Strategic Concealment in Innovation Races

Yonggyun Kim and Francisco Poggi June 20, 2023

Consider two firms engaging in an innovation race.

- The first firm to have a breakthrough obtains a prize Π .
- Firms pay a flow cost c throughout the race.
- Breakthroughs for firm i arrive at constant rate λ_i .
- Firm A has a piece of knowledge that gives them an advantage: $\lambda_A > \lambda_B$.

Expected Payoff of firm i:

$$\frac{\lambda_i}{\lambda_A + \lambda_B} \Pi - \frac{\mathsf{c}}{\lambda_A + \lambda_B}$$

Consider two firms engaging in an innovation race.

- The first firm to have a breakthrough obtains a prize Π .
- Firms pay a flow cost c throughout the race.
- Breakthroughs for firm i arrive at constant rate λ_i .
- Firm A has a piece of knowledge that gives them an advantage: $\lambda_A > \lambda_B$.

Expected Payoff of firm i:

$$\frac{\lambda_i}{\lambda_A + \lambda_B} \Pi - \frac{\mathsf{c}}{\lambda_A + \lambda_B}$$

Consider two firms engaging in an innovation race.

- The first firm to have a breakthrough obtains a prize Π .
- Firms pay a flow cost c throughout the race.

- Breakthroughs for firm i arrive at constant rate λ_i .
- Firm A has a piece of knowledge that gives them an advantage: $\lambda_A > \lambda_B$.

Expected Payoff of firm i:

$$\frac{\lambda_i}{\lambda_A + \lambda_B} \Pi - \frac{c}{\lambda_A + \lambda_B}$$

Consider two firms engaging in an innovation race.

- The first firm to have a breakthrough obtains a prize Π .
- Firms pay a flow cost c throughout the race.

- Breakthroughs for firm *i* arrive at constant rate λ_i .
- Firm A has a piece of knowledge that gives them an advantage: $\lambda_A > \lambda_B$.

Expected Payoff of firm i:

$$\frac{\lambda_i}{\lambda_A + \lambda_B} \Pi - \frac{\mathsf{c}}{\lambda_A + \lambda_B}$$

Consider two firms engaging in an innovation race.

- The first firm to have a breakthrough obtains a prize Π .
- Firms pay a flow cost c throughout the race.

- Breakthroughs for firm i arrive at constant rate λ_i .
- Firm A has a piece of knowledge that gives them an advantage: $\lambda_A > \lambda_B$.

Expected Payoff of firm i:

$$\frac{\lambda_i}{\lambda_A + \lambda_B} \Pi - \frac{c}{\lambda_A + \lambda_B}$$

Consider two firms engaging in an innovation race.

- The first firm to have a breakthrough obtains a prize Π .
- Firms pay a flow cost c throughout the race.
- Breakthroughs for firm *i* arrive at constant rate λ_i .
- Firm A has a piece of knowledge that gives them an advantage: $\lambda_{\rm A}>\lambda_{\rm B}.$

Expected Payoff of firm i:

$$\frac{\lambda_i}{\lambda_A + \lambda_B} \Pi - \frac{\mathsf{c}}{\lambda_A + \lambda_B}$$

Suppose Firm A can share knowledge with Firm B, in which case both firms would race with rate λ_A . This would:

- Reduce race duration.
- Increase the chance that Firm B wins the race.

Overall, sharing knowledge would be more efficient.

Coase Theorem: There exists a price *P* such that

- Firm B is willing to pay to acquire the knowledge.
- Firm A is willing to accept to share the knowledge with Firm B.

$$P \in \left[\frac{(\lambda_A - \lambda_B)(\lambda_A \Pi - c)}{2\lambda_A(\lambda_A + \lambda_B)}, \frac{(\lambda_A - \lambda_B)(\lambda_A \Pi + c)}{2\lambda_A(\lambda_A + \lambda_B)} \right]$$

Suppose Firm A can share knowledge with Firm B, in which case both firms would race with rate λ_A . This would:

- 1. Reduce race duration.
- Increase the chance that Firm B wins the race.

Overall, sharing knowledge would be more efficient.

