PVSS

December 1, 2023

Encryption scheme

Let $\mathbb F$ be a finite field of order q, k a parameter. Denote by $\chi_{\beta}^{m\times n}$ the distribution over matrices in $\mathbb F^{m\times n}$ where each entry of the matrix is $\leq \beta$. Let:

- *n* be the number of parties in the protocol.
- m the size of the secret to be shared (to each party).
- k be a LWE parameter.
- ℓ be the encoding redundancy.
- s, e be some integers.

 $\mathsf{Encode}(\mathbf{x} \in \mathbb{F}^t)$:

- 1. Set $\Delta := |\sqrt[\ell]{q}|$.
- 2. For $i \in [t]$, set $\Delta(x_i) := (x_i, \Delta x_i, \dots, \Delta^{\ell-1} x_i)$.

3. Return
$$\begin{bmatrix} \Delta(x_1) \\ \vdots \\ \Delta(x_t) \end{bmatrix} \in \mathbb{F}^{t\ell}.$$

Setup():

- 1. Sample $\mathbf{A} \leftarrow \mathbb{F}^{k \times k}$.
- 2. Return A.

 $\mathsf{KeyGen}_i(\mathbf{A})$ (this is key generation for party i):

- 1. Sample $\mathbf{S}_i \leftarrow \chi_s^{m\ell \times k}$. 2. Sample $\mathbf{E}_i \leftarrow \chi_e^{m\ell \times k}$.
- 3. Set $\mathbf{B}_i := \mathbf{S}_i \mathbf{A}_i + \mathbf{E}_i \in \mathbb{F}^{m\ell \times k}$.
- 4. Set $pk_i := \mathbf{B}_i$, $sk_i := \mathbf{S}_i$

$$\begin{split} &\mathsf{Enc}((\mathsf{pk}_1,\dots,\mathsf{pk}_n),\mathbf{x}\in\mathbb{F}^{mn}) \\ &1. \ \ \mathsf{Set} \ \mathbf{B} := \begin{bmatrix} \mathbf{B}_1 \\ \vdots \\ \mathbf{B}_n \end{bmatrix} \in \mathbb{F}^{mn\ell \times k}. \end{split}$$

- 2. Set $\mathbf{x} := \mathsf{Encode}(\mathbf{x}) \in \mathbb{F}^{nm\ell}$.
- 3. Sample $\mathbf{r} \leftarrow \chi_s^k$.
 4. Sample $\mathbf{e}_1 \leftarrow \chi_e^k$, $\mathbf{e}_2 \leftarrow \chi_e^{mn\ell}$.
 5. Set $\mathbf{c}_1 := \mathbf{Ar} + \mathbf{e}_1 \in \mathbb{F}^k$.

- 6. Set $\mathbf{c}_2 := \mathbf{Br} + \mathbf{e}_2 + \mathbf{x} \in \mathbb{F}^{mn\ell}$.
- 7. Parse \mathbf{c}_2 as $(\mathbf{d}_1, \dots, \mathbf{d}_n)$ where $\mathbf{d}_i \in \mathbb{F}^{m\ell}$. 8. Return $(\mathbf{c}_1, (\mathbf{d}_1, \dots, \mathbf{d}_n))$.

$$\mathsf{Dec}_i(\mathbf{S}_i, (\mathbf{c}_1, \mathbf{d}_i))$$
:

- 1. Set $\mathbf{x}' := \mathbf{d}_i \mathbf{S}_i \mathbf{c}_1 \in \mathbb{F}^{m\ell}$.
- 2. Do an approximate decryption to recover the share from \mathbf{x}' .