⑲ 日本国特許庁(JP)

⑪特許出願公開

⑩ 公 開 特 許 公 報 (A) 平3-150042

®Int. Cl. ⁵

識別記号

庁内整理番号

H 02 K 5/12

6340-5H

審査請求 未請求 請求項の数 1 (全8頁)

図発明の名称 密閉型アクチュエータ

②特 願 平1-286555

②出 願 平1(1989)11月2日

⑩発明者 堀 越 敦

敦 群馬県高崎市中居町 3 丁目24番地12

⑩発 明 者 竹 越 信 吾

東京都品川区大崎1丁目6番3号

群馬県前橋市鳥羽町129 日本精工榛名寮

四代 理 人 弁理士 森 哲 也 外3名

明 細 書

1. 発明の名称

密閉型アクチュエータ

- 2.特許請求の範囲
- (I) 駆動用コイルへの通電によって励磁される駆動 用磁極が形成されたモータステータと、

該モータステータの磁極面に対して僅かのすき まを隔てて面対向に配設されると共に磁気軸受を 介して回転自在に支承されたモータロータと、

該モータロータの変位を測定する変位検出手段 とを備え、

前記モータステータの外面に非磁性金属隔壁を 気密に固着して、前記モータステータの磁極と磁 気軸受の磁極と変位検出手段の磁極との収納空間 を密閉し、モータロータ側空間とは隔絶したこと を特徴とする密閉型アクチュエータ。

- 3. 発明の詳細な説明
- 〔産業上の利用分野〕

本発明は、超高真空雰囲気中などの微量の汚染物質や不純物ガスも許容されない雰囲気中や、腐

食性ガス雰囲気中のようにモータの磁極やコイル が腐食されてしまうような環境中で用いるのに好 適な密閉型アクチュエータに関する。

〔従来の技術〕

例えば半導体製造装置等では、不純物を極力排除するために超高真空雰囲気中で被加工物に対する加工作業が行われる。その場合に使用されるアクチュエータとして、例えば被加工物位置決め装置の駆動モータにあっては、駆動軸の軸受に一般的なグリースなどのように揮発成分を含有する潤滑剤を用いることはできないから、金や銀などの軟質金属を軸受の内外輪にプレーティングしている。

また、駆動モータのコイル絶縁材や配線被覆材及び積層磁極の接着剤なども、耐熱性に優れ放出ガスの少ない安定した材料が選定される。

他方、超高真空槽内へ外部から回転出力を導入 する手段として、従来、ベローズ式駆動方式を始 め、磁気結合型駆動方式、磁性流体シール駆動方 式等の各種のアクチュエータが知られている。い ずれも、真空用軸受に支承された回転軸の出力端側が真空雰囲気中に突出され、大気中におかれた駆動装置により入力端側に可転力が付与される構造である。すなわちべローズ式駆動方式ではは第3回に示すように、回転軸1の出力端1Aの側はははは、地域1Bは紙板形式の首振り機構3を取り付板で式の首振り機構3を大気中に配した回転装置5で式の首振り機構3を大気中に配した回転装置5で可転駆動すると、ベローズ4が伸縮運動を繰り返しつつ回転軸1が回転する仕組みである。

これに対して磁気結合型駆動方式は、回転軸の入力端側に磁性体からなる回転子が固着され、この回転子の外間はハウジングで囲んで密閉されている。そのハウジングを隔てて大気側に、回転子を取り巻くマグネットが配設され、これを回転駆動することにより回転軸1が回転する仕組みである。

また磁性流体シール駆動方式の場合は、大気側と真空側の間の隔壁を貫通して非磁性体からなる

① たとえ駆動モータのコイル絶縁材や配線被 覆材等に、耐熱性に優れ放出ガスの少ない安定し た材料が選定されても、それが有機系の絶縁材料 である限り、ミクロ的には多孔質であって表面に は無数の穴を有している。これを一旦大気にさら すと、その表面の穴にガスや水分子等を取り込ん で吸蔵してしまう。それらの吸蔵不純分子を真空 排気で除去する脱ガスに長時間を要してしまい、 生産効率の低下は避けがたい。

② 更には、真空中においては空気の対流による放熱が有り得ないから、コイル温度の局部的な上昇を生じた場合に、その部分の抵抗が増大して発熱が加速され、コイル絶縁被膜の焼損を招き易い。

