SALARY PREDICTION FOR DATA SCIENCE CAREERS

GROUP 05

SANUJI DEVASURENDRA - S14810

SAHAN MADHUSHANKA - S14835

ISINI ASALYA - S15023

Abstract

This study brings out both a descriptive analysis and an in-depth analysis of the salary prediction for data science-related careers. The main objective of this analysis is to provide not only employees but also any other party who needs access to salary information related to data science careers around the world. Therefore, for this forecasting, initially an exploratory analysis was performed. Thereafter, after fitting several statistical models based on root mean square error (RMSE) and mean percentage error (MAPE) judgments, it was identified that the best model is gradient boosting regression to explain this salary prediction model.

Table of Contents

AUSI	raci	
1.	Introduction	
	Description of the Question (include objectives)	
	Description of the Dataset	
	Important results of the descriptive analysis	
5.	Suggestions for the advanced analysis	
6.	Important results of the Advanced Analysis	8
6.2.	Shrinkage Technique Models	9
7.	Discussion and Conclusions	10
8.	Issues encountered and proposed solutions	12
Арре	endix	k not defined

List of figures

Figure 4.1 Histogram of salary in USD4	Figure 4.10 Salaries basea on oi
Figure 4.2 - Salary in USD vs. Work Year5	Figure 4.11 Salaries across diffe
Figure 4.3 Average salary across experience levels5	Figure 4.12: Salary variation for
Figure 4.4 Salary variation across experience levels over the	Figure 4.13: Frequency of le
<i>years</i> 5	leadership roles (0)
Figure 4.5: Salary variation across the company location5	Figure 5.1: Scores plot using PL
Figure 4.6: Salary variation across the employee residence 6	Figure 5.2: Loadings plot using
Figure 4.7 - Salary variation across the working mode6	Figure 6.1.1 Residual Error Plot
Figure 4.8 Pie chart for working mode6	Figure 7.1.1 Variable Importan
Figure 4.9 Pie chart of company size6	Regression

List of Tables

Table 3.1.1 Classification of Data Science Job Roles 4	Table 6.3.1 Hyper
Table 4.1 Statistics of Salary in USD 4	Regression
<i>Table 5.1 VIF Scores</i> 8	Table 6.3.2 RMSE
Table 6.1.1 RMSE Value - Multiple Linear Regression 9	Regression
Table 6.2.1 RMSE & MAPE values for Ridge, Lasso & Elastic	Table 6.4.1 RMSE
Net Regression9	Table 7.1.1 Best Me

1. Introduction

Data science has emerged as one of the most lucrative and rapidly growing fields in recent times. The demand for jobs related to data science is at an all-time high, as organizations across various industries are looking to leverage the power of data to make more informed decisions and gain a competitive edge. As a result, the salary prospects for data scientists have never been better. Hence, through this analysis, we will first explore the various factors that influence data science salaries and provide insights into the average salaries for different data science related occupations. Thereafter, by fitting several statistical models and using the optimal model, we will predict the optimal salary for an applicant under the factors considered in the analysis.

2. Description of the Question (include objectives)

Several educational institutions are enticed to develop academic programs linked to artificial intelligence, neural networks, big data, and other similar topics since individuals working in the field of data science earn excellent incomes. As a result, this aspect of "high-end pay" seems to influence not only employees but also young students.

Hence, our study focuses on "predicting the salary (in USD) of an employee in the field of data science." Furthermore, the goal of this project is not only to provide the best estimate of salary for data science professionals or young, passionate students to get some motivation for where they should be financially in several years with some notion about their future pay, but also for organizations to have a sense of the current salary trend for different job positions in the market for better budget planning in salary increments, human resource compensation, and benefits.

To accomplish the above objective, sub-objectives of this project are to,

- 1. Perform an exploratory data analysis to identify the most influential predictors of the response.
- 2. Develop a predictive model that incorporates the most significant factors to forecast the predictor.

3. Description of the Dataset

The dataset "Salaries" is sourced from https://ai-jobs.net/salaries/download/ and it is a collection of 2904 observations with no missing values. The dataset consists of 11 variables and their description is as follows.

No.	Variable Name	Description
1	wrok_year	The year during which the salary was paid.
		Categories: 2020,2021,2022,2023

2	experience_level	Categories:
		EN = Entry Level; MI = Mid-Level; SE = Senior-Level; EX = Executive-Level
3	employment_type	Categories:
		PT = Part-time; FT = Full-time; CT = Contract; FL = Freelance
4	job_title	The job role through the year. There are 83 categories.
5	salary	The total gross salary amount paid (p.a.)
6	salary_currency	The currency of the salary (p.a.) paid as an ISO 4217 currency code.
7	salary_in_usd	The salary in USD per annum (FX rate divided by the average USD rate for the respective year via fxdata.foorilla.com)
8	employee_residence	Employee's primary country of residence during the work year as an ISO 3166 country code
9	remote_ratio	The overall amount of work done remotely, possible values are as follows:
		0 = No remote work (less than 20%); 50 = Partially remote; 100 = Fully remote (more than 80%)
10	company_location	The country of the employer's main office or contracting branch as an ISO 3166 country code
11	company_size	The average number of people that worked for the company during the year:
		S = less than 50 employees (small); M = 50 to 250 employees (medium); L = more than 250 employees (large)

References:

Country codes: https://www.nationsonline.org/oneworld/country code list.htm

Currency codes: https://www.iban.com/currency-codes

3.1. Data Pre-processing

In the data pre-processing, first salary variable and salary currency variable are removed because the objective is to predict the salary in USD. Thereafter, the company's location and the employee's residence were categorized based on continents rather than an analysis based on individual countries. Next, we filtered only the full time employees in favor of the objective, where we disregarded part-time, contract, and freelance employees.

Additionally, we created a new variable called Role Type that categorizes the 83 job titles into the following nine major categories, considering their duties.

Data Strategist I	Data Architect	Data Analyst	Data Scientist	Data Engineer
-------------------	----------------	--------------	----------------	---------------

Business Intelligence Analyst	ML Ops Engineer	Data Product Manager	Other

Table 3.1.1 Classification of Data Science Job Roles

Further, a new binary variable called "leadership" was created based on their leadership role to assess whether there is any significant impact on the response.

4. Important results of the descriptive analysis

As for the objective of developing a predictive model, it is essential to understand the relationship between response variable and predictors.

Therefore, starting with the response, which is "Salary in USD" per annum, from Figure 4.1 and Table 4.1, the mean salary is slightly greater than the median. However, since the skewness statistic is less than one, it implies that our distribution is approximately normal.

Figure 4.1 Histogram of salary in USD

Salary in USD (p.a) statistics

Minimum: 5,132 1st quartile: 95,000 Median: 134,000 3rd quartile: 172,200 Maximum: 450,000 Mean: 136,011.18 Skewness: 0.554606

Table 4.1 Statistics of Salary in USD

Further, it was discovered through the ground analysis that some organizations, including META, Microsoft, and Amazon, will pay very high salaries for senior employees, such as principal data scientists and senior data scientists, who aim for maximum annual salaries of \$550,000 according to the Glassdoor records. Due to the presence of the aforementioned employees in our dataset, the extreme values in our data cannot be regarded as outliers.

Moving on to the analysis of predictors with the salary in USD, first salaries with respect to the work years were analyzed.

Figure 4.2 - Salary in USD vs. Work Year

It can be observed that, when compared to the years 2020 and 2021, the most recent two years contain a price hike in Figure 4.2. According to the *Burtch Works Study DS Analytics (2021)*, the possible reasons for this fluctuation are increased demand and popularity of data science, advancements in technology, and economic conditions. Further, if an explanation of the economic condition is provided, since with recent inflation, many organizations around the world have introduced the pegged salary system. Hence, as a result, salaries started to grow in different countries.

Figure 4.3 Average salary across experience levels.

Further, as in Figure 4.4, when we consider the salary variation across seniority over years, it too highlights that the salaries across each level approximately increase for each year.

Next, to explain the salary variation across the experience level, it is generally known that the higher you walk through the organization's hierarchy, the higher you get paid. This variation can be clearly explained by Figure 4.3, in which Glassdoor too makes a similar conclusion the higher the experience, the higher the pay.

Figure 4.4 Salary variation across experience levels over the years

Figure 4.5: Salary variation across the company location

Next, to move on with the salary variation across the company locations, the company locations were classified based on the continents. According to Figure 4.5, companies in the United States, Europe, and Oceania pay more than Asian and African companies.

The existence of major organizations like Apple, Microsoft, and Amazon across developed continents may be a reason for well paying. Additionally, the fact that Africa is the least developed continent according to the United

Nations Conference on Trade and Development may be the cause of its low employment wages.

Further, because the majority of Asian nations have developing economies, pay averages can be lower in Asian companies than in the West, as shown by Figure 4.5.

Moving on to compare the salaries across employee residences, according to Figure 4.6, Americans, Europeans, and Oceanians get highly paid. The reason behind the increased salaries on those continents may be because of higher living costs compared to other parts of the world.

