AERO 201: Introduction to Flight and Aerospace Systems

Anthony Bourboujas

December 13, 2021

1 Formulas

Bernoulli equation Any increase in fluid velocity corresponds to a decrease in pressure (Venturi effect)

$$dP = -\rho v dv$$

$$\iff P_1 + \frac{1}{2}\rho_1 v_1^2 = P_2 + \frac{1}{2}\rho_2 v_2^2 = P_0$$

P[Pa]: flow pressure $v[m \cdot s^{-1}]$: flow velocity $\rho[kg \cdot m^{-3}]$: flow density

Continuity equation Mass can neither be created nor destroyed, thus

$$\dot{m}_1 = \dot{m}_2$$

$$\iff A_1 v_1 \rho_1 = A_2 v_2 \rho_2$$

 $\dot{m}[\text{kg} \cdot \text{s}^{-1}]$: mass flow $A[\text{m}^2]$: flow area $v[\text{m} \cdot \text{s}^{-1}]$: flow velocity $\rho[\text{kg} \cdot \text{m}^{-3}]$: flow density

Excess power

$$P_{\text{excess}} = v(T - D) = W v_{\text{climb}}$$

 $egin{array}{l} P_{
m excess}[{
m W}]: {
m excess} {
m power} \\ v[{
m m}\cdot {
m s}^{-1}]: {
m aircraft} {
m velocity} \\ T[{
m N}]: {
m thrust} \\ D[{
m N}]: {
m drag} \\ W[{
m N}]: {
m aircraft} {
m weight} \\ v_{
m climb}[{
m m}\cdot {
m s}^{-1}]: {
m rate} {
m of} {
m climb} \end{array}$

Density in non-isothermal region

$$\rho = \rho_{\rm ref} \left(\frac{T}{T_{\rm ref}}\right)^{-\frac{g}{aR_{\rm air}}+1}$$

 $\begin{array}{l} \rho[\mathrm{kg\cdot m^{-3}}]; \ \mathrm{density} \ \mathrm{at} \ \mathrm{the} \ \mathrm{given} \ \mathrm{temperature} \\ \rho_{\mathrm{ref}}[\mathrm{kg\cdot m^{-3}}]; \ \mathrm{reference} \ \mathrm{density} \\ T[\mathrm{K}]; \ \mathrm{given} \ \mathrm{temperature} \\ T_{\mathrm{ref}}[\mathrm{K}]; \ \mathrm{reference} \ \mathrm{temperature} \\ g = 9.81 \ \mathrm{m \cdot s^{-2}} \\ a[\mathrm{K \cdot m^{-1}}]; \ \mathrm{temperature} \ \mathrm{gradient} \\ R_{\mathrm{air}} = 287 \ \mathrm{J \cdot kg^{-1} \cdot K^{-1}}; \ \mathrm{specific} \ \mathrm{gas} \ \mathrm{constant} \end{array}$

Density in isothermal region

$$\rho = \rho_{\rm ref} e^{-\frac{g}{R_{\rm air}T}(h - h_{\rm ref})}$$

 $\rho[Pa]$: density at the given height $\rho_{ref}[Pa]$: reference density

 $g = 9.81 \,\mathrm{m \cdot s^{-2}}$

 $R_{\rm air} = 287 \, \mathrm{J \cdot kg^{-1} \cdot K^{-1}}$: specific gas constant

T[K]: temperature h[m]: altitude

 $h_{\rm ref}[{\rm m}]$: reference altitude

Drag

$$D = \frac{1}{2}\rho v^2 S_{\rm ref} c_D$$

 $\rho[\text{kg} \cdot \text{m}^{-3}]$: air density at the given altitude $v[\text{m} \cdot \text{s}^{-1}]$: speed of the body relative to air $S_{\text{ref}}[\text{m}^2]$: wing area c_D : drag coefficient

Drag polar The aerodynamic data for an aircraft is presented in from of a drag polar

$$c_D = c_{D,0} + \frac{c_L^2}{\pi e \Lambda R}$$

 c_D : drag coefficient

 $c_{D,0}$: parasitic (form and friction) drag coefficient at zero lift

 c_L : lift coefficient

e: Oswald efficiency factor

AR: aspect ratio

Dynamic pressure Dynamic pressure is the pressure developed bu the forward motion of a body.

