

Data Science Institute Institiúid Eolaíochta Sonraí

Unsupervised Representation

Learning for Under-Resourced Languages

Name: Koustava Goswami

Unit for Linguistic Data

Data Science Institute

Date: 28/02/2022

Supervisors:

- Dr. John McCrae
- Dr. Theodorus Fransen

What are Under Resourced Languages

Non-standard Writing System

Limited presence on Web

No large corpora

Lack of linguistic documentation

Machine translation absent or poor

Some Under Resourced Languages

- Manx, Welsh, Breton, Irish, Scottish Gaelic (Indo-European Celtic)
- Assamese, Bhojpuri, Gujarati (Indo-European Indo-Aryan)
- Tamil, Telegu (Dravidian Family)
- Setswana, isiXhosa, isiZulu (African Languages)

Benefit of NLP for Under Resourced Languages

- Automatic Machine Translation helps native speakers to communicate with the outer world.
- Computer Aided Language Learning(CALL) model can be extremely beneficial where learning resources are not available.
- Languages where native speakers are not present can be revived.

Limitations of Deep Models in Under Resourced Languages

- Deep Learning algorithms are very data hungry as a result it is very hard to implement Deep Neural Networks for different Under Resourced Languages.
- It is very hard to find resources to label data in corpus.
- Texts which can be found on social network sites are full of code-mixed sentences which makes it very hard to identify languages of same family group where very few dictionary resources present.

Are you a Cross-Lingual Speaker of Under-Resourced Languages?

Representation Learning of Cross-lingual Documents

Question

• Is an unsupervised deep neural model capable of identifying languages as accurately as supervised language identification models for code-mixed

under-resourced and closely-related languages?

$$L_u = \sum_{i=1}^{N} \max_{j=1}^{i} p_{ij} - \max_{i=1}^{N} \sum_{j=1}^{i} p_{ij}^2$$

- 1. The model is designed based on two-way deep backpropagation method with joint learning.
- 2. Introduced new unsupervised loss function MLC (Maximum Likelihood Categorization) which maximizes the probability distribution of feature assignments on each class (or cluster).
- 3. The iterative clustering process fine-tunes the sentence embedding and *enhances the cluster assignment* in an unsupervised way.

Accuracy of different models for unsupervised LI and DI

Unsupervised cluster assignment accuracy

Figure 2: Attention visualization of dialect-specific words pointed out by the model

- The dialects are very closely related from four different parts —Basel (BS), Bern (BE), Lucerne (LU), and Zurich (ZH).
- Consisting of the same characters even though they represents two different dialects.
- Model is also able to identify dialectal (pronunciation) variants for an inflected form of a verb ex:
 - a. in case of BE, it is written as "hei" whereas in LU it is written as "hend" for English word "have".

Hmm!!! Interesting.. but wait, can we learn a better Cross-Lingual Sentence Representation?

13

Question

• Does an unsupervised deep sentence embedding framework generate efficient sentence embeddings in cross-lingual domains for under-resourced languages without the use of parallel corpora for downstream natural language tasks?

Related Work

- The model relies on unsupervised machine translated alignment produced by XLM-R.
- The model performed less efficiently while tested for parallel sentence mining for low-resourced languages.
- Does not understand semantic similarity between sentences efficiently.

Kvapilíková, Ivana, et al. "Unsupervised Multilingual Sentence Embeddings for Parallel Corpus Mining." In ACL 2020

Can we use knowledge transfer to build an unsupervised sentence embedding model?

Introducing Anchor-Learner Machine Learning Framework and Unsupervised Sentence Embedding Model

Sentence Embedding Framework

- The Anchor works as a stabiliser in the system providing its prior knowledge on word level.
- The Learner learns the best alignment in the cross-lingual vector space.
- The semantic similarity and relatedness between sentences are being learned using multi-task learning.
- Automatic knowledge distillation process is introduced which does not need any manual supervision.

