

Centro de Instrução Almirante Wandenkolk - CIAW Instituto Tecnológico de Aeronáutica - ITA

Curso de Aperfeiçoamento Avançado em Sistemas de Armas

TSA: Tecnologia de Sensores e Atuadores em Armamentos Guiados Apontamento e Rastreio de Alvos com Gimbal

Jozias **Del Rios** Cap Eng

delriosjdrvgs@fab.mil.br

S (12) 98177-9921

TECNOLOGIA DE SENSORES E ATUADORES EM ARMAMENTOS GUIADOS

Apontamento e Rastreio de Alvos com Gimbal

Instrutor: Cap Eng Jozias DEL RIOS

Autor do Material: Jozias DEL RIOS - rev. 04.mai.2016

TÓPICOS

- 1. Revisão de Conceitos Preliminares
- 2. Gimbal topologia Pitch-Yaw
- 3. Gimbal topologia Pitch-Roll
- 4. Conceitos de LoS e FoV
- 5. Rastreio de alvo

MOTIVAÇÃO

Conjunto de <u>articulações coordenadas ortogonais</u>
para <u>apontamento e estabilização</u> bidirecional
de <u>mira</u>, <u>sensor</u>, <u>armamento</u> ou <u>designador</u>
(pontaria)

Aplicações:

- Detector IR (míssil ar-ar, IRST, câmera FLIR)
- Designador Laser (pod)
- Radar de feixe estreito (míssil, diretor de tiro,)
- Câmeras de vídeo "TV"

MOTIVAÇÃO

Exemplo: **POD** imageador **FLIR/EO** e designador Laser RAFAEL Litening 4:

MOTIVAÇÃO

Exemplo: Autodiretor (Seeker) IR do míssil MAA1-B

(versão invalidada de projeto cancelado)

MOTIVAÇÃO

Exemplo: Canhão naval 76mm

Elevation: $-15^{\circ}/+85^{\circ}$, speed: $35^{\circ}/s$, accel.: $72^{\circ}/s^{2}$

Azimuth: 360°, speed: 60°/s, accel.: 72°/s²

MOTIVAÇÃO Infra Red Search and Track (IRST)

GIMBAL PITCH-YAW

- <u>Castelo</u>: Suporte externo <u>fixo</u> (eg. fixado ao corpo de um míssil)
- Quadro Externo: motor/encoder em relação ao castelo.
- Quadro Interno: motor/encoder em relação ao quadro externo.

x: Forward

y: Right

z: Down

GIMBAL PITCH-YAW — VISTA EXPLODIDA

Castelo, Quadro Externo, Quadro Interno, Sensor, Óptica, Dome

GIMBAL PITCH-YAW — PEÇA: CASTELO

GIMBAL PITCH-YAW — PEÇA: QUADRO EXTERNO

GIMBAL PITCH-YAW — PEÇA: QUADRO INTERNO

GIMBAL PITCH-YAW — MOVIMENTO QUADRO INTERNO

GIMBAL PITCH-YAW — MOVIMENTO QUADRO EXTERNO

GIMBAL PITCH-YAW

- Vetor de apontamento do gimbal: g
- Eixo longitudinal (Boresight): eixo x (forward)
- Comando de Pitch-Angle @ ao redor do eixo y (right)
- > Comando de Yaw-Angle \(\psi\) ao redor do eixo z (down)
- Combinando os movimentos coordenados:
 - Ângulo entre g e eixo x: Look-Angle λ (Ângulo de Visada)
 - Projeção de g no plano yz produz um Roll-Angle φ

GIMBAL PITCH-YAW — COORDENADO

GIMBAL PITCH-YAW — RELAÇOES

- Limites dos comando de Pitch: $-90^{\circ} < \theta < +90^{\circ}$
- Limites dos comando de Yaw: $-90^{\circ} < \psi < +90^{\circ}$
- Limite do Look-Angle resultante: $0^{\circ} < \lambda < +90^{\circ}$
- Limite do Roll-Angle resultante: $-180^{\circ} < \phi < +180^{\circ}$

```
Look-Angle: \lambda = \arccos(\cos\theta \cdot \cos\psi)
Roll-Angle: \varphi = \operatorname{atan2}(\operatorname{sen}\theta, \tan\psi)
```

 $\begin{cases} \text{Pitch-Angle: } \boldsymbol{\theta} = \arctan(\tan\lambda \cdot \sec\phi) \\ \text{Yaw-Angle: } \boldsymbol{\psi} = \arcsin(\sec\lambda \cdot \cos\phi) \end{cases}$

