LCD Operation

LCD is finding widespread use replacing LEDs

- The declining prices of LCD
- The ability to display numbers, characters, and graphics
- Incorporation of a refreshing controller into the LCD, thereby relieving the CPU of the task of refreshing the LCD
- Ease of programming for characters and graphics

LCD Pin Descriptions

- Send displayed information or instruction command codes to the LCD
- Read the contents of the LCD's internal registers

Pin Descriptions for LCD

	Pin	Symbol	I/O	Descriptions				
	1	VSS		Ground				
	2	VCC		+5V power supply				
	3	VEE		Power supply to control contrast				
	4	RS	I	RS=0 to select command register, RS=1 to select data register				
	5	R/W	I	R/W=0 for write, R/W=1 for read	used by the			
_	6	Е	I/O	Enable	LCD to latch			
	7	DB0	I/O	The 8-bit data bus	information			
	8	DB1	I/O	The 8-bit data bus	presented to			
	9	DB2	I/O	The 8-bit data bus	its data bus			
	10	DB3	I/O	The 8-bit data bus				
	11	DB4	I/O	The 8-bit data bus				
	12	DB5	I/O	The 8-bit data bus				
	13	DB6	I/O The 8-bit data bus					
	14	DB7	I/O	The 8-bit data bus				

HANEL

LCD Command Codes

LCD Command Codes

Code (Hex)	Command to LCD Instruction Register
1	Clear display screen
2	Return home
4	Decrement cursor (shift cursor to left)
6	Increment cursor (shift cursor to right)
5	Shift display right
7	Shift display left
8	Display off, cursor off
Α	Display off, cursor on
С	Display on, cursor off
Е	Display on, cursor blinking
F	Display on, cursor blinking
10	Shift cursor position to left
14	Shift cursor position to right
18	Shift the entire display to the left
1C	Shift the entire display to the right
80	Force cursor to beginning to 1st line
C0	Force cursor to beginning to 2nd line
38	2 lines and 5x7 matrix

Sending Data/ Commands to LCDs w/ Time Delay


```
To send any of the commands to the LCD, make pin RS=0. For data, make RS=1. Then send a high-to-low pulse to the E pin to enable the internal latch of the LCD. This is shown in the code below.
```

```
; calls a time delay before sending next data/command
;P1.0-P1.7 are connected to LCD data pins D0-D7
;P2.0 is connected to RS pin of LCD
;P2.1 is connected to R/W pin of LCD
;P2.2 is connected to E pin of LCD
        ORG
              0Н
                       ; INIT. LCD 2 LINES, 5X7 MATRIX
        VOM
              A,#38H
        ACALL COMNWRT ; call command subroutine
        ACALL DELAY
                       ; give LCD some time
        MOV
              A, #OEH
                       ; display on, cursor on
        ACALL COMNWRT ; call command subroutine
        ACALL DELAY
                       ; give LCD some time
              A,#01
                       ; clear LCD
        MOV
        ACALL COMNWRT ; call command subroutine
        ACALL DELAY
                       ; give LCD some time
        VOM
              A,#06H
                       ; shift cursor right
        ACALL COMNWRT ; call command subroutine
        ACALL DELAY
                       ; give LCD some time
        VOM
              A,#84H
                       ; cursor at line 1, pos. 4
        ACALL COMNWRT ; call command subroutine
        ACALL DELAY
                       ; give LCD some time
```

