부력제어 자율무인잠수정(BCA) 개발

- 해양복합연구단 BCA분야 (8~12세부) -

2024. 09. 25 [수요일]

지대형 [한국해양과학기술원]

주관기관: 한국해양과학기술원 한국도키멕㈜, 한국해양대학교 LIG넥스원㈜, 오션테크㈜

과제 개요

사업명	무인이동체 원천기술개발사업(내역사업 2 : 통합운용 기술실증기 개발)
과제명	무인수상선-수중자율이동체 복합체계 개발(해양복합연구단)
세부과제명	제08세부: 복합체계임무를 위한 수중글라이더용 전력 및 제어시스템 개발 제09세부: 1,000미터급 수중글라이더 구동부 및 선체 개발 제10세부: 1,000미터급 수중글라이더 자율제어 기술 개발 제11세부: 1,000미터급 수중글라이더 항법 기술 개발 제12세부: 1,000미터급 수중글라이더 센서 탑재모듈 기술 개발
연구목표	복합체계임무를 위한 1,000m급 수중글라이더 개발
사업기간	총 연구기간 : 2020. 06. 01 ~ 2027. 05. 31(1, 2단계 총 84개월) 당해(5차)년도 연구기간 : 2024. 01. 01 ~ 2024. 12. 31(12개월)
연구사업비	총 59.15억(국비 51.68억원, 기업 7.47억원)/당해 10.27억원
BCA 총괄 주관기관	한국해양과학기술원
BCA 참여기관	한국도키멕㈜, 한국해양대학교, LIG넥스원㈜, 오션테크㈜

과제 연구목표

○ 최종 목표

다양한 해양 임무를 수행하는 복합체계임무를 위한 **1,000m급 수중글라이더 개발**

○ 세부 목표

- 복합체계임무를 위한 수중글라이더 전력 및 제어시스템 개발 (한국해양과학기술원)
- 1,000m 항해가 가능한 수중글라이더의 유압식 부력 제어기 및 선체 개발(한국도키멕)
- 부력 제어를 통한 수중활강 운동체인 수중글라이더의 **자율제어 기술 개발(한국해양대학교)**
- 1,000m급 수중글라이더의 위치추정 **항법 기술 개발 (LIG넥스원)**
- 1,000m급 수중글라이더 **센서 탑재모듈 기술 개발 (오션테크)**

과제 연차별 연구개발 목표

○ 연차별 연구목표

단계	연차	연구목표	세부목표
1단계	1차년	수중글라이더 요구도 분석 및 개발일정 도출	 수요처 요구사항, 효과도 분석 목표사양을 충족하기 위한 기능, 선체, 운영시나리오 개념설계 기구/구동/유압/센서부 설계
	2차년	수중글라이더 기본설계	① 전력 및 제어시스템 기본설계 ② 부력/자세/조향 제어기 설계 및 제작 ③ 운동 모델링 CFD 유체력 계수 해석 ④ 수중복합항법 알고리즘 개발 및 항법시뮬레이터 설계 ⑤ 센서 모듈 기본 설계
	3차년	수중글라이더 상세설계	 전력 및 제어시스템 상세설계 동체 제작 및 모듈별 시스템 통합 에너지 최적 운동제어 알고리즘 개발 위치추정 알고리즘 및 항법시뮬레이터 보완 센서 모듈 상세 설계
	4차년	수중글라이더 시제 제작 및 기본 성능 시험	① 시제 제작② 기본 성능 시험③ 시험 결과에 따른 보완 사항 수립
	5차년	수중글라이더 단일 시험 평가	① 단일 시제 시험 평가 ② 복합체계 운용 기술 개발
2단계 	6차년	복합체계 운용 성능 시험	① 복합체계 종합 연동시험 (수조) ② 복합체계 통신시스템 기술 개발
	7차년	복합체계 종합 연동 시험	① 복합체계 종합 연동시험 (해상)
	8차년	최종평가 및 연구결과 활용방안 도출	① 최종평가 및 연구결과 활용방안 도출

