Chapter 1 - Introduction

Kristian Wichmann

August 12, 2017

1 Exercise 1.1

Suppose we are given a training set, of N observation points:

$$\mathbf{x} = (x_1, \dots, x_n)^t, \quad \mathbf{t} = (t_1, \dots, t_n)^t \tag{1.1}$$

We think of the t's as being dependent on the x'es: t = t(x). We wish to devise a model through polynomial curve fitting of order M. I.e. our model is of the form:

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^M w_j x^j$$
 (1.2)

Here the parameters $\mathbf{w} = (w_0, \dots, w_M)^t$ are known as the weights. We wish to find the model which minimizes the following error function:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} [y(x_n, \mathbf{w}) - t_n)]^2$$
 (1.3)

1.1 Solution

To minimize the error function, we differentiate with respect to the i'th weight, using the chain rule:

$$\frac{\partial E}{\partial w_i} = \frac{1}{2} \sum_{n=1}^{N} \frac{\partial}{\partial w_i} \left[y(x_n, \mathbf{w}) - t_n \right]^2 = \sum_{n=1}^{N} \left[y(x_n, \mathbf{w}) - t_n \right] \frac{\partial y(x_n, \mathbf{w})}{\partial w_i}$$
(1.4)

The last derivative is:

$$\frac{\partial y(x_n, \mathbf{w})}{\partial w_i} = \frac{\partial}{\partial w_i} \sum_{j=0}^M w_j x_n^j = \sum_{j=0}^M \delta_{ij} x_n^j = x_n^i$$
(1.5)

Now equation 1.4 becomes:

$$\frac{\partial E}{\partial w_i} = \sum_{n=1}^{N} \left[\sum_{j=0}^{M} w_j x_n^j - t_n \right] x_n^i = \sum_{n=1}^{N} \left[\sum_{j=0}^{M} w_j x_n^{i+j} - t_n x_n^i \right]$$
(1.6)

Now define:

$$A_{ij} = \sum_{n=1}^{N} x_n^{i+j} \quad T_i = \sum_{n=1}^{N} t_n x_n^i$$
 (1.7)

Then we can rewrite:

$$\frac{\partial E}{\partial w_i} = \sum_{j=0}^{M} A_{ij} w_j - T_i \tag{1.8}$$

Setting this derivative equal to zero, we get:

$$\sum_{j=0}^{M} A_{ij} w_j = T_i \tag{1.9}$$

2 Exercise 1.2

Consider the same problem as last exercise, but with an additional regularization term added to the error function:

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left[y(x_n, \mathbf{w}) - t_n \right]^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$
(2.1)

We wish to find the equations the weights must satisfy in this case.

2.1 Solution

The derivative of the error function is modified:

$$\frac{\partial \tilde{E}}{\partial w_i} = \frac{\partial E}{\partial w_i} + \frac{\partial}{\partial w_i} \left[\frac{\lambda}{2} ||\mathbf{w}||^2 \right]$$
 (2.2)

The last correction term is:

$$\frac{\lambda}{2} \frac{\partial}{\partial w_i} (w_0^2 + w_1^2 + \dots + w_M^2) = \lambda w_i \tag{2.3}$$

According to equation 1.8 we have:

$$\frac{\partial \tilde{E}}{\partial w_i} = \sum_{j=0}^{M} A_{ij} w_j - T_i + w_i \tag{2.4}$$

Table 1: Content of the boxes (Exercise 1.3)

	r	b	g
Apples	3	1	3
Oranges	4	1	3
Limes	3	0	4

Setting this equal to zero we get:

$$\sum_{j=0}^{M} A_{ij} w_j + \lambda w_i = T_i \tag{2.5}$$

We may absorb the λ term into the A matrix by the following modification:

$$\tilde{A}_{ij} = A_{ij} + \lambda \delta_{ij} \tag{2.6}$$

Then we get:

$$\sum_{j=0}^{M} \tilde{A}_{ij} w_j = T_i \tag{2.7}$$

3 Exercise 1.3

We have three colored boxes, r (red), b (blue), and g (green). The contents of the three boxes are shown in table 1. A box is chosen at random according to the following probability distribution:

$$p(r) = \frac{1}{5}, \quad p(b) = \frac{1}{5}, \quad p(g) = \frac{3}{5}$$
 (3.1)

Next, a random piece of fruit (equal chance for each piece) is chosen from the box.

- 1. What is the probability of the fruit being an apple?
- 2. Given that the selected fruit is an orange, what is that probability that the green box was picked?

