Math 693A: Homework 1

Stephen Giang

RedID: 823184070

Due: 9-18-24

In [1]: import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

Problem 1

Program the steepest descent and Newton algorithms using the backtracking line search. Use them to minimize the Rosenbrock function

$$f(ar{x}) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

Set the initial step length $\alpha_0=1$ and report the step length used by each method at each iteration. First try the initial point $\bar{x}_0^T=[1.2,1.2]$ and then the more difficult point $\bar{x}_0^T=[-1.2,1]$

Suggested values: $ar{lpha}=1,
ho=rac{1}{2}, c=10^{-4}$

a. Stop when $||
abla f(ec{x}_k)|| < 10^{-8}$.

You should hand in (i) your code (ii) the first 6 and last 6 values of \vec{x}_k obtained from your program for steepest descent and Newton algorithms and (iii) determine the minimizer of the Rosenbrock function x*.

b. Repeat (a.) above but stop when $|f(\vec{x}_k)| < 10^{-8}$. Compare your results with those from (a.) and discuss your observation with regards to number of iterations required in order to achieve convergence.

Solution 1

$$f(ar{x}) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2 \
abla f(ar{x}) = egin{bmatrix} \partial f/\partial x_1 \ \partial f/\partial x_2 \end{bmatrix} = egin{bmatrix} 200(x_2 - x_1^2)(-2x_1) - 2(1 - x_1) \ 200(x_2 - x_1^2) \end{bmatrix} = egin{bmatrix} -400x_1x_2 + x_1^2 \ 200x_2 \end{bmatrix}$$

```
abla^2 f(ar{x}) = egin{bmatrix} \partial^2 f/\partial x_1^2 & \partial^2 f/\partial x_1 \partial x_2 \ \partial^2 f/\partial x_2 x_1 & \partial^2 f/\partial x_2^2 \end{bmatrix} = egin{bmatrix} -400x_2 + 1200x_1^2 + 2 & -400x_1 \ -400x_1 & 200 \end{bmatrix}
```

```
In [2]: def find_alpha(xk, f, grad, hess, method='SD', alpha bar=1, rho=0.5, c=1e-4)
                               alpha = alpha bar
                               p = 1
                               if method == 'SD':
                                         p = -grad(xk) / np.linalg.norm(grad(xk))
                                          p = -np.matmul(np.linalg.inv(hess(xk)), grad(xk))
                               while f(xk + alpha * p) > f(xk) + c * alpha * np.matmul(np.transpose(p))
                                         alpha *= rho
                               return alpha, p
In [3]: def backtrack linesearch(x0, tol, max iterations, f, grad, hess, method='SD'
                               i = 0
                               xk = x0
                               xk list = []
                               fxk list = []
                               ngxk list = []
                               p list = []
                               a list = []
                               while i < max iterations and \</pre>
                                          ((tol mode == 'GRAD' and np.linalg.norm(grad(xk)) > tol) or \
                                                    (tol mode != 'GRAD' and np.linalg.norm(f(xk)) > tol)):
                                         a, p = find alpha(x0, f, grad, hess, method, alpha bar, rho, c)
                                         xk list.append(xk.copy())
                                         fxk list.append(f(xk))
                                         ngxk list.append(np.linalg.norm(grad(xk)))
                                         p list.append(p)
                                         a list.append(a)
                                         i += 1
                                         xk += a * p
                               xk list.append(xk)
                               fxk list.append(f(xk))
                               ngxk list.append(np.linalg.norm(grad(xk)))
                               p list.append('-')
                               a list.append('-')
                               d = \{ x \ k^T : xk \ list, \ f(x \ k)' : fxk \ list, \ k' : p \ list, \ alpha \ k' : a \ list, \ b \ list, \ alpha \ k' : a \ list, \ b \ list, \ alpha \ k' : a \ list, \ alpha \ list, 
                               return pd.DataFrame(data=d)
In [4]: def f(x):
                               return 100 * (x[1] - (x[0]**2))**2 + (1 - x[0])**2
                               return np.array([(-400*x[0]*x[1]) + (400*x[0]**3) - (2) + (2 * x[0]), (2)
                     def hess(x):
                               return np.array([[-400*x[1] + 1200*x[0]**2 + 2, -400*x[0]], [-<math>400*x[0], -400*x[0]
In [5]: method = []
                    x0 list = []
```

```
stopping_criteria = []
num_iter = []
```

