

## SİSTEM ANALİZİ VE TASARIMI

Veri Tabanı Tasarımı

#### Kavramsal Veri Modelleme

- Kurumsal verilerin temsili
- Amaç, veriler arasındaki anlam ve karşılıklı ilişkilere dair kuralları göstermektir
- Varlık-İlişki (E-R) diyagramları genellikle verilerin nasıl organize edildiğini göstermek için kullanılır
- Kavramsal veri modellemenin temel amacı doğru E-R diyagramları oluşturmaktır
- Bilgi toplamak için mülakat, anket ve JAD gibi yöntemler kullanılır
- Süreç akışı, karar mantığı ve veri modelleme açıklamaları arasında tutarlılık sağlanmalıdır

#### Kavramsal Veri Modelleme Süreci

- İlk adım, değiştirilen sistem için bir veri modeli geliştirmektir
- Ardından, yeni sistemin tüm gereksinimlerini içeren yeni bir kavramsal veri modeli oluşturulur
- Tasarım aşamasında, kavramsal veri modeli fiziksel bir tasarıma dönüştürülür
- Proje havuzu, SDLC sırasında gerçekleştirilen tüm tasarım ve veri modelleme adımlarını birbirine bağlar

### Çıktılar ve Sonuçlar

- Birincil çıktı varlık-ilişki diyagramıdır
- Kavramsal veri modelleme sırasında 4 adede kadar E-R diyagramı üretilebilir ve analiz edilebilir
  - > Sadece proje uygulamasında ihtiyaç duyulan verileri kapsar
  - > Değiştirilen sistem için E-R diyagramı
  - Yeni uygulamanın verilerinin çıkarıldığı tüm veritabanı için bir E-R diyagramı
  - Değiştirilmekte olan uygulama sistemine ait verilerin alındığı tüm veritabanı için bir E-R diyagramı



#### FIGURE 7-3

Sample conceptual data model diagrams (A) Standard E-R notation.

#### FIGURE 7-3

Sample conceptual data model diagrams (A) Standard E-R notation.

#### FIGURE 7-3

Sample conceptual data model diagrams (B) Visio E-R notation.



## Çıktılar ve Sonuçlar (devam)

- İkinci çıktı, depoda veya proje sözlüğünde saklanacak veri nesneleri hakkında bir dizi girdidir
  - DFD'de yer alan veri unsurları veri modelinde yer almalıdır ve bunun tersi de geçerlidir
  - Bir süreç modelindeki her veri deposu, veri modelinde temsil edilen iş nesneleriyle ilişkili olmalıdır

### Kavramsal Veri Modellemesi için Bilgi Toplama

- İki Perspektif:
  - Yukarıdan aşağıya
    - Veri modeli, işin yakından anlaşılmasıyla elde edilir
  - Aşağıdan yukarıya
    - Veri modeli, spesifikasyonlar ve iş belgeleri incelenerek türetilir

## Varlık-İlişki Modellemesine Giriş

- Notasyon üç ana yapı kullanır
  - Veri varlıkları
  - İlişkiler
  - Nitelikler
- Varlık-İlişki (E-R) Diyagramı
  - Bir kuruluş veya işletme için varlıkların, ilişkilerin ve veri öğelerinin ayrıntılı, mantıksal ve grafiksel gösterimi

## Varlık-İlişki (E-R) Modellemesi Anahtar Terimler

#### Varlık

- Kuruluşun hakkında veri tutmak istediği kullanıcı ortamındaki bir kişi, yer, nesne, olay veya kavram
- E-R diyagramlarında bir dikdörtgen ile temsil edilir

#### Varlık Türü

- Ortak özellikleri veya karakteristikleri paylaşan varlıklar topluluğu
- Varlık Örneği
  - Bir varlık türünün tek oluşumu

### Varlık-İlişki (E-R) Modellemesi (devam) Anahtar Terimler

#### • Öznitelik

- Bir kuruluşun ilgisini çeken bir varlığın adlandırılmış bir özelliği veya karakteristiği
- Aday Anahtarlar ve Tanımlayıcılar
  - Her varlık türü, bir örneği aynı türün diğer örneklerinden ayıran bir özniteliğe veya öznitelikler kümesine sahip olmalıdır
  - Aday anahtarı
    - Bir varlık türünün her bir örneğini benzersiz bir şekilde tanımlayan öznitelik (veya öznitelik kombinasyonu)







FIGURE 7-5 Entity-Relationship Diagram Notations: Basic Symbols, Relationship Degree, and Relationship Cardinality

# Varlık-İlişki (E-R) Modellemesi (devam)

Anahtar Terimler

#### Tanımlayıcı

- Bir varlık türü için benzersiz tanımlayıcı özellik olarak seçilen bir aday anahtar
- Bir tanımlayıcı için seçim kuralları
  - 1. Değeri değişmeyecek bir aday anahtar seçin
  - 2. Asla null olmayacak bir aday anahtar seçin
  - 3. Akıllı tuşları kullanmaktan kaçının
  - Büyük bileşik anahtarlar yerine tek değerli vekil anahtarlar kullanmayı düşünün

#### Varlık-İlişki (E-R) Modellemesi (devam) Anahtar Terimler

- Çok Değerli Öznitelik
  - Her varlık örneği için birden fazla değer alabilen bir öznitelik
  - E-R diyagramında iki şekilde temsil edilir:
    - çift çizgili elips
    - zayıf varlık

