## STATYSTYCZNA ANALIZA DANYCH

# III i V semestr studiów inżynierskich w PJATK, 2018/2019

Prowadząca: dr hab. Elżbieta Ferenstein, profesor PJATK

Cel wykładu - poznanie podstaw analizy danych

- statystyka opisowa
- modelowanie probabilistyczne
- wnioskowanie statystyczne



# Tematyka wykładu SAD

- Metody graficzne prezentacji danych jakościowych i ilościowych. Statystyki próbkowe. Histogramy, wykresy ramkowe.
- Prawdopodobieństwo, niezależność zdarzeń, twierdzenie Bayes'a.
- Zmienne losowe, rozkłady prawdopodobieństwa i ich parametry, wybrane rozkłady prawdopodobieństwa.
- Podstawowe statystyki i ich własności, przedziały ufności, testy parametryczne dla średnich i wariancji jednej i dwu populacji, regresja liniowa jednowymiarowa.

# Informacje praktyczne

Kontakt: PJATK pok. 308,

elzbieta.ferenstein @pja.edu.pl lub elaw@pja.edu.pl

Konsultacje: pok. 308 (po umówieniu) lub po (przed) wykładzie.

Wykłady umieszczone są na

ftp/public/elaw/SAD2018inf

Ćwiczenia umieszczone są na

ftp/public/asier/Informatyka dzienne

#### Zaliczenie ćwiczeń:

skala punktowa: 100 punktów = 98 punktów za zadania domowe + 2 punkty za wszystkie obecności na ćwiczeniach.

Ocena z ćwiczeń:  $\geq$  91 pkt: bdb;  $\geq$  81pkt: db+;  $\geq$  71: db;  $\geq$  61: dost +;  $\geq$  51: dost.

Ocena dostateczna zalicza ćwiczenia i jest warunkiem dopuszczenia do egzaminu.

Na ćwiczeniach obowiązuje znajomość materiału omawianego na wykładach.

Egzamin: zadania z zakresu wykładu i ćwiczeń.

Wymagania wstępne: Analiza I i II, Matematyka Dyskretna.

**Software:** pakiet SAS, Excel.

#### Literatura podstawowa:

- Jacek Koronacki, Jan Mielniczuk: Statystyka dla studentów kierunków technicznych i przyrodniczych, Wydawnictwa Naukowo-Techniczne 2001.
- Elżbieta Ferenstein: Statystyczna Analiza Danych, slajdy na FTP (public), katalog elaw, folder SAD2017

#### Literatura uzupełniająca:

- Janina Jóźwiak, Jarosław Podgórski: Statystyka od podstaw, PWE, Warszawa 2001(3), wyd. V (VI).
- Przemysław Grzegorzewski i inn.: Rachunek prawdopodobieństwa i statystyka, WSISiZ, Warszawa 2001.
- Amir D. Aczel: Statystyka w zarządzaniu, PWN, Warszawa 2000.
- K. Bobecka, P. Grzegorzewski, J. Pusz: Zadania z rachunku prawdopodobieństwa i statystyki, WSISiZ, Warszawa 2003.
- Mieczysław Sobczyk: Statystyka, PWN 2005.
- Marek Cieciura, Janusz Zacharski: Metody probabilistyczne w ujęciu praktycznym, Vizja 2007.

# **STATYSTYKA OPISOWA**

# Techniki wstępnej analizy danych i ich prezentacji:

- gromadzenie, przechowywanie danych, analiza danych surowych
- prezentacja danych: tabele, wykresy, parametry liczbowe obliczane dla danych.

# Cel:

- charakteryzacja danych w zwięzłej formie odzwierciedlająca pewne ich cechy, np. średni dochód, średnie zużycie paliwa, ..
- odnalezienie różnego rodzaju regularności ( nieregularności ) ukrytych w danych, zależności między podzbiorami danych.

- Obejrzenie danych surowych nieprzetworzonych,
   niepogrupowanych, niezorganizowanych.
- Poznanie sposobu i celu zebrania danych:
- jaką cechę mierzono ( obserwowano ) ?,
- w jakich jednostkach ?,
- ile wykonano obserwacji ( liczebność zbioru danych ), w jakich warunkach – czy nie zgubiono części danych, dane brakujące, czy jest możliwość przekłamań ?
- czy celem zebrania danych ma być odpowiedź na konkretne pytania ?

