Revisiting the Relationship between Short-Chain Fatty Acids, the Microbiota, and Colorectal Tumors

Running title: SCFAs and colorectal tumors
Marc A Sze 1 , Nicholas A Lesniak 1 , Mack T Ruffin IV 2 , Patrick D. Schloss 1†
† To whom correspondence should be addressed: pschloss@umich.edu
1 Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109
2 Department of Family Medicine and Community Medicine, Penn State Hershey Medical Center Hershey, PA

Abstract

- 2 Background. Colorectal cancer (CRC) is a growing health concern with the majority of the
- 3 risk for developing disease being due to environmental factors. The microbiota is one of these
- 4 environmental factors with certain bacterial community members being associated with CRC, while
- other taxa are associated to colons without tumors. Some of the taxa associated to colons without
- tumors can use fiber to produce short-chain fatty acids (SCFAs) that can inhibit tumor growth in
- 7 model systems. However, the data supporting the importance of SCFAs in human CRC is less
- 8 certain. Here, we test the hypothesis that SCFA concentrations are different in individuals with
- 9 colorectal tumors.
- Methods. We analyzed a cross-sectional (n=490) and longitudinal pre- and post-treatment (n=67)
- group for their concentrations of acetate, butyrate, and propionate. Analysis also included tumor
- classification models using Random Forest, imputed gene relative abundance with PICRUSt, and
- metagenomic sequencing on a subset (n=85) of the total cross-sectional group.
- Results. No difference in SCFA concentrations were found between individuals without tumors and
- patients with adenomas or carcinomas (P-value > 0.15). There was no difference in classification
- 6 models with or without SCFAs in their ability to predict patients with adenomas or carcinomas
- versus individuals without tumors (P-value > 0.05). Using metagenomic sequencing, there was
- also no difference in genes involved with SCFA synthesis between individuals without tumors and
- patients with adenomas or carcinomas (P-value > 0.70).
- ²⁰ Conclusions. Although our data does not support the hypothesis that SCFAs are different in
- 21 individuals that have colorectal tumors, there may be context specific scenarios where SCFAs may
- 22 still be beneficial for treatment of CRC. Alternatively, there may be other mechanisms that have not
- been thoroughly investigated that are more important to the development of human CRC.

4 Introduction

Colorectal cancer (CRC) is currently the third highest cancer-related cause of death within the US (1, 2). Although there is a genetic component to the disease, the environment is attributed to being a larger risk factor for CRC (3). These environmental risk factors include but are not limited to smoking cigarettes, diet, and the microbiota (4–6). Many of these environmental risk factors are capable of being modified, and this has lead to the investigation of how the microbiota may exacerbate or cause tumorigensis (7–9) and whether the bacterial community is altered (10, 11). Multiple reports in case/control studies have identified bacterial taxa commonly associated with individuals without tumors to be decreased in patients with carcinoma tumors (11–13). Many of these taxa within individuals without tumors actively produce short-chain fatty acids (SCFAs) from fiber that are a part of our general diet (14). The most extensively studied of these SCFAs are acetate, butyrate, and propionate (15). Overall, the specific bacterial taxa of the microbiota that create SCFAs are an attractive target to modulate the risk of CRC.

Specific SCFAs, like butyrate, have shown positive results for CRC treatment within model systems
(16). Butyrate has been shown to inhibit cancer cell growth in *in vitro* systems (17). Additionally,
supplementation with food sources that bacteria use to create these SCFAs may also be able to
confer beneficial effects. For example, fiber supplementation in mouse models of CRC caused an
overall reduction in tumor burden while also increasing SCFA concentrations (18). Although these
model systems provide important preliminary evidence towards the ability of SCFAs to reduce and
treat tumors, the studies reporting benefit in humans has been less convincing.

There is a lack of evidence on the benefit of increasing SCFA concentrations to protect against CRC in human populations. The initial case/control studies that investigated SCFA concentrations in CRC found that patients with carcinomas had lower concentrations of acetate, butyrate, and propionate versus either patients with adenomas or individuals without colon tumors (19). Although this would argue that increasing SCFA concentrations could be protective against tumorigenesis, fiber supplementation in randomized controlled trials have consistently failed to protect against tumor recurrence (20). These findings would argue against the utility of treatments that aim to use SCFAs to reduce or protect against tumorigenesis. Given the lack of clear evidence in human

studies of the benefit of SCFAs in CRC, there is a need for more investigation into this area.

