

Digital Signal Processing

TRAN Hoang Tung

Discrete time Signals

Discretetime Systems

Convolution

Difference Equations

Discrete-time Signals & Systems

TRAN Hoang Tung

Information and Communication Technology (ICT) Department University of Science and Technology of Hanoi (USTH)

March 06, 2019

□ □ □ □ □ □ □ □ □ □ □ □ 1/22

Digital Signal Processing

TRAN Hoang Tung

Discrete time Signals

Discretetime Systems

Convolution

Difference Equations

- 1 Discrete-time Signals
- 2 Discrete-time Systems
- 3 Convolution
- 4 Difference Equations

Digital Signal Processing

TRAN Hoang Tung

Discretetime Signals

Fundamenta Signals

Operations

Some Useful Results

Discretetime Systems

Convolution

Difference Equations

- 1 Discrete-time Signals
 - Fundamental Signals
 - Operations
 - Some Useful Results
- 2 Discrete-time Systems
- 3 Convolution
- 4 Difference Equations

Delta Signal

Digital Signal Processing

TRAN Hoang Tung

Discrete time Signals

Fundamental Signals

Operations

Some Usefu Results

Discretetime Systems

Convolution

Difference Equations

Delta Signal

$$\delta(n) = \begin{cases} 1 & \text{if } n = 0 \\ 0 & \text{if } n \neq 0. \end{cases}$$

Delta Signal

Digital Signal Processing

TRAN Hoang Tung

Discretetime Signals

Fundamental Signals

Operations

Some Usefu Results

Discretetime Systems

Convolution

Difference Equations

Delta Signal

$$\delta(n) = \begin{cases} 1 & \text{if } n = 0 \\ 0 & \text{if } n \neq 0. \end{cases}$$

Shifted

Delta Signal

$$(n-n_0) = \begin{cases} 1 & \text{if } n = n_0 \\ 0 & \text{if } n \neq n_0. \end{cases}$$

Unit Step Signal

Digital Signal Processing

TRAN Hoang Tung

Discrete time Signals

Fundamental Signals

Operation

Some Usefu Results

Discretetime Systems

Convolution

Difference

Unit Step Signal

$$u(n) = \begin{cases} 1 & \text{if } n \ge 0 \\ 0 & \text{if } n < 0. \end{cases}$$

Discretetime Signals

Fundamental Signals

Operations

Some Usefu Results

Discretetime Systems

Convolution

Difference Equations

Unit Step Signal

$$u(n) = \begin{cases} 1 & \text{if } n \geq 0 \\ 0 & \text{if } n < 0. \end{cases}$$

Unit Step Signal

$$u(n-n_0) = \begin{cases} 1 & \text{if } n \ge n_0 \\ 0 & \text{if } n < n_0. \end{cases}$$

Exponential Signal

Digital Signal Processing

TRAN Hoang Tung

Discretetime Signals

Fundamental Signals

Operations

Some Useful Results

Discretetime Systems

Convolution

Difference Equations

Real-valued Exponential Signal

Exponential Signal

Digital Signal Processing

TRAN Hoang Tung

Discrete time Signals

Fundamental Signals

Some Useful Results

Discretetime Systems

Convolution

Difference Equations

Real-valued Exponential Signal

Exponential Signal

Digital Signal Processing

TRAN Hoang Tung

Discretetime Signals

Fundamental Signals

Operations

Some Useful Results

Discretetime Systems

Convolution

Difference Equations

Real-valued Exponential Signal

$$x(n) = a^n$$

Complex-valued Exponential Signal

$$x(n) = e^{(\sigma + j\omega_0)n}$$

Periodic Signal

$$x(n) = x(n+N)$$

Digital Signal Processing

TRAN Hoang Tung

Discretetime Signals

Signals

Operations

Some Useful Results

Discretetime Systems

Convolution

Difference Equations

- 1 Discrete-time Signals
 - Fundamental Signals
 - Operations
 - Some Useful Results
- 2 Discrete-time Systems
- 3 Convolution
- 4 Difference Equations

Operations (1)

Digital Signal Processing

TRAN Hoang Tung

Discrete time Signals

Fundamenta Signals

Operations

Some Useful Results

Discretetime Systems

Convolution

Difference Equations

Signal Addition

$$\{\underline{\times 1(\underline{n})}\} + \{\underline{\times 2(\underline{n})}\} = \{\times 1(\underline{n}) + \times 2(\underline{n})\}$$

Operations (1)

