

INSTITUTO POLITÉCNICO NACIONAL

ESCUELA SUPERIOR DE CÓMPUTO DEPARTAMENTO DE INGENIERÍA EN SISTEMAS COMPUTACIONALES ACADEMIA DE INGENIERÍA DE SOFTWARE

Profesora: M. en C. Ma. Elena Cruz Meza,

e-mail: mcruzm@ipn.mx,

ANÁLISIS DE IMÁGENES

Análisis de Imágenes

Unidad II

Análisis Espacial

Unidad II

- 2.1 La convolución
 - 2.1.1 La convolución de dos funciones continuas.
 - 2.1.2 La convolución de dos funciones discretas.
 - 2.1.3 La imagen digital como una función discreta bidimensional.
- 2.2 El uso de la convolución de dos imágenes digitales.
 - 2.2.1 Ajuste de brillo.
 - 2.2.2 Filtros pasa-bajas (Promediador, gaussiano, etc.)
 - 2.2.3 Filtros pasa-altas (Gradiente, Sobel, Canny, etc.)
- 2.3 Filtros de moda y mediana.
- 2.4 Segmentación.
 - 2.4.1 Binarización.
 - 2.4.2 Binarización automática haciendo uso del histograma.

Introduccion...

- Segmentación: Partición de una imagen en regiones homogéneas con respecto a una o más características, por ej.:
 - la forma,
 - el color,
 - el brillo,
 - la textura.
 - el movimiento, ...
- La segmentación es el primer paso del Análisis de Imágenes (por ej. eliminación de ruido, etc.) y puede verse como el proceso que divide la imagen en sus partes constituyentes hasta un nivel de subdivisión en el que se aíslen las regiones u objetos de interés.

2.4 Segmentación

Introducción...

- El nivel de la subdivisión depende del problema, por ejemplo, hasta que los objetos de interés buscados hayan sido aislados
 - Segmentación completa: termina cuando los objetos que aparecen en una imagen se corresponden unívocamente con las distintas regiones resultado de la segmentación.
 - Segmentación parcial: se segmentan p.e. agrupaciones de objetos.
- Los algoritmos que se basan en una de estas dos propiedades básicas de los valores del nivel de gris:
 - Discontinuidad
 - Similitud entre los niveles de gris de píxeles vecinos

Ejemplos de segmentación:

Segmentación completa, mediante umbralización

Segmentación parcial, mediante detección de bordes

M. en C. Sandra Luz Morales Güitrón

2.4 Segmentación

Introducción...

Discontinuidad:

- Consiste en dividir una imagen basándose en los cambios bruscos de nivel de gris
- Principales categorías: detección de puntos aislados y la detección de líneas y bordes de una imagen

Similaridad:

 Principales categorías basados en la umbralización, crecimiento de región, y división y fusión de regiones

Formulación del problema de la segmentación

Veamos tres ejemplos de problemas en los que se requiere la segmentación de regiones de interés en una imagen para:

- · Identificación de huellas dactilares
- Identificación de múltiples objetos en una misma escena
- Reconocimiento de objetos similares

9

2.4 Segmentación 1.- Segmentación de las Huellas Dactilares(0) Objetivo: Identificación de Personas mediante la Huella Dactilar

Analisis de Imágenes 06/03/2015

Analisis de Imágenes

2.- Identificación de múltiples objetos (I)

Objetivo: Identificación de varios objetos similares que aparecen en la misma escena y conteo de los mismos

Analisis de Imágenes

- 3.- Clasificación de tipos de Iris (flores) (II)
- Tres categorías
- Patrones bidimensionales:
 - · longitud del pétalo
 - · anchura del pétalo
- Los descriptores utilizados sirven para discriminar iris setosa de las otras dos, pero no para discriminar entre iris virginica e iris versicolor

- En general, la segmentación de imágenes involucra *la* extracción y selección de características:
 - Extractor de características: subsistema que extrae información relevante para la clasificación a partir de las entidades cuantificables.
 - Clasificador: subsistema que utiliza un vector de características de la entidad cuantificable y lo asigna a una de M clases
 - Tipos de patrones:
 - Vectores: x= (x1, x2,..., xn)T
 - Cadenas
 - Árboles

2

2.4.1 Binarización

Introducción

La umbralización o binarización es una técnica de segmentación ampliamente utilizada, por ejemplo en aplicaciones industriales, ya que se emplea cuando hay una clara diferencia entre objetos a extraer respecto al fondo de la escena. Los principios que rigen son la similitud entre los pixeles pertenecientes a un objeto y sus diferencias respecto al resto, por lo que la escena debe caracterizarse por un fondo uniforme y por objetos parecidos.

Introducción...

