TRABAJO FINAL: PIPELINE PROCESADOR DLX (Familia MIPS)

ARQUITECTURA DE COMPUTADORAS
2024

Consigna

Implementar el pipeline del procesador MIPS

Marco teórico

Etapas

- ▶ **IF (Instruction Fetch):** Búsqueda de la instrucción en la memoria de programa.
- ▶ ID (Instruction Decode): Decodificación de la instrucción y lectura de registros.
- EX (Excecute): Ejecución de la instrucción propiamente dicha.
- MEM (Memory Access): Lectura o escritura desde/hacia la memoria de datos.
- WB (Write back): Escritura de resultados en los registros.

Datapath

Instruction Fetch

Instruction Decode

Execute

Memory access

Write Back

Segmentación

Control Unit

Riesgos

▶ Tipos:

- Estructurales. Se producen cuando dos instrucciones tratan de utilizar el mismo recurso en el mismo ciclo.
- De datos. Se intenta utilizar un dato antes de que este preparado. Mantenimiento del orden estricto de lecturas y escrituras.
- De control. Intentar tomar una decisión sobre una condición todavía no evaluada.

Riesgos de datos Dependencias de registros

Solución

Unidad de cortocircuitos

Riesgos de datos Dependencias de datos

Solución

Unidad de detección de riesgos

Riesgos de control

Solución

Pipeline

Tipo de Instrucciones

▶ Tipo R

- Son operaciones aritméticas y lógicas
- ▶ OP Code = 000000
- Indican la operación en los 6 bits menos significativos

OP Code	rs	rt	rd	sa	Función
6	5 A Fuente	5 A Fuente	5 ♠ Destino	5	6

Tipo de Instrucciones

Tipo I

- Operaciones con un registro y un valor inmediato
- En operaciones lógicas y aritméticas se opera con «rs» y se almacena el resultado en «rt».
- ► En load y store «rs» es la base y el inmediato es el offset.

opcode	rs	rt	immediate
6	5	5	16
	†	 	†
	base	dst	offset

Tipo de Instrucciones

Tipo J

- Operaciones de salto incondicional
- ▶ La dirección a la que se salta es la almacenada en el registro «rs».

000000	rs	00000	rd	00000	Función
6	5 ♠ Destino	5	5 † Dirección de retorno	5	6

Requerimientos

Instrucciones a implementar

- R-type
 SLL, SRL, SRA, SLLV, SRLV, SRAV
 ADDU, SUBU
 AND, OR, XOR, NOR
 SLT, SLTU
- ► I-Type

 LB, LH, LW, LWU, LBU, LHU, SB, SH, SW

 ADDI, ADDIU, ANDI, ORI, XORI, LUI

 SLTI, SLTIU, BEQ, BNE

 J, JAL
- J-Type JR, JALR

Otros requerimientos

La memoria de datos debe estar separada de la memoria de instrucciones. Ambas deben ser implementadas con IPCores

El programa a ejecutar debe ser cargado en la memoria de programa mediante un archivo «.coe»

Se debe incluir una unidad de debug que envíe información a la pc mediante la uart.

Debug unit

- Se deben enviar a la PC a través de la uart:
 - ► El contenido de los 32 registros.
 - ► El contenido de los latches intermedios.
 - Contenido de la memoria de datos usada.

Modos de operación

- Debe permitir dos modos de operación:
 - Continuo, se envía un comando a la fpga por la uart y esta inicia la ejecución del programa hasta llegar al final del mismo. Llegado ese punto se muestran todos los valores indicados en pantalla.
 - Paso a paso: Enviando un comando por la uart se ejecuta un ciclo de clock. Se debe mostrar a cada paso los valores indicados.

Pipeline final

Bibliografía

- ► Instrucciones:
 - ► MIPS IV Instruction Set
- Pipeline:
 - Computer Organization and Design 3rd Edition.
 Chapter 6. Hennessy- Patterson