

VERZIJA OD: 3. PROSINCA 2021.

PUBLISHED BY FER

WWW.FER.UNIZG.HR

Copyright © 2018 ZPM

Ova skripta se smije koristiti isključivo u osobne svrhe te se ne smije ni na koji način mijenjati ili umnožavati, kao ni prikazivati, izvoditi ili distribuirati u javnosti i drugim medijima, ili na bilo koji drugi način koristiti za bilo koju javnu ili komercijalnu svrhu.

8	DIFERENCIJALNI RAČUN	. 5
8.1	Derivacija implicitno i parametarski zadanih funkcija	5
8.1.1	Derivacija implicitno zadanih funkcija	. 5
8.1.2	Derivacija parametarski zadanih funkcija	. 9
8.2	Osnovni teoremi diferencijalnog računa	12
8.2.1	Lokalni ekstremi i stacionarne točke funkcije. Fermattov teorem	12
8.2.2	Nultočke i stacionarne točke funkcije. Rolleov teorem	16
8.2.3	Lagrangeov teorem srednje vrijednosti	17
8.3	Taylorovi polinomi. Taylorova formula	21
8.3.1	Taylorovi polinomi	22
8.3.2	Taylorova formula. Aproksimacija funkcija Taylorovim polinomom	25
8.3.3	Nalaženje kratnosti nultočaka polinoma s pomoću Taylorovog polinoma	28
8.4	Računanje limesa neodređenih oblika pomoću l'Hospitalovog pravila	28
8.4.1	Neodređeni oblik $\left(rac{0}{0} ight)$	28
8.4.2	Neodređeni oblik $\binom{\infty}{\infty}$	30
8.4.3	Neodređeni oblik $(0\cdot \infty)$	
8.4.4	Neodređeni oblik $(\infty - \infty)$	
8.4.5	Neodređeni oblici $(0^0), (1^\infty), (\infty^0)$	34
8.5	PONAVLJANJE	35
8.6	ZADACI ZA VJEŽBU	36
8.7	RJEŠENJA ZA VJEŽBE I ZADATKE	37
8.7.1	Riešenia za viežbe iz poglavlja 8.	37

8.7.2	Rješenja za zadatke iz poglavlja 8.6	38
	Kazalo	41

Ključni pojmovi: pravilo za derivaciju implicitno zadanih funkcija 7, pravilo za derivaciju parametarski zadanih funkcija 10, točke lokalnog maksimuma i minimuma 13, stacionarne točke 13, Fermattov teorem za stacionarne točke 14, Rolleov teorem 16, Lagrangeov teorem srednje vrijednosti 18, Taylorov polinom i formula 21, aproksimacija Taylorovim polinomom 25, l'Hospitalovo pravilo za neodređene oblike 28-34

8.1 Derivacija implicitno i parametarski zadanih funkcija

U prethodnim poglavljima smo radili sa elementarnim funkcijama, koje su bile eksplicitno zadane jednadžbom y = f(x). Na lijevoj strani ove jednakosti se nalazi samo ovisna varijabla y, dok se neovisna varijabla x nalazi isključivo na desnoj strani. Na primjer:

- polinomi: $y = 2x^5 3x^2 + 5x + 2$;
- trigonometrijske funkcije: $y = 3\sin(x) + 2\cos^3(2x)$;
- logaritamske i eksponencijalne funkcije: $y = \ln(x-3) + 2\ln(x-1)$, $y = e^{x^2-3x+1} e^{-x}$;
- hiperbolne funkcije: y = sh(4x 1) + ch(2x);
- razne inverzne funkcije: $y = 2\sqrt{x} 1$, $y = \arcsin(3x)$.

U ovom poglavlju ćemo derivirati funkcije y = f(x) koje su zadane i na druge nazovimo neeksplicitne načine, kao što su: implicitno i parametarski zadane funkcije.

8.1.1 Derivacija implicitno zadanih funkcija

Definicija 8.1.1 Za realnu funkciju realne varijable y = y(x) kažemo da je *implicitno* zadana, ako je zadana jednadžbom:

$$F(x, y(x)) = 0,$$

gdje je F realna funkcija dviju varijabli.

Svaka funkcija $f: \mathbb{R} \to \mathbb{R}$, koja je eksplicitno zadana, odnosno zadana je u obliku y = f(x),

može se i implicitno zadati jednadžbom: y - f(x) = 0. Kako vidimo, za ovakve funkcije je F(x,y) = y - f(x). Međutim, većina funkcija koje su implicitno zadane se ne mogu izraziti u eksplicitnom obliku. Na primjer, sljedeće funkcije y = y(x) su implicitno zadane te se ne mogu izraziti eksplicitno:

- $y^2 y = 3 + x x^2$, (primjetimo da je $F(x, y) = y^2 y 3 x + x^2$);
- $y 2\sin(xy) = x$, (primjetimo da je $F(x, y) = y 2\sin(xy) x$);
- $e^{x^2+y^2} = \ln(x^2+y^2)$, (primjetimo da je $F(x,y) = e^{x^2+y^2} \ln(x^2+y^2)$).

■ **Primjer 8.1** Funkcije $y = \sqrt{x}$ i $y = -\sqrt{x}$ se mogu implicitno zadati s istom jednadžbom $y^2 = x$, gdje je $F(x,y) = y^2 - x = 0$. Pri tome ova jednadžba definira krivulju u koordinatnoj ravnini xOy koja izgleda kao *oborena parabola*:

Slika 8.1 Parabola $y^2 = x$: graf of $f_1(x) = \sqrt{x}$ je puna crta, a od $f_2(x) = -\sqrt{x}$ je isprekidana crta

Isto tako možemo reći da iz jednadžbe $F(x,y) = y^2 - x = 0$ možemo eksplicitno izraziti dvije funkcije kao što je prikazano na gornjem grafu:

$$y = f_1(x) = \sqrt{x}$$
 i $y = f_2(x) = -\sqrt{x}$, $\mathcal{D}(f_1) = \mathcal{D}(f_2) = [0, \infty)$.

Vježba 8.1 Pokazati da se iz jednadžbe $y^2 = x^2$ mogu eksplicitno izraziti dvije funkcije $f_1(x) = |x|$ i $f_2(x) = -|x|$. Nacrtati grafove od $f_1(x)$ i $f_2(x)$. Na što vas podsjeća krivulja u ravnini koja se dobije spajanjem grafova ovih dviju funkcija? Primjetite da se iz iste ove jednadžbe mogu eksplicitno izraziti i funkcije $f_3(x) = x$ i $f_4(x) = -x$.

Vježba 8.2 Pokazati da se iz jednadžbe $x^{2/3} + y^{2/3} = 1$ mogu eksplicitno izraziti dvije funkcije $f_1(x)$ i $f_2(x)$. Potom nacrtati i spojite njihove grafove. Krivulja koju ste dobili se zove *astroida*. U standardnom špilu igračih karata osim 4 boje postoje i 4 simbola: "srce", "tref", "karo" i "pik". Lik koji zatvara astroida odgovara jednom od 4 simbola na igračim kartama. Koji je to simbol? Astroidu je otkrio Johann Bernoulli (1691–1692), te se spominje i u nekim očuvanim zapisima Leibniza iz 1715. godine.

Slika 8.2 Astroida $x^{2/3} + y^{2/3} = 1$

Vježba 8.3 Još iz srednje škole znamo da je kružnica u ravnini xOy s centrom u točki (p,q) i polumjerom r > 0 implicitno zadana jednadžbom:

$$(x-p)^2 + (y-q)^2 = r^2$$
.

Iz ove jednakosti ekplicitno izraziti dvije funkcije $y = f_1(x)$ i $y = f_2(x)$. Ovi grafovi predstavljaju redom gornju i donju polukružnicu, a njihovim spajanjem dobivamo zadanu kružnicu.

Kada smo derivirali eksplicitno zadane funkcije y = f(x), varijabla y je bila samo na lijevoj strani i to u linearnom ("slobodnom") obliku, pa smo svu pažnju usmjerili na varijablu x, koja se nalazi na desnoj strani jednakosti y = f(x). Na primjer:

- za $y = 2x^5 3x^2 + 5x + 2$ slijedi: $y' = 10x^4 6x + 5$;
- za $y = 3\sin(x) + 2\cos^3(2x)$ slijedi: $y' = 3\cos(x) 12\cos^2(2x)\sin(2x)$; za $y = e^{x^2 3x + 1} e^{-x}$ slijedi: $y' = e^{x^2 3x + 1}(2x 3) + e^{-x}$;
- za $y = \sinh(4x 1) + \cosh(2x)$ slijedi: $y' = 4\cosh(4x 1) + 2\sinh(2x)$.

Ako je pak funkcija y = y(x) implicitno zadana, tada su obadvije varijable x, y "sakrivene" unutar složenih funkcija, pa kod deriviranja moramo istovremeno voditi računa i o x i y.

Problem 8.1 Kako izračunati prvu derivaciju y'(x) i drugu derivaciju y''(x) za funkciju y = xy(x) koja je implicitno zadana jednadžbom F(x,y(x)) = 0?

Prije nego što napišemo općeniti postupak za deriviranje funkcije koja je implicitno zadana, riješit ćemo sljedeći jednostavan primjer.

■ Primjer 8.2 Želimo izračunati y'(x) i y''(x) za funkciju y = y(x) implicitno zadanu jednadžbom $y^2 - y = 1 + x - 2x^2$ u njenoj točki T(1,1). Primjetimo da uvrštavanjem za x = 1 i y = 1 u prethodnu jednakost dobivamo 0 = 0, čime se dokazuje da je T(1,1) točka na grafu od y(x). Kao prvo, sve članove prebacimo na lijevu stranu pa je ova jednažba ekvivalentna sa $y^2 - y - 1 - x + 2x^2 = 0$. Zbog toga je: $F(x,y) = y^2 - y - 1 - x + 2x^2$. Sada primjenimo nekoliko sljedećih koraka:

Korak **I.**
$$y^2(x) - y(x) - 1 - x + 2x^2 = 0 \Big| \frac{d}{dx} \implies (y^2(x))' - (y(x))' - (1)' - (x)' + 2(x^2)' = 0;$$

Korak **II.** $2y(x) \cdot y'(x) - y'(x) - 1 + 4x = 0 \implies y'(x) = \frac{1 - 4x}{2y(x) - 1}$ za sve x za koje je $y(x) \neq 1/2$;

Korak III. $y'(1) = \frac{1-4}{2-1} = -3$;

Korak IV.
$$y''(x) = (y'(x))' = \left(\frac{1-4x}{2y(x)-1}\right)' = \frac{-4(2y(x)-1)-(1-4x)2y'(x)}{(2y(x)-1)^2} \implies y''(1) = \frac{-4-18}{(1)^2} = -22.$$

Koristili smo: $(x^2)' = 2x$ i $(y^2)' = 2yy'$, budući da je y = y(x) i $(y^2)' = d/dx$. Da bi izbjegli "zaboravnost" od y' kod deriviranja izraza f(y(x)), gdje je f(x) jedna od elementarnih funkcija, bilo bi dobro ponovno napisati i protumačiti tablicu deriviranja u kojoj ne deriviramo f(x) nego $f(y(x)) \rightarrow \circlearrowleft \mathbf{KLIKNI} \circlearrowleft$.

Pravilo 1 Općeniti postupak za y'(x) i y''(x)

- 1: Jednadžbu F(x,y) = 0 deriviramo po x (ne zaboravite derivirati i članove koji sadrže y(x)).
- 2: Iz $\frac{d}{dx}F(x,y(x)) = 0$ izrazimo eksplicitno y'(x).
- 3: Ako tražimo $y'(x_0)$ u točki $T(x_0, y_0)$ koja se nalazi na funkciji y = y(x) odnosno $y_0 = y(x_0)$, tada u dobiveni izraz za y'(x) uvrstimo koordinate x_0 i y_0 .
- 4: S obzirom da smo u koraku 2. eksplicitno izrazili y'(x) to drugu derivaciju y''(x) računamo klasično po njenoj definiciji: y''(x) = (y'(x))'.

Prethodni općeniti postupak ponavljamo na još jednom primjeru.

■ **Primjer 8.3** Za funkciju y = y(x) implicitno zadanu jednadžbom $x^{2/3} + y^{2/3} = 1$ treba izračunati y'(x) u njenoj točki $T(\sqrt{8}/8, \sqrt{8}/8)$. Budući da je: $F(x,y) = x^{2/3} + y^{2/3} - 1$, primjenom prethodnog postupka korak po korak dobivamo (zbog jednostavnosti u pisanju se često umjesto y(x) i y'(x) kratko piše y i y'):

Korak I.
$$x^{2/3} + y^{2/3} - 1 = 0 \left| \frac{d}{dx} \right| \implies \frac{2}{3} x^{-1/3} + \frac{2}{3} y^{-1/3} y' = 0;$$

Korak II.
$$y'(x) = -\frac{\sqrt[3]{y}}{\sqrt[3]{x}} = -\left(\frac{y}{x}\right)^{1/3}$$
;

Korak III.
$$y'(\sqrt{8}/8) = -\sqrt[3]{\frac{\sqrt{8}/8}{\sqrt{8}/8}} = -1;$$

Korak IV.
$$y''(x) = (y'(x))' = -\left(\left(\frac{y}{x}\right)^{1/3}\right)' = -\frac{1}{3}\left(\frac{y}{x}\right)^{-2/3}\frac{y'x-y}{x^2} \implies y''(\sqrt{8}/8) = \frac{16}{3\sqrt{8}}.$$

Interesentno je da u točkama (0,1) i (0,-1) astroide $x^{2/3}+y^{2/3}=1$, derivacija y'(x) poprima neizmjerno velike vrijednosti što rezultira da astroida u tim točkama ima šiljke, vidjeti Sliku 9.2 na stranici 6.

Problem 8.2 Je li moguće izračunati drugu derivaciju y''(x) za funkciju y = y(x) a da se pri tome y'(x) ne rješava eksplicitno, kao što je navedeno u 2. koraku prethodnog postupka?

Odgovor na prethodno pitanje je: DA, tako što dobivenu jednakost koja je nastala deriviranjem jednakosti F(x, y(x)) = 0 još jednom deriviramo. Na primjer, ako smo u situaciji kao u prethodnom primjeru, onda za y''(x) ne moramo nužno eksplicitno izraziti y'(x) nego jednakost

$$\frac{2}{3}x^{-1/3} + \frac{2}{3}y^{-1/3}y' = 0$$

deriviramo još jednom (drugi član na lijevoj strani deriviramo kao produkt funkcija), pa dobivamo:

$$-\frac{2}{9}x^{-4/3} - \frac{2}{9}y^{-4/3}y'^2 + \frac{2}{3}y^{-1/3}y'' = 0 \quad \longleftrightarrow \quad -x^{-4/3} - y^{-4/3}y'^2 + 3y^{-1/3}y'' = 0,$$

iz čega se može izraziti y''(x). No ovo nije nužno u slučaju da nam treba y''(x) u nekoj konkretnoj točki. Tada tu točku jednostavno uvrstimo u prethodnu jednakost i nakon toga je lako izraziti y'' u toj konkretnoj točki. Na primjer, ako kao u prethodnom primjeru tražimo $y''(\sqrt{8}/8)$, tada u prethodnu jednakost uvrstimo sljedeće nama poznate podatke:

$$x = \frac{\sqrt{8}}{8}$$
, $y\left(\frac{\sqrt{8}}{8}\right) = \frac{\sqrt{8}}{8}$ i $y'\left(\frac{\sqrt{8}}{8}\right) = -1$

pa dobivamo:

$$-\left(\frac{\sqrt{8}}{8}\right)^{-4/3} - \left(\frac{\sqrt{8}}{8}\right)^{-4/3} (-1)^2 + 3\left(\frac{\sqrt{8}}{8}\right)^{-1/3} y'' = 0 \quad \Longrightarrow \quad y''\left(\frac{\sqrt{8}}{8}\right) = \frac{16}{3\sqrt{8}}.$$

Vježba 8.4 Za slijedeće funkcije y = y(x) koje su implicitno zadane provjerite nalazi li se dana točka $T(x_0, y_0)$ na danoj funkciji te potom izračunajte y'(x) i y''(x) u $T(x_0, y_0)$:

1.
$$y^2 + 3y = \sin(\pi x) - 3x^2 + 3$$
, $T(1, -3)$;

2.
$$ln(x-y) = x^5 - y^4 - 1$$
, $T(1,0)$; [postupak -> \circlearrowleft **KLIKNI** \circlearrowright];

3.
$$e^{x^2-y^2} = xy - y^7 + 1$$
, $T(1,1)$.

DA-NE

Točno ili Netočno?

1.
$$(v^2(x))' = 2v(x)$$

2. $(y^2(x))' = 2y(x)y'(x)$	T	N
3. $\left(\ln(x^2+y^2)\right)' = \frac{2x}{x^2+y^2}$	T	N
4. $\left(\ln(x^2+y^2)\right)' = \frac{2x+2yy'}{x^2+y^2}$	T	N
5. $(y(x)y'(x))' = y'^{2}(x)$	T	N
6. $(v(r)v'(r))' = v'^{2}(r) + v(r)v''(r)$	Т	N

Johann Bernoulli (1667–1748) je bio švicarski matematičar, koji se bavio diferencijalnim i integralnim računom, postavio je poznati "Brachistochrone problem" (čije je rješenje cikloida), te je riješio takozvani "Sophomore's dream" pomoću svoje Bernoullijeve jednakosti.

