

Hochschule für Technik und Wirtschaft

DOKUMENTATION

Projektseminar

Optimierung und Unsicherheitsquantifizierung mit Bayesianischer Statistik und MCMC-Methoden

(Prof. Schwarzenberger)

Clemens Näther, s85426 Jakub Kliemann, s85515 Dokumentation Seite 1 von 20

Contents

1	Ein	leitung	2			
2	The	neoretischer Teil				
	2.1	Grundlagen der bayesianischen Statistik und das Bayes'sche Theorem .	3			
		2.1.1 Einführung in die bayesianische Statistik	3			
		2.1.2 Das Bayes'sche Theorem und seine Bestandteile	3			
		2.1.3 Beispiele und praktische Anwendungen	5			
		2.1.4 Punktschätzer in der bayesianischen Statistik	6			
	2.2	Binomiale Verteilung und deren bayesianische Interpretation	7			
	2.3	Markov Chain Monte Carlo (MCMC) Methoden	8			
		2.3.1 Einführung in MCMC-Methoden	8			
		2.3.2 Der Metropolis-Hastings-Algorithmus	9			
	2.4	Konvergenzkriterien und Diagnosewerkzeuge für MCMC-Simulationen .	9			
3	Pra	ktischer Teil	10			
	3.1	Implementierung bayesianischer Modelle unter Verwendung in Python .	10			
	3.2	Anwendung der Modelle auf verschiedene Datensätze	11			
	3.3	Durchführung von MCMC-Simulationen	12			
	3.4	Interpretation der Ergebnisse	13			
	3.5	Vergleich mit klassischen Methoden	14			
		3.5.1 Vergleich der klassischen und bayesianischen Statistik	14			
	3.6	Semmelweis' Vermutung zum Kindbettfieber	15			
		3.6.1 Einleitung	15			
		3.6.2 Datensatz	15			
		3.6.3 Berechnung mit klassischer Statistik	15			
		3.6.4 Berechnung mit bayesianischer Statistik	16			
		3.6.5 Vergleich der Ergebnisse	17			
4	Zus	Zusammenfassung und Ausblick 18				
5	Literaturverzeichnis 19					
6	Selbstständigkeitserklärung 20					

Dokumentation Seite 2 von 20

1 Einleitung

Dokumentation Seite 3 von 20

2 Theoretischer Teil

2.1 Grundlagen der bayesianischen Statistik und das Bayes'sche Theorem

2.1.1 Einführung in die bayesianische Statistik

Die bayesianische Statistik ist ein Zweig der Statistik. Sie unterscheidet sich im wesentlichen in der Interpretation der Wahrscheinlichkeit von der klassischen Statistik. Die klassische Statistik definiert die Wahrscheinlichkeit als die **relative Häufigkeit** in einem Zufallsexperiment [4, p. 2]. In der bayesianischen Statistik hingegen wird die Wahrscheinlichkeit als Grad des Glaubens respektiv als **Plausibilität** eines Ereignisses oder einer Aussage interpretiert [1, p. 1].

Kern der bayesianischen Statistik ist es Wissen über ein Ereignis zu verfeinern, sobald neue Informationen vorliegen. Dazu nutzt man hauptsächlich das **Bayes'sche Theorem**, welches erlaubt das Vorwissen (Prior) mit neuen Daten (Likelihood) zu kombinieren und daraus eine aktualisierte Wahrscheinlichkeit (Posterior) zu berechnen.

Mit Hilfe des Bayes'schen Theorems kann man unbekannte Parameter schätzen, ein Konfidenzintervall für diese Parameter angeben und Hypothesen prüfen. Die klassische Statistik benötigt hingegen dafür Testgrößen, weshalb die bayesianische Statistik als flexibler und intuitiver gilt. [1, p. 1].

Problem der bayesianischen Statistik ist jedoch, dass die Berechnung der Posterioriverteilung analytisch oft nicht möglich ist. Da es nun aber gute numerische Methoden wie die Markov Chain Monte Carlo (MCMC) Methoden gibt, findet die bayesianische Statistik immer mehr Anwendungen. So zum Beispiel in der Medizin oder für künstliche Intelligenzen. [4, p. 1].

2.1.2 Das Bayes'sche Theorem und seine Bestandteile

Das Bayes'sche Theorem ist ein fundamentales Konzept der bayesianischen Statistik. Es beschreibt, wie man vorhandenes Vorwissen durch neue Daten aktualisiert.

