Linear Equations

Econ 5170

Computational Methods in Economics

2020-2021 Spring

Outline

- Elementary Concepts of Numerical Analysis
 - Computer arithmetic
 - Error analysis
- 2 Linear Equations
 - Direct methods
 - Iterative methods
 - Acceleration and stabilization methods

- Unlike pure mathematics, computer arithmetic has finite precision and is limited by time and space.
- Real numbers are represented as floating point numbers of the form

$$\pm d_0.d_1d_2...d_{p-1} \times \beta^e$$

where $d_0.d_1d_2...d_{p-1}$ is the significand, β is the base, e is the exponent, and p is the precision.

• Machine epsilon: Smallest quantity ϵ such that $1-\epsilon$ and $1+\epsilon$ are both different from one.

Matlab: eps = 2.2204e - 016.

 Machine infinity: Largest quantity that can be represented. Overflow occurs if an operation produces a larger quantity.

Matlab: realmax = 1.7977e + 308.

Machine zero: Any quantity that cannot be distinguished from zero.
 Underflow occurs if an operation on nonzero quantities produces a smaller quantity.

Matlab: realmin = 2.2251e - 308.

- A computer can only execute the basic arithmetic operations of addition, subtraction, multiplication, and division. Everything else is approximated.
- Relative speeds:

operation	speed relative to addition		
subtraction	1.03		
multiplication	1.03		
division	1.06		
exponentiation	5.09		
sine function	4.20		

Computer Arithmetic: Efficient Polynomial Evaluation

Computing $\sum_{k=0}^{n} a_k x^k$.

- Direct method 1: compute the various powers of x, x^2 , x^3 , etc, then multiply each a_k by x^k , and finally add the terms.
- Direct method 2: replace the expensive exponentiations with multiplications; compute x^2 by computing xx, then compute $x^3 = (xx)x$.

Computer Arithmetic: Efficient Polynomial Evaluation

Computing $\sum_{k=0}^{n} a_k x^k$.

- Direct method 1: compute the various powers of x, x^2 , x^3 , etc, then multiply each a_k by x^k , and finally add the terms.
- Direct method 2: replace the expensive exponentiations with multiplications; compute x^2 by computing xx, then compute $x^3 = (xx)x$.
- Horner's method:

$$a_0 + a_1x + a_2x^2 + a_3x^3 = a_0 + x(a_1 + x(a_2 + x \cdot a_3))$$

	Additions	Multiplications	Exponentiations
Direct method 1	n	n	n-1
Direct method 2	n	2n-1	0
Horner's method	n	n	0

Computer Arithmetic: Efficient Polynomial Evaluation

- Define a one-dimensional array $A(\cdot)$ that stores the a_k coefficients: let $A(k+1) = a_k$ for k = 0, 1, ..., N.
- Write a program to implement Horner's method

Computer Arithmetic: Efficient Computation of Derivatives

Analytic Derivatives

The derivatives of $f(x, y, z) = (x^{\alpha} + y^{\alpha} + z^{\alpha})^{\gamma}$

- Direct approach: Calculate $\gamma \alpha x^{\alpha-1} (x^{\alpha} + y^{\alpha} + z^{\alpha})^{\gamma-1}$, $\gamma \alpha y^{\alpha-1} (x^{\alpha} + y^{\alpha} + z^{\alpha})^{\gamma-1}$, $\gamma \alpha z^{\alpha-1} (x^{\alpha} + y^{\alpha} + z^{\alpha})^{\gamma-1}$.
- Efficient approach: store the values of x^{α} , y^{α} , z^{α} , z^{α} , z^{α} + z^{α} .

$$f_x = (x^{\alpha} + y^{\alpha} + z^{\alpha})^{\gamma - 1} \cdot \gamma \alpha \cdot x^{\alpha} / x$$

XALP = X ^ ALPHA; YALP = Y ^ ALPHA; ZALP = Z ^ ALPHA
SUM = XALP + YALP + ZALP
F=SUM ^ (GAMMA-1)
COM=GAMMA*ALPHA*F
FX=COM*XALP/X; FY=COM*YALP/Y; FZ=COM*ZALP/Z

Computer Arithmetic: Finite Differences

When the analytic derivatives are absent or too time-consuming, we turn to finite differences.