Figure 4.6: Salary variation across the employee residence

Figure 4.7 - Salary variation across the working mode

In Figure 4.8, it can be seen that the proportion of hybrid workers is very low compared to the other two work modes. Therefore, it can be observed that the lower number of observations has caused the salary variation.

Then, to explain the salary variation across working modes, there is no special effect on the salary from the variable; the mode of work (work from home, hybrid, or no remote work). But, in Figure 4.7, it can be seen that there is a reduction in salary for the partially remote workers, while the median salaries of fully remote and no remote workers share the almost same median salary.

Figure 4.8 Pie chart for working mode

According to Glassdoor records, larger companies pay data scientists 19.5% more than smaller ones, and by observing Figure 4.10, it can be observed that for smaller businesses, the pay is lower than for larger ones. But overall, boxplots suggest that medium companies pay better. A probable reason for this variation is that since the number of employees is limited, companies tend to maximize their pay.

Figure 4.9 illustrates that the subfield of data scientist has extreme pay rates for data scientists. To explain this variation, the existence of highly compensated employment roles like principal data scientists and lead data scientists is most likely one of the causes. However, based on median salaries, data architects are generally well paid. Additionally, jobs like intelligence analysts and data analysts pay To further less. explain mastersindatascience.org research states compared to some of the highly paid career titles like data scientist, data analyst will have fewer skill requirements and a less complicated job description. That could be a reason for lower pay for data analysts.

Figure 4.12: Salary variation for leadership roles and others

According to figure 4.13, only 6.23% of observations are leadership roles ,while the non-leadership roles are 93.77%. Since the majority are non-leadership roles, that could be a probable reason for this variation.

Figure 4.11 Salaries across different subfields in data science

Lastly, the variation of salaries across leadership roles and non leadership roles is considered. Obviously, when it comes to leadership roles that require more skills and have more responsibilities, salaries are relatively higher compared to others. But according to Figure 4.12, although the median salary is high for leadership roles, there are some non leadership roles that get paid more than leadership roles.

Figure 4.13: Frequency of leadership roles (1) and non leadership roles (0)

5. Suggestions for the advanced analysis

Since "salary_in_usd," the response variable, is a continuous variable, the dataset can be fitted with regression models. Further, the outlier analysis suggested that there are no outliers in the data, which implied that no transformation was necessary because there were not a significant number of outliers.

Hence, moving on to PLSR, partial least squares regression (PLSR) can be used to identify the clusters in the dataset, and grouping the observations into homogeneous groups can be used to improve the accuracy of the fitted models.

However, according to the PLS score plot (Figure 5.1), there are no clusters in the data.

Furthermore, the loadings plot of PLSR can be used to identify the variable clusters and the correlations among the variables.

Figure 5.1: Scores plot using PLS

Figure 5.2: Loadings plot using PLSR

The smaller the angle between two variables, the higher the correlation between them.

It is evident from Figure 5.2 that there are some variables that can be grouped together as well as some variables that have a strong correlation with the response variable. (eg: the variable leadership has a higher correlation with salary in USD.)

Moreover, according to the VIF scores in the following table, there is no multicollinearity between the predictor variables since almost all the VIF scores are around 1.

Work Year	Experience level	Remote ratio	Leadership	Company size
1.151204	1.079964	1.055934	1.043131	1.037777

Table 5.1 VIF Scores

6. Important results of the Advanced Analysis

Since the study is focused on a continuous response (salary in USD p.a.), regression models were applied to identify the most appropriate statistical model for the dataset.

6.1. Multiple Linear Regression Model

Starting with the simplest form of fitting data into multiple predictors, a multiple linear regression model is fitted to the dataset. Then the obtained RMSE value is as follows:

RMSE value	48807.0593
------------	------------

Table 6.1.1 RMSE Value - Multiple Linear Regression

But, when a further analysis was carried out to check the multiple linear regression model assumptions, it was identified that the assumption of homogeneity of the variance was violated, as a cone shape variation of residuals can be observed, as illustrated by Figure 6.1.1.

Therefore, shrinkage model techniques were assessed afterwards.

Figure 6.1.1 Residual Error Plot - Multiple LinearRegression

6.2. Shrinkage Technique Models

Considering Ridge, Lasso and Elastic Net regression models, the following outputs were generated.

	Ridge	Lasso	Elastic Net
RMSE	48776.0923	48803.1359	52249.2170
МАРЕ	0.4511	0.4516	0.6409

Table 6.2.1 RMSE & MAPE values for Ridge, Lasso & Elastic Net Regression

Hence, it can be that out of these three statistical models, the ridge regression model has the lowest RMSE and the lowest MAPE compared to the other models.

6.3. Boosting technique Models

Under the boosting techniques, the gradient boosting technique was utilized to assess the dataset. It uses gradient descent optimization to train a sequence of weak models. Since the dataset is small, to avoid overfitting, hyperparameter tuning was used in this technique. The technique that was used to tune the model was the grid search method with cross validation and the outputs were generated as follows.

Maximum depth of each tree	Minimum number of samples in each split	Number of decision trees
4	6	50

Table 6.3.1 Hyper-parameter tuning - Gradient Boosting Regression

After tuning the parameters appropriately,, following results were made.

RMSE value	48390.8252
MAPE	0.4516

Table 6.3.2 RMSE & MAPE values - Gradient Boosting Regression

6.4. Tree Based model Techniques

It is generally accurate to say that the random forest model is efficient and less likely to overfit. Hence, using the random forest model, the following results were gained. Further, similar to the gradient boosting regression, to tune the parameters, the grid search method with cross validation was utilized.

	RMSE	MAPE
Before tuning the parameters	50335.7444	0.4399
After tuning the parameters	48481.3164	0.4625

Table 6.4.1 RMSE & MAPE values - Random Forest

7. Discussion and Conclusions

7.1.Best Model

Considering all the statistical models, both the root mean square error (RMSE) and the mean absolute percentage error (MAPE) are at their lowest for the Gradient Boosting regression. Hence, the following conclusions can be drawn about the best model.

Best Model		Test	Train
Gradient Boosting	RMSE	48390.8252	48390.8252
Regression	MAPE	45126.7812	45126.7812

Table 7.1.1 Best Model

According to Table 7.1.1, it can be observed that the test RMSE is not that high when compared with the training RMSE, where a similar variation is illustrated by the MAPE values of the train and test sets. Hence, it can be concluded that the model is not overfitted.

However, when the model accuracy is considered using the R squared value, it can be noted that the proportion of variation explained by the predictors is comparatively low, resulting in $R^2 = 0.4010$.

According to Figure 7.1.1, the most significant variable has been

employee_residence_America s. The reason could be that the majority of employees that existed in the dataset are from the continent of the Americas.

Figure 7.1.1 Variable Importance Plot - Gradient Boosting Regression

In further exploration, it can be observed that experience level also has a greater impact on salaries.

The gradient boosting regression can be handled when the dataset contains a large number of categorical variables and is less prone to overfitting. Since parameters are also tuned appropriately, and the reason of supporting too many categorical variables' existence in the dataset, gradient boosting can be the best model for our dataset.

8. Issues encountered and proposed solutions.

- The variable job_title contained 83 sub-categories. Hence, using the reference https://365datascience.com/career-advice/types-of-data-science-roles-explained, further the roles were reduced to 9 sub-categories to increase the model interpretability and accuracy. However, it could be observed that classification was not 100% accurate.
- Location based variables re-categorized based on the continents to reduce newly generating amount of dummy variables.
- The best model's fit (R^2) is relatively low. Maybe a cluster analysis would suggest a better fit.

