

Model-based Estimation Methods

Parameter Estimation,

Error-in-Variables Estimation & Confidence Region

Dr.-Ing. Adel Mhamdi

AVT – Systemverfahrenstechnik

Lecture Outline

- What is a Parameter Estimation Problem?
- Linear Parameter Estimation
 - Least-Squares
 - Weighted Least-Squares
- Nonlinear Parameter Estimation
- Error-in-Variables Estimation
- Confidence Region
- Case study: Challenges in Spectral Analysis
- Data Reduction Using Principal Component Analysis

Parameter Estimation

Assume that states, model structure, outputs and inputs are known.

Find the **parameters** of this model, so that the model predicts as best as possible the measurement data (outputs).

Example: Reaction Kinetics

Reaction processes

reactant(s)
$$\rightarrow$$
 products,

Application:

- chemical reactor design
- drug delivery
- Examples : radioactive decay $^{235}U \rightarrow ^{231}Th$
 - dimerization of butadiene $2C_4H_6 \rightarrow C_8H_{12}$
- Reaction rate model: reaction rate is function of concentration, temperature, ...

 $r = f(x_A, k)$, x_A is the concentration of reactant A

- First order reaction $r = kx_A$
- Second order reaction $r = kx_A^2$
- Parameter estimation problem:

Estimate reaction rate constant k from concentration measurements!

Example: Reaction Kinetics

Assuming measurements for x_A are available, how to estimate parameter k? Use mass balance to compute r

$$x_A \Rightarrow r$$
, since $\frac{dx_A}{dt} = -r$

Lecture Outline

- What is a Parameter Estimation Problem?
- Linear Parameter Estimation
 - Least-Squares
 - Weighted Least-Squares
- Nonlinear Parameter Estimation
- Error-in-Variables Estimation
- Confidence Region
- Case Study: Challenges in Spectral Analysis
- Data Reduction Using Principal Component Analysis

Linear Parameter Estimation

Consider a static model $y := f(u, \Theta)$ (a single algebraic equation),

linear in parameters Θ ,

but may be **nonlinear** in the input variables u, i.e.

$$y = \sum_{j=1}^{n} x_j \Theta_j$$
 with $x_j := f_{u,j}(u)$

Assume, we have m experiments (from m combinations of the inputs u), thus we get m measurements

$$\tilde{y}_i = y_i + \epsilon_i$$
, $i = 1 \dots m$,

with ϵ_i an error term and

$$y_i = \sum_{j=1}^n x_{ij} \Theta_j$$
, with $x_{ij} \coloneqq f_{u,j}(u_i)$

Linear Parameter Estimation - Matrix Notation

...we have m measurements $\tilde{y}_i = y_i + \epsilon_i$, $i = 1 \dots m$ and

$$y_i = \sum_{j=1}^n x_{ij} \Theta_j$$
, with $x_{ij} \coloneqq f_{u,j}(u_i)$

Let
$$Y \coloneqq [y_1 \quad \cdots \quad y_m]^T \in \mathbb{R}^m$$
, $\tilde{Y} \coloneqq [\tilde{y}_1 \quad \cdots \quad \tilde{y}_m]^T \in \mathbb{R}^m$, $\Theta \coloneqq [\Theta_1 \quad \cdots \quad \Theta_n]^T \in \mathbb{R}^n$

and
$$X \coloneqq \begin{bmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{m1} & \cdots & x_{mn} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

We get in matrix notation:

$$Y = X\Theta$$

Linear Parameter Estimation - Least-Squares (LS) Formulation

$$\widehat{\Theta} = \arg\min_{\Theta} \|Y - \widetilde{Y}\|_{2}^{2} = \arg\min_{\Theta} \|X\Theta - \widetilde{Y}\|_{2}^{2}$$
 (cf. Reusken, 2.3)