One-sided finite difference

$$f'(x) \doteq \frac{f(x+h) - f(x)}{h}$$

where $h = \min\{\epsilon |x|, |x|\}$ is the step size and ϵ is chosen appropriately, usually on the order of 10^{-6} .

- We want h to be small relative to x
- We want h to stay away from zero to keep the division and differencing well-behaved.
- If $f: \mathbb{R}^n \to \mathbb{R}$, then

$$\frac{\partial f}{\partial x_i} \doteq \frac{f(x_1, ..., x_i + h_i, ..., x_n) - f(x_1, ..., x_i, ..., x_n)}{h_i}$$

Computer Arithmetic: Finite Differences

Cross partials are approximated by

$$\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \doteq \frac{1}{h_{j}} \left(\frac{f(..., x_{i} + h_{i}, ..., x_{j} + h_{j}, ...) - f(..., x_{i}, ..., x_{j} + h_{j}, ...)}{h_{i}} - \frac{f(..., x_{i} + h_{i}, ..., x_{j}, ...) - f(..., x_{i}, ..., x_{j}, ...)}{h_{i}} \right)$$

The second partials are approximated by

$$\frac{\partial^2 f}{\partial x_i^2} \doteq \frac{f(..., x_i + h_i, ...) - 2f(..., x_i, ...) + f(..., x_i - h_i, ...)}{h_i^2}$$

Direct versus Iterative Methods

- Direct methods: algorithms which, in the absence of round-off error, give the exact answer in a predetermined finite number of steps.
 - Pros: take a fixed amount of time and produce answers of fixed precision
 - Cons: may not exist, or require too much space or time
- Iterative methods:

$$x^{k+1} = g^{k+1}(x^k, x^{k-1}, ...)$$

- Whether the sequence x^k converges to x^* , and if convergent how fast it converges
- Must terminate the sequence at some finite point
- We can control the quality of the result

Sources of Error

- Rounding: arise from the fact that the only thing computers can do correctly is integer arithmetic
 - Example: Consider the decimal number 0.1. If $\beta=10$ and p=3, then 1.00×10^{-1} is exact. If $\beta=2$ and p=24, then

$$1.10011001100110011001101 \times 2^{-4}$$

is not exact.

 Increasing the number of bits used to present a number is the only way to reduce rounding errors.

Sources of Error

- Mathematical truncation
 - Many mathematical objects and procedures are defined as the limit of an infinite process, such as an iterative algorithm.
 - For example, the exponential function is defined as

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

On some computers it becomes $\sum_{n=0}^{N} \frac{x^n}{n!}$ for some finite N.

Error Propagation

- Once errors arise in a calculation, they can interact to reduce the accuracy of the final result even further.
- For example, solve the quadratic equation $x^2-26x+1=0$. The solution is $x^*=13-\sqrt{168}=0.0385186...$
 - Compute this number with a five-digit computer. $\sqrt{168}=12.961.$ The result is

$$\hat{x_1} = 13 - 12.961 = 0.039$$

The relative error is more than 1%.

A better approach is

$$\hat{x}_2 = 13 - \sqrt{168} = \frac{1}{13 + \sqrt{168}} \doteq \frac{1}{25.961} \doteq 0.038519$$

The relative error is 10^{-5} .

Reduce the propagation of errors

- Avoid unnecessary subtractions of numbers of similar magnitude.
- When adding a long list of numbers, first add the small numbers and then add the result to the larger numbers.

Rates of Convergence

• Suppose that the sequence $x^k \in R^n$ satisfies $\lim_{k \to \infty} x^k = x^*$. We say that x^k converges at rate q to x^* if

$$\lim_{k \to \infty} \frac{||x^{k+1} - x^*||}{||x^k - x^*||^q} < \infty$$

- If the above is true for q = 2, we say that x^k converges quadratically.
- If

$$\lim_{k \to \infty} \frac{||x^{k+1} - x^*||}{||x^k - x^*||} \le \beta < 1$$

we say that x^k converges linearly at rate β . If $\beta = 0$, x^k is said to converge superlinearly.

