

Universidade Federal de Lavras Departamento de Biologia

Programa de Mestrado Profissional em Genética e Melhoramento de Plantas Experimentação no Melhoramento de Plantas – PGMP 547

Lista de exercícios a ser resolvida manualmente e por meio do software GENES. Qualquer dúvida entrar em contato com o monitor Eric Vinicius Vieira Silva (ericvinicius.vs@gmail.com).

Data de Entrega: 02/09/2019

Exercício 01: Defina:

- a) Melhoramento de plantas
- b) Genética Quantitativa
- c) Caráter
- d) Caráter Qualitativo
- e) Caráter Quantitativo
- f) Fenótipo
- g) Herdabilidade

Exercício 02: Apresente as razões pelas quais o estudo de caracteres quantitativos deve ser realizado a nível de populações por meio de médias e variâncias.

Exercício 03: Qual o modelo adotado para estudar a herança e variação dos caracteres quantitativos? A partir da variância desse modelo, apresente a importância da experimentação para o melhoramento de plantas.

Exercício 04: Apresente as fases de um programa de melhoramento baseado na estratégia de hibridação.

Exercício 05: Sobre interação genótipos por ambientes, apresente:

- a) A definição;
- b) A principal causa da interação GxA;
- c) Os principais efeitos da interação GxA no melhoramento.

Exercício 06: Na sua cultura de trabalho como são realizados ensaios de recomendação de cultivares.

Exercício 07: Comente sobres os principais desafios que os programas de melhoramento de plantas encontram nas etapas de seleção de genótipos e recomendação de cultivares.

Exercício 08: A partir dos seguintes dados de 20 famílias de meios-irmãos, avaliadas em três ambientes, no delineamento em blocos ao acaso com duas repetições, calcule o ganho com a seleção para cada ambiente, considerando a seleção das 30% melhores famílias. Além disso, compare as famílias selecionadas em cada um dos ambientes com as selecionadas com base na média de todos os ambientes. Discuta sobre os resultados.

OBSERVAÇÕES: Devem ser apresentados todos os cálculos para o AMBIENTE 2. Para os demais ambientes pode ser utilizado o software GENES. Os relatórios do software GENES devem ser anexados junto com a lista.

	Ambientes							
FMI	1		2		3			
	Repetição		Repetição		Repetição			
	1	2	1	2	1	2		
1	54.53	55.83	54.91	64.82	60.9	60.66		
2	48.98	50.16	57.86	54.78	76.62	72.23		
3	52.47	47.59	66.81	65.12	80.05	69.35		
4	45.18	46.4	52.67	66.71	71.44	73.97		
5	47.65	55.91	58.33	60.72	76.31	65.19		
6	51.08	59.3	65.18	58.96	75.15	59.84		
7	56.75	63.68	65	65.82	64.59	63.55		
8	50.89	52.6	65.92	57.87	51.87	48.31		
9	58.44	56.85	60.34	56.8	57.39	76.72		
10	46.53	47.14	56.09	54.15	58.95	63.76		
11	46.27	49.79	70.33	79.44	56.52	62.52		
12	49.5	44.69	66.95	66.7	61.42	50.33		
13	78.81	94	88.74	93.55	100.68	120.22		
14	55.97	55.71	44.02	49.83	83.31	74.46		
15	45.83	52.03	57.64	57.45	71.52	63.28		
16	52.79	53.43	57.36	52.39	58.83	79.1		
17	45.49	54.71	68.49	56.81	66.72	80.35		
18	52.85	51.68	81.7	69.42	37.44	54.84		
19	53.46	58.97	62.24	60.9	71.94	85.14		
20	81.82	88.07	94.12	91.61	107.27	102.79		

Exercício 09: Defina:

- a) Hipótese
- b) Estatística Experimental
- c) Experimento
- d) Unidade Experimental (parcela)
- e) Bordadura
- f) Princípios básicos da experimentação
- g) Erro experimental
- h) Delineamento experimental

Exercício 10: Apresente os princípios básicos da experimentação e comente sobre a importância de cada um deles.

Exercício 11: Comente sobre os fatores que determinam a escolha de um delineamento experimental.

Exercício 12: Comente sobre as principais formas ("delineamentos") de se implantar experimentos na área de genética e melhoramento. Comente sobre em que situações cada um desses seriam aplicados e suas principais limitações.

Exercício 13: Avalie a seguinte situação: Um pesquisador quer extrair 200 famílias de uma população F2 de feijão. Em média cada planta que dará origem a uma família produz no máximo 80 sementes. O tamanho das parcelas a serem utilizadas é de 2 linhas com 2 metros cada. Considerando que são utilizadas 15 sementes por metro linear, indique qual ou quais delineamentos podem ser utilizados para avaliar essas famílias.

