

World Model & Inference Machine

Jiayu Yao

Fine-Tuning Is Not Enough

Recurrent World Models Facilitate Policy Evolution

David Ha

Google Brain Tokyo, Japan hadavid@google.com Jürgen Schmidhuber

NNAISENSE The Swiss AI Lab, IDSIA (USI & SUPSI) juergen@idsia.ch

Superintelligent Agents Pose Catastrophic Risks: Can Scientist AI Offer a Safer Path?

Yoshua Bengio*^{1,2}, Michael Cohen³, Damiano Fornasiere¹, Joumana Ghosn¹, Pietro Greiner¹, Matt MacDermott^{4,1}, Sören Mindermann¹, Adam Oberman¹, Jesse Richardson¹, Oliver Richardson¹, Marc-Antoine Rondeau¹, Pierre-Luc St-Charles¹, David Williams-King¹

¹Mila — Quebec AI Institute ²Université de Montréal ³University of California, Berkeley ⁴Imperial College London ⁵McGill University

World Model & Inference Machine

- Currently, training model to imitate or please humans (action or decision)
- World Model & Inference Machine, both components operate with an explicit notion of uncertainty to mitigate the risks of over-confident predictions (understanding)

World Model understands the world with dynamics function; Inference Machine execute specific task

Inference Machine

Goal Misspecification

- It unfortunately appears impossible to formally articulate the difference between morally right and wrong behavior without enumerating all the possible cases. (必须在完备空间内评价目标)
- overoptimization of a goal can yield disastrous outcomes

Goal Misgeneralization

- AI learns a goal that leads it to behave as intended during training and safety testing, but which diverges at deployment time.
- reward-tampering
- extreme severity and unknown likelihood of catastrophic risks

World Model

- Time horizons and anytime preparedness
 - an estimator of probabilistic bounds over worst-case scenarios that can result from the achievement of a user request.
 - develop a new training mechanism for the inference machine, grounded in a Bayesian framework and leveraging synthetic examples generated by the world model
- Bayesian
 - Uncertainty & Posterior predictive
 - Interpretable
- Model-Based
 - simulated environments

World Model & Inference Machine

(1) 基本组件

- 观察数据(Observations): $\mathcal{D} = \{x_i, y_i\}_{i=1}^N$
- 背景知识 (Background Knowledge) : K (如一阶逻辑规则、约束条件)
- **假设空间** (Hypotheses) : *H*, 包含可能的解释或模型结构。

(2) 优化目标

寻找最优假设 $h^* \in \mathcal{H}$, 使得:

$$h^* = rg \max_{h \in \mathcal{H}} \underbrace{P(\mathcal{D}|h)}_{$$
数据似然 $\cdot \underbrace{P(h|\mathcal{K})}_{$ 知识先验

即最大化数据似然与知识先验的联合概率。

(3) 具体形式化示例

以符号回归(Symbolic Regression)为例:

- 输入: 数值数据 $\{(x_i,y_i)\}$, 如 $x\in\mathbb{R}^d,y\in\mathbb{R}$ 。
- 输出: 符号表达式 h(x) (如 $h(x) = ax + b\sin(cx)$) 。
- 知识约束: K 可能限制表达式复杂度(如禁止除法)、物理量纲一致性等。

优化问题:

$$\min_{h \in \mathcal{H}} \sum_{i=1}^N (y_i - h(x_i))^2 + \lambda \cdot \mathrm{Violation}(h, \mathcal{K})$$

其中,第一项为数据拟合误差,第二项惩罚违反知识约束的行为, λ 为权衡参数。

World Model


```
def rollout(controller):
    ''' env, rnn, vae are '''
    ''' global variables '''
    obs = env.reset()
    h = rnn.initial_state()
    done = False
    cumulative_reward = 0
    while not done:
        z = vae.encode(obs)
        a = controller.action([z, h])
        obs, reward, done = env.step(a)
        cumulative_reward += reward
        h = rnn.forward([a, z, h])
    return cumulative_reward
```

Figure 2: Flow diagram showing how V, M, and C interacts with the environment (left).

Pseudocode for how our agent model is used in the OpenAI Gym [5] environment (right).

Fine-Tuning Is Not Enough

Table 1: CarRacing-v0 results over 100 trials. Table 2: DoomTakeCover-v0 results, varying τ .

