

SC20 硬件设计手册

LTE 系列

版本: SC20_硬件设计手册_V1.1

日期: 2016-04-27

移远公司始终以为客户提供最及时、最全面的服务为宗旨,如需任何帮助,请随时联系我司上海总部,联系方式如下:

上海移远通信技术有限公司

上海市徐汇区田州路 99 号 13 幢 501 室 电话: +86 21 51086236

邮箱: info@quectel.com

或联系我司当地办事处,详情请登录:

http://www.quectel.com/support/salesupport.aspx

如需技术支持或反馈我司技术文档中的问题,可随时登陆如下网址:

http://www.quectel.com/support/techsupport.aspx

或发送邮件至: Support@quectel.com

前言

移远公司提供该文档内容用以支持其客户的产品设计。客户须按照文档中提供的规范,参数来设计其产品。由于客户操作不当而造成的人身伤害或财产损失,本公司不承担任何责任。在未声明前,移远公司有权对该文档规范进行更新。

版权申明

本文档手册版权属于移远公司,任何人未经我公司允许复制转载该文档将承担法律责任。

版权所有 ©上海移远通信技术股份有限公司 2016, 保留一切权利。

Copyright © Quectel Wireless Solutions Co., Ltd. 2016.

文档历史

修订记录

版本	日期	作者	变更表述
1.0	2016-03-14	高玉全	初始版本
1.1	2016-04-27	张剑楠	1. 更新射频接受灵敏度 2. 更新工作温度

目录

文林	当历史			2
目表	表			3
表材	各索引			5
图片	十索引			7
1	引言			9
2				
_	2.1.			
	2.2.		性能	
	2.3.		——— 框图	
	2.4.		板	
3	应用接	口		15
	3.1.	概述		15
	3.2.	管脚	分配	15
	3.3.	管脚	描述	17
	3.4.	供电	电源	26
	3.	4.1.	电源接口	26
	3.	4.2.	减少电压跌落	26
	3.	4.3.	供电参考电路	27
	3.5.	开关	机	
	3.	5.1.	模块开机	28
	3.	5.2.	模块关机	30
	3.6.	VRT	℃接口	30
	3.7.	电源	输出	31
	3.8.		和电池管理	
	3.9.	USB	接口	33
	3.10.		T接口	
	3.11.	USIN	∥ 卡接口	36
	3.12.	SDIC)接口	38
	3.13.)接口	
	3.14.		妾口	
	3.15.		接口	
	3.16.		驱动接口	
			接口	
	3.18.		屏接口	
			头接口	
			后摄像头	
			前摄像头	
			设计注意事项	
	3.20.		sor 设计	
	3.21.	音频	接口	52

	3.21.1. 麦克风接口参考	53
	3.21.2. 听筒接口参考	53
	3.21.3. 耳机接口参考	54
	3.21.4. 扬声器接口参考	54
	3.21.5. 音频信号设计注意事项	55
	3.22. 紧急下载接口	55
4	WiFi 和 BT	56
	4.1. WiFi 概述	56
	4.1.1. WiFi 性能指标	56
	4.2. BT 概述	57
	4.2.1. BT 性能指标	58
5	GNSS	59
	5.1. GNSS 性能指标	59
	5.2. GNSS 射频设计指导	
6	天线接口	60
	6.1. MAIN 天线/DRX 天线接口	
	6.1.1. 管脚定义	
	6.1.2. 工作频段	
	6.1.3. 射频参考电路	
	6.2. WiFi/BT 天线接口	
	6.3. GNSS 天线接口	63
	6.3.1. 无源天线参考设计	63
	6.3.2. 有源天线参考设计	64
	6.4. 天线安装	64
	6.4.1. 天线安装要求	64
	6.4.2. RF 连接器	65
7	电气、可靠性及射频性能	67
	7.1. 极限参数	67
	7.2. 电源额定值	67
	7.3. 充电参数	68
	7.4. 工作温度	68
	7.5. 工作电流	69
	7.6. 射频发射功率	71
	7.7. 射频接收灵敏度	72
	7.8. 静电放电	73
8	物理尺寸	74
	8.1. 模块物理尺寸	74
	8.2. 推荐封装	76
	8.3. 模块俯视及底视图	77
9	存储和生产	78
	9.1. 存储	78

	9.2.	生产焊接	78
	9.3.	包装	.79
10	W な ₩	参考文档	Ω1
		<i>参与</i> 文付	
		GPRS 多时隙	
		EDGE 调制和编码方案	

表格索引

表 1:	支持频段	10
表 2:	主要性能参数	.11
表 3:	I/O 参数定义	17
表 4:	管脚描述	17
表 5:	电源描述	31
表 6:	USB 管脚定义	33
表 7:	模块内部 USB 走线长度	34
表 8:	串口管脚定义	35
表 9:	USIM 卡接口管脚描述	36
表 10:	SD 卡管脚说明	38
表 11:	模块内部 SDIO 走线长度	39
	GPIO 口列表	
表 13:	I2C 管脚定义	42
表 14:	ADC 管脚定义	42
表 15:	马达管脚定义	43
表 16:	LCM 管脚说明	43
	TP 管脚定义	
表 18:	后摄像头管脚定义	47
表 19:	前摄像头管脚定义	48
表 20:	模块内部 MIPI 走线长度	50
表 21:	控制管脚说明	51
表 22:	音频管脚定义	52
表 23:	WIFI 的发射性能	56
表 24:	WIFI 的接收性能	57
表 25:	BT 速率和版本信息	57
表 26:	BT 发射和接收性能指标	58
表 27:	GNSS 性能	59
表 28:	MAIN 天线/DRX 天线管脚定义	60
表 29:	模块工作频段	60
表 30:	WIFI/BT 天线管脚定义	62
表 31:	模块工作频段	62
表 32:	GNSS 天线管脚定义	63
表 33:	GNSS 工作频段	63
表 34:	天线要求	64
表 35:	极限参数	67
表 36:	模块电源额定值	67
表 37:	充电参数	68
表 38:	工作温度	68
表 39:	工作电流	69
	模块射频发射功率	
表 41:	模块射频接收灵敏度	72

表 42:	ESD 性能参数(JESD22-A114-F, 温度: 25℃, 湿度: 45%)	73
表 43:	卷盘包装	80
表 44:	参考文档	81
表 45:	术语缩写	81
表 46:	不同编码方案	85
表 47:	不同等级的多时隙分配表	86
表 48:	EDGE 调制和编码方式	87

图片索引

图	1:	功能框图	14
图	2:	管脚分配图(俯视图)	16
图	3:	电源电压跌落示例	27
图	4:	VBAT 输入参考电路	27
图	5:	供电输入参考设计	28
图	6:	开集驱动参考开机电路	28
图	7:	按键开机参考电路	29
图	8:	开机时序图	29
图	9:	关机时序图	30
图	10:	可充电纽扣电池给 RTC 供电	30
图	11:	电容给 RTC 供电	31
图	12:	电池连接示意图	32
图	13:	USB 接口参考设计(不支持 OTG)	33
图	14:	USB 接口参考设计(支持 OTG)	34
图	15:	电平转换参考电路	35
图	16:	RS232 电平转换参考电路	36
图	17:	8-PIN USIM 卡座参考电路图	37
图	18:	6-PIN USIM 卡座参考电路图	37
图	19:	SD 卡接口设计参考	39
图	20:	马达连接电路	43
图	21:	LCM 电路	45
图	22:	背光驱动电路	45
图	23:	TP 参考电路	46
图	24:	后 CAMERA 参考电路	48
图	25:	前 CAMERA 参考电路	49
图	26:	麦克风通道接口电路	53
图	27	听筒输出接口电路	53
图	28	耳机接口电路	54
图	29	扬声器接口电路	54
图	30	紧急下载接口参考电路	55
图	31:	射频参考电路	61
图	32:	WIFI/BT 天线参考电路	62
图	33:	无源天线参考电路	63
图	34:	有源天线参考电路	64
图	35:	UF.L-R-SMT 连接器尺寸	65
图	36:	UF.L-LP 连接线系列	66
图	37:	安装尺寸	66
图	38:	SC20 俯视及侧视图尺寸	74
图	39:	SC20 底层尺寸(俯视图)	75
图	40:	推荐封装(俯视图)	76
图	41:	模块俯视图	77

图 42:	模块底视图	. 77
	回流焊温度曲线	
	卷带尺寸(单位:毫米)	
	卷 母尺寸	70

1 引言

本文档定义了SC20模块的硬件接口规范,电气特性和机械规范。通过此文档的帮助,结合我们的应用手册和用户指导书,客户可以快速应用SC20模块于无线应用。

通过遵循以下安全原则,可确保个人安全并有助于保护产品和工作环境免遭潜在损坏。产品制造商需要将如下的安全须知传达给终端用户。若未遵守这些安全规则,Quectel不会对用户错误的使用承担责任。

道路行驶安全第一! 当你开车时,请勿使用手持移动终端设备,即使其有免提功能。请先停车,再打电话!

登机前请关闭移动终端设备。移动终端的无线功能在飞机上禁止开启用以防止对飞机通讯系统的干扰。忽略该提示项可能会导致飞行安全,甚至触犯法律。

当在医院或健康看护场所,注意是否有移动终端设备使用限制。RF干扰会导致医疗设备运行失常,因此可能需要关闭移动终端设备。

移动终端设备并不保障任何情况下都能进行有效连接,例如在移动终端设备没有话费或SIM无效。当你在紧急情况下遇见以上情况,请记住使用紧急呼叫,同时保证您的设备开机并且处于信号强度足够的区域。

您的移动终端设备在开机时会接收和发射射频信号。当靠近电视,收音机电脑或者 其他电子设备时都会产生射频干扰。

请将移动终端设备远离易燃气体。当你靠近加油站,油库,化工厂或爆炸作业场所, 请关闭移动终端设备。在任何有潜在爆炸危险场所操作电子设备都有安全隐患。

2 产品概念

2.1. 综述

SC20是一款基于高通平台、工业级高性能、可运行安卓操作系统的4G智能模块,支持LTE-FDD/LTE-TDD/WCDMA/TD-SCDMA/EVDO/CDMA/GSM等多种制式;支持WiFi 802.11b/g/n,BT4.1 LE近距离无线通信,支持GPS/GLONASS/北斗多种制式卫星定位;支持多种语音和音频编解码器,内部集成AdrenoTM 304高性能图形引擎,可以流畅播放720P视频;拥有多个音频、视频输入输出接口和丰富的GPIO接口。

SC20模块支持多种制式和多个频段,对应的频段和制式参考如下:

表 1: 支持频段

类型	频段
LTE-FDD	B1/B3/B8
LTE-TDD	B38/B39/B40/B41
WCDMA	B1/B8
TD-SCDMA	B34/B39
EVDO/CDMA	BC0
GSM	900/1800MHz
WiFi 802.11b/g/n	2402-2482MHz
BT4.1 LE	2402-2480MHz
GNSS	GPS/GLONASS/北斗

SC20是贴片式模块,共有210个管脚,包括146LCC管脚和64LGA管脚。尺寸仅有40.5mm×40.5mm×2.8mm,可以通过焊盘内嵌于各类M2M产品应用中,非常适合开发车载电脑、多媒体终端、智能家居、物联网终端等移动设备。

2.2. 主要性能

下表描述了 SC20 详细的性能参数:

