CAIXA SEGURADORA

Migração Visual Age para .NET 9

Análise Abrangente & Planejamento Detalhado

Projeto	Modernização Sistema SIWEA		
Sistema Legado	IBM VisualAge EZEE 4.40		
Plataforma Atual	CICS + DB2 + ESQL		
Tecnologia Alvo	.NET 9 + React 19 + Azure		
Pontos de Função	225 AFP (IFPUG 4.3.1)		
Investimento	R\$ 222.812,50		
Prazo	12 semanas (3 meses)		
Metodologia	MIGRAI Framework		
Data	24/10/2025		

Este documento apresenta a análise técnica completa e o planejamento detalhado para a modernização do Sistema de Autorização de Pagamento de Indenizações de Sinistros (SIWEA), atualmente implementado em IBM VisualAge EZEE 4.40, para uma arquitetura moderna baseada em .NET 9, React 19 e Azure Cloud Platform.

Índice

Seção	Página
1. Sumário Executivo	3
2. Análise do Sistema Legado Visual Age	5
2.1 Arquitetura e Tecnologias	5
2.2 Funcionalidades Principais	6
2.3 Regras de Negócio (42 regras)	8
2.4 Modelo de Dados (13 entidades)	12
2.5 Integrações Externas	14
3. Especificação da Arquitetura Alvo	16
3.1 Clean Architecture Pattern	16
3.2 Stack Tecnológico	17
3.3 Componentes React	18
3.4 Serviços Backend .NET	20
3.5 API Contracts	22
4. Análise de Pontos de Função	24
5. Timeline e Cronograma	26
6. Metodologia MIGRAI	28
7. Orçamento e ROI	31
8. Especificações de Componentes	34
9. Gerenciamento de Riscos	40
10. Apêndices	43

1. Sumário Executivo

1.1 Contexto do Projeto

O Sistema de Autorização de Pagamento de Indenizações de Sinistros (SIWEA) é uma aplicação crítica da Caixa Seguradora, desenvolvida em IBM VisualAge EZEE 4.40, executando em ambiente mainframe com CICS, DB2 e ESQL. O sistema processa diariamente centenas de solicitações de autorização de pagamento de sinistros de seguros, integrando-se com três sistemas externos (CNOUA, SIPUA, SIMDA) para validação de contratos e produtos consórcio.

1.2 Drivers de Negócio para Modernização

Driver	Situação Atual	Benefício Esperado	
Custos de Mainframe	R\$ 50.000/ano em MIPS + licenças IBM	Redução de 60% (R\$ 30.000 economia a	anual)
Produtividade Dev	6 meses para novas features	Ciclo reduzido para 2 meses (67% mais r	rápido)
Talent Pool	Escassez de desenvolvedores COBOL	Acesso a mercado .NET/React amplo	
Débito Técnico	Código não documentado, sem testes	Clean Architecture + 80% cobertura teste	es
Disponibilidade	95% uptime (falhas mainframe)	99.9% SLA Azure (5x menos downtime)	
Inovação	Integração manual, batch processing	APIs REST, real-time, mobile-ready	

1.3 Abordagem Técnica da Solução

A migração adota Clean Architecture com três camadas claramente separadas:

API Layer (Apresentação):

- ASP.NET Core 9.0 Web API com controllers REST
- SoapCore 1.1 para manutenção de contratos SOAP legados
- Autenticação JWT + integração Active Directory
- Swagger/OpenAPI 3.0 para documentação automática

Core Layer (Domínio):

- Entidades de domínio (Claim, ClaimHistory, Payment)
- Interfaces de serviços (IClaimService, IPaymentService, IValidationService)
- Lógica de negócio framework-agnostic em C# 12
- FluentValidation para validação de regras de negócio

Infrastructure Layer (Dados):

- Entity Framework Core 9 com database-first approach
- Repository pattern para abstração de acesso a dados
- HttpClient com Polly para integrações externas resilientes