③ これに対して、コイル絶縁材に無機材料を 用いると共に、配線はステンレス管のシース電線 を用いることで吸着不純分子を低減することが考 えられる。しかしその場合はコストが非常に高く なるのみならず、コイル機線スペース内に占める 銅などの導体の比率が減少して電気抵抗が増加し、 ハウジングを取付け、そのハウジング内に配した 軸受間に永久磁石を挟んだ円輪状のボールピース を設けると共に、ハウジングを貫通させた回転軸 の外周面とこれに対向するボールピース内周面と の間のすきまを磁性流体で密封している。

(発明が解決しようとする課題)

近時、半導体の集積度が高まり、それに伴って同時にICのパターン幅の微細化による高密度化が進められている。この微細化に対応できるウエハを製造するために、ウエハ品質に対する高度の均一性が要求されている。その要求に応えるためには、ウエハの低圧ガス処理室における不純物ガス濃度の一層の低減が重要である。

また、要求通りに微細加工を行うためには、極めて高精度の位置決め装置が必要である。

こうした見地から上記従来のアクチュエータを 検討すると、以下のような種々の問題点が指摘される.

すなわち、超高真空装置内で用いる駆動モータ の場合、

その結果、モータの容量低下を来す。

④ 駆動モータ回転軸の軸受潤滑に対し、グリースなどに変えて金や銀などの軟質金属を用いたものは、温度の上昇に対しても放出ガスが少ないという利点がある一方で、回転時の摩耗が大きく非常に短寿命である。その結果、真空槽を大気圧に戻して行はねばならない軸受交換作業のサイクルが短くなり、装置の稼動率が大幅に低下してしまう。

以上のような超高真空装置内にアクチュエークを設置した場合の問題点に対して、ベローズ式駆動方式、磁気結合型駆動方式、磁性流体シール駆動方式等のように真空装置外にアクチュエータの 駆動部を設けた場合をみると、

ベローズ式駆動方式ではバックラッシが大きく、 磁石吸引力により回転力を伝達する磁気結合型駆動方式では剛性が低く、いずれも高精度の位置決め精度が得られないという問題点がある。

また磁性流体シール駆動方式では、磁性流体の 耐熱温度が70℃程度と低いから、超高真空槽の ベークアウト工程(真空槽内壁等の吸蔵ガス分子、水分子の放出工程)における加熱温度に耐え得ないという問題点がある。

更に、上記各方式とも超高真空用軸受を使用しており、短寿命は免れない。

そこで本発明は、このような従来の問題点に着目してなされたものであり、その目的とするところは、超高真空の雰囲気中で不純物ガスの放出がなく、且つ高精度の位置決めが可能で、且つ寿命が長く、また真空装置も高稼動率で操業することが可能な密閉型アクチュエータを提供することにより上記従来の問題点を解決することにある。

(課題を解決するための手段)

上記目的を達成するため、本発明は、駆動用コイルへの通電によって励磁される駆動用磁極が形成されたモータステータと、該モータステータの磁極面に対して僅かのすきまを隔てて面対向に配設されると共に磁気軸受を介して回転自在に支承されたモータロータと、該モータロータの変位を測定する変位検出手段とを備え、前記モータステ

また、モータステータを真空槽内などの高度の高度の高度が要求される雰囲気から隔離する上記隔壁は、厚さの薄い非磁性金属隔壁であるから、モでルタステータコイルや磁気軸受コイルへの通電で形成される磁気回路の形成を妨げない。よってモータステータコイルへの通電や磁気軸受コイルへの通電を制御してモータロータの回転位置や姿勢を高精度に制御することが可能であり、高精度の位置決めを行うことができる。

(実施例)

以下、本発明の実施例を図とともに説明する。 第1図は本発明の第1実施例の密閉型アクチュ エータを示し、モータステータ11の外間でカッ プ状のモータロータ12が回転する形式の、いわ ゆるアウターロータ型の直接駆動モータである。

