Universidad Mayor de San Andrés Facultad de Ciencias Puras y Naturales Carrera de Informática DIV-2-2020 UMSA

Grover Osvaldo Rodriguez Apaza

26 de abril de 2022

1. Juego de Números

link

1.1. Descripción de la solución

Cada vez que se eliminaba dos monedas de la lista debia cumplir la siguiente ecuación:

$$f(A_i, A_j) = A_i * A_j - (A_i - 1) - (A_j - 1)$$

Para poder maximizar el ultimo elemento de una lista, se escribira la ecuacion de la siguiente manera.

$$f(A_{i}, A_{j}) = A_{i} * A_{j} - (A_{i} - 1) - (A_{j} - 1)$$

$$f(A_{i}, A_{j}) = A_{i} * A_{j} - A_{i} + 1 - A_{j} + 1$$

$$f(A_{i}, A_{j}) = A_{i} * A_{j} - A_{i} - A_{j} + 1 + 1$$

$$f(A_{i}, A_{j}) = A_{i}(A_{j} - 1) - (A_{j} - 1) + 1$$

$$f(A_{i}, A_{j}) = (A_{j} - 1)(A_{i} - 1) + 1$$

$$(1)$$

Finalmente si aplicamos la nueva expresion de la ecuación tendremos lo siguiente.

Sea la lista $A = a_1, a_2, a_3, a_4, \dots, a_{n-2}, a_{n-1}, a_n$ con N elementos.

Cantidad de operaciones: 1

Sacando los elementos a_1, a_3 y aplicando la operación respectiva, los nuevos elementos de la lista son:

$$A = (a_1 - 1)(a_3 - 1) + 1, a_2, a_4, \dots, a_{n-2}, a_{n-1}, a_n$$

Cantidad de operaciones: 2

Sacando los elementos a_2 , a_4 y aplicando la operación respectiva, los nuevos elementos de la lista son:

$$A = (a_1 - 1)(a_3 - 1) + 1, (a_2 - 1)(a_4 - 1) + 1, \dots, a_{n-2}, a_{n-1}, a_n$$

Cantidad de operaciones: 3

Sacando los dos primeros elementos de la lista anterior y apicando la operacion se tiene:

$$A = (a_1 - 1)(a_3 - 1)(a_2 - 1)(a_4 - 1) + 1, \dots, a_{n-2}, a_{n-1}, a_n$$

:

Cantidad de operaciones: n-3

Sacando los dos primeros elementos de la lista anterior y aplicando la operación se tiene:

$$A = (a_1 - 1)(a_3 - 1)(a_2 - 1)(a_4 - 1) * \cdots * (a_{n-2} - 1) + 1, a_{n-1}, a_n$$

Cantidad de operaciones: n-2

Sacando los dos primeros elementos de la lista anterior y aplicando la operación se tiene:

$$A = (a_1 - 1)(a_3 - 1)(a_2 - 1)(a_4 - 1) * \cdots * (a_{n-2} - 1)(a_{n-1} - 1) + 1, a_n$$

Realizado N-1 operaciones la lista tendrá solo una moneda y la resultante sera:

$$A = (a_1 - 1)(a_2 - 1)(a_3 - 1)(a_4 - 1) * \cdots * (a_{n-2} - 1)(a_{n-1} - 1)(a_n - 1) + 1$$

Finalmente se puede apreciar que la función aplicada a dos elementos de la lista es invariante a la transformación.

1.2. Codificación

Una moneda de la lista A, esta $1 \le a_i \le 10^{15}$ y como puede haber hasta 10^6 monedas, al momento de multiplicar dos elementos para evitar el desbordamiento use __int128 o multiplicación rapida.

