AMENDMENTS TO THE CLAIMS:

The listing of claims will replace all prior versions, and listings of claims in the application:

LISTING OF THE CLAIMS

- 1. (Currently amended) A lighting apparatus for emitting white light comprising:
 - a light source emitting radiation at from about 250 nm to about 550 nm; and
 - a phosphor composition radiationally coupled to the light source, the phosphor composition comprising $(Tb_{1-x-y-z-w}Y_xGd_yLu_zCe_w)_3M_rAl_{s-r}O_{12+\delta}$, where M is selected from Sc, In, Ga, Zn, or Mg, and where $0 < w \le 0.3$, 0 < x < 1, $0 < y \le 0.4$, $0 \le z < 1$, $0 \le x < 1$, $0 \le$
- 2. (Original) The lighting apparatus of claim 1, wherein the light source is a semiconductor light emitting diode (LED) emitting radiation having a wavelength in the range of from about 350 to about 550 nm.
- 3. (Original) The lighting apparatus of claim 2, wherein the LED comprises a nitride compound semiconductor represented by the formula $In_iGa_jAl_kN$, where $0 \le i$; $0 \le j$, $0 \le K$, and i + j + k = 1.
- 4. (Original) The lighting apparatus of claim 1, wherein the light source is an organic emissive structure.
- 5. (Original) The lighting apparatus of claim 1, wherein the phosphor composition is coated on the surface of the light source.
- 6. (Original) The lighting apparatus of claim 1, further comprising an encapsulant surrounding the light source and the phosphor composition.
- 7. (Original) The lighting apparatus of claim 1, wherein the phosphor composition is dispersed in the encapsulant.

- 8. (Original) The lighting apparatus of claim 1, further comprising a reflector cup.
- (Original) The lighting apparatus of claim 1, wherein said phosphor composition comprises (Tb_{0.57}Ce_{0.03}Y_{0.2}Gd_{0.2})₃Al_{4.9}O_{12+δ}.
- 10. (Original) The lighting apparatus of claim 1, wherein said phosphor composition further comprises one or more additional phosphor.
- (Currently amended) The lighting apparatus of claim 10, wherein said 11. one or more additional phosphors are selected from the group consisting of (Ba,Sr,Ca)₅(PO₄)₃(CI,F,Br,OH):Eu²⁺,Mn²⁺,Sb³⁺; (Ba,Sr,Ca)MgAl₁₀O₁₇:Eu²⁺,Mn²⁺; (Ba,Sr,Ca)BPO₅:Eu²⁺,Mn²⁺; $(Sr,Ca)_{10}(PO_4)_6*nB_2O_3:Eu^{2+}; 2SrO*0.84P_2O_5*0.16B_2O_3:Eu^{2+};$ Sr₂Si₃O_{8*}2SrCl₂:Eu²⁺; Ba₃MgSi₂O₈:Eu²⁺; Sr₄Al₁₄O₂₅:Eu²⁺; BaAl₈O₁₃:Eu²⁺; Sr₄Al₄₄O₂₅;Eu²⁺; BaAl₈O₁₃;Eu²⁺; 2SrO-0.84P₂O_{5-0.16}B₂O₃;Eu²⁺; (Ba,Sr,Ca)MgAl₁₀O₁₇:Eu²⁺,Mn²⁺; (Ba,Sr,Ca)₅(PO₄)₃(Cl,F,OH):Eu²⁺,Mn²⁺,Sb³⁺; $(Ba,Sr,Ca)MgAl_{40}O_{17}:Eu^{2+},Mn^{2+};$ (Ba,Sr,Ca)Al₂O₄:Eu²⁺; (Y,Gd,Lu,Sc,La)BO₃:Ce³⁺,Tb³⁺; Ca₈Mg(SiO₄)₄Cl₂:Eu²⁺,Mn²⁺; $(Ba,Sr,Ca)_2SiO_4:Eu^{2+}; (Ba,Sr,Ca)_2(Mg,Zn)Si_2O_7:Eu^{2+};$ $(Sr,Ca,Ba)(Al,Ga,In)_2S_4:Eu^{2+};(Y,Gd,Tb,La,Sm,Pr,Lu)_3(Al,Ga)_5O_{12}:Ce^{3+};$ $(Ca,Sr)_8(Mg,Zn)(SiO_4)_4Cl_2:Eu^{2+},Mn^{2+}$ $(CASI)_7:Na_2Gd_2B_2O_7:Ce^{3+},Tb^{3+};$ $(Ba,Sr)_2(Ca,Mg,Zn)B_2O_6:K,Ce,Tb; (Sr,Ca,Ba,Mg,Zn)_2P_2O_7:Eu^{2+},Mn^{2+} (SPP);$ $(Ca.Sr.Ba.Mg)_{10}(PO_4)_6(F,Cl,Br,OH):Eu^{2+},Mn^{2+}; (Gd,Y,Lu,La)_2O_3:Eu^{3+},Bi^{3+};$ (Gd,Y,Lu,La)₂O₂S:Eu³⁺,Bi³⁺; (Gd,Y,Lu,La)VO₄:Eu³⁺,Bi³⁺; (Ca,Sr)S:Eu²⁺; SrY₂S₄:Eu²⁺; CaLa₂S₄:Ce³⁺; (Ca,Sr)S:Eu²⁺; 3.5MgO*0.5MgF₂*GeO₂:Mn⁴⁺; $(Ba,Sr,Ca)MgP_2O_7:Eu^{2+},Mn^{2+};(Y,Lu)_2WO_6:Eu^{3+},Mo^{6+};(Ba,Sr,Ca)_xSi_vN_z:Eu^{2+}.$
- 12. (Canceled)
- 13. (Original) The lighting apparatus of claim 1, wherein said lighting apparatus has a CCT value from about 2500 to 8000.