Coase Theorem: There exists a price *P* such that

- Firm B is willing to pay to acquire the knowledge.
- Firm A is willing to accept to share the knowledge with Firm B.

$$P \in \left[\frac{(\lambda_A - \lambda_B)(\lambda_A \Pi - c)}{2\lambda_A(\lambda_A + \lambda_B)}, \frac{(\lambda_A - \lambda_B)(\lambda_A \Pi + c)}{2\lambda_A(\lambda_A + \lambda_B)} \right]$$

Suppose Firm A can share knowledge with Firm B, in which case both firms would race with rate λ_A . This would:

- 1. Reduce race duration.
- 2. Increase the chance that Firm B wins the race.

Overall, sharing knowledge would be more efficient.

Coase Theorem: There exists a price *P* such that

- Firm B is willing to pay to acquire the knowledge.
- Firm A is willing to accept to share the knowledge with Firm B.

$$P \in \left[\frac{(\lambda_A - \lambda_B)(\lambda_A \Pi - c)}{2\lambda_A(\lambda_A + \lambda_B)}, \frac{(\lambda_A - \lambda_B)(\lambda_A \Pi + c)}{2\lambda_A(\lambda_A + \lambda_B)} \right]$$

Suppose Firm A can share knowledge with Firm B, in which case both firms would race with rate λ_A . This would:

- 1. Reduce race duration.
- 2. Increase the chance that Firm B wins the race.

Overall, sharing knowledge would be more efficient.

Coase Theorem: There exists a price *P* such that

- Firm B is willing to pay to acquire the knowledge.
- Firm A is willing to accept to share the knowledge with Firm B.

$$P \in \left[\frac{(\lambda_A - \lambda_B)(\lambda_A \Pi - c)}{2\lambda_A(\lambda_A + \lambda_B)}, \frac{(\lambda_A - \lambda_B)(\lambda_A \Pi + c)}{2\lambda_A(\lambda_A + \lambda_B)} \right]$$

Suppose Firm A can share knowledge with Firm B, in which case both firms would race with rate λ_A . This would:

- 1. Reduce race duration.
- 2. Increase the chance that Firm B wins the race.

Overall, sharing knowledge would be more efficient.

Coase Theorem: There exists a price *P* such that

- Firm B is willing to pay to acquire the knowledge.
- Firm A is willing to accept to share the knowledge with Firm B.

$$P \in \left[\frac{(\lambda_A - \lambda_B)(\lambda_A \Pi - c)}{2\lambda_A(\lambda_A + \lambda_B)}, \frac{(\lambda_A - \lambda_B)(\lambda_A \Pi + c)}{2\lambda_A(\lambda_A + \lambda_B)} \right]$$

Suppose Firm A can share knowledge with Firm B, in which case both firms would race with rate λ_A . This would:

- 1. Reduce race duration.
- 2. Increase the chance that Firm B wins the race.

Overall, sharing knowledge would be more efficient.

Coase Theorem: There exists a price *P* such that

- Firm B is willing to pay to acquire the knowledge.
- Firm A is willing to accept to share the knowledge with Firm B.

$$P \in \left[\frac{(\lambda_A - \lambda_B)(\lambda_A \Pi - c)}{2\lambda_A(\lambda_A + \lambda_B)}, \frac{(\lambda_A - \lambda_B)(\lambda_A \Pi + c)}{2\lambda_A(\lambda_A + \lambda_B)} \right]$$

Most times, knowledge has to be acquired and is private.

We study an innovation race with:

- Unobservable interim breakthroughs (knowledge).
- Firms directing R&D efforts in a flexible, dynamic way.

We characterize the equilibrium behavior of firms

- When they can patent and license interim breakthroughs,
- When they cannot.

Most times, knowledge has to be acquired and is private.

We study an innovation race with:

- Unobservable interim breakthroughs (knowledge).
- Firms directing R&D efforts in a flexible, dynamic way.

We characterize the equilibrium behavior of firms

- When they can patent and license interim breakthroughs,
- When they cannot

Most times, knowledge has to be acquired and is private.

We study an innovation race with:

- Unobservable interim breakthroughs (knowledge).
- Firms directing R&D efforts in a flexible, dynamic way.

We characterize the equilibrium behavior of firms

- When they can patent and license interim breakthroughs,
- When they cannot

Most times, knowledge has to be acquired and is private.

We study an innovation race with:

- Unobservable interim breakthroughs (knowledge).
- Firms directing R&D efforts in a flexible, dynamic way.

We characterize the equilibrium behavior of firms

- When they can patent and license interim breakthroughs,
- When they cannot.

When interim breakthroughs are **public**, patents work:

- · Induce firms to share their breakthroughs.
- Induce more efficient R&D resource allocation.