Appendix

import pandas as pd	random_state=123)	my_colors = {' Data Architect': '#965cc8',
df =pd.read_csv(r'D:\UOC1\3\2nd sem\ST 3082	print(y_train.shape)	'Data Scientist': '#c85c8e',
\final project\eda\salaries_Group 5.csv')	print(x_train.shape)	' Data Engineer': '#8ec85c',
import numpy as np	#EDA	'Other': '#5cc896',' Data Analyst': '#965cc8',
import matplotlib.pylab as plt	df.describe()	'Data Product Manager': '#c85c8e', 'Business
import seaborn as sns	corr = df[['work_year','salary_in_usd']].corr()# plot the	Intelligence Analyst':
df.columns	heatmap	'#8ec85c','Data Strategist': '#5cc896',
df2 =pd.read_csv(r'D:\UOC1\3\2nd sem\ST 3082\final	plt.subplots(figsize=(5,3),dpi=300)	' ML Ops Engineer': '#965cc8'}
project\eda\all.csv')	sns.heatmap(corr, xticklabels=corr.columns,	sns.boxplot(data=df, x='role
columns = ['alpha-2','region']	yticklabels=corr.columns, annot=True,	type', y='salary_in_usd',palette=my_colors)
df2 = df2.loc[:, columns]	cmap=sns.diverging_palette(220, 20, as_cmap=True),vmin=-	plt.xticks(rotation = 45,fontsize=5)
df2.head()	1, vmax=1)	plt.xlabel('Role type')
df3 =pd.read_csv(r'D:\UOC1\3\2nd sem\ST 3082\final	plt.savefig('corr.png',dpi=300)	plt.ylabel('Salary in USD')
project\eda\file1.csv')	plt.show()	plt.savefig('Salary in USD vs role type.png',dpi=300,
df4 =pd.read csv(r'D:\UOC1\3\2nd sem\ST 3082\final	df.skew(axis = 0, skipna = True)	bbox inches='tight')
project\eda\type.csv')	plt.figure(figsize=(5,3),dpi=300)	plt.show()
df=df.merge(df3,left_on='job_title',right_on='title',how='left')	df['salary in usd'].plot(kind='hist', bins=30,	plt.figure(figsize=(5,3),dpi=300)
df=df.merge(df4,left on='type of	figsize=(12,6), facecolor='#c85c8e',edgecolor='black')	plt.title('Salary in USD vs year')
role',right_on='no',how='left')	plt.title('Histogram of salary in usd')	my colors = {2020: '#965cc8', 2021: '#c85c8e',
df.head()	plt.xlabel('Salary in USD')	2022: '#8ec85c',2023: '#5cc896'}
columns = ['salary_currency','salary','job_title	plt.savefig('Freq of salary in	sns.boxplot(data=df, x='work_year', y='salary_in_usd',
','Unnamed: 0','no','type of role','title']	usd.png',dpi=300,bbox inches='tight')	palette=my colors)
df.drop(columns, inplace=True, axis=1)	plt.show()	plt.xlabel('Work Year')
df.head()	data=list(df.groupby(['work_year'])['work_year'].count())	plt.ylabel('Salary in USD')
df=df.merge(df2,left_on='employee_residence',right_on='alph	plt.figure(figsize=(5,3),dpi=300)	plt.savefig('Salary in USD vs year.png',dpi=300,
a-2',how='left')	#plt.title('Freq of year')	bbox inches='tight')
df.drop(['alpha-2', 'employee_residence'], inplace=True,	#pit.title(Freq of year) label1 = ['2020', '2021', '2022', '2023']	plt.figure(figsize=(5,3),dpi=300)
axis=1)	# Creating plot	plt.title('Salary in USD vs Remote ratio')
df.rename(columns={'region':'employee_residence'},	plt.pie(data, labels =	my_colors = {0: '#965cc8', 50: '#c85c8e', 100:
inplace=True) df=df.merge(df2,left on='company location',right on='alpha-	label1,autopct='%1.2f%%',colors=['#965cc8','#c85c8e',	'#8ec85c'} sns.boxplot(data=df,
2',how='left') df dron(['alpha 2' 'company location'] inplace=True avic=1)	plt.title(") # show plot	x='remote_ratio',
df.drop(['alpha-2', 'company_location'], inplace=True, axis=1)	# show plot	y='salary_in_usd',palette=my_colors)
df.rename(columns={'region':'company_location'},	plt.savefig('Freq of year.png',dpi=300,bbox_inches='tight')	plt.xlabel('Remote ratio')
inplace=True)	plt.show()	plt.xticks([0,1,2], ['No remote work', 'Partially remote
df = df.loc[df["employment_type"] == 'FT']	data=list(df.groupby(['experience_level'])	work',
df.drop(['employment_type'], inplace=True, axis=1)	['experience_level'].count())	'Fully remote work'],fontsize=6)
features = ['work_year', 'experience_level',	plt.figure(figsize=(5,3),dpi=300)	plt.ylabel('Salary in USD')
'employee_residence','remote_ratio','company_location',	#plt.title('Freq of experience_level')	plt.savefig('Salary in USDvs Remote
'company_size','leadership','role type']	label1 = ['EN', 'EX', 'MI', 'SE']	ratio.png',dpi=300,
x = df.loc[:, features]	# Creating plot	bbox_inches='tight')
y = df.loc[:, ['salary_in_usd']]	plt.pie(data, labels = label1,autopct='%1.2f%%',	plt.show()
from sklearn.model_selection import train_test_split	colors=['#965cc8','#c85c8e','#8ec85c','#5cc896'])	plt.figure(figsize=(5,3),dpi=300)
from sklearn.datasets import load_iris	plt.title(")	plt.title('Salary in USD vs company size')
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,	# show plot	my_colors = {'M': '#965cc8', 'L': '#c85c8e', 'S':
random_state=123)	plt.savefig('Freq of	'#8ec85c'}
df2 =pd.read_csv(r'D:\UOC1\3\2nd sem\ST 3082\final	experience_levely.png',dpi=300,bbox_inches='tight')	sns.boxplot(data=df,
project\eda\all.csv')	plt.show()	x='company_size',
columns = ['alpha-2','region']	data=list(df.groupby(['remote_ratio'])['remote_ratio'].count(y='salary_in_usd',palette=my_colors,
df2 = df2.loc[:, columns]))	order=['S','M','L'])
df3 =pd.read_csv(r'D:\UOC1\3\2nd sem\ST 3082\final	plt.figure(figsize=(6,4),dpi=300)	plt.xlabel('Company size')
project\eda\file1.csv')	label1 = ['No remote work', 'Partially remote work',	plt.ylabel('Salary in USD')
df4 =pd.read_csv(r'D:\UOC1\3\2nd sem\ST 3082\final	'Fully remote work']	plt.savefig('SalaryinUSDvs
project\eda\type.csv')	#plt.title('Freq of remote_ratio')	company_size.png',dpi=300,bbox_inches='tight')
df5 =pd.read_csv(r'D:\UOC1\3\2nd sem\ST 3082\final	# Creating plot	plt.show()
project\eda\EL.csv')	plt.pie(data, labels =	plt.figure(figsize=(5,3),dpi=300)
df6 =pd.read_csv(r'D:\UOC1\3\2nd sem\ST 3082\final	label1,autopct='%1.2f%%',colors=['#965cc8','#c85c8e',	plt.title('Salary in USD vs employee residence')
project\eda\RR.csv')	'#8ec85c'])	my_colors = {'Americas': '#965cc8', 'Europe':
df7 =pd.read_csv(r'D:\UOC1\3\2nd sem\ST 3082\final	plt.title(")	'#c85c8e',
project\eda\CS.csv')	# show plot	'Oceania': '#8ec85c','Asia': '#5cc896','Africa':
df=df.merge(df3,left_on='job_title',right_on='title',how='left')	plt.savefig('Freq of	'#965cc8'}
df=df.merge(df4,left_on='type of	remote_ratio.png',dpi=300,bbox_inches='tight')	sns.boxplot(data=df,
role',right_on='no',how='left')	plt.show()	x='employee_residence',
df = df.loc[df["employment_type"] == 'FT']	data=list(df.groupby(['leadership'])['leadership'].count())	y='salary_in_usd',palette=my_colors)
df.drop(['employment_type'], inplace=True, axis=1)	data=list(df.groupby(['company_size'])	plt.xlabel('Employee residence')
columns = ['salary_currency','salary','job_title',	['company_size'].count())	plt.ylabel('Salary in USD')
'Unnamed: 0','no','type of role','title']	plt.figure(figsize=(5,3),dpi=300)	plt.savefig('SalaryinUSDvs
df.drop(columns, inplace=True, axis=1)	label1 = ['L', 'M', 'S']	employee_residence.png',dpi=300,bbox_inches='tight
df=df.merge(df2,left_on='employee_residence',right_on='alph	#plt.title('Freq of company size')	")
a-2',how='left')	# Creating plot	plt.show()
df.drop(['alpha-2', 'employee_residence'], inplace=True,	plt.pie(data, labels =	plt.figure(figsize=(5,3),dpi=300)
axis=1)	label1,autopct='%1.2f%%',colors=['#965cc8',	plt.title('Salary in USD vs leadership')
df.rename(columns={'region':'employee residence'},	'#c85c8e','#8ec85c'])	my_colors = {0: '#965cc8', 1: '#c85c8e'}
inplace=True)	plt.title(")	·= · · · · · · · · · · · · · · · · · ·
features = ['work year','experience level',	# show plot	
'employee residence', remote ratio', company location',	plt.savefig('Freq of company	
'company_size', 'leadership', 'role type']	size1.png',dpi=300,bbox inches='tight')	
x = df.loc[:, features]	plt.show()	
y = df.loc[:, ['salary_in_usd']]	plt.figure(figsize=(5,5),dpi=300)	
from sklearn.model selection import train test split	F . C. M. St. Server (4)41/44.	
from sklearn.datasets import load_iris		
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,		
A_ddinin_test,y_ddininy_test=train_test_spirit(x,y,test_size=0.2,	i e e e e e e e e e e e e e e e e e e e	

