MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: PE-EC702C Neural Network and Fuzzy Logic Control

Time Allotted: 3 Hours

Full Marks:70

The Figures in the margin indicate full marks. Candidate are required to give their answers in their own words as far as practicable

Group-A (Very Short Answer Type Question)

	Group-A (Very Short Answer Type Guestion)		
		[1 x 10 = 10]	
1. Answ	ver any ten of the following:		
Ø	First logic is: Used to respond to questions in away		
(tr)	Dide courons—state tive of idios	vent	
(111)	In auto-associative networks, the diagonal elements of the weight matrix are served as Reproducing the input rather than the associated pattern b) Self-loops in the auto-associative networks c) Both (a) and (b)		
(# V)	d) None of the above In ART1 nets, the bottom-up interconnections are directed From the layer to the recognition ART1 nets, the bottom-up interconnections are directed From the layer to the recognition for the fuzzy membership		
(V)	Let (a, b) and (c, d) be the pre-images of an element purious a stream. What is the fuzzy member values of a, b, c, and d in a fuzzy set are 0.5, 0.4, 0.7 and 0.2 respectively. What is the fuzzy member values of a, b, c, and d in a fuzzy set are 0.5, 0.4, 0.7 and 0.2 respectively.	rship	
(VI)	of p when f is extended to its fuzzy domain? A 4-input neuron has weights 1, 2, 3 and 4. The transfer function is linear with the constant of proportion of the following state of the control of the constant of proportion of the control of the co		
(V II)	to 2. The inputs are 4, 10, 5 and 20 respectively. The inputs are 4, 10, 5 and 20 respectively. I.e., erroneously yields an or During learning, if a Perceptron misclassifies a training data positively, i.e., erroneously yields an or	utput +1 instead of	
4	-1, the interconnection weights are Which of the following neural nets can have inequal number of input and output units?		
	a) Auto-associative nets b) Hetero-associative nets c) Both (a) and (b)		
(IX)	d) None of the above During the learning phase of a backpropagation net, direction of flow of errors is Fromto	Modus Ponens, A1, a	
(X)	Let R: If 'x is A' Then 'y is B' be a fuzzy rule. In a fuzzy reasoning process modified version of A, is used as the premise. Moreover, let B1 be the conclusion where B1 is prob version of B. If B1 = A1 op R, then according to Zadeh's interpretation, op is: a) Fuzzy Cartesian product b) Max-min composition c) Fuzzy implication	ably a modified	
, (XI)	d) None of the above Which ANN learning methods use Euclidean distance between the weight vector and the input vec		
	output? What is the highest number of patterns an n-Input n-output auto-associative net can store?		
	Group-B (Short Answer Type Question) Answer any three of the following	[5×3 = 15]	
	the shall and learning rate parameter.	[5]	
3~D0	2 Define Weights, bias, threshold and learning rate parameter. 3 Define Winner-takes-all or Clustering principle or Competitive learning.		
3∕ De	fine Winner-lakes-all or Clustering principle	(5)	
De سور	scribe supervised and Unsupervised learning.	_ (5)	
5/1/s	it the application and Important features of Kohonen Self Organizing Maps.	[5]	
6. Lis	I various interpretations of Fuzzy If-Then rule.		
	Group-C (Long Answer Type Question) Answer any three of the following	(15x3-45)	

œ.	9	illustrates the training process of an auto-associative net to store a single pattern with example.	17
	4	Explain the perceptron training algorithm with flowchart.	[8]
8		Explain the architecture of milinput and n-output Kohonen's Self Organizing Map (SOM) with neat diagram	,
	_A	Illustrate the training algorithm or Flow chart for Kohonen's SOM learning.	[7] [8]
9		Draw the structure of a 3-3-2 multi-layered feed forward neural net. Also, present the matrix algebraic expression for the net inputs and the outputs of each layer.	[5]
	(b)	L Apply an ADALINE to realize the AND function. Consider Bipolar Data	[5]
		Illustrates the training process of an hetero-associative net to store a single pattern with example ,	[5]
10		Explain the architecture of Learning Vector Quantization (LVQ) with neat diagram.	(7)
		Mustrate the training algorithm or flow chart of Learning Vector Quantization (LVQ) Learning	[8]
11,		For Speed control of DC motor, the membership functions of series resistance (Rse), Armatrure current(la) and Speed (N) are given as follows. Compute relation T for relating series resistance to motor speed, i.e.: Rse to N. Perform max-min composition only.	[8]

$$R_{\infty} = \left\{ \frac{0.4}{30} + \frac{0.6}{60} + \frac{1.0}{100} + \frac{0.1}{120} \right\}$$

$$I_{\infty} = \left\{ \frac{0.2}{20} + \frac{0.3}{40} + \frac{0.6}{60} + \frac{0.8}{80} + \frac{1.0}{100} + \frac{0.2}{120} \right\}$$

$$N = \left\{ \frac{0.35}{500} + \frac{0.67}{1000} + \frac{0.97}{1500} + \frac{0.25}{1800} \right\}$$

(b) Explain the centroid or Centre-of-Sums (CoS) or Mean-of-Maxima (MoM) method of defuzzification with suitable diagram.

"END OF PAPER "

https://www.makaut.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पायें,

Paytm or Google Pay &