This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Diagnosis method for microcomput r p riph ral equipment fault and its

Patent Number:

CN1076532

Publication date:

1993-09-22

Inventor(s):

ZHENYOU NIU (CN)

Applicant(s):

NIU ZHENYOU (CN)

Requested Patent:

CN1076532

Application Number: CN19930102128 19930304

Priority Number(s): CN19930102128 19930304

IPC Classification:

G06F11/22

EC Classification:

Equivalents:

Abstract

The present invention consists of two plug-in boards, A and B, A board comprises several groups of indicators, latches, reversors, decoding circuit, selector knobs and firmed diagnostic control program. B board includes various peripheral interface driver circuits, control circuits and clock generation circuits and several groups of indicators. The A board is inserted in the I/O slot of microcomputer, and the B board is connected with the peripheral interface. The present invention can quickly and accurately diagnose the faults of adapters and peripherals for various PCs, high-grade computers and compatible computers and can determine the fault point of circuit at chip level.

Data supplied from the esp@cenet database - I2

印发明专利申请公开说明书

[21] 申请号 93102128.6

[51] Int.CI⁵

G06F 11/22

(43) 公开日 1993年9月22日

[22]申请日 93.3.4 [71]申请人 牛振有

地址 100085 北京市清河大楼申

[72]发明人 牛扳有

[74]专利代理机构 清华大学专利事务所 代理人 廖元秋

说明书页数: 6

附图页数: 3

(54)发明名称 微型计算机外设故障诊断方法及其装置

[57]接要

本发明属于微型计算机的专用维修工具设计的技术领域。本发明由 A、B 两块插件板组成 A 板包括多组显示器,多个锁存器,多个反向器。译码电路,选择开关钮及固化的诊断控制程序,B 板包括各种外设接口驱动器电路,控制电路和时钟产生电路,多组指示器各部分,将 A 板插人微机 I/O 槽中,B 板与外设接口相连。本发明可快速、准确诊断各种类型 PC 机和高档机及兼容机的适配器及外设的故障,能判断芯片级电路故障点、维修人员操作简单、直观。

39 >

- 1. 一种微机适配器和外设故障诊断方法包括如下步骤。
- 1. 给微机各适配器和外设设定不同的出错代码;
- 2. 设置A、 B两套带有指示器及固化的诊断功能模块程序的插件板, A板插入待诊断的微机 I / O插槽中, B板接在待诊断适配器与外设的接口上;
- 3. 先使各外设与微机分离,由微机CPU向各适配器发出原码和反码相间的循环不断的标准信号,每一信号间有数秒量级的延时时间;
- 4. 由微机CPU向所说A板发数据原码,同时经过适配器向B板发数据原码,延时数秒后,对B板取回所发的数据原码送A板显示并循环进行;
- 5. 比较所说的A板和B板指示器的原码如一致,则原码读写正确; 否则适配器发电路出现故障;
- 6. 再按第4步骤进行反码是否一致,若不一致,则适配器收电路出现故障;
- 7. 若适配器发、收电路均正常则将待测的外设插入微机相应接口,由微机CPU向各外设发出原码和反码相间循环不断的标准信号,每一信号间有数秒量级的延时时间;
 - 8. 同步骤5及6的相同方法判断出外设是否出现故障;
- 9. 若按上述步骤查出适配器或外设有故障,则用万用表测量该适配器或外设中各芯片的电平,若离低电平相间出现并周期性变化,即与A板和B板指示器变化一致,则判定该芯片是故障点。
- 2. 如权利要求1所述方法的一种微机适配器和外设诊断装置。该装置由A、B两块插件板组成, 所说的A板包括多组显示器、 多个锁存器、多个反向器、译码电路,选择开关和开关纽各部分,及固化的诊断控制程序,所说的B板包括各种外设接口驱动电路,控制电路和时钟产生电路、多组指示器各部分。当对微机适配器和外设诊断时,将A板插入微机 I / O槽中,B板与外设接口相连。

