PATENT ABSTRACTS OF JAPAN

(11) Publication number:

06318561 A

(43) Date of publication of application: 15 . 11 . 94

(51) Int. CI

H01L 21/266

(21) Application number: 05105433

(22) Date of filing: 06 . 05 . 93

(71) Applicant:

SHARP CORP

(72) Inventor:

HAYASHI TAKASHI

(54) MANUFACTURE OF SEMICONDUCTOR DEVICE

(57) Abstract:

PURPOSE: To form two or more kinds of regions of different densities by only one-time impurity dosing and one-time diffusion treatment on the surface of a semiconductor substrate by changing an aperture ratio of one MOS transistor formation scheduled region and the other MOS transistor formation scheduled region, using one impurity source.

CONSTITUTION: Using a photo mask 3 having openings 5 of the size A which are formed at intervals of B and openings 4 of the size A' which are formed at intervals of B', photo resist 2 is exposed. Then, the patterned mask constituted of the photo resist 2 is formed on a semiconductor substrate 1 (an aperture ratio A/B>A'/B'). Nextly, impurities 9 are closed with the photo resist 2 being used as a mask. When heat treatment is conducted, the impurities dosed through the openings 5 are diffused in a region 5a and the impurities dosed through the openings 4 are diffused in a region 4a. Due to superposition of these, the impurities are diffused to an extent of a region 6. As a result, two kinds of impurity diffusion layers 7, 8 of different densities

are formed.

COPYRIGHT: (C)1994,JPO

			r
	., ,	,	
		,	
			-
			•
			•
			-
•			

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

()

(11)特許出願公開番号

特開平6-318561

(43)公開日 平成6年(1994)11月15日

(51)Int.Cl. ⁵

識別記号

FΙ

H01L 21/266

8617-4M

H01L 21/265

M

審査請求 未請求 請求項の数1 OL (全6頁)

(21)出願番号

特願平5-105433

(22)出願日

平成5年(1993)5月6日

(71)出願人 000005049

シャープ株式会社

大阪府大阪市阿倍野区長池町22番22号

(72)発明者 林 敬司

不

(d) 鈍 物 温 皮 大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

(74)代理人 弁理士 野河 信太郎

(54)【発明の名称】半導体装置の製造方法

(57)【要約】

【目的】 半導体装置の製造工程を簡略化を図る。

【構成】 複数のMOSトランジスタを有する半導体装置の製造方法であって、基板上にマスクを形成し、該マスクに1つのMOSトランジスタ形成予定領域内においては同じサイズの複数の開口を、他のMOSトランジスタ形成予定領域内においては同じサイズであるが前記開口のサイズとは異なる複数の開口を設けたパターン化マスク2を形成し、該パターン化マスク2を介して、同一の不純物源より同時に不純物を注入し、次いで拡散処理に付すことにより不純物濃度の異なる領域を複数形成し、該不純物濃度の異なる領域毎にMOSトランジスタを形成する。

位置

40

【請求項1】 基板上にマスクを形成し、該マスクに1つのMOSトランジスタ形成予定領域内においては同じサイズの複数の開口を、他のMOSトランジスタ形成予定領域内においては同じサイズであるが前記開口のサイズとは異なる複数の開口を設けたパターン化マスクを形成し、該パターン化マスクを介して、同一の不純物源より同時に不純物を注入し、次いで拡散処理に付すことにより不純物濃度の異なる領域を複数形成し、該不純物濃度の異なる領域毎にMOSトランジスタを形成すること 10を特徴とする半導体装置の製造方法。

1

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は半導体装置の製造方法 に関する。更に詳しくは、互いに耐圧の異なる複数種類 のMOSトランジスタを同じ半導体装置に製造する場合 に使用される半導体装置の製造方法に関する。

[0002]

【従来の技術及び発明が解決しようとする課題】 互いに 耐圧の異なる複数種類のMOSトランジスタを同じ半導 20 体装置として製造する場合、半導体基板表面に2種類以上の不純物濃度の領域を形成することが必要である。そのために、図7(a)~(c)のように2種類以上のマスク材の形成が必要である。