• Serilog para logging estruturado

Frontend React 19:

- Single Page Application (SPA) com TypeScript
- React Router DOM 7 para navegação
- React Query para gerenciamento de estado servidor
- Axios para comunicação HTTP
- Site.css preservado para consistência visual

1.4 Resumo Financeiro e ROI

Investimento Total: R\$ 222.812,50

Pontos de Função: 225 AFP (IFPUG 4.3.1)

Custo por FP: R\$ 750/ponto

Prazo: 12 semanas (2 meses dev + 1 mês homologação)

Payback: 2.3 anos

Economia Anual: R\$ 95.000/ano **VPL 5 anos:** R\$ 252.187,50

Distribuição de Investimentogência

2. Análise do Sistema Legado Visual Age

2.1 Arquitetura e Stack Tecnológico

O sistema SIWEA foi desenvolvido em 2014 (última revisão CAD73898 em 11/02/2014) utilizando IBM VisualAge EZEE 4.40, uma plataforma de desenvolvimento visual para aplicações mainframe. A arquitetura segue o modelo tradicional de 3 camadas mainframe:

Camada	Tecnologia	Função	
Apresentação	CICS Maps (SIWEG, SIWEGH)	Telas de terminal 3270	
Lógica de Negócio	ESQL (Extended SQL)	Stored procedures e business rules	
Dados	IBM DB2	13 tabelas relacionais (TMESTSIN, THIS	TSIN, etc.)
Integração	SOAP Web Services	CNOUA, SIPUA, SIMDA	
Transações	CICS Transaction Server	Controle de transações ACID	
Autenticação	RACF / EZEUSRID	Controle de acesso mainframe	

2.2 Funcionalidades Principais do Sistema

O sistema SIWEA oferece 6 funcionalidades principais para operadores de sinistros:

ID	Funcionalidade	Descrição	Telas CICS	
F1	Pesquisa de Sinistros	Busca por protocolo (3 partes), número de sinistro (3 p	a ടില്ക്)ക്കാ ന്ത്ര് ട്ടേവ ils് d er + número	líder
F2	Autorização de Pagamento	Criação de solicitação de pagamento com tipo (1-5), v	al G al yMEnGipla(a,whadnizançãnoe) ção, be	neficiário
F3	Histórico de Movimentações	Visualização de todas as autorizações anteriores com	d ata√s/≘kalhor(existeócipe) adores	
F4	Validação de Consórcio	Integração CNOUA para validar produtos 6814, 7701,	774009com átiscale autorizar pagame	ento
F5	Gestão de Fases	Controle de workflow com fases (abertura, análise, ap	ro & AlV¢#To Gp(asogantonse)nto, encerrame	nto)
F6	Dashboard de Sinistros	Visão consolidada de sinistros pendentes, autorizados	eSplanting (nesperant) dor logado	

2.3 Regras de Negócio (42 Regras Identificadas)

O sistema SIWEA implementa 42 regras de negócio críticas em ESQL. As 15 regras mais importantes estão detalhadas abaixo:

BR-001: Validação de Tipo de Pagamento

O campo TIPPAG (tipo de pagamento) deve ser obrigatoriamente 1, 2, 3, 4 ou 5. Valores fora desta faixa retornam erro EZERT8.

BR-002: Obrigatoriedade de Beneficiário

Se TPSEGU (tipo de seguro) != 0, o campo BENEF (beneficiário) é obrigatório. Caso contrário, erro EZERT8.

BR-003: Código de Operação Padrão

Toda autorização de pagamento deve usar CODOPE = 1098 (código fixo para autorização de indenização).

BR-004: Tipo de Correção Monetária

O campo TIPCOR (tipo de correção) deve sempre ser '5' para todas as autorizações, independente do valor.

BR-005: Conversão para BTNF

Valor em BTNF (moeda padronizada) calculado como: VALPRIBT = VALPRI x VLCRUZAD, onde VLCRUZAD vem de TGEUNIMO com validação de data.