$$P = \frac{1}{2}\rho v^2$$

P[Pa]: dynamic pressure

 $\rho[\text{kg}\cdot\text{m}^{-3}]$: air density at the given altitude $v[\text{m}\cdot\text{s}^{-1}]$: speed of the body relative to air

Equivalent air speed Equivalent speed on sea level

$$v_e = v \sqrt{\frac{\rho}{\rho_0}}$$

 $v_e[\text{m} \cdot \text{s}^{-1}]$: equivalent air speed $v[\text{m} \cdot \text{s}^{-1}]$: speed of the body relative to air $\rho[\text{kg} \cdot \text{m}^{-3}]$: air density at the given altitude $\rho_0[\text{kg} \cdot \text{m}^{-3}]$: air density at sea level

Flow Flow of a fluid in a pump

$$Q = \omega V$$

 $\begin{array}{l} Q[\mathrm{m}^3\cdot\mathrm{s}^{-1}] \colon \mathrm{flow} \\ \omega[\mathrm{rad}\cdot\mathrm{s}^{-1}] \colon \mathrm{shaft \ speed} \end{array}$ $V[m^3]$: volume of fluid displaced

Lift

$$L = \frac{1}{2}\rho v^2 S_{\rm ref} c_L$$

 $\rho[\text{kg}\cdot\text{m}^{-3}]$: air density at the given altitude $v[\mathbf{m} \cdot \mathbf{s}^{-1}]$: speed of the body relative to air $S_{\rm ref}[{\rm m}^2]$: wing area c_L : lift coefficient

Mach number The mach number is used to identify different aerodynamic flow regimes (subsonic, sonic and supersonic)

$$M = \frac{v}{a} = \frac{v}{\sqrt{\gamma RT}}$$

 $v[\mathbf{m} \cdot \mathbf{s}^{-1}]$: true air speed $a[\mathbf{m} \cdot \mathbf{s}^{-1}]$: speed of sound γ : isentropic coefficient, $\gamma = 1.4$ at $T = 300 \,\mathrm{K}$ $R_{\rm air} = 287\,{\rm J\cdot kg^{-1}\cdot K^{-1}}$: specific gas constant T[K]: air temperature

Orbit equation The minimal orbit velocity is $v_{\text{orbit}} \approx$ $7.9 \cdot 10^3 \, \mathrm{m \cdot s^{-1}}$ and the escape velocity is $v_{\mathrm{escape}} \approx 11.2 \cdot 10^3 \, \mathrm{m \cdot s^{-1}}$

$$\begin{split} r &= \frac{p}{1 + e \cos(\theta - C)} \\ &= \frac{\frac{(r^2 \dot{\theta})^2}{GM}}{1 + A\left(\frac{(r^2 \dot{\theta})^2}{GM}\right) \cos(\theta - C)} \end{split}$$

e = 0: path is a circle e < 1: path is an ellipse e=1: path is a parabola e > 1: path is a hyperbola

Power required Power required from the thrust required and the velocity of the aircraft (level, constant speed flight):

$$P = Tv = \sqrt{\frac{2W^3c_D^2}{\rho S_{\rm ref}c_L{}^3}}$$

P[W]: power required T[N]: thrust required

 $v[\mathbf{m} \cdot \mathbf{s}^{-1}]$: velocity relative to the air

W[N]: aircraft weight c_D : drag coefficient $\rho[\text{kg} \cdot \text{m}^{-3}]$: air density $S_{\text{ref}}[\text{m}^2]$: wing area c_L : lift coefficient

Pressure in non-isothermal region

$$P = P_{\rm ref} \left(\frac{T}{T_{\rm ref}}\right)^{-\frac{g}{aR_{\rm air}}}$$

P[Pa]: pressure at the given temperature

 $P_{\rm ref}[Pa]$: reference pressure

T[K]: given temperature

 $T_{\rm ref}[K]$: reference temperature

 $g = 9.81 \,\mathrm{m \cdot s^{-2}}$

 $a[{
m K}\cdot {
m m}^{-1}]$: temperature gradient $R_{
m air}=287\,{
m J}\cdot {
m kg}^{-1}\cdot {
m K}^{-1}$: specific gas constant

