- 1. Написать определение предела числовой последовательности.
- 2. Может ли последовательность иметь два различных конечных предела?
- 3. Написать в кванторах определение того, что последовательность имеет предел равный $+\infty$.
- 4. Сходится ли последовательность $x_n = 1$? Ответ обосновать.
- 5. Сформулировать теорему Вейерштрасса.
- 6. Определение числа е.
- 7. Сформулируйте теорему о трёх последовательностях.
- 8. Сформулируйте свойство предела частного двух числовых последовательностей.
- 9. Пусть x_n сходится к $a \in \mathbb{R}$ и $x_n > 0 \ \forall n \in \mathbb{N}$. Верно ли, что a > 0? Ответ обосновать.
- 10. Привести пример двух последовательностей x_n и y_n таких, что x_n и $x_n \cdot y_n$ сходятся, а y_n расходится.

1. Доказать, что x_n сходится к $a \in \mathbb{R} \Leftrightarrow$

1)
$$\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| < C\varepsilon; C > 0$$

$$2)\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| \le \varepsilon.$$

2. Доказать, что:

1)если
$$\lim_{n\to\infty} x_n = a$$
 $n \in \mathbb{N} x_n > 0$, то $\lim_{n\to\infty} \sqrt{x_n} = \sqrt{a}$ 2)если $x_n \to a$, то $|x_n| \to |a|$.

2)если
$$x_n \to a$$
, то $|x_n| \to |a|$.

- 3. Доказать, что $\lim_{n\to\infty} \frac{\sin n}{n} = 0$.
- 4. Доказать, что последовательности $x_n = 2^n 100n$ и $y_n = n \cdot \sin \frac{\pi n}{2}$ расходятся.
- 5. Доказать, что если x_n возрастает и неограничена, то у нее существует предел равный $+\infty$.
- 6. Доказать теорему о предельном переходе в неравенстве.
- 7. Доказать, что:

1)
$$\lim_{n\to\infty}\frac{1}{n^p}=0$$
, где $p\in\mathbb{N}$
2) $\lim_{n\to\infty}\frac{a^n}{n!}=0$

$$2) \lim_{n \to \infty} \frac{a^n}{n!} = 0$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$
$$3)x_n = \frac{2n + \sin n + 100}{\sqrt{9n^2 + 10n + 17}}.$$

- 1. Доказать, что если $\lim_{n\to\infty}x_n=+\infty,$ то у x_n не существует конечного предела.
- 2. Доказать, что $x_n = \left(1 + \frac{1}{n}\right)^{n+1}$ монотонна. (Замечание: в силу теоремы Вейер $umpacca это означает, что <math>x_n$ cxodumcs.)
- 3. Привести пример когда:

 - 1) $x_n < y_n \forall n \in \mathbb{N}$, Ho $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$. 2) $x_n > y_n \forall n \le 1000$, Ho $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$.
- 4. При каких $a \geq 1$ последовательность $x_n = \sqrt{an^2 + bn + 2} n$ имеет конечный предел?
- 5. Доказать, что если $\lim_{n\to\infty} x_n = a \ \forall n\in\mathbb{N} x_n > 0, a>0$, то $\lim_{n\to\infty} \sqrt[3]{x_n} = \sqrt[3]{a}$.
- 6. Найти $\lim_{n\to\infty} (\sqrt{n^2-1} \sqrt{n})$.

- 1. Написать определение предела числовой последовательности.
- 2. Может ли последовательность иметь два различных конечных предела?
- 3. Написать в кванторах определение того, что последовательность имеет предел равный $+\infty$.
- 4. Сходится ли последовательность $x_n = 1$? Ответ обосновать.
- 5. Сформулировать теорему Вейерштрасса.
- 6. Определение числа е.
- 7. Сформулируйте теорему о трёх последовательностях.
- 8. Сформулируйте свойство предела частного двух числовых последовательностей.
- 9. Пусть x_n сходится к $a \in \mathbb{R}$ и $x_n > 0 \ \forall n \in \mathbb{N}$. Верно ли, что a > 0? Ответ обосновать.
- 10. Привести пример двух последовательностей x_n и y_n таких, что x_n и $x_n \cdot y_n$ сходятся, а y_n расходится.

1. Доказать, что x_n сходится к $a \in \mathbb{R} \Leftrightarrow$

1)
$$\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| < C\varepsilon; C > 0$$

$$2)\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| \le \varepsilon.$$

2. Доказать, что:

1)если
$$\lim_{n\to\infty} x_n = a$$
 $n \in \mathbb{N} x_n > 0$, то $\lim_{n\to\infty} \sqrt{x_n} = \sqrt{a}$ 2)если $x_n \to a$, то $|x_n| \to |a|$.

2)если
$$x_n \to a$$
, то $|x_n| \to |a|$.

- 3. Доказать, что $\lim_{n\to\infty} \frac{\sin n}{n} = 0$.
- 4. Доказать, что последовательности $x_n = 2^n 100n$ и $y_n = n \cdot \sin \frac{\pi n}{2}$ расходятся.
- 5. Доказать, что если x_n возрастает и неограничена, то у нее существует предел равный $+\infty$.
- 6. Доказать теорему о предельном переходе в неравенстве.
- 7. Доказать, что:

1)
$$\lim_{n\to\infty}\frac{1}{n^p}=0$$
, где $p\in\mathbb{N}$
2) $\lim_{n\to\infty}\frac{a^n}{n!}=0$

$$2) \lim_{n \to \infty} \frac{a^n}{n!} = 0$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$
$$3)x_n = \frac{2n + \sin n + 100}{\sqrt{9n^2 + 10n + 17}}.$$

- 1. Доказать, что если $\lim_{n\to\infty}x_n=+\infty,$ то у x_n не существует конечного предела.
- 2. Доказать, что $x_n = \left(1 + \frac{1}{n}\right)^{n+1}$ монотонна. (Замечание: в силу теоремы Вейер $umpacca это означает, что <math>x_n$ cxodumcs.)
- 3. Найти $\lim_{n \to \infty} \left(9 + \frac{1}{n}\right)^{1/2}$ и $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{n/2}$.
- 4. Привести пример когда:
- 1) $x_n < y_n \forall n \in \mathbb{N}$, но $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$.
 2) $x_n > y_n \forall n \le 1000$, но $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$.
 5. 1) Найти предел $x_n = \frac{2^n 3^n \cdot 10}{2^n + 3^n \cdot 5}$.
 - 2) Показать, что предел последовательности $x_n = \frac{\cos^2 n}{n^3}$ равен нулю.
 - 3) Найти предел $x_n = (\frac{n}{1+n})^{-n}$.
- 6. Пусть $x_n \to x > 0$ и $y_n \to \infty$. Доказать, что $x_n \cdot y_n \to +\infty$.