Our study fills some of the current gaps in the literature that relate to the study of SCFAs and CRC in human populations. Specifically, it tests previous case/control findings on SCFA concentrations in individuals with and without tumors. We also test previous suggestions that there is a continuous reduction in SCFA concentrations as tumor severity increases by increasing the number of patients with adenomas in our study. Additionally, we build upon these observations and assesses the utility of using SCFAs and Operational Taxonomic Units (OTUs) as a risk stratification tool of colorectal tumors (adenoma or carcinoma). Collectively, this study provides important information on the replicability of previous findings in humans by extensively studying how SCFAs are associated with colorectal tumors.

To accomplish this task we directly measured the concentration of acetate, butyrate, and propionate within fecal samples for two different groups. The first group had a sample obtained at a single 63 cross sectional point in time while the second group had samples obtained before (pre-) and 64 after (post-)treatment for colorectal tumors. Additionally, we (i) assessed the affect adding SCFA concentrations to OTU data had on classification of patients with adenoma or carcinoma using the 66 Random Forest algorithm (21), (ii) used PICRUSt (22) and metagenomic sequencing to assess 67 the presence of genes involved in SCFA synthesis, and (iii) analyzed how well 16S rRNA gene sequencing predicts SCFA concentrations. This investigation provides additional information as to whether SCFAs are decreased in patients with colorectal tumors and provides context as to 70 whether targeting taxa to increase SCFA concentrations is a viable option to protect against colon 71 tumorigenesis.

3 Results

Decreased SCFA concentrations are not associated with tumors. We used high-performance liquid chromatography (HPLC) to measure acetate, butyrate, and propionate concentrations of frozen fecal samples from 490 individuals at a cross-sectional point in time. There was no difference between individuals without colon tumors (n=172) and patients with either an adenoma (n=198) or carcinoma (n=120) for any of the SCFAs measured after multiple comparison correction (P-value > 0.15) [Figure 1A - 1C]. We next measured the concentration of SCFAs in 67 patients with an adenoma (n=41) or carcinoma (n=26) in which we had pre- and post-treatment fecal samples. Although there was a general trend for increasing acetate, butyrate, and propionate concentrations after treatment for tumors, there was no significant difference pre- and post-treatment for patients with adenoma (P-value > 0.20) or carcinoma (P-value > 0.80) [Figure 1D - 1F]. Even though there was no difference in SCFA concentrations between individuals with normal colons and those with tumors, this information could still be important to help classify disease.

Random Forest models with SCFA concentrations do not classify tumors better. SCFA concentrations could improve prediction of tumors based on specific bacterial community structures. Our OTU data can be used in combination with SCFAs to assess whether there is a community dependent context to SCFA classification of tumors. Using the Random Forest algorithm we built models with OTU abundance data only or OTU abundances and SCFA concentrations to classify normal versus adenoma and normal versus carcinoma fecal samples. For adenoma and carcinoma models, there was no difference between the median AUC of models with or without SCFA concentrations (P-value > 0.05) [Figure 2]. Although including SCFA concentrations did not improve classification of colorectal tumors using Random Forest models, it is possible that the genes for enzymes involved in SCFA synthesis may vary based on the type of colorectal tumor. This would be consistent with previous 16S rRNA gene sequencing results where many taxa associated with SCFA production are decreased (10, 11).

Schanges in genes for enzymes involved in SCFA synthesis are not associated with tumors.

Using a list of specific genes that are important for the synthesis of SCFAs [Table S1], we looked for differences in gene abundance between individuals without colon tumors and patients with

adenomas or carcinomas. First, using imputed gene relative abundance based on 16S rRNA gene sequencing we found no difference in any of the genes involved with acetate, butyrate, or propionate synthesis (P-value > 0.90) [Table S2]. This similarity between groups is highlighted by visualizing genes important in butyrate synthesis [Figure 3A]. Using a paired Wilcoxon rank-sum test, there also was no difference in imputed gene relative abundance between pre- and post-treatment samples for any genes involved with SCFA synthesis (P-value > 0.70) [Table S3]. Next, we took a subset of these 490 fecal samples (n=85) and used metagenomic sequencing to confirm these results. Like the imputed gene results, metagenomic analysis found that there was no difference in any of the genes involved in SCFA synthesis between individuals without colon tumors (n=29) and patients with adenoma (n=28) or carcinoma (n=28) (P-value > 0.70) [Table S4]. This lack of difference is highlighted when we visualize the results for butyrate kinase [Figure 3B]. These observations provide evidence that gene prevalence does not change due to colorectal tumors.

