

Connecting via Winsock to STN

Welcome to STN International! Enter x:x

LOGINID:ssspta1649axm

PASSWORD:

TERMINAL (ENTER 1, 2, 3, OR ?):2

* * * * * * * * * Welcome to STN International * * * * * * * * *

NEWS 1 Web Page URLs for STN Seminar Schedule - N. America
NEWS 2 Jan 25 BLAST(R) searching in REGISTRY available in STN on the Web
NEWS 3 Jan 29 FSTA has been reloaded and moves to weekly updates
NEWS 4 Feb 01 DKILIT now produced by FIZ Karlsruhe and has a new update frequency
NEWS 5 Feb 19 Access via Tymnet and SprintNet Eliminated Effective 3/31/02
NEWS 6 Mar 08 Gene Names now available in BIOSIS
NEWS 7 Mar 22 TOXLIT no longer available
NEWS 8 Mar 22 TRCTHERMO no longer available
NEWS 9 Mar 28 US Provisional Priorities searched with P in CA/CAPLUS and USPATFULL
NEWS 10 Mar 28 LIPINSKI/CALC added for property searching in REGISTRY
NEWS 11 Apr 02 PAPERCHEM no longer available on STN. Use PAPERCHEM2 instead.
NEWS 12 Apr 08 "Ask CAS" for self-help around the clock
NEWS 13 Apr 09 BEILSTEIN: Reload and Implementation of a New Subject Area
NEWS 14 Apr 09 ZDB will be removed from STN
NEWS 15 Apr 19 US Patent Applications available in IFICDB, IFIPAT, and IFIUDB
NEWS 16 Apr 22 Records from IP.com available in CAPLUS, HCAPLUS, and ZCAPLUS
NEWS 17 Apr 22 BIOSIS Gene Names now available in TOXCENTER
NEWS 18 Apr 22 Federal Research in Progress (FEDRIP) now available
NEWS 19 Jun 03 New e-mail delivery for search results now available
NEWS 20 Jun 10 MEDLINE Reload
NEWS 21 Jun 10 PCTFULL has been reloaded

NEWS EXPRESS February 1 CURRENT WINDOWS VERSION IS V6.0d,
CURRENT MACINTOSH VERSION IS V6.0a(ENG) AND V6.0Ja(JP),
AND CURRENT DISCOVER FILE IS DATED 05 FEBRUARY 2002
NEWS HOURS STN Operating Hours Plus Help Desk Availability
NEWS INTER General Internet Information
NEWS LOGIN Welcome Banner and News Items
NEWS PHONE Direct Dial and Telecommunication Network Access to STN
NEWS WWW CAS World Wide Web Site (general information)

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

* * * * * * * * * STN Columbus * * * * * * * * * * * * *

=> file agricola caplus biosis
COST IN U.S. DOLLARS
FULL ESTIMATED COST

SINCE FILE ENTRY	TOTAL SESSION
0.21	0.21

FILE 'AGRICOLA' ENTERED AT 16:49:08 ON 26 JUN 2002

FILE 'CAPLUS' ENTERED AT 16:49:08 ON 26 JUN 2002
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2002 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'BIOSIS' ENTERED AT 16:49:08 ON 26 JUN 2002
COPYRIGHT (C) 2002 BIOLOGICAL ABSTRACTS INC. (R)

=> s fie or fertilization independent endosperm
L1 164 FIE OR FERTILIZATION INDEPENDENT ENDOSPERM

=> s l1 and plant?
L2 44 L1 AND PLANT?

=> dup rem l2
PROCESSING COMPLETED FOR L2
L3 28 DUP REM L2 (16 DUPLICATES REMOVED)

=> d 1-10 ti

L3 ANSWER 1 OF 28 CAPLUS COPYRIGHT 2002 ACS
TI Polycomb genes from maize : ZMFIE2, its protein motif analysis and characterization

L3 ANSWER 2 OF 28 CAPLUS COPYRIGHT 2002 ACS
TI Plant fertilization-independent endosperm proteins and their cDNA and genomic sequences

L3 ANSWER 3 OF 28 CAPLUS COPYRIGHT 2002 ACS
TI A method for controlling endosperm size and development in transgenic plants with attenuating genomic imprinting

L3 ANSWER 4 OF 28 CAPLUS COPYRIGHT 2002 ACS
TI Genes FIE1 and FIE3 from Arabidopsis that control endosperm development in plants

L3 ANSWER 5 OF 28 CAPLUS COPYRIGHT 2002 ACS DUPLICATE 1
TI Polycomb repression of flowering during early plant development

L3 ANSWER 6 OF 28 CAPLUS COPYRIGHT 2002 ACS DUPLICATE 2
TI Polycomb group genes control pattern formation in plant seed

L3 ANSWER 7 OF 28 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.
TI Autonomous endosperm development in flowering plants: How to overcome the imprinting problem.

