Articles

Publicaton source	Title	Year
TSE	MAHAKIL: Diversity Based Oversampling Approach to Alleviate the Class Imbalance Issue in Software Defect Prediction	2017
WCRE	An Incremental Update Framework for Efficient Retrieval from Software Libraries for Bug Localization	2013
TSE	Text Filtering and Ranking for Security Bug Report Prediction	2019

An Incremental Update Framework for Efficient Retrieval from Software Libraries for Bug Localization -WCRE.2013

Fig. 1. A typical bug localization process shown for a single bug.

Fig. 3. Incremental update framework for bug localization.

An Incremental Update Framework for Efficient Retrieval from Software Libraries for Bug Localization

Text Preprocessing and Index Creation

$$idf(w) = log(\frac{M}{df(w) + 1})$$

- Addition: $A^{t+1} = [A^t Add]$.
- When the j^{th} source file is modified: $A^{t+1} = [A_1^t A_2^t ... A_j^{t+1} ... A_M^t]$
- $[A_1^t A_2^t ... 0 ... A_M^t]$

$$\begin{array}{ll} [A_1^t A_2^t ... A_j^{t+1} ... A_M^t] \\ \bullet \text{ When the } j^{th} \text{ source file is deleted: } A^{t+1} &= df^{t+1}(w) = df^t(w) + sign(A_m^{t+1}(w) - A_m^t(w)) \\ [A_1^t A_2^t ... \mathbf{0} ... A_M^t] &= sign(x) = 1 \text{ if } x > 0, \, -1 \text{ if } x < 0 \text{ and } 0 \text{ if } x = 0. \end{array}$$

Learning parameters of the text model. VSM and SUM

$$p_{uni}(w|d_m) = \mu \frac{A_m(w)}{dl(m)} + (1 - \mu)p_c(w)$$

$$p_c(w) = \frac{cf(w)}{\sum_w cf(w)}$$

$$cf(w) = \sum_w A_m(w) & dl(m) = \sum_w A_m(w)$$

$$(2) \qquad cf^{t+1}(w) = cf^t(w) + A_m^{t+1}(w) - A_m^t(w)$$

$$dl^{t+1}(m) = dl^t(m) + A_m^{t+1}(w) - A_m^t(w)$$

MAHAKIL: Diversity Based Oversampling Approach to Alleviate the Class Imbalance Issue in Software Defect Prediction -TSE.2017

Technology:data sampling approaches are synthetic based. problem:over-generalization and boundary widened

MAHAKIL: Diversity Based Oversampling Approach to Alleviate the Class Imbalance Issue in Software Defect Prediction

2

Diversity Measurement

Mahalanobis distance (D2) proposed by P. C. Mahalanobis [28].

Data Partitioning and Pairing

uses partitional cluster approach
The pairing is systematic order

Synthetic Sample Generation

computing the mean or average between two paired instances

Text Filtering and Ranking for Security Bug Report Prediction

汇报人: 刘文杰

熊 猫 达 人 原 创 精 品

O1 Background and Problem

02 Structure

03 Experiments Setup

Background

Contributions

An approach to automatically identify keywords

A tractable method to use both bug reports

An automatic filtering and ranking method

A ranking generate a useful ranked list

FARSEC Structure

Fig. 2. Overview of the FARSEC approach.

Identifying Security Related Keywords

 $tf-idf(t,d,D) = tf(t,d) \times idf(t,D).$

(3)

Filtering Bug Reports

FARSEC filtering is based on the scoring of the terms in the feature set. Using these scores to calculate an overall score for bug reports.

was a poor ranking heuristic for low frequency evidence.

