

N-Channel Enhancement Mode Power MOSFET

Description

The GT080N10K uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge. It can be used in a wide variety of applications.

General Features

V_{DS} 100V
 I_D (at V_{GS} = 10V) 65A

• $R_{DS(ON)}$ (at V_{GS} = 10V) < 8mΩ • $R_{DS(ON)}$ (at V_{GS} = 4.5V) < 9.5mΩ

100% Avalanche Tested

RoHS Compliant

Application

- Power switch
- DC/DC converters

Schematic diagram

TO-252

Ordering Information

Device	Package	Marking	Packaging		
GT080N10K	TO-252	GT080N10	2500pcs/Reel		

Absolute Maximum Ratings $T_C = 25^{\circ}C$, unless otherwise noted						
Parameter	Symbol	Value	Unit			
Drain-Source Voltage	V_{DS}	100	٧			
Continuous Drain Current	I _D	65	Α			
Pulsed Drain Current (note1)	I _{DM}	260	А			
Gate-Source Voltage	V_{GS}	±20	V			
Power Dissipation	P _D	100	W			
Single pulse avalanche energy (note2)	E _{AS}	144	mJ			
Operating Junction and Storage Temperature Range	T_J,T_stg	-55 To 150	°C			

Thermal Resistance				
Parameter	Symbol	Value	Unit	
Thermal Resistance, Junction-to-Ambient	R _{thJA}	50	°C/W	
Maximum Junction-to-Case	R _{thJC}	1.25	°C/W	

Specifications $T_J = 25^{\circ}C$,	unless other	wise noted				
Parameter	Symbol	Took Conditions	Value			Unit
Faranietei	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Static Parameters						
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	$V_{GS} = 0V, I_D = 250\mu A$	100			V
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 100V, V_{GS} = 0V$			1	μΑ
Gate-Source Leakage	I _{GSS}	V_{GS} = $\pm 20 V$			±100	nA
Gate-Source Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.0	1.7	2.5	V
Dunin Course On Besistance	Б	V _{GS} = 10V, I _D = 20A		6.2	8.0	- mΩ
Drain-Source On-Resistance	$R_{DS(on)}$	$V_{GS} = 4.5V, I_D = 20A$		7.8	9.5	
Forward Transconductance	9 _{FS}	V _{GS} = 5V, I _D = 20A		48		S
Dynamic Parameters	I.		I			
Input Capacitance	C _{iss}	$V_{GS} = 0V$, $V_{DS} = 50V$, f = 1.0MHz		2530		pF
Output Capacitance	C _{oss}			395		
Reverse Transfer Capacitance	C _{rss}			13		
Total Gate Charge	Q_g	.,		43		
Gate-Source Charge	Q_{gs}	$V_{DD} = 50V,$ $I_{D} = 20A,$		7		nC
Gate-Drain Charge	Q_{gd}	$V_{GS} = 10V$		9		
Turn-on Delay Time	$t_{d(on)}$			10		
Turn-on Rise Time	t _r	V_{DD} = 50V, I_{D} = 20A, R_{G} = 1.6 Ω		8		
Turn-off Delay Time	$t_{d(off)}$			23		ns
Turn-off Fall Time	t _f			6		
Drain-Source Body Diode Characte	eristics		•	•		
Continuous Body Diode Current	Is	T _C = 25°C			65	Α
Body Diode Voltage	V_{SD}	$T_J = 25^{\circ}C$, $I_{SD} = 20A$, $V_{GS} = 0V$			1.2	V
Reverse Recovery Charge	Qrr	I _F = 20A, V _{GS} = 0V		75		nC
Reverse Recovery Time	Trr	di/dt=100A/us		42		ns

Notes

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature
- 2. EAS condition : Tj=25°C ,VDD=50V,VGS=10V,L=0.5mH,Rg=25 Ω The table shows the minimum avalanche energy, which is 400mJ when the device is tested until failure

TEL: 0755-29961263

3. Identical low side and high side switch with identical $R_{\mbox{\scriptsize G}}$

Gate Charge Test Circuit

Switch Time Test Circuit

EAS Test Circuit

Typical Characteristics $T_J = 25^{\circ}\text{C}$, unless otherwise noted

Figure 1. Output Characteristics

Figure 3. Drain Source On Resistance

Figure 5. Capacitance

Figure 2. Transfer Characteristics

Figure 4. Gate Charge

Figure 6. Source-Drain Diode Forward

Typical Characteristics $T_J = 25^{\circ}\text{C}$, unless otherwise noted

Figure 7. Drain-Source On-Resistance

Figure 8. Safe Operation Area

Figure 9. Normalized Maximum Transient Thermal Impedance

TO-252 Package Information

COMMON DIMENSIONS

SYMBOL	mm				
	MIN	NOM	MAX		
Α	2.20	2.30	2.40		
A1	0.00	-	0.20		
A2	0.97	1.07	1.17		
b	0.68	0.78	0.90		
b3	5.20	5.33	5.50		
С	0.43	0.53	0.63		
D	5.98	6.10	6.22		
D1	5.30REF				
E	6.40	6.60	6.80		
E1	4.63	-	-		
е	2.286BSC				
Н	9.40	10.10	10.50		
L	1.38	1.50	1.75		
L1	2.90REF				
L2	0.51BSC				
L3	0.88	-	1.28		
L4	0.50	-	1.00		
L5	1.65	1.80	1.95		
θ	0°	-	8°		