Power spot price

Pierre GRUET^{1,2}

¹ Électricité de France (EDF) – Recherche & Développement

² Laboratoire de Finance des marchés de l'énergie

Agenda

The monopoly case

- Cost definitions
- Adapted power generation system
- · Pricing at the marginal cost

The spot market

Illustration

- Some key units
- Offer curve construction

The monopoly case

The monopoly case

• In the case of monopoly the main objective is to determine an economically viable structure.

- In the case of monopoly the main objective is to determine an economically viable structure.
- The "control variables" are :

- In the case of monopoly the main objective is to determine an economically viable structure.
- The "control variables" are :
 - the production structure: capacity for each type of production plant;
 - the pricing structure of electricity (price level, structure...).

- In the case of monopoly the main objective is to determine an economically viable structure.
- The "control variables" are :
 - the production structure: capacity for each type of production plant;
 - the pricing structure of electricity (price level, structure...).
- The main uncertainty is

- In the case of monopoly the main objective is to determine an economically viable structure.
- The "control variables" are :
 - the production structure: capacity for each type of production plant;
 - the pricing structure of electricity (price level, structure...).
- The main uncertainty is the consumption.

- In the case of monopoly the main objective is to determine an economically viable structure.
- The "control variables" are :
 - the production structure: capacity for each type of production plant;
 - the pricing structure of electricity (price level, structure...).
- The main uncertainty is the consumption.
- In the monopoly case, the objective is to minimize the production cost under the constraint of satisfying the demand.

Cost definitions: cost referred to a technology

Fixed cost

The fixed cost is the cost generated by a plant outside of any production. It can be expressed:

- in monetary unit per power unit (€/MW);
- in monetary unit per power unit per year (€/MW/year).

Variable operating cost

The variable operating cost is the cost induced by the production of electricity. It is expressed in monetary unit per produced energy unit (€/MWh). In consists of the fuel price and the maintenance cost.

Complete cost

The complete cost of a plant (or a technology) is the sum of the fixed cost and the variable cost with respect to a duration of use.

Cost definitions: cost referred to the system

(Short-term) Marginal cost

The marginal cost is the production cost needed to produce one unit of power, additionally to the current demand (the marginal demand). We define it "short-term" marginal cost because it is referred to a fixed generation system.

Long-term marginal cost or developing cost

The long-term marginal cost of a technology is the sum of its variable costs and a part of its fixed cost. It is used to anticipate the future marginal cost in the case of generation system evolution.

Construction of an adapted generation system

Construction of an adapted generation system: the Boiteux principle

Demand as a load curve

- The electricity demand is viewed as an expectation of the total electricity consumption for one year.
- The consumption is aggregated to build the load curve P(h): the quantity P of electricity needed as a function of the number h of hours in a year.

Construction of an adapted generation system

- We assume we have N technologies. For each technology n = 1, ..., N we define
 - fixed cost C_n^f , in \in /MW/year
 - variable cost C_n^v in €/MWh

Given h the number of hours the technology i is used to produce electricity, we assume the complete cost to be affine

$$C_n^c = C_n^f + C_n^v h$$

The case of 2 technologies *i* and *j*

Suppose $C_i^f < C_j^f$ and $C_i^v > C_j^v$. The numbers $h_{i,j}$ of hours where it is equivalent to produce from technology i or technology j is

$$h_{i,j} = \frac{C_j^f - C_i^f}{C_i^v - C_j^v}$$

• Below $h_{i,j}$, the technology i is cheaper, whereas technology j becomes cheaper over $h_{i,j}$ of production.

Construction of an adapted generation system

 By extending the reasoning to N technologies we can determine the sequence of technologies to be used as a function of the number of hours for production.

