

AD-A111 937 ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND WATER--ETC F/G 13/13
EFFECT OF SUPPORT CONDITIONS ON BEAM VIBRATIONS SUBJECTED TO NO--ETC(U)
JAN 82 J J WU
ARLCB-TR-82002

UNCLASSIFIED

ML

1 of 1
ADA
(1234)

END
DATE FILMED
DA-82
OTIC

MICROCOPY RESOLUTION TEST CHART
Nikon Microscopy USA, Inc.

ADA111937

(12)

AD

TECHNICAL REPORT ARLCB-TR-82002

EFFECT OF SUPPORT CONDITIONS ON BEAM
VIBRATIONS SUBJECTED TO MOVING LOADS

Julian J. Wu

January 1982

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
LARGE CALIBER WEAPON SYSTEMS LABORATORY
BENÉT WEAPONS LABORATORY
WATERVLIET, N. Y. 12189

AMCMS No. 611102H600011

PRON No. 1A1283121A1A

DTIC
RECEIVED
MAR 12 1982
H

DTIC FILE COPY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

82 03 11 153

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The use of trade name(s) and/or manufacture(s) does not constitute an official indorsement or approval.

DISPOSITION

Destroy this report when it is no longer needed. Do not return it to the originator.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER ARLCB-TR-82002	2. GOVT ACCESSION NO. AD-A114937	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) EFFECT OF SUPPORT CONDITIONS ON BEAM VIBRATIONS SUBJECTED TO MOVING LOADS		5. TYPE OF REPORT & PERIOD COVERED Final
7. AUTHOR(s) Julian J. Wu	6. PERFORMING ORG. REPORT NUMBER	
9. PERFORMING ORGANIZATION NAME AND ADDRESS US Army Armament Research & Development Command Benet Weapons Laboratory, DRDAR-LCB-FL Watervliet, NY 12189		10. PROGRAM ELEMENT, PROJECT, TASK & WORK UNIT NUMBERS AMCOMS-N-611102H600011 DODSY-N-1M1283121A1A
11. CONTROLLING OFFICE NAME AND ADDRESS US Army Armament Research & Development Command Large Caliber Weapon Systems Laboratory Dover, NJ 07801		12. REPORT DATE January 1982
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 17
		15. SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES Presented at 27th Conference of Army Mathematicians, 10-12 June 1981 at U.S. Military Academy, West Point, NY. Published in proceedings of the conference.		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Support Conditions Beam Vibrations Moving Loads Finite Elements Initial Boundary Value Problems		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Solutions of beam vibrations under moving loads are presented with a variety of support conditions. The purpose is to demonstrate how the support conditions will effect such beam motions. The solution method and mathematical background will be reviewed including the introduction of various support parameters. By slightly modifying an existing computational scheme, the desired results have been obtained and presented in several tables and plots showing the effect of support stiffness on beam motions.		

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

TABLE OF CONTENTS

STATEMENT OF THE PROBLEM

AN EQUIVALENT VARIATIONAL PROBLEM

OUTLINE OF SOLUTION FORMULATION

RESULTS OF COMPUTATIONS

REFERENCES

LIST OF ILLUSTRATIONS

1. Beam deflections under a moving load for fixed-fixed supports ($\gamma = 10.0$).
 2. Beam deflections under a moving load for fixed-simply supported end conditions ($\gamma = 10.0$).
 3. Beam deflections under a moving load for fixed-free supports ($\gamma = 10.0$).
 4. Beam deflections under a moving load for free-free end conditions ($\gamma = 10.0$).
 5. Beam deflections under a moving load for free-fixed supports ($\gamma = 10.0$).

