Proyecto Beetles

Mariona Pajares y Estefanía Tobajas

2022-09-21

We used the metadata collected in the Bavarian Forest National Park in southeastern Germany, dominated by sub alpine forests of Picea abies. In a dead wood zone caused by the 2011 super German storm, 150 different species were monitored. Sampling season was conducted between May and September over four years (2008-2011).

The years passed but, did the forest restoration methods improved beetles richness?

First, let's calculate species richness by sampling site and year

```
rawdata <- read.csv("datos/rawdata_bet.csv")
rawdata$YEAR<-as.factor(rawdata$YEAR)

bet_sum<-rawdata %>%
   group_by(PLOT, YEAR) %>%
   summarise(n_species = n(),ABUNDANCE = sum(ABUNDANCE))%>%
   rename(plot=PLOT, year=YEAR, abundance= ABUNDANCE)
```

plot	year	n_species	abundance
FAE_1	2008	12	52
FAE_11	2008	28	94
FAE_16	2008	27	125
FAE_18	2008	27	123
FAE_2	2008	28	115
FAE_21	2008	33	214
FAE_24	2008	21	104
FAE_3	2008	26	50
FAE_4	2008	19	51
FAE_7	2008	28	116
FAE_9	2008	35	119
FKN_1	2008	31	86
FKN_12	2008	19	41
FKN_14	2008	33	94
FKN_15	2008	35	136
FKN_4	2008	24	53

FKN_5	2008	27	103
FKO_4	2008	33	86
FKO_6	2008	25	65
LAO_3	2008	13	20
LAW_18	2008	21	89
LAW_5	2008	22	50

Second, plot that nice data

Is there any differences in species richness by year?

```
##
## Call:
## lm(formula = n_species ~ year, data = bet_sum)
## Residuals:
##
       Min
                 1Q
                      Median
                                   ЗQ
  -21.0909 -4.5000 -0.6818
                               4.0341
                                       22.4091
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                25.773
                            1.689
                                   15.261 < 2e-16 ***
## year2009
                -1.682
                            2.388
                                   -0.704 0.48326
## year2010
                -7.364
                            2.388
                                   -3.083 0.00277 **
                -6.182
                            2.388 -2.588 0.01136 *
## year2011
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 7.921 on 84 degrees of freedom
## Multiple R-squared: 0.1347, Adjusted R-squared: 0.1038
## F-statistic: 4.36 on 3 and 84 DF, p-value: 0.006647
```

year effect plot

Posterior Predictive Check 0.06 0.04 0.02 0.00 Density

-10

Linearity

Model-predicted lines should resemble observed de Reference line should be flat and horizontal

20

30

40

50

Hemogeneity of Variance

0

10

Influential Observations Roints should be inside the contour lines

Mormality of Residuals

Mixed model with random = plot

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: n_species ~ year + (1 | plot)
##
     Data: bet_sum
##
## REML criterion at convergence: 593.1
## Scaled residuals:
       Min
           1Q
                    Median
                                 3Q
## -2.32520 -0.53554 -0.05196 0.40806 2.73103
##
## Random effects:
## Groups Name
                      Variance Std.Dev.
## plot (Intercept) 14.33
                             3.785
## Residual
                      48.42
                               6.958
## Number of obs: 88, groups: plot, 22
## Fixed effects:
##
              Estimate Std. Error t value
## (Intercept) 25.773
                       1.689 15.261
## year2009
               -1.682
                           2.098 -0.802
## year2010
               -7.364
                           2.098 -3.510
## year2011
               -6.182
                           2.098 -2.947
## Correlation of Fixed Effects:
       (Intr) yr2009 yr2010
## year2009 -0.621
## year2010 -0.621 0.500
## year2011 -0.621 0.500 0.500
```

year effect plot

Posterior Predictive Check Linearity Model-predicted lines should resemble observed de Reference line should be flat and horizontal Density 0.06 0.04 0.02 0.00 Residuals 20 0 40 15 20 n_species Fitted values Model-predicted data — Observed da Homogeneity of Variance Influential Observations Reference line should be flat and horizontal 1.5 1.0 0.5 0.0 15 20 25 3 Roints should be inside the contour lines Residu 20 10 0 10 Std. 30 0.00 0.05 0.10 Leverage (hii) Fitted values Mormality of Residuals Normality of Random Effects (plot)

30

80 8

0.15