#### Varlık-İlişki (E-R) Modellemesi (devam) Anahtar Terimler

#### • İlişki

- Kuruluşun ilgi alanına giren bir veya daha fazla varlık türünün örnekleri arasındaki bir ilişki
- İlişkilendirme, bir olayın meydana geldiğini veya varlık türleri arasında doğal bir bağ olduğunu gösterir
- İlişkiler her zaman fiil cümleleri ile etiketlenir

### Kavramsal Veri Modelleme ve E-R Diyagramı

- Hedef
  - Verilerin anlamının mümkün olduğunca çoğunu yakalayın
- Sonuç
  - Bakımı daha kolay olan daha iyi bir tasarım

## İlişki Derecesi

- O Derece
  - > Bir ilişkiye katılan varlık türü sayısı
- Üç Vaka:
  - > Tekli
    - Bir varlık türünün örnekleri arasındaki ilişki
  - >İkili
    - İki varlık türünün örnekleri arasındaki bir ilişki
  - > Üçlü
    - Üç varlık türünün örnekleri arasında eşzamanlı bir ilişki
    - Üç ikili ilişki ile aynı değildir

FIGURE 7-6
Examples of the Three
Most Common Relationships
in E-R Diagrams: Unary,
Binary, and Ternary



#### Kardinalite

- A varlığının her bir örneği ile ilişkilendirilebilecek
   B varlığı örneklerinin sayısı
- Minimum Kardinalite
  - > A varlığının her bir örneğiyle ilişkilendirilebilecek minimum B varlığı örneği sayısı
- Maksimum Kardinalite
  - > A varlığının her bir örneğiyle ilişkilendirilebilecek maksimum B varlığı örneği sayısı

### İlişkisel Varlık

 Bir veya daha fazla varlık türünün örneklerini ilişkilendiren ve bu varlık örnekleri arasındaki ilişkiye özgü nitelikler içeren bir varlık türü



FIGURE 7-7 Example of an Associative Entity

## PVF Web Mağazası: Kavramsal Veri Modelleme

- İnternet uygulamaları için kavramsal veri modellemesi, diğer uygulama türleri için izlenen süreçten farklı değildir
- Pine Valley Mobilya Web Mağazası
  - Tanımlanmış dört varlık türü
    - Müşteri
    - Envanter
    - Sipariş
    - Alışveriş sepeti



FIGURE 7-13 Entity-relationship diagram for the WebStore system.

## En İyi Alternatif Tasarım Stratejisinin Seçilmesi

#### İki temel adım:

- 1. Kapsamlı bir alternatif tasarım stratejileri seti oluşturun
- İstenen bilgi sistemi ile sonuçlanma olasılığı en yüksek olan tasarım stratejisini seçin

#### Süreç:

- 1. Gereksinimleri farklı yetenek kümelerine ayırın
- Farklı yetenek setlerini sunmak için kullanılabilecek farklı potansiyel uygulama ortamlarını sıralayın
- 3. Farklı uygulama ortamları için çeşitli kabiliyet setlerini tedarik etmek veya edinmek için farklı yollar önermek

## En İyi Alternatif Tasarım Stratejisinin Seçilmesi (devam)

#### Teslim Edilecekler

- Yedek bilgi sisteminin oluşturulması için en az üç önemli ölçüde farklı sistem tasarım stratejisi
- En çok arzu edilen bilgi sistemine yol açma olasılığı en yüksek olan tasarım stratejisi

#### Alternatif Tasarım Stratejileri Oluşturma

- En iyisi üç alternatif oluşturmaktır:
  - > Düşük Uç
    - Mevcut sistemden minimum düzeyde farklı bir sistemle kullanıcıların talep ettiği tüm gerekli işlevleri sağlar
  - > Üst Düzey
    - Söz konusu sorunu çözer ve kullanıcıların istediği birçok ekstra özelliği sağlar
  - > Orta seviye
    - Üst düzey alternatifin özellikleri ile alt düzey alternatifin tutumluluğunun uzlaşması

#### Alternatif Tasarımlara Sınır Çizmek

- Minimum Gereksinimler
  - Zorunlu özelliklere karşı istenen özellikler
  - Özelliklerin biçimleri
    - Veri
    - Çıktılar
    - Analizler
    - Erişilebilirlik, yanıt süresi ve geri dönüş süresine ilişkin kullanıcı beklentileri

## Alternatif Tasarımlara Sınır Çizmek (devam)

- Sistem Geliştirme Üzerindeki Kısıtlamalar:
  - Zaman
  - Finansal
  - Mevcut sistemin değiştirilemeyecek unsurları
  - Yasal
  - Sorunun dinamikleri

### Hoosier Burger'in Yeni Envanter Kontrol Sistemi

- Mevcut sistemin değiştirilmesi
- Şekil 7-15 sistem gereksinimlerini ve kısıtlamalarını sıralar

FIGURE 7-15
Ranked System
Requirements and
Constraints for Hoosier
Burger's Inventory System

#### SYSTEM REQUIREMENTS (in descending priority)

- Must be able to easily enter shipments into system as soon as they are received.
- System must automatically determine whether and when a new order should be placed.
- Management should be able to determine at any time approximately what inventory levels are for any given item in stock.

