

*** U. S. ARMY BALLISTIC RESEARCH LABORATORY ***

PROJECT: UNIFIED NAVY FIELD TEST PROGRAM

UTRC 17.67, DX=.105, DY=.170 NO OBUIOUS SAT.

LUFF T + SCALE (CM)

Figure 23C. Test Run 17.67 -- 2D Contour Map of Composite Frame

PROJECT: UNIFIED NAVY FIELD TEST PROGRAM

UTRC 17.67, DX-.105, DY-.170 NO OBUIOUS SAT.

LEFT

Figure 23D. Test Run 17.67 -- 3D Plot of Composite Frame

*** U. S. ARMY BALLISTIC RESEARCH LABORATORY *** RUN DATE: 27-JUL-77 14:44:45

HIGH ENERGY LASER PROGRAM BEAM DIAGNOSTICS

PROJECT: UNIFIED NAVY FIELD TEST PROGRAM

UNFTP TEST: UTRC 17.68, DX=.105, DY=.170
COMMENTS: NO OBVIOUS SAT.
NACL RUN VL2-***
60 FRAMES FROM 34 ON, TIME 15 36 59.337

2222222222222222222222222222222222221111
222222222222222222222222222222222222222
222222222222222222222222222222222222222
222233333333333333333333333333332222222
33333333333333333333333333333333333332222
333333333333333333333333333333333333333
333333344444444444444444444443333333333
3333344444444455555555555555544444333333
333344444555555555566666555555444433333333
3344445555566666666666776666666655544443333333333
44445555666667777777777777766665554443333333322222222
44455556666777777888888888877776666555444333333332222222
444555666777788888888888888888877766655544433333333222222
4455566677788889999999999999888776665554433333333222222
4455566677778889999999999999888776665554433333333322222
444555666777889999999999999988876665544433333333322222
3445556677788899999999999999988777665554433333333322222
3344455666778888899999999888887776665544433333333222222
33344455666777788888888888877777666555444333333333222222
3333444455566666777777777776666655554444333333333222222
33333444455556666666666666666655555444433333333
33333344444555555555555555555555544444333333
33333333444444444555555555554444444333333
333333333333344444444444444443333333333
333333333333333333333333333333333333333
233333333333333333333333333333333333333
2222333333333333333333333333333333322222

COORD	X	Y								
PEAK	2.047	1.785								
CENT	2.412	2.025								
VARIA	0.001	0.011								
PK100	0.095									
PK98	0.093									
PEAK	1658.000									
CONTUR	0	1	2	3	4	5	6	7	A	9
% PEAK	0.0	3.0	10.0	20.0	40.0	50.9	60.0	70.0	80.0	90.0
LEVEL	0.000	349.749	1105.800	2331.600	4663.200	5829.000	6994.800	8160.600	9326.399	
AREA	26.025	26.025	25.204	19.492	11.192	8. 157	5.730	3.802	2.374	1.142
VOLUME	122441.8	122441.8	121704.5	111926.4	83290.3	67360.7	51945.5	37361.2	24895.4	

Figure 24A. Test Run 17.68 -- Contour Array of Composite Frame

666667778887788890011122222108642075308520753197642 647 697 3 766 883 886 1 966 1 988 1 192 1 192 1 192 1 192 1 192 1 192 1 192 1 193 1 DY= . 170

Test Run Normalization of Composite Frame

PROJECT: UNIFIED NAVY FIELD TEST PROGRAM

UTRC 17.68, DX-.105, DY-.170 NO OBUIOUS SAT.

Figure 24C. Test Run 17.68 -- 2D Contour Map of Composite Frame

*** U. S. ARMY BALLISTIC RESEARCH LABORATORY ***

PROJECT: UNIFIED NAVY FIELD TEST PROGRAM

UTRC 17.68, DX=.105, DY=.170 NO OBVIOUS SAT.

LEFT

Figure 24 D. Test Run 17.68 -- 3D Plot of Composite Frame

*** U. S. ARMY BALLISTIC RESEARCH LABORATORY ***
RUR DATE: 27-JUL-77 14:59:00

HIGH ENERGY LASER PROGRAM BEAM DIACNOSTICS

PROJECT: UNIFIED NAVY FIELD TEST PROGRAM

UNFTP TEST: UTRC 17.69, DX=.105, DY=.170
COMMENTS: NO OBVIOUS SAT.