Necessary conditions:

$$\nabla_{\Theta} \| X \widehat{\Theta} - \widetilde{Y} \|_{2}^{2} = 0$$

$$\Leftrightarrow X^{T} X \widehat{\Theta} - X^{T} \widetilde{Y} = 0$$

$$\Leftrightarrow \widehat{\Theta} = X^{\dagger} \widetilde{Y}$$

where X^{\dagger} is the pseudoinverse of X

Sufficient conditions:

all eigenvalues of $\nabla_{\Theta}^2 \| X \widehat{\Theta} - \widetilde{Y} \|_2^2 = X^T X$ are positive and real

$$\Leftrightarrow$$
 rank(X) = n

Remember: (Reusken, section 2.3)

Pseudoinverse of X

- $m = n, X^{\dagger} = X^{-1}$
- m > n, $X^{\dagger} = (X^T X)^{-1} X^T$

Using SVD

$$\begin{split} X^\dagger &= V \Sigma^\dagger U^T \\ \Sigma^\dagger &= diag \big(\sigma_1^{-1}, \dots, \sigma_{\min(m,n)}^{-1}, 0, \dots, 0 \big) \\ &\in \mathbb{R}^{n \times m}, \text{ where } U, V \text{ are left and right singular vector} \end{split}$$

Linear Parameter Estimation - Illustrative Example Using LS

Model

$$y = f(u, \Theta)$$

$$= \Theta_0 + \Theta_1 u + \Theta_2 u^2$$

$$= [1 u u^2][\Theta_0 \quad \Theta_1 \quad \Theta_2]^T$$

with true parameter values

$$[\Theta_0 \quad \Theta_1 \quad \Theta_2]^T = [2,3,2]^T$$

Measurements

$$\tilde{y} = y + \epsilon$$
, $\epsilon \sim N(0, 0.25^2)$

exp.	1	2	3	4	5	6
u	0	1	2	3	4	5
ỹ	1.98	7.16	16.1	28.9	46.4	66.7

Parameter estimation by LS

$$X = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \\ 1 & 5 & 25 \end{bmatrix}, \ \tilde{Y} = \begin{bmatrix} 1.98 \\ 7.16 \\ 16.1 \\ 28.9 \\ 46.4 \\ 66.7 \end{bmatrix}$$

• Obviously rank(X) = 3

$$\Rightarrow \widehat{\Theta} = (X^T X)^{-1} X^T \widetilde{Y}$$
$$= \begin{bmatrix} 1.98 \\ 3.16 \\ 1.96 \end{bmatrix} \approx \Theta$$

Note: Linear parameter estimation is the same as linear regression!

Linear Parameter Estimation – Weighted Least-Squares

Assumption in least-squares estimation:

normally distributed, Independent measurement errors with identical standard deviation

$$\widehat{\Theta} = \arg\min_{\Theta} ||Y - \widetilde{Y}||_2 = \arg\min_{\Theta} ||X\Theta - \widetilde{Y}||_2^2$$

Generalization... W weight matrix
$$X_W = WX$$
, $\tilde{Y}_W = W\tilde{Y}$

$$\widehat{\Theta} = \arg\min_{\Theta} \|X_{W}\Theta - \widetilde{Y}_{W}\|_{2} = \arg\min_{\Theta} \|X_{W}\Theta - \widetilde{Y}_{W}\|_{2}^{2}$$

Choice of weights?

 $W = \operatorname{diag}(\tilde{\sigma}_1^{-1} \cdots \tilde{\sigma}_n^{-1}), \ \tilde{\sigma}_i$ is standard deviation of measurement i

i.e. measurements with large $\tilde{\sigma}_i$ are less important, than those with low $\tilde{\sigma}_i$

Linear Parameter Estimation

Weighted least-squares (WLS)

$$\widehat{\Theta} = \arg\min_{\Theta} ||X_W \Theta - Y_W||_2 = \arg\min_{\Theta} ||X_W \Theta - Y_W||_2^2$$

Solution?

