

Preprocesamiento de datos

Análisis automático de datos para ciencias biomédicas (Transversal Másteres Universitarios)

Juan Carlos Fernández Caballero Departamento de Informática y Análisis Numérico Universidad de Córdoba curso 2021-2022

Agradecimientos

- Estas diapositivas se han elaborado con la colaboración de:
 - ► Pedro Antonio Gutiérrez Peña pagutierrez@uco.es.
 - Javier Sánchez-Monedero sanchez-monederoj@cardiff.ac.uk.
 - ► María Pérez-Ortiz maria.perez@ucl.ac.uk.
 - César Hervás Martínez chervas@uco.es.
 - Diversas fuentes relacionadas con la temática (consultar bibliografía).

Índice

¿Preprocesar? Visualización Operaciones de preprocesado Selección características Selección instancias Conclusiones

Índice

¿Preprocesar?

Objetivo del preprocesamiento

Recordatorio: Etapa 2 del proceso de Ciencia de Datos.

Objetivo: Mejorar la calidad de los datos, de forma que:

- Se elimine el ruido o "suciedad" que pueda afectar a los modelos.
- Los datos sean interpretables por los algoritmos.
- Se pueda inferir (extraer) el máximo conocimiento.
- Se consiga un mejor rendimiento.

Datos de calidad → Resultados de calidad.

Ruido en los datos

Los datos del mundo real están "sucios", con lo que aportan ruido a los módelos:

- Incompletos: Datos perdidos. ¿Se podrían recuperar o reemplazar, por ejemplo, por la media?
- Mala representación y consistencia en el formato:
 - Ej: Formato de números en separador de cientos y miles.
 - ► Ej: Formato de fechas: 2020-03-04; 4/3/2020.
 - Ej: Valor de mediciones: Temperatura en Celsius o Fahrenheit.
- Transformación de variables:
 - ▶ Ej: Calores nominales que no se pueden tratar por el algoritmo "X".
 - ▶ Ej: Normalización, de forma que los datos estén en la misma escala.
 - ► Ei: Discretización.
- Duplicidad: Existencia de duplicidad de patrones.
- Mediciones erroneas y/o extremas:
 - ► Ej: Errores en la toma o transcripción de datos.
 - ► Ej: Valores atípicos o extremos.

Ruido en los datos

- Selección de información en cuanto a instancias:
 - Ej: Demasiadas instancias o pocas instancias.
 - ► Ej: Patrones irrelevantes que se deban eliminar dependiendo del valor que tengan en un determinado atributo.
- Selección de información en cuanto a atributos:
 - Ej: Existen demasiados atributos o muy pocos atributos.
 - ► Ei: ; Existen atributos redundantes?: Análisis de correlaciones o selección de características para eliminar los redundantes.
 - ► Ei: ¿Existen atributos de diferentes fuentes que representen lo mismo?: Distinto a correlación, posibilidad de eliminarlos.
 - ► Ej: ¿Existen atributos que no aporten información?: Se llaman atributos identificadores, por ejemplo el dni de las personas o el número de un patrón.

Relevancia de los datos

¿Son los datos que tenemos relevantes y suficientes para nuestra tarea?

Algunas reglas **orientativas** generalmente aceptadas (pero no aplicables siempre):

- Número de atributos: Para cada atributo debería haber 10 o más instancias.
- Número de instancias: Por cada clase al menos 100 instancias.

Base de datos desbalanceada: Aquella que tienen clase/s que tiene muchos menos patrones que el resto \rightarrow aplicar métodos específicos para balancear.

- Métodos de Oversampling: Aumentan el número de instancias de las clases menos representadas.
- Métodos de Undersampling: Disminuyen el número de instancias de las clases más representadas.

Buscar en la web: Oversampling and undersampling in data analysis.

