2020-2021 年广东省中学生天文知识竞赛复赛

(低年组 实测与理论部分)

注意事项:

- 1、本卷为闭卷考试,请答卷人按照自己的真实水平独立完成。
- 2、参赛选手请将答案填写在答题纸的有效答题区域上,在本试卷上的作答结果按无效处理。 比赛结束时将回收答题纸(草稿纸)。
- 3、每张 A4 答卷的开头都有"答题纸□ 草稿纸□"标识,除了首张答卷外,选手可根据需要自由选择每张空白答卷的用途。所有用作答题纸的答卷都要在"答题纸□"的方框中打"√",并按作答顺序标上页码。所有用作草稿纸的答卷都要在"草稿纸□"的方框中打"√"。废弃的答题纸需把"√"涂抹掉。
- 4、全卷总分100分, 答题时间90分钟。
- 5、考试结束前 30 分钟方可交卷离场。交卷时答题纸按顺序放置在上方,草稿纸和废弃的答 题纸放置在下方。
- 6、本场考试允许使用不具编程功能的科学计算器。

1. 红巨星支上端(共32分)

中低质量恒星在核心的氢燃尽后,将进入红巨星阶段,此时恒星的能量主要来自包围致密氦核(未燃燒)的氢燃烧壳层。随着氦核质量不断增长,恒星将沿着赫罗图上的红巨星支(Red Giant Branch)上移,直到氦核的质量达到临界,触发"氦闪",恒星从红巨星支跳转到赫罗图的高温端,这使得恒星在赫罗图上的演化轨迹显得不连续,红巨星支存在一个上顶点,称为红巨星支上端(Tip of the Red Giant Branch,简称 TRGB)。在 I 波段,TRGB 的绝对星等约-4 等,可充当标准烛光。

1.1 图 1-1 是一颗 1 倍太阳质量恒星在赫罗图上的等龄线(可看作恒星的演化轨迹)。请在答题纸上的图片里作以下标注:在红巨星支旁边标注"RGB";用"●"标出红巨星支上端的位置,并在旁边标注 TRGB。(6 分)

图 1-1 1 倍太阳质量恒星的演化轨迹。

1.2 Hatt 等人利用哈勃望远镜上的先进巡天照相机广域通道(ACS/WFC)的测光数据,通过 TGRB 法测量 NGC 1148 和 NGC 1316 的距离(Hatt et al. 2018),相关信息总结在表 1-1 中。请估算 NGC 1316 的真距离模数和距离。(12 分)

Galaxy	$m_{ m TRGB}$	σ_m	$A_{ m F814W}$	$(m-M)_0$	σ_{stat}	σ_{sys}	D (Mpc)	σ_{stat}	σ_{sys}
NGC 1448	27.26	0.04	0.02		0.04	0.06		0.3	0.5
${\rm NGC1316}$	27.40	0.04	0.03		0.04	0.06		0.3	0.5

表 1-1 NGC 1148 和 NGC 1316 的部分测光信息。其中 $m_{\rm TRGB}$ 是两天体在 I 波段中 TRGB 观测视星等, $A_{\rm F814W}$ 是 $m_{\rm TRGB}$ 所在波段的消光(Hatt et al. 2018)。

- 1.3 图 1-2 是用 ACS/WFC 数据绘制的赫罗图(Hatt et al. 2018),箭 26.0 头和红线标出了计算机程序判断的 TRGB 所在位置。在 TRGB 周围和上 26.5 方,还有很多零散分布的非 RGB 恒星样本干扰我们的判断。参考图 1- 27.0 1,这些干扰样本可能主要是什么恒星?(6 分) 27.5
- 1.4 假设 GAIA 卫星能测出 0.15 毫角秒的周年视差,它能不能通过三角视差法直接测量 NGC 1316 或星系内的亮星的距离? (8分)

图 1-2

- 2. 月亮的颜色。(共 24 分)
- 2.1 简单说明为什么有时明明没发生月食,刚升起来的月亮却是红色的,但升高后就变成黄白色? (16分)
- 2.2 有时人们还会说某个月里将出现"蓝月亮"(天文术语)。简述什么是"蓝月亮"。(8分)
- 3. 星历表(共44分)

