Admitere * Universitatea Politehnica din București 2014 Disciplina: Algebră și Elemente de Analiză Matematică Varianta A

1. Mulţimea soluţiilor ecuaţiei $\sqrt{3x+1} = x+1$ este: (5 pct.)

a)
$$\{-1,3\}$$
; b) $\{1,3\}$; c) $\{0,1\}$; d) \emptyset ; e) $\{\sqrt{2},2\}$; f) $\{-1,1\}$.

Soluţie. Existenţa radicalului şi pozitivitatea membrului stâng, care atrage după sine pozitivitatea membrului drept, conduc la condițiile $\begin{cases} 3x+1\geq 0 \\ x+1\geq 0 \end{cases} \Leftrightarrow x\in (-\frac{1}{3},\infty). \text{ Ridicând ecuația la pătrat, obţinem}$

$$3x+1=(x+1)^2 \Leftrightarrow x^2-x=0 \Leftrightarrow x(x-1)=0 \Leftrightarrow x\in\{0,1\}\subset\left(-\frac{1}{3},\infty\right),$$

deci mulțimea soluțiilor este $\{0,1\}$.

Altfel. Se testează succesiv valorile date de fiecare din cele 6 variante. Există o singura mulțime nevidă ale cărei elemente satisfac ambele ecuația dată, $\{0,1\}$.

2. Fie $S = 2C_{2014}^1 - C_{2014}^{2013}$. Atunci: (5 pct.)

a)
$$S = 2013$$
; b) $S = 2012$; c) $S = 2010$; d) $S = 1012$; e) $S = 2020$; f) $S = 2014$.

Soluţie. Se observă că $C_{2014}^{2013} = C_{2014}^1 = \frac{2014!}{2013! \cdot 1!} = 2014$, deci $S = C_{2014}^1 = 2014$.

3. Fie $f:(0,\infty)\to\mathbb{R},\, f(x)=\ln x-x.$ Abscisa punctului de extrem al funcției f este: (5 pct.)

a)
$$x = \frac{1}{2}$$
; b) $x = \frac{1}{e^2}$; c) $x = e$; d) $x = e^2$; e) $x = \frac{1}{e}$; f) $x = 1$.

Soluție. Funcția este derivabilă pe \mathbb{R} , deci extremele acesteia sunt printre punctele de anulare a derivatei. Dar $f'(x) = \frac{1}{x} - 1 = -\frac{x-1}{x}$, iar $f'(x) = 0 \Leftrightarrow x = 1$. Tabelul de variatie al funcției f este

x	0		1		∞
f'(x)		+	0	_	-1
f(x)	$-\infty$	7	-1	×	$-\infty$

deci punctul (1,-1) este singurul punct de extrem al funcției f (punct de maxim), iar abscisa acestuia este x=1.

4. Fie progresia aritmetică 1, 4, 7, 10, Să se calculeze al 2014-lea termen al progresiei. (5 pct.)

Soluție. Avem $a_1 = 1, a_2 = 4, a_3 = 7, a_4 = 10$, deci rația progresiei aritmetice este $r = a_2 - a_1 = 3$. Atunci pentru n = 2014, obținem $a_{2014} = a_1 + (n-1)r = 1 + (2014 - 1) \cdot 3 = 6040$.

5. Suma soluțiilor ecuației $\begin{vmatrix} 2 & x^2 \\ -1 & -8 \end{vmatrix} = 0$ este: (5 pct.)

a)
$$\sqrt{2}$$
; b) $1 + \sqrt{2}$; c) 0; d) 2014; e) 5; f) -2.

Soluție. Calculăm determinantul, $\begin{vmatrix} 2 & x^2 \\ -1 & -8 \end{vmatrix} = 2 \cdot (-8) - (-1) \cdot x^2$, deci ecuația se rescrie $x^2 - 16 = 0$ și are soluțiile ± 4 ; suma acestora este -4 + 4 = 0.

6. Fie funcția $f: \mathbb{R} \to |R, f(x) = 4x + 3$. Să se determine mulțimea $A = \{x \in \mathbb{R} \mid f(x) > 1\}$. (5 pct.)

a)
$$A = \mathbb{R}$$
; b) $A = \emptyset$; c) $A = [-1, \infty)$; d) $A = \{-2\}$; e) $A = (-\frac{1}{2}, \infty)$; f) $A = (-\infty, 0)$.

Soluție. Relația din definiția mulțimii A se rescrie $f(x)>1 \Leftrightarrow 4x+3>1 \Leftrightarrow 4x>-2 \Leftrightarrow x>-\frac{1}{2},$ deci $A=(-\frac{1}{2},\infty)$

7. Modulul numărului complex $z = \frac{1-i}{1+i}$ este: (5 pct.)

a)
$$\sqrt{2}$$
; b) 2; c) 3; d) $\sqrt{3}$; e) $\sqrt{5}$; f) 1.

