Упражнение 14 - Теория, задачи, решения

MC

28.05.2021

1 Пораждащи функции и трансформация на Лаплас-Стилтес

Нека $(\Omega, \mathfrak{A}, \mathbf{P})$ е вероятностно пространство на експеримент \mathcal{E} и $\mathfrak{S} = \mathfrak{S}(\Omega, \mathfrak{A}, \mathbf{P})$ е множеството на случайните величини върху $(\Omega, \mathfrak{A}, \mathbf{P})$.

Дефиниция 1.1. Нека $X \in \mathfrak{S}$ е случайна величина, приемаща цели неотрицателни стойности и нека $p_k = P(X = k), \ k = 0, 1, \dots$ Функцията

$$h_X(s) = \mathbf{E}s^X = \sum_{k=0}^{\infty} p_k s^k, \quad |s| \le 1,$$

се нарича пораждаща функция на X.

Редът дефиниращ $h_X(s)$ е абсолютно и равномерно сходящ в единичния кръг $|s| < 1, s \in \mathbb{C}$, понеже

$$\left|\sum_{k=0}^{\infty} p_k s^k\right| \le \sum_{k=0}^{\infty} p_k |s^k| \le \sum_{k=0}^{\infty} p_k = 1.$$

При предположенията и означенията на горната дефиниция, пресмятаме

$$\mathbf{E}X = \sum_{k=0}^{\infty} k p_k = h_X'(1), \quad \mathbf{D}X = h_X''(1) + h_X'(1) - (h_X'(1))^2.$$

Теорема 1.2. Ако $X_1, X_2, \ldots, X_n \in \mathfrak{S}$ са независи случайни величини с пораждащи функции h_1, h_2, \ldots, h_n , то за пораждащата функция h на $X = X_1 + X_2 + \cdots + X_n$ е в сила $h = \prod_{k=1}^n h_k$.

 ${\it Доказателство}$: Понеже $X_1,X_2,\ldots,X_n,$ то независими са и $s^{X_1},s^{X_2},\ldots,s^{X_n},$ откъдето

$$h(s) = \mathbf{E}s^X = \mathbf{E}s^{X_1}s^{X_2}\cdots s^{X_n} = \prod_{k=1}^n \mathbf{E}s^{X_k} = \prod_{k=1}^n h_k(s).$$

Теорема 1.3. Съществува биективно съответствие между неотрицателните целочислени разпределения и пораждащите им функции.

Доказателство: Две неотрицателните целочислени разпределения $p_k,\ q_k,\ k=0,1,\dots$ имащи една и съща пораждаща функция съвпадат, понеже $p_k=\frac{h_X^{(k)}(0)}{k!}$. Обратно, ако разпределенията съвпадат, то пораждащите им функции съвпадат.

Теорема 1.4. Съществува непрекъснато съответствие между неотрицателните целочислени разпределения и пораждащите им функции. Тоест, ако $\{X_n\}_{n=1}^{\infty}$ е редица от неотрицателните целочислени величини със съответни разпределения $\{p_k(n)\}_{n=1,k=0}^{\infty}$ и пораждащи функции $\{h_n(s)\}_{n=1}^{\infty}$, то условието

$$\lim_{n \to \infty} p_k(n) = p_k, \quad k = 0, 1, \dots$$

е еквивалентно на

$$\lim_{n \to \infty} h_n(s) = h(s), \quad \forall s \in [0, 1),$$

където
$$h(s) = \sum_{k=0}^{\infty} p_k s^k$$
.

За произволни неотрицателни случайни величини, вместо пораждащи функции в общия случай се разглежда трансформацията на Лаплас-Стилтес: $\xi \longmapsto \varphi_{\xi}(\lambda)$, където

$$\varphi_{\xi}(\lambda) = \mathbf{E}e^{-\lambda\xi} = \int_{\mathbb{R}^+} e^{-\lambda x} dF_{\xi}(x), \ \Re(\lambda) \ge 0.$$

Теорема 1.5. Съществува непрекъснато биективно съответствие между неотрицателните разпределения и трансформацията на Лаплас-Стилтес за тези разпределения.

Доказателство: Биективност на съответствието се доказва, като се използва формулата за обръщане:

$$F_{\xi}(x) = \lim_{\lambda \to \infty} \sum_{k < \lambda x} \frac{(-\lambda)^k}{k!} \varphi_{\xi}^{(k)}(\lambda).$$

Непрекъснатост на съотвествието означава, че редица от неотрицателни случайни величини е сходяща, тогава и само тогава, когато редицата от съответни Лаплас-Стилтес трансформации на тези случайни величини е сходяща към трансформацията на граничната случайна величина.

