Set Theory2

Yao

2022年4月28日

目录

1	集合	的宇宙	1
	1.1	数理逻辑	1
	1.2	层垒的谱系	4
	1.3	相对化 relativization	10
	1.4	绝对性	13
	1.5	基础公理的相对一致性	19
	1.6	基于良基关系的归纳与递归	21
	1.7	基础公理的绝对性	25
	1.8	不可达基数与 ZFC 的模型	36
	1.9	反映定理	45
	1.10	Exercise	49

1 集合的宇宙

1.1 数理逻辑

在 ZFC 下证明 ZFC \vdash CH,希望将 "ZFC \vdash CH" 表述为一阶句子 一般而言,给定一个 \mathcal{L} -理论 T 和一个 \mathcal{L} -句子 δ ," $T \vdash \sigma$ " 不能用一个 \mathcal{L} -句子表示,只能用元语言表述

我们需要在 ZFC 中编码"元语言"

在 ZFC 中可以定义 $\mathcal{N} = (\mathbb{N}, +, \times, 0, 1)$

即存在集合论语言 $\mathcal{L}=\{\in\}$ 中的 **公式**,在 **ZFC** 的任意模型中可以定义 $\mathbb{N},+,\times,0,1$,以上公式与模型无关

用「0[¬],「1[¬],「2[¬]... 表示 ZFC 中的"自然数",以区别元语言中的自然数

Theorem 1.1. 如果 $R \subseteq \mathbb{N}^n$ 是一个递归关系。 $T \subseteq \operatorname{Th}(\mathcal{N})$ 是包含数论的适当丰富的理论,则存在公式 $\varphi(x_1, ..., x_n)$ 使得对任意自然数 $m_1, ..., m_n$ 有

如果
$$(m_1,\ldots,m_n)\in R$$
则 $T\vdash \varphi(\lceil m_1\rceil,\ldots,\lceil m_n\rceil)$ 如果 $(m_1,\ldots,m_n)\notin R$ 则 $T\vdash \neg \varphi(\lceil m_1\rceil,\ldots,\lceil m_n\rceil)$

Remark. 1. $T \subseteq \text{Th}(\mathcal{N}) \subseteq \text{ZFC}$

- 2. φ 是语言 $\{+, \times, 0, 1\}$ 上的公式
- 3. φ 可以还原为一个 {∈} 上的公式
- 4. $\varphi(\lceil m_1 \rceil, \dots, \lceil m_n \rceil)$ 是一个闭语句

编码

编码函数 $f: X \to \mathbb{N}$

存在解码函数 g,h,对 $a=a_0,\dots,a_n\in X$, h(f(a))=n+1 , $g(f(a),k)=a_k$ (分量)

性质: 以上三种函数 f, g, h 均是递归函数 \Rightarrow 都是可表示的

性质: "公式集"的编码集是递归的

性质: 如果 $T \subseteq ZFC$ 是可公理化的,则 T 的证明集的编码集是递归的

Corollary 1.2. 存在一个公式 ψ 和 θ 使得

ZFC
$$\vdash \psi(n) \Leftrightarrow n \text{ is a formula}$$
ZFC $\vdash \neg \psi(n) \Leftrightarrow n \text{ is not a formula}$
ZFC $\vdash \theta(n) \Leftrightarrow n \text{ is a proof in ZFC}$
ZFC $\vdash \neg \theta(n) \Leftrightarrow n \text{ is not a proof in ZFC}$

称 ψ 定义了公式集, θ 定义了证明集

 $FORM = \{ \lceil \varphi \rceil \mid \varphi \text{ formula} \} \subseteq \mathbb{N}$

如果 $T \subseteq \mathsf{ZFC}$ 是可公理化的,则"T 是一致的"是一个一阶表述式"不存在一个有穷的证明序列 $D = (\varphi_1, \dots, \varphi_n)$ 使得 φ_n 形如 $\varphi \land \neg \varphi$,记作 $\mathsf{Con}(T)$

Theorem 1.3 (第二不完全). 如果T是包含ZFC的一个递归公理集,且T一致,则

$$T \not\vdash Con(T)$$

特别地, ZFC ⊁ Con(ZFC)

Theorem 1.4. 对任意可公理化的理论 T, $ZFC \vdash Con(T)$ 当且仅当存在 $M \vDash T$

即不能在 ZFC 里证明 ZFC 有一个模型

需要可公理化来写出 $\mathsf{Con}(T)$,因此因为 $\mathsf{ZFC} \nvDash \mathsf{Con}(T)$,我们只能假设这么一个模型

集合论的模型跟集合论没什么关系,就是一个集合带一个二元关系,是 关于集合论语言的结构

Definition 1.5. 设 (M, E) 是集合论模型

1. 对任意公式 $\varphi(\bar{x},y)$, 定义 M^n 上的函数

$$h_{\varphi}:M^n\to M$$

满足条件

$$M \vDash \exists y \varphi(\bar{a}, y) \Rightarrow M \vDash \varphi(\bar{a}, h_{\varphi}(\bar{a}))$$

 \hbar_{φ} 为 φ 的 Skolem 函数(依赖于选择公理,不同的变量选择有不同的函数)

2. 令 $\mathcal{H}=\{h_{\varphi}\mid \varphi \text{ formula}\}$ 为 Skolem 函数集合,设 S 是 M 的任意子集,则 $\mathcal{H}(S)$ 表示包含 S 且对 \mathcal{H} 封闭的最小集合,称之为 S 的 Skolem 壳

Lemma 1.6. 令 N 是集合论模型, $S \subseteq N$, 如果 $M = \mathcal{H}(S)$, 则 $M \prec N$

证明. Induction

对任意 $\bar{a} \in M^n$, 有 $M \vDash \varphi(\bar{a}) \Leftrightarrow N \vDash \varphi(\bar{a})$

- 1. 不含量词,显然成立
- 2. φ 形如 $\exists y \psi(\bar{x},y)$, $N \vDash \exists y \psi(\bar{a},y) \Rightarrow N \vDash \psi(\bar{a},h_{\psi}(\bar{a}))$, by IH, $M \vDash \psi(\bar{a},h_{\psi}(\bar{a})) \Rightarrow M \vDash \exists y \psi(\bar{a},y)$

Theorem 1.7 (Löwenheim-Skolem Theorem).

1.2 层垒的谱系

工作于 \mathbf{ZF}^- : $\mathbf{ZF} -$ 基础公理 $\alpha \mapsto V_{\alpha}$ 是 On 到 WF 的 1-1 映射,而 On 是真类

Lemma 1.8. For any ordinal α

- 1. V_{α} is transitive
- 2. $\xi \leq \alpha \Rightarrow V_{\xi} \subseteq V_{\alpha}$
- 3. if κ is inaccessible, then $|V_{\kappa}| = \kappa$

Definition 1.9. For any $x \in WF$, rank of x is

$$\mathrm{rank}(x) = \min\{\beta \mid x \in V_{\beta+1}\}$$

 $\operatorname{rank}(x) = \alpha \Rightarrow x \in V_{\alpha+1} \land x \not\in V_\alpha$

- $\bullet \ \ x \in V_{\alpha+1} \Leftrightarrow \mathrm{rank}(x) \leq \alpha$
- $\bullet \ \ x \subseteq V_\alpha \Leftrightarrow \mathrm{rank}(x) \leq \alpha$

Lemma 1.10. 1. $V_{\alpha} = \{x \in WF \mid rank(x) < \alpha\}$

2. WF is transitive

- 3. $\forall x, y \in WF$, $x \in y \Rightarrow rank(x) < rank(y)$
- 4. $\forall y \in WF$, $rank(y) = \sup\{rank(x) + 1 \mid x \in y\}$
- 证明. 1. by definition, $x\in V_{\mathrm{rank}(x)+1}\setminus V_{\mathrm{rank}(x)}$, $\mathrm{rank}(x)<\alpha\Rightarrow x\in V_{\mathrm{rank}(x)+1}\subseteq V_{\alpha}$ $\mathrm{rank}(x)\geq\alpha\Rightarrow x\notin V_{\alpha}$
 - 2. WF is the "union" of transitive sets
 - $3. \ y \in V_{\mathsf{rank}(y)+1} \smallsetminus V_{\mathsf{rank}(y)}\text{, } y \subseteq V_{\mathsf{rank}(y)}\text{, } x \in y \Rightarrow x \in V_{\mathsf{rank}(y)} \Rightarrow \mathsf{rank}(x) < \mathsf{rank}(y)$
 - 4. by 3, $\sup\{\operatorname{rank}(x)+1\mid x\in y\}\leq \operatorname{rank}(y)$. induction on $\operatorname{rank}(y)\leq \sup\{\operatorname{rank}(x)+1\mid x\in y\}$
 - rank(y) = 0
 - $\begin{array}{l} \bullet \ \, \mathrm{rank}(y) = \beta + 1, y \in V_{\beta + 2} \smallsetminus V_{\beta + 1} \\ \\ y \in V_{\beta + 2} \Rightarrow y \subseteq V_{\beta + 1}. \ \, y \notin V_{\beta + 1} \Rightarrow y \not\subseteq V_{\beta} \Rightarrow y \smallsetminus V_{\beta} \ \, \mathrm{nonempty}. \\ \\ \mathrm{Let} \, \, x \in y \smallsetminus V_{\beta}, \mathrm{rank}(x) \geq \beta, \sup \{ \mathrm{rank}(x) + 1 \mid x \in y \} \geq \beta + 1 = \mathrm{rank}(y) \\ \end{array}$
 - $$\begin{split} \bullet \ \, & \operatorname{rank}(y) = \gamma \operatorname{for some limit, then} \, y \subseteq V_{\gamma} \operatorname{and for any} \, \xi < \gamma, y \not\subseteq V_{\xi}, \\ & \operatorname{let} \, X_{\xi} \in y \smallsetminus V_{\xi}, \operatorname{then} \, \operatorname{rank}(X_{\xi}) \geq \xi, \sup \{ \operatorname{rank}(x) + 1 \mid x \in y \} \geq \\ & \sup \{ \xi + 1 \mid \xi < \operatorname{rank}(y) \} \geq \operatorname{rank}(y) \end{split}$$
 - WF 中的集合按照秩分层
 - 在 WF 中基础公理是成立的: $\forall y(y \neq \emptyset \rightarrow \exists x \in y(x \cap y = \emptyset))$, 因为任何序数集都有最小元,挑一个有最小 rank 的就好了
 - WF 类的构造没有用到选择公理
 - On \subseteq WF

Lemma 1.11. *for any ordinal* α

- 1. $\alpha \in WF$ and $rank(\alpha) = \alpha$
- 2. $V_{\alpha} \cap On = \alpha$
- 证明. 1. $0 \in V_1 \setminus V_0 \subset WF$, rank(0) = 0

If $\alpha \in \operatorname{WF}$ and $\operatorname{rank}(\alpha) = \alpha$. $\alpha \in V_{\alpha+1} \setminus V_{\alpha}$, $\alpha \subseteq V_{\alpha+1}$. $\alpha+1 = \alpha \cup \{\alpha\} \subseteq V_{\alpha+1}$, $\alpha+1 \in V_{\alpha+2} \subset \operatorname{WF}$. If $\alpha+1 \in V_{\alpha+1}$, then $\operatorname{rank}(\alpha+1) \leq \alpha$, but $\alpha \in \alpha+1 \Rightarrow \operatorname{rank}(\alpha) = \alpha < \operatorname{rank}(\alpha+1)$. A contradiction

suppose γ is a limit ordinal and for any $\alpha < \gamma$, $\alpha \in V_{\alpha+1} \setminus V_{\alpha}$. $\gamma = \bigcup_{\alpha < \gamma} \alpha \subseteq \bigcup_{\alpha < \gamma} V_{\alpha} = V_{\gamma}$. Thus $\gamma \in V_{\gamma+1}$, $\mathrm{rank}(\gamma) \le \gamma$ and $\mathrm{rank}(\gamma) \not< \gamma$.

2. suppose $\beta \in V_{\alpha} \cap \text{On}$, then $\beta = \text{rank}(\beta) < \alpha$. If $\beta \in \alpha$ and $\text{rank}(\beta) < \alpha$, $\beta \in V_{\alpha} \cap \text{On}$

- **Lemma 1.12.** 1. If $x \in WF$, then $\bigcup x, \mathcal{P}(x), \{x\} \in WF$, and their rank $< rank(x) + \omega$
 - 2. If $x,y \in WF$, then $x \times y, x \cup y, x \cap y, \{x,y\}, (x,y), x^y \in WF$, and their $rank < rank(x) + rank(y) + \omega$
 - 3. $\mathbb{Z}, \mathbb{Q}, \mathbb{R} \in V_{\omega + \omega}$
 - *4. for any set* x, $x \in WF \Leftrightarrow x \subset WF$
- 证明. 1. suppose $\operatorname{rank}(x) = \alpha. \ x \in V_{\alpha+1} \setminus V_{\alpha} \ \operatorname{and} \ x \subseteq V_{\alpha}.$ by transitivity, $\bigcup x \subseteq V_{\alpha} \Rightarrow \bigcup x \in V_{\alpha+1} \subset \operatorname{WF.} \ \operatorname{rank}(\bigcup x) \leq \alpha$ suppose $y \in \mathcal{P}(x), \ y \subseteq x \Rightarrow y \subseteq V_{\alpha} \Rightarrow y \in V_{\alpha+1}.$ $\mathcal{P}(x) \subseteq V_{\alpha+1},$ $\mathcal{P}(x) \in V_{\alpha+2}, \operatorname{rank}(\mathcal{P}(x)) \leq \alpha+1.$ $\{x\} \in \mathcal{P}(x) \in V_{\alpha+2}.$

2. Suppose
$$\operatorname{rank}(x) = \alpha, \operatorname{rank}(y) = \beta, x \subset V_{\alpha}, y \subset V_{\beta}$$

$$x \cup y \subset V_{\alpha} \cup V_{\beta} = V_{\max(\alpha,\beta)}, \operatorname{rank}(x \cup y) \leq \max(\alpha,\beta)$$

$$x \cap y \subset V_{\min(\alpha,\beta)}$$

$$\{x,y\} \subseteq V_{\alpha+1} \cup V_{\beta+1} = V_{\max(\alpha,\beta)+1}, \operatorname{rank}(\{x,y\}) = \max(\alpha,\beta) + 1$$

$$(x,y) = \{\{x\}, \{x,y\}\} \subset V_{\max(\alpha,\beta)+2}. \operatorname{rank}((x,y)) = \max(\alpha,\beta) + 2$$

$$x \times y = \{(a,b) \mid a \in x, b \in y\}. \ a \in x \Rightarrow \operatorname{rank}(a) < \alpha, b \in y \Rightarrow \operatorname{rank}(b) < \beta, \operatorname{rank}(a,b) < \max(\alpha,\beta) + 2, (a,b) \in V_{\max(\alpha,\beta)+2}. \ x \times y \subseteq V_{\max(\alpha,\beta)+2}, \operatorname{rank}(x \times y) \leq \max(\alpha,\beta) + 2.$$

3. $\mathbb{N} = \omega \in V_{\omega+1}$

 \mathbb{Z} : let \sim be an equivalence relation on $\omega \times \omega$, $(a,b) \sim (c,d) \Leftrightarrow a+d=b+c$, then $\mathbb{Z}=(\omega \times \omega)/\sim$. Hence \mathbb{Z} is a partition of $\omega \times \omega$ and hence $\mathbb{Z} \subseteq \mathcal{P}(\omega \times \omega)$. $\mathbb{Z} \in V_{\omega+3}$

 $\begin{array}{lll} \mathbb{Q} \colon \mbox{ let } \sim \mbox{ be an equivalence on } \mathbb{Z} \times \mathbb{Z}^+ \text{, } (a,b) \sim (c,d) \Leftrightarrow ad = bc. \\ \mathbb{Q} \subseteq \mathcal{P}(\mathbb{Z} \times \mathbb{Z}^+) \text{, } \mathbb{Q} \in V_{\omega+6} \end{array}$

 $\mathbb{R}\text{: set of dedekind cut on }\mathbb{Q}\text{, }\mathbb{R}\subset\mathcal{P}(\mathbb{Q})\text{, }\mathbb{R}\in V_{\omega+8}$

4. \Rightarrow : WF is transitive

 \Leftarrow : x is a set and $x \subset \bigcup_{\alpha \in On} V_{\alpha}$.

