

课程内容

- 第1章 作物学概述
- 第2章 作物的分类、起源与分布
- 第3章 作物品种选育与繁育
- 第4章 作物生长发育与产量
- 第5章 作物与生态环境
- 第6章 作物生产技术
- 第7章 种植制度

课程目标:

- 1、掌握作物学的概念和分类、作物遗传育种、作物生 长发育、作物与环境、栽培管理、耕作制度等。
 - 2、提升对农业内涵的理解。

农业产业,农业推广,决策、规划与设计,农业科研等。

什么是农业、作物学、作物栽培学与耕作学、作物遗传育 种学?

农业:对植物/动物进行种植、饲养或管理,并利用其产品的综合性产业。

作物学:有关大田作物生产和改良的科学理论与技术。

作物栽培学与耕作学:研究作物生长发育和产量、品质形成规律及其与环境条件的关系,探索通过栽培管理、生长调控、优化决策等途径,实现作物高产、优质、高效及其可持续性的理论、方法与技术。

作物遗传育种学: 研究作物品种选育和遗传改良及种子生产的理论、方法与技术。

作物学的作用、性质、特点?

作用:

人民生活资料的重要来源/工业原料的重要来源/出口创汇的重要物资/ 较高的种植业比重/农业现代化的主要内容

性质:

应用学科 综合学科 生态学科

特点:

严格的地域性/明显的季节性/生长的规律性/技术的实用性/生产的连续性/ 系统的复杂性

种植面积最大的作物: 小麦、水稻、玉米 (玉米、水稻、小麦—中国)。

单产最高的作物: 玉米、水稻、小麦 (水稻、玉米、小麦—中国)。

总产最高的作物: 玉米、小麦、水稻 (玉米、水稻、小麦—中国)。

粮食安全的技术途径(我国作物生产亟待解决的问题)?

- (1) 保护和合理利用农业资源
- (2) 提高单位面积产量
- (3) 改善作物品质
- (4) 加强产后加工与利用
- (5) 调整粮食发展战略
- (6) 开辟新的食物源
- (7) 自给自足,适当进口

第2章 作物的分类、起源与分布

本章主要知识点:

- 1、作物的概念
- 2、主要粮食、经济作物的分类与分布、特点与用途
- 3、作物起源与传播

第一节 作物的概念与分类

一、概念

作物——源自日本语(crop),我国古代称做<mark>稼、禾、谷、粟、</mark> 稷等等;泛指人类栽培利用的一切植物,具有一定的经济价值。

广义上指农作物、园艺作物和林木;

狭义上仅指农作物(field crop),也称庄稼,大田作物。

人类栽培种植的作物有1500多种;而且不断有新的植物资源被开发利用成为栽培作物;中国栽种的作物种类繁多,仅常见的农作物就有50多种。

作物主要由野生植物经人类不断选择、驯化、利用、演化而来,也可经人工合成(应用生物技术合成新物种)。

园艺作物: 栽培法精密,规模小,草木本均有,供付食品及观赏品之用。

林木作物: 栽培粗放,规模大,多属于木本作物,供木材之用。

农艺作物:栽培及规模介于二者之间,多属草本植物,人类衣食原料、工业原料、畜饲料。

马铃薯: 欧美 农作物 豌豆: 采食青豌豆茎叶尖 园艺作物

中国 园艺作物 副食用 采收成熟种子,农艺作物

二、作物分类★

- (一) 根据作物用途和植物学分类系统相结合分类
- 1、粮食作物 (food crops, 又称食用作物)
 - (1) 禾谷类作物 (cereal crops)

属不本科。稻、小麦、大麦、燕麦、黑麦、玉米、高粱、粟、黍 (稷)、薏苡等。蓼科的荞麦常也列入此类。<u>稻谷、小麦以外的</u>禾谷类作物称为粗粮。

(2) 豆类作物 (legume crops,或称菽谷类作物)

属豆科,主要提供植物性蛋白。如大豆、蚕豆、豌豆、绿豆、小豆(赤豆)、饭豆等。大豆以外的豆类又称杂豆类作物。

(3) 薯类作物 (tuberous crops,或称为根茎类作物)

植物学上的科属不一,主要生产淀粉类食物。如甘薯、马铃薯、木薯、山药(薯蓣)、芋、豆薯、菊芋、蕉藕等。

- 2、经济作物(economic/industrial crops)或工业原料作物
 - (1) 纤维作物 (fibre crops)