- 1) farsecsq, the frequency of words found in SBRs
- 2) farsectwo, which the frequency by two
- 3) farsec, which offers no support

Algorithm 1. Score Keywords

- 1: **ScoreWords**(B, support) {B is the bug reports data with a feature set, and support adds bias in favour of SBRs.}
- 2: **Partition**(B) \mapsto {S, NS, W} {S is SBR data, NS is NSBR data and W is the feature set.}
- 3: for win W do
- 4: {w represents each word in the feature set.}

5:
$$P(S_w) \leftarrow Min\left(1, \frac{support(tf(S_w))}{|S|}\right)$$
 in SBR not in NSBR

6:
$$P(NS_w) \leftarrow Min\left(1, \frac{tf(NS_w)}{|NS|}\right)$$
7: $Score(w) \leftarrow Vector\left(w, Max\left(0.01, Min\left(0.99, \frac{P(S_w)}{P(S_w) + P(NS_w)}\right)\right)\right)$

- 8: end for
- 9: **return** *Hashmap*(*Score*(*w*)) {Returns dictionary of *w* mapped to Score(*w*).}

Filtering Bug Reports-Score Bug Report

NSBRs are selected using the threshold score of ≥ 0.75 higher scores are likely to be false positives.

Algorithm 2. Score Bug Report

- 1: **ScoreReport**(R, B, **support**) {R is a bug report and B is the bug reports data with a feature set, and support adds bias in favour of SBRs.
- 2: $M \leftarrow ScoreWords(B, support)$
- 3: $M^* \leftarrow \emptyset$ {Initialized list of scores for security related keywords in R.}
- 4: $M' \leftarrow \emptyset$ {Initialized list of complement scores for security related keywords in R.}
- 5: for win R do
- $P(w) \leftarrow GetScore(w, M)$ {Returns score for each keyword (w) if present in dictionary and a score of zero if not present.
- 7: $M^* \leftarrow P(w)$
- 8: end for
- 9: for m in M* do
- 10: $M' \leftarrow 1-m$
- 11: end for
- 11: end for $\prod_{i=1}^{|M^*|} m_i$ 12: return $\frac{\prod_{i=1}^{|M^*|} m_i}{\prod_{i=1}^{|M^*|} m_i + \prod_{i=1}^{|M'|} (1-m_i)}$

Ranking Bug Reports

01

goal: actual SBRs are closer to the top of the list.

02

idea:ensemble learning, which
combines predictions from
multiple models using another

For example: according to the prediction results of the farsecsq filter

Step 1: (Sort by prediction in descending order): only if when the number of predicted SBRs is less than that of farsecsq

Step 2: (Sort by prediction of farsecsq)

other filters or no filters predict SBR

EXPERIMENT SETUP

Performance Measures

数据集: uses JIRA6 as its bug tracking system

TABLE 1
Characteristics of the Projects and Bug Reports

Project	Domain	Start Date	End Date	BRs	SBRs	SBRs (%)
Chromium	Web browser called Chrome.	Aug 30 2008	Jun 11 2010	41,940	192	0.5
Wicket	Component-based web application framework for the Java programming.	Oct 20 2006	Nov 9 2014	1,000	10	1.0
Ambari	Hadoop management web UI backed by its RESTful APIs.	Sep 26 2011	Aug 8 2014	1,000	29	3.0
Camel	A rule-based routing and mediation engine.	Jul 8 2007	Sep 18 2013	1,000	32	3.0
Derby	A relational database management system.	Sep 28 2004	Sep 17 2014	1,000	88	9.0

Five machine learning algorithms: Random Forest, Naive Bayes, Logistic Regression, Multilayer Perceptron and K-Nearest Neighbor. Predict

	SBRs	NSBRs
SBRs	TP	FN
NSBRs	FP	TN
pd	\overline{TP}	$\frac{TP}{P+FN}$
pf		$\frac{FP}{P+TN}$
prec	$\frac{TP}{TP}$	$\frac{TP}{P+FP}$
f-measure		$\frac{d*prec}{+prec}$
g-measure	$\frac{2 \times pd \times pd}{pd + 1}$	$\frac{[100-pf]}{100-pf)}$
AP_n	$\sum_{k=1}^{n}$	$=1 \frac{P(k)}{n}$
MAP_n	$\sum_{i=1}^{N}$	$\frac{AP_{n_i}}{N}$

