Assignment 6 (Chapter7, part1)

7.1 Suppose that we decompose the schema R = (A, B, C, D, E) into

$$(A, D, E)$$
.

Show that this decomposition is a lossless decomposition if the following set F of functional dependencies holds:

$$A \rightarrow BC$$

$$CD \rightarrow E$$

$$B \rightarrow D$$

$$E \rightarrow A$$

Solution: $R_1 = (A,B,C), R_2 = (A,D,E), so R_1 \cap R_2 = (A).$

Because $A \rightarrow BC$, we have trivially $A \rightarrow ABC$.

Hence we have $R_1 \cap R_2 \rightarrow R_1$, thus we have shown that R decomposed into R_1 and R_2 is a lossless decomposition.

7.2 List all nontrivial functional dependencies satisfied by the relation of Figure 7.18.

Α	В	С
a1	b1	c1
a1	b1	c2
a2	b1	c1
a2	bl	c3

Figure 7.18 Relation of Exercise 7.2.

Solution: Since there are only three attributes, we can check these function dependencies one by one.

Single: $A \rightarrow B$, yes.

Aug: $A \rightarrow AB$, $AC \rightarrow BC$, $AC \rightarrow ABC$,

 $A \rightarrow C$, no.

B→A, no。

B→C, no。

C→A, no。

C→B, yes.

Aug: $AC \rightarrow AB$, $C \rightarrow BC$, $AC \rightarrow ABC$.

Now we conclude here:

$$F={A \rightarrow B, A \rightarrow AB, AC \rightarrow ABC, C \rightarrow BC, C \rightarrow B, AC \rightarrow AB, AC \rightarrow BC}$$

7.13 Show that the decomposition in Exercise 7.1 is not a dependency-preserving decomposition.

Solution: $R_1 \cap R_2 = (A)$:

 $A \rightarrow BC$ implies $A \rightarrow B$ and $A \rightarrow C$, with $B \rightarrow D$, implies $A \rightarrow D$

 $A \rightarrow D$ and $A \rightarrow BC$ implies $A \rightarrow BCD$, implies $A \rightarrow CD$, with $CD \rightarrow E$ we have $A \rightarrow E$, and finally $A \rightarrow BCDE$

But the last dependence of $E \rightarrow A$ couldn't be checked unless computing R_1 joins R_2

So, it is not dependency preserving.