Mechatronic Control of an Acceleration and Braking System

91%

Mexico City Campus

School of Design, Engineering and Architecture Department of Mechatronics Engineering

Advisors

Dr. Martín Rogelio Bustamante Bello Ing. Javier Izquierdo Reyes Ing. Luis Alberto Curiel Ramírez

Mechatronics Engineering Project December 2017

RESULTS

IMT César Silva Bengochea A01331289 IMT Noé Decuir González A01334605 IMT Marianne Velázquez Guedea A01337753

PROBLEM STATEMENT

of the 360,051 car accidents registered by INEGI on 2016 are caused by the driver, from which:

SOURCE: INEGI, Consulta de: Accidentes de tránsito, Por: Causa del accidente, Según: Año de ocurrencia. 2016.

OBJECTIVES

Design, construct and implement a mechatronic system capable of remotely controlling the necessary actuators for driving a vehicle (steering wheel, braking and acceleration pedals)

- ▶ Implementation of a control system for a self-driving mode within a controlled area.
- ▶ Improvement of the steering wheel mechatronic system, developed by previous teams.
- ▶ Design of power electronics for the acceleration and braking system.
- ▶ Data Dashboard implementation for the remote control of the acceleration and braking actuators.

FINAL CIRCUIT

SYSTEM TESTING

Throughout these tests we could determine the time values for the total travel of the nut. Thus, we were able to determine the acceleration and braking percentage for each pedal.

FRONT PANEL

DEVELOPMENT

STEERING SYSTEM

Mechanical adjustment of the past system, to correct failures

- ▶ Welding of a new gear train
- ▶ Alignment between the motor axis and its gear train
- ▶ Alignment between the motor gear train and the steering wheel

ACCELERATION AND BRAKING SYSTEM

2. Physical model

1. Proposal selection

3. Implementation

control motor

Acceleration pedal

The objectives set were accomplished. We were able to create and implement an autonomous acceleration and braking system that could be remotely controlled.

The use of mechanical linear actuators (motor and bolt) allowed us to have a precise position control of the actuator at all time, which was very effective for the acceleration pedal.

We propose that for future works, a hydraulic piston or an ACME bolt is used for the braking pedal, to increase the force and reduce the braking time.

CONCLUSIONS

