РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ Факультет физико-математических и естественных наук

Кафедра прикладной информатики и теории вероятностей

Отчёт по лабораторной работе №8. Целочисленная арифметика многократной точности

Дисциплина: Математические основы защиты информации и информационной безопасности

Студент: Бармина Ольга Константиновна

Группа: НПИмд-01-23

2024 September 8th

Содержание

1	Цел	ь работы	5
2 Задание		ание	6
3	•	ретическое введение Арифметика многократной точности	7 7
4		олнение лабораторной работы	8
	4.1	Вспомогательные действия	8
	4.2	Алгоритм 1. Сложение неотрицательных целых чисел. Реализация	9
	4.3	Алгоритм 2. Вычитание неотрицательных целых чисел. Реализация	10
	4.4	Алгоритм 3. Умножение неотрицательных целых чисел столбиком.	
		Реализация	11
	4.5	Алгоритм 4. Быстрый столбик. Реализация	12
	4.6	Алгоритм 5. Деление многоразрядных целых чисел. Реализация .	12
	4.7	Алгоритм 5. Деление многоразрядных целых чисел. Реализация .	13
	4.8	Алгоритм 5. Деление многоразрядных целых чисел. Результат	14
5	Выв	оды	15
6	Список литературы		16

List of Figures

4.1	Вспомогательные действия для удобства дальнейших вычислений	8
4.2	Алгоритм 1. Сложение неотрицательных целых чисел	9
4.3	Алгоритм 2. Вычитание неотрицательных целых чисел	10
4.4	Алгоритм 3. Умножение неотрицательных целых чисел столбиком	11
4.5	Алгоритм 4. Быстрый столбик	12
4.6	Алгоритм 5. Деление многоразрядных целых чисел	12
4.7	Алгоритм 5. Деление многоразрядных целых чисел	13
4.8	Алгоритм 5. Леление многоразрядных целых чисел	14

List of Tables

1 Цель работы

Целью данной лабораторной работы является ознакомление с алгоритмами по воплощению целочисленной арифметики многократной точности, а также программная реализация данных алгоритмов.

2 Задание

Реализовать рассмотренные в инструкции к лабораторной работе алгоритмы программно.

Алгоритмы:

- 1. Сложение неотрицательных целых чисел
- 2. Вычитание неотрицательных целых чисел
- 3. Умножение неотрицательных целых чисел столбиком
- 4. Быстрый столбик
- 5. Деление многоразрядных целых чисел

3 Теоретическое введение

В данной лабораторной работе предметом нашего изучения стали алгоритмы по воплощению целочисленной арифметики многократной точности.

3.1 Арифметика многократной точности

Арифметика многократной точности — это операции (базовые арифметические действия, элементарные математические функции и пр.) над числами большой разрядности, т.е. числами, разрядность которых превышает длину машинного слова универсальных процессоров общего назначения (более 128 бит)

В современных асимметричных криптосистемах в качестве ключей, как правило, используются целые числа длиной 1000 и более битов. Для задания чисел такого размера не подходит ни один стандартный целочисленный тип данных современных языков программирования.

При работе с большими целыми числами знак такого числа удобно хранить в отдельной переменной. Например, при умножении двух чисел знак произведения вычисляется отдельно.

Далее нами были рассмотрены алгоритмы по воплощению целочисленной арифметики многократной точности.

4 Выполнение лабораторной работы

В соответствии с заданием, была написана программа по воплощению алгоритмов сложения, вычитания, умножения и деления чисел.

4.1 Вспомогательные действия

```
str2num = {chr(l_ord): (l_ord-ord('A')+10) for l_ord in range(ord('A'),ord('Z')+1)}
for n in '0123456789':
    str2num[n] = int(n)
num2str = {v: k for (k,v) in str2num.items()}

def add_0(u, n,f):
    res = [0]*(n-len(u))
    if f:
        res.extend(u)
        return res
    return "".join([num2str[i] for i in res])

def make_i(u_s, v_s, f=False,f2=True):
    u = [str2num[1] for l in u_s]
    v = [str2num[1] for l in v_s]

if f:
    if len(u) != len(v):
        u = add_0(u, len(v),f2)
        else:
        v = add_0(v, len(u),f2)
    return u,v
```

Figure 4.1: Вспомогательные действия для удобства дальнейших вычислений

4.2 Алгоритм 1. Сложение неотрицательных целых чисел.