Índice

Visualización

Visualización

- Antes incluso del preprocesamiento, es necesario analizar las características de los datos para conocer mejor el problema.
- Par ello, podemos convertir la información en una representación gráfica que nos ofrezca una visión más coherente de los datos.
- Esto ayuda a enfocar las tareas de preprocesamiento a realizar y permite, por ejemplo:
 - Detectar posibles datos erróneos.
 - Detectar y/o comparar posibles tendencias o frecuencias inusuales.
 - ► Detectar **dependencias** o correlaciones.
 - ► Detectar *outliers* (valores atípicos o extremos).
 - ► Detectar valores perdidos.

¿Preprocesar? Visualización Operaciones de preprocesado Selección características Selección instancias Conclusiones

Visualización

Los histogramas son diagramas de barras que pueden servir para:

- Dar una visión de la distribución de la población respecto a una característica o atributo.
- Mostrar el grado de homogeneidad o de variabilidad de los datos.
- Mostrar frecuencias inusuales que podrían venir de un valor etiquetado incorrectamente.

Buscar en la web: histogramas en machine learning o en análisis de datos.

Visualización

Diagramas de caja: boxplot

- Proporcionan el valor máximo, el mínimo, la mediana y los cuartiles.
- Ofrecen una visión de la simetría y dispersión que siguen los datos.
- Desvelan la presencia de posibles outliers y valores extremos.
- Buscar en la web: diagrama de caja para más información.

Figura: Boxplot atributo SalePrice.

Visualización

Gráficos de dispersión: scatter plot

- Estudian la relación existente entre dos atributos
- Pueden sugerir correlaciones entre los atributos.
- También útiles para detectar outliers y valores extremos.
- Buscar en la web: diagrama de dispersión para más información.

Histogramas en Weka

• En la pestaña **Explorer->Preprocess**, al seleccionar el atributo.

Scatter plots en Weka

- También la pestaña Explorer->Visualize nos permite ver graficos de dispersión (scatter plots) en pares de atributos.
- Doble clic en una gráfica permite individualizarla.

Índice

Operaciones de preprocesado

Preprocesado de datos en Weka

En Weka, las **herramientas de preprocesamiento** se denominan **filtros**, y hay dos tipos: **supervisados** y **no supervisados**.

- Filtros no supervisados: No tienen en cuenta la variable objetivo a predecir (clasificación/regresión).
 - ► Ejemplos sobre instancias: borrar porcentaje, borrar instancias con un valor dado en algún atributo, duplicados,etc.
 - ▶ **Ejemplos sobre atributos**: reemplazar valores perdidos, nominal a binario, normalizar, discretizar, reemplazar valores perdidos, etc.
- Filtros supervisados: Tienen en cuenta la variable objetivo a predecir para hacer operaciones sobre los datos.
 - ► **Ejemplos sobre instancias**: Oversampling, Undersampling, crear k-folds estratificados, etc.
 - ► **Ejemplos sobre atributos**: Selección de características, ordenación de clases, etc.

Filtro Tratar valores perdidos

La mayoría de métodos de Ciencia de Datos no pueden trabajar con valores perdidos. Algunas opciones:

- 1. Ignorar los patrones: Más del 5% \longrightarrow pérdida de información.
- Rellenar manualmente si se conoce el valor (en general inviable).
- 3. Imputación de datos: substituir los valores por algo.
 - ► Rellenar usando **media/moda** de los datos/clase.
 - Variables **cuantitativas** → usamos la media.
 - Variables categóricas → usamos la moda (valor más frecuente).
 - Rellenar utilizando distancias.
 - Regresión a partir de otros atributos que no tengan valores perdidos.

Recuperar valores perdidos: ejemplo media

Precaución, este ejemplo presenta un problema:

Person	Highest Education	Salary
А	School	10000
В	Post Graduate	40000
С	Graduate	35000
D	School	11000
E	Graduate	NA
F	Post Graduate	42000
G	Post Graduate	39000
Н	Graduate	25000
1.	School	12000
J	School	NA
K	Graduate	31000
L	Post Graduate	39500

- Media global de la columna: 28450 (mismo salario para School que para Graduate).
- Solución: calcular la media por separado para *School* (11000) y para *Graduate* (30333).