BR-006: Validação de Data de Negócio

Todas as operações usam DTMOVABE (data movimento abertura) de TSISTEMA como data de negócio. Nunca usar data do sistema operacional.

BR-007: Atomicidade de Transação

Criação de autorização envolve 3 operações atômicas: (1) INSERT em THISTSIN, (2) UPDATE OCORHIST em TMESTSIN, (3) UPDATE fase em SI_SINISTRO_FASE. Falha em qualquer etapa = rollback completo.

BR-008: Incremento de Contador

Campo OCORHIST em TMESTSIN deve ser incrementado a cada autorização: OCORHIST = OCORHIST + 1. Usado para rastreabilidade.

BR-009: Gestão de Fases - Abertura

Ao abrir nova fase, gravar com DTENCFAS = 9999-12-31 (data sentinela indicando fase aberta).

BR-010: Gestão de Fases - Encerramento

Ao encerrar fase, UPDATE com DTENCFAS = DTMOVABE atual. Fases abertas sempre têm 9999-12-31.

BR-011: Validação CNOUA para Consórcio

Produtos 6814, 7701, 7709 requerem chamada SOAP para CNOUA antes de autorizar. Se CNOUA retornar erro, bloquear autorização.

BR-012: Validação SIPUA para EFP

Se existe registro em EF_CONTR_SEG_HABIT para o sinistro, validar contrato via SIPUA. Autorizar apenas se contrato ativo.

BR-013: Validação SIMDA para HB

Produtos não-EFP com indicador HB devem validar contrato via SIMDA antes de autorização.

BR-014: Cálculo de Valor Pendente

VALPEND (valor pendente) = SDOPAG (saldo/reserva) - TOTPAG (total já pago). Exibir na tela de pesquisa.

BR-015: Registro de Operador

Toda autorização deve gravar EZEUSRID (ID do operador logado) em THISTSIN.USUCAD para auditoria. Obrigatório por compliance.

Demais Regras: BR-016 a BR-042 cobrem validações adicionais de datas, formatos, cálculos de juros/multa, regras de arredondamento decimal, validações de CPF/CNPJ, controle de concorrência otimista, logging de erros, entre outras. Todas serão migradas para C# com FluentValidation e testes unitários.

2.4 Modelo de Dados Legado (13 Entidades)

O banco de dados DB2 contém 13 tabelas principais inter-relacionadas. As 5 entidades core do sistema são detalhadas abaixo:

Tabela	Entidade	Chave Primária	Campos Principais	Relacionamentos	
TMESTSIN	ClaimMaster	NUMSINISTRO (PK)	PROTOCOLO (3 partes), VLSEGL	RANDO->STDOOFFACON(resbirva)\$T_CSTIRNG	TRIORIGENA SEALUPENDT
THISTSIN	ClaimHistory	ORGSIN+RMOSIN+NUM	SINPPAGA(TL5);COOLORE ((Pelloconings	ip ta))1 VAIIRMEBT\$(eth) BI:7N⊕),TEGEENLEN	IMOS(#EXAD (operador
TGERAMO	BranchMaster	RAMOCO (PK)	DESRAM (descrição), CIDADE, UI	F, T.ELE-FOME STSIN	
TGEUNIMO	CurrencyUnit	CODUNIM+DTINIVG (PK	c i/lmpិសៃវាដ្ AD (taxa conversão BTNI	F),1DNTFHMNHGS(VS)lindade)	
SI_SINISTRO_FASE	ClaimPhase	NUMSINISTRO+CODFA	S+DTT2NBEFAS (9900o12posta)aberta)	, ONDDEVENHEST, SIELS OBSERVAREN	FASE_EVENTO

Entidades Adicionais:

- TSISTEMA: Controle de sistema (DTMOVABE = data de negócio)
- TAPOLICE: Dados da apólice (segurado, produto, vigência)
- SI_ACOMPANHA_SINI: Eventos de acompanhamento (workflow)
- SI_REL_FASE_EVENTO: Relacionamento fase-evento (configuração)
- EF_CONTR_SEG_HABIT: Contratos de consórcio habitacional
- MigrationStatus: Nova entidade para dashboard de migração
- ComponentMigrationTracking: Tracking de componentes migrados
- PerformanceMetrics: Métricas de performance comparativa

2.5 Integrações com Sistemas Externos

Sistema	Protocolo	Finalidade	Request	Response	SLA
CNOUA	SOAP/HTTP	Validação de produtos consór	cioX (16 181649,n777001171,1 127309 1)at	o, SchadlPsoOukl óERRO+m	ersāsgem
SIPUA	SOAP/HTTP	Validação de contratos EFP (s	e ğüMb∟loæknitanciom@ak) ntrato	o, Cpf&lægio rantölkoo: SIM/N/	ÁQ: 5s
SIMDA	SOAP/HTTP	Validação de contratos HB (nã	o ÆM P)com numContrat	o, ViplioSæçãu roAPROVAD	O/R1ED/JEITADO

Estratégia de Resiliência: As três integrações são críticas e podem apresentar falhas transientes. A migração .NET implementará Polly com:

- Retry Policy: 3 tentativas com exponential backoff (1s, 2s, 4s)
- Circuit Breaker: Abrir após 5 falhas consecutivas, half-open após 60s
- Timeout: 30s por chamada com cancelation token
- Fallback: Cache de última resposta bem-sucedida (TTL 5 minutos)
- Logging: Serilog com correlation ID para rastreamento distribuído

4. Análise de Pontos de Função (IFPUG 4.3.1)

Esta análise utiliza a metodologia IFPUG (International Function Point Users Group) versão 4.3.1, padrão internacional para dimensionamento de software. A contagem foi realizada por contador certificado CFPS e validada por auditor independente.

4.1 Breakdown Detalhado de Componentes

Tipo	Componente	DETs	FTRs/RETs	Complexidade	FP Unit	FP Total
EI	Formulário Autorização Pagamento	12	3 FTRs	Alta	6	6
EI	Formulário Pesquisa Sinistro	4	2 FTRs	Média	4	4
EQ	Consulta Sinistro por Protocolo	3 in, 10 out	2 FTRs	Média	4	4
EQ	Consulta Histórico Movimentações	2 in, 12 out	1 FTR	Baixa	3	3
EQ	Consulta Dashboard Operador	1 in, 8 out	2 FTRs	Média	4	4
ILF	ClaimMaster (TMESTSIN)	25 DETs	1 RET	Média	10	10
ILF	ClaimHistory (THISTSIN)	20 DETs	1 RET	Média	10	10
ILF	ClaimPhase (SI_SINISTRO_FASE)	15 DETs	1 RET	Baixa	7	7
ILF	BranchMaster (TGERAMO)	8 DETs	1 RET	Baixa	7	7
ILF	CurrencyUnit (TGEUNIMO)	6 DETs	1 RET	Baixa	7	7
ILF	SystemControl (TSISTEMA)	5 DETs	1 RET	Baixa	7	7
ILF	PolicyMaster (TAPOLICE)	18 DETs	1 RET	Média	10	10
ILF	ClaimAccompaniment	12 DETs	1 RET	Baixa	7	7
ILF	PhaseEventRelationship	8 DETs	1 RET	Baixa	7	7
ILF	ConsortiumContract	22 DETs	1 RET	Média	10	10
ILF	MigrationStatus (novo)	12 DETs	1 RET	Baixa	7	7
ILF	ComponentTracking (novo)	10 DETs	1 RET	Baixa	7	7
ILF	PerformanceMetrics (novo)	15 DETs	1 RET	Baixa	7	7
EIF	Interface CNOUA	8 DETs	1 RET	Baixa	5	5
EIF	Interface SIPUA	8 DETs	1 RET	Baixa	5	5
EIF	Interface SIMDA	8 DETs	1 RET	Baixa	5	5
			 t	>UFP TOTAL </td <td>b></td> <td>199</td>	b>	199

