Poglavje 1

Izjavni račun

1.5 Sklepanje v izjavnem računu

Zgled 1 Dan je sklep

Ta žival ima krila <u>ali</u> pa ni ptič. <u>Če</u> je ta žival ptič, <u>potem</u> leže jajca. Ta žival <u>ni</u>ma kril.

Torej ta žival <u>ne</u> leže jajc.

Ali je pravilen?

Označimo osnovne izjave in sklep formalizirajmo v izjavnem računu:

p ... ta žival ima krila q ... ta žival je ptič r ... ta žival leže jajca

Ali velja

$$p \lor \neg q, q \Rightarrow r, \neg p \models \neg r? \tag{1.1}$$

Iz prve in tretje predpostavke po DS sledi $\neg q$. Toda iz $\neg q$ in $q \Rightarrow r$ ne moremo zaključiti $\neg r$; domnevamo, da ta sklep ni pravilen. Nepravilnost sklepa seveda lahko dokažemo z resničnostno tabelo, vendar zadošča, če poiščemo protiprimer: vrstico v tabeli, v kateri so vse predpostavke resnične, zaključek pa ne. V našem primeru je to vrstica oblike

Z v(x) označimo vrednost izjavnega izraza x. Iz $v(\neg p)=1$ sledi v(p)=0, iz $v(\neg r)=0$ pa v(r)=1. Torej je $v(p\vee \neg q)=v(0\vee \neg q)=v(\neg q)=1$, od koder sledi v(q)=0. Iz želenih vrednosti 1. in 3. predpostavke ter zaključka smo dobili vrednosti p, q in r. Toda ali je pri teh vrednostih tudi 2. predpostavka resnična? Ker je $v(q\Rightarrow r)=v(0\Rightarrow 1)=1$, to drži. Našli smo iskani protiprimer:

Sklep (1.1) torej ne velja. Najdeni protiprimer lahko še "konkretiziramo": to je žival, ki nima kril in ni ptič, a leže jajca - npr. želva, kača, kuščar, krokodil ...

Oglejmo si še povezavo med pravilnimi sklepi in tavtologijami.

Izrek 1 $A_1, A_2, \ldots, A_k \models B$ natanko tedaj, ko je izjavni izraz

$$A_1 \wedge A_2 \wedge \dots \wedge A_k \Rightarrow B \tag{1.2}$$

tavtologija.

Dokaz: Naj velja $A_1, A_2, \ldots, A_k \models B$. Če je konjunkcija $A_1 \wedge A_2 \wedge \cdots \wedge A_k$ resnična, so resnične vse predpostavke sklepa A_1, A_2, \ldots, A_k , torej je resničen tudi njegov zaključek B. Zato je implikacija (1.2) vedno resnična in je torej tavtologija.

Naj bo implikacija (1.2) tavtologija. Če so vse predpostavke sklepa $A_1, A_2, \ldots A_k$ resnične, je resnična tudi njihova konjunkcija $A_1 \wedge A_2 \wedge \cdots \wedge A_k$, zato je resničen tudi konsekvens B implikacije (1.2). Torej velja $A_1, A_2, \ldots, A_k \models B$.

Oglejmo si še dve pravili sklepanja z vgnezdenim pomožnim sklepom, za katerega privzamemo dodatne predpostavke, ki pa jih po koncu pomožnega sklepa spet opustimo.

Pogojni sklep (PS)

Uporabimo ga lahko, kadar ima zaključek sklepa, katerega pravilnost dokazujemo, obliko implikacije.

Izrek 2 (o pogojnem sklepu) $A_1, A_2, \ldots, A_k \models B \Rightarrow C$ natanko tedaj, ko $A_1, A_2, \ldots, A_k, B \models C$.

