# Technological Innovation and Bursting Bubbles<sup>1</sup>

Keiichi Kishi<sup>b</sup> Alexis Akira Toda<sup>c</sup> Tomohiro Hirano<sup>a</sup>

<sup>a</sup>Royal Holloway, University of London

<sup>b</sup>Kansai University

<sup>c</sup>Emory University

FARFE Conference October 18, 2025

- Many asset price booms seem to be related to technological innovation (general purpose technologies, GPTs) (Quinn and Turner, 2020)
- Examples:

Introduction

- 1720s French Mississippi bubble and British South Sea bubble: Atlantic trade, insurance
- 1840s British railway mania: steam engine, railway network
- 1890s British bicycle mania: pneumatic tire
- 1920s U.S. stock price boom: electricity, consumer durables, automobile, etc.
- 1990s U.S. dot-com bubble: Internet
- Now: AI?

# This paper

- Macro-finance model of innovation and stock bubble
  - Stock price (Q) > fundamental value (V := PDV of dividends)
- Features:
  - Skilled agents choose to work in knowledge-intensive sector or establish new firms
  - Monopolistic competition: firm stocks pay dividends
  - Strength of knowledge spillover determines dividend growth rate
  - Agents expect spillover to eventually weaken (regime switching with absorbing state)

## Main results

- 1. Agents rationally expect boom to eventually end, but bubble (Q > V) emerges as unique equilibrium outcome
  - Bubble necessity (Hirano and Toda, 2025a)
- 2. Long- and short-run effects of stock bubbles
  - Positive feedback between innovation and stock price
  - Despite inevitable collapse, bubble permanently increases output (because technology prevails)
  - Effect on wage inequality temporary
- 3. Implications for macro-financial modeling
  - Balanced growth is knife-edge (Uzawa, 1961; Schlicht, 2006)
  - Unbalanced growth and bubbles

## Related literature

- Rational bubble: Samuelson (1958), Bewley (1980), Tirole (1985), Scheinkman and Weiss (1986), Kocherlakota (1992), Santos and Woodford (1997)
- Rational bubble attached to real assets: Hirano and Toda (2024, 2025a,b)
- Stochastic bubble: Blanchard (1979), Weil (1987)
- Technological innovation and asset boom: Olivier (2000),
   Pástor and Veronesi (2009)



## Model

- Two period OLG model,  $t = 0, 1, \dots$
- Young endowed with  $e_t > 0$  units of good, old none
- Initial old endowed with asset with dividend  $D_t > 0$
- $\{(e_t, D_t)\}_{t=0}^{\infty}$  follows some stochastic process
- Epstein-Zin utility with unit EIS

$$U(c_t^y, c_{t+1}^o) = (1 - \beta) \log c_t^y + \beta \log \mathsf{E}_t [(c_{t+1}^o)^{1-\gamma}]^{\frac{1}{1-\gamma}}$$



# Equilibrium

#### Definition

Stochastic process  $\{(Q_t, c_t^y, c_t^o, n_t)\}_{t=0}^{\infty}$  is rational expectations equilibrium if

1. (Utility maximization) initial old consume  $c_0^o = Q_0 + D_0$ ; for each  $t \ge 0$ ,  $(c_t^y, n_t, c_{t+1}^o)$  maximizes utility subject to budget

Young: 
$$c_t^y + Q_t n_t = e_t$$
,  
Old:  $c_{t+1}^o = (Q_{t+1} + D_{t+1})n_t$ ,

- 2. (Commodity market clearing) for each t, we have  $c_{t}^{y} + c_{t}^{o} = e_{t} + D_{t}$
- 3. (Asset market clearing) for each t, we have  $n_t = 1$ .



