

Análisis de Señales y Sistemas Digitales

Guía de Problemas
"Síntesis de filtros recursivos"

Problemas Obligatorios 4,6(i),9(a,d),11

1. Un filtro analógico responde a la transferencia:

$$H_a = \frac{1}{s-a} + \frac{1}{s-b}$$
 donde a<0 y b<0 son reales $T_s = 2s$

- a) Determinar la ubicación de los polos y los ceros de H(z) si se usa transformación bilineal
- b) Repetir para el método invariante al impulso
- c) Comparar resultados
- 2. Demostrar que la función transferencia digital H(z) obtenida a partir de una $H_a(s)$ con polos simples empleando método invariante al impulso está dada por:

$$H(z) = \sum_{\substack{\forall \ polos \\ de \ H_a(s)}} Rsd \left[\frac{H_a(s)}{1 - e^{sT} z^{-1}} \right]$$
 Rsd: Residuos

3. Demostrar que la función transferencia digital $H_2(z)$ es obtenida a partir $H_{2a}(s)$ mediante el método invariante a impulso (Tip: analizar primer orden antes)

$$H_{2a}(s) = \frac{\lambda}{(s+\beta)^2 + \lambda^2}$$
 $H_2(z) = \frac{ze^{-\beta T}\sin(\lambda T)}{z^2 - 2ze^{-\beta T}\cos(\lambda T) + e^{-2\beta T}}$

4. (*) Dada la siguientes H(s)

$$H_a(s) = \frac{8}{(s+2)(s+4)}$$
 $H_b(s) = \frac{8}{s(s+2)(s+4)}$ $H_c(s) = \frac{(s+1)}{(s+0.5)(s+4)}$

Se pide:

Encontrar la H(z) correspondientes usando el método invariante al impulso y representar gráficamente el módulo de la respuesta en frecuencia de la H(s) y la H(z) en un mismo gráfico para comparar. Usar $\omega_s = 2 \text{ Tf}_s = 40$. Para el grafico usar escala lineal en dB para la ganancia y 0 a fs/2 para la frecuencia.

- Un integrador analógico ideal esta dado por Ha(s)=1/s obtener la H(z) usando
 - a) el metodo invariante al impulso.
 - b) el metodo invariante al escalón.
 - c) Backward
 - d) Forward
 - e) Bilineal

En todos los casos graficar modulo y fase

6. (*) Diseñar los siguientes filtros pasabajos por el método invariante al impulso suponiendo $f_s=10 \text{KHz} \ \text{y} \ \alpha=5$:

i(*) -Butterworth con
$$f_p = f_s/\alpha$$
 y $A_p = 2$ dB desde $n = 2$ a 8 ii -Tchebycheff con $f_p = f_s/\alpha$ y $A_p = 2$ dB desde $n = 2$ a 8

- a) Para cada n representar gráficamente el módulo de la respuesta en frecuencia de la H(s) y la H(z) en un mismo gráfico para comparar.
- b) Poner en evidencia en los gráficos las diferencias observadas. Presentar sólo aquellos que aporten al objetivo buscado.
- c) Sacar conclusiones de los resultados obtenidos.

Notas:

Rango de frecuencias: $[0, f_s]$.

Expresar el módulo en dB, pero usando escala lineal en ambos ejes.

- 7. Repetir el ejercicio anterior α = 8. Establecer criterios de diseño que derivan de lo observado.
- 8. Dado el siguiente filtro:

$$H(s) = \frac{s + 0.1}{(s + 0.1)^2 + 9}$$

- a) Transformar al campo digital usando (obligatoriamente) el método invariante al impulso.
- b) Transformar al campo digital usando el método invariante al impulso modificado.
- c) Transformar al campo digital usando el método Matched Z.
- d) Representar gráficamente el módulo de la H(j ω) original y de las transferencias digitales obtenidas para T = 0.1 seg. y T = 0.4 seg. Comparar resultados

9. (*)Diseñar los siguientes filtros usando el método bilineal.

Especificaciones:

$$fp = N \text{ KHz}$$
 $fa = 1.9 \text{ N KHz}$ $Ap = 1 \text{ dB}$ $Aa = 30 \text{ dB}$ $f_S = 10 \text{ N KHz}$

- a) (*)Butterworth
- b) Tchebycheff
- c) Tchebycheff inverso
- d) (*)Cauer
- e) Repetir filtros anteriores si fs = 5 N KHz.

