

Set Theory

Sets II

Content

- Set Operations
 - Union (并)
 - Intersection (交)
 - Difference (差)
 - Complement (补)
 - Symmetric Difference (对称差) (Option)

Basic operations on sets

Let A, B be two subsets of a *universal* set U (depending on the context U could be R, Z, or other sets).

intersection:
$$A \cap B = \{x \in U \mid x \in A \text{ and } x \in B\}$$

Defintion: Two sets are said to be **disjoint** if their intersection is an empty set.

e.g. Let A be the set of odd numbers, and B be the set of even numbers. Then A and B are disjoint.

$$\mathbf{union} \colon A \cup B = \{x \in U \mid x \in A \text{ or } x \in B\}$$

Fact:
$$|A \cup B| = |A| + |B| - |A \cap B|$$

Basic operations on sets

 $\mathbf{difference} \colon A - B = \{x \in U \mid x \in A \text{ and } x \notin B\}$

Fact:
$$|A-B|=|A|-|A\cap B|$$

complement: $\overline{A} = A^c = \{x \in U \mid x \notin A\}$

e.g. Let U = Z and A be the set of odd numbers. Then \overline{A} is the set of even numbers.

Fact: If
$$A\subset B$$
 , then $\overline{B}\subset \overline{A}$

Examples

$$A = \{1, 3, 6, 8, 10\}$$
 $B = \{2, 4, 6, 7, 10\}$
 $A \cap B = \{6, 10\}$, $A \cup B = \{1, 2, 3, 4, 6, 7, 8, 10\}$ $A - B = \{1, 3, 8\}$
Let $U = \{x \in Z \mid 1 \leftarrow x \leftarrow 100\}$.
 $A = \{x \in U \mid x \text{ is divisible by 3}\}$, $B = \{x \in U \mid x \text{ is divisible by 5}\}$
 $A \cap B = \{x \in U \mid x \text{ is divisible by 15}\}$

 $A \cup B = \{ x \in U \mid x \text{ is divisible by 3 or is divisible by 5 (or both)} \}$

A - B = { $x \in U \mid x \text{ is divisible by 3 but is not divisible by 5 }}$

Exercise: compute |A|, |B|, $|A \cap B|$, $|A \cup B|$, |A - B|.

- Union: Elements in at least one of the two sets.
 - $A \cup B = \{x \mid x \in A \lor x \in B\}$
 - Example:
 - $A = \{a, b\}, B = \{b, c, d\}$
 - $A \cup B = \{a, b, c, d\}$

- Intersection: Elements in exactly one of the two sets.
 - $A \cap B = \{x \mid x \in A \land x \in B\}$
 - Example:
 - $A = \{a, b\}, B = \{b, c, d\}$
 - $A \cap B = \{b\}$

- Difference: Elements in first set but not second. Difference is also called the relative complement (相对补) of B in A.
 - $A-B = \{x \mid x \in A \land x \notin B\} = A \cap B^c$
 - Example
 - $A = \{a, b\}, B = \{b, c, d\}$
 - $A-B = \{a\}$

- Symmetric Difference: Elements in exactly one of the two sets.
 - $A \oplus B = \{ x \mid x \in A \oplus x \in B \} = (A B) \cup (B A) = (A \cup B) (A \cap B)$
 - Example:
 - $A = \{a, b\}, B = \{b, c, d\}$
 - $A \oplus B = \{a,c,d\}$

- Complement: Elements not in the set (unary operator).
 - $-A^c = \{x \mid x \notin A\}$
 - Example:
 - U = N, $A = \{250, 251, 252, ...\}$
 - $A^c = \{0, 1, 2, ..., 248, 249\}$

Disjoint sets

- Disjoint: If A and B have no common elements, they are said to be disjoint.
 - *A* ∩B = ∅

Examples for set operations

• If A={1, 4, 7, 10}, B={1, 2, 3, 4, 5}

- A ∪ B =?
- $A \cap B = ?$
- · A B =?
- B A =?
- A ⊕ B =?

Example for set operations

• If A={1, 4, 7, 10}, B={1, 2, 3, 4, 5}

•
$$A \cup B = \{1, 2, 3, 4, 5, 7, 10\}$$

•
$$A \cap B = \{1, 4\}$$

•
$$A - B = \{7, 10\}$$

•
$$B - A = \{2, 3, 5\}$$

•
$$A \oplus B = (A \cup B) - (A \cap B) = \{2, 3, 5, 7, 10\}$$

Properties of set operations (1)

- Theorem: Let U be a universal set, and A, B and C subsets of U. The following properties hold:
- · a) Associativity (结合律):

$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

· b) Commutativity(交换律):

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

Properties of set operations (2)

• c) Distributive laws (分配律):

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

· d) Identity laws (恒等律):

$$A \cap U = A$$

$$A \cup \emptyset = A$$

e) Complement laws (补集律):

$$A \cup A^c = U$$

$$A \cap A^c = \emptyset$$

Properties of set operations (3)