 $x^y \subseteq \mathcal{P}(x \times y) \subseteq V_{\max(\alpha,\beta)+3}$.

Claim: there is an ordinal α s.t. $x \subset V_{\alpha}$

Otherwise, let $f:\operatorname{On} o \mathcal{P}(x)$ s.t. $f(\alpha)=x \smallsetminus V_{\alpha}$. Then for any $y \in \mathcal{P}(x)$, $f^{-1}(y)$ is a set. $\operatorname{On} = \bigcup_{y \in x} f^{-1}(y)$ and is thus a set, a contradiction

AC => Any set has cardinality

Lemma 1.13. Assume AC $(V \models ZFC)$

1. for any group G, there is a group G' in WF s.t. $G \cong G'$

- 2. for any topological space T, there is a topological space T' in WF s.t. $T \cong T'$ (homeomorphic)
- 证明. 1. suppose $(G,*_G)$ is a group, $G,*_G \in V$. By AC, there is a cardinal α s.t. $|G|=\alpha$, that is, there is a bijection $f:\alpha \to G$. Define *: for any $x,y,z\in \alpha$, $x*y=z\Leftrightarrow f(x)*_G f(y)=f(z)$. Then $(\alpha,*)\cong (G,*_G)$, $*\subseteq \alpha \times \alpha$

V 中的任何结构都可以在 WF 中找到同构象(同构是在 V 里看到的)

Definition 1.14. 任意集合 A 上的二元关系 < 是 **良基**的,当且仅当对 A 的 任意非空子集 X,X 有 < 下的极小元

Theorem 1.15. *If* $A \in WF$, then \in is a well-founded relation on A

证明. suppose $X \subseteq A$, $X \neq \emptyset$, $X \subseteq WF$, then elements of X has ranks and $x \in y \Rightarrow \operatorname{rank}(x) < \operatorname{rank}(y)$. Let x having least rank in X, then x is the \in -minimal element in X

Lemma 1.16. If A is a transitive set and \in is a well-founded relation on A, then $A \in WF$

证明. Just need to prove $A \subset WF$. If $A \not\subset WF$, $X = A \setminus WF \neq \emptyset$. Then X has a \in -minimal element x. Then $x \neq \emptyset \in WF$. For any $y \in x$, $y \in A$. By the minimality of x, $y \in WF$. Then $x \subset WF$, $x \in WF$, a contradiction

Lemma 1.17. For any set x, there is a minimal transitive set trcl(x) s.t. $x \subseteq trcl(x)$

证明. For any $n \in \omega$ define x_n

$$x_0 = x$$

$$x_{n+1} = \bigcup x_n$$

let $\operatorname{trcl}(x) = \bigcup_{n \in \omega} x_n$.

1. trcl(x) is transitive

$$a \in \operatorname{trcl}(x) \Rightarrow a \in x_n \Rightarrow a \subseteq x_{n+1} \subseteq \operatorname{trcl}(x)$$

2. trcl(x) is minimal

If $y\supseteq x$ is transitive, recursively prove for any $n<\omega$, $x_n\subseteq y$.

trcl(x) is the **transitive closure** of x.

Lemma 1.18. We can prove the following without axiom of power set

- 1. *if* x *is transitive,* trcl(x) = x
- 2. $y \in x \Rightarrow trcl(y) \subseteq trcl(x)$
- 3. $trcl(x) = x \cup \{ | \{ trcl(y) \mid y \in x \} \}$

证明. 2. $y \in x \subset trcl(x)$. $y \in trcl(x)$. $trcl(y) \subseteq trcl(x)$.

3. $x \cup \bigcup \{ \operatorname{trcl}(y) \mid y \in x \} \subseteq \operatorname{trcl}(x)$ by (2)

 $\bigcup\{\mathrm{trcl}(y)\mid y\in x\}$ is transitive. For $y\in x$, $y\subseteq\mathrm{trcl}(y)$. Thus rhs is transitive

Theorem 1.19 (In ZF^-). For any set X, TFAE

- 1. $X \in WF$
- 2. $trcl(X) \in WF$
- 3. \in is a well-founded relation on trcl(X)

证明. $1 \rightarrow 2$: WF is closed under union

Theorem 1.20. *If* $V \models ZF^-$, TFAE

1. axiom of foundation $(V \models)$ axiom of foundation

- 2. for any set X, \in is a well-founded relation on X
- 3. V = WF

 $V \vDash \mathsf{ZF} \Rightarrow V = \mathsf{WF}(\mathsf{WF} \vDash \mathsf{ZF})$

Goal: $V \models \mathbf{ZF}^- \Rightarrow \mathbf{WF} \models \mathbf{ZF}^-$ 但是 \mathbf{WF} 是一个类,我们并没有定义我们可以用相对化编码 $\mathbf{WF} \models \mathbf{ZF}^-$

1.3 相对化 relativization

工作在 ZF

Definition 1.21. M class, φ formula, φ 对 M 的 相对化 φ^M

- 1. $(x = y)^M := x = y$
- 2. $(x \in y)^M := x \in y$
- 3. $(\varphi \to \psi)^M := \varphi^M \to \psi^M$
- 4. $(\neg \varphi)^M := \neg \varphi^M$
- 5. $(\forall x\varphi)^M := (\forall x \in M)\varphi^M$

 φ^M 读作" φ 在 M 中为真",表示为 $(M, \in) \subseteq (V, \in)$ 有 $M \models \varphi$,即如果 $V \models \varphi^M$,那么 $M \models \varphi$,而 V 知道得更多一点

重新定义了满足

若 M 被公式 M(u) 定义, $(\forall x\varphi)^M$ 是公式 $\forall x(M(x) \to \varphi^M(x))$

Example 1.1. $M = \operatorname{On}, \ \operatorname{On} \vDash \forall x \forall y (x \in y \lor y \in x \lor x = y)$

" $M \vDash \varphi$ "可以形式化为 $V \vDash \varphi^M$,而 M 对应于 M(u),即等价于 $T \vdash \varphi^M$,如果我们工作在某个 T 上

若函数 f 被公式 $\varphi(\bar{x},y)$ 定义,则 $V \models \forall \bar{x} \exists ! y \varphi(\bar{x},y)$,但相对化后不一定对,因此 $f^M = \{(\bar{x},y) \in M : \varphi^M(\bar{x},y)\}$ 不一定是 M 上的函数

Definition 1.22. for any theory T, any class M, M is a **model** of T, $M \models T$, iff for any axiom φ of T, φ^M holds, i.e., $V \models \varphi^M$

V 中定义出语义

Theorem 1.23. $V \models ZF^- \Rightarrow WF \models ZF - Inf$, $V \models (ZF - Inf)^{WF}$ 等价的 $ZF^- \vdash (ZF - Inf)^{WF}$

- 存在公理: $\exists x \in M(x=x)$
- ◆ 外延公理: Ext^M

$$\forall x \in M \forall y \in M \forall u \in M ((u \in X \leftrightarrow u \in Y) \to X = Y)$$

Lemma 1.24. *If* M *is transitive, then* Ext^M *holds*

证明. suppose $X,Y\in M$, if $X\neq Y$, then there is $u\in X\triangle Y$ (by Ext in V), by transitivity, $u\in M$

• 分离公理模式: for any M, any formula φ , $S(\varphi)^M$

$$\forall x \in M \exists Y \in M \forall u \in M (u \in Y \leftrightarrow u \in X \land \varphi^M(u))$$

Therefore, if for any $X \in M$, $\{u \in X \mid \varphi^M(x)\} \in M$, then 分离公理模式在 M 中为真

Lemma 1.25. If M satisfies $x \in M \Leftrightarrow x \subset M$, then $S(\varphi)^M$ holds for any M

证明. Suppose $X\in M$, suffices to find corresponding $Y\in M$ s.t. $\forall u\in M(u\in Y\leftrightarrow u\in X\wedge \varphi^M(u))$

根据 V 中的分离公理, $Y=\{x\in X\mid \varphi^M(u)\}\in V$ and $Y\subseteq X\subset M$, thus $Y\in M$ and $\forall u(u\in Y\leftrightarrow u\in X\land \varphi^M(u))$. But $x\in Y\Rightarrow x\in M$, thus this is equivalent to $\forall u\in M(u\in Y\leftrightarrow u\in X\land \varphi^M(u))$

• axiom of pairing Pair

$$\forall x \in M \forall y \in M \exists z \in M \forall u \in M (u \in z \leftrightarrow u = x \lor u = y)$$

只要 M 对对集函数 $x, y \mapsto \{x, y\}$ 封闭,则 $Pair^M$ 成立

• 幂集公理 Pow

$$\forall X \in M \exists Y \in M \forall u \in M (u \in Y \leftrightarrow \forall a \in M (a \in u \to a \in X))$$

Lemma 1.26. If M satisfies $x \in M \Leftrightarrow x \subset M$, then Pow^M holds

证明. for any $X\in M$, $\mathcal{P}(X)\in M$. and we prove $\mathcal{P}(X)$ is the Y, for any $u\in M$

• axiom of infinity Inf

$$\exists X \in M (\emptyset \in X \land \forall y \in M (y \in X \to y^+ \in X))$$

$$\emptyset: \psi(x) := \forall u(u \in x \to u \neq u), x = \emptyset \Leftrightarrow \psi(x)$$

 $y^+: \varphi(y,z): \forall u \in z (u=y \lor u \in y) \land y \subseteq z \land y \in z$ 函数相对化后不一定是函数,所以放到下一节

• axiom of foundation Fod

$$\forall x \in M(\exists u \in M(u \in x) \to \exists y \in M(y \in x \land \neg \exists u \in M(u \in x \land u \in y)))$$

Lemma 1.27. If M is transitive and elements of M is well-founded under \in , then Fod^M holds

证明. suppose $x_0 \in M$ and there is

 $\psi := \exists u (u \in x) \text{ and } \varphi \text{ is the latter part}$

 $\psi^M(x_0) \leftrightarrow \exists u(u \in x_0) \text{ since } M \text{ is transitive, } \varphi^M(x_0) \leftrightarrow \exists y(y \in x_0 \land \neg \exists u \in M(u \in x \land u \in y))$

在 V 中, $x_0 \neq \emptyset$,由条件可知 (x_0, \in) 是良基的,于是 φ 在 V 中对,那 么当然在 M 中对

• 替换公理模式 $Rep(\varphi)$

$$\forall A \in M \forall x \in A \cap M \exists ! y \in M \varphi^M(x, y) \to \exists B \in M \forall x \in A \exists y \in B \varphi^M(x, y)$$
$$\exists ! y \theta(y) : \exists y (\theta(y) \land \forall y' (\theta(y') \to y = y'))$$

Lemma 1.28. if M satisfied $x \in M \Leftrightarrow x \subset M$, then $Rep(\varphi)^M$ holds for any φ

证明. for any $A_0\in M$, then $A_0\cap M=A_0$, thus we have $\forall x\in A_0\exists !y(\varphi^M(x,y)\wedge M(y)).$

by
$$Rep(\varphi^M(x,y) \land M(y))$$
, $\exists B' \forall x \in A_0 \exists y \in B' \varphi^M(x,y) \land M(y)$

Let
$$B = B' \cap M$$
, which is what we want

Thus in ZF^- , we can prove $WF \models ZF - \inf$

1.4 绝对性

 $(V, \in) \supseteq (M, \in)$

对于哪些 φ ,有 $V \models \varphi \Leftrightarrow M \models \varphi$

Definition 1.29. 公式 $\psi(\bar{x})$,对任意类 $M \subseteq N$,如果

$$\forall \bar{x} \in M(\psi^M(\bar{x}) \leftrightarrow \psi^N(\bar{x}))$$

就称 $\psi(\bar{x})$ 对于 M, N 是 **绝对的**, 如果 N = V, 则称 $\psi(\bar{x})$ 对于 M 是 **绝对的**

$$\bar{a} \in M \text{, } (M, \in) \vDash \psi(\bar{a}) \Leftrightarrow V \vDash \psi^M(\bar{a})$$

 ψ 相对于 M, N 绝对: $\forall \bar{a} \in M$, 有 $M \vDash \psi(\bar{a}) \Leftrightarrow N \vDash \psi(\bar{a})$

if $\forall \varphi(\bar{x}) \in L$, 均有 φ 相对于 M, N 绝对的,则 $M \leq N$

Lemma 1.30. suppose $M \subseteq N$, φ , ψ formula

- 1. 如果 φ, ψ 相对于M, N 绝对, so are $\neg \varphi, \varphi \rightarrow \psi$
- 2. if φ is q.f., then φ 对任意 M 绝对
- 3. if M are transitive, and φ 相对于它们绝对, so is $\forall x \in y\varphi$
- 证明. 3. $\forall x \in y \varphi := \forall x (x \in y \to \varphi(x,y,\bar{z}))$,故 $(\forall x \in y \varphi)^M = \forall x \in M(x \in y \to \varphi^M(x,y,\bar{z}))$,任取 $y_0,\bar{z}_0 \in M$,则由 M 的传递性,都有 $x \in y_0 \Rightarrow x \in M$

目标: $\forall x \in M(x \in y_0 \to \varphi^M(x, y_0, \bar{z}_0))$ 当且仅当 $\forall x \in N(x \in y_0 \to \varphi^N(x, y_0, \bar{z}_0))$

由 φ 的绝对性,对每个 $x_0 \in M$,有

$$\varphi^M(x_0,y_0,\bar{z}_0) \leftrightarrow \varphi^N(x_0,y_0,\bar{z}_0)$$

故 $V \vDash \forall x \in M(x \in y_0 \to \varphi^M(x, y_0, \bar{z}_0)),$ 当且仅当 $V \vDash \forall x (x \in y_0 \to \varphi^M(x, y_0, \bar{z}_0))$ 当且仅当 $V \vDash \forall x \in N(x \in y_0 \to \varphi^M(x, y_0, \bar{z}_0))$