Recuperar valores perdidos: ejemplo moda

Product	Туре	User Rating (0-5)
Α	Grocery	5
В	Cream	3
С	Fashion	2
D	Fashion	3
E	Cream	NA
F	Fashion	4
G	Grocery	2
Н	Cream	2
I	Cream	5
J	Grocery	1
K	Fashion	4
L	Grocery	4

- En este caso, no podemos usar medias, ya que la variable es categórica ordinal (user rating u opinión del usuario de 0 a 5).
- El valor medio sería 3,18 y no tiene sentido como categoría.
- Deberíamos calcular la moda (preferentemente condicionada a Cream, recuerde el problema de la media).

Filtro Valores perdidos en Weka

 $\texttt{filters} {\rightarrow} \texttt{unsupervised} {\rightarrow} \texttt{attribute} {\rightarrow} \ \texttt{ReplaceMissingValues}.$

Compruebe usted mismo la aplicación del filtro usando cargando algún dataset con datos perdidos en Weka.

weka.gui.GenericOl	ojectEditor	X
weka.filters.unsupervised	f.attribute.ReplaceMissingValues	
	g values for nominal and numeric attributes in a dataset means from the training data.	More Capabilities
debug	False	▼
doNotCheckCapabilities	False	▼
ignoreClass	False	▼
Open	Save OK	Cancel

- \longrightarrow Algunos métodos de ML **solo permiten trabajar** (o trabajan mejor) con valores **nominales**.
- \longrightarrow En otras ocasiones, una variable con valores discretos permite **reducir la cantidad de información** y hacer que los atributos sean más **fáciles de entender**
 - La solución podría consistir en discretizar una variable numérica.
 - Por ejemplo, una variable edad que toma valores de 5 a 64 años. Se podría generar una variable categórica nominal con estas categorías: {edad<=10, 10<edad<=30, 30<=edad<45, edad>=45}
 - Métodos de discretización no supervisados:
 - ► Igual amplitud.
 - ► Igual frecuencia.
 - ► *Clustering*: Se basa en agrupar instancias similares (buscar algoritmo *k*-medias en la web).

Igual amplitud.

- ightharpoonup Divide el intervalo en k intervalos del mismo ancho W.
- ▶ El valor que debe tomar k debe tener sentido según la semántica del problema \longrightarrow Necesidad del experto.
- Si m es el valor mínimo y M es el valor máximo, el ancho W será $W = \frac{M-m}{\nu}$.
- Es la forma más simple, pero los outliers pueden dominar la conversión, ya que su valor es determinante en el ancho.
- Además, puede generar desbalanceo de las categorías generadas, pocos o muchos patrones en un intervalo.

• Igual frecuencia.

- Divide el intervalo en k intervalos de distinto ancho, tratando de generar categorías (intervalos) balanceadas en cuanto al número de patrones por intervalo.
- ► El valor que debe tomar k debe tener sentido según la semántica del problema → Necesidad del experto.
- Es decir, se fuerza a que, tras la discretización, el número de ejemplos en cada categoría sea, aproximadamente, el mismo.
- Problema: Quizás haya patrones que debieran entrar en otro intervalo.

Filtro Discretización en Weka

Filtro Discretización en Weka

Al pichar sobre el nombre del filtro una vez seleccionado, nos aparecen sus parámetros configurables.

Podemos configurar por frecuencia o amplitud mediante las opciones "bins" y

"useEqualFrecuency".

Filtro Discretización en Weka

Ejemplo para "Iris" con la configuración anterior (igual amplitud):

Compruebe usted mismo la aplicación del filtro usando Weka.

Filtro Normalización y estandarización

- Normalizar: Pasar los valores de todos los atributos a un rango único, para que todos adquieran la misma importancia.
- Permite una mejor interpretabilidad del modelo, sobre todo en los problemas de regresión, no olvide usarlo.
- La mayoría de metodologías de ML trabajan mejor con los datos normalizados.
 - En Weka, algunas lo hacen de manera automática y transparente para el usuario.
 - En otros casos conviene que el usuario pruebe el rendimiento normalizando los datos previamente.
- Normalización min-max: transformación de los datos, usualmente entre [0,1].
 - Atributo A, con valor mínimo m_A y valor máximo M_A .
 - Intervalo deseado: valor mínimo m_A^* y valor máximo M_A^* .

$$[m_A, M_A] \Rightarrow [m_A^*, M_A^*]$$

$$v \Rightarrow v^*$$

$$v^* = m_A^* + (v - m_A) \frac{M_A^* - m_A^*}{M_A - m_A}$$

► Se conserva la relación entre los datos originales.