시제 개발 범위

oceantech 오션테크(주) 때양전기공업(주)

과제 연구개발로드맵

목표 성능

OBCA 목표 성능

붉은 색 표기 = 대표 목표 성능

항목	목표 성능	달성 성능	상세 정의	ИП
최대 잠항 수심	1,000m 이상	1,200m 이상 (120bar)	BCA의 최대 운용 수심 제원	동체 개선품 제작 후 자체 시험 수행
속도	평균 1.0kn 이상	평균 1.0kn 이상	BCA의 평균 수평이동속도 제원	수치 산출
ヨ기	D230 X L2,351 X W990 mm 이 내	D220 X L2,252 X W980 mm	최대 크기 제원	제작품 크기 측정
중량	85kg Olðl	80kg 0 ð	최대 중량 제원	설계 사양 및 부분 제작품 중량 측정
부력 제어기 중량	15kg Olðl	9kg 01ðł	부력 제어기의 최대 중량 제원	기구 제작 후 중량 측정
부력 제어기 소비전력	150W 0 &	80W 010H	부력 제어기의 최대 소비전력 제원 (유압 최대 사양)	소비전력 시험
부력 제어량	1L 내외 (오차 ±30%)	1.02L	부력 제어기의 부력 제어량 제원	공인 시험
자세 제어기 정밀도	± 2% 이 내	0.3% 이내	자세 제어기의 기구 정밀도	공인 시험
조향 제어기 정밀도	± 2% 이 내	1% 이내	조향 제어기의 기구 정밀도	공인 시험
운용 시간	2개월 이상	2개월 이상	BCA의 최대 임무 수행 기간	수치 산출 및 배터리 팩 제작
자료 전송	RF	2km 이상	RF의 최대 통신 가능 거리	수치 산출 및 통신 시험 수행
선택적 탑재 센서	7종 센서	7종 센서	CTD, ADCP, CO2, Ph, 메탄, 지자기, 탁도 센서 센서 탑재 모듈 Plug & Play 기능 수심 1,000m 이상 해양학 데이터 수집	7종 센서가 탑재 가능한 시나리오 및 센서 탑재 모듈 제작
연동	통신 및 네트워킹 연동	-	USV, PCA / 내역 사업 1과 통신 및 네트워킹으로 연동	설계 후 제작 진행 중
진단	자체 진단 기능	-	BCA 자체 진단	설계 후 제작 진행 중
관제 시스템	DB, 통신중계서버, 관제서버 기능	-	DB서버 - 수집된 데이터 저장 통신중계서버 - 위성통신에서 제공하는 중계서버 관제서버 - 장비운용, 데이터 가공, 저장 및 가시화 처리	설계 후 제작 진행 중
진수	USV에서 자동 진수 가능	-	독자 진수대를 이용한 USV에서 자동 진수 가능	설계 후 제작 진행 중
보조 장치	육상 보관/운반/이동 보조장치	-	육상에서 보관/운반/이동이 용이한 보조장치	2단계에서 설계 및 제작

○ 복합체계임무를 위한 수중글라이더용 전력 및 제어시스템 개발 (8세부: KIOST)

- ▶ 전력 시스템 개발 배터리 팩(이동/고정) 개발 및 연동/부하 시험
- ▶ 제어 HW 개발 제어 보드 개발 및 기구 연동 시험
- ▶ 제어 sw 개발 작동 시나리오, 주행/제어 모식도
- ➤ 운영 sw 개발 관제 시스템 개발

[고정 배터리 팩 시제]

[이동 배터리 팩 시제]

[제어보드 시제1

[관제 시스템]

[작동 시나리오 세부 모식도]

[수중글라이더 제어 모식도]

○ 1,000m급 수중글라이더 구동부 및 선체 개발 (9세부: 한국도키멕)

