

Net-Zero America - nevada state report

2021-03-05

These data underlie graphs and tables presented in the Princeton Net-Zero America study:

E. Larson, C. Greig, J. Jenkins, E. Mayfield, A. Pascale, C. Zhang, J. Drossman, R. Williams, S. Pacala, R. Socolow, EJ Baik, R. Birdsey, R. Duke, R. Jones, B. Haley, E. Leslie, K. Paustian, and A. Swan, Net-Zero America: Potential Pathways, Infrastructure, and Impacts, interim report, Princeton University, Princeton, NJ, December 15, 2020. Report available at https://netzeroamerica.princeton.edu.

Notes

- These data are all data from the study available at https://netzeroamerica.prince-ton.edu.
- The Net-Zero America study describes five pathways to reach net-zero emissions and one "no new policies" reference scenario. In this document, state-level results are grouped by scenario. For some scenarios, the study generated national, but not statelevel results.
- Within results for a given scenario, data tables are organized into corresponding sections of the full net-zero study (e.g., Pillar 1, Pillar 2, etc.)
- For Pillar 6 (Land sinks), values shown are maximum carbon storage potentials.

Data by category and subcategory

1	E+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	1
2	E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	1
3	E+ scenario - PILLAR 1: Efficiency/Electrification - Overview	1
4	E+ scenario - PILLAR 1: Efficiency/Electrification - Residential	1
5	E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	2
6	E+ scenario - PILLAR 2: Clean Electricity - Generating capacity	2
7	E+ scenario - PILLAR 2: Clean Electricity - Generation	2
8	E+ scenario - PILLAR 3: Clean fuels - Bioenergy	3
9	E+ scenario - PILLAR 4: CCUS - CO2 capture	3
10	E+ scenario - PILLAR 4: CCUS - CO2 pipelines	3
11	E+ scenario - PILLAR 4: CCUS - CO2 storage	3
12	E+ scenario - PILLAR 6: Land sinks - Agriculture	4
13	E+ scenario - PILLAR 6: Land sinks - Forests	4
14	E+ scenario - IMPACTS - Fossil fuel industries	7
15	E+ scenario - IMPACTS - Health	7
16	E+ scenario - IMPACTS - Jobs	7
17	E- scenario - PILLAR 1: Efficiency/Electrification - Commercial	8
18	E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	9
19	E- scenario - PILLAR 1: Efficiency/Electrification - Overview	9
20	E- scenario - PILLAR 1: Efficiency/Electrification - Residential	9
21	E- scenario - PILLAR 1: Efficiency/Electrification - Transportation	9
22	E- scenario - PILLAR 6: Land sinks - Agriculture	10
23	E- scenario - PILLAR 6: Land sinks - Forests	11
24	E- scenario - IMPACTS - Health	13
25	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	13
26	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand .	14
27	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview	14
28	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential	14
29	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	14
30	E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity	15
31	E+RE+ scenario - PILLAR 2: Clean Electricity - Generation	15
32	E+RE+ scenario - PILLAR 6: Land sinks - Agriculture	15
33	E+RE+ scenario - PILLAR 6: Land sinks - Forests	16
34	E+RE+ scenario - IMPACTS - Health	18
35	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial	19
36	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	19
37	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview	19
38	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential	19
39	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation	20
40	E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity	20
41	E+RE- scenario - PILLAR 2: Clean Electricity - Generation	20
42	E+RE- scenario - PILLAR 6: Land sinks - Agriculture	21
43	E+RE- scenario - PILLAR 6: Land sinks - Forests	21

44	E+RE- scenario - IMPACTS - Health	24
45	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	24
46	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	24
47	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview	24
48	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential	25
49	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	25
50	E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity	26
51	E-B+ scenario - PILLAR 2: Clean Electricity - Generation	26
52	E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy	26
53	E-B+ scenario - PILLAR 4: CCUS - CO2 capture	26
54	E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines	26
55	E-B+ scenario - PILLAR 4: CCUS - CO2 storage	27
56	E-B+ scenario - PILLAR 6: Land sinks - Agriculture	27
57	E-B+ scenario - PILLAR 6: Land sinks - Forests	28
58	E-B+ scenario - IMPACTS - Health	30
59	REF scenario - PILLAR 1: Efficiency/Electrification - Commercial	31
60	REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	31
61	REF scenario - PILLAR 1: Efficiency/Electrification - Overview	31
62	REF scenario - PILLAR 1: Efficiency/Electrification - Residential	31
63	REF scenario - PILLAR 1: Efficiency/Electrification - Transportation	32
64	REF scenario - PILLAR 6: Land sinks - Forests	32
65	REF scenario - PILLAR 6: Land sinks - Forests - REF only	34
66	REF scenario - IMPACTS - Health	35

Table 1: E+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s - Cumulative 5-yr (million \$2018)	0	7,465	8,314	0	0	0	0
Sales of cooking units - Electric Resistance (%)	41.9	54.6	83	88.6	88.9	88.9	88.9
Sales of cooking units - Gas (%)	58.1	45.4	17	11.4	11.1	11.1	11.1
Sales of space heating units - Electric Heat Pump (%)	3.34	20.2	63.4	88.9	92.5	92.6	92.7
Sales of space heating units - Electric Resistance (%)	3.3	3.45	4.17	6.37	6.82	6.85	6.84
Sales of space heating units - Fossil (%)	0.985	0.209	0.04	0.002	0	0	0
Sales of space heating units - Gas Furnace (%)	92.4	76.1	32.4	4.78	0.723	0.51	0.507
Sales of water heating units - Electric Heat Pump (%)	0.03	8.12	45.4	61.3	63.2	63.3	63.3
Sales of water heating units - Electric Resistance (%)	1.46	5.07	23	34.6	36.2	36.3	36.3
Sales of water heating units - Gas Furnace (%)	98.1	86.4	31.1	3.68	0.19	0	0
Sales of water heating units - Other (%)	0.365	0.384	0.383	0.384	0.383	0.384	0.383

Table 2: E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		2.23	2.35	3.09	3.28	3.08	3.22
Cumulative 5-yr (billion \$2018)							

Table 3: E+ scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	89.2	89	85.7	80.3	75.1	72.2	71.6
Final energy use - Industry (PJ)	73.7	73.6	72.2	72.9	75.5	77.3	79.1
Final energy use - Residential (PJ)	94.5	92.3	87.6	79.2	71.6	67.4	65.8
Final energy use - Transportation (PJ)	291	274	249	218	190	171	162

Table 4: E+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.	0	3.41	4.55	0	0	0	0
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	66.4	73.5	95.5	99.8	100	100	100
Resistance (%)							
Sales of cooking units - Gas (%)	33.6	26.5	4.53	0.228	0	0	0
Sales of space heating units - Electric	9.66	27.4	68.8	88.9	91.4	91.5	91.4
Heat Pump (%)							
Sales of space heating units - Electric	13.5	20.2	10.8	6.22	5.65	5.68	5.75
Resistance (%)							
Sales of space heating units - Fossil (%)	2.25	3.38	1.94	1.18	1.02	0.999	1.02
Sales of space heating units - Gas (%)	74.6	49	18.5	3.73	1.9	1.81	1.81
Sales of water heating units - Electric	0	8.43	46.6	60.9	62.4	62.5	62.5
Heat Pump (%)							
Sales of water heating units - Electric	23.2	37.5	32.8	35.1	35.7	35.8	35.8
Resistance (%)							
Sales of water heating units - Gas Furnace	75.1	52.3	18.8	2.22	0.114	0	0
(%)							
Sales of water heating units - Other (%)	1.72	1.82	1.81	1.8	1.78	1.78	1.78

Table 5: E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -	0	477	1,240	1,983	3,014	3,269	3,123
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.256	0	0.746	0	3.11	0	4.99
units)							
Public EV charging plugs - L2 (1000 units)	0.619	0	17.9	0	74.7	0	120
Vehicle sales - Heavy-duty - diesel (%)	97.2	92.1	67	23.3	4.22	0.628	0
Vehicle sales - Heavy-duty - EV (%)	0.588	3.81	19	45.6	57.4	59.6	60
Vehicle sales - Heavy-duty - gasoline (%)	0.227	0.227	0.176	0.066	0.013	0.002	0
Vehicle sales - Heavy-duty - hybrid (%)	0.082	0.09	0.077	0.031	0.007	0.001	0
Vehicle sales - Heavy-duty - hydrogen FC	0.392	2.54	12.7	30.4	38.2	39.7	40
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.23	1.07	0.568	0.163	0.038	0
Vehicle sales - Light-duty - diesel (%)	1.44	1.72	1.21	0.387	0.073	0.013	0
Vehicle sales - Light-duty - EV (%)	4.28	16.3	48.1	82.5	96.4	99.3	100
Vehicle sales - Light-duty - gasoline (%)	89.3	76.8	47.1	15.8	3.2	0.587	0
Vehicle sales - Light-duty - hybrid (%)	4.77	4.8	3.33	1.22	0.301	0.066	0
Vehicle sales - Light-duty - hydrogen FC	0.11	0.333	0.194	0.06	0.012	0.002	0
(%)							
Vehicle sales - Light-duty - other (%)	0.097	0.093	0.059	0.021	0.004	0.001	0
Vehicle sales - Medium-duty - diesel (%)	64.7	59.7	42.3	14.4	2.59	0.384	0
Vehicle sales - Medium-duty - EV (%)	0.784	5.07	25.3	60.8	76.5	79.5	80
Vehicle sales - Medium-duty - gasoline (%)	33.7	33.3	25.5	9.32	1.77	0.277	0
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.402	0.341	0.14	0.03	0.005	0
Vehicle sales - Medium-duty - hydrogen	0.196	1.27	6.33	15.2	19.1	19.9	20
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.255	0.205	0.083	0.019	0.004	0

