COMPUTATIONAL ECOLOGIST, BIOSTATISTICIAN, AND LECTURER

◎ 0000-0002-3191-8389 | 12 G-1508-2013 | 13 kxLDLIMAAAAJ&hl | 17 b-c-r | 15 bjoern-c-rall

Find below an overview about my peer-reviewed articles, book chapters, GitHub repositories, elsewhere published code, published data, post- and preprints, and other publications.

Articles

- 1. Brose, U., Cushing, L., Berlow, E.L., Jonsson, T., Banasek-Richter, C., Bersier, L.-F., Blanchard, J.L., Brey, T., Carpenter, S.R., Blandenier, M.-F.C., et al. (2005). Body sizes of consumers and their resources. Ecology *86*, 2545. https://doi.org/10.1890/05-0379.
- 2. Brose, U., Jonsson, T., Berlow, E.L., Warren, P., Banasek-Richter, C., Bersier, L.-F., Blanchard, J.L., Brey, T., Carpenter, S.R., Blandenier, M.-F.C., et al. (2006). Consumer–resource body-size relationships in natural food webs. Ecology 87, 2411–2417. https://doi.org/10.1890/0012–9658(2006)87%5B2411:CBRINF%5D2. 0.CO; 2.
- 3. Otto, S.B., Rall, B.C., and Brose, U. (2007). Allometric degree distributions facilitate food-web stability. Nature 450, 1226–1229. https://doi.org/10.1038/nature06359.
- 4. Rall, B.C., Guill, C., and Brose, U. (2008). Food-web connectance and predator interference dampen the paradox of enrichment. Oikos 117, 202–213. https://doi.org/10.1111/j.2007.0030–1299.15491.x.
- 5. Brose, U., Ehnes, R.B., Rall, B.C., Vucic-Pestic, O., Berlow, E.L., and Scheu, S. (2008). Foraging theory predicts predator-prey energy fluxes. J. Anim. Ecol. 77, 1072–1078. https://doi.org/10.1111/j.1365-2656. 2008.01408.x.
- 6. Riede, J.O., Rall, B.C., Banasek-Richter, C., Navarrete, S.A., Wieters, E.A., Emmerson, M.C., Jacob, U., and Brose, U. (2010). Scaling of food-web properties with diversity and complexity across ecosystems. Adv. Ecol. Res. 42, 139–170. https://doi.org/10.1016/B978-0-12-381363-3.00003-4.
- 7. Vucic-Pestic, O., Rall, B.C., Kalinkat, G., and Brose, U. (2010). Allometric functional response model: body masses constrain interaction strengths. J Anim Ecol 79, 249–256. https://doi.org/10.1111/j. 1365–2656.2009.01622.x.
- 8. Petchey, O.L., Brose, U., and Rall, B.C. (2010). Predicting the effects of temperature on food web connectance. Philos. Trans. R. Soc. B *365*, 2081–2091. https://doi.org/10.1098/rstb.2010.0011.
- 9. Rall, B.C., Vucic-Pestic, O., Ehnes, R.B., Emmerson, M., and Brose, U. (2010). Temperature, predator-prey interaction strength and population stability. Glob. Change Biol. 16, 2145–2157. https://doi.org/10.1111/j.1365-2486.2009.02124.x.
- 10. Vucic-Pestic, O., Birkhofer, K., Rall, B.C., Scheu, S., and Brose, U. (2010). Habitat structure and prey aggregation determine the functional response in a soil predator-prey interaction. Pedobiologia *53*, 307–312. https://doi.org/10.1016/j.pedobi.2010.02.003.
- 11. Ehnes, R.B., Rall, B.C., and Brose, U. (2011). Phylogenetic grouping, curvature and metabolic scaling in terrestrial invertebrates. Ecology Letters *14*, 993–1000. https://doi.org/10.1111/j.1461-0248.2011. 01660.x.
- 12. Rall, B.C., Kalinkat, G., Ott, D., Vucic-Pestic, O., and Brose, U. (2011). Taxonomic versus allometric constraints on non-linear interaction strengths. Oikos 120, 483–492. https://doi.org/10.1111/j.1600-0706. 2010.18860.x.