Interesantno je istaknuti da je obitelj Bernoulli dala u jednom kratkom razdoblju (17. i 18. stoljeće) osam matematičara - znanstvenika: Jacob, Johann, Nicolaus I, Nicolaus II, Daniel, Johann II, Johann III i Jacob II.

Slika 8.3 Johann Bernoulli

8.1.2 Derivacija parametarski zadanih funkcija

Definicija 8.1.2 Za funkciju y = y(x) kažemo da je *parametarski* zadana, ako postoje funkcije φ i ψ : $[a,b] \to \mathbb{R}$ takve da funkcijski zavisne varijable x i y možemo opisati s jednadžbama:

$$\begin{cases} x(t) = \varphi(t), \\ y(t) = \psi(t), t \in [a, b]. \end{cases}$$

Pri tome se ove jednadžbe nazivaju *parametrizacija* funkcije y = y(x).

Zbog jednostavnijeg označavanja, koristimo i oznake: x = x(t), y = y(t), $t \in [a,b]$.

Napomena 8.1 (nejedinstvenost parametrizacije) Svaka se funkcija y = y(x) koja je zadana eksplicitno može jednostavno parametrizirati sa jednadžbama:

$$x(t) = t, \ \ y(t) = y(t).$$

Na primjer, $y = x^2$ se parametrizira s x(t) = t i $y(t) = t^2$. Međutim ovakav način parametriziranja ne mora biti uvijek i pogodan. Na primjer, za funkciju $y(x) = \sqrt{1 - x^2}$, $x \in [-1, 1]$, koja u geometrijskom smislu predstavlja gornju polukružnicu s centrom u (0,0) i polumjerom r = 1, ovakav način parametriziranja

$$x(t) = t$$
, $y(t) = \sqrt{1 - t^2}$, $t \in [-1, 1]$,

je dosta nepraktičan. Međutim, ona se može i parametarski zadati jednadžbama:

$$\begin{cases} x(t) = \cos(t), \\ y(t) = \sin(t), t \in [0, \pi], \end{cases}$$

budući da je: $\sin t = \sqrt{1-\cos^2 t}$. Kako vidimo, parametrizacija funkcije y=y(x) ne mora biti jedinstvena.

■ **Primjer 8.4** Astroida je kao ravninska krivulja definirana (implicitno) jednadžbom $x^{2/3} + y^{2/3} = 1$, vidi Vježbu 8.2. Što više, lako je provjeriti da se ona može i parametarski zadati jednadžbama: $x(t) = \cos^3(t), y(t) = \sin^3(t), t \in [0, 2\pi]$.

Međutim, cikloida s polazištem u ishodištu se ne može definirati implicitno nego samo parametarski jednadžbama:

$$\begin{cases} x(t) = t - \sin(t), \\ y(t) = 1 - \cos(t), \ t \in [0, 2\pi], \text{ vidi graf dolje:} \end{cases}$$

Problem 8.3 Kako izračunati prvu derivaciju y'(x) i drugu derivaciju y''(x) funkcije y = y(x) koja je parametarski zadana jednadžbama: $x = x(t), y = y(t), t \in [a, b]$?

Primjetimo da iz jednadžbe x = x(t) dobivamo njoj inverznu funkciju t = t(x), čime y postaje složena funkcija y = y(t) = y(t(x)), koju shvaćamo kao y(x). Odgovor na pitanje postavljeno u Problemu 8.3 je sadržan u sljedećem pravilu.

Pravilo 2 Pravilo za y'(x) i y''(x)

1:
$$y'(x) = \frac{dy}{dx} = \frac{dy}{dt}\frac{dt}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\dot{y}(t)}{\dot{x}(t)}$$
;

$$2: y''(x) = \frac{dy'}{dx} = \frac{d}{dx} \left(\frac{\dot{y}(t)}{\dot{x}(t)} \right) = \frac{dt}{dx} \frac{d}{dt} \left(\frac{\dot{y}(t)}{\dot{x}(t)} \right) = \frac{1}{\dot{x}(t)} \frac{d}{dt} \left(\frac{\dot{y}(t)}{\dot{x}(t)} \right) = \frac{\ddot{y}(t)\dot{x}(t) - \dot{y}(t)\ddot{x}(t)}{(\dot{x}(t))^3};$$

3: ako je potrebno izračunati vrijednosti od y'(x) i y''(x) u zadanoj točki $T(x_T, y_T)$, tada u prethodne izraze umjesto varijabli $x = x_T$ i $y = y_T$ uvrštavamo odgovarajući parametar $t = t_T$ takav da je $x_T = x(t_T)$ i $y_T = y(t_T)$.

Ponovimo još jednom prethodna pravila:

$$y'(x) = \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$
 i $y''(x) = \frac{d^2y}{dx^2} = \frac{1}{\frac{dx}{dt}} \frac{d}{dt} \left(\frac{\frac{dy}{dt}}{\frac{dx}{dt}}\right)$.

■ **Primjer 8.5** Za funkciju y(x) koja je parametarski zadana jednadžbama x(t) = 4t + 2 i $y(t) = 2e^t + 3$, vrijednosti prve i druge derivacija u točki $T = (x_T, y_T)$ za koju je t = 2 (odnosno T = (x(2), y(2))) iznose:

$$y'(x) = \frac{\dot{y}(t)}{\dot{x}(t)} = \frac{2e^t}{4} = \frac{e^t}{2}, \quad y'(x_T) = \frac{e^2}{2}$$
$$y''(x) = \frac{1}{\dot{x}(t)} \frac{d}{dt} \left(\frac{\dot{y}(t)}{\dot{x}(t)}\right) = \frac{1}{4} \frac{d}{dt} \left(\frac{2e^t}{4}\right) = \frac{e^t}{8}, \quad y''(x_T) = \frac{e^2}{8}.$$

Kako vidimo, kod formule za y''(x) treba biti oprezan, jer u mnogim slučajevima vrijedi:

$$y''(x) \neq \frac{d}{dt} \left(\frac{\dot{y}(t)}{\dot{x}(t)} \right).$$

Prema tome ne zaboravimo član na desnoj strani pomnožiti s faktorom $1/\dot{x}(t)$. Ipak, postoji klasa funkcija za koju vrijedi jednakost u prethodnoj tvrdnji, koja? Bilo koja eksplicitno zadana funkcija y = f(x) se lako parametrizira jednadžbama x = t i y(t) = f(t). Sada je $\dot{x}(t) = 1$ i $1/\dot{x}(t) = 1$. :)

■ **Primjer 8.6** Derivaciju y'(x) od kružnice $x^2 + y^2 = 1$ možemo računati i tako što kružnicu prikažemo u parametarskom obliku $x(t) = \cos(t)$, $y(t) = \sin(t)$, $t \in [0, 2\pi]$, potom izračunamo derivacije $\dot{x}(t) = -\sin(t)$, $\dot{y}(t) = \cos(t)$ te po gornjoj formuli dobivamo:

$$y'(x) = \frac{\dot{y}(t)}{\dot{x}(t)} = -\frac{\cos(t)}{\sin(t)}, \ t \in (0, \pi) \cup (\pi, 2\pi).$$

Primjećujemo da za $t = 0, \pi, 2\pi$ odnosno u točkama T(1,0) i T(-1,0) derivacija y'(x) nije definirana što odgovara realnosti, jer u tim točkama je pripadna tangenta na kružnicu paralelna s os O_y .

■ **Primjer 8.7** Neka je y(x) funkcija čiji je graf cikloida koja je parametarski zadana jednadžbama: $x(t) = t - \sin(t)$, $y(t) = 1 - \cos(t)$, $t \in [0, 2\pi]$. U točki $T(\pi/2 - 1, 1)$ koja se nalazi na cikloidi za vrijednost parametra $t = \pi/2$, izračunajmo y'(x) i y''(x):

$$\begin{split} \dot{x}(t) &= 1 - \cos(t), \ \dot{y}(t) = \sin(t); \\ \dot{x}(\pi/2) &= 1 - \cos(\pi/2) = 1, \ \dot{y}(\pi/2) = \sin(\pi/2) = 1; \\ y'(x) &= \frac{\dot{y}(t)}{\dot{x}(t)} = \frac{\sin(t)}{1 - \cos(t)}, \ y'(\frac{\pi}{2} - 1) = \frac{\sin(\pi/2)}{1 - \cos(\pi/2)} = 1; \\ y''(x) &= \frac{1}{\dot{x}(t)} \frac{d}{dt} \left(\frac{\dot{y}(t)}{\dot{x}(t)}\right) = \frac{1}{1 - \cos(t)} \frac{d}{dt} \left(\frac{\sin(t)}{1 - \cos(t)}\right) = \frac{\cos(t)(1 - \cos(t)) - \sin^2(t)}{(1 - \cos(t))^3} \\ &= \frac{\cos(t) - 1}{(1 - \cos(t))^3} = \frac{-1}{(1 - \cos(t))^2}, \ y''(\frac{\pi}{2} - 1) = \frac{-1}{(1 - \cos(\pi/2))^2} = -1. \end{split}$$

Vježba 8.5 Za sljedeće funkcije y = y(x) koje su parametarski zadane jednadžbama x = x(t) i y = y(t) izračunati y'(x) i y''(x):

- **1**. $x(t) = t \ln(t)$ i $y(t) = t^2 + 3t$;
- **2**. $x(t) = \frac{t+1}{2-t}$ i $y(t) = \frac{t-1}{t+3}$; [postupak -> \bigcirc **KLIKNI** \bigcirc];
- 3. $x(t) = \sin^2(t) i y(t) = \cos(2t)$.

•

Vježba 8.6 Pokazati da se kružnica, kao krivulja u ravnini xOy s centrom u točki (p,q) i polumjerom r>0 koja je implicitno zadana jednadžbom: $(x-p)^2+(y-q)^2=r^2$ može i parametarski zadati jednadžbama:

$$x(t) = p + r\cos(t), y(t) = q + r\sin(t), t \in [0, 2\pi].$$

Potom, pomoću ovih jednadžbi izračunati y'(x) i y''(x).

Vježba 8.7 Pokazati da se elipsa, kao krivulja u ravnini xOy s centrom u točki (p,q) i poluosima a > 0, b > 0, koja je implicitno zadana jednadžbom:

$$\frac{(x-p)^2}{a^2} + \frac{(y-q)^2}{b^2} = 1,$$

može i parametarski zadati jednadžbama: $x(t) = p + a\cos(t), \ y(t) = q + b\sin(t), \ t \in [0, 2\pi].$ Potom, pomoću ovih jednadžbi izračunati y'(x) i y''(x).

Neka je funkcija y = y(x) parametarski zadana jednadžbama $x(t) = t^2$ i $y(t) = t^3$. Tada je:

Točno ili Netočno?

1.
$$y''(x) = \frac{d}{dx} \left(\frac{\dot{y}(t)}{\dot{x}(t)} \right) = \frac{d}{dx} \left(\frac{3t^2}{2t} \right) = \frac{d}{dx} \left(\frac{3t}{2} \right) = 0;$$
 T N

2.
$$y''(x) = \frac{d}{dt} \left(\frac{\dot{y}(t)}{\dot{x}(t)} \right) = \frac{d}{dt} \left(\frac{3t^2}{2t} \right) = \frac{d}{dt} \left(\frac{3t}{2} \right) = \frac{3}{2};$$
 T N

3.
$$y''(x) = \frac{1}{\dot{x}(t)} \frac{d}{dt} \left(\frac{\dot{y}(t)}{\dot{x}(t)} \right) = \frac{1}{2t} \frac{d}{dt} \left(\frac{3t^2}{2t} \right) = \frac{1}{2t} \frac{d}{dt} \left(\frac{3t}{2} \right) = \frac{3}{4t}.$$

8.2 Osnovni teoremi diferencijalnog računa

U ovoj točki, za realnu funkciju f(x) promatramo odnose između njenih stacionarnih točaka, s jedne strane i njenih lokalnih ekstrema i nultočaka, s druge strane.

8.2.1 Lokalni ekstremi i stacionarne točke funkcije. Fermattov teorem

Geometrijski je očevidno da na skupu $S=\mathbb{R}$ kvadratna funkcija $f(x)=-x^2+1$ postiže svoju (globalno) maksimalnu vrijednost u točki a=0 i ona iznosi f(a)=1. Pri tome točka x=a je točka maksimuma funkcije f(x) na S, odnosno: $f(x)\leq f(a), \forall x\in S$. Na istom skupu $S=\mathbb{R}$, funkcija $f(x)=\operatorname{ch}(x)$ postiže svoju (globalno) minimalnu vrijednost u točki a=0 i ona iznosi f(a)=1. Pri tome točka x=a je točka minimuma funkcije f(x) na S, odnosno: $f(x)\geq f(a), \forall x\in S$. Ekstremi funkcije y=f(x) y0 na y2 su točke maksimuma i minimuma od y2. Pripadnu vrijednost funkcije y3 zovemo maksimalna odnosno minimalna vrijednost od y4 na y5.

Vježba 8.8 Geometrijski provjerite da na skupu $S = \mathbb{R}$ kvadratna funkcija $f(x) = Ax^2 + Bx + C$, $A \neq 0$, $B, C \in \mathbb{R}$ postiže ekstrem u točki $x_T = -B/2A$ (takozvano tjeme parabole). Pri tome odredite uvjete na koeficijente A, B, C takve da je x_T točka minimuma odnosno maksimuma od f(x) na S.

Vježba 8.9 Geometrijski provjerite da na skupu $S = \mathbb{R}$ funkcije $f(x) = x^3$ i $f(x) = \operatorname{sh}(x)$ nemaju ekstrema. Primjetite da su obadvije funkcije rastuće na S odnosno: f(a) < f(b) za sve $a, b \in S$ takve da je a < b.

Za razliku od kvadratnih funkcija i kosinus hiperbolne funkcije, trigonometrijska funkcija $f(x) = \sin(x)$ ima beskonačno mnogo ekstrema na cijelom skupu $S = \mathbb{R}$, jer geometrijski je očevidno da f(x) postiže lokalno i globalno najveću vrijednost u točkama $a = \pi/2 + 2k\pi$, $k \in \mathbb{Z}$,

a lokalno i globalnu najmanju vrijednost u točkama $b=-\pi/2+2k\pi,\ k\in\mathbb{Z}$ te je f(a)=1 i f(b)=-1.

Definicija 8.2.1 Neka je $I \subseteq \mathbb{R}$ otvoreni interval u \mathbb{R} i $f: I \to \mathbb{R}$. Kažemo da:

• $a \in I$ je točka lokalnog maksimuma od f ako postoji $\delta > 0$ t.d. je

$$f(a) \ge f(x), \forall x \in \langle a - \delta, a + \delta \rangle, \quad f(x) = \nearrow_{x=a} \searrow.$$

• $a \in I$ je točka lokalnog minimuma od f ako postoji $\delta > 0$ t.d. je

$$f(a) \le f(x), \forall x \in \langle a - \delta, a + \delta \rangle, \quad f(x) = \searrow_{x=a} \nearrow.$$

Lokalni ekstremi od f su točke lokalnog maksimuma i lokalnog minimuma.

■ **Primjer 8.8** Ako nacrtamo graf funkcije $f(x) = 3x - x^3$, tada vidimo da je a = -1 točka lokalnog minimum, a = 1 točka lokalnog maksimuma funkcije f:

Slika 8.5 Graf of $f(x) = 3x - x^3$

Da bi ovo i analitički dokazali, po Definiciji 8.2.1 je dovoljno pokazati da je $f(x) \ge f(-1) = -2$ za sve $x \in \langle -3/2, 0 \rangle$ i $f(x) \le f(1) = 2$ za sve $x \in \langle 0, 3/2 \rangle$, što nije tako jednostavno.

Vježba 8.10 Pomoću grafa funkcije f(x), geometrijski provjeriti da je:

- 1. Točka a = 1 je točka lokalnog maksimuma funkcije $f(x) = -x^2 + 2x + 3$;
- **2**. Točka a = 0 je točka lokalnog minimuma funkcije f(x) = 3ch(x);
- 3. Točke a = 0 i a = 1 su redom točke lokalnog minimuma i maksimuma od $f(x) = \frac{3}{2}x^2 x^3$;
- **4**. Točke $a_k = \pi/2 + 2k\pi$, $k \in \mathbb{Z}$ su točke lokalnog maksimuma, a točke $b_k = -\pi/2 + 2k\pi$, $k \in \mathbb{Z}$ su točke lokalnog minimuma funkcije $f(x) = \sin(x)$.

