Introducción a la Lógica y la Computación

Mariana Badano Héctor Gramaglia
Pedro Sánchez Terraf Mauricio Tellechea
Guido Ivetta César Vallero

FaMAF, 20 de agosto de 2021

Información Básica

Aula virtual

https://famaf.aulavirtual.unc.edu.ar/course/view.php?id=809

Ediciones anteriores de la materia

Clases completas de 2020 en <u>YouTube</u> (y más info en <u>mi web de la materia 2020</u>).

Dinámica de trabajo

Clases virtuales

- César Vallero y Guido Ivetta serán moderadores del chat.
- Por favor hagan sus consultas por ahí, y en caso de ser necesario, ellos me la comunicarán a mí.
- Prácticos: 3 comisiones a cargo de Mariana, Héctor y Mauricio, respectivamente.

Dinámica de trabajo

Clases virtuales

- César Vallero y Guido Ivetta serán moderadores del chat.
- Por favor hagan sus consultas por ahí, y en caso de ser necesario, ellos me la comunicarán a mí.
- Prácticos: 3 comisiones a cargo de Mariana, Héctor y Mauricio, respectivamente.

Ver el teórico "en crudo" no sirve

- Cada clase (aproximadamente) tendrá indicada una lectura previa.
- De esta manera podrán sacarse más dudas en vivo.

Contenidos estimados para hoy

- Conjuntos parcialmente ordenados
 - Ejemplos
 - Máximos, mínimos, maximales y minimales
 - Supremos e ínfimos
 - Isomorfismo de posets

Relaciones de orden

Repasamos las propiedades de una relación:

- **reflexiva**: $\forall a \in A$, a R a.
- **simétrica**: $\forall a, b \in A$, $a R b \implies b R a$.
- antisimétrica: $\forall a, b \in A$, $a R b \& b R a \implies a = b$.
- transitiva: $\forall a, b, c \in A$, $a R b \& b R c \implies a R c$.

Relaciones de orden

Repasamos las propiedades de una relación:

- **reflexiva**: $\forall a \in A$, a R a.
- simétrica: $\forall a, b \in A$, $a R b \implies b R a$.
- antisimétrica: $\forall a, b \in A$, $a R b \& b R a \implies a = b$.
- transitiva: $\forall a, b, c \in A$, $a R b \& b R c \implies a R c$.

Definición

Una **relación de orden parcial** R sobre un conjunto A es una relación que satisface las propiedades de reflexividad, antisimetría y transitividad.

Relaciones de orden

Repasamos las propiedades de una relación:

- **reflexiva**: $\forall a \in A$, a R a.
- **simétrica**: $\forall a, b \in A$, $a R b \implies b R a$.
- antisimétrica: $\forall a, b \in A$, $a R b \& b R a \implies a = b$.
- transitiva: $\forall a, b, c \in A$, $a R b \& b R c \implies a R c$.

Definición

Una **relación de orden parcial** R sobre un conjunto A es una relación que satisface las propiedades de reflexividad, antisimetría y transitividad.

Ejemplo

- **1** La relaciones de **orden usuales** \leq sobre \mathbb{R} , \mathbb{Z} , \mathbb{N} .
- 2 La relación "divide" sobre N.
- **3** La relación de **inclusión** \subseteq sobre las partes $\mathscr{P}(A)$ de un conjunto A.

Conjuntos parcialmente ordenados

Definición

Un **conjunto parcial ordenado** (**cpo** ó **poset**) es un par (A, R) donde A es un conjunto y R es un orden parcial sobre A.

Conjuntos parcialmente ordenados

Definición

Un **conjunto parcial ordenado** (**cpo** ó **poset**) es un par (A,R) donde A es un conjunto y R es un orden parcial sobre A.

Ejemplo (Posets)

- **2** $(\mathbb{N}, |)$.
- $(\mathscr{P}(A),\subseteq)$ para cada conjunto A.

Conjuntos parcialmente ordenados

Definición

Un **conjunto parcial ordenado** (**cpo** ó **poset**) es un par (A,R) donde A es un conjunto y R es un orden parcial sobre A.

Ejemplo (Posets)

- **2** $(\mathbb{N}, |)$.
- $(\mathscr{P}(A),\subseteq)$ para cada conjunto A.

Subposets

Si (A, R) es un poset y $B \subseteq A$, entonces (B, R) también es un poset.

Subposets

Si (A, R) es un poset y $B \subseteq A$, entonces (B, R) también es un poset.

(Estrictamente hay que poner la *restricción de R a B* junto a *B* para tener un poset).