- La segmentación de un nivel es la conversión entre una imagen en niveles de grises y una imagen monocroma (blanco y negro)
- Características de la imagen monocroma:
 - debe contener toda la información esencial de la imagen original (mismo nº de objetos, misma forma, misma posición)
 - Mucho menor espacio

23

2.4.1 Binarización

Umbralización

- La umbralización del nivel de gris es el proceso de segmentación más simple.
- La mayor parte de los objetos o regiones de interés en una imagen están caracterizados por una reflectividad o absorción de luz más o menos constante de su superficie (los píxeles de un objeto tienen, aproximadamente, el mismo nivel de gris)
- La idea es obtener un umbral de brillo (valor de nivel de gris) que separe el(los) objeto(s) del fondo

El Umbral

 Dado que la umbralización permite convertir una imagen de niveles de gris en una binaria, la imagen binaria B(i,j) se obtiene a partir de la original I(i,j) en niveles de gris, y de un umbral de separación U seleccionado, mediante:

$$B(i,j) = 1,$$
 si $I(i,j) \ge U$
 $B(i,j) = 0,$ si $I(i,j) < U$

- Características:
 - Rápida, de coste computacional bajo, se puede realizar en tiempo real.
 - Sencilla e intuitiva
- La obtención de *U* se basa en el *histograma* de la imagen, donde se buscan y analizan sus mínimos locales.
- El histograma de una imagen no considera información espacial sino solamente la distribución de niveles de grises en la imagen.

25

2.4.1 Binarización

Algoritmo de umbralización

- Al aplicar un umbral T a la imagen en escala de grises f(x,y), esta quedará binarizada etiquetando con 1 los pixeles correspondientes al objeto y con 0 aquellos que son del fondo.
 - Conjunto de píxeles negros (0): Imagen(i,j) < T
 - Conjunto de píxeles blancos (1): Imagen(i,j) >= T
- Es decir, recorrer todos los píxeles de la imagen; si su nivel de gris es mayor (menor) que el umbral es parte del objeto, si es menor (mayor) es parte del fondo

Analisis de Imágenes 06/03/2015

2.4.1 Binarización

Elección del valor de Umbral adecuado

- La selección del umbral correcto es crucial en el proceso de segmentación por umbralización
- La selección del umbral puede ser interactiva o puede ser el resultado del algún **método de detección de umbral**
- Problemas: Ruido, Efectos de iluminación.

Umbral

Umbral demasiado alto

Analisis de Imágenes

Analisis de Imágenes

Operador intervalo de un umbral binario inverso

$$q(x,y) = 0$$
 $para p(x,y) \le u1 \ \delta \ p(x,y) \ge u2$
 $q(x,y) = 255$ $para u1 < p(x,y) < u2$

2.4.1 Binarización

Operador umbral de la escala de grises

$$q(x,y) = 255$$
 $para p(x,y) \le u1 \circ p(x,y) \ge u2$
 $q(x,y) = p(x,y)$ $para u1 > p(x,y) < u2$

Operador umbral de la escala de grises inverso

$$q(x,y) = 255$$
 $para \ p(x,y) \le u1 \ \'o \ p(x,y) \ge u2$
 $q(x,y) = 255 - p(x,y)$ $para \ u1 > p(x,y) < u2$

2.4.1 Binarización

Tipos de umbralización

- Multiumbralización: Consiste en la elección de múltiples valores de umbral, permitiendo separar a diferentes objetos dentro de una escena cuyos niveles de gris difieran.
 - Ejemplo:

2 umbrales

3 modos dominantes

Objeto 1: si $U_1 < I(x,y) \le U_2$

Objeto 2: si $I(x,y) > U_2$

Fondo: si $I(x,y) \le U_1$

Tipos de umbralización

Multiumbral

• Se obtiene una imagen no binaria

$$g(x,y)= \begin{cases} G_1 & f(x,y) \in D_1 \\ G_2 & f(x,y) \in D_2 \\ G_3 & f(x,y) \in D_3 \\ ... \\ G_n & f(x,y) \in D_1 \\ 0 & otro \end{cases}$$

M. en C. Sandra Luz Morales Güitron

2.4.1 Binarización

Tipos de umbralización

Umbral Banda

 Segmenta una imagen en regiones pertenecientes o no a un conjunto de niveles de gris

$$g(x,y) = \begin{cases} 1 & \text{f(} x,y \text{)D} \\ 0 & \text{otro} \end{cases}$$

· Puede servir indirectamente para detectar bordes

Tipos de umbralización...

