Question 1:

Show that the integer n>2 with prime decomposistion $n=p_1^{k_1}p_2^{k_2}...p_r^{k_r}$ is a square if, and only if, each of the exponents k_i is even.

$$\begin{split} n &= p_1^{2l_1} p_2^{2l_2} ... p_r^{2l_r} \\ &= (p_1^{l_1} p_2^{l_2} ... p_r^{l_r})^2 \end{split}$$

but

$$n = p_1^{2l_1+1} p_2^{2l_2+1} ... p_r^{2l_r+1}$$
$$= (p_1^{l_1} p_2^{l_2} ... p_r^{l_r})^2 \cdot p_1 p_2 ... p_r$$

as $p_1 \neq p_2 \neq p_r$, hence not a square

Question 2:

Show that $p|hcf(a^2, b)$ if and only if $p|(a, b^2)$

Using the definition of hcf;

Forward direction;

$$p|hcf(a^2,b) \implies p|a^2 \text{ and } p|b$$

$$\implies p|a \text{ and } p|b$$

$$\implies p|hcf(a,b)$$

Backward direction;

$$p|hcf(a, b^2) \implies p|a \text{ and } p|b$$

 $\implies p|a^2 \text{ and } p|b^2$

Using Theorem 1.4 euclides lemma for prime numbers;

$$\implies p|hcf(a^2,b^2)$$

$$\implies p|hcf(a^2,b) \text{ and } p|hcf(a,b^2)$$

Question 3:

Show that $p \mid gcd(a^2, b)$ if and only if $p \mid gcd(a, b^2)$.

Proof. Let p be a prime number.

(\Rightarrow) Suppose $p \mid \gcd(a^2,b)$. Then, by the definition of greatest common divisor,

$$p \mid a^2$$
 and $p \mid b$.

Since p is prime and $p \mid a^2$, by Euclid's lemma we have $p \mid a$. Hence,

$$p \mid a$$
 and $p \mid b$,

which implies $p \mid \gcd(a, b^2)$ because $p \mid b \Rightarrow p \mid b^2$.

(⇐) Conversely, suppose $p \mid \gcd(a, b^2)$. Then

$$p \mid a$$
 and $p \mid b^2$.

By Euclid's lemma again, $p \mid b^2 \Rightarrow p \mid b$. Therefore,

$$p \mid a$$
 and $p \mid b$,

which implies $p \mid a^2$ as well. Hence $p \mid \gcd(a^2, b)$.

Thus, we have shown both directions, and so

$$p \mid \gcd(a^2, b) \iff p \mid \gcd(a, b^2).$$

Question 4:

Show that $p \mid hcf(a^2, b)$ if and only if $p \mid hcf(a, b^2)$.

Proof.

Let p be a prime number.

Forward direction (\Rightarrow):

Assume $p \mid hcf(a^2, b)$.

By the definition of highest common factor,

$$p \mid a^2$$
 and $p \mid b$.

Since p is prime, using Euclid's lemma,

$$p \mid a^2 \implies p \mid a.$$

Hence,

$$p \mid a$$
 and $p \mid b$,

and therefore

$$p \mid b \implies p \mid b^2$$
.

Thus, $p \mid hcf(a, b^2)$.

Backward direction (\Leftarrow):

Assume $p \mid hcf(a, b^2)$.

Then

$$p \mid a$$
 and $p \mid b^2$.

Applying Euclid's lemma again,

$$p \mid b^2 \implies p \mid b.$$

Hence

$$p \mid a$$
 and $p \mid b$,

and so

$$p \mid a^2$$
 and $p \mid b$.

Therefore, $p \mid hcf(a^2, b)$.

Since both directions hold, we conclude that

$$p \mid hcf(a^2, b) \iff p \mid hcf(a, b^2)$$

Question 5:

If a nd b are positive integers and m and n are defined as

$$m = 3a + b$$
 and $n = 5a + 2b$

Then

$$hcf(m,n) = hcf(a,b)$$

Proof. Let $d = \gcd(a, b)$. Then we can write a = da' and b = db' for some integers a' and b' such that $\gcd(a', b') = 1$.

Now, substituting these into the expressions for m and n:

$$m = 3a + b = 3(da') + (db') = d(3a' + b')$$
$$n = 5a + 2b = 5(da') + 2(db') = d(5a' + 2b')$$

Thus, both m and n are multiples of d, which implies that d is a common divisor of m and n.

