```
import pandas as pd
import numpy as np
```

import matplotlib.pyplot as plt

df = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/AirQualityUCI.csv')
df

	Date	Time	CO(GT)	PT08.S1(CO)	NMHC(GT)	C6H6(GT)	PT08.S2(NMHC)	NOx(GT)	PT08.S3(NOx)	NO2(GT)	PT08.S4(NO
0	10/03/2004	18:00:00	2.6	1360.0	150.0	11.9	1046.0	166.0	1056.0	113.0	1692
1	10/03/2004	19:00:00	2.0	1292.0	112.0	9.4	955.0	103.0	1174.0	92.0	1559
2	10/03/2004	20:00:00	2.2	1402.0	88.0	9.0	939.0	131.0	1140.0	114.0	155
3	10/03/2004	21:00:00	2.2	1376.0	80.0	9.2	948.0	172.0	1092.0	122.0	1584
4	10/03/2004	22:00:00	1.6	1272.0	51.0	6.5	836.0	131.0	1205.0	116.0	1490
9466	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N:
9467	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N:
9468	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N:
9469	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N:
9470	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N _i

9471 rows × 17 columns

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9471 entries, 0 to 9470
Data columns (total 17 columns):

	0010000	_,	
#	Column	Non-Null Count	Dtype
0	Date	9357 non-null	object
1	Time	9357 non-null	object
2	CO(GT)	9357 non-null	float64
3	PT08.S1(CO)	9357 non-null	float64
4	NMHC(GT)	9357 non-null	float64
5	C6H6(GT)	9357 non-null	float64
6	PT08.S2(NMHC)	9357 non-null	float64
7	NOx(GT)	9357 non-null	float64
8	PT08.S3(NOx)	9357 non-null	float64
9	NO2(GT)	9357 non-null	float64
10	PT08.S4(NO2)	9357 non-null	float64
11	PT08.S5(03)	9357 non-null	float64
12	T	9357 non-null	float64
13	RH	9357 non-null	float64
14	AH	9357 non-null	float64
15	Unnamed: 15	0 non-null	float64
16	Unnamed: 16	0 non-null	float64
4+,,,,,	oc. £100+64/1E\	abias+(2)	

dtypes: float64(15), object(2)

memory usage: 1.2+ MB

```
df.dropna(subset = ['AH'], inplace = True, axis = 0)
df.reset_index(drop = True, inplace = True)
df.drop(['Unnamed: 15', 'Unnamed: 16'], axis = 1, inplace = True)
```

df.tail(5)

	Date	Time	CO(GT)	PT08.S1(CO)	NMHC(GT)	C6H6(GT)	PT08.S2(NMHC)	NOx(GT)	PT08.S3(NOx)	NO2(GT)	PT08.S4(NO
9352	04/04/2005	10:00:00	3.1	1314.0	-200.0	13.5	1101.0	472.0	539.0	190.0	1374
9353	04/04/2005	11:00:00	2.4	1163.0	-200.0	11.4	1027.0	353.0	604.0	179.0	1264
9354	04/04/2005	12:00:00	2.4	1142.0	-200.0	12.4	1063.0	293.0	603.0	175.0	124 ⁻
9355	04/04/2005	13:00:00	2.1	1003.0	-200.0	9.5	961.0	235.0	702.0	156.0	104 ⁻
9356	04/04/2005	14:00:00	2.2	1071.0	-200.0	11.9	1047.0	265.0	654.0	168.0	1129


```
df['Date'] = df['Date'].astype('category')
df['Date'] = df['Date'].cat.codes

df['Time'] = df['Time'].astype('category')
df['Time'] = df['Time'].cat.codes
```

df.tail(5)

	Date	Time	CO(GT)	PT08.S1(CO)	NMHC(GT)	C6H6(GT)	PT08.S2(NMHC)	NOx(GT)	PT08.S3(NOx)	NO2(GT)	PT08.S4(NO2)	PT08
9352	43	10	3.1	1314.0	-200.0	13.5	1101.0	472.0	539.0	190.0	1374.0	
9353	43	11	2.4	1163.0	-200.0	11.4	1027.0	353.0	604.0	179.0	1264.0	
9354	43	12	2.4	1142.0	-200.0	12.4	1063.0	293.0	603.0	175.0	1241.0	
9355	43	13	2.1	1003.0	-200.0	9.5	961.0	235.0	702.0	156.0	1041.0	
9356	43	14	2.2	1071.0	-200.0	11.9	1047.0	265.0	654.0	168.0	1129.0	


```
df.isnull().sum()
```

Date 0 Time 0 CO(GT) 0 PT08.S1(CO) 0 NMHC(GT) C6H6(GT) 0 PT08.S2(NMHC) 0 NOx(GT) 0 PT08.S3(NOx) 0 NO2(GT) 0 PT08.S4(NO2) 0 PT08.S5(03) 0 0 RH 0 dtype: int64

X = df.drop(columns = 'AH')

	Date	Time	CO(GT)	PT08.S1(CO)	NMHC(GT)	C6H6(GT)	PT08.S2(NMHC)	NOx(GT)	PT08.S3(NOx)	NO2(GT)	PT08.S4(NO2)	PT08
0	114	18	2.6	1360.0	150.0	11.9	1046.0	166.0	1056.0	113.0	1692.0	
1	114	19	2.0	1292.0	112.0	9.4	955.0	103.0	1174.0	92.0	1559.0	
2	114	20	2.2	1402.0	88.0	9.0	939.0	131.0	1140.0	114.0	1555.0	
3	114	21	2.2	1376.0	80.0	9.2	948.0	172.0	1092.0	122.0	1584.0	
4	114	22	1.6	1272.0	51.0	6.5	836.0	131.0	1205.0	116.0	1490.0	
9352	43	10	3.1	1314.0	-200.0	13.5	1101.0	472.0	539.0	190.0	1374.0	
9353	43	11	2.4	1163.0	-200.0	11.4	1027.0	353.0	604.0	179.0	1264.0	
9354	43	12	2.4	1142.0	-200.0	12.4	1063.0	293.0	603.0	175.0	1241.0	
9355	43	13	2.1	1003.0	-200.0	9.5	961.0	235.0	702.0	156.0	1041.0	
9356	43	14	2.2	1071.0	-200.0	11.9	1047.0	265.0	654.0	168.0	1129.0	

9357 rows × 14 columns

```
y = df['AH']
```

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train_scaler = scaler.fit_transform(X_train)
X_test_scaler = scaler.transform(X_test)
```


from sklearn.metrics import r2_score
r2_score(y_train, y_pred_train)

0.9220555120401427

```
y_pred_test = 1.predict(X_test_scaler)
plt.scatter(y_test, y_pred_test)
plt.xlabel("Actual Absolute Humidity")
plt.ylabel("Predicted Absolute Humidity")
plt.show()
```

r2_score(y_test, y_pred_test)

Colab paid products - Cancel contracts here

✓ 0s completed at 19:29