See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/223081509

Conformational stability, vibrational assignments, and normal coordinate analysis from FT-IR spectra of xenon solutions and ab initio calculations of epichlorohydrin

**ARTICLE** in JOURNAL OF MOLECULAR STRUCTURE · MARCH 1998

Impact Factor: 1.6 · DOI: 10.1016/S0022-2860(97)00344-X

CITATIONS READS
10 20

3 AUTHORS, INCLUDING:



Min-Joo Lee

Changwon National University

23 PUBLICATIONS 166 CITATIONS

SEE PROFILE



Journal of Molecular Structure 444 (1998) 99-113

Journal of MOLECULAR STRUCTURE

# Conformational stability, vibrational assignments, and normal coordinate analysis from FT-IR spectra of xenon solutions and ab initio calculations of epichlorohydrin

Min Joo Lee<sup>a</sup>, Seung Won Hur<sup>b</sup>, James R. Durig<sup>b,\*</sup>

<sup>a</sup>Department of Chemistry, Changwon National University, Changwon, Kyungnam 641-773, Republic of Korea <sup>b</sup>Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110-2499, USA

Received 24 July 1997; accepted 1 September 1997

## Abstract

Infrared spectra ( $3500-400 \, \mathrm{cm^{-1}}$ ) of epichlorohydrin (chloromethyloxirane), c-OC<sub>2</sub>H<sub>3</sub>C(Cl)H<sub>2</sub>, dissolved in liquid xenon have been recorded at several temperatures from  $-40 \, \mathrm{to} - 105^{\circ}\mathrm{C}$ . Additionally, the Raman spectrum of the liquid has been obtained from 23 to  $-39^{\circ}\mathrm{C}$ . These spectra are consistent with three stable conformers existing in both phases at ambient temperature. The data have been interpreted on the basis that the gauche-2 conformer is the most stable form and the gauche-1 rotamer (most polar) is the second most stable form in the xenon solution whereas the gauche-1 conformer is the most stable form and the cis conformer is the second most stable form in the liquid. Utilizing well separated triplets of three fundamentals due to all three conformers, the enthalpy differences have been determined to be  $51 \pm 14 \, \mathrm{cm}^{-1}$  ( $146 \pm 40 \, \mathrm{cal} \, \mathrm{mol}^{-1}$ ) (gauche-2 to gauche-1) and  $213 \pm 97 \, \mathrm{cm}^{-1}$  ( $609 \pm 277 \, \mathrm{cal} \, \mathrm{mol}^{-1}$ ) (gauche-2 to cis) in the xenon solution and  $383 \pm 28 \, \mathrm{cm}^{-1}$  (gauche-1 to gauche-2) and  $358 \pm 12 \, \mathrm{cm}^{-1}$  (gauche-1 to cis) in the liquid. The structural parameters, dipole moments, conformational stability, and vibrational frequencies have been determined by ab initio calculations with two basis sets up to MP2/6-31G\*. Vibrational assignments for the 24 normal modes for both the gauche-2 and gauche-1 conformers are proposed with several of the fundamentals assigned for the cis conformer. In addition, some of the fundamental frequencies for motions of the  $^{37}\mathrm{Cl}$  isotope have been observed at  $2-3 \, \mathrm{cm}^{-1}$  lower frequency than the corresponding modes of the  $^{35}\mathrm{Cl}$  isotope. © 1998 Elsevier Science B.V.

Keywords: Epichlorohydrin; Conformational stability; Ab initio calculations; Infrared spectrum

#### 1. Introduction

The epichlorohydrin (chloromethyloxirane), c-OC<sub>2</sub>H<sub>3</sub>C(Cl)H<sub>2</sub>, has been shown to exist as three conformations (Fig. 1) in the fluid phases by <sup>13</sup>C NMR [1], microwave [2–4] and vibrational [5] spectroscopies, and electro-optic measurement. [6] The

gauche-1 conformer (most polar form) is the only conformer remaining in the solid state. [5,7] However, there are still disagreements on the conformational stability in the fluid phases. In the initial vibrational studies, [7–9] the investigators demonstrated that rotational isomerism was present in the fluid phases and Hayashi et al. [7] concluded that a polar and less polar forms were present in the liquid phase. Charles et al. [10] identified these conformers

<sup>\*</sup> Corresponding author.



Fig. 1. Newman projections for the three stable conformations of epichlorohydrin.

as the gauche-1 (more polar) and gauche-2 (less polar) forms and determined that  $\Delta H$  had a value of 1.09  $\pm$ 0.20 kcal mol<sup>-1</sup> in the liquid state with the gauche-1 being the more stable form. However, these authors [10] concluded that the gauche-2 rotamer predominated in the vapor state on the basis that the infrared intensities for the 960/925 cm<sup>-1</sup> doublet in the liquid sample reversed their intensities (965/934 cm<sup>-1</sup>) in the spectrum of the vapor. This result was contradicted by another vibrational study [5] where it was concluded that the most stable conformer was the gauche-1 form in both the liquid and vapor phases. More recently, an electron diffraction study [11] reported the gauche-2 as the most stable and the gauche-1 as the second most stable at 67°C and the measurement of the dipole moments and electric birefringences [6] also concluded the gauche-2 form was more abundant (54%) than the other two forms in non-polar solvents.

Therefore, in order to further investigate the relative stability and determine the energy differences among the three conformations of epichlorohydrin, we have carried out studies of the Fourier-transform infrared (FT-IR) spectra of this molecule dissolved in liquid xenon and the Raman spectra of the liquid at variable temperatures. Additionally, theoretical ab initio calculations have also been performed, since our recent studies have shown that the combination of vibrational spectroscopy with ab initio calculations can be a powerful method for understanding conformational behavior of molecules. The ab initio calculations using various basis sets up to the MP2/ 6-31G\* level have been carried out to obtain the optimized structures and vibrational frequencies. We have also utilized the MP2/6-31G\* basis set to obtain the force field from which we have performed a normal coordinate analysis for all three conformers. Finally, we have utilized the ab initio predicted energy differences among the conformers to compare with those obtained from experiments. The results of these investigations are reported herein.

# 2. Experimental

The sample of epichlorohydrin was obtained from Aldrich Chemical Co. (Milwaukee, WI) at a stated purity of 99 + %, and subjected to further purification using a low-temperature, low-pressure fractionation column. After purification, the sample was stored in the dark, and held at 5°C under vacuum in a glass sample tube containing a greaseless stopcock. All subsequent sample manipulations were carried out under vacuum in order to avoid contamination.

The mid-infrared spectrum was recorded on a Bruker model IFS-66 Fourier transform interferometer equipped with a Globar source, Ge/KBr beamsplitter, and a TGS detector. The sample was dissolved in liquified xenon and the spectra were recorded at temperatures ranging from -40 to -105°C. For each temperature investigated, 100 interferograms were collected at a resolution of 1.0 cm<sup>-1</sup>, averaged, and transformed with a boxcar truncation function. The spectra were obtained with the sample contained in a specially designed cryostat cell which has been described elsewhere [12]. The variable temperature liquid phase Raman spectra were recorded from 23 to -39°C with a Harney-Miller [13] cell, with the sample sealed in a glass capillary. Frequencies obtained from these spectra, in addition to those from the previous study, [5] are compiled in Table 1.

## 3. Conformational stability

A portion of the infrared spectra (1500–400 cm<sup>-1</sup>) of the sample in liquid xenon solution at -100°C are

Table 1 Vibrational frequencies (cm  $^{-1}$  ) and assignments for epichlorohydrin  $^{\rm a}$ 