• f) Idempotent laws (幂等律):

$$A \cup A = A$$

$$A \cup A = A$$
 $A \cap A = A$

• g) Bound laws (绑定律):

$$A \cup U = U$$

$$A \cup U = U$$
 $A \cap \emptyset = \emptyset$

• h) Absorption laws (吸收率):

$$A \cup (A \cap B) = A$$
 $A \cap (A \cup B) = A$

Properties of set operations (4)

· i) Double complementation /Involution law(退化律):

$$(A^c)^c = A$$

• j) 0/1 laws:

$$\varnothing^c = U \qquad U^c = \varnothing$$

k) De Morgan's laws:

$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cap B)^c = A^c \cup B^c$$

$$A - (B \cup C) = (A-B) \cap (A-C)$$

$$A - (B \cap C) = (A-B) \cup (A-C)$$

Proof for set properties

 In fact, the logical identities create the set identities by applying the definitions of the various set operations.

(by def.)

```
    For example: (A∪B)∪C = A∪(B∪C)
    Proof:

            (A∪B)∪C = {x | x ∈ A∪B ∨ x ∈ C}
            (by def.)
            = {x | (x ∈ A ∨ x ∈ B) ∨ x ∈ C}
            (by def.)
            = {x | x ∈ A ∨ (x ∈ B ∨ x ∈ C)}
            (logic law)
            = {x | x ∈ A ∨ (x ∈ B∪C)}
            (by def.)
```

Other identities are derived similarly.

 $= A \cup (B \cup C)$

Proof for set properties

- It's often simpler to understand an identity by drawing a Venn Diagram.
- For example:
- DeMorgan's first law

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

can be visualized as follows:

$$\overline{A} \cup \overline{B} =$$

$$\overline{A} \cap \overline{B} =$$

Some basic properties of sets, which are true for all sets.

$$A \cap B \subseteq A$$

$$A \subseteq A \cup B$$

if
$$A \subseteq B$$
 and $B \subseteq C$, then $A \subseteq C$

$$A \cap \overline{A} = \emptyset$$

$$\overline{\overline{A}} = A$$

$$A \cup B = (A - B) \cup (B - A) \cup (A \cap B)$$

Distributive Law:
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
 (1)

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \quad (2)$$

Distributive Law: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

We can also verify this law more carefully

L.H.S

$$A = S_1 \cup S_2 \cup S_4 \cup S_5$$

$$B \cap C = S_4 \cup S_6$$

$$A \cup (B \cap C) = S_1 \cup S_2 \cup S_4 \cup S_5 \cup S_6$$

R.H.S.

$$(A \cup B) = S_1 \cup S_2 \cup S_3 \cup S_4 \cup S_5 \cup S_6$$

$$(A \cup C) = S_1 \cup S_2 \cup S_4 \cup S_5 \cup S_6 \cup S_7$$

$$(A \cup B) \cap (A \cup C) = S_1 \cup S_2 \cup S_4 \cup S_5 \cup S_6$$

De Morgan's Law:

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

 \overline{A}

 \overline{B}

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

De Morgan's Law:

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

 \overline{A}

 \overline{B}

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Disproof

$$(A-B)\cup(B-C)=A-C?$$

L.H.S

R.H.S

Disproof

$$(A-B)\cup(B-C)=A-C?$$

We can easily construct a **counterexample** to the equality, by putting a number in each region in the figure.

Let
$$A = \{1,2,4,5\}$$
, $B = \{2,3,5,6\}$, $C = \{4,5,6,7\}$.

Then we see that L.H.S = $\{1,2,3,4\}$ and R.H.S = $\{1,2\}$.

Algebraic proof

Sometimes when we know some rules, we can use them to prove new rules without drawing figures.

e.g. we can prove
$$\overline{(\overline{A} \cap \overline{B})} = A \cup B$$
 without drawing figures.

$$\overline{(\overline{A} \cap \overline{B})} = \overline{\overline{A}} \cup \overline{\overline{B}}$$
 by using DeMorgan's rule on \overline{A} and \overline{B}
$$= A \cup B$$

Algebraic proof

$$\overline{((A \cup C) \cap (B \cup C))} = (\overline{A} \cup \overline{B}) \cup \overline{C}?$$

$$\overline{((A \cup C) \cap (B \cup C))}$$

$$=\overline{(A\cup C)}\cup\overline{(B\cup C)}$$

$$= (\overline{A} \cap \overline{C}) \cup \overline{(B \cup C)}$$

$$=(\overline{A}\cap\overline{C})\cup(\overline{B}\cap\overline{C})$$

$$= (\overline{A} \cup \overline{B}) \cap \overline{C}$$

$$\neq (\overline{A} \cup \overline{B}) \cup \overline{C}$$

by DeMorgan's law on A U C and B U C

by DeMorgan's law on the first half

by DeMorgan's law on the second half

by distributive law

Exercises

$$A - (A \cap B) = A - B?$$

$$(A \cup B) - C = (A - C) \cup (B - C)$$
?

