# Computer Networks I Local Area Networks

Amitangshu Pal
Computer Science and Engineering
IIT Kanpur

#### **MAC** addresses

- 32-bit IP address:
  - network-layer address for interface
  - used for layer 3 (network layer) forwarding
  - e.g.: 128.119.40.136
- MAC (or LAN or physical or Ethernet) address:
  - function: used "locally" to get frame from one interface to another physically-connected interface (same subnet, in IP-addressing sense)
  - 48-bit MAC address (for most LANs) burned in NIC ROM, also sometimes software settable
  - e.g.: 1A-2F-BB-76-09-AD

    hexadecimal (base 16) notation
    (each "numeral" represents 4 bits)

#### MAC addresses

#### Each interface on LAN

- Has unique 48-bit MAC address
- Has a locally unique 32-bit IP address



#### **MAC** addresses

- MAC address allocation administered by IEEE
- Manufacturer buys portion of MAC address space (to assure uniqueness)
- Analogy:
  - MAC address: like Social Security Number
  - IP address: like postal address
- MAC flat address: portability
  - Can move interface from one LAN to another
  - IP address not portable: depends on IP subnet to which node is attached

#### **Ethernet**

"Dominant" wired LAN technology:

- First widely used LAN technology
- Simpler, cheap
- Kept up with speed race: 10 Mbps 400 Gbps

# Ethernet: physical topology

- Bus: popular through mid 90s
  - All nodes in same collision domain (can collide with each other)
- Switched: prevails today
  - Active link-layer 2 switch in center
  - Each "spoke" runs a (separate) Ethernet protocol (nodes do not collide with each other)



#### Ethernet frame structure

Sending interface encapsulates IP datagram (or other network layer protocol packet) in <a href="Ethernet frame">Ethernet frame</a>



#### *Preamble:*

- Used to synchronize receiver, sender clock rates
- 7 bytes of 10101010 followed by one byte of 10101011

### Ethernet frame structure (more)



- Addresses: 6 byte source, destination MAC addresses
  - If adapter receives frame with matching destination address, or with broadcast address (e.g., ARP packet), it passes data in frame to network layer protocol
  - Otherwise, adapter discards frame
- Type: indicates higher layer protocol
  - Mostly IP but others possible, e.g., Novell IPX, AppleTalk
  - Used to demultiplex up at receiver
- CRC: Cyclic redundancy check at receiver
  - Error detected: frame is dropped

## Ethernet: unreliable, connectionless

- Connectionless: No handshaking between sending and receiving NICs
- Unreliable: Receiving NIC doesn't send ACKs or NAKs to sending NIC
  - Data in dropped frames recovered only if initial sender uses higher layer rdt (e.g., TCP), otherwise dropped data lost
- Ethernet's MAC protocol: Unslotted CSMA/CD with binary backoff

# 802.3 Ethernet standards: link & physical layers

- Many different Ethernet standards
  - Common MAC protocol and frame format
  - Different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10 Gbps, 40 Gbps
  - different physical layer media: fiber, cable



#### Ethernet switch

- Switch is a link-layer device: takes an active role
  - Store, forward Ethernet frames
  - Examine incoming frame's MAC address, selectively forward frame to one-or-more outgoing links when frame is to be forwarded on segment, uses CSMA/CD to access segment
- Transparent: hosts unaware of presence of switches
- Plug-and-play, self-learning
  - Switches do not need to be configured

# Switch: multiple simultaneous transmissions

- Hosts have dedicated, direct connection to switch
- Switches buffer packets
- Ethernet protocol used on each incoming link, so:
  - No collisions; full duplex
  - Each link is its own collision domain
- Switching: A-to-A' and B-to-B' can transmit simultaneously, without collisions



switch with six interfaces (1,2,3,4,5,6)

# Switch: multiple simultaneous transmissions

- Hosts have dedicated, direct connection to switch
- Switches buffer packets
- Ethernet protocol used on each incoming link, so:
  - No collisions; full duplex
  - Each link is its own collision domain
- Switching: A-to-A' and B-to-B' can transmit simultaneously, without collisions
  - But A-to-A' and C to A' can not happen simultaneously



switch with six interfaces (1,2,3,4,5,6)

## Switch forwarding table

<u>Q:</u> How does switch know A' reachable via interface 4, B' reachable via interface 5?