- □ Cel badania statystycznego: poznanie charakterystyk dużej zbiorowości obiektów ( osoby, przedmioty, zjawiska, możliwe wyniki eksperymentów ... ) na podstawie obserwacji cech (danych ) jedynie niektórych wylosowanych obiektów
- Populacja: zbiór obiektów badanych ze względu na określoną cechę nazywaną zmienną
- Próbka (próba) zbiór cech zbadanych obiektów (jednostek) populacji

#### ■ Rodzaje cech:

- mierzalne (ilościowe) wyrażone za pomocą wartości liczbowych mianowanych: ciągłe lub dyskretne (skokowe)
- niemierzalne (jakościowe) wyrażone w sposób opisowy

#### Przykłady cech statystycznych

- mierzalne ciągłe:
  - wzrost
  - waga
  - czas realizacji ...
- mierzalne skokowe:
  - liczba pracowników
  - liczba dzieci
  - liczba przedmiotów...
- niemierzalne:
  - płeć
  - wykształcenie
  - marka samochodu...

| Populacja                                                    | badana cecha<br>(zmienna)                    | zebrane dane<br>( próbka )                                |
|--------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------|
| <ul><li>zbiór detali</li></ul>                               | jakość detalu                                | zbiór jakości zbadanych<br>detali                         |
| <ul><li>zbiór komputerów<br/>w sieci</li></ul>               | liczba awarii kompu-<br>tera w danym okresie | zbiór liczb awarii wybranych<br>komputerów w danym czasie |
| <ul><li>zbiór projektów<br/>przysłanych na konkurs</li></ul> | ocena projektu                               | zbiór ocen wybranych<br>projektów                         |
| <ul> <li>zbiór osób w<br/>zespole pracowników</li> </ul>     | staż pracy                                   | zbiór staży pracy (lat pracy)<br>wylosowanych osób        |

# Podstawowe pojęcia statystyki

# Populacja i próba



- **Badanie statystyczne pełne** (kompletne, całkowite, wyczerpujące) to badanie oparte o dane obejmujące wszystkie jednostki populacji.
- Badanie statystyczne częściowe (niekompletne, niepełne) to badanie oparte o dane obejmujące wybrane jednostki populacji.
- **Próba** to podzbiór populacji generalnej wykorzystywany w badaniu częściowym.
- **Próba reprezentatywna** to próba wybrana w sposób losowy i mająca dostateczną liczebność.

Aby wyniki badania próby można było odnieść do zbiorowości generalnej (uogólnić) próba <u>musi być</u> reprezentatywna.

- Szereg szczegółowy (wyliczający) uporządkowany ciąg obserwowanych wartości badanej cechy statystycznej.
- Szereg rozdzielczy (strukturalny) materiał statystyczny podzielony na grupy (klasy) według wybranego kryterium, zapisany w postaci tabelarycznej, z podaniem liczebności (lub częstości) każdej z wyodrębnionych grup,.
- Szeregi rozdzielcze są wynikiem operacji grupowania danych.
- W przypadku cechy mierzalnej z małą liczbą wariantów cechy tworzy się szeregi rozdzielcze punktowe.
- Gdy wariantów jest dużo buduje się szeregi rozdzielcze przedziałowe.
- Szereg rozdzielczy cechy mierzalnej opisuje rozkład empiryczny badanej cechy.

#### **Przykład** (szereg rozdzielczy punktowy)

Liczba pracowników w poszczególnych przedsiębiorstwach pewnego koncernu wynosi: 100; 125; 170; 144; 144; 235; 301; 100; 100; 170; 144; 235; 100; 301; 170; 301; 125; 125; 235, 125:125; 100; 144; 301; 144; 144; 170; 144; 144.

Są to tzw. dane surowe. Opisują cechę mierzalną skokową.