Lemma 1.31. 令 $M \subseteq N$ 且 M 传递, $\psi(\bar{x})$ 是一个公式, 则

- 1. 如果 ψ 是 Δ_0 公式,则他它对M,N是绝对的
- 2. 如果 ψ 是 Σ_1 公式,则

$$\forall \bar{x} \in M(\psi^M(\bar{x}) \to \psi^N(\bar{x}))$$

3. 如果 ψ 是 Π_1 公式,则

$$\forall \bar{x} \in M^n(\psi^N(\bar{x}) \to \psi^M(\bar{x}))$$

证明. 1. 对公式的长度进行归纳证明

2. 例子: $\diamondsuit M = \text{On}, N = \text{WF}, \ \diamondsuit \psi(y) := \forall x \in y \forall u, v \in x (u \in v \lor v \in u \lor u = v), \ 则 \psi 是 \Delta_0$ 的,则

$$\psi^M(y) = \forall x \in M(x \in y \to \forall u, v \in M(u, v \in x \to (u \in v \lor v \in u \lor u = v)))$$

$$\psi^N(y) = \forall x \in N(x \in y \to \forall u, v \in N(u, v \in x \to (u \in v \lor v \in u \lor u = v)))$$

任取 $x_0 \in WF \setminus On$ 使得 (x_0, \in) 不是线序,令 $y_0 = \{x_0\}$,则 $\psi^M(y_0)$ 的前件假, $\psi^M(y_0)$ 是真的, $\psi^N(y_0)$ 为假,因此

$$\forall \bar{x}(\psi^M(\bar{x}) \to \psi^N(\bar{x}))$$

错误

 $\Leftrightarrow x = \bar{x}, y = \bar{y}$

设 $\psi:=\exists \varphi(x,y),\ \varphi(x,y)\in \Delta_0, \psi^M:=\exists y\in M(\varphi^M(x,y)), \psi^N:=\exists y\in N(\varphi^N(x,y)),\$ 任取 $a\in M^m,\$ 目标 $\psi^M(a)\to \psi^N(a)$

若 $\psi^M(a)$ 成立, 则有 $b\in M^n$ 使得 $\psi^M(a,b)$, 由 Δ_0 的绝对性, $\psi^N(a,b)$, 因此 $\exists y\psi^N(a,y)$

3. 设 $\psi := \forall y \varphi(x,y)$ 其中 $\varphi \in \Delta_0$,则 $\psi^M := \forall y \in M \varphi^M(x,y)$, $\psi^N := \forall y \in N \varphi^N(x,y)$,设 $a \in M$ 使得 $\psi^N(a)$ 成立,目标 $\psi^M(a)$ 成立。 $\psi^N(a) \Rightarrow$ 对所有的 $b \in N$ 均有 $\varphi^N(a,b)$ 成立,故对一切 $b \in M$ 有 $\varphi^N(a,b)$ 成立,由 φ 的绝对性, $\forall y \in M \varphi^M(a,y)$

Lemma 1.32. 设 $M \subseteq N$,均是句子集 Σ 的模型,而 $\Sigma \vdash \forall \overline{x}(\varphi(\overline{x}) \leftrightarrow \psi(\overline{x}))$,则 φ 对 M 与 N 绝对当且仅当 ψ 也是

证明. $M, N \vDash \forall \overline{x} (\varphi(\overline{x}) \leftrightarrow \psi(\overline{x}))$

 $\forall \bar{x} \in M^n(\varphi^M(\bar{x}) \leftrightarrow \psi^M(\bar{x})), \ \forall \bar{x} \in N^n(\varphi^N(\bar{x}) \leftrightarrow \psi^N(\bar{x}))$ 若 φ 是绝对的, $\forall \bar{x} \in M^n(\varphi^M(\bar{x}) \leftrightarrow \varphi^N(\bar{x}))$ 因此, $\forall \bar{x} \in M^n(\psi^M(\bar{x}) \leftrightarrow \psi^N(\bar{x}))$

Definition 1.33. 假设 $M\subseteq N$, $f(x_1,\ldots,x_n)$ 是函数(类),设 $f(x_1,\ldots,x_n)$ 被公式 $\varphi(x_1,\ldots,x_n,y)$ 定义,称 f 相对于 M,N 是绝对的,是指

- 1. $\varphi(x_1,\ldots,x_n,y)$ 相对于 M,N 绝对
- 2. $\forall \bar{x} \in M^n \exists ! y \in M(\varphi^N(\bar{x}, y))$

由上一引理,f 的绝对性与定义 f 的公式无关

 $f^{M} = \{(x_{1}, \ldots, x_{n}, y) \in M^{n+1} \mid \varphi^{M}(\bar{x}, y)\}, f \upharpoonright M = \{(x_{1}, \ldots, x_{n}, y) \in M^{n+1} \mid \varphi(\bar{x}, y)\}$

f 是绝对的当且仅当 $\forall \bar{x}M \forall y \in M(\varphi(\bar{x},y) \leftrightarrow \varphi^M(\bar{x},y))$ 当且仅当 $\varphi(M^n,M)=\varphi^M(M^n,M)$,即 $f \upharpoonright M=f^M$

即对任意 $\bar{a} \in M^n$, 有 $f \upharpoonright M(\bar{a}) = f^M(\bar{a})$

Theorem 1.34. 以下关系和函数可以在 ZF^- — Pow — Inf 中用公式定义,且在 ZF^- — Pow — Inf 下等价于一个 Δ_0 -formula

- 1. $x \in y$
- 2. x = y
- 3. $x \subset y$
- 4. $\{x, y\}$
- 5. $\{x\}$
- 6. (x, y)
- *7.* ∅
- 8. $x \cup y$
- 9. $x \cap y$
- 10. x y
- 11. $x^+ = x \cup \{x\}$
- 12. x 传递
- 13. \ \ \ \ x
- 14. $\bigcap x$, $\mathbb{A} \bigcap \emptyset = \emptyset$

证明. 4. 函数 $z=\{x,y\}$ 被公式 $\forall u \in z (u=x \lor u=y) \land (x \in z \land y \in z)$

- 5. $y = \{x\}$ 被公式 $\forall u \in y(u = x) \land (x \in y)$
- 6. 函数 z=(x,y) 被公式 $\forall u\in z(u=x\vee x=\{x,y\}) \land x\in z \land \exists u\in z(u=\{x,y\})$
- 7. $\forall y \in x (y \neq y)$

- 8. 函数 $z = x \cup y$ 被公式 $\forall x \subset z \land y \subset z \land \forall u \in z (u \in x \lor u \in y)$
- 9. 函数 $z = x \cap y$ 被公式 $z \subset x \land z \subset y \land \forall u \in x (u \in y \rightarrow u \in z)$
- 10. 函数 $z = x y \ \forall u \in z (u \in x \land u \notin y) \land \forall u \in x (u \notin y \rightarrow u \in z)$
- 11. 函数 $z = x^+ \forall u \in z (u \in x \lor u = x) \land x \in z \land x \subset z$
- 12. $\forall y \in x (y \subset x)$
- 13. 函数 $z = \bigcup x, \forall u \in z \exists y \in x (u \in y) \land \forall u \in x (u \subset z)$
- 14. 函数 $z = \bigcap x$, $x = \emptyset \to z = \emptyset \land \forall u \in z \forall y \in x (u \in y) \land \exists y \in x \forall u \in z (\forall w \in x (u \in w) \to u \in z)$

Lemma 1.35. 如果 M 是一个传递类, f 是一个被 Δ_0 公式定义的函数, 如果 f 在 M 上封闭, 即 $f(M^n) \subseteq M$, 则 f 相对于 M 绝对

证明. 设 f 被 $\varphi(\bar{x},y)$ 定义, $\forall \bar{x},y \in M(\varphi(\bar{x},y) \leftrightarrow \varphi^M(\bar{x},y)), \forall \bar{x} \in M \exists ! y \in M(\varphi(\bar{x},y))$

Corollary 1.36. 之前的函数均在 ZF^- - Pow - Inf 的传递模型 M 中绝对的 ZF^- - Pow - Inf 能够保证函数封闭,传递性保证定义它们的公式的绝对性

Lemma 1.37. 绝对性对复合运算封闭,即假设 $M\subseteq N$, 公式 $\varphi(x_1,\ldots,x_n)$ 函数 $f(x_1,\ldots,x_n)$, $g_i(y_1,\ldots,y_m)$, $1\leq i\leq n$ 都相对于 M,N 绝对,则 $\varphi(g_1(y_1,\ldots,y_m),\ldots,g_n(y_1,\ldots,y_m))$ 与 $f(g_1(y_1,\ldots,y_m),\ldots,g_n(y_1,\ldots,y_m))$ 也相对于 M,N 绝对

证明. 不妨设 m=n=1

设 g(y)=z 被 $\theta(y,z)$ 定义, $\varphi(g(y)):=\exists z(\theta(y,z)\wedge\varphi(z))$ $\varphi^M(g(y)):=\exists z\in M(\theta^M(y,z)\wedge\varphi^M(z)), \varphi^N(g(y)):=\exists z\in N(\theta^M(y,z)\wedge\varphi^M(z))$

由绝对性 $\forall z \in M \forall y \in M(\theta^M(y,z) \wedge \varphi^M(z) \leftrightarrow \theta^N(y,z) \wedge \varphi^N(z))$

任取 $y_0 \in M$,设 $\exists z \in N(\theta^N(y_0, z) \land \varphi^N(z))$,由函数 g(y) = z的绝对性, $\forall y \in M \exists ! z \in M(\theta^N(y, z))$,存在唯一的 $z_0 \in M$ 使得 $\theta^N(y_0, z_0) \land \varphi^N(z_0)$

Theorem 1.38. 以下关系和函数对任意 ZF^- – Pow Inf 的传递模型 M 都是绝对的

- 1. 2 是有序对
- 2. $A \times B$
- 3. R 是关系
- 4. dom(R)
- 5. ran(R)
- 6. f 是函数
- 7. f(x)
- 8. f 是一一函数
- 证明. 1. "z 是有序对": $\exists u, v(z=(u,v))$,但是这不是 Δ_0 ,因此考虑 $\exists u \in \bigcup z \exists v \in \bigcup z (z=(u,v))$,注意这里不是平常的受囿量词,但是 令 $g_1(z) = \bigcup z$, $g_2(z) = \bigcup z$, $g_3(z) = z$, $\varphi(x_1,x_2,x_3) := \exists u \in x_1 \exists v \in x_2(x_3=(u,v))$,则 g_1,g_2,g_3,φ 绝对,故 $\varphi(g_1(z),g_2(z),g_3(z))$ 绝对
 - 2. 函数 $z = x \times y$: $\forall u \in z \exists s \in x \exists t \in y (u = (s,t)) \land \forall s \in x \forall t \in y \exists u \in z (u = (s,t))$
 - 3. R 是关系 $\Leftrightarrow \forall u \in R(u$ 是有序对)
 - 4. 函数, D = dom(R): $\forall x \in D \exists z \in R \exists u \in z \exists y \in u(z = (x, y))$ 且 $\forall z \in R \forall u \in z \forall x \in u \forall y \in u(z = (x, y) \rightarrow x \in D)$
 - 5. 同理
 - 6. f是关系 $\land \forall x \in \text{dom}(f) \exists ! y \in \text{ran}(f) \exists u \in f(u = (x, y))$
 - 7. $\varphi(f(x))$ 表示 f 是函数且 $x \in \text{dom}(f)$, 则 "y = f(x)" 定义为 $\varphi(f, x) \to \exists u \in f(u = x, y) \lor (\neg \varphi(f, x) \to y \neq \emptyset)$
 - 8. "f 是函数" 且 $\forall s \in \text{dom}(f) \forall t \in \text{dom}(f) (f(s) = f(t) \rightarrow s = t)$

1.5 基础公理的相对一致性

如果 ZF^- 一致,则 ZF 一致

目标: $V \models ZF^-$, 证明 WF $\models ZF$, 等价于 $ZF^- \vdash (ZF)^{WF}$

Lemma 1.39. 若传递类 $M \not\in ZF^-$ — Pow — Inf 的模型,且 $\omega \in M$,则无穷公理在 M 中为真,因此无穷公理在 WF 中为真($ZF^ \vdash$ (Inf) WF)

证明. • 由于 \emptyset 与 x^+ 都被 Δ_0 公式定义

- $\emptyset^M = \emptyset$, $(x^+)^M = x^+$
- 无穷公理的相对化为 $\exists x \in M(\emptyset \in x \land \forall y \in x(y^+ \in x))$
- $\exists x \in M(\emptyset \in M \land \forall y \in x(y^+ \in x))$
- 由于 $\omega \in M$, $\diamondsuit x = \omega$

结论: WF ⊨ ZF

目标: $Con(\mathbf{ZF}^{-}) \vdash Con(\mathbf{ZF})$

Theorem 1.40. 设 T (ZF^-) 是集合论的的理论, Σ (ZF) 是一个句子集,设 M 是一个类且非空,如果 $T \vdash (M \models \Sigma)$,即 $T \vdash \Sigma^M$ 或者"若 $V \models T$,则 $V \models \Sigma^M$ ",则

- 1. 对集合论语言的任何语句 φ , 如果 $\Sigma \vdash \varphi$, 则 $T \vdash \varphi^M$
- 2. 如果T一致,则以 Σ 为公理的理论也一致

证明. 1. 设 $\varphi_1, \dots, \varphi_n = \varphi$ 是 Σ 的一个证明,对 $k \leq n$,归纳证明 $T \vdash \varphi_k^M$

- 若 $\varphi_i \in \Sigma \cup Ax, Ax$ 一阶逻辑的公理, $T \vdash \varphi_i^M$
- 若 i, j < k 使得 $\varphi_j = \varphi_k \to \varphi_k$,由归纳假设 $T \vdash \varphi_i^M, T \vdash \varphi_i^M \to \varphi_k^M$,因此 $T \vdash \varphi_k^M$

2. 若 Σ 不一致,则存在 φ 使得 Σ \vdash φ \land $\neg \varphi$,从而 T \vdash $(\varphi \land \neg \varphi)^M$,故 T 不一致

Theorem 1.41. 基础公理相对于 ZF^- 一致,即如果 ZF^- 一致,则 ZF 一致证明. • $ZF^- \vdash (ZF)^{WF}$

● 故 ZF 一致能推出 ZF 一致

选择公理:任何非空集合都可被良序化 $\forall X \exists R (R \neq X \perp h)$ 良序)

- 1. $R \subseteq X \times X$
- 2. R 是线序
- 3. $\forall Y \subseteq X, Y \neq \emptyset \Rightarrow Y$ 存在 *R*-极小元

Lemma 1.42 (ZF^-). 设 $M \not\in ZF^- - Pow - Inf$ 的传递模型,如果 $X, R \in M$ 并且 $R \not\in X$ 上的一个良序,则 ($R \not\in X$ 的良序) M

证明. " $R \neq X$ 上的线序"被公式 $\varphi(X,R)$ 表达

- R 是关系
- $\forall x \in X(\neg R(x,x))$
- $\forall x, y, z \in X(R(x, y) \land R(y, z)) \rightarrow R(x, z)$
- $\forall x,y \in X(R(x,y) \lor R(y,x) \lor x=y)$ $R(x,y) \ \hbox{表示} \ (x,y) \in R, \exists z \in R(z=(x,y))$

