SULIT SP015/2

LIST OF SELECTED CONSTANT VALUES SENARAI NILAI PEMALAR TERPILIH

Speed of light in vacuum Laju cahaya dalam vakum	c	$= 3.00 \times 10^8 \text{ m s}^{-1}$
Permeability of free space Ketelapan ruang bebas	μ_{0}	$=4\pi \times 10^{-7} \text{ H m}^{-1}$
Permittivity of free space Ketelusan ruang bebas	\mathcal{E}_0	$= 8.85 \times 10^{-12} \text{ F m}^{-1}$
Electron charge magnitude Magnitud cas elektron	e	$= 1.60 \times 10^{-19} \mathrm{C}$
Planck constant Pemalar Planck	h	$= 6.63 \times 10^{-34} \mathrm{J}\mathrm{s}$
Electron mass Jisim elektron	m_e	$= 9.11 \times 10^{-31} \text{ kg}$ $= 5.49 \times 10^{-4} \text{ u}$
Neutron mass Jisim neutron	m_n	$= 1.674 \times 10^{-27} \text{ kg}$ $= 1.008665 \text{ u}$
Proton mass Jisim proton	m_p	$= 1.672 \times 10^{-27} \text{ kg}$ $= 1.007277 \text{ u}$
Deuteron mass Jisim deuteron	m_d	$= 3.34 \times 10^{-27} \text{ kg}$ $= 2.014102 \text{ u}$
Molar gas constant Pemalar gas molar	R	= 8.31 J K ⁻¹ mol ⁻¹
Rydberg constant Pemalar Rydberg	R_H	$= 1.097 \times 10^7 \mathrm{m}^{-1}$
Avogadro constant Pemalar Avogadro	N_A	$= 6.02 \times 10^{23} \text{ mol}^{-1}$
Boltzmann constant Pemalar Boltzmann	k	$= 1.38 \times 10^{-23} \text{ J K}^{-1}$
Gravitational constant Pemalar graviti	G	$= 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
Free-fall acceleration Pecutan jatuh bebas	g	$= 9.81 \text{ m s}^{-2}$

LIST OF SELECTED CONSTANT VALUES SENARAI NILAI PEMALAR TERPILIH

Atomic mass unit Unit jisim atom	1 u	= $1.66 \times 10^{-27} \text{ kg}$ = $931.5 \frac{\text{MeV}}{c^2}$
Electron volt Elektron volt	1 eV	$= 1.6 \times 10^{-19} \mathrm{J}$
Constant of proportionality for Coulomb's law Pemalar hukum Coulomb	$k = \frac{1}{4\pi\varepsilon_0}$	$= 9.0 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$
Atmospheric pressure Tekanan atmosfera	1 atm	$= 1.013 \times 10^5 \text{ Pa}$
Density of water Ketumpatan air	$ ho_{\scriptscriptstyle w}$	$= 1000 \text{ kg m}^{-3}$