GIMBAL PITCH-YAW — VETOR DE APONTAMENTO

Opções p/ obter o vetor de apontamento por rotações sucessivas:

- (A) Yaw ψ ao redor do eixo z e depois Pitch θ ao redor do eixo y
- (B) Pitch θ ao redor do eixo y e depois Yaw ψ ao redor de um certo eixo z'
- (C) Look λ ao redor do eixo z e depois Roll φ ao redor do eixo x

Fórmula de Rotação de Rodrigues:

Rotação de um vetor $\vec{\mathbf{u}}$ por um ângulo α ao redor do eixo $\hat{\mathbf{v}}$

$$\vec{u}' = \vec{u}\cos\alpha + (\hat{v}\times\vec{u})\sin\alpha + \hat{v}(\vec{u}\cdot\hat{v})(1-\cos\alpha)$$

GIMBAL PITCH-YAW — VETOR DE APONTAMENTO

Fórmula de Rotação de Rodrigues:

Rotação de um vetor u por um ângulo a ao redor do eixo v

$$\vec{\mathbf{u}}' = \vec{\mathbf{u}}\cos\alpha + (\hat{\mathbf{v}}\times\vec{\mathbf{u}})\sin\alpha + \hat{\mathbf{v}}(\vec{\mathbf{u}}\cdot\hat{\mathbf{v}})(1-\cos\alpha)$$

Exemplo (A): Rotação primeiro em Yaw e depois em Pitch:

Yaw: Rotação de vetor \hat{x} (boresight) ao redor do eixo \hat{z} por um ângulo ψ

$$\vec{g}' = \hat{x}\cos\psi + (\hat{z} \times \hat{x}) \operatorname{sen}\psi + \hat{z}(\hat{x} + \hat{z})(1 - \cos\psi)$$

$$\vec{g}' = \hat{x} \cos \psi + \hat{y} \operatorname{sen} \psi$$

GIMBAL PITCH-YAW — VETOR DE APONTAMENTO

Rotação de um vetor $\vec{\mathbf{u}}$ por um ângulo α ao redor do eixo $\hat{\mathbf{v}}$

$$\vec{u}' = \vec{u}\cos\alpha + (\hat{v}\times\vec{u})\sin\alpha + \hat{v}(\vec{u}\cdot\hat{v})(1-\cos\alpha)$$

Pitch: Rotação de \vec{g}' ao redor do eixo \hat{y} por um ângulo θ

$$\vec{g} = \vec{g}' \cos \theta + (\hat{y} \times \vec{g}') \sin \theta + \hat{y} (\vec{g}' \cdot \hat{y}) (1 - \cos \theta)^4$$

$$\vec{g} = (\hat{x}\cos\psi + \hat{y}\sin\psi)\cos\theta + (\hat{y}\times(\hat{x}\cos\psi + \hat{y}\sin\psi))\sin\theta$$

$$+\hat{y}\left((\hat{x}\cos\psi+\hat{y}\sin\psi)\cdot\hat{y}\right)(1-\cos\theta)$$

$$\vec{g} = \hat{x}\cos\psi\cos\theta + \hat{y}\sin\psi\cos\theta - \hat{z}\cos\psi\sin\theta + \hat{y}\sin\psi\left(1-\cos\theta\right)$$

$$\vec{g} = \hat{x}\cos\psi\cos\theta + \hat{y}\sin\psi - \hat{z}\cos\psi\sin\theta$$

GIMBAL PITCH-YAW – DEMONSTRAÇÕES

$$\vec{g} = \hat{x} \cos \theta \cos \psi + \hat{y} \sin \psi - \hat{z} \sin \theta \cos \psi$$

$$\cos \lambda = \hat{g} \cdot \hat{x}$$

$$\cos \lambda = \cos \theta \cos \psi$$

$$\lambda = \arccos(\cos\theta\cos\psi)$$

$$\tan \varphi = \frac{\operatorname{proj}_{-\hat{\mathbf{z}}} \vec{\mathbf{g}}}{\operatorname{proj}_{\hat{\mathbf{v}}} \vec{\mathbf{g}}} = \frac{-\hat{\mathbf{g}} \cdot \hat{\mathbf{z}}}{\hat{\mathbf{g}} \cdot \hat{\mathbf{y}}}$$

$$\tan \varphi = \frac{\operatorname{sen} \theta \operatorname{cos} \psi}{\operatorname{sen} \psi} = \frac{\operatorname{sen} \theta}{\operatorname{tan} \psi}$$

$$\varphi = \operatorname{atan2}(\operatorname{sen}\theta, \operatorname{tan}\psi)$$