- 13. Kalinkat, G., Rall, B.C., Vucic-Pestic, O., and Brose, U. (2011). The allometry of prey preferences. PLOS ONE 6, e25937. https://doi.org/10.1371/journal.pone.0025937.
- 14. Binzer, A., Brose, U., Curtsdotter, A., Eklöf, A., Rall, B.C., Riede, J.O., and Castro, F. de (2011). The susceptibility of species to extinctions in model communities. Basic Appl. Ecol. 12, 590–599. https://doi.org/10.1016/j.baae.2011.09.002.
- 15. Curtsdotter, A., Binzer, A., Brose, U., Castro, F. de, Ebenman, B., Eklöf, A., Riede, J.O., Thierry, A., and Rall, B.C. (2011). Robustness to secondary extinctions: Comparing trait-based sequential deletions in static and dynamic food webs. Basic and Applied Ecology 12, 571–580. https://doi.org/10.1016/j.baae.2011.09.008.
- 16. Riede, J.O., Binzer, A., Brose, U., Castro, F. de, Curtsdotter, A., Rall, B.C., and Eklöf, A. (2011). Size-based food web characteristics govern the response to species extinctions. Basic and Applied Ecology *12*, 581–589. https://doi.org/10.1016/j.baae.2011.09.006.
- 17. O'Gorman, E.J., Pichler, D.E., Adams, G., Benstead, J.P., Cohen, H., Craig, N., Cross, W.F., Demars, B.O.L., Friberg, N., Gíslason, G.M., et al. (2012). Impacts of warming on the structure and functioning of aquatic communities: individual- to ecosystem-level responses. Advances in Ecological Research 47, 81–176. https://doi.org/10.1016/B978-0-12-398315-2.00002-8.
- 18. Lang, B., Rall, B.C., and Brose, U. (2012). Warming effects on consumption and intraspecific interference competition depend on predator metabolism: Temperature effects on interference competition. Journal of Animal Ecology 81, 516–523. https://doi.org/10.1111/j.1365-2656.2011.01931.x.
- 19. Latz, E., Eisenhauer, N., Rall, B.C., Allan, E., Roscher, C., Scheu, S., and Jousset, A. (2012). Plant diversity improves protection against soil-borne pathogens by fostering antagonistic bacterial communities: Plant diversity improves protection against soil-borne pathogens. Journal of Ecology 100, 597–604. https://doi.org/10.1111/j.1365-2745.2011.01940.x.
- 20. Binzer, A., Guill, C., Brose, U., and Rall, B.C. (2012). The dynamics of food chains under climate change and nutrient enrichment. Phil. Trans. R. Soc. B 367, 2935–2944. https://doi.org/10.1098/rstb.2012.0230.
- 21. Ott, D., Rall, B.C., and Brose, U. (2012). Climate change effects on macrofaunal litter decomposition: the interplay of temperature, body masses and stoichiometry. Philosophical Transactions of the Royal Society B: Biological Sciences 367, 3025–3032. https://doi.org/10.1098/rstb.2012.0240.
- 22. Rall, B.C., Brose, U., Hartvig, M., Kalinkat, G., Schwarzmüller, F., Vucic-Pestic, O., and Petchey, O.L. (2012). Universal temperature and body-mass scaling of feeding rates. Philos Trans R Soc B 367, 2923–2934. https://doi.org/10.1098/rstb.2012.0242.
- 23. Kalinkat, G., Brose, U., and Rall, B.C. (2013). Habitat structure alters top-down control in litter communities. Oecologia 172, 877–887. https://doi.org/10.1007/s00442-012-2530-6.
- 24. Kalinkat, G., Schneider, F.D., Digel, C., Guill, C., Rall, B.C., and Brose, U. (2013). Body masses, functional responses and predator-prey stability. Ecol Lett 16, 1126–1134. https://doi.org/10.1111/ele.12147.
- 25. Fussmann, K.E., Schwarzmüller, F., Brose, U., Jousset, A., and Rall, B.C. (2014). Ecological stability in response to warming. Nat Clim Change 4, 206–210. https://doi.org/10.1038/nclimate2134.
- 26. Günther, B., Rall, B.C., Ferlian, O., Scheu, S., and Eitzinger, B. (2014). Variations in prey consumption of centipede predators in forest soils as indicated by molecular gut content analysis. Oikos 123, 1192–1198. https://doi.org/10.1111/j.1600-0706.2013.00868.x.