Solution 1a

```
In [6]: x0 = np.array([1.2, 1.2])
    x0_list.append(x0.copy())
    a = backtrack_linesearch(x0, 1e-8, 1e5, f, grad, hess, method='N', tol_mode=
    method.append('Newton')
    stopping_criteria.append('||grad(x_k)|| < 1e-8}')
    num_iter.append(len(a) - 1)
    if (len(a) > 12):
        display(a.head(6))
        display(a.tail(6))
    else:
        display(a)
```

	x_k^T	f(x_k)	p_k	alpha_k	grac
0	[1.2, 1.2]	5.800000e+00	[-0.004081632653060607, 0.2302040816326545]	1	1.2516
1	[1.1959183673469393, 1.4302040816326544]	3.838403e-02	[-0.19526774595264068, -0.46703190814528334]	0.5	3.9982
2	[1.098284494370619, 1.1966881275600127]	1.876234e-02	[-0.0337963351118008, -0.06469527862477475]	1	4.7848
3	[1.064488159258818, 1.131992848935238]	4.289183e-03	[-0.05249604412853717, -0.11062064249852371]	1	6.5635
4	[1.0119921151302809, 1.0213722064367143]	9.032733e-04	[-0.007731028105129378, -0.012891644319337758]	1	1.2658
5	[1.0042610870251516, 1.0084805621173767]	1.851409e-05	[-0.004210752701698793, -0.008397621375241957]	1	3.4658
6	[1.0000503343234528, 1.0000829407421348]	3.397039e-08	[-5.015646423718297e- 05, -8.258753934298202e- 05]	1	8.0197
7	[1.0000001778592156, 1.000000353202792]	3.226676e-14	[-1.7785912186877985e- 07, -3.532026362758192e- 07]	1	1.4519
8	[1.0000000000000937, 1.0000000000001557]	1.096016e-25	-	-	1.4403

```
In [7]: x0 = np.array([-1.2, 1])
    x0_list.append(x0.copy())
    a = backtrack_linesearch(x0, le-8, le5, f, grad, hess, method='N', tol_mode=
    method.append('Newton')
    stopping_criteria.append('||grad(x_k)|| < le-8')
    num_iter.append(len(a) - 1)
    if (len(a) > 12):
        display(a.head(6))
        display(a.tail(6))
```

```
else:
    display(a)
```

	x_k^T	f(x_k)	p_k	alpha_k	grad(x_k
0	[-1.2, 1.0]	24.200000	[0.02471910112359521, 0.3806741573033716]	1	232.8676
1	[-1.1752808988764047, 1.3806741573033716]	4.731884	[1.938395770053172, -4.555708012052268]	0.125	4.63947
2	[-0.9329814276197582, 0.8112106557968382]	4.087399	[0.1504413486489058, -0.2214742799844318]	1	28.5500
3	[-0.7825400789708524, 0.5897363758124063]	3.228673	[0.3225429599012032, -0.48217298724185853]	1	11.5715
4	[-0.45999711906964924, 0.10756338857054781]	3.213898	[0.06695148492830416, 0.04243898061291934]	1	30.32589
5	[-0.3930456341413451, 0.15000236918346715]	1.942585	[0.734534900159246, -0.572928969929976]	0.25	3.60410
	x_k^T	f(x_k)	p_l	alpha_	k grad(
1	6 [0.9420786864482265, 0.8813361968376636]	7.169244e- 03	[0.025913131023842295 0.05500047149575649		1 2.533067
1	7 [0.9679918174720687, 0.9363366683334201]	1.069614e- 03	[0.028218493287714363 0.05530203156725488		1 2.37581
1	8 [0.9962103107597831, 0.991638699900675]	7.776846e- 05	[0.003269068299983968 0.007309642457472454		1 3.48272
1	9 [0.999479379059767, 0.9989483423581474]	2.824669e- 07	[0.0005195105583740511 0.001049166988147352		1 3.87418
2	0 [0.9999988896181411, 0.9999975093462948]	8.517075e- 12	[1.1103219021781389e 06, 2.490532558792948e 06	-	1 1.18716
2	1 [0.999999999400433, 0.9999999998788536]	3.746839e- 21		-	- 4.47404
		1 \			
	<pre>x0 = np.array([1.2, 1.2] x0_list.append(x0.copy(a = backtrack linesearch)</pre>))	le5. f. grad. hess met	hod='SD'	tol mode

```
In [8]: x0 = np.array([1.2, 1.2])
    x0_list.append(x0.copy())
    a = backtrack_linesearch(x0, 1e-8, 1e5, f, grad, hess, method='SD', tol_mode
    method.append('Steepest Descent')
    stopping_criteria.append('||grad(x_k)|| < 1e-8')
    num_iter.append(len(a) - 1)
    if (len(a) > 12):
        display(a.head(6))
        display(a.tail(6))
    else:
        display(a)
```

	x_k^T	f(x_k)	p_k	alpha_k	grad(x_k)
0	[1.2, 1.2]	5.800000	[-0.9235489582482737, 0.38348053629686124]	0.125	125.169325
1	[1.0845563802189657, 1.2479350670371077]	0.520845	[0.9072675110117673, -0.42055399589412157]	0.03125	34.084815
2	[1.1129084899380834, 1.2347927546654163]	0.014172	[-0.9297462793930057, 0.3682008364396568]	0.001953	2.049182
3	[1.111092579236144, 1.2355118969240875]	0.012439	[0.7382728174998059, -0.6745022215981933]	0.000488	0.292120
4	[1.1114530640103137, 1.2351825501361977]	0.012424	[-0.9949271361792862, 0.10059817937758185]	0.000488	0.288998
5	[1.1109672597446012, 1.2352316703409718]	0.012410	[0.7379677257277035, -0.6748360065855116]	0.000488	0.291454