因此 $\varphi(X,R)$ 是 Δ_0 -公式

令公式 $\psi(X,Y,R)$ 为 $Y\subseteq X\wedge Y\neq\emptyset$ $\to\exists y\in Y\forall x\in Y(\neg R(x,y))$,则 $\psi(X,Y,R)$ 是 Δ_0 -公式,"R 是 X 上的良序"可以表达为 $\theta(X,Y)=\varphi(X,R)\wedge\forall Y\psi(X,Y,R)$

则 θ 是一个 Π_1 -公式

 $\forall X \in M \forall R \in M(\theta(X,R) \to \theta^M(X,R))$,任取 $X_0, R_0 \in M$ 使得 R_0 是 X_0 上的良序,则 $\theta(X_0, R_0)$,故 $\theta^M(X_0, R_0)$ 也成立,即

Theorem 1.43 (ZF^-). V_{ω} 是 $ZFC - Inf + \neg Inf$ 的模型

证明. 与 WF 类似, V_{ω} 是传递的,且关于 $\{x,y\}$, $\bigcup x$, $\mathcal{P}(x)$ 封闭,故而是 ZF – Inf 的模型(练习)

 $\neg \text{Inf: } \forall x \neg (\emptyset \in X) \land \forall y \in x (y^+ \in x)$

 $\neg \operatorname{Inf}^M : \forall x \in M(\emptyset^M \in X \land \forall y \in x((y^+)^M \in x))$

由于 $M = V_{\omega}$ 传递,故 $(\neg \operatorname{Inf})^M$: $\forall x \in M(\emptyset \in X \land \forall y \in x(y^+ \in x))$

由于 V_{ij} 中没有无穷集,故 $(\neg Inf)^M$ 在 V 中成立

 AC^M : 任取 $X \in V_{\omega}$, 若 $X \neq \emptyset$,存在 $R \in V_{\omega}$ 使得 $R \neq X$ 上的良序 $\operatorname{rank}(\mathcal{P}(x \times y)) < \operatorname{max}(\operatorname{rank}(x), \operatorname{rank}(y))$,故 $\mathcal{P}(x \times x) \in V_{\omega}$

Corollary 1.44. $Con(ZF^{-}) \vdash Con(ZFC - Inf + \neg Inf)$

1.6 基于良基关系的归纳与递归

Definition 1.45. 类 R ($\varphi(x,y)$) 是类 X ($\psi(x)$) 上的良基关系当且仅当

$$\forall U \subset X(U \neq \emptyset \rightarrow \exists y \in U(\neg \exists z \in U(zRy)))$$

U 是集合

Example 1.2. \in 是 On 上的良基关系

如果 Fud 成立,则 \in 是 V 上的良基关系

Theorem 1.46 (超穷归纳原理). 设 $\varphi(x)$ 是一个公式, 若 $\forall \alpha \in On$ 有 $\forall \beta (\beta < \alpha \rightarrow \varphi(\beta)) \rightarrow \varphi(\alpha)$, 则 $\forall \alpha \in On(\varphi(\alpha))$

Theorem 1.47 (超穷递归定理). 设 $G:V\to V$ 的函数,则存在唯一的函数 $F:\operatorname{On}\to V$ 使得

$$F(\alpha) = G(F \upharpoonright \alpha)$$

Definition 1.48. 类 X 上的关系,类 R 是 **似集合**的当且仅当对任意 $x \in X$,有 $\{y \in X \mid yRx\}$ 是一个集合

类的元素一定是集合,因为类是集合宇宙的一个子区域 一般称 $\{y \in X \mid yRx\}$ 中的元素为 x 的前驱, \in 是任何类 X 上的似集合关系

Definition 1.49. 如果 $R \neq X$ 上的似集合关系,且 $x \in X$,则递归定义

- $\operatorname{pred}^0(X, x, R) = \{ y \in X \mid yRx \}$
- $\bullet \ \operatorname{pred}^{n+1}(X,x,R) = \bigcup \{\operatorname{pred}(X,y,R) \mid y \in \operatorname{pred}^n(X,x,R)\}$
- $\operatorname{cl}(X, x, R) = \bigcup_{n \in \omega} \operatorname{pred}^n(X, x, R)$

对每个 n,pred $^n(X,x,R)$ 是集合 故 $\operatorname{cl}(X,x,R)$ 是集合 若 R 是 \in ,且 X 是传递的,则 $\operatorname{cl}(X,x,R)=x$

Lemma 1.50. 如果 R 是 X 上的似集合关系,则对任意 $y \in cl(X, x, R)$,都有 $pred(X, y, R) \subseteq cl(X, x, R)$

证明. 设 $y \in \operatorname{cl}(X, x, R)$,则存在 $n \in \omega$ 使得 $y \in \operatorname{pred}^n(X, x, R)$,故 $\operatorname{pred}(X, y, R) \subseteq \operatorname{pred}^{n+1}(X, x, R)$

Theorem 1.51. 如果 R 是 X 上的良基关系,且是似集合的,则 X 的每个非空子类 Y 都有 R-极小元

证明. 任取 $x \in Y$,若 x 不是 Y 的 R-极小元,则 $\operatorname{pred}(X,x,R) \cap Y$ 非空,于是 $Y \cap \operatorname{cl}(X,x,R)$ 非空,令 $x_0 \in Y \cap \operatorname{cl}(X,x,R)$ 为极小元,则 x_0 是 Y 的极小元,否则 $\operatorname{pred}(X,x_0,R) \cap Y = \emptyset$,任取 $z_0 \in \operatorname{pred}(X,x_0,R) \cap Y$,则 $z_0 \in Y$, $z_0 \in \operatorname{cl}(X,x,R)$,于是 $z_0 \in Y \cap \operatorname{cl}(X,x,R)$ 且 z_0Rx_0 ,与 x_0 的极小性矛盾

Remark. 假设基础公理,则 \in 是 V 上的良基关系,若 $V \neq WF$,则 $V \setminus WF$ 有极小元 x_0 非空,但是 $\forall y \in x_0 (y \in WF)$,于是 $x_0 \subset WF$,矛盾,因此 V = WF

Theorem 1.52. 设 R 是 X 上的似集合的良基关系,如果 $F: X \times V \to V$ 是"函数",则存在唯一的"函数" $G: X \to V$ 使得 $\forall x \in X(G(x) = F(x,G))$ pred(X,x,R)))

练习

证明. 1. 存在性

令公式 $\theta(x,t)$ 表示

- t 是一个函数(集合)
- $dom(t) = \{x\} \cup pred(X, x, R)$
- $\forall y \in \text{dom}(t)(t(y) = F(y, t \upharpoonright \text{pred}(X, y, R)))$
- $\forall y \notin \text{dom}(t)(t = \emptyset)$

 $\diamondsuit G = \{(x,y) \mid \theta(x,y)\},$ 证明 G 是函数:

1. 唯一性

若不唯一,则存在最小的 $x\in X$ 使得 $G(x)\neq G(x')$. 但是 $G(x)=F(x,G\upharpoonright(X,x,R))=F(x,G'\upharpoonright(X,x,R))=G'(x)$

Definition 1.53. 如果 $R \in X$ 上的似集合关系,设 $x \in X$,则定义

$$\operatorname{rank}(x, X, R) = \sup \{ \operatorname{rank}(y, X, R) + 1 \mid yRx \land y \in X \}$$

(来自超穷递归)

Definition 1.54 ($\mathbb{Z}F^-$). 如果类 X 传递,且 \in 是 X 上的良基关系,则 $X\subseteq \mathbb{W}F$ 且对任意 $x\in X$ 有 $\mathrm{rank}(x,X,\in)=\mathrm{rank}(x)$

证明. 若 $X \nsubseteq WF$, 取极小元 $x_0 \in X \setminus WF$, 显然 $x_0 \neq \emptyset$ 。任取 $z \in x_0$,由传 递性,有 $z \in X \cap WF$,于是 $x_0 \subseteq WF$,于是 $X \subseteq WF$

令 $Y=\{x\in X\mid \mathrm{rank}(x,X,\in)\neq\mathrm{rank}(x)\}$,如果 Y 非空,令 x_0 为 Y 的极小元,根据传递性, $x_0\subseteq X$,且 $\forall z\in x_0$, $\mathrm{rank}(z,X,\in)=\mathrm{rank}(z)$

$$\begin{split} \operatorname{rank}(x_0,X,\in) &= \sup\{\operatorname{rank}(z,X,\in) + 1 \mid z \in x_0\} \\ \operatorname{rank}(x_0) &= \sup\{\operatorname{rank}(z) + 1 \mid z \in x_0\} \end{split} \qquad \Box$$

Definition 1.55. 令类 R 是 X 上似集合的良基关系,则 (X,R) 上的 **mostowski** 函数 G 定义为

$$G(x) = \{G(y) \mid y \in X \land yRx\}$$

G 的值域记作 M, 称之为 (X,R) 的 **Mostowski 坍塌**

Lemma 1.56. 设 $R \neq X$ 上的一个似集合的良基关系, G 是其上的 Mostowski 函数, M 为其 Mostowski 坍塌, 则

- 1. $\forall x, y \in X(xRy \to G(x) \in G(y)), G: (X, R) \to (V, \in)$ 同态
- 2. M 是传递集
- 3. 如果幂集公理成立,则 $M \subseteq WF(ZF^- Pow Inf)$
- 4. 如果幂集公理成立,且 $x \in X$,则 rank(x,X,R) = rank(G(x))
- 证明. 3. 断言: (M, \in) 是良基的

任取 $Y \subseteq M$ 非空,则 $G^{-1}(Y) \subseteq X$ 非空,有极小元 x_0 ,若 $G(x_0)$ 不是 Y 的极小元,则 $G(x_0) \cap Y \neq \emptyset$ 。令 $z \in G(x_0) \cap Y$,则存在 $y \in G^{-1}(Y)$ 使得 G(y) = z 且 yRx_0 ,与 x_0 极小矛盾

4. 设 $x \in X$, $\mathrm{rank}(G(x)) = \sup\{\mathrm{rank}(v) + 1 \mid v \in G(x)\} = \sup\{\mathrm{rank}(G(y)) + 1 \mid y \in X \land yRx\}$

设 x_0 是使得等式不成立的极小元,则对任意 $y \in X$, $yRx_0 \to \operatorname{rank}(y,X,R) = \operatorname{rank}(G(y))$

 $\begin{aligned} & \operatorname{rank}(x,X,R) = \sup\{\operatorname{rank}(y,X,R) + 1 \mid yRx \land y \in X\} = \sup\{\operatorname{rank}(G(y)) + 1 \mid yRx \land y \in X\} = \operatorname{rank}(G(x)) \end{aligned}$

那么 G 在什么条件下是个同构

Definition 1.57. $R \in X$ 上的 外延的关系当且仅当

$$\forall x, y \in X (\forall z \in X (zRx \leftrightarrow zRy) \rightarrow x = y)$$

Lemma 1.58. 如果 X 是传递的,则 \in 在 X 上是外延的

证明. $\operatorname{pred}(X, x, \in) = x$

Lemma 1.59. 令 R 是 X 上的似集合良基关系,如果 R 在 X 上是外延的,则 G 是同构

证明. 若 G 不是单射,即 $Y = \{x \in X \mid \exists y \in X (x \neq y \land G(x) = G(y))\}$ 非空,则有极小元 x_0 ,取极小的 $y_0 \in Y$ 使得 $x_0 \neq y_0$ 且 $G(x_0) = G(y_0)$,存在 $z_0 \in X$ 使得 $\neg (z_0 R x_0 \leftrightarrow z_0 R y_0)$

若
$$z_0 Rx_0$$
, $\neg z_0 Ry_0$, 则 $G(z_0) \in G(x_0)$, $G(z_0) \notin G(y_0)$

Theorem 1.60 (莫斯托夫斯基坍塌定理). 令 R 是 X 上的似集合良基关系,并且在 X 上是外延的,则存在传递类 M 和双射 G 满足 $G: X \to M$ 满足: G 是 (X,R) 与 (M,\in) 之间的同构。另外 M 和 G 唯一

1.7 基础公理的绝对性

已知 ZF^- 一致 \Rightarrow ZF 一致 本节工作于 ZF 中

Theorem 1.61. 以下关系和函数可以在 ZF — Pow 中用公式定义,且 ZF — Pow 可以证明这些公式等价于 Δ_0 公式,所以它们对任意 ZF — Pow 的传递模型 绝对

- 1. x 是序数
- 2. x 是极限序数
- 3. x 是后继序数
- *4.* ω
- 5. x 是有穷序数
- 6. $0, 1, 2, \dots, 20, \dots$

证明. 1. ∈ 良基

x 是序数 \Leftrightarrow x 是传递集且 \in 是 x 上的线序 即 $\forall y \in x(y \subset x) \land \forall y, z \in x(y \in z \lor y = z \lor z \in y)$

- 4. $\diamondsuit \psi(x)$ 为"x 是极限序数"且 $\emptyset \in x$ 且 $\forall y \in x(y \text{ is limit } \to y = \emptyset)$
- 5. 令 $\psi(x)$ 为"x 是序数"且 $x \neq \omega$ 且 $\forall y \in x(y \neq \omega)$
- 6. 归纳证明: \emptyset : $\forall y \in x (y \neq y) \ \psi_0(x)$ 假设 n 被 $\psi_n(x)$ 定义,则 $\psi_{n+1}(x)$: $\exists y \in x (\psi_n(y) \land x = y^+)$

Remark. 令 $\psi_{limit}(x)$ 定义极限序数,即使 $V \vDash \neg \operatorname{Inf}, \psi_{limit}(x)$ 相对于 $\operatorname{ZF} - \operatorname{Pow} + \neg \operatorname{Inf}$ 的传递模型 M 仍然是绝对的,此时, $V \vDash \forall x (\psi_{limit}(x) \to x = \emptyset)$

同理定义 ω 的 $\psi_{\omega}(x)$ 也是绝对的,此时 $V \vDash \neg \exists (\psi_{\omega}(x))$ 若 V 和 M 均满足 Inf,则 $\omega \in M$ 且 $\psi_{\omega}(\omega) \leftrightarrow \psi_{\omega}^{M}(\omega)$

Lemma 1.62. 如果 M 是 ZF^- — Pow 的传递模型,则 M 的所有有穷子集都 是 M 的元素

证明. $\phi \sigma_n$ 为

$$\forall x \subset M(|x| = n \to x \in M)$$

V 看到的

- 1. σ_0 , $V \vDash (\mathbf{ZF} \mathbf{Pow})^M$,由于 $\mathbf{ZF} \mathbf{Pow} \vdash \exists x (x = \emptyset)$,故 $V \vDash \exists x \in M(x = \emptyset^M)$,而空集是一个绝对概念,因此 $V \vDash \exists x \in M(x = \emptyset)$
- 2. 假设 σ_n 成立,任取 $x \subset M$ s.t. |x| = n+1, 任取 $y \in x$,则 $y \in M$,

Theorem 1.63. 以下概念对 ZF-Pow 的任何传递模型都是绝对的

1. x 是有穷的

- $2. X^n$
- 3. $X^{<\omega}$ 即 X 上所有有穷序列的集合
- 证明. 1. 令 $\psi(x,f)$ 表示"f 是函数"且 $\mathrm{dom}(f)=x$ 且 $\mathrm{ran}(f)\in\omega$ 且 "f 是 ——的"

