Laboratorium 8 Wstęp do GSL i GNUPLOT

Krzysztof Solecki

7 Maja 2023

1 Treści zadań

1.1 Zadania GSL:

1. Proszę skompilować i uruchomić program interpolacja.c. Korzystając z programu gnuplot narysować wykres. Narysować na jednym wykresie krzywe otrzymane różnymi metodami interpolacji (w przykładzie ustawione jest *gsl interp polynomial*).

1.2 Zadania Gnuplot:

- (a) Przy pomocy gnuplot prosze narysowac dane zgromadzone w pliku *dane1.dat*. Aby wykres był czytelny, jedna z osi musi miec skale logarytmiczna. Prosze ustalic, ktora to os i narysowac wykres.
- (b) Prosze narysowac wykres funkcji dwywymiarowej, ktorej punkty znajduja sie w pliku dane2.dat. Prosze przegladnac plik i sprobowac znalezc w nim maksimum. Potem prosze zlokalizowac maksimum wizualnie na wykresie. Prosze na wykresie zaznaczyc maksimum strzałką.
- (c) Prosze odtworzyc wykres znajdujacy sie na rysunku

2 Rozwiązania zadań

2.1 Zadania GSL

Interpolacje, z których skorzystano przy rozwiązywaniu problemu to kolejno: • interpolacja sześcienna (cubic interpolation) • interpolacja Akimy (Akima interpolation • interpolacja Steffena (Steffen interpolation)

Za pomocą poniższych poleceń stworzyłem wykresy krzywych otrzymanych powyższymi metodami interpolacji:

```
gnuplot> set output "zad1gsl.jpg"
gnuplot> set terminal jpeg
gnuplot> plot "wartosci.txt" with lines, "inter.txt" with lines,
"gsl_interp_steffen.txt" with lines, "gsl_interp_akima.txt" with lines,
"gsl_interp_cspline.txt" with lines
```


Rys. 1: Krzywe otrzymane za pomocą interpolacji sześciennej, Akimy i Steffena

Wniosek: Można zauważyć, że trzy metody interpolacji dają zbliżone do siebie wyniki, natomiast interpolacja wielomianowa zdecydowanie od nich odbiega poziomem dokładności. Może być to spowodowane efektem Rungego.

2.2 Zadania Gnuplot

a) Za pomocą poniższych poleceń zmieniłem skale osi OX na logarytmiczną i narysowałem wykres.

```
gnuplot> set output "zad2a.jpg"
gnuplot> set logscale x
gnuplot> plot "dane1.dat" with lines
```


Rys. 2: Wykres do zad2a z osią OX w skali logarytmicznej

Rys. 3: Wykres do zad2a bez zmiany osi OX na skalę logarytmicznej

Wnioski: Widać, że zmiana skali na logarytmiczną spowodowała dużo lepszą czytelność wykresu. Przykładem jej zastosowania jest wykres natężenia dźwięku. Kształ funkcji przypomina membranę bębenka.

b) Za pomocą poniższych poleceń stworzyłem wykres danych z pliku "dane2.dat" oraz zaznaczyłem na nim punkt bedący maksimum (4,3,1):

```
gnuplot> set arrow from 6,4,2 to 4,3,1
gnuplot> splot "dane2.dat" with lines
```


Rys. 4: Wykres funkcji np. danych z pliku dane2.dat

Wniosek: Znalezienie maksimum na podstawie wykresu jest proste, natomiast na podstawie samych danych z pliku może być niełatwe. Na podstawie wykresu możemy zwrócić uwagę na rozłożenie punktów.

c) Za pomocą poniższych komend wygenrowałem wymagany wykres:

```
set output "zad2c.jpg"
set terminal jpeg
set boxwidth
set xrange [3:3]
set yrange [4:5]
set title "Wykres_testowy"
set ylabel "Amplituda"
set key left top box
plot "fun1.txt" lt rgb "red" with yerrorbars title "Dane z pliku fun1.txt",
sin(x**5) lt rgb "green" with lines title "funkcja2: sinus(x^5)",
```

 $2*\cos(x*\sin(x))$ lt rgb "blue" with boxes title "funkcja1: $2*\cos(x*\sin(x))$ ", $3*\sin(x)$ lt rgb "red" with lines title "funkcja3: $3*\sin(x)$ "

Rys. 5: Odtworzony wykres do zad2c

Wnioski: Za pomocą porgramu Gnuplot jesteśmy w stanie generować różnego rodzaju wykresy, mamy do dyspozycji wiele narzędzi/poleceń ułatwiających tworzenie różnego typu wykresów. Za pomocą tego programu możemy ławto analizować wykresy wybranych funkcji.

3 Bibliografia

- 1. Katarzyna Rycerz: Materiały wykładowe z przedmiotu Metody Obliczeniowe w Nauce i Technice
- 2. https://www.wolframalpha.com/
- $3. \ https://www.desmos.com/calculator?lang=pl$
- 4. https://www.gnu.org/software/gsl/gsl.html
- 5. https://en.wikiversity.org/wiki/Cubic Spline Interpolation