

Steps for Emulating Target Trials

Bianca L De Stavola

Great Ormond Street Institute of Child Health, University College London

b.destavola@ucl.ac.uk

Work funded by MRC Methodology Grant: MR/R025215/1

One-day Course on Target Trial Emulation 28th November 2022

Overview

1 Recap

2 Target Trial Emulation An Application

3 Summary Further Reading

- Might not be ethical

- Might not be ethical
- Might be impractical/expensive

- Might not be ethical
- Might be impractical/expensive
- May be (practically) possible on selected populations

- Might not be ethical
- Might be impractical/expensive
- May be (practically) possible on selected populations
- Might not be timely

Observational studies

In contrast, observational studies allow addressing questions concerning observed treatments/interventions as received under real world conditions.

However.

- Addressing causal questions using observational data requires dealing with multiple possible sources of bias:
 - Selection (into the study) bias
 - Confounding bias (aka âselection into-treatmentâ bias)
 - Measurement error/missing data bias

Observational studies

In contrast, observational studies allow addressing questions concerning observed treatments/interventions as received under real world conditions.

However.

- Addressing causal questions using observational data requires dealing with multiple possible sources of bias:
 - Selection (into the study) bias
 - Confounding bias (aka âselection into-treatmentâ bias)
 - Measurement error/missing data bias
- Additionally, other challenges/errors may arise from incorrect manipulation of the data, e.g. (see lecture 1):
 - time 0 bias
 - definition of the exposure groups

In contrast, observational studies allow addressing questions concerning observed treatments/interventions as received under real world conditions.

However.

- Addressing causal questions using observational data requires dealing with multiple possible sources of bias:
 - Selection (into the study) bias
 - Confounding bias (aka âselection into-treatmentâ bias)
 - Measurement error/missing data bias
- Additionally, other challenges/errors may arise from incorrect manipulation of the data, e.g. (see lecture 1):
 - time 0 bias
 - definition of the exposure groups
- Ideally, we should use the same design steps, whether the data are experimental or observational

Target Trial Emulation

► Hernan and Robins (2016): propose a formal approach to adopting the same design principles of RCTs in research based on observational data

American Journal of Epidemiology © The Author 2016, Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health, All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Vol. 183 No. 8 DOI: 10.1093/aje/kwv254 Advance Access publication: March 18 2016

Practice of Epidemiology

Using Big Data to Emulate a Target Trial When a Randomized Trial Is Not Available

Miguel A. Hernán* and James M. Robins

* Correspondence to Dr. Miguel A. Hernán, Department of Epidemiology, 677 Huntington Avenue, Boston, MA 02115 (e-mail: miguel hernan@post.harvard.edu).

Initially submitted December 9, 2014; accepted for publication September 8, 2015.

Target Trial Emulation

Popularity of TTE increasing (Web of Science May 2022):

▶ Popularity of TTE increasing (Web of Science May 2022):

Most recent publications in 2022:

Becker et al	Cannabis use, pain interference, and prescription opioid receipt among persons with HIV:
Becker et ai	
	a target trial emulation study
Madenci et al	Strengthening Health Services Research Using Target Trial Emulation:
	An Application to Volume-Outcomes Studies
Bakker et al	Analysing electronic health records: The benefits of target trial emulation
Admon et al	Emulating a Novel Clinical Trial Using Existing Observational Data
	Predicting Results of the PreVent Study
Garcia-Albeniz et al	The value of explicitly emulating a target trial when using real world evidence:
	an application to colorectal cancer screening
Matthews et al	Comparing Effect Estimates in Randomized Trials and Observational Studies From
mattions of a	the Same Population: An Application to Percutaneous Coronary Intervention
Trevisan et al	Stopping mineralocorticoid receptor antagonists after hyperkalaemia:
ilevisail et al	trial emulation in data from routine care
Rossides et al	
Hossides et ai	Infection risk in sarcoidosis patients treated with methotrexate compared
	to azathioprine: A retrospective 'target trial' emulated with Swedish real-world data
Hernan et al	Specifying a target trial prevents immortal time bias and other self-inflicted
	injuries in observational analyses
Lyu et al	Arteriovenous Access Type and Risk of Mortality, Hospitalization, and Sepsis Among Elderly
	Hemodialysis Patients: A Target Trial Emulation Approach
Reitblat et al	Radical prostatectomy versus external beam radiation therapy for high-grade,
	clinically localized prostate cancer: Emulation of a target clinical trial
Wu et al	Validation of Machine Learning-Based Individualized Treatment for Depressive Disorder
	Using Target Trial Emulation

