2. Моделирование динамических систем в Simulink. Непрерывные модели.

2.1. Запуск Simulink

Запустите *MatLab*. Установите свой рабочий каталог в качестве текущего каталога *MatLab*.

Запустите Simulink одним из способов:

- В командном окне ввести команду >> Simulink
- На панели инструментов нажать кнопку (Simulink)
- В глобальном меню **Start\Simulink** выбрать желаемую утилиту
- Из главного меню **File\Open...** открыть готовую модель "*.mdl".

Появится окно "Simulink Library Browser". Нажмите в его панели инструментов кнопку Create a new model или выберите пункт меню File\new ▶ Model или комбинацию клавиш Ctrl+N или из меню File\Open... откройте готовую модель "*.mdl". Появится окно модели с заголовком. С помощью команды Save as модель можно сохранить в виде файла с расширением mdl.

2.2. Демонстрационные примеры

Откройте, внимательно изучите модель, запустите симуляцию (процесс выполнения модели), проанализируйте результат симуляции для следующих демонстрационных примеров из справочника *Simulink* (команда **Demos**, раздел справки **Help\Demos\Simulink**):

• General Applications\Tracking a Bouncing Ball — прыгающий мячик

2.3. Движение тела в поле тяжести с учетом сопротивления воздуха

Цель задания – построить **S**-модель и исследовать движение тела, брошенного под углом к горизонту, с учетом сопротивления воздуха. Также необходимо ответить на вопрос, при каком угле бросания дальность полета будет достигать максимального значения, если учитывать сопротивление воздуха.

Рис. 1. Траектория полета тела, брошенного под углом к горизонту

2.3.1. Аналитическое исследование

Пусть тело массой m брошено под углом α_0 к горизонту с начальной скоростью \mathbf{v}_0 . Требуется вывести уравнение движения тела, с учетом сопротивления воздуха, и построить соответствующую **S**-модель. **S**-модель должна вычислять положение тела в любой момент времени.

Исходные данные:

m – масса тела;

 V_0 — начальная скорость;

 R_0 (**x**₀, **y**₀) – начальные координаты;

 α_0 – угол броска тела.

Полагаем:

- тело считаем материальной точкой массой m, положение которой совпадает с центром масс тела;
- движение тела происходит под действием силы тяжести с постоянным ускорением свободного падения в плоскости, перпендикулярной поверхности земли, и описывается законами классической механики Ньютона.

Введём прямоугольную систему координат, как показано на рис.1. В начальный момент времени тело массой \boldsymbol{m} находится в точке \boldsymbol{R}_0 (\boldsymbol{x}_0 , \boldsymbol{y}_0). Вектор ускорения свободного падения \boldsymbol{g} направлен вертикально вниз и имеет координаты ($\boldsymbol{0}$, $-\boldsymbol{g}$). \vec{v}_0 — вектор начальной скорости. Разложим этот вектор по базису: $\vec{v}_0 = v_{0x}\vec{i} + v_{0y}\vec{j}$. Здесь $v_{0x} = v_0 \cos \alpha_0, \dots v_{0y} = v_0 \sin \alpha_0$, α_0 - угол бросания.

Запишем второй закон Ньютона: $\vec{a} = \frac{\vec{F}}{m}$.

Ускорение в каждый момент времени есть (мгновенная) скорость изменения скорости, то есть производная от скорости по времени: $\vec{a} = \frac{d\vec{v}}{dt}$.

Следовательно, 2-й закон Ньютона можно переписать в следующем виде:

$$m\frac{d\vec{v}}{dt} = \vec{F} ,$$

где \vec{F} — это равнодействующая всех сил, действующая на тело. Так как на тело действуют сила тяжести $m\vec{g}$ и сила сопротивления воздуха \vec{F}_c , то имеем:

$$m\frac{d\vec{v}}{dt} = m\vec{g} + \vec{F}_c. \tag{1}$$

Рассмотрим два случая:

- 1) Сила сопротивления воздуха равна 0: $\vec{F}_c = 0$.
- 2) Сила сопротивления воздуха противоположно направлена с вектором скорости, и её величина пропорциональна скорости: $\vec{F}_c = -k\vec{v}, \cdots k > 0$.

Составим математическую модель системы.