Subposets

Si (A, R) es un poset y $B \subseteq A$, entonces (B, R) también es un poset.

(Estrictamente hay que poner la *restricción de R a B* junto a *B* para tener un poset).

A partir de $(\mathbb{N}, |)$ obtenemos:

Ejemplo (Conjunto de divisores de n)

 $D_n := \{k \in \mathbb{N} : k \mid n\}.$

Subposets

Si (A, R) es un poset y $B \subseteq A$, entonces (B, R) también es un poset.

(Estrictamente hay que poner la *restricción de R a B* junto a *B* para tener un poset).

A partir de $(\mathbb{N}, |)$ obtenemos:

Ejemplo (Conjunto de divisores de *n*)

 $D_n := \{k \in \mathbb{N} : k \mid n\}. (D_n, |)$ es un poset.

Subposets

Si (A,R) es un poset y $B\subseteq A$, entonces (B,R) también es un poset.

(Estrictamente hay que poner la *restricción de R a B* junto a *B* para tener un poset).

A partir de $(\mathbb{N}, |)$ obtenemos:

Ejemplo (Conjunto de divisores de n)

 $D_n := \{k \in \mathbb{N} : k \mid n\}. (D_n, |)$ es un poset.

 $D_4 = \{1, 2, 4\}.$

Subposets

Si (A, R) es un poset y $B \subseteq A$, entonces (B, R) también es un poset.

(Estrictamente hay que poner la *restricción de R a B* junto a *B* para tener un poset).

A partir de $(\mathbb{N}, |)$ obtenemos:

Ejemplo (Conjunto de divisores de n)

 $D_n := \{k \in \mathbb{N} : k \mid n\}. (D_n, |)$ es un poset.

- $D_4 = \{1, 2, 4\}.$
- $D_8 = \{1, 2, 4, 8\}.$

Subposets

Si (A, R) es un poset y $B \subseteq A$, entonces (B, R) también es un poset.

(Estrictamente hay que poner la *restricción de R a B* junto a *B* para tener un poset).

A partir de $(\mathbb{N}, |)$ obtenemos:

Ejemplo (Conjunto de divisores de n)

 $D_n := \{k \in \mathbb{N} : k \mid n\}. (D_n, \mid)$ es un poset.

- $D_4 = \{1, 2, 4\}.$
- $D_8 = \{1, 2, 4, 8\}.$
- $D_9 = \{1, 3, 9\}.$

Un **orden total** o **cadena** sobre un conjunto P es un orden parcial \leq sobre P que satisface la **ley de dicotomía**:

para todo $a, b \in P$, $a \le b$ ó $b \le a$.

Un **orden total** o **cadena** sobre un conjunto P es un orden parcial \leq sobre P que satisface la **ley de dicotomía**:

para todo
$$a, b \in P$$
, $a \le b$ ó $b \le a$.

Ejemplo

- **1** El orden \leq sobre \mathbb{R} .
- El orden lexicográfico de las palabras en un diccionario.

Un **orden total** o **cadena** sobre un conjunto P es un orden parcial \leq sobre P que satisface la **ley de dicotomía**:

para todo
$$a, b \in P$$
, $a \le b$ ó $b \le a$.

Ejemplo

- **1** El orden \leq sobre \mathbb{R} .
- El orden lexicográfico de las palabras en un diccionario.

Pregunta

¿Hay un subconjunto de S de $\mathbb R$ tal que (S,\leqslant) tenga la misma forma que $(\mathscr{P}(\{a,b\}),\subseteq)$?

Un **orden total** o **cadena** sobre un conjunto P es un orden parcial \leq sobre P que satisface la **ley de dicotomía**:

para todo
$$a, b \in P$$
, $a \le b$ ó $b \le a$.

Ejemplo

- **1** El orden \leq sobre \mathbb{R} .
- El orden lexicográfico de las palabras en un diccionario.

Pregunta

¿Hay un subconjunto de S de $\mathbb R$ tal que (S,\leqslant) tenga la misma forma que $(\mathscr P(\{a,b\}),\subseteq)$? — Actividad en Aula virtual!

Subposets

Si (A,R) es un poset y $B\subseteq A$, entonces (B,R) también es un poset.

(Estrictamente hay que poner la *restricción de R a B* junto a *B* para tener un poset).

A partir de $(\mathbb{N}, |)$ obtenemos:

Ejemplo (Conjunto de divisores de n)

 $D_n := \{k \in \mathbb{N} : k \mid n\}. (D_n, |)$ es un poset.

