離散最適化基礎論 第7回 マトロイドのサーキット

岡本 吉央 okamotoy@uec.ac.jp

電気通信大学

2015年12月4日

最終更新: 2016年8月23日 11:55

離散最適化基礎論 (7)

岡本 吉央	(電通大)
7 L XX 11	※火 (ヌウ)
スケンューバ	レ後半 (予定)

★ 休講 (国内出張)	(12/11)
8 マトロイドに対する操作	(12/18)
g マトロイドの交わり	(12/25)
* 冬季休業	(1/1)
10 マトロイド交わり定理	(1/8)
* 休講 (センター試験準備)	(1/15)
🔟 マトロイド交わり定理:アルゴリズム	(1/22)
ⅳ 最近のトピック	(1/29)
* 授業等調整日 (予備日)	(2/5)
* 期末試験	(2/12?)

注意: 予定の変更もありうる

岡本 吉央 (電通大)

離散最適化基礎論 (7)

今日の目標

今日の目標

マトロイドのサーキットの基本的な性質を証明する

鍵となる概念

▶ 基本サーキット

基本サーキットを用いて、次を考える

- ▶ 基の同時交換公理
- ▶ 最大独立集合問題に対する局所探索アルゴリズム

岡本 吉央 (電通大)

離散最適化基礎論 (7)

マトロイドの定義

非空な有限集合 E,有限集合族 $\mathcal{I} \subseteq 2^E$

マトロイドとは?

I が E 上のマトロイド (matroid) であるとは、次の 3 条件を満たすこと

- (I1) $\emptyset \in \mathcal{I}$
- (12) $X \in \mathcal{I}$ かつ $Y \subseteq X$ ならば, $Y \in \mathcal{I}$
- (13) $X, Y \in \mathcal{I}$ かつ |X| > |Y| ならば, ある $e \in X - Y$ が存在して、 $Y \cup \{e\} \in \mathcal{I}$

- ▶ (I1) と (I2) は *I* が独立集合族であることを意味する
- ▶ (I3) を増加公理 (augmentation property) と呼ぶことがある

▶ \mathcal{I} の要素である集合 $X \in \mathcal{I}$ を、このマトロイドの独立集合と呼ぶ

スケジュール 前半 (予定)

★ 休講 (卒研準備発表会)	(10/2)
■ 組合せ最適化問題におけるマトロイドの役割	(10/9)
★ 休講 (海外出張)	(10/16)
☑ マトロイドの定義と例	(10/23)
3 マトロイドの基と階数関数	(10/30)
4 グラフとマトロイド	(11/6)
5 マトロイドとグラフの全域木	(11/13)
★ 休講 (調布祭)	(11/20)
6 マトロイドに対する貪欲アルゴリズム	(11/27)
7 マトロイドのサーキット	(12/4)

離散最適化基礎論 (7)

注意:予定の変更もありうる

岡本 吉央 (電通大)

テーマ:解きやすい組合せ最適化問題が持つ「共通の性質」

疑問

どうしてそのような違いが生まれるのか?

→ 解きやすい問題が持つ「共通の性質」は何か?

回答

よく分かっていない

しかし、部分的な回答はある

部分的な回答

問題が「マトロイド的構造」を持つと解きやすい

ポイント

効率的アルゴリズムが設計できる背景に「美しい数理構造」がある

この講義では、その一端に触れたい

岡本 吉央 (電通大) 離散最適化基礎論 (7)

目次

- マトロイドのサーキット:復習
- 2 サーキットの性質
- 3 基本サーキットと同時交換公理
- 4 マトロイドに対する局所探索法
- 6 今日のまとめ

岡本 吉央 (電通大)

離散最適化基礎論 (7)

マトロイドの基

非空な有限集合 E, マトロイド $\mathcal{I} \subseteq 2^E$

マトロイドの基 (base) とは?

E 上のマトロイド \mathcal{I} の基とは、次を満たす独立集合 $B \in \mathcal{I}$ 任意の $e \in E - B$ に対して, $B \cup \{e\} \notin \mathcal{I}$

別の言い方:基とは極大な独立集合

マトロイドの基:例

マトロイドの基 (base) とは?

