ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: TAHMİN

Hüseyin Taştan¹

¹Yıldız Teknik Üniversitesi İktisat Bölümü

Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

17 Fkim 2012

3

Çoklu Regresyon Modeli Örnekler

İki Açıklayıcı Değişkenli Model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

İki Açıklayıcı Değişkenli Ücret Denklemi

$$wage = \beta_0 + \beta_1 educ + \beta_2 exper + u$$

wage: saat başına ücretler (dolar); educ: eğitim düzeyi (yıl); exper: tecrübe düzeyi (yıl)

- ▶ Burada, β_1 , ücretleri etkileyen diğer tüm faktörleri sabit tuttuğumuzda, eğitimin ücretlere etkisini ölçer.
- \triangleright β_2 ise, benzer şekilde tecrübenin ücretlere ceteris paribus etkisini gösterecektir.
- ▶ Bu regresyonda tecrübeyi sabit (fixed) tutarak eğitimin ücretlere katkısını ölçebiliyoruz. Basit regresyonda bu olanak yoktu. Sadece *educ ile u ilişkisizdir* diye varsayıyorduk.

2

Çok Değişkenli Regresyon Analizi (Multiple Regression Analysis)

- ▶ Basit regresyonda kilit varsayım olan SLR.3 varsayımı çoğu zaman gerçekçi olmayan bir varsayımdır. SLR.3: *y*'yi etkileyen tüm diğer faktörler *x* ile ilişkisizdir (ceteris paribus).
- ▶ Çoklu regresyon analizinde bağımlı değişkeni (y) eşanlı (simultaneously) olarak etkileyen pek çok etkeni kontrol edebiliriz. Zira, çok sayıda açıklayıcı değişken (x) kullanabileceğiz.
- ▶ Modele yeni değişkenler ekleyerek y'deki değişmenin daha büyük bir kısmını açıklayabiliriz. Yani, y'nin tahmini için daha üstün modeller geliştirebiliriz.
- ► Çoklu regresyonda regresyonun biçimini (functional form) belirlemede çok daha geniş olanaklara sahip olacağız.

4

Çoklu Regresyon Modeli Örnekler

Sınav başarı notu ve aile geliri

$$avgscore = \beta_0 + \beta_1 expend + \beta_2 avginc + u$$

avgscore: ortalama sınav sonucu; expend: öğrencinin eğitim harcamaları; avgincome: ortalama aile geliri

- ► Eğer aile gelirini (avginc) regresyona doğrudan sokmaz isek, onu, *u*'nun içinde ele almış olacağız.
- Aile geliri öğrencinin harcaması (expend) ile yakından ilişkili olduğundan, bu halde, x (harcama) ile u ilişkili olacak ve kilit varsayımımız, SLR.3, ihlal edilecekti. Bu ise β_1 'in sapmalı (biased) tahmin edilmesine yol açacaktı.
- Avginc değişkenini modele ekleyerek onu doğrudan kontrol etme olanağına kavuştuk.

5

Çoklu Regresyon Analizi

- ► Çoklu regresyon, modelin fonksiyonel biçimini genelleştirmeye izin verir.
- ► Ailelerin tüketimini (consumption) gelirlerinin (income) karesel (quadratic) bir fonksiyonu olarak ifade edelim:

$$cons = \beta_0 + \beta_1 inc + \beta_2 inc^2 + u$$

- ▶ Burada $x_1 = inc$ ve $x_2 = inc^2$
- ▶ Bu regresyonda β_1 'in yorumu farklı olacaktır. Çünkü, gelirin karesini (inc^2) sabit tutarak gelirin tüketim üzerindeki etkisini ölçemeyiz. Gelir değişirse karesi de değişir.
- Burada gelirdeki bir birim değişmenin tüketim üzerindeki etkisi, yani marjinal tüketim eğilimi (marginal propensity to consume) şuna eşittir:

$$\frac{\Delta cons}{\Delta inc} \approx \beta_1 + 2\beta_2 inc$$

Marjinal tüketimi gelir düzeyine bağlıdır.

7

Çoklu Regresyon Modeli Örnekler

İki Açıklayıcı Değişkenli Model: u'nun x'lerle ilişkisiz olması

$$\mathsf{E}(u|x_1, x_2) = 0$$

► Test sonuçları ve ailenin geliri modelinde bu varsayım

$$E(u|expend, avginc) = 0$$

- Yani, test skorlarını etkileyen diğer faktörler (okula ya da öğrenciye özgü karakteristikler vs.), ortalama olarak, expend ve avginc değişkenleriyle ilişkisizdir.
- ► Karesel tüketim fonksiyonunda bu varsayım:

$$E(u|inc, inc^2) = E(u|inc) = 0$$

▶ Burada inc biliniyorken inc^2 otomatik olarak bilineceğinden ayrıca koşullu beklenti içinde yazmaya gerek yoktur.

6

Çoklu Regresyon Modeli Örnekler

İki Açıklayıcı Değişkenli Model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

▶ İki açıklayıcı değişkenli modelde, "u'nun x'lerle ilişkisiz olması" varsayımını şu şekilde formüle edeceğiz:

$$\mathsf{E}(u|x_1, x_2) = 0$$

- ➤ Yani, x_1 ve x_2 'nin kitledeki (population) tüm kombinasyonları için u'nun beklenen değeri sıfırdır.
- Örneğin iki değişkenli ücret denkleminde

$$E(u|educ, exper) = 0$$

- ▶ Bu ücretleri etkileyen diğer faktörlerin (u) ortalama olarak educ ve exper ile ilişkisiz olduğu anlamına gelir.
- ▶ Örneğin, doğuştan gelen yetenek (ability) u'nun bir parçası ise, ortalama yetenek düzeyi, çalışanlar kesiminde eğitim ve tecrübenin tüm kombinasyonlarında aynıdır (sabittir).

