Modelos Lineares I

Regressão Linear Múltipla (RLM):

Multicolinearidade

(27^a e 29^a Aulas)

26ª Aula → Vista da 1ª VE e do 1º trabalho (7/10/19) 28ª Aula → Aula de dúvidas para a 2ª VE (11/10/19)

Professor: Dr. José Rodrigo de Moraes Universidade Federal Fluminense (UFF) Departamento de Estatística (GET)

Modelo de Regressão Linear Múltipla (RLM):

Introdução:

Multicolinearidade:

Quando as variáveis explicativas correlacionadas entre si (existência de multicolinearidade), a análise de regressão linear pode ficar confusa e desprovida de significado. Na presença de multicolinearidade, há dificuldade em distinguir o efeito de uma ou outra variável explicativa sobre a variável resposta Y.

Multicolinearidade → passou a designar alta correlação (mas não necessariamente I1I) ≠ Multicolinearidade perfeita → combinação linear perfeita entre as variáveis.

Modelo de Regressão Linear Múltipla (RLM):

Introdução:

Multicolinearidade:

- Na presença de multicolinearidade, os parâmetros do modelo referentes as variáveis explicativas (multi)colineares podem ser altamente instáveis apresentando variâncias muito elevadas ou sinais inconsistentes.
- O problema de multicolinearidade não altera a qualidade global do ajustamento, pois não afeta a minimização da SQErros (a não ser que exista multicolinearidade perfeita !!!).

Modelo de Regressão Linear Múltipla (RLM)

Fontes de Multicolinearidade:

Na prática, quase sempre existe algum tipo de correlação entre, pelo menos, algumas das variáveis independentes:

- Correlações meramente artificiais: duas variáveis que medem, por ex., o peso (uma em g, e a outra em kg);
- Correlações por uma variável ser função de outra (Ex.: Peso e IMC);

Modelo de Regressão Linear Múltipla (RLM): Indícios de Multicolinearidade:

- ☐ Teste F de significância geral significativo (ou um R² alto) e os testes T pouco significativos (ou até mesmo não significativos);
- ☐ Sinais das estimativas pontuais dos parâmetros diferentes dos esperados.

Modelo de Regressão Linear Múltipla (RLM):

Diagnóstico de Multicolinearidade:

- □ Quando lidamos com mais de uma variável independente, pode-se representar a correlação linear entre cada possível par de variáveis, através da matriz de correlações bivariadas.
- □ No caso de 4 variáveis independentes X₁, X₂, X₃ e X₄, existem $C_{4,2}$ =6 correlações possíveis.

Modelo de Regressão Linear Múltipla (RLM):

Diagnóstico de Multicolinearidade:

□ Obter uma matriz de correlações bivariadas, onde existe IRI > 0,90 (*Atenção* !!!).

Observações:

- Não existe um valor de correlação limite a partir do qual seja possível identificar problemas na estimação do modelo, mas em geral utiliza-se o ponto 0,90.
- Estes coeficientes de correlação linear de Pearson (R) são válidos apenas para avaliar a presença de colinearidade entre variáveis duas-a-duas.

Modelo de Regressão Linear Múltipla (RLM): Diagnóstico de Multicolinearidade:

- □ A medida estatística utilizada para diagnóstico de multicolinearidade é denominada de "<u>Fator de inflação da variância</u>", sendo denotada por *VIF* ("*Variance Inflation Factor*").
- ☐ A variância estimada de cada um dos estimadores dos parâmetros referentes às variáveis explicativas pode ser expressa por:

$$\hat{VAR}(\hat{\beta}_k) = \hat{\sigma}^2 \left(\frac{1}{1 - R_k^2}\right) \cdot \frac{1}{\sum_{i=1}^n \left(X_{ik} - \overline{X}_k\right)^2}, \quad \text{onde}: \quad VIF_k = \frac{1}{1 - R_k^2} = \frac{1}{T_k}$$

$$\boxed{ Tolerância da variavel \ X_k } \qquad \text{s}$$

Modelo de Regressão Linear Múltipla (RLM):

Diagnóstico de Multicolinearidade:

 $R_k^2
ightharpoonup {
m Coeficiente}$ de determinação do modelo entre a variável X_k (como variável dependente) e as demais variáveis X_h como independentes ($h \ne 1,2,...,p-1$).

 $T_k = 1 - R_k^2 \rightarrow \text{Tolerância da variável } X_k$:

• $T_k \cong 0 \rightarrow$ a variável X_k representa uma combinação linear quase perfeita das demais variáveis (<u>instabilidade do parâmetro associado</u>).