$$\overline{(A \cup B \cup C)} = \overline{A} \cap \overline{B} \cap \overline{C}?$$

Using properties of set operations

- How can we prove $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$?
- Method I:
- $x \in A \cup (B \cap C)$
- $\Leftrightarrow x \in A \lor x \in (B \cap C)$
- $\Leftrightarrow x \in A \lor (x \in B \land x \in C)$
- \Leftrightarrow ($x \in A \lor x \in B$) \land ($x \in A \lor x \in C$)
- (distributive law for logical expressions)
- \Leftrightarrow $x \in (A \cup B) \land x \in (A \cup C)$
- $(A \cup B) \cap (A \cup C)$

Using properties of set operations

- Method II: Membership table
 - 1 means "x is an element of this set"
 - 0 means "x is not an element of this set"

ABC	B∩C	A ∪(B ∩ C)	A ∪ B	AUC	(A ∪ B) ∩(A ∪ C)
000	0	0	0	0	0
001	0	0	0	1	0
010	0	0	1	0	0
011	1	1	1	1	1
100	0	1	1	1	1
101	0	1	1	1	1
110	0	1	1	1	1
111	1	1	1	1	1

$$S_1 \quad A \cap B \subseteq A$$
$$S_2 \quad A \cap B \subseteq B$$

$$S_3$$
 $A \subseteq A \cup B$

$$S_A \quad B \subseteq A \bigcup B$$

$$S_5$$
 $A-B\subseteq A$

$$S_6$$
 $A \oplus B \subseteq A \cup B$

$$S_7 \quad A \cup B = B \cup A$$

$$S_8$$
 $A \cap B = B \cap A$ 交換律

$$S_9 \quad A \oplus B = B \oplus A$$

$$S_{10} \quad A \cup (B \cup C) = (A \cup B) \cup C$$

$$S_{11}$$
 $(A \cap B) \cap C = A \cap (B \cap C)$ \$结合律

$$S_{12} \quad (A \oplus B) \oplus C = A \oplus (B \oplus C)$$

$$S_{13}$$
 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ S_{14} $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ S_{15} $\overline{A} = A$ 双重否定律 S_{15} $\overline{(A \cap B)} = \overline{A} \cup \overline{B}$ $\overline{(A \cup B)} = \overline{A} \cap \overline{A}$ $\overline{(A$

$$S_{26}$$
 $A \cap \emptyset = \emptyset$
 S_{27} $A \cup E = E$ 零律
 S_{28} $A \cup (A \cap B) = A$
 S_{29} $A \cap (A \cup B) = A$ 吸收律
 S_{30} $\overline{\emptyset} = E$
 S_{31} $\overline{E} = \emptyset$
 S_{32} $A \oplus A = \emptyset$
 S_{33} $A \cap (B - A) = \emptyset$
 S_{34} $A \cup (B - A) = A \cup B$
 S_{35} $A - (B \cup C) = (A - B) \cap (A - C)$

$$S_{36}$$
 $A-(B\cap C)=(A-B)\bigcup (A-C)$

$$S_{37}$$
 $A-B=A\cap B$

$$S_{38}$$
 $A \oplus B = (A \cap \overline{B}) \cup (\overline{A} \cap B)$

$$S_{39} \quad (A \bigcup B \neq \emptyset) \Longrightarrow (A \neq \emptyset) \lor (B \neq \emptyset)$$

$$S_{40} \quad (A \cap B \neq \emptyset) \Longrightarrow (A \neq \emptyset) \land (B \neq \emptyset)$$

Partitions of sets

Two sets are disjoint if their intersection is empty.

A collection of nonempty sets $\{A_1, A_2, ..., A_n\}$ is a partition of a set A if and only if

$$A = A_1 \cup A_2 \cup \cdots \cup A_n$$

 A_1 , A_2 , ..., A_n are mutually disjoint (or pairwise disjoint).

e.g. Let A be the set of integers.

$$A_1 = \{x \in A \mid x = 3k+1 \text{ for some integer k}\}$$

$$A_2 = \{x \in A \mid x = 3k+2 \text{ for some integer k}\}$$

$$A_3 = \{x \in A \mid x = 3k \text{ for some integer } k\}$$

Then $\{A_1, A_2, A_3\}$ is a partition of A

Partitions of sets

e.g. Let A be the set of integers divisible by 6.

 A_1 be the set of integers divisible by 2.

 A_2 be the set of integers divisible by 3.

Then $\{A_1, A_2\}$ is not a partition of A, because A_1 and A_2 are not disjoint, and also $A \subseteq A_1 \cup A_2$ (so both conditions are not satisfied).

e.g. Let A be the set of integers.

Let A_1 be the set of negative integers.

Let A_2 be the set of positive integers.

Then $\{A_1, A_2\}$ is not a partition of A, because $A \neq A_1 \cup A_2$ as 0 is contained in A but not contained in $A_1 \cup A_2$

The End