- 1. Написать определение предела числовой последовательности.
- 2. Может ли последовательность иметь два различных конечных предела?
- 3. Написать в кванторах определение того, что последовательность имеет предел равный $+\infty$.
- 4. Сходится ли последовательность $x_n = 1$? Ответ обосновать.
- 5. Сформулировать теорему Вейерштрасса.
- 6. Определение числа е.
- 7. Сформулируйте теорему о трёх последовательностях.
- 8. Сформулируйте свойство предела частного двух числовых последовательностей.
- 9. Пусть x_n сходится к $a \in \mathbb{R}$ и $x_n > 0 \ \forall n \in \mathbb{N}$. Верно ли, что a > 0? Ответ обосновать.
- 10. Привести пример двух последовательностей x_n и y_n таких, что x_n и $x_n \cdot y_n$ сходятся, а y_n расходится.

1. Доказать, что x_n сходится к $a \in \mathbb{R} \Leftrightarrow$

1)
$$\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| < C\varepsilon; C > 0$$

$$2)\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| \le \varepsilon.$$

2. Доказать, что:

1)если
$$\lim_{n\to\infty} x_n = a$$
 $n \in \mathbb{N} x_n > 0$, то $\lim_{n\to\infty} \sqrt{x_n} = \sqrt{a}$ 2)если $x_n \to a$, то $|x_n| \to |a|$.

2)если
$$x_n \to a$$
, то $|x_n| \to |a|$.

- 3. Доказать, что $\lim_{n\to\infty} \frac{\sin n}{n} = 0$.
- 4. Доказать, что последовательности $x_n = 2^n 100n$ и $y_n = n \cdot \sin \frac{\pi n}{2}$ расходятся.
- 5. Доказать, что если x_n возрастает и неограничена, то у нее существует предел равный $+\infty$.
- 6. Доказать теорему о предельном переходе в неравенстве.
- 7. Доказать, что:

1)
$$\lim_{n\to\infty}\frac{1}{n^p}=0$$
, где $p\in\mathbb{N}$
2) $\lim_{n\to\infty}\frac{a^n}{n!}=0$

$$2) \lim_{n \to \infty} \frac{a^n}{n!} = 0$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$
$$3)x_n = \frac{2n + \sin n + 100}{\sqrt{9n^2 + 10n + 17}}.$$

- 1. Доказать, что если $\lim_{n\to\infty}x_n=+\infty$, то у x_n не существует конечного предела.
- 2. Доказать, что $x_n = \left(1 + \frac{1}{n}\right)^{n+1}$ монотонна. (Замечание: в силу теоремы Вейер-штрасса это означает, что x_n сходится.)
- 3. Доказать, что если $\lim_{n\to\infty} x_n = a \ \forall n \in \mathbb{N} x_n > 0, a > 0,$ то $\lim_{n\to\infty} \sqrt[3]{x_n} = \sqrt[3]{a}.$
- 4. Доказать, что $\lim_{n \to \infty} \sqrt[n]{a} = 1$, где a > 1.
- 5. Пусть $\exists N: \forall n \geq N \hookrightarrow a_n \leq b_n$. Доказать, что если $a_n \to +\infty$, то $b_n \to +\infty$
- 6. Найти $\lim_{n\to\infty} \left(9+\frac{1}{n}\right)^{1/2}$ и $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n/2}$.

- 1. Написать определение предела числовой последовательности.
- 2. Может ли последовательность иметь два различных конечных предела?
- 3. Написать в кванторах определение того, что последовательность имеет предел равный $+\infty$.
- 4. Сходится ли последовательность $x_n = 1$? Ответ обосновать.
- 5. Сформулировать теорему Вейерштрасса.
- 6. Определение числа е.
- 7. Сформулируйте теорему о трёх последовательностях.
- 8. Сформулируйте свойство предела частного двух числовых последовательностей.
- 9. Пусть x_n сходится к $a \in \mathbb{R}$ и $x_n > 0 \ \forall n \in \mathbb{N}$. Верно ли, что a > 0? Ответ обосновать.
- 10. Привести пример двух последовательностей x_n и y_n таких, что x_n и $x_n \cdot y_n$ сходятся, а y_n расходится.

1. Доказать, что x_n сходится к $a \in \mathbb{R} \Leftrightarrow$

1)
$$\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| < C\varepsilon; C > 0$$

$$2)\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| \le \varepsilon.$$

2. Доказать, что:

1)если
$$\lim_{n\to\infty} x_n = a$$
 $n \in \mathbb{N} x_n > 0$, то $\lim_{n\to\infty} \sqrt{x_n} = \sqrt{a}$ 2)если $x_n \to a$, то $|x_n| \to |a|$.

2)если
$$x_n \to a$$
, то $|x_n| \to |a|$.

- 3. Доказать, что $\lim_{n\to\infty} \frac{\sin n}{n} = 0$.
- 4. Доказать, что последовательности $x_n = 2^n 100n$ и $y_n = n \cdot \sin \frac{\pi n}{2}$ расходятся.
- 5. Доказать, что если x_n возрастает и неограничена, то у нее существует предел равный $+\infty$.
- 6. Доказать теорему о предельном переходе в неравенстве.
- 7. Доказать, что:

1)
$$\lim_{n\to\infty}\frac{1}{n^p}=0$$
, где $p\in\mathbb{N}$
2) $\lim_{n\to\infty}\frac{a^n}{n!}=0$

$$2) \lim_{n \to \infty} \frac{a^n}{n!} = 0$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$
$$3)x_n = \frac{2n + \sin n + 100}{\sqrt{9n^2 + 10n + 17}}.$$

- 1. Доказать, что если $\lim_{n\to\infty}x_n=+\infty$, то у x_n не существует конечного предела.
- 2. Доказать, что $x_n = \left(1 + \frac{1}{n}\right)^{n+1}$ монотонна. (Замечание: в силу теоремы Вейер-штрасса это означает, что x_n сходится.)
- 3. Доказать, что если $\lim_{n\to\infty}x_n=a\ \forall n\in\mathbb{N}x_n>0, a>0,$ то $\lim_{n\to\infty}\sqrt[3]{x_n}=\sqrt[3]{a}.$
- 4. Пусть $x_n \to x > 0$ и $y_n \to \infty$. Доказать, что $x_n \cdot y_n \to +\infty$.
- 5. Доказать, что $\lim_{n\to\infty} \sqrt[n]{a} = 1$, где a>1.
- 6. Найти $\lim_{n\to\infty} \left(9+\frac{1}{n}\right)^{1/2}$ и $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n/2}$.

- 1. Написать определение предела числовой последовательности.
- 2. Может ли последовательность иметь два различных конечных предела?
- 3. Написать в кванторах определение того, что последовательность имеет предел равный $+\infty$.
- 4. Сходится ли последовательность $x_n = 1$? Ответ обосновать.
- 5. Сформулировать теорему Вейерштрасса.
- 6. Определение числа е.
- 7. Сформулируйте теорему о трёх последовательностях.
- 8. Сформулируйте свойство предела частного двух числовых последовательностей.
- 9. Пусть x_n сходится к $a \in \mathbb{R}$ и $x_n > 0 \ \forall n \in \mathbb{N}$. Верно ли, что a > 0? Ответ обосновать.
- 10. Привести пример двух последовательностей x_n и y_n таких, что x_n и $x_n \cdot y_n$ сходятся, а y_n расходится.