- $D_4 = \{1, 2, 4\}.$
- $D_8 = \{1, 2, 4, 8\}.$
- $D_9 = \{1, 3, 9\}.$

Subposets

Si (A,R) es un poset y $B\subseteq A$, entonces (B,R) también es un poset.

(Estrictamente hay que poner la *restricción de R a B* junto a *B* para tener un poset).

A partir de $(\mathbb{N}, |)$ obtenemos:

Ejemplo (Conjunto de divisores de n)

 $D_n := \{k \in \mathbb{N} : k \mid n\}. (D_n, |)$ es un poset.

- $D_4 = \{1, 2, 4\}.$
- $D_8 = \{1, 2, 4, 8\}.$
- $D_9 = \{1,3,9\}.$
- $D_{12} = \{1, 2, 3, 4, 6, 12\}.$

Sea (P, \leq) un poset y $b, t \in P$

Sea (P, \leq) un poset y $b, t \in P$

■ b es mínimo de $P \iff \forall x \in P, b \leq x$.

Sea (P, \leq) un poset y $b, t \in P$

■ b es mínimo de $P \iff \forall x \in P, b \leq x$.

b está debajo de todo.

Sea (P, \leq) un poset y $b, t \in P$

- b es mínimo de $P \iff \forall x \in P, b \leq x$.
- t es máximo de $P \iff \forall x \in P, x \leq t$.

b está debajo de todo.

Sea (P, \leq) un poset y $b, t \in P$

- b es mínimo de $P \iff \forall x \in P, b \leq x$.
- t es máximo de $P \iff \forall x \in P, x \leq t$.

b está debajo de todo.

t está encima de todo.

Sea (P, \leq) un poset y $b, t \in P$

■ b es mínimo de $P \iff \forall x \in P, b \leq x$.

b está debajo de todo.

■ t es máximo de $P \iff \forall x \in P, x < t$.

t está encima de todo.

■ b es minimal en $P \iff \forall x \in P, x \leq b$ implica x = b.

Sea (P, \leq) un poset y $b, t \in P$

■ b es mínimo de $P \iff \forall x \in P, b \leq x$.

b está debajo de todo.

■ t es máximo de $P \iff \forall x \in P, x \leq t$.

t está encima de todo.

■ b es minimal en $P \iff \forall x \in P, x \leq b$ implica x = b.

No hay nadie bajo b.

Sea (P, \leq) un poset y $b, t \in P$

■ b es mínimo de $P \iff \forall x \in P, b \leq x$.

b está debajo de todo.

■ t es máximo de $P \iff \forall x \in P, x \leq t$.

t está encima de todo.

■ b es minimal en $P \iff \forall x \in P, \quad x \le b$ implica x = b.

No hay nadie bajo b.

■ t es maximal en $P \iff \forall x \in P$, t < x implica t = x.

Sea (P, \leq) un poset y $b, t \in P$

■ b es mínimo de $P \iff \forall x \in P, b \leq x$.

b está debajo de todo.

■ t es máximo de $P \iff \forall x \in P, x < t$.

t está encima de todo.

■ b es minimal en $P \iff \forall x \in P, \quad x \leq b$ implica x = b.

No hay nadie bajo b.

■ t es maximal en $P \iff \forall x \in P$, t < x implica t = x.

No hay nadie encima de t.

Sea (P, \leq) un poset y $b, t \in P$

■ b es mínimo de $P \iff \forall x \in P, b \leq x$.

b está debajo de todo.

■ t es máximo de $P \iff \forall x \in P, x \leq t$.

t está encima de todo.

- b es **minimal** en $P \iff \forall x \in P, \quad x \leq b$ implica x = b.
 - No hay nadie bajo b.
- t es maximal en $P \iff \forall x \in P, t \le x$ implica t = x.

No hay nadie encima de *t*.

¿Cuáles de los siguientes tienen máximo, mínimo, maximales y/o minimales?

- $\mathbb{1}$ (\mathbb{N}, \leqslant) .
- $[0,1), \leq).$
- $({2,4,6,12,16},|).$

- 5 $(\{\{c\},\{a,b\},\{a,b,c\}\},\subseteq)$.

Sea (P, \leq) un poset, sea $S \subseteq P$ y sean $u, l, s, i \in P$.

Definición

11 $u \in P$ se dice **cota superior** de $S \iff \forall x \in S, x \leq u$.

Sea (P, \leq) un poset, sea $S \subseteq P$ y sean $u, l, s, i \in P$.

Definición

1 $u \in P$ se dice **cota superior** de $S \iff \forall x \in S, \quad x \leq u.$ u está "encima" de S.

