Question Number	Scheme	Marks
1.	$1000 \text{ r.p.m} = \frac{1000 \times 2\pi}{60} \text{ rad/s}$	B1
	$v = 0.035 \times \frac{1000 \times 2\pi}{60} = 3.67 \text{ ms}^{-1} (3 \text{ SF})$ M1 their $r \times$ their ω	M1 A1
		(3 marks)
2.	Extn at bottom = $\frac{a}{\cos \alpha} - a = \frac{2a}{3}$ (0.67a or better)	M1 A1
	Energy: $mga \tan \alpha = \frac{2\lambda \left(\frac{2a}{3}\right)^2}{2a}$	M1 A1 A1 ft
	$3mg = \lambda$ Second M0 if treated as equilibrium Third M1 for solving for λ	M1 A1
		(7 marks)
3. (a)	$mg \sin 30^{\circ} - mx^2 = ma$	M1 A1
	$\frac{g}{2} - x^2 = v \frac{dv}{dx} \text{ or } \frac{d\left(\frac{1}{2}v^2\right)}{dx}$	M1
	$\frac{gx}{2} - \frac{x^3}{3}(+C) = \frac{v^2}{2}$	M1 A1
	$x = 2 : g - \frac{8}{3} = \frac{v^2}{2}$	M1
	$v = 3.8 \text{ms}^{-1} (3.78)$ Third M1 for attempting to integrate	A1 (7)
(b)	$v = 0: \frac{gx}{2} - \frac{x^3}{3} = 0$	M1
	$x^2 = \frac{3g}{2} \implies x = 3.8$, (3.83), $\sqrt{\frac{3g}{2}}$ must have integrated for first M1	M1 A1 c.s.o (3)
		(10 marks)

(ft = follow through mark)

Question Number	Scheme	Marks
4. (a)	$(\uparrow), R = mg$	B1
	$m \frac{4a}{3} \omega^2 $ (seen and used)	B1
	$m \frac{4a}{3} \omega^2 \le \frac{3}{5} \text{ mg}$	M1
	$\omega^2 \le \frac{9g}{20a} *$	A1 c.s.o (4)
(b)	$T = \frac{2mg}{a} \frac{a}{3} = \frac{2mg}{3}$	B1
	$(\rightarrow), \frac{3}{5}mg + \frac{2mg}{3} \stackrel{\geq}{=} m \frac{4a}{3} \omega_{\text{max}}^2$	M1 A1 f.t
	$\frac{19g}{20a} = \omega_{\text{max}}^2$	A1
	$(\to), -\frac{3}{5}mg + \frac{2mg}{3} = m \frac{4a}{3} \omega_{\min}^2$	M1 A1 f.t
	$\frac{g}{20a} = \omega_{\min}^2$	A1 (7)
	If only one answer, must be clear whether max or min for final A1	(11 marks)

(ft = follow through mark; (*) indicates final line is given on the paper)

Question Number	Scheme			Marks		
5. (a)		ylinder $36\pi r^3$)	Cone $(12\pi r^3)$	Toy $(48\pi r^3)$		
	mass ratio	3	1	4	B1	
	dist. From O	2r	(-) <i>r</i>	$\frac{-}{x}$	B1	
		$(3\times 2r)-r=$	$4\overline{x}$		M1 A1	
		$\frac{5r}{4} = \frac{-}{x}$			A1	(5)
	M1 for clear attempt at $\Sigma mx = \frac{-}{x} \Sigma m - \text{correct no. of terms.}$					
		If distances not m	easured from O, B1B	1M1A1 available.		
(b)		AG vertical, se	en or implied		M1	
		$\tan \theta = \frac{3r}{4r - x}$			M1 A1	
		θ = 47 5° (1 d.)	p.) second	M1 for use of tan	A1	(4)
(c)		$\operatorname{Sim} \Delta' \operatorname{s:} \frac{OX}{3r} =$	$=\frac{3r}{4r} \ (=\tan \alpha)$		M1	
	x x	$\Rightarrow OX =$	$=\frac{9r}{4}$		A1	
	70		$\overline{x} < OX$		M1	
	x.	7	⇒ won't topple		A1 c.s.o	(4)
	,	Note that second	M1 is independent, for	r the general idea.	(13 m	arks)

(ft = follow through mark; (*) indicates final line is given on the paper)

Question Number	Scheme	Marks	8
	All M marks require correct number of terms with appropriate terms resolved		
6. (a)	B to C: $\frac{1}{2}mv^2 - \frac{1}{2}m20^2 = mg \times 50(1 - \sin 30^\circ)$	M1 A1	
	$v = 30 \text{ ms}^{-1} (29.8)$	A1	(3)
(<i>b</i>)	$(\uparrow) \text{ at } C, \qquad R - mg = m \frac{890}{50}$	M1 A1 ft	
	R = 1900 N (1930 N)	A1	(3)
(c)	C to D: $\frac{1}{2} m 890 - \frac{1}{2} mw^2 = mg \times 50 (1 - \cos 30^\circ)$	M1 A1 ft	
	$w = 28 \text{ ms}^{-1} (27.5)$	A1	(3)
(<i>d</i>)	Before: $R = mg \cos \theta$	B1	
	After: $R = mg \cos \theta + m \frac{20^2}{50}$	M1 A1	
	Change = $70 \times \frac{20^2}{50} = 560 \text{ N}$	A1 c.s.o	(4)
(e)	Lower speed at $C \Rightarrow R$ reduced	M1 A1	(2)
		(15 ma	rks)

(ft = follow through mark)

Question Number		Marks
7. (<i>a</i>	$(-) \frac{21.6x}{2} = 0.3 \ddot{x}$	M1 A1
	$-36x = \ddot{x}$	M1
	S.H.M., period = $\frac{2\pi}{\sqrt{36}} = \frac{\pi}{3}$ *	A1 c.s.o. (4)
(1	At A: $v = aw = 1.5 \times 6 = 9 \text{ ms}^{-1}$	M1 A1 (2)
($x = a \cos \omega t$	
	$0.75 = 1.5 \cos 6t$	M1
	$\frac{\pi}{3} = 6t \Rightarrow t = \frac{\pi}{18} \text{ (no decimals)}$	M1 A1 (3)
(4	$(-) \frac{21.6x}{2} = 0.5 \ddot{x}$	M1 A1
	$-21.6x = \ddot{x} \Rightarrow \text{S.H.M.}, \ \omega = \sqrt{21.6}$	A1
	At collision: CLM: $0.3 \times 9 = 0.5v \Rightarrow v = 5.4$	M1 A1 ft
	$a \times \sqrt{21.6} = 5.4$	M1
	a = 1.16 m (3SF)	A1 (7)
		(16 marks)

(ft = follow through mark; (*) indicates final line is given on the paper)