E 上のマトロイド $\mathcal I$ の基とは、次を満たす独立集合 $B\in\mathcal I$ 任意の $e\in E-B$ に対して、 $B\cup \{e\}
ot\in\mathcal I$

岡本 吉央 (電通大)

離散最適化基礎論 (7)

2015年12月4日

岡本 吉央 (電通ブ

マトロイドの基:イメージ

マトロイドの基 (base) とは?

E上のマトロイド \mathcal{I} の基とは、次を満たす独立集合 $B \in \mathcal{I}$

離散最適化基礎論 (7)

任意の $e \in E - B$ に対して, $B \cup \{e\} \notin \mathcal{I}$

Ε

15年12日4日 10/4

マトロイドのサーキット

非空な有限集合 E, マトロイド $\mathcal{I} \subseteq 2^E$

マトロイドのサーキット (circuit) とは?

E上のマトロイド \mathcal{I} のサーキットとは、次を満たす従属集合 $C \not\in \mathcal{I}$ 任意の $e \in C$ に対して、 $C - \{e\} \in \mathcal{I}$

別の言い方:サーキットとは極小な従属集合

離散最適化基礎論 (7)

2015年12月4日

マトロイドのサーキット:例

マトロイドのサーキット (circuit) とは?

E上のマトロイド \mathcal{I} のサーキットとは、次を満たす従属集合 $C \not\in \mathcal{I}$ 任意の $e \in C$ に対して、 $C - \{e\} \in \mathcal{I}$

岡本 吉央 (電通大)

離散最適化基礎論 (7)

015年12月4日 12/

フトロイドのサーキット・イメージ

マトロイドのサーキット (circuit) とは?

E上のマトロイド \mathcal{I} のサーキットとは、次を満たす従属集合 $C \notin \mathcal{I}$ 任意の $e \in C$ に対して、 $C - \{e\} \in \mathcal{I}$

岡本 吉央 (電通大)

離散最適化基礎論 (7)

2015年12月4日

マトロイドの基族とサーキット族

非空な有限集合 E, マトロイド $\mathcal{I} \subseteq 2^E$

「記法:基族とサーキット族

 $\mathcal{B} = \{B \subseteq E \mid B \ \text{は} \ \mathcal{I} \ \text{の基} \},$ $(マトロイド \mathcal{I} \ \text{の基族})$

 $C = \{C \subseteq E \mid C \text{ d } \mathcal{I} \text{ o} \text{サーキット} \}$ $(マトロイド\mathcal{I} \text{ o} \text{サーキット族})$

閉路マトロイドのサーキット

連結無向グラフ G = (V, E)

G の閉路マトロイド \mathcal{I} において

\mathcal{I}	G
独立集合	閉路を含まない部分グラフ (の辺集合)
基	全域木 (の辺集合)
従属集合	閉路を含む部分グラフ (の辺集合)
サーキット	閉路 (の辺集合)

岡本 吉央 (電通大)

離散最適化基礎論 (7)

2015年12月4日 14/48

目次

● マトロイドのサーキット:復習

② サーキットの性質

3 基本サーキットと同時交換公理

₫ マトロイドに対する局所探索法

6 今日のまとめ

岡本 吉央 (電通大)

難散最適化基礎論 (7)

5年12月4日 16/

マトロイドのサーキットの性質 (1)

非空な有限集合 E, マトロイド $\mathcal{I} \subseteq 2^E$

「マトロイドのサーキットの性質 (1)

C は \mathcal{I} のサーキット, $C \subseteq X \Rightarrow X \notin \mathcal{I}$

証明:Cが \mathcal{I} のサーキットであり, $C \subseteq X$ と仮定

- ▶ X ∈ I であると仮定する (背理法)
- ▶ $C \subseteq X$ なので、(12) より、 $C \in \mathcal{I}$
- ▶ 一方, C は \mathcal{I} のサーキットなので, $C \notin \mathcal{I}$
- ▶ この2つは互いに矛盾

