ECE 531: Detection and Estimation Theory

Natasha Devroye <u>devroye@ece.uic.edu</u> <u>http://www.ece.uic.edu/~devroye</u>

Spring 2011

Example of estimation

Goals

• infer value of unknown state of nature based on **noisy** observations

Mathematically, optimally

Detection example 1: digital communications

10001010100010

$$0 \leftrightarrow s_0(t) = \sin(\omega_0 t)$$

$$1 \leftrightarrow s_1(t) = \sin(\omega_1 t)$$

$$r(t) = \begin{cases} s_0(t) + n(t) & \text{if '0' sent} \\ s_1(t) + n(t) & \text{if '1' sent} \end{cases}$$

Detect?

Detection example 2: Radar communication

Send $s(t) = \sin(\omega_c t), 0 \le t \le T$

Receive

Hypothesis \mathcal{H}_0

$$r(t) = n(t), \ 0 \le t \le T$$

Detect?

Hypothesis \mathcal{H}_1

$$r(t) = V_r \sin((\omega_c + \omega_d)(t - \tau) + \theta_r) + n(t), \ \tau \le t \le t + \tau$$

Further examples

- Sonar: enemy submarine
- Image processing: detect an aircraft from infrared images
- Biomedicine: cardiac arryhthmia from heartbeat sound wave
- Control: detect occurrence of abrupt change in system to be controlled
- Seismology: detect presence of oil deposit

Difference between detection and estimation?

Detection:

Discrete set of hypotheses Right or wrong

• Estimation:

Continuos set of hypotheses

Almost always wrong - minimize error instead

Estimation example 1: communications

• Pulse amplitude modulation (PAM)

Receiver?

Estimation example 2: Radar

Send $s(t) = \sin(\omega_c t), 0 \le t \le T$

Receive

Hypothesis \mathcal{H}_0

$$r(t) = n(t), \ 0 \le t \le T$$

Estimate?

Hypothesis \mathcal{H}_1

$$r(t) = V_r \sin((\omega_c + \omega_d)(t - \tau) + \theta_r) + n(t), \ \tau \le t \le t + \tau$$

Our methods

- Will treat everything generally, with a unified mathematical representation
- Bias towards Gaussian noise and linear observation parameter models
- Examples mainly drawn from communications / radar

Aside: "Classical" vs. "Bayesian"

Classical

• Hypotheses/parameters are fixed, non-random

Bayesian

 Hypotheses/parameters are treated as random variables with assumed priors (or a priori distributions)

Course outline

Fundamentals of Statistical Signal Processing, Volume 1: Estimation Theory, by Steven M. Kay, Prentice Hall, 1993

General Minimum Variance Unbiased Estimation, Ch.2, 5 Cramer-Rao Lower Bound, Ch.3 Linear Models+Unbiased Estimators, Ch.4, 6 Maximum Likelihood Estimation, Ch.7 Least squares estimation, Ch.8 Bayesian Estimation, Ch.10-12

Kalman filtering

Fundamentals of Statistical Signal Processing, Volume 2: Detection Theory, by Steven M. Kay, Prentice Hall 1998.

Statistical Detection Theory, Ch.3 Deterministic Signals, Ch.4 Random Signals, Ch.5 Statistical Detection Theory 2, Ch.6 Non-parametric and robust detection

Estimation: General Minimum Variance Unbiased Estimation

• Bias: (expected value of estimator - true value of data)

$$\operatorname{Bias}(\hat{\theta}) = E[\hat{\theta}] - \theta = E[\hat{\theta} - \theta]$$

MVUE:

Unbiased estimator of minimum variance

Always exist?

Estimation: Cramer-Rao lower bound

- Lower bound on variance of ANY unbiased estimator!
- Usage:
 - assert whether an estimator is MVUE
 - benchmark against which to measure the performance of an unbiased estimator
 - feasibility studies

Estimation: linear models

• What's a linear model and why is it useful?

$$\mathbf{x} = \mathbf{H}\theta + \mathbf{w},$$

where

 $\theta = \text{vector parameter to be estimated}$

 \mathbf{x} = received signal from which to estimate θ

 $\mathbf{H} = (known)$ observation matrix

 $\mathbf{w} = \text{noise of statistical characterization } \mathcal{N}(0, \sigma^2 \mathbf{I})$

- What can be said?
- Best Linear Unbiased Estimators (BLUE)

Estimation: Maximum Likelihood Estimation

- Alternative to MVUE which is hard to find in general
- Easy to compute very widely used and practical
- What is the MLE?