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification _____	
 By _____	
Distribution/ _____	
 Availability Codes	
For A, B, C, D, E, or F	
Dist	<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>
 A	

STATEMENT OF THE PROBLEM

The dynamic equation of Euler-Bernoulli beam subjected to a moving force can be written as the following equation

$$EIy''' + \rho Ay = P\delta(x-x_0), \quad 0 < t < T \quad (1)$$

where $y = y(x,t)$ denotes the beam deflection as a function of the spatial coordinates x and the time t . The letters E , I , A , ρ , and δ denote elastic modulus, second moment of the cross-sectional area, and the area itself, the length, and the material density of the beam, respectively. A Dirac delta function is denoted by δ , $x = x(t)$ is the location of the force P . T denotes some finite time of interest. As usual, a prime ($'$) denotes differentiation with respect to x and a dot (\cdot), differentiation with respect to t .

The boundary conditions are written as

$$\begin{aligned} EIy''(0,t) + k_1y(0,t) &= 0 \\ EIy''(0,t) - k_2y'(0,t) &= 0 \\ EIy''(s,t) - k_3y(s,t) &= 0 \\ EIy''(s,t) + k_4y'(s,t) &= 0 \end{aligned} \quad (2)$$

where k_i , $i = 1, 2, 3$, and s are the spring constant which model the support characteristics. The initial conditions are

$$\begin{aligned} y(s,0) &= \bar{y}_0(s) \\ \dot{y}(s,0) &= \bar{y}_1(s) \end{aligned} \quad (3)$$

Equations (1) through (3) will be written in dimensionless form for the sake of generality and simplicity. This is accomplished by the introduction of dimensionless parameters. In the following an arrow (\rightarrow) will be read as "replaces":

$$\begin{aligned}
 y &\rightarrow \frac{y}{\lambda}, \quad x \rightarrow \frac{x}{\lambda}, \quad t \rightarrow \frac{t}{T} \\
 k_1 &\rightarrow \frac{k_1 \lambda^3}{EI}, \quad k_2 \rightarrow \frac{k_2 \lambda}{EI} \\
 k_3 &\rightarrow \frac{k_3 \lambda^3}{EI}, \quad k_4 \rightarrow \frac{k_4 \lambda}{EI} \\
 y_1 &\rightarrow \frac{y_1}{\lambda}, \quad P \rightarrow \frac{P \lambda^3}{EI}
 \end{aligned}$$

With these new dimensionless parameters, Eqs. (1) through (3) become

$$y''' + \gamma^2 y = P \delta(x-x), \quad \begin{cases} 0 \leq x \leq 1 \\ 0 \leq t \leq 1 \end{cases} \quad (1')$$

$$\begin{aligned}
 y'''(0,t) + k_1 y(0,t) &= 0 \\
 y''(0,t) - k_2 y'(0,t) &= 0 \quad 0 \leq t \leq 1 \\
 y'''(1,t) - k_3 y(1,t) &= 0 \\
 y''(1,t) + k_4 y(1,t) &= 0
 \end{aligned} \quad (2')$$

and

$$\begin{aligned}
 y(x,0) &= \bar{y}_0(x) \\
 y(x,0) &= y_1(x)
 \end{aligned} \quad 0 \leq x \leq 1 \quad (3')$$

where in Eq. (1'), we have

$$\gamma = \frac{c}{T} \quad (5a)$$

which is dimensionless, with

$$c = \left(\frac{\rho A \lambda^4}{EI}\right)^{1/2} \quad (5b)$$

which has the dimension of the physical time.

Hence then, we shall obtain solutions for the problem defined by Eqs. (1') through (3') for various values of k_i , $i = 1, 2, 3$, and 4.

