Homework-2

Advanced Computer Architecture (611)

Sandipan Dey

(85)

DSEA

8520

C) 13

376

05/5

Question 1: (80 Points)

The goal of this exercise is to compare how a loop runs on a variety of piper.

The loop implements the vector operation $Y = a \times X + Y$. Here is the MIPS code for the loop.

The goal	implements the	rector operation i	; Load X(i) ; multiply a * X(i)
foo:	L.D MULT.D L.D ADD.D S.D ADDIU ADDIU SLTIU	F2, 0(R1) F4, F2, F0 F6, 0(R2) F6, F4, F6 0(R2), F6 R1, R1, #8 R2, R2, #8 R3, R1, done R3, foo	; load Y(i) ; add a * X(i) + Y(i) ; store Y(i) ; increment X index ; increment Y index ; test if done ; loop if not done
	RFO7	***************************************	The state of the s

Assume that the results are fully bypassed. The conditional branches are resolved in the ID stage. Use the FP latencies shown in the following table but assume that the FP unit is fully pipelined:

F reliand unit	Latency
Functional unit	0
Integer ALU	1
Data memory (integer and FP loads)	2
FP add	3
FP multiply	1

A) Using the standard single issue MIPS pipeline show the number of stall cycles for each instruction and what clock cycle each instruction begins execution (i.e., enters its first EX cycle) on the first iteration of the loop. How many clock cycles does each loop iteration take?

B) Unroll the loop to make four copies of the body and schedule it for the standard MIPS pipeline. Re-order the instructions in order to maximize performance. How many clock cycles does each loop iteration take?

C) Consider running the loop on a CDC scoreboard. What would be the state of scoreboard when the SLTIU instruction reaches the write result stage in the first iteration? Assume that issue and read operands stages each take one cycle. Assume that there are one integer functional unit, one FP multiplier, and one FP adder.

D) Assume Tomasulo based CPU with one integer unit, one FP multiplier and one FP adder. Show the state of the reservation stations and register-status tables when the SLTIU writes its result on the CDB in the first loop iteration.

Answer:

Assumptions:

ADDILLEGIEL	Latency	#Clock cycles to get result after the execution has started
ADDIU, SLTIU (integer instructions)	0	- started
ADD.D	2	1
MULT.D	3	4
L.D	7	0
Lab	1	0
No. 1	-	2

It's to be noted that for L.D, the result is available after MEM cycle (hence has latency 1). Also, since <u>branch is resolved in the ID stage</u>, the operands must be ready before that.

A) With the above assumptions, we show the following pipeline stages.

Instruction	200	1 2 3 4 5 6 5 Clock Cycle Number																		
			3.	-4	5	6	7	8	9		$\overline{}$	12		14	100	400	1 47	100	1 .0	20
LD F2, 0(R1)	IF	ID	EX	MEM	WR			- 49	0.47	10	4.1.	12	13	14	15	16	17	18	19	.00
MULT D F4, F2, F0			ID				3.12	200	2.60	5.22		100		_	-	_				-
LD F6, 0(R2)			IF	Stall				NI4	MS	M6	M7	Wil	MEM	WB						
ADD D F6, F4, F6			AA.	STUIL			MEM	Contract to the Contract of th	_											
The state of the s			-	_	IF	ID	Stall	Stall	Stall	Stall	Stull	Stull	-A1	A2	A3.	A4	MEM	WB		
S.D 0(R2), F6						IF	Stall	Stall	Stall	Smill	Stoff	Stull	ID	EX		_	MEM	WB		
ADDIU R1, R1, #8													IF	ID	_	Stall	the same of the same of	STREET, STREET, STREE	13.753	
ADDIU R2, R2, #8													II.	-	-	-	All Street or Street	MEM	-	-
SLTIU R3, R1, done							-	-	_					IF	State	Stall		EX	MEM	WB
BEQZ R3, foo						-					-						IF	ID	EX	MEM
The state of the s	-	-																IF	Stall	ID
Branch Delay			10																	Stall

Forwarding stages are highlighted: MEM \rightarrow M1 (L.D to MULT.D), M8 \rightarrow A1 (MULT.D to ADD.D), A4 \rightarrow MEM (ADD.D to S.D), EX \rightarrow ID (SLTIU to BEQZ, since branch is resolved in the ID stage, the operands must be ready before that).

