Analyzing the KC House Sales Dataset to Model Sale Price

AKA

Who is Bolson?

- CEO Bolson Construction
- Specializes in:
 - Building Homes
 - Renovating Homes
 - Tearing Down Houses
- Not from around here!
- Needs your business advice!

What does Bolson want to know?

- How much does a house sell for? What drives that price?
- Where are the newest housing developments? Where's the market?
- Is price a function of n bedrooms? N bathrooms? N floors?

To answer these questions Bolson needs:

Data analysis! A working price model!

Let's get started:

Where are the newest developments?

- Plot all sales on a scatterplot using 'lat' and 'long' data
- Filter all sales for just those that occured in most recent two years (2014, 2015 for this dataset)
- Plot 'most recent sales` over top all sales, look for trends
- Find mean price:
 - o \$687K
- Find median price:
 - \$599K

What drives the price of houses?

- Pricelog is normalized distribution of Price
- Higher correlation implies better predictor
- Looking at Grade, SQFT Living, Bathrooms, LAT, etc
- How do we clarify?
 - Run a test model
 - R^2 w/ only one variable:
 - Grade
- 'Grade' can explain almost 50% of the data on its own! Definitely the biggest driver!

Dep. Variable:	pricelog	R-squared:	0.495	
Model:	OLS	Adj. R-squared:	0.495	
Method:	Least Squares	F-statistic:	2.066e+04	
Date:	Fri, 21 Jun 2019	Prob (F-statistic):	0.00	
Time:	18:22:48	Log-Likelihood:	-9172.9	
No. Observations:	21054	AIC:	1.835e+04	
Df Residuals:	21052	BIC:	1.837e+04	
Df Model:	1			
Covariance Type:	nonrobust		. 3	

	coef	std err	t	P> t	[0.025	0.975]
Intercept	10.6321	0.017	624.993	0.000	10.599	10.665
grade	0.3156	0.002	143.752	0.000	0.311	0.320

Omnibus:	133.048	Durbin-Watson:	1.965
Prob(Omnibus):	0.000	Jarque-Bera (JB):	136.615
Skew:	0.186	Prob(JB):	2.16e-30
Kurtosis:	3.132	Cond. No.	52.0

What about beds, baths, and extra floors?

High correlation with n
bathrooms helps, but still
explains much less of Price even with three variables!

Dep. Variable:			pricelog			R-squared:			0.3	11
Model:		Ö	OLS			Adj. R-squared:			0.311	
Method:		: 1	Least Squares			F-statistic:			317	71.
	Date	: Fr	i, 21 J	lun	2019	Pr	ob (F-s	tatistic):	0.	00
	Time			18:	22:48	L	.og-Lik	elihood:	-124	47.
No. Observa	tions		21054			AIC:			2.490e+	04
Df Resid	duals			2	1050			BIC:	2.493e+	04
Df N	/lodel:				3					
Covariance	Туре		n	onr	obust					
	С	oef	std e	err		t	P> t	[0.025	0.975]	
Intercept	12.10	041	0.0	13	911.4	136	0.000	12.078	12.130	
bathrooms	0.32	268	0.0	05	61.8	880	0.000	0.316	0.337	1
bedrooms	0.0	523	0.0	04	13.2	230	0.000	0.045	0.060	
floors	0.0	515	0.0	07	7.9	18	0.000	0.039	0.064	
Omnit	ous:	192.	663	[Durbin	-Wa	tson:	1.962		
Prob(Omnib	us):	0.	000	Ja	rque-E	Bera	(JB):	197.773		
Skew:		0.	.236)	Prob(JB):		1.13e-43		
Kurtosis:		3.	054		(Cond. No.		20.7		

Oh no! There's no easy answer!

So what do we do?

We Build a Model That Examines

Multiple Features!

To get a working model we need:

- 1. Linear relationships
 - a. The Pearson correlation tells us this, so we've got some options
 - b. We can't include things that strongly correlate to each other!
- 2. When the model is wrong, it needs to be reliably wrong
 - a. i.e. it's wrongness must be predictable
 - b. We need to 'normalize' some of our data
- 3. The model has to be fairly reliable
 - a. This is our friendly R^2 variable

Predictably Unpredictable

- Linear models work best when they are 'normalized' aka 'proportionally distributed'
- Pricelog, as seen earlier, is the normalized version of Price
- Transforming it like this will help make sure that the model's mistakes are ALSO proportionally distributed!