#### SYSTEM CONSTRAINTS (in descending order)

- System development can cost no more than \$50,000.
- New hardware can cost no more than \$50,000.
- The new system must be operational in no more than six months from the start of the contract.
- Training needs must be minimal (i.e., the new system must be easy to use).

## Hoosier Burger'in Yeni Envanter Kontrol Sistemi (devam)

- Şekil 7-16 mevcut sistemin adımlarını göstermektedir
- Alternatifler önerilirken, gereklilikler ve kısıtlamalar dikkate alınmalıdır

## FIGURE 7-16 The Steps in Hoosier Burger's Inventory Control System

- Meet delivery trucks before opening restaurant.
- 2. Unload and store deliveries.
- Log invoices and file in accordion file.
- 4. Manually add amounts received to stock logs.
- 5. After closing, print inventory report.
- 6. Count physical inventory amounts.
- Compare inventory reports totals to physical count totals.
- Compare physical count totals to minimum order quantities; if the amount is less, make order; if not, do nothing.
- 9. Pay bills that are due and record them as paid.

## Hoosier Burger'in Yeni Envanter Kontrol Sistemi (devam)

| CRITERIA<br>Popularomonto                                              | ALTERNATIVE A                   | ALTERNATIVE B                                     | ALTERNATIVE C                    |  |  |
|------------------------------------------------------------------------|---------------------------------|---------------------------------------------------|----------------------------------|--|--|
| Requirements 1. Easy real-time entry of new shipment data              | Yes                             | Yes                                               | Yes                              |  |  |
| Automatic reorder decisions     Real-time data on     inventory levels | For some items<br>Not available | For all items<br>Available for some<br>items only | For all items<br>Fully available |  |  |
| Constraints                                                            | = = = = =                       |                                                   |                                  |  |  |
| Cost to develop     Cost of hardware                                   | \$25,000<br>\$25,000            | \$50,000                                          | \$65,000                         |  |  |
| Cost of nardware     Time to operation                                 | Three months                    | \$50,000<br>Six months                            | \$50,000<br>Nine months          |  |  |
| Ease of training                                                       | One week of training            | Two weeks of training                             | One week of training             |  |  |

#### FIGURE 7-18 Description of Three Alternative Systems That Could Be Developed for Hoosier Burger's Inventory System

## Şekil 7-18 3 alternatifi listelemektedir:

- > Alternatif A düşük kaliteli bir tekliftir
- > Alternatif C üst düzey bir tekliftir
- > Alternatif B orta menzilli bir tekliftir

## Hoosier Burger'in Yeni Envanter Kontrol Sistemi (devam)

#### En Olası Alternatifin Seçilmesi

- > Üç alternatifi karşılaştırmak için ağırlıklı yaklaşım kullanılabilir
- > Şekil 7-19 Hoosier Burger için ağırlıklı bir yaklaşımı göstermektedir
- > Tablonun sol tarafı karar kriterlerini içerir
  - Sabitler ve gereksinimler
  - · Ağırlıklar analiz ekibi, kullanıcılar ve yöneticilerle tartışılarak belirlenir
- > Her gereksinim ve kısıtlama sıralanır
  - 1, alternatifin taleple iyi eşleşmediğini veya kısıtlamayı ihlal ettiğini gösterir
  - 5 alternatifin gereklilikleri karşıladığını veya aştığını ya da kısıtlamaya açıkça uyduğunu gösterir

| Criteria             | Weight | Alternative A |       | Alternative B |       | Alternative C |       |
|----------------------|--------|---------------|-------|---------------|-------|---------------|-------|
|                      |        | Rating        | Score | Rating        | Score | Rating        | Score |
| Requirements         |        |               |       |               |       |               |       |
| Real-time data entry | 18     | 5             | 90    | 5             | 90    | 5             | 90    |
| Auto reorder         | 18     | 3             | 54    | 5             | 90    | 5             | 90    |
| Real-time data query | 14     | 1             | 14    | 3             | 42    | 5             | 70    |
|                      | 50     |               | 158   |               | 222   |               | 250   |
| Constraints          |        |               |       |               |       |               |       |
| Development costs    | 20     | 5             | 100   | 4             | 80    | 3             | 60    |
| Hardware costs       | 15     | 5             | 75    | 4             | 60    | 4             | 60    |
| Time to operation    | 10     | 5             | 50    | 4             | 40    | 3             | 30    |
| Ease of training     | 5      | 5             | 25    | 3             | 15    | 5             | 25    |
|                      | 50     |               | 250   |               | 195   |               | 175   |
| Total                | 100    |               | 408   |               | 417   |               | 425   |

# FIGURE 7-19 Weighted approach for comparing the three alternative systems for Hoosier Burger's inventory system.

## Hoosier Burger'in Yeni Envanter Kontrol Sistemi (devam)

- En Olası Alternatifin Seçilmesi
  - Kullanılan ağırlıklara göre, C alternatifi en iyi seçenek olarak görünmektedir

## Veritabanı Tasarım Süreci

## Mantiksal Tasarım

- Kavramsal veri modeline dayalı olarak
- > Dört temel adım:
  - Normalleştirme ilkelerini kullanarak uygulama için bilinen her kullanıcı arayüzü için bir mantıksal veri modeli geliştirin
  - Tüm kullanıcı arayüzlerinden gelen normalleştirilmiş veri gereksinimlerinin tek bir konsolide mantıksal veritabanı modelinde birleştirilmesi
  - 3. Uygulama için kavramsal E-R veri modelinin normalleştirilmiş veri gereksinimlerine dönüştürülmesi
  - 4. Birleştirilmiş mantıksal veritabanı tasarımını çevrilmiş E-R modeli ile karşılaştırın ve uygulama için nihai bir mantıksal veritabanı modeli üretin