2 Характеристични функции

За произволни случайни величини, вместо пораждащи функции и трансформация на Лаплас-Стилтес в общия случай се разглеждат характеристични функции: $\xi \longmapsto \psi_{\xi}(t)$, където

$$\begin{split} \psi_{\xi}(t) &= \mathbf{E}e^{it\xi} = \int_{\mathbb{R}} e^{itx} dF_{\xi}(x), \ t \in \mathbb{R}. \\ e^{it\xi} &= \cos t\xi + i \sin t\xi \\ \Rightarrow \psi_{\xi}(t) &= \int_{\mathbb{R}} \cos tx dF_{\xi}(x) + i \int_{\mathbb{R}} \sin tx dF_{\xi}(x). \end{split}$$

Забележка 2.1. Ако ξ неотрицателна целочислена случайна величина, то $\psi_{\xi}(t)=h_{\xi}(e^{it})$. Ако $\xi\geq 0$, то $\psi_{\xi}(t)=\varphi_{\xi}(-it)$. Ако ξ е дискретна, то

$$\psi_{\xi}(t) = \sum_{k} e^{itx_k} p_k.$$

Нека $\eta = (\eta_1, \eta_2, \dots, \eta_n)$ има фунцкия на разпределени $F_{\eta}(x), x \in \mathbb{R}^n$. Многомерната характеристична функция на η се дефинира като:

$$\psi_{\eta}(t) = \psi_{\eta_1, \dots, \eta_n}(t_1, \dots, t_n) = \mathbf{E}e^{i(t, \eta)}$$

$$= \mathbf{E} e^{i\sum_{k=1}^{n} t_k \eta_k} = \int_{\mathbb{R}^n} e^{i(t,x)} dF_{\eta}(x).$$

Многомерните характеристични функции имат аналогични свойства, както и едномерните:

- 1) $|\psi_{\eta}(t)| \leq 1$, $\forall t \in \mathbb{R}^n$ и $\psi_{\eta}(0) = 1$;
- 2) $\psi_n(t)$ е равномерно непрекъсната по $t \in \mathbb{R}^n$;
- 3) Характеристичната функция на $\zeta = (\xi_1, \xi_2, \dots, \xi_m)$ при m < n се получава по следния начин: $\psi_{\xi_1, \xi_2, \dots, \xi_m}(t_1, \dots, t_m) = \psi_{\xi_1, \xi_2, \dots, \xi_n}(t_1, \dots, t_m, 0, \dots, 0)$.
 - 4) $\psi_{\xi_1,\xi_2,\dots,\xi_n}(\tau) = \psi_{\xi_1,\xi_2,\dots,\xi_n}(\tau,\tau,\dots,\tau);$
 - 5) По характеристична функция еднозначно се възтановява функцията на разпределение;
 - 6) $\xi_1, \xi_2, \dots, \xi_n$ са независими тогава и само тогава, когато

$$\psi_{\xi_1,\xi_2,...,\xi_n}(t_1,t_2,...,t_n) = \prod_{k=1}^n \psi_{\xi_k}(t_k).$$

Теорема 2.2. (Формула за обръщане) Нека ξ има функция на разпределени F(x) и характеристична функция $\psi(t)$. Тогава във всички точки на непрекъснатост x и y на F(x) е в сила:

$$F(x) - F(y) = \frac{1}{2\pi} \lim_{\sigma \to 0} \int_{\mathbb{R}} \frac{e^{-ity} - e^{-itx}}{it} \psi(t) e^{-\sigma^2 t^2} dt.$$

Теорема 2.3. (Непрекоснатост) Нека са дадени $F_n(x) = \mathbf{P}(\xi_n < x)$, $F(x) = \mathbf{P}(\xi < x)$ и $\psi_n(t) = \mathbf{E}e^{it\xi_n}$, $\psi(t) = \mathbf{E}e^{it\xi}$, $n = 1, 2, \ldots$ За сходимост (по разпределение) $F_n(x) \longrightarrow F(x)$ е необходимо и достаточно $\psi_n(t) \longrightarrow \psi(t)$, $\forall t \in \mathbb{R}$, кодето $\psi(t) = \mathbf{E}e^{it\xi}$.

