Lecture 3

Infinite Sequences

Definition 1. A numerical sequence (shortly, a sequence) is a function $a: \mathbb{N} \to \mathbb{N}$ \mathbb{R} . We will denote it by the symbol $\{a_n\} \subset \mathbb{R}$, where $a_n = a(n), n \in \mathbb{N}$ is called element of the sequence, n is called index.

An visual representation of a sequence is just given by the plot of the graph of the function $n \mapsto a_n$.

Example. Some sequences can be defined by giving a formula for the *n*th term. In the following examples we give two descriptions of the sequence: one by using the preceding notation, another by using the defining formula. Notice that ndoes not have to start at 1.

a)
$$\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$$
, b) $a_n = \frac{(-1)^n(n+1)}{3^n}$,
c) $a_n = \sqrt{n-3}$, $n \ge 3$, d) $\left\{\cos\frac{n\pi}{6}\right\}_{n=0}^{\infty}$.

b)
$$a_n = \frac{(-1)^n (n+1)}{3^n}$$

$$\mathbf{c)} \quad a_n = \sqrt{n-3}, \ n \geqslant 3,$$

$$\mathbf{d)} \quad \left\{ \cos \frac{n\pi}{6} \right\}_{n=0}^{\infty}$$

Example. Here are some sequences that do not have a simple defining equation.

- a) The sequence $\{p_n\}$, where p_n is the population of the world as of January 1 in the year n.
- b) If we let a_n be the digit in the nth decimal place of the number e, then $\{a_n\}$ is a well defined sequence whose first few terms are

$$\{7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, \ldots\}$$

c) The Fibonacci sequence is defined recursively by the conditions

$$f_1 = 1$$
, $f_2 = 1$, $f_n = f_{n-1} + f_{n-2}$, $n \ge 3$.

Each term is the sum of the two preceding terms. The first few terms are

$$\{1, 1, 2, 3, 5, 8, 13, 21, \dots\}.$$

This sequence arose when the 13th-century Italian mathematician known as Fibonacci solved a problem concerning the breeding of rabbits.

1

Definition 2. A sequence $\{a_n\}$ has the limit and we write

$$\lim_{n \to \infty} a_n = L \quad \text{or} \quad a_n \to \infty \quad \text{as} \quad n \to \infty$$

if we can make the terms a_n as close to L as we like by taking n sufficiently large. If $\lim_{n\to\infty} a_n$ exists, we say the sequence converges (or is convergent). Otherwise, we say the sequence diverges (or is divergent).

Definition 3. Let $\{a_n\} \subset \mathbb{R}$. We say that $a_n \to L \in \mathbb{R}$ (we read as: $\{a_n\}$ tends to L as n tends to ∞) if

Example. Show that $\frac{1}{n} \to 0$. It is clear that as n gets bigger, $\frac{1}{n}$ gets smaller close to 0. We have to fix $\varepsilon > 0$ and find N such that

$$\left|\frac{1}{n} - 0\right| < \varepsilon.$$

Now,

$$|\tfrac{1}{n} - 0| < \varepsilon \Leftrightarrow \tfrac{1}{n} < \varepsilon \Leftrightarrow n > \tfrac{1}{\varepsilon} = N.$$

Of course $N=\frac{1}{\varepsilon}\not\in\mathbb{N}$, but we may take $N=[\frac{1}{\varepsilon}]+1$, where $[\cdot]$ denotes integer part.

Definition 4. Let $\{a_n\} \subset \mathbb{R}$. We say that $a_n \to \infty$ if

$$\forall_{M>0} \exists_{N \in \mathbb{N}} \ (n > N \Rightarrow a_n \geqslant M).$$

We write also $\lim_{n\to\infty} a_n = \infty$. Similarly is defined $\lim_{n\to\infty} a_n = -\infty$

$$\forall_{M<0}\exists_{N\in\mathbb{N}} \ (n>N\Rightarrow a_n\leqslant M).$$

Example. Show that $\frac{n^2+1}{n} \to \infty$. Fix M > 0, we have to find N such that

$$\frac{n^2+1}{n} \geqslant M$$
.