- firms conceal interim breakthroughs (trade secrets).
- * Inefficient allocation of R&D resources.
- Particularly problematic when stakes are high

When interim breakthroughs are **public**, patents work:

- · Induce firms to share their breakthroughs.
- Induce more efficient R&D resource allocation.

- firms conceal interim breakthroughs (trade secrets).
- Inefficient allocation of R&D resources.
- Particularly problematic when stakes are high

When interim breakthroughs are **public**, patents work:

- · Induce firms to share their breakthroughs.
- Induce more efficient R&D resource allocation.

- firms conceal interim breakthroughs (trade secrets).
- Inefficient allocation of R&D resources.
- Particularly problematic when stakes are high.

When interim breakthroughs are public, patents work:

- · Induce firms to share their breakthroughs.
- Induce more efficient R&D resource allocation.

- firms conceal interim breakthroughs (trade secrets).
- Inefficient allocation of R&D resources.
- Particularly problematic when stakes are high

When interim breakthroughs are public, patents work:

- · Induce firms to share their breakthroughs.
- Induce more efficient R&D resource allocation.

- firms conceal interim breakthroughs (trade secrets).
- Inefficient allocation of R&D resources.
- Particularly problematic when stakes are high

When interim breakthroughs are public, patents work:

- · Induce firms to share their breakthroughs.
- Induce more efficient R&D resource allocation.

- firms conceal interim breakthroughs (trade secrets).
- Inefficient allocation of R&D resources.
- Particularly problematic when stakes are high

When interim breakthroughs are public, patents work:

- · Induce firms to share their breakthroughs.
- Induce more efficient R&D resource allocation.

- firms conceal interim breakthroughs (trade secrets).
- Inefficient allocation of R&D resources.
- Particularly problematic when stakes are high.

Two firms $i \in \{A, B\}$ participate in a race.

Time is continuous and infinite $t \in [0, \infty)$.

Two technologies:

- An incumbent technology L.
- A new technology H (not available at first).

A firm allocates, at each point in time, a unit of resources to:

- Research: try to obtain the new technology.
- * Development: try to win the race with the current technology.

Two firms $i \in \{A, B\}$ participate in a race.

Time is continuous and infinite $t \in [0, \infty)$.

Two technologies:

- An **incumbent** technology *L*.
- A **new** technology *H* (not available at first).

A firm allocates, at each point in time, a unit of resources to:

- Research: try to obtain the new technology.
- ' Development: try to win the race with the current technology.

Two firms $i \in \{A, B\}$ participate in a race.

Time is continuous and infinite $t \in [0, \infty)$.

Two technologies:

- An incumbent technology L.
- A **new** technology *H* (not available at first).

A firm allocates, at each point in time, a unit of resources to:

- Research: try to obtain the new technology.
- * Development: try to win the race with the current technology.

Two firms $i \in \{A, B\}$ participate in a race.

Time is continuous and infinite $t \in [0, \infty)$.

Two technologies:

- An **incumbent** technology *L*.
- A new technology H (not available at first).

A firm allocates, at each point in time, a unit of resources to:

- **Research**: try to obtain the new technology.
- **Development**: try to win the race with the current technology.

Two firms $i \in \{A, B\}$ participate in a race.

Time is continuous and infinite $t \in [0, \infty)$.

Two technologies:

- An **incumbent** technology *L*.
- A **new** technology *H* (not available at first).

A firm allocates, at each point in time, a unit of resources to:

- * Research: try to obtain the new technology.
- **Development**: try to win the race with the current technology.

Two firms $i \in \{A, B\}$ participate in a race.

Time is continuous and infinite $t \in [0, \infty)$.

Two technologies:

- An **incumbent** technology *L*.
- A **new** technology *H* (not available at first).

A firm allocates, at each point in time, a unit of resources to:

- * Research: try to obtain the new technology.
- **Development**: try to win the race with the current technology.

Technology

Technology

Payoffs

The race ends when one of the firms develops the innovation.

Payoff of firm i:

$$\Pi \cdot \mathbf{1}_{\{w=i\}} - c \cdot d$$

where

- $\Pi, c > 0$.
- $w \in \{A, B\}$ is the identity of the race winner,
- * *d* is the duration of the race.

Assumption: Incumbent technology is profitable $\Pi > c/\lambda_L$

Payoffs

The race ends when one of the firms develops the innovation.