Target Trial Emulation in Practice

Target Trial Emulation in Practice

Because of the observational nature of the data, the target trial can only be a pragmatic trial*

^{*}A trial of an intervention in the general population delivered by general practitioners and unblindly

Step 2: the Ideal Target Trial

A protocol for the ideal target trial is specified:

1.	Eligibility criteria	
2.	Recruitment period	
3.	Follow-up duration	
4.	Outcome	
5.	Treatments to be compared	
6.	Estimands	
7.	Analysis plan	

Step 3: The Emulated Trial

The protocol is then adapted to reflect the data:

1.	Eligibility criteria	
2.	Recruitment period	
3.	Follow-up duration	
4.	Outcome	
5.	Treatments to be compared	
6.	Estimands	
7.	Analysis plan	

► The setting

 There are 30,000 hospital admissions for respiratory infections in infants in England every year

- Leading cause: seasonal respiratory syncytial virus (RSV) infections, but there is no vaccine against RSV
- In the UK, immunization with Palivizumab (during RSV season) of high risk infants[†] is recommended, although there is no experimental evidence of efficacy in this population

Tpremature infants and infants with some chronic heart or lung conditions $\langle \Box \rangle \langle \Box \rangle$

The setting

- There are 30,000 hospital admissions for respiratory infections in infants in England every year

- Leading cause: seasonal respiratory syncytial virus (RSV) infections, but there is no vaccine against RSV
- In the UK, immunization with Palivizumab (during RSV season) of *high risk infants*[†] is recommended, although there is no experimental evidence of efficacy in this population

The question

Is Palivizumab effective in preventing hospitalization in this high risk population?

premature infants and infants with some chronic heart or lung conditions 4 D > 4 A >

► The data:

Linked data on infants born 2010-2016 [Zylbersztejn et al. (2020)]:

- hospital episode statistics: to identify 'at risk' population and recover hospitalization history
- hospital prescription records: to recover immunization history

Data: Hospital Treatment Insights (HTI)

Electronic health records maintained by IQVIA (https://www.iqvia.com/)

1.	Eligibility criteria	"High-risk" infants born in England
2.	Recruitment period	2010-2016
3.	Follow-up duration	- Start: 1st Oct (of YOB), or DOB if born later - End: the first of hospitalization, end of RSV season, 1st birthday, death
4.	Outcome	Hospitalization during RSV season and before 1 st birthday
5.	Treatments to be compared	Start of Pali during RSV season No Pali during the RSV season
6.	Causal contrasts	Risk difference
7.	Analysis plan	Generalised linear regression model with robust SEs

1.	Eligibility criteria	"High-risk" infants born in England
2.	Recruitment period	2010-2016
3.	Follow-up duration	- Start: 1st Oct (of YOB), or DOB if born later - End: the first of hospitalization, end of RSV season, 1st birthday, death
4.	Outcome	Hospitalization during RSV season and before 1 st birthday
5.	Treatments to be compared	Start of Pali during RSV season No Pali during the RSV season
6.	Causal contrasts	Risk difference
7.	Analysis plan	Generalised linear regression model with robust SEs

1.	Eligibility criteria	"High-risk" infants born in England
2.	Recruitment period	2010-2016
3.	Follow-up duration	- Start: 1st Oct (of YOB), or DOB if born later - End: the first of hospitalization, end of RSV season, 1st birthday, death
4.	Outcome	Hospitalization during RSV season and before 1 st birthday
5.	Treatments to be compared	Start of Pali during RSV season No Pali during the RSV season
6.	Causal contrasts	Risk difference
7.	Analysis plan	Generalised linear regression model with robust SEs

