

Similarity Query Processing for probabilistic Sets

Similarity Query Processing for probabilistic Sets

Ming GAO ¹ Cheqing JIN ¹ Wei WANG ² Xuemin LIN ^{1,2} Aoying ZHOU 1

> ¹Shanghai Key Laboratory on trustworthy computing, Software Engineering Institute, East China Normal University, Shanghai, China ²The University of New South Wales, Sydney, Australia

> > April 11, 2013

Outline

Similarity Query Processing for probabilistic Sets

> resenter: heqing JIN

.....

Preliminarie

Exact Similarity Computatio

Pruning Techniques fo Similarity Search

Evporiment

Experiment

Conclusion

- 1 Introduction
- 2 Preliminaries
- 3 Exact Similarity Computation
- 4 Pruning Techniques for Similarity Search
- 5 Approximate Solutions
- 6 Experiments
- 7 Conclusion

Motivation

Similarity
Query
Processing for
probabilistic
Sets

Cheqing JI

Introduction

Preliminario

Exact Similarity

Pruning Techniques fo Similarity Search

Approximate Solutions

Experiment

Conclusio

- Similarity query processing is a fundamental and active research area in database community.
- Multi-label classification, e.g., a document can belong to multiple topics, and so on.
- The existing work on set similarity query processing upon probabilistic sets is still rare. Moreover, such work is hard to be scaled to large probabilistic sets (p-sets) due to both high time and space complexities.

Contributions

Similarity
Query
Processing for
probabilistic
Sets

Presenter: Cheqing JII

Introduction

Preliminari

Exact Similarity Computation

Pruning Techniques for Similarity Search

Solutions

Experiment

Conclusio

- We define two types of similarity measures to capture different characteristics of the similarity between two p-sets;
- We give efficient dynamic programming-based algorithm to compute these similarities;
- We design novel individual and batch pruning techniques to speed up the query processing;
- 4 We conduct comprehensive experiments upon both synthetic and real datasets and demonstrate the efficiency and the effectiveness of the proposed approaches.

Preliminary

Similarity Query Processing for probabilistic Sets

Presente Cheqing J

. . . .

Preliminaries

Exact Similarity Computatio

Pruning Techniques for Similarity Search

Experiment

Lxperiment

Conclusion

Probabilistic set model

We model a probabilistic set ${\mathcal A}$ in a domain ${\mathcal D}$ as

$$\mathcal{A} = \{a_i : p_{a_i} | a_i \in \mathcal{D}, \forall i \in [1, n]\}$$

where $\forall i \neq j$, $a_i \neq a_j$.

Possible world model

The possible world space $\mathcal{W}(\mathcal{A})$ of \mathcal{A} is the power set of \mathcal{A} , where each possible world $w(\mathcal{A}) \in \mathcal{W}(\mathcal{A})$ has a probability, which can be computed as

$$\Pr[w(\mathcal{A})] = \prod_{t \in \mathcal{A}} p_t^{l_{t \in w(\mathcal{A})}} (1 - p_t)^{1 - l_{t \in w(\mathcal{A})}}$$

Similarity Metrics

Similarity
Query
Processing for
probabilistic
Sets

Presenter: Cheqing JII

Introduction

Preliminaries

Exact Similarity Computatio

Pruning Techniques for Similarity Search

Solutions

Experimen

Conclusion

1 Expected Similarity, ES

$$ES(\mathcal{A}, \mathcal{B}) = \sum_{\substack{w_a \in \mathcal{W}(\mathcal{A}) \\ \land w_b \in \mathcal{W}(\mathcal{B})}} sim(w_a, w_b) \cdot \Pr[w_a] \cdot \Pr[w_b],$$

where sim can be Jaccard, Dice or Cosine.