|                |              |             |              | INFRA   | RED  |        |      |          |             |      |             | RAM    | IAN  |        |             |                  | ASSIGNMENT                             |
|----------------|--------------|-------------|--------------|---------|------|--------|------|----------|-------------|------|-------------|--------|------|--------|-------------|------------------|----------------------------------------|
| Gas            | Rel.<br>Int. | Xe<br>Soln. | Rel.<br>Int. | Liquid* | Rel. | Glass* | Rel. | Crystal* | Rel.<br>Int | Gas* | Rel.<br>Int | Liquid | Rel. | Solid* | Rel.<br>Int | vib              | Approximate Description                |
| 068 Q          |              |             |              |         |      |        |      |          |             |      |             |        |      |        |             | v <sub>1</sub> " | <del></del>                            |
| 063 Q          | ms           | 3054        | m            |         |      |        |      |          |             | 3064 | w           |        |      |        |             | νį               | *CH <sub>2</sub> antisymmetric stretch |
| 056 Q          |              |             |              | 3065    | m    | 3072   | w    | 3071     | w           | 3056 | vw          | 3065   | mw   | 3068   | w           | $v_1'$           |                                        |
| 024            | m,bd         | 3015        | sh           |         |      |        |      |          |             | 3024 | m           |        |      |        |             | v <sub>2</sub>   | CH <sub>2</sub> antisymmetric stretch  |
|                |              |             |              |         |      |        |      |          |             |      |             | 3022   | sh   | 3032   | vw          | v <sub>2</sub> ' |                                        |
|                |              |             |              |         |      |        |      | 3018     | ch          |      |             |        |      | 3016   | m           |                  |                                        |
|                |              | 3010        | w            | 3005    | 5    | 3011   | m    | 3007     |             | 3015 | m           | 3006   | vs   | 3005   |             | v <sub>3</sub> ' |                                        |
| 015            | m,bd         |             |              |         | -    |        |      |          |             |      |             |        | •    | 2000   |             | . 3              |                                        |
|                |              | 3000        | m            |         |      |        |      |          |             | 3008 | mw          |        |      |        |             | $v_3$            | CH stretch                             |
|                |              | 2991        | sh           |         |      |        |      |          |             |      |             |        |      |        |             | v <sub>3</sub> " |                                        |
|                |              |             |              |         |      |        |      |          |             |      |             |        |      |        |             |                  |                                        |
| 982 R          |              | 2061        |              |         |      |        |      |          |             | 2077 |             |        |      |        |             |                  | *CU aramatria stratah                  |
| 975 Q<br>969 P |              | 2963        | m            |         |      |        |      |          |             | 2977 | S           |        |      |        |             | V <sub>4</sub>   | *CH <sub>2</sub> symmetric stretch     |
| ,0, 1          |              |             |              |         |      |        |      |          |             |      |             |        |      |        |             |                  |                                        |
| 963 Q          |              | 2953        | w            | 2963    | m    | 2970   | mw   | 2975     | w           | 2965 | m           | 2963   | vs   | 2972   | s           | ν <sub>4</sub> ' |                                        |
|                |              |             |              |         |      |        |      |          |             |      |             |        |      |        |             |                  |                                        |
|                |              | 2927        | m            |         |      |        |      |          |             | 2942 | m           |        |      |        |             | v <sub>5</sub>   | CH <sub>2</sub> symmetric stretch      |
| 940            | w,bd         | 2022        |              | 2021    |      | 2022   |      | ***      |             | 2027 | -1.         | 000    |      | 2027   |             |                  |                                        |
|                |              | 2923        | sn           | 2926    | m    | 2928   | w    | 2928     |             | 2936 | sn          | 2926   | ms   | 2926   | w           | V5'              |                                        |
|                |              |             |              |         |      |        |      | 2920     | sn          |      |             |        |      |        |             |                  |                                        |
| 894 R          |              |             |              |         |      |        |      |          |             |      |             |        |      |        |             | v <sub>6+8</sub> |                                        |
| 882 P          |              |             |              |         |      |        |      |          |             |      |             |        |      |        |             |                  |                                        |
|                |              |             |              |         |      |        |      |          |             |      |             |        |      |        |             |                  |                                        |
| 496 R          | w            |             |              |         |      |        |      |          |             |      |             |        |      |        |             |                  |                                        |
| 490 Q          |              | 1482        |              |         |      |        |      | 1490     |             |      |             |        |      |        |             | V <sub>6</sub>   | *CH <sub>2</sub> deformation           |
| 487 Q          | sh           | 1480        | sh           | 1480    | m    | 1479   | m    | 1477     | w           |      |             | 1478   | m    | 1475   | vw          | v <sub>6</sub> ' |                                        |
| 183 P          |              |             |              |         |      |        |      |          |             |      |             |        |      |        |             |                  |                                        |
| 461 R          |              |             |              |         |      |        |      |          |             |      |             |        |      |        |             |                  |                                        |
| 456 Q          | w            | 1449        | m            |         |      |        |      |          |             | 1456 | vw          |        |      |        |             | V7               | CH <sub>2</sub> deformation            |
|                |              |             |              |         |      |        |      |          |             |      |             |        |      |        |             | •                | -                                      |
| 448 P          |              |             |              |         |      |        |      |          |             |      |             |        |      |        |             |                  |                                        |
| 439 Q          | vw           |             |              | 1446    | m    | 1446   | sh   |          |             |      |             | 1447   | vw   |        |             | v <sub>7</sub> " |                                        |
| 437 Q          | w            | 1431        | w            | 1431    | me   | 1434   | me   | 1443     | m           |      |             | 1432   | w    | 1442   | 1/IV        | v <sub>7</sub> ' |                                        |
| 433 P          | ***          | 1431        | "            | 1431    | 1113 | 1434   | 1113 | 1445     | 111         |      |             | 1432   | "    | 1772   | ***         | <b>V</b> 7       |                                        |
| -              |              |             |              |         |      |        |      |          |             |      |             |        |      |        |             |                  |                                        |
| 116 R          |              |             |              |         |      |        |      |          |             |      |             |        |      |        |             |                  |                                        |
| 112 Q          | w            | 1405        | w            |         |      |        |      |          |             | 1409 | m           |        |      |        |             | v <sub>g</sub>   | ring breathing                         |
| 111.0          | ch           |             |              |         |      |        |      |          |             |      |             |        |      |        |             |                  | <sup>37</sup> Cl                       |
| III Q<br>I08 P | 511          |             |              |         |      |        |      |          |             |      |             |        |      |        |             | νg               | - · CI                                 |
|                |              |             |              |         |      |        |      |          |             |      |             |        |      |        |             |                  |                                        |
| 405 Q          | sh           | 1397        | w            | 1403    | m    | 1399   | ms   | 1405     | ms          |      |             | 1403   | m    | 1405   | m           | vg'              |                                        |
|                |              |             |              |         |      |        |      |          |             |      |             |        |      | 1401   | sh          |                  |                                        |
|                |              |             |              |         |      |        |      |          |             |      |             |        |      |        |             |                  |                                        |
| 02 Q           | w            | 1396        | sh           | 1397    | ms   |        |      |          |             | 1399 | m           | 1397   | ms   |        |             | ∨g"              |                                        |
|                |              | 1292        | vw           | 1298    | w    |        |      |          |             |      |             |        |      |        |             | ν <sub>9</sub> " |                                        |
| 80 R           |              |             |              |         |      |        |      |          |             |      |             |        |      |        |             | . у              |                                        |
| 76 Q           | ms           | 1273        | s            | 1275    | sh   | 1280   | sh   |          |             |      |             | 1276   | sh   |        |             | ν9               | CH <sub>2</sub> rock                   |
| 75 Q           |              |             |              |         |      |        |      |          |             |      |             |        |      |        |             | ν9               | <sup>37</sup> Cl                       |
| 72 P,          |              |             |              |         |      |        |      |          |             |      |             |        |      |        |             |                  |                                        |
|                | ms           | 1264        | m            | 1264    | vw   | 1267   | 8    | 1270     | m,bd        | 1269 | w           | 1266   | m    | 1266   | m           | v9'              |                                        |
| 67 Q           |              |             |              |         |      |        |      |          |             |      |             |        |      |        |             |                  |                                        |
|                |              |             |              |         |      |        |      |          |             |      |             |        |      |        |             |                  |                                        |

Table 1 (continued)

|                |              |             |              | INFRA               | KED         |        |             |            |             |      |             | RAM          | 1AN         |            |             |                                 | ASSIGNMENT                      |
|----------------|--------------|-------------|--------------|---------------------|-------------|--------|-------------|------------|-------------|------|-------------|--------------|-------------|------------|-------------|---------------------------------|---------------------------------|
| Gas_           | Rel.<br>Int. | Xe<br>Soln. | Rei.<br>Int. | Liquid <sup>4</sup> | Rel.<br>Int | Glass* | Rel.<br>Int | Crystal*   | Rel.<br>Int | Gas* | Rel.<br>Int | Liquid       | Rel.<br>Int | Solid*     | Rel.<br>Int | v <sub>i</sub> b                | Approximate Description         |
| 256 Q          |              |             |              |                     |             |        |             |            |             |      |             |              |             |            |             | V10"                            |                                 |
|                |              |             |              |                     |             |        |             | 1260       | s           |      |             |              |             | 1258       | sh          |                                 |                                 |
| 253 Q          |              | 1253        | w            | 1254                | s           | 1254   | s           | 1255       |             | 1253 | ms          | 1253         | vs          | 1254       |             | v <sub>8</sub> '                |                                 |
| 246 Q          |              | 1243        | vw           |                     |             |        |             |            |             | 1244 | w           |              |             |            |             | V <sub>10</sub>                 | CH bend                         |
|                |              | 1240        | vw           |                     |             |        |             |            |             |      |             |              |             |            |             | v <sub>7</sub> -v <sub>23</sub> |                                 |
|                |              |             |              | 1206                |             | 1212   |             | 1216       |             |      |             | 1208         |             | 1212       |             |                                 |                                 |
|                |              | 1207        |              | 1206                | vw          | 1212   |             | 1216       | w           |      |             | 1208         |             | 1213       | vw          | V <sub>11</sub> ′               |                                 |
|                |              | 1202        | vw           |                     |             | 1196   | w           |            |             |      |             | 1197         | w           |            |             | ν11"                            |                                 |
| 197 R          | -1-          | 1180        |              | 1101                |             |        |             |            |             |      |             |              |             |            |             |                                 | CH                              |
| 194 Q          | SII          | 1189        | w            | 1191                | w           |        |             |            |             |      |             |              |             |            |             | v <sub>11</sub>                 | CH <sub>2</sub> wag             |
| 192 Q<br>186 P |              |             |              |                     |             |        |             |            |             |      |             |              |             |            |             | $v_{11}$                        | <sup>37</sup> Cl                |
| 156 R          |              |             |              |                     |             |        |             |            |             |      |             |              |             |            |             |                                 |                                 |
| 151 Q          | vw           | 1149        | w            | 1145                | sh          | 1148   | sh          | 1159       | w           | 1150 | vw          | 1148         | mw          | 1160       | vw          | v <sub>12</sub> '               |                                 |
| 144 P          |              |             |              |                     |             |        |             |            |             |      |             |              |             |            |             |                                 |                                 |
| 136 Q          | sh           | 1142        | vw           |                     |             |        |             |            |             |      |             |              |             |            |             | $v_{12}$                        | CH bend                         |
| 134 Q          | vw           | 1131        | w,bd         | 1134                | m           | 1137   | m           | 1142       | w           | 1134 | vw          | 1134         | mw          | 1139       | vw          | $v_{13}$                        | *CH <sub>2</sub> wag, g2+g1+cis |
| 098 R          |              |             |              |                     |             |        |             |            |             |      |             |              |             |            |             |                                 |                                 |
| 092 Q          | vw           | 1090        | w,bd         | 1090                | mw          | 1094   | mw          | 1091       | w           | 1091 | m           | 1090         | m           | 1091       |             | v <sub>14</sub>                 | CH <sub>2</sub> twist, g2+g1    |
| 087 P          |              |             |              |                     |             |        |             |            |             |      |             |              |             | 1081       | sn          |                                 |                                 |
| 073 Q          |              |             |              |                     |             | 1073   | vw          |            |             |      |             |              |             |            |             | ν <sub>14</sub> "               |                                 |
|                |              | 1057        | vw           |                     |             | 1058   | vw          |            |             | 1055 | vw          | 1055         | vw          |            |             | v <sub>15</sub> '               |                                 |
|                |              | 1053        | vw           |                     |             |        |             |            |             |      |             |              |             |            |             | v <sub>15</sub>                 | *CH <sub>2</sub> rock           |
|                |              | 1034        | vw           |                     |             | 1030   | vw          |            |             |      |             |              |             |            |             | v <sub>15</sub> "               |                                 |
| 972 Q          | sh           | 968         | sh           |                     |             |        |             |            |             |      |             |              |             |            |             | ٧ <sub>16</sub> "               |                                 |
| ··- 🕻          | •            | ,           | ***          | 959                 | s           | 961    | s           |            |             | 965  | w           | 960          | mw          |            |             | 10                              |                                 |
| 970 R          |              |             |              |                     |             |        |             |            |             |      |             |              |             |            |             |                                 |                                 |
| 964 Q          | ms           | 962         | s            |                     |             |        |             |            |             |      |             |              |             |            |             | v <sub>16</sub>                 | C-C stretch                     |
| 960 P<br>940 R |              |             |              |                     |             |        |             | 925        | ch          |      |             |              |             | 027        | ch          |                                 |                                 |
| 934 Q          | w            | 929         | m            | 924                 | vs          | 925    | vs          | 923        |             |      |             | 925          | mw          | 927<br>921 |             | ν <sub>16</sub> '               |                                 |
| 928 P          |              |             |              |                     |             |        |             |            |             |      |             |              |             |            |             | 10                              |                                 |
|                |              | 911         | w            | 903                 | m           | 903    | s           | 908        | m           |      |             | 906          | mw          | 910        | w           | v <sub>17</sub> '               |                                 |
|                |              | 875         | w            |                     |             |        |             |            |             |      |             |              |             |            |             | V <sub>17</sub>                 | *CH <sub>2</sub> twist          |
| g s g D        |              |             |              |                     |             |        |             | 067        | ch          |      |             |              |             | 050        |             | .,                              | •                               |
| 858 R<br>853 Q | ms           | 852         | 5            | 850                 | vvs         | 852    | vvs         | 857<br>848 |             | 851  | w,bd        | 853          | mw          | 859<br>848 |             | ν <sub>18</sub> '               |                                 |
| 846 P          |              |             |              |                     |             |        |             |            |             |      | ,           |              |             |            |             | 10                              |                                 |
| 842 Q          |              | 846         | s            | 840                 | sh          | 839    | sh          |            |             | 842  | mw          |              |             |            |             | ν <sub>18</sub>                 | ring symmetric deformation      |
|                |              | 838         | w            |                     |             |        |             |            |             |      |             |              |             |            |             | v <sub>18</sub> "               |                                 |
|                |              | 330         | ••           |                     |             |        |             |            |             |      |             |              |             |            |             | *18                             |                                 |
| 803 R<br>794 P | mw           | 794         | m            |                     |             | 786    | sh          |            |             |      |             | 7 <b>8</b> 0 | w           |            |             | v <sub>19</sub>                 | ring antisymmetric deform       |
|                |              | ,,,         |              | 700                 | m,bd        |        | J.,         |            |             | 700  | vw,bo       |              | ••          |            |             | . 13                            | James de de loin                |

