Ejemplo de relación de equivalencia

En el conjunto de los reales | R se define: $x S y \Leftrightarrow x^2 - 4 x = y^2 - 4 y$

a) Reflexiva:

 \forall x \in |R : x^2 - 4 x = x^2 - 4 x (por reflexividad de la igualdad) \Rightarrow x S x

Simétrica:

 \forall x , y \in |R: x S y \Rightarrow x² - 4 x = y² - 4 y \Rightarrow y² - 4 y = x² - 4 x (por simetría de la igualdad) \Rightarrow y S x Transitiva:

$$\forall$$
 x , y , z \in |R : x S y \land y S z \Rightarrow x² - 4 x = y² - 4 y \Rightarrow y² - 4 y = z² - 4 z \Rightarrow \Rightarrow x² - 4 x = z² - 4 z (por transitividad de la igualdad) \Rightarrow x S z

b) Para graficar la relación vamos a tratar de simplificar un poco:

$$x^{2} - 4x = y^{2} - 4y \implies x^{2} - 4x + 4 = y^{2} - 4y + 4 \implies (x - 2)^{2} = (y - 2)^{2} \implies |x - 2| = |y - 2| \implies x - 2 = y - 2 \quad x - 2 = -y + 2 \implies y = x \quad y = 4 - x$$

La relación entonces nos queda: $x S y \Leftrightarrow y = x \lor y = 4 - x$

Son dos rectas:

c) Del gráfico se puede ver que todos los elementos se relacionan con dos (tienen dos imágenes) excepto el 2 que tiene 1 sola, pues es justo la intersección de las dos rectas:

$$cl(2) = \{ 2 \}$$
 para los demás: $cl(x) = \{ x, 4 - x \}$
Por ejemplo: $cl(1) = \{ 1, 3 \}$, $cl(5) = \{ 5, -1 \}$, etc.

En total hay infinitas clases, por eso el conjunto cociente debe darse por comprensión en vez de por extensión.

② ¿Está bien escribir el conjunto cociente así: $|R/S = \{ cl(x) / x \in |R \}$

NO!!!!! Pues se estaría nombrando dos veces a cada clase (al decir $x \in |R|$, estamos nombrando por ejemplo la clase del uno dos veces al decir cl(1) y cl(3) que es la misma)

Entonces... ¿qué hacemos? Debemos encontrar un conjunto de índices (subconjunto de A que está formado por un representante de cada clase).

Se puede escribir así: $[R/S = \{ cl(x) / x \in (-\infty; 2] \}$

O bien, si de cada clase tomamos como representante al mayor: $|R/S = \{ cl(x) / x \in [2, +\infty) \}$