L3 ANSWER 8 OF 28 CAPLUS COPYRIGHT 2002 ACS DUPLICATE 3
TI Genomic imprinting and seed development: Endosperm formation with and without sex

L3 ANSWER 9 OF 28 CAPLUS COPYRIGHT 2002 ACS
TI Transcriptional activator nucleic acids and polypeptides from plants

L3 ANSWER 10 OF 28 AGRICOLA DUPLICATE 4
TI Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds.

=> d 10 so

L3 ANSWER 10 OF 28 AGRICOLA DUPLICATE 4
SO Proceedings of the National Academy of Sciences of the United States of America, Sept 12, 2000. Vol. 97, No. 19. p. 10637-10642
Publisher: Washington, D.C. : National Academy of Sciences,
CODEN: PNASA6; ISSN: 0027-8424

=> d 10 au

L3 ANSWER 10 OF 28 AGRICOLA DUPLICATE 4
AU Luo, M.; Bilodeau, P.; Dennis, E.S.; Peacock, W.J.; Chaudhury, A.

=> d 10 ab

L3 ANSWER 10 OF 28 AGRICOLA DUPLICATE 4
AB The promoters of MEA (FIS1), FIS2, and FIE (FIS3), genes that repress seed development in the absence of pollination, were fused to beta-glucuronidase (GUS) to study their activity pattern. The FIS2::GUS products is found in the embryo sac, in each of the polar cell nuclei, and in the central cell nucleus. After pollination, the maternally derived FIS2::GUS protein occurs in the nuclei of the cenocytic endosperm. Before cellularization of the endosperm, activity is terminated in the micropylar and central nuclei of the endosperm and subsequently in the nuclei of the chalazal cyst. MEA::GUS has a pattern of activity similar to that of FIS2::GUS, but FIE::GUS protein is found in many tissues, including the prepollination embryo sac, and in embryo and endosperm postpollination. The similarity in mutant phenotypes; the activity of FIE, MEA, and FIS2 in the same cells in the embryo sac; and the fact that MEA and FIE proteins interact in a yeast two-hybrid system suggest that these proteins operate in the same system of control of seed development. Maternal and not paternal FIS2::GUS, MEA::GUS, and FIE::GUS show activity in early endosperm, so these genes may be imprinted. When fis2, mea, and fie mutants are pollinated, seed development is arrested at the heart embryo stage. The seed arrest of mea and fis2 is avoided when they are fertilized by a low methylation parent. The wild-type alleles of MEA or FIS2 are not required. The parent-of-origin-determined differential activity of MEA, FIS2, and FIE is not dependent on DNA methylation, but methylation does control some gene(s) that have key roles in seed development.

=> d ab

L3 ANSWER 1 OF 28 CAPLUS COPYRIGHT 2002 ACS
AB The present invention relates to polycomb genes and polypeptides isolated from Zea mays named ZMFIE2. The sequence homol. anal. of ZMFIE2 to other polycomb proteins is also provided, which indicates that ZMFIE2 is a FIE-like gene. It contains nuclear localization signal and WD-40 repeat motif. ZMFIE2 is mapped to chromosome 10. The mRNA tissue expression patterns is also studied. This corn polycomb gene might be useful for transcription repression or inhibition of transcription repression since they might function as transcriptional repressors like other esc-like proteins.

=> d so

L3 ANSWER 1 OF 28 CAPLUS COPYRIGHT 2002 ACS
SO PCT Int. Appl., 53 pp.

CODEN: PIXXD2

=> d pi

L3 ANSWER 1 OF 28 CAPLUS COPYRIGHT 2002 ACS
PATENT NO. KIND DATE APPLICATION NO. DATE

PI WO 2002006321 A2 20020124 WO 2001-US22254 20010716
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT,
RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ,
VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF,
BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG

=> d 2 ab

L3 ANSWER 2 OF 28 CAPLUS COPYRIGHT 2002 ACS
AB This invention relates to an isolated nucleic acid fragments encoding
reprodn. proteins homologous to *Arabidopsis thaliana* **fertilization**
-independent endosperm protein. The invention also
relates to the construction of a chimeric gene encoding all or a portion
of the reprodn. protein, in sense or antisense orientation, wherein
expression of the chimeric gene results in prodn. of altered levels of the
reprodn. protein in a transformed host cell. Discovery of such
fertilization-independent endosperm genes
should offer new ways of producing apomictic plants.