8

k Açıklayıcı Değişkenli Regresyon Modeli

Model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + u$$

- ightharpoonup Bu modelde k açıklayıcı değişken, k+1 bilinmeyen β parametresi vardır.
- ► Hata terimi, daha önce tanımlandığı gibi, x'ler dışında modele dahil edilmemiş tüm faktörlerin ortak etkisini temsil etmektedir.
- ► Modele ne kadar çok x değişkeni eklenirse eklensin dışarıda bırakılmış ya da gözlenemeyen faktörler her zaman olacaktır.

k Açıklayıcı Değişkenli Regresyon Modeli

- ▶ Herhangi bir parametre, β_j diyelim, diğer x'ler ve u'da içerilen faktörler sabitken ($\Delta u = 0$), x_j 'deki bir birimlik değişmenin y'de yaratacağı değişmeyi gösterir.
- Ancak x'ler arasında doğrusal olmayan özellik varsa bu yorum değişir. Örneğin aşağıdaki modeli düşünelim:

 $\log(salary) = \beta_0 + \beta_1 \log(sales) + \beta_2 ceoten + \beta_3 ceoten^2 + u$

ceoten: yöneticinin aynı işyerinde çalışma süresi (yıl), kıdemi (tenure)

- ▶ Burada β_1 maaşların satış esnekliğidir. Diğer herşey sabitken (ceteris paribus), satışlarda meydana gelen %1 artışın yönetici maaşlarında yaratacağı yüzde değişmedir
- ightharpoonup Ancak eta_2 kıdemde bir yıl artış olduğunda maaşlarda ortaya çıkan yüzde değişimi göstermez. Karesel terimi de dikkate almak zorundayız.

11

k Açıklayıcı Değişkenli Regresyon Modeli: SEKK-OLS Tahmini

Örneklem Regresyon Fonksiyonu - SRF

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \ldots + \hat{\beta}_k x_k$$

Sıradan En Küçük Kareler (Ordinary Least Squares - OLS) tahmin edicileri kalıntı kareleri toplamını (SSR) en küçük yapar:

OLS amaç fonksiyonu

$$\sum_{i=1}^{n} \hat{u}_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i1} - \hat{\beta}_{2}x_{i2} - \dots - \hat{\beta}_{k}x_{ik})^{2}$$

Birinci sıra koşullarından elde edilen k+1 denklemin çözümünden OLS tahmin edicileri $\hat{\beta}_i$ 'ler bulunur.

10

k Açıklayıcı Değişkenli Regresyon Modeli

Sıfır Koşullu Ortalama Varsayımı

$$\mathsf{E}(u|x_1,x_2,\ldots,x_k)=0$$

- ▶ Bu varsayım hata teriminin açıklayıcı değişkenlerle ilişkisiz olduğunu söylemektedir.
- ► Eğer *u x*'lerden biriyle ilişkiliyse OLS tahmin edicileri sapmalı (biased) olur. Bu durumda tahmin sonuçları güvenilir olmaz.
- ▶ İhmal edilmiş, yani dışarıda bırakılmış önemli bir değişken varsa, bu varsayım sağlanmayabilir. Bu da sapmaya yol açacaktır.
- ▶ Bu varsayım aynı zamanda fonksiyon kalıbının da doğru kurulduğu anlamına gelir.

12

k Açıklayıcı Değişkenli Regresyon Modeli: SEKK-OLS Tahmini

OLS Birinci Sıra Koşulları

$$\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} - \dots - \hat{\beta}_k x_{ik}) = 0$$

$$\sum_{i=1}^{n} x_{i1} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} - \dots - \hat{\beta}_k x_{ik}) = 0$$

$$\sum_{i=1}^{n} x_{i2} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} - \dots - \hat{\beta}_k x_{ik}) = 0$$

$$\vdots \quad \vdots \quad \vdots$$

$$\sum_{i=1}^{n} x_{ik} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} - \dots - \hat{\beta}_k x_{ik}) = 0$$

k Açıklayıcı Değişkenli Regresyon Modeli: SEKK-OLS Tahmini

OLS ve Momentler Yöntemi

OLS birinci sıra koşulları aşağıdaki popülasyon moment koşullarının örnekleme karşılıkları olarak düşünülebilir:

$$E(u) = 0$$

$$E(x_1u) = 0$$

$$E(x_2u) = 0$$

$$\vdots \vdots \vdots$$

$$E(x_ku) = 0$$

Örneklem moment koşullarının (OLS birinci sıra koşulları) tek çözüm vermesi için gerekli varsayımları daha sonra inceleyeceğiz.

15

Örnek: Üniversite Başarısını Belirleyen Faktörler, gpa1.gdt

colGPA Tahmin Sonuçları

$$\widehat{colGPA} = 1.29 + 0.453 \ hsGPA + 0.0094 \ ACT$$

n=141 öğrenci, colGPA: üniversite genel not ortalaması (4 üzerinden puan), hsGPA: lise not ortalaması, ACT: genel yetenek sınav sonucu

- Sabit terim $\hat{\beta}_0=1.29$ olarak tahmin edilmiş. hsGPA=0 ve ACT=0 olduğunda modelce tahmin edilen üniversite başarı notu. Ancak örneklemde lise not ortalaması ve ACT puanı 0 olan öğrenci olmadığından yorumlanması anlamsız.
- ▶ ACT'ı sabit tutarak lise GPA notunu 1 puan artırdığımızda üniversite GPA'sı yarım puana yakın (0.453) artıyor. ACT notu aynı olan iki öğrenciden lise GPA'sı yüksek olanın üniversite GPA'sı da yüksek olacaktır.
- ► ACT'ın işareti +'dır ancak katsayısı çok küçük olduğu için etkisi fazla değil.

