CÁLCULO NUMÉRICO

Zeros de funções - Método do Ponto Fixo

Rodrigo Madureira rodrigo.madureira@ime.uerj.br IME-UERJ

Método do Ponto Fixo (MPF)

Seja $f(x) \in C[a, b]$, onde [a, b] é o intervalo que contém uma raiz r da equação f(x) = 0.

O Método do Ponto Fixo (MPF) consiste em transformar

$$f(x)=0\Rightarrow \varphi(x)=x,$$

e a partir de uma aproximação inicial x_0 , gerar uma sequência $\{x_k\}$ de aproximações para a única raiz r pela equação de recorrência

$$x_{k+1}=\varphi(x_k),$$

pois a função $\varphi(x)$ é tal que:

$$f(r) = 0 \Rightarrow \varphi(r) = r.$$

$$\varphi_1(x) = 6 - x^2$$

$$\varphi_2(x) = \sqrt{6-x}$$

$$\varphi_3(x) = \frac{6}{x} - 1$$

$$\varphi_4(x) = \frac{6}{x+1}$$

$$\varphi_1(x) = 6 - x^2$$

$$\varphi_2(x) = \sqrt{6-x}$$

$$\varphi_3(x) = \frac{6}{x} - 1$$

$$\varphi_4(x) = \frac{6}{x+1}$$

$$\varphi_1(x) = 6 - x^2$$

$$\varphi_2(x) = \sqrt{6-x}$$

$$\varphi_3(x) = \frac{6}{x} - 1$$

$$\varphi_4(x) = \frac{6}{x+1}$$

$$\varphi_1(x) = 6 - x^2$$

$$\varphi_2(x) = \sqrt{6-x}$$

$$\varphi_3(x) = \frac{6}{x} - 1$$

$$\varphi_4(x) = \frac{6}{x+1}$$

$$\varphi_1(x) = 6 - x^2$$

$$\varphi_2(x) = \sqrt{6-x}$$

$$\varphi_3(x) = \frac{6}{x} - 1$$

$$\varphi_4(x) = \frac{6}{x+1}$$

$$x_0 = 1.5$$

$$x_1 = \varphi_1(x_0) = \varphi_1(1.5) = 3.75$$

 $x_2 = \varphi_1(x_1) = \varphi_1(3.75) = -8.06$
 $x_3 = \varphi_1(x_2) = \varphi_1(-8.06) = -59.06$
 $x_4 = \varphi_1(x_3) = \varphi_1(-59) = -3475.4$

. , , (),

$$x_0 = 1.5$$

 $x_1 = \varphi_1(x_0) = \varphi_1(1.5) = 3.75$
 $x_2 = \varphi_1(x_1) = \varphi_1(3.75) = -8.06$
 $x_3 = \varphi_1(x_2) = \varphi_1(-8.06) = -59.00$
 $x_4 = \varphi_1(x_3) = \varphi_1(-59) = -3475.44$

Conclusão: $\{x_k\}$ diverge

$$x_0 = 1.5$$

 $x_1 = \varphi_1(x_0) = \varphi_1(1.5) = 3.75$
 $x_2 = \varphi_1(x_1) = \varphi_1(3.75) = -8.06$
 $x_3 = \varphi_1(x_2) = \varphi_1(-8.06) = -59.00$
 $x_4 = \varphi_1(x_3) = \varphi_1(-59) = -3475.46$

$$x_0 = 1.5$$

 $x_1 = \varphi_1(x_0) = \varphi_1(1.5) = 3.75$
 $x_2 = \varphi_1(x_1) = \varphi_1(3.75) = -8.06$
 $x_3 = \varphi_1(x_2) = \varphi_1(-8.06) = -59.00$
 $x_4 = \varphi_1(x_3) = \varphi_1(-59) = -3475.46$
Conclusão: $\{x_4\}$ diverse