Pressure in isothermal region

$$P = P_{\text{ref}} e^{-\frac{g}{R_{\text{air}}T}(h - h_{\text{ref}})}$$

P[Pa]: pressure at the given height

 $P_{\text{ref}}[Pa]$: reference pressure

 $q = 9.81 \,\mathrm{m \cdot s^{-2}}$

 $R_{\rm air} = 287\,{
m J\cdot kg^{-1}\cdot K^{-1}}$: specific gas constant

T[K]: temperature h[m]: altitude

 $h_{\rm ref}[{\rm m}]$: reference altitude

Range Range is the max distance the aircraft can make with a given amount of fuel:

$$R = \frac{v}{C} \frac{L}{D} \ln \left(\frac{W_{\text{cruise,start}}}{W_{\text{cruise,end}}} \right)$$

R[m]: range

 $v[\mathbf{m} \cdot \mathbf{s}^{-1}]$: aircraft velocity

 $C[s^{-1}]$: specific fuel consumption

L[N]: lift D[N]: drag W[N]: weight

Reynolds number Reynolds number is used to characterize the flow (laminar, transient, turbulent)

$$Re_x = \frac{\rho vx}{\mu}$$

 Re_x : Reynolds number

 $\rho[\text{kg} \cdot \text{m}^{-3}]$: free stream density $v[\text{m} \cdot \text{s}^{-1}]$: free stream velocity

x[m]: characteristic length

 $\mu[\text{kg} \cdot \text{m}^{-1} \cdot \text{s}^{-1}]$: free stream viscosity

Rocket equation The rocket equation relates the burnout velocity v_b of a rocket vehicle to the specific impulse $I_{\rm sp}$ associated with teh engine and teh mass ration of the initial mass m_i and the final mass m_f :

$$\frac{m_i}{m_f} = \exp\left(\frac{v_b}{gI_{\rm sp}}\right)$$

$$\iff v_b = gI_{\rm sp} \ln\left(\frac{m_i}{m_f}\right)$$

Take-off length

$$L_{\rm TO} = \frac{mv^2}{2T} \approx \frac{1.44W^2}{g\rho Sc_{L,\rm max}T}$$

 $L_{\text{TO}}[\text{m}]$: take-off length m[kg]: aircraft mass

 $v[\mathbf{m} \cdot \mathbf{s}^{-1}]$: aircraft take-off speed

T[N]: thrust

W[N]: aircraft weight $\rho[\text{kg} \cdot \text{m}^{-3}]$: air density $S[\text{m}^2]$: wing area

 $c_{L,\max}$: max lift coefficient

Thrust Equation for generic propulsive device

$$T = (\dot{m}_{\rm air} + \dot{m}_{\rm fuel})v_{\rm out} + P_{\rm out}A_{\rm out} - \dot{m}_{\rm air}v_{\rm in} - P_{\rm in}A_{\rm in}$$

T[N]: thrust generated $\dot{m}[\text{kg} \cdot \text{s}^{-1}]$: mass flow $v[\text{m} \cdot \text{s}^{-1}]$: flow velocity P[Pa]: flow pressure $A[\text{m}^2]$: flow area

Thrust required Thrust required for a given aircraft at a given altitude caries with its velocity (level, constant speed flight)

$$T = W \frac{c_D}{c_L}$$

Weight

$$W_{\rm TO} = W_{\rm empty} + W_{\rm fixed} + W_{\rm fuel}$$

 $W_{\text{TO}}[N]$: take-off gross weight, MTOW $W_{\text{empty}}[N]$: empty weight, OWE $W_{\text{fixed}}[N]$: fixed weight, payload $W_{\text{fuel}}[N]$: fuel weight

2 Unit conversion

3 International standard atmosphere

Atmosphere model (oxygen supply at 12 500 ft or more for more than 30 min):

ISA temperature (T [K], h [km]):

