Q# 0.10 Language Quick Reference

Primitive Types				
64-bit integers	Int			
Double-precision floats	Double			
Booleans	Bool			
	e.g.: true or false			
Qubits	Qubit			
Pauli basis	Pauli			
	e.g.: PauliI, PauliX, PauliY, or PauliZ			
Measurement	Result			
results	e.g.: Zero or One			
Sequences of	Range			
integers	e.g.: 110 or 510			
Strings	String			
	e.g.: "Hello Quantum!"			
"Return no	Unit			
information" type	e.g.: ()			

Derived Types	
Arrays	elementType[]
Tuples	(type0, type1,) e.g.: (Int, Qubit)
Functions	<pre>input -> output e.g.: ArcCos : (Double) -> Double</pre>
Operations	<pre>input => output is variants e.g.: H : (Qubit => Unit is Adj)</pre>

User-Defined Ty	pes
Declare UDT with anonymous items	newtype <i>Name</i> = (Type, Type); e.g.: newtype <i>Pair</i> = (Int, Int);
Define UDT literal	<pre>Name(baseTupleLiteral) e.g.: let origin = Pair(0, 0);</pre>
Unwrap operator ! (convert UDT to underlying type) Declare UDT with named items	<pre>VarName! e.g.: let originTuple = origin!; (now originTuple = (0, 0)) newtype Name = (Name1: Type, Name2: Type);</pre>
	<pre>e.g.: newtype Complex = (Re : Double, Im : Double);</pre>
Accessing named items of UDTs	<pre>VarName::ItemName e.g.: complexVariable::Re</pre>
Update-and- reassign for named UDT items	<pre>set VarName w/= ItemName <- val; e.g.: mutable p = Complex(0., 0.); set p w/= Re <- 1.0;</pre>

```
Symbols and Variables

Declare immutable symbol

Declare mutable symbol (variable)

Update mutable symbol (variable)

Update mutable symbol (variable)

Apply-and-reassign set varName operator= expression e.g.: set counter += 1;
```

```
Functions and Operations
Define function
                    function Name(in0 : type0, ...)
(classical routine)
                    : returnType {
                         // function body
Call function
                    Name(parameters)
                    e.g.: let two = Sqrt(4.0);
                    operation Name(in0 : type0, ...)
Define operation
(quantum routine)
                    : returnType {
with explicitly
                         body { ... }
specified body,
                         adjoint { ... }
controlled and
                         controlled { ... }
adjoint variants
                         adjoint controlled { ... }
                    operation Name(in0 : type0, ...)
Define operation
with automatically
                    : returnType is Adj + Ctl {
generated adjoint
and controlled
variants
Call operation
                    Name(parameters)
                    e.g.: Ry(0.5 * PI(), q);
Call adjoint
                    Adjoint Name(parameters)
operation
                    e.g.: Adjoint Ry(0.5 * PI(), q);
Call controlled
                    Controlled Name(controlQubits,
operation
                         parameters)
                    e.g.: Controlled Ry(controls,
                         (0.5 * PI(), target));
```

```
Control Flow
Iterate over
                    for (index in range) {
a range of numbers
                         // Use integer index
                    e.g.: for (i in 0..N-1) { ... }
While loop
                    while (condition) {
(within functions)
Iterate over
                    for (val in array) {
an array
                         // Use value val
                    e.g.: for (q in register) { ... }
Repeat-until-
                    repeat { ... }
success loop
                    until (condition)
                    fixup { ... }
Conditional
                    if (cond1) { ... }
statement
                    elif (cond2) { ... }
                    else { ... }
Ternary operator
                    condition ? caseTrue | caseFalse
Return a value
                     return value
Stop with an error
                    fail "Error message"
Conjugations
                     within { ... }
(ABA^{\dagger} \text{ pattern})
                    apply { ... }
```

Arrays						
Allocate array	<pre>mutable name = new Type[length]</pre>					
	e.g.: mutable b = new Bool[2];					
Get array length	Length(name)					
Access k-th element	name[k]					
	NB: indices are 0-based					
Assign k-th element	set name w/= k <- value					
(copy-and-update)	e.g.: set b w/= 0 <- true;					
Array literal	[value0, value1,]					
	e.g.: let b = [true, false, true];					
Array concatenation	array1 + array2					
	e.g.: let t = [1, 2, 3] + [4, 5];					
Slicing (subarray)	name[sliceRange]					
	e.g.: if t = [1, 2, 3, 4, 5], then					
	t[1 3] is [2, 3, 4]					
	t[3] is [4, 5]					
	t[1] is [1, 2]					
	t[0 2] is [1, 3, 5]					
	t[1] is [5, 4, 3, 2, 1]					