Po uporządkowaniu danych (np. rosnąco) dostajemy szereg wyliczający (zapisany w 2 wierszach tabeli).

| 100 | 100 | 100 | 100 | 100 | 125 | 125 | 125 | 125 | 125 | 144 | 144 | 144 | 144 | 144 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 144 | 144 | 144 | 144 | 170 | 170 | 170 | 170 | 235 | 235 | 235 | 301 | 301 | 301 | 301 |

Ponieważ w zbiorze danych mamy tylko 5 wariantów cechy tworzymy szereg rozdzielczy

punktowy postaci

| Grupa | Liczebność |
|-------|------------|
| 100   | 5          |
| 125   | 5          |
| 144   | 9          |
| 170   | 4          |
| 235   | 3          |
| 301   | 4          |
| SUMA  | 30         |

# Przykład (szereg rozdzielczy przedziałowy)

Powierzchnie użytkowe (w m²) badanych 69 sklepów przedstawia uporządkowany szereg wartości cechy:

```
76; 81; 83; 85; 87; 91; 93; 94; 95; 97; 99; 104; 111; 112; 113; 114; 116; 118; 119; 120; 121; 122; 123; 125; 126; 127; 128; 128; 129; 130; 131; 132; 133; 133; 135; 135; 136; 137; 138; 138; 141; 141; 141; 141; 143; 144; 146; 146; 148; 148; 152; 155; 158; 159; 161; 162; 163; 165; 166; 167; 178; 179; 182; 184; 184; 193, 198; 200.
```

Powierzchnia jest cechą mierzalną ciągłą, dlatego przeprowadzimy grupowanie statystyczne danych tworząc szereg rozdzielczy, z przedziałami klasowymi o rozpiętości 20 m² i początkiem pierwszego przedziału klasowego równym 70 m².

Otrzymany szereg rozdzielczy (liczebności) ma postać:

| przedział  | 70-90 | 90-110 | 110-130 | 130-150 | 150-170 | 170-190 | 190-210 |
|------------|-------|--------|---------|---------|---------|---------|---------|
| liczebność | 5     | 7      | 17      | 21      | 10      | 6       | 3       |

(przyjęto przedziały lewostronnie domknięte, prawostronnie otwarte)

Szereg rozdzielczy częstości uzyskujemy zastępując liczebności przez odpowiadające im częstości (częstości względne)

częstość = (liczebność grupy) / (liczebność łączna)

Szereg rozdzielczy częstości dla prezentowanych danych ma postać

| przedział | 70-90 | 90-110 | 110-130 | 130-150 | 150-170 | 170-190 | 190-210 |
|-----------|-------|--------|---------|---------|---------|---------|---------|
| częstość  | 0,07  | 0,10   | 0,25    | 0,30    | 0,14    | 0,09    | 0,04    |

#### w ujęciu procentowym

| przedział | 70-90 | 90-110 | 110-130 | 130-150 | 150-170 | 170-190 | 190-210 |
|-----------|-------|--------|---------|---------|---------|---------|---------|
| częstość  | 7%    | 10%    | 25%     | 30%     | 14%     | 9%      | 4%      |

# Szeregi rozdzielcze skumulowane

| przedział                 | 70-90 | 90-110 | 110-130 | 130-150 | 150-170 | 170-190 | 190-210 |
|---------------------------|-------|--------|---------|---------|---------|---------|---------|
| liczebność<br>skumulowana | 5     | 12     | 29      | 50      | 60      | 66      | 69      |

| przedział            | 70-90 | 90-110 | 110-130 | 130-150 | 150-170 | 170-190 | 190-210 |
|----------------------|-------|--------|---------|---------|---------|---------|---------|
| częstość skumulowana | 0,07  | 0,17   | 0,42    | 0,72    | 0,87    | 0,96    | 1,00    |

| przedział                | 70-90 | 90-110 | 110-130 | 130-150 | 150-170 | 170-190 | 190-210 |
|--------------------------|-------|--------|---------|---------|---------|---------|---------|
| częstość skumulowana (%) | 7%    | 17%    | 42%     | 72%     | 87%     | 96%     | 100%    |

Tworzenie szeregu rozdzielczego z przedziałami klasowymi wymaga ustalenia:

- liczby klas (k),
- rozpiętości przedziałów klasowych

Rekomendowane wartości liczby klas zależą od liczebności danych (n):

według tabeli

| Liczba obserwacji | Liczba klas |
|-------------------|-------------|
| 40-60             | 6-8         |
| 60-100            | 7-10        |
| 100-200           | 9-12        |
| 200-500           | 11-17       |

- według wzorów
  - $k \approx \sqrt{n}$
  - $k \approx 1 + 3{,}322 \log n$

(W praktyce liczba przedziałów klasowych waha się od kilku do kilkunastu)

Przybliżoną rozpiętość przedziałów klasowych (przy założeniu ich jednakowej rozpiętości) podaje wzór

$$h \approx \frac{x_{\text{max}} - x_{\text{min}}}{k}$$

Rzeczywiste rozpiętości przedziałów powinny być nieco większe, ponieważ:

- muszą być rozłączne,
- ich suma powinna obejmować wszystkie obserwacje,
- najmniejsza obserwowana wartość cechy powinna znajdować się w pobliżu środka pierwszego przedziału klasowego.

Dla cechy ciągłej nie mogą występować klasy bez elementów.

Wykorzystując komputerowe pakiety statystyczne można w trybie interaktywnym modyfikować omawiane parametry i generować różne szeregi rozdzielcze, co umożliwia lepsze poznanie rozkładu empirycznego badanej cechy.

#### Prezentacja graficzna danych

Alternatywną formą prezentacji szeregów statystycznych są wykresy. W zależności od potrzeb i typu danych wykorzystuje się różne typy wykresów (słupkowe, liniowe, kołowe, kartogramy itp.)

W przypadku szeregów rozdzielczych punktowych najczęściej stosuje się wykres słupkowy, bądź kołowy. Ich konstrukcję ilustruje poniższy przykład.

Przykład (prezentacja graficzna danych jakościowych)

Liczby studentów w kraju na różnych kierunkach studiów w roku ak. 1990/91 oraz 1997/98 podane są w tabeli.

#### Wykonamy:

- wstępną analizę danych
- wykresy słupkowe (procentowe, ilościowe)
- wykresy kołowe

# Tablica danych

| Grupa                          | rok 19 | 90/91 | rok1997/98 |       |  |  |
|--------------------------------|--------|-------|------------|-------|--|--|
| kierunków                      | liczba | %     | liczba     | %     |  |  |
| pedagogiczne                   | 99552  | 18,3  | 91100      | 7,2   |  |  |
| humanistyczne                  | 69088  | 12,7  | 110565     | 8,7   |  |  |
| prawne i nauki<br>społeczne    | 133824 | 24,6  | 566475     | 44,8  |  |  |
| nauki ścisłe<br>i przyrodnicze | 144704 | 26,6  | 292110     | 23,1  |  |  |
| medyczne                       | 81600  | 15,0  | 95550      | 7,6   |  |  |
| pozostałe                      | 15232  | 2,8   | 109200     | 8,6   |  |  |
| ogółem                         | 544000 | 100,0 | 1265000    | 100,0 |  |  |

#### Opis danych surowych:

- 2 próbki o licznościach  $n_1 = 544000$  oraz  $n_2 = 1265000$
- cecha jakościowa: grupa kierunków studiów
- 6 kategorii (atrybutów) cechy
- atrybuty: grupa kierunków pedagogicznych, humanistycznych, medycznych, ....

### Najliczniejsze grupy kierunków:

- nauki ścisłe i przyrodnicze w 1990/91 roku
- prawo i nauki społeczne w 1997/98 roku

Procentowy udział klasy (liczność klasy / liczność próbki) \* 100% = częstość \* 100%

# Wykres słupkowy

Wykres słupkowy procentowego udziału grup kierunków studiów w roku akad. 1990/91



□ rok 1990/91

# Wykres słupkowy

Wykres słupkowy procentowego udziału grup kierunków studiów w roku akad. oraz 1997/98