种子纤维:棉花

韧皮纤维: 黄麻、红麻、苎麻、亚麻、大麻、苘麻等。

叶纤维: 剑麻、蕉麻等

(2) 油料作物 (oil crops)

食用油料作物:如油菜、花生、芝麻、向日葵、胡麻、甘蓝、 红花、苏子油茶、油橄榄、油棕、油椰等;

工业用油料作物: 蓖麻、油桐等。

此外,大豆也可列为油料作物。

- (3) 糖料作物(sugar crops):主要有甘蔗、甜菜等。
- (4) 嗜好类作物(stimulant crops): 烟草、茶叶、咖啡、可可

3、饲料及绿肥作物(forage and green manure crops)

豆科牧草绿肥作物:如紫花苜蓿、红花苜蓿、苕子、紫云 英、草木樨、三叶草、田菁等;

禾本科牧草:如多花黑麦草、多年生黑麦草、高羊茅、苏丹草等;

菊科牧草:如菊苣、苦荬菜等;

水生绿肥:如水葫芦、水浮莲、红萍、绿萍等。

4、药用作物(medicinal crops)

如三七、天麻、人参、黄连、贝母、枸杞、白术、白芍、甘草、半夏、红花、百合、何首乌、五味子、茯苓、灵芝等。 5、特用作物 主要有桑、橡胶、香料作物如薄荷、留兰香、编织原料作物如芦苇、席草、蔺草等。

(二) 根据作物的生物学特性分类★

1、按作物感温特性,可分为喜温作物和耐寒作物

喜温作物:在全生育期中需要的积温都较高,生长发育的最低温度为10°C左右。

如水稻、玉米、高粱、棉花、烟草、甘蔗、花生、粟等。

耐寒作物:全生育期需要的积温比较低,生长发育的最低温度 在1~3℃左右。

如麦类作物、油菜、蚕豆等。

2、按作物对光周期的反应特性分类:

长日照作物:凡适宜在日长变长时开花的作物。

如麦类作物、油菜等。

短日照作物:凡适宜在日长变短时开花的作物。

如水稻、玉米、棉花、烟草等。

中性作物: 开花与日长没有关系的作物。如荞麦、豌豆等。

定日作物:要求有一定时间的日长才能完成其生育周期。

如甘蔗的某些品种只有在12小时45分的日长条件下才能开花,长于或短于这个日长都不开花。

3、按作物对CO2同化途径,可分为C3、C4和CAM作物

C3作物:光合作用最先形成的中间产物是带3个碳原子的*磷* 酸甘油酸。如水稻、麦类、大豆、棉花等。

这类作物光合作用的CO2补偿点高,有较强的光呼吸。

C4作物:光合作用最先形成的中间产物是带4个碳原子的*草 酰乙酸*等双羧酸。如玉米、高粱、甘蔗、四倍体黑麦等。

这类作物光合作用的光照强度、 CO_2 补偿点低,光呼吸作用也低,在强光高温下光合作用能力比C3作物高。

CAM作物(景天酸代谢途径,多肉植物):仙人掌、剑麻、菠萝、向犁科和龙舌兰科等。

(三) 其他分类方法

按播种季节分:春播(夏播)作物和秋播(冬播)作物。

按收获季节分: 夏熟作物和秋熟作物。

按播种密度和田间管理分:密植作物和中耕作物等。

按生育期、生育季节分:早熟、中熟、晚熟;

按茎秆生育特点分: 高秆作物(如玉米、甘蔗等)

矮秆作物(稻、麦、油菜、大豆、棉花等)

匍匐作物(如甘薯、苕子等)。

以上各种分类方法对认识作物特性,合理安排茬口,科学应用栽培技术,具有重要作用。

第二节 起源与传播

一、起源

作物是由野生植物经人类栽培利用而来的,作物的起源和形成是人类劳动的产物和成果。

图 2-4 玉米株型的变化 (Galinat, 1998)

起源于我国的农作物★

- □ 大豆、粟、苎麻、黄麻(圆果种)、苘麻、竹庶、薏苡以及某些 粒用豆类。花生(小粒种)原产于我国,古代称作"千岁子"。
- □ 油菜的白菜型、芥菜型以及小麦的野生种类在我国西南山区广泛 存在,说明油菜、小麦的某些栽培种可能起源于中国。
- □ 我国西南山区广泛存在着野生稻的资源,因此我国也应是栽培稻的起源中心。
- □ 粟是我国古代的主粮, "粟"这个字是谷物、粮食的代表。
- □ 大豆的古称"菽",美国称"Soy",英国称"Soya",法意称"Soia", 拉丁文为"Soja", 均是"菽"的译音或谐音, 可见西方的大豆是从我国引进的。