Реализация

```
def add(u,v,b):
    u,v = make_i(u,v, True)
    n = len(u)
    k = 0
    w = []
    for j in range(n-1, -1, -1):
        w.append((u[j]+v[j]+k)%b)
        k = (u[j]+v[j]+k)//b
    w.append(k)
    w.reverse()
    return "".join([num2str[i] for i in w])

add("109","452",10)
'0561'

add("109","452",16)
'055B'
```

Figure 4.2: Алгоритм 1. Сложение неотрицательных целых чисел

4.3 Алгоритм 2. Вычитание неотрицательных целых чисел. Реализация

```
def subtract(u,v,b):
    u,v = make_i(u,v, True)
    n = len(u)
    k = 0
    w = []
    for j in range(n-1, -1, -1):
        w.append((u[j]-v[j]+k)%b)
        k = (u[j]-v[j]+k)//b
    w.append(k)
    w.reverse()
    return "".join([num2str[i] for i in w])

subtract("865","127",10)
'0738'
```

Figure 4.3: Алгоритм 2. Вычитание неотрицательных целых чисел

4.4 Алгоритм 3. Умножение неотрицательных целых чисел столбиком. Реализация

```
def multiply(u,v,b):
   u,v = make_i(u,v, False)
    n = len(u)
   m = len(v)
    w = [0] * (m+n)
    for j in range(m-1,-1,-1):
        if v[j] != 0 :
            k = 0
            for i in range(n-1,-1,-1):
                t = u[i]*v[j] + w[i+j+1] + k
w[i+j+1] = t % b
                k = t // b
            w[j] = k
    return "".join([num2str[i] for i in w])
multiply("15","12",10)
'0180'
multiply("A81","C",16)
'7E0C'
```

Figure 4.4: Алгоритм 3. Умножение неотрицательных целых чисел столбиком

4.5 Алгоритм 4. Быстрый столбик. Реализация

```
def multiply_fast(u,v,b):
    u,v = make i(u,v, False)
    n = len(u)
    m = len(v)
   w = [0] * (m+n)
   t = 0
    for s in range(0, n+m-1):
       for i in range(0, s+1):
           t = t+u[n-i-1]*v[m-s+i-1]
        w[m+n-s-1] = t\%b
        t = t//b
    return "".join([num2str[i] for i in w])
multiply_fast("15","12",10)
'0180'
multiply_fast("150","52",10)
'07800'
```

Figure 4.5: Алгоритм 4. Быстрый столбик

4.6 Алгоритм 5. Деление многоразрядных целых чисел.

Реализация

```
def to10(u_s, b, f=False):
    u_tmp = u_s if f else [str2num[1] for 1 in u_s]
    u = 0
    for i in range(len(u_tmp)):
       u += b**i * u_tmp[len(u_tmp)-i-1]
    return u
def tob(u, b, n=1):
    q, r = u//b, u%b
    w = num2str[r]
    while q >= b:
        q, r = q//b, q\%b
        w += num2str[r]
    if q != 0:
       w += num2str[q]
    while len(w)<n:</pre>
        w += '0
    return w[::-1]
```

Figure 4.6: Алгоритм 5. Деление многоразрядных целых чисел

4.7 Алгоритм 5. Деление многоразрядных целых чисел.

Реализация

```
def divide(u_s,v_s,b):
   u = u_s
   v = v_s
   u_10 = to10(u,b)
   v = 10 = to10(v,b)
   n = len(u)-1
   t = len(v)-1
   if v == '0': return 'impossible'
   q = [0]*(n-t+1)
   while u 10>=v 10 * (b**(n-t)):
       q[n-t] += 1
        u_10 -= v_10 * (b**(n-t))
   u = tob(u_10,b,n+1)
   u,v = make_i(u,v_s)
   for i in range(n,t,-1):
        if u[n-i]>=v[0]:
           q[i-t-1] = b-1
        else:
            q[i-t-1] = (u[n-i]*b + u[n-i-1])//v[0]
        while q[i-t-1]*(v[\emptyset]*b+v[1]) > u[n-i]*b*b + u[n-i+1]*b + u[n-i+2]:
           q[i-t-1] -= 1
        u_10 = to10(u,b,True)
        u_10 -= v_10*q[i-t-1]*(b**(i-t-1))
        if u_10 < 0:
            u_10 += v_10*(b**(i-t-1))
           q[i-t-1] -= 1
        u = tob(u_10,b,n+1)
   u = [str2num[1] for l in u]
return "".join([num2str[i] for i in q[::-1]]), "".join([num2str[i] for i in u])
```

Figure 4.7: Алгоритм 5. Деление многоразрядных целых чисел

4.8 Алгоритм 5. Деление многоразрядных целых чисел. Результат

```
divide('1000','15',10)
  ('066', '0010')

divide('81','27',10)
  ('3', '00')

divide('81','0',10`)
  'impossible'

divide('81','82',10)
  ('0', '81')
```

Figure 4.8: Алгоритм 5. Деление многоразрядных целых чисел

5 Выводы

Таким образом, была достигнута цель, поставленная в начале лабораторной работы: в результате выполнения данной лабораторной работы нам удалось осуществить программно алгоритмы, рассмотренные в описании к лабораторной работе, а также мы осуществили программно данные алгоритмы.

6 Список литературы

1. Методические материалы курса