Die **Prioriverteilung** beschreibt die anfänglichen Annahmen oder das Vorwissen über einen Parameter oder ein Ereignis, bevor neue Daten berücksichtigt werden. Dabei "enthält die Priorverteilung eines Parameters θ , ausgedrückt durch f (θ), was man vor Auswertung der Stichprobe über θ weiß." [4, p. 90].

Als Priori-Wahrscheinlichkeit wird somit die Wahrscheinlichkeit P(A) bezeichnet.

Die **Posterioriverteilung** beschreibt das Wissen über einen Parameter oder ein Ereignis, nachdem alle vorhandenen Daten berücksichtigt wurden. Durch die neuen Daten, meist einer Stichprobe, wird die anfängliche Annahme, die durch die Prioriverteilung ausgedrückt wird, aktualisiert. Dies führt zu einer neuen Verteilung die widerspiegelt, wie wahrscheinlich verschiedene Werte des Parameters auf Grundlage sowohl des Vorwissens als auch der neuen Informationen sind. [4, p. 109]

Die Posteriori-Wahrscheinlichkeit wird somit als P(A|B) bezeichnet.

Dokumentation Seite 4 von 20

Die **Likelihood-Funktion** enthält die Informationen, die die Daten über den Parameter oder das Ereignis liefern. Dabei beschreibt die Likelihood die Informationen aus den neuen Daten, die zur Aktualisierung der Prioriverteilung beitragen. [4, p. 88] Die Likelihood-Wahrscheinlichkeit wird somit als P(B|A) bezeichnet.

Die Wahrscheinlichkeit P(B) wird als Normierungskonstante bezeichnet. Sie sorgt dafür, dass die Posterioriverteilung korrekt normiert ist, das heißt, dass die Summe der Wahrscheinlichkeiten aller möglichen Werte des Parameters 1 ergibt. [4, p. 109]

Das Bayes'sche Theorem lässt sich somit wie folgt darstellen:

$$P(A|B) = \frac{P(A) \cdot P(B|A)}{P(B)} \tag{1}$$

Das Bayes'sche Theorem lässt sich auch rekursiv anwenden [1, p. 17]. Gegeben sei das Ereignis A sowie die Teilergebnisse $B_1, B_2, ..., B_n$. Dann ergibt sich die Wahrscheinlichkeit $P(A|B_1)$ zu:

$$P(A|B_1) = \frac{P(A) \cdot P(B_1|A)}{P(B_1)}$$
 (2)

Nun wird die Information B_2 hinzugefügt. Die Wahrscheinlichkeit $P(A|B_1, B_2)$ ergibt sich bei Unabhängigkeit von den Teilereignissen $B_1, B_2, ..., B_n$ zu:

$$P(A|B_1, B_2) = \frac{P(A) \cdot P(B_1|A) \cdot P(B_2|A)}{P(B_1) \cdot P(B_2)}$$
(3)

Weiterhin lässt sich diese Formel umstellen, wodurch deutlich wird, dass beim Hinzufügen von neuen Informationen die Posterioriverteilung aktualisiert wird:

$$P(A|B_1, B_2) = \frac{P(A) \cdot P(B_1|A) \cdot P(B_2|A)}{P(B_1) \cdot P(B_2)} = P(A|B_1) \cdot \frac{P(B_2|A)}{P(B_2)}$$
(4)

Dies lässt sich allgemein formulieren für:

$$P(A|B_1, B_2, ..., B_n) = P(A|B_1, B_2, ..., B_{n-1}) \cdot \frac{P(B_n|A)}{P(B_n)}$$
(5)

Die Wahl der Prioriverteilung ist ein wichtiger Aspekt der bayesianischen Statistik. Sie wird immer so gewählt, dass die Entropie maximal ist. Die Entropie ist ein Maß für die Unsicherheit, was bedeutet, dass nur Informationen enthalten sind, die vor der Beobachtung bekannt sind. [1, p. 57]. Unter folgenden Bedingungen ist die Prioriverteilung optimal [1, p. 59]:

- Zufallsvariablen, die in [a, b] definiert sind, sind gleichverteilt
- Zufallsvariablen mit gegebenen Mittelwert und Varianz sind normalverteilt
- Zufallsvariablen mit gegebenen Mittelwert sind **exponentialverteilt**
- Zufallsvariablen mit gegebenen Mittelwert und Varianz im Intervall $[0,\infty]$ besitzen eine **abgeschnittene Normalverteilung**

Wenn keine Informationen über den Parameter vorliegen, wird eine **uninformative** Prioriverteilung gewählt. Es handelt sich dabei um eine uneigentliche Verteilung. [1, p. 57].