Payoff of firm i:

$$\Pi \cdot \mathbf{1}_{\{w=i\}} - c \cdot d$$

where

- $\Pi, c > 0.$
- $w \in \{A, B\}$ is the identity of the race winner,
- * *d* is the duration of the race.

Assumption: Incumbent technology is profitable $\Pi > c/\lambda_{I}$

Payoffs

The race ends when one of the firms develops the innovation.

Payoff of firm i:

$$\Pi \cdot \mathbf{1}_{\{w=i\}} - c \cdot d$$

where

- $\Pi, c > 0$.
- $w \in \{A, B\}$ is the identity of the race winner,
- *d* is the duration of the race.

Assumption: Incumbent technology is profitable $\Pi > c/\lambda_L$

Payoffs

The race ends when one of the firms develops the innovation.

Payoff of firm i:

$$\Pi \cdot \mathbf{1}_{\{w=i\}} - c \cdot d$$

where

- $\Pi, c > 0$.
- $w \in \{A, B\}$ is the identity of the race winner,
- *d* is the duration of the race.

Assumption: Incumbent technology is profitable $\Pi > c/\lambda_L$

7

Information

Information:

- · Resource allocation is private information.
- Successful development is public.
- Interim breakthrough (finding of the new technology).

 Three cases:
 - (1) Public
- (2) Private
- (3) Patents

Information

Information:

- · Resource allocation is private information.
- · Successful development is public.
- Interim breakthrough (finding of the new technology)
 Three cases:
 - (1) Public
- (2) Private
- (3) Patents

Information

Information:

- Resource allocation is private information.
- · Successful development is public.
- Interim breakthrough (finding of the new technology). Three cases:
- (1) Public (2) Private (3) Patents.

Observable Interim Breakthroughs

$$\textbf{Markov states:} \qquad \Omega = \{\emptyset, \{A\}, \{B\}, \{A,B\}\}.$$

Markov strategy: $s: \Omega \rightarrow [0, 1]$

Expected payoffs: given a Markov strategy profile (s_A, s_B)

$$U^i_\omega$$
 $i \in \{1,2\}$ $\omega \in \Omega$

Solution concept: MPE

$$\textbf{Markov states:} \qquad \Omega = \{\emptyset, \{A\}, \{B\}, \{A, B\}\}.$$

Markov strategy:
$$s: \Omega \rightarrow [0, 1]$$

Expected payoffs: given a Markov strategy profile
$$(s_A, s_B)$$

$$U^i_\omega$$
 $i \in \{1,2\}$ $\omega \in \Omega$

Solution concept: MPE

$$\textbf{Markov states:} \qquad \Omega = \{\emptyset, \{A\}, \{B\}, \{A, B\}\}.$$

Markov strategy:
$$s: \Omega \rightarrow [0, 1]$$

Expected payoffs: given a Markov strategy profile
$$(s_A, s_B)$$

$$U^i_\omega$$
 $i \in \{1,2\}$ $\omega \in \Omega$

Solution concept: MPE

$$\textbf{Markov states:} \qquad \Omega = \{\emptyset, \{A\}, \{B\}, \{A,B\}\}.$$

$$\textbf{Markov strategy:} \qquad s: \Omega \to [0,1]$$

Expected payoffs: given a Markov strategy profile (s_A, s_B)

$$U^i_\omega$$
 $i \in \{1,2\}$ $\omega \in \Omega$

Solution concept: MPE.

In any MPE, the expected payoff when both firms have the new technology:

$$U_{\{A,B\}}^i = \frac{1}{2}\Pi - \frac{C}{2\lambda_H} \tag{1}$$

Suppose only Firm *j* has the new technology. What should Firm *i* do?

$$\frac{x \cdot \mu \cdot U^{i}_{\{A,B\}} + (1-x) \cdot \lambda_{L} \Pi - c}{x\mu + (1-x)\lambda_{L} + \lambda_{H}}$$

- If $\mu > \bar{\mu}$ then, in any MPE, $\mathsf{s}_{\mathsf{A}}(\{B\}) = \mathsf{s}_{\mathsf{B}}(\{A\}) = \mathsf{1}$
- If $\mu < \bar{\mu}$ then, in any MPE, $s_A(\{B\}) = s_B(\{A\}) = c$

In any MPE, the expected payoff when both firms have the new technology:

$$U_{\{A,B\}}^{i} = \frac{1}{2}\Pi - \frac{c}{2\lambda_{H}} \tag{1}$$

Suppose only Firm *j* has the new technology. What should Firm *i* do?

