Introduction to Computer Security

Project 3: Worm Hiding/Propagation and Its Detection

Chi-Yu Li (2020 Spring)
Computer Science Department
National Chiao Tung University

Goal

Understand how a worm hides and propagates itself and its detection

- You will learn about
 - □ SSH security and command operations
 - □ Simple methods for ciphering and deciphering (stream and block ciphers)
 - Analysis of abnormal processes on Linux
 - □ Routine task scheduling on Linux

Attack Scenario

- An attacker has successfully deployed a worm in a victim system
- Assume that you are the victim by having a victim VM and you know where (IP address) the attacker machine is
 - ☐ You are asked to identify and remove the worm
 - ☐ You are also asked to take revenge on the attacker by deploying an advanced worm in the attacker system

Attack Scenario (Cont.)

- Advanced worm's capabilities
 - Propagation
 - Cracking the attacker's password by launching a dictionary attack
 - Propagating itself to the attacker system via SSH
 - ☐ Hiding itself in the attacker system
 - Putting itself into multiple hidden directories
 - Naming itself using a popular program's name
 - Supporting a simple recovery mechanism
 - Payload
 - Doing RSA encryption on all the files of the attacker's desktop directory (/home/attacker/Desktop)
 - Launching DoS based on a Ping flooding attack
 - □ Trigger

原本在victim裡面的只會在reboot的時候被triggered 所以這裡要修改成每一分鐘都被triggered一次

■ The payload is triggered automatically every 1 minute

Requirements

- You need to develop/run your program in a given virtual machine
 - □ VM image: TA will send out the link on 5/8
 - [Victim account] username/password: victim/victim
 - [Attacker account] username: attacker (the password needs to be cracked)
- You are allowed to use C/C++, Shell Script or/and Python
- You are allowed to team up. Each team has at most 2 students.
 - ☐ Teams: discussions are allowed, but no collaboration
- Please submit your source codes/scripts and report to E3

Three Tasks

Task I: Identify and remove the worm in the victim system (20%)

- Task II: Develop a new worm with the specified capabilities (50%)
 - ☐ Imitating the given worm's hiding, payload, and trigger actions
- Task III: Report (30%)

Task I: Identify and Remove the Worm

- Identify where (which directory) the worm is
 - Worm: two attack modules (encryption and flooding) 可以重複使用這兩個binary file
- Check how it can be triggered automatically after system reboot

- Hints
 - ☐ A useful management tool on Linux: htop
 - Used to check the condition of each process
 - ☐ A time-based job scheduler on Linux: cron
 - Used in any Unix-like computer OS

Victim account in the given VM

Worm behaviors

- Hiding: Hidden in a certain directory H
- <u>Trigger</u>: Automatically triggered after system reboot
- <u>Payload I</u>: Encrypting the files in /home/victim/Desktop using XOR ciphering
- **Payload II**: Ping flooding

Victim VM

Task I: Identify and Remove the Worm (Cont.)

- Achievement verification
 - ☐ Mark your student ID in a file located in the hidden directory H with the worm
 - Replace the value of a verification flag with your ID
 - E.g., Verification_flag: 1234567 → Verification_flag: 0756436
 - ☐ However, the file is encrypted by the XOR stream cipher
 - The key length is single byte (You should figure out the key by yourself)
 - **■** E.g.,

ciphertext (hex): 1b 07 10 02 05 1f 0e 13 1f k k k k k k k k k k

 $\frac{1f}{k}$

ciphertext (hex): 1b 07 10 02 05 1f 0e 13 1f

plaintext:

plaintext

Cipher

Decipher

Task I: Identify and Remove the Worm (Cont.)

- Achievement verification actions
 - □ Decipher the file and mark your student ID
 - ☐ Cipher the modified file using the same key
 - □ Rename the file with "task1_result.log"
 - □ Include the final file in the final submission package

Task II: Develop a New Advanced Worm

- Once the worm is executed in the victim system, the worm can propagate itself (two attack modules) to the attacker system
 - □ Only the attacker's username and IP address are given
 - ☐ Two attack modules: ping flooding and file encryption

Task II: Develop a New Advanced Worm (Cont.)

