Esercizi strutture discrete (dal Sussidiario di Algebra e Matematica Discreta)

Alberto Carraro

April 18, 2008

Exercise 1 (8.6, pag 58). Si dimostri che se $a, b, c \in \mathbb{Z}$ e MCD(a, n) = 1 allora

$$ab \equiv_n ac \Rightarrow a \equiv_n c$$

Solution 1.

$$ab \equiv_n ac \iff n \mid ab - ac$$

$$\iff n \mid (\alpha a + \beta n)(ab - ac) \text{, perch\'e } \exists \alpha, \beta \in \mathbb{Z} \text{ . } \alpha a + \beta n = 1,$$

$$\iff n \mid \alpha a(ab - ac) + \beta n(ab - ac)$$

$$\iff n \mid \alpha a^2(b - c) \text{ , perch\'e } n \mid \beta n(ab - ac),$$

$$\iff n \mid (b - c) \text{ , vedi (*),}$$

$$\iff b \equiv_n c$$

(*) Sicuramente n non divide a^2 , perché n ed a sono primi tra loro. Inoltre ora mostriamo che se $\alpha \mid n$ allora $\alpha = \pm 1$. Assumiamo $\alpha \mid n$. Allora esiste $q \in \mathbb{Z}$ tale che $\alpha q = n$, da cui $\alpha a + \beta \alpha q = 1$. Quindi $\alpha (a + \beta q) = 1$. Questo è possibile sse α e $(a + \beta q)$ sono entrambi uguali a 1 o -1.

Definition 0.0.1. Sia X un insieme. Un sottoinsieme $x \subseteq X$ è *cofinito* (rispetto ad X) sse $X \setminus x$ è un insieme finito.

Exercise 2 (11.12, pag 82). Sia X un insieme infinito. Definiamo

$$\mathcal{P}_{cof}(X) = \{ x \in \mathcal{P}(X) \mid x \text{ cofinito } \}.$$

Dimostrare che $\langle \mathcal{P}_{cof}(X), \subseteq \rangle$ è un reticolo distributivo non limitato.

Solution 2. Prima di tutto mostriamo che $\langle \mathcal{P}_{cof}(X), \subseteq \rangle$ è un reticolo. Per questo dobbiamo trovare le operazioni inf e sup adatte.

• Vogliamo mostrare che $sup\{x,y\} = x \cup y$. Sicuramente $x \cup y$ è il piú piccolo insieme che contiene x ed y. Mostriamo che $x \cup y$ è cofinito:

$$X \smallsetminus (x \cup y) = (X \smallsetminus x) \smallsetminus y$$

Siccome x è cofinito, $(X \setminus x)$ è finito e quindi lo è anche $(X \setminus x) \setminus y$.

• Vogliamo mostrare che $\inf\{x,y\} = x \cap y$. Sicuramente $x \cap y$ è il piú grande insieme contenuto in x ed y. Mostriamo che $x \cap y$ è cofinito:

$$X \setminus (x \cap y) = (X \setminus x) \cup (X \setminus y)$$

Siccome x ed y sono cofiniti, sia $(X \setminus x)$ che $(X \setminus y)$ sono finiti e quindi lo è anche la loro unione.

Sappiamo bene che l'unione e l'intersezione godono della proprietá distributiva. Manca solo vedere che $\langle \mathcal{P}_{cof}(X), \subseteq \rangle$ non è limitato. Infatti non c'è un minimo. Non vi sono insiemi finiti in $\mathcal{P}_{cof}(X)$ e nessun insieme infinito può essere minimo rispetto all'ordinamento \subseteq .