2、作物传播的重要性★

(1) 为作物的广泛利用提供了更大的空间。

作物起源中心多为山区(如我国西南山区),而作物的种植中心均为肥沃的河谷流域(如黄河流域),因此必然需要且存在作物的传播。

(2) 促进了作物种类的多样化,丰富了作物的利用价值。

如玉米原产中美洲,传入我国不过400多年,后在我国广西、云南山区 特定的生态环境条件下,形成了我国特有的糯玉米类型。

(3) 大大促进了世界作物生产和产量水平。

小麦、水稻、玉米、棉花(陆地棉)、油菜(甘蓝型)、大豆、甘薯、 甘蔗等,在世界范围内的推广种植,为人类的生活提供了大量的产品。

(4) 作物的传播也带动了世界贸易的发展和文化的交流

马铃薯→西方文化

3、作物传播的途径

- (1) 自然途径传播:如风、雨水、河流、动物传播很慢,距离很近;
- (2) 人类有计划的开发: 如新疆棉区
- (3)移民、贸易、文化交流、传教、战争、外交活动
- (4) 其他传播活动:现代商业传播

传播的速度,古代很慢,现代迅速 传播的结果,起源中心和现在的生产中心差异很大

第三节 生产与分布

- 一、影响作物分布与生产的因素
- 二、世界作物分布与生产
- 三、中国作物分布与生产

第三节 生产与分布

一、影响作物分布与生产的因素★

- 1、作物种类和品种的生物学特性
- 2、温度、光照、降水等气候条件
- 3、纬度、海拔、地势、地貌、土壤等地理环境条件
- 4、人们的消费习惯、生活需求、消费水平等社会条件
- 5、农业经济技术的进步
- 6、国内外市场的销售和价格

作物分布还受到畜牧业、农产品加工业和现代工业、国防 发展的需求以及生态平衡、环境保护和轮作换茬、培肥地力的 需要等方面的影响。

表1 世界粮食作物主产国与单产水平高的国家★

谷物总产	中国	美国	印度	法国	印度尼 西亚	加拿大	俄罗斯	
单产	法国	德国	日本	美国	中国			
稻谷总产	中国	印度	印度尼西 亚	孟加拉	越南	泰国	日本	韩国
单产	尼日利亚 澳大利亚	日本	美国	中国	法国	印度尼西 亚		
小麦总产	中国	美国	印度	法国	俄罗斯	加拿大	澳大利 亚	土耳 其
单产	法国	德国	墨西哥	中国	美国	印度	罗马尼 亚	巴基 斯坦
玉米总产	美国	中国	巴西	阿根廷	墨西哥	法国	罗马尼 亚	印度
单产	美国	法国	德国	加拿大	澳大利 亚	阿根廷	伊朗	中国

表2 世界主要油料作物生产国与单产水平高的国家

大豆总产	美国	巴西	阿根廷	中国					
单产	美国	巴西	日本	阿根廷					
油菜总产	中国	加拿 大	印度	德国	法国	澳大利 亚	英国	波兰	捷克
单产	德国	法国	英国	捷克	波兰	美国	中国	加拿 大	澳大 利亚
花生总产	中国	印度	尼日利 亚	美国	阿根 廷	塞内加 尔	巴西	缅甸	印度 尼西 亚
单产	美国	土耳 其	日本	埃及					
向日葵 总产	俄罗 斯	阿根 廷	中国	法国	西班 牙	美国	罗马尼 亚		
单产	法国	德国	西班牙	罗马尼 亚	中国	美国	阿根廷		

- 2、我国种植业区域的划分及优势产业带☆划分依据:
 - (1) 发展种植业的自然条件和社会经济条件的区内相似性;
 - (2) 作物结构、布局和种植制度的区内相似性;
 - (3) 种植业发展方向和关键措施的区内相似性;
 - (4) 保持一定行政区界的完整性的原则;

(简称三个相似性,一个完整性)