Budući da u Definiciji 8.2.1 postoji uvjet: " $\forall x \in \langle a - \delta, a + \delta \rangle$ ", nije jednostavno praktički pokazati da vrijedi nejednakost $f(a) \geq f(x)$ ili $f(a) \leq f(x)$ za sve $x \in \langle a - \delta, a + \delta \rangle$. Zbog toga u pronalaženju lokalnih ekstrema funkcije f, u slučaju da je f diferencijabilna, koristimo se pomoćnim kriterijima: $nužni \ i \ dovoljni \ uvjet \ za \ lokalne \ ekstreme$. Za prvi takav kriterij nam je potrebna sljedeća definicija.

Definicija 8.2.2 Neka je $I \subseteq \mathbb{R}$ otvoreni interval u \mathbb{R} i neka je $f: I \to \mathbb{R}$ diferencijabilna funkcija na I. Točka x = a za koju je f'(a) = 0 se zove *stacionarna točka* funkcije f.

Stacionarna točka x=a funkcije f(x) se može geometrijski interpretirati kao točka u kojoj funkcija f(x) "miruje". Razlog ovomu je činjenica što uvjet f'(a)=0 povlači da je tangenta funkcije f(x) u x=a paralelan pravac s osi x jer ima jednadžbu y=f(a). Na primjer, u stacionarnoj točki a=0 funkcije $f(x)=x^2-1$ pripadna tangenta je pravac y=-1, koji je paralelan s osi x.

- Primjer 8.9 Pomoću prethodnog principa, geometrijski možemo lako provjeriti da:
 - 1. točka a = 0 je stacionarna točka od $f(x) = x^2 1$;

- **2**. točka $a = \pi/2$ je stacionarna točka od $f(x) = \sin(x)$;
- 3. točka $a = \pi$ je stacionarna točka od $f(x) = \cos(x)$;
- **4**. funkcije $f(x) = \ln(x)$ i $f(x) = e^x$ nemaju stacionarnih točaka, jer ove funkcije su rastuće, pa samim time "ne miruju" niti u jednoj točki svoje domene.

Kao što je to navedeno u Definiciji 8.2.2, stacionarne točke od f tražimo kao rješenja jednadžbe f'(x) = 0, što je računski problem.

■ Primjer 8.10 Pronađimo sve stacionarne točke funkcije $f(x) = x^3 - 9x^2 + 24x - 5$.

Rješenje:

$$f'(x) = 3x^2 - 18x + 24;$$

 $f'(x) = 0 \implies 3x^2 - 18x + 24 = 0 \implies x^2 - 6x + 8 = 0;$
 $x^2 - 6x + 8 = 0 \implies x_1 = 2, x_2 = 4.$

Prema tome, stacionarne točke ove funkcije su $a_1 = 2$ i $a_2 = 4$.

■ **Primjer 8.11** Pronađimo sve stacionarne točke funkcije $f(x) = \sin(2x) - 2x$.

Rješenje:

$$f'(x) = 2\cos(2x) - 2;$$

 $f'(x) = 0 \implies 2\cos(2x) - 2 = 0 \implies \cos(2x) = 1;$
 $\cos(2x) = 1 \implies 2x = 2k\pi \implies x = k\pi.$

Prema tome, stacionarne točke ove funkcije su $a_k = k\pi$, $k \in \mathbb{Z}$.

Napomena 8.2 Kod traženja stacionarnih točaka funkcije f(x) čija domena $\mathcal{D}(f)$ nije cijeli \mathbb{R} , odnosno $\mathcal{D}(f) \subset \mathbb{R}$, potrebno je odstraniti ona rješenja jednadžbe f'(x) = 0, koja nisu u domeni $\mathcal{D}(f)$, kao u sljedećem primjeru.

■ Primjer 8.12 Želimo pronaći sve stacionarne točke funkcije $f(x) = \ln(x) - x^2/2$.

Rješenje:

$$\mathcal{D}(f) = (0, \infty); \ f'(x) = \frac{1}{x} - x, \ f'(x) = 0 \implies \frac{1 - x^2}{x} = 0 \implies x = 1, \ x = -1;$$
$$-1 \notin \mathcal{D}(f), \ 1 \in \mathcal{D}(f).$$

Prema tome, ova funkcija ima samo jednu stacionarnu točku x = 1.

Vježba 8.11 Pronaći sve stacionarne točke funkcije:

1.
$$f(x) = x^3 + 3x^2 - 9x - 7$$
; **2.** $f(x) = \sin x - x/2$; **3.** $f(x) = x^2 e^{-x^2}$; **4.** $f(x) = \ln(x^2 + 2x) - x$; [postupak -> \bigcirc KLIKNI \bigcirc]; **5.** $f(x) = \arctan(xe^{1/(x-2)})$;

6.
$$f(x) = x/2 + \arcsin(1/x)$$
.

Na koji način nam stacionarne točke funkcije pomažu u pronalaženju njenih lokalnih ekstrema govore sljedeći kriteriji.

Teorem 8.2.1 — Fermatov teorem = nužni uvjet za lokalni ekstrem. Neka je $I \subseteq \mathbb{R}$ otvoreni interval u \mathbb{R} i $f: I \to \mathbb{R}$ diferencijabilna funkcija. Ako je $a \in I$ točka lokalnog ekstrema, onda je f'(a) = 0.

Jednostavno rečeno: ako je x=a točka lokalnog esktrema, tada je ona i stacionarna točka funkcije f(x), odnosno: lokalne ekstreme funkcije f tražimo među njenim stacionarnim točkama. Obrat po kontrapoziciji tvrdnje iz Teorema 8.2.1 nam daje da: ako je $f'(a) \neq 0$, tada x=a nije lokalni ekstrem funkcije f(x). Stoga kao prvi korak u traženju ekstrema funkcije f(x) prvo pronalazimo njene stacionarne točke, kao rješenja jednadžbe f'(x)=0. Kada znamo što su sve sta-

cionarne točke funkcije f(x), tada kao drugi korak primjenjujemo kriterij klasificiranja lokalnih ekstrema među stacionarnim točkama takozvani dovoljni uvjet za lokalne ekstreme, koji ćemo raditi u jednom od sljedećih poglavlja.

Dokaz Teorema 8.2.1. Neka je $a \in I$ točka lokalnog ekstrema, na primjer, točka lokalnog maksimuma. Po Definiciji 8.2.1 to znači da za neki $\delta > 0$ i svaki $x \in \langle a - \delta, a + \delta \rangle$ vrijedi: $f(x) \leq f(a)$. Promatramo dva slučaja:

1.
$$x \in \langle a - \delta, a \rangle \implies \frac{f(x) - f(a)}{x - a} = \frac{\leq 0}{\langle 0 \rangle} \geq 0 \implies \lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} = f'(a^{-}) \geq 0,$$

2.
$$x \in \langle a, a + \delta \rangle \implies \frac{f(x) - f(a)}{x - a} = \frac{\leq 0}{\geq 0} \leq 0 \implies \lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} = f'(a^+) \leq 0.$$

Sada $f'(a^-) \ge 0$ i $f'(a^+) \le 0$ zajedno dokazuju da je f'(a) = 0. Q.E.D.

Za eksperimentalnu potvrdu Teorema 8.2.1 **KLIKNI**

■ Primjer 8.13 S grafa funkcije $f(x) = \frac{1}{4}x^4 + \frac{1}{3}x^3 - x^2$ lako vidimo da ona ima u točkama x = -2 i x = 1 lokalni minimum, a u točki x = 0 lokalni maksimum. Pokazat ćemo da su ove točke i stacionarne točke:

$$f'(x) = x^3 + x^2 - 2x$$
; $f'(x) = 0 \implies x(x^2 + x - 2) = 0 \implies x = 0, x = -2, x = 1.$

Vježba 8.12 Za funkciju $f(x) = (x+2)e^{1/x}$ znamo da je a=2 njena točka lokalnog minimuma. Na barem dva načina pokazati da je a=2 i stacionarna točka ove funkcije.

Nerijetko se postavlja pitanje obrata Teorema 8.2.1, koje formuliramo na sljedeći način.

Problem 8.4 [Obrat Teorema 8.2.1] Ako je x = a stacionarna točka, je li ona nužno i točka lokalnog esktrema funkcije f(x)?

Odgovor je negativan i dan je u sljedećem primjeru.

■ **Primjer 8.14** Funkcije $f(x) = x^3$ ima stacionarnu točku a = 0. Međutim, $f(x - \varepsilon) < 0$, f(0) = 0 i $f(x + \varepsilon) > 0$ za svaki $\varepsilon > 0$. Zbog toga, a = 0 nije lokalni ekstrem od f(x). Isti zaključak vrijedi i za sve neparne potencije koje prolaze kroz ishodište (0,0) odnosno za funkcije oblika $f(x) = x^{2m+1}$, $m \in \mathbb{N}$.

Vježba 8.13 (stacionarne točke koje nisu lokalni ekstremi)

1. Trigonometrijska funkcija $f(x) = \sin^3(x)$ ima tri stacionarne točke na intervalu $(-\pi, \pi)$. To su redom $a = -\pi/2$, a = 0 i $a = \pi/2$. Pomoću grafa od f(x) provjerite da su $a = -\pi/2$ i $a = \pi/2$ njeni lokalni ekstremi, ali a = 0 nije njen lokalni ekstrem:

Slika 8.6 Graf funkcije $f(x) = \sin^3(x)$

2. Prethodni primjer bi mogli generalizirati na sljedeći način: ako je f(x) diferencijabilna funkcija takva da je f(a) = 0 i $f'(a) \neq 0$, tada x = a je stacionarna točka funkcije $g(x) = f^3(x)$, ali x = a nije lokalni ekstrem od g(x).

Napomena 8.3 Po definiciji, kritične točke funkcije su točke u kojima je f'(x) = 0 ili f'(x) ne postoji. Zbog toga, u slučaju diferencijabilnosti funkcije f kritične i stacionarne točke su iste, dok u slučaju nediferencijabilnosti od f lokalni ekstremi se mogu pojaviti i u točkama u kojima f'(x) ne postoji. Na primjer, funkcija f(x) = |x| ima šiljak u x = 0 i f'(x) ne postoji, ali je x = 0 kritična točka i točka lokalnog minimuma funkcije f(x).

Vježba 8.14 — ZI 01.02.2021. 1. Neka je $I \subseteq \mathbb{R}$ otvoreni interval, $f: I \to \mathbb{R}$ diferencijabilna funkcija te neka je $x_0 \in I$.

- (b) Koje od sljedećih tvrdnji su istinite, a koje nisu?
 - (i) $f'(x_0) \neq 0 \implies f$ nema lokalni ekstrem u x_0 .
 - (ii) $f'(x_0) = 0 \implies f$ ima lokalni ekstrem u x_0 .

Istinite tvrdnje obrazložite, a neistinite opovrgnite protuprimjerom; [postupak -> **KLIKNI**].

Pierre de Fermat (1607–1665) je bio francuski matematičar koji je ostao poznat po rezultatima: o lokalnim ekstremima diferencijabilnih funkcija (1636 godina), iz teorije vjerojatnosti (1654 godina) kao plod dugogodišnje suradnje sa Pascalom, te je dao veliki doprinos u teoriji brojeva.

Slika 8.7 Pierre de Fermat

8.2.2 Nultočke i stacionarne točke funkcije. Rolleov teorem

Iz grafa funkcije $f(x) = \sin(x)$ vidimo da između svake dvije njene uzastopne nultočke $a_k = k\pi$ i $b_k = (k+1)\pi$, $k \in \mathbb{Z}$, postoji jedna njena stacionarna točka $c_k = k\pi + \pi/2$, odnosno

$$f(a_k) = f(b_k) = 0 \implies \text{postoji } c_k \in (a_k, b_k) \text{ takav da je } f'(c_k) = 0.$$

Slično vrijedi i sa trigonometrijskim funkcijama $f(x) = \sin(mx)$ i $g(x) = \cos(mx)$, $m \in \mathbb{N}$.

Problem 8.5 — Motivacija za Rolleov teorem. Naći uvjete na funkciju f(x) takve da između dvije njene nultočke uvijek postoji barem jedna stacionarna točka.

Odgovor na ovaj problem je specijalno sadržan u sljedećem općenitijem rezultatu.

Teorem 8.2.2 — Rolle. Neka je $f: \mathbb{R} \to \mathbb{R}$ neprekinuta na [a,b] i diferencijabilna na $\langle a,b \rangle$. Ako je f(a) = f(b), onda postoji $c \in \langle a,b \rangle$ takav da je f'(c) = 0.

Slika 8.8 Grafička vizualizacija Rolleovog teorema za f(a) = f(b) = 0

Dokaz. Postoje dva slučaja:

1. $slu\check{c}aj$: neka je f(x) = f(a) = f(b) za svaki $x \in \langle a, b \rangle$. Tada je f konstantna funkcija na [a,b], pa je f'(x) = 0 za sve $x \in \langle a,b \rangle$, čime je tvrdnja teorema dokazana u ovom slučaju.

2. $slu\check{c}aj$: neka postoji $x \in \langle a,b \rangle$ takva da je $f(x) \neq f(a) = f(b)$. Budući da je f neprekinuta na [a,b], to po Teoremu 7.2.3 postoji točka iz intervala [a,b] koja je točka minimuma ili maksimuma funkcije f na [a,b]. Što više, iz uvjeta $f(x) \neq f(a) = f(b)$ slijedi da postoji i barem jedna točka $c \in \langle a,b \rangle$ koja je točka lokalnog minimuma ili maksimuma funkcije f (preciznije, c je točka lokalnog minimuma odnosno maksimuma od f ako je f(x) < f(a) = f(b) odnosno f(x) > f(a) = f(b)). Sada po Fermatovom teoremu (vidi Teorem 9.2.1) slijedi f'(c) = 0. Q.E.D.; [za video varijantu ovog dokaza (KLIKNI)].

■ **Primjer 8.15** Želimo provjeriti tvrdnju Rolleovog teorema za funkciju $f(x) = \sin(x)$ na invervalu $[a,b] = [\pi/6,5\pi/6]$. Naime,

$$f(\pi/6) = f(5\pi/6) = 1/2$$
 i $f'(x) = \cos(x) = 0 \implies x = c = \pi/2 \in \langle \pi/6, 5\pi/6 \rangle$.

Prema tome, f(a) = f(b) i postoji $c \in \langle a, b \rangle$ takav da je f'(c) = 0.

■ **Primjer 8.16** Neka je $f(x) = x^2 - 1$. Očevidno je da između dvije nultočke a = -1 i b = 1 kvadratne funkcije f(x) postoji c = 0, koja je stacionarna točka od f(x). Što više, između bilo koje dvije simetrične točke a = -A i b = A, A > 0, vrijedi: $f(a) = f(b) = A^2 - 1$. Istovremeno za stacionarnu točku c = 0 od f(x) vrijedi: $c \in \langle a, b \rangle$.

Vježba 8.15 Kao u prethodnom primjeru eksplicitno odredite dvije simetrične točke a i b takve da vrijedi: f(a) = f(b) i postoji $c \in \langle a, b \rangle$ takva da je f'(c) = 0, za funkciju:

1.
$$f(x) = \text{ch}(x)$$
; **2**. $f(x) = \frac{x^2}{x^2 + 1}$; **3**. $f(x) = e^{-x^2}$.

Vježba 8.16 — ZIR 15.02.2021. 4. Neka je $f:[a,b]\subseteq\mathbb{R}\to\mathbb{R}$ neprekinuta na [a,b] i diferencijabilna na $\langle a,b\rangle$. Ako je f(a)=f(b), tada je samo jedna od sljedeće 3 tvrdnje uvijek istinita:

- (T1) $\exists c \in \langle a, b \rangle$ t.d. f(a) = f(c) = f(b);
- (T2) $\exists c \in \langle a, b \rangle$ t.d. f'(c) = 0;
- (T3) $\exists c \in \langle a, b \rangle$ t.d. f(c) = 0.

Tvrdnju koja je uvijek istinita dokažite, a za preostale dvije nađite protuprimjer; [postupak -> **KLIKNI**].

Michel Rolle (1652–1719), francuski matematičar, koji se bavio infinitezimalnim računom i algebarskim jednadžbama. Poznat je po Rolleovom teoremu i radovima o Gaussovim eliminacijama u rješavanju algebarskih jednadžbi.

8.2.3 Lagrangeov teorem srednje vrijednosti

Ako su a i b dvije točke iz domene funkcije f(x), tada kroz točke (a, f(a)) i (b, f(b)) njenog grafa u ravnini \mathbb{R}^2 možemo povući pravac $y = k_s(x-a) + f(a)$ s koeficijentom smjera:

$$k_s = \frac{f(b) - f(a)}{b - a}$$
.