necessary condition:

$$\nabla_{\Theta} \| X_W \widehat{\Theta} - Y_W \|_2^2 = 0$$

$$\Leftrightarrow X_W^T X \widehat{\Theta} - X_W^T Y_W = 0$$

$$\Leftrightarrow \widehat{\Theta} = X_W^\dagger Y_W$$

where X_W^{\dagger} is the pseudoinverse of X_W

sufficient condition:

all eigenvalues of $\nabla_{\Theta}^2 \| X_W \widehat{\Theta} - Y_W \|_2^2 = X_W^T X_W$ are positive and real

$$\Leftrightarrow$$
 rank $(X_W) = n$

Lecture Outline

- What is a Parameter Estimation Problem?
- Linear Parameter Estimation
 - Least-Squares
 - Weighted Least-Squares
- Nonlinear Parameter Estimation
- Error-in-Variables Estimation
- Confidence Region
- Case Study: Challenges in Spectral Analysis
- Data Reduction Using Principal Component Analysis

Nonlinear Parameter Estimation

The model is **nonlinear in parameters** Θ , e.g. $y = f(u, \Theta)$:

Least squares estimation

$$\min_{\Theta} \sum_{i=1}^{m} \left(f(u_i, \Theta) - \tilde{f}(u_i) \right)^2$$

is an **optimization problem**, that must be (in general) solved **iteratively** with appropriate numerical methods

NCO:

$$\Rightarrow \sum_{i=1}^{m} \left(f(u_i, \Theta) - \tilde{f}(u_i) \right) \frac{\partial f(u_i, \Theta)}{\partial \Theta} = 0$$

It can provide local solutions!

Parameter 0

Lecture Outline

- What is a Parameter Estimation Problem?
- Linear Parameter Estimation
 - Least-Squares
 - Weighted Least-Squares
- Nonlinear Parameter Estimation
- Error-in-Variables Estimation
- Confidence Region
- Case Study: Challenges in Spectral Analysis
- Data Reduction Using Principal Component Analysis

Error-in-Variables Estimation (1)

- Not only the dependent output data y, but also the independent input data u are error-prone!
- Taking into account error in the inputs, the problem becomes implicit
 - ⇒ We cannot solve for corrupted variables in one step with WLS, only iteratively.

Error-prone output data
$$\tilde{y} = y + \epsilon_y$$

Error-prone input data
$$\tilde{u} = u + \epsilon_u$$

Unknown parameters
$$\Theta_0, \Theta_1$$

$$\tilde{y} = \Theta_0 + \Theta_1 \tilde{u} + \epsilon_y = \Theta_0 + \Theta_1 u + \Theta_1 \epsilon_u + \epsilon_y$$

⇒ We need a more general method that WLS, as it can cope only with error-prone outputs. The new method should work also in case of nonlinear parameter estimation!

Britt and Luecke, "The Estimation of Parameters in Nonlinear, Implicit Models", Technometrics, 1973

Error-in-Variables Estimation (2)

We combine the error-prone inputs u and outputs y to a single variable z

General setup:

$$g(z, \Theta) = 0$$

where

- $z \in \mathbb{R}^q$ are the measurable variables
- $\Theta \in \mathbb{R}^r$ are the unknown parameter
- $g: \mathbb{R}^{q+r} \to \mathbb{R}^s$ is the vector of well behaved system functions
- and $q \ge s > r$.

Well behaved: g_i , $\frac{\partial g_i}{\partial z_j}$, $\frac{\partial g_i}{\partial \Theta_j}$ are continuous, $\frac{\partial^2 g_i}{\partial z_j \partial \Theta_k}$ exist and are bounded

rank of Jacobian matrices $\operatorname{rank}(\nabla_z g(z, \Theta)) = s$ and $\operatorname{rank}(\nabla_\Theta g(z, \Theta)) = r$

The measurements \tilde{z} of z contain random experimental errors $\epsilon_z \sim N(0, \Sigma^2)$:

$$\tilde{z} = z + \epsilon_z$$

Error-in-Variables Estimation (3)

Since $\epsilon_z \sim N(0, R)$, the probability density function $p(\tilde{z}|z, \Theta)$ for the measurement vector becomes:

$$p(\tilde{z}|z,\Theta) = (2\pi)^{-\frac{q}{2}} |\Sigma|^{-1} e^{-\frac{1}{2}(\tilde{z}-z)^T \Sigma^{-2}(\tilde{z}-z)}$$

Goal: Find the "best" estimate $(\hat{z}, \widehat{\Theta})$ of true (z, Θ) for which holds that $g(\hat{z}, \widehat{\Theta}) = 0$.