Table 6: E+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Biomass power plant	0	0	0	0	0	0	0
(billion \$2018)							
Capital invested - Biomass w/ccu allam	0	0	0	0	0	0	0
power plant (billion \$2018)							
Capital invested - Biomass w/ccu power	0	0	0	0	0	0	0
plant (billion \$2018)							
Capital invested - Solar PV - Base (billion	0	0	0	9.55	6.1	4.81	4.06
\$2018)							
Capital invested - Solar PV - Constrained	0	3.93	0	4.62	3.7	2.12	1.58
(billion \$2018)							
Capital invested - Wind - Base (billion	0	0.755	3.61	4.44	2.11	0.898	2.84
\$2018)							
Capital invested - Wind - Constrained	0	0.262	1.01	0.429	0.94	0.089	0.787
(billion \$2018)							
Installed (cumulative) - OffshoreWind -	0	0	0	0	0	0	0
Base land use assumptions (MW)							
Installed (cumulative) - Rooftop PV (MW)	675	1,040	1,389	1,810	2,310	2,893	3,583
Installed (cumulative) - Solar - Base land	4,971	4,971	4,971	13,631	19,500	24,398	28,779
use assumptions (MW)							
Installed (cumulative) - Wind - Base land	822	1,335	4,050	7,632	9,418	10,219	12,897
use assumptions (MW)							

Table 7: E+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Biomass power plant (GWh)	0	0	0	0	0	0	0
Biomass w/ccu allam power plant (GWh)	0	0	0	0	0	0	0
Biomass w/ccu power plant (GWh)	0	0	0	0	0	0	0
Solar - Base land use assumptions (GWh)	13,021	0	0	21,541	14,515	12,087	10,775
Solar - Constrained land use assumptions (GWh)	12,657	0	0	3,812	4,423	3,148	8,802

Table 7: E+ scenario - PILLAR 2: Clean Electricity - Generation (continued)

	-	•	-				
Item	2020	2025	2030	2035	2040	2045	2050
Wind - Base land use assumptions (GWh)	2,421	1,498	7,621	9,902	4,883	2,157	7,226
Wind - Constrained land use assumptions	657	538	1,658	1,092	1,453	76.4	1,732
(GWh)							

Table 8: E+ scenario - PILLAR 3: Clean fuels - Bioenergy

Item	2020	2025	2030	2035	2040	2045	2050
Biomass purchases (million \$2018/year)	0	0	0	0	0	0	0
Conversion capital investment -	0	0	0	0	0	0	0
Cumulative 5-yr (million \$2018)							
Number of facilities - Allam power w ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Beccs hydrogen	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Diesel (quantity)	0	0	0	0	0	0	0
Number of facilities - Diesel ccu (quantity)	0	0	0	0	0	0	0
Number of facilities - Power (quantity)	0	0	0	0	0	0	0
Number of facilities - Power ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Pyrolysis (quantity)	0	0	0	0	0	0	0
Number of facilities - Pyrolysis ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Sng (quantity)	0	0	0	0	0	0	0
Number of facilities - Sng ccu (quantity)	0	0	0	0	0	0	0

Table 9: E+ scenario - PILLAR 4: CCUS - CO2 capture

Item	2020	2025	2030	2035	2040	2045	2050
Annual - All (MMT)		0	0.01	0.03	0.05	0.04	0.03
Annual - BECCS (MMT)		0	0	0	0	0	0
Annual - Cement and lime (MMT)		0	0	0	0	0	0
Annual - NGCC (MMT)		0	0.01	0.03	0.05	0.04	0.03
Cumulative - All (MMT)		0	0.01	0.04	0.09	0.13	0.16
Cumulative - BECCS (MMT)		0	0	0	0	0	0
Cumulative - Cement and lime (MMT)		0	0	0	0	0	0
Cumulative - NGCC (MMT)		0	0.01	0.04	0.09	0.13	0.16

Table 10: E+ scenario - PILLAR 4: CCUS - CO2 pipelines

Item	2020	2025	2030	2035	2040	2045	2050
All (km)		0	51.1	102	102	102	102
Cumulative investment - All (million \$2018)		0	26.6	53.3	53.4	53.4	53.3
Cumulative investment - Spur (million \$2018)		0	26.6	53.3	53.4	53.4	53.3
Cumulative investment - Trunk (million \$2018)		0	0	0	0	0	0
Spur (km)		0	51.1	102	102	102	102
Trunk (km)		0	0	0	0	0	0

Table 11: E+ scenario - PILLAR 4: CCUS - CO2 storage

Item	2020	2025	2030	2035	2040	2045	2050
CO2 storage (MMT)		0	0	0	0	0	0
Injection wells (wells)		0	0	0	0	0	0
Resource characterization, appraisal, permitting costs (million \$2020)		0	0	0	0	0	0
Wells and facilities construction costs (million \$2020)		0	0	0	0	0	0

Table 12: E+ scenario - PILLAR 6: Land sinks - Agriculture

Thomas Th	0000	0005	2030	2035	0070	00/5	2050
Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							Ü
deployment - Corn-ethanol to energy							
grasses (1000 tC02e/y)							
Carbon sink potential - Aggressive							-227
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							-1.61
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-229
deployment - Total (1000 tCO2e/y)							
Carbon sink potential - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Moderate							-114
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							-0.807
deployment - Permanent conservation							0.00.
cover (1000 tC02e/y)							
Carbon sink potential - Moderate							-115
deployment - Total (1000 tC02e/y)							110
Land impacted for carbon sink -							0
Aggressive deployment - Corn-ethanol to							U
energy grasses (1000 hectares)							
Land impacted for carbon sink -							319
-							317
Aggressive deployment - Cropland							
measures (1000 hectares)							0.40
Land impacted for carbon sink -							2.48
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							
Land impacted for carbon sink -							322
Aggressive deployment - Total (1000							
hectares)							
Land impacted for carbon sink - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							160
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							1.24
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							162
deployment - Total (1000 hectares)							
. ,		1					

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-1,579
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-10,254
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-691
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-4,703
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							-2.49
plantations (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-4.57
retention of HWP (1000 tCO2e/y)							

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Increase							-186
trees outside forests (1000 tC02e/y)							
Carbon sink potential - High - Reforest							0
cropland (1000 tC02e/y) Carbon sink potential - High - Reforest							-593
pasture (1000 tC02e/y)							-593
Carbon sink potential - High - Restore							-2,495
productivity (1000 tC02e/y)							-2,475
Carbon sink potential - Low - Accelerate							-791
regeneration (1000 tC02e/y)							
Carbon sink potential - Low - All (not							-3,666
counting overlap) (1000 tCO2e/y)							-,
Carbon sink potential - Low - Avoid							-115
deforestation (1000 tCO2e/y)							
Carbon sink potential - Low - Extend							-1,806
rotation length (1000 tCO2e/y)							
Carbon sink potential - Low - Improve							-1.27
plantations (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-1.52
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-65.1
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							0
cropland (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-44.9
pasture (1000 tCO2e/y)							
Carbon sink potential - Low - Restore							-841
productivity (1000 tCO2e/y)							
Carbon sink potential - Mid - Accelerate							-1,185
regeneration (1000 tC02e/y)							
Carbon sink potential - Mid - All (not							-6,960
counting overlap) (1000 tC02e/y)							
Carbon sink potential - Mid - Avoid							-403
deforestation (1000 tCO2e/y)							0.057
Carbon sink potential - Mid - Extend rotation length (1000 tCO2e/y)							-3,254
Carbon sink potential - Mid - Improve							-1.86
plantations (1000 tC02e/y)							-1.00
Carbon sink potential - Mid - Increase							-3.05
retention of HWP (1000 tCO2e/y)							-3.03
Carbon sink potential - Mid - Increase							-126
trees outside forests (1000 tC02e/y)							-120
Carbon sink potential - Mid - Reforest							0
cropland (1000 tCO2e/y)							Ū
Carbon sink potential - Mid - Reforest							-319
pasture (1000 tCO2e/y)							
Carbon sink potential - Mid - Restore							-1,668
productivity (1000 tCO2e/y)							,
Land impacted for carbon sink potential -							258
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							93.6
High - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							2,398
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							0.918
High - Improve plantations (1000							
hectares)							

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests (continued)

Land impacted for carbon sink potential -	2020	2025	2030	2035	2040	2045	2050
High - Increase retention of HWP (1000							·
hectares) Land impacted for carbon sink potential -							17.7
High - Increase trees outside forests							11.
(1000 hectares)							
Land impacted for carbon sink potential -							
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							16.8
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							827
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							3,612
High - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							129
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							87.9
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							046
Land impacted for carbon sink potential -							919
Low - Extend rotation length (1000							
hectares)							0.459
Land impacted for carbon sink potential - Low - Improve plantations (1000							0.45
hectares)							
Land impacted for carbon sink potential -							(
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							9.3
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							(
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							2.92
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							500
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							1,649
Low - Total impacted (over 30 years)							
(1000 hectares)							10/
Land impacted for carbon sink potential -							194
Mid - Accelerate regeneration (1000 hectares)							
Land impacted for carbon sink potential -							90.7
Mid - Avoid deforestation (over 30 years)							70.
(1000 hectares)							
Land impacted for carbon sink potential -							1,658
Mid - Extend rotation length (1000							1,000
hectares)							
Land impacted for carbon sink potential -							0.69
Mid - Improve plantations (1000 hectares)							2.3.
Land impacted for carbon sink potential -							(
Mid - Increase retention of HWP (1000							·
hectares)							
Land impacted for carbon sink potential -							13.5
Mid - Increase trees outside forests (1000							
hectares)							

Table 13: E+	ccanario -	DTII AD 6.	Land cinke	Enracte	(continued)
Table 13: <i>E+</i>	scenario -	PILLAR 6:	Luna sinks -	· Forests i	i continuea i

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							0
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							21.1
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,008
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							2,986
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 14: E+ scenario - IMPACTS - Fossil fuel industries

Item	2020	2025	2030	2035	2040	2045	2050
Natural gas consumption - Annual (tcf)		232	196	157	118	74.3	51.5
Natural gas consumption - Cumulative (tcf)		0	0	0	0	0	4,725
Natural gas production - Annual (tcf)		0.004	0.003	0.003	0.003	0.002	0.002
Oil consumption - Annual (million bbls)		44.9	38.5	29.3	20.6	13.8	8.32
Oil consumption - Cumulative (million bbls)		0	0	0	0	0	906
Oil production - Annual (million bbls)		0.33	0.332	0.331	0.262	0.213	0.142

Table 15: E+ scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		49.7	0.067	0.067	0.044	0.027	0
Coal (million 2019\$)							
Monetary damages from air pollution -		40.7	21.6	18.5	17.4	11.7	4.81
Natural Gas (million 2019\$)							
Monetary damages from air pollution -		473	466	372	224	105	40.3
Transportation (million 2019\$)							
Premature deaths from air pollution -		5.62	0.008	0.008	0.005	0.003	0
Coal (deaths)							
Premature deaths from air pollution -		4.59	2.44	2.09	1.96	1.32	0.543
Natural Gas (deaths)							
Premature deaths from air pollution -		53.2	52.4	41.8	25.2	11.8	4.54
Transportation (deaths)							

