Name:	 MatrNr.:	

Klausur: Grundlagen der Elektronik SS 16

Kurzfragen ohne Unterlagen (Bearbeitungszeit: 30 min)

- 1) Die Steilheit eines MOSFETs kann erhöht werden, wenn man ...
- 2) Um welche digitale Grundschaltung handelt es sich bei dem Bild rechts unten? Um welche Transistoren handelt es sich bei M_1 und M_2 (Funktionsprinzip, Details)? Stellen Sie die Wahrheitstabelle zur Schaltung auf.
- 3) Ergänzen Sie die folgenden Aussagen zu den Eigenschaften zweier Halbleiter A und B, die sich nur in ihrer effektiven Masse der Elektronen im Leitungsband unterscheiden $(m_A^* < m_B^*)$ in den punktierten Bereichen durch ">", "<" oder "=".
- 4) Skizzieren Sie in dem vorbereiteten Diagramm den Konzentrationsverlauf der Minoritätsladungsträger in der neutralen Basis $(x_2 \text{ bis } x_3)$ eines npn-Transistors (Diffusionsdreieck). Vernachlässigen Sie die Variation der Verarmungszonenbreiten mit der Spannung. Markieren Sie die Verläufe mit dem Buchstaben der Teilaufgaben; U_{eb} : Emitter-Basis-Spannung und U_{cb} : Kollektor-Basis-Spannung. Geben Sie die Minoritätsladungsträgerkonzentration $n_p(x_2)$ in Abhängigkeit von U_{eb} formelmäßig an.
- 5) Gegeben ist eine ideale Metall-Isolator-Halbleiter-Struktur (Bild a) mit gleichen Austrittsarbeiten von Halbleiter und Metall sowie in den Bildern c bis e die zugehörigen Bändermodelle für drei Arbeitspunkte. Um welchen Halbleitertyp handelt es sich?
 - Zeichnen Sie für niedrige Frequenzen den $C(U_g)/C_i$ -Verlauf in das Diagramm (Bild b). Markieren Sie die Arbeitspunkte der drei angegebenen Bändermodelle mit dem zugehörigen Buchstaben (c bis e) in der $C(U_g)/C_i$ -Kennlinie.
- 6) Gegeben ist das Bändermodell W(x) von p-dotiertem Silizium. Skizzieren Sie für Raumtemperatur die Zustandsdichten der Elektronen im Leitungsband und der Löcher im Valenzband D(W) in parabolischer Näherung, sowie die Fermi-Verteilung f(W) und die Elektronen- und Löcherkonzentrationen im Leitungs- bzw. Valenzband n(W), p(W) in den vorbereiteten Koordinatensystemen.
- 7) Welche der Aussagen zu einer AlGaAs/GaAs-Doppelheterostruktur-LED sind richtig?
- 8) Welche der Aussagen zu einem idealen pn-Übergang mit angelegter Spannung U sind zutreffend?
- 9) Der schematische Querschnitt rechts zeigt zwei Transistoren einer CMOS-Schaltung. Ergänzen Sie jeweils den Kanaltyp und beschriften Sie in dem unteren Feld die markierte Schicht und das verwendete Material. CMOS ist die Abkürzung für ...
- 10) Skizzieren Sie in den vorbereiteten Diagrammen die örtlichen Verläufe der Raum-

ladungsdichte $\rho(x)$, und des elektrischen Feldes E(x) sowie das Bändermodell W(x) in der angedeuteten, idealen Metall-Oxid-p-Halbleiterstruktur für den Fall der Anreicherung. Beschriften Sie $W_{\rm F}$, $W_{\rm L}$, $W_{\rm V}$ sowie die angelegte Spannung U. Welches Vorzeichen muss dann die Spannung U zwischen Metall und Halbleiter aufweisen?

NT		
Name:	 	

Klausur: Grundlagen der Elektronik SS 16

Aufgaben ohne Unterlagen (Bearbeitungszeit: 2 Std.)