モータステータ11は、基台11a、脚部11 b、胴部11c、頭部111を有し、基台11a の下側に真空フランジ13が、上側には径方向に 張り出した脚部11bがそれぞれ気密にシール溶 接されている。円柱状の胴部11cは脚部11b ータの外面に非磁性金属隔壁を気密に固着して、 前記モータステータの磁極と磁気軸受の磁極と変 位検出手段の磁極との収納空間を密閉し、モータ ロータ側空間とは隔絶させた。

(作用)

モータロータを支承する軸受として、非接触型の磁気軸受を使用することにより、軸受潤滑が不用となり摩耗による寿命の短縮とか、軸受交換等の作業による稼動率の低下が解消される。また、接触型軸受にみられる発度による汚染もない。

また、それら磁気軸受の駆動用コイルやモータステータの駆動用コイル等、不純ガスが吸蔵されやすい部材が配設された個所のアクチュエータ内部を非磁性金属隔壁で気密に覆い、モータロータ側から隔絶したため、モータステータや磁気を対したため、モータステータや磁気があるが、雰囲気を汚染する不純物として放出されることはない。また反対に、モータステータの回転駆動用コイルや絶縁材等が半導体製造のエッチング用反応性ガスで浸食されることもない。

にボルトB1で固着され、頭部11dはその胴部 11cから径方向に張り出して形成してある。そ の胴部11cの中間位置の外周面に、回転駆動用 コイル14によって励磁される回転駆動用磁極と してのモータステータ磁極15が形成されている。

このモータステータ磁極 1 5 の先端部には、一 定のピッチを有する複数の歯が回転軸と平行に設 けられている。

一方、カップ状のモータロータ12は、テーブル面部12aと円筒状の側面部12bと棚部12c円筒状の側面部12bと棚部12c円のタステータ登極15の外側に回転自在に支承とわれている。そのモータロータ12の側面面には、大一タステータでは極15が関面には、前間面には、対対の内側面には、前間面には、が関面をよったがある。この外側の関面には、前間面のようには、前間の外側の関面には、前間の外側の関面には、前間の外側の関面には、前間の外側の関面には、前間の外側の関面には、前間の外側の関面には、前間の外側の関面をよるがあるがあるがあるがあるがあるがあるがあるがあるがある。その場列のピッチと同ったるが、モータスを極極15の歯のピッチと同ったるが、モータスを極極15の歯のピッチと同ったるが、モータスを極極15の歯のピッチと同った。

テータ磁極15の歯とモータロータ磁極16の歯列の位相は相対的にずらすように配設されている。かくして、回転駆動用コイル14への電流の供給を制御しつつモータステータ磁極15の歯を周方向に順次に励磁することにより、モータロータ磁極16の対応する歯を順次吸引してモータロータ12をモータステータ11の回りに回転させる回転駆動力が得られるようになっている。

このモータロータ12は、磁気軸受によって非接触に支承されるように構成されている。する面に支 で の外周面に 第 1 1 c の外周面に 第 1 のラジアル磁極15の上方が固置着されてのラジアル磁気を 1 8 Aが固着されている。上記の各位を 1 7 Aが固着されてル18 Aが固結されている。上記の各位を 1 7 Aが は 2 の内の 1 2 の内の 1 2 の内の は 3 ないのの 1 3 Aに 3 ないの 1

いは静電容量型ギャップ検出器は使用できず、イ ンダクタンス型検出器となる。

モータステータ 1 1 の脚部 1 1 b の下面側の凹所には、断面 U字状のコア 2 5 A と励磁コイル 2 5 B を有する第 1 のスラスト磁気軸受 2 5 が配設され、一方、モータステータ 1 1 の頭部 1 1 d の上面側の凹所には、同様に断面 U字状のコア 2 5 A と励磁コイルを有する助磁コイルを有する第 2 のスラスト磁気軸受 2 7 が配設されている。

また、モータステータ 1 1 の頭部 1 1 d の上面の中央位置の凹所には、断面 E 字状のコア 2 9 A にコイル 2 9 B を巻回してなるスラスト 磁気軸受用ギャップ検出器 2 9 が配設されている。

上記のように支承されたモータロータ12のテーブル面12aには、被回転駆動体が取付けられるようになっている。

そして、上記モータステータ11とモータロータ12との対向面間のすきま30には、例えば非 磁性ステンレスSUS304などの非磁性金属からなる薄肉円筒状の隔壁31が、両者11.12