П

岡本 吉央 (電通大)

離散最適化基礎論 (7)

離散最適化基礎論 (7)

▶ このとき, ある要素 $e' \in C' - C$ が存在して, $C \subseteq C' - \{e'\}$

П

マトロイドのサーキットの性質 (3)

非空な有限集合 E, マトロイド $\mathcal{I} \subseteq 2^E$

マトロイドのサーキットの性質:弱消去公理

C, C' は I の異なるサーキット、 $e \in C \cap C' \Rightarrow$ \mathcal{I} のあるサーキット C'' が存在して, $C'' \subseteq (C \cup C') - \{e\}$

弱消去公理: weak elimination property

岡本 吉央 (電通大)

離散最適化基礎論 (7)

離散最適化基礎論 (7)

マトロイドのサーキットの性質 (3) :証明 (続き)

非空な有限集合 E, マトロイド $\mathcal{I} \subset 2^E$

マトロイドのサーキットの性質:弱消去公理

C, C' は I の異なるサーキット, $e \in C \cap C' \Rightarrow$ \mathcal{I} のあるサーキット C'' が存在して, $C'' \subseteq (C \cup C') - \{e\}$

証明(続き):したがって、次の式が得られる

▶ $r((C \cup C') - \{e\})$ $\leq r(C \cup C')$ (階数の単調性) $\leq r(C) + r(C') - r(C \cap C')$ (階数の劣モジュラ性) $<(|C|-1)+(|C'|-1)-r(C\cap C')$ (前ページで示した事項) $= (|C|-1) + (|C'|-1) - |C \cap C'|$ $(C \cap C' \in \mathcal{I})$ $= |C| + |C'| - |C \cap C'| - 2$ $= |C \cup C'| - 2 = |(C \cup C') - \{e\}| - 1$

▶ $\therefore C \cup C' - \{e\}$ は従属集合であり、サーキットを含む

岡本 吉央 (電通大)

離散最適化基礎論 (7)

離散最適化基礎論 (7)

目次

● マトロイドのサーキット:復習

❷ サーキットの性質

③ 基本サーキットと同時交換公理

4 マトロイドに対する局所探索法

今日のまとめ

岡本 吉央 (電通大)

マトロイドのサーキットの性質 (2)

非空な有限集合 E, マトロイド $\mathcal{I} \subseteq 2^E$

「マトロイドのサーキットの性質 (2)

C ≠ C' と仮定する (背理法)

C, C' は I のサーキット, $C \subseteq C' \Rightarrow C = C'$

証明: C, C' が \mathcal{I} のサーキットであり, $C \subseteq C'$ と仮定

▶ 前のページの性質 (1) より、C' - {e'} ∉ I

▶ これは C' がサーキットであることに矛盾

マトロイドのサーキットの性質 (3):証明

非空な有限集合 E, マトロイド $\mathcal{I} \subseteq 2^E$

マトロイドのサーキットの性質:弱消去公理

C, C' は I の異なるサーキット、 $e \in C \cap C' \Rightarrow$ \mathcal{I} のあるサーキット C'' が存在して, $C'' \subseteq (C \cup C') - \{e\}$

証明: C, C' は異なるサーキットであり, $e \in C \cap C'$ と仮定

- ▶ 前々ページの性質 (2) より, $C C' \neq \emptyset$ かつ $C' C \neq \emptyset$
- ▶ つまり、C ∩ C' は C, C' の真部分集合である
- ▶ サーキットの定義より, $C \cap C' \in \mathcal{I}$
- ト 特に, $r(C \cap C') = |C \cap C'|$
- ▶ C, C' は従属集合なので、r(C) < |C|, r(C') < |C'|</p>
- ▶ 特に, $r(C) \le |C| 1$, $r(C') \le |C'| 1$

マトロイドのサーキットの性質 (4)