 Semiumbralización: se obtiene una imagen resultado en niveles de gris, poniendo a cero el fondo de la imagen y conservando los niveles de gris de los objetos a segmentar que aparecen en al imagen inicial, es decir, Enmascara el fondo dejando a la vista la información de los objetos:

$$g(x,y)= \begin{cases} f(x,y), & \text{Si } f(x,y) \geq U \\ 0, & \text{en otro caso} \end{cases}$$

Puede servir indirectamente para detectar bordes

39

2.4.1 Binarización

Umbral Adaptativo

- El valor del umbral depende de las características locales de la imagen. El umbral depende de las coordenadas espaciales x e y.
- El valor del umbral varía como función de las características locales de la imagen.

$$T = T (f,f_c)$$

- La imagen se divide en subimágenes fc.
- Se calcula un umbral para cada subimagen.
- Si no se puede calcular en alguna subimagen, se interpola a partir de las subimágenes vecinas.
- · Cada subimagen se procesa respecto a su umbral.

Tipos de umbralización...

- Métodos basados en el valor de gris medio: Se usa el nivel medio de gris de la imagen como valor de umbral
 - (suma de todos los niveles de gris de cada píxel / nº total de píxeles)
- Efecto en la imagen binarizada:
 - casi la mitad de los píxeles serán considerados como blancos, y los demás como negros

2.4.1 Binarización

Umbral Global

- En realidad sólo de debería usar en circunstancias muy concretas OT = T(f)
- Las variaciones en el nivel de gris son habituales ...debidas a iluminación no uniforme, parámetros no uniformes del dispositivos de captura, etc...
- (la umbralización global tiene éxito si el entorno de captura es controlado, p.e. inspección de objetos industriales). El éxito depende de si el histograma está bien dividido. A veces la iluminación impide una partición del histograma efectiva y es preciso utilizar umbralización local o adaptativa).

Mediante el histograma de niveles de grises de la imagen: Porcentaje de pixeles negros

- Dado un histograma, y un porcentaje de píxeles negros deseados:
 - Se determina el numero de píxeles negros multiplicando el porcentaje por el número total de pixeles
 - Se cuentan el número de pixeles de cada nivel del histograma, empezando por el nivel cero, hasta llegar al número de pixeles negros deseados
 - El umbral será el nivel de gris del histograma en el que la cuenta llegue al número de píxeles negros deseados

Profesora María Elena Cruz Meza

43

2.4.1 Binarización automática haciendo uso del histograma

Método de los picos usando el histograma de niveles de grises de la imagen (I)

- Basado en una observación práctica:
 - El valor T de umbral suele aparecer en el punto bajo entre dos picos del histograma
- Seleccionar el umbral ahora consiste en
 - Encontrar los dos picos
 - Encontrar el punto bajo entre ellos.
- Encontrar el primer pico es fácil (aquel nivel de gris del histograma que tenga el mayor valor)
- Segundo pico mas difícil de encontrar

Profesora María Elena Cruz Meza

Método de los picos usando el histograma de niveles de grises de la imagen (II)

- Problema 2º pico:
 - El segundo valor más grande del histograma puede ser el que está justo a la derecha del mayor, en vez de ser el segundo pico
- Solución: Dar preferencia a picos que no están cercanos al máximo.
 - Si el pico más alto en nivel j, seleccionar el segundo pico por:

$$\max\{((k-j)^2 h[k]) \mid (0 \le k \le 255)\}$$

Profesora María Elena Cruz Meza

45

2.4.1 Binarización automática haciendo uso del histograma

Método de los picos usando el histograma de niveles de grises de la imagen (III)

Profesora María Elena Cruz Meza

Binarización mediante el histograma de pixeles borde (I)

- Este método se basa en el hecho de que un píxel de borde debe estar cercano al límite entre una imagen y el fondo, o entre dos objetos
- El método consiste en buscar un umbral haciendo uso del operador Laplaciano (operador de detección de borde no direccional)

Profesora María Elena Cruz Meza

47

2.4.1 Binarización automática haciendo uso del histograma

Binarización mediante el histograma de pixeles borde (II)

Algoritmo:

- Calcular la convolución entre el operador laplaciano con la imagen
- Calcular el histograma de la convolución obtenida
- Obtener el valor de gris para el histograma que cubre el porcentaje especificado
- Calcular histograma de la imagen original considerando únicamente los píxeles que cuyo laplaciano es mayor que el valor anterior
- Calcular el umbral con el nuevo histograma por alguno de los métodos anteriores

Profesora María Elena Cruz Meza

Binarización mediante Selección Iterativa de un Umbral (I)

- Un umbral inicial es refinado por pasos consecutivos por medio de la imagen o del histograma.
- El umbral inicial estimado es el nivel de gris medio llamado Tb y el nivel medio de los píxeles mayores o iguales al inicial es llamado To. Una nueva estimación del umbral es (Tb+To)/2, y el proceso se repite usando este umbral. Cuando no hay cambios en el umbral en dos pasos consecutivos se termina el proceso y este es el umbral.