101

102

103

104

106

107

108

109

110

111

113

121

Expected taxa are associated with higher SCFA concentrations regardless of tumor status.

Using OTU data we built Random Forest models to classify higher than median and lower than 114 median SCFA concentrations. Overall, OTU data had a reasonable ability to classify high and 115 low SCFA concentrations [Figure S1A]. However, these models tended to be over fit, suggesting 116 that rarer taxa may be important for this classification [Figure S1A]. The most important OTUs 117 to these models (assessed with mean decrease in accuracy (MDA)) were taxa that are normally 118 associated with SCFA production [Figure S1B]. These results highlight that within our data, SCFA 119 concentrations are associated with taxa known to produce acetate, butyrate, and propionate. 120 Additionally, OTUs associated with these taxa are the most important to models that can classify high and low SCFA concentrations. Overall, our results are robust and do not support the hypothesis 122 that differences in SCFA concentrations are associated with colorectal tumors.

24 Discussion

The observations from this study do not support the hypothesis that SCFA concentrations are 125 different in individuals with tumors. Whether we directly measured the SCFA concentration or 126 investigated genes associated with their production, no difference could be identified [Figure 1 127 & 3]. There is an intriguing reason why taxa associated with SCFA production are decreased in 128 CRC but the genes involoved with its' production are not. Mouth-associated microbes such as 129 Fusobacterium nucleatum and Porphyromonas asaccharolytica have been found to be increased in patients with carcinomas versus individuals without tumors (10, 11, 23). Both of these bacterial 131 species are known to have strains that can produce SCFAs such as butyrate (24). Thus the reason 132 we may be observing no change in genes involved with SCFA synthesis, as well as no change to 133 SCFAs themselves, is because the production is being supported by more inflammatory microbes 134 associated with CRC. Additionally, our observations that no benefit could be found in using the 135 concentrations to help classify individuals with and without tumors would be consistent with this 136 reason [Figure 2]. However, our observations are in stark contrast to some of the previous literature. Much of the previous research on SCFA benefit to human CRC has been illustrated in model 138 systems (16). Many SCFAs are produced through the breakdown of fiber (14) and a recent study in 139 mice found that fiber supplementation increased SCFA concentrations and decreased tumor burden (18). Additionally, SCFAs such as butyrate can inhibit tumor growth in in vitro experiments (17). 141 Yet, observations in humans has been mixed. Previous case/control studies found associations 142 with lower SCFA concentrations in individuals with carcinoma tumors (19). However, individual randomized controlled trials and a recent meta-analysis on fiber supplementation to prevent 144 tumor recurrence has found no benefit (20, 25). Our results align with what has been reported 145 in randomized-controlled trials, that SCFAs do not provide general protection against colorectal

One limitation of current research into the effect of SCFAs in CRC has been that all tumors are treated as the same type. However, there are known differences in the types of mutations that occur (26) and treating all tumors as equal may actually hide any benefit that could be found in specific subsets of individuals. Similar to the idea of specific immunotherapy for specific tumors

tumors. It is possible though that there are specific instances where SCFAs may be beneficial.

(27), SCFAs may have beneficial effects for specific types of colorectal tumors. Future research will 152 need to test if this is a valid hypothesis. Another limitation is that a fecal sample may not be an ideal 153 type of biospecimen and that the effect SCFAs have on tumorigenesis is only detected in the colon. 154 However, most in vivo studies as well as human studies have used fecal material in their analysis 155 (18, 19). Additionally, studies that measure SCFA changes after fiber supplementation use fecal 156 material to track these responses (28). Although there are limitations with the current research on 157 SCFAs and colorectal tumors, our observations along with the randomized controlled trials on fiber 158 supplementation in tumor recurrence (20) provide evidence that these specific metabolites may 159 not be protective. Yet, taxa that are associated with SCFA production are consistently higher in 160 indivdiuals without colon tumors than patients with carcinomas (10, 11, 23). 161