Next, we need to show that a common divisor of m and n must also divide d.

Let c be a common divisor of m and n. Then $c \mid m$ and $c \mid n$, which means:

$$c \mid d(3a' + b')$$
$$c \mid d(5a' + 2b')$$

Definition 4.6 Interger combination

Since c divides both d(3a'+b') and d(5a'+2b'), it must also divide any integer linear combination of these two expressions. In particular, we can form the following combinations:

$$5m - 3n = 5d(3a' + b') - 3d(5a' + 2b') = d(15a' + 5b' - 15a' - 6b') = d(-b')$$

$$2n - m = 2d(5a' + 2b') - d(3a' + b') = d(10a' + 4b' - 3a' - b') = d(7a' + 3b')$$

Definition 4.8 Coprime

Since c divides both d(-b') and d(7a'+3b'), it follows that c must divide d because a',b' are coprime, implies that c cannot divide a' or b' unless it divides d. Thus, we have shown that any common divisor c of m and n

must also divide d. Therefore, the greatest common divisor of m and n is equal to d:

$$\gcd(m,n)=d=\gcd(a,b)$$

Question 6:

If a and b are positive integers and m, n are defined by

$$m = 3a + b$$
 and $n = 5a + 2b$,

show that

$$gcd(m, n) = gcd(a, b).$$

Proof. Let $d = \gcd(a, b)$. Then a = da' and b = db' for some integers a', b' such that $\gcd(a', b') = 1$.

Substitute a = da' and b = db'

Substituting into the definitions of m and n,

$$m = 3a + b = 3(da') + (db') = d(3a' + b'),$$

$$n = 5a + 2b = 5(da') + 2(db') = d(5a' + 2b').$$

Thus, d divides both m and n, so d is a common divisor of m and n.

Any common divisor of m, n also divides d

Let c be any common divisor of m and n. Then

$$c \mid d(3a' + b')$$
 and $c \mid d(5a' + 2b')$.

By the property of integer linear combinations, c must also divide any integer combination of these two:

$$5m - 3n = 5d(3a' + b') - 3d(5a' + 2b') = d(-b'),$$

$$2n - m = 2d(5a' + 2b') - d(3a' + b') = d(7a' + 3b').$$

Because gcd(a', b') = 1

Since a' and b' are coprime, the only common divisors of (-b') and (7a' + 3b') are ± 1 . Hence, any divisor c of both expressions must divide d.

Thus, every common divisor of m,n divides d, and d divides both m,n. Therefore,

$$gcd(m, n) = d = gcd(a, b).$$

Question 7:

Given a positive integer in the form 14a+3 there is a prime divisor of the form 14b+3.

Proof. Let n = 14a + 3 be a posistive integer.

If n is prime, then n must also be a prime divisor of the form 14b+3 for some integer b.

Hence;

$$a = b$$

If n is not prime, then it must have a prime factor p, such that $p\mid n$. By the properties of modular arithmetic, we have:

$$n \equiv 3 \pmod{1}4$$

Since $p \mid n$, it follows that:

$$p \equiv 3 \pmod{1}4$$

Thus, p is a prime divisor of n of the form 14b + 3 for some integer b.

Euclid's lemma

Therefore, in either case, whether n is prime or not, there exists a prime divisor of n of the form 14b+3.

Question 8:

If n is divisible by 15 but not by 9 or 25, the $\tau(n)$ is divisible by 4.

Proof. If n is divisble by 15, then its prime factorisation must be of the form;

$$n = 3^{k_1} \cdot 5^{k_2} \cdot p_1^{k_3} \cdot p_2^{k_4} \dots$$

 $k_1, k_2 = 1$ as n is not divisble by 9 or 25.

Hence we can write;

$$n = 3^1 \cdot 5^1 \cdot p_1^{k_3} \cdot p_2^{k_4} \dots$$

Where $k_i > 1$

The number of divisors function $\tau(n)$ is given by;

$$\tau(n) = (1+1)(1+1)(k_3+1)(k_4+1)\dots$$
$$\tau(n) = 4(k_3+1)(k_4+1)\dots$$

Thus, $\tau(n)$ is divisible by 4.

This one-check **Question 9:**

Given a positive integer in the form 14a + 3, determine whether there must exist a prime divisor of the form 14b + 3.