Dokaz: Označimo $A = A_1 \wedge A_2 \wedge \cdots \wedge A_k$. Po izreku 1.2 zadošča pokazati, da je izraz $A \Rightarrow (B \Rightarrow C)$ tavtologija natanko tedaj, ko je tavtologija izraz $A \wedge B \Rightarrow C$. Ker velja

$$A\Rightarrow (B\Rightarrow C) \sim \neg A \lor (\neg B \lor C) \sim (\neg A \lor \neg B) \lor C \sim \neg (A \land B) \lor C \sim A \land B \Rightarrow C,$$
sta izraza enakovredna, torej je prvi tavtologija natanko tedaj kot drugi. \Box

3

Zgled 2 Pokažimo:
$$p \Rightarrow q \lor r, \neg r \models p \Rightarrow q$$
.

Od sedmih osnovnih pravilnih sklepov lahko uporabimo le združitev ali pridružitev, a ni jasno, kaj in kateri predpostavki bi pridružili ter kako potem naprej. Ker pa ima zaključek obliko implikacije, lahko uporabimo pogojni sklep.

1. $p \Rightarrow q \lor r$ predpostavka 2. $\neg r$ predpostavka 3.1. p predpostavka PS 3.2. $q \lor r$ MP iz 3.1, 1 3.3. q DS iz 3.2, 2 3. $p \Rightarrow q$ PS iz 3.1 – 3.3

V tretji vrstici tabele smo začeli pomožni sklep z dodatno predpostavko p, ki ni logična posledica prvotnih predpostavk $p \Rightarrow q \lor r$ in $\neg r$, zato pomožni sklep zamaknemo v desno in začnemo številčiti vrstice na 2. nivoju (3.1, 3.2, ...). V vrstici 3.3 smo iz razširjene množice predpostavk izpeljali q, torej smo po izreku o pogojnem sklepu iz prvotnih predpostavk izpeljali implikacijo $p \Rightarrow q$, ki jo zdaj lahko zapišemo v vrstico 3 z utemeljitvijo: PS iz 3.1 – 3.3. Ker smo dobili želeni zaključek, je dokaz pravilnosti sklepa končan.

Sklep s protislovjem (RA)

Sklep s protislovjem (latinsko: reductio ad absurdum) lahko uporabimo kadarkoli.

Izrek 3 (o sklepu s protislovjem) $A_1, A_2, ..., A_k \models B$ natanko tedaj, ko $A_1, A_2, ..., A_k, \neg B \models 0$.

Dokaz: Označimo $A = A_1 \wedge A_2 \wedge \cdots \wedge A_k$. Po izreku 1.2 zadošča pokazati, da je $A \Rightarrow B$ tavtologija natanko tedaj, ko je tavtologija $A \wedge \neg B \Rightarrow 0$. Ker je

$$A \wedge \neg B \Rightarrow 0 \sim \neg (A \wedge \neg B) \vee 0 \sim \neg A \vee \neg \neg B \sim \neg A \vee B \sim A \Rightarrow B$$

sta izraza enakovredna, torej je prvi tavtologija natanko tedaj kot drugi. $\hfill\Box$

Zgled 3 Pokažimo: $p \Rightarrow \neg(q \Rightarrow r), q \land s \Rightarrow r, s \models \neg p.$

```
1. p \Rightarrow \neg(q \Rightarrow r) predpostavka
2. \quad q \wedge s \Rightarrow r
                               predpostavka
3. s
                               predpostavka
4.1.
               \neg \neg p
                                     predpostavka RA
4.2.

\begin{array}{c}
p\\
\neg(q \Rightarrow r)
\end{array}

                                     \sim 4.1
4.3.
                                     MP iz 4.2, 1
4.4.
               q \wedge \neg r
                                     \sim 4.3
4.5.
                                     Po iz 4.4
                  q
4.6.
                                     Zd iz 4.5 in 3
                q \wedge s
4.7.
                                     MP iz 4.6, 2
4.8.
               \neg r \wedge q
                                     \sim 4.4
                                     Po iz 4.8
4.9.
                 \neg r
4.10.
                                     Zd iz 4.7, 4.9
               r \wedge \neg r
4.11.
                  0
                                     \sim 4.10
                        RA iz 4.1 – 4.11
```

V četrti vrstici tabele smo začeli pomožni sklep z dodatno predpostavko $\neg \neg p$, ki je negacija želenega zaključka. V vrstici 4.11 smo iz razširjene množice predpostavk izpeljali protislovje 0, torej smo po izreku o sklepu s protislovjem iz prvotnih predpostavk izpeljali implikacijo želeni zaključek, ki smo ga zapisali v vrstico 4.

