

Analítica y Visualización de Datos

Dr. Miguel Jesús Torres Ruiz

Distancia de Euclidiana (1)

Definición

$$d_E = \sqrt{\sum_{k=1}^n (p_k - q_k)^2}$$

- Donde:
 - *n* es el número de dimensiones (atributos)
 - p_k y q_k son respectivamente los k-ésimos atributos (componentes) u objetos de datos p y q.
 - p_k y q_k son respectivamente los k-ésimos atributos (componentes) u objetos de datos p y q.
- Requiere de una estandarización, en caso de que las escalas difieran entre sí.

Instituto Politécnico Nacional

"La Técnica al Servicio de la Patria"

Distancia de Euclidiana (2)

	Altura	Peso
Punto	\boldsymbol{x}	y
p_1	0	2
p_2	2	0
p_3	3	1
p_4	5	1

	p_1	p_2	p_3	p_4
p_1	0	2.828	3.162	5.099
p_2	2.828	0	1.414	3.162
p_3	3.1622	1.414	0	2
p_4	5.099	3.162	2	0

Matriz de Distancia

Distancia de Minkowski (1)

Definición

- La distancia de Minkowski es una métrica definida en un espacio vectorial normado que puede considerarse como una generalización tanto de la distancia Euclidiana como de la distancia de Manhattan.
- La distancia del orden de Minkowski r, donde r es un número entero entre dos puntos.
- Por tanto, se tiene que $P=(p_1,p_2,\ldots,p_n)$ y $Q=(q_1,q_2,\ldots,q_n)\in\mathbb{R}^n$, se define como:

$$Dist L_P = \left(\sum_{k=1}^n |p_k - q_k|^r\right)^{\frac{1}{r}}$$

• Donde:

- r es un parámetro
- n es el número de dimensiones (atributos),
- p_k y q_k son respectivamente los k-ésimos atributos (componentes) u objetos de datos p y q.

Distancia de Minkowski (2)

Definición

- Para $r \ge 1$, la distancia de Minkowski es una métrica como resultado de la Desigualdad de Minkowski.
- Cuando r < 1, la distancia entre (0,0) y (1,1) es $2^{\frac{1}{r}} > 2$, pero el punto (0,1) está a la distancia de 1 de estos dos puntos.
- Esto viola la propiedad de desigualdad del triángulo, porque r < 1 no es una métrica. Sin embargo se puede obtener una métrica para estos valores, simplemente eliminando el exponente $\frac{1}{r}$
- La distancia de Minkowski también se puede ver como un múltiplo de la potencia media de las diferencias por componentes de *r*.

Distancia de Minkowski (3)

Definición

- La familia de distancias de Minkowski
 - Costo de evaluación O(n)
 - Cumplen con las propiedades métricas
 - Cuando r=1: Se conoce como City Block (Manhattan, <u>Taxicab</u>, norma L_1)
 - Un ejemplo común de esto es la distancia de *Hamming*, que es solo la cantidad de bits que son diferentes entre dos vectores binarios.

 $Dist L_P = \left(\sum_{k=1}^n |p_k - q_k|^r\right)^{\overline{r}}$

- Cuando r=2: Distancia Euclidiana (norma L_2)
- Cuando $r=\infty$: Distancia Chebyshev (chessboard, norma L_{max} , norma L_{∞} , Distancia Máxima, Distancia Suprema)
 - Esta es la diferencia máxima entre cualquier componente de los vectores.
 - Por ejemplo: L_{∞} de (1, 0, 2) y (6, 0, 3) = ??? == 5
- No confundir r con n, es decir, todas estas distancias están definidas para todos los números de dimensiones.

$$L_1(P,Q) = \sum_{k=1}^{n} |p_k - q_k|$$

$$L_2(P,Q) = \sum_{k=1}^{n} (p_k - q_k)^2$$

$$L_{max}(P,Q) = \max_{1 \le k \le n} \{|p_k - q_k|\}$$

Distancia de Minkowski (4)

Taxicab

Instituto Politécnico Nacional

"La Técnica al Servicio de la Patria"

Distancia de Minkowski (5)

Punto	$\boldsymbol{\mathcal{X}}$	y
p_1	0	2
p_2	2	0
p_3	3	1
p_4	5	1

Matriz de Distancia

L_1	p_1	p_2	p_3	p_4
p_1	0	4	4	6
p_2	4	0	2	4
p_3	4	2	0	2
p_4	6	4	2	0
L_2	p_1	p_2	p_3	p_4
p_1	0	2.828	3.162	5.099
p_2	2,.828	0	1.414	3.162
p_3	3.162	1.414	0	2
p_4	5.099	3.162	2	0
L_{∞}	p_1	p_2	p_3	p_4
p_1	0	2	3	5
p_2	2	0	1	3
p_3	3	1	0	2
p_4	5	3	2	0

Distancia de Minkowski (6)

Distancia de Minkowski (7)

Distancia de Minkowski (8)

p < 1: Conjuntos no convexos

 $p \ge 1$: Conjuntos convexos

Distancia de Hamming (1)

Definición

• La distancia de Hamming se define como: $D_H(x,y) = \sum_{i=1}^{r} \rho\left(x^{(i)},y^{(i)}\right)$ y considerando la métrica discreta:

$$\rho(x,y) = \begin{cases} 0 \text{ si } x = y \\ 1 \text{ Otro caso} \end{cases}$$

- Entonces, la distancia de Hamming produce la cantidad de valores de características que no coinciden.
 - Para características binarias, la distancia de Hamming es igual a la distancia de Manhattan.
- Sin embargo, la distancia de Hamming no está asociada con una norma porque la condición $\|\alpha \cdot x\| = |\alpha| \cdot \|x\| \ \forall \alpha \in \mathbb{R}, x \in \mathbb{R}^p$ no se cumple.
- Las variantes de la distancia de Hamming usan funciones modificadas ρ para especificar similitudes entre características individuales.
 - Por ejemplo, si las características son páginas web (escala nominal), entonces ρ podría ser menor para pares de páginas con contenido similar y mayor para pares de páginas con contenido bastante diferente.

Distancia de Hamming (2)

Definición

- La distancia de Hamming se utiliza en procesamiento de señales y telecomunicaciones.
 - Contar el número de bits corruptos en la transmisión de un mensaje de una longitud determinada.
- Permite cuantificar la diferencia entre dos secuencias de símbolos.
- Es una distancia en el sentido matemático, con dos secuencias de símbolos de la misma longitud y asocia el número de posiciones donde difieren las dos secuencias.
- Para comparar secuencias de longitudes variables o cadenas de caracteres que pueden sufrir no solo sustituciones, sino también inserciones o borrados, se utiliza la distancia de Levenshtein.

• Ejemplo:

- $\alpha = (0\ 0\ 0\ 1\ 1\ 1\ 1); \beta = (1\ 1\ 0\ 1\ 0\ 1\ 1) : d_H = 1 + 1 + 0 + 0 + 1 + 0 + 0 = 3$
- La distancia entre α y β es igual a 3 porque 3 bits difieren.
- La distancia de Hamming entre (1 0 1 1 1 0 1) y (1 0 0 1 0 0 1) es 2
- La distancia de Hamming entre (2 14 3 8 96) y (2 23 3 7 96) es 3
- La distancia de Hamming entre "r a m e r" y "c a s e s" es 3