【0003】すなわち半導体基板101にフォトマスク102を用いてフォトレジスト103を形成しそれをパターン化マスクとして不純物104をイオン注入する(図7(a))。次にフォトマスク105を用いて103とは別の領域にフォトレジスト108を形成しそれをパターン化マスクとして不純物107をイオン注入する(図7(b))。

【0004】その後熱拡散処理を行って不純物拡散層109、110が形成される(図7(c))。不純物104、107の種類及び不純物量を適切に設定することにより図7(d)のような半導体基板表面不純物濃度分布が得られる。また、特開昭第63-153817号公報あるいは特開平第3-245525号公報には、一つのトランジスタ内で不純物拡散層に濃度の勾配をもたせて耐圧の向上、あるいは、傾斜ポテンシャルの形成を行う方法が開示されている。

【0005】ここで、液晶ドライバー等の半導体装置では論理信号を処理する部分と出力信号を処理する部分とを持つため、2種類以上のトランジスタ耐圧が必要となる。一般に論理信号処理は低い電源電圧(~5V)で駆動し、トランジスタの寸法を小さくするために基板不純物濃度は比較的高く設定する必要がある。一方出力信号処理部は高い電源電圧で駆動するため基板不純物濃度は比較的低く設定する必要がある。このような半導体装置を製造する為には半導体基板表面に2種類以上の不純物濃度の領域を形成しなければならないが、上記従来技術50

では製造工程が複雑となるという問題点がある。 【0006】

【課題を解決するための手段及び作用】かくして本発明によれば、基板上にマスクを形成し、該マスクに1つのMOSトランジスタ形成予定領域内においては同じサイズの複数の開口を、他のMOSトランジスタ形成予定領域内においては同じサイズであるが前記開口のサイズとは異なる複数の開口を設けたパターン化マスクを形成し、該バターン化マスクを介して、同一の不純物源より同時に不純物を注入し、次いで拡散処理に付すことにより不純物濃度の異なる領域を複数形成し、該不純物濃度の異なる領域毎にMOSトランジスタを形成することを特徴とする半導体装置の製造方法が提供される。

【0007】この発明で形成されるパターン化マスクにおける開口は、1つのMOSトランジスタ形成予定領域で、同じサイズで複数からなる。この形成予定領域における開口の割合(以下開口比と称する)が、前記領域内に導入する不純物濃度と相関関係がある。従って、この発明では、1つの不純物源を用い、1つのMOSトランジスタ形成予定領域と他のMOSトランジスタ形成予定領域とでは、開口比を変えることにより、所望の不純物濃度差を得ようとするものである。

【0008】この目的のため、1つの形成予定領域(X)では、複数の開口を各開口が同じサイズになるように形成される。他の形成予定領域(Y)では、前記領域(X)における開口比と異ならせるため、複数の開口のそれぞれを前記の開口より大きいか又は小さくして構成される。また各領域における開口の数は、一方向につき5個以上が好ましい。次に、パターン化マスクに形成される個々の開口の形状の一例を、開口比の定義式ともに図4(a)~(e)に示すが、示された開口の形状 に本発明は限定されるものではない。開口比は、予め基板に均一に導入されている不純物の濃度及び注入する不純物の濃度を考慮して、所望の不純物濃度領域を形成するために調整することができる。本発明に使用されるパターン化マスクの開口比は、少なくとも0より大きく1より小さく、0.04~0.8が好ましい。

【0009】次に開口比と半導体基板表面の不純物濃度との関係を図5に示した。この図から開口比、予め基板に均一に導入されている不純物及び注入する不純物の濃度を調整することによって所望の不純物濃度の領域を得られることがわかる。更に、開口比とその領域内に形成されたトランジスタの耐圧との関係を図6に示す。図5からも明らかなように、所望の不純物濃度の領域を得ることができるので、それぞれのMOSトランジスタの耐圧に対応した不純物濃度を設定することができる。ここで図5及び図6の測定条件として、半導体基板として不純物濃度が 1×10^{11} cm 11 の n型シリコン基板を用いた。開口の形状として、図4(a)に示した形状を使用し、B=3 μ mに固定し、Aを調節した。また、不純物

