2 лаба

Метод дихотомии

3адаются *a, b* и погрешность ϵ .

- Берем две точки вблизи середины интервала [a, b]: $x1 = (a + b \varepsilon) / 2, x2 = (a + b + \varepsilon) / 2$.
- Вычисляем y1 = f(x1), y2 = f(x2).
- Если y1 > y2, тогда присваивается a=x1, иначе присваивается b=x2
- Если b-a>2є, тогда повторяем с п.1, иначе переходим к пункту 5.
- Вычисляем xm = (a + b) / 2, ym = f (xm).
- Конец.

Метод золотого сечения

На первом шаге (итерации) точки вычисляются по формулам: x_1 =a+0,382(b-a), x_2 =a+0,618(b-a)

Затем вычисляются значение функции в этих точках.

Возможны два случая:

Если $f(x_1) < f(x_2)$, то оставляем отрезок $[a,x_2]$. На второй итерации x_2 полагаем равным x_1 , а x_1 вычисляем по формуле $x_1 = a + 0.382(x_2 - a)$. Значение функции вычисляется только в точке x_1 , так как значение функции в x_2 уже было вычислено на предыдущем шаге.

Если $f(x_1) < f(x_2)$, то оставляем отрезок $[a,x_2]$. На второй итерации x1 полагаем равным x_2 , а x_2 вычисляем по формуле $x_2 = a + 0.618(b - x1)$. Значение функции вычисляется только в точке x_2 , так как значение функции в x_1 уже было вычислено на предыдущем шаге.

Вычисления продолжают до тех пор, пока длина интервала не станет меньше требуемой точности.

$$\tilde{\mathbf{x}} = a - \frac{f'(a)}{f'(a) - f'(b)} (a - b)$$
 (21)

Шаг 1. Находим \tilde{x} по формуле (21). Вычисляем $f'(\tilde{x})$ и переходим к шагу 2.

Шаг 2. Проверка на окончание поиска: если $|f'(\tilde{x})| \leq \varepsilon$ то положить $x^* = \tilde{x}$,

 $f^* = f(\tilde{x})$, и завершить поиск, иначе перейти к шагу 3.

Шаг 3. Переход к новому отрезку. Если $f'(\tilde{x}) > 0$, то положить $b = \tilde{x}$, $f'(b) = f'(\tilde{x})$, иначе положить $a = \tilde{x}$, $f'(a) = f'(\tilde{x})$. Перейти к шагу 1.

Метод Ньютона

Приравнивая к нулю правую часть в (22), получим первый элемент

$$x_1 = x_0 - \frac{F(x_0)}{F'(x_0)} \tag{23}$$

итерационной последовательности {x_k}, k=1,2,...

На (k+1)-м шаге по найденной на предыдущем шаге точке x_k можно найти точку

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$
 (24)

Вычисления по формуле (24) производятся до тех пор, пока

не выполнится неравенство $|f'(x_k)| \le \varepsilon$, после чего полагают $x^* \approx x_k$, $f^* \approx f(x_k)$.