UC San Diego

Optimizing Deep Convolutional Generative Adversarial Networks Using CUDA

ECE 277 - Final Project, Winter 2025

Kenneth Casimiro, Electrical Engineering M.S. Nathaniel Greenberg, Electrical Engineering M.S.

Contents

- 1 Background
- 2 Project Overview
- 3 Architecture
- 4 CUDA Optimization Strategies
- 5 Applied CUDA Optimizations

- 6 Results
- 7 Future Work

Background

Generative Adversarial Networks (GAN)

- Generator
- Discriminator
- Adversarial Process
- Creating Realistic Images

Project Overview

Project Overview - DCGAN Optimization

Objective

• This project aims to enhance the performance of DCGANs through CUDA optimizations

Scope

- Focus on lightweight architectures with a custom DCGAN trained on MNIST and Celeb-A
- Benchmark GPU performance against CPU execution for real-time applications

Datasets

- MNIST: A dataset of 70,000 grayscale 28×28 images of handwritten digits (0-9), widely used for image classification
- Celeb-A: A large-scale dataset of 200,000+ celebrity face images with 40 labeled attributes, used for facial analysis and GANs

Outcomes

Demonstrate significant improvements in speed and efficiency through CUDA optimizations

Architecture

DCGAN Architecture

Generator

- Layer 1: Transposed Conv (100 → 512), 4×4, stride 1, padding 0
- Layer 2: Transposed Conv (512 → 256), 4×4, stride 2, padding 1
- Layer 3: Transposed Conv (256 → 128), 4×4, stride 2, padding 1
- Layer 4: Transposed Conv (128 → 3), 4×4, stride 2, padding 1 (RGB output)

Discriminator

- Layer 1: Conv $(3 \rightarrow 128)$, 4×4, stride 2, padding 1
- Layer 2: Conv (128 → 256), 4×4, stride 2, padding 1
- Layer 3: Conv (256 → 512), 4×4, stride 2, padding 1
- Layer 4: Conv (512 → 1), 4×4, stride 1, padding 0

DCGAN Architecture

(Radford et al 2015)

DCGAN Architecture with DataHub

Baseline (CPU)

- No hardware acceleration → slowest training
- Uses Sigmoid + BCELoss (less stable)
- Adam optimizer (standard but not optimal)

Key Takeaway:

- CPU → Slowest, no acceleration
- FP32 → Optimized, stable, higher memory
- FP16 → Fastest, lower memory, possible instability

FP32 (GPU - Full Precision)

- Runs on GPU with Tensor Core acceleration
- Uses BCEWithLogitsLoss (more stable) + AdamW optimizer
- Faster than CPU but high memory usage

FP16 (GPU - Mixed Precision)

- Uses AMP for reduced memory & faster computation
- Enables larger batch size
- May cause numerical instability if not scaled properly

DCGAN Architecture DataHub Results

Image from CPU Baseline (EMNIST)

Test Name	EMNIST Runtime	CELEB-A Runtime
CPU Baseline	1611.83 seconds.	1523.73 seconds.
FP32	182.20 seconds.	179.67 seconds.
FP16	85.10 seconds.	91.70 seconds.

Custom CUDA DCGAN Implementation

- **Replaced PyTorch ops** with custom CUDA kernels for matrix multiplications, convolutions, activations, etc.
- **Implemented CUDA kernels** in a separate .cu file and compiled them with nvcc.
- Created Python wrappers using ctypes to call CUDA functions from Python.
- **Generator & Discriminator** use these CUDA kernel functions instead of PyTorch built-in operations.
- **Optimized for GPU acceleration**, reducing latency compared to native PyTorch implementations.
- Achieves better control over computations and enables deeper optimizations at the kernel level.

