

KFK

Канальные охладители с прямым испарительным охлаждением для прямоугольных каналов

Применение

- Для охлаждения приточного воздуха в системах вентиляции различных помещений.
- Используются в качестве охладителя в приточных или приточно-вытяжных установках.

Конструкция

- Корпус охладителя с прямым испарительным охлаждением выполнен из оцинкованной стали.
- Трубные коллекторы выполнены из меди, а поверхность теплообмена – из алюминиевых пластин.
- Выпускается в 3-рядном исполнении трубок для эксплуатации с хладагентами R123, R134a, R152a, R404a, R407c, R410a, R507, R12, R22, R32.
- Оборудован каплеуловителем из полипропиленового профиля и дренажным поддоном для сбора и отвода конденсата.
- Каплеуловитель эффективен при скорости воздушного потока не более 4 м/с.

Монтаж

- Монтаж осуществляется только в горизонтальном положении при помощи фланцевого соединения с отводом конденсата.
- Перед охладителем должен быть установлен воздушный фильтр для защиты от загрязнения.
- Охладитель устанавливается с учетом равномерного распределения воздушного потока по всему сечению.
- Охладитель может устанавливаться до или после приточного вентилятора. При установке охладителя после вентилятора необходимо предусмотреть между ними воздуховод длиной не менее 1–1,5 м для стабилизации воздушного потока.
- Для достижения максимальной производительности охладитель необходимо подключать по принципу противотока (приведенные номограммы указаны для такого подключения).
- При монтаже охладителя необходимо предусмотреть слив конденсата через сифон. Расчет высоты сифона зависит от общего давления вентилятора (см. таблицу и рисунок ниже).

Н, мм	К, мм	Р, Па
100	55	600
200	105	1100
260	140	1400

Н: высота сифона **К:** высота отвола

К: высота отвода **Р:** общее давление вентилятора

 Для правильной и безопасной работы охладителя рекомендуется применять систему автоматики для обеспечения комплексного управления и автоматического регулирования холодопроизводительности.

Подключение против направления потока воздуха

Подключение по направлению потока воздуха

y	'cı	10	ВН	10	e	об	03	на	ач	eı	ни	ıe
•	٠,		ъ.		•	v	03	••••	u -	٠.	•••	

Серия Размер фланца (ШхВ), см

мер фланца (ШхВ), см Количество рядов водяного охладителя

40x20; 50x25; 50x30; 60x30; 60x35; 70x40; 80x50; 90x50; 100x50

KFK

Габаритные размеры, мм

Модель	Ø D1	Ø D2	В	B1	B2	Н	H1	H2	L
KFK 40x20-3	12	22	400	440	470	200	295	103	44
KFK 50x25-3	12	22	500	540	570	250	345	155	44
KFK 50x30-3	12	22	500	540	570	300	395	210	33
KFK 60x30-3	18	28	600	640	670	300	395	199	44
KFK 60x35-3	18	28	600	640	670	350	445	199	44
KFK 70x40-3	22	28	700	740	770	400	495	224	44
KFK 80x50-3	22	28	800	840	870	500	595	340	44
KFK 90x50-3	22	28	900	940	970	500	595	340	44
KFK 100x50-3	22	28	1000	1040	1070	500	595	325	44

ПОТЕРИ ДАВЛЕНИЯ ВОЗДУХА ОХЛАДИТЕЛЕЙ С ПРЯМЫМ ИСПАРИТЕЛЬНЫМ ОХЛАЖДЕНИЕМ

График расчета охладителей

KFK 40x20-3

Пример расчета параметров охладителя При расходе воздуха 950 м³/ч скорость в сечении охладителя будет составлять 3,35 м/с ①

• Чтобы найти температуру, до которой возможно охлаждение воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной летней температуры (например,+30 °C) провести влево линию ② до пересечения с влажностью наружного воздуха (напр. 50 %) и поднять перпендикуляр на ось температуры воздуха после охладителя (+21,1 °C) ③.

- Для того, чтобы определить мощность охладителя, необходимо от точки пересечения расхода воздуха ① с линией расчетной летней температуры (напр. +30 °С) провести вправо линию ④ до пересечения с влажностью наружного воздуха (напр. 50 %) и поднять перпендикуляр на ось мощности охладителя (4,7 кВт) ⑤.
- Для определения необходимого расхода хладагента через охладитель необходимо опустить перпендикуляр (§) на ось
- расхода хладагента через охладитель (100 кг/час). Для определения падения давления хладагента в охладителе необходимо найти точку пересечения линии ⑥ с графиком потери давления и провести вправо перпендикуляр 7 на ось падения давления хладагента (6,5 кПа).

KFK 50x25-3

Пример расчета параметров охладителя

При расходе воздуха 1400 м³/ч скорость в сечении охладителя будет составлять 3,1 м/с ①.