Debugging (classical)				
Print a string	Message("Hello Quantum!")			
Print an	<pre>Message(\$"Value = {val}")</pre>			
interpolated string				

Resources

Documentation	
Quantum	https://docs.microsoft.com/
Development Kit	quantum
Q# Language	https://docs.microsoft.com/
Reference	quantum/language
Q# Libraries	https://docs.microsoft.com/
Reference	qsharp/api

Q# Code Repositories					
QDK Samples	https://github.com/microsoft/ quantum				
QDK Libraries	https://github.com/microsoft/ QuantumLibraries				
Quantum Katas (tutorials)	https://github.com/microsoft/ QuantumKatas				
Q# compiler and extensions	<pre>https://github.com/microsoft/ qsharp-compiler</pre>				
Simulation framework	<pre>https://github.com/microsoft/ qsharp-runtime</pre>				
Jupyter kernel and Python host	<pre>https://github.com/microsoft/ iqsharp</pre>				
Source code for the documentation	https://github.com/ MicrosoftDocs/quantum-docs-pr				

Debugging (quantum)

Print amplitudes of wave function Assert that a qubit is in $|0\rangle$ or $|1\rangle$ state DumpMachine("dump.txt") AssertQubit(Zero, zeroQubit) AssertQubit(One, oneQubit)

Measurements

Measure qubit in Pauli Z basis yields a Result (Zero or One) Reset qubit to $|0\rangle$ Reset an array of qubits to $|0.0\rangle$ ResetAll(register)

Working with Q# from command line

Command Line Basics

Change directory cd dirname
Go to home cd ~
Go up one directory cd ..
Make new directory mkdir dirname
Open current code .

Working with Q# Projects

Create new project	<pre>dotnet new console -lang Q#output project-dir</pre>
Change directory to project directory	cd project-dir
Build project	dotnet build
Run all unit tests	dotnet test

Math reference

Complex Arithmetic (a+bi)+(c+di)(a+c)+(b+d)i(a+bi)(c+di) $a \cdot c + a \cdot di + b \cdot ci + (b \cdot d)i^2 =$ $= (a \cdot c - b \cdot d) + (a \cdot d + b \cdot c)i$ Complex conjugate $\overline{a+bi} = a-bi$ $\frac{a+bi}{c+di} \cdot 1 = \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di} = \frac{(a+bi)(c+di)}{c^2+d^2}$ Division $\frac{a+bi}{c+di}$ $\sqrt{a^2+b^2}$ Modulus |a + bi| $\cos \theta + i \sin \theta$ e^{a+bi} $e^a \cdot e^{bi} = e^a \cos b + ie^a \sin b$ r^{a+bi} $r^a \cdot r^{bi} = r^a \cdot e^{bi \ln r} =$ $= r^a \cos(b \ln r) + i \cdot r^a \sin(b \ln r)$ Polar form $re^{i\theta}$ to $a = r \cos \theta$ Cartesian form a+bi $b = r \sin \theta$ Cartesian form a+bi $r = \sqrt{a^2 + b^2}$ to polar form $re^{i\theta}$ $\theta = \arctan(\frac{b}{a})$

 $b \cdot \overline{x} \quad b \cdot \overline{y} \quad b \cdot \overline{z}$

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

 $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} & \mathbf{0} \end{bmatrix}$