1. Доказать, что x_n сходится к $a \in \mathbb{R} \Leftrightarrow$

1)
$$\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| < C\varepsilon; C > 0$$

$$2)\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| \le \varepsilon.$$

2. Доказать, что:

1)если
$$\lim_{n\to\infty} x_n = a$$
 $n \in \mathbb{N} x_n > 0$, то $\lim_{n\to\infty} \sqrt{x_n} = \sqrt{a}$ 2)если $x_n \to a$, то $|x_n| \to |a|$.

2)если
$$x_n \to a$$
, то $|x_n| \to |a|$.

- 3. Доказать, что $\lim_{n\to\infty} \frac{\sin n}{n} = 0$.
- 4. Доказать, что последовательности $x_n = 2^n 100n$ и $y_n = n \cdot \sin \frac{\pi n}{2}$ расходятся.
- 5. Доказать, что если x_n возрастает и неограничена, то у нее существует предел равный $+\infty$.
- 6. Доказать теорему о предельном переходе в неравенстве.
- 7. Доказать, что:

1)
$$\lim_{n\to\infty}\frac{1}{n^p}=0$$
, где $p\in\mathbb{N}$
2) $\lim_{n\to\infty}\frac{a^n}{n!}=0$

$$2) \lim_{n \to \infty} \frac{a^n}{n!} = 0$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$
$$3)x_n = \frac{2n + \sin n + 100}{\sqrt{9n^2 + 10n + 17}}.$$

- 1. Доказать, что если $\lim_{n\to\infty}x_n=+\infty,$ то у x_n не существует конечного предела.
- 2. Доказать, что $x_n = \left(1 + \frac{1}{n}\right)^{n+1}$ монотонна. (Замечание: в силу теоремы Вейер $umpacca это означает, что <math>x_n$ cxodumcs.)
- 3. Доказать, что если $\lim_{n\to\infty} x_n = a \ \forall n \in \mathbb{N} x_n > 0, a > 0$, то $\lim_{n\to\infty} \sqrt[3]{x_n} = \sqrt[3]{a}$.
- 4. 1) Найти предел $x_n = \frac{2^n 3^n \cdot 10}{2^n + 3^n \cdot 5}$.
 - 2) Показать, что предел последовательности $x_n = \frac{\cos^2 n}{n^3}$ равен нулю.
 - 3) Найти предел $x_n = (\frac{n}{1+n})^{-n}$.
- 5. Привести пример когда:

 - 1) $x_n < y_n \forall n \in \mathbb{N}$, но $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$. 2) $x_n > y_n \forall n \le 1000$, но $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$.
- 6. Исследовать на сходимость $x_n = n + (-1)^n$.

- 1. Написать определение предела числовой последовательности.
- 2. Может ли последовательность иметь два различных конечных предела?
- 3. Написать в кванторах определение того, что последовательность имеет предел равный $+\infty$.
- 4. Сходится ли последовательность $x_n = 1$? Ответ обосновать.
- 5. Сформулировать теорему Вейерштрасса.
- 6. Определение числа е.
- 7. Сформулируйте теорему о трёх последовательностях.
- 8. Сформулируйте свойство предела частного двух числовых последовательностей.
- 9. Пусть x_n сходится к $a \in \mathbb{R}$ и $x_n > 0 \ \forall n \in \mathbb{N}$. Верно ли, что a > 0? Ответ обосновать.
- 10. Привести пример двух последовательностей x_n и y_n таких, что x_n и $x_n \cdot y_n$ сходятся, а y_n расходится.

1. Доказать, что x_n сходится к $a \in \mathbb{R} \Leftrightarrow$

1)
$$\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| < C\varepsilon; C > 0$$

$$2)\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| \le \varepsilon.$$

2. Доказать, что:

1)если
$$\lim_{n\to\infty} x_n = a$$
 $n \in \mathbb{N} x_n > 0$, то $\lim_{n\to\infty} \sqrt{x_n} = \sqrt{a}$ 2)если $x_n \to a$, то $|x_n| \to |a|$.

2)если
$$x_n \to a$$
, то $|x_n| \to |a|$.

- 3. Доказать, что $\lim_{n\to\infty} \frac{\sin n}{n} = 0$.
- 4. Доказать, что последовательности $x_n = 2^n 100n$ и $y_n = n \cdot \sin \frac{\pi n}{2}$ расходятся.
- 5. Доказать, что если x_n возрастает и неограничена, то у нее существует предел равный $+\infty$.
- 6. Доказать теорему о предельном переходе в неравенстве.
- 7. Доказать, что:

1)
$$\lim_{n\to\infty}\frac{1}{n^p}=0$$
, где $p\in\mathbb{N}$
2) $\lim_{n\to\infty}\frac{a^n}{n!}=0$

$$2) \lim_{n \to \infty} \frac{a^n}{n!} = 0$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$
$$3)x_n = \frac{2n + \sin n + 100}{\sqrt{9n^2 + 10n + 17}}.$$

- 1. Доказать, что если $\lim_{n\to\infty}x_n=+\infty$, то у x_n не существует конечного предела.
- 2. Доказать, что $x_n = \left(1 + \frac{1}{n}\right)^{n+1}$ монотонна. (Замечание: в силу теоремы Вейер-штрасса это означает, что x_n сходится.)
- 3. Найти $\lim_{n\to\infty} (\sqrt{n^2-1} \sqrt{n}).$
- 4. Пусть $x_n \to x > 0$ и $y_n \to \infty$. Доказать, что $x_n \cdot y_n \to +\infty$.
- 5. Доказать, что если $\lim_{n\to\infty} x_n = a \ \forall n \in \mathbb{N} x_n > 0, a > 0$, то $\lim_{n\to\infty} \sqrt[3]{x_n} = \sqrt[3]{a}$.
- 6. Доказать, что $\lim_{n\to\infty} \sqrt[n]{a} = 1$, где a>1.

- 1. Написать определение предела числовой последовательности.
- 2. Может ли последовательность иметь два различных конечных предела?
- 3. Написать в кванторах определение того, что последовательность имеет предел равный $+\infty$.
- 4. Сходится ли последовательность $x_n = 1$? Ответ обосновать.
- 5. Сформулировать теорему Вейерштрасса.
- 6. Определение числа е.
- 7. Сформулируйте теорему о трёх последовательностях.
- 8. Сформулируйте свойство предела частного двух числовых последовательностей.
- 9. Пусть x_n сходится к $a \in \mathbb{R}$ и $x_n > 0 \ \forall n \in \mathbb{N}$. Верно ли, что a > 0? Ответ обосновать.
- 10. Привести пример двух последовательностей x_n и y_n таких, что x_n и $x_n \cdot y_n$ сходятся, а y_n расходится.

1. Доказать, что x_n сходится к $a \in \mathbb{R} \Leftrightarrow$

1)
$$\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| < C\varepsilon; C > 0$$

$$2)\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| \le \varepsilon.$$

2. Доказать, что:

1)если
$$\lim_{n\to\infty} x_n = a$$
 $n \in \mathbb{N} x_n > 0$, то $\lim_{n\to\infty} \sqrt{x_n} = \sqrt{a}$ 2)если $x_n \to a$, то $|x_n| \to |a|$.

2)если
$$x_n \to a$$
, то $|x_n| \to |a|$.