The measurement \tilde{z} is the only information we have.

 \Rightarrow Idea: "for the "best" estimate $(\hat{z}, \widehat{\Theta})$ it must hold that the probability to get \tilde{z} as

measurement is maximal."

⇒ maximum likelihood estimate

Maximum Likelihood Estimate (1)

Probability density function

$$p(\tilde{z}|z,\Theta) = (2\pi)^{-\frac{q}{2}} |\Sigma|^{-1} e^{-\frac{1}{2}(\tilde{z}-z)^T \Sigma^{-2}(\tilde{z}-z)}$$

The likelihood function for the measurement \tilde{z} is defined as

$$L(\bar{z}, \overline{\Theta}) = p(\tilde{z}|\bar{z}, \overline{\Theta}) = (2\pi)^{-\frac{q}{2}} |\Sigma|^{-1} e^{-\frac{1}{2}(\tilde{z}-\bar{z})^T \Sigma^{-2}(\tilde{z}-\bar{z})}$$

where $(\bar{z}, \bar{\Theta})$ have to fulfill the equations $g(\bar{z}, \bar{\Theta}) = 0$.

The maximum likelihood estimate

$$\begin{split} \left(\hat{z}, \widehat{\Theta}\right)_{ML} &= \arg\max_{(\bar{z}, \overline{\Theta})} L(\bar{z}, \overline{\Theta}) \\ &= \arg\min_{(\bar{z}, \overline{\Theta})} \left((\tilde{z} - \bar{z})^T \Sigma^{-2} (\tilde{z} - \bar{z}) \right) \\ s. t. \quad g(\bar{z}, \overline{\Theta}) &= 0 \end{split}$$

⇒This is the "constrained" WLS!

Maximum Likelihood Estimate (2)

If the equation vector $g(\bar{z}, \overline{\Theta}) = 0$ has a unique solution \bar{z} for each $\overline{\Theta}$, the constrained minimization problem reduces to an unconstrained one with respect to $\overline{\Theta}$:

$$(\hat{z}, \widehat{\Theta})_{ML} = \arg\min_{\widehat{\Theta}} ((\tilde{z} - \bar{z})^T \Sigma^{-2} (\tilde{z} - \bar{z}))$$

Note: Solving the minimization problem is an iterative process, since \bar{z} has to be calculated from the implicit relation $g(\bar{z}, \bar{\Theta}) = 0!$

If in addition \bar{z} can be written as a explicit function of $\bar{\Theta}$, i.e. $\bar{z} = \bar{z}(\bar{\Theta})$, the estimation problem reduces to the standard nonlinear parameter estimation problem:

$$\widehat{\Theta} = \arg\min_{\overline{\Theta}} \left(\left(\widetilde{z} - \overline{z}(\overline{\Theta}) \right)^T \Sigma^{-2} \left(\widetilde{z} - \overline{z}(\overline{\Theta}) \right) \right)$$

Lecture Outline

- What is a Parameter Estimation Problem?
- Linear Parameter Estimation
 - Least-Squares
 - Weighted Least-Squares
- Nonlinear Parameter Estimation
- Error-in-Variables Estimation
- Confidence Region
- Case Study: Challenges in Spectral Analysis
- Data Reduction Using Principal Component Analysis

Quality of Parameter Estimation

Can we evaluate the "quality" of the model?

Some quality assessment criteria (... check more than one):

Parameter covariance matrix: propagation of measurement noise into parameter uncertainty data on estimates

⇒ no output errors ...

Confidence regions: the region in parameter space containing true parameters with a certain probability

⇒ visualization of parametric uncertainty ...

Goodness-of-fit test: prediction capabilities of the model with respect to measured outputs

⇒ difficult to verify test assumptions...

Confidence Region (1)

Consider a model

$$y_i = f(u_i, \Theta),$$

where the model parameter Θ are unknown, but the model structure f is known.

