ME 3001 Lecture, Systems of Linear Equations The Gaussian Elimination Algorithm

Simple Example (3x3)

This is a 2 part process

- Step 1: Forward Elimination of Unknowns
 - Eliminate x_1 from equations 2 to n
 - * Eliminate x_1 from equation 2
 - · define the eliminating factor f_{21} as a_{21}/a_{11}
 - · redefine a_{21} as $a_{21} a_{11} * f_{21}$
 - · redefine a_{22} as $a_{22} a_{12} * f_{21}$

. . .

- · redifine a_{2n} as $a_{2n} a_{1n} * factor$
- * Eliminate x_1 from equation 3
 - · define the eliminating factor f_{31} as a_{31}/a_{11}
 - · redefine a_{31} as $a_{31} a_{11} * f_{31}$
 - · redefine a_{32} as $a_{32} a_{12} * f_{31}$

. .

- · redefine a_{3n} as $a_{3n} a_{1n} * f_{31}$
- Eliminate x_2 from equations 3 to n
 - * Eliminate x_2 from equation 3
 - · define the eliminating factor f_{32} as a_{32}/a_{22}
 - · redefine a_{32} as $a_{32} a_{22} * f_{32}$
 - · redefine a_{33} as $a_{33} a_{23} * f_{32}$

. .

· redefine a_{3n} as $a_{3n} - a_{2n} * f_{32}$

. . .

- Eliminate x_{n-1} from equation n
 - · define the eliminating factor $f_{n,n-1}$ as $a_{n,n-1}/a_{n-1,n-1}$
 - · redefine $a_{n,n-1}$ as $a_{n,n-1} a_{n-1,n-1} * f_{n,n-1}$

• Step 2: Backwards Substitution

- Solve Equations n through 1
 - * Solve for x_n as $\frac{b_n}{a_{n,n}}$
 - * Solve for x_{n-1} as $\frac{b_{n-1} (a_{n-1,n}x_n)}{a_{n-1,n-1}}$
 - * Solve for x_{n-2} as $\frac{b_{n-2}-(a_{n-2,n-1}x_{n-1})-(a_{n-2,n}x_n)}{a_{n-2,n-2}}$

.

- * Solve for x_1 as $\frac{b_1 (a_{12}x_2) \dots (a_{1,n-1}x_{n-1}) (a_{1,n}x_n)}{a_{1,1}}$
- Summary

• The Forward Eimination Algorithm:

for k from 1 to n-1

fact=
$$a_{i,k}/a_{k,k}$$

for j from k to n

$$a_{i,j} = a_{i,j} - \text{fact} \times a_{k,j}$$

$$end$$

$$b_i = b_i - \text{fact} \times b_k$$

end

end

• The Backwards Substitution Algorithm:

$$x_n = b_n/a_{n,n}$$
for i from n-1 to 1

$$x_i = (b_i - \sum_{j=i+1}^n (a_{i,j} x_j)) / a_{i,i}$$

end

• A close look at backwards substitution

$$x_{i} = (b_{i} - \sum_{j=i+1}^{n} (a_{i,j} x_{j})) / a_{i,i}$$
 end

REMINDER - Homework 2 is due Wed. Sep. 26

REMINDER - MATLAB script from today's lecture will be posted on ilearn.