

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N 2, 2012

Электронный журнал, per. Эл. N ФС77-39410 om 15.04.2010 ISSN 1817-2172

 $http://www.math.spbu.ru/diffjournal \\ e-mail: jodiff@mail.ru$

Теория обыкновенных дифференциальных уравнений

ОБОБЩЕННЫЕ НОРМАЛЬНЫЕ ФОРМЫ СИСТЕМ ОДУ С КВАДРАТИЧНО-КУБИЧЕСКОЙ НЕВОЗМУЩЕННОЙ ЧАСТЬЮ

В. В. БАСОВ, С. Е. ПЕТРОВА

Россия, 198504, Санкт-Петербург, Петродворец, Университетский пр., д. 28, Санкт-Петербургский Государственный университет, математико-механический факультет, кафедра дифференциальных уравнений, e-mail: vlvlbasov@rambler.ru, sveta.e.petrova@gmail.com

Аннотация

Конструктивным методом получены все структуры обобщенных нормальных форм, к которым может быть сведена формальным обратимым преобразованием двумерная автономная система ОДУ с квадратично-кубическим многочленом в невозмущенной части, линейно эквивалентным какому-либо квазиоднородному многочлену.

СОДЕРЖАНИЕ

1.	Введение	. 155
2.	Выделение квазиоднородного многочлена	. 156
3.	Метод резонансных уравнений и ОНФ	. 160
4.	ОНФ систем с $R_{(2,1)}^{[2]}$ в невозмущенной части	. 162
5.	ОНФ систем с $R_{(1,2)}^{[2]}$ в невозмущенной части	. 166
6.	ОНФ систем с $R_{(1,2)}^{[3]}$ в невозмущенной части	. 171
7.	ОНФ систем с $R_{(2,3)}^{[3]}$ в невозмущенной части	.175
8.	ОНФ систем с $R_{(2,3)}^{[4]}$ в невозмущенной части	. 185
9.	ОНФ систем с $R_{(3,4)}^{[5]}$ в невозмущенной части	. 197
Сп	исок литературы	. 217

1 Введение

В работе будет рассматриваться двумерная автономная система

$$\dot{x}_i = P_i(x) + X_i(x) \quad (i = 1, 2, \quad P_i \not\equiv 0),$$
 (1)

в которой невозмущенную часть образуют полиномы $P_1(x) = a_1x_1^2 + b_1x_1x_2 + c_1x_2^2$ и $P_2(x) = a_2x_1^3 + b_2x_1^2x_2 + c_2x_1x_2^2 + d_2x_2^3$. А возмущение $X_i(x) = \sum_{p_1+p_2=i+2}^{\infty} X_i^{(p_1,p_2)} x_1^{p_1} x_2^{p_2}$.

Задача заключается в том, чтобы при помощи формальных обратимых замен переменных максимальным образом упростить систему (1), сохраняя квадратично-кубическую структуру ее невозмущенной части.

Эта задача естественным образом распадается на две: сначала при помощи линейных обратимых замен упростить невозмущенную часть системы (1), а затем при помощи формальных почти тождественных замен упростить полученное возмущение, сводя исходную систему к так называемой обобщенной нормальной форме $(OH\Phi)$.

Нормализация возмущений системы будет осуществляться конструктивно методом резонансных уравнений, впервые описанным и примененном первым из авторов в [1], а затем в [2], [3] и еще целом ряде работ. Метод позволяет, во всяком случае, если степень возмущения не превосходит трех, в явном виде выписать все возможные структуры ОНФ, к которым исходная система с фиксированной невозмущенной частью может быть сведена формальной почти тождественной заменой. Это подразумевает, что для каждого порядка возмущения ОНФ будет указано не только максимальное число ненулевых слагаемых данного порядка, но и конкретно все показатели степеней, которые эти слагаемые могут иметь, а если надо, то и их коэффициенты.

Метод резонансных уравнений можно сразу применять, если невозмущенная часть системы является векторным однородным многочленом, например, второго порядка (см. [3]—[7]) или третьего порядка (см. [8]). В противном случае, например, как в системе (1), необходимо сначала выровнять порядки невозмущенной части, вводя для переменных вес, обобщенную степень и рассматривая только квазиоднородные многочлены (КОМ). А это удается сделать далеко не для любого векторного многочлена.

Поэтому при решении задачи нормализации невозмущенной части системы (1) надо сначала выделить все возможные КОМ квадратично-кубической структуры и указать условия на коэффициенты многочленов P_1, P_2 , при которых линейной неособой заменой они сводятся к соответствующим КОМ. И только затем приступить к последовательной нормализации возмущений систем с различными квадратично-кубическими КОМ в невозмущенной части.

В работе показано, что невозмущенная часть системы (1) может быть сведена к семи различным каноническим КОМ. И далее в явном виде получены все возможные ОНФ систем с каждым из выделенных невырожденных канонических КОМ в невозмущенной части, кроме системы с КОМ (y_1^2, y_1^3) , исследованной ранее в [2].

2 Выделение квазиоднородного многочлена

1⁰. Пусть
$$z = (z_1, z_2), \ \gamma = (\gamma_1, \gamma_2), \ q = (q_1, q_2), \ Q = (Q_1(z), Q_2(z)), \ Z = (Z_1(z), Z_2(z)).$$

Определение 1. Весом переменной z назовем вектор γ , если его компоненты γ_1, γ_2 — натуральные и взаимно простые. Обобщенной степенью (o.c.) монома $z_1^{q_1} z_2^{q_2}$ ($q_1, q_2 \in \mathbb{Z}_+$, $|q| = q_1 + q_2 \ge 1$) назовем скалярное произведение $\langle q, \gamma \rangle$.

Определение 2. Векторный многочлен Q(z) назовем квазиоднородным многочленом (KOM) о.с. $k \in \mathbb{N}$ с весом γ и обозначим $Q_{\gamma}^{[k]}(z)$, если для $\forall i = 1, 2$ в Q_i входят только мономы о.с. $k + \gamma_i$, т.е. в КОМ компонента $Q_{\gamma,i}^{[k]}(z) = \sum_{q: \langle q, \gamma \rangle - \gamma_i = k} Q_i^{[q_1 \gamma_1, q_2 \gamma_2]} z_1^{q_1} z_2^{q_2}$. КОМ $Q_{\gamma}^{[k]}(z)$ назовем невырожденным (HKOM), если обе его компоненты $Q_{\gamma,1}^{[k]}(z), Q_{\gamma,2}^{[k]}(z) \not\equiv 0$.

В приведенных терминах векторный однородный многочлен степени k+1, обозначаемый $Q^{(k+1)}(z)=\sum_{q:\,|q|=k+1}Q_i^{(q_1,q_2)}z_1^{q_1}z_2^{q_2}$, имеет стандартный вес $\gamma=(1,1)$ и о.с. k.

В результате компоненты векторного степенного ряда $Z(z) = \sum_{q:\,|q| \geq 1} Z^{(q_1,q_2)} z_1^{q_1} z_2^{q_2}$ можно записать как в виде суммы однородных многочленов: $Z_i = \sum_{k=0}^\infty Z_i^{(k+1)}(z)$, так и для произвольного веса γ в виде суммы КОМ: $Z_i = \sum_{k=1}^\infty Z_{\gamma,i}^{[k]}(z)$, разумеется, при условии, что все коэффициенты $Z_i^{(q_1,q_2)} = 0$, если $\langle q,\gamma \rangle - \gamma_i \leq 0$ (i=1,2).

В дальнейшем при наличии такой возможности нижний индекс γ будем опускать.

 ${f 2^0}$. Пусть Q(z), как и P(x) в системе (1), имеет квадратично-кубическую структуру: $Q_1=\breve{a}_1z_1^2+\breve{b}_1z_1z_2+\breve{c}_1z_2^2$, $Q_2=\breve{a}_2z_1^3+\breve{b}_2z_1^2z_2+\breve{c}_2z_1z_2^2+\breve{d}_2z_2^3$. Установим, какие из его членов могут образовывать НКОМ.

Утверждение 1. Q(z) является НКОМ $Q_{\gamma}^{\chi}(z)$ в следующих семи случаях:

$$1) \ \ Q_{(2,1)}^{[2]}(z) = (\check{a}_1 z_1^2, \check{d}_2 z_2^3), \qquad 2) \ \ Q_{(1,2)}^{[1]}(z) = (\check{a}_1 z_1^2, \check{a}_2 z_1^3), \qquad 3) \ \ Q_{(1,2)}^{[2]}(z) = (\check{b}_1 z_1 z_2, \check{b}_2 z_1^2 z_2),$$

4)
$$Q_{(1,2)}^{[3]}(z) = (\check{c}_1 z_2^2, \check{c}_2 z_1 z_2^2), \quad 5) \ Q_{(2,3)}^{[3]}(z) = (\check{b}_1 z_1 z_2, \check{a}_2 z_1^3), \quad 6) \ Q_{(2,3)}^{[4]}(z) = (\check{c}_1 z_2^2, \check{b}_2 z_1^2 z_2), \quad (2)$$

$$7) \ Q_{(3,4)}^{[5]}(z) = (\check{c}_1 z_2^2, \check{a}_2 z_1^3).$$

Доказательство. По определению 2 векторный полином Q(z) является КОМ степени χ с весом γ , если для каждого слагаемого $Q_{\gamma,i}^{[q_1^i\gamma_1,q_2^i\gamma_2]}z_1^{q_1}z_2^{q_2}$, входящего в Q, показатели q_1^i , q_2^i , (i=1,2) удовлетворяют следующей системе:

$$\chi + \gamma_i = q_1^i \gamma_1 + q_2^i \gamma_2 \quad (q_1^i + q_2^i = i + 1). \tag{3}$$

В рассматриваемом случае Q_1 и Q_2 должны иметь по одному члену. Действительно, допустим, что это не так. Пусть Q_1 имеет хотя бы два монома $(\alpha_1 z_1^{q_1^1} z_2^{q_2^1}$ и $\beta_1 z_1^{\overline{q}_1^1} z_2^{\overline{q}_2^1})$, тогда $(q_1^1 - \overline{q}_1^1)\gamma_1 = (\overline{q}_2^1 - q_2^1)\gamma_2$ и, следовательно, $\gamma_1 = \gamma_2$, т.к. $q_1^1 - \overline{q}_1^1 = \overline{q}_2^1 - q_2^1 \neq 0$. Тогда в (3) при i=1 получится $\gamma_1=\chi$, а при i=2: $\gamma_1=2\chi$, значит, $\chi=0$, что невозможно.

Таким образом, HKOM Q(z) должен иметь вид:

$$Q_1(z) = \alpha_1 z_1^p z_2^{2-p}, \ Q_2(z) = \alpha_2 z_1^q z_2^{3-q} \quad (p = \overline{0, 2}, \ q = \overline{0, 3}, \ \alpha_1 \alpha_2 \neq 0).$$

При этом система (3) примет вид: $p\gamma_1+(2-p)\gamma_2=\chi+\gamma_1,\ q\gamma_1+(3-q)\gamma_2=\chi+\gamma_2$ или $(p-q-1)\gamma_1=(p-q)\gamma_2,\ \chi=(p-1)\gamma_1+(2-p)\gamma_2.$ А значит, если p>q+1, то $\gamma_1=p-q,$ $\gamma_2=p-q-1,\ \chi=2p-q-2;$ если p< q, то $\gamma_1=q-p,\ \gamma_2=q-p+1,\ \chi=q-2p+2,$ что дает (2).

 ${f 3^0}$. Линейная замена $z_i= au_iy_i$ $(au_i\neq 0,\ i=1,2)$ переводит систему $\dot z_i=Q_i(z)$ в систему $\dot y_i=\check Q_i(y)$ с $\check Q_1=\check a_1 au_1y_1^2+\check b_1 au_2y_1y_2+\check c_1 au_1^{-1} au_2^2y_2^2,\ \check Q_2=\check a_2 au_1^3 au_2^{-1}y_1^3+\check b_2 au_1^2y_1^2y_2+\check c_2 au_1 au_2y_1y_2^2+\check d_2 au_2^2y_2^3.$

Предположим, что Q(z) – HKOM вида (2_1) – (2_7) . Тогда $\check{Q}(y)=(\check{Q}_1(y),\check{Q}_2(y))$ тоже HKOM той же степени и с тем же весом. Выбирая должным образом коэффициенты замены, пронормируем HKOM \check{Q} , соответственно получая:

- 1) $\check{Q}_{(2,1)}^{[2]} = (y_1^2, y_2^3) \operatorname{sign} \check{d}_2 \operatorname{при} \tau_1 = \check{a}_1^{-1} \operatorname{sign} \check{d}_2, \ \tau_2 = |\check{d}_2|^{-1/2};$
- 2) $\breve{Q}_{(1,2)}^{[1]'}=(y_1^2,y_1^3)$ при $\tau_1=\breve{a}_1^{-1},\ \tau_2=\breve{a}_1^{-3}\breve{a}_2;$
- 3) $\breve{Q}_{(1,2)}^{[2]} = (y_1 y_2, y_1^2 y_2) \operatorname{sign} \breve{b}_2$ при $\tau_1 = |\breve{b}_2|^{-1/2}, \ \tau_2 = \breve{b}_1^{-1} \operatorname{sign} \breve{b}_2;$
- 4) $\check{Q}_{(1,2)}^{[3]'}=(y_2^2,y_1y_2^2)$ при $au_1=\check{c}_1^{1/3}\check{c}_2^{-2/3},\ au_2=(\check{c}_1\check{c}_2)^{-1/3};$
- 5) $\breve{Q}_{(2.3)}^{[3]} = (y_1 y_2, y_1^3)$ при $\tau_1 = (\breve{b}_1 \breve{a}_2)^{-1/3}, \ \tau_2 = \breve{b}_1^{-1};$
- 6) $\breve{Q}_{(2,3)}^{[4]} = (y_2^2, y_1^2 y_2) \operatorname{sign} \breve{b}_2$ при $\tau_1 = |\breve{b}_2|^{-1/2} \operatorname{sign} (\breve{b}_2 \breve{c}_1), \ \tau_2 = |\breve{c}_1^2 \breve{b}_2|^{-1/4};$
- 7) $\check{Q}_{(3,4)}^{[5]} = (y_2^2, y_1^3)$ при $\tau_1 = (\check{c}_1 \check{a}_2)^{-1/5}, \ \tau_2 = \check{a}_2^{2/5} \check{c}_1^{-3/5}.$

Определение 3. Каноническими невырожденными квазиоднородными многочленами квадратично-кубической структуры (КНКОМ $_{\kappa\kappa}$) будем называть такие НКОМ $R_{\gamma}^{[\chi]}(y)$:

1)
$$R_{(2,1)}^{[2]} = \sigma(y_1^2, y_2^3),$$
 2) $R_{(1,2)}^{[1]} = (y_1^2, y_1^3),$ 3) $R_{(1,2)}^{[2]} = \sigma(y_1 y_2, y_1^2 y_2),$ 4) $R_{(1,2)}^{[3]} = (y_2^2, y_1 y_2^2),$ 5) $R_{(2,3)}^{[3]} = (y_1 y_2, y_1^3),$ 6) $R_{(2,3)}^{[4]} = \sigma(y_2^2, y_1^2 y_2),$

7)
$$R_{(3,4)}^{[5]} = (y_2^2, y_1^3)$$
 $(\sigma = \pm 1).$

 ${\bf 4^0}$. Установим условия на коэффициенты системы (1) $\dot{x}_i = P_i(x) + X_i(x)$, при которых она линейной неособой заменой

$$x_1 = py_1 + qy_2, \quad x_2 = ry_1 + sy_2 \quad (pq - rs \neq 0),$$
 (4)

может быть сведена к системе

$$\dot{y}_i = \widetilde{P}_i(y) + Y_i(y) \quad (\widetilde{P}_i \neq 0, \ i = 1, 2)$$

$$\tag{5}$$

с $\widetilde{P}_1=\widetilde{a}_1y_1^2+\widetilde{b}_1y_1y_2+\widetilde{c}_1y_2^2,\ \widetilde{P}_2=\widetilde{a}_2y_1^3+\widetilde{b}_2y_1^2y_2+\widetilde{c}_2y_1y_2^2+\widetilde{d}_2y_2^3,\ Y_i=\sum_{p_1+p_2=i+2}^{\infty}Y_i^{(p_1,p_2)}y_1^{p_1}y_2^{p_2},$ невозмущенная часть которой является КНКОМ $_{\rm KK}$, т. е. $\widetilde{P}=R_{\gamma}^{[\chi]},\$ а члены возмущения имеют о.с. более высокую чем χ .

Иными словами, система (5) после перегруппировки по о.с. должна иметь вид

$$\dot{y}_i = R_{\gamma,i}^{[\chi]}(y) + \sum_{k=\chi+1}^{\infty} Y_{\gamma,i}^{[k]}(y). \tag{6}$$

У четырех ${\rm KHKOM_{\rm kk}}$ вес и порядок таковы, что возмущение Y может иметь члены, обобщенный порядок которых не превосходит χ . Поэтому будем предполагать, что

$$\begin{array}{l} 1) \ R_{(2,1)}^{[2]} : \ Y_1^{(0,3)} = 0 \ (k=1), \ Y_1^{(1,2)}, Y_1^{(0,4)} = 0 \ (k=2); \\ 3) \ R_{(1,2)}^{[2]} : \ Y_1^{(3,0)}, Y_2^{(4,0)} = 0 \ (k=2); \\ 4) \ R_{(1,2)}^{[3]} : \ Y_1^{(3,0)}, Y_2^{(4,0)} = 0 \ (k=2), \ Y_1^{(2,1)}, Y_1^{(4,0)}, Y_2^{(5,0)}, Y_2^{(3,1)} = 0 \ (k=3); \\ 6) \ R_{(2,3)}^{[4]} : \ Y_1^{(3,0)} = 0 \ (k=4). \end{array}$$

Дифференцируя замену (4) в силу (1) и (5), получаем тождества:

$$P_1(py_1 + qy_2, ry_1 + sy_2) + X_1(py_1 + qy_2, ry_1 + sy_2) = p(\widetilde{P}_1 + Y_1(y_1, y_2)) + q(\widetilde{P}_2 + Y_2(y_1, y_2)),$$

$$P_2(py_1 + qy_2, ry_1 + sy_2) + X_2(py_1 + qy_2, ry_1 + sy_2) = r(\widetilde{P}_1 + Y_1(y_1, y_2)) + s(\widetilde{P}_2 + Y_2(y_1, y_2)).$$

Во втором из них квадратичные члены встречаются только в слагаемом $\,r\widetilde{P}_{1}\,,$ а значит, r=0. Поэтому

$$a_{1}(py_{1} + qy_{2})^{2} + b_{1}s(py_{1} + qy_{2})y_{2} + c_{1}s^{2}y_{2}^{2} + X_{1}(py_{1} + qy_{2}, sy_{2}) =$$

$$= p(\tilde{a}_{1}y_{1}^{2} + \tilde{b}_{1}y_{1}y_{2} + \tilde{c}_{1}y_{2}^{2} + Y_{1}) + q(\tilde{a}_{2}y_{1}^{3} + \tilde{b}_{2}y_{1}^{2}y_{2} + \tilde{c}_{2}y_{1}y_{2}^{2} + \tilde{d}_{2}y_{2}^{3} + Y_{2}),$$

$$a_{2}(py_{1} + qy_{2})^{3} + b_{2}s(py_{1} + qy_{2})^{2}y_{2} + c_{2}s^{2}(py_{1} + qy_{2})y_{2}^{2} + d_{2}s^{3}y_{2}^{3} +$$

$$+X_{2}(py_{1} + qy_{2}, sy_{2}) = s(\tilde{a}_{2}y_{1}^{3} + \tilde{b}_{2}y_{1}^{2}y_{2} + \tilde{c}_{2}y_{1}y_{2}^{2} + \tilde{d}_{2}y_{2}^{3} + Y_{2}) \quad (p, s \neq 0).$$

$$(8)$$

Приравнивая коэффициенты при квадратичных членах в первом уравнении (8) и при кубических во втором, находим формулы для коэффициентов P(y) системы (5):

$$\tilde{a}_1 = a_1 p, \ \tilde{b}_1 = 2a_1 q + b_1 s, \ \tilde{c}_1 = (a_1 q^2 + b_1 q s + c_1 s^2) p^{-1};
\tilde{a}_2 = a_2 p^3 s^{-1}, \ \tilde{b}_2 = (3a_2 q s^{-1} + b_2) p^2, \ \tilde{c}_2 = (3a_2 q^2 s^{-1} + 2b_2 q + c_2 s) p,
\tilde{d}_2 = a_2 q^3 s^{-1} + b_2 q^2 + c_2 q s + d_2 s^2 \quad (p, s \neq 0).$$
(9)

Лемма 1. *Если в системе* (1):

- 1) для $\forall a_1, d_2 \neq 0$, $\forall b_1: a_2, b_2, c_2 = 0$, $c_1 = a_1^{-1}b_1^2/4$, $X_1^{(0,3)} = a_1^{-3}b_1(-2a_1^2d_2 + a_1b_1X_1^{(2,1)} b_1^2X_1^{(3,0)})/4$, $X_1^{(1,2)} = a_1^{-2}b_1(4a_1X_1^{(2,1)} 3b_1X_1^{(3,0)})/4$, $X_1^{(0,4)} = a_1^{-5}b_1(16a_1^4(X_1^{(1,3)} X_2^{(0,4)}) 8a_1^3b_1(X_1^{(2,2)} X_2^{(1,3)}) + 4a_1^2b_1^2(X_1^{(3,1)} X_2^{(2,2)}) 2a_1b_1^3(X_1^{(4,0)} X_2^{(3,1)}) b_1^4X_2^{(4,0)})/32$, то она заменой (4) сводится к системе (5) с $\widetilde{P} = R_{(2,1)}^{[1]}$, в котором $\sigma = \text{sign } d_2$;
- 2) dir $\forall a_1, a_2 \neq 0, \ \forall b_1: \ c_1 = a_1^{-1}b_1^2/4, \ b_2 = 3a_1^{-1}a_2b_1/2, \ c_2 = 3a_1^{-2}a_2b_1^2/4, \ d_2 = a_1^{-3}a_2b_1^3/8,$ то она заменой (4) сводится к системе (5) с $\widetilde{P} = R_{(1,2)}^{[1]}$;
- 3) для $\forall b_1, b_2 \neq 0$, $\forall c_1: a_1, a_2, X_1^{(3,0)}, X_2^{(4,0)} = 0$, $c_2 = 2b_1^{-1}b_2c_1$, $d_2 = b_1^{-2}b_2c_1^2$, то она заменой (4) сводится к системе (5) с $\widetilde{P} = R_{(1,2)}^{[2]}$, в котором $\sigma = \operatorname{sign} b_2$; 4) для $\forall c_1, c_2 \neq 0$, $\forall d_2: a_1, a_2, b_1, b_2, X_1^{(3,0)}, X_1^{(4,0)}, X_1^{(2,1)}, X_2^{(3,1)}, X_2^{(4,0)}, X_2^{(5,0)} = 0$, то она заменой (4) сводится к системе (5) с $\widetilde{P} = R_{(1,2)}^{[3]}$;
- 5) для $\forall b_1, a_2 \neq 0$, $\forall c_1: a_1 = 0$, $b_2 = 3a_2b_1^{-1}c_1$, $c_2 = 3a_2b_1^{-2}c_1^2$, $d_2 = a_2b_1^{-3}c_1^3$, то она заменой (4) сводится к системе (5) с $\widetilde{P} = R_{(2,3)}^{[3]}$;
- 6) для $\forall c_1, b_2 \neq 0, \ \forall c_2: \ a_1, a_2, b_1, X_1^{(3,0)} = 0, \ d_2 = b_2^{-1} c_2^2/4, \ mo$ она заменой (4) сводится к системе (5) с $\widetilde{P} = R_{(2,3)}^{[4]}$, в котором $\sigma = \mathrm{sign}\, b_2$;
- 7) для $\forall c_1, a_2 \neq 0, \ \forall b_2 : \ a_1, b_1 = 0, \ c_2 = a_2^{-1}b_2^2/3, \ d_2 = a_2^{-2}b_2^3/27, \ mo$ она заменой (4) сводится к системе (5) с $\widetilde{P} = R_{(3,4)}^{[5]}$.

Доказательство. 1) Пусть в системе (5) $\widetilde{P}=R_{(2,1)}^{[1]}$, т. е. $\widetilde{a}_1=1,\ \widetilde{a}_2,\widetilde{b}_1,\widetilde{b}_2,\widetilde{c}_1,\widetilde{c}_2=0,\ \widetilde{d}_2=\sigma=\pm 1;\ Y_1^{(0,3)},Y_1^{(1,2)},Y_1^{(0,4)}=0.$ Тогда из (9) получаем равенства: $a_2=0,\ b_2=0,\ c_2=0;\ p=a_1^{-1},\ s=\pm 1/|d_2|^{1/2},\ \sigma=\mathrm{sign}\ \mathrm{d}_2,\ \mathrm{q}=\mp \mathrm{b}_1/(2\mathrm{a}_1|\mathrm{d}_2|^{1/2}),\ \mathrm{r}=0;\ \mathrm{b}_1^2-4\mathrm{a}_1\mathrm{c}_1=0.$

Условия $Y_1^{(0,3)},Y_1^{(1,2)},Y_1^{(0,4)}=0$ из (7_1) для системы (5) накладывают три связи на коэффициенты возмущения $X=(X_1(x),X_2(x))$ системы (1). Действительно, приравнивая коэффициенты при $y_2^3,\ y_1y_2^2$ в (8_1) и при y_2^4 в (8_1) и (8_2) , получаем равенства:

$$\begin{split} q^3X_1^{(3,0)} + q^2sX_1^{(2,1)} + qs^2X_1^{(1,2)} + s^3X_1^{(0,3)} &= q\tilde{d}_2 = \sigma q; \\ 3pq^2X_1^{(3,0)} + 2pqsX_1^{(2,1)} + ps^2X_1^{(1,2)} &= q\tilde{c}_2 = 0; \\ q^4X_1^{(4,0)} + q^3sX_1^{(3,1)} + q^2s^2X_1^{(2,2)} + qs^3X_1^{(1,3)} + s^4X_1^{(0,4)} &= qY_2^{(0,4)}, \\ q^4X_2^{(4,0)} + q^3sX_2^{(3,1)} + q^2s^2X_2^{(2,2)} + qs^3X_2^{(1,3)} + s^4X_2^{(0,4)} &= sY_2^{(0,4)}. \end{split}$$

Подставляя $X_1^{(1,2)}$ из второго равенства в первое и $Y_2^{(0,4)}$ из четвертого в третье, имеем: $-2q^3X_1^{(3,0)}-q^2sX_1^{(2,1)}+s^3X_1^{(0,3)}=\sigma q,\ 3q^2X_1^{(3,0)}+2qsX_1^{(2,1)}+s^2X_1^{(1,2)}=0,\ q^4sX_1^{(4,0)}+q^3s^2X_1^{(3,1)}+q^2s^3X_1^{(2,2)}+qs^4X_1^{(1,3)}+s^5X_1^{(0,4)}-q^5X_2^{(4,0)}-q^4sX_2^{(3,1)}-q^3s^2X_2^{(2,2)}-q^2s^3X_2^{(1,3)}-s^4X_2^{(0,4)}=0.$ Подставляя в эти равенства формулы для p,q,s, получаем:

$$\begin{split} a_1^{-3}b_1^3|d_2|^{-3/2}X_1^{(3,0)}/4 - a_1^{-2}b_1^2|d_2|^{-3/2}X_1^{(2,1)}/4 + |d_2|^{-3/2}X_1^{(0,3)} - \sigma a_1^{-1}b_1|d_2|^{-1/2}/2 &= 0, \\ 3a_1^{-2}b_1^2|d_2|^{-1}X_1^{(3,0)}/4 - a_1^{-1}b_1^2|d_2|^{-1}X_1^{(2,1)} + |d_2|^{-1}X_1^{(1,2)} &= 0, \\ |d_2|^{-5/2}(a_1^{-4}b_1^4X_1^{(4,0)}/16 - a_1^{-3}b_1^3X_1^{(3,1)}/8 + a_1^{-2}b_1^2X_1^{(2,2)}/4 - a_1^{-1}b_1X_1^{(1,3)}/2 + X_1^{(0,4)} + \\ +a_1^{-5}b_1^5X_2^{(4,0)}/32 - a_1^{-4}b_1^4X_2^{(3,1)}/16 + a_1^{-3}b_1^3X_2^{(2,2)}/8 - a_1^{-2}b_1^2X_2^{(1,3)}/4 + a_1^{-1}b_1X_2^{(0,4)}) &= 0. \end{split}$$

Отсюда, производя необходимые упрощения, приходим к равенствам из п.1 леммы.

2) Пусть в системе (5) $\widetilde{P}=R_{(1,2)}^{[1]}$, т.е. $\widetilde{a}_1=1,\ \widetilde{a}_2=1,\ \widetilde{b}_1,\widetilde{b}_2,\widetilde{c}_1,\widetilde{c}_2,\widetilde{d}_2=0$. Дополнительных условий на члены возмущения Y в данном случае нет, так как Y не имеет членов порядка ≥ 1 . Из равенств (9) получим:

$$a_1p = 1$$
, $a_2p^3s^{-1} = 1$, $2a_1q + b_1s = 0$; $a_1q^2 + b_1qs + c_1s^2 = 0$, $3a_2qs^{-1} + b_2 = 0$, $3a_2q^2s^{-1} + 2b_2q + c_2s = 0$, $a_2q^3s^{-1} + b_2q^2 + c_2qs + d_2s^2 = 0$.

Поскольку $p,s\neq 0$, то $a_1,a_2\neq 0$. Из первых трех равенств получим: $p=a_1^{-1},\ s=a_1^{-3}a_2,$ $q=-b_2/(3a_1^3)$. Подставим в оставшиеся равенства формулы для p,q,s: $3a_1^{-1}a_2b_1-2b_2=0,$ $a_1b_2^2-3a_2b_1b_2+9a_2^2c_1=0,\ 3a_2c_2-b_2^2=0,\ 2b_2^3-9a_2b_2c_2+27a_2^2d_2=0.$ Выражая $b_2,\ c_1,\ c_2,$ d_2 получим условия п.2 леммы.

4) Пусть в системе (5) $\widetilde{P}=R_{(1,2)}^{[3]}$, т. е. $\widetilde{c}_1=1,\ \widetilde{c}_2=1,\ \widetilde{a}_1,\widetilde{a}_2,\widetilde{b}_1,\widetilde{b}_2,\widetilde{d}_2=0;\ Y_1^{(3,0)},Y_2^{(4,0)},Y_1^{(2,1)},Y_1^{(4,0)},Y_2^{(5,0)},Y_2^{(3,1)}=0$. Из равенств (9) получим: $a_1,\ a_2,\ b_1,\ b_2=0;\ s=c_1^{-1/3}c_2^{-1/3},p=c_1^{1/3}c_2^{-2/3},\ q=-c_1^{-1/3}c_2^{-4/3}d_2$.

Условия $Y_1^{(3,0)}, Y_2^{(4,0)}, Y_1^{(2,1)}, Y_1^{(4,0)}, Y_2^{(5,0)}, Y_2^{(3,1)} = 0$ из (7_4) для системы (5) накладывают шесть связей на коэффициенты возмущения X системы (1). Действительно, приравнивая коэффициенты при $y_1^3, \ y_1^4, \ y_1^2y_2, \ y_1^5, y_1^3y_2$ в (8_1) и (8_2) , получаем равенства:

$$\begin{split} p^3X_1^{(3,0)} &= pY_1^{(3,0)} = 0; \ p^4X_1^{(4,0)} = pY_1^{(4,0)} + qY_2^{(4,0)} = 0, \ p^4X_2^{(4,0)} = sY_2^{(4,0)} = 0; \\ p^2sX_1^{(2,1)} &+ 3p^2qX_1^{(3,0)} = pY_1^{(2,1)}; \ p^5X_2^{(5,0)} = sY_2^{(5,0)} = 0; \ p^3sX_2^{(3,1)} + 4p^3qX_2^{(4,0)} = sY_2^{(3,1)} = 0. \end{split}$$

Из них имеем: $X_1^{(3,0)}, X_1^{(4,0)}, X_1^{(2,1)}, X_2^{(4,0)}, X_2^{(5,0)}, X_2^{(3,1)} = 0.$

Остальные случаи доказываются аналогично.

 ${f 5^0}$. Если отказаться от квадратично-кубической структуры невозмущенной части системы, то все КНКОМ кк окажутся частными случаями следующих НКОМ:

$$1) \ \ Q_{(2,1)}^{[2]}(y) = (Q_1^{[0,4]}y_2^4 + Q_1^{[2,2]}y_1y_2^2 + Q_1^{[4,0]}y_1^2, \ \ Q_2^{[0,3]}y_2^3 + Q_2^{[2,1]}y_1y_2);$$

2)
$$Q_{(1,2)}^{[1]}(y) = (Q_1^{[0,2]}y_2 + Q_1^{[2,0]}y_1^2, Q_2^{[1,2]}y_1y_2 + Q_2^{[3,0]}y_1^3);$$

3)
$$Q_{(1,2)}^{[2]}(y) = (Q_1^{[1,2]}y_1y_2 + Q_1^{[3,0]}y_1^3, Q_2^{[0,4]}y_2^2 + Q_2^{[2,2]}y_1^2y_2 + Q_2^{[4,0]}y_1^4);$$

4)
$$Q_{(1,2)}^{[3]}(y) = (Q_1^{[0,4]}y_2^2 + Q_1^{[2,2]}y_1^2y_2 + Q_1^{[4,0]}y_1^4, \ Q_2^{[1,4]}y_1y_2^2 + Q_2^{[3,2]}y_1^3y_2 + Q_2^{[5,0]}y_1^5);$$

5)
$$Q_{(2,3)}^{[3]}(y) = (Q_1^{[2,3]}y_1y_2, Q_2^{[0,6]}y_2^2 + Q_2^{[6,0]}y_1^3);$$

$$5) \ Q_{(2,3)}^{[3]}(y) = (Q_1^{[2,3]}y_1y_2, \ Q_2^{[0,6]}y_2^2 + Q_2^{[6,0]}y_1^3);$$

$$6) \ Q_{(2,3)}^{[4]}(y) = (Q_1^{[0,6]}y_2^2 + Q_1^{[6,0]}y_1^3, \ Q_2^{[4,3]}y_1^2y_2);$$

$$7) \ Q_{(3,4)}^{[5]}(y) = (Q_1^{[0,8]}y_2^2, \ Q_2^{[9,0]}y_1^3).$$

7)
$$Q_{(3,4)}^{[5]}(y) = (Q_1^{[0,8]}y_2^2, Q_2^{[9,0]}y_1^3).$$

При этом прежде, чем начинать работать с системами с указанными невозмущенными частями, надо нормализовать сами $Q_{\gamma}^{[\chi]}$, сводя их к различным каноническим формам.

3 Метод резонансных уравнений и ОНФ

Рассмотрим систему

$$\dot{x}_i = P_{\gamma,i}^{[\chi]}(x) + X_i(x) \quad (i = 1, 2), \tag{10}$$

в которой $P_{\gamma}^{[\chi]}$ – произвольный КОМ о.с. χ с весом γ , а возмущение $X_i = \sum_{k=\chi+1}^{\infty} X_{\gamma,i}^{[k]}(x)$. Ее частным случаем является система (6).

Пусть почти тождественная формальная замена

$$x_i = y_i + h_i(y), (11)$$

где $h_i = \sum_{k=1}^{\infty} h_{\gamma,i}^{[k]}(y)$, переводит систему (10) в систему с аналогичной структурой:

$$\dot{y}_i = P_{\gamma,i}^{[\chi]}(y) + Y_i(y) \quad (i = 1, 2).$$
 (12)

Дифференцируя замену (11) в силу систем (10) и (12), получаем тождества:

$$P_{\gamma,i}^{[\chi]}(y+h) + X_i(y+h) = P_{\gamma,i}^{[\chi]}(y) + Y_i(y) + \sum_{i=1}^{2} \partial h_i / \partial y_j (P_{\gamma,j}^{[\chi]}(y) + Y_j(y)).$$

Поскольку $P_{\gamma,i}^{[\chi]}(y+h)-P_{\gamma,i}^{[\chi]}(y)=\sum_{j=1}^2\partial P_{\gamma,i}^{[\chi]}/\partial y_j\ h_j(y)+P_i^*(y,h)$, где P^* содержит члены ряда h как минимум во 2-й степени, эти тождества принимают вид

$$\sum_{i=1}^{2} \left(\frac{\partial h_i}{\partial y_j} P_{\gamma,j}^{[\chi]}(y) - \frac{\partial P_{\gamma,i}^{[\chi]}}{\partial y_j} h_j(y) \right) \equiv -Y_i(y) + X_i(y+h) - \sum_{i=1}^{2} \frac{\partial h_i}{\partial y_j} Y_j(y) + P_i^*(y,h).$$

Выделим в последнем тождестве члены, имеющие обобщенный порядок $k \ge \chi + 1$:

$$\sum_{i=1}^{2} \left(\frac{\partial h_{\gamma,i}^{[k-\chi]}}{\partial y_j} P_{\gamma,j}^{[\chi]}(y) - \frac{\partial P_{\gamma,i}^{[\chi]}}{\partial y_j} h_{\gamma,j}^{[k-\chi]}(y) \right) = \widetilde{Y}_{\gamma,i}^{[k]}(y) - Y_{\gamma,i}^{[k]}(y), \tag{13}$$

где
$$\widetilde{Y}_{\gamma,i}^{[k]} = \{X_i(y+h) + P_i^*(y,h) - \sum_{j=1}^2 \partial h_i / \partial y_j \ Y_j(y)\}_{\gamma}^{[k]}$$
.

КОМ $\widetilde{Y}_{\gamma}^{[k]}$ может содержать лишь квазиоднородные многочлены $h_{\gamma}^{[s]}$ и $Y_{\gamma}^{[s+\chi]}$, у которых $1 \leq s \leq k-\chi-1$. Следовательно, при последовательном по мере возрастания k вычислении $h_{\gamma}^{[k-\chi]}$ и $Y_{\gamma}^{[k]}$ в КОМ $\widetilde{Y}_{\gamma}^{[k]}$ оказываются уже известные величины.

Левая часть (13) является линейным оператором $L_{k-\chi}^P$ (скобкой Ли), переводящим линейное пространство $H_{k-\chi}$ КОМ степени $k-\chi$ в линейное пространство H_k .

В дальнейшем γ остаётся неизменным, поэтому нижний индекс γ у KOM опускаем.

Рассмотрим КОМ $Z^{[k]}$. Вектор показателей степеней q^i (i=1,2) любого слагаемого его i-й компоненты удовлетворяет уравнению $(q^i,\gamma)=k+\gamma_i$.

Пусть k_{γ}^{i} – это число различных векторов q^{i} , удовлетворяющих этому уравнению.

Располагая q^i в лексико-графическом порядке, взаимно-однозначно сопоставим КОМ $Z^{[k]}$ вектор его коэффициентов $Z^{\{k\}}=(Z_1^{\{k\}},\ Z_2^{\{k\}})$ размерности $|k_\gamma|=k_\gamma^1+k_\gamma^2$.

С учетом сказанного выше, система (13) может быть переписана в матричном виде

$$L^{\{k\}}h^{\{k-\chi\}} = \widetilde{Y}^{\{k\}} - Y^{\{k\}} \quad (k \ge \chi + 1), \tag{14}$$

где $L^{\{k\}} = L^{\{k\}}(P_{\gamma}^{[\chi]})$ — постоянная матрица размерности $|k_{\gamma}| \times |(k-\chi)_{\gamma}|$, являющаяся представлением линейного оператора $L_{k-\gamma}^P$.

Предположим, что матрица $L^{\{k\}}$ имеет ранг $r_k = r_k(\chi) = |(k-\chi)_\gamma| - k_\gamma^0$, где $k_\gamma^0 \ge 0$. Выделяя из системы (14) линейную подсистему порядка r_k с ненулевым определителем, однозначно найдем r_k компонент вектора коэффициентов $h^{\{k-\chi\}}$ замены (11), а оставшиеся k_γ^0 свободных компонент произвольным образом зафиксируем. После этого подставим $h^{\{k-\chi\}}$ в оставшиеся уравнения системы (13), получая $n_k = n_k(\chi) = |k_\gamma| - r_k$ линейно независимых линейных уравнений, связывающих компоненты вектора коэффициентов $Y^{\{k\}}$:

$$\langle \alpha_{\mu}^{\{k\}}, Y_1^{\{k\}} \rangle + \langle \beta_{\mu}^{\{k\}}, Y_2^{\{k\}} \rangle = \tilde{c} \ (\mu = \overline{1, n_k}),$$
 (15)

где $\tilde{c} = \langle \alpha_{\mu}^{\{k\}}, \widetilde{Y}_{1}^{\{k\}} \rangle + \langle \beta_{\mu}^{\{k\}}, \widetilde{Y}_{2}^{\{k\}} \rangle$ — известная константа, а n_{k} пар постоянных векторов $\alpha_{\mu}^{\{k\}}, \beta_{\mu}^{\{k\}}$ размерностей $k_{\gamma}^{1}, k_{\gamma}^{2}$ определяются только КОМ $P_{\gamma}^{[\chi]}$ системы (10).

Определение 4. Уравнения (15) называем *резонансными*. Коэффициенты КОМ $Y^{[k]}$ системы (12), входящие хотя бы в одно из резонансных уравнений (15), называем *резонансными*, а остальные – *нерезонансными*. *Резонансными* называем k_{γ}^{0} коэффициентов КОМ $h^{[k-\chi]}$, остающихся свободными при решении системы (14).

Покажем, что резонансные уравнения позволяют установить наличие формальной эквивалентности между любыми двумя системами, имеющими невозмущенную часть $P_{\gamma}^{[\chi]}$, и конструктивно выделить из них наиболее простые системы, называемые обобщенными нормальными формами, указав все их возможные структуры.

Любым n_k различным резонансным коэффициентам $Y^{k,\eta} = Y_{i_\eta}^{[q_1^\eta \gamma_1, q_2^\eta \gamma_2]}$ квазиоднородных многочленов $Y_1^{[k]}, Y_2^{[k]}$, где $\eta = \overline{1, n_k}, \ i_\eta \in \{0,1\}, \ q_1^\eta \gamma_1 + q_2^\eta \gamma_2 - \gamma_{i_\eta} = k$, сопоставим матрицу множителей $\Upsilon^k = \{ \psi_{\mu\eta}^k \}_{\mu,\eta=1}^{n_k}$, элемент $\psi_{\mu\eta}^k$ которой, если $i_\eta = 1$, равен компоненте вектора $\alpha_\mu^{\{k\}}$, являющейся множителем при $Y^{k,\eta}$ в μ -ом уравнении (15), а если $i_\eta = 2$, равен соответствующей компоненте вектора $\beta_\mu^{\{k\}}$.

Определение 5. Для $\forall k \geq 2$ семейство резонансных коэффициентов $\mathcal{Y}^k = \{Y^{k,\eta}\}_{\eta=1}^{n_k}$ называем резонансным k-набором, если $\det \Upsilon^k \neq 0$. Для любых $\mathcal{Y}^2, \mathcal{Y}^3, \ldots$ семейство $\mathcal{Y} = \bigcup_{k=2}^{\infty} \mathcal{Y}^k$ называем резонансным набором.

Использование для $\forall k \geq 2$ резонансных k-наборов \mathcal{Y}^k позволяет однозначно разрешать резонансные уравнения (15) относительно коэффициентов любого из них.

Определение 6. Систему (12) называем *обобщенной нормальной формой (ОНФ)*, если при $\forall k \geq 2$ все коэффициенты КОМ $Y_1^{[k]}, Y_2^{[k]}$ как резонансные, так и не резонансные, равны нулю, за исключением коэффициентов из какого-либо резонансного k-набора \mathcal{Y}^k , имеющих произвольные значения.

Тем самым, структуру любой ОНФ порождает какой-либо резонансный набор \mathcal{Y} .

Знание резонансных уравнений (15) делает очевидными следующие утверждения.

Теорема 1. Для того чтобы система (12) была формально эквивалентна исходной системе (10), необходимо и достаточно, чтобы для $\forall k \geq 2$ коэффициенты ее KOM $Y_1^{[k]}, Y_2^{[k]}$ удовлетворяли резонансным уравнениям (15).

Теорема 2. Для любой системы (10) и для любого выбранного по её невозмущенной части резонансного набора $\mathcal Y$ существует и единственна почти тождественная замена (11) с заранее произвольным образом зафиксированными резонансными коэффициентами, преобразующая (10) в $OH\Phi$ (12), структура которой порождена $\mathcal Y$.

4 ОНФ систем с ${ m R}^{[2]}_{(2,1)}$ в невозмущенной части.

4.1 Получение связующей системы

Рассмотрим систему (10) с канонической невозмущенной частью $R_{(2,1)}^{[2]}=(x_1^2,x_2^3)$:

$$\dot{x}_1 = x_1^2 + \sum_{k=3}^{\infty} X_1^{[k]}(x), \quad \dot{x}_2 = x_2^3 + \sum_{k=3}^{\infty} X_2^{[k]}(x), \tag{16}$$

где в возмущении КОМ $X_i^{[k]} = \sum_{2q_1+q_2=k+\gamma_i} X_i^{[2q_1,q_2]} x_1^{q_1} x_2^{q_2}$.

Замечание 1. Вообще говоря, $R_{(2,1)}^{[2]} = \sigma(x_1^2, x_2^3)$, но при $\sigma = -1$ можно сделать замену времени $t = -\tau$ и получить систему (16), возмущение в которой сменит знак.

Пусть формальная почти тождественная замена

$$x_i = y_i + h_i(y) \quad (i = 1, 2),$$
 (17)

где $h_i(y)=\sum_{k=3}^\infty h_i^{[k-2]}(y), \ h_i^{[k-2]}=\sum_{2q_1+q_2=k+\gamma_i-2} h_i^{[2q_1,q_2]}y_1^{q_1}y_2^{q_2}$ переводит (16) в систему:

$$\dot{y}_1 = y_1^2 + \sum_{k=3}^{\infty} Y_1^{[k]}(y), \quad \dot{y}_2 = y_2^3 + \sum_{k=3}^{\infty} Y_2^{[k]}(y),$$
 (18)

где возмущение $Y_i^{[k]} = \sum_{2q_1+q_2=k+\gamma_i} Y_i^{[2q_1,q_2]} y_1^{q_1} y_2^{q_2}$.

Тождества (13) с $\chi=2$ и $\gamma=(2,1)$ для систем (16), (18) и замены (17) имеют вид:

$$\frac{\partial h_1^{[k-2]}}{\partial y_1}y_1^2 + \frac{\partial h_1^{[k-2]}}{\partial y_2}y_2^3 - 2y_1h_1^{[k-2]} = \widetilde{Y}_1^{[k]} - Y_1^{[k]}, \quad \frac{\partial h_2^{[k-2]}}{\partial y_1}y_1^2 + \frac{\partial h_2^{[k-2]}}{\partial y_2}y_2^3 - 3y_2^2h_2^{[k-2]} = \widetilde{Y}_2^{[k]} - Y_2^{[k]},$$

где $\widetilde{Y}_i^{[k]} \; (i=1,2)\;$ находится по формуле, указанной в (13).