14

Regresyonun Yorumu

İki Açıklayıcı Değişkenli Durum

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$$

- Eğim parametre tahminleri, $\hat{\beta}_j$, açıklayıcı değişkenlerin y üzerindeki kısmi ya da ceteris paribus etkilerini verir.
- $\hat{\beta}_1$ 'nın yorumu: x_2 sabitken, yani $\Delta x_2 = 0$

$$\Delta \hat{y} = \hat{\beta}_1 \Delta x_1$$

• Benzer şekilde x_1 sabitken $\hat{\beta}_2$ 'nın yorumu

$$\Delta \hat{y} = \hat{\beta}_2 \Delta x_2$$

16

Örnek: Üniversite Başarısını Belirleyen Faktörler, gpa1.gdt

► Sadece *ACT* notunu alarak basit regresyon tahmin etseydik şöyle olacaktı:

colGPA Basit Regresyon Tahmin Sonuçları

$$\widehat{colGPA} = 2.4 + 0.0271 \ ACT$$

- ► *ACT*'ın katsayısı önceki çoklu regresyonda bulunandan 3 kat daha yüksek çıktı.
- ► Ancak, bu regresyon, bize, lise *GPA*'sı aynı iki öğrenciyi karşılaştırma olanağı vermiyor. Önceki regresyon veriyordu.
- ightharpoonup Lise not ortalamasını kontrol ettiğimizde ACT puanının önemi azalıyor.

k Değişkenli Modelin Yorumu

SRF - Örneklem Regresyon Fonksiyonu

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \ldots + \hat{\beta}_k x_k.$$

Değişimler Cinsinden

$$\Delta \hat{y} = \hat{\beta}_1 \Delta x_1 + \hat{\beta}_2 \Delta x_2 + \ldots + \hat{\beta}_k \Delta x_k.$$

▶ x_1 değişkeninin katsayısı $\hat{\beta}_1$ 'nın yorumu: diğer değişkenler sabitken, yani $\Delta x_2 = 0, \ \Delta x_3 = 0, \ \dots, \ \Delta x_k = 0$

$$\Delta \hat{y} = \hat{\beta}_1 \Delta x_1$$

- ▶ Diğer tüm değişkenler sabitken x_1 'de meydana gelen 1 birim değişmenin y'de meydana getireceği ortalama değişim $\hat{\beta}_1$ kadardır (y'nin birimi cinsinden).
- Diğer katsayı tahminleri de benzer şekilde yorumlanır.

19

Diğer Değişkenleri Sabit Tutmanın Anlamı

- Çoklu regresyonda beta katsayılarını ceteris paribus koşulu altında bağımsız değişkenlerin y üzerindeki kısmi etkileri (partial effects) olarak yorumluyoruz.
- ightharpoonup Örneğin, yukarıdaki regresyonda, $\hat{eta}_1=0.092$, tecrübe ve kıdemi aynı olan iki işçiden eğitimi 1 yıl fazla olanının %9.2 daha yüksek ücret alacağı şeklinde yorumlandı.
- ▶ Bu yorum, verinin bu şekilde toplandığı anlamına gelmez. Veri (data) rassal seçilmiş 526 işçiye ait ücret, eğitim ve kıdem bilgilerinden oluşuyor. Kıdemi ve tecrübesi aynı olan işçileri ayrıca gruplandırmıyoruz.
- Aslında kıdemleri aynı olan işçilerden oluşan bir örneklem olsaydı kıdem değişkenini modele koymaya gerek kalmazdı.
- Ancak uygulamada çoğunlukla bu mümkün değildir. Çoklu regresyon analizinde zaten buna gerek yoktur.

18

Örnek: Logaritmik Ücret Denklemi

Tahmin Sonuçları

$$\widehat{log\ Ucret} = 0.284 + 0.092\ egitim + 0.0041\ tecrube + 0.022\ kidem$$

n=526 çalışan

- ► Katsayı tahminleri *ceteris paribus* yorumlanmalı.
- ▶ Bağımlı değişken logaritmik, açıklayıcı değişkenler kendi ölçü birimleriyle modelde yer aldığından (log-level) katsayı tahminleri 100 ile çarpılarak % olarak yorumlanmalı.
- ➤ Örneğin, tecrübe ve kıdem sabit tutulduğunda eğitim bir yıl arttırıldığında ücretler ortalama % 9.2 artmaktadır.
- ▶ Başka bir ifadeyle, tecrübe ve kıdem düzeyleri aynı olan iki çalışandan birinin eğitim düzeyi diğerinden bir yıl fazlaysa, bu iki çalışan için tahmin edilen ücret farkı ortalama % 9.2'dir.
- Burada somut iki işçiden değil ortalama durumdan bahsedilmektedir.

20

Birden Fazla Değişkeni Aynı Anda Değiştirmek

- ▶ Bazen x'lerden birkaçını birden değiştirererk y'de meydana gelen değişimi ölçmek isteriz.
- ▶ Bazı durumlarda da x'lerden biri değiştirildiğinde diğeri otomatik olarak değişir.
- ▶ Örneğin ücret denkleminde kıdemi 1 yıl arttırdığımızda tecrübe de otomatik olarak 1 yıl artar.
- ▶ Bu durumda ikisinin ücret üzerindeki etkisi % 2.61 olur:

$$\Delta log \ \widehat{Ucret} = 0.0041 \Delta tecrube + 0.022 \Delta kidem$$
$$= 0.0041 + 0.022 = 0.0261$$

Tahmin Edilen Değerler ve Kalıntılar

inci gözlem için tahmin edilen y değerleri (fitted/predicted values)

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \ldots + \hat{\beta}_k x_{ik}.$$

