一. 选择题(每题 1 分, 共 15 分)

(A) 1 : 2 : 4. (B) 1 : 4 : 8. (C) 1 : 4 : 16. (D) 4 : 2 : 1.

2. 金属导体中的电子,在金属内部属中共有 N 个自由电子,其中电子的距				
		0 1 00 1011	H 4 196 1 7 4	
$\frac{dN}{N} = \begin{cases} NV & dV \\ 0 & \end{cases}$	$0 \leqslant v \leqslant v_m$ $v > v_m$			
式中 A 为常数.则该电子气电子的				
$(A) \frac{A}{3}v_m^3. \tag{B}$	$\frac{1}{4}U_m$.			
(C) v_m . (D)	$\frac{A}{3}v_m^2$.]	
3. 按照麦克斯韦分子速率分布定律,具有最概然速率 v_p 的分子,其动能为:				
(A) $\frac{3}{2}RT$. (B)	$\frac{3}{2}kT$.			
(C) kT . (D)	$\frac{1}{2}RT$.	Γ]	
 4. 关于温度的意义,有下列几种说法: (1) 气体的温度是分子平均平动动能的量度. (2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义. (3) 温度的高低反映物质内部分子运动剧烈程度的不同. (4) 从微观上看,气体的温度表示每个气体分子的冷热程度. 这些说法中正确的是 (A) (1)、(2)、(4). (B) (1)、(2)、(3). 				
(C) (2) , (3) , (4) .		[]	
(B) 不论经历的是什么过程, (C) 若气体从始态变到终态经	V_2 , V_2 , V_2 的终态. 若已知 V_2 与 气体对外净作的功一定为正值 气体从外界净吸的热一定为正 运历的是等温过程,则气体吸收	V ₁ ,且 T ₂ =T · 值. 的热量最少.	ī,则以下	
(D) 如果不给定气体所经历的吸热的正负皆无法判断.	过是什么过程,则气体在过程中x	可外伊作切利 [从外芥伊 	
ク・ハハ ロイエアンノ ロンロ(ヤン stpl)・		L	_	

1

1. 三个容器 $A \setminus B \setminus C$ 中装有同种理想气体,其分子数密度 n 相同,而方均根速率之比

]

为 $\left(\overline{v_A^2}\right)^{1/2}:\left(\overline{v_B^2}\right)^{1/2}:\left(\overline{v_C^2}\right)^{1/2}=1:2:4$,则其压强之比 $p_A:p_B:p_C$ 为:

6. 一定量的理想气体, 其状态变化遵从多方过程方程 pV'' = 常量, 已知其体积增大为 原来的二倍时,温度相应降低为原来的四分之一,则多方指数n为

- (A) 3.
- (B) 2.

7. 一定量的理想气体,从 a 态出发经过①或②过程 到达b态, acb 为等温线(如图),则①、②两过程中 外界对系统传递的热量 Q_1 、 Q_2 是

- (A) $Q_1>0$, $Q_2<0$. (B) $Q_1<0$, $Q_2<0$.
- (C) $Q_1>0$, $Q_2>0$. (D) $Q_1<0$, $Q_2>0$.

Γ 7

8. 一定量的理想气体, $\mathcal{L}_p - V$ 图上初态 a 经历(1) 或(2)过程到达末态 b,已知 a、b 两态处于同一条绝 热线上(图中虚线是绝热线),则气体在

- (A)(1)过程中放热,(2)过程中吸热.
- (B)(1)过程中吸热,(2)过程中放热.
- (C) 两种过程中都吸热.
- (D) 两种过程中都放热.

Γ 7

9. 一定量的理想气体经历 acb 过程时吸热 500

- J. 则经历 acbda 过程时, 吸热为
 - (A) -1200 J.
- (B) -700 J.
- (C) -400 J. (D) 700 J.

