Lecture 28

niceguy

March 24, 2023

1 Hysteresis

"Soft" magnetic matierials have small residual \vec{B} values, being easily magnetised and demagnetised.

"Hard" magnetic materials are the opposite, having high residual \vec{B} values. They are difficult to demagnetise, and make good permanent magnets. However, there is a greater energy loss when applied field \vec{H} varies with time.

2 Boundary Conditions

From

$$\iint_{S} \vec{B} \cdot d\vec{S} = 0$$

Observe that the integral is equal to $\vec{B}_{n1} - \vec{B}_{n2}$, meaning the normal component of \vec{B} is preserved when crossing a magnetic materia. Now consider a closed loop of length Δl along \vec{H} . Then

$$\oint_{c} trclockwise\vec{H} \cdot d\vec{l} = H_{t2}\Delta l - H_{t1}\Delta l = J_{S}\Delta l \Rightarrow \hat{n}_{2} \times (\vec{H}_{1} - \vec{H}_{2}) = \vec{J}_{S}$$