Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Лабораторная работа №2. Представление знаний

Дисциплина: Интеллектуальные системы

Выполнил студент гр. 13541/1	A.А. Дроздовский (подпись)
Руководитель	А.М. Сазанов
	(подпись) "" 2017 г.

1. Привести интенсиональные и экстенсиональные определения двух понятий

Интенсиональное:

Микроконтроллер – микросхема, предназначенная для управления электронными устройствами.

Компьютерная игра – компьютерная программа, служащая для организации игрового процесса.

Экстенсиональное:

Микроконтроллер — небольшая микросхема, например 8-битные микроконтроллеры PIC фирмы Microchip Technology и AVR фирмы Atmel, 16-битные MSP430 фирмы TI, а также 32-битные микроконтроллеры, архитектуры ARM, которую разрабатывает фирма ARM Limited и продаёт лицензии другим фирмам для их производства.

Компьютерная игра – совокупность таких программ как World of Warcraft, Half-Life 2, Ведьмак, Grand Theft Auto V и др..

2. Построить ментальную модель знаний в предметной области

Рис. 2.1. Интеллект-карта

3. Разработать стратегию принятия решений о приеме на работу кандидата:

• Набор продукционных правил

If (Есть опыт программирования МК)

If (Знает периферии STM32)

If (Знание основных интерфейсов)

Принят

Else if (Высшее образование)

Принят

Else не принят

• Дерево принятия решений

Рис. 3.1. Дерево принятия решений.

• Таблица решений

Таблица 1. Таблица решений

ОПЫТ	Знание	Знание	Высшее	Принят на
прог-ния МК	STM 32	интерфейсов	образование	работу
+	+	+	+	+

+	+	+	-	+
+	+	-	+	+
+	+	-	-	-
+	-	+	+	+
+	-	+	-	-
+	-	-	+	-
+	-	-	-	-
-	+	+	+	-
-	+	+	-	-
-	+	-	+	-
-	+	-	-	-
-	-	+	+	-
-	-	+	-	-
-	-	-	+	-
-	-	-	-	-

4. Выделить отличия и сходства следующих моделей представления знаний: алгоритмических, логических, сетевых и продукционных и сценарий.

Алгоритмическая модель — задает описание решения задачи в виде графа либо программы вычисления. Основными достоинствами являются универсальность, теоретическая проработанность, модульность и относительная простота реализации. Недостатки — невозможность обучения, ручное пополнение базы знаний;

Погическая модель — вся информация, необходимая для решения прикладных задач, рассматривается как совокупность фактов и утверждений, которые представляются как формулы в некоторой логике;

Сетевая модель – как правило, это граф, отображающий смысл целостного образа. Узлы графа соответствуют понятиям и объектам, а дуги – отношениям между объектами;

Продукционная модель — это модель, основанная на правилах, позволяющая представить знание в виде условия: if (...) then ...else ...;

Сценарий — модель, в которой используются причинно-следственные отношения между информационными единицами. Кроме того, могут встречаться отношения следующих типов: средство — результат; орудие — действие [1].

Все модели определены с целью достижения одной цели — описание модели какого-то процесса. Очевидно, что любой процесс может быть представлен как в одной моделью, так и в несколькими. Выбор зависит от «удобства» и «неудобства» использования той или иной модели. Например, для описания процесса, происходящего на конвейерной ленте, предпочтительно использовать сетевую модель, в тоже время процесс можно было бы описать так же с помощью алгоритмических, логических и продукционных моделей.

5. Что такое онтологии, деревья, фреймы? В чем сходство и различие данных моделей?

Онтология в компьютерных системах — это попытка всеобъемлющей и подробной формализации некоторой области знаний с помощью концептуальной схемы [2].

Дерево — модель представления иерархических классификаций и сетей. Обычно один из узлов дерева является его корнем. Остальные узлы образуют ветвящуюся структуру "наследников" корневого узла, в которой отсутствуют циклы. Узлы, не имеющие наследников, являются терминальными, или "листьями" дерева, а остальные узлы называются промежуточными (нетерминальными).

