## Audition ED IP Paris - Concours commun

## Probabilistic Approach to Diffusion-Mediated Surface Phenomena

Director: **Denis GREBENKOV**Laboratoire PMC, Ecole Polytechnique

**Yilin YE** May 15, 2023

## **Academic Training**

| Undergraduate, Chemistry.     Xiamen University, Xiamen, China                            | 2015 - 2019<br><b>92.34</b> /100 |
|-------------------------------------------------------------------------------------------|----------------------------------|
| • Diplôme de l'ENS. (International Selection)<br>École Normale Supérieure, Paris, France  | 2019 - 2023<br>In progress       |
| * Research Assitant.  Hunan University, Changsha, China                                   | 2020 - 2021                      |
| <ul> <li>Master 1, Chemistry.</li> <li>École Normale Supérieure, Paris, France</li> </ul> | 2021 - 2022<br><b>15.60</b> /20  |
| ⋆ Master 2, Physics, ICFP.                                                                | 2022 - 2023                      |

École Normale Supérieure, Paris, France

(1st semester) 13.69/20

(2nd semester, without internship) 15.00/20

• Theoretical Chemistry: Statistical Mechanics applied to Chemistry

## **Courses Selected**

| Damien Laage & Guilluam Stirnemann                                                                            | <b>16.00</b> /20         |
|---------------------------------------------------------------------------------------------------------------|--------------------------|
| Physics of fluids and nonlinear physics     Arnaud Antkowiak & Camille Duprat                                 | M2S1<br><b>14.86</b> /20 |
| * Computational and Data-Driven Physics Alberto Rosso & Rémi Monasson                                         | M2S1<br><b>13.70</b> /20 |
| • Statistical Physics 2: Disordered Systems and Interdisciplinary Applicat Francesco Zamponi & Gregory Schehr | ions M2S2<br>15.00/20    |
| * Advanced Topics in Markov-chain Monte Carlo Werner Krauth                                                   | M2S2<br><b>15.00</b> /20 |

M1S1

## Internships







• Brownian Motion near the Soft Surface Feb. ~ Jul. 2022 M1S2, Thomas Salez, Yacine Amarouchene, David Dean Laboratoire Ondes et Matière d'Aquitaine, Université de Bordeaux



• Study of  $\eta^{(\prime)} \to \pi^+ \pi^- \gamma^{(*)}$  Decays by Effective Field Theory Research Assistant, Lingyun Dai Mar.  $\sim$  Aug. 2021 School of Physics & Electronics, Hunan University



Simulation of Vibrational ICD on Model Systems with Reduced
 Dimensions
 Jun. ~ Jul. 2020

 L3S2, Jérémie Caillat
 Laboratoire de Chimie Physique - Matière et Rayonnement, Sorbonne Université





#### ElastoHydroDynamics interactions & Modified fluctuation-dissipation relation

#### Equations of motion (EOM) are non-linearly coupled



$$\ddot{\mathbf{X}}_{\mathbf{G}} + \frac{2\varepsilon\xi}{3} \frac{\dot{\mathbf{X}}_{\mathbf{G}}}{\sqrt{\Delta}} + \frac{\kappa\varepsilon\xi}{6} \left[ \frac{19}{4} \frac{\dot{\Delta}\dot{\mathbf{X}}_{\mathbf{G}}}{\Delta^{7/2}} - \frac{\dot{\Delta}\dot{\Theta}}{\Delta^{7/2}} + \frac{1}{2} \frac{\ddot{\Theta} - \ddot{\mathbf{X}}_{\mathbf{G}}}{\Delta^{5/2}} \right] = 0$$

$$\dot{\mathbf{v}} + f(\Delta) \mathbf{v} + \kappa \mathbf{g}(\dot{\mathbf{v}}, \mathbf{v}, \Delta) = 0 \qquad \rightarrow \qquad \dot{\mathbf{v}} = -\gamma_{\text{eff}} \mathbf{v} + \delta F/M$$

$$\left\langle \delta F_{i}^{2} \right\rangle \propto \frac{2m_{i}\gamma_{i0}}{\beta} \left[ 1 - \kappa \cdot \frac{\gamma_{i1}(\Delta)}{\gamma_{i0}(\Delta)} \right] \qquad \frac{D(\kappa, \Delta)}{D(0, \Delta)} = 1 - \kappa \cdot \frac{\gamma_{i1}(\Delta)}{\gamma_{i0}(\Delta)}$$