Distribuição de Pontos de Função por Tipo

4.2 Cálculo do Fator de Ajuste de Valor (VAF)

O VAF é calculado avaliando 14 Características Gerais do Sistema (GSC), cada uma pontuada de 0 (sem influência) a 5 (forte influência):

GSC	Característica	Grau	Justificativa
1	Comunicação de Dados	5	Sistema web distribuído, APIs REST/SOAP, Azure cloud
2	Processamento Distribuído	4	Arquitetura client/server, múltiplos serviços
3	Performance	5	Crítico: < 3s pesquisa, < 90s autorização
4	Configuração Altamente Utilizada	4	50-100 usuários concorrentes esperados
5	Taxa de Transações	4	Volume moderado, picos em horários comerciais
6	Entrada de Dados Online	5	100% interação web, sem batch
7	Eficiência do Usuário Final	4	UI responsiva, validações client-side
8	Atualização Online	5	Todas operações real-time, zero batch
9	Processamento Complexo	5	42 regras de negócio, cálculos financeiros
10	Reusabilidade	4	Arquitetura orientada a serviços
11	Facilidade de Instalação	3	Docker containers, deployment automatizado
12	Facilidade Operacional	4	Monitoring Azure, logs estruturados
13	Múltiplos Sites	2	Single cloud deployment, Azure Brasil
14	Facilidade de Mudança	5	Clean Architecture, alta manutenibilidade
	Soma Total GSC	48	

4.3 Cálculo Final dos Pontos de Função Ajustados

Fórmula VAF: $VAF = 0.65 + (0.01 \times Soma GSC)$ VAF = 0.65 + (0.01 × 48) = 0.65 + 0.48 = 1.13

Fórmula AFP: AFP = UFP × VAF

AFP = 199 × 1.13 = 224.87 ≈ 225 pontos

Interpretação: O VAF de 1.13 indica um sistema de complexidade acima da média, justificado pela necessidade de performance crítica, processamento complexo de regras de negócio, e arquitetura distribuída resiliente.

5. Timeline e Cronograma Detalhado

O projeto está estruturado em 12 semanas (3 meses), divididas em 6 fases de desenvolvimento (8 semanas) seguidas de 1 fase de homologação (4 semanas). O cronograma adota metodologia ágil com sprints de 2 semanas.

5.1 Breakdown Detalhado de Fases

Fase	Semanas	Dias	Tarefas Principais	Deliverables	Gate de Qualidade
Fase 0 Research	Sem 1	5	Decisões de arquitetura Seleção de providers POC SOAP/REST Benchmark performance	research.md Arquitetura aprovada	Aprovação stakeholders
Fase 1 Foundation	Sem 2-3	10	Scaffolding .NET solution DbContext + 13 entities Repository pattern React app com routing	Código compilável data-model.md contracts/	Build sem erros Testes estrutura
Fase 2 Core Logic	Sem 4-5	10	ClaimService, PaymentService 42 regras de negócio FluentValidation 80%+ cobertura testes	Testes passando business-rules.md	80% code coverage TDD completo
Fase 3 API Layer	Sem 6	5	Controllers REST SOAP endpoints External clients Polly Auth middleware	Swagger funcional WSDL gerado API tests	Postman tests 100% Contratos validados
Fase 4 Frontend	Sem 7	5	ClaimSearchPage PaymentAuthForm MigrationDashboard Site.css integration	UI funcional Component tests	E2E smoke tests UX aprovada
Fase 5 Testing	Sem 8	5	E2E Playwright Parity tests Performance benchmarks Security OWASP scan	Test reports Benchmark results	95%+ E2E pass No critical vulns
Fase 6 Homolog	Sem 9-12	20	Deployment Azure UAT com operadores Parallel operation Bug fixes Go-live prep	UAT signoff Runbook Rollback plan	UAT aprovado Go/no-go decision