N= Numero de grupo

- En todos los casos se pide:
 - I) Hallar H(z) y expresarla como productos de cascadas de 2^{do} orden de la forma:

$$H(z) = \frac{A_2 z^2 + A_1 z + A_0}{B_2 z^2 + B_1 z + B_0}$$

Ejemplo:

	A ₂	A 1	A ₀	B ₂	B ₁	B ₀
Etapa #1	1.34	2.56	1.45	34.66	1.33	0.34
Etapa #2	1.23	2.37	1.57	674.66	31.33	7.34

- II) Representar **sólo** el módulo de $H_a(j\omega)$ y $H_D(e^{j\omega})$ en un mismo gráfico para comparar. Usar escala lineal para el módulo (dB) y la frecuencia (Hz) en el rango [0 a fs/2].
- III) Representar el mapeo de singularidades en cada caso y analizarlo.
- IV) Indicar claramente los procedimientos realizados (fórmulas, reemplazos, programas usados, etc.)
- V) Sacar conclusiones de los resultados obtenidos.
- 10. Repetir el ejercicio 9.d) cuando se emplean las transformaciones:
 - a) Backward
 - b) Forward

11. (*) Sabiendo que h(n) es la respuesta impulsiva de un filtro causal y que la entrada al mismo es una secuencia finita x(n), se realizan las siguientes operaciones:

Sistema I

- a) Hallar la $h_I(n)$, que corresponde a la respuesta impulsiva del sistema completo cuya entrada es x(n) y salida y(n)
- b) Calcular la respuesta en frecuencia completa $H_I(e^{j\omega})$, y expresarla en función del módulo y la fase de $H(e^{j\omega})$.
- c) ¿Cuál será la aplicación de este sistema?

Sistema II

- d) Hallar la $h_{II}(n)$, que corresponde a la respuesta impulsiva del sistema completo cuya entrada es x(n) y salida y(n)
- e) Calcular la respuesta en frecuencia completa $H_{II}(e^{j\omega})$, y expresarla en función del módulo y la fase de $H(e^{j\omega})$.

Aplicación:

- f) Hallar la h(n) de un filtro pasabajos Legendre mediante transformación bilineal, que responda a las siguientes especificaciones en módulo: fp = $\bf N$ KHz Ap = .2 dB fa = 1.9 $\bf N$ KHz Aa = 30 dB fs = 20 $\bf N$ KHz $\bf N$ = Numero de grupo
- g) Se desea obtener, a partir del filtro anterior, uno de fase nula. Aplicando los sistemas I y II estudiados, hallar y graficar (comparando con la respuesta analógica y la plantilla):
 - H_I (e^{jω})
 - H_{II}(e^{jω})
- h) De los resultados hallados en el punto g), determinar si algún sistema es apropiado para lograr el filtro total pedido y justificar.
- i) Con el objeto de verificar los resultados del punto previo se pide realizar la siguiente simulación en MATLAB:
 - generar una poliarmónica x(n) tal que todas las componentes se encuentren en la banda pasante del filtro.
 - representar gráficamente la señal original x(n) y la respuesta al Legendre.
 - repetir el punto anterior pero usando la versión no causal del filtro elegida.

ASSD -4- Síntesis de IIR

12. Fase mínima

Determinar si un filtro analógico de fase mínina se transforma en uno digital con la misma propiedad:

- a) Transformación invariante al impulso
- b) Transformación bilineal

13. Transformación de sistemas de segundo orden en cascada

Dada una transferencia analógica de cuarto orden H(s), expresada como la cascada de dos transferencias de segundo orden $H_1(s).H_2(s)$, determinar si el filtro digital obtenido mediante una transformación dada es el mismo, ya sea obteniendo H(z) a partir de H(s) o como producto de las transformadas en cascada $H_1(z).H_2(z)$.

Se pide para las siguientes transformaciones:

- a) Transformación invariante al impulso
- b) Transformación bilineal
- c) Transformación backward

14. <u>Transformación de sistemas de segundo orden en paralelo</u>

Dada una transferencia analógica H(s), expresada como el paralelo de dos transferencias de segundo orden $H_1(s)+H_2(s)$, determinar si el filtro digital obtenido mediante una transformación dada es el mismo, ya sea obteniendo H(z) a partir de H(s) o como suma de las transformadas en paralelo $H_1(z)+H_2(z)$.

Se pide para las siguientes transformaciones:

- a) Transformación invariante al impulsoe
- b) Transformación bilineal
- c) Transformación backward
- 15. Como seria el diseño de un filtro si queremos que su respuesta sea invariante al escalón. Dar un ejemplo.