Ovakav pravac se još zove *sekanta* funkcije kroz dvije točke, pa smo u tom smislu njen koeficijent obilježili sa k_s . Znamo da su dva pravca y = kx + l i y = Kx + L paralelni ako imaju iste koeficijente

smjera, odnosno ako je k=K. Ako pretpostavimo da je funkcija f(x) neprekinuta, tada (kao na Slici 9.9 dolje) paralelnim pomicanjem pravca y=k(x-a)+f(a) dobivamo pravce y=kx+L koji sijeku graf G(f) funkcije f(x) u dvjema njegovim točkama sve dok ti pravci na kraju ne pređu u stanje dodirivanja grafa G(f), odnosno u tangentu na f(x) u nekoj točki $c\in\langle a,b\rangle$ koja ima jednadžbu $y=k_t(x-c)+f(c)$, gdje je $k_t=f'(c)$. Geometrijski vidimo da za neprekinutu funkciju f postoji $c\in\langle a,b\rangle$ takva da je tangenta na graf funkcije f u točki x=c paralelna sa tom sekantom, odnosno $k_t=k_s$ ili

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Slika 8.9 Grafička vizualizacija Lagrangeovog teorema

Kao i na gornjoj slici zaključujemo da je: k = f'(c). Egzaktna formulacija ove geometrijske činjenice je sadržan u sljedećem rezultatu:

Teorem 8.2.3 Lagrangeov teorem srednje vrijednosti Neka je $f:[a,b]\to\mathbb{R}$ neprekinuta, diferencijabilna na $\langle a,b\rangle$. Onda postoji $c\in\langle a,b\rangle$ takav da je

$$f(b) - f(a) = f'(c)(b - a).$$

Dokaz. Funkciji y = f(x) i točkama x = a, x = b pridružimo pomoćnu funkciju:

$$F(x) = f(x) - \left[\frac{f(b) - f(a)}{b - a}(x - a) + f(a)\right].$$

Izraz u uglatoj zagradi [.] predstavlja sekantu povučenu kroz točke (a, f(a)) i (b, f(b)) koje se nalaze na grafu funkcije f(x), vidi Sliku 9.9. Lako je provjeriti da je F(a) = F(b) i da je F(x) neprekidna funkcija na [a,b]. Zbog toga možemo primjeniti Teorem 8.2.2 na funkciju F(x) pa postoji $c \in \langle a,b \rangle$ takav da je F'(c) = 0. Budući da je:

$$F'(x) = f'(x) - \frac{f(b) - f(a)}{b - a},$$

to F'(c)=0 povlači: $f'(c)-\frac{f(b)-f(a)}{b-a}=0$ odnosno f(b)-f(a)=f'(c)(b-a). \square

Za eksperimentalnu potvrdu Teorema 8.2.3 ()KLIKNI()

Napomena 8.4 Primijetimo da vrijede sljedeće fizikalne interpretacije:

$$\frac{f(b)-f(a)}{b-a} \quad \text{je srednja brzina promjene funkcije f na $\langle a,b\rangle$;}$$

f'(c) je trenutna brzina promjene funkcije f u točki x=c.

- Primjer 8.17 Za funkciju $f(x) = 4x x^3$ na intervalu $\langle a,b \rangle = \langle 0,1 \rangle$, želimo pronaći $c \in \langle a,b \rangle$ takav da je f(b) f(a) = f'(c)(b-a). Zahvaljujući Teoremu 8.2.3 znamo da takav c postoji. Međutim, kad ga želimo izračunati onda provodimo sljedeće korake:
 - $f(x) = 4x x^3$, a = 0 i $b = 1 \implies b a = 1$, f(a) = 0, f(b) = 3, f(b) f(a) = 3;
 - $f'(x) = 4 3x^2 \implies f'(c) = 4 3c^2$;

•
$$f(b) - f(a) = f'(c)(b-a) \implies 3 = 4 - 3c^2 \implies c = \frac{\sqrt{3}}{3} \in \langle 0, 1 \rangle.$$

Vježba 8.17 Za zadanu funkciju f(x) na zadanom intervalu $\langle a,b\rangle$ pronaći točku $c\in\langle a,b\rangle$ takvu da je f(b)-f(a)=f'(c)(b-a), gdje je:

- **1**. $f(x) = e^{3x}$, $\langle a, b \rangle = \langle 0, 2 \rangle$;
- **2**. $f(x) = \ln(5x)$, $\langle a, b \rangle = \langle 1, 3 \rangle$; [postupak -> \bigcirc **KLIKNI** \bigcirc];
- **3**. $f(x) = \sin(x)$, $\langle a, b \rangle = \langle 0, \pi \rangle$.

Vježba 8.18 — Zl 04.02.2019. Ispitajte istinitost sljedeće tvdnje: **(T3.)** Za svaki x > 0 postoji $c \in \langle 0, x \rangle$ takav da vrijedi:

$$\frac{\sin x}{x} = \cos(c);$$
 [postupak -> \circlearrowleft **KLIKNI** \circlearrowright].

■ Primjer 8.18 — brzina promjene temperature ljudske kože na ljetnom suncu. Neka se ljetna temperatura T(t) ljudske kože izmjerena točno u t minuta nakon početka sunčanja mijenja kao funkcija $T(t) = at^2 + b$, $t \ge 0$. Ako vrijednost temperature normalne kože prije sunčanja iznosi $T(0) = 36.5C^\circ$, a nakon 5 minutnog sunčanja iznosi $T(5) = 47.5C^\circ$, kolika je srednja brzina $\overline{v_T}$ promjene temperature kože? Potom odrediti u kojem je trenu $c \in \langle 0, 5 \rangle$ kontinuirana brzina promjene temperature $v_T(t)$ na ovom vremenskom intervalu bila jednaka srednoj brzini $\overline{v_T}$. Rješenje problema.

Prvo, iz zadanog uvjeta T(0) = 36.5 i T(5) = 47.5 prvo pronalazimo nepoznate parametre a i b, odnosno iz $T(0) = a(0)^2 + b = 36.5$ i $T(5) = a(5)^2 + b = 47.5$ slijedi a = 0.44, b = 36.5; prema tome ljetna temperatura kože u ovom slučaju se ponaša kao funkcija $T(t) = (0.44)t^2 + 36.5$. Sada izračunamo srednju brzinu promjene temperature u ovom vremenskom intervalu koja iznosi:

$$\overline{v_T} = (T(5) - T(0))/5 = 11/5 = 2.2 \, C^{\circ} / \text{min.}$$

Znamo da je trenutna brzina jednaka $v_T(t) = T'(t) = (0.88)t$. Sada po Lagrangeovom teoremu srednje vrijednosti primjenjenog na funkciju T(t) postoji trenutak $c \in (0,5)$ takav da je:

$$T'(c) = (0.88)c = \frac{T(5) - T(0)}{5 - 0} = 2.2 \implies c = 2.5 \text{min.}$$

Prema ovome, nakon samo 2.5 minute izlaganja suncu brzina promjene temperature kože je dostigla njenu srednju vrijednost u vremenskom intervalu od 5 ninuta, odnosno: $v_T(2.5 \,\text{min}) = 2.2\,C^\circ/\text{min}$.

Vježba 8.19 — brzina promjene temperature hladnog radijatora. Na temelju prethodnog primjera, postaviti i riješiti problem zagrijavanja hladnog radijatora i brzinu promjene temperature u njemu nakon proteklih 10 minuta. Pretpostavite da se temperatura zagrijavanja radijatora ponaša, na primjer kao funkcija $T(t) = ae^t + b$, gdje nepoznate parametre a i b treba odrediti, na primjer iz uvjeta: $T(0) = 13C^{\circ}$ i $T(10) = 45C^{\circ}$. Kolika je srednja brzina $\overline{v_T}$ promjene temperature radijatora u ovom vremenskom intervalu? Potom odrediti u kojem je trenu $c \in \langle 0, 10 \rangle$

kontinuirana brzina promjene temperature $v_T(t)$ na ovom vremenskom intervalu bila jednaka srednoj brzini $\overline{v_T}$?

Sada iskazujemo i dokazujemo neke posljedice Teorema 8.2.3, koje ćemo koristiti u kasnijim poglavljima.

```
Korolar 8.2.4 Neka su f,g:\langle a,b\rangle\subseteq\mathbb{R}\to\mathbb{R} diferencijabilne funkcije.

(i) Ako je f'(x)=0, \forall x\in\langle a,b\rangle, onda je f(x)=konst. na \langle a,b\rangle.

(ii) Ako je f'(x)=g'(x), \forall x\in\langle a,b\rangle, onda je f(x)=g(x)+konst. na \langle a,b\rangle.
```

Dokaz. (i) Po Teoremu 8.2.3 znamo da za svaki $a_1,b_1 \in \langle a,b \rangle$ postoji $c_1 \in \langle a_1,b_1 \rangle$ takav da je $f(b_1)-f(a_1)=f'(c_1)(b_1-a_1)$. Zbog pretpostavke $f'(x)=0, \forall x\in \langle a,b \rangle$ slijedi $f'(c_1)=0$ pa je zbog toga $f(a_1)=f(b_1)$ za sve $a_1,b_1\in \langle a,b \rangle$. Time smo pokazali da je f(x) konstantna funkcija na intervalu $\langle a,b \rangle$.

(ii) Definiramo pomoćnu funkciju F(x) = f(x) - g(x). Iz pretpostavke slijedi da je F'(x) = f'(x) - g'(x) = 0 za sve $x \in \langle a, b \rangle$. Primjenimo li prvi dio ovog korolara, dobivamo da je F(x) konstantna funkcija, što pokazuje drugu tvrdnju ovog korolara. \square

```
Korolar 8.2.5 Neka je f: \langle a,b \rangle \subseteq \mathbb{R} \to \mathbb{R} diferencijabilna funkcija.

(i) Ako je f'(x) > 0 na \langle a,b \rangle, onda f strogo raste na \langle a,b \rangle.

(ii) Ako je f'(x) < 0 na \langle a,b \rangle, onda f strogo pada na \langle a,b \rangle.
```

Dokaz. (i) Neka je f'(x) > 0 na $\langle a,b \rangle$. Odaberimo $x_1, x_2 \in \langle a,b \rangle$ takve da je $x_1 < x_2$. Po Teoremu 8.2.3 znamo da za svaki $x_1, x_2 \in \langle a,b \rangle$ postoji $c \in \langle x_1, x_2 \rangle$ takav da je $f(x_2) - f(x_1) = f'(c_1)(x_2 - x_1)$. Iz pretpostavke slijedi da je desna strana prethodne jednakosti strogo pozitivna, pa onda to mora isto biti i lijeva odnosno $f(x_2) - f(x_1) > 0$ ili $f(x_2) > f(x_1)$. Time smo pokazali da f(x) strogo raste na $\langle a,b \rangle$.

(ii) Ovaj dokaz se analogno provodi kao prethodni pa ga prepuštamo studentu. □

- Primjer 8.19 Pomoću Korolara 8.2.5 lako možemo provjeriti da:
- $f(x) = e^x$ strogo raste na \mathbb{R} , budući da je $f'(x) = e^x > 0$ na \mathbb{R} ;
- $f(x) = \cos(x)$ strogo pada na $(0, \pi)$, budući da je $f'(x) = -\sin(x) < 0$ na $(0, \pi)$;
- $f(x) = \ln x$ strogo raste na $(0, \infty)$, budući da je f'(x) = 1/x > 0 na $(0, \infty)$;
- f(x) = 1/x strogo pada na $(0, \infty)$, budući da je $f'(x) = -1/x^2 < 0$ na $(0, \infty)$.

Vježba 8.20 Pomoću Korolara 8.2.5 dokazati da:

```
1. f(x) = x - 2 \arctan(x) \operatorname{strogo} \operatorname{pada} \operatorname{na} \langle -1, 1 \rangle;
```

2.
$$f(x) = \frac{1}{x-4}e^{\frac{1}{x-2}}$$
 strogo raste na $\langle 2, 3 \rangle$;

3.
$$f(x) = \frac{x^3}{x^2-9}$$
 strogo pada na $\langle -3\sqrt{3}, -3 \rangle$;

4.
$$f(x) = \frac{3x-7}{3\sqrt{x^2-5x+6}}$$
 strogo raste na $\langle 0,1 \rangle$;

5.
$$f(x) = (x+2)e^{1/x}$$
 strogo pada na $(0,2)$ i strogo raste na $(2,3)$; [postupak -> \bigcirc KLIKNI \bigcirc];

6.
$$f(x) = x - 2\ln\left(1 - \frac{1}{x}\right)$$
 strogo raste na $\langle -2, -1 \rangle$ i strogo pada na $\langle 1, 2 \rangle$; [postupak -> \bigcirc **KLIKNI** \bigcirc].

8.3 Taylorovi polinomi. Taylorova formula

U ovoj točki ćemo pokazati kako u okolini neke točke $x = x_0$ aproksimirati vrijednost zadane funkcije f(x) njenim Taylorovim polinomom stupnja n, koga označavamo sa $T_n(x)$ i koji ovisi o f(x) u smislu da svaka fukcija ima svoj $T_n(x)$.

Poznato je da računalo vrijednosti eksponencijalne, logaritamske, trigonemetrijske i drugih funkcija računa aproksimacijom njihovim Taylorovim polinomom određenog stupnja, na primjer:

$$e^{x} \approx T_{4}(x) = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \frac{x^{4}}{24} = \sum_{k=0}^{4} \frac{x^{k}}{k!},$$

$$\ln(x+1) \approx T_{7}(x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \frac{x^{5}}{5} - \frac{x^{6}}{6} + \frac{x^{7}}{7} = \sum_{k=0}^{7} (-1)^{k+1} \frac{x^{k}}{k},$$

$$\operatorname{ch} x \approx T_{4}(x) = 1 + \frac{x^{2}}{2} + \frac{x^{4}}{24} = \sum_{k=0}^{2} \frac{x^{2k}}{(2k)!},$$

$$\sin x \approx T_{5}(x) = x - \frac{x^{3}}{6} + \frac{x^{5}}{120} = \sum_{k=0}^{2} \frac{(-1)^{k} x^{2k+1}}{(2k+1)!},$$

$$\cos x \approx T_{6}(x) = 1 - \frac{x^{2}}{4} + \frac{x^{4}}{24} - \frac{x^{6}}{720} = \sum_{k=0}^{3} \frac{(-1)^{k} x^{2k}}{(2k)!},$$

$$\operatorname{arctg} x \approx T_{13}(x) = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} - \frac{x^{7}}{7} + \frac{x^{9}}{9} - \frac{x^{11}}{11} + \frac{x^{13}}{13} = \sum_{k=0}^{6} \frac{(-1)^{k} x^{2k+1}}{2k+1}.$$

Što više, ako označimo sa $R_n(x)$ takozvani ostatak ili grešku pri aproksimaciji funkcije f(x) njenim Taylorovim polinomom, gdje $R_n(x)$ ovisi o funkciji f(x), tada se može pokazati da vrijedi:

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \dots + \frac{x^{n}}{n!} + R_{n}(x) = \sum_{k=0}^{n} \frac{x^{k}}{k!} + R_{n}(x),$$

$$\ln(x+1) = x - \frac{x^{2}}{2} + \dots + \frac{(-1)^{n+1}x^{n}}{n} + R_{n}(x) = \sum_{k=1}^{n} (-1)^{k+1} \frac{x^{k}}{k} + R_{n}(x), -1 < x \le 1,$$

$$\operatorname{ch} x = 1 + \frac{x^{2}}{2} + \frac{x^{4}}{24} + \dots + \frac{x^{2n}}{(2n)!} + R_{2n}(x) = \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + R_{2n}(x),$$

$$\sin x = x - \frac{x^{3}}{6} + \frac{x^{5}}{120} + \dots + \frac{(-1)^{n}x^{2n+1}}{(2n+1)!} + R_{2n+1}(x) = \sum_{k=0}^{n} \frac{(-1)^{k}x^{2k+1}}{(2k+1)!} + R_{2n+1}(x),$$

$$\cos x = 1 - \frac{x^{2}}{4} + \frac{x^{4}}{24} + \dots + \frac{(-1)^{n}x^{2n}}{(2n)!} + R_{2n}(x) = \sum_{k=0}^{n} \frac{(-1)^{k}x^{2k}}{(2k)!} + R_{2n}(x),$$

$$\operatorname{arctg} x = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} + \dots + \frac{(-1)^{n}x^{2n+1}}{2n+1} + R_{2n+1}(x) = \sum_{k=0}^{n} \frac{(-1)^{k}x^{2k+1}}{2k+1} + R_{2n+1}(x),$$

gdje u svakom od prethodnih slučajeva vrijedi: $R_n(x) \to 0$ kada $n \to \infty$.

8.3.1 Taylorovi polinomi

Definicija 8.3.1 Neka $f:\langle a,b\rangle\subseteq\mathbb{R}\to\mathbb{R}$ ima u točki $x_0\in\langle a,b\rangle$ sve derivacije do n-te, uključujući n-tu derivaciju. Onda polinom

$$T_n(x) = f(x_0) + \frac{f'(x_0)}{1!} \cdot (x - x_0) + \frac{f''(x_0)}{2!} \cdot (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} \cdot (x - x_0)^n$$

$$= \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} \cdot (x - x_0)^k$$

zovemo *n*-ti *Taylorov polinom funkcije f u okolini točke* $x_0 \in \langle a,b \rangle$. Ukoliko je $x_0 = 0$, tada

$$T_n(x) = f(0) + \frac{f'(0)}{1!} \cdot x + \frac{f''(0)}{2!} \cdot x^2 + \dots + \frac{f^{(n)}(0)}{n!} \cdot x^n$$
$$= \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} \cdot x^k$$

također zovemo i MacLaurinov polinom funkcije f.