	x_k^T	f(x_k)	p_k	alpha_k	grad(
17400	[0.9999999996523948, 0.9999999992382226]	5.639470e- 19	[-0.8896063550470215, 0.456728073430956]	0.0	2.914
17401	[0.9999999996006129, 0.9999999992648076]	5.637747e- 19	[0.8998402348659098, -0.43621961408958265]	0.0	2.915
17402	[0.9999999996529905, 0.9999999992394163]	5.635008e- 19	[-0.8896142925800934, 0.45671261252260165]	0.0	2.914
17403	[0.9999999996012081, 0.9999999992660005]	5.633306e- 19	[0.8998322546480199, -0.4362360754168105]	0.0	2.915
17404	[0.9999999996535852, 0.9999999992406082]	5.630559e- 19	[-0.8896230306307835, 0.45669559158294937]	0.0	2.914
17405	[0.999999996276938, 0.9999999992538998]	1.388333e- 19	-	-	3.33(

```
In [9]: x0 = np.array([-1.2, 1])
    x0_list.append(x0.copy())
    a = backtrack_linesearch(x0, 1e-8, 1e5, f, grad, hess, method='SD', tol_mode
    method.append('Steepest Descent')
    stopping_criteria.append('||grad(x_k)|| < 1e-8')
    num_iter.append(len(a) - 1)
    if (len(a) > 12):
        display(a.head(6))
        display(a.tail(6))
    else:
        display(a)
```

			x_k^1	-	f(x_k)			ı	p_k	alpl	ha_k	gı	rad(x_k)
0			[-1.2, 1.0]] 24.2	200000		92584764 37789699				0.25	23	32.86768
1	[-0.9 1.	06853808 .0944742	90762003 49356653	6.3	321495		87543295 48333957			0	.125	(64.71980
2			79639393 20466823		955234		91822046 39606965			0.0	0625	(64.61313
3			28602165 52671886		112427		65572219 75500225			0.00	7812		4.56444
4			82300993 01429073		103538		99894867 45842715			0.00	7812		3.70671
5	[-1.0 1.0)1789697)5255455	17451134 39293768	4.0	098937		62866341 77767750			0.00	7812		4.22805
			x	_k^T	f((x_k)			ı	o_k	alph	a_k	grad(
17	7868		x 999974894 999944473	- 4255,	f (0794475 8054157	6338	19,	alph	a_k 0.0	grad (
	7868 7869	0.99999	99997489	4255, 3786] 9499,		27e- 17	0.455		6338 74806 11630	19, 33] 16,	alph		
17		0.99999 [0.99999 [0.99999	999974894 999944473 99997074	4255, 3786] 9499, 5295]	3.4549	27e- 17 336e- 17	0.4556 [0.899 -0.4371 [-0.890	8054157 3880301	66338 74806 11630 67745 96390	19, 33] 16, 06]	alph	0.0	2.332
17 17	7869	0.99999 0.99999 0.99999 0.99999	999974894 999944473 99997074 999946596	4255, 3786] 9499, 5295] 7601, 0651]	3.4549	27e- 17 336e- 17 669e- 17	0.4556 [0.899 -0.4371] [-0.890 0.455	8054157 3880301 5119956 0870249	66338 74806 11630 67745 96390 68589	19, 33] 16, 06] 07, 46]	alph	0.0	2.332
17 17	7869 7870	0.99999 0.99999 0.99999 0.99999 0.99999	999974894 999944473 99997074 999946596 99997493 999944566	4255, 3786] 9499, 5295] 7601, 0651] 9281, 3091]	3.4549 3.4538 3.4525	27e- 17 336e- 17 669e- 17 81e- 17	0.4556 [0.899 -0.4371] [-0.890 0.455 [0.899 -0.437 [-0.890	8054157 3880301 5119956 0870249 7906185 3807207	66338 74806 11630 67745 96390 88589 75194 11971	19, 33] 16, 06] 07, 46] 71, 23]	alph	0.0	2.332 2.332 2.332

Thus we can assume the minimizer of the Rosenbrock function xst=(1,1)

Solution 1b

0.9999999945708563]

```
In [10]: x0 = np.array([1.2, 1.2])
    x0_list.append(x0.copy())
    a = backtrack_linesearch(x0, 1e-8, 1e5, f, grad, hess, method='N', tol_mode=
    method.append('Newton')
    stopping_criteria.append('||f(x_k)|| < 1e-8')
    num_iter.append(len(a) - 1)
    if (len(a) > 12):
        display(a.head(6))
        display(a.tail(6))
    else:
        display(a)
```

