A11 - CAL

Vinicius Gasparini e Lucas Meneghelli

22 de outubro de 2019

1 Codificação de Huffman

Foi construído a seguinte tabela relacionando a ocorrência em que cada simbolo aparece na palavra e então medido sua frequência.

	Ocorrência	Frequência	Simples	Huffman
A	7	30	000	11
В	3	13	001	01
""	3	13	010	001
R	3	13	011	000
С	2	9	100	1000
D	2	9	101	1001
E	2	9	110	1010
P	1	4	111	1011

A árvore usada para construção foi a seguinte

2 Puzzle

Para resolver o problema foi utilizado uma otimização sob o algoritmo BFS.

O grafo é modelado de maneira que um estado do jogo representa um vértice. Este vértice então é ligado a estados alcançáveis a partir do jogo atual. O peso da aresta é denotado pela função c(x) abaixo descrita:

- c(x) = f(x) + h(x) onde,
 - f(x) é a distância do nodo xaté o estado inicial (movimentos até este ponto)
 - h(x) a quantidade de peças que ainda não estão na sua posição final

Tendo em mãos este grafo, é aplicado um BFS priorizando as arestas com menor custo de c(x). Caso este caminho não resulte na solução, usamos backtracking para voltar a um estado válido.