chap4_exercise_labs

```
library(ISLR2)
  library(ggplot2)
  library(MASS)
Attaching package: 'MASS'
The following object is masked from 'package:ISLR2':
    Boston
  library(e1071)
  library(class)
  library(dplyr)
Attaching package: 'dplyr'
The following object is masked from 'package:MASS':
    select
The following objects are masked from 'package:stats':
    filter, lag
```

The following objects are masked from 'package:base': intersect, setdiff, setequal, union

######labs

head(Smarket)

```
Lag2 Lag3
  Year
        Lag1
                           Lag4
                                  Lag5 Volume Today Direction
       0.381 -0.192 -2.624 -1.055 5.010 1.1913 0.959
1 2001
2 2001
       0.959  0.381  -0.192  -2.624  -1.055  1.2965  1.032
                                                             Uр
3 2001 1.032 0.959 0.381 -0.192 -2.624 1.4112 -0.623
                                                          Down
4 2001 -0.623 1.032 0.959 0.381 -0.192 1.2760 0.614
                                                             Uр
5 2001
       0.614 -0.623 1.032 0.959 0.381 1.2057 0.213
                                                             Uр
6 2001
       0.213  0.614  -0.623  1.032  0.959  1.3491  1.392
                                                             Uр
```

names(Smarket)

- [1] "Year" "Lag1" "Lag2" "Lag3" "Lag4" "Lag5"
- [7] "Volume" "Today" "Direction"

summary(Smarket)

Year	Lag1	Lag2	Lag3
Min. :2001	Min. $:-4.922000$	Min. :-4.922000	Min. :-4.922000
1st Qu.:2002	1st Qu.:-0.639500	1st Qu.:-0.639500	1st Qu.:-0.640000
Median:2003	Median : 0.039000	Median : 0.039000	Median : 0.038500
Mean :2003	Mean : 0.003834	Mean : 0.003919	Mean : 0.001716
3rd Qu.:2004	3rd Qu.: 0.596750	3rd Qu.: 0.596750	3rd Qu.: 0.596750
Max. :2005	Max. : 5.733000	Max. : 5.733000	Max. : 5.733000
Lag4	Lag5	Volume	Today
Min. :-4.922	000 Min. :-4.922	00 Min. :0.3561	Min. :-4.922000
1st Qu.:-0.640	000 1st Qu.:-0.640	00 1st Qu.:1.2574	1st Qu.:-0.639500
Median : 0.038	500 Median: 0.038	50 Median :1.4229	Median : 0.038500
Mean : 0.001	636 Mean : 0.005	61 Mean :1.4783	Mean : 0.003138
3rd Qu.: 0.596	750 3rd Qu.: 0.597	00 3rd Qu.:1.6417	3rd Qu.: 0.596750
Max. : 5.733	000 Max. : 5.733	00 Max. :3.1525	Max. : 5.733000
Direction			
Down:602			

cor(Smarket[, -9])

```
Year
                          Lag1
                                       Lag2
                                                    Lag3
                                                                 Lag4
       1.00000000 0.029699649 0.030596422 0.033194581 0.035688718
Year
       0.02969965 1.000000000 -0.026294328 -0.010803402 -0.002985911
Lag1
       0.03059642 -0.026294328 1.000000000 -0.025896670 -0.010853533
Lag2
       0.03319458 -0.010803402 -0.025896670 1.000000000 -0.024051036
Lag3
       0.03568872 \ -0.002985911 \ -0.010853533 \ -0.024051036 \ \ 1.000000000
Lag4
       0.02978799 - 0.005674606 - 0.003557949 - 0.018808338 - 0.027083641
Lag5
Volume 0.53900647 0.040909908 -0.043383215 -0.041823686 -0.048414246
Today 0.03009523 -0.026155045 -0.010250033 -0.002447647 -0.006899527
                         Volume
               Lag5
                                       Today
        0.029787995 0.53900647 0.030095229
Year
Lag1
       -0.005674606 0.04090991 -0.026155045
       -0.003557949 -0.04338321 -0.010250033
Lag2
Lag3
       -0.018808338 -0.04182369 -0.002447647
Lag4
       -0.027083641 -0.04841425 -0.006899527
        1.000000000 -0.02200231 -0.034860083
Lag5
Volume -0.022002315 1.00000000 0.014591823
Today -0.034860083 0.01459182 1.000000000
```

attach(Smarket)
plot(Volume)