AN EQUIVALENT VARIATIONAL PROBLEM

The problem of solving the equation (1') through (3') in the previous section will be transformed into a variational problem. Consider

$$I = \int_{x_0}^{x_1} L dx \quad (5a')$$

with

$$\begin{aligned} L &= \frac{1}{2} \int_{x_0}^{x_1} \left(\ddot{y}^2 + c_1^2 y'^2 + c_2^2 \dot{y}^2 + k_1(x) y^2 + k_2(x) \dot{y}^2 \right) dx dt \\ &\quad + \int_{t_0}^1 dt \{ k_3(y(t), \dot{y}(t), t) + k_4 y'(t) \dot{y}'(t) \} \\ &\quad + \{ k_5(y(1), \dot{y}(1), t) + k_6 y'(1) \dot{y}'(1, t) \} \\ &\quad + \int_{x_0}^{x_1} dx \{ k_7(y(x, 0)) + \bar{y}_0(x) y^*(x, 0) - \bar{y}_1(x) \dot{y}^*(x, 0) \} \quad (5b') \end{aligned}$$

where $y^*(x, t)$ is called the adjoint function of $y(x, t)$. If one takes the first variation of I considering $y(x, t)$ to be fixed and δy^* to be completely arbitrary, it is easy to see that the differential equation (1') and boundary condition (2') will be recovered and the initial condition becomes

$$\begin{aligned} \dot{y}(x, 0) - k_7[y(x, 0)] - \bar{y}_0(x) &= 0 \\ \dot{\bar{y}}(x, 0) - \bar{y}_1(x) &= 0 \end{aligned} \quad (3'')$$

In Eq. (3''), it is seen that if one let $k_7 \rightarrow \infty$ in the limit, the initial condition of $\dot{y}(x, 0)$ will also be recovered. The use of a large parameter such as k_7 is known as the penalty function method or the method of large spring constant.¹

¹Wu, J. J., "Vibrations of a Beam Under Moving Loads by a Finite Element Formulation Consistent in Spatial and Time Coordinates," The 51st Shock and Vibration Bulletin, Part 3: Analytical Methods, Dynamics, and Vehicle Systems, pp. 111-130 (1981).

OUTLINE OF SOLUTION FORMULATION

To derive the finite element matrix equations, one needs to integrate (1) and write

$$\begin{aligned} & \int_{\Omega} D(x,t) v \cdot \nabla w = 0 \\ & \Rightarrow \frac{1}{2} \int_0^T \int_{\Omega} \{v'' \nabla w^*\} + v^* \nabla w^* + \frac{\partial}{\partial t} (w^* v^*) \nabla w \, dx dt \\ & \quad - \int_0^T \int_{\Omega} \{v'' \nabla w^*\} v^* \nabla w \, dx dt + \int_0^T \int_{\Omega} v^* \nabla w \, dx dt \\ & \quad + \int_0^T \int_{\Omega} \{v'' \nabla w^*\} v^* \nabla w \, dx dt - \int_0^T \int_{\Omega} v^* \nabla w \, dx dt \\ & \quad + \int_0^T \int_{\Omega} \{v'' \nabla w^*\} v^* \nabla w \, dx dt - \int_0^T \int_{\Omega} v^* \nabla w \, dx dt \end{aligned}$$

The dependent variables are now introduced

$$\begin{aligned} i &= \frac{(1)}{K} \approx Kx-i+1 \\ n &= \frac{(j)}{L} \approx Lt-j+1 \end{aligned} \quad (1)$$

or

$$x = \frac{1}{K} (i+1-1)$$

$$t = \frac{1}{L} (n+1-j+1)$$

where K is the number of divisions in x and L , in t . A typical grid scheme is shown in Figure 6). Equation (6b) can now be written as

