

Graduação em Engenharia - Núcleo Comum

Disciplina: Mecânica dos Sólidos (Estática)

Professor: Tiago Toitio (tiago.toitio@uniube.br)

PROVA P3

Aluno 1:		RA:					
Aluno 2:		RA:					
Valor:	Nota:	Data:					
Prova P3 – 25,0 pontos							
Capítulo 1 – Princípios Gerais (C	Questão 01)						
Capítulo 2 – Vetores Força (Questão 02)							
Capítulo 3 – Equilíbrio de Ponto Material (Questão 03)							
Capítulo 4 – Momento de uma Força (Questão 04)							
Capítulo 5 – Equilíbrio de Corpo	Rígido (Questões 05)						
Data de Entrega: Até dia <u>08-12-2023</u> (Entregar na sala VIA-109 entre 19:10 e 20:40 horas; na impossibilidade de entregar impresso nesse horário, enviar no Diário de Bordo)							

Considerar: aceleração da gravidade $g = 10 \text{ m/s}^2$

Questão 01 (5,0 pontos). Duas partículas têm massa m1 e m2. As partículas estão separadas por uma distância d. Ver dados de entrada na Tabela 1.

- a) Utilizando a Lei de Newton para atração gravitacional, calcular a força de atração gravitacional entre as partículas. Esboçar o desenho indicando as forças e a distância.
- b) Calcular a força peso de cada partícula.

Tabela 1 – Dados de entrada em função do RA.

	m1 (kg)	m2 (kg)	d (cm)		m1 (kg)	m2 (kg)	d (cm)
5149766	500	600	200	5152439	500	600	265
6108933	520	620	205	5161622	520	620	270
5147523	540	640	210	5154807	540	640	275
5165094	560	660	215	5122056	560	660	280
5147793	580	680	220	5152587	580	680	285
5156171	600	700	225	5159181	600	700	290
5154828	620	720	230	5138032	620	720	295
5156079	640	740	235	5162308	640	740	300
5156139	660	760	240	5148249	660	760	305
5157071	680	780	245	5149843	680	780	310
5159212	700	800	250	5155661	700	800	315
5157629	720	820	255	5153344	720	820	320
5157832	740	840	260				

Questão 02 (5,0 pontos) Para o sistema de três forças mostrado, pede-se:

- a) Determinar as componentes retangulares de cada vetor.
- b) Determinar o vetor força resultante.

Tabela 2 – Dados de entrada em função do RA.

	F1 (kN)	F2 (kN)	F3 (kN)		F1 (kN)	F2 (kN)	F3 (kN)
5149766	10	12	8	5152439	23	25	21
6108933	11	13	9	5161622	24	26	22
5147523	12	14	10	5154807	25	27	23
5165094	13	15	11	5122056	26	28	24
5147793	14	16	12	5152587	27	29	25
5156171	15	17	13	5159181	28	30	26
5154828	16	18	14	5138032	29	31	27
5156079	17	19	15	5162308	30	32	28
5156139	18	20	16	5148249	31	33	29
5157071	19	21	17	5149843	32	34	30
5159212	20	22	18	5155661	33	35	31
5157629	21	23	19	5153344	34	36	32
5157832	22	24	20				

Questão 03 (5,0 pontos). Determine as forças de tração desenvolvidas nos cabos AC e AB de modo que o sistema esteja em equilíbrio. A massa do cilindro é dada na Tabela 3.

Tabela 3 – Dados de entrada em função do RA.

	m (kg)		m (kg)
5149766	250,0	5152439	380,0
6108933	260,0	5161622	390,0
5147523	270,0	5154807	400,0
5165094	280,0	5122056	410,0
5147793	290,0	5152587	420,0
5156171	300,0	5159181	430,0
5154828	310,0	5138032	440,0
5156079	320,0	5162308	450,0
5156139	330,0	5148249	460,0
5157071	340,0	5149843	470,0
5159212	350,0	5155661	480,0
5157629	360,0	5153344	490,0
5157832	370,0		

Questão 04 (5,0 pontos). Determine o momento resultante em relação ao ponto O.

Questão 05 (5,0 pontos). Uma empilhadeira de peso 3200 lb (aplicado no ponto G') levanta uma caixa de 1700 lb (aplicado no ponto G).

- (a) Transformar as medidas nas unidades lb (libras) e pulg (polegadas) para kN e cm, respectivamente.
- (b) Calcular a força que os pneus A e B exercem no piso.

