TDAB01 Sannolikhetslära och Statistik

Jose M. Peña IDA, Linköpings Universitet

Föreläsning 9

Översikt

- **▶** Hypotesttest
- ► Z-test
- ► T-test
- χ^2 -test för populationsvarians
- $ightharpoonup \chi^2$ -test för modellutvärdering

Hypotestest

 Exempel 1. Genomsnittshastigheten på ditt bredband är sämre än leverantören utlovat.

Nollhypotes : $H_0 : \mu \ge 8 \text{ Mbit/s}$

Alternativhypotes: $H_A: \mu < 8 \text{ Mbit/s}$

Exempel 2. En ny medicin påverkar blodtrycket.

 $\textbf{Nollhypotes}:\, \textit{H}_{0}: \mu = 0$

Alternativhypotes: $H_A: \mu \neq 0$

Exempel 3. En UI-förändring ökar andelen nöjda användare.

Nollhypotes: $H_0: p \le p_0$

Alternativhypotes: $H_A: p > p_0$

► Exempel 4. Andelen KD-väljare är under 4%-spärren.

Nollhypotes: $H_0: p \ge 0.04$

Alternativhypotes: $H_A : p < 0.04$

Hypotestest

▶ Tvåsidigt test förkastar H_0 om μ är större eller mindre än μ_0

Nollhypotes : H_0 : $\mu = \mu_0$

Alternativhypotes: $H_A: \mu \neq \mu_0$

Ensidigt test

Nollhypotes : H_0 : $\mu \le \mu_0$

Alternativhypotes: $H_A: \mu > \mu_0$

eller

Nollhypotes : $H_0: \mu \ge \mu_0$

Alternativhypotes: $H_A: \mu < \mu_0$

Ensidiga test skrivs ibland så här (det ger samma resultat):

Nollhypotes : H_0 : $\mu = \mu_0$

Alternativhypotes: $H_A: \mu < \mu_0$

Steg vid hypotestest

- 1. Välj teststatistika, $T = T(X_1, ..., X_n)$.
- 2. Beräkna **nollfördelningen** för T, dvs samplingfördelningen F_0 för T om H_0 är sann.
- 3. Bestäm förkastningsregionen \mathcal{R} i nollfördelningen så att $P(T \in \mathcal{R}|H_0) = \alpha$.
- 4. Förkasta H_0 på signifikansnivån α om $T_{obs} \in \mathcal{R}$, där T_{obs} är det observerade värdet på T.

- H₀ gäller populationen. Då, H₀ är sann eller ej. Då, acceptera H₀ betyder inte att H₀ är sann med sannolikhet 1 α. Det betyder att stickprovet stödjer H₀ tillräckligt för att inte förkasta den.
- ▶ Se Example 9.25 i Baron.

Hypotestest fel

► Typ I fel

$$\alpha = P(F\"{o}rkasta H_0|H_0 \ddot{a}r sann)$$

Vi vill kontrollera att α hålls på en förbestämd låg nivå.

► Typ II fel

$$P(Acceptera H_0|H_0 \text{ är falsk})$$

	Acceptera H_0	Förkasta H_0
H ₀ sann	Korrekt beslut	Typ I fel
H_A sann	Typ II fel	Korrekt beslut

- **Styrka** (power): $P(F\"{o}rkasta H_0|H_A \ddot{a}r sann) = 1 typ II fel.$
- ▶ Rent formellt, förkastar man H₀ eller ej. Man aldrig accepterar den.

