DIALOG(R)File 345:Inpadoc/Fam.& Legal Stat

(c) 2004 EPO. All rts. reserv.

8480073

Basic Patent (No, Kind, Date): JP 63318125 A2 881227 < No. of Patents: 002>

MANUFACTURE OF SEMICONDUCTOR DEVICE (English)

Patent Assignee: FUJITSU LTD

Author (Inventor): EIFUKU HIDEMA; HIZUYA KENICHI; SHIOTANI YOSHIMI

IPC: *H01L-021/265; H01L-029/78 CA Abstract No: 111(08)069338U Derwent WPI Acc No: C 89-044322 JAPIO Reference No: 130166E000019 Language of Document: Japanese

Patent Family:

Patent No Kind Date Applic No Kind Date

JP 63318125 A2 881227 JP 87153981 A 870619 (BASIC)

JP 96015215 B4 960214 JP 87153981 A 870619

Priority Data (No,Kind,Date): JP 87153981 A 870619

DIALOG(R)File 347:JAPIO

(c) 2004 JPO & JAPIO. All rts. reserv.

Image available 02701225

MANUFACTURE OF SEMICONDUCTOR DEVICE

PUB. NO.:

63-318125 [JP 63318125 A]

PUBLISHED:

December 27, 1988 (19881227)

INVENTOR(s): EIFUKU HIDEMA

HIZUYA KENICHI

SHIOTANI YOSHIMI

APPLICANT(s): FUJITSU LTD [000522] (A Japanese Company or Corporation), JP

(Japan)

APPL. NO.:

62-153981 [JP 87153981]

FILED:

June 19, 1987 (19870619)

INTL CLASS:

[4] H01L-021/265; H01L-029/78

JAPIO CLASS: 42.2 (ELECTRONICS -- Solid State Components)

JAPIO KEYWORD: R097 (ELECTRONIC MATERIALS -- Metal Oxide Semiconductors,

MOS); R100 (ELECTRONIC MATERIALS -- Ion Implantation)

JOURNAL:

Section: E, Section No. 746, Vol. 13, No. 166, Pg. 19, April

20, 1989 (19890420)

ABSTRACT

PURPOSE: To improve the performance of transistors by ion-implanting boron a silicon substrate through a thermal oxide film, and difluoride into activating the ion implantation regions by heating them with light exposure, thereby forming P-type regions.

CONSTITUTION: With a resist pattern 6 and a field oxide film 2 as a mask, boron difluoride is selectively ion-implanted through a gate oxide film 5 into the substrate 1 surface in a region where an element is to be formed. After removing the pattern 6, the oxide film on the implantation regions 109 is removed to expose the upper surface of the regions 108, 109. The regions 108, 109 are heated and activated by a lamp anneal method, thereby forming a shallow P(sup +) type source region 8 and a P(sup +) type drain region 9. Whereupon, the surface level due to fluorine ions greatly reduces, so that the surface leakage at the source-drain junction greatly reduces. With this, the improvement of the performance of transistors is accomplished.

⑩日本国特許庁(IP)

⑪ 特許出願公開

⑫ 公 開 特 許 公 報 (A) 昭63-318125

@Int Cl.4

識別記号

厅内整理番号

❷公開 昭和63年(1988)12月27日

H 01 L 21/265

Z-7738-5F P-8422-5F 301

審査請求 未請求 発明の数 1 (全5頁)

