西北工业大学《线性代数》2018-2019第一学期期末试卷

一、填空题(将正确答案填在题中横线上。每小题 2 分, 共 10 分)

1.
$$\mathcal{Q}_{A_{n \times n}}$$
 满足 $A^2 - A + 2E = O$, $\mathcal{Q}_{A^{-1}} = ----$

- 2. 若齐次线性方程组 $\begin{cases} \lambda x_1 + x_2 + x_3 = 0 \\ x_1 + \lambda x_2 + x_3 = 0 \end{cases}$ 只有零解,则 λ 应满足_____。 $x_1 + x_2 + x_3 = 0$

4. 矩阵
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}$$
的行向量组线性_____。

5.
$$n$$
 阶方阵 A 满足 $A^2 - 3A - E = 0$, 则 $A^{-1} = -----$ 。

二、判断正误(正确的在括号内填"√",错误的在括号内填"×"。每小题 2 分,共 10 分)

- 1. 若行列式 $_{D}$ 中每个元素都大于零,则 \longrightarrow > \bigcirc 。()
- 1. 若行列式 D^{Trank} 2. 零向量一定可以表示成任意一组向量的线性组合。()
 3. 向量组 a_1 , a_2 , \cdots , a_m 中,如果 a_1 与 a_m 对应的分量成比例,则向量组 a_1 , a_2 , \cdots , a_s

线性相关。()

4.
$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
, $MA^{-1} = A$.

5. 若 $_{\lambda}$ 为可逆矩阵 $_{A}$ 的特征值,则 $_{\Delta^{-1}}$ 的特征值为 $_{\lambda}$ 。()

三、单项选择题 (每小题仅有一个正确答案, 将正确答案题号填入括号内。每小题 2 分, 共 10 分)

- 1. 设 $_A$ 为 $_n$ 阶矩阵,且 $_{|A|=2}$,则 $_{\|A|A^T|=}$ ()。
 - ① 2^n ② 2^{n-1} ③ 2^{n+1} 4 4
- 2. n 维向量组 α_1 , α_2 ,..., α_s (3 \leq s \leq n) 线性无关的充要条件是 ()。
 - ① α_1 , α_2 ,..., α_s 中任意两个向量都线性无关

更多考试真题请扫码获取

- ② α_1 , α_2 ,..., α_s 中存在一个向量不能用其余向量线性表示
- ③ $\alpha_{\scriptscriptstyle 1}$, $\alpha_{\scriptscriptstyle 2}$,..., $\alpha_{\scriptscriptstyle s}$ 中任一个向量都不能用其余向量线性表示
- ④ α_1 , α_2 ,…, α_s 中不含零向量
- 3. 下列命题中正确的是()。
 - ① 任意 $n \wedge n + 1$ 维向量线性相关
 - ② 任意 $n \uparrow_{n+1}$ 维向量线性无关
 - ③ 任意 $_{n+1}$ 个 $_{n}$ 维向量线性相关
 - ④ 任意 $_{n+1}$ 个 $_n$ 维向量线性无关
- 4. 设 A , B 均为 n 阶方阵,下面结论正确的是()。
- ② 若 $_A$, $_B$ 均可逆,则 $_A$ $_B$ 可逆
- ① 若 $_{A}$, $_{B}$ 均可逆, 则 $_{A+B}$ 可逆 ② 若 $_{A}$, $_{B}$ 均可逆, 则 $_{A}$ $_{B}$ ③ 若 $_{A+B}$ 可逆, 则 $_{A-B}$ ④ 若 $_{A+B}$ 可逆, 则 $_{A}$, $_{B}$ 均可逆

 - 5. 若 ν_1 , ν_2 , ν_3 , ν_4 是线性方程组 ${}_{A{\rm X}}=0$ 的基础解系,则 ${}_{\nu_1}$ + ${}_{\nu_2}$ + ${}_{\nu_3}$ + ${}_{\nu_4}$ 是 ${}_{A{\rm X}}=0$ TY a.