## Veritabanı Tasarım Süreci (devam)

## Fiziksel Tasarım

- > Mantıksal veritabanı tasarımının sonuçlarına göre
- > Önemli kararlar:
  - 1. Mantıksal veritabanı modelinden her bir öznitelik için depolama formatının seçilmesi
  - Mantıksal veritabanı modelindeki öznitelikleri fiziksel kayıtlar halinde gruplama
  - 3. Kayıtların hızlı bir şekilde saklanabilmesi, geri getirilebilmesi ve güncellenebilmesi için ilgili kayıtların ikincil bellekte (sabit diskler ve manyetik bantlar) düzenlenmesi
  - 4. Erişimi daha verimli hale getirmek için veri depolamaya yönelik ortam ve yapıların seçilmesi

## Veritabanı Tasarım Süreci (devam)

- Birincil Anahtar
  - Değeri bir ilişkinin tüm oluşumlarında benzersiz olan bir öznitelik

## Çıktılar ve Sonuçlar

- Mantıksal veritabanı tasarımı her veri öğesini, sistem girdisini veya çıktısını hesaba katmalıdır
- Normalleştirilmiş ilişkiler birincil çıktıdır
- Fiziksel veritabanı tasarımı, ilişkilerin dosyalara dönüştürülmesiyle sonuçlanır

## İlişkisel Veritabanı Modeli

- İlgili tablolar veya ilişkiler kümesi olarak temsil edilen veriler
- İlişki
  - > Adlandırılmış, iki boyutlu bir veri tablosu. Her ilişki bir dizi adlandırılmış sütundan ve rastgele sayıda adlandırılmamış satırdan oluşur
  - > Mülkler
    - Hücrelerdeki girişler basittir
    - Sütunlardaki girişler aynı değerler kümesindendir
    - Her satır benzersizdir
    - Sütunların sırası, ilişkinin anlamını veya kullanımını değiştirmeden değiştirilebilir
    - Satırlar herhangi bir sırada değiştirilebilir veya saklanabilir

## İlişkisel Veritabanı Modeli (devam)

- İyi Yapılandırılmış İlişki
  - Minimum miktarda fazlalık içeren ve kullanıcıların satırları hata veya tutarsızlık olmadan eklemesine, değiştirmesine ve silmesine olanak tanıyan bir ilişki

### FIGURE 9-5 EMPLOYEE1 relation with sample data.

#### EMPLOYEE1

| Emp_ID | Name             | Dept         | Salary |
|--------|------------------|--------------|--------|
| 100    | Margaret Simpson | Marketing    | 42,000 |
| 140    | Allen Beeton     | Accounting   | 39,000 |
| 110    | Chris Lucero     | Info Systems | 41,500 |
| 190    | Lorenzo Davis    | Finance      | 38,000 |
| 150    | Susan Martin     | Marketing    | 38,500 |

## Normalleştirme

- Karmaşık veri yapılarını basit, kararlı veri yapılarına dönüştürme süreci
- Fazlalığı ortadan kaldırır (bkz. Şekil 9-6)

#### EMPLOYEE2

| Emp_ID | Name             | Dept         | Salary | Course      | Date_Completed |
|--------|------------------|--------------|--------|-------------|----------------|
| 100    | Margaret Simpson | Marketing    | 42,000 | SPSS        | 6/19/2015      |
| 100    | Margaret Simpson | Marketing    | 42,000 | Surveys     | 10/7/2015      |
| 140    | Alan Beeton      | Accounting   | 39,000 | Tax Acc     | 12/8/2015      |
| 110    | Chris Lucero     | Info Systems | 41,500 | SPSS        | 1/12/2015      |
| 110    | Chris Lucero     | Info Systems | 41,500 | C++         | 4/22/2015      |
| 190    | Lorenzo Davis    | Finance      | 38,000 | Investments | 5/7/2015       |
| 150    | Susan Martin     | Marketing    | 38,500 | SPSS        | 6/19/2015      |
| 150    | Susan Martin     | Marketing    | 38,500 | TQM         | 8/12/2015      |

FIGURE 9-6 Relation with redundancy.

## Normalleştirme (devam)

- İkinci Normal Form (2NF)
  - Her bir birincil olmayan anahtar özniteliği tüm anahtar tarafından tanımlanır (tam işlevsel bağımlılık olarak adlandırılır)
- Üçüncü Normal Form (3NF)
  - Birincil olmayan anahtar nitelikler birbirlerine bağlı değildir (geçişli bağımlılıklar olarak adlandırılır)
- Normalleştirmenin sonucu, birincil anahtar olmayan her özniteliğin tüm birincil anahtara bağlı olmasıdır.