としてホウ素を使用し、注入条件を65keV、3.0×10¹ cm⁻¹ とし、熱拡散の条件を1150 °C、25hr とした。

【0010】パターン化マスクに使用できる材料としては、フォトレジスト、熱酸化膜、CVDで積層された膜等が挙げられる。例えばマスクにフォトレジストを使用する場合、スピナー法等によって膜厚 $1\sim 2\mu m$ で塗布し、露光、現像、溶媒による除去によってパターン化マスクを形成することができる。このフォトレジストには公知のものが使用でき、ポジ型及びネガ型のいずれでもはる。使用可能である。

【0011】次に上記マスクとしてフォトレジストを使用した場合の不純物の注入方法の一例を、図1に基づいて説明する。まず基板上にマスクを積層する。本発明に使用できる基板としては、公知の基板を使用することができるが、シリコン基板を使用することが好ましい。またこの基板はあらかじめn型あるいはp型の導電型に設定されていてもよい。次に、図1(a)に示すように半導体基板1上に、間隔Bで大きさAの開口部5及び間隔B,で大きさA,の開口部4を設けたフォトマスク3を20用いて、フォトレジストを露光し、フォトレジスト2からなるパターン化マスクを形成(ただし開口比A/B>A,/B,)する。ここで、形成される不純物領域の濃度によっても相違するが、開口は2~4 μ mが好ましく、開口部AはBの0.04~0.8倍、開口部A'はB'の0.04~0.8倍が好ましい。

【0012】次に、上記フォトレジスト2をパターン化マスクとして不純物9を注入する。注入方法としては、所望の不純物濃度を実現できるならばどのような方法も使用することができる。そのような方法としては、イオ 30ン注入、気相拡散、ドープドオキサイド、分子線エピタキシー等が挙げられる。例えばイオン注入法を使用する場合、注入の条件は、形成される不純物領域の濃度によっても相違するが、 $15\sim150\,\mathrm{KeV}$ 、 $1\times10^{11}\sim5\times10^{11}$ ions/cm² が好ましい。また不純物としては、P型不純物領域を形成する場合は、ホウ素等が挙げられ、n型不純物領域を形成する場合は、リン、砒素、アンチモン等が挙げられる。

【0013】その後、1000~1150℃で熱処理を行うと、不純物が導入された部位から導入されない部位へ拡散する。すなわち開口部5から導入された不純物は5aの範囲まで拡散し、開口部4から導入された不純物は4aの範囲まで拡散する。それらの重ね合わせによって6の範囲まで不純物が拡散する(図1(b))。その結果、図7(d)と同様な図1(c)に示す半導体基板表面不純物分布をもつ2種類の濃度の均一な不純物拡散層7、8を形成することができる(図1(d))。

【0014】次に公知の方法に基づいて、素子分離領域、ソース・ドレイン領域となる不純物拡散層、ゲート酸化膜、ゲート電極を形成することによって、不純物濃 50

度の異なるMOSトランジスタを形成することができる。以上のように、複数種類のMOSトランジスタの耐圧を持つ半導体装置を製造するために半導体基板表面に2種類以上の不純物濃度の領域を形成する工程で、それぞれのMOSトランジスタの耐圧に対応した不純物濃度を設定し、それに応じて開口部の大きさを変えて上記手段のごとく不純物導入、熱拡散処理を行うことにより、1回の不純物導入、拡散処理で半導体基板表面に2種類以上の濃度の異なる領域を同時に形成することができる。

[0015]

