Санкт-Петербургский политехнический университет Петра Великого Физико-механический институт

Высшая школа прикладной математики и вычислительной физики

Математическая статистика

Отчёт по лабораторной работе №1-2

Работу выполнил: П. П. Филиппов Группа: 5030102/10101 Преподаватель: А. Н. Баженов

 ${
m Caнкт-}\Pi{
m erep}{
m fypr}$ 2024

Содержание

1.	Постановка задачи	3
2.	Теоретическая информация	3
	2.1. Распределения	3
	2.1.1. Определение	4
	2.2. Характеристики положения	4
	2.2.1. Характеристики рассеяния	
3.	Изображения	5
4.	Характеристики положения и рассеяния	20

1. Постановка задачи

Даны 5 распределений:

• Нормальное распределение:

N(x, 0, 1)

• Распрделение Коши:

C(x, 0, 1)

• Распределение Стьюдента:

t(x, 0, 3)

• Распределение Пуассона:

P(k, 10)

• Нормальное распрделение:

$$U(x, -\sqrt{3}, \sqrt{3})$$

- 1. Необходимо сгенерировать выборки размером 10,50 и 1000 элементов. Построить на одном рисунке гистограмму и график плостности распределения.
- 2. Сгенерировать выборки размером 10, 100 и 1000 элементов. Для каждой вычислить следующие характеристики положения данных:

$$\bar{x}$$
, $medx$, $z_{\rm R}$, $z_{\rm O}$, $z_{\rm tr}$.

Повторить такие вычисления 1000 раз для каждой выборки и найти среднее характеристик положения и их квадратов:

$$E(z) = \bar{z}$$

Вычислить оценку дисперсии по формуле:

$$D(z) = \bar{z^2} - \bar{z}^2$$

Представить полученные данные в виде таблицы

2. Теоретическая информация

2.1. Распределения

• Нормальное распределение

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

• Распределение Коши

$$C(x,0,1) = \frac{1}{\pi} \frac{1}{x^2 + 1}$$

• Распределение Стьюдента

$$t(x,0,3) = \frac{Y_0}{\sqrt{\sum_{i=0}^{3} Y_i^2}}, Y_i \sim N(0,1)$$

• Распределение Пуассона

$$P(k,10) = \frac{10^k}{k!}e^{-10}$$

• Нормальное распределение

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}}, |x| \le \sqrt{3} \\ 0, |x| > \sqrt{3} \end{cases}$$

2.1.1. Определение

Гистогра́мма в математической статистике — это один из графических методов исследования рядов распределения значений случайной величины.

2.2. Характеристики положения

• Выборочное среднее

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

• Выборочная медиана

$$medx = \begin{cases} x_{(l+1)}, n = 2l + 1\\ \frac{x_{(l)} + x_{(l+1)}}{2}, n = 2l \end{cases}$$

• Полусумма экстремальных выборочных элементов

$$z_{\rm R} = \frac{x_{(1)} + x_{(n)}}{2}$$

 \bullet Полусумма квартилей Выборочная квартиль $\mathbf{z}_{\mathbf{p}}$ порядка p определяется формулой

$$z_{p} = \begin{cases} x_{([np]+1)}, np \\ x_{(np)}, np \end{cases}$$

полусумма квартилей

$$z_{\mathbf{Q}} = \frac{z_{\frac{1}{4}} + z_{\frac{3}{4}}}{2}$$

• Усеченное среднее

$$z_{\rm tr} = \frac{1}{n - 2r} \sum_{i=r+1}^{n-r} x_i(i), r \approx \frac{n}{4}$$