Table 1 (continued)

|                |              |             |              | INFRA   | RED  |        |      |          |             |      |             | RAN    | IAN         |            |             |                                        | ASSIGNMENT                                   |
|----------------|--------------|-------------|--------------|---------|------|--------|------|----------|-------------|------|-------------|--------|-------------|------------|-------------|----------------------------------------|----------------------------------------------|
| Gas            | Rei.<br>Int. | Xe<br>Soln. | Rel.<br>Int. | Liquid* | Rel. | Glass* | Rel. | Crystal* | Rel.<br>Int | Gas* | Rei.<br>Int | Liquid | Rel.<br>Int | Solid*     | Rel.<br>Int | v <sub>i</sub> b                       | Approximate Description                      |
| 788            | sh           | 788         | w            |         |      | 777    |      | <u>-</u> |             |      |             | 773    | w           |            |             | ν <sub>19</sub> "                      | <del></del>                                  |
| 781 R          |              |             |              |         |      |        |      |          |             |      |             |        |             |            |             |                                        |                                              |
| 775 Q          | mw           | 769         | 5            | 756     | s    | 754    | s    | 754      | s           |      |             | 759    | m           | 760        | •           | v <sub>19</sub> '                      |                                              |
|                |              |             | •            |         |      | , .    | -    | ,        | •           |      |             | ,      |             | 755        |             | . 19                                   |                                              |
| 761 R          |              |             |              |         |      |        |      |          |             |      |             |        |             |            |             |                                        |                                              |
| 756 Q          | vs           | 750         | vs           | 733     | sh   | 732    | sh   |          |             | 755  | vs          | 735    | sh          |            |             | v <sub>20</sub>                        | C-Cl stretch                                 |
| 755 Q          |              | ,,,,        |              | ,,,,    | 511  | ,52    | 311  |          |             | 755  | • • •       | ,,,,   | 311         |            |             | *20                                    | C CI Silcion                                 |
| 752 Q          |              | 746         | sh           |         |      |        |      |          |             |      |             |        |             |            |             | v <sub>20</sub>                        | <sup>37</sup> Cl                             |
| 749 P          | 311          | , 40        | <b>311</b>   |         |      |        |      |          |             |      |             |        |             |            |             | 20                                     | •                                            |
|                |              |             |              |         |      |        |      | 718      | sh          |      |             |        |             |            |             |                                        |                                              |
|                |              |             |              |         |      |        |      |          |             | - 40 |             |        |             |            |             |                                        |                                              |
| 743 Q          | m            | 736         | m            | 720     | vvs  | 715    | vvs  | 713      | S           | 742  | ms          | 721    | vs          | 717        | vs          | ν <sub>20</sub> '                      |                                              |
|                |              | 733         | w            |         |      |        |      |          |             |      |             |        |             |            |             | v <sub>20</sub> '                      | <sup>37</sup> Cl                             |
|                |              | 703         | vw           | 692     | mw   | 690    | mw   |          |             |      |             | 695    | mw          |            |             | ν <sub>20</sub> "                      |                                              |
|                |              | 701         | vw           |         |      |        |      |          |             |      |             |        |             |            |             | v <sub>20</sub> "                      | <sup>37</sup> C1                             |
|                |              | ,01         | • • •        |         |      |        |      |          |             |      |             |        |             |            |             | - 20                                   |                                              |
| 526 R          |              |             |              | 516     |      |        |      |          |             | 520  |             | 517    |             |            |             | "                                      |                                              |
| 521 Q          |              | 520         | vw           | 516     | m    | 318    | mw   |          |             | 520  | vw          | 317    | w           |            |             | ν <sub>21</sub> "<br>ν <sub>21</sub> " | <sup>37</sup> C!                             |
| 518 Q<br>511 P |              |             |              |         |      |        |      |          |             |      |             |        |             |            |             | V21                                    | Ci                                           |
| 311 6          |              |             |              |         |      |        |      |          |             |      |             |        |             |            |             |                                        |                                              |
| 443 R          |              |             |              |         |      |        |      |          |             |      |             |        |             | 450        |             |                                        |                                              |
| 438 Q<br>430 P |              | 438         | m            | 441     | S    | 446    | VS   | 453      | S           | 443  | w           | 443    | mw          | 452<br>446 |             | v <sub>21</sub> '                      |                                              |
| 430 P          |              |             |              |         |      |        |      |          |             |      |             |        |             | 440        | "           |                                        |                                              |
|                |              | 405         | vw           |         |      | 413    |      |          |             | 406  | w           | 413    | w           |            |             | $v_{21}$                               | ring-C(Cl)H <sub>2</sub> out-of-plane bend   |
|                |              |             |              |         |      | 365    |      | 374      | w           | 371  | s           | 372    | ms          | 380        |             | $v_{22}$                               | ring-C(Cl)H <sub>2</sub> in-plane bend, g2+g |
| 218 R          |              |             |              |         |      |        |      |          |             |      |             |        |             | 373        | sh          |                                        |                                              |
| 214 Q          | w            |             |              |         |      | 230    |      |          |             | 211  | m           | 221    | w           |            |             | v <sub>23</sub>                        | CCCI bend                                    |
| 206 P          |              |             |              |         |      |        |      |          |             |      |             |        |             |            |             |                                        |                                              |
|                |              |             |              |         |      | 228    |      |          |             |      |             |        |             |            |             | v <sub>23</sub> '                      |                                              |
| -90            | w,bd         |             |              |         |      |        |      |          |             | 86   | vw          |        |             |            |             | v <sub>24</sub>                        | C(CI)H <sub>2</sub> asymmetric torsion       |
|                |              |             |              |         |      |        |      |          |             |      |             |        |             | 68         | w           |                                        | lattice mode                                 |

<sup>\*</sup>Abbreviations used: s, strong, m, moderate; w, weak; v, very; bd, broad; sh, shoulder; A, B, and C refer to infrared band envelopes; P, Q, and R refer to portions of the IR band contours.

shown in Fig. 2. From the comparison of these spectra with the previous [5] vibrational spectra and calculated frequencies, several conformational triplets have been identified. The best resolved are those at 850–830, 795–760 and 530–400 cm<sup>-1</sup> with the first two best suited for enthalpy determinations. The lowest frequency triplet has the best separated bands but the one at 406 cm<sup>-1</sup> for the gauche-2 fundamental is very weak and very near the FT–IR interferometer spectral cut-off. Therefore, the first two set of triplets were used for the conformational stability determinations.