への通電で第1, 第2の各ラジアル磁気軸受磁極 17A, 18Aを励磁し、その磁気力で対向磁極 17B, 18Bが吸引されて、モータロータ12 のラジアル方向の位置が非接触で保持される。

モータステータ11の頭部11dの下面側には、第1のラジアル磁気軸受用ギャップ検出器21の 検出磁極21Aが検出コイル22を有して配設されると共に、これと対向するリング状の磁性体2 1Bがモータロータ12の内周面にクステータ11 のX、Y方向に設けられたサリンク状とれていたといる。上記検出のもの内間で形成するの方になれた場合の大きには、アウェンでである。とは、同じのものものものでは、同じく第2のラジアルの破壊出コイルのでは、同じは、これと対策は出ると共に、同じはなるとは、これと対向では、は、これと対応による。は、これと対応によるの対けられている。

なお、ここで使用するギャップ検出器は、非磁 性金属隔壁を介して検出するため、渦電流型ある

を隔離するように配設されている。この隔壁31 の上端部は、モータステータ11の頭部11dの 外周面に気密にシール溶接されている。また、隔 壁31の下端部は、モータステータ11の脚部1 1bの外周面に気密にシール溶接されている。

これにより、モータステータ11の外周において、回転駆動用コイル14,モータステータ磁極15,第1のラジアル磁気軸受17の磁極17A,第2のラジアル磁気軸受18の磁極18A,コイル19,第1のラジアル磁気軸受用ギャップ検出器21の磁極21Aとコイル22,第2のラジアル磁気軸受用ギャップ検出器23の磁極23Aとコイル22などが収納されたスペースは、モータロータ12側の外部から完全に隔絶されている。

また、モータステータの脚部11bの下面には、 薄肉の非磁性金属板からなる隔壁32がシール溶 接されており、第1のスラスト磁気軸受25はモ ータロータ12側の外部から完全に隔絶されてい る。

更に、モータステータの頭部11dの上面には、

なお上記各個所のシール溶接は、各コイルやその絶縁材等の耐熱性が比較的低い材料でなる部品が内蔵されている状態で行われるため、温度上昇を局部に限定できる電子ピーム溶接やレーザピーム溶接が用いられる。

次に作用を説明する。

モータロータ12の非接触保持は次のようにしておこなわれる。

第1のラジアル磁気軸受17および第2のラジアル磁気軸受18のコイル19に、制御装置を介して通電すると起磁力を生じ、各磁気軸受磁極17A、18Aが励磁される。非磁性金属からなる隔壁31の厚みは十分に薄いから、磁束は隔壁31を通して対向磁極17B、18Bに到達する。こうして各磁気軸受磁極17A、18Aと、これ

御されたモータ電流を順次流して、モータステータ 班極 15を順次励班する。このモータステータ 破極 15の磁気吸引力で対応するモータロータ磁 極 16の歯が順次吸引されてモータロータ 12が 回転駆動される。

に対向したモータロータ側の磁極17B.18B との間に磁気回路が形成され、その磁気吸引力で モータロータ12のXY方向(ラジアル方向)の 位置が保持される。

また、第1のスラスト磁気軸受25のコイル2 5 B および第2のスラスト磁気軸受27のコイル 27 B に、制御装置を介して通電すると起磁力を 生じ、各磁気軸受コア25A,27Aが励磁される。非磁性金属からなる隔壁32、33を通過す 4分に薄いから、磁束は隔壁32、33を通過する。そので第1のスラスト磁気軸受25にあっては対向側であるモータロータの棚部12cとの間に磁気軸受27にあっては対向側であるモータークストでであっては対向側であるモータークのデーブル面部12aとの間に磁気回路が形成される。その磁気吸引力でモータロータ12の7方向(スラスト方向)の位置が保持される。

モータロータ12の回転駆動は、円周方向に沿い順に配列されている複数の回転駆動用コイル14に対して、図外のドライブユニットを介して制

磁気軸受25、第2のスラスト磁気軸受27の励磁電流を加減すれば、モータロータ12の傾きを補正することができる。

スラスト磁気軸受用ギャップ検出器29の検出信号は、専らモータロータ12の上下保持位置の調整に用いられる。

この密閉型アクチュエータは、例えば半導体製造装置の超高真空槽の槽壁に設けられた取付け孔から真空槽内部にモータロータ12側を差し入れ、真空用フランジ13をポルトで槽壁に固定して取付けられる。