Method	Average Score
DQN [66] A3C (continuous) [36] A3C (discrete) [41] Gym Leader [44]	343 ± 18 591 ± 45 652 ± 10 838 ± 11
V model V model with hidden layer Full World Model	632 ± 251 788 ± 141 906 ± 21

Temperature $ au$	Virtual Score	Actual Score
0.10 0.50 1.00 1.15 1.30	2086 ± 140 2060 ± 277 1145 ± 690 918 ± 546 732 ± 269	193 ± 58 196 ± 50 868 ± 511 1092 ± 556 753 ± 139
Random Policy Gym Leader [62]	N/A N/A	$210 \pm 108 \\ 820 \pm 58$

https://worldmodels.github.io/

Do NOT Think That Much for 2+3=? On the Overthinking of o1-Like LLMs

```
Xingyu Chen*,1,2, Jiahao Xu*,1, Tian Liang*,1, Zhiwei He*,1,2, Jianhui Pang¹, Dian Yu¹, Linfeng Song¹, Qiuzhi Liu¹, Mengfei Zhou², Zhuosheng Zhang², Rui Wang†², Zhaopeng Tu†1, Haitao Mi¹, and Dong Yu¹
```

¹Tencent AI Lab ²Shanghai Jiao Tong University

OVERTHINK: Slowdown Attacks on Reasoning LLMs

Abhinav Kumar, Jaechul Roh, Ali Naseh, Marzena Karpinska Mohit Iyyer, Amir Houmansadr, Eugene Bagdasarian

University of Massachusetts Amherst

{abhinavk, jroh, anaseh, mkarpinska, miyyer, amir, eugene}@cs.umass.edu

Figure 1. Overview of OVERTHINK Attack.

Llama3.3-70B (7 tokens)

The answer to 2 + 3 is 5.

Qwen2.5-72B (7 tokens)

The answer to 2 plus 3 is 5.

Qwen2.5-Math-72B (45 tokens)

To find the answer of 2 plus 3, we can follow these steps: 1. Start with the number 2.

2. Add the number 3 to the number 2.

When we add 3 to 2, we get: $\{2 + 3 = 5\}$

So, the answer is $(\boxed{5})$.

GPT-4o (7 tokens)

The answer to 2 + 3 is 5.

Gemini Pro (5 tokens)

2 + 3 equals 5.

Claude-3.5 (7 tokens)

The answer to 2+3 is 5.

QwQ-32B-Preview (901 tokens)

Solution1 39 tokens	2 plus 3 that's a pretty straightforward arithmetic problem. I think I can handle this. So, let's see, 2 plus 3 means I'm adding two numbers together. I know that when you add two and three, you get five.
Solution2 109 tokens	But maybe I should think about it step by step to make sure I understand the process. First, what is addition? Addition is a mathematical operation where you combine two or more numbers to get a total or sum. In this case, I'm dealing with two numbers: 2 and 3. So, starting with 2, if I add 3 to it, I'm essentially moving three steps forward on the number line. Let me visualize that. If I start at 2 and move one step to the right, I reach 3. Another step takes me to 4, and one more step takes me to 5. So, 2 plus 3 equals 5.
Solution3 39 tokens	Alternatively, I can think of it in terms of objects. Suppose I have two apples and then I get three more apples. How many apples do I have in total? Well, two apples plus three apples equals five apples.
Solution4 34 tokens	Another way to look at it is using fingers. I can hold up two fingers on one hand and three on the other, then count all the fingers together, which gives me five fingers.
Solution5 42 tokens	I can also break it down using smaller numbers. For example, 2 plus 2 equals 4, and then adding one more makes it 5. So, 2 plus 2 is 4, plus 1 is 5, which is the same as 2 plus 3.
Solution 6 26 tokens	Moreover, if I consider the number properties, 2 and 3 are both positive integers, and their sum should also be a positive integer, which is 5.
Solution8 29 tokens	Furthermore, in algebra, if I have an equation like $x + 3 = 5$, then solving for x would give me $x = 2$, which aligns with 2 plus 3 equals 5.
Solution10 19 tokens	Alternatively, using Roman numerals, 2 is II and 3 is III. Adding them together gives V, which is 5.
! !	
I I	In conclusion, the answer to 2 plus 3 is 5.
'	

Figure 3: Distribution of solution counts in generated responses for different test sets and models (QwQ-32B-Preview ("QwQ") and DeepSeek-R1 ("R1")).

Figure 5: Distribution of occurrences for the first correct answer.

