

Disciplina: Processamento Digital de Sinais

Professora: Suzete Correia

Projeto – Equações de Diferenças com Coeficientes Constantes

1. Função Filter Matlab

Um sistema LIT pode ser definido tanto pela resposta ao impulso como pela equação de diferenças com coeficientes constantes (relação de entrada e saída). A função filter do MATLAB é capaz de resolver numericamente uma equação diferenças dados a entrada e os coeficientes da equação. A sintaxe é:

```
>> y=filter(b,a,x);
```

Em que b = [b0,b1,...,bM] e a = [a0,a1,...,aN] são os vetores que representam os coeficientes da equação de diferenças. Se x for o vetor que representa o sinal de entrada, o vetor y representa a saída do sistema para condições iniciais nulas. O comprimento do vetor y será o mesmo do vetor de entrada x. Condições iniciais diferentes de zero são incorporadas usando-se a sintaxe do comando alternativo y=filter(b,a,x,zi), em que zi representa as condições iniciais exigidas por filter.

Exemplo: Seja a seguinte equação de diferenças e condições iniciais nulas:

$$y[n]-y[n-1]+0.9y[n-2]=x[n]$$

Trace a resposta ao impulso para n = -20,...,100

```
>> b=[1]; a=[1,-1,0.9];
>> x=impseq(0,-20,120); n=[-20:120];
>> h=filter(b,a,x);
>> stem(n,h);
>> title('Resposta ao Impulso'); xlabel('n'); ylabel('h[n]');
```

2. Exercícios

1. A função rand (1, N) do Matlab gera uma sequência aleatória de comprimento N, cujos elementos se encontram distribuídos uniformemente em [0,1]. Dada um sequência senoidal de amplitude 1 e frequência 0,01, adicione o ruído definido por rand(1,N) – 0,5 e trace os gráficos da senóide com e sem ruído (plot). Troque a amplitude do ruído para 10 e 5 vezes a da senóide e ilustre graficamente o que acontece.

2. O filtro da média móvel é definido como:

$$y[n] = \frac{1}{M} \sum_{k=0}^{M-1} x[n-k]$$

em que M é o tamanho da janela.

- a. Considere M = 3. Faça a implementação desse filtro no Matlab usando filter.
- b. Dado o sinal ruidoso obtido na primeira questão, realize a sua filtragem pelo filtro implementado e plote o resultado obtido. Experimente também outros valores de M e descreva as suas observações. Que filtro é esse?
- 3. Considere dois filtros FIR S1 e S2, respectivamente:

$$y[n] = 0.5x[n] - 0.5x[n-1]$$
 e $y[n] = 0.5x[n] + 0.5x[n-1]$

- a. Escreva funções no Matlab para implementar esses filtros.
- b. Faça o download do arquivo musica.au. Use o comando auread para carregar o arquivo no Matlab e utilize a função sound para escutar o sinal. Em seguida, filtre o sinal de áudio em cada um dos sistemas S1 e S2 e escute os sinais filtrados. Como os filtros modificam o sinal de áudio? Descreva as suas observações.
- c. Obtenha a resposta em freqüência dos filtros. Classifique-os quanto a seletividade em freqüência.
- 4. Considere o sistema linear e invariante no tempo definido pela seguinte equação de diferença:

$$y[n] = x[n] + \alpha y[n-N]$$

- a. Considere N = 2000 e α = 0,5. Faça a implementação desse filtro no Matlab e trace a resposta ao impulso do sistema. Usando o comando soundsc e escute o sinal obtido.
- b. Faça o download do arquivo audio1_lab.wav. Use o comando wavread para carregar o arquivo no Matlab e utilize a função sound para escutar o sinal. Para garantir que a saída não seja truncada, é conveniente prolongar o sinal x com amostras nulas:

$$>> x = [x', zeros(1.4000)];$$

Faça a filtragem do sinal pelo filtro implementado. Escute o resultado obtido. Experimente também com N=50. Descreva as suas observações para cada valor de N. Altere o valor de α para 0; 0,25; 0,75; 1; 1,75 e verifique o que acontece. Que filtro é esse?