

Спецкурс ОСФИ Лекция 1 16 февраля 2011

Свет как энергия. Радиометрия. Фотометрия

Алексей Игнатенко, к.ф.-м.н.

Лаборатория компьютерной графики и мультимедиа ВМК МГУ

На лекции: свет, радиометрия, фотометрия

- Свет и волновая природа света
- Радиометрия: основные термины и понятия
- Фотометрия: основные термины и понятия

Наблюдатель

«Хорошая» система

«Плохая» система

Свет: электромагнитные волны или частицы

- Двойственная природа света
 - Электромагнитные волны
 - Поток частиц
- Атрибуты световой волны: амплитуда, длина волны, поляризация
 - Аплитуда ~ энергия
 - Измеряется в ваттах (Вт = Дж/Сек)
- Излучается дискретными квантами - фотонами

Видимые длины волн ~400-700нм

- Видимый свет ~400-700 нанометров
 - 380-470 нм фиолетовый и синий цвет
 - 500-560 нм зеленый
 - 590-760 нм красный
- В более мелких участках этих интервалов цвет излучений соответствует различным оттенкам

Свет – это поток волн с различными длинами, амплитудами, поляризацией

Свет: поток волн с различными длинами и различными амплитудами

• Можно рассматривать как сумму монохроматических излучений

Свет: дуальность

Электромагнитная волна

волновая оптика

Поток частиц

геометрическая оптика

Причины дуальности объясняются в квантовой оптике

Фотоэлектрический эффект

• Излучение электронов под действием света

 Является одним из обоснований фотонной теории (теории частиц)

Волновая природа света: дифракция и интерференция

- Явление преобразования распространяющейся в пространстве волны
- Возникает при сравнимых размерах длины волны и размеров неоднородности среды
- При размерах неоднородностей, на 3-4 порядка превышающих длину волны, дифракцией можно пренебречь

Геометрическая оптика

- Закон прямолинейного распространения света
- Закон независимого распространения лучей
- Закон отражения света
- Закон преломления света (Закон Снелла)
- Закон обратимости светового луча

Волновая природа света: поляризация

- Световая волна поперечная волна
- Волновой вектор и вектор амплитуды

Поляризация: пример

Флюоресценция, фосфоресценция и другие нетепловые свечения вещества

Фотолюминесценция — свечение под действием света (видимого и УФ-диапазона)

- флуоресценция
- фосфоресценция

Геометрическая оптика: итоги

 Далее мы будем рассматривать свет как поток частиц

- Гораздо проще для алгоритмов!
- 👎 Сразу отбрасываем явления
 - Дифракции
 - Интерференции
 - Поляризации
 - Люминесценции

На лекции: свет, радиометрия, фотометрия

- Свет и волновая природа света
- Радиометрия: основные термины и понятия
- Фотометрия: основные термины и понятия

Распространение света

Единицы измерения света (радиометрические)

Полный поток источника света

Вт

Радиометрия

- Радиометрия наука об измерении электромагнитного излучения
 - Включая видимый свет

- Радиометрия не учитывает особенностей человеческого восприятия
- Основана на излучении как потоке частиц (геометрическая оптика)
- Тем не менее, возможно включать элементы волновой оптики

Радиометрия: предположения

• Линейность

Суммарный эффект двух входных сигналов всегда равен сумме эффектов каждого сигнала по отдельности

• Сохранение энергии

Рассеиваемая энергия не может выдавать больше энергии, чем было изначально

• Отсутствие поляризации

Единственное свойство света – распределение по длинам волн (частоте)

• Отсутствие флюоресценции и фосфоресценции

Поведение света на одной частоте не зависит от поведения на другой

• Устойчивость состояния

Распределение световой энергии не зависит от времени

Радиометрия: недостатки

Невозможно измерить физические эффекты:

- Дифракция
- Интерференция
- Поляризация
- Флюоресценция
- Фосфоресценция

(Последние три легко добавить)

Стоп. Зачем это нужно?

Измерение света нужно для создания фотореалистичных изображений виртуальных трехмерных сцен

Почему важно знать спектральное распределение энергии?