Фреймовая система представления знаний является моделью описания человеческих знаний в виде связанной совокупности крупных структурных единиц, каждая из которых содержит данные, описывающие определенную

ситуацию. Во фреймовой системе единицей представления является объект, называемый фреймом. Фрейм содержит совокупность некоторых понятий и сущностей, с помощью которой можно описать конкретную ситуацию. Фрейм имеет уникальное имя и внутреннюю структуру, состоящую из множества упорядоченных элементов – слотов. Каждый слот имеет уникальное в пределах своего фрейма имя и содержит определенную информацию. Таким образом, каждый фрейм структура ЭТО данных, описывающая определенную ситуацию, место, объект и т.п. Структура данных внутри фрейма может иметь различный вид: граф, таблица и т.п., а также может представлять комбинацию различных способов представлений данных.

Фреймы могут быть связаны между собой посредством своих слотов и образовывать иерархические структуры[3].

6. Ознакомьтесь с теорией экспертных систем (ЭС). Опишите различие между базой данных (БД) и базой знаний (БЗ). Что такое логика предикатов? Что такое «правило вывода»? В чем сильные и слабые стороны любой ЭС?

Экспертная система— компьютерная система, способная частично заменить специалиста-эксперта в разрешении проблемной ситуации. Современные экспертные системы начали разрабатываться исследователями искусственного интеллекта в 1970-х годах, а в 1980-х получили коммерческое подкрепление. Предшественники экспертных систем были предложены в 1832 году С. Н. Корсаковым, создавшим механические устройства, так называемые «интеллектуальные машины», позволявшие находить решения по заданным условиям, например, определять наиболее подходящие лекарства по наблюдаемым у пациента симптомам заболевания [4].

В информатике экспертные системы рассматриваются совместно с базами знаний как модели поведения экспертов в определенной области знаний с использованием процедур логического вывода и принятия решений, а базы знаний — как совокупность фактов и правил логического вывода в

выбранной предметной области деятельности. База данных ЭТО совокупность данных, представленных в некоторой объектной форме. При этом данные систематизированы специальным образом, позволяющим найти их и обработать наиболее быстрым способом. Похожие действия выполняет такой программный инструмент как «Мастер» (англ. Wizard). Мастера применяются как в системных программах, так и в прикладных для упрощения интерактивного общения с пользователем (например, при установке ПО). Главное отличие мастеров от экспертных систем — отсутствие базы знаний все действия жестко запрограммированы. Это просто набор форм для заполнения пользователем. Другие подобные программы — поисковые или справочные (энциклопедические) системы. По запросу пользователя они предоставляют наиболее подходящие (релевантные) разделы базы статей (представления об объектах областей знаний, их виртуальную модель). Логика предикатов - центральный раздел логики, в котором изучается субъектнопредикатная структура высказывании истинностные взаимосвязи между ними [5]. Modus ponens («правило вывода»): если А и А □ В выводимые формулы, то В также выводима [6].

Сильные и слабые стороны экспертных систем. Идеальная ЭС способна заменить эксперта человека, при этом процент ошибок сведется к нулю, а скорость принятия решений возрастет в разы. Однако организация ЭС, время на создания такой машины, а также поддержка обновлений системы является сложными задачами, которые под час решить сложнее нежели найти эксперта в человеческом облике. Постепенное развитие ЭС решит все насущие проблемы, и позволит использовать их повсеместно.

7. Приведите не менее 3 примеров экспертных систем в каждой из предметных областей, разработанную в последнее десятилетие (не позднее 2007).

Таблица 2. Экспертные системы.

Предметная	Название, Страна, Год	Ссылка
область	разработки, Краткое	
	описание	
Геология	HASP/SIAP.	http://expsys.narod.ru/glava.htm
	Интерпретирующая система,	
	которая определяет	
	местоположение и типы судов в	
	Тихом океане по данным	
	акустических систем слежения.	
	PROSPECTOR. CIIIA. 2013.	https://habrahabr.ru/post/247221/
	геологоразведочная экспертная	
	система, предназначена для	
	геологической разведки	
	месторождений полезных	
	ископаемых. США	
	DRILLING ADVISOR.	https://www.weatherford.com/en
	США. 2015.	/products-and-
	Помогает буровому мастеру при	services/drilling/drilling-
	бурении нефтяных скважин	advisor%E2%84%A0-solution/
	разрешать вопросы, связанные с	
	прихваткой долота.	
Юриспруденция	AUDITOR. CIIIA. 2007.	http://www.arm-
	Помогает профессиональному	robotechs.ru/hp/soft_3.asp?name=A
	аудитору оценить возможности	UDITOR
	клиента погасить задолженность.	
	Консультант плюс. Россия.	http://www.consultant.ru/
	1997-2017. Электронная база	
	правовой и нормативной	
	информации, предельно удобна и	
	интуитивно понятна в	
	использовании.	
	SHYSTER. Австралия.	http://users.cecs.anu.edu.au/~James.P
	Экспертная система для	opple/publications/theses/phd.pdf
	регулирования нескольких	