- 3. Доказать, что $\lim_{n\to\infty} \frac{\sin n}{n} = 0$.
- 4. Доказать, что последовательности $x_n = 2^n 100n$ и $y_n = n \cdot \sin \frac{\pi n}{2}$ расходятся.
- 5. Доказать, что если x_n возрастает и неограничена, то у нее существует предел равный $+\infty$.
- 6. Доказать теорему о предельном переходе в неравенстве.
- 7. Доказать, что:

1)
$$\lim_{n\to\infty}\frac{1}{n^p}=0$$
, где $p\in\mathbb{N}$
2) $\lim_{n\to\infty}\frac{a^n}{n!}=0$

$$2) \lim_{n \to \infty} \frac{a^n}{n!} = 0$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$
$$3)x_n = \frac{2n + \sin n + 100}{\sqrt{9n^2 + 10n + 17}}.$$

- 1. Доказать, что если $\lim_{n\to\infty}x_n=+\infty$, то у x_n не существует конечного предела.
- 2. Доказать, что $x_n = \left(1 + \frac{1}{n}\right)^{n+1}$ монотонна. (Замечание: в силу теоремы Вейер-штрасса это означает, что x_n сходится.)
- 3. Найти $\lim_{n\to\infty} (\sqrt{n^2-1} \sqrt{n}).$
- 4. Пусть $\exists N: \forall n \geq N \hookrightarrow a_n \leq b_n$. Доказать, что если $a_n \to +\infty$, то $b_n \to +\infty$
- 5. Доказать, что если $\lim_{n\to\infty}x_n=a\ \forall n\in\mathbb{N}x_n>0, a>0,$ то $\lim_{n\to\infty}\sqrt[3]{x_n}=\sqrt[3]{a}.$
- 6. Доказать, что $\lim_{n \to \infty} \sqrt[n]{a} = 1$, где a > 1.

- 1. Написать определение предела числовой последовательности.
- 2. Может ли последовательность иметь два различных конечных предела?
- 3. Написать в кванторах определение того, что последовательность имеет предел равный $+\infty$.
- 4. Сходится ли последовательность $x_n = 1$? Ответ обосновать.
- 5. Сформулировать теорему Вейерштрасса.
- 6. Определение числа е.
- 7. Сформулируйте теорему о трёх последовательностях.
- 8. Сформулируйте свойство предела частного двух числовых последовательностей.
- 9. Пусть x_n сходится к $a \in \mathbb{R}$ и $x_n > 0 \ \forall n \in \mathbb{N}$. Верно ли, что a > 0? Ответ обосновать.
- 10. Привести пример двух последовательностей x_n и y_n таких, что x_n и $x_n \cdot y_n$ сходятся, а y_n расходится.

1. Доказать, что x_n сходится к $a \in \mathbb{R} \Leftrightarrow$

1)
$$\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| < C\varepsilon; C > 0$$

$$2)\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| \le \varepsilon.$$

2. Доказать, что:

1)если
$$\lim_{n\to\infty} x_n = a$$
 $n \in \mathbb{N} x_n > 0$, то $\lim_{n\to\infty} \sqrt{x_n} = \sqrt{a}$ 2)если $x_n \to a$, то $|x_n| \to |a|$.

2)если
$$x_n \to a$$
, то $|x_n| \to |a|$.

- 3. Доказать, что $\lim_{n\to\infty} \frac{\sin n}{n} = 0$.
- 4. Доказать, что последовательности $x_n = 2^n 100n$ и $y_n = n \cdot \sin \frac{\pi n}{2}$ расходятся.
- 5. Доказать, что если x_n возрастает и неограничена, то у нее существует предел равный $+\infty$.
- 6. Доказать теорему о предельном переходе в неравенстве.
- 7. Доказать, что:

1)
$$\lim_{n\to\infty}\frac{1}{n^p}=0$$
, где $p\in\mathbb{N}$
2) $\lim_{n\to\infty}\frac{a^n}{n!}=0$

$$2) \lim_{n \to \infty} \frac{a^n}{n!} = 0$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$
$$3)x_n = \frac{2n + \sin n + 100}{\sqrt{9n^2 + 10n + 17}}.$$

- 1. Доказать, что если $\lim_{n\to\infty}x_n=+\infty$, то у x_n не существует конечного предела.
- 2. Доказать, что $x_n = \left(1 + \frac{1}{n}\right)^{n+1}$ монотонна. (Замечание: в силу теоремы Вейер-штрасса это означает, что x_n сходится.)
- 3. Пусть $\exists N: \forall n \geq N \hookrightarrow a_n \leq b_n$. Доказать, что если $a_n \to +\infty$, то $b_n \to +\infty$
- 4. Найти $\lim_{n\to\infty} (\sqrt{n^2-1} \sqrt{n})$.
- 5. Доказать, что если $\lim_{n\to\infty} x_n = a \ \forall n \in \mathbb{N} x_n > 0, a > 0,$ то $\lim_{n\to\infty} \sqrt[3]{x_n} = \sqrt[3]{a}.$
- 6. Найти предел последовательности $x_n = \frac{n}{2^n}$. (Указание: использовать, что $2^n = (1+1)^n = \sum_{k=0}^n C_n^k$)

- 1. Написать определение предела числовой последовательности.
- 2. Может ли последовательность иметь два различных конечных предела?
- 3. Написать в кванторах определение того, что последовательность имеет предел равный $+\infty$.
- 4. Сходится ли последовательность $x_n = 1$? Ответ обосновать.
- 5. Сформулировать теорему Вейерштрасса.
- 6. Определение числа е.
- 7. Сформулируйте теорему о трёх последовательностях.
- 8. Сформулируйте свойство предела частного двух числовых последовательностей.
- 9. Пусть x_n сходится к $a \in \mathbb{R}$ и $x_n > 0 \ \forall n \in \mathbb{N}$. Верно ли, что a > 0? Ответ обосновать.
- 10. Привести пример двух последовательностей x_n и y_n таких, что x_n и $x_n \cdot y_n$ сходятся, а y_n расходится.

1. Доказать, что x_n сходится к $a \in \mathbb{R} \Leftrightarrow$

1)
$$\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| < C\varepsilon; C > 0$$

$$2)\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| \le \varepsilon.$$

2. Доказать, что:

1)если
$$\lim_{n\to\infty} x_n = a$$
 $n \in \mathbb{N} x_n > 0$, то $\lim_{n\to\infty} \sqrt{x_n} = \sqrt{a}$ 2)если $x_n \to a$, то $|x_n| \to |a|$.

2)если
$$x_n \to a$$
, то $|x_n| \to |a|$.