# Unique equilibrium

Due to unit EIS, optimal consumption of young is

$$c_t^y = (1 - \beta)e_t$$

• Young budget constraint and  $n_t = 1$  forces

$$Q_t = Q_t n_t = e_t - c_t^y = \beta e_t$$

## Proposition

There exists unique rational expectations equilibrium. Asset price is  $Q_t = \beta e_t$  and consumption is  $(c_t^y, c_t^o) = ((1 - \beta)e_t, \beta e_t + D_t)$ . Let

$$m_{t \rightarrow t+1} = \frac{\partial U/\partial c_{t+1}^o}{\partial U/\partial c_t^y} = \frac{\beta}{1-\beta} \frac{c_t^y(c_{t+1}^o)^{-\gamma}}{\mathsf{E}_t[(c_{t+1}^o)^{1-\gamma}]}$$

be stochastic discount factor (SDF) between time t and t+1

Using equilibrium conditions,

$$m_{t \to t+1} = \frac{\beta}{1 - \beta} \frac{(1 - \beta)e_t(\beta e_{t+1} + D_{t+1})^{-\gamma}}{\mathsf{E}_t[(\beta e_{t+1} + D_{t+1})^{1-\gamma}]}$$
$$= \frac{Q_t(Q_{t+1} + D_{t+1})^{-\gamma}}{\mathsf{E}_t[(Q_{t+1} + D_{t+1})^{1-\gamma}]}$$

Depends only on asset price, dividend, and risk aversion

- Let  $m_{t \to t+1}$  be SDF between t and t+1
- No-arbitrage condition is

$$Q_t = \mathsf{E}_t[m_{t \to t+1}(Q_{t+1} + D_{t+1})]$$

Iteration yields

$$Q_0 = \mathsf{E}_0 \sum_{s=1}^t m_{0 \to s} D_s + \mathsf{E}_0 [m_{0 \to t} Q_t],$$

where

$$m_{t\to t+s} := m_{t\to t+1} \times \cdots \times m_{t+s-1\to t+s}$$

is SDF between t and t + s

• Letting  $t \to \infty$  (+ dominated convergence theorem), get

$$Q_0 = \underbrace{\mathsf{E}_0 \sum_{s=1}^{\infty} m_{0 \to s} D_s}_{=:V_0} + \underbrace{\lim_{t \to \infty} \mathsf{E}_0[m_{0 \to t} Q_t]}_{=:B_0},$$

#### where

- $V_0$ : fundamental value,
- $B_0$ : bubble
- By definition, no bubble if and only if

$$\lim_{t\to\infty} \mathsf{E}_0[m_{0\to t}Q_t] = 0$$

• We now put more structure to derive stochastic bubbles

## Assumption

There are two states denoted by u, b. Letting  $z_t \in \{u, b\}$  denote state at time t, transition probabilities given by

$$\Pr[z_{t+1} = u \mid z_t = u] = \pi \in (0, 1),$$
  
 $\Pr[z_{t+1} = b \mid z_t = b] = 1.$ 

- State u persists with probability  $\pi$
- State b absorbing

## State *b* exhibits balanced growth

### Assumption

For any  $\tau$ , conditional on  $z_{\tau} = b$ , sequence  $\{(e_t, D_t)\}_{t=\tau}^{\infty}$  is deterministic and  $e_{t+1}/e_t = D_{t+1}/D_t$  for all  $t \geq \tau$ .

## Proposition

Once state b is reached, no bubble:  $Q_t = V_t$ .

- Intuition:  $Q_t = \beta e_t$  grows with endowment
- In state b, uncertainty resolved and gross risk-free rate

$$R_{t+1} = \frac{\beta e_{t+1} + D_{t+1}}{\beta e_t} = \frac{e_{t+1}}{e_t} \left( 1 + \frac{1}{\beta} \underbrace{\frac{D_{t+1}}{e_{t+1}}}_{\text{constant}} \right)$$

exceeds endowment growth, so discounting rules out bubbles

## Condition for bubbles in state u

## Assumption

Conditional on time t-1 information, endowment  $e_t$  and dividend  $D_t$  depend only on state  $z_t \in \{u,b\}$ .