Модель без учета сопротивления воздуха

Рассмотрим <u>первый случай</u>, когда отсутствует сопротивление воздуха. Тогда из (1) имеем $m\frac{d\vec{v}}{dt}=m\vec{g}$, или

$$\frac{d\vec{v}}{dt} = \vec{g} \ . \tag{2}$$

Из (2) следует, что

$$\vec{\mathbf{v}} = \vec{\mathbf{v}}_0 + \vec{\mathbf{g}} t \,. \tag{3}$$

Т.е. в отсутствии сопротивления воздуха скорость неограниченно увеличивается (равно-ускоренное движение).

Так как

$$\vec{v} = \frac{d\vec{R}}{dt} \,, \tag{4}$$

где \vec{R} - радиус-вектор, то из (3) и с учетом (4) имеем: $\frac{d\vec{R}}{dt} = \vec{v}_0 + \vec{g} t$.

Отсюда получаем формулу закона движения тела при равноускоренном движении:

$$\vec{R} = \vec{R}_0 + \vec{v}_0 t + \frac{\vec{g} t^2}{2}. \tag{5}$$

Запишем равенство (2) в скалярном виде:

$$\frac{dv_x}{dt} = 0, \dots \frac{dv_y}{dt} = -g. \tag{6}$$

Согласно второму закону Ньютона и с учетом (4) и (6) дифференциальные уравнения движения в проекциях на оси x и y имеют вид

$$m\frac{d^2x}{dt^2} = 0$$
, $m\frac{d^2y}{dt^2} = -mg$, $v_x = \frac{dx}{dt}$, $v_y = \frac{dy}{dt}$ (7)

при следующих начальных условиях:

$$x(0) = x_0, \ y(0) = y_0, \ v_x(0) = v_0 \cos \alpha_0, \ v_v(0) = v_0 \sin \alpha_0.$$
 (8)

Математическая постановка соответствует задаче Коши для системы обыкновенных дифференциальных уравнений с заданными начальными условиями.

Найдем зависимости x(t), y(t), $v_x(t)$, $v_y(t)$. Из (7) запишем систему ОДУ первого порядка:

$$\frac{dv_x}{dt} = 0, \quad \frac{dv_y}{dt} = -g, \quad v_x = \frac{dx}{dt}, \quad v_y = \frac{dy}{dt}.$$
 (9)

После интегрирования системы (9) и с учетом начальных условий (8) получаем аналитическое решение

$$x(t) = x_0 + v_0 \cos \alpha_0 \cdot t, \quad y(t) = y_0 + v_0 \sin \alpha_0 \cdot t - \frac{gt^2}{2},$$

$$v_x(t) = v_0 \cos \alpha_0, \quad v_y(t) = v_0 \sin \alpha_0 - gt,$$
(10)

из которого следует, что полет тела, брошенного под углом к горизонту, при отсутствии сопротивления воздуха происходит по параболической траектории.

Модель с учетом сопротивления воздуха

Теперь рассмотрим **второй случай**, когда сила сопротивления воздуха противоположно направлена с вектором скорости, и ее величина пропорциональна скорости: $\vec{F}_c = -k\vec{v}, \cdots k > 0$.

В этом случае второй закон Ньютона имеет вид $m \frac{d\vec{v}}{dt} = m\vec{g} - k\vec{v}$, отсюда

$$\frac{d\vec{v}}{dt} = \vec{g} - \frac{k}{m} \vec{v} .$$

Запишем это равенство в скалярном виде:

$$\frac{dv_x}{dt} = -\frac{k}{m}v_x, \dots \frac{dv_y}{dt} = -g - \frac{k}{m}v_y. \tag{11}$$

Имеем два линейных дифференциальных уравнения. Тогда система (9) для случая учета сопротивления воздуха перепишется в виде:

$$\frac{dv_x}{dt} = -\frac{k}{m}v_x, \dots \frac{dv_y}{dt} = -g - \frac{k}{m}v_y, \quad v_x = \frac{dx}{dt}, \quad v_y = \frac{dy}{dt}.$$
 (12)

Математическая постановка соответствует задаче Коши для системы обыкновенных дифференциальных уравнений (12) с заданными начальными условиями (8).