Filtro Normalización en Weka

 $\mathtt{filters} {\rightarrow} \mathtt{unsupervised} {\rightarrow} \mathtt{attribute} {\rightarrow} \ \mathtt{Normalize}$

Compruebe usted mismo la aplicación del filtro usando Weka. La figura actual muestra una normalización [0,1].

weka.gui.GenericOb	ojectEditor		×
weka.filters.unsupervised	l.attribute.Normalize		
About Normalizes all nume class attribute, if set)	eric values in the given (dataset (apart from the	More Capabilities
debug	False		▼
doNotCheckCapabilities	False		V
ignoreClass	False		▼
scale	1.0		
translation	0.0		
Open	Save	ОК	Cancel

Filtro Nominales a binarios

Algunos métodos como las Redes Neuronales y la regresión solo trabajan con atributos numéricos (al igual que otros, como algunos arboles de decisión, trabajan solo con nominales). Es necesaria una transformación:

En Weka filters \rightarrow unsupervised \rightarrow attribute \rightarrow NominalToBinary

Filtro Nominales a binarios

- Con la opción BinaryAttributesNominal=False (por defecto en Weka) todos los atributos nominales se transfoman a numericos (un nuevo atributo por cada etiqueta).
 - Los nominales que tenían solo dos etiquetas en su lista ({etiqueta1, etiqueta2}) se transforman a numéricos con dos valores posibles, 0 ó 1.
 - Con la opción transformAllValues=True los nominales que tenían solo dos etiquetas en su lista también se transforman a númericos (al igual que el resto de nominales) dando lugar a dos nuevos atributos binarizados.
- Con la opción BinaryAttributesNominal=True los atributos nominales siguen siendo nominales, pero por cada etiqueta de la lista de nominales se crea un nuevo atributo nominal con dos etiquetas posibles {t,f}.
 - Los nominales que tenían solo dos etiquetas en su lista ({etiqueta1, etiqueta2}) permanencen igual.
 - Con la opción transformAllValues=True los nominales que tenían solo dos etiquetas en su lista también siguen siendo nominales (al igual que el resto de nominales) dando lugar a dos nuevos atributos nominales con dos etiquetas posibles {t,f}.
- Compruebe usted mismo la aplicación del filtro usando Weka.

Filtro Datos anómalos (outliers y extremos)

- Los outliers son datos con valores sus características considerablemente diferentes a la mayoría.
 - Ojo: Pueden ser correctos aunque sean anómalos estadísticamente para la metodología de detección que se esté usando.
- Los valores extremos son datos mucho más diferentes al resto que los outliers. Estos datos probablemente si sean datos anómalos, malas mediciones, etc.
- Detección:
 - ► Mediante distancias respecto a los demás datos (boxplots).
 - ► Gráficos de dispersión (*scatter plot*).
 - Mediante técnicas de agrupamiento que dejen fuera a patrones anómalos (k-medias). Busque información en la web si desea conocer su funcionamiento o metodología de trabajo.

Filtro Datos anómalos (outliers y extremos)

Figura: Agrupamiento o clustering

¿Qué hacemos si detectamos outliers y extremos?:

- Eliminar el patrón (más habitual).
- Ignorar: Hay modelos que son robustos a *outliers* y extremos.
- Reemplazar el outlier o extremo por la media del atributo u otro estadístico.

Filtro Datos anómalos (outliers y extremos) en Weka

 $\texttt{filters} {\rightarrow} \texttt{unsupervised} {\rightarrow} \texttt{attribute} {\rightarrow} \ \texttt{InterquartileRange}$

Se basa en los rangos interquartílicos, como los boxplots.

