

CornerNet

https://arxiv.org/pdf/1808.01244.pdf

どんなもの?

対象のバウンディングボックスを1組みのキーポイント(左上と右下の点)として、単一の畳み込みニューラルネットワークを使用して物体を検出する新しい手法。

先行研究と比べてどこがすごい?

アンカーボックスの設計が不要。 MS COCOで42.2%のAPを達成し、既存の全てのone-stage 検出器の性能を上回った。

技術や手法のキモはどこ?

バウンディングボックスがアンカーボックスの場合、以下の2つの欠点があるが、アンカーボックスを使わずに 学習ができる。

- 非常に多くのアンカーボックスのセットが必要
- ・多くのハイパーパラメータ/設計の選択が必要

どうやって有効だと検証した?

他の手法と比べて精度がよかった

	AP	$\mathrm{AP^{50}}$	$\mathrm{AP^{75}}$	AP^s	AP^m	AP^l
FPN (w/ ResNet-101) + Corners	30.2	44.1	32.0	13.3	33.3	42.7
Hourglass + Anchors	32.9	53.1	35.6	16.5	38.5	45.0
Hourglass + Corners	38.4	53.8	40.9	18.6	40.5	51.8

議論はある?

コーナーを正しく検出することが課題となっている

次に読むべき論文は?

You Only Look Once: Unified, Real-Time Object Detection https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_CVPR_2016_paper.pdf

You Only Look Once

https://www.cv-foundation.org/openaccess/content_cvpr_2016 /papers/Redmon You Only Look CVPR 2016 paper.pdf

どんなもの?

YOLOというのはもともと"You only live once"「人生一度きり」 の頭文字をとったスラング。

"You Only Look Once"「見るのは一度きり」という風に文字ってモデルを名付け、人間のように一目見ただけで物体検出ができる

先行研究と比べてどこがすごい?

通常のYOLO(Titan X GPUを利用)では45f/sec、Fast YOLO での検証では150f/secの速さで画像を処理できる。 他のリアルタイム検出器の2倍のmAPを達成してる。

技術や手法のキモはどこ?

画像認識を回帰問題に落とし込み、「画像の領域推定」と「分類」を同時に行う

どうやって有効だと検証した?

Real-Time Detectors	Train	mAP	FPS
100Hz DPM [30]	2007	16.0	100
30Hz DPM [30]	2007	26.1	30
Fast YOLO	2007+2012	52.7	155
YOLO	2007+2012	63.4	45
Less Than Real-Time			
Fastest DPM [37]	2007	30.4	15
R-CNN Minus R [20]	2007	53.5	6
Fast R-CNN [14]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[27]	2007+2012	73.2	7
Faster R-CNN ZF [27]	2007+2012	62.1	18
YOLO VGG-16	2007+2012	66.4	21

他の手法と比べて精 度がよかった

議論はある?

YOLOは処理速度は早い一方、小さい物の検出が苦手

次に読むべき論文は?

なし