【実施例】

実施例1

n型半導体基板に2種類の異なる耐圧をもつn型トラン ジスタを同一半導体基板に形成する場合について図2に 基づいて述べる。図2(a)にて不純物濃度1×10° cm⁻,のn型Si基板11にフォトマスク13を用いて膜 厚1~2μmのフォトレジスト12を形成し、それをパ ターン化マスクとしてホウ素からなる不純物19を65 keV、3×10''ions/cm'でイオン注入した。ここ で開口パターンには図4 (b) のパターンを使用し、B $=B'=3 \mu m$ 、 $A=2.2 \mu m$ (開口比=0.5 4)、A'=1.8 μ m (開口比=0.36) とした。 【0016】次に、パターン化マスクを除去後、熱拡散 (1150℃、25hr) によりp型不純物濃度が1.8 ×10''cm'の不純物拡散層17、p型不純物濃度が 1.0×10 cm の不純物拡散層18を形成した (図 2 (b))。この基板の表面層の表面不純物濃度の分布 を図2(c)に示した。その後、従来技術により素子分 離のための電気絶縁膜21、n型不純物拡散層24、ゲ ート酸化膜22、ゲート電極23を設けた。以上の工程 により耐圧30Vの第1のn型トランジスタ(I)と、 耐圧42Vの第2のn型トランジスタ(II)を形成するこ とができた(図2(d))。

【0017】実施例2

n型半導体基板に 2 種類の異なる耐圧をもつp型トランジスタを同一半導体基板に形成する場合について図 3 に基づいて述べる。図 3 (a) にて不純物濃度 1×10^{14} cm⁻³ on型 S i 基板 3 1 にフォトマスク 3 3 を用いて膜厚 $1\sim 2\,\mu$ mのフォトレジスト 3 2 を形成し、それをパターン化マスクとしてホウ素からなる不純物 3 9 を 6 5 kev、 3×10^{14} ions/cm⁻¹ でイオン注入した。ここで図 4 (b) のパターンを使用し、B=B⁻¹ = $3\,\mu$ m、A=1.0 μ m(開口比=1.11)、A⁻¹ = 0.7 μ m(開口比=0.05)とした。

【0018】次に、パターン化マスクを除去後、熱拡散 (1150℃、25hr)によりn型不純物濃度2.0× 10''cm'の不純物拡散層37、n型不純物濃度6.0 ×10''cm'の不純物拡散層38が形成された(図3 (b))。この基板の表面層の表面不純物濃度の分布を 5

図3 (c) に示した。その後、従来技術により素子分離のための電気絶縁膜41、p型不純物拡散層44、ゲート酸化膜42、ゲート電極43を設けた。以上の工程により耐圧-54Vの第1のp型トランジスタ(III)と、耐圧-46Vの第2のp型トランジスタ(IV)を形成することができた(図3(d))。

[0019]

【発明の効果】液晶ドライバー等の半導体装置を効率良く製造する為には、低い電源電圧(~5V)で駆動される論理信号処理部と高い電源電圧で駆動される出力信号 10処理部とを同じ半導体基板に形成するため、半導体基板表面にそれぞれの部分に最適な2種類以上の不純物濃度の領域を形成しなければならない。

【0020】従来技術では複数回の不純物の導入工程が必要だったが、本発明により1回の不純物の導入工程で同時に複数種類の不純物濃度領域を形成することが可能となり半導体装置の製造工程を簡略化出来る。

【図面の簡単な説明】

【図1】本発明の半導体装置の製造方法の概略説明図である。

【図2】本発明の実施例での半導体装置の製造方法の概略説明図である。

【図3】本発明の実施例での半導体装置の製造方法の概略説明図である。

【図4】半導体基板に選択的に不純物を導入する開口の 一例である。

【図5】開口比と半導体基板の表面層の不純物濃度との 関係を示す図である。 【図 6 】開口比とトランジスタの耐圧との関係を示す図 である。

【図7】従来の半導体装置の製造方法の概略説明図である。

【符号の説明】

1、11、31 半導体基板

2、12、32 フォトレジスト (パターン化マスク)

3、13、33 フォトマスク

4、5 開口部

) 4a、5a 不純物の注入範囲

6 不純物の拡散範囲

7、17、37 不純物拡散層

8、18、38 不純物拡散層

9、19、39 不純物

21、41 素子分離領域

22、42 ゲート酸化膜

23、43 ゲート電極

24、44 n型不純物拡散層

101 半導体基板

20 102 フォトマスク

103 フォトレジスト (パターン化マスク)

104 不純物

105 フォトマスク

107 不純物

108 フォトレジスト (パターン化マスク)

109 不純物拡散層

110 不純物拡散層

【図5】

【図6】

【図4】

不就物導入機

- --