Question 2

Assume that the concerts in P are sorted by start time.

(a)

Let $S \subset P = \{(s_1, f_1)(s_2, f_2), ..., (s_n, f_n)\}$. Choose an arbitrary concert $C = (s_c, f_c) \in S$ and the concerts that overlap with it. Let O be the set of concerts from P that overlap with C. Specifically, for all concerts say $J = (s_j, f_j) \in P$, if $s_j < s_c$ and $f_j > s_c$, OR, if $s_j > s_c$ and $s_j < f_c$, then add concert J to O. Then, let $P' = P \setminus \{C \cup O\}$. Let $S' = S \setminus C$ and we are done since no concerts in S overlap with C, ie, $O \notin S'$ already. Then S' is the set of concerts from P' so that for all $(s_i', f_i') \in S'$, $f_i' < s_{i+1}'$, ie, no overlaps, where |S'| is maximal.

(b)

We will show that |S'| is maximal. Assume, in hopes of contradiction, that |S'| is not maximal, that is, there exists a set of pairs $T' \subset P'$, so that for every $(s_i', f_i') \in T'$, $f_i' < s_{i+1}'$, where |T'| > |S'|. Let $T = T' \cup C$, so |T| = |T'| + 1.

First, we will show that T is feasible for P. Since $P' = P \setminus \{C \cup O\}$, P' contains no pairs that overlap with C, so since $T' \subset P'$, it follows that T' contains no pairs that overlap with C either. Therfore, when unionizing C with T' to form T, there will be no overlapping, ie, for every $(s_i, f_i) \in T$, $f_i < s_{i+1}$. Thus, T is feasible for P.

Now, |T| = |T'| + 1 > |S'| + 1 = |S|, contradicting the fact that |S| is maximal. Thus, |S'| must be maximal.