1.	Eligibility criteria	"High-risk" infants born in England
2.	Recruitment period	2010-2016
3.	Follow-up duration	- Start: 1st Oct (of YOB), or DOB if born later - End: the first of hospitalization, end of RSV season, 1st birthday, death
4.	Outcome	Hospitalization during RSV season and before 1 st birthday
5.	Treatments to be compared	Start of Pali during RSV season No Pali during the RSV season
6.	Causal contrasts	Risk difference
7.	Analysis plan	Generalised linear regression model with robust SEs

1.	Eligibility criteria	"High-risk" infants born in England
2.	Recruitment period	2010-2016
3.	Follow-up duration	- Start: 1st Oct (of YOB), or DOB if born later - End: the first of hospitalization, end of RSV season, 1st birthday, death
4.	Outcome	Hospitalization during RSV season and before 1 st birthday
5.	Treatments to be compared	 Start of Pali during RSV season No Pali during the RSV season
6.	Causal contrasts	Risk difference
7.	Analysis plan	Generalised linear regression model with robust SEs

1.	Eligibility criteria	"High-risk" infants born in England
2.	Recruitment period	2010-2016
3.	Follow-up duration	- Start: 1st Oct (of YOB), or DOB if born later - End: the first of hospitalization, end of RSV season, 1st birthday, death
4.	Outcome	Hospitalization during RSV season and before 1 st birthday
5.	Treatments to be compared	 Start of Pali during RSV season No Pali during the RSV season
6.	Causal contrasts	Risk difference
7.	Analysis plan	Generalised linear regression model with robust SEs

1.	Eligibility criteria	High risk infants born in England for whom sufficient data available [‡]
2.	Recruitment period	
3.	Follow-up duration	
4.	Outcome	
5.	Treatments to be compared	
6.	Causal contrasts	
7.	Analysis plan	

 $^{^\}ddagger$ To establish eligibility, treatment, outcome

1.	Eligibility criteria	High risk infants born in England for whom sufficient data available [‡]
2.	Recruitment period	
3.	Follow-up duration	
4.	Outcome	
5.	Treatments to be compared	
6.	Causal contrasts	
7.	Analysis plan	

[‡]To establish eligibility, treatment, outcome BUT missing data may lead to selection bas ✓ ≧ ► ✓ ≧ ► □ ≧

1.	Eligibility criteria	High risk infants born in England for whom sufficient data available§
2.	Recruitment period	Same
3.	Follow-up duration	Same
4.	Outcome	
5.	Treatments to be compared	
6.	Causal contrasts	
7.	Analysis plan	

1.	Eligibility criteria	High risk infants born in England for whom sufficient data available§
2.	Recruitment period	Same
3.	Follow-up duration	Same
4.	Outcome	Same but may be affected by misclassification
5.	Treatments to be compared	
6.	Causal contrasts	
7.	Analysis plan	

1.	Eligibility criteria	High risk infants born in England for whom sufficient data available ¶
2.	Recruitment period	Same
3.	Follow-up duration	Same
4.	Outcome	Same BUT may be affected by misclassification
5.	Treatments to be compared	"First recorded use of Pali"
6.	Causal contrasts	
7.	Analysis plan	

1.	Eligibility criteria	High risk infants born in England for whom sufficient data available
2.	Recruitment period	Same
3.	Follow-up duration	Same
4.	Outcome	Same
5.	Treatments to be compared	"First recorded use of Pali"
6.	Causal contrasts	Same
7.	Analysis plan	

To establish eligibility, treatment, outcome BUT missing data may lead to selection bias 🔌 🚊 🕨 🔌 🚊

1.	Eligibility criteria	High risk infants born in England for whom sufficient data available
2.	Recruitment period	Same
3.	Follow-up duration	Same
4.	Outcome	Same
5.	Treatments to be compared	"First recorded use of Pali"
6.	Causal contrasts	Same
7.	Analysis plan	Same BUT must control for confounding

