1. project info

proposal: mar.6

presentation: apr.3

report: 5 pages, IEEE style, apr.13

2. dual norm

$$||z||_* := \sup_x \{ z^T x : ||x||_p \le 1 \}$$

dual norm of L1-norm:

$$||z||_* := \sup_x \{ z^T x : ||x||_1 \le 1 \}$$

 $\max \sum_{i} z_i x_i$,

subject to : $\sum_{i} ||x_{i}|| \leq 1$

select x_i corresponding to z_i with maximum absolute value equivalent to $||z||_* = ||z||_{\infty}$

dual norm of L- ∞ -norm:

$$||z||_* := \sup_x \{ z^T x : ||x||_\infty \le 1 \}$$

 $\max \sum_{i} z_i x_i$,

subject to : $||x_i|| \le 1, \forall i$

choose $x_i = 1$ if $z_i \ge 0$ and $x_i = 0$ if $z_i < 0$

equivalent to $||z||_* = ||z||_1$

in general the dual norm of L_p -norm is L_q -norm where 1/p + 1/q = 1

3. calculus

consider
$$f: \mathbb{R}^n \to \mathbb{R}$$

consider
$$f: \mathbb{R}^n \to \mathbb{R}$$

gradient of $f: \nabla f(x) = \begin{bmatrix} \partial f/\partial x_i \\ ... \end{bmatrix}$

$$f(x) = a^T x \implies \nabla f(x) = a$$

$$f(x) = a^T x \implies \nabla f(x) = a$$

$$f(x) = x^T P x, P = P^T \implies \nabla f(x) = 2P x$$

$$f(x) = x^T P x \implies \nabla f(x) = 2(\frac{P^T + P}{2})x = (P^T + P)x$$

approximation, Taylor expansion:

$$f(x) \approx f(x_0) + \nabla^T f(x_0)(x - x_0) + o((x - x_0)^2)$$

$$f(x + \delta x) \approx f(x_0) + \nabla^T f(x) \delta x + o((\delta x)^2)$$

chain rule:

$$f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}, h(x) = f(g(x))$$

$$g: \mathbb{R}^m \to \mathbb{R}, g(x) = f(Ax + b)$$

 $\nabla g(x) = A^T \nabla f(Ax + b)$

2nd derivative:

2nd derivative:
$$\nabla^2 f(x) = \begin{bmatrix} \partial^2 f / \partial x_1 \partial x_1 & \dots \\ \dots & \partial^2 f / \partial x_n \partial x_n \end{bmatrix} \nabla f(x) = Px + g$$
$$\nabla^2 f(x) = P$$

Hessian gives the 2nd order approximation:

$$f(x) \approx f(x_0) + \nabla^T f(x_0)(x - x_0) + \frac{1}{2}(x - x_0)^T \nabla^2 f(x_0)(x - x_0)$$

4. matrices

 $A \in \mathbb{R}^{m \times n}$: set of all real matrices

inner product: $\sum_i \sum_j x_{ij} y_{ij} = trace(XY^T) = trace(Y^TX) = \sum_i (XY)_{ii}$

note trace has cyclic property

frobenius norm: $||X||_F = (\sum_i \sum_j X_{ij}^2)^{\frac{1}{2}}$ range: $R(A) = \{Ax : x \in \mathbb{R}^n\} = \sum_i a_i x_i$, where a_i is ith column (column space of A)

null space: $N(A) = \{x : Ax = 0\}$

5. matrix decomposition

SVD:

 $A_{m \times n} = U_{m \times m} \Sigma_{m \times n} V_{n \times n}^T$

U and V are left and right eigenvector matrixes

U and V are orthogonal matrixes $(BB^T = B^TB = I)$

 Σ is rectangular diagonal matrix of eigenvalues

rank:

number of nonzero eigenvalues

 $A_{m\times n}x_n$

linear transformation: $U\Sigma V^Tx$ rotation - scaling - rotation