Institute for Analysis and Scientific Computing

Lothar Nannen, Conrad Gößnitzer, Michael Innerberger

Numerik von Differentialgleichungen - Kreuzlübung 4

Übungstermin: 22.4.2020 22. April 2020

Aufgabe 16:

Wenden Sie die Methode der (Zweischritt-) Richardson Extrapolation aus Abschnitt 2.7 auf das explizite Euler-Verfahren an.

- a) Welches Verfahren entsteht dabei?
- **b)** Weisen Sie unabhängig von Abschnitt 2.7 nach, dass dieses Verfahren die Konvergenzordnung 2 besitzt.

Aufgabe 17:

Implementieren Sie das implizite Euler Verfahren unter Verwendung des Newton-Verfahrens zur Lösung des nichtlinearen Gleichungssystems. Der Algorithmus soll als Input-Parameter einen Vektor von Stützstellen t, einen Startwert y_0 , die rechte Seite und Ableitung der rechten Seite f bzw. $\frac{\partial}{\partial y} f$ sowie eine geeignete Abbruchbedinung für das Newton Verfahren (Toleranz und/oder maximale Anzahl an Interationen) akzeptieren.

Testen Sie das Verfahren an folgenden Anfangswertproblemen: Sei $Y = (y_1, y_2)^{\top}$ die Lösung des Anfangswertproblems

$$Y'(t) = \begin{pmatrix} -2 & 1\\ 1 & -2 \end{pmatrix} Y(t) + \begin{pmatrix} 2\sin t\\ 2(\cos t - \sin t) \end{pmatrix}, \quad t \ge 0, \qquad Y(0) = \begin{pmatrix} 2\\ 3 \end{pmatrix}. \tag{1}$$

Sei $Z = (z_1, z_2)^{\top}$ die Lösung des Anfangswertproblems

$$Z'(t) = \begin{pmatrix} -2 & 1\\ 998 & -999 \end{pmatrix} Z(t) + \begin{pmatrix} 2\sin t\\ 999(\cos t - \sin t) \end{pmatrix}, \quad t \ge 0, \qquad Z(0) = \begin{pmatrix} 2\\ 3 \end{pmatrix}. \tag{2}$$

Vergleichen Sie dabei auch mit den Ergebnissen und Schrittweiten des eingebetteten Runge-Kutta Verfahren RK5(4) aus Aufgabe 15. Verwenden Sie dazu die Parameter $t \in [0, 10], \rho = 0.7, \eta = 1.5,$ tol = $10^{-6}, h_{min} = 10^{-10}$.

Aufgabe 18:

Gegeben sei ein implizites, s-stufiges Runge-Kutta Verfahren der Form

$$\begin{array}{c|c}
c & A \\
\hline
0 & b^{\top}
\end{array} \tag{3}$$

Zeigen Sie: Angewendet auf das Anfangswertproblem $y' = \lambda y$ mit $y(0) = y_0$ und $\lambda \in \mathbb{C}$ gilt für hinreichend kleine h

$$y_{i+1} = R(\lambda h)y_i \tag{4}$$

mit einer rationalen Funktion R = P/Q und Polynomen $P, Q \in \Pi_s$ vom maximalen Grad s.

Aufgabe 19:

Beweisen Sie, welche Konsistenzordnungen die impliziten Runge-Kutta Verfahren aus Example 3.11 (impliziter Euler), Example 3.12 (implizite Trapezregel) und Example 3.13 (implizite Mittelpunktsregel) besitzen.

Aufgabe 20:

Implizite Runge-Kutta Verfahren führen zu einem nichtlinearen Gleichungssystem, dessen Lösung sehr aufwändig sein kann. Zur Vereinfachung kann man folgende Verfahren zur Lösung von autonomen Differentialgleichungen y'(t) = f(y(t)) verwenden.

Gegeben sei $b \in \mathbb{R}^m$, $A = (A_{ij}) \in \mathbb{R}^{m \times m}$ mit $A_{ij} = 0$ für $i \leq j$ und $B = (B_{ij}) \in \mathbb{R}^{m \times m}$ mit $B_{ij} = 0$ für i < j. Weiter sei J die Jacobi-Matrix von f an der stelle y_{ℓ} , d.h. $J := \partial_y f(y_{\ell})$. Dann beschreiben die folgenden Gleichungen ein implizites Einschrittverfahren

$$k_i = hJ\sum_{j=1}^{i} (B_{ij} - A_{ij}) k_j + f\left(y_\ell + h\sum_{j=1}^{i-1} A_{ij}k_j\right), \qquad i = 1, \dots, m$$
 (5a)

$$y_{\ell+1} := y_{\ell} + h \sum_{j=1}^{m} b_j k_j.$$
 (5b)

- a) Zeigen Sie, dass für dieses Verfahren nur m lineare Gleichungssysteme (und keine nichtlinearen) gelöst werden müssen.
- b) Mit welchem Gesamtaufwand sind diese linearen Gleichungssysteme lösbar, wenn $B_{ii} = \beta$ für alle i = 1, ..., m?
- c) Zeigen Sie, dass diese linearen Gleichungssysteme für alle h > 0 eindeutig lösbar sind, wenn $B_{ii} = \beta > 0$ für alle i = 1, ..., m und wenn J nur negative Eigenwerte besitzt.
- d) Zeigen Sie, dass (5) für lineare Funktionen f ein implizites Runge-Kutta Verfahren beschreibt.