HANEL

Sending Data/ Commands to LCDs w/ Time

```
Delay
(cont')

8051

P1.0

D0

V<sub>CC</sub>

V<sub>EE</sub>

10k

POT

LCD

P1.7

D7

V<sub>SS</sub>

P2.0

P2.1

P2.2
```

```
VOM
               A, #'N'
                         ; display letter N
                         ; call display subroutine
        ACALL DATAWRT
                         ; give LCD some time
        ACALL DELAY
        MOV
               A,#'0'
                          ; display letter 0
                         ; call display subroutine
        ACALL DATAWRT
               AGAIN
AGAIN:
        SJMP
                         ;stay here
COMNWRT:
                         ; send command to LCD
        VOM
               P1,A
                         ; copy reg A to port 1
                         :RS=0 for command
               P2.0
        CLR
               P2.1
                         ;R/W=0 for write
        CLR
        SETB
               P2.2
                         ;E=1 for high pulse
                         ; give LCD some time
        ACALL DELAY
        CLR
               P2.2
                         ;E=0 for H-to-L pulse
        RET
DATAWRT:
                         ; write data to LCD
               P1,A
                         ; copy reg A to port 1
        MOV
                         ;RS=1 for data
               P2.0
        SETB
        CLR
               P2.1
                         ;R/W=0 for write
               P2.2
                         ;E=1 for high pulse
        SETB
        ACALL DELAY
                         ; give LCD some time
        CLR
               P2.2
                         ;E=0 for H-to-L pulse
        RET
        VOM
               R3, #50
                         ;50 or higher for fast CPUs
DELAY:
HERE2:
               R4,#255
                         ;R4 = 255
        VOM
               R4, HERE
HERE:
        DJNZ
                         ;stay until R4 becomes 0
        DJNZ
               R3, HERE2
        RET
        END
```



```
Sending Data/
Commands to
LCDs w/ Time
Delay
(cont')

8051
```

```
Delay (cont') +5V

8051
P1.0
D0
V<sub>CC</sub>
V<sub>EE</sub>
10k
POT

RS R/W E

P2.0
P2.1
P2.2
```

```
; Check busy flag before sending data, command to LCD
;p1=data pin
;P2.0 connected to RS pin
;P2.1 connected to R/W pin
;P2.2 connected to E pin
     ORG
           0Н
           A,#38H
                        ; init. LCD 2 lines ,5x7 matrix
     VOM
     ACALL COMMAND
                        ; issue command
          A,#OEH
     VOM
                        ;LCD on, cursor on
     ACALL COMMAND
                        ; issue command
     VOM
          A,#01H
                        ; clear LCD command
                        ; issue command
     ACALL COMMAND
          A,#06H
                        ; shift cursor right
     VOM
     ACALL COMMAND
                        ; issue command
           A, #86H
                        ; cursor: line 1, pos. 6
     VOM
     ACALL COMMAND
                        ; command subroutine
     VOM
           A, #'N'
                        ; display letter N
     ACALL DATA DISPLAY
           A,#'0'
                        ;display letter O
     VOM
     ACALL DATA DISPLAY
HERE:SJMP
                        ;STAY HERE
           HERE
```


LCD INTERFACING Sending Codes

```
Sending Codes
and Data to
LCDs w/ Busy
Flag
```

```
COMMAND:
     ACALL READY
                          ; is LCD ready?
     VOM
            P1,A
                          ; issue command code
     CLR
            P2.0
                          ;RS=0 for command
     CLR
            P2.1
                          ;R/W=0 to write to LCD
            P2.2
                          ;E=1 for H-to-L pulse
     SETB
            P2.2
                          ;E=0,latch in
     CLR
     RET
DATA DISPLAY:
     ACALL READY
                          ; is LCD ready?
                          ;issue data
     VOM
            P1,A
            P2.0
                          ;RS=1 for data
     SETB
            P2.1
                          ;R/W = 0 to write to LCD
     CLR
            P2.2
     SETB
                          ;E=1 for H-to-L pulse
            P2.2
     CLR
                   To read the command register, we make R/W=1,
     RET
READY:
                   RS=0, and a H-to-L pulse for the E pin.
     SETB
            P1.7
     CLR
            P2.0
                          ; RS=0 access command req
     SETB
            P2.1
                          ;R/W=1 read command req
; read command reg and check busy flag
BACK: SETB
            P2.2
                          ;E=1 for H-to-L pulse
     CLR
            P2.2
                          ;E=0 H-to-L pulse
                         ;stay until busy flag=0
     JΒ
            P1.7,BACK
     RET
                     If bit 7 (busy flag) is high, the LCD is busy
     END
                     and no information should be issued to it.
```


Sending Codes and Data to LCDs w/ Busy Flag (cont')

LCD Timing for Read

Note: Read requires an L-to-H pulse for the E pin

HANEL

Sending Codes and Data to LCDs w/ Busy Flag (cont')

LCD Timing for Write

HANEL

LCD Data Sheet

The upper address range can go as high as 0100111 for the 40-character-wide LCD, which corresponds to locations 0 to 39

One can put data at any location in the LCD and the following shows address locations and how they are accessed

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	Α	Α	Α	Α	Α	Α	Α

- AAAAAAA=000_0000 to 010_0111 for line1
- > AAAAAAA=100_0000 to 110_0111 for line2