$\# {\it Logistic Regression}$

```
glm.fits <- glm(
   Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume,
   data = Smarket,
   family = binomial
)
summary(glm.fits)</pre>
```

Call:

```
glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 +
Volume, family = binomial, data = Smarket)
```

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.126000	0.240736	-0.523	0.601
Lag1	-0.073074	0.050167	-1.457	0.145
Lag2	-0.042301	0.050086	-0.845	0.398
Lag3	0.011085	0.049939	0.222	0.824
Lag4	0.009359	0.049974	0.187	0.851
Lag5	0.010313	0.049511	0.208	0.835

Volume 0.135441 0.158360 0.855 0.392

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1731.2 on 1249 degrees of freedom Residual deviance: 1727.6 on 1243 degrees of freedom

AIC: 1741.6

Volume 0.3924004

Number of Fisher Scoring iterations: 3

smallest p-value here is associated with Lag1

```
coef(glm.fits)
 (Intercept)
                     Lag1
                                   Lag2
                                                Lag3
                                                              Lag4
                                                                           Lag5
-0.126000257 \ -0.073073746 \ -0.042301344 \ \ 0.011085108 \ \ 0.009358938 \ \ 0.010313068
      Volume
 0.135440659
  summary(glm.fits)$coef
                Estimate Std. Error
                                        z value Pr(>|z|)
(Intercept) -0.126000257 0.24073574 -0.5233966 0.6006983
Lag1
            -0.073073746 0.05016739 -1.4565986 0.1452272
Lag2
            -0.042301344 0.05008605 -0.8445733 0.3983491
Lag3
             0.011085108 0.04993854 0.2219750 0.8243333
Lag4
             0.009358938 0.04997413 0.1872757 0.8514445
Lag5
             0.010313068 0.04951146 0.2082966 0.8349974
             0.135440659 0.15835970 0.8552723 0.3924004
Volume
  summary(glm.fits)$coef[, 4] ###col 5 the p-value
(Intercept)
                   Lag1
                                                         Lag4
                                Lag2
                                            Lag3
                                                                     Lag5
  0.6006983
              0.1452272
                           0.3983491
                                       0.8243333
                                                   0.8514445
                                                                0.8349974
```

```
glm.probs <- predict(glm.fits, type = "response")</pre>
  glm.probs[1:10]
0.5070841 0.4814679 0.4811388 0.5152224 0.5107812 0.5069565 0.4926509 0.5092292
0.5176135 0.4888378
  contrasts(Direction)
     Uр
Down 0
Uр
      1
  glm.pred <- rep("Down", 1250)</pre>
  glm.pred[glm.probs > .5] = "Up"
  table(glm.pred, Direction)
        Direction
glm.pred Down Up
    Down 145 141
    Uр
          457 507
  mean(glm.pred == Direction)
[1] 0.5216
  train \leftarrow (Year < 2005)
  Smarket.2005 <- Smarket[!train, ]#test df</pre>
  dim(Smarket.2005)
[1] 252
          9
```

```
Direction.2005 <- Direction[!train]</pre>
  glm.fits <- glm(</pre>
    Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume,
    data = Smarket, family = binomial, subset = train
  )
#use the test_x to predict
  glm.probs <- predict(glm.fits, Smarket.2005,</pre>
                         type = "response")
  glm.pred <- rep("Down", 252)</pre>
