PMATH 348 Fields and Galois Theory

University of Waterloo - Winter 2025

4th April 2025

Instructor: Yu-Ru Liu

LaTeX: Xing Liu

Contents

1	Review of Ring Theory				
	1.1	Introduction to Galois Theory	3		
	1.2	Review of Ring Theory	4		
2	Integral Domains				
	2.1	Irreducibles and Primes	8		
	2.2	Ascending Chain Condition	11		
	2.3	Unique Factorization Domains and Principal Ideal Domains	13		
	2.4	Gauss' Lemma	18		
3	Field Extensions				
	3.1	Degree of Extensions	24		
	3.2	Algebraic and Transcendental Extensions	25		
4	Splitting Fields				
	4.1	Existence of Splitting Fields	32		
	4.2	Uniqueness of Splitting Fields	34		
	4.3	Degrees of Splitting Fields	35		
5	More	Field Theory	37		

	5.1	5.1 Prime Fields		
	5.2	Formal Derivatives and Repeated Roots	38	
	5.3	Finite Fields	40	
6	Solvab	le Groups and Automorphism Groups	45	
	6.1	Solvable Groups	45	
	6.2	Automorphism Groups	49	
	6.3	Automorphism Groups of Splitting Fields	50	
7	7 Separable Extensions and Normal Extensions			
	7.1	Separable Extensions	53	
	7.2	Normal Extensions	55	
8 Galois Correspondence			60	
	8.1	Galois Extensions	60	
	8.2	The Fundamental Theorem	64	
9	Cyclic	Extensions	72	
10 Solvability by Radicals				
	10.1	Radical Extensions	77	
	10.2	Radical Solutions	78	
11	Cyclote	omic Extensions	82	

1 Review of Ring Theory

Lecture 1, 2025/01/06 _____

1.1 Introduction to Galois Theory

Polynomial Equations

Linear Equations: Let ax + b = 0 with $a, b \in \mathbb{R}$ and $a \neq 0$. The solution is $x = -\frac{b}{a}$.

Quadratic Equations (about 1600 BC): Let $ax^2 + bx + c = 0$ with $a, b, c \in \mathbb{R}$ and $a \neq 0$. Its solutions are $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Definition 1.1 (**Radical**). An expression involving only $+, -, \times, \div, \sqrt[n]{\cdot}$ is called a **radical**.

Cubic Equations (Tartaglia, del Ferro, Fertana (1535)): After a linear transformation, all cubic equations can be reduced to

$$x^3 + px = q.$$

A solution of the above equation is of the form (Cardanos formula)

$$x = \sqrt[3]{\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}} + \sqrt[3]{\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}}.$$

Quartic Equations (Ferrari): reduced to a cubic equation (see Bonus 1).

Quintic Equations:

- This question was attempted by Euler, Bezout, Lagrange without success.
- In 1799, Ruffini gave a 516-page proof about the insolvability of quintic equations (in radicals). His proof was "almost right".
- In 1824, Abel filled in the gap in Ruffini's proof.

Question: Given a quintic equation, is it solvable by radicals?

Reverse Question: Suppose that a radical solution exits. How does its associated quintic equation look like?

Two main steps of the Galois Theory

- (1) Link a root of a quintic equation, say α , to $\mathbb{Q}(\alpha)$, the smallest field containing \mathbb{Q} and α .
 - $\mathbb{Q}(\alpha)$ is a field, so it has more structures to be played with than α .
 - However, our knowledge of $\mathbb{Q}(\alpha)$ is limited. For example, consider $\mathbb{Q}(\sqrt{2}, \sqrt{3})$, the smallest field containing $\mathbb{Q}, \sqrt{2}, \sqrt{3}$. We do not know many intermediate fields between \mathbb{Q} and $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.

(2) Link the field $\mathbb{Q}(\alpha)$ to a group. More precisely, we associate the field extension $\mathbb{Q}(\alpha)$ to the group

$$\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\alpha))=\{\varphi\,:\,\mathbb{Q}(\alpha)\rightarrow\mathbb{Q}(\alpha)\text{ an isomorphism and }\varphi|_{\mathbb{Q}}=1_{\mathbb{Q}}\}.$$

- It can be shown that if α is "good". Aut_{\mathbb{Q}}($\mathbb{Q}(\alpha)$) is a finite group.
- Moreover, there is a one-to-one correspondence between the intermediate fields of $\mathbb{Q}(\alpha)$ and the subgroups of $\mathrm{Aut}_{\mathbb{Q}}(\mathbb{Q}(\alpha))$.

Galois Theory (in short): the interplay between fields and groups.

1.2 Review of Ring Theory

Definition 1.2 (**Ring**). A set R is a (unitary) **ring** if it has 2 operations, addition + and multiplication \cdot , such that (R, +) is an abelian group and (R, \cdot) satisfies closure, associativity and identity properties of a group, in addition to the distributive law.

More precisely, if *R* is a ring, then for all $a, b, c \in R$, we have

(1) $a + b \in R$.

- (2) a + b = b + a.
- (3) a + (b + c) = (a + b) + C.
- (4) There exists $0 \in R$ s.t. a + 0 = a = 0 + a, 0 is called the zero of R.
- (5) There exists $-a \in R$ s.t. a + (-a) = 0 = (-a) + a, -a is called the inverse of a.
- (6) $ab := a \cdot b \in R$.
- (7) a(bc) = (ab)c.
- (8) There exists $1 \in R$ s.t. a1 = a = 1a, 1 is called the unity of R.
- (9) a(b+c) = ab + ac and (b+c)a = ba + ca (distributive law).

The ring *R* is called a commutative ring if is also satisfy:

(10) ab = ba.

Note. Properties (1) - (5) is equivalent to say that (R, +) is an abelian group. Properties (6) - (8) is equivalent to say that (R, \cdot) is almost a group.

Note. We only consider commutative rings in PMATH 348.

Lecture 2, 2025/01/08

Definition 1.3 (**Unit**). Let *R* be a commutative ring. We say that $u \in \mathbb{R}$ is a **unit** if *u* has a multiplicative inverse in *R*, denoted by u^{-1} , i.e. $uu^{-1} = 1 = u^{-1}u$.

Let R^* denote the set of all units in R. Note that (R^*, \cdot) is a group.

Definition 1.4 (Field). A commutative ring $R \neq \{0\}$ with $R^* = R \setminus \{0\}$ is a **field**.

Definition 1.5 (Integral Domain). A commutative ring $R \neq \{0\}$ is an **integral domain** if for $a, b \in R$, ab = 0 implies that a = 0 or b = 0.

Example. \mathbb{Z} is an integral domain, while \mathbb{Q} , \mathbb{R} , \mathbb{C} are fields.

Proposition 1.1. Every subring of a field (including the field itself) is an integral domain.

Definition 1.6 (Ideal). A subset I of a commutative ring R is an **ideal** if $0 \in I$ and for $a, b \in I$ and $r \in R$, we have $a - b \in I$ and $ra \in I$.

Example. Let *I* be an ideal of a commutative ring *R*. If $1_R \in I$, then I = R.

Example. The only ideals of a field F are $\{0\}$ and F.

The ring of integers \mathbb{Z}

- \mathbb{Z} is an integral domain.
- The units of \mathbb{Z} are $\{\pm 1\}$.
- Division Algorithm in \mathbb{Z} : for $a,b\in\mathbb{Z}$ with $a\neq 0$, we can write b=aq+r with $q,r\in\mathbb{Z}$ and $0\leq r<|a|$.
- Using the division algorithm in \mathbb{Z} , we can prove that an ideal I of \mathbb{Z} is of the form $I = \langle n \rangle = n\mathbb{Z}$ for some $n \in \mathbb{Z}$. Note that if n > 0, then the generator is unique.
- Consider all fields containing \mathbb{Z} . Their intersection (the smallest field containing \mathbb{Z}) is the set of rational numbers $\mathbb{Q} = \left\{ \frac{a}{b} : a, b \in \mathbb{Z}, b \neq 0 \right\}$.

The polynomial ring F[x] (F: a field)

Define $F[x] = \{f(x) = a_0 + a_1 x + \dots + a_m x^m : a_i \in F (0 \le i \le m)\}.$

- If $a_m = 1$, we say that f(x) is monic.
- If $a_m \neq 0$, we define the degree of f(x), $\deg(f(x)) = m$. Also, $\deg(0) = -\infty$.
- Product Rule: for f(x), $g(x) \in F[x]$, $\deg(fg) = \deg(f) + \deg(g)$.
- F[x] is an integral domain.
- The units of F[x] are $F^* = F \setminus \{0\}$.
- Division Algorithm in F[x]: for f(x), $g(x) \in F[x]$ with $f(x) \neq 0$, we can write g(x) = f(x)q(x) + r(x) with q(x), $r(x) \in F[x]$ and $\deg(r) < \deg(f)$.
- Using the division algorithm in F[x], we can prove that an ideal I of F[x] is of the form $I = \langle f(x) \rangle = f(x)F[x]$ for some $f(x) \in F[x]$. Note that if f(x) is monic, then it is unique.

• Consider all fields containing F[x]. Their intersection is the set of rational functions

$$F(x) = \left\{ \frac{f(x)}{g(x)} : f(x), g(x) \in F[x], g(x) \neq 0 \right\}.$$

Definition 1.7 (**Quotient Ring**). Let *I* be an ideal of a ring *R*. We recall that the additive quotient group R_{I} is a ring with the multiplication (r + I)(s + I) = rs + I. The unity of R_{I} is 1 + I. This is the **quotient ring** of *R* by *I*.

Theorem 1.2 (First Isomorphism Theorem).

Let $\theta: R \to S$ be a ring homomorphism. Then the kernel of θ , Ker θ , is an ideal of R. Also, we have

$$R_{\text{Ker }\theta} \cong \text{im }\theta.$$

Example. Let F be a field and S be a ring and let $\phi : F \to S$ be a ring homomorphism. Since the only ideals of F are $\{0\}$ and F, either ϕ is injective or $\phi = 0$.

Definition 1.8 (**Prime Ideal**). Let *R* be a commutative ring. An ideal $P \neq R$ of *R* is a **prime ideal** if whenever $r, s \in R$ satisfy $rs \in P$, then $r \in P$ or $s \in P$.

Definition 1.9 (Maximal Ideal). Let R be a commutative ring. An ideal $M \neq R$ of R is a **maximal ideal** if whenever A is an ideal such that $M \subseteq A \subseteq R$, then A = M or A = R.

Proposition 1.3. Every maximal ideal if a prime ideal.

Theorem 1.4. Let *I* be an ideal of a ring *R* and $I \neq R$. Then

- (1) I is a maximal ideal $\iff R_I$ is a field.
- (2) I is a prime ideal $\iff R_I$ is an integral domain.

2 Integral Domains

2.1 Irreducibles and Primes

Definition 2.1 (Divides). Let R be an integral domain and $a, b \in R$. We say that a divides b, denoted by $a \mid b$, if b = ca for some $c \in R$.

Proposition 2.1. Let *R* be an integral domain. For $a, b \in R$, the following are equivalent:

- (1) $a \mid b$ and $b \mid a$.
- (2) a = ub for some unit $u \in R$.
- (3) $\langle a \rangle = \langle b \rangle$.

Proof.

- (1) \implies (2): If $a \mid b$ and $b \mid a$, write b = ua and a = vb for some $u, v \in R$. If a = 0, then b = 0 and thus a = 1b. If $a \neq 0$, then a = v(ua) = (vu)a. This implies that uv = 1 since R is an integral domain. Thus, u is a unit.
- (2) \Longrightarrow (3): If a = ub, then $\langle a \rangle \subseteq \langle b \rangle$. Since u is a unit, and $b = u^{-1}a$, we have $\langle b \rangle \subseteq \langle a \rangle$. It follows that $\langle a \rangle = \langle b \rangle$.
- (3) \Longrightarrow (1): If $\langle a \rangle = \langle b \rangle$, then $a \in \langle a \rangle = \langle b \rangle$. Thus, a = ub for some $u \in R$, i.e. $b \mid a$. Similarly, since $b \in \langle a \rangle$, we have $a \mid b$.

Lecture 3, 2025/01/10

Definition 2.2 (**Associated**). Let R be an integral domain. For $a, b \in R$, we say a is **associated** to b, denoted by $a \sim b$, if $a \mid b$ and $b \mid a$. From Proposition 2.1, \sim is an equivalence relation in R. More precisely,

- (1) $a \sim a, \forall a \in R$.
- (2) If $a \sim b$, then $b \sim a$.
- (3) If $a \sim b$ and $b \sim c$, then $a \sim c$.

Remark. Also, we can show (see Piazza):

- (1) If $a \sim a'$ and $b \sim b'$, then $ab \sim a'b'$.
- (2) If $a \sim a'$ and $b \sim b'$, then $a \mid b \iff a' \mid b'$.

Example. Let $R = \mathbb{Z}[\sqrt{3}] = \{m + n\sqrt{3} : m, n \in \mathbb{Z}\}$, which is an integral domain (exercise). Note that $(2 + \sqrt{3})(2 - \sqrt{3}) = 1$. Thus, $2 + \sqrt{3}$ is a unit in R. Since $3 + 2\sqrt{3} = (2 + \sqrt{3})\sqrt{3}$, we have $3 + 2\sqrt{3} \sim \sqrt{3}$ in $\mathbb{Z}[\sqrt{3}]$.

Definition 2.3 (Irreducible, Reducible).

Let R be an integral domain. We say $p \in R$ is **irreducible** if $p \neq 0$ is not a unit, and if p = ab with $a, b \in R$, then either a or b is a unit in R. An element that is not irreducible is called **reducible**.

Example. Let $R = \mathbb{Z}[\sqrt{-5}] = \{m + n\sqrt{-5} : m, n \in \mathbb{Z}\}$ and $p = 1 + \sqrt{-5}$.

Claim. p is irreducible in R.

For $d = m + n\sqrt{-5}$, the <u>norm</u> of d is defined to be $N(d) = (m + n\sqrt{-5})(m - n\sqrt{-5}) = m^2 + 5n^2 \in \mathbb{N} \cup \{0\}$. One can check that N(ab) = N(a)N(b) for $a, b \in R$ (see Piazza) and $N(d) = 1 \iff d$ is a unit (see A1).

Proof of Claim. Suppose that $p = ab \in R$. Then,

$$6 = N(p) = N(a)N(b).$$

Note that $6 = 1 \cdot 6 = 2 \cdot 3$. If $N(d) = m^2 + 5n^2 = 2$ with $m, n \in \mathbb{Z}$, then n = 0. However, $m^2 \neq 2$. Hence $N(d) \neq 2$. Similarly, $N(d) \neq 3$. Thus, we have either N(a) = 1 or N(b) = 1, i.e. either a or b is a unit in a. Thus, a is irreducible.

Another way to show $m^2 + 5n^2 \neq 2$ is to consider the equation $m^2 + 5n^2 \equiv 2 \pmod{5}$. It has no solutions since for $m \equiv 0, 1, 2, 3, 4 \pmod{5}$, we have $m^2 \equiv 0, 1, 4 \pmod{5}$.

Proposition 2.2. Let R be an integral domain and let $p \in R$ with $p \neq 0$, not a unit. The following are equivalent:

- (1) *p* is irreducible.
- (2) If $d \mid p$, then $d \sim 1$ or $d \sim p$.
- (3) If $p \sim ab$ in R, then $p \sim a$ or $p \sim b$.

(4) If p = ab in R, then $p \sim a$ or $p \sim b$.

As a consequence, if $p \sim q$, then p is irreducible $\iff q$ is irreducible.

Proof.

- (1) \implies (2): If p = ad for some $a \in R$, then by (1), either d or a is a unit. Thus, $d \sim 1$ or $d \sim p$.
- (2) \implies (3): If $p \sim ab$, then $b \mid p$. By (2), either $b \sim 1$ or $b \sim p$. If $b \sim p$, then we are done. If $b \sim 1$, then $a \sim p$.
- $(3) \implies (4)$: This is clear.
- (4) \implies (1): If p = ab, then by (4), either $p \sim a$ or $p \sim b$. If $p \sim a$, write a = up for some unit u. Since R is commutative, we have p = ab = (up)b = p(ub). Since R is an integral domain and $p \neq 0$, we have 1 = ub. Thus, b is a unit. Similarly, $p \sim b$ implies that a is a unit. Thus (1) follows.

Definition 2.4 (Prime). Let R be an integral domain and $p \in R$. We say p is **prime** if $p \neq 0$ is not a unit and if $p \mid ab$ with $a, b \in R$, then $p \mid a$ or $p \mid b$.

Remark. If $p \sim q$, then p is prime $\iff q$ is prime (exercise). Also, by induction, if p is a prime and $p \mid a_1 \cdots a_n$, then $p \mid a_i$ for some i.

Proposition 2.3. Let *R* be an integral domain and $p \in R$. If *p* is prime, then *p* is irreducible.

Proof. Let $p \in R$ be prime. If p = ab in R, then $p \mid a$ or $p \mid b$. If $p \mid a$, write a = dp for some $d \in R$. Since R is commutative, we have a = dp = d(ab) = a(db). Since R is an integral domain and $a \neq 0$, we have 1 = db. Thus, b is a unit. Similarly, if $p \mid b$, then a is a unit. If follows that p is irreducible.

Example. The converse of Proposition 2.3 is not true. Consider

$$R = \mathbb{Z}[\sqrt{-5}] = \{m + n\sqrt{-5} : m, n \in \mathbb{Z}\}$$
 and $p = 1 + \sqrt{-5}$.

Claim. p is not prime in R.

Proof. We recall that for $d = m + n\sqrt{-5}$, $N(d) = m^2 + 5n^2 \in \mathbb{N} \cup \{0\}$. Note that $2 \cdot 3 = 6 = 1$

 $(1+\sqrt{-5})(1-\sqrt{-5})$ in R. If p is prime, since $p\mid 2\cdot 3$, then $p\mid 2$ or $p\mid 3$. Suppose $p\mid 2$, say 2=qp for some $q\in R$. If follows that

$$4 = N(2) = N(q)N(p) = 6N(q)$$

which is not possible since $N(q) \in \mathbb{N} \cup \{0\}$. Similarly, $p \mid 3$ is not possible. Thus p is not prime.

Lecture 4, 2025/01/13

We recall that for a prime $p \in \mathbb{Z}$, we have $p = \pm 1, \pm p$ are the only factorizations of p (i.e. p is irreducible). Also, we can prove Euclid's lemma, which states that if $p \mid ab$, then $p \mid a$ or $p \mid b$ (i.e. p is prime). The same thing holds if we replace \mathbb{Z} with F[x] for a field F.

Question: What is the additional property in \mathbb{Z} or F[x] that allows us to get "irreducible \implies prime"?

Exercise: Construct another element that is irreducible but not prime in $\mathbb{Z}[\sqrt{-5}]$.

2.2 Ascending Chain Condition

Definition 2.5 (Ascending Chain Condition on Principal Ideals (ACCP)).

An integral domain R is said to satisfy the **ascending chain conditions on principal ideals** (ACCP) if for any ascending chain $\langle a_1 \rangle \subseteq \langle a_2 \rangle \subseteq \cdots$ of principal ideals in R, $\exists n \in \mathbb{N}$ s.t.

$$\langle a_n \rangle = \langle a_{n+1} \rangle = \cdots$$
.

Example.

Claim. \mathbb{Z} satisfies ACCP.

Proof. If $\{0\} \subsetneq \langle a_1 \rangle \subseteq \langle a_2 \rangle \subseteq \langle a_3 \rangle \subseteq \cdots$ in \mathbb{Z} , then $a_2 \mid a_1, a_3 \mid a_2$, and so on. Taking absolute values gives $|a_1| \geq |a_2| \geq |a_3| \geq \cdots$. Since each $|a_i| \geq 0$ is an integer, we get $|a_n| = |a_{n+1}| = \cdots$ for some $n \in \mathbb{N}$. It implies that $a_{i+1} = \pm a_i$ for all $i \geq n$. Thus, $\langle a_i \rangle = \langle a_{i+1} \rangle$ for all $i \geq n$. \square

Theorem 2.4. Let R be an integral domain satisfying the ACCP. If $a \in R$ with $a \neq 0$ is not a unit, then a can be written as a product of irreducible elements of R.

Proof. Suppose that $\exists 0 \neq a \in R$ with a is not a unit, which is not a product of irreducible elements. Since a is not irreducible, by Proposition 2.2, we can write $a = x_1 a_1$ with $a \nsim x_1$ and $a \nsim a_1$. Note that at least one of x_1 and WLOG suppose a_1 is not a product of irreducible elements (if both are, so is a). Suppose that a_1 is not a product of irreducible elements. Then, as before, we can write $a_1 = x_2 a_2$ with $a_1 \nsim x_2$ and $a_1 \nsim a_2$. This process continues infinitely and we have an ascending chain of principal ideals

$$\langle a \rangle \subseteq \langle a_1 \rangle \subseteq \langle a_2 \rangle \subseteq \cdots$$
.

Since $a \nsim a_1, a_1 \nsim a_2, ...$, by Proposition 2.1, we have

$$\langle a \rangle \subsetneq \langle a_1 \rangle \subsetneq \langle a_2 \rangle \subsetneq \cdots$$

which contradicts ACCP. Thus, such an a does not exist.

Theorem 2.5. If *R* is an integral domain satisfying the ACCP, so is R[x].

Proof. Suppose that R[x] does not satisfy ACCP. Then, there exists a chain of principal ideals $\{0\} \subsetneq \langle f_1 \rangle \subsetneq \langle f_2 \rangle \subsetneq \cdots$ in R[x]. Thus, we have $f_{i+1} \mid f_i$ for all $i \in \mathbb{N}$. Let a_i denote the leading coefficient of f_i for each i. Since $f_{i+1} \mid f_i$, we have $a_{i+1} \mid a_i$ for each i. Thus, $\{0\} \subsetneq \langle a_1 \rangle \subseteq \langle a_2 \rangle \subseteq \cdots$ in R. Since R satisfies ACCP, we have $\langle a_n \rangle = \langle a_{n+1} \rangle = \cdots$ for some $n \geq 1$, i.e. $a_n \sim a_{n+1} \sim \cdots$. For $m \geq n$, let $f_m = gf_{m+1}$ for some $g(x) \in R[x]$. If b is the leading coefficient of g(x), then $a_m = ba_{m+1}$. Since $a_m \sim a_{m+1}$, then b is a unit in $a_m \in a_m$. However, $a_m \in a_m$ is not a unit in $a_m \in a_m$. Thus, $a_m \in a_m$ and it is true for all $a_m \in a_m$. Thus, we have

$$\deg(f_n) > \deg(f_{n+1}) > \cdots$$

which leads to a contradiction since $deg(f_i) \ge 0$. Thus, R[x] satisfies ACCP.

Lecture 5, 2025/01/15

Example. Since \mathbb{Z} satisfies ACCP, so does $\mathbb{Z}[x]$ by Theorem 2.5.

Example. Consider $R = \{n + xf : n \in \mathbb{Z}, f \in \mathbb{Q}[x]\}$, the set of polynomials in $\mathbb{Q}[x]$ whose constant term is in \mathbb{Z} . Then, R is an integral domain (exercise), but we have

$$\langle x \rangle \subsetneq \left\langle \frac{1}{2} x \right\rangle \subsetneq \left\langle \frac{1}{2^2} x \right\rangle \subsetneq \cdots \quad \text{in } R.$$

Thus, R does not satisfy ACCP.

2.3 Unique Factorization Domains and Principal Ideal Domains

Definition 2.6 (Unique Factorization Domain (UFD)).

An integral domain *R* is called a **unique factorization domain** (**UFD**) if it satisfies the following conditions:

- (1) If $a \in R$ with $a \neq 0$ is not a unit, then a is a product of irreducible elements in R.
- (2) If $p_1p_2 \cdots p_r \sim q_1q_2 \cdots q_s$, where p_i and q_i are irreducible, then r = s and after possible reordering, $p_i \sim q_i$ for all i.

Example. \mathbb{Z} and F[x] (F is a field) are UFDs.

Example. A field is a UFD.

Proposition 2.6. Let *R* be a UFD and $p \in R$. If *p* is irreducible, then *p* is prime.