- 14. (Original) The lighting apparatus of claim 1, wherein said lighting apparatus has a CRI value of greater than 60.
- 15. (Original) A lighting apparatus for emitting white light comprising:

 a light source emitting radiation at from about 250 to about 550 nm; and

a phosphor composition radiationally coupled to the light source, the phosphor composition comprising $(RE_{1-x}Sc_xCe_y)_2A_{3-p}B_pSi_{z-q}Ge_qO_{12+\delta}$, where RE is selected from a lanthanide ion or Y³⁺, A is selected from Mg, Ca, Sr, or Ba, B is selected from Mg and Zn, and where $0 \le p \le 3$, $0 \le q \le 3$, $2.5 \le z \le 3.5$, $0 \le x < 1$, $0 < y \le 0.3$, $-1.5 \le \delta \le 1.5$.

- 16. (Original) The lighting apparatus of claim 15, wherein the light source is a semiconductor LED emitting radiation having a wavelength in the range of from about 350 to about 550 nm.
- 17. (Original) The lighting apparatus of claim 16, wherein the LED comprises a nitride compound semiconductor represented by the formula $In_iGa_jAl_kN$, where $0 \le i$; $0 \le j$, $0 \le K$, and i + j + k = 1.
- 18. (Original) The lighting apparatus of claim 15, wherein said light source is an organic emissive structure.
- 19. (Original) The lighting apparatus of claim 15, wherein the phosphor composition is coated on the surface of the light source.
- 20. (Original) The lighting apparatus of claim 15, further comprising an encapsulant surrounding the light source and the phosphor composition.
- 21. (Original) The lighting apparatus of claim 15, wherein the phosphor composition is dispersed in the encapsulant.
- 22. (Original) The lighting apparatus of claim 15, further comprising a reflector cup.