3.1 Solution 1

The probability of getting an apple (A) is:

$$p(A) = p(A|r)p(r) + p(A|b)p(b) + p(A|g)p(g)$$
(3.2)

Inserting:

$$p(A) = \frac{3}{10} \cdot \frac{1}{5} + \frac{1}{2} \cdot \frac{1}{5} + \frac{3}{10} \cdot \frac{3}{5} = \frac{3}{50} + \frac{1}{10} + \frac{9}{50} = \frac{3+5+9}{50} = \frac{17}{50} = 34\%$$
 (3.3)

3.2 Solution 2

We wish to find p(g|O), where 'O' is short for orange. For this we need Bayes' rule:

$$p(g|O) = \frac{p(O|g)p(g)}{p(O)}$$
(3.4)

The denominator can be found similarly to problem 1:

$$p(O) = p(O|r)p(r) + p(O|b)p(b) + p(O|g)p(g)$$
(3.5)

Inserting:

$$p(O) = \frac{4}{10} \cdot \frac{1}{5} + \frac{1}{2} \cdot \frac{1}{5} + \frac{3}{10} \cdot \frac{3}{5} = \frac{4+5+9}{50} = \frac{18}{50} = 36\%$$
 (3.6)

Now we have:

$$p(g|O) = \frac{3/10 \cdot 3/5}{18/50} = \frac{9 \cdot 50}{50 \cdot 18} = \frac{9}{18} = \frac{1}{2}$$
 (3.7)

4 Exercise 1.4

Let $p_x(x)$ be a probability density function for a continuous variable x. Consider a variable transformation x = g(y). The pdf for the transformed variable is then:

$$p_y(y) = p_x(x) \left| \frac{dx}{dy} \right| = p_x(g(y))|g'(y)| \tag{4.1}$$

Show that in general, a non-linear transformation will change the location of a maximum of the pdf, while a linear one will not.

4.1 Solution

If p_x has a maximum at $x = \hat{x}$ then we must have:

$$\frac{dp_x(\hat{x})}{dx} = 0 (4.2)$$

Now, consider the derivative of p_y :

$$\frac{dp_y(y)}{dy} = \frac{dp_x}{dx}\frac{dg}{dy}|g'(y)| + p_x(g(y))\operatorname{sgn}(g'(y))g''(y)$$
(4.3)

If $y = g(\hat{x})$, the first term is zero, but the second need not be. Therefore, the location of a maximum will generally move. However, for a linear transformation the second derivative is zero, and so the second term becomes zero as well.

5 Exercise 1.5

The variance of a continuous random variable f(x) is defined as:

$$var[f(x)] = \mathbb{E}[(f(x) - \mathbb{E}[f(x)])^2]$$
(5.1)

Show that this may be written:

$$var[f(x)] = \mathbb{E}[f(x)^2] - \mathbb{E}[f(x)]^2$$
(5.2)

5.1 Solution

Expand the square inside the expectation value:

$$(f(x) - \mathbb{E}[f(x)])^2 = f(x)^2 + \mathbb{E}[f(x)]^2 - 2f(x)\mathbb{E}[f(x)]$$
 (5.3)

The expectation values is:

$$\mathbb{E}[f(x)^{2}] + \mathbb{E}[f(x)]^{2} - 2\mathbb{E}[f(x)] \cdot \mathbb{E}[f(x)] = \mathbb{E}[f(x)^{2}] - \mathbb{E}[f(x)]^{2}$$
 (5.4)

6 Exercise 1.6

Show that two independent random variable x and y have zero covariance.

6.1 Solution

The covariance can be written:

$$\int \int (x - \mathbb{E}[x])(y - \mathbb{E}[y])p(x, y)dx dy$$
 (6.1)

Here p(x, y) is the joint distribution function of x and y. But since these are independent p(x, y) = p(x)p(y). So this integral splits into two parts:

$$\int \int (x - \mathbb{E}[x])(y - \mathbb{E}[y])p(x)p(y)dx dy = \int (x - \mathbb{E}[x])dx \cdot \int (y - \mathbb{E}[y])dy$$
 (6.2)

Each of these factors is zero, and therefore so is the covariance.

7 Exercise 1.7

Show that:

$$I = \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^2}x^2\right) dx = \sqrt{2\pi\sigma^2}$$
 (7.1)

7.1 Solution

Consider the square of I:

$$I^{2} = \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^{2}}x^{2}\right) dx \cdot \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^{2}}y^{2}\right) dy$$
 (7.2)

Rearrange the order:

$$I^{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^{2}}x^{2}\right) \exp\left(-\frac{1}{2\sigma^{2}}y^{2}\right) dx dy =$$
 (7.3)

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^2}(x^2 + y^2)\right) dx dy \tag{7.4}$$

The may be regarded as an integral over the plane. We may now shift to polar coordinates, noting that $x^2 + y^2 = r^2$ and $dx dy = r dr d\theta$:

$$I^{2} = \int_{0}^{2\pi} \int_{0}^{\infty} \exp\left(-\frac{r^{2}}{2\sigma^{2}}\right) r \ dr \ d\theta = 2\pi \int_{0}^{\infty} \exp\left(-\frac{r^{2}}{2\sigma^{2}}\right) r \ dr \tag{7.5}$$

For the r-integral, substitute $u=r^2$. Then du/dr=2r, and so $dr=\frac{1}{2r}du$:

$$\int_0^\infty \exp\left(-\frac{r^2}{2\sigma^2}\right) r \, dr = \int_0^\infty \exp\left(-\frac{u}{2\sigma^2}\right) r \frac{1}{2r} du = \frac{1}{2} \int_0^\infty \exp\left(-\frac{u}{2\sigma^2}\right) du$$
(7.6)

This is elemental to integrate:

$$\frac{1}{2} \left[-2\sigma^2 \exp\left(-\frac{u}{2\sigma^2} \right) \right]_0^\infty = \sigma^2 \tag{7.7}$$

Hence $I^2 = 2\pi\sigma^2$, and therefore $I = \sqrt{2\pi\sigma^2}$.