- Чтобы найти температуру, до которой возможно охлаждение воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной летней температуры (например,+30 °C) провести влево линию ② до пересечения с влажностью наружного воздуха
- Для того, чтобы определить мощность охладителя, необходимо от точки пересечения расхода воздуха © с линией расчетной летней температуры (напр. +30 °C) провести вправо линию ® до пересечения с влажностью наружного воздуха (напр. 50 %) и поднять перпендикуляр на ось мощности охладителя (7,2 кВт) ⑤.
- Для определения необходимого расхода хладагента через охладитель необходимо опустить перпендикуляр 6 на ось расхода хладагента через охладитель (152 кг/час).
- Для определения падения давления хладагента в охладителе необходимо найти точку пересечения линии (6) с графиком потери давления и провести вправо перпендикуляр 🧷 на ось падения давления хладагента (7,5

KFK 50x30-3

Пример расчета параметров охладителя

При расходе воздуха 2000 м3/ч скорость в сечении охладителя будет составлять 3,75 м/с ①.

• Чтобы найти температуру, до которой возможно охлаждение воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной летней температуры (например,+30 °C) провести влево линию 2) до пересечения с влажностью наружного воздуха (напр. 50 %) и поднять перпендикуляр на ось температуры воздуха после охладителя (+21,2 °C) $\ \ \,$ 3.

- Для того, чтобы определить мощность охладителя, необходимо от точки пересечения расхода воздуха ⊕ с линией расчетной летней температуры (напр. +30
 °C) провести вправо линию ⊕ до пересечения с влажностью наружного воздуха (напр. 50 %) и поднять перпендикуляр на ось мощности охладителя (10 кВт) ⑤.
- Для определения необходимого расхода хладагента через охладитель необходимо опустить перпендикуляр (6) на ось расхода хладагента через охладитель (215 кг/час). • Для определения падения давления хладагента
- в охладителе необходимо найти точку пересечения линии ⑥ с графиком потери давления и провести вправо перпендикуляр ⑦ на ось падения давления хладагента (16,0 кПа).

KFK 60x30-3

Пример расчета параметров охладителя При расходе воздуха 2500 м 3 /ч скорость в сечении охладителя будет составлять 3,75 м/с ①.

- Чтобы найти температуру, до которой возможно охлаждение воздуха, необходимо от точки пересечения расхода воздуха 1 с линией расчетной летней температуры (например,+30 °C) провести влево линию ② до пересечения с влажностью наружного воздуха (напр. 50 %) и поднять перпендикуляр на ось температуры воздуха после охладителя $(+22,5\,^{\circ}\mathrm{C})$ ③.
- Для того, чтобы определить мощность охладителя, необходимо от точки пересечения расхода воздуха ⊕ с линией расчетной летней температуры (напр. +30 °C) провести вправо линию ⊕ до пересечения с влажностью наружного воздуха (напр. 50 %) и поднять перпендикуляр на ось мощности охладителя (10,5 кВт) ⑤.
- Для определения необходимого расхода хладагента через охладитель необходимо опустить перпендикуляр 6 на ось расхода хладагента через охладитель (225 кг/час).
- Для определения падения давления хладагента в охладителе необходимо найти точку пересечения линии (6) с графиком потери давления и провести вправо перпендикуляр 🗇 на ось падения давления хладагента (17 k∏a).

KFK 60x35-3

Пример расчета параметров охладителя При расходе воздуха 3500 м³/ч скорость в сечении охладителя будет составлять 4,65 м/с ①

• Чтобы найти температуру, до которой возможно охлаждение воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной летней температуры (например,+30 °C) провести влево линию ② до пересечения с влажностью наружного воздуха (напр. 50 %) и поднять перпендикуляр на ось температуры воздуха после охладителя (+22,5 °C) ③.

- Для того, чтобы определить мощность охладителя, необходимо от точки пересечения расхода воздуха ⊕ с линией расчетной летней температуры (напр. +30
 °C) провести вправо линию ⊕ до пересечения с влажностью наружного воздуха (напр. 50 %) и поднять перпендикуляр на ось мощности охладителя (14,5 кВт) ⑤.
- Для определения необходимого расхода хладагента через охладитель необходимо опустить перпендикуляр (§) на ось расхода хладагента через охладитель (310 кг/час). • Для определения падения давления хладагента
- в охладителе необходимо найти точку пересечения линии ⑥ с графиком потери давления и провести вправо перпендикуляр \bigcirc на ось падения давления хладагента (24,0 кПа).

KFK 70x40-3

Пример расчета параметров охладителя

При расходе воздуха 4500 м³/ч скорость в сечении охладителя будет составлять 4,7 м/с ①.

