TA:	Itziar	Ochoa	de	Alaiza
	I CZICII	O CIIOG	CL C	TITALLA

Fall 2017

Sections: ADJ/ADK

Alternating Series

Alternating Series Test (AST)

If the alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} b_n$ with $b_n > 0$ satisfies

(i)

(ii)

then the series is

With the same hypothesis as above, by the Alternating Series Estimation Theorem we have

$$|R_n| \le$$

Absolute Convergence and the Ratio and Root Tests

- Define the following notions:
 - a) Absolutely convergent:

b) Conditionally convergent:

The Ratio Test

If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$

The Root Test

If $\lim_{n\to\infty} \sqrt[n]{|a_n|}$

STEPS:

- 1. Use Ratio or Root Test.
- 2. If that is inconclusive and the series is alternating, then do BOTH of the next:
 - (a) Use AST
 - (b) Check whether $\sum |a_n|$ is divergent or convergent.

If the AST shows that the series in convergent, BUT $\sum |a_n|$ is divergent then $\sum a_n$ is **conditionally convergent**. However, if $\sum |a_n|$ is convergent then $\sum a_n$ is **absolutely convergent**.

Determine whether the following series converge absolutely, converge conditionally or diverge.

$$1. \sum_{n=1}^{\infty} \frac{(-1)^n \cos(n\pi)}{n}$$

2.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n^2 + 7}$$

3.
$$\sum_{n=2}^{\infty} \frac{(-1)^{n+1} (2n)!}{5^n \, n! \, n!}$$

4.
$$\sum_{n=2}^{\infty} (-1)^n \left(\frac{n+1}{3n+5}\right)^n$$

Power Series

1. Find the radius of convergence for the following power series.

$$\sum_{n=1}^{\infty} \frac{n! x^n}{5 \cdot 11 \cdot 17 \cdot \dots \cdot (6n-1)}$$

2. Find the interval of convergence for the following power series.

$$\sum_{n=1}^{\infty} \frac{2(x-3)^n}{3^n \cdot n}$$

Representation of Functions as Power Series

$$\frac{1}{1-x} = , \text{for } |x| <$$

REMARKS:

- 1. If you integrate a series to find the power series for a particular function, remember to calculate +C.
- 2. The radius of convergence (R) doesn't change when we derivate or integrate a series. However, the interval of convergence (I) may change (i.e., you will still need to check the endpoints).

Examples: Find the power series representation of the function and determine the interval of convergence.

1.
$$f(x) = \frac{x}{9+x^2}$$

$$2. \ f(x) = \left(\frac{x}{1+4x}\right)^2$$

$$3. \ f(x) = \ln\left(\frac{1+x}{1-x}\right)$$

4.
$$f(x) = \arctan(2x)$$

Taylor and Maclaurin Series

Taylor series of the function f at a:

$$f(x) = \sum_{n=0}^{\infty}$$

$$, |x - a| < R$$

Nth-degree Taylor polynomial of f at a:

$$T_N(x) =$$

Then
$$f(x) = T_N(x) + R_N(x)$$
 and

$$|R_N(x)| \le$$

for some value z between a and x.

• How is the series called when the center is a = 0?

$$\frac{1}{1-x} =$$

$$R =$$

$$e^x =$$

$$R =$$

$$\sin(x) =$$

$$R =$$

$$\cos(x) =$$

$$R =$$

$$\arctan(x) =$$

$$R =$$

$$\ln(1+x) =$$

$$R =$$

$$(1+x)^k =$$

$$R =$$

Practice problems

1. Find the Maclaurin series of $f(x) = 9(1-x)^{-2}$ using the definition of a Maclaurin series.

2. Find the value of $f^{(8)}(0)$ given that $f(x) = \frac{1 - \cos(2x^2)}{2}$.

3. Find the value of the following limit:

$$\lim_{x \to \infty} x^2 (e^{\frac{-1}{x^2}} - 1)$$

4. Find the value of $\sum_{n=0}^{\infty} \frac{4^n}{5^n n!}$.

5. Approximate $f(x) = \sqrt{x}$ by a Taylor polynomial of degree 2 at a=9. Then use Taylor's Inequality to estimate the accuracy of the approximation when x lies in [9, 10]. You don't need to simplify your answer.

6. Give a series representation for $\int_0^1 x \arctan x \, dx$. Then write down enough terms to approximate $\int_0^1 x \arctan x \, dx$ to within $\frac{1}{100}$.