ΩmegaGo Elastic, Highly Distributed Go Al Tournaments

Joe Doyle and Rachel Kositsky 15-418 S16 Final Project

Go is like Chess, but harder

- Two players: black vs. white
- Players place stones on a 19×19 grid
- Surround territory and enemy stones to win
- Go: ~10³⁶⁰ possible games
- Chess: ~10¹²⁴ possible games

https://en.wikipedia.org/wiki/Go_(game)

AlphaGo State of the Art: APV-MCTS

(taller bar = stronger AI)

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." Nature 529.7587 (2016): 484-489.

Lock-Free Monte Carlo Tree Search

- Pick the best moves you know
- Play random moves until the game ends

- Compute win/loss
- Atomically update each move's win probability

More threads ⇒ More data ⇒ Higher accuracy

Policy Neural Network: Structure

- Inputs: 19×19×46 image
- Outputs: 19×19 grayscale image
 - o probability of playing on each point
- n 3×3 inner convolutional layers
 - \circ n = 3, 4, 5, 6
- Asynchronous Policy MCTS: Bias MCTS
 - Policy provides a hypothesis for MCTS's experiments

Policy Neural Network: Training

- Trained on latedays
- 70,000 skilled amateur games
- Training Accuracy: % of samples where the network guessed the move played
- AlphaGo: 57% on this dataset

Comparing AI Skill

Elastic distributed tournament system

- Fully comparing n Als requires $O(n^2)$ games
- "Use whatever systems you can get your hands on"
 - oghc#.ghc.cmu.edu
- Scale up and down with available machines

Elastic distributed tournament system

>5700 games played

MCTS improves with more threads

Demo

System Architecture

Questions?