Table 16: E+ scenario - IMPACTS - Jobs

Item	2020	2025	2030	2035	2040	2045	2050
By economic sector - Agriculture (jobs)		4.73	9.61	3.67	2.85	2.09	1.56
By economic sector - Construction (jobs)		6,041	7,276	15,232	15,004	14,345	16,626
By economic sector - Manufacturing		3,127	5,003	6,673	6,273	5,545	6,319
(jobs)							
By economic sector - Mining (jobs)		1,000	705	460	278	154	81.4
By economic sector - Other (jobs)		731	874	2,560	2,642	2,750	3,658
By economic sector - Pipeline (jobs)		264	236	203	156	109	61.4
By economic sector - Professional (jobs)		2,457	3,297	6,883	7,165	7,159	8,679
By economic sector - Trade (jobs)		1,734	2,077	4,320	4,514	4,619	5,832
By economic sector - Utilities (jobs)		5,031	6,499	10,552	11,485	11,333	12,433
By education level - All sectors -		6,552	8,394	15,220	15,480	15,019	17,509
Associates degree or some college (jobs)							
By education level - All sectors -		4,039	5,140	9,091	9,253	8,989	10,525
Bachelors degree (jobs)							
By education level - All sectors - Doctoral		133	169	330	337	332	398
degree (jobs)							
By education level - All sectors - High		8,698	11,043	19,997	20,143	19,413	22,591
school diploma or less (jobs)							

Table 16: E+ scenario - IMPACTS - Jobs (continued)

Table 10. L+ Scellal 10 - IMPACTS - Jubs (cui	•						
Item	2020	2025	2030	2035	2040	2045	2050
By education level - All sectors - Masters		968	1,232	2,246	2,308	2,263	2,668
or professional degree (jobs)							
By resource sector - Biomass (jobs)		20.3	26.5	10.5	8.58	7.64	6.65
By resource sector - CO2 (jobs)		0	116	233	232	231	61.2
By resource sector - Coal (jobs)		173	32.1	0	0	0	0
By resource sector - Grid (jobs)		7,640	10,855	19,010	20,735	20,480	23,582
By resource sector - Natural Gas (jobs)		2,984	2,544	2,232	2,373	2,272	1,564
By resource sector - Nuclear (jobs)		0	0.004	0.007	0	0	0
By resource sector - Oil (jobs)		2,072	1,639	1,165	767	485	276
By resource sector - Solar (jobs)		5,502	5,726	17,180	16,390	16,260	21,032
By resource sector - Wind (jobs)		1,998	5,038	7,054	7,015	6,281	7,168
Median wages - Annual - All (\$2019 per		60,296	60,802	61,169	62,341	63,413	64,215
job)							
On-Site or In-Plant Training - Total jobs - 1		3,400	4,322	7,823	7,938	7,685	8,928
to 4 years (jobs)		-		•	•		
On-Site or In-Plant Training - Total jobs - 4		1,442	1,792	3,345	3,406	3,309	3,829
to 10 years (jobs)							
On-Site or In-Plant Training - Total jobs -		3,281	4,192	7,631	7,716	7,472	8,753
None (jobs)							
On-Site or In-Plant Training - Total jobs -		181	232	422	432	419	485
Over 10 years (jobs)							
On-Site or In-Plant Training - Total jobs -		12,085	15,439	27,663	28,029	27,131	31,695
Up to 1 year (jobs)							
On-the-Job Training - All sectors - 1 to 4		4,393	5,582	10,115	10,274	9,951	11,548
years (jobs)							
On-the-Job Training - All sectors - 4 to 10		1,427	1,775	3,353	3,417	3,324	3,851
years (jobs)							
On-the-Job Training - All sectors - None		1,091	1,375	2,542	2,566	2,490	2,936
(jobs)							
On-the-Job Training - All sectors - Over 10		202	259	468	464	442	513
years (jobs)							
On-the-Job Training - All sectors - Up to 1		13,275	16,988	30,407	30,800	29,809	34,842
year (jobs)							
Related work experience - All sectors - 1		7,314	9,297	16,720	16,981	16,466	19,218
to 4 years (jobs)							
Related work experience - All sectors - 4		4,774	6,077	10,924	11,095	10,750	12,504
to 10 years (jobs)							
Related work experience - All sectors -		2,963	3,759	6,814	6,922	6,717	7,840
None (jobs)							
Related work experience - All sectors -		1,260	1,624	2,855	2,890	2,787	3,239
Over 10 years (jobs)							
Related work experience - All sectors - Up		4,079	5,220	9,572	9,632	9,296	10,890
to 1 year (jobs)							
Wage income - All (million \$2019)		1,230	1,580	2,868	2,963	2,919	3,448

Table 17: E- scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -	0	7,460	8,285	0	0	0	0
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric	41.9	46.2	50.2	60.8	75.4	84.6	87.8
Resistance (%)							
Sales of cooking units - Gas (%)	58.1	53.8	49.8	39.2	24.6	15.4	12.2
Sales of space heating units - Electric	3.34	13	18	32.6	57.8	78.9	88.5
Heat Pump (%)							
Sales of space heating units - Electric	3.3	3.43	3.51	3.82	4.64	5.8	6.5
Resistance (%)							
Sales of space heating units - Fossil (%)	0.985	0.242	0.226	0.167	0.082	0.026	0.007
Sales of space heating units - Gas Furnace	92.4	83.3	78.3	63.4	37.5	15.3	4.96
(%)							

Table 17: E- scenario -	DILLAR 1. Efficience	//Electrification -	Commercial	continued
Table II. E- Scellul IO -	PILLAK I. EIIILIEIIL	// EIECH 111CUHUH -	CUITITIETCIULT	Continueur

Item	2020	2025	2030	2035	2040	2045	2050
Sales of water heating units - Electric	0.03	1.53	5.79	18.2	38.6	54.2	60.6
Heat Pump (%)							
Sales of water heating units - Electric	1.46	2.2	4.25	10.4	21	30.2	34.5
Resistance (%)							
Sales of water heating units - Gas Furnace	98.1	95.9	89.6	71	39.9	15.3	4.5
(%)							
Sales of water heating units - Other (%)	0.365	0.384	0.383	0.384	0.383	0.384	0.383

Table 18: E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		2	2.09	2.43	2.55	2.99	3.14
Cumulative 5-yr (billion \$2018)							

Table 19: E- scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	89.2	89.2	88.5	87.3	84.9	81.8	79
Final energy use - Industry (PJ)	73.7	73.6	72.4	73.5	76.5	78.3	80
Final energy use - Residential (PJ)	94.5	92.7	91.9	90.1	85.9	79.9	74.4
Final energy use - Transportation (PJ)	291	276	258	242	229	214	195

Table 20: E- scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs. REF - Cumulative 5-yr (billion \$2018)	0	3.39	4.49	0	0	0	0
Sales of cooking units - Electric Resistance (%)	66.2	67.1	70.2	78.4	89.7	96.7	99.1
Sales of cooking units - Gas (%)	33.8	32.9	29.8	21.6	10.3	3.33	0.896
Sales of space heating units - Electric Heat Pump (%)	9.66	20.3	25	38.9	62.1	80.4	88.2
Sales of space heating units - Electric Resistance (%)	13.5	21.8	20.6	17.6	12.4	8.21	6.44
Sales of space heating units - Fossil (%)	2.25	3.63	3.53	2.94	1.99	1.35	1.13
Sales of space heating units - Gas (%)	74.6	54.3	50.8	40.6	23.5	10.1	4.22
Sales of water heating units - Electric Heat Pump (%)	0	1.53	5.88	18.5	39	54	60.1
Sales of water heating units - Electric Resistance (%)	23.2	38.6	38.2	36.7	35.1	35	35.4
Sales of water heating units - Gas Furnace (%)	75.1	58	54.2	42.9	24.1	9.21	2.71
Sales of water heating units - Other (%)	1.72	1.82	1.82	1.82	1.8	1.79	1.78

Table 21: E- scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -	0	0	80.1	162	553	1,721	2,514
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.256	0	0.253	0	1.17	0	3.2
units)							
Public EV charging plugs - L2 (1000 units)	0.619	0	6.09	0	28.1	0	76.9
Vehicle sales - Heavy-duty - diesel (%)	97.4	96	91.3	79.8	58.2	32.1	13.7
Vehicle sales - Heavy-duty - EV (%)	0.498	1.45	4.11	10.8	23.6	39.5	51
Vehicle sales - Heavy-duty - gasoline (%)	0.228	0.236	0.239	0.225	0.179	0.109	0.051
Vehicle sales - Heavy-duty - hybrid (%)	0.083	0.094	0.104	0.107	0.092	0.06	0.03
Vehicle sales - Heavy-duty - hydrogen FC	0.332	0.969	2.74	7.17	15.7	26.3	34
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.28	1.46	1.95	2.25	1.96	1.14
Vehicle sales - Light-duty - diesel (%)	1.45	1.88	2.04	1.61	1.02	0.524	0.225

Table 21: E- scenario - PILLAR 1: Efficiency/Electrification - Transportation (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Vehicle sales - Light-duty - EV (%)	2.01	4.96	12.4	26.8	49.4	72.7	87.8
Vehicle sales - Light-duty - gasoline (%)	91.4	86.9	78.7	65.5	45.1	24.2	10.7
Vehicle sales - Light-duty - hybrid (%)	4.96	5.74	6.41	5.78	4.28	2.5	1.2
Vehicle sales - Light-duty - hydrogen FC	0.112	0.377	0.32	0.242	0.17	0.094	0.044
(%)							
Vehicle sales - Light-duty - other (%)	0.098	0.102	0.092	0.08	0.057	0.031	0.014
Vehicle sales - Medium-duty - diesel (%)	64.8	62.2	57.7	49.4	35.6	19.6	8.37
Vehicle sales - Medium-duty - EV (%)	0.664	1.94	5.49	14.3	31.4	52.6	68
Vehicle sales - Medium-duty - gasoline (%)	33.8	34.7	34.7	31.9	24.4	14.2	6.33
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.418	0.464	0.478	0.414	0.275	0.141
Vehicle sales - Medium-duty - hydrogen	0.166	0.485	1.37	3.58	7.86	13.2	17
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.266	0.279	0.286	0.258	0.184	0.102