0 - 11 km: T = -6.5h + 288.16

11 - 25 km: T = 216.66

25 - 47 km: T = 3(h - 25) + 216.66

47 - 53 km: T = 282.66

53 - 79 km: T = -4.5(h - 53) + 282.66

79 - 90 km: T = 165.66

90 - 105 km: T = 4(h - 90) + 165.66

Table 1: Unit conversion EES, SI and others

	EES		SI	
\overline{m}	1 slug		14.5939 kg	
\overline{F}	1 lb		4.44822 N	
\overline{l}	1 ft		0.3048 m	
\overline{P}	$1 \text{ lb} \cdot \text{ft}^{-2}$		47.8803 Pa	
\overline{T}	1 °R		5/9·R K	
$\overline{\rho}$	$1 \text{ slugs} \cdot \text{ft}^{-3}$		$515.378 \text{ kg} \cdot \text{m}^{-3}$	
\overline{v}	$1 ext{ ft} \cdot ext{s}^{-1}$		$0.3048 \text{ m} \cdot \text{s}^{-1}$	
R	$1 \text{ ft} \cdot \text{lb} \cdot \text{slugs}^{-1} \cdot {}^{\circ}\text{R}^{-1}$		$0.167226 \text{ J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$	
	<u></u>	Others	' 	
	\overline{m}	32.1740 lb		
\overline{l}		12 in, 1/5280 mi	, 1/6076 nmi	
		1/144 psi	1/144 psi	
	\overline{T}	_ 0/0 -0 = 00000 = 00000 =		
	$\overline{\rho}$	ρ 32.1740 lb · ft ⁻³		
	$v = 3600/5280 \text{ mi} \cdot \text{h}^{-1}, 3600/6076 \text{ kn}$			

4 Common acronyms

AFDS: aircraft flight direction system

AC: advisory circulars, example of acceptable means, but not the only means, of demonstrating compliance with regulations and standards

AD: airworthiness directives, legally enforceable regulation to correct unsafe conditions in a product

AFDX: aviation full duplex AGB: accessory gear box

AR: aspect ratio

$$AR = \frac{b^2}{S_{\text{out}}}$$

AR: aspect ratio b[m]: wing span $S_{ref}[m^2]$: wing area

ARINC: aeronautical radio incorporated ARP: aircraft recommended practice

ASI: air speed indicator

ATA: Air Transport Association

ATC: air traffic control BPR: bypass ratio

$$BPR = \frac{\dot{m}_{\rm fan}}{\dot{m}_{\rm core}}$$

BPR < 2: Low

2 < BPR < 4: Medium

BPR > 4: High

 $\mathbf{BPR} = \mathbf{12}$: Ultra-high

EASA: European Aviation Safety Agency CAR: Canadian Aviation Regulations EBHA: electrical backup hydraulic actuator

EDP: engine driven pump

EHA: electro-hydraulic actuator

EHSA: electro-hydraulic servo actuator

EICAS: engine indicating and crew alerting system

EMA: electro-mechanical actuator EMC: electro-magnetic compatibility

EMI: electro-magnetic interference EMP: electrical motor pump

FAA: Federal Aviation Administration **FAR:** Federal Aviation Regulations

FADEC: full authority digital engine control system

FBW: fly-by-wire

FCU: fuel control unit, controls thrust generated by the engine

FCU: flight control unit

FMS: flight management system

HF: high frequency

HMA: hydro-mechanical actuator

IATA: International Air Transport Association

IEEE: Institute of Electrical and Electronics Engineers

IDG: integrated drive generator

IMA: integrated modular architecture ISA: International Standard Atmosphere

ITT: inter turbine temperatureJAR: Joint Aviation Regulations

LCC: life-cycle cost

LRU: line replaceable units LRM: line replaceable modules

MCDU: multipurpose control and display unit

MLG: main landing gear

MTOW: maximum takeoff weight

NLG: nose landing gear

NACA: National Advisory Committee for Aeronautics NH: rotation speed of the engine high pressure shaft NF: rotation speed of the engine free turbine shaft

OAT: outside air temperature

OBOGS: on-board oxygen generation system **OEM:** original equipment manufacturer

OWE: operational weight empty (structure propulsion, systems, instruments, avionics)

Payload: crew, equipment, passengers, baggage, food, drinks, cargo, missiles bombs, ammunition