- Очень важно для компьютерной графики, т.к.
 оптические свойства материалов зависят от длины волны
 - Отражение, поглощение, пропускание
- Свойства материалов также моделируются спектральным распределением

Световая энергия (radiant energy) – сама по себе не подходит для наших задач

Обозначение: Q

Единица измерения: Дж

- Плохо подходит для наших задач
- Т.к. необходимо выразить излучаемую телом энергию! (например, при нагреве)
- Т.е. нужно описать свойства потока энергии
 - Скорость
 - Направление
 - Концентрированность (плотность)

Световой поток (flux)

Поток: энергия, излучаемая в единицу времени для заданной поверхности

- Обозначение: Ф
- $\Phi = dQ / dt$
- Единицы измерения: Вт (ватт = Дж/с)
- Стационарный процесс!

Световой поток (flux): как измерить?

 Поставить источник света

 Замерить изменение температуры площадки за заданное время

Q=mcΔT

Спектральный поток

- Ф задает суммарную характеристику по всем длинам волн
- Φ_λ задает поток на данной длине волны

$$\Phi = \int \Phi_{\lambda} \, d\lambda$$

Полный энергетический поток (total radiant flux)

- Часто бывает нужно замерить полное излучение источника света
- Весь объем энергии, излучаемый телом за промежуток времени
- Характеризует источник света, нельзя увеличить, только сконцентрировать
- Нужны более детальные величины
 - Распределение по площади
 - Распределение по направлению

Телесный угол

- Часть пространства
 - Является объединением всех лучей, выходящих из данной точки
 - Пересекающих некоторую поверхность
- Равен площади сегмента единичной сферы, соответствующему проекции кривой на эту сферу
- Для сферы радиуса R и площади проекции S, угол равен S/R^2
- Единица стерадиан (безразмерная)

Сила излучения (intensity)

- Предыдущие определения зависели от площади
- Но для точечных источников понятия площади нет
 - А нам часто придется рассматривать точки на поверхности
 - Или точечные источники света
- Плотность потока света, проходящего через телесный угол
- Единицы измерения: Вт / Ст

$$I = \frac{d\Phi}{d\omega}$$

Связь полного потока и силы излучения

$$\Phi = 4\pi^*I$$

$$\Phi = \int I \, \mathrm{d} \, \omega = I \int \mathrm{d} \, \omega = 4\pi I$$

Освещенность и светимость

- Нужны единицы для описания потока излучения, попадающего на поверхность или исходящего с поверхности
- Плотность потока света, проходящего через заданную площадку
- Не знаем направления, поэтому два симметричных термина
 - освещенность
 - светимость

Энергетическая освещенность (irradiance)

- Обозначение: E
- Единицы измерения: **Вт/м**²

$$E = \frac{d\Phi}{dS}$$

Связь освещенности и «косинуса»

- Во многих моделях освещения встречается соз в качестве множителя
- Верно для параллельных пучков

Освещенность и сила света: закон обратных квадратов

Пусть площадка с площадью А освещена точечным источником света на расстоянии R

$$E = \frac{d\Phi}{dA} = \frac{I d\omega}{dA} = \frac{I dA}{R^2 dA} = \frac{I}{R^2}$$
$$d\omega = \frac{dA}{R^2}$$

Закон обратных квадратов (наклонная площадка)

- Пусть площадка с площадью А освещена точечным источником света на расстоянии R
- Под углом theta

$$E = \frac{d\Phi}{dA} = \frac{I d\omega}{dA} = \frac{I dA \cos \theta}{R^2 dA} = \frac{I \cos \theta}{R^2}$$
$$d\omega = \frac{dA \cos \theta}{R^2}$$

Энергетическая светимость (radiant exitance)

- Обозначение: М
- Единицы измерения: **Вт/м**²

• В компьютерной графике еще называют **radiosity** $M = \frac{d\Phi}{dS}$

Яркость (radiance)

- Наиболее важная единица
- Источник не точечный
- Плотность потока, попадающего на площадку единичной площади, проходя через единичный телесный угол
- Обозначение: L
- Единицы измерения:
 Вт / (Ст * м²)

$$L = \frac{d^2 \Phi}{d \omega dS \cos \theta}$$

Исходящее и входящее излучение (яркость)

Выражение излучения через другие единицы

Свойства излучения

• Передается в вакууме без потерь!