For parameter estimation there are m noisy measurement available:

$$\tilde{y}_i = y_i + \epsilon_i, \quad i = 1, ..., m, \quad \epsilon \sim N(0, \Sigma^2)$$

Goal: Instead of just determine a point estimate $\widehat{\Theta}$, we also want to determine a region, where the real parameter is situated with a given probability $(1 - \alpha)$.

 \Rightarrow these regions are called **confidence regions** Ω

Let $p(\Theta|\tilde{y})$ be the probability density function of Θ , based on the measurement vector \tilde{y} , then for Ω it must hold:

$$\int_{\Omega} p(\Theta|\tilde{y})d\Theta = 1 - \alpha$$

Confidence Region (2)

Approximation of Confidence Region (1)

In the parameter estimation case, the probability density function is

$$p(\Theta|\tilde{y}) = p(\tilde{y}|\Theta) = (2\pi)^{-\frac{m}{2}} |\Sigma|^{-1} e^{-\Phi(u,\Theta)},$$

where $\Phi(u, \Theta) = \frac{1}{2}(\tilde{y} - y)^T \Sigma^{-2}(\tilde{y} - y)$ and $y_i = f(u_i, \Theta)$.

The ML estimate is: $\widehat{\Theta}_{ML} = \arg \max_{\Theta} p(\widetilde{y}|\Theta) = \arg \min_{\Theta} \Phi(u,\Theta)$

 $J_{\Theta}(u,\Theta) := \nabla_{\Theta} \Phi(u,\Theta)$ $H_{\Theta}(u,\Theta) := \nabla_{\Theta}^{2} \Phi(u,\Theta)$

Taylor series expansion of $\Phi(u, \Theta)$ at fixed inputs u and $\widehat{\Theta}_{ML}$:

$$\Phi(u,\Theta) = \Phi(u,\widehat{\Theta}_{ML}) + J_{\Theta}(u,\widehat{\Theta}_{ML})(\Theta - \widehat{\Theta}_{ML}) + \frac{(\Theta - \widehat{\Theta}_{ML})^T H_{\Theta}(u,\widehat{\Theta}_{ML})(\Theta - \widehat{\Theta}_{ML})}{2} + \cdots$$

since $J_{\Theta}(u, \widehat{\Theta}_{ML}) = 0$ according to necessary conditions of optimality and we assume to analyze a neighborhood of $\widehat{\Theta}_{ML}$, where 3^{rd} and higher order derivatives are negligible.

$$\Phi(u,\Theta) \approx \Phi(u,\widehat{\Theta}_{ML}) + \frac{(\Theta - \widehat{\Theta}_{ML})^T H_{\Theta}(u,\widehat{\Theta}_{ML})(\Theta - \widehat{\Theta}_{ML})}{2}$$

Approximation of Confidence Region (2)

Then the probability density function can be approximated by

$$p(\Theta|\tilde{y}) \approx (2\pi)^{-\frac{m}{2}} |\Sigma|^{-1} e^{-\left(\Phi(u,\widehat{\Theta}_{ML}) + \frac{\Delta\Theta^T H_{\Theta}(u,\widehat{\Theta}_{ML})\Delta\Theta}{2}\right)}$$

where $\Delta\Theta \coloneqq (\Theta - \widehat{\Theta}_{ML})$.

The smallest region Ω , which fulfills

$$\int_{\Omega} p(\Theta|\tilde{y})d\Theta = 1 - \alpha$$

is now an **ellipsoid with center in** $\widehat{\Theta}_{ML}$:

$$\Omega = \left\{ \Theta \in \mathbb{R}^r | \Delta \Theta^T H_{\Theta} (u, \widehat{\Theta}_{ML}) \Delta \Theta \le \beta \right\}$$

where β is a function dependent on α and the covariance Σ^2 .