OKTOBER 2024

- 27. Lang, B., Rall, B.C., Scheu, S., and Brose, U. (2014). Effects of environmental warming and drought on size-structured soil food webs. Oikos 123, 1224–1233. https://doi.org/10.1111/j.1600-0706.2013.00894.x.
- 28. Ott, D., Digel, C., Klarner, B., Maraun, M., Pollierer, M., Rall, B.C., Scheu, S., Seelig, G., and Brose, U. (2014). Litter elemental stoichiometry and biomass densities of forest soil invertebrates. Oikos 123, 1212–1223. https://doi.org/10.1111/oik.01670.
- 29. Ott, D., Digel, C., Rall, B.C., Maraun, M., Scheu, S., and Brose, U. (2014). Unifying elemental stoichiometry and metabolic theory in predicting species abundances. Ecol Lett 17, 1247–1256. https://doi.org/10.1111/ele.12330.
- 30. Heethoff, M., and Rall, B.C. (2015). Reducible defence: chemical protection alters the dynamics of predator–prey interactions. Chemoecology *25*, 53–61. https://doi.org/10.1007/s00049-014-0184-z.
- 31. Allhoff, K.T., Ritterskamp, D., Rall, B.C., Drossel, B., and Guill, C. (2015). Evolutionary food web model based on body masses gives realistic networks with permanent species turnover. Sci Rep 5, 10955. https://doi.org/10.1038/srep10955.
- 32. Binzer, A., Guill, C., Rall, B.C., and Brose, U. (2016). Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food-web structure. Glob Change Biol 22, 220–227. https://doi.org/10.1111/gcb.13086.
- 33. Latz, E., Eisenhauer, N., Rall, B.C., Scheu, S., and Jousset, A. (2016). Unravelling Linkages between Plant Community Composition and the Pathogen-Suppressive Potential of Soils. Sci Rep 6, 23584. https://doi.org/10.1038/srep23584.
- Rall, B.C., and Latz, E. (2016). Analyzing pathogen suppressiveness in bioassays with natural soils using integrative maximum likelihood methods in R. PeerJ 4, e2615. https://doi.org/10.7717/peerj.2615.
- 35. Schneider, F.D., Brose, U., Rall, B.C., and Guill, C. (2016). Animal diversity and ecosystem functioning in dynamic food webs. Nat Commun 7, 12718. https://doi.org/10.1038/ncomms12718.
- 36. Lang, B., Ehnes, R.B., Brose, U., and Rall, B.C. (2017). Temperature and consumer type dependencies of energy flows in natural communities. Oikos 126, 1717–1725. https://doi.org/10.1111/oik.04419.
- 37. Li, Y., Brose, U., Meyer, K., and Rall, B.C. (2017). How patch size and refuge availability change interaction strength and population dynamics: a combined individual- and population-based modeling experiment. PeerJ 5, e2993. https://doi.org/10.7717/peerj.2993.
- 38. Brose, U., Blanchard, J.L., Eklöf, A., Galiana, N., Hartvig, M., R. Hirt, M., Kalinkat, G., Nordström, M.C., O'Gorman, E.J., Rall, B.C., et al. (2017). Predicting the consequences of species loss using size-structured biodiversity approaches: Consequences of biodiversity loss. Biol Rev 92, 684–697. https://doi.org/10.1111/brv.12250.
- 39. Hirt, M.R., Jetz, W., Rall, B.C., and Brose, U. (2017). A general scaling law reveals why the largest animals are not the fastest. Nat Ecol Evol 1, 1116–1122. https://doi.org/10.1038/s41559-017-0241-4.
- 40. O'Gorman, E.J., Zhao, L., Pichler, D.E., Adams, G., Friberg, N., Rall, B.C., Seeney, A., Zhang, H., Reuman, D.C., and Woodward, G. (2017). Unexpected changes in community size structure in a natural warming experiment. Nature Clim Change 7, 659–663. https://doi.org/10.1038/nclimate3368.
- 41. Li, Y., Rall, B.C., and Kalinkat, G. (2018). Experimental duration and predator satiation levels systematically affect functional response parameters. Oikos 127, 590–598. https://doi.org/10.1111/oik.04479.