Actual

Rank

probability of detection (pd), probability of false alarm (pf), precision, f-measures and g-measures

(not predicting NSBRs as SBRs)

EXPERIMENT DESIGN AND RESULTS

Within Project Prediction (WPP) and Transfer ProjectPrediction (TPP) filters: unfiltered, FARSEC filtered, and CLNI filtered: removes noisy NSBRs

- RQ1: Can security cross words lead to mislabelled security bug reports by prediction models?
- RQ2: How do we build effective prediction models for security bug reports when data scarcity is an issue?

RQ1: Can Security Cross Words Lead to Mislabelled Security Bug Reports by Prediction Models

Security Cross Words (SCWs)

TABLE 5
WPP Results with FARSEC and CLNI Filtering (Those with the Highest G-Measures Are Highlighted)

Source	Security Cross W	ords (SCWs)	38											
-	Filter	# SCWs	Target	Filter	Learner	TN	TP	FN	FP	pd	pf	prec	f-measure	g-measure
Chromium	train farsecsq	100 95	Chromium	train	logistic_regression	20,815	18	97	40	15.7	0.2	31.0	20.8	27.1
	farsectwo	100		farsecsq	random forest	20,801	17	98	54	14.8	0.3	23.9	18.3	25.7
	farsec	100		farsectwo	logistic_regression	20,815	18	97	40	15.7	0.2	31.0	20.8	27.1
	clni clnifarsecsq	100 95		farsec	logistic_regression	20,815	18	97	40	15.7	0.2	31.0	20.8	27.1
	clnifarsectwo	100		clni	logistic_regression	20,808	18	97	47	15.7	0.2	27.7	20.0	27.1
	clnifarsec	100		clnifarsecsq	multilayer_perceptron	20,066	57	58	789	49.6	3.8	6.7	11.9	65.4
				clnifarsectwo	logistic_regression	20,808	18	97	47	15.7	0.2	27.7	20.0	27.1
Wicket	train	74	•	clnifarsec	logistic_regression	20,808	18	97	47	15.7	0.2	27.7	20.0	27.1
	farsecsq	12			0 - 0									
	farsectwo farsec	13 40	Wicket	train	naive_bayes	459	1	5	35	16.7	7.1	2.8	4.8	28.3
	clni	74		farsecsq	logistic_regression	305	4	2	189	66.7	38.3	2.1	4.0	64.1
	clnifarsecsq	12		farsectwo	logistic_regression	313	4	2	181	66.7	36.6	2.2	4.2	65.0
	clnifarsectwo clnifarsec	13 40		farsec	logistic_regression	454	2	4	40	33.3	8.1	4.8	8.3	48.9
	Ciniiarsec	40		clni	naive_bayes	467	0	6	27	0.0	5.5	0.0	0.0	0.0
				clnifarsecsq	logistic_regression	368	2	4	126	33.3	25.5	1.6	3.0	46.1