□ rok1997/98

# Połączony wykres słupkowy



# Połączony wykres słupkowy



# Wykres kołowy

Wykres kołowy procentowego udziału grup kierunków studiów w roku akad. 1990/91



Kąt wycinka koła dla grupy humanistycznej =

$$0,127 \times 360^{\circ} = 45,72^{\circ}$$

Kąt wycinka koła odpowiadającego określonej kategorii =

Liczebność kategorii / liczebność próbki )×360°.

częstość kategorii x 100% =

= (pole wycinka / pole koła) x 100%

# Wykres kołowy

Wykres kołowy procentowego udziału grup kierunków studiów w roku akad. 1997/98



# Wykresy kołowe

Wykres kołowy procentowego udziału grup kierunków studiów w roku akad. 1990/91



#### Wykres kołowy procentowego udziału grup kierunków studiów w roku akad. 1997/98



# Wykres słupkowy

#### Przykład



# Wykres kołowy

#### Przykład

Tablica xx. Wartość eksportu krajów członkowskich UE w okresie2006 I-X (ceny bieżące w mld EUR)



#### Źródło:

# Ograniczenia wykresów kołowych:

- można przedstawić jedynie dane procentowe
- w próbce musi być co najmniej 1 obserwacja każdej kategorii ( bo łączna suma pól wycinków musi stanowić 100 % pola koła )
- mało czytelne przy dużej liczbie kategorii
- analiza dwóch wykresów kołowych bardziejkłopotliwa niż połączonego wykresu słupkowego.

# METODY OPISU DANYCH ILOŚCIOWYCH SKALARNYCH

**Wykresy:** diagramy, histogramy, łamane częstości, wykresy przebiegu.

**Przykład.** W stu kolejnych rzutach kostką sześcienną otrzymano wyniki (próbkę cechy dyskretnej o liczności 100):

522632531253625446164552461443424244 114531565615624552545511225526355414 5514321261216513615662235524

# Rozkład liczby oczek w próbce

**Wartość** (I. oczek) 1 2 3 4 5 6 **Liczność** (I. wystąpień) 16 19 9 17 25 14

# Rozkład częstości liczby oczek w próbce

**Wartość** (I. oczek) 1 2 3 4 5 6 **Częstość** 0,16 0,19 0,09 0,17 0,25 0,14

Zwięzły opis próbki: **rozkład cechy w próbce**, tzn. zapisanie jakie wartości wystąpiły w próbce i ile razy, lub z jaką częstością.

Diagram liczebności

Diagram częstości

Przykład. Wiek 25 osób, które ubezpieczyły się w III filarze emerytalnym w pewnym zakładzie pracy: 30, 49, 33, 35, 37, 20, 31, 30, 36, 46, 39, 40, 38, 41, 35, 37, 24, 27, 36, 43, 45, 25, 32, 29, 28.

- 21 różnych wartości: diagram rozkładu lat nieczytelny.
- Agregacja danych: przedziały wiekowe zawierające
   wszystkie obserwacje, liczba obserwacji w tych przedziałach.

#### Częstość **Przedział Obserwacje** Liczność (klasa) 20 1/25 = 0.04[18,23)3/25 = 0.12[23,28)24, 27, 25 3 [28,33)30, 30, 31, 32, 29, 28 6 6/25 = 0.247/25 = 0.28[33,38)33, 35, 37, 36, 35, 37, 36 39, 40, 38, 41 [38,43) 4/25 = 0.163/25 = 0.12[43,48)43, 45, 46 3 [48,53) 1/25 = 0.04

49

# Histogram



28+16+12+4=60% pracowników ma co najmniej 33 lata

Szeregi rozdzielcze przedziałowe są prezentowane za pomocą:

- Histogramów,
- Diagramów (wieloboków liczebności),
- Krzywych liczebności (lub częstości).

**Histogram** to wykres słupkowy, w którym podstawy prostokątów, leżące na osi odciętych, odpowiadają przedziałom klasowym, natomiast wysokości są określone na osi rzędnych przez odpowiadające im liczebności (bądź częstości).

**Diagram** jest łamaną powstałą przez połączenie punktów, których współrzędnymi są środki przedziałów klasowych i odpowiadające im liczebności (lub częstości).

Krzywa liczebności to wygładzony wielobok liczebności.

