Assignment Section_2.3 due 05/01/2014 at 11:58pm MST

1. (1 pt) If
$$f(x) = 2x^2 - 4x - 15$$
, find $f'(x)$.

Answer(s) submitted:

• 4 (x−1)

(correct)

Correct Answers:

• 2*2*x-4

2. (1 pt) Let
$$f(x) = 4x^8 - 5x^5 - 2x^3 + 3x$$
, find $f'(x)$.

Answer: _____

Find f'(4).

Answer: ____

Answer(s) submitted:

- $32x^7-25x^4-6x^2+3$
- 517795

(correct)

Correct Answers:

- \bullet 4*8*x^7 5*5*x^4 -2*3*x^2 + 3
- \bullet 4*8*4^7 (5*5*4^4) (2*3*4^2) + 3

3. (1 pt) If
$$f(t) = 3\sin t - 4\pi\cos t$$
, find $f'(t)$

Answer(s) submitted:

• 4pisin(t) + 3cos(t)

(correct)

Correct Answers:

- 3*cos(t) +4*3.14159265358979*sin(t)
- **4.** (1 pt) If

$$f(t) = \frac{\sqrt{4}}{t^7},$$

find f'(t).

Find f'(5).

Answer(s) submitted:

- -14/t^8
- -14/390625

(correct)

Correct Answers:

- (sqrt(4))*(-7)*t**(-7-1)
- -3.584E-05

5. (1 pt) If
$$f(x) = 6 + \frac{2}{x} + \frac{7}{x^2}$$
, find $f'(x)$.

Answer(s) submitted:

 \bullet - (2(x+7) / x³)

(correct)

Correct Answers:

6. (1 pt) If
$$f(x) = (x-7)(9x+5)$$
, then

$$f'(x) =$$

Answer(s) submitted:

• 18x-58

(correct)

Correct Answers:

• 2*9*x +5 -7*9

7. (1 pt) If
$$f(t) = 3t^{-5/3}$$
, find $f'(t)$.
 $f'(t) = \underline{\hspace{1cm}}$

Answer(s) submitted:

• -5/t^(8/3)

(correct)

Correct Answers:

•
$$(-5)*(t**((-5/3)-1))$$

8. (1 pt)

Differentiate the following function:

$$V(r) = \frac{4}{3}\pi r^3$$

 $V'(r) = \underline{\hspace{1cm}}$ Answer(s) submitted:

• 4pir^2

(correct)

Correct Answers:

• (4* pi* r^2)

9. (1 pt) If
$$f(x) = 15\sqrt{x}(x-5)$$
, find $f'(x)$. $f'(x) =$

Answer(s) submitted:

• 15(3x-5)/(2sqrt(x))

(correct)

Correct Answers:

10. (1 pt) If
$$f(x) = 6\sqrt{x}(x^3 - 3\sqrt{x} + 6)$$
, find $f'(x)$.

Find f'(3).

Answer(s) submitted:

- $3((7x^{(5/2)}) + (6/sqrt(x)) 6)$
- 319.75

(correct)

Correct Answers:

- 3.5*6*x**2.5 -6*3+.5*6*6*x**(-.5)
- 319.749907475931

11. (1 pt) If
$$y = 4\pi^7$$
, find y' .

Answer(s) submitted:

• 0

(correct)

Correct Answers:

• 0

12. (1 pt) If
$$f(u) = \sqrt{1}u + \sqrt{8u}$$
, find $f'(u)$

Answer(s) submitted:

• (sqrt(2)/sqrt(u)) + 1

(correct)

Correct Answers:

• sqrt(1)+sqrt(8)/(2*sqrt(u))

13. (1 pt) If
$$f(x) = \frac{7x^2 + 8x + 25}{\sqrt{x}}$$
, find $f'(x)$.

Answer(s) submitted:

• $((x(21x + 8) - 25) / (2x^{(3/2)}))$

(correct)

Correct Answers:

14. (1 pt) If
$$f(x) = \frac{-5x^5 + 5x^4 - 7x^3}{x^4}$$
, find $f'(x)$.

Answer(s) submitted:

• $((7/x^2) - 5)$

(correct)

Correct Answers:

 \bullet -5 - -7/x²

15. (1 pt) If
$$f(t) = 3\sqrt{t} + \frac{7}{\sqrt{t}}$$
, find $f'(t)$.

Answer(s) submitted:

• ((3t-7)/(2t^(3/2)))

(correct)

Correct Answers:

16. (1 pt)

Let
$$f(x) = -7x^6\sqrt{x} + \frac{6}{x^3\sqrt{x}}$$
.

$$f'(x) = \underline{\hspace{1cm}}$$

[NOTE: Your answer should be a function in terms of the variable 'x' and not a number!]

Answer(s) submitted:

•
$$-(7(13x^10 + 6) / (2x^(9/2)))$$

(correct)

Correct Answers:

•
$$-7*(6 + 1/2)*x**(6 - 1/2) - 6*(3 + 1/2)/x**(3+3/2)$$

17. (1 pt) If
$$f(t) = \frac{\sin t}{3} + \frac{4}{t}$$
, then

$$f'(t) =$$

Answer(s) submitted:

• $(\cos(t)/3) - (4/t^2)$

(correct)

Correct Answers:

• cos(t)/3-4/t^2

18. (1 pt) If
$$f(t) = \sqrt[3]{t^2} + 2\sqrt{t^3}$$
, find $f'(t)$.