$$\frac{\mathbf{X} \cdot \boldsymbol{\mu} \cdot \boldsymbol{U}^{i}_{\{A,B\}} + (\mathbf{1} - \mathbf{X}) \cdot \boldsymbol{\lambda}_{L} \boldsymbol{\Pi} - \mathbf{c}}{\mathbf{X} \boldsymbol{\mu} + (\mathbf{1} - \mathbf{X}) \boldsymbol{\lambda}_{L} + \boldsymbol{\lambda}_{H}}$$

- If $\mu > \bar{\mu}$ then, in any MPE, $s_A(\{B\}) = s_B(\{A\}) = 1$
- If $\mu < \bar{\mu}$ then, in any MPE, $s_A(\{B\}) = s_B(\{A\}) = 0$

In any MPE, the expected payoff when both firms have the new technology:

$$U_{\{A,B\}}^{i} = \frac{1}{2}\Pi - \frac{c}{2\lambda_{H}} \tag{1}$$

Suppose only Firm *j* has the new technology. What should Firm *i* do?

$$\frac{\mathbf{X} \cdot \boldsymbol{\mu} \cdot \boldsymbol{U}^{i}_{\{A,B\}} + (\mathbf{1} - \mathbf{X}) \cdot \boldsymbol{\lambda}_{L} \boldsymbol{\Pi} - \mathbf{c}}{\mathbf{X} \boldsymbol{\mu} + (\mathbf{1} - \mathbf{X}) \boldsymbol{\lambda}_{L} + \boldsymbol{\lambda}_{H}}$$

- If $\mu > \bar{\mu}$ then, in any MPE, $s_A(\{B\}) = s_B(\{A\}) = 1$
- If $\mu < \bar{\mu}$ then, in any MPE, $s_A(\{B\}) = s_B(\{A\}) = 0$

In any MPE, the expected payoff when both firms have the new technology:

$$U_{\{A,B\}}^{i} = \frac{1}{2}\Pi - \frac{c}{2\lambda_{H}} \tag{1}$$

Suppose only Firm *j* has the new technology. What should Firm *i* do?

$$\frac{x \cdot \mu \cdot U_{\{A,B\}}^{i} + (1-x) \cdot \lambda_{L} \Pi - c}{x \mu + (1-x)\lambda_{L} + \lambda_{H}}$$

- * If $\mu>\bar{\mu}$ then, in any MPE, $s_A(\{B\})=s_B(\{A\})=1$
- * If $\mu < \bar{\mu}$ then, in any MPE, $s_A(\{B\}) = s_B(\{A\}) = o$

Expected payoffs

Using the previous lemma, we obtain the payoffs $U_{\{i\}}^{i}, U_{\{j\}}^{i}$.

• if
$$\mu>\bar{\mu}$$
,

$$\label{eq:ui} \textit{U}_{\{i\}}^{\textit{i}} = \frac{\lambda_{\textit{H}} \Pi + \mu \textit{V}_{\textit{C}} - \textit{c}}{\mu + \lambda_{\textit{H}}}, \qquad \textit{U}_{\{j\}}^{\textit{i}} = \frac{\mu \textit{V}_{\textit{c}} - \textit{c}}{\mu + \lambda_{\textit{H}}},$$

• if
$$\mu < \bar{\mu}$$
,

$$U_{\{i\}}^i = \frac{\lambda_H \Pi - c}{\lambda_L + \lambda_H}, \qquad U_{\{j\}}^i = \frac{\lambda_L \Pi - c}{\lambda_L + \lambda_H}$$

11

Expected payoffs

Using the previous lemma, we obtain the payoffs $U_{\{i\}}^{i}, U_{\{i\}}^{i}$.

