AI Lab for Wireless Communications

Week4 – Auto-Encoder

Generative Model

- Mimic the underlying distribution generating the dataset
- Approaches of generative model
 - Auto-encoder
 - Variational auto-encoder (VAE)
 - Generative adversarial network (GAN)

Auto-Encoder (1/2)

- Strictly, it is NOT a generative model
- It does not learn a distribution, but some low dimensional representation
- The loss function is to measure the similarity of \underline{x} and $\hat{\underline{x}}$
- Applications
 - Dimensionality reduction
 - (Image) compression/decompression
 - (Image) denoising
 - Feature extraction
 - Clustering

Auto-Encoder (2/2)

- Find a low dimensional representative z such that we can reconstruct \underline{x} from \underline{z}
- The parameter ϕ and θ are learned together

VAE(1/2)

- A generative model that learns the distribution $P_{\theta}(x|z)$ so that one can generate latent representation and use it to generate new \hat{x}
- Two goal of VAE
 - Provide low dimensional representation
 - Generate new data

VAE(2/2)

• Except the origin procedure of auto-encoder, add a parameter under normal distribution for randomness (ϵ)

GAN (1/2)

• The goal is to learn the distribution $P_{\theta}(x|z)$ so that one can generate latent representation and use it to generate new \hat{x}

• Idea: Build another DNN model to calculate the divergence (classifying sample as either coming from the true distribution or the model's distribution

GAN(2/2)

- GAN consists of two functions, generator and discriminator
- Generator generates sample to fool the discriminator (Not necessary $P_g = P_x$
- In practical, we first use DNN to train good *D* and use DNN to train good *G*. This alternating process is performing iteratively

Auto-Encoder for Channel Coding

- Transform the message (class) into a low complexity representation (codeword)
- Optimize the similarity of the message (class)

Implement Training Part

- Build up the auto-encoder model
 (encoder (DNN1) + artificial channel noise + decoder (DNN2))
- 2. Train the model with training message

Implement Testing Part

- 1. Predict the codeword by encoding model (DNN1)
- 2. Add random noise to the transmitted signal
- 3. Predict message by the decoding model (DNN2)

Example code

Define the structure of your model

```
# Define the autoencoder model
input_bits = keras.Input(shape=(16,))
encoded = layers.Dense(7, activation='sigmoid')(input_bits)
encoded = layers.BatchNormalization()(encoded) # Normalize activations
noisy = layers.GaussianNoise(0.1)(encoded) # Noise layer added
decoded = layers.Dense(16, activation='softmax')(noisy)
autoencoder = keras.Model(input bits, decoded)
```

Compile and train your model

```
autoencoder.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# Train the autoencoder
autoencoder.fit(messages, messages, epochs=1000, verbose=0)
```

Apply the trained model to do the prediction

Lab for Today

- Apply auto-encoder to channel coding problem
- Implement auto-encoder for SNR=0~6
- Demo
 - Part 1 (SNR=0~6) Show the curve
 - Part 2 (SNR=6) BLER competition

Top 1/3:	100
_ , _	
Top 2/3:	95
$BLER \le 6 \times 10^{-3}$	90

- Model requirement
 - Epoch ≥ 5
 - # of layers ≥ 3
 (Either Encoder or Decoder)