2020	2025	2030	2035	2040	2045	2050
						0
						-227
						-1.61
						-229
						0
						-114
						-0.807
						-115
						0
						319
						2.48
						322
						0
						_
						160
						1.24
						1
	2020				ks - Agriculture 2020 2025 2030 2035 2040	

Table 22: E- scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink - Moderate							162
deployment - Total (1000 hectares)							

Table 23: E- scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-1,579
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-10,254
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-691
deforestation (1000 tC02e/y)							
Carbon sink potential - High - Extend							-4,703
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							-2.49
plantations (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-4.57
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-186
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							0
cropland (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-593
pasture (1000 tCO2e/y)							
Carbon sink potential - High - Restore							-2,495
productivity (1000 tCO2e/y)							•
Carbon sink potential - Low - Accelerate							-791
regeneration (1000 tCO2e/y)							
Carbon sink potential - Low - All (not							-3,666
counting overlap) (1000 tCO2e/y)							0,000
Carbon sink potential - Low - Avoid							-115
deforestation (1000 tC02e/y)							110
Carbon sink potential - Low - Extend							-1,806
rotation length (1000 tCO2e/y)							-1,000
Carbon sink potential - Low - Improve							-1.27
plantations (1000 tCO2e/y)							-1.27
Carbon sink potential - Low - Increase							-1.52
							-1.52
retention of HWP (1000 tC02e/y)							/ - 1
Carbon sink potential - Low - Increase							-65.1
trees outside forests (1000 tC02e/y)							
Carbon sink potential - Low - Reforest							0
cropland (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-44.9
pasture (1000 tCO2e/y)							
Carbon sink potential - Low - Restore							-841
productivity (1000 tCO2e/y)							
Carbon sink potential - Mid - Accelerate							-1,185
regeneration (1000 tCO2e/y)							
Carbon sink potential - Mid - All (not							-6,960
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Mid - Avoid							-403
deforestation (1000 tCO2e/y)							
Carbon sink potential - Mid - Extend							-3,254
rotation length (1000 tCO2e/y)							
Carbon sink potential - Mid - Improve							-1.86
plantations (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-3.05
retention of HWP (1000 tCO2e/y)							2.30
Carbon sink potential - Mid - Increase							-126
			 			I	0

Table 23: E- scenario - PILLAR 6: Land sinks - Forests (continued)

Item Carbon sink potential - Mid - Reforest	2020	2025	2030	2035	2040	2045	2050
cropland (1000 tCO2e/y)							U
							010
Carbon sink potential - Mid - Reforest							-319
pasture (1000 tC02e/y) Carbon sink potential - Mid - Restore							1//0
·							-1,668
productivity (1000 tCO2e/y)							050
Land impacted for carbon sink potential -							258
High - Accelerate regeneration (1000							
hectares)							00.7
Land impacted for carbon sink potential -							93.6
High - Avoid deforestation (over 30 years)							
(1000 hectares)							0.000
Land impacted for carbon sink potential -							2,398
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							0.918
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							17.7
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							0
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							16.8
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							827
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							3,612
High - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							129
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							87.9
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							919
Low - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							0.459
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							9.3
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							0
Low - Reforest cropland (1000 hectares)							ŭ
Land impacted for carbon sink potential -							2.92
Low - Reforest pasture (1000 hectares)							2.72
Land impacted for carbon sink potential -							500
Low - Restore productivity (1000							300
hectares)							

Table 23: E- scenario - PILLAR 6: Land sinks - Forests (continued)

2020	2025	2030	2035	2040	2045	2050
						1,649
						194
						90.7
						1,658
						0.69
						0
						13.5
						0
						21.1
						1,008
						2,986
	2020	2020 2025	2020 2025 2030	2020 2025 2030 2035	2020 2025 2030 2035 2040	2020 2025 2030 2035 2040 2045

Table 24: E- scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution - Coal (million 2019\$)		49.7	0.067	0.067	0.044	0.027	0
Monetary damages from air pollution - Natural Gas (million 2019\$)		41.5	16.3	10.7	5.53	2.61	1.34
Monetary damages from air pollution - Transportation (million 2019\$)		482	515	527	497	413	295
Premature deaths from air pollution - Coal (deaths)		5.62	0.008	0.008	0.005	0.003	0
Premature deaths from air pollution - Natural Gas (deaths)		4.68	1.85	1.21	0.624	0.295	0.151
Premature deaths from air pollution - Transportation (deaths)		54.2	57.9	59.3	55.9	46.5	33.1

Table 25: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -	0	7,465	8,314	0	0	0	0
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric	41.9	54.6	83	88.6	88.9	88.9	88.9
Resistance (%)							
Sales of cooking units - Gas (%)	58.1	45.4	17	11.4	11.1	11.1	11.1
Sales of space heating units - Electric	3.34	20.2	63.4	88.9	92.5	92.6	92.7
Heat Pump (%)							
Sales of space heating units - Electric	3.3	3.45	4.17	6.37	6.82	6.85	6.84
Resistance (%)							
Sales of space heating units - Fossil (%)	0.985	0.209	0.04	0.002	0	0	0

Table 25: F+RF+	scenario - DII I AR 1	Efficiency/Electrification -	Commercial (continued)
I abit 25. ETRET	. OCEIIUI IU - PILLAK I.		· Gommer Ciai i Comunicati

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Gas Furnace (%)	92.4	76.1	32.4	4.78	0.723	0.51	0.507
Sales of water heating units - Electric Heat Pump (%)	0.03	8.12	45.4	61.3	63.2	63.3	63.3
Sales of water heating units - Electric Resistance (%)	1.46	5.07	23	34.6	36.2	36.3	36.3
Sales of water heating units - Gas Furnace (%)	98.1	86.4	31.1	3.68	0.19	0	0
Sales of water heating units - Other (%)	0.365	0.384	0.383	0.384	0.383	0.384	0.383

Table 26: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		2.23	2.35	3.09	3.28	3.08	3.22
Cumulative 5-yr (billion \$2018)							

Table 27: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	89.2	89	85.7	80.3	75.1	72.2	71.6
Final energy use - Industry (PJ)	73.7	73.6	72.2	72.9	75.5	77.3	79.1
Final energy use - Residential (PJ)	94.5	92.3	87.6	79.2	71.6	67.4	65.8
Final energy use - Transportation (PJ)	291	274	249	218	190	171	162

Table 28: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.	0	3.41	4.55	0	0	0	0
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	66.4	73.5	95.5	99.8	100	100	100
Resistance (%)							
Sales of cooking units - Gas (%)	33.6	26.5	4.53	0.228	0	0	0
Sales of space heating units - Electric	9.66	27.4	68.8	88.9	91.4	91.5	91.4
Heat Pump (%)							
Sales of space heating units - Electric	13.5	20.2	10.8	6.22	5.65	5.68	5.75
Resistance (%)							
Sales of space heating units - Fossil (%)	2.25	3.38	1.94	1.18	1.02	0.999	1.02
Sales of space heating units - Gas (%)	74.6	49	18.5	3.73	1.9	1.81	1.81
Sales of water heating units - Electric	0	8.43	46.6	60.9	62.4	62.5	62.5
Heat Pump (%)							
Sales of water heating units - Electric	23.2	37.5	32.8	35.1	35.7	35.8	35.8
Resistance (%)							
Sales of water heating units - Gas Furnace	75.1	52.3	18.8	2.22	0.114	0	0
(%)							
Sales of water heating units - Other (%)	1.72	1.82	1.81	1.8	1.78	1.78	1.78

Table 29: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -	0	477	1,240	1,983	3,014	3,269	3,123
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000 units)	0.256	0	0.746	0	3.11	0	4.99
Public EV charging plugs - L2 (1000 units)	0.619	0	17.9	0	74.7	0	120
Vehicle sales - Heavy-duty - diesel (%)	97.2	92.1	67	23.3	4.22	0.628	0
Vehicle sales - Heavy-duty - EV (%)	0.588	3.81	19	45.6	57.4	59.6	60
Vehicle sales - Heavy-duty - gasoline (%)	0.227	0.227	0.176	0.066	0.013	0.002	0
Vehicle sales - Heavy-duty - hybrid (%)	0.082	0.09	0.077	0.031	0.007	0.001	0
Vehicle sales - Heavy-duty - hydrogen FC (%)	0.392	2.54	12.7	30.4	38.2	39.7	40

Table 29: E+RE+ scena	nio DILLAD 1. Efficience	v/Electrification	Transportation	(nontinued)
Table 29. E+RE+ Scellu	II IU - PILLAR I. EIIIUIEIIU	: 7/ = 12011 1110011011 -	Trunsbortution	COMUNICEUM

Item	2020	2025	2030	2035	2040	2045	2050
Vehicle sales - Heavy-duty - other (%)	1.5	1.23	1.07	0.568	0.163	0.038	0
Vehicle sales - Light-duty - diesel (%)	1.44	1.72	1.21	0.387	0.073	0.013	0
Vehicle sales - Light-duty - EV (%)	4.28	16.3	48.1	82.5	96.4	99.3	100
Vehicle sales - Light-duty - gasoline (%)	89.3	76.8	47.1	15.8	3.2	0.587	0
Vehicle sales - Light-duty - hybrid (%)	4.77	4.8	3.33	1.22	0.301	0.066	0
Vehicle sales - Light-duty - hydrogen FC	0.11	0.333	0.194	0.06	0.012	0.002	0
(%)							
Vehicle sales - Light-duty - other (%)	0.097	0.093	0.059	0.021	0.004	0.001	0
Vehicle sales - Medium-duty - diesel (%)	64.7	59.7	42.3	14.4	2.59	0.384	0
Vehicle sales - Medium-duty - EV (%)	0.784	5.07	25.3	60.8	76.5	79.5	80
Vehicle sales - Medium-duty - gasoline (%)	33.7	33.3	25.5	9.32	1.77	0.277	0
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.402	0.341	0.14	0.03	0.005	0
Vehicle sales - Medium-duty - hydrogen	0.196	1.27	6.33	15.2	19.1	19.9	20
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.255	0.205	0.083	0.019	0.004	0