- 2 Confidence-based Similarity, CS
 - Conditioned cumulative probability

$$\mathsf{CPr}(\mathsf{x},\mathcal{A},\mathcal{B}) = \sum_{(w_a,w_b) \in \mathcal{W}(\mathcal{A},\mathcal{B}) \land sim(w_a,w_b) \geq \mathsf{x}} \mathsf{Pr}\left[(w_a,w_b)\right]$$

Let $minconf \in [0,1]$ be a user-defined minimum confidence threshold. CS between \mathcal{A} and \mathcal{B} is defined as: $CS(\mathcal{A}, \mathcal{B}, minconf) = \max\{x \mid \mathbf{CPr}(x, \mathcal{A}, \mathcal{B}) \geq minconf\}.$

Running Example

Similarity Query Processing for probabilistic

Presenter: Cheqing JIN

Preliminaries

Exact Similarity

Computatio

Techniques for Similarity Search

Approximate Solutions

Experiment

Conclusio

Table: Possible Worlds and Similarities

\mathcal{A}	\mathcal{B}
{1:0.7, 2:1.0}	$\{1:1.0,\ 2:0.5,\ 3:0.8\}$

W _a	w _b	$Pr[(w_a, w_b)]$	Jaccard
$\{2^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}\}$	0.03	0
$\{2^{\mathcal{A}}\}$	$\{1^{\mathcal{B}},2^{\mathcal{B}}\}$	0.03	0.5
$\{2^{\mathcal{A}}\}$	$\{1^{\mathcal{B}},3^{\mathcal{B}}\}$	0.12	0
$\{2^{\mathcal{A}}\}$	$\{1^{\mathcal{B}},2^{\mathcal{B}},3^{\mathcal{B}}\}$	0.12	0.333
$\{2^{\mathcal{A}},1^{\mathcal{A}}\}$	$\{1^{\mathcal{B}}\}$	0.07	0.5
$\{2^{\mathcal{A}},1^{\mathcal{A}}\}$	$\{1^{\mathcal{B}},2^{\mathcal{B}}\}$	0.07	1
$\{2^{\mathcal{A}},1^{\mathcal{A}}\}$	$\{1^{\mathcal{B}},3^{\mathcal{B}}\}$	0.28	0.333
$\{2^{\mathcal{A}},1^{\mathcal{A}}\}$	$\{1^{\mathcal{B}},2^{\mathcal{B}},3^{\mathcal{B}}\}$	0.28	0.666

	Jaccard
ES(A, B)	0.44
CS(A, B, minconf = 0.5)	0.333

Pre-processing

Similarity Query Processing for probabilistic Sets

Presenter: Cheqing JIN

Introduction

Preliminarie

Exact Similarity

Pruning
Techniques for

Search

Evperiment

Conclusior

Normalized of Two P-sets

$$\mathcal{A} = \{ c_1 : p_{c_1}^{\mathcal{A}}, \dots, c_k : p_{c_k}^{\mathcal{A}}, d_1 : p_{d_1}, \dots, d_{n-k} : p_{d_{n-k}} \}$$

$$\mathcal{B} = \{ c_1 : p_{c_1}^{\mathcal{B}}, \dots, c_k : p_{c_k}^{\mathcal{B}}, d_{n-k+1} : p_{d_{n-k+1}}, \dots$$

$$d_{n+m-2k} : p_{d_{n+m-2k}} \}$$

Computing H[i,j]

$$H[i,j] = \sum_{(w_a,w_b) \in \mathcal{W}(\mathcal{A},\mathcal{B}) \land |w_a \cap w_b| = i \land |w_a \cup w_b| = j} \mathbf{Pr} \left[w_a \right] \cdot \mathbf{Pr} \left[w_b \right]$$

Dynamic Programming

Similarity Query Processing for probabilistic Sets

Exact Similarity Computation

Common element

$$H^{I}[i,j] = H^{I-1}[i,j](1-\rho_{I}^{A})(1-\rho_{I}^{B})$$

$$+ H^{I-1}[i,j-1](\rho_{I}^{A}(1-\rho_{I}^{B}) + (1-\rho_{I}^{A})\rho_{I}^{B})$$

$$+ H^{I-1}[i-1,j-1]\rho_{I}^{A}\rho_{I}^{B}$$

Distinct element

$$H^{I}[i,j] = H^{I-1}[i,j](1-p_I) + H^{I-1}[i,j-1]p_I$$

Assuming $n \geq m \geq k$, the time complexity of computing $H^{m+n-k}[i,j]$, i.e., H[i,j], $(0 \le i \le k \text{ and } 0 \le j \le m+n-k)$ can be shown to be $\Theta(kn^2)$ or $O(n^3)$, and the space complexity is $\Theta(kn)$, or $O(n^2)$. イロト イポト イヨト イヨト

