Amendment and Remarks Serial No. 10/015,106 Page 2 of 17

CLAIMS

1. (Currently Amended) A reinforcing structure for use in the manufacture of a pultruded part where the reinforcing structure is pulled through a pultrusion die in a continuous longitudinal pull direction, the reinforcing structure comprising:

a plurality of longitudinal rovings oriented along the longitudinal pull direction:

a plurality of reinforcing fibers <u>oriented in a generally planar non-overlapping</u> configuration so that reinforcing fibers do not extend over or cover one another and extending in a transverse direction to the longitudinal rovings,

wherein the reinforcing fibers eomprises comprise at least 40% of a volume of materials of the reinforcing structure; and

a permeable transport veb of staple fibers bonded to the reinforcing fibers so that the reinforcing structure has a th ckness of about 0.004-0.020 inches.

- 2. (Previously Presented) The reinforcing structure of claim 1 wherein the reinforcing fibers comprises at least 10% of a volume of materials of the reinforcing structure.
- 3. (Currently Amended) The reinforcing structure of claim 1 wherein the reinforcing fibers comprise one or more overlapping layers of first-reinforcing fibers so that the reinforcing fibers within each layer are in a generally planar non-overlapping configuration.
- 4. (Previously Presented) The reinforcement structure of claim 1 wherein the staple fibers comprise a length of about ½ 4 inches.
- 5. (Previously Presented) The reinforcement structure of claim 1 wherein the staple fibers comprise a length of about 0.01 12 inches.

Amendment and Remarks Serial No. 10/015,106 Page 3 of 17

- 6. (Previously Presented) The reinforcement structure of claim 1 wherein the staple fibers comprise a weight of about 60 grams per square meter to about 300 grams per square meter before bonding to the reinforcing fibers.
- 7. (Previously Presented) The reinforcement structure of claim 1 wherein the staple fibers comprise a weight of about 10 grams per square meter to about 1200 grams per square meter before bonding to the reinforcing fibers.
- 8. (Previously Presented) The reinforcing structure of claim 1 wherein the stable fibers comprises heat-fusible f bers.
- 9. (Previously Presented) The reinforcing structure of claim 1 wherein the stable fibers comprise at least two different polymeric fibers, each comprising a different glass transition temperature.
- 10. (Original) The reir forcing structure of claim 9 wherein the at least two polymeric fibers comprise a glass transition temperature of about 350 °F and about 270 °F, respectively.
- 11. (Previously Presented) The reinforcing structure of claim 1 wherein the permeable transport web comprises:
- a plurality of first polymeric fibers comprising a first glass transition temperature; and
- a plurality of bi-component fibers wherein a first component comprises the first glass transition temperature and a second component comprises a second glass transition temperature less than the first glass transition temperature.
- 12. (Original) The reinforcing structure of claim 11 wherein the bi-component fibers comprise a core-sheath configuration.
- 13. (Original) The reir forcing structure of claim 1 comprising in-plane mechanical and directional stability.

Amendment and Remarks Serial No. 10/015,106 Page 4 of 17

- 14. (Previously Presented) The reinforcing structure of claim 1 wherein the permeable transport web comprises a plurality of fibers randomly bonded to the reinforcing fibers.
- 15. (Previously Presented) The reinforcing structure of claim 1 wherein the permeable transport web comprises ε plurality of fibers thermally bonded to the reinforcing fibers.
- 16. (Previously Presented) The reinforcing structure of claim 1 wherein the reinforcing fibers are spaced apart and attached to the permeable transport web by a continuous stitching fiber.
- 17. (Previously Presented) The reinforcing structure of claim 16 wherein the stitching fiber comprises glass fibers natural fibers; carbon fibers; metal fibers; ceramic fibers; synthetic or polymeric fibers; composite fibers including one or more components of glass, natural materials, metal, ceramic, carbon, or synthetics components; or a combination thereof.
- 18. (Previously Presented) The reinforcing structure of claim 1 comprising a binder bonding the stable fibers to the reinforcing fibers.
- 19. (Previously Presented) The reinforcing structure of claim 18 wherein the binder comprises one or more of a letex binder, a polyvinyl acetate emulsion, or a crosslinking polyvinyl acetate emulsion.
- 20. (Previously Presented) The reinforcing structure of claim 1 comprising a plurality of perforations through the permeable transport web and extending between the reinforcing fibers.
- 21. (Original) The reinforcing structure of claim 1 comprising a permeability of at least 180 ft³/minute/ft² as measured according to the procedure of ASTM D737-96 with a pressure differential of about 0.5 in:h column of water.