#### **Theorem**

For  $z \in \{u, b\}$ , let  $(e_t^z, D_t^z)$  be value of  $(e_t, D_t)$  conditional on  $z_0 = \cdots = z_{t-1} = u$  and  $z_t = z$  and let  $c_t^z := \beta e_t^z + D_t^z$ . If  $z_0 = u$ , then there is a bubble at t = 0 if and only if

Vanishing dividends: 
$$\sum_{t=1}^{\infty} D_t^u / e_t^u < \infty,$$

Large crash: 
$$\sum_{t=1}^{\infty} (c_t^b/c_t^u)^{1-\gamma} < \infty.$$

# Intuition and implications

- 1. Noting  $Q_t = \beta e_t$ ,  $\sum D_t^u/e_t^u < \infty$  implies  $Q_t^u/D_t^u \to \infty$ . Hence bubble can be understood as temporary deviation from balanced growth and explosive dynamics in P/D ratio
- 2. Equilibrium is unique. Hence (under these conditions) asset price bubble is necessity, not possibility
- 3. Conditions for stochastic bubbles stronger than deterministic case (Montrucchio, 2004, Proposition 7); if  $\gamma < 1$ , need crash to be larger the longer the bubble lasts

# Model with innovation and intangible capital

- Extend toy model to production, innovation, intangible capital (Grossman and Helpman, 1991)
  - R&D
  - Monopolistic competition
- Mass L > 0 unskilled agents work in consumption good sector
- Mass H > 0 skilled agents either
  - · Work in knowledge-intensive intermediate good firms, or
  - Engage in R&D and establish new firms

Representative firm produces output (consumption good)

$$Y_{t} = F(A_{Xt}X_{t}, A_{Lt}L_{t})$$

$$= (\alpha(A_{Xt}X_{t})^{1-\rho} + (1-\alpha)(A_{Lt}L_{t})^{1-\rho})^{\frac{1}{1-\rho}}$$

#### where

- $X_t$ : knowledge-intensive good,  $L_t$ : unskilled labor
- $A_{Xt}$ ,  $A_{Lt}$ : factor-augmenting productivities
- $1/\rho < 1$ : elasticity of substitution
- Maximizes profit  $Y_t P_t X_t w_{Lt} L_t$ , where
  - P<sub>t</sub>: price of knowledge-intensive good
  - w<sub>Lt</sub> unskilled wage
- Zero profit

# Knowledge-intensive good sector

· Representative firm produces knowledge-intensive good

$$X_t = n_t^{1-1/\theta} \left( \int_0^{n_t} [x_t(j)]^{\theta} dj \right)^{1/\theta},$$

#### where

- $n_t$ : "knowledge" (accumulates over time)
- $x_t(j)$ : knowledge-intensive intermediate good produced by firm j
- $\theta \in (0,1)$ : elasticity parameter
- Maximizes profit

$$P_t X_t - \int_0^{n_t} p_t(j) x_t(j) \,\mathrm{d}j$$

Zero profit

# Knowledge-intensive intermediate good sector

- Intermediate goods differentiated by  $j \in [0, n_t]$
- Skilled labor produces intermediate good 1:1
- Firm j maximizes profit

$$d_t(j) = (p_t(j) - w_{Ht})x_t(j)$$

by setting  $p_t(j)$  (monopolistic competition), taking wage  $w_{Ht}$  and demand  $x_t(j)$  as given

• Profit  $d_t(j)$  paid as dividend to firm j stock

- New intermediate good varieties created through R&D
- 1 unit of skilled labor  $\rightarrow an_t$  new varieties (firms)
- Founder sells stocks (claim to monoply profits) at IPO
- Hence indifference condition.

$$w_{Ht} = Q_t a n_t,$$

where  $Q_t = q_t(j)$  stock price

## Proposition

There exists unique equilibrium. Letting  $g(x) = (F_X/F_L)(x, 1)$ , fraction of skilled who work  $\phi_t$  solves

$$\frac{1}{aH} = \phi_t - 1 + \beta + \beta \left[ \theta \frac{A_{Xt}H}{A_{Lt}L} g \left( \frac{A_{Xt}H}{A_{Lt}L} \phi_t \right) \right]^{-1}.$$