- Notably, the first round generally comprises less than 60% of the total tokens generated, suggesting that the extended CoT might not significantly enhance accuracy.
- later solutions marginally contribute to improvements in accuracy.

$$\xi_O = \frac{1}{N} \sum_{i=1}^{N} \sigma_i \frac{\hat{T}_i}{T_i}$$

Outcome Efficiency

$$\hat{T}_i = egin{cases} \# ext{tokens to first arrive at correct answer,} & \sigma_i = 1 \ T_i, & \sigma_i = 0 \end{cases}$$

$$\sigma_i = \begin{cases} 1, & \text{if at least one solution in response is correct} \\ 0, & \text{otherwise} \end{cases}$$

Solution Set

$$R_i = \{s_i^1, \dots, s_i^m, \dots, s_i^{M_i}\}$$

Response Set

$$S^m = \{s_1^m, \ldots, s_k^m, \ldots, s_K^m\}$$

$$Dis^m = \frac{\sum_{k=1}^K \tau_k^m}{K}$$

$$\tau_k^m = \begin{cases} 1, & \text{if } \Phi(s_k^m) \nsubseteq \{\Phi(s_k^1), \dots, \Phi(s_k^{m-1})\} \\ 0, & \text{otherwise} \end{cases}$$

Diversity Efficiency

Figure 6: Ratio of whether a solution provides a new reasoning strategy for each index.

$$D_i = \sum_{m=1}^M \tau_i^m T_i^m$$

Diversity Efficiency

Table 1: Model efficiency results of strong LLMs.

Models	Accuracy Respo		nse	Efficiency		
11104010	riccurucy	#Solution	#Token	Outcome	Process	
ASDIV						
Llama-3.3-70B-Instruct	95.6	1.0	166.4	95.6%	100.0%	
Qwen2.5-Math-72B-Instruct	96.3	1.0	213.0	96.3%	100.0%	
QwQ-32B-Preview	96.9	3.5	741.8	$^{-}$ $^{-}$ $^{-}$ $41.9\%^{-}$	66.5%	
DeepSeek-R1	97.1	4.5	845.0	45.9 %	64.3%	
GSM8K						
Llama-3.3-70B-Instruct	92.6	1.0	220.3	92.6%	100.0%	
Qwen2.5-Math-72B-Instruct	95.8	1.0	317.4	95.8%	100.0%	
QwQ-32B-Preview	94.8	3.1	772.8	50.7% _	67.6%	
DeepSeek-R1	96.4	4.3	1056.3	48.9%	62.0%	
MATH500						
Llama-3.3-70B-Instruct	75.4	1.0	553.4	75.4%	100.0%	
Qwen2.5-Math-72B-Instruct	86.8	1.0	593.1	86.8%	100.0%	
QwQ-32B-Preview	93.0	3.2	$\bar{2}4\bar{0}\bar{7}.\bar{9}$		-71.2%	
DeepSeek-R1	96.4	4.3	2704.3	51.0%	66.2%	

Figure 7: Efficiency results of (a) QwQ-32B-Preview and (b) DeepSeek-R1 across different difficulty levels of the MATH500 testset.

Table 4: Experimental results of the proposed efficiency enhancing methods.

Methods	Accuracy	Response		Efficiency		
MEHIOUS	Accuracy	#Solution	#Token	Outcome	Process	
ASDIV						
QwQ-32B-Preview	96.9	3.5	741.8	41.9%	66.5%	
+SimPO _{FCS+Reflection}	96.8	2.0	381.6	77.6%	86.0%	
	GSN	M8K				
QwQ-32B-Preview	94.8	3.1	772.8	50.7%	67.6%	
+SimPO _{FCS+Reflection}	96.0	2.0	416.6	80.2%	87.2%	
MATH500						
QwQ-32B-Preview	93.0	3.2	2407.9	52.3%	71.2%	
+SFT _{Shortest} Response	93.2	3.0	2359.5	60.4%	75.6%	
+DPO _{Shortest Response}	94.0	2.7	1929.5	65.8%	79.1%	
+RPO _{Shortest Response}	91.6	2.7	2015.7	64.8%	79.2%	
+SimPO _{Shortest Response}	92.4	2.5	1871.8	67.6%	80.9%	
+SimPO _{First-Correct Solution}	91.0	$ar{1.4}$	1016.0	88.7%_	98.1%	
+SimPO _{FCS+Reflection} (Ours)	92.8	1.9	1330.7	80.0%	89.5%	
+SimPO _{Greedily} Diverse Solutions	91.8	1.7	1286.1	84.3%	93.6%	
GPQA						
Qwen2.5-Math-72B-Instruct	46.5	1.0	811.7	46.5%	100%	
QwQ-32B-Preview	59.6	$\bar{2}.\bar{2}$	3228.4	-51.4%	84.3%	
+SimPO _{FCS+Reflection}	59.1	1.7	2085.7	55.7%	90.4%	
	AIM	1E24				
Qwen2.5-Math-72B-Instruct	23.3	1.0	1204.5	23.3%	100.0%	
QwQ-32B-Preview	46.7	$\bar{2.6}$	9480.9	38.4%	84.4%	
+SimPO _{FCS+Reflection}	43.3	1.7	5154.5	39.8%	92.0%	

Thanks