T. Salez, and L. Mahadevan, J. Fluid Mech. 2015, 779, 181-196

#### ElastoHydroDynamics interactions & Modified fluctuation-dissipation relation

#### Equations of motion (EOM) are non-linearly coupled



$$\begin{split} \ddot{\mathbf{X}}_{\mathbf{G}} &+ \frac{2\varepsilon\xi}{3} \frac{\dot{\mathbf{X}}_{\mathbf{G}}}{\sqrt{\Delta}} + \frac{\kappa\varepsilon\xi}{6} \left[ \frac{19}{4} \frac{\dot{\Delta}\dot{\mathbf{X}}_{\mathbf{G}}}{\Delta^{7/2}} - \frac{\dot{\Delta}\dot{\Theta}}{\Delta^{7/2}} + \frac{1}{2} \frac{\ddot{\Theta} - \ddot{\mathbf{X}}_{\mathbf{G}}}{\Delta^{5/2}} \right] = 0 \\ \dot{\mathbf{v}} &+ \mathbf{f}(\Delta) \ \mathbf{v} + \kappa \ \mathbf{g}(\dot{\mathbf{v}}, \mathbf{v}, \Delta) = 0 \qquad \rightarrow \qquad \dot{\mathbf{v}} = -\gamma_{\mathrm{eff}} \ \mathbf{v} + \delta F/M \\ &\left\langle \delta F_{i}^{2} \right\rangle \propto \frac{2m_{i}\gamma_{i0}}{\beta} \left[ 1 - \kappa \cdot \frac{\gamma_{i1}(\Delta)}{\gamma_{i0}(\Delta)} \right] \qquad \frac{D(\kappa, \Delta)}{D(0, \Delta)} = 1 - \kappa \cdot \frac{\gamma_{i1}(\Delta)}{\gamma_{i0}(\Delta)} \end{split}$$

T. Salez, and L. Mahadevan, J. Fluid Mech. 2015, 779, 181-196

#### Add random force into EOM for modified fluctuation-dissipation relation





## **Thesis Project - Motivation**



# How does the complicated environment affect diffusion-controlled reactions?

B. Augner, and D. Bothe. arXiv:1911.13030, 2019

F. Zhao, et al. Small, 2011, 7(10), 1322-1337

## Thesis Project

#### Probabilistic Approach to Diffusion-mediated Surface Phenomena

- $\bullet$  Boundary local time  $\ell_t$  characterizes the number of encounters with the boundary
- Surface reaction occurs when  $\ell_t$  exceeds some threshold  $\hat{\ell}$  characterized by  $\Psi(\ell)$ 
  - $\star$  standard surface reactions  $\Psi(\ell) = qe^{-q\ell}$
  - $\star$  various surface reactions: arbitrary  $\Psi(\ell)$
- This approach was applied only in simple confinements like sphere.

figs/pending\_scheme.png

#### **Thesis Project - Aims**

Probabilistic Approach to Diffusion-mediated Surface Phenomena

- Numerical practices on local time and conditional probability  $P(\mathbf{x}, \ell, t | \mathbf{x}_0)$ ;
- Analyze reversible chemical reactions by generalized propagator  $G_{\Psi}(\mathbf{x}, t | \mathbf{x}_0) = \int d\ell \Psi(\ell) P(\mathbf{x}, \ell, t | \mathbf{x}_0);$
- Popularize 2D model towards 3D model for simulations of real cases;



Brownian motion as Markov-chain Monte Carlo

$$\delta = \text{constant}$$

$$\Delta x_i = \operatorname{ran}(-\delta, +\delta)$$
  $\Delta y_i = \operatorname{ran}(-\delta, +\delta)$ 

$$r = \text{constant}$$
  $\theta_i = \text{ran}(0, 2\pi)$ 

$$\Delta x = r \cos \theta_i \qquad \Delta y = r \sin \theta_i$$





Geometry-adapted fast random walk

$$r_i \neq \text{constant}$$

$$\theta_i = \operatorname{ran}(0, 2\pi)$$

Find maximal radius and Jump uniformly.



## Compute distribution probability on each segment:





## Thanks for your attention!















## Local Time $\ell$

$$ec{x}_{k+1} = ec{x}_k + 
ho(\cos heta, \sin heta_k)$$
 $au = rac{\delta^2}{4D} \qquad t_{k+1} = t_k + au$ 

$$\ell_{t_{k+1}} = \ell_{t_k} + \sqrt{\frac{\pi}{2}D\tau}$$