将我国种植业划分为10个一级区域31个二级区。

水稻总产	湖南	江西	广东	湖北	广西	江苏	安徽	四川	黑龙江
单产	江苏	湖北	四川	黑龙江	云南	湖南			
小麦总产	河南	山东	河北	安徽	江苏	四川	陕西	甘肃	内蒙古
单产	山东	河南	河北	江苏	安徽	陕西			
玉米总产	吉林	河北	山东	河南	黑龙江	内蒙古	辽宁	四川	云南
单产	吉林	山东	河北	辽宁	河南	内蒙古	黑龙江		
甘薯总产	四川	河南	安徽	山东	广东	福建			
马铃薯 总 产	内蒙 古	黑龙江	贵州	云南	甘肃				

产量次序为:水稻、玉米、小麦;

甘薯产量远大于马铃薯

大豆总产	黑龙江	内蒙古	河南	山东	安徽	河北	
单产	黑龙江						
油菜总产	安徽	湖北	湖南	江西	四川	江苏	贵州
单产	湖北	江苏	湖南	安徽	四川		
花生总产	山东	河南	河北	广东	安徽	广西	江苏
单产	山东	河南	河北	江苏	安徽	广东	
向日葵 总产	内蒙古	山西	新疆	黑龙江			
芝麻总产	河南	安徽	湖北				

棉花总产	新疆	山东	河南	河北	江苏	湖北	安徽
单产	新疆	江苏	湖南	山东	河北	湖北	
麻类总产	四川	湖南	浙江	江西	安徽	湖北	
甘蔗总产	广西	广东	云南	海南			
甜菜总产	黑龙江	新疆	内蒙古	甘肃	山西		
烟草总产	云南	贵州	河南	湖南	四川	福建	
茶叶总产	福建	浙江	云南	湖北	湖南	四川	

第三章 作物品种选育与良种繁殖

作物育种学:研究选育与繁殖优良品种的理论与方法,是作物学的重要组成部分。

包括以下主要内容:

第一节 品种及种质资源

第二节 作物的繁殖方式与育种特点

第三节 作物育种方法

第四节 良种繁育

第一节 品种及种质资源

本节知识点:

什么是品种? 优良品种? 品种改良?

品种改良的目标? 如何制定育种目标?

什么是种质资源? 种质资源库?

种质资源的作用? 有哪些类型? 如何搜集和保存?

- 1.品种改良目标(即育种目标)?
 - 1) 高产; 2) 优质; 3) 稳定性好; 4) 适应性强
- 2.作物的品质包含哪些方面?

化学品质 (即营养品质, 如蛋白质、淀粉含量)

物理品质 (如小麦的沉降值、稻米的胶稠度)

加工品质 (小麦出粉率、水稻出米率)

食用品质 (即口感品质)

<u>本章知识点:</u>

3.制定育种目标的原则?

- 1)国民经济和生产发展的前景;2) 当地现有品种有待提高和改进的主要性状;
- 3) 具体性状的可行性; 4) 品种的合理搭配

4.什么是种质资源?种质资源有哪些类型?

各种植物的栽培种、野生种的繁殖材料以及利用上述繁殖材料人工创造的遗传材料。

种质资源的类型

按来源: (1) 本地种质资源; (2) 外地种质资源; (3) 野生植物资源; (4)

人工创造的种质资源

按亲缘关系: (1) 初级基因库; (2) 次级基因库; (3) 三级基因库

5.作物的繁殖方式?

- ◆ 有性繁殖: 凡由雌雄配子结合,经过受精过程,最后形成种子繁衍后代的, 统称有性繁殖。
- ◆ 自花授粉、异花授粉、常异花授粉
- ◆ 无性繁殖: 凡不经过有两性细胞受精过程的方式繁殖后代的统称为无性繁殖。

6.作物的品种类型

1) 自交系品种; 2) 杂交品种; 3) 群体品种; 4) 无性系品种

1.什么是引种? 引种的规律?

通过搜集、引进种质资源,在人类的选择培育下,使野生植物成为栽培植物,使外地或外国的作物品种成为本地的作物品种的措施和过程。

- (1) 低温长日性作物的引种规律
- ①原产高纬度地区的品种,引到低纬度地区?
- ②原产低纬度地区的品种, 引至高纬度地区?
- ③高海拔地区的品种,引到平原地区?
 - (2) 高温短日性作物的引种规律
 - (3) 作物对环境反应的敏感度
- ①敏感型作物:如大豆。
- ②迟钝型作物:如甘薯、花生。
- ③中间型作物:如水稻、玉米、谷子、棉花、麻类。

2.引种的原则

- (1) 要根据生产发展的需要,确定引种的目的与任务
- (2) 先试验后引种, 少引种多自繁。
- (3) 引种试验与栽培试验相结合,探索良种良法配套技术
- (4) 进行必要的检疫, 防止带入本地区没有的病虫草害。

3.什么是选择育种

直接利用自然变异,不需要人工创造变异而从中进行选择并通过比较试验的育种方法。

4.什么是杂交育种,亲本选配的原则?

