GESTIÓN DE BASE DE DATOS

UNIDAD 5: SQL

NOELIA HUGUET CHACÓN

- Las consultas multitabla son las basadas en más de una tabla de la BD.
- Se distinguen dos tipos de consultas multitabla:
 - La **unión** que se utilizará si tenemos dos tablas con las mismas columnas y queremos obtener una nueva tabla con las filas de la primera y las filas de la segunda. La tabla resultante tendrá las mismas columnas que la primera tabla.
 - La composición consistirá en concatenar filas de una tabla con filas de otra. Obtendremos, así definido, una tabla con las columnas de la primera tabla unidas a las columnas de la segunda tabla, y las filas de la tabla resultante son concatenaciones de filas de la primera tabla con filas de la segunda tabla.

Características de la Unión:

- Las sentencias SELECT que intervengan tendrán que tener el mismo número de columnas, mismo tipo de dato y mismo orden (no importa el nombre de las columnas).
- > Las columnas del resultado tendrán el mismo nombre que los de la primera consulta.
- La unión no incluye filas repetidas de manera predeterminada, si alguna fila está en las dos tablas, sólo aparecerá una vez en el resultado final.
- > Si quisiéramos que aparecieran todas las filas incluso las repeticiones de filas, incluiríamos la palabra ALL.

Sintaxis de Unión:

```
SELECT campos_tabla1 FROM Tabla1_Nombre UNION SELECT campos_tabla2 FROM Tabla2_Nombre ;
```


TABLA ALUMNOS

Cod_alumno	Nombre	Apellidos	Telefono	Edad	Población	Cod_curso
1	Pepe	García Martínez	698569852	20	Valencia	1
2	Jose	González García	699885521	22	Mislata	1
3	Marta	Mas Rojas	698896541	18	Valencia	2

TABLA ALUMNOS2

COD_ALUMNO	NOMBRE	Apellidos	MOVIL	Edad	Poblacion	Cod_curso
25	Jose	Murcia Fernández	666559853	25	Xirivella	2
78	Martin	Cámara Cruz	655598585	35	Valencia	1

SELECT NOMBRE, TELEFONO **FROM** ALUMNOS **UNION SELECT** nombre, MOVIL **FROM** alumnos2;

NOMBRE	TELEFONO
Pepe	698569852
Jose	699885521
Marta	698896541
Jose	666559853
Martín	655598585

Características de la Composición:

- La composición permitirá obtener una fila con datos de dos o más tablas.
- > Sería muy útil cuando queramos visualizar filas cuyos datos se encuentran en más de una tabla.
- Las tablas estarán relacionadas entre ellas de alguna forma, a través de alguna de sus columnas.
- Existen distintos tipos de composición:
 - El producto cartesiano
 - El INNER JOIN
 - EI LEFT / RIGHT JOIN

- Sintaxis composición producto cartesiano:
 - ➤ Calculando el producto cartesiano a dos tablas se obtiene una tabla con las columnas de la primera tabla unidas a las columnas de la segunda tabla, y las filas de la tabla resultante son todas las posibles concatenaciones de filas de la primera tabla con filas de la segunda tabla.
 - ➤ El producto cartesiano se indica poniendo en la cláusula FROM las tablas que queremos componer separadas por comas, podemos obtener así el producto cartesiano de dos, tres, o más tablas.
 - > Sintaxis del producto cartesiano:

SELECT campos **FROM** Tabla1, Tabla2 **WHERE** tabla1.campo=tabla2.campo;

SELECT * **FROM** tutores, alumnos;

identif	nombre	móvil	codigo	nombre	fechan	telef	id_tutor
1	pepe	659141425	1	luis vargas	2017-05-09	644454541	1
2	sara	688969679	1	luis vargas	2017-05-09	644454541	1
1	рере	659141425	2	juanito valderr	2016-08-02	961224578	2
2	sara	688969679	2	juanito valderr	2016-08-02	961224578	2

SELECT * **FROM** tutores, alumnos **WHERE** alumnos.id_tutor=tutores.identif;

identif	nombre	móvil	codigo	nombre	fechan	telef	id_tutor
1	pepe	659141425	1	luis vargas	2017-05-09	644454541	1
2	sara	688969679	2	juanito valderr	2016-08-02	961224578	2

LEFT JOIN

Aparecen los registros que aparecen en ambas tablas y los que solo aparecen en la tabla 1 (la de la izquierda).

INNER JOIN

Registros que aparecen en ambas tablas, si sólo aparecen en una no se muestran.

RIGHT JOIN

Aparecen los registros que aparecen en ambas tablas y los que solo aparecen en la tabla 2 (la de la derecha).

- Características composición INNER JOIN:
 - ➤ Definido para cada registro de una de las tablas busca directamente en la otra tabla los registros que cumplen la condición, con lo cual se emparejan sólo los registros que luego van a aparecer en el resultado.
 - Es posible que pueda aparecer más de un criterio de emparejamiento, uniéndolas mediante los operadores AND y OR poniendo cada condición entre paréntesis.
- Sintaxis composición INNER JOIN: permite emparejar filas de distintas tablas de forma más eficiente que con el producto cartesiano cuando una de las columnas de emparejamiento está indexada.

SELECT * FROM Tabla1 **INNER JOIN** Tabla2 **ON** tabla1.campo=tabla2.campo;

SELECT * FROM tutores **INNER JOIN** alumnos **ON** tutores.identif=alumnos.id_tutor

SELECT alumnos.nombre as nombre_alumno, tutores.poblacion as poblacion_tutor, tutores.nombre as nombre_tutor **FROM** tutores **INNER JOIN** alumnos **ON** (tutores.identif=alumnos.id_tutor) **WHERE** (tutores.poblacion='Torrent');

- **LEFT JOIN**: Con esta cláusula se obtendrán las filas resultado del INNER JOIN más las filas de la tabla de la izquierda que no tienen correspondencia en la otra tabla, y rellenar en esas filas los campos de la tabla de la derecha con valores nulos.
- RIGHT JOIN: De la misma manera se obtendrán las filas resultado del INNER JOIN más las filas de la tabla de la derecha que no tienen correspondencia en la otra tabla, y rellenar en esas filas los campos de la tabla de la izquierda con valores nulos

SELECT * **FROM** Tabla1 **LEFT/RIGHT JOIN** Tabla2 **ON** tabla1.campo=tabla2.campo;

SELECT * **FROM** tutores **LEFT JOIN** alumnos **ON** tutores.identif=alumnos.id_tutor

SELECT * FROM tutores **RIGTH JOIN** alumnos **ON** tutores.identif=alumnos.id_tutor

identif	nombre	móvil	codigo	nombre	fechan	telef	id_tutor
1	pepe	659141425	1	luis vargas	2017-05-09	644454541	1
2	sara	688969679	2	juanito valderr	2016-08-02	961224578	2