

LEARNING PROGRESS REVIEW

Week 10

Diaz Jubairy - Hermulia Hadie Desi Sulistyowati - Farahul Jannah

Table of Content

1. Advanced Visualization

- Seaborn
- Folium
- Wordcloud

2. Introduction to Machine Learning

- Machine Learning
- ML approaches
- Supervised vs Unsupervised Learning
- Bias and Variance Tradeoff
- Linear regression
- Logistic Regression

3. Data Preprocessing for Machine Learning

- What is Data
 Preprocessing
- Data cleaning (imputation)
- Data transformation (one-hot, label encoding)
- Normalization, standardization

1.

Advanced Visualization

Seaborn, Folium, WordCloud

Seaborn

Seaborn adalah salah satu library Python yang berguna menciptakan visualisasi data statistik dengan tampilan yang berkualitas tinggi.
Library ini di bangun berdasarkan library matplotlib serta terintegrasi dengan struktur data pada Pandas. Secara sederhana,
Seaborn adalah ekstensi dari Matplotlib

import seaborn as sns

Seaborn vs Matplotlib

Seaborn

- Mempunyai berbagai macam plot dan tema untuk visualisasi data
- Menggunakan syntax yang sederhana
- Bekerja dengan Pandas dataframe
- Menghindari tumpang tindih plot dengan bantuan tema defaultnya.
- Memakai banyak memori.
- Tidak ada pie chart

Matplotlib

- Digunakan untuk membuat grafik dasar.
- Menggunakan syntax yang kompleks dan panjang
- Bekerja dengan Numpy dan Pandas.
- Dapat disesuaikan secara personal.

Mengatur Background Grafik

 White grid : background warna putih dengan garis(grid)

sns.set_style("whitegrid")

 Dark grid : background warna abuabu dengan garis(grid)

sns.set_style("darkgrid")

Mengatur Background Grafik

 White: warna background putih tanpa garis (grid)

sns.set_style("white")

 Dark : warna background abu-abu tanpa garis (grid)

sns.set_style("dark")

Mengatur Background Grafik

 Ticks: warna background putih dan di setiap axis ada tanda

sns.set_style("ticks")

Regplot

sns.regplot() untuk menampilkan grafik yang menggambarkan informasi tentang sebaran dan hubungan regresi data

ax = sns.regplot(x="total_bill", y="tip", data=tips)

Lmplot

Apabila regplot hanya bisa menampilkan sebaran dan hubungan regresi data secara sederhana. Lmplot bisa menampilkan sebaran dan hubungan regresi data dengan mengacu pada variabel pembeda.

```
g = sns.lmplot(
    x="total_bill",
    y="tip",
    hue="day",
    data=tips)
```


Lmplot

Apabila hanya ingin menampilkan scatter plotnya saja, maka bisa ditambah dengan fungsi "fit_reg=False"

Scatterplot

Scatterplot tidak hanya bisa ditampilkan dengan syntax Implot, tapi juga bisa menggunakan syntax "sns.scatterplot()"

Barchart

```
ax = sns.barplot(x="sex", y="total_bill", hue="day", data=tips)
```


Catplot

Catplot dapat digunakan untuk menunjukkan hubungan antara variabel numerik dan satu atau lebih variabel kategorik menggunakan salah satu dari beberapa representasi visual. Beberapa jenis plot yang bisa digunakan dalam catplot adalah:

Categorical scatterplots

- stripplot() (with kind = "strip"; ini adalah default dari catplot)
- swarmplot() (with kind ="swarm")

Categorical distribution plots

- boxplot() (with kind =
 "box")
- violinplot() (with kind
 - = "violin"
- boxenplot() (with kind"boxen")

Categorical estimate plot

- poinplot() (with kind = "point"
- barplot() (with kind =
 "bar"
- countplot() (with kind"count)

Catplot

```
g = sns.catplot(x="day", y="tip", hue="sex", col='smoker', kind='boxen', data=tips)
```


Histogram

g = sns.displot(tips.total_bill, kde=True)

Boxplot

g = sns.boxplot(x="day", y="tip", hue='sex', data=tips)

Scatterplot Matrix

Menampilkan seluruh hubungan antar variabel yang mempunyai data numerik

g = sns.pairplot(tips, hue="sex")

Joinplot

Menampilkan plot dari dua variabel dengan grafik bivariat dan univariat.