$$\begin{aligned}
 & \sum_{i=1}^K \sum_{j=1}^L \frac{1}{\Delta t} \frac{1}{\Delta x} \frac{K^3}{L^3} \bar{y}''(ij) \delta y^*(ij) = \frac{\tau^* L}{K} \bar{y}_0(ij) \delta y^*(ij) \int d\zeta dn \\
 & + \sum_{i=1}^{K-1} \sum_{j=1}^L \frac{1}{\Delta t} \left\{ \frac{K^3}{L^3} \bar{y}(ij)^{(1)} \delta y^*(ij)(0,0) + K_2 \frac{\tau^*}{L} \bar{y}'(ij)(0,0) \delta y^*(ij)(0,0) \right. \\
 & \quad \left. + \sum_{i=1}^{K-1} \sum_{j=1}^{L-1} \frac{1}{\Delta t} \left[\tau^* k_5 (\bar{y}(ij)(1,0) \delta y^*(ij)(1,0)) \right. \right. \\
 & \quad \left. - \left. \frac{K^3 - K^2 - K + 1}{K^3} \frac{1}{\Delta x} \int d\zeta \bar{y}(ij)(x-x) \delta y^*(ij)(x,0) \right] \right\} \int d\zeta dn \\
 & + \sum_{i=1}^K \frac{\tau^* k_5}{K} \frac{1}{\Delta x} \int d\zeta \bar{y}_0(ij)(1) \delta y^*(ij)(1,0) \\
 & + \sum_{i=1}^K \frac{\tau^*}{K} \frac{1}{\Delta x} \int_0^1 d\zeta \bar{y}_1(ij) \delta y^*(ij)(1,0) \quad (8)
 \end{aligned}$$

The shape function vector is now introduced. Let

$$\bar{y}(ij)(\zeta, \eta) = a^T(\zeta, \eta) Y(ij)$$

$$y^*(ij)(\zeta, \eta) = a^T(\zeta, \eta) Y^*(ij) = Y^{*T}(ij) a(\zeta, \eta) \quad (9)$$

Equation (8) then becomes

$$\begin{aligned}
 & \sum_{i=1}^K \sum_{j=1}^L \frac{\delta Y^* T_{(ij)}}{\zeta} - \frac{K^3}{L} A = \frac{1}{\zeta} \sum_{i=1}^K B_i \cdot Y_{(ij)} \\
 & + \sum_{i=1}^K \frac{\delta Y^* T_{(ij)}}{\zeta} \left(\frac{k_1}{L} B_1 + \frac{k_2 K^2}{L} B_2 + Y_{(ii)} \right) \\
 & + \sum_{i=1}^K \frac{\delta Y^* T_{(kj)}}{\zeta} \left(\frac{k_3}{L} B_3 + \frac{k_4 K^2}{L} B_4 + Y_{(kk)} \right) \\
 & + \sum_{i=1}^K \frac{\delta Y^* T_{(il)}}{\zeta} \left(\frac{k_5}{K} B_5 + Y_{(ll)} \right) \\
 & = \sum_{i=1}^K \sum_{j=1}^L \frac{\delta Y^* T_{(ij)}}{\zeta} \frac{P}{L} F_{(ij)} + \sum_{i=1}^K \frac{\delta Y^* T_{(il)}}{\zeta} \frac{P}{K} G_{(i)} \\
 & + \sum_{i=1}^K \frac{\delta Y^* T_{(il)}}{\zeta} \frac{\gamma^2}{K} H_{(i)} \quad (14)
 \end{aligned}$$

where, as it can be seen readily, that

$$\begin{aligned}
 A &= \int_0^1 \int_0^1 \int_0^1 a(\xi, \eta) a^T(\xi, \eta) d\xi d\eta \\
 B &= \int_0^1 \int_0^1 \int_0^1 a(\xi, \eta) a^T(\xi, \eta) d\xi d\eta \\
 B_1 &= \int_0^1 \int_0^1 a(0, \eta) a^T(0, \eta) d\eta, \quad B_2 = \int_0^1 \int_0^1 a(\xi, 0) a^T(\xi, 0) d\xi \\
 B_3 &= \int_0^1 \int_0^1 a(1, \eta) a^T(1, \eta) d\eta, \quad B_4 = \int_0^1 \int_0^1 a(\xi, 1) a^T(\xi, 1) d\xi \\
 B_5 &= \int_0^1 a(\xi, 1) a^T(\xi, 0) d\xi \\
 F_{(ij)} &= \int_0^1 \int_0^1 a(\xi, \eta) \delta_{(ij)}(\xi - \eta) d\xi d\eta, \quad G_{(i)} = \int_0^1 a(\xi, 1) y_{(i)}(\xi) d\xi
 \end{aligned}$$