Kalıntılar (Residuals)

$$\hat{u}_i = y_i - \hat{y}_i$$

- ➤ x değerlerini tahmin edilen regresyon denkleminde yerine koyarsak modelce tahmin edilen y değerlerine ulaşırız.
- ► Gözlenen y değerleriyle modelce tahmin edilen değerler arasındaki fark kalıntıları verir.
- $\hat{u} > 0$ ise $y_i > \hat{y}_i$, eksik tahmin (underprediction)
- $\hat{u} < 0$ ise $y_i < \hat{y}_i$, fazla tahmin (overprediction)

23

Katsayı Tahminlerinin Alternatif Türetimi

İki değişkenli model

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2.$$

▶ Burada x_1 'in eğim katsayısının tahmincisi:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n \hat{r}_{i1} y_i}{\sum_{i=1}^n \hat{r}_{i1}^2}$$

▶ Burada \hat{r}_{i1} , x_1 'in x_2 üzerine regresyonundan elde edilen kalıntılardır:

$$x_{i1} = \hat{\alpha}_0 + \hat{\alpha}_1 x_{i2} + \hat{r}_{i1}$$

▶ Öyleyse $\hat{\beta}_1$, y'nin kalıntılar üzerine regresyonundan elde edilen eğim katsayısıdır:

$$y_i = \hat{\beta}_0 + \hat{\beta}_1 r_{i1} + kal_1 nt_1$$

 Ceteris paribus yorumunun başka bir versiyonu. (partialling out, netting out) 22

Kalıntı Terimlerinin Cebirsel Özellikleri

► OLS kalıntılarının toplamı ve dolayısıyla da örnek ortalaması sıfıra eşittir:

$$\sum_{i=1}^{n} \hat{u}_i = 0, \qquad \bar{\hat{u}} = 0$$

Bu birinci örneklem moment koşulunun sonucudur.

ightharpoonup Açıklayıcı değişken x_j ile kalıntı terimleri arasındaki örneklem kovaryansı sıfırdır:

$$\sum_{i=1}^{n} x_{ij} \hat{u}_i = 0, \quad j = 1, 2, \dots, k$$

Bu da diğer moment koşullarının bir sonucudur (bkz. OLS birinci sıra koşulları). Kalıntılarla açıklayıcı değişkenlerin ilişkisizliği empoze edilmiştir.

- $(\bar{x_j}, \bar{y}: j=1,2,\ldots,k)$ noktası daima OLS regresyon doğrusu üzerine düşer.
- $\bar{y} = \bar{\hat{y}}$

24

Basit ve Çoklu Regresyon Tahminlerinin Karşılaştırılması

Basit ve İki değişkenli model

$$\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1, \quad vs. \quad \hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2.$$

- ► Yukarıdaki regresyonlar genellikle farklı sonuçlar verir.
- ► Ancak şu iki durumda eğim katsayıları aynı olur:
- x_2 'inin y üzerindeki kısmi etkisi sıfırdır, $\hat{\beta}_2 = 0$
- ightharpoonup Örneklemde x_1 ve x_2 ilişkisizdir.

Kareler Toplamları (Sum of Squares)

▶ SST y'deki toplam değişkenliği verir.

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Var(y) = SST/(n-1) olduğuna dikkat ediniz.

▶ Benzer şekilde SSE modelce açıklanan kısımdaki değişkenliği verir.

$$SSE = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

▶ SSR ise kalıntılardaki değişkenliğin bir ölçütüdür.

$$SSR = \sum_{i=1}^{n} \hat{u}_i^2$$

▶ y'deki toplam değişkenlik aşağıdaki gibi yazılabilir:

$$SST = SSE + SSR$$

27

Uyum İyiliği (Goodness-of-fit)

► Determinasyon katsayısı:

$$R^2 = \frac{SSE}{SST} = 1 - \frac{SSR}{SST}$$

- Regresyona yeni bir x eklendiğinde \mathbb{R}^2 her zaman artar ya da aynı kalır.
- ▶ Bunun sebebi yeni bir değişken eklendiğinde *SSR*'nin her zaman azalmasıdır.
- ightharpoonup Bu nedenle yeni bir değişkenin katkısının belirlenmesinde R^2 iyi bir ölçüt değildir.
- ▶ Bunun için düzeltilmiş R^2 (adjusted R^2) kullanılır.

26

Uyum İyiliği (Goodness-of-fit)

▶ Bu ifadenin her iki tarafını SST'ye bölersek:

$$1 = \frac{SSE}{SST} + \frac{SSR}{SST}$$

ightharpoonup Açıklanan kısmın değişkenliğinin toplam değişkenlik içindeki payı regresyonun determinasyon (belirlilik) katsayısıdır ve R^2 ile gösterilir:

$$R^2 = \frac{SSE}{SST} = 1 - \frac{SSR}{SST}$$

- \blacktriangleright SSE hiç bir zaman SST'den büyük olamayacağı için $0 \le R^2 \le 1$
- $ightharpoonup R^2$ y'deki değişkenliğin x tarafından açıklanan kısmının yüzdesini verir. Regresyonun açıklama gücü yükseldikçe R^2 1'e yaklaşır.
- $ightharpoonup R^2$ şu şekilde de hesaplanabilir: $R^2 = Corr(y, \hat{y})^2$

28

Uyum İyiliği (Goodness-of-fit): Örnek

Basit ve İki değişkenli model

$$\widehat{colGPA} = 1.29 + 0.453 \ hsGPA + 0.0094 \ ACT$$

$$n = 141 \quad R^2 = 0.176$$

- ▶ Burada determinasyon katsayısı 0.176 olarak tahmin edilmiştir.
- ▶ Üniversite GPA notlarındaki değişkenliğin yaklaşık %17.6'sı hsGPA ve ACT değişkenleriyle açıklanabilmektedir.
- ▶ Dışarıda bırakılan birçok faktör olduğundan üniversite başarısının küçük bir kısmı açıklanabilmiştir.
- ▶ Üniversite başarısını etkileyen bu modelde yer almayan başka birçok değişken olduğu unutulmamalıdır.

