All Chapters

Problem

Approach 3: Train Semi-supervised model!

Paper

Published as a conference paper at ICLR 2018

Unsupervised Representation Learning by Predicting Image Rotations

Spyros Gidaris, Praveer Singh, Nikos Komodakis
University Paris-Est, LIGM
Ecole des Ponts ParisTech
{spyros.gidaris,praveer.singh,nikos.komodakis}@enpc.fr

Source: https://arxiv.org/pdf/1803.07728.pdf

Results

Table 2: Test classification error rates (%) on CIFAR-100 with data augmentation averaged over four runs. **Left** – Results with 10,000 and 50,000 labels. **Right** – Results with unlabeled Tiny Images.

Method	10,000 labels 50,000 images	50,000 labels 50,000 images
Supervised [22] SESEMI ASL (ConvNet) ImageNet-32 Fine-tuned	44.56 ± 0.30 40.57 ± 0.20 32.44 ± 0.27	26.42 ± 0.17 22.49 ± 0.15 22.22 ± 0.25
II Model SSL [22] TempEns SSL [22] SESEMI SSL (ConvNet) SESEMI SSL (WRN)	39.19 ± 0.36 38.65 ± 0.51 38.71 ± 0.11 38.69 ± 0.10	$\begin{array}{c} 26.32 \pm 0.04 \\ 26.30 \pm 0.15 \\ \textbf{22.49} \pm \textbf{0.15} \\ 23.42 \pm 0.11 \end{array}$

Method	50,000 labels Tiny 500,000	50,000 labels Tiny 237,203
Supervised [22]	26.42 ± 0.17	26.42 ± 0.17
SESEMI ASL (ConvNet)	22.49 ± 0.15	22.49 ± 0.15
ImageNet-32 Fine-tuned	22.22 ± 0.25	22.22 ± 0.25
II Model SSL [22]	25.79 ± 0.17	25.43 ± 0.32
TempEns SSL [22]	23.62 ± 0.23	23.79 ± 0.24
SESEMI SSL (ConvNet)	22.52 ± 0.10	22.50 ± 0.26
SESEMI SSL (WRN)	22.65 ± 0.30	22.62 ± 0.24

Source: Phi Vu Tran

"Exploring Self-Supervised Regularization for Supervised and Semi-Supervised Learning"

Flyreel AI Research

https://arxiv.org/pdf/1906.10343.pdf

Dataset

New Notebook

Panda or Bear Image Classification

Al Panda or Bear Binary Image Classification

About Dataset

The dataset contains panda and bear images generated by DALL-E Mini, an Al model that draws images from any prompt. The task for this dataset is binary classification.

All images are scaled 256×256.

Source: https://www.kaggle.com/datasets/mattop/panda-or-bear-image-classification

Self-supervised Task

SESEMI Architecture

applies self-supervised task of predicting rotation