Equilibrium prices are

Knowledge-intensive good price:  $P_t = p_t(j) = F_X A_{Xt}$ ,

Skilled wage:  $w_{Ht} = \theta F_X A_{Xt}$ ,

Unskilled wage:  $w_{Lt} = F_L A_{Lt}$ ,

Stock price:  $Q_t = \frac{w_{Ht}}{an_t} = \frac{\theta}{an_t} F_X A_{Xt},$ 

# Knowledge spillover

## Assumption

Let there be two states indexed by  $z \in \{u, b\}$ . There exist constants  $A_X, A_L > 0$  and  $\xi_u, \xi_b, \lambda_u, \lambda_b \ge 0$  such that

$$(A_{Xt},A_{Lt})=(A_Xn_t^{\xi_{z_t}},A_Ln_t^{\lambda_{z_t}}),$$

where

$$\xi_u > \lambda_u > \lambda_b = \xi_b$$
.

- Spillover as in Frankel (1962) and Romer (1986)
- State b (absorbing) is balanced growth  $(\xi_b = \lambda_b)$
- Spillover stronger in state u and in knowledge-intensive good sector

Equilibrium conditions

$$u: \frac{1}{aH} = \phi_t - 1 + \beta + \frac{\beta(1-\alpha)}{\theta\alpha} \left(\frac{A_X H}{A_L L}\right)^{\rho-1} n_t^{(\xi_{z_t} - \lambda_{z_t})(\rho-1)} \phi_t^{\rho},$$

$$b: \frac{1}{aH} = \phi_b - 1 + \beta + \frac{\beta(1-\alpha)}{\theta\alpha} \left(\frac{A_X H}{A_L L}\right)^{\rho-1} \phi_b^{\rho}.$$

## Proposition

Under maintained assumptions, following statements are true.

- 1. Conditional on staying in state u,  $\{\phi_t\}$  monotonically converges to zero and knowledge  $n_t$  asymptotically grows at rate  $G_u := 1 + aH$ .
- 2. In state b,  $\{\phi_t\}$  is constant at  $\phi_b$  and knowledge  $n_t$  grows at rate  $G_b := 1 + a(1 \phi_b)H < G_u$ .

# Dynamics of $\phi_t$



# Inevitable emergence of stock price bubbles

Equilibrium dynamics reduces to toy model

#### **Theorem**

Suppose relative risk aversion is  $\gamma < 1$ . Let  $Q_t$  be stock price in unique equilibrium and  $V_t$  fundamental value. Then

- 1. In state  $z_t = u$ , stock price exhibits a bubble:  $Q_t > V_t$  and price-dividend ratio  $Q_t/D_t$  grows exponentially.
- 2. In state  $z_t = b$ , stock price reflects fundamentals:  $Q_t = V_t$  and price-dividend ratio  $Q_t/D_t$  is constant.

## Numerical example



# Implications of stock bubbles

- Indifference condition  $w_{Ht} = an_t Q_t$ , so  $Q_t \uparrow$  implies high skilled wage and more innovation
- Unskilled labor relatively abundant, so wage inequality \(\bar{\chi}\) during bubble
- In long run,  $\phi_t = \phi_b$  constant, so wage inequality unaffected but GDP permanently higher with longer bubble



# Balanced growth is knife-edge

- In macro, there is strong presupposition in balanced growth
- But balanced growth is knife-edge (Uzawa (1961) steady state growth theorem)

## Proposition

Assume only Epstein-Zin utility and neoclassical production function F. Then price-dividend ratio  $Q_t/D_t$  is constant over time if and only if either relative productivity  $A_{Xt}/A_{Lt}$  is constant or production function F is Cobb-Douglas. In particular, in our setting, parameters need to satisfy

$$\xi_{\mu} = \lambda_{\mu}$$
 or  $\rho = 1$ .