3 Условия на задачите от упражнение 14

Задача 1 Нека ξ и η са независими случайни величини с плътности и характеристични функции съответно равни на $f_{\xi}, \varphi_{\xi}, f_{\eta}, \varphi_{\eta}$. Да се намерят характеристичните функции на $\xi \eta, \frac{\xi}{\eta}, \xi g(\eta)$, където $g: \mathbb{R} \to \mathbb{R}$ е интегруема по Лебег функция.

Задача 2 Да се намери характеристичната функция на $\eta = \xi_1 \xi_2 - \xi_3 \xi_4$, където случайните величини $\xi_k \in \mathcal{N}(0, \sigma^2), \ k = 1, 2, 3, 4$ са независими.

Задача 3 Нека случайната величина $\zeta = (\xi, \eta)$ има плътност

$$f_{\zeta}(x,y) = \frac{1}{\pi^2(1+x^2)(1+y^2)}, \ (x,y) \in \mathbb{R}^2.$$

Да се намерят характеристичните функции на ζ и ξ .

Задача 4 Каква е вероятността уравнението $x^2 + 2bx + c = 0$ да има два различни реални корена, ако b и c са независими случайни величини с разпределение $\text{Ex}(\lambda)$?

Задача 5 Нека $\xi \in \mathcal{N}(0,1)$ и $\eta = \xi^2 - 1$. Да се докаже, че за коефициентът на корелация е в сила $\rho(\xi,\eta) = 0$.

Задача 6 Нека случайните величини ξ_1,\dots,ξ_n са независими и еднакво разпределени, като $P(\xi_1=j)=\frac{1}{m},\ j=0,1,\dots,m-1.$ Означаваме $S_n=\xi_1+\dots+\xi_n$ и $q_m=P(S_n\leq m).$ Да се намерят пораждащата функция на S_n и функцията $\sum_{m\geq 0}q_mx^m.$

Задача 7 Нека $\xi_1, \xi_2 \in \mathcal{N}(\mu, \sigma^2)$ са независими случайни величини. Чрез характеристични функции, да се докаже, че случайните величини $\xi_1 + \xi_2$ и $\xi_1 - \xi_2$ са независими.

4 Решения на задачите от упражнение 14

Задача 1 Означаваме с $\varphi_{\xi\eta}$ характеристичната функция на $\xi\eta$, и нека съвместната плътност на (ξ,η) е $f_{\xi,\eta}(x,y)$. Понеже ξ и η са независими, то $f_{\xi,\eta}(x,y)=f_{\xi}(x)f_{\eta}(y)$.

$$\begin{split} \varphi_{\xi\eta}(t) &= \mathbf{E} e^{it\xi\eta} = \iint_{\mathbb{R}^2} e^{itxy} f_{\xi,\eta}(x,y) dx dy \\ &= \iint_{\mathbb{R}^2} e^{itxy} f_{\xi}(x) f_{\eta}(y) dx dy = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} e^{itxy} f_{\xi}(x) dx \right) f_{\eta}(y) dy \\ &= \int_{\mathbb{R}} \varphi_{\xi}(ty) f_{\eta}(y) dy. \end{split}$$

Аналогично пресмятаме

$$\begin{split} \varphi_{\xi\eta}(t) &= \int_{\mathbb{R}} \varphi_{\eta}(tx) f_{\xi}(x) dx, \\ \varphi_{\frac{\xi}{\eta}}(t) &= \int_{\mathbb{R}} \varphi_{\xi}\left(\frac{t}{y}\right) f_{\eta}(y) dy, \\ \varphi_{\xi g(\eta)}(t) &= \int_{\mathbb{D}} \varphi_{\xi}(tg(y)) f_{\eta}(y) dy. \end{split}$$

Задача 2 Понеже $\xi_k \in \mathcal{N}(0,\sigma^2)$, k=1,2,3,4 са независими, то независими са $\xi_1\xi_2$ и $\xi_3\xi_4$. Следователно

$$\varphi_{\eta}(t) = \mathbf{E}e^{it\eta} = \mathbf{E}e^{it\xi_1\xi_2}e^{-it\xi_3\xi_4} = \mathbf{E}e^{it\xi_1\xi_2}\mathbf{E}e^{-it\xi_3\xi_4} = \varphi_{\varepsilon_1\varepsilon_2}(t)\varphi_{\varepsilon_3\varepsilon_4}(-t).$$