¡Ojo!: solo se puede aplicar cuando TODOS los atributos son de tipo numérico (sino, aplicar antes el filtro no supervisado *NominalToBinary*).

weka.gui.GenericObj	ectEditor	<u>x</u>
weka.filters.unsupervised.	attribute.InterquartileRange	
About		
A filter for detecting ou interquartile ranges.	More Capabilities	
attributeIndices	first-last	
debug	False	_
detectionPerAttribute	False	▽
doNotCheckCapabilities	False	_
extremeValuesAsOutliers	False	_
extremeValuesFactor	6.0	
outlierFactor	3.0	
outputOffsetMultiplier	False	v
o 1	Save OK	Cancel
Open	Save OK	Cancel

Filtro Datos anómalos (outliers y extremos) en Weka

Significado de los valores de configuración del filtro filters→unsupervised→attribute→ InterquartileRange

- outlierFactor: Por defecto establecido a 3. A mayor valor (4, 5, 6, ...)
 hace que un patrón sea más dificil que se considere como outlier a
 pesar de que sea muy diferente al resto.
- extremeValueFactor: Por defecto establecido a 6. A mayor valor (7, 8, 9, ...) hace que un patrón sea más dificil que se considere como extremo o extreme outlier a pesar de que sea muy diferente al resto.

Índice

Selección características

La selección de características implica una reducción del tamaño de los datos.

- Más atributos no significa más éxito en la clasificación: A mayor número de atributos mayor tiempo de cómputo y probabilidad de tener sobreaprendizaje si hay atributos redundates.
- Permite al método centrarse sólo en los atributos relevantes → Se mejora la calidad del modelo.
- El modelo resultante tiene menos variables → Se obtiene una mejor interpretabilidad.

Selección de características: Ejemplo

Ejercicio: Seleccionar dos atributos para clasificar estos 5 patrones (4 dimensiones o atributos)

Selección de características: Ejemplo

*X*1 : [1,2,3,{4,5}] *X*2 : [{1,2},3,{4,5}]

 $X3:[1,\{2,3\},\{4,5\}]$

3:[1,{2,3},{4,5}]

 $X4:[\{1,2,3\},4,5]$

¿Elegiría $\{X_1, X_2\}$ o $\{X_1, X_3\}$? Mejor solución: $\{X_1, X_4\}$

Una manera de seleccionar característica es mediante técnicas de búsqueda que exploren el espacio de los posibles subconjuntos de características.

• Se plantea como un problema de **búsqueda** y de **evaluación**.

Método de evaluación: Mediante una función de evaluación se determina la **bondad** de subconjuntos de atributos en su **discriminación sobre la clase de salida**.

Nos centraremos en tres.

- Pestaña **Select attributes.Attribute Evaluator** en Weka.
 - CfsSubsetEval: Tiene en cuenta tanto lo bueno que son los atributos respecto a la salida, como lo redundantes que son entre si, indicando los atributos más importantes.
 - ► CorrelationAttributeEval: Evalua lo bueno que es cada atributo respecto a la salida, basándose el coeficiente de correlación de Pearson respecto a la misma. Se suele utilizar más en problemas de regresión para correlaciones lineales. Indica la importancia de cada atributo mediante un ranking que va de mayor a menor.
 - Si tenemos variables **nominales** se aconsejan pasarlas a **numéricas** (filtro **no supervisado** *NominalToBinary*)).
 - ► InfoGainAttributeEval: Evalua lo bueno que es cada atributo respecto a la salida, basándose en la ganancia de información respecto a la misma. Se suele utilizar más en problemas de clasificación. Indica la importancia de cada atributo mediante un ranking que va de mayor a menor.

Los dos últimos métodos *CorrelationAttributeEval* y *InfoGainAttributeEval* nos pueden aportar información sobre el problema, pero hay que tener en cuenta lo siguiente:

- No seleccionan características de manera automática.
- No tienen en cuenta si dos atributos están correlados entre si.
- Para seleccionar características deberían usarse junto con métodos que nos indiquen la correlación entre los propios atributos (variables independientes), como la matriz de correlación de Pearson.
- La matriz de correlación de Pearson se puede obtener mediante la combinación *PrincipalComponents* + *Ranker*.
- Con la matriz de correlación de Pearson podríamos probar a eliminar aquellos atributos que estén muy correlados.