Przykład (prezentacja graficzna danych ilościowych)

Histogram przedstawiający szereg rozdzielczy z przykładu (pow. sklepów)



Uwaga! Kształt histogramu dla szeregu częstości jest identyczny

# Diagram szeregu rozdzielczego z przykładu (pow. sklepów)



# Histogram oraz diagram przedstawiający szereg rozdzielczy przedziałowy



#### Krzywa liczebności szeregu rozdzielczego



Histogram przedstawiający szereg rozdzielczy skumulowany



# Diagram szeregu rozdzielczego skumulowanego (wykres dystrybuanty empirycznej)



#### Zmienność.







#### **KONSTRUKCJA HISTOGRAMU**

Początkowy wybór długości przedziałów:

$$h = 2,64 \times IQR \times n^{-1/3}$$

n = liczność próbki, IQR = rozstęp międzykwartylowy = zakres 50%
 "środkowych" wartości w próbce

Obserwacja wpływu stopniowego zwiększania lub zmniejszania długości przedziałów na kształt histogramu:

$$\alpha h, \alpha^2 h, \dots$$
 lub  $\alpha^{-1} h, \alpha^{-2} h, \dots$ ;  $\alpha > 1$ 

Mała długość przedziału to: nieregularność histogramu

Duża długość przedziału to: za duże wygładzenie histogramu

Przy ustaleniu kompromisu pomiędzy zbyt dużym wygładzeniem histogramu (redukcją informacji) a dużą nieregularnością histogramu pomocne są dodatkowe informacje o naturze obserwowanego zjawiska, np. obserwacje z kilku różnych populacji mogą dawać histogramy wielomodalne.

Początek histogramu: najmniejsza obserwacja stanowi środek pierwszego przedziału. Uśredniając kilka histogramów o nieznacznie przesuniętych początkach można uniezależnić się od wpływu początku histogramu na jego kształt.

# WSKAŹNIKI SUMARYCZNE

WSKAŹNIKI POŁOŻENIA (miary położenia, parametry położenia) charakteryzują najbardziej reprezentatywne dane, centralną "tendencję" danych, określają "środek" próbki:

Niech:  $x_1, x_2, \ldots, x_n$  - próbka o liczności n.

Wartość średnia w próbce ( średnia próbkowa, średnia próbki )

$$\overline{x} = \frac{1}{n}(x_1 + x_2 + \dots + x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i$$

## Mediana w próbce (mediana próbki, mediana próbkowa)

Niech 
$$x_{(1)} \le x_{(2)} \le ... \le x_{(n-1)} \le x_{(n)}$$

uporządkowane w sposób rosnący wartości próbki:

$$x_{(1)} = \min\{x_1, x_2, ..., x_n\}, ..., x_{(n)} = \max\{x_1, x_2, ..., x_n\}$$

$$x_{med} = x_{((n+1)/2)},$$
 gdy n jest nieparzyste

$$\mathbf{x}_{med}$$
 =  $x_{((n+1)/2)}$ , gdy n jest nieparzyste   
  $\mathbf{x}_{med}$  =  $\frac{1}{2}(x_{(n/2)} + x_{(n/2+1)})$ , gdy n jest parzyste.

#### Przykład. Miesięczny dochód 11-tu osób:

| Dochód (PLN) | 2000 | 2500 | 3500 | 19000 |
|--------------|------|------|------|-------|
| Liczba osób  | 4    | 4    | 2    | 1     |

Średnie wynagrodzenie tej grupy osób to:

$$\overline{x} = \frac{1}{11}(4 \times 2000 + 4 \times 2500 + 2 \times 3500 + 19000) = 4000$$

2000, 2000, 2000, 2000, 2500, <u>2500,</u> 2500, 2500, 3500, 3500, 19000

Mediana = 2500

#### Średnia wrażliwa na obserwacje odstające:

 $\bar{x} = 4000 > 3500 = x_{(10)}, \ x_{(11)} = 19000$  - średnia nie odzwierciedla "typowego" dochodu.

