

MASTER IN CITY & TECHNOLOGY DIGITAL TOOLS AND BIG DATA 2019/2020

FACULTY DIEGO PAJARITO

Environmental Monitoring

Methods, devices and indicators

Source:

Contaminant	Mètode de mostreig i mesura - norma		
Diòxid de sofre (SO ₂)	Fluorescència ultraviolada (Ref.) - EN 14212		
Diòxid de nitrogen i òxids de nitrogen (NO ₂ i NO _x)	Quimioluminescència (Ref.) - EN 14211		
Partícules en suspensió de diàmetre inferior a 10 micres (PM10)	Gravimetria (Ref.) - EN 12341 Absorció de radiació beta Microbalança oscil·lant Dispersió ortogonal de llum		
Partícules en suspensió de diàmetre inferior a 2.5 micres (PM2.5)	Gravimetria (Ref.) - EN 14907 Dispersió ortogonal de llum		
Plom (Pb)	Mostreig amb el filtre PM10 (EN 12341) i espectrometria d'absorció atòmica (Ref.) - EN 14902		
Monòxid de carboni (CO)	Espectrometria infraroja no dispersiva (IRND) (Ref.) - EN 14626		
Ozó (O ₃)	Fotometria ultraviolada (Ref.) - EN 14625		
Benzè (C ₆ H ₆)	Aspiració amb cartutx adsorbent i determinació per cromatografia de gasos (Ref.) - EN 14662 parts 1, 2 i 3		
Metalls pesants (As, Cd, Ni)	Mostreig amb el filtre PM10 (EN 12341) i determinació per digestió àcida i espectrometria (Ref.) - EN 1490		
Benzo(a)Pirè (BaP)	Mostreig amb el filtre PM10 (EN 12341) extracció i determinació per cromatografia (Ref.) – UNE15549		
Sulfur d'hidrogen (H ₂ S)	Fluorescència ultraviolada		
Clor (Cl ₂)	Captació per dissolució adsorbent i colorimetria		
Clorur d'hidrogen (HCI)	Captació per dissolució adsorbent i cromatografia iònica		
Mercuri (Hg)	Mètodes espectrofotomètrics (Ref.) - EN 15852		

Used to compare emissions from various greenhouse gases based upon their global warming potential. E.g., GW potential for methane over 100 years is 21.

1M metric tons methane = emissions of 21M metric tons of CO.

Table I Lifetimes and Global Warming Potentials (GWP) Relative to CO₂ for Selected Greenhouse Gases (GHG)

Industrial or Common Name	Chemical Formula	Lifetime (Years)	GWP for Given Time Period	
			20-Years	100-Years
Carbon Dioxide	CO ₂	N/A	1	1
Methane	CH ₄	12	72	25
Nitrous Oxide	NO ₂	114	289	298
CFC-11	CCI ₃ F	45	6,730	4,750
Halon-1301	CBrF ₃	65	8,480	7,140
HFC-23	CHF ₃	270	12,000	14,800
Sulfur Hexafluoride	SF ₆	3,200	16,300	22,800
Nitrogen Trifluoride	NF ₃	740	12,300	17,200
HFE-125	CHF2OCF3	136	13,800	14,900

Source: Adapted from Table 2.14, IPCC, 2007.

Although environmental variables are continues in space, they are measured using punctual locations.

"Everything is related to everything else, but near things are more related than distant things." in **Tobler's First Law and Spatial Analysis** (Miller J., 2005)

Interpolation: Voronoi, IDW, Kriging, etc.

A diverse set of (complex) mathematical methods used to identify behavioural patterns, infer future changes and interpolate results

OBJ

Smart Citizen Kit

ISCAPE_A #7DC1

5 100 %

LAST DATA RECEIVED:MAY 21, 2020 - 18:05

Compare with

AIR TEMP...

info

Details of one of IAAC's kit: https://smartcitizen.me/kits/10917

OBJ

CanAir.io

Organized by:

Source: https://canair.io/#talleres

Crowdsourced data initiatives

Sensebox

Hands-on

Let's get some environmental data for Barcelona?

Let's see what we are thinking http://etc.ch/AgVd

https://www.directpoll.com/

* This survey is designed only for the live session

Exploring air quality data for Barcelona

Goal: to access and to manipulate data about historical measurements for air quality.

- 1. Get access to historical data about air quality in Barcelona
- 2. Navigate and download data from environmental stations
- Run the python script and create basic plots for historical records
- 4. Open geospatial layers for environmental stations in QGIS
- 5. [optional] Explore interpolation options in QGIS

Using curated maps to complement visualisations

Goal: To use the WMS (map service) for environmental data of Barcelona as an additional (visual) analysis layer.

- 1. Navigate the <u>Barcelona's web application</u> for environmental data maps
- 2. Get the WMS url
- 3. Configure access to WMS using QGIS
- 4. Create a geospatial visualisation that combines your project data sources

Scrapping Barcelona's air pollution predictions

Goal: To access and visualise air pollution predictions for PM10 and NO2 in Barcelona

- 1. Navigate the web portal <u>"air quality, metropolitan area of Barcelona"</u>
- 2. Scrap web app resources to find the raster image displaying model results
- 3. Scrap web app resources to find the spatial parametres (coordinates) for georeferencing the image.
- 4. Add model images to QGIS
- 5. Use the georeferencing tool in QGIS to generate geospatial layers

Give some examples of potential uses of the data source identified:

How do you see the integration of these datasets and the analysis for the studio project?

Space-time analysis

Present in most of the environmental analysis

OBJ

Combination of space, time and environmental variables

Taac | Institute for advanced architecture architecture Thermal comfort

https://www.intechopen.com/books/mediterranean-identities-environment-society-culture/climate-and-urban-morphology-in-the-city-of-barcelona-the-role-of-yegetation

Waste management in Istanbul

Unpublished work for the https://pop-machina.eu / maker academy

Waste management (Turkey)

Social relationships

Heavily impacted by environmental conditions

COVID-19 Death Rate by Household Income (by ZIP)

Source terraces:

https://opendata-ajuntament.barcelona.cat/data/en/dataset/terrasses-comercos-vigents/resource/8808bc24-e14c-45a5-9c24-5e67846f087a

Source: green areas:

https://opendata-ajuntament.barcelona.cat/data/en/dataset?q=public+space

Source: https://opendata-ajuntament.barcelona.cat/data/en/dataset/espais-prioritaris-neteja-barcelona

Hands-on

What can we see from these data sets?

Comparing Barcelona's income and social distancing spaces

Goal: To identify if there is correlation between income and available space for social activities in Barcelona

Comparing Barcelona's pollution and social distancing spaces

Goal: To identify if there is correlation between air pollution conditions and COVID-19 cases in Barcelona

MASTER IN CITY & TECHNOLOGY DIGITAL TOOLS AND BIG DATA 2019/2020

FACULTY DIEGO PAJARITO