Chapitre IV La couche réseau

Le plan de données

A note on the use of these Powerpoint slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- •If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- •If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

© All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved

Computer
Networking: A Top
Down Approach
7ème édition
Jim Kurose, Keith Ross
Addison-Wesley
2017

Chapitre IV: plan

4.1 introduction

- plan de données
- plan de contrôle

4.2 à l'intérieur d'un routeur

4.3 IP: Internet Protocol

- structure du datagramme
- adressage IPv4
- DHCP
- ICMP
- translation d'adresses réseaux (NAT)
- IPv6

La couche réseau

- transporte les segments de l'émetteur vers le récepteur
- côté émission: encapsule les segments en datagrammes
- côté réception: délivre les segments vers la couche transport
- les protocoles réseaux sont dans toutes les hôtes et les routeurs
- le routeur examine l'entête de tous les datagrammes IP qui le traversent

Deux fonctionnalités de la couche réseau

- transfert: déplacer les paquets d'une entrée du routeur vers la sortie appropriée
- routage: déterminer la route à prendre par les paquets de la source vers la dest.
 - algorithmes de routage

analogie: voyage

- routage: processus de planifier un voyage de la source vers la dest.
- transfert: processus de traverser un point d'interconnexion

Plan de données, plan de contrôle

Plan de données

- local
- détermine comment le datagramme qui arrive au port d'entrée est transféré au bon port de sortie
- fonction "transfert"

Plan de contrôle

- vue globale du réseau
- détermine la route (la série des routeurs) que doit prendre le datagramme de la source à la destination
- deux approches:
 - Algorithmes de routage traditionnels: implémentés dans les routeurs
 - software-defined networking (SDN): implémenté au niveau de serveurs distants

Plan de contrôle (dans chaque routeur)

Chaque routeur implémente un algorithme de routage. Les routeurs intéragissent entre eux.

Plan de contrôle (centralisé)

Un contrôleur distant interagit avec les agents de contrôle (CA) implémentés dans chaque routeur

Services de la couche réseau

Q: Quels sont les services que peut assurer la couche réseau pour le transport des datagrammes?

exemples de services par datagramme:

- * garantie de livraison
- garantie de livraison dans un délai précis

exemples de services par flux de datagrammes:

- livraison en ordre
- garantie d'un débit minimal pour le flux
- garantie de la gigue (délai entre deux paquets successifs)

Comparaison des services

arch	nitecture	modèle de	Garanties ?				info sur la	
_	réseau	services	débit	perte	ordre	délai	congestion	
	Internet	au mieux	non	non	non	non	non	
	ATM	CBR	taux constant	oui	oui	oui	pas de congestion	
	ATM	VBR	garantie	oui	oui	oui	pas de congestion	
	ATM	ABR	garantie minimum	non	oui	non	oui	
	ATM	UBR	non	non	oui	non	non	

Chapitre IV: plan

4.1 introduction

- plan de données
- plan de contrôle

4.2 à l'intérieur d'un routeur

4.3 IP: Internet Protocol

- structure du datagramme
- adressage IPv4
- DHCP
- ICMP
- translation d'adresses réseaux (NAT)
- IPv6

Architecture d'un routeur

Deux fonctions principales:

- exécuter un algorithme de routage (RIP, OSPF, BGP)
- transférer des datagrammes (entrée vers sortie)

Fonctionnement du port d'entrée

couche liaison:

ex., Ethernet

commutation décentralisée:

- en utilisant l'adresse de dest., et la table de routage, il trouve le port de sortie « match and action »
- objectif: compléter le traitement du port d'entrée rapidement 'line speed'
- mise en file: si les paquets arrivent plus rapidement que le taux de transfert vers le commutateur
 La couche réseau 4-12

Transfert selon la destination

		— Table d	le transfert —	
Intervalle d	Interface			
11001000 à	00010111	00010000	0000000	0
-	00010111	00010111	11111111	O
11001000 à	00010111	00011000	0000000	1
	00010111	00011000	11111111	•
11001000 à	00010111	00011001	0000000	2
<u> </u>	00010111	00011111	11111111	4
sinon				3