• if
$$\mu > \bar{\mu}$$
,

$$\label{eq:ui} \textit{U}_{\{i\}}^{\textit{i}} = \frac{\lambda_{\textit{H}} \Pi + \mu \textit{V}_{\textit{C}} - \textit{c}}{\mu + \lambda_{\textit{H}}}, \qquad \textit{U}_{\{j\}}^{\textit{i}} = \frac{\mu \textit{V}_{\textit{c}} - \textit{c}}{\mu + \lambda_{\textit{H}}},$$

• if
$$\mu < \bar{\mu}$$
,

$$\label{eq:ui} \textit{U}_{\{i\}}^{i} = \frac{\lambda_{H}\Pi - \textit{c}}{\lambda_{L} + \lambda_{H}}, \qquad \textit{U}_{\{j\}}^{i} = \frac{\lambda_{L}\Pi - \textit{c}}{\lambda_{L} + \lambda_{H}}.$$

11

Fixing continuation values $U^i_{\{i\}}$ and $U^i_{\{j\}}$, one can define the payoff at state \emptyset :

$$u_{\emptyset}(x,y) := \frac{\mu \cdot x \cdot U^{i}_{\{j\}} + \mu \cdot y \cdot U^{i}_{\{j\}} + \lambda_{L} \cdot (1-x) \cdot \Pi - c}{\mu(x+y) + \lambda_{L}(2-x-y)}$$

Lemma

Let
$$\Delta_y = u_{\emptyset}(1, y) - u_{\emptyset}(0, y)$$

* If Δ_0 , Δ_1 positive (negative), it is best to choose x=1 (x=0 independently of y.

* If only Δ_1 is positive, allocations are strategic complements. * If only Δ_0 is positive, allocations are strategic substitutes.

Fixing continuation values $U^i_{\{i\}}$ and $U^i_{\{j\}}$, one can define the payoff at state \emptyset :

$$u_{\emptyset}(x,y) := \frac{\mu \cdot x \cdot U^{i}_{\{i\}} + \mu \cdot y \cdot U^{i}_{\{j\}} + \lambda_{L} \cdot (1-x) \cdot \Pi - c}{\mu(x+y) + \lambda_{L}(2-x-y)}$$

Lemma

Let $\Delta_y = u_\emptyset(1, y) - u_\emptyset(0, y)$.

- If Δ_0 , Δ_1 positive (negative), it is best to choose x = 1 (x = 0) independently of y.
- If only Δ_1 is positive, allocations are strategic complements.
- If only Δ_0 is positive, allocations are strategic substitutes

Fixing continuation values $U^i_{\{i\}}$ and $U^i_{\{j\}}$, one can define the payoff at state \emptyset :

$$u_{\emptyset}(x,y) := \frac{\mu \cdot x \cdot U^{i}_{\{i\}} + \mu \cdot y \cdot U^{i}_{\{j\}} + \lambda_{L} \cdot (1-x) \cdot \Pi - c}{\mu(x+y) + \lambda_{L}(2-x-y)}$$

Lemma

Let $\Delta_y = u_\emptyset(1, y) - u_\emptyset(0, y)$.

- If Δ_0 , Δ_1 positive (negative), it is best to choose x = 1 (x = 0) independently of y.
- If only Δ_1 is positive, allocations are strategic complements.
- If only Δ_0 is positive, allocations are strategic substitutes

Fixing continuation values $U^i_{\{i\}}$ and $U^i_{\{j\}}$, one can define the payoff at state \emptyset :

$$u_{\emptyset}(x,y) := \frac{\mu \cdot x \cdot U^{i}_{\{i\}} + \mu \cdot y \cdot U^{i}_{\{j\}} + \lambda_{L} \cdot (1-x) \cdot \Pi - c}{\mu(x+y) + \lambda_{L}(2-x-y)}$$

Lemma

Let $\Delta_y = u_\emptyset(1, y) - u_\emptyset(0, y)$.

- If Δ_0 , Δ_1 positive (negative), it is best to choose x = 1 (x = 0) independently of y.
- If only Δ_1 is positive, allocations are strategic complements.
- * If only Δ_{o} is positive, allocations are strategic substitutes.

Proposition

For almost all parameters, there is a unique MPE.

- $\mu > \bar{\mu}$: firms do research until obtaining the H technology.
- $\mu < \mu$: firms develop with the L technology.
- $\mu \in (\underline{\mu}, \overline{\mu})$, firms follow **fall-back strategies**: do research until either of the firms obtains the new technology and develop afterwards.

Proposition

For almost all parameters, there is a unique MPE.

- $\mu > \bar{\mu}$: firms do research until obtaining the H technology.
- $\mu < \mu$: firms develop with the L technology.
- $\mu \in (\underline{\mu}, \overline{\mu})$, firms follow **fall-back strategies**: do research until either of the firms obtains the new technology and develop afterwards.

Proposition

For almost all parameters, there is a unique MPE.

