

# Capstone Project Credit Card Default Prediction

Individual Project
Uthaman A



#### Content

- Introduction
- Problem Statement
- Data Summary
- Approach Overview
- Exploratory Data Analysis
- Modelling Overview
- Feature Importance
- Challenges
- Conclusion



#### Introduction

In today's world credit cards have become a lifeline to a lot of people so banks provide us with credit cards. Now we know the most common issue there is in providing these kind of deals are people not being able to pay the bills. These people are what we call 'defaulters'.



#### **Problem Statement**

Predicting whether a customer will default on his/her credit card



#### **Data Summary**

- X1 Amount of credit(includes individual as well as family credit)
- X2 Genser
- X3 Education
- X4 Marital Status
- X5 Age
- X6 to X11 History of past payments from April to September
- X12 to X17 Amount of bill statement from April to September
- X18 to X23 Amount of previous payment from April to September
- Y Default payment



### **Approach Overview**

**Data Cleaning** 

**Data Exploration** 

**Modeling** 

#### **Understanding and Cleaning**

- Find information on documented columns values
- Clean data to get it ready for Analysis

#### **Graphical**

 Examining the data with visualization

#### **Machine Learning**

- Logistic
- SVM
- Random Forest
- XGBoost



### **Basic Exploration**

- Data for Taiwan.
- Data for 30000 customers.
- 6 Months payment and bill data available.
- No null data.
- 9 Categorical variables present



#### **Gender Distribution**





#### **Gender wise defaulters**



**30%** of Males and **26%** of Females are defaulters



#### **Education Distribution**





#### **Education wise defaulters**



Higher Education Level, lower Default Risk



#### **Marital Distributions**





#### **Marital Status**



#### No Significant Correlation of Default risk And marital

status



### **Age Distribution**







### Age wise defaulters



30 to 50: Lower Risk

<30 and >50
Risk Increases



#### **Modelling Overview**

- Supervised learning/Binary Classification
- Imbalance data with 78% non-defaulters and 22% defaulters
   Models Used:
  - Logistic Regression
  - Knn
  - Decision Trees
  - Random Forest
  - SVM
  - XGBoost
  - Naïve Bayes



#### **Modelling Steps**

#### Data Preprocessing

Data Fitting and Tuning

Model Evaluation

- Feature Selection
- Feature engineering
- Train test data split(80%-20)
- SMOTE oversampling

- Start with default model parameter
- Hyperparameter tuning
- Measure Ruc\_AOC on training data

- Model testing
- Precision Recall Score
- Compare with the other models



### **Logistic Modelling**

#### **Parameters:**

- C = 0.01
- Penalty = L2

The accuracy on test data is 0.7498865183840218
The precision on test data is 0.6862516212710765
The recall on test data is 0.7862981126467529
The f1 on test data is 0.7328762379666182
The roc\_score on test data is 0.75399811292715



### Logistic feature importance





#### **SVM Modelling**

#### **Parameters:**

- C = 10
- Kernel= 'rbf'

The accuracy on test data is 0.7786135788859347
The precision on test data is 0.7175097276264591
The recall on test data is 0.8173758865248227
The f1 on test data is 0.7641939494405305
The roc score on test data is 0.7828356377036455



#### **Random Forest Metrics**

#### **Parameters:**

- Max\_depth=30
- N\_estimators=150

The accuracy on test data is 0.8349004604111276
The precision on test data is 0.804928664072633
The recall on test data is 0.8562362030905077
The f1 on test data is 0.8297900788875517
The roc\_score on test data is 0.8361078238014633



### Random Forest feature importance





#### **XGBoost Modelling**

#### **Parameters:**

- Max\_depth=15
- Min\_child\_weight=8

The accuracy on test data is 0.7727773814927696
The precision on test data is 0.6941634241245136
The recall on test data is 0.8236380424746076
The f1 on test data is 0.7533783783784
The roc\_score on train data is 0.779688571836878



#### X Gradient Boosting feature importance





#### **AUC-ROC** curve comparison







### Challenges

- Understanding the columns.
- Feature engineering
- Getting a higher accuracy on the models



#### Conclusion

- XGBoost provided us the best results giving us a recall of 85 percent(meaning out of 100 defaulters 85 will be correctly caught by XGBoost)
- Random Forest also had good score as well but leads to overfit the data.
- Logistic regression being the least accurate with recall of 79.



## Thank You