Transfert selon la destination

Règle du plus long préfixe

L'entrée dans la table de tranfert qui correspond à la destination est celle qui partage le plus long préfixe avec l'adresse de destination

Intervalle d'adresses de destination	Interface
11001000 00010111 00010*** *****	0
11001000 00010111 00011000 ******	1
11001000 00010111 00011*** ******	2
sinon	3

exemples:

DA: 11001000 00010111 00010110 10100001

DA: 11001000 00010111 00011000 10101010

Quel interface?

Quel interface?

Network Layer: Data Plane 4-14

Commutateur

- transférer le paquet du buffer d'entrée vers le buffer de sortie approprié
- * taux (vitesse) de commutation: taux selon lequel les paquets passent de l'entrée à la sortie
- trois types de commutateurs

Commutation par mémoire

Les routeurs de l'ère génération:

- des ordinateurs traditionnels avec une commutation sous contrôle directe de la CPU
- le paquet est copié dans le mémoire du système
- la vitesse est limitée par la bande du mémoire (2 traversées du bus par datagramme)

Commutation par le bus

- le datagramme se déplace du mémoire du port d'entrée au mémoire du port de sortie à travers un bus partagé
- contention dans le bus: la vitesse de commutation est limitée par la bande du bus
- bus de 32 Gbps, Cisco 5600: vitesse suffisante pour les routeurs des entreprises et d'accès

Commutation par un réseau d'interconnexion

- contourne les limitations de la bande du bus
- réseaux banyan, crossbar, d'autres réseaux d'interconnexions initialement développés pour connecter des processeurs
- conception avancée : fragmenter le datagramme en des cellules de taille fixe, commuter les cellules à travers la fabrique.
- Cisco I 2000: commutent 60 Gbps à travers un réseau d'interconnexion

Mise en file à l'entrée

bloqué

- si le commutateur est plus lent -> mise en file aux ports d'entrées
 - délai et perte à cause du débordement des tampons d'entrée!
- blocage en tête de ligne: les datagrammes en tête d'une file d'attente ne permettent pas le services des autres

Port de sortie

- mise en tampon: exigé lorsque le taux d'arrivée à partir du commutateur est plus grand que le taux de transmission >> perte
- * ordonnancement choisir le datagramme à envoyer → comment?

Mise en file à la sortie

- mise en mémoire quand le taux d'arrivée via le commutateur dépasse la vitesse de sortie
- possiblement: attente (délai) et perte due à la surcharge de tampon de sortie!

Mécanismes d'ordonnancement

- Ordonnancement: choisir le prochain paquet à envoyer
- Ordonnancement FIFO (first in first out): choisir selon l'ordre d'arrivée à la file
 - politique d'élimination: si un paquet arrive à une file déjà pleine: quel paquet éliminer?
 - tail drop: éliminer le paquet qui vient d'arriver
 - priorité: éliminer selon la priorité
 - random: éliminer aléatoirement

Ordonnancement par priorité

Envoyer le paquet qui dispose de la plus haute priorité

- Plusieurs classes, avec différentes priorités
 - Différencier les classes par un marquage ou une information au niveau de l'en-tête IP

Autres mécanismes d'ordonnancement

Ordonnancement Round Robin (RR):

- Plusieurs classes
- vérifier les files d'une manière cyclique et envoyer un paquet de chaque classe (si disponible)

Network Layer: Data Plane 4-24

Autres mécanismes d'ordonnancement

Weighted Fair Queuing (WFQ):

- généralisation du Round Robin
- chaque classe reçoit un service proportionnel à son poids durant chaque cycle

Network Layer: Data Plane 4-25

Chapitre IV: plan

4.1 introduction

- plan de données
- plan de contrôle

4.2 à l'intérieur d'un routeur

4.3 IP: Internet Protocol

- structure du datagramme
- adressage IPv4
- DHCP
- ICMP
- translation d'adresses réseaux (NAT)
- IPv6

