

Page: 121 of 130

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.4 ± 6 %	5.80 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		1-2

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.05 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.2 ± 6 %	5.94 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.23 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	81.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.5 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1134_May13

Page 7 of 16

Page: 122 of 130

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	45.9 ± 6 %	6.22 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	-	

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.52 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1134_May13

Page 8 of 16

Page: 123 of 130

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	49.0 Ω - 8.6 jΩ	
Return Loss	- 21.2 dB	

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	50.2 Ω - 6.0 jΩ	
Return Loss	- 24.5 dB	

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	52.3 Ω - 2.2 jΩ		
Return Loss	- 30.3 dB		

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	53.1 Ω - 2.8 jΩ	
Return Loss	- 27.9 dB	

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	56.7 Ω - 5.2 jΩ	
Return Loss	- 22.0 dB	

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	49.6 Ω - 7.8 jΩ	
Return Loss	- 22.1 dB	

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	50.0 Ω - 5.2 jΩ	
Return Loss	- 25.7 dB	

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	53.3 Ω - 1.5 jΩ	
Return Loss	- 29.0 dB	

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	53.8 Ω - 1.4 jΩ	
Return Loss	- 28.2 dB	

Certificate No: D5GHzV2-1134_May13

Page 9 of 16

Page: 124 of 130

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	56.9 Ω - 1.9 jΩ	
Return Loss	- 23.6 dB	

General Antenna Parameters and Design

Application of the second seco	
Electrical Delay (one direction)	1.204 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	May 07, 2012	

Certificate No: D5GHzV2-1134_May13

Page 10 of 16

Page: 125 of 130

DASY5 Validation Report for Head TSL

Date: 07.05.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1134

Communication System: UID 0 - CW ; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f=5200 MHz; $\sigma=4.58$ S/m; $\epsilon_r=34.7;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5500 MHz; $\sigma=4.68$ S/m; $\epsilon_r=34.5;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5500 MHz; $\sigma=4.68$ S/m; $\epsilon_r=34.5;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5500 MHz; $\sigma=4.96$ S/m; $\epsilon_r=34.1;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5600 MHz; $\sigma=4.96$ S/m; $\epsilon_r=34.1;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5800 MHz; $\sigma=5.17$ S/m; $\epsilon_r=33.8;$ $\rho=1000$ kg/m 3 Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41); Calibrated: 28.12.2012, ConvF(5.1, 5.1, 5.1);
 Calibrated: 28.12.2012, ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.76, 4.76, 4.76);
 Calibrated: 28.12.2012, ConvF(4.81, 4.81, 4.81); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.239 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 30.1 W/kg SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.31 W/kg Maximum value of SAR (measured) = 18.8 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.228 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 32.4 W/kg

SAR(1 g) = 8.54 W/kg; SAR(10 g) = 2.45 W/kg

Maximum value of SAR (measured) = 20.0 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.993 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 34.4 W/kg

SAR(1 g) = 8.63 W/kg; SAR(10 g) = 2.46 W/kg

Maximum value of SAR (measured) = 20.9 W/kg

Certificate No: D5GHzV2-1134_May13

Page 11 of 16

Page: 126 of 130

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.812 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 34.0 W/kg

SAR(1 g) = 8.51 W/kg; SAR(10 g) = 2.42 W/kg

Maximum value of SAR (measured) = 20.4 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz 2/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 61.825 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 33.5 W/kg SAR(1 g) = 8.01 W/kg; SAR(10 g) = 2.28 W/kg Maximum value of SAR (measured) = 19.7 W/kg

0 dB = 19.7 W/kg = 12.94 dBW/kg

Certificate No: D5GHzV2-1134_May13

Page 12 of 16

Impedance Measurement Plot for Head TSL

Certificate No: D5GHzV2-1134_May13

Page 13 of 16

Page: 128 of 130

DASY5 Validation Report for Body TSL

Date: 06.05.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1134

Communication System: UID 0 - CW ; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f=5200 MHz; $\sigma=5.43$ S/m; $\epsilon_r=46.9$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5300 MHz; $\sigma=5.56$ S/m; $\epsilon_r=46.8$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5500 MHz; $\sigma=5.58$ S/m; $\epsilon_r=46.4$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5500 MHz; $\sigma=5.94$ S/m; $\epsilon_r=46.2$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5600 MHz; $\sigma=5.94$ S/m; $\epsilon_r=46.2$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5800 MHz; $\sigma=6.22$ S/m; $\epsilon_r=45.9$; $\rho=1000$ kg/m 3 Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.67, 4.67, 4.67); Calibrated: 28.12.2012, ConvF(4.43, 4.43, 4.43); Calibrated: 28.12.2012, ConvF(4.22, 4.22, 4.22); Calibrated: 28.12.2012, ConvF(4.38, 4.38, 4.38); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 59.044 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 29.8 W/kg

SAR(1 g) = 7.53 W/kg; SAR(10 g) = 2.1 W/kg

Maximum value of SAR (measured) = 17.8 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
Reference Value = 59.057 V/m; Power Drift = -0.05 dB
Peak SAR (extrapolated) = 31.1 W/kg
SAR(1 g) = 7.68 W/kg; SAR(10 g) = 2.15 W/kg
Maximum value of SAR (measured) = 18.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.162 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 34.7 W/kg SAR(1 g) = 8.05 W/kg; SAR(10 g) = 2.23 W/kg Maximum value of SAR (measured) = 19.7 W/kg

Certificate No: D5GHzV2-1134_May13

Page 14 of 16

Page: 129 of 130

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.160 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 36.3 W/kg SAR(1 g) = 8.23 W/kg; SAR(10 g) = 2.28 W/kg Maximum value of SAR (measured) = 20.1 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 55.389 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 35.3 W/kg

SAR(1 g) = 7.52 W/kg; SAR(10 g) = 2.08 W/kg

Maximum value of SAR (measured) = 19.0 W/kg

0 dB = 19.0 W/kg = 12.79 dBW/kg

Certificate No: D5GHzV2-1134_May13

Page 15 of 16

Impedance Measurement Plot for Body TSL

Certificate No: D5GHzV2-1134_May13

Page 16 of 16