Amendment and Remarks Serial No. 10/015,106 Page 5 of 17

- 22. (Original) The rein forcing structure of claim 1 comprising a permeability of about 300 ft³/minute/ft² as measured according to the procedure of ASTM D737-96 with a pressure differential of about 0.5 inch column of water.
- 23. (Original) The reinforcing structure of claim 1 comprising a permeability of more than 350 ft³/minute/ft² as measured according to the procedure of ASTM D737-96 with a pressure differential of about (1.5 inch column of water.
- 24. (Original) The reinforcing structure of claim 1 comprising a circular bending stiffness of at least about 4 Newtons as measured according to the procedure of ASTM D4032-94.
- 25. (Original) The reinforcing structure of claim 1 comprising a circular bending stiffness in a range of about 1 Newtons to about 15 Newtons as measured according to the procedure of ASTM D4032-94.
 - 26. (Cancelled)
- 27. (Original) The reinforcing structure of claim 1 comprising a thickness of about 0.010 inches to about 0.012 inches.
- 28. (Original) The reinforcement structure of claim 1 wherein the reinforcement structure comprises a tensile strength in the transverse direction of about 200 lbs/inch as measured using the procedure of ASTM D76-99.
- 29. (Original) The reinforcement structure of claim 1 wherein the reinforcement structure comprises a tensile strength in the pull direction of at least 6 lbs/inch as measured using the procedure of ASTM D76-99.
- 30. (Previously Presented) The reinforcing structure of claim 1 wherein the reinforcing fibers comprise glass fibers; natural fibers; carbon fibers; metal fibers; ceramic fibers; synthetic or polymeric fibers; composite fibers including one or more components of

Amendment and Remarks Serial No. 10/015,106 Page 6 of 17

glass, natural materials, metal, ceramic, carbon, or synthetics components; or a combination thereof.

- 31. (Previously Presented) The reinforcing structure of claim 1 wherein the reinforcing fibers comprise at least one polymeric component.
- 32. (Previously Presented) The reinforcing structure of claim 1 wherein the reinforcing fibers comprise an organosilane agent treated surface.
- 33. (Previously Presented) The reinforcement structure of claim 32 wherein the organosilane agent comprises one or more families of a cationic amino-functional silane, tris (2- methoxyethoxyvinylsilane), or 3-methoxypropyltrimethoxysilane.
- 34. (Original) The reinforcing structure of claim 1 wherein the transverse direction comprises a direction about 90° +/- 10° relative to the pull direction.
- 35. (Original) The reinforcing structure of claim 1 wherein the transverse direction comprises a direction about 90° +/- 5° relative to the pull direction.
- 36. (Previously Presented) The reinforcing structure of claim 1 wherein substantially all of the reinforcing fibers extend continuously across a width of the reinforcing structure.
- 37. (Original) The reinforcing structure of claim 1 comprising a plurality of permeable transport webs.
- 38. (Original) The reinforcing structure of claim 1 comprising a plurality of second reinforcing fibers extending at one or more acute angles relative to the pull direction.
- 39. (Original) The reinforcing structure of claim 1 comprising a plurality of second reinforcing fibers extending at a first acute angle relative to the pull direction and a plurality of third reinforcing fibers extending at a second acute angle that is the negative of the first acute angle.