Dokumentation Seite 5 von 20

2.1.3 Beispiele und praktische Anwendungen

Beispiel 1: m gleichgeformte Kugeln, unter denen sich k rote Kugeln und m-k schwarze Kugeln befinden. Eine Kugel wird zufällig gezogen. Die Wahrscheinlichkeit, dass die gezogene Kugel rot ist, beträgt

$$P(A) = \frac{k}{m} = p \tag{6}$$

Der Versuch wird erweitert, sodass n-mal eine Kugel mit Zurücklegen gezogen wird. Die Wahrscheinlichkeit, dass x-mal eine rote Kugel bie n-maligem Ziehen gezogen wird, beträgt

$$P(x|n,p) = \binom{n}{x} \cdot p^x \cdot (1-p)^{n-x} \tag{7}$$

Sei nun p unbekannt. Dieses p ist nun zu schätzen. Die Binomialverteilung wird nun als Likelihood-Funktion verwendet:

$$P(n,x|p) = \binom{n}{x} \cdot p^x \cdot (1-p)^{n-x} \tag{8}$$

wobei $0 \le p \ge 1$. Als Prioridichte wird die Gleichverteilung verwendet, da es keine Informationen über p gibt.

$$P(p) = \begin{cases} 1, & \text{für } 0 \le p \le 1\\ 0, & \text{sonst} \end{cases}$$
 (9)

Die Posterioridichte ergibt sich somit zu:

$$P(p|n,x) = \frac{\binom{n}{x}p^x \cdot (1-p)^{n-x}}{P(n,x)}$$
 (10)

Vergleicht man dies mit der Dichtefunktion der Beta-Verteilung, so erkennt man dass die Posterioridichte einer Beta-Verteilung entspricht.

$$P(p|n,x) = \frac{(n+1)!}{x! \cdot (n-x)!} \cdot p^x \cdot (1-p)^{n-x} = \frac{\Gamma(n+1)}{\Gamma(x+1) \cdot \Gamma(n-x+1)} \cdot p^x \cdot (1-p)^{n-x}$$
(11)

Somit suche nach Maximum der Posterioridichte, um den Schätzer für p zu finden.

$$\frac{d}{dp}P(p|n,x) = xp^{x-1} \cdot (1-p)^{n-x} - (n-x)p^x \cdot (1-p)^{n-x-1} = 0$$
 (12)

$$\Rightarrow xp^{x-1} \cdot (1-p)^{n-x} = (n-x)p^x \cdot (1-p)^{n-x-1}$$
(13)

Vereinfacht ergibt sich:

$$\Rightarrow x(1-p) = (n-x)p \tag{14}$$

$$\Rightarrow \frac{x}{p} - \frac{n-x}{1-p} = 0 \tag{15}$$

$$\Rightarrow p = \frac{x}{n} \tag{16}$$

Der Schätzer für p ist somit der relative Anteil der roten Kugeln an der Gesamtanzahl der Kugeln.

Dokumentation Seite 6 von 20

Beispiel 2: Beispiel 1 wird erweitert. Es wird nun eine zweite Stichprobe gezogen. Stichprobe 1: $n_1 = 10$, $x_1 = 4$, Stichprobe 2: $n_2 = 20$, $x_2 = 6$. Daten sind unabhängig voneinander. Die Daten (Posterioriverteilung) der 1. Stichprobe dienen nun als Prioridichte für die 2. Stichprobe. Man erhält somit:

$$P(p|n_1, x_1, n_2, x_2) = \frac{P(p|n_1, x_1) \cdot P(p|n_2, x_2)}{P(n_1, x_1, n_2, x_2)}$$
(17)

Dabei ist die Prioridichte identisch zur Posterioridichte der 1. Stichprobe, siehe Gleichung (10). Die Posterioridichte der 2. Stichprobe ergibt sich somit zu:

$$P(p|n_1, x_1, n_2, x_2) = \frac{\binom{n_1 + n_2}{x_1 + x_2} \cdot p^{x_1} \cdot (1 - p)^{n_1 - x_1} \cdot p^{x_2} \cdot (1 - p)^{n_2 - x_2}}{P(n_1, x_1, n_2, x_2)}$$
(18)