- ▶ 유압식 부력 제어기 개발
- ▶ 자세 제어기 개발
- ▶ 조향 및 기타 제어기 개발
- ▶ 내압 용기 설계 및 성능 해석 기술 개발
- ▶ 시제품 제작
 - 기구 구동 성능 및 내구성 검증
 - 자체 수압용 챔버를 이용한 방수 성능 검증

[부력 제어기 시제]

[조향 제어기 시제]

[탄소 복합소재 동체]

[기타 구성품]

○ 1,000m급 수중글라이더 자율제어 기술 개발 (10세부: 한국해양대학교)

- ▶ 시스템 파라미터 분석
- ➤ 형상 설계에 따른 유체력 계수 CFD 해석
- ▶ 수직 운동 및 항행 시뮬레이터 개발
- ▶ 에너지 최적 운동 제어 및 항법 알고리즘 개발

[Layered PID 제어 방식]

- 1,000m급 수중글라이더 항법 기술 개발 (11세부: LIG 넥스원)
 - ▶ 수중 항법 알고리즘 개발
 - 위치 추정 알고리즘 검증용 소프트웨어 구조 설계
 - 위치 추정 알고리즘 설계 및 검증
 - GPS 정보 기반 통합 해류 추정
 - ▶ 수중 항법 시뮬레이터(항법 성능 검증 장치) 개발
 - 수중글라이더의 위치 추정 알고리즘 시뮬레이션 수행
 - 시험 데이터 기반 성능 분석 수행

[항법 성능 검증 장치 SW GUI 구성]

[위치 추정 알고리즘 SW 구조]

[통합 해류 추정]

[위치 추정 검증]

○ 1,000m급 수중글라이더 센서 탑재모듈 기술 개발 (12세부: 오션테크)

- ▶ 센서 탑재 모듈 개발
 - 센서와 센서 모듈 인터페이스 보드로 구성
 - 시나리오 분류 / 크기 및 전력 소모를 고려한 센서 선정
 - 센서 자동 인식, 센서 운용 제어, 자체 로깅 기능 구성
- ➤ Plug & Play 기능 개발
 - 임무 시나리오 별 센서의 취득 자료를 수집/처리
 - 모듈화가 가능한 Plug & Play 기능

[센서 인터페이스 보드 회로 설계]

[센서 인터페이스 보드 시제]

[센서 모듈 시나리오]

[센서 연동 시험]

장비 크기 및 내부 구성품

○ 내부 구성품 배치

1차 시제 제작품

○ 1차 시제 제작품

[시제 설계 안]

[시제 제작품]

대표 성과

○ 대표 산출물 (건수)

1171123	기술		논문			특허		ui m
시제퓓	네품 기술 자료	국외논문	국외발표	국내논문	국내발표	출원	등록	비고
9	14	3	5	4	4	_	-	

○ 대표 산출물 (리스트)

순번	시제품	기술자료	비교
1	전력 시스템	- 설계 보고서 1부	
2	제어 시스템	- 설계 보고서 1부 - BCARCS-BCA 인터페이스통제문서(ICD) 1부	
3	부력 제어기	- 기술 사양서 1부 - 공인 시험 성적서 1부	
4	자세 제어기	- 기술 사양서 1부 - 공인 시험 성적서 1부	
5	조향 제어기	- 기술 사양서 1부 - 공인 시험 성적서 1부	
6	동체 및 페이로드부	- 기술 사양서 1부 - 공인 시험 성적서 1부	
7	자율 제어 시뮬레이션 프로그램	- 매뉴얼 1부	
8	항법 시뮬레이터	- 기술 사양서 1부	
9	위치 추정 알고리즘	- 기술 사양서 1부	

