Tutoraggio Analisi 1 2024-2025

Mara Barucco

September 2024

Primo Incontro: acquisire il linguaggio specifico

Test Preliminare

Domanda 1. Individua la proposizione equivalente alla frase: "La vita di un uomo non ha prezzo".

- (A) Esiste almeno un uomo la cui vita non ha prezzo
- (B) Esiste un solo uomo la cui vita non ha prezzo
- (C) La vita di tutti gli uomini non ha prezzo
- (D) Non esiste uomo per cui la vita non ha prezzo
- (E) Nessuna delle precedenti

Domanda 2. Individua la proposizione equivalente alla frase: "Il test è molto selettivo: basta un errore e sei escluso".

- (A) Il test è molto selettivo perché con esattamente un errore sei escluso
- (B) Il test è molto selettivo perché con almeno un errore sei escluso
- (C) Il test è molto selettivo: se sbagli tutto sei escluso
- (D) Il test è molto selettivo infatti se non sbagli tutto non sei escluso
- (E) Nessuna delle precedenti

Domanda 3. Individua la corretta traduzione in simboli della proposizione "Non esiste alcun numero reale x tale che, per ogni numero reale y, risulti x > y."

- (A) $\exists x \in \mathbb{R} \mid \forall y \in \mathbb{R}, x > y$
- (B) $\forall x \in \mathbb{R} \mid \exists y \in \mathbb{R}, x \geq y$
- (C) $\forall y \in \mathbb{R}, \nexists x \in \mathbb{R} \mid x \geq y$
- (D) $\forall x \in \mathbb{R} \mid \exists y \in \mathbb{R}, x > y$
- (E) Nessuna delle precedenti

Domanda 4. Individua la proposizione vera tra le seguenti

- (A) $\forall x \in \mathbb{R}$, $\tan x = \frac{\sin x}{\cos x}$ per definizione di tangente. (B) $\forall x \in \mathbb{R}$, $\log x > 0$, poiché il dominio della funzione $\log e$ x > 0.
- (C) $\nexists x \in \mathbb{R} \mid \log x = 0$ poiché il dominio della funzione $\log \grave{e} x > 0$.
- (D) $\nexists x \in \mathbb{R} \mid x^2 < 0$ poiché il quadrato di un numero reale è sempre positivo.
- (E) Nessuna delle precedenti

Domanda 5. Individua le proposizioni equivalenti:

- i. Per ogni esercizio esiste almeno uno studente che l'ha sbagliato.
 - ii. Esiste almeno uno studente che ha sbagliato tutti gli esercizi.
- iii. Nessun esercizio è stato risolto correttamente da tutti gli studenti.
- (A) Sono tutte equivalenti.
- (B) Nessuna è equivalente alle altre.
- (C) Solo la prima e la seconda sono equivalenti.
- (D) Solo la prima e la terza sono equivalenti.
- (E) Solo la seconda e la terza sono equivalenti.

Domanda 6. La negazione di "Esiste un asino che vola" è:

- (A) Esiste un asino che cammina.
- (B) Nessun asino vola.
- (C) Esistono più asini che volano.
- (D) Tutti gli asini camminano.
- (E) Esiste un asino che non vola.

Domanda 7. La negazione di "Ogni oggetto d'avorio è bianco" è:

- (A) Ogni oggetto d'avorio è nero.
- (B) Nessun oggetto d'avorio è bianco.
- (C) Esiste un oggetto d'avorio che è nero.
- (D) Ogni oggetto d'avorio non è bianco.
- (E) Esiste un oggetto d'avorio che non è bianco.

Domanda 8. Individua la proposizione falsa:

- (A) $\forall x \in (-2,2), x^2 \in [0,5).$
- (B) $\forall x \in (-2,2), |x^3| \le 8.$
- (C) $\forall x \in [-2,2], e^x \in (\frac{1}{e^2}, e^2).$
- (D) $\forall x \in [-2,2], x^2 + 1 \in (0,5].$
- (E) $\exists x \in (-2,2) \mid \log x = 0$.

Quantificatori

Esercizio 1. Per ciascuna delle proposizioni che seguono, precisa se l'articolo indeterminativo "un" ha significato *esistenziale* o *universale*.

- A. La vita di un essere umano non ha prezzo.
- B. Un uomo è stato derubato, stamattina.
- C. Il test è molto selettivo: basta un errore e sei escluso.
- D. Un amico si riconosce nei momenti difficili.
- E. Per fare un tavolo ci vuole il legno. [...] Per fare il frutto ci vuole un fiore. [...] Per fare un tavolo ci vuole un fiore.

Esercizio 2. Per ciascuna delle proposizioni che seguono, riscrivila in simboli utilizzando i quantificatori $(\exists, \forall, \text{ ecc.})$.

