Automated Canary Analysis Workshop

Spinnaker Summit - 11/16/2019

Chris SandenSenior Data Scientist, Netflix

Andrew Phillips
Product Manager, Google
(Assistant duct-taper)

Agenda

Canary Release Overview

Spinnaker/Kayenta Overview

Provision Spinnaker/Kayenta/Prometheus & Sample Artifacts

Good/Bad Indicators Of Safety

Exercises

Spinnaker/Kayenta Overview

Metric Sources

Atlas

Datadog

Graphite

InfluxDB

New Relic

Prometheus

SignalFx

Stackdriver

Wavefront

Judgement

Netflix Canary Judge

Spinnaker/Kayenta Overview

Provision Spinnaker/Kayenta

- 1. Grab a temporary account id/pw.
- 2. Open an incognito window in Chrome.
- 3. Navigate to: https://console.cloud.google.com/marketplace/details/google-cloud-platform/spinnaker
- 4. Click on "Go to Spinnaker for Google Cloud Platform" and follow the instructions.
 - Provisioning & configuration should take around 20 minutes to complete. -

Once the `setup.sh` script completes, move to the next slide...

Good/Bad Indicators of Safety

Good/Bad Indicators of Safety

Install Prometheus/Grafana & Provision Sample Artifacts

- 1. `exit` out of the Cloud Shell window.
- 2. Launch the Canary Workshop tutorial:

 https://console.cloud.google.com/cloudshell/editor?cloudshell_git_repo=github.com/duftler

 /canary-workshop.git&cloudshell_tutorial=tutorial.md&cloudshell_print=instructions.txt
- 3. Follow the instructions.
 - Provisioning & configuration should take around 5 minutes to complete. -

Install Prometheus/Grafana & Provision Sample Artifacts (continued)

Should see output like the following upon completion:

```
Access Prometheus here: http://35.230.84.233:31269
```

Access Grafana here: http://35.230.84.233:30866

If localhost: 8080 is unreachable (at any point), re-run:

~/spinnaker-for-gcp/scripts/manage/connect_unsecured.sh

GCP Resources

Locate Relevant GCP Resources

Navigate to: https://console.cloud.google.com/

Resources that may be helpful during the workshop:

GKE->Workloads

Cloud Build->History

GCR->Images

Exercises

Locate workshop Application

Follow the instructions in the console to connect to the Spinnaker UI.

Select the 'workshop' application on the Applications tab:

Explore Pipelines

Navigate to the Pipelines tab and examine the configuration of each pre-populated pipeline:

Locate Sample App and Sample Metric Parameters

The sample-app repo has been cloned into your home directory:

Manually Canary a Change

Adjust one of the sample metrics (e.g. change JOB_PROCESSING_TIME_MEAN to 55) and push your changes:

Follow Progression of Change

- Change is pushed to Cloud Source Repo
- Cloud Build trigger builds new image
- Image is published to Container Registry
- Deploy Canary pipeline is triggered
- Baseline and Canary deployments are provisioned (locate image digests)
- Metrics are collected by Prometheus
- Grafana dashboard refreshes automatically
- Wait several minutes for dashboard to reflect change

Do Not Manually Approve Change Yet

Promote Change

Promote the change into production by clicking "Continue" on the "Manually Validate Canary Results" stage of the "Deploy Canary" pipeline. Successful completion of that pipeline will trigger the "Promote Canary" pipeline.

Successful completion of the "Promote Canary" pipeline will trigger the "Clean Up Canary" pipeline.

At this point, we will have covered 'manual' canary releases of binary changes, and we will next adapt the existing release workflow to include automated canary analysis.

Create Canary Configuration

Create a new Canary Config named "workshop-config":

Create Canary Configuration

Create a new Metric Config named "http-error-rate", with a PromQL template containing:

avg(http_error_count{canary="\${scope}"} / http_request_count)

Configure Metric		
Group	Group 1	\$
Name	http-error-rate	
Fail on	Increase Decrease • Either	
Criticality	☐ Fail the canary if this metric fails	
NaN Strategy ⊖	● Default (remove)	
Query Type [©]	Default • PromQL	
Template ❷	avg(http_error_count{canary="\${scope}}"}/http_request_count)	
		10
	Cancel	

Set the scoring weight of the group to 100 and save your Canary Config.

Create Automated Canary Analysis Stage

Edit the "Deploy Canary" pipeline and replace the "Manually Validate Canary Results" stage with a new "Canary Analysis" stage.

Make sure to select "Real Time (Manual)", and a reasonable lifetime (e.g. 5 minutes, for the purposes of this demonstration). 5 seconds is a good step size to start with.

Pay special attention to the values specified for Baseline & Canary, as they will be bound to \${scope} when expanding the template.

Canary a Change

Push an inconsequential change (e.g. add a comment to the local.env file):

Explore Canary Report and Underlying Queries

Click on the Canary Report link in the Pipeline Execution Details view:

Explore Canary Report and Underlying Queries

For troubleshooting, you can find the expanded queries (and their actual results) via the Metrics link:

Canary a Change

Now push a change that is likely to fail the canary analysis (e.g. change HTTP ERROR RATE to 0.3):

Configure Retrospective Analysis

Capture the timestamps from the analysis stage (using the copy-to-clipboard buttons) and use them to configure a new pipeline with a "Retrospective" canary analysis stage:

Configure Retrospective Analysis

This technique can be used to quickly iterate on a canary analysis configuration, with reproducible results, without needing to repeatedly wait for infrastructure to be provisioned and torn down.

ary Analysis Configuration				
Analysis Config				
Analysis Type ©	Real Time (Manual)			
	Retrospective			
Config Name	workshop-config v			
Start Time @	2019-11-16T16:17:17.509Z			
End Time ⊕	2019-11-16T16:22:17.509Z			
Interval 0	5 minutes			
Step	5 seconds			
Baseline Offset ©	minutes			
Lookback Type 🛭	Growing \$			
Baseline + Canary Pair				
Baseline ©	baseline			
Baseline Location ©	location			
Canary ©	canary			
Canary Location	location			

Additional Things to Explore

- Configure a canary using multiple metrics
- See if you can tune one of the metrics such that a human would have a hard time determining from the dashboard whether it is a safe push or not, but the statistical test still yields good results

