Curse of Dimensionality

Features Maps and Dimension Raising

Kernel Regression

Feature Ma

Reproducing

Conclusion

Stat 205: Introduction to Nonparametric Statistics

Lecture 11: Kernelization/Feature Maps

Instructor David Donoho; TA: Yu Wang

Curse of Dimensionality

Features Maj and Dimension Raising

Kernel Regression

Kernels and Feature Maps

. . .

Conclusio

Curse of dimensionality

- ▶ High-dimensional space is mostly empty
- Even Nearest Neighbors are far apart
- Example: $x_i = (x_{i,1}, \dots, x_{i,p})$ Entries uniform

Maximum coordinate distance (ℓ_{∞})

$$d(x_1, x_2) = \max_{k=1}^{p} |x_{1k} - x_{2k}|$$

 $x_i \sim_{iid} unif[0,1]$

ightharpoonup Chance of two specific points within δ-distance

$$P\{d(x_1, x_j) < \delta\} = P(\bigcap_{k=1}^{p} \{|x_{1k} - x_{2k}| < \delta\})$$

= $(1 - 2\delta)^p$

• Chance x_1 has no neighbors within δ -distance

$$P\{\min_{j=2}^{n} d(x_1, x_j) > \delta\} = P(\bigcap_{j=2}^{n} \{d(x_1, x_j) > \delta\}) = (1 - (1 - 2\delta)^p)^n.$$

ightharpoonup Can vary $n,p,\ \delta$ in these formulas (Homework).

Feature Maps

Curse of Dimensionality

Features Maps and Dimension Raising

Kernel Regression

Feature Maps

Kernels

Conclusio

- ► Terms of art: Kernel- { Regression, NN, 'Trick' }
- ▶ Data $Y = (y_i)_{i=1}^n$; "response", "target"
- ▶ Data $X = (x_i)_{i=1}^n$; $x_i \in \mathbb{R}^p$; predictors.
- ▶ Feature map: x_i inputs, $\phi(x_i)$ features.

$$\phi: \mathbf{R}^p \mapsto \mathbf{R}^m$$

- ▶ Dimension Raising: $m \gg p$: many more synthetic features than input dimension.
- ▶ After raising dimension can use any standard method:
 - Linear regression
 - Logistic regression classifier
 - Nearest neighbor regression, classifier

ecture 11

Curse of Dimensionality

Features Maps and Dimension Raising

Kernel Regressio

Kernels and Feature Maps

Remeis

Conclusion

Feature Map Examples

ightharpoonup p = 1 Step functions

$$\phi(x) = (1_{[a_1,a_2]}(x),1_{(a_2,a_3]}(x),\ldots,1_{(a_{m-1},a_m]}(x))^T$$

ightharpoonup p = 1 Polynomial features

$$\phi(x) = (1, x_1, \dots, x_1^{m-1})^T$$

 \triangleright p > 1 Quadratic multivariate polynomial features

$$\phi(x) = (1, x_1, \dots, x_p, x_1^2, \dots, x_p^2, x_1 x_2, \dots, x_{p-1} x_p)^T$$

Here m = 1 + p + p(p + 1)/2.

ightharpoonup p > 1 Random features:

$$\phi(x) = (\sigma(w_1^T x), \dots, \sigma(w_m^T x))$$

- \triangleright $\sigma()$ specific nonlinearity, eg relu
- (w_i) direction vectors in \mathbb{R}^p

Curse of Dimensionality

Features Maps and Dimension Raising

Kernel Regression

Feature Maps

Kerneis

Conclusion

Kernel Regression

- $\phi: \mathbf{R}^p \mapsto \mathbf{R}^m$ feature map
- Linear predictor $\mu(x;\theta) = \phi^T(x)\theta$.
- n × m matrix of features

$$\Phi = [\phi(x_i)^T]_{i=1}^n$$

Squared error Loss

$$PMSE^{train}(\theta) = L(\theta) = ||Y - \Phi\theta||_2^2$$

Least-squares estimate

$$\hat{\theta} = \operatorname{argmin} L(\theta)$$

Least-squares solution

$$\hat{\theta} = (\Phi^T \Phi)^{\dagger} \Phi^T Y$$

- M has full column rank $M^{\dagger}v = M^{-1}v$
- ightharpoonup M rank deficient: $M^{\dagger}v$ solves minimum norm problem

$$\min \|\theta\|_2^2$$
 subject to $M\theta = v$.