Exercício 14: Comente sobre os delineamentos inteiramente casualizado e de blocos casualizados e apresente as principais diferenças.

Exercício 15: Realize no software Genes dois sorteios para avaliar 10 genótipos com três repetições nos seguintes delineamentos:

- a) Inteiramente casualizado
- b) Blocos casualizados

Exercício 16: Apresente os modelos dos delineamentos abaixo e defina cada um dos efeitos que compõe os modelos.

- a) Inteiramente casualizado
- b) Blocos casualizados

Exercício 17: Defina:

- a) Efeito fixo
- b) Efeito aleatório
- c) Modelo fixo
- d) Modelo aleatório
- e) Modelo misto

Exercício 18: Defina o que é uma análise de variância e o seu principal objetivo.

Exercício 19: Apresente as pressuposições a serem adotadas para realizar uma análise de variância.

Exercício 20: Quais as medidas a serem adotadas em caso de violação dos requisitos da ANOVA.

Exercício 21: Cite algumas transformações de dados e em que situações podem ser empregadas.

Exercício 22: Foram avaliados cinco tratamentos para controle de pulgões na cultura do pepino. Os tratamentos foram:

A: Testemunha

B: Azinfós etílico

C: Supracid 40CE dose 1

D: Supracid 40CE dose 2

E: Diazinon 60 CE

Segue abaixo os dados obtidos no experimento:

	Repetições							
Tratamentos	1	2	3	4	5	6		
A	2370	1687	2592	2283	2910	3020		
В	1282	1527	871	1025	825	920		
С	562	321	636	317	485	842		
D	173	127	132	150	129	227		
Е	193	71	82	62	96	44		

Realize:

- Verificação da pressuposição de homocedasticidade pelo teste do F máximo. Em caso de violação dessa pressuposição avalie a possibilidade de utilização das transformações: Raiz quadrada, logaritmo natural (ln) e potência de 2 (X²). Escolha uma destas para proceder as análises.
- Análise de variância. Interprete os resultados.
- Apresente e interprete o coeficiente de variação
- Testes de comparação de médias (Tukey, Duncan, SNK, e Dunnett). Interprete os resultados.

OBSERVAÇÃO: Devem ser apresentados os cálculos para os testes de Hartley, para a análise de variância e para os testes de Tukey e de Dunnet. Para os demais testes de média podem ser apresentados somente os resultados do Genes. Todas as análises devem ser realizadas TAMBÉM no Genes.

Exercício 23: Foram avaliadas 21 linhagens elite de feijão em um ensaio de competição quanto a produtividade grãos. O delineamento utilizado foi de blocos ao acaso com três repetições. O intuito desse experimento é identificar linhagens candidatas a serem recomendadas.

Linhagana	Repetições				
Linhagens	1	2	3		
1	2173	2157	2166		
2	1851	1260	1074		
3	2015	2026	2238		
4	2188	2184	2716		
5	2067	1556	1755		
6	1050	2031	1816		
7	1127	2256	2071		
8	2334	1849	2347		
9	1576	1144	1320		
10	1504	1757	1508		
11	1904	1853	1731		
12	1787	2052	2137		
13	2002	1862	1972		
14	2064	2430	2641		
15	1893	1573	1472		
16	1579	1795	2664		
17	1427	1069	2472		
18	1385	1417	1405		
19	1790	2229	2201		
20	2114	1976	2423		
21	2080	1985	2324		

- a) Apresente o modelo a ser adotado;
- b) Apresente a natureza dos efeitos do modelo;
- c) Qual a natureza do modelo;
- d) Apresente as hipóteses a serem testadas na análise de variância;
- e) Realize a verificação das pressuposições da ANOVA pelo software Genes. Leve em consideração os testes de Bartllet, curtose, simetria e Lilliefors.
- f) Realize a análise de variância e faça as interpretações necessárias.
- g) Apresente o coeficiente de variação e o erro padrão da média. Faça as interpretações necessárias;
- h) Apresente o intervalo de confiança para cada uma das médias;
- i) Realize os testes de comparações de médias: Tukey, Duncan, SNK e Scott and Knott. Interprete os resultados;
- j) Realize o teste de Dunnet considerando que as linhagens 20 e 21 são testemunhas. OBSERVAÇÃO: Não há necessidade de apresentar os cálculos para a verificação das pressuposições da ANOVA e dos testes Tukey, Duncan, SNK e Scott and Knott. Para os demais devem ser apresentados os cálculos. Devem ser anexados os relatórios das análises realizadas no software GENES.