La couche réseau de l'Internet

fonctions de la couche réseau:

Format du datagramme IP

version du protocole 32 bits taille totale du datagramme taille de l'en-tête head. type of length (octets) service len pour "type" de données fragment 16-bit identifier | flgs fragmentation/ offset réassemblage nombre max des sauts time to upper header (restant, décrémenter layer live checksum à chaque routeur) 32 bit source IP address 32 bit destination IP address protocole de couche supérieure options (au besoin) taille des en-têtes? 20 octets de TCP data 20 octets de IP = 40 octets + entête application

Fragmentation IP, réassemblage

- Un lien réseau a un MTU (max. transfer unit size) – taille maximale du datagramme.
 - différents types de liens, différents MTUs
- Un datagramme IP large est divisé ("fragmenté") dans le réseau
 - le datagramme devient plusieurs
 - "réassemblage" à la dest. finale seulement
 - les bits d'entête IP sont utilisés pour identifier les fragments

Fragmentation IP, réassemblage

exemple:

- datagramme de 4000 octets
- MTU = 1500 octets

taille	ID	fragflag	offset	
=4000	=X	=0	=0	

un grand datagramme est divisé en plusieurs petits datagrammes

taille	ID	fragflag	offset	
=1500	=x	=1	=185	

taille	ID	fragflag	offset	
=1040	=x	=0	=370	

Chapitre IV: plan

4.1 introduction

- plan de données
- plan de contrôle

4.2 à l'intérieur d'un routeur

4.3 IP: Internet Protocol

- structure du datagramme
- adressage IPv4
- DHCP
- ICMP
- translation d'adresses réseaux (NAT)
- IPv6

Adressage IP: introduction

- adresse IP: identificateur d'interface de 32 bits
- interface: connexion entre l'équipement et le lien physique
 - un routeur en possède plusieurs
 - un hôte en possède très souvent un à deux
- une adresse IP associée à chaque interface

Sous-réseaux

*adresse IP:

- les bits les plus significatifs – sous réseau
- les bits les moins significatifs – hôtes

* un sous-réseau ?

- les interfaces qui ont la même partie sousréseau dans leurs adresses IP
- peuvent physiquement communiquer sans l'intervention d'un routeur

un réseau de 3 sous-réseaux

Sous-réseaux

méthode

- pour déterminer les sous-réseaux, détacher chaque interface de sa machine ou routeur, en créant des iles de réseaux isolés
- chaque réseau isolé est un sous-réseau

223.1.3.0/24

le masque: /24

Sous-réseaux

Combien de sousréseaux?

Adressage IP: CIDR

CIDR: Classless InterDomain Routing

- La partie d'adressage sous réseau est de taille arbitraire
- Le format de l'adresse: a.b.c.d/x, où x est le # de bits dans la partie sous réseau de l'adresse

200.23.16.0/23

Adresses IP: comment en obtenir une?

Q: comment obtenir une adresse IP?

- stocker dans un fichier
 - Windows: control-panel->network->configuration->tcp/ip->properties
 - UNIX: /etc/rc.config
- DHCP: Dynamic Host Configuration Protocol: dynamiquement à partir d'un serveur
 - "plug-and-play"

adresses IP: comment en obtenir un?

Q: comment un réseau donne des adresses IP à ses sous-réseaux?