# İşlevsel Bağımlılıklar ve Birincil Anahtarlar

## Fonksiyonel Bağımlılık

- İki nitelik arasındaki belirli bir ilişki. Belirli bir ilişki için, A'nın her geçerli değeri için A'nın değeri B'nin değerini benzersiz bir şekilde belirliyorsa, B niteliği A niteliğine işlevsel olarak bağımlıdır.
- Bir ilişkideki örnekler (veya örnek veriler) işlevsel bir bağımlılığın varlığını kanıtlamaz
- Sorun alanı bilgisi, işlevsel bağımlılığı tanımlamak için en güvenilir yöntemdir

# İşlevsel Bağımlılıklar ve Birincil Anahtarlar (devam)

- İkinci Normal Form (2NF)
  - Bir ilişki, aşağıdaki koşullardan herhangi biri geçerli ise ikinci normal formdadır (2NF):
    - Birincil anahtar yalnızca bir öznitelikten oluşur
    - 2. İlişkide birincil olmayan anahtar öznitelikleri yoktur
    - 3. Birincil olmayan her bir anahtar öznitelik işlevsel olarak birincil anahtar özniteliklerin tamamına bağlıdır

# Fonksiyonel Bağımlılıklar ve Birincil Anahtarlar (devam)

- İkinci normal forma (2NF) dönüştürme
  - Bir ilişkiyi 2NF'ye dönüştürmek için, diğer nitelikleri belirleyen ve belirleyici olarak adlandırılan nitelikleri kullanarak ilişkiyi yeni ilişkilere ayrıştırın
  - Belirleyiciler yeni ilişkinin birincil anahtarı haline gelir

# Fonksiyonel Bağımlılıklar ve Birincil Anahtarlar (devam)

- Üçüncü Normal Form (3NF)
  - Bir ilişki ikinci normal formdaysa (2NF) ve iki (veya daha fazla) birincil olmayan anahtar nitelik arasında işlevsel (geçişli) bağımlılık yoksa üçüncü normal formdadır (3NF)
  - Bir ilişkiyi 2NF'ye dönüştürmek için, iki belirleyiciyi kullanarak ilişkiyi iki ilişkiye ayırın

FIGURE 9-9
Removing Transitive
Dependencies
(A) Relation with Transitive
Dependency
(B) Relations in 3NF

### SALES

| 1 | Customer_ID | Customer_Name | Salesperson | Region |
|---|-------------|---------------|-------------|--------|
| I | 8023        | Anderson      | Smith       | South  |
| ı | 9167        | Bancroft      | Hicks       | West   |
| ı | 7924        | Hobbs         | Smith       | South  |
| ı | 6837        | Tucker        | Hernandez   | East   |
| ı | 8596        | Eckersley     | Hicks       | West   |
| ۱ | 7018        | Arnold        | Faulb       | North  |

## SALES1

| Customer_ID | Customer_Name | Salesperson |
|-------------|---------------|-------------|
| 8023        | Anderson      | Smith       |
| 9167        | Bancroft      | Hicks       |
| 7924        | Hobbs         | Smith       |
| 6837        | Tucker        | Hernandez   |
| 8596        | Eckersley     | Hicks       |
| 7018        | Arnold ´      | Faulb       |

## SPERSON

| Salesperson | Region |
|-------------|--------|
| Smith       | South  |
| Hicks       | West   |
| Hernandez   | East   |
| Faulb       | North  |

# Fonksiyonel Bağımlılıklar ve Birincil Anahtarlar (devam)

## Yabancı Anahtar

 Bir ilişkide birincil olmayan anahtar özniteliği olarak ve başka bir ilişkide birincil anahtar özniteliği (veya birincil anahtarın bir parçası) olarak görünen bir öznitelik

## Referans Bütünlüğü

 Bir ilişkideki bir özniteliğin değerinin (veya varlığının) başka bir ilişkideki aynı özniteliğin değerine (veya varlığına) bağlı olduğunu belirten bir bütünlük kısıtı

# E-R Diyagramlarını İlişkilere Dönüştürme

- Kavramsal veri modelini bir dizi normalleştirilmiş ilişkiye dönüştürmek yararlıdır
- Adımlar:
  - 1. Kuruluşları temsil edin
  - 2. İlişkileri temsil edin
  - 3. İlişkileri normalleştirin
  - 4. İlişkileri birleştirin

# E-R Diyagramlarını İlişkilere Dönüştürme (devam)

## 1. Tüzel Kişileri Temsil Edin

- Her düzenli varlık bir ilişkiye dönüştürülür
- Varlık türünün tanımlayıcısı, ilgili ilişkinin birincil anahtarı olur
- Birincil anahtar aşağıdaki iki koşulu karşılamalıdır.
  - a. Anahtarın değeri ilişkideki her satırı benzersiz bir şekilde tanımlamalıdır
  - b. Anahtar yedekli olmamalıdır

CUSTOMER Customer\_ID

Name

Address City\_State\_Zip Discount

FIGURE 9-10

Transforming an entity type to a relation (A) E-R diagram (B) Relation.

### **CUSTOMER**

| Customer_ID | Name                 | Address        | City_State_Zip        | Discount |
|-------------|----------------------|----------------|-----------------------|----------|
| 1273        | Contemporary Designs | 123 Oak St.    | Austin, TX 28384      | 5%       |
| 6390        | Casual Corner        | 18 Hoosier Dr. | Bloomington, IN 45821 | 3%       |

B

# E-R Diyagramlarını İlişkilere Dönüştürme (devam)

## 2. İlişkileri Temsil Edin

- İkili 1:N İlişkiler
  - İlişkinin bir tarafındaki varlığın birincil anahtar niteliğini (veya niteliklerini) sağ taraftaki ilişkiye yabancı anahtar olarak ekleyin
  - Tek taraf çok tarafa göç eder

### FIGURE 9-11

Representing a 1:N relationship.
(A) E-R diagram, (B) relations.