2.4. Пример: Прыгающий мячик

Постановка задачи моделирования

Создать «с нуля» S-модель движения мячика, брошенного со скоростью 15 м/с вертикально вверх с высоты 10 м над твердой горизонтальной поверхностью(в более сложном условии: мячик брошен под углом к горизонту). При моделировании учесть сопротивление воздуха (Resistance) и эластичность мячика (Elasticity). В качестве примера использовать демонстрационную модель General Applications | Bouncing Ball Model, приведенную в Simulink Demos.

Входные параметры

Мячик будем считать материальной точкой массой **m**, положение которой совпадает с центром масс мячика. Движение происходит строго перпендикулярно горизонтальной поверхности в поле силы тяжести с постоянным ускорением в соответствии со вторым законом Ньютона.

В качестве параметров, описывающих состояние системы, будем использовать высоту \mathbf{h} и скорость \mathbf{v} центра масс мячика.

y(t)=h(t) – положение мячика над поверхностью в момент времени t;

 $\mathbf{v}(\mathbf{t})$ — вертикальная скорость движения мячика в момент времени t;

y(0)=h(0)=10 м — положение в начальный (нулевой) момент времени;

v(0) = 15 м/c - скорость в начальный (нулевой) момент времени;

 $\mathbf{m} = \mathbf{1} \ \mathbf{\kappa} \mathbf{\Gamma} - \mathbf{M} \mathbf{a} \mathbf{c} \mathbf{c} \mathbf{a} \mathbf{m} \mathbf{y} \mathbf{u} \mathbf{k} \mathbf{a};$

 $g = 9.81 \text{ м/c}^2$ – ускорение свободного падения;

 $k = 0.005 \ \kappa \Gamma/c - \kappa$ оэффициент сопротивления воздуха;

 $\mathbf{E1} = -0.8$ – коэффициент восстановления мячика, равный отношению скорости после удара к скорости до удара о поверхность.

Математическая модель

Определим закон вертикального движения материальной точки массой \mathbf{m} под действием силы тяжести и силы сопротивления воздуха, если известны начальная координата точки \mathbf{h}_0 и ее начальная скорость \mathbf{v}_0 .

Данную задачу можно рассматривать как движение тела, брошенного под углом $\alpha_0 = 90^{\circ}$ к горизонту (т.е. *вертикально вверх*), в поле тяжести с учетом сопротивления воздуха.

Тогда из (12), (8) закон изменения скорости движущейся материальной точки с учетом сопротивления воздуха можно описать задачей Коши

$$\frac{dv}{dt} = -g - \frac{k}{m}v, \quad v = \frac{dy}{dt}, \dots v(0) = v_0, \dots y(0) = y_0.$$
(2.1)

Simulink-модель

Откроем окно библиотеки блоков **Simulink**, из которой будем брать заготовки блоков для модели. Создадим новую **S**-модель в отдельном окне и сохраним ее в файле **Ball.mdl**.

Шаг 1. Настройка параметров конфигурации S-модели.

• Выберем пункт меню Simulation | Configuration Parameters... окна S-модели и в разделе Solver установим параметры:

Stop time = 20;

Type = Variable-step;

Solver = ode45:

Max step size = 0.01.

Шаг 2. Подключение интеграторов для определения скорости и положения мячика в текущий момент времени (рис.2).

- На первом этапе будем считать, что сопротивление воздуха отсутствует, т. е. в системе (2.1) коэффициент $\mathbf{k} = \mathbf{0}$.
- Начнем с ускорения свободного падения блок Sources | Constant. Назовем его Gravity и настроим его параметр Constant value = 9.81.