and

$$H_3 = \int_0^1 a(\xi, 0) y_1(i)(\xi) d\xi \quad (14)$$

Now Eq. (10) can be assembled in a global matrix equation

$$[SY]^T [K] [Y] = [F]^T [F] \quad (11)$$

By virtue of the fact that $[SY]$ is not subjected to any constraint conditions, one has

$$[SY]^T [K] [Y] = [F]^T [F] \quad (12)$$

which can be solved routinely. More details can be found in reference 1.

RESULTS AND DISCUSSIONS

Appropriate values of physical parameters must be assigned for obtaining numerical results. Let

$$\varphi = \frac{s}{l} \quad (13)$$

be the velocity of the travelling force. Only constant velocity will be considered in this report. Thus τ becomes the time required for the force to move from one end of the beam to the other end. As τ varies from ∞ to 0, the velocity v varies from 0 to ∞ as s is always finite. Since we have normalized all the parameters in length with respect to s , it is not necessary to specify s in numerical computations. Instead, the beam's length is considered to be unity. The real value in length can be recovered simply by a multiplication of s to the normalized (dimensionless) ones. Then it will be helpful if we let Eq. (14) can be related to some reference velocity associated with the beam's characteristics. We shall select the velocity of the first mode of vibration (standing waves) of a cantilevered beam as this reference velocity and call it

¹Wu, J. J., "Vibrations of a Beam Under Moving Loads by a Finite Element Formulation Consistent in Spatial and Time Coordinates," The 51st Shock and Vibration Bulletin, Part 3; Analytical Methods, Dynamics, and Vehicle Systems, pp. 111-130 (1981).

v_1 . Hence the normalized velocity is defined by

$$\frac{\bar{v}}{v} = \frac{v}{v_1} \quad (15)$$

Now, we shall relate this \bar{v} with the parameters given earlier in this report. It is known in many textbooks on vibrations (for example, see reference 3) that for a cantilevered beam, the fundamental vibrations has a circular frequency

$$\omega_1 = (1.875)/c = 3.81 \text{ rad/sec} \quad (16)$$

where c is given in (5b). The corresponding frequency and period are then respectively

$$f_1 = \frac{\omega_1}{2\pi} = 0.560/c \quad (\text{in cycles per second})$$

$$T_1 = \frac{1}{f_1} = 1.79 \quad (\text{in seconds}) \quad (16)$$

Hence

$$v_1 = \frac{2\ell}{T_1} = 2\ell f_1 = 1.12 \frac{c}{\gamma} \quad (17)$$

and

$$\frac{\bar{v}}{v_1} = \frac{v}{1.12 \frac{c}{\gamma}} = \frac{\gamma/T}{1.12 \frac{c}{\gamma}} = 0.895 \frac{\gamma}{c} = 0.895 \frac{T}{\gamma} \quad (18)$$

where $\gamma = c/T$, as defined in Eq. (5b).

For the results computed in this report, γ is set to be ten. Hence $\bar{v} = 8.95$ or v is about nine times v_1 . At this load velocity, the dynamic effect of the moving force on the beam vibration is quite evident as shown in Figures 1 through 5. This is also approximately a typical speed at which a projectile

³Fryba, L. Vibration of Solids and Structures Under Moving Loads, Noordhoff International, Groningen, 1971, p. 91.

moves down a cannon tube (see, for example, reference 4). Figure 1 shows the deflection curves for a beam with fixed-fritted supports. Curves numbered I, II, III, and IV are at the moment when P is at $1/4$, $2/4$, $3/4$, and $4/4$ of support. Figures 2 through 5 are the same curves for the support conditions of fixed-simpler-supported, fixed-free, free-free, and free-fixed, respectively.