的()

-) 解向量
 ② 基础解系
 ③ 通解
- ④ A 的行向量

四、计算题(每小题 9 分, 共 63 分)

1. 计算行列式
$$\begin{vmatrix} x+a & b & c & d \\ a & x+b & c & d \\ a & b & x+c & d \\ a & b & c & x+d \end{vmatrix}$$
 。

$$\begin{vmatrix} x+a & b & c & d \\ a & x+b & c & d \\ a & b & x+c & d \\ a & b & c & x+d \end{vmatrix} = \begin{vmatrix} x+a+b+c+d & b & c & d \\ x+a+b+c+d & x+b & c & d \\ x+a+b+c+d & b & x+c & d \\ x+a+b+c+d & b & c & x+d \end{vmatrix}$$

$$=(x+a+b+c+d)\begin{vmatrix} 1 & b & c & d \\ 1 & x+b & c & d \\ 1 & b & x+c & d \\ 1 & b & c & x+d \end{vmatrix} = (x+a+b+c+d)\begin{vmatrix} 1 & b & c & d \\ 0 & x & 0 & 0 \\ 0 & 0 & x & 0 \\ 0 & 0 & 0 & x \end{vmatrix} = (x+a+b+c+d)x^3$$

2. 设
$$AB = A + 2B$$
,且 $A = \begin{pmatrix} 3 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 4 \end{pmatrix}$, 求 B 。

M.
$$(A-2E)B=A$$
 $(A-2E)^{-1}=\begin{bmatrix} 2 & -1 & -1 \\ 2 & -2 & -1 \\ -1 & 1 & 1 \end{bmatrix}$, $B=(A-2E)^{-1}A=\begin{bmatrix} 5 & -2 & -2 \\ 4 & -3 & -2 \\ -2 & 2 & 3 \end{bmatrix}$

3. 设
$$B = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
, $C = \begin{pmatrix} 2 & 1 & 3 & 4 \\ 0 & 2 & 1 & 3 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$ 且矩阵 X 满足关系式 $X(C - B)' = E$,求 X 。

4. 问
$$a$$
 取何值时,下列向量组线性相关 $\alpha_1=\begin{bmatrix}a\\-\frac{1}{2}\\-\frac{1}{2}\end{bmatrix}$, $\alpha_2=\begin{bmatrix}-\frac{1}{2}\\a\\-\frac{1}{2}\end{bmatrix}$, $\alpha_3=\begin{bmatrix}-\frac{1}{2}\\-\frac{1}{2}\\a\end{bmatrix}$ 。

5.
$$\lambda$$
 为何值时,线性方程组 $\begin{bmatrix} \lambda x_1 + x_2 + x_3 = \lambda - 3 \\ x_1 + \lambda x_2 + x_3 = -2 \\ x_1 + x_2 + \lambda x_3 = -2 \end{bmatrix}$ 有唯一解,无解和有无穷多解当方程组有无穷多解时求其通解。
① 当 $\lambda \neq 1$ 且 $\lambda \neq -2$ 时,方程组有唯一解;
② 当 $\lambda = -2$ 时方程组无解

① 当
$$_{\lambda \neq 1}$$
 且 $_{\lambda \neq -2}$ 时,方程组有唯一解;

②当
$$\lambda = -2$$
 时方程组无解

③当
$$\lambda=1$$
时,有无穷多组解,通解为 $X=\begin{bmatrix} -2\\0\\0 \end{bmatrix}+c_1\begin{bmatrix} -1\\1\\0 \end{bmatrix}+c_2\begin{bmatrix} -1\\0\\1 \end{bmatrix}$

6. 设
$$\alpha_1 = \begin{bmatrix} 1\\4\\1\\0 \end{bmatrix}, \ \alpha_2 = \begin{bmatrix} 2\\9\\-1\\-3 \end{bmatrix}, \ \alpha_3 = \begin{bmatrix} 1\\0\\-3\\-1 \end{bmatrix}, \ \alpha_4 = \begin{bmatrix} 3\\10\\-7\\-7 \end{bmatrix}.$$
 求此向量组的秩和一个极大无关组,并将其余

向量用该极大无关组线性表示。

7. 设
$$_{A}=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}$$
 ,求 $_{A}$ 的特征值及对应的特征向量。

五、证明题(7分)

若 $_A$ 是 $_n$ 阶方阵,且 $_{AA^{\mathrm{T}}}=I$, |A|=-1 , 证明 $_{|A+I|=0}$ 。 其中 $_I$ 为单位矩阵。

微信公众号。工人小星球