- 23. (Original) The lighting apparatus of claim 15, wherein said phosphor composition comprises (Lu_{0.955}Ce_{0.045})₂CaMg₂Si₃O₁₂.
- 24. (Original) The lighting apparatus of claim 15, wherein said phosphor composition comprises two or more distinct phosphors having the formula $(RE_{1-x}Sc_xCe_y)_2A_{3-p}B_pSi_{z-q}Ge_qO_{12+\delta}$, where RE is selected from a lanthanide ion or Y³⁺, A is selected from Mg, Ca, Sr, or Ba, B is selected from Mg and Zn, and where $0 \le p \le 3$, $0 \le q \le 3$, $2.5 \le z \le 3.5$, $0 \le x < 1$, $0 < y \le 0.3$, $-1.5 \le \delta \le 1.5$, wherein each of said distinct phosphors has a different emission spectrum.
- 25. (Original) The lighting apparatus of claim 15, wherein said phosphor composition further comprises one or more additional phosphors.
- The lighting apparatus of claim 25, wherein said 26. (Currently amended) one or more additional phosphors are selected from the group consisting of (Ba,Sr,Ca)₅(PO₄)₃(Cl,F,Br,OH):Eu²⁺,Mn²⁺,Sb³⁺; (Ba,Sr,Ca)MgAl₁₀O₁₇:Eu²⁺,Mn²⁺; (Ba,Sr,Ca)BPO₅:Eu²⁺,Mn²⁺; $(Sr,Ca)_{10}(PO_4)_6*nB_2O_3:Eu^{2+}; 2SrO*0.84P_2O_5*0.16B_2O_3:Eu^{2+};$ $Sr_2Si_3O_{8^*}2SrCl_2:Eu^{2^+}; Ba_3MgSi_2O_8:Eu^{2^+}; Sr_4Al_{14}O_{25}:Eu^{2^+}; BaAl_8O_{13}:Eu^{2^+};$ $Sr_4Al_{14}O_{25}:Eu^{2+}; BaAl_8O_{13}:Eu^{2+}; 2SrO-0.84P_2O_{5-0.16}B_2O_3:Eu^{2+};$ (Ba,Sr,Ca)MgAl₄₀O₄₇;Eu²⁺,Mn²⁺; (Ba,Sr,Ca)₅(PO₄)₃(Cl,F,OH);Eu²⁺,Mn²⁺,Sb³⁺; $(Ba,Sr,Ca)MgAl_{10}O_{17}:Eu^{2+},Mn^{2+}; (Ba,Sr,Ca)Al_2O_4:Eu^{2+};$ (Y,Gd,Lu,Sc,La)BO₃:Ce³⁺,Tb³⁺; Ca₈Mg(SiO₄)₄Cl₂:Eu²⁺,Mn²⁺; (Ba,Sr,Ca)₂SiO₄:Eu²⁺; (Ba,Sr,Ca)₂(Mg,Zn)Si₂O₇:Eu²⁺; $(Sr,Ca,Ba)(Al,Ga,In)_2S_4:Eu^{2+}; (Y,Gd,Tb,La,Sm,Pr,Lu)_3(Al,Ga)_5O_{12}:Ce^{3+};$ $(Ca,Sr)_8(Mg,Zn)(SiO_4)_4Cl_2:Eu^{2+},Mn^{2+}$ $(CASI)_7:Na_2Gd_2B_2O_7:Ce^{3+},Tb^{3+};$ (Ba,Sr)₂(Ca,Mg,Zn)B₂O₆:K,Ce,Tb; (Sr,Ca,Ba,Mg,Zn)₂P₂O₇:Eu²⁺,Mn²⁺ (SPP); $(Ca,Sr,Ba,Mg)_{10}(PO_4)_6(F,CI,Br,OH):Eu^{2+},Mn^{2+}; (Gd,Y,Lu,La)_2O_3:Eu^{3+},Bi^{3+};$ (Gd,Y,Lu,La)₂O₂S:Eu³⁺,Bi³⁺; (Gd,Y,Lu,La)VO₄:Eu³⁺,Bi³⁺; (Ca,Sr)S:Eu²⁺; SrY₂S₄:Eu²⁺; CaLa₂S₄:Ce³⁺; (Ca,Sr)S:Eu²⁺; 3.5MgO*0.5MgF₂*GeO₂:Mn⁴⁺; $(Ba,Sr,Ca)MgP_2O_7:Eu^{2+},Mn^{2+};(Y,Lu)_2WO_6:Eu^{3+},Mo^{6+};(Ba,Sr,Ca)_xSi_vN_z:Eu^{2+}.$