 $VIF_k = \frac{1}{1 - R_k^2}$ \rightarrow Fator de inflação da variância para o parâmetro do modelo referente a variável X_k :

• O VIF_k representa o aumento multiplicativo na estimativa da variância do estimador de β_k , devido a correlação de X_k com as demais variáveis independentes.

Modelo de Regressão Linear Múltipla (RLM):

Medidas de Diagnóstico de Multicolinearidade:

Relações:

OBS:

Se $R_k^2 = 0$ (ausência de multicolin earidade) $\rightarrow T_k = 1 \rightarrow VIF_k = 1 \rightarrow \min \left[V\hat{A}R(\hat{\beta}_k)\right]$

Variáveis com baixa tolerância T, tem valores elevados de VIF, e vice-versa.

Regra prática:

VIF>10 \rightarrow R^2 >0,90 \rightarrow R>0,95: diagnóstico positivo de multicolinearidade !!!

A variância infla por um fator superior a 10.

Exemplo 1: Modelo de RLM com p-1=5 vars explicativas

Os dados apresentados na tabela a seguir se referem a um estudo sobre a duração do AME (Y), em meses, realizado com uma amostra de n=21 mães atendidas num determinado hospital.

O objetivo do estudo é estudar a relação entre Y e as seguintes variáveis explicativas:

- ✓ Anos de estudo da mãe (X₁)
- ✓ Tempo de orientação (em min) voltada ao manejo (X₂).
- ✓ Tempo de orientação (em min) voltada a nutrição (X₃).
- √ Horas de trabalho (X₄)
- √ Tempo (em anos) de casada (X₅)

☐ Exemplo 1 (continuação):

Ajuste o modelo completo e verifique a existência de multicolinearidade. Em caso afirmativo, tome alguma medida para contornar este problema. Justifique o uso da medida escolhida

Avalie as hipótese básicas do modelo, utilizando os resíduos estudentizados.

Escreva um pequeno relatório, com os resultados dos ajustes dos modelos e as principais conclusões obtidas (contexto do problema).

12

Mãe	AME	Anos de estudo	Tempo de orientação (nutrição)	Tempo de orientação (manejo)	Horas de trabalho	Tempo de casada
1	2,1	6	30	71	23	1
2	3,4	6	21	65	35	6
3	3,6	6	30	81	24	7
4	1,7	6	18	50	27	1
5	1,8	6	14	46	49	1
6	3,2	6	28	74	50	8
7	2,6	6	24	64	52	5
8	2,9	6	21	63	64	7
9	2,3	6	16	54	37	5
10	1,6	5	14	47	49	1
11	1,5	6	16	47	85	3
12	2,7	6	26	70	80	9
13	4,1	6	54	117	74	12
14	2,0	6	12	46	76	5
15	2,3	6	19	57	81	6
16	3,6	6	39	89	60	10
17	3,3	6	39	86	52	12
18	1,8	6	18	50	64	6
19	1,7	6	22	56	18	5
20	2,4	5	34	75	32	13 9
21	3,0	6	38	84	64	6

	lo 1)		ANOVA ^b					
Mod	al	Sum of Squares	df	Mean	Square	F	Sia	
1	Regression	11,291	5		2,258	56,32	9 ,00	00 ⁸
	Residual	,601	15		,040			
	Total	11,892	20					
D	. Dependent Variat	ole: Duraçao_AME	Coefficient	s ^a				
Б	Dependent Variab	· -	Coefficient	-	Standa			
	. Dependent Variat	· -	Coefficient	-	Standa Coeffi Be	cients	t	Sid
odel	Dependent Variat	Unstand B	Coefficient	fficients	Coeffi	cients	t -2,924	Sig
odel (Unstand B	Coefficient	fficients . Error	Coeffi	cients	t -2,924 1,345	
odel (A	Constant)	Unstand B	Coefficient	fficients . Error ,786	Coeffi	cients	-,	,
odel (Constant) vios_estudo fempo_orientação_	Unstand B -2,	Coefficient ardized Coe Sto 298	fficients . Error .786 .153	Coeffi	cients eta ,090	1,345	,
odel (Constant) vnos_estudo 'empo_orientação_ utrição 'empo orientação	Unstand B -2,	Coefficient lardized Coe Sto 298 206 128	fficients . Error .786 .153 .022	Coeffi	,090 -1,779	1,345 -5,854	

| Exemplo: Resultados do ajuste do modelo completo (modelo 1) | Matriz de correlações bivariadas | Correlations | Correlations