Приравняв в них коэффициенты при $y_1^{q_1}y_2^{q_2}$, получим линейную связующую систему:

$$(q_1 - 3)h_1^{[2q_1 - 2, q_2]} + (q_2 - 2)h_1^{[2q_1, q_2 - 2]} = \widehat{Y}_1^{[2q_1, q_2]} \quad (2q_1 + q_2 = k + 2),$$

$$(q_1 - 1)h_2^{[2q_1 - 2, q_2]} + (q_2 - 5)h_2^{[2q_1, q_2 - 2]} = \widehat{Y}_2^{[2q_1, q_2]} \quad (2q_1 + q_2 = k + 1),$$
(19)

в которой $\widehat{Y}_i^{[2q_1,q_2]} = \widetilde{Y}_i^{[2q_1,q_2]} - Y_i^{[2q_1,q_2]}$.

Положим k=2r+v $(r\in\mathbb{N},\ v=1,2),\ q_1=l$ $(l\in\mathbb{Z}_+),$ тогда в $\widehat{Y}_i^{[2q_1,q_2]}$ индекс $q_2 = 2(r-l) + v + \gamma_i \ge 0$ и связующая система (19) перепишется в виде:

$$\begin{aligned} &(l-3)h_1^{[2l-2,2(r-l)+2+v]} + (2(r-l)+v)h_1^{[2l,2(r-l)+v]} = \widehat{Y}_1^{[2l,2(r-l)+2+v]} & (l=\overline{0,r+v}), \\ &(l-1)h_2^{[2l-2,2(r-l)+1+v]} + (2(r-l)+v-4)h_2^{[2l,2(r-l)-1+v]} = \widehat{Y}_2^{[2l,2(r-l)+1+v]} & (l=\overline{0,r+v}), \end{aligned}$$

4.2 Случай r=1 (k=3,4)

 $\mathbf{1^0}$. k=3 (v=1). Система (20) имеет вид: $3h_1^{[0,3]}=\widehat{Y}_1^{[0,5]}, -2h_1^{[0,3]}+h_1^{[2,1]}=\widehat{Y}_1^{[2,3]}, -h_1^{[2,1]}=\widehat{Y}_1^{[4,1]}, -h_2^{[0,2]}=\widehat{Y}_2^{[0,4]}, -3h_2^{[2,0]}=\widehat{Y}_2^{[2,2]}, h_2^{[2,0]}=\widehat{Y}_2^{[4,0]}$ и дает две резонансные связи:

$$2\widehat{Y}_{1}^{[0,5]} + 3\widehat{Y}_{1}^{[2,3]} + 3\widehat{Y}_{1}^{[4,1]} = 0, \quad 3\widehat{Y}_{2}^{[4,0]} + \widehat{Y}_{2}^{[2,2]} = 0. \tag{21}$$

 $\mathbf{2^0}$. k=4 (v=2). Система (20) имеет вид: $4h_1^{[0,4]}=\widehat{Y}_1^{[0,6]}, -2h_1^{[0,4]}+2h_1^{[2,2]}=\widehat{Y}_1^{[2,4]}, -h_1^{[2,2]}=\widehat{Y}_1^{[4,2]}, 0=\widehat{Y}_1^{[6,0]}, 0=\widehat{Y}_2^{[0,5]}, -2h_2^{[2,1]}=\widehat{Y}_2^{[2,3]}, h_2^{[2,1]}=\widehat{Y}_2^{[4,1]}$ и дает четыре резонансные связи:

$$\widehat{Y}_{1}^{[0,6]} + 2\widehat{Y}_{1}^{[2,4]} + 4\widehat{Y}_{1}^{[4,2]} = 0, \quad \widehat{Y}_{1}^{[6,0]} = 0, \quad \widehat{Y}_{2}^{[0,5]} = 0, \quad \widehat{Y}_{2}^{[2,3]} + 2\widehat{Y}_{2}^{[4,1]} = 0. \tag{22}$$

4.3 Случай r > 2 (k > 5)

 1^{0} . Вводя новые обозначения, запишем (20_{1}) в следующем виде:

$$a_l^v h_{1,l-1}^v + b_l^v h_{1,l}^v = Y_{1,l}^v \quad (l = \overline{0, r+v}),$$
 (23)

где
$$a_l^v=l-3,\ b_l^v=2(r-l)+v,\ h_{1,l}^v=h_1^{[2l,2(r-l)+v]}\ (l=\overline{0,r+v-1}),\ Y_{1,l}^v=\widehat{Y}_1^{[2l,2(r-l)+2+v]}.$$

Решая систему (23) методом Гаусса, аннулируем элементы b^v_{r+v-1},\dots,b^v_3 в матрице

$$\begin{pmatrix} b_0^v & 0 & \dots & 0 \\ a_1^v & b_1^v & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & a_{r+v-1}^v & b_{r+v-1}^v \\ 0 & \dots & 0 & a_{r+v}^v \end{pmatrix}_{(r+v+1)\times(r+v)},$$
получая $\overline{Y}_{1,l}^v$ вместо $Y_{1,l}^v$ по рекуррентным формулам: $\overline{Y}_{1,r+v}^v = Y_{1,r+v}^v, \ \overline{Y}_{1,l}^v = Y_{1,l}^v - \frac{\overline{Y}_{1,l+1}^v b_l^v}{a_{l+1}^v} \quad (l = \overline{r+v-1,3}).$

мулам:
$$\overline{Y}_{1,r+v}^v = Y_{1,r+v}^v$$
, $\overline{Y}_{1,l}^v = Y_{1,l}^v - \frac{\overline{Y}_{1,l+1}^v b_l^v}{a_{l+1}^v}$ $(l = \overline{r+v-1,3})$.

Поскольку $a_3^v=0$, четвертое уравнение системы (l=3), полученной из (23) имеет вид: $0\cdot h_{1,2}^v+0\cdot h_{1,3}^v=\overline{Y}_{1,3}^v$, где $\overline{Y}_{1,3}^v=\sum_{m=3}^{r+v}\alpha_{1,m}^vY_{1,m}^v$ и $\alpha_{1,m}^v=(-1)^{m-1}\prod_{j=3}^{m-1}(b_j^v/a_{j+1}^v)$.

В результате находим первую резонансную связь:

$$\sum_{m=3}^{r+v} \alpha_{1,m}^v \widehat{Y}_1^{[2m,2(r-m+1)+v]} = 0, \quad \alpha_{1,m}^v = (-1)^{m-1} \prod_{j=3}^{m-1} \frac{2(r-j)+v}{j-2}.$$
 (24)

А оставшаяся подсистема 3×3 однозначно разрешима, так как $h_{1,2}^v$ не имел ограничений.

 2^0 . Вводя новые обозначения, запишем (20_2) в следующем виде:

$$a_l^v h_{2,l-1}^v + b_l^v h_{2,l}^v = Y_{2,l}^v \quad (l = \overline{0, r+1}),$$
 (25)

где
$$a_l^v=l-1,\ b_l^v=2(r-l)+v-4,\ h_{2,l}^v=h_2^{[2l,2(r-l)-1+v]}\ (l=\overline{0,r}),\ Y_{2,l}^v=\widehat{Y}_2^{[2l,2(r-l)+1+v]}.$$

Для решения системы (25) методом Гаусса аннулируем элементы b_r^v,\dots,b_1^v матрицы

$$\begin{pmatrix} b_0^v & 0 & \dots & 0 \\ a_1^v & b_1^v & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & a_r^v & b_r^v \\ 0 & \dots & 0 & a_{r+1}^v \end{pmatrix}_{(r+2)\times(r+1)},$$
 получая $\overline{Y}_{2,l}^v$ вместо $Y_{2,l}^v$ по рекуррентным формулам:
$$\overline{Y}_{2,r+1}^v = Y_{2,r+1}^v, \ \overline{Y}_{2,l}^v = Y_{2,l}^v - \frac{\overline{Y}_{2,l+1}^v b_l^v}{a_{l+1}^v} \quad (l = \overline{r,1}).$$

Поскольку $a_1^v=0$, второе уравнение (l=1) системы, полученной из (25) принимает вид: $0\cdot h_{2,0}^v+0\cdot h_{2,1}^v=\overline{Y}_{2,1}^v$, где $\overline{Y}_{2,1}^v=\sum_{m=1}^{r+1}\beta_{2,m}^vY_{2,m}^v$ и $\beta_{2,m}^v=(-1)^{m-1}\prod_{j=1}^{m-1}(b_j^v/a_{j+1}^v)$.

В результате находим вторую резонансную связь:

$$\sum_{m=1}^{r+1} \beta_{2,m}^{v} \widehat{Y}_{2}^{[2l,2(r-l)+1+v]} = 0, \quad \beta_{2,m}^{v} = (-1)^{m-1} \prod_{j=1}^{m-1} \frac{2(r-j)+v-4}{j}.$$
 (26)

4.4 Полученные результаты

Возвращаясь к обозначениям, введенным для системы (19), с учетом (21), (22), (24), (26) заключаем, что коэффициенты КОМ $Y^{[k]}$ связующей системы (20) удовлетворяют следующим резонансным уравнениям:

$$2Y_1^{[0,5]} + 3Y_1^{[2,3]} + 3Y_1^{[4,1]} = \tilde{c}, \ Y_2^{[2,2]} + 3Y_2^{[4,0]} = \tilde{c} \quad (k=3);$$
(27)

$$Y_1^{[0,6]} + 2Y_1^{[2,4]} + 4Y_1^{[4,2]} = \tilde{c}, \ Y_1^{[6,0]} = \tilde{c}, \ Y_2^{[0,5]} = \tilde{c}, \ Y_2^{[2,3]} + 2Y_2^{[4,1]} = \tilde{c} \quad (k=4); \tag{28}$$

$$\sum_{m=3}^{r+1} \alpha_{1,m}^1 Y_1^{[2m,2(r-m)+3]} = \tilde{c}, \ \sum_{m=1}^{r+1} \beta_{2,m}^1 Y_2^{[2m,2(r-m)+2]} = \tilde{c} \quad (k = 2r+1, r \ge 2);$$
 (29)

$$\sum_{m=3}^{r+1} \alpha_{1,m}^2 Y_1^{[2m,2(r-m)+4]} = \tilde{c}, \ \sum_{m=1}^{r-1} \beta_{2,m}^2 Y_2^{[2m,2(r-m)+3]} = \tilde{c} \quad (k=2r+2,r\geq 2), \tag{30}$$

где $\alpha_{1,m}^1 = (-1)^{m-1} \prod_{j=3}^{m-1} (2(r-j)+1)(j-2)^{-1} \neq 0$, $\beta_{2,m}^1 = (-1)^{m-1} \prod_{j=1}^{m-1} (2(r-j)-3)/j \neq 0$; $\alpha_{1,m}^2 = (-1)^{m-1} \prod_{j=3}^{m-1} (2(r-j)+2)(j-2)^{-1} \neq 0$, $\beta_{2,m}^2 = (-1)^{m-1} \prod_{j=1}^{m-1} (2(r-j)-2)/j \neq 0$ ($\alpha_{1,r+2}^2, \beta_{2,r}^2, \beta_{2,r+1}^2 = 0$).

Теорема 3. Для того чтобы система (18) была формально эквивалентна исходной системе (16), необходимо и достаточно, чтобы коэффициенты $KOM Y^{[k]}$ удовлетворяли:

- 1) при k=2r+1 двум уравнениям (27) (r=1) или двум уравнениям (29) (r>2);
- 2) при k = 2r + 2 четырем уравнениям (28) (r = 1) или двум уравнениям (30) (r > 2).

Следствие 1. $B KOM Y^{[k]}$ системы (18):

- 1) при k=2r+1, если r=1, то коэффициенты $Y_1^{[0,5]},\ Y_1^{[2,3]},\ Y_1^{[4,1]},\ Y_2^{[2,2]},\ Y_2^{[4,0]}$ резонансные, $Y_2^{[0,4]}$ нерезонансный, а если $r\geq 2$, то коэффициенты $Y_1^{[2m,2(r-m)+3]}$ ($m=\overline{3,r+1}$) и $Y_2^{[2m,2(r-m)+2]}$ ($m=\overline{1,r+1}$) резонансные, $Y_1^{[0,2r+3]},\ Y_1^{[2,2r+1]},\ Y_1^{[4,2r-1]},$ $Y_{2}^{[0,2r+2]}$ – нерезонансные;
- 2) при k=2r+2, если r=1, то все коэффициенты KOM $Y^{[4]}$ резонансные, а если $r\geq 2$, то $Y_1^{[2m,2(r-m)+4]}$ ($m=\overline{3,r+1}$) и $Y_2^{[2m,2(r-m)+3]}$ ($m=\overline{1,r-1}$) резонансные, а $Y_1^{[0,2r+4]}$, $Y_1^{[2,2r+2]}$, $Y_1^{[4,2r]}$, $Y_1^{[2r+4,0]}$, $Y_2^{[0,2r+3]}$, $Y_2^{[2r,3]}$, $Y_2^{[2r+2,1]}$ нерезонансные;
- 3) все коэффициенты замены (17) нерезонансные и определяются однозначно.

Для $\forall k \geq 3$ положим $n_k = \{4 \text{ при } k = 4; 2 - \text{при остальных } k\}.$

Следствие 2. В системе (18) n_k различных резонансных коэффициентов КОМ $Y^{[k]}$ образуют резонансный k-набор \mathcal{Y}^k , если это:

1) \mathcal{Y}^3 : один из $Y_1^{[0,5]}$, $Y_1^{[2,3]}$, $Y_1^{[4,1]}$ и один из $Y_2^{[2,2]}$, $Y_2^{[4,0]}$;

2) \mathcal{Y}^4 : $Y_1^{[6,0]}$, $Y_2^{[0,5]}$, один из $Y_1^{[0,6]}$, $Y_1^{[2,4]}$, $Y_1^{[4,2]}$ и $Y_2^{[2,3]}$ или $Y_2^{[4,1]}$;

3) \mathcal{Y}^{2r+1} $(r \geq 2)$: $Y_1^{[2l_3,2(r-l_3)+3]}$ $(l_3 \in \{3,\ldots,r+1\})$ и $Y_2^{[2l_7,2(r-l_7)+2]}$ $(l_7 \in \{1,\ldots,r+1\})$;

4) \mathcal{Y}^{2r+2} $(r \geq 2)$: $Y_1^{[2l_4,2(r-l_4)+4]}$ $(l_4 \in \{3,\ldots,r+1\})$ и $Y_2^{[2l_8,2(r-l_8)+3]}$ $(l_8 \in \{1,\ldots,r-1\})$.

Таким образом, система (18) по определению является ОНФ, если для каждого k > 3все коэффициенты её КОМ $Y^{[k]}$ равны нулю, кроме n_k штук, принадлежащих любому резонансному k-набору, описанному в следствии 2, и имеющих произвольные значения.

Следствие 3. Для системы (18) произвольный резонансный набор $\mathcal{Y} = \bigcup_{k=3}^{\infty} \mathcal{Y}^k$ имеет вид: $\{Y_1^{[2l_1,5-2l_1]},Y_1^{[6,0]},Y_1^{[2l_2,6-2l_2]},Y_1^{[2l_3,2(r-l_3)+3]},Y_1^{[2l_4,2(r-l_4)+4]},Y_2^{[2l_5,2(2-l_5)]},Y_2^{[0,5]},Y_2^{[2l_6,5-2l_6]},$ $Y_{2}^{[2l_{7},2(r-l_{7})+2]}, Y_{2}^{[2l_{8},2(r-l_{8})+3]}\}, \ \ e \partial e \ \ l_{1}, l_{2} \in \{0,1,2\}, \ \ l_{3}, l_{4} \in \{3,\ldots,r+1\}, \ \ l_{5}, l_{6} \in \{1,2\}, l_{7} \in \{1,\ldots,r+1\}, \ \ l_{8} \in \{1,\ldots,r-1\}, \ \ r \geq 2.$

Теорема 4. Для любой системы (16) и для любого выбранного по её невозмущенной части резонансного набора $\mathcal Y$ из следствия 3 существует и единственна почти тождественная замена (17), преобразующая систему (16) в $OH\Phi$ (18):

$$\begin{split} \dot{y}_1 &= y_1^2 + Y_1^{[2l_1,5-2l_1]} y_1^{l_1} y_2^{5-2l_1} + Y_1^{[6,0]} y_1^3 + Y_1^{[2l_2,6-2l_2]} y_1^{l_2} y_2^{6-2l_2} + \\ &+ \sum_{r=2}^{\infty} \left(Y_1^{[2l_3,2(r-l_3)+3]} y_1^{l_3} y_2^{2(r-l_3)+3} + Y_1^{[2l_4,2(r-l_4)+4]} y_1^{l_4} y_2^{2(r-l_4)+4} \right), \\ \dot{y}_2 &= y_2^3 + Y_2^{[2l_5,2(2-l_5)]} y_1^{l_5} y_2^{2(2-l_5)} + Y_2^{[0,5]} y_2^5 + Y_2^{[2l_6,5-2l_6]} y_1^{l_6} y_2^{5-2l_6} + \\ &+ \sum_{r=2}^{\infty} \left(Y_2^{[2l_7,2(r-l_7)+2]} y_1^{l_7} y_2^{2(r-l_7)+2} + Y_2^{[2l_8,2(r-l_8)+3]} y_1^{l_8} y_2^{2(r-l_8)+3} \right). \end{split}$$

5 OHФ систем с $\mathbf{R}^{[2]}_{(1.2)}$ в невозмущенной части

5.1 Получение связующей системы

Рассмотрим систему (10) с канонической невозмущенной частью $R_{(1,2)}^{[2]}=(x_1x_2,x_1^2x_2)$:

$$\dot{x}_1 = x_1 x_2 + \sum_{k=3}^{\infty} X_1^{[k]}(x), \quad \dot{x}_2 = x_1^2 x_2 + \sum_{k=3}^{\infty} X_2^{[k]}(x),$$
 (31)

где в возмущении КОМ $X_i^{[k]} = \sum_{q_1+2q_2=k+\gamma_i} X_i^{[q_1,2q_2]} x_1^{q_1} x_2^{q_2}$.

Замечание 2. Вообще говоря, $R_{(1,2)}^{[2]} = \sigma(x_1x_2, x_1^2x_2)$, но при $\sigma = -1$ можно сделать замену времени $t = -\tau$ и получить систему (31), возмущение в которой сменит знак.

Пусть формальная почти тождественная замена (17) переводит (31) в систему:

$$\dot{y}_1 = y_1 y_2 + \sum_{k=3}^{\infty} Y_1^{[k]}(y), \quad \dot{y}_2 = y_1^2 y_2 + \sum_{k=3}^{\infty} Y_2^{[k]}(y),$$
 (32)

где возмущение $Y_i^{[k]} = \sum_{q_1+2q_2=k+\gamma_i} Y_i^{[q_1,2q_2]} y_1^{q_1} y_2^{q_2}.$

Тождества (13) с $\chi = 2$, $\gamma = (1,2)$ для систем (31), (32) и замены (17) имеют вид:

$$\frac{\partial h_1^{[k-2]}}{\partial y_1} y_1 y_2 + \frac{\partial h_1^{[k-2]}}{\partial y_2} y_1^2 y_2 - y_2 h_1^{[k-2]} - y_1 h_2^{[k-2]} = \widetilde{Y}_1^{[k]} - Y_1^{[k]},$$

$$\frac{\partial h_2^{[k-2]}}{\partial y_1} y_1 y_2 + \frac{\partial h_2^{[k-2]}}{\partial y_2} y_1^2 y_2 - 2y_1 y_2 h_1^{[k-2]} - y_1^2 h_2^{[k-2]} = \widetilde{Y}_2^{[k]} - Y_2^{[k]},$$

где $\widetilde{Y}_i^{[k]} \; (i=1,2)\;$ находится по формуле, указанной в (13).

Приравнивая коэффициенты при $y_1^{q_1}y_2^{q_2}$, получаем линейную связующую систему:

$$(q_1 - 1)h_1^{[q_1, 2(q_2 - 1)]} + q_2h_1^{[q_1 - 2, 2q_2]} - h_2^{[q_1 - 1, 2q_2]} = \widehat{Y}_1^{[q_1, 2q_2]} \qquad (q_1 + 2q_2 = k + 1),$$

$$q_1h_2^{[q_1, 2(q_2 - 1)]} + (q_2 - 1)h_2^{[q_1 - 2, 2q_2]} - 2h_1^{[q_1 - 1, 2(q_2 - 1)]} = \widehat{Y}_2^{[q_1, 2q_2]} \qquad (q_1 + 2q_2 = k + 2),$$

$$(33)$$

в которой $\widehat{Y}_i^{[q_1,2q_2]} = \widetilde{Y}_i^{[q_1,2q_2]} - Y_i^{[q_1,2q_2]}$

Положим k=2r+v $(r\in\mathbb{N},\ v=1,2),\ q_2=r-l+1$ $(l\le r+1),$ тогда в $\widehat{Y}_i^{[q_1,2q_2]}$ индекс $q_1=2l+v+\gamma_i-2\ge 0$ и связующая система (33) перепишется в виде:

$$(2l+v-2)h_{1}^{[2l+v-1,\,2(r-l)]} + (r-l+1)h_{1}^{[2l+v-3,\,2(r-l+1)]} - h_{2}^{[2l+v-2,\,2(r-l+1)]} =$$

$$= \widehat{Y}_{1}^{[2l+v-1,\,2(r-l+1)]} \quad (l=\overline{0,r+1}),$$

$$(2l+v)h_{2}^{[2l+v,\,2(r-l)]} + (r-l)h_{2}^{[2l+v-2,\,2(r-l+1)]} - 2h_{1}^{[2l+v-1,\,2(r-l)]} =$$

$$= \widehat{Y}_{2}^{[2l+v,\,2(r-l+1)]} \quad (l=\overline{-v+1,r+1}).$$

$$(34)$$

или

$$(2l+v-2)h_{1,l+1}^v + (r-l+1)h_{1,l}^v - h_{2,l}^v = Y_{1,l}^v \quad (l = \overline{0,r+1}),$$

$$(2l+v)h_{2,l+1}^v + (r-l)h_{2,l}^v - 2h_{1,l+1}^v = Y_{2,l}^v \quad (l = \overline{-v+1,r+1}),$$
(35)

где
$$h_{1,l}^v = h_1^{[2l+v-3,2(r-l+1)]}$$
 $(l = \overline{1,r+1}), Y_{1,l}^v = \widehat{Y}_1^{[2l+v-1,2(r-l+1)]}$ $(l = \overline{0,r+1}), h_{2,l}^v = h_2^{[2l+v-2,2(r-l+1)]}$ $(l = \overline{-v+2,r+1}), Y_{2,l}^v = \widehat{Y}_2^{[2l+v,2(r-l+1)]}$ $(l = \overline{-v+1,r+1}).$

5.2 Условия совместности связующей системы

 ${f 1^0}.~~{f v}={f 1}~({f k}={f 2r}+{f 1}).$ Система (35) принимает вид $(l=\overline{0,r+1}):$

$$(r-l+1) h_{1,l}^1 + (2l-1)h_{1,l+1}^1 - h_{2,l}^1 = Y_{1,l}^1, \quad (r-l)h_{2,l}^1 + (2l+1)h_{2,l+1}^1 - 2h_{1,l+1}^1 = Y_{2,l}^1.$$
 (351)

В обеих подсистемах число уравнений на единицу больше числа неизвестных. Поэтому выделим из (35^1) оба уравнения с l=r+1: $-h^1_{2,r+1}=Y^1_{1,r+1}$, $-h^1_{2,r+1}=Y^1_{2,r+1}$. Они фиксируют коэффициент $h^1_{2,r+1}$ и дают первую резонансную связь:

$$\widehat{Y}_{1}^{[2(r+1),0]} - \widehat{Y}_{2}^{[2r+3,0]} = 0. \tag{36}$$

Коэффициент $h^1_{2,r+1}$ встречается еще только один раз в подсистеме (35^1_2) при l=r: $(2r+1)h^1_{2,r+1}-2h^1_{1,r+1}=Y^1_{2,r}$. Перенесем его вправо и обозначим $\widetilde{Y}^1_{2,r}=Y^1_{2,r}+(2r+1)Y^1_{2,r+1}$.

Подставив $h_{1,m}^1$ $(m=\overline{0,r})$ из оставшихся уравнений (35_2^1) в (35_1^1) , получим систему

$$a_l^1 h_{2,l-1}^1 + b_l^1 h_{2,l}^1 + c_l^1 h_{2,l+1}^1 = Y_{0,l}^1 \quad (l = \overline{0,r}),$$
 (37)

в которой $a_l^1=(r-l+1)^2\ (l=\overline{2,r}),\ b_l^1=(2l-1)(2(r-l)+1)-2\ (l=\overline{1,r}),\ c_l^1=4l^2-1\ (l=\overline{0,r-1});\ Y_{0,l}^1=2Y_{1,l}^1+(r-l+1)Y_{2,l-1}^1+(2l-1)Y_{2,l}^1\ (l=\overline{0,r-1}),\ Y_{0,r}^1=2Y_{1,r}^1+Y_{2,r-1}^1+(2r-1)\tilde{Y}_{2,r}^1.$

Для решения системы (37) будем методом Гаусса аннулировать элементы $c_{r-1}^1, c_{r-2}^1, \dots$

матрицы $\begin{pmatrix} c_0^1 & 0 & 0 & \dots & 0 \\ b_1^1 & c_1^1 & 0 & \dots & 0 \\ a_2^1 & b_2^1 & c_2^1 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & a_{r-1}^1 & b_{r-1}^1 & c_{r-1}^1 \\ 0 & \dots & 0 & a_r^1 & b_r^1 \end{pmatrix}_{(r+1)\times r}, \quad \text{получая элементы } d_l^1 \text{ вместо } b_l^1 \text{ и } \overline{Y}_{0,l}^1 \text{ вме-}$

сто $Y_{0,l}^1,$ пока $d_{l+1}^1 \neq 0 \ (l \geq 0),$ по рекуррентным формулам:

$$d_r^1 = b_r^1, \ \overline{Y}_{0,r}^1 = Y_{0,r}^1; \quad d_l^1 = b_l^1 - \frac{a_{l+1}^1 c_l^1}{d_{l+1}^1}, \ \overline{Y}_{0,l}^1 = Y_{0,l}^1 - \frac{\overline{Y}_{0,l+1}^1 c_l^1}{d_{l+1}^1} \quad (l = r - 1, r - 2, \ldots). \quad (38)$$

Лемма 2. Для элементов d_1^1 из (38) верна следующая прямая формула:

$$d_l^1 = (2l - 3)(r - l + 1) \neq 0 \quad (l = \overline{r, 0}). \tag{39}$$

Доказательство. В (38) $d_r^1=2r-3$, что совпадает с d_r^1 из (39) и дает базу индукции. Пусть для $\forall l=\overline{r-1},1$ верна формула (39). Тогда согласно (38) имеем $d_{l-1}^1=b_{l-1}^1-a_l^1c_{l-1}^1(d_l^1)^{-1}=(2l-3)(2r-2l+3)-2-(r-l+1)(2l-1)=(2l-5)(r-l+2)$.

В результате первое уравнение (l=0) системы, полученной из (37), принимает вид: $0 \cdot h_{2,1}^1 = \overline{Y}_{0,0}^1$, где $\overline{Y}_{0,0}^1 = \sum_{m=0}^r \theta_{2,m}^1 Y_{0,m}^1$ с $\theta_{2,m}^1 = (-1)^m \prod_{j=1}^m (c_{j-1}^1/d_j^1)$. Учитывая (37) и (39), получаем:

$$\theta_{2,m}^1 = (-1)^m \prod_{j=1}^m \frac{2j-1}{r-j+1} \neq 0 \quad (m = \overline{0,r}).$$

В обозначениях (35) имеем: $\sum_{m=0}^{r}\theta_{2,m}^{1}Y_{0,m}^{1}=\sum_{m=0}^{r-1}\theta_{2,m}^{1}(2Y_{1,m}^{1}+(r-m+1)Y_{2,m-1}^{1}+(2m-1)Y_{2,m}^{1})+\theta_{2,r}^{1}(2Y_{1,r}^{1}+Y_{2,r-1}^{1}+(2r-1)\widetilde{Y}_{2,r}^{1})=2\sum_{m=0}^{r}\theta_{2,m}^{1}Y_{1,m}^{1}+\sum_{m=0}^{r-1}((2m-1)\theta_{2,m}^{1}+(r-m)\theta_{2,m+1}^{1})Y_{2,m}^{1}+(2r-1)\theta_{2,r}^{1}Y_{2,r}^{1}+(4r^{2}-1)\theta_{2,r}^{1}Y_{2,r+1}^{1}$ и $(2m-1)\theta_{2,m}^{1}+(r-m)\theta_{2,m+1}^{1}=-2\theta_{2,m}^{1}$.

В результате уравнение $\overline{Y}_{0,0}^1=0$ дает для (34) с v=1 вторую резонансную связь:

$$\sum_{m=0}^{r} \alpha_{2,m}^{1} \widehat{Y}_{1}^{[2m,2(r-m+1)]} + \sum_{m=0}^{r+1} \beta_{2,m}^{1} \widehat{Y}_{2}^{[2m+1,2(r-m+1)]} = 0, \tag{40}$$

где $\alpha_{2,m}^1, -\beta_{2,m}^1 = 2\theta_{2,m}^1$ $(m = \overline{0,r-1}), \ \alpha_{2,r}^1 = 2\theta_{2,r}^1, \ \beta_{2,r}^1 = (2r-1)\theta_{2,r}^1, \ \beta_{2,r+1}^1 = (4r^2-1)\theta_{2,r}^1.$ $\mathbf{2^0}. \ \mathbf{v} = \mathbf{2} \ (\mathbf{k} = \mathbf{2r} + \mathbf{2}).$ Система (35) принимает вид:

$$(r-l+1)h_{1,l}^2 + 2l \cdot h_{1,l+1}^2 - h_{2,l}^2 = Y_{1,l}^2 \quad (l = \overline{0,r+1}),$$

$$(r-l)h_{2,l}^2 + (2l+2)h_{2,l+1}^2 - 2h_{1,l+1}^2 = Y_{2,l}^2 \quad (l = \overline{-1,r+1}).$$

$$(35^2)$$

Подставляя $h_{2,l}^2$ и $h_{2,l+1}^2$ из системы (35_1^2) в (35_2^2) , получаем систему:

$$a_l^2 h_{1,l}^2 + b_l^2 h_{1,l+1}^2 + c_l^2 h_{1,l+2}^2 = Y_{0,l}^2 \quad (l = \overline{-1, r+1}),$$
 (41)

в которой $a_l^2=(r-l)(r-l+1)$ $(l=\overline{1,r+1}),\ b_l^2=2((r-l)(2l+1)-1)$ $(l=\overline{0,r}),\ c_l^2=4(l+1)^2$ $(l=\overline{-1,r-1}),\ Y_{0,l}^2=(r-l)Y_{1,l}^2+2(l+1)Y_{1,l+1}^2+Y_{2,l}^2$ $(Y_{1,-1}^2,Y_{1,r+2}^2=0).$

Заметим, что $c_{-1}^2=0$ и $a_{r+1}^2=0$, а значит, при l=-1 имеем: $Y_{0,-1}^2=Y_{2,-1}^2=0$, при l=r+1: $Y_{0,r+1}^2=-Y_{1,r+1}^2+Y_{2,r+1}^2=0$. Отсюда получаем первые две резонансные связи:

$$\widehat{Y}_{2}^{[0,2(r+2)]} = 0, \quad \widehat{Y}_{1}^{[2r+3,0]} - \widehat{Y}_{2}^{[2(r+2),0]} = 0.$$
 (42)

Для решения оставшихся уравнений системы (41) при $l=\overline{0,r}$ будем методом Гаусса

аннулировать элементы $c_{r-1}^2, c_{r-2}^2, \dots$ матрицы $\begin{pmatrix} b_0^2 & c_0^2 & 0 & \dots & 0 \\ a_1^2 & b_1^2 & c_1^2 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & a_{r-1}^2 & b_{r-1}^2 & c_{r-1}^2 \\ 0 & \dots & 0 & 0 & b_r^2 \end{pmatrix}_{(r+1)\times(r+1)},$ по-

лучая d_l^2 вместо b_l^2 и $\overline{Y}_{0,l}^2$ вместо $Y_{0,l}^2$, пока $d_{l+1}^2 \neq 0 \ (l \geq 0)$, по рекуррентным формулам:

$$d_r^2 = b_r^2, \ \overline{Y}_{0,r}^2 = Y_{0,r}^2; \quad d_l^2 = b_l^2 - \frac{a_{l+1}^2 c_l^2}{d_{l+1}^2}, \ \overline{Y}_{0,l}^2 = Y_{0,l}^2 - \frac{\overline{Y}_{0,l+1}^2 c_l^2}{d_{l+1}^2} \quad (l = r - 1, r - 2, \dots).$$
 (43)

Лемма 3. Для элементов d_l^2 из (43) верна следующая прямая формула:

$$d_r^2 = -2, \quad d_l^2 = 2l(r - l + 1) \quad (l = \overline{r - 1, 0}).$$
 (44)

Доказательство. В (43) $d_{r-1}^2=b_{r-1}^2-a_r^2c_{r-1}^2(d_r^2)^{-1}=4(r-1)$, что совпадает с d_{r-1}^2 из (44) и дает базу индукции.

Пусть для $\forall l=\overline{r-2,1}$ верна формула (44). Тогда согласно (43) имеем: $d_{l-1}^2=b_{l-1}^2-a_l^2c_{l-1}^2(d_l^2)^{-1}=2((r-l+1)(2l-1)-1)-2l(r-l)=2(l-1)(r-l+2).$

Поскольку в (44) только $d_0^2=0$, то первое уравнение (l=0) системы, полученной из (41), принимает вид: $0\cdot h_{1,1}^2=\overline{Y}_{0,0}^2$, где $\overline{Y}_{0,0}^2=\sum_{m=0}^r\theta_{3,m}^2Y_{0,m}^2$, а множители $\theta_{3,m}^2=(-1)^m\prod_{j=1}^m(c_{j-1}^2/d_j^2)$. Учитывая (41) и (44), получаем:

$$\theta_{3,m}^2 = (-1)^m \prod_{j=1}^m \frac{2j}{r-j+1} \neq 0 \quad (m = \overline{1,r-1}), \quad \theta_{3,r}^2 = 2r^2 \theta_{3,r-1}^2 \neq 0.$$

В обозначениях (35^2) : $\sum_{m=0}^r \theta_{3,m}^2 Y_{0,m}^2 = \sum_{m=0}^r \theta_{3,m}^2 ((r-m)Y_{1,m}^2 + 2(m+1)Y_{1,m+1}^2 + Y_{2,m}^2) = rY_{1,0}^2 + \sum_{m=1}^r ((r-m)\theta_{3,m} + 2m\theta_{3,m-1}^2)Y_{1,m}^2 + 2(r+1)\theta_{3,r}^2 Y_{1,r+1}^2 + \sum_{m=0}^r \theta_{3,m}^2 Y_{2,m}^2 = 0,$ причем $(r-m)\theta_{3,m}^2 + 2m\theta_{3,m-1}^2 = 2m(r-m+1)^{-1}\theta_{3,m-1}^2.$

В результате уравнение $\overline{Y}_{0,0}^2=0$ дает для (34) с v=2 третью резонансную связь

$$\sum_{m=0}^{r+1} \alpha_{3,m}^2 \widehat{Y}_1^{[2m+1,2(r-m+1)]} + \sum_{m=0}^r \beta_{3,m}^2 \widehat{Y}_2^{[2(m+1),2(r-m+1)]} = 0 \qquad (h_1^{[1,2r]} - \forall), \tag{45}$$

где
$$\alpha_{3,0}^2 = r$$
, $\alpha_{3,m}^2 = 2m(r-m+1)^{-1}\theta_{3,m-1}^2$ $(m=\overline{1,r})$, $\alpha_{3,r+1}^2 = 2(r+1)\theta_{3,r}^2$, $\beta_{3,m}^2 = \theta_{3,m}^2$.

5.3 Полученные результаты

Возвращаясь к обозначениям для системы (33), согласно (36), (40), (42), (45) заключаем, что $\forall r \in \mathbb{N}$ коэффициенты КОМ $Y^{[k]}$ удовлетворяют резонансным уравнениям:

$$Y_1^{[2(r+1),0]} - Y_2^{[2r+3,0]} = \tilde{c}, \quad \sum_{m=0}^{r} \alpha_{2,m}^1 Y_1^{[2m,2(r-m+1)]} + \sum_{m=0}^{r+1} \beta_{2,m}^1 Y_2^{[2m+1,2(r-m+1)]} = \tilde{c} \quad (k = 2r+1),$$

$$\tag{46}$$

$$Y_2^{[0,2(r+2)]} = \tilde{c}, \quad Y_1^{[2r+3,0]} - Y_2^{[2(r+2),0]} = \tilde{c},$$

$$\sum_{n=0}^{r+1} \alpha_{3,m}^2 Y_1^{[2m+1,2(r-m+1)]} + \sum_{n=0}^{r} \beta_{3,m}^2 Y_2^{[2(m+1),2(r-m+1)]} = \tilde{c} \quad (k=2r+2),$$
(47)

где $\alpha_{2,m}^1, -\beta_{2,m}^1 = 2\theta_{2,m}^1$ $(m = \overline{0,r-1}), \ \alpha_{2,r}^1 = 2\theta_{2,r}^1, \ \beta_{2,r}^1 = (2r-1)\theta_{2,r}^1, \ \beta_{2,r+1}^1 = (4r^2-1)\theta_{2,r}^1,$ а $\theta_{2,m}^1 = (-1)^m \prod_{j=1}^m (2j-1)(r-j+1)^{-1} \neq 0 \ (m = \overline{0,r}); \ \alpha_{3,0}^2 = r, \ \alpha_{3,m}^2 = 2m(r-m+1)^{-1} \times \theta_{3,m-1}^2 \ (m = \overline{1,r}), \ \alpha_{3,r+1}^2 = 2(r+1)\theta_{3,r}^2, \ \beta_{3,m}^2 = \theta_{3,m}^2, \ \text{a} \ \theta_{3,m}^2 = (-1)^m \prod_{j=1}^m 2j(r-j+1)^{-1} \neq 0 \ (m = \overline{1,r-1}), \ \theta_{3,r}^2 = 2r^2\theta_{3,r-1}^2 \neq 0.$

В частности, для r=1 резонансные уравнения выглядят следующим образом:

$$\begin{split} Y_1^{[4,0]} - Y_2^{[5,0]} &= \tilde{c}, \quad -2Y_1^{[0,4]} + 2Y_1^{[2,2]} + 2Y_2^{[1,4]} + Y_2^{[3,2]} + 3Y_2^{[5,0]} &= \tilde{c}, \\ Y_2^{[0,6]} &= \tilde{c}, \quad Y_1^{[5,0]} - Y_2^{[6,0]} &= \tilde{c}, \quad Y_1^{[1,4]} + 2Y_1^{[3,2]} + Y_2^{[2,4]} + 2Y_2^{[4,2]} + 8Y_2^{[6,0]} &= \tilde{c}. \end{split}$$

Теорема 5. Для того чтобы система (32) была формально эквивалентна исходной системе (31), необходимо и достаточно, чтобы коэффициенты КОМ $Y^{[k]}$ удовлетворяли: 1) при k = 2r + 1 удовлетворяли двум уравнениям (46):

2) при k = 2r + 2 – трем уравнениям (47) (здесь везде $r \ge 1$).

Следствие 4. Для $\forall \ k \geq 3$ все коэффициенты $KOM \ Y^{[k]}$ в системе (32) – резонансные, при этом для $\forall \ r \geq 1$ коэффициент $h_1^{[1,2r]} \ KOM \ h_1^{[2r]}$ также является резонансным.

Для $\forall k \geq 3$ положим $n_k = \{2 \text{ при } k = 2r + 1; 3 \text{ при } k = 2r + 2\}.$

Следствие 5. В системе (32) n_k различных резонансных коэффициентов КОМ $Y^{[k]}$ образуют резонансный k-набор \mathcal{Y}^k , если это:

1) \mathcal{Y}^{2r+1} : либо $Y_1^{[2(r+1),0]}$ и $Y_1^{[2l_1,2(r-l_1+1)]}$ ($l_1 \in \{0,\ldots,r\}$) или $Y_2^{[2l_2+1,2(r-l_2+1)]}$ ($l_2 \in \{0,\ldots,r+1\}$)); либо $Y_2^{[2r+3,0]}$ и $Y_1^{[2l_3,2(r-l_3+1)]}$ ($l_3 \in \{0,\ldots,r+1\}$) или $Y_2^{[2l_4+1,2(r-l_4+1)]}$ ($l_4 \in \{0,\ldots,r\}$); 2) \mathcal{Y}^{2r+2} : либо $Y_2^{[0,2(r+2)]}$, $Y_1^{[2r+3,0]}$ и $Y_1^{[2l_5+1,2(r-l_5+1)]}$ ($l_5 \in \{0,\ldots,r\}$) или $Y_2^{[2(l_6+1),2(r-l_6+1)]}$ ($l_6 \in \{0,\ldots,r+1\}$); либо $Y_2^{[0,2(r+2)]}$, $Y_2^{[2(r+2),0]}$ и $Y_1^{[2l_7+1,2(r-l_7+1)]}$ ($l_7 \in \{0,\ldots,r+1\}$) или $Y_2^{[2(l_8+1),2(r-l_8+1)]}$ ($l_8 \in \{0,\ldots,r\}$).

Таким образом, система (32) по определению является ОНФ, если для каждого $k \ge 3$ все коэффициенты её КОМ $Y^{[k]}$ равны нулю, кроме n_k штук, принадлежащих любому резонансному k-набору, описанному в следствии 5, и имеющих произвольные значения.

Следствие 6. Для системы (32) произвольный резонансный набор $\mathcal{Y} = \bigcup_{k=3}^{\infty} \mathcal{Y}^k$ имеет следующий вид: $\{\rho_1^r Y_1^{[2(r+1),0]}, \rho_1^r \rho_2^r Y_1^{[2l_1,2(r-l_1+1)]}, (1-\rho_1^r) \rho_3^r Y_1^{[2l_3,2(r-l_3+1)]}, \rho_4^r Y_1^{[2r+3,0]}, \rho_4^r \rho_5^r Y_1^{[2l_5+1,2(r-l_5+1)]}, (1-\rho_1^r) Y_2^{[2r+3,0]}, \rho_1^r (1-\rho_2^r) Y_2^{[2l_2+1,2(r-l_2+1)]}, (1-\rho_4^r) Y_2^{[2(r+2),0]}, (1-\rho_3^r) Y_2^{[2l_4+1,2(r-l_4+1)]}, Y_2^{[0,2(r+2)]}, \rho_4^r (1-\rho_5^r) Y_2^{[2(l_6+1),2(r-l_6+1)]}, (1-\rho_4^r) (1-\rho_6^r) Y_2^{[2(l_8+1),2(r-l_8+1)]}\}, где <math>l_1, l_4, l_5, l_8 \in \{0,\ldots,r\}, l_2, l_3, l_6, l_7 \in \{0,\ldots,r+1\}, \rho_j^r \in \{0,1\} \ (j=\overline{1,6}), \ r \geq 1.$ Если множитель при некотором $Y_i^{[q_1,2q_2]},$ входящим в \mathcal{Y} , равен нулю, то этот элемент отсутствует.

Теорема 6. Для любой системы (31) и для любого выбранного по её невозмущенной части резонансного набора $\mathcal Y$ из следствия 6 существует и единственна почти тож дественная замена (17) с заранее произвольным образом зафиксированными резонансными коэффициентами, преобразующая систему (31) в $OH\Phi$ (32):

$$\begin{split} \dot{y}_1 &= y_1 y_2 + \sum_{r=1}^{\infty} \left(\rho_1^r Y_1^{[2(r+1),0]} y_1^{2(r+1)} + \rho_1^r \rho_2^r Y_1^{[2l_1,2(r-l_1+1)]} y_1^{2l_1} y_2^{r-l_1+1} + \right. \\ &+ (1-\rho_1^r) \rho_3^r Y_1^{[2l_3,2(r-l_3+1)]} y_1^{2l_3} y_2^{r-l_3+1} + \rho_4^r Y_1^{[2r+3,0]} y_1^{2r+3} + \rho_4^r \rho_5^r Y_1^{[2l_5+1,2(r-l_5+1)]} y_1^{2l_5+1} y_2^{r-l_5+1} + \\ &\quad + (1-\rho_4^r) \rho_6^r Y_1^{[2l_7+1,2(r-l_7+1)]} y_1^{2l_7+1} y_2^{r-l_7+1} \right), \\ \dot{y}_2 &= y_1^2 y_2 + \sum_{r=1}^{\infty} \left((1-\rho_1^r) Y_2^{[2r+3,0]} y_1^{2r+3} + \rho_1^r (1-\rho_2^r) Y_2^{[2l_2+1,2(r-l_2+1)]} y_1^{2l_2+1} y_2^{r-l_2+1} + \right. \\ &\quad + (1-\rho_1^r) (1-\rho_3^r) Y_2^{[2l_4+1,2(r-l_4+1)]} y_1^{2l_4+1} y_2^{r-l_4+1} + Y_2^{[0,2(r+2)]} y_2^{r+2} + \\ &\quad + \rho_4^r (1-\rho_5^r) Y_2^{[2(l_6+1),2(r-l_6+1)]} y_1^{2(l_6+1)} y_2^{r-l_6+1} + (1-\rho_4^r) Y_2^{[2(l_8+1),2(r-l_8+1)]} y_1^{2(l_8+1)} y_2^{r-l_8+1} \right). \end{split}$$

Пример 1. Любая система (31) формально эквивалентна $OH\Phi$, не имеющей возмущения в первом уравнении, при определенных значениях $l_4, l_8 \in \{0, \dots, r\}$:

$$\dot{y}_1 = y_1 y_2, \quad \dot{y}_2 = y_1^2 y_2 + \sum_{r=1}^{\infty} \left(Y_2^{[r+4,0]} y_1^{r+4} + Y_2^{[2l_4+1,2(r-l_4+1)]} y_1^{2l_4+1} y_2^{r-l_4+1} + Y_2^{[2l_8+2,2(r-l_8+1)]} y_1^{2l_8+2} y_2^{r-l_8+1} + Y_2^{[0,2(r+2)]} y_2^{r+2} \right).$$

6 ОНФ систем с ${ m R}^{[3]}_{(1.2)}$ в невозмущенной части

6.1 Получение связующей системы

Рассмотрим систему (10) с канонической невозмущенной частью $R_{(1,2)}^{[3]}=(x_2^2,x_1x_2^2)$:

$$\dot{x}_1 = x_2^2 + \sum_{k=4}^{\infty} X_1^{[k]}(x), \quad \dot{x}_2 = x_1 x_2^2 + \sum_{k=4}^{\infty} X_2^{[k]}(x), \tag{48}$$

где в возмущении КОМ $X_i^{[k]} = \sum_{q_1+2q_2=k+\gamma_i} X_i^{[q_1,2q_2]} x_1^{q_1} x_2^{q_2}$.

Пусть формальная почти тождественная замена

$$x_i = y_i + h_i(y) \quad (i = 1, 2),$$
 (49)

где $h_i(y)=\sum_{k=4}^\infty h_i^{[k-3]}(y)\,,\;h_i^{[k-3]}=\sum_{q_1+2q_2=k+\gamma_i-3} h_i^{[q_1,2q_2]}y_1^{q_1}y_2^{q_2}$ переводит (48) в систему:

$$\dot{y}_1 = y_2^2 + \sum_{k=4}^{\infty} Y_1^{[k]}(y), \quad \dot{y}_2 = y_1 y_2^2 + \sum_{k=4}^{\infty} Y_2^{[k]}(y),$$
 (50)

где возмущение $Y_i^{[k]} = \sum_{q_1+2q_2=k+\gamma_i} Y_i^{[q_1,2q_2]} y_1^{q_1} y_2^{q_2}$.