Joinplot juga mempunyai beberapa kind, yaitu:

scatter

hex

kde

reg

hist

resid

Folium

Folium memudahkan untuk memvisualisasikan data yang telah dimanipulasi dengan Python pada peta interaktif. Folium memungkinkan untuk mengaplikasikan data ke peta untuk visualisasi choropleth serta meneruskan visualisasi vektor/raster/HTML yang kaya sebagai penanda pada peta.

import folium

Folium

Syntax

Folium

Result

WordCloud

Word Cloud adalah teknik visualisasi data yang digunakan untuk merepresentasikan data teks di mana ukuran setiap kata menunjukkan frekuensi atau kepentingannya. Word cloud banyak digunakan untuk enganalisis data dari situs web jejaring sosial.

import wordcloud

2.

Introduction to Machine Learning

What is Machine Learning

Cabang kecerdasan buatan (Artificial Intelligence/ AI), yang berkaitan dengan desain dan pengembangan algoritma yang memungkinkan komputer mengembangkan perilaku berdasarkan data empiris.

Warena kecerdasan membutuhkan pengetahuan, maka komputer perlu memperoleh pengetahuan.

Why "Learn"?

- Machine learning adalah pemrograman komputer untuk mengoptimalkan kinerja menggunakan contoh data atau pengalaman masa lalu.
- Machine Learning digunakan ketika:
 - Keahlian manusia tidak ada (navigating on Mars)
 - Manusia tidak mampu menjelaskan keahliannya (speech recognition)
 - Solusi yg perlu disesuaikan dengan kasus tertentu (user biometrics)

ML vs Traditional Programming

- Traditional programming adalah proses manual—artinya seseorang (programmer) membuat program yang didalamnya terdapat aturanaturan.
- Sedangkan di machine learning, algoritma secara otomatis merumuskan aturan (rules) dari data.

Types of Learning

1. Supervised learning

- Training data mempunyai target class
- Classification, regression/ prediction

2. Unsupervised learning

- Training data tidak mempunyai target class
- Clustering, association rules

3. Semi-supervised learning

Sebagian training data memiliki output

4. Reinforcement learning

Rewards (hadiah) diberikan ketika agent sukses dalam tugas tertentu, dan dihukum (punishment) ketika salah.

Supervised learning

Tid	Attrib1	Attrib2	Attrib3	Class
1	Yes	Large	125K	No
2	No	Medium	100K	No
3	No	Small	70K	No
4	Yes	Medium	120K	No
5	No	Large	95K	Yes
6	No	Medium	60K	No
7	Yes	Large	220K	No
8	No	Small	85K	Yes
9	No	Medium	75K	No
10	No	Small	90K	Yes

Unsupervised learning

Tid	Attrib1	Attrib2	Attrib3		
1	Yes	Large	125K		
2	No	Medium	100K		
3	No	Small	70K 120K 95K		
4	Yes	Medium			
5	No	Large			
6	No	Medium	60K		
7	Yes	Large	220K		
8	No	Small	85K		
9	No	Medium	75K		
10	No	Small	90K		

Semi-supervised learning

Tid	Attrib1	Attrib2	Attrib3	Class
1	Yes	Large	125K	No
2	No	Medium	100K	
3	No	Small	70K	
4	Yes	Medium	120K	
5	No	Large	95K	
6	No	Medium	60K	No
7	Yes	Large	220K	No
8	No	Small	85K	Yes
9	No	Medium	75K	
10	No	Small	90K	Yes

Supervised vs Unsupervised Learning

Supervised = Mempelajari data untuk memprediksi output. Kita tahu target label, sehingga kita membuat model untuk memprediksi label.