Amendment and Remarks Serial No. 10/015,106 Page 7 of 17

- 40. (Original) The reinforcing structure of claim 39 comprising a plurality of fourth reinforcing fibers extending in the pull direction.
- 41. (Original) The reinforcing structure of claim 39 wherein the first reinforcing fibers are located between the second and third reinforcing fibers.
- 42. (Original) The reinforcing structure of claim 1 comprising a plurality of second reinforcing fibers extending at a first acute angle relative to the pull direction, a plurality of third reinforcing fibers extending at a second acute angle that is the negative of the first acute angle, and a plurality of fourth reinforcing fibers extending generally in the pull direction.
- 43. (Original) The reir forcing structure of claim 42 wherein the permeable transport web comprises a plurality of fibers at least a portion of which are randomly entangled with one or more of the first, second, third or fourth reinforcing fibers.
- 44. (Original) The reir forcing structure of claim 42 wherein the permeable transport web comprises a plurality of fibers at least a portion of which are thermally bonded with one or more of the first, second, third or fourth reinforcing fibers.
- 45. (Original) The reir forcing structure of claim 42 wherein the first reinforcing fibers are stitched with one or more of the permeable transport web, the second reinforcing fibers, the third reinforcing fibers, and the fourth reinforcing fibers.
- 46. (Original) The reinforcing structure of claim 42 comprising a binder attaching the permeable transport web to one or more of the first, second, third or fourth reinforcing fibers.
- 47. (Original) The reir forcing structure of claim 42 wherein one or more of the first, second, third or fourth reinforcing fibers comprise a polymeric component.

Amendment and Remarks Serial No. 10/015,106 Page 8 of 17

- 48. (Original) The reinforcing structure of claim 42 wherein the first reinforcing fibers are located between the second and third reinforcing fibers and the fourth reinforcing fibers.
- 49. (Original) The reinforcing structure of claim 42 wherein the first, second, third or fourth reinforcing fibers comprise discrete layers.
- 50. (Currently Amended) A reinforcing structure for use in the manufacture of a pultruded part where the reinforcing structure is pulled through a pultrusion die in a continuous longitudinal pull direction, the reinforcing structure comprising:
- a plurality of longitudinal rovings oriented along the longitudinal pull direction;
- a plurality of reinforcing fibers oriented in a generally planar, non-overlapping configuration and in a transverse direction to the longitudinal rovings wherein the reinforcing fibers do not extend over or cover one another; and
- a permeable transport web of staple fibers bonded to the reinforcing fibers such so that the reinforcing structure has a thickness of about 0.0004-0.020 inches and so that a ratio of a modulus of elasticity of the reinforcing structure in the transverse direction relative to a modulus of elasticity in the pull direction comprises at least 1.2.
- 51. (Original) The reinforcing structure of claim 50 wherein the ratio of the modulus of elasticity of the reinforcing structure in the transverse direction relative to the modulus of elasticity in the pull direction comprises at least 1.5.
- 52. (Original) The reinforcing structure of claim 50 wherein the ratio of the modulus of elasticity of the reinforcing structure in the transverse direction relative to the modulus of elasticity in the pull direction comprises at least 3.
- 53. (Original) The reinforcing structure of claim 50 wherein the ratio of the modulus of elasticity of the reinforcing structure in the transverse direction relative to the modulus of elasticity in the pull direction comprises at least 5.

