Введение в 3D ML

Каратаева Екатерина

БПМИ182 27.04.21

Области применения:

- Робототехника
- Компьютерное зрение
- Виртуальная и дополненная реальность
- Медицина
- Промышленность
- ***** ...

Robot Perception

Shape Design

Augmented Reality

Robotic Bin Picking

Примеры задач:

- Классификация и кластеризация 3D данных
- Генерация 3D контента
- ❖ 2D-to-3D
- Сегментация 3D сцен или объектов
- ❖ Поиск 3D объектов

Формы представления 3D-данных

Воксели (voxel = volumetric + pixel)

Преимущества:

- Легко получить из другого типа моделей
- Связь с физическими свойствами объектов
- Можно представить в виде обычных векторов

Недостатки:

- "Грубость" аппроксимации формы при малом разрешении
- Данный подход ограничен низким разрешением пространственной сетки.

Облака точек (Point clouds)

Облака точек (Point clouds)

Преимущества:

- Естественный формат данных в задачах пространственного сканирования
- Можно легко получены из других моделей

Недостатки:

- Неупорядоченность данных
- ❖ Отсутствует информация о связях между точками

Полигональные модели (Mesh, polygonal models)

Преимущества:

- ❖ Естественный формат для использования в компьютерной графике, игровых движках
- Лучше описывают пространственные особенности объектов

Недостатки:

 Чувствительность формата к выбросам в данных.

Функциональные модели (CAD models)

Преимущества:

- Компактность, масштабируемость, физически корректная модель
- ❖ Можно получить модель любого другого формата

Недостатки:

- Мало обучающих выборок
- Другие форматы проблематично приводить к функциональному

$$SDF(\boldsymbol{x}) = s : \boldsymbol{x} \in \mathbb{R}^3, \, s \in \mathbb{R}$$

Information

Information

Метод радиальных базисных функций

Occupancy Net

$Intersection \ over \ Union \ (IoU) \ = \frac{Area \ of \ Overlap}{Area \ of \ Union}$

--- Prediction

Ground-truth

F1 score

Chamfer loss

$$\Lambda_{P,Q} = \{ (p, \arg\min_q ||p - q||) : p \in P \}$$

$$\mathcal{L}_{\text{cham}}(P,Q) = |P|^{-1} \sum_{(p,q) \in \Lambda_{P,Q}} ||p-q||^2 + |Q|^{-1} \sum_{(q,p) \in \Lambda_{Q,P}} ||q-p||^2$$

Edge regularizer (loss)

$$\mathcal{L}_{\text{edge}}(V, E) = \frac{1}{|E|} \sum_{(v, v') \in E} ||v - v'||^2, E \subseteq V \times V$$

Smooth regularizer (loss)

$$\mathcal{L}_{sm}(x) = \sum_{\theta_i \in \mathcal{E}} (\cos \theta_i + 1)^2$$

Multi-view Convolutional Neural Networks for 3D Shape Recognition (2015)

VoxNet (2015)

PointNet (2016)

Classification Network

Segmentation Network

VoxNet [17]		volume		12		83.0	85.9
Subvolume [18]		volume		20		86.0	89.2
LFD [28]		image		10		75.5	-
MVCNN [23]		image		80		90.1	-
Ours baseline		point		1-1		72.6	77.4
Ours PointNet		point		1		86.2	89.2
Table 1. Classification results on ModelNet40. Our net achieves							
state-of-the-art among deep nets on 3D input.							
			#params]		FI	OPs/sample	
PointNet (vanilla)			0.8M		148M		
			5 8 50 00 Vision			FILE	
PointNet			3.5	3.5M		0 M	

16.6M

60.0M

3633M

62057M

input

mesh

volume

SPH [11]

3DShapeNets [28]

Subvolume [18]

MVCNN [23]

#views

accuracy

avg. class

68.2

77.3

accuracy

overall

84.7 85.9 89.2

Источники:

https://github.com/timzhang642/3D-Machine-Learning

https://habr.com/ru/company/itmai/news/t/548734/

https://studfile.net/preview/6226531/page:10/

https://medium.com/@nabil.madali/introduction-to-3d-deep-learning-740c199b100c

https://medium.com/phygitalism/3d-neural-networks-review-6a5908439d54

https://medium.com/phygitalism/3d-ml-metrics-loss-functions-9708ff0476e2