Classifieur MNIST

Pierre Genty

Olivier Léobal

1^{er} décembre 2017

1 Utilisation

L'exécutable est classifier.py. Attention, le chemin des données à utiliser est fixe dans le programme : elles doivent donc avoir les noms par défaut, dans un répertoire data/.

On peut passer plusieurs options :

- -h (ou help): aide
- -p < n > : activer la PCA, avec < n > composants
- -a : afficher les images moyennes de chaque catégorie à la fin de l'analyse
- -o <path> : écrire un fichier <path>.npy avec résultats de l'analyse

Le programme requiert numpy et matplotlib (pas de surprises). Si le PCA est activé, il importera aussi sklearn (scikit-learn), qui requiert SciPy pour son implémentation de la PCA.

2 Performance

Sur le jeu de test, le taux d'erreur global est de 38.7%. On remarque des performances particulièrement au dessus des autres sur les pantalons (classe 1) et baskets (classe 7), mais très inférieures avec les pull-overs (classe 2) et les chemises (6).

La distribution des des choix du système est :

Catégorie	0	1	2	3	4	5	6	7	8	9
Proportion (%)	8	11	5	13	16	13	5	16	5	9

Totaux possiblement $\neq 100$ à cause des arrondis

Les pantalons (1) sont effectivement bien reconnus, mais le bon score des baskets (7) est en partie du à une sur-reconnaissance.

On peut en savoir plus grâce à la matrice de confusion :

		Label									
		0	1	2	3	4	5	6	7	8	9
	0	312	6	5	7	1	0	84	0	1	0
	1	12	449	1	60	12	0	6	0	2	0
_	2	3	5	139	0	48	0	29	0	2	0
유	3	89	16	12	378	49	1	55	0	44	5
$\mathbb{C}\mathrm{hoix}$	4	18	2	202	24	342	0	144	0	62	1
	5	56	1	74	25	34	261	79	28	63	19
	6	13	2	88	5	33	0	81	0	8	0
	7	2	0	0	0	0	193	1	452	78	61
	8	2	0	0	1	2	0	3	0	260	0
	9	0	0	0	0	0	30	0	20	6	391

On voit que les pull-overs (2) sont très souvent pris pour des manteaux (4), qui ont une forme très similaire ; le même problème survient avec les chemises (6).

3 Analyse en composantes principales

On peut utiliser le PCA avec l'option -p <nombre de composants>.

Le PCA implique des opérations supplémentaires pour remettre en forme les données, mais accélère le traitement. En pratique, on observe :

# composantes	Temps d'exécution	Taux d'erreur
(sans PCA)	1m45	38.7%
20	1m26	50.7%
15	1 m 05	51.7%
10	0 m 45	52.2%
5	0m27	52.6%
3	0 m 19	53.7%
1	0 m 13	59.1%

Ou, sous forme de graphique :

Sur les PC de l'école : Linux Mint 18.1, i5-2400, 4Go RAM, interpréteur Anaconda. Moyenne de 5 exécutions à la suite, avec la commande time

On augmente largement notre taux d'erreur, mais en proportion très moindre du temps d'exécution. Ici, on a divisé le temps d'exécution par 8 en perdant 20 points de précision. On réalise aussi que la PCA permet de réduire en fait le nombre de dimensions utiles à 84 voire 28 dimensions (3 ou 1 composantes) : davantage deviennent inutiles.

4 Analyse des performances des classifieurs SciKit-learn

Les classifieurs sont dans le module scikit-compare.py, ce module ne dispose malheureusement pas d'opttion variées et se lance en exécution seule.

4.1 Un classifieur SVM: le SVC

Le SVC est lancé avec un kernel linéaire apporte les performances détaillées sur le rapport suivant (généré par les metrics de scikit):

On remarque que là aussi, les pull-overs (2), les manteaux (4) et les chemises (6) sont les catégories aux plus hauts taux d'erreur, étant très similaires en termes de formes.

4.2 Un classifieur par voisins proches: le KNeighborsClassifier

Le KNeighbors Classifier est lancé avec le paramètre de base 5 voisins les plus proches et donne le rapport de performances suivant:

On remarque une performance très constante avec une moyenne à 82%, et tout comme auparavant, les mêmes catégories de vêtements accusent un taux de précision plus bas que la moyenne: les pull-overs (2), les manteaux (4) et les chemises (6).