Proof. Let n = 14a + 3 for some integer a. We consider two cases.

If n is prime, then it is itself a prime divisor of the form 14b+3 (taking b=a).

If n is not prime, then it has at least one prime factor p such that $p \mid n$. However, it does *not* follow that $p \equiv 3 \pmod{14}$ simply because $n \equiv 3 \pmod{14}$. The congruence relation does not, in general, transfer from a number to all of its factors.

To see this, consider a counterexample:

$$n = 185 = 14 \times 13 + 3.$$

Then

$$185 = 5 \times 37.$$

Checking each prime factor modulo 14:

$$5 \equiv 5 \pmod{14}, \quad 37 \equiv 9 \pmod{14}.$$

Neither of these primes is congruent to $3 \pmod{14}$. Therefore, n=185 is a counterexample to the claim.

Hence, the statement is **false**: not every integer of the form 14a+3 has a prime divisor of the form 14b+3.

Case 1: n is prime

Case 2: n is composite

Conclusion

Question 10:

If n is divisible by 15 but not by 9 or 25, then $\tau(n)$ is divisible by 4.

Proof. If n is divisible by 15, its prime factorisation must be of the form

$$n = 3^{k_1} \cdot 5^{k_2} \cdot p_1^{k_3} \cdot p_2^{k_4} \dots$$

Since n is not divisible by 9 or 25, we must have $k_1=k_2=1$.

Hence

$$n = 3^1 \cdot 5^1 \cdot p_1^{k_3} \cdot p_2^{k_4} \dots$$

where each $k_i \geq 0$.

The number of divisors function is given by

$$\tau(n) = (k_1 + 1)(k_2 + 1)(k_3 + 1)(k_4 + 1)\dots$$

Substituting $k_1 = k_2 = 1$,

$$\tau(n) = (1+1)(1+1)(k_3+1)(k_4+1)\ldots = 4 \times (k_3+1)(k_4+1)\ldots$$

Since the remaining factors are integers, $\tau(n)$ is a multiple of 4.

Conclusion

Therefore, $\tau(n)$ is divisible by 4 whenever n is divisible by 15 but not by 9 or 25.

Question 11:

Given a positive integer in the form 14a + 3, determine whether there must exist a prime divisor of the form 14b + 3.

Proof. Let n = 14a + 3 for some integer a. We consider two cases.

ıg

If n is prime, then it is itself a prime divisor of the form 14b+3 (taking b=a).

Case 2: n is composite

Case 1: n is prime

If n is not prime, then it has at least one prime factor p such that $p \mid n$. However, it does *not* follow that $p \equiv 3 \pmod{14}$ simply because $n \equiv 3 \pmod{14}$. The congruence relation does not, in general, transfer from a number to all of its factors.

To see this, consider a counterexample:

$$n = 185 = 14 \times 13 + 3.$$

Then

$$185 = 5 \times 37.$$

Checking each prime factor modulo 14:

$$5 \equiv 5 \pmod{14}, \quad 37 \equiv 9 \pmod{14}.$$

Neither of these primes is congruent to $3 \pmod{14}$. Therefore, n=185 is a counterexample to the claim.

Conclusion

Hence, the statement is **false**: not every integer of the form 14a+3 has a prime divisor of the form 14b+3.

Question 12:

If n is divisible by 15 but not by 9 or 25, then $\tau(n)$ is divisible by 4.

Proof. If n is divisible by 15, its prime factorisation must be of the form

$$n = 3^{k_1} \cdot 5^{k_2} \cdot p_1^{k_3} \cdot p_2^{k_4} \dots$$

Since n is not divisible by 9 or 25, we must have $k_1=k_2=1$.

Hence

$$n = 3^1 \cdot 5^1 \cdot p_1^{k_3} \cdot p_2^{k_4} \dots$$

where each $k_i \geq 0$.

The number of divisors function is given by

$$\tau(n) = (k_1 + 1)(k_2 + 1)(k_3 + 1)(k_4 + 1)\dots$$

Substituting $k_1 = k_2 = 1$,

$$\tau(n) = (1+1)(1+1)(k_3+1)(k_4+1)\ldots = 4 \times (k_3+1)(k_4+1)\ldots$$

Since the remaining factors are integers, $\tau(n)$ is a multiple of 4.

Conclusion

Therefore, $\tau(n)$ is divisible by 4 whenever n is divisible by 15 but not by 9 or 25.