Oder mithilfe der Beta-Verteilung:

$$P(p|n_1, x_1, n_2, x_2) = \frac{\Gamma(n_1 + n_2 + 1)}{\Gamma(x_1 + x_2 + 1) \cdot \Gamma(n_1 + n_2 - x_1 - x_2 + 1)} \cdot p^{x_1 + x_2} \cdot (1 - p)^{n_1 + n_2 - x_1 - x_2}$$
(19)

Die Daten der 1. und 2. Stichprobe könnnen somit kombiniert werden. Für die Daten $n_1 = 10, x_1 = 4, n_2 = 20, x_2 = 6$:

$$P(p|10, 4, 20, 6) = 931395465p^{10} \cdot (1-p)^{20}$$
(20)

2.1.4 Punktschätzer in der bayesianischen Statistik

Im folgenden wird die Schätzung eines Parameters mithilfe der Bayes-Strategie erläutert. Die möglichen Schätzwerte der Parameter x werden als \hat{x} bezeichnet. Die wahren Parameter werden als x bezeichnet.

Es wird eine Kostenfunktion $L(\hat{x}, x)$ definiert, die die Kosten für die Schätzung \hat{x} des wahren Parameters x angibt. Dies bedeutet, dass die Kostenfunktion die Differenz zwischen dem wahren Parameter x und der Schätzung \hat{x} angibt. Dabei gibt es verschiedene Kostenfunktionen, die verwendet werden können. [1, p. 65]

Die quadratische Kostenfunktion ist definiert als: $L(x - \hat{x}) = (x - \hat{x})\Sigma^{-1}(x - \hat{x})$. Diese gibt den quadratischen Abstand zwischen dem wahren Parameter x und der Schätzung \hat{x} an. Die zu erwartenden Kosten werden berechnet mit dem Erwartungswert der Kostenfunktion. Diese Schätzung führt zu dem Erwartungswert von x, das heißt $\hat{x} = E(x)$. [1, pp. 65–66]

Die Kostenfunktion der absoluten Fehler ist definiert als: $L(x, \hat{x}) = |x - \hat{x}|$. Diese gibt den absoluten Abstand zwischen x und \hat{x} an. Die Schätzung mit dem absoluten Fehler ergibt den Median der Verteilung, das heißt $F(\hat{x}_m ed) = 0.5$ [1, pp. 67–68]

Die Null-Eins-Kostenfunktion bedeutet, dass es entweder Kosten oder keine Kosten

gibt. Diese ist definiert durch:
$$L(x - \hat{x}) = \begin{cases} 0 & \text{für } |x - \hat{x}| < b \\ a & \text{für } |x - \hat{x}| \ge b \end{cases}$$

wobei a und b als Konstaten angenommen werden. Wenn der Fall $b \to 0$ betrachtet wird, ergibt sich als Schätzer das Argument des Maximums der Posterioriverteilung, das heißt $\hat{x}_M = \arg\max \ p(x|y)$. [1, pp. 68–69]

Dokumentation Seite 7 von 20

2.2	Binomiale	Verteilung	und	deren	bayesianische	Interpreta-
	tion					

Dokumentation Seite 8 von 20

2.3 Markov Chain Monte Carlo (MCMC) Methoden

2.3.1 Einführung in MCMC-Methoden

Bei einer direkten Simulation wird vorrausgesetzt, dass die Verteilung der Zufallsvariablen bekannt ist. Dies ist jedoch in der Praxis nicht immer gegeben. Die Berechnung der Posterioriverteilung ist analytisch oft nicht möglich, vor allem bei komplexen Modellen oder hohen Dimensionen.

Die Markov Chain Monte Carlo (MCMC) Methoden sind eine Klasse von Algorithmen, die es ermöglichen, eine Stichprobe aus einer Verteilung zu ziehen, ohne die Verteilung zu kennen. [3, p. 179]

Diese Methoden verwenden zwei Konzepte: Markov-Ketten und Monte Carlo-Methoden. Eine Markov-Kette ist eine Folge von Zufallsvariablen, die die Markov-Eigenschaft erfüllen. Die Markov-Eigenschaft sagt aus, dass die nächste Zufallsvariable nicht von den vorherigen Zufallsvariablen, sondern nur von der letzten Zufallsvariable abhängt. Das bedeutet, dass die Wahrscheinlichkeit, im nächsten Zustand $X_n + 1$ zu landen, nur von X_n abhängt. Die Übergangswahrscheinlichkeit zwischen den Zuständen kann in einer Übergangsmatrix dargestellt werden. [3, 188f.]