Amendment and Remarks Scrial No. 10/015,106 Page 9 of 17

- 54. (Currently Amended) A reinforcing structure for use in the manufacture of a pultruded part where the reinforcing structure is pulled through a pultrusion die in a continuous longitudinal pull direction, the reinforcing structure comprising:
- a plurality of longitudinal rovings oriented along the longitudinal pull direction;
- a plurality of non-overlapping-reinforcing fibers such oriented in a generally planar non-overlapping configuration so that the portion of the reinforcing fibers extending in a transverse direction to the longitudinal rovings comprises at least 30% of a volume of materials comprising the reinforcing structure; and
- a permeable transport veb of staple fibers bonded to the reinforcing fibers so that the reinforcing structure has a the ckness of about 0.004-0.020 inches.
- 55. (Currently Amended) A reinforcing structure for use in the manufacture of a pultruded part where the reinforcing structure is pulled through a pultrusion die in a continuous longitudinal pull direction, the reinforcing structure comprising:
- a plurality of longitudinal rovings oriented along the longitudinal pull direction:
- a plurality of reinforcing fibers generally oriented in a transverse direction to the longitudinal rovings and in a generally planar non-overlapping configuration so that the reinforcing fibers do not extend over or cover one another; and
- a permeable transport web bonded to the reinforcing fibers so that the reinforcing structure has a thickness of about 0.004-0.020 inches,
 - the permeably transport web comprising;
- a plurality of first poly neric fibers comprising a first glass transition temperature; and
- a plurality of bi-component fiber wherein a first component comprises the first glass transition temperature and a second component comprises a second glass transition temperature less than the first glass transition temperature.
- 56. (Currently Amended) A. reinforcing structure for use in the manufacture of a pultruded part where the reinforcing structure is pulled through a pultrusion die in a continuous longitudinal pull direction, the reinforcing structure comprising:

Amendment and Remarks Serial No. 10/015,106 Page 10 of 17

a plurality of longitudinal rovings oriented along the longitudinal pull direction;

a plurality of reinforcing fibers oriented in a transverse direction to the longitudinal rovings and in a generally planar non-overlapping configuration so that the reinforcing fibers do not extend over or cover one another and; and

a permeable transport web thermally bonded to the reinforcing fibers so that the reinforcing structure has a thickness of about 0.004-0.020 inches and comprises a permeability of at least 180 ft³/minute/ft² as measured according to the procedure of ASTM D737-96 with a pressure differential of about 0.5 inch column of water.

57. (Currently Amended) A reinforcing structure for use in the manufacture of a pultruded part where the reinforcing structure is pulled through a pultrusion die in a continuous longitudinal pull direction, the reinforcing structure comprising:

a plurality of first reinforcing fibers oriented at 45° (+/- 15°) relative to the pull direction and in a generally planar non-overlapping configuration so that the first reinforcing fibers do not extend over or cover one another;

a plurality of second reinforcing fibers oriented at -45° (+/- 15°) relative to the pull direction and in a generally plan ir non-overlapping configuration so that the second reinforcing fibers do not extend over or cover one another; and

a permeable transport web of staple fibers bonded to the first and second reinforcing fibers such that the first and second reinforcing fibers comprises at least 30% of a volume of materials comprising the reinforcing structure and has a thickness of about 0.004-0.020 inches.

58. (Currently Amended) A reinforcing structure where the reinforcing structure is pulled through a pultrusion die in a continuous longitudinal pull direction, the reinforcing structure comprising:

a plurality of first reinforcing fibers oriented at 60° (+/- 15°) relative to the pull direction and in a generally planar non-overlapping configuration so that the first reinforcing fibers do not extend over or cover one another;

a plurality of second reinforcing fibers oriented at -60° (+/- 15°) relative to the pull direction and in a generally plan ir non-overlapping configuration so that the second reinforcing fibers do not extend over or cover one another; and

Amendment and Remarks Serial No. 10/015,106 Page 11 of 17

a permeable transport web of staple fibers bonded to the first and second reinforcing fibers suchso that the firs: and second reinforcing fibers comprises at least 30% of a volume of materials comprising the reinforcing structure and has a thickness of about 0.004-0.020 inches.

59. (Canceled).