- 3. Доказать, что $\lim_{n\to\infty} \frac{\sin n}{n} = 0$.
- 4. Доказать, что последовательности $x_n = 2^n 100n$ и $y_n = n \cdot \sin \frac{\pi n}{2}$ расходятся.
- 5. Доказать, что если x_n возрастает и неограничена, то у нее существует предел равный $+\infty$.
- 6. Доказать теорему о предельном переходе в неравенстве.
- 7. Доказать, что:

1)
$$\lim_{n\to\infty}\frac{1}{n^p}=0$$
, где $p\in\mathbb{N}$
2) $\lim_{n\to\infty}\frac{a^n}{n!}=0$

$$2) \lim_{n \to \infty} \frac{a^n}{n!} = 0$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$
$$3)x_n = \frac{2n + \sin n + 100}{\sqrt{9n^2 + 10n + 17}}.$$

- 1. Доказать, что если $\lim_{n\to\infty}x_n=+\infty,$ то у x_n не существует конечного предела.
- 2. Доказать, что $x_n = \left(1 + \frac{1}{n}\right)^{n+1}$ монотонна. (Замечание: в силу теоремы Вейерumpacca это означает, что x_n cxodumcs.)
- 3. Исследовать на сходимость $x_n = n + (-1)^n$.
- 4. Привести пример когда:

 - 1) $x_n < y_n \forall n \in \mathbb{N}$, Ho $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$. 2) $x_n > y_n \forall n \le 1000$, Ho $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$.
- 5. 1) Найти предел $x_n = \frac{2^n 3^n \cdot 10}{2^n + 3^n \cdot 5}$.
 - 2) Показать, что предел последовательности $x_n = \frac{\cos^2 n}{n^3}$ равен нулю.
 - 3) Найти предел $x_n = (\frac{n}{1+n})^{-n}$.
- 6. Найти $\lim_{n\to\infty} \left(9+\frac{1}{n}\right)^{1/2}$ и $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n/2}$.

- 1. Написать определение предела числовой последовательности.
- 2. Может ли последовательность иметь два различных конечных предела?
- 3. Написать в кванторах определение того, что последовательность имеет предел равный $+\infty$.
- 4. Сходится ли последовательность $x_n = 1$? Ответ обосновать.
- 5. Сформулировать теорему Вейерштрасса.
- 6. Определение числа е.
- 7. Сформулируйте теорему о трёх последовательностях.
- 8. Сформулируйте свойство предела частного двух числовых последовательностей.
- 9. Пусть x_n сходится к $a \in \mathbb{R}$ и $x_n > 0 \ \forall n \in \mathbb{N}$. Верно ли, что a > 0? Ответ обосновать.
- 10. Привести пример двух последовательностей x_n и y_n таких, что x_n и $x_n \cdot y_n$ сходятся, а y_n расходится.

1. Доказать, что x_n сходится к $a \in \mathbb{R} \Leftrightarrow$

1)
$$\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| < C\varepsilon; C > 0$$

$$2)\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| \le \varepsilon.$$

2. Доказать, что:

1)если
$$\lim_{n\to\infty} x_n = a$$
 $n \in \mathbb{N} x_n > 0$, то $\lim_{n\to\infty} \sqrt{x_n} = \sqrt{a}$ 2)если $x_n \to a$, то $|x_n| \to |a|$.

2)если
$$x_n \to a$$
, то $|x_n| \to |a|$.

- 3. Доказать, что $\lim_{n\to\infty} \frac{\sin n}{n} = 0$.
- 4. Доказать, что последовательности $x_n = 2^n 100n$ и $y_n = n \cdot \sin \frac{\pi n}{2}$ расходятся.
- 5. Доказать, что если x_n возрастает и неограничена, то у нее существует предел равный $+\infty$.
- 6. Доказать теорему о предельном переходе в неравенстве.
- 7. Доказать, что:

1)
$$\lim_{n\to\infty}\frac{1}{n^p}=0$$
, где $p\in\mathbb{N}$
2) $\lim_{n\to\infty}\frac{a^n}{n!}=0$

$$2) \lim_{n \to \infty} \frac{a^n}{n!} = 0$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$
$$3)x_n = \frac{2n + \sin n + 100}{\sqrt{9n^2 + 10n + 17}}.$$

- 1. Доказать, что если $\lim_{n\to\infty}x_n=+\infty,$ то у x_n не существует конечного предела.
- 2. Доказать, что $x_n = \left(1 + \frac{1}{n}\right)^{n+1}$ монотонна.(Замечание: в силу теоремы Вейер-штрасса это означает, что x_n сходится.)
- 3. Пусть $x_n \to x > 0$ и $y_n \to \infty$. Доказать, что $x_n \cdot y_n \to +\infty$.
- 4. Доказать, что если $\lim_{n\to\infty} x_n = a \ \forall n \in \mathbb{N} x_n > 0, a > 0$, то $\lim_{n\to\infty} \sqrt[3]{x_n} = \sqrt[3]{a}$.
- 5. Доказать, что $\lim_{n \to \infty} \sqrt[n]{a} = 1$, где a > 1.
- 6. Доказать, что x_n сходится и найти $\lim_{n\to\infty} x_n$, если $x_{n+1}=x_n^2+3x_n+1$ и $x_1=-3/2$. (Указание: использовать то, что если $x_n\to a$, то и $x_{n+1}\to a$)

- 1. Написать определение предела числовой последовательности.
- 2. Может ли последовательность иметь два различных конечных предела?
- 3. Написать в кванторах определение того, что последовательность имеет предел равный $+\infty$.
- 4. Сходится ли последовательность $x_n = 1$? Ответ обосновать.
- 5. Сформулировать теорему Вейерштрасса.
- 6. Определение числа е.
- 7. Сформулируйте теорему о трёх последовательностях.
- 8. Сформулируйте свойство предела частного двух числовых последовательностей.
- 9. Пусть x_n сходится к $a \in \mathbb{R}$ и $x_n > 0 \ \forall n \in \mathbb{N}$. Верно ли, что a > 0? Ответ обосновать.
- 10. Привести пример двух последовательностей x_n и y_n таких, что x_n и $x_n \cdot y_n$ сходятся, а y_n расходится.

1. Доказать, что x_n сходится к $a \in \mathbb{R} \Leftrightarrow$

1)
$$\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| < C\varepsilon; C > 0$$

$$2)\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| \le \varepsilon.$$

2. Доказать, что:

1)если
$$\lim_{n\to\infty} x_n = a$$
 $n \in \mathbb{N} x_n > 0$, то $\lim_{n\to\infty} \sqrt{x_n} = \sqrt{a}$ 2)если $x_n \to a$, то $|x_n| \to |a|$.

2)если
$$x_n \to a$$
, то $|x_n| \to |a|$.