		Clock Cycle Issued	
foo:	LD F2, 0(R1)	1	
	Stall	2	;to prevent RAW hazard for F2
	MULT.D F4, F2, F0	3	
	L.D F6, 0(R2)	4	
	Stall	5	to prevent RAW hazard for F4, F6
	Stall	6	
	Stall	7	
	Stall	8	
	Stall	9	
	Stall	10	
	ADD.D F6, F4, F6	11	
	Stall	12	;to prevent RAW hazard for F6
	Stall	13	
	S.D 0(R2), F6	14	7.50
	ADDIU R1, R1, #8	15	
	ADDIU R2, R2, #8	16	
	SLTIU R3, R1, done	17	
	Stall	18	;to prevent RAW hazard for R3,
	BEQZ R3, foo	19	;branch is resolved in ID stage
	Stall	20	;delayed branch

Hence, total number of clock cycles required = 20 per loop. d by a smart / sophisticated compiler, the loop looks like the following:

Optimized / reordered by a street	Clock Cycle Issued
	1
tox LDF2 0(R1)	2
LD F6, O(R2) MULT.D F4, F2, F0	3
ADDIU R1, R1, #8	4
ADDIU R2, R2, #8	5
SLTIU R3, R1, done	6
Stall	7
Stall	8
Stall	9
ADD.D F6, F4, F6	10
Stall	11
BEQZ R3, foo	12
S.D -8(R2), F6	13

B) Unrolling the loop and making 4 copies of the body (here we assume the number of times the loop iterates is a multiple of 4), and using the fact that all the FP units are pipelined,

Instruction	Clock Cycle Issued
L.D F2, 0(R1)	1
MULT.D F4, F2, F0	3
L.D F6, 0(R2)	4
ADD.D F6, F4, F6	11
S.D 0(R2), F6	14
L.D F8, 8(R1)	15
MULT.D F10, F8, F0	17
L.D F12, 8(R2)	18
ADD.D F12, F10, F12	25
S.D 8(R2), F12	28
L.D F14, 16(R1)	29
MULT.D F16, F14, F0	31
L.D F18, 16(R2)	32
ADD.D F18, F16, F18	39
S.D 16(R2), F18	42
LD F20, 24(R1)	43

MAT.D F22, F20, F0	45
Fruit 4 741 B 2 1	46
DESCRIPTION OF THE PROPERTY OF	53
	56
antt Rl. Kl. #34	57
(DDIII) R2, K2, #32	58
SLTIU R3, R1, done	59
BEQZ R3, foo	61
Branch Delay	62

By reordering, we get the following:

Instruction	Clock Cycle Issued
L.D F2, 0(R1)	1
LD F6, 0(R2)	2
MULT.D F4, F2, F0	3
L.D F8, 8(R1)	4
LD F12, 8(R2)	5
MULT.D F10, F8, F0	6
LD F14, 16(R1)	7
L.D F18, 16(R2)	8
MULT.D F16, F14, F0	9
L.D F20, 24(R1)	10
L.D F24, 24(R2)	11
MULT.D F22, F20, F0	12
ADD.D F6, F4, F6	13
ADD.D F12, F10, F12	14
ADDIU R1, R1, #32	15
SLTIU R3, R1, done	16
ADD.D F18, F16, F18	17
S.D 0(R2), F6	18
S.D 8(R2), F12	19
ADD.D F24, F22, F24	20
S.D 16(R2), F18	21
ADDIU R2, R2, #32	22
BEQZ R3, foo	23
S.D -8(R2), F24	24

Since 4 times the body of the loop takes 24 clock cycles, each iteration of the loop takes 6 clock cycles.

LD.D takes 2 clock cycles (latency 1), ADD.D takes 4 clock cycles (latency 8 clock cycles (latency 7), the scoreboard status when SLTIU writes:

C) Assuming that LD.D takes 8 clock cycles (latency 7), and 33 MULTD takes 8 clock cycles (latency 7), and Read	Comp Write Resul
31 MLLTD tast 31 MLLTD tast 31 k Issue Read	erands Execution Comp Write Resul

33 MULT	The man				de	Execution Comp	5
27 100	CHARMS		k	Issue	Read Operation	43	
Instruction	Statu	11		1	2 +1-	14	15
Instruction	F2	10	RI	2	6		10
(D)		F2	F0		7	9	21
MULTID		0	R2	6		20	
LD _	The state of the s	F4	F6	7	16	23	24
ADD.D	F6	0	R2	11	22	27	28
S.D	RI	R1	8	25	26	31	32
ADDIU	R2	R2	8	29	30	35	36
ADDIU	R3	R1	done	33	34	30	