Тождества (13) с $\chi=3,\ \gamma=(1,2)$ для систем (48), (50) и замены (49) имеют вид:

$$\frac{\partial h_1^{[k-3]}}{\partial y_1} y_2^2 + \frac{\partial h_1^{[k-3]}}{\partial y_2} y_1 y_2^2 - 2y_2 h_2^{[k-3]} = \widetilde{Y}_1^{[k]} - Y_1^{[k]},$$

$$\frac{\partial h_2^{[k-3]}}{\partial y_1} y_2^2 + \frac{\partial h_2^{[k-3]}}{\partial y_2} y_1 y_2^2 - y_2^2 h_1^{[k-3]} - 2y_1 y_2 h_2^{[k-3]} = \widetilde{Y}_2^{[k]} - Y_2^{[k]},$$

где $\widetilde{Y}_i^{[k]} \; (i=1,2)\;$ находится по формуле, указанной в (13).

Приравнивая коэффициенты при $y_1^{q_1}y_2^{q_2}$, получаем линейную связующую систему:

$$(q_1+1)h_1^{[q_1+1,2(q_2-2)]} + (q_2-1)h_1^{[q_1-1,2(q_2-1)]} - 2h_2^{[q_1,2(q_2-1)]} = \widehat{Y}_1^{[q_1,2q_2]} \quad (q_1+2q_2=k+1),$$

$$(q_1+1)h_2^{[q_1+1,2(q_2-2)]} + (q_2-3)h_2^{[q_1-1,2(q_2-1)]} - h_1^{[q_1,2(q_2-2)]} = \widehat{Y}_2^{[q_1,2q_2]} \quad (q_1+2q_2=k+2),$$
(51)

в которой $\widehat{Y}_i^{[q_1,2q_2]} = \widetilde{Y}_i^{[q_1,2q_2]} - Y_i^{[q_1,2q_2]}$

Положим k = 2r + v $(r = 2, 3, 4, ..., v = 0, 1), q_2 = r - l + 1$ $(l \le r + 1).$

Тогда в $\widehat{Y}_i^{[q_1,2q_2]}$ индекс $q_1=2l+v+\gamma_i-2\geq 0$ и связующая система (51) перепишется в виде:

$$(2l+v)h_{1}^{[2l+v,2(r-l-1)]} + (r-l)h_{1}^{[2l+v-2,2(r-l)]} - 2h_{2}^{[2l+v-1,2(r-l)]} =$$

$$= \widehat{Y}_{1}^{[2l+v-1,2(r-l+1)]} \quad (l = \overline{-v+1,r+1}),$$

$$(2l+v+1)h_{2}^{[2l+v+1,2(r-l-1)]} + (r-l-2)h_{2}^{[2l+v-1,2(r-l)]} - h_{1}^{[2l+v,2(r-l-1)]} =$$

$$= \widehat{Y}_{2}^{[2l+v,2(r-l+1)]} \quad (l = \overline{0,r+1}).$$

$$(52)$$

6.2 Случай r=2 (k=4,5)

 ${f 1^0}.~~k=4~~(v=0).~$ Система (52) имеет вид: $h_1^{[0,2]}+2h_1^{[2,0]}-2h_2^{[1,2]}=\widehat{Y}_1^{[1,4]},~-2h_2^{[3,0]}=\widehat{Y}_1^{[3,2]},~0=\widehat{Y}_1^{[5,0]},~-h_1^{[0,2]}+h_2^{[1,2]}=\widehat{Y}_2^{[0,6]},~-h_1^{[2,0]}-h_2^{[1,2]}+3h_2^{[3,0]}=\widehat{Y}_2^{[2,4]},~-2h_2^{[3,0]}=\widehat{Y}_2^{[4,2]},~0=\widehat{Y}_2^{[6,0]}$ и дает три резонансные связи:

$$\widehat{Y}_{1}^{[3,2]} - Y_{2}^{[4,2]} = 0, \quad \widehat{Y}_{1}^{[5,0]} = 0, \quad \widehat{Y}_{2}^{[6,0]} = 0.$$
 (53)

 $\mathbf{2^0}$. k=5 (v=1). Система (52) имеет вид: $h_1^{[1,2]}-2h_2^{[0,4]}=\widehat{Y}_1^{[0,6]},\ h_1^{[1,2]}+3h_1^{[3,0]}-2h_2^{[2,2]}=\widehat{Y}_1^{[2,4]},\ -2h_2^{[4,0]}=\widehat{Y}_1^{[4,0]},\ 0=\widehat{Y}_1^{[6,0]},\ -h_1^{[1,2]}+2h_2^{[2,2]}=\widehat{Y}_2^{[1,6]},\ -h_1^{[3,0]}-h_2^{[2,2]}+4h_2^{[4,0]}=\widehat{Y}_2^{[3,4]},\ -2h_2^{[4,0]}=\widehat{Y}_2^{[5,2]},\ 0=\widehat{Y}_2^{[7,0]}$ и дает три резонансные связи:

$$\widehat{Y}_{1}^{[4,2]} - Y_{2}^{[5,2]} = 0, \quad \widehat{Y}_{1}^{[6,0]} = 0, \quad \widehat{Y}_{2}^{[7,0]} = 0.$$
 (54)

6.3 Случай $r \geq 3 \; (k \geq 6)$

При l=r+1 из системы (52) сразу получим две резонансные связи:

$$\widehat{Y}_1^{[2r+v+1,0]} = 0, \quad \widehat{Y}_2^{[2r+v+2,0]} = 0.$$
 (55)

Вводя новые обозначения, запишем оставшиеся уравнения (52) в следующем виде:

$$(2l+v)h_{1,l+1}^v + (r-l)h_{1,l}^v - 2h_{2,l}^v = Y_{1,l}^v \quad (l = \overline{-v+1,r}),$$

$$(2l+v+1)h_{2,l+1}^v + (r-l-2)h_{2,l}^v - h_{1,l+1}^v = Y_{2,l}^v \quad (l = \overline{0,r}),$$
(56)

где $h_{1,l}^v = h_1^{[2l+v-2,2(r-l)]}$ $(l = \overline{1,r}), h_{2,l}^v = h_2^{[2l+v-1,2(r-l)]}, Y_{1,l}^v = \widehat{Y}_1^{[2l+v-1,2(r-l+1)]}$ $(l = \overline{0,r}); Y_{1,0}^0, Y_{1,r+1}^v = 0.$

Подставляя $h_{2,l}^v$ и $h_{2,l+1}^v$ из системы (56_1) в (56_2) , получаем систему:

$$a_l^v h_{1,l}^v + b_l^v h_{1,l+1}^v + c_l^v h_{1,l+2}^v = Y_{0,l}^v \quad (l = \overline{0,r}), \tag{57}$$

в которой $a_l^v=(r-l)(r-l-2)$ $(l=\overline{1,r}),\ b_l^v=(r-l)(4l+2v+1)-3(2l+v+1)$ $(l=\overline{0,r-1}),\ c_l^v=(2l+v+1)(2l+v+2)$ $(l=\overline{0,r-2}),\ Y_{0,l}^v=(r-l-2)Y_{1,l}^v+(2l+v+1)Y_{1,l+1}^v+2Y_{2,l}^v.$

Заметим, что $a_r^v=0$, а значит при l=r имеем: $Y_{0,r}^v=0$, откуда получаем третью резонансную связь: $\widehat{Y}_{r}^{[2r+v-1,2]}-\widehat{Y}_{r}^{[2r+v,2]}=0. \tag{58}$

 $Y_1^{[2r+v-1,2]} - Y_2^{[2r+v,2]} = 0. (58)$

Для решения оставшихся уравнений системы (57) будем методом Гаусса аннулировать

элементы $c_{r-2}^v, c_{r-3}^v, \dots$ матрицы $\begin{pmatrix} b_0^v & c_0^v & 0 & \dots & 0 \\ a_1^v & b_1^v & c_1^v & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & \dots & a_{r-2}^v & b_{r-2}^v & c_{r-2}^v \\ 0 & \dots & 0 & a_{r-1}^v & b_{r-1}^v \end{pmatrix}_{r \times r}$, получая d_l^v вместо b_l^v и

 $\overline{Y}_{0,l}^v$ вместо $Y_{0,l}^v$ $(l \le r-1),$ пока $d_{l+1}^v \ne 0$ $(l \ge 0),$ по рекуррентным формулам:

$$d_{r-1}^{v} = b_{r-1}^{v}, \ \overline{Y}_{0,r-1}^{v} = Y_{0,r-1}^{v}; \quad d_{l}^{v} = b_{l}^{v} - \frac{a_{l+1}^{v} c_{l}^{v}}{d_{l+1}^{v}}, \ \overline{Y}_{0,l}^{v} = Y_{0,l}^{v} - \frac{\overline{Y}_{0,l+1}^{v} c_{l}^{v}}{d_{l+1}^{v}} \quad (l = r - 2, r - 3, \dots).$$

$$(59)$$

Лемма 4. Для элементов d_1^v из (59) верна следующая прямая формула:

$$d_{r-1}^v = -2r - v, \ d_{r-2}^v = -\frac{6}{2r+v}, \ d_{r-3}^v = 6r + 3v - 18, \ d_l^v = (2l+v)(r-l) \quad (l = \overline{r-4,0}).$$
 (60)

Доказательство. В (59) $d_{r-4}^v = b_{r-4}^v - a_{r-3}^v c_{r-4}^v / d_{r-3}^v = 4(r-4) - 4(r-4)^2 - (2v+7)(r-4) + (2v+1)r - 3v - 3 - 3(2r+v-7)(2r+v-6)/(6r+3v-18) = 4(2r+v-8)$, что совпадает с d_{r-4}^v из (60) и дает базу индукции.

Пусть для произвольного $l=\overline{r-5,1}$ верна формула (60). Тогда согласно (59) имеем: $d_{l-1}^v=b_{l-1}^v-a_l^vc_{l-1}^v/d_l^v=4(l-1)r-4(l-1)^2-(2v+7)(l-1)+(2v+1)r-3v-3-(r-l-1)\times (r-l+1)(2l+v-1)(r-l)^{-1}=(2l+v-2)(r-l+1).$

 ${f 0}^0$. ${f v}={f 0}$ (${f k}={f 2r}$). Поскольку в (60) только $d_0^0=0$, то первое уравнение (l=0) системы, полученной из (57), принимает вид: $0\cdot h_{1,1}^0=\overline{Y}_{0,0}^0$, где $\overline{Y}_{0,0}^0=\sum_{m=0}^{r-1}\theta_{4,m}^0Y_{0,m}^0$ с $\theta_{4,m}^0=(-1)^m\prod_{j=1}^m(c_{j-1}^0/d_j^0)$. Учитывая (57) и (60), получаем:

$$\theta_{4,m}^0 = (-1)^m \prod_{j=1}^m \frac{2j-1}{r-j} \neq 0 \quad (m = \overline{0,r-3}), \quad \theta_{4,r-2}^0 = (1/3)(2r-5)(2r-4)r \,\theta_{4,r-3}^0, \\ \theta_{4,r-1}^0 = (2r-3)(r-1)r^{-1} \,\theta_{4,r-2}^0.$$

В обозначениях (56): $\sum_{m=0}^{r-1}\theta_{4,m}^0Y_{0,m}^0=\sum_{m=0}^{r-1}\theta_{4,m}^0((r-m-2)Y_{1,m}^0+(2m+1)Y_{1,m+1}^0+2Y_{2,m}^0)=\sum_{m=1}^{r-1}((r-m-2)\theta_{4,m}^0+(2m-1)\theta_{4,m-1}^0)Y_{1,m}^0+(2r-1)\theta_{4,r-1}^0Y_{1,r}^0+2\sum_{m=0}^{r-1}\theta_{4,m}^0Y_{2,m}^0,$ причем $(r-m-2)\theta_{4,m}^0+(2m-1)\theta_{4,m-1}^0=2(2m-1)(r-m)^{-1}\theta_{4,m-1}^0$ для $\forall\,m=\overline{1,r-2},$ а при m=r-1 имеем: $-\theta_{4,r-1}^0+(2r-3)\theta_{4,r-2}^0=(2r-3)r^{-1}\theta_{4,r-2}^0.$

В результате уравнение $\overline{Y}_{0,0}^0=0$ дает для (52) с v=0 четвёртую резонансную связь:

$$\sum_{m=1}^{r} \alpha_{4,m}^{0} \widehat{Y}_{1}^{[2m-1,2(r-m+1)]} + \sum_{m=0}^{r-1} \beta_{4,m}^{0} \widehat{Y}_{2}^{[2m,2(r-m+1)]} = 0 \qquad (h_{1}^{[0,2(r-1)]} - \forall), \tag{61}$$

в которой $\alpha_{4,m}^0=2(2m-1)(r-m)^{-1}\theta_{4,m-1}^0$ $(m=\overline{1,r-2}),$ $\alpha_{4,r-1}^0=(2r-3)r^{-1}\theta_{4,r-2}^0,$ $\alpha_{4,r-1}^0=(2r-3)\theta_{4,r-1}^0,$ $\beta_{4,m}^0=2\theta_{4,m}^0.$

 ${f 1^0}.~~{f v=1}~({f k=2r+1}).~~$ Согласно формуле (60) $d_l^1 \neq 0,~$ поэтому система, полученная из (57) после преобразования Гаусса, однозначно разрешима.

6.4 Полученные результаты

Возвращаясь к обозначениям, введенным для системы (51), согласно (53), (55), (58), (61) заключаем, что коэффициенты КОМ $Y^{[k]}$ удовлетворяют резонансным уравнениям:

$$Y_1^{[3,2]} - Y_2^{[4,2]} = \tilde{c}, \quad Y_1^{[5,0]} = \tilde{c}, \quad Y_2^{[6,0]} = \tilde{c} \quad (k=4);$$
 (62)

$$Y_1^{[2r-1,2]} - Y_2^{[2r,2]} = \tilde{c}, \quad Y_1^{[2r+1,0]} = \tilde{c}, \quad Y_2^{[2r+2,0]} = \tilde{c},$$

$$\sum_{m=1}^{r} \alpha_{4,m}^{0} Y_1^{[2m-1,2(r-m+1)]} + \sum_{m=0}^{r-1} \beta_{4,m}^{0} Y_2^{[2m,2(r-m+1)]} = \tilde{c} \quad (k = 2r, \ r \ge 3);$$

$$(63)$$

$$Y_1^{[2r+2,0]} = \tilde{c}, \quad Y_2^{[2r+3,0]} = \tilde{c}, \quad Y_1^{[2r,2]} - Y_2^{[2r+1,2]} = \tilde{c} \quad (k = 2r+1, \ r \ge 2); \tag{64}$$

где
$$\alpha_{4,m}^0=2(2m-1)(r-m)^{-1}\theta_{4,m-1}^0$$
 $(m=\overline{1,r-2}),$ $\alpha_{4,r-1}^0=(2r-3)r^{-1}\theta_{4,r-2}^0,$ $\alpha_{4,r}^0=(2r-1)\theta_{4,r-1}^0,$ $\beta_{4,m}^0=2\theta_{4,m}^0,$ a $\theta_{4,m}^0=(-1)^m\prod_{j=1}^m(2j-1)(r-j)^{-1}\neq 0$ $(m=\overline{0,r-3}),$ $\theta_{4,r-2}^0=(1/3)(2r-5)(2r-4)r$ $\theta_{4,r-3}^0\neq 0,$ $\theta_{4,r-1}^0=(2r-3)(r-1)r^{-1}$ $\theta_{4,r-2}^0\neq 0.$

Теорема 7. Для того чтобы система (50) была формально эквивалентна исходной системе (48), необходимо и достаточно, чтобы коэффициенты $KOM\ Y^{[k]}$ удовлетворяли: 1) при k=2r – трем уравнениям (62) (r=2) или четырем уравнениям (63) $(r\geq 3)$; 2) при k=2r+1 $(r\geq 2)$ – трем уравнениям (64).

Следствие 7. $B KOM Y^{[k]}$ системы (50):

1) при k=2r, если r=1, то коэффициенты $Y_1^{[3,2]},\ Y_1^{[5,0]},\ Y_2^{[4,2]},\ Y_2^{[6,0]}$ – резонансные, $Y_1^{[1,4]},\ Y_2^{[0,6]},\ Y_2^{[2,4]}$ – нерезонансные, а если $r\geq 3$, то все коэффициенты $KOM\ Y^{[2r]}$ – резонансные, при этом коэффициент $h_1^{[0,2(r-1)]}\ KOM\ h_1^{[k-3]}$ также является резонансным; 2) при k=2r+1 ($r\geq 2$) коэффициенты $Y_1^{[2r,2]},\ Y_1^{[2r+2,0]},\ Y_2^{[2r+1,2]},\ Y_2^{[2r+3,0]}$ – резонансные, а $Y_1^{[2m,2(r-l+1)]}$ ($m=\overline{0,r-1}$), $Y_2^{[2m+1,2(r-m+1)]}$ ($m=\overline{0,r-1}$) – нерезонансные.

Для $\forall k \geq 4$ положим $n_k = \{3$ при $k = 4, 2r + 1 (r \geq 2); 4$ при $k = 2r (r \geq 3)\}.$

Следствие 8. В системе (50) n_k различных резонансных коэффициентов КОМ $Y^{[k]}$ образуют резонансный k-набор \mathcal{Y}^k , если это:

1) а) $\mathcal{Y}^4: Y_1^{[5,0]}, Y_2^{[6,0]}$ и $Y_1^{[3,2]}$ или $Y_2^{[4,2]};$ b) \mathcal{Y}^{2r} $(r \geq 3):$ либо $Y_1^{[2r+1,0]}, Y_2^{[2r+2,0]}, Y_1^{[2r-1,2]}$ и $Y_1^{[2l_1-1,2(r-l_1+1)]}$ $(l_1 \in \{1,\ldots,r-1\})$ или $Y_2^{[2l_2,2(r-l_2+1)]}$ $(l_2 \in \{0,\ldots,r-1\});$ либо $Y_1^{[2r+1,0]}, Y_2^{[2r+2,0]}, Y_2^{[2r+2,0]}$ и $Y_1^{[2l_3-1,2(r-l_3+1)]}$ $(l_3 \in \{1,\ldots,r\})$ или $Y_2^{[2l_4,2(r-l_4+1)]}$ $(l_4 \in \{0,\ldots,r-1\});$ 2) \mathcal{Y}^{2r+1} $(r \geq 2): Y_1^{[2r+2,0]}, Y_2^{[2r+3,0]}$ и $Y_1^{[2r+3,0]}$ или $Y_2^{[2r+1,2]}$.

Таким образом, система (50) по определению является ОНФ, если для каждого $k \ge 4$ все коэффициенты её КОМ $Y^{[k]}$ равны нулю, кроме n_k штук, принадлежащих любому резонансному k-набору, описанному в следствии 8, и имеющих произвольные значения.

Следствие 9. Для системы (50) произвольный резонансный набор $\mathcal{Y} = \bigcup_{k=4}^{\infty} \mathcal{Y}^k$ имеет вид: $\{\rho_1^r Y_1^{[3,2]}, \ \rho_2^r Y_1^{[2r-1,2]}, \ \rho_2^r \rho_3^r Y_1^{[2l_1-1,2(r-l_1+1)]}, \ (1-\rho_2^r)\rho_4^r Y_1^{[2l_3-1,2(r-l_3+1)]} \ (r\geq 3), \ Y_1^{[2r+1,0]}, \ Y_1^{[2(r+1),0]}, \ \rho_5^r Y_1^{[2r,2]} \ (r\geq 2), \ (1-\rho_1^r) Y_2^{[4,2]}, \ \rho_2^r (1-\rho_3^r) Y_2^{[2l_2,2(r-l_2+1)]}, \ (1-\rho_2^r) Y_2^{[2r,2]}, \ (1-\rho_2^r) Y_2^{[2l_4,2(r-l_4+1)]} \ (r\geq 3), \ Y_2^{[2r+2,0]}, \ Y_2^{[2r+3,0]}, \ (1-\rho_5^r) Y_2^{[2r+1,2]} \ (r\geq 2)\}, \ \text{еде} \ l_1 \in \{1,\ldots,r-1\}, \ l_2, l_4 \in \{0,\ldots,r-1\}, \ l_3 \in \{1,\ldots,r\}, \ \rho_j^r \in \{0,1\} \ (j=\overline{1,5}).$ Если множитель при некотором $Y_i^{[q_1,2q_2]}$, входящим в \mathcal{Y} , равен нулю, то этот элемент отсутствует.

Теорема 8. Для любой системы (48) и для любого выбранного по её невозмущенной части резонансного набора $\mathcal Y$ из следствия 9 существует и единственна почти тож дественная замена (49) с заранее произвольным образом зафиксированными резонансными коэффициентами, преобразующая систему (48) в $OH\Phi$ (50):

$$\dot{y}_1 = y_2^2 + \rho_1^r Y_1^{[3,2]} y_1^3 y_2 + \sum_{r=2}^{\infty} \left(Y_1^{[2r+1,0]} y_1^{2r+1} + Y_1^{[2(r+1),0]} y_1^{2(r+1)} + \rho_5^r Y_1^{[2r,2]} y_1^{2r} y_2 \right) +$$

$$+ \sum_{r=3}^{\infty} \left(\rho_2^r Y_1^{[2r-1,2]} y_1^{2r-1} y_2 + \rho_2^r \rho_3^r Y_1^{[2l_1-1,2(r-l_1+1)]} y_1^{2l_1-1} y_2^{r-l_1+1} +$$

$$+ (1 - \rho_2^r) \rho_4^r Y_1^{[2l_3-1,2(r-l_3+1)]} y_1^{2l_3-1} y_2^{r-l_3+1} \right),$$

$$\dot{y}_{2} = y_{1}y_{2}^{2} + (1 - \rho_{1}^{r})Y_{2}^{[4,2]}y_{1}^{4}y_{2} + \sum_{r=2}^{\infty} \left(Y_{2}^{[2r+2,0]}y_{1}^{2r+2} + Y_{2}^{[2r+3,0]}y_{1}^{2r+3} + (1 - \rho_{5}^{r})Y_{2}^{[2r+1,2]}y_{1}^{2r+1}y_{2}\right) + \sum_{r=3}^{\infty} \left(\rho_{2}^{r}(1 - \rho_{3}^{r})Y_{2}^{[2l_{2},2(r-l_{2}+1)]}y_{1}^{2l_{2}}y_{2}^{r-l_{2}+1} + (1 - \rho_{2}^{r})Y_{2}^{[2r,2]}y_{1}^{2r}y_{2} + (1 - \rho_{2}^{r})Y_{2}^{[2l_{4},2(r-l_{4}+1)]}y_{1}^{2l_{4}}y_{2}^{r-l_{4}+1}\right).$$

Пример 2. Любая система (48) формально эквивалентна $OH\Phi$, у которой в возмущении все члены не более чем линейны по y_2 :

$$\dot{y}_1 = y_2^2 + \sum_{r=5}^{\infty} Y_1^{[r,0]} y_1^r + \sum_{r=3}^{\infty} Y_1^{[r,2]} y_1^r y_2, \quad \dot{y}_2 = y_1 y_2^2 + \sum_{r=6}^{\infty} Y_2^{[r,0]} y_1^r + \sum_{r=3}^{\infty} Y_2^{[2r,2]} y_1^{2r} y_2.$$

7 ОНФ систем с ${f R}^{[3]}_{(2,3)}$ в невозмущенной части

7.1 Получение связующей системы

Рассмотрим систему (10) с канонической невозмущенной частью $R_{(2,3)}^{[3]}=(x_1x_2,x_1^3)$:

$$\dot{x}_1 = x_1 x_2 + \sum_{k=4}^{\infty} X_1^{[k]}(x), \quad \dot{x}_2 = x_1^3 + \sum_{k=4}^{\infty} X_2^{[k]}(x), \tag{65}$$

где в возмущении КОМ $X_i^{[k]} = \sum_{2q_1+3q_2=k+\gamma_i} X_i^{[2q_1,3q_2]} x_1^{q_1} x_2^{q_2} \quad (i=1,2).$

Пусть формальная почти тождественная замена

$$x_i = y_i + h_i(y) \quad (i = 1, 2),$$
 (66)

где $h_i(y)=\sum_{k=4}^\infty h_i^{[k-3]}(y)\,,\;h_i^{[k-3]}=\sum_{2q_1+3q_2=k+\gamma_i-3} h_i^{[2q_1,3q_2]}y_1^{q_1}y_2^{q_2}$ переводит (65) в систему:

$$\dot{y}_1 = y_1 y_2 + \sum_{k=4}^{\infty} Y_1^{[k]}(y), \quad \dot{y}_2 = y_1^3 + \sum_{k=4}^{\infty} Y_2^{[k]}(y),$$
 (67)

где возмущение $Y_i^{[k]} = \sum_{2q_1+3q_2=k+\gamma_i} Y_i^{[2q_1,3q_2]} y_1^{q_1} y_2^{q_2}$.

Тождества (13) с $\chi = 3$, $\gamma = (2,3)$ для систем (65), (67) и замены (66) имеют вид:

$$\frac{\partial h_1^{[k-3]}}{\partial y_1} y_1 y_2 + \frac{\partial h_1^{[k-3]}}{\partial y_2} y_1^3 - y_2 h_1^{[k-3]} - y_1 h_2^{[k-3]} = \widetilde{Y}_1^{[k]} - Y_1^{[k]},$$

$$\frac{\partial h_2^{[k-3]}}{\partial y_1} y_1 y_2 + \frac{\partial h_2^{[k-3]}}{\partial y_2} y_1^3 - 3y_1^2 h_1^{[k-3]} = \widetilde{Y}_2^{[k]} - Y_2^{[k]},$$

где $\widetilde{Y}_i^{[k]} \; (i=1,2)\;$ находится по формуле, указанной в (13).

Приравнивая коэффициенты при $y_1^{q_1}y_2^{q_2}$, получаем линейную связующую систему:

$$(q_{1}-1)h_{1}^{[2q_{1},3(q_{2}-1)]} + (q_{2}+1)h_{1}^{[2(q_{1}-3),3(q_{2}+1)]} - h_{2}^{[2(q_{1}-1),3q_{2}]} = \widehat{Y}_{1}^{[2q_{1},3q_{2}]} \qquad (2q_{1}+3q_{2}=k+2),$$

$$q_{1}h_{2}^{[2q_{1},3(q_{2}-1)]} + (q_{2}+1)h_{2}^{[2(q_{1}-3),3(q_{2}+1)]} - 3h_{1}^{[2(q_{1}-2),3q_{2}]} = \widehat{Y}_{2}^{[2q_{1},3q_{2}]} \qquad (2q_{1}+3q_{2}=k+3),$$

$$(68)$$

в которой $\widehat{Y}_i^{[2q_1,3q_2]} = \widetilde{Y}_i^{[2q_1,3q_2]} - Y_i^{[2q_1,3q_2]}$

Поскольку $k \geq 4$, а $q_1, q_2 \in \mathbb{Z}_+$, введем следующее разложение:

$$k = 6r + u + 3v - 2$$
 $(r \in \mathbb{N}, u = 0, 1, 2, v = 0, 1),$ $q_1 = 3l + s$ $(l \in \mathbb{Z}_+, s = 0, 1, 2).$

Тогда $q_2 = (k + \gamma_i - 2q_1)/3 = 2(r - l) + v + (u - 2s + \gamma_i - 2)/3 \in \mathbb{Z}_+$ в следующих случаях:

- 0) u = 0: s = 0 и $l = \overline{0, r}$ (i = 1), s = 2 и $l = \overline{0, r + v 1}$ (i = 2);
- 1) u = 1: s = 2 и $l = \overline{0, r + v 1}$ (i = 1), s = 1 и $l = \overline{0, r}$ (i = 2);
- 2) u = 2: s = 1 u $l = \overline{0,r}$ (i = 1), s = 0 u $l = \overline{0,r+v}$ (i = 2).

7.2 Условия совместности связующей системы

$7.2.1 \quad u{=}0 \quad (k=6r+3v-2)$

Перепишем (68), используя введенные в разделе 7.1 разложения для q_1 и q_2 при u=0:

$$(3l-1)h_{1}^{[6l,6(r-l)+3v-3]} + (2(r-l)+v+1)h_{1}^{[6(l-1),6(r-l)+3v+3]} - h_{2}^{[6l-2,6(r-l)+3v]} =$$

$$= \widehat{Y}_{1}^{[6l,6(r-l)+3v)]} \quad (l=\overline{0,r}),$$

$$(3l+2)h_{2}^{[6l+4,6(r-l-1)+3v]} + (2(r-l)+v)h_{2}^{[6l-2,6(r-l)+3v]} - 3h_{1}^{[6l,6(r-l)+3v-3]} =$$

$$= \widehat{Y}_{2}^{[6l+4,6(r-l)+3v-3]} \quad (l=\overline{0,r+v-1})$$

$$(68^{0})$$

ИЛИ

$$(3l-1)h_{1,l}^{v} + (2(r-l)+v+1)h_{1,l-1}^{v} - h_{2,l-1}^{v} = Y_{1,l}^{v} \quad (l = \overline{0,r}), (3l+2)h_{2,l}^{v} + (2(r-l)+v)h_{2,l-1}^{v} - 3h_{1,l}^{v} = Y_{2,l}^{v} \quad (l = \overline{0,r+v-1}),$$

$$(69)$$

где
$$h_{1,l}^v = h_1^{[6l,6(r-l)+3v-3]}, \ Y_{2,l}^v = \widehat{Y}_2^{[6l+4,6(r-l)+3v-3)]} \ (l = \overline{0,r+v-1}), \ h_{2,l}^v = h_2^{[6l+4,6(r-l-1)+3v]} \ (l = \overline{0,r-1}), \ Y_{1,l}^v = \widehat{Y}_1^{[6l,6(r-l)+3v)]} \ (l = \overline{0,r}); \ Y_{2,-1}^v, Y_{2,r}^0 = 0.$$

Подставляя теперь $h_{1,l}^v$ и $h_{1,l-1}^v$ из (69_2) в (69_1) , получаем систему:

$$a_l^v h_{2,l-2}^v + b_l^v h_{2,l-1}^v + c_l^v h_{2,l}^v = Y_{0,l}^v \quad (l = \overline{0,r}), \tag{70}$$

в которой
$$a_l^v=(2(r-l)+v+1)(2(r-l)+v+2)$$
 $(l=\overline{2,r}),\ b_l^v=(3l-1)(4(r-l)+2v+1)-3$ $(l=\overline{1,r}),\ c_l^v=(3l-1)(3l+2)$ $(l=\overline{0,r-1}),\ Y_{0,l}^v=3Y_{1,l}^v+(2(r-l)+v+1)Y_{2,l-1}^v+(3l-1)Y_{2,l}^v.$

Для решения системы (70) будем методом Гаусса аннулировать элементы $c_{r-1}^v, c_{r-2}^v, \dots$

матрицы
$$\begin{pmatrix} c_0^v & 0 & 0 & \dots & 0 \\ b_1^v & c_1^v & 0 & \dots & 0 \\ a_2^v & b_2^v & c_2^v & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & a_{r-1}^v & b_{r-1}^v & c_{r-1}^v \\ 0 & \dots & 0 & a_r^v & b_r^v \end{pmatrix}_{(r+1)\times r},$$
 получая d_l^v вместо b_l^v и $\overline{Y}_{0,l}^v$ вместо $Y_{0,l}^v$

 $(l \le r)$, пока $d^v_{l+1} \ne 0 \ (l \ge 0)$, по рекуррентным формулам:

$$d_r^v = b_r^v, \ \overline{Y}_{0,r}^v = Y_{0,r}^v; \quad d_l^v = b_l^v - \frac{a_{l+1}^v c_l^v}{d_{l+1}^v}, \ \overline{Y}_{0,l}^v = Y_{0,l}^v - \frac{\overline{Y}_{0,l+1}^v c_l^v}{d_{l+1}^v} \quad (l = r-1, r-2, \dots). \quad (71)$$

 0^0 . v = 0 (k = 6r - 2).

Лемма 5. Для элементов d_1^0 из (71) верна следующая прямая формула:

$$d_l^0 = (3l - 4)(2(r - l) + 1) \neq 0 \quad (l = \overline{r, 1}). \tag{72}$$

Доказательство. В (71) $d_r^0 = 3r - 4$, что совпадает с d_r^0 из (72) и дает базу индукции.

Пусть для $\forall l = \overline{r-1,1}$ верна формула (72). Тогда согласно (71) имеем $d_{l-1}^0 = b_{l-1}^0 - a_l^0 c_{l-1}^0 (d_l^0)^{-1} = (3l-4)(4(r-l)+5) - 3 - (2(r-l)+2)(3l-2) = (2(r-l)+3)(3l-7).$

В результате первое уравнение (l=0) системы, полученной из (70), принимает вид: $0 \cdot h_{2,0}^0 = \overline{Y}_{0,0}^0$, где $\overline{Y}_{0,0}^0 = \sum_{m=0}^r \theta_{1,m}^{0,0} Y_{0,m}^0$ с $\theta_{1,m}^{0,0} = (-1)^m \prod_{j=1}^m (c_{j-1}^0/d_j^0)$. Учитывая (70) и (72), получаем:

$$\theta_{1,m}^{0,0} = (-1)^m \prod_{j=1}^m \frac{3j-1}{2(r-j)+1} \neq 0 \quad (m=\overline{0,r}).$$

В обозначениях (69) имеем: $\sum_{m=0}^{r} \theta_{1,m}^{0,0} Y_{0,m}^0 = \sum_{m=0}^{r} \theta_{1,m}^{0,0} (3Y_{1,m}^0 + (2(r-m)+1)Y_{2,m-1}^0 + (3m-1)Y_{2,m}^0) = 3\sum_{m=0}^{r} \theta_{1,m}^{0,0} Y_{1,m}^0 + \sum_{m=0}^{r-1} ((3m-1)\theta_{1,m}^{0,0} + (2(r-m)-1)\theta_{1,m+1}^{0,0})Y_{2,m}^0 = 0,$ причем $(3m-1)\theta_{1,m}^{0,0} + (2(r-m)-1)\theta_{1,m+1}^{0,0} = -3\theta_{1,m}^{0,0}.$

В результате уравнение $\overline{Y}_{0,0}^0=0$ дает для системы (68°) с v=0 резонансную связь:

$$\sum_{m=0}^{r} \alpha_{1,m}^{0,0} \widehat{Y}_{1}^{[6m,6(r-m)]} + \sum_{m=0}^{r-1} \beta_{1,m}^{0,0} \widehat{Y}_{2}^{[6m+4,6(r-m)-3]} = 0 \qquad (\alpha_{1,m}^{0,0}, -\beta_{1,m}^{0,0} = \theta_{1,m}^{0,0}). \tag{73}$$

 $1^0. \ \ v=1 \ \ (k=6r+1).$

Лемма 6. В матрице системы (70) диагональные элементы d_r^1, \ldots, d_1^1 , определяемые по формулам (71), положительны.

Доказательство. Пусть $f_l = 3(l-1)(2(r-l)+3)$, тогда $f_1 = 0$, $f_l > 0$ при $l = \overline{2,r}$.

Покажем методом математической индукции, что $d_l^1 > f_l$ при $l = \overline{r, 1}$.

Согласно (71) $d_r^1 = 9r - 6 > 9r - 9 = f_r$, что является базой индукции.

Пусть $d_{l+1}^1 > f_{l+1} = 3(2(r-l)+1)l$. Тогда $d_l^1 = b_l^1 - c_l^1 a_{l+1}^1/d_{l+1}^1 > b_l^1 - c_l^1 a_{l+1}^1/f_{l+1}$, так как $c_l^1 a_{l+1}^1 = 2(3l-1)(3l+2)(r-l)(2(r-l)+1) > 0$ при $l = \overline{r}, \overline{1}$. Но $b_l^1 - c_l^1 a_{l+1}^1/f_{l+1} > f_l$ $\Leftrightarrow (3l-1)(4(r-l)+3) - 3 - (2/3)(3l-1)(3l+2)(r-l)/l - 3(2(r-l)+3)(l-1) > 0 \Leftrightarrow (4r+5l)/3 > 0$, что верно. Поэтому $d_l^1 > f_l$, т. е. $d_l^1 > 0$ для $\forall l = \overline{1,r}$.

Первое уравнение (l=0) системы, полученной из (70), принимает вид: $0 \cdot h_{2,0}^1 = \overline{Y}_{0,0}^1$, где $\overline{Y}_{0,0}^1 = \sum_{m=0}^r \theta_{1,m}^{0,1} Y_{0,m}^1$ с $\theta_{1,m}^{0,1} = (-1)^m \prod_{j=1}^m (c_{j-1}^1/d_j^1) \neq 0$, так как $c_l^1 \neq 0$ для $\forall l=\overline{0,r-1}$. В обозначениях (69): $\sum_{m=0}^r \theta_{1,m}^{0,1} Y_{0,m}^1 = \sum_{m=0}^r \theta_{1,m}^{0,1} (3Y_{1,m}^1 + (2(r-m)+2)Y_{2,m-1}^1 + (3m-1)Y_{2,m}^1) = 3\sum_{m=0}^r \theta_{1,m}^{0,1} Y_{1,m}^1 + \sum_{m=0}^{r-1} ((3m-1)\theta_{1,m}^{0,1} + 2(r-m)\theta_{1,m+1}^{0,1})Y_{2,m}^1 + (3r-1)\theta_{1,r}^{0,1} Y_{2,r}^1$, причем $(3m-1)\theta_{1,m}^{0,1} + 2(r-m)\theta_{1,m+1}^{0,1} = (3m-1)(1-2(r-m)(3m+2)/d_{m+1}^1)\theta_{1,m}^{0,1}$.

В результате уравнение $\overline{Y}_{0,0}^1=0$ дает для (68°) v=1 резонансную связь:

$$\sum_{m=0}^{r} \alpha_{1,m}^{0,1} \widehat{Y}_1^{[6m,6(r-m)+3]} + \sum_{m=0}^{r} \beta_{1,m}^{0,1} \widehat{Y}_2^{[6m+4,6(r-m)]} = 0, \tag{74}$$

в которой $\alpha_{1,m}^{0,1}=3\theta_{1,m}^{0,1},\ \beta_{1,m}^{0,1}=(3m-1)(1-2(r-m)(3m+2)/d_{m+1}^1)\theta_{1,m}^{0,1}\ (m=\overline{0,r-1}),$ $\beta_{1,r}^{0,1}=(3r-1)\theta_{1,r}^{0,1},\$ а множители $\theta_{1,m}^{0,1}=(-1)^m\prod_{j=1}^m((3j-4)(3j-1)/d_j^1)\neq 0$ по лемме 6.

7.2.2 u=1 (k = 6r + 3v - 1)

Перепишем (68), используя введенные в разделе 7.1 разложения для q_1 и q_2 при u=1:

$$(3l+1)h_{1}^{[6l+4,6(r-l-1)+3v]} + (2(r-l)+v)h_{1}^{[6l-2,6(r-l)+3v]} - h_{2}^{[6l+2,6(r-l)+3v-3]} =$$

$$= \widehat{Y}_{1}^{[6l+4,6(r-l)+3v-3]} \quad (l = \overline{0,r+v-1}),$$

$$(3l+1)h_{2}^{[6l+2,6(r-l)+3v-3]} + (2(r-l)+v+1)h_{2}^{[6l-4,6(r-l)+3v+3]} - 3h_{1}^{[6l-2,6(r-l)+3v]} =$$

$$= \widehat{Y}_{2}^{[6l+2,6(r-l)+3v]} \quad (l = \overline{0,r})$$

$$(68^{1})$$

или

$$(3l+1)h_{1,l}^{v} + (2(r-l)+v)h_{1,l-1}^{v} - h_{2,l}^{v} = Y_{1,l}^{v} \quad (l = \overline{0, r+v-1}),$$

$$(3l+1)h_{2,l}^{v} + (2(r-l)+v+1)h_{2,l-1}^{v} - 3h_{1,l-1}^{v} = Y_{2,l}^{v} \quad (l = \overline{0, r}),$$

$$(75)$$

где $h_{1,l}^v=h_1^{[6l+4,6(r-l-1)+3v]}$ $(l=\overline{0,r-1}), \ Y_{1,l}^v=\widehat{Y}_1^{[6l+4,6(r-l)+3v-3]}, \ h_{2,l}^v=h_2^{[6l+2,6(r-l)+3v-3]}$ $(l=\overline{0,r+v-1}), \ Y_{2,l}^v=\widehat{Y}_2^{[6l+2,6(r-l)+3v]}$ $(l=\overline{0,r}); \ Y_{1,-1}^v, Y_{1,r}^0=0.$

Подставляя теперь $h_{2,l}^v$ и $h_{2,l-1}^v$ из подсистемы (75_1) в (75_2) , получаем систему:

$$a_l^v h_{1,l-2}^v + b_l^v h_{1,l-1}^v + c_l^v h_{1,l}^v = Y_{0,l}^v \quad (l = \overline{0,r}), \tag{76}$$

в которой $a_l^v=(2(r-l)+v+1)(2(r-l)+v+2)$ $(l=\overline{2,r}),\ b_l^v=(6l-1)(2(r-l)+v)+3l-5$ $(l=\overline{1,r}),\ c_l^v=(3l+1)^2$ $(l=\overline{0,r-1}),\ Y_{0,l}^v=(2(r-l)+v+1)Y_{1,l-1}^v+(3l+1)Y_{1,l}^v+Y_{2,l}^v.$

 ${f 0^0}$. ${f v}={f 0}\ ({f k}={f 6r}-{f 1})$. Для решения системы (76) будем методом Гаусса аннулировать

элементы
$$a_2^0, a_3^0, \dots$$
 матрицы
$$\begin{pmatrix} c_0^0 & 0 & 0 & \dots & 0 \\ b_1^0 & c_1^0 & 0 & \dots & 0 \\ a_2^0 & b_2^0 & c_2^0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & a_{r-1}^0 & b_{r-1}^0 & c_{r-1}^0 \\ 0 & \dots & 0 & a_r^0 & b_r^0 \end{pmatrix}_{(r+1)\times r}, \text{ получая } e_l^0 \text{ вместо } b_l^0 \text{ и}$$

 $\overline{Y}_{0,l}^0$ вместо $Y_{0,l}^0$ $(l \le r)$, пока $e_{l-1}^0 \ne 0$ $(l \ge 2)$, по рекуррентным формулам:

$$e_{1}^{0} = b_{1}^{0}, \ \overline{Y}_{0,0}^{0} = Y_{0,0}^{0}, \ \overline{Y}_{0,1}^{0} = Y_{0,1}^{0}; \quad e_{l}^{0} = b_{l}^{0} - \frac{a_{l}^{0} c_{l-1}^{0}}{e_{l-1}^{0}}, \ \overline{Y}_{0,l}^{0} = Y_{0,l}^{0} - \frac{\overline{Y}_{0,l-1}^{0} a_{l}^{0}}{e_{l-1}^{0}} \quad (l = 2, 3, \dots).$$
 (77)

Лемма 7. В матрице системы (76) определяемые по формулам (77) диагональные элементы e_1^0, \ldots, e_{r-1}^0 положительны, а e_r^0 отрицателен.

Доказательство. Для оценки снизу элементов e_l^0 при $l=\overline{1,r-1}$ введем положительную функцию $f_l=(3l+1)(2(r-l)-1).$

Покажем методом математической индукции, что $e_l^0 > f_l$ при $l = \overline{1,r-1}$.

В (77) $e_1^0 = 10r - 12 > 8r - 12 = f_1$, что является базой индукции.

Пусть теперь $e_{l-1}^0 > f_{l-1} = (3l-2)(2(r-l)+1)$. Тогда $e_l^0 = b_l^0 - a_l^0 c_{l-1}^0 / e_{l-1}^0 > b_l^0 - a_l^0 c_{l-1}^0 / f_{l-1}$, так как $a_l^0 c_{l-1}^0 = (2(r-l)+1)(2(r-l)+2)(3l-2)^2 > 0$. Но $b_l^0 - a_l^0 c_{l-1}^0 / f_{l-1} = (2(r-l)+1)(2(r-l)+2)(3l-2)^2 > 0$.

 $2(6l-1)(r-l)+3l-5-(2(r-l)+2)(3l-2)=(2(r-l)-1)(3l+1)=f_l$. Значит, $e_l^0>f_l$, т. е. $e_l^0>0 \ \forall \, l=\overline{1,r-1}$.

Оценим теперь элементы e_l^0 $(l=\overline{1,r})$ сверху так, чтобы e_r^0 в итоге оказались бы отрицательным. Введем $g_l=2(r-l)(3l+3)$. При $l=\overline{1,r-1}$ функция $g_l>0$ и $g_r=0$.

Покажем методом математической индукции, что $e_l^0 < g_l$ при $l = \overline{1,r}$.

В (77) $e_1^0 = 10r - 12 < 12r - 12 = g_1$, что является базой индукции.

Пусть $e_{l-1}^0 < g_{l-1} = 6l(r-l+1)$. Тогда $e_l^0 = b_l^0 - a_l^0 c_{l-1}^0 / e_{l-1}^0 < b_l^0 - a_l^0 c_{l-1}^0 / g_{l-1}$, так как $a_l^0 c_{l-1}^0 > 0$. Но $b_l^0 - a_l^0 c_{l-1}^0 / g_{l-1} < g_l \Leftrightarrow 2(6l-1)(r-l) + 3l - 5 - (1/6)(2(r-l)+2) \times (3l-2)^2 / l - 2(r-l)(3l+3) < 0 \Leftrightarrow (1/3)(5l-8r-4)/l < 0$, что верно при $l=\overline{1,r}$. Поэтому $e_l^0 < g_l$, а значит $e_r^0 < 0$.

Следовательно можно полностью аннулировать нижнюю диагональ a_2^0, \ldots, a_r^0 матрицы системы (76). Теперь аннулируем элементы c_{r-1}^0, \ldots, c_0^0 , диагональные элементы e_r^0, \ldots, e_1^0 при этом не изменятся, а вместо $\overline{Y}_{0,l}^0$ получим $\check{Y}_{0,l}^0$ по рекуррентным формулам:

$$\breve{Y}_{0,r}^{0} = \overline{Y}_{0,r}^{0}, \quad \breve{Y}_{0,l}^{0} = \overline{Y}_{0,l}^{0} - c_{l}^{0} \breve{Y}_{0,l+1}^{0} / e_{l+1}^{0} \quad (l = \overline{r-1,0}).$$

Тогда первое уравнение системы (l=0), полученной из (76), принимает вид: $0 \cdot h_{1,0}^0 = \widecheck{Y}_{0,0}^0$, где $\widecheck{Y}_{0,0}^0 = \sum_{m=0}^r \theta_m^{1,0} \overline{Y}_{0,m}^0$ с $\theta_m^{1,0} = (-1)^m \prod_{j=1}^m c_{j-1}^0/e_j^0 \neq 0$, так как $c_l^0 \neq 0$ для $\forall l=\overline{0,r-1}$.