Answer(s) submitted:

• $(9t^{(3/2)} + 2t^{(2/3)})/(3t)$

(correct)

Correct Answers:

• $(2/3)*(t^(-1/3)) + (3)*(t**(1/2))$

19. (1 pt)

Find the equation of the tangent line to the curve $y = 6 \sin x$ at the point $(\pi/6,3)$.

The equation of this tangent line can be written in the form y = mx + b where

$$m = \underline{\hspace{1cm}}$$
 and $b = \underline{\hspace{1cm}}$

Answer(s) submitted:

- 3sgrt (3)
- -((sqrt(3)pi)/2) + 3

(correct)

Correct Answers:

- 5.19615242270663
- 0.279300956757525

20. (1 pt) Find the equation of the tangent line and normal line to the curve $y = (3+5x)^2$ at the point (4,529). Write the equations of the lines in the form y = mx + b.

Tangent line: y =

Normal line: $y = \underline{\hspace{1cm}}$

Answer(s) submitted:

- 230x-391
- \bullet (-x/230) + 529.02

(correct)

Correct Answers:

- 230*(x-4)+529
- \bullet -(x-4)/230 + 529

21. (1 pt) Find the first and second derivative of the function.

$$f(x) = 6\sin x + 10\cos x.$$

f'(x) =_____

$$f''(x) =$$

Answer(s) submitted:

- 6cos(x) 10sin(x)
- $-2(3\sin(x) + 5\cos(x))$

(correct)

Correct Answers:

• 6*cos(x) - 10*sin(x)

• $-6*\sin(x) - 10*\cos(x)$

22. (1 pt) Find the points on the graph of $f(x) = 2x^3 + 12x^2 - 72x + 18$ where the tangent is horizontal. List the x-values of these points. (Separate answers by commas if there are more than one.)

 $x \text{ value(s)} = \underline{\hspace{1cm}}$ Answer(s) submitted:

−6, 2

(correct)

Correct Answers:

- −6, 2
- **23.** (1 pt) For what value(s) of x is the tangent line of the graph of

$$f(x) = 8x^3 - 12x^2 - 143x - 24$$

parallel to the line y = x - 1.1?

If there is more than one value of x, list them as a comma separated list.

Answer(s) submitted:

−2, 3

(correct)

Correct Answers:

- −2, 3
- **24.** (1 pt) At what point does the normal to $y = 4 3x + 4x^2$ at (1,5) intersect the parabola a second time?

The normal line is perpendicular to the tangent line. If two lines are perpendicular their slopes are negative reciprocals – i.e. if the slope of the first line is m then the slope of the second line is -1/m

Answer(s) submitted:

- -0.3
- 5.26

(correct)

Correct Answers:

- -0.3
- 5.26

$s = (1/3)t^3 - 2t^2 + 4t + 5$	• 4024
	(correct)
	Correct Answers:
(a) Find the velocity and acceleration as functions of t .	• 4*t**3 - 12
Velocity at time $t = $	• 96
Acceleration at time $t = $	• 1.44224957030741
(b) Find the acceleration after 1 second.	• (1.44224957030741,infinity)
Acceleration after 1 second:	• 4025.96049226553
(c) Find the acceleration at the instant when the velocity is 0. Acceleration:	27. (1 pt) If a ball is thrown vertically upward from the roof of 48 foot building with a velocity of 64 ft/sec, its height after t seconds is $s(t) = 48 + 64t - 16t^2$.
Answer(s) submitted:	
• (t-2)^2	a.) What is the maximum height the ball reaches?
• 2(t-2)	Answer:
• -2	
• 0	
(correct)	b.) What is the velocity of the ball when it hits the ground
Correct Answers:	(height 0)?
• 3*(0.333333333333333)*(t**2)-2*(2)*t + 4	Answer:
• 6*0.33333333333333*t - 2*2	Answer(s) submitted:
• -2	• 112
• 0	● -84.66
26. (1 pt) A particle moves along a straight line and its posi-	(correct)
tion at time t is given by $s(t) = t^4 - 12t + 21$, $t \ge 0$. where s	Correct Answers:
is measured in feet and t in seconds.	48 + 64*4/2 -4*4^2
(A) Find the velocity at time <i>t</i> :	−16*(4*4+4*3)^.5
(B) Find the velocity (in ft/sec) of the particle at time $t = 3$.	28. (1 pt) A spherical balloon is being inflated. Find the
	rate of increase (with respect to the radius r) of the surface area
(C) Find all values of t for which the particle is at rest. (If there	$(S=4\pi r^2)$ when:
are no such values, enter none . If there are more than one	(A) $r = 2$ inches \rightarrow Rate of increase =
value, list them separated by commas.)	(B) $r = 4$ inches \rightarrow Rate of increase =
<i>t</i> =	(C) $r = 5$ inches \rightarrow Rate of increase =
(D) Use interval notation to indicate when the particle is mov-	Answer(s) submitted:
ing in the positive direction. (If needed, enter inf for ∞ . If the	• 16pi
particle is never moving in the positive direction, enter <i>none</i> .)	• 32pi
	• 40pi
(E) Find the total distance traveled during the first 8 seconds.	(correct)
	Correct Answers:
	• 50.2654832
Answer(s) submitted:	• 100.5309664

• 3^(1/3)

• (3^(1/3),Inf)

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

• 4(t^3-3)

25. (1 pt) Suppose that the equation of motion for a particle

(where s is in meters and t in seconds) is

• 125.663708