As seen from above, there is no WAR/WAW hazard, only structural/RAW hazards are there to be resolved by the scoreboard. The scoreboard operations are explained as follows:

be resolved by	the scoreboard. The scoreboard operations are esp
Clock cycle	
1	Scoreboard Action 1st L.D issued (assuming no structural hazard being the 1st instruction) 1st L.D issued (assuming no structural hazard being the 1st L.D reads operands
2	
3-5	be issued (structural hazard for busy Integer FU), no further instruction will be issued till clock cycle 4 (guarantees in-order issue), also MULT.D can't read
	operand, RAW hazard will be resolved after 1st L.D writes F2 at clock cycle 4
6	2 nd L.D issued, MULT.D reads operands
7	ADD.D issued, MULT.D starts execution, 2 nd L.D reads operands
8-10	2 nd L.D completes execution and writes result. S.D can't be issued (structural hazard for busy Integer FU), no further instruction will be issued till clock cycle 8 (guarantees in-order issue), MULT.D continues execution, ADD.D can't read operand because of RAW hazard (data-dependence) on F4 (MILITED). F6 (2 nd LD)
11	on F4 (MULT.D), MULT D continues execution
12-15	because of RAW hazard (data-dependence) on F4 (MULT.D), S.D can't read operand operand since data-dependent (RAW hazard) on F6 (ADD.D), ADDIU can't be
16-21	operand since data-dependent (RAW hazard) on F6 (ADD D)
22-24	S.D reads operand
25	(structural hazard for busy Integer FU), no further instruction will be issued till 1st ADDIU issued

1 st ADDIU reads operand, completes execution and writes result. 2 st ADDIU can't issued (structural hazard for busy Integer FU), no further instruction will be 2 st ADDIU issued.
(MANAGE PROMOCI
2 nd ADDIU reads operand, completes execution and writes result. SLTIU can't be issued (structural hazard for busy Integer FU), no further instruction will be issued [SLTIU] is a superior of the structure of t
SLTIU issued
SLTIU reads operand, completes execution and writes result. No other instructions corresponding to Integer FU can be issued (structural hazard) till clock cycle 36.

Functional Unit Status (after clock cycle 35, right before FLTIII)

Time	Name	Busy	Op	Fi	Fi	Fk		Qk	Ri	Rk
	Integer	Yes	FLTIU	R3	Fj R1	done	14	- Va	Yes	Yes
	Mult	No				SHORE			103	1.08
	Add	No						1		

Functional Unit Status (after clock cycle 36, right after FLTIU writes its result)

Time	Name	Busy	Op	Fi	Fj	Fk	Qi	Qk	Rj	Rk
2	Integer	No					1000			
	Mult	No				1	1 - 01			
	Add	No							111111	

Register result statu	15									
Clock		FO	F2	F4	F6	F8	F10	F12	***	F30
36	FU									

D) Load and Stores are treated as FUs with Reservation Stations. Assuming that the Tomasulo has 3 load buffers and 3 store buffers, L.D with 2 clock cycles, ADD.D with 4 clock cycles and

MULT.D with 8 clock cycles execution time, with 1 integer, 1 FP-Mult and 1 FP-Add reservation station, Mult (FP) } Assumption

Istruction St	atus				1	3
nstruction	i	J	K	Issue	Execute	Write Result
D	F2	0	R1	1	3	4
MULT.D	F4	F2	F0	2	14 12	?
D	F6	0	R2	35	5	6
ADD.D	F6	F4	F6	4	10	
S.D	F6	0	R2	5.	1	2 2 1
DDIU	RI	R1	8	6 -	7	8
ADDIU	R2	R2	8	9 -	- 10	11
LTILL	120	***	- Lawren	12	- 13	14

ADD. D can't start execution until MULT. D writes result, then F4 is available

S.D can't start execution until the operand is written

Can't issue the 2nd ADDIV immediately after 1st time Integer unit is busy

(bridesta) by ADD.D

Multi Ves	Op MULT.D ADD.D	write-result st Vj R(F0)	age, just after Vk M(R1) M(R2)	Qj Qj Mult1	Qk
Addi				0.5	F30
Register Status	F4	F6	444		
Field F0 F2	Multl	Add1			

Load	12.11	ffers
Long	Du	12000

Qi

Long D	Load1	Load2	Load3
Field	Loadi	Louis	-
Address			3.7
Busy	No	No	No

Store Buffers

Field	Storel	Store2	Store3
Address			
Busy	No	No	No

Question 2: (20 Points)

It is critical that the scoreboard be able to distinguish RAW and WAR hazards, since a WAR hazard requires stalling the instruction doing the writing until the instruction reading an operand initiates execution, while a RAW hazard requires delaying the reading instruction until the writing instruction finishes-just the opposite. For example, consider the sequence:

MULT.D F0, F6, F4 SUB.D F8, F0, F2 ADD.D F2, F10, F2

The SUB.D depends on the MULT.D (a RAW hazard) and thus the MULT.D must be allowed to complete before the SUB.D; if the MULT.D were stalled for the SUB.D due to the inability to distinguish between RAW and WAR hazards, the processor will deadlock. This sequence contains a WAR hazard between the ADD.D and the SUB.D, and the ADD.D cannot be allowed to complete until the SUB.D begins execution. The difficulty lies in distinguishing the RAW hazard between MULT.D and SUB.D, and the WAR hazard between the SUB.D and ADD.D.