RACL RUN V12-***

60 FRAMES FROM 14 ON, TIME 15 39 53.946

COURT | 1280 |
COURT | 1

COORD	X	Y			
PEAK	2.467	2.125			
CENT	2.486	2.021			
VARIA	0.001	0.012			
PK100	0.086				
PK98	0.085				
PEAK 1	14794.000				
CONTUR	0	1	2	3	
% PEAK	0.9	3.0	10.0	20.0	
LEVEL	0.000	443.820	1479.400	2958.800	
AREA	26.023	26.025	25.472	20.492	
VOLUME	171514.4	171514.4	170851.3	159534.8	

 8
 1
 2
 3
 4
 5
 6
 7
 8
 9

 9
 3.0
 10.0
 20.0
 40.0
 50.0
 60.0
 70.0
 80.0
 90.0

 9
 443.820
 1479.400
 2958.800
 5917.600
 7397.000
 8876.400
 10355.800
 11835.200
 13314.601

 3
 26.025
 25.472
 20.492
 12.852
 9.818
 7.104
 5.069
 3.374
 1.874

 4
 171514.4
 170851.3
 159534.8
 125915.3
 105775.6
 83746.3
 64108.4
 45267.7
 26463.5

Figure 25A. Test Run 17.69 -- Contour Array of Composite Frame

46 54 64 67 76 68 77 68 85 77 77 88 16 77 77 88 16 77 77 88 16 77 77 88 16 77 77 88 16 77 77 89 16 77 88 16 77 77 89 16 77 88 16 77 87 88 16 77 77 88 16 77 87 88 16 77 87 88 16 77 77 88 16 77 88 16 77 88 16 77 88 16 80 91 16 80 92 16 80 92 16 80 92 16 80 93 16 81 **44444444449999988**6666667**988899999**11266 11366 DY= . 170

Figure 25B. Test Run 17.69 -- Normalization of Composite Frame

PROJECT: UNIFIED NAVY FIELD TEST PROGRAM

UTRC 17.69, DX=.105, DY=.170 NO OBUIOUS SAT.

SCALE (CM)

Figure 25C. Test Run 17.69 -- 2D Contour Map of Composite Frame

PROJECT: UNIFIED NAVY FIELD TEST PROGRAM

UTRC 17.69, DX-.105, DY-.170 NO OBUIOUS SAT.

LEFT

Figure 25D. Test Run 17.69 -- 3D Plot of Composite Frame 107

*** U. S. ARMY BALLISTIC RESEARCH LABORATORY *** RUN DATE: 27-JUL-77 15:18:41

HIGH ENERGY LASER PROGRAM BEAM DIAGNOSTICS

PROJECT: UNIFIED NAVY FIELD TEST PROCES

UNFTP TEST: UTRC 17.75, DX=.065, DY=.121
COMMENTS: NO SAT., LASER SPUTTERED: ONLY 16 OF 55 FRS. SHOWED POWER.
NACL RUN VL2-***
55 FRAMES FROM 2 ON, TIME 15 47 27.447

	•	•	•		•				•											٠		•	٠	•				•	•																						
		•	•		٠	٠															٠									01.4																					
-	•	•	•	٠	•	•																			*																										1
		•	•	•		•	٠																																												1
	•		٠	•	•			٠													÷																														
		•	•			•									1																													6							
	ı	l		•				٠																																											
															3																																	10			
	e,								÷									1	1	1	1																														
			•																		1	1	1	1	1	1		٠.		1	1	1	1																		
	0												1	П	u	11	1	1	1	2	2	2	2	1	1	1	1	1 1	11	1	1	1	1	1	1 1	1	1														
											1	1	1	1	2	22	2	2	2	3:	3	3:	2:	2	2:	2	25	25	21	1	1	1	i	ī	12		ā	4	3	2	,	ľ	•	i	i	i	ï		•	•	•
											1	1	1	1	2	23	3	5	7	8	9	8	7	5	4:	3	3:	22	22	2	1	ī	ī	i	1 1	2	2	2	2			•	•	•	•	•	•	•	•	•	•
												1	1	2	13	13	5	5	6	6	6	5	5	4	3:	3	3:	12	20	2	2	2	2	ż	33	3	2	ī	-		•	i	i	i				•	•	ï	
											1	1	1	2	2	22	3	3	3	3	4	5	71	1	91	R	7:		13	2	2	5	5	2	21	ĭ	7	i				•	•	•	•	•	•	•	•	•	•
											1	1	i	1	i	2	2	2	3	3:	3	4	6	R	0	0	2		30	9	5	5	2	2	11	•	•	î	1			:	*	•	•	;	;	:	:	•	•
									1	1	1	2		15	ĥ	5	5	4	4	5	6	6	71	R	9	0	00	36	25	is	a	=	4	ζ.	21		i	:	•			•	•	:	:	:	:	:	:	•	•
					ì	ì			ī	ī	2	3	4	15	6		3	3	3	3	4	6	,	7	7	61	3		6	A	Ω	à	Ξ.	4	21	•	1	:	2	ě		•	•	:	:	:	:	:	•	•	•
				ì	ì	ì	9	Ì	•	í	1	9	9	3		4	4	5	4	4.	4.	4	7		7	D'	76		10	2	3	3	3	0	33		3		•	1	٠.	:	:	:	:	;	:		:	:	:
			1	1		•	Ì	Ì	ì	ì	i	ī	1	2		2	2	3	3	3	4	6	7	2	0	6	-	25	20	2	3	3	3	3	11	2	2	2			ď	1	1	:	:	:	:	;		:	
																																			11																
																																			11																
																																			11																
	•																																		1 1																
•																																												1		1	ī	1	1	1	
																																			1 1									1	1	1	1	1	1	1	1
	•		•																																11														1	1	1
		•	•	•																							. 1	U	1	I	1	1	1	1	1 1	1	ı	1	1		1	1	1	1	1	1	1	1	1	I	1

