Industrial Communication Networking: An Ethernet Based Implementation

A STUDY ON INDUSTRIAL COMMUNICATION NETWORKING: ETHERNET BASED IMPLEMENTATION

HAIRULAZWAN BIN HASHIM

KOLEJ UNIVERSITI TEKNOLOGI TUN HUSSEIN ONN

- · · · · ·

PERPUSTAKAAN UTHM *30000001883557*

and the

KOLEJ UNIVERSITI TEKNOLOGI TUN HUSSEIN ONN

PENGESAHAN STATUS LAPORAN PROJEK SARJANA

A STUDY ON INDUSTRIAL COMMUNICATION NETWORKING: ETHERNET BASED IMPLEMENTATION

SESI PENGAJIAN: 2006/2007

Saya HAIRULAZWAN BIN HASHIM mengaku membenarkan Laporan Projek Sarjana ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan Projek Sarjana adalah hakmilik Kolej Universiti Teknologi Tun Hussein Onn.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ** Sila tandakan (√)

	SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
	TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan
$\sqrt{}$	TIDAK TERHAD	Disahkan oleh
-(12	TO ROLL	

Alamat Tetap:

NO. 15 BLOK 1, FELDA SEMENCHU, 81900 KOTA TINGGI, JOHOR DARUL TAKZIM.

(TANDATANGAN PENULIS)

Tarikh: 30 NOVEMBER 2006

PM DR. ZAINAL ALAM BIN HARON

(TANDATANGAN PENYELIA)

Nama Penyelia

Tarikh: 25/11/6

CATATAN:

** Jika Laporan Projek Sarjana ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan ini perlu di kelaskan sebagai SULIT atau TERHAD.

A STUDY ON INDUSTRIAL COMMUNICATION NETWORKING: ETHERNET BASED IMPLEMENTATION

HAIRULAZWAN BIN HASHIM

A project report is submitted as partial fulfillment of the requirements for the award of the degree of

Master of Electrical Engineering

Faculty of Electrical and Electronic Engineering Kolej Universiti Teknologi Tun Hussein Onn "I hereby declare that the work in this report in my own except for quotations and summaries which have been duly acknowledged."

Student Hairw

HAIRULAZWAN BIN HASHIM

Date 30 NOVEMBER 2006

Supervised by

Supervisor

ASSOC. PROF. DR. ZAINAL ALAM BIN HARON

For my beloved wife, Norasiah binti Md Aspan

My father and mother,

Hashim bin Mohd Said and Uminah binti Kaseran@Hj. Yusof

My family,

Zainita, Mohd Rizal, Mohd Nazree, Norzela, Mohd Haizam, Md Syfulnizam, Noorzalila, Siti Norida, Mohd Salehudin, Siti Nordianah and Mohd Syafiq

for their encouragement, support, caring and blessing...

ACKNOWLEDGEMENT

Alhamdulillah, I am grateful to ALLAH S.W.T on His blessing in completing this project.

I am deeply grateful for the help that I received from my supervisor,
Associate Professor Dr. Zainal Alam bin Haron during this development of this
project. His willingness to help and ideas has kept me on my toes from the beginning
stage of this project until the completion of this thesis.

I could not have done this project without the unconditional support, active encouragement, complete cooperation, and honest sacrifice by my wife, Norasiah binti Md Aspan and family. To appreciate their immense contribution, this thesis is lovingly dedicated to them.

I am also indebted to Kolej Universiti Teknologi Tun Hussein Onn (KUiTTHO) and Jabatan Perkhidmatan Awam (JPA) for supporting me in the form of a scholarship and study leave.

I would also like to extend my gratitude to all lecturers and technician that has given me all the basic needed for completing this project, and also to my classmates, friend, colleagues and who helped me directly or indirectly for their encouragement and help. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space.

ABSTRACT

Recent enhancement of an industrial communication and networking technology has made it possible to apply Ethernet networks at all levels of industrial automation, especially at controller level where the data exchange in real-time communication is mandatory. This thesis presents a study on the development of industrial communication network based on the Ethernet and its implementation on a Computer Integrated Manufacturing (CIM-70A) system which located at Robotic Laboratory in KUiTTHO. The Ethernet module was installed on supervisory OMRON PLC to integrate the various stations in the CIM-70A system. The workability of this communication technique was analyzed and compared with the conventional serial communication which is widely used in automation networking systems. Through this approach, the communication and integration of CIM systems can be accessed easily and hence available to be upgraded to the management and enterprise levels of automation.

