Chapitre 8: Fractions. 1. Diviseurs et multiples d'un nombre entier.

Définition: Effectuer la division euclidienne d'un nombre entier a par un nombre entier b différent de 0, c'est trouver deux nombres entiers q et r tels que : $a = b \times q + r$ avec r < b . Le nombre a s'appelle le **quotient** et le nombre a s'appelle le **reste**.

Le nombre q s'appelle le quotient et le nombre r s'appelle le reste . Exemple : La division euclidienne de 377 par 12 est :			
La division euclidienne de 127 par 3 est :	La division euclidienne de 252 par 9 est :		
Chapitre 8: Fractions.			
Chapitre 8: Fractions. 1. Diviseurs et multiples d'un non	rbre entier.		
Définition: Effectuer la division euclidienne d'un nombre entier a par un nombre entier b différent de			
c'est trouver deux nombres entiers q et r tels q	ue: $a = b \times q + r$ avec $r < b$.		
Le nombre q s'appelle le quotient et le nombre q	r s'appelle le reste .		
Exemple:			
La division euclidienne de 377 par 12 est :			
La division euclidienne de 127 par 3 est :	La division euclidienne de 252 par 9 est :		

Définition: Lorsque la division euclidienne de a par b donne un reste égal à zéro on dit que:

<mark>a est un **multiple** de b</mark>ou que <mark>b est un **diviseur** de a ou que <mark>a est **divisible** par b</mark></mark>

Exemple 1: La division euclidienne de 187 par 17 donne $187 = 17 \times 11 + 0$ (le reste est nul). On peut donc dire que 187 est un multiple de 17, ou encore que 17 est un diviseur de 187.

Exemple 2: Les diviseurs de 20 sont 1; 2; 4; 5; 10 et 20.

Remarque: Tous les nombres sont des multiples de 1 et d'eux même.

Définition: Lorsque la division euclidienne de *a* par *b* donne un reste égal à zéro on dit que:

<mark>a est un **multiple** de b</mark> ou que <mark>b est un **diviseur** de a ou que <mark>a est **divisible** par b</mark></mark>

Exemple 1: La division euclidienne de 187 par 17 donne $187 = 17 \times 11 + 0$ (le reste est nul). On peut donc dire que 187 est un multiple de 17, ou encore que 17 est un diviseur de 187.

Exemple 2: Les diviseurs de 20 sont 1; 2; 4; 5; 10 et 20.

Remarque : Tous les nombres sont des multiples de 1 et d'eux même.

Définition: Lorsque la division euclidienne de *a* par *b* donne un reste égal à zéro on dit que:

a est un multiple de b ou que b est un diviseur de a ou que a est divisible par b

Exemple 1: La division euclidienne de 187 par 17 donne $187 = 17 \times 11 + 0$ (le reste est nul). On peut donc dire que 187 est un multiple de 17, ou encore que 17 est un diviseur de 187.

Exemple 2: Les diviseurs de 20 sont 1; 2; 4; 5; 10 et 20.

Remarque : Tous les nombres sont des multiples de 1 et d'eux même.

Les critères de divisibilité :

- * Si un nombre entier a pour chiffre des unités 0,2,4,6 ou 8, alors il est divisible par 2.
- * Si la somme des chiffres d'un nombre entier est divisible par 3, alors ce nombre est divisible par 3.
- * Si un nombre se termine par deux chiffres formant un multiple de 4 alors ce nombre est divisible par 4.
- * Si un nombre entier a pour chiffre des unités 0 ou 5, alors il est divisible par 5.
- * Si la somme des chiffres d'un nombre entier est divisible par 9, alors ce nombre est divisible par 9.
- * Si un nombre entier a pour chiffre des unités 0, alors il est divisible par 10.

Les critères de divisibilité :

- * Si un nombre entier a pour chiffre des unités 0,2,4,6 ou 8, alors il est divisible par 2.
- * Si la somme des chiffres d'un nombre entier est divisible par 3, alors ce nombre est divisible par 3.
- *Si un nombre se termine par deux chiffres formant un multiple de 4 alors ce nombre est divisible par 4.
- * Si un nombre entier a pour chiffre des unités 0 ou 5, alors il est divisible par 5.
- * Si la somme des chiffres d'un nombre entier est divisible par 9, alors ce nombre est divisible par 9.
- * Si un nombre entier a pour chiffre des unités 0, alors il est divisible par 10.