The potential protection against colorectal cancers may not be from SCFAs even though taxa 162 associated with their production are higher in individuals without tumors versus patients with 163 carcinomas (10, 11, 23). Protection could be via a different pathway and by extension other 164 metabolites that have not been extensively studied. Alternatively, protection may not occur via a 165 metabolite but instead through niche exclusion of mouth-associated microbes (e.g. Fusobacterium, 166 Porphyromonas, Parvimonas, Peptostreptococcus (6, 12, 13)). The idea of niche exclusion is similar 167 to how the community protects against Clostridium difficile infection (29) with chronic inflammation 168 replacing the role of antibiotics. Although we did not find lower concentrations of SCFAs associated with colorectal tumors, we think that there are many exciting new avenues to explore because of 170 these results.

172 Conclusions

Our observations found no difference in SCFA concentration, their utility as a classification tool, or for genes of enzymes involved in SCFA synthesis between individuals without colon tumors and patients with either adenoma or carcinoma tumors. Although these results are different than other reports in the literature, they do align with the randomized controlled trials that have tested fiber use in preventing colorectal tumor recurrence. Overall, these results suggest that the SCFAs typically produced by resident microbes do not protect against tumor. By focusing on other types mechanisms, the identification of more promising therapeutic options for use in treating colorectal cancer may be found.

Materials and Methods

191

194

Study design and sampling. The overall protocol has been described in detail previously (30, 182 31). In brief, this study used fecal samples obtained at either a single cross-sectional time point 183 (n=490) or from before (pre-) and after (post-) treatment of a patient's tumor (n=67). For patients undergoing treatment for their tumor the length of time between their initial and follow up sample 185 ranged from 188 - 546 days. Our use of treatment has been previously defined as encompassing 186 removal of a tumor with or without chemotherapy and radiation (30). Diagnosis of tumor was made by colonoscopic examination and histopathological review of biopsies obtained (30, 31). The 188 University of Michigan Institutional Review Board approved the study and informed consent was 189 obtained from all participants in accordance to the guidelines set out by the Helsinki Declaration.

Measuring specific SCFAs. Our protocol for the measurement of acetate, butyrate, and propionate followed a previously published protocol that used a High-Performance Liquid Chromatography 192 (HPLC) machine (28). The following changes to this protocol included the use of frozen fecal 193 samples suspended in 1ml of PBS instead of fecal suspensions in DNA Genotek OmniGut tubes, and the use of the actual weight of fecal samples instead of the average weight for SCFA 195 concentration normalizations. These methodological changes did not affect the overall median concentrations of these SCFAs between the two studies (see Table 1 (28) and Figure 1 here).

16s rRNA gene sequencing. The workflow and processing have been previously described (30, 198 32, 33). The major differences from these previous reports include: the use of version 1.39.5 of the 199 mothur software package and clustering Operational Taxonomic Units (OTUs) at 97% similarity using the OptClust algorithm (34). 201

Generating imputed metagenomes. The use of PICRUSt version 1.1.2 with the recommended 202 standard operating protocol (22) was used. Briefly, the mothur shared file and metadata was converted into a biom formatted table using the biom convert function, the subsequent biom 204 file was processed with the 'normalize by copy number.py' function, and subsequent imputed 205 metagenomes created using the 'predict metagenomes.py' function.

Obtaining Operational Protein Families from metagenomes. A subset of the cross-sectional

group (n=490) containing a total of 85 individuals (normal n=29, adenoma n=28, and carcinoma n=28) was shotgun sequenced on an Illumina HiSeq using 125 bp paired end reads and a previously described method (35). Briefly, the sequences were quality filtered and sequences aligning to the human genome were removed prior to contig assembly with MEGAHIT (36). Open Reading Frames (ORFs) were identified using Prodigal (37), counts generated using Diamond (38), subsequent clustering into Operational Protein Families (OPFs) used mmseq2 (39), and OPF alignment used the KEGG database (40).

Pulling genes involved with SCFA synthesis. Specific genes located near the end of the pathways involved in the synthesis of acetate, butyrate, and propionate were analyzed for any differences between individuals with normal colons and those with tumors. These genes were based on pathways from KEGG as well as previous research (40, 41) and a list can be found in the supplemental material [Table S1].