- Setting of most interest: m ≫ p.
 - Problem is underdetermined
 - Generalized inverse is used

Surprises in Dimension-Raising, 1/3

Curse of Dimensionality

Features Maps and Dimension Raising

Kernel Regression

Kernels and Feature Maps

Canalinaian

In the $m \gg n$ setting, we often can do all computations in dimension n = min(m, n)!

- ▶ SVD $\Phi = UDV^T$,
 - Φ: n × m,
 - ▶ U, D: n × n
- ▶ Define n × n kernel matrix

$$K = \Phi \Phi^T = [\phi(x_i)^T \phi(x_j)]_{i,j=1}^n$$

Kernel properties

$$K = \Phi \Phi^T = UD^2U^T; \qquad K^{\dagger} = UD^{-2}U^T.$$

Define m × m Gram matrix

$$G = \Phi^T \Phi = VD^2 V^T$$
; $G^{\dagger} = VD^{-2} V^T$.

Special Property relating G, Φ and K.

$$\Phi G^{\dagger} \Phi^{T} = UDV^{T}VD^{-2}VV^{T}DU^{T} = UU^{T}$$

Here U depends on Φ since $\Phi = UDV^T$ Here U depends on K since $K = UD^2U^T$ Doesn't (need to) involve Φ .

Curse of

Features Maps

Kernel Regression

Kernels and Feature Maps

Kernels

Conclusion

Zero-Training Loss

Typically when $m \gg n$ zero training error:

$$\hat{\mu}(x) = \mu(x; \hat{\theta}) = \phi^{T}(x)\hat{\theta}.$$

$$\hat{Y} = [\hat{\mu}(x_i)^T]_{i=1}^n$$

$$\textit{PMSE}^{\textit{train}}(\hat{\theta}) = \mathcal{L}(\hat{\theta}) = \textit{n}^{-1} \|\textit{Y} - \hat{\textit{Y}}\|_2^2 = 0.$$

Consider predictions

$$\hat{Y} = \Phi \hat{\theta} = HY$$

where [from previous slide]

$$H = \Phi(\Phi^T \Phi)^{-1} \Phi^T = \Phi G^{\dagger} \Phi^T = UU^T$$

In the full column rank case, $UU^T = I_n$, the $n \times n$ identity, so

$$\hat{\mu} = \Phi \hat{\theta} = HY = Y$$

'Zero training loss' in the full column rank case.

Curse of Dimensionality

Features Maps and Dimension Raising

Kernel Regression

Kernels and Feature Maps

Conclusion

Regularized Kernel Regression, 1

- In the case where $m \gg n$ we generally get $\hat{\mu} = Y$: predictions just reproduce the data in-sample.
- Statistical Theory tells us: if any noise in the data, then $\hat{\mu} = Y$ is overfit.
- Indeed $\hat{\mu} = Y$ means: our predictions in-sample are exactly as noisy as the data; when used out of sample on test data, $\Phi(X^{\text{test}})$ actually noisier than the data.
- So to avoid making hyper-noisy predictions, we regularize Regularized coefficients:

$$\hat{\theta}_{\lambda} = (\Phi^{T} \Phi + \lambda I)^{-1} \Phi^{T} Y$$
$$= (G + \lambda I)^{-1} \Phi^{T} Y$$

Regularized predictions:

$$\hat{\mu}_{\lambda} = \Phi \hat{\theta}_{\lambda}$$

$$= \Phi (G + \lambda I)^{-1} \Phi^{T} Y$$

- You have probably seen this before, in the guise of ridge regression... The linear algebra is the same: but with a new interpretation.
- Penalized squared error loss:

$$\mathcal{L}_{\lambda}(\theta|X,Y) = \frac{1}{n} \sum_{i} (y_i - \phi(x_i)^T \theta)^2 + \lambda \|\theta\|_2^2$$

the second term is called a penalty term.

Regularized coefficients $\hat{\theta}_{\lambda}$ listed earlier are minimizing the penalized squared-error loss.