Stopping Rules

• Stop and accept x_{k+1} if

$$\frac{|x_k - x_{k+1}|}{1 + |x_k|} \le \epsilon$$

This allows us to stop the sequence if it appears that the changes are small or if the limit appears to be close to zero.

ullet If we know a sequence is linearly convergent at rate eta < 1. We have

$$||x^{k+1} - x^*|| \le \beta ||x^k - x^*||$$

 $||x^k - x^*|| \le ||x^k - x^{k+1}||/(1 - \beta)$

Stop and accept x_{k+1} if

$$||x^k - x^{k+1}|| \le \epsilon (1 - \beta)$$

the error is bounded by $||x^k - x^*|| \le \epsilon$.

Stopping Rule

• For example, consider the scalar sequence

$$x_k = \sum_{j=1}^k \frac{1}{j}$$

The limit of x_k is infinite, but any particular x_k is finite.

- First stopping rule: If $\epsilon = 0.001$, it will end at k = 9330 where $x_k = 9.71827$.
- Second stopping rule: never conclude that the sequence converges.

Compute and Verify

- Consider the problem of solving f(x) = 0. The exact solution is x^* , our approximate solution is \hat{x} .
- Forward error analysis: How far is \hat{x} from x^* ?
- Backward error analysis: Construct a similar problem \hat{f} such that $\hat{f}(\hat{x}) = 0$. How far is \hat{f} from f?
- Compute and verify: how far is $f(\hat{x})$ from its target value of 0?

Direct Methods: Backsubstitution

- Consider the system of linear equations Ax = b, where A is an $n \times n$ matrix, and b is an $n \times 1$ vector.
- Backsubstitution: Suppose A is lower triangular

$$A = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

Then

$$x_1 = \frac{b_1}{a_{11}}$$

$$x_k = \frac{b_k - \sum_{j=1}^{k-1} a_{kj} x_j}{a_{kk}}, \quad k = 2, 3, ..., n$$

• If A is upper triangular, we can similarly solve Ax = b beginning with $x_n = b_n/a_{nn}$.

Direct Methods: LU Decomposition

- Factor A into the product of two triangular matrices, A = LU
 - ullet L is lower triangular and U is upper triangular.

$$Ax = b$$

$$\Rightarrow LUx = b$$

$$\Rightarrow Lz = b \text{ and } Ux = z$$

- Solve for z in Lz = b by backsubstitution
- Solve for x in Ux = z by backsubstitution
- Gaussian elimination produces such an LU decomposition for any nonsingular A.

Matlab: [L, U] = Iu(A).

Direct Methods: QR Factorization

• If A is nonsingular, then decompose A = QR, where Q is orthogonal (Q'Q) is a diagonal matrix and R is upper triangular. Matlab: [Q,R] = qr(A).

$$Ax = b$$

$$\Rightarrow Q'Ax = Q'b$$

$$\Rightarrow Q'QRx = Q'b$$

$$\Rightarrow DRx = Q'b$$

- D is a diagonal matrix. DR is upper triangular.
- Compute x by applying backsubstitution.

Direct Methods: Cholesky Factorization

- The LU and QR decomposition can be applied to any nonsingular matrix
- Cholesky factorization can be used for symmetric positive definite matrices.
- Cholesky decomposition: A = LL', where L is a lower triangular matrix. L is the "square root" of A.
 Matlab: C = chol(A)
- A special case of LU decomposition, but only has half the cost of LU decomposition.

Iterative Methods

- Decomposition methods for linear equations are direct methods of solution
 - Can be very costly for large systems, since the time requirement are order n^3 and the space requirements are order n^2
- Iterative methods can economize on space and provide good answers in reasonable time
 - Gauss-Jacobi Algorithm
 - Gauss-Seidel Algorithm

Iterative Methods: Fixed-Point Iteration

- Rewrite the problem as a fixed-point problem and repeatedly iterate the fixed-point mapping
- For the problem Ax = b, define G(x) = Ax b + x

$$x^{k+1} = G(x^k) = (A+I)x^k - b$$

• It will converge only if all the eigenvalues of A + I have modulus less than 1.