Согласно формуле (77) имеем: $\sum_{m=0}^{r} \theta_{m}^{1,0} \overline{Y}_{0,m}^{0} = \theta_{0}^{1,0} Y_{0,0}^{0} + \theta_{1}^{1,0} Y_{0,1}^{0} + \theta_{2}^{1,0} (Y_{0,2}^{0} - a_{2}^{0} Y_{0,1}^{0} / e_{1}^{0}) + \dots + \theta_{r}^{1,0} (Y_{0,r}^{0} - a_{r}^{0} Y_{0,r-1}^{0} / e_{r-1}^{0} + \dots + (-1)^{r-1} Y_{0,1}^{0} \prod_{j=2}^{r} a_{j}^{0} / e_{j-1}^{0}) = \sum_{m=0}^{r} \theta_{1,m}^{1,0} Y_{0,m}^{0}, \text{ где } \theta_{1,0}^{1,0} = \theta_{0}^{1,0} = 1, \quad \theta_{1,m}^{1,0} = \sum_{s=m}^{r} (-1)^{s-m} \theta_{s}^{1,0} \cdot \prod_{j=m+1}^{s} a_{j}^{0} / e_{j-1}^{0} \quad (m=\overline{1,r}).$

В обозначениях (75): $\sum_{m=0}^{r}\theta_{1,m}^{1,0}Y_{0,m}^{0}=\sum_{m=0}^{r}\theta_{1,m}^{1,0}((2(r-m)+1)Y_{1,m-1}^{0}+(3m+1)Y_{1,m}^{0}+Y_{2,m}^{0})=\sum_{m=0}^{r-1}((3m+1)\theta_{1,m}^{1,0}+(2(r-m)-1)\theta_{1,m+1}^{1,0})Y_{1,m}^{0}+\sum_{m=0}^{r}\theta_{1,m}^{1,0}Y_{2,m}^{0}.$

В результате уравнение $\check{Y}_{0,0}^0=0$ дает для (68^1) с v=0 резонансную связь:

$$\sum_{m=0}^{r-1} \alpha_{1,m}^{1,0} \widehat{Y}_1^{[6m+4,6(r-m)-3]} + \sum_{m=0}^{r} \beta_{1,m}^{1,0} \widehat{Y}_2^{[6m+2,6(r-m)]} = 0, \tag{78}$$

где $\alpha_{1,m}^{1,0} = (3m+1)\theta_{1,m}^{1,0} + (2(r-m)-1)\theta_{1,m+1}^{1,0}, \quad \beta_{1,m}^{1,0} = \theta_{1,m}^{1,0}, \quad \text{a} \quad \theta_{1,0}^{1,0} = 1,$ $\theta_{1,m}^{1,0} = (-1)^m \sum_{s=m}^r \prod_{j=1}^s (3j-2)^2/e_j^0 \cdot \prod_{j=m+1}^s (2(r-j)+1)(2(r-j)+2)/e_{j-1}^0 \quad (m=\overline{1,r}).$

 ${f 1^0}.~~{f v}={f 1}~~({f k}={f 6r}+{f 2}).$ Для решения системы (76) будем методом Гаусса аннулировать

элементы $c_{r-1}^1, c_{r-2}^1, \dots$ матрицы $\begin{pmatrix} c_0^1 & 0 & 0 & \dots & 0 \\ b_1^1 & c_1^1 & 0 & \dots & 0 \\ a_2^1 & b_2^1 & c_2^1 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & a_{r-1}^1 & b_{r-1}^1 & c_{r-1}^1 \\ 0 & \dots & 0 & a_r^1 & b_r^1 \end{pmatrix}_{(r+1)\times r},$ получая d_l^1 вместо

 b_l^1 и $\overline{Y}_{0,l}^1$ вместо $Y_{0,l}^1$ $(l \le r)$, пока $d_{l+1}^1 \ne 0$ $(l \ge 0)$, по рекуррентным формулам:

$$d_r^1 = b_r^1, \ \overline{Y}_{0,r}^1 = Y_{0,r}^1; \quad d_l^1 = b_l^1 - \frac{a_{l+1}^1 c_l^1}{d_{l+1}^1}, \ \overline{Y}_{0,l}^1 = Y_{0,l}^1 - \frac{\overline{Y}_{0,l+1}^1 c_l^1}{d_{l+1}^1} \quad (l = r - 1, r - 2, \dots). \quad (79)$$

Лемма 8. Для элементов d_1^1 из (79) верна следующая прямая формула:

$$d_l^1 = (3l - 2)(2(r - l) + 3) \neq 0 \quad (l = \overline{r, 1}). \tag{80}$$

Доказательство. В (79) $d_r^1 = 3(3r-2)$, что совпадает с d_r^1 из (80) и дает базу индукции.

Пусть для $\forall \, l = \overline{r-1,1}$ верна формула (80). Тогда согласно (79) имеем $\, d^1_{l-1} = b^1_{l-1} - a^1_l c^1_{l-1} (d^1_l)^{-1} = 6lr - 6l^2 + 25l - 10r - 25 = (3l-5)(2(r-l)+5).$

Первое уравнение (l=0) системы, полученной из (76), принимает вид: $0 \cdot h_{1,0}^1 = \overline{Y}_{0,0}^1$, где $\overline{Y}_{0,0}^1 = \sum_{m=0}^r \theta_{1,m}^{1,1} Y_{0,m}^1$ с $\theta_{1,m}^{1,1} = (-1)^m \prod_{j=1}^m (c_{j-1}^1/d_j^1)$. Учитывая (76) и (80), получаем:

$$\theta_{1,m}^{1,1} = (-1)^m \prod_{j=1}^m \frac{3j-2}{2(r-j)+3} \neq 0 \quad (m = \overline{0,r}).$$

В обозначениях (75): $\sum_{m=0}^{r} \theta_{1,m}^{1,1} Y_{0,m}^1 = \sum_{m=0}^{r} \theta_{1,m}^{1,1} ((2(r-m)+2)Y_{1,m-1}^1 + (3m+1)Y_{1,m}^1 + Y_{2,m}^1) = \sum_{m=0}^{r-1} ((3m+1)\theta_{1,m}^{1,1} + 2(r-m)\theta_{1,m+1}^{1,1})Y_{1,m}^1 + (3r+1)\theta_{1,r}^{1,1}Y_{1,r}^1 + \sum_{m=0}^{r} \theta_{1,m}^{1,1}Y_{2,m}^1 = 0,$ причем $(3m+1)\theta_{1,m}^{1,1} + 2(r-m)\theta_{1,m+1}^{1,1} = (3m+1)(2(r-m)+1)^{-1}\theta_{1,m}^{1,1}.$

В результате уравнение $\overline{Y}_{0,0}^1=0$ дает для (68^1) с v=1 резонансную связь:

$$\sum_{m=0}^{r} \alpha_{1,m}^{1,1} \widehat{Y}_{1}^{[6m+4,6(r-m)]} + \sum_{m=0}^{r} \beta_{1,m}^{1,1} \widehat{Y}_{2}^{[6m+2,6(r-m)+3)]} = 0, \tag{81}$$

где $\alpha_{1,m}^{1,1}=(3m+1)(2(r-m)+1)^{-1}\theta_{1,m}^{1,1},\ \beta_{1,m}^{1,1}=\theta_{1,m}^{1,1}.$

7.2.3 u=2 (k=6r+3v)

Перепишем (68), используя введенные в разделе 7.1 разложения для q_1 и q_2 при u=1:

$$3l h_{1}^{[6l+2,6(r-l)+3v-3]} + (2(r-l)+v+1)h_{1}^{[6l-4,6(r-l)+3v+3]} - h_{2}^{[6l,6(r-l)+3v]} =$$

$$= \widehat{Y}_{1}^{[6l+2,6(r-l)+3v]} \quad (l = \overline{0,r}),$$

$$3l h_{2}^{[6l,6(r-l)+3v]} + (2(r-l)+v+2)h_{2}^{[6(l-1),6(r-l+1)+3v]} - 3h_{1}^{[6l-4,6(r-l)+3v+3]} =$$

$$= \widehat{Y}_{2}^{[6l,6(r-l)+3v+3]} \quad (l = \overline{0,r+v}).$$

$$(68^{2})$$

Заметим, что при l=0 из второй подсистемы можно сразу получить следующую резонансную связь:

$$\widehat{Y}_{2}^{[0,3(2r+v+1)]} = 0. (82)$$

Вводя новые обозначения, запишем (68^2) в следующем виде:

$$3l h_{1,l}^{v} + (2(r-l) + v + 1) h_{1,l-1}^{v} - h_{2,l}^{v} = Y_{1,l}^{v} \quad (l = \overline{0,r}), 3l h_{2,l}^{v} + (2(r-l) + v + 2) h_{2,l-1}^{v} - 3h_{1,l-1}^{v} = Y_{2,l}^{v} \quad (l = \overline{1,r+v}),$$

$$(83)$$

где $h_{1,l}^v=h_1^{[6l+2,6(r-l)+3v-3]}$ $(l=\overline{0,r+v-1}),\ Y_{1,l}^v=\widehat{Y}_1^{[6l+2,6(r-l)+3v]},\ h_{2,l}^v=h_2^{[6l,6(r-l)+3v]}$ $(l=\overline{0,r}),\ Y_{2,l}^v=\widehat{Y}_2^{[6l,6(r-l)+3v+3)]}$ $(l=\overline{1,r+v});\ Y_{1,r+1}^1=0.$

Подставляя теперь $h_{2,l}^v$ и $h_{2,l-1}^v$ из подсистемы (83_1) в (83_2) , получаем систему:

$$a_l^v h_{1,l-2}^v + b_l^v h_{1,l-1}^v + c_l^v h_{1,l}^v = Y_{0,l}^v \quad (l = \overline{1, r+v}),$$
 (84)

в которой $a_l^v=(2(r-l)+v+2)(2(r-l)+v+3)$ $(l=\overline{2,r+v}),\ b_l^v=3(2l-1)(2(r-l)+v+1)+3l-6$ $(l=\overline{1,r+v}),\ c_l^v=9l^2$ $(l=\overline{1,r+v-1}),\ Y_{0,l}^v=(2(r-l)+v+2)Y_{1,l-1}^v+3l\,Y_{1,l}^v+Y_{2,l}^v.$

 ${\bf 0^0}$. ${\bf v}={\bf 0}~({\bf k}={\bf 6r})$. Для решения системы (84) будем методом Гаусса аннулировать эле-

менты
$$c_{r-1}^0, c_{r-2}^0, \dots$$
 матрицы
$$\begin{pmatrix} b_1^0 & c_1^0 & 0 & \dots & 0 \\ a_2^0 & b_2^0 & c_2^0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & \dots & a_{r-1}^0 & b_r^0 & c_{r-1}^0 \\ 0 & \dots & 0 & a_r^0 & b_r^0 \end{pmatrix}_{r \times r}$$
, получая d_l^0 вместо b_l^0 и $\overline{Y}_{0,l}^0$ вместо $Y_{0,l}^0$ ($l \le r$), пока $d_{l-1}^0 \ne 0$ ($l \ge 1$), по рекуррентным формулам:

 $\overline{Y}_{0,l}^0$ вместо $Y_{0,l}^0$ $(l \le r)$, пока $d_{l+1}^0 \ne 0$ $(l \ge 1)$, по рекуррентным формулам:

$$d_r^0 = b_r^0, \ \overline{Y}_{0,r}^0 = Y_{0,r}^0; \quad d_l^0 = b_l^0 - \frac{a_{l+1}^0 c_l^0}{d_{l+1}^0}, \ \overline{Y}_{0,l}^0 = Y_{0,l}^0 - \frac{\overline{Y}_{0,l+1}^0 c_l^0}{d_{l+1}^0} \quad (l = r - 1, r - 2, \dots). \quad (85)$$

Лемма 9. Для элементов d_l^0 из (85) верна следующая прямая формула:

$$d_l^0 = 3(l-1)(2(r-l)+3) \quad (l = \overline{r,1}). \tag{86}$$

Доказательство. В (85) $d_r^0 = 9(r-1)$, что совпадает с d_r^0 из (86) и дает базу индукции.

Пусть для $\forall \, l = \overline{r-1,1}$ верна формула (86). Тогда согласно (85) имеем $\, d_{l-1}^0 = b_{l-1}^0 - a_l^0 c_{l-1}^0 (d_l^0)^{-1} = 3(2l-3)(2(r-l)+3) + 3l-9 - 3(2(r-l)+2)(l-1) = 3(l-2)(2(r-l)+5). \,\,\Box$

Поскольку в (86) только $d_1^0=0$, то первое уравнение (l=1) системы, полученной из (84), принимает вид: $0\cdot h_{1,0}^0+0\cdot h_{1,1}^0=\overline{Y}_{0,1}^0$, где $\overline{Y}_{0,1}^0=\sum_{m=1}^r\theta_{2,m}^{2,0}Y_{0,m}^0$ с $\theta_{2,m}^{2,0}=(-1)^{m-1}\prod_{j=2}^m(c_{j-1}^0/d_j^0)$. Учитывая (84) и (86), получаем:

$$\theta_{2,m}^{2,0} = (-1)^{m-1} \prod_{j=2}^{m} \frac{3(j-1)}{2(r-j)+3} \neq 0 \quad (m = \overline{1,r}).$$

В обозначениях (83) : $\sum_{m=1}^{r} \theta_{2,m}^{2,0} Y_{0,m}^0 = \sum_{m=1}^{r} \theta_{2,m}^{2,0} ((2(r-m)+2)Y_{1,m-1}^0 + 3m Y_{1,m}^0 + Y_{2,m}^0) = 2r\theta_{2,1}^{2,0} Y_{1,0}^0 + \sum_{m=1}^{r-1} (3m\theta_{2,m}^{2,0} + 2(r-m)\theta_{2,m+1}^{2,0}) Y_{1,m}^0 + 3r\theta_{2,r}^{2,0} Y_{1,r}^0 + \sum_{m=1}^{r} \theta_{2,m}^{2,0} Y_{2,m}^0$, причем $3m\theta_{2,m}^{2,0} + 2(r-m)\theta_{2,m+1}^{2,0} = 3m(2(r-m)+1)^{-1}\theta_{2,m}^{2,0}$.

В результате уравнение $\overline{Y}_{0,1}^0=0$ дает для (68^2) с v=0 вторую резонансную связь при наличии свободной компоненты $h_1^{[2,3(2r-1)]}$:

$$\sum_{m=0}^{r} \alpha_{2,m}^{2,0} \widehat{Y}_{1}^{[6m+2,6(r-m)]} + \sum_{m=1}^{r} \beta_{2,m}^{2,0} \widehat{Y}_{2}^{[6m,6(r-m)+3]} = 0, \tag{87}$$

где $\alpha_{2,0}^{2,0} = 2r\theta_{2,1}^{2,0}$, $\alpha_{2,m}^{2,0} = 3m(2(r-m)+1)^{-1}\theta_{2,m}^{2,0}$ $(m=\overline{1,r})$, $\beta_{2,m}^{2,0} = \theta_{2,m}^{2,0}$

 ${f 1^0}.~~{f v}={f 1}~~({f k}={f 6r}+{f 3}).$ Для решения системы (84) будем методом Гаусса аннулировать

элементы
$$a_2^1,a_3^1,\dots$$
 матрицы
$$\begin{pmatrix} b_1^1&c_1^1&0&\dots&0\\a_2^1&b_2^1&c_2^1&\dots&0\\ \vdots&\ddots&\ddots&\ddots&\vdots\\0&\dots&a_r^1&b_r^1&c_r^1\\0&\dots&0&a_{r+1}^1&b_{r+1}^1 \end{pmatrix}_{(r+1)\times(r+1)},$$
 получая e_l^1 вместо b_l^1

и $\overline{Y}_{0,l}^1$ вместо $Y_{0,l}^1$ $(l \le r+1)$, пока $e_{l-1}^1 \ne 0$ $(l \ge 2)$, по рекуррентным формулам:

$$e_1^1 = b_1^1, \ \overline{Y}_{0,1}^1 = Y_{0,1}^1; \quad e_l^1 = b_l^1 - \frac{a_l^1 c_{l-1}^1}{e_{l-1}^1}, \ \overline{Y}_{0,l}^1 = Y_{0,l}^1 - \frac{\overline{Y}_{0,l-1}^1 a_l^1}{e_{l-1}^1} \quad (l = 2, 3, \dots).$$
 (88)

Лемма 10. Для элементов e_l^1 из (88) верна следующая прямая формула:

$$e_l^1 = 3l(2(r-l)+1) \neq 0 \quad (l = \overline{1,r+1}).$$
 (89)

Доказательство. В (88) $e_1^1=3(2r-1)$, что совпадает с e_1^1 из (89) и дает базу индукции. Пусть для $\forall\, l=\overline{2,r+1}$ верна формула (89). Тогда согласно (88) имеем $e_{l+1}^1=b_{l+1}^1-a_{l+1}^1c_l^1(e_l^1)^{-1}=6(2l+1)(r-l)+3l-3-3(2(r-l)+2)l=3(l+1)(2(r-l)-1)$.

Значит, в этом случае система (84) однозначно разрешима.

7.3 Полученные результаты

Возвращаясь к обозначениям для системы (68) согласно (73),(74),(78),(81),(82),(87) заключаем, что $\forall r \in \mathbb{N}$ коэффициенты КОМ $Y^{[k]}$ удовлетворяют резонансным уравнениям:

$$\sum_{m=0}^{r} \alpha_{1,m}^{0,0} Y_1^{[6m,6(r-m)]} + \sum_{m=0}^{r-1} \beta_{1,m}^{0,0} Y_2^{[6m+4,6(r-m)-3]} = \tilde{c} \quad (k = 6r - 2), \tag{90}$$

где $\alpha_{1,m}^{0,0}, -\beta_{1,m}^{0,0} = \theta_{1,m}^{0,0}, \text{ a } \theta_{1,m}^{0,0} = (-1)^m \prod_{j=1}^m (3j-1)(2(r-j)+1)^{-1} \neq 0;$

$$\sum_{m=0}^{r-1} \alpha_{1,m}^{1,0} Y_1^{[6m+4,6(r-m)-3]} + \sum_{m=0}^{r} \beta_{1,m}^{1,0} Y_2^{[6m+2,6(r-m)]} = \tilde{c} \quad (k = 6r - 1), \tag{91}$$

где $\alpha_{1,m}^{1,0}=(3m+1)\theta_{1,m}^{1,0}+(2(r-m)-1)\theta_{1,m+1}^{1,0},\ \beta_{1,m}^{1,0}=\theta_{1,m}^{1,0},\ \text{а}\ \theta_{1,0}^{1,0}=\underline{1},\ \theta_{1,m}^{1,0}=(-1)^m\times\sum_{s=m}^r\prod_{j=1}^s(3j-2)^2/e_j^0\cdot\prod_{j=m+1}^s(2(r-j)+1)(2(r-j)+2)/e_{j-1}^0\ (m=\overline{1,r}),\$ элементы e_m^1 находятся рекуррентно из формул (77), причем $\beta_{1,0}^{1,0}=1,\ \beta_{1,r}^{1,0}=(-1)^r\prod_{j=1}^r(3j-2)^2/e_j^0\neq 0;$

$$Y_2^{[0,3(2r+1)]} = \tilde{c}, \ \sum_{m=0}^{r} \alpha_{2,m}^{2,0} Y_1^{[6m+2,6(r-m)]} + \sum_{m=1}^{r} \beta_{2,m}^{2,0} Y_2^{[6m,6(r-m)+3]} = \tilde{c} \quad (k=6r),$$
 (92)

где $\alpha_{2,0}^{2,0}=2r\theta_{2,1}^{2,0}\neq 0, \ \alpha_{2,m}^{2,0}=3m(2(r-m)+1)^{-1}\theta_{2,m}^{2,0}\neq 0 \ (m=\overline{1,r}), \ \beta_{2,m}^{2,0}=\theta_{2,m}^{2,0}\neq 0,$ так как $\theta_{2,m}^{2,0}=(-1)^{m-1}\prod_{j=2}^m3(j-1)(2(r-j)+3)^{-1}\neq 0;$

$$\sum_{m=0}^{r} \alpha_{1,m}^{0,1} Y_1^{[6m,6(r-m)+3]} + \sum_{m=0}^{r} \beta_{1,m}^{0,1} Y_2^{[6m+4,6(r-m)]} = \tilde{c} \quad (k = 6r+1), \tag{93}$$

где $\alpha_{1,m}^{0,1}=3\theta_{1,m}^{0,1}\neq 0,\ \beta_{1,m}^{0,1}=(3m-1)(1-2(r-m)(3m+2)/d_{m+1}^1)\theta_{1,m}^{0,1}\ (m=\overline{0,r-1}),$ $\beta_{1,r}^{0,1}=(3r-1)\theta_{1,r}^{0,1}\neq 0,\$ а $\theta_{1,m}^{0,1}=(-1)^m\prod_{j=1}^m((3j-4)(3j-1)/d_j^1)\neq 0,\$ элементы d_m^0 находятся рекуррентно из формул (71), причем $\beta_{1,r-1}^{0,1}=(3r-4)(1-2(3r-1)(9r-6)^{-1})\theta_{1,r-1}^{0,1}\neq 0;$

$$\sum_{m=0}^{r} \alpha_{1,m}^{1,1} Y_1^{[6m+4,6(r-m)]} + \sum_{m=0}^{r} \beta_{1,m}^{1,1} Y_2^{[6m+2,6(r-m)+3)]} = \tilde{c} \quad (k = 6r + 2), \tag{94}$$

где $\alpha_{1,m}^{1,1}=(3m+1)(2(r-m)+1)^{-1}\theta_{1,m}^{1,1}\neq 0,\ \beta_{1,m}^{1,1}=\theta_{1,m}^{1,1}\neq 0,$ так как $\theta_{1,m}^{1,1}=(-1)^m\times\prod_{j=1}^m(3j-2)(2(r-j)+3)\neq 0;$

$$Y_2^{[0,6(r+1)]} = \tilde{c} \quad (k = 6r + 3). \tag{95}$$

В частности, для r=1 резонансные уравнения выглядят следующим образом:

$$Y_{2}^{[0,9]} = \widetilde{c}, \quad Y_{1}^{[0,6]} - 2Y_{1}^{[6,0]} - Y_{2}^{[4,3]} = \widetilde{c}, \quad 3Y_{1}^{[4,3]} + 2Y_{2}^{[2,6]} + Y_{2}^{[8,0]} = \widetilde{c}, \\ Y_{2}^{[0,9]} = \widetilde{c}, \quad 2Y_{1}^{[2,6]} + 3Y_{1}^{[8,0]} + Y_{2}^{[6,3]} = \widetilde{c}, \quad 9Y_{1}^{[0,9]} + 6Y_{1}^{[6,3]} + Y_{2}^{[4,6]} + 4Y_{2}^{[10,0]} = \widetilde{c}, \\ Y_{1}^{[4,6]} - 4Y_{1}^{[10,0]} + 3Y_{2}^{[2,9]} - Y_{2}^{[8,3]} = \widetilde{c}, \quad Y_{2}^{[0,12]} = \widetilde{c}.$$

Теорема 9. Для того чтобы система (67) была формально эквивалентна исходной сиcтеме (65), необходимо и достаточно, чтобы коэффициенты $KOM \ Y^{[k]} \$ удовлетворяли:

- 1) $npu \ k = 6r 2$ уравнению (90);
- 2) $npu \ k = 6r 1 уравнению (91);$
- 3) $npu \ k = 6r$ двум уравнениям (92);
- 4) $npu \ k = 6r + 1 уравнению (93);$
- 5) $npu \ k = 6r + 2 уравнению (94);$
- 6) при k = 6r + 3 уравнению (95) (здесь везде r > 1).

Следствие 10. В КОМ $Y^{[k]}$ системы (67) для $\forall r \in \mathbb{N}$:

- 1) при k = 6r 2 все коэффициенты являются резонансными;
- 2) при k = 6r 1 не удается полностью описать множество резонансных коэффициентов, так как множители $\alpha_{1,m}^{1,0}$ $(m=\overline{0,r-1})$ и $\beta_{1,m}^{1,0}$ $(m=\overline{1,r-1})$ могут обращаться в ноль, но коэффициенты $Y_2^{[2,6r]}$ и $Y_2^{[6r+2,0]}$ – резонансные;
- 3) $npu\ k=6r\ все\ коэффициенты- резонансные, <math>npu\ этом\ коэффициент\ h_1^{[2,3(2r-1)]}\ KOM$ $h_1^{[k-3]}$ также является резонансным;
- 4) при k=6r+1 не удается полностью описать множество резонансных коэффиииентов, так как множители $\beta_{1,m}^{0,1}$ $(m=\overline{0,r-2})$ могут обращаться в ноль, но все
- коэффициенты $Y_1^{[6m,6(r-m)+3]}$ $(m=\overline{0,r}),$ а также $Y_2^{[6r+4,0]}$ и $Y_2^{[6r-2,6]}$ резонансные; 5) при k=6r+2 все коэффициенты являются резонансными; 6) при k=6r+3 коэффициент $Y_2^{[0,6(r+1)]}$ резонансный, а $Y_1^{[6m+2,6(r-m)]}$ $(m=\overline{0,r}),$ $Y_2^{[6m,6(r-m)+3]}$ $(m=\overline{1,r})$ нерезонансные.

Для $\forall k \geq 4$ положим $n_k = \{2 \text{ при } k = 6r; 1 - \text{при остальных } k\}.$

Следствие 11. В системе (67) n_k различных резонансных коэффициентов КОМ $Y^{[k]}$

- образуют резонансный k-набор \mathcal{Y}^k , если это:

 1) \mathcal{Y}^{6r-2} : $Y_1^{[6l_1,6(r-l_1)]}$ ($l_1 \in \{0,\ldots,r\}$) или $Y_2^{[6l_2+4,6(r-l_2)-3]}$ ($l_2 \in \{0,\ldots,r-1\}$);

 2) \mathcal{Y}^{6r-1} : $Y_2^{[2,6r]}$, или $Y_2^{[6r+2,0]}$, или $Y_1^{[6m+4,6(r-m)-3]}$ ($m \in \{0,\ldots,r-1\}$), если $\alpha_{1,m}^{1,0} \neq 0$,
- $\begin{array}{l} \mathcal{Z}) \ \mathcal{Y} & : \ I_{2} \\ unu \ Y_{2}^{[6m+2,6(r-m)]} \ (m \in \{1,\ldots,r-1\}), \ ecnu \ \beta_{1,m}^{1,0} \neq 0; \\ \mathcal{Z}) \ \mathcal{Y}^{6r} : \ Y_{2}^{[0,3(2r+1)]} \ u \ Y_{1}^{[6l_{4}+2,6(r-l_{4})]} \ (l_{4} \in \{0,\ldots,r\}) \ unu \ Y_{2}^{[6l_{5},6(r-l_{5})+3]} \ (l_{5} \in \{1,\ldots,r\}); \\ \mathcal{Z}) \ \mathcal{Y}^{6r+1} : \ Y_{1}^{[6l_{6},6(r-l_{6})+3]} \ (l_{6} \in \{0,\ldots,r\}), \ unu \ Y_{2}^{[6r-2,6]}, \ unu \ Y_{2}^{[6r+4,0]}, \ unu \ Y_{2}^{[6m+4,6(r-m)]} \\ (m \in \{0,\ldots,r-2\}), \ ecnu \ \beta_{1,m}^{0,1} \neq 0; \\ \mathcal{Y}^{6r+2} : \ Y_{1}^{[6l_{8}+4,6(r-l_{8})]} \ (l_{8} \in \{0,\ldots,r\}) \ unu \ Y_{2}^{[6l_{9}+2,6(r-l_{9})+3]} \ (l_{9} \in \{0,\ldots,r\}); \\ \mathcal{Z}^{6r+2} : \ Y_{1}^{[6l_{8}+4,6(r-l_{8})]} \ (l_{8} \in \{0,\ldots,r\}) \ unu \ Y_{2}^{[6l_{9}+2,6(r-l_{9})+3]} \ (l_{9} \in \{0,\ldots,r\}); \end{array}$
- 6) $\mathcal{Y}^{6r+3}: Y_2^{[0,6(r+1)]}$.

Таким образом, система (67) по определению является ОНФ, если для каждого $k \ge 4$ все коэффициенты её КОМ $Y^{[k]}$ равны нулю, кроме n_k штук, принадлежащих любому резонансному k-набору, описанному в следствии 11, и имеющих произвольные значения.

Следствие 12. Для системы (67) неполное семейство резонансных наборов \mathcal{Y}^* имеет вид: $\{\rho_1^r Y_1^{[6l_1,6(r-l_1)]}, \rho_2^r Y_1^{[6l_4+2,6(r-l_4)]}, \rho_3^r Y_1^{[6l_6,6(r-l_6)+3]}, \rho_4^r Y_1^{[6l_8+4,6(r-l_8)]}, Y_2^{[0,3(2r+1)]}, Y_2^{[0,6(r+1)]}, Y_2^{[6l_3+2,6(r-l_3)]}, (1-\rho_1^r) Y_2^{[6l_2+4,6(r-l_2)-3]}, (1-\rho_2^r) Y_2^{[6l_5,6(r-l_5)+3]}, (1-\rho_3^r) Y_2^{[6l_7+4,6(r-l_7)]}, (1-\rho_4^r) Y_2^{[6l_9+2,6(r-l_9)+3]}\}$, $z \partial e \ l_1, l_4, l_6, l_8, l_9 \in \{0, \dots, r\}, \ l_2 \in \{0, \dots, r-1\}, \ l_3 \in \{0, r\}, l_5 \in \{1, \dots, r\}, \ l_7 \in \{r-1, r\}, \ \rho_j^r \in \{0, 1\} \ (j=\overline{1, 4}), \ r \geq 1$. Если множитель при некотором $Y_i^{[2q_1,3q_2]}$, входящим в \mathcal{Y}^* , равен нулю, то этот элемент отсутствует.

Теорема 10. Для любой системы (65), и для любого выбранного по её невозмущенной части резонансного набора \mathcal{Y}^* из следствия 12 существует и единственна почти тождественная замена (66) с заранее произвольным образом зафиксированными резонансными коэффициентами, преобразующая систему (65) в $OH\Phi$ (67):

$$\begin{split} \dot{y}_1 &= y_1 y_2 + \sum_{r=1}^{\infty} \left(\rho_1^r Y_1^{[6l_1, 6(r-l_1)]} y_1^{3l_1} y_2^{2(r-l_1)} + \rho_2^r Y_1^{[6l_4+2, 6(r-l_4)]} y_1^{3l_4+1} y_2^{2(r-l_4)} + \right. \\ & + \rho_3^r Y_1^{[6l_6, 6(r-l_6)+3]} y_1^{3l_6} y_2^{2(r-l_6)+1} + \rho_4^r Y_1^{[6l_8+4, 6(r-l_8)]} y_1^{3l_8+2} y_2^{2(r-l_8)} \right), \\ \dot{y}_2 &= y_1^3 + \sum_{r=1}^{\infty} \left(Y_2^{[0, 3(2r+1)]} y_2^{2r+1} + Y_2^{[0, 6(r+1)]} y_2^{2(r+1)} + Y_2^{[6l_3+2, 6(r-l_3)]} y_1^{3l_3+1} y_2^{2(r-l_3)} + \right. \\ & + (1 - \rho_1^r) Y_2^{[6l_2+4, 6(r-l_2)-3]} y_1^{3l_2+2} y_2^{2(r-l_2)-1} + (1 - \rho_2^r) Y_2^{[6l_5, 6(r-l_5)+3]} y_1^{3l_5} y_2^{2(r-l_5)+1} + \\ & + (1 - \rho_3^r) Y_2^{[6l_7+4, 6(r-l_7)]} y_1^{3l_7+2} y_2^{2(r-l_7)} + (1 - \rho_4^r) Y_2^{[6l_9+2, 6(r-l_9)+3]} y_1^{3l_9+1} y_2^{2(r-l_9)+1} \right). \end{split}$$

Пример 3. Любая система (65) формально эквивалентна ОНФ, не имеющей возмущения в первом уравнении:

$$\dot{y}_1 = y_1 y_2, \qquad \dot{y}_2 = y_1^3 + \sum_{\substack{r=1 \ r=1}}^{\infty} \left(Y_2^{[0,3(2r+1)]} y_2^{2r+1} + Y_2^{[0,6(r+1)]} y_2^{2(r+1)} + Y_2^{[6r+2,0]} y_1^{3r+1} + \right. \\ \left. + Y_2^{[4,6r-3]} y_1^2 y_2^{2r-1} + Y_2^{[6r,3]} y_1^{3r} y_2 + Y_2^{[6r+4,0]} y_1^{3r+2} + Y_2^{[2,6r+3]} y_1 y_2^{2r+1} \right).$$

8 ОНФ систем с ${ m R}^{[4]}_{(2.3)}$ в невозмущенной части

8.1 Получение связующей системы

Рассмотрим систему (10) с канонической невозмущенной частью $R_{(2,3)}^{[4]}=(x_2^2,x_1^2x_2)$:

$$\dot{x}_1 = x_2^2 + \sum_{k=5}^{\infty} X_1^{[k]}(x), \quad \dot{x}_2 = x_1^2 x_2 + \sum_{k=5}^{\infty} X_2^{[k]}(x),$$
 (96)

где в возмущении КОМ $X_i^{[k]} = \sum_{2q_1+3q_2=k+\gamma_i} X_i^{[2q_1,3q_2]} x_1^{q_1} x_2^{q_2} \quad (i=1,2).$

Замечание 3. Вообще говоря, $R_{(2,3)}^{[4]} = \sigma(x_2^2, x_1^2 x_2)$, но при $\sigma = -1$ можно сделать замену времени $t = -\tau$ и получить систему (96), возмущение в которой сменит знак.

Пусть формальная почти тождественная замена

$$x_i = y_i + h_i(y) \quad (i = 1, 2),$$
 (97)

где $h_i(y) = \sum_{k=5}^{\infty} h_i^{[k-4]}(y)$, $h_i^{[k-4]} = \sum_{2q_1+3q_2=k+\gamma_i-4} h_i^{[2q_1,3q_2]} y_1^{q_1} y_2^{q_2}$ переводит (96) в систему:

$$\dot{y}_1 = y_2^2 + \sum_{k=5}^{\infty} Y_1^{[k]}(y), \quad \dot{y}_2 = y_1^2 y_2 + \sum_{k=5}^{\infty} Y_2^{[k]}(y),$$
 (98)

где возмущение $Y_i^{[k]} = \sum_{2q_1+3q_2=k+\gamma_i} Y_i^{[2q_1,3q_2]} y_1^{q_1} y_2^{q_2}$.

Тождества (13) с $\chi=4,\ \gamma=(2,3)$ для систем (96), (98) и замены (97) имеют вид:

$$\frac{\partial h_1^{[k-4]}}{\partial y_1} y_2^2 + \frac{\partial h_1^{[k-4]}}{\partial y_2} y_1^2 y_2 - 2y_2 h_2^{[k-4]} = \widetilde{Y}_1^{[k]} - Y_1^{[k]},$$

$$\frac{\partial h_2^{[k-4]}}{\partial y_1} y_2^2 + \frac{\partial h_2^{[k-4]}}{\partial y_2} y_1^2 y_2 - 2y_1 y_2 h_1^{[k-4]} - y_1^2 h_2^{[k-4]} = \widetilde{Y}_2^{[k]} - Y_2^{[k]},$$

где $\widetilde{Y}_i^{[k]} \; (i=1,2)\;$ находится по формуле, указанной в (13).

Приравнивая коэффициенты при $y_1^{q_1}y_2^{q_2}$, получаем линейную связующую систему:

$$(q_1+1)h_1^{[2(q_1+1),3(q_2-2)]} + q_2h_1^{[2(q_1-2),3q_2]} - 2h_2^{[2q_1,3(q_2-1)]} = \widehat{Y}_1^{[2q_1,3q_2]} \qquad (2q_1+3q_2=k+2),$$

$$(q_1+1)h_2^{[2(q_1+1),3(q_2-2)]} + (q_2-1)h_2^{[2(q_1-2),3q_2]} - 2h_1^{[2(q_1-1),3(q_2-1)]} = \widehat{Y}_2^{[2q_1,3q_2]} \qquad (2q_1+3q_2=k+3),$$

$$(99)$$

в которой $\widehat{Y}_i^{[2q_1,3q_2]} = \widetilde{Y}_i^{[2q_1,3q_2]} - Y_i^{[2q_1,3q_2]}$

Поскольку $k \geq 5$, а $q_1,q_2 \in \mathbb{Z}_+$, введем следующее разложение:

$$k = 6r + u + 3v - 1$$
 $(r \in \mathbb{N}, u = 0, 1, 2, v = 0, 1),$ $q_1 = 3l + s$ $(l \in \mathbb{Z}_+, s = 0, 1, 2).$

Тогда $q_2 = (k + \gamma_i - 2q_1)/3 = 2(r - l) + v + (u - 2s + \gamma_i - 1)/3 \in \mathbb{Z}_+$ в следующих случаях:

0)
$$u = 0$$
: $s = 2$ и $l = \overline{0, r + v - 1}$ $(i = 1), s = 1$ и $l = \overline{0, r}$ $(i = 2)$;

1)
$$u=1$$
: $s=1$ и $l=\overline{0,r}$ $(i=1),\ s=0$ и $l=\overline{0,r+v}$ $(i=2);$

2)
$$u = 2$$
: $s = 0$ и $l = \overline{0, r + v}$ $(i = 1), s = 2$ и $l = \overline{0, r}$ $(i = 2)$.

8.2 Случай r=1 $(k=\overline{5,10})$

 $\mathbf{1^0}$. k=5 $(u=0,\ v=0)$. Система (99) имеет вид: $h_1^{[0,3]}-2h_2^{[4,0]}=\widehat{Y}_1^{[4,3]},\ -2h_1^{[0,3]}+2h_2^{[4,0]}=\widehat{Y}_2^{[2,6]},\ -h_2^{[4,0]}=\widehat{Y}_2^{[8,0]}$ и дает резонансную связь:

$$2\widehat{Y}_1^{[4,3]} + \widehat{Y}_2^{[2,6]} - 2\widehat{Y}_2^{[8,0]} = 0. {(100)}$$

 $\mathbf{2^0}$. k=6 (u=1,v=0). Система (99) имеет вид: $2h_1^{[4,0]}-2h_2^{[2,3]}=\widehat{Y}_1^{[2,6]},\ 0=\widehat{Y}_1^{[8,0]},$ $h_2^{[2,3]}=\widehat{Y}_2^{[0,9]},\ -2h_1^{[4,0]}=\widehat{Y}_2^{[6,3]}$ и дает две резонансных связи:

$$\widehat{Y}_{1}^{[2,6]} + 2\widehat{Y}_{2}^{[0,9]} + \widehat{Y}_{2}^{[6,3]} = 0, \quad \widehat{Y}_{1}^{[8,0]} = 0.$$
(101)

 ${f 3^0}.~~k=7~(u=2,~v=0).~$ Система (99) имеет вид: $h_1^{[2,3]}-2h_2^{[0,6]}=\widehat{Y}_1^{[0,9]},~~h_1^{[2,3]}-2h_2^{[6,0]}=\widehat{Y}_1^{[6,0]},~~-2h_1^{[6,3]},~-2h_1^{[0,6]}+3h_2^{[6,0]}=\widehat{Y}_2^{[4,6]},~~-h_2^{[6,0]}=\widehat{Y}_2^{[10,0]}$ и дает резонансную связь:

$$\widehat{Y}_{1}^{[0,9]} + 3\widehat{Y}_{1}^{[6,3]} + 2\widehat{Y}_{2}^{[4,6]} = 0. \tag{102}$$

 ${f 4^0}.~k=8~(u=0,~v=1).$ Система (99) имеет вид: $2h_1^{[0,6]}+3h_1^{[6,0]}-2h_2^{[4,3]}=\widehat{Y}_1^{[4,6]},$ $0=\widehat{Y}_1^{[10,0]},~-2h_1^{[0,6]}+2h_2^{[4,3]}=\widehat{Y}_2^{[2,9]},~-2h_1^{[6,0]}=\widehat{Y}_2^{[8,3]}$ и дает две резонансных связи:

$$2\widehat{Y}_{1}^{[4,6]} + 2\widehat{Y}_{2}^{[2,9]} + 3\widehat{Y}_{2}^{[8,3]} = 0, \quad \widehat{Y}_{1}^{[10,0]} = 0 \quad (h_{1}^{[4,3]} - \forall). \tag{103}$$

 ${f 5^0}.~~k=9~(u=1,~v=1).~$ Система (99) имеет вид: $2h_1^{[4,3]}-2h_2^{[2,6]}=\widehat{Y}_1^{[2,9]},~~h_1^{[4,3]}-2h_2^{[8,0]}=\widehat{Y}_1^{[8,3]},~~h_2^{[2,6]}=\widehat{Y}_2^{[0,12]},~-2h_1^{[4,3]}+h_2^{[2,6]}+4h_2^{[8,0]}=\widehat{Y}_2^{[6,6]},~-h_2^{[8,0]}=\widehat{Y}_2^{[12,0]}$ и дает две резонансные связи:

$$2\widehat{Y}_{1}^{[8,3]} - \widehat{Y}_{2}^{[0,12]} + \widehat{Y}_{2}^{[6,6]} = 0, \quad \widehat{Y}_{1}^{[2,9]} + 2\widehat{Y}_{1}^{[8,3]} + 2\widehat{Y}_{2}^{[6,6]} + 4\widehat{Y}_{2}^{[12,0]} = 0. \tag{104}$$

 ${f 6^0}$. k=10 $(u=2,\ v=1)$. Система (99) имеет вид: $h_1^{[2,6]}-2h_2^{[0,9]}=\widehat{Y}_1^{[0,12]},\ 2h_1^{[2,6]}-2h_2^{[6,6]}+4h_1^{[8,0]}=\widehat{Y}_1^{[6,6]},\ 0=\widehat{Y}_1^{[12,0]},\ -2h_1^{[2,6]}+2h_2^{[0,9]}+3h_2^{[6,3]}=\widehat{Y}_2^{[4,9]},\ -2h_1^{[8,0]}=\widehat{Y}_2^{[10,3]}$. Из третьего уравнения системы получаем единственную резонансную связь:

$$\widehat{Y}_1^{[12,0]} = 0. {(105)}$$

8.3 Случай $r \geq 2$ $(k \geq 11)$

8.3.1 u=0 (k=6r+3v-1)

Перепишем (99), используя введенные в разделе 8.1 разложения для q_1 и q_2 при u=0:

$$(3l+3)h_{1}^{[6(l+1),6(r-l-1)+3v-3]} + (2(r-l)+v-1)h_{1}^{[6l,6(r-l)+3v-3]} - 2h_{2}^{[6l+4,6(r-l-1)+3v]} = \\ = \widehat{Y}_{1}^{[6l+4,6(r-l)+3v-3]} \quad (l = \overline{0,r+v-1}), \\ (3l+2)h_{2}^{[6l+4,6(r-l)+3v]} + (2(r-l)+v-1)h_{2}^{[6l-2,6(r-l)+3v]} - 2h_{1}^{[6l,6(r-l)+3v-3]} = \\ = \widehat{Y}_{2}^{[6l+2,6(r-l)+3v]} \quad (l = \overline{0,r})$$

или

$$(3l+3)h_{1,l+1}^{v} + (2(r-l)+v-1)h_{1,l}^{v} - 2h_{2,l+1}^{v} = Y_{1,l}^{v} \quad (l = \overline{0,r+v-1}),$$

$$(3l+2)h_{2,l+1}^{v} + (2(r-l)+v-1)h_{2,l}^{v} - 2h_{1,l}^{v} = Y_{2,l}^{v} \quad (l = \overline{0,r}),$$

$$(106)$$

где $h_{1,l}^v=h_1^{[6l,6(r-l)+3v-3]}, \ Y_{1,l}^v=\widehat{Y}_1^{[6l+4,6(r-l)+3v-3]} \ (l=\overline{0,r+v-1}), \ h_{2,l}^v=h_2^{[6l-2,6(r-l)+3v]} \ (l=\overline{1,r}), \ Y_{2,l}^v=\widehat{Y}_2^{[6l+2,6(r-l)+3v]} \ (l=\overline{0,r}); \ Y_{1,-1}^0, Y_{1,r}^0=0.$

 ${f 0^0}$. ${f v}={f 0}$ (${f k}={f 6r-1}$). Подставляя $h_{2,l}^0$ и $h_{2,l+1}^0$ из (106_1) в (106_2) , получаем систему:

$$a_l^0 h_{1,l-1}^0 + b_l^0 h_{1,l}^0 + c_l^0 h_{1,l+1}^0 = Y_{0,l}^0 \quad (l = \overline{0,r}), \tag{107}$$

в которой $a_l^0=(2(r-l)-1)(2(r-l)+1)$ $(l=\overline{1,r}),\ b_l^0=(6l+2)(2(r-l)-1)-4$ $(l=\overline{0,r-1}),$ $c_l^0=(3l+2)(3l+3)$ $(l=\overline{0,r-2}),\ Y_{0,l}^0=(2(r-l)-1)Y_{1,l-1}^0+(3l+2)Y_{1,l}^0+2Y_{2,l}^0.$

Для решения системы (107) будем методом Гаусса аннулировать элементы a_1^0, a_2^0, \dots

матрицы
$$\begin{pmatrix} b_0^0 & c_0^0 & 0 & \dots & 0 \\ a_1^0 & b_1^0 & c_1^0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & a_{r-2}^0 & b_{r-2}^0 & c_{r-2}^0 \\ 0 & \dots & 0 & a_{r-1}^0 & b_{r-1}^0 \\ 0 & \dots & 0 & 0 & a_r^0 \end{pmatrix}_{(r+1)\times r}, \text{ получая } e_l^0 \text{ вместо } b_l^0 \text{ и } \overline{Y}_{0,l}^0 \text{ вместо } Y_{0,l}^0$$

$$(l \leq r), \text{ пока } e_{l-1}^0 \neq 0 \quad (l \geq 1), \text{ по рекуррентным формулам:}$$

$$e_0^0 = b_0^0, \ \overline{Y}_{0,0}^0 = Y_{0,0}^0; \quad e_l^0 = b_l^0 - \frac{a_l^0 c_{l-1}^0}{e_{l-1}^0}, \ \overline{Y}_{0,l}^0 = Y_{0,l}^0 - \frac{\overline{Y}_{0,l-1}^0 a_l^0}{e_{l-1}^0} \quad (l = 1, 2, \dots).$$
 (108)

Лемма 11. Для элементов e_l^0 из (108) верна следующая прямая формула:

$$e_l^0 = (3l+2)(2(r-l)-3) \neq 0 \quad (l = \overline{0,r-1}).$$
 (109)

Доказательство. В (108) $e_0^0 = 2(2r-3)$, что совпадает с e_0^0 из (109) и дает базу индукции.