- Advanced worm's capabilities
 - Propagation
 - Cracking the attacker's password by launching a dictionary attack
 - Propagating itself to the attacker system via SSH
 - ☐ Hiding itself (or two attack modules) in the attacker system
 - Putting it into two hidden directories including the directory H
 - The other directory H' is /home/attacker/Desktop/.Backup
 - When the attack modules in one directory are removed, the payload can still be triggered from those in the other directory
 - Payload
 - Doing RSA encryption on all the files of the attacker's desktop directory (/home/attacker/Desktop)
 - Launching a Ping flooding attack
 - □ Trigger
 - The payload is triggered automatically every 1 minute

Task II: Worm Propagation

- Cracking the attacker's password using a dictionary attack
 - ☐ Assume that the password is created based on the attacker's personal information
 - A file including the attacker's personal information is given: /home/victim/materials/attacker.dat
 - Note: the password is composed of only some information entries

Hints

- ☐ A module for trying string combination in Python: **itertools**
- ☐ Automatic SSH and SFTP operation in Python: paramiko
- □ Passing a password to the ssh command in Shell: sshpass

Task II: Payload

- Doing RSA encryption on all the files of the attacker's desktop folder
 - ☐ An RSA encryption/decryption binary is given
 - /home/victim/materials/RSA/RSA_encrypt
 - □ A set of public/private keys is also given
 - /home/victim/materials/RSA/key.dat
 - Each trigger: check any unencrypted files in the directory and encrypt them using the public key
 - Note: you should avoid encrypting a file more than once
 - Hint
 - A crontab management module in Python: **crontab**

這邊獨立寫一個排程的python檔案 透過SSH傳到目標之後 再用paramiko遠端執行這個獨立的python code

- Launching a ping flooding attack
 - ☐ You can use the ping flooding binary found in Task I or write it by yourself

Task II: Payload (Cont.)

- Hint: Verification by TAs
 - Creating several files in /home/attacker/Desktop
 - After launching your worm
 - Deciphering the files in /home/attacker/Desktop with the private key
 - Checking whether they are the same as the original ones
 - ☐ After killing the ping flooding process
 - Checking whether there are many ICMP packets 1-2 min later

Task III

- Item 1 (10%): Please describe how you finished Task I
 - □ Only description is sufficient and no more than 200 English words
- Item 2 (10%): Please propose three security settings in SSH server that can prevent common dictionary attack
 - □ Description should be clear and no more than 200 English words
- Item 3 (10%): Please explain why Linux differentiates crontab into three types (users, system and applications).
 - Description should be clear and no more than 200 English words
- Note the report must be written in English with font size 11 or 12 in Times New Roman. It must be submitted in one PDF file with a name "report.pdf".

Important: How to prepare your worm and flag files

- Must provide a Makefile which compiles your source code into one executable file named worm_revenge (Missing: -20%)
- Test requirements for the program (Missing: -10% for each)
 - Must be run in the given VM without any additional tools or libraries
 - Must work for the test command: ./worm_revenge <Attacker IP>
 - ◆ E.g. ./worm_revenge 10.0.2.5
 - □ After being executed, the worm should propagate the attack modules through SSH, place the trigger, trigger the payloads, and then terminate

Project Submission

- Due date: 6/4 11:55 p.m.
 - □ Makeup submission: 6/21 11:55 p.m. (75 points at most)
- Submission rules
 - □ Put all your files into a directory and name it using your student ID(s)
 - If your team has two members, please concatenate your IDs separated by "-"
 - □ Zip the directory and upload the zip file to New e3
 - ☐ A sample of the zip file: 1234567.zip or 1234567-7654321.zip
 - 1234567 or 1234567-7654321 (Directory Name)
 - ◆ Makefile
 - ◆ Worm.cpp
 - report.pdf
 - task1_result.log

17

Questions?