Stochastic Processes.

Stock process $\frac{dS_{t}}{C} = r dt + \sigma dWt \qquad (981) \text{ under } Q$

Option that is of European type

Payoff = $\phi(S_T)$

then the V(t, s) = value of applier at time t when stock price is S

Solves: $\frac{\partial V}{\partial t} + r \frac{\partial V}{\partial S} + \frac{1}{2} e^{2S^2} \frac{\partial^2 V}{\partial S^2} - r V = 0$ $V(T,S) = (S-K)_{+}$ $\frac{\partial^2 U}{\partial t^2} + \frac{\partial^2 U}{\partial S^2} = 0$ $\frac{\partial^2 U}{\partial t^2} - \frac{\partial^2 U}{\partial S^2} = 0$ Wave e^{2S} $\frac{\partial^2 U}{\partial t^2} - \frac{\partial^2 U}{\partial S^2} = 0$ Wave e^{2S} $\frac{\partial^2 U}{\partial t^2} - \frac{\partial^2 U}{\partial S^2} = 0$ Heat eg.)

Implied volatility

$$dS_t = rS_t dt + \sigma S_t dW_t$$

$$\begin{array}{c}
\left(\left(S_{t}, K_{1}, \tau\right) \\
\uparrow \\
S_{t} \\
\end{array}\right) \xrightarrow{\left(\left(S_{t}, K_{1}, \tau\right)\right)}$$

Owned numbers
$$1 \text{ mosth} = \frac{1}{12}, \frac{30}{365} / \frac{25}{252}$$

$$\frac{S}{\left(S'+C'V''V''\right)} = \left(\left(S'+C'V''V'\right) = \frac{1}{2}\left(S'+C'V''V''V''\right)$$

Find 5 that is implied by the option price CASECR.d
implied volatility

find x s. + fix = y

Bisetor Whad

A fruition where root in [a,6] changes sign!

Start with a_1b , f(x)Fart with a_1b , f(x)Fart with a_1b , f(x)Fart with a_1b , f(x)Figure f(x) for f(x) f

While (1b-a) >
$$\epsilon$$
) do
if $(f(a)f(a^{+b})<0)$ then $(b=a^{+b})$ else $(a=a^{+b})$

else
$$\left(\alpha = \frac{\alpha + 1}{2}\right)$$

return atb

Thursday, January 24, 2019 8:49 PM