Orijinden Geçen Regresyon

x'ler 0 olduğunda tahmin edilen y değeri 0

$$\tilde{y} = \tilde{\beta}_1 x_1 + \tilde{\beta}_2 x_2 + \ldots + \tilde{\beta}_k x_k.$$

- ▶ Regresyonda sabit terim olmadığına dikkat ediniz.
- ▶ R^2 negatif çıkabilir. Bu durumda R^2 0 kabul edilir ya da regresyona sabit terim konarak yeniden tahmin yapılır.
- ▶ R^2 'nin negatif çıkması, y'nin örneklem ortalamasının (\bar{y}) y'deki değişkenliği açıklamada modeldeki değişkenlerden daha başarılı olduğu anlamına gelir.
- ► Eğer PRF'de sabit terim sıfırdan farklı ise, orijinden geçen regresyonun OLS tahmincileri sapmalı olur.
- ➤ Sabit terim sıfır olduğu halde sıfır değilmiş gibi regresyona dahil etmek ise regresyonun varyansını yükseltir ve OLS tahmincilerinin değişkenliğini arttırır.

31

OLS Tahmincilerinin Sapmasızlığı için Gerekli Varsayımlar

MLR.3 Sıfır Koşullu Ortalama

$$\mathsf{E}(u|x_1,x_2,\ldots,x_k)=0$$

- ▶ Bu varsayım *x* açıklayıcı değişkenlerinin kesin dışsal olduğunu söyler. Hata terimiyle açıklayıcı değişkenler ilişkisizdir.
- ▶ Bu varsayımın sağlanamadığı durumlar nelerdir?
- ► Bunlardan biri regresyonun fonksiyon kalıbının yanlış kurulmasıdır (functional form misspecification)
- Önemli bir değişkenin regresyon dışında bırakılması da bu varsayımı zedeler (omitted variable)
- Açıklayıcı değişkenlerde yapılan ölçme hataları bu varsayımın ihlaline yol açar (measurement error)
- ▶ Bu varsayım sağlanmıyorsa içsel değişkenler (endogenous variables) sözkonusudur.

30

OLS Tahmincilerinin Sapmasızlığı için Gerekli Varsayımlar

MLR.1 Parametrelerde Doğrusallık

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + u$$

Model parametrelerde doğrusaldır. u rassal hata terimidir.

MLR.2 Rassal Örnekleme

Elimizde MLR.1 ile tanımlanan popülasyondan çekilmiş n gözlemli bir rassal örneklem vardır:

$$\{(x_{i1}, x_{i2}, \dots, x_{ik}, y_i) : i = 1, 2, \dots, n\}$$

32

OLS Tahmincilerinin Sapmasızlığı için Gerekli Varsayımlar

MLR.4 Tam Çoklu Bağıntının Olmaması

Bu varsayım x açıklayıcı değişkenleri arasında tam doğrusal bir ilişkinin olmaması gerektiğini söyler. Herhangi bir x diğer x'lerin lineer bir kombinasyonu olarak yazılamaz.

- ▶ Bu varsayım x'lerin birbirleriyle ilişkili olmasına izin verir. İzin verilmeyen tam korelasyonun olmamasıdır.
- ➤ x'ler tam ilişkili olursa OLS katsayılarının tahmini matematiksel olarak mümkün olmaz. (katsayılar belirsiz olur).
- ▶ Bu varsayıma göre açıklayıcı değişkenler ilişkili (correlated) olabilirler. x'ler arasında korelasyona izin vermezsek çoklu regresyondan istediğimiz faydayı alamayız.
- Örneğin, öğrenci notları, harcamaları ve aile geliri regresyonunda aile geliri (avginc) ile harcama (expend) arasında ilişki olduğunu bilerek bu değişkenleri modele sokuyoruz. Amaç geliri kontrol etmek.

OLS tahmincilerinin sapmasızlığı

TEOREM: $\hat{\beta}$ 'ların Sapmasızlığı

MLR.1-MLR.4 varsayımları altında OLS tahmin edicileri sapmasızdır:

$$\mathsf{E}(\hat{\beta}_i) = \beta_i, \quad j = 0, 1, 2, \dots, k$$

Sapmasızlık OLS tahmin edicilerinin örnekleme dağılımlarının orta noktasının (beklentisinin) bilinmeyen popülasyon parametrelerine eşit olduğunu söyler.

35

Modele Gereksiz Açıklayıcı Değişken Eklenmesi

▶ Bu durumda SRF (Örneklem Regresyon Fonksiyonu - ÖRF)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3$$

▶ OLS tahmin edicileri hala sapmasızdır:

$$\mathsf{E}(\hat{\beta}_0) = \beta_0, \ \ \mathsf{E}(\hat{\beta}_1) = \beta_1, \ \ \mathsf{E}(\hat{\beta}_2) = \beta_2, \ \ \mathsf{E}(\hat{\beta}_3) = 0,$$

- Gereksiz eklenen değişkenin katsayısının doğru değeri 0'dır. Bu değişkenin bir açıklayıcılığı olmadığından OLS tahmincilerinin beklenen değeri de 0 olacaktır.
- ▶ OLS tahmincileri hala sapmasız olsa da regresyonun varyansı yükselir. Sonuç olarak tahmin edicilerin de varyansları (ve standart hataları) yüksek çıkacaktır.