Sea (P, \leq) un poset, sea $S \subseteq P$ y sean $u, l, s, i \in P$.

- **1** $u \in P$ se dice **cota superior** de $S \iff \forall x \in S, \quad x \leq u.$ u está "encima" de S.
- 2 $l \in P$ se dice cota inferior de $S \iff \forall x \in S, l \leq x$.

Sea (P, \leq) un poset, sea $S \subseteq P$ y sean $u, l, s, i \in P$.

- **1** $u \in P$ se dice **cota superior** de $S \iff \forall x \in S, \quad x \leq u.$ $u \in S$ está "encima" de S.
- 2 $l \in P$ se dice cota inferior de $S \iff \forall x \in S, \quad l \leq x.$ l está "debajo" de S.

Sea (P, \leq) un poset, sea $S \subseteq P$ y sean $u, l, s, i \in P$.

- 1 $u \in P$ se dice **cota superior** de $S \iff \forall x \in S, \quad x \leq u.$ u está "encima" de S.
- 2 $l \in P$ se dice cota inferior de $S \iff \forall x \in S, \quad l \leq x.$ l está "debajo" de S.
- 3 $s \in P$ se dice **supremo** de S si s es una cota superior de S y $\forall b \in P, b$ es cota superior b de $S \implies s \leq b$. Escribimos " $s = \sup S$ ".

Sea (P, \leq) un poset, sea $S \subseteq P$ y sean $u, l, s, i \in P$.

- 1 $u \in P$ se dice cota superior de $S \iff \forall x \in S, x < u$. u está "encima" de S.
- 2 $l \in P$ se dice cota inferior de $S \iff \forall x \in S, l < x$. l está "debajo" de S.
- $s \in P$ se dice **supremo** de S si s es una cota superior de S y $\forall b \in P, b \text{ es cota superior } b \text{ de } S \implies s \leq b.$ Escribimos " $s = \sup S$ ". Es la menor cota superior.

Sea (P, \leq) un poset, sea $S \subseteq P$ y sean $u, l, s, i \in P$.

- 1 $u \in P$ se dice **cota superior** de $S \iff \forall x \in S, \quad x \leq u.$ u está "encima" de S.
- 2 $l \in P$ se dice cota inferior de $S \iff \forall x \in S, \quad l \leq x.$ l está "debajo" de S.
- 3 $s \in P$ se dice **supremo** de S si s es una cota superior de S y $\forall b \in P, b$ es cota superior b de $S \implies s \le b$. Escribimos " $s = \sup S$ ".
- 4 $i \in P$ se dice **ínfimo** de S si i es una cota inferior de S y $\forall b \in P, b$ es cota inferior b de $S \implies b \leq i$. Escribimos " $i = \inf S$ ".

Sea (P, \leq) un poset, sea $S \subseteq P$ y sean $u, l, s, i \in P$.

- **1** $u \in P$ se dice **cota superior** de $S \iff \forall x \in S, \quad x \leq u.$ u está "encima" de S.
- 2 $l \in P$ se dice cota inferior de $S \iff \forall x \in S, \quad l \leq x.$ l está "debajo" de S.
- $s \in P$ se dice **supremo** de $s \in S$ si $s \in S$ superior de $s \in S$ y $\forall b \in P, b \in S$ es cota superior $s \in S$ defined as $s \in S$. Escribimos " $s = \sup S$ ". Es la menor cota superior.
- 4 $i \in P$ se dice **infimo** de S si i es una cota inferior de S y $\forall b \in P, b$ es cota inferior b de $S \implies b \le i$. Escribimos " $i = \inf S$ ". Es la mayor cota inferior.

Isomorfismo de posets

Sean (P, \leq) , (Q, \leq') dos posets, y sea $f: P \to Q$ una función.

Isomorfismo de posets

Sean (P, \leq) , (Q, \leq') dos posets, y sea $f: P \to Q$ una función.

Definición

f es un **isomorfismo** si

- f es biyectiva y
- para todo $x, y \in P$, se cumple que

$$x \le y \iff f(x) \le' f(y).$$

Isomorfismo de posets

Sean (P, \leq) , (Q, \leq') dos posets, y sea $f: P \to Q$ una función.

Definición

f es un **isomorfismo** si

- $\blacksquare f$ es biyectiva y
- para todo $x, y \in P$, se cumple que

$$x \le y \iff f(x) \le' f(y).$$

Decimos entonces que (P,\leq) y (Q,\leq') son **isomorfos** y escribimos $(P,\leq)\cong (Q,\leq').$