Surprises in Dimension-Raising, 2/3

Curse of Dimensionality

Features Maps and Dimension Raising

Kernel Regression

Kernels and Feature Maps

rterrieis

Conclusion

In the $m \gg n$ setting, we often can do all computations in dimension n = min(m, n)!

Regularized predictions:

$$\hat{\mu}_{\lambda} = \Phi \hat{\theta}_{\lambda}
= \Phi (G + \lambda I)^{-1} \Phi^{T} Y$$

- The matrix 'sandwich' $\Phi(G + \lambda I)^{\dagger} \Phi^{T}$ appears to go into m dimensions: G is $m \times m$.
- Actually we saw a few slides ago a special property:

$$\Phi G^{\dagger} \Phi^T = UDV^T VD^{-2} V^T UDU^T = UU^T$$

all terms on RHS: n times n.

Also

$$\Phi(G + \lambda I)^{\dagger} \Phi^{T} = UDV^{T} V (U^{T} UDV^{T} = U(D^{2} (D^{2} + \lambda I)^{-1}) U^{T}$$

again all terms on RHS: n times n.

• We can compute full regularization path: $\hat{\mu}_{\lambda} = U^T diag(\frac{d_i^2}{d_i^2 + \lambda})U^T Y$.

We can compute many things without ever going into m dimensions!

Fast Generalized Cross-Validation

Curse of Dimensionality

Features Maps and Dimension Raising

Kernel Regression

Kernels and Feature Maps

Kernels

Conclusio

Sum of squared errors as a function of λ

$$RSS(\lambda) = \|Y - H_{\lambda}Y\|_{2}^{2} = \sum_{i=1}^{n} (y_{i} - \hat{\mu}_{\lambda}(x_{i}))^{2}$$
$$= \|diag(\frac{\lambda}{d_{i}^{2} + \lambda})\tilde{Y}\|_{2}^{2}$$

where diag() means diagonal $n \times n$ matrix and $D = diag(d_i)$ and $\tilde{Y} \equiv U^T Y$. Hence, with a startup cost of one single SVD, we get O(n) cost per evaluation.

Generalized Cross-validation score:

$$GCV(\lambda) = \frac{1}{1 - tr(H_{\lambda})/n} \cdot \|Y - H_{\lambda}Y\|_{2}^{2}$$

Incremental cost O(n) per evaluation of GCV:

$$ightharpoonup tr(H_{\lambda}) = \sum_{i=1}^{n} \frac{\lambda}{d_i^2 + \lambda}$$

$$\|Y - H_{\lambda}Y\|_{2}^{2} = \sum_{i=1}^{n} \tilde{y}_{i}^{2} \cdot \frac{\lambda^{2}}{(d_{i}^{2} + \lambda)^{2}}$$

Evaluate on grid.

We can compute many things in O(n) without ever going into m dimensions!

Curse of Dimensionality

Features Maps and Dimension Raising

Kernel Regression

Kernels and Feature Maps

Conclusion

Explicit Kernel Functions

- Given feature map $\phi(x)$, define $\mathcal{K}(x, z) = \phi(x)^T \phi(z)$
- ▶ Often K(x, z) computable without going into m dimensions!
- Example: Quadratic polynomial features

$$\phi(x)^{T} \phi(z) = 1 + \sum_{i=1}^{p} x_{i}z_{i} + \sum_{i,j=1}^{p} x_{i}x_{j}z_{i}z_{j}$$

$$= 1 + x^{T}z + (\sum_{i=1}^{p} x_{i}z_{i})(\sum_{j=1}^{p} x_{j}z_{j})$$

$$= 1 + x^{T}z + (x^{T}z)^{2}$$

$$= \mathcal{K}_{2}(x, z),$$

say.

Example: Cubic Polynomial Features

$$\phi(x)^T \phi(z) = 1 + x^T z + (x^T z)^2 + (x^T z)^3 = \mathcal{K}_3(x, z),$$

say.

