Semantics

1. Syntax

2. Semantics

3. Metatheory

Lemma 3.1 (Subject reduction (inf)). [safety_inf] If $\Gamma \vdash e_1 \Rightarrow A$ and $e_1 \leadsto e_2$, then $\Gamma \vdash e_2 \Rightarrow A$.

Lemma 3.2 (Subject reduction (chk)). [safety_chk] If $\Gamma \vdash e_1 \Leftarrow A$ and $e_1 \leadsto e_2$, then $\Gamma \vdash e_2 \Leftarrow A$.

Lemma 3.3 (Progress (inf)). [progress_inf] If $\varnothing \vdash e \Rightarrow A$, then $e = v \land v \in A$ or $\exists e_1. e \leadsto e_1$.

Lemma 3.4 (Progress (chk)). [progress_chk] If $\varnothing \vdash e \Leftarrow A$, then $(e:A) = v \land v \in A$ or $\exists e_1. (e:A) \leadsto e_1$.

Lemma 3.5 (Reduction is determistic). [red_unique] If $(\Gamma \vdash e_1 \Leftarrow A \text{ or } \Gamma \vdash e_1 \Rightarrow A)$, and $e_1 \rightsquigarrow e_2$, and $e_1 \rightsquigarrow e_3$, then $e_2 = e_3$.