9発明の名称 半導体装置の製造方法

> 創特 昭62-153981

四出 額 昭62(1987)6月19日

79発明 渚 福 栄

馬

神奈川県川崎市中原区上小田中1015番地 富士通株式会社

何発 明 日数谷 者 健 — 神奈川県川崎市中原区上小田中1015番地 富士通株式会社

明 ⑫発 者 谷 喜 美 神奈川県川崎市中原区上小田中1015番地 富士通株式会社

富士通株式会社 **犯出** 願 人

神奈川県川崎市中原区上小田中1015番地

砂代 理 弁理士 井桁

1.発明の名称

半導体装置の製造方法

2.特許請求の範囲

n型シリコン基板上に熟酸化膜を形成し、

該热酸化膜を通して該シリコン基板内に二弗化 **硼素をイオン注入した後、**

上記熱酸化膜を除去し、

しかる後、上記二弗化硼素がイオン注入された 領域を光照射加熱により活性化してp型領域を形 成せしめる工程を含むことを特徴とする半導体装 置の製造方法。

3.発明の詳細な説明

(概要)

二弗化硼素(BF₂) のイオン注入とランプアニー ルの組合せによって浅いp型領域を形成するショ ートチャネル型MIS半導体装置の製造方法にお いて、BP。のイオン注入をシリコン基板上に形成

した熱酸化膜を介して該基板面にダメージを与え ないように且つ浅く行い、上記熱酸化膜を除去し た後、前記イオン注入領域を短時間の高温ランプ アニール処理によって表面部への弗累分子の倡折 を伴わなずに活性化し、表面リーク電流の少ない 浅いp型領域を形成する。

〔産薬上の利用分野〕

本発明は半導体装置の製造方法に係り、特に浅 ・いり型領域の形成方法の改良に関する。

MISICにおいては高集積化に伴う動作速度 の低下を防止するためにチャネル長は順次縮小さ れて来ており、これに伴って生ずるショートチャ ネル効果を防止するためにソース・ドレインを極 力に浅く形成することが必要になる。

そこで浅いソース・ドレイン領域を形成する方 法として、絶縁膜を通して半導体基体面に不純物 をイオン注入することによって浅い不純物注入鎖 域を形成し、ランプからの赤外線照射により基板 表面部のみを急速に再温に加熱するランプアニー

ル方法により上記不純物注人領域の拡大を抑えて 活性化する方法が提供されている。

しかし上記方法において p 型の不純物として通常用いられる硼素 (B) を用いた際には、イオン注人における硼素 (B) の飛程が n 型の不純物である 砒素 (As) に比べて著しく長いことにより、砒素 同様の浅いイオン注入領域が形成できず、そのため n 型ソース・ドレイン領域と同様の浅い p 型ソース・ドレイン領域の形成が困難である。

そこで p 型の不純物として質量が硼素 (B) に比べて比較的砒素 (As) に近い二弗化硼素 (BFz) 分子を注入不純物に用いることにより、 違い p 型ソース・ドレイン領域が形成されるが、この場合接合部に表面リークを生じて素子特性が劣化する傾向があり、改善が要望されている。

〔従来の技術〕

上記BP。のイオン注入とランプアニール法との 組合せにより浅いp型ソース・ドレイン領域を形 成する際に、従来は次のような方法が行われてい

して得られる高エネルギーの赤外線(IR)を脳射して行うランプアニール技術により該案子形成領域4の表面部を900~1000で程度に数秒間加熱し、上記 BFェ・注入領域108 及び109 を拡大させずに活性化し、第3図(4)のように浅い p・型ソース領域8及び p・型ドレイン領域9を形成する方法であった。

しかし該従来方法によると、 BFェ・注入領域 108 及び109 の活性化に際して、 BFェ・注入領域 108 上に形成されている熱酸化膜即ちゲート酸化膜 5 と、弗索ィオン(F・) との銀和力が極めて大きいために BFェ・注入領域108 、109 内に含まれる F・の温度プロファイルにおけるピーク温度の位置がSi基板 1 即ちソース 8 及びドレイン領域 9 の表面部へ引っ張られて移動する。

この F・の濃度プロファイルの移動の状態を示したのが第4図で、カープSは注入直後の初期の濃度プロファイル、カープBはランプアニール後の濃度プロファイルである。図中、SiOzは熱酸化膜即ちゲート酸化膜、Si基板はソース及びドレイ