Пусть для
$$\forall l=\overline{1,r-1}$$
 верна формула (109). Тогда согласно (108) имеем $e_{l+1}^0=b_{l+1}^0-a_{l+1}^0c_l^0(e_l^0)^{-1}=(6l+8)(2(r-l)-3)-4-3(2(r-l)-1)(l+1)=(3l+5)(2(r-l)-5).$

В результате последнее уравнение (l=r) системы, полученной из (107), принимает вид: $0 \cdot h_{1,r-1}^0 = \overline{Y}_{0,r}^0$, где $\overline{Y}_{0,r}^0 = \sum_{m=0}^r \theta_{1,m}^{0,0} Y_{0,m}^0$ с $\theta_{1,m}^{0,0} = (-1)^{r-m} \prod_{j=m+1}^r (a_j^0/e_{j-1}^0)$. Учитывая (107) и (109), получаем:

$$\theta_{1,m}^{0,0} = (-1)^{r-m} \prod_{j=m+1}^{r} \frac{2(r-j)+1}{3j-1} \neq 0 \quad (m = \overline{0,r}).$$

В обозначениях (106) имеем: $\sum_{m=0}^{r}\theta_{1,m}^{0,0}Y_{0,m}^{0} = \sum_{m=0}^{r}\theta_{1,m}^{0,0}((2(r-m)-1)Y_{1,m-1}^{0}+(3m+2)Y_{1,m}^{0}+2Y_{2,m}^{0}) = \sum_{m=0}^{r-1}((3m+2)\theta_{1,m}^{0,0}+(2(r-m)-3)\theta_{1,m+1}^{0,0})Y_{1,m}^{0}+2\sum_{m=0}^{r}\theta_{1,m}^{0,0}Y_{2,m}^{0},$ причем $(3m+2)\theta_{1,m}^{0,0}+(2(r-m)-3)\theta_{1,m+1}^{0,0} = -2\theta_{1,m+1}^{0,0}.$

В результате уравнение $\overline{Y}_{0,r}^0=0$ дает для (99^0) с v=0 резонансную связь:

$$\sum_{m=0}^{r-1} \alpha_{1,m}^{0,0} \widehat{Y}_1^{[6m+4,6(r-m)-3]} + \sum_{m=0}^{r} \beta_{1,m}^{0,0} \widehat{Y}_2^{[6m+2,6(r-m)]} = 0 \quad (\alpha_{1,m}^{0,0} = -2\theta_{1,m+1}^{0,0}, \ \beta_{1,m}^{0,0} = 2\theta_{1,m}^{0,0}). \ (110)$$

 ${f 1^0}.~~{f v}={f 1}~~({f k}={f 6r}+{f 2}).$ При l=r из (106_1) сразу получаем резонансную связь:

$$\widehat{Y}_1^{[6r+4,0]} = 0. {(111)}$$

Подставляя теперь $h_{1,l}^1$ и $h_{1,l+1}^1$ из подсистемы (106_2) в (106_1) , получаем систему:

$$a_l^1 h_{2,l}^1 + b_l^1 h_{2,l+1}^1 + c_l^1 h_{2,l+2}^1 = Y_{0,l}^1 \quad (l = \overline{0, r-1}),$$
 (112)

в которой $a_l^1=4(r-l)^2$ $(l=\overline{1,r-1}),\ b_l^1=(6l+5)(2(r-l)-1)-5$ $(l=\overline{0,r-1}),\ c_l^1=(3l+3)(3l+5)$ $(l=\overline{0,r-2}),\ Y_{0,l}^1=2Y_{1,l}^1+2(r-l)Y_{2,l}^1+3(l+1)Y_{2,l+1}^1.$

Для решения системы (112) будем методом Гаусса аннулировать элементы

$$c_{r-2}^1, c_{r-3}^1, \dots \text{ матрицы} \begin{pmatrix} b_0^1 & c_0^1 & 0 & \dots & 0 \\ a_1^1 & b_1^1 & c_1^1 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & a_{r-2}^1 & b_{r-2}^1 & c_{r-2}^1 \\ 0 & \dots & 0 & a_{r-1}^1 & b_{r-1}^1 \end{pmatrix}_{r \times r}, \text{ получая } d_l^1 \text{ вместо } b_l^1 \text{ и } \overline{Y}_{0,l}^1 \text{ вместо } b_l^2 \text{ и } \overline{Y}_{0,l}$$

сто $Y_{0,l}^1$ $(l \le r)$, пока $d_{l+1}^1 \ne 0$ $(l \ge 0)$, по рекуррентным формулам:

$$d_{r-1}^{1} = b_{r-1}^{1}, \ \overline{Y}_{0,r-1}^{1} = Y_{0,r-1}^{1}; \ d_{l}^{1} = b_{l}^{1} - \frac{a_{l+1}^{1} c_{l}^{1}}{d_{l+1}^{1}}, \ \overline{Y}_{0,l}^{1} = Y_{0,l}^{1} - \frac{\overline{Y}_{0,l+1}^{1} c_{l}^{1}}{d_{l+1}^{1}} (l = r-2, r-3, \dots).$$
 (113)

Лемма 12. Для элементов d_l^1 из (113) верна следующая прямая формула:

$$d_l^1 = 6l(r - l) \quad (l = \overline{r - 1, 0}). \tag{114}$$

Доказательство. В (113) $d_{r-1}^1=6(r-1)$, что совпадает с d_{r-1}^1 из (114) и дает базу. Пусть для $\forall \, l=\overline{r-2}, 0$ верна формула (114). Тогда согласно (113) имеем $d_{l-1}^1=b_{l-1}^1-a_l^1c_{l-1}^1(d_l^1)^{-1}=(6l-1)(2(r-l)+1)-5-2(r-l)(3l+2)=6(l-1)(r-l+1)$.

Поскольку в (114) только $d_0^1=0$, то первое уравнение (l=0) системы, полученной из (112), принимает вид: $0\cdot h_{2,1}^1+0\cdot h_{2,2}^1=\overline{Y}_{0,0}^1$, где $\overline{Y}_{0,0}^1=\sum_{m=0}^{r-1}\theta_{2,m}^{0,1}Y_{0,m}^1$ с $\theta_{2,m}^{0,1}=(-1)^m\prod_{j=1}^m(c_{j-1}^1/d_j^1)$. Учитывая (112) и (114), получаем:

$$\theta_{2,m}^{0,1} = (-1)^m \prod_{j=1}^m \frac{3j+2}{2(r-j)} \neq 0 \quad (m = \overline{0, r-1}).$$

В обозначениях (106) имеем: $\sum_{m=0}^{r-1}\theta_{2,m}^{0,1}Y_{0,m}^1 = \sum_{m=0}^{r-1}\theta_{2,m}^{0,1}(2Y_{1,m}^1+2(r-m)Y_{2,m}^1+3(m+1)Y_{2,m+1}^1) = 2\sum_{m=0}^{r-1}\theta_{2,m}^{0,1}Y_{1,m}^1+2rY_{2,0}^1+\sum_{m=1}^{r-1}(2(r-m)\theta_{2,m}^{0,1}+3m\theta_{2,m-1}^{0,1})Y_{2,m}^1+3r\theta_{2,r-1}^{0,1}Y_{2,r}^1,$ причем $2(r-m)\theta_{2,m}^{0,1}+3m\theta_{2,m-1}^{0,1} = -2\theta_{2,m-1}^{0,1}.$

В результате уравнение $\overline{Y}_{0,0}^1=0$ дает для (99^0) с v=1 вторую резонансную связь:

$$\sum_{m=0}^{r-1} \alpha_{2,m}^{0,1} \widehat{Y}_1^{[6m+4,6(r-m)]} + \sum_{m=0}^{r} \beta_{2,m}^{0,1} \widehat{Y}_2^{[6m+2,6(r-m)+3)]} = 0 \qquad (h_2^{[4,6r-3]} - \forall), \tag{115}$$

где $\alpha_{2,m}^{0,1}=2\theta_{2,m}^{0,1},\ \beta_{2,0}^{0,1}=2r,\ \beta_{2,m}^{0,1}=-2\theta_{2,m-1}^{0,1}\ (m=\overline{1,r-1},)\ \beta_{2,r}^{0,1}=3r\theta_{2,r-1}^{0,1}.$

8.3.2 u=1 (k = 6r + 3v)

Перепишем (99), используя введенные в разделе 8.1 разложения для q_1 и q_2 при u=1:

$$(3l+2)h_{1}^{[6l+4,6(r-l-1)+3v]} + (2(r-l)+v)h_{1}^{[6l-2,6(r-l)+3v]} - 2h_{2}^{[6l+2,6(r-l)+3v-3]} =$$

$$= \widehat{Y}_{1}^{[6l+2,6(r-l)+3v]} \quad (l = \overline{0,r}),$$

$$(3l+1)h_{2}^{[6l+2,6(r-l)+3v-3]} + (2(r-l)+v)h_{2}^{[6l-4,6(r-l)+3v+3]} - 2h_{1}^{[6l-2,6(r-l)+3v]} =$$

$$= \widehat{Y}_{2}^{[6l,6(r-l)+3v+3]} \quad (l = \overline{0,r+v})$$

$$(99^{1})$$

или

$$(3l+2)h_{1,l}^{v} + (2(r-l)+v)h_{1,l-1}^{v} - 2h_{2,l}^{v} = Y_{1,l}^{v} \quad (l = \overline{0,r}), (3l+1)h_{2,l}^{v} + (2(r-l)+v)h_{2,l-1}^{v} - 2h_{1,l-1}^{v} = Y_{2,l}^{v} \quad (l = \overline{0,r+v}),$$

$$(116)$$

где
$$h_{1,l}^v = h_1^{[6l+4,6(r-l)+3v-6]}$$
 $(l=\overline{0,r-1}), Y_{1,l}^v = \widehat{Y}_1^{[6l+2,6(r-l)+3v]}$ $(l=\overline{0,r}), h_{2,l}^v = h_2^{[6l+2,6(r-l)+3v-3]}$ $(l=\overline{0,r+v-1}), Y_{2,l}^v = \widehat{Y}_2^{[6l,6(r-l)+3v+3]}$ $(l=\overline{0,r+v}); Y_{1,-1}^v, Y_{1,r+1}^1 = 0.$

 ${f 0^0}.~~{f v}={f 0}~~({f k}={f 6r}).~$ При l=r~ из $(116_1)~$ сразу получаем резонансную связь:

$$\widehat{Y}_{1}^{[6r+2,0]} = 0. {(117)}$$

Подставляя теперь $h_{2,l}^0$ и $h_{2,l-1}^0$ из подсистемы (116_1) в (116_2) , получаем систему:

$$a_l^0 h_{1,l-2}^0 + b_l^0 h_{1,l-1}^0 + c_l^0 h_{1,l}^0 = Y_{0,l}^0 \quad (l = \overline{0,r}), \tag{118}$$

в которой $a_l^0=4(r-l)(r-l+1)$ $(l=\overline{2,r}),\ b_l^0=12l(r-l)-4$ $(l=\overline{1,r}),\ c_l^0=(3l+1)(3l+2)$ $(l=\overline{0,r-1}),\ Y_{0,l}^0=2(r-l)Y_{1,l-1}^0+(3l+1)Y_{1,l}^0+2Y_{2,l}^0$ $(Y_{1,r}^0=0).$

Для решения (118) будем методом Гаусса аннулировать элементы $c_{r-1}^0, c_{r-2}^0, \dots$ мат-

рицы
$$\begin{pmatrix} c_0^0 & 0 & 0 & \dots & 0 \\ b_1^0 & c_1^0 & 0 & \dots & 0 \\ a_2^0 & b_2^0 & c_2^0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & a_{r-1}^0 & b_{r-1}^0 & c_{r-1}^0 \\ 0 & \dots & 0 & a_r^0 & b_r^0 \end{pmatrix} (n+1) \times n$$
, получая d_l^0 вместо b_l^0 и $\overline{Y}_{0,l}^0$ вместо $Y_{0,l}^0$ ($l \leq r$),

пока $d_{l+1}^0 \neq 0 \ (l \geq 1)$, по рекуррентным формулам:

$$d_r^0 = b_r^0, \ \overline{Y}_{0,r}^0 = Y_{0,r}^0; \quad d_l^0 = b_l^0 - \frac{a_{l+1}^0 c_l^0}{d_{l+1}^0}, \ \overline{Y}_{0,l}^0 = Y_{0,l}^0 - \frac{\overline{Y}_{0,l+1}^0 c_l^0}{d_{l+1}^0} \quad (l = r - 1, r - 2, \dots). \quad (119)$$

Лемма 13. Для элементов d_I^0 из (119) верна следующая прямая формула:

$$d_r^0 = -4, \quad d_l^0 = 2(3l-1)(r-l+1) \neq 0 \quad (l = \overline{r-1,1}).$$
 (120)

Доказательство. В (119) $d_r^0 = -4$, что совпадает с d_r^0 из (120) и дает базу индукции. Пусть для $\forall l = \overline{r-1,1}$ верна формула (120). Тогда согласно (119) имеем $d_{l-1}^0 = b_{l-1}^0 - a_l^0 c_{l-1}^0 (d_l^0)^{-1} = 12(r-l+1) - 4 - 2(r-l)(3l-2) = 2(3l-4)(r-l+2)$.

Первое уравнение (l=0) системы, полученной из (118), принимает вид: $0 \cdot h_{1,0}^0 = \overline{Y}_{0,0}^0$ где $\overline{Y}_{0,0}^0 = \sum_{m=0}^r \theta_{2,m}^{1,0} Y_{0,m}^0$ с $\theta_{2,m}^{1,0} = (-1)^m \prod_{j=1}^m (c_{j-1}^0/d_j^0)$. С учетом (118) и (120) получаем:

$$\theta_{2,m}^{1,0} = (-1)^m \prod_{j=1}^m \frac{3j-2}{2(r-j+1)} \neq 0 \quad (m = \overline{0,r-1}), \quad \theta_{2,r}^{1,0} = (1/4)(3r-2)(3r-1)\theta_{2,r-1}^{1,0} \neq 0.$$

В обозначениях (116) имеем: $\sum_{m=0}^{r}\theta_{2,m}^{1,0}Y_{0,m}^{0}=\sum_{m=0}^{r}\theta_{2,m}^{1,0}(2(r-m)Y_{1,m-1}^{0}+(3m+1)Y_{1,m}^{0}+2Y_{2,m}^{0})=\sum_{m=0}^{r-1}((3m+1)\theta_{2,m}^{1,0}+2(r-m-1)\theta_{2,m+1}^{1,0})Y_{1,m}^{0}+2\sum_{m=0}^{r}\theta_{2,m}^{1,0}Y_{2,m}^{0},$ причем $(3m+1)\theta_{2,m}^{1,0}+2(r-m-1)\theta_{2,m+1}^{1,0}=(3m+1)(r-m)^{-1}\theta_{2,m}^{1,0}.$

В результате уравнение $\overline{Y}_{0,0}^0=0$ дает для (99^1) с v=0 вторую резонансную связь:

$$\sum_{m=0}^{r-1} \alpha_{2,m}^{1,0} \widehat{Y}_1^{[6m+2,6(r-m)]} + \sum_{m=0}^{r} \beta_{2,m}^{1,0} \widehat{Y}_2^{[6m,6(r-m)+3]} = 0, \tag{121}$$

где $\alpha_{2,m}^{1,0} = (3m+1)(r-m)^{-1}\theta_{2,m}^{1,0}, \quad \beta_{2,m}^{1,0} = 2\theta_{2,m}^{1,0}.$

 $\mathbf{1^0}$. $\mathbf{v} = \mathbf{1}$ ($\mathbf{k} = \mathbf{6r} + \mathbf{3}$). Подставляя $h_{2,l}^1$, $h_{2,l-1}^1$ из (116₁) в (116₂), получаем систему:

$$a_l^1 h_{1,l-2}^1 + b_l^1 h_{1,l-1}^1 + c_l^1 h_{1,l}^1 = Y_{0,l}^1 \quad (l = \overline{0,r+1}),$$
 (122)

в которой $a_l^1=(2(r-l)+1)(2(r-l)+3)$ $(l=\overline{2,r+1}),\ b_l^1=6l(2(r-l)+1)-4$ $(l=\overline{1,r}),$ $c_l^1=(3l+1)(3l+2)$ $(l=\overline{0,r-1}),\ Y_{0,l}^1=(2(r-l)+1)Y_{1,l-1}^1+(3l+1)Y_{1,l}^1+2Y_{2,l}^1.$

Для решения системы (122) будем методом Гаусса аннулировать элементы

$$c_{r-1}^1,c_{r-2}^1,\dots \text{ матрицы} \begin{pmatrix} c_0^1 & 0 & 0 & \dots & 0 \\ b_1^1 & c_1^1 & 0 & \dots & 0 \\ a_2^1 & b_2^1 & c_2^1 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & a_{r-1}^1 & b_{r-1}^1 & c_{r-1}^1 \\ 0 & \dots & 0 & a_r^1 & b_r^1 \\ 0 & \dots & 0 & 0 & a_{r+1}^1 \end{pmatrix}_{(r+2)\times r}, \text{ получая } d_l^1 \text{ вместо } b_l^1 \text{ и } \overline{Y}_{0,l}^1$$

вместо $Y_{0,l}^1$ $(l \le r+1)$, пока $d_{l+1}^1 \ne 0$ $(l \ge 1)$, по рекуррентным формулам:

$$\begin{aligned} d_r^1 &= b_r^1 = 6r - 4 > 0, \quad \overline{Y}_{0,r+1}^1 = Y_{0,r+1}^1, \quad \overline{Y}_{0,r}^1 = Y_{0,r}^1; \\ d_l^1 &= b_l^1 - a_{l+1}^1 \, c_l^1 / d_{l+1}^1, \quad \overline{Y}_{0,l}^1 = Y_{0,l}^1 - \overline{Y}_{0,l+1}^1 \, c_l^1 / d_{l+1}^1 \quad (l = r - 1, r - 2, \dots). \end{aligned} \tag{123}$$

Лемма 14. В матрице системы (122) диагональные элементы d_r^1, \ldots, d_1^1 , определяемые по формулам (123), положительны.

Доказательство. Пусть $f_l = (3l-1)(2(r-l)+3)$, тогда $f_l > 0$ для $\forall l = \overline{1,r-1}$.

Покажем методом математической индукции, что $d_l^1 > f_l$ при $l = \overline{r-1,1}$.

Согласно (123) $d_{r-1}^1=18r-22>15r-20=f_{r-1},$ что является базой индукции.

Пусть $d_{l+1}^1 > f_{l+1} = (3l+2)(2(r-l)+1)$. Тогда $d_l^1 = b_l^1 - c_l^1 a_{l+1}^1/d_{l+1}^1 > b_l^1 - c_l^1 a_{l+1}^1/f_{l+1}$, так как $c_l^1 a_{l+1}^1 = (3l+1)(3l+2)(2(r-l)-1)(2(r-l)+1) > 0$ при $l = \overline{r-1}, \overline{1}$. Но $b_l^1 - c_l^1 a_{l+1}^1/f_{l+1} = 6(2(r-l)+1)l - 4 - (3l+1)(2(r-l)-1) = (3l-1)(2(r-l)+3) = f_l$. Поэтому $d_l^1 > f_l$, т.е. $d_l^1 > 0$ для $\forall l = \overline{1,r}$.

Следовательно можно полностью аннулировать верхнюю диагональ c_{r-1}^1,\dots,c_0^1 матрицы системы (122), после чего первое уравнение (l=0) системы, полученной из (122), принимает вид: $0\cdot h_{1,0}^1=\overline{Y}_{0,0}^1$, где $\overline{Y}_{0,0}^1=\sum_{m=0}^r\theta_{1,m}^{1,1}Y_{0,m}^1$ с $\theta_{1,m}^{1,1}=(-1)^m\prod_{j=1}^m(c_{j-1}^1/d_j^1)\neq 0$, так как $c_l^1\neq 0$ для $\forall\, l=\overline{0,r-1}$.

В обозначениях (116): $\sum_{m=0}^{r}\theta_{1,m}^{1,1}Y_{0,m}^{1}=\sum_{m=0}^{r}\theta_{1,m}^{1,1}((2(r-m)+1)Y_{1,m-1}^{1}+(3m+1)Y_{1,m}^{1}+2Y_{2,m}^{1})=\sum_{m=0}^{r-1}((3m+1)\theta_{1,m}^{1,1}+(2(r-m)-1)\theta_{1,m+1}^{1,1})Y_{1,m}^{1}+(3r+1)\theta_{1,r}^{1,1}Y_{1,r}^{1}+2\sum_{m=0}^{r}\theta_{1,m}^{1,1}Y_{2,m}^{1},$ причем $(3m+1)\theta_{1,m}^{1,1}+(2(r-m)-1)\theta_{1,m+1}^{1,1}=(3m+1)(1-(3m+2)(2(r-m)-1)/d_{m+1}^{1})\theta_{1,m}^{1,1}.$

В результате уравнение $\overline{Y}_{0,0}^1=0$ дает для (99^1) с v=1 первую резонансную связь:

$$\sum_{m=0}^{r} \alpha_{1,m}^{1,1} \widehat{Y}_{1}^{[6m+2,6(r-m)+3]} + \sum_{m=0}^{r} \beta_{1,m}^{1,1} \widehat{Y}_{2}^{[6m,6(r-m+1)]} = 0, \tag{124}$$

где $\alpha_{1,m}^{1,1}=(3m+1)(1-(3m+2)(2(r-m)-1)/d_{m+1}^1)\theta_{1,m}^{1,1} \ (m=\overline{0,r-1}), \ \alpha_{1,r}^{1,1}=(3r+1)\theta_{1,r}^{1,1}\neq 0,$ $\beta_{1,m}^{1,1}=2\theta_{1,m}^{1,1}\neq 0,$ а $\theta_{1,m}^{1,1}=(-1)^m\prod_{j=1}^m((3j-2)(3j-1)/d_j^1)\neq 0$ по лемме 14.

Коэффициент $\alpha_{1,m}^{1,1}\neq 0$, поскольку $(3m+1)(1-(3m+2)(2(r-m)-1)/d_{m+1}^1)\theta_{1,m}^{1,1}\neq 0$ $\Leftrightarrow 1-(3m+2)(2(r-m)-1)/d_{m+1}^1\neq 0 \Leftrightarrow d_{m+1}^1\neq (3m+2)(2(r-m)-1)$, что верно при $l=\overline{0,r-2}$, поскольку в лемме 14: $d_{m+1}^1>(3m+2)(2(r-m)+1)>(3m+2)(2(r-m)-1)$. А так как $d_r^1=6r-4$, то $\alpha_{1,r-1}^{1,1}=(3/2)(r-1)\theta_{1,r-1}^{1,1}\neq 0$ при $r\geq 2$.

Теперь аннулируем элементы a_2^1,\dots,a_{r+1}^1 , диагональные элементы d_1^1,\dots,d_r^1 при этом не изменятся, а вместо $\overline{Y}_{0,l}^1$ получим $\widecheck{Y}_{0,l}^1$ по рекуррентным формулам:

$$\breve{Y}_{0,1}^1 = \overline{Y}_{0,1}^1, \quad \breve{Y}_{0,l}^1 = \overline{Y}_{0,l}^1 - \frac{a_l^1 \breve{Y}_{0,l-1}^1}{d_{l-1}^1} \quad (l = \overline{2,r+1}).$$

Тогда последнее уравнение (l=r+1) системы, полученной из (122), принимает вид: $0\cdot h^1_{1,r-1}=\breve{Y}^1_{0,r+1}$, где $\breve{Y}^1_{0,r+1}=\sum_{m=1}^{r+1}\theta^{1,1}_m\overline{Y}^1_{0,m}$ с $\theta^{1,1}_m=(-1)^{r+1-m}\prod_{j=m+1}^{r+1}a^1_j/d^1_{j-1}\neq 0$, так как $a^1_l\neq 0$ для $\forall\, l=\overline{2,r+1}$.

В обозначениях (116): $\sum_{m=1}^{r+1}\theta_{2,m}^{1,1}Y_{0,m}^1=\sum_{m=1}^{r+1}\theta_{2,m}^{1,1}((2(r-m)+1)Y_{1,m-1}^1+(3m+1)Y_{1,m}^1+2Y_{2,m}^1)=(2r-1)\theta_{2,1}^{1,1}Y_{1,0}^1+\sum_{m=1}^{r}((3m+1)\theta_{2,m}^{1,1}+(2(r-m)-1)\theta_{2,m+1}^{1,1})Y_{1,m}^1+2\sum_{m=1}^{r+1}\theta_{2,m}^{1,1}Y_{2,m}^1.$

В результате уравнение $\breve{Y}^1_{0,r+1}=0$ дает для $\left(99^1\right)$ с v=1 вторую резонансную связь:

$$\sum_{m=0}^{r} \alpha_{2,m}^{1,1} \widehat{Y}_{1}^{[6m+2,6(r-m)+3]} + \sum_{m=1}^{r+1} \beta_{2,m}^{1,1} \widehat{Y}_{2}^{[6m,6(r-m+1)]} = 0, \tag{125}$$

в которой $\alpha_{2,0}^{1,1}=(2r-1)\theta_{2,1}^{1,1}, \ \alpha_{2,m}^{1,1}=(3m+1)\theta_{2,m}^{1,1}+(2(r-m)-1)\theta_{2,m+1}^{1,1} \ (m=\overline{1,r}),$ $\beta_{2,m}^{1,1}=2\theta_{2,m}^{1,1}, \ \text{а множители} \ \theta_{2,m}^{1,1}=(-1)^{m+r+1}\sum_{s=1}^m\prod_{j=s+1}^{r+1}(2(r-j)+1)(2(r-j)+3)/d_{j-1}^1\times\prod_{j=s}^{m-1}(3j+1)(3j+2)/d_{j+1}^1\neq 0 \ (m=\overline{1,r})$ по лемме 14, $\theta_{2,r+1}^{1,1}=1$.

8.3.3 u=2 (k=6r+3v+1)

Перепишем (99), используя введенные в разделе 8.1 разложения для q_1 и q_2 при u=2:

$$(3l+1)h_{1}^{[6l+2,6(r-l)+3v-3]} + (2(r-l)+v+1)h_{1}^{[6l-4,6(r-l)+3v+3]} - 2h_{2}^{[6l,6(r-l)+3v]} =$$

$$= \widehat{Y}_{1}^{[6l,6(r-l)+3v+3]} \quad (l=\overline{0,r+v}),$$

$$(3l+3)h_{2}^{[6(l+1),6(r-l-1)+3v]} + (2(r-l)+v-1)h_{2}^{[6l,6(r-l)+3v]} - 2h_{1}^{[6l+2,6(r-l)+3v-3]} =$$

$$= \widehat{Y}_{2}^{[6l+4,6(r-l)+3v]} \quad (l=\overline{0,r})$$

$$(99^{2})$$

ИЛИ

$$(3l+1)h_{1,l}^{v} + (2(r-l)+v+1)h_{1,l-1}^{v} - 2h_{2,l}^{v} = Y_{1,l}^{v} \quad (l = \overline{0, r+v}),$$

$$(3l+3)h_{2,l+1}^{v} + (2(r-l)+v-1)h_{2,l}^{v} - 2h_{1,l}^{v} = Y_{2,l}^{v} \quad (l = \overline{0, r}),$$
 (126)

где
$$h_{1,l}^v=h_1^{[6l+2,6(r-l)+3v-3]}$$
 $(l=\overline{0,r+v-1}),$ $Y_{1,l}^v=\widehat{Y}_1^{[6l,6(r-l)+3v+3]}$ $(l=\overline{0,r+v}),$ $h_{2,l}^v=h_2^{[6l,6(r-l)+3v]},$ $Y_{2,l}^v=\widehat{Y}_2^{[6l+4,6(r-l)+3v]}$ $(l=\overline{0,r});$ $Y_{1,r+1}^0,Y_{2,-1}^1=0.$

 ${f 0^0}$. ${f v}={f 0}$ (${f k}={f 6r+1}$). Подставляя $h_{2,l}^0$ и $h_{2,l+1}^0$ из (126_1) в (126_2) , получаем систему:

$$a_l^0 h_{1,l-1}^0 + b_l^0 h_{1,l}^0 + c_l^0 h_{1,l+1}^0 = Y_{0,l}^0 \quad (l = \overline{0,r}),$$
 (127)

в которой $a_l^0=(2(r-l)-1)(2(r-l)+1)$ $(l=\overline{1,r}),\ b_l^0=2(3l+2)(2(r-l)-1)-4$ $(l=\overline{0,r-1}),$ $c_l^0=(3l+3)(3l+4)$ $(l=\overline{0,r-2}),\ Y_{0,l}^0=(2(r-l)-1)Y_{1,l}^0+(3l+3)Y_{1,l+1}^0+2Y_{2,l}^0.$

Для решения системы (127) будем методом Гаусса аннулировать элементы

$$c_{r-2}^0, c_{r-3}^0, \dots \text{ матрицы} \begin{pmatrix} b_0^0 & c_0^0 & 0 & \dots & 0 \\ a_1^0 & b_1^0 & c_1^0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & a_{r-2}^0 & b_{r-2}^0 & c_{r-2}^0 \\ 0 & \dots & 0 & a_{r-1}^0 & b_{r-1}^0 \\ 0 & \dots & 0 & 0 & a_r^0 \end{pmatrix}_{(r+1)\times r}, \text{ получая } d_l^0 \text{ вместо } b_l^0 \text{ и } \overline{Y}_{0,l}^0$$

вместо $Y_{0,l}^0$ $(l \le r)$, пока $d_{l+1}^0 \ne 0$ $(l \ge 0)$, по рекуррентным формулам:

$$d_{r-1}^{0} = b_{r-1}^{0} = 6r - 6 > 0, \quad \overline{Y}_{0,r}^{0} = Y_{0,r}^{0}, \quad \overline{Y}_{0,r-1}^{0} = Y_{0,r-1}^{0};$$

$$d_{l}^{0} = b_{l}^{0} - a_{l+1}^{0} c_{l}^{0} / d_{l+1}^{0}, \quad \overline{Y}_{0,l}^{0} = Y_{0,l}^{0} - \overline{Y}_{0,l+1}^{0} c_{l}^{0} / d_{l+1}^{0} \quad (l = r - 2, r - 3, ...).$$

$$(128)$$

Лемма 15. В матрице системы (127) диагональные элементы d_{r-1}^0, \ldots, d_0^0 , определяемые по формулам (128), положительны.

Доказательство. Пусть $f_l=6l(r-l)$, тогда $f_0=0$ и $f_l>0$ для $\forall\, l=\overline{1,r-2}.$

Покажем методом математической индукции, что $d_l^1 > f_l$ при $l = \overline{r-2,0}$.

Согласно (128) $d_{r-2}^0=13, 5r-25>12r-24=f_{r-2},$ что является базой индукции.

Пусть $d_{l+1}^1>f_{l+1}=6(l+1)(r-l-1)$. Тогда $d_l^0=b_l^0-c_l^0a_{l+1}^0/d_{l+1}^0>b_l^0-c_l^0a_{l+1}^0/f_{l+1}$, так как $c_l^0a_{l+1}^0=(3l+3)(3l+4)(2(r-l)-3)(2(r-l)-1)>0$. Но $b_l^0-c_l^0a_{l+1}^0/f_{l+1}>f_l\Leftrightarrow 2(3l+2)(2(r-l)-1)-4-(1/2)(3l+4)(2(r-l)-3)(2(r-l)-1)(r-l-1)^{-1}-6l(r-l)>0\Leftrightarrow (1/2)(3l+4)(r-l-1)^{-1}>0$, что верно. Поэтому $d_l^0>f_l$ при $l=\overline{r-2,0}$, т. е. $d_l^0>0$. \square

Следовательно можно полностью аннулировать диагональ c_0^0,\dots,c_{r-2}^0 матрицы системы (127). Теперь аннулируем элементы a_1^0,\dots,a_r^0 , диагональные элементы d_{r-1}^0,\dots,d_0^0 при этом не изменятся, а вместо $\overline{Y}_{0,l}^0$ получим $\widecheck{Y}_{0,l}^0$ по рекуррентным формулам:

$$\label{eq:Y00} \breve{Y}^0_{0,0} = \overline{Y}^0_{0,0}, ~~ \breve{Y}^0_{0,l} = \overline{Y}^0_{0,l} - a^0_l \breve{Y}^0_{0,l-1}/d^0_{l-1} ~~ (l = \overline{1,r}).$$

Тогда последнее уравнение (l=r) системы, полученной из (127), принимает вид: $0\cdot h_{1,r-1}^0=\breve{Y}_{0,r}^0,$ где $\breve{Y}_{0,r}^0=\sum_{m=0}^r\theta_m^{2,0}\overline{Y}_{0,m}^0$ с $\theta_m^{2,0}=(-1)^{r-m}\prod_{j=m+1}^ra_j^0/d_{j-1}^0\neq 0,$ так как $a_l^0\neq 0$ для $\forall\, l=\overline{1,r}.$

Согласно формуле (128) имеем: $\sum_{m=0}^{r}\theta_{m}^{2,0}\overline{Y}_{0,m}^{0}=\theta_{0}^{2,0}(Y_{0,0}^{0}-c_{0}^{0}Y_{0,1}^{0}/d_{r-1}^{0}+\ldots+(-1)^{r-1}Y_{0,r-1}^{0}\prod_{j=0}^{r-2}c_{j}^{0}/d_{j+1}^{0})+\ldots+\theta_{r-2}^{2,0}(Y_{0,r-2}^{0}-c_{r-2}^{0}Y_{0,r-1}^{0}/d_{r-1}^{0})+\theta_{r-1}^{2,0}Y_{0,r-1}^{0}+\theta_{r}^{2,0}Y_{0,r}^{0}=\sum_{m=0}^{r}\theta_{1,m}^{2,0}Y_{0,m}^{0},$ где $\theta_{1,m}^{2,0}=\sum_{s=0}^{m}(-1)^{m-s}\theta_{s}^{2,0}\cdot\prod_{j=s}^{m-1}c_{j}^{0}/d_{j+1}^{0}$ $(m=\overline{0,r-1}),$ $\theta_{1,r}^{2,0}=\theta_{r}^{2,0}=1.$

В обозначениях (126): $\sum_{m=0}^{r}\theta_{1,m}^{2,0}Y_{0,m}^{0}=\sum_{m=0}^{r}\theta_{1,m}^{2,0}((2(r-m)-1)Y_{1,m}^{0}+(3m+3)Y_{1,m+1}^{0}+2Y_{2,m}^{0})=(2r-1)\theta_{1,0}^{2,0}Y_{1,0}^{0}+\sum_{m=1}^{r}((2(r-m)-1)\theta_{1,m}^{2,0}+3m\theta_{1,m-1}^{2,0})Y_{1,m}^{0}+2\sum_{m=0}^{r}\theta_{1,m}^{2,0}Y_{2,m}^{0}=0.$

В результате уравнение $Y_{0,r}^0 = 0$ дает для (99^2) с v = 0 резонансную связь:

$$\sum_{m=0}^{r} \alpha_{1,m}^{2,0} \widehat{Y}_{1}^{[6m,6(r-m)+3]} + \sum_{m=0}^{r} \beta_{1,m}^{2,0} \widehat{Y}_{2}^{[6m+4,6(r-m)]} = 0, \tag{129}$$

где $\alpha_{1,0}^{2,0}=(2r-1)\theta_{1,0}^{2,0},\ \alpha_{1,m}^{2,0}=(2(r-m)-1)\theta_{1,m}^{2,0}+3m\theta_{1,m-1}^{2,0}\ (m=\overline{1,r}),\ \beta_{1,m}^{2,0}=2\theta_{1,m}^{2,0},\ \alpha_{1,m}^{2,0}=(-1)^{m+r}\sum_{s=0}^{m}\prod_{j=s+1}^{r}(2(r-j)-1)(2(r-j)+1)/d_{j-1}^{0}\cdot\prod_{j=s}^{m-1}(3j+3)(3j+4)/d_{j+1}^{0}\neq 0$ $(m=\overline{0,r-1})$ по лемме 15, $\theta_{1,r}^{2,0}=1$.

 ${f 1^0}.~~{f v}={f 1}~~({f k}={f 6r}+{f 4}).$ При l=r+1 из (126_1) получаем первую резонансную связь:

$$\widehat{Y}_1^{[6(r+1),0]} = 0. \tag{130}$$

Подставляя теперь $h_{1,l}^1$ и $h_{2,l-1}^1$ из подсистемы (126_2) в (116_1) , получаем систему:

$$a_l^1 h_{2,l-1}^1 + b_l^1 h_{2,l}^1 + c_l^1 h_{1,l+1}^1 = Y_{0,l}^1 \quad (l = \overline{0,r}),$$
 (131)

в которой $a_l^1=4(r-l+1)^2$ $(l=\overline{1,r}),\ b_l^1=(6l+1)(2(r-l)+1)-5\ (l=\overline{0,r}),\ c_l^1=(3l+1)(3l+3)$ $(l=\overline{0,r-1}),\ Y_{0,l}^1=2Y_{1,l}^1+2(r-l+1)Y_{2,l-1}^1+(3l+1)Y_{2,l}^1.$

Для решения системы (131) будем методом Гаусса аннулировать элементы

$$c_{r-1}^1,c_{r-2}^1,\dots$$
 матрицы
$$\begin{pmatrix} b_0^1 & c_0^1 & 0 & \dots & 0 \\ a_1^1 & b_1^1 & c_1^1 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & a_{r-1}^1 & b_{r-1}^1 & c_{r-1}^1 \\ 0 & \dots & 0 & a_r^1 & b_r^1 \end{pmatrix}_{\substack{(r+1)\times (r+1)}}$$
, получая d_l^1 вместо b_l^1 и $\overline{Y}_{0,l}^1$ вместо $Y_{0,l}^1$ ($l \leq r$), пока $d_{l+1}^1 \neq 0$ ($l \geq 1$), по рекуррентным формулам:

вместо $Y_{0,l}^1$ $(l \le r)$, пока $d_{l+1}^1 \ne 0$ $(l \ge 1)$, по рекуррентным формулам:

$$d_r^1 = b_r^1, \ \overline{Y}_{0,r}^1 = Y_{0,r}^1; \quad d_l^1 = b_l^1 - \frac{a_{l+1}^1 c_l^1}{d_{l+1}^1}, \ \overline{Y}_{0,l}^1 = Y_{0,l}^1 - \frac{\overline{Y}_{0,l+1}^1 c_l^1}{d_{l+1}^1} \quad (l = r-1, r-2, \dots). \quad (132)$$

Лемма 16. Для элементов d_I^1 из (132) верна следующая прямая формула:

$$d_l^1 = 2(3l - 2)(r - l + 1) \neq 0 \quad (l = \overline{r, 0}). \tag{133}$$

Доказательство. В (132) $d_r^1=2(3r-2)$, что совпадает с d_r^1 из (133) и дает базу индукции. Пусть для $\forall l=\overline{r-1,0}$ верна формула (133). Тогда согласно (132) имеем $d_{l-1}^1=b_{l-1}^1-a_l^1c_{l-1}^1(d_l^1)^{-1}=(6l-5)(2(r-l)+3)-5-6l(r-l+1)=2(3l-5)(r-l+2)$.

Значит, в этом случае система (131) однозначно разрешима.

8.4 Полученные результаты

Возвращаясь к обозначениям, введенным для системы (99), согласно (100)–(105), (110), (111), (115), (117), (121), (124), (125), (129), (130) заключаем, что коэффициенты КОМ $Y^{[k]}$ удовлетворяют следующим резонансным уравнениям:

$$\sum_{m=0}^{r-1} \alpha_{1,m}^{0,0} Y_1^{[6m+4,6(r-m)-3]} + \sum_{m=0}^{r} \beta_{1,m}^{0,0} Y_2^{[6m+2,6(r-m)]} = \tilde{c} \quad (k = 6r - 1, \ r \ge 1), \tag{134}$$

где
$$\alpha_{1,m}^{0,0} = -2\theta_{1,m+1}^{0,0}, \ \beta_{1,m}^{0,0} = 2\theta_{1,m}^{0,0}, \ a \ \theta_{1,m}^{0,0} = (-1)^{r-m} \prod_{j=m+1}^r (2(r-j)+1)(3j-1)^{-1} \neq 0;$$

$$Y_1^{[6r+2,0]} = \tilde{c}, \quad \sum_{m=0}^{r-1} \alpha_{2,m}^{1,0} Y_1^{[6m+2,6(r-m)]} + \sum_{m=0}^{r} \beta_{2,m}^{1,0} Y_2^{[6m,6(r-m)+3]} = \tilde{c} \quad (k = 6r, \ r \ge 1), \quad (135)$$

где
$$\alpha_{2,m}^{1,0}=(3m+1)(r-m)^{-1}\theta_{2,m}^{1,0},\ \beta_{2,m}^{1,0}=2\theta_{2,m}^{1,0},\ a\ \theta_{2,m}^{1,0}=(-1)^m\prod_{j=1}^m(3j-2)(2(r-j+1))^{-1}\neq 0$$
 $(m=\overline{0,r-1}),\ \theta_{2,r}^{1,0}=(1/4)(3r-2)(3r-1)\theta_{2,r-1}^{1,0}\neq 0;$

$$Y_1^{[0,9]} + 3Y_1^{[6,3]} + 2Y_2^{[4,6]} = \tilde{c} \quad (k=7);$$
 (136)

$$\sum_{m=0}^{r} \alpha_{1,m}^{2,0} Y_1^{[6m,6(r-m)+3]} + \sum_{m=0}^{r} \beta_{1,m}^{2,0} Y_2^{[6m+4,6(r-m)]} = \tilde{c} \quad (k = 6r+1, \ r \ge 2), \tag{137}$$

где $\alpha_{1,0}^{2,0}=(2r-1)\theta_{1,0}^{2,0}\neq 0, \ \alpha_{1,m}^{2,0}=(2(r-m)-1)\theta_{1,m}^{2,0}+3m\theta_{1,m-1}^{2,0}\ (m=\overline{1,r}), \ \beta_{1,m}^{2,0}=2\theta_{1,m}^{2,0}\neq 0,$ а $\theta_{1,m}^{2,0}=(-1)^{m+r}\sum_{s=0}^m\prod_{j=s+1}^r(2(r-j)-1)(2(r-j)+1)/d_{j-1}^0\cdot\prod_{j=s}^{m-1}(3j+3)(3j+4)/d_{j+1}^0\neq 0$ $(m=\overline{0,r-1}),\ \theta_{1,r}^{2,0}=1,$ элементы d_m^0 находятся рекуррентно из формул (128);

$$Y_1^{[6r+4,0]} = \tilde{c}, \sum_{m=0}^{r-1} \alpha_{2,m}^{0,1} Y_1^{[6m+4,6(r-m)]} + \sum_{m=0}^{r} \beta_{2,m}^{0,1} Y_2^{[6m+2,6(r-m)+3)]} = \tilde{c} \quad (k = 6r+2, \ r \ge 1), \ (138)$$

где
$$\alpha_{2,m}^{0,1}=2\theta_{2,m}^{0,1},\ \beta_{2,0}^{0,1}=2r,\ \beta_{2,m}^{0,1}=-2\theta_{2,m-1}^{0,1}\ (m=\overline{1,r-1},)\ \beta_{2,r}^{0,1}=3r\theta_{2,r-1}^{0,1},\ {\rm a}\ \theta_{2,m}^{0,1}=(-1)^m\prod_{j=1}^m(3j+2)(2(r-j))^{-1}\neq 0;$$

$$\sum_{m=0}^{r} \alpha_{1,m}^{1,1} Y_1^{[6m+2,6(r-m)+3]} + \sum_{m=0}^{r} \beta_{1,m}^{1,1} Y_2^{[6m,6(r-m+1)]} = \tilde{c},$$

$$\sum_{m=0}^{r} \alpha_{2,m}^{1,1} Y_1^{[6m+2,6(r-m)+3]} + \sum_{m=1}^{r+1} \beta_{2,m}^{1,1} Y_2^{[6m,6(r-m+1)]} = \tilde{c} \quad (k = 6r + 3, \ r \ge 1),$$
(139)

где
$$\alpha_{1,m}^{1,1}=(3m+1)(1-(3m+2)(2(r-m)-1)/d_{m+1}^1)\theta_{1,m}^{1,1}$$
 $(m=\overline{0,r-1}),$ $\alpha_{1,r}^{1,1}=(3r+1)\theta_{1,r}^{1,1},$

 $eta_{1,m}^{1,1}=2 heta_{1,m}^{1,1}, \ \mathrm{a}\ heta_{1,m}^{1,1}=(-1)^m\prod_{j=1}^m((3j-2)(3j-1)/d_j^1)
eq 0,$ причем $lpha_{1,m}^{1,1}=0$ только при $r=1;\ lpha_{2,0}^{1,1}=(2r-1) heta_{2,1}^{1,1},\ lpha_{2,m}^{1,1}=(3m+1) heta_{2,m}^{1,1}+(2(r-m)-1) heta_{2,m+1}^{1,1}\ (m=\overline{1,r}),\ eta_{2,m}^{1,1}=2 heta_{2,m}^{1,1},$ a $eta_{2,m}^{1,1}=(-1)^{m+r+1}\sum_{s=1}^m\prod_{j=s+1}^{r+1}(2(r-j)+1)(2(r-j)+3)/d_{j-1}^1\cdot\prod_{j=s}^{m-1}(3j+1)(3j+2)/d_{j+1}^1
eq 0$ $(m=\overline{1,r}),\;\;\theta_{2,r+1}^{1,1}=1,\;$ элементы d_m^1 находятся рекуррентно из формул (123);

$$Y_1^{[6(r+1),0]} = \tilde{c} \quad (k = 6r + 4, \ r \ge 1). \tag{140}$$

Теорема 11. Для того чтобы система (98) была формально эквивалентна исходной системе (96), необходимо и достаточно, чтобы коэффициенты $KOM Y^{[k]}$ удовлетворяли:

- 1) $npu \ k = 6r 1 ypaвнению (134) \ (r \ge 1);$
- 2) при k = 6r двум уравнениям (135) (r > 1):
- 3) при k = 6r + 1 уравнению (136) (r = 1) или уравнению (137) $(r \ge 2)$;
- 4) при $k = 6r + 2 двум уравнениям (138) (r \ge 1);$
- 5) при $k = 6r + 3 \partial eym$ уравнениям (139) (r > 1);
- 6) при k = 6r + 4 уравнению (140) $(r \ge 1)$.

Следствие 13. $B \ KOM \ Y^{[k]} \ cucmemы \ (98):$

 $1,2,5)\ npu\ k=6r-1,6r,6r+3\ (r\geq 1)\ все\ коэффициенты являются резонансными;$

3) при k=6r+1, если r=1, то коэффициенты $Y_1^{[0,9]},\ Y_1^{[6,3]},\ Y_2^{[4,6]}$ – резонансные, $Y_2^{[10,0]}$ — нерезонансный, а если $r \geq 2$, то не удается полностью описать множество резонансных коэффициентов, так как множители $\alpha_{1,m}^{2,0}$ $(m=\overline{1,r})$ в (137) могут обращаться в нуль, но коэффициенты $Y_1^{[0,6r+3]},\ Y_2^{[6m+4,6(r-m)]}$ $(m=\overline{0,r})$ – резонансные;

4) $npu \ k=6r+2 \ (r\geq 1)$ все коэффициенты являются резонансными, npu этом коэф- ϕ ициент $h_2^{[4,6r-3]}$ KOM $h_2^{[k-4]}$ является резонансным;

 $6)\ npu\ k=6r+4\ (r\geq 1)\ коэффициент\ Y_1^{[6r+6,0]}\$ является резонансным, а коэффициенты $Y_1^{[6m,6(r-m+1)]},\ Y_2^{[6m+4,6(r-m)+3]}\ (m=\overline{0,r})\$ — нерезонансные.