Adapted generation system

- Find technology n_1 of cheaper fixed cost. Initialise $\mathcal{N} = \{n_1\}$
- for k = 2 : N

$$\textit{h}_{\textit{n}_{k-1},\textit{n}_{k}} = \min \left\{ \textit{h}_{\textit{n}_{k-1},\textit{n}} \; ; \; \textit{n} \in \left\{1,\ldots,\textit{N}\right\} \cap \mathcal{N}^{\textit{c}} \right\}$$

and set $\mathcal{N} = \mathcal{N} \cup \{n_k\}$

Remark

The algorithm may stop before interation N once $h_{n_k} > 8760$ (i.e. 1 year), which means that the remaining technologies are never competitive.

Optimal capacity structure

• Given the load curve P(h), and the sequence $(h_{n_1,n_2},\ldots,h_{n_{N-1},n_N})$ the capacity needed for each technology is given by the following algorithm.

Optimal capacity structure

- The capacity Q_1 for technology n_1 is given by $Q_1 = P(0) P(h_{n_1,n_2})$.
- The capacity Q_i , for i = 2, ..., N 1, for technology n_i is given by $Q_i = (P(h_{n_i-1}, n_i) P(h_{n_i, n_i+1}))$.
- The capacity Q_N for technology n_N is given by $Q_N = P(h_{n_{N-1},n_N})$.

Optimal capacity structure: Illustration

Example of optimal capacity structure in the case of 3 technologies

Figure: Optimal capacity structure

This also gives an piecewise constant approximation of the load curve.

Pricing

- The optimal capacity structure leads to a minimal global production cost for one year of electricity consumption.
- Question: what is the optimal (minimal) price for selling electricity?

Pricing at the marginal cost

Assume a piecewise constant selling price structure (P_1,\ldots,P_N) corresponding to the number of technologies: we consider a "state variable" defining the marginal capacity and a price as a function of this state variable. Therefore the minimal price for selling electricity is the complete cost for the most expensive technology and the marginal cost for the others:

$$P_1 = \frac{C_1^f}{h_{1,2}} + C_1^v$$

 $P_i = C_i^v, i = 2,..., N$

Pricing at the marginal cost

• First consider technology n_1 , only called for $h_{1,2}$ hours. The complete cost per MWh is $\frac{1}{h_{1,2}}(C_1^f + C_1^{\nu}h_{1,2})$. Therefore the minimal selling price P_1 is such as it exactly covers the complete cost:

$$P_1 = \frac{C_1^f}{h_{1,2}} + C_1^v$$

• Technology n_2 is called $h_{2,3}$ hours. The income for the first $h_{1,2}$ hours is:

$$P_{1}h_{1,2}Q_{2} = C_{1}^{f}Q_{2} + C_{1}^{v}h_{1,2}Q_{2}$$

$$= C_{2}^{f}Q_{2} + C_{2}^{v}h_{1,2}Q_{2}$$

$$= C_{2}^{f}Q_{2} + C_{2}^{v}h_{1,2}Q_{2}$$

This income completely covers the fixed cost of technology n_2 , the price P_2 between $h_{1,2}$ and $h_{2,3}$ is then the marginal cost $P_2 = C_2^{\vee}$

Same idea for all remaining technologies

Conclusion

Conclusion

- In the case of a monopoly, the objective of the electricity producer is to build an adapted power generation system.
- Selling at the marginal costs is, with an adapted power generation system, the optimal strategy to cover the total production cost.

Market creation

- The French power generation system is not adapted.
- The open market lets free to propose any price superior to the marginal cost (but limited by competition).
- However in electricity markets the price offers are close to the marginal cost.
- It gives a strong relationship, then, between the electricity spot price and the fuel spot prices.

Spot market

• Fixing on October 28th, 2011.