Similarity Query Processing for probabilistic Sets

Exact Similarity

Table: H[i, j]

\mathcal{A}	\mathcal{B}
$\{1:0.7,\ 2:1.0\}$	$\{1:1.0,\ 2:0.5,\ 3:0.8\}$

	j = 0	j = 1	<i>j</i> = 2	j=3
i = 0	0	0	0.03	0.12
i = 1		0	0.1	0.4
i=2			0.07	0.28

For ES, we simply compute the weighted average of all the entries in H. For example,

$$ES = (0 + 0 + 0.03 + 0.12) \times 0 + 0 \times \frac{1}{1} + 0.1 \times \frac{1}{2} + 0.4 \times \frac{1}{3} + 0.07 \times \frac{2}{2} + 0.28 \times \frac{2}{3} = 0.44.$$

Similarity Query Processing for probabilistic Sets

Presenter: Cheqing JII

Preliminaries

Exact Similarity Computation

Pruning
Techniques for
Similarity

Approximate Solutions

Conclusion

Let *minconf* be 0.5. We calculate CS by accessing entries of H[i,j] by the decreasing order of the similarity values and stop whenever the answer is found.

Table: H[i,j]

	j = 0	j = 1	j=2	j=3
i = 0	0	0	0.03	0.12
i = 1		0	0.1	0.4
i=2			0.07	0.28

Thus, $\mathbf{CPr}(1, \mathcal{A}, \mathcal{B}) = 0.07$.

Similarity Query Processing for probabilistic Sets

Similarity

Let minconf be 0.5. We calculate CS by accessing entries of H[i,j] by the decreasing order of the similarity values and stop whenever the answer is found.

Table: H[i,j]

	j = 0	j = 1	j=2	j=3
i = 0	0	0	0.03	0.12
i = 1		0	0.1	0.4
i=2			0.07	0.28

Thus, **CPr**(1, A, B) = 0.07.

Similarity Query Processing for probabilistic Sets

Presenter: Cheqing JII

Introduction

Preliminaries

Exact Similarity Computation

Pruning Techniques for Similarity

Approximate Solutions

Experiment

Conclusion

Let *minconf* be 0.5. We calculate CS by accessing entries of H[i,j] by the decreasing order of the similarity values and stop whenever the answer is found.

Table: H[i,j]

	j = 0	j = 1	j=2	j = 3
i = 0	0	0	0.03	0.12
i = 1		0	0.1	0.4
i=2			0.07	0.28

Similarly, $\mathbf{CPr}(\frac{2}{3}, \mathcal{A}, \mathcal{B}) = 0.35$.

Similarity Query Processing for probabilistic Sets

Presenter: Cheqing JII

Introduction

Preliminaries

Exact Similarity

Pruning
Techniques for
Similarity

Approximate Solutions

Experiment

Conclusion

Let *minconf* be 0.5. We calculate CS by accessing entries of H[i,j] by the decreasing order of the similarity values and stop whenever the answer is found.

Table: H[i,j]

	j = 0	j = 1	j=2	j=3
i = 0	0	0	0.03	0.12
i = 1		0	0.1	0.4
i=2			0.07	0.28

Similarly,
$$\mathbf{CPr}(\frac{1}{2}, \mathcal{A}, \mathcal{B}) = 0.45$$
.

Similarity Query Processing for probabilistic Sets

Exact Similarity Computation

Let *minconf* be 0.5. We calculate *CS* by accessing entries of H[i,j] by the decreasing order of the similarity values and stop whenever the answer is found.