Exe	xemplo: Resultados do ajuste do modelo 3									
	elo 3: Exclu			•						
wioue	eio 3. Excit	illiuo 11		ova ^b	ino					
Mod	lel	Sum Squar		df	Mean	Square	F	Sic		
1	Regression		9,802	3	moun	3,267	26,573		00a	
	Residual		2.090	17		.123				
	Total	1 1	1,892	20						
	Bradiatora: /Co				antudo	Tompo	riontação	manaia		
	a. Predictors: (Co o. Dependent Vari	nstant), Tem	po_casado	, Anos_e	estudo,	Tempo_c	I prientação	_manejo		
	,	nstant), Tem	po_casado ao_AME Coeffic	, Anos_e	ırdized	Tempo_c	prientação	_manejo	ty Statis	
t	o. Dependent Vari	nstant), Tem able: Duraç Unstandardize	po_cas ado ao_AME Coeffice d Coefficients Std. Error	Anos_e	irdized cients	t -	Sig.			
(Constr	p. Dependent Vari	unstandardize B -1,930	po_casado ao_AME Coefficients Std. Error 1,365	Anos_e ients* Standa	irdized cients	t -1,414	Sig175	Collineari Tolerance	VI	
(Consta	p. Dependent Vari	Unstandardize B -1,930 ,410	po_casado ao_AME Coefficients Std.Error 1,365 ,243	Anos_e ients* Standa	irdized cients ta ,179	t -1,414 1,690	Sig175	Collineari Tolerance	VI / 1,	
(Consta Anos_∈ Tempo manejo	o. Dependent Vari	unstandardize B -1,930	po_casado ao_AME Coefficients Std. Error 1,365	Anos_e ients* Standa	irdized cients	t -1,414	Sig175	Collineari Tolerance	ty Statisti	

Exemplo 2: Modelo de RLM com p-1=3 vars explicativas

Os dados apresentados na tabela a seguir se referem a um estudo sobre o desempenho de n=20 alunos de doutorado na 2ª avaliação da disciplina "Epidemiologia Social" (Y).

O objetivo do estudo é estudar a relação entre Y e as seguintes variáveis explicativas:

✓ Tempo (em horas) dedicado a resolução de exercícios (X₁)

✓ Tempo (em horas) dedicado ao estudo da teoria (X₂).

✓ Nota da 1ª avaliação da referida disciplina (X₃).

☐ Exemplo 2 (continuação):

Ajuste o modelo completo e verifique a existência de multicolinearidade. Em caso afirmativo, tome alguma medida para contornar este problema. Justifique o uso da medida escolhida.

Avalie a hipótese de normalidade dos erros (usando o "QQ-Plot" e o "Teste de Kolmogorov-Sminorv") e a presença de outliers. Para tanto, utilize os resíduos estudentizados do modelo.

Escreva um pequeno relatório, com os resultados dos ajustes dos modelos e as principais conclusões obtidas (contexto do problema). OBS: *Ajuste usando o SPSS !!!*

luno	Nota da V2	Tempo_exs	Tempo_teoria	Nota da V1
1	5,4	17	36	5,0
2	2,4	10	21	3,0
3	4,9	13	29	4,0
4	3,2	11	26	4,0
5	8,2	23	38	7,0
6	4,2	16	35	5,0
,	5,6	15	32	5,0
;	2,1	8	20	1,0
)	2,8	10	25	2,0
0	3,6	12	30	2,0
1	6,9	20	40	7,0
2	3,9	12	31	3,5
3	2,3	8	23	2,0
4	3,5	8	22	4,0
5	9,0	20	40	9,0
6	8,5	24	39	8,0
17	10,0	26	42	9,5
8	9,2	25	40	9,0
9	9,0	25	40	9,0
20	8,2	23	36	8,0

Exemplo: Resultados do ajuste do modelo completo (modelo 1) b. Dependent Variable: Y nota v2 Sum of Squares 135,276 Regression 159.844 4,514 16 ,282 Residual a. Predictors: (Constant), Tempo_teoria, nota_v1, Tempo_exs b. Dependent Variable: Y_nota_v2 ,457 ,002 ,027 ,514 ,182 ,521 ,433 3,794 2,442

Exemplo: R (modelo 1)			ste do	modelo	completo
Matriz de con	<u>reiações biv</u>	<u>/ariadas</u>			
		Correlation	s		
		Y nota v2	nota v1	Tempo exs	Tempo teoria
Pearson Correlation	Y_nota_v2	1,000	,971	,968	,920
	nota_v1	,971	1,000	,945	(,897)
	Tempo_exs	,968	,945	1,000	,939
	Tempo_teoria	,920	(,897)	,939	1,000
Sig. (1-tailed)	Y_nota_v2		,000	,000	,000
	nota_v1	,000		,000	,000
	Tempo_exs	,000	,000		,000
	Tempo_teoria	,000	,000	,000	
N	Y_nota_v2	20	20	20	20
	nota_v1	20	20	20	20
	Tempo_exs	20	20	20	20
	Tempo_teoria	20	20	20	20
					28

