Church-Turing These Een nieuw paradijs

Pieter van Engelen

Radboud Universiteit Nijmegen

03-06-2022

De tijd

De protagonisten

De situatie

Entscheidungsproblem Berekenbaarheidsmodellen De kracht van berekenbaarheid

De these

Voorbij de these

Hypercomputation Quantum computing

Radboud Universiteit Nijmegen

De These

Every effectively calculable function is computable

Church (1936), Turing (1937)

Alonzo Church (1903 - 1995) Princeton University, USA

- Logicus, wiskundige
- Van 1936 tot 1979 redacteur van Journal of Symbolic Logic
- 'Bedenker' van de λ -calculus
- Eerste-orde predicaat-logica is onbeslisbaar
- Peano-arithmetiek is onbeslisbaar

Alan Turing (1912 - 1954) Cambridge & Manchester

- Grondlegger van
 - Informatica
 - Artificiële intelligentie
 - Morphogenetica
- Legendarisch codebreaker
- Marathonloper

Stephen Kleene (1909-1994)

??? (1897 - 1954)

Das Entscheidungsproblem

Das Entscheidungsproblem

Vind een algoritme waarmee de waarheid van een uitspraak in de eerste orde predikaatlogica vast te stellen is.

(D. Hilbert & W. Ackermann, 1928, Grundzüge der theoretischen Logik)

Pieter van Engelen 03-06-2022 Church-Turing These 8 / 27

Entscheidungsproblem

Eerste orde predikaatlogica

(extreem kort door de bocht)

Logica met

- variabelen
- de gebruikelijke operatoren $\land, \lor, \rightarrow, \neg, \ldots$
- predikaten P(x)
- universele en existentiële kwantificatie ∀,∃

Voorbeelden:

$$\forall_{n \in \mathbb{N}} \exists_{m \in \mathbb{N}} [m > n]$$

$$\forall_{p,q \in \mathbb{Q}} \exists_{r \in \mathbb{Q}} [p < r < q]$$

$$\exists_x [P(x) \land \forall_y \forall_{y'} [P(y) \land P(y') \to y = y']]$$

Entscheidungsproblem

Eerste orde predikaatlogica

Afspraak:

We hebben het alleen over predikaten en kwantificatie over de natuurlijke getallen $\mathbb N$

Gezocht:

Algoritme wat gegeven een uitspraak roept of die uitspraak WAAR of ONWAAR is.

Probleem:

Wat is een algoritme?

Wat is een algoritme??

• Grootste-gemene-deler van Euclides

Wat is een algoritme??

- Grootste-gemene-deler van Euclides
- Zeef van Eratosthenes

Wat is een algoritme??

- Grootste-gemene-deler van Euclides
- Zeef van Eratosthenes
- Gauss-eliminatie

Probleem: Nog geen formele definitie van een algoritme.

Probleem: Nog geen formele definitie van een algoritme.

Terug naar 1936.

Probleem: Nog geen formele definitie van een algoritme.

Terug naar 1936-ish.

n 🍀

Wat is een algoritme

Probleem: Nog geen formele definitie van een algoritme.

Terug naar 1936-ish.

Turing machines

en 🍀

Wat is een algoritme

Probleem: Nog geen formele definitie van een algoritme.

Terug naar 1936-ish.

- Turing machines
- Recursietheorie

Probleem: Nog geen formele definitie van een algoritme.

Terug naar 1936-ish.

- Turing machines
- Recursietheorie
- λ-calculus

De programma's

$$x,y,\ldots\in\Lambda$$
 (Variabelen)
$$M,N\in\Lambda\Rightarrow MN\in\Lambda$$
 (Applicatie)
$$x,M\in\Lambda\Rightarrow(\lambda x.M)\in\Lambda$$
 (Abstractie)

- $\lambda x.x$
- *λxy.x*
- $\lambda pqr.pr(qr)$
- $(\lambda x.xx)A$
- $\lambda x.y$
- $\lambda f x. f(f(f(x))) \equiv \lceil 3 \rceil$

Actie

$$(\lambda x.M)N \longrightarrow_{\beta} M[x := N]$$

Actie

$$(\lambda x.M)N \longrightarrow_{\beta} M[x := N]$$

$$(\lambda xyz.zxy)(\lambda x.xx)(\lambda x.x)(\lambda xy.x) \rightarrow_{\beta}$$