Pomožne sklepe lahko v istem dokazu uporabimo večkrat, lahko jih tudi gnezdimo v globino. Vsakič ko začnemo nov pomožni sklep, ga zamaknemo v desno in številkam vrstic dodamo nov nivo, ko ga končamo, pa se pomaknemo nazaj v levo.

1.6 Polni nabori izjavnih veznikov

Definicija 1 Neka množica izjavnih veznikov M je poln nabor, če za vsak izjavni izraz A obstaja enakovreden izjavni izraz B, ki vsebuje samo veznike iz M.

Trditev 1 Množica $\{\neg, \land, \lor\}$ je poln nabor izjavnih veznikov.

Dokaz: Naj bo A poljuben izjavni izraz. Vzemimo

$$B \ = \begin{cases} \mathrm{DNO}(A), & \text{\'e je } A \text{ kontingenten,} \\ p \vee \neg p, & \text{\'e je } A \text{ tavtologija,} \\ p \wedge \neg p, & \text{\'e je } A \text{ protislovje.} \end{cases}$$

Potem B vsebuje le veznike iz množice $\{\neg, \land, \lor\}$ in velja: $B \sim A$.

V gornjem dokazu lahko namesto DNO seveda uporabimo tudi KNO.

Zgled 4 Brž ko poznamo kak poln nabor izjavnih veznikov P, imamo preprost recept za dokazovanje, da je neka druga množica veznikov M tudi poln nabor:

- 1. Izberemo neki znan poln nabor P.
- 2. Vsak veznik iz znanega polnega nabora P izrazimo samo z vezniki iz M.

Če nam to uspe, smo dokazali, da je M poln nabor izjavnih veznikov.

Utemeljitev: Vsak izjavni izraz lahko izrazimo le z uporabo veznikov iz P, vsak veznik iz P pa lahko izrazimo le z uporabo veznikov iz M. Torej lahko vsak izjavni izraz izrazimo le z uporabo veznikov iz M.

Trditev 2 *Množice* $\{\neg, \land\}$, $\{\neg, \lor\}$, $\{\neg, \Rightarrow\}$, $\{0, \Rightarrow\}$ so polni nabori veznikov.

Dokaz: 1. Za $M = \{\neg, \land\}$ vzamemo $P = \{\neg, \land, \lor\}$. Zadošča izraziti \lor z \neg, \land :

$$A \lor B \sim \neg \neg (A \lor B) \sim \neg (\neg A \land \neg B) \checkmark$$

2. Za $M=\{\neg,\vee\}$ vzamemo $P=\{\neg,\wedge,\vee\}.$ Zadošča izraziti \wedge z \neg,\vee :

$$A \wedge B \sim \neg \neg (A \wedge B) \sim \neg (\neg A \vee \neg B) \sqrt{}$$

3. Za $M=\{\neg,\,\Rightarrow\}$ vzamemo $P=\{\neg,\vee\}.$ Zadošča izraziti \vee z $\neg,\,\Rightarrow:$

$$A \vee B \sim \neg \neg A \vee B \sim \neg A \Rightarrow B \sqrt{}$$

4. Za $M = \{0, \Rightarrow\}$ vzamemo $P = \{\neg, \Rightarrow\}$. Zadošča izraziti \neg z $0, \Rightarrow$:

$$\neg A \sim \neg A \lor 0 \sim A \Rightarrow 0 \checkmark$$

Definirajmo še tri dvomestne veznike, ki so negacije že znanih veznikov.