微型计算机外设故障诊断方法及其装置

本发明属于微型计算机的专用维修工具设计的技术领域,特别涉及一种对适配器和外设维修的专用工具。

迄今为止,人们诊断、维修微型计算机故障一般使用万用表、TT L逻辑笔一类的简单工具或用示波器、逻辑分析仪等高档通用仪器。使 用万用表等简单工具只能定性地查找出一般故障,使用逻辑分析仪等仪 器不但价格昂贵, 而且对维修人员要求较高, 即要对微机维修有较丰富 的经验,还要有正确使用逻辑分析仪等仪器的专门知识。为克服上述维 修微机手段的不足之处,使微机故障的维修、检测更快速、准确。近年 来出现了一些微机故障维修、诊断专用工具。本申请人于1991年4 月申请的题为"微型计算机故障诊断方法及其实现装置"发明专利就是 其中的一种。 该发明能快速、 自动查找微机系统板本身有关电路的故 障,但不能检测和维修微机适配器和外设。《计算机世界》杂志199 〇年第8期介绍的题为 "一种实用的80286 微机故障诊断维修工 具"一文,介绍了由一块系统板检测卡及配套使用装有检测程序的RO M芯片组成的专用工具。该装置通过专门设计的程序控制检测、检测到 的故障信息送微机显示器显示结果。该检测方法是通过检测程序使CP U向适配器写读数据,根据写读数据再由程序进行比较来判断故障。由 于CPU发出的数据是通过适配器到外设的,从外设读到CPU的数据 正确与否, 一方面取决于外设是否正常, 另一方面取决于适配器的好 坏。因此,该测试装置仍有许多不足之处:其一,该测试卡只能对适配 器级的故障进行初步判断, 不能确定适配器内部具体芯片的故障; 二,对检测到的故障不能确定是适配器的还是外设故障,不能对故障点 定位。

本发明的目的在于为克服上述装置的不足之处,提出一种能快速判断微机适配器和外设故障、适配器芯片一级和某根信号线故障以及外设写入、读出电路芯片一级故障的方法及实现该方法的装置,提高微修微机适配器和外设的效率和准确性。

本发明所述的对微机适配器和外设故障诊断方法包括如下步骤。

- 1. 给微机各适配器和外设设定不同的出错代码:
- 2. 设置A、 B两套带有指示器及固化的诊断功能模块程序的插件板, A板插入待诊断的微机 I / O插槽中, B板接在待诊断适配器与外设的接口上;
- 3. 先使各外设与微机分离,由微机CPU向各适配器发出原码和反码相间的循环不断的标准信号,每一信号间有数秒量级的延时时间;
- 4. 由微机CPU向所说A板发数据原码,同时经过适配器向B板发数据原码,延时数秒后,对B板取回所发的数据原码送A板显示并循环进行;
- 6. 比较所说的A板和B板指示器的原码如一致,则原码读写正确; 否则适配器发电路出现故障;
- 6. 再按第4步骤进行反码是否一致,若不一致,则适配器收电路出现故障;
- 7. 若适配器发、收电路均正常则将待测的外设插入微机相应接口,由微机CPU向各外设发出原码和反码相间循环不断的标准信号,每一信号间有数秒量级的延时时间;
 - 8. 同步骤 5 及 6 的相同方法判断出外设是否出现故障;
- 9. 若按上述步骤查出适配器或外设有故障,则用万用表测量该适配器或外设中各芯片的电平,若离低电平相间出现并周期性变化,即与A板和B板指示器变化一致,则判定该芯片是故障点。

本发明提出的上述诊断微机适配器和外设故障的方法、 快速、 准确、简单、易行。可适用各种类型PC机和高档机及兼容机。

本发明根据上述方法设计出一种微机适配器和外设诊断装置。该装置由A、B两块插件板组成, 所说的A板包括多组显示器、 多个锁存器、多个反向器、译码电路,选择开关和开关纽各部分,及固化的诊断控制程序,所说的B板包括各种外设接口驱动电路,控制电路和时钟产生电路、多组指示器各部分。当对微机适配器和外设诊断时,将A板插入微机 I/O槽中,B板与外设接口相连。其工作过程如下:

通过选择A板的选择开关,进入功能模块诊断子程序,该子程序则自动进入常写常读状态,常写数据一方面送A板第一组显示器,另一方面数据通过主机适配器送B板的显示器,然后程序自动转到常读数据状态,且从B板读回数据,读得的数据送A板第二组显示器,这样,根据A板第一组显示器、第二组显示器,以及B板的指示器的数据和附带的正确代码表比较很快可找到故障点。

本装置克服了一般诊断方法的单调控制方式,变单调控制方式为双重控制方式。并且具有常写常读功能,A板的作用主要起控制和显示作用,B板则负责接收主机发送的数据直接显示,且不影响数据返回。因此本装置不仅提供了故障检测功能,使"死机"激活,而且提供一种故障诊断方法和手段。

附图简要说明:图1为A板组成框图

图2为B板组成框图

图 3 为诊断控制软件程序流程图

本发明提供一种微机适配器和外设故障诊断装置实施方法如图1~3所示。现详细描述图一、图二、图三及诊断过程:

图一为A板组成框图其作用为: 诊断控制选择和显示。 由锁存器 1、2、3译码电路、反向器1、2、3、显示器1、2、3以及选择 开关和开关组SWO、SW1、SW2、SW3、SW4、SW6、SW6、SW7等组成。锁存器1的输入端接微机I/O通道,锁存器1的输出端接显示装置1;锁存器2的输出端接反向器1的输入端,它的输出端接反向器2的输入端,它的输出端接显示装置2;锁存器3的输入端接微机I/O通道,锁存器3的输出端接反向器3的输入端,它的输出端接显示装置3。译码电路的输入端接微机I/O通道,其输出端分别接入锁存器1、2、3。开关组SWO、1、2、3、4、5、6、7,分别接开关选择输入端,其输出端接微机I/O通道。

