Markov Decision Process II

CSE 4617: Artificial Intelligence

Isham Tashdeed Lecturer, CSE

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Value Iteration

Assume no discount!

$$V_0$$
 0 0

Will It Converge?

How do we know that the V_k vectors are going to converge?

- Case 1 \rightarrow Time limited MDPs (Always terminates after m steps)
- Case $2 \rightarrow \text{Value of } 0 < \gamma < 1$
 - The last layer is at best R_{max} or at worst R_{min}
 - The difference between the two trees is at most $\gamma^k \max |R|$

Policy Evaluation

Fixed Policies

Do the optimal action

Do what π says to do

- If we have some fixed policy $\pi(s) \to \text{Only}$ one action per state, No need to max over all actions
- For regular value iteration $\rightarrow O(S^2A)$ per iteration

Utilities of a Fixed Policy

- Compute the utility of a state *s* under a fixed policy $\pi \rightarrow$ usually a non-optimal policy
- $V^{\pi}(s) \rightarrow$ Total expected utility when starting from state s and following π

•
$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

- How to calculate $V^{\pi}(s)$ or $V^{\pi}(s')$?
- $V_0^{\pi}(s) = 0$ $V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$
- Efficiency \rightarrow O(S^2) per iteration
- Or try solving the linear equation!

Policy Evaluation

Always Go Right

Always Go Forward

Policy Extraction

Policy Extraction

- Given the optimal values $V^*(s)$, how to extract the policy?
- We need to run a one step expectimax to find the policy

$$\pi^*(s) = \operatorname*{argmax} \sum\limits_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s')
ight]$$

• This is policy extraction

Policy Extraction

- Given the optimal q-values $Q^*(s,a)$, how to extract the policy?
- We need to run a one step expectimax to find the policy

$$\pi^*(s) = \operatorname*{argmax}_{a} Q^*(s, a)$$

- Actions are much easier to select from q-values, than values
- This is the very basic of reinforcement learning

Gridworld Display

k = 9

CSE 4617: Artificial Intelligence

Problems with Value Iteration

- Repeats the Bellman updates at every state each iteration
- It is slow $\rightarrow O(S^2A)$
- The direction at each state rarely changes
- Policy converges long before the values converge

- Step 1: Policy evaluation → Calculate utilities for some fixed policy until convergence (Not optimal policy)
- Step 2: Policy improvement → Update policy using one-step look-ahead with resulting converged (but not optimal) utilities as future values
- Repeat until policy converges

- Evaluation: for fixed current policy π , find the values with policy evaluation:
 - Iterate until convergence

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') [R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s')]$$

- Evaluation: For fixed current policy π , find the values with policy evaluation:
 - Iterate until convergence

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') [R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s')]$$

• Improvement: For fixed values, get a better policy using policy extraction:

$$\pi_{i+1}(s) = \operatorname*{argmax} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

• Repeat until convergence

Both value iteration and policy iteration compute the same thing

In value iteration:

- Both utility values and policy is updated at each iteration
- Slow

In policy iteration:

- First we update the utility values for a fixed policy \rightarrow faster as we only consider one action
- After that, new policy is chosen \rightarrow Slow, similar to value iteration

- States \rightarrow Win, Lose
- Actions \rightarrow Blue, Red
- \bullet $\gamma = 1$
- 100 time steps

Solving MDPs is offline planning

- You know the details of the MDP
- You find all the quantities through computation
- You don't actually play the game!

\$0 \$0 \$0 \$2 \$0 \$2 \$0 \$0 \$0 \$0

- States \rightarrow Win, Lose
- Actions \rightarrow Blue, Red
- $\bullet \quad \gamma = 1$
- 100 time steps

Reinforcement Learning is online planning

- You don't know the details of the MDP
- You actually play the game!

In reinforcement learning

- Exploration: Try unknown actions to get information.
- Exploitation: Eventually, you have to use what you know
- Regret: Even if you learn intelligently, you make mistakes
- Sampling: You have to try things repeatedly
- Difficulty: Learning can be much harder than solving a known MDP

Thank you