- $\mu > \bar{\mu}$: firms do research until obtaining the H technology.
- $\mu < \underline{\mu}$: firms develop with the L technology.
- $\mu \in (\underline{\mu}, \overline{\mu})$, firms follow **fall-back strategies**: do research until either of the firms obtains the new technology and develop afterwards.

Proposition

For almost all parameters, there is a unique MPE.

- $\mu > \bar{\mu}$: firms do research until obtaining the H technology.
- $\mu < \mu$: firms develop with the L technology.
- $\mu \in (\underline{\mu}, \bar{\mu})$, firms follow **fall-back strategies**: do research until either of the firms obtains the new technology and develop afterwards.

Unobservable Interim

Breakthroughs

Allocation Policy

With *unobservable* interim breakthroughs, firms cannot condition their allocation on the opponents' technology.

An **allocation policy** $\sigma_i(t)$ indicates how much resources Firm i allocates to research at time t, conditional on that

- Firm i doesn't have the new technology.
- the race is still on.

$$\sigma_i: \mathbb{R} \to [0,1]$$

Solution concept: Pure Symmetric Nash Equilibrium (SNE)

Allocation Policy

With *unobservable* interim breakthroughs, firms cannot condition their allocation on the opponents' technology.

An **allocation policy** $\sigma_i(t)$ indicates how much resources Firm i allocates to research at time t, conditional on that

- Firm i doesn't have the new technology.
- the race is still on.

$$\sigma_i:\mathbb{R} o [\mathtt{0},\mathtt{1}]$$

Solution concept: Pure Symmetric Nash Equilibrium (SNE).

Allocation Policy

With *unobservable* interim breakthroughs, firms cannot condition their allocation on the opponents' technology.

An **allocation policy** $\sigma_i(t)$ indicates how much resources Firm i allocates to research at time t, conditional on that

- Firm i doesn't have the new technology.
- the race is still on.

$$\sigma_i: \mathbb{R} \to [\mathsf{0}, \mathsf{1}]$$

Solution concept: Pure Symmetric Nash Equilibrium (SNE).

Evolution of Beliefs

- Consider that
 - an opponent follows policy σ .
 - the race is ongoing by time t.
- The probability p_t that the opponent has the new technology evolves according to:

$$p_0 = 0$$

$$\dot{p}_t = \underbrace{\mu \cdot \sigma(t) \cdot (1 - p_t)}_{\text{ME}} \underbrace{- [\lambda_H - (1 - \sigma(t))\lambda_L] \cdot p_t \cdot (1 - p_t)}_{\text{BU}}$$

Evolution of Beliefs

- Consider that
 - an opponent follows policy σ .
 - the race is ongoing by time t.
- The probability p_t that the opponent has the new technology evolves according to:

$$p_0 = c$$

$$\dot{p}_{t}$$
 = $\underbrace{\mu \cdot \sigma(t) \cdot (1 - p_{t})}_{\text{ME}}$ $\underbrace{- [\lambda_{H} - (1 - \sigma(t))\lambda_{L}] \cdot p_{t} \cdot (1 - p_{t})}_{\text{BU}}$

Evolution of Beliefs

Figure 1: Mechanic and Bayesian Updating effects. $\sigma_j =$ 1. $\mu =$ 1.5, $\lambda_H =$ 3, and $\delta =$ 2/3.

Steady State

Definition

A Steady State (SS) is a pair (p, x) such that

- If $\sigma(t) = x$ then $\dot{p}_t = o$.
- If opponent develops at constant rate $p\lambda_H + (1-p)(1-x)\lambda_L$, the firm is indifferent between any allocation.

Lemma

If $\mu \in \{\underline{\mu}, \overline{\mu}\}$, there is a unique Steady State $(p^*, x^*) \in (0, 1)^2$.

17

Symmetric Markovian Equilibrium

Proposition

Let $\mu \in (\underline{\mu}, \bar{\mu})$ and (p^*, x^*) is the unique SS. Then (σ^*, σ^*) is a SNE, where

$$\sigma^*(t) = \begin{cases} 1 & t < T^* \\ x^* & t \ge T^* \end{cases}$$

and and the beliefs at $p_{T^*} = p^*$.

Symmetric Markovian Equilibrium

Equilibrium beliefs are strictly increasing until T^* and then constant.

- Unique SNE where *p* is increasing over time.
- Unique SNE markovian in beliefs.