密閉型アクチュエータにおける隔壁31,32,33でそれぞれに密閉されたスペースは、モータステータ11に設けられている図示されない配線孔から基台11aの空孔日を経て大気側に連通しているが、真空槽内部とは完全に隔絶されている。そのため、モータステータ11に取付けられている回転駆動用コイル14、モータステータ磁極15、第1のラジアル磁気軸受17A,18Aやコ

イル19、第1のラジアル磁気軸受用ギャップ検出器21および第2のラジアル磁気軸受用ギャップ検出器23の各磁極21A,23Aやコイル22、あるいは第1のスラスト磁気軸受25、第2のスラスト磁気軸受27、スラスト磁気軸受用ギャップ検出器29等に吸蔵されているガスや水分が真空槽内部に拡散して真空雰囲気を汚染するこ

とは防止される。

したがって、真空槽内部の排気も容易であり、ベークアウト時も短時間で所定の超高真空に到達でき、生産効率が高い。また、コイル絶縁材にわざわざ高価な無機材料を使用する必要もない。更には、半導体製造の場合、真空排気後に真空槽内部に導入されるエッチング用の反応性ガスに対しても、ステンレス材からなる隔壁31,32,33で保護されるから、上記各磁極のコイルや絶縁材等がエッチングされてしまうおそれはない。

また、モータロータ12を支承する軸受として、 非接触型の磁気軸受を使用することにより、軸受 潤滑が不用となり摩耗による寿命の短縮とか、軸

の汚染に対し配慮することが必要である。レゾルバのロータはモータロータ12の内周面に取付けられる。モータロータ12が回転するとレゾルバのロータも回転する。これにより、レゾルバのステータとの歯間のリラクタンスが変化する。その変化を図示しないドライブユニットのレゾルバ制御回路によりデジタル化し、位置信号として利用することで、モータロータ12の回転角度の精密なフィードバック制御がなされ、高精度の位置決めができる。

なお、必要に応じて、第1のラジアル磁気軸受用ギャップ検出器21、第2のラジアル磁気軸受用ギャップ検出器23と第1のラジアル磁気軸受17や第2のラジアル磁気軸受18との間に磁気 適磁板を配設してもよい。

また、モータステータ11を内側、モータロータ12を外側に配設した構成を示したが、これとは反対にモータステータ11が外側、モータロータ12のほうが内側になる構成とすることも可能である。

また、回転駆動用コイル14、第1,第2の各ラジアル磁気軸受17.18のコイル19等は大気側に連通しているから、通電で発熱しても対流で放熱することができ、局部的な蓄熱によるコイル境損も防止できる。なお、回転駆動用コイル14が大気側にあることから、必要に応じてモータステータ11の内部に空気や水を通して強制冷却することも容易である。

モータロータ12の回転の位置決め精度についても、例えばフィードバック制御により、あるいはパルスモータによるオープンループ制御を行うことにより極めて高精度が保証される。フィードバック制御方式の場合は、回転検出器として例えばレゾルバを使用することができる。その場合、レゾルバのコイルを有するステータはモータステータ11の外周面に装着して非磁性金属隔壁31による密閉空間内に配設し吸蔵ガスによる真空槽

第2図には本発明の第2実施例を示す。

この実施例は、本出願人が先に提案した非接触 複動型アクチュエータ(特開昭 6 2 - 1 1 9 5 0) を密閉構造としたもので、モータロータが回転と 同時に上下方向にも駆動される点が上記第1実施 例とは異なっている。

すなわち、モータステータ11の胴部11cの 外周面の上位置には、上下駆動モータ兼姿勢制御 用ラジアル磁気軸受の磁極40がコイル41を有 して配設されると共に、下位置には、回転駆動モ ータ兼姿勢制御用ラジアル磁気軸受の磁極42が コイル43を有して配設されている。モータロー タ12の内周面には、その上方の磁極42に対向するロータ磁極44と、下方の磁極42に対向するロータ磁極45がそれぞれに固着されている。