Mediana odporna ( mało wrażliwa ) na obserwacje odstające:

 $x_{med} = x_{(6)} = 2500$  - mediana jest lepszą miarą przeciętnego

wynagrodzenia niż średnia

#### Przykład. Miesięczny dochód 10-ciu osób (w tys. PLN):

| Dochód (PLN) | [1, 1,5) | [1,5, 2) | [2, 2,5) | [2,5,3) |
|--------------|----------|----------|----------|---------|
| Liczba osób  | 2        | 2        | 4        | 2       |

Średnia na podstawie danych zgrupowanych:

$$\overline{x} = \sum_{i=1}^{k} \frac{n_i \widetilde{x}_i}{n} = \frac{2 \times 1,25 + 2 \times 1,75 + 4 \times 2,25 + 2 \times 2,75}{10} = 2,05$$

# Średnia ucinana (ucięta) ( z parametrem k )

$$\overline{x}_{tk} = \frac{1}{n-2k} \sum_{i=k+1}^{n-k} x_{(i)},$$

stosowana gdy wartości odstające są wynikiem błędu (błędne przetworzenie danych lub błędy przyrządów pomiarowych).

**Ostrzeżenie:** obserwacje odstające mogą być bardzo istotne, np. są wynikiem rozregulowania procesu produkcji

# Średnia winsorowska (z parametrem k)

$$\overline{x}_{wk} = \frac{1}{n} \left[ (k+1)x_{(k+1)} + \sum_{i=k+2}^{n-k-1} x_{(i)} + (k+1)x_{(n-k)} \right]$$

Stosowana w sytuacjach gdy wartości skrajne (k najmniejszych lub k największych) niepewne co do ich prawdziwych wartości (np. zostały utracone z bazy danych; nie mogły być zaobserwowane w przypadku badania czasu życia lub czasu bezawaryjnej pracy urządzenia gdy eksperymentator ma ograniczony czas obserwowania zjawiska.

**Moda** – najczęściej występująca wartość (lub wartości) w próbce.

# WSKAŹNIKI ROZPROSZENIA (miary rozproszenia,

parametry rozproszenia) charakteryzują rozrzut danych, rozproszenie wartości próbki wokół parametru położenia.

#### Rozstęp próbki

$$R = x_{(n)} - x_{(1)},$$

#### Wariancja próbki (w próbce)

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2},$$

#### Odchylenie standardowe w próbce (próbki)

$$s = \sqrt{s^2}$$

#### Odchylenie przeciętne od wartości średniej

$$d_1 = \frac{1}{n} \sum_{i=1}^{n} |x_i - \overline{x}|$$

#### Dolny (pierwszy) kwartyl

 $Q_1$ = mediana podpróbki składającej się z elementów próbki "mniejszych" od mediany  $x_{med}$ .

#### Górny (trzeci) kwartyl

 $Q_3$  = mediana podpróbki składającej się z elementów próbki "większych" od mediany.

#### Rozstęp międzykwartylowy:

$$IQR = Q_3 - Q_1$$

#### WYKRES RAMKOWY (pudełkowy)

ilustruje wzajemne położenie pięciu wskaźników sumarycznych:

$$x_{(1)} = x_{min}$$
,  $Q_1$ ,  $x_{med}$ ,  $Q_3$ ,  $x_{(n)} = x_{max}$ .





Obserwacja potencjalnie odstająca

Z wykresu odczytujemy następujące wskaźniki:

- Q<sub>1</sub> = 0,1 = rzut na oś poziomą lewego boku prostokąta
- Q<sub>2</sub> = 0,7 = rzut na oś poziomą prawego boku prostokąta
- Q<sub>3</sub> = 0,3 = rzut na oś poziomą pionowego odcinka wewnątrz prostokąta
- IQR = długość podstawy prostokąta

Wąsy wykresu ramkowego = linie po obu stronach prostokąta.