显然 $\psi(x, f)$ 是绝对的, x 有穷 $\Leftrightarrow \exists f \psi(x, f)$

目标: $\forall x \in M(x \text{ finite} \leftrightarrow (x \text{ finite})^M)$,即 $\forall x \in M(\exists f \psi(x, f) \leftrightarrow \exists f \in M \psi(x, f))$

任取 $x_0 \in M$,若存在 $f_0 \in M$ 使得 $\psi^M(x_0, f_0)$ 成立,则 $\psi(x_0, f_0)$ 成立,

若存在 f 使得 $\psi(x_0, f)$ 成立,下面证明 $f_0 \in M$ 。存在 $n \in \omega$ 使得 $f_0: x \to n$ 是一一的函数, $f_0 \subseteq x_0 \times n$ 是有穷集

n 与 x_0 均属于 M, 故 $x_0 \times n \in M$, 故 $x_0 \times \subset M$, 故 $f_0 \subseteq M$ 是有穷子 集,

2. X^n 是 n 到 X 的所有函数的集合

令 $f:n\to X$ 表示"f 是函数"且 $\mathrm{dom}(f)=n$ 且 $\mathrm{ran}(f)\subseteq X$ f 是绝对的,于是 $\forall f,n,X\in M((f:n\to X)\leftrightarrow (f:n\to X)^M)$ 定义函数

$$F(X,n) = \begin{cases} 0 & n \notin \omega \\ \{f \mid f : n \to x\} & n \in \omega \end{cases}$$

Z = F(X, n) 被公式 $\psi(X, n, z)$ 表示: $(n \notin \omega \to z = 0) \land (n \in \omega \to z = \{f \mid f : n \to x\})$

下面证明 ψ 的绝对性,只需证明 $\forall n \in \omega$ 以及 $X_0, Z_0 \in M$,有

$$\forall y \in Z_0(y:n \to X_0) \land \forall f((f:n \to X_0) \to f \in Z_0)$$

唯一的障碍是 $\forall f$,但是因为当 $n, X_0 \in M$ 且 $f: n \to X_0$,则 f 是 M 的有穷子集

故 $\psi(X, n, Z)$ 是绝对的

下面验证, $X^n \subseteq \mathcal{P}(n \times X) \in M$

$$V \vDash \forall X \in M \forall n \in M \exists ! Z \in M \psi(X, n, Z)$$

任取 $X\in M$,若 $n\notin\omega$,则 $F(X,n)=\emptyset\in M$,若 $n\in\omega$,定义 $\theta_n(x,y)$ 为

$$\exists a_0 \dots a_{n-1} (x = (a_0, \dots, a_{n-1}) \wedge y = \{(0, a_0), \dots, (n-1, a_{n-1})\})$$

令 $[X^n]$ 表示 n 次笛卡儿积,显然 $[X^n]$ ∈ M

 $\forall x \in [X^n] \exists ! y \in M\theta_n^M(x, y)$

由于 M 满足替换公理,故存在 $z \in M, X^n \subset z$

根据分离公理

$$V \vDash \exists u \in M \forall f \in M (f \in u \leftrightarrow f \in z \land (f : n \to x))$$

故 $u = X^n \in M$

3. 先证明封闭, 再证明绝对

首先证明函数 $Z = X^{<\omega}$ 是绝对的

$$\diamondsuit F(x,n) = X^n , 则 \ Z = \bigcup \{F(x,0),F(x,1),\dots\} = \bigcup \operatorname{ran}(F(x,-)) \upharpoonright \omega$$
 由于 $\omega \in M$, 于是 $\operatorname{ran}(F(x,-) \upharpoonright \omega) \in M$, 由并集公理, $\bigcup \operatorname{ran}(F(x,-) \upharpoonright \omega) \in M$

 $\exists \mathbb{I} \ x \in M \Rightarrow X^{<\omega} \in M$

 $Z=X^{<\omega}$ 被公式 $\varphi(x,z)$ 定义: $\forall f(f\in z\leftrightarrow \exists n(n ext{ fintie ordinal} \land f\in X^n))$

验证: $\forall x \in M \forall z \in M(\varphi(x,z) \leftrightarrow \varphi^M(x,z))$

V看到所有有穷序数都在M中

于是 φ 绝对, $\forall x \in M \exists ! z \in M \varphi(x, z)$

Theorem 1.64. 以下概念对 ZF^- – Pow 的任何传递模型都是绝对的

- 1. R 是 X 上的良序 (集合)
- 2. type(x, R)
- 证明. 1. 已证明: $\forall R \in M \forall x \in M (R \not = X \text{ 的良序})^M)$ 另一方面, $\mathsf{ZF} \mathsf{Pow} \vdash \forall R \forall X [R \not = X \text{ 的良序}] \to \exists \alpha \exists f (\alpha \text{ ordinal } \land f : A)$

 $(\alpha, \in) \cong (X, R)$

后面的部分是绝对的

同时这个也有 M 的相对化 $(\mathbf{ZF-Pow})^M \vdash \forall R \in M \forall X \in M[(R是 X 的良序)^M \to \exists \alpha \in M \exists f \in M(\alpha \text{ ordinal} \land f : (\alpha, \in) \cong (X, R)]$

若 $R_0, X_0 \in M$ 且 $(R_0$ 是 X_0 的良序) M ,则存在 $\alpha \in M$, $f \in M$, $f : (\alpha, \in M) \cong (X_0, R_0)$,因此 $V \models R_0$ 是 X_0 的良序

2. 令 W(X,R) 表示 R 是 X 的良序,令 $\chi(X,R,Z)$ 表示 Z 是序数且 W(X,R) 且 $\exists f:(Z,\in)\cong(X,R)$

则 $Z = \text{type}(X, R) \Leftrightarrow \chi(X, R, Z)$,而 χ 是绝对(这里的问题是 $\exists f$,要证明 f 一定在 M 中,参考良序绝对性的证明)的且 $\forall X, R \in M \exists ! Z \in M \chi(X, R, Z)$ (练习)

Theorem 1.65. 以下概念对 ZF-Pow 的任何传递模型都是绝对的

- 1. $\alpha + 1$
- $2. \alpha 1$
- 3. $\alpha + \beta$
- 4. $\alpha \cdot \beta$
- 证明. 2. $x = \alpha 1$ 被

 $\alpha \neq 0 \land ((\alpha 后继 \land \alpha = x + 1) \lor (\alpha 极限 \land \alpha = x))$

3. 没有递归定义的绝对性

 $\alpha + \beta$ 的定义为 type($\alpha \oplus \beta$)

由于 type(-,-) 是绝对的,只需证明 $\alpha \oplus \beta$ 是绝对的

令 $F(\alpha \oplus \beta) = W$,其中 $W = \{\alpha \times \{0\} \cup \beta \times \{1\}\}$,再令 $G(\alpha \oplus \beta) = R$,其中 $R \subseteq W^2$ 且满足 $\forall x \in \alpha \times \{0\} \forall y \in \beta \times \{1\} (xRy)$ 且 $\forall x, y \in \alpha((x,0)R(y,0) \leftrightarrow x \in y)$ 且 $\forall x, y \in \beta((x,1)R(y,1) \leftrightarrow x \in y)$

显然 $R \neq W$ 的良序集

F 是绝对的

$$\forall x \in R[\exists a \in \alpha \exists b \in \alpha (a \in b \land x = ((a,0),(b,0)))$$

$$\lor \exists a \in \beta \exists b \in \beta (a \in b \land x = ((a,1),(b,1)))$$

$$\lor \exists a \in \alpha \exists b \in \beta (x = ((a,0),(b,1)))]$$

$$\land \forall a,b \in \alpha \exists x \in R(x = ((a,0),(b,0)))$$

$$\land \forall a,b \in \beta \exists x \in R(x = ((a,1),(b,1)))$$

$$\land \forall a \in \alpha \forall b \in \beta \exists x \in R(x = ((a,0),(b,1)))$$

用 $\theta(\alpha, \beta, x)$ 表示方括号,则 $V \vDash \forall z (z \in R \leftrightarrow \theta(\alpha, \beta, z))$

于是 $G(\alpha, \beta) = R \Leftrightarrow \psi(\alpha, \beta, R)$

 ψ, θ 是绝对的

若 $\alpha, \beta \in M$,则 $\{x \mid \theta(\alpha, \beta, x)\} = \{x \in M \mid \theta(\alpha, \beta, x)\} = \{x \in M \mid \theta^M(\alpha, \beta, x)\} \subseteq M$, $R = \{x \in W^2 \mid \theta^M(\alpha, \beta, x)\}$,由分离公理, $R \in M$ 故 $G(\alpha, \beta) = R$ 是绝对的,

 $\alpha + \beta = \text{type}(F(\alpha, \beta), G(\alpha, \beta))$ 是绝对的

4. 同理: $\alpha \cdot \beta = \text{type}(\alpha \otimes \beta)$ 是绝对的

设 X 是一个类,被公式 X(x) 定义,称 X 绝对是指 $\forall x \in M(X(x) \leftrightarrow X^{M}(x))$

令 X^M 表示 $\{x \in M \mid x^M(x)\}$, X 对于 M 绝对 $\Leftrightarrow X^M = X \cap M$ 若 M 是 ZF - Pow 的传递模型,则 $On^M = M \cap On$

作为函数的类, $G:X\to Y$ 其中 X,Y 是类,是一个公式 G(x,y) 满足函数的条件

称 G 相对于类 M 是绝对的是指

- 1. $\forall x \in X^M \exists ! y \in Y^M G^M(x,y)$, $\mathbb{P} G^M: X^M \to Y^M$
- 2. $\forall x \in M \forall y \in M(G^M(x,y) \leftrightarrow G(x,y))$

Theorem 1.66. 设 $R \not\in X$ 的似集合的良基关系, $F: X \times V \to V$, 令 $G: X \to V$ 如递归定理所定义的:

$$\forall x \in X(G(x) = F(x, G \upharpoonright pred(X, x, R)))$$

令M是ZF-Pow 的传递模型,且假设

- 1. F 相对于 M 绝对的
- 2. X, R 相对于 M 是绝对的
- $3. (R在 X 上是似集合的)^M$
- 4. $\forall x \in M(pred(X, x, R) \subseteq M)$

则 G 对 M 是绝对的

证明. 阅读书中证明

$$V \vDash (X^M = X \cap M)$$

$$V \vDash (R^M = R \cap (M \times M))$$

$$V \vDash R^M = (X^M)^2 \cap R$$

$$V \vDash (X^M, R^M)$$
 是良基的

R 在 X 上是似集合的, $\forall x \in X \exists z \forall y \in X (y \in z \leftrightarrow yRx)$,它的相对化就是 $\forall x \in X^M \exists z \in M \forall y \in X^M (y \in z \leftrightarrow yR^M x)$

故 (X^M,R^M) 是似集合的且 $\forall x \in M(\operatorname{pred}(X^M,x,R^M) \in M)$ 由 X 与 R 的绝对性, $\operatorname{pred}(X^M,x,R^M) = \operatorname{pred}(X,x,R) \cap M$ 由于 $\forall x \in M(\operatorname{pred}(X,x,R)) \subseteq M$,故 $\forall x \in M(\operatorname{pred}(X^M,x,R^M) = \operatorname{pred}(X,x,R))$

断言 1: 函数 $y = \operatorname{pred}(X, x, R)$ 是绝对的 $y = \operatorname{pred}(X, x, R)$ 被公式 $\psi(x, y)$ 表示:

$$\forall z(z \in y \leftrightarrow z \in X \land zRx)$$

则 $\psi^M(x,y)$ 为

$$\forall z \in M (z \in y \leftrightarrow z \in X^M \land z R^M x)$$

若 $x_0, y_n \in M$,有 $z \in y_0 \to z \in M$, $zRx_0 \to z \in M$ 故 ψ 绝对,由以上分析,若 $x \in M$,则 $\operatorname{pred}(X, x, R) \in M$ 。故 $y = \operatorname{pred}(X, x, R)$ 是作为函数是绝对的

对任意的 $x \in M$,有 $(\operatorname{pred}(X, x, R))^M = \operatorname{pred}(X, x, R) = \operatorname{pred}(X^m, x, R^M)$ 先在 (X^M, R^M) 是似集合的的良基关系,由绝对性, $F^M : X^M \times M \to$ M,这些都是 V 看到的,那么由递归定理,存在函数 $g : X^M \to V$ 满足

$$\forall x \in X^M(g(x) = F^M(x,g \upharpoonright \mathsf{pred}(X^M,x,R^M)))$$

目标:证明 $g = G^M$ (书本)

问题: 递归定理中的 "G" 只刻画了 G 的性质并非定义(元语言)回忆: G(x) 的定义令公式 $\theta(x,t)$ 表示

- t 是一个函数(集合)
- $x \in X$
- $dom(t) = \{x\} \cup pred(X, x, R)$
- $\forall y \in \text{dom}(t)(t(y) = F(y, t \upharpoonright \text{pred}(X, y, R)))$
- $\forall y \notin \text{dom}(t)(t = \emptyset)$

则 $G(x) = y \Leftrightarrow \exists t(\theta(x, t) \land y = t(x))$

下面证明 $\exists t(\theta(x,t) \land y = t(x))$ 的绝对性

断言 2: $\theta(x,t)$ 是绝对的

只需证明 $t \upharpoonright \operatorname{pred}(X, y, R)$ 是绝对的,即若 $x_0 \in X^M, y_0 \in \operatorname{pred}(X, x_0, R)$, $t_0 \in M$,则 $t_0 \upharpoonright \operatorname{pred}(X, y_0, R) = (t_0 \upharpoonright \operatorname{pred}(X, y_0, R))^M$ 函数 $s = t \upharpoonright \operatorname{pred}(X, y, R)$ 被公式

 $\eta(y,t,s) := \forall x \in s \exists u \exists v (uRy \land v = t(u) \land x = (u,v)) \land \forall u \forall v (uRy \land v = t(u) \rightarrow (u,v) \in s)$

验证: η 是绝对的 (练习), 但是 uRy, 因此 $u \in M$,

故 $\theta(x,t)$ 是绝对的

断言 3: $\theta(x,t)$ 定义了一个类函数,即 $V \vDash \forall x \in X \exists ! t \theta(x,t)$ 练习(对 $x \in X$ 归纳证明)

下面证明 θ 作为函数是绝对的 **断言 4**: 若 $x \in M$, 则 $\forall t(\theta(x,t) \to t \in M)$

否则,存在一个极小的 $x_0 \in M, t_0$ 使得 $\theta(x_0, t_0)$ 且 $t_0 \notin M$

若 $\operatorname{pred}(X,x_0,R)=\emptyset$,则由 θ 的定义, $t_0=\{(x_0,F(x_0,\emptyset))\}\in M$,矛盾

 $t^* = \operatorname{ran}(\theta \upharpoonright \operatorname{pred}(X, x_0, R))$

由归纳假设, $\forall x \in \operatorname{pred}(X, x_0, R) \exists ! y \in M(\theta(x, y))$

于是 $\forall x \in \operatorname{pred}(X, x_0, R) \exists ! y \in M(\theta^M(x, y))$