- 3. Доказать, что $\lim_{n\to\infty} \frac{\sin n}{n} = 0$.
- 4. Доказать, что последовательности $x_n = 2^n 100n$ и $y_n = n \cdot \sin \frac{\pi n}{2}$ расходятся.
- 5. Доказать, что если x_n возрастает и неограничена, то у нее существует предел равный $+\infty$.
- 6. Доказать теорему о предельном переходе в неравенстве.
- 7. Доказать, что:

1)
$$\lim_{n\to\infty}\frac{1}{n^p}=0$$
, где $p\in\mathbb{N}$
2) $\lim_{n\to\infty}\frac{a^n}{n!}=0$

$$2) \lim_{n \to \infty} \frac{a^n}{n!} = 0$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$
$$3)x_n = \frac{2n + \sin n + 100}{\sqrt{9n^2 + 10n + 17}}.$$

- 1. Доказать, что если $\lim_{n\to\infty}x_n=+\infty$, то у x_n не существует конечного предела.
- 2. Доказать, что $x_n = \left(1 + \frac{1}{n}\right)^{n+1}$ монотонна. (Замечание: в силу теоремы Вейер-штрасса это означает, что x_n сходится.)
- 3. Доказать, что если $\lim_{n\to\infty} x_n = a \ \forall n \in \mathbb{N} x_n > 0, a > 0,$ то $\lim_{n\to\infty} \sqrt[3]{x_n} = \sqrt[3]{a}.$
- 4. Пусть $x_n \to x > 0$ и $y_n \to \infty$. Доказать, что $x_n \cdot y_n \to +\infty$.
- 5. Пусть $\exists N: \forall n \geq N \hookrightarrow a_n \leq b_n$. Доказать, что если $a_n \to +\infty$, то $b_n \to +\infty$
- 6. Найти $\lim_{n\to\infty} (\sqrt{n^2-1} \sqrt{n}).$

- 1. Написать определение предела числовой последовательности.
- 2. Может ли последовательность иметь два различных конечных предела?
- 3. Написать в кванторах определение того, что последовательность имеет предел равный $+\infty$.
- 4. Сходится ли последовательность $x_n = 1$? Ответ обосновать.
- 5. Сформулировать теорему Вейерштрасса.
- 6. Определение числа е.
- 7. Сформулируйте теорему о трёх последовательностях.
- 8. Сформулируйте свойство предела частного двух числовых последовательностей.
- 9. Пусть x_n сходится к $a \in \mathbb{R}$ и $x_n > 0 \ \forall n \in \mathbb{N}$. Верно ли, что a > 0? Ответ обосновать.
- 10. Привести пример двух последовательностей x_n и y_n таких, что x_n и $x_n \cdot y_n$ сходятся, а y_n расходится.

1. Доказать, что x_n сходится к $a \in \mathbb{R} \Leftrightarrow$

1)
$$\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| < C\varepsilon; C > 0$$

$$2)\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| \le \varepsilon.$$

2. Доказать, что:

1)если
$$\lim_{n\to\infty} x_n = a$$
 $n \in \mathbb{N} x_n > 0$, то $\lim_{n\to\infty} \sqrt{x_n} = \sqrt{a}$ 2)если $x_n \to a$, то $|x_n| \to |a|$.

2)если
$$x_n \to a$$
, то $|x_n| \to |a|$.

- 3. Доказать, что $\lim_{n\to\infty} \frac{\sin n}{n} = 0$.
- 4. Доказать, что последовательности $x_n = 2^n 100n$ и $y_n = n \cdot \sin \frac{\pi n}{2}$ расходятся.
- 5. Доказать, что если x_n возрастает и неограничена, то у нее существует предел равный $+\infty$.
- 6. Доказать теорему о предельном переходе в неравенстве.
- 7. Доказать, что:

1)
$$\lim_{n\to\infty}\frac{1}{n^p}=0$$
, где $p\in\mathbb{N}$
2) $\lim_{n\to\infty}\frac{a^n}{n!}=0$

$$2) \lim_{n \to \infty} \frac{a^n}{n!} = 0$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$
$$3)x_n = \frac{2n + \sin n + 100}{\sqrt{9n^2 + 10n + 17}}.$$

- 1. Доказать, что если $\lim_{n\to\infty}x_n=+\infty,$ то у x_n не существует конечного предела.
- 2. Доказать, что $x_n = \left(1 + \frac{1}{n}\right)^{n+1}$ монотонна. (Замечание: в силу теоремы Вейерumpacca это означает, что x_n cxodumcs.)
- 3. 1) Найти предел $x_n = \frac{2^n 3^n \cdot 10}{2^n + 3^n \cdot 5}$.
 - 2) Показать, что предел последовательности $x_n = \frac{\cos^2 n}{n^3}$ равен нулю.
 - 3) Найти предел $x_n = (\frac{n}{1+n})^{-n}$.
- 4. Доказать, что если $\lim_{n\to\infty} x_n = a \ \forall n \in \mathbb{N} x_n > 0, a > 0,$ то $\lim_{n\to\infty} \sqrt[3]{x_n} = \sqrt[3]{a}.$
- 5. Привести пример когда:

 - 1) $x_n < y_n \forall n \in \mathbb{N}$, Ho $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$. 2) $x_n > y_n \forall n \le 1000$, Ho $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$.
- 6. Пусть $x_n \to x > 0$ и $y_n \to \infty$. Доказать, что $x_n \cdot y_n \to +\infty$.

- 1. Написать определение предела числовой последовательности.
- 2. Может ли последовательность иметь два различных конечных предела?
- 3. Написать в кванторах определение того, что последовательность имеет предел равный $+\infty$.
- 4. Сходится ли последовательность $x_n = 1$? Ответ обосновать.
- 5. Сформулировать теорему Вейерштрасса.
- 6. Определение числа е.
- 7. Сформулируйте теорему о трёх последовательностях.
- 8. Сформулируйте свойство предела частного двух числовых последовательностей.
- 9. Пусть x_n сходится к $a \in \mathbb{R}$ и $x_n > 0 \ \forall n \in \mathbb{N}$. Верно ли, что a > 0? Ответ обосновать.
- 10. Привести пример двух последовательностей x_n и y_n таких, что x_n и $x_n \cdot y_n$ сходятся, а y_n расходится.

1. Доказать, что x_n сходится к $a \in \mathbb{R} \Leftrightarrow$

1)
$$\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| < C\varepsilon; C > 0$$

$$2)\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| \le \varepsilon.$$

2. Доказать, что:

1)если
$$\lim_{n\to\infty} x_n = a$$
 $n \in \mathbb{N} x_n > 0$, то $\lim_{n\to\infty} \sqrt{x_n} = \sqrt{a}$ 2)если $x_n \to a$, то $|x_n| \to |a|$.

2)если
$$x_n \to a$$
, то $|x_n| \to |a|$.

- 3. Доказать, что $\lim_{n\to\infty} \frac{\sin n}{n} = 0$.
- 4. Доказать, что последовательности $x_n = 2^n 100n$ и $y_n = n \cdot \sin \frac{\pi n}{2}$ расходятся.
- 5. Доказать, что если x_n возрастает и неограничена, то у нее существует предел равный $+\infty$.
- 6. Доказать теорему о предельном переходе в неравенстве.
- 7. Доказать, что:

1)
$$\lim_{n\to\infty}\frac{1}{n^p}=0$$
, где $p\in\mathbb{N}$
2) $\lim_{n\to\infty}\frac{a^n}{n!}=0$

$$2) \lim_{n \to \infty} \frac{a^n}{n!} = 0$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$
$$3)x_n = \frac{2n + \sin n + 100}{\sqrt{9n^2 + 10n + 17}}.$$

