DNN approximation for custom hardware

Anshul Bansal Aayush Bansal

- Q: Why we need DNN approximation?
- → To develop algorithms for DNN inference that
 - 1. Reduce computational and storage cost
 - 2. Increases throughput
 - 3. Decreases latency

Two types:

- 1. Quantization
- 2. Weight Reduction

Quantization

- → reducing precision of the weights
 - Floating point Flexible in data representation range but expensive
 - Floating point predetermined precision

- Data in different layers have have varied range hence constant quantization can
- provide sub optimal bandwidth efficiency.
 Block Floating Point Dynamic fixed points.
- Adaptive Quantization Each filter has independent precision.

Using fixed point, accuracy goes down merely by 1-2 pp.

- Binarization Quantization of parameters into two values {1,-1}.
- Ternarization {1,0,-1}.

- Fine Grained Quantization Ternarization of Fp32 in group and then ternarizing each group independently.
- Logarithmic Quantization Parameters are quantized in the powers of two with scaling factor .

Weight Reduction

→ removing redundant parameters

- 1. Pruning and structural simplification
- 2. Leads to reduction in number of activations

- Leads to workload reduction since it removes unnecessary parameters.
- Iterative Pruning Pruning followed by retraining, allowing remaining connections to learn to compensate for pruning loss.

Pruning - Similar neurons are wired together by removing redundant connections

- Weight Sharing Groups Parameters into buckets reducing workload size.
- Structured matrices Weight matrix represented as a structure of repeated pattern such that it can be expressed in fewer parameters.

(a) Quantisation methods: baseline (4), eight-bit fixed point (+), logarithmic (4), ternary (5) and binary (x).

(b) Weight-reduction methods: baseline (△), hybrid (+), weight sharing (◊), pruning (○), structured matrix (×) and factorisation (○).

		Cheaper arithmetic operations	Memory reduction	Workload reduction
Quant- isation	Fixed-point representation	~	~	×
	Binarisation and ternarisation	~	~	×
	Logarithmic quantisation	~	~	(if shift lengths are constant)
Weight	Pruning	×	V	V
	Weight sharing	×	~	(if multiplications are precomputed)
	Low-rank factorisation	×	~	V
	Structured matrices	×	V	~
	Knowledge distillation	×	~	✓
Input-dependent computation Activation function approximation Hybrid strategies		×	×	~
		×	×	~
		~	V	~

Future Research Directions

- 1. Convergence Guarantees
- 2. Self Adaptive Hyper Parameter Fine Tuning
- 3. FPGA-ASIC Heterogeneous System