<u>A:</u> Each switch has a switch table, each entry:

- (MAC address of host, interface to reach host, time stamp)
- Looks like a routing table!

**Q**: How are entries created, maintained in switch table?

Something like a routing protocol?



Switch: self-learning

- Switch *learns* which hosts can be reached through which interfaces
  - When frame received, switch "learns" location of sender: incoming LAN segment
  - Records sender/location pair in switch table



| MAC addr | interface | TTL |
|----------|-----------|-----|
| Α        | 1         | 60  |
|          |           |     |
|          |           |     |

Switch table (initially empty)

# Switch: frame filtering/forwarding

#### When frame received at switch:

- 1. Record incoming link, MAC address of sending host
- 2. Index switch table using MAC destination address
- 3. If entry found for destination then {
  if destination on segment from which frame arrived
   then drop frame
   else forward frame on interface indicated by entry
  }
  else flood /\* forward on all interfaces except arriving interface \*/

Self-learning, forwarding: example

Frame destination, A', location unknown: flood

Destination A location known: selectively send

on just one link



| interface | TTL                 |
|-----------|---------------------|
| 1<br>4    | 60<br>60            |
|           | interface<br>1<br>4 |

switch table (initially empty)

## Interconnecting switches

Self-learning switches can be connected together:



- Q: Sending from A to G how does  $S_1$  know to forward frame destined to G via  $S_4$  and  $S_3$ ?
- <u>A:</u> Self learning! (works exactly the same as in single-switch case!)

# 2 Observations on CSMA/CD

- Transmitter can send/listen concurrently
  - If (Transmitted Sensed = null)? Then success
- The signal is identical at Tx and Rx
  - Non-dispersive



The TRANSMITTER can detect if and when collision occurs

## IEEE 802.11 Wireless LAN

| IEEE 802.11 standard | Year        | Max data rate    | Range | Frequency                       |
|----------------------|-------------|------------------|-------|---------------------------------|
| 802.11b              | 1999        | 11 Mbps          | 30 m  | 2.4 Ghz                         |
| 802.11g              | 2003        | 54 Mbps          | 30m   | 2.4 Ghz                         |
| 802.11n (WiFi 4)     | 2009        | 600              | 70m   | 2.4, 5 Ghz                      |
| 802.11ac (WiFi 5)    | 2013        | 3.47Gpbs         | 70m   | 5 Ghz                           |
| 802.11ax (WiFi 6)    | 2020 (exp.) | 14 Gbps          | 70m   | 2.4, 5 Ghz                      |
| 802.11af             | 2014        | 35 – 560<br>Mbps | 1 Km  | unused TV bands<br>(54-790 MHz) |
| 802.11ah             | 2017        | 347Mbps          | 1 Km  | 900 Mhz                         |

All use CSMA/CA for multiple access

### IEEE 802.11: multiple access

- Avoid collisions: 2<sup>+</sup> nodes transmitting at same time
- 802.11: CSMA sense before transmitting
  - Don't collide with detected ongoing transmission by another node
- 802.11: no collision detection!
  - Difficult to sense collisions: high transmitting signal, weak received signal due to fading
  - Can't sense all collisions in any case: hidden terminal, fading
  - Goal: avoid collisions: CSMA/CollisionAvoidance





## IEEE 802.11 MAC Protocol: CSMA/CA

#### 802.11 sender

1 If sense channel idle for **DIFS** then transmit entire frame (no CD)

#### 2 If sense channel busy then

start random backoff time timer counts down while channel idle transmit when timer expires if no ACK, increase random backoff interval, repeat 2

#### 802.11 receiver

#### If frame received OK

return ACK after **SIFS** (ACK needed due to hidden terminal problem)



## Avoiding collisions (more)

Idea: sender "reserves" channel use for data frames using small reservation packets

- Sender first transmits small request-to-send (RTS) packet to BS using CSMA
  - RTSs may still collide with each other (but they're short)
- BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
  - Sender transmits data frame
  - Other stations defer transmissions

## IEEE 802.11



# IEEE 802.11