Die Monte Carlo-Methoden sind eine Gruppe von Algorithmen, die es ermöglichen, Zufallsvariablen zu schätzen, indem Zufallszahlen generiert werden. Sie erzeugen zufällige Stichproben, um eine Näherung der Verteilung zu erhalten. [3, 14f.]

Die MCMC-Methoden nutzen die Monte Carlo-Methoden, um eine Markov-Kette zu simulieren. Diese Technik ist besonders nützlich, um eine Posterioriverteilung zu schätzen, wenn direkte Berechnungen nicht möglich sind. [3, p. 179] Im folgenden wird der Metropolis-Hastings-Algorithmus erläutert, der eine der bekanntesten MCMC-Methoden ist.

Dokumentation Seite 9 von 20

2.3.2 Der Metropolis-Hastings-Algorithmus

Der Metropolis-Hastings-Algorithmus erstellt eine Markov-Kette, die eine Posterioriverteilung f(x) approximiert. f(x) besteht aus einer bekannten Funktion p(x), die sich aus der Likelihood-Funktion und der Prioriverteilung zusammensetzt und aus einer unbekannten Normierungskonstante. Für die Berechnung wird eine Hilfsfunktion q(y|x) benötigt, welche die Übergangswahrscheinlichkeit von einem Zustand x_t zum nächsten Zustand x_{t+1} angibt und ähnlich wie die Posterioriverteilung ist. Oftmals wird dafür die Normalverteilung gewählt sodass $q(y|x) = N(x,\sigma^2)$, wobei σ beeinflusst dabei die Schrittweite, die die Markov-Kette macht. [2, 226f.]

Der Algorithmus besteht aus folgenden Schritten:

- 1. Wähle einen Startwert x_0
- 2. Wähle einen neuen Wert y aus der Hilfsfunktion $q(y|x_t)$ im Fall einer Normalverteilung $N(x_t, \sigma^2)$ wird ein zufälliger Wert aus der Normalverteilung gezogen
- 3. Berechne die Akzeptanzwahrscheinlichkeit α :

$$\alpha = \min\{1, \frac{p(y) \cdot q(x_t|y)}{p(x_t) \cdot q(y|x_t)}\}\tag{21}$$

Diese gibt an, wie wahrscheinlich der neue Wert x_{t+1} akzeptiert wird.

- 4. Ziehe eine Zufallszahl u aus einer Gleichverteilung U(0,1)
- 5. Wähle den nächsten Wert x_{t+1} :

$$x_{t+1} = \begin{cases} y, & \text{wenn } u < \alpha \\ x_t, & \text{sonst} \end{cases}$$
 (22)

6. Wiederhole die Schritte 2-5 bis die Stichprobe die gewünschte Verteilung genau genug approximiert

Der Metropolis-Hastings-Algorithmus ist ein Verallgemeinerung des Metropolis-Algorithmus, der nur für symmetrische Hilfsfunktionen q(y|x) funktioniert. Bei einer symmetrischen Hilfsfunktion ist $q(y-x_t) = q(x_t-y)$ und deswegen kürzt sich die Akzeptanzwahrscheinlichkeit zu $\alpha = min\{1, \frac{p(y)}{p(x_t)}\}$. [2, 226f.]

Der erste Teil der Markov-Kette wird als **Burn-in-Phase** bezeichnet, welche verworfen wird, weil sich die Kette erst an die Zielverteilung anpassen muss. Der restliche Teil wird als **Sampling-Phase** bezeichnet, welche dann die Verteilung simuliert. [2, 226f.]