If θ is the parameter to be estimated and \mathbf{x} is the observation, then the MLE estimator θ_{MLE} is:

$$\hat{\theta_{MLE}} = \arg\max p(\mathbf{x}; \theta)$$
 for fixed (given) \mathbf{x}

• Properties?

Estimation: Least Squares

 Alternative estimator with no general optimality properties, but nice and intuitive and no probabilistic assumptions on data are made - only need a signal model

The least squares estimator $\hat{\theta_{LS}}$ is equal to the value of θ that minimizes

$$J(\theta) = \sum_{n=0}^{N-1} (x[n] - s[n, \theta])^2,$$

where $s[n, \theta]$ is the sent signal (or nature) for given parameter θ .

- Advantages?
- Disadvantages?

Estimation: Bayesian Estimation

- Parameter to be estimated is assumed to be random, according to some prior distribution which models our knowledge of it
- Bayesian Minimum Mean Squared Error (MMSE):

Select the estimator \hat{A} to minimize $BMSE(\hat{A}) = \int \int (A - \hat{A})^2 p(\mathbf{x}, A) d\mathbf{x} dA$

Obtain the famous mean of the posterior pdf, i.e.

$$\hat{A} = E[A|\mathbf{x}]$$

Applications to Gaussian noise / linear model

Estimation: Bayesian Estimation

• General risk functions - arbitrary "cost" functions

$$\mathcal{R} = \int \int \mathcal{C}(\theta - \hat{\theta}) p(\mathbf{x}, \theta) \, d\mathbf{x} d\theta$$

• Maximum a posteriori (MAP) estimation

$$\hat{\theta} = \arg\max_{\theta} p(\theta|\mathbf{x})$$

• Linear MMSE: constrain estimator to be linear - very practical

$$\hat{\theta} = \sum_{n=0}^{N} a_n x[n] + a_N$$

where we choose the weighting coefficients a_n to minimize the Bayesian MSE

$$BMSE(\hat{\theta}) = E[(\theta - \hat{\theta})^2]$$

Estimation: Kalman filtering

- recursive filter for estimating internal state of linear dynamical system from a series of noisy measurements
- example: tracking a moving target using radar measurements

Estimation: Kalman filtering

• recursive filter for estimating internal state of linear dynamical system from a series of noisy measurements

$$\begin{aligned} \mathbf{X}_k &= & \mathbf{F}_k \mathbf{X}_k + \mathbf{W}_k \\ \mathbf{Y}_k &= & \mathbf{H} \mathbf{X}_k + \mathbf{V}_k \\ \mathbf{W}_k &\sim & \mathcal{N}(\mathbf{0}, \mathbf{Q}_k), \quad E[\mathbf{W}_k \mathbf{W}_j^T] = \mathbf{Q}_k \delta_{k-j} \\ \mathbf{V}_k &\sim & \mathcal{N}(\mathbf{0}, \mathbf{R}_k, \quad E[\mathbf{V}_k \mathbf{V}_j^T] = \mathbf{R}_k \delta_{k-j}, \end{aligned}$$

• than can recursively estimate/predict and update the state covariances as:

$$\begin{aligned} \mathbf{P}_{k}^{-} &= \mathbf{F}_{k-1} \mathbf{P}_{k-1}^{+} \mathbf{F}_{k-1}^{T} + \mathbf{Q}_{k-1} \\ \mathbf{K}_{k} &= \mathbf{P}_{k}^{-} \mathbf{H}_{k}^{T} \left(\mathbf{H}_{k} \mathbf{P}_{k}^{-} \mathbf{H}_{k}^{T} + \mathbf{R}_{k} \right)^{-1} = \mathbf{P}_{k}^{+} \mathbf{H}_{k}^{T} \mathbf{R}_{k}^{-1} \\ \mathbf{x}_{k}^{-} &= \mathbf{F}_{k-1} \mathbf{x}_{k-1}^{+} \\ \mathbf{x}_{k}^{+} &= \mathbf{x}_{k}^{-} + \mathbf{K}_{k} (\mathbf{y}_{k} - \mathbf{H}_{k} \mathbf{x}_{k}^{-}) \\ \mathbf{P}_{k}^{+} &= (\mathbf{I} - \mathbf{K}_{k} \mathbf{H}_{k}) \mathbf{P}_{k}^{-} \end{aligned}$$