A: allouer des portions de son espace des adresses alloué par le fournisseur d'accès

Le bloc de ISP 1	<u> 1001000_0</u>	<u>0010111 0</u>	<u>0010000</u> (0000000	200.23.16.0/20
Organization 0	44004000	00010111	00040000	0000000	200 22 46 0/22
•	•		<u> </u>		200.23.16.0/23
Organisation 1			•		
Organisation 2	<u>11001000</u>	00010111	<u>0001010</u> 0	0000000	200.23.20.0/23
Organisation 7	11001000	00010111	00011110	00000000	200.23.30.0/23

Adressage hiérarchique

Intervalle FAI	11001000 00010111	<u>0001</u> 0000	00000000	200.23.16.0/20
Organization 0	<u>11001000 00010111</u>	<u>0001000</u> 0	0000000	200.23.16.0/23
Organization 1	<u>11001000 00010111</u>	<u>0001001</u> 0	0000000	200.23.18.0/23
Organization 2	<u>11001000 00010111</u>	<u>0001010</u> 0	0000000	200.23.20.0/23
Organization 7	<u>11001000 00010111</u>	<u>0001111</u> 0	00000000	200.23.30.0/23

Adressage hiérarchique

L'adressage hiérarchique permet une diffusion efficace des info de routage:

Adressage hiérarchique

FAI2 a une route spécifique vers Organisation I

Chapitre IV: plan

4.1 introduction

- plan de données
- plan de contrôle

4.2 à l'intérieur d'un routeur

4.3 IP: Internet Protocol

- structure du datagramme
- adressage IPv4
- DHCP
- ICMP
- translation d'adresses réseaux (NAT)
- IPv6

DHCP: Dynamic Host Configuration Protocol

objectif: permettre à l'hôte d'obtenir une adresse IP d'un serveur quand il rejoint le réseau

- peut renouveler son usage d'adresse
- permet la réutilisation d'adresses (seulement monopoliser l'adresse quand il est connecté)
- supporte des usagers mobiles qui veulent rejoindre des réseaux (brièvement)

DHCP:

- l'hôte diffuse "DHCP discover"
- le serveur DHCP réponds par "DHCP offer"
- l'hôte demande l'adresse IP : "DHCP request"
- le serveur DHCP envoie l'adresse: "DHCP ack"

Scénario DHCP

Scénario DHCP

DHCP

DHCP peut retourner plus que seulement des adresses IP allouées aux sous-réseaux :

- Adresse du premier routeur pour un client
- Nom et adresse IP d'un serveur DNS
- Le masque réseau (indiquant la partie adresse réseau vs hôte)

DHCP: exemple

- connecter un ordi qui a besoin d'une @IP, @ du premier routeur, @ du serveur DNS : utilise DHCP
- la requête DHCP est encapsulé en UDP, encapsulé en IP, encapsulé en Ethernet 802. I
- la trame Ethernet décapsulé à IP, décapsulé à UDP, décapsulé à DHCP

DHCP: exemple

- le serveur DHCP envoie un Ack DHCP qui contient une adresse IP, l'adresse IP du premier routeur, nom & adresse IP du serveur DNS
- encapsulation du serveur DHCP, transfert de la trame vers le client,
- décapsuler jusqu'au DHCP chez le client
- le client connait maintenant son adresse IP, le nom et l'adresse IP du serveur DNS, l'adresse IP du premier routeur

DHCP: Wireshark (LAN maison)

Message type: **Boot Request (1)**

Hardware type: Ethernet Hardware address length: 6

Hops: 0

requête Transaction ID: 0x6b3a11b7

Seconds elapsed: 0

Bootp flags: 0x0000 (Unicast) Client IP address: 0.0.0.0 (0.0.0.0) Your (client) IP address: 0.0.0.0 (0.0.0.0) Next server IP address: 0.0.0.0 (0.0.0.0) Relay agent IP address: 0.0.0.0 (0.0.0.0)

Client MAC address: Wistron_23:68:8a (00:16:d3:23:68:8a)

Server host name not given Boot file name not given Magic cookie: (OK)

Option: (t=53,l=1) **DHCP Message Type = DHCP Request**

Option: (61) Client identifier

Length: 7: Value: 010016D323688A:

Hardware type: Ethernet

Client MAC address: Wistron 23:68:8a (00:16:d3:23:68:8a)