Намираме $\varphi_{\xi_1\xi_2}$ използвайки задача 1 и полагайки за краткост $\alpha=\frac{\sigma}{\sqrt{\sigma^4t^2+1}}$:

$$\begin{split} \varphi_{\xi_1\xi_2}(t) &= \int_{\mathbb{R}} \varphi_{\xi_1}(ty) f_{\xi_2}(y) dy \\ &= \frac{1}{\sqrt{2\pi\sigma^2}} \int_{\mathbb{R}} e^{-\frac{\sigma^2 t^2 y^2}{2}} e^{-\frac{y^2}{2\sigma^2}} dy = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{\mathbb{R}} e^{-\frac{y^2}{2\alpha^2}} dy \\ &= \frac{\alpha}{\sigma} \frac{1}{\sqrt{2\pi\alpha^2}} \int_{\mathbb{R}} e^{-\frac{y^2}{2\alpha^2}} dy = \frac{\alpha}{\sigma} = \frac{1}{\sqrt{\sigma^4 t^2 + 1}}. \end{split}$$

От равенствата $\varphi_{\xi_1\xi_2}(t)=\varphi_{\xi_3\xi_4}(t)=\varphi_{\xi_3\xi_4}(-t)$ следва, че $\varphi_{\eta}(t)=\frac{1}{\sigma^4t^2+1}$.

Задача 3 Нека $\varphi_{\zeta}(t,s)$ е характеристичната функция на ζ . Пресмятаме

$$\varphi_{\zeta}(t,s) = \mathbf{E}e^{i(t\xi+s\eta)} = \iint_{\mathbb{R}} e^{i(tx+sy)} f_{\zeta}(x,y) dx dy$$
$$= \frac{1}{\pi^2} \int_{\mathbb{R}} \frac{e^{itx}}{1+x^2} dx \int_{\mathbb{R}} \frac{e^{isy}}{1+y^2} dy.$$

За пресмятането на интеграли от вида $\int_{\mathbb{R}} \frac{e^{itx}}{1+x^2} dx$ ще приложим следната теоремата:

Теорема 4.1. (Пресмятане на интеграли от вида $\int_{\mathbb{R}} e^{itx} f(x) dx, t \in \mathbb{R}$)

Нека f(z) е холоморфна, с изключение на краен брой полюси, нележащи върху реалната ос. Нека рестрикцията на f върху реалната права е абсолютно интегруема, тоест $\int_{\mathbb{R}} |f(x)| dx < \infty$. Ако $\lim_{|z| \to \infty} f(z) = 0$, то е в сила равенството

$$\int_{\mathbb{R}} e^{itx} f(x) dx = 2\pi i \operatorname{sign}(t) \sum \operatorname{Res} \left(f(z) e^{itz} \right),$$

където сумирането се извършва по всички полюси на f в горната полуравнина $\Im(z)>0$ при t>0, или по полюсите в $\Im(z)<0$ при t<0.

Прилагаме теорема 4.1 и получаваме: $\int_{\mathbb{R}} \frac{e^{itx}}{1+x^2} dx = \pi e^{-t}, \ t>0$ и $\int_{\mathbb{R}} \frac{e^{itx}}{1+x^2} dx = \pi e^t, \ t\leq 0$. Следователно

$$\int_{\mathbb{D}} \frac{e^{itx}}{1+x^2} dx = \pi e^{-|t|} \Rightarrow \varphi_{\zeta}(t,s) = e^{-|t|-|s|}, \quad \varphi_{\xi}(t) = \varphi_{\zeta}(t,0) = e^{-|t|}.$$

Задача 4 Ще използваме означенията $X=b,\ Y=c.$ Понеже X и Y са независими, то съвместната им плътност има вида:

$$f_{X,Y}(x,y) = \left\{ egin{array}{ll} \lambda^2 e^{-\lambda(x+y)}, & x>0, \ y>0 \ 0, & {
m B} \ {
m octahanute} \ {
m cлучаu} \end{array}
ight.$$

Уравнението има два различни реални корена, точно тогава, когато $X^2 > Y$. Нека

$$D = \{(x, y) \in \mathbb{R}^2 \mid x > 0, \ y > 0, \ x^2 > y\}.$$

Търсената вероятност е

$$P(X^{2} > Y) = \iint_{D} f_{X,Y}(x,y) dx dy = \iint_{D} \lambda^{2} e^{-\lambda(x+y)} dx dy$$

$$= \lambda^{2} \int_{0}^{\infty} \left(\int_{0}^{x^{2}} e^{-\lambda(x+y)} dy \right) dx = -\lambda \int_{0}^{\infty} \left(e^{-\lambda(x+y)} \Big|_{y=0}^{x^{2}} \right) dx$$