Course outline

Fundamentals of Statistical Signal Processing, Volume 1: Estimation Theory, by Steven M. Kay, Prentice Hall, 1993

General Minimum Variance Unbiased Estimation, Ch.2, 5 Cramer-Rao Lower Bound, Ch.3 Linear Models+Unbiased Estimators, Ch.4, 6 Maximum Likelihood Estimation, Ch.7 Least squares estimation, Ch.8 Bayesian Estimation, Ch.10-12

Fundamentals of Statistical Signal Processing, Volume 2: Detection Theory, by Steven M. Kay, Prentice Hall 1998.

Statistical Detection Theory, Ch.3 Deterministic Signals, Ch.4 Random Signals, Ch.5 Statistical Detection Theory 2, Ch.6 Non-parametric and robust detection

Detection: Statistical Detection Theory

Binary hypothesis testing

Detection: Statistical Detection Theory

• Binary hypothesis testing

$$\mathcal{H}_0$$
 or \mathcal{H}_1 ?

- $P(\mathcal{H}_0; \mathcal{H}_0) = \text{prob}(\text{decide } \mathcal{H}_0 \text{ when } \mathcal{H}_0 \text{ is true}) = \text{prob of correct non-detection}$
- $P(\mathcal{H}_0; \mathcal{H}_1) = \text{prob}(\text{decide } \mathcal{H}_0 \text{ when } \mathcal{H}_1 \text{ is true}) = \text{prob of missed detection}$:= P_M
- $P(\mathcal{H}_1; \mathcal{H}_0) = \text{prob}(\text{decide } \mathcal{H}_1 \text{ when } \mathcal{H}_0 \text{ is true}) = \text{prob of false alarm } := P_{FA}$
- $P(\mathcal{H}_1; \mathcal{H}_1) = \text{prob}(\text{decide } \mathcal{H}_1 \text{ when } \mathcal{H}_1 \text{ is true}) = \text{prob of detection} := P_D$

Detection: Statistical Detection Theory

Neyman-Pearson (NP): maximize P_D subject to a desired fixed P_{FA} .

Receiver Operating Characteristics (ROC) curves

Generalized Bayesian risk which includes as special cases

- Minimum probability of error $(\min P_E)$ or maximum a posteriori (MAP): $C_{ii} = 0, C_{ij} = 1$ for $i \neq j$.
- Maximum likelihood (ML): $C_{ij} = 0, C_{ij} = 1$ for $i \neq j$ AND all priors are equal, i.e. $P(\mathcal{H}_i) = P(\mathcal{H}_j), \forall i, j$.

Detection: Deterministic Signals

• How to detect known signals in noise?

$$\mathcal{H}_0: x[n] = w[n]$$

$$\mathcal{H}_1: x[n] = s[n] + w[n],$$

• The famous matched filter!

- Generalized matched filter
- > 2 hypotheses

Detection: Random Signals

• What if s[n] is random?

$$\mathcal{H}_0: x[n] = w[n]$$

$$\mathcal{H}_1: x[n] = s[n] + w[n],$$

• Key idea behind estimator-correlator:

Estimate the signal first, then matched-filter the estimate

• Linear model simplifies things again...

Detection: Statistical Decision Theory II

• model for the pdfs under 2 hypotheses are unknown

$$\mathcal{H}_0: x[n] = w[n]$$

$$\mathcal{H}_1: x[n] = s[n] + w[n],$$

- Uniformly most powerful test
- Generalized likelihood ratio test
- Bayesian approach
- Wald test
- Rao test

Course structure

http://www.ece.uic.edu/~devroye/courses/ECE531/