Código utilizando Multiplicación rápida

Código

Código utilizando __int128

Código

1.3. Multiplicación Rápida

1.4. Explicación

Para multiplicar 2 números ans = a * b, se puede expresar en términos de sumas de la siguiente manera:

$$ans = \underbrace{a + a + a + \dots + a}_{b-veces}$$

el algoritmo trivial que revuelve dicho problema es el siguiente: "'c++ ll ans = 0; for(int $i=1; i \neq b; i++$) ans += a; "' pero necesitamos encontrar una manera mas eficiente de multiplicar dos números. Podemos expresar la ecuación anterior de la siguiente manera:

$$ans = \underbrace{a + a + a + \cdots + a}_{\frac{b}{2} - veces} + \underbrace{a + a + a + \cdots + a}_{\frac{b}{2} - veces}$$

se puede calcular $\frac{b}{2}$ y multiplicarle por 2 para obtener ans.

$$b = \frac{b}{2} + \frac{b}{2} = 2 * \frac{b}{2}$$

similarmente podemos calcular $\frac{b}{2}$ de la forma:

$$\frac{b}{2} = \frac{b}{4} + \frac{b}{4} = 2 * \frac{b}{4}$$

de igual manera se puede calcular $\frac{b}{4}$ de la forma:

$$\frac{b}{4} = \frac{b}{8} + \frac{b}{8} = 2 * \frac{b}{8}$$

:

El valor $\frac{b}{2^{k-1}}$ se puede calcular:

$$\frac{b}{2^{k-1}} = \frac{b}{2^k} + \frac{b}{2^k} = 2 * \frac{b}{2^k}$$

El valor $\frac{b}{2^k}$ se puede calcular:

$$\frac{b}{2^k} = \frac{b}{2^{k+1}} + \frac{b}{2^{k+1}} = 2 * \frac{b}{2^{k+1}}$$

cuando dividimos entre $\frac{b}{2}$, se tiene casos:

- Caso 1: b es par Cuando se divide un número par entre 2, no existe residuo.
- Caso 2: b es impar Cuando se divide un número impar entre 2, el residuo siempre es 1, entonces estariamos perdiendo un valor de a, para evitar ese caso, cada vez que b es impar, se suma el valor de a a la respuesta.
- Cuando b = 0, el resultado siempre sera 0, ya que a * 0 = 0.

Finalmente definamos la función recursiva fast(a,b), donde el resultado de dicha función es el resultado de multiplicar a*b.

$$fast(a,b) = \begin{cases} b = 0 & 0 & (Caso\ base) \\ b\ es\ impar & 2*fast(a,\frac{b}{2}) + a \\ b\ es\ par & 2*fast(a,\frac{b}{2}) \end{cases}$$

1.5. Codificación Recursiva

```
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll fast(ll a, ll b){
   if(b == 0)
      return 0;
return 2 * fast(a, b / 2) + (b & 1 ? a : 0);
}
```

1.6. Codificación Iterativa

```
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
```

Generalmentte estos resultados son muy grandes para almacenarlos, por tal motivo se hallar el valor $\% \mod$

1.7. Codificación Recursiva

```
#include <bits/stdc++.h>
using namespace std;
typedef long long l1;
const l1 mod = 1e9 + 7;
l1 fast(l1 a, l1 b){
    if(b == 0)
        return 0;
    if(b % 2 == 0)
        return (2 % mod * fast(a, b / 2) % mod) % mod;
    return ((2 % mod * fast(a, b / 2) % mod) % mod;
}
```

1.8. Codificación Iterativa

```
| #include <bits/stdc++.h>
2 using namespace std;
3 typedef long long 11;
4 const 11 mod = 1e9 + 7;
5 | 11 fast1(| la, | ll | b){
      11 \text{ ans} = 0;
      while(b > 0){
           if(b & 1)
                ans = (ans + a) \% mod;
           b = b / 2;
           a = (a + a) \% mod;
11
      }
12
13
      return ans;
14 }
```

Fury

1.9. Analisis de complejidad.

La complejidad va a depender del parametro b, de la función.

- lacktriangle Cuando b es par: b se divide por 2.
- cuando b es impar: b se divide por 2.

Mientras b sea mayor o igual 1, en cada paso de la función recursiva se divide por 2.

De esa manera podemos expresar la siguiente ecuación.

$$\frac{b}{2^k} = 1$$

donde k es la cantidad de veces que b se dividira por 2. Aplicando logaritmos a ambos lados se obtiene:

$$k = log_2b$$

Complejidad: $O(log \ b)$