PLA-LiDAR:

Physical Laser Attacks against LiDAR-based 3D Object Detection in Autonomous Vehicle

Zizhi Jin¹, Xiaoyu Ji¹, Yushi Cheng^{1,2}, Bo Yang¹, Chen Yan¹, Wenyuan Xu¹

¹Zhejiang University, ²Tsinghua University,

LiDAR

- □ LiDAR (Light Detection and Ranging) is widely used for perception.
- ☐ Correct LiDAR perception provides the foundation for safety in self driving.

Self-driving Car

Robots

CVIS

Drones

Source: www.velodynelidar.com

How Does LiDAR work?

How Does LiDAR-based Perception work?

Security of LiDAR-based Perception

Is it possible to fool 3D object detection using lasers in the physical world?

PLA-LiDAR can achieve physical laser attacks!

Contributions of PLA-LiDAR:

- Enhanced Point Manipulation Capability
- 2. Physical-world Laser Attacks against 3D Object Detection

Threat Model and Attack Goal

Attack Scenarios

No obstacles in front of the vehicle ①

① Creating: the victim LiDAR perceives a non-existing object

② Hiding: the victim LiDAR fails to perceive an existing object

Challenges of Physical Laser Attack


```
3. "Curse of Light Speed"

small time error * light speed = distance error

e. g. 1ns * 3 * 10^8 m/_S = 30cm
```

C1: How to make the attack signal be considered as a valid echo?

C2: How to have a fine control of the injected point clouds?

C1: What is valid echo?

□ Return Mode:

Strongest — the strongest echo. ✓
Last —the last (temporally) detected echo.
Dual —both the strongest and last echo.

Vulnerability: Echo can be forged.

Insights:

- A high-power fake echo can be recognized as a valid echo.
- The real echo will be **ignored**.

Preliminary: Point Injection Experiment

Critical Laser Parameters:

Parameters	Requirements	
Wavelength	Appropriate: Same as LiDAR laser	
Peak Power Power Ppeak = [High: The higher the better	
Reptition Frequency $f_{rep} = [0 \text{ to }]$	Precise: According to LiDAR scanning sequence	

SOTA: Cao. CCS'19. 200 points (8° hori. angle)

C2. Have a fine control of the point clouds: PLA-LiDAR

Step1. Point Cloud Design

- Design the point cloud to either hide or create objects.
- Requirement: Injectable point cloud.

Step2. Laser Signal Design

- Convert the point cloud into laser signals
- Requirement: Fully the 3D information of the point cloud.

Step3. Points Injection

- Inject the signals into the lidar to generate desired point cloud.
- Requirement: Precise synchronization.

Step1: Injectable Point Cloud Design

Physical Constraints :

- a. Every generated point can only locate on one of the LiDAR's laser rays;
- b. Each laser ray can generate at most one point.

1. Record-based

Pros: 1) Black box. (a) 2) Naturally satisfy the physical constraint.

2. Optimization-based ≽+ →

Question formulation:

Constrained **Search Space.**

$$\begin{array}{ll} \underset{\mathbf{P'}}{\min} & \mathcal{L}(\mathbf{P} \) \\ \text{s.t.} & (R_i^{'},\alpha_i^{'},\omega_i^{'}) \in \operatorname{Loc}^{exp}, i \in [1,n] \\ & |\alpha_i^{'}-\alpha_j^{'}| + |\omega_i^{'}-\omega_j^{'}| \neq 0, i,j \in [1,n] \end{array} \longrightarrow \text{Satisfy constrain a.}$$

Step2: Laser Signal Design.

Step3: Points Injection with Precise Sychronization.

The measurement method of t_{device}

Empirically, time error should be within 3 nanosecond.

The delay should be set: $t_{delay} = t_{align} - ToF_1 - ToF_2 - t_{device}$ where $t_{align} = N * T_{full} - T_{sfc}$

PLA-LiDAR: System Design.

Physical-World Attacks

Naïve Hiding

Ground Truth

Benign point cloud

Point Cloud under attack

Detection under attack

Record-based Creating

Optimization Hiding

Optimization Creating

Evaluation

- Physical-world attack Evaluation
 - Four Attacks
 - Two LiDARs: VLP-16, RS-16

 Three Models: Second, Pointpillar, Apollo

Physical Attack Setup

Physical-World Attacks

Overall Performance

90.5% 48.8%

Detector LiDAR		Attack Types			
Detector	Model	Nai-Hide	Rec-Create	Opt-Hide	Opt-Create
SECOND	VLP-16	100%	98%	38%	72%
SECOND	RS-16	100%	86%	33%	61%
PoinPillar	VLP-16	100%	64%	79%	15%
1 omi mai	RS-16	100%	51%	68%	12%
Apollo	VLP-16	100%	98%	77%	37%
	RS-16	100%	89%	73%	21%

VLP-16: 73.2%

RS-16: 66.2%

Obersavations:

- 1. VLP-16 (73.2%) is more vulnerable than RS-16 (66.2%).
 - Period randomization can mitigates our attacks.
- 2. Naive attack (90.5%) is better than optimization-based attack (48.8%).
 - Optimization attack has a higher requirement on timing.

Feasibility Study on Moving Vehicle

(a) A receiver and a laser transmitter on the car roof.

(b) The attack equipment in the car trunk.

Setup of moving experiment.

(c) The victim car (Apollo KiT) with a VLP-16.

- Improvement to conquer Jitter when moving
- \triangleright A large-diameter telescope (Φ = 50 mm) to expand the receiver's receiving area
- > Large spot diameter (8 cm), and use a high-power laser diode (P_{peak} = 300 W)
- Attack success rate:
- Hiding Attacks 94.1% (16/17 trials)
- Creating Attacks 78.9% ASR (15/19 trials)

Feasibility Study on Moving Vehicle - Demo

Hiding Attacks

Creating Attacks

Potential Mitigation

1. LiDAR Improvement

- Pulse Encoding
- Pulse Randomizing and Scanning Period Randomizing

2. Security Redundancy

- Multi-LiDAR Fusion
- Multi-Sensor Fusion

Summary

- Proposed the PLA-LiDAR attack
 - > 20 times more points than prior works.
 - > 4 types of attacks.
- Extensive physical experiments
 - > 2 LiDARs + 3 Detection Models
 - Stationary + Moving
- Show the physical threats of lasers against LiDAR-based object detection!

PLA-LiDAR: Physical Laser Attacks against LiDAR-based 3D Object Detection in Autonomous Vehicle

Demo Website:

https://sites.google.com/view/physicallidar-attack

xji@zju.edu.cn, wyxu@zju.edu.cn

USSLAB Website: www.usslab.org

How Does Mechanical LiDAR work?

LiDAR generates point cloud by laser ranging and laser beam steering.

How Does LiDAR-based Perception work?

Laser Ranging

- \triangleright Direction (θ, φ)
- > Distance
- d = 0.5 * t * c

Point Array:

Vertical Steering

Scanning sequence in vertical

Point Cloud:

Vertical & Horizontal Steering

300 ~ 1200 RPM (Rotating per Minute)

Dive into Mechanical LiDAR - Return Mode

☐ Return Mode: Strongest or Last or Dual

Return Mode	Valid Echo	Point Number
Strongest (Default)	Echo ₁	1
Last	Echo ₂	1
Dual	Echo ₁ & Echo ₂	2

Return Mode	Valid Echo
Strongest	Fake Echo
Last	Fake Echo
Dual	Echo 1 & Fake Echo

Return Mode	Valid Echo
Strongest	Fake Echo
Last	Echo ₁ / Fake Echo (saturation)
Dual	Echo 1 & Fake Echo