Prática 5 - Bioinspirados - Problema do Caixeiro Viajante - ACS

Rodrigo José Zonzin Esteves

9 de maio de 2025

1 Compêndio de resultados

1.1 Instância *lau15*

Para calibrar os parâmetros do ACS, foram realizadas variações de valores para α , β e ϵ . A faixa de valores testados para essa instância são:

- α : 0.5, 1 e 1.2
- β : 0.5, 1, 5 e 10
- ϵ : 0.01, 0.1, 0.5 e 1, 3

Para esse conjunto de teste, portanto, 60 combinações foram testadas e 44 delas atingiram o mínimo global. As combinações que não atingiram são apresentadas na Tabela 1.

Como se observa, o valor $\alpha=0.5$ foi o fator limitante para a otimização dessa instância, pois nenhuma combinação em que ele estava presente foi capaz de obter o mínimo global. Além disso, valores de $\beta=0.5$ também se mostraram pouco efetivos para a otimização. Isso ocorre pois valores de α e β no intervalo aberto (0,1) diminuem o valor de p_{ij}^k tornam-se muito pequenos, limitando a formação de novos caminhos. A Figura 1 apresenta algumas curvas de execução para o conjunto de parâmetros ($\alpha=0.5, \beta=0.5, \epsilon=1$).

Para $\alpha=1$ e $\beta=0.55$, a Figura 2 apresenta alguns caminhos tomados pelo ACS. A consistência dos caminhos tomados pelo algoritmo demonstram que, apesar de não obterem custo ótimo, são de viabilidade eventual para problemas onde o custo para se obter o mínimo não é factível.

Além disso, a Figura 3 mostra a variação do parâmetro α para três valores distintos. Os demais parâmetros foram mantidos constantes, conforme o caso básico sugerido na disciplina. Como se observa, o melhor comportamento foi obtido para $\alpha = 5$.

Além disso, a Figura 4 faz um comparativo similar ao parâmetro anterior. Desta vez, manteve-se $\alpha=1$ para avaliar a maior influência do parâmetro β na escolha das

α	β	ϵ
0.5	0.5	0.01
0.5	0.5	0.1
0.5	0.5	0.5
0.5	0.5	1
0.5	0.5	3
0.5	1	0.01
0.5	1	0.1
0.5	1	0.5
0.5	1	1
1	0.5	0.01
1	0.5	0.5
1	0.5	3
1.2	0.5	1
1.2	0.5	3
1.2	1	3

Tabela 1: Combinações de valores que não atingiram o ótimo local

(a) Curvas não-ótimas para $\alpha=0.5,\;\beta=0.5,$ (b) Curvas ótimas para $\alpha=1,\;\beta=1,\;\epsilon=0.5$ $\epsilon=1$

Figura 1: Comparação entre alguns parâmetros

cidades. Os resultados sugerem que $\beta \in [5, 10]$ funcionou melhor, ao passo que um valor muito baixo não foi capaz de otimizar a função objetivo.

Já a Figura 5 apresenta o resultado para valores de ρ . Não foi observado que a variação significativa deste parâmetro alterou o resultado final. Possivelmente, isso ocorre porque os demais parâmetros já estão suficientemente ajustados ao problema. Além disso, a instância com apenas 15 nós pode não ser suficiente para testar a eficiência desse parâmetro na abordagem do ACS.

Figura 2: Caption

Figura 3: Variações do α

Figura 4: Análise da variação do β

Por fim, foi analisado o impacto das gerações na minimização do problema. Conforme a Figura 6, 50 iterações foram insuficientes para se obter o mínimo global, enquanto 100 iterações foram suficientes para esse propósito. Os parâmetros utilizados nesse teste foram definidos anteriormente.

Figura 5: Análise da variação do ρ

Figura 6: Impacto do número de iterações para $\alpha=5,\,\beta=10$ e $\rho=0.75$

1.2 Instância sgb128

Para a instância sgb128, foi testado duas execuções com os seguintes parâmetros:

- α: 5
- β: 10
- ρ: 0.5
- ϵ : 0.5

Número do Ensaio	Valor mínimo obtido
0	22480.0
1	22349.0
2	22483.0
3	21924.0

Tabela 2: Valores mínimos obtidos para o segundo teste

• Q: 100

• Iterações máximas: 200

A Figura 7 apresenta o melhor custo encontrado para as $\frac{128(128-1)}{2}$ possíveis rotas. Como se observa, o melhor resultado foi de aproximadamente 21 500 unidades de custo no Ensaio 0.

Figura 7: Testes realizados

Um segundo teste, desta vez alterando o parâmetro de evaporação para $\rho=0.65$, composto por 4 ensaios e 200 iterações foi realizado. A Figura 8 apresenta a evolução do *fitness* e a Tabela 2 apresenta os valores mínimos obtidos.

Como se nota, o conjunto de parâmetros otimizados pela instância anterior demonstraram mais eficiência na obtenção de um mínimo global.

Figura 8: Testes realizados