- 42. Eitzinger, B., Rall, B.C., Traugott, M., and Scheu, S. (2018). Testing the validity of functional response models using molecular gut content analysis for prey choice in soil predators. Oikos 127, 915–926. https://doi.org/10.1111/oik.04885.
- 43. Hirt, M.R., Grimm, V., Li, Y., Rall, B.C., Rosenbaum, B., and Brose, U. (2018). Bridging scales: allometric random walks link movement and biodiversity research. Trends in Ecology & Evolution 33, 701–712. https://doi.org/10.1016/j.tree.2018.07.003.
- 44. Rosenbaum, B., and Rall, B.C. (2018). Fitting functional responses: Direct parameter estimation by simulating differential equations. Methods Ecol Evol 9, 2076–2090. https://doi.org/10.1111/2041-210X. 13039.
- 45. Sohlström, E.H., Marian, L., Barnes, A.D., Haneda, N.F., Scheu, S., Rall, B.C., Brose, U., and Jochum, M. (2018). Applying generalized allometric regressions to predict live body mass of tropical and temperate arthropods. Ecol Evol 8, 12737–12749. https://doi.org/10.1002/ece3.4702.
- 46. Archer, L.C., Sohlström, E.H., Gallo, B., Jochum, M., Woodward, G., Kordas, R.L., Rall, B.C., and O'Gorman, E.J. (2019). Consistent temperature dependence of functional response parameters and their use in predicting population abundance. J. Anim. Ecol. 88, 1670–1683. https://doi.org/10.1111/1365-2656.13060.
- 47. Marx, J.M., Rall, B.C., Phillips, H.R.P., and Brose, U. (2019). Opening the black box of plant nutrient uptake under warming predicts global patterns in community biomass and biological carbon storage. Oikos 128, 1503–1514. https://doi.org/10.1111/oik.06141.
- 48. Pennekamp, F., Iles, A.C., Garland, J., Brennan, G., Brose, U., Gaedke, U., Jacob, U., Kratina, P., Matthews, B., Munch, S., et al. (2019). The intrinsic predictability of ecological time series and its potential to guide forecasting. Ecological Monographs 89, e01359. https://doi.org/10.1002/ecm.1359.
- 49. Brose, U., Archambault, P., Barnes, A.D., Bersier, L.-F., Boy, T., Canning-Clode, J., Conti, E., Dias, M., Digel, C., Dissanayake, A., et al. (2019). Predator traits determine food-web architecture across ecosystems. Nat. Ecol. Evol. 3, 919–927. https://doi.org/10.1038/s41559-019-0899-x.
- 50. Ryser, R., Häussler, J., Stark, M., Brose, U., Rall, B.C., and Guill, C. (2019). The biggest losers: habitat isolation deconstructs complex food webs from top to bottom. Proceedings of the Royal Society B: Biological Sciences 286, 20191177. https://doi.org/10.1098/rspb.2019.1177.
- 51. Gauzens, B., Rall, B.C., Mendonça, V., Vinagre, C., and Brose, U. (2020). Biodiversity of intertidal food webs in response to warming across latitudes. Nat. Clim. Change 10, 264–269. https://doi.org/10.1038/s41558-020-0698-z.
- 52. Sohlström, E.H., Archer, L.C., Gallo, B., Jochum, M., Kordas, R.L., Rall, B.C., Rosenbaum, B., and O'Gorman, E.J. (2021). Thermal acclimation increases the stability of a predator–prey interaction in warmer environments. Global Change Biology *27*, 3765–3778. https://doi.org/10.1111/gcb.15715.
- Voigt, E., Rall, B.C., Chatzinotas, A., Brose, U., and Rosenbaum, B. (2021). Phage strategies facilitate bacterial coexistence under environmental variability. PeerJ 9, e12194. https://doi.org/10.7717/peerj.12194.
- 54. Nickisch (born Gericke), D., Rall, B.C., Singer, A., and Ashauer, R. (2022). Fish species sensitivity ranking depends on pesticide exposure profiles. Environ Toxicol Chem 41, 1732–1741. https://doi.org/10.1002/etc.5348.
- 55. Sohlström, E.H., Brose, U., Klink, R. van, Rall, B.C., Rosenbaum, B., Schädler, M., and Barnes, A.D. (2022). Future climate and land-use intensification modify arthropod community structure. Agric. Ecosyst. Environ. 327, 107830. https://doi.org/10.1016/j.agee.2021.107830.

