

ALLOY 6 A MATTER OF TIME

Authors:

Luca Padalino Francesca Pia Panaccione Francesco Santambrogio

To understand how Alloy 5 deals with dynamic modeling

To understand which are the **limitations** of the **dynamic modeling** in Alloy 5 and why Alloy needed a **new version**

To understand which are the **new features** introduced in **Alloy 6**

STATIC

VS

DYNAMIC

STATIC MODELSThe family example

STATIC

Represents something that does not change over time

Allows to describe a legal state of a dynamic system

```
abstract sig Person {
   father: lone Man,
   mother: lone Woman
sig Man extends Person {
   wife: lone Woman
sig Woman extends Person {
   husband: lone Man
```

STATIC MODELS

Instances

STATIC

Represents something that does not change over time

Allows to describe a legal state of a dynamic system

STATIC MODEL INSTANCES

```
Person = {John, Sarah}
Man = {John}
Woman = {Sarah}
Married = {}
```



```
Person = {John, Sarah}
Man = {John}
Woman = {Sarah}
Married = {John, Sarah}
```

DYNAMIC MODELSState transitions

DYNAMIC

Represents something changing over time

Allows to describe possible transitions between states of the system

```
Person = {John, Sarah}
Man = {John}
Woman = {Sarah}
Married = {}
```



```
Person = {John, Sarah}
Man = {John}
Woman = {Sarah}
Married = {John, Sarah}
```

DYNAMIC MODELSUntil Alloy 6

Until Alloy 6: no predefined notion of time and of state transition

BUT two ways to model dynamic aspects of a system:

- By placing an **ordering** on some signatures
- 2 By introducing a **Time signature** expressing time

DYNAMIC MODELSOrdering

By placing an **ordering** on some signatures


```
open util/ordering[S]
sig S{}
```

Creates a **single linear ordering** over signature S

- ➤ There are multiple "S" atoms representing the same physical element but at different points in time
- > It is like creating a finite state machine on atoms of "S"

DYNAMIC MODELS

Traces

TRACE (Alloy 5): a fact that describes how the system will evolve by constraining "valid models" to ones where the system evolves properly


```
open util/ordering[S] as ord
...
fact traces {
    ord/first=S1
    all s: ord-ord/last |
    let s' = s.next |
    // general operations
    op1[s, s'] or ... or opN[s, s']
}
```

DYNAMIC MODELSOrdering limitations

The ordering method is really **hard to use** when we have **multiple** signatures that are changing or multiple properties that can change:

- > We should place the order on each signature that can change over time
- → the code is not optimized.

...WE CAN DO BETTER!

DYNAMIC MODELSUntil Alloy 6

Until Alloy 6: no predefined notion of time and of state transition

BUT two ways to model dynamic aspects of a system:

By placing an **ordering** on some signatures

2 By introducing a **Time signature** expressing time

DYNAMIC MODELS

Time signature

by introducing a Time signature expressing time

Creates a **Time signature** that internally uses the ordering module

> The linear ordering is placed on Time

> We have to add a time component to each relation that changes over time

DYNAMIC MODELSThe family example

DYNAMIC

Represents something changing over time

Allows to describe possible transitions between states of the system

```
sig Time {}
abstract sig Person {
   father: Man
   mother: Woman
   alive: set Time
sig Man extends Person {
   wife: Woman lone -> Time
sig Woman extends Person {
   husband: Man lone -> Time
```

DYNAMIC MODELS

The family example

If the **relation** that changes over time is **BOOLEAN**:

```
sig Person {
   alive: set Time
}

times where the field is true
```


DYNAMIC MODELS

The family example

If the **relation** that changes over time is **ARBITRARY**:

DYNAMIC MODELSLimitations

There are **some limitations** to what we can model in a dynamic system:

- Import a package and try to emulate time without dealing with a real notion of time
- Alloy cannot test that some property is guaranteed to happen in infinite time (liveness)

...WE CAN DO BETTER!

ALLOY 6 Introduction

Alloy 6: there is an implicit, built-in notion of (discrete) time

1 Linear temporal logic

Time horizon

2 Mutable signatures and fields

5 New visualizer

Temporal operators

LINEAR TEMPORAL LOGIC (LTL) Definition

LINEAR TEMPORAL LOGIC (LTL): «an infinite sequence of states where each point in time has a unique successor, based on a linear-time perspective»

Trace

Instance = TRACE: infinite sequence of states

Instance = TRACE: infinite sequence of states

STATE: a valuation for signatures and fields

LASSO: a sequence of a finite number of states that loops back to a former state

Alloy 6: an implicit, built-in notion of (discrete) time

1 Linear temporal logic

Time horizon

2 Mutable signatures and fields

5 New visualizer

Temporal operators

MUATBLE SIGNATURES AND FIELDS Var keyword

VAR

- ➤ A signature or field proceeded by **var** is said to be **mutable**
- ➤ A signature or field **not** proceeded by **var** is said to be **static** and assumed to be **constant** over time

```
enum Liveness {Alive, Dead, Unborn}
abstract sig Person {
   father: lone Man
   mother: lone Woman
  var liveness: Liveness
sig Man extends Person {
  var wife: lone Woman
sig Woman extends Person {
   var husband: lone Man
```