Actie

$$(\lambda x.M)N \longrightarrow_{\beta} M[x := N]$$

$$(\lambda xyz.zxy)(\lambda x.xx)(\lambda x.x)(\lambda xy.x) \to_{\beta} (\lambda yz.z(\lambda x.xx)y)(\lambda x.x)(\lambda xy.x) \to_{\beta}$$

Actie

$$(\lambda x.M)N \longrightarrow_{\beta} M[x := N]$$

$$(\lambda xyz.zxy)(\lambda x.xx)(\lambda x.x)(\lambda xy.x) \to_{\beta} (\lambda yz.z(\lambda x.xx)y)(\lambda x.x)(\lambda xy.x) \to_{\beta} (\lambda z.z(\lambda x.xx))\lambda x.x(\lambda xy.x) \to_{\beta}$$

Actie

$$(\lambda x.M)N \longrightarrow_{\beta} M[x := N]$$

$$(\lambda xyz.zxy)(\lambda x.xx)(\lambda x.x)(\lambda xy.x) \to_{\beta} (\lambda yz.z(\lambda x.xx)y)(\lambda x.x)(\lambda xy.x) \to_{\beta} (\lambda z.z(\lambda x.xx))\lambda x.x(\lambda xy.x) \to_{\beta} (\lambda xy.x)(\lambda x.xx))\lambda x.x \to_{\beta} \lambda x.xx$$

Recursietheorie (Kleene 1935)

Initiële functies

$$\mathcal{O}(x)=0$$
 Nul $\mathcal{S}(x)=x+1$ Successor $\mathcal{P}_i^n(x_1,\dots,x_n)=x_i$ Projectie $f(\vec{x})=h(g_1(\vec{x}),\dots,g_m(\vec{x}))$ Functie compositie

Primitieve recursie

$$f(\vec{x},0) = g(\vec{x}) \qquad \qquad \text{0-geval}$$

$$f(\vec{x},n+1) = h(\vec{x},y,f(\vec{x},y)) \qquad \qquad \text{Recursieve geval}$$

 μ -recursie

$$f(\vec{x}) = \mu y [g(\vec{x}, y) = 0]$$
 "De kleinste y zodat $g(\vec{x}, y) = 0$ "

Pieter van Engelen 03-06-2022 Church-Turing These 15 / 27

Recursietheorie (Kleene 1935)

Voorbeelden

$$\mathcal{P}(0) = 0$$
 $\min(x, 0) = x$ $\mathcal{P}(n+1) = n$ $\min(x, y+1) = \mathcal{P}(\min(x, y))$

$$f(n) = \mu y[2y = n \vee 2y + 1 = n]$$

Pieter van Engelen 03-06-2022 Church-Turing These 16 / 27

Turing machines (Turing 1936)

De equivalentie

$$\lambda - {\sf definieerbaar} \overset{({\sf Turing } \ 1937)}{\Longrightarrow} {\sf Turing } \ {\sf berekenbaar}$$

Turing berekenbaar
$$\stackrel{\text{(Turing 1937)}}{\Longrightarrow} \mu - \text{recursief}$$

$$\mu - \mathsf{recursief} \overset{(\mathsf{Kleene} \ 1936)}{\Longrightarrow} \lambda - \mathsf{definieerbaar}$$

De equivalentie

De uitspraken:

- Een functie $f: \mathbb{N} \to \mathbb{N}$ is berekenbaar
- Er bestaat een λ -term F zdd $f(n) = m \Leftrightarrow F^{\Gamma}n^{\gamma} = {^{\Gamma}}m^{\gamma}$
- Er bestaat een μ -recursieve functie ϕ zdd $f(n) = m \Leftrightarrow \phi(n) = m$
- Er bestaat een T.M. zdd $f(n) = m \Leftrightarrow \mathsf{T.M.}_f \text{ geeft bij invoer } \ulcorner n \urcorner \text{ uitvoer } \ulcorner m \urcorner$

zijn synoniem met elkaar.

Halting Problem

Universaliteits principe

De These

Every effectively calculable function is computable Church (1936), Turing (1937) Elke uitrekenbare functie is berekenbaar

Hypercomputation

Oracle machines Infinite state Transfiniete recursie

Quantum computing

Church Turing Deutsch
Wat doet quantum computing

Tragiek in het paradijs

Stephen Kleene (1909-1994)

??? (1897 - 1954)

Stephen Kleene (1909-1994)

Emil Post (1897 - 1954)