sns.boxplot(data=df, x='leadership', y='salary_in_usd',	mport scipy.stats as stats	#Onehotencoding
palette=my_colors)	#Chi-squared test statistic, sample size, and	x_train = pd.get_dummies(x_train, columns =
plt.xlabel('Leadership')	minimum of rows and columns	['employee residence','company location','role
plt.ylabel('Salary in USD')	X2 = stats.chi2 contingency(data crosstab,	type'])
plt.savefig('Salary in USD vs leadership.png',dpi=300,	correction=False)[0]	x_test = pd.get_dummies(x_test, columns =
bbox_inches='tight')	minDim = min(data_crosstab.shape)-1	['employee_residence','company_location','role
plt.show()	mmbim = mm(data_crosstab.snape) 1	type'])
plt.figure(figsize=(5,3),dpi=300)	Healaulata Cramaria V	x_test.head()
plt.title('Salary in USD vs company location')	#calculate Cramer's V	from sklearn.linear_model import Ridge
my_colors = {'Americas': '#965cc8', 'Europe': '#c85c8e',	V = np.sqrt((X2/n) / minDim)	from sklearn.linear_model import Lasso
'Oceania': '#8ec85c','Asia': '#5cc896','Africa': '#965cc8'}		from sklearn.linear_model import ElasticNet
sns.boxplot(data=df,		from sklearn.metrics import mean_squared_error
x='company_location', y='salary_in_usd',palette=my_colors)	#display Cramer's V	from sklearn.metrics import
plt.xlabel('Company location')	print(V)	mean absolute percentage error, r2 score
plt.ylabel('Salary in USD')	data_crosstab =	#Ridge
plt.savefig('Salary in USD vs	pd.crosstab(x_train['employee_residence'],	ridge = Ridge(alpha=1)
company_location.png',dpi=300,bbox_inches='tight')	x_train['role type'],	ridge.fit(x train, y train)
plt.show()	margins = False)	y pred = ridge.predict(x test)
	import scipy.stats as stats	
plt.figure(figsize=(5,3),dpi=300)	#Chi-squared test statistic, sample size, and	rmse_ridge = np.sqrt(mean_squared_error(y_test,
plt.title(")		y_pred))
my_colors = {'EN': '#965cc8', 'MI': '#c85c8e', 'SE': '#8ec85c',	minimum of rows and columns	mape_ridge =
'EX': '#5cc896'}	X2 = stats.chi2_contingency(data_crosstab,	mean_absolute_percentage_error(y_test, y_pred)
sns.boxplot(data=df,	correction=False)[0]	rmse_ridge
x='work year',	minDim = min(data_crosstab.shape)-1	mape ridge
y='salary_in_usd',hue='experience_level',palette=my_colors,		#Lasso
hue order=['EN','MI','SE','EX'])		mean_absolute_percentage_error, r2_score
plt.xlabel('Work year')	#calculate Cramer's V	lasso = Lasso(alpha=1)
	V = np.sqrt((X2/n) / minDim)	
plt.ylabel('Salary in USD')	1 ' ' ' ' ' ' '	lasso.fit(x_train, y_train)
plt.savefig('Salary experience level work		y_pred = lasso.predict(x_test)
year.png',dpi=300,bbox_inches='tight')	#display Cramer's V	rmse_lasso = np.sqrt(mean_squared_error(y_test,
plt.show()	print(V)	y_pred))
x=df.groupby(['work_year'])['salary_in_usd'].mean()		mape_lasso =
plt.figure(figsize=(5,3),dpi=300)	data_crosstab	mean_absolute_percentage_error(y_test, y_pred)
plt.plot(x,color='red',marker='*')	pd.crosstab(x_train['company_location'],	rmse lasso
plt.title('Avarage salary vs Year')	x_train['leadership'],	mape lasso
plt.xticks([2020,2021,2022,2023])	margins = False)	#Elastic Net
plt.xlabel('Year')	import scipy.stats as stats	elastic_net = ElasticNet(alpha=1, l1_ratio=0.5)
plt.savefig('avgsalaryvsyear.png',dpi=300,bbox inches='tight')	#Chi-squared test statistic, sample size, and	
	minimum of rows and columns	elastic_net.fit(x_train, y_train)
plt.show()	X2 = stats.chi2_contingency(data_crosstab,	y_pred = elastic_net.predict(x_test)
c_color=('#965cc8','#c85c8e','#8ec85c','#5cc896')	correction=False)[0]	rmse_elastic = np.sqrt(mean_squared_error(y_test,
y=list(df.groupby(['work_year'])['salary_in_usd'].mean())	minDim = min(data_crosstab.shape)-1	y_pred))
x=['2020','2021','2022','2023']	#calculate Cramer's V	mape_elastic =
plt.figure(figsize=(5,3),dpi=300)		mean_absolute_percentage_error(y_test, y_pred)
plt.title('Avg salary vs work year')	V = np.sqrt((X2/n) / minDim)	rmse elastic
bars=plt.bar(x,y,color=c_color)		Mape_elastic
plt.savefig('Avg salary vs work year.png',dpi=300,figsize=(6,5))		y=[105,1895,296]
plt.show()	#display Cramer's V	plt.figure(figsize=(5,3),dpi=300)
	print(V)	
	print(v)	nlt title/'Eros of company cize')
df.groupby(['experience_level'])['salary_in_usd'].mean()	data_crosstab =	plt.title('Freq of company size')
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','MI','SE','EX']		bars=plt.bar(x,y,color=c_color)
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','MI','SE','EX'] y=[76565.097701,103574.322896,150691.900324,200210.136364]	data_crosstab =	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','MI','SE','EX'] y=[75656.097701,103574.322896,150691.900324,200210.136364] plt.figure(figsize=[5,3),dpi=300)	data_crosstab = pd.crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight')
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EX'] y=[76565.097701,103574.322896,150691.900324,200210.136364] plt.figure(figsize=[5,3],dpi=300) plt.title('Avg salary vs experience level')	data_crosstab = pd.crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show()
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','MI','SE','EX'] y=[75656.097701,103574.322896,150691.900324,200210.136364] plt.figure(figsize=[5,3),dpi=300)	data_crosstab = pd.crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight')
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EX'] y=[76565.097701,103574.322896,150691.900324,200210.136364] plt.figure(figsize=[5,3],dpi=300) plt.title('Avg salary vs experience level')	data_crosstab = pd.crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show()
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Ml','SE','EX'] y=[76565.097701,103574.322896,150691.900324,200210.136364] plt.figure(figsize=(5,3),dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color)	data_crosstab = pd.crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df('employee_residence'))) y=list(df.groupby(['employee_residence'])
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EX'] y=[76565.097701,103574.322896,150691.900324,200210.136364] plt.figure(figsize=(5,3),dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level,pmg',dpi=300,bbox_inches='tight')	data_crosstab = pd.crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(dfl'employee_residence'])) y=list(df.groupby(['employee_residence']) ['employee_residence'].count())
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EX'] y=[76565.097701,103574.322896,150691.900324,200210.136364] plt.figure(figsize=[5,3],dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level,'') plt.show() plt.show()	data_crosstab = pd.crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df('employee_residence'])) y=list(df.groupby(['employee_residence']) ['employee_residence'].count()) x=['Africa','Americas','Asia','Europe','Oceania']
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EX'] y=[76565.097701,013574.322896,150691.900324,200210.136364] plt.fitgure(figsize=(5,3),dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level, avg salary vs experience level, ng',dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['work_year']]['work_year'].count())	data_crosstab = pd.crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df['employee_residence'])) y=list(df.groupby(['employee_residence']) ['employee_residence'].count()) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figsize=(5,3),dpi=300)
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EX'] y=[76565.097701,103574.322896,150691.900324,200210.136364] plt.figure(figsize=[5,3],dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level.png',dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['work_year'])['work_year'].count()) x=[2020,2021,2022,2023]	data_crosstab = pd.crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df['employee_residence'])) y=list(df.groupby(['employee_residence']) ['employee_residence'].count()) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of employee residence')
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EX'] y=[76565.097701,103574.322896,150691.900324,200210.136364] plt.figure(figsize=[5,3],dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level, bar, defined by salary vs experience level, png',dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['work_year']]['work_year'].count()) x=[2020,2021,2022,2023] plt.figure(figsize=(5,3),dpi=300)	data_crosstab = pd.crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df['employee_residence'])) y=list(df.groupby(['employee_residence']) ['employee_residence'].count()) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figsize=[5,3],dpi=300) plt.title('Freq of employee residence') bars=plt.bar(x,y,color='#c85c8e')
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EX'] y=[76565.097701,103574.322896,150691.900324,200210.136364] plt.figure(figsize=(5,3),dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level, vs experience level, vs experience level, png',dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['work_year'])['work_year'].count()) x=[2020,2021,2022,2023] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of Year')	data_crosstab = pd.crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df('employee_residence'])) y=list(df.groupby(['employee_residence']) ['employee_residence'].count()) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of employee residence') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of employee
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EX'] y=[75656.097701,103574.322896,150691.900324,200210.136364] plt.figure(figsize=(5,3),dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level.png',dpi=300,bbox_inches='tight') plt.show() y=[ist(df_groupby(['work_year'])['work_year'].count()) x=[2020,2021,2022,2023] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of Year') plt.xticks([2020,2021,2022,2023])	data_crosstab = pd.crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df['employee_residence'])) y=list(df.groupby(['employee_residence']) ['employee_residence'].count()) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of employee residence') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of employee residence.png',dpi=300,bbox_inches='tight')
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EX'] y=[76565.097701,103574.322896,150691.900324,200210.136364] plt.figure(figsize=(5,3),dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level, ys experience level, ys experience level, plt.savefig('Avg salary vs experience level, plt.show() y=[std(f.groupby(['work_year'])['work_year'].count()) x=[2020,2021,2022,2023] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of Year') plt.xticks([2020,2021,2022,2023]) bars=plt.bar(x,y,color=c_color)	data_crosstab = pd.crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df['employee_residence'])) y=list(df.groupby(['employee_residence']) ['employee_residence'].count()) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of employee residence') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of employee residence.png',dpi=300,bbox_inches='tight') plt.show()
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EX'] y=[76565.097701,103574.322896,150691.900324,200210.136364] pit.figure(figsize=[5,3],dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level, 'bars=plt.bar(x),golor=c_color) plt.savefig('Avg salary vs experience level, 'png', dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['work_year']]['work_year'].count()) x=[2020,2021,2022,2023] plt.figure(figsize=[5,3],dpi=300) plt.title('Freq of Year') plt.xticks([2020,2021,2022,2023]) bars=plt.bar(x,y,color=c_color) print(x)	data_crosstab = pd.crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df('employee_residence'])) y=list(df.groupby(['employee_residence'])) y=list(df.groupby(['employee_residence'])) y=list(df.groupby(['employee_residence'])) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of employee residence') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of employee residence.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df('company_location')))
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EX'] y=[76565.097701,103574.322896,150691.900324,200210.136364] plt.figure(figsize=[5,3],dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level, 'bars=plt.bar(x),golor=c_color) plt.savefig('Avg salary vs experience level, 'png',dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['work_year'])['work_year'].count()) x=[2020,2021,2022,2023] plt.figure(figsize=[5,3],dpi=300) plt.title('Freq of Year') plt.xticks([2020,2021,2022,2023]) bars=plt.bar(x,y,color=c_color) print(x) plt.savefig('Freq of Year1.png',dpi=300,bbox_inches='tight')	data_crosstab = pd.crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df['employee_residence'])) y=list(df.groupby(['employee_residence'])) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of employee residence') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of employee residence.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df['company_location'])) y=list(df.groupby(['company_location'])