因此 $t^* = \operatorname{ran}(\theta^M \upharpoonright \operatorname{pred}(X, x_0, R))$

由替换公理, $t^* \in M$, 由绝对性

$$t_0 = (\left\lfloor \ \right\rfloor t^*) \cup \{(x_0, F^M(x_0, \left\lfloor \ \right\rfloor t^*))\} \in M$$

矛盾

故 $\forall x \in M \exists ! t \in M \theta(x, t)$, 即 $\theta(x, t)$ 作为函数绝对记 $\phi(x, y) := \exists t (\theta(x, t) \land y = t(x))$, 则

$$\phi^M(x,y) = \exists t \in M(\theta(x,t) \land y = t(x))$$

但是 $\forall x \in M \forall y \in M$

$$(\exists t(\theta(x,t) \land y = t(x))) \leftrightarrow \exists t \in M(\theta(x,t) \land y = t(x))$$

下面证明 G(x) 作为函数绝对,即 G(x) 封闭

回亿: $g: X^M \to M$ 满足

$$\forall x \in X^M(g(x) = F^M(x, g \upharpoonright \operatorname{pred}(X^M, x, R^M)))$$

断言 5: $\forall x \in X^M(G(x) = g(x))$

否则, 存在"极小"的 $x_0 \in X^M = X \cap M$ 使得 $G(x_0) \neq g(x_0)$

显然 $\operatorname{pred}(X,x_0,R)=\operatorname{pred}(X^M,x_0,R^M)\neq\emptyset$,否则 $g(x_0)=F^M(\emptyset,g)$

 $\emptyset) = F^M(\emptyset,\emptyset) = F(\emptyset,g \upharpoonright \emptyset) = G(x_0)$

假设 $\operatorname{pred}(X, x_0, R) = \operatorname{pred}(X^M, x_0, R^M) \neq \emptyset$,由 x_0 的极小性,有 $\forall x \in \operatorname{pred}(X, x_0, R) \cap \operatorname{pred}(X^M, x_0, R^M)$ 时,有 G(x) = g(x)

因此
$$G \upharpoonright \operatorname{pred}(X, x_0, R) = g \upharpoonright \operatorname{pred}(X^M, x_0, R^M)$$

 $g(x_0) = F^M(x_0, g \upharpoonright \operatorname{pred}(X^M, x_0, R^M)) = G(x_0)$,矛盾

Theorem 1.67. 一下概念对 ZF — Pow 的传递模型都是绝对的

- $1. \alpha^{\beta}$ (序数)
- 2. rank(x)
- 3. trcl(x)

证明. 1. 若
$$\alpha = 0$$
,则 $\alpha^{\beta} = 0$

它是递归定义的, 因此是绝对的

规定 $On \times On$ 上的关系 R 为

$$R = \{((\alpha, \beta_1), (\alpha, \beta_2)) \mid \beta_1 \in \beta_2\} \subseteq \mathsf{On}^2$$

显然 R 是良基关系,R 是似集合的, $\operatorname{pred}(\operatorname{On}^2,(\alpha,\beta),R)=\{\alpha\}\times\beta$

定义 $F: \operatorname{On}^2 \times V \to V$ 为

$$F(\alpha,\beta,x) = \begin{cases} 0 & \alpha = 0 \lor x \notin \mathsf{On}^3 \\ 1 & \beta = 0 \land \alpha \neq 0 \\ \left(\bigcup_{y \in x} \pi_3(y)\right) \cdot \alpha & \mathsf{otherwise}, x \in \mathsf{On}^3 \end{cases}$$

有 M 的传递性, $x=(x_1,x_2,x_3)\in M\Rightarrow x_1,x_2,x_3\in M$ 由 (x_1,x_2,x_3) 的绝对性, $y=\pi_3(x)$ 是绝对的,因为 $y=\pi_3(x)$ 为

$$\exists x_1 \exists x_2 \exists x_3 (x = (x_1, x_2, x_3) \land y = x_3)$$

验证 $G(\alpha, \beta) = \alpha^{\beta}$ 是基于 F 递归定义的,因此 G 是绝对的

- 2. ${\rm rank}(x)$,即 ${\rm rank}(V,x,\in)$ ${\rm rank}(x)=\sup\{{\rm rank}(y)+1\mid y\in x\},\ \ {\rm 找}\ F,\ \ {\rm 并证明绝对性},\ \ {\rm 练习}$
- 3. $trcl(x) = x \cup \bigcup \{trcl(y) \mid y \in x\}$ 练习

Remark. $\alpha + \beta$ 也是递归定义的

Remark. • rank(x) 的定义用到 V_{α}

- 当 $M \nvDash Pow$, V_{α}^{M} 没有意义
- $\operatorname{rank}(x)$ 仍可递归定义为 $\sup\{\operatorname{rank}(y)+1\mid y\in x\}$
- 当 $M \models Pow$,则两种定义等价 定义公式 $\varphi(x,y)$ 为

$$\forall z(z \in y \leftrightarrow z \subseteq x)$$

当 $V \models \text{Pow}$,则 $V \models \forall x \exists ! y \varphi(x, y)$,即 $\varphi(x, y)$ 定义了一个函数,记作 $\mathcal{P}(x) = y$ 若 $M \models \text{Pow}$,则

$$V \vDash \forall x \in M \exists ! y \in M \varphi^M(x, y)$$

当 M 传递时, $\subseteq^M \Leftrightarrow \subseteq$, 若 $M \models Pow$, 则

$$V \models (\varphi^M$$
定义了 M 到 M 的函数)

记该函数为 $\mathcal{P}^M(x)$,即 $\mathcal{P}^M(x) = \{z \in M \mid z \subseteq^M x\}$ 当 M 传递时, $\mathcal{P}^M(x) = \{z \in M \mid z \subseteq x\} = \mathcal{P}(x) \cap M$ 同理 $V^M_\alpha = \{x \in M \mid (\mathrm{rank}(x) < \alpha)^M\}$

- 1. 若 $x \in M$,则 $\mathcal{P}^M(x) = \mathcal{P}(x) \cap M$ 只需 Pow 加传递
- 2. 如果 $\alpha \in M$,则 $V_{\alpha}^{M} = V_{\alpha} \cap M$ 只需ZF—Pow,若有Pow,则 V_{α}^{M} 是由 \mathcal{P}^{M} 得到的

Remark. \mathcal{P} 与 V_{α} 作为函数不是绝对的 固定 $x \in M$,则 $\mathcal{P}(x)$ 可以是带参数 x 的公式

$$\mathcal{P}(x)(y) : \forall z(z \in y \leftrightarrow z \in x)$$

此时谓词 $\mathcal{P}(x)$ 是绝对的, $(\mathcal{P}(x))^M = \mathcal{P}(x) \cap M$

固定 $\alpha\in M\cap {\rm On}$,则 V_{α} 可以看成带参数 α 的谓词,此时 $(V_{\alpha})^{M}=V_{\alpha}\cap M$ 是绝对的

1.8 不可达基数与 ZFC 的模型

一般来讲, V_{α} 不是 ZF 的模型,比如 ZF $^ \vdash$ $(V_{\omega} \vDash$ ZFC - Inf) 令 Z 表示 ZF - 替换公理模式(Rep) ZC 表示 ZFC - Rep

Theorem 1.69. 如果 $\gamma > \omega$ 是无穷极限序数,则 ZF $\vdash (V_{\gamma} \vDash Z)$,ZFC $\vdash (V_{\gamma} \vDash ZC)$

证明. 假设 $V \models ZF$

- 存在公理:
- 外延公理: $\forall x \in V_{\gamma} \forall y \in V_{\gamma} \forall u \in V_{\gamma} ((u \in x \leftrightarrow u \in y) \rightarrow x = y), V_{\gamma}$ 传递
- 分离公理模式: 假设 $x \in V_{\gamma}$, 则存在 $\beta < \gamma$ 使得 $x \in V_{\beta}$, 故 $x \subseteq V_{\beta}$, $\mathcal{P}(x) \subseteq \mathcal{P}(V_{\beta}) = V_{\beta+1} \subseteq V_{\gamma}$, 则若 $x \in V_{\gamma}$, 则 X 的子集均属于 V_{γ} 分离公理

 $\forall x \in V_{\gamma} \exists Y \in V_{\gamma} \forall u \in V_{\gamma} (u \in Y \leftrightarrow u \in X \land \varphi^{M}(u))$

在V里面可以看到这些是X的子集,且能看到X的所有子集在 V_{γ} 里

- 对集公理, $\forall x \forall y \exists z \forall u (u \in z \leftrightarrow u = x \lor u = y)$ 设 $x,y \in V_{\gamma} \subseteq \mathrm{WF} = V$,有 $\mathrm{rank}(\{x,y\}) < \mathrm{max}\{\mathrm{rank}(x),\mathrm{rank}(y)\} + \omega$,故 $\{x,y\} \in V_{\gamma}$
- 并集公理, 类似
- 幂集公理, 类似
- 无穷公理 对于 \mathbf{ZF}^- - \mathbf{Pow} - \mathbf{Rep} 的传递模型, \emptyset 与后继运算是绝对的 $\omega \in V_{\gamma}$,故无穷公理的相对化成立
- 基础公理

 $\forall x \in V_{\gamma}((x \neq \emptyset)^{V_{\gamma}} \to \exists y \in V_{\gamma}(y \in x \land (y \cap x = \emptyset)^{V_{\gamma}}))$ 对于 $\mathbf{ZF}^{-} - \mathbf{Pow} - \mathbf{Rep}$ 的传递模型, $\emptyset 与 \cap \mathbf{E}$ 绝对的 而 $V_{\gamma} \subseteq \mathbf{WF} = V$,故 Fon 成立

若 $V \models \mathsf{ZFC}$,设 $x \in V_{\gamma}$,则 $V \models \exists R (R \not = X \text{ 的良序})$ 。 $R \subseteq X \times X \Rightarrow R \in V_{\gamma}$,对于 $\mathsf{ZF}^- - \mathsf{Pow} - \mathsf{Inf} - \mathsf{Rep}$ 的传递模型 V_{γ} 有

 $V \vDash (R \not \in X$ 的良序) $^{V_{\gamma}}$

Exercise 1.8.1. 证明 $V_{\omega+\omega}$ 不满足 Rep

证明. $f: n \to \omega + n$

Proposition 1.70. 工作在 ZFC

- ZF 不能证明"V., 存在"
- ZF 不能证明"对任意 x, trcl(x) 存在"

证明. 构造模型否定这两个命题

令
$$V \vDash \mathsf{ZFC}$$
,令 $X_0 = \omega$, $X_{\alpha+1} = \mathcal{P}(X_\alpha)$, $X_\gamma = \bigcup_{\beta < \gamma} X_\beta$ (γ 极限序数)显然 $\overline{X} = \bigcup_{\alpha \in \mathsf{On}} X_\alpha = \mathsf{WF} = V$ (练习)

容易验证以下事实: X_{α} 传递,设 f(x,y) 表示 $\{x,y\}$,(x-y), $x \times y$, $\bigcup x$, $\cap x$, $\mathcal{P}(x)$,...

若 $x \in X_{\alpha}, y \in X_{\beta}$,则 $f(x,y) \in X_{\max\{\alpha,\beta\}+\omega}$

类似可证 X_{ij} 是 ZC - Inf 的传递模型

由于 $\omega \in X_{\omega}$,故 $X_{\omega} \models Inf$,即 $X_{\omega} \models ZC$

显然 $V_{\omega} \nsubseteq \omega = X_0$,于是存在 $V_n \nsubseteq X_0$,故 $\mathcal{P}(V_n) \nsubseteq \mathcal{P}(X_0)$,即 $\forall k < \omega$, $V_{n+k} \nsubseteq X_k$,故 $\forall n < \omega$,都有 $V_{\omega} \nsubseteq X_n$,故 $V_{\omega} \notin X_{\omega}$

但要严格地说的话得找到一个东西定义 V_{ω} 然后证明它的相对化在 X_{ω} 不满足

另一方面,
$$V_0 \subseteq X_0 \Rightarrow V_n \subseteq X_n$$
,于是 $V_\omega \subseteq X_\omega$ 令 $G: \omega \to WF$ 为 $G(n) = V_\alpha$

验证 G 相对于 X_{ω} 是绝对的,G 的任何一个片段都是有穷的,因此片段的值域都在 X_{ω} 中,因为 X_{ω} 对于任何有穷集合封闭

注: 当 $M \models \mathsf{ZF-Pow}$,我们知道递归函数 G 的绝对性,此时 $X_{\omega} \not\models \mathsf{Rep}$,然而 X_{ω} 的任何有穷子集都属于 X_{ω} ,故而对任何 $f: \omega \to X_{\omega}$,有 $f(\{0,\ldots,n\}) \in X_{\omega}$,可以证明 G 的绝对性(练习)

 V_{ω} 被公式 $\eta(x): \exists n \in \omega(x \in G(n))$

 $(V_{\omega}$ 被" $\alpha \in V_{\omega}$ "定义,但是 X_{ω} 不一定认为 V_{ω} 是集合,必需用 X_{ω} 认可的方式定义)

 V_{a} , 存在指的是

 $\exists y \forall x (x \in y \leftrightarrow \eta(x))$

由于 G 是绝对的, $\eta(x)$ 绝对,因此 X_{ω} 认为" V_{ω} 存在"当且仅当 $\exists y \in X_{\omega} \forall x \in X_{\omega} (x \in y \leftrightarrow \eta(x))$

由于 $V_{\omega} \subseteq X_{\omega}$ 且 X_{ω} 是传递的,以上的公式等价于

$$\exists y \in X_{\omega} \forall x (x \in y \leftrightarrow \eta(x))$$

而这样的 y 只能是 V_{ω} , 而 $V_{\omega} \notin X_{\omega}$, 因此以上句子不成立

即 $ZFC \vdash "X_{\omega} \models ZC + V_{\omega}$ 不存在"

证明"x 存在且 $\operatorname{trcl}(x)$ 不存在",假设 $V \vDash \operatorname{ZFC}$,令 $t(u) = \{u\}$, $x_n = t^n(n)$, $\operatorname{rank}(x_n) = 2n$, $x = \{x_n \mid n < \omega\}$,令 $X_0 = x$, $X_1 = \bigcup X_0$,…, $X_{n+1} = \bigcup X_n$,则 $\operatorname{trcl}(x) = \bigcup_{n < \omega} X_n$

令 $Y_0=\omega\cup X_0$, $Y_{n+1}=\mathcal{P}(Y_n)\cup Y_n\cup X_n$,验证 $Y_\omega=\bigcup_{n<\omega}Y_n$ 是传递的,验证 $Y_\omega\vDash \mathsf{ZC}$,验证 $x\in Y_1\subseteq Y$,验证 $\mathsf{trcl}(x)=\bigcup_{n<\omega}X_n\notin Y$,即验证 $\forall n\exists m(X_m\nsubseteq Y_n)$

后面类似,证明
$$Y_{\omega} \models "\operatorname{trcl}(x)$$
不存在"

Theorem 1.71. 如果 κ 是不可达基数,则在 ZF^- 中可以证明 V_{κ} \models ZF,在 ZFC^- 中可以证明 V_{κ} \models ZFC