Die spezifische Leitfähigkeit $\sigma(T)$ eines reinen p-Halbleiters ($N_D = 0$) soll in den zwei Temperaturbereichen (1) mit $T < T_1$ und (2) mit $T \ge T_1$ analysiert werden. Die effektiven Zustandsdichten N_L und N_V im Leitungs- und Valenzband sowie die Beweglichkeiten μ_n und μ_p der Elektronen und Löcher sollen jeweils gleich groß sein und folgende Temperaturabhängigkeiten aufweisen ($T_0 = 300 \text{ K}$):

$$N_{\rm L}(T) = N_{\rm V}(T) = N_0 \left(\frac{T}{T_0}\right)^{3/2}$$
; für beide Bereiche (1) und (2)
 $\mu_{\rm p}(T) = \mu_{\rm n}(T) = \mu_0$; im Bereich (1)
 $\mu_{\rm p}(T) = \mu_{\rm n}(T) = \mu_0 \left(\frac{T_0}{T}\right)^{3/2}$; im Bereich (2).

Es liegt vollständige Ionisation der Dotierstoffe ($N_A^- = N_A = 10^{15}$ cm⁻³) vor, und der Halbleiter ist im thermodynamischen Gleichgewicht ($np = n_i^2$). Nutzen Sie:

$$n_{\rm i} = \sqrt{N_{\rm L}(T) N_{\rm V}(T)} \exp \left(-\frac{W_{\rm G}}{2 \,\mathrm{k} T}\right) \; ; \; \sigma(T) = \mathrm{q} \left[n(T) \mu_{\rm n}(T) + p(T) \mu_{\rm p}(T)\right]$$

a) Ermitteln Sie ausgehend von Ladungsneutralität $(N_D^+ + p = N_A^- + n)$ unter Berücksichtigung der genannten Bedingungen eine quadratische Gleichung für p, die als weitere Parameter nur noch N_A und n_i enthält. Lösen Sie diese Gleichung, so dass sich für die Bereiche (1) und (2) näherungsweise ergibt:

$$p=N_{\rm A}$$
; mit $2n_{\rm i}/N_{\rm A}<<1$; im Bereich (1) $p=n_{\rm i}$; mit $2n_{\rm i}/N_{\rm A}>>1$; im Bereich (2)

- b) Leiten Sie nun die Temperaturabhängigkeiten p(T) in den Bereichen (1) und (2) explizit formelmäßig ab. Wie groß ist jeweils im Vergleich n(T)?
- c) Ermitteln Sie anschließend die Temperaturabhängigkeiten der spezifischen Leitfähigkeit $\sigma(T)$ in den Bereichen (1) und (2). Die abgeleiteten Formeln sollen jeweils alle Temperaturabhängigkeiten explizit enthalten.
- d) Ordnen Sie die in der Tabelle gegebenen Werte für σ in Abhängigkeit von T den Temperaturbereichen (1) und (2) zu. Ergänzen Sie in der Tabelle auch die entsprechenden Werte von T_0/T .

T (K)	290	300	310	320	390	420	525	665
$\sigma (1/\Omega cm)$	0,04	0,04	0,04	0,04	0,1	0,2	1,0	4,0
Bereich		(1)			(2)	
T_0/T	1,03	1	0,97	0,94	0,77	0,71	0,57	0,45

Tragen Sie die Werte für σ (T) nun in das Diagramm unten ein. Ergänzen Sie die Achsenbeschriftungen (Skalierung und Einheit). Markieren und bezeichnen Sie die beiden charakteristischen Temperaturabhängigkeiten im Diagramm. Bestimmen Sie aus der Auftragung den Bandabstand W_G , die Beweglichkeit μ_0 , die effektive Zustandsdichte N_0 und die Übergangstemperatur T_1 formel- und zahlenmäßig. Folgende Daten sind gegeben: $q = 1,6\cdot10^{-19}$ C; $k = 8,62\cdot10^{-5}$ eV/K.