非空な有限集合 E, マトロイド $\mathcal{I} \subset 2^E$

゙マトロイドのサーキットの性質:強消去公理

C, C' は I の異なるサーキット, $e \in C \cap C'$, $f \in C - C' \Rightarrow$ \mathcal{I} のあるサーキット C'' が存在して、 $f \in C'' \subseteq (C \cup C') - \{e\}$

証明:演習問題

強消去公理: strong elimination property

岡本 吉央 (雷诵大)

独立集合に要素を追加して従属となるとき…

非空な有限集合 E, マトロイド $\mathcal{I} \subseteq 2^E$

任意の $X \in \mathcal{I}$ と任意の要素 $e \in E - X$ に対して, $X \cup \{e\}$ が従属ならば、 $X \cup \{e\}$ は \mathcal{I} のサーキットをただ 1 つ含む

岡本 吉央 (電通大)

離散最適化基礎論 (7)

独立集合に要素を追加して従属となるとき…:証明

非空な有限集合 E, マトロイド $\mathcal{I} \subseteq 2^E$

命題

任意の $X \in \mathcal{I}$ と任意の要素 $e \in E - X$ に対して, $X \cup \{e\}$ が従属ならば, $X \cup \{e\}$ は \mathcal{I} のサーキットをただ1つ含む

証明: $X \cup \{e\}$ が従属ならば、サーキットの定義より、サーキットを含む

- ▶ 異なる2つのサーキット C, C' を X ∪ {e} が含むと仮定 (背理法)
- ▶ $X \in \mathcal{I}$ なので、 $e \in C$ かつ $e \in C'$

基の同時交換公理 (simultaneous exchange property)

非空な有限集合 E, マトロイド $\mathcal{I} \subseteq 2^E$

マトロイドの基の性質:同時交換公理

注:第3回講義で証明した基交換公理は以下の通り

- ▶ ∴ $e \in C \cap C'$
- ▶ 弱消去公理より、 $(C \cup C') \{e\}$ に含まれるサーキットが存在
- ▶ しかし, $(C \cup C') \{e\} \subseteq X$ なので, $X \in \mathcal{I}$ に矛盾

岡本 吉央 (電通大)

B. B' が I の基 ⇒

B, B' が \mathcal{I} の基 \Rightarrow

離散最適化基礎論 (7)

任意の $e \in B$ に対して、ある $e' \in B'$ が存在して、

任意の $e \in B$ に対して、ある $e' \in B'$ が存在して、

 $(B - \{e\}) \cup \{e'\}, (B' - \{e'\}) \cup \{e\}$ も \mathcal{I} の基

2015年12月4日

П

岡本 吉央 (電通大)

C(e, B) で表す

基本サーキット (fundametal circuit)

「命題の系 (ただちに分かること)

命題

非空な有限集合 E, マトロイド $\mathcal{I} \subseteq 2^E$

任意の $X \in \mathcal{I}$ と任意の要素 $e \in E - X$ に対して,

I の任意の基 B と任意の要素 $e \in E - B$ に対して、

このサーキットを、B に関する e の基本サーキットと呼び、

 $B \cup \{e\}$ は \mathcal{I} のサーキットをただ 1 つ含む

 $X \cup \{e\}$ が従属ならば、 $X \cup \{e\}$ は \mathcal{I} のサーキットをただ 1 つ含む

離散最適化基礎論 (7)

2015年12月4日

基の同時交換公理:例

非空な有限集合 E, マトロイド $\mathcal{I} \subseteq 2^E$

マトロイドの基の性質:同時交換公理

B, B' が \mathcal{I} の基 \Rightarrow 任意の $e \in B$ に対して、ある $e' \in B'$ が存在して、 $(B - \{e\}) \cup \{e'\}, (B' - \{e'\}) \cup \{e\}$ も \mathcal{I} の基

岡本 吉央 (電通大)

離散最適化基礎論 (7)

2015 / 12 8 4 8 20 /

岡本 古失 (竜週人)

離散最適化基礎論 (7)

マトロイドの基の性質:基交換公理 (base exchange property)

