WPROWADZENIE DO ŚRODOWISKA R

WYMAGANIA: ŚRDOWISKO R, BIBLIOTEKI: dplyr, ggplot2, moments, stats (https://cran.r-project.org)

ZAD. 1. Oblicz wartości następujących wyrażeń w środowisku R:

- a) $2 \cdot 3^3 + \log_7 2401$; b) $\sqrt[3]{2}$; c) $\sqrt[5]{\sqrt[3]{2}}$.

ZAD. 2. Dane są macierze
$$\mathbf{A} = \begin{bmatrix} 1 & 3 & -8 \\ -10 & 2 & 4 \\ 12 & 1 & 5 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ -1 & 5 \end{bmatrix}.$$

Oblicz, tam gdzie to możliwe

- a) wyznaczniki macierzy
- b) macierze odwrotne
- c) macierze transponowane i ich wyznaczniki
- d) iloczyny macierzy (również przez siebie lub macierz transponowaną)
- e) iloczyn skalarny pierwszego wiersza macierzy A oraz drugiej kolumny macierzy **B**.
- ZAD. 3. Wykorzystując zapis macierzowy układu równań oraz działania na macierzach, wyznacz macierz odwrotną do macierzy układu $\mathbf{A}^{-1} = \begin{bmatrix} a_{ij} \end{bmatrix}_{4\times4}$ oraz wektor \mathbf{X} rozwiązań układu równań:

$$\begin{cases} x + y - z - 2t = -7 \\ 2x + 2y + 3t = 21 \\ 5x + 5y + 2z + 5t = 40 \\ -2x - 3y + z + 2t = 2 \end{cases}$$
 Podaj wartość a_{23} .

- **ZAD. 4.** Skonstruuj wektor kwadratów liczb od 1 do 100 a następnie zlicz, które cyfry oraz jak często występują na pozycji jedności w wyznaczonych kwadratach (użyj operatora modulo, funkcji summary oraz typu factor). Ile wśród nich jest podzielnych przez 2, przez 3 oraz przez 2 i 3?
- **ZAD. 5.** Zbuduj własne tablice trygonometryczne. Przygotuj ramkę danych, w których zebrane beda informacje o wartościach funkcji sinus, cosinus, tangens i cotangens dla katów: 0°, 30°, 45°, 60°, 90° (funkcje trygonometryczne w R przyjmują argumenty w radianach). W tym celu napisz funkcję **rad** (użyj function), która zamieni stopnie na radiany (stała π w R ma oznaczenie pi), utwórz wektor w radianach oraz ramkę danych **Tablice** (użyj data.frame).
- **ZAD. 6.** Przygotuj wektor 30 łańcuchów znaków następującej postaci: liczba.litera, gdzie liczba to kolejne liczby od 1 do 30 a litera to trzy duże litery A, B, C występujące cyklicznie, czyli 1.A 2.B 3.C 4.A itd. Wykorzystaj funkcję paste, która łączy napisy.

Struktury danych w R

Obiekt	Туру	Różne typy
Wektor (vector)	numeryczny, znakowy, zespolony, logiczny	Nie
Czynnik (factor)	numeryczny, znakowy	Nie
Tabela (table)	numeryczny, znakowy, zespolony, logiczny	Nie
Ramka danych (data.frame)	numeryczny, znakowy, zespolony, logiczny	Tak
Lista (list)	numeryczny, znakowy, zespolony, logiczny funkcja, wyrażenie	Tak

Operatory:

- operatory arytmetyczne: +, -, *, /, ^, %% (dodawanie, odejmowanie, mnożenie, dzielenie, potęgowanie, dzielenie modulo);
- operatory logiczne: !, |, & (negacja, alternatywa, koniunkcja);
- operatory relacyjne: >, <, >=, <=, ==, != .

Pełna lista operatorów na stronie:

https://cran.r-project.org/doc/manuals/r-release/R-lang.html#Operators

Wybrane (wbudowane) funkcje

Funkcja	Opis
$\log(x)$	Logarytm naturalny z x
$\exp(x)$	Liczba <i>e</i> podniesiona do potęgi <i>x</i>
$\log(x, n)$	Logarytm z x przy podstawie n
sqrt(x)	Pierwiastek kwadratowy z x
factorial(n)	$n! = 1 \cdot 2 \cdot \ldots \cdot n$
choose(n, k)	Symbol Newtona
abs(x)	Wartość bezwzględna z x
round(x, digits=n)	Zaokrągla x do n miejsc po przecinku
sin(x)	Sinus x (x w rad)
$\cos(x)$	Cosinus x (x w rad)
tan(x)	Tangens x (x w rad)

Wektory w R możemy tworzyć wykorzystując:

- funkcję c(), (combine połącz, np. c(1, 3, 5, 9, 10));
- operator : tworzący ciąg arytmetyczny o różnicy 1 (np. 1:10);
- funkcję seq(), (sequence sekwencja) tworzy ciąg arytmetyczny (np. seq(-5,5,by=0.2))
- funkcję rep(), (replicate powtórz) powtarza elementy zadaną liczbę razy (np. rep(c(1,2),2)).

Funkcja	Opis
length(x)	Długość (liczba elementów) wektora x
$\max(\mathbf{x})$	Największa wartość z elementów wektora x
$\min(\mathbf{x})$	Najmniejsza wartość z z elementów wektora x
$sum(\mathbf{x})$	Suma wszystkich wartości wektora x
$prod(\mathbf{x})$	Iloczyn wszystkich wartości wektora x
$sort(\mathbf{x}, decreasing = FALSE)$	Sortuje (rosnąco) wartości wektora x; gdy TRUE - male-
	jąco
$sample(\mathbf{x}, n, replace=TRUE)$	Losowanie n elementów wektora \mathbf{x} ze zwracaniem (re-
	place =TRUE) lub bez (replace=FALSE)
which(x)	Zwraca te indeksy wektora logicznego x, które mają war-
	tość TRUE, np which($\mathbf{x} == 5$) podaje indeksy elementów
	wektora x równe 5.
unique(x)	Usuwa duplikaty wektora elementów x .
x [<i>i</i>]	Indeksowanie wektora – odwołanie się do elementu wek-
	tora o indeksie i
summary(x)	Podsumowanie dla wektora x (minimum, maksimum,
-	średnia, kwantyle)
	Dla wektora elementów kategorycznych (factor) zlicza
	elementy na poszczególnych poziomach

Macierze

- matrix(dane, r, k) tworzy macierz o r wierszach i k kolumnach z danych
- $\operatorname{cbind}(\mathbf{x}_1, ..., \mathbf{x}_n)$ tworzy macierz łącząc podane wektory jako kolumny
- rbind($\mathbf{x}_1, ..., \mathbf{x}_n$) tworzy macierz łącząc podane wektory jako wiersze

Funkcja	Opis	
dim(A)	Wymiar macierzy A	
t(A)	Transpozycja macierzy A	
sum(A)	Suma elementów macierzy A	
det(A)	Wyznacznik macierzy A	
A %*% B	Mnożenie macierzy	
solve(A)	Tworzenie macierzy odwrotnej	
solve(A, B)	Rozwiązanie układu macierzowego $\mathbf{AX} = \mathbf{B}$	
A [1,2]	Odwołanie się do elementu w pierwszym wierszu i drugiej kolumnie macierzy A	