Christian Thomas

Problem 1. Use the definitions to prove or disprove the statement $2n(n-1)/2 \in \Theta(n)$, and illustrate this graphically.

Answer: The definition requires us to find c and n_0 so that

$$\frac{2n(n-1)}{2} \ge cn \text{ when } n \ge n_0$$

To prove that $2n(n-1)/2 \in \Theta(n)$ we first must prove $2n(n-1)/2 \in O(n)$ and $2n(n-1)/2 \in \Omega(n)$. The book states that $g(n) \neq O(f(n))$ if the ratio g(n)/f(n) is getting arbitrarily large and no constant c could make definition work. If we take (2n(n-1)/2)/(n) you get n-1 which will grow arbitrarily large, no matter the constant. It would be more accurate to say $2n(n-1)/2 \in \Omega(n)$ and the graphic demonstrates this clearly.

This is graphically illustrated by the following plot that shows 2n(n-1)/2 along with the standard function n^{n^n} scaled by the constant coefficient c=22.

Problem 2. Using the definitions, either prove the following assertion, or disprove it with a specific counterexample:

if
$$t(n) \in O(g(n))$$
 then $g(n) \in \Omega(t(n))$

Answer: If the statement is true, then there exist c_1 , c_2 , and n_0 such that $g(n) \ge c_1 * t(n)$ for Big O and $t(n) \le c_2 * g(n)$ for Big Omega. The next, Big O turns into $g(n)/t(n) \ge c_1$ and Big Omega turns into $t(n)/g(n) \le c_2$. Lastly, you then get $t(n) \le (1/c_1) * g(n)$ for Big O and $g(n) \ge (1/c_2) * t(n)$ for Big Omega which makes sense for any $n \ge n_0$ QED.

Problem 3. For each of the following pairs, state and briefly justify (but you dont have to rigorously prove) whether $f(n) \in O(g(n))$, $f(n) \in \Omega(g(n))$, or $f(n) \in \Theta(g(n))$.

- 1. $f(n) = n^{1/2} g(n) = n^{2/3}$ Answer: $n^{1/2} \in \Theta(n^{2/3})$ is true because both functions are polynomials functions with degrees between 0 and 1.
- **2. Answer:** The constant 10 in front of $\log(n)$ is practically irrelevant at insanely large values making it essentially $\log(n)$ vs. $\log(n^2)$ since it is well know that $n \leq O(n^2)$ is true, then we know that $10\log(n) \in O(\log(n^2))$ is also true.

- **3. Answer:** In this question it is a polynomial function vs. a logarithmic function. It is well known that polynomial functions tend to be much slower than logarithmic, so $n^{1/2} \in \Omega((log(n)^3))$
- **4. Answer:** Addition becomes meaningless when headed toward infinity, which means we are essentially comparing n and nlog(n). n and n obviously grow at same rate, so if you multiply n by log(n) that would make $n \leq nlog(n)$. Therefore, $n + log(n) \in O(nlog(n))$