- 27. (Original) The lighting apparatus of claim 15, further comprising a (Tb,Y)₃Al_{4.9}O_{12-δ}:Ce³⁺ phosphor wherein -1≤δ≤1.
- 28. (Original) The lighting apparatus of claim 15, wherein 2.9 ≤z ≤3.1.
- 29 (Original) The lighting apparatus of claim 15, wherein $0 \le q/(z-q) \le 0.5$.
- 30. (Original) The lighting apparatus of claim 15, wherein A is Ca.
- 31. (Original) The lighting apparatus of claim 15, wherein A is Mg.
- 32. (Original) The lighting apparatus of claim 15, wherein B is Mg.
- 33. (Original) The lighting apparatus of claim 15, wherein $y \le 0.05$.
- 34. (Original) The lighting apparatus of claim 15, wherein said lighting apparatus has a CCT value from about 2500 to 8000.
- 35. (Original) The lighting apparatus of claim 15, wherein said lighting apparatus has a CRI value of greater than 60.
- 36. (Currently amended) A phosphor composition comprising ($Tb_{1-x-y-z-w}Y_xGd_yLu_zCe_w$) $_3M_rAl_{s-r}O_{12+\delta}$, where M is selected from Sc, In, Ga, Zn, or Mg, and where $0 < w \le 0.3$, 0 < x < 1, $0 < y \le 0.4$, $0 \le z < 1$ $0 \le x < 1$, $0 \le y \le 0.4$, $0 \le z < 1$, $0 \le x < 1$, $0 \le x$
- 37. (Original) The phosphor composition according to claim 36 comprising $(\mathsf{Tb}_{0.57}\mathsf{Ce}_{0.03}\mathsf{Y}_{0.2}\mathsf{Gd}_{0.2})_3\mathsf{Al}_{4.9}\mathsf{O}_{12+\delta}.$
- 38. (Original) The phosphor composition according to claim 36, wherein said phosphor composition is capable of absorbing the radiation emitted by a light source emitting from 400-500 nm and emitting radiation that, when combined with said radiation from said light source, produces white light.

- 39. (Original) A phosphor composition comprising $(RE_{1-x}Sc_xCe_y)_2A_{3-p}B_pSi_{z-q}Ge_qO_{12+\delta}$, where RE is selected from a lanthanide ion or Y^{3+} , A is selected from Mg, Ca, Sr, or Ba, B is selected from Mg and Zn, and where $0 \le p \le 3$, $0 \le q \le 3$, $2.5 \le z \le 3.5$, $0 \le x < 1$, $0 < y \le 0.3$, $-1.5 \le \delta \le 1.5$.
- 40. (Original) The phosphor composition according to claim 39, wherein 2.9 ≤z ≤3.1.
- 41. (Original) The phosphor composition according to claim 39, wherein $0 \le q/(z-q) \le 0.5$.
- 42. (Original) The phosphor composition according to claim 39, wherein A is Ca.
- 43. (Original) The phosphor composition according to claim 39, wherein A is Mg.
- 44. (Original) The phosphor composition according to claim 39, wherein B is Mg.
- 45. (Original) The phosphor composition according to claim 39, wherein y ≤ 0.05.
- 46. (Original) The phosphor composition according to claim 39 comprising $(Lu_{0.955}Ce_{0.045})_2CaMg_2Si_3O_{12}$.
- 47. (Original) The phosphor composition according to claim 39, wherein said phosphor composition is capable of absorbing the radiation emitted by a light source emitting from 400-500 nm and emitting radiation that, when combined with said radiation from said light source, produces white light.
- 48. (Original) A phosphor blend including a first phosphor selected from the group consisting of $(Tb,Y)_3Al_{4.9}O_{12-\delta}:Ce^{3+}$ wherein $-1 \le \delta \le 1$ and $(Tb_{1-x-y-z-w}Y_xGd_yLu_zCe_w)_3M_rAl_{s-r}O_{12+\delta}$, where M is selected from Sc, In, Ga, Zn, or Mg,

and where $0 < w \le 0.3$, $0 \le x < 1$, $0 \le y \le 0.4$, $0 \le z < 1$, $0 \le r \le 4.5$, $4.5 \le s \le 6$, and $-1.5 \le \delta \le 1.5$, and a second phosphor having the formula $(RE_{1-x}Sc_xCe_y)_2A_{3-p}B_pSi_{z-q}Ge_qO_{12+\delta}$, where RE is selected from a lanthanide ion or Y^{3+} , A is selected from Mg, Ca, Sr, or Ba, B is selected from Mg and Zn, and where $0 \le p \le 3$, $0 \le q \le 3$, $2.5 \le z \le 3.5$, $0 \le x < 1$, $0 < y \le 0.3$, $-1.5 \le \delta \le 1.5$.