 $(B-\{e\})\cup\{e'\}$ も \mathcal{I} の基

2015年12月4日

基の同時交換公理:証明の前に

非空な有限集合 E, マトロイド $\mathcal{I} \subset 2^E$

補題B

Bが \mathcal{I} の基, $e, e' \in E$ に対して

 $e \in C(e',B)$ \Rightarrow $(B-\{e\}) \cup \{e'\}$ も \mathcal{I} の基

証明:e = e' のとき、 $(B - \{e\}) \cup \{e'\} = B$ なので、これは基

- ▶ 次に、e ≠ e' のときを考える
- ▶ (B {e}) ∪ {e'} が従属であると仮定 (背理法)
- ▶ (B {e}) ∪ {e'} はサーキットを含む (それを C とする)
- ▶ $C \subseteq B$ であると $B \in \mathcal{I}$ と (I2) に矛盾するので、 $e' \in C$
- ▶ 一方, $B \cup \{e'\}$ が含むサーキットはただ1つなので, C = C(e', B)
- $\blacktriangleright \ \ \therefore \ e \in C(e',B) \subseteq (B-\{e\}) \cup \{e'\}$
- これは、e ∉ (B {e}) ∪ {e'} に矛盾

岡本 吉央 (電通大)

離散最適化基礎論 (7)

015年12月4日 2

岡本 吉央 (電通大)

離散最適化基礎論 (7)

2015年12月4日 30/4

(第3回講義より)

П

基の同時交換公理:証明(1)

非空な有限集合 E, マトロイド $\mathcal{I} \subseteq 2^E$

マトロイドの基の性質:同時交換公理

B,B' が \mathcal{I} の基 \Rightarrow 任意の $e \in B$ に対して,ある $e' \in B'$ が存在して, $(B-\{e\}) \cup \{e'\}, (B'-\{e'\}) \cup \{e\}$ も \mathcal{I} の基

証明:C' = C(e, B') とする

▶ 次の集合族 F を考える (C は I のサーキット族)

 $\mathcal{F} = \{ C \in \mathcal{C} \mid e \in C \subseteq B \cup B', C - B \subseteq C' - B \}$

- ▶ $C' \in \mathcal{F}$ なので, $\mathcal{F} \neq \emptyset$
- ▶ *F* の要素 *C* で, |*C B*| を最小とするものを *C** とする
- ▶ このとき, $|C^* B| \ge 1$

(なぜか?)

基の同時交換公理:証明の前に(続き)

非空な有限集合 E, マトロイド $\mathcal{I} \subset 2^E$

補題B

BがIの基, $e, e' \in E$ に対して

 $e \in \mathcal{C}(e',B)$ \Rightarrow $(B-\{e\}) \cup \{e'\}$ も \mathcal{I} の基

証明 (続き): したがって, $(B-\{e\})\cup\{e'\}$ は独立

▶ ここで, $|B| = |(B - \{e\}) \cup \{e'\}|$

マトロイドの基の性質:補題 A

▶ 第3回講義補題Aより, $(B-\{e\})\cup\{e'\}$ は基

B が \mathcal{I} の基, $X \in \mathcal{I}$, $|B| = |X| \Rightarrow X$ も \mathcal{I} の基

基の同時交換公理:証明(1')

 $|C^* - B| \ge 1$

(なぜか?)

- ▶ |C* B| = 0 だと仮定する
- つまり、C*⊆B
- ▶ C^* は従属集合であり、 $B \in \mathcal{I}$ なので、サーキットの定義に矛盾 [

岡本 吉央 (電通大)

離散最適化基礎論 (7)

2015年12月4日

岡本 吉央 (電通オ

離散最適化基礎論

2015年12月4日

基の同時交換公理:証明(2)

主張

 $|C^* - B| = 1$

<u>主張の証明</u>: $|C^* - B| \ge 2$ であると仮定 (背理法)