下表是太阳系某行星的星历表。请根据表中的信息回答下列问题。

- 3.1 绘制该行星的地平高度 h 随北京时间 t 变化的曲线图。(14 分)
- 3.2 该天体在当天什么时刻上中天? (6分)
- 3.3 已知观测者在北半球,估算观测点的地理纬度,要求误差在2角分以内。(8分)
- 3.4 估算观测点的地理经度,要求误差在10角分以内。(10分)
- 3.5 判断该天体是太阳系内还是太阳系外的天体,需简述判断依据。(6分)

UTC+0800	儒略日 恒星时 (120°E)		方位角	高度角	赤经	赤纬	
12:00:00	2459504.67	13:43:32	+122°55'57.3"	+5°06'52.8"	16h32m11.4s	-25°05'43.2"	
12:30:00	2459504.69	14:13:37	+127°12'18.2"	+10°20'40.0"	16h32m17.1s	-25°05'59.3"	
13:00:00	2459504.71	14:43:42	+131°54'53.9"	+15°18'44.8"	16h32m22.8s	-25°06'15.3"	
13:30:00	2459504.73	15:13:47	+137°07'45.1"	+19°55'05.9"	16h32m28.5s	-25°06'31.3"	
14:00:00	2459504.75	15:43:52	+142°54'26.4"	+24°04'25.1"	16h32m34.2s	-25°06'47.2"	
14:30:00	2459504.77	16:13:57	+149°17'22.2"	+27°40'57.8"	16h32m39.9s	-25°07'03.1"	
15:00:00	2459504.79	16:44:02	+156°16'43.7"	+30°38'33.7"	16h32m45.5s	-25°07'18.8"	
15:30:00	2459504.81	17:14:07	+163°49'18.1"	+32°51'02.5"	16h32m51.2s	-25°07'34.5"	
16:00:00	2459504.83	17:44:12	+171°47'36.2"	+34°12'58.2"	16h32m56.8s	-25°07'50.1"	
16:30:00	2459504.85	18:14:17	+180°00'01.6"	+34°40'33.7"	16h33m02.5s	-25°08'05.6"	
17:00:00	2459504.88	18:44:22	+188°12'22.0"	+34°12'27.6"	16h33m08.1s	-25°08'21.1"	
17:30:00	2459504.90	19:14:27	+196°10'25.8"	+32°50'02.9"	16h33m13.8s	-25°08'36.4"	
18:00:00	2459504.92	19:44:32	+203°42'38.2"	+30°37'08.0"	16h33m19.5s	-25°08'51.6"	
18:30:00	2459504.94	20:14:36	+210°41'33.1"	+27°39'09.7"	16h33m25.1s	-25°09'06.8"	
19:00:00	2459504.96	20:44:41	+217°03'59.6"	+24°02'18.6"	16h33m30.8s	-25°09'21.9"	
19:30:00	2459504.98	21:14:46	+222°50'10.4"	+19°52'44.9"	16h33m36.5s	-25°09'36.9"	
20:00:00	2459505.00	21:44:51	+228°02'30.3"	+15°16'12.7"	16h33m42.1s	-25°09'51.9"	
20:30:00	2459505.02	22:14:56	+232°44'34.4"	+10°18'00.2"	16h33m47.8s	-25°10'06.8"	
21:00:00	2459505.04	22:45:01	+237°00'22.8"	+5°04'10.0"	16h33m53.5s	-25°10'21.6"	
21:30:00	2459505.06	23:15:06	+240°53'55.4"	-0°04'10.4"	16h33m59.3s	-25°10'36.4"	
22:00:00	2459505.08	23:45:11	+244°28'58.8"	-6°24'32.0"	16h34m05.0s	-25°10'51.2"	
22:30:00	2459505.10	0:15:16	+247°49'03.2"	-12°20'19.4"	16h34m10.7s	-25°11'05.9"	
23:00:00	2459505.13	0:45:21	+250°57'25.5"	-18°24'24.0"	16h34m16.5s	-25°11'20.6"	
23:30:00	2459505.15	1:15:26	+253°57'14.6"	-24°35'15.7"	16h34m22.3s	-25°11'35.3"	