Γ 7

10. 理想气体卡诺循环过程的两条绝热线下的面积 大小(图中阴影部分)分别为 S_1 和 S_2 ,则二者的大小 关系是:

- (A) $S_1 > S_2$. (B) $S_1 = S_2$.
- (C) $S_1 < S_2$. (D) 无法确定.

Γ

11. 某理想气体分别进行了如图所示的两个卡诺循 环: I(abcda)和 II(a'b'c'd'a'),且两个循环曲线所围 面积相等. 设循环 I 的效率为 n, 每次循环在高温热 源处吸的热量为 Q,循环 Π 的效率为 η' ,每次循环 在高温热源处吸的热量为Q',则

(B)
$$\eta > \eta'$$
, $Q > Q'$

(C)
$$\eta < \eta'$$
, $Q < Q'$. (D) $\eta < \eta'$, $Q > Q'$.

D)
$$\eta < \eta'$$
, $O > O'$

12. 卡诺定理指出: 工作于两个一定温度的高、低温热源之间的 (A) 一切热机效率相等. (B) 一切可逆机效率相等. (C) 一切不可逆机的效率相等.] (D) 一切不可逆机的效率一定高于可逆机的效率. Γ 13. 关于热功转换和热量传递过程,有下面一些叙述: (1) 功可以完全变为热量,而热量不能完全变为功; (2) 一切热机的效率都只能够小于 1: (3) 热量不能从低温物体向高温物体传递: (4) 热量从高温物体向低温物体传递是不可逆的. 以上这些叙述 (A) 只有(2)、(4)正确. (B) 只有(2)、(3)、(4)正确. (C) 只有(1)、(3)、(4)正确. (D) 全部正确. Γ] 14. 如图所示:一定质量的理想气体,从同一状态 A 出发, 分别经 AB (等压)、AC (等温)、AD (绝热) 三种过程膨 胀, 使体积从 V_1 增加到 V_2 . 问哪个过程中气体的熵增加最 多?哪个过程中熵增加为零?正确的答案是: (A) 过程 AC 熵增加最多,过程 AD 熵增加为零. (B) 过程 AB 熵增加最多,过程 AC 熵增加为零. (C) 过程 AB 熵增加最多,过程 AD 熵增加为零. (D) 过程 AD 熵增加最多,过程 AB 熵增加为零. Γ ٦ 15. 理想气体绝热地向真空自由膨胀,体积增大为原来的两倍,则始、末两态的温度 T_1 与 T_2 和始、末两态气体分子的平均自由程 $\overline{\lambda}$ 与 $\overline{\lambda}$,的关系为 (A) $T_1 = 2T_2$, $\overline{\lambda}_1 = \overline{\lambda}_2$. (B) $T_1 = 2T_2$, $\overline{\lambda}_1 = \frac{1}{2}\overline{\lambda}_2$. (C) $T_1 = T_2$, $\overline{\lambda}_1 = \overline{\lambda}_2$. (D) $T_1 = T_2$, $\overline{\lambda}_1 = \frac{1}{2}\overline{\lambda}_2$ 一. 填空题(每题 1 分, 共 15 分) 1. 在容积为 $10^{-2}\,\mathrm{m}^3$ 的容器中,装有质量 $100\,\mathrm{g}$ 的气体,若气体分子的方均根 速率为 $200 \,\mathrm{m} \cdot \mathrm{s}^{-1}$,则气体的压强为 2. 一容器内储有某种气体, 若已知气体的压强为 3×10⁵ Pa, 温度为 27℃, 密 度为 0.24 kg/m³,则可确定此种气体是____气;并可求出此气体分子热运动 的最概然速率为 m/s.

