

Petrel 2017 Property Modeling Module 17: Petrophysical modeling using secondary data

Petrel 2017 Property modeling

Intro

Petrel Property Modeling objective and workflow

Property modeling data preparation

Scale up well logs

Univariate and bivariate geostatistics

Facies modeling

Discrete data analysis

Stochastic facies modeling

Continuous data analysis

Stochastic and deterministic petrophysical modeling: Gaussian simulation

Petrophysical modeling

Use of secondary information for property modeling

Volume calculation and Uncertainty analysis

Conditioning to a facies realization

Correlation with secondary data

Local varying mean (LVM): Theory

$$z(x_0) = \sum_{i=1}^{n} \lambda_i z(x_i) + [1 - \sum_{i=1}^{n} \lambda_i] m(x_0)$$

- $Z(x_i)$: Data points (for example, porosity).
- $m(x_0)$: Secondary input such as a 2D map (porosity) or a property with a strongly correlated positive value.
- The sum of the weights λ_i can be less than one.
- The smaller the weights the bigger the influence of the Local varying mean $m(x_0)$ on the calculated value $Z(x_0)$.
- Local varying mean gains influence with increasing distance of location x_0 from data points (decreasing weights λ_i).

IMPORTANT: Secondary input should be smooth and available for all locations x_0 and Positively correlated to the primary data.

Local varying mean

Average porosity map

Co-kriging: Theory

Traditional Co-kriging equation:
$$Z_{COK}(x_0) = \sum_i \lambda_i Z(x_i) + \sum_j \mu_j Y(x_j)$$

- Requires variograms of primary and secondary property and a cross variogram.
- Consequently, a larger equation system is constructed with more constraints.

Collocated Co-kriging equation:
$$Z_{CCOK}(x_0) = \sum_i \lambda_i Z(x_i) + \mu Y(x_0)$$

- A simplified equation system → faster than traditional Co-kriging.
- Possible solution if there is a more densely sampled secondary variable.
- Requires a variogram only for the primary property, using a correlation coefficient for the secondary property.

Collocated Co-kriging

Correlation coefficient slider bar

Bivariate distribution

Raw crossplot with bins

Create crossplot bins

Use different bins

Continuous trend modeling (1)

Continuous trend modeling (2)

Make trend

Application of trends

Exercises

- Create a porosity model with Co-kriging
- Create a permeability model with Co-kriging
- Create a permeability model with trend data
- Create a permeability model with Bivariate distribution