Proof. Let $p \in R$ be irreducible. If $p \mid ab$, with $a, b \in R$, write ab = pd for some $d \in R$. Since R is a UFD, we can factor a, b and d into irreducible elements, say $a = p_1 \cdots p_k$, $b = q_1 \cdots q_l$, and $d = r_1 \cdots r_m$ (here we allow k, l, or m to be 0 to take care of the case when a, b, or d is a unit). Since p = ab, we have $pr_1 \cdots r_m = p_1 \cdots p_k q_1 \cdots q_l$. Since p is irreducible, it implies that $p \sim p_i$ for some i or $p \sim q_j$ for some j. Thus, $p \mid a$ or $p \mid b$.

Example. Since \mathbb{Z} is a UFD, a prime $p \in \mathbb{Z}$ satisfies Euclid's lemma: $p \mid ab \implies p \mid a$ or $p \mid b$. A similar statement holds if we replace \mathbb{Z} by F[x].

Example. Consider $R = \mathbb{Z}[\sqrt{-5}]$ and $p = 1 + \sqrt{-5} \in R$. We have seen before that p is irreducible in R but not prime. By Proposition 2.6, R is not a UFD. For example,

$$6 = (1 + \sqrt{-5})(1 - \sqrt{-5}) = 2 \cdot 3$$

where $1 \pm \sqrt{-5}$, 2, 3 are all irreducible in R. However, $1 + \sqrt{-5} \approx 2$ and $1 + \sqrt{-5} \approx 3$. Since $N(1 + \sqrt{-5}) = 6$ while N(2) = 4 and N(3) = 9 (note that $u \in R$ is a unit $\iff N(u) = 1$).

Example.

Claim. $R = \mathbb{Z}[\sqrt{-5}]$ satisfies the ACCP.

Proof. If $\{0\} \subsetneq \langle a_1 \rangle \subseteq \langle a_2 \rangle \subseteq \langle a_3 \rangle \subseteq \cdots$ in R, then $a_2 \mid a_1, a_3 \mid a_2$, and so on. Taking the norms gives $N(a_1) \geq N(a_2) \geq N(a_3) \geq \cdots$. Since each $N(a_i) \geq 0$ is an integer, we get $N(a_n) = N(a_{n+1}) = \cdots$ for some $n \in \mathbb{N}$. Since $N(d) = 1 \iff d$ is a unit in R, it follows that $a_{i+1} \sim a_i$ for all $i \geq n$. Thus, $\langle a_i \rangle = \langle a_{i+1} \rangle$ for all $i \geq n$.

Definition 2.7 (Greatest Common Divisor).

Let R be an integral domain and $a, b \in R$. We say $d \in R$ is a **greatest common divisor** (note that it is no longer unique) of a, b, denoted by gcd(a, b), if it satisfies the following conditions:

- (1) $d \mid a$ and $d \mid b$.
- (2) If $e \in R$ with $e \mid a$ and $e \mid b$, then $e \mid d$.

One can prove the following (see Piazza).

Proposition 2.7. Let R be a UFD and $a,b \in R \setminus \{0\}$. If p_1,\ldots,p_k are non-associated primes dividing a and b, say $a \sim p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ and $b \sim p_1^{\beta_1} \cdots p_k^{\beta_k}$ with $\alpha_i,\beta_i \in \mathbb{N} \cup \{0\}$, then

$$\gcd(a,b) \sim p_1^{\min(\alpha_1,\beta_1)} \cdots p_k^{\min(\alpha_k,\beta_k)}.$$

Remark. If R is a UFD and $d, a_1, \dots, a_m \in R$, we have (exercise) $\gcd(da_1, \dots, da_m) = d \gcd(a_1, \dots, a_m)$.

Theorem 2.8. Let *R* be an integral domain, the following are equivalent:

- (1) *R* is a UFD.
- (2) R satisfies ACCP and gcd(a, b) exists for all non-zero $a, b \in R$.
- (3) *R* satisfies ACCP and every irreducible element in *R* is prime.

Lecture 6, 2025	/01/17	

Proof of Theorem 2.8.

- (1) \Longrightarrow (2): By Proposition 2.7, $\gcd(a,b)$ exists. Suppose that $\exists \{0\} \neq \langle a_1 \rangle \subsetneq \langle a_2 \rangle \subsetneq \cdots$ in R. Since $\langle a_1 \rangle \neq \{0\}$, we know that $a_1 \neq 0$ is not a unit, and write $a_1 = p_1^{k_1} \cdots p_r^{k_r}$ where p_i are non-associated primes and $k_i \in \mathbb{N}$. Since $a_i \mid a_1$ for all i, we have $a_i \sim p_1^{d_{i,1}} \cdots p_r^{d_{i,r}}$ for $0 \leq d_{i,j} \leq k_j$ with $1 \leq j \leq r$. Thus, there are only finitely many non-associated choices for a_i and so there exists $m \pm n$ with $a_m \sim a_n$. This implies that $\langle a_m \rangle = \langle a_n \rangle$, which is a contradiction. Thus, R satisfies ACCP.
- (2) \Longrightarrow (3): Let $p \in R$ be irreducible and suppose that $p \mid ab$. By (2), let $d \sim \gcd(a, p)$. Then, $d \mid p$. Since p is irreducible, we have $d \sim p$ or $d \sim 1$. In the first case, since $d \sim p$ and $d \mid a$, we have $p \mid a$. In the second case, since $d \sim \gcd(a, p) \mid 1$, then $\gcd(ab, pb) \sim b$. Since $p \mid ab$ and $p \mid pb$, we have $p \mid \gcd(ab, pb)$ i.e. $p \mid b$. Thus, p is prime.
- (3) \Longrightarrow (1): If R satisfies ACCP, by Theorem 2.4, for $a \in R$ with $a \neq 0$ not a unit, a is a product of irreducible elements of R. Thus, it suffices to show that such factorization is unique. Suppose we have $p_1 \cdots p_r \sim q_1 \cdots q_s$, where p_1 and q_j are irreducible. Since p_1 is a prime, then $p_1 \mid q_j$ for some j, say q_1 . By Proposition 2.2, we have $p_1 \sim q_1$. Since $p_i \sim q_i$ with $1 \leq i \leq r$. Thus, the factorization is unique.

Definition 2.8 (Principal Ideal Domain (PID)).

An integral domain R is called a **principal ideal domain** (**PID**) if every ideal is principal, i.e. every ideal is of the form $\langle a \rangle = aR$ for some $a \in R$.

Example. \mathbb{Z} and F[x] with F being a field, are PIDs.

Example. A field F is a PID, since its only ideals are $\{0\}$ and F.

Example. Let $n \in \mathbb{N}$ with n not a prime Although all ideals of \mathbb{Z}_n are principal (exercise), \mathbb{Z}_n is not a PID, since \mathbb{Z}_n is not an integral domain.

Proposition 2.9. Let R be a PID and let a_1, \ldots, a_n be non-zero elements in R. Then $d \sim \gcd(a_1, \ldots, a_n)$ exists and $\exists r_1, \ldots, r_n \in R$ s.t.

$$gcd(a_1,\ldots,a_n) \sim r_1a_1 + \cdots + r_na_n$$
.

Proof. Let $A = \langle a_1, \dots, a_n \rangle = \{r_1 a_1 + \dots + r_n a_n : r_i \in R\}$ which is an ideal of R. Since R is a PID, $\exists d \in R$ s.t. $A = \langle d \rangle$. Thus, $d = r_1 a_1 + \dots + r_n a_n$ for some $r_i \in R$.

Claim. $d \sim \gcd(a_1, \dots, a_n)$.

Proof of Claim. Since $A = \langle d \rangle$ and $a_i \in A$, we have $d \mid a_i$ for all i. Also, if $r \mid a_i$ for all i, then $r \mid (r_1a_i + \dots + r_na_n)$, i.e. $r \mid d$. By the definition of gcd, we have $d \sim \gcd(a_1, \dots, a_n)$.

Theorem 2.10. Every PID is a UFD.

Proof. If *R* is a PID, by Theorem 2.8 and Proposition 2.9, it suffices to show that *R* satisfies the ACCP. If $\{0\} \subsetneq \langle a_1 \rangle \subseteq \langle a_2 \rangle \subseteq \cdots$ in *R*, write $A = \langle a_1 \rangle \cup \langle a_2 \rangle \cup \cdots$. Then, *A* is an ideal (exercise). Since *R* is a PID, we can write $A = \langle a \rangle$ for some $a \in R$. Then, $a \in \langle a_n \rangle$ for some *n* and hence

$$\langle a \rangle \subseteq \langle a_n \rangle \subseteq \langle a_{n+1} \rangle \subseteq \cdots \subseteq A = \langle a \rangle$$
.

Thus, $\langle a_n \rangle = \langle a_{n+1} \rangle = \cdots = \langle a \rangle$, i.e. R satisfies ACCP. It follows that R is a UFD.

Example.

Claim. $\mathbb{Z}[x]$ is not a PID.

Proof. Consider $A = \{2n + xf(x) : n \in \mathbb{Z}, f(x) \in \mathbb{Z}[x]\}$ which is an ideal of $\mathbb{Z}[x]$ (exercise).

Suppose $A = \langle g(x) \rangle$ for some $g(x) \in \mathbb{Z}[x]$. Since $2 \in A$, we have $g(x) \mid 2$. It follows that $g(x) \sim 1$ or $g(x) \sim 2$. If $g(x) \sim 1$, then $1 \in A$ and hence $A = \mathbb{Z}[x]$. If $g(x) \sim 2$, then $2 \in A$ and hence $A = \langle 2 \rangle$. However, $x \in A$ but $x \notin \langle 2 \rangle$. Thus, $A \neq \langle 2 \rangle$. Thus, $\mathbb{Z}[x]$ is not a PID. \square

Lecture 7, 2025/01/20

Theorem 2.11. Let *R* be a PID. If $0 \neq p \in R$ is not a unit, then the following are equivalent:

- (1) p is a prime.
- (2) $R_{\langle p \rangle}$ is a field.
- (3) $R_{\langle p \rangle}$ is an integral domain.

Note. By Theorem 1.4, we see from (2) and (3) that in a PID, every non-zero prime ideal is maximal.

Proof.

- (2) \implies (3): Every field is an integral domain.
- (3) \Longrightarrow (1): Suppose that $p \mid ab$ with $a, b \in R$. Then,

$$(a + \langle p \rangle)(b + \langle p \rangle) = ab + \langle p \rangle$$
$$= 0 + \langle p \rangle \quad \text{in } \frac{R}{\langle p \rangle}.$$

Since $R/\langle p \rangle$ is an integral domain, we have $a + \langle p \rangle = 0 + \langle p \rangle$ or $b + \langle p \rangle = 0 + \langle p \rangle$ in $R/\langle p \rangle$. It follows that either $p \mid a$ or $p \mid b$. Thus, p is a prime.

(1) \Longrightarrow (2): Suppose that p is a prime. Consider $a+\langle p\rangle \neq 0+\langle p\rangle$ in $R/\langle p\rangle$. Then, $a\notin\langle p\rangle$ and thus $p\nmid a$. Consider $A=\{ra+sp:r,s\in R\}$, which is an ideal of R. Since R is a PID, $A=\langle d\rangle$ for some $d\in R$. Since $p\in A$, we have $d\mid p$. Since $p\in A$, we have $p\in A$, we have $p\in A$, we have $p\in A$. Since $p\in A$, we have $p\in A$, we have $p\in A$, we have $p\in A$. Since $p\in A$, we have $p\in A$, we have $p\in A$. It follows that $p\in A$. In particular, $p\in A$, say $p\in A$. Then,

$$(a + \langle p \rangle)(b + \langle p \rangle) = ab + \langle p \rangle = (1 - cp) + \langle p \rangle = 1 + \langle p \rangle \quad \text{in } ^{R} / \langle p \rangle.$$

It follows that $R/\langle p \rangle$ is a field.

Example. $\mathbb{Z}[x]$ is NOT a PID since $A = \{2n + xf(x) : n \in \mathbb{Z}, f(x) \in \mathbb{Z}[x]\}$ is not principal.

Remark. We have the following chain:

Fields \subseteq PID \subseteq UFD \subseteq ACCP \subseteq Integral Domain \subseteq Commutative Rings \subseteq Rings.

We will see that PID \subseteq UFD in the next section! An example that is a UFD, but not a PID: $\mathbb{Z}[x]$.

Remark. Theorem 2.11 may fail if we replace PID with UFD. For example, $R = \mathbb{Z}[x]$ is a UFD (see section 2.4). Consider $\langle x \rangle \in R$. Then, $R/\langle x \rangle \cong \mathbb{Z}$, which is an integral domain but not a field. Thus, $\langle x \rangle$ is a prime ideal of $\mathbb{Z}[x]$, but not a maximal ideal.

Remark.

- In a PID, maximal ideal \iff prime ideal (in general, maximal \implies prime).
- In a UFD, prime elements ⇔ irreducible elements (in general, prime ⇒ irreducible).

2.4 Gauss' Lemma

Consider 2x + 4. It is irreducible in $\mathbb{Q}[x]$, but it is reducible in $\mathbb{Z}[x]$ since 2x + 4 = 2(x + 2).

Definition 2.9 (Content, Primitive Polynomial).

If R is a UFD and $0 \neq f(x) \in R[x]$, a greatest common divisor of all coefficients of f(x) is called a **content** of f(x) and is denoted by c(f). If $c(f) \sim 1$, we say that f(x) is a **primitive polynomial**.

Example. In $\mathbb{Z}[x]$, $c(6 + 10x^2 + 15x^3) \sim \gcd(6, 10, 15) \sim 1$ and $c(6 + 9x^2 + 15x^3) \sim \gcd(6, 9, 15) \sim 3$. Thus, $6 + 10x^2 + 15x^3$ is primitive while $6 + 9x^2 + 15x^3$ is not.

Lemma 2.12. Let *R* be a UFD and $0 \neq f(x) \in R[x]$.

- (1) f(x) can be written as $f(x) = c(f)f_1(x)$ where $f_1(x)$ is primitive.
- (2) If $0 \neq b \in R$, then $c(bf) \sim bc(f)$.

Proof.

(1) For $f(x) = a_m x^m + \dots + a_1 x + a_0 \in R[x]$, let $c = c(f) \sim \gcd(a_0, \dots, a_m)$. Write $a_i = cb_i$ for all i. Then, $f(x) = cf_1(x)$ where $f_1(x) = b_m x^m + \dots + b_1 x + b_0$. Then,

$$c \sim \gcd(a_0, \dots, a_m) \sim \gcd(cb_0, \dots, cb_m) \sim c \gcd(b_0, \dots, b_m).$$

It follows that $gcd(b_0, ..., b_m) \sim 1$, i.e. $c(f_1) \sim 1$. Hence, $f_1(x)$ is primitive.

(2) If a_0, \ldots, a_m are the coefficients of f(x), then the coefficients of bf(x) are ba_0, \ldots, ba_m . Thus, $c(bf) \sim \gcd(ba_0, \ldots, ba_m) \sim b\gcd(a_0, \ldots, a_m) \sim bc(f)$.

Lemma 2.13. Let R be a UFD and $\ell(x) \in R[x]$ be irreducible with $\deg(\ell) \geq 1$. Then, $c(\ell) \sim 1$, i.e. $\ell(x)$ is primitive.

Lecture 8, 2025/01/22

Proof. By Lemma 2.12, write $\ell(x) = c(\ell)\ell_1(x)$ where $\ell_1(x)$ is primitive. Since $\ell(x)$ is irreducible, either $c(\ell)$ or $\ell_1(x)$ is a unit. Since $\deg(\ell_1) = \deg(\ell) \ge 1$, $\ell_1(x)$ is not a unit. Thus, $c(\ell) \sim 1$.

Theorem 2.14 (Gauss' Lemma).

Let *R* be a UFD. If $f(x) \neq 0$ and $g(x) \neq 0$ are in R[x], then

$$c(fg) \sim c(f)c(g)$$
.

In particular, the product of primitive polynomials is primitive.

Proof. Let $f = c(f)f_1$ and $g = c(g)g_1$ where f_1 and g_1 are primitive. Then by Lemma 2.12,

$$c(fg) \sim c(c(f)f_1c(g)g_1) \sim c(f)c(g)c(f_1g_1) \sim c(f)c(g).$$

Thus, it suffices to prove that f(x)g(x) is primitive when f(x) and g(x) are primitive, i.e. $c(f) \sim 1 \sim c(g)$. Suppose f(x) and g(x) are primitive, but f(x)g(x) is not primitive. Since R is a UFD, there exists a prime p dividing each coefficient of f(x)g(x). Write $f(x) = a_0 + a_1x + \cdots + a_mx^m$ and

 $g(x) = b_0 + b_1 x + \dots + b_n x^n$. Since f(x) and g(x) are primitive, then p does not divide every a_i nor every b_i . Thus, $\exists k, s \in \mathbb{N} \cup \{0\}$ such that

- (1) $p \nmid a_k$, but $p \mid a_i$ for $0 \le i < k$.
- (2) $p \nmid b_s$, but $p \mid b_j$ for $0 \le j < s$.

The coefficients of x^{k+s} in f(x)g(x) is $c_{k+s} = \sum_{i+j=k+s} a_i b_j$. Because of (1) and (2), p divides all $a_i b_j$ with i+j=k+s, except $a_k b_s$. It follows that $p \nmid c_{k+s}$, which is a contradiction. Thus, f(x)g(x) is primitive.

Theorem 2.15. Let R be a UFD whose field of fractions is F. Regard $R \subseteq F$ as a subring of F as usual. If $\ell(x) \in R[x]$ is irreducible in R[x], then $\ell(x)$ is irreducible in F[x].

Remark. The converse is false. For example, 2x + 4 is irreducible in $\mathbb{Q}[x]$, but 2x + 4 = 2(x + 2) is reducible in $\mathbb{Z}[x]$.

Proof. Let $\ell(x) \in R[x]$ be irreducible. Suppose that $\ell(x) = g(x)h(x)$ in F[x]. If a and b are products of the denominators of the coefficients of g(x) and h(x) respectively, then $g_1(x) = ag(x) \in R[x]$ and $h_1(x) = bh(x) \in R[x]$. Note that $ab\ell(x) = g_1(x)h_1(x)$ is a factorization in R[x]. Since $\ell(x)$ is irreducible in R[x], by Lemma 2.13, $c(\ell) \sim 1$. Also, by Gauss' Lemma, we have

$$ab \sim abc(\ell) \sim c(ab\ell(x)) \sim c(g_1(x)h_1(x)) \sim c(g_1)c(h_1). \tag{*}$$

Now, write $g_1(x) = c(g_1)g_2(x)$ and $h_1(x) = c(h_1)h_2(x)$ where $g_2(x)$ and $h_2(x)$ are primitive in R[x]. Then

$$ab\ell(x) = g_1(x)h_1(x) = c(h_1)c(g_1)g_2(x)h_2(x).$$

By (*), we have $\ell(x) \sim g_2(x)h_2(x)$. Since $\ell(x)$ is irreducible in R[x], it follows that $h_2(x) \sim 1$ or $g_2(x) \sim 1$. If $g_2(x) \sim 1$ in R, then $ag(x) = g_1(x) = c(g_1)g_2(x)$. Thus, $g(x) = a^{-1}c(g_1)g_2(x)$ with $g_2(x) \sim 1$ is a unit in F[x]. Similarly, if $h_2(x) \sim 1$, then h(x) is a unit in F[x]. Thus, $\ell(x) = g(x)h(x)$ in F[x] implies that either g(x) or h(x) is a unit in F[x]. It follows that $\ell(x)$ is irreducible in F[x]. \square

Proposition 2.16. Let R be a UFD whose field of fractions is F. Regard $R \subseteq F$ as a subring of F. Let $f(x) \in R[x]$ with $\deg(f) \ge 1$. The following are equivalent:

- (1) f(x) is irreducible in R[x].
- (2) f(x) is primitive and irreducible in F[x].

Proof.

- (1) \implies (2): This follows from Lemma 2.13 and Theorem 2.15.
- (2) \implies (1): Suppose that f(x) is primitive and irreducible in F[x], but is reducible in R[x]. Then, a nontrivial factorization of f(x) in R[x] must be of the form f(x) = dg(x) with $d \in R$ and $d \nsim 1$ (if both factors have $\deg \geq 1$, then it would be a nontrivial factorization in F[x]). Since $d \mid f(x)$ and $d \nmid 1$, we have d divides each coefficient of f(x), which contradicts the fact that f(x) is primitive. Thus, f(x) is irreducible in R[x].

Theorem 2.17. If R is a UFD, then R[x] is also a UFD.

Proof. Because of Theorem 2.5 (R satisfies ACCP $\implies R[x]$ satisfies ACCP) and 2.8, to prove this result, it suffices to show that every irreducible element $\ell(x)$ in R[x] is prime. Let $\ell(x) \mid f(x)g(x)$ with $f(x), g(x) \in R[x]$. We aim to prove that $\ell(x) \mid f(x)$ or $\ell(x) \mid g(x)$. Note that if $\deg(\ell) = 0$, i.e. ℓ is a constant. Then, $\ell(x) \mid f(x)g(x)$ implies that $\ell \mid c(fg)$ and hence $\ell \mid c(f)c(g)$. Since ℓ is prime in R (by Proposition 2.6 since R is a UFD and ℓ is irreducible), we have $\ell \mid c(f)$ or $\ell \mid c(g)$. So $\ell \mid f(x)$ or $\ell \mid g(x)$. In the following proof, we assume that $\deg(\ell) \geq 1$.

To prove this result, it suffices to prove the following claim.

Claim. If $\ell(x) \mid f_1(x)g_1(x)$ with $f_1(x)$ and $g_1(x)$ are primitive, then $\ell(x) \mid f_1(x)$ or $\ell(x) \mid g_1(x)$.

Proof of Claim. Since $\ell(x) \mid f(x)g(x)$ for some $h(x) \in R[x]$. By Lemma 2.12, write $f(x) = c(f)f_1(x)$ and $g(x) = c(g)g_1(x)$ and $h(x) = c(h)h_1(x)$ where $f_1(x)$, $g_1(x)$, and $h_1(x)$ are primitive in R[x]. By Lemma 2.13 (this is where we need $\deg(\ell) \geq 1$), we have $c(\ell) \sim 1$. It follows that $c(h) \sim c(f)c(g)$. Since $c(h)h_1(x)\ell(x) = c(f)c(g)f_1(x)g_1(x)$, it follows that $h_1(x)\ell(x) \sim f_1(x)g_1(x)$. By the assumption, we have $\ell(x) \mid f_1(x)$ or $\ell(x) \mid g_1(x)$. It follows that $\ell(x) \mid f(x)$ or $\ell(x) \mid g(x)$.

We now assume that $\ell(x) \mid f(x)g(x)$ in R[x], where f(x), g(x) are primitive in R[x]. Let F be the field of fractions of R and consider $R \subseteq F$ as a subring of F. Then, we have $\ell(x) \mid f(x)g(x)$ in F[x]. Since $\ell(x) \in R[x]$ is irreducible, by Theorem 2.15, $\ell(x)$ is irreducible in F[x]. By Euclid's lemma for F[x], we have $\ell(x) \mid f(x)$ or $\ell(x) \mid g(x)$. Suppose that $\ell(x) \mid f(x)$ in F[x], say $f(x) = \ell(x)k(x)$ for some $k(x) \in F[x]$. If $d \in R$ is the product of all denominators of non-zero coefficients of k(x), then

 $k_0(x) = dk(x) \in R[x]$ and we have $df(x) = d\ell(x)k(x) = k_0(x)\ell(x)$. Since f(x) is primitive and $\ell(x)$ is irreducible (thus $c(\ell) \sim 1$), by Gauss' Lemma, we have

$$d \sim c(df) \sim c(k_0 \ell) \sim c(k_0)c(\ell) \sim c(k_0)$$
.