To establish eligibility, treatment, outcome BUT missing data may lead to selection bias 🔌 🚊 🕨 🔌 🚊

Two approaches:

- Methods that require adjustment for confounders:
 - Stratification/regression,
 - matching, propensity scores
 - G-methods: standardization/g-formula, g-estimation, IP weighting

Controlling for Confounding

Two approaches:

- Methods that require adjustment for confounders:
 - Stratification/regression,
 - matching, propensity scores
 - G-methods: standardization/g-formula, g-estimation, IP weighting
- 2. Methods that exploit sources of randomness in the data:
 - instrumental variables (e.g. genetic variants)
 - regression discontinuity (e.g. randomly varying policy implementation)

Two approaches:

- Methods that require adjustment for confounders:
 - Stratification/regression,
 - matching, propensity scores
 - G-methods: standardization/g-formula, g-estimation, IP weighting
- 2. Methods that exploit sources of randomness in the data:
 - instrumental variables (e.g. genetic variants)
 - regression discontinuity (e.g. randomly varying policy

Both approaches rely on unverifiable assumptions

Two approaches:

- 1. Methods that require adjustment for confounders:
 - Stratification/regression,
 - matching, propensity scores
 - G-methods: standardization/g-formula, g-estimation, IP weighting
- 2. Methods that exploit sources of randomness in the data:
 - instrumental variables (e.g. genetic variants)
 - regression discontinuity (e.g. randomly varying policy

To be discussed in the next lecture

- Addressing causal questions using observational data requires dealing with multiple possible sources of bias.
- ➤ Some biases can be avoided by adopting the TTE framework, as this gives formality to the design and analysis steps.
- ► There are some remaining challenges, however.
- Overall requirements for causal inference:
 - (a) a well-defined causal question
 - (b) high quality data
 - (c) clear study design
 - (d) valid data analysis

- Addressing causal questions using observational data requires dealing with multiple possible sources of bias.
- ➤ Some biases can be avoided by adopting the TTE framework, as this gives formality to the design and analysis steps.
- There are some remaining challenges, however.
- Overall requirements for causal inference:
 - (a) a well-defined causal question
 - (b) high quality data
 - (c) clear study design
 - (d) valid data analysis

- ► Addressing causal questions using observational data requires dealing with multiple possible sources of bias.
- ➤ Some biases can be avoided by adopting the TTE framework, as this gives formality to the design and analysis steps.
- There are some remaining challenges, however.
- Overall requirements for causal inference:
 - (a) a well-defined causal question
 - (b) high quality data
 - (c) clear study design
 - (d) valid data analysis

- ► Addressing causal questions using observational data requires dealing with multiple possible sources of bias.
- ➤ Some biases can be avoided by adopting the TTE framework, as this gives formality to the design and analysis steps.
- ▶ There are some remaining challenges, however.
- Overall requirements for causal inference:
- (a) a well-defined causal question
- (b) high quality data
- (c) clear study design
- (d) valid data analysis

- Grodstein et al. Hormone therapy and coronary heart disease: the role of time since menopause and age at hormone initiation. J Women's Health. 2006;15(1):35–44
- Hernàn et al. Specifying a target trial prevents immortal time bias and other self-inflicted injuries in observational analyses Journal of Clinical Epidemiology 2016: 79 (2016) 70e75
- Hernàn et al. Observational Studies Analyzed Like Randomized Experiments Epidemiology 2008;19: 766–779
- Hernàn and Hernandez-Diaz. Beyond the intention to treat in comparative effectiveness research. Clin Trials 2012; 9, 48–55
- Hernàn and Robins. Using Big Data to Emulate a Target Trial When a Randomized Trial Is Not Available. American Journal of Epidemiology, 2016, 183, 758–764
- Suissa. Immortal time bias in observational studies of drug effects. Pharmacoepidemiol Drug Saf 2007; 241-9
- Zylbersztejn et al. Access to palivizumab among children at high risk of respiratory syncytial virus complication in English hospitals. Br J Clin Pharmacol 2021: 1-12.