Рисунок 3.1. Нормальное распределение с мощностью выборки 20

2.2.1. Характеристики рассеяния

Выборочная дисперсия

$$D = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

3. Изображения

Гистограммы и графики плотности распределения

Рисунок 3.2. Нормальное распределение с мощностью выборки 50

Рисунок 3.3. Нормальное распределение с мощностью выборки 1000

Рисунок 3.4. Распределение Коши с мощностью выборки 20

Рисунок 3.5. Распределение Коши с мощностью выборки 50

Рисунок 3.6. Распределение Коши с мощностью выборки 1000

Рисунок 3.7. Распределение Стьюдента с мощностью выборки 20 $\,$

Рисунок 3.8. Распределение Стьюдента с мощностью выборки 50

Рисунок 3.9. Распределение Стьюдента с мощностью выборки 1000

Рисунок 3.10. Распределение Пуассона с мощностью выборки 20

Рисунок 3.11. Распределение Пуассона с мощностью выборки 50

Рисунок 3.12. Распределение Пуассона с мощностью выборки 1000

Рисунок 3.13. Равномерное распределение с мощностью выборки 20

Рисунок 3.14. Равномерное распределение с мощностью выборки 50

Рисунок 3.15. Равномерное распределение с мощностью выборки 1000

4. Характеристики положения и рассеяния

	X	medx	z_{R}	z_{Q}	\mathbf{z}_{tr}
n = 10					
E(z)	-0.003	-0.009	0.004	0.311	0.268
D(z)	0.101	0.138	0.182	0.126	0.117
n = 100					
E(z)	0.003	0.006	-0.010	0.015	0.029
D(z)	0.010	0.017	0.092	0.012	0.012
n = 1000					
E(z)	0.000505	0.000861	-0.005829	0.001809	0.003526
D(z)	0.001001	0.001546	0.061285	0.001240	0.001208

Таблица характеристик для нормального распределения

Таблица 4.1

	X	medx	$z_{ m R}$	z_{Q}	\mathbf{z}_{tr}	
n = 10						
E(z)	0.263	0.015	1.235	1.152	0.708	
D(z)	326.419	0.309	7957.822	7.738	1.571	
n = 100						
E(z)	-0.625	0.005	-31.900	0.034	0.044	
D(z)	315.737	0.026	769006.729	0.053	0.028	
n = 1000						
E(z)	-0.975851	-0.001068	-471.841774	0.001362	0.003156	
D(z)	577.154552	0.002354	142342868.075401	0.004851	$0.002458_{\Pi H II}$	a 4

Таблица характеристик для распределения Коши

	X	medx	\mathbf{z}_{R}	$z_{ m Q}$	\mathbf{z}_{tr}
n = 10					
E(z)	-0.003	-0.009	0.004	0.311	0.268
D(z)	0.101	0.138	0.182	0.126	0.117
n = 100					
E(z)	0.003	0.006	-0.010	0.015	0.029
D(z)	0.010	0.017	0.092	0.012	0.012
n = 1000					
E(z)	0.000505	0.000861	-0.005829	0.001809	0.003526
D(z)	0.001001	0.001546	0.061285	0.001240	0.001208

Таблица характеристик для распределения Стьюдента

	X	medx	z_{R}	z_{Q}	$z_{ m tr}$
n = 10					
E(z)	10.020	9.886	10.325	10.951	10.793
D(z)	1.059	1.538	1.915	1.411	1.316
n = 100					
E(z)	9.993	9.840	10.911	9.970	9.942
D(z)	0.098	0.216	0.869	0.163	0.125
n = 1000					
E(z)	10.006251	9.998113	11.666532	9.994541	9.869122
D(z)	0.010175	0.001996	0.630028	0.004223	0.011241

Таблица характеристик для распределения Пуассона

	X	medx	z_{R}	z_{Q}	\mathbf{z}_{tr}
n = 10					
E(z)	0.016	0.023	-0.001	0.330	0.331
D(z)	0.102	0.239	0.044	0.131	0.158
n = 100					
E(z)	0.004	0.010	-0.001	0.023	0.040
D(z)	0.010	0.029	0.001	0.014	0.019
n = 1000					
E(z)	0.002147	0.004821	3e-06	0.004058	0.006161
D(z)	0.001008	0.002881	5e-06	0.001483	0.001964

Таблица 4.5

Таблица характеристик для равномерного распренделения