Les critères de divisibilité :

- * Si un nombre entier a pour chiffre des unités 0,2,4,6 ou 8, alors il est divisible par 2.
- * Si la somme des chiffres d'un nombre entier est divisible par 3, alors ce nombre est divisible par 3.
- *Si un nombre se termine par deux chiffres formant un multiple de 4 alors ce nombre est divisible par 4.
- * Si un nombre entier a pour chiffre des unités 0 ou 5, alors il est divisible par 5.
- * Si la somme des chiffres d'un nombre entier est divisible par 9, alors ce nombre est divisible par 9.
- * Si un nombre entier a pour chiffre des unités 0, alors il est divisible par 10.

Les critères de divisibilité :

- * Si un nombre entier a pour chiffre des unités 0,2,4,6 ou 8, alors il est divisible par 2.
- * Si la somme des chiffres d'un nombre entier est divisible par 3, alors ce nombre est divisible par 3.
- * Si un nombre se termine par deux chiffres formant un multiple de 4 alors ce nombre est divisible par 4.
- * Si un nombre entier a pour chiffre des unités 0 ou 5, alors il est divisible par 5.
- * Si la somme des chiffres d'un nombre entier est divisible par 9, alors ce nombre est divisible par 9.
- * Si un nombre entier a pour chiffre des unités 0, alors il est divisible par 10.

Les critères de divisibilité :

- * Si un nombre entier a pour chiffre des unités 0,2,4,6 ou 8, alors il est divisible par 2.
- Si la somme des chiffres d'un nombre entier est divisible par 3, alors ce nombre est divisible par 3.
- * Si un nombre se termine par deux chiffres formant un multiple de 4 alors ce nombre est divisible par 4.
- * Si un nombre entier a pour chiffre des unités 0 ou 5, alors il est divisible par 5.
- * Si la somme des chiffres d'un nombre entier est divisible par 9, alors ce nombre est divisible par 9.
- * Si un nombre entier a pour chiffre des unités 0, alors il est divisible par 10.

Autres critères

- * Si un nombre est divisible par 2 et par 3 alors il est divisible par 6.
- * Pour savoir si un nombre est divisible par 7, il suffit de prendre son nombre de dizaines et d'ajouter 5 fois son chiffre des unités. Si le résultat est divisible par 7 alors le nombre de départ l'est aussi.

```
Exemples: 161 est-il un multiple de 7?

Oui car 16 + 1 x 5 = 16 + 5 = 21 et 21 est un multiple de 7. (En fait 161 = 7 x 23).

133 est-il un multiple de 7?

Oui car 13 + 3 x 5 = 13 + 15 = 28 et 28 est un multiple de 7. (En fait 133 = 7 x 19).
```

Autres critères

- * Si un nombre est divisible par 2 et par 3 alors il est divisible par 6.
- Pour savoir si un nombre est divisible par 7, il suffit de prendre son nombre de dizaines et d'ajouter 5 fois son chiffre des unités. Si le résultat est divisible par 7 alors le nombre de départ l'est aussi.

```
Exemples: 161 est-il un multiple de 7?

Oui car 16 + 1 x 5 = 16 + 5 = 21 et 21 est un multiple de 7. (En fait 161 = 7 x 23).

133 est-il un multiple de 7?

Oui car 13 + 3 x 5 = 13 + 15 = 28 et 28 est un multiple de 7. (En fait 133 = 7 x 19).
```

Autres critères

- * Si un nombre est divisible par 2 et par 3 alors il est divisible par 6.
- Pour savoir si un nombre est divisible par 7, il suffit de prendre son nombre de dizaines et d'ajouter 5 fois son chiffre des unités. Si le résultat est divisible par 7 alors le nombre de départ l'est aussi.

```
Exemples: 161 est-il un multiple de 7?

Oui car 16 + 1 \times 5 = 16 + 5 = 21 et 21 est un multiple de 7. (En fait 161 = 7 \times 23).

133 est-il un multiple de 7?

Oui car 13 + 3 \times 5 = 13 + 15 = 28 et 28 est un multiple de 7. (En fait 133 = 7 \times 19).
```

11. Vocabulaire des fractions

Définition: Le **quotient** de deux nombres a et b est noté $\frac{a}{h}$.

C'est le nombre qui donne **a** quand on le multiplie par **b**.

Cela correspond à la formule $b \times \frac{a}{h} = a$.

Exemple : Le quotient de 10 par 4 est $\frac{10}{4}$. C'est le nombre qui vérifie : $4 \times \frac{10}{4} = 10$.