To determine the relative stability of all three conformers of epichlorohydrin in a liquid xenon solution, the variable temperature study has been carried out at eight different temperatures varying from -40 to -105°C. Two of the well-resolved conformer triplets are shown in Figs. 3 and 4. The features at 846, 852, and 838 cm<sup>-1</sup> of the symmetric ring deformation and 794, 769 and 788 cm<sup>-1</sup> of the other ring deformation have been assigned to the most stable gauche-2, the second most stable gauche-1, and high energy cis conformers, respectively. These

<sup>†</sup>Denotations used are: V, fundamental for gauche-2 conformer: V, fundamental for gauche-1 conformer; v", fundamental for cis conformer; 17Cl, fundamental of epichlorohydrin of 37Cl isotope.



Fig. 2. Infrared spectra of epichlorohydrin dissolved in liquified xenon at  $-100^{\circ}$ C in the region of (a)  $1500-400 \,\mathrm{cm}^{-1}$  with the top spectrum higher concentration; (b) mixture of gauche-1 and gauche-2; (c) pure gauche-1; and (d) pure gauche-2.

assignments are consistent with the predicted frequency order for the second set of triplets for these modes for the individual conformers from the ab initio calculations whereas for the higher frequency triplets the predicted order for the gauche-2 and gauche-1 bands are reversed. Also the weakest band in each triplet is assigned to the highest energy cis conformer. All of these experimental spectra have been leastsquares fitted using a set of Gaussian-Lorentz sum profiles for obtaining reliable intensities and the resulting integrated intensities are summarized in Table 2. Using these values, van't Hoff plots have been made for each set of triplets (Fig. 5). The values for  $\Delta H$  have been calculated to be 51  $\pm$  $14 \text{ cm}^{-1}$  (145  $\pm$  40 cal mol<sup>-1</sup>) and 213  $\pm$  97 cm<sup>-1</sup>  $(608 \pm 278 \text{ cal mol}^{-1})$  for the gauche-2 to gauche-1 and gauche-2 to cis forms, respectively. The latter value has a large statistical uncertainty because of the weakness of the bands for the cis conformer.



Fig. 3. Infrared spectra (870–820 cm<sup>-1</sup>) for the variable temperature study of epichlorohydrin in a liquid xenon solution and the simulated profiles for 168 K at the bottom.

Even though previous studies [5,10] reported the enthalpy differences of the liquid, we have redetermined these values from the well resolved Raman lines of the ring-C(Cl)H<sub>2</sub> out-of-plane bend. Charles, et al. [10] determined the  $\Delta H$  on the basis of the infrared intensities for the 960/925 cm<sup>-1</sup> doublet. In this study, the line at 960 cm<sup>-1</sup>, which they [10] assigned as a fundamental of gauche-2, has been found to not be a single band from one conformer but has a line from the cis conformer underneath it. Kalasinsky and Wurrey [5] also determined the  $\Delta H$  values of the liquid to be 1.2  $\pm$  0.2 and 0.7  $\pm$ 0.10 kcal mol<sup>-1</sup> from the triplet at 735, 721 and  $695 \text{ cm}^{-1}$  ( $\nu_{20}$ , C-Cl stretch) assigned to the cis, gauche-1 and gauche-2 conformers, respectively. In our study, this triplet has been assigned to the gauche-2, gauche-1 and cis conformers in the order of the 735, 721 and 691 cm<sup>-1</sup> bands, respectively.

Therefore, we have carried out the variable temperature study of the Raman spectra of the liquid from 23 to -39°C for the clearly resolved triplet



Fig. 4. Infrared spectra (810–760 cm<sup>-1</sup>) for the variable temperature study of epichlorohydrin in a liquid xenon solution and the simulated profiles for 168 K at the bottom.

of the ring– $C(Cl)H_2$  out-of-plane bending mode. The resulting intensities are summarized in Table 3 and a van't Hoff plot is shown in Fig. 6. The corresponding values for  $\Delta H$  have been obtained to be 383  $\pm$  28 cm<sup>-1</sup> (1.09  $\pm$  0.08 kcal mol<sup>-1</sup>) and 358  $\pm$  12 cm<sup>-1</sup> (1.02  $\pm$  0.03 kcal mol<sup>-1</sup>) for the gauche-1 to gauche-2 and gauche-1 to cis conformers, respectively. From these results, we have concluded that the most stable rotamer in the liquid is the polar gauche-1 rotamer and the other polar form of cis is slightly more stable than the least polar gauche-2 form.

## 4. Ab initio calculations

In order to provide additional information with regard to the structure and form of the normal vibrational modes of epichlorohydrin, we have carried out LCAO-MO-SCF restricted Hartree–Fock calculations. These calculations have been performed with the Gaussian-92 program [14] using the 3-21G\* and 6-31G\* basis sets with gaussian functions at the restricted Hartree–Fock (RHF) level and with full electron correlation [15] to the second order (MP2) for obtaining the optimized geometries and ab initio frequencies for the gauche-2, gauche-1, and cis conformations. The energy minima with respect to the



Fig. 5. A van't Hoff plot for epichlorohydrin dissolved in liquified xenon.

Table 2
Temperature and integrated intensity ratios for the conformational study of epichlorohydrin in liquid xenon

| Vib. No.        | <i>T</i> (K) | $K_1 = I_{\text{gauche-1}}/I_{\text{gauche-2}}^{a}$ | $K_2 = I_{\rm cis}/I_{\rm gauche-2}^{\rm b}$ | $-\ln(K_1)$                   | $-\ln(K_2)$                  |
|-----------------|--------------|-----------------------------------------------------|----------------------------------------------|-------------------------------|------------------------------|
| ν <sub>18</sub> | 168          | 0.545                                               | 0.103                                        | 0.606                         | 2.28                         |
|                 | 173          | 0.507                                               | 0.077                                        | 0.680                         | 2.56                         |
|                 | 183          | 0.568                                               | 0.109                                        | 0.570                         | 2.22                         |
|                 | 193          | 0.548                                               | 0.099                                        | 0.601                         | 2.31                         |
|                 | 203          | 0.582                                               | 0.148                                        | 0.541                         | 1.91                         |
|                 | 213          | 0.540                                               | 0.129                                        | 0.617                         | 2.05                         |
|                 | 223          | 0.598                                               | 0.097                                        | 0.515                         | 2.33                         |
|                 | 233          | 0.602                                               | 0.188                                        | 0.507                         | 1.67                         |
| $\Delta H^{c}$  |              |                                                     |                                              | $48 \pm 18 \mathrm{cm}^{-1}$  | $213 \pm 97 \text{ cm}^{-1}$ |
| ν <sub>19</sub> | 168          | 0.724                                               |                                              | 0.323                         |                              |
|                 | 173          | 0.802                                               |                                              | 0.221                         |                              |
|                 | 183          | 0.819                                               |                                              | 0.199                         |                              |
|                 | 193          | 0.844                                               |                                              | 0.169                         |                              |
|                 | 203          | 0.756                                               |                                              | 0.280                         |                              |
|                 | 213          | 0.840                                               |                                              | 0.174                         |                              |
|                 | 223          | 0.868                                               |                                              | 0.141                         |                              |
|                 | 233          | 0.865                                               |                                              | 0.145                         |                              |
| $\Delta H^c$    |              |                                                     |                                              | $53 \pm 22  \mathrm{cm}^{-1}$ |                              |

 $<sup>^{8}</sup>K_{1}$  represents the ratios of the intensities of the 852/846 cm<sup>-1</sup> for the  $\nu_{18}$  and the intensities of the 769/794 cm<sup>-1</sup> for the  $\nu_{19}$ .

nuclear coordinates have been obtained by the simultaneous relaxation of all the geometric parameters using the gradient method of Pulay. [16,17] The calculated parameters are given in Table 4 for the gauche-2, gauche-1 and cis conformations. From Table 4, the structure which has the chlorine atom in the gauche-2 position (Fig. 1) relative to the ring is shown to be the thermodynamically preferred conformation with all three basis sets. The calculated torsional angles of the Cl atom to the ring for the gauche-2, gauche-1 and cis conformations are  $117.4^{\circ}$ ,  $117.3^{\circ}$  and  $2.5^{\circ}$ , respectively. These results also give the  $C_2$ – $C_3$  distances and dipole moments of 1.501,

1.497 and 1.507 Å and 0.691, 3.893 and 3.267 D for the gauche-2, gauche-1, and cis conformers from the MP2/6-31G\* calculations, respectively.

For the normal coordinate analysis, the following procedure has been used to transform ab initio results into the form required for our iterative normal coordinate programs. The Cartesian coordinates obtained for the optimized structure were input into the G-matrix program together with the complete set of thirty internal coordinates (Table 5 and Fig. 7). This complete set of internal coordinates has been used to form the symmetry coordinates and they are listed in Table 6. The output of this G-matrix program

Table 3
Temperature and integrated intensity ratios for the conformational study of epichlorohydrin in the liquid phase

| T(K°) | $K_1 = I_{\text{gauche-2}}/I_{\text{gauche-1}}^{\text{a}}$ | $K_2 = I_{\text{cis}}/I_{\text{gauche-1}}^{\text{b}}$ | $-\ln(K_1)$ | $-\ln(K_2)$ |
|-------|------------------------------------------------------------|-------------------------------------------------------|-------------|-------------|
| 234   | 0.2516                                                     | 0.2089                                                | 1.380       | 1.566       |
| 240   | 0.2664                                                     | 0.2298                                                | 1.323       | 1.479       |
| 251   | 0.3046                                                     | 0.2494                                                | 1.189       | 1.389       |
| 260   | 0.3159                                                     | 0.2663                                                | 1.152       | 1.323       |
| 267   | 0.3222                                                     | 0.2835                                                | 1.133       | 1.261       |
| 278   | 0.3552                                                     | 0.3015                                                | 1.035       | 1.199       |
| 296   | 0.4254                                                     | 0.3343                                                | 0.855       | 1.096       |

 $<sup>{}^{</sup>a}K_{1}$  represents the ratios of the Raman line intensities of the 413/443 cm<sup>-1</sup>.

