Olimpiada Națională de Matematică Etapa Națională, Deva, 23 aprilie 2019

Soluții și barem orientativ de corectare la CLASA a XI-a

Problema 1. Fie $n \in \mathbb{N}$, $n \geq 2$, şi $A, B \in \mathcal{M}_n(\mathbb{C})$ cu proprietatea că există o matrice idempotentă $C \in \mathcal{M}_n(\mathbb{C})$, astfel încât $C^* = AB - BA$. Arătați că $(AB - BA)^2 = O_n$. (C se numește idempotentă dacă $C^2 = C$; matricea C^* este adjuncta matricei C .) Soluție și barem: Arătăm că matricea C nu poate fi inversabilă. Dacă C ar fi inversabilă, din idempotență rezultă că $C = I_n$. Dar atunci $AB - BA = C^* = I_n^* = I_n$, egalitate imposibilă deoarece $tr(AB - BA) = 0 \neq n = tr(I_n)$
i) $rang(C) \le n-2$. Atunci $AB - BA = C^* = O_n$, deci $(AB - BA)^2 = O_n$
Dar atunci, $(AB - BA)^2 = tr(AB - BA) \cdot (AB - BA) = O_n$.
Problema 2. Fie $f:[0,\infty) \longrightarrow \mathbb{R}$ o funcție continuă, constantă pe \mathbb{N} . Dacă pentru orice numere reale $0 \le a < b < c < d$, pentru care $f(a) = f(c)$ și $f(b) = f(d)$ are loc $f\left(\frac{a+b}{2}\right) = f\left(\frac{c+d}{2}\right)$, arătați că f este constantă. Soluție și barem: Fie $k = f(0)$ și pentru orice $n \in \mathbb{N}$ mulțimea $A_n = \frac{1}{2^n} \cdot \mathbb{N}$. Arătăm prin inducție după $n \in \mathbb{N}$ că $f(x) = k$, pentru orice $x \in A_n$. Pentru $n = 0, f(m) = k, \forall m \in \mathbb{N}$, conform ipotezei
$f(x) = f\left(\frac{a+b}{2}\right) = f\left(\frac{c+d}{2}\right) = f(m+3) = k.$
Rezultă că $f(x) = k$, $\forall x \in A_{n+1}$
că f este constantă pe $[0,\infty)$

Problema 3. a) Arătați că există funcții derivabile $f:(0,\infty)\longrightarrow (0,\infty)$ cu proprietatea că

f(f'(x)) = x, pentru orice x > 0.

b) Arătați că nu există funcții derivabile $f: \mathbb{R} \longrightarrow \mathbb{R}$ cu proprietatea că f(f'(x)) = x, pentru orice $x \in \mathbb{R}$.

Soluție și barem:

a) Fie φ soluția pozitivă a ecuației $r^2 - r - 1 = 0$. Atunci funcția

$$f:(0,\infty)\longrightarrow (0,\infty):x\mapsto f(x)=\left(\frac{1}{\varphi}\right)^{\frac{1}{\varphi}}\cdot x^{\varphi}$$

satisface condiția din enunț: $f'(x) = \varphi^{1-\frac{1}{\varphi}} \cdot x^{\varphi-1}$ și $f(f'(x)) = \varphi^{\varphi-1-\frac{1}{\varphi}} \cdot x^{\varphi(\varphi-1)} = x, \forall x > 0.$

Problema 4. Fie p un număr prim. Pentru orice permutare $\sigma \in S_p$ considerăm matricea $A_{\sigma} = (a_{ij})_{i,j=\overline{1,p}} \in \mathcal{M}_p(\mathbb{Z})$, cu elementele $a_{ij} = \sigma^{i-1}(j)$, pentru orice $i, j = \overline{1,p}$, unde σ^0 este permutarea identică, iar $\sigma^k = \underline{\sigma} \circ \sigma \circ \cdots \circ \sigma$, pentru orice $k \in \mathbb{N}^*$.

 $de \ k$ ori Arătați că mulțimea $D = \{ |\det(A_{\sigma})| : \sigma \in S_p \}$ are cel mult 1 + (p-2)! elemente.

Soluţie şi barem:

Arătăm că $\det(A_{\sigma}) = 0$, pentru orice permutare care nu este un ciclu de lungime p. Notăm cu C_i coloana cu numărul i din matricea A_{σ} . Cum fiecare linie a matricei conține toate numerele $1, 2, \ldots, p$, avem

$$C_1 + C_2 + \dots + C_p = \frac{p(p+1)}{2} \cdot \begin{pmatrix} 1\\1\\\vdots\\1 \end{pmatrix}.$$

de lungime k, pentru un $k \in \mathbb{N}$, cu $1 \leq k < p$. Fie $c = (i_1, i_2, \ldots, i_k)$ un astfel de ciclu din descompunerea lui σ . La intersecția fiecărei linii a matricei A_{σ} cu coloanele $C_{i_1}, C_{i_2}, \ldots, C_{i_k}$ ale sale se găsesc toate numerele din mulțimea $\{i_1, i_2, \ldots, i_k\}$, astfel că

$$C_{i_1} + C_{i_2} + \dots + C_{i_k} = (i_1 + i_2 + \dots + i_k) \cdot \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}.$$

Coloanele matricei A_{σ} sunt atunci liniar dependente, astfel că $\det(A_{\sigma}) = 0. \dots 1p$ Fie acum σ o permutare ciclică de ordin p. Deoarece p este prim, pentru orice $k = \overline{1, p-1}$ avem

$$\{\sigma^{kl}|\ l = \overline{0, p-1}\} = \{\sigma^l|\ l = \overline{0, p-1}\},\$$