一些反例

2022年4月24日

1 $C_{c}(\mathbb{R}^{n}) \subseteq \mathcal{S}(\mathbb{R}^{n})$

Example 1. Let $f(x) := e^{|x|^2}$ for any $x \in \mathbb{R}^n$. Then $f \in \mathcal{S}(\mathbb{R}^n)$ but $f \notin C_c(\mathbb{R}^n)$.

2 极大函数不是强 (1,1) 的

Proposition 2. Let $f \in L^1(\mathbb{R}^n) \setminus \{0\}$. Then $Mf \notin L^1(\mathbb{R}^n)$.

下面定理来自 Stein [2, Theorem 1].

Theorem 3. Let *B* be a bounded subset of \mathbb{R}^n . Then $Mf \in L^1(B)$ if and only if $f \in L \log L(B)$, where $\log^+ t := \max\{\log t, 0\}$ and

$$L \log L(B) := \left\{ f \text{ is a measurable function on } B : \int_{B} |f(x)| \log^{+} |f(x)| dx < \infty \right\}.$$

 $L\log L(B) \subsetneq L^1(B)$ 应该是对的, 但反例还没找到. [1, Example 1.9] 给出了一个有点关系的反例, 但我们需要的是它们的临界情形.

Example 4. Let $B := B(\mathbf{0}, 1) \subset \mathbb{R}^n$, $\delta \in (0, \infty)$, and f(x) := ? for any $x \in B$. Then $f \in L^1(B)$ but $f \notin L \log L(B)$.

Remark 5. 由上面例子及 Theorem 3 知 $f \in L^1(B)$ 但 $Mf \notin L^1(B)$.

3 Hilbert 变换

Theorem 6. Let $f \in \mathcal{S}(\mathbb{R}^n)$. Then $Hf \in L^1(\mathbb{R}^n)$ if and only if $f \in L^1(\mathbb{R}^n)$ and $\int_{\mathbb{R}^n} f(x) = 0$.

Theorem 7. Let $f \in L^1(\mathbb{R}^n)$. If $Hf \in L^1(\mathbb{R}^n)$, then $\int_{\mathbb{R}^n} f(x) = 0$.

一个自然的问题是,上述定理反过来成立么?答案是否定的.

Example 8. 待补.

参考文献

- [1] D. Cruz-Uribe and A. Fiorenza, A, $L \log L$ results for the maximal operator in variable L^p spaces. Trans. Amer. Math. Soc. 361 (2009), 2631-2647. [1]
- [2] E. M. Stein, Note on the class *L* log *L*. Studia Math. 32 (1969), 305-310. [1]