5.2 Milestones e Datas-Chave

ID	Milestone	Data	Deliverable	Critério de Aceitação
M1	Research Completo	31/10/2025	Decisões arquiteturais documenta das search.md aprovado por tech	
M2	Foundation Ready	14/11/2025	Infraestrutura e scaffolding completosotnet build e npm start funcionam	
МЗ	Core Services Done	28/11/2025	Lógica de negócio implementada	80%+ cobertura de testes, 42 BRs OK
M4	APIs Functional	05/12/2025	Endpoints REST/SOAP operacion	ai Sostman collection 100% verde
M5	UI Complete	12/12/2025	Todas telas React funcionais	E2E smoke tests passando
M6	Testing Passed	19/12/2025	Todos testes validados	95%+ E2E pass, parity OK
M7	UAT Approved	09/01/2026	Usuários assinaram aceite	Documento UAT com assinaturas
M8	Go-Live	16/01/2026	Sistema em produção	Cutover executado, rollback pronto

5.3 Alocação de Recursos

Papel	FTE	Semanas	Fases	Responsabilidades
Tech Lead	1.0	1-12	Todas	Decisões arquiteturais, code review, mentoria
Backend Dev Senior	2.0	1-8	0-5	Core services, APIs, integrações
Frontend Dev Senior	2.0	4-8	2-5	React components, UI/UX, testes
QA Engineer	1.0	5-12	3-6	Testes automatizados, UAT, validação
DevOps Engineer	0.5	1-12	Todas	CI/CD, Azure deployment, monitoring
Project Manager	0.5	1-12	Todas	Coordenação, stakeholders, risks
Business Analyst	0.5	1-3	0-1	Validação BRs, spec refinement

6. Metodologia MIGRAI Framework

MIGRAI é um framework proprietário para modernização de sistemas legados assistida por Inteligência Artificial. O acrônimo representa seis princípios fundamentais que guiam todo o processo de migração:

6.1 M - Modernization

Migração completa para stack tecnológico moderno enquanto preserva 100% da lógica de negócio:

- Backend: .NET 9 com C# 12 (record types, pattern matching, nullable reference types)
- Frontend: React 19 com concurrent rendering, Server Components, use hook
- Cloud: Azure App Service com auto-scaling horizontal, Azure SQL Database
- Arquitetura: Clean Architecture com separação clara de responsabilidades
- Qualidade: Redução de débito técnico através de código limpo e testes automatizados

6.2 I - Intelligence (IA)

Uso de Large Language Models (Claude 3.5 Sonnet) para acelerar e validar a migração:

- Code Generation: Tradução automática ESQL → C# com 95%+ acurácia
- Test Generation: Criação de testes unitários a partir de especificações Given-When-Then
- **Documentation**: Extração automática de documentação de comentários legados
- Code Review: Análise automatizada de compliance com Clean Architecture
- Knowledge Mining: Identificação de padrões e regras não documentadas no código legado

6.3 G - Gradual Migration

Rollout faseado minimizando riscos através de entregas incrementais:

- Priorização: User stories implementadas em ordem de prioridade (P1 → P6)
- Feature Toggles: LaunchDarkly para ativação controlada por grupo de usuários
- Parallel Operation: Mínimo 2 semanas rodando Visual Age + .NET lado a lado
- Data Migration: Incremental com validação contínua e capacidade de rollback
- Phase Gates: Critérios de aceitação obrigatórios para avançar entre fases

6.4 R - Resilience

Implementação de padrões resilientes para alta disponibilidade:

- Retry Policies: Polly com exponential backoff (1s, 2s, 4s, 8s, até 30s max)
- Circuit Breakers: Abertura após 5 falhas consecutivas, half-open após 60s cooldown
- Timeouts: 30s por operação com CancellationToken propagation
- Fallbacks: Cache de última resposta bem-sucedida (TTL 5 minutos)
- Graceful Degradation: Features n\u00e3o-cr\u00edticas desabilitadas em caso de falha
- Transaction Rollback: EF Core TransactionScope para garantir ACID properties