- 49. (Currently amended) A phosphor composition comprising (Ca_{1-x-y-z}Sr_xBa_yCe_z)₃(Sc_{1-a-b}Lu_aD_c)₂Si_{n-w}Ge_wO_{12+ δ}, where D is either Mg or Zn, 0≤x<1, 0≤y<1, 0<z≤0.3, 0≤a≤1, 0≤c≤1, 0≤w≤1 0≤w≤3, 2.5≤n≤3.5, and -1.5≤ δ ≤1.5.
- 50. (Currently amended) The phosphor composition according to claim 49, comprising Ca₃Sc₂Si_nGe_wO₁₂:Ce³⁺ Ca₃Sc₂(Si_xGe_{1-x})₃O₁₂:Ce³⁺, wherein x is from 0.67 to 1.9.
- 51. (Original) The phosphor composition according to claim 50, comprising Ca₃Sc₂Si₃O₁₂:Ce³⁺.
- 52. (Currently amended) The phosphor composition according to claim 50, comprising (Ca_{0.99}Ce_{0.01})₃Sc₂Si₃O₁₂:Ce³⁺.
- 53. (Original) The phosphor composition according to claim 49, wherein said phosphor composition is capable of absorbing radiation having a wavelength of from about 250 to about 490 nm and emitting radiation with an emission maximum at about 505 nm.
- 54. (Original) The phosphor composition according to claim 49, wherein 2.9 ≤n ≤3.1.
- 55. (Canceled)
- 56. (Original) The phosphor composition according to claim 49, wherein x ≤ 0.1.

- 57. (Original) The phosphor composition according to claim 49, wherein y ≤0.1.
- 58. (Original) The phosphor composition according to claim 49, wherein $z \le 0.05$.
- 59. (Original) The phosphor composition according to claim 49, wherein a ≤ 0.10.
- 60. (Canceled)
- 61. (Canceled)
- 62. (Canceled)
- 63. (Original) The phosphor composition according to claim 49, further comprising $(Tb_{1-x-y-z-w}Y_xGd_yLu_zCe_w)_3M_rAl_{s-r}O_{12+\delta}$, where M is selected from Sc, In, Ga, Zn, or Mg, and where $0 < w \le 0.3$, $0 \le x < 1$, $0 \le y \le 0.4$, $0 \le z < 1$, $0 \le r \le 4.5$, $4.5 \le s \le 6$, and $-1.5 \le \delta \le 1.5$; and $(RE_{1-x}Sc_xCe_y)_2A_{3-p}B_pSi_{z-q}Ge_qO_{12+\delta}$, where RE is selected from a lanthanide ion or Y^{3+} , A is selected from Mg, Ca, Sr, or Ba, B is selected from Mg and Zn, and where $0 \le p \le 3$, $0 \le q \le 3$, $2.5 \le z \le 3.5$, $0 \le x < 1$, $0 < y \le 0.3$, $-1.5 \le \delta \le 1.5$.
- 64. (Original) A lighting apparatus comprising a light source emitting radiation having an emission wavelength of from about 250 to about 500 nm and a phosphor composition comprising (Ca_{1-x-y-z}Sr_xBa_yCe_z)₃(Sc_{1-a-b}Lu_aD_c)₂Si_{n-w}Ge_wO_{12+δ}, where D is either Mg or Zn, 0≤x<1, 0≤y<1, 0<z≤0.3, 0≤a≤1, 0≤c≤1, 0≤w≤3, 2.5≤n≤3.5, and −1.5≤δ≤1.5.
- 65. (Original) The lighting apparatus of claim 64, wherein said lighting apparatus is a white light emitting device.
- 66. (Original) The lighting apparatus of claim 64, further comprising one or more additional phosphors.

