

Agenda

- 1. Project Introduction
- 2. Data Crawling & Preprocessing
- Feature vectors & General Model(SVM, Tree, etc.) Comparison
- 4. Audio feature and Convolutional Neural Network Analysis

MER

- multi-label tagging task
- acoustic features <-> emotion tags
- application: music recommendation etc.
- models: SVM, random forests, CNN (Liu, Xin, et al.)

Dataset -- overview

- source: Spotify
- 7195 songs (5510 with .wav)
 - o Calm: 2951 (2742 with .wav)
 - sad: 439 (232 with .wav)
 - o energetic: 3554 (2364 with .wav)
 - o happy: 251 (172 with .wav)
- 16 features
 - provided by Spotify API
- Label
 - o/ self-labelled
 - o binary: positive & negative
 - o multi-class

Dataset -- preprocessing

- drop duplicated songs
- extract songs with preview_url (with audio)

```
calm.csv
calm_no_duplicates.csv
calm_no_duplicates_no_nan.csv
calm_vectors/
```

Dataset -- features

object metadata

16 features from Spotify API

id	0LweQRsfJ3pRAJJFy6DrR1
danceability	0.776
energy	0.692
key	2
loudness	-3.834
mode	1
speechiness	0.0555
acousticness	0.0075
instrumentalness	0
liveness	0.0588
valence	0.543
tempo	95.972
duration_ms	198174
time_signature	4
artist_name	Jessi
track_name	What Type of X
preview_url	https://p.scdn.co/mp3-preview/917623a4638d1005
binary_label	1
multiclass_label	4
Name: 1, dtype: ob;	ject

Dataset-features

calm

energetic

Spectrogram

- 2D discrete Fourier transform of audio
- visualize harmonic structure in audio

Dataset -- features

- 30 second preview
 - retrieve .wav
 - .wav -> matrix 128 * 216
 - intensities of spaced frequency ranges over discrete slices in time

```
x, sr = librosa.load(file, offset = 10,duration = 5)
ps = librosa.feature.melspectrogram(x, sr = sr)
```

```
data = np.array(data)
print(data.shape)
np.save(name + '.npy', data)
```


Traditional models:)

SVM, Random Forest, etc.

Final Result

	precision	recall	f1-score	support
Sad	0.43	0.48	0.45	88
Healing	0.95	0.97	0.96	1926
joyful	0.90	0.86	0.88	816

first vs. last

	precision	recall	f1-score	support
Sad Healing	0.43	0.48	0.45 0.96	88 1926
joyful	0.90	0.86	0.88	816

classifier = stacking (SVM, Decision Tree, Random Forest)

	precision	recall	f1-score	support
sad	1.00	0.06	0.11	53
calm	0.93	1.00	0.96	1926
happy	1.00	0.02	0.04	50
energetic	0.89	0.85	0.87	766

classifier = SVM

Model Improvement

------A long journey of model optimization------

Better data

- oversampling
- o add more data

Better model

- o grid search for hyperparameter
- try different models
- stack models

Other

change classification criterion

Improve the model

Main Difficulty: class imbalance

```
calm: 9629 68.91%
energetic: 3829 27.40%
sad: 266 1.90%
happy: 250 1.79%
```

Better Data

Oversampling: library SMOTE

before	pred	cision	recall	f1-score	support
sad		1.00	0.06	0.11	53
calm	'	0.93	1.00	0.96	1926
happy		1.00	0.02	0.04	50
energetic		0.89	0.85	0.87	766

classifier = SVM default parameters

- 0	precis	ion	recall	f1-score	support
after	12	12121	70 00	per restor	1000
sad	0	.17	0.62	0.27	53
calm	0	.94	0.95	0.94	1926
happy	0	.15	0.58	0.23	50
energetic	0	.94	0.58	0.72	766

classifier = SVM default parameters + oversampling

More data helps!!!

	precision	recall	f1-score	support
sad	0.33	0.72	0.45	88
calm	0.94	0.96	0.95	1926
happy	0.16	0.58	0.25	50
energetic	0.94	0.62	0.75	766

SVM default parameters + oversampling + add data

Better Model

Hyperparameter tuning: Gridsearch

Try different models:

```
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
```

Stacking

Other

Change classification criterion

Future Work

- More data: add data for the minority class
- Data of higher quality
- More features: extract features from the audio

Neural Network

Feature vector input:

One-layer NN

Raw audio input:

Conv + FC

Conv + LSTM + DNN

Simple NN

One layer with 8 nodes

Accuracy Score: 89.4%

In [351]: #Normalize the features
X = MinMaxScaler().fit_transform(X)

Non-trainable params: 0

Layer (type)	Output Shape	Param #
dense_92 (Dense)	(None, 8)	112
dense_93 (Dense)	(None, 4)	36

Baseline model:

Three-layer CNN

Accuracy: 53.9%

Conv + FC

Conv + LSTM + DNN

(128, 216, 1)

Conv + FC 3,552,513 Parameters

30+ mins

Training time

81%
Best Val
Accuracy

Can we do better??

Adam Optimizer

Cross-entropy Loss

Model Optimization

Callbacks=[es]
Early Stopping

Batch size 32

Batch-normalization

After Activation Before drop out

Drop Out rate 0.3 --> 0.5

Accuracy 89.47%

Can we do better?

We changed the filter size from square into rectangular...

With only 446193 parameters! 1/10 of original numbers!

Accuracy: 89.11%

Pure LSTM

Low training rate and bad behavior!

Conv + LSTM + DNN

Filter

kernel_size=(1, 3)

Time + LSTM

Bidirectional LSTM

(128, dropout=0.25, return_sequences=True) 89.11%

High Training Accuracy!

LeakyReLU(alpha=0.01)

10+ mins/Epoch ... Super slow ... Orz ...

Image from Rajat Hebbar

Model Limitation & Future Improvement

- 1. Data limitation
 - a. Subjective label / 5s Clips / quantity
- 2. Audio Data Augmentation
 - a. Time Stretching / Pitch Shifting
 - b. Dynamic Range Compression
 - c. Background Noise
- 3. Multi-class Emotion Recognition
- 4. New data type (SoundNet)

Thank you!