2.4 Konvergenzkriterien und Diagnosewerkzeuge für MCMC-Simulationen

Dokumentation Seite 10 von 20

3 Praktischer Teil

3.1 Implementierung bayesianischer Modelle unter Verwendung in Python

Dokumentation Seite 11 von 20

Dokumentation Seite 12 von 20

Dokumentation Seite 13 von 20

Dokumentation Seite 14 von 20

3.5 Vergleich mit klassischen Methoden

3.5.1 Vergleich der klassischen und bayesianischen Statistik

	Klassische Statistik	Bayesianische Statistik	
Bevorzugte Ver-	Human- und Sozial-	Technik und Künstliche In-	
wendung	wissenschaften,	telligenz	
	Wirtschaftswissenschaften,		
	Biologie		
Schätzen von	nur Stichprobe wird betra-	Stichprobe und Vorwissen	
Parametern,	chtet	wird betrachtet	
Testen von Hy-			
pothesen			

Table 1: Vergleich der klassischen und bayesianischen Statistik

Statistikmethode	Vorteile	Nachteile
Klassische Statistik	 Einfachheit und breite Akzeptanz in der Wissenschaft. Gut für große Datensätze und standardisierte Testverfahren. Benötigt keine subjektiven Annahmen über Wahrscheinlichkeiten. 	 Abhängig von großen Stichproben. Unflexibel gegenüber neuen Daten und Modellen. Ergebnisse oft schwer zu interpretieren bei komplexen Datenstrukturen.
Bayesianische Statistik	 Flexibel und anpassbar an komplexe Modelle. Ermöglicht die Einbeziehung von Vorwissen (Priors). Liefert direkte Wahrscheinlichkeiten für Parameter und Modelle. 	 Subjektivität bei der Wahl der Priors. Rechenintensiv, besonders bei großen Datensätzen. Oft weniger bekannt und akzeptiert in konservativen Disziplinen.

Table 2: Vergleich der Vor- und Nachteile der klassischen und bayesianischen Statistik.

Dokumentation Seite 15 von 20

3.6 Semmelweis' Vermutung zum Kindbettfieber

3.6.1 Einleitung

Semmelweis' Vermutung zum Kindbettfieber basiert auf seiner Beobachtung, dass der Sterberate von Frauen bei der Geburt in einer Klinik stark variierte, je nachdem, ob die Geburtshelfer ihre Hände vor der Entbindung in einer Chlorlösung wuschen. Er vermutete, dass das Kindbettfieber, das häufig tödlich endete, durch eine Infektion verursacht wurde, die durch nicht desinfizierte Hände von Ärzten übertragen wurde. Diese Vermutung führte zu einer drastischen Senkung der Sterblichkeit in den Kliniken, in denen sie umgesetzt wurde.

3.6.2 Datensatz

Der Datensatz, den Semmelweis zur Untermauerung seiner Theorie verwendete, umfasst zwei Zeiträume:

- Vor Einführung der Chlorwaschung: In den 6 Jahren vor der Einführung der Chlorwaschung in der Klinik starben 1.989 von 20.042 Frauen.
- Nach Einführung der Chlorwaschung: In den 14 Jahren nach der Einführung starben nur 1.883 von 56.104 Frauen.
- $x = 1989, n_x = 20.042, y = 1883, n_y = 56.104$

3.6.3 Berechnung mit klassischer Statistik

Mit der klassischen Statistik könne wir die Vermutung überprüfen, indem wir einen Hypothesentest durchführen.

Wir testen $H_0: \pi_X \leq \pi_Y$ oder auch $H_0: \pi_X - \pi_Y \leq 0$ gegen $H_1: \pi_X - \pi_Y > 0$ Dabei sind π_X und π_Y die Sterblichkeitsraten vor und nach der Chlorwaschung.

$$\hat{\delta} = \hat{\pi}_X - \hat{\pi}_Y \tag{23}$$

$$=\frac{x}{n_x} - \frac{y}{n_y} \tag{24}$$

$$=\frac{1989}{20.042} - \frac{1883}{56.104} \tag{25}$$

$$= 0.0992 - 0.0336 \tag{26}$$

$$=0.0656$$
 (27)

$$\delta_{+} = z_{\alpha} \cdot \sqrt{\frac{\hat{\pi}_{X} \cdot (1 - \hat{\pi}_{X})}{n_{x}} + \frac{\hat{\pi}_{Y} \cdot (1 - \hat{\pi}_{Y})}{n_{y}}}$$

$$(28)$$

Für $\alpha = 0.01$ ergibt sich $z_{\alpha} = 2.33$.

$$\delta_{+} = 2.33 \cdot \sqrt{\frac{0.0992 \cdot (1 - 0.0992)}{20042} + \frac{0.0336 \cdot (1 - 0.0336)}{56104}}$$
 (29)

$$\delta_{+} = 0.0052 \tag{30}$$

Da $\hat{\delta} = 0.0656 > \delta_+ = 0.0052$ können wir die Nullhypothese H_0 ablehnen und die Vermutung von Semmelweis annehmen.

