Ex No. 1	Data Structuring Techniques in ML
Date:	

Aim

To structure data using various data structuring techniques such as Data Binning, Data Sampling, Data Aggregation and Data Dimensionality Reduction, in machine learning.

Definitions

Data Binning

Data binning, also called data discrete binning or data bucketing, is a data pre-processing technique used to reduce the effects of minor observation errors. The original data values which fall into a given small interval, a bin, are replaced by a value representative of that interval, often a central value.

Data Sampling

Sampling is the practice of analyzing a subset of all data in order to uncover the meaningful information in the larger data set.

Data Aggregation

Data aggregation is the process where raw data is gathered and expressed in a summary form for statistical analysis.

Data Dimensionality Reduction

Dimensionality reduction, or dimension reduction, is the transformation of data from a high-dimensional space into a low-dimensional space so that the low-dimensional representation retains some meaningful properties of the original data, ideally close to its intrinsic dimension.

Procedure

Open PyCharm Community Edition.

Go to File menu → New Project → Specify the project name → Press "Create" button.

Right Click on Project name → New → Python File → Specify the file name → Press Enter.

Type the following codes. Right click on file name or coding window → Select "Run" to view the result.

Data Binning

Binning.py

```
import numpy as np
import math
from sklearn.datasets import load iris
from sklearn import datasets, linear model, metrics
# load iris data set
dataset = load iris()
a = dataset.data
b = np.zeros(150)
# take 1st column among 4 column of data set
for i in range(150):
     b[i] = a[i, 1]
b = np.sort(b) # sort the array
# create bins
bin1 = np.zeros((30, 5))
bin2 = np.zeros((30, 5))
bin 3 = np.zeros((30, 5))
# Bin mean
for i in range(0, 150, 5):
     k = int(i / 5)
     mean = (b[i] + b[i+1] + b[i+2] + b[i+3] + b[i+4]) / 5
     for i in range(5):
          bin1[k, j] = mean
print("Bin Mean: \n", bin1)
# Bin boundaries
for i in range(0, 150, 5):
     k = int(i / 5)
     for i in range(5):
          if (b[i+j] - b[i]) < (b[i+4] - b[i+j]):
```

```
bin2[k, j] = b[i]
         else:
              bin2[k, j] = b[i + 4]
print("Bin Boundaries: \n", bin2)
# Bin median
for i in range(0, 150, 5):
    k = int(i / 5)
    for j in range(5):
         bin3[k, j] = b[i + 2]
print("Bin Median: \n", bin3)
Output
Python 3.7.4 (tags/v3.7.4:e09359112e, Jul 8 2019, 20:34:20) [MSC v.1916 64 bit
(AMD64)] on win32
runfile('C:/Users/2mca1/binning.py', wdir='C:/Users/2mca1')
Bin Mean:
 [[2.18 2.18 2.18 2.18 2.18]
 [2.34 2.34 2.34 2.34 2.34]
 [2.48 2.48 2.48 2.48 2.48]
 [2.52 2.52 2.52 2.52 2.52]
 [2.62 2.62 2.62 2.62 2.62]
 [2.7 \quad 2.7 \quad 2.7 \quad 2.7 \quad 2.7]
 [2.74 2.74 2.74 2.74 2.74]
 [2.8 2.8 2.8 2.8 2.8]
 [2.8 2.8 2.8 2.8 2.8]
 [2.86 2.86 2.86 2.86 2.86]
 [2.9 2.9 2.9 2.9 2.9]
 [2.96 2.96 2.96 2.96 2.96]
 [3.
       3.
             3.
                  3.
                       3. ]
 [3.
       3.
             3.
                  3.
                       3. ]
```

[3.

3.

3.

3.

3.]