Table 30: E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Solar PV - Base (billion \$2018)	0	0	1.54	12.5	7.67	7.2	6.58
Capital invested - Wind - Base (billion \$2018)	0	1.35	3.98	5.69	4.12	3.06	6.92
Installed (cumulative) - OffshoreWind - Base land use assumptions (MW)	0	0	0	0	0	0	0
Installed (cumulative) - Solar - Base land use assumptions (MW)	4,971	4,971	6,259	17,580	24,957	32,297	39,397
Installed (cumulative) - Wind - Base land use assumptions (MW)	822	1,738	4,729	9,316	12,802	15,530	22,067

Table 31: E+RE+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Solar - Base land use assumptions (GWh)	13,021	0	3,207	28,043	18,212	17,901	17,428
Solar - Constrained land use assumptions (GWh)	13,021	0	2,777	4,885	7,544	10,378	13,224
Wind - Base land use assumptions (GWh)	2,421	2,665	8,336	12,652	9,440	7,094	16,351
Wind - Constrained land use assumptions (GWh)	657	1,372	1,108	2,374	808	234	1,058

Table 32: E+RE+ scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-227
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							-1.61
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-229
deployment - Total (1000 tCO2e/y)							
Carbon sink potential - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Moderate							-114
deployment - Cropland measures (1000							
tCO2e/y)							

Table 32: E+RE+ scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Moderate							-0.807
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Moderate							-115
deployment - Total (1000 tCO2e/y)							
Land impacted for carbon sink -							0
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							319
Aggressive deployment - Cropland							
measures (1000 hectares)							
Land impacted for carbon sink -							2.48
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							
Land impacted for carbon sink -							322
Aggressive deployment - Total (1000							
hectares)							
Land impacted for carbon sink - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							160
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							1.24
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							162
deployment - Total (1000 hectares)							

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate regeneration (1000 tCO2e/y)							-1,579
Carbon sink potential - High - All (not counting overlap) (1000 tC02e/y)							-10,254
Carbon sink potential - High - Avoid deforestation (1000 tCO2e/y)							-691
Carbon sink potential - High - Extend rotation length (1000 tCO2e/y)							-4,703
Carbon sink potential - High - Improve plantations (1000 tCO2e/y)							-2.49
Carbon sink potential - High - Increase retention of HWP (1000 tCO2e/y)							-4.57
Carbon sink potential - High - Increase trees outside forests (1000 tC02e/y)							-186
Carbon sink potential - High - Reforest cropland (1000 tCO2e/y)							0
Carbon sink potential - High - Reforest pasture (1000 tCO2e/y)							-593
Carbon sink potential - High - Restore productivity (1000 tC02e/y)							-2,495
Carbon sink potential - Low - Accelerate regeneration (1000 tCO2e/y)							-791
Carbon sink potential - Low - All (not counting overlap) (1000 tCO2e/y)							-3,666
Carbon sink potential - Low - Avoid deforestation (1000 tCO2e/y)							-115
Carbon sink potential - Low - Extend rotation length (1000 tCO2e/y)							-1,806

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item Conhon sink notantial Law Improve	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Low - Improve							-1.2
plantations (1000 tC02e/y)							1 50
Carbon sink potential - Low - Increase							-1.52
retention of HWP (1000 tC02e/y)							-65.
Carbon sink potential - Low - Increase trees outside forests (1000 tC02e/y)							-65.
Carbon sink potential - Low - Reforest							(
·							
cropland (1000 tC02e/y) Carbon sink potential - Low - Reforest							-44.9
							-44.5
pasture (1000 tC02e/y)							0.1
Carbon sink potential - Low - Restore							-84
productivity (1000 tCO2e/y) Carbon sink potential - Mid - Accelerate							1101
							-1,185
regeneration (1000 tC02e/y)							/ 0//
Carbon sink potential - Mid - All (not							-6,960
counting overlap) (1000 tC02e/y)							/ 0/
Carbon sink potential - Mid - Avoid							-403
deforestation (1000 tCO2e/y)							0.05
Carbon sink potential - Mid - Extend							-3,254
rotation length (1000 tC02e/y)							
Carbon sink potential - Mid - Improve							-1.86
plantations (1000 tC02e/y)							
Carbon sink potential - Mid - Increase							-3.0
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-126
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							(
cropland (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-319
pasture (1000 tCO2e/y)							
Carbon sink potential - Mid - Restore							-1,668
productivity (1000 tCO2e/y)							
Land impacted for carbon sink potential -							258
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							93.6
High - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							2,398
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							0.918
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							(
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							17.
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							(
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							16.8
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							82
High - Restore productivity (1000							52
hectares)							
Land impacted for carbon sink potential -							3,61
High - Total impacted (over 30 years)							3,01.
(1000 hectares)	[

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -	2020	2023	2030	2033	2040	2043	129
Low - Accelerate regeneration (1000							127
hectares)							
Land impacted for carbon sink potential -							87.9
							01.9
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							010
Land impacted for carbon sink potential -							919
Low - Extend rotation length (1000							
hectares)							0 / 50
Land impacted for carbon sink potential -							0.459
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							9.3
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							0
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							2.92
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							500
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							1,649
Low - Total impacted (over 30 years)							•
(1000 hectares)							
Land impacted for carbon sink potential -							194
Mid - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							90.7
Mid - Avoid deforestation (over 30 years)							, 0.11
(1000 hectares)							
Land impacted for carbon sink potential -							1,658
Mid - Extend rotation length (1000							1,000
hectares)							
Land impacted for carbon sink potential -			-				0.69
Mid - Improve plantations (1000 hectares)							0.07
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							U
hectares)							
							10 5
Land impacted for carbon sink potential -							13.5
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							0
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							21.1
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,008
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							2,986
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 34: E+RE+ scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		49.7	0.067	0.067	0.044	0.027	0
Coal (million 2019\$)							

Table 34:	E+RE+ scenario -	· IMPACTS -	Health	l continued l

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		37.3	19.5	10.2	6.87	3.43	1.19
Natural Gas (million 2019\$)							
Monetary damages from air pollution -		473	466	372	224	105	40.3
Transportation (million 2019\$)							
Premature deaths from air pollution -		5.62	0.008	0.008	0.005	0.003	0
Coal (deaths)							
Premature deaths from air pollution -		4.21	2.21	1.15	0.775	0.387	0.134
Natural Gas (deaths)							
Premature deaths from air pollution -		53.2	52.4	41.8	25.2	11.8	4.54
Transportation (deaths)							

Table 35: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s - Cumulative 5-yr (million \$2018)	0	7,465	8,314	0	0	0	0
Sales of cooking units - Electric Resistance (%)	41.9	54.6	83	88.6	88.9	88.9	88.9
Sales of cooking units - Gas (%)	58.1	45.4	17	11.4	11.1	11.1	11.1
Sales of space heating units - Electric Heat Pump (%)	3.34	20.2	63.4	88.9	92.5	92.6	92.7
Sales of space heating units - Electric Resistance (%)	3.3	3.45	4.17	6.37	6.82	6.85	6.84
Sales of space heating units - Fossil (%)	0.985	0.209	0.04	0.002	0	0	0
Sales of space heating units - Gas Furnace (%)	92.4	76.1	32.4	4.78	0.723	0.51	0.507
Sales of water heating units - Electric Heat Pump (%)	0.03	8.12	45.4	61.3	63.2	63.3	63.3
Sales of water heating units - Electric Resistance (%)	1.46	5.07	23	34.6	36.2	36.3	36.3
Sales of water heating units - Gas Furnace (%)	98.1	86.4	31.1	3.68	0.19	0	0
Sales of water heating units - Other (%)	0.365	0.384	0.383	0.384	0.383	0.384	0.383

Table 36: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		2.23	2.35	3.09	3.28	3.08	3.22
Cumulative 5-yr (billion \$2018)							

Table 37: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	89.2	89	85.7	80.3	75.1	72.2	71.6
Final energy use - Industry (PJ)	73.7	73.6	72.2	72.9	75.5	77.3	79.1
Final energy use - Residential (PJ)	94.5	92.3	87.6	79.2	71.6	67.4	65.8
Final energy use - Transportation (PJ)	291	274	249	218	190	171	162

Table 38: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.	0	3.41	4.55	0	0	0	0
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	66.4	73.5	95.5	99.8	100	100	100
Resistance (%)							
Sales of cooking units - Gas (%)	33.6	26.5	4.53	0.228	0	0	0
Sales of space heating units - Electric	9.66	27.4	68.8	88.9	91.4	91.5	91.4
Heat Pump (%)							
Sales of space heating units - Electric	13.5	20.2	10.8	6.22	5.65	5.68	5.75
Resistance (%)							

Table 38: E+RE-	acanania DII	IAD 1. Eff	icionou/Floota	ification	Dooidontial	(continued)
14016 20: E+KE-	SCEHULTO - PIL	LAK I. EIII	ICIEHCV/EIECH	IIICULIUII	Residentian	COMUNICEUM

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Fossil (%)	2.25	3.38	1.94	1.18	1.02	0.999	1.02
Sales of space heating units - Gas (%)	74.6	49	18.5	3.73	1.9	1.81	1.81
Sales of water heating units - Electric Heat Pump (%)	0	8.43	46.6	60.9	62.4	62.5	62.5
Sales of water heating units - Electric Resistance (%)	23.2	37.5	32.8	35.1	35.7	35.8	35.8
Sales of water heating units - Gas Furnace (%)	75.1	52.3	18.8	2.22	0.114	0	0
Sales of water heating units - Other (%)	1.72	1.82	1.81	1.8	1.78	1.78	1.78