Steg vid hypotestest

- ▶ Allmänt: H₀ vs H_A
 - 1. Välj teststatistika, $T = T(X_1, ..., X_n)$.
 - 2. Beräkna **nollfördelningen** för T, dvs samplingfördelningen för T om H_0 är sann.
 - 3. Bestäm förkastningsregionen \mathcal{R} i nollfördelningen så att $P(T \in \mathcal{R}|H_0) = \alpha$.
 - 4. Förkasta H_0 på signifikansnivån α om $T_{obs} \in \mathcal{R}$, där T_{obs} är det observerade värdet på T.
- ▶ Bernoulliexempel: $H_0: p \le 0.6$ vs $H_A: p > 0.6$.
 - 1. **Teststatistika**, $T = S = \sum_{i=1}^{n} X_i$.
 - 2. Nollfördelningen för $T: \sum_{i=1}^{n} X_i \sim Bin(n, 0.6)$.
 - 3. Låt α = 0.05. Då, qbinom(p=0.05,size=100,prob=0.6, lower.tail=F) ger \mathcal{R} = [68,100] ungefär.
 - 4. Säg T_{obs} = 70. Då, T_{obs} \in \mathcal{R} och $H_0: p \le 0.6$ förkastas på signifikansnivån 0.05.

Z-test

- Z-test används när nollfördelningen är normalfördelad, dvs samplingfördelningen för teststatistikan om H₀ är sann är normalfördelad.
 - Exempel 1. $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$ och

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$

- Exempel 2. CLT.
- Ensidigt Z-test: $H_0: \mu = \mu_0$ och $H_A: \mu > \mu_0$.

$$\begin{cases} \text{F\"orkasta } H_0 & \text{om } Z \geq z_{\alpha} \\ \text{Acceptera } H_0 & \text{om } Z < z_{\alpha} \end{cases}$$

▶ Tvåsidigt *Z*-test: $H_0: \mu = \mu_0$ och $H_A: \mu \neq \mu_0$.

$$\begin{cases} \text{F\"orkasta } H_0 & \text{ om } |Z| \geq z_{\alpha/2} \\ \text{Acceptera } H_0 & \text{ om } |Z| < z_{\alpha/2} \end{cases}$$

8/1

Z-test

Aterbesök Example 9.25 i Baron.

Z-test för skillnad mellan väntevärdena av två populationer

▶ Vi kan också testa om två populationer har samma väntevärde:

$$H_0: \mu_X = \mu_Y$$

$$H_A: \mu_X \neq \mu_Y$$

- Exempel: Är andelen KD-sympatisörer lika stor i Stockholm och Göteborg?
- Låt X_1, \ldots, X_n vara ett slumpmässigt stickprov från $N(\mu_X, \sigma^2)$.
- Låt Y_1, \ldots, Y_m vara ett slumpmässigt stickprov från $N(\mu_Y, \sigma^2)$.
- Obs. båda populationerna har samma varians.
- ▶ **Teststatistika**: $\bar{X} \bar{Y}$. Samplingfördelning under H_0 ?
 - Linjärkombination av normalvariabler är normalfördelade, dvs $\bar{X} \bar{Y}$ är normalfördelad

 - $E(\bar{X} \bar{Y}) = \mu_X \mu_Y = 0 \text{ under } H_0.$ $Var(\bar{X} \bar{Y}) = Var(\bar{X}) + Var(\bar{Y}) = \sigma^2/n + \sigma^2/m = \sigma^2 (1/n + 1/m).$
 - Då.

$$Z = \frac{X - Y}{\sqrt{\sigma^2 \left(\frac{1}{n} + \frac{1}{m}\right)}}$$

Se Example 9.26 i Baron.

T-test

- Z-test används när nollfördelningen är normalfördelad, dvs samplingfördelningen för teststatistikan om H₀ är sann är normalfördelad.
- Om σ^2 inte är känd utan skattas med s^2 blir inte

$$\frac{\bar{X} - \mu_0}{s/\sqrt{n}}$$

längre normalfördelad utan t-**fördelad** med n-1 frihetsgrader.

• Och z_{α} blir istället t_{α} och hämtas från Tabell A5 i Byron.

Koppling mellan hypotestest och konfidensintervall

Ett Z-test eller T-test av $H_0: \theta = \theta_0 \mod H_A: \theta \neq \theta_0$ på signfikansnivån α accepterar nollhypotesen om och endast om θ_0 ingår i ett symmetriskt $(1-\alpha)100\%$ konfidensintervall för θ .