- <u>Learner</u> is trained to generate sentence embedding in <u>multi-task</u> setup
 - \circ <u>Unsupervised</u> Loss function L_A captures <u>semantic</u> relationship between sentence pairs
 - \circ Loss function L_B helps to map correct <u>translation pairs</u>
- We introduce <u>Word Mover's Distance</u> in loss function L_A
 - Preserve <u>relative semantic distances</u> between sentence pairs
 - Minimise <u>Euclidean</u> distance with the knowledge of <u>semantic</u> relation at <u>word level</u> from <u>anchor</u> model

$$\mathcal{L}_{\mathcal{A}} = \frac{1}{N} \sum_{i=1}^{N} \exp^{|\exp^{-d_{euc}(s_i',t_i')} - exp^{-d_{wmd}(s_i,t_i)}|}$$

• L_B addresses translation ranking problem using <u>Cosine similarity</u>

$$\mathcal{L_B} = \frac{1}{N} \sum_{i=1}^{N} cossim(s_i', t_i')$$

- Inclusion of <u>Word Mover's Distance</u> is <u>advantageous</u> for <u>unsupervised</u> learning
 - Closer representations for similar sentences
 - Dissimilar sentences have embeddings that are apart in the embedding space
- Efficiently captures <u>negation</u> in sentence pairs while understanding semantic relatedness

Datasets used to train the model

- We have trained the model based on Multilingual Natural Language Inference Dataset.
- Training does not involve any cross-lingual parallel datasets.
- The training dataset contains both monolingual and cross-lingual datasets.
 - In case of cross-lingual datasets building we keep premises from the source language and replace the hypothesis with random hypothesis sentences, and vice-versa.
- The training process does not take any annotated levels into account.
- We have trained our model on 13 languages.

Premise	Hypothesis	Type Monolingual (EN-EN)	
How do you know? All this is their information again.	This information belongs to them.		
 woher weißt du das? All das sind ihre Informationen. 	Diese Information gehört Ihnen.	Monolingual (DE-DE)	
How do you know? All this is their information again.	Diese Information gehört Ihnen.	Cross-lingual (EN-DE)	
 woher weißt du das? All das sind ihre Informationen. 	This information belongs to them.	Cross-lingual (DE-EN)	

That is interesting.. What about word representation learning?

Current Research Work

Question

 Does an unsupervised deep neural model learn morphological paradigm relatedness without any prior linguistic information for closely related and low-resourced languages?

Unsupervised Paradigm Discovery Problem

- This work treats the paradigm discovery problem (PDP)—the task of learning an inflectional morphological system from unannotated sentences.
- The system makes use of word embeddings and string similarity to cluster forms by cell and by paradigm.
- They have released gold standard dataset for 8 languages.

Gold Grid	cell 1	cell 2	cell 3	cell 4	cell 5
paradigm 1	«watch»	«watches»	watching	watched	watched
paradigm 2	«follow»	follows	«following»	followed	followed
paradigm 3	see	«sees»	«seeing»	«saw»	seen

Alexander, et al. "The Paradigm Discovery Problem" In ACL 2020

Unsupervised paradigm clustering task

For example, if the tokenized Bible text is: "peace be with you! as the father has sent me, I am sending you.", then the output format is:

Unsupervised Morphological Typology Learning (currently in progress)

Figure 1: MGAN's architecture with K generators, a binary discriminator, a multi-class classifier.

- No rule extraction is needed.
- Language independent.
- Providing only list of words as corpora will be sufficient.
- Can be extended to n number of languages.

Reference Papers for the talk

- Goswami, K., Rani, P., Chakravarthi, B. R., Fransen, T., & McCrae, J. P. (2020, December). ULD@ NUIG at SemEval-2020 Task 9: Generative Morphemes with an Attention Model for Sentiment Analysis in Code-Mixed Text. In *Proceedings of the Fourteenth Workshop on Semantic Evaluation@LREC2020* (pp. 968-974).
- Goswami, K., Sarkar, R., Chakravarthi, B. R., Fransen, T., & McCrae, J. P. (2020, December). Unsupervised Deep Language and Dialect Identification for Short Texts. In *Proceedings of the 28th International Conference on Computational Linguistics* (pp. 1606-1617).
- Goswami, K., Dutta, S., Assen, H., Fransen, T., & McCrae, J. P. (2021). Unsupervised Cross Lingual Sentence Embedding using Multitask Learning (IJCAI 2021) (Currently Under Review).
- Rani, P., Suryawanshi, S., Goswami, K., Chakravarthi, B. R., Fransen, T., & McCrae, J. P. (2020, May). A comparative study of different state-of-the-art hate speech detection methods in Hindi-English code-mixed data. In *Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying@LREC2020* (pp. 42-48).
- Sarkar, R., Goswami, K., Arcan, M., & McCrae, J. P. (2020, December). Suggest me a movie for tonight: Leveraging Knowledge Graphs for Conversational Recommendation. In *Proceedings of the 28th International Conference on Computational Linguistics* (pp. 4179-4189).