COORD	x	Y
PEAK	1.657	1.270
CENT	1.689	1.284
VARIA	0.088	0.336
PK100	1.155	
PK98	1.132	
PEAK	1526.000	

CONTUR % PEAK	0	1	2	3	4	5	6	7	8	9
LEVEL	0.000	3.0 45.780	10.0 152.600	20.0 305.200	40.0 610.400	50.0 763.000	915.600	70.0	1220.800	90.0
AREA VOLUME	11.467	1321.6	$\frac{1.864}{1092.5}$	1.227 953.9	0.731 733.9	0.590 636.4	0.409 484.4	0.291 367.2	0.197	0.063

Figure 26A. Test Run 17.75 -- Contour Array of Composite Frame

Figure 26B. Test Run 17.75 -- Normalization of Composite Frame 109

*** U. S. ARMY BALLISTIC RESEARCH LABORATORY ***

PROJECT: UNIFIED NAVY FIELD TEST PROGRAM

UTRC 17.75, DX=.065, DY=.121
NO SAT., LASER SPUTTERED; ONLY 16 OF 55 FRS. SHOWED POWER.

SCALE (CM)

Figure 26C. Test Run 17.75 -- 2D Contour Map of Composite Frame

PROJECT: UNIFIED NAVY FIELD TEST PROGRAM

UTRC 17.75, DX=.065, DY=.121
NO SAT., LASER SPUTTERED; ONLY 16 OF 55 FRS. SHOWED POWER.

Figure 26D. Test Run 17.75 -- 3D Plot of Composite Frame

No. of		No. of	
Copies	Organization	Copies	Organization
I A C	Commander Defense Documentation Center ATTN: DDC-TCA Cameron Station Alexandria, VA 22314	enes:	Director Applied Technology Laboratory US Army Research & Technology Labs (AVRADCOM) ATTN: DAVDL-DU-MOS, E.Gilbert Fort Eustis, VA 23604
A T	Director of Defense Research and Engineering ATTN: Asst Dir (Space & Advanced System) The Pentagon Washington, DC 20301		Commander US Army Electronics Research and Development Command Technical Support Activity ATTN: DELSD-L Fort Monmouth, NJ 07703
A 1	Defense Advanced Research Projects Agency ATTN: Dir, Laser Div 1400 Wilson Boulevard Arlington, VA 22209		Commander US Army Communications Rsch and Development Command ATTN: DRDCO-SGS Fort Monmouth, NJ 07703
] A	Director Institute for Defense Analysis ATTN: Classified Library Dr. R.G. Finke Dr. J. Ross 400 Army-Navy Drive Arlington, VA 22202		Commander US Army Missile Research and Development Command ATTN: DRDMI-R Redstone Arsenal, AL 35809 Commander
l A S	Commander US Army Materiel Development and Readiness Command ATTN: DRCDMD-ST 5001 Eisenhower Avenue Alexandria, VA 22333		US Army Missile Research and Development Command ATTN: High Energy Laser Project, DRCPM-HEL Redstone Arsenal, AL 35809
l #	Commander US Army Aviation Research and Development Command ATTN: DRSAV-E 12th and Spruce Streets St. Louis, MO 63166		Commander US Army Missile Research and Development Command High Energy Laser Directorate ATTN: DRSMI-HRS, Dr. R. Conrad DRSMI-RHAE, A. Jenkins DRSMI-RH, W. Gurley
, ,	2:		Redstone Arsenal, AL 35809