Parameter Precision (1)

The Θ on the border of the confidence ellipse fulfills the equation

$$\Delta\Theta^T H_{\Theta}(u, \widehat{\Theta}_{ML}) \Delta\Theta = \Phi(u, \Theta) - \Phi(u, \widehat{\Theta}_{ML}) = \beta$$

 $H_{\Theta}(u, \widehat{\Theta}_{ML})$ determines the curvature of $\Phi(u, \widehat{\Theta}_{ML})$ at $\widehat{\Theta}_{ML}$:

Parameter Precision (2)

- $H_{\Theta}(u, \widehat{\Theta}_{ML})$ and β determine $\Delta\Theta$: for given β , a larger Hessian results in smaller $\Delta\Theta$
- High parameter precision requires a small $\Delta\Theta$ and thus a small confidence region.

Confidence Region, Eigenvalues and Eigenvectors

Eigenvalue decomposition

$$H_{\Theta}(u,\widehat{\Theta}_{ML}) = V \begin{bmatrix} \lambda_1 & 0 \\ 0 & \ddots \\ 0 & \lambda_r \end{bmatrix} V^{-1}$$
, where the i^{th} column of V is the

eigenvector v_i

- Axis i of the confidence ellipsoid is characterized by
 - orientation → eigenvector v_i
 - length → eigenvalue λ_i and β

• For a given β , the extension of the confidence region can be measured by the eigenvalues λ_i of $H_{\Theta}(u, \widehat{\Theta}_{ML})$.

Lecture Outline

- What is a Parameter Estimation Problem?
- Linear Parameter Estimation
 - Least-Squares
 - Weighted Least-Squares
- Nonlinear Parameter Estimation
- Error-in-Variables Estimation
- Confidence Region
- Case Study: Challenges in Spectral Analysis
- Data Reduction Using Principal Component Analysis

Case Study - Challenges in Spectral Analysis

Challenges for calibration models:

Molecular interaction

Reactive Mixtures

Temperature changes

Variable properties of measurement devices

Nonlinear spectral effects

Single- and Multi-Component Mixture Spectra

Raman spectrum – the Raman light scattering intensity in arbitrary units as a function of the wave number.

Pure component spectrum j:

 $\Rightarrow S_i^*(v, \Theta)$ is nonlinear in parameters Θ

N-component mixture spectrum:

 $\Rightarrow S(v) = \sum_{j=1}^{n} \alpha_i S_j^*(v, \Theta)$ is linear combination of nonlinear function

Case Study: Spectral Analysis

Goal: Be able to infer from measurements of the mixture spectrum S the concentrations x_i of the components j in the mixture.

 \Rightarrow Calibrate the model: Use reference measurements of S, where the concentrations x_j are known, to estimate the model parameter

Case Study: Univariate Calibration – First Method

- Measure n pure component spectra S_i^* and one mixture spectrum S.
- Assume linear superposition (ideal mixing according to Lambert-Beer law)
- Weights α_i could be estimated from spectra S_i^* and S_i^* by WLS:

$$\min_{\alpha} \left(\left\| S(v) - \sum_{j=1}^{n} \alpha_{j} S_{j}^{*}(v) \right\|_{2} \right)$$

Objective: Determine the relationship between the fitted weights α_j and mixture concentrations x_j , j=1,...,n

Assumption (Lambert-Beer):

All
$$\frac{x_j}{x_i}$$
 depend linearly on $\frac{\alpha_j}{\alpha_i}$ i.e. $\frac{\alpha_j}{\alpha_i} K_{j,i}^{cali} = \frac{x_j}{x_i}$, $j, i \in \{1, ..., n\}$

The parameter $K_{j,i}^{cali}$ can now be used to determine the concentrations x_j of an unknown mixtures out of a spectrum S(v):

- 1. Solve the optimization problem for the measured spectrum to get the weights α_i
- 2. Use the equations $\frac{\alpha_j}{\alpha_i} K_{j,i}^{cali} = \frac{x_j}{x_i}$ and $\sum_{j=1}^n x_j = 1$ to get the concentrations x_j

Case Study: Multivariate Calibration – Second Method

- In reality, it is not possible to measure continuous spectra S(v)
- \Rightarrow measure the intensity of a mixture spectrum $S(v_i)$ at m discrete wave numbers v_i

Assumption: The concentrations x_j can be written as a linear combination of the intensities of the spectrum at the m discrete wave numbers, i.e.