Kao što vidimo, Taylorov polinom $T_n(x)$ je polinom **najviše** n-tog stupnja po potencijama $(x-x_0)$ s koeficijentima:

$$f(x_0), f'(x_0), \frac{f''(x_0)}{2!}, \dots, \frac{f^{(n)}(x_0)}{n!}.$$

Primijetimo da može biti $f^{(n)}(x_0) = 0$.

U sljedećim primjerima ćemo izvesti Taylorove polinome za elementarne funkcije $f(x) = e^x$, $f(x) = \ln(x+1)$ i $f(x) = \operatorname{ch} x$, koji su napisani gore iznad Definicije 8.3.1.

■ **Primjer 8.20** Odredimo i skicirajmo Taylorove polinome $T_n(x)$ funkcije $f(x) = e^x$ u točki $x_0 = 0$ za n = 0, 1, 2, 3. U tom smislu, bilo bi dobro izračunati n-tu derivaciju od f(x) za sve $n \in \mathbb{N}$: $f(x) = e^x$ povlači $f'(x) = e^x$ što nas dovodi do pretpostavke da je:

$$f^{(n)}(x) = e^x, \forall n \in \mathbb{N}.$$

Dokažimo prethodnu tvrdnju matematičkom indukcijom:

- baza indukcije n = 1: $f'(x) = e^x$, što je točno;
- pretpostavka indukcije: $f^{(n)}(x) = e^x$ za neki $n \in \mathbb{N}$;
- korak indukcije: $f^{(n+1)}(x) = e^x$. Dokaz:

$$f^{(n+1)}(x) = |\text{definicija derivacije}| = (f^{(n)}(x))' = |\text{pretpostavka indukcije}| = (e^x)' = e^x$$
. \square

Sada specijalno za x = 0 dobivamo $f(0) = e^0 = 1$ i $f^{(n)}(0) = e^0 = 1$ za sve $n \in \mathbb{N}$, pa po Definiciji 8.3.1 slijedi:

$$\left(e^{x} \approx \right) T_{n}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} \cdot x^{k} = \sum_{k=0}^{n} \frac{1}{k!} \cdot x^{k} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!}.$$

Ova aproksimacija funkcije $f(x) = e^x$ njenim Taylorovim polinomom $T_n(x)$ oko točke $x_0 = 0$ se može grafički prikazati tako što na jednom grafu nacrtamo i funkciju f(x) i njene Taylorove polinome $T_n(x)$ za razne vrijednosti stupnja n = 0, 1, 2, 3:

Slika 8.10 Taylorov polinom $T_n(x)$ bolje aproksimira funkciju f(x) što je njegov stupanj n veći.

■ **Primjer 8.21** Odredimo Taylorov polinom $T_n(x)$ funkcije $f(x) = \ln(x+1)$ u točki $x_0 = 0$ za sve x za koje je f(x) definirana, a to je za x > -1. Računanjem prvih nekoliko derivacija od f(x) dobivamo:

$$f'(x) = \frac{1}{x+1} \implies f''(x) = -\frac{1}{(x+1)^2} \implies f'''(x) = \frac{2}{(x+1)^3} \implies f^{(4)}(x) = -\frac{3!}{(x+1)^4},$$

što nas dovodi do pretpostavke da je:

$$f^{(n)}(x) = (-1)^{n-1} \frac{(n-1)!}{(x+1)^n}, \forall n \in \mathbb{N}.$$

Dokažimo prethodnu tvrdnju matematičkom indukcijom:

- baza indukcije n = 1: f'(x) = 1/(x+1), što je točno;
- pretpostavka : $f^{(n)}(x) = (-1)^{n-1} \frac{(n-1)!}{(x+1)^n}$ za neki $n \in \mathbb{N}$; korak: $f^{(n+1)}(x) = (-1)^n \frac{n!}{(x+1)^{n+1}}$.

Dokaz:

$$f^{(n+1)}(x) = \left(f^{(n)}(x)\right)' = \left((-1)^{n-1} \frac{(n-1)!}{(x+1)^n}\right)' = -n(-1)^{n-1} \frac{(n-1)!}{(x+1)^{n+1}} = (-1)^n \frac{n!}{(x+1)^{n+1}}. \square$$

Sada specijalno za x = 0 dobivamo

$$f(0) = \ln(1) = 0$$
 i $f^{(n)}(0) = (-1)^{n-1} \frac{(n-1)!}{(0+1)^n} = (-1)^{n-1} (n-1)!, \forall n \in \mathbb{N},$

što po Definiciji 8.3.1 povlači:

$$T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} \cdot x^k = f(0) + \sum_{k=1}^n \frac{(-1)^{k-1}(k-1)!}{k!} \cdot x^k$$
$$= \sum_{k=1}^n \frac{(-1)^{k-1}}{k} \cdot x^k = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{(-1)^{n-1}x^n}{n}.$$

_

■ **Primjer 8.22** Odredimo Taylorov polinom $T_n(x)$ funkcije $f(x) = \operatorname{ch} x$ u točki $x_0 = 0$. Računanjem prvih nekoliko derivacija od f(x) dobivamo:

$$f'(x) = \operatorname{sh} x \implies f''(x) = \operatorname{ch} x \implies f'''(x) = \operatorname{sh} x \implies f^{(4)}(x) = \operatorname{ch} x,$$

što nas dovodi do pretpostavke da je: $f^{(2n)}(x) = \operatorname{ch} x$ i $f^{(2n-1)}(x) = \operatorname{sh} x$, $\forall n \in \mathbb{N}$. Analogno kao u prethodna dva primjera se ove dvije tvrdnje dokazuju matematičkom indukcijom. Na primjer, pokažimo prvu od njih dvije: $f^{(2n)}(x) = \operatorname{ch} x$, $\forall n \in \mathbb{N}$. Dokaz:

- baza indukcije n = 1: $f''(x) = \operatorname{ch} x$, što je točno;
- pretpostavka: $f^{(2n)}(x) = \operatorname{ch} x$ za neki $n \in \mathbb{N}$;
- korak: $f^{(2n+2)}(x) = \operatorname{ch} x$. Dokaz:

$$f^{(2n+2)}(x) = (f^{(2n)}(x))^{(2)} = (\operatorname{ch} x)^{(2)} = ((\operatorname{ch} x)')' = \operatorname{ch} x. \ \Box$$

Sada specijalno za x = 0 dobivamo

$$f(0)=\operatorname{ch}(0)=1,\ f^{(2n)}(0)=\operatorname{ch}(0)=1\quad \text{i}\quad f^{(2n-1)}(0)=\operatorname{sh}(0)=0,\ \forall n\in\mathbb{N},$$

što po Definiciji 8.3.1 slijedi:

$$T_{2n}(x) = T_{2n+1}(x) = \sum_{k=0}^{n} \frac{f^{(2k)}(0)}{(2k)!} \cdot x^{2k} = \sum_{k=0}^{n} \frac{1}{(2k)!} \cdot x^{2k} = 1 + \frac{x^2}{2} + \frac{x^4}{24} + \dots + \frac{x^{2n}}{(2n)!}.$$

Primjetimo da Taylorov polinom $T_n(x)$ je polinom **najviše** n-tog stupnja sa formulom danom u Definiciji 8.3.1, pa je zbog toga u ovom slučaju $T_{2n}(x) = T_{2n+1}(x)$.

Vježba 8.21 Odrediti Taylorov polinom $T_n(x)$ za sljedeće funkcije f(x) u okolini zadane točke x_0 , gdje je $n \in \mathbb{N}$:

- **1**. $f(x) = e^{2x}$, $x_0 = 0$, $n \in \mathbb{N}$:
- **2**. $f(x) = \ln(x), x_0 = 1, n \in \mathbb{N};$
- 3. $f(x) = \operatorname{ch}(3x), x_0 = 0, n \in \mathbb{N};$
- **4**. $f(x) = x^3 x^2 + 7$, $x_0 = 2$, n = 3.

U sljedećem primjeru ćemo pokazati da ako je funkcija f(x) polinom n-tog stupnja da je tada njen Taylorov polinom $T_n(x)$ upravo jednak tom polinomu odnosno $f(x) = T_n(x)$.

- Primjer 8.23 Zadana je funkcija (polinom) trećeg stupnja $f(x) = x^3 x^2 + 2x 4$.
- (i) Prikažimo funkciju f(x) kao polinom po potencijama od (x-3), odnosno treba naći koeficijente a_0, a_1, a_2 i a_3 takve da je:

$$x^3 - x^2 + 2x - 4 = a_3(x - 3)^3 + a_2(x - 3)^2 + a_1(x - 3) + a_0.$$

- (ii) Nađimo $T_3(x)$ za funkciju f(x) u okolini točke $x_0 = 3$.
- (iii) Na temelju rezultata iz (i) i (ii) vrijedi li:

$$f(x) = T_3(x)$$
?

Rješenje:

(i) Jednostavnim algebarskim jednakostima, kao što je $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$, dobivamo:

$$x^3 - x^2 + 2x - 4 = ((x - 3) + 3)^3 - ((x - 3) + 3)^2 + 2((x - 3) + 3) - 4$$

$$= (x-3)^3 + 8(x-3)^2 + 23(x-3) + 20.$$

(ii) Imamo: $f(x) = x^3 - x^2 + 2x - 4$, $f'(x) = 3x^2 - 2x + 2$, f''(x) = 6x - 2 i f'''(x) = 6, pa kako je $x_0 = 3$:

$$f(x_0) = 20, \ f'(x_0) = 23, \ \frac{f''(x_0)}{2!} = 8, \ \frac{f''(x_0)}{3!} = 1,$$

što zajedno s Definicijom 8.3.1 povlači:

$$T_3(x) = \frac{f''(x_0)}{3!}(x - x_0)^3 + \frac{f''(x_0)}{2!}(x - x_0)^2 + f'(x_0)(x - x_0) + f(x_0)$$
$$= (x - 3)^3 + 8(x - 3)^2 + 23(x - 3) + 20.$$

(iii) Iz prethodna dva koraka očevidno vrijedi: $f(x) = T_3(x)$.

Napomena 8.5 U prethodnom primjeri smo mogli prvo izračunati $T_3(x)$, a onda raspisivanjem pokazati da je $T_3(x) = f(x)$.

Prethodni primjer se može generalizirati na bilo koji polinom trećeg ili *n*-tog stupnja, kao što slijedi.

Vježba 8.22 Neka je funkcija f(x) općeniti polinom *n*-tog stupnja odnosno

$$f(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$$

te $x = x_0 \in \mathbb{R}$ bilo koja točka. Napisati f(x) po potencijama od $(x - x_0)$. Potom, ako je $T_n(x)$ Taylorov polinom od f(x) u okolini točke x_0 pokazati da je: $f(x) = T_n(x)$.

O točnosti aproksimacije diferencijabilne funkcije f(x) s njenim Taylorovim polinomom $T_n(x)$ govorimo u nastavku.

8.3.2 Taylorova formula. Aproksimacija funkcija Taylorovim polinomom

Teorem 8.3.1 Neka je $x_0 \in \langle a, b \rangle$ i funkcija $f : \langle a, b \rangle \to \mathbb{R}$ ima u intervalu $\langle a, b \rangle$ sve derivacije do (n+1)-ve, uključujući i (n+1)-vu derivaciju. Onda f možemo prikazati pomoću *Taylorove formule* kao:

$$f(x) = T_n(x) + R_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} \cdot (x - x_0)^k + R_n(x),$$

gdje je $T_n(x)$ Taylorov polinom n-tog stupnja funkcije f(x) u $x_0 \in \langle a, b \rangle$, a ostatak $R_n(x)$ se može zapisati kao

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} \cdot (x - x_0)^{n+1} \text{ zaneki } c \in \langle x_0, x \rangle \text{ ili } c \in \langle x, x_0 \rangle.$$

Izraz $R_n(x)$ zovemo Lagrangeov oblik ostatka ili ostatak u Lagrangeovom obliku. Iz Taylorove formule

$$f(x) = T_n(x) + R_n(x)$$

vidimo da ostatak $R_n(x)$ predstavlja *pogrešku aproksimacije* funkcije f(x) Taylorovim polinomom $T_n(x)$ odnosno:

$$f(x) = T_n(x) + R_n(x) \implies f(x) \approx T_n(x) \quad \text{i} \quad |f(x) - T_n(x)| = |R_n(x)|.$$

Za sve elementarne funkcije će vrijediti da je $\lim_{n\to\infty} |R_n(x)| = 0$ odnosno kako raste stupanj polinoma n, tako se smanjuje pogreška aproksimacije odnosno vrijedit će $T_n(x) \to f(x)$, $n \to \infty$, (detaljnije o ovome ćemo raditi u Taylorovim redovima u Matematičkoj analizi 2).

- Primjer 8.24 Zadana je funkcija $f(x) = e^x$ i točka $x_0 = 0$.
- (i) Odrediti Taylorovu formulu za f(x) u okolini $x_0 = 0$ te pokažimo da je $\lim_{n \to \infty} R_n(x) = 0$ za sve $x \in \mathbb{R}$.
- (ii) Odrediti približnu vrijednost od \sqrt{e} pomoću Taylorovog polinoma četvrtog stupnja funkcije f(x) u okolini x = 0 te procijeniti pogrešku ove aproksimacije.

Rješenje za (i). Kao prvo, u Primjeru 8.20 smo našli $T_n(x)$ za funkciju $f(x) = e^x$ i pokazali smo da je $f^{(n)}(x) = e^x$, $n \in \mathbb{N}$. Sada iz Teorema 8.3.1 slijedi:

$$f(x) = T_n(x) + R_n(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} \cdot x^k + R_n(x) = \sum_{k=0}^n \frac{1}{k!} \cdot x^k + R_n(x),$$

gdje je

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} \cdot x^{n+1} = \frac{e^c}{(n+1)!} \cdot x^{n+1} \quad \text{za neki } c \in \langle 0, x \rangle \text{ ili } c \in \langle x, 0 \rangle,$$

gdje točka c ovisi o $n \in \mathbb{N}$ i $e^c \le M$, gdje je $M = e^x$ (slučaj $c \in \langle 0, x \rangle$) ili M = 1 (slučaj $c \in \langle x, 0 \rangle$), pa M ne ovisi o $n \in \mathbb{N}$. Zbog toga je:

$$0 \le |R_n(x)| = \frac{e^c |x|^{n+1}}{(n+1)!} \le M \frac{|x|^{n+1}}{(n+1)!}.$$

Iz ovog slijedi: $\lim_{n\to\infty} R_n(x) = 0$.

Rješenje za (ii) Budući da je $\sqrt{e} = e^{1/2} = f(1/2)$, ako koristimo dobiveni rezultat iz (i) za n = 4 tada $f(1/2) = T_4(1/2) + R_n(1/2)$ povlači:

$$\sqrt{e} = f(1/2) \approx T_4(1/2) = \sum_{k=0}^{4} \frac{1}{k!2^k} = 1 + \frac{1}{1!2^1} + \frac{1}{2!2^2} + \frac{1}{3!2^3} + \frac{1}{4!2^4} = \frac{633}{384},$$

$$\left| \sqrt{e} - \frac{633}{384} \right| = \left| \sqrt{e} - T_4(1/2) \right| = \left| R_4(1/2) \right| = \frac{e^c}{5!} \cdot \frac{1}{2^5} \le \frac{e^{1/2}}{5!2^5} \le \frac{2}{5!2^5} \le \frac{1}{5!2^4},$$

 $\operatorname{za} c \in \langle 0, 1/2 \rangle.$

- Primjer 8.25 Zadana je funkcija $f(x) = \ln(x+1)$ i točka $x_0 = 0$, gdje je x > -1.
- (i) Odrediti Taylorovu formulu za f(x) u okolini $x_0 = 0$ te pokazati da je $\lim_{n \to \infty} R_n(x) = 0$ za sve $x \in (0,1]$.
- (ii) Odrediti približnu vrijednost od ln(2) pomoću Taylorovog polinoma petog stupnja funkcije f(x) u okolini x = 0 te procijeniti pogrešku ove aproksimacije.

Rješenje za (i). U Primjeru 8.21 smo našli $T_n(x)$ za funkciju $f(x) = \ln(x+1)$ i pokazali smo da je

$$f^{(n)}(x) = (-1)^{n-1} \frac{(n-1)!}{(x+1)^n}, \ \forall n \in \mathbb{N}.$$

Sada iz Teorema 8.3.1 slijedi:

$$f(x) = T_n(x) + R_n(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} \cdot x^k + R_n(x) = \sum_{k=1}^n \frac{(-1)^{k-1}}{k} \cdot x^k + R_n(x),$$

gdje je

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} \cdot x^{n+1} = \frac{(-1)^n}{(n+1)(c+1)^{n+1}} \cdot x^{n+1} \quad \text{za neki } c \in \langle 0, x \rangle \text{ ili } c \in \langle x, 0 \rangle,$$

a točka c ovisi o $n \in \mathbb{N}$. Specijalno, ako uzmemo sve $x \in (0,1]$, tada je $0 < c < x \le 1 < c+1$ iz čega slijedi $0 < x/(c+1) \le 1$, pa imamo:

$$0 \le |R_n(x)| = \frac{x^{n+1}}{(n+1)(c+1)^{n+1}} \le \frac{1}{n+1}.$$

Odnosno dokazali smo da je $\lim_{n\to\infty} R_n(x)=0$. Slično se dobiva i za slučaj kada je $x\in \langle -1,0]$.