- In these cases the feature map dimension $m\gg p$, but calculating $\mathcal K$ takes $O(\min(n,p))$ operations.
- We can leverage this to save on regularized kernel regression

Curse of Dimensionality

Features Map and Dimensio Raising

Kernel Regression

Kernels and Feature Maps

Kernels

Conclusion

Surprises in Dimension-Raising, 3/3

In the $m \gg n$ setting, we often can do all computations in dimension n = min(m, n)!

$$\hat{\mu}_{\lambda} = \Phi(G + \lambda I)^{-1} \Phi^{T} Y$$

- ► The matrix 'sandwich' $Φ(G + λI)^†Φ^T$ appears to go into m dimensions: G is m × m.
- Actually we saw a few slides ago a special property:

$$\Phi(G+\lambda I)^{\dagger}\Phi^T = UDV^TV(U^TUDV^T = U(D^2(D^2+\lambda I)^{-1})U^T$$

all terms on RHS: n times n.

Another way to put it:

$$\Phi(G + \lambda I)^{\dagger} \Phi^{T} = K(K + \lambda I)^{-1}$$

appears to involve G which is m times m but is actually a function of the n times n matrix K!

Indeed

$$K = UD^2U^T$$

Now when there is an explicit Kernel K(x, z)

$$K_{ii} = \mathcal{K}(x_i, x_i)$$

Hence we can obtain the matrix K without ever going into m dimensions!

With an explicit Kernel compute many things without ever going into m dimensions!

Curse of Dimensionality

Features Maps and Dimension Raising

Kernel Regression

Kernels and Feature Maps

Conclusion

Conclusion

Kernel Examples

So we often specify $\mathcal K$ only; never explicitly construct our feature map $\Phi!$ Examples of $\mathcal K$ we can specify

Power Kernels, $\ell = 1, 2, \ldots$

$$\mathcal{K}_{\ell}(x,z) = (x^T z)^{\ell}$$

Gaussian Kernel (often called Radial Basis Function).

$$K_G(x, z) = \exp(-\frac{\|x - z\|_2^2}{2\sigma^2})$$

Laplacian Kernel (often called Radial Basis Function).

$$\mathcal{K}_L(x, z) = \exp(-\alpha ||x - z||_2)$$

Sums of Kernels with positive coefficients

$$\mathcal{K}(x,z) = c_1 \mathcal{K}_1(x,z) + c_2 \mathcal{K}_2(x,z)$$

$$c_i > 0, i = 1, 2.$$

Products of Kernels with positive integer coefficients

$$\mathcal{K}(x,z) = \mathcal{K}_1(x,z)^{\ell_1} \cdot \mathcal{K}_2(x,z)^{\ell_2}$$

$$\ell_i \in \{1, 2, 3, \dots\}, i = 1, 2.$$

Many others.

Curse of Dimensionality

reatures Maps and Dimension Raising

Kernels and

Feature Maps

Conclusion

Standing behind explicit kernel is implicit feature map

Definition. Let $\mathcal{X} \subset \mathbf{R}^p$. The symmetric function $\mathcal{K}(x,z)$ on $\mathcal{X} \times \mathcal{X}$ is called PSD if, for every n and every $(c_i)_{i=1}^n$ with $c_i \in \mathbf{R}$ and every $(x_i)_{i=1}^n$ with $x_i \in \mathcal{X}$:

$$\sum_{i=1}^n \sum_{j=1}^n c_i c_j K(x_i, x_j) \geq 0.$$

Mercer's Theorem:

if K is positive semidefinite, then $K(x,z) = \phi(x)^T \phi(z)$ for some feature map $\phi(x)$ from \mathbf{R}^p into \mathbf{R}^m for some $m \ge n$.

There are many many explicit kernels! The feature map may surprise you!

Curse of Dimensionality

Features Maps and Dimension Raising

Kernel Regression

Kernels and Feature Maps

Reproducing Kernels

Kerneis

Examples of Implicit Feature maps associated with PD Kernels

domain ${\mathcal X}$	kernel	feature span	dim <i>m</i>
R^p	$K_2(x, z) = 1 + x'z + (x'z)^2$	quadratic polyn's on \mathbf{R}^p	$1 + p + \frac{p(p+1)}{2}$
R^p	$\mathcal{K}_{G}(x,z) = \exp(-\alpha x-z _{2}^{2})$	all polyn's on \mathbf{R}^p	∞ -
[0, 1]	$\mathcal{K}_{S}(u, v) = (1 - \max(u, v)) \min(u, v)$	polyn's vanishing at $0,1$	∞
$\mathcal{D} = \{ z \leq 1\}$	$\mathcal{K}_D(z, w) = \frac{1}{1 - \overline{z}w}$	all polyn's in z	∞

Often many equivalent feature maps, related by

$$\psi = \Omega \phi$$

where Ω is an orthogonal mapping of feature space \mathbf{R}^m . Only the span and normalization are fixed.