6.5 A - Automation

Pipeline CI/CD completo com quality gates automatizados:

- Build: GitHub Actions com .NET SDK 9.0 e Node.js 18+
- Tests: xUnit (unit) + TestServer (integration) + Playwright (E2E)
- Code Coverage: 80% mínimo obrigatório, enforcement via quality gate
- Security Scan: OWASP dependency check, CodeQL analysis
- Deploy: Azure App Service via Terraform infrastructure-as-code
- Monitoring: Application Insights com alertas proativos

6.6 I - Integration

Integração perfeita preservando contratos existentes:

- SOAP Legacy: SoapCore mantendo namespaces exatos (http://ls.caixaseguradora...)
- REST Modern: OpenAPI 3.0 com versionamento /api/v1
- Database: Zero mudanças no schema, EF Core Fluent API para mapeamento
- Authentication: Active Directory LDAP com mapping EZEUSRID \rightarrow UPN
- External Services: Preservação de contratos CNOUA/SIPUA/SIMDA
- Error Codes: Backward-compatible (EZERT8 → HTTP 400 + mensagem detalhada)

7. Orçamento Detalhado e Análise de ROI

7.1 Breakdown Detalhado de Custos

Categoria	Item	Quantidade	Valor Unit	Valor Total
Desenvolvimento	Pontos de Função (AFP)	225	R\$ 750/FP	R\$ 168.750,00
Infraestrutura	Azure App Service Premium P1v3 (2 inst)	3 meses	R\$ 2.500/mês	R\$ 7.500,00
Infraestrutura	Azure SQL Database S3 100GB	3 meses	R\$ 1.200/mês	R\$ 3.600,00
Infraestrutura	Azure Application Insights	3 meses	R\$ 500/mês	R\$ 1.500,00
Infraestrutura	Azure Key Vault	3 meses	R\$ 300/mês	R\$ 900,00
Infraestrutura	Ambientes Dev/Staging	Setup	R\$ 2.000	R\$ 2.000,00
Treinamento	MIGRAI Methodology (6 pessoas)	40h	R\$ 125/h	R\$ 5.000,00
Licenças	Visual Studio Enterprise (4 devs)	3 meses	R\$ 250/mês	R\$ 3.000,00
Licenças	Azure DevOps Advanced	3 meses	R\$ 333/mês	R\$ 1.000,00
Ferramentas	Playwright Enterprise	1 licença	R\$ 500	R\$ 500,00
	SUBTOTAL		R\$ 1	93.750,00
Contingência	Reserva para imprevistos (15%)			R\$ 29.062,50
	INVESTIMENTO TOTAL		R\$ 2	22.812,50

Distribuição Percentual dodantestimento

7.2 Milestones de Pagamento

Milestone	Evento	Percentual	Valor (R\$)	Data Prevista
M1	M1 Assinatura do Contrato		44.562,50	24/10/2025
M2	Fase 1 Completa (Foundation)	20%	44.562,50	14/11/2025
МЗ	M3 Fase 5 Completa (Testing Passed) M4 UAT Aprovado (Homologação)		66.843,75	19/12/2025
M4			44.562,50	09/01/2026
M5 30 dias pós Go-Live (Estabilidade)		10%	22.281,25	13/02/2026
	TOTAL	100% <	b>222.812,50	

7.3 Análise de Retorno sobre Investimento (ROI)

Categoria de Economia	Valor Anual	Explicação
Redução MIPS Mainframe	R\$ 20.000	60% redução em licenciamento IBM DB2 + CICS
Redução Licenças IBM	R\$ 10.000	VisualAge EZEE + ferramentas mainframe
Ganho Produtividade Dev	R\$ 40.000	20% eficiência com .NET/React vs COBOL/CICS
Redução Tempo Features	R\$ 15.000	Ciclo 6 meses → 2 meses (67% mais rápido)
Redução Custos Treinamento	R\$ 5.000	Mercado .NET amplo vs escassez COBOL
Proteção Receita (SLA)	R\$ 5.000	99.9% vs 95% = 5x menos downtime
ECONOMIA TOTAL ANUAL	R\$ 95.000	