上下駆動モータ兼姿勢制御用ラジアル磁気軸受の磁極40は、同心円状に円周四等分で設けられ、各磁極先端部の極片は回転軸と垂直に一定のピッチを有するように形成されている。一方、ロータ磁極44の内周面には前記磁極40の極片と対向

する整列した歯列が回転軸と垂直に一定のピッチ で形成されている。そして、コイル41に通電し て磁極40を励磁すると、モータロータ12は中 心方向に磁気吸引力を受けると共に、回転軸(2 軸)方向に沿い上下に駆動される。

回転駆動モータ兼姿勢制御用ラジアル磁気軸受の磁極42は、同じく円周四等分で設けられ、各磁極先端部の極片は回転軸と平行に一定のピッチを有するように形成されている。一方、ロータ磁極45の内周面には前記磁極42の極片と対向する整列した歯列が回転軸と平行に一定のピッチで形成されている。そして、コイル43に通電して磁極42を励磁すると、モータロータ12は中心方向に磁気吸引力を受けると共に、回転軸(2軸)の回りを回転する方向に駆動される。

つまり、モータロータ 1 2 は、上下駆動モータ 兼姿勢制御用ラジアル磁気軸受の磁極 4 0 及び回 転駆動モータ兼姿勢制御用ラジアル磁気軸受の磁 極 4 2 によって、保持されつつ回転軸方向と回転 方向とに駆動されるものである。

9 等が省略できると共に、上下の隔壁32.33 も不用で溶接個所も2個所のみで足りるという利 点がある。

〔発明の効果〕

以上説明したように、本発明によれば、駆動用 コイルへの通電によって励磁される駆動用磁極が 形成されたモータステータと、該モータステータ の磁極面に対して僅かのすきまを隔てて面対向に 配設されると共に磁気軸受を介して回転自在に支 承されたモータロータと該モータロータの変位を 測定する変位検出手段とを備え、前記モータステ ータの外面に非磁性金属隔壁を気密に固着して、 前記モータステータの磁極と磁気軸受の磁極と変 位検出手段の磁極との収納空間を密閉し、モータ ロータ側空間とは隔絶した。そのため、アクチュ エータを例えば半導体製造装置の高真空雰囲気内 や反応性ガス雰囲気中で使用しても、アクチュエ ータ構成部材中で吸蔵ガスが最も多いコイルや有 機絶縁材から高真空雰囲気内に不純ガスが放出さ れたり、あるいはコイルや有機絶縁材等が浸食さ

モータステータ 1 1 の頭部 1 1 d の下面には第 1 実施例と同様に第 1 のラジアル磁気軸受用ギャップ検出器 2 1 が設けられ、一方、脚部 1 1 a の 上面には第 2 のラジアル磁気軸受用ギャップ検出器 2 3 が設けられている。

モータロータ12の姿勢制御は、これらの検出器21,23の検出信号を制御装置を介して上下駆動モータ兼姿勢制御用ラジアル磁気軸受の磁極40のコイル41、及び回転駆動モータ兼姿勢制御用ラジアル磁気軸受の磁極42のコイル43にフィードバックして磁極励磁電流を調整することによりなされる。

しかして、この実施例の場合も、非磁性体金属製の隔壁31をモータステータ11の外周にシール溶接して、上記磁極40,42及び検出器21,23の磁極を密閉し、真空槽内へのガス放出を防止している。

この第2実施例場合は、第1実施例における第 1のスラスト磁気軸受25、第2のスラスト磁気 軸受27、スラスト磁気軸受用ギャップ検出器2

れたりすることはない。

また、上記非磁性金属隔壁で磁気回路の形成を 妨げられることがなく、モータロータの回転や姿 勢制御を高精度に行うことができる。

また、非接触軸受としたため、寿命が長く、且 つ真空装置等も高稼動率で操業することができる という効果が得られる。

4. 図面の簡単な説明

第1図は本発明の第1実施例を半断面で示す側面図、第2図は第1実施例を半断面で示す側面図、第3図は従来の密閉型アクチュエータの一例を示す模式断面図である。

図中、11はモータステータ、12はモータロータ、14,41,43は駆動用コイル、15,40,42は駆動用破極、17,18,25,27は磁気軸受、21,23,29は変位検出手段、31,32,33は非磁性金属隔壁。

第 図

-250-