TITLE:- Event Horizons in Energy Systems: Modeling Overload Relay Dynamics for Autonomous Spacecraft Resilience

AUTHOR:- ARJUN A.K.A HEET TRIVEDI EMAIL:- heettrivedio2@gmail.com

Abstract: - In Autonomous Orbital Nodes such as Project SOLIS, energy Distribution integrity is Critical. Overload Relay Trips, Triggered by excessive Current Draw or Voltage Collapse, represents a Class of Internal Electrodynamic failure Capable of Destabilizing Subsystems rapidly.

Introduction: - An Overload Relay Trip occurs when Current load Exceeds Safety Thresholds beyond Recoverable margins. Unlike Random failure, these are force-driven Collapses – where a system's own power Requirements skills itself unless managed. In space, no manual reset exists; hence automatic fallback and self-isolation protocols are mandatory.

Definition of Overload Relay Trip:- "Overload relay trip" is forced Disconnection of Power Paths to present Thermal or mechanical Destruction of Critical Components when energy exceeds Design thresholds.

Physical Principles:- Core Laws Involved;

$$\bigstar$$
 Ohm's Law - > $V = IR$

$$\bigstar$$
 Power Law - > P = IV

★ Thermal Stress Equation;

$$Q = I^2 Rt$$

Where., Q = thermal energy generated

I = Current

R = Resistance

t = time

Excessive Q leads to conductor melting, Semiconductor Destruction, and core failure.

Dynamics Load behaviour: Load is not Constant in SOLIS System. Spikes Occurs due to:

- ★ Solar Intensity Fluctuations
- ★ Communication Burst Activity
- ★ Environmental Reaction Events (Micrometeorite Shielding Activation)

Thus., Dynamic load Monitoring becomes Non-linear and requires predictive Adjustment, not Static Thresholds.

Relay Activation Models:- Simplified models;

★ Thermal model - > Activates after

Accumulated heat

★ Magnetic model - > Activates Instantly if

Current overshoot happens Sharply.

Both Modeled by Exponential Functions;

$$Trip = T_0 * e^{-k(lactual/lrated)}$$

Mathematical Failure Modeling:- Probability of Overload Trip;

$$Ptrip = 1 - e^{-\lambda \Delta I}$$

Where., $\lambda = Relay Sensitivity factor$ $\Delta I = Excess Current Margin$

Critical Subsystems Affected: -

Subsystem	Risk if Trip fails
CPU Core	Meltdown, Catastrophic damage
Communication Stack	Total Radio Blackouts
Power Banks	Thermal Runaways, Explosion Risk
Navigation Circuits	Control Signal Corruption

Simulation Parameters:-

Parameter	Value
Nominal Load	1.0 Amps
Trip Point	1.5 Amps Sustained for > 2 seconds
Emergency Cutoff	2.2 Amps Instantaneously

Thermodynamics parallels:- Relay trip is a self-defense Entropy operation. It is equivalent to an energy valve preventing localized heat death. Thus;

 $\delta S_{saved} \propto \delta E_{cutoff}$

Energy Saved = Entropy Prevented

Future Research Extensions:- ★ Smart Relays with quantum-tuned thresholds.

★ Load Prediction using AI (Dynamic pre-trip

Anticipation)

★ Magnetic Switch Relays immune to space

radiation Distortion.

In Project SOLIS, I propose.,

"Every power path is a probabilistic river of entropy; relay trips for artificial event horizons collapsing paths to solve spacetime stability".

Which means., Every relays is like a Black Hole event Horizons and saving systems from their own energy collapse.

References:- (1) J.R. Lucas,

"Relay Protection and System Stability in Electrical Power Systems," University of Colombo Publications, 1998.

(2) IEEE Po wer System Relaying Committee,

"Protective Relaying Theory and Applications," IEEE Press, 1997.

(3) C.L. Wadhwa,

"Electrical Power Systems," New Age International Publishers, 2006.

(4) NASA Glenn Research Center,

"Electric Power Systems for Spacecraft," NASA Technical Reports, 2004.

(5) M.A. Pai,

"Power System Stability: Analysis and Control," North Holland, 1981.

(6) F.P. Wohlbier,

"Energy Dissipation Mechanisms in High-Power Electrical Systems," Journal of Energy Physics, 2007.

(7) V. Vittal,

"System Protection Techniques in Space-Based Energy Networks," Proceedings of IEEE Aerospace Conference, 2015.

(8) Landauer, R.,

"Dissipation and Noise in Computation," Physics Today, 1991.

(9) P. Kundur,

"Power System Stability and Control," McGraw-Hill Education, 1994.

(10) Project SOLIS Internal Research (Heet Trivedi, 2025),

"Thermodynamic Control and Fallback Structures in Orbital Power Architectures,"

(Self-Published Original Research).