Для $\forall k \geq 5$ положим $n_k = \{1 \text{ при } k = 6r - 1, 6r + 1, 6r + 4 (r \geq 1), 2 - \text{при остальных } k \}.$

Следствие 14. В системе (98) n_k различных резонансных коэффициентов КОМ $Y^{[k]}$

- образуют резонансный k-набор \mathcal{Y}^k , если это:

 1) \mathcal{Y}^{6r-1} $(r \geq 1)$: $Y_1^{[6l_1+4,6(r-l_1)-3]}$ $(l_1 \in \{0,\ldots,r-1\})$ или $Y_2^{[6l_2+2,6(r-l_2)]}$ $(l_2 \in \{0,\ldots,r\})$;

 2) \mathcal{Y}^{6r} $(r \geq 1)$: $Y_1^{[6r+2,0]}$ и $Y_1^{[6l_3+2,6(r-l_3)]}$ $(l_3 \in \{0,\ldots,r-1\})$ или $Y_2^{[6l_4,6(r-l_4)+3]}$ $(l_4 \in \{0,\ldots,r-1\})$

- 3) a) \mathcal{Y}^7 : $Y_1^{[0,9]}$, unu $Y_1^{[6,3]}$, unu $Y_2^{[4,6]}$; b) \mathcal{Y}^{6r+1} $(r \geq 2)$: $Y_1^{[0,6r+3]}$, unu $Y_2^{[6l_6+4,6(r-l_6)]}$ $(l_6 \in \{0,\ldots,r\})$, unu $Y_1^{[6m,6(r-m)+3]}$ $(m = \{1,\ldots,r\})$, echu $\alpha_{1,m}^{2,0} \neq 0$; 4) \mathcal{Y}^{6r+2} $(r \geq 1)$: $Y_1^{[6r+4,0]}$ u $Y_1^{[6l_7+4,6(r-l_7)]}$ $(l_7 \in \{0,\ldots,r-1\})$ unu $Y_2^{[6l_8+2,6(r-l_8)+3)]}$
- $\begin{array}{l} (l_{8} \in \{0,\ldots,r\}); \\ 5) \ a) \ \mathcal{Y}^{9} : \ \textit{nubo} \ Y_{1}^{[8,3]} \ \textit{u} \ \textit{oduh} \ \textit{us} \ Y_{1}^{[2,9]}, \ Y_{2}^{[6,6]}, \ Y_{2}^{[12,0]}; \ \textit{nubo} \ Y_{2}^{[0,12]} \ \textit{u} \ \textit{oduh} \ \textit{us} \ Y_{1}^{[2,9]}, \ Y_{1}^{[8,3]}, \\ Y_{2}^{[6,6]}, \ Y_{2}^{[12,0]}; \ \textit{nubo} \ Y_{2}^{[6,6]} \ \textit{u} \ \textit{oduh} \ \textit{us} \ Y_{1}^{[2,9]}, \ Y_{2}^{[12,0]}; \ \textit{b)} \ \mathcal{Y}^{6r+3} \ (r \geq 2) : \ \textit{nubo} \ Y_{2}^{[0,6(r+1)]} \\ u \ Y_{1}^{[2,6r+3]} \ \textit{unu} \ Y_{2}^{[6l_{13},6(r-l_{13}+1)]} \ (l_{13} \in \{1,\ldots,r+1\}); \ \textit{nubo} \ Y_{2}^{[6(r+1),0]} \ \textit{u} \ Y_{1}^{[6l_{14}+2,6(r-l_{14})+3]} \\ (l_{14} \in \{0,\ldots,r\}) \ \textit{unu} \ Y_{2}^{[6l_{15},6(r-l_{15}+1)]} \ (l_{15} \in \{0,\ldots,r\}); \ \textit{nubo} \ \textit{nobule} \ \textit{dea} \ \textit{us} \ Y_{1}^{[6m+2,6(r-m)+3]} \\ (m \in \{0,\ldots,r\}), \ Y_{2}^{[6m,6(r-m+1)]} \ (m \in \{1,\ldots,r\}) \ \textit{npu} \ \textit{ycnobulu}, \ \textit{umo} \ \alpha(\beta)_{1,m_{1}}^{1,1} \alpha(\beta)_{2,m_{2}}^{1,1} (\alpha)_{1,m_{1}}^{1,1} \alpha(\beta)_{2,m_{2}}^{1,1} (\alpha)_{1,m_{1}}^{1,1} \alpha(\beta)_{2,m_{2}}^{1,1} (\alpha)_{1,m_{1}}^{1,1} \alpha(\beta)_{1,m_{1}}^{1,1} \alpha(\beta)_{2,m_{2}}^{1,1} (\alpha)_{1,m_{1}}^{1,1} \alpha(\beta)_{1,m_{2}}^{1,1} \alpha(\beta)_{2,m_{2}}^{1,1} (\alpha)_{1,m_{1}}^{1,1} \alpha(\beta)_{1,m_{1}}^{1,1} \alpha(\beta)_{1,m_{2}}^{1,1} (\alpha)_{1,m_{1}}^{1,1} \alpha(\beta)_{1,m_{2}}^{1,1} \alpha(\beta)_{1,m_{2}}^{1,1} (\alpha)_{1,m_{1}}^{1,1} \alpha(\beta)_{1,m_{2}}^{1,1} \alpha(\beta)_{1,m_{2}}^{1,1} (\alpha)_{1,m_{2}}^{1,1} \alpha(\beta)_{1,m_{2}}^{1,1} (\alpha)_{1,m_{2}}^{1,$ $\alpha(\beta)_{1,m_2}^{1,1}\alpha(\beta)_{2,m_1}^{1,1}\neq 0$ ($m\in\{1,\ldots,r-1\}$) при условии, что $\beta_{1,0}^{1,1}\alpha_{2,m}^{1,1}\neq 0$;
- 6) \mathcal{Y}^{6r+4} (r > 1): $Y_1^{[6(r+1),0]}$.

Таким образом, система (98) по определению является ОНФ, если для каждого $k \ge 5$ все коэффициенты её КОМ $Y^{[k]}$ равны нулю, кроме n_k штук, принадлежащих любому резонансному k-набору, описанному в следствии 14, и имеющих произвольные значения.

Следствие 15. Для системи (98) неполное семейство резонансных наборов \mathcal{Y}^* имеет вид: $\left\{ \rho_1^r Y_1^{[6l_1+4,6(r-l_1)-3]}, Y_1^{[6r+2,0]}, \rho_2^r Y_1^{[6l_3+2,6(r-l_3)]} \right\} (r \geq 1), \rho_3^r Y_1^{[6l_5,9-6l_5]}, \rho_4^r Y_1^{[0,6r+3]} (r \geq 2), Y_1^{[6r+4,0]}, \rho_5^r Y_1^{[6l_7+4,6(r-l_7)]} (r \geq 1), \rho_6^r Y_1^{[8,3]}, \rho_6^r \rho_7^r Y_1^{[2,9]}, (1-\rho_6^r) \rho_8^r (1-l_9) Y_1^{[6l_{11}+2,9-6l_{11}]}, l_9 (1-\rho_6^r) \rho_9^r Y_1^{[2,9]}, \rho_{10}^r \rho_{11}^r Y_1^{[2,6r+3]}, (1-\rho_{10}^r) \rho_{12}^r Y_1^{[6l_{14}+2,6(r-l_4)+3]} (r \geq 2), Y_1^{[6(r+1),0]}, (1-\rho_1^r) Y_2^{[6l_2+2,6(r-l_2)]}, (1-\rho_2^r) Y_2^{[6l_4,6(r-l_4)+3]} (r \geq 1), (1-\rho_3^r) Y_2^{[4,6]}, (1-\rho_4^r) Y_2^{[6l_6+4,6(r-l_6)]}, (r \geq 2), (1-\rho_5^r) Y_2^{[6l_8+2,6(r-l_8)+3]} (r \geq 1), (1-\rho_6^r) Y_2^{[6l_9,12-6l_9]}, \rho_6^r (1-\rho_7^r) Y_2^{[6l_{10},12-6l_{10}]}, (1-l_9) (1-\rho_6^r) (1-\rho_8^r) Y_2^{[6l_{12},12-6l_{12}]}, l_9 (1-\rho_6^r) (1-\rho_9^r) Y_2^{[12,0]}, \rho_{10}^r Y_2^{[0,6(r+1)]}, (1-\rho_{10}^r) Y_2^{[6(r+1),0]}, \rho_{10}^r (1-\rho_{11}^r) Y_2^{[6l_{13},6(r-l_{13}+1)]}, (1-\rho_{10}^r) (1-\rho_{12}^r) Y_2^{[6l_{15},6(r-l_{15}+1)]} (r \geq 2) \right\}, \quad \text{где } l_1, l_3, l_7 \in \{0,\ldots,r-1\}, l_2, l_4, l_6, l_8, l_{14}, l_{15} \in \{0,\ldots,r\}, l_{13} \in \{1,\ldots,r+1\}, l_5, l_9, l_{11} \in \{0,1\}, u_{10}, l_{12} \in \{1,2\}, \rho_j^r \in \{0,1\}, (j=\overline{1},\overline{12}).$ Если мноэнситель при некотором $Y_i^{[2q_1,3q_2]}, \text{ входя-шим в } \mathcal{Y}^*, \text{ равен нулю, то этот элемент отсутствует.}$

Теорема 12. Для любой системы (96), и для любого выбранного по её невозмущенной части резонансного набора \mathcal{Y}^* из следствия 15 существует и единственна почти тождественная замена (97) с заранее произвольным образом зафиксированными резонансными коэффициентами, преобразующая систему (96) в $OH\Phi$ (98):

$$\begin{split} \dot{y}_1 &= y_2^2 + \rho_3^r Y_1^{[6l_5,9-6l_5]} y_1^{3l_5} y_2^{3-2l_5} + \rho_6^r Y_1^{[8,3]} y_1^4 y_2 + \rho_6^r \rho_7^r Y_1^{[2,9]} y_1 y_2^3 + l_9 (1-\rho_6^r) \rho_9^r Y_1^{[2,9]} y_1 y_2^3 + \\ &+ (1-\rho_6^r) \rho_8^r (1-l_9) Y_1^{[6l_{11}+2,9-6l_{11}]} y_1^{3l_{11}+1} y_2^{3-2l_{11}} + \sum_{r=1}^{\infty} \left(\rho_1^r Y_1^{[6l_1+4,6(r-l_1)-3]} y_1^{3l_1+2} y_2^{2(r-l_1)-1} + \right. \\ &+ Y_1^{[6r+2,0]} y_1^{3r+1} + \rho_2^r Y_1^{[6l_3+2,6(r-l_3)]} y_1^{3l_3+1} y_2^{2(r-l_3)} + Y_1^{[6r+4,0]} y_1^{3r+2} + \rho_5^r Y_1^{[6l_7+4,6(r-l_7)]} y_1^{3l_7+2} y_2^{2(r-l_7)} + \\ &+ Y_1^{[6(r+1),0]} y_1^{3(r+1)} \right) + \sum_{r=2}^{\infty} \left(\rho_4^r Y_1^{[0,6r+3]} y_2^{2r+1} + \rho_{10}^r \rho_{11}^r Y_1^{[2,6r+3]} y_1^1 y_2^{2r+1} + \\ &+ (1-\rho_{10}^r) \rho_{12}^r Y_1^{[6l_{14}+2,6(r-l_{14})+3]} y_1^{3l_{14}+1} y_2^{2(r-l_{14})+1} \right), \end{split}$$

$$\begin{split} \dot{y}_2 &= y_1^2 y_2 + (1 - \rho_3^r) Y_2^{[4,6]} y_1^2 y_2^2 + (1 - \rho_6^r) Y_2^{[6l_9,12-6l_9]} y_1^{3l_9} y_2^{4-2l_9} + l_9 (1 - \rho_6^r) (1 - \rho_9^r) Y_2^{[12,0]} y_1^6 + \\ &+ \rho_6^r (1 - \rho_7^r) Y_2^{[6l_{10},12-6l_{10}]} y_1^{3l_{10}} y_2^{4-2l_{10}} + (1 - l_9) (1 - \rho_6^r) (1 - \rho_8^r) Y_2^{[6l_{12},12-6l_{12}]} y_1^{3l_{12}} y_2^{4-2l_{12}} + \\ &+ \sum_{r=1}^{\infty} \left((1 - \rho_1^r) Y_2^{[6l_2+2,6(r-l_2)]} y_1^{3l_2+1} y_2^{2(r-l_2)} + (1 - \rho_2^r) Y_2^{[6l_4,6(r-l_4)+3]} y_1^{3l_4} y_2^{2(r-l_4)+1} + \right. \\ &+ (1 - \rho_5^r) Y_2^{[6l_8+2,6(r-l_8)+3]} y_1^{3l_8+1} y_2^{2(r-l_8)+1} \right) + \sum_{r=2}^{\infty} \left((1 - \rho_4^r) Y_2^{[6l_6+4,6(r-l_6)]} y_1^{3l_6+2} y_2^{2(r-l_6)} + \right. \\ &+ \left. + \rho_{10}^r Y_2^{[0,6(r+1)]} y_2^{2(r+1)} + (1 - \rho_{10}^r) Y_2^{[6(r+1),0]} y_1^{3(r+1)} + \rho_{10}^r (1 - \rho_{11}^r) Y_2^{[6l_{13},6(r-l_{13}+1)]} y_1^{3l_13} y_2^{2(r-l_{13}+1)} + \right. \\ &+ \left. + (1 - \rho_{10}^r) (1 - \rho_{12}^r) Y_2^{[6l_{15},6(r-l_{15}+1)]} y_1^{3l_{15}} y_2^{2(r-l_{15}+1)} \right). \end{split}$$

Пример 4. Любая система (96) формально эквивалентна $OH\Phi$, у которой в возмущении все члены не более чем линейны по y_2 :

$$\begin{split} \dot{y}_1 &= y_2^2 + \sum_{r=1}^{\infty} \left(Y_1^{[6r-2,3]} y_1^{3r-1} y_2 + Y_1^{[6r,3]} y_1^{3r} y_2 + Y_1^{[6r+2,0]} y_1^{3r+1} + Y_1^{[6r+2,3]} y_1^{3r+1} y_2 + \right. \\ & + Y_1^{[6r+4,0]} y_1^{3r+2} + Y_1^{[6(r+1),0]} y_1^{3(r+1)} \big), \\ \dot{y}_2 &= y_1^2 y_2 + \sum_{r=1}^{\infty} \left(Y_2^{[6r,3]} y_1^{3r} y_2 + Y_2^{[6r+2,3]} y_1^{3r+1} y_2 + Y_2^{[6(r+1),0]} y_1^{3(r+1)} \right). \end{split}$$

ОНФ систем с ${\bf R}^{[5]}_{(3,4)}$ в невозмущенной части 9

9.1Получение связующей системы

Рассмотрим систему (10) с канонической невозмущенной частью $R_{(3,4)}^{[5]} = (x_2^2, x_1^3)$:

$$\dot{x}_1 = x_2^2 + \sum_{k=6}^{\infty} X_1^{[k]}(x), \quad \dot{x}_2 = x_1^3 + \sum_{k=6}^{\infty} X_2^{[k]}(x), \tag{141}$$

где в возмущении КОМ $X_i^{[k]} = \sum_{3q_1+4q_2=k+\gamma_i} X_i^{[3q_1,4q_2]} x_1^{q_1} x_2^{q_2} \quad (i=1,2).$

Пусть формальная почти тождественная замена

$$x_i = y_i + h_i(y) \quad (i = 1, 2),$$
 (142)

где $h_i = \sum_{k=6}^{\infty} h_i^{[k-5]}(y)$, $h_i^{[k-5]} = \sum_{3q_1+4q_2=k+\gamma_i-5} h_i^{[3q_1,4q_2]} y_1^{q_1} y_2^{q_2}$ переводит (141) в систему:

$$\dot{y}_1 = y_2^2 + \sum_{k=6}^{\infty} Y_1^{[k]}(y), \quad \dot{y}_2 = y_1^3 + \sum_{k=6}^{\infty} Y_2^{[k]}(y),$$
 (143)

в которой возмущение $Y_i^{[k]} = \sum_{3q_1+4q_2=k+\gamma_i} Y_i^{[3q_1,4q_2]} y_1^{q_1} y_2^{q_2}$.

Тождества (13) с $\chi = 5$, $\gamma = (3,4)$ для систем (141), (143) и замены (142) имеют вид:

$$\frac{\partial h_1^{[k-5]}}{\partial y_1}y_2^2 + \frac{\partial h_1^{[k-5]}}{\partial y_2}y_1^3 - 2y_2h_2^{[k-5]} = \widetilde{Y}_1^{[k]} - Y_1^{[k]}, \ \frac{\partial h_2^{[k-5]}}{\partial y_1}y_2^2 + \frac{\partial h_2^{[k-5]}}{\partial y_2}y_1^3 - 3y_1^2h_1^{[k-5]} = \widetilde{Y}_2^{[k]} - Y_2^{[k]},$$

где $\widetilde{Y}_i^{[k]} \; (i=1,2)\;$ находится по формуле, указанной в (13).

Приравнивая коэффициенты при $y_1^{q_1}y_2^{q_2}$, получим линейную связующую систему:

$$(q_1+1)h_1^{[3(q_1+1),4(q_2-2)]} + (q_2+1)h_1^{[3(q_1-3),4(q_2+1)]} - 2h_2^{[3q_1,4(q_2-1)]} = \widehat{Y}_1^{[3q_1,4q_2]} (3q_1+4q_2=k+3),$$

$$(q_1+1)h_2^{[3(q_1+1),4(q_2-2)]} + (q_2+1)h_2^{[3(q_1-3),4(q_2+1)]} - 3h_1^{[3(q_1-2),4q_2]} = \widehat{Y}_2^{[3q_1,4q_2]} (3q_1+4q_2=k+4),$$

$$(144)$$

в которой $\widehat{Y}_i^{[3q_1,4q_2]} = \widetilde{Y}_i^{[3q_1,4q_2]} - Y_i^{[3q_1,4q_2]}$

Так как $k \ge 6$, а $q_1, q_2 \in \mathbb{Z}_+$, введем следующее разложение:

$$k = 12r + u + 4v - 6$$
 $(r \in \mathbb{N}, u = 0, 1, 2, 3, v = 0, 1, 2),$ $q_1 = 4l + s$ $(l \in \mathbb{Z}_+, s = 0, 1, 2, 3).$

Тогда $q_2 = (k + \gamma_i - 3q_1)/4 = 3(r - l) + v - (3s - u - \gamma_i + 6)/4 \in \mathbb{Z}_+$ в следующих случаях: 0) u = 0: s = 3 и $l = \overline{0, r - 1}$ (i = 1), s = 2 и $l = \overline{0, r + \lfloor (v - 2)/3 \rfloor}$ (i = 2); 1) u = 1: s = 2 и $l = \overline{0, r + \lfloor (v - 2)/3 \rfloor}$ (i = 1), s = 1 и $l = \overline{0, r + \lfloor (v - 1)/3 \rfloor}$ (i = 2); 2) u = 2: s = 1 и $l = \overline{0, r + \lfloor (v - 1)/3 \rfloor}$ (i = 1), s = 0 и $l = \overline{0, r}$ (i = 2); (i = 2);

- 3) u=3: s=0 и $l=\overline{0,r}$ (i=1), s=3 и $l=\overline{0,r+\lfloor (v-2)/3 \rfloor}$ (i=2).

Здесь для $\forall x \in \mathbb{R}$ введена функция *non*: $|x| = \max \{ n \in \mathbb{Z} \mid n \leqslant x \}$.

9.2 Условия совместности связующей системы

$9.2.1 \quad u=0 \quad (k=12r+4v-6)$

Перепишем (144), используя введенные в разделе 9.1 разложения для q_1 и q_2 при u=0:

$$(4l+4)h_1^{[12(l+1),12(r-l-1)+4v-8]} + (3(r-l)+v-2)h_1^{[12l,12(r-l)+4v-8]} - 2h_2^{[12l+9,12(r-l)+4v-16]} = \widehat{Y}_1^{[12l+9,12(r-l)+4v-12]} \quad (l=\overline{0,r-1}),$$

$$(4l+3)h_2^{[12l+9,12(r-l)+4v-16]} + (3(r-l)+v-1)h_2^{[12l-3,12(r-l)+4v-4]} - 3h_1^{[12l,12(r-l)+4v-8]} = \widehat{Y}_2^{[12l+6,12(r-l)+4v-8]} \quad (l=\overline{0,r+\lfloor (v-2)/3\rfloor})$$

$$(144^0)$$

или

$$(4l+4)h_{1,l+1}^{v} + (3(r-l)+v-2)h_{1,l}^{v} - 2h_{2,l}^{v} = Y_{1,l}^{v} \quad \frac{(l=\overline{0,r-1}),}{(4l+3)h_{2,l}^{v} + (3(r-l)+v-1)h_{2,l-1}^{v} - 3h_{1,l}^{v} = Y_{2,l}^{v} \quad (l=\overline{0,r+\lfloor (v-2)/3 \rfloor}),$$

$$(145)$$

где
$$h_{1,l}^v = h_1^{[12l,12(r-l)+4v-8]}, \quad Y_{2,l}^v = \widehat{Y}_2^{[12l+6,12(r-l)+4v-8]} \quad (l = \overline{0,r+\lfloor (v-2)/3\rfloor}), \quad Y_{1,l}^v = \widehat{Y}_1^{[12l+9,12(r-l)+4v-12]} \quad (l = \overline{0,r-1}), \quad h_{2,l}^v = h_2^{[12l+9,12(r-l)+4v-16]} \quad (l = \overline{0,r+\lfloor (v-1)/3\rfloor-1}); \quad Y_{2,r}^0, Y_{2,r}^1 = 0.$$

Подставляя $h_{1,l}^v$ и $h_{1,l+1}^v$ из (145_2) в (145_1) , получаем систему:

$$a_l^v h_{2,l-1}^v + b_l^v h_{2,l}^v + c_l^v h_{2,l+1}^v = Y_{0,l}^v \quad (l = \overline{0, r-1}), \tag{146}$$

в которой $a_l^v=(3(r-l)+v-2)(3(r-l)+v-1)$ $(l=\overline{1,r-1}),\ b_l^v=(8l+7)(3(r-l)+v-1)+v-3)-7$ $(l=\overline{0,r+\lfloor (v-1)/3\rfloor -1}),\ c_l^v=(4l+4)(4l+7)$ $(l=\overline{0,r+\lfloor (v-1)/3\rfloor -2}),\ Y_{0,l}^v=3Y_{1,l}^v+(3(r-l)+v-2)Y_{2,l}^v+(4l+4)Y_{2,l+1}^v.$

 ${f 0^0}$. ${f v}={f 0}~({f k}={f 12r}-{f 6})$. Для решения системы (146) будем методом Гаусса аннулировать

элементы
$$a_1^0, a_2^0, \dots$$
 матрицы
$$\begin{pmatrix} b_0^0 & c_0^0 & 0 & \dots & 0 \\ a_1^0 & b_1^0 & c_1^0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & a_{r-3}^0 & b_{r-3}^0 & c_{r-3}^0 \\ 0 & \dots & 0 & a_{r-2}^0 & b_{r-2}^0 \\ 0 & \dots & 0 & 0 & a_{r-1}^0 \end{pmatrix}_{r \times (r-1)},$$
 получая e_l^0 вместо b_l^0 и

 $\overline{Y}_{0,l}^0$ вместо $Y_{0,l}^0$ $(l \le r-1),$ пока $e_{l-1}^0 \ne 0$ $(l \ge 1),$ по рекуррентным формулам:

$$e_0^0 = b_0^0, \ \overline{Y}_{0,0}^0 = Y_{0,0}^0; \quad e_l^0 = b_l^0 - \frac{a_l^0 c_{l-1}^0}{e_{l-1}^0}, \ \overline{Y}_{0,l}^0 = Y_{0,l}^0 - \frac{\overline{Y}_{0,l-1}^0 a_l^0}{e_{l-1}^0} \quad (l = 1, 2, \dots).$$
 (147)

Лемма 17. Для элементов e_l^0 из (147) верна следующая прямая формула:

$$e_l^0 = (4l+7)(3(r-l)-4) \neq 0 \quad (l = \overline{0,r-2}).$$
 (148)

Доказательство. В (147) $e_0^0 = 7(3r-4)$, что совпадает с e_0^0 из (148) и дает базу индукции.

Пусть для $\forall l=\overline{1,r-2}$ верна формула (148). Тогда согласно (147) имеем $e_{l+1}^0=b_{l+1}^0-a_{l+1}^0c_l^0(e_l^0)^{-1}=(8l+15)(3(r-l)-6)-7-(3(r-l)-5)(4l+4)=(4l+11)(3(r-l)-7).$

В результате последнее уравнение (l=r-1) системы, полученной из (146), принимает вид: $0 \cdot h_{2,r-2}^0 = \overline{Y}_{0,r-1}^0$, где $\overline{Y}_{0,r-1}^0 = \sum_{m=0}^{r-1} \theta_{1,m}^{0,0} Y_{0,m}^0$ с $\theta_{1,m}^{0,0} = (-1)^{r-1-m} \prod_{j=m+1}^{r-1} (a_j^0/e_{j-1}^0)$. Учитывая (146) и (148), получаем:

$$\theta_{1,m}^{0,0} = (-1)^{r-1-m} \prod_{j=m+1}^{r-1} \frac{3(r-j)-2}{4j+3} \neq 0 \quad (m = \overline{0,r-1}).$$

В результате уравнение $\overline{Y}_{0,r-1}^0=0$ дает для (144°) с v=0 резонансную связь:

$$\sum_{m=0}^{r-1} \alpha_{1,m}^{0,0} \widehat{Y}_1^{[12m+9,12(r-m-1)]} + \sum_{m=0}^{r-1} \beta_{1,m}^{0,0} \widehat{Y}_2^{[12m+6,12(r-m)-8]} = 0, \tag{149}$$

где $\alpha_{1,m}^{0,0}=3\theta_{1,m}^{0,0},\ \beta_{1,m}^{0,0}=3(3(r-m)-2)(4m+3)^{-1}\theta_{1,m}^{0,0}.$

 1^0 . $v = 1 \ (k = 12r - 2)$. Для решения системы (146) будем методом Гаусса аннулировать

элементы
$$a_1^1, a_2^1, \dots$$
 матрицы
$$\begin{pmatrix} b_0^1 & c_0^1 & 0 & \dots & 0 \\ a_1^1 & b_1^1 & c_1^1 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & a_{r-2}^1 & b_{r-2}^1 & c_{r-2}^1 \\ 0 & \dots & 0 & a_{r-1}^1 & b_{r-1}^1 \end{pmatrix}_{r \times r}$$
, получая e_l^1 вместо b_l^1 и $\overline{Y}_{0,l}^1$

вместо $Y_{0,l}^1$ $(l \le r - 1)$, пока $e_{l-1}^1 \ne 0$ $(l \ge 1)$, по рекуррентным формулам:

$$e_0^1 = b_0^1, \ \overline{Y}_{0,0}^1 = Y_{0,0}^1; \quad e_l^1 = b_l^1 - \frac{a_l^1 c_{l-1}^1}{e_{l-1}^1}, \ \overline{Y}_{0,l}^1 = Y_{0,l}^1 - \frac{\overline{Y}_{0,l-1}^1 a_l^1}{e_{l-1}^1} \quad (l = 1, 2, \dots).$$
 (150)

Лемма 18. Для элементов e_l^1 из (150) верна следующая прямая формула:

$$e_l^1 = 3(4l+7)(r-l-1) \quad (l = \overline{0,r-1}).$$
 (151)

Доказательство. В (150) $e_0^1=21(r-1)$, что совпадает с e_0^1 из (151) и дает базу индукции.

Пусть для $\forall l=\overline{1,r-1}$ верна формула (151). Тогда согласно (150) имеем $e^1_{l+1}=b^1_{l+1}-a^1_{l+1}c^1_l(e^1_l)^{-1}=(8l+15)(3(r-l)-5)-7-(3(r-l)-4)(4l+4)=3(4l+11)(r-l-2).$

Поскольку в (151) только $e_{r-1}^1=0$, то последнее уравнение (l=r-1) системы, полученной из (146), принимает вид: $0\cdot h_{2,r-2}^1+0\cdot h_{2,r-1}^1=\overline{Y}_{0,r-1}^1$, где $\overline{Y}_{0,r-1}^1=\sum_{m=0}^{r-1}\theta_{1,m}^{0,1}Y_{0,m}^1$ с $\theta_{1,m}^{0,1}=(-1)^{r-1-m}\prod_{j=m+1}^{r-1}(a_j^1/e_{j-1}^1)$. Учитывая (146) и (151), получаем:

$$\theta_{1,m}^{0,1} = (-1)^{r-1-m} \prod_{j=m+1}^{r-1} \frac{3(r-j)-1}{4j+3} \neq 0 \quad (m = \overline{0,r-1}).$$

В обозначениях (145): $\sum_{m=0}^{r-1}\theta_{1,m}^{0,1}Y_{0,m}^1 = \sum_{m=0}^{r-1}\theta_{1,m}^{0,1}(3Y_{1,m}^1 + (3(r-m)-1)Y_{2,m}^1 + (4m+4)Y_{2,m+1}^1) = 3\sum_{m=0}^{r-1}\theta_{1,m}^{0,1}Y_{1,m}^1 + (3r-1)\theta_{1,0}^{0,1}Y_{2,0}^1 + \sum_{m=1}^{r-1}((3(r-m)-1)\theta_{1,m}^{0,1} + 4m\theta_{1,m-1}^{0,1})Y_{2,m}^1,$ причем $(3(r-m)-1)\theta_{1,m}^{0,1} + 4m\theta_{1,m-1}^{0,1} = 3(3(r-m)-1)(4m+3)^{-1}\theta_{1,m}^{0,1}.$

В результате уравнение $\overline{Y}_{0,r-1}^1=0$ дает для (144^0) с v=1 резонансную связь при наличии свободной компоненты $h_2^{[12r-3,0]}$:

$$\sum_{m=0}^{r-1} \alpha_{1,m}^{0,1} \widehat{Y}_1^{[12m+9,12(r-m)-8]} + \sum_{m=0}^{r-1} \beta_{1,m}^{0,1} \widehat{Y}_2^{[12m+6,12(r-m)-4]} = 0, \tag{152}$$

где $\alpha_{1,m}^0 = 3\theta_{1,m}^{0,1}, \ \beta_{1,m}^{0,1} = 3(3(r-m)-1)(4m+3)^{-1}\theta_{1,m}^{0,1}.$

 ${f 2^0}$. ${f v}={f 2}~({f k}={f 12r}+{f 2})$. Для решения системы (146) будем методом Гаусса аннулировать

2°.
$$\mathbf{v}=\mathbf{2}$$
 ($\mathbf{k}=\mathbf{12r}+\mathbf{2}$). Для решения системы (146) будем методом Гаусса аннулировать
$$\begin{pmatrix} b_0^2 & c_0^2 & 0 & \dots & 0 \\ a_1^2 & b_1^2 & c_1^2 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & \dots & a_{r-2}^2 & b_{r-2}^2 & c_{r-2}^2 \\ 0 & \dots & 0 & a_{r-1}^2 & b_{r-1}^2 \end{pmatrix}_{r \times r}, \text{ получая } e_l^2 \text{ вместо } b_l^2 \text{ и } \overline{Y}_{0,l}^2$$
 вместо $Y_{0,l}^2$ ($l \le r-1$), пока $e_{l-1}^2 \ne 0$ ($l \ge 1$), по рекуррентным формулам:

вместо $Y_{0,l}^2$ $(l \le r-1)$, пока $e_{l-1}^2 \ne 0$ $(l \ge 1)$, по рекуррентным формулам:

$$e_0^2 = b_0^2, \ \overline{Y}_{0,0}^2 = Y_{0,0}^2; \quad e_l^2 = b_l^2 - \frac{a_l^2 c_{l-1}^2}{e_{l-1}^2}, \ \overline{Y}_{0,l}^2 = Y_{0,l}^2 - \frac{\overline{Y}_{0,l-1}^2 a_l^2}{e_{l-1}^2} \quad (l = 1, 2, \dots).$$
 (153)

Лемма 19. Для элементов e_l^2 из (153) верна следующая прямая формула:

$$e_l^2 = (4l+7)(3(r-l)-2) \neq 0 \quad (l = \overline{0,r-1}).$$
 (154)

Доказательство. В (153) $e_0^2 = 7(3r-2)$, что совпадает с e_0^2 из (154) и дает базу индукции.

Пусть для $\forall l=\overline{1,r-1}$ верна формула (154). Тогда согласно (153) имеем $e_{l+1}^2=b_{l+1}^2-a_{l+1}^2c_l^2(e_l^2)^{-1}=(8l+15)(3(r-l)-4)-7-(3(r-l)-3)(4l+4)=(4l+11)(3(r-l)-5).$

Значит, система (146) однозначно разрешима.

9.2.2 u=1 (k = 12r + 4v - 5)

Перепишем (144), используя введенные в разделе 9.1 разложения для q_1 и q_2 при u=1:

$$(4l+3)h_1^{[12l+9,12(r-l)+4v-16]} + (3(r-l)+v-1)h_1^{[12l-3,12(r-l)+4v-4]} - 2h_2^{[12l+6,12(r-l)+4v-12]} = \widehat{Y}_1^{[12l+6,12(r-l)+4v-8]} \quad (l=\overline{0,r+\lfloor (v-2)/3\rfloor}),$$

$$(4l+2)h_2^{[12l+6,12(r-l)+4v-12]} + (3(r-l)+v)h_2^{[12l-6,12(r-l)+4v]} - 3h_1^{[12l-3,12(r-l)+4v-4]} = \widehat{Y}_2^{[12l+3,12(r-l)+4v-4]} \quad (l=\overline{0,r+\lfloor (v-1)/3\rfloor}).$$

$$(144^1)$$

Вводя новые обозначения, запишем эту систему в следующем виде:

$$(4l+3)h_{1,l}^{v} + (3(r-l)+v-1)h_{1,l-1}^{v} - 2h_{2,l}^{v} = Y_{1,l}^{v} \quad (l = \overline{0, r + \lfloor (v-2)/3 \rfloor}),$$

$$(4l+2)h_{2,l}^{v} + (3(r-l)+v)h_{2,l-1}^{v} - 3h_{1,l-1}^{v} = Y_{2,l}^{v} \quad (l = \overline{0, r + \lfloor (v-1)/3 \rfloor}),$$

$$(155)$$

где
$$h_{1,l}^v = h_1^{[12l+9,12(r-l)+4v-16]}$$
 $(l = 0, r + \lfloor (v-1)/3 \rfloor - 1), h_{2,l}^v = h_2^{[12l+6,12(r-l)+4v-12]}$ $(l = 0, r-1), Y_{1,l}^v = \hat{Y}_1^{[12l+6,12(r-l)+4v-8]}$ $(l = 0, r + \lfloor (v-2)/3 \rfloor), Y_{2,l}^v = \hat{Y}_2^{[12l+3,12(r-l)+4v-4]}$ $(l = 0, r + \lfloor (v-1)/3 \rfloor); Y_{1,-1}^0, Y_{1,-1}^1, Y_{1,r}^1 = 0.$

 ${f 0^0}$. ${f v}={f 0}$ (${f k}={f 12r}-{f 5}$). Подставляя $h_{2,l}^0$ и $h_{2,l-1}^0$ из (155_1) в (155_2) , получаем систему:

$$a_l^0 h_{1,l-2}^0 + b_l^0 h_{1,l-1}^0 + c_l^0 h_{1,l}^0 = Y_{0,l}^0 \quad (l = \overline{0,r-1}),$$
 (156)

в которой $a_l^0=3(r-l)(3(r-l)+2)$ $(l=\overline{2,r-1}),\ b_l^0=3(8l+1)(r-l)-4l-8$ $(l=\overline{1,r-1}),\ c_l^0=(4l+2)(4l+3)$ $(l=\overline{0,r-2}),\ Y_{0,l}^0=3(r-l)Y_{1,l-1}^0+(4l+2)Y_{1,l}^0+2Y_{2,l}^0.$

Для

решения системы (156) будем методом Гаусса аннулировать элементы $c_{r-2}^0, c_{r-3}^0, \dots$ мат-

рицы
$$\begin{pmatrix} c_0^0 & 0 & 0 & \dots & 0 \\ b_1^0 & c_1^0 & 0 & \dots & 0 \\ a_2^0 & b_2^0 & c_2^0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & a_{r-2}^0 & b_{r-2}^0 & c_{r-2}^0 \\ 0 & \dots & 0 & a_{r-1}^0 & b_{r-1}^0 \end{pmatrix}_{r\times (r-1)}, \quad \text{получая} \quad d_l^0 \quad \text{вместо} \quad b_l^0 \quad \text{и} \quad \overline{Y}_{0,l}^0 \quad \text{вместо} \quad Y_{0,l}^0$$

 $(l \le r - 1)$, пока $d_{l+1}^0 \ne 0 \ (l \ge 0)$, по рекуррентным формулам:

$$d_{r-1}^{0} = b_{r-1}^{0}, \ \overline{Y}_{0,r-1}^{0} = Y_{0,r-1}^{0}; \quad d_{l}^{0} = b_{l}^{0} - \frac{a_{l+1}^{0} c_{l}^{0}}{d_{l+1}^{0}}, \ \overline{Y}_{0,l}^{0} = Y_{0,l}^{0} - \frac{\overline{Y}_{0,l+1}^{0} c_{l}^{0}}{d_{l+1}^{0}} \quad (l = r - 2, r - 3, \dots).$$

$$(157)$$

Лемма 20. Для элементов d_I^0 из (157) верна следующая прямая формула:

$$d_l^0 = (4l - 1)(3(r - l) + 2) \neq 0 \quad (l = \overline{r - 1, 1}). \tag{158}$$

Доказательство. В (157) $d_{r-1}^0=5(4r-5)$, что совпадает с d_{r-1}^0 из (158) и дает базу. Пусть для $\forall l=\overline{r-2,1}$ верна формула (158). Тогда согласно (157) имеем $d_{l-1}^0=b_{l-1}^0-a_l^0c_{l-1}^0(d_l^0)^{-1}=3(8l-7)(r-l+1)-4l-4-3(r-l)(4l-4)=(4l-5)(3(r-l)+5)$.

В результате первое уравнение (l=0) системы, полученной из (156), принимает вид: $0 \cdot h_{1,0}^0 = \overline{Y}_{0,0}^0$, где $\overline{Y}_{0,0}^0 = \sum_{m=0}^{r-1} \theta_{1,m}^{1,0} Y_{0,m}^0$ с $\theta_{1,m}^{1,0} = (-1)^m \prod_{j=0}^{m-1} (c_j^0/d_{j+1}^0)$. Учитывая (156) и (158), получаем:

$$\theta_{1,m}^{1,0} = (-1)^m \prod_{j=0}^{m-1} \frac{4j+2}{3(r-j)-1} \neq 0 \quad (m = \overline{0, r-1}).$$

В обозначениях (145): $\sum_{m=0}^{r-1}\theta_{1,m}^{1,0}Y_{0,m}^0 = \sum_{m=0}^{r-1}\theta_{1,m}^{1,0}(3(r-m)Y_{1,m-1}^0 + (4m+2)Y_{1,m}^0 + 2Y_{2,m}^0) = \sum_{m=0}^{r-2}((4m+2)\theta_{1,m}^{1,0} + 3(r-m-1)\theta_{1,m+1}^{1,0})Y_{1,m}^0 + (4r-2)\theta_{1,r-1}^{1,0}Y_{1,r-1}^0 + 2\sum_{m=0}^{r-1}\theta_{1,m}^{1,0}Y_{2,m}^0,$ причем $(4m+2)\theta_{1,m}^{1,0} + 3(r-m-1)\theta_{1,m+1}^{1,0} = 2(4m+2)(3(r-m)-1)^{-1}\theta_{1,m}^{1,0}.$

В результате уравнение $\overline{Y}_{0,0}^0=0$ дает для (144¹) с v=0 резонансную связь:

$$\sum_{m=0}^{r-1} \alpha_{1,m}^{1,0} \widehat{Y}_1^{[12m+6,12(r-m)-8]} + \sum_{m=0}^{r-1} \beta_{1,m}^{1,0} \widehat{Y}_2^{[12m+3,12(r-m)-4]} = 0, \tag{159}$$

где $\alpha_{1,m}^{1,0}=2(4m+2)(3(r-m)-1)^{-1}\theta_{1,m}^{1,0},\ \beta_{1,m}^{1,0}=2\theta_{1,m}^{1,0}.$

 ${f 1^0}$. ${f v}={f 1}$ (${f k}={f 12r-1}$). Подставляя $h^1_{2,l}$ и $h^1_{2,l-1}$ из (155₁) в (155₂), получаем систему:

$$a_l^1 h_{1,l-2}^1 + b_l^1 h_{1,l-1}^1 + c_l^1 h_{1,l}^1 = Y_{0,l}^1 \quad (l = \overline{0,r}),$$
 (160)

в которой $a_l^1=(3(r-l)+1)(3(r-l)+3)$ $(l=\overline{2,r}),$ $b_l^1=3(8l+1)(r-l)+4l-7$ $(l=\overline{1,r}),$ $c_l^1=(4l+2)(4l+3)$ $(l=\overline{0,r-1}),$ $Y_{0,l}^1=(3(r-l)+1)Y_{1,l-1}^1+(4l+2)Y_{1,l}^1+2Y_{2,l}^1.$

Для решения системы (160) будем методом Гаусса аннулировать элементы a_2^1, a_3^1, \dots

матрицы
$$\begin{pmatrix} c_0^1 & 0 & 0 & \dots & 0 \\ b_1^1 & c_1^1 & 0 & \dots & 0 \\ a_2^1 & b_2^1 & c_2^1 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & a_{r-1}^1 & b_{r-1}^1 & c_{r-1}^1 \\ 0 & \dots & 0 & a_r^1 & b_r^1 \end{pmatrix}_{(r+1)\times r},$$
 получая e_l^1 вместо b_l^1 и $\overline{Y}_{0,l}^1$ вместо $Y_{0,l}^1$

 $(l \le r)$, пока $e_{l-1}^1 \ne 0 \ (l \ge 2)$, по рекуррентным формулам:

$$e_{1}^{1} = b_{1}^{1}, \ \overline{Y}_{0,0}^{1} = Y_{0,0}^{1}, \ \overline{Y}_{0,1}^{1} = Y_{0,1}^{1}; \quad e_{l}^{1} = b_{l}^{1} - \frac{a_{l}^{1} c_{l-1}^{1}}{e_{l-1}^{1}}, \ \overline{Y}_{0,l}^{1} = Y_{0,l}^{1} - \frac{\overline{Y}_{0,l-1}^{1} a_{l}^{1}}{e_{l-1}^{1}} \quad (l = 2, 3, \dots).$$

$$(161)$$

Лемма 21. В матрице системы (160) определяемые по формулам (161) диагональные элементы e_1^1, \ldots, e_{r-1}^1 положительны, а e_r^1 отрицателен.

Доказательство. Для оценки снизу элементов e_l^1 при $l=\overline{1,r-1}$ введем положительную функцию $f_l=(4l+2)(3(r-l)-2).$

Покажем методом математической индукции, что $e_l^1 > f_l$ при $l = \overline{1, r-1}$.

В (161) $e_1^1 = 27r - 30 > 18r - 30 = f_1$, что является базой индукции.

Пусть теперь $e_{l-1}^1>f_{l-1}=(4l-2)(3(r-l)+1).$ Тогда $e_l^1=b_l^1-a_l^1c_{l-1}^1/e_{l-1}^1>b_l^1-a_l^1c_{l-1}^1/f_{l-1},$ так как $a_l^1c_{l-1}^1=(3(r-l)+1)(3(r-l)+3)(4l-2)(4l-1)>0.$ Но $b_l^1-a_l^1c_{l-1}^1/f_{l-1}=3(8l+1)(r-l)+4l-7-(4l-1)(3(r-l)+3)=(4l+2)(3(r-l)-2)=f_l.$ Значит $e_l^1>f_l,$ т. е. $e_l^1>0$ для $\forall\,l=\overline{1,r-1}.$

Оценим теперь элементы e_l^1 $(l=\overline{1,r})$ сверху так, чтобы доказать, что $e_r^1<0$. Введем $g_l=3(r-l)(4l+5)$. При $l=\overline{1,r-1}$ функция $g_l>0$ и $g_r=0$.

Покажем методом математической индукции, что $e_l^1 < g_l$ при $l = \overline{1,r}$.

В (161) $e_1^1 = 27r - 30 < 27r - 27 = g_1$, что является базой индукции.

Пусть $e_{l-1}^1 < g_{l-1} = 3(r-l+1)(4l+1)$. Тогда $e_l^1 = b_l^1 - a_l^1 c_{l-1}^1/e_{l-1}^1 < b_l^1 - a_l^1 c_{l-1}^1/g_{l-1}$, так как $a_l^1 c_{l-1}^1 > 0$. Но $b_l^1 - a_l^1 c_{l-1}^1/g_{l-1} < g_l \Leftrightarrow 3(8l+1)(r-l) + 4l - 7 - (3(r-l)+1)(4l-2) \times (4l-1)(4l+1)^{-1} - 3(r-l)(4l+5) < 0 \Leftrightarrow -3(6r-2l+3)(4l+1)^{-1} < 0$, что верно при $l=\overline{1,r}$. Поэтому $e_l^1 < g_l$, а значит $e_r^1 < 0$.

В результате можно полностью аннулировать нижнюю диагональ a_2^1, \ldots, a_r^1 матрицы системы (160), а затем аннулировать элементы c_{r-1}^1, \ldots, c_0^1 . Диагональные элементы e_r^1, \ldots, e_1^1 при этом не изменятся, а вместо $\overline{Y}_{0,l}^1$ получим $\check{Y}_{0,l}^1$ по рекуррентным формулам:

$$\breve{Y}_{0,r}^1 = \overline{Y}_{0,r}^1, \ \breve{Y}_{0,l}^1 = \overline{Y}_{0,l}^1 - \frac{c_l^1 \breve{Y}_{0,l+1}^1}{e_{l+1}^1} \quad (l = \overline{r-1,0}).$$

Тогда первое уравнение (l=0) системы, полученной из (160), принимает вид: $0 \cdot h_{1,0}^1 = \widecheck{Y}_{0,0}^1$, где $\widecheck{Y}_{0,0}^1 = \sum_{m=0}^r \theta_m^{1,1} \overline{Y}_{0,m}^1$ с $\theta_m^{1,1} = (-1)^m \prod_{j=1}^m c_{j-1}^1/e_j^1 \neq 0$, так как $c_l^1 \neq 0$ для $\forall l=\overline{0,r-1}$. Согласно формуле (161) имеем: $\sum_{m=0}^r \theta_m^{1,1} \overline{Y}_{0,m}^1 = \theta_0^{1,1} Y_{0,0}^1 + \theta_1^{1,1} Y_{0,1}^1 + \theta_2^{1,1} (Y_{0,2}^1 - a_2^1 Y_{0,1}^1/e_1^1) + \ldots + \theta_r^{1,1} (Y_{0,r}^1 - a_r^1 Y_{0,r-1}^1/e_{r-1}^1 + \ldots + (-1)^{r-1} Y_{0,1}^1 \prod_{j=2}^r a_j^1/e_{j-1}^1) = \sum_{m=0}^r \theta_{1,m}^{1,1} Y_{0,m}^1$, где $\theta_{1,0}^{1,1} = \theta_0^{1,1} = 1$, $\theta_{1,m}^{1,1} = \sum_{s=m}^r (-1)^{s-m} \theta_s^{1,1} \cdot \prod_{j=m+1}^s a_j^1/e_{j-1}^1$ $(m=\overline{1,r})$.

