• 241880334 闵振昌 第三章

- 3
- 4
- 5
- 7
- 11
- 12

241880334 闵振昌 第三章

3

W		func1(w)		func2(w)	
机器数	值	机器数	值	机器数	值
00000000		00000000		00000000	
00000000	127	00000000	127	00000000	127
00000000	121	00000000	121	00000000	121
01111111		01111111		01111111	
00000000		00000000		11111111	
0000000	128	00000000	128	11111111	-128
0000000	120	00000000	120	11111111	-128
10000000		10000000		10000000	
00000000		00000000		11111111	
00000000	255	00000000	255	11111111	-1
00000000	233	00000000	255	11111111	-1
11111111		11111111		11111111	
00000000		00000000		00000000	
00000000	256	00000000	0	00000000	0
00000001	256	00000000	U	00000000	U
00000000		00000000		00000000	

func1这个函数,可以得到原来的这个无符号整数低8位作为一个无符号整数代表的值 func2这个函数,可以得到输入的无符号整数低8位作为一个有符号整数代表的值

模式	x	x	у	у	x×y(截断 前)	x×y(截 断前)	x×y(截 断后)	x×y(截 断后)
模式	机器 数	值	机器 数	值	机器数	值	机器数	值
无符 号整 数	110	6	010	2	01100	12	100	4
带符 号整 数	110	-2	010	2	11100	-4	100	-4
无符 号整 数	001	1	111	7	111	7	111	7
带符 号整 数	001	1	111	-1	111	-1	111	-1
无符 号整 数	111	7	111	7	110001	49	001	1
带符 号整 数	111	-1	111	-1	00001	1	001	1

5

由此可知optarith()函数代表的是机器实现arith()函数的过程,首先关注对x的处理 机器在计算 $X \times M$ 时,先将x左移4位,再减去原来的x,由此可见x增大的倍数是 2^4-1 ,所以M是15 在计算 y/N 时,机器先判断y是不是正数,如果是,直接将y右移2位;如果不是,先将y加3,再右移2位 如此说明,N应该是 $2^2 \sim 2^3$,即4到8,如何判断N的具体值?看y小于0的时候,因为给y加3,所以N的值应该是7

用六位补码表示 x = 001010, y = 111010 (1)[x + y]_补 = 000100 = 4, [x - y]_补 = x + (-y) = 001010 + 000110 = 001111 = 16

- (2)y的原码是100110, $[x \times y]_{\bar{\mathbb{R}}} = 001010 \times 100110 = 11111100 = -60$
- $(3)[x \times y]_{k} = 1100110 = -60$
- $(4)[x/y]_{\mathbb{R}} = 001010/100110 = 100001 \, \text{\mathfrak{L}} \, 000010 \, \text{\mathbb{D}} 1 \, \text{\mathfrak{L}} \, 4$
- $(5)[x/y]_{?} = 001010/111010 = 1111111 \pm 000010$ 即 -1 ± 4

11

转化为规格化浮点数: $(15/16) \times 2^7 = 0.1111 * 2^7$,因此尾数是00.1111,阶码是7+8=15=1111 $(2/16) \times 2^5 = 0.0010 * 2^5$,因此尾数是00.0010,阶码是5+8=13=1101 (1)阶码差为2,因此将 $(2/16) \times 2^5$ 尾数右移2位,变为00.000010,阶码变为15,再将尾数相加,得到00.111110,截断成6位是00.1111,阶码为15 不采用附加位:尾数00.111110已是规格化形式,直接保留,结果浮点数为阶码移码1111,尾数00.1111,真值为 $(15/16) \times 2^7$ 采用 2 位附加位:00.1111 + 00.000010 = 00.111110(含附加位),尾数最后一位是1,附加位最高位是1,所以向偶数舍入(将尾数最后一位1变为0),最终尾数为 00.1110,因此真值是 $(7/8) \times 2^7$

- (2) 阶码差为2,因此将 $-(2/16) \times 2^5$ 尾数右移2位,变为11.111110,阶码为15 00.1111 + 11.111110 = 100.111010(含附加位) 不采用附加位:截断6位,00.1110,阶码是15,真值是 $(7/8) \times 2^7$ 采用 2 位附加位:附加位最高位是1,不舍入, $(7/8) \times 2^7$
- (3)这次要右移 $(15/16) \times 2^5$ 的尾数,变为00.001111,00.001111+00.0010=00.010111,阶码是15,不采用附加位:截断6位,00.0101,阶码是15,真值是 $(5/16) \times 2^7$ 采用 2 位附加位:附加位最高位是1,尾数最后一位是1,向偶数舍入,变为00.0110,阶码是15,真值是 $(3/8) \times 2^7$
- (4)右移 $(15/16) \times 2^5$ 的尾数,变为00.001111, $(2/16) \times 2^7$ 尾数的相反数是11.1110 00.001111+11.1110=100.000111(含附加位) 不采用附加位:截断6位,00.0001,阶码是15,真值是 $(1/16) \times 2^7$ 采用 2 位附加位:附加位最高位是1,尾数最后一位是1,向偶数舍入,变为100.0010,阶码是15,真值是 $(1/4) \times 2^7$