### CUSTOMER

| Customer_ID | Name                 | Address        | City_State_ZIP        | Discount |
|-------------|----------------------|----------------|-----------------------|----------|
| 1273        | Contemporary Designs | 123 Oak St.    | Austin, TX 28384      | 5%       |
| 6390        | Casual Corner        | 18 Hoosier Dr. | Bloomington, IN 45821 | 3%       |

### ORDER

| Order_Number | Order_Date | Promised_Date | Customer_ID |
|--------------|------------|---------------|-------------|
| 57194        | 3/15/15    | 3/28/15       | 6390        |
| 63725        | 3/17/15    | 4/01/15       | 1273        |
| 80149        | 3/14/15    | 3/24/15       | 6390        |

# E-R Diyagramlarını İlişkilere Dönüştürme (devam)

- 2. Temsil İlişkileri (devam)
  - İkili veya Tekli 1:1
    - Üç olası seçenek:
      - a. A'nın birincil anahtarını B'nin yabancı anahtarı olarak ekleme
      - b. B'nin birincil anahtarını A'nın yabancı anahtarı olarak ekleme
      - c. Her ikisi de
  - İkili ve daha yüksek M:N ilişkileri
    - Başka bir ilişki oluşturun ve tüm ilişkilerin birincil anahtarlarını yeni ilişkinin birincil anahtarı olarak ekleyin



### **ORDER**

| Order_Number | Order_Date | Promised_Date |
|--------------|------------|---------------|
| 61384        | 2/17/2012  | 3/01/2012     |
| 62009        | 2/13/2012  | 2/27/2012     |
| 62807        | 2/15/2012  | 3/01/2012     |

### ORDER LINE

| Order_Number | Product_ID | Quantity_<br>Ordered |
|--------------|------------|----------------------|
| 61384        | M128       | 2                    |
| 61384        | A261       | 1                    |

### **PRODUCT**

| Product_ID | Description | (Other<br>Attributes) |
|------------|-------------|-----------------------|
| M128       | Bookcase    |                       |
| A261       | Wall unit   | ·                     |
| R149       | Cabinet     | :                     |

B

FIGURE 9-12
Representing an M:N relationship (A) E-R diagram (B) Relations.

# E-R Diyagramlarını İlişkilere Dönüştürme (devam)

- Tekil 1:N İlişkiler
  - Tek bir varlık türünün örnekleri arasındaki ilişki
  - Özyinelemeli yabancı anahtar kullanma
    - Bir ilişkide, aynı ilişkinin birincil anahtar değerlerine referans veren bir yabancı anahtar
- Tek M:N İlişkileri
  - Ayrı bir ilişki oluşturun
  - Yeni ilişkinin birincil anahtarı, her ikisi de değerlerini aynı birincil anahtardan alan iki özniteliğin bileşimidir



FIGURE 9-13
Two unary relations (A) EMPLOYEE with manages relationship (1:N) (B) Bill-of-materials structure (M:N).

 Table 9.1
 E-R to Relational Transformation

| E-R Structure                                                                 | Relational Representation                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Regular entity                                                                | Create a relation with primary key and nonkey attributes.                                                                                                                                                                                                                     |
| Weak entity                                                                   | Create a relation with a composite primary key (which includes the primary key of the entity on which this weak entity depends) and nonkey attributes.                                                                                                                        |
| Binary or unary 1:1<br>relationship                                           | Place the primary key of either entity in the relation fo<br>the other entity or do this for both entities.                                                                                                                                                                   |
| Binary 1: N relationship                                                      | Place the primary key of the entity on the one side of<br>the relationship as a foreign key in the relation for the<br>entity on the many side.                                                                                                                               |
| Binary or unary M:N relationship or associative entity                        | Create a relation with a composite primary key using<br>the primary keys of the related entities, plus any non-<br>key attributes of the relationship or associative entity.                                                                                                  |
| Binary or unary M:N relationship or associative entity with additional key(s) | Create a relation with a composite primary key using<br>the primary keys of the related entities and additional<br>primary key attributes associated with the relationship<br>or associative entity, plus any nonkey attributes of the<br>relationship or associative entity. |
| Binary or unary M:N relationship or associative entity with its own key       | Create a relation with the primary key associated with<br>the relationship or associative entity, plus any nonkey<br>attributes of the relationship or associative entity and<br>the primary keys of the related entities (as nonkey<br>attributes).                          |

# E-R Diyagramlarını İlişkilere Dönüştürme (devam)

## 3. İlişkileri Birleştirme (Entegrasyonu Görüntüle)

- Amaç gereksiz ilişkileri ortadan kaldırmaktır
- Entegrasyon Sorunlarını Görüntüle
  - Eşanlamlılar
    - Aynı nitelik için kullanılan iki farklı isim
    - Birleştirirken, kullanıcıların tek ve standart bir isim üzerinde anlaşmasını sağlayın
  - Eşsesli Kelimeler
    - İki veya daha fazla farklı öznitelik için kullanılan tek bir öznitelik adı
    - Yeni bir ad oluşturularak çözüldü
  - Anahtar olmayanlar arasındaki bağımlılıklar
    - Görünüm entegrasyonunun bir sonucu olarak bağımlılıklar oluşturulabilir
    - Çözümlemek için yeni ilişkinin normalleştirilmesi gerekir