1 Director
US Army Mobility Research
and Development Laboratory

Ames Research Center Moffett Field, CA 94035

	DISTRIBU	JTION I	LIST
No. of Copies		No. of Copies	
1	Commander US Army Missile Materiel Readiness Command ATTN: DRSMI-AOM Redstone Arsenal, AL 35809		HQDA (DAMA-AR, Garker; DAMA-RAA, LTC Narus) Washington, DC 20310 Director
1	Commander US Army Tank Automotive Research & Development Cmd ATTN: DRDTA-UL Warren, MI 48090	2	US Army Advanced BMD Technology Center ATTN: ATC-0 ATC-T, J.Hagefstration P. O. Box 1500 Huntsville, AL 35807
2	Commander US Army Armament Research and Development Command ATTN: DRDAR-TSS Dover, NJ 07801	1	Commander Naval Air Systems Command ATTN: AIR-530313, R. Hume AIR-5204, LTC R. Remers Washington, DC 20361
1	Commander US Army Armament Materiel Readiness Command ATTN: DRSAR-LEP-L, Tech Lib Rock Island, IL 61299	2	Commander Naval Ordnance Systems Command ATTN: CPT Skolnik, PMO-405 L. Stoessel, PMS-405 Washington, DC 20360
1	Commander US Army Rock Island Arsenal ATTN: SARRI-LR, J.W. McGarvey Rock Island, IL 61299		Commander Naval Surface Weapons Center ATTN: DG 13, J. Bland Dahlgren, VA 22448
2	Director US Army Materials and Mechanics Research Center ATTN: DRXMR-HW, S. Arnold R. Fitzpatrick	2	Commander Naval Surface Weapons Center ATTN: Code 413, R. Culpepper Code 433, F. Cooke Silver Spring, MD 20910
1	Watertown, MA 02172 Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL, Tech Lib White Sands Missile Range NM 88002	4	Commander US Naval Weapons Center ATTN: Code 4011, E.B. Niccum Code 4011, H. Jeffers Code 4565, C. Sandberg Code 4011, W. McCanless China Lake, CA 93555

2 HQDA (DAMA-WSN-T, Pellegrini; DAMA-WS, McCorke) Washington, DC 20310

No. of		No. of	
Copies	Organization	Copies	Organization
	Commander Naval Research Laboratory		Director Lawrence Livermore Laboratory
	ATTN: Code 6330, A. Schindler Code 6332, T. Schriempf Code 6425, Dr. R.Wenzel Code 6416, Dr. M.Achter		ATTN: Dr. J. Emmett, L-555 P. O. Box 808 Livermore, CA 94550
	Washington, DC 20375	1	General Research Corporation ATTN: Dr. G. K. Warmbrod
	Superintendent		307 Wynn Drive
	Naval Postgraduate School ATTN: Dept of Physics and		Huntsville, AL 35807
	Chemistry, Prof J.R.Neighbou Lib, Code 2124 Monterey, CA 93940	ırs 2	Science Applications, Inc. ATTN: Dr. Peckham Dr. E. Alcarez
1	RADC/OCSE, Mr. R. Urtz Griffiss AFB, NY 13441		2361 Jefferson Davis Highway Arlington, VA 22202
	AFWL (COL D. Lamberson; Dr.	2	Battelle Memorial Institute Columbus Laboratory
	Rudder; MAJ H. Rede; LTC K. Gilbert; MAJ W. Godsey; CPT J. Jackson; CPT D.Evans)		ATTN: Mr. K. Wilkes Mr. S. Rubin 505 King Avenue
	Kirtland AFB, NM 87117		Columbus, OH 43201
	AFFDL/FEN, CPT G. Camburn Wright-Patterson AFB, OH 45433	4	Massachusetts Institute of Tech, Lincoln Laboratory ATTN: Dr. Marquet
	AFML (LPJ, MAJ P. Elder; LC, Mr. G. Denman; MBC, Mr. R. Farmer)		Dr. Rediker Dr. Edelberg Dr. Reis
	Wright-Patterson AFB, OH 45433		P. O. Box 73 Lexington, MA 02173
	ASD/ENFTV (D. Wallick) Wright-Patterson AFB, OH 45433	3 1	Stanford Research Institute ATTN: Dr. R. Armistead
	Director		Menlo Park, CA 94025
	Lawrence Livermore Laboratory ATTN: Dr. J. Fleck, L-71 P. O. Box 808 Livermore, CA 94550	1	Stanford Research Institute ATTN: Mr. John H. Hennings 306 Wynn Drive, NW Huntsville, AL 35805
	Director Lawrence Livermore Laboratory ATTN: Dr. H. Kruger P. O. Box 808 Livermore, CA 94550		

Aberdeen Proving Ground

Dir, USAMSAA

ATTN: DRXSY, Dr. Sperrazza DRXSY-AFF

Mr. D. Smith

Mr. A. Henderson

Cdr, USATECOM

ATTN: DRSTE-SG-H