Table: H[i,j]

	j = 0	j = 1	<i>j</i> = 2	<i>j</i> = 3
i = 0	0	0	0.03	0.12
i = 1		0	0.1	0.4
i=2			0.07	0.28

Similarly,
$$\mathbf{CPr}(\frac{1}{3}, \mathcal{A}, \mathcal{B}) = 0.85$$
. Since

$$\mathbf{CPr}(\frac{1}{3}, \mathcal{A}, \mathcal{B}) = 0.85 > minconf$$
 and

$$\begin{aligned} & \textbf{CPr}(\frac{1}{3},\mathcal{A},\mathcal{B}) = 0.85 > \textit{minconf} \text{ and} \\ & \textbf{CPr}(\frac{1}{2},\mathcal{A},\mathcal{B}) = 0.45 < \textit{minconf}, \textit{CS}(\mathcal{A},\mathcal{B},\textit{minconf}) = \frac{1}{3}. \end{aligned}$$

Similarity Search

Similarity
Query
Processing for
probabilistic
Sets

Presenter: Cheqing JIN

Introduction

Preliminarie

Similarity Computation

Pruning Techniques for Similarity Search

Approximate Solutions

Experiment

Conclusion

```
Answer Queries with Pruning (Q, \{O_i\}, \tau, minconf)
```

```
C \leftarrow \text{candidates that survive batchPruning};
foreach p-set in C;
     pruned \leftarrow false:
    if the query type is ESQ;
         ub \leftarrow calcESUpperBound(Q, O_i);
         if ub < \tau then pruned \leftarrow true;
    if the query type is CSQ;
         ub \leftarrow calcCSUpperBound(Q, O_i, \tau);
         if ub < \tau then pruned \leftarrow true;
    if pruned = false;
         sim \leftarrow the similarity value between Q and O_i;
         if sim > \tau then output \mathcal{O}_i
```


Preliminary

Similarity Query Processing for probabilistic Sets

Cheqing JIN

- III I I

Preliminarie

Exact Similarity Computation

Pruning Techniques for Similarity Search

Solutions

Experiment

Conclusion

Preliminary

- $E[|\mathcal{A}|] = \sum_{w \in \mathcal{W}(\mathcal{A})} |w| \cdot Pr[w] = \sum_{l=1}^{n} p_{l}^{\mathcal{A}}$
- lacksquare lacksquare $[|\mathcal{A} \cap \mathcal{B}|] = \sum_{l=1}^k p_l^{\mathcal{A}} \cdot p_l^{\mathcal{B}}$
- $\mathbf{E}[|\mathcal{A} \cup \mathcal{B}|] = \sum_{l=1}^{k} (p_l^{\mathcal{A}} + p_l^{\mathcal{B}} p_l^{\mathcal{A}} \cdot p_l^{\mathcal{B}}) + \sum_{l=k+1}^{n+m-k} p_l$

Batch Pruning

- 1 We index all the p-sets in the database by their expected sizes;
- 2 We compute a lower bound S_L and an upper bound S_U of the expected size for the appropriate query type;
- 3 We consider p-sets whose expected sizes fall within $[S_L, S_U]$.

Upper Bounds

Similarity Query Processing for probabilistic Sets

Pruning Techniques for Similarity Search

1 Upper Bound for ES: query p-set Q, a data p-set Q, the similarity threshold τ , \mathcal{O} can be pruned if $UB_1(\mathbf{E}[|\mathcal{Q} \cap \mathcal{O}|])$, **E** $[|Q \cup O|]$ $< \tau$, where

$$UB_1(u, v) = \min_{\exp(-u/3) \le \epsilon \le 1} \left(2\epsilon + \frac{u + \sqrt{-3u \ln \epsilon}}{v - \sqrt{-2v \ln \epsilon}} \right)$$