通过不同亲本间的杂交,在后代中创造变异并从中选育新品种的方法。

亲本选配:

- (1) 亲本的优点多缺点少,且优缺点互补
- (2) 亲本之一最好为当地优良品种
- (3) 亲本的遗传差异较大(生态类型、地理起源和亲缘关系)
- (4) 亲本应具有较好的配合力

5.什么是杂种优势,表现特点是什么?利用的要求?

指两个性状不同的亲本杂交产生的杂种 \mathbf{F}_1 ,表现出的某些性状或综合性状超过其亲本品种的现象。

表现特点

- (1) 复杂多样性
- (2)杂种优势强弱和亲本性状差异及纯度密切相关
- (3)F2及以后世代杂种优势的衰退

杂种优势利用的基本要求

- (1) 双亲一般配合力高
- (2) 双亲遗传差异大
- (3) 双亲优点多缺点少且优缺点互补。
- (4) 制种性状好

第四章 作物生长发育与产量品质形成

- > 第一节 作物的发育特性与生育期
- > 第二节 作物器官的建成
- > 第三节 作物的群体特征
- > 第四节 作物的产量形成
- ➢ 第五节 作物的品质形成

1.什么是生长?发育?

生长(growth): 作物在数量上的不可逆增长叫生长。

发育(development): 在生长的基础上,作物体内发生的一系列质的变化。

2.生长和发育的关系?

没有生长便没有发育,没有发育也不会有进一步的生长,生长与发育是交替推进的。1)生长是发育的基础;2)发育又促进了新器官的生长;3)生长快发育慢;4)生长慢,发育快。

3. S形生长曲线的应用?

- 1) S曲线可作为检验作物生育进程是否正常的依据之一。
- 2) 各种措施(促进或抑制)都应在最快速度到来之前应用。
- 3) 不同器官S生长曲线不同,促控时注意相互影响。

4.什么是生育期、物候期和生育时期

生育期:作物<u>出苗</u>到成熟期间的总天数,即作物的一生。

物候期:作物生长发育在一定外界环境条件下所表现的形态特征, 人为地制定一个具体标准,以便科学地把握作物的生育进程。

生育时期:指某一形态特征出现变化后持续的一段时间,并以该时期 始期至下一时期始期的天数计算。

5.生长中心、养分分配、C-N代谢与栽培目标? ★

生育阶段	<mark>前期</mark> (营养生长)	中期 (营养生长和生殖生长并进)	<mark>后期</mark> (生殖生长)
生长中心 与养分分 配中心	根、叶、枝(蘗)	主要中心:花(幼穗)次要中心:叶、枝、根	籽实、块根、块 茎
C/N代谢特点	N代谢占优势	C、N代谢并重	C代谢占优势
栽培目标	壮苗早发, 建立足够营 养体,长好 苗架	壮株稳长,形成足够量的 储存产品的器官积累大量 有机物,壮茎足花(大穗)	养根保叶,保证 足够有机物向产 品器官运转,增 粒增重

6.什么是休眠和后熟?

