

WINE QUALITY PREDICTION MODELLING

-Ankita Sarawgi

Introduction

- Relationship between the chemical properties of wine and its quality
- UCI machine learning repository
- 2 datasets; Red & White variants of Portuguese wine

Number of instances; Red wine: 1599, White wine: 4898

- 11 Attributes + 1 output
- Output: Sensory data (0=very bad) (10=Excellent)

Median of evaluations by wine experts

Scope And Limitation

Usage: Oenologist wine tasting evaluation

Improve production

Controlled pricing

- Opinions of different experts (Not a science)
- Approach: Project divided into two parts
 - Data exploration and preparation
 - Model setup and prediction

Data Exploration

Analyzing relationship

Features	Impact
Fixed Acidity	Medium(+ve)
Volatile Acidity	Medium(-ve)
Citric acid	Not significant
Residual Sugar	Not significant
Chlorides	Medium(-ve)
Free SO ₂	Not significant
Total SO ₂	Medium(-ve)
Density	Low(-ve)
рН	Low(+ve)
Sulphates	Not Significant
Alcohol	High(+ve)

Correlated Features

Correlation coefficient matrix

[[1 .62] [.62 1]]

Datasets and Modelling

Decision Tree Regressor

San	nole	set
Juli	IPIC	3C1

Alcohol	9.8	9.8	9.8	9.8	9.8	9.9	9.9	9.9	9.9	9.9	10	10	10	10	10	10
Quality	5	5	5	5	5	5	6	6	6	6	6	5	7	7	6	7
✓ Case 1																
Alcohol	9.8	9.8	9.8	9.8	9.8	9.9	9.9	9.9	9.9	9.9	10	10	10	10	10	10
SSE = 10																
Predicted	5	5	5	5	5	5	5	5	5	5	7	7	7	7	7	7
Actual	5	5	5	5	5	5	6	6	6	6	6	5	7	7	6	7
SSE = 5																
Predicted	5	5	5	5	5	6	6	6	6	6	6	6	6	6	6	6
Actual	5	5	5	5	5	5	6	6	6	6	6	5	7	7	6	7

Decision Tree Continued....

- For each independent variable, multiple split points are selected
- Lowest yielding SSE split point/node is selected
- Similar process recursively continued
- A number of parameters to be considered : Best/random splitting strategies

Max depth

Max features

- Two parameters greatly affect results: Min sample split & Min leaves
- Considered 36 different scenarios to arrive at the parameter values that gives us the best results

Results

- Different evaluation methods exist for evaluation of Regression problems: MAE, RMSE, R^2, Accuracy percent
- Testing on the remaining data
- RMSE values on the test data

Red_wine: .4461

New_red: .4457

White_wine: .6431

New_white: .6528

Conclusion

- The low RMSE value suggests the models quite accurately predicts the wine quality score based on the chemical properties of wine
- Gives a fairly basic idea to assist in the production and pricing process