表 2: 主要性能参数

性能	说明
	四核 ARM Cortex-A7 处理器
应用处理器	主频最高至 1.1 GHz
	512kB 2 级缓存
	QDSP6 v5内核
多媒体处理器	工作频率691.2MHz
	768KB L2
存储	8GB EMMC+8Gb LPDDR3
操作系统	Android OS 5.1
供电	VBAT供电电压范围: 3.5V~4.2V
供电	典型供电电压: 3.8V
	Class 4 (33dBm±2dB) for EGSM900
	Class 1 (30dBm±2dB) for DCS1800
	Class E2 (27dBm±3dB) for EGSM900 8-PSK
	Class E2 (26dBm±3dB) for DCS1800 8-PSK
发射功率	Class 3 (24dBm+1/-3dB) for WCDMA bands
	Class 3 (24dBm±1dB) for CDMA BC0
	Class 3 (24dBm+1/-3dB) for TD-SCDMA bands
	Class 3 (23dBm ±2dB) for LTE FDD bands
	Class 3 (23dBm ±2dB) for LTE TDD bands
	支持 3GPP R9 CAT4 FDD and TDD
LTE 特性	支持 1.4 - 20 MHz 射频带宽
	支持下行 2x2MIMO
	最大 150Mbps (DL), 50Mbps (UL)
	支持 3GPP R9 DC-HSPA+
WCDMA 特性	支持 16-QAM, 64-QAM and QPSK modulation
VVODIVII (1) III	3GPP R6 HSUPA: Max 11Mbps (UL)
	3GPP R9 DC-HSPA+: Max 42Mbps (DL)
TD-SCDMA 特性	支持 3GPP R8 1.28 TDD
	最大 4.2Mbps (DL), 2.2 Mbps (UL)
CDMA 特性	最大 3.1Mbps (DL), 1.8 Mbps (UL)
GSM/GPRS/EDGE	GPRS:
特性	支持GPRS multi-slot class 33
JA ITY	编码格式: CS-1, CS-2, CS-3和CS-4
	細時伶式: US-1, US-2, US-3和US-4

	每帧最大 4 个 Rx 时隙 EDGE: 支持EDGE multi-slot class 33 支持GMSK和8-PSK
WLAN 特性	2.4G 单频段,支持802.11b/g/n,最高至150Mbps 支持AP 模式
Bluetooth 特性	BT4.1 LE
卫星定位	GPS/GLONASS/北斗
短消息 (SMS)	Text与PDU模式 点到点MO和MT SMS广播 SMS存储:默认SIM
AT 命令	符合3GPP TS 27.007, 27.005并有新增Quectel的AT命令
LCM 接口	4组MIPI_DSI,每组最高支持1.5Gbps 速率 支持WVGA(2 组 MIPI_DSI),最高支持720p(4 组 MIPI_DSI) 24bit 色彩深度
摄像头接口	使用MIPI_CSI,每组最高支持1.5Gbps速率,可支持2个摄像头后摄像头使用2 组 MIPI_CSI,最高支持8MP像素前摄像头使用1 组 MIPI_CSI,最高支持2MP像素
音频接口	音频输入: 2 组模拟麦克风输入,集成内部偏置 音频输出: AB 类立体声耳机输出 AB 类差分听筒输出 D 类差分扬声器功放输出
USB 接口	支持USB2.0高速模式,数据传输速率最大480Mbps 用于 AT 命令,数据传输,软件调试和软件升级等 支持 USB OTG(需外加 5V 供电芯片) 驱动: 支持Windows XP,Windows Vista,Windows 7,Windows 8, Windows CE5.0/6.0*,Linux 2.6/3.0,Android 2.3/4.0/4.2
USIM 卡接口	2 组USIM卡接口 支持USIM/SIM卡: 1.8V和2.95V 支持双卡双待(需软件支持)
UART 接口	2 组串口 一组支持RTS,CTS 硬件流控的四线串口 一组用于 Debug 的两线串口 最高速率至4Mbps
SDIO 接口	支持SD3.0; 4bit SDIO; SD 卡 支持热插拔
I2C 接口	3组I2C,最高速率至3.4Mbps(High speed),用于TP、Camera、Senso 等外设

ADC 接口	3路,用于输入电压检测、电池温度检测及通用ADC
实时时钟	支持
天线接口	MAIN 天线、DRX 天线、GNSS 天线、WIFI/BT 天线接口
物理特征	尺寸: 40.5±0.15 × 40.5±0.15 × 2.8±0.2 mm 接口: LCC 重量: 9.6g
温度范围	正常工作温度: -35°C ~ +75°C ¹⁾ 扩展工作温度: -40°C ~ +85°C ²⁾ 非工作温度: 小于-40°C 和 大于+85°C ³⁾
软件升级	通过USB
RoHS	符合RoHS标准

备注

- 1. 1) 表示当模块工作在此温度范围时,模块的相关性能满足 3GPP 标准要求。
- 2. ²⁾ 表示当模块工作在此温度范围时,模块仍具备语音、短信、紧急呼叫等功能,不会出现不可恢复的故障;射频频谱、网络基本不受影响,仅输出功率等参数的值会降低或超出标准的范围。
- 3. ³⁾ 表示当模块工作在此温度范围时,考虑温度测试时的不确定性及模块的差异性,在此描述温度范围 限值的 2℃温度误差内,模块可能会关机。
- 4. *表示此功能当前在研发中。

2.3. 功能框图

下图为SC20功能框图,阐述了其主要功能:

- 电源管理
- 射频部分
- 基带部分
- LPDDR3+EMMC 存储器
- 外围接口
 - --USB 接口
 - --USIM 卡接口
 - --UART 接口
 - --SDIO 接口
 - --I2C 接口
 - --ADC 接口
 - --LCD(MIPI)接口
 - --TP 接口

- --CAM(MIPI)接口
- --AUDIO 接口

图 1: 功能框图

2.4. 开发板

为了有助于测试及使用 SC20 模块,移远公司提供一套开发板。开发板工具包括 SMART-EVB 板、RS-232 转 USB 线、USB 线、耳机及天线等,详细信息请参考*文档 [2]*。

3 应用接口

3.1. 概述

SC20共有146个1.0mm间距的SMT焊盘,以及64个内圈焊盘。以下章节详细阐述了模块各组接口的功能:

- 电源供电
- VRTC接口
- LCM接口
- TP接口
- 摄像头接口
- 音频接口
- USB接口
- USIM接口
- UART接口
- SDIO接口
- I2C接口
- ADC接口

3.2. 管脚分配

SC20 模块管脚分配图:

图 2: 管脚分配图 (俯视图)

3.3. 管脚描述

表 3: I/O 参数定义

类型	描述
Ю	输入/输出
DI	数字输入
DO	数字输出
PI	电源输入
PO	电源输出
Al	模拟输入
AO	模拟输出
OD	漏极开路

SC20 的管脚功能及电气特性描述如下表所示:

表 4: 管脚描述

电源					
管脚名称	管脚号	I/O	描述	DC 特性	备注
VBAT_BB	1,2	PI	模块基带电源	Vmax=4.2V Vmin=3.5V Vnorm=3.8V	电源必须能够提供达 3A
VBAT_RF	145,146	PI	模块射频电源	Vmax=4.2V Vmin=3.5V Vnorm=3.8V	- 的电流,建议外部加齐 纳二极管作浪涌保护
VRTC	126	PI/PO	RTC 接口	VOmax=3.2V VBAT 无连接时: V _I =2.0V~3.25V I _{IN} max=130uA	不用则悬空
LDO5_1V8	111	РО	输出 1.8V	Vnorm=1.8V I _O max=20mA	仅用于 IO 口上拉和电 平转换,不用于外设供 电

LDO6_1V8	125	РО	输出 1.8V	Vnorm=1.8V I _O max=100mA	提供外部接口电源, 用时需要外部并联 2.2uF~4.7uF 电容, 用则悬空	
LDO17_2V85	129	РО	输出 2.85V	Vnorm=2.85V I _O max=300mA	提供外部接口电源,用时需要外部并联 2.2uF~4.7uF电容, 用则悬空	
SD_LDO11	38	РО	SD 卡供电电源	Vnorm=2.95V I _O max=600mA		
SD_LDO12	32	РО	输出 1.8V/2.95V	Vnorm=2.95V I _O max=50mA	仅供 SD 卡上拉	
GND	3,7,12, ,51,62, ,78,85, ,89,120 130,13 ,140,14 4,147- 60-178 182,18 ,188,18 2,193, 00,201 209	69,76 86,88 0,122, 2,135 43,14 150,1 8,180- 4-186 39,19 198,2	地			
音频接口						
管脚名称	管脚号	I/O	描述	DC 特性	备注	
MIC1P	4	Al	主麦克风输入正极			
MIC_GND	5		MIC 地			
MIC2P	6	AI	耳机 MIC 输入			
EARP	8	AO	听筒输出正极			
EARN	9	AO	听筒输出负极			
SPKP	10	AO	扬声器输出正极			
SPKN	11	AO	扬声器输出负极			

HPH_R	136	АО	耳机右声道		
HPH_GND	137		耳机虚拟地		
HPH_L	138	AO	耳机左声道		
HS_DET	139	Al	耳机插入检测		默认高电平
USB 接口					
管脚名称	管脚号	I/O	描述	DC 特性	备注
USB_VBUS	141,142	PI	USB 电源	Vmax=6.3V Vmin=4.35V Vnorm=5.0V	用于 USB 5V 电源输入及接入检测
USB_DM	13	Ю	USB 数据负信号		画名关八四台 000
USB_DP	14	Ю	USB 数据正信号	- 符合 USB2.0 规范	要求差分阻抗 90Ω
USB_ID	16	Al	USB ID 检测信号		默认高电平
USIM 接口					
管脚名称	管脚号	I/O	描述	DC 特性	备注
USIM2_DETEC	T 17	DI	USIM2 卡检测信号	V _{IL} max=0.63V V _{IH} min=1.17V	低电平有效,需要外部上拉到 1.8V 不用则悬空
USIM2_RST	18	DO	USIM2 卡复位信号	V _{OL} max=0.4V V _{OH} min=0.8×USIM2_V	DD
USIM2_CLK	19	DO	USIM2 卡时钟信号	V _{OL} max=0.4V V _{OH} min=0.8×USIM2_V	DD
USIM2_DATA	20	Ю	USIM2 卡数据信号	V_{IL} max=0.2×USIM2_VIV_IMmin=0.7×USIM2_VIV_IMmax=0.4V V_{OH} min=0.8×USIM2_VIV_IMmin=0.8	DD
USIM2_VDD	21	PO	USIM2 卡供电电源	For 1.8V USIM: Vmax=1.85V Vmin=1.75V For 2.95V USIM: Vmax=2.95V Vmin=2.8V	模块自动识别 1.8V 或 2.95V USIM 卡
USIM1_DETEC	T 22	DI	USIM1 卡检测信号	V _{IL} max=0.63V V _{IH} min=1.17V	低电平有效,需要 外部上拉到 1.8V 不用则悬空

USIM1_RST	23	DO	USIM1 卡复位信号	V _{OL} max=0.4V V _{OH} min=0.8×USIM1_V	/DD
USIM1_CLK	24	DO	USIM1 卡时钟信号	V _{OL} max=0.4V V _{OH} min=0.8×USIM1_V	/DD
USIM1_DATA	25	Ю	USIM1 卡数据信号	V _{IL} max=0.2×USIM1_V V _{IH} min=0.7×USIM1_V V _{OL} max=0.4V V _{OH} min=0.8×USIM1_V	DD
USIM1_VDD	26	PO	USIM1 卡供电电源	For 1.8V USIM: Vmax=1.85V Vmin=1.75V For 2.95V USIM: Vmax=2.95V Vmin=2.8V	模块自动识别 1.8V 或 2.95V USIM 卡
UART 接口					
管脚名称	管脚号	I/O	描述	DC 特性	备注
UART1_TXD	34	DO	UART1 发送数据	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V 电源域 不用则悬空
UART1_RXD	35	DI	UART1 接收数据	V _{IL} max=0.63V V _{IH} min=1.17V	1.8V 电源域 不用则悬空
UART1_CTS	36	DI	UART1 清除发送	V _{IL} max=0.63V V _{IH} min=1.17V	1.8V 电源域 不用则悬空
UART1_RTS	37	DO	UART1 请求发送	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V 电源域 不用则悬空
UART2_RXD	93	DI	UART2 接收数据	V _{IL} max=0.63V V _{IH} min=1.17V	1.8V 电源域 不用则悬空
UART2_TXD	94	DO	UART2 发送数据	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V 电源域 不用则悬空
SDIO/SD 卡接口]				
管脚名称	管脚号	I/O	描述	DC 特性 备剂	生
SD_CLK	39	DO	SDIO CLK	For 1.8V SD 卡: V _{OL} max=0.45V V _{OH} min=1.4V For 2.95V SD 卡: V _{OL} max=0.37V	

