MODEL	USEFUL FOR	CHARACTERISTICS
U-NET	Semantic Segmentation	 - A CNN developed for biomedical image segmentation. - Modified and extended to work with fewer training images and to yield more precise segmentations. - To predict the pixels in the border region of the image, the missing context is extrapolated by mirroring the input image.
Mask-RCNN	Detection	 Perform detection on various region proposals and thus end up performing prediction multiple times for various regions in a image. extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition.
Faster-RCNN	Detection	 Perform detection on various region proposals and thus end up performing prediction multiple times for various regions in a image. Faster R-CNN consists of two stages. The first stage, called a Region Proposal Network (RPN), proposes candidate object bounding boxes
Keras - RetinaNeT	Detection	RetinaNet has been formed by making two improvements over existing single stage object detection models (like YOLO and SSD): Feature Pyramid Networks for Object Detection Focal Loss for Dense Object Detection
SSD	Detection	- Single Shot Detector - runs a convolutional network on input image only once and calculates a feature map.
YOLOv3	Detection	- You Only Look Once - Fast
DenseNet	Classification	 it is a logical extension of ResNet, where you merge (additive) a previous layer into a future layer. in ResNet by adding additive merges we are forcing the network to learn residuals Whereas in densenet: it proposes concatenating outputs from the previous layers instead of using the summation.