If we write $k_0(x) = c(k_0)k_1(x)$ with $k_1(x) \in R[x]$, then $df(x) = k_0(x)\ell(x) = c(k_0)k_1(x)\ell(x)$. Since $d \sim c(k_0)$, it follows that $f(x) \sim k_1(x)\ell(x)$. Thus, $\ell(x) \mid f(x)$ in R[x]. Similarly, if $\ell(x) \mid g(x)$ in F[x], then we can show that $\ell(x) \mid g(x)$ in R[x]. It follows that $\ell(x)$ is prime and hence R[x] is a UFD. \square

Note. Let *R* be a UFD and $x_1, ..., x_n$ be *n* commutative variables, i.e. $x_i x_j = x_j x_i$ for all $i \neq j$. Define the ring $R[x_1, ..., x_n]$ as polynomials in *n* variable inductively by

$$R[x_1, \dots, x_n] = (R[x_1, \dots, x_{n-1}])[x_n].$$

Corollary 2.18. If *R* is a UFD, then for all $n \in \mathbb{N}$, $R[x_1, ..., x_n]$ is also a UFD.

Since \mathbb{Z} is a UFD, we have the following.

Corollary 2.19. $\mathbb{Z}[x]$ and $\mathbb{Z}[x_1, ..., x_n]$ are UFDs.

Remark. Hence $\mathbb{Z}[x]$ is a UFD. Since it is not a PID, we have PID \subseteq UFD.

Theorem 2.20 (Eisenstein's Criterion).

Let R be a UFD with the field of fractions F. Let $h(x) = c_n x^n + \cdots + c_1 x + c_0 \in R[x]$ with $n \ge 1$. Let $\ell \in R$ be an irreducible element. If $\ell \nmid c_n$ and $\ell \mid c_i$ for all $0 \le i \le n-1$ and $\ell^2 \nmid c_0$, then h(x) is irreducible in F[x].

Proof. Suppose for a contradiction that h(x) is irreducible in F[x]. By Gauss's Lemma for UFD, $\exists s(x)$ and $r(x) \in R[x]$ of degree ≥ 1 such that h(x) = s(x)r(x). Write

$$s(x) = a_0 + a_1 x + \dots + a_m x^m$$
 and $r(x) = b_0 + b_1 x + \dots + b_n x^n$,

where $1 \le m$ and k < n. Since h(x) = s(x)r(x), we have

$$c_0 = a_0 b_0$$
, $c_1 = a_0 b_1 + a_1 b_0$, $c_2 = a_0 b_2 + a_1 b_1 + a_2 b_0$, ...

Consider the constant term. Since $\ell \mid c_0$, we have $\ell \mid a_0b_0$. Since ℓ is irreducible and R is a UFD, we have ℓ is a prime. Hence, $\ell \mid a_0$ or $\ell \mid b_0$. WLOG, suppose that $\ell \mid a_0$. Since $\ell^2 \nmid c_0$, we have $\ell \nmid b_0$. Consider the coefficient of x. Since $\ell \mid c_1$, we ave $\ell \mid (a_0b_1 + a_1b_0)$. Since $\ell \mid a_0$, we have $\ell \mid a_1b_0$. Since $\ell \nmid b_0$, we have $\ell \mid a_1$. By repeating the above argument, the conditions on coefficients of h(x) imply that $\ell \mid a_i$ for all $0 \leq i \leq m-1$. However, $\ell \nmid a_m$ since $\ell \nmid c_n$. Consider the reduction $\overline{h}(x) = \overline{s}(x)\overline{r}(x)$ in $R/\langle \ell \rangle[x]$. By the assumption on the coefficients of h, we have $\overline{h}(x) = \overline{c_n}x^n$. However, since $\overline{s}(x) = \overline{a_m}x^m$ and $\ell \nmid b_0$, then $\overline{s}(x)\overline{r}(x)$ contains the term $\overline{a_mb_0}x^m$, which leads to a contradiction. So, h(x) is irreducible in F[x].

Example. Consider $2x^7 + 3x^4 + 6x^2 + 12$ is irreducible in $\mathbb{Q}[x]$ by Eisenstein's Criterion with $\ell = 3$.

Example. Let p be a prime. Let $\zeta_p = e^{\frac{2\pi i}{p}} = \cos\left(\frac{2\pi}{p}\right) + i\sin\left(\frac{2\pi}{p}\right)$ be a p-th root of 1. It is a root of the p-th cyclotomic polynomial:

$$\Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p-1} + x^{p-2} + \dots + x + 1.$$

Eisenstein's Criterion does not imply directly that $\Phi_p(x)$ is irreducible. However, we can consider

$$\Phi_p(x+1) = \frac{(x+1)^p - 1}{x} = x^{p-1} + \binom{p}{1} x^{p-2} + \dots + \binom{p}{p-2} x + \binom{p}{p-1}.$$

Since p is a prime, we know that $p \nmid 1$, $p \mid \binom{p}{i}$ for all $1 \le i \le p-1$ and $p^2 \nmid \binom{p}{p-1}$. Thus by Eisenstein's Criterion, $\Phi_p(x+1)$ is irreducible in $\mathbb{Q}[x]$.

Note. Since $\Phi_p(x)$ is primitive, it is irreducible in $\mathbb{Z}[x]$.

3 Field Extensions

Lecture 9, 2025/01/24 _____

3.1 Degree of Extensions

Definition 3.1 (**Field Extension**). If *E* is a field containing another field *F*, we say that *E* is a **field extension** of *F*, denoted by E_{F} .

Remark. Note that the notation E_{f} is NOT used to denote a quotient ring as the field E has no ideals other than $\{0\}$ and E itself.

Remark. If E_{F} is a field extention, we can view E as a vector space over F:

- (1) **Addition**: For $e_1, e_2 \in E$, $e_1 \oplus e_2 := e_1 + e_2$ (addition of E).
- (2) **Scalar Multiplication**: For $c \in F$ and $e \in E$, $c \odot e := ce$ (multiplication of E).

Definition 3.2 (Degree, Finite/Infinite Extension).

The dimension of E over F (viewed as a vector space) is called the **degree** of E over F, denoted by [E:F]. If $[E:F] < \infty$, we say that E_F is a **finite extension**. Otherwise, E_F is an **infinite extension**.

Example. $[\mathbb{C} : \mathbb{R}] = 2$ is a finite extension, since $\mathbb{C} \cong \mathbb{R} + \mathbb{R}i$ ($\mathbb{C} = \text{Span}\{1, i\}$ over \mathbb{R}).

Example. Let F be a field. Define F[x] as usual. Then define

$$F(x) = \left\{ \frac{f(x)}{g(x)} : f(x), g(x) \in F[x] \text{ and } g(x) \neq 0 \right\}$$

to be the field of fractions of F[x]. Then $[F(x): F] = \infty$ since $\{1, x, x^2, ...\}$ is linearly independent over F.

Theorem 3.1. If E/K and K/F are finite field extensions, then E/F is a finite extension. Moreover, we have

$$[E:F] = [E:K][K:F].$$

In particular, if *K* is an intermediate field of a finite extension E_{f} , then $[K:F] \mid [E:F]$.

Proof. Suppose [E:K]=m and [K:F]=n. Let $\{a_1,\ldots,a_m\}$ be a basis of E/K and $\{b_1,\ldots,b_n\}$ be a basis of E/K. It suffices to prove that $C=\{a_ib_j:1\leq i\leq m,1\leq j\leq n\}$ is a basis of E/K.

Claim (1). Span_{*F*} $\mathcal{C} = E$. That is, every element of *E* is a linear combination of $\{a_ib_j\}$ over *F*.

Proof of Claim (1). For $e \in E$, we have $e = \sum_{i=1}^{m} k_i a_i$ with $k_i \in K$. For each $k_i \in K$, we have $k_i = \sum_{j=1}^{n} c_{ij} b_j$ with $c_{ij} \in F$. Thus, it follows that $e = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} b_j a_i$. It follows that Span $\mathcal{C} = E$.

Claim (2). \mathcal{C} is linearly independent over F.

Proof of Claim (2). Suppose that $\sum_{i=1}^m \sum_{j=1}^n c_{ij}a_ib_j = 0$ for some $c_{ij} \in F$. Since $\sum_{j=1}^n c_{ij}b_j \in K$ and $\{a_1,\ldots,a_m\}$ is linearly independent over K, so we have $\sum_{j=1}^n c_{ij}b_j = 0$ for all i. Since $\{b_1,\ldots,b_n\}$ is linearly independent over F, we have $c_{ij} = 0$ for all i, j. Therefore, $\mathcal C$ is linearly independent over F.

Combining the two claims, we have that \mathcal{C} is a basis of E_F and [E:F]=mn=[E:K][K:F]. \square

3.2 Algebraic and Transcendental Extensions

Definition 3.3 (Algebraic, Transendental).

Let E_{f} be a field extension and $\alpha \in E$. We say that α is **algebraic** over F if $\exists f(x) \in F[x] \setminus \{0\}$ with $f(\alpha) = 0$. Otherwise, we say that α is **transcendental** over F.

Example. $\frac{c}{d} \in \mathbb{Q}$ (root of f(x) = dx - c) and $\sqrt{2}$ (root of $f(x) = x^2 - 2$) are algebraic over \mathbb{Q} . However, π and e are transcendental over \mathbb{Q} .

Example.

Claim. $\alpha = \sqrt{2} + \sqrt{3}$ is algebraic over \mathbb{Q} .

Proof. To prove this claim, write $\alpha - \sqrt{2} = \sqrt{3}$. By squaring both sides, we have

$$\alpha^2 - 2\sqrt{2}\alpha + 2 = 3 \implies \alpha^2 - 1 = 2\sqrt{2}\alpha \implies \alpha^4 - 2\alpha^2 + 1 = 8\alpha^2 \implies \alpha^4 - 10\alpha^2 + 1 = 0.$$

It follows that α is a root of $f(x) = x^4 - 10x^2 + 1 \in \mathbb{Q}[x]$, hence, α is algebraic over \mathbb{Q} .

Let E_F be a field extension and $\alpha \in E$. Let $F[\alpha]$ denote the smallest subring of E containing F and E and we use E and to denote the smallest subfield of E containing E and E are defined as E and E and E are defined as E are defined as E and E are d

Definition 3.4 (Simple Extension).

If $E = F(\alpha)$ for some $\alpha \in E$, we say that E_F is a **simple extension**.

Definition 3.5 (*F*-Homomorphism).

Let R and R_1 be two rings which contain a field F. A ring homomorphism $\varphi: R \to R_1$ is said to be an F-homomorphism if $\varphi|_F = 1_F$. That is, $\varphi(x) = x$ for all $x \in F$.

Theorem 3.2. Let E_F be a field extension and $\alpha \in R$. If α is transcendental over F, then we have

$$F[\alpha] \cong F[x]$$
 and $F(\alpha) \cong F(x)$.

In particular, $F[\alpha] \neq F(\alpha)$.

Proof. Let $\varphi: F(x) \to F(\alpha)$ be the unique *F*-homomorphism defined by $\varphi(x) = \alpha$. Thus, for $f(x), g(x) \in F[x]$ and $g(x) \neq 0$, we have

$$\varphi\left(\frac{f(x)}{g(x)}\right) = \frac{f(\alpha)}{g(\alpha)} \in F(\alpha).$$

Since α is transcendental, we have $g(\alpha) \neq 0$ for all $g(x) \in F[x]$. Thus, this map is well-defined. Since F(x) is a field and $\operatorname{Ker} \varphi$ is an ideal of F(x), we have that $\operatorname{Ker} \varphi = \{0\}$ or $\operatorname{Ker} \varphi = F(x)$. Since φ is not

the zero map because $\varphi(x) = \alpha \neq 0$, we have $\operatorname{Ker} \varphi = \{0\}$ and therefore φ is injective. Also, since F(x) is a field, im φ contains a field generated by F and α . Since $F(\alpha)$ is the smallest field containing F and α , we must have $F(\alpha) \subseteq \operatorname{im} \varphi$. Thus, φ is surjective and therefore an isomorphism. It follows that $F(x) \cong F(\alpha)$ and $F[x] \cong F[\alpha]$.

Lecture 10, 2025/01/27

Theorem 3.3. Let E_{F} be a field extension and $\alpha \in E$. If α is algebraic over F, then there exists a unique monic irreducible polynomial $p(x) \in F[x]$ such that there exists an F-isomorphism

$$\varphi: F[x]/\langle p(x)\rangle \to F[\alpha]$$
 with $\varphi(x) = \alpha$.

From there we conclude that $F[\alpha] = F(\alpha)$.

Remark. Since α is algebraic, the map defined in the proof of previous theorem, $\frac{f(x)}{g(x)} \mapsto \frac{f(\alpha)}{g(\alpha)}$ is NOT well-defined.

Proof. Consider the unique *F*-homomorphism $\varphi: F[x] \to F(\alpha)$ by $\varphi(x) = \alpha$. Thus, for $f(x) \in F[x]$, we have $\varphi(f(x)) = f(\alpha) \in F[\alpha]$. Since F[x] is a ring, im φ contains a ring generated by F and α . That is, $F[\alpha] \subseteq \operatorname{im} \varphi$ and thus im $\varphi = F[\alpha]$. Consider

$$I = \operatorname{Ker} \varphi = \{ f(x) \in F[x] : f(\alpha) = 0 \}.$$

Since α is algebraic, $I \neq \{0\}$. Theorefore, by the First Ring Isomorphism Theorem, $F[x]/I \cong F[\alpha]$. Note that $\operatorname{im} \varphi$ is a subring of the field $F(\alpha)$. Thus, $\operatorname{im} \varphi$ is an integral domain and it follows that F[x]/I is an integral domain. This implies that I is a prime ideal and say $I = \langle p(x) \rangle$ where p(x) is irreducible. If we assume p(x) is monic, then it is unique. It follows that

$$F[x]_{\langle p(x)\rangle} \cong F[\alpha].$$

Since F[x] is a PID, the prime ideal $\langle p(x) \rangle$ is maximal. Thus, $F[x]/\langle p(x) \rangle$ is a field and hence $F[\alpha]$ is a field. Since $F[\alpha]$ is the smallest field containing F and α , we have $F[\alpha] = F(\alpha)$.

Definition 3.6 (Minimal Polynomial).

If α is algebraic over a field F, the unique monic irreducible polynomial p(x) in Theorem 3.3 is called the **minimal polynomial** of α over F.

As a direct consequence of the above two theorems, we have the following.

Theorem 3.4. Let E_F be a field extension and $\alpha \in E$.

- (1) α is transcendental over $F \iff [F(\alpha) : F] = \infty$.
- (2) α is algebraic over $F \iff [F(\alpha):F] < \infty$.

Moreover, if p(x) is the minimal polynomial of α over F, we have

$$[F(\alpha):F] = \deg(p(x))$$

and $\{1, a, a^2, \dots, a^{\deg(p(x))-1}\}$ is a basis of $F(\alpha)/F$.

Proof. It suffices to prove the (\Rightarrow) in (1) and (2) since the (\Leftarrow) comes from taking the contrapositive.

- (1) (\Rightarrow): By Theorem 3.2, if α is transcendental over F, then $F(\alpha) \cong F(x)$. In F(x), the elements $\{1, x, x^2, ...\}$ are linearly independent over F. Thus, $[F(\alpha) : F] = \infty$.
- (2) (\Rightarrow): By Theorem 3.3, if α is algebraic over F, then $F(\alpha) \cong F[x]/\langle p(x)\rangle$ with $x \mapsto \alpha$. Note that $F[x]/\langle p(x)\rangle \cong \{r(x) \in F[x] : \deg(r) < \deg(p)\}$. Thus, $\{1, x, \dots, x^{\deg(p)-1}\}$ is a basis of $F[x]/\langle p(x)\rangle$. It follows that $[F(\alpha) : F] = \deg(p)$ and $\{1, \alpha, \dots, \alpha^{\deg(p)-1}\}$ is a basis of $F(\alpha)$ over F.

Example. Let p be a prime and $\zeta_p=e^{2\pi i/p}$, a p-th root of unity. We have seen in Chapter 2 that ζ_p is a root of the p-th cyclotomic polynomial $\Phi_p(x)$, which is irreducible. Thus, by Theorem 3.4, $\Phi_p(x)$ is the minimal polynomial of ζ_p over $\mathbb Q$ and $[\mathbb Q(\zeta_p):\mathbb Q]=\deg(\Phi_p)=p-1$. The field $\mathbb Q(\zeta_p)$ is called the p-th cyclotomic field of $\mathbb Q$.

Example. Let $\alpha = \sqrt{2} + \sqrt{3}$. We recall that α is a root of $x^4 - 10x^2 + 1$. Note that $(\alpha - \sqrt{2})^2 = 3$. We have $\alpha^2 - 2\sqrt{2}\alpha + 2 = 3$. Hence, $\sqrt{2} = \frac{\alpha^2 - 1}{2\alpha}$ is an element in $\mathbb{Q}(\alpha)$. Since $\sqrt{2}$ is a root of $x^2 - 2$, which is irreducible, we have $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2$. Also, $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$ (see Piazza). Hence, $[\mathbb{Q}(\alpha) : \mathbb{Q}(\sqrt{2})] \ge 2$, since $\alpha = \sqrt{2} + \sqrt{3}$. Since α is a root of a polynomial of degree 4, it follows that $4 \ge [\mathbb{Q}(\alpha) : \mathbb{Q}] = [\mathbb{Q}(\alpha) : \mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] \ge 2 \cdot 2 = 4$. Hence, $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 4$ and $x^4 - 10x^2 + 1$ is the minimal polynomial of α over \mathbb{Q} .

Exercise: Can we show that $x^4 - 10x^2 + 1$ is irreducible using Eisenstein's criterion?

Theorem 3.5. Let E_F be a field extension. If $[E:F] < \infty$, $\exists \alpha_1, \dots, \alpha_n \in E$ s.t.

$$F \subsetneq F(\alpha_1) \subsetneq F(\alpha_1, \alpha_2) \subsetneq \cdots \subsetneq F(\alpha_1, \dots, \alpha_n) = E.$$

Thus, to understand a finite extension, it suffices to understand a finite simple extension.

Proof. We will prove this theorem by induction on [E:F]. If [E:F]=1, then E=F and we are done. Suppose [E:F]>1 and the statement holds for all field extensions $E_{1/F_{1}}$ with $[E_{1}:F_{1}]<[E:F]$. Let $\alpha_{1} \in E \setminus F$. By Theorem 3.1, $[E:F]=[E:F(\alpha_{1})] \cdot [F(\alpha_{1}):F]$. Since $[F(\alpha_{1}):F]>1$, we have $[E:F(\alpha_{1})]<[E:F]$. By induction hypothesis, $\exists \alpha_{2},\alpha_{3},...,\alpha_{n} \in E$ s.t.

$$F(\alpha_1) \subsetneq F(\alpha_1)(\alpha_2) \subsetneq \cdots \subsetneq F(\alpha_1)(\alpha_2, \dots, \alpha_n) = E = F(\alpha_1, \dots, \alpha_n).$$

Thus, we have $F \subsetneq F(\alpha_1) \subsetneq F(\alpha_1, \alpha_2) \subsetneq \cdots \subsetneq F(\alpha_1, \dots, \alpha_n) = E$.

Definition 3.7 (Algebraic, Transcendental).

A field extension E_{f} is **algebraic** if every $\alpha \in E$ is algebraic over F. Otherwise, it is called **transcendental**.

Theorem 3.6. Let E_F be a field extension. If $[E:F] < \infty$, then E_F is algebraic.

Proof. Suppose [E:F]=n. For $\alpha \in E$, the elements $\{1,\alpha,\alpha^2,\ldots,\alpha^n\}$ are not linearly independent

over *F*. Then, $\exists c_i \in F \ (0 \le i \le n)$, not all 0, such that

$$\sum_{i=0}^{n} c_i \alpha^i = 0.$$

Thus, α is a root of the polynomial $\sum_{i=0}^{n} c_i x^i \in F[x]$, hence it is algebraic over F.

Theorem 3.7. Let E_{f} be a field extension. Define

$$L = \{ \alpha \in E : [F(\alpha) : F] < \infty \}.$$

Then, L is an intermediate field of E_{F} .

Proof. If $\alpha, \beta \in L$, we need to show that $\alpha \pm \beta$, $\alpha\beta$ and $\alpha/\beta(\beta \neq 0) \in L$. By the definition of L, we have $[F(\alpha):F]<\infty$ and $[F(\beta):F]<\infty$. Consider the field $F(\alpha,\beta)$. Since the minimal polynomial of α over $F(\beta)$ divides the minimal polynomial of α over F (the minimal polynomial of α over F, say $p(x) \in F[x]$, is also a polynomial over $F(\beta)$, i.e. $p(x) \in F(\beta)[x]$ s.t. $p(\alpha)=0$, we have $[F(\alpha,\beta):F(\beta)] \leq [F(\alpha):F]$. Combining this with Theorem 3.1, we have

$$[F(\alpha,\beta):F] = [F(\alpha,\beta):F(\beta)][F(\beta):F]$$

$$\leq [F(\alpha):F][F(\beta):F] < \infty.$$

Since $\alpha + \beta \in F(\alpha, \beta)$, it follows that $[F(\alpha + \beta) : F] \leq [F(\alpha, \beta) : F] < \infty$, i.e. $\alpha + \beta \in L$. Similarly, we can show that $\alpha - \beta$, $\alpha\beta$ and α/β ($\beta \neq 0$) $\in L$.

Definition 3.8 (Algebraic Closure).

Let E_{f} be a field extension. Then we say

$$L = \{ \alpha \in E : [F(\alpha) : F] < \infty \}$$

is the **algebraic closure** of F in E.

Definition 3.9 (Algebraically Closed).

A field F is **algebraically closed** if for any algebraic extension E_{F} , we have E = F.

Example. By the fundamental theorem of algebra, $\mathbb C$ is algebraically closed. Moreover, $\mathbb C$ is the algebraic closure of $\mathbb R$ in $\mathbb C$.

Example. Let $\overline{\mathbb{Q}}$ be the algebraic closure of \mathbb{Q} in \mathbb{C} , i.e.

$$\overline{\mathbb{Q}} = \{ \alpha \in \mathbb{C} : \alpha \text{ is algebraic over } \mathbb{Q} \}.$$

Since $\zeta_p \in \overline{\mathbb{Q}}$, we have

$$[\overline{\mathbb{Q}}:\mathbb{Q}] \geq [\mathbb{Q}(\zeta_p):\mathbb{Q}] = p-1.$$

Since $p \to \infty$, we have $[\overline{\mathbb{Q}} : \mathbb{Q}] = \infty$. Hence, the converse of Theorem 3.6 is false.

4 Splitting Fields

Lecture 12, 2025/01/31 _____

4.1 Existence of Splitting Fields

Definition 4.1 (Split Over). Let E/F be a field extension. We say that $f(x) \in F[x]$ **splits over** E if E contains all roots of f(x), i.e. f(x) is a product of linear factors in E[x].

Definition 4.2 (Splitting Field).

Let \tilde{E}_F be a field extension, $f(x) \in F[x]$ and $F \subseteq E \subseteq \tilde{E}$. If

- (1) f(x) splits over E.
- (2) There is no proper subfield of E such that f(x) splits over it.

Then, we say *E* is a **splitting field** of f(x) in \tilde{E} .

Theorem 4.1. Let $p(x) \in F[x]$ be irreducible. The quotient ring $F[x]/\langle p(x)\rangle$ is a field containing F and a root of p(x).

Proof. Since p(x) is irreducible, the ideal $I = \langle p(x) \rangle$ is maximal (since F[x] is a PID). Thus, E = F[x]/I is a field. Consider the map $\phi : F \to E$ given by $a \mapsto a + I$. Since F is a field and $\phi \neq 0$, we get that ϕ is injective. Thus, $F \cong \phi(F) \subseteq E$. By identifying F with $\phi(F)$, F can be viewed as a subfield of E. Let $\alpha = x + I \in E$. We claim that α is a root of p(x). Write

$$\begin{split} p(x) &= a_0 + a_1 x + \dots + a_n x^n \in F[x] \\ &= (a_0 + I) + (a_1 + I) x + \dots + (a_n + I) x^n \in E[x]. \end{split}$$

Then, we have

$$p(\alpha) = (a_0 + I) + (a_1 + I)\alpha + \dots + (a_n + I)\alpha^n$$

$$= (a_0 + I) + (a_1 + I)(x + I) + \dots + (a_n + I)(x + I)^n$$

$$= (a_0 + I) + (a_1x + I) + \dots + (a_nx^n + I) \quad \text{since } (x + I)^k = x^k + I$$

$$= (a_0 + a_1x + \dots + a_nx^n) + I$$

$$= p(x) + I = 0 + I.$$

Thus, $\alpha = x + I \in E$ is a root of p(x).