5차년도 연구목표

- ❖ 5차년도 연구목표
 - ① 수중글라이더 단일 시험 평가
- ❖ 5차년도 연구내용
 - 단일 시제 시험 평가
 - 구성품 별 성능시험
 - ✓ 기구부 연동 시험
 - ✓ 기구부 내구성 시험
 - ✓ 구동 시험에 결과에 따른 기구 보완
 - ✓ 센서 페이로드 모듈 연동 시험
 - ✓ 선체 외압 시험
 - 수조 시험
 - ✓ 선체 운동 성능 파악
 - ✓ 자율 제어 알고리즘 검증 및 개선
 - 해상시험
 - ✓ 주행 및 운영 상태 검증 및 개선
 - ✓ 항법 알고리즘 검증 및 개선
 - 복합체계 운용 기술 개발
 - BC-AUV 임무별 운용 기술 개발
 - 센서 탑재 및 지상용 복합체계 운용 콘솔 설계 및 제작
 - USV와 AUV간 수상 운용 시 무선 통신 시스템 기술 개발

[시험 시제 제작]

[무선 통신 시스템 구성도]

중간 결과

연구 진행 사항 [1/3]

- ◆ BCA 진수대 설계 및 제작
 - · 총괄 기관과 진수대-USV 설치 방안 및 위치 협의 (**완료**, 8월)
 - · BCA 진수대 설계 및 제작 (예정, 10월 중)
 - · BCA 진수대 설치 일정 조율 (예정, 10월 중)

중간 결과

○ 연구 진행 사항 (2/3)

▲ 전력 및 제어시스템-기구부 연동 시험

- ㆍ제작된 배터리 팩, 제어시스템을 기구부 (부력/자세/조향 제어기)와 연동하여 구동 성능 시험
- · 별도의 전원 공급 없이 제작된 배터리 팩을 이용한 제어시스템-기구부 **구동 성능 및 소모 전력량 확인**
- · 부력 제어기 (**완료**, 3월)
 - 100bar의 압력이 작용하는 상태에서 부력 제어기 구동 성능 확인
 - 부하 별 소모 전력량 확인 (0~100 bar)
- · 자세 제어기 (**완료**, 3월)
 - 선체 조립 상태에서 수직 상태로 구동 성능 확인
- · 조향 제어기 (**완료**, 8월)
 - 구동 범위(-30~30°) 구동 성능 확인

[부력 제어기 연동 및 부하 시험]

◆ 기구부 내구성 시험

- · 장기 연속 구동으로 **기구부의 내구성을 확인**
- · 부력 제어기 (**완료**, 4월) 이상 무
- · 자세 제어기 (**완료**, 3월) 이상 무
- · 조향 제어기 (**완료**, 9월) 이상 무

[기구부 내구성 시험]

중간 결과

연구 진행 사항 (3/3)

- ◆ 선체 외압 시험 [완료, 6월]
 - · 선체 외압 시험을 위한 자체 수압용 챔버 제작 (한국도키멕)
 - · 선체 및 구성품 외압 시험 수행 (120bar, 약 30분)

[선체 외압 시험]

▶ 제어기-센서 페이로드 모듈 연동 시험 [완료, 7월]

- · 시나리오 별 제어기-페이로드 연동 시험 수행
- · 센서 연동 상태 및 데이터 로그 내용 확인 및 평가
- 6가지 시나리오에 맞춰 연동 시험 완료

[센서 연동 시험]

▶ 통신 기능 연동 시험 [완료, 7월]

- · 제어기-통신 모듈 간 통신 기능 연동 확인
- · RF 모뎀, 위성 통신(Main / Sub), 통신 스위칭 기능 시험 완료

[통신 기능 연동 시험]

시험 계획

○ 시험 계획

- ◆ 시험 시제 연동 [~10월 초]
 - ·시험 시제 준비 (기구/구성품 조립 및 배선)
- ▶ 복합체계 운용 기술 개발 [~10월 중]
 - · BCA 임무 관제를 위한 관제시스템 개발
 - · BCA 임무 별 운용 기술 개발
 - · 해상 시험 간에 관제시스템을 사용

◆ 수조 시험 [10월 3~4 번째 주]