图二为B板组成框图,由各种外设(打印机、通信、软驱、硬驱、 监示器)接口驱动电路和对应于各种外设的多组指示器1、2、3、4

5以及控制电路和时钟产生电路组成。

上述接口驱动电路的输入端分别接微机外设接口,它们的输出端分别接在指示器1、2、3、4、5。

控制电路和时钟产生电路分别接在上述接口驱动电路的输入端。

图三为软件诊断控制流程:它们对各适配器及其外设的故障进行诊断。

现结合图一、图二、图三举例,详细描述对各适配器和外设的诊断过程:

例1. 打印机适配器诊断:

当A板设置开关SW1 SW1 SW0=001时,则进入打印机适配器诊断。首先,控制程序首先向A板显示装置,送数据原码(可任意代码)且向打印机数据口(或命令口或状态口)送原码到B板指示器1,将送入数据口原码读回送A板显示装置2,读得的数据与A板显示装置1比较,不正确,错误代码送A板显示装置3,延时5秒后,循

环进行,如正确延时5秒后,进入下步操作,控制程序向A板显示装置 1 送反码,且向打印机数据口送反码,到B板指示器1,将送入数据口 反码读回送A板显示装置2,延时5秒后重新比较,不正常,转错误处理,循环进行,如正确,给出正确码送A板显示装置3,然后返回主程序。

例2. 通信接口8250内循环诊断:

当A板设置开关SW2 SW1 SW0=010时,则进入通信接口8250内循环诊断。控制程序向A板显示装置1送原码数据,且向8250送原码,将送入8250原码读回送A板显示装置2,比较不正确,将错误码送A板显示装置3,延时5秒后,返回入口处,循环进行。如正确,延时5秒后,控制程序向A板显示装置,送反码,且向8250送反码,将送入8250反码读回送A板显示装置2,不正确,将错误码送A板显示装置3,延时5秒后,返回入口处,循环进行。如正确,给出正确码送A板显示装置3,返回主程序。

例3. 通信接口外循环诊断:

当A板设置开关SW2 SW1 SW0=011时,程序进入通信接口循环诊断。控制程序向A板显示装置,送原码数据,且向通信接口送原码,将送入通信接口原码读回送A板显示装置2,数据比较不正确,则将错误码送A板显示装置3,延时5秒后,返回入口处,则循环进行。如正确,延时5秒后,控制程向A板显示装置1送反码数据,且向通信接口送反码到B板指示器,将送入通信接口的反码读回送A板显示装置2,不正确给出错误码送A板显示装置3,延时5秒,返回入口处,循环进行。如正确,给出正确码,送A板显示装置3,返回主程序。

例4. 软驱诊断:

如设置A板开关SW2 SW1 SW0=100,则程序自动转

入软驱诊断程序.

控制程序向A板显示装置1送数据原码,且向软驱送原码,将送入软驱原码数据读回送A板显示装置2,不正确,错误代码送A板显示装置3, 延时5秒后,返回入口处,循环进行。如正确,延时5秒后,控制程序向A板显示装置,送反码,且向软驱送反码,将送入软驱反码数据读回,送A板显示装置2,不正确,错误码送A板显示装置3,延时5秒后,返回入口处,循环进行。如正确,给出正确码送A板显示装置3,返回主程序。

例5. 硬驱诊断:

如设置A板开关SW2 SW1 SW0=101,则程序自动转入硬驱诊断。

控制程序向A板显示装置1送数据原码,而向硬驱送原码,且B板指示器4具有相同的原码数据。将送入硬驱原码数据读回送A板显示装置2,不正确,错误码送A板显示装置3,延时5秒后,返回入口处,循环诊断。如正确,延时5秒后,控制程序向A板显示装置1送反码,而向硬驱送反码,且B板指示器4具有相同的反码数据,将送入硬驱反码读回送A板显示装置2,诊断不正确,则将错误码送A板显示装置3,延时5秒后,返回入口处循环诊断,如正确,将正确码送A板显示装置3后,返回主程序。

例6. 监示器诊断:

设置A板开关SW2 SW1 SW0=110,程序自动进入显示诊断程序,控制程序向A板显示装置1送原码数据,且向显示器送原码,延时5秒后,控制程序向A板显示装置1送反码数据,且向显示器送反码,延时5秒后,循环进行诊断。

本装置同本发明人1989年专利号:89219656·4,1991年专利申请号:913226.0同时使用效果更明显,功能更全面。

图 2.

图 3