				clnifarsectwo	logistic_regression	357	2	4	137	33.3	27.7	1.4	2.8	45.6
026				clnifarsec	logistic_regression	442	3	3	52	50.0	10.5	5.5	9.8	64.2
Ambari	train farsecsq	95 25	Ambari	train	multilayer_perceptron	485	1	6	8	14.3	1.6	11.1	12.5	24.9
	farsectwo	57		farsecsq	random forest	422	3	4	71	42.9	14.4	4.1	7.4	57.1
	farsec	88		farsectwo	random forest	478	4	3	15	57.1	3.0	21.1	30.8	71.9
	clni	94 25		farsec	multilayer_perceptron	469	1	6	24	14.3	4.9	4.0	6.3	24.8
	clnifarsecsq	57		clni	multilayer_perceptron	480	1	6	13	14.3	2.6	7.1	9.5	24.9
	clnifarsec	88		clnifarsecsq	random forest	455	4	3	38	57.1	7.7	9.5	16.3	70.6
				clnifarsectwo	random forest	471	2	5	22	28.6	4.5	8.3	12.9	44.0
				clnifarsec	random_forest	493	1	6	0	14.3	0.0	100.0	25.0	25.0
Camel	train farsecsq	88 27	G1			***************************************					3.5			
	farsectwo	47	Camel	train	logistic_regression	464	2	16	17	11.1		10.5	10.8	19.9
	farsec	82		farsecsq	random_forest	426	3	15	55	16.7	11.4	5.2	7.9	28.1
	clni clnifarsecsq	88 27		farsectwo	logistic_regression	280	9	9	201	50.0	41.8	4.3	7.9	53.8
	clnifarsectwo	47		farsec	logistic_regression	448	3	15	33	16.7	6.9	8.3	11.1	28.3
Camel	clnifarsec	82		clni	naive_bayes	422	3	15	59	16.7	12.3	4.8	7.5	28.0
				clnifarsecsq	multilayer_perceptron	415	3	15	67	16.7	13.9	4.3	6.8	27.9
				clnifarsectwo	multilayer_perceptron	445	2	16	37	11.1	7.7	5.1	7.0	19.8
				clnifarsec	logistic_regression	458	3	15	24	16.7	5.0	11.1	13.3	28.4
Derby	train farsecsq	95	Derby	train	naive_bayes	427	16	26	31	38.1	6.8	34.0	36.0	54.1
	farsectwo	72		farsecsq	ib_k	321	23	19	137	54.8	29.9	14.4	22.8	61.5
	farsec	90		farsectwo	random forest	401	20	22	57	47.6	12.4	26.0	33.6	61.7
	clni clnifarsecsq	94		farsec	naive_bayes	429	16	26	29	38.1	6.3	35.6	36.8	54.2
	clnifarsectwo	70		clni	random forest	456	10	32	2	23.8	0.4	83.3	37.0	38.4
	clnifarsec	89		clnifarsecsq	ib_k	321	23	19	137	54.8	29.9	14.4	22.8	61.5
				clnifarsectwo	random forest	416	15	27	42	35.7	9.2	26.3	30.3	51.3
				clnifarsec	naive baves	427	16	26	31	38.1	6.8	34.0	36.0	54.1
									~ .	COLL	0.0	V	00.0	