- 1. Per ogni numero razionale q, esiste un intero n tale che n è maggiore di q.
- 2. Ogni numero naturale divisibile per 14 è divisibile per 7 e per 2.
- 3. Ogni numero primo dispari è maggiore o uguale a 3.
- 4. Esiste un numero reale minore di tutti i numeri naturali multipli di 3.
- 5. Per ogni numero intero, esiste il successivo.
- 6. Esiste un numero razionale x, tale che il suo quadrato è maggiore di 1.
- 7. Non esiste alcun numero reale x tale che, per ogni numero reale y, risulti che x è maggiore o uguale a y.
- 8. Comunque scelti due numeri reali x e y tali che x = y o x = -y, il quadrato di x è uguale al quadrato di y.

Esercizio 3. Traduci in linguaggio corrente le seguenti proposizioni e stabiliscine il valore di verità.

ESERCIZIO SVOLTO

Traduciamo in linguaggio corrente le seguenti proposizioni e individuiamone il valore di verità:

a.
$$\forall y \in \mathbb{N}, \exists x \in \mathbb{N} \mid x > y$$

b.
$$\exists x \in \mathbb{N} \mid \forall y \in \mathbb{N}, x \leq y$$

a. Individuiamo le traduzioni in linguaggio corrente dei vari simboli:

$$\forall y \in \mathbf{N}$$
, $\exists x \in \mathbf{N}$ $x > y$

Per ogni numero esiste un numero tale che x è maggiore di y
naturale y naturale x

La proposizione significa quindi:

«Per ogni numero naturale y, esiste un numero naturale x tale che x è maggiore di y»

Evidentemente tale proposizione è vera.

b. Ragionando come nel caso precedente si deduce che la proposizione significa:

«Esiste un numero naturale x tale che, comunque si scelga un numero naturale y, x è minore o uguale a y»

Tale proposizione è *vera* in quanto il numero naturale x = 1 soddisfa la proprietà espressa dalla proposizione.

- 1. $\forall x \in \mathbb{N}, x$ è divisibile per 2 e per 5
- 2. $\exists x \in \mathbb{N} \mid x$ è divisibile per 2 e per 5

3.
$$\exists x \in \mathbb{N} \mid -1 < x < 2$$

4.
$$\exists x \in \mathbb{N} \mid 1 < x < 2$$

$$5. \ \exists x \in \mathbb{Q} \mid -1 < x < 1$$

$$6. \ \forall x \in \mathbb{Q}, -1 < x < 1$$

7.
$$\forall x \in \mathbb{N}, x^2 \ge 0$$

$$8. \ \exists x \in \mathbb{Z} \mid x^2 < 0$$

9.
$$\forall x \in \mathbb{N}, (x+1) \in \mathbb{N}$$

10.
$$\forall x \in \mathbb{N}, (x-1) \in \mathbb{N}$$

11.
$$\exists x \in \mathbb{Q} \mid x^2 \notin \mathbb{Q}$$

12.
$$\forall x \in \mathbb{Z}, |x| > 0$$

- 13. $\forall x \in \mathbb{Q}, 0+x=0$
- 14. $\forall x \in \mathbb{Q}, 1 \cdot x = 1$
- 15. $\forall x \in \mathbb{N}, x^2 \neq 2$
- 16. $\forall x \in \mathbb{N}, x^2 > 0$
- 17. $\forall x \in (-3,4), x^2 \in [0,16).$
- 18. $\forall x \in (-2,2], |x^3| < 8.$
- 19. $\forall x \in [-3,3], e^x \in (\frac{1}{e^3}, e^3).$
- 20. $\forall x \in [-2,2], x^2 + 1 \in (0,7].$
- 21. $\exists x \in (-2,2) \mid \log x = 1$.
- 22. $\exists x \in \mathbb{N} \mid \forall y \in \mathbb{N}, x + y = y$
- 23. $\exists x \in \mathbb{N} \mid \forall y \in \mathbb{N}, x + y = x$
- 24. $\exists x \in \mathbb{N} \mid \forall y \in \mathbb{N}, xy = x$
- 25. $\exists x \in \mathbb{N} \mid \forall y \in \mathbb{N}, xy = y$
- 26. $\forall x \in \mathbb{N}, \exists y \in \mathbb{N} \mid x + y = y$
- 27. $\forall x \in \mathbb{N}, \exists y \in \mathbb{N} \mid x + y = x$
- 28. $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z} \mid xy \leq 0$
- 29. $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z} \mid xy > 0$

Esercizio 4. Completa inserendo al posto dei puntini " $\exists x \in \mathbb{N}$ |" oppure " $\forall x \in \mathbb{N}$ " oppure " $\exists x \in \mathbb{N}$ |", in modo da ottenere una proposizione vera e il più generale possibile. Usare i puntini a destra per motivare la propria scelta, come illustrato negli esempi.

