Encoding II, Algorithms and Data Structures Elias Gestrich

Exercise 1: IEE 754 Number format

```
b) positive: first bit = 0 20.5_{10} = 1\,0100.1_2 \rightarrow \text{mantissa: } 0100100000000000000000, \text{ exponent: } 0111\,1111_2 + 100_2 = 1000\,0011_2 \\ \Longrightarrow 010000011010010000000000000000
```

Exercise 2: ASCII

```
a) S = 53_{16}, k = 6B_{16}, I = 49_{16}: "SkI" = 536B49_{16} = 101\,0011\,0110\,1011\,0100\,1001_2
```

Exercise 3: Binary Search Trees

a)

remove(12) \rightarrow 12 has no child:

remove(11) \rightarrow 11 has two childs: replace 11 with the most right element of the left child (the 10) and remove the child, because 10 has one child on the left side move this child to the left side of the root:

Exercise 4: Hashing

a) 13

b)

0	\rightarrow
1	$\rightarrow 40 \rightarrow 27$
2	\rightarrow
3	$\rightarrow 16$
4	\rightarrow
5	$\rightarrow 5 \rightarrow 31$
6	$\rightarrow 19$
7	$\rightarrow 20 \rightarrow 7$
8	$\rightarrow 21 \rightarrow 34$
9	\rightarrow
10	$\rightarrow 23$
11	\rightarrow
12	$\rightarrow 12$

c)

newly inserted key	20	19	5	21	7	40	23	31	12	16	27	34
newly inserted key	20	13	0	21	'	40	20	51	14	10	41	04
0												34
1						40	40	40	40	40	40	40
2											27	27
3										16	16	16
4												
5			5	5	5	5	5	5,	5	5	5	5
6		19	19	19	19	19	19	19	19	19	19	19
7	20	20	20	20	20	20	20	20	20	20	20	20
8				21	21	21	21	21	21	21	21	21
9					7	7	7	7,	7	7	7	27
10							23	23	23	23	23	23^{t}
11								31	31	31	31	31
12									12	12	12	12