1.2 Exercise 6 – more complex calculations

- 1. Succinic acid has the formula $(CH_2)_n(COOH)_2$ and reacts with dilute sodium hydroxide as follows: $(CH_2)_n(COOH)_2 + 2NaOH \rightarrow (CH_2)_n(COONa)_2 + 2H_2O$ 2.0 g of succinic acid were dissolved in water and the solution made up to 250 cm³. This solution was placed in a burette and 18.4 cm³ was required to neutralise 25 cm³ of 0.1 moldm⁻³ NaOH. Deduce the molecular formula of the acid and hence the value of n.
- 2. Sodium carbonate exists in hydrated form, $Na_2CO_3.xH_2O$, in the solid state. 3.5 g of a sodium carbonate sample was dissolved in water and the volume made up to 250 cm^3 . 25.0 cm^3 of this solution was titrated against 0.1 moldm⁻³ HCl and 24.5 cm³ of the acid were required. Calculate the value of x given the equation: $Na_2CO_3 + 2HCl \rightarrow 2NaCl + CO_2 + H_2O$
- 3. 25 cm³ of a sample of vinegar (CH₃COOH) was pipetted into a volumetric flask and the volume was made up to 250 cm³. This solution was placed in a burette and 13.9 cm³ were required to neutralise 25 cm³ of 0.1 moldm⁻³ NaOH. Calculate the molarity of the original vinegar solution and its concentration in gdm⁻³, given that it reacts with NaOH in a 1:1 ratio.
- 4. 2.5 g of a sample of impure ethanedioic acid, H₂C₂O₄.2H₂O, was dissolved in water and the solution made up to 250 cm³. This solution was placed in a burette and 21.3 cm³ were required to neutralise 25 cm³ of 0.1 moldm⁻³ NaOH. Given that ethanedioic acid reacts with NaOH in a 1:2 ratio, calculate the percentage purity of the sample.
- 5. A toilet cleaner containing sodium hydrogensulphate, NaHSO₄ is believed to have been contaminated. 5.678 g of the sample were dissolved in water and the solution was made up to 250 cm³. This solution was placed in a burette and 23.1 cm³ of it were required to neutralise 25 cm³ of 0.1 moldm⁻³ sodium hydroxide. Calculate the percentage purity of the sample given that the species react in a 1:1 ratio.
- 6. When silicon tetrachloride is added to water, the following reaction occurs: SiCl₄(l) + 2H₂O(l) → SiO₂(s) + 4HCl(aq)
 1.2 g of impure silicon tetrachloride was dissolved in excess water, and the resulting solution was made up to 250 cm³. A 25 cm³ portion of the solution was then titrated against 0.10 moldm⁻³ sodium hydroxide, and 18.7 cm³ of the alkali were required. What was the percentage purity of the silicon tetrachloride?
- 7. 13.2 g of a sample of zinc sulphate, ZnSO₄.xH₂O, was strongly heated until no further change in mass was recorded. On heating, all the water of crystallisation evaporated as follows: ZnSO₄.xH₂O → ZnSO₄ + xH₂O. Calculate the number of moles of water of crystallisation in the zinc sulphate sample given that 7.4 g of solid remained after strong heating.