Définition : Si a et b sont des **nombres entiers**, on dit que $\frac{a}{b}$ est **une fraction.** $\boxed{\frac{a}{b}}$ dénominateur

Le dénominateur b ne peut pas être égal à 0.

11. Vocabulaire des fractions

Définition: Le **quotient** de deux nombres a et b est noté $\frac{a}{h}$.

C'est le nombre qui donne **a** quand on le multiplie par **b**.

Cela correspond à la formule $b \times \frac{a}{h} = a$.

Exemple : Le quotient de 10 par 4 est $\frac{10}{4}$. C'est le nombre qui vérifie : $4 \times \frac{10}{4} = 10$.

Définition : Si a et b sont des **nombres entiers**, on dit que $\frac{a}{b}$ est **une fraction.** $\boxed{\frac{a}{b}}$ dénominateur

Le dénominateur b ne peut pas être égal à 0.

Les écritures décimales à connaître par cœur

Dans tous les cas :On peut retrouver l'écriture décimale d'une fraction en posant la division.

Dans certains cas : On peut aller beaucoup plus vite en mémorisant quelques exemples.

$$\frac{1}{2}=0,5$$
 , $\frac{1}{3}\approx 0,33$, $\frac{1}{4}=0,25$, $\frac{1}{5}=0,2$, $\frac{1}{10}=0,1$

Les écritures décimales à connaître par cœur

Dans tous les cas :On peut retrouver l'écriture décimale d'une fraction en posant la division.

Dans certains cas: On peut aller beaucoup plus vite en mémorisant quelques exemples.

$$\frac{1}{2}=0,5$$
 , $\frac{1}{3}\approx 0,33$, $\frac{1}{4}=0,25$, $\frac{1}{5}=0,2$, $\frac{1}{10}=0,1$

Les écritures décimales à connaître par cœur

Dans tous les cas :On peut retrouver l'écriture décimale d'une fraction en posant la division.

Dans certains cas: On peut aller beaucoup plus vite en mémorisant quelques exemples.

$$\frac{1}{2}=0,5$$
 , $\frac{1}{3}\approx 0,33$, $\frac{1}{4}=0,25$, $\frac{1}{5}=0,2$, $\frac{1}{10}=0,1$

Les écritures décimales à connaître par cœur

Dans tous les cas :On peut retrouver l'écriture décimale d'une fraction en posant la division.

Dans certains cas: On peut aller beaucoup plus vite en mémorisant quelques exemples.

$$\frac{1}{2}=0,5$$
 , $\frac{1}{3}\approx 0,33$, $\frac{1}{4}=0,25$, $\frac{1}{5}=0,2$, $\frac{1}{10}=0,1$

Exprimer une proportion.

Les fractions servent souvent à exprimer des proportions.

Exemple : Dans une classe contenant 12 garçons et 8 filles, la proportion de filles est égale à $\frac{8}{20}$.

Nous verrons un peu plus tard que c'est aussi égal à $\frac{2}{5}$ (2 élèves sur cinq sont des filles) ou encore à 40 %.

Exprimer une proportion.

Les fractions servent souvent à exprimer des proportions.

Exemple: Dans une classe contenant 12 garçons et 8 filles, la proportion de filles est égale à $\frac{8}{20}$.

Nous verrons un peu plus tard que c'est aussi égal à $\frac{2}{5}$ (2 élèves sur cinq sont des filles) ou encore à 40 %.

Exprimer une proportion.

Les fractions servent souvent à exprimer des proportions.

Exemple : Dans une classe contenant 12 garçons et 8 filles, la proportion de filles est égale à $\frac{8}{20}$.

Nous verrons un peu plus tard que c'est aussi égal à $\frac{2}{5}$ (2 élèves sur cinq sont des filles) ou encore à 40 %.

Exprimer une proportion.

Les fractions servent souvent à exprimer des proportions.

Exemple : Dans une classe contenant 12 garçons et 8 filles, la proportion de filles est égale à $\frac{8}{20}$.

Nous verrons un peu plus tard que c'est aussi égal à $\frac{2}{5}$ (2 élèves sur cinq sont des filles) ou encore à 40 %.

Exprimer une proportion.

Les fractions servent souvent à exprimer des proportions.

Exemple: Dans une classe contenant 12 garçons et 8 filles, la proportion de filles est égale à $\frac{8}{20}$.

