Software Project Management (6 - 20191120)

Mohammed Seyam

Assistant Professor
Information Systems Department
Faculty of Computers & Information
Mansoura University

seyam@mans.edu.eg
http://people.cs.vt.edu/seyam

Estimating

"It is difficult to make predictions, especially about the future" - Attributed to Yogi Berra (... but also to Niels Bohr and others)

Effort, Duration, and Resources

Estimation

- Effort (Work): how much work will the activity need to be completed
- Resources: type and quantity of resources available the activity
- Duration: how long will the activity last for

Effort

- The amount of work an activity requires to be completed. A very good starting point.
- Measured in (work-)days, (work-)weeks, (work-)months
- Often the term man-* is also used (e.g. 3 man-months = 1 person working for 3 months; 3 people working for one month)

Project Manager is a Person who thinks nine women can deliver a baby in One month.

Resources

- The resources needed to carry the work out. Typically a constraints (limited)
- Expressed as manpower, that is, number of people and percentage of availability
- For instance: 1 person full time; 2 people at 50%
- Certain tasks might require material resources (e.g. bricks & pipes) or equipment (e.g. a machine for DNA sequencing)
- Material resources are consumed by the execution of an activity; equipment can be reused
- In software development usually resources = manpower

Duration

- How long the activity will last for
- Measured in hours, days, months, ...
- Often:
 - -1 week = 5 days = 40 hours
 - $-1 \text{ month} = 20 \text{ days} \dots \text{ why?}$
- In some countries:
 - -1 week = 36 hours (7.12 hours/day)
- Calendar time differs from duration: calendar time includes non-working days, holidays, ...

A (simplistic) view

D = E / M

- Fix any two among D, E, and M (= manpower), and you get the third
- Typically effort and man power are the variables you will be working with (and derive duration from it)

 The equation is a simplification... good enough for various cases (do not take it to extremes)

Some Examples

1 week = 40 hours

- Effort: 40 man-hours; Resources: 1 @ 100% →
 D = 40 man-hours / 1 man = 40 hours = 1 week
- Effort: 80 hours; Resources: 2 @ 100% →
 D = 80 man-hours / 2 man = 40 hours = 1 week
- Effort: 80 hours; Resources: 1 @ 50% →
 D = 80 / 50% = 160 hours = 4 weeks
 (a person at 50% will be able to work 20 hours/week; it
 takes 4 weeks to get to the 80 hours needed for the
 activity)

Uncertainty in Planning

Uncertainty in planning

- Planning has a certain degree of uncertainty
- (In software and not only) we are over-optimistic
- "best guess" might also be a problem

Uncertainty in planning

- Three practices (not necessarily good) to account for uncertainty
 - Implicit padding: each activity includes some contingency time
 - Explicit padding: the contingency time is explicitly modeled as an activity
 - React and re-plan: when a delays occurs, you re-plan and redefine a new realistic schedule
- Some suggestions:
 - Always evaluate the cost of delays
 - Choose a strategy and make it clear (with yourself and with your stakeholders, if possible)

Estimation Techniques

Approaches to Estimation

- Expert Judgement is "quick and dirty" and based on experience. It can be applied either top-down or bottomup
- PERT (Program Evaluation and Review Technique)
 takes into account the probabilistic nature of estimations
- Algorithmic Techniques provide estimations by measuring specific qualities of a system and applying algorithms (Function Points, COCOMO, WebObjects)

Expert Judgement

- Efficient and fast. Based on personal (rather than organizational) assets
- Underlying assumption: the project uses a product WBS
- Top-down
 - Start at the top of the WBS and break estimations as you move down
- Bottom-up
 - Start at the bottom of the WBS and sum as you move up

PERT Program Evaluation and Review Technique

PERT

- Program Evaluation and Review Technique
- Developed in the sixties
- It is a methodology to define and control projects
- Variations exists (e.g. PERT/COST developed by NASA/DOD)

A Motivating Example

PERT Formula

- Estimation in PERT is based on the idea that estimates are uncertain
 - Therefore uses duration ranges
 - And the probability of falling to a given range
- For each task, three estimates:
 - Optimistic
 - * (would likely occur 1 time in 20)
 - Most likely
 - * (modal value of the distribution)
 - Pessimistic
 - * (would be exceeded only one time in 20)

Variance and Standard Deviation

- Variance (σ²) and standard deviation (σ) measure how spread a population is from the average
- Standard deviation (σ) is the square root of variance
- Example: normal distribution: a bell shaped probability distribution function

PERT Formula

Task duration is an average of three estimations:

$$t_e = \frac{(a+4m+b)}{6}$$

 t_e = expected time

a = optimistic time estimate (1 in 20)

m = most likely time estimate

b = pessimistic time estimate (1 in 20)

Beta Distributions

Average is given by the formula:

$$t_e = \frac{(a+4m+b)}{6}$$

Variance (σ²) and standard deviation (σ) are given by:

$$o^{-2} = (\frac{b-a}{6})^2$$
 $= (\frac{b-a}{6})^2$

Algorithmic Techniques

Introduction

- Goal: find a way to systematically determine the effort (duration) required for an (arbitrary) task/project
- Ideally:
 - Identify a set of measurable characteristics of a project that determine the project's effort/duration
 - Define a function that, given the characteristics mentioned above, computes the effort/duration

$$f(x_1,\ldots,x_n)=e$$

Problem: how do you find f, x_1 , ..., x_n ?

Solution

 Look at existing projects/datasets; each project is represented by a vector:

$$< a_1, ..., a_n, effort >$$

Find correlations between (some of the) variables in the datasets:

$$f(a_{1,...,}a_{k}) \propto effort$$

 Find appropriate measurement means for the variables at the beginning of a project (so that we can apply the function to a new project)

Discussion

- Advantages:
 - Replicable
 - Objective
- Limitations of the models:
 - Size of the dataset used for defining the model and accuracy of the model
- Limitations of their application:
 - Resources needed to collect the data (time and expertise)
 - Applicability of the model to the system at hand
 - Accuracy of the data collected to estimate for a new system

28

Main Techniques

Function Points (FP)

- Function-based, it estimates effort based on its functional characteristics
- Duration/Team size computed through productivity metrics
- It requires a critical analysis of the requirements

Constructive Cost Modeling (COCOMO)

- Size-based, it estimates effort, duration, and team size based on the (presumed) size of a system in source lines of code
- Different families of models
- Sometime used in conjunction

Group Assignment

- Build a WBS for your graduation project
- Deliverables:
 - WBS diagram
 - WBS dictionary (Template available on https://drive.google.com/open?id=1IHjBDz4FpubLVZFS ibZWxHYOOJ8WET3s)
- Deliver a hard copy to your TA in your own lab next week.

Questions