Before

Don't Double-Dip

- If we add in features that are closely related to each other, they can disrupt the Pricelog prediction!
- Think of it like paying off one credit card with another: things are moving, but you aren't changing your total amount of debt
- Take out things that talk to each other:
 - e.g. Grade talks to sqft_living and sqft above

To get a working model we need:

- Linear relationships
 - a/ The Pearson correlation tells us this, so we've got some options
 - b. We can't include things that strongly correlate to each other!
- 2. When the model is wrong, it needs to be reliably wrong
 - a. i.e. it's wrongness must be predictable
 - We need to 'normalize' some of our data
- The model has to be fairly reliable.
 - a. This is our friendly R^2 variable

Building a Model With What We Have

- After knocking out variables that correlate to each other, we're down to about 15 total
- We run combinations of the 15 into the model, and keep the variables that have the largest coeff (ie, really big impact), discard the rest
- Play with some trial and error, adding some variables back in
- Get a nice R^2

Dep. Variable:	pricelog	R-squared:	0.723					
Model:	OLS	Adj. R-squared:	0.723					
Method:	Least Squares	F-statistic:	9175.					
Date:	Fri, 21 Jun 2019	Prob (F-statistic):	0.00					
Time:	18:22:53		coef	std err	t	P> t	[0.025	0.975]
No. Observations:	21054	Intercept	-42.6515	0.733	-58.172	0.000	-44.089	-41.214
Df Residuals:	21047	intercept	-42.0515	0.733	-30.172	0.000	-44.009	-41.214
Df Model:	6	grade	0.2666	0.002	118.485	0.000	0.262	0.271
Covariance Type:	nonrobust	lat	1.2965	0.014	90.746	0.000	1.268	1.324
		waterfront	0.6487	0.023	27.993	0.000	0.603	0.694
		condition	0.0617	0.003	19.478	0.000	0.055	0.068
		bathrooms	0.1874	0.004	53.282	0.000	0.181	0.194
		yr_built	-0.0044	8.38e-05	-52.113	0.000	-0.005	-0.004

To get a working model we need:

- Linear relationships
 - a. The Pearson correlation tells us this, so we've got some options
 - b. We can't include things that strongly correlate to each other!
- 2. When the model is wrong, it needs to be reliably wrong
 - (a.) i.e. it's wrongness must be predictable
 - b. We need to 'normalize' some of our data
- 3. The model has to be fairly reliable
 - a. This is our friendly R^2 variable

Wrong in the Right Way

- We randomly split the data into two sets:
 - o A larger "Training" set
 - o A smaller "Testing" set
- We build a model w/ the same variables on the Training set
 - New coeffs, New R^2
- Test that model on the "Testing" set and the "Training" set
- Then, compare 'wrongness'
- If MUCH more wrong on one set than the other? Model doesn't work!
- If errors are CONSISTENT and evenly distributed? Model does work!

To get a working model we need:

- 1. Linear relationships
 - a. The Pearson correlation tells us this, so we've got some options
 - b. We can't include things that strongly correlate to each other!
- 2. When the model is wrong, it needs to be reliably wrong
 - a. i.e. it's wrongness must be predictable
 - b. We need to 'normalize' some of our data
- The model has to be fairly reliable
 - This is our friendly R^2 variable

We did it! We can help Bolson predict housing prices!

What our model looks like:

$$log(Price) = \alpha(Grade) + \beta(Latitude) + \gamma(Waterfront) + \delta(Condition) + \epsilon(Bathrooms) + \zeta(YearBuilt) + Intercept$$

$$log(Price) = \frac{133}{500} Grade + \frac{162}{125} Latitude + \frac{81}{125} Waterfront + \frac{77}{1250} Condition + \frac{187}{1000} Bathrooms - \frac{1}{250} Year Built - 42.651$$