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EX'] y=[76565.097701,103574.322896,150691.900324,200210.136364] plt.figure(figsize=(5,3),dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level.png',dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['work_year'])['work_year'].count()) x=[2020,2021,2022,2023] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of Year') plt.xticks([2020,2021,2022,2023]) bars=plt.bar(x,y,color=c_color) print(x) plt.savefig('Freq of Year1.png',dpi=300,bbox_inches='tight') plt.savefig('Freq of Year1.png',dpi=300,bbox_inches='tight') plt.show()	data_crosstab = pd.crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df['employee_residence'])) y=list(df.groupby(['employee_residence'])) ['employee_residence'].count()) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of employee residence') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of employee residence,'png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df['company_location'])) y=list(df.groupby(['company_location']) ['company_location'].count())
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EX'] y=[76565.097701,103574.322896,150691.900324,200210.136364] plt.figure(figsize=[5,3],dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level, 'bars=plt.bar(x),golor=c_color) plt.savefig('Avg salary vs experience level, 'png',dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['work_year'])['work_year'].count()) x=[2020,2021,2022,2023] plt.figure(figsize=[5,3],dpi=300) plt.title('Freq of Year') plt.xticks([2020,2021,2022,2023]) bars=plt.bar(x,y,color=c_color) print(x) plt.savefig('Freq of Year1.png',dpi=300,bbox_inches='tight')	data_crosstab = pd.crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df['employee_residence'])) y=list(df.groupby(['employee_residence'])) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of employee residence') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of employee residence.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df['company_location'])) y=list(df.groupby(['company_location'])
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EX'] y=[76565.097701,103574.322896,150691.900324,200210.136364] plt.figure(figsize=(5,3),dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level.png',dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['work_year'])['work_year'].count()) x=[2020,2021,2022,2023] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of Year') plt.xticks([2020,2021,2022,2023]) bars=plt.bar(x,y,color=c_color) print(x) plt.savefig('Freq of Year1.png',dpi=300,bbox_inches='tight') plt.savefig('Freq of Year1.png',dpi=300,bbox_inches='tight') plt.show()	data_crosstab = pd.crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df['employee_residence'])) y=list(df.groupby(['employee_residence'])) ['employee_residence'].count()) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of employee residence') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of employee residence,'png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df['company_location'])) y=list(df.groupby(['company_location']) ['company_location'].count())
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EX'] y=[76565.097701,103574.322896,150691.900324,200210.136364] pit.figure(figsize=[5,3],dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level, 'bars=plt.bar(x,y,color=c_color) plt.show() y=list(df.groupby(['work_year'])['work_year'].count()) x=[2020,2021,2022,2023] plt.figure(figsize=[5,3],dpi=300) plt.title('Freq of Year') plt.xticks([2020,2021,2022,2023]) bars=plt.bar(x,y,color=c_color) print(x) plt.savefig('Freq of Year1.png',dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['experience_level'])['experience_level'].count()) x=['EN','EX','Mi','SE']	data_crosstab = pd.crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df['employee_residence'])) y=list(df.groupby(['employee_residence'])) y=list(df.groupby(['employee_residence'])) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of employee residence') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of employee residence.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df['company_location'])) y=list(df.groupby(['company_location']) ['company_location'].count()) x=['Africa','Americas','Asia','Europe','Oceania']
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EX'] y=[75656.097701,103574.322896,150691.900324,200210.136364] plt.figure(figsize=(5,3),dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level.png',dpi=300,bbox_inches='tight') plt.show() y=[ist(df.groupby(['work_year'])['work_year'].count()) x=[2020,2021,2022,2023] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of Year') plt.xticks([2020,2021,2022,2023]) bars=plt.bar(x,y,color=c_color) print(x) plt.savefig('Freq of Year1.png',dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['experience_level'])['experience_level'].count()) x=['EN','EX','Mi','SE'] y=[174,66,511,1545]	data_crosstab = pd.crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df['employee_residence'])) y=list(df.groupby(['employee_residence'])) ['employee_residence'].count()) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of employee residence') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of employee residence.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df['company_location'])) y=list(df.groupby(['company_location']) ['company_location'].count()) x=['Africa', 'Americas', 'Asia', 'Europe', 'Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of company location')
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EX'] y=[76565.097701,103574.322896,150691.900324,200210.136364] plt.figure(figsize=[5,3],dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level,npg',dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['work_year'])['work_year'].count()) x=[2020,2021,2022,2023] plt.figure(figsize=[5,3),dpi=300) plt.title('Freq of Year') plt.xticks([2020,2021,2022,2023]) bars=plt.bar(x,y,color=c_color) print(x) plt.savefig('Freq of Year1.png',dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['experience_level'])['experience_level'].count()) x=['EN','EN','Mi','SE'] y=[174,66,511,1545] plt.figure(figsize=[5,3),dpi=300)	data_crosstab = data_crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df['employee_residence'])) y=list(df.groupby(['employee_residence'])) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figize=(5,3),dpi=300) plt.title('Freq of employee residence') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of employee residence') bright('Freq of employee residence') bright('Freq of employee residence') bright('Freq of employee residence') bright('Freq of employee residence') plt.show() print(pd.unique(df['company_location'])) y=list(df.groupby(['company_location']) ('company_location').count()) x=['Africa', 'Americas', 'Asia', 'Europe', 'Oceania'] plt.figure(figize=(5,3),dpi=300) plt.title('Freq of company_location') bars=plt.bar(x,y,color='#c85c8e')
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EX'] y=[76565.097701,103574.322896,150691.900324,200210.136364] plt.figure(figsize=[5,3],dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level, bars=plt.bar(x,y,color=c_tight') plt.show() y=list(df.groupby(['work_year']]['work_year'].count()) x=[2020,2021,2022,2023] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of Year') plt.xicks([2020,2021,2022,2023]) bars=plt.bar(x,y,color=c_color) print(x) plt.savefig('Freq of Year1.png',dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['experience_level'])['experience_level'].count()) x=['EN','EX','Mi','SE'] y=[174,66,511,1545] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of experience level')	data_crosstab = data_crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df('employee_residence'])) y=list(df.groupby(['employee_residence'])) y=list(df.groupby(['employee_residence'])) y=list(df.groupby(['employee_residence'])) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of employee residence') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of employee residence.png',dpi=300,bbox_inches='tight') pit.show() print(pd.unique(df('company_location'])) y=list(df.groupby(['company_location'])) y=list(df.groupby(['company_location']) ['company_location'].count()) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of company location') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of company)
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EX'] y=[75656.097701,103574.322896,150691.900324,200210.136364] plt.figure(figsize=(5,3),dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level.png',dpi=300,bbox_inches='tight') plt.show() y=[ist(df.groupby(['work_year'])['work_year'].count()) x=[2020,2021,2022,2023] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of Year') plt.xticks([2020,2021,2022,2023]) bars=plt.bar(x,y,color=c_color) print(x) plt.savefig('Freq of Year1.png',dpi=300,bbox_inches='tight') plt.show() y=[ist(df.groupby(['experience_level'])['experience_level'].count()) x=['EN','EX','Mi','SE'] y=[174,66,511,1545] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of experience level') bars=plt.bar(x,y,color=c_color)	data_crosstab = pd.crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df('employee_residence'])) y=list(df.groupby(['employee_residence'])) y=list(df.groupby(['employee_residence'])) x=['Africa', 'Americas', 'Asia', 'Europe', 'Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of employee residence') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of employee residence.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df['company_location'])) y=list(df.groupby(['company_location'])) ['company_location'].count()) x=['Africa', 'Americas', 'Asia', 'Europe', 'Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of company location') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of company location') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of company location,png',dpi=300,bbox_inches='tight')
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EX'] y=[76565.097701,103574.322896,150691.900324,200210.136364] plt.figure(figsize=(5,3),dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level.png',dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['work_year'])['work_year'].count()) x=[2020,2021,2022,2023] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of Year') plt.xticks([2020,2021,2022,2023]) bars=plt.bar(x,y,color=c_color) print(x) plt.savefig('Freq of Year1.png',dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['experience_level'])['experience_level'].count()) x=['EN','EX','Mi','SE'] y=[174,66,511,1545] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of experience level') plt.savefig('aprience_level') plt.savefig('Freq of experience level') plt.savefig('Freq of experience level)	data_crosstab = data_crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df['employee_residence'])) y=list(df.groupby(['employee_residence'])) ['employee_residence'].count()) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figize=(5,3),dpi=300) plt.title('Freq of employee residence') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of employee residence,'plt.show() print(pd.unique(df['company_location'])) y=list(df.groupby(['company_location']) ['company_location'].count()) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figize=(5,3),dpi=300) plt.title('Freq of company_location') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of company) location.png',dpi=300,bbox_inches='tight') plt.show()