证明. 已知 $\mathbf{ZF}^- \models (V_{\kappa} \models Z), \mathbf{ZFC}^- \models (V_{\kappa} \models \mathbf{ZC}),$ 下面验证替换公理模式

$$\forall A(\forall x \in A \exists ! y \psi(x, y) \rightarrow \exists B \forall x \in A \exists y \in B \psi(x, y))$$

相对化

 $\forall A \in M (\forall x \in A \exists ! y \in M \psi^M(x, y) \to \exists B \in M \forall x \in A \exists y \in B \psi(x, y))$

假设 $A \in V_{\kappa}$ 且 $\forall x \in A \exists ! y \in V_{\kappa} \psi^{M}(x, y)$

由于 κ 是极限序数,故 $A \in V_{\kappa} \Rightarrow \exists \alpha < \kappa (A \in V_{\alpha})$,因此 $A \subseteq V_{\alpha}$,而 $V \vDash (\psi^{M} : A \to V_{\kappa})$,于是 $V \vDash |A| \leq |V_{\alpha}| < \kappa, V \vDash |f(A)| < \kappa, V \vDash f(A) \subseteq V_{\kappa}$,由 κ 的正则性,所以存在 $\beta < \kappa$, $f(A) \subseteq V_{\beta}$,于是 $f(A) \in V_{\beta+1} \subseteq V_{\kappa}$,即 B = f(A) 即可

注: V_{κ} 的基数小于 κ 的子集都是 V_{κ} 的元素 若 M 的有穷子集都是 M 的元素,则 $M \models$ 有穷 Rep

Corollary 1.72. ZFC 中不能证明"存在不可达基数"

证明. 若 ZFC \vdash "存在不可达基数",则 ZFC \vdash " $V_{\kappa} \models$ ZFC",即 ZFC \vdash $\exists X (\mathsf{ZFC})^X$,因为 V_{κ} 是个集合,因此 ZFC \vdash Con(ZFC)

若只能找到一个真类,我们不能得到能证明一致性 □

若T是可公理化的,则

$$\mathsf{ZFC} \vdash \mathsf{Con}(T) \leftrightarrow \exists M(T)^M$$

(粗略的完全性定理)取一个适当大的子集 $P \subseteq ZFC$,有

$$P \vdash \mathsf{Con}(T) \leftrightarrow \exists M(T)^M$$

已知若 $V \models ZF^-$,则 WF $\models ZF,ZF^- \vdash (ZF)^{WF} \Rightarrow ZF^- \models Con(ZF)$,因为 WF 不是集合

Lemma 1.73. 设 κ 是不可达基数 (极限序数),则以下概念对 V_{κ} 都是绝对的

- 1. x 是一个基数
- 2. x 是正则基数
- 3. x 是一个不可达基数
- 证明. 1. x 是基数被公式 $\varphi(x)$ 表示:"x 是序数" $\land \forall f \forall y \in x((f:y \to x) \to \operatorname{ran}(f) \neq x)$

三个子公式对 $\mathbf{ZF} - \mathbf{Pow} - \mathbf{Inf} - \mathbf{Rep}$ 的传递模型都是绝对的 若 κ 是极限序数,则

$$V_{\kappa} \vDash \mathsf{ZF} - \mathsf{Pow} - \mathsf{Inf} - \mathsf{Rep}$$

由于 $\varphi(x)$ 是一个 Π_1 公式, 故

$$\forall x \in V_{\kappa}(\varphi(x) \to \varphi^{V_{\kappa}}(x))$$

另一方面,要证明 $\forall x \in V_{\kappa}(\varphi^{V_{\kappa}}(x) \to \varphi(x))$,只需证明若 $x,y \in V_{\kappa}$ 且 $f:y \to x$,则 $f \in V_{\kappa}$

显然若 $f:y\to x$,则 $f\in x^y$,而 $x,y\in V_\alpha$, $x^y\in V_{\alpha+\omega}$,故 $f\in V_\kappa$,rank $(f)\leq \max\{\mathrm{rank}(x),\mathrm{rank}(y)\}+2$

2. x 是正则基数被公式 $\varphi(x)$ 表示:"x 是基数" $\land \forall f \forall y \in x[(f:y \to x) \to \exists z \in x(\operatorname{ran}(f) \subseteq z)]$

与1类似

3. x 是不可达基数被公式 $\varphi(x)$ 表示: "x 是正则基数" $\land \forall f \forall y \in x((f:2^y \to x) \to \operatorname{ran}(f) \neq x)$

 2^y 是 y 到 2 的全体函数为绝对概念

用"I"表示"存在不可达基数"

Lemma 1.74. 如果 ZFC 一致,则 ZFC $+\neg I$ 也是一致的,即

$$ZFC \vdash Con(ZFC) \rightarrow Con(ZFC + \neg I)$$

证明. 设 $V \models ZFC + Con(ZFC)$, $V \models \exists M(ZFC)^M$

先在 $M \models \mathsf{ZFC}$,视 M 为集合宇宙,若 κ 是 M 中最小的不可达基数,则 $V_{\kappa} \models \mathsf{ZFC} + \neg I$,即 $M \models (\mathsf{ZFC} + \neg I)^{V_{\kappa}}$

存在 M 中的元素 X 使得 $M \models "(X, \in) \models \mathsf{ZFC} + \neg I"$,即 $M \models (\mathsf{ZFC} + \neg I)^X$,则 $V \models ((\mathsf{ZFC} + \neg I)^X)^M$,即 $\forall y \rightsquigarrow \forall y \in X \rightsquigarrow \forall y \in X \cap M$,因此 $V \models (\mathsf{ZFC} + \neg I)^{X \cap M}$ (验证:归纳)

注: M 看到 (X, \in) 恰好是 V 看到的 $(X \cap M, \in)$

因此 $V \models Con(ZFC + \neg I)$

若 M 中不存在不可达基数,则 $M \models \mathsf{ZFC} + \neg I$,因此 $V \models (\mathsf{ZFC} + \neg I)^M$ 事实上 $(\mathbb{N}, +, \times, 0, 1) + AC + \mathsf{Con}(\mathsf{ZFC}) \vdash \mathsf{Con}(\mathsf{ZFC} + \neg I)$ (完全性要AC)

以上引理表明: ZFC F I

以上证明没有使用哥德尔不完全定理

最好的情况是,"ZFC +I"一致,即我们希望 ZFC 下构造"ZFC +I"的模型

Corollary 1.75. 在 ZFC 中不能生成"ZFC + I"的模型,即

$$ZFC + Con(ZFC) \not\vdash Con(ZFC + I)$$

证明. 否则,假设 ZFC 一致,则 ZFC +I 一致,目标 ZFC +I \vdash Con(ZFC +I) 任取 $V \models$ ZFC +I,则 $V \models$ (ZFC) $^{V_{\kappa}}$,由完全性, $V \models$ Con(ZFC),因此有了矛盾

Definition 1.76. 对任意的无穷基数 κ

$$H_{\kappa} = \{x \mid |\operatorname{trcl}(x)| < \kappa\}$$

Lemma 1.77 ($V \models ZFC$). 对任意的无穷基数 κ 有

$$H_{\kappa} \subseteq V_{\kappa}$$

证明. V = WF,只需验证 $\forall x \in H_{\kappa}$,有 $rank(x) < \kappa$

设 $x\in H_\kappa$,令 $t={\rm trcl}(x)$,令 $s=\{{\rm rank}(y)\mid y\in t\}\subseteq {\rm On}$,验证 s 是序数

假设 α 是最小的不属于 s 的序数, $\alpha \subseteq s$,若 $\alpha \neq s$,令 $\beta = \min(s \setminus \alpha)$,因此 $\beta > \alpha$,令 $y \in t$ 使得 $\beta = \operatorname{rank}(y)$, $\forall z \in y$, $z \in t$ 且 $\operatorname{rank}(z) < \operatorname{rank}(y)$,由 β 的极小性, $\forall z \in y(\operatorname{rank}(z) < \alpha)$, $\beta = \operatorname{rank}(y) = \sup\{\operatorname{rank}(z) + 1 \mid z \in y\}$,因此 $\beta \leq \alpha$,矛盾

故 s=lpha,且 $|s|\leq |t|=|\mathrm{trcl}(x)|<\kappa$,所以 $lpha<\kappa$,x $\subseteq \mathrm{trcl}(x)\subseteq V_s$ 口

Lemma 1.78. 如果 κ 是正则基数,则 $H_{\kappa} = V_{\kappa}$ 当且仅当 κ 是不可达基数

证明. 设 κ 不可达,只需证明 $V_{\kappa} \subseteq H_{\kappa}$

对 $\alpha < \kappa$ 进行归纳证明: $|V_{\alpha}| < \kappa$ (练习)

设 $x \in V_{\kappa}$,则存在 $\alpha < \kappa$ 使得 $x \in V_{\alpha}$, $\operatorname{trcl}(x) \subseteq V_{\alpha}$,因此 $|\operatorname{trcl}(x)| < \kappa$ 假设 κ 不是不可达基数,则存在 $\lambda < \kappa$, $2^{\lambda} \geq \kappa$, $\mathcal{P}(\lambda) \in V_{\lambda+\omega} \subseteq V_{\kappa} / |\operatorname{trcl}(P(\lambda))| \geq 2^{\lambda} \geq \kappa$,因此 $P(\lambda) \in V_{\kappa} \setminus H_{\kappa}$

Lemma 1.79. 对于任意无穷基数 κ

1. H_κ 传递

- 2. $H_{\kappa} \cap On = \kappa$
- 3. $x \in H_{\kappa} \Rightarrow \bigcup x \in H_{\kappa}$
- 4. $x, y \in H_{\kappa} \Rightarrow \{x, y\} \in H_{\kappa}$
- $5. \ x \in H_{\kappa} \perp y \subseteq x, \ \ y \in H_{\kappa}$
- 6. 如果 κ 正则,则

$$\forall x (x \in H_{\kappa} \leftrightarrow x \subset H_{\kappa} \land |x| < \kappa)$$

- 证明. 1. 设 $x \in y \in H_{\kappa}$, 则 $|\mathrm{trcl}(y)| < \kappa$, 而 $\mathrm{trcl}(x) \subset \mathrm{trcl}(y)$, 因此 $x \in H_{\kappa}$
 - 2. 若 $\alpha < \kappa$,则 $\alpha = \operatorname{trcl}(\alpha)$,因此 $\alpha \in H_{\kappa}$ 若 $\alpha \in H_{\kappa}$,则 $|\alpha| < \kappa$,因此 $\alpha < \kappa$
 - $3. \ \bigcup x \subseteq \operatorname{trcl}(x) \Rightarrow \operatorname{trcl}(\bigcup x) \subseteq \operatorname{trcl}(x), \ \ \text{\'et} \ x \in H_{\kappa} \Rightarrow \bigcup x \in H_{\kappa}$
 - 4. $\operatorname{trcl}(\{x,y\}) = \{x,y\} \cup \operatorname{trcl}(x) \cup \operatorname{trcl}(y)$
 - 5. $trcl(y) \subseteq trcl(x)$
 - 6. 若 $x \in H_{\kappa}$,由传递性, $x \subset H_{\kappa}$, $|x| \leq |\operatorname{trcl}(x)| < \kappa$ 若 $x \subset H_{\kappa}$, $|x| < \kappa$, 设 $x = \{x_i \mid i < \lambda\}$,则 $\operatorname{trcl}(x) = x \cup \bigcup_{i < \lambda} \operatorname{trcl}(x_i)$,若 $|\operatorname{trcl}(x)| \geq \kappa$,则 $\forall \alpha < \kappa$,存在 $i < \lambda$ 使得 $|\operatorname{trcl}(x_i)| > \alpha$,故 λ 与 κ 共尾

Theorem 1.80 (ZFC). 若 κ 是不可数正则基数,则 $H_{\kappa} \models$ ZFC – Pow

证明. H_{κ} 传递 \Rightarrow 外延公理

 H_{κ} 非空 \Rightarrow 存在公理

由于 $x \in H_{\kappa} \leftrightarrow x \subset H_{\kappa} \land |x| < \kappa$,故分离公理 + 替换公理成立 H_{κ} 对 $\bigcup x$ 与 $\{x,y\}$ 封闭,故对集公理 + 并集公理成立

 H_{κ} 满足以上公理 $\Rightarrow \emptyset, \omega, x^+, x \cap y$ 的绝对性

由于 $\omega \in H_{\kappa}$, $H_{\kappa} \models Inf$

 $\emptyset, x \cap y$ 的绝对性, $H_{\kappa} \vDash Fud$

选择公理: $\forall x \in H_k \exists R \in H_\kappa (R \to X \ \text{的良序})^{H_\kappa}$

已知,若 $x, R \in H_{\kappa}$,则 R 是 x 的良序当且仅当 (R是 X 的良序) $^{H_{\kappa}}$ (ZF-Pow)

只需验证: 如果 $X \in H_{\kappa}$, 则 $\forall R \subseteq X \times X$, 有 $R \in H_{\kappa}$

显然 $|X|<\kappa$,因此 $|X\times X|<\kappa$,若 $a,b\in X$,则 $|\mathrm{trcl}((a,b))|<|\mathrm{trcl}(x)|+\aleph_0$,因此 $(a,b)\in H_\kappa$,因此 $R\subset H_\kappa$,根据 (6),有 $R\in H_\kappa$

Theorem 1.81 (ZFC). 如果 κ 是不可数正则基数、TFAE

- 1. $H_{\kappa} \models ZFC$
- 2. $H_{\kappa} = V_{\kappa}$
- 3. κ 不可达

证明. 已知 $2 \leftrightarrow 3$

 $1 \to 2+3$: 若 κ 不是不可达基数,则存在 $\lambda < \kappa$ 使得 $2^{\lambda} \ge \kappa$, $\lambda \in H_{\kappa}$ 且 $\mathcal{P}(\lambda) \notin H_{\kappa}$,于是 $H_{\kappa} \nvDash \text{Pow}$

 $V \vDash \forall z \in H_{\kappa} \forall x \in H_{\kappa} (x \in z \leftrightarrow x \subseteq \lambda)$

$$2 \rightarrow 1$$
 显然

以上引理表明,若 κ 正则且不是不可达的,则

$$\mathsf{ZFC} \vdash (\mathsf{ZFC} - \mathsf{Pow} + \neg \mathsf{Pow})^{H_{\kappa}}$$

故 $Con(ZFC) \rightarrow Con(ZFC-Pow+\neg Pow)$,即 Pow 不能由 ZFC 中的其它 公理推出

Corollary 1.82. $Con(ZFC) \rightarrow Con(ZFC - Pow + \forall (x countable))$

证明. $H_{\omega_1} \models \mathsf{ZFC} - \mathsf{Pow}$

x 可数:存在 f, $(f:x\to\omega)$ 是双射,只需要这个 f 是属于 H_{ω_1} 就行了,但这是显然的 $\forall x,y\in H_{\kappa'}$ $x^y\in H_{\kappa}$ 用性质 6

这个可数我们得在
$$H_{\omega_1}$$
里看到

1.9 反映定理

已知 $V \models \mathbf{ZF} \Rightarrow V_{\alpha} \models Z \alpha > \omega$

 $V \vDash \mathsf{ZFC} \Rightarrow V_{\alpha} \vDash \mathsf{ZC} \ (\alpha > \omega)$