<sup>&</sup>lt;sup>b</sup>K<sub>2</sub> represents the ratios of the intensities of the 838/846 cm<sup>-1</sup>.

<sup>&</sup>lt;sup>c</sup>Average value of  $\Delta H$  is 51  $\pm$  14 cm<sup>-1</sup> (146  $\pm$  40 cal mol<sup>-1</sup>).

 $<sup>{}^{</sup>b}K_{2}$  represents the ratios of the Raman line intensities of the 517/443 cm<sup>-1</sup>.



Fig. 6. A van't Hoff plot for liquid epichlorohydrin using the intensities of the Raman triplet line of the ring-C(Cl)H<sub>2</sub> out-of-plane bend.

consists of the B-matrix and the unsymmetrized G-matrix. The B-matrix has been used to convert the ab initio force field in Cartesian coordinates to a force field in the desired internal coordinates for the gauche-2, gauche-1 and cis conformers which can be obtained from the authors. All diagonal elements of the obtained force fields in internal coordinates have been assigned scaling factors. The force field has then been input, along with the unsymmetrized G-matrix and scaling factors, into the perturbation program written by Schachtschneider [18]. Initially, all scaling factors have been kept fixed at a value of 1.0 to produce the pure ab initio calculated vibrational frequencies and the potential energy distributions (P.E.D.)



Fig. 7. Geometrical model for epichlorohydrin in the cis conformation.

which are given in Table 7. Subsequently, a scaling factor of 0.9 for all coordinates except 1.0 for the torsion has been utilized to obtain the scaled frequencies. The resultant frequencies from the scaled force field are also listed in Table 7.

## 5. Vibrational assignment

The infrared spectrum of the xenon solution and the ab initio calculations indicate that many normal modes should be reassigned from those given earlier [5] since they were assigned based on the gauche-1 form as the most stable conformation in the gas and liquid phases. On the basis of the scaled ab initio frequencies along with calculated infrared intensities and the principle that the two polar forms can be stabilized in the liquid phase and the gauche-1 is the only conformer in the solid, we have reassigned many of the fundamentals for each of the conformers. Our observations of the FT-IR spectrum of the xenon solution with the relatively sharp bands aided the assignment of the individual bands to the gauche-2 and gauche-1 conformers. In this investigation, we have concluded that both the more polar gauche-1 and cis forms become more abundant in the liquid phase whereas the bands of the less polar gauche-2 form becomes less intense than the corresponding

Table 4 Structural parameters, dipole moments, rotational constants and energies of epichlorohydrin $^{\rm a}$ 

|                                                       | RHF/3-21G* |          |         | RHF/6-31G* | *        |         | MP2/6-31G* | *        |         | Microwave |          | ·       |
|-------------------------------------------------------|------------|----------|---------|------------|----------|---------|------------|----------|---------|-----------|----------|---------|
| Parameter                                             | gauche-II  | gauche-1 | cis     | gauche-II  | gauche-1 | cis     | gauche-II  | gauche-I | cis     | gauche-II | gauche-1 | cis     |
| $r(C_2-C_3)$                                          | 1.499      | 1.496    | 1.505   | 1.504      | 1.501    | 1.508   | 1.501      | 1.497    | 1.507   | 1.522     | 1.513*   | 1.522   |
| r(Cl-C <sub>3</sub> )                                 | 1.813      | 1.810    | 1.801   | 1.793      | 1.793    | 1.786   | 1.787      | 1.787    | 1.779   | 1.767     | 1.760    | 1.794   |
| r(C <sub>2</sub> -C <sub>4</sub> )                    | 1.469      | 1.475    | 1.470   | 1.451      | 1.455    | 1.452   | 1.463      | 1.467    | 1.463   | 1.471*    | 1.471*   | 1.471*  |
| r(C <sub>2</sub> -0)                                  | 1.468      | 1.464    | 1.459   | 1.400      | 1.397    | 1.393   | 1.439      | 1.435    | 1.431   | 1.436*    | 1.436*   | 1.436*  |
| r(C <sub>4</sub> -0)                                  | 1.476      | 1.473    | 1.477   | 1.407      | 1.403    | 1.407   | 1.445      | 1.442    | 1.447   | 1.436*    | 1.436*   | 1.436*  |
| r(H <sub>1</sub> -C <sub>2</sub> )                    | 1.071      | 1.071    | 1.074   | 1.077      | 1.077    | 1.081   | 1.090      | 1.090    | 1.093   | 1.082*    | 1.082*   | 1.082*  |
| r(H <sub>7</sub> -C <sub>3</sub> )                    | 1.077      | 1.077    | 1.078   | 1.079      | 1.078    | 1.080   | 1.091      | 1.091    | 1.093   | 1.092*    | 1.092*   | 1.092*  |
| $r(H_8-C_3)$                                          | 1.076      | 1.077    | 1.078   | 1.078      | 1.080    | 1.080   | 1.091      | 1.092    | 1.092   | 1.092*    | 1.092*   | 1.092*  |
| $r(H_9-C_4)$                                          | 1.071      | 1.071    | 1.069   | 1.077      | 1.077    | 1.074   | 1.088      | 1.088    | 1.086   | 1.082*    | 1.082*   | 1.082*  |
| r(H <sub>10</sub> -C <sub>4</sub> )                   | 1.070      | 1.071    | 1.071   | 1.076      | 1.076    | 1.077   | 1.087      | 1.088    | 1.088   | 1.082*    | 1.082*   | 1.082*  |
| $< (C_3 - C_2 - H_1)$                                 | 116.6      | 9.911    | 113.0   | 115.2      | 115.2    | 111.2   | 115.8      | 115.7    | 112.0   |           |          |         |
| < (CI-C <sub>3</sub> -C <sub>2</sub> )                | 8.601      | 110.9    | 113.5   | 110.5      | 111.4    | 114.7   | 110.1      | 111.0    | 113.8   | 110.97    | 109.45*  | 110.94  |
| $< (C_4 - C_2 - C_3)$                                 | 119.4      | 118.9    | 123.6   | 121.5      | 120.6    | 125.9   | 46.5       | 46.2     | 51.9    |           |          |         |
| $< (0-C_2-C_3)$                                       | 112.6      | 114.4    | 116.9   | 114.3      | 116.4    | 118.3   | 154.8      | 144.8    | 151.6   |           |          |         |
| $< (C_4C_20)$                                         | 60.4       | 60.1     | 9.09    | 59.1       | 58.9     | 59.3    | 108.3      | 98.6     | 7.66    |           |          |         |
| < (C <sub>2</sub> OC <sub>4</sub> )                   | 8.65       | 60.3     | 60.1    | 62.2       | 58.6     | 62.4    | 2.79       | 76.8     | 75.6    |           |          |         |
| $< (H_7-C_1-C_2)$                                     | 111.8      | 110.3    | 110.2   | 1.11.1     | 110.7    | 8.601   | 111.3      | 8.601    | 109.5   | 109.45*   | 109.45*  | 109.45* |
| $< (H_8-C_3-C_2)$                                     | 110.7      | 111.4    | 110.0   | 111.0      | 111.0    | 9.601   | 110.0      | 111.0    | 109.6   | 109.45*   | 109.45*  | 109.45* |
| $< (H_9-C_4-C_2)$                                     | 119.1      | 119.4    | 119.5   | 6.611      | 120.1    | 120.3   | 119.1      | 119.7    | 119.6   |           |          |         |
| $< (H_{10}-C_4C_2)$                                   | 119.3      | 119.2    | 118.8   | 119.8      | 119.7    | 119.2   | 8.611      | 119.5    | 119.3   |           |          |         |
| $< (H_9C_4H_{10})$                                    | 116.4      | 116.2    | 116.8   | 115.4      | 115.2    | 115.8   | 115.7      | 115.6    | 116.2   |           |          |         |
| $\tau(CI-C_3-C_2-H_4)$                                | - 65.5     | 53.0     | 180.2   | - 60.7     | 55.4     | 185.3   | - 62.6     | 57.3     | 182.5   | -70.21    | 54.02    | 173.22  |
| $\tau(C_4-C_2-C_3-H_1)$                               | 155.9      | 154.1    | 153.5   | 156.2      | 153.8    | 154.2   |            |          |         |           |          |         |
| $\tau(O-C_2-C_3-H_1)$                                 | - 136.4    | - 137.9  | - 135.5 | - 136.4    | - 138.3  | - 134.9 |            |          |         |           |          |         |
| $\eta(H_7-C_3-C_2-CI)$                                | 118.4      | 118.0    | 120.1   | 118.6      | 119.0    | 120.5   | 112.8      | 111.4    | 111.6   |           |          |         |
| $\eta(H_8-C_3-C_2-Cl)$                                | - 118.8    | - 118.6  | - 118.9 | - 119.5    | - 118.7  | - 119.8 | 111.6      | 112.5    | 111.5   |           |          |         |
| $\tau(H_9-C_4-C_2-O)$                                 | - 103.4    | - 103.0  | - 102.5 | -103.0     | - 102.8  | - 102.5 | - 103.6    | -′103.1  | - 102.8 |           |          |         |
| τ(H <sub>10</sub> -C <sub>4</sub> -C <sub>2</sub> -O) | 103.0      | 103.4    | 102.9   | 103.0      | 103.3    | 103.0   | 103.2      | 103.7    | 103.2   |           |          |         |
| μa                                                    | 0.465      | 2.009    | 0.945   | 0.119      | 2.022    | 0.962   | - 0.074    | 0.753    | - 2.447 |           |          |         |
| μ                                                     | 0.572      | 3.135    | 2.429   | 0.771      | 3.584    | 1.955   | 0.651      | 3.260    | 1.997   |           |          |         |
| <b>µ</b> c                                            | 0.128      | 0.506    | 2.570   | 0.092      | 0.593    | 2.222   | -0.218     | - 1.989  | -0.838  |           |          |         |
| Ą                                                     | 0.749      | 3.758    | 3.660   | 0.785      | 4.158    | 3.112   | 0.691      | 3.893    | 3.267   |           |          |         |
| ¥                                                     | 12813      | 13187    | 8533    | 13571      | 13879    | 9081    | 13171      | 13268    | 8785    | 12739     | 13377    | 8379    |
| В                                                     | 2014       | 2034     | 2645    | 2003       | 2054     | 2590    | 2024       | 2090     | 2655    | 2067      | 2082     | 2841    |
| C                                                     | 1867       | 1892     | 2390    | 1871       | 1917     | 2340    | 1884       | 1938     | 2397    | 1881      | 1932     | 2511    |
|                                                       |            |          |         |            |          |         |            |          |         |           |          |         |

<sup>a</sup>Bond lengths in Å, bond angles in degree, dipole moments in Debye, total energy in Hartrees, and rotational constants in MHz.