ime veznika	simbolni zapis in definicija veznika	kako preberemo sestavljeno izjavo	
stroga disjunkcija	$p+q \sim \neg(p \Leftrightarrow q)$	bodisi p bodisi q ;	
		natanko ena od izjav p,q je resnična	
Shefferjev veznik	$p \uparrow q \sim \neg (p \land q)$	ne p ali ne q ;	
		vsaj ena od izjav p, q je lažna	
Łukasiewiczev veznik	$p \downarrow q \sim \neg (p \lor q)$	niti p niti q ;	
		obe izjavi p, q sta lažni	

Resničnostne tabele:

_	p	q	p+q	$p \uparrow q$	$p \downarrow q$
	1	1	0	0	0
	1	0	1	1	0
	0	1	1	1	0
	0	0	0	1	1

Nekaj dodatnih enakovrednosti:

Trditev 3 *Množice* $\{1, +, \wedge\}$, $\{0, \Leftrightarrow, \vee\}$, $\{\uparrow\}$, $\{\downarrow\}$ so polni nabori veznikov.

Dokaz: 1. Za
$$M=\{1,+,\wedge\}$$
 vzamemo $P=\{\neg,\wedge\}$. Zadošča izraziti \neg z $1,+,\wedge$: $\neg A \sim A+1 \checkmark$

- 2. Za $M=\{0,\,\Leftrightarrow,\,\vee\}$ vzamemo $P=\{\neg,\,\vee\}.$ Zadošča izraziti \neg z $0,\,\Leftrightarrow,\,\vee\colon$ $\neg A\ \sim\ A\Leftrightarrow 0\ \surd$
- 3. Za $M = \{\uparrow\}$ vzamemo $P = \{\neg, \land\}$. Izrazimo \neg, \land z veznikom \uparrow : $\neg A \sim \neg (A \land A) \sim A \uparrow A \checkmark$ $A \land B \sim \neg \neg (A \land B) \sim \neg (A \uparrow B) \sim (A \uparrow B) \uparrow (A \uparrow B) \checkmark$
- 4. Za $M = \{\downarrow\}$ vzamemo $P = \{\neg, \land\}$. Izrazimo \neg, \land z veznikom \downarrow : $\neg A \sim \neg (A \lor A) \sim A \downarrow A \checkmark$ $A \land B \sim \neg (\neg A \lor \neg B) \sim \neg A \downarrow \neg B \sim (A \downarrow A) \downarrow (B \downarrow B) \checkmark$

Kako pa pokažemo, da neka množica izjavnih veznikov M ni poln nabor?

Recept: Poiščemo neko lastnost izjavnih veznikov, ki jo vsi vezniki iz M imajo in ki se pri sestavljanju (komponiranju) izjavnih veznikov ohranja, obstajajo pa vezniki, ki te lastnosti nimajo.

Definicija 2 Naj bo f neki n-mestni izjavni veznik.

- 1. Veznik f ohranja vrednost 1, če je f(1, 1, ..., 1) = 1.
- 2. Veznik f ohranja vrednost 0, če je $f(0,0,\ldots,0)=0$.

Trditev 4 Množici $\{1, \wedge, \vee, \Rightarrow, \Leftrightarrow\}$ in $\{0, \wedge, \vee, +\}$ nista polna nabora izjavnih veznikov.

- **Dokaz:** 1. Vsi vezniki iz množice $M = \{1, \land, \lor, \Rightarrow, \Leftrightarrow\}$ ohranjajo vrednost 1, veznik ¬ pa je ne ohranja. Torej množica M ni poln nabor izjavnih veznikov, saj negacije ni mogoče izraziti le z vezniki iz M.
- 2. Vsi vezniki iz množice $M = \{0, \wedge, \vee, +\}$ ohranjajo vrednost 0, veznik ¬ pa je ne ohranja. Torej množica M ni poln nabor izjavnih veznikov, saj negacije ni mogoče izraziti le z vezniki iz M.