Soluție. Amplificând fracția cu conjugata numitorului, obținem

$$\left| \frac{1-i}{1+i} \right| = \left| \frac{(1-i)^2}{1^2 - i^2} \right| = \left| \frac{-2i}{2} \right| = |-i| = \sqrt{0^2 + (-1)^2} = 1.$$

Altfel. Folosim relația $\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$, și obținem $\left|\frac{1-i}{1+i}\right| = \frac{|1-i|}{|1+i|} = \frac{\sqrt{1^2+(-1)^2}}{\sqrt{1^2+1^2}} = \frac{\sqrt{2}}{\sqrt{2}} = 1$.

8. Să se calculeze produsul P al soluțiilor ecuației $3x^2 - 2x - 1 = 0$. (5 pct.)

a)
$$P = 2$$
; b) $P = 3$; c) $P = 1$; d) $P = \frac{1}{2}$; e) $P = -\frac{1}{3}$; f) $P = -1$.

Soluție. Folosind a doua (ultima) relație Viéte $x_1x_2 = \frac{c}{a}$ pentru rădăcinile $x_{1,2}$ ale polinomului de gradul doi $ax^2 + bx + c$ pentru cazul nostru (a = 3, b = -2, c = -1), rezultă $x_1x_2 = \frac{-1}{3} = -\frac{1}{3}$.

Altfel. Rădăcinile ecuației sunt

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 3 \cdot (-1)}}{2 \cdot 3} = \frac{2 \pm 4}{6} = \frac{1 \pm 2}{3},$$

deci $x_1 = 1$, $x_2 = -\frac{1}{3}$, iar produsul acestora este $x_1 x_2 = -\frac{1}{3}$.

9. Să se calculeze termenul care nu-l conține pe x din dezvoltarea $(x+\frac{1}{x})^{10}$. (5 pct.)

a)
$$C_{10}^3$$
; b) C_{10}^2 ; c) $2C_{10}^8$; d) 3; e) C_{10}^1 ; f) C_{10}^5

Soluţie. Termenul de ordin k+1 al binomului $(a+b)^n$ este $T_{k+1}=C_n^ka^{n-k}b^k$, $k=\overline{0,n}$. La noi, $n=10, a=x, b=\frac{1}{x}$, deci $T_{k+1}=C_{10}^kx^{10-k}\left(\frac{1}{x}\right)^k=C_{10}^kx^{10-2k}$, și deci T_{k+1} nu conține x doar dacă puterea lui x este zero. Rezultă $10-2k=0 \Leftrightarrow k=5$, pentru care obținem $T_6=C_{10}^5$.

10. Soluția ecuației $\log_2(x^2 + 1) - \log_2 x = 1$ este: **(5 pct.)**

a)
$$x = 4$$
; b) $x = 2$; c) $x = \sqrt{2}$; d) $x = 1$; e) $x = 3$; f) $x = 0$.

Soluție. Condițiile de existență ale celor doi logaritmi sunt $\begin{cases} x^2+1>0 \\ x>0 \end{cases}, \text{ deci } x\in(0,\infty). \text{ Ecuația se rescrie } \log_2\frac{x^2+1}{x}=\log_22 \Leftrightarrow \frac{x^2+1}{x}=2 \Leftrightarrow x^2-2x+1=0 \Leftrightarrow (x-1)^2=0 \Leftrightarrow x=1\in(0,\infty), \text{ deci soluția căutată este } x=1. \end{cases}$

11. Multimea solutiilor ecuatiei $3^{x^2+x+2} = 9$ este: (5 pct.)

a)
$$\{-1,0\}$$
; b) $\{-2,2\}$; c) $\{0,4\}$; d) \emptyset ; e) $\{1,3\}$; f) $\{-1,1\}$.

Soluţie. Eecuaţia se rescrie

$$3^{x^2+x+2} = 9 \Leftrightarrow 3^{x^2+x+2} = 3^2 \Leftrightarrow x^2+x+2 = 2 \Leftrightarrow x^2+x = 0 \Leftrightarrow x(x+1) = 0 \Leftrightarrow x \in \{-1,0\}.$$

12. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + e^x$. Atunci: (5 pct.)

a)
$$f'(1) = 3e$$
; b) $f'(1) = 2$; c) $f'(1) = 2 + e$; d) $f'(1) = 0$; e) $f'(1) = e$; f) $f'(1) = e^2$.

Soluție. Derivata funcției f este $f'(x) = 2x + e^x$, deci f'(1) = 2 + e.

