		T	F
Nazwa	Symbol graficzny	Funkcja algebraiczna	Tablica prawdy
AND	A—————————————————————————————————————	F = A • B lub F = AB	AB F 0 0 0 0 1 0 1 0 0 1 1 1
OR	$A \longrightarrow F$	F = A + B	AB F 0 0 0 0 1 1 1 0 1 1 1 1
NOT	A————F	F = A'	A F 0 1 1 0
NAND	A—————————————————————————————————————	$F = (\overline{AB})$	AB F 0 0 1 0 1 1 1 0 1 1 1 0
NOR	A—————————————————————————————————————	$F = (\overline{A + B})$	AB F 0 0 1 0 1 0 1 0 0 1 1 0

RYSUNEK A.1. Podstawowe bramki logiczne

TABELA A.7. Tablica prawdy multipleksera 4 do 1

S2	S1	F
0	0	D0
0	1	D1
1	0	D2
1	1	D3

RYSUNEK A.12. Reprezentacja multipleksera 4 do 1

RYSUNEK A.13. Realizacja multipleksera

RYSUNEK A.15. Dekoder z trzema wejściami i $2^3 = 8$ wyjściami

RYSUNEK A.16. Dekodowanie adresu

RYSUNEK A.17. Realizacja demultipleksera za pomocą dekodera

RYSUNEK A.19. Przykład programowalnej tablicy logicznej: (a) PLA o 3 wejściach i 2 wyjściach; (b) schemat połączeń PLA o 3 wejściach i 2 wyjściach

RYSUNEK A.20. 64-bitowa pamięć ROM

TABELA A.9. Tablica prawdy dodawania binarnego

(a) Dodawanie pojedynczych bitów			(b) Dodawanie wraz z przeniesieniem					
A	В		Przeniesienie	C_{in}	Α	В	Suma	C_{out}
0	0	0	0	0	0	0	0	0
0	1	1	0	0	0	1	1	0
1	0	1	0	0	1	0	1	0
1	1	0	1	0	1	1	0	1
				1	0	0	1	0
				1	0	1	0	1
				1	1	0	0	1
				1	1	1	1	1

RYSUNEK A.21. Sumator 4-bitowy

RYSUNEK A.22. Realizacja sumatora

RYSUNEK A.23. Budowanie sumatora 32-bitowego za pomocą sumatorów 8-bitowych

RYSUNEK A.24. Przerzutnik S-R typu zatrzask zrealizowany za pomocą bramek NOR

TABELA A.10. Przerzutnik S-R

(a) Tablica własności					(b) Uproszczona tablica własności			
Bieżące wejścia		Stan bieżący Stan nas		astępny	S	R		Q_{n+1}
S	SR	Q_n	Q_n Q_{n+1} 0		0		Q_n	
(00	0	(C	0	1		Õ
(00	1		1	1	0		1
(01	0	(0	1	1		_
(01	1	()				
10		0		l				
1	10			1				
11		0		-				
11		1	_	_				
		(c) Odp	owiedź na sz	ereg sygnałów	wejściov	wych		
t	0	1 2	3	4 5	6	7	8	9
S	1	0 0	0	0 0	0	0	1	0
R	0	0 0	1	0 0	1	0	0	0
Q_{n+1}	1	1 1	0	0 0	0	0	1	1

RYSUNEK A.26. Synchronizowany przerzutnik S-R

RYSUNEK A.27. Przerzutnik D

RYSUNEK A.28. Przerzutnik J-K

Nazwa	Symbol graficzny	Tablica stanów			
	S Q	S	R	Q _{n+1}	
S-R	Ck	0	0	Q_n	
J-R	CK	0	1	0	
		1	0	1	
	$R \overline{Q}$	1	1	-	
	J Q	J	K	Q _{n+1}	
1 1/2		0	0	Q_n	
J-K	Ck	0	1	0	
		1	0	<u>1</u>	
	K Q	1	1	$\frac{0}{Q_n}$	
	D Q	D	Q_{n+1}		
D		0	0		
	Ck	1	1	;	
	$\overline{\mathbb{Q}}$			•	

RYSUNEK A.29. Podstawowe przerzutniki

RYSUNEK A.30. 8-bitowy rejestr równoległy