

70001 – Advanced Computer Graphics: Photographic Image Synthesis
Abhijeet Ghosh
Lecture 09, Feb. 6th 2024

1

Rendering Equation [Kajiya 86]

- $L_r(x, \omega_r) = \int_{\Omega} f_r(x, \omega_r, \omega_i) L_i(x, \omega_i) \cos \theta_i V(\omega_i) d\omega_i$.
 - only discuss direct illumination integral
- Brute force solution too expensive!
 - especially under EM illumination
- Monte Carlo integration
 - stochastic approximation

Monte Carlo Integration

- $I(f) = \int_{S} f(x) p(x) dx$,
 - f(x) is the function defined over S
 - -p(x) is the probability density function of f
- Monte Carlo estimate

$$I_{N}(f) = \frac{1}{N} \sum_{i=1}^{N} f(x_{i})$$

- converges as N $\rightarrow \infty$
- $X=\{x_1, x_2, \dots, x_N\}$ are i.i.d.s drawn from p(x)

3

Expected Value

- I(f) also referred to as expected value E(x)
 - integral computes the average!
- E(x) satisfies the following properties:
 - $E(\alpha x) = \alpha E(x)$, where α is a constant
 - $E(\sum_i x_i) = \sum_i E(x_i)$

Variance

- $var(x) = E((x E(x))^2)$ = $E(x^2) - E(x)^2$.
- Variance observes the following properties:
 - $var(\sum_i x_i) = \sum_i var(x_i)$
 - $var(\alpha x) = \alpha^2 var(x)$.
- In image synthesis, variance manifests as noise!

5

Variance

• $\operatorname{var}(I_{N}(f)) = \operatorname{var}(1 \sum_{i=1}^{N} f(x_{i}))$ $= 1 \operatorname{var}(\sum_{i=1}^{N} f(x_{i}))$ $= 1 \operatorname{var}(f(x_{i}))$ $= \frac{1}{N} \operatorname{var}(f(x_{i}))$

Monte Carlo Variance

- Variance inversely proportional to sample size N!
 - Error in estimate behaves like standard deviation
- Notion of diminishing returns
 - Image quality depends on N²
 - Quadruple N to halve the error!
- MC integration suffers from the curse of dimensionality

7

Importance Sampling

- $I(f) = \int_{S} f(x) dx$
- Unbiased MC estimate of I(f)

$$I(f) \approx 1 \sum_{i=1}^{N} \frac{f(x_i)}{p(x_i)}$$

 $-p(x_i)$ is a PDF, also called a proposal distribution

Importance Sampling

f ratio needs to have low variance!
 p

- Importance sampling
 - choosing p such that f & p have similar shape
- · Direct illumination integral
 - p chosen according to distribution of illumination
 - or BRDF

9

Probability Density Function

- PDF p describes the relative likelihood of a certain value
 - for a random variable $x \sim p$
- A PDF has the following characteristics:
 - $-p(x) \ge 0$,
 - $-\int_{0}^{1} p(x) dx = 1$, where $x \in [0, 1]$.

Cumulative Density Function

- CDF C describes how to sample from a given PDF p
- $C(x) = p(X \le x)$.
- $C(x) = \int_0^x p(x) dx$.
- Sampling by function inversion!
 - analytic
 - numeric

11

Cumulative Density Function

- Choose a uniform variate $u_i \in [0, 1]$
- Transform u_i by \mathbb{C}^{-1} to obtain $x_i \sim p$.
 - $-x_i = C^{-1}(u_i).$
- Since $p(x) \ge 0$, C(x) is monotonically increasing
 - $C^{-1}(x)$ always exists!

Analytic Function Inversion

• If $p(x) = 3x^2/2$, where $x \in [-1, 1]$,

$$C(x) = \int_{1}^{1} 3x^{2}/2 dx = (x^{3} + 1)/2,$$

and
$$C^{-1}(x) = (2y-1)^{1/3}$$
, where $y = C(x)$

13

Uniform Sampling a Disk

• Given a disk of radius R

$$p(\mathbf{r}, \boldsymbol{\theta}) = 1/ \pi R^2$$
,

$$C(r, \theta) = \int_0^{\theta} \int_0^r \frac{1}{\pi R^2} r dr d\theta$$
$$= \theta r^2 / (2\pi R^2)$$

• $(r, \theta) = (R\sqrt{u_1}, 2\pi u_2)$

BRDF Models

- · Several BRDF models can be sampled analytically
 - cosine lobe, Gaussian lobe, GGX
- Sampling a Phong lobe

$$\frac{p(\theta, \varphi) = (n + 1) \cos^{n} \theta}{2\pi}$$

• $(\theta, \varphi) = (\arccos((1 - u_1)^{1/(n+1)}), 2\pi u_2)$

15

Phong lobe

- $(\theta, \varphi) = (\arccos((1 u_1)^{1/(n+1)}), 2\pi u_2)$
 - sample direction distributed about local +Z
 - need to rotate sample to be about global reflection vector $\boldsymbol{\omega}_r!$
- Half-vector parameterization $p(\omega_h)$
 - Microfacet models
 - samples generated about ω_h

Isotropic Gaussian

- Ward BRDF $p(\omega_h) \sim \exp-(\tan^2\theta_h/\alpha^2)$ (proportionality implies CDF!)
- Sample θ_h :

```
\theta_h = \arctan(\alpha \sqrt{-\log u_1})
```

• Sample φ_h :

$$\varphi_h = 2\pi u_2$$

17

Sampling GGX

- GGX lobe $p(\omega_h) \sim \alpha^2/(\alpha^2 + \tan^2 \theta_h)^2$
- Sample θ_h :

$$\theta_h = \arctan(\alpha \sqrt{u_1} / (\sqrt{1 - u_1}))$$

• Sample φ_h :

$$\varphi_h = 2\pi u_2$$

Anisotropic Gaussian

- Ward BRDF $p(\omega_h) \sim \exp-(\tan^2 \theta_h(\cos^2 \varphi_h/\alpha_x^2 + \sin^2 \varphi_h/\alpha_y^2)$
- Sample θ_h : $\theta_h = \arctan(\sqrt{-\log u_1/(\cos^2 \varphi_h/\alpha_x^2 + \sin^2 \varphi_h/\alpha_y^2}))$
- Sample φ_h : $\varphi_h = \arctan((\alpha_v/\alpha_x)\tan(2\pi u_2))$

19

Anisotropic Phong

- Ashikhmin-Shirley $p(\omega_h) = \sqrt{(n_u+1)(n_v+1)} \cos^s \theta_h$ 2π where $s = \cos^2 \varphi_h \, n_u^2 + \sin^2 \varphi_h \, n_v^2$
- Sample θ_h :

$$\theta_h = a\cos((1 - u_1)^{1/(s+1)})$$

• Sample φ_h :

$$\varphi_h$$
 = arctan($\sqrt{(n_u + 1)/(n_v + 1)}$)tan($2\pi u_2$))

Microfacet lobe

- Analytic inversion of PDF $p(\omega_h)$
- Need for reflection of ω_r about ω_h $\omega_i = 2(\omega_h \cdot \omega_r) \omega_h \omega_r$ ray-tracing done for sampled ω_i

• Final step conversion of PDF $p(\omega_h)$ to $p(\omega_r)$

$$p(\omega_r) = \frac{p(\omega_h)}{4(\omega_h \cdot \omega_i)}$$

21

Numerical CDF Inversion

- Numerical integration of PDF
- Uniform samples on Y-axis $\rightarrow x \sim p(x)$ on X-axis
- Useful for sampling from EMs!

