Distributed Computing

using Apache Spark

Technology Trends

Gartner's hype cycle

Gartner's hype cycle

Big Data

- Walmart collects 2.5 petabytes every hour
- They found that Strawberry pop-tarts sales increased by 7 times before a Hurricane.
- Now they place all the Strawberry pop-tarts at the checkouts before hurricanes.
- They own 250 node cluster to do this analysis!

Challenges

- Challenges of Big data is massive size of data
- Data may not fit in the memory of computer
- Splitting data across machines introduces more complications (imagine calculating average of list of numbers distributed on 10 machines)

Machine Learning

- Facebook recommends items
 - Which posts appear in your timeline
 - suggesting friends
- 100B rating, 1B users, millions of items

Challenges

Same challenges as big data

Internet of Things

- More 'things' are connected to Internet
- Tesla's over the air software update
- Smart TVs (Android TV, Apple TV, etc)
- Smart Watches
- Health devices (Fitbit)

Challenges

- Traffic can't be handled by one network card
- Processing must be as fast as possible, we need to take actions immediately

Conclusion

- We must scale to more than one machine
- Distributed programming has costs that we must pay to cope with requirements

Distributed Programming

- Counting a million dollars would take you about 3 hours.
- Luckily you can easily divide the work among your friends!

Counting Example

- Divide money among friends
- Count in parallel
- Add the counts to get the total count

Coding Time

Download Spark

http://www.eu.apache.org/dist/spark/spark-1.5.1/spark-1.5.1-bin-hadoop2.6.tgz

- Open Spark shell
 - bin/spark-shell

- bin/pyspark < Python
- Notice "Started SparkUI at http://localhost:4040"
- Open the url in browser

Create list of 10000 tuples

Transform collection into new one

Spark UI

How Spark Works

Executors can be running on same machine (local mode), or in different remote cluster without changing code

Driver

- Can be shell
- Or any program creates SparkContext instance
- Contains your logic
- Send 'execution plan' to executors and collects output

Java Driver Example

```
import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
public class Test {
 public static void main(String[] args) {
   SparkContext sc =
      new SparkContext(new SparkConf().setAppName("Test"));
```

Executors

- They run the tasks (sent by driver) and return results back.
- They provide in-memory storage for RDDs
- Spark's local mode runs executors on same machine as driver
- Usually executors run on dedicated machines

RDD

- Resilient Distributed Dataset
- Fault-tolerant collection of elements
- Can be operated in parallel
- Can be created programmatically
- Can be loaded from external storage (Database or text-file) sc.textFile("data.txt")

Creating RDDs

```
Programatically
```

```
sc.parallelize(data)
sc.range(1, 100)
```

Externally

```
sc.textFile("file.txt")
sc.textFile("data/*.txt")
sc.textFile("data")
```

Multiple files merged

Transformation

```
rdd1
.map(....)
.filter(....)
```

Traditional Algorithms

```
class Count {
 public static void main(String[] args) {
  int[] money = new int[10000] {100, ...};
  int count = 0
  for (int i = 0; i <= money.length; i++) {
    count += money[i]
                                  money = [100] * 10000
 System.out.println(count)
                                  count = 0
                                  for i in range(len(money)):
                                    count += money[i]
                                  print(count)
```

Developer is responsible for iterating on array

Traditional Algorithms

```
class Count {
 public static void main(String[] args) {
  int[] money = new int[10000] {100, ...};
  int count = 0
  for (int note : money) {
    count += note
                                  money = [100] * 10000
 System.out.println(count)
                                  count = 0
                                  for note in money:
                                    count += note
                                  print(count)
```

Developer is responsible for "collecting" result

Imperative Style

Previous example is considered "imperative"

1 imperative • 1

SAVE

adjective im-per-a-tive \im-per-a-tiv, -pe-ra-\

: very important

grammar: having the form that expresses a command rather than a statement or a question

: expressing a command in a forceful and confident way

Imperative programming

- is a programming paradigm that uses statements that change program's state (variables)
- Developer responsible for specifying the steps needed to reach the answer

Declarative programming

- is a programming paradigm that expresses the logic without describing it's control flow.
- Functional programming languages are declarative
- SQL is declarative language

Functional style

```
class Count {
 public static void main(String[] args) {
  int[] money = new int[10000] {100, ...};
  int count = Arrays
    .stream(money)
    .reduce(0, (a, b) -> a + b))
                                  money = [100] * 10000
                                  count = reduce(
 System.out.println(count)
                                    lambda a, b: a + b,
                                     money)
                                  print(count)
```

- Logic and control flow are separated
- Developer is responsible specifying logic
- Language/Framework responsible for execution details

Scala in a syringe!