ABSTRAK

Penambahan penggunaan komunikasi dan rangkaian industri sejak akhirakhir ini telah menjadikan rangkaian Ethernet boleh diaplikasikan di semua peringkat automasi perindustrian, terutamanya di tahap pengawal di mana penukaran data dalam masa nyata adalah mandatori. Tesis ini membentangkan satu kajian pembangunan perindustrian rangkaian komunikasi berdasarkan Ethernet dan seterusnya akan diaplikasikan kepada sistem pembuatan komputer bersepadu (CIM-70A) yang terletak di Makmal Robotik, KUiTTHO. Modul Ethernet telah dipasangkan kepada pengawal logik boleh aturcara (PLC) jenama OMRON (siri CJ1M) untuk menyepadukan pelbagai stesen pengeluaran di dalam sistem CIM-70A. Kebolehkerjaan teknik komunikasi ini telah dianalisis dan dibandingan dengan sistem konvensional yang begitu meluas digunakan di dalam rangkaian sistem automasi iaitu komunikasi bersiri. Menerusi pendekatan ini, komunikasi dan integrasi sistem CIM lebih mudah dicapai dan seterusnya boleh dipertingkatkan ke peringkat pengurusan dan perusahaan di dalam sistem automasi.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DEC	LARATION	ii
	DED	ICATION	iii
	ACK	NOWLEDGEMENT	iv
	ABS	TRACT	v
	ABS'	TRAK	vi
	TAB	LE OF CONTENTS	vii
	LIST	OF TABLES	xi
	LIST	OF FIGURES	xi
	LIST OF ABBREVIATIONS		xiv
	LIST	T OF APPENDICES	xvii
I	INTI	RODUCTION	1
	1.1	Project Overview	1
	1.2	Problem Statement	2
	1.3	Objective	3
	1.4	Scope of Work	3
	1.5	Thesis Layout	4

CHAPTER		TITL	E	PAGE
II	LITE	ERATUI	RE REVIEW	5
	2.1	Introd	uction of Industrial Communication	5
	2.2	Fieldb	uses Standard	7
	2.3	Real-t	ime Communication Evolution	9
	2.4	Indust	rial Ethernet	10
III	INDI	USTRIA	L ETHERNET COMMUNICATION	
	AND	NETW	ORKING	16
	3.1	Etherr	net Background	16
		3.1.1	Ethernet and the OSI Model	16
		3.1.2	Ethernet Frame Format	17
	3.2	Etherr	net System Configuration and Devices	18
		3.2.1	Ethernet Station Interface	19
		3.2.2	Twisted-pair Cables	19
		3.2.3	Switched Ethernet	20
	3.3	OMR	ON Communication and Networking	21
	3.4	OMR	ON PLC and OSI Model	23
		3.4.1	Application Layer	25
		3.4.2	Transport Layer	26
			3.4.2.1 FINS/UDP Method	26
			3.4.2.2 FINS/TCP Method	28
		3.4.3	Network Layer	30
			3.4.3.1 IP Address Configuration	30
			3.4.3.2 Subnet Masks Configuration	31
		3.4.4	Physical Layer	32
		3.4.5	FINS Communications	33
	3.5	OMR	ON Network Instructions	34

CHAPTER		TITL	E	PAGE
IV	HAR	DWAR	E INSTALLATION AND	
	SOFTWARE DEVELOPMENT		36	
	4.1	Introd	uction	36
	4.2	CIM-	70A System	37
		4.2.1	Introduction of CIM-70A System	37
		4.2.2	Communication Networking of	
			CIM-70A System	38
		4.2.3	Real-Time Monitoring of CIM-70A System	39
			4.2.3.1 OMRON CX-Programmer	40
			4.2.3.2 Citect SCADA	40
			4.2.3.3 ASRS HMI	41
	4.3	Hardv	vare Installation	42
		4.3.1	Ethernet Module Installation	43
		4.3.2	Communications Test	45
	4.4	Softw	are and Programming Development	47
		4.4.1	Introduction	47
		4.4.2	Programming Development	47
V	RES	ULTS A	ND ANALYSIS	52
	5.1	Introd	luction	52
	5.2	Syster	m Setup and Memory Allocations	52
	5.3	Comn	nunication Test	54
	5.4	Real-t	time Monitoring	55