Rješenje za (ii) Budući da je $\ln(2) = \ln(1+1) = f(1)$, to možemo koristiti rezultat iz (i) za n = 5 odnosno $f(1) = T_5(1) + R_5(1)$, što nam daje sljedeću aproksimaciju i ocjenu pripadne greške od ove aproksimacije:

$$\ln(2) = f(1) \approx T_5(1) = \sum_{k=1}^{5} \frac{(-1)^{k-1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} = \frac{47}{60},$$
$$\left| \ln(2) - \frac{47}{60} \right| = \left| \ln(2) - T_5(1) \right| = \left| R_5(1) \right| = \frac{1}{(5+1)(c+1)^{5+1}} \le \frac{1}{6},$$

 $\operatorname{za} c \in \langle 0, 1 \rangle$.

Vježba 8.23 1. Koristeći Taylorov polinom 4. stupnja funkcije $f(x) = \cos(x)$ u okolini točke $x_0 = 0$, aproksimirajte broj cos 1 te ocijenite pogrešku aproksimacije.

2. Koristeći Taylorov polinom 2. stupnja funkcije $f(x) = \sqrt{x}$ u okolini točke $x_0 = 36$, odredite aproksimaciju broja $\sqrt{35}$.

Poput sljedećeg primjera možemo aproksimirati vrijednosti iracionalne funkcije a da se pri tome ne traži računanje i procjena ostatka $R_n(x)$.

■ **Primjer 8.26** Koristeći aproksimaciju funkcije $f(x) = \sqrt{x}$ polinomom $T_1(x)$ u okolini točke $x_0 = 36$, bez upotrebe kalkulatora odredimo aproksimaciju broja $\sqrt{35}$. *Rješenje*. Prema Teoremu 8.3.1 imamo da je:

$$f(x) \approx T_1(x) = f(x_0) + f'(x_0)(x - x_0).$$

Dakle, x = 35 i $\sqrt{35} = f(35)$. Budući da točka x_0 treba biti takva da su $f(x_0)$ i $f'(x_0)$ izračunljivi bez upotrebe kalkulatora, izabrana je vrijednost $x_0 = 36$. Kako je $f'(x) = 1/(2\sqrt{x})$, to je f(36) = 6 i f'(36) = 1/12, pa zaključujemo da je:

$$\sqrt{35} = f(35) \approx T_1(35) = f(36) + f'(36)(35 - 36) = 6 - \frac{1}{12} = \frac{71}{12}$$

Vježba 8.24 Koristeći aproksimaciju funkcije $f(x) = \operatorname{arctg} x$ polinomom $T_3(x)$ u okolini točke $x_0 = 0$, bez upotrebe kalkulatora pokažite da je arctg $1/2 \approx 11/24$.

8.3.3 Nalaženje kratnosti nultočaka polinoma s pomoću Taylorovog polinoma

Ako polinom P(x) stupnja n ima realnu (ili kompleksnu) nultočku a, to znači da je P(a) = 0. Kažemo da nultočka a ima kratnost k, gdje je k prirodan broj, ako je polinom P(x) djeljiv s $(x-a)^k$, i k je najveća potencija s tim svojstvom (tj. $P(x) = (x-a)^k Q(x)$, a za polinom Q(x) stupnja n-k vrijedi $Q(a) \neq 0$, tj. Q(x) nije djeljiv s x-a).

■ Primjer 8.27 Polinom $P(x) = x^3 + 7x^2 + 16x + 12$ ima nultočku a = -2, jer je P(-2) = 0. Kolika je kratnost te nultočke?

Rješenje. Vrijedi P(-2) = 0 i P'(-2) = 0, ali $P''(-2) \neq 0$ (provjerite), pa Taylorovim razvojem polinoma P(x) dobivamo

$$P(x) = T_3(x) = P(-2) + P'(-2)(x+2) + \frac{P''(-2)}{2!}(x+2)^2 + \frac{P'''(-2)}{3!}(x+2)^3$$

$$= (x+2)^2 \left[\frac{P''(-2)}{2!} + \frac{P'''(-2)}{3!}(x+2) \right]$$

$$= (x+2)^2 (x+3).$$

Prema tome, kratnost nultočke $a_{1,2} = -2$ iznosi k = 2. Imamo još jednu nultočku $a_3 = -3$ kratnosti 1.

Na sličan način vidimo i općenito, da kratnost nul-točke x_0 polinoma P(x) je jednaka k onda i samo onda ako je $P(x_0) = P'(x_0) = \dots = P^{(k-1)}(x_0) = 0$ i $P^{(k)}(x_0) \neq 0$.

8.4 Računanje limesa neodređenih oblika pomoću l'Hospitalovog pravila

L'Hospitalovo pravilo se koristi za računanje limesa kvocijenta dviju funkcija u slučaju neodređenih oblika $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ ili $\begin{pmatrix} \infty \\ \infty \end{pmatrix}$. Ostali neodređeni oblici $(\infty - \infty)$, $(0 \cdot \infty)$, (0^0) , (∞^0) , (1^∞) se svode na oblike $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ ili $\begin{pmatrix} \infty \\ \infty \end{pmatrix}$ i računanje pomoću L'Hospitalovog pravila.

8.4.1 Neodređeni oblik $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Teorem 8.4.1 — l'Hospitalovo pravilo $(\frac{0}{0})$. Neka su f,g diferencijabilne funkcije na $S = \langle a, x_0 \rangle \cup \langle x_0, b \rangle$ i $g'(x) \neq 0$ na S. Ako vrijedi

$$\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0 \qquad \text{ i } \qquad \text{postoji } \lim_{x\to x_0} \frac{f'(x)}{g'(x)} \in \bar{\mathbb{R}} = \mathbb{R} \cup \{\pm\infty\},$$

onda je

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

U zadacima oznaka l'H označava korištenje l'Hospitalovog pravila.

Primijetimo da se pomoću Teorema 8.4.1 mogu lako izračunati neki važni limesi koje smo izveli u Poglavlju 7, kao što su:

$$\lim_{x \to 0} \frac{\sin(x)}{x} = \left(\frac{0}{0}\right) = 1'H = \lim_{x \to 0} \frac{\cos(x)}{1} = 1, \qquad \lim_{x \to 0} \frac{e^x - 1}{x} = \left(\frac{0}{0}\right) = 1'H = \lim_{x \to 0} \frac{e^x}{1} = 1,$$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \left(\frac{0}{0}\right) = 1'H = \lim_{x \to 0} \frac{1}{1+x} = 1.$$

Pomoću l'Hospitalovog pravila iz Teorema 8.4.1, računamo sljedeće limese. Pri tome ako se dani limes može riješiti i na jedan od klasičnih načina koje smo radili u Poglavlju 7, tada je on izračunat na više načina.

■ Primjer 8.28

(1)
$$\lim_{x \to 0} \frac{\sin(2x)}{x} = \left(\frac{0}{0}\right) = 1'H = \lim_{x \to 0} \frac{2\cos(2x)}{1} = 2.$$

Zadatak pod (1) možemo riješiti i klasično:

$$\lim_{x \to 0} \frac{\sin(2x)}{x} = 2\lim_{x \to 0} \frac{\sin(2x)}{2x} = 2 \quad \text{ili} \quad \lim_{x \to 0} \frac{\sin(2x)}{x} = 2\lim_{x \to 0} \frac{\cos(x)\sin(x)}{x} = 2\cos(0)\lim_{x \to 0} \frac{\sin(x)}{x} = 2.$$

Za razliku od zadatka pod (1), zadatak pod (2) se može riješiti samo l'Hospitalom.

(2)
$$\lim_{x \to 0} \frac{\sin(5x)}{\sqrt[3]{x}} = \left(\frac{0}{0}\right) = 1'H = \lim_{x \to 0} \frac{5\cos(5x)}{1/(3\sqrt[3]{x^2})} = 15\cos(0)\lim_{x \to 0} \sqrt[3]{x^2} = 0.$$

(3)
$$\lim_{x \to 1} \frac{\cos(\pi x) + 1}{x - 1} = \left(\frac{0}{0}\right) = 1'H = \lim_{x \to 1} \frac{-\pi \sin(\pi x)}{1} = 0.$$

(4)
$$\lim_{x \to -1} \ln \left(\frac{\operatorname{ch}(x+1) + x}{x+1} \right) = \ln \lim_{x \to -1} \frac{\operatorname{ch}(x+1) + x}{x+1} = \ln \left(\frac{0}{0} \right)$$
$$= \ln \ln \lim_{x \to -1} \frac{\operatorname{sh}(x+1) + 1}{1} = \ln \ln 1 = 0.$$

(5)
$$\lim_{x \to 0} \frac{\operatorname{tg}(x^2) - x^2}{\sin(x^2) - x^2} = |x^2 = t| = \lim_{t \to 0} \frac{\operatorname{tg}(t) - t}{\sin(t) - t} = \left(\frac{0}{0}\right) = 1' H = \lim_{t \to 0} \frac{\frac{1}{\cos^2(t)} - 1}{\cos(t) - 1}$$
$$= \lim_{t \to 0} \frac{1 - \cos^2(t)}{\cos^2(t)(\cos(t) - 1)} = -\lim_{t \to 0} \frac{\cos(t) + 1}{\cos^2(t)} = -2.$$

(6)
$$\lim_{x \to 0} \frac{\ln(1+x^2)}{\sin^2 x} = \left(\frac{0}{0}\right) = \lim_{x \to 0} \frac{2x/(1+x^2)}{2\sin(x)\cos(x)} = \lim_{x \to 0} \frac{1}{(1+x^2)\cos(x)} \cdot \lim_{x \to 0} \frac{x}{\sin(x)} = 1.$$

(7)
$$\lim_{x \to 0} \frac{\sqrt[5]{\cos x} - \cos x}{\sin^2 x} = \left(\frac{0}{0}\right) = 1'H = \lim_{x \to 0} \frac{-\frac{1}{5}(\cos x)^{-4/5} \sin x + \sin x}{2 \sin x \cos x}$$
$$= \lim_{x \to 0} \frac{-\frac{1}{5}(\cos x)^{-4/5} + 1}{2 \cos x} = 2/5.$$

■ **Primjer 8.29** Računamo sljedeći limes u ovisnosti o parametru $a \in \mathbb{R}$:

$$\lim_{x \to 0} \frac{x \cos x + a \sin x}{x^3} = \left(\frac{0}{0}\right) = 1' H = \lim_{x \to 0} \frac{\cos x - x \sin x + a \cos x}{3x^2}$$

$$= \lim_{x \to 0} \frac{(a+1) \cos x - x \sin x}{3x^2} = \lim_{x \to 0} \left[(a+1) \frac{\cos x}{3x^2} - \frac{\sin x}{3x} \right]$$

$$= \begin{cases} -1/3, & a = -1, \\ \infty, & a > -1, \\ -\infty, & a < -1. \end{cases}$$

•

Provjerite da je

$$e - \left(1 + \frac{1}{x}\right)^x \sim \frac{e}{2x}$$
 kad $x \to \pm \infty$.

Posebno, onda postoje dvije pozitivne konstante A i B takve da za sve prirodne brojeve n vrijedi

$$\frac{A}{n} \le e - \left(1 + \frac{1}{n}\right)^n \le \frac{B}{n}.$$

Drugim riječima, $\left(1+\frac{1}{n}\right)^n$ konvergira prema broju $e\approx 2,718$ brzinom 1/n kad $n\to\infty$. To pokazuje da je konvergencija jako spora.

Rješenje. Dvaput rabimo l'Hospitalovo pravilo:

$$\begin{split} \lim_{x \to \pm \infty} \frac{e - \left(1 + \frac{1}{x}\right)^x}{\frac{1}{x}} &= \left(\frac{0}{0}\right) \stackrel{\text{l'H.}}{=} \lim_{x \to \pm \infty} \frac{-\left(1 + \frac{1}{x}\right)^x \left[\ln\left(1 + \frac{1}{x}\right) - \frac{1}{x+1}\right]}{-\frac{1}{x^2}} \\ &= e \cdot \lim_{x \to \pm \infty} \frac{\ln\left(1 + \frac{1}{x}\right) - \frac{1}{x+1}}{\frac{1}{x^2}} = \left(\frac{0}{0}\right) \\ \stackrel{\text{l'H.}}{=} e \cdot \lim_{x \to \pm \infty} \frac{\frac{1}{1 + \frac{1}{x}} \left(-\frac{1}{x^2}\right) + \frac{1}{(x+1)^2}}{-\frac{2}{x^3}} \\ &= \frac{e}{2} \cdot \lim_{x \to \pm \infty} \frac{x^2}{(x+1)^2} = \frac{e}{2}. \end{split}$$

Vježba 8.25 Korištenjem l'Hospitalovog pravila iz Teorema 8.4.1, dokažite da su sljedeći limesi istiniti.

1.
$$\lim_{x \to 0} \frac{\sin(2x - x^2)}{x + x^2} = 2$$
. 2. $\lim_{x \to 1} \frac{\operatorname{tg}(\pi x - \pi)}{\sin(\pi x)} = -1$.

3.
$$\lim_{x \to -1} \ln \left(\frac{-x^2 + e^{x+1}}{-x - x^2} \right) = \ln 3.$$
 4. $\lim_{x \to 0} \frac{e^{x^2} - 1}{\arctan (x^2)} = 1.$

5.
$$\lim_{x \to 0} \frac{(x+1)^{x+1} - x - 1}{\ln(x+1) - x} = -2.$$
 6. $\lim_{x \to 0} \frac{\sin x - \sin x}{(e^x - 1)^3} = -1/3.$

7.
$$\lim_{x\to 0} \frac{\ln^2(tgx)}{ctg^2(x)} = 0.$$

8.4.2 Neodređeni oblik $\binom{\infty}{n}$

Teorem 8.4.2 — l'Hospitalovo pravilo $\binom{\infty}{\infty}$. Neka su f,g diferencijabilne funkcije na $S=\langle a,x_0\rangle\cup\langle x_0,b\rangle$ i $g'(x)\neq 0$ na S. Ako vrijedi $\lim_{x\to x_0}f(x)=\lim_{x\to x_0}g(x)=\infty \qquad \text{i} \qquad \text{postoji } \lim_{x\to x_0}\frac{f'(x)}{g'(x)}\in\bar{\mathbb{R}}=\mathbb{R}\cup\{\pm\infty\},$

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \infty \qquad \text{i} \qquad \text{postoji } \lim_{x \to x_0} \frac{f'(x)}{g'(x)} \in \bar{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\},$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

Tvrdnja Teorem 8.4.2 vrijedi i u slučajevima:

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = -\infty, \lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} g(x) = \pm \infty.$$

■ Primjer 8.30 Pomoću l'Hospitalovog pravila iz Teorema 8.4.2, računamo sljedeće limese.