Digital Signal Processing

TRAN Hoang Tung

Discretetime Signals

Fundamental Signals

Operations

Some Useful Results

Discretetime Systems

Convolution

Difference Equations

Signal Addition

$${x1(n)} + {x2(n)} = {x1(n) + x2(n)}$$

Signal Multiplication

$${x1(n)}.{x2(n)} = {x1(n)x2(n)}$$

Operations (1)

Digital Signal Processing

TRAN Hoang Tung

Discretetime Signals

Fundamenta Signals

Operations

Some Useful Results

Discretetime

Convolution

Difference Equations

Signal Addition

$$(x1(n)) + (x2(n)) = (x1(n) + x2(n))$$

Signal Multiplication

$${x1(n)}.{x2(n)} = {x1(n)x2(n)}$$

Signal Scaling

$$\alpha\{x(n)\} = \{\widehat{\alpha}x(n)\}$$

2 (d.n)

Operations (2)

Digital Signal Processing

TRAN Hoang Tung

Discrete time Signals

Signals

Operations

Some Useful Results

Discretetime Systems

Camualistian

Difference Equations

Signal Shifting

$$y(n) = \{x(n-k)\}$$

TRAN Hoang Tung

Discretetime Signals

Fundamental Signals

Operations

Some Useful Results

Discretetime

Convolution

Difference

Signal Shifting

$$y(n) = \{x(n-k)\}$$

Signal Folding

$$y(n) = \{x(-n)\}$$

Operations (3)

Digital Signal Processing

TRAN Hoang Tung

Discrete time Signals

Signals

Operations

Some Usefu Results

Discretetime Systems

Convolution

Difference Equations

Signal Energy

$$E_{x} = \sum_{-\infty}^{+\infty} |x(n)|^{2}$$

Operations (3)

Digital Signal Processing

TRAN Hoang Tung

Discretetime Signals

Signals

Operations

Some Useful Results

Discretetime Systems

Convolution

Difference Equations

Signal Energy

$$E_{x} = \sum_{-\infty}^{+\infty} |x(n)|^{2}$$

Signal Power of a periodic x(n)

$$P_{x} = \frac{1}{N} \sum_{n=1}^{N-1} |x(n)|^{2}$$

Digital Signal Processing

TRAN Hoang Tung

Discretetime Signals

Signals

Operations

Some Useful Results

Discretetime Systems

Convolutio

Difference Equations

- 1 Discrete-time Signals
 - Fundamental Signals
 - Operations
 - Some Useful Results
- 2 Discrete-time Systems
- 3 Convolution
- 4 Difference Equations

10 10 10 10 10 10 10 10 10 10 11/22

Digital Signal Processing

TRAN Hoang Tung

Discretetime Signals

Signals

Operation

Some Useful Results

Discretetime Systems

Convolution

Difference

Delta

$$x(n) = \sum_{k=-\infty}^{+\infty} x(k)\delta(n-k)$$

Digital Signal Processing

TRAN Hoang Tung

Discrete time Signals

Signals

Operation

Some Useful Results

Discretetime Systems

Convolution

Difference

Delta

$$x(n) = \sum_{k=-\infty}^{+\infty} x(k)\delta(n-k)$$

Even and odd synthesis

$$x_{e}(n) = \frac{1}{2}[x(n) + x(-n)]$$
$$x_{o}(n) = \frac{1}{2}[x(n) - x(-n)]$$

Digital Signal Processing

TRAN Hoang Tung

Discretetime Signals

Fundamenta Signals

Operation

Some Useful Results

Discretetime

Convolution

Difference Equations

The Geometric Series

$$\sum_{n=0}^{N-1} \alpha^n = \frac{1 - \alpha^N}{1 - \alpha}$$

Digital Signal Processing

TRAN Hoang Tung

Discrete time Signals

Signals

Operations

Some Useful Results

Discretetime Systems

Convolution

Difference

The Geometric Series

$$\sum_{n=0}^{N-1} \alpha^n = \frac{1 - \alpha^N}{1 - \alpha}$$

Correlations

$$r_{x,y}(l) = \sum_{n=-\infty}^{+\infty} x(n)y(n-l)$$

$$r_{x,x}(I) = \sum_{n=0}^{+\infty} x(n)x(n-I)$$

Digital Signal Processing

TRAN Hoang Tung

Discrete time Signals

Discretetime Systems

Convolution

Difference Equations

- 1 Discrete-time Signals
- 2 Discrete-time Systems
- 3 Convolution
- 4 Difference Equations

Linear Systems (1)

Digital Signal Processing

TRAN Hoang Tung

Discrete time Signals

Discretetime Systems

Convolution

Difference Equations

Linearity

A discrete system $L[\cdot]$ is linear iff

$$L[a_1x_1(n) + a_2x_2(n)] = a_1L[x_1(n)] + a_2L[x_2(n)]$$

$$\frac{d_{2(n)}}{y_{2(n)}} \stackrel{\forall_{3(n)}}{=} \frac{L[x_{2(n)}]}{L[x_{2(n)}]}$$