LIST OF SELECTED FORMULAE SENARAI RUMUS TERPILIH

1.
$$\vec{A} \cdot \vec{B} = AB \cos \theta$$

2.
$$\vec{A} \times \vec{B} = AB \sin \theta \hat{n}$$

3.
$$v = u + at$$

$$4. \qquad s = ut + \frac{1}{2}at^2$$

5.
$$v^2 = u^2 + 2as$$

$$6. s = \frac{1}{2} (u + v) t$$

7.
$$p = mv$$

8.
$$J = F \Delta t$$

9.
$$J = \Delta p = mv - mu$$

10.
$$f = \mu N$$

11.
$$W = Fs \cos \theta$$

$$12. K = \frac{1}{2}mv^2$$

13.
$$U = mgh$$

14.
$$U_s = \frac{1}{2}kx^2 = \frac{1}{2}Fx$$

15.
$$P_{\rm av} = \frac{\Delta W}{\Delta t}$$

16.
$$P = Fv$$

17.
$$F_{\rm c} = \frac{mv^2}{r} = mv\omega = mr\omega^2$$

$$18. F = \frac{GMm}{r^2}$$

$$a_{\rm g} = \frac{GM}{r^2}$$

$$20. U = \frac{GMm}{r}$$

$$v_{\rm esc} = \sqrt{\frac{2GM}{R}} = \sqrt{2gR}$$

$$22. \qquad v = \sqrt{\frac{GM}{r}}$$

$$23. T = 2\pi \sqrt{\frac{r^3}{GM}}$$

24.
$$s = r\theta$$

25.
$$v = r\omega$$

26.
$$a_t = r\alpha$$

$$27. a_{\rm c} = \frac{v^2}{r} = r\omega^2$$

28.
$$\omega = \omega_{o} + \alpha t$$

$$29. \qquad \theta = \omega_{o}t + \frac{1}{2}\alpha t^{2}$$

5

LIST OF SELECTED FORMULAE SENARAI RUMUS TERPILIH

30.
$$\omega^2 = \omega_0^2 + 2\alpha\theta$$

$$\omega = \frac{2\pi}{T} = 2\pi f$$

31.
$$\tau = rF\sin\theta$$

46.
$$T = 2\pi \sqrt{\frac{l}{g}}$$

32.
$$I = \sum mr^2$$

$$47. T = 2\pi \sqrt{\frac{m}{k}}$$

33.
$$I_{\text{solid sphere}} = \frac{2}{5}MR^2$$

48.
$$k = \frac{2\pi}{\lambda}$$

34.
$$I_{\text{solid cylinder/disc}} = \frac{1}{2}MR^2$$

49.
$$v = f\lambda$$

$$35. I_{\rm ring} = MR^2$$

50.
$$y(x,t) = A \sin(\omega t \pm kx)$$

36.
$$I_{\text{rod}} = \frac{1}{12} ML^2$$

37.
$$\tau = I\alpha$$

51.
$$y = A \cos kx \sin \omega t$$

38.
$$L = I\omega$$

52.
$$I = \frac{P}{4}$$

39.
$$x = A \sin \omega t$$

53.
$$f = \frac{nv}{2l}$$

$$40. \qquad v = \frac{dx}{dt} = \pm \omega \sqrt{A^2 - x^2}$$

54.
$$f_{\rm n} = \frac{n}{2l} \sqrt{\frac{T}{\mu}}$$

41.
$$a = \frac{dv}{dt} = \frac{d^2x}{dt^2} = -\omega^2 x$$

55.
$$f = \frac{nv}{4L}$$

$$42. \qquad K = \frac{1}{2}m\omega^2\left(A^2 - x^2\right)$$

56.
$$v = \sqrt{\frac{T}{u}}$$

$$43. \qquad U = \frac{1}{2} m\omega^2 x^2$$

57.
$$\mu = \frac{m}{1}$$

$$44. \qquad E = \frac{1}{2} m\omega^2 A^2$$

SULIT

LIST OF SELECTED FORMULAE SENARAI RUMUS TERPILIH

58.
$$f_{\rm a} = \left(\frac{v \pm v_{\rm o}}{v \pm v_{\rm s}}\right) f$$

59.
$$\sigma = \frac{F}{A}$$

60.
$$\varepsilon = \frac{e}{l_o}$$

61.
$$Y = \frac{\sigma}{\varepsilon}$$

62.
$$U = \frac{1}{2} Fe$$

$$63. \qquad \frac{dQ}{dt} = -kA \left(\frac{dT}{dx}\right)$$

64.
$$\Delta L = \alpha L_0 \Delta T$$

65.
$$\Delta A = \beta A_{o} \Delta T$$

66.
$$\Delta V = \gamma V_{o} \Delta T$$

67.
$$\beta = 2\alpha$$

68.
$$\gamma = 3\alpha$$

69.
$$pV = nRT$$

70.
$$n = \frac{m}{M} = \frac{N}{N_A}$$

$$v_{\rm rms} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3RT}{M}}$$

72.
$$pV = \frac{1}{3} Nmv_{\rm rms}^2$$

73.
$$p = \frac{1}{3} p v_{\text{rms}}^2$$

74.
$$K_{\text{tr}} = \frac{3}{2} \left(\frac{R}{N_{\text{A}}} \right) T = \frac{3}{2} kT$$

75.
$$U = \frac{1}{2} fNkT = \frac{1}{2} fnRT$$

76.
$$Q = \Delta U + W$$

77.
$$W = nRT \ln \frac{V_2}{V_1} = nRT \ln \frac{p_1}{p_2}$$

78.
$$W = \int p dV = p \left(V_2 - V_1 \right)$$