In []: #/ default_exp assignment_part_1

Laplace Transforms

1. Calculate the Laplace Transform $\boldsymbol{X}(s)$ of the signal $\boldsymbol{x}(t)$:

$$x(t) = (4t - 3cos(5t))e^{-2t}$$

1. Calculate the Inverse Laplace Transform g(t) of the transfer function G(s):

$$G(s) = 2 + rac{3}{2s^3 + 3s^2 + s}$$

Block Diagrams

1. Calculate the equivalent transfer function $G_t(s)=rac{Y(s)}{X(s)}$ of the following block diagram:

System Response

- 1. Write the transfer function to a step input of a second order system characterised by:
- Static gain G(0) = 5
- ullet Damping ratio $\xi=0.5$
- ullet Settling time $t_s=3s$
- No zeros
- 1. Plot the qualitative behaviour of the step response of the system:

$$G(s) = rac{20(3+0.1s)(s^2+10s+160)}{(2s+10)(0.1s+5)(s^2+2s+400)}$$

- 1. For the system G(s) defined above, calculate:
- ullet Its steady state value y_∞ to a step input (when $t o\infty$)
- ullet Its settling time t_s
- ullet If the system oscillates, calculate the period T_ω of the oscillation

Routh Criterion

1. Determine the values of K for which the following feedback system is asymptotically stable:

Bode Plots

1. Plot the Bode amplitude and phase plots for the system $G_d(s)$ discussed in question 7.