Theorem 4.2 (Kronecker's Theorem).

Let $f(x) \in F[x]$, there exists a field E containing F such that f(x) splits over E.

Proof. We prove this theorem by induction on $\deg(f)$. If $\deg(f) = 1$, then we let E = F and we are done. If $\deg(f) > 1$ and the statement holds for all g(x) with $\deg(g) < \deg(f)$ (g(x) is not necessarily in F[x]). Write f(x) = p(x)h(x) with $p(x), h(x) \in F[x]$ and p(x) is irreducible. By Theorem 4.1, there exists a field K such that $F \subseteq K$ and K contains a root of p(x), say α . Thus, $p(x) = (x - \alpha)q(x)$ and $f(x) = (x - \alpha)h(x)q(x)$ with $h(x) \in K[x]$. Since $\deg(hq) < \deg(f)$, by induction, there exists a field E containing K over which h(x)q(x) splits. It follows that f(x) splits over E.

Theorem 4.3. Every $f(x) \in F[x]$ has a splitting field which is a finite extension of F.

Proof. Let $f(x) \in F[x]$, by Theorem 4.2, there is a field extension E_F over which f(x) splits, say $\alpha_1, \ldots, \alpha_n$ are roots of f(x) in E. Consider $F(\alpha_1, \ldots, \alpha_n)$. This is the smallest subfield of E containing all roots of f(x). So f(x) does not split over any proper subfield of it. Thus, $F(\alpha_1, \ldots, \alpha_n)$ is the splitting field of f(x) in E. Moreover, since α_i are all algebraic, $F(\alpha_1, \ldots, \alpha_n)_F$ is a finite extension. \square

Example. Consider $x^3 - 2$ in $\mathbb{Q}[x]$. We have

$$x^3 - 2 = (x - \sqrt[3]{2})(x - \sqrt[3]{2}\zeta_3)(x - \sqrt[3]{2}\zeta_3^2).$$

So, $\mathbb{Q}(\sqrt[3]{2}, \zeta_3)$ is the splitting field of $x^3 - 2$ over \mathbb{Q} .

Remark. If f(x) splits in E, i.e. $\alpha_1, \ldots, \alpha_n$ are roots of f(x) in E, then $F(\alpha_1, \ldots, \alpha_n)$ is the splitting field of f(x) in E.

4.2 Uniqueness of Splitting Fields

We have seen that for the field extension E_F , $F(\alpha_1, ..., \alpha_n)$ is the splitting field of $f(x) \in F[x]$ in E and it is unique with E.

Question: If we change E_{f} to a different field extension, say $E_{1/f}$, what is the relation between the splitting field of f(x) in E and the one in E_1 ?

Definition 4.3 (Extend). Let $\phi: R \to R_1$ be a ring homomorphism and $\Phi: R[x] \to R_1[x]$ be the unique homomorphism satisfying $\Phi|_R = \phi$ and $\Phi(x) = x$. In this case, we say Φ extends ϕ . More generally, if $R \subseteq S$ and $R_1 \subseteq S_1$ and $\Phi: S \to S_1$ is a ring homomorphism with $\Phi|_R = \phi$, we say Φ extends ϕ .

Theorem 4.4. Let $\phi: F \to F_1$ be an isomorphism of fields and $f(x) \in F[x]$. Let $\Phi: F[x] \to F_1[x]$ be the unique ring isomorphism which extends ϕ . Let $f_1(x) = \Phi(f(x))$ and $E_{f_1}(x) = \Phi(f(x))$ and $f_1(x)$ in F and F_1 , respectively. Then, there exists an isomorphism $\psi: E \to E_1$ which extends ϕ .

Corollary 4.5. Any two splitting fields of $f(x) \in F[x]$ over F are F-isomorphisic.

Proof of Theorem 4.4. We prove this theorem by induction on [E:F]. If [E:F]=1, then f(x) is a product of linear function in F[x] and so is $f_1(x)$ in $F_1[x]$. Thus, E=F and $E_1=F_1$. Take $\psi=\phi$, and we are done.

Suppose that [E:F] > 1 and the statement is true for all field extension $\widehat{E}_{/\widetilde{F}}$ with $[\widetilde{E}:\widetilde{F}] < [E:F]$. Let $p(x) \in F[x]$ be an irreducible factor of f(x) with $\deg(p) \geq 2$ and let $p_1(x) = \Phi(p(x))$ (such p(x) exists as if all irreducible factors of f(x) are of degree 1, then [E:F]=1). Let $\alpha \in E$ and $\alpha_1 \in E_1$ be roots of p(x) and $p_1(x)$ respectively. From Theorem 3.3, we have an F-isomorphism

$$F(\alpha) \cong F[x]/\langle p(x)\rangle \quad \alpha \mapsto x + \langle p(x)\rangle.$$

Similarly there is an F-isomorphism

$$F_1(\alpha_1) \cong F_1[x]/\langle p_1(x)\rangle \quad \alpha_1 \mapsto x + \langle p_1(x)\rangle.$$

Consider the isomorphism $\Phi: F[x] \to F_1[x]$ which extends ϕ . Since $p_1(x) = \Phi(p(x))$, there exists a field isomorphism

$$\tilde{\Phi}: F[x]/\langle p(x)\rangle \to F_1[x]/\langle p_1(x)\rangle \quad x + \langle p(x)\rangle \mapsto x + \langle p_1(x)\rangle$$

which extends ϕ . It follows that there exists an isomorphism

$$\tilde{\phi}: F(\alpha) \to F_1(\alpha_1) \quad \alpha \mapsto \alpha_1$$

which extends ϕ . Note that since $\deg(p) \geq 2$, $[E:F(\alpha)] < [E:F]$. Since E (respectively E_1) is the splitting field of $f(x) \in F(\alpha)[x]$ (respectively $f_1(x) \in F_1(\alpha_1)[x]$), by induction, there exists $\psi: E \to E_1$ which extends $\tilde{\phi}$. Thus, ψ extends ϕ .

Remark. By taking $\phi: F \to F$ to be the identity map in Theorem 4.4, we obtain Corollary 4.5.

4.3 Degrees of Splitting Fields

Theorem 4.6. Let F be a field and $f(x) \in F[x]$ with $\deg(f) = n \ge 1$. If E_F is the splitting field of f(x), then $[E:F] \mid n!$.

Proof. We prove this by induction on $\deg(f)$. If $\deg(f) = 1$, choose E = F and we have $[E : F] \mid 1!$. Suppose that $\deg(f) > 1$ and the statement holds for all g(x) with $\deg(g) < \deg(f)$ (g(x) is not necessarily in F[x]). Two cases:

(1) If $f(x) \in F[x]$ is irreducible and $\alpha \in E$ is a root of f(x) by Theorem 3.3,

$$F(\alpha) \cong F[x]/\langle f(x) \rangle$$
 and $[F(\alpha) : F] = \deg(f) = n$.

Write $f(x) = (x - \alpha)g(x) \in F(\alpha)[x]$ with $g(x) \in F(\alpha)[x]$. Since E is the splitting field of g(x) over $F(\alpha)$ and $\deg(g) = n - 1$, by induction, $[E : F(\alpha)] \mid (n - 1)!$. Since $[E : F] = [E : F(\alpha)][F(\alpha) : F]$, it follows that $[E : F] \mid n!$.

(2) If f(x) is not irreducible, write f(x) = g(x)h(x) with $g(x), h(x) \in F[x]$, $\deg(g) = m, \deg(h) = k$, m+k=n and $1 \le m, k < n$. Let K be the splitting field of g(x) over F. Since $\deg(g) = m$, by induction, $[K:F] \mid m!$. Since E is the splitting field of h(x) over K and $\deg(h) = k$, by induction, $[E:K] \mid k!$. Thus, $[E:F] = [E:K][K:F] \mid m!k!$, which is a factor of n! (since $\frac{n!}{m!k!} = \binom{n}{m} \in \mathbb{Z}$).

5 More Field Theory

5.1 Prime Fields

Definition 5.1 (**Prime Field**). The **prime field** of a field F is the intersection of all subfields of F.

Theorem 5.1. If F is a field, then its prime field is isomorphic to either \mathbb{Q} or \mathbb{Z}_p for some prime p.

Definition 5.2 (**Characteristic**). Given a field F, if its prime field is isomorphic to \mathbb{Q} (respectively \mathbb{Z}_p), we say F has **characteristic** 0 (respectively characteristic p), denoted by ch(F) = 0 (respectively ch(F) = p).

Note. If ch(F) = p, for $a, b \in F$,

$$(a+b)^p = a^p + \binom{p}{1} a^{p-1} b + \dots + \binom{p}{p-1} a b^{p-1} + \binom{p}{p} b^p = a^p + b^p.$$

The last equality follows since $\binom{p}{i}$ $(1 \le i \le p-1)$ are divisible by p and hence 0.

____ Lecture 14, 2025/02/5 ___

Proof of Theorem 5.1. Let F_1 be a subfield of F. Consider the map

$$\chi: \mathbb{Z} \to F_1 \quad n \mapsto n \cdot 1 \quad \text{where } 1 \in F_1 \subseteq F.$$

Let $I = \operatorname{Ker} \chi$ be the kernel of χ . Since $\mathbb{Z}/I \cong \operatorname{im} \chi$ (by the First Ring Isomorphism Theorem), a subring of F_1 , it is an integral domain. Thus, I is a prime ideal. Two cases.

- (1) If $I = \langle 0 \rangle$, then $\mathbb{Z} \subseteq F_1$. Since F_1 is a field, $\mathbb{Q} = \operatorname{Frac}(\mathbb{Z}) \subseteq F_1$.
- (2) If $I=\langle p\rangle$, by the First Ring Isomorphism Theorem, then $\mathbb{Z}_p=\mathbb{Z}/\langle p\rangle\cong\operatorname{im}\chi\subseteq F_1.$

Note that if ch(F) = p, we have $(a + b)^p = a^p + b^p$. Using this, we can prove the following.

Proposition 5.2. Let F be a field with $\mathrm{ch}(F)=p$ and let $n\in\mathbb{N}$. Then, the map $\varphi:F\to F$ given by $u\mapsto u^p$ is an injective \mathbb{Z}_p -homomorphism of fields. If F is finite, then φ is a \mathbb{Z}_p -isomorphism of F.

5.2 Formal Derivatives and Repeated Roots

Definition 5.3 (Formal Derivative).

If F is a field, the monomials $\{1, x, x^2, ...\}$ form an F-basis of F[x]. Define the linear operator $D: F[x] \to F[x]$ by D(1) = 0 and $D(x^i) = ix^{i-1}$ for $i \in \mathbb{N}$. Thus, for $f(x) = a_0 + a_1x + \cdots + a_nx^n$, where $a_i \in F$,

$$D(f(x)) = a_1 + 2a_2x + \dots + na_nx^{n-1}.$$

One can check that we have the following properties.

- (1) D(f + g) = D(f) + D(g).
- (2) (Leibniz Rule) D(fg) = D(f)g + fD(g).

We call D(f) = f' the **formal derivative** of f(x).

Theorem 5.3. Let *F* be a field and $f(x) \in F[x]$.

- (1) If ch(F) = 0, then $f'(x) = 0 \iff f(x) = c$ for some $c \in F$.
- (2) If ch(F) = p, then $f'(x) = 0 \iff f(x) = g(x^p)$ for some $g(x) \in F[x]$.

Proof.

- (1) (**⇐**): is clear.
 - (⇒): For $f(x) = a_0 + a_1x + \cdots + a_nx^n$, we have $f'(x) = a_1 + 2a_2x + \cdots + na_nx^{n-1} = 0$ implying that $ia_i = 0$ for $1 \le i \le n$. Since ch(F) = 0, we have $i \ne 0$. Thus, $a_i = 0$ for $1 \le i \le n$ and $f(x) = a_0 \in F$.
- (2) (\Leftarrow): Write $g(x) = b_0 + b_1 x + \dots + b_m x^m \in F[x]$. Then, $f(x) = g(x^p) = b_0 + b_1 x^p + \dots + b_m x^{pm}$. Thus, $f'(x) = pb_1 x^{p-1} + 2pb_2 x^{2p-1} + \dots + pmb_m x^{pm-1}$. Since ch(F) = p, we have f'(x) = 0. (\Rightarrow): For $f(x) = a_0 + a_1 x + \dots + a_n x^n$, $f'(x) = a_1 + 2a_2 x + \dots + na_n x^{n-1} = 0$ implies that $ia_i = 0$ for $1 \le i \le n$. Since ch(F) = p, $ia_i = 0$ implies that $a_i = 0$ unless $p \mid i$. Thus,

$$f(x) = a_0 + a_p x^p + a_{2p} x^{2p} + \dots + a_{mp} x^{mp} = g(x^p)$$

where $g(x) = a_0 + a_p x + \dots + a_{mp} x^m \in F[x].$

Definition 5.4 (Repeated Root).

Let E_F be a field extension and $f(x) \in F[x]$. We say $\alpha \in E$ is a **repeated root** of f(x) if $f(x) = (x - \alpha)^2 g(x)$ for some $g(x) \in E[x]$.

Theorem 5.4. Let E/F be a field extension, $f(x) \in F[x]$ and $\alpha \in E$. Then, α is a repeated root of $f(x) \iff (x - \alpha)$ divides both f and f', i.e. $(x - \alpha) \mid \gcd(f, f')$.

Proof.

 (\Rightarrow) : Suppose $f(x) = (x - \alpha)^2 g(x)$ for some $g(x) \in E[x]$. Then,

$$f'(x) = 2(x - \alpha)g(x) + (x - \alpha)^2 g'(x)$$

= $(x - \alpha)[2g(x) + (x - \alpha)g'(x)].$

Thus, $(x - \alpha) \mid f$ and $(x - \alpha) \mid f'$.

 (\Leftarrow) : Suppose $(x - \alpha) \mid f$ and $(x - \alpha) \mid f'$. Write $f(x) = (x - \alpha)h(x)$, where $h(x) \in E[x]$. Then,

$$f'(x) = h(x) + (x - \alpha)h'(x).$$

Since $f'(\alpha) = 0$, we have $h(\alpha) = 0$. Thus, $(x - \alpha)$ is a factor of h(x) and $f(x) = (x - \alpha)^2 g(x)$ for some $g(x) \in E[x]$.

Definition 5.5 (Separable). Let F be a field and $f(x) \in F[x] \setminus \{0\}$. We say f(x) is **separable** over F if it has no repeated roots in any extension of F.

Example. f(x) = (x - 4)(x + 9) is separable in $\mathbb{Q}[x]$.

Corollary 5.5. Let *F* be a field and $f(x) \in F[x] \setminus \{0\}$. f(x) is separable $\iff \gcd(f, f') = 1$.

Remark. We note that the condition of repeated roots depends on the extension of F, while the gcd condition involves only F.

Proof. Note that $gcd(f, f') \neq 1 \iff (x - \alpha) \mid gcd(f, f')$ for some α in some extension of F. By Theorem 5.4, the result follows.

Corollary 5.6. If ch(F) = 0, then every irreducible $r(x) \in F[x]$ is separable.

Proof. Let $r(x) \in F[x]$ be irreducible. Then

$$\gcd(r, r') = \begin{cases} 1 & \text{if } r' \neq 0 \\ r & \text{if } r' = 0. \end{cases}$$

Suppose that r(x) is not separable. Then, by Corollary 5.5, $\gcd(r,r') \neq 1$. Thus, r'(x) = 0. Since $\operatorname{ch}(F) = 0$, from Theorem 5.3, r'(x) = 0 implies that $r(x) = c \in F$, a contradiction since $\deg(r) \geq 1$. Thus, r(x) is separable.

Example. The *p*-th cyclotonic polynomial $\Phi_p(x) = x^{p-1} + x^{p-2} + \dots + x + 1$ is irreducible over $\mathbb Q$ and hence separable. We recall that the roots of $\Phi_p(x)$ are $\zeta_p, \zeta_p^2, \dots, \zeta_p^{p-1}$, which are all distinct.

Lecture 15, 2025/02/7

5.3 Finite Fields

Given a field F, let $F^* = F \setminus \{0\}$ be the multiplicative group of non-zero elements of F.

Proposition 5.7. If *F* is a finite field, then ch(F) = p for some prime p and $|F| = p^n$ for some $n \in \mathbb{N}$.

Proof. Since F is a finite field, by Theorem 5.1, its prime field is \mathbb{Z}_p . Since F is a finite dimentional vector space over \mathbb{Z}_p , say $\dim_{\mathbb{Z}_p} F = n$, then we know that

$$F \cong \underbrace{\mathbb{Z}_p \times \cdots \times \mathbb{Z}_p}_{n \text{ times}} \cong \mathbb{Z}_p^n$$

as vector spaces. This means that $|F| = p^n$.

Theorem 5.8. Let F be a field and G a finite subgroup of F^* . Then, G is a cyclic group. In particular, if F is a finite field, then F^* is a cyclic group.

Proof. WLOG, we can assume $G \neq \{1\}$. Since G is a finite abelian group, by the Fundamental Theorem of Finite Abelian Groups, we have

$$G \cong \mathbb{Z}/_{n_1\mathbb{Z}} \times \cdots \times \mathbb{Z}/_{n_r\mathbb{Z}}$$

with $n_1 > 1$ and $n_1 \mid n_2 \mid \cdots \mid n_r$. Since $n_r(\mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_r\mathbb{Z}) = 0$, it follows that every $u \in G$ is a root of $x^{n_r} - 1 \in F[x]$. Since the polynomial has at most n_r distinct roots in F, we have r = 1 and $G \cong \mathbb{Z}/n_r\mathbb{Z}$.

By taking u to be a generator of the multiplicative group F^* , we have the following.

Corollary 5.9. If F is a finite field, then F is a simple extension of \mathbb{Z}_p , i.e. $F = \mathbb{Z}_p(u)$ for some $u \in F^*$.

Theorem 5.10. Let *p* be a prime and $n \in \mathbb{N}$. Then,

- (1) F is a field with $|F| = p^n \iff F$ is a splitting field of $x^{p^n} x$ over \mathbb{Z}_p .
- (2) Let F be a finite field with $|F| = p^n$. Let $m \in \mathbb{N}$ with $m \mid n$. Then, F contains a unique subfield K with $|K| = p^m$.

Proof.

(1) (\Rightarrow): If $|F| = p^n$, then $|F^*| = p^n - 1$. Then, every $u \in F^*$ satisfies $u^{p^n - 1} = 1$. Thus, u is a root of $x(x^{p^n - 1} - 1) = x^{p^n} - x \in \mathbb{Z}_p[x]$. Since $0 \in F$ is also a root of $x^{p^n} - x$, the polynomial $x^{p^n} - x$ has p^n distinct roots in F, that is, it splits over F. Thus, F is a splitting field of $x^{p^n} - x$ over \mathbb{Z}_p . (\Leftarrow): Suppose F is the splitting field of $f(x) = x^{p^n} - x$ over \mathbb{Z}_p . Since ch(F) = p, we have f'(x) = -1. Then, gcd(f, f') = 1 which means f(x) is separable and has p^n distinct roots in F by Corollary 5.5. Let E be the set of all roots of f(x) in F and define

$$\varphi: F \to F \quad u \mapsto u^{p^n}.$$

For $u \in F$, u is a root of $f(x) \iff \varphi(u) = u$. Since the condition is closed under addition, subtraction, multiplication and division, the set E is a subfield of F of order p^n which contains \mathbb{Z}_p (since all $u \in \mathbb{Z}_p$ satisfies $u^{p^n} = u$). Since F is the splitting field, it is generated over \mathbb{Z}_p by the roots of f(x), that is, the elements of E. Thus, $F = \mathbb{Z}_p(E) = E$.

(2) We recall that

$$x^{ab} - 1 = (x^a - 1)(x^{ab-a} + x^{ab-2a} + \dots + x^a + 1).$$

Then if n = mk, we have

$$x^{p^n} - x = x(x^{p^n-1} - 1) = x(x^{p^m-1} - 1)g(x) = x(x^{p^m} - x)g(x)$$

for some $g(x) \in \mathbb{Z}_p[x]$. Since $x^{p^n} - x$ splits over F, so does $x^{p^m} - x$. Let

$$K = \{ u \in F : u^{p^m} - u = 0 \}.$$

Thus, $|K| = p^m$, since $u^{p^m} - u$ is separable (we can see this by taking the derivative), so the roots are distinct. Also, by (1), K is a field. Note that if $K \subseteq F$ is any subfield with $|K| = p^m$, then $\tilde{K} \subseteq K$ since all elements $v \in \tilde{K}$ satisfies $v^{p^m} = v$. It follows that $\tilde{K} = K$ since they have the same size. Thus, we see that a subfield K of F with $|K| = p^m$ is unique.

As a direct consequence of Theorem 5.10, we have the following.

Corollary 5.11 (E.H. Moore).

Let p be a prime and $n \in \mathbb{N}$. Then, any two finite fields of order p^n are isomorphic. We will denote such a field by \mathbb{F}_{p^n} .

Corollary 5.12. Let F be a finite field with ch(F) = p. Then,

- (1) $F = F^p = \{x^p : x \in F\}.$
- (2) Every irreducible $r(x) \in F[x]$ is separable.

Proof.

- (1) Every finite field $F = \mathbb{F}_{p^n}$ is the splitting field of $x^{p^n} x$ over \mathbb{Z}_p for some prime p and $n \in \mathbb{N}$. Then for every $a \in F$, $a = a^{p^n} = (a^{p^{n-1}})^p$. Since $a^{p^{n-1}} \in F$, we have $F = F^p$.
- (2) Let $r(x) \in F[x]$ be irreducible. Then,

$$\gcd(r,r') = \begin{cases} 1 & \text{if } r' \neq 0 \\ r & \text{if } r' = 0. \end{cases}$$

Suppose that r(x) is not separable. Then, by Corollary 5.5, $gcd(r, r') \neq 1$. Thus, r'(x) = 0. Since ch(F) = p, from Theorem 5.3, r'(x) = 0 implies that

$$r(x) = a_0 + a_p x^p + \dots + a_{mp} x^{mp}$$

for some $a_i \in F$. Since $F = F^p$, we can write $a_i = b_i^p$. Thus,

$$r(x) = b_0^p + b_1^{p^2} x^p + \dots + b_m^{p^{m+1}} x^{mp} = (b_0 + b_1 x + \dots + b_m x^m)^p$$

which is a contradiction since r(x) is irreducible. Thus, r(x) is separable.

Example. Let ch(F) = p and consider $f(x) = x^p - a$. Since $f'(x) = px^{p-1} = 0$, we have $gcd(f, f') \neq 1$. By Corollary 5.5, f(x) is not separable. Define $F^p = \{b^p : b \in F\}$, which is a subfield of F.

- (1) If $a \in F^p$, say $a = b^p$ for some $b \in F$, then $f(x) = x^p b^p = (x b)^p \in F[x]$. This has repeated roots so it is not separable, but this is reducible in F[x].
- (2) Suppose $a \notin F^p$. Let E_f be an extension where $x^p a$ has a root, say $\beta \in E$. Hence,

we have $\beta^p - a = 0$. Note that since $a = \beta^p \notin F^p$, we know that $\beta \notin F$. We have $x^p - a = x^p - \beta^p = (x - \beta)^p$, which is not separable.

Claim. $f(x) = x^p - a$ is irreducible in F[x] when $a \notin F^p$.

Proof. Write $x^p - a = g(x)h(x)$ for some $g(x), h(x) \in F[x]$ are monic polynomials. We have seen that $x^p - a = (x - \beta)^p$. Thus, $g(x) = (x - \beta)^r$ and $h(x) = (x - \beta)^s$ for some $r, s \in \mathbb{N} \cup \{0\}$ with r + s = p. Write

$$g(x) = (x - \beta)^r = x^r - r\beta x^{r-1} + \dots + (-\beta)^r$$
.

Then, $r\beta \in F$. Since $\beta \notin F$, as an element of F, we have $r = 0_F$ in F. Thus, as an integer, r = 0 or r = p. It follows that either g(x) = r or h(x) = 1 in F[x]. Thus, f(x) is irreducible in F[x].