<sup>b</sup>Taken from Ref. [3,4]. The parameters denoted with an asterisk (\*) were held fixed at the given values during the fit.

4.502119

4.503673 198

4.504574 0

3.806241

3.808316 283

3.809604 0

0.644824 857

0.646746 436

0.648731 0

-(E+647)  $\Delta E (cm^{-1})$ 

Table 5
Internal coordinate definitions<sup>a</sup> for epichlorohydrin

| Coordinate Involved                               | Definition           | Coordinate Involved                   | Definition    |  |
|---------------------------------------------------|----------------------|---------------------------------------|---------------|--|
| C <sub>2</sub> O stretch                          | X                    | OC <sub>2</sub> H bend                | φ             |  |
| C <sub>4</sub> O stretch                          | R                    | C <sub>4</sub> C <sub>2</sub> H bend  | λ             |  |
| C <sub>2</sub> C <sub>4</sub> stretch             | D                    | C <sub>3</sub> C <sub>2</sub> H bend  | $\omega$      |  |
| C <sub>2</sub> C <sub>3</sub> stretch             | Q                    | OC <sub>4</sub> H <sub>9</sub> bend   | σ             |  |
| C <sub>2</sub> H stretch                          | P                    | $C_2C_4H_9$ bend                      | $\epsilon$    |  |
| C <sub>4</sub> H <sub>9</sub> stretch             | $\mathbf{Z}_{1}$     | OC <sub>4</sub> H <sub>10</sub> bend  | η             |  |
| C <sub>4</sub> H <sub>10</sub> stretch            | $\mathbf{Z}_2$       | $C_2C_4H_{10}$ bend                   | ✓             |  |
| C <sub>3</sub> Cl stretch                         | T                    | HC₄H bend                             | X             |  |
| C <sub>3</sub> H <sub>7</sub> stretch             | $\mathbf{Y}_{\perp}$ | C <sub>2</sub> C <sub>3</sub> Cl bend | $\theta$      |  |
| C <sub>3</sub> H <sub>8</sub> stretch             | $\mathbf{Y}_{2}$     | $C_2C_3H_7$ bend                      | $\mu_{\perp}$ |  |
| C <sub>2</sub> OC <sub>4</sub> bend               | α                    | $C_2C_3H_8$ bend                      | $\mu_2$       |  |
| OC <sub>2</sub> C <sub>4</sub> bend               | β                    | CIC <sub>3</sub> H <sub>7</sub> bend  | $\rho$        |  |
| OC <sub>4</sub> C <sub>2</sub> bend               | δ                    | ClC <sub>3</sub> H <sub>8</sub> bend  | $\rho_2$      |  |
| OC <sub>2</sub> C <sub>3</sub> bend               | γ                    | HC <sub>3</sub> H bend                | Δ             |  |
| C <sub>4</sub> C <sub>2</sub> C <sub>3</sub> bend | $\pi$                | asymmetric torsion                    | au            |  |

<sup>&</sup>lt;sup>a</sup>For atom denotation see Fig. 7.

bands in the vapor. This conclusion is consistent with that of Charles, et al. [10]. Therefore, the bands of polar conformers will be weaker or disappear in the spectrum of the vapor or xenon solution and become stronger or appear in the liquid with the bands of the gauche-1 the only ones in the solid.

With these points we have carefully reassigned the fundamentals of all three conformers and most

Table 6 Symmetry coordinates for epichlorohydrin

| Species | Description                                 | Symmetry coordinate                             |  |
|---------|---------------------------------------------|-------------------------------------------------|--|
| A       | *CH <sub>2</sub> antisymmetric stretch      | $\mathbf{S}_1 = \mathbf{Z}_1 - \mathbf{Z}_2$    |  |
|         | CH <sub>2</sub> antisymmetric stretch       | $S_2 = Y_1 - Y_2$                               |  |
|         | α-CH stretch                                | $S_3 = P$                                       |  |
|         | *CH <sub>2</sub> symmetric stretch          | $S_4 = Z_1 + Z_2$                               |  |
|         | CH <sub>2</sub> symmetric stretch           | $S_5 = Y_1 + Y_2$                               |  |
|         | *CH <sub>2</sub> deformation                | $S_6 = 4\chi - \sigma - \epsilon - \eta - \psi$ |  |
|         | CH <sub>2</sub> deformation                 | $S_7 = \Delta$                                  |  |
|         | ring breathing                              | $S_8 = X + R + D$                               |  |
|         | CH <sub>2</sub> rock                        | $S_9 = \mu_1 + \mu_2 - \rho_1 - \rho_2$         |  |
|         | C-H in-plane bend                           | $S_{10} = 2\omega - \phi - \lambda$             |  |
|         | CH <sub>2</sub> wag                         | $S_{11} = \mu_1 - \mu_2$                        |  |
|         | C-H out-of-plane bend                       | $S_{12} = \phi - \lambda$                       |  |
|         | *CH <sub>2</sub> wag                        | $S_{13} = \sigma - \epsilon + \eta - \psi$      |  |
|         | CH <sub>2</sub> twist                       | $S_{14} = \rho_1 - \rho_2$                      |  |
|         | 8CH <sub>2</sub> rock                       | $S_{15} = \sigma + \epsilon - \eta - \psi$      |  |
|         | C-C stretch                                 | $S_{16} = Q$                                    |  |
|         | *CH <sub>2</sub> twist                      | $S_{17} = \sigma - \epsilon - \eta + \psi$      |  |
|         | ring symmetric deformation                  | $S_{18} = 2\alpha - \beta - \delta$             |  |
|         | ring antisymmetric deformation              | $S_{19} = X - R$                                |  |
|         | C-Cl stretch                                | $S_{20} = T$                                    |  |
|         | ring -C(Cl)H <sub>2</sub> out-of-plane bend | $S_{21} = \pi - \gamma$                         |  |
|         | ring -C(Cl)H <sub>2</sub> in-plane bend     | $S_{22} = \pi + \gamma$                         |  |
|         | CCCl bend                                   | $S_{23} = \theta$                               |  |
|         | -C(Cl)H <sub>2</sub> asymmetric torsion     | $S_{24} = \tau$                                 |  |

<sup>\*</sup>Ring modes.

nation (A) transfer of the calculated frequencies (cm<sup>-1</sup>) and potential energy distribution (P.E.D.) for epichlorohydrin