- Any balanced growth model is knife-edge theory
- Once we adopt unbalanced growth (here due to uneven technological spillover), asset price bubble becomes necessity
- Tight connection between technological innovation and stock bubble
- Innovation-driven stock bubble has many benefits (e.g., higher long-run output because more innovation) despite inevitable collapse

- Bewley, T. (1980). "The optimum quantity of money". In: Models of Monetary Economies. Ed. by J. H. Kareken and N. Wallace. Federal Reserve Bank of Minneapolis, 169–210. URL: https://researchdatabase.minneapolisfed.org/collections/tx31qh93v.
- Blanchard, O. J. (1979). "Speculative bubbles, crashes and rational expectations". *Economics Letters* 3.4, 387–389. DOI: 10.1016/0165-1765(79)90017-X.
- Frankel, M. (1962). "The production function in allocation and growth: A synthesis". *American Economic Review* 52.5, 996–1022.
- Grossman, G. M. and E. Helpman (1991). Innovation and Growth in the Global Economy. Cambridge, MA: MIT Press.
- Hirano, T. and A. A. Toda (2024). "Bubble economics". Journal of Mathematical Economics 111, 102944. DOI: 10.1016/j.jmateco.2024.102944.

- Hirano, T. and A. A. Toda (2025a). "Bubble necessity theorem".

  Journal of Political Economy 133.1, 111–145. DOI: 10.1086/732528.
- Hirano, T. and A. A. Toda (2025b). "Unbalanced growth and land overvaluation". *Proceedings of the National Academy of Sciences* 122.14, e2423295122. DOI: 10.1073/pnas.2423295122.
- Kocherlakota, N. R. (1992). "Bubbles and constraints on debt accumulation". *Journal of Economic Theory* 57.1, 245–256. DOI: 10.1016/S0022-0531(05)80052-3.
- Montrucchio, L. (2004). "Cass transversality condition and sequential asset bubbles". *Economic Theory* 24.3, 645–663. DOI: 10.1007/s00199-004-0502-8.
- Olivier, J. (2000). "Growth-enhancing bubbles". *International Economic Review* 41.1, 133–152. DOI: 10.1111/1468-2354.00058.
- Pástor, Ľ. and P. Veronesi (2009). "Technological revolutions and stock prices". *American Economic Review* 99.4, 1451–1483. DOI: 10.1257/aer.99.4.1451.

- Quinn, W. and J. D. Turner (2020). Boom and Bust: A Global History of Financial Bubbles. Cambridge University Press. DOI: 10.1017/9781108367677.
- Romer, P. M. (1986). "Increasing returns and long-run growth".

  Journal of Political Economy 94.5, 1002–1037. DOI:

  10.1086/261420.
- Samuelson, P. A. (1958). "An exact consumption-loan model of interest with or without the social contrivance of money". *Journal of Political Economy* 66.6, 467–482. DOI: 10.1086/258100.
- Santos, M. S. and M. Woodford (1997). "Rational asset pricing bubbles". *Econometrica* 65.1, 19–57. DOI: 10.2307/2171812.
- Scheinkman, J. A. and L. Weiss (1986). "Borrowing constraints and aggregate economic activity". *Econometrica* 54.1, 23–45. DOI: 10.2307/1914155.

- Schlicht, E. (2006). "A variant of Uzawa's theorem". *Economics Bulletin* 5.6, 1–5. URL:
  - http://www.accessecon.com/pubs/EB/2006/Volume5/EB-06E10001A.pdf.
- Tirole, J. (1985). "Asset bubbles and overlapping generations". *Econometrica* 53.6, 1499–1528. DOI: 10.2307/1913232.
- Uzawa, H. (1961). "Neutral inventions and the stability of growth equilibrium". *Review of Economic Studies* 28.2, 117–124. DOI: 10.2307/2295709.
- Weil, P. (1987). "Confidence and the real value of money in an overlapping generations economy". *Quarterly Journal of Economics* 102.1, 1–22. DOI: 10.2307/1884677.



MARKETS

INVESTING CLUB VIDEO

TECH

# Jeff Bezos says AI is in an industrial bubble but society will get 'gigantic' benefits from the tech

PUBLISHED FRI, OCT 3 2025-7:40 AM EDT | UPDATED FRI, OCT 3 2025-9:45 AM EDT











"The [bubbles] that are industrial are not nearly as bad, it can even be good, because when the dust settles and you see who are the winners, societies benefits from those inventions " return