P-värde

- Hur väljer vi α?
- Lågt α ställer mycket stora krav på bevisningen: Teststatistikan måste anta mycket stora (positiva eller negativa) värden för att vi ska kunna förkasta H₀.
- ▶ **Stort** α ställer **låga krav**: Vi förkastar H_0 baserat på väldigt lite bevis.
- Idé: Presentera resultat för alla α.
- ▶ P-värde = den lägsta signifikansnivån α där vi kan förkasta H_0 .
- Alternativ definition: Sannolikheten att få en teststatistika som är lika extrem eller ännu mer extrem än T_{obs}.
- Exempel: Ensidigt Z-test. Då,

$$p$$
-värde = $P(Z \ge Z_{obs})$

► Se Example 9.38 i Baron.

χ^2 -test for populationsvarians

Väntevärdesriktig estimator av σ^2

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

▶ **Samplingfördelning** för s^2 om $X_1, ..., X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$

$$\frac{(n-1)s^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \bar{X}}{\sigma}\right)^2 \sim \chi_{n-1}^2$$

- χ^2 -fördelningen kan användas för konfidensintervall och hypotestest för σ^2 . Se Sections 9.5.2 och 9.5.3 i Baron.
- * $\chi^2_{1-\frac{\alpha}{2}}$ och $\chi^2_{\frac{\alpha}{2}}$ hämtas från Tabell A6 i Baron. Obs. båda behövs eftersom χ^2_{ν} -fördelningen är **inte symmetrisk**.
- χ^2 (Chi-två) fördelningen med ν frihetsgrader

$$f(x) = \frac{1}{2^{\nu/2}\Gamma(\nu/2)}x^{\nu/2-1}e^{-x/2}, \quad x > 0$$

• Om $X \sim \chi^2_{\nu}$ så gäller

$$\mathbb{E}(X) = \nu \text{ och } Var(X) = 2\nu$$

• $\chi^2_{
u}$ -fördelningen är ett specialfall av gamma: Gamma(
u/2,1/2).

χ^2 goodness of fit test

- Antag att populationen har följande diskreta fördelning F_0 , dvs $P(X = 1) = p_1, P(X = 2) = p_2, ..., P(X = m) = p_m.$
- Om du har observerat n observationer så förväntar du dig $n \cdot p_k$ observationer där X = k.
- Låt Exp(k) beteckna förväntat antal observationer med värde k om F₀ är en korrekt populationsmodell.
- ▶ Låt *Obs*(*k*) beteckna faktiskt antal observationer med värde *k*.

χ^2 goodness of fit test

χ²-statistika

$$\chi^2 = \sum_{k=1}^m \frac{\left[Obs(k) - Exp(k)\right]^2}{Exp(k)}$$

- Om χ^2 är för stort så drar vi slutsatsen att data inte kommer från populationen med fördelningen F_0 ovan.
- Men hur stort är för stort ? Jämför med samplingfördelningen för χ² under H₀: F = F₀ mot Hₐ: F ≠ F₀.
- ▶ Vid stora stickprov följer χ^2 -statistikan en χ^2 -fördelning med m-1 frihetsgrader, om Exp(k) > 5 för alla k.
- Vi kan även testa om data kommer från $F_0(\theta)$ där θ är en **okänd** parameter som skattas med en konsistent estimator. Då, χ^2 -statistikan följer en χ^2 -fördelning med m-d-1 frihetsgrader där d är dimensionen av θ . **Hela fördelningsfamiljen** testas på en gång. Se Section 10.1.2 i Baron.
- ▶ Kontinuerliga fördelningar kan hanteras genom diskretisering (men se till att Exp(k) > 5 för alla k).

Översikt

- **▶** Hypotesttest
- ► Z-test
- ► T-test
- χ^2 -test för populationsvarians
- $ightharpoonup \chi^2$ -test för modellutvärdering