Technologies de l'IA Marketing & Spark-MLlib

Philippe Besse & Brendan Guillouet

Université de Toulouse INSA – Dpt GMM Institut de Mathématiques – ESP UMR CNRS 5219

La technologie Spark et son écosystème

Librairie SparkML vs. MLlib

- Spark 2.4
- Peu de méthodes mais passage à l'échelle "Volume"
- MLlib : Resilient Distributed Dataset (RDD)
- SparkML: DataFrame, pipeline vers MLlib
- Fonctions
 - Statistique descriptive, tests
 - k-means, GMM
 - SVD donc ACP
 - Non negative Matrix Factorisation (ALS)
 - Régression linéaire et logistique (l₁ et l₂)
 - SVM linéaires, Classifieur Bayésien Naïf
 - Arbre, Forêt Aléatoire, Boosting (GBM)

Apprentissage avec Spark MLlib

- Données massives : n et p très grands
- Données distribuées : Hadoop
- Après préparation des données massives avec Spark
- Question :
 - Apprendre sur tout : Spark MLlib
 - ou échantillonner : Python Scikit-learn
- Exemples
 - Random Forest sur MNIST
 - Non negative Matrix Factorisation (NMF) Movie Lens: recommandation de films
 - Régression logistique
 Catégorisation de textes de Cdiscount

MNIST : quelques exemples d'images de caractères

MNIST: État de l'art

- Site de Yann le Cun
- 60 000 caractères, $28 \times 28 = 784$ pixels
- Test: 10 000 images
- Méthodes classiques (k-nn, RF)
- Prétraitement de normalisation des images
- Distance spécifique (tangeantielle) avec propriétés d'invariance
- Ondelettes et scattering (Stéphane Mallat)
- Apprentissage Profond : TensorFlow, Lasagne, Keras
- ...
- Comparer l'usage des méthodes classiques

Implémentations de Random Forest

- R:randomForest, ranger
- Python: Scikit-learn
- MLlib: arbres du projet Google PLANET
- Problèmes : mémoire et temps d'exécution
 - maxBins = 32
 - maxDepth: élagage d'un arbre
- Bootstrap ou tirages sans remise?

MNIST: forêts aléatoires avec R (ranger pas randomForest)

MNIST: forêts aléatoires avec Python (Scikit-learn)

MNIST: forêts aléatoires avec Spark (MLlib); maxdepth=15

MNIST : Forêts aléatoires (Spark) avec 2, 4 ou 6 exécuteurs

Reconnaissance de caractères MNIST Random Forest: comparaison MNIST: discussion

MNIST: discussion

- R ranger (sauf Windows) ou Python Scikit-learn
- Spark : problèmes de mémoire limitent maxDpeth, nb arbres
- Spark : scalability pas vérifiée
- Plateau de l'erreur fonction de la taille de l'apprentissage
- Architecture intégrée préférable à distribuée
- Conclusion : Scikit-learn plutôt que MLlib

E-commerce et Systèmes de Recommandation

- Gestion de la relation client : score d'appétence
- Google double click, Criteo, enchères
- Commerce en ligne et filtrage de produits (Cf. Vignette)
 - Filtrage adaptatif: algorithme de bandit
 - Filtrage collaboratif: concours Netflix
 - Basé sur les seules informations client × produit
 - Modèle de voisinage
 - Facteurs latents
 - Méthodes mixtes ou hybrides

Problèmes délicats

- Évaluation d'une recommandation : Nb clics de ventes, AB testing, RMSE
- Initialisation : cold start

Filtrage collaboratif par voisinage

- Grande matrice creuse clients × produits
 - Nombre ou présence de ventes
 - Appréciation ou note de 1 à 5
- Basé sur le voisinage client ou produit
 - Définir une similarité (corrélation linéaire ou rang)
 - Trouver un sous-ensemble S_i de proches de i
 - Prévoir une note ou un achat
 - Combinaison linéaire des notes de S_i

Filtrage collaboratif par facteurs latents

- Matrices clients × produits très creuses
- Nombre d'achats ou de clics vs. appréciation ou note
- Valeur nulle vs. valeur manquante
- Modèle par factorisation vs. Complétion
 - Candes et Tao (2010)
 - $\min_{\mathbf{M}} \left(||P_{\Omega}(\mathbf{X} \mathbf{M})||_{2}^{2} + \lambda ||\mathbf{M}||_{*} \right)$
 - $P_{\Omega}(\mathbf{X})$: "restriction" de la matrice \mathbf{X} à l'ensemble des valeurs connues

Complétion de matrice

- Netflix ou MovieLens : problème de complétion
- Sujet à la bibliographie explosive
- Deux méthodes facilement accessibles (R et Spark)
 - Librairie R softImpute : Algorithme hybride associant SVDs seuillées et moindres carrés alternés (Hastie et al. 2015)

$$\min_{\mathbf{A}_{\mathbf{n} \times \mathbf{r}}, \mathbf{B}_{\mathbf{p} \times \mathbf{r}}} ||P_{\Omega}(\mathbf{X} - \mathbf{A}\mathbf{B}^T)||_2^2 + \lambda \left(||\mathbf{A}||_2^2 + ||\mathbf{B}||_2^2\right)$$

 Librairie Spark MLlib: Complétion par Non negative Matrix Factorisation (NMF)

Non negative Matrix Factorisation

$$\min_{\mathbf{W},\mathbf{H}\geq 0}\left[l(\mathbf{X},\mathbf{W}\mathbf{H})+P(\mathbf{W},\mathbf{H})\right]$$

- Similaire à la SVD mais avec contrainte de non négativité
- l : moindres carrés ou Kulback Leibler
- P : régularisation
- Nombreux algorithmes dont ALS
- Convergence locale
- Nombreuses initialisations disponibles
- Optimiser le rang de W et H
- Optimiser le coefficient de régularisation
- *MLlib* : deux options factorisation ou complétion : $P_{\Omega}(\mathbf{X})$

Données MovieLens

- 100k 100 000 évaluations de 1000 utilisateurs de 1700 films.
 - 1M Un million d'évaluations par 6000 utilisateurs sur 4000 films.
 - 10M Dix millions d'évaluations par 72 000 utilisateurs sur 10 000 films.
 - 20M Vingt deux millions d'évaluations par 138 000 utilisateurs sur 27 000 films.

Rang Max	λ	Temps	RMSE
4	1	5.6	1.07
10	10	12.6	1.020
10	20	12.2	1.033
15	10	19.4	1.016
20	1	26.9	1.020
20	10	26.1	1.016
20	15	24.4	1.018
20	20	27.0	1.016
30	20	40.1	1.020

MovieLens : Optimisation du rang et de la régularisation de softImpute

MovieLens : complétion par NMF (MLlib)

MovieLens : complétion par NMF (MLlib)

MovieLens: discussion

- NMF mais pas de complétion dans Scikit-learn
- Moins bon RMSE de softImpute : pas de contrainte ?
- MLlib : pas tout à fait scalable
- Architecture distribuée adaptée aux matrices creuses

Conclusion

- Comparaison entre architectures distribuée vs. intégrée
- Problème de maturation des technologies
- Trois étapes :
 - Data munging, streaming: Spark, SparkSQL
 - Apprentissage : grosses data et gros modèles
- R vs. Python Scikit-learn vs. SparkSQL, SparkML
- Nettoyage et Apprentissage en ligne?
- But? Publication, Concours, Industriel
- Cdiscount, Critéo, Deepky, Tinyclues, Hupi (ppml)...
- Ne pas oublier : fiabilité, représentativité des données