$\dots \qquad \exists x \in \mathbb{N} \mid \dots x + 3 = 5$	un esempio è $x=2$ infatti $2+3=5$, ma la proposizione non è vera per tutti i numeri naturali, un controesempio è $x=4$, infatti $4+3=7 \neq 5$
$\dots x + 5 = 3$	perché la soluzione dell'equazione è $x=-2$, ma $-2 \notin \mathbb{N}$
$\dots \qquad \forall x \in \mathbb{N} \dots 3x + 5x = 8x$	per la proprietà distributiva della moltiplicazione rispetto all'addizione $8x = (3+5)x = 3x + 5x$.
$\dots \dots x^2 > 0$	
$\ldots x \cdot 1 = x$	
$\dots x: 2 = 15$	
$\dots x:3=1$	
$\dots \dots x \cdot 0 = 0$	
$\dots \dots x \cdot 3 = 5$	
$\dots \dots x + 0 = x$	
$\dots \dots x + 0 = 0$	
$\dots \dots x+1=2$	
$\dots \dots x+1=-2$	
$\ldots (3x): 3=1$	
$\dots 3x - 3x = 0$	

Esercizio 5. Completa inserendo al posto dei puntini " $\exists x \in \mathbb{R}$ |" oppure " $\forall x \in \mathbb{R}$ " oppure " $\nexists x \in \mathbb{R}$ |", in modo da ottenere una proposizione vera e il più generale possibile. Usare i puntini a destra per motivare la propria scelta, come nell'esercizio precedente.

$\ldots \ldots \sin x = 1$	
$\ldots \cos x = 2$	
$\dots \qquad \arcsin x = \frac{\pi}{2}$	
$\ldots \cos x \le 1$	
$\ldots \log 0 = x$	
$\ldots \log x = 0$	
$\dots \qquad \arcsin x = 2\pi$	
$\dots \tan x = \frac{\sin x}{\cos x}$	
$\dots \sin^2 x + \cos^2 x = 1$	
$\dots e^{\log x} = x$	
$\dots e^{\log x } = x $	
$\dots e^{\log(x^2+1)} = x^2+1$	

ESERCIZIO SVOLTO

Neghiamo la proposizione «in ogni mese dell'anno, c'è almeno un giorno in cui c'è bel tempo».

Utilizzando i simboli dei quantificatori, la proposizione data si può formalizzare così:

«∀ mese dell'anno, ∃ un giorno in cui c'è bel tempo»

La sua negazione è:

«non è vero che, ∀ mese dell'anno, ∃ un giorno in cui c'è bel tempo»

Essa si può riscrivere più semplicemente. Si può infatti fare «sorpassare» la negazione al primo quantificatore, \forall , trasformandolo in ∃:

«∃ un mese dell'anno in cui non è vero che ∃ un giorno in cui c'è bel tempo»

Similmente, la negazione può sorpassare il secondo quantificatore ∃, trasformandolo in ∀:

«∃ un mese dell'anno in cui, ∀ giorno, non è vero che c'è bel tempo»

Pertanto, una forma equivalente a [*], espressa in linguaggio corrente, è:

«esiste almeno un mese dell'anno in cui, tutti i giorni, non c'è bel tempo»

- 1. Esiste un numero primo la somma delle cui cifre è divisibile per 3.
- 2. Ogni uomo vive più di 50 anni.

- 3. Ogni studente sostiene almeno due interrogazioni in un quadrimestre.
- 4. In ogni città c'è un aeroporto.
- 5. In ogni scuola è presente un laboratorio di informatica.
- 6. Non esiste un numero che è primo e pari.
- 7. Tutti gli insegnanti hanno vinto un concorso.
- 8. Ogni triangolo non scaleno ha almeno un asse di simmetria.
- 9. In ogni classe c'è almeno uno studente che è promosso con il massimo dei voti.
- 10. Esiste almeno un giorno dell'anno in cui tutti non lavorano.
- 11. Per ogni numero naturale, esiste un numero naturale che lo precede.
- 12. Esiste un numero reale x tale che, per ogni numero reale y, risulta $x \ge y$.
- 13. Esiste almeno una città in cui nessun abitante lavora.

Esercizio 7. Scrivi la negazione delle seguenti proposizioni o dei seguenti enunciati aperti, utilizzando le leggi di De Morgan.

LEGGE | Leggi di De Morgan

- a. La negazione della proposizione $p \lor q$ è equivalente alla proposizione $\overline{p} \land \overline{q}$.
- b. La negazione della proposizione $p \land q$ è equivalente alla proposizione $\overline{p} \lor \overline{q}$. Analoghe regole possono essere utilizzate per negare enunciati aperti della forma $p(x) \lor q(x)$ e $p(x) \land q(x)$.

• Leggi di De Morgan $\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$

- 1. Paolo non studia e non lavora.
- 2. $a \neq 1$ o b = 1
- 3. Paolo studia o gioca a tennis.
- 4. a = 0 e b = 10
- 5. Il numero n è primo o dispari.
- 6. Il numero n è maggiore o uguale al numero m.
- 7. Il numero x è tale che $5 \le x \le 15$. (Suggerimento: osserva che $5 \le x \le 15$ equivale a $x \ge 5 \land x \le 15$)
- 8. Il numero x è tale che $6 \le x < 10$.
- 9. Il numero x è tale che 7 < x < 9.

- 10. Il numero x è tale che $12 < x \le 19$.
- 11. Il numero x è tale che x < 5 o $x \ge 20$.
- 12. Il numero x è tale che $x \le 9$ o x > 18.
- 13. Il numero x è tale che $x \le 3$ o $x \ge 6$.
- 14. Il numero x è tale che x < 4 o x > 8.