$$x_0 = 1.5$$

$$x_1 = \varphi_1(x_0) = \varphi_1(1.5) = 3.75$$

$$x_2 = \varphi_1(x_1) = \varphi_1(3.75) = -8.06$$

$$x_3 = \varphi_1(x_2) = \varphi_1(-8.06) = -59.00$$

$$x_4 = \varphi_1(x_3) = \varphi_1(-59) = -3475.46$$

$$x_0 = 1.5$$

 $x_1 = \varphi_1(x_0) = \varphi_1(1.5) = 3.75$
 $x_2 = \varphi_1(x_1) = \varphi_1(3.75) = -8.06$
 $x_3 = \varphi_1(x_2) = \varphi_1(-8.06) = -59.00$
 $x_4 = \varphi_1(x_3) = \varphi_1(-59) = -3475.46$

Conclusão: $\{x_k\}$ diverge.

$$x_1 = \varphi_2(x_0) = \varphi_2(1.5) = 2.1213$$

 $x_2 = \varphi_2(x_1) = \varphi_2(2.1213) = 1.9694$
 $x_3 = \varphi_2(x_2) = \varphi_2(1.9694) = 2.0076$
 $x_4 = \varphi_2(x_3) = \varphi_2(2.0076) = 1.9981$

 $x_5 = \varphi_2(x_4) = \varphi_2(1.9981) = 2.0000$

Conclusão: $\{x_k\} \rightarrow 2$

 $x_0 = 1.5$

$$x_0 = 1.5$$

 $x_1 = \varphi_2(x_0) = \varphi_2(1.5) = 2.1213$
 $x_2 = \varphi_2(x_1) = \varphi_2(2.1213) = 1.9694$
 $x_3 = \varphi_2(x_2) = \varphi_2(1.9694) = 2.0076$
 $x_4 = \varphi_2(x_3) = \varphi_2(2.0076) = 1.9981$
 $x_5 = \varphi_2(x_4) = \varphi_2(1.9981) = 2.0003$

$$x_0 = 1.5$$

 $x_1 = \varphi_2(x_0) = \varphi_2(1.5) = 2.1213$
 $x_2 = \varphi_2(x_1) = \varphi_2(2.1213) = 1.9694$
 $x_3 = \varphi_2(x_2) = \varphi_2(1.9694) = 2.0076$
 $x_4 = \varphi_2(x_3) = \varphi_2(2.0076) = 1.9981$
 $x_5 = \varphi_2(x_4) = \varphi_2(1.9981) = 2.0005$

Conclusão: $\{x_k\} \rightarrow 2$

$$x_0 = 1.5$$

 $x_1 = \varphi_2(x_0) = \varphi_2(1.5) = 2.1213$
 $x_2 = \varphi_2(x_1) = \varphi_2(2.1213) = 1.9694$
 $x_3 = \varphi_2(x_2) = \varphi_2(1.9694) = 2.0076$
 $x_4 = \varphi_2(x_3) = \varphi_2(2.0076) = 1.9981$
 $x_5 = \varphi_2(x_4) = \varphi_2(1.9981) = 2.0005$

$$x_0 = 1.5$$

 $x_1 = \varphi_2(x_0) = \varphi_2(1.5) = 2.1213$
 $x_2 = \varphi_2(x_1) = \varphi_2(2.1213) = 1.9694$
 $x_3 = \varphi_2(x_2) = \varphi_2(1.9694) = 2.0076$
 $x_4 = \varphi_2(x_3) = \varphi_2(2.0076) = 1.9981$
 $x_5 = \varphi_2(x_4) = \varphi_2(1.9981) = 2.0005$

Conclusão: $\{x_k\} \rightarrow 2$

$$x_0 = 1.5$$

 $x_1 = \varphi_2(x_0) = \varphi_2(1.5) = 2.1213$
 $x_2 = \varphi_2(x_1) = \varphi_2(2.1213) = 1.9694$
 $x_3 = \varphi_2(x_2) = \varphi_2(1.9694) = 2.0076$
 $x_4 = \varphi_2(x_3) = \varphi_2(2.0076) = 1.9981$
 $x_5 = \varphi_2(x_4) = \varphi_2(1.9981) = 2.0005$

$$x_0 = 1.5$$

 $x_1 = \varphi_2(x_0) = \varphi_2(1.5) = 2.1213$
 $x_2 = \varphi_2(x_1) = \varphi_2(2.1213) = 1.9694$
 $x_3 = \varphi_2(x_2) = \varphi_2(1.9694) = 2.0076$
 $x_4 = \varphi_2(x_3) = \varphi_2(2.0076) = 1.9981$
 $x_5 = \varphi_2(x_4) = \varphi_2(1.9981) = 2.0005$