(1)
$$\lim_{x \to \infty} \frac{\ln^3(2x)}{x^3} = \left(\lim_{x \to \infty} \frac{\ln(2x)}{x}\right)^3 = \left(\frac{\infty}{\infty}\right)^3 = 1'H = \left(\lim_{x \to \infty} \frac{1/x}{1}\right)^3 = 0.$$

(2)
$$\lim_{x \to 0+} \frac{\ln(3x)}{\operatorname{ctg}(2x)} = -\left(\frac{\infty}{\infty}\right) = 1'H = \lim_{x \to 0+} \frac{1/x}{-2/\sin^2(2x)} = -\frac{1}{2}\lim_{x \to 0+} \frac{\sin^2(2x)}{x}$$
$$= -\frac{1}{2}\left(\frac{0}{0}\right) = 1'H = -\frac{1}{2}\lim_{x \to 0+} \frac{4\sin(2x)\cos(2x)}{1} = 0.$$

(3)
$$\lim_{x \to \pi/2} \frac{\operatorname{tg}(3x)}{\operatorname{tg}(7x)} = \left(\frac{\infty}{\infty}\right) = 1' H = \lim_{x \to \pi/2} \frac{3/\cos^2(3x)}{7/\cos^2(7x)} = \frac{3}{7} \lim_{x \to \pi/2} \left(\frac{\cos(7x)}{\cos(3x)}\right)^2$$
$$= \frac{3}{7} \left(\lim_{x \to \pi/2} \frac{\cos(7x)}{\cos(3x)}\right)^2 = \left(\frac{0}{0}\right) = \frac{3}{7} \left(\lim_{x \to \pi/2} \frac{-7\sin(7x)}{-3\sin(3x)}\right)^2 = \frac{3}{7} \cdot \frac{7^2}{3^2} = \frac{7}{3}.$$

(4)
$$\lim_{x \to \infty} \arctan \left(\frac{x}{\ln(3x)} \right) = \arctan \left(\lim_{x \to \infty} \frac{x}{\ln(3x)} \right) = \arctan \left(\frac{\infty}{\infty} \right)$$
$$= l'H = \arctan \left(\lim_{x \to \infty} \frac{1}{1/x} \right) = \arctan \left(\infty \right) = \pi/2.$$

Napomena 8.6 Kod oblika $\binom{\infty}{\infty}$ ponekad je bolje od l'H primijeniti klasičan način rješavanja, koji smo radili u Poglavlju 7. Pravi primjer za ovo je kada se pojavljuju korjeni u racionalnoj funkciji od koje tražimo limes, kao u sljedećem limesu:

$$\lim_{x \to +\infty} \frac{\sqrt{x^2 + 1} + 2x}{\sqrt{x^2 + x} + \sqrt{x^2 - 1}} = \left(\frac{0}{0}\right) = \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 + 1} + 2x\right)/x}{\left(\sqrt{x^2 + x} + \sqrt{x^2 - 1}\right)/x}$$
$$= \lim_{x \to +\infty} \frac{\left(\sqrt{1 + 1/x^2} + 2\right)}{\left(\sqrt{1 + 1/x} + \sqrt{1 - 1/x^2}\right)} = \frac{1 + 2}{1 + 1} = \frac{3}{2}.$$

Medjutim, ako bi u rješavanju ovog limesa primijenili l'H tada dolazimo u računske probleme, kao što slijedi:

$$\lim_{x \to +\infty} \frac{\sqrt{x^2 + 1} + 2x}{\sqrt{x^2 + x} + \sqrt{x^2 - 1}} = \left(\frac{0}{0}\right) = 1'H = \lim_{x \to +\infty} \frac{\frac{x}{\sqrt{x^2 + 1}} + 2}{\frac{2x + 1}{2\sqrt{x^2 + 1}} + \frac{x}{\sqrt{x^2 - 1}}} = \dots \text{prekomplicirano} \dots = ?$$

■ Primjer 8.31 Pokažimo na limesu:

$$\lim_{x \to \infty} \frac{x + \cos x}{x + \sin x} = \left(\frac{\infty}{\infty}\right)$$

da svi uvjeti Teorema 8.4.2 nisu zadovoljeni, pa u njegovom rješavanju ne možemo koristiti l'Hospitalovo pravilo. Naime,

$$\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \lim_{x \to \infty} \frac{1 - \sin x}{1 + \cos x}$$
 ne postoji!

S druge strane, početni limes ipak postoji:

$$\lim_{x \to \infty} \frac{x + \cos x}{x + \sin x} = \lim_{x \to \infty} \frac{1 + \frac{\cos x}{x}}{1 + \frac{\sin x}{x}} = 1.$$

■ **Primjer 8.32** U sljedećem limesu su uvjeti Teorema 8.4.2 zadovoljeni, ali primjena l'Hospitalovog pravila ne dovodi nas do rezultata:

$$\lim_{x \to \infty} \frac{\operatorname{ch} x}{e^x} = \left(\frac{\infty}{\infty}\right) = \operatorname{l}' H = \lim_{x \to \infty} \frac{\operatorname{sh} x}{e^x} = \left(\frac{\infty}{\infty}\right) = \operatorname{l}' H = \lim_{x \to \infty} \frac{\operatorname{ch} x}{e^x} = ?.$$

U ovakvom slučaju radimo na klasičan način bez l'Hospitalovog pravila:

$$\lim_{x \to \infty} \frac{\operatorname{ch} x}{e^x} = \lim_{x \to \infty} \frac{e^x + e^{-x}}{2e^x} = \lim_{x \to \infty} \frac{e^{2x} + 1}{2e^{2x}} = \lim_{x \to \infty} \frac{(e^{2x} + 1)/e^{2x}}{2e^{2x}/e^{2x}} = \lim_{x \to \infty} \frac{1 + e^{-2x}}{2} = 1/2.$$

Vježba 8.26 Korištenjem l'Hospitalovog pravila iz Teorema 8.4.2, dokažite da su sljedeći limesi istiniti.

1.
$$\lim_{x \to \infty} \frac{\ln^5(10x)}{x^5} = 0$$
. 2. $\lim_{x \to 0} \frac{\operatorname{ctg}(2x)}{\operatorname{ctg}(5x)} = \frac{5}{2}$.

3.
$$\lim_{x \to \infty} \operatorname{arcth}\left(\frac{e^x}{x}\right) = 0.$$
 4. $\lim_{x \to \infty} \frac{e^{3x}}{x \ln x} = \infty.$

8.4.3 Neodređeni oblik $(0 \cdot \infty)$

Pravilo:

$$\lim_{x \to a} f(x) \cdot g(x) = (0 \cdot \infty) = \begin{cases} \lim_{x \to a} \frac{f(x)}{\frac{1}{g(x)}} = \left(\frac{0}{0}\right) \\ \lim_{x \to a} \frac{g(x)}{\frac{1}{f(x)}} = \left(\frac{\infty}{\infty}\right). \end{cases}$$

Isto pravilo vrijedi kad se u limesima $x \to a$ zamijeni sa $x \to a^+$ ili $x \to a^-$.

■ Primjer 8.33 Pomoću prethodnog pravila, računamo sljedeći limes:

$$\lim_{x \to 0^+} x \ln(3x) = (0 \cdot \infty) = \lim_{x \to 0^+} \frac{\ln(3x)}{1/x} = \left(\frac{\infty}{\infty}\right) = 1' H = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = -\lim_{x \to 0^+} x = 0.$$

Naravno, mogli smo odabrati i kompliciraniji način, koji nas na žalost ne vodi do rješenja:

$$\lim_{x \to 0^{+}} x \ln(3x) = (0 \cdot \infty) = \lim_{x \to 0^{+}} \frac{x}{1/\ln(3x)} = \left(\frac{0}{0}\right) = 1' H = \lim_{x \to 0^{+}} \frac{1}{-1/(x \ln^{2}(3x))}$$
$$= -\lim_{x \to 0^{+}} x \ln^{2}(3x) = \dots = ?$$

■ Primjer 8.34 Računamo sljedeće limese:

$$\bullet \quad \lim_{x \to \infty} \left(x \cdot \operatorname{arcctg}(4x) \right) = (\infty \cdot 0) = \lim_{x \to \infty} \frac{\operatorname{arcctg}(4x)}{1/x} = \left(\frac{0}{0} \right) = 1' + \lim_{x \to \infty} \frac{4x^2}{1 + 16x^2} = \frac{1}{4}.$$

•
$$\lim_{x \to \infty} \left(x^2 (e^{3/x^2} - 1) \right) = (\infty \cdot 0) = \lim_{x \to \infty} \frac{e^{3/x^2} - 1}{1/x^2} = \left(\frac{0}{0} \right) = 1' H = \lim_{x \to \infty} \frac{-6e^{3/x^2}/x^3}{-2/x^3} = 3.$$

•
$$\lim_{x \to \infty} x^2 \sin \frac{5}{x^2} = (\infty \cdot 0) = \lim_{x \to \infty} \frac{\sin(5/x^2)}{1/x^2} = |t = 1/x^2| = \lim_{t \to 0} \frac{\sin(5t)}{t} = \left(\frac{0}{0}\right)$$

= $1'H = 5\lim_{t \to 0} \frac{\cos(5t)}{1} = 5$.

Vježba 8.27 Korištenjem l'Hospitalovog pravila, pokažite da su sljedeći limesi istiniti.

1.
$$\lim_{x \to \pi/4} (1 - \sin(2x)) \operatorname{tg}(2x) = 0.$$

2.
$$\lim_{x \to 0^+} \ln(x/2) \operatorname{tg}(3x/2) = 0$$
. 3. $\lim_{x \to \infty} x \left(e^{\sin(2/x)} - 1 \right) = 2$.

4.
$$\lim_{x \to 1^+} \ln(x-1) \ln(x) = 0.$$
 5. $\lim_{x \to \infty} (x \cdot \operatorname{arcctg}(3x)) = \frac{1}{3}.$

8.4.4 Neodređeni oblik $(\infty - \infty)$

Pravilo:

$$\lim_{x \to a} (f(x) - g(x)) = (\infty - \infty) = \lim_{x \to a} \left(1 - \frac{g(x)}{f(x)}\right) f(x) = \begin{cases} (0 \cdot \infty), & \lim \frac{g(x)}{f(x)} = 1\\ \text{određeni oblik}, & \lim \frac{g(x)}{f(x)} \neq 1. \end{cases}$$

■ Primjer 8.35 Pomoću prethodnog pravila, računamo sljedeći limes:

$$\begin{split} \lim_{x \to \infty} \left(x e^{1/x} - x \right) &= (\infty - \infty) = \lim_{x \to \infty} \left(x (e^{1/x} - 1) \right) = (\infty \cdot 0) \\ &= \lim_{x \to \infty} \frac{e^{1/x} - 1}{1/x} = \left(\frac{0}{0} \right) = \mathbf{l}' \mathbf{H} = \lim_{x \to \infty} \frac{-e^{1/x}/x^2}{-1/x^2} = 1. \end{split}$$

■ Primjer 8.36 Računamo sljedeći limes:

$$\lim_{x \to -\infty} (xe^{3/x} - x) = |t = -x| = \lim_{t \to \infty} (-te^{-3/t} + t) = (-\infty + \infty)$$

$$= \lim_{t \to \infty} (t(1 - e^{-3/t})) = (\infty \cdot 0)$$

$$= \lim_{x \to \infty} \frac{1 - e^{-3/t}}{1/t} = \left(\frac{0}{0}\right) = 1'H = \lim_{t \to \infty} \frac{-3e^{-3/t}/t^2}{-1/t^2} = 3.$$

■ Primjer 8.37 Računamo sljedeći limes:

$$\lim_{x \to 1^{+}} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right) = (\infty - \infty) = \lim_{x \to 1^{+}} \frac{x \ln x - x + 1}{(x-1) \ln x} = \left(\frac{0}{0} \right) = 1' H$$

$$= \lim_{x \to 1^{+}} \frac{\ln x + x/x - 1}{\ln x + (x-1)/x} = \lim_{x \to 1^{+}} \frac{x \ln x}{x \ln x + x - 1} = \left(\frac{0}{0} \right) = 1' H$$

$$= \lim_{x \to 1^{+}} \frac{\ln x + 1}{\ln x + 2} = 1/2.$$

■ Primjer 8.38 Računamo sljedeći limes:

$$\lim_{x \to 0} \left(\operatorname{cth} x - \operatorname{ctg} x \right) = (\infty - \infty)$$

$$= \lim_{x \to 0} \left(\frac{\operatorname{ch} x}{\operatorname{sh} x} - \frac{\cos x}{\sin x} \right) = \lim_{x \to 0} \frac{\operatorname{ch} x \sin x - \operatorname{sh} x \cos x}{\operatorname{sh} x \sin x} = \left(\frac{0}{0} \right) = 1' H$$

$$= \lim_{x \to 0} \frac{\operatorname{sh} x \sin x + \operatorname{ch} x \cos x - \operatorname{ch} x \cos x + \operatorname{sh} x \sin x}{\operatorname{ch} x \sin x + \operatorname{sh} x \cos x}$$

$$= 2 \lim_{x \to 0} \frac{\sinh x \sin x}{\cosh x \sin x + \sinh x \cos x} = \left(\frac{0}{0}\right) = 1'H$$

$$= 2 \lim_{x \to 0} \frac{\cosh x \sin x + \sinh x \cos x}{\sinh x \sin x + \cosh x \cos x + \cosh x \cos x - \sinh x \sin x}$$

$$= 2 \lim_{x \to 0} \frac{\cosh x \sin x + \sinh x \cos x}{2 \cosh x \cos x} = \frac{2}{2} \cdot \frac{0}{1} = 0.$$

■ Primjer 8.39 Računamo sljedeći limes:

$$\lim_{x \to 1} \left(\frac{1}{1 - x} - \frac{7}{1 - x^7} \right) = \pm (\infty - \infty) = \lim_{x \to 1} \frac{1 - x^7 - 7(1 - x)}{(1 - x)(1 - x^7)} = \left(\frac{0}{0} \right) = 1'H$$

$$= \lim_{x \to 1} \frac{-7x^6 + 7}{-(1 - x^7) - 7x^6(1 - x)} = \left(\frac{0}{0} \right) = 1'H$$

$$= \lim_{x \to 1} \frac{-42x^5}{7x^6 - 42x^5 + 49x^6} = -\frac{42}{14} = -3.$$

Vježba 8.28 Korištenjem l'Hospitalovog pravila, pokažite da su sljedeći limesi istiniti.

1.
$$\lim_{x \to 0} \left(\frac{2}{x} + \frac{2}{1 - e^x} \right) = 1.$$
 2. $\lim_{x \to 0} \left(\text{ctg}(2x) - \frac{1}{2x} \right) = 0.$

3.
$$\lim_{x \to 0} \left(\frac{1}{2\sin^2(x/2)} - \frac{2}{x^2} \right) = \frac{1}{6}$$
. 4. $\lim_{x \to 0} \left(\frac{\coth x - \cot x}{x} \right) = \frac{2}{3}$.

5.
$$\lim_{x \to 1} \left(\frac{5}{1 - x^5} - \frac{55}{1 - x^{55}} \right) = -25.$$
 6. $\lim_{x \to 0} \left(\frac{1}{x^2} - \operatorname{ctg}^2 x \right) = \frac{2}{3}.$

8.4.5 Neodređeni oblici $(0^0), (1^\infty)$, (∞^0)

Pravilo:

$$\lim_{x \to a} f(x)^{g(x)} = \lim_{x \to a} e^{g(x) \ln f(x)} = e^{\lim_{x \to a} g(x) \ln f(x)} = e^{(0 \cdot \infty)} = \dots$$

■ Primjer 8.40 Pomoću prethodnog pravila, računamo sljedeće limese:

$$\bullet \quad \lim_{x \to \infty} x^{1/x} = (\infty^0) = \lim_{x \to \infty} e^{(1/x)\ln x} = e^{\lim_{x \to \infty} \frac{\ln x}{x} = (\frac{\infty}{\infty})} = e^{\lim_{x \to \infty} \frac{1/x}{1}} = e^0 = 1.$$

•
$$\lim_{x \to 1} x^{1/(1-x^2)} = (1^{\pm \infty}) = e^{\lim_{x \to 1} \frac{\ln x}{(1+x)(1-x)}} = e^{\frac{1}{2}(\frac{0}{0})} = e^{\frac{1}{2}\frac{1/x}{-1}} = e^{-1/2}.$$

•
$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{5/x^2} = (1^{\infty}) = e^{\lim_{x \to 0} \frac{5\ln(\sin x/x)}{x^2}} = e^{-5/6},$$

budući da je:

$$\lim_{x \to 0} \frac{5\ln(\sin x/x)}{x^2} = \left(\frac{0}{0}\right) = 1'H$$

$$= 5\lim_{x \to 0} \frac{\frac{x}{\sin x} \frac{x \cos x - \sin x}{x^2}}{2x} = 5\lim_{x \to 0} \frac{x \cos x - \sin x}{2x^3} = \left(\frac{0}{0}\right) = 1'H$$

8.5 PONAVLJANJE 35

$$=5\lim_{x\to 0}\frac{-x\sin x + \cos x - \cos x}{6x^2} = -\frac{5}{6}\lim_{x\to 0}\frac{\sin x}{x} = -\frac{5}{6}.$$

Vježba 8.29 Pokažite da su sljedeći limesi istiniti.

1. $\lim_{x \to 0} \left(\frac{1}{x}\right)^{\text{tgx}} = 1$. 2. $\lim_{x \to 1} x^{1/(1-x^3)} = e^{-1/3}$.

3. $\lim_{x \to 0} \left(\frac{\operatorname{tg} x}{x}\right)^{3/x^2} = e$. 4. $\lim_{x \to \pi/2} (\sin x)^{2/\cos x} = 1$.

5. $\lim_{x \to 1} (\ln x)^{3(1-x)} = 1$. 6. $\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{\sin x}{x - \sin x}} = e^{-1}$.

Napomena 8.7 Primijetimo da $0^{+\infty}$ nije neodređeni oblik te vrijedi $0^{+\infty}=0$. Zaista, ako gledamo limes $f(x)^{g(x)}$ kad $x\to +\infty$, takav da $f(x)\to 0$ a $g(x)\to +\infty$, onda za dovoljno veliki x imamo $|f(x)|\le 1/2$, pa je $0\le |f(x)|^{g(x)}\le 1/2^{g(x)}\to 0$. Prema teoremu o sendviču zaključujemo da je $\lim_{x\to\infty} f(x)^{g(x)}=0$. Slično se vidi i općenitije, da za svaki $c\in \langle -1,1\rangle$ vrijedi $c^{+\infty}=0$.

8.5 PONAVLJANJE

1. Svaka se funkcija $f: \mathbb{R} \to \mathbb{R}$ koja je eksplicitno zadana jednadžbom y = f(x) može istovremeno implicitno zadati jednadžbom F(x, f(x)) = y - f(x) = 0 i parametarski zadati s jednadžbama x(t) = t, y(t) = f(t).

