Retinal Vessel Segmentation (RVS)

Xinyu Ma January 30, 2024

Contents

Part 1. Background

Part 2. Goal statements

Part 3. Model

Part 4. Conclusion

retinal images

> a digital picture of the back of your eye[1]

> it shows the retina, the optic disc, and blood vessels, which helps ophthalmologist find certain

diseases^[1]

fundus camera

Important features in retinal image^[2]

^[1] https://www.webmd.com/eye-health/what-is-retinal-imaging

^[2] Abdullah, Muhammad, Muhammad Moazam Fraz, and Sarah A. Barman. "Localization and segmentation of optic disc in retinal images using circular Hough transform and grow-cut algorithm.

- vessel segmentation
 - an application of semantic segmentation in medical image analysis

Semantic Segmentation

- a deep learning algorithm that associates a label or category with every pixel in an image^[3]
- Input:images
- Output: convert them into masks with highlighted regions of interest, each pixel in the image is assigned a class ID based on the object of interest to which it belongs.

Autonomous Driving

Caries diagnosis

vessel segmentation

an application of semantic segmentation in medical image analysis

> associates a label or category with every pixel in an image

vessel segmentation —> to correctly classify the vessel pixels and background pixels in the retinal image

Goal statements

☐ Goal

- generate the final retinal blood vessel segmentation images
 - Input: retinal images (RGB image)
 - Output: corresponding vessel segmentation image (Binary Image)

Goal statements

☐ Stretch Goals

repair some breakpoints on blood vessel segmentation images

Examples of breakpoints on the segmentation images^[4]

some patches on DRIVE dataset^[4]

□ Classic methods

- attempt to find inherent patterns of retinal vessels without any manual annotation.
- most of these approaches are rule-based techniques, including vessel tracking^[5], matched filtering^[6], thresholding^[7], etc.

vessel tracking methods

[5] Y. Yin, M. Adel, and S. Bourennane, "Automatic segmentation and measurement of vasculature in retinal fundus images using probabilistic formulation," Comput. Math. Methods Med., vol. 2013, 2013, Art. no. 260410.

[6] S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and M. Goldbaum, "Detection of blood vessels in retinal images using two-dimensional matched filters," IEEE Trans. Med. Imag., vol. 8, no. 3, pp. 263-269, Sep. 1989.

[7] X. Jiang and D. Mojon, "Adaptive local thresholding by verificattion-based multithreshold probing with application to vessel detection in retinal images," IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 1, pp. 131-137, Jan. 2003.

□ Classic methods

- attempt to find inherent patterns of retinal vessels without any manual annotation.
- most of these approaches are rule vessel tracking^[5], matched filteri

vessel tracking methods

using two-dimensional matched filters," IEEE Trans. Med. Imag., vol. 8, no. 3, pp. 263 - 269, Sep. 1989.

[7] X. Jiang and D. Mojon, "Adaptive local thresholding by verifica_x0002_tion-based multithreshold probing with application to vessel detection in retinal images," IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 1, pp.

■ Deep Learning Methods

■ Loss Function

- choose the binary cross entropy as segmentation loss function
 - $L = -\frac{1}{n} \sum_{i=1}^{n} y_i \log p(y_i) + (1-y_i) \log (1-p(y_i))$, where n represents the total number of training pixels, y is the label (0 or 1) and $p(y_i)$ represent predicted probability of label (0 for background pixels and 1 for blood vessel pixels).
- it is used to judge how well a binary classification model predicts an outcome

Loss Function

- choose the binary cross entropy as segmentation loss function
 - $L=-\frac{1}{n}\sum_{i=1}^n y_i\log p(y_i)+(1-y_i)\log (1-p(y_i)),$ where n represents the total number of training pivals. Y is the label (0 $L=-\frac{1}{n}\sum_{i=1}^n y_i\log p(y_i)+(1-y_i)\log (1-p(y_i))$ probability for the label is 1(blood vessel pixels)
- it is used to jumodel predicts a

blood vessel

- (1) if the predicted value $p(y_i)$ is close to 1, then the value of the loss function should be close to 0
- (2) if the predicted value $p(y_i)$ is close to 0 at this point, then the value of the loss function should be very large

Taking a single output as an example, when the label is y = 1, Loss = $-\log p(y)$, when the predicted value is close to 1, Loss=0, otherwise Loss tends to positive infinity

Evaluation Criteria

- Accuracy—a widely used evaluation metric for the task of binary segmentation, computes the percentage of correctly classified pixels in the whole image
 - $ACC = \frac{TP + TN}{TP + FN + TN + FP}$
- > Sensitivity—measures the proportion of actual positives that are correctly classified as such
 - $Sen = \frac{TP}{TP + FN}$
- > Specificity—measure the proportion of actual negatives that are correctly identified as such
 - $Spec = \frac{TN}{TN+FP}$.

Tab. Parameter meanings in the formula

TP (true positive)	the number of pixels that belongs to vessels and also classifies them as the same
FP (false positive)	the number of pixels that predict as vessels but belong to the background
TN (true negative)	pixels that are predicted as background and belong to it
FN (false negative)	vessel pixels, but the algorithm assigns them to the background

Conclusion

☐ Goal

- Generate the final retinal blood vessel segmentation images
- Stretch Goals: repair some breakpoints on blood vessel segmentation images

Deep Learning Method

- ► loss function: $L(p,q) = -\frac{1}{n} \sum_{k=1}^{n} q_k \log p_k + (1-q_k) \log (1-p_k)$
- Evaluation Criteria: Accuracy, Sensitivity, Specificity

vessel segmentation —> to correctly classify the vessel pixels and background pixels in the retinal image

Questions?