Option: (t=50,l=4) Requested IP Address = 192.168.1.101

Option: (t=12,l=5) Host Name = "nomad" **Option: (55) Parameter Request List**

Length: 11; Value: 010F03062C2E2F1F21F92B

1 = Subnet Mask; 15 = Domain Name 3 = Router: 6 = Domain Name Server 44 = NetBIOS over TCP/IP Name Server

Message type: Boot Reply (2) Hardware type: Ethernet Hardware address length: 6

réponse

Hops: 0

Transaction ID: 0x6b3a11b7

Seconds elapsed: 0

Bootp flags: 0x0000 (Unicast)

Client IP address: 192.168.1.101 (192.168.1.101)

Your (client) IP address: 0.0.0.0 (0.0.0.0)

Next server IP address: 192.168.1.1 (192.168.1.1)

Relay agent IP address: 0.0.0.0 (0.0.0.0)

Client MAC address: Wistron 23:68:8a (00:16:d3:23:68:8a)

Server host name not given Boot file name not given

Magic cookie: (OK)

Option: (t=53,I=1) DHCP Message Type = DHCP ACK

Option: (t=54,l=4) **Server Identifier = 192.168.1.1** Option: (t=1,l=4) Subnet Mask = 255.255.255.0

Option: (t=3,l=4) Router = 192.168.1.1

Option: (6) Domain Name Server

Length: 12; Value: 445747E2445749F244574092;

IP Address: 68.87.71.226: IP Address: 68.87.73.242: IP Address: 68.87.64.146

Option: (t=15,l=20) Domain Name = "hsd1.ma.comcast.net."

ICMP: internet control message protocol

*	utilisé par les nœuds pour communiquer des info de la couche 3	Type 0	Code 0	description echo reply (ping)
		3	0	dest. network unreachable
	 rapports d'erreurs: hôte non accessible, réseau, 	3	1	dest host unreachable
	port, protocole	3	2	dest protocol unreachable
	écho requête/réponse	3	3	dest port unreachable
	(utilisé par ping)	3	6	dest network unknown
*	au niveau réseau mais il est	3	7	dest host unknown
	"au dessus" de IP:	4	0	source quench (congestion
	 les msgs ICMP sont 			control - not used)
	portés dans un datagramme IP	8	0	echo request (ping)
	massage ICMP: type code	9	0	route advertisement
*	plus les premiers 8 octets du	10	0	router discovery
	message ICMP: type, code plus les premiers 8 octets du datagramme IP causant	11	0	TTL expired
	l'erreur	12	0	bad IP header

Chapitre IV: plan

4.1 introduction

- plan de données
- plan de contrôle

4.2 à l'intérieur d'un routeur

4.3 IP: Internet Protocol

- structure du datagramme
- adressage IPv4
- DHCP
- ICMP
- translation d'adresses réseaux (NAT)
- IPv6

Tous les datagrammes quittant le réseau local ont la même adresse IP source NAT: 138.76.29.7, numéros de port source différents

Les datagrammes avec source ou destination dans ce réseau Ont l'adresse 10.0.0/24 pour la source, destination (comme d'hab.)

motivation: le réseau local utilise seulement une adresse IP pour l'extérieur:

- la plage des adresses non nécessaires pour le FAI: juste une adresse IP pour tous les équipements
- peut changer les adresses des équipements dans un réseau local sans en informer l'extérieur
- peut changer le FAI sans changer les adresses dans le réseau local
- les équipements dans le réseau local ne sont pas explicitement adressables, ni visible par l'extérieure (meilleure sécurité)

implémentation: le routeur NAT doit:

- Datagrammes sortants: remplacer (adresse IP source, # port) de chaque datagramme à (adresse IP NAT, nouveau # port)
 ... les clients/servers distants répondent en utilisant (adresse IP NAT, nouveau # port) comme adresse de destination
- Se rappeler (en utilisant la table de translation NAT) chaque paire de translation (adresse IP source, # port) à (adresse IP NAT, nouveau # port)
- Datagrammes entrants: remplacer (adresse IP NAT, nouveau # port) dans le champ dest. de chaque datagramme entrant avec la valeur (adresse IP source, # port) correspondante stockée dans le tableau NAT