	правовых областей, включая	
	аспекты австралийского	
	авторского права, договорного	
	права, личное имущество и	
	административное право.	
Медицина	DENDRAL. США. Первая	https://ru.wikipedia.org/wiki/Dendral
	экспертная система в области	
	идентификации органических	
	соединений с помощью анализа	
	масс-спектрограмм.	
	MYCIN. США. Система	http://ru.wikipedia.org/wiki/MYCIN
	предназначена для диагностики и	
	лечения медицинских инфекций.	
	Исходя из представленных	
	пациентом симптомов, система	
	ставит диагноз и рекомендует курс	
	соответствующего	
	медикаментозного лечения	
	HDDSS. США. Помогает	Artificial Intelligence & Expert
	врачам определять и выбирать	Systems Sourcebook
	подходящее лечение для	
	пациентов с болезнью Ходжкина.	
Экономика	Audit Expert. Россия. 2015.	https://www.expert-
	Аналитическая система	systems.com/financial/ae/
	диагностики, оценки и	
	мониторинга финансового	
	состояния одного или группы	
	предприятий на основе данных	
	финансовой и управленческой, в	
	том числе консолидированной	
	отчетности.	
	Project Expert. Россия.	https://www.expert-
	2010. Позволяющая «прожить»	systems.com/financial/pe/
	планируемые инвестиционные	
	решения без потери финансовых	

	средств, предоставить необходимую финансовую отчётность потенциальным инвесторам и кредиторам, обосновать для них эффективность участия в проекте.	
	Prime Expert. Россия. 2010. Планирование и принятие инвестиционных решений.	https://www.expert- systems.com/financial/Prime_Expert/
Биология	Region. Россия. Оценка изменений состояния социально-эколого-экономических систем волжского басейна	http://www.sevin.ru/%20volecomag/i ssues/2014_1/%20PEJ_2014_1_110- 114.pdf
	МОССЕМ. Германия. 2017. Помощь специалистам в области молекулярной биологии при планировании экспериментов по изучению ДНК и клонированию.	http://www.molgen.de/
	Immune Response Template. Россия. Проект, направленный на сбор, анализ и визуализацию доступных данных о взаимодействиях иммунных клеток, цитокинов, хемокинов и других медиаторов у людей.	http://www.insysbio.ru/ru/news/1612 21

8. Выводы

Каждый из рассмотренных способов моделирования и структуризации знаний обладает специфическими особенностями, характеризующими область его применения. Также в ходе работы были рассмотрены некоторые экспертные системы в различных областях, что наглядно показывает о

возможности применения Θ С во всевозможных отраслях деятельности человека.

Список литературы:

- 1. Гавриленко Т.В. Представление знаний о динамической предметной области методами теоретико-множественного анализа Сургут 2004
- 2. Сетевая модель. [Электронный ресурс]. Режим доступа: http://bizbook.online/business_menedjment/setevyie-modeli-osnovnyie-ponyatiya-klassyi.html (Дата обращения 24.09.2017)
- 3. Представление знаний в интеллектуальных системах [Электронный ресурс]. Режим доступа: http://nrsu.bstu.ru/chap13.html (Дата обращения 26.09.2017)
- 4. Экспертные системы. [Электронный ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/Экспертная_система (Дата обращения 29.09.2017)
- Логика предикатов. [Электронный ресурс]. Режим доступа: http://dic.academic.ru/dic.nsf/enc_philosophy/626/ЛОГИКА (Дата обращения 29.09.2017)
- 6. Правило Вывода. [Электронный ресурс]. Режим доступа: http://ru.wikipedia.org/wiki/Modus_ponens (Дата обращения 29.09.2017)