2 (as L[x] + az L[x]

$$a_1 x_1 + a_2 x_2$$

$$=$$

Linear Systems (1)

Digital Signal Processing

TRAN Hoang Tung

Discrete time Signals

Discretetime Systems

Convolution

Difference

Linearity

A discrete system $L[\cdot]$ is linear iff

$$L[a_1x_1(n) + a_2x_2(n)] = a_1L[x_1(n)] + a_2L[x_2(n)]$$

Time-invariant

$$y(n) = L[x(n)] \rightarrow L[x(n-k)] = y(n-k)$$

Linear Systems (1)

Digital Signal Processing

TRAN Hoang Tung

Discrete time Signals

Discretetime Systems

Convolution

Difference Equations

Linearity

A discrete system $L[\cdot]$ is linear iff

$$L[a_1x_1(n) + a_2x_2(n)] = a_1L[x_1(n)] + a_2L[x_2(n)]$$

Time-invariant

$$y(n) = L[x(n)] \rightarrow L[x(n-k)] = y(n-k)$$

Linear Time-invariant

Impulse respons@

Linear Systems (2)

Digital Signal Processing

TRAN Hoang Tung

Discrete time Signals

Discretetime Systems

Convolution

Difference Equations

Stability - BIBO

$$|x(n)| < \infty \rightarrow |y(n)| < \infty$$

 $\Leftrightarrow \sum_{n=-\infty}^{+\infty} |h(n)| < \infty$

Linear Systems (2)

Digital Signal Processing

TRAN Hoang Tung

Discrete time Signals

Discretetime Systems

Convolution

Difference Equations

Stability - BIBO

$$|x(n)| < \infty \rightarrow |y(n)| < \infty$$

$$\Leftrightarrow \sum_{n=-\infty}^{+\infty} |h(n)| < \infty$$

Causality

Digital Signal Processing

TRAN Hoang Tung

Discrete time Signals

Discrete time Systems

Convolution

Difference Equations

- 1 Discrete-time Signals
- 2 Discrete-time Systems
- 3 Convolution
- 4 Difference Equations

AOC AY COM

y(n) = 7(n) x h(n)

Convolution Sum

Digital Signal Processing

TRAN Hoang Tung

Discrete time Signals

Discrete time Systems

Convolution

Difference Equations

Convolution

Convolution Sum

Digital Signal Processing

TRAN Hoang Tung

Discrete time Signals

time Systems

Convolution

Difference Equations

Convolution

$$y(n) = \sum_{k=-\infty}^{+\infty} x(k)h(n-k)$$

Correlations

$$r_{x,h}(n) = \sum_{k=-\infty}^{+\infty} x(k)h(k-n)$$

Digital Signal Processing

TRAN Hoang Tung

Discrete time Signals

Discrete time Systems

Convolution

Difference Equations

- 1 Discrete-time Signals
- 2 Discrete-time Systems
- 3 Convolution
- 4 Difference Equations

Digital Signal Processing

TRAN Hoang Tung

Discrete time Signals

Discrete time Systems

Convolution

Difference Equations An LTI discrete system can also be described by a linear constant coefficient difference equation of the form

$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{m=0}^{M} b_m x(n-m)$$

or

$$y(n) = \sum_{m=0}^{M} b_m x(n-m) - \sum_{k=1}^{N} a_k y(n-k)$$

Octave Implementation

Digital Signal Processing

TRAN Hoang Tung

Discrete time Signals

Discrete time Systems

Convolution

Difference Equations

Function *filter* to solve difference equation

$$y = filter(b, a, x)$$

where

$$b = [b_0, b_1, \dots, b_M]; a = [a_0, a_1, \dots, a_N]$$

Octave Implementation

Digital Signal Processing

TRAN Hoang Tung

Discrete time Signals

Discretetime Systems

Convolution

Difference Equations

Function *filter* to solve difference equation

$$y = filter(b, a, x)$$

where

$$b = [b_0, b_1, \dots, b_M]; a = [a_0, a_1, \dots, a_N]$$

Function impz to compute and plot impulse response

$$h = impz(b, a, n)$$

Digital Filters

Digital Signal Processing

TRAN Hoang Tung

Discrete time Signals

Discrete time Systems

Convolution

Difference Equations There are two types of filters:

- 1 FIR filter (finite-duration impulse response): non-recursive or moving average (MA)
- 2 IIR filter (infinite-duration impulse response): autoregressive moving average (ARMA)