				For 1.8V SD 卡:		
				V _{IL} max=0.58V		
				V _{IH} min=1.27V		
				V_{OL} max=0.45 V		
				V _{OH} min=1.4V		
SD_CMD	40	IO	SDIO CMD			
				For 2.95V SD 卡:		
				V_{IL} max=0.73 V		
				V _{IH} min=1.84V		
				V_{OL} max=0.37 V		
				V _{OH} min=2.2V		
00 04740	4.4	10		For 1.8V SD 卡:		
SD_DATA0	41	IO	SDIO DATA0	V _{IL} max=0.58V		
				V _{IH} min=1.27V		
				V _{OL} max=0.45V		
SD_DATA1	42	Ю	SDIO DATA1	V _{OH} min=1.4V		
OD_DATAT	SD_DATAT 42	10	3DIO DATAT	• ОП· · · · · · ·		
				— For 2.95V SD 卡:		
				V _{IL} max=0.73V		
SD_DATA2	43	Ю	SDIO DATA2	V _{IH} min=1.84V		
				─ V _{OL} max=0.37V		
CD DATAS	4.4	10		V _{OH} min=2.2V		
SD_DATA3	44	IO	SDIO DATA3			
SD_DET	45	DI	SD 卡检测信号	V _{IL} max=0.63V	SD 卡插入检测信号,低时	电
			OD THE MILE 3	V _{IH} min=1.17V	平有效。	
触摸屏接口						
管脚名称	管脚号	I/O	描述	DC 特性	备注	
TP_INT	30	DI	触摸屏中断信号	V _{IL} max=0.63V	1.8V 电源域	
	30	Di	压沃州 下奶旧 了	V _{IH} min=1.17V	1.0 V 电弧线	
				V _{OL} max=0.45V	1.8V 电源域	
TP_RST	31	DO	触摸屏复位信号	V _{OH} min=1.35V	低电平复位	
				V UHITIII - 1.33 V	IM CIXE	
TP_I2C_SCL	47	OD	触摸屏 I2C 时钟		1.8V 电源域	
TP_I2C_SDA	48	OD	触摸屏 I2C 数据		1.8V 电源域	
LCM 接口						

管脚名称	管脚号	I/O	描述	DC 特性	备注
PWM	29	DO	背光亮度调节 PWM 控制信号	V _{OL} max=0.45V V _{OH} max=VBAT_BB	
LCD_RST	49	DO	LCM 复位信号	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V 电源域 低电平复位
LCD_TE	50	DI	LCM Tearing Effect 信号	V _{IL} max=0.63V V _{IH} min=1.17V	1.8V 电源域
MIPI_DSI_CLKN	52	AO	- MIPI LCM 时钟信号		
MIPI_DSI_CLKP	53	AO	MIFI LOM 町 神信 与		
MIPI_DSI_LN0N	54	AO			
MIPI_DSI_LN0P	55	АО	_		
MIPI_DSI_LN1N	56	АО	_		
MIPI_DSI_LN1P	57	АО			
MIPI_DSI_LN2N	58	АО	MIPI LCM 数据信号		
MIPI_DSI_LN2P	59	АО	_		
MIPI_DSI_LN3N	60	АО	_		
MIPI_DSI_LN3P	61	АО			
Camera 接口					
管脚名称	管脚号	1/0	描述	DC 特性	备注
MIPI_CSI0_CLKN	63	AI	后摄像头 MIPI 时钟		
MIPI_CSI0_CLKP	64	Al	信号		

MIPI_CSI0_LN0N	65	AI	_		
MIPI_CSI0_LN0P	66	AI	后摄像头 MIPI 数据		
MIPI_CSI0_LN1N	67	AI	信号		
MIPI_CSI0_LN1P	68	AI			
MIPI_CSI1_CLKN	70	AI	前摄像头 MIPI 时钟		
MIPI_CSI1_CLKP	71	AI	信号		
MIPI_CSI1_LN0N	72	AI	前摄像头 MIPI 数据		
MIPI_CSI1_LN0P	73	AI	信号		
CAM0_MCLK	74	DO	后摄像头时钟	V _{OL} max=0.45V V _{OH} min=1.35V	
CAM1_MCLK	75	DO	前摄像头时钟	V _{OL} max=0.45V V _{OH} min=1.35V	
CAM0_RST	79	DO	后摄像头复位信号	V _{OL} max=0.45V V _{OH} min=1.35V	
CAM0_PWD	80	DO	后摄像头关断信号	V _{OL} max=0.45V V _{OH} min=1.35V	
CAM1_RST	81	DO	前摄像头复位信号	V _{OL} max=0.45V V _{OH} min=1.35V	
CAM1_PWD	82	DO	前摄像头关断信号	V _{OL} max=0.45V V _{OH} min=1.35V	
CAM_I2C_SCL	83	OD	摄像头 I2C 时钟		1.8V 电源域
CAM_I2C_SDA	84	OD	摄像头 I2C 数据		1.8V 电源域
按键接口		·			

管脚名称	管脚号	I/O	描述	DC 特性	备注
PWRKEY	114	DI	模块开关机按键	V _{IL} max=0.63V V _{IH} min=1.17V	内部 1.8V 上拉,低电 平有效
KEY_VOL_UP	95	DI	音量加	V _{IL} max=0.63V V _{IH} min=1.17V	不用则需要悬空
KEY_VOL_ DOWN	96	DI	音量减	V _{IL} max=0.63V V _{IH} min=1.17V	不用则需要悬空
SENSOR_I2C	妾口				
管脚名称	管脚号	I/O	描述	DC 特性	备注
SENSOR_I2C_ SCL	91	OD	外部传感器 I2C 时钟		1.8V 电源域
SENSOR_I2C_ SDA	92	OD	外部传感器 I2C 数据		1.8V 电源域
ADC 接口					
管脚名称	管脚号	I/O	描述	DC 特性	备注
ADC	128	Al	通用 ADC 检测		最高输入电压 1.7V
VBAT_SNS	133	AI	电池电压检测		最高 4.5V 输入电压
VBAT_SNS VBAT_THERM	133	AI AI	电池电压检测电池温度检测		
					模块内部上拉,外部只
VBAT_THERM				DC 特性	模块内部上拉,外部只
VBAT_THERM 射频接口	134	AI	电池温度检测	DC 特性	模块内部上拉,外部员需 NTC 电阻接地
VBAT_THERM 射频接口 管脚名称	134	AI I/O	电池温度检测描述		模块内部上拉,外部员需 NTC 电阻接地
VBAT_THERM 射频接口 管脚名称 ANT_MAIN	134 管脚号 87	I/O	电池温度检测 描述 主天线接口	DC 特性 - 50 欧姆特性阻抗	模块内部上拉,外部只需 NTC 电阻接地
VBAT_THERM 射频接口 管脚名称 ANT_MAIN ANT_DRX	134 管脚号 87 131	I/O IO AI	电池温度检测 描述 主天线接口 分集天线接口		模块内部上拉,外部员需 NTC 电阻接地

管脚名称	管脚号	I/O	描述	DC 特性	备注
GPIO_23	33	Ю	GPIO		
GPIO_32	90	Ю	GPIO		
GPIO_31	97	Ю	GPIO		
GPIO_92	98	Ю	GPIO		
GPIO_88	99	Ю	GPIO		
GPIO_89	100	Ю	GPIO		
GPIO_69	101	Ю	GPIO		
GPIO_68	102	Ю	GPIO		
GPIO_97	103	Ю	GPIO		
GPIO_110	104	Ю	GPIO		
GPIO_0	105	Ю	GPIO		
GPIO_98	106	Ю	GPIO		
GPIO_94	107	Ю	GPIO		
GPIO_36	108	Ю	GPIO		
GPIO_65	109	Ю	GPIO		
GPIO_96	110	Ю	GPIO		
GPIO_58	112	Ю	GPIO		
GPIO_99	113	Ю	GPIO		
GPIO_95	115	Ю	GPIO		
GPIO_11	116	Ю	GPIO		
GPIO_10	117	Ю	GPIO		
GPIO_9	118	Ю	GPIO		
GPIO_8	119	Ю	GPIO		
GPIO_16	123	Ю	GPIO		

GPIO_17	124	Ю	GPIO		
其他接口					
管脚名称	管脚号	I/O	描述	DC 特性	备注
VIB_DRV	28	РО	马达驱动		接马达负极
RESET_N	179	DI	复位		
USB_BOOT	46	DI	强制 USB 启动信号		上电时短接到 LDO5_1V8 可强制从 USB 启动
CHARGE_SEL	127	DI	用于充电选择		悬空,采用模块内部 充电;接地,采用模 块外部充电IC
预留管脚					
RESERVED	151,152,153 154,155,156 ,157,158,15 9,183,187,1 0 90,191,194, 195,196,197 ,199,202,20 3,204,205,2 06,207,210		预留管脚		

3.4. 供电电源

3.4.1. 电源接口

SC20提供4个VBAT管脚用于连接外部电源: 2个VBAT_RF管脚用于模块RF供电,另2个VBAT_BB管脚用于给模块的基带供电。电源输入范围为3.5V~4.2V,推荐值为3.8V。VBAT 电源的性能,比如负载能力、纹波的大小等等,都会直接影响模块的性能和稳定性。极限情况下,模块耗流有可能达到3A左右的瞬时峰值,若供电能力不足会有电压跌落。如果电压跌落到3.1V以下,会造成模块自动关闭等异常。

3.4.2. 减少电压跌落

用户设计时候请特别注意电源部分的设计,确保即使在模块电流到3A时,VBAT的跌落不能低于3.1V。如果电压跌落低于3.1V以下,模块会关机。

图 3: 电源电压跌落示例

为保证VBAT电压不会跌落到3.1V以下,在靠近模块VBAT 输入端,建议并联一个低ESR(ESR=0.7Ω)的100uF的钽电容,以及100nF、33pF(0603 封装)、10pF(0603 封装)滤波电容,并且建议VBAT的PCB 走线尽量短且足够宽,减小VBAT走线的等效阻抗,确保在最大发射功率时大电流下不会产生太大的电压跌落。建议VBAT走线宽度不少于2mm,并且走线越长,线宽越宽,电源部分的地平面尽量完整。

为抑制电源波动冲击,确保输出电源的稳定,建议在电源前端加一个额定功率在0.5W以上的齐纳二极管,并靠近模块的VBAT摆放,起到稳压作用,参考电路如下:

图 4: VBAT 输入参考电路

3.4.3. 供电参考电路

电源设计对模块的供电至关重要,必须选择能够提供至少3A电流能力的电源。若输入电压跟模块的供电电压的压差不是很大,建议选择LDO作为供电电源。若输入输出之间存在比较大的压差,则使用开关电源转换器。

下图是+5V供电的参考设计,采用了MICREL公司的LDO,型号为MIC29302WU。它的输出电压大约是3.8V,负载电流峰值到3A。

图 5: 供电输入参考设计

备注

- 1. 当模块出现异常导致无法正常关机时,建议通过断开电源来关闭模块,然后再连接电源来重启模块。
- 2. 模块带充电功能,如果客户使用**图5**的方式设计电源,需要在软件中关闭充电功能,或者在VBAT通路 上串接肖特基二极管,防止电流反向流入电源芯片。

3.5. 开关机

3.5.1. 模块开机

VBAT上电后,通过拉低PWRKEY时间超过1.6s可以使模块开机。PWRKEY内部有上拉,高电平电压 典型值为1.8V。

推荐使用开集驱动电路来控制PWRKEY管脚,参考电路如下:

图 6: 开集驱动参考开机电路

另一种控制 PWRKEY 管脚的方式是直接通过一个按钮开关,按钮附近需放置一个 TVS 用于 ESD 保护,参考电路如下:

图 7: 按键开机参考电路

开机时序图如下图所示:

图 8: 开机时序图

备注

① 在拉低 PWRKEY 管脚之前,需要保证 VBAT 电压稳定。建议 VBAT 上电达到 3.8V 且稳定 30ms 之后 再拉低 PWRKEY 管脚,不能一直拉低 PWRKEY 管脚。

3.5.2. 模块关机

关机可以通过把PWRKEY信号拉低至少1秒用来关机。模块检测到关机动作以后,屏幕会有提示窗弹出,确认是否执行关机动作。

关机也可以通过长时间拉低PWRKEY超过8s来实现强制关机。强制关机时序图如下图所示:

图 9: 关机时序图

3.6. VRTC 接口

VRTC为模块内部RTC的外部供电管脚,当VBAT断开后,用户需要保存实时时钟时,则VRTC引脚不能悬空,可以通过连接一个外部电池或者电容至VRTC 管脚来供电。RTC电源使用外部电池或者电容供电时有以下几种参考电路:

若RTC失效,模块上电后进行数据连接可以同步RTC时钟。

图 10: 可充电纽扣电池给 RTC 供电

图 11: 电容给 RTC 供电

- VRTC电源输入电压范围为2.0-3.25V,典型值为3.0V,当VBAT断开时平均耗流为5uA。
 - VBAT 供电时, RTC 误差是 50ppm; VRTC 供电时, RTC 误差是 200ppm。
- 当外接可充电纽扣电池时,要求纽扣电池的 ESR 小于 2K,推荐使用 SEIKO 的 MS621FE FL11E。
- 当外接大电容时,推荐值为低 ESR 的 100uF 电容,能保持实时时钟约 45 秒。

3.7. 电源输出

SC20有多路电源输出,用于外围电路供电。

在应用时,建议并联33pF和10pF电容,可以有效去除高频干扰。

表 5: 电源描述

名称	可编程范围 (V)	默认电压(V)	驱动电流(mA)	待机
LDO5_1V8	-	1.8	20	保持
LDO6_1V8	-	1.8	100	无
LDO17_2V85	-	2.85	300	保持
SD_LDO12	-	2.95	50	
SD_LDO11	1.75~3.337	2.95	600	
USIM1_VDD	1.75~3.337	1.8/2.95	50	
USIM2_VDD	1.75~3.337	1.8/2.95	50	

3.8. 充电和电池管理

SC20模块可以对过放的电池进行充电,其充电过程包括涓流充电、恒流、恒压充电等状态。

- 涓流充电: 其分为2部分,涓流充电-A: 电池电压低于2.8V时充电电流90mA;涓流充电-B: 电池电压在2.8V~3.2V之间时充电电流450mA;
- 恒流充电: 当电池电压在3.2V~4.2V之间时恒流充电,适配器充电时充电电流1.44A, USB充电时充电电流450mA:
- 恒压充电: 当电池电压达到4.2V时恒压充电,充电电流逐渐下降,充电电流降低到100mA左右,截止充电。

SC20模块带有电池温度检测功能,需要电池内部集成有热敏电阻(默认选择47K 1%,B4050的NTC,推荐SUNLORD的SDNT1608X473F4050FTF),将热敏电阻连接到VBAT_THERM管脚。目前默认出厂设置的温度范围为-3.0℃~48.5℃。电池温度管脚的不连接会导致电池不能充电,电池电量显示错误等故障。电池充电连接示意图如下图所示:

图 12: 电池连接示意图

掌机、手持POS等移动设备都是电池为设备供电,不同型号的电池,需要修改软件中电池充放电曲线,以达到良好的应用效果。

如果客户使用的电池没有热敏电阻,或客户使用电源适配器对模块进行供电,只连接VBAT和GND,此时为防止系统判断电池温度异常,导致无法充电,客户应该将VBAT_THERM引脚通过一个47KΩ的电阻连接到GND;如悬空,则判断电池不存在,导致无法充电。

VBAT SNS管脚必须连接,否则会影响模块正常电压检测以及与之相关的开关机和电池充放电问题。

3.9. USB 接口

SC20提供一个USB接口,该接口符合USB2.0规范,支持高速(480Mbps),全速(12Mbps)模式。 USB接口可用于AT命令,数据传输,软件调试和软件升级。

下表为USB的管脚接口定义:

表 6: USB 管脚定义

管脚名称	管脚号	I/O	描述	备注
USB_VBUS	141,142	PI	USB 电源输入	4.35~6.3V 典型值: 5.0V
USB_DM	13	Ю	USB 差分数据负	— 90Ω 差分走线
USB_DP	14	Ю	USB 差分数据正	
USB_ID	16	AI	USB ID 检测信号	默认高电平

USB_VBUS电源为USB 电源或者适配器电源,可用于作为USB插入检测,以及通过模块内部PMU给电池充电,电源输入电压范围4.35~6.3V,推荐值为5V。模块支持单节锂电池充电管理,不同容量型号的电池需要设置不同的充电参数。模块内置线性充电电路最高支持1.44A充电电流。

下面提供2种参考设计,客户可以根据需求选择使用。

图 13: USB 接口参考设计(不支持 OTG)

图 14: USB 接口参考设计(支持 OTG)

SC20支持OTG协议,客户如果使用OTG功能可以参照图14。AW3605DNR是AWINIC公司的一颗高效率的DC-DC升压芯片,客户可自行选择。

在USB接口的电路设计中,为了确保USB的性能,在电路设计中建议遵循以下设计原则:

- USB数据走线周围需要包线处理,走90Ω的阻抗差分线。
- USB数据线上的ESD器件选型需要特别注意,寄生电容不要超过2pF。
- 不要在晶振,振荡器,磁性装置和RF信号下面走USB线,建议走内层且立体包地。
- USB的ESD器件尽量靠近USB的接口放置。
- LAYOUT走线要求USB_DM, USB_DP线长差不超过6.6mm。

表 7: 模块内部 USB 走线长度

PIN	信号	长度 (mm)	长度误差(DP-DM)
13	USB_DM	29.43	-0.07
14	USB_DP	29.36	

3.10. UART 接口

SC20模块可提供2组UART 接口,UART1是4线,支持硬件流控,UART2是2线接口,用于Debug。管脚定义如下表:

表 8: 串口管脚定义

管脚名称	管脚号	I/O		
官 网	11 12 12 12 12 12 12 12 12 12 12 12 12 1	1/0	畑 处	首 任
UART1_TXD	34	DO	UART1 发送数据	1.8V 电源域,不用则悬空
UART1_RXD	35	DI	UART1 接收数据	1.8V 电源域,不用则悬空
UART1_CTS	36	DI	UART1 清除发送	1.8V 电源域,不用则悬空
UART1_RTS	37	DO	UART1 请求发送	1.8V 电源域,不用则悬空
UART2_RXD	93	DI	UART2 接收数据	1.8V 电源域,不用则悬空
UART2_TXD	94	DO	UART2 发送数据	1.8V 电源域,不用则悬空

UART1一个4线串口,串口电平是1.8V,在与3.3V的串口通信时,需要在中间加一个电平转换芯片。推荐使用TI公司的TXS0104EPWR,对应的参考设计如下图:

图 15: 电平转换参考电路

同样,与PC机通信的时候,也需要做电平转换,建议添加一个电平转换芯片及一个RS-232转换芯片。 对应的参考设计如下图。

图 16: RS232 电平转换参考电路

备注

UART2接口与UART1类似,参考电路请参考UART1。

3.11. USIM 卡接口

USIM卡接口支持ETSI和IMT-2000 SIM卡规范,SC20有2个USIM卡接口,支持双卡双待功能(软件默认关闭),USIM卡通过模块内部的电源供电,可自动识别1.8V和2.95V卡。

表 9: USIM 卡接口管脚描述

管脚名称	管脚号	I/O	描述	备注
USIM2_DETECT	17	DI	USIM2 卡插拔检测	外部上拉,低电平有效, 不用可悬空
USIM2_RST	18	DO	USIM2 卡复位信号	
USIM2_CLK	19	DO	USIM2 卡时钟信号	
USIM2_DATA	20	Ю	USIM2 卡数据信号	外部上拉 10K 电阻到 USIM2_VDD
USIM2_VDD	21	РО	USIM2 卡供电电源	自动识别 1.8V 和 2.95V USIM 卡
USIM1_DETECT	22	DI	USIM1 卡插拔检测	外部上拉,低电平有效, 不用可悬空
USIM1_RST	23	DO	USIM1 卡复位信号	

USIM1_CLK	24	DO	USIM1 卡时钟信号	
USIM1_DATA	25	Ю	USIM1 卡数据信号	外部上拉 10K 电阻到 USIM1_VDD
USIM1_VDD	26	РО	USIM1 卡供电电源	自动识别 1.8V 和 2.95V USIM 卡

通过USIM_DETECT管脚,SC20支持USIM卡热插拔功能。8-pin USIM卡接口参考电路如下:

图 17: 8-pin USIM 卡座参考电路图

如果不需要用USIM_DETECT管脚作为USIM卡检测功能,请保持该管脚悬空。下图是使用6-pin USIM卡座接口参考电路:

图 18: 6-pin USIM 卡座参考电路图

在 USIM 卡接口的电路设计中,为了确保 USIM 卡的良好的性能和不被损坏,在电路设计中建议遵循以下设计原则:

- USIM 卡座靠近模块摆放,尽量保证 USIM 卡信号线布线长度不超过 200mm。
- USIM 卡信号线布线远离 RF 线和 VBAT 电源线。
- USIM 卡座的地与模块的 USIM_GND 布线要短而粗。保证 USIM_VDD 与 USIM_GND 布线宽度不小于 0.5mm,且在 USIM_VDD 与 USIM_GND 之间的旁路电容不超过 1uF,并且靠近 USIM 卡座摆放。
- 为了防止 USIM_CLK 信号与 USIM_DATA 信号相互串扰,两者布线不能太靠近,并且在两条走线之间增加地屏蔽。此外,USIM_RST 信号也需要地保护。
- 为了确保良好的 ESD 性能,建议 USIM 卡的管脚增加 TVS 管。选择的 TVS 管寄生电容不大于 50pF。在模块和 USIM 卡之间需要串联 22 欧姆的电阻用于抑制杂散 EMI,增强 ESD 防护。USIM 卡的外围器件应尽量靠近 USIM 卡座摆放。
- 在 USIM_DATA, USIM_VDD, USIM_CLK 和 USIM_RST 线上并联 33pF 电容用于滤除射频干扰,并 且靠近 USIM 卡座摆放。

3.12. SDIO 接口

模块支持4位数据接口的SD卡,或者基于SDIO协议的设备,支持最新的SD3.0协议。

SD卡连接管脚定义和特性如下。

表 10: SD 卡管脚说明

管脚名称	管脚号	I/O	描述	备注
SD_LDO11	38	РО	SD卡驱动电源	
SD_LDO12	32	РО	SD 卡上拉电源	支持 1.8V 和 2.95V 双电源,最大驱动电流 50mA;
SD_CLK	39	DO	高速数字时钟	
SD_CMD	40	I/O	控制线	
SD_DATA0	41	I/O		生态经验 电视应口阻性体操机
SD_DATA1	42	I/O		速率较高,建议采用阻抗线控制
SD_DATA2	43	I/O	- 高速双向数字信号	
SD_DATA3	44	I/O		
SD_DET	45	DI	SD 卡插入检测	低电平有效

SD卡的参考电路如下所示。

图 19: SD 卡接口设计参考

SD_LDO11是SD卡外设驱动电源,能够提供最大约600mA电流;由于驱动电流较大,建议走线宽度 0.5mm;为保证驱动电流的稳定,需要在SD卡座侧并联2.2uF和33pF电容。

CMD、CLK、DATA0、DATA1、DATA2、DATA3均为高速信号线,PCB设计过程中需要控制特性阻抗在50ohm左右,不要与其他走线交叉,走线尽量放在内层。CMD、DATA0、DATA1、DATA2、DATA3走线建议做等长处理,CLK走线保持与其他走线等长处理,单独包地。

LAYOUT线长要求:

- 1. 阻抗控制50 Ω +/- 10%, 并做屏蔽处理。
- 2. CMD和DATA线相对CLK走线长度差不能超过1mm。

表 11: 模块内部 SDIO 走线长度

管脚号	信号	长度(mm)	备注
39	SD_CLK	14.60	
40	SD_CMD	14.55	
41	SD_DATA0	14.53	
42	SD_DATA1	14.56	
43	SD_DATA2	14.53	
44	SD_DATA3	14.57	

3.13. GPIO 接口

SC20拥有丰富的GPIO接口,接口电平1.8V,管脚定义如下:

表 12: GPIO 口列表

管脚号	管脚名称	GPIO	复位状态	备注
17	USIM2_DETECT	GPIO_52	B-PD:nppukp	
18	USIM2_RST	GPIO_51	B-PD:nppukp	
19	USIM2_CLK	GPIO_50	BH-PD:nppukp	Wakeup
20	USIM2_DATA	GPIO_49	BH-PD:nppukp	Wakeup
22	USIM1_DETECT	GPIO_56	B-PD:nppukp	
23	USIM1_RST	GPIO_55	B-PD:nppukp	
24	USIM1_CLK	GPIO_54	B-PD:nppukp	
25	USIM1_DATA	GPIO_53	B-PD:nppukp	
30	TP_INT	GPIO_13	B-PD:nppukp	Wakeup
31	TP_RST	GPIO_12	B-PD:nppukp	Wakeup
33	GPIO_23	GPIO_23	B-PD:nppukp	
34	UART1_TXD	GPIO_20	BH-PD:nppukp	Wakeup
35	UART1_RXD	GPIO_21	B-PD:nppukp	UART1_RX Wakeup
36	UART1_CTS	GPIO_111	B-PD:nppukp	Wakeup
37	UART1_RTS	GPIO_112	B-PD:nppukp	Wakeup
45	SD_DET	GPIO_38	B-PD:nppukp	Wakeup
46	USB_BOOT	GPIO_37	B-PD:nppukp	Wakeup
47	TP_I2C_SCL	GPIO_19	B-PD:nppukp	
48	TP_I2C_SDA	GPIO_18	B-PD:nppukp	
49	LCD_RST	GPIO_25	B-PD:nppukp	Wakeup
50	LCD_TE	GPIO_24	B-PD:nppukp	
74	CAM0_CLK	GPIO_26	B-PD:nppukp	
75	CAM1_CLK	GPIO_27	B-PD:nppukp	
79	CAM0_RST	GPIO_35	B-PD:nppukp	Wakeup
80	CAM0_PWD	GPIO_34	B-PD:nppukp	Wakeup
81	CAM1_RST	GPIO_28	B-PD:nppukp	Wakeup
82	CAM1_PWD	GPIO_33	B-PD:nppukp	
83	CAM_I2C_SCL	GPIO_30	B-PD:nppukp	
84	CAM_I2C_SDA	GPIO_29	B-PD:nppukp	
90	GPIO_32	GPIO_32	B-PD:nppukp	
91	SENSOR_I2C_SCL	GPIO_7	B-PD:nppukp	
92	SENSOR_I2C_SDA	GPIO_6	B-PD:nppukp	
93	UART2_RXD	GPIO_5	B-PD:nppukp	UART2_RX Wakeup

94	UART2_TXD	GPIO_4	B-PD:nppukp	
95	KEY_VOL_UP	GPIO_90	B-PD:nppukp	Wakeup
96	KEY_VOL_DOWN	GPIO_91	B-PD:nppukp	Wakeup
97	GPIO_31	GPIO_31	B-PD:nppukp	Wakeup
98	GPIO_92	GPIO_92	B-PD:nppukp	Wakeup
99	GPIO_88	GPIO_88	B-PD:nppukp	
100	GPIO_89	GPIO_89	B-PD:nppukp	
101	GPIO_69	GPIO_69	B-PD:nppukp	
102	GPIO_68	GPIO_68	B-PD:nppukp	
103	GPIO_97	GPIO_97	B-PD:nppukp	Wakeup
104	GPIO_110	GPIO_110	B-PD:nppukp	Wakeup
105	GPIO_0	GPIO_0	B-PD:nppukp	
106	GPIO_98	GPIO_98	B-PD:nppukp	Wakeup
107	GPIO_94	GPIO_94	B-PD:nppukp	Wakeup
108	GPIO_36	GPIO_36	B-PD:nppukp	Wakeup
109	GPIO_65	GPIO_65	B-PD:nppukp	Wakeup
110	GPIO_96	GPIO_96	B-PD:nppukp	Wakeup
112	GPIO_58	GPIO_58	B-PD:nppukp	Wakeup
113	GPIO_99	GPIO_99	B-PD:nppukp	
115	GPIO_95	GPIO_95	B-PD:nppukp	Wakeup
116	GPIO_11	GPIO_11	B-PD:nppukp	Wakeup
117	GPIO_10	GPIO_10	B-PD:nppukp	
118	GPIO_9	GPIO_9	B-PD:nppukp	
119	GPIO_8	GPIO_8	B-PD:nppukp	
123	GPIO_16	GPIO_16	B-PD:nppukp	
124	GPIO_17	GPIO_17	B-PD:nppukp	

Wakeup: 可唤醒系统的中断引脚

B: Bidirectional digital with CMOS input

H: High-voltage tolerant

NP: pdpukp = default no-pull with programmable options following the colon (:)

PD: nppukp = default pulldown with programmable options following the colon (:)

PU: nppdkp = default pullup with programmable options following the colon (:)

KP: nppdpu = default keeper with programmable options following the colon (:)

3.14. I2C 接口

SC20可提供3组I2C接口,仅支持主设备模式。I2C接口均属于开漏输出,外部电路必须加上拉,I2C接口最高速率可支持3.4Mbps,接口参考高电平1.8V。

表 13: I2C 管脚定义

管脚名称	管脚号	I/O	描述	备注
TS_I2C_SCL	47	OD	触摸屏 I2C 时钟	
TS_I2C_SDA	48	OD	触摸屏 I2C 数据	
CAM_I2C_SCL	83	OD	摄像头 I2C 时钟	
CAM_I2C_SDA	84	OD	摄像头 I2C 数据	
SENSOR_I2C_SCL	91	OD	外部传感器 I2C 时钟	用于外部传感器
SENSOR_I2C_SDA	92	OD	外部传感器 I2C 数据	一川」外前化學商

3.15. ADC 接口

SC20提供3路ADC通道,管脚定义如下:

表 14: ADC 管脚定义

管脚名称	管脚号	I/O	描述	备注
ADC	128	Al	通用 ADC 检测	最高输入电压 1.7V
VBAT_SNS	133	AI	电池电压检测	最高 4.5V 输入电压
VBAT_THERM	134	Al	电池温度检测	模块内部上拉,外部只需 47K NTC 电阻接地

ADC管脚最大可支持10bit精度分辨率。

备注

当输入电压超过 VBAT_SNS 管脚最大输入电压时,不可采用电阻分压方式设计,请使用通用 ADC 管脚采用电阻分压方式设计。

3.16. 马达驱动接口

SC20马达管脚定义如下:

表 15: 马达管脚定义

管脚名称	管脚号	I/O	描述	备注
VIB_DRV	28	РО	马达驱动	接马达负极

马达电路由专门电路驱动,参考设计电路如下。

图 20: 马达连接电路

当VIB_DRV从驱动状态断开时,马达上多余的电量从二极管形成的回路释放,避免器件损坏。

3.17. LCM 接口

SC20视频输出接口基于MIPI_DSI标准,支持4组高速差分数据传输,每组最高速度达1.5Gbps,最大支持720P显示。

LCM管脚定义如下:

表 16: LCM 管脚说明

管脚名称	管脚号	I/O	描述	备注
LDO6_1V8	125	РО	电源输出	

LDO17_2V85	129	РО	电源输出	
PWM	29	DO	背光亮度调节PWM 控制 信号	
LCD_RST	49	DO	LCM 复位信号	低电平复位
LCD_TE	50	DI	LCM Tearing Effect信号	
MIPI_DSI_CLKN	52	AO	- MIPI LCM时钟信号	
MIPI_DSI_CLKP	53	AO	- MIPI LCIMIN 評信与	
MIPI_DSI_LN0N	54	AO		
MIPI_DSI_LN0P	55	AO		
MIPI_DSI_LN1N	56	AO		
MIPI_DSI_LN1P	57	AO	NAIDLL CNA牧坛 住 日	
MIPI_DSI_LN2N	58	AO	- MIPI LCM数据信号	
MIPI_DSI_LN2P	59	AO		
MIPI_DSI_LN3N	60	AO	_	
MIPI_DSI_LN3P	61	AO		

对于720P屏幕,需要4组MIPI_DSI连接,以华锐光电的LHR050H41-00上LCM接口为例(IC: ILI9881C),参考电路如下:

图 21: LCM 电路

MIPI属于高速信号线,建议在靠近LCM一侧串联共模电感改善电磁辐射干扰。推荐采用ICT公司的ICMEF112P900MFR。

当客户需要兼容屏设计时,LCM的LCD_ID引脚连接到模块ADC,但需要注意的是不能超过ADC管脚电压范围。

LCM需要背光电路, 背光驱动参考电路如下图所示, 调整背光亮度可以通过模块的29管脚PWW来实现。 PWW可以用来做LCM的背光调节, 通过调整占空比来调节背光亮度。

图 22: 背光驱动电路

3.18. 触摸屏接口

SC20提供一组I2C接口可以用于连接触摸屏(TP),同时提供了所需的电源和中断脚,模块提供TP管脚定义如下表:

表 17: TP 管脚定义

管脚名称	管脚号	I/O	描述	备注
LDO6_1V8	125	РО	电源输出	I2C上拉电源
LDO17_2V85	129	РО	电源输出	TP供电电源
TP_INT	30	DI	触摸屏中断信号	
TP_RST	31	DO	触摸屏复位信号	低电平有效
TP_I2C_SCL	47	OD	触摸屏I2C时钟	
TP_I2C_SDA	48	OD	触摸屏I2C数据	

TP接口参考电路以华锐光电的LHR050H41-00上TP接口为例(IC:GT9147)连接如下:

图 23: TP 参考电路

3.19. 摄像头接口

SC20视频输入接口基于MIPI_CSI标准,可支持两个摄像头,最高支持8MP像素摄像头。摄像和照相质量依据摄像头传感器、镜头规格参数等多种因素决定,可根据我司推荐和已调试的摄像头规格,按实际场

景选择摄像头型号。

我司调试过如下Camera Sensor 型号:

● 后摄像头: TOSHIBA的T4KA3

● 前摄像头: SuperPix的SP2508

3.19.1. 后摄像头

后摄像头通过FPC和连接器实现传输和控制,后摄像头使用2组MIPI_CSI差分数据线接口,最高可支持8MP像素的摄像头。

SC20后摄像头管脚定义如下:

表 18: 后摄像头管脚定义

管脚名称	管脚号	I/O	描述	备注
LDO6_1V8	125	РО	电源输出	
LDO17_2V85	129	РО	电源输出	
MIPI_CSI0_CLKN	63	AI		
MIPI_CSI0_CLKP	64	AI	- 后摄像头MIPI时钟信号	
MIPI_CSI0_LN0N	65	AI	— 后摄像头MIPI数据信号 ————————————————————————————————————	
MIPI_CSI0_LN0P	66	AI		
MIPI_CSI0_LN1N	67	AI		
MIPI_CSI0_LN1P	68	AI		
CAM0_MCLK	74	DO	后摄像头时钟信号	
CAM0_RST	79	DO	后摄像头复位信号	
CAM0_PWD	80	DO	后摄像头关断信号	
CAM_I2C_SCL	83	OD	摄像头I2C时钟	
CAM_I2C_SDA	84	OD	摄像头I2C数据	

后摄像头以T4KA3的模组为例参考电路如下:

图 24: 后 Camera 参考电路

后摄像头的电源DVDD_1V2、VDD_AF_2V8由外部LDO提供。

3.19.2. 前摄像头

前摄像头使用1组MIPI_CSI差分信号,已调试验证可支持2MP摄像头。

SC20前摄像头管脚定义如下:

表 19: 前摄像头管脚定义

管脚名称	管脚号	I/O	描述	备注
LDO6_1V8	125	РО	电源输出	
LDO17_2V85	129	РО	电源输出	
MIPI_CSI1_CLKN	70	Al	- 前摄像头MIPI时钟信号	
MIPI_CSI1_CLKP	71	Al	刊	

MIPI_CSI1_LN0N	72	Al	前摄像头MIPI数据信号
MIPI_CSI1_LN0P	73	Al	則
CAM1_MCLK	75	DO	前摄像头时钟信号
CAM1_RST	81	DO	前摄像头复位信号
CAM1_PWD	82	DO	前摄像头关断信号
CAM_I2C_SCL	83	OD	摄像头I2C时钟
CAM_I2C_SDA	84	OD	摄像头I2C数据

前摄像头以SP2508的模组为例连接方式如下:

图 25: 前 Camera 参考电路

3.19.3. 设计注意事项

● 原理图设计注意使用的视频设备接口定义,不同的视频组件其连接座的定义也会不同,需要注意连接 座和组件的正确连接。

- MIPI为高速信号线,传输速率最高可到1.5Gbps,走线采用100欧姆差分阻抗,走线建议放在内层,不要和其他信号线交叉。对于同一视频组件的MIPI走线,要做等长控制;MIPI信号线之间建议保持1.5倍线宽间距,防止串扰;做100欧姆差分阻抗匹配时,为保证阻抗的一致性,请不要跨接不同的GND平面。
- MIPI接口在选择ESD器件时请选择小容值的TVS,建议寄生电容小于1pF。
- MIPI走线要求如下:
 - 1. 走线总长度不超过305mm。
 - 2. 要求控制100欧姆差分阻抗,误差±10%。
 - 3. 组内差分线长度误差控制在0.67mm以内。
 - 4. 组与组之间长度误差控制在1.3mm以内。

表 20: 模块内部 MIPI 走线长度

PIN	信号	长度(mm)	长度误差(P-N)	
52	MIPI_DSI_CLKN	7.08	0.62	
53	MIPI_DSI_CLKP	6.45	-0.63	
54	MIPI_DSI_LN0N	6.15	-0.30	
55	MIPI_DSI_LN0P	5.85	-0.30	
56	MIPI_DSI_LN1N	6.64	-0.04	
57	MIPI_DSI_LN1P	6.60	-0.04	
58	MIPI_DSI_LN2N	8.20	0.74	
59	MIPI_DSI_LN2P	8.94	0.74	
60	MIPI_DSI_LN3N	9.28	0.96	
61	MIPI_DSI_LN3P	10.24	0.96	
63	MIPI_CSI0_CLKN	10.55	0.54	
64	MIPI_CSI0_CLKP	11.09	0.54	
65	MIPI_CSI0_LN0N	12.13	0.40	
66	MIPI_CSI0_LN0P	12.53	0.40	
67	MIPI_CSI0_LN1N	13.73	0.76	
68	MIPI_CSI0_LN1P	14.49	0.76	
70	MIPI_CSI1_CLKN	17.32	0.13	

71	MIPI_CSI1_CLKP	17.45	
72	MIPI_CSI1_LN0N	18.89	0.25
73	MIPI_CSI1_LN0P	19.24	0.35

3.20. Sensor 设计

SC20与传感器连接采用I2C通讯,可支持各类Sensor,如ALS/PS,Compass,G-sensor,Gyroscopic 等。

目前已验证的物料有: BST-BMA223, STK3311-WV, MPU-6881, MMC35240PJ。

表 21: 控制管脚说明

管脚名称	管脚号	I/O	描述	备注
SENSORS_I2C_SCL	91	OD	I2C时钟	
SENSORS_I2C_SDA	92	OD	I2C数据	
GPIO_88	99	DI	陀螺仪中断INT2	
GPIO_89	100	DI	陀螺仪中断INT1	_
GPIO_94	107	DI	距离传感器中断	— 默认配置,但不限于这些
GPIO_36	108	DI	指南针中断	GPIO
GPIO_65	109	DI	重力传感器中断 INT2	_
GPIO_96	110	DI	重力传感器中断INT1	_

3.21. 音频接口

SC20提供了两组模拟音频输入通道和三组模拟输出通道。

音频管脚定义如下表:

表 22: 音频管脚定义

管脚名称	管脚号	I/O	描述	备注
MIC1P	4	Al	主麦克风输入正极	
MIC_GND	5		MIC 地	
MIC2P	6	AI	耳机 MIC 输入	
EARP	8	AO	听筒输出正极	
EARN	9	AO	听筒输出负极	
SPKP	10	AO	扬声器输出正极	
SPKN	11	AO	扬声器输出负极	
HPH_R	136	AO	耳机右声道	
HPH_GND	137		耳机虚拟地	
HPH_L	138	AO	耳机左声道	
HS_DET	139	AI	耳机插入检测	默认高电平

- 模块有两组音频输入,均为单端接口。
- 听筒接口输出采用差分输出。
- 扬声器接口输出采用差分输出,内置D类功放驱动,在VBAT供电4.2V下,负载为8Ω时典型的输出功率为879mW。
- 耳机接口输出为立体声左右声道输出,耳机具有插入检测功能。

3.21.1. 麦克风接口参考

图 26: 麦克风通道接口电路

3.21.2. 听筒接口参考

图 27 听筒输出接口电路

3.21.3. 耳机接口参考

图 28 耳机接口电路

3.21.4. 扬声器接口参考

图 29 扬声器接口电路

3.21.5. 音频信号设计注意事项

手持话柄及免提的麦克风建议采用内置射频滤波双电容(如10pF和33pF)的驻极体麦克风,从干扰源头滤除射频干扰,会很大程度减少耦合TDD噪音。33pF电容用于滤除模块工作在900MHz 频率时的高频干扰。如果不加该电容,在通话时候有可能会听到TDD噪声。同时10pF的电容是用以滤除工作在1800MHz 频率时的高频干扰。需要注意的是,由于电容的谐振点很大程度上取决于电容的材料以及制造工艺,因此选择电容时,需要咨询电容的供应商,选择最合适的容值来滤除工作时的高频噪声。

GSM发射时的高频干扰严重程度通常主要取决于客户应用设计。在有些情况下,GSM900的TDD噪声比较严重,而有些情况下,DCS1800的TDD噪声比较严重。因此客户可以根据测试的结果选贴需要的滤波电容,甚至有的时候不需要贴该类滤波电容。

PCB板上的射频滤波电容摆放位置要尽量靠近音频器件或音频接口,走线尽量短,要先经过滤波电容再到其他点。

天线的位置离音频元件和音频走线尽量远,减少辐射干扰,电源走线和音频走线不能平行,电源线尽量远离音频线。

差分音频走线必须遵循差分信号的Layout规则。

3.22. 紧急下载接口

USB_BOOT为紧急下载接口,开机时短暂的短连USB_BOOT管脚和LDO5_1V8模块即可进入紧急下载模式,用于产品因为故障无法正常启动或运行时最终的处理方式,为方便产品后续的软件升级和调试,请预留此管脚。

图 30 紧急下载接口参考电路

4 WiFi和BT

SC20模块提供了一个WiFi和BT 共用天线接口ANT_WIFI/BT,阻抗为 $50\,\Omega$ 。客户可以通过此接口连接外部的PCB天线,吸盘天线或者陶瓷天线以实现WiFi和BT的功能。

4.1. WiFi 概述

SC20模块支持2.4G 单频 WLAN 无线通信,支持802.11b、802.11g 和802.11n等制式,最高速率可达150Mbps。其特性如下:

- 支持 Wake-on-WLAN(WoWLAN)
- 支持 ad hoc 模式
- 支持 WAPI SMS4 硬件加密
- 支持 AP 模式
- 支持 WiFi Direct
- 支持 MCS 0-7 for HT20 和 HT40

4.1.1. WiFi 性能指标

如下表格列出了SC20 WiFi的发射和接收性能:

表 23: WiFi 的发射性能

制式	速率	输出功率
802.11b	1Mbps	15.77dBm
802.11b	11Mbps	15.62dBm
802.11g	6Mbps	15.59dBm
802.11g	54Mbps	15.01dBm
802.11n HT20	MCS0	13.97dBm
802.11n HT20	MCS7	13.08dBm
802.11n HT40	MCS0	14.75dBm
802.11n HT40	MCS7	13.52dBm

表 24: WiFi 的接收性能

制式	速率	灵敏度
802.11b	1/11Mbps	-86dBm
802.11g	54Mbps	-76dBm
802.11n HT20	MCS7	-74dBm

参考规范如下:

序号	文档编号
1	IEEE 802.11n WLAN MAC and PHY, October 2009 + IEEE 802.11-2007 WLAN MAC and PHY, June 2007
2	IEEE Std 802.11b, IEEE Std 802.11d, IEEE Std 802.11e, IEEE Std 802.11g, IEEE Std 802.11i: IEEE 802.11-2007 WLAN MAC and PHY, June 2007i

4.2. BT 概述

SC20模块支持BT4.1 (BR/EDR+BLE) 规范,调制方式支持 GFSK, 8-DPSK, π /4-DQPSK。

- 最多支持7路无线连接。
- 最多同时支持 3.5 个 PICONET 微微网。
- 支持 1 路 SCO 或者 eSCO 连接 (Synchronous Connection Oriented)。

BR/EDR信道带宽为1Mhz,可容纳79个信道;BLE信道带宽为2MHz,可容纳40个信道。

表 25: BT 速率和版本信息

版本	数据率	最大应用吞吐量	备注
1.2	1Mbit/s	>80 Kbit/s	
2.0+EDR	3Mbit/s	>80 Kbit/s	
3.0 + HS	24 Mbit/s	请参考3.0 + HS	
4.0	24 Mbit/s	请参考4.0 LE	

参考规范如下:

序号	文档编号
1	Bluetooth Radio Frequency TSS and TP Specification 1.2/2.0/2.0 + EDR/2.1/2.1+ EDR/3.0/3.0 + HS, August 6, 2009
2	Bluetooth Low Energy RF PHY Test Specification, RF-PHY.TS/4.0.0, December 15, 2009

4.2.1. BT 性能指标

SC20 BT发射和接收性能指标参考如下表格:

表 26: BT 发射和接收性能指标

发射机性能			
分组类型	DH5	2-DH5	3-DH5
发射功率	10dBm	8dBm	8dBm
接收机性能			
分组类型	DH5	2-DH5	3-DH5
接收灵敏度	-93dBm	-92dBm	-86dBm

5 GNSS

SC20智能模块内部采用了高通的IZat™引擎,其GEN 8C同时支持GPS,GLONASS和北斗多种定位系统。模块内嵌了LNA,能有效的提高GNSS的定位灵敏度。

5.1. GNSS 性能指标

下表列出了传导模式下SC20模块的GNSS性能指标。

表 27: GNSS 性能

参数	状态描述	典型值	单位
	冷启动	TBD	dBm
灵敏度(GNSS)	重捕获	TBD	dBm
	追踪	TBD	dBm
	冷启动	32	S
TTFF (GNSS)	温启动	30	S
	热启动	2	S
静态漂移(GNSS)	CEP-50	6	m

5.2. GNSS 射频设计指导

如果天线、Layout等方面设计不好,会造成GPS接收灵敏度降低,导致GPS定位时间长或者定位精度低等现象,GNSS射频设计中需遵守以下设计原则:

- GNSS 和 GPRS 射频部分,包括 layout 走线和天线布局,设计上要尽量远离,防止这两部分互相干扰。
- 在用户系统中, GNSS 射频信号以及射频相关的元器件的位置布局, 应注意远离高速电路、开关电源、 大的电感以及单片机的时钟电路等。
- 对于电磁环境比较恶劣或者静电防护要求高的设计,要求在天线接口中增加 ESD 防护二极管。且必须 选用超低结电容的 ESD 防护二极管,建议结电容不超过 0.5pF,否则会影响射频回路的阻抗特性,或 者对射频信号造成旁路衰减。
- 不论馈线还是 PCB 走线,都要求 50Ω 阻抗控制,并且走线不能太长。
 GNSS 参考电路设计请参考第6.3章节。