Figure: French power spot prices on October 28th, 2011

Spot market: offer curve

Typical offer curve in the French market

Spot market: offer curve

- Key notion: Merit order
- Not easy in practice
 - storage management
 - maintenance planning
 - system services
 - dynamic constraints (starting, minimal power...)
 - coupling constraints

*Turbine A Combustion (Fioul ou Gaz)

- The spot price is not always the marginal cost
 - Non consistent price offers with respect to marginal cost
 - Some price levels (spikes) do not correspond to any marginal cost

Volume (MWh)

Prix (€/MWh)

Source epex spot

French offer (01.01.2012 5h)

Spot prices (spike 1785€/MWh at 02.09.2012 9h)

• The case of wind: uncertainty in the production capacity

The case of wind: uncertainty in the production capacity

Conclusion

- Spot prices are not exactly the marginal cost
 - Dynamic (temporal and geographical) constraints
 - Storage management (water, gas, ...)
 - etc

Illustration

Illustration

Production cost: some key units

	Commodity	Hoot roto (or roturn)	
	Commodity	Heat rate (or return	
Electricity	€/MWh	-	
Gas	€/MWh	%	
	€/therm	therm/MWh	
	€/mmBtu	mmBtu/MWh	
Oil	€/t	t/MWh	
	€/gal	gal/MWh	
	€/bbl	bbl/MWh	
Coal	€/t	t/MWh	
Carbon	€/t _{carbon}		

• Consider a simple generation structure

Technology	Capacity	Heat rate	Emission coef.	Spot price	
Gas	250 MW	250%	0.2 tCO2/MWh	24 €/MWh	
Coal	500 MW	0.5 tC/MWh	2.5 tCO2/tC	100 €/tC	
Fuel Oil	100 MW	1.5 bbl/MWh	0.5 tCO2/bbl	80 €/bbl	

Question

Build the offer curve

• First case: Carbon emission price = 10 €/tCO2

• First case: Carbon emission price = 10 €/tCO2

• **Second case:** Carbon emission price = 50 €/tCO2

• Second case: Carbon emission price = 50 €/tCO2

• Consider a simple generation structure

Technology	Capacity	Heat rate	Emission coef.	Spot price
Gas	250 MW	250%	0.2 tCO2/MWh	24 €/MWh
Coal	500 MW	0.5 tC/MWh	2.5 tCO2/tC	100 €/tC
Fuel Oil	100 MW	1.5 bbl/MWh	0.5 tCO2/bbl	80 €/bbl
Wind Power	100 MW	25% (return)	0	0 €/MWh

Question

Build the offer curve

- Carbon emission price = 10 €/tCO2
- Demand level: 600 MW

Offer Curve

Question

How much renewables capacity is needed to change the system marginality and decrease the spot price?

Carbon emission price = 10 €/tCO2

Demand level: 600 MW

Answer: 400 MW of renewables

Case study: two interconnected markets

Market 1

Technology	Capacity	Heat rate	Emission coef.	Spot price
Gas	250 MW	250%	0.2 tCO2/MWh	24 €/MWh
Coal	500 MW	0.5 tC/MWh	2.5 tCO2/tC	100 €/tC
Fuel Oil	100 MW	1.5 bbl/MWh	0.5 tCO2/bbl	80 €/bbl
Wind Power	100 MW	25% (return)	0	0 €/MWh

Market 2

Technology	Capacity	Heat rate	Emission coef.	Spot price
Gas	200 MW	250%	0.2 tCO2/MWh	22 €/MWh
Coal	300 MW	0.5 tC/MWh	2.5 tCO2/tC	100 €/tC
Fuel Oil	100 MW	1.5 bbl/MWh	0.5 tCO2/bbl	80 €/bbl
Wind Power	500 MW	25% (return)	0	0 €/MWh

Demand market 1: 850 MW

Demand market 2: 300 MW

Case study: two interconnected markets

Interconnect. capacity	Spot price market 1	Spot price market 2	Comment
0MW	127.5 €/MWh	60 €/MWh	Prices without connection
50MW	127.5 €/MWh	62.5 €/MWh	Only increasing of Market 2
200MW	65 €/MWh	62.5 €/MWh	Effects in both markets
500MW	62.5 €/MWh	62.5 €/MWh	Perfect price convergence