Método de búsqueda: Mediante una metodología de búsqueda se determinan la selección de subconjuntos de atributos.

- Determinados métodos pueden provocar problemas combinatorios inabordables cuando crece el número de atributos.
- Otros métodos usan estrategia (heurística) para evitarlo. Es menos preciso pero también menos costoso.
- Pestaña Select attributes. Search Method en Weka (nos centraremos en dos).
 - Ranker: No hace búsqueda de subconjuntos de atributos, sino que los ordena de mejor a peor según el algoritmo evaluador seleccionado. Seleccionar los k mejores.
 - ▶ *BestFirst*: Método de búsqueda voraz de subconjuntos de atributos.
- Para saber sobre selección de características se requiere un estudio más extenso de cada método de evaluación y de búsqueda. Use la web y la bibliografía si desea ampliar conocimientos.

Combinaciones en las que nos centraremos:

- CfsSubsetEval + BestFirst: Selecciona un subconjunto de atributos del total que podrían ser representativos de nuestro problema.
- CorrelationAttributeEval + Ranker: Se basa en hacer ranking de los atributos usando el coeficiente de correlación de Pearson. Se nos ordenan de mejor a peor. Podríamos elegir los de mayor ranking y hacer pruebas para ir comprobando rendimientos (ojo, no indican la correlación entre los atributos independientes).
- InfoGainAttributeEval + Ranker: Se basa en hacer ranking de los atributos usando la ganancia de información. Se nos ordenan de mejor a peor. Podríamos elegir los de mayor ranking y hacer pruebas para ir comprobando rendimientos (ojo, no indican la correlación entre los atributos independientes).

Selección de características en Weka

Selección de carácterísticas *CfsSubsetEval* + *BestFirst* en Weka en el entorno **Explorer->Select attributes**.

Selección de características en Weka

Selección de carácterísticas CorrelationAttributeEval + Ranker en Weka en el entorno Explorer->Select attributes.

Search Method Attri Attribute bear Corre Randed attrib 0.015 3 pet 0.022 4 pet 0.078 1.50 0.077 2.077 0.077 1.50	Weka Explorer - 💉 🔞
Choose CorrelationAttribute(val Search Method Choose manker rt 1.7979931348023137E200 H 1 2 Attribute selection Mode Cross-weldation Folds 10 Seed 1 Section Result list (right-lisk for options) 1002222. Rowsel # CorrelationAttribute Cross-weldation Folds 10 Cross-weldation Folds 10	s Visualize
search Method Choose Ranker T 1.79799333480233575309 N 1 Attribute selection hode Orcess-validation Folds 10 Seed 1 1	
Throose financer 7 - 1.79799313480273177E200 N - 1 Attribute selection flode Orseveniform poils 10 Seed 1 S	
Attribute selection Mode © Use full transpect © Cross-validation Fedes 10 Seed 1 S	
© Use full training set Cross-validation Folds 15 Set late 1 No class Set Set	
Cross-validation Foots 10 Search Search Stant S	ion output
== Attribute Search Pethod Attribute Eve Constitute Search Search Constitute Search Constitute Search Constitute Search Constitute C	vels_attributeSelection.CorrelationAttributeSval vels_attributeSelection.Reder-7-1.797893146823157E000-8-1 100 201 202 202 202 202 202 202 202 20
4	Note remking. Lunter (spperind, Class (nominal): 5 class): Lation Remking Filter litery litery litery litery litery
Status	
OK .	Log

Selección de características en Weka

Selección de carácterísticas InfoGainAttributeEval + Ranker en Weka en el entorno Explorer->Select attributes.

