Solutions week 9

Simon Elias Schrader

November 1, 2024

1 Diskusjonsoppgaver

- Q14.7 Fluorescens skjer når et molekyl relakserer fra en eksitert tilstand med spin S ned til en eksitert tilstand med samme spin S. I fosforscens er det en endring av spin S til S'. Vi kan for eksempel ha en fluoroscent overgang fra første eksiterte singlett tilstand S_1 til grunntilstanden S_0 , i tillegg til en fosforescent overgang fra den første eksiterte tripletttilstanden T_1 til singlettilstanden S_0 . Overganger der spin endres, er spin-forbudte, og krever at det er en ikke-neglesjerbar spin-bane-kobling. Men de er fortsatt usannsynlige og tar lang tid i samme tid kan det skje konkurrerende, fluoroscente overganger. Derfor er fluoroscens vanligere.
- Q14.16 Seleksjonsreglene krever at $\Delta\Lambda$ er lik 0 eller ± 1 . Vi krever også at $\Delta S=0$. For homonuklære molekyler kreves det tillegg at $u\to g$ eller at $g\to u$. Det er derfor bare overgangen til $A^2\Pi_u$ som er tilltatt.
- $-^{1}\Sigma$: $m_l = 0$ og S = 0 betyr at det er èn tilstand.
 - $-{}^{3}\Sigma_{q}^{-}$: Triplettilstand med $|M_{L}|=0$: 3 tilstander.
 - ²Π: Doblettilstand med $|M_L| = 1$: $2 \times 2 = 4$ tilstander.
 - $-^{2}\Delta$: Doblettilstand med $|M_L|=2$: $2\times 2=4$ tilstander.
- Q14.21 Om vi antar at molekylet er i en vibrasjonell gruntillstand og at den ekisterte tilstanden ikke kan deles opp i flere vibrasjonelle tilstander, et det bare én linje vi forventer å se.

2 Regneoppgaver gjort av meg

• We calculate the wavelength by $\lambda = \frac{1}{\nu}$. This gives

$$\lambda_1 = \frac{1}{7918} \text{ cm} = \frac{1}{7918} \cdot 10^7 \text{ nm} = 1263 \text{ nm}$$

$$\lambda_2 = \frac{1}{13195} \text{ cm} = \frac{1}{13195} \cdot 10^7 \text{ nm} = 758 \text{ nm}$$

den første overgangen er en $\Lambda=0$ til $\Lambda=2$ overgang, som er forbudt, så vi observerer bare overagangen med bølgelgende λ_2 .

• Dette koker til syvende og sist ned til å løse integralet. Vi får

$$\psi_{g,0}^* \psi_{e,0} = \left(\frac{\alpha}{\pi}\right)^{1/2} e^{-\alpha r^2 + \alpha \delta r - \frac{1}{2}\alpha \delta^2}$$

slik at integralet blir

$$\left|\int_{-\infty}^{\infty} \psi_{g,0}^* \psi_{e,0} \, dr\right|^2 = \frac{\alpha}{\pi} e^{-\alpha \delta^2} \left(\int_{-\infty}^{\infty} e^{-\alpha r^2 + \alpha \delta r} dr\right)^2 = \frac{\alpha}{\pi} e^{-\alpha \delta^2} \left(\left(\frac{\pi}{\alpha}\right)^{1/2} e^{\alpha^2 \delta^2/(4\alpha)}\right)^2 = e^{-1/2\alpha \delta^2}$$

1