- ▶ $x \in C^* B$ として,C = C(x, B) とする
- ▶ このとき、次が成立
 - $C \subseteq B \cup B'$

 $(\cdot \colon C^* \subseteq B \cup B')$

- $C B \subseteq C' B$
- $(: C B = \{x\} \subseteq C^* B \subseteq C' B)$
- ▶ $|C^* B| > |C B|$
- $(: |C^* B| \ge 2, |C B| = |\{x\}| = 1)$
- C* の構成法から、e ∉ C
- ▶ 強消去公理より、 T のサーキット C" で次を満たすものが存在

$$e \in C'' \subseteq (C \cup C^*) - \{x\}$$

岡本 吉央 (電通大)

離散最適化基礎論 (7)

基の同時交換公理:証明 (3')

 $|C''-B|<|C^*-B|$

(なぜか?)

- ▶ $C'' \subseteq (C \cup C^*) \{x\}$ かつ $C = C(x, B) \subseteq B \cup \{x\}$ より $C'' - B \subseteq ((C \cup C^*) - \{x\}) - B \subseteq C^* - B$
- ▶ x ∉ C" より、x ∉ C" B
- ▶ 一方で、xの定義より、 $x \in C^* B$
- ▶ したがって、C" Bは C* Bの真部分集合
- ▶ ゆえに、 |C" B| < |C* B|</p>

離散最適化基礎論 (7)

П

目次

- マトロイドのサーキット:復習
- サーキットの性質
- 3 基本サーキットと同時交換公理
- 4 マトロイドに対する局所探索法
- 今日のまとめ

岡本 吉央 (雷诵大)

離散最適化基礎論 (7)

マトロイドに対する局所探索法 (local search)

局所探索法:基本的な考え方

- ▶ 基を1つ、常に保持する
- ▶ 要素を交換することで、重み和の大きい基を見つける
- ▶ 交換で重み和を大きくできなくなったら、終了

基の同時交換公理:証明 (3)

主張

 $|C^* - B| = 1$

主張の証明 (続き):

▶ 強消去公理より、 I のサーキット C" で次を満たすものが存在

$$e \in C'' \subseteq (C \cup C^*) - \{x\}$$

- ▶ このとき,次が成立
 - $C'' \subseteq B \cup B'$

 $(:: C, C^* \subseteq B \cup B')$

- $C'' B \subseteq C' B$
- $(\because C''-B\subseteq ((C\cup C^*)-\{x\})-B\subseteq (C-B)\cup (C^*-B)\subseteq C'-B)$
- したがって、C" ∈ F
- ▶ 一方, $|C'' B| < |C^* B|$

(なぜか?)

- ▶ これは C* の構成法に矛盾

岡本 吉央 (電通大) 離散最適化基礎論 (7)

基の同時交換公理:証明(4)

主張より, ある $e' \in E$ が存在して, $C^* - B = \{e'\}$

- ▶ このとき, $C^* = C(e', B)$ であり, $e \in C^*$
- ▶ また, $e' \in C^* B \subseteq C' B$ なので, $e' \in C' = C(e, B')$

【ここまでで証明できたこと:まとめ

B, B' が \mathcal{I} の基 \Rightarrow 任意の $e \in B$ に対して,ある $e' \in B'$ が存在して, $e \in C(e', B)$ かつ $e' \in C(e, B')$

▶ したがって、補題Bより、 $(B - \{e\}) \cup \{e'\}, (B' - \{e'\}) \cup \{e\}$ も \mathcal{I} の基

解きたい問題

マトロイドの最大独立集合問題

有限集合 E 上のマトロイド \mathcal{I} と重み $w: E \to \mathbb{R}_+$ に対して

 $\sum w(e)$ maximize

 $e \in X$

subject to $X \in \mathcal{I}$

第5回講義(観察1):最適解として、基であるものが存在する

▶ つまり、重み和が最大の基を見つければよい

離散最適化基礎論 (7)

マトロイドに対する局所探索法:アルゴリズムの記述

^{*}最大独立集合問題に対する局所探索アルゴリズム

■ B ← I の任意の基

岡本 吉央 (電通大)