Random Forest models. The model was first trained on 80% of the data and then tested on the held out 20% (80/20 split) using the Random Forest algorithm for classification models (21). This was repeated on 100 different 80/20 splits of the data to generate a reasonable range for the AUC of the model. The reported AUCs, unless otherwise specified, are for the test sets. The classification models were built to group normal versus adenoma, normal versus carcinoma, and high versus low SCFA concentrations.

Statistical analysis workflow. All analysis was performed using the statistical language R (42). 226 Generally, a Kruskal-Walis rank sum test with a Dunn's post-hoc test was used to assess differences 227 between the groups used. Where appropriate Benjamini-Hochberg was used to correct for multiple comparisons (43). First, we assessed differences in SCFA concentrations measured by HPLC 229 between individuals with normal colons and patients with tumors (adenoma or carcinoma). We 230 then analyzed whether SCFA concentrations changed in patients with an adenoma or carcinoma pre- versus post-treatment. Next, we assessed whether OTUs alone or OTUs and SCFAs were 232 better able to classify individuals with and without tumor using Random Forest models. Next, the 233 imputed gene counts of important mediators of SCFA synthesis was tested. Additionally, the counts 234 generated for OPFs that matched important genes involved with SCFA creation were analyzed.

- Finally, models to classify high or low SCFA concentration based on the median of each SCFA and
- ²³⁷ 16S rRNA gene sequencing data was created using the Random Forest algorithm.

38 Acknowledgements

The authors thank the Great Lakes-New England Early Detection Research Network for providing
the fecal samples that were used in this study. We would also like to thank Kwi Kim and Thomas M
Schmidt for their help in running the short-chain fatty acid analysis on the High-Performance Liquid
Chromatography machine at the University of Michigan. Salary support for Marc A. Sze came from
the Canadian Institute of Health Research and NIH grant UL1TR002240. Salary support for Patrick
D. Schloss came from NIH grants P30DK034933 and 1R01CA215574.

References

- 1. **Haggar F**, **Boushey R**. 2009. Colorectal cancer epidemiology: Incidence, mortality, survival, and risk factors. Clinics in Colon and Rectal Surgery **22**:191–197. doi:10.1055/s-0029-1242458.
- 248 2. **Siegel RL**, **Miller KD**, **Jemal A**. 2016. Cancer statistics, 2016. CA: A Cancer Journal for Clinicians **66**:7–30. doi:10.3322/caac.21332.
- Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E,
 Skytthe A, Hemminki K. 2000. Environmental and heritable factors in the causation of cancer
 analyses of cohorts of twins from sweden, denmark, and finland. New England Journal of Medicine
 343:78–85. doi:10.1056/nejm200007133430201.
- 4. Fliss-Isakov N, Zelber-Sagi S, Webb M, Halpern Z, Kariv R. 2017. Smoking habits are strongly associated with colorectal polyps in a population-based case-control study. Journal of Clinical Gastroenterology 1. doi:10.1097/mcg.0000000000000035.
- 5. Lee J, Jeon JY, Meyerhardt JA. 2015. Diet and lifestyle in survivors of colorectal cancer.
 Hematology/Oncology Clinics of North America 29:1–27. doi:10.1016/j.hoc.2014.09.005.
- 6. Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, Ojesina AI, Jung J,
 Bass AJ, Tabernero J, Baselga J, Liu C, Shivdasani RA, Ogino S, Birren BW, Huttenhower
 C, Garrett WS, Meyerson M. 2011. Genomic analysis identifies association of fusobacterium with
 colorectal carcinoma. Genome Research 22:292–298. doi:10.1101/gr.126573.111.
- Zackular JP, Baxter NT, Iverson KD, Sadler WD, Petrosino JF, Chen GY, Schloss PD.
 2013. The gut microbiome modulates colon tumorigenesis. mBio 4:e00692–13–e00692–13.
 doi:10.1128/mbio.00692-13.
- 8. **Baxter NT**, **Zackular JP**, **Chen GY**, **Schloss PD**. 2014. Structure of the gut microbiome following colonization with human feces determines colonic tumor burden. Microbiome **2**:20. doi:10.1186/2049-2618-2-20.
- 9. Zackular JP, Baxter NT, Chen GY, Schloss PD. 2015. Manipulation of the gut microbiota

