Ph20.7: Linear and Non-linear Regression: The Hubble plot using Type-1a Supernovae

Sophie Li

March 2019

1 Initial Plots

Figure 1: Red shift vs. Distance Modulus

Figure 2: Red shift vs. Luminosity Distance

2 Linear Hubble's Law

Figure 3: Linear Hubble's Law to Red shift vs. Luminosity Distance

For the linear Hubble's Law we got a $H_0=67.19.$

3 Non-linear Hubble's Law

Figure 4: Non-linear Hubble's Law to Red shift vs. Luminosity Distance

For the non-linear Hubble's law we got $H_0=60.19$ and $q=0.2861\,$

4 FLRW Metric Expression

Figure 5: Non-linear Hubble's Law to Red shift vs. Luminosity Distance

For the FLRW metric experession for luminosity distance we got $H_0=62.12$ and $\Omega_M=0.3679$. From the fit we have that the value of Ω_M has $\sigma^2=0.0021706$. This means that for $\Omega_{\Lambda}=1-\Omega_M$, this means that for Ω_{Λ} there is a statistical significance of 13.57. This is a very high value for statistical significance and thus strongly suggests that $\Omega_{\Lambda}>0$ and thus that the universe is expanding.