Values

```
scala> val x = 5
x: Int = 5
scala> x = 4
<console>:8: error: reassignment to val
```

- Similar to final values in Java and const in C#
- You can't set reassign to something else

Values have types

```
scala> val x: Int = 5
x: Int = 5
OR
scala> val x = 5
x: Int = 5
```

- Scala can detect the type (Type inference)
- Both code snippets above has no difference

Functions

```
scala> def add(x: Int, y: Int): Int = x + y
add: (x: Int, y: Int)Int

scala> add(3, 4)
res17: Int = 7
```

- Scala can infer the return types of functions
- Parameters type can't inferred (expect for specific cases)

Functions

```
def add(x: Int, y: Int) = x + y

def add(x: Int, y: Int) = {
  val sum = x + y
  sum
}
```

Last expression in function's body is the return

Functions

```
scala> def five() = 5
five: ()Int

scala> five()
res15: Int = 5

scala> five
res16: Int = 5
```

 Functions with no parameters can be called without parenthesis

Anonymous Functions

```
scala> (x: Int, y: Int) => x + y
res18: (Int, Int) => Int = <function2>
```

- Similar to lambda in python
- Short syntax to create function

Anonymous Functions

```
(1 \text{ to } 100).\text{map}(n \Rightarrow n/2).\text{reduce}((n1, n2) \Rightarrow n1 + n2)
```

- Usually used to send functions as parameters
- Scala can infer arguments' types here

Anonymous Functions

```
(1 to 100).map(_ / 2).reduce(_ + _)
```

Shorter syntax to create function!

Pair

```
scala> (1, "one")
res22: (Int, String) = (1,one)

scala> 1 -> "one"
res23: (Int, String) = (1,one)

scala> Pair(1,"one")
res21: (Int, String) = (1,one)

scala> Tuple2(1,"one")
res26: (Int, String) = (1,one)
```

- Used to group two related items
- Types can be different

Pair

```
scala> val t = (1, "one")
res35: (Int, String) = (1,one)

scala> t._1
res36: Int = 1

scala> t._2
res37: String = one

scala> t.swap
res38: (String, Int) = (one,1)
```

Sequence

```
scala> val s = Seq(1, 2, 3)
s: Seq[Int] = List(1, 2, 3)
scala> s(0)
res31: Int = 1
scala> s.head
res34: Int = 1
scala> s.tail
res35: Seq[Int] = List(2, 3)
```

RDD Operations

- RDDs support two types of operations
 - transformations (ex: map, filter)
 Returns new RDD
 - actions (ex: reduce, collect)
 Returns normal values

Transformations

- map
- flatMap
- filter
- distinct

map

- Output RDD has same length as input RDD
- Function is applied to every element, and produces exactly one element

map

map

```
val words =
   sc.parallelize(Seq("hello", "hi", "merhaba", "selam"))
words.map(_.toUpperCase).collect
```

res17: Array[String] = Array(HELLO, HI, MERHABA, SELAM)

Function produces zero or more elements


```
val words =
   sc.parallelize(Seq("hello world", "bye bye all"))
words.flatMap(_.split(" ")).collect
```

res17: Array[String] = Array(hello, world, bye, bye, all)

Only Space

```
val words =
   sc.parallelize(Seq("hello world", "bye bye all", ""))
words.flatMap(_.split(" ")).collect
```

res17: Array[String] = Array(hello, world, bye, bye, all)

Last element in input didn't produce any output

filter

- Output RDD' length is less or equal to input's
- Functions return boolean
- Only elements who match are produced in output RDD

filter

filter

```
val words =
   sc.parallelize(Seq("hello", "hi", "merhaba", "selam"))
words.map(_.startsWith("h")).collect
```

res17: Array[String] = Array(hello, hi)

distinct

- Output RDD' length is less or equal to input's
- Functions return boolean
- Only elements who match are produced in output RDD

distinct

Executors are independent, we need more work!

shuffle operation (repartitioning of data)

Shuffle operation

- re-distributing data so that it's grouped differently across partitions
- repartitioning data is expensive operation
- moves data across network, which can be slow
- however, sometimes it is necessary

distinct

 Usually the order of RDD is lost (elements are shuffled)

distinct

```
val words =
   sc.parallelize(Seq("hello", "hi", "merhaba", "hi"))
words.distinct.collect
```

res17: Array[String] = Array(hello, hi, merhaba)