		A	NOVAb						
Model	Sur Squ		df	Mear	n Square	F		Sic	
1 Regressi		34,660	2		67,330	223,1	150		00a
Residual		5,129	17		,302			,000	
Total			40						
a. Predictors: (C b. Dependent V	Constant), Te		19 studo, no	ota_v1					_
a. Predictors: (C	Constant), Ter ariable: Y_no	mpo_total_e ota_v2 Coef	studo, no	lized					
a. Predictors: (C b. Dependent V	Constant), Ter ariable: Y_no	mpo_total_e ota_v2 Coef	studo, no ficients*	lized ents				_	Statistics
a. Predictors: (C b. Dependent V	Constant), Ter ariable: Y_no Unstandardize	mpo_total_e ota_v2 Coef ed Coefficients Std. Error	studo, no	lized ents	1,000	Sig.	Collin	_	Statistics VIF
a. Predictors: (C b. Dependent V	Constant), Ter ariable: Y_no	mpo_total_e ota_v2 Coef	studo, no ficients*	lized ents	t -1,996 4,674	Sig. ,062	Tolera	_	

Exemplo: Análise dos resíduos para o modelo 2 Teste de normalidade de Kolmogorov-Smirnov para os resíduos do modelo One-Sample Kolmogorov-Smirnov Test Normal Parameters^{a,b} ,0000000 ,0000000 ,0110334 Std. Deviation ,51958174 .94590530 1,01117996 Most Extreme Differences Absolute .172 .172 .168 Positive ,102 ,102 ,096 ,172 Kolmogorov-Smirnov Z ,768 ,768 749 ,629 Asymp. Sig. (2-tailed) a. Test distribution is Normal. b. Calculated from data.

Aula prática – Exercício 1: Modelo de Regressão Linear Múltipla (RLM)

Considerando os dados sobre o número de publicações nos últimos 5 anos (X_1) , o tempo de experiência (em meses) como docente (X_2) e o índice de desempenho como professor/pesquisador (numa escala de 0 a 100), pede-se:

- a) Construa um gráfico de dispersão entre as duas variáveis explicativas X_1 e X_2 , e calcule o coeficiente de correlação linear entre elas.Você acha que existe problema de multicolinearidade?
- b) Ajuste o modelo com as duas variáveis explicativas, e avalie se sua conclusão obtida na letra a) continua a mesma.
- c) Obtenha o "fator de inflação da variância" (VIF) para cada uma das variáveis explicativas. Qual a sua conclusão ?
- d) Afinal qual modelo você escolheria? Sugestão: Use o teste de comparabilidade de modelos e/ou alguma medida apropriada.

Prof.	X_1	X_2	Y	
1	17	35,7	52,1	-
2	6	11,4	24,6	
3	13	28,6	49,2	
4	11	25,8	30,0	
5	23	50,6	82,2	
6	16	27,2	42,4	
7	15	31,3	55,7	
8	5	10,0	21,1	
9	10	18,9	27,7	
10	12	25,2	36,3	
11	20	39,9	69,1	
12	12	32,5	38,8	
13	8	13,6	22,8	
14	8	19,0	34,7	

Aula prática – Exercício 2: Modelo de Regressão Linear Múltipla (RLM)

Considerando os dados sobre o salário (em 100 UM), idade (em anos) e tempo de serviço (em anos) de n=25 trabalhadores de uma pequena empresa (Tabela 2), pede-se:

- a) Construa um gráfico de dispersão entre as duas variáveis explicativas.
- b) Calcule o coeficiente de correlação linear entre as variáveis explicativas. Você acha que existe problema de multicolinearidade?
- c) Ajuste o modelo com as duas variáveis explicativas, e avalie se sua conclusão obtida na letra b) continua a mesma.
- d) Obtenha o "fator de inflação da variância" (VIF) para cada uma das variáveis explicativas.
- e) Qual a sua conclusão final ?

				continua	ção		
Func.	Salário	Idade	Tempo de serviço	Func.	Salário	Idade	Tempo de serviço
1	35	48	15	16	17	21	1
2	25	25	2	17	29	45	21
3	22	23	1	18	27	40	17
4	39	55	20	19	35	43	20
5	23	40	8	20	19	23	5
6	30	42	10	21	25	30	10
7	26	24	4	22	29	31	13
8	30	38	6	23	32	35	17
9	38	49	19	24	28	34	15
10	40	52	22	25	19	21	3
11	45	57	25				•
12	37	47	17				
13	43	48	25				
14	22	22	1				
15	27	48	7				37