Ν	1atrico	la	

Esame Di Progettazione di Sistemi Digitali -Canale AL 26/01/2021 (B)

Nome:		 	
Cognome:		 	
Matricola:			

Esercizio 1 (5 punti)

Analizzare la rete sequenziale mostrata in figura. Stendere la tavola degli stati futuri e di uscita e disegnare l'automa (il diagramma di transizione degli stati).

Tabella degli stati

S1	S0	X	S1'	S0'	Q
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	1
0	1	1	1	0	1
1	0	0	0	0	1
1	0	1	0	1	1
1	1	0	0	0	1
1	1	1	0	0	1

Automa

Matricola

Esercizio 2 (8 punti)

Progettare un circuito sequenziale con un ingresso x e due uscite z1 e z0. L'uscita z1 deve essere uguale a 1 se gli ultimi tre bit di ingresso rappresentano un numero negativo in Ca2, mentre z0 deve essere 1 se gli ultimi 3 bit contengono almeno due 0. Non si considerino le sovrapposizioni.

Esempio x 0101111111000001100 z1 000001001000000001

z0 00100000001001001

PS	X	NS	Z 1 Z 0
R	0	S_{0X}	00
R	1	S_{1X}	00
S_{0X}	0	S_{00}	00
S_{0X}	1	S_{01}	00
S_{1X}	0	S_{10}	00
S_{1X}	1	S_{11}	00
S_{00}	0	R	01
S_{00}	1	R	01
S_{01}	0	R	01
S_{01}	1	S_{11}	00
S_{10}	0	R	11
S_{10}	1	R	10
S_{11}	0	R	10
S_{11}	1	R	10

	Codifica			
Stato	S_2	S_1	S_0	
R	0	0	0	
S_{0X}	0	0	1	
S_{1X}	0	1	0	
S_{00}	0	1	1	
S_{01}	1	0	0	
S_{10}	1	0	1	
S_{11}	1	1	0	

Matricola _____

S ₂ S ₁ S ₀	X	S2'S1'S0'	Z1Z 0
000	0	001	00
000	1	010	00
001	0	011	00
001	1	100	00
010	0	101	00
010	1	110	00
011	0	000	01
011	1	000	01
100	0	000	01
100	1	110	00
101	0	000	11
101	1	000	10
110	0	000	10
110	1	000	10

$$S_{2}' = \bar{S}_{2}\bar{S}_{1}S_{0}x + \bar{S}_{2}S_{1}\bar{S}_{0} + S_{2}\bar{S}_{1}\bar{S}_{0}x$$

$$S_{1}' = \bar{S}_{2}\bar{S}_{1}\bar{S}_{0}x + \bar{S}_{2}\bar{S}_{1}S_{0}\bar{x} + \bar{S}_{2}S_{1}\bar{S}_{0}x + S_{2}\bar{S}_{1}\bar{S}_{0}x$$

$$S_{0}' = \bar{S}_{2}\bar{S}_{1}\bar{S}_{0}\bar{x} + \bar{S}_{2}\bar{S}_{1}S_{0}\bar{x} + \bar{S}_{2}S_{1}\bar{S}_{0}\bar{x}$$

$$z_{1} = S_{2}\bar{S}_{1}S_{0} + S_{2}S_{1}\bar{S}_{0}$$

$$z_{0} = \bar{S}_{2}S_{1}S_{0} + S_{2}\bar{S}_{1}\bar{S}_{0}\bar{x} + S_{2}\bar{S}_{1}S_{0}\bar{x}$$

Esercizio 3 (1+2+1 punti)

- Rappresentare X = -42 e Y = 95 in Ca2, ognuno con il minimo numero di bit.
- Dopo aver calcolato il numero di bit necessario per rappresentare sia la somma X+Y che la differenza X-Y, portare X e Y alla lunghezza necessaria ed eseguire le due operazioni.
- Infine, verificare i risultati ottenuti.

```
-X=42=32+8+2=0101010 (usiamo 7 bit, poiché stiamo rappresentando numeri con il segno)
```

$$X = -42 = 1010101 + 1 = 1010110$$

Y=95=64+16+8+4+2+1=01011111 (usiamo 8 bit, poiché stiamo rappresentando numeri con il segno)

```
11010110 + X (estendiamo il segno ad 8 bits) 010111111 Y
```

$$100110101 = 32+16+4+1 = 53$$
 (il bit 1 di riporto va scartato)

$$-Y = -(01011111) = 10100000 + 1 = 10100001$$

$$11010110 + X$$

$$10100001 - Y$$

$$101110111 = -256 + 64 + 32 + 16 + 4 + 2 + 1 = -137$$

Esercizio 4 (3 punti)