	x_k^T	f(x_k)	p_k	alpha_k	grad(
0	[1.2, 1.2]	5.800000e+00	[-0.004081632653060607, 0.2302040816326545]	1	125.1
1	[1.1959183673469393, 1.4302040816326544]	3.838403e-02	[-0.19526774595264068, -0.46703190814528334]	0.5	0.3
2	[1.098284494370619, 1.1966881275600127]	1.876234e-02	[-0.0337963351118008, -0.06469527862477475]	1	4.7
3	[1.064488159258818, 1.131992848935238]	4.289183e-03	[-0.05249604412853717, -0.11062064249852371]	1	0.6
4	[1.0119921151302809, 1.0213722064367143]	9.032733e-04	[-0.007731028105129378, -0.012891644319337758]	1	1.2
5	[1.0042610870251516, 1.0084805621173767]	1.851409e-05	[-0.004210752701698793, -0.008397621375241957]	1	0.0
6	[1.0000503343234528, 1.0000829407421348]	3.397039e-08	[-5.015646423718297e- 05, -8.258753934298202e- 05]	1	0.0
7	[1.0000001778592156, 1.000000353202792]	3.226676e-14	-	-	0.0

```
In [11]: x0 = np.array([-1.2, 1])
    x0_list.append(x0.copy())
    a = backtrack_linesearch(x0, 1e-8, 1e5, f, grad, hess, method='N', tol_mode=
    method.append('Newton')
    stopping_criteria.append('||f(x_k)|| < 1e-8')
    num_iter.append(len(a) - 1)
    if (len(a) > 12):
        display(a.head(6))
        display(a.tail(6))
    else:
        display(a)
```

	x_k^T	f(x_k)	p_k	alpha_k	grad(x_k
0	[-1.2, 1.0]	24.200000	[0.02471910112359521, 0.3806741573033716]	1	232.8676
1	[-1.1752808988764047, 1.3806741573033716]	4.731884	[1.938395770053172, -4.555708012052268]	0.125	4.63942
2	[-0.9329814276197582, 0.8112106557968382]	4.087399	[0.1504413486489058, -0.2214742799844318]	1	28.5500
3	[-0.7825400789708524, 0.5897363758124063]	3.228673	[0.3225429599012032, -0.48217298724185853]	1	11.5715
4	[-0.45999711906964924, 0.10756338857054781]	3.213898	[0.06695148492830416, 0.04243898061291934]	1	30.3258!
5	[-0.3930456341413451, 0.15000236918346715]	1.942585	[0.734534900159246, -0.572928969929976]	0.25	3.60410

	x_k^T	f(x_k)	p_k	alpha_k	grad(x
15	[0.8634908081058761, 0.7419312454333862]	1.999278e- 02	[0.07858787834235031, 0.1394049514042774]	1	1.24
16	[0.9420786864482265, 0.8813361968376636]	7.169244e- 03	[0.025913131023842295, 0.05500047149575649]	1	2.53
17	[0.9679918174720687, 0.9363366683334201]	1.069614e- 03	[0.028218493287714363, 0.05530203156725488]	1	0.23
18	[0.9962103107597831, 0.991638699900675]	7.776846e- 05	[0.003269068299983968, 0.007309642457472454]	1	0.348
19	[0.999479379059767, 0.9989483423581474]	2.824669e- 07	[0.0005195105583740511, 0.001049166988147352]	1	0.00
20	[0.9999988896181411, 0.9999975093462948]	8.517075e- 12	-	-	0.000

```
In [12]: x0 = np.array([1.2, 1.2])
    x0_list.append(x0.copy())
    a = backtrack_linesearch(x0, 1e-8, 1e5, f, grad, hess, method='SD', tol_mode
    method.append('Steepest Descent')
    stopping_criteria.append('||f(x_k)|| < 1e-8')
    num_iter.append(len(a) - 1)
    if (len(a) > 12):
        display(a.head(6))
        display(a.tail(6))
    else:
        display(a)
```

	x_k^T	f(x_k)	p_k	alpha_k	grad(x_k)
0	[1.2, 1.2]	5.800000	[-0.9235489582482737, 0.38348053629686124]	0.125	125.169325
1	[1.0845563802189657, 1.2479350670371077]	0.520845	[0.9072675110117673, -0.42055399589412157]	0.03125	34.084815
2	[1.1129084899380834, 1.2347927546654163]	0.014172	[-0.9297462793930057, 0.3682008364396568]	0.001953	2.049182
3	[1.111092579236144, 1.2355118969240875]	0.012439	[0.7382728174998059, -0.6745022215981933]	0.000488	0.292120
4	[1.1114530640103137, 1.2351825501361977]	0.012424	[-0.9949271361792862, 0.10059817937758185]	0.000488	0.288998
5	[1.1109672597446012, 1.2352316703409718]	0.012410	[0.7379677257277035, -0.6748360065855116]	0.000488	0.291454

