ME 57200 Aerodynamic Design

Lecture #18: Incompressible Flow over Delta Wing

Dr. Yang Liu

Steinman 253

Tel: 212-650-7346

Email: yliu7@ccny.cuny.edu

Elliptical Lift Distribution

How to design the wing to produce an elliptical lift distribution?

Elliptical Lift Distribution

Consider a wing with no geometric twist and no aerodynamic twist.

$$\alpha_i = -\frac{w}{V_{\infty}} = \frac{\Gamma_0}{2bV_{\infty}}$$

Induced angle of attack is also constant over the span for an elliptical lift distribution

Hence, $a_{\text{eff}} = a - a_i$ is also constant along the span.

The local section lift coefficient c_i is given by

$$c_l = a_0 \left(\alpha_{\text{eff}} - \alpha_{L=0} \right)$$

where $a_0 = 2\pi$ from the thin airfoil theory

c, must be constant along the span

Elliptical Lift Distribution

The lift per unit span is

$$L'(y) = q_{\infty} c c_l$$

The chord length can be solved:

$$c(y) = \frac{L'(y)}{q_{\infty}c_l}$$

where q_{∞} and c_l are constant along the span, while L'(y) varies elliptically along the span

For an elliptic lift distribution, the chord must vary elliptically along the span; that is, the wing planform is elliptical

General Lift Distribution

The circulation distribution along an elliptical finite wing is:

$$\Gamma(y) = \Gamma_0 \sqrt{1 - \left(\frac{2y}{b}\right)^2} \quad \xrightarrow{y = -\frac{b}{2}\cos\theta} \quad \Gamma(\theta) = \Gamma_0 \sin\theta$$

The circulation distribution along an arbitrary finite wing can be expressed by using a Fourier sine series:

$$\Gamma(\theta) = 2bV_{\infty} \sum_{1}^{N} A_n \sin n\theta$$

Geometric AoA
$$\alpha(\theta_0) = \frac{2b}{\pi c(\theta_0)} \sum_{1}^{N} A_n \sin n\theta_0 + \alpha_{L=0}(\theta_0) + \sum_{1}^{N} nA_n \frac{\sin n\theta_o}{\sin \theta_0}$$

At a given spanwise location, θ_0 is specified, b, $c(\theta_0)$, and $\alpha_{L=0}(\theta_0)$ are known quantities from the geometry and airfoil section of the finite wing.

General Lift Distribution

$$\alpha(\theta_0) = \frac{2b}{\pi c(\theta_0)} \sum_{1}^{N} A_n \sin n\theta_0 + \alpha_{L=0}(\theta_0) + \sum_{1}^{N} nA_n \frac{\sin n\theta_o}{\sin \theta_0}$$

At a given spanwise location, it is algebraic equation with N unknowns, $A_1, A_2, ..., A_n$

We can choose N different spanwise stations to obtain a system of N independent algebraic equations with N unknowns.

The lift coefficient for the finite wing:

$$C_L = \frac{2}{V_{\infty}S} \int_{-b/2}^{b/2} \Gamma(y) \, dy = \frac{2b^2}{S} \sum_{1}^{N} A_n \int_0^{\pi} \sin n\theta \sin \theta d\theta$$

$$\int_{0}^{\pi} \sin n\theta \sin \theta \, d\theta = \begin{cases} \pi/2 & \text{for } n = 1 \\ 0 & \text{for } n \neq 1 \end{cases}$$

$$C_{L} = A_{1}\pi \frac{b^{2}}{S} = A_{1}\pi AR$$
of the Fourier series expansion

General Lift Distribution

The induced drag coefficient:

$$C_{D,i} = \frac{2b^2}{S} \int_0^{\pi} \left(\sum_{1}^N A_n \sin n\theta \right) \left(\sum_{1}^N nA_n \sin n\theta \right) d\theta$$

$$\int_0^{\pi} \sin m\theta \sin k\theta = \begin{cases} 0 & \text{for } m \neq k \\ \pi/2 & \text{for } m = k \end{cases}$$

$$C_{D,i} = \frac{2b^2}{S} \left(\sum_{1}^N nA_n^2 \right) \frac{\pi}{2} = \pi AR \sum_{1}^N nA_n^2$$

$$= \pi AR \left(A_1^2 + \sum_{2}^N nA_n^2 \right)$$

$$= \pi ARA_1^2 \left[1 + \sum_{2}^N n \left(\frac{A_n}{A_1} \right)^2 \right]$$

$$\delta = \sum_{2}^N n(A_n/A_1)^2 \ge 0$$

$$C_{D,i} = \frac{C_L^2}{\pi AR} (1 + \delta)$$

General Lift Distribution

Define a span efficiency factor, e

$$e = (1 + \delta)^{-1} \le 1$$

$$C_{D,i} = \frac{C_L^2}{\pi AR} (1 + \delta)$$

$$C_{D,i} = \frac{C_L^2}{\pi e A R}$$

- When $\delta=0$ and e=1, $\left|C_{D,i}=\frac{C_L^2}{\pi\Delta R}\right|$ Elliptical lift distribution