2. Funkcije y = y(x) koje su implicitno zadane s jednadžbom F(x,y(x)) = 0 se ne mogu uvijek iz te jednadžbe eksplicitno izraziti ili ako se mogu onda nisu jedinstvene. Na primjer, iz jednadžbe $y^2 + e^{xy} = 1$ ne možemo ekplicitno izraziti y = y(x) dok iz jednadžbe $y^2 = x^3$ možemo izraziti dvije funkcije $y = \sqrt{x^3}$ i $y = -\sqrt{x^3}$.

3. Kada tražimo y'(x) za funkciju y = y(x) koja je implicitno zadana jednadžbom F(x,y(x)) = 0, tada sve članove u F(x,y) = 0 koji sadrže y(x) deriviramo kao složenu funkciju. Na primjer, $(y+xy^2)' = y' + y^2 + 2xyy'$.

4. Za parametarski zadanu funkciju y(x) jednadžbama x = x(t) i y = y(t) njena derivacija y'(x) je kvocijent od dy/dt i dx/dt. Međutim, y"(x) nije kvocijent od d²y/dt² i d²x/dt².
 5. Stacionarne točke funkcije f(x) su nultočke njene derivacije, odnosno rješenja jednadžbe:

5. Stacionarne točke funkcije f(x) su nultočke njene derivacije, odnosno rješenja jednadžbe: f'(x) = 0. Iako točke lokalnog ekstrema od f(x) moraju biti i stacionarne točke od f(x), obrat ne vrijedi: postoje stacionarne točke u kojima funkcija ne postiže svoju lokalnoo minimalnu ili maksimalnu vrijednost. Na primjer: x = 1 je stacionarna točka od $f(x) = (x - 1)^3$ ali nije točka njenog lokalnog ekstrema.

6. Između svake dvije uzastopne nultočke a i b od f(x) postoji barem jedna njena stacionarna točka of f(x), pod uvjetom da je f(x) diferencijabilna na intervalu $\langle a,b\rangle$.

7. Zahvaljujući Lagrangeovom teoremu srednje vrijednosti, lako možemo opravdati sljedeću praktičnu činjenicu: ako se od faksa do kuće vozimo biciklom, tada između svaka dva trenutka t_1 i t_2 , $t_1 < t_2$, postoji trenutak $c \in \langle t_1, t_2 \rangle$ u kojem ćemo voziti srednjom brzinom na ovom vremenskom intervalu.

8. Zahvaljujući Taylorovoj formuli možemo aproksimirati sve elementarne funkcije njihovim Taylorovim polinomima $T_n(x)$ te ih i tako računati u računalu.

9. Po Taylorovoj formuli je $f(x) = T_n(x) + R_n(x)$, gdje je $T_n(x)$ polinom n- tog stupnja po potencijama $(x - x_0)^k$ za k = 0, 1, 2, ..., n. Iako ostatak $R_n(x)$ sadrži potenciju $(x - x_0)^{n+1}$ on nije polinom jer $R_n(x)$ sadrži i $c \in \langle x_0, x \rangle$ ili $c \in \langle x, x_0 \rangle$. Budući da c ovisi o x taj član je funkcija o x odnosno

c=c(x). Još jednostavnije, ako f(x) nije polinom što je uglavnom slučaj, kada bi $R_n(x)$ bio polinom tada bi to isto bio i zbroj polinoma $T_n(x)+R_n(x)$ pa iz Taylorove formule slijedi da je i f(x) polinom, što je kontradikcija.

8.6 ZADACI ZA VJEŽBU

Zadatak 8.1 U danoj točki T odrediti derivaciju funkcije y = y(x) koja je implicitno zadana:

8.1. a)
$$y + \cos^2(x/y) = 9/2$$
, $T(\pi, 4)$;

8.1. b)
$$x^y + \arctan(x-1) = \sqrt{y}, T(1,1).$$

Zadatak 8.2 Naći y'(x) u točki $T(x_0, 1)$ funkcije y = y(x) koja je implicitno zadana:

$$x^3 + 2e^x(1-y)^2 - y^2\ln(y) + 8 = 0.$$

Zadatak 8.3 Naći jednadžbu tangente u točki T(1,0) na funkciju y = y(x) implicitno zadanu jednadžbom:

$$xy^2 + x^3 + e^y = 2$$
.

Zadatak 8.4 Naći jednadžbu tangente u točki $T(\sqrt{3},1)$ na funkciju y=y(x) implicitno zadanu jednadžbom:

$$y^{x} + 2\cos(\arctan(x/y)) = 2.$$

Zadatak 8.5 Naći jednadžbe tangente i normale u u točki T(0,1) na funkciju y = y(x) implicitno zadanu jednadžbom:

$$y^{\sin(xy)} + ye^x = 2$$
; [postupak -> \circlearrowleft KLIKNI \circlearrowright].

Zadatak 8.6 — LJIR 07.07.2017. Funkcija y = y(x) je implicitno zadana jednadžbom:

$$e^{xy} + \sin(x + y^2) = 1.$$

Odredite jednandžbu tangente na graf funkcije y(x) u točki $T(\pi,0)$; [postupak -> \bigcirc **KLIKNI** \bigcirc].

Zadatak 8.7 Ako je funkcija y = y(x) zadana implicitno $2e^x + 3e^y = 1$ pokazati tada y(x) zadovoljava jednadžbu: y'' = y'(1 - y').

Zadatak 8.8 Odredite y'(x) i y''(x) za funkciju y = y(x) zadanu parametarski:

a)
$$x(t) = \ln(\operatorname{tg}(t/2)) + \cos t - \sin t$$
, $y(t) = \sin t + \cos t$;

b)
$$x(t) = 1 + \sqrt{t}, \quad y(t) = \left(\frac{t}{1+t}\right)^7.$$

Zadatak 8.9 Naći jednadžbu tangente u točki $T(x_0, y_0)$ za koju je $t = \pi/4$ na funkciju y = y(x) zadanu parametarski: $x(t) = 8(\cos t + t \sin t)$, $y(t) = 8(\sin t - t \cos t)$.

Zadatak 8.10 Pokazati da je pravac y = 3x - 5 tangenta u točki $T(x_0, y_0)$ za koju je t = 0 na funkciju y = y(x) zadanu parametarski:

$$x(t) = 2 + t + t^2 - \ln(t^2 + 1), \quad y(t) = 1 + 4t + t^3 - \arctan(t); \quad [postupak \rightarrow \text{OKLIKNI}]$$
.

Zadatak 8.11 — ZI 03.02.2020. (i) Odredite interval [a,b] i točku $c \in \langle a,b \rangle$ takvu da za funkciju $f(x) = \operatorname{sh}^2(x)$ vrijedi Rolleov teorem; [postupak \rightarrow **KLIKNI** \bigcirc].

(iii) Odredite interval [a,b] i točku $c \in \langle a,b \rangle$ takvu da za funkciju $f(x) = x^2 - 3x + 5$ vrijedi Lagrangeov teorem srednje vrijednosti; [postupak $\rightarrow \bigcirc$ KLIKNI \bigcirc].

Zadatak 8.12 Odredite i skicirajte Taylorove polinome $T_n(x)$ za sljedeće funkcije f(x) u okolini zadane točke x_0 za naznačene $n \in \mathbb{N}$:

- a) $f(x) = x^3 + x^2 + 1, x_0 = 1, n = 0, 1, 2, 3;$
- **b)** $f(x) = \sin^2(3x), x_0 = 0, n = 0, 1, 2, 3, 4;$
- c) $f(x) = \frac{\ln x}{x}, x_0 = 1, n = 0, 1, 2, 3.$

Zadatak 8.13 Naći drugi Taylorov polinom $T_2(x)$ oko točke (9,3) funkcije y = y(x) koja je zadana implicitno:

$$y + \ln(x/y^2) = 3.$$

Zadatak 8.14 a) Naći drugi Taylorov polinom $T_2(x)$ oko točke (0,0) na funkciju y = y(x) koja je zadana parametarski:

$$x(t) = t^2 - 3t + 2$$
, $y(t) = t^2 - 5t + 6$.

b) Pokazati da je:

$$T_2(x) = \frac{1}{2^7} + \frac{7}{2^7}(x-2) + \frac{35}{2^8}(x-2)^2$$

drugi Taylorov polinom funkcije y = y(x) oko točke $(2, 1/2^7)$ gdje je funkciju y = y(x) zadana parametarski:

$$x(t) = 1 + \sqrt{t}, \ y(t) = \left(\frac{t}{1+t}\right)^{7}.$$

Zadatak 8.15 Korištenjem l'Hospitalovog pravila odrediti limese:

- a) $\lim_{x\to 0} x \left(e^{\sinh(2/x)} 1 \right)$;
- **b**) $\lim_{x\to 0} \frac{\sqrt{x^2+3}(e^{2x}-x-1)}{\sin(2x)}$;
- c) $\lim_{x\to 2} [\ln(2-x/2) \operatorname{tg}(\pi x/4)];$
- **d**) $\lim_{x \to 1} (\cos(2\pi x))^{\operatorname{tg}(\pi x/2)};$
- e) $\lim_{x\to 0} \frac{3^x 3^{-x}}{x}$.

8.7 RJEŠENJA ZA VJEŽBE I ZADATKE

8.7.1 Rješenja za vježbe iz poglavlja 8.

Rješenja za vježbe iz poglavlja 8 osim za one vježbe u kojima su rješenja već napisana:

Vježba 8.1: grafovi od f(x) = |x| i f(x) = -|x|:

Vježba 8.2: "karo".

Vježba 8.3:
$$f_1(x) = q + \sqrt{r^2 - (x-p)^2}$$
, $f_2(x) = q - \sqrt{r^2 - (x-p)^2}$.

Viežba 8.4

1.
$$y'(x) = \frac{\pi \cos(\pi x) - 6x}{2y + 3}, y''(x) = \frac{-2y'^2 - \pi^2 \sin(\pi x) - 6}{2y + 3},$$

 $y'(1, -3) = \frac{\pi}{3} + 2, y''(1, -3) = \frac{2}{3}(\pi/3 + 2)^2 + 2;$

2.
$$y'(1,0) = -4$$
, $y''(1,0) = -45$;

3.
$$y'(1,1) = -1/4, y''(1,1) = 922/121.$$

Vježba 8.5:

1.
$$y'(x) = \frac{2t^2+3t}{t-1}, y''(x) = \frac{2t^3-4t^2-3t}{(t-1)^3};$$

2.
$$y'(x) = \frac{4}{3} \cdot \left(\frac{2-t}{t+3}\right)^2$$
, $y''(x) = -\frac{40}{9} \cdot \left(\frac{2-t}{t+3}\right)^3$;

3.
$$y'(x) = -2$$
; $y''(x) = 0$.

Vježba 8.6:
$$y'(x) = -\operatorname{ctg}(t), y''(x) = -\frac{1}{r\sin^3 t}.$$

Vježba 8.7:
$$y'(x) = -\frac{b}{a}\operatorname{ctg}(t), y''(x) = -\frac{b}{a^2\sin^3 t}.$$

Vježba 8.8: $A > 0 \implies x_T$ je točka minimuma od f(x) na S, ali $A < 0 \implies x_T$ je točka maksimuma od f(x) na S.

Vježba 8.11:

1.
$$f'(x) = 0 \implies x^2 + 2x - 3 = 0$$
; stacionarne točke od $f(x)$ su: $x_1 = -3, x_2 = 1$;

2.
$$f'(x) = 0 \implies \cos x = 1/2$$
; stacionarne točke od $f(x)$ su: $x_k = \pi/3 + 2k\pi, k \in \mathbb{Z}$;

3.
$$f'(x) = 0 \implies 2xe^{-x^2}(1-x^2) = 0$$
; stacionarne točke od $f(x)$ su: $x_1 = -1, x_2 = 1$;

4. stacionarna točka od f(x) je: $x_1 = \sqrt{2}$; primjetimo da točka $x_1 = -\sqrt{2}$ isto zadovoljava jednadžbu f'(x) = 0, ali ona nije u domeni zadane funkcije f(x);

5. stacionarne točke od
$$f(x)$$
 su: $x_1 = 1$ i $x_2 = 4$.

6. stacionarne točke od
$$f(x)$$
 su: $x_1 = -\sqrt{\frac{1+\sqrt{17}}{2}}$ i $x_2 = \sqrt{\frac{1+\sqrt{17}}{2}}$.

Vježba 8.12: (naputak - prvi način, primjenom Fermatovog teorema, a drugi način, izračunamo f'(x) i pokažemo da je f'(2) = 0).

Vježba 8.15:

1.
$$a = -1, b = 1, c = 0 \in \langle a, b \rangle$$
, $ch(-1) = ch(1), f'(x) = sh(x), f'(0) = 0$;

2. za svaki
$$a > 0$$
, $c = 0 \in \langle -a, a \rangle$, $f(-a) = f(a)$, $f'(0) = 0$.

1.
$$e^6 - e^0 = 3e^{3c}(2-0) \implies c = \frac{1}{3}\ln\frac{e^6 - 1}{6} \in (0,2);$$

1.
$$e^6 - e^0 = 3e^{3c}(2 - 0) \implies c = \frac{1}{3}\ln\frac{e^6 - 1}{6} \in \langle 0, 2 \rangle;$$

2. $\ln(15) - \ln(5) = \frac{1}{c}(3 - 1) \implies c = \frac{2}{\ln(3)} \in \langle 1, 3 \rangle;$

3.
$$\sin \pi - \sin 0 = (\cos c)(\pi - 0) \implies c = \pi/2 \in \langle 0, \pi \rangle$$
.

Viežba 8.21:

1.
$$T_n(x) = \sum_{k=0}^n \frac{2^k}{k!} \cdot x^k;$$
 2. $T_n(x) = \sum_{k=0}^n (-1)^{k+1} \frac{(x-1)^k}{k};$ **3.** $T_n(x) = \sum_{k=1}^n \frac{3^{2k}}{(2k)!} \cdot x^{2k};$

4.
$$T_3(x) = 11 + 8(x-2) + 5(x-2)^2 + (x-2)^3$$
.

Vježba 8.24:
$$T_3(x) = x - x^3$$
, $\arctan(1/2) \approx T_3(1/2) = 11/24$.

Viežba 8.23:

1.
$$T_4(x) = 1 - x^2/2! + x^4/4!$$
, $\cos(1) \approx T_4(1) = 13/24$, $|\cos(1) - T_4(1)| = |R_4(1)| \le 1/5!$;

2.
$$T_2(x) = 6 + \frac{1}{12}(x - 36) - \frac{1}{8 \cdot 6^3}(x - 36)^2$$
, $\sqrt{35} \approx T_2(35) = 6 - \frac{1}{12} - \frac{1}{8 \cdot 6^3}$.

Rješenja za zadatke iz poglavlja 8.6. 8.7.2

Zadatak 8.1: a)
$$y'_T = \frac{4}{16+\pi}$$
; b) $y'_T = 4$.

Zadatak 8.2:
$$y'(x_0) = y'(-2) = 12$$
.

Zadatak 8.3:
$$y = -3x + 3$$
.

Zadatak 8.4:
$$y - 1 = \frac{\sqrt{3}}{4\sqrt{3} + 3}(x - \sqrt{3}) = \frac{1}{4 + \sqrt{3}}(x - \sqrt{3}).$$

Zadatak 8.5:
$$t....y - 1 = -x$$
, $n....y - 1 = x$.

Zadatak 8.6:
$$t.... y = x/\pi - 1$$
.

Zadatak 8.7: naputak: $y'(x) = -\frac{2}{3}e^{x-y}$, $y''(x) = -\frac{2}{3}e^{x-y}(1-y')$.

Zadatak 8.8:

a)
$$y'(x) = tg(t), y''(x) = \frac{\sin t}{\cos^3 t(\cos t - \sin t)};$$

b)
$$y'(x) = 14t^6 \cdot \frac{\sqrt{t}}{(1+t)^8}, y''(x) = 14t^6 \cdot \frac{13-3t}{(1+t)^9}.$$

Zadatak 8.9: $y = x - 2\sqrt{2}\pi$.

Zadatak 8.12:

a)
$$T_3(x) = 3 + 5(x - 1) + 4(x - 1)^2 + (x - 1)^3;$$

b) $T_4(x) = 9x^2 - 27x^4;$

b)
$$T_4(x) = 9x^2 - 27x^4$$
;

c)
$$T_3(x) = (x-1) - 3(x-1)^2 + 11(x-1)^3$$
.

Zadatak 8.13:
$$T_2(x) = 3 - \frac{1}{3}(x-9) - \frac{1}{54}(x-9)^2$$
.

Zadatak 8.14-a): točka (0,0) odgovara parametru t=2, $y'(x)=\frac{2t-5}{2t-3},$ $y''(x)=\frac{4}{(2t-3)^3},$ $T_2(x) = 2x^2 - x.$

Zadatak 8.15: a) $L = \infty$; b) $L = \sqrt{3}/2$; c) $L = 2/\pi$; d) L = 1; e) $L = 2 \ln 3$.