4 OF 7

56. Kalinkat, G., Rall, B.C., Uiterwaal, S., and Uszko, W. (2023). Empirical evidence of type III functional responses and why it remains rare. Front Ecol Evol 11, 1033818. https://doi.org/10.3389/fevo.2023.1033818.

Book Chapters _____

1. Kalinkat, G., and Rall, B.C. (2015). Effects of climate change on the interactions between insect pests and their natural enemies. In Climate Change and Insect Pests (CABI), pp. 74–91. https://doi.org/10.1079/9781780643786.0074.

GitHub repositories

- 1. Rall, B.C. (2023). Rare type III responses: code.
- 2. Rall, B.C. (2024). My CV.

Code published elsewhere _____

- 1. Rall, B.C., and Latz, E. (2016). Analyzing pathogen suppressiveness in bioassays with natural soils using integrative maximum likelihood methods in R: Main Sources.
- 2. Rall, B.C., and Latz, E. (2016). Analyzing pathogen suppressiveness in bioassays with natural soils using integrative maximum likelihood methods in R: Manual Sources.
- 3. Li, Y., Brose, U., Meyer, K., and Rall, B.C. (2017). CPP code for the individual based model; from: "How patch size and refuge availability change interaction strength and population dynamics: a combined individual-and population-based modeling experiment".
- 4. Rosenbaum, B., and Rall, B.C. (2019). Data from: Fitting functional responses: direct parameter estimation by simulating differential equations.
- 5. Ryser, R., Häussler, J., Stark, M., Brose, U., Rall, B.C., and Guill, C. (2019). Data from: The biggest losers: habitat isolation deconstructs complex food webs from top to bottom.
- 6. Nickisch (born Gericke), D., Rall, B.C., Singer, A., and Ashauer, R. (2022). Code from: "Fish species sensitivity ranking depends on pesticide exposure profiles (openGuts Standalone Version).
- 7. Nickisch (born Gericke), D., Rall, B.C., Singer, A., and Ashauer, R. (2022). Code from: "Fish species sensitivity ranking depends on pesticide exposure profiles (R morse version).
- 8. Rall, B.C. (2023). Rare Type III functional responses (Code): Version 1.0.0.