- 1. Доказать, что если $\lim_{n\to\infty}x_n=+\infty$, то у x_n не существует конечного предела.
- 2. Доказать, что $x_n = \left(1 + \frac{1}{n}\right)^{n+1}$ монотонна. (Замечание: в силу теоремы Вейер-штрасса это означает, что x_n сходится.)
- 3. Доказать, что если $\lim_{n\to\infty}x_n=a\ \forall n\in\mathbb{N} x_n>0, a>0,$ то $\lim_{n\to\infty}\sqrt[3]{x_n}=\sqrt[3]{a}.$
- 4. Доказать, что $\lim_{n\to\infty} \sqrt[n]{a} = 1$, где a>1.
- 5. Пусть $x_n \to x > 0$ и $y_n \to \infty$. Доказать, что $x_n \cdot y_n \to +\infty$.
- 6. Доказать, что x_n сходится и найти $\lim_{n\to\infty} x_n$, если $x_{n+1}=x_n^2+3x_n+1$ и $x_1=-3/2$. (Указание: использовать то, что если $x_n\to a$, то и $x_{n+1}\to a$)

- 1. Написать определение предела числовой последовательности.
- 2. Может ли последовательность иметь два различных конечных предела?
- 3. Написать в кванторах определение того, что последовательность имеет предел равный $+\infty$.
- 4. Сходится ли последовательность $x_n = 1$? Ответ обосновать.
- 5. Сформулировать теорему Вейерштрасса.
- 6. Определение числа е.
- 7. Сформулируйте теорему о трёх последовательностях.
- 8. Сформулируйте свойство предела частного двух числовых последовательностей.
- 9. Пусть x_n сходится к $a \in \mathbb{R}$ и $x_n > 0 \ \forall n \in \mathbb{N}$. Верно ли, что a > 0? Ответ обосновать.
- 10. Привести пример двух последовательностей x_n и y_n таких, что x_n и $x_n \cdot y_n$ сходятся, а y_n расходится.

1. Доказать, что x_n сходится к $a \in \mathbb{R} \Leftrightarrow$

1)
$$\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| < C\varepsilon; C > 0$$

$$2)\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| \le \varepsilon.$$

2. Доказать, что:

1)если
$$\lim_{n\to\infty} x_n = a$$
 $n \in \mathbb{N} x_n > 0$, то $\lim_{n\to\infty} \sqrt{x_n} = \sqrt{a}$ 2)если $x_n \to a$, то $|x_n| \to |a|$.

2)если
$$x_n \to a$$
, то $|x_n| \to |a|$.

- 3. Доказать, что $\lim_{n\to\infty} \frac{\sin n}{n} = 0$.
- 4. Доказать, что последовательности $x_n = 2^n 100n$ и $y_n = n \cdot \sin \frac{\pi n}{2}$ расходятся.
- 5. Доказать, что если x_n возрастает и неограничена, то у нее существует предел равный $+\infty$.
- 6. Доказать теорему о предельном переходе в неравенстве.
- 7. Доказать, что:

1)
$$\lim_{n\to\infty}\frac{1}{n^p}=0$$
, где $p\in\mathbb{N}$
2) $\lim_{n\to\infty}\frac{a^n}{n!}=0$

$$2) \lim_{n \to \infty} \frac{a^n}{n!} = 0$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$
$$3)x_n = \frac{2n + \sin n + 100}{\sqrt{9n^2 + 10n + 17}}.$$

- 1. Доказать, что если $\lim_{n\to\infty}x_n=+\infty,$ то у x_n не существует конечного предела.
- 2. Доказать, что $x_n = \left(1 + \frac{1}{n}\right)^{n+1}$ монотонна. (Замечание: в силу теоремы Вейерumpacca это означает, что x_n cxodumcs.)
- 3. 1) Найти предел $x_n = \frac{2^n 3^n \cdot 10}{2^n + 3^n \cdot 5}$.
 - 2) Показать, что предел последовательности $x_n = \frac{\cos^2 n}{n^3}$ равен нулю.
 - 3) Найти предел $x_n = (\frac{n}{1+n})^{-n}$.
- 4. Доказать, что если $\lim_{n\to\infty}x_n=a\ \forall n\in\mathbb{N} x_n>0, a>0,$ то $\lim_{n\to\infty}\sqrt[3]{x_n}=\sqrt[3]{a}.$
- 5. Привести пример когда:

 - 1) $x_n < y_n \forall n \in \mathbb{N}$, Ho $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$. 2) $x_n > y_n \forall n \le 1000$, Ho $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$.
- 6. Пусть $x_n \to x > 0$ и $y_n \to \infty$. Доказать, что $x_n \cdot y_n \to +\infty$.

- 1. Написать определение предела числовой последовательности.
- 2. Может ли последовательность иметь два различных конечных предела?
- 3. Написать в кванторах определение того, что последовательность имеет предел равный $+\infty$.
- 4. Сходится ли последовательность $x_n = 1$? Ответ обосновать.
- 5. Сформулировать теорему Вейерштрасса.
- 6. Определение числа е.
- 7. Сформулируйте теорему о трёх последовательностях.
- 8. Сформулируйте свойство предела частного двух числовых последовательностей.
- 9. Пусть x_n сходится к $a \in \mathbb{R}$ и $x_n > 0 \ \forall n \in \mathbb{N}$. Верно ли, что a > 0? Ответ обосновать.
- 10. Привести пример двух последовательностей x_n и y_n таких, что x_n и $x_n \cdot y_n$ сходятся, а y_n расходится.

1. Доказать, что x_n сходится к $a \in \mathbb{R} \Leftrightarrow$

1)
$$\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| < C\varepsilon; C > 0$$

$$2)\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| \le \varepsilon.$$

2. Доказать, что:

1)если
$$\lim_{n\to\infty} x_n = a$$
 $n \in \mathbb{N} x_n > 0$, то $\lim_{n\to\infty} \sqrt{x_n} = \sqrt{a}$ 2)если $x_n \to a$, то $|x_n| \to |a|$.

2)если
$$x_n \to a$$
, то $|x_n| \to |a|$.

- 3. Доказать, что $\lim_{n\to\infty} \frac{\sin n}{n} = 0$.
- 4. Доказать, что последовательности $x_n = 2^n 100n$ и $y_n = n \cdot \sin \frac{\pi n}{2}$ расходятся.
- 5. Доказать, что если x_n возрастает и неограничена, то у нее существует предел равный $+\infty$.
- 6. Доказать теорему о предельном переходе в неравенстве.
- 7. Доказать, что:

1)
$$\lim_{n\to\infty}\frac{1}{n^p}=0$$
, где $p\in\mathbb{N}$
2) $\lim_{n\to\infty}\frac{a^n}{n!}=0$

$$2) \lim_{n \to \infty} \frac{a^n}{n!} = 0$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$
$$3)x_n = \frac{2n + \sin n + 100}{\sqrt{9n^2 + 10n + 17}}.$$

- 1. Доказать, что если $\lim_{n\to\infty}x_n=+\infty,$ то у x_n не существует конечного предела.
- 2. Доказать, что $x_n = \left(1 + \frac{1}{n}\right)^{n+1}$ монотонна. (Замечание: в силу теоремы Вейер $umpacca это означает, что <math>x_n$ cxodumcs.)
- 3. Пусть $\exists N: \forall n \geq N \hookrightarrow a_n \leq b_n$. Доказать, что если $a_n \to +\infty$, то $b_n \to +\infty$
- 4. Найти $\lim_{n \to \infty} \left(9 + \frac{1}{n}\right)^{1/2}$ и $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{n/2}$.
- 5. Привести пример когда:

 - 1) $x_n < y_n \forall n \in \mathbb{N}$, Ho $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$. 2) $x_n > y_n \forall n \le 1000$, Ho $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$.
- 6. При каких $a \geq 1$ последовательность $x_n = \sqrt{an^2 + bn + 2} n$ имеет конечный предел?