6 Solvable Groups and Automorphism Groups

6.1 Solvable Groups

Definition 6.1 (Solvable). A group *G* is **solvable** if there exists a tower:

$$G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_m = \{1\}$$

with $G_{i+1} \triangleleft G_i$ and $G_{i/G_{i+1}}$ abelian for all $0 \le i \le m-1$.

Remark. G_{i+1} is not necessarily a normal subgroup of G. However, if G_{i+1} is a normal subgroup of G, we get $G_{i+1} \triangleleft G_i$ for free.

Example. Consider the symetric group S_4 . Let A_4 be the alternating group of S_4 and $V \cong \mathbb{Z}_{2\mathbb{Z}} \times \mathbb{Z}_{2\mathbb{Z}}$, the Klein 4-group. Note that A_4 and V are normal subgroups of S_4 . We have

$$S_4 \supseteq A_4 \supseteq V \supseteq \{1\}.$$

Since $S_{4/A_{4}} \cong \mathbb{Z}_{2\mathbb{Z}}$ and $A_{4/V} \cong \mathbb{Z}_{3\mathbb{Z}}$. Both of them are abelian, so S_{4} is solvable.

Theorem 6.1 (Second Isomorphism Theorem).

Let H and K be subgroups of a group G with $K \triangleleft G$. Then, HK is a subgroup of $G, K \triangleleft HK$, $H \cap K \triangleleft H$ and

$$HK/K \cong H/H \cap K$$

Theorem 6.2 (Third Isomorphism Theorem).

Let $K \subseteq H \subseteq G$ be groups with $K \triangleleft G$ and $H \triangleleft G$. Then, $H/K \triangleleft G/K$ and

$$(G/K)/(H/K) \cong G/H$$

Theorem 6.3. Let *G* be a solvable group. Then,

- (1) If H is a subgroup of G, then H is solvable.
- (2) Let *N* be a normal subgroup of *G*, then the quotient group G_N is solvable.

Example. S_4 contains subgroups isomorphic to S_3 and S_2 , Since S_4 is solvable, by Theorem 6.3, S_3 and S_2 are solvable.

Lecture 17, 2025/02/12

Proof of Theorem 6.3. Since *G* is a solvable group, there exists a tower

$$G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_m = \{1\}$$

with $G_{i+1} \triangleleft G_i$ and $G_{i \not\sim G_{i+1}}$ abelian for all $0 \le i \le m-1$.

(1) Define $H_i = H \cap G_i$. Since $G_{i+1} \triangleleft G_i$, the tower

$$H = H_0 \supseteq H_1 \supseteq \cdots \supseteq H_m = \{1\}$$

satisfies $H_{i+1} \triangleleft H_i$. Note that both H_i and G_{i+1} are subgroups of G_i and

$$H_{i+1}=H\cap G_{i+1}=H_i\cap G_{i+1}.$$

Applying the Second Isomorphism Theorem, we have

$$H_{i \not H_{i+1}} \cong H_{i \not H_i \cap G_{i+1}} \cong H_i G_{i+1} \not \subseteq G_{i \not G_{i+1}}$$

since $H_i \subseteq G_i$ and $G_{i+1} \subseteq G_i$. Now, since $G_{i \not\sim G_{i+1}}$ is abelian, so is $H_{i \not\sim H_{i+1}}$. It follows that H is solvable.

(2) Consider the following tower

$$G = G_0 N \supseteq G_1 N \supseteq \cdots \supseteq G_m N = N$$

and take the quotient by N, we have

$$G_{N} = G_{0}N_{N} \supseteq G_{1}N_{N} \supseteq \cdots \supseteq G_{m}N_{N} = \{1\}.$$

Since $G_{i+1} \triangleleft G_i$ and $N \triangleleft G$, we have $G_{i+1}N \triangleleft G_iN$, which implies that $G_{i+1}N/N \triangleleft G_iN/N$.

By the Third Isomorphism Theorem, we have

$$\binom{G_iN_N}{N}_{G_{i+1}N_N}\cong G_iN_{G_{i+1}N}.$$

Now, by the Second Isomorphism Theorem,

$$G_i N / G_{i+1} N \cong G_i / G_i \cap G_{i+1} N$$

Consider the natural quotien map $\pi: G_i \to G_{i \not / G_i \cap G_{i+1} N}$ which is surjective. Since G_{i+1} is a subgroup of $(G_i \cap G_{i+1} N)$, this means that G_{i+1} is contained in Ker π , so it induces a surjective map $G_{i \not / G_{i+1}} \to G_{i \not / G_i \cap G_{i+1} N}$ by the universal property of groups. Since $G_{i \not / G_{i+1}}$ is abelian, so is $G_{i \not / G_i \cap G_{i+1} N}$. Thus, $G_{i+1} \cap G_{i+1} \cap G_{$

Theorem 6.4. Let N be a normal subgroup of G. If N and G/N are solvable, then G is solvable. In particular, a direct product of finitely many solvable groups is solvable.

Proof. Since *N* is solvable, we have a tower

$$N=N_0\supseteq N_1\supseteq\cdots\supseteq N_m=\{1\}$$

with $N_{i+1} \triangleleft N_i$ and $N_{i \nmid N_{i+1}}$ abelian for all $0 \le i \le m-1$. For a subgroup $H \subseteq G$ with $N \subseteq H$, we denote $\overline{H} = H_{N}$. Since G_{N} is solvable, we have a tower

$$G_N = \overline{G}_0 \supseteq \overline{G}_1 \supseteq \cdots \supseteq \overline{G}_m = \{1\}$$

with $\overline{G}_{i+1} \triangleleft \overline{G}_i$ and $\overline{G}_i \not \subset_{G_{i+1}}$ abelian. Let $\operatorname{Sub}_N(G)$ denote the subgroups of G which contain N. Consider the map

$$\sigma: \operatorname{Sub}_N(G) \to \underbrace{\operatorname{Sub}(G/N)}_{\text{all subgroups of } G/N} H \to H/N.$$

For all $i=0,1,\ldots,r$, define $G_i=\sigma^{-1}(\overline{G}_i)$. Since $N \triangleleft G$ and $\overline{G}_{i+1} \triangleleft \overline{G}_i$, we have (see Piazza)

 $G_{i+1} \triangleleft G_i$. Moreover, by the Third Isomorphism Theorem, we have

$$G_{i/G_{i+1}} \cong \overline{G}_{i/\overline{G}_{i+1}}.$$

It follows that

$$G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_r = N = N_0 \supseteq N_1 \supseteq \cdots \supseteq N_m = \{1\}$$

with $G_{i+1} \triangleleft G_i$, $N_{i+1} \triangleleft N_i$ and $G_{i \not \sim G_{i+1}}$, $N_{i \not \sim N_{i+1}}$ are all abelian. Thus, G is solvable.

Definition 6.2 (Simple Group).

A group G is **simple** if it is not trivial and has no normal subgroups other than $\{1\}$ and G.

Example. One can show that the alternating group A_5 is simple (see Bonus). Since $A_5 \supseteq \{1\}$ is the only tower and $A_5/\{1\}$ is not abelian, A_5 is not solvable. By Theorem 6.3, S_5 is not solvable. Moreover, since all S_n with $n \ge 5$ contains a subgroup isomorphic to S_5 , which is not solvable. By Theorem 6.3 again, S_n is not solvable for all $n \ge 5$.

Note. This example is the reason why we separate polynomials of degree 5 or higher from those of degree 1, 2, 3, 4.

Corollary 6.5. Let *G* be a finite solvable group. Then, there exists a tower

$$G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_m = \{1\}$$

with $G_{i+1} \triangleleft G_i$ and $G_{i/G_{i+1}}$ a cyclic group.

Proof. If *G* is solvable, there exists a tower

$$G=G_0\supseteq G_1\supseteq \cdots \supseteq G_n=\{1\}$$

with $G_{i+1} \triangleleft G_i$ and $G_{i \not\sim G_{i+1}}$ abelian for all $0 \le i \le n-1$. Consider $A = G_{i \not\sim G_{i+1}}$, a finite abelian group. We have

$$A \cong C_{k_1} \times C_{k_2} \times \cdots \times C_{k_r}$$

where C_k is a cyclic group of order k. Since each $G_{i \not\sim G_{i+1}}$ can be rewritten as a product of cyclic groups, the result follows.

Remark. In the above group, given a finite cyclic group C, by the Chinese Remainder Theorem, we have

$$C \cong \mathbb{Z}/\langle p_1^{\alpha_1} \rangle \times \cdots \times \mathbb{Z}/\langle p_r^{\alpha_r} \rangle$$

where p_i are distinct primes. Also, for a cyclic group whose order is a prime power, say $\mathbb{Z}/\langle p^{\alpha} \rangle$, we have a tower of subgroups

$$\mathbb{Z}_{\langle p^{\alpha} \rangle} \supseteq \mathbb{Z}_{\langle p^{\alpha-1} \rangle} \supseteq \cdots \supseteq \mathbb{Z}_{\langle p \rangle} \supseteq \{1\}.$$

Lecture 18, 2025/02/24

6.2 Automorphism Groups

Definition 6.3 (F-Automorphism, Automorphism Group).

Let E_{F} be a field extension. If ψ is an **automorphism** of E, i.e. $\psi: E \to E$ is an isomorphism. If $\psi|_{F} = 1_{F}$, then we say ψ is an F-automorphism of E. By map composition, one can verify that the set

$$\operatorname{Aut}_F(E) = \{ \psi : E \to E \mid \psi \text{ is an } F\text{-automorphism} \}$$

is a group. We call it the **automorphism group** of E_{F} .

Lemma 6.6. Let E/F be a field extension and $f(x) \in F[x]$ and $\psi \in \operatorname{Aut}_F(E)$. If $\alpha \in E$ is a root of f(x), then $\psi(\alpha)$ is also a root of f(x).

Proof. Write $f(x) = a_0 + a_1 x + \dots + a_n x^n \in F[x]$, then

$$\begin{split} f(\psi(\alpha)) &= a_0 + a_1 \psi(\alpha) + \dots + a_n \psi(\alpha)^n \\ &= \psi(a_0) + \psi(a_1) \psi(\alpha) + \dots + \psi(a_n) \psi(\alpha)^n \quad \text{since } \psi \text{ is an } F\text{-automorphism} \\ &= \psi(a_0 + a_1 \alpha + \dots + a_n \alpha^n) \\ &= \psi(f(\alpha)) = \psi(0) = 0. \end{split}$$

Thus, $\psi(\alpha)$ is a root of f(x).

Lemma 6.7. Let $E = F(\alpha_1, ..., \alpha_n)$ be a field extension of F. For $\psi_1, \psi_2 \in \operatorname{Aut}_F(E)$, if $\psi_1(\alpha_i) = \psi_2(\alpha_i)$ for all $1 \le i \le n$, then $\psi_1 = \psi_2$.

Proof. Note that for $\alpha \in E$, we have

$$\alpha = \frac{f(\alpha_1, \dots, \alpha_n)}{g(\alpha_1, \dots, \alpha_n)}$$

where $f(x_1, ..., x_n), g(x_1, ..., x_n) \in F[x_1, ..., x_n]$ with $g \neq 0$. Thus, the lemma follows.

Corollary 6.8. If E_{f} is a finite extension, then $Aut_{F}(E)$ is a finite group.

Proof. Since E_{F} is a finite extension, by Theorem 3.5, we have

$$E = F(\alpha_1, \dots, \alpha_n)$$

where α_i is algebraic over F for $1 \le i \le n$. For $\psi \in \operatorname{Aut}_F(E)$, by Lemma 6.6, $\psi(\alpha_i)$ is a root of the minimal polynomial of α_i for all $1 \le i \le n$. Thus, it has only finitely many choices. Now, by Lemma 6.7, since $\psi \in \operatorname{Aut}_F(E)$ is completely determined by $\psi(\alpha_i)$, there are only finitely many choices for ψ . Thus, $\operatorname{Aut}_F(E)$ is finite.

Remark. The converse of above Corollary is false. For example, $\mathbb{R}_{\mathbb{Q}}$ is an infinite extension. But one can show that $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{R}) = \{1\}$ (see A6).

6.3 Automorphism Groups of Splitting Fields

Definition 6.4 (Automorphism Group of Splitting Field).

Let F be a field and $f(x) \in F[x]$. The **automorphism group** of f(x) over F is $\operatorname{Aut}_F(E)$, where E is the splitting field of f(x) over F.

Remark. Recall Theorem 4.4 (a result in splitting field) and A4, we showed that the number of such $\psi \leq [E:F]$. Also, one can show that the equality holds \iff every irreducible factor of f(x) is separable over F. As a direct consequence, we have the following.

Theorem 6.9. Let E_F be the splitting field of a non-zero polynomial $f(x) \in F[x]$. We have

$$|\operatorname{Aut}_F(E)| \leq [E:F]$$

and the equality holds \iff every irreducible factor of f(x) is separable.

Theorem 6.10. If $f(x) \in F[x]$ has n distinct roots in the splitting field E, then $Aut_F(E)$ is isomorphic to a subgroup of S_n . In particular, $|Aut_F(E)| \mid n!$.

Proof. Let $X = \alpha_1, \dots, \alpha_n$ be distinct roots of f(x) in E. By Lemma 6.6, if $\psi \in \operatorname{Aut}_F(E)$, then $\psi(X) = X$. Let $\psi|_X$ be the restriction of ψ in X and S_X be the permutation group of X. The map

$$\operatorname{Aut}_F(E) \to S_X \cong S_n \quad \text{by} \quad \psi \mapsto \psi|_{Y}$$

is a group homomorphism. Moreover, by Lemma 6.7, this map is injective. Thus, $\operatorname{Aut}_F(E)$ is isomorphic to a subgroup of S_n .

Example. Let $f(x) = x^3 - 2 \in \mathbb{Q}[x]$ and E/\mathbb{Q} be the splitting field of f(x). We have seen that $E = \mathbb{Q}(\sqrt[3]{2}, \zeta_3)$ and $[E : \mathbb{Q}] = 6$. Since $\operatorname{ch}(\mathbb{Q}) = 0$ and f(x) is irreducible, so f(x) is separable. By Theorem 6.9, $|\operatorname{Aut}_{\mathbb{Q}}(E)| = [E : \mathbb{Q}] = 6$. Also, since f(x) has 3 distinct roots, by Theorem 6.10, $\operatorname{Aut}_{\mathbb{Q}}(E)$ is a subgroup of S_3 by isomorphism. Since $|S_3| = 6 = |\operatorname{Aut}_{\mathbb{Q}}(E)|$, we have $\operatorname{Aut}_{\mathbb{Q}}(E) \cong S_3$.

Example. Let F be a field with $\operatorname{ch}(F) = p$ and $F^p \neq F$. Let $f(x) = x^p - a$ with $a \in F \setminus F^p$. Let E/F be the splitting field of f(x). We have seen in Chapter 5 that f(x) is irreducible in F[x] and $f(x) = (x - \beta)^p$ for some $\beta \in E \setminus F$. This, $E = F(\beta)$. Since β can only map to β under any $\psi \in \operatorname{Aut}_F(E)$, we have $\operatorname{Aut}_F(E) = \{1\}$. However note that

$$|Aut_{E}(E)| = 1$$
 and $[E : F] = deg(f(x)) = p$.

We have $|\operatorname{Aut}_F(E)| \neq [E:F]$. This is because f(x) is not separable.

Definition 6.5 (Fixed Field).

Let E_F be a field extension and $\psi \in \operatorname{Aut}_F(E)$. Define

$$E^{\psi} = \{ \alpha \in E : \psi(\alpha) = \alpha \}$$

which is a subfield of E containing F. We call E^{ψ} the **fixed field** of ψ . If $G \subseteq \operatorname{Aut}_F(E)$, the **fixed field** of G is defined by

$$E^G = \bigcap_{\psi \in G} E^{\psi} = \{ \alpha \in E : \psi(\alpha) = \alpha \text{ for all } \psi \in G \}.$$

Theorem 6.11. Let $f(x) \in F[x]$ be a polynomial in which every irreducible factor is separable. Let E/F be the splitting field of f(x). If $G = \operatorname{Aut}_F(E)$, then $E^G = F$.

Proof. Let $L = E^G$. Since $F \subseteq L$, we have $\operatorname{Aut}_L(E) \subseteq \operatorname{Aut}_F(E)$. On the other hand, if $\psi \in \operatorname{Aut}_F(E)$, by definition of L, for all $a \in L$, we have $\psi(a) = a$. This implies that $\psi \in \operatorname{Aut}_L(E)$. Thus, $\operatorname{Aut}_F(E) \subseteq \operatorname{Aut}_L(E)$. It follows that $G = \operatorname{Aut}_F(E) = \operatorname{Aut}_L(E)$. Note chat since f(x) is separable over F and splits over F, f(x) is also separable over F and has F as its splitting field over F. Thus, by Theorem 6.9,

$$|\operatorname{Aut}_F(E)| = [E : F]$$
 and $|\operatorname{Aut}_L(E)| = [E : L]$

It follows that [E:F]=[E:L] and since [E:F]=[E:L][L:F], we have [L:F]=1. Thus, L=F, i.e. $E^G=F$.

7 Separable Extensions and Normal Extensions

7.1 Separable Extensions

Definition 7.1 (Separable, Separable Extension).

Let E_F be an algebraic field extension. For $\alpha \in E$, let $p(x) \in F[x]$ be the minimal polynomial of α over F. We say that α is **separable** over F if p(x) is separable. We say that E_F is a **separable extension** if α is separable for all $\alpha \in E$.

Example. If ch(F) = 0, by Corollary 5.6, every irreducible polynomial $p(x) \in F[x]$ is separable. Thus, if ch(F) = 0, any algebraic extension E/F is separable.

Theorem 7.1. Let E_F be the splitting field of $f(x) \in F[x]$. If every irreducible factor of f(x) is separable, then E_F is separable.

Proof. Let $\alpha \in E$ and $p(x) \in F[x]$ be the minimal polynomial of α . Let $\{\alpha = \alpha_1, \dots, \alpha_n\}$ be all of the distinct roots of p(x) in E. Define $\tilde{p}(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n)$.

Claim. $\tilde{p}(x) \in F[x]$.

Proof of Claim. Let $G = \operatorname{Aut}_F(E)$ and $\psi \in G$. Since ψ is an automorphism, $\psi(\alpha_i) \neq \psi(\alpha_j)$ if $i \neq j$ and by Lemma 6.6, ψ permutes $\alpha_1, \dots, \alpha_n$. Thus by extending $\psi : E \to E$ uniquely to $\psi : E[x] \to E[x]$ by $x \mapsto x$, we have

$$\psi(\tilde{p}(x)) = (x - \psi(\alpha_1)) \cdots (x - \psi(\alpha_n)) = (x - \alpha_1) \cdots (x - \alpha_n) = \tilde{p}(x).$$

It follows that $\tilde{p}(x) \in E^{\psi}[x]$ and since ψ is arbitrary, we get $\tilde{p}(x) \in E^{G}[x]$. Since E/F is the splitting field of f(x) whose irreducible factors are separable, by Theorem 6.11, $E^{G} = F$. Thus, $\tilde{p}(x) \in F[x]$.

Thus, we have $\tilde{p}(x) \in F[x]$ with $\tilde{p}(\alpha) = 0$. Since p(x) is the minimal polynomial of α , we have $p(x) \mid \tilde{p}(x)$. Also, since $\alpha_1, \dots, \alpha_n$ are all distinct roots of p(x), we have $\tilde{p}(x) \mid p(x)$. Also, since p(x) and $\tilde{p}(x)$ are both monic, we have $p(x) = \tilde{p}(x)$. It follows that p(x) is separable.

Corollary 7.2. Let E_{f} be a finite extension and $E = F(\alpha_1, ..., \alpha_n)$. If each α_i is separable over F for all $1 \le i \le n$, then E_{f} is separable.

Proof. Let $p_i(x) \in F[x]$ be the minimal polynomial of α_i for all $1 \le i \le n$. Let $f(x) = p_1(x) \cdots p_n(x)$ with each $p_i(x)$ being separable. Let L be the splitting field of f(x) over F. By Theorem 7.1, L/F is separable. Since $E = F(\alpha_1, \dots, \alpha_n)$ is a subfield of L, we have E is also separable.

Lecture 20, 2025/02/28

Corollary 7.3. Let E_{f} be an algebraic extension and L be the set of all $\alpha \in E$ which is separable over F, then L is a field.

Proof. Let $\alpha, \beta \in L$. Then, $\alpha \pm \beta$, $\alpha\beta$, α/β ($\beta \neq 0$) $\in F(\alpha, \beta)$. By Corollary 7.2, $F(\alpha, \beta)$ is separable and hence $F(\alpha, \beta) \subseteq L$. Thus, L is a field.

We have seen in Theorem 3.5 that a finite extension is a composition of simple extensions.

Definition 7.2 (Primitive Element).

If $E = F(\gamma)$ is a simple extension, we say that γ is a **primitive element** of E_{f} .

Theorem 7.4 (Primitive Element Theorem).

If E_f is a finite separable extension, then $E = F(\gamma)$ for some $\gamma \in E$. In particular, if ch(F) = 0, then any finite extension E_f is a simple extension.

Proof. We have seen in Corollary 5.9 that a finite extension of a finite field is always simple. Thus, WLOG, suppose that F is an infinite field. Since $E = F(\alpha_1, \dots, \alpha_n)$ for some $\alpha_1, \dots, \alpha_n \in E$, it suffices to consider when $E = F(\alpha, \beta)$ and the general case can be done by induction.

Let $E = F(\alpha, \beta)$ with $\alpha, \beta \notin F$.

Claim. There exists $\lambda \in F$ s.t. $\gamma = \alpha + \lambda \beta$ and $\beta \in F(\gamma)$.

Note. If the claim holds, then $\alpha = \gamma - \lambda \beta \in F(\gamma)$ and we have $F(\alpha, \beta) \subseteq F(\gamma)$. Also, since $\gamma = \alpha + \lambda \beta$, $F(\gamma) \subseteq F(\alpha, \beta)$. Thus, $E = F(\alpha, \beta) = F(\gamma)$.

Proof of Claim. Let a(x) and b(x) be the minimal polynomials of α and β over F, respectively. Since $\beta \notin F$, $\deg(b) > 1$. Thus, there exists a root $\tilde{\beta}$ of b(x) such that $\tilde{\beta} \neq \beta$. Choose $\lambda \in F$ s.t.

$$\lambda \neq \frac{\tilde{\alpha} - \alpha}{\beta - \tilde{\beta}}$$

for all roots $\tilde{\alpha}$ of a(x) and all roots $\tilde{\beta}$ of b(x) with $\tilde{\beta} \neq \beta$ in some splitting field of a(x)b(x) over F. The choice of λ is possible since there are infinitely many elements in F but only finitely many choices of $\tilde{\alpha}$ and $\tilde{\beta}$. Let $\gamma = \alpha + \lambda \beta$. Consider

$$h(x) = a(\gamma - \lambda x) \in F(\gamma)[x].$$

Then, we have $h(\beta) = a(\gamma - \lambda \beta) = a(\alpha) = 0$. However, for any $\tilde{\beta} \neq \beta$, since

$$\gamma - \lambda \tilde{\beta} = \alpha + \lambda (\beta - \tilde{\beta}) \neq \tilde{\alpha}$$
 by the choice of λ ,

we have $h(\tilde{\beta}) = a(\gamma - \lambda \tilde{\beta}) \neq 0$. Thus, h(x) and b(x) have β as a common root, but no other common roots in any extension of $F(\gamma)$. Let $b_1(x)$ be the minimal polynomial of β over $F(\gamma)$. Thus, $b_1(x)$ divides both h(x) and b(x). Since E_{f} is separable and $b(x) \in F[x]$ is irreducible, b(x) has distinct roots, so does $b_1(x)$. The roots of $b_1(x)$ are also common to h(x) and b(x). Since h(x) and b(x) have only β as a common root, $b_1(x) = x - \beta$. Since $b_1(x) \in F(\gamma)[x]$, we obtain $\beta \in F(\gamma)$.

7.2 Normal Extensions

Definition 7.3 (Normal Extension).