PSR: primary surveillance radar

PTU: power transfer unit (transfer power from a hydraulic system to another one)

RAT: ram air turbine

RNP: required navigation performance

SELCAL: selective call

 $\mathbf{SFC:}\ \mathrm{specific}\ \mathrm{fuel}\ \mathrm{consumption}$

 $\frac{m_{\text{fuel consumed}}}{\dot{W}_{\text{brake horse}}t}$

 $m_{\text{fuel consumed}}$: mass of fuel consumed

 $\dot{W}_{\mathrm{brake\ horse}}$: for propeller engines, power provided

to the propeller

t[h]: duration of the fuel consumption

SSR: secondary surveillance radar

TCCA: Transport Canada's Civil Aviation

TGT: turbine gas temperature TRL: technology readiness level TRU: transformer rectifier unit

TSFC: thrust specific fuel consumption

 $\frac{m_{\text{fuel consumed}}}{F_{\text{thrust generated}}t}$

 $m_{\rm fuel\ consumed}[{\rm kg}]$: mass of fuel consumed

 $F_{\text{thrust generated}}[N]$: force generated by the thrust t[h]: duration of the fuel consumption

VFG: variable frequency generator

VHF: very high frequency

VSCFG: variable speed constant frequency generator

WTB: wing tip brake

5 Materials and structures

Categories and function of aircraft structures:

Primary structure Load-bearing, stress and safety (wing box, fuselage, load paths)

Secondary structure Shaping, contour, surface (fairings, engine nacelle, nose cone)

Innter structural configuration Partitioning (payload, cockpit, system installation zones, safety-critical zones, segregation)

Structural layout of the aircraft fuselage:

External skin Carries shear from external transverse, torsional and cabin pressure loads

Tranverse elements Bulkheads support high concentrated loads in strategic zones (wings, empennage, landing gear) and distribute it into the skin; Frames maintain geometric integrity, support small loads

Longitudinal elements Longerons carry major portion of axial loads from bending; stringer carry residual axial loads from bending

Wing structure layout:

Multi-rib transport aircraft with high aspect ratio and relatively large thickness

Multi-spar high speed fighter aircraft, thin and highly loaded wings

Table 2: Material properties

	Strength/weight	Cost
Al-alloy	good	reasonable
Steel	too heavy	reasonable
Titanium	better than Al	very high
Composites	very good	depends
	Temperature	Corrosion
	sensitivity	
Al-alloy	good	good
Steel	good	stainless steel: good
Titanium	very good	good
Composites	bad	very good

6 Aviation alphabet

A: ALPHAB: BRAVOC: CHARLIE

Table 3: Fastener types

Fastener	Advantages	Disadvantages
Rivets	Low cost, low weight, flush surface	Permanent, limited static shear,
	possible, high rigidity	low tension, noisy installation
Bolts	Removable, high shear, high ten-	no flush surface, high weight, high
	sion	cost
Solid rivet	Low cost, low weight, good shear	Low tension strength, access to
	strength, automation, good clamp-	both side, permanent, noisy instal-
	up	lation, incompatible with compos-
		ite
Blind rivet	One side installation, low cost, low	Low tension strength, low shear
	weight	strength, permanent, moderate
		clamp-up, poor fatigue, moderate
		reliability
Blind Bolt	One side installation, good shear	Low tension strength, high cost
	strength	and weight, permanent, moderate
		clamp-up, poor fatigue, moderate
		reliability
Hi-Lites and Hi-Loks	High shear strength, high clamp-	Access to both side, permanent,
	up, high reliability, moderate ten-	noisy installation, moderate cost
	sion strength, high interference	and weight, very high cost for
		Taper-Lok

D: DELTA

E: ECHO

F: FOXTROT

G: GOLF

H: HOTEL

I: INDIA

J: JULIET

K: KILO

L: LIMA

M: MIKEN: NOVEMBER

O: OSCAR

P: PAPA

Q: QUEBEC

R: ROMEO

S: SIERRA

T: TANGO

U: UNIFORM

 \mathbf{V} : VICTOR

 \mathbf{W} : WHISKEY

X: XRAY

Y: YANKEE

Z: ZULU