Static Environment Representation from Radar Measurements

Contents

DESIGN

Sensor Setup

Inputs Considered

Grid Representation

High Level Architecture 1

High Level Architecture 2

Sequence Diagram

High-Level Architecture: Grid State Estimation for each Radar

Stationary Measurement Identification

Clutter Removal by RANSAC

Polar to Cartesian measurement conversion

Coordinate Transformation Sensor to Vehicle Frame

Measurement Grid Computation

Grid State Prediction

Grid State Update: procedure

Grid State Update : equations

Grid State Update : prune grid cells

Grid Fusion

CLOSING REMARKS

Use-cases

Sensor Setup

Source: <u>https://radar-scenes.com/dataset/sensors/</u>

Parameters / Sensor	Radar 1	Radar 2	Radar 3	Radar 4
Mount x coordinate	+3.663	+3.86	+3.86	+3.663
Mount y coordinate	-0.873	-0.7	+0.7	+0.873
Mount angle	-85°	-25°	+25°	+85°
Range resolution	0.15 meters			
Azimuth resolution	At the boresight direction, the resolution is about 0.5° and degrades to 2° at the outer parts of the field of view			
Range rate resolution	0.1 km/hr			
Maximum range	100 meters			
Maximum azimuth	±60°			
Approximate measurement cycle	60 millisecond (approx. 17 Hz)			

Inputs Considered

Measuremets from radar i at time t in sensor frame

$$\begin{split} Z_t^{radar_i} &= \{z_1 \quad z_2 \quad ... \quad z_{m_k}\} & \quad r \to range \\ z_i &= [r \quad \alpha \quad v_r]^T & \quad \alpha \to azimuth \\ & \quad v_r \to range \ rate \end{split}$$

Radar i mount info

installation coordinates $\rightarrow \begin{pmatrix} x_m^{radar_i} & y_m^{radar_i} \end{pmatrix}$ mounting angle $\rightarrow \theta_m^{radar_i}$

Ego vehicle odometry at time t

 $v_t^x \rightarrow lateral velocity$ $\dot{\omega}_t \rightarrow yaw rate$

Ego vehicle localization information at time t (arbitrary frame)

position \rightarrow (px_t^{loc} py_t^{loc}) orientation \rightarrow θ_t^{loc}

Grid Representation

It is assumed that **only a single measurement can occupy a grid cell**. If a measurement is in the grid cell then the corresponding cell state is (px, py, logodds)

At a time a subset of grid cells are maintained which holds valid measurements/states

Since the grid is rectangular with uniformly sized cells. Each grid cell can be indexed like an image leading to efficient gating and state updates

Separate grids are maintained w.r.t the ego vehicle for each radars which are then combined to get a fused grid. This scheme ensures that the architecture can be made modular and more robust against sensor failures

High-Level Architecture 1

High-Level Architecture 2

Sequence Diagram

High-Level Architecture: Grid State Estimation for each Radar

Udit Bhaskar

9

Stationary Measurement Identification

compute ego motion at the radar location in the radar frame

$$R = \begin{bmatrix} \cos(\theta^{mount}) & -\sin(\theta^{mount}) \\ \sin(\theta^{mount}) & \cos(\theta^{mount}) \end{bmatrix}$$

$$\begin{bmatrix} v_{x}^{rad_pred} \\ v_{y}^{rad_pred} \end{bmatrix} = R^{-1} \begin{bmatrix} 1 & 0 & -r_{y}^{mount} \\ 0 & 1 & r_{x}^{mount} \end{bmatrix} \begin{bmatrix} v_{x}^{ego_pred} \\ v_{y}^{ego_pred} \\ \dot{\omega}^{ego_pred} \end{bmatrix}$$

 $(v_x^{rad_pred}, v_y^{rad_pred})$

input: azimuth angles of the Radar measurem

ents

for each of the locations corresponding to radar measurements compute the predicted range rates

$$v_{r_pred}^{i} = -\left(v_{x}^{rad_pred}\cos(\theta^{i}) + v_{y}^{rad_pred}\sin(\theta^{i})\right)$$

