AI 6102: Machine Learning Methodologies & Applications

L8a: K-NN Classifiers

Sinno Jialin Pan

Nanyang Technological University, Singapore

Homepage: http://www.ntu.edu.sg/home/sinnopan

Typical Learning Procedure

Inductive Learning

Labeled training data $\{x_i, y_i\}$, i = 1, ..., N

ID	Gender	Profession	Income	Saving	Repay
1	F	Engineer	60k	200k	Yes
2	M	Student	10k	20k	Yes
•••					
10	M	Student	8k	5k	No
		Test da	ıta x *		
ID	Gender		İ	Saving	
ID 11	Gender F	Profession	İ	Saving	
			Income		
		Profession	Income		
		Profession	Income		

Lazy Learning Procedure

Lazy Learning

Repay

Yes or No

Labeled training data $\{x_i, y_i\}$, i = 1, ..., N

ID	Gender	Profession	Income	Saving	Repay
1	F	Engineer	60k	200k	Yes
2	M	Student	10k	20k	Yes
	•••		~ ~		
10	M	Student		X	No
			-		

Training phase

- A model is not learned during "training phase"
- Instead, hashing table or indexing can be built

Test phase

Retrieve similar training instances

ID	Gender	Profession	Income	Saving
11	F	Lawyer	70k	100k

Based on the labels of the retrieved data instances

K-Nearest Neighbors Classifiers

• Algorithm:

- For each test instance x^* , retrieve K training data instances that are the most similar to x^* (K nearest neighbors) from the training set
- Based on the class labels of the K nearest neighbors to make a prediction on x^*

Illustration

- ☐ Requirements:
 - A set of <u>stored labeled training</u> instances
 - <u>Distance measure</u> to compute distance between instances
 - The <u>value of K</u>, the number of nearest neighbors to retrieve
- ☐ To classify a test instance:
 - Compute distance to all the training instances
 - Identify K nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of the test instance (e.g., using the majority class)

Distance & Nearest Neighbors

- Euclidean distance $d(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{\sum_{k=1}^{m} (x_{ik} x_{jk})^2}$
 - The smaller is the value, the more similar are two data instances
 - K-nearest neighbors of an instance x are data instances that have the K smallest distance to x

Value of K

- *K* is a hyper-parameter:
 - If *K* is too small, sensitive to noise points
 - If K is too large, neighborhood may include points from other classes

Determine Class Label

- Determine the class from nearest neighbor list
 - Take the majority vote of class labels among the *K*-nearest neighbors
 Indicator function that
- For majority voting:

 $y^* = \arg\max_{c} \underbrace{\sum_{(x_i,y_i) \in \mathcal{N}_{x^*}} I(c = y_i)}_{C}$ Nearest neighbors of the test instance x^*

returns 1 if its input is

- Every neighbor has the same impact on the classification
- This makes the algorithm more sensitive to the choice of *K*

Weighted Voting

- Alternative scheme: distance-weight voting
 - Weight the influence of each nearest neighbor x_i according to its distance to the test data

$$w_i = \frac{1}{d(\mathbf{x}^*, \mathbf{x}_i)^2}$$

That is

$$y^* = \arg\max_{c} \sum_{(x_i, y_i) \in \mathcal{N}_{x^*}} w_i I(c = y_i)$$

The larger is the distance to the test data, the smaller influence of the corresponding nearest neighbor to the vote

An Example

Consider a binary classification problem, and a 5-NN classifier

Instance ID	Class	Squared distance to test data
1	+	9
2	+	12.25
3	+	16
4	_	2.25
5	_	4

• Majority voting:

• Distance-weight voting:

Distance—Weight votes for +:

$$\frac{1}{9} + \frac{1}{12.25} + \frac{1}{16} = 0.2552$$

Distance—Weight votes for —:

$$\frac{1}{4} + \frac{1}{2.25} = 0.6944$$

Potential Issues

- Features may have very different scales, e.g.,
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 3kg to 200kg
 - income of a person may vary from \$10K to \$1M
- Features need to be rescaled to prevent distance from being dominated by some features
- Solution: normalization on features of different scales to the same scale
 - Min-Max normalization
 - Standardization (z-score normalization)

Summary

- The KNN classifiers are a <u>lazy learner</u>
 - A classification model is not built explicitly
 - "Training" is very efficient
 - Classifying test instances is relatively expensive

Implementation using scikit-learn

• API: sklearn.neighbors.KNeighborsClassifier

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

Example

```
>>> from sklearn.neighbors import KNeighborsClassifier
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> rng = np.random.RandomState(0)
>>> y = rng.integers(2, n_samples)
>>> X = rng.randn(n_samples, n_features)
>>> knnC = KNeighborsClassifier(n_neighbors=3)
>>> knnC.fit(X, y)
                                             set number of neighbors
>>> pred= knnC.predict(X)
  Build indices s.t. it is more efficient
  when making predictions on test data
```

Thank you!