- · 생기원 해양로봇센터(부산 기장) 조파수조에서 시험 예정
- · 운동 성능 파악 (잠항 / 부상 / 자세 / 회전 반경 등)
- · 자율 제어 알고리즘 검증 및 개선
- · 실증 항목 = 복합체계 임무를 위한 수중중글라이더 개발 수중글라이더 운용 기간
- <u>해상 시험</u> [10~11월]
 - · 부산 영도 인근해역에서 시험 예정
 - · 주행 및 시제 운영 상태 검증 및 개선
 - · **항법 알고리즘 검증** 및 개선
 - · 실증 항목 = 수중글라이더 RF 통신 거리

[관제시스템 예시]

[수조 시험 예시]

[해상 시험 예시]

O BCA 시제 시험/검증 방안

2단계 개발 항목	시험 내용	시험/검증 목표	시험예상일자
7단계 개월 8백	(정성) 복합체계 임무를 위한 수중글라이더 개발		
		수중글라이더 단일 시험 평가	24년 10월 경
		복합체계 운용 성능 시험	6차년도
		복합체계 종합 연동 시험	7-8차년도(최종)
(8세부)	[정량] 수중글라이더 운용 기간	≥ 2개월, 단위시간 기준 수조 실험에 근거	24년 10월 경
전력 및 제어시스템		≥ 2개월, 단위시간 기준 수조 실험에 근거	6차년도
개발		≥ 2개월, 해상 실험에 근거, Sea state 3이내	7-8차년도(최종)
		≥ 2km, 연안-육지 2km 범위내, Ses state 20l내	24년 10월 경
	(정량) 수중글라이더 RF 통신 거리	≥ 2km, 연안-육지 2km 범위내, Ses state 3이내	6차년도
		≥ 2km, 해상 실험에 근거, Ses state 3이내	7-8차년도(최종)
	(정성) 유압식 부력 제어기 및 선체 개발	수조 시험 시의 문제점을 보완하여 최종 시제품 제작, 단일 시험 평가 요구 성능 목표의 100% 만족	24년 10월 경
(9세부)	(정량) 부력 제어기 소비전력	≤150W (부하 100bar, 부력 제어량 1L에 대해 유압 최대 사양으로 10회 시험하여 시제품 평균 소비전력 측정)	23년 11월 검증 완료
유압식 부력 제어기 및 선체 개발	(정량) 자세 제어 정밀도	< ±2% [배터리 최대 무게에서 지정된 자세 제어 정밀도를 수조에서 실험, 센서장착 비교값 산출]	24년 10월 경
	(정량) 선체 외압	선체 외압 120bar 수조에서 안전율을 고려한 외압시험 실시하여 내부로 수분 침투 여부 확인	24년 10월 경
	(정량) 조향 제어 정밀도	< ±2%(지정된 조향 제어 정밀도를 수조에서 실험, 센서장착 비교값 산출)	24년 10월 경
(10세부) 자율 제어 기술 개발	(정성) 수중글라이더의 실해역 운항실험 및 데이터 취득	수중글라이더 수조 센서 테스트 수중글라이더 실해역 실험 및 운용 테스트 시뮬레이션 결과와 실험 테이터 분석	24년 10월 경
(11세부) 항법 기술 개발	(정성) 1000급 수중글라이더의 위치추정 항법 기술 개발	수중글라이더 시험 평가 적용	24년 10월 경
(12세부)	(정성) 해양관측용 센서 탑재 모듈 기술 개발	센서모듈 통합성능시험 및 보완	24년 10월 경
센서 탑재 모듈 기술 개발	(정량) 센서모듈 Plug & play 기능 개발	Plug & Play 통합성능시험 및 보완 - 모듈 2개 이상 시험(통합 시험)	24년 10월 경

○ BCA 금년도 수행 실증방안 (1/3)