- The lighting apparatus of claim 66, wherein said 67. (Currently amended) one or more additional phosphors are selected from the group consisting of $(Ba,Sr,Ca)_5(PO_4)_3(Cl,F,Br,OH):Eu^{2+},Mn^{2+},Sb^{3+};$ (Ba,Sr,Ca)MgAl₁₀O₁₇:Eu²⁺,Mn²⁺; (Ba,Sr,Ca)BPO₅:Eu²⁺,Mn²⁺; $(Sr,Ca)_{10}(PO_4)_6*nB_2O_3:Eu^{2+}; 2SrO*0.84P_2O_5*0.16B_2O_3:Eu^{2+};$ Sr₂Si₃O₈,2SrCl₂:Eu²⁺; Ba₃MgSi₂O₈:Eu²⁺; Sr₄Al₁₄O₂₅:Eu²⁺; BaAl₈O₁₃:Eu²⁺; $Sr_4Al_{14}O_{25}:Eu^{2+}; BaAl_8O_{13}:Eu^{2+}; 2SrO_{-0.84}P_2O_{5_{-0.16}}B_2O_3:Eu^{2+};$ (Ba,Sr,Ca)MgAI₁₀O₁₇:Eu²⁺,Mn²⁺; (Ba,Sr,Ca)₆(PO₄)₃(CI,F,OH):Eu²⁺,Mn²⁺,Sb³⁺; (Ba,Sr,Ca)MgAl₄₀O_{4z}:Eu²⁺,Mn²⁺; (Ba,Sr,Ca)Al₂O₄:Eu²⁺; (Y,Gd,Lu,Sc,La)BO₃:Ce³⁺,Tb³⁺; Ca₈Mg(SiO₄)₄Cl₂:Eu²⁺,Mn²⁺; (Ba,Sr,Ca)₂SiO₄:Eu²⁺; (Ba,Sr,Ca)₂(Mg,Zn)Si₂O₇:Eu²⁺; (Sr,Ca,Ba)(Al,Ga,In)₂S₄:Eu²⁺; (Y,Gd,Tb,La,Sm,Pr,Lu)₃(Al,Ga)₅O₁₂:Ce³⁺; $(Ca,Sr)_8(Mg,Zn)(SiO_4)_4CI_2:Eu^{2+},Mn^{2+}$ $(CASI)_7:Na_2Gd_2B_2O_7:Ce^{3+},Tb^{3+};$ (Ba,Sr)₂(Ca,Mg,Zn)B₂O₆:K,Ce,Tb; (Sr,Ca,Ba,Mg,Zn)₂P₂O₇:Eu²⁺,Mn²⁺ (SPP); (Ca,Sr,Ba,Mg)₁₀(PO₄)₆(F,Cl,Br,OH):Eu²⁺,Mn²⁺; (Gd,Y,Lu,La)₂O₃:Eu³⁺,Bi³⁺; (Gd.Y.Lu.La)₂O₂S:Eu³⁺.Bi³⁺: (Gd.Y.Lu,La)VO₄:Eu³⁺,Bi³⁺: (Ca,Sr)S:Eu²⁺: SrY₂S₄:Eu²⁺; CaLa₂S₄:Ce³⁺; (Ca,Sr)S:Eu²⁺; 3.5MgO*0.5MgF₂*GeO₂:Mn⁴⁺; $(Ba,Sr,Ca)MgP_2O_7:Eu^{2+},Mn^{2+}; (Y,Lu)_2WO_6:Eu^{3+},Mo^{6+}; (Ba,Sr,Ca)_xSi_vN_z:Eu^{2+}.$
- 68. (Currently amended) The lighting apparatus of claim 64, further comprising at least one phosphor selected from the group consisting of $(Tb_{1-x-y-z-w}Y_xGd_yLu_zCe_w)_3M_rAl_{s-r}O_{12+\delta}$, where M is selected from Sc, In, Ga, Zn, or Mg, and where $0 < w \le 0.3$, $0 \le x < 1$, $0 \le y \le 0.4$, $0 \le z < 1$, $0 \le r \le 4.5$, $4.5 \le s \le 6$, and $-1.5 \le \delta \le 1.5$, and further wherein at least one of y or z is >0; $(RE_{1-x}Sc_xCe_y)_2A_{3-p}B_pSi_{z-q}Ge_qO_{12+\delta}$, where RE is selected from a lanthanide ion or Y^{3+} , A is selected from Mg, Ca, Sr, or Ba, B is selected from Mg and Zn, and where $0 \le p \le 3$, $0 \le q \le 3$, $2.5 \le z \le 3.5$, $0 \le x < 1$, $0 < y \le 0.3$, $-1.5 \le \delta \le 1.5$; and $(Tb, Y)_3Al_{4.9}O_{12-\delta}$. Ce^{3+} wherein $-1 \le \delta \le 1$.
- 69. (Original) The lighting apparatus of claim 64, wherein the light source is a semiconductor light emitting diode.

- 70. (Original) The lighting apparatus of claim 64, wherein said lighting apparatus has a CRI value of greater than 60.
- 71. (Original) The lighting apparatus of claim 64, wherein said phosphor comprises Ca₃Sc₂(Si_xGe_{1-x})₃O₁₂:Ce³⁺, wherein x is from 0.67 to 1.0.
- 72. (Original) The lighting apparatus of claim 64, wherein said phosphor comprises Ca₃Sc₂Si₃O₁₂:Ce³⁺.
- 73. (Currently amended) The lighting apparatus of claim 64, wherein said phosphor comprises $(Ca_{0.99}Ce_{0.01})_3Sc_2Si_3O_{12}$: Ce^{3+} .