```
#Dataset is "Iris"
Libraries
import numpy as np
import pandas as pd
import seaborn as sns
sns.set_palette('husl')
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn import metrics
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model selection import train test split
Load dataset
data = pd.read_csv('/content/Iris.csv')
data.head()
                      5 1
                                    3.5
                                                   1.4
                                                                 0.2 Iris-setosa
     2 3
                       4.7
                                    3.2
                                                   1.3
                                                                 0.2 Iris-setosa
     4 5
                       5.0
                                    3.6
                                                   1.4
                                                                 0.2 Iris-setosa
data.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 150 entries, 0 to 149
     Data columns (total 6 columns):
      # Column
                        Non-Null Count Dtype
      0 Id
                        150 non-null
                                         int64
      1 SepalLengthCm 150 non-null
                                        float64
```

```
2 SepalWidthCm 150 non-null float64
3 PetalLengthCm 150 non-null float64
4 PetalWidthCm 150 non-null float64
5 Species 150 non-null object
dtypes: float64(4), int64(1), object(1)
memory usage: 7.2+ KB
```

data.describe()

	Iu	Separtenguicii	Зератитиспсш	Petallengthiam	PECAIMIUCIICIII
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

data['Species'].value_counts()

Iris-setosa 50
Iris-versicolor 50
Iris-virginica 50
Name: Species, dtype: int64

Data Visualisation

```
tmp = data.drop('Id', axis=1)
g = sns.pairplot(tmp, hue='Species', markers='+')
plt.show()
```



```
g = sns.violinplot(y='Species', x='SepalLengthCm', data=data, inner='quartile')
plt.show()
g = sns.violinplot(y='Species', x='SepalWidthCm', data=data, inner='quartile')
plt.show()
g = sns.violinplot(y='Species', x='PetalLengthCm', data=data, inner='quartile')
plt.show()
g = sns.violinplot(y='Species', x='PetalWidthCm', data=data, inner='quartile')
plt.show()
```


1.000 -

Accuracy Scores for Values of k of k-Nearest-Neighbors

```
# experimenting with different n values
k_range = list(range(1,26))
scores = []
for k in k_range:
    knn = KNeighborsClassifier(n_neighbors=k)
    knn.fit(X_train, y_train)
    y_pred = knn.predict(X_test)
    scores.append(metrics.accuracy_score(y_test, y_pred))

plt.plot(k_range, scores)
plt.xlabel('Value of k for KNN')
plt.ylabel('Accuracy Score')
plt.title('Accuracy Scores for Values of k of k-Nearest-Neighbors')
plt.show()
```