Studying the inequality, we get

$$\frac{n^2+1}{n} \geqslant M \Leftrightarrow n^2 - Mn + 1 \geqslant 0.$$

This is a second degree inequality in n. Let $\Delta = M^2 - 4$. We have

- if $\Delta < 0$ the inequality is fulfilled for every $n \in \mathbb{N}$, this means we can take N = 0.
- if $\Delta \geqslant 0$, the solutions are

$$n \leqslant \frac{M - \sqrt{\Delta}}{2}, \quad n \geqslant \frac{M + \sqrt{\Delta}}{2}.$$

The first has at maximum a finite number of solutions which are natural numbers. But if we consider the second one and take $N = \frac{M + \sqrt{\Delta}}{2}$, we see that any $n \ge N$ is a solution. In any case we are able to find an initial index N.

A sequence having a finite limit is shortly called **convergent**, while if the limit is infinite is called **divergent**. There's a third possible situation, because

not all the sequences are convergent or divergent. Example. Consider the

sequence

$$a_n = (-1)^n$$
, that is $+1; -1; +1; -1; ...$

It seems evident that such a sequence cannot have a limit.

Theorem 5 (Limit Laws). If $\{a_n\}$ and $\{b_n\}$ are convergent sequences and c is a constant, then

- $\lim_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n$,
- $\lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} a_n \lim_{n \to \infty} b_n$,
- $\lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n$,
- $\lim_{n\to\infty} a_n b_n = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n$,
- $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} if \lim_{n \to \infty} b_n \neq 0,$
- $\lim_{n\to\infty} a_n^p = [\lim_{n\to\infty} a_n]^p$ if p > 0 and $a_n > 0$.

Theorem 6 (Squeeze Theorem). If $a_n \leq b_n \leq c_n$ for $n \geq n_0$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$.

Theorem 7. If $\lim_{n\to\infty} |a_n| = 0$, then $\lim_{n\to\infty} a_n = 0$.

Theorem 8. We have

$$\lim_{n \to \infty} \frac{1}{n^r} = 0 \quad if \quad r > 0.$$

Example. Find $\lim_{n\to\infty} \frac{n}{n+1}$. Divide numerator and denominator by the highest power of n that occurs in the denominator and then use the Limit Laws.

$$\lim_{n \to \infty} \frac{n}{n+1} = \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n}} = \frac{1}{1+0} = 1.$$

Example. Is the sequence $a_n = \frac{n}{\sqrt{n+10}}$ convergent or divergent? We divide numerator and denominator by n

$$\lim_{n\to\infty}\frac{n}{\sqrt{10+n}}=\lim_{n\to\infty}\frac{1}{\sqrt{\frac{1}{n}+\frac{10}{n^2}}}=\infty$$

because the numerator is constant and the denominator approaches 0. So $\{a_n\}$ is divergent.

Example. Evaluate $\lim_{n\to\infty} \frac{(-1)^n}{n}$ if it exists. We first calculate the limit of the absolute value

$$\lim_{n \to \infty} \left| \frac{(-1)^n}{n} \right| = \lim_{n \to \infty} \frac{1}{n} = 0.$$

Therefore,

$$\lim_{n \to \infty} \frac{(-1)^n}{n} = 0.$$

Theorem 9. If $\lim_{n\to\infty} a_n = L$ and the function f is continuous at L, then

$$\lim_{n \to \infty} f(a_n) = f(L).$$

Example. Find $\lim_{n\to\infty} \sin\left(\frac{\pi}{n}\right)$. Because the sine function is continuous at 0, we write

$$\lim_{n\to\infty}\sin\left(\frac{\pi}{n}\right)=\sin\left(\lim_{n\to\infty}\frac{\pi}{n}\right)=\sin 0=0.$$

Example. Discuss the convergence of the sequence $a_n = \frac{n!}{n^n}$, where $n! = 1 \cdot 2 \cdot ... \cdot n$. Let us write

$$a_n = \frac{1 \cdot 2 \cdot \dots \cdot n}{n \cdot n \cdot \dots \cdot n} = \frac{1}{n} \left(\frac{2 \cdot 3 \cdot \dots \cdot n}{n \cdot n \cdot \dots \cdot n} \right).$$

Notice that the expression in parentheses is at most 1 because the numerator is less than (or equal to) the denominator. So

$$0 < a_n \leqslant \frac{1}{n}.$$

We know that $\frac{1}{n} \to 0$ as $n \to \infty$. Therefore $a_n \to 0$ as $n \to \infty$ by the Squeeze Theorem.