$$= -\lambda \int_{0}^{\infty} \left(e^{-\lambda(x^{2}+x)} - e^{-\lambda x} \right) dx = \lambda \left(\lambda^{-1} - e^{\frac{\lambda}{4}} \int_{0}^{\infty} e^{-\lambda(x+1/2)^{2}} dx \right)$$

$$= \lambda \left(\lambda^{-1} - \frac{e^{\frac{\lambda}{4}}}{\sqrt{2\lambda}} \int_{0}^{\infty} \exp\left(-\frac{\left[\sqrt{\frac{\lambda}{2}}(2x+1)\right]^{2}}{2} \right) d \left[\sqrt{\frac{\lambda}{2}}(2x+1)\right] \right)$$

$$= \lambda \left(\lambda^{-1} - \frac{e^{\frac{\lambda}{4}}}{\sqrt{2\lambda}} \int_{\sqrt{\lambda/2}}^{\infty} e^{-\frac{u^{2}}{2}} du \right) = \lambda \left(\lambda^{-1} - \frac{e^{\frac{\lambda}{4}}}{\sqrt{2\lambda}} \int_{-\infty}^{-\sqrt{\lambda/2}} e^{-\frac{u^{2}}{2}} du \right)$$

$$= 1 - e^{\frac{\lambda}{4}} \sqrt{\pi \lambda} \cdot \Phi\left(-\sqrt{\frac{\lambda}{2}} \right).$$

Задача 5 От $\xi \in \mathcal{N}(0,1)$ следва $\mathbf{E}\xi = 0, \ \mathbf{D}\xi = 1, \ \mathbf{D}\eta = \mathbf{D}(\xi^2 - 1) = \mathbf{D}\xi^2 > 0.$ Следователно

$$\mathbf{cov}(\xi,\eta) = \mathbf{E}\xi\eta - \mathbf{E}\xi\mathbf{E}\eta = \mathbf{E}\xi\eta = \mathbf{E}\xi(\xi^2 - 1) = \mathbf{E}\xi^3 = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} u^3 \exp\left(-\frac{u^2}{2}\right) du = 0,$$

понеже подинтегралната функция $f(u) = u^3 \exp\left(-\frac{u^2}{2}\right)$ е нечетна. Следователно

$$\rho(\xi, \eta) = \frac{\mathbf{cov}(\xi, \eta)}{\sqrt{\mathbf{D}\xi}\sqrt{\mathbf{D}\eta}} = 0.$$

Задача 6 Нека G(x) е пораждащата функция на S_n , а $g_i(x)$ $i=1,\ldots,n$, са пораждащите функции на ξ_i . Получаваме

$$g_i(x) = \sum_{k=0}^{m-1} P(\xi_i = k) x^k = \frac{1}{m} \sum_{k=0}^{m-1} x^k = \frac{1 - x^m}{m(1 - x)}.$$

Понеже ξ_1, \ldots, ξ_n са независими, от 1.2 следва

$$G(x) = \prod_{i=1}^{n} g_i(x) = \left(\frac{1 - x^m}{m(1 - x)}\right)^n.$$

За всяко цяло $k \geq 0$ дефинираме $\eta_k = S_n + k$ и нека $h_k(x)$ е пораждащата функция на η_k :

$$h_k(x) = \sum_{l=0}^{\infty} P(S_n + k = l)x^l = \sum_{l=0}^{\infty} P(S_n = l - k)x^l = \sum_{m=0}^{\infty} P(S_n = m)x^{m+k}$$

$$= x^k \sum_{m=0}^{\infty} P(S_n = m) x^m = x^k G(x).$$

Пресмятаме

$$\sum_{m\geq 0} q_m x^m = \sum_{m=0}^{\infty} P(S_n \leq m) x^m = \sum_{m=0}^{\infty} \sum_{k=0}^{\infty} P(S_n + k = m) x^m$$
$$= \sum_{k=0}^{\infty} \sum_{m=0}^{\infty} P(S_n + k = m) x^m = \sum_{k=0}^{\infty} h_k(x) = G(x) \sum_{k=0}^{\infty} x^k = \frac{(1 - x^m)^n}{m^n (1 - x)^{n+1}}.$$

Забележка 4.2. Смяна реда на сумиране в двойни редове: Ако $\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} a_{m,n}$ е абсолютно сходящ, то можем да извършим смяна на редът на сумиране:

$$\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} a_{m,n} = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_{m,n}.$$