60. (Currently Amended) A reinforcing structure for use in the manufacture of a pultruded part where the reinforcing structure is pulled through a pultrusion die in a continuous longitudinal pull direction, the reinforcing structure comprising:

a plurality of longitudi all rovings oriented along the longitudinal pull direction;

a plurality of reinforcing fibers extendingoriented in a generally planar nonoverlapping configuration so that the reinforcing fibers do not extend over or cover one another and so that the reinforcing fibers extend in a transverse direction to the longitudinal rovings and extending extend continuously across a width of the reinforcing structure; and

a permeable transport web of staple fibers bonded to the reinforcing fibers so that the reinforcing structure has a thickness of about 0.004 - 0.020 inches.

61. (Currently Amended) A reinforcing mat adapted for use in manufacture of a pultruded part where the reinforcing mat is pulled with longitudinal fibers through a pultrusion die in a continuous longitudinal pull direction, the reinforcing mat comprising:

a body presenting a pair of opposed outer surfaces defining the thickness of the reinforcing mat;

the body including elongated reinforcing fibers oriented in a first direction transverse to the pull direction and in a generally planar non-overlapping configuration so that the reinforcing fibers do not extend over or cover one another;

the body including transport components arranged to provide longitudinal strength, shear strength and anti-skewing resistance sufficient to allow the reinforcing mat to be carried through the pultrusion die with the longitudinal fibers; and

and the body including entangling fibers defined by at least portions of staple fibers that extend through at least a portion of the thickness, the staple fiber portions being

Amendment and Remarks Serial No. 10/015,106 Page 12 of 17

entangled and bonded with the reinforcing fibers so that the reinforcing structure has a thickness of about 0.004-0.020 inche.

- 62. (Previously Presented) The reinforcing mat according to claim 61 wherein the transport components include transport fibers that provide longitudinal strength, shear strength and anti-skewing resistance and allow the reinforcing mat to be carried through the pultrusion die with the longitudinal fibers.
- 63. (Previously Presented) The reinforcing mat according to claim 61 wherein the transport components include a binder that provides longitudinal strength, shear strength and anti-skewing resistance.
- 64. (Previously Presented) The reinforcing mat according to claim 61 wherein the transport components include at least one layer of randomly oriented staple fibers.
- 65. (Original) The reinforcing mat according to claim 61 wherein the entangling staple fibers are hydro-entangled.
- 66. (Original) The reinforcing mat according to claim 61 wherein the entangling fibers have a bending resistance less than a bend resistance of the reinforcing fibers.
- 67. (Original) The reinforcing mat according to claim 61 wherein at least a portion of the entangling fibers are heat bonded to the reinforcing fibers.
- 68. (Original) The reir forcing mat according to claim 61 wherein the reinforcing fibers extend continuously across the full transverse width of the reinforcing mat.
- 69. (Original) The reir forcing mat according to claim 61 wherein the reinforcing fibers are oriented at an angle of about 90° with respect to the longitudinal direction.

Amendment and Remarks Serial No. 10/015,106 Page 13 of 17

- 70. (Original) The reinforcing mat according to claim 62 wherein the transport fibers include fibers extending diagonally across substantially the full transverse width of the reinforcing mat and at an angle with respect to the reinforcing fibers.
- 71. (Original) The reinforcing mat according to claim 62 wherein the transport fibers include stitched fibers.
- 72. (Previously Presented) The reinforcing mat according to claim 62 wherein the transport fibers include fibers extending substantially in the longitudinal direction.
- 73. (Original) The reinforcing mat according to claim 61 wherein the longitudinal fibers include stitched fibers.
- 74. (Previously Presented) The reinforcing mat according to claim 61 wherein the reinforcing fibers comprise glass and the entangled fibers comprise polyester.
- 75. (Original) The reinforcing mat according to claim 61 comprising a plurality of holes through the thickness of the reinforcing mat.
- 76. (Original) The reinforcing mat according to claim 75 wherein the plurality of holes through the thickness of the reinforcing mat are punched.