## Fiziksel Dosya ve Veritabanı Tasarımı

## Aşağıdaki bilgiler gereklidir

- > Hacim tahminleri de dahil olmak üzere normalleştirilmiş ilişkiler
- > Her bir niteliğin tanımları
- Verilerin nerede ve ne zaman kullanıldığına, girildiğine, alındığına, silindiğine ve güncellendiğine ilişkin açıklamalar (sıklıklar dahil)
- Yanıt süresi ve veri bütünlüğüne ilişkin beklentiler veya gereksinimler
- Dosyaları ve veritabanını uygulamak için kullanılan teknolojilerin açıklamaları

## Tasarım Alanları

## Saha

- Sistem yazılımı tarafından tanınan en küçük adlandırılmış uygulama verisi birimi
- Her ilişkideki her bir öznitelik bir veya daha fazla alan olarak temsil edilecektir

## Veri türlerini seçme

- > Veri Tipi
  - Kurumsal verileri temsil etmek için sistem yazılımı tarafından tanınan bir kodlama şeması
- > Dört hedef:
  - Depolama alanını en aza indirin
  - Alan için tüm olası değerleri temsil eder
  - Saha için veri bütünlüğünü iyileştirin
  - Sahada istenen tüm veri manipülasyonlarını destekleyin
- > Hesaplanan alanlar
  - Diğer veritabanı alanlarından türetilebilen bir alan

# Veri Bütünlüğünün Kontrolü

- Varsayılan Değer
  - > Bir alan için açık bir değer girilmediği sürece o alanın alacağı değer
- Giriş Maskesi
  - > Bir alanın her bir konumu için genişliği ve olası değerleri kısıtlayan bir kod kalıbı
- Menzil Kontrolü
  - > Alana girilebilecek değer aralığını sınırlar
- Referans Bütünlüğü
  - Bir ilişkideki bir özniteliğin değerinin (veya varlığının) başka bir ilişkideki aynı özniteliğin değerine (veya varlığına) bağlı olduğunu belirten bütünlük kısıtı
- O Boş Değer
  - > Alan değerinin eksik olduğunu veya başka bir şekilde bilinmediğini gösteren, 0, boş veya başka bir değerden farklı özel bir alan değeri

CUSTOMER(Customer\_ID,Cust\_Name,Cust\_Address,...)

CUST\_ORDER(Order\_ID,Customer\_ID,Order\_Date,...)

and Customer\_ID may not be null because every order must be for some existing customer

EMPLOYEE(**Employee\_ID**, **Supervisor\_ID**, Empl\_Name,...)

B and Supervisor\_ID may be null because not all employees have supervisors

#### FIGURE 9-17

Examples of referential integrity field controls. (A) Referential integrity between relations, and (B) referential integrity within a relation.

## Fiziksel Tabloların Tasarlanması

- İlişkisel Veritabanı İlişkili Tablolar Kümesidir
- Fiziksel Tablo
  - > Tablonun her satırındaki alanları belirten adlandırılmış bir satır ve sütun kümesi
- Tasarım Hedefleri
  - > İkincil depolamanın (disk alanı) verimli kullanımı
    - Diskler tek bir makine işleminde okunabilecek birimlere ayrılır
    - Alan, bir tablo satırının fiziksel uzunluğu depolama birimiyle neredeyse eşit olarak bölündüğünde en verimli şekilde kullanılır

- Tasarım Hedefleri (devam)
  - Verimli veri işleme
    - Veriler ikincil bellekte yan yana depolandığında en verimli şekilde işlenir

## Denormalizasyon

- Satır ve alanların kullanım yakınlığına dayalı olarak normalleştirilmiş ilişkileri fiziksel tablolara bölme veya birleştirme işlemi
- Belirli işlemleri diğerlerinin zararına optimize eder
- Normalleştirmenin kullanılabileceği üç yaygın durum:
  - 1. Bire bir ilişkisi olan iki varlık
  - 2. Anahtar olmayan özniteliklere sahip çoktan çoğa bir ilişki
  - Referans verileri

#### FIGURE 9-18

Examples of denormalization (A) Denormalization by columns (B) Denormalization by rows.

#### Normalized Product Relation

 $PRODUCT(\underline{Product\_ID}, Description, Drawing\_Number, Weight, Color, Unit\_Cost, Burden\_Rate, Price, Product\_Manager)$ 

#### Denormalized Functional Area Product Relations for Tables

Engineering: E\_PRODUCT(Product\_ID, Description, Drawing\_Number, Weight, Color)

Accounting: A\_PRODUCT(Product\_ID,Unit\_Cost,Burden\_Rate)

Marketing: M\_PRODUCT(Product\_ID,Description,Color,Price,Product\_Manager)

A

#### Normalized Customer Table

#### CUSTOMER

| Customer_ID | Name   | Region   | Annual_Sales |
|-------------|--------|----------|--------------|
| 1256        | Rogers | Atlantic | 10,000       |
| 1323        | Temple | Pacific  | 20,000       |
| 1455        | Gates  | South    | 15,000       |
| 1626        | Hope   | Pacific  | 22,000       |
| 2433        | Bates  | South    | 14,000       |
| 2566        | Bailey | Atlantic | 12,000       |