В обозначениях (155): $\sum_{m=0}^{r} \theta_{1,m}^{1,1} Y_{0,m}^1 = \sum_{m=0}^{r} \theta_{1,m}^{1,1} ((3(r-m)+1) Y_{1,m-1}^1 + (4m+2) Y_{1,m}^1 + 2Y_{2,m}^1) = \sum_{m=0}^{r-1} ((4m+2) \theta_{1,m}^{1,1} + (3(r-m)-2) \theta_{1,m+1}^{1,1}) Y_{1,m}^1 + 2 \sum_{m=0}^{r} \theta_{1,m}^{1,1} Y_{2,m}^1.$

В результате уравнение $\check{Y}_{0,0}^1=0$ дает для (1441) с v=1 резонансную связь:

$$\sum_{m=0}^{r-1} \alpha_{1,m}^{1,1} \widehat{Y}_1^{[12m+6,12(r-m)-4]} + \sum_{m=0}^{r} \beta_{1,m}^{1,1} \widehat{Y}_2^{[12m+3,12(r-m)]} = 0, \tag{162}$$

где $\alpha_{1,m}^{1,1} = (4m+2)\theta_{1,m}^{1,1} + (3(r-m)-2)\theta_{1,m+1}^{1,1}, \quad \beta_{1,m}^{1,1} = 2\theta_{1,m}^{1,1}, \quad a \quad \theta_{1,0}^{1,1} = 1, \quad \theta_{1,m}^{1,1} = (-1)^m \times \sum_{s=m}^r \prod_{j=1}^s (4j-2)(4j-1)/e_j^1 \cdot \prod_{j=m+1}^s (3(r-j)+1)(3(r-j)+3)/e_{j-1}^1 \quad (m=\overline{1,r}).$

 2^0 . $\mathbf{v} = \mathbf{2}$ ($\mathbf{k} = \mathbf{12r} + \mathbf{3}$). В системе (155₂) при l = 0 имеем:

$$2h_{2.0}^2 = Y_{2.0}^2. (163)$$

Подставляя $h_{1,l-1}^2$ и $h_{1,l}^2$ из остальных уравнений (155_2) в (155_1) , получаем систему:

$$a_l^2 h_{2,l-1}^2 + b_l^2 h_{2,l}^2 + c_l^2 h_{2,l+1}^2 = Y_{0,l}^2 \quad (l = \overline{0,r}), \tag{164}$$

в которой $a_l^2=(3(r-l)+1)(3(r-l)+2)$ $(l=\overline{1,r}),\ b_l^2=3(8l+5)(r-l)-7$ $(l=\overline{0,r-1}),\ c_l^2=(4l+3)(4l+6)$ $(l=\overline{0,r-2}),\ Y_{0,l}^2=3Y_{1,l}^2+(3(r-l)+1)Y_{2,l}^2+(4l+3)Y_{2,l+1}^2.$

Для решения системы (164) будем методом Гаусса аннулировать элементы a_1^2, a_2^2, \dots

матрицы
$$\begin{pmatrix} b_0^2 & c_0^2 & 0 & \dots & 0 \\ a_1^2 & b_1^2 & c_1^2 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & a_{r-2}^2 & b_{r-2}^2 & c_{r-2}^2 \\ 0 & \dots & 0 & a_{r-1}^2 & b_{r-1}^2 \\ 0 & \dots & 0 & 0 & a_r^2 \end{pmatrix}_{(r+1)\times r}, \text{ получая } e_l^2 \text{ вместо } b_l^2 \text{ и } \overline{Y}_{0,l}^2 \text{ вместо } Y_{0,l}^2$$

 $(l \le r)$, пока $e_{l-1}^2 \ne 0 \ (l \ge 1)$, по рекуррентным формулам:

$$e_0^2 = b_0^2, \ \overline{Y}_{0,0}^2 = Y_{0,0}^2; \quad e_l^2 = b_l^2 - \frac{a_l^2 c_{l-1}^2}{e_{l-1}^2}, \ \overline{Y}_{0,l}^2 = Y_{0,l}^2 - \frac{\overline{Y}_{0,l-1}^2 a_l^2}{e_{l-1}^2} \quad (l = 1, 2, \dots).$$
 (165)

Лемма 22. В матрице системы (164) определяемые по формулам (165) диагональные элементы e_0^2, \ldots, e_{r-1}^2 положительны.

Доказательство. Пусть $f_l = (4l+5)(3(r-l)-2)$, тогда $f_l > 0$ при $l = \overline{0,r-1}$.

Покажем методом математической индукции, что $e_l^2 > f_l$ при $l = \overline{0,r-1}$.

Согласно (165) $e_0^2 = 15r - 7 > 15r - 10 = f_0$, что является базой индукции.

Пусть $e_{l-1}^2 > f_{l-1} = (4l+1)(3(r-l)+1)$. Тогда $e_l^2 = b_l^2 - a_l^2 c_{l-1}^2 / e_{l-1}^2 > b_l^2 - a_l^2 c_{l-1}^2 / f_{l-1}$, так как $a_l^2 c_{l-1}^2 = (3(r-l)+1)(3(r-l)+2)(4l-1)(4l+2) > 0$. Но $b_l^2 - a_l^2 c_{l-1}^2 / f_{l-1} > f_l \Leftrightarrow 3(8l+5)(r-l) - 7 - (4l-1)(4l+2)(3(r-l)+2)(4l+1)^{-1} - (4l+5)(3(r-l)-2) > 0 \Leftrightarrow (6(r+l)+7)(4l+1)^{-1} > 0$, что верно. Поэтому $e_l^2 > f_l$, т. е. $e_l^2 > 0$ для $\forall l = \overline{0,r-1}$. \square

Следовательно можно полностью аннулировать нижнюю диагональ a_1^2,\dots,a_r^2 матрицы системы (164), после чего последнее уравнение (l=r) системы, полученной из (164), примет вид: $0 \cdot h_{2,r-1}^2 = \overline{Y}_{0,r}^2$, где $\overline{Y}_{0,r}^2 = \sum_{m=0}^r \theta_{1,m}^{1,2} Y_{0,m}^2$ с $\theta_{1,m}^{1,2} = (-1)^{r-m} \prod_{j=m}^{r-1} (a_{j+1}^2/e_j^2) \neq 0$, так как $a_j^2 \neq 0$ для $\forall l = \overline{1,r}$.

В обозначениях (155): $\sum_{m=0}^{r}\theta_{1,m}^{1,2}Y_{0,m}^2 = \sum_{m=0}^{r}\theta_{1,m}^{1,2}(3Y_{1,m}^2 + (3(r-m)+1)Y_{2,m}^2 + (4m+m)Y_{2,m}^2 + (4m+m)Y_{2,m}^2 + (3r+1)\theta_{1,0}^{1,2}Y_{2,0}^2 + \sum_{m=1}^{r}((3(r-m)+1)\theta_{1,m}^{1,2} + (4m-1)\theta_{1,m-1}^{1,2})Y_{2,m}^2,$ причем $(3(r-m)+1)\theta_{1,m}^{1,2} + (4m-1)\theta_{1,m-1}^{1,2} = (3(r-m)+1)(1-(4m-1)(3(r-m)+2)/e_{m-1}^2)\theta_{1,m}^{1,2}.$

В результате уравнение $\overline{Y}_{0,r}^2=0$ дает для (144¹) с v=2 первую резонансную связь:

$$\sum_{m=0}^{r} \alpha_{1,m}^{1,2} \widehat{Y}_{1}^{[12m+6,12(r-m)]} + \sum_{m=0}^{r} \beta_{1,m}^{1,2} \widehat{Y}_{2}^{[12m+3,12(r-m)+4]} = 0, \tag{166}$$

где $\alpha_{1,m}^{1,2}=3\theta_{1,m}^{1,2},\ \beta_{1,0}^{1,2}=(3r+1)\theta_{1,0}^{1,2},\ \beta_{1,m}^{1,2}=(3(r-m)+1)(1-(4m-1)(3(r-m)+2)/e_{m-1}^2)\theta_{1,m}^{1,2}$ $(m=\overline{1,r}),\ \text{a}\ \theta_{1,m}^{1,2}=(-1)^{r-m}\prod_{j=m}^{r-1}((3(r-j)-2)(3(r-j)-1)/e_j^2)\neq 0$ по лемме 22.

Теперь аннулируем элементы c_{r-2}^2,\ldots,c_0^2 в исходной матрице системы (164), получая d_l^2 вместо b_l^2 и $Y_{0,l}^2$ вместо $Y_{0,l}^2$ ($l \le r$), пока $d_{l+1}^2 \ne 0$ ($l \ge 0$), по рекуррентным формулам:

$$d_{r-1}^{2} = b_{r-1}^{2}, \ \breve{Y}_{0,r}^{2} = Y_{0,r}^{2}, \ \breve{Y}_{0,r-1}^{2} = Y_{0,r-1}^{2};$$

$$d_{l}^{2} = b_{l}^{2} - \frac{a_{l+1}^{2} c_{l}^{2}}{d_{l+1}^{2}}, \ \breve{Y}_{0,l}^{2} = Y_{0,l}^{2} - \frac{\breve{Y}_{0,l+1}^{2} c_{l}^{2}}{d_{l+1}^{2}} \ (l = r - 2, r - 3, \dots).$$

$$(167)$$

Лемма 23. В матрице системы (164) диагональные элементы d_{r-1}^2, \ldots, d_0^2 , определяемые по формулам (167), положительны.

Доказательство. Пусть $f_l=(4l-1)(3(r-l)+1),$ тогда $f_l>0$ для $\forall\, l=\overline{0,r-1}.$

Покажем методом математической индукции, что $d_l^2 > f_l$ при $l = \overline{r-1,0}$.

Согласно (167) $d_{r-1}^2=24r-16>16r-20=f_{r-1},$ что является базой индукции.

Пусть $d_{l+1}^2 > f_{l+1} = (4l+3)(3(r-l)-2)$. Тогда $d_l^2 = b_l^2 - c_l^2 a_{l+1}^2/d_{l+1}^2 > b_l^2 - c_l^2 a_{l+1}^2/f_{l+1}$, так как $c_l^2 a_{l+1}^2 = (4l+3)(4l+6)(3(r-l)-2)(3(r-l)-1) > 0$ при $l = \overline{r-2,0}$. Но $b_l^2 - c_l^2 a_{l+1}^2/f_{l+1} = 3(8l+5)(r-l)-7 - (4l+6)(3(r-l)-1) = (4l-1)(3(r-l)+1) = f_l$, поэтому $d_l^2 > f_l$, т. е. $d_l^2 > 0$ для $\forall l = \overline{0,r-1}$.

Следовательно можно полностью аннулировать верхнюю диагональ c_{r-2}^2,\dots,c_0^2 матрицы системы (164), после чего первое уравнение (l=0) системы, полученной из (164), принимает вид: $b_0^2\cdot h_{2,0}^2=\check{Y}_{0,0}^2$, а учитывая (163) получим: $\check{Y}_{0,0}^2-(1/2)(15r-7)Y_{2,0}^2=0$, где $\check{Y}_{0,0}^2=\sum_{m=0}^{r-1}\theta_{2,m}^{1,2}Y_{0,m}^2$ с $\theta_{2,m}^{1,2}=(-1)^m\prod_{j=0}^{m-1}(c_j^2/d_{j+1}^2)\neq 0$, так как $c_l^2\neq 0$ для $\forall\,l=\overline{0,r-2}$.

В обозначениях (155): $\sum_{m=0}^{r-1}\theta_{2,m}^{1,2}Y_{0,m}^2=\sum_{m=0}^{r-1}\theta_{2,m}^{1,2}(3Y_{1,m}^2+(3(r-m)+1)Y_{2,m}^2+(4m+3)\times Y_{2,m+1}^2)=3\sum_{m=0}^{r-1}\theta_{2,m}^{1,2}Y_{1,m}^2+(3r+1)Y_{2,0}^2+\sum_{m=1}^{r-1}((3(r-m)+1)\theta_{2,m}^{1,2}+(4m-1)\theta_{2,m-1}^{1,2})Y_{2,m}^2+(4r-1)\theta_{2,r-1}^{1,2}Y_{2,r}^2,$ причем $(3(r-m)+1)\theta_{2,m}^{1,2}+(4m-1)\theta_{2,m-1}^{1,2}=(4m-1)(1-(4m+2)\times (3(r-m)+1)/d_m^2)\theta_{2,m-1}^{1,2}.$

В результате уравнение $\check{Y}_{0,0}^2-(1/2)(15r-7)Y_{2,0}^2=0$ дает для системы (144^1) с v=2 вторую резонансную связь:

$$\sum_{m=0}^{r-1} \alpha_{2,m}^{1,2} \widehat{Y}_1^{[12m+6,12(r-m)]} + \sum_{m=0}^{r} \beta_{2,m}^{1,2} \widehat{Y}_2^{[12m+3,12(r-m)+4]} = 0, \tag{168}$$

где $\alpha_{2,m}^{1,2}=3\theta_{2,m}^{1,2},\ \beta_{2,0}^{1,2}=-9(r-1)/2,\ \beta_{2,m}^{1,2}=(4m-1)(1-(4m+2)(3(r-m)+1)/d_m^2)\theta_{2,m-1}^{1,2}\ (m=\overline{1,r-1}),\ \beta_{2,r}^{1,2}=(4r-1)\theta_{2,r-1}^{1,2},\ \text{а}\ \theta_{2,m}^{1,2}=(-1)^m\prod_{j=0}^{m-1}((4j+3)(4j+6)/d_{j+1}^2)\neq 0$ по лемме 23.

9.2.3 u=2 (k = 12r + 4v - 4)

Перепишем (144), используя введенные в разделе 9.1 разложения для q_1 и q_2 при u=2:

$$(4l+2)h_1^{[12l+6,12(r-l)+4v-12]} + (3(r-l)+v)h_1^{[12l-6,12(r-l)+4v]} - 2h_2^{[12l+3,12(r-l)+4v-8]} = \\ = \widehat{Y}_1^{[12l+3,12(r-l)+4v-4]} \quad (l = \overline{0,r+\lfloor (v-1)/3\rfloor}), \\ (4l+1)h_2^{[12l+3,12(r-l)+4v-8]} + (3(r-l)+v+1)h_2^{[12l-9,12(r-l)+4v+4]} - 3h_1^{[12l-6,12(r-l)+4v]} = \\ = \widehat{Y}_2^{[12l,12(r-l)+4v]} \quad (l = \overline{0,r})$$

или

$$(4l+2)h_{1,l}^{v} + (3(r-l)+v)h_{1,l-1}^{v} - 2h_{2,l}^{v} = Y_{1,l}^{v} \quad (l = \overline{0, r + \lfloor (v-1)/3 \rfloor}),$$

$$(4l+1)h_{2,l}^{v} + (3(r-l)+v+1)h_{2,l-1}^{v} - 3h_{1,l-1}^{v} = Y_{2,l}^{v} \quad (l = \overline{0,r}),$$

$$(169)$$

$$(4l+1)h_{2,l} + (3(r-l)+v+1)h_{2,l-1} - 3h_{1,l-1} \equiv Y_{2,l} \quad (l=0,r),$$
 где $h_{1,l}^v = h_1^{[12l+6,12(r-l)+4v-12]} \quad (l=\overline{0,r-1}), \quad h_{2,l}^v = h_2^{[12l+3,12(r-l)+4v-8]} \quad (l=\overline{0,r+\lfloor (v-2)/3\rfloor}),$ $Y_{1,l}^v = \widehat{Y}_1^{[12l+3,12(r-l)+4v-4]} \quad (l=\overline{0,r+\lfloor (v-1)/3\rfloor}), \quad Y_{2,l}^v = \widehat{Y}_2^{[12l,12(r-l)+4v]} \quad (l=\overline{0,r});$ $Y_{1,-1}^0, Y_{1,r}^0, Y_{1,-1}^2 = 0.$

 ${f 0^0}$. ${f v}={f 0}$ (${f k}={f 12r-4}$). Подставляя $h_{2,l}^0$ и $h_{2,l-1}^0$ из (169 $_1$) в (169 $_2$), получаем систему:

$$a_l^0 h_{1,l-2}^0 + b_l^0 h_{1,l-1}^0 + c_l^0 h_{1,l}^0 = Y_{0,l}^0 \quad (l = \overline{0,r}),$$

$$(170)$$

в которой $a_l^0=(3(r-l)+1)(3(r-l)+3)$ $(l=\overline{2,r}),\ b_l^0=3(8l-1)(r-l)+4l-8$ $(l=\overline{1,r}),\ c_l^0=(4l+1)(4l+2)$ $(l=\overline{0,r-1}),\ Y_{0,l}^0=(3(r-l)+1)Y_{1,l-1}^0+(4l+1)Y_{1,l}^0+2Y_{2,l}^0.$

Для решения системы (170) будем методом Гаусса аннулировать элементы a_2^0, a_3^0, \dots

матрицы
$$\begin{pmatrix} c_0^0 & 0 & 0 & \dots & 0 \\ b_1^0 & c_1^0 & 0 & \dots & 0 \\ a_2^0 & b_2^0 & c_2^0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & a_{r-1}^0 & b_{r-1}^0 & c_{r-1}^0 \\ 0 & \dots & 0 & a_r^0 & b_r^0 \end{pmatrix}$$
, получая e_l^0 вместо b_l^0 и $\overline{Y}_{0,l}^0$ вместо $Y_{0,l}^0$

 $(l \le r)$, пока $e_{l-1}^1 \ne 0 \ (l \ge 2)$, по рекуррентным формулам:

$$e_{1}^{0} = b_{1}^{0}, \ \overline{Y}_{0,0}^{0} = Y_{0,0}^{0}, \ \overline{Y}_{0,1}^{0} = Y_{0,1}^{0}; \quad e_{l}^{0} = b_{l}^{0} - \frac{a_{l}^{0} c_{l-1}^{0}}{e_{l-1}^{0}}, \ \overline{Y}_{0,l}^{0} = Y_{0,l}^{0} - \frac{\overline{Y}_{0,l-1}^{0} a_{l}^{0}}{e_{l-1}^{0}} \quad (l = 2, 3, \dots).$$

$$(171)$$

Лемма 24. В матрице системы (170) определяемые по формулам (171) диагональные элементы e_1^0, \ldots, e_{r-1}^0 положительны, а e_r^0 отрицателен.

Доказательство. Для оценки снизу элементов e_l^0 при $l = \overline{1, r-1}$ введем положительную функцию $f_l = (4l+1)(3(r-l)-2)$.

Покажем методом математической индукции, что $e_l^0 > f_l$ при $l = \overline{1, r-1}$.

В (171) $e_1^0 = 21r - 25 > 15r - 25 = f_1$, что является базой индукции.

Пусть теперь $e_{l-1}^0 > f_{l-1} = (4l-3)(3(r-l)+1)$. Тогда $e_l^0 = b_l^0 - a_l^0 c_{l-1}^0 / e_{l-1}^0 > b_l^0 - a_l^0 c_{l-1}^0 / f_{l-1}$, так как $a_l^0 c_{l-1}^0 = (3(r-l)+1)(3(r-l)+3)(4l-3)(4l-2) > 0$. Но $b_l^0 - a_l^0 c_{l-1}^0 / f_{l-1} = 3(8l-1)(r-l) + 4l-8 - (4l-2)(3(r-l)+3) = (4l+1)(3(r-l)-2) = f_l$. Значит $e_l^0 > f_l$, т. е. $e_l^0 > 0 \ \forall l = \overline{1,r-1}$.

Оценим теперь элементы e_l^0 $(l=\overline{1,r})$ сверху так, чтобы доказать, что $e_r^0<0$. Введем $g_l=3(r-l)(4l+3)$. При $l=\overline{1,r-1}$ функция $g_l>0$ и $g_r=0$.

Покажем методом математической индукции, что $e_l^0 < g_l$ при $l = \overline{1,r}$.

В (171) $e_1^0 = 21r - 25 < 21r - 21 = g_1$, что является базой индукции.

Пусть $e_{l-1}^0 < g_{l-1} = 3(r-l+1)(4l-1)$. Тогда $e_l^0 = b_l^0 - a_l^0 c_{l-1}^0 / e_{l-1}^0 < b_l^0 - a_l^0 c_{l-1}^0 / g_{l-1}$, так как $a_l^0 c_{l-1}^0 > 0$. Но $b_l^0 - a_l^0 c_{l-1}^0 / g_{l-1} < g_l \Leftrightarrow 3(8l-1)(r-l) + 4l - 8 - (3(r-l)+1) \times (4l-3)(4l-2)(4l-1)^{-1} - 3(r-l)(4l+3) < 0 \Leftrightarrow -2(3r+5l-1)(4l-1)^{-1} < 0$, что верно при $l=\overline{1,r}$. Поэтому $e_l^0 < g_l$, а значит $e_r^0 < 0$.

Поэтому можно полностью аннулировать нижнюю диагональ a_2^0,\dots,a_r^0 матрицы системы (170), затем аннулировать элементы c_{r-1}^0,\dots,c_0^0 . Диагональные элементы e_r^0,\dots,e_1^0 при этом не изменятся, а вместо $\overline{Y}_{0,l}^0$ получим $\widecheck{Y}_{0,l}^0$ по рекуррентным формулам:

$$\breve{Y}_{0,r}^0 = \overline{Y}_{0,r}^0, \quad \breve{Y}_{0,l}^0 = \overline{Y}_{0,l}^0 - \frac{c_l^0 \breve{Y}_{0,l+1}^0}{e_{l+1}^0} \quad (l = \overline{r-1,0}).$$

Тогда первое уравнение (l=0) системы, полученной из (170), принимает вид: $0 \cdot h_{1,0}^0 = Y_{0,0}^0$, где $Y_{0,0}^0 = \sum_{m=0}^r \theta_m^{2,0} \overline{Y}_{0,m}^0$ с $\theta_m^{2,0} = (-1)^m \prod_{j=1}^m c_{j-1}^0/e_j^0 \neq 0$, так как $c_l^0 \neq 0$ для $\forall l=\overline{0,r-1}$. Согласно формуле (171) имеем: $\sum_{m=0}^r \theta_m^{2,0} \overline{Y}_{0,m}^0 = \theta_0^{2,0} Y_{0,0}^0 + \theta_1^{2,0} Y_{0,1}^0 + \theta_2^{2,0} (Y_{0,2}^0 - a_2^0 Y_{0,1}^0/e_1^0) + \ldots + \theta_r^{2,0} (Y_{0,r}^0 - a_r^0 Y_{0,r-1}^0/e_{r-1}^0 + \ldots + (-1)^{r-1} Y_{0,1}^0 \prod_{j=2}^r a_j^0/e_{j-1}^0) = \sum_{m=0}^r \theta_{1,m}^{2,0} Y_{0,m}^0$, где $\theta_{1,0}^{2,0} = \theta_0^{2,0} = 1$, $\theta_{1,m}^{2,0} = \sum_{s=m}^r (-1)^{s-m} \theta_s^{2,0} \cdot \prod_{j=m+1}^s a_j^0/e_{j-1}^0$ $(m=\overline{1,r})$.

В обозначениях (169): $\sum_{m=0}^{r}\theta_{1,m}^{2,0}Y_{0,m}^{1}=\sum_{m=0}^{r}\theta_{1,m}^{2,0}((3(r-m)+1)Y_{1,m-1}^{0}+(4m+1)Y_{1,m}^{0}+2Y_{2,m}^{0})=\sum_{m=0}^{r-1}((4m+1)\theta_{1,m}^{2,0}+(3(r-m)-2)\theta_{1,m+1}^{2,0})Y_{1,m}^{0}+2\sum_{m=0}^{r}\theta_{1,m}^{2,0}Y_{2,m}^{0}.$

В результате уравнение $\check{Y}^0_{0,0}=0$ дает для (144^2) с v=0 резонансную связь:

$$\sum_{m=0}^{r-1} \alpha_{1,m}^{2,0} \widehat{Y}_1^{[12m+3,12(r-m)-4]} + \sum_{m=0}^{r} \beta_{1,m}^{2,0} \widehat{Y}_2^{[12m,12(r-m)]} = 0, \tag{172}$$

где $\alpha_{1,m}^{2,0}=(4m+1)\theta_{1,m}^{2,0}+(3(r-m)-2)\theta_{1,m+1}^{2,0},\ \beta_{1,m}^{2,0}=2\theta_{1,m}^{2,0},\ \text{a}\ \theta_{1,0}^{2,0}=1,\ \theta_{1,m}^{2,0}=(-1)^m\times\sum_{s=m}^r\prod_{j=1}^s(4j-3)(4j-2)/e_j^0\cdot\prod_{j=m+1}^s(3(r-j)+1)(3(r-j)+3)/e_{j-1}^0\ (m=\overline{1,r}).$

 ${f 1^0}.~~{f v}={f 1}~~({f k}={f 12r}).~~{f B}$ системе (169 $_1$) при l=r имеем:

$$h_{1,r-1}^1 = Y_{1,r}^1. (173)$$

Теперь подставляя $h_{2,l-1}^1$ и $h_{2,l}^1$ из (169_1) в (169_2) , получаем систему:

$$a_l^1 h_{1,l-2}^1 + b_l^1 h_{1,l-1}^1 + c_l^1 h_{1,l}^1 = Y_{0,l}^1 \quad (l = \overline{0,r}),$$
 (174)

в которой $a_l^1=(3(r-l)+2)(3(r-l)+4)$ $(l=\overline{2,r}),\ b_l^1=(8l-1)(3(r-l)+1)+4l-8$ $(l=\overline{1,r}), \ c_l^{1}=(4l+1)(4l+2) \ (l=\overline{0,r-1}), \ Y_{0,l}^{1}=(3(r-l)+2)Y_{1,l-1}^{1}+(4l+1)Y_{1,l}^{1}+2Y_{2,l}^{1}.$ Для решения системы (174) будем методом Гаусса аннулировать элементы $c_{r-1}^{1}, c_{r-2}^{1}, \ldots$

матрицы
$$\begin{pmatrix} c_0^1 & 0 & 0 & \dots & 0 \\ b_1^1 & c_1^1 & 0 & \dots & 0 \\ a_2^1 & b_2^1 & c_2^1 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & a_{r-1}^1 & b_{r-1}^1 & c_{r-1}^1 \\ 0 & \dots & 0 & a_r^1 & b_r^1 \end{pmatrix}_{(r+1)\times r},$$
 получая d_l^1 вместо b_l^1 и $\overline{Y}_{0,l}^1$ вместо $Y_{0,l}^1$ ($l \le r$), пока $d_{l+1}^1 \ne 0$ ($l \ge 0$), по рекуррентным формулам:

 $(l \le r)$, пока $d_{l+1}^1 \ne 0 \ (l \ge 0)$, по рекуррентным формулам:

$$d_{r}^{1} = b_{r}^{1} = 12r - 9 > 0, \ \overline{Y}_{0,r}^{1} = Y_{0,r}^{1}; \quad d_{l}^{1} = b_{l}^{1} - \frac{a_{l+1}^{1} c_{l}^{2}}{d_{l+1}^{1}}, \ \overline{Y}_{0,l}^{1} = Y_{0,l}^{1} - \frac{\overline{Y}_{0,l+1}^{1} c_{l}^{1}}{d_{l+1}^{1}} (l = r - 1, r - 2, \dots).$$

$$(175)$$

Лемма 25. В матрице системы (174) диагональные элементы d_r^1, \ldots, d_1^1 , определяемые по формулам (175), положительны.

Доказательство. Пусть $f_l = (4l-3)(3(r-l)+3)$, тогда $f_l > 0$ для $\forall l = \overline{1,r}$.

Покажем методом математической индукции, что $d_l^1 > f_l$ при $l = \overline{r-1,1}$.

Согласно (167) $d_{r-1}^1 = (76/3)r - 128/3 > 24r - 42 = f_{r-1}$, что является базой индукции.

Пусть $d_{l+1}^1 > f_{l+1} = 3(4l+1)(r-l)$. Тогда $d_l^1 = b_l^1 - c_l^1 \frac{a_{l+1}^1}{d_{l+1}^1} > b_l^1 - c_l^1 a_{l+1}^1/f_{l+1}$, так как $c_l^1 a_{l+1}^1 = (4l+1)(4l+2)(3(r-l)-1)(3(r-l)+1) > 0$ при l = r-2, 1. Но $b_l^1 - c_l^1 a_{l+1}^1/f_{l+1} > f_l \Leftrightarrow a_{l+1}^1 - a_{l+1}^1/f_{l+1} > f_l$ $(8l-1)(3(r-l)+1)+4l-8-(1/3)(4l+2)(3(r-l)-1)(3(r-l)+1)(r-l)^{-1}-(4l-3)(3(r-l)+3)>0$ $\Leftrightarrow (2/3)(2l+1)(r-l)^{-1}>0$, что верно. Поэтому $d_l^1>f_l$, т. е. $d_l^1>0$ для $\forall l=\overline{1,r}$.

Следовательно можно полностью аннулировать верхнюю диагональ c_{r-1}^1, \ldots, c_0^1 матрицы системы (174), после чего первое уравнение (l=0) системы, полученной из (174), принимает вид: $0 \cdot h_{1,0}^1 = \overline{Y}_{0,0}^1$, где $\overline{Y}_{0,0}^1 = \sum_{m=0}^r \theta_{1,m}^{2,1} Y_{0,m}^1$ с $\theta_{1,m}^{2,1} = (-1)^m \prod_{j=0}^{m-1} (c_j^1/d_{j+1}^1) \neq 0$, так как $c_l^1 \neq 0$ для $\forall l = \overline{0,r-1}$.

В обозначениях (169): $\sum_{m=0}^{r}\theta_{1,m}^{2,1}Y_{0,m}^{1}=\sum_{m=0}^{r}\theta_{1,m}^{2,1}((3(r-m)+2)Y_{1,m-1}^{1}+(4m+1)Y_{1,m}^{1}+2Y_{2,m}^{1})=\sum_{m=0}^{r-1}((4m+1)\theta_{1,m}^{2,1}+(3(r-m)-1)\theta_{1,m+1}^{2,1})Y_{1,m}^{1}+(4r+1)\theta_{1,r}^{2,1}Y_{1,r}^{1}+2\sum_{m=0}^{r}\theta_{1,m}^{2,1}Y_{2,m}^{1},$ причем $(4m+1)\theta_{1,m}^{2,1}+(3(r-m)-1)\theta_{1,m+1}^{2,1}=(4m+1)(1-(4m+2)(3(r-m)-1)/d_{m+1}^{1})\theta_{1,m}^{2,1}.$

В результате уравнение $\overline{Y}_{0,0}^1=0$ дает для (144^2) с v=1 первую резонансную связь:

$$\sum_{m=0}^{r} \alpha_{1,m}^{2,1} \widehat{Y}_1^{[12m+3,12(r-m)]} + \sum_{m=0}^{r} \beta_{1,m}^{2,1} \widehat{Y}_2^{[12m,12(r-m)+4]} = 0, \tag{176}$$

где $\alpha_{1,m}^{2,1}=(4m+1)(1-(4m+2)(3(r-m)-1)/d_{m+1}^1)\theta_{1,m}^{2,1} \ (m=\overline{0,r-1}), \ \alpha_{1,r}^{2,1}=(4r+1)\theta_{1,r}^{2,1}\neq 0,$ $\beta_{1,m}^{2,1}=2\theta_{1,m}^{2,1}\neq 0,$ а $\theta_{1,m}^{2,1}=(-1)^m\prod_{j=0}^{m-1}(4j+1)(4j+2)/d_{j+1}^1\neq 0$ по лемме 25.

Теперь аннулируем элементы a_2^1, \ldots, a_r^1 в исходной матрице уравнения (174), получая e^1_l вместо b^1_l и $\check{Y}^1_{0,l}$ вместо $Y^1_{0,l}$ $(l \le r)$, пока $e^1_{l-1} \ne 0$ $(l \ge 2)$, по рекуррентным формулам:

$$e_{1}^{1} = b_{1}^{1}, \ \breve{Y}_{0,0}^{1} = Y_{0,0}^{1}, \ \breve{Y}_{0,1}^{1} = Y_{0,1}^{1}; e_{l}^{1} = b_{l}^{1} - a_{l}^{1} c_{l-1}^{1} / e_{l-1}^{1}, \ \breve{Y}_{0,l}^{1} = Y_{0,l}^{1} - \breve{Y}_{0,l-1}^{1} a_{l}^{1} / e_{l-1}^{1} \quad (l = 1, 2, ...).$$

$$(177)$$

Лемма 26. В матрице системы (174) определяемые по формулам (177) диагональные элементы e_1^1, \ldots, e_r^1 положительны.

Доказательство. Пусть $f_l = 3(4l+2)(r-l)$, тогда $f_l > 0$ при $l = \overline{1,r-1}$ и $f_r = 0$.

Покажем методом математической индукции, что $e_l^2 > f_l$ при $l = \overline{1,r}$.

Согласно (165) $e_1^2 = 21r - 18 > 18r - 18 = f_1$, что является базой индукции.

Пусть $e_{l-1}^1 > f_{l-1} = 3(4l-2)(r-l+1)$. Тогда $e_l^1 = b_l^1 - a_l^1 c_{l-1}^1 / e_{l-1}^1 > b_l^1 - a_l^1 c_{l-1}^1 / f_{l-1}$, так как $a_l^1 c_{l-1}^1 = (3(r-l)+2)(3(r-l)+4)(4l-3)(4l-2) > 0$ при $l = \overline{1,r}$. Но $b_l^1 - a_l^1 c_{l-1}^1 / f_{l-1} > f_l$ $\Leftrightarrow (8l-1)(3(r-l)+1)+4l-8-(1/3)(3(r-l)+2)(3(r-l)+4)(4l-3)(r-l+1)^{-1} - 3(4l+2)(r-l) > 0$ $\Leftrightarrow (1/3)(4l-3)(r-l+1)^{-1} > 0$, что верно. Поэтому $e_l^1 > f_l$, т. е. $e_l^1 \neq 0$ для $\forall l = \overline{1,r}$. \square

Следовательно можно полностью аннулировать нижнюю диагональ a_2^1,\dots,a_r^1 матрицы системы (174), после чего последнее уравнение (l=r) системы, полученной из (174), принимает вид: $b_r^1 \cdot h_{1,r-1}^1 = \check{Y}_{0,r}^1$, а учитывая (173) получим: $\check{Y}_{0,r}^1 - (12r-9)Y_{1,r}^1 = 0$, где $\check{Y}_{0,r}^1 = \sum_{m=1}^r \theta_{2,m}^{2,1} Y_{0,m}^1$ с $\theta_{2,m}^{2,1} = (-1)^{r-m} \prod_{j=m}^{r-1} (a_{j+1}^1/e_j^1) \neq 0$, так как $a_j^1 \neq 0$ для $\forall l = \overline{2,r}$.

В обозначениях (169): $\sum_{m=1}^r \theta_{2,m}^{2,1} Y_{0,m}^1 = \sum_{m=1}^r \theta_{2,m}^{2,1} ((3(r-m)+2) Y_{1,m-1}^1 + (4m+1) Y_{1,m}^1 + 2Y_{2,m}^1) = (3r-1) \theta_1^2 Y_{1,0}^1 + \sum_{m=1}^{r-1} ((4m+1) \theta_{2,m}^{2,1} + (3(r-m)-1) \theta_{2,m+1}^{2,1}) Y_{1,m}^1 + (4r+1) Y_{1,r}^1 + 2\sum_{m=1}^r \theta_{2,m}^{2,1} Y_{2,m}^1, \text{ причем } (4m+1) \theta_{2,m}^{2,1} + (3(r-m)-1) \theta_{2,m+1}^{2,1} = (3(r-m)-1)(1-(4m+1)\times (3(r-m)+1)/e_m^1) \theta_{2,m+1}^2.$

В результате уравнение $\check{Y}_{0,r}^1-(12r-9)Y_{1,r}^1=0$ дает для (144^2) с v=1 вторую резонансную связь:

$$\sum_{m=0}^{r} \alpha_{2,m}^{2,1} \widehat{Y}_{1}^{[12m+3,12(r-m)]} + \sum_{m=1}^{r} \beta_{2,m}^{2,1} \widehat{Y}_{2}^{[12m,12(r-m)+4]} = 0, \tag{178}$$

где $\alpha_{2,0}^{2,1}=(3r-1)\theta_{2,1}^2\neq 0, \quad \alpha_{2,m}^{2,1}=(3(r-m)-1)(1-(4m+1)(3(r-m)+1)/e_m^1)\theta_{2,m+1}^{2,1}$ $(m=\overline{1,r-1}), \quad \alpha_{2,r}^{2,1}=-2(4r-5)\neq 0, \quad \beta_{2,m}^{2,1}=2\theta_{2,m}^{2,1}\neq 0, \text{ a } \theta_{2,m}^{2,1}=(-1)^{r-m}\prod_{j=m}^{r-1}(3(r-j)-1)\times (3(r-j)+1)/e_j^1)\neq 0$ по лемме 26.

 ${f 2^0}$. ${f v}={f 2}$ (${f k}={f 12r}+{f 4}$). Подставляя $h_{2,l}^2$ и $h_{2,l-1}^2$ из (1691) в (1692), получаем систему:

$$a_l^2 h_{1,l-2}^2 + b_l^2 h_{1,l-1}^2 + c_l^2 h_{1,l}^2 = Y_{0,l}^2 \quad (l = \overline{0,r}),$$
 (179)

в которой $a_l^2=(3(r-l)+3)(3(r-l)+5)$ $(l=\overline{2,r}),\ b_l^2=(8l-1)(3(r-l)+2)+4l-8$ $(l=\overline{1,r}),\ c_l^2=(4l+1)(4l+2)$ $(l=\overline{0,r-1}),\ Y_{0,l}^2=(3(r-l)+3)Y_{1,l-1}^2+(4l+1)Y_{1,l}^2+2Y_{2,l}^2.$

Для решения системы (179) будем методом Гаусса аннулировать элементы a_2^0, a_3^0, \dots

матрицы $\begin{pmatrix} c_0^0 & 0 & 0 & \dots & 0 \\ b_1^0 & c_1^0 & 0 & \dots & 0 \\ a_2^0 & b_2^0 & c_2^0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & a_{r-1}^0 & b_{r-1}^0 & c_{r-1}^0 \\ 0 & \dots & 0 & a_r^0 & b_r^0 \end{pmatrix}_{(r+1)\times r}, \text{ получая } d_l^2 \text{ вместо } b_l^2 \text{ и } \overline{Y}_{0,l}^2 \text{ вместо } Y_{0,l}^2$

 $(l \le r)$, пока $d_{l+1}^2 \ne 0 \ (l \ge 0)$, по рекуррентным формулам:

$$d_r^2 = b_r^2, \ \overline{Y}_{0,r}^2 = Y_{0,r}^2; \quad d_l^2 = b_l^2 - \frac{a_{l+1}^2 c_l^2}{d_{l+1}^2}, \ \overline{Y}_{0,l}^2 = Y_{0,l}^2 - \frac{\overline{Y}_{0,l+1}^2 c_l^2}{d_{l+1}^2} \quad (l = r - 1, r - 2, \dots). \quad (180)$$

Лемма 27. В матрице системы (179) диагональные элементы d_r^2, \ldots, d_1^2 , определяемые по формулам (180), положительны.

Доказательство. Пусть $f_l=(4l-3)(3(r-l)+5),$ тогда $f_l>0$ для $\forall\, l=\overline{1,r}.$

Покажем методом математической индукции, что $d_l^2 > f_l$ при $l = \overline{r, 1}$.

Согласно (180) $d_r^2 = 20r - 10 > 20r - 15 = f_r$, что является базой индукции.

Пусть $d_{l+1}^2 > f_{l+1} = (4l+1)(3(r-l)+2)$. Тогда $d_l^2 = b_l^2 - c_l^2 a_{l+1}^2 / d_{l+1}^2 > b_l^2 - c_l^2 a_{l+1}^2 / f_{l+1}$, так как $c_l^2 a_{l+1}^2 = 3(4l+1)(4l+2)(r-l)(3(r-l)+2) > 0$ при $l = \overline{r,1}$. Но $b_l^2 - c_l^2 a_{l+1}^2 / f_{l+1} > f_l$ $\Leftrightarrow (8l-1)(3(r-l)+2) + 4l - 8 - 3(4l+2)(r-l) - (4l-3)(3(r-l)+5) > 0 \Leftrightarrow 5 > 0$, что верно. Поэтому $d_l^2 > f_l$, т. е. $d_l^2 > 0$ для $\forall l = \overline{1,r}$.

Следовательно можно полностью аннулировать верхнюю диагональ c_{r-1}^2,\dots,c_0^2 матрицы системы (179), после чего первое уравнение (l=0) системы, полученной из (179), принимает вид: $0\cdot h_{1,0}^2=\overline{Y}_{0,0}^2$, где $\overline{Y}_{0,0}^2=\sum_{m=0}^r\theta_{1,m}^{2,2}Y_{0,m}^2$ с $\theta_{1,m}^{2,2}=(-1)^m\prod_{j=1}^m(c_{j-1}^2/d_j^2)\neq 0$, так как $c_l^2\neq 0$ для $\forall\, l=\overline{0,r-1}$.

В обозначениях (169): $\sum_{m=0}^{r}\theta_{1,m}^{2,2}Y_{0,m}^2=\sum_{m=0}^{r}\theta_{1,m}^{2,2}((3(r-m)+3)Y_{1,m-1}^2+(4m+1)Y_{1,m}^2+2Y_{2,m}^2)=\sum_{m=0}^{r-1}((4m+1)\theta_{1,m}^{2,2}+3(r-m)\theta_{1,m+1}^{2,2})Y_{1,m}^2+(4r+1)\theta_{1,r}^{2,2}Y_{1,r}^2+2\sum_{m=0}^{r}\theta_{1,m}^{2,2}Y_{2,m}^2,$ причем $(4m+1)\theta_{1,m}^{2,2}+3(r-m)\theta_{1,m+1}^{2,2}=(4m+1)(1-3(4m+2)(r-m)/d_{m+1}^2)\theta_{1,m}^{2,2}.$

В результате уравнение $\overline{Y}_{0,0}^2=0$ дает для (144^2) с v=2 резонансную связь:

$$\sum_{m=0}^{r} \alpha_{1,m}^{2,2} \widehat{Y}_{1}^{[12m+3,12(r-m)+4]} + \sum_{m=0}^{r} \beta_{1,m}^{2,2} \widehat{Y}_{2}^{[12m,12(r-m)+8]} = 0, \tag{181}$$

где $\alpha_{1,m}^{2,2}=(4m+1)(1-3(4m+2)(r-m)/d_{m+1}^2)\theta_{1,m}^{2,2} \quad (m=\overline{0,r-1}), \quad \alpha_{1,r}^{2,2}=(4r+1)\theta_{1,r}^{2,2}\neq 0,$ $\beta_{1,m}^{2,2}=2\theta_{1,m}^{2,2}\neq 0, \text{ а } \theta_{1,m}^{2,2}=(-1)^m\prod_{j=1}^m((4j-3)(4j-2)/d_j^2)\neq 0 \text{ по лемме } 27.$

$9.2.4 \quad u=3 \quad (k=12r+4v-3)$

Перепишем (144), используя введенные в разделе 9.1 разложения для q_1 и q_2 при u=3:

$$(4l+1)h_1^{[12l+3,12(r-l)+4v-8]} + (3(r-l)+v+1)h_1^{[12l-9,12(r-l)+4v+4]} - 2h_2^{[12l,12(r-l)+4v-4]} = \\ = \widehat{Y}_1^{[12l,12(r-l)+4v]} \quad (l=\overline{0,r}), \\ (4l+4)h_2^{[12(l+1),12(r-l-1)+4v-4]} + (3(r-l)+v-1)h_2^{[12l,12(r-l)+4v-4]} - \\ -3h_1^{[12l+3,12(r-l)+4v-8]} = \widehat{Y}_2^{[12l+9,12(r-l)+4v-8]} \quad (l=\overline{0,r}+\lfloor (v-2)/3 \rfloor).$$

Вводя новые обозначения, запишем эту систему в следующем виде:

$$(4l+1)h_{1,l}^{v} + (3(r-l)+v+1)h_{1,l-1}^{v} - 2h_{2,l}^{v} = Y_{1,l}^{v} \quad (l = \overline{0,r}),$$

$$(4l+4)h_{2,l+1}^{v} + (3(r-l)+v-1)h_{2,l}^{v} - 3h_{1,l}^{v} = Y_{2,l}^{v} \quad (l = \overline{0,r} + \lfloor (v-2)/3 \rfloor),$$

$$(182)$$

где
$$h_{1,l}^v = h_1^{[12l+3,12(r-l)+4v-8]}$$
 $(l = \overline{0,r+\lfloor (v-2)/3 \rfloor}), \ Y_{1,l}^v = \widehat{Y}_1^{[12l,12(r-l)+4v]}$ $(l = \overline{0,r}), \ h_{2,l}^v = h_2^{[12l,12(r-l)+4v-4]}$ $(l = \overline{0,r+\lfloor (v-1)/3 \rfloor}), \ Y_{2,l}^v = \widehat{Y}_2^{[12l+9,12(r-l)+4v-8]}$ $(l = \overline{0,r+\lfloor (v-2)/3 \rfloor}); \ Y_{1,-1}^0, Y_{1,r}^0, Y_{1,-1}^2 = 0.$

Подставляя $h_{1,l}^v$ и $h_{1,l-1}^v$ из (182₂) в (182₁), получаем систему:

$$a_l^v h_{2,l-1}^v + b_l^v h_{2,l}^v + c_l^v h_{2,l+1}^v = Y_{0,l}^v \quad (l = \overline{0,r}), \tag{183}$$

в которой $a_l^v=(3(r-l)+v+1)(3(r-l)+v+2)$ $(l=\overline{1,r}),\ b_l^v=(8l+1)(3(r-l)+v)-7$ $(l=\overline{0,r+\lfloor (v-1)/3\rfloor}),\ c_l^v=(4l+1)(4l+4)$ $(l=\overline{0,r+\lfloor (v-1)/3\rfloor}-1),\ Y_{0,l}^v=3Y_{1,l}^v+(3(r-l)+v+1)Y_{2,l-1}^v+(4l+1)Y_{2,l}^v.$

 ${f 0^0}.~~{f v}={f 0}~~({f k}={f 12r}-{f 3}).$ Для решения системы (183) будем методом Гаусса аннулировать

элементы
$$c_{r-2}^0, c_{r-3}^0, \dots$$
 матрицы
$$\begin{pmatrix} b_0^0 & c_0^0 & 0 & \dots & 0 \\ a_1^0 & b_1^0 & c_1^0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & a_{r-2}^0 & b_{r-2}^0 & c_{r-2}^0 \\ 0 & \dots & 0 & a_r^0 & b_{r-1}^0 \\ 0 & \dots & 0 & 0 & a_r^0 \end{pmatrix}_{(r+1)\times r}$$
, получая d_l^0 вместо

 b_l^0 и $\overline{Y}_{0,l}^0$ вместо $Y_{0,l}^0$ $(l \le r)$, пока $d_{l+1}^0 \ne 0$ $(l \ge 0)$, по рекуррентным формулам:

$$d_{r-1}^{0} = b_{r-1}^{0}, \ \overline{Y}_{0,r}^{0} = Y_{0,r}^{0}, \ \overline{Y}_{0,r-1}^{0} = Y_{0,r-1}^{0};$$

$$d_{l}^{0} = b_{l}^{0} - \frac{a_{l+1}^{0} c_{l}^{0}}{d_{l+1}^{0}}, \ \overline{Y}_{0,l}^{0} = Y_{0,l}^{0} - \frac{\overline{Y}_{0,l+1}^{0} c_{l}^{0}}{d_{l+1}^{0}} \ (l = r - 2, r - 3, ...).$$

$$(184)$$

Лемма 28. В матрице системы (183) диагональные элементы d_{r-1}^0, \ldots, d_1^0 , определяемые по формулам (184), положительны, а d_0^0 отрицателен.

Доказательство. Для оценки снизу элементов d_l^0 при $l=\overline{r-1,1}$ введем положительную функцию $f_l=(4l-3)(3(r-l)+1).$

Покажем методом математической индукции, что $d_l^0 > f_l$ при $l = \overline{r-1,1}$.

Согласно (184) $d_{r-1}^0 = 24r - 28 > 16r - 28 = f_{r-1}$, что является базой индукции.

Пусть $d_{l+1}^0 > f_{l+1} = (4l+1)(3(r-l)-2)$. Тогда $d_l^0 = b_l^0 - c_l^0 a_{l+1}^0 / d_{l+1}^0 > b_l^0 - c_l^0 a_{l+1}^0 / f_{l+1}$, так как $c_l^0 a_{l+1}^0 = (4l+1)(4l+4)(3(r-l)-2)(3(r-l)-1) > 0$ при $l = \overline{r-1}, \overline{1}$. Но $b_l^0 - c_l^0 a_{l+1}^0 / f_{l+1} = 3(8l+1)(r-l) - 7 - (4l+4)(3(r-l)-1) = (4l-3)(3(r-l)+1) = f_l$. Поэтому $d_l^0 > f_l$, т. е. $d_l^0 > 0$ для $\forall l = \overline{1,r-1}$.

Оценим теперь элементы d_l^0 $(l=\overline{0,r-1})$ сверху так, чтобы доказать, что $d_0^0<0$. Введем $g_l=4l(3(r-l)+3)$. При $l=\overline{1,r-1}$ функция $g_l>0$ и $g_0=0$.