 $|110\rangle\langle111| + |111\rangle\langle110|$

CCNOT

Gates r	eference						
Single Gate	Qubit gates Matrix representation	Ket-bra representation	Applying to \(\psi\)	$a=lpha\ket{0}+eta\ket{1}$	Applying to basis state	es: $\ket{0},\ket{1},\ket{+},\ket{-}$ an	d $ \pm i\rangle = \frac{1}{\sqrt{2}}(0\rangle \pm i 1\rangle)$
Х	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	$ 0\rangle\langle 1 + 1\rangle\langle 0 $	$ \psi\rangle = \alpha 1\rangle + \beta$		$X 0\rangle = 1\rangle$ $X 1\rangle = 0\rangle$	$X \mid + \rangle = \mid + \rangle$ $X \mid - \rangle = - \mid - \rangle$	$X i\rangle = i -i\rangle$ $X -i\rangle = -i i\rangle$
Υ	$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$	$i(\ket{1}ra{0}-\ket{0}ra{1})$	$Y \psi\rangle = i (\alpha 1\rangle$	$-\beta\ket{0}$)	$Y 0 \rangle = i 1 \rangle$ $Y 1 \rangle = -i 0 \rangle$	$Y \mid + \rangle = -i \mid - \rangle$ $Y \mid - \rangle = i \mid + \rangle$	$Y i\rangle = i\rangle$ $Y -i\rangle = - -i\rangle$
Z	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	$ 0\rangle \langle 0 - 1\rangle \langle 1 $	$Z \psi\rangle = \alpha 0\rangle$ –	- β 1 >	$Z 0\rangle = 0\rangle Z 1\rangle = - 1\rangle$	$Z \mid + \rangle = \mid - \rangle$ $Z \mid - \rangle = \mid + \rangle$	$egin{aligned} Z\ket{i} &= \ket{-i} \ Z\ket{-i} &= \ket{i} \end{aligned}$
1	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\left 0\right\rangle \left\langle 0\right +\left 1\right\rangle \left\langle 1\right $	$I\left \psi\right\rangle =\left \psi\right\rangle$				
Н	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$	$ 0\rangle\left\langle + + 1\right\rangle\left\langle - $	$H\left \psi\right\rangle = \alpha\left +\right\rangle$	$+\beta \left -\right\rangle = \frac{\alpha+\beta}{\sqrt{2}} \left 0\right\rangle + \frac{\alpha-\beta}{\sqrt{2}} \left 1\right\rangle$	$H 0\rangle = +\rangle$ $H 1\rangle = -\rangle$	$\begin{array}{l} H \left + \right\rangle = \left 0 \right\rangle \\ H \left - \right\rangle = \left 1 \right\rangle \end{array}$	$\begin{array}{l} H\left i\right\rangle = e^{i\pi/4}\left -i\right\rangle \\ H\left -i\right\rangle = e^{-i\pi/4}\left i\right\rangle \end{array}$
S	$egin{bmatrix} 1 & 0 \ 0 & i \end{bmatrix}$	$ 0\rangle \langle 0 + i 1\rangle \langle 1 $	$S\left \psi\right\rangle = \alpha\left 0\right\rangle +$	$-ieta\ket{1}$	$S 0\rangle = 0\rangle$ $S 1\rangle = i 1\rangle$	$S \mid + \rangle = \mid i \rangle$ $S \mid - \rangle = \mid -i \rangle$	$egin{aligned} S\ket{i} &= \ket{-} \ S\ket{-i} &= \ket{+} \end{aligned}$
T	$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$	$\left 0\right\rangle \left\langle 0\right +e^{i\pi/4}\left 1\right\rangle \left\langle 1\right $	$T\left \psi\right\rangle = \alpha\left 0\right\rangle +$	$-e^{i\pi/4}\beta\ket{1}$	$T\left 0\right\rangle =\left 0\right\rangle$	$T\left 1\right\rangle = e^{i\pi/4}\left 1\right\rangle$	
$R_x(\theta)$	$\begin{bmatrix} \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}$	$\begin{array}{l} \cos\frac{\theta}{2}\left 0\right\rangle\left\langle 0\right -i\sin\frac{\theta}{2}\left 1\right\rangle\left\langle 0\right -\\ -i\sin\frac{\theta}{2}\left 0\right\rangle\left\langle 1\right +\cos\frac{\theta}{2}\left 1\right\rangle\left\langle 1\right \end{array}$	$R_x(\theta) \psi\rangle = \left(\alpha \cos \frac{\theta}{2} - i\beta \sin \frac{\theta}{2}\right) 0\rangle + \left(\beta \cos \frac{\theta}{2} - i\alpha \sin \frac{\theta}{2}\right) 1\rangle$		$R_x(\theta) 0\rangle = \\ = \cos \frac{\theta}{2} 0\rangle - i \sin \frac{\theta}{2} 1\rangle$	$R_x(\theta) 1\rangle = \\ = \cos \frac{\theta}{2} 1\rangle - i \sin \frac{\theta}{2} 0\rangle$))
$R_y(\theta)$	$\begin{bmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}$	$\cos\frac{\theta}{2}\left 0\right\rangle\left\langle 0\right +\sin\frac{\theta}{2}\left 1\right\rangle\left\langle 0\right -\\-\sin\frac{\theta}{2}\left 0\right\rangle\left\langle 1\right +\cos\frac{\theta}{2}\left 1\right\rangle\left\langle 1\right $	$R_y(\theta) \psi\rangle = (\alpha + (\beta \cos \frac{\theta}{2} + \alpha))$	$\cos rac{ heta}{2} - eta \sin rac{ heta}{2})\ket{0} + \sin rac{ heta}{2}\ket{1}$	$R_y(\theta) 0\rangle = \\ = \cos \frac{\theta}{2} 0\rangle + \sin \frac{\theta}{2} 1\rangle$	$R_y(\theta) 1\rangle = \\ = \cos \frac{\theta}{2} 1\rangle - \sin \frac{\theta}{2} 0\rangle$	
$R_z(\theta)$	$\begin{bmatrix} e^{-i\theta/2} & 0\\ 0 & e^{i\theta/2} \end{bmatrix}$	$e^{-i\theta/2} 0\rangle \langle 0 + e^{i\theta/2} 1\rangle \langle 1 $	$R_z(\theta) \psi\rangle = \alpha \epsilon$	$e^{-i\theta/2} 0\rangle + \beta e^{i\theta/2} 1\rangle$	$R_z(\theta) 0\rangle = e^{-i\theta/2} 0\rangle$	$R_z(\theta) 1\rangle = e^{i\theta/2} 1\rangle$	
$R_1(\theta)$	$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix}$	$ 0\rangle \langle 0 + e^{i\theta} 1\rangle \langle 1 $	$R_1(\theta) \psi\rangle = \alpha$	$ 0\rangle + \beta e^{i\theta} 1\rangle$	$R_1(\theta) 0\rangle = 0\rangle$	$R_1(\theta) 1\rangle = e^{i\theta} 1\rangle$	
	ubit gates						
Gate	Matrix Representation $\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$	Ket-Bra Representation $ 00\rangle\langle00 + 01\rangle\langle01 + 11\rangle$	/10 + 10\/11	Applying to $ \psi\rangle = \alpha 00\rangle + \beta$	$ 1 01\rangle + \gamma 10\rangle + \delta 11\rangle$	Applying to basis states	
CNOT	$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$	$ 00\rangle\langle00 + 01\rangle\langle01 + 11\rangle$ Or $ 0\rangle\langle0 \otimes I + 1\rangle\langle1 \otimes X$	(10 + 10)(11	$CNOT \left \psi \right\rangle = \alpha \left 00 \right\rangle + \beta \left 01 \right\rangle$			$CNOT\ket{10} = \ket{11}$ $CNOT\ket{11} = \ket{10}$
SWAP	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	$ 00\rangle \langle 00 + 01\rangle \langle 10 + 10$	$\rangle \langle 01 + 11\rangle \langle 11 $	$\mathrm{SWAP}\left \psi\right\rangle = \alpha\left 00\right\rangle + \gamma\left 01\right\rangle$			SWAP $ 10 angle = 01 angle$ SWAP $ 11 angle = 11 angle$
Controlle	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & a_{0,0} & a_{0,1} \\ 0 & 0 & a_{1,0} & a_{1,1} \end{bmatrix}$	$egin{array}{l} 00 angle\langle00 + 10 angle\langle01 +a_{0,0}\ a_{0,1} 10 angle\langle11 +a_{1,0} 10 angle\langle11\ \mathrm{Or}\ 0 angle\langle0 \otimes I+ 1 angle\langle1 \otimes U \end{array}$		$\begin{array}{l} C(U)\left \psi\right> = \alpha\left 00\right> + \gamma\left 01\right> + (\gamma a_{1,0} + \delta a_{1,1})\left 11\right> \end{array}$			$C(U)\ket{10} = \ket{1}\otimes(lpha\ket{0}+\gamma\ket{1})$ $C(U)\ket{11} = \ket{1}\otimes(eta\ket{0}+\delta\ket{1})$
Toffoli (CCNOT) gate							
Gate Matrix Representation K		Ket-Bra Representation		Applying to $ \psi\rangle = \alpha 000\rangle + \beta 001\rangle + \gamma 010\rangle + \delta 011\rangle + \epsilon 100\rangle + \lambda 101\rangle + \eta 110\rangle + \kappa 111\rangle$		Applying to basis states	
	$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$						