休眠:在适宜的条件下,作物种子和供繁殖的营养器官暂时停止萌发的现象。

深休眠: 种子未完全通过生理成熟或收获后进入休眠, 给予适当的条件仍不能发芽, 又称生理(自然)休眠。

强迫休眠: 种子已具有发芽的能力, 但由于不利环境条件的诱导而引起自我调节的休眠。

后熟:种子从休眠状态向萌发状态逐渐转变的过程。

7. 有性种子萌发过程

种子萌发分为_吸胀、萌动、发芽_三个阶段。

发芽标准: 禾谷类作物,根长一粒谷,芽长半粒谷

萌发形式:根据下胚轴的是否伸长分成<u>子叶出土</u>和<u>子叶不出土</u>两 类。

8. 种子萌发需要的外界条件

足够的水分、充足的氧气和适当的温度,有些种子的萌发还受着光的影响。(1)水分(2)氧气(3)温度(4)光照

需光性种子或喜光性种子,例如烟草、莴苣、杂草种子需暗性或嫌光性种子,如番茄、茄子、瓜类、苋菜种子

<u>本章知识点:</u>

9. 根系的类型

单子叶作物(monocotyledon)的根,属<u>须根系</u>; 双子叶作物(dicotyledon)的根,属<u>直根系</u>。

- (1) 单子叶作物的根系 由 初生根系 和次生根系 组成。
- (2) 双子叶作物的根系 由一条发达的 主根 和 各级侧根 构成。

10. 根系的功能

①支柱作用 ②吸收水分和养分 ③合成物质 ④增加土壤有机质。 ⑤贮存养分 ⑥可作为繁殖器官。

11. 影响根系生长的主要因素

- (1)土壤湿度与氧气:水分是影响根系生长的主要因素,过于干燥和潮湿的土壤都不利于根系的生长及其功能的发挥。
 - (2) 土壤肥力和酸碱度 (pH)

土壤肥沃时,根冠比比土壤贫瘠时要小。

当pH值超过5~8时,通常将阻绕或限制根系的生长。pH值低于5时, 会造成根系毒害。

(3) 土壤温度: 适宜20~30℃。

12. 茎枝的功能?

- ①支持功能: 叶、穗或果实生长,决定叶面积分布与结实部位合理配置。
- ②输导系统。
- ③合成功能:绿色幼嫩茎、枝具有合成有机养料的作用。
- ④临时贮存养料的器官。
- ⑤通气作用,水稻。
- ⑥茎可作为繁殖器官,如甘蔗、马铃薯等。

13.叶层分组及功能?

根据叶片出生时间的先后和着生部位大致可分为下、中、上三层(组)。

下层叶片:生育前期出生的下部叶片,其光合产物主要供给<u>根系、分蘖、</u> <u>幼叶</u>。

__<mark>中层叶片</mark>:生育中期出生的中部的叶片,其光合产物主要供给<u>茎秆、穗</u> <u>(或花蕾)</u>生长。

上层叶片:生育后期出生的位于上部的叶片,其光合产物主要<u>供应结实</u> 器官。

14、地下部和地上部的相互关系

1、根系与地上部器官之间的生长关系; 2、根系重量与地上部重量的相互关系; 3、环境条件和栽培技术的影响

15、营养生长与生殖生长的关系

1、形态发生的相互关系; 2、养分运转的关系; 3、栽培上的应用

16、营养器官间的相互关系

叶与芽(蘖)

第五章 作物与生态环境

第一节 作物的生态因子与生长调节

第二节 作物与光照

第三节 作物与温度

第四节 作物与水分

第五节 作物与空气

第六节 作物与肥料

第七节 作物与土壤

什么是生态因子?

(与作物有关的所有环境因子)

生态因子的分类和作用机制?

(气候、土壤、地形、生物、人为; 主次、交互、直接和间接作用、阶段性)

生态因子的限制方式? (3大定律)

(最小因子、报酬递减、耐性定律)

作物的生态适应性(生态型、生活型)

光照对作物生长的影响(光强、日长、光周期)

<u>本章知识点:</u>

光周期理论的应用

- (1) 引种: 同纬度地区,只要肥水条件相似,引种容易成功。不同纬度的地区引种时,一定要进行试验,忌盲目引进。
 - (2) 育种:促进花期相遇。南繁北育,加代繁殖。
 - (3)控制花期(花卉):
 - (4) 调节营养和生殖生长

营养器官为收获物: 适当推迟开花能够提高产量和品质。南麻北种

<u>本章知识点:</u>

温度对作物生长的影响?

a生长,温度高生长快;b发育,诱导成花(低温),高温促进发育(感温性)

作物三基点温度的特征?

不同作物、不同生育时期、不同器官、最适温度接近最高温度

什么是积温、活动积温、有效积温?

≥零度、生物学零度、高于生物学零度与生物学零度的差值累加值

积温在农业生产上的应用

确定播期、预测产量、制定种植制度

温度逆境对作物的危害及防御措施(低温、高温、逆温)

作物对水分的需求特点?

生理需水、生态需水; 需水临界期

水分逆境对作物的影响?

干旱(土壤、大气)、水涝(渍害、涝害)

CO2的时空变化规律及与作物产量的关系

CO2补偿点、CO2饱和点: C4作物和C3作物的区别

温室气体的主要成分和对作物影响

CO2、CH4、N2O;气候差异变大,CO2浓度增加;病虫草害

作物必需的营养元素?

N. P. K. S. Ca. Mg. Fe. Mn. B. Zn. Cu. Mo. Cl

主要矿质元素的作用及营养诊断?