$$x_j = \sum_{k=1}^m b_{k,j} S(v_k)$$

• For calibration l mixture spectra S_k , k=1,...,l are measured, where the concentration $x_{j,k}$ are known for all components j=1,...,n

Case Study: Multivariate Calibration – Second Method

Solve

$$\min_{\Theta}(\|Y - X\Theta\|_2)$$

$$\Rightarrow \Theta = \left(\mathbf{X}^{\mathrm{T}}\mathbf{X}\right)^{-1}X^{T}Y$$

Problems:

- X is a large matrix with $l \ge m$ (l number of measurements, m number of wavenumbers)
- Strong collinearity in X, because only n components influence the spectra
 - \Rightarrow Condition number of X is very large
 - ⇒ ill-posed problem

Idea: Reduce the dimension of the matrix by a skillful selection of a new coordinate system.

Lecture Outline

- What is an Parameter Estimation Problem?
- Linear Parameter Estimation
 - Least-Squares
 - Weighted Least-Squares
- Nonlinear Parameter Estimation
- Error-in-Variables Estimation
- Confidence Region
- Case Study: Challenges in Spectral Analysis
- Data Reduction Using Principal Component Analysis

Data Reduction with Principle Component Analysis

Consider two component mixture spectrum with $rank(\Theta) = 2$ and measurements $S_k(v_i)$, i = 1,2 and k = 1,...,l:

Identify a new coordinate system alongside the largest variants in the data

⇒ Principle Component Analysis (PCA)

Principle component (PC) are **right singular vectors** of the matrix *X*.

SVD of
$$X$$
:
$$X = \underbrace{U \mathrm{diag}(\sigma)}_{=:T} V^T = TV^T$$
 where $T^T T = diag(\sigma) U^T U diag(\sigma) = \mathrm{diag}(\sigma^2)$ and $V^T V = I$

Note: The singular values tell us, how much information is contained in a PC

Illustration of Principle Component Analysis

Select those PC which correspond to large singular values, cf. truncated SVD

(Reusken, section 3.2):

$$X_{red} = T_{red} V_{red}^T$$

 T_1 contains the main information

T₂ contains only measurement signal noise and can be neglected

Binary spectral data with two correlated intensities is reduced to one dimension. In general, spectral matrices can be represented in (n-1)-dimensional spaces!

Calibration by Principle Component Regression (PCR)

Idea: Identify the model parameters Θ in the reduced space X_{red}

$$\min_{\Theta}(\|Y - X_{red}\Theta_{red}\|_2)$$

$$\Rightarrow \Theta_{red} = (X_{red}^T X_{red})^{-1} X_{red}^T Y$$
$$= V_{red} (T_{red}^T T_{red})^{-1} T_{red}^T Y$$

Since $X_{red} \approx X$, the identified model parameters θ_{red} are a good approximation of Θ .

Advantage:

- $T_{red} \in \mathbb{R}^{l \times (n-1)}$, where X and $X_{red} \in \mathbb{R}^{l \times m}$ with $m \ge n$
- $cond(T_{red}) = cond(X_{red}) < cond(X)$, because the smallest singular values of X are not taken into account

Capturing Nonlinearity – Indirect Hard Modeling

PCR requires a linear spectral model, but nature is nonlinear

Spectral shifts

parameters $\Theta_{S,j}$

Peak variations

parameters $\Theta_{P,j}$ (position, intensity, width, shape)

Baseline effects

parameters Θ_B

Full spectral model: $S(v, \alpha, \Theta) = B(v, \Theta_B) + \sum_{j=1}^{n} \alpha_j S_j^* (v, \Theta_{S,j}, \Theta_{P,j})$

Spectral model is **nonlinear in 0**,

where $\Theta := [\Theta_B^T, \Theta_S^T, \Theta_P^T]^T$

⇒ Nonlinear parameter estimation

Review questions

- Why is the parameter estimation an inverse problem?
- Explain Least Squares Method (LS) using an example!
- What is the main difference between LS and Weighted LS?
- In what sense and under which conditions is the WLS-estimate optimal?
- Explain the method of data reduction by PCA!
- Explain the "Constrained" WLS!
- What is confidence region?

