

Sistemas de Numeración

Decimal

En esta posición el dígito 2
tiene un peso de 10.

En esta posición el dígito 3
tiene un peso de 1. $2 \times 10 + 3 \times 1$ 20 + 3 23 $10^2 \ 10^1 \ 10^0 \ 10^{-1} \ 10^{-2} \ 10^{-3} \dots$ Coma decimal $X = \sum_i (d_i \times 10^i)$ Aritmética Binaria y Lógica de Computadores

BCD

Sistemas de Codificación

Siglas para Binary-Coded Digit, ampliación de la representación para números

$$137_{10} = 10001001_2$$
 (binario)
 $137_{10} = 0001\ 0011\ 0111$ (BCD)

Aritmética Binaria y Lógica de Computadores

5

Sistemas de Codificación

Decimal	Binary	Hexadecimal	BCD	Gray
0	0	0	0000	0000
1	1	1	0001	0001
2	10	2	0010	0011
3	11	3	0011	0010
4	100	4	0100	0110
5	101	5	0101	0111
6	110	6	0110	0101
7	111	7	0111	0100
8	1000	8	1000	1100
9	1001	9	1001	1101
10	1010	Α	0001 0000	1111
11	1011	В	0001 0001	1110
12	1100	С	0001 0010	1010
13	1101	D	0001 0011	1011
14	1110	E	0001 0100	1001
15	1111	F	0001 0101	1000

Aritmética Binaria y Lógica de Computadores

7

ASCII

Sistemas de Codificación

Código alfanumérico para representar todos los caracteres del idioma inglés.

Character	Hex	Decimal	Character	Hex	Decimal	Character	Hex	Decimal	Character	Hex	Decimal
NUL (null)	0	0	Data Link Esc	10	16	Space	20	32	0	30	48
Start Heading	1	1	Direct Control 1	11	17	!	21	33	1	31	49
Start Text	2	2	Direct Control 2	12	18	"	22	34	2	32	50
End Text	3	3	Direct Control 3	13	19	#	23	35	3	33	51
End Transmit.	4	4	Direct Control 4	14	20	\$	24	36	4	34	52
Enquiry	5	5	Negative ACK	15	21	%	25	37	5	35	53
Acknowlege	6	6	Synch Idle	16	22	&	26	38	6	36	54
Bell	7	7	End Trans Block	17	23		27	39	7	37	55
Backspace	8	8	Cancel	18	24	(28	40	8	38	56
Horiz. Tab	9	9	End of Medium	19	25)	29	41	9	39	57
Line Feed	Α	10	Substitue	1A	26	*	2A	42	:	3A	58
Vert. Tab	В	11	Escape	1B	27	+	2B	43	;	3B	59
Form Feed	С	12	Form Separator	1C	28	,	2C	44	<	3C	60
Carriage Return	D	13	Group Separator	1D	29	-	2D	45	=	3D	61
Shift Out	Е	14	Record Separator	1E	30		2E	46	>	3E	62
Shift In	F	15	Unit Separator	1F	31	/	2F	47	?	3F	63

Aritmética Binaria y Lógica de Computadores

ASCII

Sistemas de Codificación

Código alfanumérico para representar todos los caracteres del idioma inglés.

Character	Hex	Decimal									
@	40	64	Р	50	80		60	96	р	70	112
Α	41	65	Q	51	81	a	61	97	q	71	113
В	42	66	R	52	82	b	62	98	r	72	114
С	43	67	s	53	83	С	63	99	s	73	115
D	44	68	Т	54	84	d	64	100	t	74	116
E	45	69	U	55	85	е	65	101	u	75	117
F	46	70	V	56	86	f	66	102	v	76	118
G	47	71	w	57	87	g	67	103	w	77	119
Н	48	72	X	58	88	h	68	104	x	78	120
1	49	73	Y	59	89	i	69	105	у	79	121
J	4A	74	Z	5A	90	j	6A	106	z	7A	122
K	4B	75	[5B	91	k	6B	107	{	7B	123
L	4C	76	\	5C	92	I	6C	108	1	7C	124
M	4D	77]	5D	93	m	6D	109	}	7D	125
N	4E	78	^	5E	94	n	6E	110	~	7E	126
0	4F	79	_	5F	95	0	6F	111	Delete	7F	127

Aritmética Binaria y Lógica de Computadores

9

10

Sistemas de Codificación Corrección de errores

Bit de paridad: Bit adicional a una palabra para comprobar si tuvo errores de transmisión.