Table 39: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -	0	477	1,240	1,983	3,014	3,269	3,123
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.256	0	0.746	0	3.11	0	4.99
units)							
Public EV charging plugs - L2 (1000 units)	0.619	0	17.9	0	74.7	0	120
Vehicle sales - Heavy-duty - diesel (%)	97.2	92.1	67	23.3	4.22	0.628	0
Vehicle sales - Heavy-duty - EV (%)	0.588	3.81	19	45.6	57.4	59.6	60
Vehicle sales - Heavy-duty - gasoline (%)	0.227	0.227	0.176	0.066	0.013	0.002	0
Vehicle sales - Heavy-duty - hybrid (%)	0.082	0.09	0.077	0.031	0.007	0.001	0
Vehicle sales - Heavy-duty - hydrogen FC	0.392	2.54	12.7	30.4	38.2	39.7	40
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.23	1.07	0.568	0.163	0.038	0
Vehicle sales - Light-duty - diesel (%)	1.44	1.72	1.21	0.387	0.073	0.013	0
Vehicle sales - Light-duty - EV (%)	4.28	16.3	48.1	82.5	96.4	99.3	100
Vehicle sales - Light-duty - gasoline (%)	89.3	76.8	47.1	15.8	3.2	0.587	0
Vehicle sales - Light-duty - hybrid (%)	4.77	4.8	3.33	1.22	0.301	0.066	0
Vehicle sales - Light-duty - hydrogen FC	0.11	0.333	0.194	0.06	0.012	0.002	0
(%)							
Vehicle sales - Light-duty - other (%)	0.097	0.093	0.059	0.021	0.004	0.001	0
Vehicle sales - Medium-duty - diesel (%)	64.7	59.7	42.3	14.4	2.59	0.384	0
Vehicle sales - Medium-duty - EV (%)	0.784	5.07	25.3	60.8	76.5	79.5	80
Vehicle sales - Medium-duty - gasoline (%)	33.7	33.3	25.5	9.32	1.77	0.277	0
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.402	0.341	0.14	0.03	0.005	0
Vehicle sales - Medium-duty - hydrogen	0.196	1.27	6.33	15.2	19.1	19.9	20
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.255	0.205	0.083	0.019	0.004	0

Table 40: E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity

		•	<u> </u>	<i>,</i>			
Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Solar PV - Base (billion		1.02	1.25	4.31	3.28	1.17	0
\$2018)							
Capital invested - Solar PV - Constrained (billion \$2018)		1.21	1.27	1.83	1.36	0.252	0
Capital invested - Wind - Base (billion \$2018)		0.732	0.847	2.48	2.62	1.24	1.86
Capital invested - Wind - Constrained (billion \$2018)		0.158	0.176	0.868	0.274	0.093	0.954

Table 41: E+RE- scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Solar - Base land use assumptions (GWh)	13,021	1,892	2,611	9,695	7,775	2,943	0
Solar - Constrained land use assumptions	13,021	2,227	2,572	3,934	2,977	583	0
(GWh)							
Wind - Base land use assumptions (GWh)	1,971	1,451	1,859	5,579	6,102	3,067	4,832
Wind - Constrained land use assumptions	448	309	328	1,683	554	198	1,760
(GWh)							

Table 42: E+RE- scenario - PILLAR 6: Land sinks - Agriculture

lable 42: E+RE- scenario - PILLAR 6: Land							
Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-227
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							-1.61
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-229
deployment - Total (1000 tC02e/y)							
Carbon sink potential - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 tC02e/y)							
Carbon sink potential - Moderate		+				+	-114
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							-0.807
deployment - Permanent conservation							0.00.
cover (1000 tC02e/y)							
Carbon sink potential - Moderate		+				+	-115
deployment - Total (1000 tC02e/y)							110
Land impacted for carbon sink -							0
Aggressive deployment - Corn-ethanol to							Ū
energy grasses (1000 hectares)							
Land impacted for carbon sink -							319
Aggressive deployment - Cropland							017
measures (1000 hectares)							
Land impacted for carbon sink -		+				+	2.48
Aggressive deployment - Permanent							2.40
conservation cover (1000 hectares)							
Land impacted for carbon sink -							322
Aggressive deployment - Total (1000							JZZ
hectares)							
Land impacted for carbon sink - Moderate		-					0
deployment - Corn-ethanol to energy							U
grasses (1000 hectares) Land impacted for carbon sink - Moderate							160
·							160
deployment - Cropland measures (1000							
hectares)							10/
Land impacted for carbon sink - Moderate							1.24
deployment - Permanent conservation							
cover (1000 hectares)							1/0
Land impacted for carbon sink - Moderate							162
deployment - Total (1000 hectares)							

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-1,579
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-10,254
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-691
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-4,703
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							-2.49
plantations (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-4.57
retention of HWP (1000 tCO2e/y)							

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Increase							-186
trees outside forests (1000 tC02e/y)							
Carbon sink potential - High - Reforest cropland (1000 tCO2e/y)							(
Carbon sink potential - High - Reforest pasture (1000 tCO2e/y)							-593
Carbon sink potential - High - Restore productivity (1000 tCO2e/y)							-2,495
Carbon sink potential - Low - Accelerate regeneration (1000 tC02e/y)							-79
Carbon sink potential - Low - All (not counting overlap) (1000 tC02e/y)							-3,666
Carbon sink potential - Low - Avoid							-115
deforestation (1000 tC02e/y) Carbon sink potential - Low - Extend							-1,806
rotation length (1000 tC02e/y) Carbon sink potential - Low - Improve							-1.2
plantations (1000 tCO2e/y) Carbon sink potential - Low - Increase							-1.52
retention of HWP (1000 tC02e/y)							
Carbon sink potential - Low - Increase trees outside forests (1000 tCO2e/y)							-65.
Carbon sink potential - Low - Reforest cropland (1000 tCO2e/y)							(
Carbon sink potential - Low - Reforest pasture (1000 tC02e/y)							-44.9
Carbon sink potential - Low - Restore productivity (1000 tCO2e/y)							-84
Carbon sink potential - Mid - Accelerate regeneration (1000 tCO2e/y)							-1,18
Carbon sink potential - Mid - All (not counting overlap) (1000 tCO2e/y)							-6,960
Carbon sink potential - Mid - Avoid deforestation (1000 tCO2e/y)							-40
Carbon sink potential - Mid - Extend							-3,25
rotation length (1000 tCO2e/y) Carbon sink potential - Mid - Improve							-1.8
plantations (1000 tCO2e/y) Carbon sink potential - Mid - Increase							-3.0
retention of HWP (1000 tCO2e/y) Carbon sink potential - Mid - Increase							-12
trees outside forests (1000 tCO2e/y) Carbon sink potential - Mid - Reforest							(
cropland (1000 tCO2e/y) Carbon sink potential - Mid - Reforest							-31
pasture (1000 tCO2e/y) Carbon sink potential - Mid - Restore							-1,66
productivity (1000 tCO2e/y) Land impacted for carbon sink potential -							25
High - Accelerate regeneration (1000 nectares)							25
and impacted for carbon sink potential -							93.
High - Avoid deforestation (over 30 years) (1000 hectares)							, 3.
Land impacted for carbon sink potential - High - Extend rotation length (1000							2,39
hectares) Land impacted for carbon sink potential - High - Improve plantations (1000							0.91

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued)

Land impacted for carbon sink potential -	2020	2025	2030	2035	2040	2045	2050
High - Increase retention of HWP (1000 hectares)							(
Land impacted for carbon sink potential -							17.
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							(
High - Reforest cropland (1000 hectares)							Ì
Land impacted for carbon sink potential -							16.8
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							82
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							3,612
High - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							129
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							87.9
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							919
Low - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							0.459
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							(
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							9.3
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							(
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							2.92
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							500
Low - Restore productivity (1000							
hectares) Land impacted for carbon sink potential -							1,649
Low - Total impacted (over 30 years)							1,045
(1000 hectares)							
Land impacted for carbon sink potential -							194
Mid - Accelerate regeneration (1000							174
hectares)							
Land impacted for carbon sink potential -							90.
Mid - Avoid deforestation (over 30 years)							70.
(1000 hectares)							
Land impacted for carbon sink potential -							1,658
Mid - Extend rotation length (1000							1,000
hectares)							
Land impacted for carbon sink potential -							0.69
Mid - Improve plantations (1000 hectares)							0.0
Land impacted for carbon sink potential -							(
Mid - Increase retention of HWP (1000		[,
hectares)							
Land impacted for carbon sink potential -							13.5
Mid - Increase trees outside forests (1000							.5.0
hectares)		[

Table 43: E+RE-	cconario	DTIIAD	6. Land sinks	Enrocte	(continued)
1401E 45. E+KE-	SCEHUITO -	PILLAR	o: Luiiu Siiiks -	· FUI'ESIS I	COMUNICEUR

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							0
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							21.1
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,008
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							2,986
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 44: E+RE- scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		49.7	0.067	0.067	0.044	0.027	0
Coal (million 2019\$)							
Monetary damages from air pollution -		46.7	28.6	29.1	34.3	22.5	5.07
Natural Gas (million 2019\$)							
Monetary damages from air pollution -		473	466	372	224	105	40.3
Transportation (million 2019\$)							
Premature deaths from air pollution -		5.62	0.008	0.008	0.005	0.003	0
Coal (deaths)							
Premature deaths from air pollution -		5.27	3.23	3.28	3.87	2.54	0.573
Natural Gas (deaths)							
Premature deaths from air pollution -		53.2	52.4	41.8	25.2	11.8	4.54
Transportation (deaths)							

Table 45: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s - Cumulative 5-yr (million \$2018)	0	7,460	8,285	0	0	0	0
Sales of cooking units - Electric Resistance (%)	41.9	46.2	50.2	60.8	75.4	84.6	87.8
Sales of cooking units - Gas (%)	58.1	53.8	49.8	39.2	24.6	15.4	12.2
Sales of space heating units - Electric Heat Pump (%)	3.34	13	18	32.6	57.8	78.9	88.5
Sales of space heating units - Electric Resistance (%)	3.3	3.43	3.51	3.82	4.64	5.8	6.5
Sales of space heating units - Fossil (%)	0.985	0.242	0.226	0.167	0.082	0.026	0.007
Sales of space heating units - Gas Furnace (%)	92.4	83.3	78.3	63.4	37.5	15.3	4.96
Sales of water heating units - Electric Heat Pump (%)	0.03	1.53	5.79	18.2	38.6	54.2	60.6
Sales of water heating units - Electric Resistance (%)	1.46	2.2	4.25	10.4	21	30.2	34.5
Sales of water heating units - Gas Furnace (%)	98.1	95.9	89.6	71	39.9	15.3	4.5
Sales of water heating units - Other (%)	0.365	0.384	0.383	0.384	0.383	0.384	0.383

Table 46: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		2	2.09	2.43	2.55	2.99	3.14
Cumulative 5-yr (billion \$2018)							

Table 47: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	89.2	89.2	88.5	87.3	84.9	81.8	79

Table 47: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Industry (PJ)	73.7	73.6	72.4	73.5	76.5	78.3	80
Final energy use - Residential (PJ)	94.5	92.7	91.9	90.1	85.9	79.9	74.4
Final energy use - Transportation (PJ)	291	276	258	242	229	214	195