- [3. 3. 3. 3.]
- [3.04 3.04 3.04 3.04 3.04]
- [3.1 3.1 3.1 3.1 3.1]
- [3.12 3.12 3.12 3.12 3.12]
- [3.2 3.2 3.2 3.2 3.2]
- [3.2 3.2 3.2 3.2 3.2]
- [3.26 3.26 3.26 3.26 3.26]
- [3.34 3.34 3.34 3.34 3.34]
- [3.4 3.4 3.4 3.4 3.4]
- [3.4 3.4 3.4 3.4 3.4]
- [3.5 3.5 3.5 3.5 3.5]
- [3.58 3.58 3.58 3.58 3.58]
- [3.74 3.74 3.74 3.74 3.74]
- [3.82 3.82 3.82 3.82 3.82]
- [4.12 4.12 4.12 4.12 4.12]]

Bin Boundaries:

- [[2. 2.3 2.3 2.3 2.3]
- [2.3 2.3 2.4 2.4]
- [2.4 2.5 2.5 2.5 2.5]
- [2.5 2.5 2.5 2.5 2.6]
- [2.6 2.6 2.6 2.6 2.7]
- [2.7 2.7 2.7 2.7 2.7]
- [2.7 2.7 2.7 2.8 2.8]
- [2.8 2.8 2.8 2.8 2.8]
- [2.8 2.8 2.8 2.8 2.8]
- [2.8 2.8 2.9 2.9 2.9]
- [2.9 2.9 2.9 2.9 2.9]

- [2.9 2.9 3. 3. 3.]
- [3. 3. 3. 3.]
- [3. 3. 3. 3.]
- [3. 3. 3. 3.]
- [3. 3. 3. 3.]
- [3. 3. 3. 3.1 3.1]
- [3.1 3.1 3.1 3.1 3.1]
- [3.1 3.1 3.1 3.1 3.2]
- [3.2 3.2 3.2 3.2 3.2]
- [3.2 3.2 3.2 3.2 3.2]
- [3.2 3.2 3.3 3.3 3.3]
- [3.3 3.3 3.4 3.4]
- [3.4 3.4 3.4 3.4 3.4]
- [3.4 3.4 3.4 3.4 3.4]
- [3.5 3.5 3.5 3.5 3.5]
- [3.5 3.6 3.6 3.6 3.6]
- [3.7 3.7 3.7 3.8 3.8]
- [3.8 3.8 3.8 3.8 3.9]
- [3.9 3.9 3.9 4.4 4.4]]

Bin Median:

- [[2.2 2.2 2.2 2.2 2.2]
- [2.3 2.3 2.3 2.3 2.3]
- [2.5 2.5 2.5 2.5 2.5]
- [2.5 2.5 2.5 2.5 2.5]
- [2.6 2.6 2.6 2.6 2.6]
- [2.7 2.7 2.7 2.7 2.7]
- [2.7 2.7 2.7 2.7 2.7]

- [2.8 2.8 2.8 2.8 2.8]
- [2.8 2.8 2.8 2.8 2.8]
- [2.9 2.9 2.9 2.9 2.9]
- [2.9 2.9 2.9 2.9 2.9]
- [3. 3. 3. 3.]
- [3. 3. 3. 3.]
- [3. 3. 3. 3.]
- [3. 3. 3. 3.]
- [3. 3. 3. 3.]
- [3. 3. 3. 3.]
- [3.1 3.1 3.1 3.1 3.1]
- [3.1 3.1 3.1 3.1 3.1]
- [3.2 3.2 3.2 3.2 3.2]
- [3.2 3.2 3.2 3.2 3.2]
- [3.3 3.3 3.3 3.3 3.3]
- [3.3 3.3 3.3 3.3 3.3]
- [3.4 3.4 3.4 3.4 3.4]
- [3.4 3.4 3.4 3.4 3.4]
- [3.5 3.5 3.5 3.5 3.5]
- [3.6 3.6 3.6 3.6 3.6]
- [3.7 3.7 3.7 3.7 3.7]
- [3.8 3.8 3.8 3.8 3.8]
- [4.1 4.1 4.1 4.1 4.1]]

Data Sampling

Random-sampling.py

import numpy as np

generating population data following Normal Distribution

```
N = 10000
mu = 10
std = 2
population df = np.random.normal(mu,std,N)
# function that creates random sample
def random sampling(df, n):
    random sample = np.random.choice(df,replace = False, size = n)
    return(random sample)
randomSample = random sampling(population df, N)
print(randomSample)
Output
C:\Users\2mca2\PycharmProjects\sumaiya\venv\Scripts\python.exe
C:/Users/2mca2/PycharmProjects/sumaiya/randomsampling.py
[10.50911361 10.17222969 10.40282203 ... 8.91980209 12.00965177
 11.12126602]
Process finished with exit code 0
Systematic-sampling.py
import numpy as np
import pandas as pd
# generating population data following Normal Distribution
N = 10000
mu = 10
std = 2
population df = np.random.normal(mu,std,N)
# function that creates random sample using Systematic Sampling
def systematic sampling(df, step):
    id = pd.Series(np.arange(1,len(df),1))
    df = pd.Series(df)
    df pd = pd.concat([id, df], axis = 1)
    df pd.columns = ["id", "data"]
    # these indices will increase with the step amount not 1
    selected index = np.arange(1,len(df),step)
    # using iloc for getting thee data with selected indices
    systematic sampling = df pd.iloc[selected index]
    return(systematic sampling)
n = 10
step = int(N/n)
sample = systematic sampling(population_df, step)
print(sample)
```