	x_k^T	f(x_k)	p_k	alpha_k	grad(
760	(1.0000947573549144, 1.0001728154925418)	3.689534e- 08	[-0.8993477754229203, 0.437234009246587]	0.000015	0.00
760	[1.0000810343969153, 1.00017948715406]	3.688363e- 08	[0.8901608661349564, -0.45564638965086124]	0.000015	0.0
760	(1.0000946171738034, 1.0001725345419132)	3.687067e- 08	[-0.8993405794827605, 0.43724881028495965]	0.000015	0.00
760	(1.0000808943256057, 1.0001792064292772)	3.685900e- 08	[0.8901683081356354, -0.45563185050097244]	0.000015	0.0
761	.o [1.0000944772160496, 1.0001722540389801]	3.684608e- 08	[-0.8993333947651702, 0.43726358762210527]	0.000008	0.00
761	. 1 [1.0000876158467658, 1.0001755900954044]	7.688837e- 09	-	-	0.0

```
In [13]: x0 = np.array([-1.2, 1])
    x0_list.append(x0.copy())
    a = backtrack_linesearch(x0, 1e-8, 1e5, f, grad, hess, method='SD', tol_mode
    method.append('Steepest Descent')
    stopping_criteria.append('||f(x_k)|| < 1e-8')
    num_iter.append(len(a) - 1)
    if (len(a) > 12):
        display(a.head(6))
        display(a.tail(6))
    else:
        display(a)
```

	x_k^T	f(x_k)	p_k	alpha_k	grad(x_k)
0	[-1.2, 1.0]	24.200000	[0.9258476436951987, 0.3778969974266118]	0.25	232.86768
1	[-0.9685380890762003, 1.094474249356653]	6.321495	[-0.8754329511019114, -0.4833395784797665]	0.125	64.71980
2	[-1.0779672079639393, 1.0340568020466823]	5.955234	[0.9182204697883884, 0.3960696515281009]	0.0625	64.61313
3	[-1.020578428602165, 1.0588111552671886]	4.112427	[-0.6557221923755718, -0.7550022559080029]	0.007812	4.56444
4	[-1.0257012582300993, 1.0529127001429073]	4.103538	[0.9989486700781974, -0.04584271533188964]	0.007812	3.70671
5	[-1.0178969717451134, 1.0525545539293768]	4.098937	[-0.6286634183205771, -0.7776775080105423]	0.007812	4.22805

	x_k^T	f(x_k)	p_k	alpha_k	grad(
829	4 [0.9999188045929814, 0.9998202058939769]	3.690310e- 08	[-0.8901209311299495, 0.4557243991321418]	0.000015	0.00
829	5 [0.9999052224254532, 0.9998271596964539]	3.689137e- 08	[0.8993177573723037, -0.43729574806399646]	0.000015	0.0
829	6 [0.9999189449254131, 0.9998204870928762]	3.687839e- 08	[-0.8901284454241932, 0.45570972191375175]	0.000015	0.00
829	7 [0.9999053626432258, 0.9998274406713966]	3.686671e- 08	[0.899310601230656, -0.43731046467487633]	0.000015	0.0
829	8 [0.9999190850339916, 0.9998207678432613]	3.685377e- 08	[-0.8901359474827254, 0.45569506799945797]	0.000008	0.00
829	9 [0.9999122938356618, 0.999824244520721]	7.704680e- 09	-	-	0.0

In [14]: comparison_lb = {'Line Search Method': method, 'x_0^T': x0_list, 'Stopping (
 df = pd.DataFrame(data=comparison_lb)
 display(df.sort_values(by=['Line Search Method']))

	Line Search Method	x_0^T	Stopping Criteria	Number of Iterations to Reach Convergence
0	Newton	[1.2, 1.2]	grad(x_k) < 1e-8}	8
1	Newton	[-1.2, 1.0]	grad(x_k) < 1e-8	21
4	Newton	[1.2, 1.2]	$ f(x_k) < 1e-8$	7
5	Newton	[-1.2, 1.0]	$ f(x_k) < 1e-8$	20
2	Steepest Descent	[1.2, 1.2]	grad(x_k) < 1e-8	17405
3	Steepest Descent	[-1.2, 1.0]	grad(x_k) < 1e-8	17873
6	Steepest Descent	[1.2, 1.2]	$ f(x_k) < 1e-8$	7611
7	Steepest Descent	[-1.2, 1.0]	$ f(x_k) < 1e-8$	8299

We can see that for the most part, Newton's Method seems to find the minimum the fastest. Obviously the problem that may occur is it approching a non-minimum value, such as a saddle point. We can also see that when only comparing the $||f(x_k)|| < 10^{-8}$ stopping criteria, the steepest decent has a much easier time with that and produces far less iterations. Which assumes that for the stopping criteria of $||\nabla f(x_k)|| < 10^{-8}$, $f(x_k)$ is making such small changes that the value doesn't change that much.

Problem 2

Using the \vec{x}_k values you obtained in Problem 1:

- (i) Plot the value of objective function $f(\vec{x}_k)$ against the iteration number for the steepest descent algorithm.
- (ii) Plot the value of objective function $f(\vec{x}_k)$ against the iteration number for the Newton algorithms.
- (iii) Compare the graph obtained in (i) with the one obtained in (ii). What can you infer about the convergence of the steepest descent and Newton algorithm.