[정성] 복합체계 임무를 위한 수중글라이더 개발

- 실증 목표: 수중글라이더 단일 시험 평가
- 실증 장소/일시: 한국생산기술연구원 해양로봇센터 (부산 기장) 조파 수조 / 24년 10월 중
- 실증 방법
- ① 조파 수조에 BCA 진수
- ② 1-cycle 잠항 명령 전달 (잠항 수심: 약 5m, 조향타 각도: -30~30°, 센서 계측 수행)
- ③ BCA 부상 후 RF 통신을 통해 취득 자료 획득 (건물 안이므로 위성통신 X, 별도 시험 수행)
- ④ 취득 자료를 통해 각 구성품 별 구동 성능 및 통합 상태 검증
- 부력 제어기 : 부력제어기 내 오일 변화량을 통해 설정한 값으로 부력 조절이 되는지 확인
- 자세 제어기 : 이동 배터리 팩의 이동량을 통해 선체의 설정된 pitch 각으로 자세를 제어하는지 확인
- 조향 제어기 : 설정한 각도로 조향타가 회전하는지 육안으로 확인, 회전 반경 변화 확인
- RF 통신 : 통신 로그를 통해 BCA가 부상해 있는 동안 관제시스템과의 통신 여부 확인
- 센서 페이로드: 1-cycle 잠항을 수행하는 동안 측정된 데이터 값과 기준값 (수조 물 특성 정보) 비교
- 위성 통신 : BCA가 위성 통신을 수행할 수 있도록 건물 밖으로 이동해서 통신 로그를 통해 관제시스템과의 위성 통신 여부 확인

[한국생산기술연구원 조파수조]

○ BCA 금년도 수행 실증방안 (2/3)

[정량] 수중글라이더 운용 기간

- 실증 목표: ≥ 2개월, 단위시간 기준 수조 실험에 근거
- 실증 장소/일시: 한국생산기술연구원 해양로봇센터 (부산 기장) 조파 수조 / 24년 10월 중
- 실증 방법
- ① 조파 수조에 BCA 진수
- ② 1-cycle 잠항 명령 전달 (잠항 수심: 약 5m, 센서 계측 수행)
- ③ BCA 부상 후 RF 통신을 통해 취득 자료 획득
- ④ 수심 5m 잠항 시 전력 사용량을 이용해서 수심 1,000m 전력 소모량으로 수치적 환산
- 1,000m 1-cycle 전력 소모량 = 부력/자세/조향 제어기 전력 소모량 + 센서 페이로드 전력 소모량 + 기타 부품 전력 소모량
- 부력 제어기: 5m 1-cycle 전력 소모량 = 1,000m 1-cycle 전력 소모량 (부력 조절량 동일 조건)
- 센서, 자세/조향 제어기 : 수심 (d, 5m /1,000m)에 대하여 입사각 (θ)에 따른 BCA 이동거리 (l)를 계산하고 비례식을 이용하여 전력 소모량 (P) 환산

$$l=rac{d}{\sin(heta)}$$
 , $P_{1000}=rac{l_{1000}}{l_{5}} imes P_{5}$, $P_{1000}:1{,}000m$ 수심 이동에 대한 전력 소모량

- 기타 부품 전력 소모량은 1-cvcle 전력 사용량에서 부력/자세/조향 제어기 및 센서 전력 소모량을 제한 나머지로 함
- BCA가 평균 1knot로 이동하면 1-cycle을 주행하는데 약 2시간 소요
- 전력 소모량 총 합 = (1,000m 1-cycle 전력 소모량) * (하루 주행 횟수) * (2개월)
- 전력 소모량 총 합을 전체 배터리 팩 용량과 비교

[주행 Cycle]

○ BCA 금년도 수행 실증방안 (3/3)

[정량] 수중글라이더 RF 통신 거리

- 실증 목표: ≥ 2km, 연안-육지 2km 범위내, Sea state 2이내

- 실증 장소/일시 : 영도 인근 해역 / 24년 10월 중

- 실증 방법

- ① 영도 인근 해역에 실험 구역과 Sea state 2인 날을 선정
- ② 해안가에 BCA 관제시스템을 설치하고 2km 떨어진 해역에 BCA 진수
- ③ 관제시스템에서 RF 통신을 통해서 BCA로 접속 시도
- ④ RF 통신을 통해서 BCA 상태 정보를 취득
- ⑤ 관제시스템에서 수신된 데이터 확인을 통해 검증

