Automatic Machine Learning?

Andreas Mueller (NYU Center for Data Science, scikit-learn)

Why?

Issues with current tools (scikit-learn)

Selecting Hyper-Parameters

Scikit-learn: Explicit is better than implicit

```
make_pipeline(
    OneHotEncoder(),
    Imputer(),
    StandardScaler(),
    SVC())
```

What?

from automl import AutoClassifier clf = AutoClassifier().fit(X_train, y_train)

```
> Current Accuracy: 70% (AUC .65) LinearSVC(C=1), 10sec
> Current Accuracy: 76% (AUC .71) RandomForest(n_estimators=20) 30sec
> Current Accuracy: 80% (AUC .74) RandomForest(n_estimators=500) 30sec
```

Step 1: Automate Parameter Selection

Step 2: Automate Model Selection

Step 3: Automate Pipeline Selection

How?

Formalizing the Search Space

Discrete and Continuous Parameters Conditional Parameters Fixed pipeline vs flexible pipeline

Formalizing the Search Space

Discrete and Continuous Parameters Conditional Parameters Fixed pipeline vs flexible pipeline

Search Methods

Exhaustive Search (Grid Search)

Randomized Search

Bayesian Optimization (SMBO)

Gaussian process based minimization

Gaussian process based minimization

Gaussian process based minimization

Gaussian Processes

Random Forest Based (SMAC)

Non-parametric (TPE)

Experiment	# Evals	SMAC	TPE	Spearmint	DNGO
Branin (0.398)	200	0.655 ± 0.27	0.526 ± 0.13	$\boldsymbol{0.398 \pm 0.00}$	0.398 ± 0.00
Hartmann6 (-3.322)	200	-2.977 ± 0.11	-2.823 ± 0.18	-3.3166 ± 0.02	-3.319 ± 0.00
Logistic Regression	100	8.6 ± 0.9	8.2 ± 0.6	$\boldsymbol{6.88 \pm 0.0}$	$\boldsymbol{6.89 \pm 0.04}$
LDA (On grid)	50	1269.6 ± 2.9	1271.5 ± 3.5	$\boldsymbol{1266.2 \pm 0.1}$	$\boldsymbol{1266.2 \pm 0.0}$
SVM (On grid)	100	24.1 ± 0.1	24.2 ± 0.0	24.1 ± 0.1	24.1 ± 0.1

Warm-starting and Meta-learning

Dataset 1

optimization

Algorithm + Parameters

Dataset 1

optimization

Algorithm + Parameters

optimization

Algorithm + Parameters

optimization

Algorithm + Parameters

Algorithm + Parameters

Algorithm + Parameters

Meta-Features

Existing Approaches

auto-sklearn (Hutter, Feurer, Eggensperger) http://automl.github.io/auto-sklearn/stable/

Autoweka

Hyperopt-sklearn

TPot

010101010

Spearmint

https://github.com/HIPS/Spearmint

Scikit-optimize

Gaussian process based minimization

Within Scikit-learn

- GridSearchCV
- RandomizedSearchCV
- BayesianSearchCV (coming)
- Searching over Pipelines (coming)
- Built-in parameter ranges (coming)

TODO

Clean separation of:

- Model Search Space
- Pipeline Search Space
- Optimization Method
- Meta-Learning
- Exploit prior knowledge better!
- Usability
- Runtime consideration

TODO

Clean separation of:

- Model Search Space
- Pipeline Search Space
- Optimization Method
- Meta-Learning
- Exploit prior knowledge better!
- Usability
- Runtime consideration
- Data subsampling

Criticism

Randomized Search works well

Do we need 100 Classifiers? Do we need Complex pipelines?

I don't want a black-box!

http://oreilly.com/pub/get/scipy

Material

- Random Search for Hyper-Parameter Optimization (Bergstra, Bengio)
- Efficient and Robust Automated Machine Learning (Feurer et al) [autosklearn]
- http://automl.github.io/auto-sklearn/stable/
- Efficient Hyperparameter Optimization and Infinitely Many Armed Bandits (Lie et. al) [hyperband] https://arxiv.org/abs/1603.06560
- Scalable Bayesian Optimization Using Deep Neural Networks [Snoek et al]

Thank you.

@amuellerml

@amueller

amueller@nyu.edu

http://amueller.io