- reveals role in colon tumorigenesis. mSphere 1:e00001–15. doi:10.1128/msphere.00001-15.
- 10. Shah MS, DeSantis TZ, Weinmaier T, McMurdie PJ, Cope JL, Altrichter A, Yamal J-M,
 Hollister EB. 2017. Leveraging sequence-based faecal microbial community survey data to identify
 a composite biomarker for colorectal cancer. Gut 67:882–891. doi:10.1136/gutjnl-2016-313189.
- ²⁷⁴ 11. **Sze MA**, **Schloss PD**. 2018. Leveraging existing 16S rRNA gene surveys to identify reproducible biomarkers in individuals with colorectal tumors. doi:10.1101/285486.
- 12. Zeller G, Tap J, Voigt AY, Sunagawa S, Kultima JR, Costea PI, Amiot A, Bohm J, Brunetti
 F, Habermann N, Hercog R, Koch M, Luciani A, Mende DR, Schneider MA, Schrotz-King P,
 Tournigand C, Nhieu JTV, Yamada T, Zimmermann J, Benes V, Kloor M, Ulrich CM, Knebel
 Doeberitz M von, Sobhani I, Bork P. 2014. Potential of fecal microbiota for early-stage detection
 of colorectal cancer. Molecular Systems Biology 10:766–766. doi:10.15252/msb.20145645.
- 13. **Baxter NT**, **Ruffin MT**, **Rogers MAM**, **Schloss PD**. 2016. Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions. Genome Medicine **8**. doi:10.1186/s13073-016-0290-3.
- 14. Holscher HD. 2017. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut
 Microbes 8:172–184. doi:10.1080/19490976.2017.1290756.
- 15. Louis P, Flint HJ. 2016. Formation of propionate and butyrate by the human colonic microbiota.
 Environmental Microbiology 19:29–41. doi:10.1111/1462-2920.13589.
- 16. **O'Keefe SJD**. 2016. Diet, microorganisms and their metabolites and colon cancer. Nature Reviews Gastroenterology & Hepatology **13**:691–706. doi:10.1038/nrgastro.2016.165.
- 290 17. Encarnação JC, Pires AS, Amaral RA, Gonçalves TJ, Laranjo M, Casalta-Lopes JE,
 291 Gonçalves AC, Sarmento-Ribeiro AB, Abrantes AM, Botelho MF. 2018. Butyrate, a dietary
 292 fiber derivative that improves irinotecan effect in colon cancer cells. The Journal of Nutritional
 293 Biochemistry 56:183–192. doi:10.1016/j.jnutbio.2018.02.018.
- 18. Bishehsari F, Engen P, Preite N, Tuncil Y, Naqib A, Shaikh M, Rossi M, Wilber S, Green

- S, Hamaker B, Khazaie K, Voigt R, Forsyth C, Keshavarzian A. 2018. Dietary fiber treatment corrects the composition of gut microbiota, promotes SCFA production, and suppresses colon carcinogenesis. Genes 9:102. doi:10.3390/genes9020102.
- 19. Ohigashi S, Sudo K, Kobayashi D, Takahashi O, Takahashi T, Asahara T, Nomoto K, Onodera H. 2013. Changes of the intestinal microbiota, short chain fatty acids, and fecal pH in patients with colorectal cancer. Digestive Diseases and Sciences 58:1717–1726. doi:10.1007/s10620-012-2526-4.
- 20. Yao Y, Suo T, Andersson R, Cao Y, Wang C, Lu J, Chui E. 2017. Dietary fibre for the prevention of recurrent colorectal adenomas and carcinomas. Cochrane Database of Systematic Reviews. doi:10.1002/14651858.cd003430.pub2.
- 21. **Liaw A**, **Wiener M**. 2002. Classification and regression by randomForest. R News **2**:18–22.
- 22. Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC,
 Burkepile DE, Thurber RLV, Knight R, Beiko RG, Huttenhower C. 2013. Predictive functional
 profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology
 303 31:814–821. doi:10.1038/nbt.2676.
- 23. **Sze MA**, **Baxter NT**, **Ruffin MT**, **Rogers MAM**, **Schloss PD**. 2017. Normalization of the microbiota in patients after treatment for colonic lesions. Microbiome **5**. doi:10.1186/s40168-017-0366-3.
- 24. **Vital M**, **Howe AC**, **Tiedje JM**. 2014. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. mBio **5**:e00889–14–e00889–14. doi:10.1128/mbio.00889-14.
- 25. Schatzkin A, Lanza E, Corle D, Lance P, Iber F, Caan B, Shike M, Weissfeld J, Burt R,
 Cooper MR, Kikendall JW, Cahill J, Freedman L, Marshall J, Schoen RE, Slattery M. 2000.
 Lack of effect of a low-fat, high-fiber diet on the recurrence of colorectal adenomas. New England
 Journal of Medicine 342:1149–1155. doi:10.1056/nejm200004203421601.
- 26. Fearon ER, Vogelstein B. 1990. A genetic model for colorectal tumorigenesis. Cell