- 16-bit champ du numéro de port :
 - 60,000 connexions simultanées avec une seule adresse LAN!
- la NAT est controversée :
 - les routeurs doivent traiter seulement jusqu'à la couche 3
 - le manque d'adresses doit être résolue par IPv6
 - la NAT ne respecte pas le principe de bout-en-bout
 - La possibilité NAT doit être prise en compte par les concepteurs d'app., ex., applications P2P
 - NAT traversable: et si le client veut se connecter avec un serveur derrière un NAT?

Chapitre IV: plan

4.1 introduction

- plan de données
- plan de contrôle

4.2 à l'intérieur d'un routeur

4.3 IP: Internet Protocol

- structure du datagramme
- adressage IPv4
- DHCP
- ICMP
- translation d'adresses réseaux (NAT)
- IPv6

IPv6: motivation

- motivation initiale: l'espace d'adresses de 32-bit sera complétement allouée bientôt.
- motivation additionnelles :
 - Le format de l'entête devra aider à accélérer le traitement/transfert
 - L'entête devra faciliter la QoS

format de datagramme IPv6 :

- Entête de taille fixe de 40 octets
- Pas de fragmentation possible

Format de datagramme IPv6

priorité: identifier la priorité des datagrammes d'un flux étiquette de flux: identifier les datagrammes du même "flux" (le concept de "flux" n'est pas bien défini).

Prochain entête: identifier le protocole de la couche supérieure pour les données

ver	pri	étiquette de flux			
taille	des dor	nnées proch. entête hop limit			
adresse source (128 bits)					
adresse destination (128 bits)					
données					

D'autres changements vs IPv4

- checksum: enlevé pour réduire le temps fde traitement à chaque saut
- options: permises, mais à l'extérieure de l'entête, indiquées par le champ de "prochain entête"
- * ICMPv6: nouvelle version de ICMP
 - types de message additionnels, ex. "Paquet trop grand"
 - Fonctions de gestion de groupe de multicast

Transition de IPv4 à IPv6

- Les routeurs ne passeront pas tous à IPv6 simultanément
 - Comment le réseau va opérer avec un mélange de routeurs IPv4 et IPv6?
- Mise en tunnel: les datagrammes IPv6 joueront le rôle de données dans des datagrammes IPv4 pour traverser les routeurs IPv4

Mise en tunnel

Mise en tunnel

IPv6: adoption

- Google: 8% of des services accès des via IPv6
- NIST: I/3 des domaines du gouvernement US sont capables de fonctionner avec IPv6
- Très longue période de déploiement, utilise
 - 20 ans et encore!
 - les changements d'applications en 20 ans a changé énormément : WWW, Facebook, diffusion média, Skype, ...
 - pourquoi?

- Soit un datagramme de 2400 octets avec un id.
 422 sur un lien avec MTU = 700 octets
 - combien de fragments?
 - valeurs des différents champs?

- Soit le sous-réseau ayant l'adresse 128.119.40.128/26
 - combien peut-on assigner d'adresses IP?
 - donner la plage d'adresses.
- Soit le sous-réseau ayant l'adresse 128.119.40.64/26
 - diviser le sous-réseau en quatre sous-réseaux ayant chacun le même nombre d'adresses

 Soit le sous-réseau ayant l'adresse 192.1.1.0/24 qui doit être diviser en

A: 60 interfaces

■ B: 20 interfaces

C: I4 interfaces

D: ? interfaces

• E: ? interfaces

• F:? interfaces

 Soit le sous-réseau ayant l'adresse 214.97.254.0/23 qui doit être diviser en

A: 250 interfaces

B: I20 interfaces

C: I20 interfaces

D: 2 interfaces

E: 2 interfaces

• F: 2 interfaces