Data published _____

- 1. Ehnes, R.B., Rall, B.C., and Brose, U. (2011). Appendix S1(a) to "Phylogenetic grouping, curvature and metabolic scaling in terrestrial invertebrates".
- 2. Lang, B., Rall, B.C., Scheu, S., and Brose, U. (2014). Effects of environmental warming and drought on size-structured soil food webs.
- 3. Ott, D., Digel, C., Rall, B.C., Maraun, M., Scheu, S., and Brose, U. (2014). Supplementary Tables 1 & 2 from: "Unifying elemental stoichiometry and metabolic theory in predicting species abundances".
- 4. Brose, U., Cushing, L., Berlow, E.L., Jonsson, T., Banasek-Richter, C., Bersier, L.-F., Blanchard, J.L., Brey, T., Carpenter, S.R., Blandenier, M.-F.C., et al. (2016). Body sizes of consumers and their resources. https://doi.org/10.6084/m9.figshare.c.3298772.v1.

- 5. Rall, B.C., and Latz, E. (2016). Analyzing pathogen suppressiveness in bioassays with natural soils using integrative maximum likelihood methods in R: Main Sources. https://doi.org/10.7717/peerj.2615/supp-1.
- 6. Rall, B.C., and Latz, E. (2016). Analyzing pathogen suppressiveness in bioassays with natural soils using integrative maximum likelihood methods in R: Manual Sources. https://doi.org/10.7717/peerj.2615/supp-3.
- 7. Lang, B., Ehnes, R.B., Brose, U., and Rall, B.C. (2017). Data from: Temperature and consumer type dependencies of energy flows in natural communities. https://doi.org/10.5061/dryad.58m3g.
- 8. Hirt, M.R., Jetz, W., Rall, B.C., and Brose, U. (2017). Supplementary information: a general scaling law reveals why the largest animals are not the fastest.
- 9. Li, Y., Rall, B.C., and Kalinkat, G. (2017). Data from: Experimental duration and predator satiation levels systematically affect functional response parameters. https://doi.org/10.5061/DRYAD.G5516.
- 10. Eitzinger, B., Rall, B., Traugott, M., and Scheu, S. (2017). Data from: Testing the validity of functional response models using molecular gut content analysis for prey choice in soil predators. https://doi.org/10.5061/DRYAD.31TOK.
- 11. Sohlström, E., Marian, L., Barnes, A., Haneda, N., Scheu, S., Rall, B., Brose, U., and Jochum, M. (2018). Data from: Applying generalised allometric regressions to predict live body mass of tropical and temperate arthropods. https://doi.org/10.5061/dryad.vk24fr1.
- 12. Marx, J.M., Rall, B.C., Phillips, H.R.P., and Brose, U. (2019). Data from: Opening the black box of plant nutrient uptake under warming predicts global patterns in community biomass and biological carbon storage. https://doi.org/10.5061/DRYAD.3SR11G3.
- 13. Rosenbaum, B., and Rall, B.C. (2019). Data from: Fitting functional responses: direct parameter estimation by simulating differential equations. https://doi.org/10.5061/DRYAD.KB76QJ8.
- 14. Archer, L.C., Sohlström, E.H., Gallo, B., Jochum, M., Woodward, G., Kordas, R.L., Rall, B.C., and O'Gorman, E.J. (2020). Data from: Consistent temperature dependence of functional response parameters and their use in predicting population abundance. https://doi.org/10.5061/DRYAD.TR4V447.
- 15. Sohlström, E.H., Brose, U., Klink, R. van, Rall, B.C., Rosenbaum, B., Schädler, M., and Barnes, A. (2021). Dataset for Sohlström et al. Future climate and land-use intensification modify arthropod community structure. https://doi.org/10.6084/m9.figshare.17290088.v1.
- 16. Nickisch (born Gericke), D., Rall, B.C., Singer, A., and Ashauer, R. (2022). Data from: "Fish species sensitivity ranking depends on pesticide exposure profiles".
- 17. Kalinkat, G., Rall, B.C., Uiterwaal, S., and Uszko, W. (2023). Rare type III responses: data & data methods (v1.0.0). https://doi.org/10.5281/zenodo.7620216.