Describe how the scoreboard avoids this problem and show the scoreboard values of the above sequence assuming the ADD.D is the only instruction that has completed execution(though it has not active instruction sequences.)

Answer

The scoreboard can distinguish the RAW and WAR hazard (data-dependency and anti-dependency) from the functional unit status, by checking the flags R_j and R_k that indicate whether the source registers F_j and F_k (corresponding functional units Q_j and Q_k) respectively are ready or not, along with checking the destination register F_j .

the functional unit used by an instruction I, then I will not write its result until wif $(f) \neq F_i(FU) \vee R_j(f) = No) \wedge (F_k(f) \neq F_i(FU) \vee R_k(f) = No)$ is true. This was hazard and also the condition on $R_j(f)$ differentiates it from RAW hazard.

destination register of I (from FU) is same as a source register of an instruction J from the functional unit f(I) is going to write the source register of J), i.e.,

$$g(F_i(f)) = F_i(FU)$$
, it will be

- Anti-dependence (WAR hazard) if $R_j(f) = Yes$ (the corresponding source register is ready).
- Data-dependence (RAW hazard) if $R_j(f) = No$ (the source register is still waiting to be written).

resimportant to note the following: if the instruction J is still waiting for its (one of) source register to be written by some other instruction, it must be waiting for instruction I only and on where instruction. Since WAW hazards can't happen (prevented at issue stage), the case that the source $R_j(f)$ is waiting for some other instruction (not I) is ruled out (since if it is true then with I and the other instruction (both active) would have the same destination $R_j(f)$, resulting a WAW hazard, a contradiction).

inexplain simply, two instructions are related to each other if 1st instruction's destination is some as (at least) one of the sources of the 2nd instruction. The relation is data-dependence (leading to RAW hazard) if the 2nd instruction waits for the source to be written by 1st instruction indicated by the corresponding source flag value 'not ready'). The relation is, on the other hand and dependence (leading WAR hazard) if the 2nd instruction does not wait on the 1st instruction and (indicated by the corresponding source flag value 'ready'), the other source register of the instruction which is different from the 1st instruction's destination register may typically be not ready', waiting on some other instruction.

Assuming that the scoreboard has 2 FP-Add units (if there is only 1 FP-Add unit, due to in-order have and structural hazard ADD.D can never be issued until SUB.D completes execution and writes it result) and 1 FP-Multiply unit, and assuming execution cycles for Add and Multiply 4 and 8 clock cycles respectively.

astruction St	i	j	K	Issue	Read Operands	Execution Complete	Write Result
MULT.D SUB.D	FO	F6	F4	1	2		
ADD,D	F8	FO	F2	2		8	
20'D	F2	F10	F2	3	4	0	

Oi Qk Yes	Yes
TG FI FK	Yes
F0 F6 F4 Mul Yes	Yes

As can be seen from above, the relation between SUB.D and ADD.D is anti-dependence (leading to WAR hazard), since,

the relation between SOBD and
$$R_*(Add1) = Yes$$
. $F_*(Add1) = F_*(Add2)$ and $R_*(Add1) = Yes$. This makes the $F_*(Add1) = F_*(Add2) = F_*(FU) \neq F_*(FU) \neq$

On the contrary, the relation between MULT.D and SUB.D is data-dependence (leading to RAW hazard), since, $F_i(Add1) = F_i(Mult)$ and $R_i(Add1) = No$. Also, $F_i(Add1) \neq F_i(Mult)$ and $R_k(Add1) = Yes$.

$$\therefore f = Add1, \ FU = Mult \Rightarrow (F_j(f) \neq F_i(FU) \lor R_j(f) = No) = true \ , \ also,$$

$$(F_k(f) \neq F_k(FU) \vee R_k(f) = No) = true$$
. This makes the condition

$$(\forall f)((F_i(f) \neq F_i(FU) \vee R_i(f) = No) \wedge (F_k(f) \neq F_i(FU) \vee R_k(f) = No))$$
 true (also,

Q,(Add1) indicates that it is waiting for Mult) and scoreboard becomes aware of the fact that this is NOT a candidate for WAR hazard (rather it is a candidate for RAW hazard), hence Mult does not wait and writes F0, avoiding deadlock.