Nous verrons un peu plus tard que c'est aussi égal à $\frac{2}{5}$ (2 élèves sur cinq sont des filles) ou encore à 40 %.

III. Fractions égales.

Propriété: Un quotient ne change pas si on multiplie ou si on divise son numérateur ET son dénominateur par un même nombre différent de zéro. Autrement dit :

$$\frac{3}{2} = \frac{6}{4}$$

$$\frac{3}{4} = \frac{75}{100}$$

Exemple:
$$\frac{3}{2} = \frac{6}{4}$$
 $\frac{3}{4} = \frac{75}{100}$ $\frac{20}{100} = \frac{2}{10} = \frac{1}{5}$

Définition: Simplifier une fraction, c'est trouver une fraction qui lui est égale mais avec un numérateur et un dénominateur plus petit.

Exemple 1:
$$\frac{42}{56} =$$

Exemple 2:
$$\frac{22}{33} =$$

III. Fractions égales.

Propriété: Un quotient ne change pas si on multiplie ou si on divise son numérateur ET son dénominateur par un même nombre différent de zéro. Autrement dit :

$$\frac{3}{2} = \frac{6}{4}$$

$$\frac{3}{4} = \frac{75}{100}$$

Exemple:
$$\frac{3}{2} = \frac{6}{4}$$
 $\frac{3}{4} = \frac{75}{100}$ $\frac{20}{100} = \frac{2}{10} = \frac{1}{5}$

Définition: Simplifier une fraction, c'est trouver une fraction qui lui est égale mais avec un numérateur et un dénominateur plus petit.

Exemple 1:
$$\frac{42}{56} =$$

Exemple 2:
$$\frac{22}{33} =$$

Rappel.

«On ne change pas une fraction lorsqu'on divise (ou lorsqu'on multiplie) son numérateur et son dénominateur par un même nombre»

Exemple (attention à l'alignement) :

$$\frac{4}{3} = \frac{8}{6} = \frac{24}{18} = \frac{48}{36}$$

N. Exprimer une proportion de plusieurs manières

Dans une classe de 5ème, il y a 18 filles sur un total de 30 élèves.

- La proportion de filles est égale à $\frac{nombre de filles}{nombre total d'élèves} = \frac{18}{30}$ (fraction)
- On dit aussi que cette proportion est de **0,6** car $\frac{18}{30} = \frac{6}{10} = 0,6$. (nombre décimal)
- Enfin, comme $\frac{6}{10} = \frac{60}{100}$, on dit aussi que cette proportion est de **60** %. (pourcentage)
- -----> II y a au moins trois réponses possibles $\frac{18}{30} = 0.6 = 60 \%$

N. Exprimer une proportion de plusieurs manières

Dans une classe de 5ème, il y a 18 filles sur un total de 30 élèves.

- La proportion de filles est égale à $\frac{nombre de filles}{nombre total d'élèves} = \frac{18}{30}$ (fraction)
- On dit aussi que cette proportion est de **0,6** car $\frac{18}{30} = \frac{6}{10} = 0,6$. (nombre décimal)
- Enfin, comme $\frac{6}{10} = \frac{60}{100}$, on dit aussi que cette proportion est de **60** %. (pourcentage)
- -----> II y a au moins trois réponses possibles $\frac{18}{30} = 0.6 = 60 \%$

V. Comparer deux fractions

Situation 1 : comparer une fraction avec le nombre 1.

Si a < b alors $\frac{a}{b} < 1$. Si a > b alors $\frac{a}{b} > 1$. Si a = b alors $\frac{a}{b} = 1$.

Exemples: $\frac{5}{4}$ 1, $\frac{3}{4}$ 1, $\frac{4}{4}$ 1.

Situation 2 : comparer deux fractions ayant le même dénominateur.

Si deux fractions ont le même dénominateur, on peut savoir rapidement laquelle est la plus grande en comparant les numérateurs. En langage mathématiques, cela correspond à la propriété suivante :

Propriété: Les lettres a,b et c désignent trois nombres entiers positifs avec $C \neq 0$.

Si a < b alors $\frac{a}{c} < \frac{b}{c}$.

Exemple: 7 est plus petit que 9, donc $\frac{7}{4}$ $\frac{9}{4}$.

Situation 3 : comparer deux fractions n'ayant pas le même dénominateur

C'est le cas le plus difficile mais on y parvient en écrivant les fraction avec le même dénominateur.

Exemple: On veut comparer $\frac{17}{8}$ et $\frac{7}{3}$.