- 1. Написать определение предела числовой последовательности.
- 2. Может ли последовательность иметь два различных конечных предела?
- 3. Написать в кванторах определение того, что последовательность имеет предел равный $+\infty$.
- 4. Сходится ли последовательность $x_n = 1$? Ответ обосновать.
- 5. Сформулировать теорему Вейерштрасса.
- 6. Определение числа е.
- 7. Сформулируйте теорему о трёх последовательностях.
- 8. Сформулируйте свойство предела частного двух числовых последовательностей.
- 9. Пусть x_n сходится к $a \in \mathbb{R}$ и $x_n > 0 \ \forall n \in \mathbb{N}$. Верно ли, что a > 0? Ответ обосновать.
- 10. Привести пример двух последовательностей x_n и y_n таких, что x_n и $x_n \cdot y_n$ сходятся, а y_n расходится.

1. Доказать, что x_n сходится к $a \in \mathbb{R} \Leftrightarrow$

1)
$$\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| < C\varepsilon; C > 0$$

$$2)\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| \le \varepsilon.$$

2. Доказать, что:

1)если
$$\lim_{n\to\infty} x_n = a$$
 $n \in \mathbb{N} x_n > 0$, то $\lim_{n\to\infty} \sqrt{x_n} = \sqrt{a}$ 2)если $x_n \to a$, то $|x_n| \to |a|$.

2)если
$$x_n \to a$$
, то $|x_n| \to |a|$.

- 3. Доказать, что $\lim_{n\to\infty} \frac{\sin n}{n} = 0$.
- 4. Доказать, что последовательности $x_n = 2^n 100n$ и $y_n = n \cdot \sin \frac{\pi n}{2}$ расходятся.
- 5. Доказать, что если x_n возрастает и неограничена, то у нее существует предел равный $+\infty$.
- 6. Доказать теорему о предельном переходе в неравенстве.
- 7. Доказать, что:

1)
$$\lim_{n\to\infty}\frac{1}{n^p}=0$$
, где $p\in\mathbb{N}$
2) $\lim_{n\to\infty}\frac{a^n}{n!}=0$

$$2) \lim_{n \to \infty} \frac{a^n}{n!} = 0$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$
$$3)x_n = \frac{2n + \sin n + 100}{\sqrt{9n^2 + 10n + 17}}.$$

- 1. Доказать, что если $\lim_{n\to\infty}x_n=+\infty$, то у x_n не существует конечного предела.
- 2. Доказать, что $x_n = \left(1 + \frac{1}{n}\right)^{n+1}$ монотонна.(Замечание: в силу теоремы Вейер-штрасса это означает, что x_n сходится.)
- 3. 1) Найти предел $x_n = \frac{2^n 3^n \cdot 10}{2^n + 3^n \cdot 5}$.
 - 2) Показать, что предел последовательности $x_n = \frac{\cos^2 n}{n^3}$ равен нулю.
 - 3) Найти предел $x_n = (\frac{n}{1+n})^{-n}$.
- 4. Доказать, что если $\lim_{n\to\infty}x_n=a\ \forall n\in\mathbb{N}x_n>0, a>0,$ то $\lim_{n\to\infty}\sqrt[3]{x_n}=\sqrt[3]{a}.$
- 5. Пусть $x_n \to x > 0$ и $y_n \to \infty$. Доказать, что $x_n \cdot y_n \to +\infty$.
- 6. Найти $\lim_{n\to\infty} (\sqrt{n^2-1} \sqrt{n}).$

- 1. Написать определение предела числовой последовательности.
- 2. Может ли последовательность иметь два различных конечных предела?
- 3. Написать в кванторах определение того, что последовательность имеет предел равный $+\infty$.
- 4. Сходится ли последовательность $x_n = 1$? Ответ обосновать.
- 5. Сформулировать теорему Вейерштрасса.
- 6. Определение числа е.
- 7. Сформулируйте теорему о трёх последовательностях.
- 8. Сформулируйте свойство предела частного двух числовых последовательностей.
- 9. Пусть x_n сходится к $a \in \mathbb{R}$ и $x_n > 0 \ \forall n \in \mathbb{N}$. Верно ли, что a > 0? Ответ обосновать.
- 10. Привести пример двух последовательностей x_n и y_n таких, что x_n и $x_n \cdot y_n$ сходятся, а y_n расходится.

1. Доказать, что x_n сходится к $a \in \mathbb{R} \Leftrightarrow$

1)
$$\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| < C\varepsilon; C > 0$$

$$2)\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| \le \varepsilon.$$

2. Доказать, что:

1)если
$$\lim_{n\to\infty} x_n = a$$
 $n \in \mathbb{N} x_n > 0$, то $\lim_{n\to\infty} \sqrt{x_n} = \sqrt{a}$ 2)если $x_n \to a$, то $|x_n| \to |a|$.

2)если
$$x_n \to a$$
, то $|x_n| \to |a|$.

- 3. Доказать, что $\lim_{n\to\infty} \frac{\sin n}{n} = 0$.
- 4. Доказать, что последовательности $x_n = 2^n 100n$ и $y_n = n \cdot \sin \frac{\pi n}{2}$ расходятся.
- 5. Доказать, что если x_n возрастает и неограничена, то у нее существует предел равный $+\infty$.
- 6. Доказать теорему о предельном переходе в неравенстве.
- 7. Доказать, что:

1)
$$\lim_{n\to\infty}\frac{1}{n^p}=0$$
, где $p\in\mathbb{N}$
2) $\lim_{n\to\infty}\frac{a^n}{n!}=0$

$$2) \lim_{n \to \infty} \frac{a^n}{n!} = 0$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$

$$2)x_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$
$$3)x_n = \frac{2n + \sin n + 100}{\sqrt{9n^2 + 10n + 17}}.$$

- 1. Доказать, что если $\lim_{n\to\infty}x_n=+\infty,$ то у x_n не существует конечного предела.
- 2. Доказать, что $x_n = \left(1 + \frac{1}{n}\right)^{n+1}$ монотонна.(Замечание: в силу теоремы Вейер-штрасса это означает, что x_n сходится.)
- 3. Доказать, что если $\lim_{n\to\infty} x_n = a \ \forall n \in \mathbb{N} x_n > 0, a > 0,$ то $\lim_{n\to\infty} \sqrt[3]{x_n} = \sqrt[3]{a}.$
- 4. Доказать, что $\lim_{n\to\infty} \sqrt[n]{a} = 1$, где a>1.
- 5. Найти предел последовательности $x_n = \frac{n}{2^n}$. (Указание: использовать, что $2^n = (1+1)^n = \sum_{k=0}^n C_n^k$)
- 6. Доказать, что x_n сходится и найти $\lim_{n\to\infty} x_n$, если $x_{n+1}=x_n^2+3x_n+1$ и $x_1=-3/2$. (Указание: использовать то, что если $x_n\to a$, то и $x_{n+1}\to a$)