

Détection acoustique optimale en milieu diffusant complexe

Offre de thèse, 2024-2027. Financement déjà acquis.

Laboratoire: Laboratoire Interdisciplinaire de Physique (LIPhy), Grenoble, France

Superviseurs: Dr. Dorian Bouchet et Prof. Emmanuel Bossy

Description du projet

L'imagerie médicale ultrasonore repose sur un principe simple : un ensemble de sources émettent des ondes acoustiques dans le milieu à imager, et ces ondes sont réfléchies vers un capteur par l'objet d'intérêt. Les ondes acoustiques se propagent de manière simple dans les tissus biologiques mous, ce qui permet aux médecins d'examiner facilement les femmes enceintes grâce aux ondes ultrasonores. Cependant, il reste extrêmement difficile de faire de l'imagerie ultrasonore lorsque les ondes acoustiques se propagent dans des milieux complexes. Par exemple, il est très difficile de visualiser l'activité du cerveau à l'aide d'ultrasons, car le crâne déforme les ondes acoustiques de manière incontrôlée. Ce défi nous motive à mieux comprendre la façon dont les ondes acoustiques se propagent dans les milieux complexes.

Au cours des dernières décennies, la possibilité de contrôler plusieurs sources indépendantes a été largement utilisée afin de maximiser l'énergie acoustique n'importe où à l'intérieur de milieux diffusants complexes. Au lieu de maximiser l'énergie acoustique, ce projet de thèse abordera maintenant la question suivante : comment tirer parti de ces nombreuses sources acoustiques afin de maximiser la quantité d'information délivrée à l'observateur? D'un point de vue conceptuel, le projet associe des outils issus de la théorie des ondes et de la théorie de l'information afin de comprendre comment l'information se propage dans les milieux diffusants complexes, à la fois dans l'espace et dans le temps. D'un point de vue expérimental, le projet implique la réalisation d'une preuve de principe conçue afin de mesurer la position d'une cible cachée à l'intérieur d'un milieu diffusant aléatoire composé de diffuseurs acoustiques. À l'aide d'une matrice de transducteurs à la pointe de la technologie, le champ acoustique sera faconné en espace et

Fig. 1: Principe de l'expérience acoustique proposée, qui sera développée afin de maximiser la quantité d'information contenue dans les ondes diffusées concernant les propriétés d'une cible cachée, tel que sa position z.

en temps afin de mesurer les propriétés de la cible cachée de la manière la plus précise possible.

Profil du candidate ou de la candidate

Le candidat ou la candidate doit être titulaire d'un Master en physique ou en ingénierie. Il/elle doit être motivé.e pour (i) apprendre de nouveaux concepts en physique et (ii) les appliquer pour le développement expérimental d'un nouveau type de système d'imagerie ultrasonore.

Pour plus d'information

Contact: Dorian Bouchet (dorian.bouchet@univ-grenoble-alpes.fr)

Site web personnel : https://dbouchet.github.io

Site web du laboratoire : https://liphy.univ-grenoble-alpes.fr

Références:

- D. Bouchet and E. Bossy, Physical Review Reserach 5, 013144 (2023)
- G. Godefroy, B. Arnal, and E. Bossy, Scientific Reports 13, 2961 (2023)