Example. Show that $\lim_{n\to\infty} n^{\frac{1}{n}} = 1$. Clearly $(1+1)^n \geqslant 1+n > n$, so that

 $n^{\frac{1}{n}} - 1 < 1$ for $n \ge 1$. Also, for $n \ge 1$, we observe that $n^{\frac{1}{n}} \ge 1$, so that $n^{\frac{1}{n}} - 1 = x_n$ with $x_n \ge 0$. In particular, using the binomial theorem, we deduce that

$$n = (1 + x_n)^n \ge 1 + nx_n + \frac{n(n-1)}{2}x_n^2 \ge 1 + \frac{n(n-1)}{2}x_n^2,$$

which implies that

$$0 \leqslant x_n = n^{\frac{1}{n}} - 1 \leqslant \sqrt{\frac{2}{n}}$$
 for $n \geqslant 1$.

By the Squeeze Theorem, $x_n \to 0$ as $n \to 0$, since $\frac{1}{\sqrt{n}} \to 0$. We conclude that $n^{\frac{1}{n}} \to 1$ as $n \to \infty$, as desired.

Theorem 10. The sequence $\{r^n\}$ is convergent if $-1 < r \le 1$ and divergent for all other values of r

$$\lim_{n \to \infty} r^n = \begin{cases} 0 & \text{if } -1 < r < 1, \\ 1 & \text{if } r = 1 \end{cases}$$

Definition 11. A sequence $\{a_n\}$ is called increasing if $a_n < a_{n+1}$ for all $n \ge 1$, that is, $a_1 < a_2 < a_3 < \dots$ It is called decreasing if $a_n > a_{n+1}$ for all $n \ge 1$. A sequence is monotonic if it is either increasing or decreasing.

Example. The sequence $\left\{\frac{3}{n+5}\right\}$ is decreasing because

$$\frac{3}{n+5} > \frac{3}{(n+1)+5} = \frac{3}{n+6}$$

and so $a_n > a_{n+1}$ for all $n \ge 1$.

Example. Show that the sequence $a_n = \frac{n}{n^2+1}$ is decreasing. We must show that $a_{n+1} < a_n$, that is,

$$\frac{n+1}{(n+1)^2} < \frac{n}{n^2+1}.$$

This inequality is equivalent to the one we get by cross-multiplication

$$\frac{n+1}{(n+1)^2} < \frac{n}{n^2+1},$$

$$(n+1)(n^2+1) < n[(n+1)^2+1],$$

$$n^3 + n^2 + n + 1 < n^3 + 2n^2 + 2n,$$

$$1 < n^2 + n.$$

Since $n \ge 1$, we know that the inequality $n^2 + n > 1$ is true. Therefore $a_{n+1} < a_n$ and so $\{a_n\}$ is decreasing.

Definition 12. A sequence $\{a_n\}$ is bounded above if there is a number M such that

$$a_n \leqslant M$$
 for all $n \geqslant 1$.

It is bounded below if there is a number m such that

$$m \leqslant a_n$$
 for all $n \geqslant 1$.

If it is bounded above and below, then $\{a_n\}$ is a bounded sequence.

Example. The sequence $a_n = n$ is bounded below $(a_n > 0)$ but not above. The sequence $a_n = \frac{n}{n+1}$ is bounded because $0 < a_n < 1$ for all n.

Theorem 13 (Monotonic Sequence Theorem). Every bounded, monotonic sequence is convergent.

Remark 1. A sequence that is increasing and bounded above is convergent. Likewise, a decreasing sequence that is bounded below is convergent.

Example. Set $a_n = \frac{1 \cdot 3 \cdot 5 \cdot ... \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot ... \cdot (2n)}$. Then $\{a_n\}$ converges. Note that $a_n > 0$ for all $n \ge 1$ and

$$a_{n+1} = a_n \left(\frac{2n+1}{2n+2}\right) < a_n$$

Thus, $\{a_n\}$ is decreasing and bounded below by 0. Applying Monotonic Sequence Theorem, we see that $\{a_n\}$ converges. Note also that $a_n < 1$ for $n \ge 1$. **Example.** Let $a_n = \left(1 + \frac{1}{n}\right)^n$, $n \ge 1$. The sequence $\{a_n\}$ is called Euler's sequence. Note that using Bernoulli's inequality $(1+x)^n \ge 1 + nx$ for $x \ge 0$ and $n \ge 1$ for $x = \frac{1}{n}$ we get

$$\left(1+\frac{1}{n}\right)^n\geqslant 2\quad \text{for}\quad n\geqslant 1.$$

We show that the sequence is increasing. We have applying Bernoulli's inequality

$$\frac{a_{n+1}}{a_n} = \frac{\left(1 + \frac{1}{n+1}\right)^{n+1}}{\left(1 + \frac{1}{n}\right)^n} = \frac{n+1}{n} \left(1 - \frac{1}{(n+1)^2}\right)^{n+1} > \frac{n+1}{n} \left[1 - \frac{n+1}{(n+1)^2}\right] = 1.$$