|                  |                                             |        |        | Banı       | gauche-2 |                                                                                              |            | , ,    | gauche- | -<br>- |                                                         |         |             | cis  |        |                                                                            |
|------------------|---------------------------------------------|--------|--------|------------|----------|----------------------------------------------------------------------------------------------|------------|--------|---------|--------|---------------------------------------------------------|---------|-------------|------|--------|----------------------------------------------------------------------------|
| Vib.             |                                             | φ      | Fixed  | ĸ          |          |                                                                                              | Αb         | Fixed  | ĸ       |        |                                                         | 4       | Fixed       | ĸ    |        |                                                                            |
| ž                | Fundamental*                                | Initio | Scaled | Ē          | g.       | P.E.D.                                                                                       | Initio     | Scaled | , E     | ogs.   | P.E.D.                                                  | Initiob | Scaled      | Int. | Obs.   | P.E.D.                                                                     |
| ,-<br>,-         | •CH, antisymmetric stretch                  | 3275   | 3107   | 16.9       | 3063     | 998,                                                                                         | 3270       | 3102   | 18.0    | 3056   | 1866                                                    | 3289    | 3120        | 10.3 | 3068   | 978,                                                                       |
| ۸,               | CH <sub>2</sub> antisymmetric stretch       | 3230   | 3064   | 9.6        | 3024     | 94S <sub>2</sub>                                                                             | 3224       | 3059   | 5.4     | 3016   | 935,                                                    | 3209    | 3044        | 3.8  |        | 375,615,                                                                   |
| 3,               | C-H stretch                                 | 3203   | 3038   | 8.0        | 3008     | 93S,                                                                                         | 3199       | 3035   | 8.0     | 3015   | 93S <sub>3</sub>                                        | 3185    | 3021        | 15.9 | (2991) | , S66                                                                      |
| >*               | *CH <sub>2</sub> symmetric stretch          | 3175   | 3012   | 12.9       | 2975     | *S66                                                                                         | 3171       | 3009   | 15.5    | 2963   | *S66                                                    | 3164    | 3002        | 24.8 |        | 365,615,                                                                   |
| ^د               | CH2 symmetric stretch                       | 3158   | 2996   | 9.5        | 2940     | 100S <sub>s</sub>                                                                            | 3150       | 2988   | 11.7    | 2936   | 99S,                                                    | 3143    | 2982        | 7.3  |        | 98S <sub>4</sub>                                                           |
| > <b>°</b>       | *CH <sub>2</sub> deformation                | 1583   | 1502   | 13         | 1490     | 80S <sub>6</sub>                                                                             | 1582       | 1500   | 0.7     | 1487   | 82S <sub>6,11S</sub>                                    | 1581    | 1500        | 4.5  |        | 84S <sub>k</sub>                                                           |
| ۲,               | CH, deformation                             | 1548   | 1469   | 1.2        | 1456     | 875,12Sg                                                                                     | 1528       | 1450   | 2.3     | 1437   | , ses,                                                  | 1535    | 1456        | 6.4  |        | 94S,                                                                       |
| >*               | ring breathing                              | 1489   | 1413   | 2.5        | 1412     | 18S <sub>8</sub> ,37S <sub>10</sub> ,18S <sub>6</sub>                                        | 1316       | 1249   | 4.3     | 1253   | 41S <sub>8</sub> ,31S <sub>10</sub>                     | 1482    | 1406        | 11.5 | 1402   | 42Se,17S2,12Se,11S1                                                        |
| ۸,               | CH, rock                                    | 1364   | 1294   | 28.5       | 1275     | 83S,                                                                                         | 1360       | 1290   | 32.8    | 1267   | 815,125 <sub>10</sub>                                   | 1389    | 1317        | 17.0 | (1292) | ,                                                                          |
| V <sub>10</sub>  | C-H bend                                    | 1316   | 1248   | Ξ          | 1246     | 50S <sub>10</sub> .27S <sub>8</sub>                                                          | 1486       | 1410   | 1.7     | 1405   | 40S <sub>10</sub> ,18S <sub>8</sub> ,14S <sub>6</sub>   | 1332    | 1264        | 3.0  | 1256   | 71S <sub>10</sub>                                                          |
| <b>,</b>         | CH, wag                                     | 1251   | 1187   | 3.6        | 1186     | 38S <sub>11</sub> ,19S <sub>14</sub> ,14S <sub>16</sub>                                      | 1276       | 1211   | 0.7 (   | (1207) | 35S <sub>11</sub> ,32S <sub>14</sub>                    | 1274    | 1208        | 0.7  | (1202) | 44S <sub>11</sub> ,17S <sub>10</sub>                                       |
| ٧,               | C-H bend                                    | 1200   | 1138   | 0.5        | 111      | ,48S <sub>12</sub> ,33S <sub>15</sub>                                                        | 1192       | 1131   | 97      | (1142) | 41S <sub>12</sub> ,23S <sub>15</sub> ,18S <sub>13</sub> | 1189    | 1128        | 9.4  |        | 86S <sub>11</sub>                                                          |
| v <sub>13</sub>  | *CH <sub>2</sub> wag                        | 1177   | 1116   | <b>8</b> . | 1134     | 88S <sub>13</sub>                                                                            | 1183       | 1123   | =       | 1139   | 51S <sub>13</sub> ,20S <sub>15</sub>                    | 1183    | 1122        | 2.3  |        | 55S <sub>11</sub> ,31S <sub>15</sub>                                       |
| >                | CH <sub>2</sub> twist                       | 1143   | 1085   | 3.5        | 1092     | 22S <sub>14</sub> ,26S <sub>17</sub> ,17S <sub>16</sub> ,16S <sub>15</sub>                   | 1149       | 1090   | 1.8     | 1001   | 23S14,21S16,19S13,14S17                                 | 1120    | 1062        | 1.3  | 1073   | 72S <sub>14</sub> ,10S <sub>13</sub>                                       |
| v<br>Si          | *CH, rock                                   | 1107   | 1050   | 0.03       | (1053)   | 30S <sub>15</sub> ,32S <sub>12</sub> ,22S <sub>14</sub>                                      | 1115       | 1058   | Ξ       | 1055   | 36S <sub>15</sub> ,27S <sub>12</sub> ,24S <sub>17</sub> | 1083    | 1028        | 2.2  | (1034) | 41S <sub>15</sub> ,22S <sub>13</sub> ,11S <sub>16</sub>                    |
| ر<br>ا           | C-C stretch                                 | 1013   | 196    | 23.9       | <b>%</b> | 20S <sub>16</sub> ,18S <sub>17</sub> ,17S <sub>18</sub> ,16S <sub>8</sub> ,13S <sub>14</sub> | 716        | 976    | 20.7    | 934    | 17S16,26S19,19S11,17S14                                 | 1019    | 296         | 23.2 | 216    | 66S <sub>16</sub> ,20S <sub>17</sub> ,12S <sub>11</sub> ,10S <sub>19</sub> |
| ۰ <sub>1</sub> ۲ | *CH, twist                                  | 916    | 698    | 5.6        | (875)    | 32S <sub>17</sub> ,32S <sub>11</sub>                                                         | <b>3</b> 6 | 914    | 2.0     | (116)  | 24S <sub>17</sub> ,34S <sub>10</sub> ,11S <sub>11</sub> | 156     | 905         | 2.1  |        | 19S <sub>17</sub> ,28S <sub>19</sub> ,21S <sub>16</sub>                    |
| >                | ring symmetric deformation                  | 868    | 852    | 19.2       | 842      | 38S <sub>j1</sub> ,40S <sub>j9</sub>                                                         | 895        | 849    | 26.3    | 853    | 43S <sub>18</sub> ,18S <sub>1</sub> ,                   | 882     | <b>8</b> 40 | 30.0 | (838)  | 59S <sub>18</sub> ,16S <sub>19</sub> ,15S <sub>16</sub>                    |
| ۲<br>او          | ring antisymmetric deformation              | 839    | 797    | 13.6       | 794      | 49S <sub>19</sub> ,28S <sub>18</sub>                                                         | 818        | 9//    | 32.0    | 27.5   | 60S <sub>19</sub> ,23S <sub>20</sub>                    | 833     | 191         | 14.8 | 788    | 26S <sub>19</sub> ,20S <sub>20</sub> ,10S <sub>17</sub>                    |
| 20               | C-Cl stretch                                |        | 764    | 50.4       | 755      | 79S <sub>20</sub>                                                                            | 788        | 747    | 12.4    | 743    | 52S <sub>20</sub> ,12S <sub>23</sub> ,10S <sub>19</sub> | 742     | 40,         | 11.8 | (703)  | 435 <sub>20</sub> ,205 <sub>23</sub> ,125 <sub>17</sub> ,115 <sub>19</sub> |
| 7,               | ring -C(Cl)H <sub>2</sub> out-of-plane bend | 425    | 403    | 0.2        | 406      | 47S <sub>21</sub> ,16S <sub>23</sub>                                                         | 450        | 427    | 14.5    | 438    | 36S <sub>21</sub> ,21S <sub>22</sub> ,19S <sub>23</sub> | 542     | 515         | 1.6  | 521    | 30S21,33S20,20S23                                                          |
| 717              | ring -C(Cl)H, in-plane bend                 | 382    | 362    | 4.3        | 371      | 67S <sub>22</sub> ,12S <sub>20</sub>                                                         | 379        | 360    | 1.2     | 371    | 58S <sub>22</sub> ,12S <sub>20</sub>                    | 359     | 340         | 9.8  |        | 77S22,10S16                                                                |
| ٧,               | CCCI bend                                   | 216    | 205    | 12.8       | 214      | 60S <sub>23</sub> ,26S <sub>21</sub>                                                         | 214        | 203    | 0.1     | 380    | 53S <sub>23</sub> ,32S <sub>21</sub> ,12S <sub>11</sub> | 217     | 902         | 4.0  |        | 54S <sub>23,</sub> 22S <sub>22</sub> ,11S <sub>8</sub>                     |
| ν<br>12          | C(Cl)H <sub>2</sub> asymmetric torsion      | 96     | 8      | 7.5        | 8        | 875 <sub>24</sub> ,105 <sub>21</sub>                                                         | 101        | 8      | 1.2     | •89    | 83S <sub>24</sub>                                       | 116     | 110         | 4.2  |        | 81S <sub>24</sub>                                                          |

<sup>a</sup>Asterisks (\*) denote ring modes.

<sup>b</sup>Obtained from the MP2/6-31G\* calculation.

Scaled ab initio calculations with scaling factor of 0.9 for all coordinates except for the torsion.

<sup>d</sup>Calculated infrared intensities in km mol<sup>-1</sup>.

\*Frequencies are taken from the infrared or Raman spectra of the gas except those in parentheses which were taken from the infrared spectrum of the xenon solution, and those with an asterisk (\*) from the Raman spectrum of the solid.



Fig. 8. Calculated Raman spectra (scattering activities from RHF/6-31G\*) of (a) experimental of the liquid, with lines marked with asterisks due to the cis conformer; (b) mixture of the gauche-1 and gauche-2 conformers; (c) pure gauche-2; (d) pure gauche-1; and (e) pure cis epichlorohydrin.

of those which were previously [5] assigned to the gauche-1 conformer switched to those for the gauche-2 form and vice versa. The bands at 1253 and 1405 cm<sup>-1</sup> in the infrared spectrum of the gas have been assigned as the ring breathing and C2-H in-plane bend of the gauche-1 form, respectively, which are consistent with the calculated potential energy distribution listed in Table 7. The bands at 853 and 842 cm<sup>-1</sup> in the infrared spectrum of the gas, which were assigned as the two different fundamentals [5],  $\nu_{17}$  and  $\nu_{18}$ , have now been assigned as the same symmetric ring deformation of the gauche-1 and gauche-2 conformer, respectively. Another major change has been for the  $\nu_{21}$  mode. Previously  $\nu_{22}$  had been assigned at 406 cm<sup>-1</sup> in the Raman spectrum of the gas but we have reassigned it to the  $\nu_{21}$  fundamental of the gauche-2 form which is consistent with the scaled ab initio frequency for this fundamental. All of the vibrational assignments for the remaining fundamentals for all three conformers are summarized in Table 7.

