3.5 条件分布

之前定义了条件概率,两事件 $A \times B$,若P(A)>0,则可考虑在A发生前提下B发生的概率:

$$P(B|A) = \frac{P(AB)}{P(A)}$$

对二维随机变量,也可类似分析

二维离散型随机变量的条件分布

(X, Y)联合分布律为 $P(X = x_i, Y = y_i) = p_{ii}, i, j = 1, 2, \cdots$

边缘分布律为
$$P(X = x_i) = p_{i\bullet} = \sum_j p_{ij}$$

$$P(Y = y_j) = p_{\bullet j} = \sum_i p_{ij}$$

$$P(Y=y_j)=p_{\bullet j}=\sum_i p_{ij}$$

定义

若
$$P(Y=y_i)=p_{\bullet i}>0$$

考虑条件概率 $P(X = x_i | Y = y_i)$, $i, j = 1, 2, \cdots$

$$P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{p_{ij}}{p_{\bullet j}}, i = 1, 2, \dots$$

称为 $Y=y_i$ 条件下,随机变量X的条件分布律

同理, 若 $P(X = x_i) = p_i > 0$

$$P(Y = y_j | X = x_i) = \frac{P(X = x_i, Y = y_j)}{P(X = x_i)} = \frac{p_{ij}}{p_{i\bullet}}, j = 1, 2, \dots$$

例

盒子里装有3只黑球,4只红球,3只白球,在其中任取2球,以X表示取到黑球的数目,Y表示取到红球的只数。

求: (i) $X \times Y$ 的联合分布律; (ii) X=1 时Y 的条件分布律;

(iii) Y=0时X的条件分布律。

解

(i) X、Y的联合分布律为

X^{Y}	0	1	2
0	1/15	4/15	2/15
1	3/15	4/15	0
2	1/15	0	0

(iii)
$$X = 0 \quad 1 \quad 2$$

 $P(X=k \mid Y=0) \quad 1/5 \quad 3/5 \quad 1/5$

(ii) 由于 *P*(*X*=1)=7/15 故在*X*=1时*Y*的条件分布

$$P(Y = 0 | X = 1) = 3/7$$

 $P(Y = 1 | X = 1) = 4/7$
 $P(Y = 2 | X = 1) = 0$

例

一射手进行射击,击中目标的概率为p(0 ,射击直至击中目标两次为止,设以<math>X表示 首次击中目标所进行的射击次数,以Y表示总共进行的射击次数,试求X和Y的联合分布律 和条件分布律。 要点: 第m次击中第一次, 第n次击中第二次, 其他n-2次均未击中

解)
$$(X, Y)$$
的联合分布律为 $P(X = m, Y = n) = p^2 q^{n-2}, q = 1 - p, n = 2, 3, \dots, m = 1, 2, \dots n-1$

$$X$$
的边缘分布律为 $P(X=m)=\sum_{n=m+1}^{\infty}P(X=m,Y=n)=\sum_{n=m+1}^{\infty}p^2q^{n-2}=pq^{m-1},\ m=1,2,\cdots$

Y的边缘分布律为
$$P(Y=n) = \sum_{m=1}^{n-1} P(X=m,Y=n) = \sum_{m=1}^{n-1} p^2 q^{n-2} = (n-1)p^2 q^{n-2}, n=2,3,\cdots$$

于是,对于每一 $(n=2,3,\cdots), P(Y=n)>0$ 在Y=n条件下,X的条件分布律为

$$P(X=m|Y=n) = \frac{P(X=m,Y=n)}{P(Y=n)} = \frac{p^2q^{n-2}}{(n-1)p^2q^{n-2}} = \frac{1}{n-1}, \qquad m=1, 2, \dots, n-1$$

对于每一 $m(m=1,2,\cdots), P(X=m)>0$ 在X=m 条件下, Y的条件分布律为

$$P(Y = n | X = m) = \frac{P(X = m, Y = n)}{P(X = m)} = \frac{p^2 q^{n-2}}{pq^{m-1}} = pq^{n-m-1}, \qquad n = m+1, m+2, \dots$$

第3章:多维随机变量及其分布

二维连续型随机变量的条件分布

对任意x和y,均有 P(X=x)=0、P(Y=y)=0 无法定义"条件分布函数"? 不能用下式

$$F_{X|Y}(x|y) = P(X \le x|Y = y) = \frac{P(X \le x, Y = y)}{P(Y = y)}$$

虽然P(Y=y)=0,但可设 $\varepsilon>0$,对于任意x,考虑条件概率 $P(X \le x | y < Y \le y + \varepsilon)$

设
$$P(y < Y \le y + \varepsilon) > 0$$
 则 $P(X \le x | y < Y \le y + \varepsilon) = \frac{P(X \le x, y < Y \le y + \varepsilon)}{P(y < Y \le y + \varepsilon)} = \int_{-\infty}^{x} \left[\int_{y}^{y + \varepsilon} f(t, y) dv \right] dt / \int_{y}^{y + \varepsilon} f_{Y}(y) dy$