Custom CUDA DCGAN Results

Image from CUDA (EMNIST)

Image from CUDA (Celeb-A)

Test	EMNIST	CELEB-A
Name	Runtime	Runtime
CUDA	54.94 seconds	113.70 seconds

CUDA Optimization Strategies

CUDA Optimization Strategies

- **Thread Parallelism:** Each thread processes one element, maximizing parallel execution (matrix multiplication)
- Grid and Block Configuration: Uses dim to efficiently map computations and ensure full dataset coverage
- Memory Coalescing: Structured memory access reduces latency, optimizing matrix operations
- **Shared Memory Usage:** Currently relies on global memory; leveraging shared memory can further improve performance, especially for matrix multiplication and convolution

CUDA Optimization Strategies

- Optimized Conditional Logic: Uses branchless operations (e.g., max() for ReLU) to improve efficiency
- Maximized GPU Occupancy: Launches 256 threads per block for element-wise ops, 16×16 blocks for 2D ops
- Reduced Redundant Computation:
 Precomputes batch norm statistics on CPU before passing to GPU
- Efficient Strided Memory Access: Manually handles strides in transposed convolution for proper alignment

Applied CUDA Optimizations

Memory Coalesced Optimization

- Uncoalesced memory access:
 Scattered thread memory pattern
- **High memory latency:** Poor cache & slow reads
- **Indexing restructured:** Threads access contiguous elements
- **Coalesced execution**: Faster, efficient memory throughput

conv transpose2d optimized kernel

```
if (i_y >= 0 && i_y < H_in && i_x >= 0 && i_x < W_in) {
   int input_idx = ((n * in_channels + ic) * H_in + i_y) * W_in + i_x;
   int weight_idx = (ic * out_channels + oc) * kH * kW + ky * kW + kx;
   sum += input[input_idx] * shared_weight[weight_idx];
}</pre>
```

conv transpose2d backward input kernel optimized

Shared Memory Optimization

```
global void conv transpose2d optimized kernel(
global void conv transpose general kernel(const float* input, const float* weight, float* output,
                                                                                                            const float* restrict input, const float* restrict weight, float* output,
  int batch, int in channels, int out channels,
                                                                                                            int batch, int in channels, int out channels,
  int H in, int W in,
                                                                                                            int H in, int W in, int H out, int W out,
                                                                                                            int kH, int kW, int stride, int padding) {
  int H out, int W out,
  int kH, int kW,
                                                                                                            extern shared float shared weight[];
  int stride, int padding) {
                                                                                                            int oc = blockIdx.x;
                                                                                                            int n = blockIdx.v:
  int idx = blockIdx.x * blockDim.x + threadIdx.x;
                                                                                                            int y = threadIdx.y + blockIdx.z * blockDim.y;
  int total = batch * out channels * H out * W out;
                                                                                                             int x = threadIdx.x + blockIdx.z * blockDim.x;
  if (idx < total) {
                                                                                                            if (y >= H out | | x >= W out) return;
     // Decode the output index into (n, oc, y, x)
     int temp = idx;
                                                                                                            // Load weights into shared memory (one-time load per block)
     int x = temp % W out;
                                                                                                            if (threadIdx.v < kH && threadIdx.x < kW)
     temp /= W out:
                                                                                                                 for (int ic = 0; ic < in channels; ic++) {
                                                                                                                      shared weight (ic * out channels + oc) * kH * kW + threadIdx.y * kW + threadIdx.x] =
     int y = temp % H_out;
                                                                                                                          weight[(ic * out channels + oc) * kH * kW + threadIdx.v * kW + threadIdx.x];
     temp /= H out;
     int oc = temp % out channels:
     int n = temp / out_channels;
                                                                                                             syncthreads();
                                                                                                            float sum = 0.0f;
     float sum = 0.0f;
     for (int ic = 0; ic < in channels; ic++) {
                                                                                                            for (int ic = 0; ic < in channels; ic++) {
                                                                                                                 for (int ky = 0; ky < kH; ky \leftrightarrow) {
        for (int ky = 0; ky < kH; ky++) {
                                                                                                                      for (int kx = 0; kx < kW; kx++) {
            for (int kx = 0; kx < kW; kx++) {
                                                                                                                          int i y = y + padding - ky;
```

- Weights are loaded once into shared memory
- Significantly speeds up transposed convolution
- Shared memory allows for much faster data access compared to global memory
- Reduce memory accesses

