

Trabajo Práctico Anual "Sistema de Gestión Energética"

Grupo: 1 Integrantes:

- Jonathan Strelczuk 116.565-3
- Mauricio Rocha 158.090-5
- Guido Dicomo 121305-2
- Flavia De Rosa 158.739-0

Fecha de entrega: 24/04/2018

Profesor: Martin Aguero

Ayudante a cargo: Martin Aguero

Repositorio: https://github.com/jstrelczuk/dds-tp-2018-grupo-01.git

Branch: Master

Commit ID: 5e1e31b (ultimo commit)

Diseño de Sistemas - SGE - Grupo 1

DISENO DE SISTEMAS	0
Registro de cambios	1
Tabla de decisión grupal, sobre el diseño	2
Diagrama de casos de uso	3
Diagrama de arquitectura	5
Diagrama de clases inicial:	6
Tabla de Requerimientos no funcionales:	7
4.1 Observables en tiempo de ejecución	7
4.2 Relacionadas con la evolución del sistema	7

Trabajo Práctico Anual "Sistema de Gestión Energética"

Registro de cambios

Fecha	Modificaciones
25/04/2018	Se agregó el Actor ENRE al Diagrama de casos de uso, y como contexto para los mismos, SGE
25/04/2018	Se agregó Cliente / Servidor al Diagrama de Arquitectura.

Tabla de decisión grupal, sobre el diseño

FECHA	DECISIÓN	VENTAJA	DESVENTAJA	ALTERNATIVA
20/03/2018	Utilizar ASP.NET, con Visual Studio	Conocimiento y experiencia por la mayoría		
27/03/2018	Utilizar draw.io para el diseño de los diagramas	Facilidad de uso		
27/03/2018	Utilizar GitHub para control de versiones	Facilidad, portabilidad y conocimiento de la mayoría		
27/03/2018	Implementación de un modelo MVC	Mantenibilidad y fácil codificación		

1. Diagrama de casos de uso

Notas:

Se tiene en cuenta que el cliente ya está autenticado. Se tiene en cuenta que el Administrador ya está autenticado.

2. Diagrama de arquitectura

Proponemos un modelo de 3 capas:

3. Diagrama de clases inicial:

Notas:

Para la relación entre el Cliente y la Categoría elegimos una asociación, porque un cliente sólo estará relacionado a una categoría a la vez.

Para la relación entre Cliente y Dispositivo, elegimos una agregación, porque entendemos que los Dispositivos ya existen solo el cliente los agrega a su lista.

4. Tabla de Requerimientos no funcionales:

Consideramos dividir los requerimientos en 2 categorías:

4.1 Observables en tiempo de ejecución

REQ	Descripción	SGE	P(*)
Eficiencia	Capacidad para hacer un buen uso de los recursos disponibles.	El sistema se basa en el concepto de eficiencia energética , el cual implica el uso de la energía de manera consciente, sin afectar la calidad de vida de las personas. En el largo plazo, <u>disminuirán los cortes de suministro eléctrico</u> y también el <u>importe a abonar</u> en las facturas de los clientes por será <u>menor por reducción de consumo</u> .	1
Usabilidad	Facilidad de uso (interfaz con el usuario)	Los usuarios, deben poder interactuar con el sistema, de manera fácil y rápida	1
Seguridad	Grado de protección de los datos	Se asegurará la confidencialidad y protección de los datos de los usuarios.	2

(*) Prioridad

4.2 Relacionadas con la evolución del sistema

REQ	Descripción	SGE	P(*)
Mantenibilidad	Facilidad en adaptar nuevas funcionalidades, cambios y corrección de errores no detectados en etapas anteriores	El sistema deberá ser flexible para adaptarse a las modificaciones que surgieran de los nuevos requerimientos, de manera efectiva.	2
Compresibilidad	Grado de un sistema en ser probado en determinado contexto	El sistema deberá funcionar dentro del dominio planteado.	2
Expansibilidad	Capacidad del sistema de crecer en cuanto a funcionalidades	Es un sistema iterativo por etapas, las cuales se irán agregando nuevas funcionalidades, para cumplir con el objetivo de eficiencia energética.	2
Escalabilidad	Capacidad del sistema en manejar una creciente carga de trabajo	Deberá soportar una demanda de trabajo creciente en el tiempo, determinada por la cantidad de dispositivos que posea cada cliente.	1
Disponibilidad	Grado en el que sistema se encuentra operable en determinado momento	El sistema estará disponible siempre que los usuarios lo necesiten.	2