Table 48: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.	0	3.39	4.49	0	0	0	0
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	66.2	67.1	70.2	78.4	89.7	96.7	99.1
Resistance (%)							
Sales of cooking units - Gas (%)	33.8	32.9	29.8	21.6	10.3	3.33	0.896
Sales of space heating units - Electric	9.66	20.3	25	38.9	62.1	80.4	88.2
Heat Pump (%)							
Sales of space heating units - Electric	13.5	21.8	20.6	17.6	12.4	8.21	6.44
Resistance (%)							
Sales of space heating units - Fossil (%)	2.25	3.63	3.53	2.94	1.99	1.35	1.13
Sales of space heating units - Gas (%)	74.6	54.3	50.8	40.6	23.5	10.1	4.22
Sales of water heating units - Electric	0	1.53	5.88	18.5	39	54	60.1
Heat Pump (%)							
Sales of water heating units - Electric	23.2	38.6	38.2	36.7	35.1	35	35.4
Resistance (%)							
Sales of water heating units - Gas Furnace	75.1	58	54.2	42.9	24.1	9.21	2.71
(%)							
Sales of water heating units - Other (%)	1.72	1.82	1.82	1.82	1.8	1.79	1.78

Table 49: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -	0	0	80.1	162	553	1,721	2,514
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.256	0	0.253	0	1.17	0	3.2
units)							
Public EV charging plugs - L2 (1000 units)	0.619	0	6.09	0	28.1	0	76.9
Vehicle sales - Heavy-duty - diesel (%)	97.4	96	91.3	79.8	58.2	32.1	13.7
Vehicle sales - Heavy-duty - EV (%)	0.498	1.45	4.11	10.8	23.6	39.5	51
Vehicle sales - Heavy-duty - gasoline (%)	0.228	0.236	0.239	0.225	0.179	0.109	0.051
Vehicle sales - Heavy-duty - hybrid (%)	0.083	0.094	0.104	0.107	0.092	0.06	0.03
Vehicle sales - Heavy-duty - hydrogen FC	0.332	0.969	2.74	7.17	15.7	26.3	34
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.28	1.46	1.95	2.25	1.96	1.14
Vehicle sales - Light-duty - diesel (%)	1.45	1.88	2.04	1.61	1.02	0.524	0.225
Vehicle sales - Light-duty - EV (%)	2.01	4.96	12.4	26.8	49.4	72.7	87.8
Vehicle sales - Light-duty - gasoline (%)	91.4	86.9	78.7	65.5	45.1	24.2	10.7
Vehicle sales - Light-duty - hybrid (%)	4.96	5.74	6.41	5.78	4.28	2.5	1.2
Vehicle sales - Light-duty - hydrogen FC	0.112	0.377	0.32	0.242	0.17	0.094	0.044
(%)							
Vehicle sales - Light-duty - other (%)	0.098	0.102	0.092	0.08	0.057	0.031	0.014
Vehicle sales - Medium-duty - diesel (%)	64.8	62.2	57.7	49.4	35.6	19.6	8.37
Vehicle sales - Medium-duty - EV (%)	0.664	1.94	5.49	14.3	31.4	52.6	68
Vehicle sales - Medium-duty - gasoline (%)	33.8	34.7	34.7	31.9	24.4	14.2	6.33
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.418	0.464	0.478	0.414	0.275	0.141
Vehicle sales - Medium-duty - hydrogen	0.166	0.485	1.37	3.58	7.86	13.2	17
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.266	0.279	0.286	0.258	0.184	0.102

Table 50: E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Biomass power plant (billion \$2018)	0	0	0	0	0	0	0
Capital invested - Biomass w/ccu allam power plant (billion \$2018)	0	0	0	0	0	0	0
Capital invested - Biomass w/ccu power plant (billion \$2018)	0	0	0	0	0	0	0

Table 51: E-B+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Biomass power plant (GWh)	0	0	0	0	0	0	0
Biomass w/ccu allam power plant (GWh)	0	0	0	0	0	0	0
Biomass w/ccu power plant (GWh)	0	0	0	0	0	0	0

Table 52: E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy

Item	2020	2025	2030	2035	2040	2045	2050
Biomass purchases (million \$2018/year)	0	0	0	0	0	0	0
Conversion capital investment -	0	0	0	0	0	0	0
Cumulative 5-yr (million \$2018)							
Number of facilities - Allam power w ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Beccs hydrogen	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Diesel (quantity)	0	0	0	0	0	0	0
Number of facilities - Diesel ccu (quantity)	0	0	0	0	0	0	0
Number of facilities - Power (quantity)	0	0	0	0	0	0	0
Number of facilities - Power ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Pyrolysis (quantity)	0	0	0	0	0	0	0
Number of facilities - Pyrolysis ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Sng (quantity)	0	0	0	0	0	0	0
Number of facilities - Sng ccu (quantity)	0	0	0	0	0	0	0

Table 53: E-B+ scenario - PILLAR 4: CCUS - CO2 capture

Item	2020	2025	2030	2035	2040	2045	2050
Annual - All (MMT)		0	0.01	0.04	0.06	0.04	0.05
Annual - BECCS (MMT)		0	0	0	0	0	0
Annual - Cement and lime (MMT)		0	0	0	0	0	0
Annual - NGCC (MMT)		0	0.01	0.04	0.06	0.04	0.05
Cumulative - All (MMT)		0	0.01	0.05	0.11	0.15	0.2
Cumulative - BECCS (MMT)		0	0	0	0	0	0
Cumulative - Cement and lime (MMT)		0	0	0	0	0	0
Cumulative - NGCC (MMT)		0	0.01	0.05	0.11	0.15	0.2

Table 54: E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines

Item	2020	2025	2030	2035	2040	2045	2050
All (km)		0	51.1	102	102	102	102
Cumulative investment - All (million \$2018)		0	26.6	53.4	53.5	53.4	53.4
Cumulative investment - Spur (million \$2018)		0	26.6	53.4	53.5	53.4	53.4
Cumulative investment - Trunk (million \$2018)		0	0	0	0	0	0
Spur (km)		0	51.1	102	102	102	102
Trunk (km)		0	0	0	0	0	0

Table 55: E-B+ scenario - PILLAR 4: CCUS - CO2 storage

Item	2020	2025	2030	2035	2040	2045	2050
CO2 storage (MMT)		0	0	0	0	0	0
Injection wells (wells)		0	0	0	0	0	0
Resource characterization, appraisal, permitting costs (million \$2020)		0	0	0	0	0	0
Wells and facilities construction costs (million \$2020)		0	0	0	0	0	0

Table 56: E-B+ scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	205
Carbon sink potential - Aggressive							
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-22
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							
deployment - Cropland to woody energy							
crops (1000 tCO2e/y)							
Carbon sink potential - Aggressive							
deployment - Pasture to energy crops							
(1000 tC02e/y)							
Carbon sink potential - Aggressive							-1.6
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-22
deployment - Total (1000 tCO2e/y)							
Carbon sink potential - Moderate							
deployment - Corn-ethanol to energy							
grasses (1000 tC02e/y)							
Carbon sink potential - Moderate							-11
deployment - Cropland measures (1000							•
tCO2e/y)							
Carbon sink potential - Moderate							
deployment - Cropland to woody energy							
crops (1000 tC02e/y)							
Carbon sink potential - Moderate							
deployment - Pasture to energy crops							
(1000 tC02e/y)							
Carbon sink potential - Moderate							-0.80
deployment - Permanent conservation							-0.00
cover (1000 tCO2e/y)							
Carbon sink potential - Moderate							-11
deployment - Total (1000 tC02e/y)							-11
Land impacted for carbon sink -							
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							78
Aggressive deployment - Cropland							10
measures (1000 hectares)							
Land impacted for carbon sink -							
Aggressive deployment - Cropland to							
woody energy crops (1000 hectares)							
Land impacted for carbon sink -							
Aggressive deployment - Pasture to							
energy crops (1000 hectares)							<u> </u>
Land impacted for carbon sink -							2.4
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							
Land impacted for carbon sink -							79
Aggressive deployment - Total (1000							
hectares)							

Table 56: E-B+ scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							160
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							0
deployment - Cropland to woody energy							
crops (1000 hectares)							
Land impacted for carbon sink - Moderate							0
deployment - Pasture to energy crops							
(1000 hectares)							
Land impacted for carbon sink - Moderate							1.24
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							162
deployment - Total (1000 hectares)							

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-1,579
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-10,254
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-69
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-4,703
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							-2.49
plantations (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-4.57
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-186
trees outside forests (1000 tC02e/y)							
Carbon sink potential - High - Reforest							C
cropland (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-593
pasture (1000 tCO2e/y)							
Carbon sink potential - High - Restore							-2,495
productivity (1000 tCO2e/y)							
Carbon sink potential - Low - Accelerate							-79 ⁻
regeneration (1000 tCO2e/y)							
Carbon sink potential - Low - All (not							-3,666
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Low - Avoid							-115
deforestation (1000 tCO2e/y)							
Carbon sink potential - Low - Extend							-1,806
rotation length (1000 tCO2e/y)							
Carbon sink potential - Low - Improve							-1.27
plantations (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-1.52
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-65.
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							(
cropland (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-44.9
pasture (1000 tC02e/y)							
Carbon sink potential - Low - Restore							-84
productivity (1000 tCO2e/y)							

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Mid - Accelerate	2020	2023	2030	2000	2040	2043	-1,185
regeneration (1000 tCO2e/y)							1,100
Carbon sink potential - Mid - All (not							-6,960
counting overlap) (1000 tCO2e/y)							0,700
Carbon sink potential - Mid - Avoid				+		+	-403
deforestation (1000 tC02e/y)							-400
Carbon sink potential - Mid - Extend						+	-3,254
rotation length (1000 tCO2e/y)							-3,234
Carbon sink potential - Mid - Improve							-1.86
							-1.00
plantations (1000 tCO2e/y)							0.05
Carbon sink potential - Mid - Increase							-3.05
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-126
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							0
cropland (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-319
pasture (1000 tCO2e/y)							
Carbon sink potential - Mid - Restore							-1,668
productivity (1000 tCO2e/y)							•
Land impacted for carbon sink potential -							258
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -				+		+	93.6
High - Avoid deforestation (over 30 years)							73.0
(1000 hectares)							
							0.200
Land impacted for carbon sink potential -							2,398
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							0.918
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							17.7
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							0
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							16.8
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							827
High - Restore productivity (1000							021
hectares)							
Land impacted for carbon sink potential -							3,612
High - Total impacted (over 30 years)							0,012
(1000 hectares)							
Land impacted for carbon sink potential -						+	129
Low - Accelerate regeneration (1000							127
hectares)							070
Land impacted for carbon sink potential -							87.9
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -	T						919
Low - Extend rotation length (1000							
	1						
hectares)		ı	I				
hectares) Land impacted for carbon sink potential -							0.459
							0.459