#### Denormalized Regional Customer Tables

#### A\_CUSTOMER

| Customer_ID | Name   | Region   | Annual_Sales |
|-------------|--------|----------|--------------|
| 1256        | Rogers | Atlantic | 10,000       |
| 2566        | Bailey | Atlantic | 12,000       |

#### P\_CUSTOMER

| Customer_ID | Name | Region | Annual_Sales |
|-------------|------|--------|--------------|

### Denormalized Regional Customer Tables

#### A\_CUSTOMER

| Customer_ID | Name   | Region   | Annual_Sales |
|-------------|--------|----------|--------------|
| 1256        | Rogers | Atlantic | 10,000       |
| 2566        | Bailey | Atlantic | 12,000       |

#### P\_CUSTOMER

| Customer_ID | Name   | Region  | Annual_Sales |
|-------------|--------|---------|--------------|
| 1323        | Temple | Pacific | 20,000       |
| 1626        | Hope   | Pacific | 22,000       |

#### S\_CUSTOMER

| Customer_ID | Name  | Region | Annual_Sales |
|-------------|-------|--------|--------------|
| 1455        | Gates | South  | 15,000       |
| 2433        | Bates | South  | 14,000       |

#### FIGURE 9-19

Possible denormalization situations (A) two entities with a one-to-one relationship (B) a many-to-many relationship with nonkey attributes (C) reference data.



#### Normalized relations:

STUDENT(<u>Student ID</u>, Campus\_Address, <u>Application ID</u>)
APPLICATION(<u>Application ID</u>, Application\_Date, Qualifications, <u>Student ID</u>)

### Denormalized relation:

STUDENT(<u>Student ID</u>, Campus\_Address, Application\_Date, Qualifications) and Application\_Date and Qualifications may be null

(Note: We assume Application\_ID is not necessary when all fields are stored in one record, but this field can be included if it is required application data.)

A



### Normalized relations:

```
VENDOR(<u>Vendor_ID</u>, Address, Contact_Name)
```

ITEM(Item ID, Description)

PRICE QUOTE(Vendor ID, Item ID, Price)

### Denormalized relations:

VENDOR(Vendor ID, Address, Contact\_Name)

ITEM-QUOTE(Vendor ID, Item ID, Description, Price)

B



## Normalized relations:

STORAGE(<u>Instr ID</u>, Where\_Store, Container\_Type)
ITEM(<u>Item\_ID</u>, Description, <u>Instr\_ID</u>)

## Denormalized relation:

ITEM(Item\_ID, Description, Where\_Store, Container\_Type)

C

- Tablo Satırlarını Düzenleme
  - Fiziksel Dosya
    - İkincil belleğin bitişik bir bölümünde saklanan adlandırılmış bir tablo satırları kümesi
  - Kullanılan veritabanı yönetim yazılımına bağlı olarak her tablo fiziksel bir dosya olabilir veya tüm veritabanı tek bir dosya olabilir

- Dosya Organizasyonu
  - Bir dosyanın kayıtlarını fiziksel olarak düzenlemek için bir teknik
  - Dosya organizasyonunu seçmek için hedefler:
    - 1. Hızlı veri alma
    - 2. İşlemleri işlemek için yüksek verim
    - 3. Depolama alanının verimli kullanımı
    - 4. Arızalara veya veri kaybına karşı koruma
    - 5. Yeniden yapılanma ihtiyacının en aza indirilmesi
    - 6. Büyümeye uyum sağlama
    - 7. Yetkisiz kullanıma karşı güvenlik

## O Dosya Düzenleme Türleri

- > Sıralı
  - Dosyadaki satırlar birincil anahtar değerine göre sırayla saklanır
  - Kayıtların güncellenmesi ve eklenmesi dosyanın yeniden yazılmasını gerektirebilir
  - · Kayıtların silinmesi alanın boşa harcanmasına neden olur

## > Endeksli

- Satırlar sıralı veya sırasız olarak saklanır ve yazılımın tek tek satırları bulmasını sağlayan bir dizin oluşturulur
- Dizin
  - Bir dosyada bazı koşulları sağlayan satırların konumunu belirlemek için kullanılan bir tablo
- İkincil İndeks
  - Birden fazla satırın aynı değer kombinasyonuna sahip olabileceği bir alan kombinasyonuna dayalı dizin



- İndeks seçimi için yönergeler
  - 1. Her dosyanın birincil anahtarı için benzersiz bir dizin belirtin
  - 2. Yabancı anahtarlar için bir dizin belirtin
  - Verileri almak amacıyla niteleme, sıralama ve gruplama komutlarında başvurulan anahtar olmayan alanlar için bir dizin belirtin
- Karma Dosya Organizasyonu
  - > Her satır için adres bir algoritma kullanılarak belirlenir

## Dosyalar için Kontroller Tasarlama

- Yedekleme Teknikleri
  - Dosyaların periyodik olarak yedeklenmesi
  - İşlem günlüğü veya denetim izi
  - Değişiklik günlüğü
- Veri Güvenliği Teknikleri
  - Kodlama veya şifreleme
  - Kullanıcı hesabı yönetimi
  - Kullanıcıların verilerle doğrudan çalışmasının yasaklanması; kullanıcıların dosyaları yalnızca doğrulama kontrollerinden sonra güncelleyen bir kopya ile çalışması

## PVF WebStore: Veritabanı Tasarımı

• Tasarım süreci diğer uygulamalardan farklı değildir