34

Modele Gereksiz Açıklayıcı Değişken Eklenmesi

- ► Modele gerekli olmadığı halde bir açıklayıcı değişken eklersek OLS tahmini bundan nasıl etkilenir?
- ▶ Modele gereksiz bir değişken eklenmesi PRF'de bu değişkenin kısmi etkisinin sıfır olduğu anlamına gelmektedir. Model fazla kurulmuştur (overspecification).
- ▶ Örneğin aşağıdaki regresyonda x_3 'ün kısmi etkisinin sıfır olduğunu varsayalım, $\beta_3 = 0$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u$$

► Koşullu beklentisini alırsak

$$\mathsf{E}(y|x_1, x_2, x_3) = \mathsf{E}(y|x_1, x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

▶ Bu PRF'nin bilinmediğini, araştırmacının modele x_3 'ü katsayısı 0 olduğu halde eklediğini varsayıyoruz.

36

Gerekli Bir Değişkenin Model Dışında Bırakılması (Omitted Variable)

- ► Modelde yer alması gerektiği halde bir değişkeni dışlarsak OLS tahmini bundan nasıl etkilenir?
- ► Gerekli bir değişkenin modelden dışlanması PRF'de bu değişkenin kısmi etkisinin sıfır olmadığı anlamına gelmektedir. Model eksik kurulmuştur (underspecification).
- ▶ Bu durumda OLS tahmin edicileri sapmalı olur.
- ► Örneğin MLR.1-MLR.4 varsayımları sağlansın ve PRF iki açıklayıcı değişken içersin:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

▶ x₂ değişkenini gözleyemediğimiz için model dışında bıraktığımızı düşünelim. Bu durumda SRF

$$\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1$$

• x_1 katsayı tahmincisi $\tilde{\beta}_1$ hala sapmasız mıdır?

Gerekli Bir Değişkenin Model Dışında Bırakılması (Omitted Variable)

 Dışarıda bırakılan değişkenin etkisi hata teriminin içinde yer alacaktır:

$$y = \beta_0 + \beta_1 x_1 + \nu$$

• Gerçek model (PRF) x_2 'yi içermektedir. Bu nedenle hata terimi ν

$$\nu = \beta_2 x_2 + u$$

▶ Yukarıdaki modelde β_1 'in OLS tahmincisi:

$$\tilde{\beta}_1 = \frac{\sum_{i=1}^n (x_{i1} - \bar{x}_1) y_i}{\sum_{i=1}^n (x_{i1} - \bar{x}_1)^2}$$

Sapmanın boyutunu belirlemek için $\tilde{\beta}_1$ formülünde y yerine PRF'yi yazıp, yeniden düzenleyerek beklentisini alıyoruz.

39

Gerekli Bir Değişkenin Model Dışında Bırakılması

$$E(\tilde{\beta}_1) = \beta_1 + \beta_2 \left(\frac{\sum (x_{i1} - \bar{x}_1) x_{i2}}{\sum (x_{i1} - \bar{x}_1)^2} \right)$$

 β_2 'nin sağında yer alan parantez içindeki ifade x_2 'nin x_1 üzerine regresyonundan elde edilen eğim katsayısıdır:

$$\tilde{x}_2 = \tilde{\delta}_0 + \tilde{\delta}_1 x_1$$

Böylece

$$E(\tilde{\beta}_1) = \beta_1 + \beta_2 \tilde{\delta}_1$$
$$sapma = E(\tilde{\beta}_1) - \beta_1 = \beta_2 \tilde{\delta}_1$$

olur. Buna **dışlanmış değişken sapması** (omitted variable bias) adı verilir.

38

Gerekli Bir Değişkenin Model Dışında Bırakılması

$$\tilde{\beta}_{1} = \frac{\sum (x_{i1} - \bar{x}_{1})(\beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + u_{i})}{\sum (x_{i1} - \bar{x}_{1})^{2}}$$

$$= \beta_{1} + \beta_{2} \frac{\sum (x_{i1} - \bar{x}_{1})x_{i2}}{\sum (x_{i1} - \bar{x}_{1})^{2}} + \frac{\sum (x_{i1} - \bar{x}_{1})u_{i}}{\sum (x_{i1} - \bar{x}_{1})^{2}}$$

Bunun beklenen değerini (koşullu) alırsak

 $E(\tilde{\beta}_{1}) = \beta_{1} + \beta_{2} \frac{\sum (x_{i1} - \bar{x}_{1})x_{i2}}{\sum (x_{i1} - \bar{x}_{1})^{2}} + \frac{\sum (x_{i1} - \bar{x}_{1})}{\sum (x_{i1} - \bar{x}_{1})^{2}}$ $= \beta_{1} + \beta_{2} \left(\frac{\sum (x_{i1} - \bar{x}_{1})x_{i2}}{\sum (x_{i1} - \bar{x}_{1})^{2}} \right)$

40

Dışlanmış Değişken Sapması

$$sapma = E(\tilde{\beta}_1) - \beta_1 = \beta_2 \tilde{\delta}_1$$

- Eğer $\tilde{\delta}_1 = 0$ ya da $\beta_2 = 0$ ise sapma 0 olur.
- Sapmanın işareti hem β_2 'ye hem de dışlanan değişken ile modele dahil edilen değişken arasındaki korelasyona bağlıdır.
- ▶ Dışlanan değişken gözlenemiyor ise bu korelasyonu hesaplamak mümkün olmayabilir.
- Aşağıdaki tablo sapmanın yönüne ilişkin olası durumları özetlemektedir:

Sapmanın İşareti

	$Corr(x_1, x_2) > 0$	$Corr(x_1, x_2) < 0$
$\beta_2 > 0$	pozitif sapma	negatif sapma
$\beta_2 < 0$	negatif sapma	pozitif sapma

