HOW TO HANDLE BIG DATA SCIENCE TASKS AS A BEGINNER

Several Useful Tips from a Real Task

Sibo Ding Apr 28, 2023

ABOUT ME

Prior to this task:

Passed COMP1117: Introduction to Python

Started to learn Numpy and Pandas without too much practice

ABOUT THE TASK

Transform a 3000*1500 data frame to 75000*40 within 1 minute

There are only input and output files

→ Understand the data structures in both files by myself

	Α	В	С	D
1	id	name	quarter	Poc_Sut
2	156	kick	-12	65412
3	156	kick	-9	86453
4	156	kick	0	789456
5	156	kick	7	98645
6	156	kick	10	874651
7	237	abba	-12	48653
8	237	abba	-9	86453
9	237	abba	0	846511
10	237	abba	7	
11	237	abba	10	

25 quarters for each row

Input Data

Output Data

25 different columns

TIP 1: ANALYZE WORK FLOW

Decompose a big task into several small tasks

Either forwards or backwards

	Α	В	С	D		
1	id	name	quarter	Poc_Sut		
2	156	kick	-12	65412		
3	156	kick	-9	86453		
4	156	kick	0	789456		
5	156	kick	7	98645		
6	156	kick	10	874651		
7	237	abba	-12	48653		
8	237	abba	-9	86453		
9	237	abba	0	846511		
10	237	abba	7			
11	237	abba	10			

Duplicate 25 rows for the common columns

2 Add "quarter" column

No method is mentioned

→ Totally **generalizable**

Transform remaining columns

TIP 2: SIMPLIFY TASKS, FIND PATTERNS

I manually **group** 1400+ columns using Excel (20 mins)

	Α	В	С	D	Е
1	Poc_Sut	Dfl_Sut	Poc_Sut_chg	Dfl_Sut_avg	Qer_Sut_log
2	Poc_MIT	Dfl_MIT	Poc_MIT_chg	Dfl_MIT_avg	Qer_MIT_log
3	Poc_Tr_Ca	Dfl_Tr_Ca	Poc_Tr_Ca_chg	Dfl_Tr_Ca_avg	Qer_Tr_Ca_log

Stupid, but intuitive and effective to **understand the structure**Same beginning, same middle, etc.

Filter columns we need (in green for example)

TIP 3: USE SIMPLIFIED TASKS FOR TRIAL

Create small tasks with a similar structure

To verify big tasks with shorter time

	Α	В	С		D		Е	F			G
1	id	name	Poc_Sut_	_12	Poc_Sut_	_9	Poc_Sut	Poc_S	ut_7	Poc_	Sut_10
2	1 56	kick	654	412	864	53	789456	98	3645		874651
3	237	abba	480	653	864	53	846511				

	Α	В	С	D	
1	id	name	quarter	Poc_Sut	
2	156	kick	-12	65412	
3	156	kick	-9	86453	
4	156	kick	0	789456	
5	156	kick	7	98645	
6	156	kick	10	874651	
7	237	abba	-12	48653	
8	237	abba	-9	86453	
9	237	abba	0	846511	
10	237	abba	7		
11	237	abba	10		

Input Data

Output Data

TIP 4: READ DOCUMENTATIONS

Useful user manuals (same as "help" panel in R)

My personal habit: Examples (specific) → Parameters (abstract)

Examples

Constructing DataFrame from a dictionary.

pandas.DataFrame

```
class pandas.DataFrame(data=None, index=None, columns=None, dtype=None,
copy=None) [source]
```

Two-dimensional, size-mutable, potentially heterogeneous tabular data.

Data structure also contains labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure.

Parameters: data: ndarray (structured or homogeneous), Iterable, dict, or DataFrame

Dict can contain Series, arrays, constants, dataclass or list-like objects. If data is a dict, column order follows insertion-order. If a dict contains Series which have an index defined, it is aligned by its index.

Ochanged in version 0.25.0: If data is a list of dicts, column order follows insertion-order.

TIP 5: SPEED, READABILITY, EXTENDIBILITY

Sometimes conflict → need balance

High readability helps you (colleagues, clients) better **maintain** code

High extendibility helps you handle similar new cases by **modifying** a small part of code

THANKS

Tip 6: Keep improving

Review previous work after learning new knowledge