Increased Parallelization

```
global void conv2d forward optimized kernel(
global void conv2d kernel(const float* input, const float* weight, float* output,
                                                                                                        const float* __restrict__ input, const float* __restrict__ weight, float* output,
  int batch, int in channels, int out channels,
                                                                                                        int batch, int in channels, int out channels,
  int H in, int W in,
                                                                                                        int H in, int W in, int H out, int W out,
                                                                                                        int kH, int kW, int stride, int padding) {
  int H out, int W out,
  int kH, int kW,
                                                                                                        extern shared float shared weight[];
  int stride, int padding) {
                                                                                                        int oc = blockIdx.x; // Each block computes an output channel
  int idx = blockIdx.x * blockDim.x + threadIdx.x:
                                                                                                        int n = blockIdx.y; // Each block computes a batch sample
  int total = batch * out channels * H out * W out;
                                                                                                        int y = threadIdx.y + blockIdx.z * blockDim.y;
                                                                                                        int x = threadIdx.x + blockIdx.z * blockDim.x;
  if (idx < total) {
       // Decode index into (n, oc, y, x)
                                                                                                        if (y >= H \text{ out } || x >= W_{\text{out}}) return; // Boundary check
       int temp = idx;
       int x = temp % W out; temp /= W out;
                                                                                                        // Load weights into shared memory (one-time load per block)
       int v = temp % H out: temp /= H out:
                                                                                                        if (threadIdx.y < kH && threadIdx.x < kW) {
       int oc = temp % out channels; temp /= out channels;
                                                                                                            for (int ic = 0: ic < in channels: ic++) {
                                                                                                                shared weight[(oc * in channels + ic) * kH * kW + threadIdx.y * kW + threadIdx.x] =
       int n = temp:
                                                                                                                   weight[(oc * in_channels + ic) * kH * kW + threadIdx.y * kW + threadIdx.x];
       float sum = 0.0f;
       // For each input channel and kernel element:
                                                                                                        syncthreads();
       for (int ic = 0; ic < in channels; ic++) {
            for (int ky = 0; ky < kH; ky++) {
                                                                                                        float sum = 0.0f;
                for (int kx = 0; kx < kW; kx++) {
                                                                                                        for (int ic = 0; ic < in channels; ic++) {
                     int in y = y * stride - padding + ky;
                                                                                                            for (int ky = 0; ky < kH; ky++)
                     int in x = x * stride - padding + kx;
                                                                                                               for (int kx = 0; kx < kW; kx++) {
                     if (in \lor x = 0.88) in \lor x \in H in 88 in \lor x = 0.8
```

- Inefficient Parrelization
 Fewer active CUDA cores
- Uncoalesced Memory Access
 Redundant global memory reads

- One thread per pixel
 Maximized parallel execution
- Better workload distribution
 Lower memory traffic & faster compute

Non-Striding Memory

```
global void batchnorm forward compute mean var(
global void batchnorm compute mean var(const float* input, float* mean, float* var, int N, int C, int H, int W) {
                                                                                                                      const float* restrict input, float* mean, float* var, int N, int C, int H, int W) {
  int c = blockIdx.x: // one block per channel
  int channel size = N * H * W;
                                                                                                                       int c = blockIdx.x: // One block per channel
  __shared__ float shared_sum[256];
                                                                                                                       int tid = threadIdx.x;
                                                                                                                       int num pixels = N * H * W:
  float sum = 0.0f;
  for (int i = threadIdx.x; i < channel size; i += blockDim.x)
                                                                                                                       extern shared float shared sum[];
      int n = i / (H * W);
                                                                                                                       shared_sum[tid] = 0.0f;
      int rem = i % (H * W):
                                                                                                                       __syncthreads();
      int h = rem / W;
      int w = rem % W:
                                                                                                                       float sum = 0.0f:
      int idx = ((n * C + c) * H + h) * W + w;
                                                                                                                       for (int i = tid; i < num pixels; i += blockDim.x) {
                                                                                                                          int n = i / (H * W);
      sum += input[idx];
                                                                                                                          int hw = i % (H * W);
                                                                                                                          int index = ((n * C + c) * H + hw / W) * W + hw % W;
  shared sum[threadIdx.x] = sum;
                                                                                                                          sum += input[index];
  syncthreads();
  // Reduce within block.
                                                                                                                       shared sum[tid] = sum;
  for (int stride = blockDim.x / 2; stride > 0; stride /= 2) {
                                                                                                                       __syncthreads();
      if (threadIdx.x < stride)
          shared sum[threadIdx.x] += shared sum[threadIdx.x + stride];
                                                                                                                      // Reduce within the block
      __syncthreads();
                                                                                                                       for (int stride = blockDim.x / 2; stride > 0; stride /= 2) {
                                                                                                                          if (tid < stride) {
                                                                                                                               shared sum[tid] += shared sum[tid + stride];
  if (threadIdx.x == 0)
      mean[c] = shared sum[0] / channel size;
                                                                                                                           syncthreads();
  syncthreads();
  __shared__ float shared_sum2[256];
                                                                                                                      if (tid == 0) {
  float sum sq = 0.0f;
                                                                                                                          mean[c] = shared sum[0] / num pixels;
  float m = mean[c];
                                                                                                                       syncthreads();
  for (int i = threadIdx.x; i < channel size; i += blockDim.x) {
      int n = i / (H * W):
                                                                                                                       // Compute variance
```