Unsupervised = Menemukan pattern/ characteristic dari data. Kita tidak mengetahui target label, sehingga kita membuat model yang mencoba mengelompokkan data.

Supervised Learning

- Classification (klasifikasi) = metode yang menarik beberapa kesimpulan dari nilai input yangdiberikan pada saat training dan kemudian akan memprediksi label/kelas untuk data baru.
- Regression (regresi) = metode yang mencoba untuk menentukan kekuatan dan karakter hubungan antara satu variabel dependen dan serangkaian variabel lainnya (variabel independen).
- Algoritma regresi = nilai kontinu (seperti harga, gaji, usia, dll). §
 Algoritma klasifikasi = nilai diskrit (seperti stroke atau normal, spam atau bukan spam, dll)
- Both are supervised learning

Classification, regression, clustering

price	bedroons	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	grade	sqft_above	sqft_basement	yr_built
221900.0	3	1.00	1180	5650	1.0	0	0	3	7	1180	0	1955
538000.0	3	2.25	2570	7242	2.0	0	0	3	7	2170	400	1951
180000.0	2	1.00	770	10000	1.0	0	0	3	6	770	.0	1933
604000.0	- 4	3.00	1960	5000	1.0	0	0	5	7	1050	910	1965
510000.0	3	2.00	1680	8080	1.0	0	0	3	8	1680	0	1987

Regression (house price dataset)

_												_
	14	pender	age	hypertension	heart_disease	ever narried	work_type	Basidence_type	mg_glucose_level	led.	seeking status	strok
	9046	More	67.0	0.		Yes	Private	Urban	229.69	36.6	formerly smoked	
1	51676	Female	61.0	0		Yes	Self-employed	Butt	202.21	Nani	never smoked	
2	31112	Male	0.05	0	1	Yes	Private	Row	105.92	22.5	never smoked	18
2	60160	Female	49.0	0		Yes	Privile	Utter	171 23	34.4	smokes	
4	1960	Female	79.0	1	- 1	Yes	Self-employed	Best	179.12	24.0	never smoked	
-											_	
\$105	18234	Female	80.0	1		Yes	Private	Ultion	83.75	Navi	never smoked	
\$10E	64573	Female	91.0	0	0	Yes	Sef-employed	Uthin	125.20	40.0	never smoked	
5107	19723	Female	55.0	0		Yes	Self-employed	Red	82.99	30.6	never smoked	3
5108	37544	108	81.0	0		Yes	Private	Rick	106.25	25.6	turnerly smoked	
2109	44679	Female	44.0	0	0	Yes	Govt job	Utter	65.26	26.2	Unknown	

Classification (stroke dataset)

	10	5ex	Marital status	Age	Education	Income	Occupation
0	100000001	0	0	67	2	124670	1
1	100000002	1	1	22	1	150773	1
2	100000003	0	0	49	1	89210	0
3	100000004	0	0	45	1	171565	1
4	100000005	0	0	53	1	149031	- 1

Clustering (customer dataset)

Stage in Machine Learning

Data preprocessing

Data cleaning, filling missing value, remove outlier

Train models

Select the algorithm
Feature selection and extraction

Evaluate model

Assess performance Model comparison

Deploy model

Apply model to new data Real-time demonstration

Why Data Preprocessing?

- Data di dunia nyata itu umumunya tidak bersih, banyak hal-hal yang perlu ditanggulangi seperti :
 - Data hilang:
 e.g., occupation=""
 - Noisy: mengandung pencilan
 e.g., Salary="-10" codes or names
 - Inkonsisten: ketodakasamaan format e.g., sex="Girl" vs. sex="Female"
- o No quality data, no quality mining results!
 - Keputusan yang berkualitas harus
 didasarkan pada data yang berkualitas

Sex	Age	BMI	DM type	DM duration	FBS	Sys BP	Dias BP	Retinopathy
Male	65	25	11	20	129	130	80	Yes
Male	42	27	11	300	210	140	90	No
Female	31	21	1	11	164	145	80	Yes
Male	70	32	II	29	208	160	100	Yes
Female	54	34	11	6	183	155	95	No
	46	29	11	7	198	160	100	No
Female	16	24	1	-1	250	135	80	No
Male	67	30	II	12	243	165	90	Yes
Female	51	28	11	7	163	130	85	No
Girl	70	36	11	20	250	150	90	Yes
Female	63	35	11	14	203	160	110	No
Male	44	39	II	3	149	140	90	No
Boy	51	24	11	9	160	155	80	No
Male	27	19	1	5	170	140	90	No

Model construction

Use the Model in Prediction

Tenured?