- 319 **61**:759–767. doi:10.1016/0092-8674(90)90186-i.
- ³²⁰ 27. **Thomas X**, **Heiblig M**. 2016. The development of agents targeting the BCR-ABL tyrosine kinase as philadelphia chromosome-positive acute lymphoblastic leukemia treatment. Expert Opinion on Drug Discovery **11**:1061–1070. doi:10.1080/17460441.2016.1227318.
- 28. Venkataraman A, Sieber JR, Schmidt AW, Waldron C, Theis KR, Schmidt TM. 2016.

 Variable responses of human microbiomes to dietary supplementation with resistant starch.

 Microbiome 4. doi:10.1186/s40168-016-0178-x.
- 29. **Theriot CM**, **Young VB**. 2015. Interactions between the gastrointestinal microbiome and clostridium difficile. Annual Review of Microbiology **69**:445–461. doi:10.1146/annurev-micro-091014-104115.
- 328 30. **Sze MA**, **Baxter NT**, **Ruffin MT**, **Rogers MAM**, **Schloss PD**. 2017. Normalization of the microbiota in patients after treatment for colonic lesions. Microbiome **5**. doi:10.1186/s40168-017-0366-3.
- 330 31. **Baxter NT**, **Ruffin MT**, **Rogers MAM**, **Schloss PD**. 2016. Microbiota-based model improves 331 the sensitivity of fecal immunochemical test for detecting colonic lesions. Genome Medicine **8**. 332 doi:10.1186/s13073-016-0290-3.
- 332. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA,

 Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Horn DJV, Weber CF.

 2009. Introducing mothur: Open-source, platform-independent, community-supported software

 for describing and comparing microbial communities. Applied and Environmental Microbiology

 75:7537–7541. doi:10.1128/aem.01541-09.
- 338 33. **Kozich JJ**, **Westcott SL**, **Baxter NT**, **Highlander SK**, **Schloss PD**. 2013. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq illumina sequencing platform. Applied and Environmental Microbiology **79**:5112–5120. doi:10.1128/aem.01043-13.
- 342 34. **Westcott SL**, **Schloss PD**. 2017. OptiClust, an improved method for assigning amplicon-based sequence data to operational taxonomic units. mSphere **2**:e00073–17.

- 344 doi:10.1128/mspheredirect.00073-17.
- 345 35. Hannigan GD, Duhaime MB, Ruffin MT, Koumpouras CC, Schloss PD. 2017. Diagnostic potential & the interactive dynamics of the colorectal cancer virome. doi:10.1101/152868.
- 36. **Li D**, **Liu C-M**, **Luo R**, **Sadakane K**, **Lam T-W**. 2015. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de bruijn graph. Bioinformatics

 31:1674–1676. doi:10.1093/bioinformatics/btv033.
- 37. **Hyatt D**, **Chen G-L**, **LoCascio PF**, **Land ML**, **Larimer FW**, **Hauser LJ**. 2010. Prodigal:

 Prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics **11**:119.

 doi:10.1186/1471-2105-11-119.
- 353 38. **Buchfink B**, **Xie C**, **Huson DH**. 2014. Fast and sensitive protein alignment using DIAMOND.