 $V_{\omega} \models \mathsf{ZFC} - \mathsf{Inf}$

 V_{α} 不能"反映"V 的全貌, 除非 α 是不可达基数

对不可达基数 κ , V_{κ} 能"反映"V 的全貌(不全对)

 H_{κ} 也类似,

本节讨论另一个方向: 对给定的句子 φ , 若 φ 在 V 中成立,则能否找到 α 使得 $V_{\alpha} \models \varphi$

问: 是否存在 φ ,它在 V 中成立,但是 $\forall \alpha(V_\alpha \nvDash \varphi)$ (因为 ZC 少了无穷条 Rep)

Theorem 1.83 (反映定理). 对于任意有穷 $\varphi_1, ..., \varphi_n$, 存在 α 使得

$$V \vDash \varphi_i \Leftrightarrow V_{\alpha} \vDash \varphi_i (i = 1, \dots, n)$$

即

$$V \vDash \varphi_i \leftrightarrow \varphi_i^{V_\alpha}$$

设 F 是一个集合论语言的公式集,如果对每个 $\varphi(x_1,\ldots,x_n)\in F$,对每个 $a_1,\ldots,a_n\in M$,有 $M\models\varphi[a_1,\ldots,a_n]\Leftrightarrow N\models\varphi[a_1,\ldots,a_n]$,则称 M 是 N 的相对于 F 的初等子模型,记作 $M\prec_F N$

反映定理是 Löwenheim-Skolem Theorem 的有穷"版本",等价地说 F中的公式相对于 V_{α} 绝对

Lemma 1.84. 令 $M\subseteq N$ 都是类, $\varphi_1,\ldots,\varphi_n$ 是对子公式封闭的公式集,则以下命题等价

- $1. \varphi_1, \dots, \varphi_n$ 相对于 M 和 N 绝对
- 2. 如果 φ_i 是形如 $\exists x \varphi_i(x, y_1, ..., y_m)$ 的公式,则

$$\forall \bar{y} \in M(\exists x \in N\varphi_j^N(x,\bar{y}) \to \exists x \in M\varphi_j^N(x,\bar{y}))$$

证明. $1 \rightarrow 2$: 设 φ_i 形如这样的形式,由绝对性

$$\forall \bar{y} \in M(\varphi_i^N(\bar{y}) \leftrightarrow \varphi_i^M(\bar{y}))$$

载有 φ_i 的绝对性, $\forall \bar{y}(\exists x \in M\varphi_i^M(x,\bar{y}) \leftrightarrow \exists x \in M\varphi_i^N(x,\bar{y}))$

 $2 \to 1$: 对 φ_i 的长度归纳证明:若 $|\varphi_i|$ 最小,则 φ_i 无量词,因此绝对若长度小于 $|\varphi_i|$ 的公式都是绝对的,则 φ_i 的所有子公式都绝对,而 φ_i 的形式有以下形式

- 1. $\varphi_i \to \varphi_k$
- 2. $\neg \varphi_i$
- 3. $\exists x \varphi_i(x, \bar{y})$

只需验证情形 3: 任取 $\bar{y} \in M$, 由题设条件,

$$\exists x \in N\varphi_i^N(x,\bar{y}) \to \exists x \in M\varphi_i^N(x,\bar{y})$$

由 φ_i 的绝对性,有

$$\exists x \in N\varphi_i^N(x,\bar{y}) \to \exists x \in M\varphi_i^M(x,\bar{y})$$

而显然

$$\exists x \in M\varphi_i^N(x,\bar{y}) \to \exists x \in N\varphi_i^N(x,\bar{y})$$

这个证明没有用到有穷性, 因此无穷情况也成立

Theorem 1.85 (反映定理,ZF). 对于任意有穷公式集 $F = \{\varphi_1, ..., \varphi_n\}$,对任意 $\alpha \in \text{On}$,存在 $\beta \geq \alpha$ 使得 F 对 V_β 绝对

在
$$ZF$$
 中, $WF = V$

证明. 由于没有选择公理,无法"构造" $\mathcal{H}(V_{\alpha})$, V_{α} 的 Skolem hull

本质上,我们只需要找到一个 V_{β} 使得每个形如 $\exists x \varphi(x, \bar{y})$ 的公式以及每一组参数 $\bar{b} \in V_{\beta}$ 有 $V \vDash \exists x \varphi_j(x, \bar{b}) \Leftrightarrow V_{\beta} \vDash \exists x \varphi_j(x, \bar{b})$,即系数来自 V_{β} 的方程若有解,则有一个解 $\in V_{\beta}$

设 $\varphi_i \in F$ 且形如 $\exists y \varphi_i(\bar{x}, y)$,定义函数 h_i 如下:

- $\in \mathbb{R}$ $\bar{x} \in V$, $\Leftrightarrow U = \{y \mid \varphi_i(\bar{x}, y)\}$
- 若 $U \neq \emptyset$,则存在最小的 ξ 使得 $U \cap V_{\xi} \neq \emptyset$,此时令 $h_i(\bar{x}) = V_{\xi}$ (用了 序数的良序性)
- 函数 h_i 满足

$$\forall \bar{x}(\exists y \varphi_i(\bar{x}, y) \to \exists y \in h_i(\bar{x})) \varphi_i(\bar{x}, y)$$

定义 h_F 为:

$$h_F(x_1,\dots,x_m) = \bigcup \{h_i(x_1,\dots,x_m): i=1,\dots,n\}$$

这里必需要求只能有穷多个,因为 h_i 是类

则 h_F 满足: 对每个形如 $\exists y \varphi_i(\bar{x}, y)$ 的公式,有

$$\forall \bar{x}(\exists y \varphi_i(\bar{x}, y) \to \exists y \in h_F(\bar{x}) \varphi_i(\bar{x}, y))$$

任取 α , 递归定义 V_{α}^{i} , $i \in \omega$ 如下:

- $V_{\alpha}^0 = V_{\alpha}$
- $\bullet \ V_{\alpha}^{i+1} = V_{\alpha}^{i} \cup \bigcup \{h_{F}(\bar{y}) \mid \bar{y} \in V_{\alpha}^{i}\}$

令 $V_{\beta} = \bigcup V_{\alpha}^{i}$,相当于 V_{α} 的 F-Skolem hull,若 $\varphi_{i} \in F$ 形如 $\exists y \varphi_{j}(\bar{x}, y)$ 任取 $\bar{x} \in V_{\beta}$,则存在 $k < \omega$ 使得 $\bar{x} \in V_{\alpha}^{k}$,若 $\exists y \varphi_{j}(\bar{x}, y)$,则

$$\exists y \in h_F(\bar{x}) \varphi_j(\bar{x},y)$$

Corollary 1.86 (ZF). 令 $F = \{\sigma_1, \dots, \sigma_n\}$ 为 ZF 的有穷子集,则

$$\forall \alpha \exists \beta \geq \alpha (\sigma_1^{V_\beta} \wedge \dots \wedge \sigma_n^{V_\beta})$$

证明. 将 F 扩张为 F',有穷且对子公式封闭,于是 $\forall \alpha \exists \beta \geq \alpha$ 使得 F' 相对于 V_{β} 绝对

对于 F' 中的句子,有

 $ZF \vdash \sigma \leftrightarrow \sigma^{V_{\beta}}$

Corollary 1.87. 设 $F = \{\sigma_1, ..., \sigma_n\} \subseteq ZF$,除非 $ZF \times T - X$,否则 " $F \not\vdash ZF$ " 证明. 存在 V_β 使得 $ZF \vdash (F)^{V_\beta}$,若 $F \vdash ZF \Rightarrow ZF \vdash (ZF)^{V_\beta}$,故 $ZF \vdash (ZF)^{V_\beta} \to Con(ZF)$ (无需 AC,反过来要),因此 $ZF \vdash Con(ZF)$

Remark. 以上推论对 ZF 的任意扩张成立

若 AC 成立,则反映定理可以改进为存在可数 (M, \in) 使得 $M \prec_F V$ (绝对性强于 \prec_F)

- 若 F 含有无穷公理,则 $M \neq V_{\alpha}$
- 若 F 含有幂集公理, 若 M 传递,则没有绝对性
 - 令 ψ(x,y) 表示 ∀u(u ∈ y ↔ u ⊆ x), 令 Pow: ∀x∃yψ(x,y), 则 ψ 与 Pow 不能同时绝对
 M 传递时, ⊆↔⊆^{eq}, 若 ψ 绝对, 则 V 看到的幂集跟 M 看到的幂集, 而 M 是可数的
- 若 $F \subseteq_f \mathsf{ZFC}$,由 Mostowski collapsing 定理,存在传递模型使得 $(M, \in) \cong (N, \in)$

F 相对于 N 绝对,但是 F 的子公式不一定绝对(比如 ψ 与 Pow)

Theorem 1.88 (ZFC). 对任意有穷公式集F,对任意集合N,存在集合M 使得

- 1. $N \subseteq M$
- $2. \varphi_1, \ldots, \varphi_n$ 相对于 (M, \in) 绝对

- 3. $|M| \leq |N| + \aleph_0$
- 4. 若 N 至 δ 可数,则 M 可数

证明. 不妨设 F 对于子公式封闭,令 \mathcal{H}_F 为 F 对应的 Skolem 函数集,令 $M=\mathcal{H}_F(N)$ (练习)

Corollary 1.89 (ZFC). 对任意有穷句子集 $F=\{\varphi_1,\dots,\varphi_n\}$,对任意的传递集 N,存在 M 满足

- 1. $N \subseteq M$
- 2. F 相对于 (M, \in) 是绝对的
- 3. $|M| \leq |N| + \aleph_0$
- 4. M 传递

证明. 不妨设外延公理 $\in F$,则存在 (M', \in) 满足 1-3

 (M', \in) 良基似集合且满足外延公理

故 $G:M'\to V$, $x\mapsto \{G(y)\mid y\in M'\land y\in x\}$ 是 M' 到 M=G(M') 的同构,M 传递,由 M' 的绝对性, $V\vDash\varphi_i\leftrightarrow\varphi_i^{M'}$

由同构

$$\varphi_i^{M'} \Leftrightarrow M' \vDash \varphi_i \Leftrightarrow M \vDash \varphi_i \Leftrightarrow \varphi_i^M$$

故 F 相对于 M 绝对

设 $N\subseteq M'$ 传递,对 N 中元素的 rank 归纳证明: $\forall x\in N(G(x)=x)$,即 $G(N)=N\subseteq M$

句子集的绝对性被同构保持,而公式不是这样(例子是幂集公理) Remark. 若 $\varphi(x_1,\ldots,x_n)$ 是一个公式,且 $(M,\in)\cong (M',\in)$ 则 φ 相对于

1.10 Exercise

 $\textit{Exercise } 1.10.1. \qquad 1. \ \ V_{\alpha} = \{x \in \mathsf{WF} \mid \mathsf{rank}(x) < \alpha\}$

2. WF is transitive

- 3. $\forall x, y \in WF, x \in y \Rightarrow rank(x) < rank(y)$
- 4. $\forall y \in WF$, $rank(y) = sup\{rank(x) + 1 \mid x \in y\}$
- 证明. 1. by definition, $x\in V_{\mathrm{rank}(x)+1}\setminus V_{\mathrm{rank}(x)}$, $\mathrm{rank}(x)<\alpha\Rightarrow x\in V_{\mathrm{rank}(x)+1}\subseteq V_{\alpha}$ $\mathrm{rank}(x)\geq\alpha\Rightarrow x\notin V_{\alpha}$
 - 2. WF is the "union" of transitive sets
 - $3.\ y\in V_{\mathrm{rank}(y)+1}\smallsetminus V_{\mathrm{rank}(y)}\text{, }y\subseteq V_{\mathrm{rank}(y)}\text{, }x\in y\Rightarrow x\in V_{\mathrm{rank}(y)}\Rightarrow \mathrm{rank}(x)<\mathrm{rank}(y)$
 - 4. by 3, $\sup\{\operatorname{rank}(x)+1\mid x\in y\}\leq \operatorname{rank}(y).$ induction on $\operatorname{rank}(y)\leq \sup\{\operatorname{rank}(x)+1\mid x\in y\}$
 - rank(y) = 0
 - $\begin{array}{l} \bullet \ \ {\rm rank}(y) = \beta + 1, y \in V_{\beta + 2} \smallsetminus V_{\beta + 1} \\ \\ y \in V_{\beta + 2} \Rightarrow y \subseteq V_{\beta + 1}. \ \ y \notin V_{\beta + 1} \Rightarrow y \not\subseteq V_{\beta} \Rightarrow y \smallsetminus V_{\beta} \ \ {\rm nonempty}. \\ \\ {\rm Let} \ x \in y \smallsetminus V_{\beta}, {\rm rank}(x) \geq \beta, \ {\rm sup}\{{\rm rank}(x) + 1 \mid x \in y\} \geq \beta + 1 = {\rm rank}(y) \\ \end{array}$
 - $$\begin{split} \bullet \ \, & \operatorname{rank}(y) = \gamma \operatorname{for some limit, then } y \subseteq V_{\gamma} \operatorname{and for any } \xi < \gamma, y \nsubseteq V_{\xi}, \\ & \operatorname{let } X_{\xi} \in y \smallsetminus V_{\xi}, \operatorname{then } \operatorname{rank}(X_{\xi}) \geq \xi, \sup \{ \operatorname{rank}(x) + 1 \mid x \in y \} \geq \\ & \sup \{ \xi + 1 \mid \xi < \operatorname{rank}(y) \} \geq \operatorname{rank}(y) \end{split}$$

Exercise 1.10.2. R 是似集合的,则 R 是外延的当且仅当对任意 $x, y \in X$

$$x \neq y \rightarrow \operatorname{pred}(X, x, R) \neq \operatorname{pred}(X, y, R)$$

Exercise 1.10.3 (7.10.7). 证明莫斯托夫斯基定理中的 M 和 G 唯一

证明. 假设 M, N 是传递类且 $f: (M, \in) \cong (N, \in)$, $S = \{x \in M \mid f(x) \neq x\}$ 。因为 $M \neq N$,因此 S 非空,取 S 的极小元 x_0 ,则对于任意 $y \in x_0$,

$y=f(y)\in f(x_0)$,于是 $x_0\subset f(x_0)$,又因为 f 是双射,同理有 $f(x_0)\subset x$ 于是 $f(x_0)=x_0$,矛盾。因此 $M=N$ 。 若 $f_1:(X,R)\cong (M,\in),\ f_2:(X,R)\cong (N,\in),\ 则\ M=N$,于 $f_1f_2=f_2f_1=\mathrm{id}$,因此 $f_1=f_2$	
Exercise 1.10.4 (7.10.8). 证明以下概念对任意 ZF – Pow 的传递模型绝对	
1. $X^{<\omega}$	
证明. 1. $f \in X^{<\omega}$ 当且仅当存在有穷序数 n 使得 $f \in X^n$ 而任意这样的模型都有有穷序数	
Exercise 1.10.5 (7.10.9). $V_{\omega} \models \mathbf{ZF} - \mathbf{Inf} + \neg \mathbf{Inf}$	
证明.	