CHAPTER		TITLE	PAGE
VI	CON	CLUSIONS AND RECOMMENDATIONS	59
	6.1	Conclusion	59
	6.2	Recommendations for Future Development	60
	REF	ERENCES	61
	APP	ENDICES	65

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Characteristic of some standard fieldbuses	8
2.2	Some of the Ethernet network types	11
3.1	OMRON PLC communication network comparison	21
3.2	Subnet Mask classification	32
3.3	Ethernet version 2.0 and IEEE 802.3 standard	33
3.4	OMRON network instructions; SEND(090) and RECV(098)	34
3.5	Control words format	35
4.1	CIO memory area of CIM-70A system	39
4.2	Ethernet module setup for CIM-70E system	44
4.3	Control data for ASRS Station in Conveyor System Station	
	PLC program	49
4.4	Control data created in Conveyor System Station	
	PLC program	50
4.5	Control data created in CIM-70E station PLC program	51
5.1	IP and MAC addresses for CIM-70E system	53
5.2	CIO memory area comparison	54
5.3	Communication test results	55

LIST OF FIGURES

FIGURE NO	D. TITLE	PAGE
1.1	Pyramid of industrial automation system	2
3.1	OSI model comparison	17
3.2	Standard Ethernet frame format	17
3.3	Ethernet basic configuration	18
3.4	Ethernet module, ETN-21	19
3.5	Ethernet network method using hub/switch	20
3.6	Ethernet OSI model	23
3.7	FINS command architecture	25
3.8	FINS command and response	25
3.9	FINS/UDP method	27
3.10	FINS/TCP method	28
3.11	IP address classification	30
3.12	Subnet Mask example	32
3.13	Ethernet version 2.0 and IEEE 802.3 configuration	33
3.14	FINS communication architecture	34
4.1	Overall CIM-70A system layout	37
4.2	CIM-70A system networking	38
4.3	Complete Link method of CIM-70A system	39
4.4	Rack status of ASRS HMI	41
4.5	CIM-70E system networking	42
4.6	Overview of Ethernet module installation procedure	43
4.7	PING command	45
4.8	Example of PING command	46

FIGURE NO.	TITLE	PAGE
4.9	A main parts of ladder program for Conveyor System Station	48
5.1	IP and MAC addresses scanning	53
5.2	PING command results	54
5.3	Online monitoring through CX-Programmer window	57

LIST OF ABBREVIATIONS

ACK - acknowledgement

ARP - address resolution protocol

ASRS - automatic storage and retrieval system

AUI - attachment unit interface

BACNet - building automation and control network

CAN - controller area network

CD - compact disc

CIM - computer integrated manufacturing

CiN - CAN in automation
CIO - common input/output
COM - component object model
CPU - central processing unit

CSMA/CD - carrier sense multiple access with collision detection

DCOM - distributed component object model

DEC - Digital Electronic Corporation

DIX - DEC, Intel, and Xerox

DM - digital memory

DNS - domain name system

EHS - European Home System

ERP - entrepreneurs resources planning

FA - field assembly

FF - Foundation Fieldbus

FINS - factory interface network service

FINS/TCP - factory interface network service/transmission control

protocol

FINS/UDP - factory interface network service/user datagram protocol

FIP - factory instrumentation protocol

FKEE - Faculty of Electrical and Electronic Engineering

FTP - file transfer protocol

HART - Highway Addressable Remote Transducer

HMI - human machine interface

ICMP - internet control message protocol

ID - identity device

IDA - interface for distributed automation

IEEE - Institute of Electrical and Electronic Engineer

IEC - International Electrotechnical Commission

IP - internet protocol

ISA - Instrument Society of America

ISP - interoperable system project

KUiTTHO - Kolej Universiti Teknologi Tun Hussein Onn

LAN - local area network
LLC - logical link control

LonWorks - local operating networks

MAC - medium access control

MAU - multi-station access unit or medium attachment unit

MES - manufacturing execution system

MRP - material requirement planning

MRP-II - manufacturing resources planning

.....