It should be noted that the load P is assumed to move from the left toward the right. The beam motions from fixed-free supports are rather different from those of free-fixed supports as demonstrated, for example, in Figures 3 and 5. This typical behavior has also been noted by Fryba.³ In fact, the deflection curves for the case of free-fixed supports resemble closely to those of free-free supports than the fixed-free ones.

The values of the "spring constants" in Eqs. (2') and (5b) are as follows. For a fixed rigid support the k_1 is taken to be 10^{10} ; for no support at all, it is assigned a zero. The value of k_5 in Eq. (5b) is also assigned to be zero.

Results presented above are based on a grid scheme of 5x8 elements. A typical grid scheme is shown in Figure 6. Numerical convergence of these data should be fairly good as discussed previously in Reference 1.

¹Wu, J. J., "Vibrations of a Beam Under Moving Loads by a Finite Element Formulation Consistent in Spatial and Time Coordinates," The 51st Shock and Vibration Bulletin, Part 3; Analytical Methods, Dynamics, and Vehicle Systems, pp. 111-130 (1981).

²Fryba, Vibration of Solids and Structures Under Moving Loads, Noordhoff International, Groningen, 1971, p. 91.

³Wu, J. J., "Vibrations of a Beam Under Moving Loads by a Finite Element Formulation Consistent in Spatial and Time Coordinates," The 51st Shock and Vibration Bulletin, Part 3; Analytical Methods, Dynamics, and Vehicle Systems, pp. 126 (1981).

REFERENCES

1. Wu, J. J., "Vibrations of a Beam Under Moving Loads by a Finite Element Formulation Consistent in Spatial and Time Coordinates," The 51st Shock and Vibration Bulletin, Part 3; Analytical Methods, Dynamics, and Vehicle Systems, pp. 111-130 (1981).
2. Tong, K. N., Theory of Mechanical Vibration, John Wiley, New York, 1960, p. 256.
3. Fryba, L., Vibration of Solids and Structures Under Moving Loads, Noordhoff International, Groningen, 1971, p. 91.
4. Wu, J. J., "Vibrations of a Beam Under Moving Loads by a Finite Element Formulation Consistent in Spatial and Time Coordinates," The 51st Shock and Vibration Bulletin, Part 3; Analytical Methods, Dynamics, and Vehicle Systems, pp. 126 (1981).

Figure 1. Beam deflections under a moving load for fixed-fixed supports ($\gamma = 10.0$).

Figure 2. Beam deflections under a moving load for fixed-simply supported end conditions ($\gamma = 10.0$).

Figure 3. Beam deflections under a moving load for fixed-free supports ($\gamma = 10.0$).

Figure 4. Beam deflections under a moving load for free-free end conditions ($\gamma = 10.0$).

Figure 5. Beam deflections under a moving load for a free-fixed supports ($\gamma = 10.0$).

Figure 6

A Typical Grid of Finite Elements

TECHNICAL REPORT INTERNAL DISTRIBUTION LIST

	<u>NO. OF COPIES</u>
COMMANDER	1
CHIEF, DEVELOPMENT ENGINEERING BRANCH ATTN: DRDAR-LCB-DA	1
-DM	1
-DP	1
-DR	1
-DS	1
-DC	1
CHIEF, ENGINEERING SUPPORT BRANCH ATTN: DRDAR-LCB-SE	1
-SA	1
CHIEF, RESEARCH BRANCH ATTN: DRDAR-LCB-RA	2
-RC	1
-RM	1
-RP	1
CHIEF, LNC MORTAR SYS. OFC. ATTN: DRDAR-LCB-M	1
CHIEF, IMP. 81MM MORTAR OFC. ATTN: DRDAR-LCB-I	1
TECHNICAL LIBRARY ATTN: DRDAR-LCB-TL	5
TECHNICAL PUBLICATIONS & EDITING UNIT ATTN: DRDAR-LCB-TL	2
DIRECTOR, OPERATIONS DIRECTORATE	1
DIRECTOR, PROCUREMENT DIRECTORATE	1
DIRECTOR, PRODUCT ASSURANCE DIRECTORATE	1

NOTE: PLEASE NOTIFY ASSOC. DIRECTOR, BENET WEAPONS LABORATORY, ATTN: DRDAR-LCB-TL, OF ANY REQUIRED CHANGES.