Solution 2 (i) (ii)


```
In [17]:  x0 = np.array([-1.2, 1]) \\ a = backtrack\_linesearch(x0, 1e-8, 1e5, f, grad, hess, method='N', tol\_mode= y\_vals = list(np.log10(a['f(x_k)'])) \\ x\_vals = list(range(1, len(y\_vals) + 1))   plot(x\_vals, y\_vals, 'Newtons for $x\_0^T = [-1.2, 1]$ and $|| \nable f(x_k)$
```



```
In [18]: x0 = np.array([1.2, 1.2]) a = backtrack_linesearch(x0, 1e-8, 1e5, f, grad, hess, method='SD', tol_mode y_vals = list(np.log10(a['f(x_k)'])) x_vals = list(range(1, len(y_vals) + 1)) plot(x_vals, y_vals, 'Steepest Descent for x_0^T = [1.2, 1.2] and \|\cdot\|
```

Number of Iterations


```
In [19]:  x0 = np.array([-1.2, 1]) \\ a = backtrack\_linesearch(x0, 1e-8, 1e5, f, grad, hess, method='SD', tol\_mode \\ y\_vals = list(np.log10(a['f(x_k)'])) \\ x\_vals = list(range(1, len(y\_vals) + 1))   plot(x\_vals, y\_vals, 'Steepest Descent for $x\_0^T = [-1.2, 1]$ and $|| \nable | | \nable | | \nable | | \nable | | \nable | \nable | | \nable | \nable | \nable | \nable | | \nable | \nable
```


Solution 2 (iii)

We can see that based on the graphs of the steepest decent and newtons method, newtons method converges Q-Quadratically, whereas steepest descent converges Q-Linearly.

Problem 3

Let

$$f(x,y) = 5 - 5x - 2y + 2x^2 + 5xy + 6y^2$$
 $g(x,y) = rac{(x^2 - 0.5) + (y^2 - 3) + (x^2 - 1)(y^2 - 4)}{(x^2 + y^2 + 1)^2}$
 $h(x,y) = rac{(x^2 - 0.25) + (y^2 - 3) + (x^2 - 0.25)(y^2 - 4)}{(x^2 + y^2 + 1)^2}$

- (a) Determine if the function f(x,y) is convex.
- (b) Create a contour plot and a surface plot for f(x,y),g(x,y) and h(x,y) using a programming language of your choice. Use x=[-3,3] and y=[-3,3]

Solution 3 (a)

To find if f(x) is convex, we can just check to see if the hessian is positive definite.

$$f(x,y) = 5 - 5x - 2y + 2x^2 + 5xy + 6y^2$$
 $\nabla f(x,y) = \begin{pmatrix} -5 + 4x + 5y \\ -2 + 5x + 12y \end{pmatrix}$
 $\nabla^2 f(x,y) = \begin{pmatrix} 4 & 5 \\ 5 & 12 \end{pmatrix}$

Because the $Tr(\nabla^2 f(x,y))=16>0$ and $|\nabla^2 f(x,y)|=23>0$, that means the hessian is positive definite which means that f(x) is convex

Solution 3 (b)

```
In [20]: def plot contour surface(f, title):
              [X, Y] = np.meshgrid(np.linspace(-3, 3, 10), np.linspace(-3, 3, 10))
             f \text{ vals} = f(X, Y)
             fig, ax = plt.subplots()
             ax.contourf(X, Y, f vals)
             ax.set title('Contour Plot - ' + title)
             ax.set xlabel('x')
             ax.set ylabel('y')
             ax.grid()
             fig = plt.figure()
             ax = plt.axes(projection = '3d')
             ax.plot_surface(X, Y, f_vals, cmap = plt.get cmap('Blues'))
             ax.set title('Surface Plot - ' + title)
             ax.set xlabel('x')
             ax.set ylabel('y')
             plt.show()
```

```
In [21]: def f(x,y):
    return 5 - 5*x - 2*y + 2*x**2 + 5*x*y + 6*y**2

def g(x,y):
    return ((x**2 - 0.5) + (y**2 - 3) + (x**2 - 1)*(y**2 - 4)) / ((x**2 + y*))

def h(x,y):
    return ((x**2 - 0.25) + (y**2 - 3) + (x**2 - 0.25)*(y**2 - 4)) / ((x**2))

plot_contour_surface(f, '$f(x,y) = 5 - 5x -2y + 2x^2 + 5xy + 6y^2$')
    plot_contour_surface(g, '$g(x,y) = \\frac{(x^2 - 0.5) + (y^2 - 3) + (x^2 - 1)}{(x^2 - 0.5) + (y^2 - 3) + (x^2 - 1)}
```


Surface Plot - $f(x, y) = 5 - 5x - 2y + 2x^2 + 5xy + 6y^2$

Surface Plot - $h(x, y) = \frac{(x^2 - 0.25) + (y^2 - 3) + (x^2 - 0.25)(y^2 - 4)}{(x^2 + y^2 + 1)^2}$

Problem 4

- (i) Show that the sequence $x_k=1+(0.5)^{2^k}$ is Q-quadratically convergent.
- (ii) Does the sequence $x_k=1/k!$ converge Q-superlinearly? or Q-quadratically?