Alloy 6: an implicit, built-in notion of (discrete) time

1 Linear temporal logic

Time horizon

2 Mutable signatures and fields

5 New visualizer

3 Temporal operators

TEMPORAL OPERATORSFuture and Past operators

FUTURE	PAST
ALWAYS	HISTORICALLY
EVENTUALLY	ONCE
AFTER	BEFORE
UNTIL	SINCE
RELEASES	TRIGGERERD
•	(NO DUAL)

...FOR MORE INFO: https://www.youtube.com/watch?v=GncsAmy29I0

Flipped Classroom

Video on Temporal Operators

Link Video
10 min.

Quiz

1

Dynamic modeling in Alloy 5

https://forms.office.com/e/9bjmhZTQ0j

DYNAMIC MODELS

Quiz solutions

1.	What is a dynamic model?	
	☐ A model that represents something static.	
	A model that represents something changing over time.	
	A model that has a first-class notion of time.	
2.	How is time emulated in Alloy 5?	
	By using utility macros.	
	By placing an ordering on some signature.	
	By encoding it in the signature fields.	
3.	What is a trace in Alloy 5?	
	A fact that describes how the system will evolve.	
	A module that helps to model time.	
	A predicate that relates each state to the next state in the sequence.	
4.	What is the purpose of a time signature?	
	To represent complex specifications with multiple changing entities or properties.	
	To represent simple boolean properties that change over time.	
	☐ To encode arbitrary properties with multirelations.	

Quiz

2

LTL and Mutable Signatures and Fields

https://forms.office.com/e/G3MzQugLb5

LTL & MUTABLE SIGNATURES AND FIELDS

Quiz solutions

1.	What does the 'var' keyword do in Alloy 6?	
		Specifies that a signature or field is constant over time
		Specifies that a signature or field is mutable
		Specifies that a signature or field is a trace
		Specifies that a signature or field is a lasso trace
2.	What	is a static signature or field in Alloy 6?
		A signature or field that is constant over time
		A signature or field that is a trace
		A signature or field that is a lasso trace
		A signature or field that is mutable
3.	What	is linear-time temporal logic used for in Alloy 6?
		Reasoning about future and past states along a trace
		Reasoning about constant values
		Reasoning about mutable values
		Reasoning about lasso traces

Quiz

3

Temporal Operators

https://forms.office.com/e/d5Himvahqs 10 min.

TEMPORAL OPERATORS

Quiz solutions

1.	What is the condition for the expression "F until G" to be true in state i?
	G is true in some state j ≥ i and F is true in every state k such that i ≤ k < j
	G is true in every state ≥ i up to and including a state k in which F is true
	□ F is true in state i and G is true in state i + 1
2.	What is the condition for the expression "F; G" to be true in state i?
	G is true in some state j ≥ i and F is true in every state k such that i ≤ k < j
	G is true in every state ≥ i up to and including a state k in which F is true
	□ F is true in state i and G is true in state i + 1
3.	What is the condition for the expression "always F" to be true in state i?
	F is true in some state ≥ i
	□ F is true in every state ≥ i
	☐ F is true in state i + 1
4.	What is the condition for the expression "eventually F" to be true in state i?
	□ F is true in some state ≥ i
	□ F is true in every state ≥ i
	☐ F is true in state i + 1

TEMPORAL OPERATORS

Quiz solutions

5.	What	is the condition for the expression "after F" to be true in state i?
		F is true in some state ≤ i
		F is true in every state ≤ i
		F is true in state i + 1
6.	What	is the condition for the expression "before F" to be true in state i?
		F is true in some state ≤ i
		F is true in every state ≤ i
		F is true in state i – 1
7.	What	is the condition for the expression "historically F" to be true in state i?
		F is true in some state ≥ i
		F is true in every state ≤ i
		F is true in state i + 1
8.	What	is the condition for the expression "once F" to be true in state i?
		F is true in some state ≤ i
		F is true in every state ≤ i
		F is true in state i + 1

Alloy 6: an implicit, built-in notion of (discrete) time

1 Linear temporal logic

Time horizon

2 Mutable signatures and fields

5 New visualizer

Temporal operators

TIME HORIZON Number of steps

TIME HORIZON: the possible number of transitions of lasso traces to explore

default #steps = 10

for 10 steps

N) 1 <= #steps <= N

for N steps

for M .. N steps

1...) 1 <= #steps

for 1 .. steps

TIME HORIZON Model-checking

TIME HORIZON: the possible number of transitions of lasso traces to explore

BOUNDED MODEL-CHECKING

COMPLETE MODEL-CHECKING