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EX'] y=[76565.097701,103574.322896,150691.900324,200210.136364] plt.figure(figsize=[5,3],dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.show() y=list(df.groupby(['work_year'])['work_year'].count()) x=[2020,2021,2022,2023] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of Year') plt.xicks([2020,2021,2022,2023]) bars=plt.bar(x,y,color=c_color) print(x) plt.savefig('Freq of Year1.png',dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['experience_level'])['experience_level'].count()) x=['EN','EN',''Mi','SE'] y=[74,66,511,1545] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of experience level.png',dpi=300,bbox_inches='tight') plt.savefig('Freq of experience level.png',dpi=300,bbox_inches='tight') plt.savefig('Freq of experience level.png',dpi=300,bbox_inches='tight') plt.show()	data_crosstab = data_crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df('employee_residence'])) y=list(df.groupby(['employee_residence'])) y=list(df.groupby(['employee_residence'])) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of employee residence') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of employee residence.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df['company_location'])) y=list(df.groupby(['company_location'])) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of company_location') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of company_location') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of company_location,'pdi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['role type'])['role type'].count())
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EX'] y=[76565.09701,103574.322896,150691.900324,200210.136364] plt.figure(figsize=(5,3),dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level,png',dpi=300,bbox_inches='tight') plt.show() y=[stdf.groupby(['work_year'])['work_year'].count()) x=[2020,2021,2022,2023] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of Year') plt.xticks([2020,2021,2022,2023]) bars=plt.bar(x,y,color=c_color) print(x) plt.savefig('Freq of Year1.png',dpi=300,bbox_inches='tight') plt.show() y=[stdf.groupby(['experience_level'])['experience_level'].count()) x=[Yen', 'Ex', 'Mi', 'Se'] y=[74,66,511,1545] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of experience level.png',dpi=300,bbox_inches='tight') blt.savefig('Freq of experience level.png',dpi=300,bbox_inches='tight') plt.show() c_color=(#965cc8', '#c85c8e', '#8ec85c')	data_crosstab = data_crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df('employee_residence'])) y=list(df.groupby(['employee_residence'])) y=list(df.groupby(['employee_residence'])) y=list(df.groupby(['employee_residence'])) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of employee residence') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of employee residence.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df('company_location'])) y=list(df.groupby(['company_location'])) y=list(df.groupby(['company_location'])) plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of company location') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of company location') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of company location') y=list(df.groupby(['role type'])('role type'].count()) x=['Data Analyst','Data Architect','Data Engineer','ML
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EX'] y=[76565.097701,103574.322896,150691.900324,200210.136364] plt.figure(figsize=[5,3],dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level.png',dpi=300,bbox_inches='tight') plt.show() y=[stdf.groupby(['work_year'])['work_year'].count()) x=[2020,2021,2022,2023] plt.figure(figsize=[5,3],dpi=300) plt.title('Freq of Year') plt.xticks([2020,2021,2022,2023]) bars=plt.bar(x,y,color=c_color) print(x) plt.savefig('Freq of Year1.png',dpi=300,bbox_inches='tight') plt.show() y=[ist(df.groupby(['experience_level'])['experience_level'].count()) x=['EN','EX','Mi','SE'] y=[174,66,511,1545] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of experience level') plt.show() c_color=("#965cc8",'#c85c8e",'#8ec85c") y=list(df.groupby(['remote_ratio'])['remote_ratio'].count())	data_crosstab = data_crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df('employee_residence'])) y=list(df.groupby(['employee_residence'])) ['employee_residence'].count()) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of employee residence') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of employee residence,'plt.show() print(pd.unique(df['company_location'])) y=list(df.groupby(['company_location'])) ['company_location'].count()) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of company location') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of company location') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of company location) y=list(df.groupby(['role type'])['role type'].count()) x=['Data Analyst ','Data Architect','Data Engineer','ML Ops Engineer','Business Intelligence Analyst','Data
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EX'] y=[76565.097701,103574.322896,150691,900324,200210.136364] plt.figure(figsize=[5,3],dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level, ng, dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['work_year'])['work_year'].count()) x=[2020,2021,2022,2023] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of Year') plt.xtick([2020,2021,2022,2023]) bars=plt.bar(x,y,color=c_color) print(x) plt.savefig('Freq of Year1.png',dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['experience_level'])['experience_level'].count()) x=['EN', 'EN', 'Mi', 'SE'] y=[174,66,511,1545] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of experience level.png',dpi=300,bbox_inches='tight') plt.show() c_color=('#965cc8', '#c85c8e', '#8ec85c') y=list(df.groupby(['remote_ratio'])['remote_ratio'].count()) x=['No remote work', 'Partially remote', 'Fully remote']	data_crosstab = pd.crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df['employee_residence'])) y=list(df.groupby(['employee_residence']) ('employee_residence'].count()) x=['Africa', 'Americas', 'Asia', 'Europe', 'Oceania'] plt.figure(figisize=(5,3),dpi=300) plt.title('Freq of employee residence') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of employee residence) brishow() print(pd.unique(df['company_location'])) y=list(df.groupby(['company_location'])) y=list(df.groupby(['company_location'])) x=['Africa', 'Americas', 'Asia', 'Europe', 'Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of company location') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of company location') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of company location,png',dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['role type'])['role type'].count()) x=['Data Analyst', 'Data Architect', 'Data Engineer', 'ML Ops Engineer', 'Business Intelligence Analyst', 'Data Product Manager', 'Data Scientist', 'Data
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EX'] y=[76565.097701,103574.322896,150691.900324,200210.136364] plt.figure(figsize=[5,3],dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level.png',dpi=300,bbox_inches='tight') plt.show() y=[stdf.groupby(['work_year'])['work_year'].count()) x=[2020,2021,2022,2023] plt.figure(figsize=[5,3],dpi=300) plt.title('Freq of Year') plt.xticks([2020,2021,2022,2023]) bars=plt.bar(x,y,color=c_color) print(x) plt.savefig('Freq of Year1.png',dpi=300,bbox_inches='tight') plt.show() y=[ist(df.groupby(['experience_level'])['experience_level'].count()) x=['EN','EX','Mi','SE'] y=[174,66,511,1545] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of experience level') plt.show() c_color=("#965cc8",'#c85c8e",'#8ec85c") y=list(df.groupby(['remote_ratio'])['remote_ratio'].count())	data_crosstab = pd.crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df('employee_residence'])) y=list(df.groupby(['employee_residence'])) ['employee_residence'].count()) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of employee residence') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of employee residence,'plt.show() print(pd.unique(df['company_location'])) y=list(df.groupby(['company_location'])) ['company_location'].count()) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of company location') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of company location') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of company location) y=list(df.groupby(['role type'])['role type'].count()) x=['Data Analyst ','Data Architect','Data Engineer','ML Ops Engineer','Business Intelligence Analyst','Data
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EX'] y=[76565.097701,103574.322896,150691,900324,200210.136364] plt.figure(figsize=[5,3],dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level, ng, dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['work_year'])['work_year'].count()) x=[2020,2021,2022,2023] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of Year') plt.xtick([2020,2021,2022,2023]) bars=plt.bar(x,y,color=c_color) print(x) plt.savefig('Freq of Year1.png',dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['experience_level'])['experience_level'].count()) x=['EN', 'EN', 'Mi', 'SE'] y=[174,66,511,1545] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of experience level.png',dpi=300,bbox_inches='tight') plt.show() c_color=('#965cc8', '#c85c8e', '#8ec85c') y=list(df.groupby(['remote_ratio'])['remote_ratio'].count()) x=['No remote work', 'Partially remote', 'Fully remote']	data_crosstab = pd.crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df['employee_residence'])) y=list(df.groupby(['employee_residence']) ('employee_residence'].count()) x=['Africa', 'Americas', 'Asia', 'Europe', 'Oceania'] plt.figure(figisize=(5,3),dpi=300) plt.title('Freq of employee residence') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of employee residence) brishow() print(pd.unique(df['company_location'])) y=list(df.groupby(['company_location'])) y=list(df.groupby(['company_location'])) x=['Africa', 'Americas', 'Asia', 'Europe', 'Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of company location') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of company location') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of company location,png',dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['role type'])['role type'].count()) x=['Data Analyst', 'Data Architect', 'Data Engineer', 'ML Ops Engineer', 'Business Intelligence Analyst', 'Data Product Manager', 'Data Scientist', 'Data
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EX'] y=[75656.09701,103574.322896,150691.900324,200210.136364] plt.figure(figsize=(5,3),dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level.png',dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['work_year'])['work_year'].count()) x=[2020,2021,2022,2023] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of Year') plt.xticks([2020,2021,2022,2023]) bars=plt.bar(x,y,color=c_color) print(x) plt.savefig('Freq of Year1.png',dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['experience_level'])['experience_level'].count()) x=['EN','Ex','Mi','SE'] y=[174,66,511,1545] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of experience level.png',dpi=300,bbox_inches='tight') plt.show() c_color=('#965cc8','#c85c8e','#8c85c') y=list(df.groupby(['remote_ratio'])['remote_ratio'].count()) x=['No remote work','Partially remote','Fully remote'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of remote ratio')	data_crosstab = pd.crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df('employee_residence'])) y=list(df.groupby(['employee_residence'])) y=list(df.groupby(['employee_residence'])) y=list(df.groupby(['employee_residence'])) x=['africa','Americas','Asia','Europe','Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of employee residence') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of employee residence.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df('company_location'])) y=list(df.groupby(['company_location'])) y=list(df.groupby(['company_location']) plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of company location') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of company location') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of company location.png',dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['role type'])['role type'].count()) x=['Data Analyst ','Data Architect','Data Engineer','ML Ops Engineer','Business Intelligence Analyst','Data Product Manager','Data Scientist','Data Strategist','Other'] plt.figure(figsize=(5,3),dpi=300)