Rzut lewego wąsa na oś poziomą = przedział  $[x_*, Q_1]$ , gdzie

$$x_* = \min\{ x_k: Q_1 - 3/2 \cdot IQR \le x_k \le Q_1 \},$$

podobnie określamy rzut prawego wąsa = przedział  $[x^*, Q_1]$ , gdzie

$$\mathbf{x}^* = \max\{ x_k: Q_3 \le x_k \le Q_3 + 3/2 \cdot IQR \}$$

Count = 100

Average = 2,02544

Median = 1,46467

Variance = 3,16395

Standard deviation = 1,77875

Minimum = 0.0150559

Maximum = 8,05684

Range = 8,04179

Lower quartile = 0,638618

Upper quartile = 3,23695

Interquartile range = 2,59833

Coeff. of variation = 87,8206%

#### Box-and-Whisker Plot



#### Histogram



Box-and-Whisker Plot



#### Summary Statistics for RAND1

Count = 100

Average = -0,110696

Median = -0.0516888

Variance = 1,07775

Standard deviation = 1,03815

Minimum = -3,36516

Maximum=2,26235

Range = 5,62751

Lower quartile = -0,726224

Upper quartile = 0,680553

Interquartile range = 1,40678

Stnd. skewness = -1,86072

Coeff. of variation = -937,836%

Box-and-Whisker Plot







Box-and-Whisker Plot





Dziękuję za uwagę

# Wykres słupkowy procentowego udziału grup kierunków studiów w r. ak. 1990/91



#### Połączony wykres słupkowy



#### 1990/91



Na osiach poziomych: granice klas wiekowych ( przedziałów) wysokości słupków = procentowy udział każdej klasy w próbce

Wysokość słupka = częstość klasy x 100%.
Pole słupka =

stała długość przedziału x częstość x 100

Histogram liczebności: wysokość słupka = liczność klasy

Histogram częstości: wysokość słupka = częstość klasy

# Wykres słupkowy procentowego udziału grup kierunków studiów w r. ak. 1997/98



#### 1997/98



| Grupa<br>kierunków                | rok 1990/91 |      | rok 1997/9 | 8    |
|-----------------------------------|-------------|------|------------|------|
| KICIUIIKOW                        | liczba      | %    | liczba     | %    |
| 1. pedagogiczne                   | 99 552      | 18,3 | 91 100     | 14,0 |
| 2. humanistyczne                  | 69 088      | 12,7 | 110 565    | 8,1  |
| 3. prawne i nauki społeczne       | 133 824     | 24,6 | 566 475    | 41,5 |
| 4. nauki ścisłe i<br>przyrodnicze | 144 704     | 26,6 | 292 110    | 21,4 |
| 5. medyczne                       | 81 600      | 15,0 | 95 550     | 7,0  |
| 6. pozostałe                      | 15 232      | 2,8  | 109 200    | 8,0  |
| ogółem                            | 544 000     | 100  | 1 365 000  | 100  |

## Wykresy słupkowe

1990/91

1997/98





Przykład. W 30 rzutach kostką sześcienną otrzymano liczby oczek:

wartość (liczba oczek)
 1
 2
 3
 4
 5
 6

 liczność (liczba wystąpień)
 5
 4
 6
 3
 5
 7

 częstość
 
$$\frac{5}{30}$$
 $\frac{4}{30}$ 
 $\frac{6}{30}$ 
 $\frac{3}{30}$ 
 $\frac{5}{30}$ 
 $\frac{7}{30}$ 

# Diagram liczebności



Liczba oczek

# Wykres kołowy



# Wstępna analiza danych

#### **Opis danych surowych:**

- 2 próbki o liczebnościach n = 544000 oraz m = 1365000
- cecha jakościowa: grupa kierunków studiów
- 6 kategorii ( klas, atrybutów ) cechy
- atrybuty: grupa kierunków pedagogicznych, humanistycznych, medycznych, ....

#### Najliczniejsze grupy kierunków:

nauki ścisłe i przyrodnicze w 1990/91 roku prawo i nauki społeczne w 1997/98 roku

Procentowy udział klasy =

( liczność klasy/ liczebność próbki ) x 100% = częstość x 100%

# Metody opisu danych jakościowych

wykres słupkowy, wykres kołowy

Przykład. Liczby studentów w kraju na różnych

kierunkach studiów w roku ak. 1990/91 oraz 1997/98

podane są w tabeli. Wykonamy:

- wstępną analizę danych
- wykresy słupkowe (procentowe, ilościowe)
- wykresy kołowe