作物的需肥量和需肥特性

a不同作物; b不同品种; c不同生育阶段

营养临界期、最大效率期?

土壤性质和结构?

物理性质: 质地、孔隙性、结构性、热性质、可耕性

化学性质: 吸收性、酸碱性、缓冲性、养分

团粒结构、块状结构、片层结构

第六章 作物生产技术

第一节 土壤耕作与培肥技术

第二节 播种技术

第三节 育苗移栽技术

第四节 地膜覆盖栽培技术

第五节 施肥技术

第六节 水分管理技术

第七节 化学调控技术

第八节 病虫草害防治技术

第九节 收获与贮藏

什么是土壤耕作?作用和意义?

a耕层三相比;b微生物活性;c提高肥料利用率;d适宜的播床;e蓄水保墒;f控制病虫草害

土壤耕作的类型?

土壤基本耕作: 翻耕、深松、旋耕

表土耕作:耙地、耱地、镇压、作畦、起垄、中耕、培土

少耕和免耕

土壤培肥的途径?

合理轮作、合理施肥、秸秆还田、种植绿肥等

播种期确定的依据?

品种特性、种植制度、气候条件、病虫害、种植方式

播种期和播种量如何确定?

播期: 品种特性、种植制度、气候条件、病虫害、种植方式、市场因素

播量:作物、品种类型、环境及生产条件、栽培技术水平、目标产量和经济效益

育苗移栽的作用和类型?

- 1.缓和季节矛盾, 充分利用自然资源; 2.延长作物生育期, 增加复种指数;
- 3. 便于集中管理,培育壮苗;4.减少种子、水、肥料、农药等用量节约成本;
- 5.保证大田适宜的密度。

类型:露地育苗、保温育苗、增温育苗

地膜覆盖的效应

1、提高土壤温度,促进作物早熟;2、防止水土流失,改善土壤物理性状;3、促进微生物活动,加速土壤养分的分解转化;4、防止土壤返盐,提高出苗率;5、改善近地光照条件,提高光能利用率;6、病虫害发生规律变化,病虫害的防治应相应变化

肥料利用率的变化规律

1.土壤肥力越高,肥料利用率越低; 2.施肥量越大, 肥料利用率越低; 3.灌溉条件越差, 肥料利用率越低; 4.追肥高于基肥; 5.深施高于表施; 6.有机无机配合高于单施; 7.腐熟高于半腐熟; 8.粘土高于沙土;

需水临界期:作物一生中对水分最敏感的时期。

大多在营养生长向生殖生长过渡阶段。

此期缺水,作物的幼穗分化、开花授粉、受精和胚胎发育过程都会发生障碍,最终导致减产。

主要作物的需水临界期

作物

水稻

冬小麦与黑麦

春小麦、燕麦、大麦

玉米

豆类、花生

向日葵

棉花

马铃薯

需水临界期

孕穗期一开花期

孕穗一抽穗

孕穗一抽穗

开花一乳熟

开花期一结实

葵盘的形成一灌浆

开花结铃期

开花一块茎形成

植物生长调节剂的应用

- (一) 生长促进剂
- 1、人工合成的IAA类似物
 - (1)吲哚丁酸(IBA)

促进插条生根,时效长,发生的不定根多而细长。

经NAA处理的发根数少而粗壮。<u>IBA和NAA混合使用最理想</u>。

(2) 萘乙酸(NAA)

常用于刺激生长、插条生根,防止果实脱落和疏花疏果等。

(3) 2, 4-D (二氯苯氧乙酸)

生产上主要用作除草剂(高浓度)和植物生长刺激剂。

(4) 2甲4氯(MCPA)

水稻秧苗老根发生断根,生长受到抑制,便于起秧。

2、赤霉素(GA)

生产上最常用的是"920"(即GA3)。

在pH值3-4下, GA的溶液最稳定。是<u>多效唑、矮壮素</u>等 生长抑制剂的拮抗剂。

3.细胞分裂素(CTK)

诱导离体组织的细胞分裂和调节分化,延缓蛋白质和叶绿素的降解。活性强弱如下:

ZT(玉米素)>PBA(四氢吡喃基苄基腺嘌呤)>

6-BA(6-苄基氨基嘌呤)>KT(激动素)>腺嘌呤。

4、乙烯利(CEPA)