Let E_F be an algebraic extension. We say E_F is a **normal extension** if for any irreducible polynomial $p(x) \in F[x]$, either p(x) has no roots in E or p(x) has all roots in E.

Note. In other words, if p(x) has a root in E, then p(x) splits over E.

Theorem 7.5. A finite extension E_{F} is normal \iff it is the splitting field of some $f(x) \in F[x]$.

Proof.

 (\Rightarrow) : Suppose that E_{f} is normal, write $E = F(\alpha_{1}, \ldots, \alpha_{n})$. Let $p_{i}(x) \in F[x]$ be the minimal polynomial of α_{i} $(1 \leq i \leq n)$. Define $f(x) = p_{1}(x) \cdots p_{n}(x)$. Since E_{f} is normal, f(x) splits over E. Let $\alpha_{i} = \alpha_{i,1}, \alpha_{i,2}, \ldots, \alpha_{i,r_{i}}$ $(1 \leq i \leq n)$ be the roots of $p_{i}(x)$ in E. Then,

$$E = F(\alpha_1, \dots, \alpha_n) = F(\alpha_{1,1}, \dots, \alpha_{1,r_1}, \dots, \alpha_{n,1}, \dots, \alpha_{n,r_n})$$

which is the splitting field of f(x) over F.

Lecture 21, 2025/03/03

(\Leftarrow): Let E_F be the splitting field of $f(x) \in F[x]$. Let $p(x) \in F[x]$ be irreducible and have root $\alpha_1 \in E$. Let E_F be the splitting field of p(x) over E. Write

$$p(x) = c(x - \alpha_1) \cdots (x - \alpha_n)$$

where $0 \neq c \in F$ and $\alpha = \alpha_1 \in E$ and $\alpha_2, \dots, \alpha_n \in K = E(\alpha_1, \dots, \alpha_n)$. Since we know that

$$F(\alpha) \cong F[x]/(p(x)) \cong F(\alpha_2),$$

we have the F-isomorphism $\theta: F(\alpha) \to F(\alpha_2)$ with $\theta(\alpha) = \alpha_2$. Thus, we can view K as the splitting field of p(x)f(x) over $F(\alpha)$ and $F(\alpha_2)$, respectively. Thus by Theorem 4.4, there exists an isomorphism $\psi: K \to K$ which extends θ . In particular, $\psi \in \operatorname{Aut}_F(K)$. Since $\psi \in \operatorname{Aut}_F(K)$, we know that ψ permutes the roots of f(x). Since E is generated over E by the roots of E0, by Lemma 6.6, we have E1 if follows that for E2. It follows that for E3 is normal. E4.

Example.

Claim. Every quadratic extension is normal.

Proof. Let E/F be a field extension with [E:F]=2. For $\alpha\in E\setminus F$, we have $E=F(\alpha)$. Let

 $p(x) = x^2 + ax + b$ be the minimal polynomial of α over F. If β is another root of p(x), then

$$p(x) = (x - \alpha)(x - \beta) = x^2 - (\alpha + \beta)x + \alpha\beta.$$

Since $\alpha \in E$, $\alpha\beta \in F$, we have $\beta = -\alpha - a \in E$. Hence, E_F is normal.

Example. Consider $\mathbb{Q}(\sqrt[4]{2})_{\mathbb{Q}}$. We say this extension is not normal since the irreducible polynomial $p(x) = x^4 - 2$ has a root in $\mathbb{Q}(\sqrt[4]{2})$ but does not split over $\mathbb{Q}(\sqrt[4]{2})$ (since $\pm \sqrt[4]{2}$ are also roots). In fact, $\mathbb{Q}(\sqrt[4]{2})_{\mathbb{Q}}$ is made up of the quadratic extension $\mathbb{Q}(\sqrt[4]{2})_{\mathbb{Q}}$ and $\mathbb{Q}(\sqrt[4]{2})_{\mathbb{Q}}$, which are both normal. Thus, if \mathbb{Z}_K , \mathbb{Z}_K are normal, then \mathbb{Z}_K is not necessarily normal.

Proposition 7.6. If E/F is a normal extension and K is an intermediate field, then E/K is normal.

Proof. Let $p(x) \in K[x]$ be irreducible and has a root $\alpha \in E$. Let $f(x) \in F[x] \subseteq K[x]$ be the minimal polynomial of α over F. Then, $p(x) \mid f(x)$. Since E_F is normal, f(x) splits over E, so does p(x). Thus, E_F is a normal extension.

Remark. In Proposition 7.6, ${}^K\!\!/_F$ is not always a normal extension. For example, let $F=\mathbb{Q}$, $K=\mathbb{Q}(\sqrt{2})$, and $E=\mathbb{Q}(\sqrt[4]{2},i)$. Then, ${}^E\!\!/_F$ is the splitting field of x^4-2 and hence normal. Also, ${}^E\!\!/_K$ is normal but ${}^K\!\!/_F$ is not normal.

Proposition 7.7. Let E/F be a finite normal extension and $\alpha, \beta \in E$. Then, the following are equivalent:

- (1) There exists $\psi \in \operatorname{Aut}_F(E)$ such that $\psi(\alpha) = \beta$.
- (2) The minimal polynomial of α and β over F are the same.

In this case, we say α and β are **conjugate** over F.

Proof.

(1) \Longrightarrow (2): Let p(x) be the minimal polynomial of α over F and $\psi \in \operatorname{Aut}_F(E)$ with $\psi(\alpha) = \beta$. Then,

 β is also a root of p(x). Since p(x) is monic and irreducible, it follows that p(x) must be the minimal polynomial of β over F. Hence, α and β have the same minimal polynomial over F.

(2) \implies (1): Suppose that the minimal polynomial of α and β are the same, say p(x). Then,

$$F(\alpha) \cong F[x]/\langle p(x)\rangle \cong F(\beta).$$

We have the F-isomorphism $\theta: F(\alpha) \to F(\beta)$ with $\theta(\alpha) = \beta$. Since E/F is a finite normal extension, E must be the splitting field of some polynomial $f(x) \in F[x]$. Then, we can also view E as the splitting field of f(x) over $F(\alpha)$ and $F(\beta)$, respectively. By Theorem 4.4, there exists an isomorphism $\psi: E \to E$ which extends θ . It follows that $\psi \in \operatorname{Aut}_F(E)$ and $\psi(\alpha) = \beta$.

Lecture 22, 2025/03/05

Example. The complex numbers $\sqrt[3]{2}$, $\sqrt[3]{2}$, $\sqrt[3]{2}$ are all conjugates over $\mathbb Q$ since they are roots of the irreducible polynomial $x^3 - 2 \in \mathbb Q[x]$.

Definition 7.4 (Normal Closure).

A **normal closure** of a finite extension E_F is a finite normal extension N_F satisfying:

- (1) E is a subfield of N.
- (2) For any intermediate field L of $^{N}/_{E}$, if L is normal over F, then L = N. In other words, N is the smallest field containing E such that N is normal.

Example. The normal closure of
$$\mathbb{Q}(\sqrt[3]{2})_{\mathbb{Q}}$$
 is $\mathbb{Q}(\sqrt[3]{2},\zeta_3)_{\mathbb{Q}}$.

Theorem 7.8. Every finite extension E_F has a normal closure N_F that is unique up to E-isomorphism.

Proof. Since E_F is finite, we can write $E = F(\alpha_1, ..., \alpha_n)$ and let $p_i(x)$ be the minimal polynomial of α_i over F for all $1 \le i \le n$. Let $f(x) = p_1(x)p_2(x) \cdots p_n(x)$ and N_F be the splitting field of f(x) over E. Since $\alpha_1, ..., \alpha_n$ are roots of f(x), N is also a splitting field of f(x) over F. By Theorem 7.5, N_F is normal. Let $E \subseteq N$ be a subfield containing E. Then, E contains all the E0. If E1 is normal over E2, then each E3 polynomial over E4. Therefore, E5 or show uniqueness, let E5 be the splitting

field of f(x) over E as above. Let $N_{1/F}$ be another normal closure of E_{F} . Since N_{1} is normal over F and contains all α_{i} , f(x) splits over N. Thus, N_{1} must contain a splitting field \tilde{N} of f(x) over F. By Corollary 4.5, N and \tilde{N} are E-isomorphic. Since \tilde{N} is a splitting field of f(x) over F, by Theorem 7.5, \tilde{N} is normal over F. Thus by definition of normal closure, $\tilde{N} = N_{1}$. It follows that N and N_{1} are E-isomorphic.

8 Galois Correspondence

8.1 Galois Extensions

We recall for a finite extension E_{F} , we have:

- Theorem 7.5: E_{f} is the splitting field of some $f(x) \in F[x] \iff E_{f}$ is normal.
- Theorem 7.1: E_F is the splitting field of some $f(x) \in F[x]$ whose irreducible factors are separable $\implies E_F$ is separable.

Definition 8.1 (Galois Extension, Galois Group).

An algebraic extension E_F is **Galois** if it is normal and separable. If E_F is Galois, then the **Galois group** of E_F , denoted $Gal_F(E)$, is defined to be the automorphism group, $Aut_F(E)$.

Note. That is, $Gal_F(E) = Aut_F(E)$.

Remark. We note that

- (1) By Theorem 7.1 and 7.5, a finite Galois extension is equivalent to the splitting field of some $f(x) \in F[x]$ whose irreducible factors are separable.
- (2) If $E_{/F}$ is a finite Galois extension, by Theorem 6.9, we have

$$|Gal_E(E)| = [E : F].$$

(3) If E_{f} is the splitting field of some separable $f(x) \in F[x]$ with $\deg(f) = n$, then by Theorem 6.10, $\operatorname{Gal}_{F}(E)$ is isomorphic to a subgroup of S_{n} .

Example. Let *E* be the splitting field of $f(x) = (x^2 - 2)(x^2 - 3)(x^2 - 5) \in \mathbb{Q}[x]$. Then, $E = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ and $[E : \mathbb{Q}] = 8$ (exercise). For $\psi \in \operatorname{Gal}_{\mathbb{Q}}(E)$, we have

$$\psi(\sqrt{2}) = \pm \sqrt{2}, \quad \psi(\sqrt{3}) = \pm \sqrt{3}, \quad \psi(\sqrt{5}) = \pm \sqrt{5}.$$

Since $|Gal_{\mathbb{Q}}(E)| = [E : \mathbb{Q}] = 8$, $Gal_{\mathbb{Q}}(E) \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

Theorem 8.1 (E. Artin).

Let E be a field and G a finite subgroup of $\operatorname{Aut}(E)$. Let $E^G = \{\alpha \in E : \psi(\alpha) = \alpha \text{ for all } \psi \in G\}$. Then, E_{EG} is a finite Galois extension and $\operatorname{Gal}_{EG}(E) = G$. In particular, $[E : E^G] = |G|$.

Proof. Let n = |G| and $F = E^G$. For $\alpha \in E$, consider the *G*-orbit of α :

$$\{\psi(\alpha): \psi \in G\} = \{\alpha = \alpha_1, \dots, \alpha_m\}$$

where each α_i is distinct. Note that $m \leq n$. Consider $f(x) = (x - \alpha_1) \cdots (x - \alpha_m)$. For any $\psi \in G$, ψ permutes the roots $\alpha_1, \dots, \alpha_m$. Since the coefficients of f(x) are symmetric with respect to each α_i , they are fixed by all $\psi \in G$. Thus, $f(x) \in E^G[x] = F[x]$. To show that f(x) is the minimal polynomial of α over F, consider a factor $g(x) \in F[x]$ of f(x). WLOG, we can write

$$g(x) = (x - \alpha_1) \cdots (x - \alpha_\ell)$$

with $\ell \le m$. If $\ell < m$, since α_i are in the *G*-orbit of α , $\exists \psi \in G$ s.t.

$$\{\alpha_1,\ldots,\alpha_\ell\}\neq\{\psi(\alpha_1),\ldots,\psi(\alpha_\ell)\}.$$

Then, we have

$$\psi(g(x)) = (x - \psi(\alpha_1)) \cdots (x - \psi(\alpha_\ell)) \neq g(x).$$

Thus if $\ell < m$, then $g(x) \notin F[x]$. It follows that f(x) is the minimal polynomial of α over F. Since f(x) is separable and splits over E, we know that E/F is a Galois extension.

Claim. $[E:F] \leq n$.

Proof. Suppose for a contradiction that [E:F] > n = |G|. Then, we can choose $\beta_1, \dots, \beta_n, \beta_{n+1} \in E$

which are linearly independent over F. For all $G = \{\psi_1, \dots, \psi_n\}$, consider the system

$$\psi_{1}(\beta_{1})v_{1} + \dots + \psi_{1}(\beta_{n+1})v_{n+1} = 0$$

$$\vdots$$

$$\psi_{n}(\beta_{1})v_{1} + \dots + \psi_{n}(\beta_{n+1})v_{n+1} = 0$$

of n linear equations in (n+1) variables v_1,\ldots,v_{n+1} . Thus, it has a non-zero solution in E (more columns than rows, so nullity is at least 1). Let $(\gamma_1,\ldots,\gamma_{n+1})$ be a non-zero solution which has the minimal number of non-zero coordinates, say r. Clearly r>1 (since we need at least two non-zero coordinates to get a non-zero solution, it there is only one non-zero term, the sum will not be 0). WLOG, we can assume $\gamma_1,\ldots,\gamma_r\neq 0$ and $\gamma_{r+1},\ldots,\gamma_n,\gamma_{n+1}=0$. Thus,

$$\psi_j(\beta_1)\gamma_1 + \dots + \psi_j(\beta_r)\gamma_r = 0. \tag{1}$$

for all $j \in \{1, ..., n\}$. By dividing the solution by γ_r , we can assume $\gamma_r = 1$. Also, since $(\beta_1, ..., \beta_r)$ are independent over F and

$$\beta_1 \gamma_1 + \dots + \beta_r \gamma_r = 0,$$

by taking $\psi_i = 1$ for some i. There exists at least one $\gamma_r \notin F$. Since $r \ge 2$, WLOG, we assume $\gamma_1 \notin F$ (if all $\gamma_i \in F$, then $\beta_1 \gamma_1 + \cdots + \beta_r \gamma_r = 0 \implies \gamma_i = 0 \ \forall i$). Choose $\phi \in G$ s.t. $\phi(\gamma_1) \ne \gamma_1$. Applying ψ in (1) gives

$$(\phi \circ \psi_i)(\beta_1)\phi(\gamma_1) + \dots + (\phi \circ \psi_i)(\beta_r)\phi(\gamma_r) = 0$$
 (2)

for all $j \in \{1, ..., n\}$. Since $\phi \in G$, therefore by the property of group, we have $\{\phi \circ \psi_1, ..., \phi \circ \psi_n\} = \{\psi_1, ..., \psi_n\} = G$. Therefore, we can rewrite (2) as

$$\psi_i(\beta_1)\phi(\gamma_1) + \dots + \psi_i(\beta_r)\phi(\gamma_r) = 0 \tag{3}$$

for all $j \in \{1, ..., n\}$. Then, by subtracting (3) form (1), we have

$$\psi_j(\beta_1)(\gamma_1 - \phi(\gamma_1)) + \dots + \psi_j(\beta_r)(\gamma_r - \phi(\gamma_r)) = 0.$$

Since $\gamma_r = 1$, we have $\gamma_r - \phi(\gamma_r) = 0$. Also, since $\gamma_1 \notin F$, we have $\gamma_1 - \phi(\gamma_1) \neq 0$. Therefore,

$$(\gamma_1 - \phi(\gamma_1), \dots, \gamma_{r-1} - \phi(\gamma_{r-1}), \gamma_r - \phi(\gamma_r) = 0, 0, \dots, 0)$$

is a non-zero solution to the system with fewer number of non-zero coordinates, which contradicts the choices of $(\gamma_1, \dots, \gamma_{n+1})$ with minimal number of non-zero coordinates. Thus, $[E:F] \leq n$.

Using the claim, we can see that $n = |G| \le |\operatorname{Gal}_F(E)| = [E:F] \le n$. By "Squeeze Theorem", we have [E:F] = n and $\operatorname{Gal}_F(E) = G$.

Remark. Let E be a field and G a finite subgroup of Aut(E). For $\alpha \in E$, let $\{\alpha = \alpha_1, \dots, \alpha_m\}$ be the G-orbit of α , i.e. the set of conjugates of α . Then, we can see from the proof of Theorem 8.1 that the minimal polynomial of α over E^G is $(x - \alpha_1) \cdots (x - \alpha_m) \in E^G[x]$.

Definition 8.2 (Elementary Symmetric Functions).

Let t_1, \dots, t_n be variables. We define the **elementary symmetric functions** in t_1, \dots, t_n as s_1, \dots, s_n where

$$s_m = \sum_{1 \le j_1 < \dots < j_m \le n} t_{j_1} \cdots t_{j_m}.$$

For example,

$$\begin{split} s_1 &:= t_1 + \dots + t_n, \\ s_2 &:= \sum_{1 \leq i \leq j \leq n} t_i t_j, \\ &\vdots \\ s_n &:= t_1 \cdots t_n. \end{split}$$

Then,

$$f(x) = (x - t_1) \cdots (x - t_n) = x^n - s_1 x^{n-1} + s_2 x^{n-2} - \dots + (-1)^n s_n.$$

Example. Let $E = F(t_1, \dots, t_n)$ be the function field in n variables t_1, \dots, t_n over a field F. Consider the symmetric group S_n as a subgroup of $\operatorname{Aut}(E)$ which permutes the variables t_1, \dots, t_n and fixes the field F. We are interested in finding $E^{S_n} = E^G$ where $G = S_n$. From the proof of Theorem 8.1, the coefficients of the minimal polynomial of t_1 lie in E^G . Thus, by considering the minimal polynomial of t_1 , we can get some hints about E^G . The G-orbit of t_1 is $\{t_1, \dots, t_n\}$. By the remark above, we see that

$$f(x) = (x - t_1) \cdots (x - t_n)$$

is the minimal polynomial of t_1 over E^G . Let s_1, \ldots, s_n be the elementary symmetric functions of t_1, \ldots, t_n . So we have

$$f(x) = x^n - s_1 x^{n-1} + s_2 x^{n-2} - \dots + (-1)^n s_n \in L[x]$$

where $L = F(s_1, \dots, s_n)$.

Lecture 24, 2025/03/10

Claim. $L = E^G$.

Proof. E is the splitting field of f(x) over L. Since deg(f) = n, by Theorem 4.6, we have

$$[E:L] \leq n!$$

On the other hand, by Theorem 8.1, we have

$$[E:E^G] = |G| = |S_n| = n!.$$

Since $L \subseteq E^G$,

$$n! = [E : E^G] \le [E : L] \le n! \implies E^G = L.$$

8.2 The Fundamental Theorem

Theorem 8.2 (The Fundamental Theorem of Galois Theory).

Let E_F be a finite Galois extension and $G = \operatorname{Gal}_F(E)$. There is an order reversing bijection between the intermediate fields of E_F and the subgroups of G. More precisely, let $\operatorname{Int}(E_F)$ denote the set of intermediate fields of E_F and $\operatorname{Sub}(G)$ denote the set of subgroups of G. Then, the maps

$$\operatorname{Int}\left(\stackrel{E}{/_F}\right) \to \operatorname{Sub}(G) \quad L \mapsto L^* := \operatorname{Gal}_L(E)$$

and

$$\operatorname{Sub}(G) \to \operatorname{Int}\left(E/F\right) \quad H \mapsto H^* := E^H$$

are inverses of each other and reverse the inclusion relation. In particular, for $L_1, L_2 \in \operatorname{Int}\left(\stackrel{E}{/_F}\right)$ with $L_2 \subseteq L_1$, and $H_1, H_2 \in \operatorname{Sub}(G)$ with $H_2 \subseteq H_1$, we have

$$[L_1:L_2] = [L_2^*:L_1^*]$$
 and $[H_1:H_2] = [H_2^*:H_1^*].$

Note. We can use the following diagram to illustrate above.

Proof. Let $L \in \operatorname{Int}(E/F)$ and $H \in \operatorname{Sub}(G)$. We recall Theorem 6.11, which states that if $G_1 = \operatorname{Gal}_{F_1}(E_1)$, then $E^{G_1} = F_1$. Thus, we have

$$(L^*)^* = (Gal_L(E))^* = E^{Gal_L(E)} = L.$$

Also, Theorem 8.1 states that if $G_1 \subseteq \operatorname{Aut}(E_1)$, then $\operatorname{Gal}_{E^{G_1}}(E) = G_1$. Thus, we have

$$(H^*)^* = (E^H)^* = \text{Gal}_{E^H}(E) = H.$$

Thus, we have

$$H \mapsto H^* \mapsto H^{**} = H$$
 and $L \mapsto L^* \mapsto L^{**} = L$.

In particular, the maps $L \mapsto L^*$ and $H \mapsto H^*$ are reverses of each other. Let $L_1, L_2 \in \operatorname{Int} \left(\underbrace{E_F} \right)$. Since E_F is the splitting field of some polynomial $f(x) \in F[x]$ whose irreducible factors are separable, E_L and E_L are also Galois extensions since E is the splitting field of f(x) over L_1 and L_2 , respectively. We have

$$L_2 \subseteq L_1 \implies \operatorname{Gal}_{L_1}(E) \subseteq \operatorname{Gal}_{L_2}(E) \implies L_1^* \subseteq L_2^*.$$

Also,

$$[L_1:L_2] = \frac{[E:L_2]}{[E:L_1]} = \frac{|\mathrm{Gal}_{L_2}(E)|}{|\mathrm{Gal}_{L_1}(E)|} = \frac{|L_2^*|}{|L_1^*|} = [L_2^*:L_1^*].$$

For $H_1, H_2 \in \text{Sub}(G)$,

$$H_2 \subseteq H_1 \implies E^{H_1} \subseteq E^{H_2} \implies H_1^* \subseteq H_2^*$$
.

Also,

$$[H_1:H_2] = \frac{|H_1|}{|H_2|} = \frac{|\operatorname{Gal}_{E^{H_1}}(E)|}{|\operatorname{Gal}_{E^{H_2}}(E)|} = \frac{[E:E^{H_1}]}{[E:E^{H_2}]} = [E^{H_2}:E^{H_1}] = [H_2^*:H_1^*].$$

Remark. Consider $E_{\mathbb{Q}}$ with $E = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. We recall that $|\mathrm{Gal}_{\mathbb{Q}}(E)| = 4$, note that $\mathrm{Gal}_{\mathbb{Q}}(E) \cong \mathbb{Z}_{\mathbb{Q}} \times \mathbb{Z}_{\mathbb{Q}}$. Since there are only finitely many subgroups of $\mathrm{Gal}_{\mathbb{Q}}(E)$, there are only finitely many intermediate fields between \mathbb{Q} and E.

We recall that if E_{F} is a finite Galois extension and $L \in \operatorname{Int}(E_{F})$, then E_{F} is not always Galois. For example, if we take $E = \mathbb{Q}(\sqrt[3]{2}, \zeta_3)$, $L = \mathbb{Q}(\sqrt[3]{2})$, and $F = \mathbb{Q}$, then E_{F} is not Galois.

Remark. We have the following diagram.

$$E \longleftarrow \{1\} = \operatorname{Gal}_{E}(E)$$

$$\downarrow \qquad \qquad \downarrow$$

$$L \longleftarrow L^{*} = \operatorname{Gal}_{L}(E)$$

$$\downarrow \qquad \qquad \downarrow$$

$$F \longleftarrow G = \operatorname{Gal}_{F}(E)$$

From the above picture, if L_f is Galois, the corresponding group is G_{L^*} , which is well-defined only if $L^* \triangleleft G$.