た。

即ち第3図(a)に示すように、通常の方法で形成されたフィールド酸化膜2及びその下部のn型チャネルストッパ3とによってn型シリコン(Si) 基体 1 が分離表出されてなる素子形成領域 4 上に独酸化法にり厚さ 200~300 人程度のゲート酸化膜 5 を形成し、該基体上に多結晶シリコン(ポリSi) 層を成長し、該ポリSi層に不純物を高濃度にドーズして導電性を付与し、通常通りレジストパターン6をマスクにして該ポリSi層をパターニングしてSiゲート電極7を形成する。

次いで第3図(ロに示すように、上記レジストパターン6及びフィールド酸化膜2をマスクにし、40~50KeV程度の注入エネルギーでゲート酸化膜5を通してn-型Si基体1面に選択的にBFz・をィオン注入する。ここで注入されたBPz・のピーク濃度の位置は500人程度の深さに形成される。なお108及び109はBFz・注入領域を示す。

次いでレジストパターン6を除去した後、該基 板面を赤外線ランブから放射される赤外線を集光

ン領域に対応し、深さ 0 の面は该Si 基板の表面を示す。

この図に表されるように表面部の F・が熱酸化膜 (ゲート酸化膜) 中に吸収され、 F・の濃度プロファイルのピーク濃度の位置(Cass) がランプアニールによってSi 基板即ちソース及びドレイン 領域の表面近傍に移動する。 なおこの図はシムス分析の結果から描かれたものである。

そしてこの F* の表面濃度の増大によってソース、ドレイン領域上の表面準位が増大し、これによってソース・ドレイン接合に表面リークを生じて該ショートチャネル型MIS半導体装置の性能が損なわれるという問題があった。

(発明が解決しようとする問題点)

本発明が解決しようとする問題点は、上記従来のBFIのイオン注入とランプアニール手段とによる後いp型領域の形成方法を用いたショートチャネル型MIS半導体装置において、p型領域の表面部に存在する高温度の F・による界面単位の増

大によって、p型領域接合の表面リークが増大し て性能の劣化を引き起こしていたことである。

(問題点を解決するための手段)

上記問題点は、n型シリコン基板上に無酸化膜を形成し、該無酸化膜を通して該シリコン基板内に二弗化硼素をイオン注入した後、上記無酸化膜を除去し、しかる後、上記二弗化硼素がイオン注入された領域を光照射加熱により活性化して p型領域を形成せしめる工程を含む本発明による半導体装置の製造方法によって解決される。

(作用)

1

即ち本発明の方法においては、 BFェ・のイオン 注入領域を活性化するためのランプアニール処理 を、 BFェ・注入の際にスルー(透過用)酸化膜と して用いた BFェ・注入領域上の酸化膜を除去して BFェ・注入領域面を表出せしめた状態で行うこと によって、 BFェ・注入領域の F・の濃度分布が活 性化により表面部に向かって移動することをなく

n型チャネルストッパ3とによってn 型Si基体 1が分離表出されてなる楽子形成領域4上に熟酸 化法により厚さ200~300 人程度のゲート酸化膜 5を形成し、該基体上にポリSi層を成長し、該ポ リSi層に不純物を高濃度に導入して導電性を付与 し、レジストパターン6をマスクにして該ポリSi 層をパターニングしてポリSiゲート電極7を形成 する。

第1团(b)参照

次いで上記レジストパターン6及びフィールド酸化膜2をマスクにし、上記ゲート酸化膜5を通して40~50KeV程度の注入エネルギーで例えば2×10¹⁵程度のドーズ量の二弗化硼素(BF_x・)を案子形成領域4内の基体1面に選択的にイオン注入する。このイオン让人により形成される BF_x・注入領域108及び109の渡度プロファイルにおけるピーク濃度の位置は基体1の表面から 500人程度の深さに形成される。

