}\omega$

Characteristic Impedance ρ :

$$\rho = \omega_0 L = \frac{1}{\omega_0 C}$$

$$= \sqrt{\frac{L}{C}}$$

$$X = \omega L - \frac{1}{\omega C} \Rightarrow Z = R + jX = R + j(\omega L - \frac{1}{\omega C})$$

Reactance

Resonant Frequency ω_0 :

$$X = \omega_0 L - \frac{1}{\omega_0 C} = 0$$

$$\Rightarrow \omega_0 = \frac{1}{\sqrt{LC}}$$

Inductive
$$X = \omega L - \frac{1}{\omega c}$$
 1) $\omega > \omega_0$, $X > 0$ Inductive, ELI

2)
$$\omega < \omega_0$$
, $X < 0$ Capacitive, ICE

3)
$$\omega = \omega_0$$
, $X = 0$ purely resistive

Series Resonant Circuit—Impendance $Z{\sim}\omega$

Characteristic Impedance ho:

$$\rho = \omega_0 L = \frac{1}{\omega_0 C}$$

$$= \sqrt{\frac{L}{C}}$$

$$X = \omega L - \frac{1}{\omega C} \Rightarrow Z = R + jX = R + j(\omega L - \frac{1}{\omega C})$$

Reactance

Resonant Frequency ω_0 :

$$X = \omega_0 L - \frac{1}{\omega_0 C} = 0$$

$$\Rightarrow \omega_0 = \frac{1}{\sqrt{LC}}$$

trap

filter

Series Resonant Circuit—Quality Factor (Q)

Difference: resonator Q_0 only for ω_0 , inductor Q for ω Similarity: energy loss (from R)

Series Resonant Circuit— Voltage Resonance

Series Resonance

$$\begin{cases} \dot{V}_{L0} = \dot{I}_0 \cdot j\omega_0 L = \frac{\dot{V}_s}{R} j\omega_0 L = j \frac{\omega_0 L}{R} \dot{V}_s = jQ_0 \dot{V}_s \\ \dot{V}_{C0} = \dot{I}_0 \cdot \frac{1}{j\omega_0 C} = \frac{\dot{V}_s}{R} \frac{1}{j\omega_0 C} = -j \frac{\frac{1}{\omega_0 C}}{R} \dot{V}_s = -jQ_0 \dot{V}_s \end{cases} \qquad Q_0 = \frac{\omega_0 L}{R} = \frac{\frac{1}{\omega_0 C}}{R}$$

Denote:

 $\dot{V}_{L0} = -\dot{V}_{C0}$ same voltage value of, Q_0 times source voltage \bigstar Note: withstand voltage of L and C (esp. C)

Series Resonant Circuit— Detuning Coefficient

$$Q_0 = \frac{\omega_0 L}{R} = \frac{\frac{1}{\omega_0 C}}{R} = \frac{\rho}{R}$$

Resonance,
$$Q_0 = \frac{(Reactance)X}{(Resistance)R}$$

$$\xi = 0$$
 denote resonance

Detuning,
$$\xi = \frac{(Reactance\ sum)X}{(Resistance)R} = \frac{\omega L - \frac{1}{\omega C}}{R}$$

$$\omega \approx \omega_0$$

$$=\frac{\omega_0 L}{R} \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right) = Q_0 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right) = Q_0 \frac{(\omega + \omega_0)(\omega - \omega_0)}{\omega_0 \omega}$$

$$\xi pprox Q_0 rac{2(\omega - \omega_0)}{\omega_0}$$

$$\xi = Q_0 \cdot \frac{2\Delta\omega}{\omega_0}$$
 or $\xi = Q_0 \cdot \frac{2\Delta f}{f_0}$ $\xi \neq 0$ dennote detuning value

Series Resonant Circuit— Resonance Curve

$$Z = R + jX = R + j(\omega L - \frac{1}{\omega C})$$

$$\dot{V}_{s}$$

$$\dot{V}_{s}$$

$$\dot{V}_{s}$$

$$\dot{I} = \frac{\dot{V}_{s}}{R + j(\omega L - \frac{1}{\omega C})} \sim \omega$$

> Resonance Curve:

$$N(f) = \frac{\dot{I}}{\dot{I}_0} = \frac{\frac{\dot{V}_s}{R + j(\omega L - \frac{1}{\omega C})}}{\frac{\dot{V}_s}{R}} = \frac{R}{R + j(\omega L - \frac{1}{\omega C})} = \frac{1}{1 + j(\frac{\omega L - \frac{1}{\omega C}}{R})}$$

$$\Rightarrow N(f) = \frac{\dot{I}}{\dot{I}_0} = \frac{1}{1 + j\xi}$$

$$\xi = \frac{\omega L - \frac{1}{\omega C}}{R}$$

$$\xi = \frac{\omega L - \frac{1}{\omega C}}{R}$$

Amplitude-Frequency

Series Resonant Circuit— Bandwidth

 \triangleright Bandwidth: scope among \dot{I} drop to 0.707 of \dot{I}_0 $B = 2\Delta f_{0.7} = |f_2 - f_1|$

Curve
$$N(f) = \frac{\dot{I}}{\dot{I}_0} = \frac{1}{1+j\xi}$$

$$\mathsf{AF}: |N(f)| = \frac{1}{\sqrt{1+\xi^2}} = \frac{1}{\sqrt{2}}$$

$$\mathsf{AF}:|N(f)| = \frac{1}{\sqrt{1+\xi^2}} = \frac{1}{\sqrt{2}}$$
 \Rightarrow if $2\Delta f_{0.7}$ $\xi = \pm 1$ $\xi = Q_0 \cdot \frac{2\Delta f}{f_0}$

$$2\Delta f = 2\Delta f_{0.7}$$

 $Q_0 \cdot B = f_0$

Amplitude-Frequency (AF)

Series Resonant Circuit— Phase-Frequency Curve

Resonance Curve
$$N(f) = \frac{\dot{I}}{\dot{I}_0} = \frac{1}{1+j\xi}$$

 \Rightarrow PF: $\psi = -arctg\xi$

linearality ↓

Phase-Frequency (PF)

Series Resonant Circuit— with load

 \succ unloaded Q:

$$Q_0 = \frac{\omega_0 L}{R}$$

 \triangleright loaded Q:

$$Q_L = \frac{\omega_0 L}{R + R_S + R_L}$$

Consider source resistance & load resistance

$$Q_L \downarrow \Rightarrow B \uparrow$$

Summary—Series Resonance

Resonance Curve: $N(f) = \frac{\dot{I}}{\dot{I}_0} = \frac{1}{1+j\xi}$ Amplitude-Frequency: $|N(f)| = \left|\frac{\dot{I}}{\dot{I}_0}\right|$

cf. Inductor $Q = \frac{\omega L}{L}$

 $: \rho = \omega_0 L = \frac{1}{\omega_0 C}$

 $Q_0 = \frac{(Reactance)X}{(Resistance)R} = \frac{\omega_0 L}{R} = \frac{\frac{1}{\omega_0 C}}{R} = \frac{\rho}{R}$

Detunning:
$$\xi = \frac{(Reactance\ Sum)X}{(Resistance)R} = \frac{\omega L - \frac{1}{\omega C}}{R} \approx Q_0 \cdot \frac{2\Delta f}{f_0} \Rightarrow Q_0 \cdot B = f_0$$

Phase-Frequency $\psi = -arctg\xi$