- 2) Ermitteln Sie die Abschnürspannung U_p eines n-Kanal-Sperrschicht-Feldeffekttransistors (JFET). In der gradual-channel-approximation (Abb. 2) wird angenommen, dass das elektrische Feld in der Verarmungszone unterhalb des Gates (schraffierte Fläche) in y-Richtung und im Kanal in x-Richtung verläuft. Gehen Sie, wie für die ideale pn-Diode bei 300 K üblich, davon aus, dass die Dotierstoffe vollständig ionisiert sind und die beweglichen Ladungsträger in der Sperrschicht keine Rolle spielen.
 - a) Ermitteln Sie ausgehend vom Verlauf der Raumladung $\rho(y) = q(N_D^+ + p N_A^- n)$ der Gate-Diode durch Integration der Poisson-Gleichung: $\frac{d^2W_L(y)}{dy^2} = q\frac{dE(y)}{dy} = \frac{q}{\varepsilon}\rho(y)$
 - den Verlauf der elektrischen Feldstärke E(y) und der Leitungsbandkante $W_{\rm L}(y)$ im Bereich der Sperrschicht jeweils für den p- und den n-Bereich. Skizzieren Sie die Verläufe (Vorlage). Markieren Sie charakteristische Parameter $[-qN_{\rm A}, qN_{\rm D}, q(U_{\rm D}-U_{\rm P})]$.
 - b) Bestimmen Sie die Bandaufwölbung $W_{\rm L}(w_{\rm n})$ - $W_{\rm L}(-w_{\rm p})$ am Ort x=l näherungsweise unter Beachtung von $N_{\rm D}$ << $N_{\rm A}$. Ermitteln Sie nun die Spannung $U_{\rm p}$ ($U_{\rm sg}=0$) bei Kanalabschnürung näherungsweise unter Beachtung von $N_{\rm D}$ << $N_{\rm A}$. Folgendende Daten sind gegeben: $N_{\rm D}=10^{16}$ cm⁻³; d=0,5 µm; relative Dielektrizitätskonstante: $\varepsilon_{\rm r}=11,7$; $\varepsilon_{\rm 0}=8,854\cdot10^{-12}$ As/(Vm); $q=1,6\cdot10^{-19}$ C, $U_{\rm D}=0,7$ V.

Name:	
чаше	••••

- Analysieren Sie die Schaltung in <u>Abb. 3a</u>. Der Transistor ist durch das Kennlinienfeld in <u>Abb. 3 b</u> charakterisiert. Folgende Betriebsparameter sind gegeben: $U_{\rm B} = 6$ V, $U_{\rm ce} = 4.0$ V, $U_{\rm eb} = -0.7$ V, $U_{\rm E} = 0.2$ V, $I_{\rm b} = 6$ μA, $I_{\rm q} = 5 \times I_{\rm b}$, $R_{\rm G} = 50$ Ω, $R_{\rm L} = 1$ kΩ.
 - a) Welcher Transistortyp liegt vor? Zeichnen Sie das Gleichstromersatzschaltbild. Ermitteln Sie den Arbeitspunkt (U_{ce}, I_c) und die Widerstände R_1, R_2, R_E und R_C . Wie groß ist I_c $(U_{ce} = 0)$? Tragen Sie Arbeitspunkt und -gerade in das Kennlinienfeld ein.
 - b) Führen Sie eine Wechselstromanalyse durch. Welcher Schaltungstyp liegt vor? Zeichnen Sie hierzu die Ersatzschaltung unter Verwendung des vereinfachten Kleinsignal-Ersatzschaltbildes für den Transistor (Abb. 3c) mit den Parametern α = 0,997; $r_{\rm b}$ = 1,2 k Ω und $r_{\rm e}$ = 8 Ω . Die Kondensatoren stellen im betrachteten Frequenzbereich Kurzschlüsse dar.
 - Bestimmen Sie aus b) mit Hilfe der in a) ermittelten Werte den Eingangswiderstand $R_{\rm e}=u_1/i_1$, die Stromverstärkung $v_{\rm i}=i_2/i_1$, die Leerlaufspannungsverstärkung $v_{\rm uL}=u_2/u_1$ ($i_2=0$), die Spannungsverstärkung $v_{\rm u}=u_2/u_{\rm G}$ ($i_2\neq 0$) und den Ausgangswiderstand $R_{\rm a}=u_2/i_2$ ($u_{\rm G}=0$) der Schaltung formel- und zahlenmäßig. Nutzen Sie bei der Herleitung der Formeln sich aus den Zahlenwerten ergebende sinnvolle Näherungen.