  glm.pred[glm.probs > .5] <- "Up"</pre>
  table(glm.pred, Direction.2005) #Direction.2005 truth/test y
        Direction.2005
glm.pred Down Up
    Down
           77 97
           34 44
    Uр
  mean(glm.pred == Direction.2005)
[1] 0.4801587
#refit use Lag1 and Lag2
  glm.fits <- glm(</pre>
    Direction ~ Lag1 + Lag2 ,
    data = Smarket, family = binomial, subset = train
  glm.probs <- predict(glm.fits, Smarket.2005,</pre>
                         type = "response")
  glm.pred <- rep("Down", 252)</pre>
  glm.pred[glm.probs > .5] <- "Up"</pre>
  table(glm.pred, Direction.2005)
```

```
Direction.2005
glm.pred Down Up
    Down
           35 35
    Uр
           76 106
  mean(glm.pred == Direction.2005)
[1] 0.5595238
  predict(glm.fits,
          newdata = data.frame(Lag1 = c(1.2, 1.5), Lag2 = c(1.1, -0.8)),
          type = "response" )
0.4791462 0.4960939
#LDA
  lda.fit <- lda(Direction ~ Lag1 + Lag2,</pre>
                 data = Smarket,
                  subset = train)
  lda.fit
Call:
lda(Direction ~ Lag1 + Lag2, data = Smarket, subset = train)
Prior probabilities of groups:
    Down
               Uр
0.491984 0.508016
Group means:
                        Lag2
            Lag1
Down 0.04279022 0.03389409
   -0.03954635 -0.03132544
Coefficients of linear discriminants:
            LD1
Lag1 -0.6420190
Lag2 -0.5135293
```

```
lda.pred <- predict(lda.fit, Smarket.2005)</pre>
  lda.class <- lda.pred$class</pre>
  table(lda.class, Direction.2005)#LDA,logistic almost identical
         Direction.2005
lda.class Down Up
            35 35
     Down
     Uр
            76 106
  mean(lda.class == Direction.2005)
[1] 0.5595238
  sum(lda.pred$posterior[, 1] >= .5)
[1] 70
  sum(lda.pred$posterior[, 1] < .5)#the col2 is p(Down)</pre>
[1] 182
  head(lda.pred$posterior)
          Down
                       Uр
999 0.4901792 0.5098208
1000 0.4792185 0.5207815
1001 0.4668185 0.5331815
1002 0.4740011 0.5259989
1003 0.4927877 0.5072123
1004 0.4938562 0.5061438
  lda.class[1:20]
 [1] Up
               Uр
                                                              Down Up
          Uр
                    Uр
                          Up
                               Uр
                                    Uр
                                         Up
                                              Up Up
                                                        Uр
                                                                              Uр
          Uр
               Down Up
[16] Up
                          Uр
Levels: Down Up
```

```
sum(lda.pred$posterior[, 1] > .9)
[1] 0
  qda.fit <- qda(Direction ~ Lag1 + Lag2, data = Smarket,</pre>
                  subset = train)
  qda.fit
Call:
qda(Direction ~ Lag1 + Lag2, data = Smarket, subset = train)
Prior probabilities of groups:
    Down
               Uр
0.491984 0.508016
Group means:
                        Lag2
            Lag1
Down 0.04279022 0.03389409
Up -0.03954635 -0.03132544
  qda.class <- predict(qda.fit, Smarket.2005)$class</pre>
  table(qda.class, Direction.2005)
         Direction.2005
qda.class Down Up
     Down
            30 20
            81 121
     Uр
  mean(qda.class == Direction.2005)
[1] 0.5992063
#Naive Bayes
  nb.fit <- naiveBayes(Direction ~ Lag1 + Lag2, data = Smarket,</pre>
                        subset = train)
```