13. Fie matricea $A = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}$. Atunci A^2 este: (5 pct.)

a)
$$\binom{6\ 5}{4\ 3}$$
; b) $\binom{7\ 12}{18\ 31}$; c) $\binom{1\ 2}{10\ 31}$; d) $\binom{5\ 10}{15\ 25}$; e) $\binom{7\ 10}{12\ 15}$; f) $\binom{8\ 10}{18\ 4}$.

Soluţie. Avem $A^2 = A \cdot A = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix} = \begin{pmatrix} 7 & 12 \\ 18 & 31 \end{pmatrix}$.

14. Să se calculeze integrala $I = \int_0^1 (x^3 + 2x) dx$. (5 pct.)

a)
$$I = \frac{1}{2}$$
; b) $I = \frac{3}{2}$; c) $I = \frac{5}{2}$; d) $I = \frac{7}{2}$; e) $I = \frac{1}{4}$; f) $I = \frac{5}{4}$.

Soluţie. Obţinem $I = \int_0^1 (x^3 + 2x) dx = \left(\frac{x^4}{4} + x^2\right)\Big|_0^1 = \frac{1}{4} + 1 = \frac{5}{4}$.

15. Fie polinomul $P = 2X^3 + 4X^2 - 5X + a$. Să se determine a astfel încât polinomul P să fie divizibil cu X - 1. (5 pct.)

a)
$$a = -3$$
; b) $a = 3$; c) $a = 0$; d) $a = -1$; e) $a = -2$; f) $a = 2$.

Soluţie. Conform teoremei Bezout, $(x - x_0)|P \Leftrightarrow P(x_0) = 0$, deci în cazul nostru pentru $x_0 = 1$ obţinem $P(1) = 0 \Leftrightarrow 1 + a = 0 \Leftrightarrow a = -1$.

16. Fie f un polinom de gradul 2014 cu rădăcinile $-1, -2, -3, \ldots, -2014$. Pentru $x \in (-2, \infty)$, se consideră ecuația: $\int_{x+1}^{x+2} \frac{f'(t)}{f(t)} dt = \ln(x+2016) - x^2$. Dacă n este numărul soluțiilor negative și m este numărul soluțiilor pozitive ale ecuației date, atunci: (5 pct.)

a)
$$n = 0, m = 2$$
; b) $n + m = 3$; c) $n = 1, m = 1$; d) $2n + m = 4$; e) $n = 0, m = 1$; f) $n = 1, m = 0$.

Soluție. Polinomul f are gradul egal cu numărul de rădăcini distincte, deci ca o consecință a teoremei Bezout, f are forma $f(x) = a(x+1)(x+2)(x+3) \cdot \ldots \cdot (x+2014)$, unde $a \in \mathbb{R} \setminus \{0\}$. Folosind formula de derivare a produsului de funcții, rezultă că derivata sa este

$$f'(x) = a \sum_{k=1}^{2014} (x+1)(x+2)(x+3) \cdot \dots \cdot (\widehat{x+k}) \cdot \dots \cdot (x+2014),$$

unde factorul cu circumflex este omis din podus. Atunci $\frac{f'(t)}{f(t)} = \sum_{k=1}^{2014} \frac{1}{t+k}$, deci

$$\int_{x+1}^{x+2} \frac{f'(t)}{f(t)} dt = \sum_{k=1}^{2014} \int_{x+1}^{x+2} \frac{1}{t+k} dt = \sum_{k=1}^{2014} \ln(t+k)|_{x+1}^{x+2}$$
$$= \sum_{k=1}^{2014} (\ln(x+k+2) - \ln(x+k+1)) = \ln(x+2016) - \ln(x+2).$$

După simplificări, ecuația din enunț se rescrie

$$\ln(x+2016) - \ln(x+2) = \ln(x+2016) - x^2 \quad \Leftrightarrow \quad x^2 - \ln(x+2) = 0.$$

deci ecuația din enunț se rescrie g(x)=0, unde $g(x)=x^2-\ln(x+2)$, $x\in(-2,\infty)$. Atunci $g'(x)=2x-\frac{1}{x+2}=\frac{2x^2+4x-1}{x+2}$, iar $g'(x)=0\Leftrightarrow x\in\{\frac{-2\pm\sqrt{6}}{2}\}$. Se observă că $\frac{-2-\sqrt{6}}{2}<-2$ iar $x_*=\frac{-2+\sqrt{6}}{2}\in(0;\frac{1}{2})$. Tabelul de variație al funcției g este

x	-2		0		x_*	∞		
f'(x)		_	-0.5	_	0	+	+	
f(x)	$+\infty$	×	-1	×	y_*	7	$+\infty$	

și semnalează inegalitatea $y_* < -1 < 0$. Funcția g fiind continuă, schimbările de semn ale acesteia arată că ecuația g(x) = 0 admite o soluție negativă $x_- < 0$ și una pozitivă $x_+ > x_* > 0$, și deci m = n = 1.