NIC - network interface card

OSI - open system interconnection

PC - personal computer

PID - proportional, integral and derivative

PING - packet internet groper

PLC - programmable logic controllers
POP3 - post office protocol version 3.0

Profibus - Process Fieldbus
P-Net - Process Network

SCADA - supervisory control and data acquisition

ScTP - screened twisted-pair cable

SDS - smart distributed system

SMTP - simple mail transfer protocol

SNTP - simple network time protocol

STP - shielded twisted-pair cable

TCP - transmission control protocol

TCP/IP - transmission control protocol/internet protocol

UDP - user datagram protocol

UTP - unshielded twisted-pair cable

LIST OF APPENDICES

APPENDIX 1	NO. TITLE	PAGE
A	OMRON CJ Series Manuals	65
В	CIM-70A System Operation	67
B.1	System Operation	67
B.2	Master: Conveyor System Station	68
B.3	Station 1:Robot Arm	69
B.4	Station 2: Pick & Place	70
B.5	Station 3: Vision Inspection Station	71
B.6	Automatic Storage and Retrieval System (ASRS) Station	72
C	Ethernet Module Installation	75
C.1	Switch Settings	75
	C.1.1 Setting the Unit Number	76
	C.1.2 Setting the Node Address	76
C.2	Mounting Ethernet Module to a PLC	77
C.3	Creating an Input/Output (I/O) Tables	78
C.4	Ethernet Module Setup Procedure	79
	C.4.1 Using CX-Programmer	79
	C.4.2 Using the Web Browser Setting Function	83
C.5	Creating Routing Tables	86
	C.5.1 Routing Tables Overview	87
	C.5.2 Creating Routing Tables Procedure	88

APPENDIX	NO. TITLE	PAGE
D	OMRON PLC Program	93
D.1	Conveyor System Station Program	93
D.2	ASRS Station Program	97
D.3	Station 1: Robot Arm Program	98
D.4	Station 2: Pick & Place Program	99
E	Attachment CD	100

CHAPTER I

INTRODUCTION

1.1 Project Overview

Data communication and networking may be the fastest growing technology in our culture today (Forouzan, 2001). It is extensively used in an industrial network to integrate both office and manufacturing equipment. During the last two decades, the industrial communication system have evolved at a rapid pace and passed from the traditional serial communication to the fieldbuses. The term fieldbus applies to a large family of two-way digital communication protocols that were specially developed to overcome the physical and performance limitations of low level digital and analogue standard (Sterling and Wissler, 2003). A full fieldbus protocol can handle byte size data for complex transmitters and valves as well as diagnostics or control information. Any control device requiring extensive communication for configuration requires a full fieldbus.

Ethernet, the well-known Local Area Network (LAN) standardized by IEEE has been largely utilized in industrial communication. The Ethernet network have gained the capability of communicating in real-time thus opening an attractive scenario, implementation of Ethernet at all level of an industrial automation system (Figure 1.1).

1.2 Problem Statement

Real-time communication has become some major issue in automated manufacturing system. Some problems such as data and status monitoring, transmission data size and speed, online program editing, and accessibility of controller are encountered in conventional serial communication networking such as in Computer Integrated Manufacturing (CIM) system. Furthermore, the integration into higher level of automation system; Manufacturing Resources Planning (MRP-II), Manufacturing Execution System (MES) and Entrepreneurs Resources Planning (ERP) has difficulty to implement (Figure 1.1).

Figure 1.1: Pyramid of industrial automation system

1.3 Objective

The objectives of this project are:

- i) To develop a hardware infrastructure of CIM system communication network based on Ethernet protocol.
- ii) To familiarize and thus overcome real-time monitoring issues so that allows easier integration between the different units of the CIM systems via Ethernet module on OMRON PLC CJ-series.
- iii) To verify and validate the functionality, feasibility and workability of the project.

1.4 Scope of Work

This project is concentrating to develop a CIM system communication network based on the Ethernet protocol. The work will involve using OMRON PLC controller (CJ Series) attached with Ethernet module to integrate the various production units in the CIM system including supervisory workstation. The environment of this implementation is established CIM-70A systems developed in the Robotics Laboratory, Faculty of Electrical and Electronic Engineering (FKEE). Kolej Universiti Teknologi Tun Hussein Onn (KUiTTHO).