当
$$\varepsilon > 0$$
 时,上式为 $F_{X|Y}(x|y) = P(X \le x|y < Y \le y + \varepsilon) = \int_{-\infty}^{x} \left[\int_{y}^{y+\varepsilon} f(t,v) dv \right] dt / \int_{y}^{y+\varepsilon} f_{Y}(v) dv$

$$\approx \frac{\varepsilon \int_{-\infty}^{x} f(t,y)dt}{\varepsilon f_{Y}(y)} = \int_{-\infty}^{x} \frac{f(t,y)}{f_{Y}(y)}dt$$

对比一维随机变量的概率密度 $F(x) = \int_{-\infty}^{x} f(t)dt$

可见 $\frac{f(x,y)}{f_y(y)}$ 是二维随机变量的条件概率密度

由定义
$$f_{X|Y}(x|y) = \frac{\partial}{\partial x} F_{X|Y}(x|y) \Rightarrow f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

事实上
$$\frac{\partial}{\partial x} F_{X|Y}(x|y) = \frac{\partial}{\partial x} \lim_{\varepsilon \to 0^+} \frac{P(X \le x, y < Y \le y + \varepsilon)}{P(y < Y \le y + \varepsilon)}$$

$$= \frac{\partial}{\partial x} \lim_{\varepsilon \to 0^+} \frac{F(x, y+\varepsilon) - F(x, y)}{F_Y(y+\varepsilon) - F_Y(y)}$$

$$= \frac{\partial}{\partial x} \lim_{\varepsilon \to 0^{+}} \frac{F(x, y+\varepsilon) - F(x, y)}{\varepsilon} = \frac{\partial}{\partial x} \frac{\frac{\partial F(x, y)}{\partial y}}{\frac{\partial F(x, y)}{\partial y}} = \frac{\partial}{\partial x} \frac{\frac{\partial F(x, y)}{\partial y}}{\frac{\partial F(x, y)}{\partial y}}$$

$$= \frac{\partial^2 F(x,y)}{\partial x \partial y} = \frac{f(x,y)}{f_Y(y)}$$

定义

若(X、Y) 联合概率密度为f(x,y), (X、Y)关于Y的边缘概率密度为 $f_Y(y)$, 若对于固定y, $f_Y(y)>0$, 则称

 $\frac{f(x,y)}{f_y(y)}$ 为 Y=y 条件下随机变量X 的条件概率密度

记为
$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

函数
$$\int_{-\infty}^{x} f_{X|Y}(t|y)dt = \int_{-\infty}^{x} \frac{f(t,y)}{f_{Y}(y)}dt$$

为Y=y条件下随机变量X的条件分布函数,记为 $F_{X|Y}(x|y)=P(X \le x|Y=y)$

设二维随机变量(X,Y)在区域 $\{(x,y): |y| < x < 1\}$ 内均匀分布, 求条件概率密度 $f_{X|Y}(x|y)$ 和 $P(X > \frac{2}{3}|Y = \frac{1}{2})$

解 据题意, (X, Y) 的联合概率密度为 $f(x,y) = \begin{cases} 1, & |y| < x < 1 \\ 0, & \text{其他} \end{cases}$

Y的边缘概率密度为
$$f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \begin{cases} \int_{-y}^{1} dx = 1 - |y|, & -1 < y < 1 \\ 0, & 其他 \end{cases}$$

于是给定
$$y(-1 < y < 1)$$
, X 的条件概率密度为 $f_{X|Y}(x|y) = \begin{cases} \frac{1}{1-|y|}, & |y| < x < 1\\ 0, & 其他 \end{cases}$

$$P(X > \frac{2}{3} | Y = \frac{1}{2}) = \int_{2/3}^{+\infty} f_{X|Y}(x | \frac{1}{2}) dx = \int_{2/3}^{1} 2 dx = \frac{2}{3}$$

二维均匀分布的条件分布仍为均匀分布

设数X在区间(0,1)上随机取值,当观察到X=x (0< x< 1)时,数Y在区间(x,1)上随机取值, 求Y的概率密度 $f_v(y)$

设数为求Y的概率密度,就要先求(X, Y)的联合概率密度;

而根据X的边缘概率密度和Y在X给定下的条件概率密度,即可求得求(X, Y)的联合概率密度

$$X$$
的边缘概率密度是 $f_X(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & \text{其他} \end{cases}$

X的边缘概率密度是 $f_X(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & \text{其他} \end{cases}$ 对于任意x (0 < x < 1)时,在X = x 条件下,Y 条件概率密度为 $f_{Y|X}(y|x) = \begin{cases} \frac{1}{1-x} & x < y < 1 \\ 0 & \text{其他} \end{cases}$

$$(X, Y)$$
的联合概率密度为 $f(x, y) = f_X(x) f_{Y|X}(y|x) = \begin{cases} \frac{1}{1-x} & x < y < 1, \ 0 < x < 1 \\ 0 & 其他 \end{cases}$

所以Y的边缘概率密度为
$$f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \begin{cases} \int_0^y \frac{1}{1-x} dx = -\ln(1-y) & 0 < y < 1 \\ 0 & \text{其他} \end{cases}$$