bits añadidos de paridad par

Aritmética Binaria y Lógica de Computadores

Lógica Digital **Operaciones Lógicas** NAND **=** NOT/AND NOR **≡** NOT/OR Entradas Salida Entradas Salida \boldsymbol{X} \boldsymbol{X} 0 0 0 0 0 0 0 0 1 = ALTO, 0 = BAJO1 = ALTO, 0 = BAJOAritmética Binaria y Lógica de Computadores

Lógica Digital Reglas del Algebra booleana

7. $A \cdot A = A$

2.
$$A + 1 = 1$$

 $8. A \cdot \overline{A} = 0$

3.
$$A \cdot 0 = 0$$

9. $\overline{\overline{A}} = A$

4.
$$A \cdot 1 = A$$

10. A + AB = A

5.
$$A + A = A$$

11. $A + \overline{A}B = A + B$

6.
$$A + \overline{A} = 1$$

12. (A + B)(A + C) = A + BC

A, B o C pueden representar una sola variable o una combinación de variables.

Aritmética Binaria y Lógica de Computadores

17

Lógica Digital

Teoremas de DeMorgan

Output

Inputs

Inputs			Output			
X	7	Y	$\overline{X+Y}$	$\overline{X}\overline{Y}$		
()	0	1	1		
()	1	0	0		
1		0	0	0		
1		1	0	0		

Aritmética Binaria y Lógica de Computadores

¹⁹ Algebra booleana

Lógica Digital

	Boolean	Sets		
Function	Description	Function	Description	
A AND B	1 if and only if A and B are 1	A∩B	Set of elements that belong to both A and B (intersection)	
A OR B	1 if A or B or both are 1; 0 if both A and B are 0	A∪B	Set of elements that belong to A or B or both (union)	
A OR B	1 if and only if A is 0	Ā	Set of elements not in A (complement of A)	

Aritmética Binaria y Lógica de Computadores

19

Circuitos Combinacionales Mapas de Karnaugh Reducción de un mapa de Karnaugh Aritmética Binaria y Lógica de Computadores

Circuitos Combinacionales Multiplexores

El multiplexor conecta varias entradas a una única salida. En cualquier momento, se selecciona una de las entradas para pasarla a la salida.

S2	S1	F
0	0	D0
0	1	D1
1	0	D2
1	1	D3

Aritmética Binaria y Lógica de Computadores

25

Circuitos Combinacionales Decodificadores

Un descodificador es un circuito combinacional con varias líneas de salida, de las cuales sólo una se activa en cada momento. La línea de salida depende del patrón de las líneas de entrada.

Address	Chip
0000-00FF	0
0100-01FF	1
0200-02FF	2
0300-03FF	3

Decodificador con 3 entradas y 8 salidas.

Aritmética Binaria y Lógica de Computadores

Circuitos Combinacionales
Generador de Paridad

Paray (P)

Transmitter

Paray

Circuitos Secuenciales

Un circuito secuencial depende no solamente de las entradas, sino de valores que fueron obtenidos fruto de una ejecución previa del mismo circuito.

Latch

Dispositivo de almacenamiento temporal de dos estados, que almacena, o puede almacenar, un bit.

Entra	Entradas Salidas		ıs	
\overline{S}	\overline{R}	Q	$ar{arrho}$	Comentarios
1	1	NC	NC	No cambio. El latch permanece en el estado que estaba.
0	1	1	0	Latch en estado SET.
1	0	0	1	Latch en estado RESET.
0	0	1	1	Condición no válida

Aritmética Binaria y Lógica de Computadores

29

Circuitos Secuenciales

Latch

Characteristic Table							
Current Inputs	Current State	Next State					
SR	Q_n	Q_{n+1}					
00	0	0					
00	1	1					
01	0	0					
01	1	0					
10	0	1					
10	1	1					
11	0	_					
11	1	_					

Cada ejecución modifica los valores de la siguiente, generando una secuencia de valores.

Response to Series of Inputs										
t	0	1	2	3	4	5	6	7	8	9
S	1	0	0	0	0	0	0	0	1	0
R	0	0	0	1	0	0	1	0	0	0
Q_{n+1}	1	1	1	0	0	0	0	0	1	1

Aritmética Binaria y Lógica de Computadores

Circuitos Secuenciales

	Entr	adas	Salidas _		
S	R	CLK	Q	$ar{\varrho}$	Comentarios
0	0	X	Q_0	\overline{Q}_{0}	No cambio
0	1	\uparrow	0	1	RESET
1	0	↑	1	0	SET
1	1	\uparrow	?	?	No válida

↑ = transición del reloj de nivel BAJO a nivel ALTO

X = irrelevante ("condición indiferente")

 Q_0 = nivel de salida previo a la transición del reloj

Aritmética Binaria y Lógica de Computadores

33