Weka Explorer - ⋄ €	
Preprocess Classify Cluster A	Associate Select attributes Visualize
Attribute Evaluator	
Choose InfoGainAttributeEv	val
Search Method	
Choose Ranker -T -1.7976933	1348623157E308 ·N ·1
Attribute Selection Mode	Attribute selection output
© Use full training set Cross validation Folds 1 Seed 1	Instances 150 Attributes Sepalmonth Sepalmon
Status	
ОК	Log

Índice

Selección instancias

Selección de instancias

La **selección de instancias** se emplea para:

- Reducir el número de patrones de las clases más numerosas (under-sampling).
- Incrementar el número de patrones en las clases minoritarias, introduciendo patrones sintéticos (over-sampling).

Ventajas:

- Acelera el proceso de entrenamiento.
- Mejor exactitud del modelo.
- Modelos más simples e interpretables.
- Reducción del ruido y patrones redundantes.
- Facilita el aprendizaje con grandes volúmenes de datos.

Selección de instancias

Ejemplo de **selección de instancias** representativas para **reducir el conjunto de datos**:

Figura: Ejemplo de selección de instancias.

Desbalanceo de los datos

En algunos casos las clases pueden tener una **frecuencia extremadamente desigual**:

- Ej. en diagnosis médica: 90 % saludables, 10 % enfermos.
- Ej. en seguridad: más del 99.99 % de los ciudadanos no son terroristas.
- ¡Mirar porcentaje de clasificación por clase!

Cuidado...

- Clasificador inutil: Pudiera ser incluso aquel con un [90 %-99.99 %] correcto...
- Ej: 100 patrones (90 clase A y 10 clase B). Reconoce a todos los de la clase A, pero ninguno de la clase B.

Desbalanceo de los datos

¿Qué hacer?

- **Sobremuestreo** (*over-sampling*): Generar nuevos patrones sintéticos de la clase minoritaria.
- **Inframuestreo** (*under-sampling*): Seleccionar una muestra de patrones de la clase mayoritaria.

Selección de instancias y desbalanceo en Weka

Filtros No supervisados más importantes (no estratifican):

- RemoveDuplicates: Eliminar patrones duplicados (under-sampling).
- RemovePercentage: Elimina (sin estratificar) aleatoriamente un porcentaje de patrones de la base de datos (under-sampling).
- RemoveRange: Eliminar patrones según su índice en la base de datos, p.ej. 1-500 (under-sampling).
- RemoveWithValues: Eliminar patrones que tienen unos valores concretos para determinados atributos (under-sampling).
- Resample (para balanceo de datos): Aumenta/disminuye los patrones seleccionando (sin estratificar) aleatoriamente algunos de ellos (con reemplazamiento - se puede volver a elegir - o no) (under-sampling-over-sampling).

Selección de instancias y desbalanceo en Weka

Filtros Supervisados más importantes (estratifican):

- Resample (para balanceo de datos): Como en el caso No Supervisado, selecciona aleatoriamente algunos patrones de la base de datos (con reemplazamiento o no), pero manteniendo una determinada proporción de patrones por clase, es decir, es estratificado. (under-sampling-over-sampling)
- SpreadSubsample (para balanceo de datos): Selecciona aleatoriamente algunos patrones de la base de datos de manera estratificada, eliminandolos de forman que el número de patrones por clase se ajuste a la más pequeña (under-sampling).
 - ► Parámetro distributionSpread = 1.0

Índice

Conclusiones

¿Cómo analizar nuestros datos?

Realizar una **análisis preliminar** para entender sus **características** específicas:

- Hacer más fácil el preprocesado y el aprendizaje.
- En ocasiones necesidad de un experto.
- Combinación de inspección humana y automática: Utilizar técnicas automatizadas para identificar casos "extraños" y dejar al experto trabajar sobre estos datos.
- El no detectar casos anómalos (o en general, el obviar un análisis previo) puede llevar a muchos problemas a posteriori, por ejemplo al normalizar.
- Balanceo de clases: una o varias clases mucho menos frecuente.
 - Métodos de remuestreo de la clase minoritaria.
 - Selección de instancias de la clase mayoritaria.

¿Preguntas? ¡Gracias!

