Genomic surveillance for canine rabies

Roman Biek

SPEEDIER kickoff meeting (Glasgow)
November 2018

Genetic sequencing in pathogen epidemiology

Sequencing

ATTTCTCTG ATTTCCTTA ATGTCCTTA ATGTCCTTA ATGTCCTCA Interpretation
Which pathogen?
What strain type?
'Who infected whom'?

Rabies virus

Enveloped, negative strand RNA virus

Small genome:

- ~12,000 base pairs (bp)
- 5 genes

Traditional targets of rabies virus sequencing

Partial N gene data from Philippines

Short sequences (362 bp)

Allows basic strain typing

Limited resolution: many sequences identical

Nishizono et al. 2002

Higher resolution from whole genomes

Brunker et al. 2015

Identical Sequences

very common

common

rare

Insights from genomic data

Adopting a genomic surveillance approach

Generating whole genome data made possible by massive parallel sequencing technologies that have brought down costs

But often long time lags until data are available

Portable DNA sequencers: genomes in real-time

Genomic surveillance: closing the loop

Informing long-term plans for control, prevention and elimination

Effective tools for visualization and interpretation of genomic data

Targeted strategy for collecting samples and high quality metadata

Timely generation of whole genome data in country