 Nature Methods **12**:59–60. doi:10.1038/nmeth.3176.
- 355 39. **Steinegger M**, **Söding J**. 2017. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nature Biotechnology. doi:10.1038/nbt.3988.
- 40. **Kanehisa M**, **Sato Y**, **Kawashima M**, **Furumichi M**, **Tanabe M**. 2015. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research **44**:D457–D462. doi:10.1093/nar/gkv1070.
- 41. **Baxter NT**, **Zackular JP**, **Chen GY**, **Schloss PD**. 2014. Structure of the gut microbiome following colonization with human feces determines colonic tumor burden. Microbiome **2**:20. doi:10.1186/2049-2618-2-20.
- 42. **R Core Team**. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
- 43. **Benjamini Y**, **Hochberg Y**. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological) **57**:289–300.

Figure 1. No change in SCFA measurements was observed between normal, adenoma, 368 and carcinoma individuals using HPLC. Acetate concentrations in fecal samples of individuals without colon tumors, adenomas, and carcinomas (A). Butyrate concentrations in fecal samples 370 of individuals without colon tumors, adenomas, and carcinomas (B). Propionate concentrations 371 in fecal samples of individuals without colon tumors, adenomas, and carcinomas (C). The black 372 lines indicate the median SCFA concentration. Acetate concentrations in fecal samples before and after treatment for adenoma (yellow) and carcinoma (red) (D). Butyrate concentrations in fecal 374 samples before and after treatment for adenoma (yellow) and carcinoma (red) (E). Propionate 375 concentrations in fecal samples before and after treatment for adenoma (yellow) and carcinoma (red) (F). The black dots and lines represent the median change in SCFA concentration.

369

377

Figure 2. SCFAs do not improve OTU-based Random Forest models. The area under the 378 curve of 100 different 80/20 split OTU-based normal versus adenoma 10-fold CV models with and without SCFAs (A). The area under the curve of 100 different 80/20 OTU-based normal versus 380 carcinoma 10-fold CV models with and without SCFAs (B). The black line represents the median 381 AUC. The dotted line highlights an AUC of 0.5. 382

Figure 3. No change in butyrate producing genes identified between normal, adenoma, and 383 carcinoma individuals. Imputed gene relative abundance of important butyrate pathway genes 384 using PICRUSt (A). Counts per million (corrected for size and number of contigs in an OPF) for the 385 Butyrate Kinase gene (B). The other butyrate pathway genes from the PICRUSt analysis did not 386 align to any of the OPFs in the metagenome analysis. 387

Figure 4. OTU-based regression Random Forest models of SCFA concentrations. The train 388 and test correlation between actual and predicted values from 100 different 80/20 split OTU-based 389 models with 10-fold CV using regression Random Forest (A). The model accuracy of predicted 390 SCFA concentrations differed between individuals without tumors, patients with adenomas, and 391 patients with carcinomas. Generally, patients with carcinomas had predicted concentrations closest 392 to their actual measured concentration (B). The top 10 OTUs based on mean decrease in accuracy 393 (MDA) for each SCFA model, colored by their lowest taxonomic identification (C). 394

Patients with adenomas had the higest number of significant negative Figure 5.

correlations between OTU relative abundance and SCFA concentration. Colors denote the family or lowest taxonomic ID that an OTU classified to. Fewer significant positive correlations were observed overall. Additionally, the differences in the number of significant positive correlations between patients with adenomas versus individuals without tumors (normal) and patients with carcinomas was not as pronounced as the number of significant negative correlations.

Figure S1. OTU-based classification Random Forest models of high/low SCFA groups 401 based on overall SCFA median concentration. The train and test results of 100 different 402 80/20 split OTU-based models with 10-fold CV based on higher or lower than the median SCFA 403 concentration using classification Random Forest (A). The model accuracy of predicted high/low 404 SCFA groups differed between individuals without tumors, patients with adenomas, and patients 405 with carcinomas. Patients with adenomas consistently had the best classification accuracy (B). The 406 top 10 OTUs based on mean decrease in accuracy (MDA) for each SCFA model, colored by their 407 lowest taxonomic identification (C). 408

Figure S2. Patients with adenomas had the higest number of significant differences in
OTU relative abundance between high/low SCFA groups. Colors denote the family or lowest
taxonomic ID that an OTU classified to. Fewer significant OTUs were observed in individuals without
tumors (normal) and patients with carcinomas versus patients with adenomas.