Dışlanmış Değişken Sapması

$$sapma = E(\tilde{\beta}_1) - \beta_1 = \beta_2 \tilde{\delta}_1$$

- Sapmanın işaretinin yanı sıra boyutu da önemlidir. Sapmanın boyutu hem $\tilde{\delta}_1$ 'e hem de β_2 'ye bağlıdır.
- $ightharpoonup eta_1$ 'in büyüklüğüne nazaran küçük bir sapma uygulamada sorun yaratmayabilir.
- Ancak çoğu durumda sapmanın büyüklüğünü hesaplamak mümkün olmaz.
- ▶ Bazı durumlarda sapmanın yönü hakkında bir fikir edinebiliriz. Örneğin ücret denkleminde gerçek PRF hem eğitim (educ) hem de doğuştan gelen yetenek (ability) değişkenlerini içersin.
- ► Yetenek (ability) değişkeni gözlenemediği için model dışında bırakılırsa dışlanmış değişken sapması oluşur.
- Bu durumda eğitim katsayısındaki sapmanın işaretinin + olacağının söyleyebiliriz. Çünkü, yetenekli insanlar daha fazla eğitim alma eğilimindedir ve yetenek ücretlerle pozitif ilişkilidir.

43

Dışlanmış Değişken Sapması

- ▶ Daha fazla açıklayıcı değişkenin içerildiği modellerde gerekli bir değişkenin model dışında bırakılması OLS tahmincilerinin genellikle sapmalı olmasına yol açar.
- ► Gerçek model aşağıdaki gibi olsun:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u$$

 $ightharpoonup x_3$ dışarıda bırakılarak aşağıdaki model tahmin edilsin:

$$\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 + \tilde{\beta}_2 x_2$$

- $ightharpoonup x_3$, x_1 ile ilişkili, x_2 ile ilişkisiz olsun.
- ▶ Bu durumda $\tilde{\beta}_1$ ve $\tilde{\beta}_2$ 'nin her ikisi birden sapmalı olacaktır. Ancak x_1 ile x_2 ilişkisiz ise $\tilde{\beta}_2$ sapmasız olacaktır.

42

Dışlanmış Değişken Sapması

▶ Dışlanmış değişkenin etkisi hata terimi *u*'nun içinde yer alacağı için MLR.3 artık sağlanmaz.

$$wage = \beta_0 + \beta_1 educ + \beta_2 ability + u$$

▶ Bunun yerine aşağıdaki model tahmin edilirse

$$wage = \beta_0 + \beta_1 educ + \nu$$
$$\nu = \beta_2 ability + u$$

- \blacktriangleright Eğitim değişkeni ile hata terimi (ν) ilişkili olur.
- ▶ Bu durumda MLR.3 sağlanmaz:

$$\mathsf{E}(\nu|educ) \neq 0$$

► Eğitim değişkeni içseldir. Yeteneğin dışlandığı durumda eğitimin etkisi abartılı tahmin edilir. Aslında eğitimin etkisinin bir kısmı doğuştan gelen yeteneğe bağlıdır.

44

OLS Tahmincilerinin Varyansları

MLR.5 Sabit Varyans (Homoscedasticity)

Bu varsayım x açıklayıcı değişkenlerine koşullu olarak hata varyansının sabit olduğunu söyler:

$$\mathsf{Var}(u|x_1,x_2,\ldots,x_k) = \sigma^2$$

- Bunun sağlanmadığı duruma değişen varyans (heteroscedasticity) denir.
- ► Bu varsayım OLS tahmincilerinin varyanslarının ve standart hatalarının türetilmesinde ve etkinlik özelliklerinin belirlenmesinde kullanılır.
- ► Sapmasızlık için bu varsayıma gerek yoktur.
- Örneğin, ücret denkleminde bu varsayım, model dışında bırakılan faktörlerin değişkenliğinin modele dahil edilen değişkenlere (tecrübe, eğitim, kıdem, vs.) bağlı olmadığını söylemektedir.

OLS Tahmincilerinin Varyansları

Gauss-Markov Varsayımları

MLR.1-MLR.5 varsayımlarına Gauss-Markov Varsayımları denir.

MLR.1: Parametrelerde doğrusallık,

MLR.2: Rassal örnekleme,

MLR.3: Sıfır koşullu ortalama,

MLR.4: Tam çoklu doğrusallığın olmaması,

MLR.5: Sabit varyans.

▶ Bu varsayımlar kesit-veri regresyonu için geçerli varsayımlardır.

► Zaman serileriyle regresyon analizinde bu varsayımların değiştirilmesi gerekir.

▶ MLR.3 ve MLR.5 bağımlı değişken cinsinden ifade edilebilir:

$$\mathsf{E}(y|x_1, x_2, \dots, x_k) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

$$Var(y|x_1, x_2, ..., x_k) = Var(u|x_1, x_2, ..., x_k) = \sigma^2$$

47

OLS Tahmincilerinin Varyansları

Teorem: $\hat{\beta}$ 'ların varyansları

Gauss-Markov varsayımları (MLR.1-MLR.5) altında

$$\mathsf{Var}(\hat{eta}_j) = rac{\sigma^2}{SST_j(1-R_j^2)}, \quad j=1,2,\dots,k$$

- ▶ $Var(\hat{\beta}_j)$, x'lerin birbirleriyle korelasyon düzeyini belirten R_j^2 terimine de bağlıdır.
- ► Tek açıklayıcı değişkenli modelde bu terim bulunmaz.
- Açıklayıcı değişkenlerin birbileriyle doğrusal ilişki düzeyi arttıkça OLS tahmincilerinin varyansı sınırsız artar.
- ➤ x'ler arasında yüksek doğrusal bağlantı (multicollinearity) olması varyansların yüksek çıkmasına neden olur.
- Limitte $R_j^2 = 1$ olduğunda varyans sonsuz olur (ayrıca $\hat{\beta}$ 'lar belirsiz olur). Ancak MLR.4 varsayımı bunu engeller.