 $\begin{array}{lll} \left|000\right\rangle\langle000| + \left|001\right\rangle\langle001| + \left|010\right\rangle\langle010| + & \mathsf{CCNOT}\left|\psi\right\rangle = \alpha\left|000\right\rangle + \beta\left|001\right\rangle + \gamma\left|010\right\rangle + \\ \left|011\right\rangle\langle011| + \left|100\right\rangle\langle100| + \left|101\right\rangle\langle101| + & \delta\left|011\right\rangle + \epsilon\left|100\right\rangle + \lambda\left|101\right\rangle + \kappa\left|\mathbf{110}\right\rangle + \eta\left|\mathbf{111}\right\rangle \end{array}$

 $\mathsf{CCNOT} \ket{000} = \ket{000}$

 $\mathsf{CCNOT} \ket{001} = \ket{001}$

 $\begin{array}{l} \text{CCNOT} \left| 010 \right\rangle = \left| 010 \right\rangle \\ \text{CCNOT} \left| 011 \right\rangle = \left| 011 \right\rangle \end{array}$

 $\mathsf{CCNOT} \ket{100} = \ket{100}$

 $\mathsf{CCNOT} |101\rangle = |101\rangle$

 $\mathsf{CCNOT} |110\rangle = |111\rangle$

 $CCNOT |111\rangle = |110\rangle$