- Strided Memory Access
 Inefficient global memory transactions
- Poor memory coalescing Threads access scattered location

- Sequential Memory Access
 Higher global memory throughout
- Warp-level Optimization
 Reduced latency & better coalescing

Results

Benchmarks

Benchmark	Old CUDA (Forward)	Optimized CUDA (Forward)	Speedup (Forward)	Old CUDA (Backward)	Optimized CUDA (Backward)	Speedup (Backward)
Conv2d	0.000568 sec	0.000178 sec	3.19x	0.001791 sec	0.000413 sec	4.33x
ConvTranspos e2d	0.000188 sec	0.0001786 sec	1.07x	0.000415 sec	0.000368 sec	1.13x
BatchNorm2d	0.001209 sec	0.000479 sec	2.53x	0.001335 sec	0.000710 sec	1.88x

CUDA Results - EMNIST

Test Name	Processing Time	Speed
EMNIST CPU	1611.83 sec	N/A
EMNIST GPU FP32	182.20 sec	8.85x
EMNIST GPU FP16	85.10 sec	18.94x
EMNIST GPU with CUDA	54.94 sec	29.34x
EMNIST with CUDA Optimized	46.95 sec	34.33x

CUDA Results - Celeb-A

Test Name	Processing Time	Speed
Celeb-A CPU	1523.73 seconds.	N/A
Celeb-A GPU FP32	179.67 seconds.	8.48x
Celeb-A GPU FP16	91.70 seconds.	16.62x
Celeb-A GPU with CUDA	113.70 seconds	13.4x
Celeb-A with CUDA Optimized	110.69 seconds	13.76x

Future Work

Future Work

- Optimizing our custom CUDA Kernels for PyTorch-Level Performance:
 Our current implementation has high loss and lower accuracy compared to PyTorch's optimized kernels
- **Implement Kernel Fusion:** Combine multiple operations into a single kernel to reduce memory access overhead and improve computational efficiency.

```
Testing of PyTorch vs Custom Implementation of ConvTranspose2d Difference norm between custom and native outputs: 1300.3450927734375 Custom output shape: torch.Size([2, 512, 4, 4]) Native output shape: torch.Size([2, 512, 4, 4])
```

Thank you!

Sources

- Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks." arXiv, 16 Nov. 2015, arxiv.org/abs/1511.06434.
- Goodfellow, Ian J., et al. "Generative Adversarial Nets." arXiv, 10 June 2014, arxiv.org/abs/1406.2661.
- Dhara, Rimika. "CUDA 3: Your Checklist for Optimizing CUDA Kernels." Medium, 17
 Apr. 2020,
 <u>medium.com/@rimikadhara/cuda-3-your-checklist-for-optimizing-cuda-kernels-6</u>

 8ef2a42332d
- Crawford, Bryce. EMNIST: Extended MNIST. Kaggle, 2017, www.kaggle.com/datasets/crawford/emnist
- Li, Jessica. CelebA Dataset. Kaggle, 2020,
 www.kaggle.com/datasets/jessicali9530/celeba-dataset