Date

Regression 国归	pin.
Goal: Given {(x,y)} dataset, learn a function:	
Good: Given $\{(\vec{x}, y)\}$ dataset, learn a function: $y' = h(\vec{x})$, by $y \neq y$	
● 每: 1. 找函数拟台左曲线	
AND THE PARTY OF T	111
>n Method O: K-NNB1/7	
k=1: pick the nearest x , return its y	145
● or: K=2: weighted / unweighted 效果见下	D
	*
The state of the s	> 10
k=1 k=2 weighted k=2 unweighted	- 1/2
Mathed Q. Dasising Tras Programing	
Wedney 2: Vecision tree Regression	0.33
The condition of the perfection of the perfectio	WHOLE Para
yes x2 < B No range [0.3)	15
9et3.6) x range[3.6) range[6,9]=7.5	TE
yes, 4	
● 划分 Xi; 然后 「yil 聚为一类,着mean (Decision Tree 分至最	后明)
	20
Method 3: Linear Functions, Residuals & MSE	
△ Linear functions ≠ Linear decision Boundaries	
Def: Regression is predicting real-valued outputs	
$VD = \int (X^{\alpha}, y^{\alpha}) I_{i=1}, \overline{X}^{\alpha} \in \mathbb{R}^{m}, y^{\alpha} \in \mathbb{R}^{N}$	
Eg: y=w7x+b Eg: y=sign(w7x+b)	

KOKUYO

Key idea: Find the linear function h (with w, b) that minimizes the squares of residual for training set.

ei= 1 y" - h(w x"+b) Residual:

Loss = \frac{1}{n} \sum_{i=r}^{n} ei^{2}

有MSE有什么用? The big picture: Optimization for ML

: $\mathcal{J}(\theta)$, $\mathcal{J}: \mathbb{R}^M \to \mathbb{R}$ argmin $\mathcal{J}(\theta)$ Def: Given function:

Goal: \hat{\theta} = an

形象理解: 在日如何一步步到日本呢?

Naive one: 院机并提口 A: Gradient Descent:

 $\overrightarrow{O} \leftarrow \overrightarrow{O} - \delta t \, \nabla J(\overrightarrow{O})$. Where δt is step size, ϵR

procedure GD (J, 0 (0)): Pseudocode:

O ← O (0); while not converged do:

0 + 0 - 8 VO JIO) reture 0

那么 not converged => 如何判定日已收敛至日*附近呢?

||V0J(0)||, ≤ E

 $\mathcal{J}^{(i)}(\theta) = (y^{(i)} - \theta^T \chi^{(i)})^T$, $\mathcal{J}(\theta) = \sqrt{\sum_{i=1}^{N} \mathcal{J}^{(i)}(\theta)}$

 $\left(\sum_{j=1}^{5} O_{j} \chi_{j}^{(i)} - y^{(i)}\right) = 2 \left(O^{T} \chi^{(i)} - y^{(i)}\right) \chi_{k}^{(i)}$

 $\frac{d}{dk} \mathcal{J}(\theta) = \sum_{i=1}^{N} \left(\theta^{T} \chi^{(i)} - y^{(i)} \right) \chi_{k}^{(i)} , \quad \nabla_{\theta} \mathcal{J}(\theta) = \left[\frac{d\theta_{i}}{d\theta_{i}} \mathcal{J}(\theta) \right] = \sum_{i=1}^{N} \left(\theta^{T} \chi^{(i)} - y^{(i)} \right) \chi^{(i)}$

Campus

0

6

0

•

1

00000

*: 直觉上: N=2, 那么超平面显然有很多种划分 日= (XTX) XTY, 这个 XTX 可逆台?一般认为N>>DH时,几乎 总是 full-rank的。但是关键在于计算 XTX 递时间复杂度 多少? 算 x TX O(NO); 年で的道: O(D) 那么,有没有不那么精确但复杂度能够接受的近似本法呢? GD& SGD: 0 < 0 MTD, OGRM Gradient Descent: while not converged do O CO - Y VT(0) 南 Stochastic D: T(0) = N Gradient Descent 0 + 0 (0) while not converged do 实质: 厚耕全部样本, in uniform (\1,2,-, N) return o - y Vo J'(0) 现在一步用一个 P(x", y") 70 J"(0) why SGD能work?因为E[VoJ(10)]= > $= \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \int_{i}^{(i)}(\theta) = \nabla_{\theta} \int_{i}^{(\theta)}(\theta)$ 高: GD Def: An epoch is a single passing through training data MSE One update per epoch Loss GD N update per epoch Computation step to convergence Oclog 1/E) Theoretical GD O(N/h) Comparison: 0 (M) 但实践中更快 理论上SGD 收敛更慢 那么在上一面的 Linear Regression 情事中, Jus = N = (y")-O"x")

0 < 0 (0)

return 0

unile not converged do:

刚 SGD:

ロ CO-Y (の水い-y い)x いいい い大様はり Uniform

为3保证N次可过一个epoch

for ie shuffle (si, will) do do to to to range (1, N) shuffle

0

(