6 天线接口

SC20提供了MAIN天线、DRX天线、GNSS 天线、WiFi/BT天线4 个天线接口。天线接口的特性阻抗是50欧姆。

6.1. MAIN 天线/DRX 天线接口

6.1.1. 管脚定义

表 28: MAIN 天线/DRX 天线管脚定义

管脚名称	管脚号	I/O	描述	备注
ANT_MAIN	87	Ю	2G/3G/4G 主天线接口	特性阻抗 50Ω
ANT_DRX	131	Al	分集天线接口	特性阻抗 50Ω

6.1.2. 工作频段

表 29: 模块工作频段

频段	下行	上行	单位
EGSM900	925-960	880-915	MHz
DCS1800	1805-1880	1710-1785	MHz
WCDMA Band1	2110-2170	1920-1980	MHz
WCDMA Band8	925-960	880-915	MHz
CDMA BC0	869-894	824-849	MHz
TD-SCDMA Band34	2010-2025	2010-2025	MHz
TD-SCDMA Band39	1880-1920	1880-1920	MHz
LTE-FDD B1	2110-2170	1920-1980	MHz

LTE-FDD B3	1805-1880	1710-1785	MHz
LTE-FDD B8	925-960	880-915	MHz
LTE-TDD B38	2570-2620	2570-2620	MHz
LTE-TDD B39	1880-1920	1880-1920	MHz
LTE-TDD B40	2300-2400	2300-2400	MHz
LTE-TDD B41	2555-2655	2555-2655	MHz

备注

SC20 的 LTE-TDD B41 频段带宽为 100MHz (2555-2655 MHz), 信道范围 40240-41240。

6.1.3. 射频参考电路

对于天线接口的外围电路设计,为了能够更好地调节射频性能,建议预留 π 匹配电路。天线连接参考电路如下图所示。其中电容默认不贴,只贴0欧姆电阻。

图 31: 射频参考电路

6.2. WiFi/BT 天线接口

以下的表格介绍了WiFi/BT天线管脚定义和工作频段。

表 30: WiFi/BT 天线管脚定义

管脚名	管脚号	I/O	描述	备注
ANT_WIFI/BT	77	Ю	WIFI/BT 天线接口	特性阻抗 50Ω

表 31: 模块工作频段

类型	频段	单位
802.11b/g/n	2402~2482	MHz
BT4.1 LE	2402~2480	MHz

WiFi/BT天线连接参考电路如下图所示。其中电容默认不贴,只贴0欧姆电阻。

图 32: WiFi/BT 天线参考电路

6.3. GNSS 天线接口

以下的表格介绍了GNSS天线管脚定义和工作频段。

表 32: GNSS 天线管脚定义

管脚名称	管脚号	I/O	描述	备注
ANT_GNSS	121	AI	GNSS 天线接口	特性阻抗 50Ω

表 33: GNSS 工作频段

类型	频段	単位
GPS	1575.42 ± 1.023	MHz
GLONASS	1597.5 - 1605.8	MHz
北斗	1561.098 ± 2.046	MHz

6.3.1. 无源天线参考设计

可采用无源的陶瓷天线或者其它形式的GPS无源天线,为了保证GNSS接收性能,建议模块外部增加 LNA电路,下图为无源天线参考电路。

图 33: 无源天线参考电路

6.3.2. 有源天线参考设计

有源天线的电源是从天线的信号线通过56nH的电感完成馈电的,常见的有源天线为3.3V~5V 供电。有源天线自身功耗非常小,但要求电源比较稳定和干净,建议用性能较高的LDO给天线供电,有源天线参考电路如下图所示。

图 34: 有源天线参考电路

6.4. 天线安装

6.4.1. 天线安装要求

下表列出了对主天线、分集天线、WiFi/BT天线、GNSS天线要求:

表 34: 天线要求

项目	要求
GSM/WCDMA/TD-SCDMA/LTE	驻波比: ≤ 2 增益 (dBi): 1 最大输入功率 (W): 50 输入阻抗 (Ω): 50 极化类型: 垂直方向 插入损耗: < 1dB (GSM900, WCDMA B8, LTE B8) 插入损耗: < 1.5dB (DCS1800, WCDMA B1, TD-SCDMA B34/B39, LTE B1/B3/B39) 插入损耗: < 2dB (B38/B40/B41)

	驻波比:≤2
	增益 (dBi): 1
WiFi/BT	最大输入功率 (W): 50
VVIFI/DI	输入阻抗 (Ω): 50
	极化类型:垂直方向
	插入损耗: < 1dB
	频率范围: 1559 - 1607MHz
	极化类型: 右旋圆极化或者线极化
	驻波比: < 2 (典型值)
GNSS	无源天线增益: > 0dBi
GNSS	有源天线噪声系数: < 1.5dB (典型值)
	有源天线增益: > -2dBi
	有源天线内置 LNA 增益: 20dB (典型值)
	有源天线总增益: > 18dBi (典型值)

6.4.2. RF 连接器

如果使用RF连接器的连接方式,推荐使用Hirose的UF.L-R-SMT连接器。

图 35: UF.L-R-SMT 连接器尺寸

可以选择U.FL-LP系列的连接线来和UF.L-R-SMT配合使用。

	U.FL-LP-040	U.FL-LP-066	U.FL-LP(V)-040	U.FL-LP-062	U.FL-LP-088	
Part No.	261	200	3.4	87	1.85 2.0 2.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	
Mated Height	2.5mm Max. (2.4mm Nom.)	2.5mm Max. (2.4mm Nom.)	2.0mm Max. (1.9mm Nom.)	2.4mm Max. (2.3mm Nom.)	2.4mm Max. (2.3mm Nom.)	
Applicable cable	Dia. 0.81mm Coaxial cable	Dia. 1.13mm and Dia. 1.32mm Coaxial cable	Dia. 0.81mm Coaxial cable	Dia. 1mm Coaxial cable	Dia. 1.37mm Coaxial cable	
Weight (mg)	53.7	59.1	34.8	45.5	71.7	
RoHS			YES			

图 36: UF.L-LP 连接线系列

下图为连接线和连接器安装尺寸:

图 37: 安装尺寸

详情请参考 http://www.hirose.com。

7 电气、可靠性及射频性能

7.1. 极限参数

下表模块部分管脚电压电流最大耐受值:

表 35: 极限参数

参数	最小	最大	単位
VBAT	-0.5	6	V
USB_VBUS	-0.5	16	V
VBAT 最大电流	0	3	A
数字管脚电压	-0.3	2.3	V

7.2. 电源额定值

表 36: 模块电源额定值

参数	描述	条件	最小	典型	最大	单位
VBAT	VBAT	电压必须在该范围之内,包括电 压跌落,纹波和尖峰	3.5	3.8	4.2	V
	突发发射时的电压 跌落	EGSM900 最大发射功率下			400	mV
I _{VBAT}	峰值电流(每个发 射时隙下)	EGSM900 最大发射功率下		1.8	3.0	А
USB_VBUS	USB 接入检测		4.35	5.0	6.3	V
VRTC	备用电池供电电压		2.0	3.0	3.25	V

7.3. 充电参数

表 37: 充电参数

参数	最小	默认	最大	单位
涓流充电-A 电流	81	90	99	mA
涓流充电-A门限电压(15.62mV步进)	2.5	2.796	2.984	V
涓流充电-B门限电压(18.75mV步进)	3.0	3.2	3.581	V
充电电压设置范围(25mV步进)	4	4.2	4.775	V
充电电压精度			+/-2	%
充电电流设置范围(90mA步进)	90		1440	mA
充电电流精度			+/-10	%
充电截止电流: 充电电流设置为90mA到450mA时		7		%
充电截止电流:充电电流设置为450mA到1440mA时		7.4		%

7.4. 工作温度

下表列出了模块温度范围:

表 38: 工作温度

参数	最小	典型	最大	単位
正常工作温度	-35	25	75	°C
扩展工作温度	-40		85	°C
非工作温度	<-45		>85	°C

7.5. 工作电流

SC20模块各种工作模式下的工作电流如下表所示:

表 39: 工作电流

参数	描述	条件	最小	典型	最大	单位
	关机电流	关机		20		uA
	GSM/GPRS 模式供 电电流	睡眠模式 (不连接 USB) @DRX=2		3.78		mA
		睡眠模式 (不连接 USB) @DRX=5		2.59		mA
		睡眠模式 (不连接 USB) @DRX=9		2.32		mA
		睡眠模式 (不连接 USB) @DRX=6		3.21		mA
	WCDMA 模式供电电流	睡眠模式 (不连接 USB) @DRX=8		2.49		mA
		睡眠模式 (不连接 USB) @DRX=9		2.12		mA
	LTE-FDD 模式供电电流	睡眠模式 (不连接 USB) @DRX=6		3.79		mA
I_{VBAT}		睡眠模式 (不连接 USB) @DRX=8		2.92		mA
		睡眠模式 (不连接 USB) @DRX=9		2.53		mA
		睡眠模式 (不连接 USB) @DRX=6		3.69		mA
	LTE-TDD 模式供电 电流	睡眠模式 (不连接 USB) @DRX=8		2.83		mA
		睡眠模式 (不连接 USB) @DRX=9		2.59 mA 2.32 mA 3.21 mA 2.49 mA 2.12 mA 3.79 mA 2.92 mA 2.53 mA 2.53 mA 2.53 mA 2.53 mA 1.11 mA	mA	
		EGSM900 @PCL5		258		mA
		EGSM900 @PCL12		134		mA
	GSM 语音通话	EGSM900 @PCL19		111		mA
		DCS1800 @PCL0		210		mA
		DCS1800 @PCL7		146		mA

参数	描述	条件	最小	典型	最大	单位
		DCS1800 @PCL15		129		mA
	WODMA 注立字	Band 1 @max power		456		mA
	WCDMA 语音通话	Band 8 @max power		455		mA
		GPRS900 (1UL/4DL) @PCL5		246		mA
		GPRS900 (2UL/3DL) @PCL5		399		mA
		GPRS900 (3UL/2DL) @PCL5		480		mA
	CDDC 粉坛体於	GPRS900 (4UL/1DL) @PCL5		555		mA
	GPRS 数据传输	DCS1800 (1UL/4DL) @PCL0		215		mA
		DCS1800 (2UL/3DL) @PCL0		325		mA
		DCS1800 (3UL/2DL) @PCL0		435		mA
		DCS1800 (4UL/1DL) @PCL0		550		mA
	EDGE 数据传输	EDGE900 (1UL/4DL) @PCL8		189		mA
		EDGE900 (2UL/3DL) @PCL8		277		mA
		EDGE900 (3UL/2DL) @PCL8		375		mA
		EDGE900 (4UL/1DL) @PCL8		471		mA
		DCS1800 (1UL/4DL) @PCL2		185		mA
		DCS1800 (2UL/3DL) @PCL2		269		mA
		DCS1800 (3UL/2DL) @PCL2		366		mA
		DCS1800 (4UL/1DL) @PCL2		466	mA mA mA	mA
		Band 1(HSDPA) @max power		455		mA
	MODMA 粉井 1+ tA	Band 8(HSDPA) @max power		436		mA
	WCDMA 数据传输	Band 1(HSUPA) @max power		442		mA
		Band 8(HSUPA) @max power		430		mA
	LTE 数据传输	LTE-FDD Band1 @max power		713		mA

参数	描述	条件	最小	典型	最大	单位
		LTE-FDD Band3 @max power		736		mA
		LTE-FDD Band8 @max power		715		mA
		LTE-TDD Band38 @max power		354		mA
		LTE-TDD Band39 @max power		391		mA
		LTE-TDD Band40 @max power		392		mA
		LTE-TDD Band41 @max power		372		mA

7.6. 射频发射功率

下表列出了SC20模块射频发射功率参数:

表 40: 模块射频发射功率

频段	最大	最小
EGSM900	33 dBm ± 2 dB	5dBm±5dB
DCS1800	$30 dBm \pm 2 dB$	0dBm±5dB
WCDMA Band1	24dBm+1/-3dB	<-50dBm
WCDMA Band8	24dBm+1/-3dB	<-50dBm
CDMA BC0	24dBm±1dB	<-50dBm
TD-SCDMA Band34	24dBm+1/-3dB	<-50dBm
TD-SCDMA Band39	24dBm+1/-3dB	<-50dBm
LTE-FDD B1	$23 dBm \pm 2 dB$	<-44dBm
LTE-FDD B3	$23 dBm \pm 2 dB$	<-44dBm
LTE-FDD B8	23dBm±2dB	<-44dBm
LTE-TDD B38	23dBm±2dB	<-44dBm
LTE-TDD B39	23dBm±2dB	<-44dBm

LTE-TDD B40	23dBm±2dB	<-44dBm
LTE-TDD B41	23dBm±2dB	<-44dBm

备注

在 GPRS 网络 4 时隙发送模式下,最大输出功率减小 3dB。该设计符合 3GPP TS 51.010-1 中 13.16 节 所述的 GSM 规范。

7.7. 射频接收灵敏度

下表列出了SC20模块射频灵敏度:

表 41: 模块射频接收灵敏度

频率		灵	敏度	
沙 火 干	主集	分集	主集+分集	3GPP(SIMO)
EGSM900	-109dBm	NA	NA	-104dBm
DCS1800	-109dBm	NA	NA	-104dBm
WCDMA Band1	-110dBm	NA	NA	-106.7dBm
WCDMA Band8	-110dBm	NA	NA	-103.7dBm
CDMA BC0	-110dBm	NA	NA	-104dBm
TD-SCDMA Band34	-109dBm	NA	NA	-108dBm
TD-SCDMA Band39	-109dBm	NA	NA	-108dBm
LTE-FDD B1	-98dBm	-99dBm	-102dBm	-96.3dBm
LTE-FDD B3	-97dBm	-98dBm	-101dBm	-93.3dBm
LTE-FDD B8	-97dBm	-98dBm	-101dBm	-93.3dBm
LTE-TDD B38	-97dBm	-98dBm	-100dBm	-96.3dBm
LTE-TDD B39	-98dBm	-98dBm	-101dBm	-96.3dBm
LTE-TDD B40	-97dBm	-98dBm	-100dBm	-96.3dBm

LTE-TDD B41	-96dBm	-98dBm	-100dBm	-94.3dBm

7.8. 静电放电

在模块应用中,由于人体静电,微电子间带电摩擦等产生的静电,通过各种途径放电给模块,可能会对模块造成一定的损坏,所以ESD保护必须要重视。在研发、生产组装、测试等过程,尤其在产品设计中,都应采取防ESD保护措施。如电路设计在接口处或易受ESD的位置增加ESD保护,生产中佩戴防静电手套等。

下表为模块重要管脚的ESD耐受电压情况。

表 42: ESD 性能参数(JESD22-A114-F, 温度: 25℃, 湿度: 45%)

测试点	接触放电	空气放电	单位
电源和地接口	+/-5	+/-10	KV
天线接口	+/-5	+/-10	KV
USB 接口	+/-2	+/-4	KV
其他接口	TBD	TBD	KV

8 物理尺寸

本章节描述了模块的机械尺寸,所有的尺寸单位为毫米。

8.1. 模块物理尺寸

图 38: SC20 俯视及侧视图尺寸

图 39: SC20 底层尺寸(俯视图)

8.2. 推荐封装

图 40: 推荐封装 (俯视图)

备注

- 1. 为了保证模块能够正常安装,在PCB中让模块和其他的器件保持至少3mm的距离。
- 2. 所有RESERVED的管脚不能连接到GND。

8.3. 模块俯视及底视图

图 41: 模块俯视图

图 42: 模块底视图

备注

此处为 SC20 模块的设计效果图。如需更真实的图片信息,请参照移远通信的模块实物。

9 存储和生产

9.1. 存储

SC20以真空密封袋的形式包装,模块的存储需遵循如下条件:

- 1. 环境温度低于40摄氏度,空气湿度小于90%情况下,模块可在真空密封袋中存放12个月。
- 2. 当真空密封袋打开后,若满足以下条件,模块可直接进行回流焊或其它高温流程:
- 模块存储空气湿度小于10%。
- 模块环境温度低于30摄氏度,空气湿度小于60%,工厂在72小时以内完成贴片。
- 3. 若模块处于如下条件,需要在贴片前进行烘烤:
- 当环境温度为23摄氏度(允许上下5摄氏度的波动)时,湿度指示卡显示湿度大于10%。
- 当真空密封袋打开后,模块环境温度低于30摄氏度,空气湿度小于60%,但工厂未能在72小时以内完成贴片。
- 当真空密封袋打开后,模块存储空气湿度大于10%。
- 4. 如果模块需要烘烤,请在125摄氏度下(允许上下5摄氏度的波动)烘烤48小时。

备注

模块的包装无法承受高温,在模块烘烤之前,请移除模块包装。如果只需要短时间的烘烤,请参考IPC/JEDECJ-STD-033 规范。

9.2. 生产焊接

用印刷刮板在网板上印刷锡膏,使锡膏通过网板开口漏印到PCB上,印刷刮板力度需调整合适,为保证模块印膏质量,SC20模块焊盘部分对应的钢网厚度应为0.18mm。详细信息请参考*文档【4】*。

推荐回流焊的温度为235~245℃,不能超过260℃。为避免模块反复受热损坏,建议客户PCB板第一面完成回流焊后再贴模块。推荐的炉温曲线图如下图:

图 43: 回流焊温度曲线

9.3. 包装

SC20模块用卷带包装,并用真空密封袋将其封装。建议需要生产使用的时候再打开真空包装。

每个卷带卷带直径(TBD)毫米,包含200个SC20模块,具体规格如下:

TBD

图 44: 卷带尺寸(单位:毫米)

TBD

图 45: 卷盘尺寸

表 43: 卷盘包装

模块	MOQ for MP	最小包装: 200pcs	最小包装 ×4=800pcs
SC20	200	Size: mm3 N.W: kg G.W: kg	Size: mm3 N.W: kg G.W: kg

10 附录 A 参考文档

表 44:参考文档

序号	文档名称	备注
[1]	Quectel_SC20_AT_Commands_Manual	SC20 AT Commands Manual
[2]	Quectel_Smart_EVB_User_Guide	Smart Module EVB User Guide
[3]	Quectel_SC20_Reference_Design	SC20 Reference Design
[4]	Quectel_Module_Secondary_SMT_User_ Guide	Module Secondary SMT User Guide

表 45: 术语缩写

术语	描述
ADC	Analog-to-Digital Converter
AMR	Adaptive Multi-rate
ARP	Antenna Reference Point
bps	Bits Per Second
CHAP	Challenge Handshake Authentication Protocol
CS	Coding Scheme
CSD	Circuit Switched Data
CTS	Clear to Send
DRX	Discontinuous Reception
DCE	Data Communications Equipment (typically module)
DTE	Data Terminal Equipment (typically computer, external controller)
DTR	Data Terminal Ready

DTX	Discontinuous Transmission
EFR	Enhanced Full Rate
EGSM	Extended GSM900 band (includes standard GSM900 band)
ESD	Electrostatic Discharge
FR	Full Rate
GMSK	Gaussian Minimum Shift Keying
GPS	Global Positioning System
GSM	Global System for Mobile Communications
HR	Half Rate
HSPA	High Speed Packet Access
I/O	Input/Output
IMEI	International Mobile Equipment Identity
Imax	Maximum Load Current
Inorm	Normal Current
LED	Light Emitting Diode
LNA	Low Noise Amplifier
MO	Mobile Originated
MS	Mobile Station (GSM engine)
MT	Mobile Terminated
PAP	Password Authentication Protocol
PBCCH	Packet Broadcast Control Channel
PCB	Printed Circuit Board
PDU	Protocol Data Unit
PPP	Point-to-Point Protocol
PSK	Phase Shift Keying

QAM	Quadrature Amplitude Modulation
QPSK	Quadrature Phase Shift Keying
RF	Radio Frequency
RHCP	Right Hand Circularly Polarized
RMS	Root Mean Square (value)
RTC	Real Time Clock
Rx	Receive
SIM	Subscriber Identification Module
SMS	Short Message Service
TDMA	Time Division Multiple Access
TE	Terminal Equipment
TX	Transmitting Direction
UART	Universal Asynchronous Receiver & Transmitter
UMTS	Universal Mobile Telecommunications System
URC	Unsolicited Result Code
USIM	Universal Subscriber Identity Module
USSD	Unstructured Supplementary Service Data
Vmax	Maximum Voltage Value
Vnorm	Normal Voltage Value
Vmin	Minimum Voltage Value
V _{IH} max	Maximum Input High Level Voltage Value
V _{IH} min	Minimum Input High Level Voltage Value
V _{IL} max	Maximum Input Low Level Voltage Value
V _{IL} min	Minimum Input Low Level Voltage Value
V _I max	Absolute Maximum Input Voltage Value

V _I min	Absolute Minimum Input Voltage Value
V _{OH} max	Maximum Output High Level Voltage Value
V _{OH} min	Minimum Output High Level Voltage Value
V _{OL} max	Maximum Output Low Level Voltage Value
V _{OL} min	Minimum Output Low Level Voltage Value
VSWR	Voltage Standing Wave Ratio
WCDMA	Wideband Code Division Multiple Access

11 附录 B GPRS 编码方案

表 46: 不同编码方案

编码方式	CS-1	CS-2	CS-3	C4-4
码速	1/2	2/3	3/4	1
USF	3	3	3	3
Pre-coded USF	3	6	6	12
Radio Block excl.USF and BCS	181	268	312	428
BCS	40	16	16	16
Tail	4	4	4	-
Coded Bits	456	588	676	456
Punctured Bits	0	132	220	-
数据速率 Kb/s	9.05	13.4	15.6	21.4

12 附录 C GPRS 多时隙

GPRS规范中,定义了29类GPRS多时隙模式提供给移动台使用。多时隙类定义了上行和下行的最大速率。表述为3+1或者2+2,第一个数字表示下行时隙数目,第二个数字表示上行时隙数目。Active时隙表示GPRS设备上行、下行通讯可以同时使用的总时隙数。

不同等级的多时隙分配节选表如下表所示:

表 47: 不同等级的多时隙分配表

Multislot Class	Downlink Slots	Uplink Slots	Active Slots
1	1	1	2
2	2	1	3
3	2	2	3
4	3	1	4
5	2	2	4
6	3	2	4
7	3	3	4
8	4	1	5
9	3	2	5
10	4	2	5
11	4	3	5
12	4	4	5

13 附录 D EDGE 调制和编码方案

表 48: EDGE 调制和编码方式

Coding Scheme	Modulation	Coding Family	1 Timeslot	2 Timeslot	4 Timeslot
CS-1	GMSK	/	9.05kbps	18.1kbps	36.2kbps
CS-2	GMSK	/	13.4kbps	26.8kbps	53.6kbps
CS-3	GMSK	/	15.6kbps	31.2kbps	62.4kbps
CS-4	GMSK	/	21.4kbps	42.8kbps	85.6kbps
MCS-1	GMSK	С	8.80kbps	17.60kbps	35.20kbps
MCS-2	GMSK	В	11.2kbps	22.4kbps	44.8kbps
MCS-3	GMSK	A	14.8kbps	29.6kbps	59.2kbps
MCS-4	GMSK	С	17.6kbps	35.2kbps	70.4kbps
MCS-5	8-PSK	В	22.4kbps	44.8kbps	89.6kbps
MCS-6	8-PSK	A	29.6kbps	59.2kbps	118.4kbps
MCS-7	8-PSK	В	44.8kbps	89.6kbps	179.2kbps
MCS-8	8-PSK	A	54.4kbps	108.8kbps	217.6kbps
MCS-9	8-PSK	A	59.2kbps	118.4kbps	236.8kbps