,' <u>output</u>: preliminary list of ,' stationary measurements'

 $Z_{stationary}^{i}$

Stationary measurement selection

if errorⁱ \leq threshold, then Zⁱis considered stationary

 $error^i$

Compare the predicted range rate with the measurement range rate

$$error^{i} = \left| v_{r_pred}^{i} - v_{r}^{i} \right|$$

 $v_{r_pred}^{i}$

 v_r^i

input: range rates of the Radar measurements

Clutter Removal by RANSAC

Polar to Cartesian measurement

conversion

Coordinate Transformation Sensor to Vehicle Frame

Measurement Grid Computation

Grid State Prediction

Compute pose transformation matrix

that can transform vectors from vehicle frame at t-1 to vehicle frame at t

$$T_{prev} = \begin{bmatrix} \cos(\theta_{t-1}^{loc}) & -\sin(\theta_{t-1}^{loc}) & px_{t-1}^{loc} \\ \sin(\theta_{t-1}^{loc}) & \cos(\theta_{t-1}^{loc}) & py_{t-1}^{loc} \\ 0 & 0 & 1 \end{bmatrix}$$

$$T_{curr} = \begin{bmatrix} \cos(\theta_t^{loc}) & -\sin(\theta_t^{loc}) & px_t^{loc} \\ \sin(\theta_t^{loc}) & \cos(\theta_t^{loc}) & py_t^{loc} \\ 0 & 0 & 1 \end{bmatrix}$$

$$T = T_{curr}^{-1} T_{prev} = \begin{bmatrix} R_{2 \times 2} & t_{2 \times 1} \\ 0_{1 \times 2} & 1 \end{bmatrix}$$

Grid State Update: procedure

Grid State Update: equations

Initialize new Cell States

$$x_{upd}^i = x_{meas}^i$$

$$y_{upd}^i = y_{meas}^i$$

$$l_{upd}^i = \alpha_0 * l_{meas}^i$$

Cell States Update Rule 1

$$x_{upd}^{i} = w_{x} * x_{meas}^{i} + (1 - w_{x}) * x_{pred}^{i}$$
 $y_{upd}^{i} = w_{y} * y_{meas}^{i} + (1 - w_{y}) * y_{pred}^{i}$
 $l_{upd}^{i} = l_{meas}^{i} + \alpha_{1} * l_{pred}^{i}$

Cell States Update Rule 2

$$x_{upd}^i = x_{pred}^i$$

$$y_{upd}^i = y_{pred}^i$$

$$l_{upd}^i = \alpha_2 * l_{pred}^i$$

Cell States Update Rule 3

$$x_{upd}^i = x_{pred}^i$$

$$y_{upd}^i = y_{pred}^i$$

$$l_{upd}^i = \alpha_3 * l_{pred}^i$$

Note:

$$0 < w_x, w_y, \alpha_0, \alpha_1, \alpha_2, \alpha_3 \leq 1$$

Grid State Update: prune grid cells

Grid Fusion

$$\begin{aligned} x_{fus}^i &= w_{sensor1} * x_{sensor1}^i + w_{sensor2} * x_{sensor2}^i + w_{sensor3} * x_{sensor3}^i + w_{sensor4} * x_{sensor4}^i \\ y_{fus}^i &= w_{sensor1} * y_{sensor1}^i + w_{sensor2} * y_{sensor2}^i + w_{sensor3} * y_{sensor3}^i + w_{sensor4} * y_{sensor4}^i \\ l_{fus}^i &= l_{sensor1}^i + l_{sensor2}^i + l_{sensor3}^i + l_{sensor4}^i \end{aligned}$$

Note:

$$W_{sensor1} + W_{sensor2} + W_{sensor3} + W_{sensor4} = 1$$

Use-cases

- Occupancy grid mapping
- Road profile computation
- Input Image to a deep Neural Network for various perception tasks
- Radar only perception for AD/ADAS

etc ...

The End