② ある $e \in B$ とある $e' \in E - B$ に対して,

w(e) < w(e') かつ $(B - \{e\}) \cup \{e'\}$ が \mathcal{I} の基 ならば、 $B \leftarrow (B - \{e\}) \cup \{e'\}$

- **3** そのような $e \in B$ と $e' \in E B$ が存在する限り、上を繰り返す
- 4 存在しないとき、Bを出力して終了

基の取りうる重み和の種類は有限なので, このアルゴリズムも有限回の繰り返しで必ず停止する

マトロイドに対する局所探索法:例

最大独立集合問題に対する局所探索アルゴリズム

- B ← I の任意の基
- 2 ある $e \in B$ とある $e' \in E B$ に対して,

w(e) < w(e') かつ $(B - \{e\}) \cup \{e'\}$ が \mathcal{I} の基 ならば、 $B \leftarrow (B - \{e\}) \cup \{e'\}$

- 3 そのような $e \in B$ と $e' \in E B$ が存在する限り、上を繰り返す
- 存在しないとき、Bを出力して終了

岡本 吉央 (電通大)

離散最適化基礎論 (7)

局所探索アルゴリズムの正当性:証明 (1)

- ▶ アルゴリズムの出力を B として, これが最適解ではないと仮定
- ▶ B' は最適解で、|B ∩ B'| が最大のものであるとする
 - ▶ B は最適解ではないので、 B ≠ B'
- ▶ 同時交換公理より, 任意の $e \in B - B'$ に対して、ある $e' \in B' - B$ が存在して
- ▶ B はアルゴリズムの出力なので、w(e) > w(e')

岡本 吉央 (電通大)

離散最適化基礎論 (7)

2015年12月4日 43/48

目次

- マトロイドのサーキット:復習
- 2 サーキットの性質
- 3 基本サーキットと同時交換公理
- 4 マトロイドに対する局所探索法
- 今日のまとめ

岡本 吉央 (電通大)

離散最適化基礎論 (7)

残った時間の使い方

- ▶ 演習問題をやる
 - ▶ 相談推奨 (ひとりでやらない)
- ▶ 質問をする
 - ▶ 教員は巡回
- ▶ 退室時, 小さな紙に感想など書いて提出する ← 重要
 - ▶ 匿名で OK

局所探索アルゴリズムの正当性

非空な有限集合 E, マトロイド $\mathcal{I}\subseteq 2^E$, 重み $w\colon E\to\mathbb{R}_+$

局所探索アルゴリズムの正当性

局所探索アルゴリズムの出力は最大独立集合問題の最適解である

証明の方針:

- ▶ アルゴリズムの出力を B, 最適解を B'とする
- ト $\overline{$ 証明の目標 $}:\sum_{e\in B}w(e)\geq\sum_{e\in B'}w(e)$ (これを示せば十分)

離散最適化基礎論 (7)

- ▶ そのために、同時交換公理を用いる
- ▶ 実際は背理法で証明を進める

局所探索アルゴリズムの正当性:証明(2)

- $\sum_{f\in (B'-\{e'\})\cup\{e\}}$ ightharpoonup B' は最適解なので, $\sum w(f) \geq 0$
- ▶ t t
- \rightarrow : w(e) = w(e')

岡本 吉央 (電通大)

- ▶ ∴ (B' {e'})∪{e}も最適解
- ▶ しかし,

$$|B \cap (B' - \{e'\}) \cup \{e\}| = |B \cap B'| + 1 > |B \cap B'|$$

▶ これは B' の選び方に 矛盾

したがって、B は最適解である

岡本 吉央 (電通大)

離散最適化基礎論 (7)

 \Box

今回のまとめ

今日の目標

マトロイドのサーキットの基本的な性質を証明する

鍵となる概念

▶ 基本サーキット

基本サーキットを用いて、次を考える

- ▶ 基の同時交換公理
- ▶ 最大独立集合問題に対する局所探索アルゴリズム

岡本 吉央 (電通大)

蘇散最適化基礎論 (7)

- ▶ 内容は何でも OK