Iterative Methods: Gauss-Jacobi Algorithm

• Consider the equation from the first row of Ax = b:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b_1$$

We can solve for x_1 in terms of $(x_2,..,x_n)$ if $a_{11} \neq 0$

$$x_1 = a_{11}^{-1}(b_1 - a_{12}x_2 - \dots - a_{1n}x_n)$$

• In general, if $a_{ii} \neq 0$, we have

$$x_i = \frac{1}{a_{ii}} \{b_i - \sum_{j \neq i} a_{ij} x_j\}$$

The GJ Iteration

$$x_i^{k+1} = \frac{1}{a_{ii}} \{ b_i - \sum_{j \neq i} a_{ij} x_j^k \}$$

Iterative Methods: Gauss-Seidel Algorithm

- In the GJ method, we use a new guess for x_i , x_i^{k+1} , only after we have computed the entire vector of new values
- If x_i^{k+1} is a better estimate of x_i^* than x_i^k , using x_i^{k+1} to compute x_{i+1}^{k+1} would seem to be better than using x_i^k
- The idea of GS method is to use a new approximation of x_i^* as soon as it is available.

$$\begin{aligned} x_1^{k+1} &= a_{11}^{-1} \big(b_1 - a_{12} x_2^k - \dots - a_{1n} x_n^k \big) \\ x_2^{k+1} &= a_{22}^{-1} \big(b_2 - a_{21} x_1^{k+1} - a_{23} x_3^k - \dots - a_{2n} x_n^k \big) \end{aligned}$$

The GS iteration

$$x_i^{k+1} = \frac{1}{a_{ii}} \{ b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{k+1} - \sum_{j=i+1}^{n} a_{ij} x_j^{k} \}$$

Iterative Methods: Example

- Inverse demand equation p = 10 q and the supply curve q = p/2 + 1.
- Initial guess is p = 4 and q = 1.
- Gauss-Jacobi iteration:

$$q_{n+1} = 1 + \frac{1}{2}p_n$$

 $p_{n+1} = 10 - q_n$

Gauss-Seidel iteration:

$$q_{n+1} = 1 + \frac{1}{2}p_n$$

 $p_{n+1} = 10 - q_{n+1}$

Iterative Methods: Example

Iterative Methods: Example

Table 3.2 Gaussian methods for (3.6.6)

$\frac{\text{Iteration}}{n}$	Gauss-Jacobi		Gauss-Seidel		
	p_n	q_n	p_n	q_n	
0	4	1	4	1	
1	9	3	7	3	
2	7	5.5	5.5	4.5	
3	4.5	4.5	6.25	3.75	
4	5.5	3.25	5.875	4.125	
5	6.75	3.75	6.0625	3.9375	
7	5.625	4.125	6.0156	3.9844	
10	6.0625	4.0938	5.9980	4.0020	
15	5.9766	4.0078	6.0001	3.9999	
20	5.9980	3.9971	6.0000	4.0000	

Exercise

- Write a function to implement the Gauss-Jacobi iteration, set $p_0 = 4$, $q_0 = 1$, and the number of iterations N = 5. Try different values of N.
- Write a function to implement the Gauss-Seidel iteration, set $p_0 = 4$, $q_0 = 1$, and the number of iterations N = 5. Try different values of N.

Iterative Methods: Operator Splitting Approach

- Write A as A = N P.
- Define the iteration

$$Nx^{m+1} = b + Px^m$$

If N is invertible, can also be written

$$x^{m+1} = N^{-1}(b + Px^m)$$

GJ iteration

$$N = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}, P = - \begin{pmatrix} 0 & a_{12} & \cdots & a_{1n} \\ a_{21} & 0 & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & 0 \end{pmatrix}$$

Iterative Methods: Operator Splitting Approach

GS iteration

$$N = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}, P = - \begin{pmatrix} 0 & a_{12} & \cdots & a_{1n} \\ 0 & 0 & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

- General iterative scheme for Ax = b
 - Find an N with an easily computed N^{-1} and split the operator A = N P.
 - 2 Construct the iterative scheme $x^{m+1} = N^{-1}(b + Px^m)$.
 - § Find acceleration scheme to ensure and/or speed up convergence.
 - Find adaptive scheme to learn acceleration parameters.

Iterative Methods: Convergence

- Converge if $\rho(N^{-1}P) < 1$, where $\rho()$ is the spectral radius (largest eigenvalue in absolute value) of the matrix.
- If A is diagonally dominant, both Gauss-Jacobi and Gauss-Seidel iteration schemes are convergent for all initial guesses.

$$\sum_{i\neq i}|a_{ij}|<|a_{ii}|,\quad i=1,...,n$$

• GJ and GS methods are at best linearly convergent and the rate of convergence is given by $\rho(N^{-1}P)$.

