1

Uvažme následující graf:



Tento graf je třísouvislý a nemá mosty. Dále uvažme hrany (1,2) a (5,6). Bude-li nějaké párování obsahovat obě tyto hrany, vrcholy 3 a 4 nelze nijak spárovat, tudíž žádné párování obsahující obě tyto hrany nemůže být perfektní.

2

Mějme následující graf:



Tento graf je 3-regulární, ovšem pouze 1-souvislý (mezi zelenými vrcholy jsou mosty). Budeme hledat perfektní párování tohoto grafu. Kdybychom v jednom domečku spárovali černý vrchol se zeleným, zbydou v tomto domečku jen tři černé vrcholy, které již nelze všechny spárovat. V perfektním párování tedy musí být spárovány všechny černé vrcholy mezi sebou.

Tím nám ovšem zbydou čtyři zelené vrcholy, které nelze žádným způsobem všechny spárovat. Tento graf tedy nemá perfektní párování.

## 3

Párování grafu  $K_{n,n}$  je ekvivalentní permutaci n prvků (mezi  $u_i$  a  $w_j$  vede hrana právě tehdy, když  $\pi(i) = j$ ). Počet těchto párování je tedy roven n!. Když z tohoto grafu odebereme jednu hranu, znemožníme právě párování používající tuto hranu. Tato párování jsou ekvivalentní permutacím s jedním konkrétním pevným bodem a je jich tedy (n-1)! Počet párování výsledného grafu tedy vychází na  $n! - (n-1)! = (n-1)! \cdot (n-1)$ .

## 4

Dokážeme indukcí.

- Strom s jedním vrcholem nemá žádné perfektní párování. Strom se dvěma vrcholy má právě jedno.
- Mějme strom T o n vrcholech (n>2). Tento strom má nejméně dva listy. Vezmeme libovolný list stromu. Aby párování bylo perfektní, z tohoto listu musí vést párovací hrana. Vytvoříme strom T' tak, že odebereme oba vrcholy této hrany z T. Tato operace nám nemůže porušit párování T, neboť oba odebrané vrcholy již byly spárovány. Zároveň je T' les, jehož komponenty mají méně než n vrcholů. Z indukčního předpokladu tedy existuje nejvýše jedno perfektní párování T' (respektive všech jeho komponent). Zpětným přidáním vrcholů pak získáme nejvýše jedno perfektní párování T.

## 5

Graf  $G_{n,a,b}$  je bipartitní graf. První partitu tvoří množina  $M = \{X : |X| = a\}$ . Druhá partita je pak tvořena množinou  $N = \{X : |X| = b\}$ . Toto dokážeme snadno z faktu, že množina nemůže být podmnožinou množiny stejné velikosti.

Zároveň z definice vrcholů máme  $|M| = \binom{n}{a}$  a  $|N| = \binom{n}{b}$ . Protože se jedná o bipartitní graf, velikost největšího párování může být rovna nejvýše velikosti menší z partit.

Z každého vrcholu N vede  $\binom{b}{a}$  hran do vrcholů M. Tyto hrany totiž odpovídají všem podmnožinám velikosti a z množiny velikosti b. Pokud  $|N| \leq |M|$ , vrcholy v M mají stupně stejné nebo menší než  $\binom{b}{a}$ . Z libovolné množiny  $J \subseteq N$  pak vede  $|J| \cdot \binom{b}{a}$  hran. Z nižších stupňů vrcholů v M ovšem dostáváme  $|N(J)| \geq \frac{\binom{b}{a} \cdot |J|}{\binom{b}{a}}$ , tudíž je splněna Hallova podmínka a  $G_{n,a,b}$  má SRR. Pro  $|N| \geq |M|$  je argument stejný, pouze vyměníme partity.

 $G_{n,a,b}$  tedy má SRR a velikost jeho největšího párování je rovna  $\min \{ \binom{n}{b}, \binom{n}{a} \}$ 

6

Mějme dvě maximální párování, X a Y. Jelikož X je párování, musí platit, že každá hrana z  $Y \backslash X$  sousedí nejvýše se dvěma hranami z  $X \backslash Y$ . V opačném případě bychom měli dvě hrany X končící ve stejném bodě.

Zároveň víme, že každá hrana z  $X \setminus Y$  sousedí s alespoň jednou hranou z  $Y \setminus X$ . Kdyby to pro nějakou hranu neplatilo, dala by se přidat do Y, což je spor s jeho maximalitou.

Z předchozích dvou pozorování tedy dostáváme, že  $|X\backslash Y|\leq 2\cdot |Y\backslash X|.$  Dále pak úpravami:

$$|X| = |X \cap Y| + |X \setminus Y| \le |X \cap Y| + 2 \cdot |Y \setminus X| \le 2 \cdot |Y \cap X| + 2 \cdot |Y \setminus X| = 2 \cdot |Y|$$

Z čehož nám vyplývá, že  $|X| \leq 2 \cdot |Y|$  pro libovolná dvě maximální párování. Pokud za X dosadíme nějaké největší párování grafu G, pak pro libovolné Y maximální párování tohoto grafu dostáváme  $\frac{\mu(G)}{2} \leq |Y|$ .