 Να βρεθούν τα σταθερά σημεία της δοσμένης εξίσωσης διαφορών: * 	1/1
$y_{t+1} = \frac{1}{2}y_t^2$	
🔵 1 ασταθές και 2 ευσταθές.	
💿 0 ευσταθές και 2 ασταθές.	~
Ο ασταθές και 2 ευσταθές.	
1 ευσταθές και 2 ασταθές.	
✓ Να βρεθούν τα σταθερά σημεία της δοσμένης εξίσωσης διαφορών: *	1/1
$y_{t+1} = 2y_t^2 - 1$	
-1/2 και 1 ασταθή και τα δύο.	~
-1/2 ευσταθές και 1 ασταθές.	
Ο ευσταθές και 1 ασταθές.	

0 και 1 και τα δύο ευσταθή.

$$y_{t+1} = y_t^2 - \frac{1}{2}$$

$$\frac{1+\sqrt{3}}{2} \kappa \alpha \iota \frac{1-\sqrt{3}}{2}$$

 Το πρώτο ασταθές και το δεύτερο ευσταθές. 1 ασταθές και 0 ευσταθές.

-1 ευσταθές και 1 ασταθές.

Ο και 1 και τα δύο ασταθή.

✓ Να βρεθεί η σταθερή κατάσταση της δοσμένης εξίσωσης διαφορών: *	1/1
$y_{t+1} = 2y_t + 10$	
O 20.	
O 30.	
O 10.	
-10.	~
✓ Να βρεθούν τα σταθερά σημεία της δοσμένης εξίσωσης διαφορών: *	1/1
$y_{t+1} = 4y_t + 10$	
🔵 1 ευσταθές.	
🔵 1 ασταθές.	
-10/3 ασταθές.	~
-10/3 ευσταθές.	

$$y_{t+1} = \frac{1}{4}y_t + 2$$

- 8/3 ευσταθές με μονοτονία.
- 8/3 ευσταθές με ταλάντωση.
- 🔵 1 ασταθές.
- Ο και 1 ασταθή.

Σωστή απάντηση

8/3 ευσταθές με μονοτονία.

✓ Να βρεθούν τα σταθερά σημεία της δοσμένης εξίσωσης διαφορών: * 1/1

$$y_{t+1} = -\frac{1}{4}y_t + 10$$

- 20/3 ευσταθές με μονοτονία.
- 20/3 ευσταθές με ταλάντωση.
- 10 ευσταθές με μονοτονία.
- 8 ευσταθές με ταλάντωση.

$$y_{t+1} = y_t + 10$$

Να βρεθεί η λύση της δοσμένης εξίσωσης διαφορών: *

1/1

$$y_{t+1} = -\frac{1}{2}y_t + 1$$

$$y_t = C(\frac{1}{4})^t + 1$$

) _

$$y_t = C2^t + 1$$

 $y_t = C(-\frac{1}{2})^t + \frac{2}{3}$

 $y_t = C(\frac{1}{2})^t + \frac{1}{2}$

) _

O -

•

$$y_{t+1} = \frac{1}{5}y_t^2 + 1$$

$$\frac{5+\sqrt{5}}{2}$$
 $\kappa \alpha \iota \frac{5-\sqrt{5}}{2}$

_

$$\frac{7+\sqrt{7}}{2}$$
 $\kappa \alpha \iota \frac{7-\sqrt{7}}{2}$

 \bigcirc $_{-}$

Ο και 1.

🔵 -1 και 1.