Post- and Preprints_

- 1. Curtsdotter, A., Binzer, A., Brose, U., Castro, F. de, Ebenman, B., Eklöf, A., Riede, J.O., Thierry, A., and Rall, B.C. (2011). Robustness to secondary extinctions: Comparing trait-based sequential deletions in static and dynamic food webs.
- 2. Allhoff, K.T., Ritterskamp, D., Rall, B.C., Drossel, B., and Guill, C. (2015). Evolutionary food web model based on body masses gives realistic networks with permanent species turnover.

- 3. Rall, B.C., and Latz, E. (2016). Assessing plant pathogen infection rates in natural soils using R. https://doi.org/10.7287/peerj.preprints.2156v1.
- 4. Li, Y., Brose, U., Meyer, K., and Rall, B.C. (2016). How patch size and refuge availability change interaction strength and population dynamics: a combined individual- and population-based modeling experiment. https://doi.org/10.7287/peerj.preprints.2190.
- 5. Hirt, M.R., Jetz, W., Rall, B.C., and Brose, U. (2016). Universal scaling of maximum speed with body mass Why the largest animals are not the fastest. https://doi.org/10.1101/095018.
- 6. Fussmann, K.E., Rosenbaum, B., Brose, U., and Rall, B.C. (2017). Interactive effects of shifting body size and feeding adaptation drive interaction strengths of protist predators under warming. https://doi.org/10.1101/101675.
- 7. Eitzinger, B., Rall, B.C., Traugott, M., and Scheu, S. (2017). Combining molecular gut content analysis and functional response models shows how body size affects prey choice in soil predators. https://doi.org/10.1101/113944.
- 8. Li, Y., Rall, B.C., and Kalinkat, G. (2017). Experimental duration and predator satiation levels systematically affect functional response parameters. https://doi.org/10.1101/108886.
- 9. Rosenbaum, B., and Rall, B.C. (2017). Fitting functional responses: direct parameter estimation by simulating differential equations. https://doi.org/10.1101/201632.
- 10. Sohlstroem, E.H., Marian, L., Barnes, A.D., Haneda, N.F., Scheu, S., Rall, B.C., Brose, U., and Jochum, M. (2018). Applying generalised allometric regressions to predict live body mass of tropical and temperate arthropods. https://doi.org/10.1101/297697.
- 11. Pennekamp, F., Iles, A., Garland, J., Brennan, G., Brose, U., Gaedke, U., Jacob, U., Kratina, P., Matthews, B., Munch, S., et al. (2018). The intrinsic predictability of ecological time series and its potential to guide forecasting. https://doi.org/10.1101/350017.
- 12. Ryser, R., Häussler, J., Stark, M., Brose, U., Rall, B.C., and Guill, C. (2019). The biggest losers: Habitat isolation deconstructs complex food webs from top to bottom. https://doi.org/10.1101/439190.

Theses, Manuals, Method Descriptions, and other Reports_

- 1. Rall, B.C. (2006). Temperature and enrichment effects on simple consumer resource pairs and complex food web models.
- 2. Rall, B.C. (2010). Allometry, temperature, and the stability of food webs.
- 3. Rall, B.C. (2014). Workshop fitting non-linear models to data in r: from power laws to population dynamics.
- 4. Rall, B.C., and Latz, E. (2016). Manual: Analyzing pathogen suppressiveness in bioassays with natural soils using integrative maximum likelihood methods in R. https://doi.org/10.7717/peerj.2615/supp-2.
- 5. Rosenbaum, B., and Rall, B.C. (2018). Manual: Fitting functional responses: Direct parameter estimation by simulating differential equations.
- 6. Rosenbaum, B., and Rall, B.C. (2018). Supplement: Fitting functional responses: Direct parameter estimation by simulating differential equations.
- 7. Rall, B.C., Kalinkat, G., Uiterwaal, S., and Uszko, W. (2023). Rare type III responses: methods for code and simulation models (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.7619822.