В начало Курсы ФИиВТ 09.03.04 Программная инженерия(Очная) ПС 11 Разработка программных систем 4 семестр

(09.03.04_11_4 сем_о)Физика Дополнительные виды работ Спектр ртути (защита)

Тест начат Вторник, 21 Май 2024, 13:07

Состояние Завершенные

Завершен Вторник, 21 Май 2024, 13:11

Прошло з мин. 45 сек.

времени

Оценка 4,00 из 4,00 (100%)

Вопрос 1
Верно
Баллов: 1,00 из 1,00

Главное квантовое число электрона в атоме равно **2**.

Укажите все возможные состояния электрона.

Выберите один или несколько ответов:

2f

2S **✓**

✓ 2p **✓**

2d

Ваш ответ верный.

Вопрос **2** Верно Баллов: 1,00 из 1,00

Дана схема состояний электрона в атоме водорода.

Существуют <u>правила отбора переходов</u> электрона между состояниями, т.к. должны выполняться законы <u>сохранения энергии и момента импульса</u>.

Укажите <u>разрешенные</u> переходы.

Выберите один или несколько ответов:

✓ e ✓

b

✓ a ✓

d

Ваш ответ верный.

Вопрос **3**

Верно

Баллов: 1,00 из 1,00

Атом ртути находится в состоянии 3 F.

Полный момент атома может принимать значения от |L + S| до |L - S|.

Укажите все возможные значения квантового числа полного момента атома для этого состояния:

Выберите один или несколько ответов:

1

✓ 2 🗸

✓ 3 ✓

Ваш ответ верный.

Зерно Баллов: 1,00 из 1,00		
Укажите разреше	ен или запрещен данный переход в атоме ртути и его причину.	
6 ³ D ₃ - 6 ³ P ₂		
	разрешен, т.к. орбитальное квантовое число изменилось на 1	
7 ³ S ₁ - 6 ¹ P ₁	разрешен, т.к. орбитальное квантовое число изменилось на 1	✓
8 ³ S ₁ - 7 ¹ S ₀	запрещен, т.к. орбитальное квантовое число не изменилось	✓