2 Upper Bound for CS: given a CS query p-set Q, a data p-set Q, parameters minconf and τ . Then \mathcal{O} can be pruned if (i) $\mathbf{E}[|Q \cap \mathcal{O}|] \leq \tau \cdot \mathbf{E}[|Q \cup \mathcal{O}|], \text{ and (ii) } UB_2(\mathbf{E}[|Q \cap \mathcal{O}|],$ $\mathbf{E}[|\mathcal{Q} \cup \mathcal{O}|], \tau) < minconf$, where

$$UB_2(u, v, \alpha) = \min_{u \le \xi \le \min(\alpha v, 2u)} \left(e^{\frac{-(\alpha v - \xi)^2}{2\alpha^2 v}} + e^{\frac{-(\xi - u)^2}{3u}} \right)$$

Approximate Solutions

Query Processing for probabilistic Sets

Approximate Solutions

Sampling-based Method for ES

We randomly sample $\lceil (\ln \frac{2}{\delta})/(2\epsilon^2) \rceil$ joint possible worlds (where ϵ and δ refer to the error threshold and confidence parameter respectively) and use the average of the similarity in the sampled possible worlds to approximate the expected similarity ES.

Sampling-based Method for CS

For any ϵ , δ , we randomly generate $24 \cdot \left[\ln \frac{1}{\delta} \right]$ groups of possible worlds, and each group contains $[2\epsilon^{-2}]$ pairs of possible worlds from \mathcal{A} and \mathcal{B} . In each group, we select the (minconf \cdot M)-th largest similarity value into an array sa. Finally, we select the median value from G entries in the sa array.

We have the error guarantee of these two approximate computations.

Experiment Settings

Similarity
Query
Processing for
probabilistic
Sets

Presente Cheqing J

Introduction

Preliminarie

Exact Similarity

Pruning Techniques for Similarity

Approximat Solutions

Experiments

Conclusion

Data sets

- SYN
- pDBLP
- pDeli

Measures

- Efficiency measure: memory usage; computation time; pruning time.
- Effectiveness measure: candidate size; result size; pruning rate; average precision.

Performance on SYN

Similarity Query Processing for probabilistic Sets

Experiments

Figure: Query Time

Figure: Query Time

Figure: Candidate Size Figure: Memory Usage

Figure: Candidate Size Figure: Candidate Size

Performance on pDBLP

Similarity Query Processing for probabilistic Sets

Presenter: Cheqing JIN

Introduction

Preliminarie

Exact Similarity

Pruning Techniques for Similarity

Approximate Solutions

Experiments

Conclusion

Figure: Pruning Rate

Figure: Query Time Fig

Figure: Query Time

Figure: Query Time

Case Study on pDBLP

Similarity Query Processing for probabilistic Sets

Presenter Cheging JI

Introduction

Preliminaries

Similarity Computatio

Pruning Techniques fo Similarity

Approximate Solutions

Experiments

Conclusio

Table: Sample Query Results on pDBLP

Query Author	Top-3 Similar Authors	
Hanan Samet	Thomas Seidl, Walid G. Aref, Pavel Zezula	
Jeffrey D. Ullman	Leonid Libkin, Yehoshua Sagiv, Richard J. Lipton	
Michael I. Jordan	Zoubin Ghahramani, Eric P. Xing, John Shawe-Taylor	

As we can see, the top-3 results are indeed researchers with closely matching research interest with the query author.

Performance on pDeli

Similarity Query Processing for probabilistic Sets

Figure: Pruning Rate

Figure: Query Time

Figure: Pruning Rate

Figure: Query Time

Conclusion

Similarity
Query
Processing for
probabilistic
Sets

Presenter: Cheqing JII

D II . .

E.

Similarity Computatio

Pruning Techniques fo Similarity Search

Solutions

Lxperimen

Conclusion

- We then study two kinds of similarity queries based on the expected and confidence-based similarity measures.
- 2 Both exact and approximate algorithms are developed to compute these values.
- 3 We develop novel pruning techniques based on upper bound estimation.
- 4 Both the theoretical analysis and our empirical evaluation demonstrate the effectiveness and efficiency of the proposed methods.

Acknowledgement

Similarity Query Processing for probabilistic Sets

Presenter: Cheqing JIN

Introductio

Preliminarie

Exact Similarity Computatio

Pruning Techniques for Similarity Search

Approximate Solutions

Experimen

Conclusion

Q & A

Thank you for your attention!