Problem Set 2 MATH 20700

2 Eigenvalues and Eigenvectors

From Treil (2017).

Chapter 4

- 10/11: **1.1.** True or false:
 - a) Every linear operator in an n-dimensional vector space has n distinct eigenvalues.
 - b) If a matrix has one eigenvector, it has infinitely many eigenvectors.
 - c) There exists a square real matrix with no real eigenvalues.
 - d) There exists a square matrix with no (complex) eigenvectors.
 - e) Similar matrices always have the same eigenvalues.
 - f) Similar matrices always have the same eigenvectors.
 - g) A non-zero sum of two eigenvectors of a matrix A is always an eigenvector.
 - h) A non-zero sum of two eigenvectors of a matrix A corresponding to the same eigenvalue λ is always an eigenvectors.
 - 1.3. Compute eigenvalues and eigenvectors of the rotation matrix

$$\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

Note that the eigenvalues (and eigenvectors) do not need to be real.

- 1.5. Prove that eigenvalues (counting multiplicities) of a triangular matrix coincide with its diagonal entries.
- **1.6.** An operator A is called **nilpotent** if $A^k = \mathbf{0}$ for some k. Prove that if A is nilpotent, then $\sigma(A) = \{0\}$ (i.e., that 0 is the only eigenvalue of A).
- 1.7. Show that the characteristic polynomial of a block triangular matrix

$$\begin{pmatrix} A & * \\ \mathbf{0} & B \end{pmatrix}$$

where A and B are square matrices coincides with $\det(A - \lambda I) \det(B - \lambda I)$. (Hint: Use Exercise 3.11 from Chapter 3.)

1.8. Let $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be a basis in a vector space V. Assume also that the first k vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ of the basis are eigenvectors of an operator A, corresponding to an eigenvalue λ (i.e., that $A\mathbf{v}_j = \lambda \mathbf{v}_j$, $j = 1, \ldots, k$). Show that in this basis, the matrix of the operator A has block triangular form

$$\begin{pmatrix} \lambda I_k & * \\ \mathbf{0} & B \end{pmatrix}$$

where I_k is the $k \times k$ identity matrix and B is some $(n-k) \times (n-k)$ matrix.

- **1.10.** Prove that the determinant of a matrix A is the product of its eigenvalues (counting multiplicities). (Hint: First show that $\det(A \lambda I) = (\lambda_1 \lambda) \cdots (\lambda_n \lambda)$, where $\lambda_1, \ldots, \lambda_n$ are eigenvalues (counting multiplicities). Then compare the free terms (terms without λ) or plug in $\lambda = 0$ to get the conclusion.)
- 1.11. Prove that the trace of a matrix equals the sum of its eigenvalues in three steps. First, compute the coefficient of λ^{n-1} in the right side of the equality

$$\det(A - \lambda I) = (\lambda_1 - \lambda) \cdots (\lambda_n - \lambda)$$

Then show that $\det(A - \lambda I)$ can be represented as

$$\det(A - \lambda I) = (a_{1,1} - \lambda)(a_{2,2} - \lambda) \cdots (a_{n,n} - \lambda) + q(\lambda)$$

where $q(\lambda)$ is a polynomial of degree at most n-2. And finally, compare the coefficients of λ^{n-1} to get the conclusion.

Problem Set 2 MATH 20700

- **2.1.** Let A be an $n \times n$ matrix. True or false (justify your conclusions):
 - a) A^T has the same eigenvalues as A.
 - b) A^T has the same eigenvectors as A.
 - c) If A is diagonalizable, then so is A^T .
- **2.2.** Let A be a square matrix with real entries, and let λ be its complex eigenvalue. Suppose $\mathbf{v} = (v_1, \dots, v_n)^T$ is a corresponding eigenvector, i.e., $A\mathbf{v} = \lambda \mathbf{v}$. Prove that the $\bar{\lambda}$ is an eigenvalue of A and $A\bar{\mathbf{v}} = \bar{\lambda}\bar{\mathbf{v}}$, where $\bar{\mathbf{v}} = (\bar{v}_1, \dots, \bar{v}_n)^T$ is the complex conjugate of the vector \mathbf{v} .
- **2.3.** Let

$$A = \begin{pmatrix} 4 & 3 \\ 1 & 2 \end{pmatrix}$$

Find A^{2004} by diagonalizing A.

- **2.4.** Construct a matrix A with eigenvalues 1 and 3 and corresponding eigenvectors $(1,2)^T$ and $(1,1)^T$. Is such a matrix unique?
- **2.6.** Consider the matrix

$$A = \begin{pmatrix} 2 & 6 & -6 \\ 0 & 5 & -2 \\ 0 & 0 & 4 \end{pmatrix}$$

- a) Find its eigenvalues. Is it possible to find the eigenvalues without computing?
- b) Is this matrix diagonalizable? Find out without computing anything.
- c) If the matrix is diagonalizable, diagonalize it.
- **2.8.** Find all square roots of the matrix

$$A = \begin{pmatrix} 5 & 2 \\ -3 & 0 \end{pmatrix}$$

i.e., find all matrices B such that $B^2 = A$. (Hint: Finding a square root of a diagonal matrix is easy. You can leave your answer as a product.)

- **2.10.** Let A be a 5×5 matrix with 3 eigenvalues (not counting multiplicities). Suppose we know that one eigenspace is three-dimensional. Can you say if A is diagonalizable?
- **2.11.** Give an example of a 3×3 matrix which cannot be diagonalized. After you construct the matrix, can you make it "generic," so no special structure of the matrix can be seen?
- **2.13.** Eigenvalues of a transposition:
 - a) Consider the transformation T in the space $M_{2\times 2}$ of 2×2 matrices defined by $T(A)=A^T$. Find all its eigenvalues and eigenvectors. Is it possible to diagonalize this transformation? (Hint: While it is possible to write a matrix of this linear transformation in some basis, compute the characteristic polynomial, and so on, it is easier to find eigenvalues and eigenvectors directly from the definition.)
 - b) Can you do the same problem but in the space of $n \times n$ matrices?
- **2.14.** Prove that two subspaces V_1 and V_2 are linearly independent if and only if $V_1 \cap V_2 = \{0\}$.