Proposition 8.3. Let E/F be a finite Galois extension with $G = \operatorname{Gal}_F(E)$. Let L be an intermediate field. For $\psi \in G$, we have

$$\operatorname{Gal}_{\psi(L)}(E) = \psi \operatorname{Gal}_L(E) \psi^{-1}.$$

Proof of Proposition 8.3. For $\alpha \in \psi(L)$, then $\psi^{-1}(\alpha) \in L$. If $\phi \in \operatorname{Gal}_L(E)$, we have

$$\phi(\psi^{-1}(\alpha)) = \psi^{-1}(\alpha) \implies \psi \phi \psi^{-1}(\alpha) = \alpha.$$

Thus, $\psi \phi \psi^{-1} \in \operatorname{Gal}_{\psi(L)}(E)$. Thus,

$$\psi \operatorname{Gal}_{L}(E)\psi^{-1} \subseteq \operatorname{Gal}_{\psi(L)}(E).$$

Since we have

$$\left|\psi\operatorname{Gal}_{L}(E)\psi^{-1}\right|=\left|\operatorname{Gal}_{L}(E)\right|=\left[E:L\right]=\left[E:\psi(L)\right]=\left|\operatorname{Gal}_{\psi(L)}(E)\right|,$$

it follows that $\operatorname{Gal}_{\psi(L)}(E) = \psi \operatorname{Gal}_{L}(E)\psi^{-1}$.

Theorem 8.4. Let E_{F} , L, L^* be defined as in the Fundamental Theorem. Then, L_{F} is a Galois extension $\iff L^*$ is a normal subgroup of $G = \operatorname{Gal}_F(E)$. In this case, we have

$$\operatorname{Gal}_F(L) \cong {}^{G}/_{L^*} = {}^{\operatorname{Gal}_F(E)}/_{\operatorname{Gal}_L(E)}.$$

Proof. To get the "if and only if", we have

$$\begin{array}{l} L_{/F} \text{ is normal } \iff \psi(L) = L \text{ for all } \psi \in \operatorname{Gal}_F(E) \\ \\ \iff \operatorname{Gal}_{\psi(L)}(E) = \operatorname{Gal}_L(E) \text{ for all } \psi \in \operatorname{Gal}_F(E) \\ \\ \iff \psi \operatorname{Gal}_L(E) \psi^{-1} = \operatorname{Gal}_L(E) \text{ for all } \psi \in \operatorname{Gal}_F(E) \\ \\ \iff L^* = \operatorname{Gal}_L(E) \text{ is a normal subgroup of } G. \end{array}$$

In this case, if L_F is a Galois extension, the restriction map

$$G = \operatorname{Gal}_F(E) \to \operatorname{Gal}_F(L) \quad \psi \mapsto \psi|_L$$

is well-defined. Moreover, it is surjective and its kernel is $\operatorname{Gal}_L(E)$, as elements in the kernel fix everything in L. Thus, we get $\operatorname{Gal}_F(L) \cong \operatorname{Gal}_F(E)$ / $\operatorname{Gal}_L(E)$.

Example. For a prime p, let $q=p^n$. We have seen that the Frobenius automorphism of \mathbb{F}_q is defined by $\sigma_p: \mathbb{F}_q \to \mathbb{F}_q$ by $\alpha \mapsto \alpha^p$. For $\alpha \in \mathbb{F}_q$, we have

$$\sigma_p^n(\alpha) = \alpha^{p^n} = \alpha.$$

For $1 \le m < n$, we have $\sigma_P^m(\alpha) = \alpha^{p^m}$. Since the polynomial $x^{p^m} - x$ has at most p^m roots in \mathbb{F}_q , $\exists \alpha \in E$ such that $\alpha^{p^m} - \alpha \ne 0$. Thus, $\sigma_p^m \ne 1$. Hence, σ_o has order n. Let $G = \operatorname{Gal}_{\mathbb{F}_p}(\mathbb{F}_q)$, it follows that

$$n = |\langle \sigma_p \rangle| = |G| = [\mathbb{F}_q : \mathbb{F}_p] = n.$$

Thus, $G = \langle \sigma_p \rangle$, a cyclic group of order n. Consider the subgroup H of G of order d. Then, $d \mid n$ and $[G : H] = \frac{n}{d}$. By Theorem 8.2, we have

$$\frac{n}{d} = [G:H] = [H^*:G^*] = [\mathbb{F}_q^H:\mathbb{F}_q^G] = [\mathbb{F}_q^H:\mathbb{F}_p].$$

Thus, $H^* = \mathbb{F}_q^H = \mathbb{F}_{p^{n/d}}.$ The picture is as follows:

$$\begin{array}{c|c} \mathbb{F}_q & \longleftarrow & \{1\} \\ & & & \\ & & & \\ H^* = \mathbb{F}_{p^{n/d}} & \longleftarrow & H \\ & & & \\ & & & \\ \mathbb{F}_p & \longleftarrow & G \end{array}$$

Example. Let E be the splitting field of $x^5 - 7$ over \mathbb{Q} in \mathbb{C} . Then $E = \mathbb{Q}(\alpha, \zeta_5)$ with $\alpha = \sqrt[5]{7}$ and $\zeta_5 = e^{2\pi i/5}$. The minimal polynomials of α and ζ_5 over \mathbb{Q} are $x^5 - 7$ and $x^4 + x^3 + x^2 + x + 1$, respectively. We can show that $[E : \mathbb{Q}] = 20$ and hence $G = \operatorname{Gal}_{\mathbb{Q}}(E)$ is a subgroup of S_5 of order 20 (Piazza exercise).

For $\psi \in G$, its action is determined by $\psi(\alpha)$ and $\psi(\zeta_5)$. We write $\psi = \psi_{k,s}$ if

$$\psi(\alpha) = \alpha \zeta_5^k, k \in \mathbb{Z}_5$$
 and $\psi(\zeta_5) = \zeta_5^s, s \in \mathbb{Z}_5^*$.

Define $\sigma = \psi_{1,1}$ where

$$\psi_{1,1}: \alpha \to \alpha \zeta_5$$
 and $\zeta_5 \to \zeta_5$

and $\tau = \psi_{0,2}$ where

$$\psi_{0,2}: \alpha \to \alpha$$
 and $\zeta_5 \to \zeta_5^2$.

We can show that $\tau \sigma = \sigma^2 \tau$ (exercise) and we have

$$G = \langle \sigma, \tau : \sigma^5 = 1 = \tau^4, \tau \sigma = \sigma^2 \tau \rangle.$$

Since |G|=20, by Lagrange's Theorem, the possible subgroups of G are of order 1,2,4,5,10,20. We have $|G|=20=2^2\cdot 5$. Let n_p be the number of Sylow-p subgroups of G. By the Third Sylow's Theorem, we have $n_5 \mid 4$ and $n_5 \equiv 1 \pmod{5}$. Hence, $n_5 = 1$. It follows that G has a unique Sylow 5-subgroup, say P_3 , which is of order 5. Since $\langle \sigma \rangle$ is a subgroup of order 5, we have $P_5 = \langle \sigma \rangle \cong \mathbb{Z}_5$. Note that by the Second Sylow Theorem, we have $P_5 \triangleleft G$. Also, $P_2 \mid 5$ and $P_3 \equiv 1 \pmod{2}$. Hence, $P_4 \equiv 1$ or 5. If $P_4 \equiv 1$, then the only Sylow 2-subgroup is $P_4 \equiv \langle \tau \rangle \cong \mathbb{Z}_4$ and $P_4 \triangleleft G$. Since $|P_4 \cap P_5| = 1$, $P_4 \cong P_4 \times P_5 \cong \mathbb{Z}_4 \times \mathbb{Z}_5 \cong \mathbb{Z}_{20}$, which is abelian, and this contradicts that $P_4 \equiv 1$ is not abelian. Thus, there are 5 Sylow-2 groups. We have seen that $P_4 \equiv 1$ is of order 4. Thus, the cyclic group $P_4 \equiv 1$ is a Sylow 2-subgroup and all other Sylow 2-subgroups are conjugates to it. Note that since all elements of $P_4 \equiv 1$ are of the form $P_4 \equiv 1$, we have

$$\sigma^a \tau^b(\tau) \tau^{-b} \sigma^{-a} = \sigma^a \tau \sigma^{-a}$$

where $a \in \{0, 1, 2, 3, 4\}$. Now, using the relation $\tau \sigma = \sigma^2 \tau$, we have

$$\langle \sigma^4 \tau \sigma^{-4} \rangle = \langle \sigma^{-1} \tau \sigma \rangle = \langle \sigma \tau \rangle = \langle \psi_{1,2} \rangle.$$

Using the same argument, we see that the Sylow 2-subgroups are

$$\langle \psi_{0,2} \rangle$$
, $\langle \psi_{1,2} \rangle$, $\langle \psi_{2,2} \rangle$, $\langle \psi_{3,2} \rangle$, $\langle \psi_{4,2} \rangle$.

Moreover, since a subgroup of G of order 2 is contained in a Sylow 2-subgroup of G, then

$$\langle \psi_{02}^2 \rangle$$
, $\langle \psi_{12}^2 \rangle$, $\langle \psi_{22}^2 \rangle$, $\langle \psi_{32}^2 \rangle$, $\langle \psi_{42}^2 \rangle$

are all subgroups of order 2. For a subgroup H of G of order 10, since P_5 is the only sungroup of G of order 5, H contains $P_5 = \langle \sigma \rangle$. Thus, $\sigma^a \tau^b \in H \iff \tau^b \in H$. The only elements of the form τ^b which is of order 2 is τ^2 . Thus, $H = \langle \sigma, \tau^2 \rangle$. Combining all the arguments, we have the following diagram of subgroups of G.

For an intermediate field L of $E_{\mathbb{Q}}$, we consider $L^* = \operatorname{Gal}_L(E)$. For example, for $\mathbb{Q}(\zeta_5)$, note that $\psi_{1,1}(\zeta_5) = \zeta_5$. Thus, $\mathbb{Q}(\zeta_5)^* \supseteq \langle \psi_{1,1} \rangle$. Since

$$|\langle \psi_{1,1} \rangle| = [\langle \psi_{1,1} \rangle : \{1\}] = 5$$
 and $5 = [E : \mathbb{Q}(\zeta_5)] = [\mathbb{Q}(\zeta_5)^* : \{1\}],$

we have $\mathbb{Q}(\zeta_5)^* = \langle \psi_{1,1} \rangle$. Also, $\psi_{1,2}(\alpha \zeta_5^r) = \alpha \zeta_5 \zeta_5^{2r} = \alpha \zeta_5^{r+1}$. If $\psi_{1,2}$ fixes $\alpha \zeta_5^r$, then $r \equiv 2r+1$ (mod 5), i.e. $r \equiv 4 \pmod{5}$. Thus, $\mathbb{Q}(\alpha \zeta_5^2)^* \supseteq \langle \psi_{1,2} \rangle$. Since

$$|\langle \psi_{1,2} \rangle| = [\langle \psi_{1,2} \rangle : \{1\}] = 4 = [E : \mathbb{Q}(\alpha \zeta_5^2)],$$

we have $\mathbb{Q}(\alpha\zeta_5^2)^* = \langle \psi_{1,2} \rangle$. Using the same argument, we can get $\langle \psi_{r,2} \rangle^*$ for $r \in \{0,1,2,3,4\}$. Consider $\beta = \zeta_5 + \zeta_5^{-1}$, we have

$$\beta^{2} + \beta - 1 = (\zeta_{5} + \zeta_{5}^{-1})^{2} + (\zeta_{5} + \zeta_{5}^{-1}) - 1$$
$$= \zeta_{5}^{2} + 2 + \zeta_{5}^{-2} + \zeta_{5} + \zeta_{5}^{-1} - 1$$
$$= 1 + \zeta_{5} + \zeta_{5}^{2} + \zeta_{5}^{3} + \zeta_{5}^{4} = 0.$$

The last equality is because the minimal polynomial of ζ_5 is $x^4 + x^3 + x^2 + x + 1$. Since $x^2 + x - 1 = 0$ has no rational roots, we have $[\mathbb{Q}(\alpha, \beta) : \mathbb{Q}(\alpha)] = 2$. Therefore, we have the following corresponding diagram of the intermediate fields of $\mathbb{Z}_{\mathbb{Q}}$.

9 Cyclic Extensions

Lecture 27, 2025/03/17

Definition 9.1 (Abelian, Cyclic, or Solvable Galois Extensions).

A Galois extension E_F is called **abelian**, **cyclic**, or **solvable** if $Gal_F(E)$ has the corresponding property.

Lemma 9.1 (Dedekind's Lemma).

Let K and L be fields and let $\psi_i:L\to K$ $(0\leq i\leq n)$ be the distinct non-zero homomorphisms. If $c_i\in K$ and

$$c_i \psi_1(\alpha) + \dots + c_n \psi_n(\alpha) = 0 \quad \forall \alpha \in L,$$

then, $c_1 = \cdots = c_n = 0$.

Proof. Suppose the statement is false, so there exists $c_1, \dots, c_n \in K$, not all 0 such that

$$c_1\psi_1(\alpha) + \dots + c_n\psi_n(\alpha) = 0 \quad \forall \alpha \in L.$$
 (1)

Let $m \ge 2$ be the minimal positive integer such that

$$c_1\psi_1(\alpha) + \dots + c_m\psi_m(\alpha) = 0 \quad \forall \alpha \in L.$$

Since m is minimal, we have $c_i \neq 0$ for all $1 \leq i \leq m$. Since $\psi_1 \neq \psi_2$, we can choose $\beta \in L$ s.t. $\psi_1(\beta) \neq \psi_2(\beta)$. Moreover, we can assume $\psi_1(\beta) \neq 0$. By (1), we have

$$c_1\psi_1(\alpha\beta) + \dots + c_m\psi_m(\alpha\beta) = 0 \quad \forall \alpha \in L.$$

By dividing the above equation by $\psi_1(\beta)$, we have

$$c_1\psi_1(\alpha) + c_2\psi_2(\alpha) \cdot \frac{\psi_2(\beta)}{\psi_1(\beta)} + \dots + c_m\psi_m(\alpha) \cdot \frac{\psi_m(\beta)}{\psi_1(\beta)} = 0 \quad \forall \alpha \in L.$$
 (2)

Consider (1) - (2), we obtain

$$c_2\bigg(1-\frac{\psi_2(\beta)}{\psi_1(\beta)}\bigg)\psi_2(\alpha)+\cdots+c_m\bigg(1-\frac{\psi_m(\beta)}{\psi_1(\beta)}\bigg)\psi_m(\alpha)=0\quad\forall\,\alpha\in L.$$

As $c_2\left(1-\frac{\psi_2(\beta)}{\psi_1(\beta)}\right)\neq 0$, we have a contradiction with the minimal choice of m (we have m-1 now). Thus, such c_1,\ldots,c_m do not exist and the lemma holds.

Theorem 9.2. Let F be a field and $n \in \mathbb{N}$. Suppose that ch(F) = 0 or p with $p \nmid n$. Assume also that $x^n - 1$ splits over F.

- (1) If the Galois extension E_F is cyclic of degree n, then $E = F(\alpha)$ for some $\alpha \in E$ with $\alpha^n \in F$. In particular, $x^n \alpha^n$ is the minimal polynomial of α over F.
- (2) If $E = F(\alpha)$ with $\alpha^n \in F$, then E_F is a cyclic extension of degree d with $d \mid n$ and $\alpha^d \in F$. In particular, $x^d \alpha^d$ is the minimal polynomial of α over F.

Proof. Let $\zeta_n \in F$ be the primitive n-th root of unity, that is, $\zeta_n^n = 1$ and $\zeta_n^d \neq 1$ for all $1 \leq d < n$. Note that since ch(F) = 0 or p with $p \nmid n$, the polynomial $x^n - 1$ is separable. Thus, $\{1, \zeta_n, \zeta_n^2, \dots, \zeta_n^{n-1}\}$ are distinct.

(1) Let $G = \operatorname{Gal}_F(E) = \langle \psi \rangle \cong C_n$, the cyclic group of order n. Apply Lemma 9.1 to K = L = E and ψ_i , all elements of G, and $c_1 = 1$, $c_2 = \zeta_n^{-1}$, ..., $c_n = \zeta_n^{-(n-1)}$. Since $c_i \neq 0$ for all $1 \leq i \leq n$, there exists $u \in E$ such that

$$\alpha = u + \zeta_n^{-1} \psi(u) + \dots + \zeta_n^{-(n-1)} \psi^{n-1}(u) \neq 0.$$

We have $1(\alpha) = \alpha$ and

$$\psi(\alpha) = \psi(u) + \zeta_n^{-1} \psi^2(u) + \dots + \zeta_n^{-(n-1)} \psi^n(u) = \alpha \zeta_n$$

$$\psi^2(\alpha) = \alpha \zeta_n^2$$

$$\vdots$$

$$\psi^{n-1}(\alpha) = \alpha \zeta_n^{n-1}.$$

Thus, $\alpha, \alpha\zeta_n, \dots, \alpha\zeta_n^{n-1}$ are conjugates to each other, i.e. they have the same minimal polynomial over F, say p(x). Since $\alpha, \dots, \alpha\zeta_n^{n-1}$ are all distinct, it follows that $\deg(p(x)) = n$. Also, since $p(x) \in F[x]$,

$$p(0) = \pm \alpha(\alpha \zeta_n) \cdots (\alpha \zeta_n^{n-1}) = \alpha^n \zeta^{\frac{n(n-1)}{2}} \in F.$$

Since $\zeta_n \in F$, we have $\alpha^n \in F$. Since α is a root of $x^n - \alpha^n \in F[x]$ and $\deg(p(x)) = n$, we have $p(x) = x^n - \alpha^n$. Moreover, since $F(\alpha) \subseteq E$ and $[F(\alpha) : F] = n = [E : F]$, we obtain $E = F(\alpha)$.

(2) Suppose $\alpha^n \in F$ and let $p(x) \in F[x]$ be the minimal polynomial of α over F. Since α is a root of $x^n - \alpha^n \in F[x]$, so $p(x) \mid (x^n - \alpha^n)$. Thus, the roots of p(x) are of the form $\alpha \zeta_n^i$ for some i and we have

$$p(0) = \pm \alpha^d \cdot \zeta_n^k$$

for some $k \in \mathbb{Z}$ and d = number of roots of $p(x) = \deg(p)$. Since $p(0) \in F$ and $\zeta_n \in F$, we have $\alpha^d \in F$. Since $x^d - \alpha^d \in F[x]$ has α as a root, we know that $p(x) \mid (x^d - \alpha^d)$. Since $\deg(p) = d$ and p(x) is monic, we have $p(x) = x^d - \alpha^d$.

Claim. $d \mid n$.

Proof of Claim. Suppose not, say n = qd + r with $q \in \mathbb{Z}$ and 0 < r < d. Since $\alpha^n, \alpha^d \in F$, we have

$$\alpha^r = \alpha^{n-qd} = (\alpha^n)(\alpha^d)^{-q} \in F.$$

Since $\alpha^r \in F$, we know that α is not a root of $x^r - \alpha^r \in F[x]$. It follows that $p(x) \mid (x^r - \alpha^r)$, a contradiction since $\deg(p) = d > r$. Thus, $d \mid n$.

Write n = md. Since $p(x) = x^d - \alpha^d$, then the roots of p(x) are

$$\alpha, \alpha \zeta_n^m, \dots, \alpha \zeta_n^{(d-1)m}$$
.

Since $\zeta_n \in F$, $E = F(\alpha)$ is the splitting field of the separable polynomial p(x) over F, thus E is Galois. If $\psi \in G = \operatorname{Gal}_F(E)$ satisfies $\psi(\alpha) = \alpha \zeta_n^m$, then $G = \langle \psi \rangle \cong C_d$. Thus, E/F is a cyclic extension of degree d.

Theorem 9.3. Let *F* be a field with ch(F) = p, where *p* is a prime.

- (1) If $x^p x a \in F[x]$ is irreducible, then its splitting field E_F is a cyclic extension of degree p.
- (2) If E_F is a cyclic extension of degree p, then E_F is the splitting field of some irreducible polynomial $x^p x a \in F[x]$.

Proof.

(1) Let $f(x) = x^p - x - a$ and α a root of f(x). Then since ch(F) = p, we have

$$f(\alpha + 1) = (\alpha + 1)^p - (\alpha + 1) - a = \alpha^p + 1 - \alpha - 1 - a = \alpha^p - \alpha - a = 0.$$

Thus, $\alpha+1$ is also a root of f(x). Similarly, $\alpha, \alpha+1, \ldots, \alpha+(p-1)$ are all roots of f(x). It follows that $E=F(\alpha, \alpha+1, \ldots, \alpha+(p-1))=F(\alpha)$ and $[E:F]=\deg(f)=p$. Since \mathbb{Z}_p is the only cyclic group of order p, it follows that $\operatorname{Gal}_F(E)\cong\mathbb{Z}_p$. Indeed, $\operatorname{Gal}_F(E)=\langle\psi\rangle$ whether

$$\psi: E \to E$$
 by $\psi|_F = 1|_F$ and $\psi(\alpha) = \alpha + 1$.

(2) Let $G = \operatorname{Gal}_F(E) = \langle \psi \rangle \cong \mathbb{Z}_p$. Apply Lemma 9.1 to K = L = E and ψ_i , all elements of G, and $c_1 = \cdots = c_p = 1$. Since $c_i \neq 0$ $(1 \leq i \leq p)$, $\exists v \in E$ s.t.

$$\beta := v + \psi(v) + \dots + \psi^{p-1}(v) \neq 0.$$

Note that $\psi^i(\beta) \ \forall \psi^i \in G$ where $1 \le i \le p-1$, we have $\beta \in F$. Set $u = \frac{v}{\beta}$. Since $\beta \in F$, we have

$$\begin{split} u + \psi(u) + \dots + \psi^{p-1}(u) &= \frac{\upsilon}{\beta} + \psi\left(\frac{\upsilon}{\beta}\right) + \dots + \psi^{p-1}\left(\frac{\upsilon}{\beta}\right) \\ &= \frac{\upsilon + \psi(\upsilon) + \dots + \psi^{p-1}(\upsilon)}{\beta} = \frac{\beta}{\beta} = 1. \end{split}$$

Now, we define $\alpha = 0 \cdot u - 1 \cdot \psi(u) - 2\psi^2(u) - \dots - (p-1)\psi^{p-1}(u)$. Then, we have

$$\psi(\alpha) = -\psi^{2}(u) - 2\psi^{3}(u) - \dots - (p-1)\psi^{p}(u).$$

Thus,

$$\psi(\alpha) - \alpha = \psi(u) + \psi^2(u) + \dots + \psi^p(u) = 1.$$

It follows that $\psi(\alpha) = \alpha + 1$. Since ch(F) = p, we have

$$\psi(\alpha^p) = \psi(\alpha)^p = (\alpha + 1)^p = \alpha^p + 1.$$

It follows that

$$\psi(\alpha^p - \alpha) = \psi(\alpha^p) - \psi(\alpha) = (\alpha^p + 1) - (\alpha + 1) = \alpha^p - \alpha.$$

Thus, $\alpha^p - \alpha$ is fixed by ψ . Since $G = \langle \psi \rangle$, we have $a = \alpha^p - \alpha \in F$ and α is a root of $x^p - x - a \in F[x]$. Since [E:F] = p, we have $[F(\alpha):F]$ is a factor of p. Note that $\alpha \notin F$, as $\psi(\alpha) = \alpha + 1$, so α is not fixed by ψ . And since p is a prime, it follows that $[F(\alpha):F] = p$ and $E = F(\alpha)$. Since $[F(\alpha):F] = p$, we know that $x^p - x - a$ is the minimal polynomial of α over F.

10 Solvability by Radicals

Lecture 29, 2025/03/21 _

10.1 Radical Extensions

Definition 10.1 (Radical Extension).

A finite extension E_F is **radical** if there exists a tower of fields

$$F = F_0 \subseteq F_1 \subseteq \cdots \subseteq F_m = E$$

such that $F_i = F_{i-1}(\alpha_i)$ where $\alpha_i \in F_i$ and $\alpha_i^{d_i} \in F_{i-1}$ for some $d_i \in \mathbb{N}$ for all i = 1, ..., m.

Lemma 10.1. If ${}^{E}/_{F}$ is a finite separable radical extension, then its normal closure ${}^{N}/_{F}$ is also radical.

