

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Adder, Subtractor, Overflow - 1

Reetinder Sidhu

Department of Computer Science and Engineering

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Adder, Subtractor, Overflow - 1

Reetinder Sidhu

Department of Computer Science and Engineering

Course Outline

- Digital Design
 - Combinational logic design
 - * Adder, Subtractor, Overflow 1
 - Sequential logic design
- Computer Organization
 - Architecture (microprocessor instruction set)
 - Microarchitecure (microprocessor operation)

Concepts covered

- Unsigned Binary Numbers
- Signed (Two's Complement) Binary Numbers
- Binary Addition

Binary Number Representation (Unsigned)

Binary	Decimal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Three bit binary numbers (unsigned)

• Unsigned number representation: $m = \sum_{i=0}^{n-1} x_i \times 2^i$

- Logic circuits handle only a fixed number of bits
 - So result may not fit leading to Overflow
- Logic circuits cannot directly represent minus sign
 - So need signed number representation

Binary Number Representation (Unsigned)

Binary	Decimal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Three bit binary numbers (unsigned)

• Unsigned number representation: $m = \sum_{i=0}^{n-1} x_i \times 2^i$

- Logic circuits handle only a fixed number of bits
 - So result may not fit leading to Overflow
- Logic circuits cannot directly represent minus sign
 - So need signed number representation

Binary Number Representation (Unsigned)

Binary	Decimal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Three bit binary numbers (unsigned)

• Unsigned number representation: $m = \sum_{i=0}^{n-1} x_i \times 2^i$

- Logic circuits handle only a fixed number of bits
 - So result may not fit leading to Overflow
- Logic circuits cannot directly represent minus sign
 - So need signed number representation

Binary Number Representation (Unsigned)

Binary	Decimal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Three bit binary numbers (unsigned)

• Unsigned number representation: $m = \sum_{i=0}^{n-1} x_i \times 2^i$

- Logic circuits handle only a fixed number of bits
 - So result may not fit leading to Overflow
- Logic circuits cannot directly represent minus sign
 - So need signed number representation

Binary Number Representation (Unsigned)

Binary	Decimal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Three bit binary numbers (unsigned)

• Unsigned number representation: $m = \sum_{i=0}^{n-1} x_i \times 2^i$

- Logic circuits handle only a fixed number of bits
 - So result may not fit leading to Overflow
- Logic circuits cannot directly represent minus sign
 - So need signed number representation

Binary Number Representation (Unsigned)

Binary	Decimal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Three bit binary numbers (unsigned)

• Unsigned number representation: $m = \sum_{i=0}^{n-1} x_i \times 2^i$

- Logic circuits handle only a fixed number of bits
 - So result may not fit leading to Overflow
- Logic circuits cannot directly represent minus sign
 - So need signed number representation

Binary Number Representation (Two's Complement)

- Intuition behind two's complement representation:
 - Incrementing the 3-bit number 110 yields 111 and incrementing again yields 000
 - So decrementing 000 yields 111 and decrementing again yields 110
 - ► Thus 111 can represent -1, 110 can represent -2 and so on . . .

Decimal
0
1
2
3
-4
-3
-2
-1

Three bit binary numbers (two's complement)

- Twos complement number representation: $m = -x_{n-1}2^{n-1} + \sum_{i=0}^{n-2} x_i \times 2^i$
- For 3-bit numbers, range shift from 0–7 to -4–3

Adder, Subtractor, Overflow - 1 Two's Complement of a Number

Two's Complement Procedure

Taking the two's complement of a number reverses the sign of the number:

- Invert each bit of the number^a
- Add 1 to the number obtained

^aStep 1 called one's complement.

Two's Complement Example

Consider the 4-bit number 0101 (5 in decimal):

- Inverting all bits yields 1010
- 2 Adding 1 yields 1011, which represents -5
- Taking two's complement of 1011 reverses the sign again yielding 0101

Two's Complement Addition

Two's Complement Addition Algorithm Example

- If inputs are interpreted as unsigned numbers, the output can be interpreted as their sum represented as an unsigned number
- If inputs are interpreted as two's complement numbers, the output can be interpreted as their sum represented as a two's complement number
- A key property of the two's complement representation

Two's Complement Addition

Two's Complement Addition Algorithm Example

- If inputs are interpreted as unsigned numbers, the output can be interpreted as their sum represented as an unsigned number
- If inputs are interpreted as two's complement numbers, the output can be interpreted as their sum represented as a two's complement number
- A key property of the two's complement representation

Two's Complement Addition

Two's Complement Addition Algorithm Example

- If inputs are interpreted as unsigned numbers, the output can be interpreted as their sum represented as an unsigned number
- If inputs are interpreted as two's complement numbers, the output can be interpreted as their sum represented as a two's complement number
- A key property of the two's complement representation

Two's Complement Addition

Two's Complement Addition Algorithm Example

- If inputs are interpreted as unsigned numbers, the output can be interpreted as their sum represented as an unsigned number
- If inputs are interpreted as two's complement numbers, the output can be interpreted as their sum represented as a two's complement number
- A key property of the two's complement representation

Two's Complement Addition

Two's Complement Addition Algorithm Example

- If inputs are interpreted as unsigned numbers, the output can be interpreted as their sum represented as an unsigned number
- If inputs are interpreted as two's complement numbers, the output can be interpreted as their sum represented as a two's complement number
- A key property of the two's complement representation

Two's Complement Addition

Two's Complement Addition Algorithm Example

- If inputs are interpreted as unsigned numbers, the output can be interpreted as their sum represented as an unsigned number
- If inputs are interpreted as two's complement numbers, the output can be interpreted as their sum represented as a two's complement number
- A key property of the two's complement representation

Two's Complement Addition

Two's Complement Addition Algorithm Example

- If inputs are interpreted as unsigned numbers, the output can be interpreted as their sum represented as an unsigned number
- If inputs are interpreted as two's complement numbers, the output can be interpreted as their sum represented as a two's complement number
- A key property of the two's complement representation

Basic Definitions

PES UNIVERSITY ONLINE

- Sign extension
- Hexadecimal number representation
- Most Sgnificant Bit (msb)
- Least Sgnificant Bit (Isb)
- Most Sgnificant Byte (MSB)
- Least Sgnificant Byte (LSB)
- Bit, nibble, byte
- Kilobit (Kb), Megabit (Mb) and Gigabit (Gb)
- Kilobyte (KB), Megabyte (MB) and Gigabyte (GB)

Think About It

Another Binary Addition

- Add the binary numbers 0111 and 1011. Does the output make sense if inputs are interpreted as:
 - Unsigned binary numbers
 - Signed, two's complement numbers
- Hint: may need to remove overflow bit

Two's Complement Exceptions

- Consider 4-bit binary numbers
- There are two numbers whose two's complement does not reverse their signs
- What are those numbers?
- Does above apply to 3-bit or 5-bit numbers?