=> d 2 pi

L3 ANSWER 2 OF 28 CAPLUS COPYRIGHT 2002 ACS
PATENT NO. KIND DATE APPLICATION NO. DATE

PI WO 2001016325 A2 20010308 WO 2000-US23735 20000830
W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE,
DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN,
MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, UA, UG, US, UZ, VN, YU, ZW, AM, AZ, BY, KG, KZ, MD, RU,
TJ, TM
RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ,
CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
EP 1208204 A2 20020529 EP 2000-957908 20000830
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
IE, SI, LT, LV, FI, RO, MK, CY, AL

=> d 3 so

L3 ANSWER 3 OF 28 CAPLUS COPYRIGHT 2002 ACS
SO PCT Int. Appl., 65 pp.
CODEN: PIXXD2

=> d 3 pi

L3 ANSWER 3 OF 28 CAPLUS COPYRIGHT 2002 ACS

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI WO 2001009299	A2	20010208	WO 2000-GB2953	20000731
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG				
EP 1204759	A2	20020515	EP 2000-949752	20000731
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL				

=> d 3 ab

L3 ANSWER 3 OF 28 CAPLUS COPYRIGHT 2002 ACS

AB A method for controlling endosperm size and development, and seed viability in **plants** is provided. The method employs nucleic acid constructs encoding proteins involved in genomic imprinting, in the prodn. of transgenic **plants**. The nucleic acid constructs can be used in the prodn. of transgenic **plants** to affect interspecific hybridization.

=> d 4 pi

L3 ANSWER 4 OF 28 CAPLUS COPYRIGHT 2002 ACS

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI US 6229064	B1	20010508	US 1998-177249	19981022
CA 2330765	AA	19991111	CA 1999-2330765	19990503
WO 9957247	A1	19991111	WO 1999-US9676	19990503
W: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM RW: GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG				
AU 9937833	A1	19991123	AU 1999-37833	19990503
EP 1073718	A1	20010207	EP 1999-920305	19990503
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI				
JP 2002513561	T2	20020514	JP 2000-547203	19990503

=> d 5 ab

L3 ANSWER 5 OF 28 CAPLUS COPYRIGHT 2002 ACS DUPLICATE 1

AB All **plants** flower late in their life cycle. For example, in *Arabidopsis*, the shoot undergoes a transition and produces reproductive flowers after the adult phase of vegetative growth. Much is known about genetic and environmental processes that control flowering time in mature **plants**. However, little is understood about the mechanisms that prevent **plants** from flowering much earlier during embryo and seedling development. *Arabidopsis* embryonic flower (*emf1* and *emf2*) mutants flower soon after germination, suggesting that a floral repression mechanism is established in wild-type **plants** that prevents

flowering until maturity. Here, we show that polycomb group proteins play a central role in repressing flowering early in the **plant** life cycle. We found that mutations in the **Fertilization**

Independent Endosperm (FIE), polycomb gene caused the seedling shoot to produce flower-like structures and organs. Flower-like structures were also generated from the hypocotyl and root, organs not assocd. with reprodn. Expression of floral induction and homeotic genes was derepressed in mutant embryos and seedlings. These results suggest that **FIE**-mediated polycomb complexes are an essential component of a floral repression mechanism established early during **plant** development.

=> d 5 so

L3 ANSWER 5 OF 28 CAPLUS COPYRIGHT 2002 ACS DUPLICATE 1
SO Proceedings of the National Academy of Sciences of the United States of America (2001), 98(24), 14156-14161
CODEN: PNASA6; ISSN: 0027-8424

=> d 5 au

L3 ANSWER 5 OF 28 CAPLUS COPYRIGHT 2002 ACS DUPLICATE 1
AU Kinoshita, Tetsu; Harada, John J.; Goldberg, Robert B.; Fischer, Robert L.

=> d 6 ab

L3 ANSWER 6 OF 28 CAPLUS COPYRIGHT 2002 ACS DUPLICATE 2
AB A review and discussion with 28 refs. Transcriptional activators of the Trithorax group (TRX-G) and repressors of the Polycomb group (Pc-G) are involved in multiple aspects of embryogenesis in Drosophila and the mouse and appear to have a conserved role in the zygotic control of the development of the anterior-posterior axis. In the model **plant** Arabidopsis, three Pc-G genes have been isolated and characterized to date. CURLY LEAF (CLF) represses the expression of a floral homeotic gene in vegetative tissues but does not appear to have a role in **plant** embryogenesis. Two other Pc-G genes, FIS1/MEDEA and FIS3/**FIE**, have been characterized in studies of mutants that produce seeds in the absence of fertilization. Seeds resulting from autonomous development in fis mutants do not contain an embryo but only endosperm, the second product of double fertilization in flowering **plants**. Thus, FIS genes are considered to be repressors of endosperm development before fertilization. When fis ovules are fertilized, the endosperm patterning along the major polar axis is perturbed. Posterior structures develop in more anterior domains of the endosperm. This correlates with the ectopic expression of a posterior mol. marker. FIS genes appear to be potent regulators of the establishment of the anterior-posterior polar axis in the endosperm.

=> d 6 so

L3 ANSWER 6 OF 28 CAPLUS COPYRIGHT 2002 ACS DUPLICATE 2
SO Current Biology (2001), 11(4), 277-281
CODEN: CUBLE2; ISSN: 0960-9822