RQ2: : How Do We Build Effective Prediction Models for Security Bug Reports When Data Scarcity Is an Issue

TABLE 5
WPP Results with FARSEC and CLNI Filtering (Those with the Highest G-Measures Are Highlighted)

TABLE 6
TPP Results with FARSEC and CLNI Filtering (Those with the Highest G-Measures Are Highlighted)

Target	Filter	Learner	TN	TP	FN	FP	pd	pf	prec	f-measure	g-measure	Target	Source	Filter	Learner	TN	TP 1	FN	FP	pd	pf	prec	f-measure	g-measure
Chromium	train farsecsq farsectwo farsec clni clnifarsecsq clnifarsectwo clnifarsec	logistic_regression random_forest logistic_regression logistic_regression logistic_regression multilayer_perceptron logistic_regression logistic_regression	20,815 20,801 20,815 20,815 20,808 20,066 20,808 20,808	18 17 18 18 18 57 18 18	97 98 97 97 97 58 97	40 54 40 40 47 789 47 47	15.7 14.8 15.7 15.7 15.7 49.6 15.7	0.2 0.3 0.2 0.2 0.2 3.8 0.2 0.2	31.0 23.9 31.0 31.0 27.7 6.7 27.7	20.8 18.3 20.8 20.8 20.0 11.9 20.0 20.0	27.1 25.7 27.1 27.1 27.1 65.4 27.1 27.1	Chromium	Derby Ambari Ambari Derby Camel Ambari Derby Camel	train farsecsq farsectwo farsec clni clnifarsecsq clnifarsectwo clnifarsec	random_forest random_forest random_forest multilayer_perceptron logistic_regression random_forest random_forest multilayer_perceptron	20,835 19,279 20,454 20,502 20,262 19,817 20,332	2 1 34 53 12 1 25 56 26	113 81 62 103 90 59	401 353 593 1,038	1.7 29.6 46.1 10.4 21.7 48.7 22.6	0.1 7.6 1.9 1.7 2.8 5.0	9.1 2.1 11.7 3.3 4.0 5.1	2.9 3.9 18.6 5.0 6.8 9.3 7.8 4.1	3.4 44.8 62.7 18.9 35.5 64.4 36.7 13.0
Wicket	train farsecsq farsectwo farsec clni clnifarsecsq clnifarsectwo clnifarsec	naive_bayes logistic_regression logistic_regression logistic_regression naive_bayes logistic_regression logistic_regression logistic_regression	459 305 313 454 467 368 357 442	1 4 4 2 0 2 2 2 3	5 2 2 4 6 4 4 3	35 189 181 40 27 126 137 52	16.7 66.7 66.7 33.3 0.0 33.3 33.3 50.0	7.1 38.3 36.6 8.1 5.5 25.5 27.7 10.5	2.8 2.1 2.2 4.8 0.0 1.6 1.4 5.5	4.8 4.0 4.2 8.3 0.0 3.0 2.8 9.8	28.3 64.1 65.0 48.9 0.0 46.1 45.6 64.2	Wicket	Camel Chromium Camel Camel Ambari Chromium Camel Camel	train farsecsq farsectwo farsec clni clnifarsecsq clnifarsectwo clnifarsec	naive_bayes multilayer_perceptron random_forest naive_bayes multilayer_perceptron random_forest random_forest naive_bayes	437 475 490 431 476 493 489 433	1 3 1	3 5 5 5 5 5 5 5 5	57 19 4 63 18 1 5 61	16.7 50.0	3.8 0.8 12.8 3.6 0.2 1.0	5.0 20.0 4.5 5.3 50.0 16.7	9.1 7.7 18.2 8.3 8.0 25.0 16.7 8.6	63.9 28.4 28.5 63.6 28.4 28.6 28.5 63.7
Ambari	train farsecsq farsectwo farsec clni clnifarsecsq clnifarsectwo clnifarsec	multilayer_perceptron random_forest random_forest multilayer_perceptron multilayer_perceptron random_forest random_forest random_forest	485 422 478 469 480 455 471 493	1 3 4 1 1 4 2	6 4 3 6 6 3 5 6	8 71 15 24 13 38 22 0	14.3 42.9 57.1 14.3 14.3 57.1 28.6 14.3	1.6 14.4 3.0 4.9 2.6 7.7 4.5 0.0	11.1 4.1 21.1 4.0 7.1 9.5 8.3 100.0	12.5 7.4 30.8 6.3 9.5 16.3 12.9 25.0	24.9 57.1 71.9 24.8 24.9 70.6 44.0 25.0	Ambari	Derby Chromium Chromium Camel Derby Chromium Chromium Camel	train farsecsq farsectwo farsec clni clnifarsecsq clnifarsectwo clnifarsec	multilayer_perceptron multilayer_perceptron naive_bayes multilayer_perceptron multilayer_perceptron random_forest naive_bayes multilayer_perceptron	484 474 472 492 477 492 474 492	1	5 4 6 5 6 5 6	9 19 21 1 16 1 19 1	14.3	1.8 3.9 4.3 0.2 3.2 0.2 3.9 0.2	11.1 50.0	22.2 20.7 19.4 22.2 16.0 22.2 14.3 22.2	44.3 59.3 59.2 25.0 44.1 25.0 44.1 25.0

谢谢观看

猫 达 人 原 创

品