またこの際核 BF₂・注入領域108 及び109 内に含まれる遊離弗累イオン(F・) の濃度プロファイ

し、形成されたp型領域の表面部の F・温度を従来に比べ大幅に減少させる。

これによって上記 BFェ・のイオン注入及びランプアニール手段により形成される浅い p型領域のF・による表面単位が従来に比べ大幅に減少して該p型領域の表面リークが大幅に減少するので、該p型領域を用いて形成するショートチャネル型pチャネルMIS半導体装置の性能が向上する。

(実施例)

以下本発明を、図を参照し実施例により具体的 に説明する。

第1図(2)~(e)は本発明の方法の一実施例を示す 工程断面図で、第2図は同実施例における F・濃度のプロファイル図である。

全図を通じ同一対象物は同一符合で示す。

第1図(a)参照

本発明の方法によりショートチャネル型のpチャネルMISトランジスタを形成するに際しては 従来同様に、フィールド酸化膜2及びその下部の

ルも BF: と同様になる。

第1図(c)参照

次いでレジストパターン6を除去した後、弗酸と硝酸の混液等による通常のウエットエッチング手段により上記 BFz・让人領域108、109 上のゲート酸化膜5を除去し、該 BFz・注人領域108、109 の上面を表出させる。

第1図(1)参照

次いで従来同様高照度の赤外線で照射するランプアニール法により上記 BFz・注入領域108、109を900~1000で程度に数秒程度加熱し活性化して深さ1000人程度の浅いp・型ソース領域8及びp・型ドレイン領域9を形成する。

第1团(e)参照。

以後通常通り不純物プロック用酸化膜10を形成し、構建酸ガラス(PSG) 等よりなる層間絶縁膜11を形成し、ソース領域8、ドレイン領域9等へのコンタクト窓を形成し、アルミニウム等よりなるソース配線12及びドレイン配線13等を形成してショートチャネル型のpチャネルMISトランジ

スタが完成する。

従ってソース領域 8 及びドレイン領域 9 の表面 部に存在する F・によって該ソース領域 8 及びドレイン領域 9 の表面に形成される表面準位は、従来に比べ大幅に減少し、該浅いp・型ソース領域 8 及びp・型ドレイン領域 9 の接合上の表面リー

第3図(a)~(c)は従来方法の工程断面図、

第4図は従来方法における P・濃度のプロファ イル図

である.

図において、

- lはn 型Si基板、
- 2はフィールド酸化膜、
- 3はn型チャネルストッパ、
- 4 は素子形成領域、
- 5はゲート酸化膜、
- 6 はレジストパクーン、
- 7はポリSiゲート電極、
- 8はp・型ソース領域、
- gはp・型ドレイン領域、
- 10は不純物プロック用酸化膜、
- 11は層間絶縁膜、
- 12はソース配線、
- 13はドレイン配線
- [08 、109 は BF2* 注入領域、

クは従来に比べ大幅に減少する。

なお本発明の方法はバイポーラ半導作装置の製造にも適用される。

(発明の効果)

以上説明のように本発明によれば、二鬼化硼素のイオン注入と、ランプアニール法との組合せによって浅いp型のソース領域及びドレイン領域を形成するショートチャネル型pチャネルMISトランジスタの形成に際して、弗業イオンによる表面単位が大幅に減少するので、ソース及びドレイン接合における表面リークが大幅に減少し、該ショートチャネル型pチャネルMISトランジスタの性能向上が図れる。

4. 図面の簡単な説明

第1図(a)~(e)は本発明の方法の一実施例を示す 工程断面図、

第2図は同実施例における F・濃度のプロファイル図、

を示す。

代理人 弁理士 井桁貞一

()

本発明の実施例におけるF[†]濃度のプロプイル図 第 2 図

従来方法におけるF*濃度のプロプイル図第 4 図

従来方法 の 工程 断面 図 第 3 図