3. 边长为 1 m 的立方箱子内盛有处于标准状态下的 3×10^{25} 个氧分子,此时氧分子的平均速率 \bar{v} = m/s. 若已知在单位时间内撞击在容器器壁单位面积

上的分子数是 $\frac{1}{4}n\overline{v}$ (其中 n 为分子数密度),计算 1 秒钟内氧分	子与箱子碰撞的次数
N = s ⁻¹ .	
4. 在无外力场作用的条件下,处于平衡态的气体分子按速度分布的 分布律来描述. 如果气体处于外力场中,气体分	
律,可用分布律来描述.	
5. 某系统由两种理想气体 $A \setminus B$ 组成. 其分子数分别为 $N_A \setminus N_B$.	若在某一温度下, A、
B 气体各自的速率分布函数为 $f_A(v)$ 、 $f_B(v)$,则在同一温度下,由 A	I、B 气体组成的系统
的速率分布函数为 $f(v)$ =	
6. 按照分子运动论的观点,气体中的扩散现象是由于分子热运动原	听引起的
输运;热传导现象是由于分子热运动所引起的输	j运; 粘滞现象
是由于分子热运动所引起的输运.	
7. 一定量的某种理想气体,先经过等体过程使其热力学温度升高,过等温过程使其体积膨胀为原来的 2 倍,则分子的平均碰撞频率 9 8. 如图所示,已知图中画不同斜线的两部分的面积分别为 9 9 9 9 9 9 9 9 9 9	更为原来的倍.
9. 若用气体状态参量(p 、 V 、 T)来表述一定量气体的内能,则有	Ī:
(1) 理想气体的内能是的单值函数;	
(2) 真实气体的内能是	的函数.
10. 刚性双原子分子的理想气体在等压下膨胀所作的功为 W,则传	送给气体的热量为
	自由度为 i), 在等压
$W/Q=$ $\Delta E/Q=$	
12. 一理想卡诺热机在温度为 300 K 和 400 K 的两个热源之间工作 (1) 若把高温热源温度提高 100 K,则其效率可提高为原来的 (2) 若把低温热源温度降低 100 K,则其逆循环的致冷系数将降	D

13. 有 ν 摩尔理想气体,作如图所示的循环过程 acba,其中 acb 为半圆弧,b-a 为等压线, $p_c=2p_a$. 令 气体进行 a-b 的等压过程时吸热 Q_{ab} ,则在此循环 过程中气体净吸热量

$$Q_{ab}$$
. (填入: $>$, $<$ 或 $=$)

14. 由绝热材料包围的容器被隔板隔为两半, 左边是理想气体, 右边真空, 如果

把隔板撤去,气体将进行自由膨胀过程,达到平衡后气体的温度_____(升高、降低或不变),气体的熵_____(增加、减小或不变).

- 15. 1 mol 理想气体在气缸中进行无限缓慢的膨胀, 其体积由 V_1 变到 V_2 .
- 一. 选择题(每题 1 分, 共 15 分)

1C 2B 3C 4B 5D 6A 7C 8A 9B 10B 11D 12B 13A 14C 15D

- 一. 填空题(每题 1 分, 共 15 分)
- 1. 1.33×10⁵ Pa 1分
- 2. 氢 0.5 分; 1.58×10³ 0.5 分
- 3. 425 0.5 分; 1.9×10^{28} 0.5 分
- 4. 麦克斯韦 0.5 分; 玻尔兹曼 0.5 分

5.
$$\frac{N_A f_A(\upsilon) + N_B f_B(\upsilon)}{N_A + N_B}$$
 1 $\not\!\!$

- 6. 质量 0.3 分; 动能 0.3 分; 定向动量 0.4 分
- 7. 1 1分
- 8. $S_1 + S_2$ 0.5 %; $-S_1$ 0.5 %
- 9. 温度 T 0.5 分; 温度 T 和体积 V (或温度 T 和压强 p) 0.5 分
- $10. \quad \frac{7}{2}W \qquad 1 \,$
- 11. $\frac{2}{i+2}$ 0.5 %; $\frac{i}{i+2}$ 0.5 %
- 12. 1.6 0.5 %; $\frac{1}{3}$ 0.5 %
- 13. < 1分
- 14. 不变 0.5分; 增加 0.5分
- 15. 0 0.5 %; $R \ln \frac{V_2}{V_1}$ 0.5 %