

	Date						
(1.2)	Compare the distal and analogo Filterio						
	(124 (c) in assignments)						
	pigtal Filter Anlog Filter						
	Doperates on dista penton sono Doperates on anlog						
	Samples (orsampled signals (oractual						
	Version) of the signal						
(=+2)(Ft2)							
	2) It is defined by and with later 2) It is defined by						
	linear difference linear differentia						
	equation.						
	(sta) (sta)						
	3) It consists of 3) It consists of ele-						
	adders, multipliers 2001 tetal ctrical components like						
	and delars implmented 2 resistors , capacitors						
	in digtal logic (Lizzai (2) and inductors.						
	Put 5 = -1						
	4) In digital Filters the () In aniog Filters the						
W	Filter coefficents approximation problem						
	are designed to satisfy is solved to satisfy						
	The desired frequery The desired frequery						
	responce responce						
	5) Higher (05) Higher (05)						
P. Carlotte	1ts depends lower cost 1+5-depend on the						
	ottanlog anlog componant.						
	\$ 5-6-4 S-6-4						

1-6×9-7

9.4)	7 -	47.11			
9.7		34013	The first of	9	
	-3/-1	The second second	- 0 T = D	a unot ill	12/2-1-12

$$H(s) = 2^{\frac{1}{2}-\frac{1}{2}-\frac{1}{2}} = \frac{1}{2} = \frac{1}{2}$$

$$(s+1)(s+2)$$

$$H(5) = 2$$
 = A + B
 $(5+2)(5+2)$ 5+1 5+2

$$\begin{array}{c|c} A \Rightarrow & 2 & \times 5 + 1 \\ \hline (5+2)(5+2) & 5=-1 \end{array}$$

5= -2

$$\begin{array}{c|c} A \Rightarrow 2 & = 2 = A \\ \hline & -1 + 2 & \end{array}$$

$$B = \frac{2}{(5+2)}$$

$$= 2 = -2 > B$$

$$H(s) = 2 - 2$$

 $s(-1) = (-2)$

iv) compute The z-transform of The digtal filter

$$H(2) = \frac{V}{5} CK = \frac{-CI}{1 - e^{PLT} - 2} \frac{1}{1 - e^{PLT} - 2}$$

$$P_1 = -1$$
, $P_2 = -2$ and $7 = 1$ } sub

$$H(2) = 2 - 2$$

$$1 - e^{-2}z^{-1} \quad 1 - e^{-2}z^{-2}$$

$$H(2) = 2$$
 - 2
 $2 - 0.36782^{-1}$ $1 - 8.1353352^{-1}$

Taking Lcm

$$H(2) = 2(2-0.13532^{-1}) - 2(2-0.36 + 82^{-1})$$

 $(2-0.36 + 82^{-1})$ $(2-0.1353352^{-1})$

$$= 2 - 0.27062^{-1} - 2 + 0.73562^{-1}$$

$$= 2 - 0.13532^{-1} - 0.36782^{-1} + 0.044982^{-2}$$