Dokumentation Seite 16 von 20

3.6.4 Berechnung mit bayesianischer Statistik

Bei der bayesianischen Statistik können wir Priors definieren und die Wahrscheinlichkeit der Sterblichkeitsraten unter Berücksichtigung von Vorwissen berechnen. Es werden die Wahrscheinlichkeiten für $\Pi_X > \Pi_Y$ und $\Pi_X \leq \Pi_Y$ ermittelt.

Vorwissen für Sterblichkeitsrate mit und ohne Chlorwaschung:

- wahrscheinlichste Sterblichkeitsrate: 0.021
- halb so wahrscheinlich: 0.030

Parameter a' und b' für die Beta-Verteilung:

$$m = 0.021$$
 (31)

$$v = 0.030$$
 (32)

$$\frac{f(v)}{f(m)} = 0.5\tag{33}$$

$$a' = \frac{\ln \frac{f(v)}{f(m)}}{\ln \frac{v}{m} + \frac{1-m}{m} \ln \frac{1-v}{1-m}} + 1$$
(34)

$$a' = \frac{\ln 0.5}{\ln \frac{0.030}{0.021} + \frac{1 - 0.021}{0.021} \ln \frac{1 - 0.030}{1 - 0.021}} + 1 \tag{35}$$

$$a' = 10 \tag{36}$$

$$b' = \frac{\ln \frac{f(v)}{f(m)}}{\ln \frac{v}{m} + \frac{1-m}{m} \ln \frac{1-v}{1-m}} \cdot \frac{1-m}{m} + 1$$
 (37)

$$b' = 9 \cdot \frac{1 - 0.021}{0.021} + 1 \tag{38}$$

$$b' = 438 \tag{39}$$

Parameter der Posterioriverteilungen von Π_X und Π_Y :

$$a_X = a' + x = 10 + 1989 = 1999$$
 (40)

$$b_X = b' + n_x - x = 438 + 20042 - 1989 = 18491 \tag{41}$$

$$a_Y = a' + y = 10 + 1883 = 1893$$
 (42)

$$b_Y = b' + n_y - y = 438 + 56104 - 1883 = 54659 \tag{43}$$

Die Posteriors für Π_X und Π_Y sind Beta-verteilte Zufallsvariablen:

$$\Pi_X \sim Beta(1999, 18491)$$
 (44)

$$\Pi_Y \sim Beta(1893, 54659)$$
 (45)

Dokumentation Seite 17 von 20

3.6.5 Vergleich der Ergebnisse

Der Vergleich der klassischen Statistik mit der bayesianischen Statistik liefert uns unterschiedliche Perspektiven:

- Mit der klassischen Statistik haben wir die Sterblichkeitsraten für beide Perioden direkt berechnet und den Unterschied gemessen.
- Die bayesianische Statistik berücksichtigt zusätzlich Vorwissen und liefert eine schätzungsweise Wahrscheinlichkeitsverteilung der Sterblichkeitsraten, was eine flexiblere Modellierung und Unsicherheitsabschätzung ermöglicht.

Dokumentation Seite 18 von 20

Dokumentation Seite 19 von 20

5 Literaturverzeichnis

References

[1] Karl-Rudolf Koch. Einführung in die Bayes-Statistik. Berlin [u.a.]: Springer, 2000. ISBN: 3540666702. URL: https://katalog.slub-dresden.de/id/0-306244284.

- [2] Dirk P. Kroese, Thomas Taimre, and Zdravko I. Botev. *Handbook of Monte Carlo Methods*. Wiley Series in Probability and Statistics. Hoboken, NJ: Wiley, 2011. ISBN: 9780470177938. URL: https://www.wiley.com/en-us/Handbook+of+Monte+Carlo+Methods-p-9780470177938.
- [3] Thomas Müller-Gronbach, Erich Novak, and Klaus Ritter. *Monte Carlo-Algorithmen*. Berlin: Springer, 2012. ISBN: 9783540891406. URL: https://katalog.slub-dresden.de/id/0-618339728.
- [4] Wolfgang Tschirk. Statistik: Klassisch oder Bayes zwei Wege im Vergleich. Berlin , , © 2014. ISBN: 3642543847. URL: https://katalog.slub-dresden.de/id/0-160866449X.

Dokumentation Seite 20 von 20

