Math 206A Lecture 10 Notes

Daniel Raban

October 19, 2018

1 \mathcal{F} -Vectors of Polytopes

1.1 Types of polytopes

There are two types of convex polytopes in \mathbb{R}^d .

- 1. **simplicial polytopes** (all faces are simplices),
- 2. simple polytopes (degree of every vertex = d, dim(P) = d).

There is a duality between these two types. Basically, a point on each face, and take the convex hull to get the dual polytope. P is simple iff P^* is simplicial.

Definition 1.1. Let $P \subseteq \mathbb{R}^d$ be a convex polytope with $\dim(P) = d$. Let $f_i(P)$ be the number of i dimensional faces of P. This is called the \mathcal{F} -vector of P.

Proposition 1.1.
$$f_i(P) = f_{d-i-1}(P^*)$$
.

Topologists like simplicial polytopes, but combinatorialists like simple polytopes. We will focus on simple polytopes, but the previous proposition tells us that this is really the same story.

1.2 Dehn-Sommerville equations

Theorem 1.1 (Dehn-Sommerville equations¹). Let $P \subseteq \mathbb{R}^d$ be simple. Then

$$\sum_{i=k}^{d} (-1)^{i} \binom{i}{k} f_{i} = \sum_{i=d-k}^{d} (-1)^{d-i} \binom{i}{d-k} f_{i}.$$

for all $0 \le k \le d$.

The case d = 3 was proved by Euler. The cases d = 4.5 were proved by Dehn, and d > 5 was proved by Sommerville.

Remark 1.1. When k=0, this becomes

$$\sum_{i=0}^{d} (-1)^i f_i = 1.$$

This is Euler's formula. When d = 3, we get $f_0 - f_1 + f_2 = 2$, where $f_3 = 1$.

Example 1.1. Let P be a simplex in \mathbb{R}^d . Then $f_0 = d+1$, and $f_i = \begin{pmatrix} d+i \\ i+1 \end{pmatrix}$.

Example 1.2. Let $Q \subseteq \mathbb{R}^d$ be a d-cube. Then $f_0 = 2^d$, $f_d = 1$, and $f_{d-1} = 2d$. In general, $f_i = \binom{d}{i} 2^{d-i}$, because we have $\binom{d}{i}$ ways to choose a face and 2^{d-i} coordinates left. We get

$$\sum_{i=0}^{d} f_i = 3^d,$$

which could be otherwise proven as an elementary exercise.

Proposition 1.2. Let $\mathcal{F}(t) = \sum_{i=0}^d f_i t^i$. Define $\mathcal{G}(t) := \mathcal{F}(t-1) = \sum_{i=-}^d g_i t^i$. Then $g_k = \sum_{i=1}^{d} (-1)^i \binom{i}{k} f_i$.

Proof.

$$\mathcal{G}(t+1) = \sum_{i=0}^{d} g_i(t+1)^i = \sum_{i=0}^{d} g_i \sum_{k=0}^{i} \binom{i}{k} t^k = \sum_{k=0}^{d} t^k \left[\sum_{i=k}^{d} g_i \binom{i}{k} \right] = \sum_{i=0}^{d} t^k f_k = \mathcal{F}(t). \quad \Box$$

So the Dehn-Sommerville equations say that $g_i = g_{d-i}$.

Example 1.3. For a simplex, $\mathcal{F} = (1+t)^{d+1}$. Then $\mathcal{G}(t) = t^{d+1}$.

Example 1.4. For the *d*-cube, $\mathcal{F}(t) = (2+t)^d$, and $\mathcal{G}(t) = (1+t)^d$.

Let's prove the theorem.

Proof. Fix $\varphi: \mathbb{R}^d \to \mathbb{R}$ a Morse function (a linear function that is nonconstant on edges of the polytope). For a vertex v, define the index $\operatorname{ind}_{\varphi}(v)$ to be the number of edges increasing by φ . Observe that $0 \leq \operatorname{ind}_{\varphi}(v) \leq d$. Define $h_i^{(\varphi)}$ to be the number of vertices $v \in V(P)$ such that $\operatorname{ind}_{\varphi}(v) = i$.

We claim that $f_k = \sum_{i=k}^d {i \choose k} h_i^{(\varphi)}$. Take any k-face Q, and let v be the minimum vertex with respect to φ . Let $i = \operatorname{ind}_{\varphi}(v)$. The number of k-faces Q is $\sum_{i=k}^{d} {i \choose k} h_i^{(\varphi)}$, which is the number of ways to choose Q with minimum vertex v times the index.

Then $\sum_{i=0}^{d} h_i^{(\varphi)} t^i = \mathcal{F}(t-1)$. So for all φ , $h_i^{(\varphi)} = g_i$. If we replace φ with $-\varphi$, we get

 $h_i^{(\varphi)} = h_{d-i}^{-\varphi}$. The left hand side is g, and the right hand side is g_{d-i} .