#### 6. Discussion

From the ab initio calculations, the gauche-2 conformer is shown to be thermodynamically preferred in all three calculations (Table 4). The infrared spectrum of the xenon solution also shows that the gauche-2 conformer is the most stable conformer and the gauche-1 the second most stable form in this nonpolar solvent. These results should also reflect the stability in the gas phase since xenon should have a relatively small effect on the conformer stability [12] as was found for n-butane. Although the calculated energy differences between the gauche-2 and gauche-1 forms is relatively small (198 cm<sup>-1</sup> from the MP2/6-31G\* calculation), it is doubtful that the order of stability would change with larger basis sets. Therefore, both the ab initio calculations and the spectral data from the xenon solution indicate that the gauche-2 conformer is the most stable rotamer and that the gauche-2 conformer is undoubtedly the most stable rotamer in the isolated vapor state [12,20].

From the Raman spectrum of the liquid, it has been concluded that the polar gauche-1 and cis forms become more stable in the condensed state. Therefore, the gauche-1 rotamer of epichlorohydrin becomes predominant in the liquid phase and the only form in the solid. Even though the orientation of the gauche-2 form is much more favored than the cis on the basis of steric arguments, it has been determined that the cis form is slightly more stable than the gauche-2 rotamer in the liquid state. These polar forms may be stabilized by hydrogen bonding in the condensed phases but the gauche-2 form is sterically favored in the isolated state.

Raman (Fig. 8) and infrared (Fig. 2) spectra for epichlorohydrin were calculated using the frequencies and intensities determined from the MP2/6-31G\* calculations and scattering activities from the RHF/6-31G\* calculations. The Gaussian-92 program [14] with the option of calculating the polarizability derivatives was used. The Raman scattering cross sections,  $\partial \sigma_j/\partial \Omega$  which are proportional to the Raman intensities, can be calculated from the scattering activities and the predicted frequencies for each



Fig. 9. Calculated (MP2/6-31G\*) infrared absorbance spectra of (a) cis; (b) gauche-1; and (c) gauche-2 epichlorohydrin.

normal mode using the relationship [19]:

$$\frac{\partial \sigma_{j}}{\partial \Omega} = \left(\frac{2^{4} \pi^{4}}{45}\right) \left(\frac{(\nu_{0} - \nu_{j})^{4}}{1 - \exp\left[-\frac{hc\nu_{j}}{kT}\right]}\right) \left(\frac{h}{8\pi^{2}c\nu_{j}}\right) S_{j}$$

where  $v_0$  is the exciting frequency,  $v_1$  is the vibrational frequency of the jth normal mode, and  $S_i$  is the corresponding Raman scattering activity. To obtain the polarized Raman scattering cross sections, the polarizabilities are incorporated into  $S_i$  by  $S_i[(1$  $r_i$ )/(1 +  $r_i$ )] where  $r_i$  is the depolarization ratio of the jth normal mode. The Raman scattering cross sections (RHF/6-311G\*) and calculated frequencies (MP2/6-31G\*) were used together with a Lorentzian line shape function to obtain the calculated spectra. Since the calculated frequencies are approximately 10% higher than those observed, the frequency axis of the theoretical spectrum was compressed by a factor of 0.9. The predicted Raman spectrum of each of the conformers is shown in Fig. 8. Additionally, the mixture of the two most abundant conformers with the experimental ΔH of 383 cm<sup>-1</sup> with the gauche-2 the more stable conformer is shown in Fig. 8(b). This spectrum should be compared to the experimental one shown in Fig. 8(a). The calculated spectrum has some small differences from the experimental spectrum, especially in the relative intensities of the bands in the 1100 cm<sup>-1</sup> region. Nevertheless, it provides support for the assignment of the observed bands to the indicated fundamentals and the conclusions on the conformer stabilities. In Fig. 8(a) we have indicated the two clearly observed Raman lines of the cis conformer with asterisks and the higher frequency line is predicted to be one of the strongest lines in the Raman spectrum of the cis conformer (Fig. 8(e)). Thus the relative intensities of the two lines due to the cis conformer appear consistent with its abundance relative to the other two conformers.

Infrared intensities were also calculated based on the dipole moment derivatives with respect to the Cartesian coordinates. The derivatives were taken from the ab initio calculations (MP2/6-31G\*) transformed to normal coordinates by:

$$\left(\frac{\partial \mu u}{\partial Q_{i}}\right) - \sum_{j} \left(\frac{\partial \mu u}{\partial X_{j}}\right) L_{ji}$$

where  $Q_i$  is the ith normal coordinate,  $X_j$  is the jth Cartesian displacement coordinate, and  $L_{ji}$  is the transformation matrix between the Cartesian

displacement coordinates and normal coordinates. The infrared intensities were then calculated by:

$$I_{i} = \frac{N\pi}{3c^{2}} \left[ \left( \frac{\partial \mu u_{x}}{\partial Q_{i}} \right)^{2} + \left( \frac{\partial \mu u_{y}}{\partial Q_{i}} \right)^{2} + \left( \frac{\partial \mu u_{x}}{\partial Q_{i}} \right)^{2} \right]$$

The predicted infrared spectra of the gauche-2, gauche-1 and cis conformers are shown in Fig. 9(c), 9(b) and 9(a), respectively. The mixture of the two most abundant conformers with the experimental  $\Delta H$  of 51 cm<sup>-1</sup> with the gauche-2 conformer the more stable rotamer is shown in Fig. 2(b). Again, the frequency axis of the theoretical spectrum was shifted by a factor of 0.9. The infrared spectrum of the sample dissolved in xenon is shown in Fig. 2(a). The bands at 788, 703 and 520 cm<sup>-1</sup> are due to fundamentals of the cis conformer but excluding these bands there is rather good agreement with the observed spectrum of the sample dissolved in xenon (Fig. 2(a)). There are some intensity differences in the 770-795 cm<sup>-1</sup> region but the antisymmetric deformation of the two conformers are badly overlapped in the infrared spectrum of the sample dissolved in xenon whereas they are well resolved in the calculated spectrum (Fig. 2(b)). The predicted spectrum clearly shows the utility of the calculated infrared intensities for supporting the vibrational assignments and how bands can be assigned to the individual conformers.

In conclusion, three conformers of epichlorohydrin have been clearly identified in the FT-IR spectrum of the xenon solution as well as in the Raman spectrum of the liquid and the enthalpy differences determined. With these results, the fundamental frequencies have been reassigned for all three conformers. Finally, it should be mentioned that the theoretical ab initio calculation and noble gas isolation techniques [12] are powerful tools for analyzing the complex conformational stabilities of the three stable rotamers along with their vibrational assignments.

## Acknowledgements

JRD would like to acknowledge partial support of these studies by the University of Missouri-Kansas City Faculty Research Grant program.

## References

- [1] M.J. Shapiro, J. Org. Chem. 42 (1977) 1434.
- [2] F.G. Fujiwara, J.C. Chang, H. Kim, J. Mol. Struct. 41 (1977) 177.
- [3] M.A. Mohammadi, W.V.F. Brooks, J. Mol. Spectrosc. 73 (1978) 353.
- [4] M.A. Mohammadi, W.V.F. Brooks, J. Mol. Spectrosc. 78 (1979) 89.
- [5] V.F. Kalasinsky, C.J. Wurrey, J. Raman Spectrosc. 9 (1980)
- [6] M.J. Aroney, K.E. Calderbank, H.J. Stootman, Aust. J. Chem. 31 (1978) 2303.
- [7] M. Hayashi, K. Hamo, K. Ohno, H. Murata, Bull. Chem. Soc. Jpn. 45 (1972) 949.
- [8] L. Paolini, M. Landi-Vittory, Sci. Rep. 1st Super Sanita 2 (1962) 37.
- [9] O. Ballans, J. Wagner, Z. Phys. Chem. (Leipzig) 45 (1940) 272.
- [10] S.W. Charles, G.I.L. Jones, N.L. Owen, J. Mol. Struct. 20 (1974) 83.
- [11] Q. Shen, J. Mol. Struct. 130 (1985) 275.
- [12] W.A. Herrebout, B.J. van der Veken, A. Wang, J.R. Durig, J. Phys. Chem. 99 (1995) 578.
- [13] F.A. Miller, B.M. Harney, Appl. Spectrosc. 24 (1970) 291.
- [14] Gaussian-92/DFT, Revision G.3, M.J. Frisch, G.W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G. Johnson, M.W. Wong, J.B. Foresman, M.A. Robb, M. Head-Gordon, E.S. Replogle, R. Gomperts, J.L. Andres, K. Raghavachari, J.S. Binkley, C. Gonzalez, R.L. Martin, D.J. Fox, D.J. DeFrees, J. Baker, J.J.P. Stewart, J.A. Pople, Gaussian, Inc., Pittsburgh, PA, 1993.
- [15] C. Moller, H.S. Plesset, Phys. Rev. 46 (1934) 618.
- [16] G. Fogorasi, P. Pulay, in: J.R. Durig (Ed.), Vibrational Spectra and Structure, Vol. 14, Elsevier, Amsterdam, 1985.
- [17] P. Pulay, Mol. Phys. 17 (1969) 197.
- [18] J. H. Schachtschneider, Vibrational Analysis of Polyatomic Molecules, Parts V and VI, Technical Report Nos. 231 and 57, Shell Development Co., Houston, TX, 1964 and 1965.
- [19] G. W. Chantry, in A. Anderson (Ed.), The Raman Effect, Vol. 1, Chap. 2 Marcel Dekker Inc., New York, 1971.
- [20] W.A. Herrebout, B.J. van der Veken, J. Phys. Chem. 100 (1996) 9671.