The group G is isomorphic to the group labelled by [40, 13] in the Small Groups library. Ordinary character table of $G \cong C2 \times C2 \times D10$:

	1a	2a	2b	2c	5a	2d	2e	2f	10a	10b	5b	2g	10c	10d	10e	10 <i>f</i>
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	-1	-1	1	1	1	1	-1	-1	1	-1	1	-1	-1	1
χ_3	1	-1	-1	1	1	1	-1	-1	-1	1	1	1	-1	-1	1	-1
χ_4	1	-1	1	-1	1	-1	1	-1	1	-1	1	1	-1	1	-1	-1
χ_5	1	-1	1	1	1	-1	-1	1	1	1	1	-1	1	1	1	1
χ_6	1	1	-1	-1	1	-1	-1	1	-1	-1	1	1	1	-1	-1	1
χ_7	1	1	-1	1	1	-1	1	-1	-1	1	1	-1	-1	-1	1	-1
χ_8	1	1	1	-1	1	1	-1	-1	1	-1	1	-1	-1	1	-1	-1
χ_9	2	0	-2	-2	$E(5)^2 + E(5)^3$	0	0	2	$-E(5)^2 - E(5)^3$	$-E(5)^2 - E(5)^3$	$E(5) + E(5)^4$	0	$E(5)^2 + E(5)^3$	$-E(5) - E(5)^4$	$-E(5) - E(5)^4$	$E(5) + E(5)^4$
χ_{10}	2	0	-2	-2	$E(5) + E(5)^4$	0	0	2	$-E(5) - E(5)^4$	$-E(5) - E(5)^4$	$E(5)^2 + E(5)^3$	0	$E(5) + E(5)^4$	$-E(5)^2 - E(5)^3$	$-E(5)^2 - E(5)^3$	$E(5)^2 + E(5)^3$
χ_{11}	2	0	-2	2	$E(5)^2 + E(5)^3$	0	0	-2	$-E(5)^2 - E(5)^3$	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$	$E(5) + E(5)^4$	$-E(5) - E(5)^4$
χ_{12}	2	0	-2	2	$E(5) + E(5)^4$	0	0	-2	$-E(5) - E(5)^4$	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	$-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$	$E(5)^2 + E(5)^3$	$-E(5)^2 - E(5)^3$
χ_{13}	2	0	2	-2	$E(5)^2 + E(5)^3$	0	0	-2	$E(5)^2 + E(5)^3$	$-E(5)^2 - E(5)^3$	$E(5) + E(5)^4$	0	$-E(5)^2 - E(5)^3$	$E(5) + E(5)^4$	$-E(5) - E(5)^4$	$-E(5) - E(5)^4$
χ_{14}	2	0	2	-2	$E(5) + E(5)^4$	0	0	-2	$E(5) + E(5)^4$	$-E(5) - E(5)^4$	$E(5)^2 + E(5)^3$	0	$-E(5) - E(5)^4$	$E(5)^2 + E(5)^3$	$-E(5)^2 - E(5)^3$	$-E(5)^2 - E(5)^3$
χ_{15}	2	0	2	2	$E(5)^2 + E(5)^3$	0	0	2	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$E(5) + E(5)^4$	$E(5) + E(5)^4$
χ_{16}	2	0	2	2	$E(5) + E(5)^4$	0	0	2	$E(5) + E(5)^4$	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$

Trivial source character table of $G \cong C2 \times C2 \times D10$ at p = 5:

invital bourse character table of G = C2 x C2 x D10 at p = 0.																					
Normalisers N_i						N_1								N_2							
p-subgroups of G up to conjugacy in G						P_1							P_2								
Representatives $n_j \in N_i$	1a	2a	2b	2c	2d	2e	2f	2g	1 <i>a</i>	2c	2b	2a	2f	2e	2d	2g					
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16}$		1	5	5	1	1	5	1	0	0	0	0	0	0	0	0					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-1	-5	-5	1	1	5	-1	0	0	0	0	0	0	0	0					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-	-5	5	1	-1	-5	1	0	0	0	0	0	0	0	0					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-1	5	-5	-1	1	-5	1	0	0	0	0	0	0	0	0					
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} \end{vmatrix} $	5	-1	5	5	-1	-1	5	-1	0	0	0	0	0	0	0	0					
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} \end{vmatrix} $	5	1	-5	-5	-1	-1	5	1	0	0	0	0	0	0	0	0					
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} \end{vmatrix} $	5	1	-5	5	-1	1	-5	-1	0	0	0	0	0	0	0	0					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5	1	5	-5	1	-1	-5	-1	0	0	0	0	0	0	0	0					
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	1	1	-1	1	-1	-1	-1	1	-1	1	1	-1	-1	1	-1					
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} \end{vmatrix} $	1	1	-1	1	-1	1	-1	-1	1	1	-1	1	-1	1	-1	-1					
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} \end{vmatrix} $	1	1	-1	-1	-1	-1	1	1	1	-1	-1	1	1	-1	-1	1					
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} $	1	-1	1	1	-1	-1	1	-1	1	1	1	-1	1	-1	-1	-1					
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} $	1	-1	1	-1	-1	1	-1	1	1	-1	1	-1	-1	1	-1	1					
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} $	1	-1	-1	1	1	-1	-1	1	1	1	-1	-1	-1	-1	1	1					
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16}$	1	-1	-1	-1	1	1	1	-1	1	-1	-1	-1	1	1	1	-1					

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1, 5, 12, 20, 28)(2, 8, 16, 24, 32)(3, 10, 18, 26, 34)(4, 11, 19, 27, 35)(6, 14, 22, 30, 37)(7, 15, 23, 31, 38)(9, 17, 25, 33, 39)(13, 21, 29, 36, 40)]) \cong C5$