Прилагайки тази забележка в задача 6, смяната реда на сумиране се обосновава чрез:

$$\sum_{m=0}^{\infty} \sum_{k=0}^{\infty} |P(S_n + k = m)x^m| \le \sum_{m=0}^{\infty} |x|^m = \frac{1}{1 - |x|}, \quad |x| < 1.$$

Задача 7 Нека $\varphi_{\xi_k}(t)$ е характеристичната функция на $\xi_k \in \mathcal{N}(\mu, \sigma^2), \ k=1,2$. Следователно

$$\varphi_{\xi_k}(t) = \mathbf{E}e^{it\xi_k} = \int_{\mathbb{R}} e^{itx} f_{\xi_k}(x) dx = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{\mathbb{R}} e^{itx} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$
$$= e^{i\mu t - \frac{\sigma^2 t^2}{2}}$$

Полагаме $X = \xi_1 - \xi_2$, $Y = \xi_1 + \xi_2$. Съгласно теорема 4.5 следва, че X и Y са независими, тогава и само тогава, когато $\varphi_{X,Y}(t,s) = \varphi_X(t)\varphi_Y(s)$. Пресмятаме

$$\varphi_{X}(t) = \mathbf{E}e^{it(\xi_{1} - \xi_{2})} = \mathbf{E}e^{it\xi_{1}}e^{-it\xi_{2}} = \mathbf{E}e^{it\xi_{1}}\mathbf{E}e^{-it\xi_{2}} = \varphi_{\xi_{1}}(t)\varphi_{\xi_{2}}(-t) = e^{-\sigma^{2}t^{2}}.$$

$$\varphi_{Y}(s) = \varphi_{\xi_{1} + \xi_{2}}(s) = \varphi_{\xi_{1}}(s)\varphi_{\xi_{2}}(s) = e^{2i\mu s - \sigma^{2}s^{2}}.$$

$$\varphi_{X,Y}(t,s) = \mathbf{E}e^{i[(\xi_{1} - \xi_{2})t + (\xi_{1} + \xi_{2})s]} = \mathbf{E}e^{i(t+s)\xi_{1}}e^{i(s-t)\xi_{2}}$$

$$= \mathbf{E}e^{i(t+s)\xi_{1}}\mathbf{E}e^{i(s-t)\xi_{2}} = \varphi_{\xi_{1}}(t+s)\varphi_{\xi_{2}}(s-t) = e^{2i\mu s - \sigma^{2}(t^{2} + s^{2})}.$$

Следователно е в сила равенството $\varphi_{X,Y}(t,s)=\varphi_X(t)\varphi_Y(s)$, откъдето X и Y са независими. По-горе използвахме, че ξ_1 и ξ_2 са независими, откъдето независими са $e^{i(t+s)\xi_1}$ и $e^{i(s-t)\xi_2}$ и съгласно теорема 4.4 получаваме $\mathbf{E}e^{it\xi_1}e^{-it\xi_2}=\mathbf{E}e^{it\xi_1}\mathbf{E}e^{-it\xi_2}$. За пресмятането на $\varphi_{X,Y}(t,s)$ използвахме следната дефиниция:

Дефиниция 4.3. Нека $X = (X_1, \dots, X_n)$ е n-мерна случайна величина. Характеристичната функция на X се дефинира чрез

$$\varphi_X(t_1, t_2, \dots, t_n) = \mathbf{E} \exp\left(i \sum_{k=1}^n t_k X_k\right).$$

Теорема 4.4. Нека X_1, \ldots, X_n са независими случайни величини от \mathfrak{S} . Тогава е в сила равенството

$$\mathbf{E}\left(\prod_{k=1}^{n} X_k\right) = \prod_{k=1}^{n} \mathbf{E} X_k.$$

Теорема 4.5. Нека $X_1, ..., X_n$ са случайни величини от $\mathfrak S$ съответно с характеристични функции $\varphi_1, ..., \varphi_n$. Необходимо и достатъчно условие $X_1, ..., X_n$ да бъдат независими е равенството:

$$\varphi_{X_1, X_2, \dots, X_n}(t_1, t_2, \dots, t_n) = \prod_{k=1}^n \varphi_k(t_k).$$

Теорема 4.6. Нека X_1, \ldots, X_n са независими случайни величини от $\mathfrak S$ съответно с характеристични функции $\varphi_1, \ldots, \varphi_n$. Тогава за характеристичната функция на $X_1 + X_2 + \cdots + X_n$ е в сила равенството:

$$\varphi_{{\scriptscriptstyle X_1+X_2+\cdots+X_n}}(t) = \prod_{k=1}^n \varphi_k(t).$$