Profesora María Elena Cruz Meza

2.4.1 Binarización automática haciendo uso del histograma

Binarización mediante Selección Iterativa de un Umbral (I)

- El mismo umbral puede ser calculado usando el histograma (más rápido)
- El umbral inicial será el nivel de gris medio, para el paso n-esimo se calcula como:

$$T_{k} = \frac{\sum_{i=0}^{T_{k-1}} i \cdot h(i)}{2\sum_{i=0}^{T_{k-1}} h(i)} + \frac{\sum_{j=T_{k-1}+1}^{N} j \cdot h(j)}{2\sum_{j=T_{k-1}+1}^{N} h(j)}$$

El proceso continua hasta encontrar un T k igual a T_{k-1}, este valor es el umbral.

Profesora María Elena Cruz Meza

Binarización Optima

- Si hay dos grupos de píxeles en la imagen, la varianza de los valores de nivel grises en la imagen se denota por:
- Para un umbral dado, se puede calcular por separado la varianza de los píxeles de objeto y de los píxeles de fondo, denotado por: σ_b^2

Profesora María Elena Cruz Meza

51

2.4.1 Binarización automática haciendo uso del histograma

Binarización Optima

 Un umbral óptimo puede ser encontrado reduciendo al mínimo la proporción de la varianza entre-clase de la varianza total.

$$\eta(t) = \frac{\sigma_b^2}{\sigma_t^2}$$

- El valor medio global es: $\mu_{\scriptscriptstyle T}$
- · La varianza entre-clases es calculado por:

$$\sigma_b^2 = \omega_0 \omega_1 (\mu_0 \mu_1)^2$$

Profesora María Elena Cruz Meza

Binarización Optima

· Donde:

$$\omega_0 = \sum_{i=0}^t p_i \qquad \omega_1 = 1 - \omega_0$$

Siendo P_i la probabilidad del nivel de gris i. H(i)/N

$$\mu_0 = \frac{\mu_t}{\omega_0}$$
 $\mu_1 = \frac{\mu_T - \mu_t}{1 - \omega_0}$ $\mu_t = \sum_{i=0}^t i.p_i$

• El valor de t que minimice será el valor de umbral óptimo. $\eta(t)$

Profesora María Elena Cruz Meza

53

2.4.1 Binarización automática haciendo uso del histograma

Métodos de Binarización con umbral mínimo error

- El histograma de la imagen puede ser pensado como una función de densidad de probabilidad de las dos distribuciones (pixeles objetos y pixeles de fondo).
- El histograma se puede aproximar por:

$$p(g) = \frac{1}{\sigma_1 \sqrt{2\pi}} e^{-((g-\mu_1)^2/2\sigma_1^2)} + \frac{1}{\sigma_2 \sqrt{2\pi}} e^{-((g-\mu_2)^2/2\sigma_2^2)}$$

Profesora María Elena Cruz Meza

Binarización mediante umbrales regionales

- Normalmente son cuatro umbrales, cada uno de los cuales puede calcular el umbral para un cuarto de la imagen.
- Reduce los resultados de la segmentación en la totalidad de la imagen, pero simplifica la dificultad de los cálculos.
- El algoritmo de cálculo de umbral aplicado a cada región intenta dividir los píxeles en dos grupos, objetos y fondos.
- Este algoritmo se usa si en la región hubiera píxeles de ambos grupos.

Profesora María Elena Cruz Meza

55

2.4.1 Binarización automática haciendo uso del histograma

Métodos de medias móviles

- El algoritmo se basa en umbral por píxel de una manera rápida, usando promedios.
- Un promedio móvil es simplemente el significado del nivel de gris de los últimos n píxeles vistos.

$$M_{i+1} = M_i - \frac{M_i}{n} + g_{i+1}$$

- Cualquier píxel menor a un porcentaje fijo de su promedio móvil pertenece al conjunto de píxeles negro; de otra manera al conjunto de blanco.
- Para computar la estimación del promedio móvil para el próximo píxel (el primero), que se usa como umbral

 $V = \begin{cases} 0 \text{ si } \left(g_i < \left(\frac{M_i}{n} \frac{100 - pct}{100} \right) \right) \\ 255 \text{ en otro caso} \end{cases}$

Profesora María Elena Cruz Meza

Bibliografía

•Gonzalez, RC y Woods, RE Digital Image Processing. Addision-Weslay, USA, 1992.

- •Forsyth y Ponce. Computer Vision: A modern approach. Prentice-Hall, New Jersey, 2003.
- •J. Parker. Algorithms for image processing and computer vision. John Wiley & Sons ed. (1997), 116-149

Links para practicar:

http://homepages.inf.ed.ac.uk/rbf/HIPR 2/hipr_top.htm

http://www.tsc.uc3m.es/imagine/index.html