Inorganic Chemistry

Final Examination

Jan. 12, 2011

- 1. Draw the Lewis structure and give the point group of the following molecules (with highest possible symmetry.) (10%)
 - (a) Sulfuric acid (b) Nitric acid (c) Phosphoric acid (d) Perchloric acid
 - (e) Hydrazoic acid (HN₃)
- 2. Draw the 3-dimensional structure and give the point group of the following species. (10%)
 - (a) Ferrocene (b) Diborane (c) $[Re_2Cl_8]^{2-}$ (d) S_8
 - (e) $[K(18C6)]^+$ (in which, 18C6 = 18-Crown-6)

- 3. For each of the following reactions, identify the acid and the base. Also indicate which acid-base definition (Lewis, Solvent system, Bronsted-Lowry) applies. In some cases, more than one definition may apply. (10%)
 - (a) $HC1O_4 + CH_3CN \longrightarrow CH_3CNH^+ + C1O_4^-$
 - (b) $PCl_5 + ICl \longrightarrow [PCl_4]^+ + [ICl_2]^-$
 - (c) $2 \text{ C1O}_3^- + \text{SO}_2 \longrightarrow 2 \text{ C1O}_2 + \text{SO}_4^{2-}$
 - (d) 2 NOCl + Sn \longrightarrow SnCl₂ + 2 NO (in N₂O₄ solvent) (e) BH₄ + 4 H₂O \longrightarrow B(OH)₄ + 4 H₂
- 4. Use Drago's E and C parameters(Table 1) to calculate ΔH for the reactions of pyridine and BF3 and of pyridine and B(CH3)3. Repeat the calculations of the proceeding problem using NH3 as the base, and put the four reactions in order of the magnitudes of their Δ H values. (6%)

Table 1 C_A , E_A , C_B , and	E _B Values (kcal/mo	l)	
Acid Compound	C_A	E_A	
B(CH ₃) ₃	1.70	6.14	
BF_3	1.62	9.88	
Base compound	C_B	E_{B}	
Pyridine	6.40	1.17	
NH_3	3.46	1.36	

- 5. List the following acids in order of acid strength in aqueous solution (Hint: Use Pauling's equation): (6%)
 - a. HMnO₄ H₃AsO₄ H₂SO₃ H₂SO₄
 - b. HClO HClO₄ HClO₂ HClO₃
- 6. HF has H_0 = -11.0. Addition of 4% SbF₅ lowers H_0 to -21.0. Explain why this should be true, and why the resulting solution is so strongly acidic that it can protonate alkenes. (4%)

$$(CH_3)_2C=CH_2 + H^+ \longrightarrow (CH_3)_3C^+$$

NO RS As

7. Diagram A shows some subjects and B shows some optical transforms. Match the objects to the transforms and determine their correct relative orientations. (12%)

B

A I S

A I S

A I S

A I S

A I S

B

8.
$$F(hkl) = \sum_{j} f_{j}e^{2\pi i(hx_{j}+ky_{j}+lz_{j})}$$

$$\rho(x,y,z) = \sum_{h} \sum_{k} \sum_{l} |F_{hkl}| \cdot e^{i\alpha} e^{-2\pi i(hx+ky+lz)}$$

Explain the meaning of each term in the two equations. (12%)

- 9. (a) Show that spheres occupy 74.0% of the total volume in a face-centered cubic structure in which all atoms are identical.
 - (b) What percent of the total volume is occupied by spheres in a body-centered cube in which all atoms are identical.(8%)

10.LiBr has a density of 3.464 g/cm³ and the NaCl crystal structure. Calculate the interionic distance, and compare your answer with the value from the sum of the ionic radii found in Table 2. (6%) (the fornula weight of LiBr is 86.85 g/mol)

Ionio	C	oordination Number	r
Ionic –	4	6	8
Li ⁺	73	90 pm	106
Br		182	and tree

11. Derive the lattice energy (U) from electrostatic energy and short distance repulsion energy at $r = r_0$. (10%)

$$U = \frac{NMZ^{+}Z^{-}e^{2}}{r_{o}} \left(1 - \frac{1}{n}\right)$$

12. Focusing on the boron atoms and the bridging hydrogens of diborane as Fig.1, we can use Table 3 to sketch the group orbitals and determine their matching irreducible representations.(8%)

- (a) Show that the representation $\Gamma(p_z)$ reduces to $A_g+B_{1u}.$
- (b) Show that the representation $\Gamma(p_x)$ reduces to $B_{2g}+B_{3u}$.
- (c) Show that the representation $\Gamma(1s)$ reduces to $A_g + B_{3u}$.
- (d) Verify that the sketches for the group orbitals match their respective symmetry designations (Ag, B2g, B1u, B3u) in Table 3. (Please use the fill-in-the-blank form of Table 4 to answer (d)) Table 3 Character Table

		E	$C_2(z)$	C ₂ (y)	$C_2(x)$	i	$\sigma(xy)$	σ(xz)	$\sigma(yz)$	
V	v Ag	1	1	1	1	1	A 144	1	1	
	B_{1g}	1	1	-1	11 C1 C	1	TO HELL	-1	-1	Rz
1	$\sqrt{B_{2g}}$	1	-1	1	-1	1	-1	1	-1	Ry
-	B_{3g}	1	-1	-1	0.104	1	-1	-1	wodt (a	R_{χ}
	A_{u}	1	1	1.1	1	-1	-1. b	97,-1799	-eo - 1	
e l	$\sqrt{B_{1u}}$	1	1	-1	-1	-1	-1	1	net 41 7 d	Z
12	B_{2u}	1	-1	1	-1	-1	1	-1	1	y
- 3/	v B _{3u}	1	-1	-1	1	-1	1	1	-1	X

Table 4	designations	Group Orbitals Sketches
	Ag	
Pz	B _{1u}	
p _x	B_{2g}	
	B _{3u}	
S	Ag	
	B_{3u}	

- 13. The reaction $P_4(g) \rightleftharpoons 2 P_2(g)$ has $\Delta H = 217$ kJ/ mol. If the bond energy of a single phosphorous-phosphorous bond is 200 kJ/mol, calculate the bond energy of the P=P bond. Compare the value you obtain with the bond energy in N_2 (946 kJ/ mol), and suggest an explanation for the difference in bond energies in P_2 and N_2 .(6%)
- 14.BrF₃ undergoes autodissociation according to the equilibrium $2 \text{ BrF}_3 \Longrightarrow \text{BrF}_2^+ + \text{BrF}_4^-$

ionic fluorides such as KF behave as base in BrF₃, whereas some covalent fluorides such as SbF₅ behave as acids. On the basis of the solvent system concept, write balanced chemical equations for these acid-base reactions of fluorides with BrF₃.(4%)

15. Give the name <u>in English</u>, indicate their magnetic properties (paramagnetic, diamagnetic) and rationalize the bond distance.(12%)

Formula	Name	Magnetic Property	O-O Distance (pm)
O_2^+	oxizunium		111.6
O_2	ggen		120.8
O_2	aggerion		135
O ₂ ²⁻	реголу		149
O ₃	ozone		127.8
O_3	Zonium	Market Committee	134

-- The End --