nb.fit

```
Naive Bayes Classifier for Discrete Predictors
Call:
naiveBayes.default(x = X, y = Y, laplace = laplace)
A-priori probabilities:
    Down
0.491984 0.508016
Conditional probabilities:
      Lag1
Y
              [,1]
                       [,2]
  Down 0.04279022 1.227446
  Uр
     -0.03954635 1.231668
      Lag2
              [,1]
                       [,2]
  Down 0.03389409 1.239191
     -0.03132544 1.220765
  mean(Lag1[train][Direction[train] == "Down"])
[1] 0.04279022
  nb.class <- predict(nb.fit, Smarket.2005)</pre>
  table(nb.class, Direction.2005)
        Direction.2005
nb.class Down Up
    Down
           28 20
    Uр
           83 121
  mean(nb.class == Direction.2005)
[1] 0.5912698
```

```
nb.preds <- predict(nb.fit, Smarket.2005, type = "raw")</pre>
  nb.pred <- rep("Down", 252)</pre>
  nb.pred[nb.preds[,2] > .5] <- "Up"</pre>
  table(nb.pred, Direction.2005)
       Direction.2005
nb.pred Down Up
   Down
          28 20
          83 121
   Uр
  #K-Nearest Neighbors
  train.X <- cbind(Lag1, Lag2)[train, ]</pre>
  test.X <- cbind(Lag1, Lag2)[!train, ]</pre>
  train.Direction <- Direction[train]</pre>
  set.seed(1)
  knn.pred \leftarrow knn(train.X, test.X, train.Direction, k = 1)
  table(knn.pred, Direction.2005)
        Direction.2005
knn.pred Down Up
    Down
           43 58
           68 83
    Uр
  knn.pred <- knn(train.X, test.X, train.Direction, k = 3)
  table(knn.pred, Direction.2005)
        Direction.2005
knn.pred Down Up
    Down
           48 54
    Uр
           63 87
  mean(knn.pred == Direction.2005)
[1] 0.5357143
```

```
dim(Caravan)
[1] 5822
           86
  attach(Caravan)
  summary(Purchase)
  No Yes
5474 348
  standardized.X <- scale(Caravan[, -86])#only drop Purchase</pre>
  test <- 1:1000
  train.X <- standardized.X[-test, ]</pre>
  test.X <- standardized.X[test, ]</pre>
  train.Y <- Purchase[-test]</pre>
  test.Y <- Purchase[test]</pre>
  set.seed(1)
  knn.pred <- knn(train.X, test.X, train.Y, k = 1)
  mean(test.Y != knn.pred)
[1] 0.118
  mean(test.Y != "No")
[1] 0.059
  table(knn.pred, test.Y)
        test.Y
knn.pred No Yes
     No 873 50
     Yes 68
```

```
knn.pred <- knn(train.X, test.X, train.Y, k = 3)
  table(knn.pred, test.Y)
       test.Y
knn.pred No Yes
    No 920 54
    Yes 21 5
  knn.pred <- knn(train.X, test.X, train.Y, k = 5)
  table(knn.pred, test.Y)
       test.Y
knn.pred No Yes
    No 930 55
    Yes 11
######exercise
 13.
  Weekly %>%
    ggplot(aes(x = Year, y = Volume)) +
    geom_point()
```



```
glm.fits <- glm(
   Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume,
   data = Weekly,
   family = binomial
)
summary(glm.fits) #lag2</pre>
```

Call:

```
glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 +
Volume, family = binomial, data = Weekly)
```

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	0.26686	0.08593	3.106	0.0019	**
Lag1	-0.04127	0.02641	-1.563	0.1181	
Lag2	0.05844	0.02686	2.175	0.0296	*
Lag3	-0.01606	0.02666	-0.602	0.5469	
Lag4	-0.02779	0.02646	-1.050	0.2937	
Lag5	-0.01447	0.02638	-0.549	0.5833	
Volume	-0.02274	0.03690	-0.616	0.5377	

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 1496.2 on 1088 degrees of freedom
Residual deviance: 1486.4 on 1082 degrees of freedom
AIC: 1500.4
Number of Fisher Scoring iterations: 4
  glm.probs <- predict(glm.fits, Weekly,</pre>
                        type = "response")
  glm.pred <- rep("Down", 1089)</pre>
  glm.pred[glm.probs > .5] = "Up"
  table(glm.pred, Weekly$Direction)
glm.pred Down Up
    Down
           54 48
    Uр
          430 557
  attach(Weekly)
The following objects are masked from Smarket:
    Direction, Lag1, Lag2, Lag3, Lag4, Lag5, Today, Volume, Year
  train <- (Year < 2009)
  Weekly.test <- Weekly[!train, ]#test df</pre>
  Direction.test <- Direction[!train]</pre>
  glm.fits <- glm(</pre>
    Direction ~ Lag2,
    data = Weekly, family = binomial, subset = train
  glm.probs <- predict(glm.fits, Weekly.test, type = "response")</pre>
#logistic
```