17. Fie funcția $f:(0,\infty)\to\mathbb{R},\,f(x)=x\ln x.$ Dacă

 $M = \{x_0 \in (0, \infty) \mid \text{dreapta tangentă la graficul lui } f \text{ în punctul de abscisă } x_0 \text{ trece prin } A(2, 1)\}$

şi
$$S = \sum_{x_0 \in M} x_0$$
, atunci: (5 pct.)

a)
$$S \in (3,4)$$
; b) $S \in (\frac{3}{2},2)$; c) $S \in [1,\frac{3}{2})$; d) $S \in (4,5)$; e) $S \in (2,3)$; f) $S \in (5,6)$.

Soluție. Avem $f'(x) = \ln x + 1$, iar dreapta d din definiția mulțimii M are ecuația

$$d: y - f(x_0) = f'(x_0)(x - x_0) \Leftrightarrow y - x_0 \ln x_0 = (\ln x_0 + 1)(x - x_0) \Leftrightarrow y = x(\ln x_0 + 1) - x_0,$$

iar condiția $A(2,1) \in d$ se rescrie $x_0 - 2 \ln x_0 - 1 = 0$. Aflarea soluțiilor x_0 ale acestei ecuații revine la rezolvarea ecuației g(x) = 0, $x \in (0, \infty)$, unde $g(x) = x - 2 \ln x - 1$. Obținem $g'(x) = \frac{x-2}{x}$, iar tabelul de variație al funcției g este

x	0		$x_1 = 1$		2	3	x_2	4		∞
g'(x)		_	0	_	0	+	+	+	+	+
g(x)	$+\infty$	\searrow	0	\searrow	$\ln \frac{e}{4}$	7	0	7	7	$+\infty$

unde g(1)=0, $g(2)=\ln\frac{e}{4}<0,$ $g(3)=\ln\frac{e^2}{9}<0,$ $g(4)=\ln\frac{e^3}{16}>0.$ Dar g este conținuă, iar schimbările de semn indică două puncte de anulare $x_1=1,$ $x_2\in(3,4),$ care formează mulțimea $M=\{x_1,x_2\}.$ Atunci $S=\sum_{x_0\in M}x_0=x_1+x_2=1+x_2\in(4,5).$

18. Mulțimea soluțiilor reale ale ecuației $2\sqrt[3]{2x-1} = x^3 + 1$ este: (5 pct.)

$$a) \ \{1, \frac{-1 \pm \sqrt[3]{5}}{2}\}; \ b) \ \{1, \frac{1 \pm \sqrt{3}}{2}\}; \ c) \ \{1, \frac{-2 \pm \sqrt{5}}{2}\}; \ d) \ \{1, \frac{-1 \pm \sqrt{5}}{2}\}; \ e) \ \{1, \frac{-1 \pm \sqrt[3]{3}}{2}\}; \ f) \ \{1, \frac{-2 \pm \sqrt{7}}{3}\}.$$

Soluție. Notăm $u=\sqrt[3]{2x-1}$. Această egalitate împreună cu ecuația din enunț conduce la sistemul echivalent

$$\begin{cases} u^3 = 2x - 1 \\ 2u = x^3 + 1 \end{cases} \Leftrightarrow \begin{cases} u^3 - 1 = 2(x - 1) \\ x^3 - 1 = 2(u - 1) \end{cases} \Leftrightarrow \begin{cases} u^3 - 1 = 2(x - 1) \\ u^3 - x^3 = 2(x - u). \end{cases}$$

A doua ecuație a sistemului din dreapta - obținută prin scăderea ecuațiilor sistemului anterior - se rescrie

$$(u-x) \cdot (u^2 + ux + x^2 + 2) = 0.$$

Se observă că a doua paranteză nu se poate anula, deoarece se poate rescrie prin restrângerea pătratelor sub forma $\left(u+\frac{x}{2}\right)^2+\left(\frac{x\sqrt{3}}{2}\right)^2+2>0$. Atunci, din anularea primei paranteze a produsului rezultă egaliatea u=x, care prin înlocuire în prima ecuație a sistemului conduce la

$$x^{3} - 1 = 2(x - 1) \Leftrightarrow (x - 1)(x^{2} + x - 1) = 0 \Leftrightarrow x \in \left\{1, \frac{-1 \pm \sqrt{5}}{2}\right\}.$$