Solution 4 (i)

Notice the following tests for

$$x^* = \lim_{k o \infty} 1 + (0.5)^{2^k} = 1$$

Q-Linear Test:

$$rac{||x_{k+1}-x^*||}{||x_k-x^*||} = rac{1+(0.5)^{2^{k+1}}-1}{1+(0.5)^{2^k}-1} = rac{(0.5)^{2^{k+1}}}{(0.5)^{2^k}} = 0.5^{2^{k+1}-2^k}$$

Q-Superlinear Test:

$$\lim_{k o\infty}rac{||x_{k+1}-x^*||}{||x_k-x^*||}=\lim_{k o\infty}rac{1+(0.5)^{2^{k+1}}-1}{1+(0.5)^{2^k}-1}=\lim_{k o\infty}rac{(0.5)^{2^{k+1}}}{(0.5)^{2^k}}=\lim_{k o\infty}0.5^{2^{k+1}-2^k}$$

Q-Quadratic Test (PASS):

$$rac{||x_{k+1}-x^*||}{\left||x_k-x^*|
ight|^2} = rac{1+(0.5)^{2^{k+1}}-1}{(1+(0.5)^{2^k}-1)^2} = rac{(0.5)^{2^{k+1}}}{(0.5)^{2^{k+1}}} = 0.5^{2^{k+1}-2^{k+1}} = 1 \leq M \in \mathbb{R}^+$$
 :

We can come up to a direct conclusion for the Q-Quadratic Test which shows that the Rate of Convergence with $x^{st}=1$ is Q-Quadratic, Q-Superlinear, AND Q-Linear.

Notice the Q-Quadratic Test for

$$x^* = \lim_{k o -\infty} 1 + (0.5)^{2^k} = 2$$
 $rac{||x_{k+1} - x^*||}{||x_k - x^*||^2} = rac{1 + (0.5)^{2^{k+1}} - 2}{(1 + (0.5)^{2^k} - 2)^2} = rac{(0.5)^{2^{k+1}} - 1}{(0.5)^{2^{k+1}} + 1 - 2(0.5)^{2^k}} = rac{(0.5)^{2^{k+1}} - 1}{(0.5)^{2^{k+1}} + 1 - (0.5)^{2^k} + 1 - (0.5)^{2^{k+1}} + 1 - (0.5)^{2^{k+1}}} \le 1$

We can see that for large values, k, we know that the numerator is smaller than the denominator:

$$(0.5)^{2^{k+1}} - 1 < (0.5)^{2^{k+1}} + 1 - (0.5)^{2^k - 1}$$

such that the quotient converges which implies there exists a real positive value, M, that the quotient will always be less than.

We can come up to a direct conclusion for the Q-Quadratic Test which shows that the Rate of Convergence with $x^{st}=2$ is Q-Quadratic, Q-Superlinear, AND Q-Linear.

Solution 4 (ii)

Notice the Q-Superlinear Test for

$$x^* = \lim_{k o \infty} rac{1}{k!} = 0$$
 $\lim_{k o \infty} rac{||x_{k+1} - x^*||}{||x_k - x^*||} = \lim_{k o \infty} rac{1/(k+1)!}{1/k!} = \lim_{k o \infty} rac{(k!)}{(k+1)!} = \lim_{k o \infty} rac{(k!)}{(k!)(k+1)} = \lim_{k o \infty} \frac{(k!)}{(k!)(k+1)} = \lim_{k o \infty} \frac{(k!)(k+1)}{(k!)(k+1)$

Notice the Q-Quadratic Test:

$$rac{||x_{k+1}-x^*||}{||x_k-x^*||^2} = rac{1/(k+1)!}{(1/k!)^2} = rac{(k!)^2}{(k+1)!} = rac{(k!)(k!)}{(k!)(k+1)} = rac{k!}{k+1}
ot \leq M \in \mathbb{R}^+ ext{ for } 0$$

We can come p to a direct conclusion for the Q-Superlinear Test and Failed Q-Quadratic Test which shows that the Rate of Convergence with $x^{st}=1$ is Q-Superlinear, AND Q-Linear.

Problem 5

Consider the one-dimensional function

$$f(x) = egin{cases} (x-1)^2 + 2 & -1 \leq x \leq 1, \ 2 & 1 \leq x \leq 2, \ -(x-2)^2 + 2 & 2 \leq x \leq 2.5, \ (x-3)^2 + 1.5 & 2.5 \leq x \leq 4, \ -(x-5)^2 + 3.5 & 4 \leq x \leq 6, \ -2x + 14.5 & 6 \leq x \leq 6.5, \ 2x - 11.5 & 6.5 \leq x \leq 8 \end{cases}$$

defined over the interval [-1,8]. (i) Graph the function. (ii) Identify the strict global maximum point. (iii) Identify the local maximum and the strict local minimum points.