- Фотокамера записывает именно яркость
- Глаз реагирует на яркость

Почему передается без потерь? Закон сохранения яркости

$$d\omega_s = \frac{dA_d cos\theta_d}{r^2} \qquad d\omega_d = \frac{dA_s cos\theta_s}{r^2}$$

$$d^2G = dA_s cos\theta_s d\omega_s = \frac{dA_s cos\theta_s dA_d cos\theta_d}{r^2} = dA_d cos\theta_d d\omega_d$$

Почему передается без потерь? Закон сохранения яркости (2)

$$d^{2}G = dA_{s}cos\theta_{s}d\omega_{s} = \frac{dA_{s}cos\theta_{s}dA_{d}cos\theta_{d}}{r^{2}} = dA_{d}cos\theta_{d}d\omega_{d}$$

$$L_s = \frac{d^2\Phi_s}{cos\theta_s d\omega_s dA_s} = \frac{d^2\Phi_s}{d^2G} \qquad L_d = \frac{d^2\Phi_d}{cos\theta_d d\omega_d dA_d} = \frac{d^2\Phi_d}{d^2G}$$

Ламбертовы источники и их свойства

- Ламбертов источник L = const
- Т.е. со всех сторон одинаково ярким выглядит

• Свойства:

- I = I0 * cos(theta)
- M=Pi * L
- Светящийся плоский диск неотличим от полусферы
 - Солнце ламбертов источник!

Некоторые радиометрические значения

Описание	Значение
Полный поток 100 Вт газонаполненной вольфрамовой лампы	82 Bt
накаливания	
Поток типичного гелиум-неонного лазера средней мощности, на	5 мВт
частоте 632,8 нм	
Поток 40 Вт лампы дневного света	23,2 Вт
Заотмосферная освещенность на средней земной орбите	$1367~\mathrm{Bt/m}^2$
Земная прямая солнечная освещенность, чистое небо, зима,	$852~\mathrm{Bt/m^2}$
юго-восток США, полдень	
Земная полная (полусферическая) освещенность, чистое небо,	$686~\mathrm{Bt/m^2}$
зима, юго-восток США, полдень	
Яркость солнца на поверхности	$2,3 \times 10^7 \mathrm{Bt} \cdot \mathrm{m}^{-2} \mathrm{ct}^{-1}$
Видимая яркость солнца с Земли	$1,4 \times 10^7 {\rm Bt \cdot m^{-2} ct^{-1}}$

На лекции: свет, радиометрия, фотометрия

- Свет и волновая природа света
- Радиометрия: основные термины и понятия
- Фотометрия: основные термины и понятия

Фотометрия

 Фотометрия может рассматриваться как подмножество радиометрии, в котором все радиометрические единицы были изменены с учетом чувствительности человеческого глаза

Функция спектральной световой эффективности V-lambda

Преобразование между радиометрическими и фотометрическими единицами

$$Q_{\nu} = 683 \int_{380}^{780} Q_{\lambda} V(\lambda) \,\mathrm{d}\lambda$$

Qv – одна из единиц Ф,I,E,M,L

Радиометрические и фотометрические единицы

Радиометрические единицы	Обозн.	Фотометрические единицы	Обозн.
Энергетический поток (radiant flux)	Вт	Световой поток (luminous flux)	Люмен
Энергетическая сила излучения (radiant intensity)	Вт/ст	Сила света (luminous intensity)	Кандела = Люмен/ст
Энергетическая освещенность (irradiance)	Вт/м2	Световая освещенность (illuminance)	Люкс = Люмен/м2
Энергическая яркость (radiance)	Вт/м2/ст	Световая яркость (luminance)	Нит = Кандел/м2

Световой поток

- Световой поток (люмен ватт)
 - поток лучистой энергии, оцениваемый по зрительному ощущению
 - Поток, взвешенный функцией световой эффективности
 - Поток внутрь телесного угла 1ст
 - Если 1кд по любому направлению, то полный поток 4рі
 лм

Сила света

- Сила света кандела (кд) (ватт на стерадиан)
 - до платинового эталона была "международная свеча"
- Коэффициент 683 идет именно из определения канделы, так, чтобы 1 кандела была приблизительно равна силе света свечи

Освещенность

• Освещенность - люкс (1 люмен по площади 1м2 - ватт / M2)

Яркость

- Яркость (кандела на квм ватт / стерадиан / м2) = нит.
 - Luminance

Задание

Литература

- DeCusatis, C., "Handbook of Applied Photometry." AIP Press (1997)
- McCluney, W. R., "Introduction to Radiometry and Photometry", Artech House (1994)