[통신 개념도]

BCA 세부기술 통합 실증방안 (1/3)

[정성] 복합체계 임무를 위한 수중글라이더 개발

- 실증 목표
- 복합체계 운용 성능 시험 (6차년도)
- 복합체계 종합 연동 시험 (7-8차년도)
- 실증 방법
- ① 6차년도 검증방안은 "BCA 금년도 수행 실증방안 (1/3)" (p.23)과 동일
- 전년도 평가를 통해 개선된 BCA을 검증
- 복합체계 구성을 위한 통신 및 기능 연동 작업 수행
- ② 7-8차년도: 실해역 내 시험 구역에 BCA 진수
- ③ 무선통신 (RF 또는 위성)을 이용한 USV-PCA-BCA 복합체계 종합 연동 시험 수행
- RF 통신을 이용한 MCS에서 BCA 제어
- 위성 통신을 이용한 BCARCS에서 BCA 제어 (임무수행/변경, BCA 상태 확인, 자료 취득 등)
- BCA 위치 정보 공유 및 필요시 임무 변경
- 통신 로그 파일, 취득 데이터를 통해 검증

[복합체계 통신 구조]

BCA 세부기술 통합 실증방안 (2/3)

[정량] 수중글라이더 운용 기간

- 실증 목표
- ≥ 2개월, 단위시간 기준 수조 실험에 근거 (6차년도)
- ≥ 2개월, 해상 실험에 근거, Sea state 3이내 (7-8차년도)
- 실증 방법
- ① 6차년도 검증방안은 "BCA 금년도 수행 실증방안 (2/3)" (p.24)과 동일
- 전년도 평가를 통해 개선된 BCA을 검증
- ② 7-8차년도 : 실해역 시험 구역에 BCA 진수 (잠항 수심 : 약 1,000m, 센서 계측 수행)
- ◆ 잠항 수심은 시험 차수에 따라 점진적으로 증가하여 최종 목표 수심 1,000m까지 시험 수행
- ③ 운용 시나리오 임무 명령 전달 (실증 지점의 수심에 따른 잠항 수심 결정)
- ④ 1일 후 위성 통신을 통해 취득 자료 획득 및 전력 소모량 확인
- ⑤ 1일 전력 소모량을 이용하여 2개월 전력 소모량으로 환산
- 2개월 전력 소모량 = (1일 전력 소모량) * (2개월)
- ⑥ 전력 소모량 총 합을 전체 배터리 팩 용량과 비교
- 실증 기간은 시험 차수에 따라 점진적으로 증가하여 비교 데이터를 축적

[시험 예정지]

[주행 사이클]

BCA 세부기술 통합 실증방안 (3/3)

(정량) 수중글라이더 RF 통신 거리

- 실증 목표
- ≥ 2km, 연안-육지 2km 범위내, Sea state 3이내 (6차년도)
- ≥ 2km, 해상 실험에 근거, Sea state 3이내 (7-8차년도)
- 실증 방법
- ① 영도 인근 해역 (6차년도) / 실해역 시험 구역 (7-8차년도)에서 Sea state 3인 날을 선정
- ② 6차년도: 해안가에 BCA 관제시스템을 설치하고 2km 떨어진 해역에 BCA 진수
- ③ 7-8차년도: 선박에 BCA 관제시스템을 설치하고 2km 떨어진 해역에 BCA 진수
- ④ 관제시스템에서 RF 통신을 통해서 BCA로 1-cycle 잠항 명령 전달
- ⑤ BCA 부상 후 RF 통신을 통해서 운항정보를 획득 (위치 확인 필요)
- ⑥ 관제시스템에서 수신된 데이터 확인을 통해 검증

[통신 개념도]

2024년도 무인이동체원천기술개발사업 통합기술워크샵

감사합니다.