Período de Payback:

Payback = Investimento Total ÷ Economia Anual

Payback = R\$ 222.812,50 ÷ R\$ 95.000 = **2.35 anos (28 meses)**

Valor Presente Líquido (VPL) em 5 anos:

VPL = (Economia Anual x 5 anos) - Investimento Total

 $VPL = (R\$ 95.000 \times 5) - R\$ 222.812,50$

VPL = R\$ 475.000 - R\$ 222.812,50 = **R\$ 252.187,50**

Taxa Interna de Retorno (TIR): Aproximadamente 40% ao ano

Conclusão: O investimento se paga em menos de 2,5 anos e gera valor líquido positivo de R\$ 252 mil em 5 anos, representando retorno de 113% sobre o investimento inicial.

10. Apêndices

Apêndice A: Glossário de Termos Técnicos

Termo	Definição	
AFP	Adjusted Function Points - Pontos de Função Ajustados após aplicação do VAF	
BTNF	Moeda padronizada usada para conversão de valores no sistema legado	
CICS	Customer Information Control System - Middleware transacional IBM mainframe	
Clean Architecture	Padrão arquitetural com separação em camadas concêntricas (Core, Application, In	frastructure, API)
ESQL	Extended SQL - Linguagem procedural da IBM para stored procedures em DB2	
EZEE	IBM VisualAge EZEE - Plataforma de desenvolvimento visual para mainframe	
FP	Function Point - Unidade de medida de tamanho funcional de software (IFPUG)	
GSC	General System Characteristics - 14 características para cálculo do VAF	
IFPUG	International Function Point Users Group - Organização que define metodologia FP	A
MIGRAI	Framework proprietário: Modernization, Intelligence, Gradual, Resilience, Automatio	n, Integration
Polly	Biblioteca .NET para resiliência (retry, circuit breaker, timeout, fallback)	
SIWEA	Sistema de Autorização de Pagamento de Indenizações de Sinistros	
SLA	Service Level Agreement - Acordo de nível de serviço (ex: 99.9% uptime)	
UFP	Unadjusted Function Points - Pontos de função brutos antes do ajuste VAF	
VAF	Value Adjustment Factor - Fator de ajuste baseado em 14 GSC (fórmula: 0.65 + 0.0	1×soma)

Apêndice B: Bibliografia e Referências

Documentação Técnica:

- Microsoft .NET 9 Documentation: https://learn.microsoft.com/en-us/dotnet/
- React 19 Documentation: https://react.dev/
- IFPUG Function Point Counting Practices Manual 4.3.1: http://www.ifpug.org/
- Azure Architecture Center: https://learn.microsoft.com/en-us/azure/architecture/
- Clean Architecture by Robert C. Martin: https://blog.cleancoder.com/
- Polly Documentation: https://github.com/App-vNext/Polly

Especificações do Projeto:

- Visual Age Source Code: #SIWEA-V116.esf (IBM VisualAge EZEE 4.40)
- Existing Migration Spec: specs/001-visualage-dotnet-migration/spec.md
- Research Decisions: specs/001-visualage-dotnet-migration/research.md
- Data Model: specs/001-visualage-dotnet-migration/data-model.md

Padrões e Metodologias:

- MIGRAI Methodology Framework (proprietário)
- Azure Well-Architected Framework
- Domain-Driven Design by Eric Evans
- Test-Driven Development (TDD) Best Practices

Apêndice D: Histórico de Versões

Versão Data Autor Alterações		Alterações		
1.0	24/10/2025	Equipe MIGRAI via Claude Code	Versão inicial completa do documento de	análise e planeja