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST

<u>NO. OF COPIES</u>		<u>NO. OF COPIES</u>
ASST SEC OF THE ARMY RESEARCH & DEVELOPMENT ATTN: DEP FOR SCI & TECH THE PENTAGON WASHINGTON, D.C. 20315		
COMMANDER US ARMY TANK-AUTMV R&D COMD ATTN: TECH LIB - DRDTA-UL MAT LAB - DRDTA-RK WARREN, MICHIGAN 48090		
COMMANDER US ARMY MAT DEV & READ. COMD ATTN: DRCDE 5001 EISENHOWER AVE ALEXANDRIA, VA 22333		
COMMANDER US MILITARY ACADEMY ATTN: CHMN, MECH ENGR DEPT WEST POINT, NY 10996		
COMMANDER US ARMY MISSILE COMD REDSTONE SCIENTIFIC INFO CEN ATTN: DOCUMENTS SECT, BLDG 4484 REDSTONE ARSENAL, AL 35898		
COMMANDER REDSTONE ARSENAL ATTN: DRSMI-RRS -RSM ALABAMA 35809		
COMMANDER ROCK ISLAND ARSENAL ATTN: SARRI-ENM (MAT SCI DIV) ROCK ISLAND, IL 61202		
COMMANDER HQ, US ARMY AVN SCH ATTN: OFC OF THE LIBRARIAN FT RUCKER, ALABAMA 36362		
COMMANDER US ARMY FGN SCIENCE & TECH CEN ATTN: DRXST-SD 220 7TH STREET, N.E. CHARLOTTESVILLE, VA 22901		
COMMANDER US ARMY MATERIALS & MECHANICS RESEARCH CENTER ATTN: TECH LIB - DRXMR-PL WATERTOWN, MASS 02172		
NOTE: PLEASE NOTIFY COMMANDER, ARRADCOM, ATTN: BENET WEAPONS LABORATORY, DRDAR-LCB-TL, WATERVLIET ARSENAL, WATERVLIET, N.Y. 12189, OF ANY REQUIRED CHANGES.		

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST (CONT)

<u>NO. OF COPIES</u>	<u>NO. OF COPIES</u>
1	12
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1

COMMANDER
US ARMY RESEARCH OFFICE
P.O. BOX 12311
RESEARCH TRIANGLE PARK, NC 27709

COMMANDER
US ARMY HARVEY DIAMOND LAB
ATTN: TECH LIB
2400 POWDER MILL ROAD
ADELPHIA, PA 19783

DIRECTOR
US ARMY INDUSTRIAL BASE ENG ACT
ATTN: DRXPE-MT
ROCK ISLAND, IL 61201

CHIEF, MATERIALS BRANCH
US ARMY R&S GROUP, EUR
BOX 65, FPO N.Y. 09510

COMMANDER
NAVAL SURFACE WEAPONS CEN
ATTN: CHIEF, MAT SCIENCE DIV
DAHLGREN, VA 22448

DIRECTOR
US NAVAL RESEARCH LAB
ATTN: DIR, MECH DIV
CODE 26-27 (DOC LIB)
WASHINGTON, D. C. 20375

NASA SCIENTIFIC & TECH INFO FAC.
P. O. BOX S757, ATTN: ACQ BR
BALTIMORE/WASHINGTON INTL AIRPORT
MARYLAND 21240

NOTE: PLEASE NOTIFY COMMANDER, ARRADCOM, ATTN: BENET WEAPONS LABORATORY,
DRTAF-LCB-TL, WATERVLIET ARSENAL, WATERVLIET, N.Y. 12189, OF ANY
REQUIRED CHANGES.