Acceleration and Stabilization Methods

• Consider the problem Ax = b. Define G = I + A. The iteration

$$x^{k+1} = Gx^k - b$$

It only converges if $\rho(G) < 1$. But if $\rho(G)$ is close to 1, converge will be slow.

Consider next the iteration

$$x^{k+1} = w(Gx^k - b) + (1 - w)x^k$$
$$\equiv G_{|w|}x^k - wb$$

Acceleration and Stabilization Methods

- When w>1, it's called extrapolation. If it converges, then Gx^k-b-x^k is a good direction to move, and perhaps it would be better to move to a point in this direction beyond Gx^k-b and converge even faster.
- When w < 1, it's called dampening. If it is unstable, it could be that the direction $Gx^k b x^k$ is a good one, but that the point $Gx^k b$ overshoots the solution.

Acceleration and Stabilization Methods

- Define m as the minimum element of $\sigma(G)$ and M the maximum. $\sigma()$ is the spectrum of the matrix (set of eigenvalues).
- The optimal w will be

$$w^* = \frac{2}{2 - m - M}$$

• The new spectral radius is

$$\rho(G_{|w^*|}) = \left| \frac{M - m}{2 - M - m} \right| \tag{1}$$

- If M < 1, then $\rho(G_{|w^*|}) < 1$, no matter what m is. So we can always find an w^* that produces a stable iteration.
- If M > 1 and m < -1, (1) fails.

Acceleration and Stabilization Methods: SOR

Successive Overrelaxation (SOR) Method

$$x_i^{k+1} = w(\frac{1}{a_{ii}})[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{k+1} - \sum_{j=i+1}^{n} a_{ij} x_j^{k}] + (1 - w) x_i^{k}$$

- The *i*th component of the k+1 iterate is a linear combination, parameterized by w, of the Gauss-Seidel value and the kth iterate.
- Write A = L + D + U, where L, D, and U consists of the elements of A below, on, and above the diagonal, respectively. Then

$$x_i^{k+1} = N_w^{-1}(P_w x^k + wb)$$

where $N_w = D + wL$ and $P_w = (1 - w)D - wU$.

Stabilization Example

- Inverse demand function is p = 21 q and supply function is $q = \frac{p}{2} 3$.
- GS iteration:

$$p^{k+1} = 21 - 3q^k$$
$$q^{k+1} = \frac{p^{k+1}}{2} - 3$$

SOR:

$$p^{k+1} = w(21 - 3q^k) + (1 - w)p^k$$
$$q^{k+1} = w(\frac{p^{k+1}}{2} - 3) + (1 - w)q^k$$

where w = 0.75

Stabilization Example

Acceleration Example

- Reaction curves of two price-setting duopolists: Firm 1's reaction function is $p_1 = 1 + 0.75p_2$ and firm 2's reaction function is $p_2 = 2 + 0.8p_1$.
- GS iteration:

$$p_1^{k+1} = 1 + 0.75p_2^k$$

$$p_2^{k+1} = 2 + 0.8p_1^{k+1}$$

SOR:

$$p_1^{k+1} = w(1+0.75p_2^k) + (1-w)p_1^k$$

$$p_2^{k+1} = w(2+0.8p_1^{k+1}) + (1-w)p_2^k$$

where w = 1.5

Acceleration Example

Exercise

- Write a function to implement the GS iteration and SOR algorithms for the supply-demand problem, set $p_0 = 10$, $q_0 = 0$, w = 0.75, and the number of iterations N = 5. Try different values of p_0 , q_0 , w.
- Write a function to implement the GS iteration and SOR algorithms for the duopolist problem, set $p_{1,0}=0, p_{2,0}=0, w=1.5, N=5$. Try different values of $p_{1,0}, p_{2,0}, w$.

Nonlinear Equations

- Many concepts and methods carry over from linear to nonlinear equations.
- Idea: f(x) = 0 is approximated by $f(x_0) + f_x(x_0)(x x_0) = 0$
- Iterative methods: GJ, GS, convergence (local instead of global), acceleration and stabilization methods.