Reproducing Kernels

Curse of Dimensionality

reatures Maj and Dimension Raising

Kernel Regression

Feature Ma

Reproducing Kernels

Conclusion

- ► Reproducing Kernel Hilbert space *H*
- Kernel Membership property:

$$k_x(\cdot) \equiv \mathcal{K}(x,\cdot) \in \mathcal{H}, \quad \forall x \in \mathcal{X}.$$

Reproducing property:

$$(f, k_x)_{\mathcal{H}} = f(x), \qquad f \in \mathcal{H}, \qquad \forall x \in \mathcal{X}.$$

▶ **Theorem.** Every positive definite kernel K induces a unique RKHS \mathcal{H}_K

Curse of Dimensionality

Features Map and Dimensio Raising

Kernel Regression

Feature Map

Reproducing Kernels

Conclusion

Representer Theorem

- ightharpoonup Reproducing Kernel Hilbert space ${\cal H}$
- Penalized Least-squares

$$\mathcal{L}_{\lambda}(f) = n^{-1} \|Y - (f(x_i))\|_2^2 + \lambda \|f\|_{\mathcal{H}}^2$$

Optimizer

$$\hat{f}^* = \operatorname{argmin}_f \mathcal{L}_{\lambda}(f)$$

Every solution

$$\hat{f}^*(\cdot) = g(\cdot) + \sum_i \theta_i^* \mathcal{K}(\cdot, x_i)$$

g in null space of \mathcal{H} : $||g||_{\mathcal{H}} = 0$.

► Coefficients determined by

$$\theta^* = \operatorname{argmin}_{\vartheta} \{ \| Y - K \vartheta \|_2^2 + \lambda \vartheta^T K \vartheta \}$$

Solution

$$\theta^* = (K^T K + \lambda K)^{\dagger} K^T Y$$

 $n \times n$ system!

Reproducing

Kernels

▶ Domain *X* = [0, 1]

 $\blacktriangleright \text{ Kernel } \mathcal{K}_S(u,v) = (1 - \max(u,v)) \min(u,v)$

Hilbert space: Sobolev space W_0^1 .

Representer:

Example:

$$k_{u}(v) = \left\{ \begin{array}{ll} (1-u)v & v < u \\ (1-v)u & v > u \end{array} \right..$$

Piecewise linear in v with one knot at v = u!

Optimal penalized-MSE solution

$$\hat{f}_{\lambda}^*(v) = a + bv + \sum_i \theta_i^* k_{x_i}(v)$$

Piecewise linear with one knot at every x_i !

Penalization by W_0^1 (semi-) norm

$$||f||_{W_0^1}^2 = \int_0^1 |f'(t) - \bar{f'}|^2 dt.$$

where $\bar{f'} = \int_0^1 f'(t) dt$.

Penalized kernel regression based on the Sobolev Kernel K_S finds the linear spline which best balances a tradeoff between smoothness $\|f\|_{W^{\frac{1}{2}}}^2$ and lack-of-fit $\|Y - f\|_2^2$.

Conclusion

Curse of Dimensionality

Features Maps and Dimension Raising

Kernel Regression

Feature Maps

Kernels

Conclusion

- ► Modern machine learning involves implicitly or explicitly feature manufacturing
- ▶ Dimension m of feature map can be far greater than $\max(n, p)$ of dataset
- Two approaches:
 - **Explicit:** specify feature map $\phi(x)$
 - ▶ Implicit: specify kernel $\mathcal{K}(x,z)$
- Advantages of Implicit [Kernel]:
 - Computations always in dimension n.
 - ► Explicit kernel representation $\hat{\mu}(z) = \sum_i \theta_i K(z, x_i)$
- **Explicit**, massive learned feature maps, [Deepnet] $m \gg n$.
 - Advantage: outperform kernel methods
 - Disadvantage: costly in GPU etc.