- Чтобы найти температуру, до которой возможно охлаждение воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной летней температуры (например,+30 °C) провести влево линию ② до пересечения с влажностью наружного воздуха (напр. 50 %) и поднять перпендикуляр на ось температуры воздуха после охладителя (+22,8 °C) $\$ 3.
- Для того, чтобы определить мощность охладителя, необходимо от точки пересечения расхода воздуха © с линией расчетной летней температуры (напр. +30 °C) провести вправо линию ® до пересечения с влажностью наружного воздуха (напр. 50 %) и поднять перпендикуляр на ось мощности охладителя (17 кВт) ⑤.
- Для определения необходимого расхода хладагента через охладитель необходимо опустить перпендикуляр 6 на ось расхода хладагента через охладитель (360 кг/час).

Расход хладагента через охладитель, кг/час

• Для определения падения давления хладагента в охладителе необходимо найти точку пересечения линии © с графиком потери давления и провести вправо перпендикуляр 🧷 на ось падения давления хладагента (19,0 кПа).

KFK 80x50-3

Пример расчета параметров охладителя

При расходе воздуха 6000 м3/ч скорость в сечении охладителя будет составлять 4,35 м/с ①.

• Чтобы найти температуру, до которой возможно охлаждение воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной летней температуры (например,+30 °C) провести влево линию 2) до пересечения с влажностью наружного воздуха (напр. 50 %) и поднять перпендикуляр на ось температуры воздуха после охладителя (+21,0 °C) ③.

- Для того, чтобы определить мощность охладителя, необходимо от точки пересечения расхода воздуха ⊕ с линией расчетной летней температуры (напр. +30
 °C) провести вправо линию ⊕ до пересечения с влажностью наружного воздуха (напр. 50 %) и поднять перпендикуляр на ось мощности охладителя (25,5 кВт) ⑤.
- Для определения необходимого расхода хладагента через охладитель необходимо опустить перпендикуляр (6) на ось расхода хладагента через охладитель (605 кг/час). • Для определения падения давления хладагента
- в охладителе необходимо найти точку пересечения линии ⑥ с графиком потери давления и провести вправо перпендикуляр ⑦ на ось падения давления хладагента (26,0 кПа).

KFK 90x50-3

Пример расчета параметров охладителя При расходе воздуха 7000 м 3 /ч скорость в сечении охладителя будет составлять 4,4 м/с ①.

- Чтобы найти температуру, до которой возможно охлаждение воздуха, необходимо от точки пересечения расхода воздуха 1 с линией расчетной летней температуры (например,+30 °C) провести влево линию ② до пересечения с влажностью наружного воздуха (напр. 50 %) и поднять перпендикуляр на ось температуры воздуха после охладителя $(+20,7\,^{\circ}\text{C})$ ③.
- Для того, чтобы определить мощность охладителя, необходимо от точки пересечения расхода воздуха ⊕ с линией расчетной летней температуры (напр. +30 °C) провести вправо линию ⊕ до пересечения с влажностью наружного воздуха (напр. 50 %) и поднять перпендикуляр на ось мощности охладителя (28,0 кВт) ⑤.
- Для определения необходимого расхода хладагента через охладитель необходимо опустить перпендикуляр 6 на ось расхода хладагента через охладитель (640 кг/час).
- Для определения падения давления хладагента в охладителе необходимо найти точку пересечения линии (6) с графиком потери давления и провести вправо перпендикуляр 🗇 на ось падения давления хладагента (26,0 кПа).

KFK 100x50-3

Пример расчета параметров охладителя При расходе воздуха 7000 м³/ч скорость в сечении охладителя будет составлять 4,1 м/с \bigcirc .

• Чтобы найти температуру, до которой возможно охлаждение воздуха, необходимо от точки пересечения расхода воздуха ① с линией расчетной летней температуры (например,+30 °C) провести влево линию ② до пересечения с влажностью наружного воздуха (напр. 50 %) и поднять перпендикуляр на ось температуры воздуха после охладителя (20,5 °C) $\cite{3}$.

- Для того, чтобы определить мощность охладителя, необходимо от точки пересечения расхода воздуха ① с линией расчетной летней температуры (напр. +30 °С) провести вправо линию ④ до пересечения с влажностью наружного воздуха (напр. 50 %) и поднять перпендикуляр на ось мощности охладителя (30,0 кВт) ⑤.
- Для определения необходимого расхода хладагента через охладитель необходимо опустить перпендикуляр (в) на ось расхода хладагента через охладитель (710 кг/час).
 Для определения падения давления хладагента
- в охладителе необходимо найти точку пересечения линии © с графиком потери давления и провести вправо перпендикуляр \bigcirc на ось падения давления хладагента (30,0 кПа).