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EX'] y=[76565.097701,103574.322896,150691.900324,200210.136364] plt.figure(figsize=(5,3),dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level, ng',dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['work_year'])['work_year'].count()) x=[2020,2021,2022,2023] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of Year') plt.savefig('Freq of Year1.png',dpi=300,bbox_inches='tight') plt.savefig('Freq of Year1.png',dpi=300,bbox_inches='tight') plt.savefig('Freq of Year1.png',dpi=300,bbox_inches='tight') plt.sfigure(figsize=(5,3),dpi=300) plt.title('Freq of experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of experience level.png',dpi=300,bbox_inches='tight') plt.show() c_color=('#965cc8', '#c85c8e', '#8ec85c') y=list(df.groupby(['remote_ratio'])['remote_ratio'].count()) x=['No remote work', 'Partially remote', 'Fully remote'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of remote ratio') bars=plt.bar(x,y,color=c_color)	data_crosstab = = pd.crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df['employee_residence'])) y=list(df.groupby(['employee_residence']) ('employee_residence'].count()) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of employee residence') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of employee residence-plt.show() print(pd.unique(df['company_location'])) y=list(df.groupby(['company_location'])) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of company_location') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of company_location') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of company_location,png',dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['role type'])['role type'].count()) x=['Data Analyst ','Data Architect','Data Engineer','ML Ops Engineer','Business Intelligence Analyst','Data Product Manager','Data Scientist','Data Strategist','Other'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of role type')
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EN'] y=[76565.097701,103574.322896,150691.900324,200210.136364] plt.figure(figsize=[5,3],dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level, ng',dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['work_year'])['work_year'].count()) x=[2020,2021,2022,2023] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of Year') plt.xicks([2020,2021,2022,2023]) bars=plt.bar(x,y,color=c_color) print(x) plt.savefig('Freq of Year1.png',dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['experience_level'])['experience_level'].count()) x=['EN','EN','Mi','SE'] y=[174,66,511,1545] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of experience level.png',dpi=300,bbox_inches='tight') plt.savefig('Freq of experience level.png',dpi=300,bbox_inches='tight') plt.show() c_color=('#965cc8', '#c85c8e', '#8ec85c') y=list(df.groupby(['remote_ratio'])['remote_ratio'].count()) x=['No remote work', 'Partially remote', 'Fully remote'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of remote ratio') bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of remote ratio') bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of remote ratio)	data_crosstab	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df('employee_residence'])) y=list(df.groupby(['employee_residence']) ('employee_residence'].count()) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of employee residence') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of employee residence.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df['company_location'])) y=list(df.groupby(['company_location'])) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of company location') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of company location') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of company location') y=list(df.groupby(['role type'])['role type'].count()) x=['Data Analyst','Data Architect','Data Engineer','ML Ops Engineer','Business Intelligence Analyst','Data Strategist','Other'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of role type') plt.xticks(rotation = 45)
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EX'] y=[75656.09701,103574.322896,150691.900324,200210.136364] plt.figure(figsize=(5,3),dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level.png',dpi=300,bbox_inches='tight') plt.show() y=[stdf.groupby(['work_year'])['work_year'].count()) x=[2020,2021,2022,2023] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of Year') plt.xticks([2020,2021,2022,2023]) bars=plt.bar(x,y,color=c_color) print(x) plt.show() y=[stdf.groupby(['experience_level'])['experience_level'].count()) x=[YeN','EX','Mi','SE'] y=[174,66,511,1545] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of experience level.png',dpi=300,bbox_inches='tight') plt.show() c_color=('#965cc8', '#c85c8e', '#8ec85c') y=[ist(df.groupby(['remote_ratio'])['remote_ratio'].count()) x=['No remote work', 'Partially remote', 'Fully remote'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of remote ratio') bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of remote ratio.png',dpi=300,bbox_inches='tight')	data_crosstab = = pd.crosstab(x_train['company_location'],	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df('employee_residence'])) y=list(df.groupby(['employee_residence'])) y=list(df.groupby(['employee_residence'])) y=list(df.groupby(['employee_residence'])) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of employee residence') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of employee residence.png',dpi=300,bbox_inches='tight') pit.show() print(pd.unique(df('company_location'])) y=list(df.groupby(['company_location'])) y=list(df.groupby(['company_location']) plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of company location') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of company location') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of company location,png',dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['role type'])['role type'].count()) x=['Data Analyst ','Data Architect','Data Engineer','ML Ops Engineer','Business Intelligence Analyst','Data Product Manager','Data Scientist','Data Strategist','Other'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of role type') plt.xicks(rotation = 45) bars=plt.bar(x,y,color='#c85c8e')
df.groupby(['experience_level'])['salary_in_usd'].mean() x=['EN','Mi','SE','EN'] y=[76565.097701,103574.322896,150691.900324,200210.136364] plt.figure(figsize=[5,3],dpi=300) plt.title('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level') bars=plt.bar(x,y,color=c_color) plt.savefig('Avg salary vs experience level, ng',dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['work_year'])['work_year'].count()) x=[2020,2021,2022,2023] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of Year') plt.xicks([2020,2021,2022,2023]) bars=plt.bar(x,y,color=c_color) print(x) plt.savefig('Freq of Year1.png',dpi=300,bbox_inches='tight') plt.show() y=list(df.groupby(['experience_level'])['experience_level'].count()) x=['EN','EN','Mi','SE'] y=[174,66,511,1545] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of experience level.png',dpi=300,bbox_inches='tight') plt.savefig('Freq of experience level.png',dpi=300,bbox_inches='tight') plt.show() c_color=('#965cc8', '#c85c8e', '#8ec85c') y=list(df.groupby(['remote_ratio'])['remote_ratio'].count()) x=['No remote work', 'Partially remote', 'Fully remote'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of remote ratio') bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of remote ratio') bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of remote ratio)	data_crosstab	bars=plt.bar(x,y,color=c_color) plt.savefig('Freq of company size.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df('employee_residence'])) y=list(df.groupby(['employee_residence']) ('employee_residence'].count()) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of employee residence') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of employee residence.png',dpi=300,bbox_inches='tight') plt.show() print(pd.unique(df['company_location'])) y=list(df.groupby(['company_location'])) x=['Africa','Americas','Asia','Europe','Oceania'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of company location') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of company location') bars=plt.bar(x,y,color='#c85c8e') plt.savefig('Freq of company location') y=list(df.groupby(['role type'])['role type'].count()) x=['Data Analyst','Data Architect','Data Engineer','ML Ops Engineer','Business Intelligence Analyst','Data Strategist','Other'] plt.figure(figsize=(5,3),dpi=300) plt.title('Freq of role type') plt.xticks(rotation = 45)

```
dsd=df[df["company_location"] != df["employee_residence"]]
                                                                                                                                            rf random.best params
                                                                                # Import the model we are using
plt.figure(figsize=(5,3),dpi=300)
                                                                                                                                           # Use the forest's predict method on the test data
sns.boxplot(data=dsd, y='salary_in_usd')
                                                                                                 sklearn.ensemble
                                                                                                                                import
                                                                                RandomForestRegressor
                                                                                                                                           predictions2 = rf_random.predict(x_test)
plt.ylabel('Salary in USD')
plt.savefig('diff.png',dpi=300,bbox_inches='tight')
                                                                                                                                           from sklearn metrics import mean squared error
                                                                                # Instantiate model with 1000 decision trees
plt.show()
                                                                                                                                           mse2 = mean_squared_error(y_test, predictions2)
print("MSE2:", mse2)
                                                                                rf = RandomForestRegressor(n_estimators = 1000,
data_crosstab = pd.crosstab(x_train['employee_residence'],
                                                                                random state = 42)
               x_train['company_location'],
                  margins = False)
                                                                                                                                           rmse2 = np.sqrt(mse2)
print("RMSE2:", rmse2)
                                                                                # Train the model on training data
Data_crosstab
                                                                                rf.fit(x_train, y_train);
import scipy, stats as stats
#Chi-squared test statistic, sample size, and minimum of rows and
                                                                                                                                                               sklearn metrics
                                                                                                                                                                                             import
                                                                                # Use the forest's predict method on the test data
                                                                                                                                           mean_absolute_percentage_error
mape2 = mean_absolute_percentage_error(y_test, predictions2)
columns
                                                                                predictions1 = rf.predict(x_test)
X2 = stats.chi2_contingency(data_crosstab, correction=False)[0]
n = 2296
                                                                                from sklearn.metrics import mean_squared_error
                                                                                                                                           print("MAPE2:", mape2)
minDim = min(data_crosstab.shape)-1
                                                                                mse1 = mean_squared_error(y_test, predictions1)
print("MSE1:", mse1)
                                                                                                                                           from sklearn.metrics import r2 score