The lift distribution which yields minimum induced drag is the elliptical lift distribution

However,...

Elliptic planforms are more expensive to manufacture.

Too expensive

Elliptic wing

Too far from optimum

Rectangular wing

Taper Ratio: c_t/c_r

- The lift distribution closely approximates the elliptic case
- Most conventional aircraft employ tapered rather than elliptical wing planforms

<u>Differences between airfoil and finite-wing properties</u>

A finite wing generates induced drag due to downwash effects

In practice, we always observe the geometric angle of attack.

Since $\alpha > \alpha_{\rm eff}$, the observed lift curve is less inclined.

A finite wing has a reduced lift slope

Differences between airfoil and finite-wing properties

$$\frac{dC_L}{d(\alpha - \alpha_i)} = a_0 \qquad C_L = a_0 (\alpha - \alpha_i) + \text{const}$$

For an elliptic wing
$$C_L = a_0 \left(\alpha - \frac{C_L}{\pi AR} \right) + \text{const}$$

$$\frac{dC_L}{d\alpha} = a = \frac{a_0}{1 + a_0/\pi AR}$$

For a finite wing of general planform

$$a = \frac{a_0}{1 + (a_0/\pi AR)(1 + \tau)}$$

where τ is a function of the Fourier coefficients, A_n , ranges between 0.05 and 0.25

as AR
$$\rightarrow \infty$$
, $a \rightarrow a_0$

The Delta Wing

The Convair F-102A

The Space Shuttle

<u>The Delta Wing – Designed for Supersonic Flows</u>

- Delta wings produce significantly less wave drag due to their low wing thickness, which means that it produces less relative drag than a normal wing while supersonic.
- The large root chord gives the delta wing a high internal fuel volume even though the wings relative thickness is low.
- A delta wing is naturally stable in pitch, therefore it does not require a separate tail surface.
- Deltas can operate at extremely high angles of attack, which give it unparalleled amounts of maneuverability at high speeds.

Flow over Delta Wings

High-speed flow

- Energy transformations and temperature changes are important considerations
 - Science of Thermodynamics

The Delta Wing

- Designed specifically for high-speed airplanes
- Why are we discussing it in this topic, which deals with low-speed incompressible flow over finite wings?

The Delta Wing

- Takeoff and landing at low speeds.
- In most cases, these aircraft spend the most of their flight time at subsonic speeds.
- Early work by Alexander Lippisch in Germany during the 1930s

Subsonic Flow Pattern over a Delta Wing

Discussion:

Flow patterns over a delta wing?

Two vortex patterns at the highly swept leading edges.

- The pressure on the bottom surface is higher than that on the top surface
- The flow curl from the bottom to the top at the leading edges
- Since the leading edge is sharp, the flow will separate along the entire length.
- The separated flow curls into a primary vortex above the wing just inboard of each leading edge.
- A secondary vortex is formed underneath the primary vortex.
- Inboard of the leading-edge vortices, the surface streamlines are attached.

Subsonic Flow Pattern over a Delta Wing

Discussion:

Benefits or Disadvantages of Delta wing in subsonic flows?

Subsonic Flow Pattern over a Delta Wing

- Near the leading edges, the static pressure drops considerably, creating a strong "suction" on the top surface, which enhances the lift
- The large wing area causes more viscous drag for the same amount of lift compared to a high aspect ratio wing.

- Vortex lift at high angle of attack produces considerably more drag than a comparatively sized conventional wing.
- Highly unstable due to unsymmetrical vortices at high angle of attack.

DELTA

FAST

The Delta Wing – HOMEWORK #7, due on Friday, 4/19

- Write a 2-page essay about the aerodynamics of the delta wing
 - The history of the delta wing
 - its design principles
 - its performance characteristics
 - High-speed vs. low-speed
 - •