Output

C:\Users\2mca2\PycharmProjects\sumaiya\venv\Scripts\python.exe C:/Users/2mca2/PycharmProjects/sumaiya/systematicsampling.py

	id	data
1	2.0	11.376670
1001	1002.0	7.902640
2001	2002.0	9.362893
3001	3002.0	13.432706
4001	4002.0	12.517116
5001	5002.0	7.566955
6001	6002.0	11.995210
7001	7002.0	11.061732
8001	8002.0	7.779656
9001	9002.0	12.856361

Process finished with exit code 0

Data Aggregation

Aggregation.py

Output

C:\Users\2mca2\PycharmProjects\sumaiya\venv\Scripts\python.exe C:\/Users/2mca2\PycharmProjects\sumaiya\dataaggregation.py

A B C D

```
2000-01-01 1.083986 0.590291 -0.702095 -2.022874
```

2000-01-06 1.397718 0.221107 0.910881 0.495881

2000-01-09 1.010055 -0.330848 -0.768370 -0.034331

Rolling [window=3,min_periods=1,center=False,axis=0,method=single]

Process finished with exit code 0

Data Dimensionality Reduction

Dimen-reduction.py

Import necessary libraries
from sklearn import datasets # to retrieve the iris Dataset
import pandas as pd # to load the dataframe
from sklearn.preprocessing import StandardScaler # to standardize the features
from sklearn.decomposition import PCA # to apply PCA
import seaborn as sns # to plot the heat maps
import matplotlib.pyplot as plt

#Load the Dataset
iris = datasets.load_iris()
#convert the dataset into a pandas data frame
df = pd.DataFrame(iris['data'], columns = iris['feature_names'])
#display the head (first 5 rows) of the dataset
print(df.head())

#Standardize the features

#Create an object of StandardScaler which is present in sklearn.preprocessing
scalar = StandardScaler()
scaled_data = pd.DataFrame(scalar.fit_transform(df)) #scaling the data
print(scaled_data)

#Check the Co-relation between features without PCA sns.heatmap(scaled_data.corr())

```
plt.show()
#Applying PCA
#Taking no. of Principal Components as 3
pca = PCA(n components = 3)
pca.fit(scaled data)
data pca = pca.transform(scaled data)
data pca = pd.DataFrame(data pca,columns=['PC1','PC2','PC3'])
print(data pca.head())
#Checking Co-relation between features after PCA
sns.heatmap(data pca.corr())
plt.show()
Output
C:\Users\2mca2\PycharmProjects\sumaiya\venv\Scripts\python.exe
C:/Users/2mca2/PycharmProjects/sumaiya/dimensionality-reduction.py
   sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
0
    5.1
                      3.5
                                          1.4
                                                             0.2
1
    4.9
                      3.0
                                          1.4
                                                             0.2
2
    4.7
                      3.2
                                                             0.2
                                          1.3
3
    4.6
                      3.1
                                          1.5
                                                             0.2
4
    5.0
                      3.6
                                          1.4
                                                             0.2
       0
                  1
                            2
                                       3
0
    -0.900681
              1.019004 -1.340227 -1.315444
    -1.143017 -0.131979 -1.340227 -1.315444
1
2
    3
    -1.506521
              0.098217 -1.283389 -1.315444
4
    -1.021849 1.249201 -1.340227 -1.315444
    145
146 0.553333 -1.282963 0.705921
                                  0.922303
```

147 0.795669 -0.131979 0.819596 1.053935

 $148 \quad 0.432165 \quad 0.788808 \quad 0.933271 \quad 1.448832$

149 0.068662 -0.131979 0.762758 0.790671

[150 rows x 4 columns]