                                                                                                                                           rSq2 = r2_score(y_test, predictions2)
print("R-squared2:", rSq2)
Grid Search with Cross Validation
                                                                                rmse1 = np.sqrt(mse1)
#calculate Cramer's V
                                                                                print("RMSE1:", rmse1)
V = np.sqrt((X2/n) / minDim)
                                                                                from
                                                                                                  sklearn.metrics
                                                                                                                                import
                                                                                                                                           from sklearn, model selection import GridSearchCV
#display Cramer's V
                                                                                mean_absolute_percentage_error
                                                                                                                                           # Create the parameter grid based on the results of
print(V)
                                                                                mape1 = mean_absolute_percentage_error(y_test,
                                                                                predictions1)
                                                                                                                                           random search
data_crosstab = pd.crosstab(x_train['employee_residence'],
                                                                                print("MAPE1:", mape1)
                                                                                                                                           param grid = {
               x_train['leadership'],
                                                                                                                                              'bootstrap': [True],
'max_depth': [40,60,80,100],
                  margins = False)
                                                                                from sklearn.metrics import r2_score
#gradient boosting method
                                                                                                                                              'max_features': [2,3],
                                                                                rSq1 = r2_score(y_test, predictions1)
print("R-squared1:", rSq1)
import pandas as pd
                                                                                                                                              max_leatures. [2,3],
'min_samples_leaf: [1,2,3],
'min_samples_split': [3,5,7],
'n_estimators': [500,1000,1500,1800,2000]
from sklearn.ensemble import GradientBoostingRegressor
                                                                                 #hyperparameter tunning in rf
from sklearn.model_selection
from sklearn.metrics import accuracy score
                                                                                from
                                                                                                                                import
from sklearn.model selection import GridSearchCV
                                                                                RandomizedSearchCV
from sklearn.metrics import mean_squared_error
                                                                                                                                           # Instantiate the g
grid_search = GridSearche.,
param_grid = param_grid,
cv = 3, n_jobs = -1, verbose = 2)
                                                                                                                                           # Instantiate the grid search model
                                                                                # Number of trees in random forest
from sklearn.metrics import mean_absolute_percentage_error, r2_score
                                                                                                                                                              GridSearchCV(estimator = rf2,
                                                                                n estimators = [int(x) \text{ for } x \text{ in np.linspace(start} = 200,
model gbm = GradientBoostingRegressor()
                                                                                stop = 2000, num = 10)]
param_grid = {
                                                                                # Number of features to consider at every split
  'n_estimators': [50, 100, 200],
                                                                                max_features = ['auto', 'sqrt']
                                                                                # Maximum number of levels in tree
  'learning_rate': [0.01, 0.1, 0.2],
                                                                                                                                           grid_search.fit(x_train, y_train)
                                                                                max_depth = [int(x) for x in np.linspace(10, 110, num)]
  'max_depth': [3, 4, 5].
                                                                                                                                           grid search.best params
  'min_samples_split': [2, 4, 6]}
                                                                                max_depth.append(None)
# Minimum number of samples required to split a
                            GridSearchCV(estimator=model_gbm,
grid_search
                   =
                                                                                                                                           best_grid = grid_search.best_estimator_
# Use the forest's predict method on the test data
param_grid=param_grid, cv=5)
                                                                                node
best_model = grid_search.best_estimator_
                                                                                                                                           predictions3 = best_grid.predict(x_test)
                                                                                min samples split = [2, 5, 10]
best model.fit(x train, y train)
                                                                                # Minimum number of samples required at each leaf
                                                                                                                                           from sklearn.metrics import mean squared error
                                                                                node
y_pred = best_model.predict(x_test)
                                                                                                                                           mse3 = mean_squared_error(y_test, predictions3)
print("MSE3:", mse3)
                                                                                min_samples_leaf = [1, 2, 4]
rmse_test = np.sqrt(mean_squared_error(y_test, y_pred))
                                                                                # Method of selecting samples for training each tree
                       mean_absolute_percentage_error(y_test,
mape test
                                                                                bootstrap = [True, False]
                                                                                # Create the random grid
                                                                                                                                           rmse3 = np.sqrt(mse3)
print("RMSE3:", rmse3)
y_pred)
r_squared_test = r2_score(y_test, y_pred)
                                                                                random_grid = {'n_estimators': n_estimators,
                                                                                          'max features': max features,
mape test
                                                                                          'max_depth': max_depth,
                                                                                                                                                               sklearn.metrics
                                                                                                                                                                                             import
                                                                                                                                           mean_absolute_percentage_error
mape3 = mean_absolute_percentage_error(y_test,
predictions3)
train_pred = best_model.predict(x_train)
                                                                                          'min_samples_split': min_samples_split,
'min_samples_leaf': min_samples_leaf,
rmse_train
                            np.sqrt(mean_squared_error(y_train,
                                                                                          'bootstrap': bootstrap}
train pred))
                                                                                                                                           print("MAPE3:", mape3)
                                                                                print(random grid)
rmse train
                                                                                 #Random Search Training
mape_train = mean_absolute_percentage_error(y_train,
                                                                                                                                           from sklearn.metrics import r2 score
                                                                                #Now, we instantiate the random search and fit it like
                                                                                                                                           rSq3 = r2_score(y_test, predictions3)
print("R-squared3:", rSq3)
                                                                                any Scikit-Learn model:
train_pred)
                                                                                # Use the random grid to search for best
mape_train
                                                                                hyperparameters
#VIP
                                                                                # First create the base model to tune
import matplotlib.pyplot as plt
                                                                                rf2 = RandomForestRegressor()
feature_importance = best_model.feature_importances_
                                                                                # Random search of parameters, using 3 fold cross
sorted idx = np.argsort(feature importance)
pos = np.arange(sorted_idx.shape[0]) + .5
                                                                                validation.
                                                                                # search across 100 different combinations, and use
plt.figure(figsize=(12, 6))
                                                                                all available cores
rf random = RandomizedSearchCV(estimator = rf2,
plt.barh(pos,
                                   feature importance[sorted idx],
align='center',color=['#8ec85c','#5cc896','#c85c8e','#965cc8'])
                                                                                param_distributions = random_grid, n_iter = 100, ev
                                                                                 = 3, verbose=2, random_state=42, n_jobs = -1)
nlt vticks(nos
np.array(x_test.columns.values.tolist())[sorted_idx])
                                                                                # Fit the random search model
plt.xlabel('Feature Importance')
                                                                                rf_random.fit(x_train, y_train)
plt.title('Variable Importance Plot')
plt.show()
```