Ma)
$$M_0^+ + P = N_A + H$$
, $N_0^+ = N_0 = 0$, $N_A = N_A$, $0 = \frac{n_1^2}{P}$
 $\Rightarrow P = N_A + \frac{n_1^2}{P} \Rightarrow P^2 - N_A P - n_1^2 = 0$
 $\Rightarrow P_{M_2} = \frac{N_A}{2} + \frac{1}{4} + \frac{N_1^2}{4} + \frac{1}{1} = \frac{N_A}{2} (1 + \sqrt{1 + \frac{4n_1^2}{N_A^2}})$
 $nur_0 + \frac{1}{2} \frac{1}{4} + \frac{1}{4} + \frac{1}{1} = \frac{N_A}{2} (1 + \sqrt{1 + \frac{4n_1^2}{N_A^2}})$
 $nur_0 + \frac{1}{2} \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{1}{2} \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{1}{2} \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{1}{4} \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{1}{4} \frac{1}{4} + \frac{1}{4} = \frac{1}{4} \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{1}{4} \frac{1}{4} + \frac{1}{4} \frac{1}{4} = \frac{1}{4} \frac{1}{4} \frac{1}{4} = \frac{1}{4} \frac{1}{4} \frac{1}{4} + \frac{1}{4} \frac{1}{4} \frac{1}{4} = \frac{1}{4} \frac{1}{4} \frac{1}{4} + \frac{1}{4} \frac{1}{4} \frac{1}{4} = \frac{1}{4} \frac{1}{4} \frac{1}{4} + \frac{1}{4} \frac{1}{4} \frac{1}{4} = \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} = \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} = \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} = \frac{1}{4} \frac{1}{4} \frac{1}{4} = \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} = \frac{1}{4} \frac{1}{4} \frac{1}{4} = \frac{1}{4} \frac{1}{4} \frac{1}{4} = \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} = \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} = \frac{1}{4} \frac{1}{4} \frac{1}{4} = \frac{1}{4} \frac{1}{4} \frac{1}{4} + \frac{1}{4} \frac{1}{4} \frac{1}{4} = \frac{1}{4} \frac{1}{4} \frac{1}{4} = \frac{1}{4} \frac{1}{4} \frac{1}{4} = \frac{1}{4} \frac{1}{4} \frac{1}{4} = \frac{1}{4} \frac{1}{4}$

2a) g(y) = q[No(y) - NA(y)] in der sperroshidt n- Baeid P-Beech P(y) = 9 NoP(y) = -9 NA 1. heterochen der Poissongleidung: E(y)= \frac{4}{2} \partial p(y) dy + C E(y) = - \$N4) dy + C = - \$N44+C| E(y) = & No (P(y) dy + C C= B(Wp) + 9 NA (-Wp) C=B(wn) - 7 NOWN > E(y) = - & NA (y-Wp) 2. Integration der Parisonplanding: WL (y) = 9 (E(y) dy + C WL(y) = - & NA (y+wp) dy + C $|W_{L}(y) = \frac{q^2}{\varepsilon} N_0 \int (y - w_n) dy + C$ = - 2 NA (2 y2+ wpy) + C = = 92 VA (2 y2-wny) + C C=W_(-wp) - \frac{\frac{4^2}{2}}{2} NA \frac{\omega^2}{2} \(C = W_L(\omega_h) + \frac{\frac{4^2}{2}}{2} ND \frac{\omega^n}{2} -> WL(y)-WL (-Up) = - = = = NA (y+ Wp)2 (-> WL(y)-WL(Wn) = = = NO (y-Wn)2 b) $W_{L}(w_{n}) - W_{L}(-w_{p}) = W_{L}(w_{n}) - W_{L}(v) + W_{L}(v) - W_{L}(-w_{p}) = -9(20-29)$ $= -\frac{9^{2}}{2\epsilon}(N_{D}w_{n}^{2} + N_{A}w_{p}^{2}) = -\frac{9^{2}}{2\epsilon}N_{D}w_{n}^{2}(1+\frac{N_{A}w_{p}^{2}}{N_{D}w_{n}^{2}}) = -\frac{9^{2}}{2\epsilon}N_{D}w_{n}^{2}(1+\frac{w_{p}^{2}}{w_{n}})^{2}$ 2- 7 NO Wn2 bei Absidurmpdes Kanals: Wn = d -> U0-Ug = 2 No d2 Spannegsunland: -Usg = Ug + Uds = 0 >> Ug = -Uds = -Up -> U0+Up = 7 ND d2 -> Up = 7 ND d2 = 1,23 V