Proof. Since E_F is a finite separable extension, by Theorem 7.4, $E = F(\beta)$ for some $\beta \in E$. Since E_F is a radical extension, there is a tower $F = F_0 \subseteq F_1 \subseteq \cdots \subseteq F_m = E$ such that $F_i = F_{i-1}(\alpha_i)$ where $\alpha_i \in F_i$ and $\alpha_i^{d_i} \in F_{i-1}$ for some $d_i \in \mathbb{N}$. Let $p(x) \in F[x]$ be the minimal polynomial of β and let $\beta = \beta_1, \beta_2, \ldots, \beta_n$ be roots of p(x). By definition of normal closure and Theorem 7.5,

$$N = E(\beta_2, \dots, \beta_n) = F(\beta_1, \beta_2, \dots, \beta_n).$$

Also, there is an F-isomorphism

$$\sigma_i : F(\beta) \to F(\beta_i)$$
 by $\beta \mapsto \beta_i \quad \forall 2 \le j \le n$.

Since N can be viewed as the splitting field of p(x) over $F(\beta)$ and $F(\beta_j)$, respectively, by Theorem 4.4, there exists $\psi_j: N \to N$ which extends σ_j for $2 \le j \le n$. Thus, $\psi_j \in \operatorname{Gal}_F(N)$ and $\psi_j(\beta) = \beta_j$. Then, we have the following tower of fields

$$\begin{split} F &= F_0 \subseteq F_1 \subseteq \cdots \subseteq F_m = E = F(\beta_1) \\ &= F(\beta_1) \psi_2(F_0) \subseteq F(\beta_1) \psi_2(F_1) \subseteq \cdots \subseteq F(\beta_1) \psi_2(F_m) \\ &= F(\beta_1, \beta_2) \subseteq F(\beta_1, \beta_2) \psi_3(F_0) \subseteq F(\beta_1, \beta_2) \psi_3(F_1) \subseteq \cdots \subseteq F(\beta_1, \beta_2, \dots, \beta_n) = N. \end{split}$$

Note that since $F_i = F_{i-1}(\alpha_i)$ and $\alpha_i^{d_i} \in F_{i-1}$, we have

$$\begin{split} F(\beta_1, \dots, \beta_{j-1}) \psi_j(F_i) &= F(\beta_1, \dots, \beta_{j-1}) \psi_j(F_{i-1}(\alpha_i)) \\ &= (F(\beta_1, \dots, \beta_{j-1}) \psi_j(F_{i-1})) (\psi_j(\alpha_i)) \end{split}$$

and $(\psi_j(\alpha_i))^{d_i} = \psi_j(\alpha_i^{d_i}) \in \psi_j(F_{i-1})$. Thus, N_f is a radical extension.

Remark. By Lemma 10.1, to consider a finite separable radical extension, we could instead consider its normal closure, which is Galois.

Definition 10.2 (Solvable by Radicals).

Let F be a field and $f(x) \in F[x]$. We say f(x) is **solvable by radicals** if there exists a radical extension E/F such that f(x) splits over E.

Remark. It is possible that $f(x) \in F[x]$ is solvable by radicals, but its splitting field is not a radical extension over F (see A10).

Remark. We recall that an expression involving only $+,-,\times,\div,\sqrt[n]{\cdot}$ is a radical. Let F be a field and $f(x) \in F[x]$ with separable irreducible factors. If f(x) is solvable by radicals, by the definition of radical extensions, f(x) has a radical root. Conversely, if f(x) has a radical root, it is in some radical extension. By Lemma 10.1, the normal closure $\sqrt[n]{F}$ of $\sqrt[E]{F}$ is radical. Since f(x) splits over N, f(x) is solvable by radicals.

10.2 Radical Solutions

We have seen in A8 that the following result holds.

Lemma 10.2. Let E_F be a field extension, and let K, L be intermediate fields of E_F . Suppose that K_F is a finite Galois extension. Then, KL is a finite Galois extension of L and $Gal_L(KL)$ is isomorphic to a subgroup of $Gal_F(K)$.

Proof. Since K_f is a finite Galois extension, K is the splitting field of some $f(x) \in F[x]$ over F whose irreducible factors are separable. Since $F \subseteq L$, we know that KL is the splitting field of f(x) over L,

thus it is also Galois. Consider the map

$$\Gamma: \operatorname{Gal}_L(KL) \to \operatorname{Gal}_F(K)$$
 by $\sigma \mapsto \sigma|_K$.

Note that $\psi \in \operatorname{Gal}_L(KL)$ fixed L, thus F. Also, since K_{f} is a Galois extension, $\psi(K) = K$. Thus, Γ is well-defined. Moreover, if $\psi|_K = 1|_K$, thus, ψ is trivial on K and L. Thus, ψ is trivial on KL. This shows that Γ is an injection. Thus, by the First Isomorphism Theorem, $\operatorname{Gal}_L(KL) \cong \operatorname{im} \Gamma$, a subgroup of $\operatorname{Gal}_F(K)$.

Definition 10.3 (Galois Group of a Polynomial).

Let E_{f} be the splitting field of a polynomial $f(x) \in F[x]$ whose irreducible factors are separable. The **Galois group** of f(x) is defined to be $Gal_{F}(E)$, denoted by Gal(f).

Theorem 10.3. Let F be a field with ch(F) = 0 and $f(x) \in F[x] \setminus \{0\}$. Then, f(x) is solvable by radicals \iff its Galois group Gal(f) is solvable.

Proof. To be finished...

Lecture 30, 2025/03/24

Proposition 10.4. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of prime degree p. If f(x) contains precisely two non-real roots in \mathbb{C} , then $Gal(f) \cong S_p$.

Proof. One can show that the symmetric group S_n can be generated by cycles (12) and (12 ... n). Thus, to show $\operatorname{Gal}(f) \cong S_p$, it suffices to find a p-cycle and a 2-cycle in $\operatorname{Gal}(f)$. Let α be a root of f(x). Since f(x) is irreducible of degree p, we have $[\mathbb{Q}(\alpha):\mathbb{Q}]=\deg(f)=p$. Thus, $p\mid |\operatorname{Gal}(f)|$. By Cauchy's Theorem, there exists an element of $\operatorname{Gal}(f)$ which is of order p, i.e. a p-cycle. Also, the complex conjugage map $\sigma(a+bi)=a-bi$ will interchange two non-real roots of f(x) and fix all real roots. Thus, it is of order 2, i.e. a 2-cycle. By changing notation, if necessary, we have (12), $(12 \dots p) \in \operatorname{Gal}(f)$. It follows that $\operatorname{Gal}(f) \cong S_p$.

Example. Consider $f(x) = x^5 + 2x^3 - 24x - 2 \in \mathbb{Q}[x]$, which is irreducible by Eisenstein's Criterion with p = 2. Since

$$f(-1) = 19 \quad f(1) = -23$$

$$\lim_{x \to \infty} f(x) = \infty \quad \lim_{x \to -\infty} f(x) = -\infty,$$

there are at least 3 real roots of f(x). Let $\alpha_1, \alpha_2, \dots, \alpha_5$ be roots of f(x), i.e. $f(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_5)$. By considering the coefficients of x^4 and x^3 terms of f(x), we have

$$\sum_{i=1}^{5} \alpha_i = 0 \quad \text{and} \quad \sum_{i < j} \alpha_i \alpha_j = 2.$$

From the first sum, we have

$$\left(\sum_{i=1}^{5} \alpha_i\right)^2 = \sum_{i=1}^{5} \alpha_i^2 + 2\sum_{i < j} \alpha_i \alpha_j = 0.$$

It follows that $\sum_{i=1}^{5} \alpha_i^2 = -4$. Thus, not all roots of f(x) are real. It follows that f(x) has three real roots and two non-real roots. By Proposition 10.4, $Gal(f) \cong S_5$. Since S_5 is not solvable, by Theorem 10.3, f(x) is not solvable by radicals.

Note. Review this example for Test 2.

From the above example, we see a polynomial of degree 5 is not always solvable by radicals. Since $S_5 \subseteq S_n$ for all $n \ge 5$, we also have the following result.

Theorem 10.5 (The Abel-Ruffini Theorem).

A general polynomial f(x) with $deg(f) \ge 5$ is not solvable by radicals.

Example. The polynomial $x^7 - 2x^4 - 7x^3 + 14$ is solvable since $x^7 - 2x^4 - 7x^3 + 14 = (x^3 - 2)(x^4 - 7)$.

Cutoff for Test 2!

Lecture 31, 2025/03/26 _

Indeed, we can show that "almost all" polynomial f(x) of degree n satisfy $Gal(f) \cong S_n$. More precisely, let

$$E_n(N) = \#\{f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0 \in \mathbb{Z}[x] : |a_i| \le N, \, \text{Gal}(f) \subsetneq S_n\}$$

and let

$$T_n(N) = \#\{f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0 \in \mathbb{Z}[x] : |a_i| \le N\}.$$

Then by the large sieve, Gallagher proved that

$$\lim_{N\to\infty}\frac{E_n(N)}{T_n(N)}=0.$$

Thus, we conclude that for "almost all" (i.e. desity 100%) $f(x) \in \mathbb{Z}[x]$ with $\deg(f) = n$, we have $\operatorname{Gal}(f) \cong S_n$. This is the Probablistic Galois Theory.

Probablistic Galois Theory: the study of the "density" of f(x) with $Gal(f) \cong S_n, A_n$, or etc.

For each $a_{n-1}, a_{n-2}, \dots, a_1, a_0$ with $|a_i| \le N$, there are (2N+1) choices for each one of them. Thus, $T_n(N) = (2N+1)^n$. Note that if $a_0 = 0$, $f(x) = x(x^{n-1} + a_{n-1}x^{n-2} + \dots + a_1)$, then

$$Gal(f) = Gal(x^{n-1} + a_{n-1}x^{n-2} + \dots + a_1) \subseteq S_{n-1} \subsetneq S_n.$$

Thus, $E_n(N) \ge (2N+1)^{n-1}$.

Conjecture (van der Waerden): $E_n(N)$ is of size N^{n-1} .

The best result is due to Gallagher that $E_n(N) \leq CN^{n-\frac{1}{2}}(\log N)$.

11 Cyclotomic Extensions

For a prime p, we have seen in Chapter 2 that the p-th cyclotomic polynomial

$$\Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p - 1} + x^{p - 2} + \dots + x + 1$$

is irreducible in $\mathbb{Q}[x]$. However, for a general $n \in \mathbb{N}$ with $n \ge 2$, $x^{n-1} + x^{n-2} + \dots + x + 1$ is not always irreducible. For example, since $x^4 - 1 = (x^2 - 1)(x^2 + 1) = (x^2 + 1)(x - 1)(x + 1)$, we have

$$\frac{x^4 - 1}{x - 1} = (x^2 + 1)(x + 1)$$

which is not irreducible in $\mathbb{Q}[x]$.

Thus, to generalize the definition of cyclotomic polynomial to general positive integer n, we note that

$$\Phi_p(x) = (x - \zeta_1)(x - \zeta_p^2) \cdots (x - \zeta_p^{p-1})$$

where $\zeta_p = e^{\frac{2\pi i}{p}}$. For each k = 1, 2, ..., p-1, we have $\gcd(k, p) = 1$. So we can rewrite

$$\Phi_p(x) = \prod_{\substack{1 \le k \le p-1 \\ \gcd(k,p)=1}} (x - \zeta_p^k).$$

Let $\zeta_n = e^{\frac{2\pi i}{n}}$, which is of order n in the multiplicative group $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$. We recall that for a general $k \in \mathbb{Z}$, the order of ζ_n^k is $\frac{n}{\gcd(n,k)}$, which is a divisor of n. In particular, the order of ζ_n^k is the same as the order of $\zeta_n^k \iff \gcd(n,k) = 1$.

Definition 11.1 (*n*-th Cyclotomic Polynomial).

The *n***-th cyclotomic polynomial** is defined by

$$\Phi_n(x) = \prod_{\substack{1 \le k \le n \\ \gcd(k,n)=1}} (x - \zeta_n^k) \quad \text{where } \zeta_n = e^{\frac{2\pi i}{n}}.$$

Definition 11.2 (Primitive *n*-th Root of Unity, *n*-th Cyclotomic Extension).

For $n \in \mathbb{N}$ and $k \in \mathbb{Z}$ with gcd(k, n) = 1, we call ζ_n^k a **primitive** n-th root of unity in \mathbb{C} .

Also, the field $\mathbb{Q}(\zeta_n^k) = \mathbb{Q}(\zeta_n)$ is called the *n*-th cyclotomic extension over \mathbb{Q} , which is the splitting field of $\Phi_n(x)$.

Since the order of ζ_n^k is $\frac{n}{\gcd(n,k)}$, which is a positive divisor of n, we have the following result.

Proposition 11.1.

 $x^n - 1 = \prod_{d \mid n} \Phi_d(x)$, where d runs through all positive divisors of n.

Example.
$$x^6 - 1 = \Phi_1(x)\Phi_2(x)\Phi_3(x)\Phi_6(x) = (x-1)(x+1)(x^2+x+1)(x^2-x+1)(x^2-x+1)$$
.

Lecture 32, 2025/03/28

Let $\psi \in G = \operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}(\zeta_n))$. Since ζ_n is of order n, $\psi(\zeta_n)$ is also of order n. It follows that $\psi(\zeta_n) = \zeta^k$ for some k with $\gcd(k, n) = 1$. Thus, ψ permutes the set

$$\{\zeta_n^k : 1 \le k \le n, \gcd(k, n) = 1\}.$$

Since the above set contains all roots of $\Phi_n(x)$, it follows that $\Phi_n(x) \in \mathbb{Q}(\zeta_n)^G[x] = \mathbb{Q}[x]$. Thus

Theorem 11.2 (Gauss). $\Phi_n(x) \in \mathbb{Z}[x]$ and is irreducible.

Theorem 11.3 (Gauss). We have $\operatorname{Gal}_{\mathbb{Q}}(\zeta_n) \cong \left(\mathbb{Z}/\langle n \rangle\right)^*$, the unit group of $\mathbb{Z}/\langle n \rangle$. In particular, $[\mathbb{Q}(\zeta_n):\mathbb{Q}] = \varphi(n)$, where φ is the Euler totient function.

Proof. We have seen that for $\psi \in \operatorname{Gal}_{\mathbb{Q}}(\zeta_n)$, $\psi(\zeta_n) = \zeta_n^k$ for some k with $\gcd(k,n) = 1$. Define the maps

$$\Gamma: \left(\mathbb{Z}/\langle n \rangle\right)^* \to \operatorname{Gal}_{\mathbb{Q}}(\zeta_n) \quad k + \langle n \rangle \mapsto (\psi_k: \zeta_n \mapsto \zeta_n^k)$$

which is a bijection. Also, for $k_1k_2 + \langle n \rangle \in \left(\mathbb{Z}/\langle n \rangle \right)^*$, we have

$$\psi_{k_1k_2}(\zeta_n) = \zeta_n^{k_1k_2} = (\zeta_n^{k_1})^{k_2} = (\psi_{k_1}(\zeta_n))^{k_2} = (\psi_{k_1} \circ \psi_{k_2})(\zeta_n).$$

Thus, Γ is a group isomorphism and we have $\operatorname{Gal}_{\mathbb{Q}}(\zeta_n) \cong \left(\mathbb{Z}/\langle n \rangle\right)^*$.

Theorem 11.4. A quadratic extension of \mathbb{Q} in \mathbb{C} is contained in some $\mathbb{Q}(\zeta_n)$.

Proof. A quadratic extension $E_{\mathbb{Q}}$ is the splitting field of $ax^2 + bx + c \in \mathbb{Q}[x]$ with $a \neq 0$. Since $ax^2 + bx + c$ has roots $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, we have $E = \mathbb{Q}(\sqrt{b^2 - 4ac})$, where $b^2 - 4ac \in \mathbb{Q}$. Write $b^2 - 4ac = \frac{d}{q}$ for some $d \in \mathbb{Z}$, q > 0, and $\gcd(d, q) = 1$. Since $q^2\left(\frac{d}{q}\right) = dq$, we have $\mathbb{Q}\left(\sqrt{\frac{d}{q}}\right) = \mathbb{Q}(\sqrt{dq})$. Thus, it suffices to consider a quadratic extension of the form $\mathbb{Q}(\sqrt{D})$ where D is a square-free integer. Note that $\mathbb{Q}(\sqrt{1}) = \mathbb{Q}$ and $\mathbb{Q}(\sqrt{-1}) = \mathbb{Q}(\zeta_4)$. Also, for the distinct primes p_1, p_2 , if $\mathbb{Q}(\sqrt{p_1}) = \mathbb{Q}(\zeta_{n_1})$ and $\mathbb{Q}(\sqrt{p_2}) = \mathbb{Q}(\zeta_{n_2})$, then $\sqrt{p_1p_2} \in \mathbb{Q}(\zeta_{n_1}, \zeta_{n_2}) \subseteq \mathbb{Q}(\zeta_{n_1n_2})$ since $\zeta_{n_1} = \zeta_{n_1n_2}^{n_1}$ and $\zeta_{n_2} = \zeta_{n_1n_2}^{n_2}$. It follows that $\mathbb{Q}(\sqrt{p_1p_2}) \subseteq \mathbb{Q}(\zeta_{n_1n_2})$. Thus, to prove this theorem, it suffices to consider the case when D = p. If p = 2, since $(1 + i)^2 = 2i$ and $(1 + i) \in \mathbb{Q}(\zeta_4) = \mathbb{Q}(i)$, we have $\sqrt{2i} = \sqrt{2} \cdot \sqrt{i} \in \mathbb{Q}(\zeta_4)$. Also, $i \in \mathbb{Q}(\zeta_4)$ implies that $\sqrt{i} \in \mathbb{Q}(\zeta_8)$. It follows that

$$-\sqrt{2} = \sqrt{2}\sqrt{i}(\sqrt{i})^3 \in \mathbb{Q}(\zeta_8)$$
 and $\mathbb{Q}(\zeta_2) \subseteq \mathbb{Q}(\zeta_8)$.

Now, let p be an odd prime. The minimal polynomial of ζ_p is

$$\Phi_p(x) = x^{p-1} + x^{p-2} + \dots + x + 1 = \prod_{\substack{1 \le k \le p-1 \\ \gcd(k,p) = 1}} (x - \zeta_p^k).$$

The discriminant of $\Phi_p(x)$ is defined to be

$$D(\Phi_p) = \prod_{\substack{1 \le k \le p-1 \\ \gcd(k,p)=1}} (\zeta_p^i - \zeta_p^j)^2.$$

One can verify that $D(\Phi_p) = (-1)^{\frac{p-1}{2}} p^{p-2}$ (exercise). If $p \equiv 1 \pmod{4}$, we get $\sqrt{p} \in \mathbb{Q}(\zeta_p)$. If $p \equiv 3 \pmod{4}$, we have $\sqrt{-p} \in \mathbb{Q}(\zeta_p)$. Since $\sqrt{p} = \pm i\sqrt{-p}$ and $i \in \mathbb{Q}(\zeta_4)$, we have $\sqrt{p} \in \mathbb{Q}(\zeta_{4p})$. In all cases, we have $\sqrt{p} \in \mathbb{Q}(\zeta_{4p})$ and $\mathbb{Q}(\sqrt{p}) \subseteq \mathbb{Q}(\zeta_{4p})$.

Remark. Note that $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}(\sqrt{D})) \cong 1$ or $\mathbb{Z}_{\langle 2 \rangle}$, which is an abelian group. The above term is a special case of a theorem of Kronecker-Weber, which states that every abelian extension of \mathbb{Q} is contained in a cyclotomic extension.

Lemma 11.5. Let p be a prime and $m \in \mathbb{N}$ with $p \nmid m$. Then for $a \in \mathbb{Z}$, $p \mid \Phi_m(a) \iff p \nmid a$ and $a \pmod{p}$ has order m in \mathbb{F}_p^* .

Lecture 33, 2025/03/31

We recall Euclid's Theorem that there are infinitely many primes. This is equivalent to saying that there are infinitely many primes $p \equiv 1 \pmod{2}$.

Question: How about $p \equiv 1 \pmod{4}$ and $p \equiv 3 \pmod{4}$?

The same proof as the one for Euclid's Theorem can be adapted to prove the $p \equiv 3 \pmod{4}$ case, but not the $p \equiv 1 \pmod{4}$ case.

Question: For any $m \in \mathbb{N}$, let $k \in \mathbb{Z}$ with gcd(k, m) = 1. Are there infinitely many primes of the form $p \equiv k \pmod{m}$?

Another way to formulate Euclid's Theorem is that for f(x) = x (or f(x) = x + 1, x + k), the set of prime divisors of the sequence f(1), f(2), ... is infinite.

Lemma 11.6. If $f(x) \in \mathbb{Z}[x]$ is monic and $\deg(f) \ge 1$, the set of prime divisors of the nonzero integers in the sequence $f_1, f_2, ...$ is infinite.

Theorem 11.7 (Dirichlet's Theorem).

For $m \in \mathbb{N}$, $m \ge 2$, there are infinitely many primes p s.t. $p \equiv 1 \pmod{m}$.

Proof. Consider $\Phi_m(x)$. By Lemma 11.6, there are infinitely many prime divisors p of the nonzero integers in the sequence $\Phi_m(2), \Phi_m(3), \ldots$ If $p \mid \Phi_m(a)$ for some integer $a \geq 2$, by Lemma 11.5, the reduction of $a \mod p$ has order m in \mathbb{F}_p^* . Since \mathbb{F}_p^* has order (p-1), we have $m \mid (p-1)$, i.e. $p \equiv 1 \pmod m$.

Remark. Dirichlet's Theorem indeed gives a much stronger result. Let

$$\pi(x) = \#\{p \le x, p \text{ prime}\} = \frac{x}{\log x} + \text{Error.}$$

Then, Dirichlet's Theorem states that

$$\pi(x, 1, m) = \#\{p \le x, \ p \text{ prime}, \ p \equiv 1 \pmod{m}\}\$$
$$= \frac{1}{\psi(m)} \cdot \frac{x}{\log x} + \text{Error}.$$

Check out PMATH 440, Analytic Number Theory!

Theorem 11.8. Let A be a finite abelian group. Then, there exists a Galois extension E/\mathbb{Q} with $E = \mathbb{Q}(\zeta_n)$ and $Gal_{\mathbb{Q}}(E) \cong A$.

Proof. Since *A* is a finite abelian group, we can write

$$A\cong C_{k_1}\times C_{k_2}\times \cdots \times C_{k_s}$$
 where C_{k_i} is a cyclic group of order k_i .

Choose primes $p_1 < p_2 < \cdots < p_s$ s.t.

$$p_1 \equiv 1 \pmod{k_1}$$
 $p_2 \equiv 1 \pmod{k_2}$
 \vdots
 $p_s \equiv 1 \pmod{k_s}$.

Such primes exist by Theorem 11.7. Let $n = p_1 p_2 \cdots p_s$ and consider $E = \mathbb{Q}(\zeta_n)$. Then,

$$G = \operatorname{Gal}_{\mathbb{Q}}(E) \cong \left(\mathbb{Z}/\langle n \rangle\right)^{*}$$

$$\cong \left(\mathbb{Z}/\langle p_{1} \rangle\right)^{*} \times \left(\mathbb{Z}/\langle p_{2} \rangle\right)^{*} \times \cdots \times \left(\mathbb{Z}/\langle p_{s} \rangle\right)^{*}$$

$$\cong C_{p_{1}-1} \times C_{p_{2}-1} \times \cdots \times C_{p_{s}-1}.$$

Write $p_1 - 1 = k_1 d_1, \dots, p_s - 1 = k_s d_s$. Since $C_{p_1 - 1}$ is cyclic, there exists a subgroup $D_{d_i} \cong C_{d_i}$ of $C_{p_i - 1}$, which is of order d_i . Moreover, $C_{p_i - 1}/D_{d_i} \cong C_{k_i}$. Define

$$H \cong D_{d_1} \times \cdots \times D_{d_s}$$

which is a normal subgroup of G. Also, $G/H \cong C_{k_1} \times \cdots \times C_{k_s} \cong A$. Let $L = H^* = E^H$.

$$E = \mathbb{Q}(\zeta_n) \longleftrightarrow \{1\}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$L = E^H \longleftrightarrow H$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{Q} \longleftrightarrow G$$

Since H is a normal subgroup of G, by Theorem 8.4, L/ \mathbb{Q} is a Galois extension and

$$\operatorname{Gal}_{\mathbb{Q}}(L) \cong {}^{G}\!\!/_{H} \cong A.$$

END OF PMATH 348!