Comparative statics:

- The effects of λ_L , λ_H and μ on T^* and x^* are the expected ones.
- σ^* does not depend on Π or c

Symmetric Markovian Equilibrium

Equilibrium beliefs are strictly increasing until T^* and then constant.

- Unique SNE where *p* is increasing over time.
- Unique SNE markovian in beliefs.

Comparative statics:

- The effects of λ_L , λ_H and μ on T^* and x^* are the expected ones.
- σ^* does not depend on Π or c.

Patents

Model with Patents

Same model as before with the following modifications:

- A firm that has the new technology can apply for a patent.
 - Patent applications are public.
- First-to-invent: The patent is granted if no other firm had the interim breakthrough before.
- If patent is granted, the patent holder makes a TIOLI offer to the opponent.
- If offer is accepted, both firms race with the new technology onward.

- A firm that has the new technology can apply for a patent.
 - Patent applications are public.
- First-to-invent: The patent is granted if no other firm had the interim breakthrough before.
- If patent is granted, the patent holder makes a TIOLI offer to the opponent.
- If offer is accepted, both firms race with the new technology onward.

- A firm that has the new technology can apply for a patent.
 - Patent applications are public.
- **First-to-invent**: The patent is granted if no other firm had the interim breakthrough before.
- If patent is granted, the patent holder makes a TIOLI offer to the opponent.
- If offer is accepted, both firms race with the new technology onward.

- A firm that has the new technology can apply for a patent.
 - Patent applications are public.
- **First-to-invent**: The patent is granted if no other firm had the interim breakthrough before.
- If patent is granted, the patent holder makes a TIOLI offer to the opponent.
- If offer is accepted, both firms race with the new technology onward.

- A firm that has the new technology can apply for a patent.
 - Patent applications are public.
- **First-to-invent**: The patent is granted if no other firm had the interim breakthrough before.
- If patent is granted, the patent holder makes a TIOLI offer to the opponent.
- If offer is accepted, both firms race with the new technology onward.

Continuation Payoffs

Suppose firms apply for patents immediately. Then, in equilibrium, patents are granted.

After a patent is granted, the TIOLI offer will capture all the extra surplus and will be accepted.

Then we can use the observable case results for state \emptyset , with different continuation values: $\hat{U}^{i}_{\{i\}}$ and $\hat{U}^{i}_{\{j\}}$.

Continuation Payoffs

Suppose firms apply for patents immediately. Then, in equilibrium, patents are granted.

After a patent is granted, the TIOLI offer will capture all the extra surplus and will be accepted.

Then we can use the observable case results for state \emptyset , with different continuation values: $\hat{U}^{i}_{\{i\}}$ and $\hat{U}^{i}_{\{i\}}$.

Continuation Payoffs

Suppose firms apply for patents immediately. Then, in equilibrium, patents are granted.

After a patent is granted, the TIOLI offer will capture all the extra surplus and will be accepted.

Then we can use the observable case results for state \emptyset , with different continuation values: $\hat{U}^i_{\{i\}}$ and $\hat{U}^i_{\{j\}}$.

Proposition

If stakes are sufficiently high (Π/c large enough)

- firms do NOT apply for patents in equilibrium.
- Equilibrium allocations and payoffs as in the unobservable case

Intuition: Coase Theorem fails to hold because patenting changes the outside option of the opponent firm.

Proposition

If stakes are sufficiently high (Π/c large enough)

- firms do NOT apply for patents in equilibrium.
- Equilibrium allocations and payoffs as in the unobservable case.

Proposition

If stakes are sufficiently high (Π/c large enough)

- firms do NOT apply for patents in equilibrium.
- Equilibrium allocations and payoffs as in the unobservable case.

Proposition

If stakes are sufficiently high (Π/c large enough)

- firms do NOT apply for patents in equilibrium.
- Equilibrium allocations and payoffs as in the unobservable case.

Proposition

If stakes are sufficiently high (Π/c large enough)

- firms do NOT apply for patents in equilibrium.
- Equilibrium allocations and payoffs as in the unobservable case.

Intuition: Coase Theorem fails to hold because patenting changes the outside option of the opponent firm.

Conclusion

We develop a model of innovation race with interim breakthroughs.

We solve equilibria where these interim breakthrougs are public and private.

We use the results to analyze the effectiveness of intermediate patents.

- Firms might not patent to conceal breakthroughs even when patent holders have all the bargaining power in licensing negotiations.
- Patents for interim breakthroughs are less effective when stakes are high.