Printed Pages: 02 Sub Code: RCA203 Roll No. Paper Id: 214235

MCA

(SEM II) THEORY EXAMINATION 2018-19 INTRODUCTION TO AUTOMATA THEORY & LANGUAGES

Time: 3 Hours Total Marks: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 7 = 14$

- Define finite automata (FA) a.
- State the difference between NFA and DFA. b.
- Write regular expression for the set of strings over $\{0,1\}$. c.
- d. State Arden's theorem.
- e. What is null and unit production?
- f. Define grammar.
- What is Turing machine? g.

SECTION B

2. Attempt any three of the following:

 $7 \times 3 = 21$

Construct a NFA to DFA that given below: a.

Where q_0 is starting state and q_3 is final state.

State\ inputs	0	1
q ₀	q 1, q 2	q1
q1	q 2	q1, q2
q ₂	q ₃	q ₀
q 3	-	q ₀

- b. Using the pumping lemma to show $L=\{a^p \mid p \text{ is a prime no. } \}$ is not regular.
- c. Reduce the following grammar to Chomsky normal form (CNF)

S→aAD

 $A \rightarrow aB/bAB$

 $B \rightarrow b$

 $D \rightarrow d$

- d. Find the language generated by a grammar $G=(\{S\},\{0,1\},\{S\rightarrow 0S1,S\rightarrow 01\},S)$
- Define a push down automata (PDA). Is the language of Deterministic PDA e. and Non - deterministic PDA same? Describe it.

SECTION C

3. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- Prove that for every NDFA accepting a language L there exist an equivalent DFA accepting the same language L.
- Using pumping lemma to show that the language $L=\{a^nb^nc^n \mid n\geq 1\}$ is not a (b) CFL.

4. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- Explain halting problems of Turing machine with one example. (a)
- Explain post correspondence problem with an example. (b)

5. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Construct a transition system of finite automata equivalent to the regular expression 10+(00+11)0*1.
- (b) Construct a regular expression of finite automata which is given below: Where q_1 is starting state as well as final state.

State\ inputs	a	b
q ₁	q ₂	q ₃
q_2	q4	qı
q 3	q ₁	q4
Q4	q4	q4

6. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Design a Turing Machine to accept the language $L=\{a^nb^n / n>=1\}$.
- (b) Show that union of recursive languages is recursive.

7. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Define mealy and Moore machine. Explain the procedure for transforming a Moore machine to corresponding Mealy machine.
- (b) Write short notes on:
 - (i) Greibach Normal Form.
 - (ii) NP-hard and NP-complete problems.