联合分布、边缘分布和条件分布小结

二维随机变量的分布函数

联合分布函数
$$F(x,y) = P\{(X \le x) \cap (Y \le y)\} \stackrel{\text{idd}}{==} P(X \le x, Y \le y)$$
 $-\infty < x < +\infty, -\infty < y < +\infty$

$$F(-\infty, -\infty) = 0, F(+\infty, +\infty) = 1$$

对任意固定 $y, F(-\infty, y) = 0$; 对任意固定 $x, F(x, -\infty) = 0$

F(x, y)关于x, y是不减函数、右连续

若
$$x_1 < x_2$$
, $y_1 < y_2$, 则 $F(x_2, y_2) - F(x_2, y_1) + F(x_1, y_1) - F(x_1, y_2) \ge 0$

边缘分布函数
$$F_X(x) = F(x,+\infty) = P(X \le x)$$
 $F_Y(y) = F(+\infty,y) = P(Y \le y)$

条件分布函数 $F_{X|Y}(x|y) = P(X \le x|Y = y)$ 为Y=y条件下随机变量X的条件分布函数 $F_{Y|X}(y|x) = P(Y \le y|X = x)$ 为X=x条件下随机变量Y的条件分布函数

二维离散型随机变量

联合分布律 $P(X = x_i, Y = y_j) = p_{ij}, i, j = 1, 2, \dots$

联合分布函数
$$F(x,y) = \sum_{x_i \le x} \sum_{y_i \le y} p_{ij}$$

边缘分布律

$$P(X = x_i) = P(X = x_i, Y \le +\infty) = \sum_{j=1}^{\infty} p_{ij} \stackrel{\text{id}}{==} p_{i\bullet} \qquad i = 1, 2, \dots$$

$$P(Y = y_j) = P(X \le +\infty, Y = y_j) = \sum_{i=1}^{\infty} p_{ij} \stackrel{\text{id}}{==} p_{\bullet j} \qquad j = 1, 2, \dots$$

XY	y_1	$y_2 \dots$	y_j	$P(X=x_i)$
x_1	p ₁₁	<i>p</i> ₁₂	p_{1j}	p _{1•}
x_2	p_{21}	$p_{22} \dots$	p_{2j}	p _{2•}
·	n.	i. D.,	: p	n.
• i	Pil	p_{i2}		<i>P i</i> •
$P(Y = y_j)$				

边缘分布函数
$$F_X(x) = F(x, +\infty) = \sum_{x_i \le x} \sum_{j=1}^{\infty} p_{ij}$$
 $F_Y(y) = F(+\infty, y) = \sum_{y_j \le y} \sum_{i=1}^{\infty} p_{ij}$

条件分布律

 $P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_i)} = \frac{p_{ij}}{p_{\bullet i}}, i = 1, 2, \dots$ 为 $Y = y_j$ 条件下,随机变量X的条件分布律

第3章:多维随机变量及其分布

二维连续型随机变量

联合概率密度与联合分布函数 $F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(u,v) du dv$

边缘概率密度 $f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy$ $f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx$

边缘分布函数 $F_X(x) = F(x,+\infty) = \int_{-\infty}^x \left[\int_{-\infty}^{+\infty} f(t,y) dy \right] dt = \int_{-\infty}^x f_X(t) dt$

$$F_{Y}(y) = F(+\infty, y) = \int_{-\infty}^{y} \left[\int_{-\infty}^{+\infty} f(x, t) dx \right] dt = \int_{-\infty}^{y} f_{Y}(t) dt$$

条件概率密度 $f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$ 为 Y=y 条件下随机变量X 的条件概率密度

条件分布函数 $F_{X|Y}(x|y) = \int_{-\infty}^{x} f_{X|Y}(t/y)dt$ 为Y=y条件下随机变量X的条件分布函数

联合分布 = 边缘分布 × 条件分布

二维离散型随机变量

条件分布律
$$P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{p_{ij}}{p_{ij}}, i = 1, 2, ... 为 Y = y_j 条件下,随机变量X的条件分布律$$

联合分布律
$$P(X = x_i, Y = y_j) = P(Y = y_j) P(X = x_i | Y = y_j) = i, j = 1, 2, \dots$$

二维连续型随机变量

条件概率密度 $f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$ 为 Y=y 条件下随机变量X 的条件概率密度

联合概率密度 $f(x,y) = f_Y(y) f_{X|Y}(x|y)$

第3章:多维随机变量及其分布

本节回顾

口 二维离散型随机变量的条件分布律

若
$$P(Y=y_i)=p_{\bullet i}>0$$

$$P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{p_{ij}}{p_{ij}}, i = 1, 2, \dots$$
 称为 $Y = y_j$ 条件下,随机变量 X 的条件分布律

□ 二维连续型随机变量的条件概率密度

 $\ddot{a}(X, Y)$ 联合概率密度为f(x, y), (X, Y)关于Y的边缘概率密度为 $f_Y(y)$, 若对于固定y, $f_{\nu}(y)>0$, 则称

$$\frac{f(x,y)}{f_Y(y)}$$
 为 $Y=y$ 条件下随机变量 X 的条件概率密度 记为 $f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$