```
glm.pred <- rep("Down", 104)</pre>
  glm.pred[glm.probs > .5] <- "Up"</pre>
  table(glm.pred, Direction.test)
        Direction.test
glm.pred Down Up
    Down
            9 5
    Uр
           34 56
  mean(glm.pred == Direction.test)
[1] 0.625
#LDA
  lda.fit <- lda(Direction ~ Lag2,</pre>
                  data = Weekly,
                  subset = train)
  lda.pred <- predict(lda.fit, Weekly.test)</pre>
  lda.class <- lda.pred$class</pre>
  table(lda.class, Direction.test)
         Direction.test
lda.class Down Up
     Down
             9 5
     Uр
            34 56
#QDA
  qda.fit <- qda(Direction ~ Lag2,
                  data = Weekly,
                  subset = train)
  qda.pred <- predict(qda.fit, Weekly.test)</pre>
  qda.class <- qda.pred$class
  table(qda.class, Direction.test)
```

```
Direction.test
qda.class Down Up
     Down
             0 0
     Uр
            43 61
  mean(qda.class == Direction.test)
[1] 0.5865385
###KNN with K = 1
  train.X <- matrix(Weekly$Lag2[train], ncol = 1)</pre>
  test.X <- matrix(Weekly$Lag2[!train], ncol = 1)</pre>
  train.Direction <- Direction[train]</pre>
  set.seed(1)
  knn.pred \leftarrow knn(train.X, test.X, train.Direction, k = 1)
  table(knn.pred, Direction.test)
        Direction.test
knn.pred Down Up
    Down
           21 30
           22 31
    Uр
#h
  nb.fit <- naiveBayes(Direction ~ Lag2, data = Weekly,</pre>
                         subset = train)
  nb.class <- predict(nb.fit, Weekly.test)</pre>
  table(nb.class, Direction.test)
        Direction.test
nb.class Down Up
            0 0
    Down
           43 61
    Uр
  mean(nb.class == Direction.test)
```

```
[1] 0.5865385
#j Experiment
  for (K in 1:5) {
    train.X <- matrix(Weekly$Lag2[train], ncol = 1)</pre>
    test.X <- matrix(Weekly$Lag2[!train], ncol = 1)</pre>
    train.Direction <- Direction[train]</pre>
    set.seed(1)
    knn.pred <- knn(train.X, test.X, train.Direction, k = K)</pre>
    C <- table(knn.pred, Direction.test)</pre>
    if ("Up" %in% rownames(C)) {
      pred <- sum(C["Up",])</pre>
       did_increase <- C["Up", "Up"]</pre>
       accuracy <- did_increase / pred # Ensure 'pred' is not zero before division
       # Printing results
       cat(sprintf("K=%d: # predicted to be up: %2d, # who did increase %d, accuracy %.1f%%\n
                   K, pred, did_increase, accuracy * 100))
  }
K=1: # predicted to be up: 53, # who did increase 31, accuracy 58.5%
K=2: # predicted to be up: 58, # who did increase 34, accuracy 58.6%
K=3: # predicted to be up: 68, # who did increase 41, accuracy 60.3%
K=4: # predicted to be up: 67, # who did increase 44, accuracy 65.7%
K=5: # predicted to be up: 67, # who did increase 40, accuracy 59.7%
#14
  Auto <- read.csv("Auto.csv")</pre>
  Auto$horsepower <- as.numeric(Auto$horsepower)</pre>
Warning: NAs introduced by coercion
  Auto <- Auto[!is.na(Auto$horsepower), ]</pre>
  Auto$mpg01 <- if_else(Auto$mpg > median(Auto$mpg), 1, 0)
```

Boxplot of cylinders by mpg01

Boxplot of displacement by mpg01

Boxplot of horsepower by mpg01