Conclusão: $\{x_k\} \rightarrow 2$.

$$x_0 = 1.5$$

$$x_1 = 3.00$$

$$X_3 = 5.00$$

 $x_4 = 0.20$

Conclusão: $\{x_k\}$ oscila e não converge.

$$x_0 = 1.5$$

$$x_1 = 3.00$$

$$x_3 = 5.00$$

$$x_4 = 0.20$$

Conclusão: $\{x_k\}$ oscila e não converge.

$$x_0 = 1.5$$

$$x_1 = 3.00$$

$$x_2 = 1.00$$

$$x_3 = 5.00$$

Conclusão: $\{x_k\}$ oscila e não converge.

$$x_0 = 1.5$$

$$x_1 = 3.00$$

$$x_2 = 1.00$$

 $x_3 = 5.00$

Conclusão: $\{x_k\}$ oscila e não converge.

$$x_0 = 1.5$$

$$x_1 = 3.00$$

$$x_2 = 1.00$$

$$x_3 = 5.00$$

 $x_4 = 0.20$

Conclusão: $\{x_k\}$ oscila e não

$$x_0 = 1.5$$

$$x_1 = 3.00$$

$$x_2 = 1.00$$

$$x_3 = 5.00$$

$$x_4 = 0.20$$

Conclusão: $\{x_k\}$ oscila e não converge.

$$x_0 = 1.5$$

 $x_1 = 2.40$
 $x_2 = 1.76$

 $x_3 = 2.18$

 $x_4 = 1.88$

Conclusão: {*x_k*} converge lentamente.

$$x_0 = 1.5$$

 $x_1 = 2.40$
 $x_2 = 1.76$
 $x_3 = 2.18$
 $x_4 = 1.88$

Conclusão: {*x_k*} converge entamente.

$$x_0 = 1.5$$

 $x_1 = 2.40$
 $x_2 = 1.76$
 $x_3 = 2.18$
 $x_4 = 1.88$

Conclusão: {*x_k*} converge lentamente.

$$x_0 = 1.5$$

 $x_1 = 2.40$
 $x_2 = 1.76$
 $x_3 = 2.18$

Conclusão: $\{x_k\}$ converge lentamente.

$$x_0 = 1.5$$

$$x_1 = 2.40$$

$$x_2 = 1.76$$

$$x_3 = 2.18$$

$$x_4 = 1.88$$

Conclusão: $\{x_k\}$ converge entamente.

$$x_0 = 1.5$$

$$x_1 = 2.40$$

$$x_2 = 1.76$$

$$x_3 = 2.18$$

$$x_4 = 1.88$$

Conclusão: $\{x_k\}$ converge lentamente.

Resumo Comparativo dos Casos

$\varphi(x)$	$ \varphi'(x) $	Conclusão
$\varphi_1(x)=6-x^2$	$ \varphi_1'(x) > 1$	Divergente
$\varphi_2(x) = \sqrt{6-x}$	$ \varphi_1'(x) <1$	Convergente ($r=2$)
$\varphi_3(x) = \frac{6}{x} - 1$	$ \varphi_1'(x) > 1$	Oscilante / Não converge
$\varphi_4(x) = \frac{6}{x+1}$	$ \varphi_1'(x) <1$	Convergente (lento)

Exemplo 2

Ache a raiz da equação $f(x) = e^x + x - 2 = 0$ com tolerância $\epsilon = 10^{-3}$ usando as seguintes funções de iteração linear:

- $\varphi_1(x) = 2 e^x$;
- $\varphi_2(x) = \ln(2-x)$