GIMBAL PITCH-YAW — APONTAMENTO LOOK-ROLL

Rotação de um vetor $\vec{\mathbf{u}}$ por um ângulo α ao redor do eixo $\hat{\mathbf{v}}$

$$\vec{u}' = \vec{u}\cos\alpha + (\hat{v} \times \vec{u}) sen\alpha + \hat{v}(\vec{u} \cdot \hat{v})(1 - \cos\alpha)$$

Look: Rotação do Vetor x̂ (boresight) ao redor do eixo ẑ por um ângulo λ

$$\vec{g}' = \hat{x} \cos \lambda + (\hat{z} \times \hat{x}) \sin \lambda + \hat{z} (\hat{x} \cdot \hat{z}) (1 - \cos \lambda)$$

$$\vec{g}' = \hat{x} \cos \lambda + \hat{y} \sin \lambda$$

Roll: Rotação do Vetor \vec{g}' ao redor do eixo \hat{x} por um ângulo ϕ

$$\vec{g} = \vec{g}' \cos \varphi + (\hat{x} \times \vec{g}') \sin \varphi + \hat{x} (\vec{g}' \cdot \hat{x}) (1 - \cos \varphi)$$

=
$$\hat{x} \cos \lambda \cos \phi + \hat{y} \sin \lambda \cos \phi + \hat{z} \sin \lambda \sin \phi + \hat{x} \cos \lambda (1 - \cos \phi)$$

$$\vec{g} = \hat{x} \cos \lambda + \hat{y} \sin \lambda \cos \phi + \hat{z} \sin \lambda \sin \phi$$

GIMBAL PITCH-ROLL

- Corpo: fixado ao veículo.
- Castelo: motor/encoder com movimento de rolamento.
- Quadro: motor/encoder em relação ao castelo.

GIMBAL PITCH-ROLL — VISTA EXPLODIDA

Corpo, Castelo, Quadro, Sensor, Óptica, Dome

GIMBAL PITCH-ROLL

Servomecanismo de Roll:

ângulo φ rotaciona todo o <u>Castelo</u>

Servomecanismo de Pitch:

ângulo → rotaciona o Quadro

GIMBAL PITCH-ROLL - ANÁLISE COMO SENSOR

- Por não ter "quadro interno", este gimbal tem características óptico-mecânicas mais eficientes para apontamento "side-looking" com **Look**-Angle λ =90°
 - ➤ <u>Motor</u>, <u>Encoder</u> e <u>Mancais</u> não estarão obstruindo significativamente o feixe óptico de entrada.
 - Motores irradiam calor na forma de radiação infravermelha. A <u>transmissão</u> ou as <u>reflexões internas</u> interferem nas leituras do detector infravermelho, que é extremamente sensível (exige um nível de ruído de fundo muito reduzido).

CAMPO e LINHA de VISADA — FoV e LoS

FoV = **Field of View**

- Cone espacial onde se pode detectar.
 - > <u>Instantâneo</u> **iFoV**: considera somente o sensor e óptica.
 - ➤ Geralmente um cone estreito, entre 0,5 e 3,0° total.
 - Cone centrado no LoS.
 - > Total, também FoR (Field of Regard): considerando o Gimbal
 - SRAAM 3ª geração: aprox. 40º ao redor de boresight.
 - > SRAAM 4ª geração: aprox. 80º ao redor de boresight.

LoS = **L**ine of **S**ight

> Reta que inicia no detector e tem a direção do apontamento

CAMPO de VISADA — iFoV e FoV Total (FoR)

iFoV deve <u>acomodar</u> o <u>erro</u> entre reta Míssil-Alvo e **LoS**.

Rastreio perdido caso a reta Míssil-Alvo saia do cone do iFoV.

- > Quando um alvo "hot spot" entra no iFoV, pode ser rastreado:
 - Gimbal controlado para manter o alvo no centro do LoS.

RASTREIO do ALVO

- > Gimbal Pitch-Yaw:
 - Gerados erros cartesianos (Azimute , Elevação)

RASTREIO do ALVO

- Gimbal Pitch-Roll:
 - Gerados erros polares (Rolamento , Elevação)

ÂNGULOS a partir do LoS Míssil-Alvo