```
#'displacement' 'weight'
  set.seed(1)
  Auto_df <- Auto[, c('displacement', 'weight', 'mpg01')]</pre>
  test <- sample(nrow(Auto_df), 100)</pre>
  train.X <- Auto_df[-test, -3]</pre>
  test.X <- Auto_df[test, -3]</pre>
  train.df <- Auto_df[-test, ]</pre>
  train.Y <- Auto_df[-test, 'mpg01']</pre>
  test.Y <- Auto_df[test, 'mpg01']</pre>
#d LDA
  lda.fit <- lda(mpg01 ~ displacement + weight,</pre>
                   data = train.df)
  lda.pred <- predict(lda.fit, test.X)</pre>
  lda.class <- lda.pred$class</pre>
  table(lda.class, test.Y)
         test.Y
lda.class 0 1
        0 43 4
        1 7 46
  mean(lda.class == test.Y)
[1] 0.89
#QDA
  qda.fit <- qda(mpg01 ~ displacement + weight,
                   data = train.df)
  qda.pred <- predict(qda.fit, test.X)</pre>
  qda.class <- qda.pred$class
  table(qda.class, test.Y)
```

```
test.Y
qda.class 0 1
        0 47 5
        1 3 45
  mean(qda.class == test.Y)
[1] 0.92
#logistic regression
  glm.fits <- glm(</pre>
    mpg01 ~ displacement + weight,
    data = train.df, family = binomial
  )
  glm.probs <- predict(glm.fits, test.X,</pre>
                        type = "response")
  glm.pred <- rep("0", 100)
  glm.pred[glm.probs > .5] <- "1"</pre>
  table(glm.pred, test.Y)
        test.Y
glm.pred 0 1
       0 46 5
       1 4 45
  mean(glm.pred == test.Y)
[1] 0.91
```

naive Bayes

```
nb.fit <- naiveBayes(mpg01 ~ displacement + weight,</pre>
                         data = train.df)
  nb.class <- predict(nb.fit, test.X)</pre>
  table(nb.class, test.Y)
        test.Y
nb.class 0 1
       0 45 4
       1 5 46
  mean(nb.class == test.Y)
[1] 0.91
  knn.pred \leftarrow knn(train.X, test.X, train.Y, k = 1)
  C <- table(Predicted = knn.pred, Actual = test.Y)</pre>
  print(C)
         Actual
Predicted 0 1
        0 43 8
        1 7 42
  for (K in 1:5) {
    set.seed(1)
    knn.pred <- knn(train.X, test.X, train.Y, k = K)</pre>
    C <- table(Predicted = knn.pred, Actual = test.Y)</pre>
     if ("1" %in% rownames(C)) {
       pred <- sum(C["1",])</pre>
       did_higher <- C["1", "1"]</pre>
       if (pred > 0) {
         accuracy <- did_higher / pred
         # Printing results
```

```
cat(sprintf("K=%d: # predicted to be higher than median: %2d, # who did higher than
                     K, pred, did_higher, accuracy * 100))
      }
    }
  }
K=1: # predicted to be higher than median: 49, # who did higher than median 42, accuracy 85.
K=2: # predicted to be higher than median: 50, # who did higher than median 44, accuracy 88.
K=3: # predicted to be higher than median: 50, # who did higher than median 44, accuracy 88.
K=4: # predicted to be higher than median: 50, # who did higher than median 45, accuracy 90.
K=5: # predicted to be higher than median: 52, # who did higher than median 46, accuracy 88.
#15
  Power <- function() {</pre>
      result <- 2^3
      print(result)
  }
  Power()
[1] 8
  Power2 <- function(x, a) {
      result <- x^a
      print(result)
  Power2(3, 8)
[1] 6561
  Power2(10, 3)
[1] 1000
  Power2(8, 17)
[1] 2.2518e+15
```

```
Power2(13, 13)