Рис. 2. Интеграторы, вычисляющие скорость и положение

- При помощи блока **Math Operations** | **Unary Minus** изменим знак ускорения свободного падения.
- Для моделирования скорости используем блок Continuous | Integrator. Назовем его Velocity. Соединим его вход с выходом блока Unary Minus.
- Для моделирования положения мячика используем блок Continuous | Integrator. Назовем его Height. Соединим его вход с выходом блока Velocity.
- Начальные условия **Initial Condition** в обоих интеграторах задаются внутри блоков и равны нулю, т. е. пока считаем $\mathbf{v}(\mathbf{0}) = \mathbf{0}$, $\mathbf{h}(\mathbf{0}) = \mathbf{0}$.
- Для контроля добавим в модель осциллограф **Sinks** | **Scope**, с помощью которого будем следить за изменением во времени интересующих нас параметров модели. Подсоединим его входы к выходам блоков **Velocity** и **Height**. Тем самым мы увидим, как изменяются скорость и положение мячика. Окно осциллографа можно открыть, дважды щелкнув по нему мышкой.
- Запустите модель, проанализируйте графики изменения скорости $\mathbf{v}(\mathbf{t})$ и положения $\mathbf{h}(\mathbf{t})$, объясните полученный результат.
 - Шаг 3. Задание начальных условий вне интегратора (рис. 3).
- Добавим в модель два блока Sources | Constant, назовем их **v0** и **h0**. Установим их параметры Constant value равными **15** и **10** соответственно. На данном шаге эти блоки будут задавать начальную скорость **v(0)** и начальное положение **h(0)**.
- В настройках интегратора Velocity укажем, что начальное условие будет задаваться извне. Для этого установим параметр Initial condition source = external. У блока появится дополнительный вход \mathbf{x}_0 , к которому подключим блок \mathbf{v}_0 .
- Аналогично настроим параметры блока **Height**. К входу $\mathbf{x_0}$ подключим блок $\mathbf{h0}$.
- Вновь запустите модель, проанализируйте графики изменения скорости $\mathbf{v}(\mathbf{t})$ и положения $\mathbf{h}(\mathbf{t})$, объясните изменения.

Рис. 3. Установка начальных значений v0 и h0

Шаг 4. Моделирование удара мячика о поверхность (рис. 4).

- В блоке Height установим флажок Limit output и значение параметра Lower saturation limit = 0.
- В блоке Velocity установим параметр внешнего сброса External reset = falling. Тип внешнего управляющего сигнала обеспечивает сброс интегратора к начальному состоянию. На изображении блока появится дополнительный управляющий вход с условным обозначением типа управляющего сигнала \mathfrak{k} . Соединим данный вход с выходом блока Height.

• Теперь в модели учитывается удар мячика о поверхность, но его скорость после удара рассчитывается неверно: вместо изменения знака текущего значения скорости в момент удара, вновь задается начальное значение \mathbf{v}_0 .

Рис. 4. Модель с учетом ударов мячика о поверхность

Шаг 5. Корректировка изменения скорости в момент удара о землю.

- Для задания *правильной* начальной скорости удалим из модели блок v0 и подключим на вход x_0 блока Velocity блок начальных условий Signal Attributes | IC. Назовем его v0. Установим значение параметра Initial value = 15.
- Добавим блок усилителя входного сигнала **Math Operations** | **Gain**, назовем его **Ball Elasticity** и установим его параметр **Gain** = -1. При помощи данного блока в дальнейшем будем изменять коэффициент восстановления мячика. Пока считаем мячик абсолютно упругим.
- В блоке Velocity установим флажок Show state port. Для изменения положений названия блока и нового выходного порта выделим блок Velocity, нажмем правую кнопку мыши и выберем пункт меню Format > Flip Name. Соединим появившийся выход с блоком v0 через блок Ball Elasticity. Теперь текущее значение скорости в момент удара о поверхность изменяет знак (и величину, если мячик не является абсолютно упругим) и играет роль начальной скорости дальнейшего движения (рис. 5).

Рис. 5. Учет изменения скорости мячика в момент удара о поверхность

Шаг 6. Учет сопротивления воздуха и эластичности мячика (рис. 6).

- Заменим блок Unary minus на блок Math Operations | Sum, изменим его параметр List of signs на −−|.
- Добавим блок **Math Operations** | **Gain**. Назовем его **Resistance**. Через параметр **Gain** блока будем вводить в модель коэффициент сопротивления воздуха, деленный на массу мячика.
- Умножим выходной сигнал блока Velocity на значение блока Resistance и сложим результат с ускорением свободного падения Gravity при помощи блока Sum. Полученное со знаком «минус» значение подадим на вход блока Velocity.
- Установим значение коэффициента восстановления мячика **Ball Elasticity** = -0.8.
- Запустите S-модель и исследуйте полученные результаты.

Рис. 6. S-модель прыгающего мячика

Шаг 7. Учет массы мячика. Самостоятельно измените модель для учета массы мячика согласно формуле (2.1).