在pH<4时稳定。棉花常用乙烯利催熟,促进茎、叶中的营养物质向棉铃及纤维中转移,加快棉铃生长发育进程和纤维充实,可提早7~10天吐絮,提前10天左右收获。

(二) 植物生长抑制剂

1、青鲜素(MH) 亦称马来酰肼。

可以抑制细胞分裂和破坏顶端优势。

生产上常用来抑制马铃薯、洋葱、大蒜等在贮藏中发芽。并可控制烟草侧芽的生长,还可以抑制草莓的徒长,增加结实。

同时可用作除草剂。

2、三碘苯甲酸(2, 3, 5-T, TIBA)

- (1) 具有促进开花的作用,促使花芽的形成。
- (2) 低浓度下可促进生根,但在高浓度下抑制生长。
- (3)阻碍生长素在植物体内的运输,抑制茎部顶端生长,促进腋芽萌发,因此植株分枝多,增加开花数和结实数。

3、整形素(形态素)

是抗生长素物质,阻碍生长素由顶芽向下运输。被植物体吸收后传导至全身,大多数积累在茎顶端分生组织,所以抑制顶端分生组织,使植株矮化,促进侧芽生长。

4、脱落酸(ABA)

- ①促进离层形成, 衰老和脱落;
- ②干旱、渍水、盐碱条件下,气孔迅速关闭。凋萎叶片中ABA含量明显增加,并与凋萎程度相关。
- ③脱落酸能控制由生长素、细胞分裂素和赤霉素引起的生理效应;
- ④促进叶片脱落,诱导种子和芽休眠,抑制种子发芽和侧芽生长;

ABA抑制种子发芽作用很容易解除,因为只要把种子浸入水中除去ABA,效应就可被终止。

(三) 植物生长延缓剂

主要作用是抑制赤霉素的生物合成。施用赤霉素可以逆转这种矮化效应。

1、矮壮素(CCC)

- 一般不易被土壤所固定或被土壤微生物分解,一般作土壤使用效果较好。
- (1) 抑制GA的生物合成:可使植株矮化、茎粗、叶色加深,增强抗逆性。
- (2) 抑制植物生长,使植物矮化防止倒伏,对小麦节间伸长有明显抑制效果。用于棉花生产可防止棉株徒长,减少蕾铃脱落。

2、皮克斯(pix)

化学名称为,中文名称缩节胺(DPC)、助壮素、健壮素等,可溶于水。

棉花内吸性的生长调节物质,可被叶片吸收并在植物体内运输。能有效地抑制棉花营养生长,使节间缩短,降低分枝长度,改善光照条件,增加下部结铃,促进早熟。

处理3~6天后棉叶变成深绿,4个星期后抑制效应最明显。主要用于水肥供应充足的棉田;对肥水水足或发育不良的棉株不宜施用。

3、比久(B9)

易被土壤固定或被土壤微生物分解,一般不作土壤使用。

抑制IAA运输和GA合成,可使植株矮化,叶绿且厚,增强抗逆性,促进果实着色,使色泽鲜艳;

还可防止果实收前脱落和贮藏中果实的褪色,以及抑制苹果新梢的生长和促进次年度的花芽形成等。

4、多效唑 国外称PP333。

能抑制赤霉素生物合成,降低内源吲哚乙酸的含量。 能控长促蘖,降低植株高度、缩短节间、增粗茎杆,提 高抗倒能力,提高作物抗低温、干旱能力和移栽后抗植 伤能力。

多效唑还可防治水稻恶苗病、棉花立枯病、油菜菌核病等。水稻苗期施用,可控制秧苗徒长,增加分蘖,减轻栽后败苗。在小麦、水稻上应用可防止倒伏。

第八节 病虫草害防治技术

一、病害防治

1、症状

——变色: 黄化、红叶、花叶

——斑点:褐斑、条斑、灰斑、白斑

——腐烂:湿腐、干腐、立枯、猝倒

——萎焉:黄萎、枯萎、青枯

──畸形:肿瘤、卷叶、丛株

2、对作物的影响

——根系: 烂根、烂秧、根尖线虫

——茎: 黄萎病、枯萎病、青枯病(花生)

——叶:褪色、变红、黄化、花叶、病斑

课程作业

结合自己对本课程的学习情况写一篇心得体会。

包含(但不限于):

- 通过这门课程的学习,我学到了什么?
- 课程内容和我最初的期望有没有差距?
- 课程内容设置是否合理,我最想通过这门课学的知识是什么?我的建议?
- > 老师在教育教学中的优点、缺点、需要改进的地方?

字数不限,格式自拟,手写不可打印,考试时交。