LCD Addressing for the LCDs of 40×2 size

	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Line1 (min)	1	8	0	0	0	0	0	0
Line1 (max)	1	\ 0	1	0	0	1	1	1
Line2 (min)	1	1	0	0	0	0	0	0
Line2 (max)	1	1	1	0	0	1	1	1

Sending
Information to
LCD Using
MOVC
Instruction

```
; Call a time delay before sending next data/command
; P1.0-P1.7=D0-D7, P2.0=RS, P2.1=R/W, P2.2=E
        ORG
        VOM
              DPTR, #MYCOM
C1:
        CLR
        MOVC A, @A+DPTR
        ACALL COMNWRT
                       ; call command subroutine
                        ; give LCD some time
        ACALL DELAY
              DPTR
        INC
        JΖ
              SEND DAT
        SJMP
              C1
SEND DAT:
        MOV
              DPTR, #MYDATA
D1:
        CLR
              Α
              A, @A+DPTR
        MOVC
                        ; call command subroutine
        ACALL DATAWRT
        ACALL DELAY
                        ; give LCD some time
        INC
              DPTR
        JΖ
              AGAIN
        SJMP
              D1
AGAIN:
        SJMP
              AGAIN
                        ;stay here
. . . . .
```


HANEL

Sending
Information to
LCD Using
MOVC
Instruction
(cont')

```
COMNWRT:
                         ; send command to LCD
               P1,A
        VOM
                         ; copy reg A to P1
        CLR
               P2.0
                         ; RS=0 for command
               P2.1
                         ;R/W=0 for write
        CLR
               P2.2
                         ;E=1 for high pulse
        SETB
        ACALL DELAY
                         ; give LCD some time
               P2.2
                         ;E=0 for H-to-L pulse
        CLR
        RET
DATAWRT:
                         ; write data to LCD
        VOM
               P1,A
                         ; copy reg A to port 1
        SETB
               P2.0
                         ;RS=1 for data
               P2.1
        CLR
                         ;R/W=0 for write
        SETB
               P2.2
                         ;E=1 for high pulse
        ACALL DELAY
                         ; give LCD some time
               P2.2
                         ;E=0 for H-to-L pulse
        CLR
        RET
                         ;50 or higher for fast CPUs
DELAY:
        MOV
               R3,#250
               R4,#255
                         R4 = 255
HERE2:
        MOV
HERE:
               R4,HERE
                         ;stay until R4 becomes 0
        DJNZ
        DJNZ
               R3, HERE2
        RET
        ORG
               300H
MYCOM:
        DB
               38H, 0EH, 01, 06, 84H, 0; commands and null
               "HELLO", 0
MYDATA: DB
        END
```


HANEL

Sending
Information to
LCD Using
MOVC
Instruction
(cont')

Example 12-2

Write an 8051 C program to send letters 'M', 'D', and 'E' to the LCD using the busy flag method.

Solution:

```
#include <req51.h>
sfr ldata = 0x90; //P1=LCD data pins
sbit rs = P2^0;
sbit rw = P2^1;
sbit en = P2^2;
sbit busy = P1^7;
void main(){
  1cdcmd(0x38);
  lcdcmd(0x0E);
  lcdcmd(0x01);
  1cdcmd(0x06);
  lcdcmd(0x86);
                   //line 1, position 6
  lcdcmd('M');
  lcdcmd('D');
  lcdcmd('E');
}
```


HANEL

Sending
Information to
LCD Using
MOVC
Instruction
(cont')

```
void lcdcmd(unsigned char value) {
 lcdready();
            //check the LCD busy flag
 ldata = value; //put the value on the pins
 rs = 0;
 rw = 0;
                //strobe the enable pin
 en = 1;
 MSDelay(1);
 en = 0;
 return;
}
void lcddata(unsigned char value) {
 lcdready();
 rs = 1;
 rw = 0;
                //strobe the enable pin
 en = 1;
 MSDelay(1);
 en = 0;
 return;
```


HANEL

Sending
Information to
LCD Using
MOVC
Instruction
(cont')

```
void lcdready() {
  busy = 1;
                    //make the busy pin at input
  rs = 0;
  rw = 1;
  while(busy==1) { //wait here for busy flag
    en = 0;
                    //strobe the enable pin
    MSDelay(1);
    en = 1;
}
void lcddata(unsigned int itime) {
  unsigned int i, j;
  for(i=0;i<itime;i++)</pre>
    for (j=0; j<1275; j++);
}
```


HANEL