Согласно (184) $d_{r-1}^0=24r-28<24r-24=g_{r-1},$ что является базой индукции.

Пусть $d_{l+1}^0 < g_{l+1} = 12(l+1)(r-l)$. Тогда $d_l^0 = b_l^0 - c_l^0 a_{l+1}^0/d_{l+1}^0 < b_l^0 - c_l^0 a_{l+1}^0/g_{l+1}$, так как $c_l^0 a_{l+1}^0 > 0$ при $l = \overline{r-1,0}$. Но $b_l^0 - c_l^0 a_{l+1}^0/g_{l+1} < g_l \Leftrightarrow 3(8l+1)(r-l) - 7 - (1/3)(4l+1) \times (3(r-l)-2)(3(r-l)-1)(r-l)^{-1} - 4l(3(r-l)+3) < 0 \Leftrightarrow (2/3)(-6r+2l-1)(r-l)^{-1} < 0$, что верно при $l = \overline{0,r-1}$. Поэтому $d_l^0 < g_l$, т.е. $d_0^0 < 0$.

Поэтому можно полностью аннулировать верхнюю диагональ c^0_{r-2},\dots,c^0_0 матрицы системы (183), затем аннулировать элементы a^0_1,\dots,a^0_r . Диагональные элементы d^0_0,\dots,d^0_{r-1} при этом не изменятся, а вместо $\overline{Y}^0_{0,l}$ получим $\check{Y}^0_{0,l}$ по рекуррентным формулам:

$$\breve{Y}_{0,0}^0 = \overline{Y}_{0,0}^0, \quad \breve{Y}_{0,l}^0 = \overline{Y}_{0,l}^0 - \frac{a_l^0 \breve{Y}_{0,l-1}^0}{d_{l-1}^0} \quad (l = \overline{1,r}).$$

Тогда последнее уравнение (l=r) системы, полученной из (183), принимает вид: $0\cdot h_{2,r-1}^0=\breve{Y}_{0,r}^0$, где $\breve{Y}_{0,r}^0=\sum_{m=0}^r\theta_m^{3,0}\overline{Y}_{0,m}^0$ с $\theta_m^{3,0}=(-1)^{r-m}\prod_{j=m+1}^ra_j^0/d_{j-1}^0\neq 0$, так как $a_l^0\neq 0$ для $\forall\,l=\overline{1,r}$. Согласно формуле (184) имеем: $\sum_{m=0}^r\theta_m^{3,0}\overline{Y}_{0,m}^0=\theta_0^{3,0}(Y_{0,0}^0-c_0^0Y_{0,1}^0/d_1^0+\ldots+(-1)^{r-1}Y_{0,r-1}^0\prod_{j=0}^{r-2}c_j^0/d_{j+1}^0)+\ldots+\theta_{r-2}^{3,0}(Y_{0,r-2}^0-c_{r-2}^0Y_{0,r-1}^0/d_{r-1}^0)+\theta_{r-1}^{3,0}Y_{0,r-1}^0+\theta_{r-1}^{3,0}Y_{0,r}^0=\sum_{m=0}^r\theta_{1,m}^{3,0}Y_{0,m}^0$, где $\theta_{1,m}^{3,0}=\sum_{s=0}^m(-1)^{m-s}\theta_s^{3,0}\cdot\prod_{j=s}^{m-1}c_j^1/d_{j+1}^1$ $(m=\overline{0,r-1}),\;\theta_{1,r}^{3,0}=\theta_r^{3,0}=1.$

В обозначениях (182): $\sum_{m=0}^{r} \theta_{1,m}^{3,0} Y_{0,m}^0 = \sum_{m=0}^{r} \theta_{1,m}^{3,0} (3Y_{1,m}^0 + (3(r-m)+1)Y_{2,m-1}^0 + (4m+1)Y_{2,m}^0) = 3\sum_{m=0}^{r} \theta_{1,m}^{3,0} Y_{1,m}^0 + \sum_{m=0}^{r-1} ((4m+1)\theta_{1,m}^{3,0} + (3(r-m)-2)\theta_{1,m+1}^{3,0})Y_{2,m}^0.$

В результате уравнение $\check{Y}_{0,r}^0=0$ дает для (144^3) с v=0 резонансную связь:

$$\sum_{m=0}^{r} \alpha_{1,m}^{3,0} \widehat{Y}_{1}^{[12m,12(r-m)]} + \sum_{m=0}^{r-1} \beta_{1,m}^{3,0} \widehat{Y}_{2}^{[12m+9,12(r-m)-8)]} = 0, \tag{185}$$

где $\alpha_{1,m}^{3,0}=3\theta_{1,m}^{3,0},\ \beta_{1,m}^{3,0}=(4m+1)\theta_{1,m}^{3,0}+(3(r-m)-2)\theta_{1,m+1}^{3,0},\ a\ \theta_{1,r}^{3,0}=1,\ \theta_{1,m}^{3,0}=(-1)^{m+r}\times\sum_{s=0}^m\prod_{j=s+1}^r(3(r-j)+1)(3(r-j)+2)/d_{j-1}^0\cdot\prod_{j=s}^{m-1}(4j+1)(4j+4)/d_{j+1}^1\ (m=\overline{0,r-1}).$

 ${f 1^0}.\ {f v}={f 1}\ ({f k}={f 12r+1}).$ Для решения системы (183) будем методом Гаусса аннулиро-

$${f 1^0.}$$
 ${f v}={f 1}$ (${f k}={f 12r}+{f 1}$). Для решения системы (183) будем методом Гаусса аннулировать элементы $c_{r-1}^1, c_{r-2}^1, \ldots$ матрицы $\begin{pmatrix} b_0^1 & c_0^1 & 0 & \dots & 0 \\ a_1^1 & b_1^1 & c_1^1 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & a_{r-1}^1 & b_{r-1}^1 & c_{r-1}^1 \\ 0 & \dots & 0 & a_r^1 & b_r^1 \end{pmatrix}_{(r+1)\times(r+1)}$, получая d_l^1

вместо b_l^1 и $\overline{Y}_{0,l}^1$ вместо $Y_{0,l}^1$ $(l \le r)$, пока $d_{l+1}^1 \ne 0$ $(l \ge 0)$, по рекуррентным формулам:

$$d_r^1 = b_r^1, \ \overline{Y}_{0,r}^1 = Y_{0,r}^1; \quad d_l^1 = b_l^1 - \frac{a_{l+1}^1 c_l^1}{d_{l+1}^1}, \ \overline{Y}_{0,l}^1 = Y_{0,l}^1 - \frac{\overline{Y}_{0,l+1}^1 c_l^1}{d_{l+1}^1} \quad (l = r - 1, r - 2, \dots).$$
 (186)

Лемма 29. Для элементов d_1^1 из (186) верна следующая прямая формула:

$$d_l^1 = (4l - 3)(3(r - l) + 2) \neq 0 \quad (l = \overline{r, 0}). \tag{187}$$

Доказательство. В (186) $d_r^1=2(4r-3),\;$ что совпадает с d_r^1 из (187) и дает базу индукции.

Пусть для $\forall l=\overline{r-1,0}$ верна формула (187). Тогда согласно (186) имеем $d_{l-1}^1=b_{l-1}^1-a_l^1c_{l-1}^1(d_l^1)^{-1}=(8l-7)(3(r-l)+4)-7-4l(3(r-l)+3)=(4l-7)(3(r-l)+5).$

Значит, система (183) однозначно разрешима.

 ${f 2^0}$. ${f v}={f 2}$ (${f k}={f 12r+5}$). Для решения системы (183) будем методом Гаусса аннулиро-

вать элементы
$$c_{r-1}^2, c_{r-2}^2, \dots$$
 матрицы
$$\begin{pmatrix} b_0^2 & c_0^2 & 0 & \dots & 0 \\ a_1^2 & b_1^2 & c_1^2 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & a_{r-1}^2 & b_{r-1}^2 & c_{r-1}^2 \\ 0 & \dots & 0 & a_r^2 & b_r^2 \end{pmatrix}_{(r+1)\times(r+1)},$$
 получая d_l^2

вместо b_l^2 и $\overline{Y}_{0,l}^2$ вместо $Y_{0,l}^2$ $(l \leq r)$, пока $d_{l+1}^2 \neq 0$ $(l \geq 0)$, по рекуррентным формулам:

$$d_r^2 = b_r^2, \ \overline{Y}_{0,r}^2 = Y_{0,r}^2; \quad d_l^2 = b_l^2 - \frac{a_{l+1}^2 c_l^2}{d_{l+1}^2}, \ \overline{Y}_{0,l}^2 = Y_{0,l}^2 - \frac{\overline{Y}_{0,l+1}^2 c_l^2}{d_{l+1}^2} \quad (l = r - 1, r - 2, \dots).$$
 (188)

Лемма 30. В матрице системы (183) диагональные элементы d_r^2, \ldots, d_1^2 , определяемые по формулам (188), положительны, а d_0^2 отрицателен.

Доказательство. Для оценки снизу элементов d_l^2 при $l = \overline{r,1}$ введем положительную функцию $f_l = (4l-3)(3(r-l)+3)$.

Покажем методом математической индукции, что $d_l^2 > f_l$ при $l = \overline{r, 1}$.

Согласно (188) $d_r^2 = 16r - 5 > 12r - 9 = f_r$, что является базой индукции.

Пусть $d_{l+1}^2 > f_{l+1} = 3(4l+1)(r-l)$. Тогда $d_l^2 = b_l^2 - c_l^2 a_{l+1}^2 / d_{l+1}^2 > b_l^2 - c_l^2 a_{l+1}^2 / f_{l+1}$, так как $c_l^2 a_{l+1}^2 = 3(4l+1)(4l+4)(r-l)(3(r-l)+1) > 0$ при $l = \overline{r}, \overline{1}$. Но $b_l^2 - c_l^2 a_{l+1}^2 / f_{l+1} = (8l+1)(3(r-l)+2) - \overline{7} - (4l+4)(3(r-l)+1) = (4l-3)(3(r-l)+3) = f_l$. Поэтому $d_l^2 > f_l$, т. е. $d_l^2 > 0$ для $\forall l = \overline{1,r}$.

Оценим теперь элементы d_l^2 $(l=\overline{0,r})$ сверху так, чтобы доказать, что $d_0^2<0$. Введем $g_l=4l(3(r-l)+4)$. При $l=\overline{1,r}$ функция $g_l>0$ и $g_0=0$.

Согласно (188) $d_r^2 = 16r - 5 < 16r = g_r$, что является базой индукции.

Пусть $d_{l+1}^2 < g_{l+1} = 4(l+1)(3(r-l)+1)$. Тогда $d_l^2 = b_l^2 - c_l^2 a_{l+1}^2/d_{l+1}^2 < b_l^2 - c_l^2 a_{l+1}^2/g_{l+1}$, так как $c_l^2 a_{l+1}^2 > 0$ при $l = \overline{r,0}$. Но $b_l^2 - c_l^2 a_{l+1}^2/g_{l+1} < g_l \Leftrightarrow (8l+1)(3(\underline{r-l})+2) - 7 - 3(4l+1) \times (r-l) - 4l(3(r-l)+4) < 0 \Leftrightarrow -5 < 0$! Поэтому $d_l^2 < g_l$ при $l = \overline{r,0}$, т. е. $d_0^2 < 0$.

Значит, система (183) однозначно разрешима.

9.3 Полученные результаты

Возвращаясь к обозначениям, введенным для системы (144), согласно (149), (152), (159), (162), (166), (168), (172), (176), (178), (181), (185) заключаем, что $\forall r \in \mathbb{N}$ коэффициенты КОМ $Y^{[k]}$ удовлетворяют резонансным уравнениям:

$$\sum_{m=0}^{r-1} \alpha_{1,m}^{0,0} Y_1^{[12m+9,12(r-m-1)]} + \sum_{m=0}^{r-1} \beta_{1,m}^{0,0} Y_2^{[12m+6,12(r-m)-8]} = \tilde{c} \quad (k = 12r - 6), \tag{189}$$

где $\alpha_{1,m}^{0,0}=3\theta_{1,m}^{0,0},\ \beta_{1,m}^{0,0}=3(3(r-m)-2)(4m+3)^{-1}\theta_{1,m}^{0,0},\ a\ \theta_{1,m}^{0,0}=(-1)^{r-1-m}\times\prod_{j=m+1}^{r-1}(3(r-j)-2)(4j+3)^{-1}\neq 0;$

$$\sum_{m=0}^{r-1} \alpha_{1,m}^{1,0} Y_1^{[12m+6,12(r-m)-8]} + \sum_{m=0}^{r-1} \beta_{1,m}^{1,0} Y_2^{[12m+3,12(r-m)-4]} = \tilde{c} \quad (k = 12r - 5), \tag{190}$$

где $\alpha_{1,m}^{1,0}=2(4m+2)(3(r-m)-1)^{-1}\theta_{1,m}^{1,0},\quad \beta_{1,m}^{1,0}=2\theta_{1,m}^{1,0},\quad \text{a}\quad \theta_{1,m}^{1,0}=(-1)^m\times\prod_{j=0}^{m-1}(4j+2)(3(r-j)-1)^{-1}\neq 0;$

$$\sum_{m=0}^{r-1} \alpha_{1,m}^{2,0} Y_1^{[12m+3,12(r-m)-4]} + \sum_{m=0}^{r} \beta_{1,m}^{2,0} Y_2^{[12m,12(r-m)]} = \tilde{c} \quad (k = 12r - 4), \tag{191}$$

где $\alpha_{1,m}^{2,0}=(4m+1)\theta_{1,m}^{2,0}+(3(r-m)-2)\theta_{1,m+1}^{2,0},\ \beta_{1,m}^{2,0}=2\theta_{1,m}^{2,0},\ a\ \theta_{1,0}^{2,0}=1,\ \theta_{1,m}^{2,0}=(-1)^m\times\sum_{s=m}^r\prod_{j=1}^s(4j-3)(4j-2)/e_j^0\cdot\prod_{j=m+1}^s(3(r-j)+1)(3(r-j)+3)/e_{j-1}^0\ (m=\overline{1,r}),$ элементы e_m^0 находятся рекуррентно из формул (171), причем $\beta_{1,0}^{2,0}=2,\ \beta_{1,r}^{2,0}=2(-1)^r\prod_{j=1}^r(4j-3)\times(4j-2)/e_j^0\neq 0,$ а если r=1, то и $\alpha_{1,0}^{2,0}\neq 0;$

$$\sum_{m=0}^{r} \alpha_{1,m}^{3,0} Y_1^{[12m,12(r-m)]} + \sum_{m=0}^{r-1} \beta_{1,m}^{3,0} Y_2^{[12m+9,12(r-m)-8)]} = \tilde{c} \quad (k = 12r - 3), \tag{192}$$

где $\alpha_{1,m}^{3,0}=3\theta_{1,m}^{3,0},\ \beta_{1,m}^{3,0}=(4m+1)\theta_{1,m}^{3,0}+(3(r-m)-2)\theta_{1,m+1}^{3,0},\ a\ \theta_{1,r}^{3,0}=1,\ \theta_{1,m}^{3,0}=(-1)^{m+r}\times\sum_{s=0}^m\prod_{j=s+1}^r(3(r-j)+1)(3(r-j)+2)/d_{j-1}^0\cdot\prod_{j=s}^{m-1}(4j+1)(4j+4)/d_{j+1}^1\ (m=\overline{0,r-1}),$ элементы d_m^0 находятся рекуррентно из формул (184), причем $\alpha_{1,r}^{3,0}=3,\ \alpha_{1,0}^{3,0}=3(-1)^r\times\prod_{j=1}^r(3(r-j)+1)(3(r-j)+2)/d_{j-1}^0\neq 0,\ a\ если\ r=1,\ то\ и\ \beta_{1,0}^{3,0}\neq 0;$

$$\sum_{m=0}^{r-1} \alpha_{1,m}^{0,1} Y_1^{[12m+9,12(r-m)-8]} + \sum_{m=0}^{r-1} \beta_{1,m}^{0,1} Y_2^{[12m+6,12(r-m)-4]} = \tilde{c} \quad (k = 12r - 2), \tag{193}$$

где $\alpha_{1,m}^0 = 3\theta_{1,m}^{0,1}$, $\beta_{1,m}^{0,1} = 3(3(r-m)-1)(4m+3)^{-1}\theta_{1,m}^{0,1}$, а $\theta_{1,m}^{0,1} = (-1)^{r-1-m} \times \prod_{j=m+1}^{r-1} (3(r-j)-1)(4j+3)^{-1} \neq 0$;

$$\sum_{m=0}^{r-1} \alpha_{1,m}^{1,1} Y_1^{[12m+6,12(r-m)-4]} + \sum_{m=0}^{r} \beta_{1,m}^{1,1} Y_2^{[12m+3,12(r-m)]} = \tilde{c} \quad (k = 12r - 1), \tag{194}$$

где $\alpha_{1,m}^{1,1}=(4m+2)\theta_{1,m}^{1,1}+(3(r-m)-2)\theta_{1,m+1}^{1,1},\ \beta_{1,m}^{1,1}=2\theta_{1,m}^{1,1},\ a\ \theta_{1,0}^{1,1}=1,\ \theta_{1,m}^{1,1}=(-1)^m\times\sum_{s=m}^r\prod_{j=1}^s(4j-2)(4j-1)/e_j^1\cdot\prod_{j=m+1}^s(3(r-j)+1)(3(r-j)+3)/e_{j-1}^1\ (m=\overline{1,r}),$ элементы e_m^1 находятся рекуррентно из формул (161), причем $\beta_{1,0}^{1,1}=2,\ \beta_{1,r}^{1,1}=2(-1)^r\prod_{j=1}^r(4j-2)\times(4j-1)/e_j^1\neq 0,$ а если r=1, то и $\alpha_{1,0}^{1,1}\neq 0;$

$$\sum_{m=0}^{r} \alpha_{1,m}^{2,1} Y_1^{[12m+3,12(r-m)]} + \sum_{m=0}^{r} \beta_{1,m}^{2,1} Y_2^{[12m,12(r-m)+4]} = \tilde{c},
\sum_{m=0}^{r} \alpha_{2,m}^{2,1} Y_1^{[12m+3,12(r-m)]} + \sum_{m=1}^{r} \beta_{2,m}^{2,1} Y_2^{[12m,12(r-m)+4]} = \tilde{c} \quad (k = 12r),$$
(195)

где $\alpha_{1,m}^{2,1}=(4m+1)(1-(4m+2)(3(r-m)-1)/d_{m+1}^1)\theta_{1,m}^{2,1}$ $(m=\overline{0,r-1}),$ $\alpha_{1,r}^{2,1}=(4r+1)\theta_{1,r}^{2,1}\neq 0,$ $\beta_{1,m}^{2,1}=2\theta_{1,m}^{2,1}\neq 0,$ а $\theta_{1,m}^{2,1}=(-1)^m\prod_{j=0}^{m-1}(4j+1)(4j+2)/d_{j+1}^1)\neq 0,$ элементы d_m^1 находятся рекуррентно из формул (175), причем если r=1, то $\alpha_{1,0}^{2,1}\neq 0;$ $\alpha_{2,0}^{2,1}=(3r-1)\theta_{2,1}^2\neq 0,$ $\alpha_{2,m}^{2,1}=(3(r-m)-1)(1-(4m+1)(3(r-m)+1)/e_m^1)\theta_{2,m+1}^{2,1}$ $(m=\overline{1,r-1}),$ $\alpha_{2,r}^{2,1}=-2(4r-5)\neq 0,$ $\beta_{2,m}^{2,1}=2\theta_{2,m}^{2,1}\neq 0,$ а $\theta_{2,m}^{2,1}=(-1)^{r-m}\prod_{j=m}^{r-1}(3(r-j)-1)(3(r-j)+1)/e_j^1)\neq 0,$ элементы e_m^1 находятся рекуррентно из формул (177);

$$\sum_{m=0}^{r} \alpha_{1,m}^{1,2} Y_1^{[12m+6,12(r-m)]} + \sum_{m=0}^{r} \beta_{1,m}^{1,2} Y_2^{[12m+3,12(r-m)+4]} = \tilde{c},
\sum_{m=0}^{r-1} \alpha_{2,m}^{1,2} Y_1^{[12m+6,12(r-m)]} + \sum_{m=0}^{r} \beta_{2,m}^{1,2} Y_2^{[12m+3,12(r-m)+4]} = \tilde{c} \quad (k = 12r + 3),$$
(196)

где $\alpha_{1,m}^{1,2}=3\theta_{1,m}^{1,2}\neq0,~\beta_{1,0}^{1,2}=(3r+1)\theta_{1,0}^{1,2}\neq0,~\beta_{1,m}^{1,2}=(3(r-m)+1)(1-(4m-1)\times(3(r-m)+2)/e_{m-1}^2)\theta_{1,m}^{1,2}~(m=\overline{1,r}),~\mathrm{a}~\theta_{1,m}^{1,2}=(-1)^{r-m}\prod_{j=m}^{r-1}((3(r-j)-2)(3(r-j)-1)/e_j^2)\neq0,$ элементы e_m^2 находятся рекуррентно из формул (165), причем если $r=1,~\mathrm{to}~\beta_{1,r}^{1,2}\neq0;$ $\alpha_{2,m}^{1,2}=3\theta_{2,m}^{1,2}\neq0,~\beta_{2,0}^{1,2}=-(9/2)(r-1),~\beta_{2,m}^{1,2}=(4m-1)(1-(4m+2)(3(r-m)+1)/d_m^2)\theta_{2,m-1}^{1,2}$ $(m=\overline{1,r-1}),~\beta_{2,r}^{1,2}=(4r-1)\theta_{2,r-1}^{1,2}\neq0,~\mathrm{a}~\theta_{2,m}^{1,2}=(-1)^m\prod_{j=0}^{m-1}((4j+3)(4j+6)/d_{j+1}^2)\neq0,$ элементы d_m^2 находятся рекуррентно из формул (167), причем $\beta_{2,0}^{1,2}=0$ только при r=1;

$$\sum_{m=0}^{r} \alpha_{1,m}^{2,2} Y_1^{[12m+3,12(r-m)+4]} + \sum_{m=0}^{r} \beta_{1,m}^{2,2} Y_2^{[12m,12(r-m)+8]} = \tilde{c} \quad (k = 12r+4), \tag{197}$$

где $\alpha_{1,m}^{2,2}=(4m+1)(1-3(4m+2)(r-m)/d_{m+1}^2)\theta_{1,m}^{2,2} \quad (m=\overline{0,r-1}), \quad \alpha_{1,r}^{2,2}=(4r+1)\theta_{1,r}^{2,2}\neq 0,$ $\beta_{1,m}^{2,2}=2\theta_{1,m}^{2,2}\neq 0, \quad a \quad \theta_{1,m}^{2,2}=(-1)^m\prod_{j=1}^m((4j-3)(4j-2)/d_j^2)\neq 0, \quad$ элементы d_m^2 находятся рекуррентно из формул (180), а если $r=1, \text{ то } \alpha_{1,0}^{2,2}\neq 0.$

В частности, для r=1 резонансные уравнения выглядят следующим образом:

$$\begin{split} 3\widehat{Y}_{1}^{[9,0]} + \widehat{Y}_{2}^{[6,4]} &= \widetilde{c}; \quad \widehat{Y}_{1}^{[6,4]} + \widehat{Y}_{2}^{[3,8]} = \widetilde{c}; \quad 3\widehat{Y}_{1}^{[3,8]} + 4\widehat{Y}_{2}^{[0,12]} + 2\widehat{Y}_{2}^{[12,0]} = \widetilde{c}; \\ \widehat{Y}_{1}^{[0,12]} + 2\widehat{Y}_{1}^{[12,0]} + \widehat{Y}_{2}^{[9,4]} &= \widetilde{c}; \quad 3\widehat{Y}_{1}^{[9,4]} + 2\widehat{Y}_{2}^{[6,8]} = \widetilde{c}; \quad 2\widehat{Y}_{1}^{[6,8]} + \widehat{Y}_{2}^{[3,12]} + 2\widehat{Y}_{2}^{[15,0]} = \widetilde{c}; \\ \widehat{Y}_{1}^{[3,12]} + 10\widehat{Y}_{1}^{[15,0]} - 6\widehat{Y}_{2}^{[0,16]} + 4\widehat{Y}_{2}^{[12,4]} &= \widetilde{c}, \quad \widehat{Y}_{1}^{[3,12]} + \widehat{Y}_{1}^{[15,0]} + \widehat{Y}_{2}^{[12,4]} = \widetilde{c}; \\ 3\widehat{Y}_{1}^{[6,12]} - 12\widehat{Y}_{1}^{[18,0]} + 4\widehat{Y}_{2}^{[3,16]} - \widehat{Y}_{2}^{[15,4]} &= \widetilde{c}, \quad \widehat{Y}_{1}^{[6,12]} + \widehat{Y}_{2}^{[15,4]} = \widetilde{c}; \\ 2\widehat{Y}_{1}^{[3,16]} - 5\widehat{Y}_{1}^{[15,4]} + 10\widehat{Y}_{2}^{[0,20]} - 2\widehat{Y}_{2}^{[12,8]} &= \widetilde{c}. \end{split}$$

Теорема 13. Для того чтобы система (143) была формально эквивалентна исходной системе (141), необходимо и достаточно, чтобы коэффициенты $KOM\ Y^{[k]}$ удовлетворяли:

- 1) $npu \ k = 12r 6 уравнению (189);$
- 2) $npu \ k = 12r 5 уравнению (190);$
- 3) $npu \ k = 12r 4$ уравнению (191);
- 4) $npu \ k = 12r 3 уравнению (192);$
- 5) $npu \ k = 12r 2 ypashehum (193);$
- 6) $npu \ k = 12r 1$ уравнению (194);
- 7) $npu \ k = 12r$ двум уравнениям (195);
- 8) $npu \ k = 12r + 1 pавнялись нулю;$
- 9) $npu \ k = 12r + 2 pавнялись нулю;$
- 10) $npu \ k = 12r + 3 двум уравнениям (196);$
- 11) $npu \ k = 12r + 4 уравнению (197);$
- 12) $npu \ k = 12r + 5$ равнялись нулю (здесь везде $r \ge 1$).

Следствие 16. $B KOM Y^{[k]}$ системы (143):

- (1,2) при k=12r-6,12r-5 (r > 1) все коэффициенты являются резонансными;
- 3) при k=12r-4, если r=1, то все коэффициенты резонансные, а если $r\geq 2$, то не удается полностью описать множество резонансных коэффициентов, так как множители $\alpha_{1,m}^{2,0}$ ($m=\overline{0,r-1}$) и $\beta_{1,m}^{2,0}$ ($m=\overline{1,r-1}$) могут обращаться в ноль, но коэффициенты $Y_2^{[0,12r]}$ и $Y_2^{[12r,0]}$ резонансные;
- 4) при k=12r-3, если r=1, то все коэффициенты резонансные, а если $r\geq 2$, то не удается полностью описать множество резонансных коэффициентов, так как множители $\alpha_{1,m}^{3,0}$ ($m=\overline{1,r-1}$) и $\beta_{1,m}^{3,0}$ ($m=\overline{0,r-1}$) могут обращаться в ноль, но коэффициенты $Y_1^{[0,12r]}$ и $Y_1^{[12r,0]}$ резонансные;
- 5) при k=12r-2 $(r\geq 1)$ все коэффициенты резонансные, при этом коэффициенты $h_2^{[12r-3,0]}$ KOM $h_2^{[k-5]}$ также являются резонансными;
- 6) при k=12r-1, если r=1, то все коэффициенты резонансные, а если $r\geq 2$, то не удается полностью описать множество резонансных коэффициентов, так как множители $\alpha_{1,m}^{1,1}$ ($m=\overline{0,r-1}$) и $\beta_{1,m}^{1,1}$ ($m=\overline{1,r-1}$) могут обращаться в ноль, но коэффициенты $Y_2^{[3,12r]}$ и $Y_2^{[12r+3,0]}$ резонансные;
- 7) при k=12r, если r=1, то все коэффициенты резонансные, а если $r\geq 2$, то не удается полностью описать множество резонансных коэффициентов, так как множештели $\alpha_{1,m}^{2,1}$ ($m=\overline{0,r-1}$) и $\alpha_{2,m}^{2,1}$ ($m=\overline{1,r-1}$) могут обращаться в ноль, но все коэффициенты $Y_2^{[12m,12(r-m)+4]}$ ($m=\overline{0,r}$), а также $Y_1^{[3,12r]}$ и $Y_1^{[12r+3,0]}$, резонансные;

8,9,12) При k = 12r + 1,12r + 2,12r + 5 (r > 1) все коэффициенты – нерезонансные; 10) при k = 12r + 3, если r = 1, то все коэффициенты – резонансные, а если r > 2, то не удается полностью описать множество резонансных коэффициентов, так как множители $\beta_{1,m}^{1,2}$ $(m=\overline{1,r})$ и $\beta_{2,m}^{1,2}$ $(m=\overline{1,r-1})$ могут обращаться в ноль, но все коэффициенты $Y_1^{[12m+6,12(r-m)]}$ $(m=\overline{0,r})$, а также $Y_2^{[3,12r+4]}$ и $Y_2^{[12r+3,4]}$ – резонансные; 11) при k=12r+4, если r=1, то все коэффициенты – резонансные, а если $r\geq 2$, то не удается полностью описать множество резонансных коэффициентов, так как множиmели $lpha_{1,m}^{2,2}$ $(m=\overline{0,r-1})$ могут обращаться в ноль, но все коэффициенты $Y_2^{[12m,12(r-m)+8]}$ $(m=\overline{0,r}),\; a\; m$ акже $Y_1^{[12r+3,4]}\; -\; p$ езонансные; Для $\forall k \geq 6$ положим $n_k = \{2 \text{ при } k = 12r, 12r + 3 \ (r \geq 1); 0 \text{ при } k = 12r + 1,$ $12r + 2, 12r + 5 \ (r \ge 1); \ 1$ – при остальных k }. **Следствие 17.** В системе (143) n_k различных резонансных коэффициентов КОМ $Y^{[k]}$ образуют резонансный k -набор \mathcal{Y}^k , если это:

1) \mathcal{Y}^{12r-6} $(r \ge 1)$: $Y_1^{[12l_1+9,12(r-l_1-1)]}$ или $Y_2^{[12l_2+6,12(r-l_2)-8]}$ $(l_1,l_2 \in \{0,\ldots,r-1\});$ 2) \mathcal{Y}^{12r-5} $(r \ge 1)$: $Y_1^{[12l_3+6,12(r-l_3)-8)]}$ или $Y_2^{[12l_4+3,12(r-l_4)-4)]}$ $(l_3,l_4 \in \{0,\ldots,r-1\});$ 3) а) \mathcal{Y}^8 : $Y_1^{[3,8]}$, или $Y_2^{[0,12]}$, или $Y_2^{[12,0]}$; b) \mathcal{Y}^{12r-4} $(r \ge 2)$: $Y_2^{[0,12r]}$, или $Y_2^{[12r,0]}$, или $Y_1^{[12m+3,12(r-m)-4]}$ $(m \in \{0,\ldots,r-1\}),$ если $\alpha_{1,m}^{2,0} \ne 0,$ или $Y_2^{[12m,12(r-m)]}$ $(m \in \{1,\ldots,r-1\}),$ 4) a) $\mathcal{Y}^9: Y_1^{[0,12]}, \ unu \ Y_1^{[12,0]}, \ unu \ Y_2^{[9,4]}; \ b) \ \mathcal{Y}^{12r-3} \ (r \geq 2): Y_1^{[0,12r]}, \ unu \ Y_1^{[12r,0]}, \ unu \ Y_1^{[12m,12(r-m)]} \ (m \in \{1,\ldots,r-1\}), \ ecnu \ \alpha_{1,m}^{3,0} \neq 0, \ unu \ Y_2^{[12m+9,12(r-m)-8]} \ (m \in \{0,\ldots,r-1\}),$ если $\beta_{1,m}^{3,0} \neq 0$; 5) \mathcal{Y}^{12r-2} $(r \ge 1)$: $Y_1^{[12l_9+9,12(r-l_9)-8]}$ und $Y_2^{[12l_{10}+6,12(r-l_{10})-4]}$ $(l_9,l_{10} \in \{0,\ldots,r-1\});$ 6) a) \mathcal{Y}^{11} : $Y_1^{[6,8]}$, und $Y_2^{[3,12]}$, und $Y_2^{[15,0]}$; b) \mathcal{Y}^{12r-1} $(r \ge 2)$: $Y_2^{[3,12r]}$, und $Y_2^{[12r+3,0]}$, und $Y_1^{[12m+6,12(r-m)-4]}$ $(m \in \{0,\ldots,r-1\}), ecnu$ $\alpha_{1,m}^{1,1} \ne 0, und$ $Y_2^{[12m+3,12(r-m)]}$ $(m \in \{1, \dots, r-1\}), \ ecnu \ \beta_{1,m}^{1,1} \neq 0;$ $(m \in \{1, \dots, r-1\}), \ echt \ \beta_{1,m} \neq 0,$ γ a) γ : любые dea us $\gamma_1^{[3,12]}, \gamma_1^{[15,0]}, \gamma_2^{[0,16]}, \gamma_2^{[12,4]}; \ b$) γ і γ

 $\begin{array}{l} 10) \ a) \ \mathcal{Y}^{15} \ : \ \textit{nubo} \ Y_1^{[6,12]} \ \textit{u} \ Y_1^{[18,0]}, \ \textit{unu} \ Y_2^{[3,16]}, \ \textit{unu} \ Y_2^{[15,4]}; \ \textit{nubo} \ Y_2^{[15,4]} \ \textit{u} \ Y_1^{[18,0]} \ \textit{unu} \ Y_2^{[3,16]}; \ b) \ \mathcal{Y}^{12r+3} \ (r \geq 2) \ : \ Y_1^{[12r+6,0]} \ \textit{u} \ Y_2^{[3,12r+4]}, \ \textit{unu} \ Y_2^{[12r+3,4]}, \ \textit{unu} \ Y_1^{[12l_{18}+6,12(r-l_{18})]} \\ (l_{18} \ \in \ \{0,\ldots,r-1\}); \ \textit{nubo} \ \textit{nobule} \ \textit{dea} \ \textit{us} \ Y_1^{[12m+6,12(r-m)]} \ (m \ \in \ \{0,\ldots,r-1\}), \\ Y_2^{[12m+3,12(r-m)+4]} \ (m \in \{0,\ldots,r\}) \ \textit{npu} \ \textit{ycnobulu} \ \alpha(\beta)_{1,m_1}^{1,2} \alpha(\beta)_{2,m_2}^{1,2} - \alpha(\beta)_{1,m_2}^{1,2} \alpha(\beta)_{2,m_1}^{1,2} \neq 0 \\ (m_1 \ - \ \textit{nomep} \ \textit{nepsolo} \ \textit{budpatheoloo} \ \textit{kospfuluerma}, \ m_2 \ - \ \textit{emopoloo}; \ \textit{nubo} \ Y_1^{[12r+6,0]} \ \textit{u} \\ Y_2^{[12m+3,12(r-m)+4]} \ (m \in \{1,\ldots,r-1\}) \ \textit{npu} \ \textit{ycnobulu}, \ \textit{umo} \ \alpha_{1,r}^{1,2} \beta_{2,m}^{1,2} \neq 0; \\ 11) \ \textit{a)} \ \mathcal{Y}^{16} \colon Y_1^{[3,16]}, \ \textit{unu} \ Y_1^{[15,4]}, \ \textit{unu} \ Y_2^{[0,20]}, \ \textit{unu} \ Y_2^{[12,8]}; \ \textit{b)} \ \mathcal{Y}^{12r+4} \ (r \geq 2) \colon Y_1^{[12r+3,4]}, \ \textit{unu} \ Y_2^{[12l_{22},12(r-l_{22})+8]} \ (l_{22} \in \{0,\ldots,r\}), \ \textit{unu} \ Y_1^{[12m+3,12(r-m)+4]} \ (m \in \{0,\ldots,r-1\}), \ \textit{ecnu} \ \alpha_{1,m}^{2,2} \neq 0; \end{array}$

Таким образом, система (143) по определению является ОНФ, если для каждого $k \ge 6$ все коэффициенты её КОМ $Y^{[k]}$ равны нулю, кроме n_k штук, принадлежащих любому резонансному набору, описанному в следствии 17, и имеющих произвольные значения.

Следствие 18. Для системы (143) неполное семейство резонансных наборов \mathcal{Y}^* имеет вид: $\{\rho_1^rY_1^{[12l_1+9,12(r-l_1-1)]}, \rho_2^rY_1^{[12l_3+6,12(r-l_3)-8]} \ (r\geq 1), \rho_4^rY_1^{[12l_1,12(1-l_7)]}, Y_1^{[12l_8,12(r-l_8)]} \ (r\geq 2), \rho_3^rY_1^{[3,8]}, \rho_5^rY_1^{[12l_9+9,12(r-l_9)-8]} \ (r\geq 1), \rho_7^rY_1^{[12l_13+3,12(1-l_{13})]}, (1-l_{13})\rho_7^r\rho_8^rY_1^{[15,0]}, \rho_6^rY_1^{[6,8]}, (1-\rho_7^r)\rho_9^rY_1^{[15,0]}, \rho_{10}^rY_1^{[12l_{15}+3,12(r-l_{15})]} \ (r\geq 2), \rho_{15}^rY_1^{[12l_{13}+3,12(1-l_{13})]}, (1-\rho_{11}^r)\rho_{13}^rY_1^{[18,0]}, \rho_{11}^rY_1^{[12l_1+6,0]}, \rho_{11}^rY_1^{[12l_1+6,12(r-l_{18})]} \ (r\geq 2), \rho_{15}^rY_1^{[12l_{20}+3,16-12l_{20}]}, \rho_{16}^rY_1^{[12r+3,4]} \ (r\geq 2), (1-\rho_1^r)Y_2^{[12l_2+6,12(r-l_2)-8]}, (1-\rho_2^r)Y_2^{[12l_4+3,12(r-l_4)-4]} \ (r\geq 1), (1-\rho_3^r)Y_2^{[12l_5,12(1-l_5)]}, Y_2^{[12l_6,12(r-l_6)]}, (r\geq 2), (1-\rho_1^r)Y_2^{[12l_2+3,12(r-l_2)-8]}, (1-\rho_5^r)Y_2^{[12l_{10}+6,12(r-l_{10})-4]} \ (r\geq 1), (1-\rho_3^r)Y_2^{[12l_2+3,12(1-l_5)]}, Y_2^{[12l_1+3,12(1-l_{11})]}, Y_2^{[12l_1+3,12(r-l_{10})]}, (r\geq 2), (1-\rho_1^r)Y_2^{[12l_2+3,12(r-l_{10})-4]}, (r\geq 2), (r\geq 1), (1-\rho_6^r)Y_2^{[12l_1+3,12(1-l_{11})]}, (r\geq 1), (1-\rho_6^r)Y_2^{[12l_1+3,12(1-l_{11})]}, (r\geq 1), (1-\rho_7^r)Y_2^{[12l_2+3,12(r-l_{20})]}, (r\geq 1), (r\geq 2), (r\geq 1), (r\geq 2), (r\geq 1), (r\geq 1),$

Теорема 14. Для любой системы (141), и для любого выбранного по её невозмущенной части резонансного набора \mathcal{Y}^* из следствия 18 существует и единственна почти тождественная замена (142) с заранее произвольным образом зафиксированными резонансными коэффициентами, преобразующая систему (141) в $OH\Phi$ (143):

$$\begin{split} \dot{y}_1 &= y_2^2 + \rho_3^2 Y_1^{[3,8]} y_1 y_2^2 + \rho_4^7 Y_1^{[12l_1,12(1-l_7)]} y_1^{4l_7} y_2^{3(1-l_7)} + \rho_6^7 Y_1^{[6,8]} y_1^2 y_2^2 + \\ &\quad + \rho_7^7 Y_1^{[12l_1,3]+3,12(1-l_13)} y_1^{4l_3+1} y_2^{3(1-l_13)} + (1-l_{13}) \rho_7^7 \rho_8^8 Y_1^{[15,0]} y_1^5 + (1-\rho_7^7) \rho_9^9 Y_1^{[15,0]} y_1^5 + \\ &\quad + \rho_{11}^7 Y_1^{[6,12]} y_1^2 y_2^3 + \rho_{11}^7 \rho_{12}^7 Y_1^{[18,0]} y_1^6 + (1-\rho_{11}^7) \rho_{13}^7 Y_1^{[18,0]} y_0^6 + \rho_{15}^7 Y_1^{[12l_2+3,12(r-l_2])} y_1^{4l_2+1} y_2^{4-3l_{20}} + \\ &\quad + \sum_{r=1}^\infty \left(\rho_1^r Y_1^{[12l_1+9,12(r-l_1-1)]} y_1^{4l_1+3} y_2^{3(r-l_1-1)} + \rho_2^r Y_1^{[12l_3+6,12(r-l_3)-8]} y_1^{4l_3+2} y_2^{3(r-l_3)-2} + \\ &\quad + \rho_5^r Y_1^{[12l_9+9,12(r-l_9)-8]} y_1^{4l_5} y_2^{3(r-l_9)-2} \right) + \\ &\quad + \sum_{r=2}^\infty \left(Y_1^{[12l_8,12(r-l_8)]} y_1^{4l_3} y_2^{3(r-l_8)} + \rho_{10}^r Y_1^{[12l_15+3,12(r-l_{15})]} y_1^{4l_15+1} y_2^{3(r-l_{15})} + Y_1^{[12r+6,0]} y_1^{4r+2} + \\ &\quad + \rho_{14}^r Y_1^{[12l_8+6,12(r-l_{18})]} y_1^{4l_5} y_2^{3(1-l_5)} + (1-\rho_4^r) Y_2^{[9,4]} y_1^3 y_2 + (1-\rho_7^r) Y_2^{[12,4]} y_1^4 y_2 + \\ &\quad + (1-\rho_6^r) Y_2^{[12l_{11}+3,12(1-l_{11})]} y_1^{4l_{11}+1} y_2^{3(r-l_{15})} + (1-l_{13}) \rho_7^r (1-\rho_8^r) Y_2^{[12l_{14},16-12l_{14}]} y_1^{4l_{14}} y_2^{4-3l_{14}} + \\ &\quad + (1-\rho_7^r) (1-\rho_9^r) Y_2^{[0,16]} y_2^4 + \rho_{11} (1-\rho_{12}^r) Y_2^{[12l_{17}+3,16-12l_{17}]} y_1^{4l_{17}+1} y_2^{4-3l_{17}} + (1-\rho_{11}) Y_2^{[15,4]} y_1^5 y_2 + \\ &\quad + (1-\rho_{11}^r) (1-\rho_{13}^r) Y_2^{[3,16]} y_1 y_2^4 + (1-\rho_{15}^r) Y_2^{[12l_{17}+3,16-12l_{17}]} y_1^{4l_{17}+1} y_2^{4-3l_{17}} + (1-\rho_{11}^r) Y_2^{[15,4]} y_1^5 y_2 + \\ &\quad + (1-\rho_5^r) Y_2^{[12l_2+6,12(r-l_2)-8]} y_1^{4l_2+2} y_2^{3(r-l_2)-2} + (1-\rho_2^r) Y_2^{[12l_4+3,12(r-l_4)-4]} y_1^{4l_4+1} y_2^{3(r-l_4)-1} + \\ &\quad + (1-\rho_5^r) Y_2^{[12l_{10}+6,12(r-l_{10})-4]} y_1^{4l_{10}+2} y_2^{3(r-l_{10})-1} + \sum_{r=2}^\infty \left(Y_2^{[12l_6,12(r-l_6)+4]} y_1^{4l_4} y_2^{3(r-l_{20})+2} + (1-\rho_{10}^r) Y_2^{[12l_{12}+3,12(r-l_{10})+4]} y_1^{4l_{19}+1} y_2^{3(r-l_{10})+1} + (1-\rho_{10}^r) Y_2^{[12l_{22},12(r-l_{20})+8]} y_1^{4l_2} y_2^{3(r-l_{20})+2} \right). \end{split}$$

Пример 5. Любая система (141) формально эквивалентна, например, следующей ОНФ:

$$\begin{split} \dot{y}_1 &= y_2^2 + \sum_{r=2}^{\infty} \left(Y_1^{[12r,0]} y_1^{4r} + Y_1^{[12r+6,0]} y_1^{4r+2} \right), \qquad \dot{y}_2 = y_1^3 + Y_2^{[9,4]} y_1^3 y_2 + Y_2^{[3,16]} y_1 y_2^4 + \\ &+ \sum_{r=1}^{\infty} \left((Y_2^{[12r-6,4]} y_1^{4r-2} y_2 + Y_2^{[12r-9,8]} y_1^{4r-3} y_2^2) + (Y_2^{[12r,0]} y_1^{4r} + Y_2^{[12r-6,8]} y_1^{4r-2} y_2^2) + \\ &+ (Y_2^{[12r+3,0]} y_1^{4r+1} + Y_2^{[12r,4]} y_1^{4r} y_2) + (Y_2^{[12r+3,4]} y_1^{4r+1} y_2 + Y_2^{[12r,8]} y_1^{4r} y_2^2) + Y_2^{[0,12r+4]} y_2^{3r+1} \right). \end{split}$$

Список литературы

- [1] *Басов В.В.* Обобщенная нормальная форма и формальная эквивалентность систем дифференциальных уравнений с нулевыми характеристическими числами // Дифференц. уравнения. 2003.— Т. 39, № 2.— С. 154–170.
- [2] Басов В.В., Федотов А.А. Обобщенная нормальная форма двумерных систем ОДУ с линейно-квадратичной невозмущенной частью // Вестник СПбГУ. Сер. 1.— 2007.— вып. 1.— С. 25–30.
- [3] *Басов В.В., Скитович А.В.* Обобщенная нормальная форма и формальная эквивалентность двумерных систем с нулевым квадратичным приближением, І // Дифференц. уравнения.— 2003.— Т. 39, № 8.— С. 1016-1029.
- [4] Басов В.В., Федорова Е.В. Двумерные вещественные системы ОДУ с квадратичной невозмущенной частью: классификация и вырожденные обобщенные нормальные формы // Дифференциальные уравнения и процессы управления (Эл. журнал http://www.math.spbu.ru/diffjournal).—2010.— № 4.— С. 49–85.
- [5] *Басов В. В., Скитович А. В.* Обобщенная нормальная форма и формальная эквивалентность двумерных систем с нулевым квадратичным приближением, II // Дифференц. уравнения.— 2005.— Т. 41. № 8.— С. 1011-1023.
- [6] Bacob B. B. Обобщенная нормальная форма и формальная эквивалентность двумерных систем с нулевым квадратичным приближением, III // Дифференц. уравнения.— 2006.— Т. $42. \ No. 3.$ С. 308-319.
- [7] *Басов В. В., Федорова Е. В.* Обобщенная нормальная форма и формальная эквивалентность двумерных систем с нулевым квадратичным приближением, IV // Дифференц. уравнения.— 2009.— Т. 45. № 3.— С. 297–313.
- [8] *Басов В. В.* Обобщенная нормальная форма и формальная эквивалентность систем дифференциальных уравнений с нулевым приближением $(x_2^3, -x_1^3)$ // Дифференц. уравнения.— 2004.— Т. 40. № 8.— С. 1011–1022.
- [9] *Басов В. В., Слуцкая А. Г.* Обобщенные нормальные формы двумерных вещественных систем ОДУ с квазиоднородным многочленом в невозмущенной части // Дифференциальные уравнения и процессы управления (Эл. журнал http://www.math.spbu.ru/diffjournal).— 2010.— № 4.— С. 108-133.