1999 年清华大学硕士生入学考试电路原理试题

- 一、(16分)完成下列各题
- (1) 已知图 1(a)中 C_1 , C_2 , C_3 , 求 C_{12} , C_{23} , C_{31} .

(2) 求图 1(b) 所示电路中的电流 I(运算放大器为理想运算放大器)。

- (3) 定性画出图 1(c)电路中电压 u_R的波形。
- (4) 图 1(d)电路中 u_s=sinωt V。求 ω 为多少时 u_o落后 u_s。

二、(8 分) 求图 2 电路中流过电阻 R 的电流 I_R 。

三、(8分)图 3 电路中,已知 $R_1 = 20$ Ω, $R_2 = 10$ Ω, $\omega L_1 = 6$ Ω, $\omega L_2 = 4$ Ω, $\omega M = 2$ Ω, $\frac{1}{\omega C} = 16$ Ω, $u_S = 100 + 50\sin(2\omega t + 10^\circ)$ V.

求:(1)电流i及i的有效值I。

(2) 求电阻 R₁和 R₂各自吸收的有功功率。

欢迎访问慧易升考研网: www.eduhys.com 下载更多清华大学电路原理考研资料 四、(8分)图4电路中,已知工频对称三相电源线电压 uab =

 $380\sqrt{2}\sin(314t+30^{\circ})$ V, 电动机负载三相总功率 P=1.7 kW, $\cos\varphi=0.8$, 对称三相负载阻抗 Z=50+j80 Ω .

- (1) 求三相电源发出的有功功率和无功功率;
- (2) 为使电源端功率因数提高到 $\cos \varphi = 0.9$,在负载处并联一组三相电容(星形联接),求所需电容 C。

五、(6 分)一线性电路,其冲激响应 h(t)和 e(t)的波形如图 5 所示。试用卷积积分求响应 r(t)(卷积结果用时间分段形式表示,分别写出上下限)。

六、 $(8 \, \mathcal{G})$ 电路如图 $6 \, \text{所示}$ 。已知 $u_{c}(0^{-})=1 \, V, i_{L}(0^{-})=2 \, A$ 。用运算法(拉普拉斯变换法)求电容电压 $u_{c}(t)(t \geq 0)$ 。

七、(8分) 电路如图 7 所示。

(1) 以 1,2,3 支路为树支写出关联矩阵 A;基本回路矩阵 B;

基本割集矩阵Q。

(2) 列写以 u_c , i_L 为状态变量的状态方程, 并整理成标准形式。

八、 $(8\, \mathcal{G})$ 图 8 电路中方框部分为含独立源和电阻的网络。 当 ab 端口短接时, R 支路的电流为 I_{si} ; 当端口 ab 开路时, R 支路

欢迎访问意**物**鬼滴为I- \mathfrak{S}^{2} - \mathfrak{S}

欢迎访问慧易升考研网: www.eduhys.com 九、(8分) 试证明图 9 电路在频率 $f = \frac{1\Gamma$ 载更多清华大学电路原理考研资料 $2\pi\sqrt{LC}$

支路电流与RI无关。

十、(8分) 图 10 所示电路中储能元件无初始储能。 $i_s = 2 \delta(t) A, u_s = 10 \sin 2t \epsilon(t) V$ 。试用时域分析法求 $i_L n u_c$ 。

十一、 $(8\,
m eta)$ 已知图 11(a)中二端口 N 的传输参数为 $T=\begin{bmatrix} 1.5 & 2.5 \ \Omega \\ 0.5 \ S & 1.5 \end{bmatrix}$,负载电阻 R 为非线性电阻,其伏安特性如图 11 (b) 所示。求非线性电阻 R 上的电压和电流。

十二、(6分) 图 12 电路中,11′两端接恒定电压 U。已知在 t = 0 时,将一未充电的电容 $C = \frac{1}{3}$ F 接至 22'后(图 12(a)),33′两端电压为 $u_{01} = \frac{1}{2} + \frac{1}{8} e^{-\frac{3}{4}t}$ V(t>0)。现将此未充电的电容与一无储能的电感 L=1 H 串联,在 t=0 时接至 22'端(图 12(b))。求 LC 接入后 33'两端的电压 u_{02} 。

欢迎访问慧易升考研网: www.eduhys.com

₱我更多清华大学电路原理考研资料·