Solution 5 (i)

In [22]: def plot(x_vals_list, y_vals_list, title='plot', xlabel='x', ylabel='y', xli
 for x vals, y vals in zip(x vals list, y vals list):

```
plt.plot(x_vals, y_vals, '-')
plt.grid()
plt.title(title)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
if xlim:
    plt.xlim(xlim[0], xlim[1])
if ylim:
    plt.ylim(ylim[0], ylim[1])
```

```
In [23]: x vals list = []
         y_vals_list = []
         x vals list.append(np.linspace(-1, 1, 10 000))
         y vals list.append((x vals list[0] - 1)**2 + 2)
         x vals list.append(np.linspace(1, 2, 10 000))
         y_vals_list.append(2 * np.ones(len(x_vals_list[1])))
         x vals list.append(np.linspace(2, 2.5, 10 000))
         y vals list.append(-(x vals list[2] - 2)**2 + 2)
         x vals list.append(np.linspace(2.5, 4, 10 000))
         y vals list.append((x vals list[3] - 3)**2 + 1.5)
         x vals list.append(np.linspace(4, 6, 10 000))
         y vals list.append(-(x vals list[4] - 5)**2 + 3.5)
         x vals list.append(np.linspace(6, 6.5, 10 000))
         y vals list.append(-2 * x vals list[5] + 14.5)
         x vals list.append(np.linspace(6.5, 8, 10 000))
         y_vals_list.append(2 * x_vals_list[6] - 11.5)
         plot(x vals list, y_vals_list, 'Solution 5', '$x$', '$f(x)$', [-2,9], [0, 7]
```


Solution 5 (ii) (iii)

Strict Global Maximum: (-1,6)

Local Maximum: (2,2)

Local Minimum: (1,2)

Strict Local Maximum: (5,3.5)

Strict Local Minimum: (3,1.5),(6.5,1.5)

Problem 6

Determine if any of the following matrices are positive definite.

$$A = \begin{pmatrix} 4 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 2 & 4 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & -1 \end{pmatrix} \qquad C = \begin{pmatrix} -4 & 1 & 1 \\ 1 & -4 & 1 \\ 1 & 1 & -4 \end{pmatrix}$$

Solution 6

To determine if a matrix is positive definite, we can take note that the matrix must be symmetric and all of its eigenvalues are positive.

Notice A is symmetric. Now we will find its eigenvalues λ :

$$|A - \lambda I| = \begin{vmatrix} 4 - \lambda & 2 & 3 \\ 2 & 3 - \lambda & 2 \\ 3 & 2 & 4 - \lambda \end{vmatrix} = 0$$

$$0 = (4 - \lambda) \left((3 - \lambda)(4 - \lambda) - 2(2) \right) - 2 \left((2)(4 - \lambda) - (2)(3) \right) + 3 \left((4 - \lambda) \left((3 - \lambda)(4 - \lambda) - 2(2) \right) - 2 \left((2)(4 - \lambda) - (2)(3) \right) + 3 \left((4 - \lambda)(4 - \lambda) - 2(2) \right) - 2 \left((2 - 2\lambda) + 3 \left((-5 + 3\lambda) \right) \right)$$

$$0 = (4 - \lambda) \left((3 - \lambda)(4 - \lambda) - 2(2) \right) - 2 \left((2 - 2\lambda) + 3 \left((-5 + 3\lambda) \right) \right)$$

$$0 = (-\lambda)^3 + 11\lambda^2 - 36\lambda + 32 + 13$$

$$0 = -\lambda^3 + 11\lambda^2 - 23\lambda + 13$$

By evaluating the graph of this function, we get that all of its eigenvalues are positive such that matrix, A is positive definite

Notice B is symmetric. Now we will find its eigenvalues λ :

$$|B - \lambda I| = \left| egin{aligned} 2 - \lambda & 2 & 2 \ 2 & 2 - \lambda & 2 \ 2 & 2 & -1 - \lambda \end{aligned}
ight| = 0$$
 $0 = (2 - \lambda) \left((2 - \lambda)(-1 - \lambda) - 2(2) \right) - 2 \left((2)(-1 - \lambda) - (2)(2) \right) + 0$
 $0 = (2 - \lambda) \left(\lambda^2 - \lambda - 6 \right) - 2 \left(-6 - 2\lambda \right) + 2 \left(2\lambda \right)$
 $0 = \left(-\lambda^3 + 3\lambda^2 + 4\lambda - 12 \right) + \left(12 + 4\lambda \right) + \left(4\lambda \right)$
 $0 = -\lambda^3 + 3\lambda^2 + 12\lambda$

By evaluating the graph of this function, we get that all of its eigenvalues are NOT positive such that matrix, B is NOT positive definite

Notice C is symmetric. Now we will find its eigenvalues λ :

$$|C - \lambda I| = \begin{vmatrix} -4 - \lambda & 1 & 1 \\ 1 & -4 - \lambda & 1 \\ 1 & 1 & -4 - \lambda \end{vmatrix} = 0$$

$$0 = (-4 - \lambda) \left((-4 - \lambda)^2 - 1 \right) - \left((-4 - \lambda) - 1 \right) + \left(1 - (-4 - \lambda) \right)$$

$$0 = (-4 - \lambda)^3 - (-4 - \lambda) + 2 - 2(-4 - \lambda)$$

$$0 = (-4 - \lambda)^3 - 3(-4 - \lambda) + 2$$

By evaluating the graph of this function, we get that all of its eigenvalues are NOT positive such that matrix, ${\cal C}$ is NOT positive definite

This notebook was converted to PDF with convert.ploomber.io