We show that the sequence is bounded. Since $k! = 1 \cdot 2 \cdot 3 \cdot ... \cdot k \ge 1 \cdot 2 \cdot 2 \cdot ... \cdot 2 = 2^{k-1}$ for $k \ge 2$, we have

$$2 < a_n < 1 + \sum_{k=1}^{n} \frac{1}{k!} < 1 + \sum_{k=1}^{n} \frac{1}{2^{k-1}} = 1 + \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} < 3.$$

It follows that the sequence $\{a_n\}$ converges to a real number that is at most 3.

Definition 14.

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n.$$

Remark 2.

$$e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n \quad x \in \mathbb{R} \setminus \{0\}.$$

Example.

a)

$$\lim_{n \to \infty} \left(1 - \frac{3}{n} \right)^{n+2} = \lim_{n \to \infty} \left[\left(1 - \frac{1}{3n} \right)^{3n} \right]^{\frac{n+2}{3n}} = e^{-\frac{1}{3}},$$

b)

$$\lim_{n \to \infty} \left(1 + \frac{5}{n} \right)^n = e^5.$$

Theorem 15. For p > 0, we have

$$\lim_{n \to \infty} \frac{r^n}{n^p} = \begin{cases} 0 & \text{if} & |r| \leqslant 1, \\ \infty & \text{if} & r > 1, \\ \text{does not exist} & \text{if} & r < -1. \end{cases}$$

Theorem 16. • $(\pm \infty) + a = \pm \infty, a \in \mathbb{R}$

- $(+\infty) + (+\infty) = +\infty$,
- $(-\infty) + (-\infty) = -\infty$,
- $(+\infty) \cdot a = sqn(a)\infty$, $(a \neq 0)$,
- $(-\infty) \cdot a = sgn(a)(-\infty), \quad (a \neq 0),$
- $(+\infty) \cdot (+\infty) = +\infty$,
- $(+\infty) \cdot (-\infty) = -\infty$,
- $(-\infty) \cdot (-\infty) = +\infty$,
- $\frac{a}{+\infty} = 0$, $(a \in \mathbb{R})$,
- $\frac{+\infty}{a} = sgn(a)\infty$, $(a \neq 0)$,
- $\frac{-\infty}{a} = sgn(a)(-\infty), \quad (a \neq 0),$
- $\frac{+\infty}{0^+} = \frac{-\infty}{0^-} = +\infty, \frac{+\infty}{0^-} = \frac{-\infty}{0^+} = -\infty$.

Remark 3. Indeterminate forms:

- $(\pm \infty) + (\pm \infty)$ opposite signs,
- $(\pm \infty) \cdot 0$,
- \bullet $\frac{0}{0}$,

 \bullet $\frac{\pm \infty}{\pm \infty}$

Example. Assume that $\lim_{n\to\infty} a_n = +\infty$ and $\lim_{n\to\infty} b_n = +\infty$.

a) let $a_n = b_n = n$, then

$$\lim_{n \to \infty} a_n - b_n = \lim_{n \to \infty} n - n = 0,$$

b) let $a_n = n^2$ and $b_n = n$, then

$$\lim_{n \to \infty} a_n - b_n = \lim_{n \to \infty} n^2 - n = \lim_{n \to \infty} n^2 \left(1 - \frac{1}{n} \right)$$
$$= \lim_{n \to \infty} n^2 \cdot \lim_{n \to \infty} \left(1 - \frac{1}{n} \right) = \infty \cdot 1 = \infty.$$

Example. Assume that $\lim_{n\to\infty} a_n = \infty$ and $\lim_{n\to\infty} b_n = \infty$.

a) let $a_n = b_n = n$, then

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n}{n} = 1,$$

b) let $a_n = 2n^2$ and $b_n = n$, then

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{2n^2}{n} = \lim_{n \to \infty} 2n = \infty,$$