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							9.3
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							0
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							2.92
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							500
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							1,649
Low - Total impacted (over 30 years)							•
(1000 hectares)							
Land impacted for carbon sink potential -							194
Mid - Accelerate regeneration (1000							
hectares							
Land impacted for carbon sink potential -							90.7
Mid - Avoid deforestation (over 30 years)							,
(1000 hectares)							
Land impacted for carbon sink potential -							1,658
Mid - Extend rotation length (1000							1,000
hectares)							
Land impacted for carbon sink potential -							0.69
Mid - Improve plantations (1000 hectares)							0.07
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							Ü
hectares)							
Land impacted for carbon sink potential -							13.5
Mid - Increase trees outside forests (1000							10.0
hectares)							
Land impacted for carbon sink potential -							0
Mid - Reforest cropland (1000 hectares)							Ü
Land impacted for carbon sink potential -							21.1
Mid - Reforest pasture (1000 hectares)							21.1
Land impacted for carbon sink potential -							1,008
Mid - Restore productivity (1000							1,000
hectares)							
Land impacted for carbon sink potential -							2,986
Mid - Total impacted (over 30 years) (1000							2,700
hectares)							
Heoral est							

Table 58: E-B+ scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution - Coal (million 2019\$)		49.7	0.067	0.067	0.044	0.027	0
Monetary damages from air pollution - Natural Gas (million 2019\$)		39.2	16.1	11.5	9.69	6.41	3.23
Monetary damages from air pollution - Transportation (million 2019\$)		482	515	527	497	413	295
Premature deaths from air pollution - Coal (deaths)		5.62	0.008	0.008	0.005	0.003	0
Premature deaths from air pollution - Natural Gas (deaths)		4.43	1.82	1.3	1.09	0.723	0.365
Premature deaths from air pollution - Transportation (deaths)		54.2	57.9	59.3	55.9	46.5	33.1

Table 59: REF scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -	0	7,365	7,706	0	0	0	0
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric	41.9	44.7	44.7	44.6	44.4	44.5	44.6
Resistance (%)							
Sales of cooking units - Gas (%)	58.1	55.3	55.3	55.4	55.6	55.5	55.4
Sales of space heating units - Electric	3.34	23.9	63.4	77.1	78.7	78.8	78.8
Heat Pump (%)							
Sales of space heating units - Electric	3.3	5.04	10.6	16	20	20.6	20.7
Resistance (%)							
Sales of space heating units - Fossil (%)	0.985	0.211	0.092	0.03	0.004	0	0
Sales of space heating units - Gas Furnace	92.4	70.9	25.9	6.85	1.34	0.57	0.508
(%)							
Sales of water heating units - Electric	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Heat Pump (%)							
Sales of water heating units - Electric	1.46	1.47	1.47	1.48	1.47	1.48	1.47
Resistance (%)							
Sales of water heating units - Gas Furnace	98.1	98.1	98.1	98.1	98.1	98.1	98.1
(%)							
Sales of water heating units - Other (%)	0.365	0.384	0.383	0.384	0.383	0.384	0.383

Table 60: REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		2.15	2.25	2.49	2.61	2.9	3.04
Cumulative 5-yr (billion \$2018)							

Table 61: REF scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	89.2	90.9	92	92.1	92.8	95.6	100
Final energy use - Industry (PJ)	73.8	76.5	78.3	81.6	85.7	92	98.7
Final energy use - Residential (PJ)	94.5	93.4	95	97.3	101	105	108
Final energy use - Transportation (PJ)	291	280	269	263	267	277	288

Table 62: REF scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.	0	3.21	3.39	0	0	0	0
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	65.9	65.9	65.9	65.9	65.9	65.9	65.9
Resistance (%)							
Sales of cooking units - Gas (%)	34.1	34.1	34.1	34.1	34.1	34.1	34.1
Sales of space heating units - Electric	8.46	27.8	28.5	29.6	30.6	31.8	33.4
Heat Pump (%)							
Sales of space heating units - Electric	13.8	20.2	19.9	19.6	18.9	17.9	16.3
Resistance (%)							
Sales of space heating units - Fossil (%)	2.27	2.79	2.82	2.75	2.59	2.52	2.58
Sales of space heating units - Gas (%)	75.5	49.2	48.8	48.1	47.9	47.8	47.7
Sales of water heating units - Electric	0	0	0	0	0	0	0
Heat Pump (%)							
Sales of water heating units - Electric	23.2	38.8	38.9	38.9	39	39	39
Resistance (%)							
Sales of water heating units - Gas Furnace	75.1	59.4	59.3	59.3	59.2	59.2	59.2
(%)							
Sales of water heating units - Other (%)	1.72	1.82	1.82	1.82	1.81	1.81	1.81

Table 63: REF scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Vehicle sales - Heavy-duty - diesel (%)	98.1	98.2	97.9	97	95.6	93.5	91.6
Vehicle sales - Heavy-duty - EV (%)	0	0	0	0	0	0	0
Vehicle sales - Heavy-duty - gasoline (%)	0.229	0.242	0.257	0.274	0.294	0.317	0.343
Vehicle sales - Heavy-duty - hybrid (%)	0.083	0.096	0.112	0.13	0.15	0.174	0.202
Vehicle sales - Heavy-duty - hydrogen FC	0.119	0.138	0.16	0.186	0.216	0.25	0.29
(%)							
Vehicle sales - Heavy-duty - other (%)	1.51	1.31	1.57	2.37	3.69	5.71	7.57
Vehicle sales - Light-duty - diesel (%)	1.45	1.88	2.17	2.02	1.81	1.69	1.6
Vehicle sales - Light-duty - EV (%)	3.92	6.06	6.87	8.47	10.3	11.8	13
Vehicle sales - Light-duty - gasoline (%)	89.6	86	83.7	81.7	79.6	77.6	76.1
Vehicle sales - Light-duty - hybrid (%)	4.79	5.62	6.85	7.41	7.95	8.48	8.86
Vehicle sales - Light-duty - hydrogen FC	0.11	0.373	0.34	0.3	0.296	0.296	0.306
(%)							
Vehicle sales - Light-duty - other (%)	0.097	0.101	0.097	0.098	0.097	0.096	0.098
Vehicle sales - Medium-duty - diesel (%)	65.2	63.5	61.6	59.6	58	56.5	55.2
Vehicle sales - Medium-duty - EV (%)	0.027	0.105	0.329	0.671	0.895	0.973	0.993
Vehicle sales - Medium-duty - gasoline (%)	34	35.5	37	38.5	39.7	40.8	41.7
Vehicle sales - Medium-duty - hybrid (%)	0.365	0.427	0.496	0.577	0.674	0.793	0.929
Vehicle sales - Medium-duty - hydrogen	0.175	0.208	0.242	0.285	0.339	0.409	0.487
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.255	0.271	0.298	0.345	0.42	0.528	0.671

Table 64: REF scenario - PILLAR 6: Land sinks - Forests

2020	2025	2030	2035	2040	2045	2050
						-1,579
						-10,254
						-691
						-4,703
						-2.49
						-4.57
						-186
						0
						-593
						-2,495
						-791
						-3,666
						-115
						-1,806
						-1.27
						-1.52
						-65.1
						55.1
						0
						O
	2020	2020 2025	2020 2025 2030	2020 2025 2030 2035	2020 2025 2030 2035 2040	2020 2025 2030 2035 2040 2045

Table 64: REF scenario - PILLAR 6: Land sinks - Forests (continued)

2020	2025	2030	2035	2040	2045	2050
						-44.9
						-841
						-1,185
						-6,960
						-403
						-3,254
						-1.86
						-3.05
						-126
						0
						-319
						-1,668
						258
						93.6
						2,398
						0.918
						0
						17.7
						0
						16.8
						827
						3,612
						129
						87.9
						· · · · ·
						919
	2020	2020 2025	2020 2025 2030	2020 2025 2030 2035	2020 2025 2030 2035 2040	2020 2025 2030 2035 2040 2045

Table 64: REF scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							0.459
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							9.3
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							0
Low - Reforest cropland (1000 hectares)							0.00
Land impacted for carbon sink potential -							2.92
Low - Reforest pasture (1000 hectares)							F00
Land impacted for carbon sink potential -							500
Low - Restore productivity (1000							
hectares) Land impacted for carbon sink potential -							1,649
Low - Total impacted (over 30 years)							1,049
(1000 hectares)							
Land impacted for carbon sink potential -							194
Mid - Accelerate regeneration (1000							174
hectares)							
Land impacted for carbon sink potential -						+	90.7
Mid - Avoid deforestation (over 30 years)							70.1
(1000 hectares)							
Land impacted for carbon sink potential -							1,658
Mid - Extend rotation length (1000							,
hectares)							
Land impacted for carbon sink potential -							0.69
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							13.5
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							0
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							21.1
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,008
Mid - Restore productivity (1000							
hectares)							0.007
Land impacted for carbon sink potential -							2,986
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 65: REF scenario - PILLAR 6: Land sinks - Forests - REF only

Item	2020	2025	2030	2035	2040	2045	2050
Business-as-usual carbon sink - Natural uptake (Mt CO2e/y)	0.51		1.5				0.43
Business-as-usual carbon sink - Retained in Hardwood Products (Mt CO2e/y)	-0.001		-0.003				-0.003
Business-as-usual carbon sink - Total (Mt CO2e/y)	0.509		1.5				0.428

Table 66: REF scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution - Coal (million 2019\$)		79.7	47.1	25.4	19.3	18	16.9
Monetary damages from air pollution - Natural Gas (million 2019\$)		47.8	32.2	35	32.9	50.9	46.9
Monetary damages from air pollution - Transportation (million 2019\$)		480	521	561	604	648	695
Premature deaths from air pollution - Coal (deaths)		9.01	5.31	2.87	2.18	2.03	1.91
Premature deaths from air pollution - Natural Gas (deaths)		5.4	3.64	3.95	3.71	5.74	5.29
Premature deaths from air pollution - Transportation (deaths)		54	58.6	63.1	67.9	72.9	78.1