A.2 Fonctions affines

Définition A.2 La fonction f définie sur \mathbb{R} est **affine** s'il existe m et $p \in \mathbb{R}$ tel que pour tout $x \in \mathbb{R}$ f(x) = mx + p

Proposition A.1 Pour toute fonction affine les écarts sur la variable image y sont proportionnels aux écarts sur la variable initiale x. Plus précisément il existe $m \in \mathbb{R}$ tel que :

Pour tout
$$x_A$$
 et $x_B \in \mathbb{R}$ $f(x_A) - f(x_B) = m(x_A - x_B)$

Le réel m est appelé **taux d'accroissement** de f. et on a pour $y_A = f(x_A)$ et $y_B = f(x_B)$:

$$m = \frac{f(x_A) - f(x_B)}{x_A - x_B} = \frac{y_A - y_B}{x_A - x_B}$$
 $x_A \neq x_B$

Figure A.1 – Graphiquement, m est le rapport de l'augmentation verticale sur l'augmentation horizontale. p = f(0) est l'ordonnée à l'origine

Déterminer l'expression réduite d'une fonction affine f tel que $y_A = f(x_A)$ et $y_B = f(x_B)$:

- On calcule m à l'aide du taux de variation entre x_A et x_B .
- On remarque que si y = f(x) alors $y = f(x) = m(x x_A) + y_A$
- On en déduit la forme réduite.

■ Exemple A.3 Soit f fonction affine tel que f(12) = 17 et f(16) = 25. Le taux de variation de 12 à 16: $m = \frac{f(12) - f(16)}{12 - 16} = \frac{17 - 25}{12 - 16} = \frac{-8}{-4} = 2$.

Pour tout
$$x \in \mathbb{R}$$
: $f(x) - f(12) = m(x - 12)$

$$f(x) = 2(x - 12) + f(12)$$
$$= 2x - 24 + 17$$

$$f(x) = 2x - 7$$

A.2.1 Exercices: Fonction affines et applications

Exercice 1 — auto-positionnement, réactivation de la 2nde. Les questions sont indépendantes.

1. Le taux de variation d'une fonction entre les valeurs x = a et x = b est le rapport

- 2. Soit la fonction affine définie sur \mathbb{R} par f(x) = -3x + 2.
 - a) Déterminer l'image de 2.
 - b) Donner l'équation vérifiée par l'antécédent de 0 et déterminer le.

- d) Déterminer le taux de variation entre x = 2 et x = 5 de la fonction f.
- e) La représentation graphique de f est la droite d'ordonnée à l'origine
- 3. Déterminer l'expression réduite de la fonction affine f tel que f(-3) = 2 et f(4) = -1.

- 4. Entourer les fonctions affines décroissantes mais non linéaires :
 - **(B)** g(x) = 3x 5 **(C)** $h(x) = \frac{-2}{3}x + 1$ **(D)** u(x) = -3 **(E)** v(x) = -1 + x(A) f(x) = -5x
- 5. Donner l'expression de la fonction affine représentée ci-dessous :

6. Montrer que le taux de variation de la fonction affine définie par f(x) = 3x + 5 entre deux valeurs a et b est toujours égal à 3.

7. Déterminer par lecture graphique l'expression de la fonction affine représentée ci-contre :

$$m = \dots \dots \dots$$

$$f(x) = \dots (x - \dots) + \dots$$

$$f(x) = \dots \dots \dots \dots \dots \dots$$

$$f(x) = \dots \dots x + \dots$$

8. Proposer une fonction affine dont le tableau de signe est

x	$-\infty$		5		$+\infty$								
signe			0	1									
de f(x)		_											

9. Déterminer les erreurs dans le tableau de signes cidessous :

x	$-\infty$		$\frac{10}{7}$		10		$+\infty$
-7x - 10		+	0	_		_	
x - 10		+		+	0	_	
k(x) = (-7x - 10)(x - 10)		+	0	_		+	

Pour une fonction f affine de taux d'accroissement m et tel que $\beta = f(\alpha)$.

Alors pour tout x:

$$f(x) = m(x - \alpha) + \beta$$

$$f(x) = \dots (x - \dots) + \dots f(x) = \dots (x - \dots) + \dots$$

$$f(x) = \dots (x - \dots) + \dots$$

$$f(x) = \dots f(x) = \dots f(x) = \dots$$

$$f(x) = \dots x + \dots$$

$$f(x) = \dots x + \dots$$

$$f(x) = \dots x + \dots$$

Exercice 3 — vu en 2nde. Déterminer l'expression réduite de la fonction affine f dans chaque cas.

- 1. le taux d'accroissement vaut $\frac{2}{3}$ et f(15) = 3
- **2.** f(-1) = 4 et f(2) = 3.
- 3. sa courbe représentative passe par A(3;-2) et B(-1;3).
- 4. f est linéaire et f(-8) = 12.

Exercice 4 — vu en 2nde. Complétez les tableaux de variation et de signe des fonctions affines.

1. $f_1(x) = 3x + 2$

x	
variation de $f_1(x)$	
signe de $f_1(x)$	

2. $f_2(x) = -9x + 5$

x	
variation de $f_2(x)$	
signe de $f_2(x)$	

Exercice 5 — vu en 2nde. Détérminez le signe des fonctions suivantes selon les valeurs de x.

1. $f_1(x) = 7(x+2)(x-3)$

2. $f_2(x) = 5(-3x+1)(2x+3)$

x	$-\infty$		$+\infty$	x	$-\infty$		$+\infty$

Exercice 6 — vu en 2nde. Utiliser les tableaux de signe pour résoudre les inéquations suivantes :

 (I_1) -3(5x-4)(-3x-8) > 0

 (I_2) $-2(4x+3)(3x+5) \leq 0$

x	$-\infty$	$+\infty$ x	$-\infty$	$+\infty$

Exercice 7

- 1. Déterminer l'équation réduite de la droite (AB) passant par A(4;1) et B(6;2).
- 2. Déterminer l'équation réduite de la droite (CD) passant par C(-1, -2) et D(3, 10).
- 3. Les droites (AB) et (CD) se coupent en M. Écrire le système vérifié par les coordonnées de M et déterminer M.