Usando gli assiomi dell'algebra di Boole, verificare la seguente identità:

$$\frac{(\overline{b}+c)(a+b\overline{c})}{(\overline{b}+c)} + (\overline{a}c+b)\overline{(a\oplus bc)} = \overline{a}+b$$

$$\overline{(b+c)} + \overline{(a+b\overline{c})} + (\overline{a}c+b)\overline{(a\oplus bc)} = \overline{a}+b$$

$$b\overline{c} + \overline{a}\overline{b}\overline{c} + (\overline{a}c+b)\overline{(a\overline{b}c} + \overline{a}bc) = \overline{b}\overline{c} + \overline{a}\overline{b}\overline{c} + (\overline{a}c+b)\overline{(a\overline{b}c} + \overline{a}bc) = \overline{b}\overline{c} + \overline{a}\overline{b} + \overline{a}c + (\overline{a}c+b)\overline{(a+bc)} \cdot (a+\overline{b}+\overline{c}) = \overline{a}+b$$

$$b\overline{c} + \overline{a}\overline{b} + \overline{a}c + (\overline{a}c+b)\overline{(a+bc)} \cdot (a+\overline{b}+\overline{c}) = \overline{a}+b$$

$$b\overline{c} + \overline{a}\overline{b} + \overline{a}c + (\overline{a}c+b)\overline{(a\overline{b}+a\overline{c}+abc)} = \overline{a}+b$$

$$b\overline{c} + \overline{a}\overline{b} + \overline{a}c + (\overline{a}\overline{b}c + \overline{a}b\overline{c} + abc) = \overline{a}$$

$$b\overline{c} + \overline{a}\overline{b} + \overline{a}c + \overline{a}\overline{b}c + \overline{a}b\overline{c} + abc = \overline{a}$$

$$b\overline{c} + \overline{a}\overline{b} + \overline{a}c + \overline{a}b\overline{c} + abc = \overline{a}$$

$$b\overline{c} + \overline{a}\overline{b} + \overline{a}c + \overline{a}b\overline{c} + abc = \overline{a}$$

$$\overline{a}(\overline{b} + c + b\overline{c}) + b(\overline{c} + ac) = \overline{a}$$

$$\overline{a}(\overline{b} + c + b) + b(\overline{c} + a) = \overline{a}$$

$$\overline{a}(c+1) + b(\overline{c} + a) = \overline{a}$$

per assorbimento: $\bar{a}c + \bar{a}\bar{b}c = \bar{a}c$ $c + b\bar{c} = c + b$ $\bar{c} + ac = \bar{c} + a$

Matricola _____

$$\bar{a} + b (a + \bar{c}) = \bar{a} + ab + b\bar{c} = \bar{a} + b + b\bar{c} = \bar{a} + b$$

Esercizio 5 (1+2+1+2 punti)

- Si consideri il circuito in figura e si scriva l'espressione della funzione f
- Trasformare tale espressione, usando assiomi e regole dell'algebra di Boole, in forma normale SOP ed in forma normale POS
- Si scriva la tavola di verità di f
- Si scrivano le espressioni minimali SOP e POS di f

$$f = a\overline{b} + b + \overline{b}(d\overline{a} + ac) = a\overline{b} + b + \overline{a}\overline{b}d + a\overline{b}c$$
$$= a\overline{b} + b + \overline{a}\overline{b}d = a + b + \overline{a}\overline{b}d = a + b + d \text{ (SOP/POS)}$$

per assorbimento: $a\bar{b} + a\bar{b}c = a\bar{b}$

abcd	f
0000	0
0001	1
0010	0
0011	1
0100	1
0101	1
0110	1
0111	1
1000	1
1001	1
1010	1
1011	1
1100	1
1101	1

Esercizio 6 (1+2+1 punti)

Dati i numeri in rappresentazione IEEE 754 X = 13600000 e Y = 41100000, (a) rappresentarli in notazione decimale in virgola mobile (approssimato \pm 0,03), (b) eseguire l'operazione X+Y e (c) rappresentare il risultato sia in notazione decimale a virgola mobile (approssimato \pm 0,03) e sia in esadecimale.

Per la somma bisognerebbe fare lo shift di X di 92 posizioni, ottenendo una mantissa di tutti zeri.