[1] 3.028751e+14

Power3 <- function(x, a) {
    result <- x^a
    return(result)
}

value1 <- Power3(2, 3)

x_values <- 1:10
y_values <- x_values^2

df <- data.frame(x_values, y_values)

df %>%
    ggplot( aes(x = x_values, y = y_values)) +
    geom_point() +
    geom_smooth() +
```

 $\ensuremath{\text{`geom_smooth()`}}\ using method = 'loess' and formula = 'y ~ x'$

ggtitle("Plot of $f(x) = x^2$ ") +

xlab("x values") +

 $ylab("f(x) = x^2 values")$

Plot of $f(x) = x^2$ $x = x^2$

```
PlotPower <- function(x_values, a) {
   y_values <- x_values^a

   df <- data.frame(x_values, y_values)

   df %>%
    ggplot( aes(x = x_values, y = y_values)) +
    geom_point() +
   geom_smooth() +
   ggtitle("Plot of f(x) = x^2") +
    xlab("x values") +
    ylab("f(x) = x^2 values")
}

PlotPower(1:10, 3)
```

`geom_smooth()` using method = 'loess' and formula = 'y ~ x'

Plot of $f(x) = x^2$ 1000 750 250 250 2.5 5.0 x values

#16.

Boxplot of zn by crim01

Boxplot of indus by crim01

30

Boxplot of chas by crim01

Boxplot of nox by crim01

Boxplot of tax by crim01

crim01 (Above/Below Median Crime rate)

Boxplot of ptratio by crim01

34

Boxplot of medv by crim01


```
#indus,nox,age,dis,rad

set.seed(1)
Boston_df <- Boston[, c('indus', 'nox', 'age','dis','rad','crim01')]
test <- sample(nrow(Boston_df), 200)

train.X <- Boston_df[-test, -6]
test.X <- Boston_df[test, -6]
train.df <- Boston_df[-test, ]

train.Y <- Boston_df[-test, 'crim01']
test.Y <- Boston_df[test, 'crim01']

#logistic

glm.fits <- glm(
    crim01 ~ indus + nox + age +dis + rad,
    data = train.df, family = binomial
)

glm.probs <- predict(glm.fits, test.X,</pre>
```

```
type = "response")
  glm.pred <- rep("0", 200)
  glm.pred[glm.probs > .5] <- "1"</pre>
  table(glm.pred, test.Y)
        test.Y
glm.pred 0 1
       0 97 16
       1 9 78
  mean(glm.pred == test.Y)
[1] 0.875
#LDA
  lda.fit <- lda(crim01 ~ indus + nox + age +dis + rad,</pre>
                  data = train.df)
  lda.pred <- predict(lda.fit, test.X)</pre>
  lda.class <- lda.pred$class</pre>
  table(lda.class, test.Y)
         test.Y
lda.class 0 1
        0 95 23
        1 11 71
  mean(lda.class == test.Y)
[1] 0.83
\#qda
```

```
qda.fit <- qda(crim01 ~ indus + nox + age +dis + rad,
                  data = train.df)
  qda.pred <- predict(qda.fit, test.X)</pre>
  qda.class <- qda.pred$class
  table(qda.class, test.Y)
         test.Y
qda.class 0 1
        0 99 18
        1 7 76
  mean(qda.class == test.Y)
[1] 0.875
#naiveBayes
  nb.fit <- naiveBayes(crim01 ~ indus + nox + age +dis + rad,</pre>
                        data = train.df)
  nb.fit
Naive Bayes Classifier for Discrete Predictors
Call:
naiveBayes.default(x = X, y = Y, laplace = laplace)
A-priori probabilities:
0.4803922 0.5196078
Conditional probabilities:
   indus
         [,1]
                  [,2]
  0 6.681088 5.289341
  1 15.132893 5.550083
```

```
nox
Y [,1] [,2]
 0 0.4681619 0.05532716
  1 0.6397610 0.09878089
  age
Y [,1] [,2]
 0 51.71361 25.69922
 1 86.19434 17.05572
  dis
Y [,1] [,2]
 0 5.188369 2.099384
 1 2.456703 1.048184
 rad
Y [,1] [,2]
 0 4.163265 1.613474
  1 14.572327 9.565536
  nb.class <- predict(nb.fit, test.X)</pre>
  table(nb.class, test.Y)
      test.Y
nb.class 0 1
      0 92 20
      1 14 74
```