46

OLS Tahmincilerinin Varyansları

Teorem: $\hat{\beta}$ 'ların varyansları

Gauss-Markov varsayımları (MLR.1-MLR.5) altında

$$\mathsf{Var}(\hat{eta}_j) = rac{\sigma^2}{SST_j(1-R_j^2)}, \quad j=1,2,\dots,k$$

Burada

$$SST_j = \sum_{i=1}^n (x_{ij} - \bar{x}_j)^2$$

 x_j 'deki örneklem değişkenliği, R_j^2 ise x_j 'nin diğer tüm x değişkenlerine (sabit terim içeren) regresyonundan elde edilen belirlilik katsayısıdır.

- ▶ $Var(\hat{\beta}_i)$, σ_2 ile aynı yönde, SST_i ile ters yönde ilişkilidir.
- $ightharpoonup SST_j$ 'yi arttırmanın tek yolu gözlem hacmini (n) arttırmaktır. σ^2 'yi düşürmenin tek yolu ise güçlü açıklayıcı değişkenler bulmaktır.

Varyans ve R_j^2 İlişkisi

40

OLS Tahmincilerinin Varyansları

Varyansın Tahmini

Hata varyansının sapmasız bir tahmincisi şudur:

$$\hat{\sigma}^2 = \frac{1}{n-k-1} \sum_{i=1}^n \hat{u}_i^2 = \frac{SSR}{n-k-1}$$

► Serbestlik derecesi (degrees of freedom):

$$dof = n - (k+1)$$

- ► dof = gözlem sayısı parametre sayısı
- Serbestlik derecesi OLS birinci sıra koşullarından gelmektedir. Bu koşullar k+1 taneydi. Kalıntılar üzerine k+1 tane kısıt konmaktadır.
- ▶ n tane kalıntı teriminden n-(k+1) tanesi biliniyorsa geriye kalan k+1 kalıntı otomatik olarak bilinecektir. Öyleyse kalıntıların serbestlik derecesi n-k-1'dir.
- ► Hata terimi *u*'nun serbestlik derecesi ise *n*'dir.

51

Gauss-Markov Teoremi

Gauss-Markov Teoremi

MLR.1-MLR.5 varsayımları altında sıradan en küçük kareler (OLS) tahmin edicileri, tüm doğrusal, sapmasız tahmin ediciler kümesi içinde en etkin (en küçük varyanslı) olanlarıdır. Başka bir ifadeyle, MLR.1-MLR.5 varsayımları altında OLS tahmin edicileri $\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \ldots, \hat{\beta}_k$; populasyon parametreleri $\beta_0, \beta_1, \beta_2, \ldots, \beta_k$ 'nin Doğrusal En İyi Sapmasız Tahmin Edicileridir (kısaca, DESTE ya da BLUE-Best Linear Unbiased Estimators)

- ► Gauss-Markov teoremi regresyon modelinin OLS yöntemiyle tahmini için teorik dayanak sağlar.
- ► Eğer bu varsayımlar sağlanıyorsa OLS dışında başka bir tahmin yöntemine başvurmamıza gerek yoktur. OLS bize varyansı en düşük (best) tahmincileri vermektedir.
- ▶ Bu 5 varsayımdan biri bile ihlal edilirse Gauss-Markov teoremi geçersiz olur. MLR.3 sağlanmazsa sapmasızlık, MLR.5 sağlanmazsa etkinlik özelliği kaybolur.

50

OLS Tahmincilerinin Varyansları

 $\hat{\beta}$ 'ların Standart Sapmaları (sd)

$$\operatorname{sd}(\hat{\beta}_j) = \frac{\sigma}{\sqrt{SST_j(1-R_j^2)}}, \quad j=1,2,\dots,k$$

 $\hat{\beta}$ 'ların Standart Hataları (se)

$$\operatorname{se}(\hat{\beta}_j) = \frac{\hat{\sigma}}{\sqrt{SST_j(1 - R_j^2)}}, \quad j = 1, 2, \dots, k$$

- $\hat{\sigma} = \sqrt{\hat{\sigma}^2}$ regression standart hatasıdır (SER standard error of regression).
- ► SER regresyonun standart sapmasının bir tahmincisidir. Regresyona yeni bir değişken eklendiğinde SER azalabilir ya da artabilir.
- ightharpoonup se $(\hat{\beta}_j)$ güven aralıklarının hesaplanmasında ve hipotez testlerinin yapılmasında kullanılır.

52

OLS Tahmincilerinin Doğrusallığı

Doğrusal tahmin ediciler

 $ilde{eta}_j$ tahmincisi aşağıdaki gibi yazılabiliyorsa doğrusaldır:

$$\tilde{\beta}_j = \sum_{i=1}^n w_{ij} y_i$$

Burada w_{ij} tüm açıklayıcı değişkenlerin bir fonksiyonu olabilir. OLS tahmincileri yukarıdaki gibi yazılabildiğinden doğrusaldırlar:

$$\hat{\beta}_j = \frac{\sum_{i=1}^n \hat{r}_{ij} y_i}{\sum_{i=1}^n \hat{r}_{ij}^2} = \sum_{i=1}^n w_{ij} y_i, \quad \text{burada} \quad w_{ij} = \frac{\hat{r}_{ij}}{\sum_{i=1}^n \hat{r}_{ij}^2}$$

 \hat{r}_{ij} x_j 'nin tüm diğer açıklayıcı değişkenler üzerine regresyonundan elde edilen kalıntı terimidir.