Yes/No?

Bias and variance

Bias

- Bias adalah perbedaan antara rata rata hasil prediksi dari model ML yang kita develop dengan data nilai yang sebenarnya.
- Bias yang tinggi dikarenakan dalam pembangunan model ML, dilakukan terlalu sederhana (oversimplified).

Variance

- Variance adalah variabel dari prediksi yang memberikan kita informasi perserbaran data hasil prediksi.
- Model yang memiliki variance tinggi memiliki korelasi kuat hanya pada training set, sehingga akan berkinerja baik pada training data saja.

Bias variance tradeoff

➢ DigitalSkola

➢ DioitalSkola

Linear Regression

Membentuk hubungan antara dua variabel menggunakan garis lurus.

- Simple linear regression: Y = a + bX + u
- Multiple linear regression: Y = a + b₁X₁ + b₂X₂ + b₃X₃ + ... + b_tX_t + u

Where:

- Y = the variable that you are trying to predict (dependent variable).
- X = the variable that you are using to predict Y (independent variable).
- a = the intercept.
- b = the slope.
- u = the regression residual.

Linear Regression

- Regresi linier mencoba menggambar garis yang paling dekat dengan data dengan menemukan slope dan intercept dan meminimalkan regression errors.
- Ordinary Least Squares (OLS) adalah metode estimasi yang paling umum untuk model linier

Linear Regression

Example

- y (dependent variable) = price (house price)
- x (independent variable) = sqft_living (square feet)

Q = House with 1000 square feet, approximate price? A = USD 237562.663

Logistic Regression

Q = Patient with BG 190 mg/dL, is it diagnosed as diabetes?

A = Probability diabetes is 0.882


```
#hold out, dibagi menjadi training dan testing set
X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=42)
#scaling
scaler = StandardScaler().fit(X train)
X train = scaler.transform(X train)
X test = scaler.transform(X test)
# data preprocessing selesai
#mulai melakukan modelling. model ML learning dari training set
model=LogisticRegression()
model.fit(X train, y train)
# membuat prediksi
y_pred = model.predict(X_test)
#menghitung performa model, dengan accuracy dll
print('Accuracy ',accuracy score(y test, y pred))
print('Precision ',precision_score(y_test, y_pred, average='macro'))
print('Recall ',recall_score(y_test, y_pred, average='macro'))
print('Confusion matrix ', confusion matrix(y test, y pred))
plot confusion matrix(model, X test, y test, cmap=plt.cm.Blues)
plt.show()
```


3.

Data Preprocessing for Machine Learning

Features/Variable

Fitur adalah properti terukur dari objek yang kita coba analisis.

Fitur muncul sebagai kolom dalam table.

Sex	Age	BMI	DM type	DM duration	FBS	Sys BP	Dias BP	Retinopathy
Male	65	25	11	20	129	130	80	Yes
Male	42	27	II	300	210	140	90	No
Female	31	21	1	11	164	145	80	Yes
Male	70	32	II	29	208	160	100	Yes
Female	54	34	II	6	183	155	95	No
	46	29	II	7	198	160	100	No
Female	16	24	1	-1	250	135	80	No
Male	67	30	II	12	243	165	90	Yes
Female	51	28	II	7	163	130	85	No
Girl	70	36	II	20	250	150	90	Yes
Female	63	35	II	14	203	160	110	No
Male	44	39	H	3	149	140	90	No
Воу	51	24	II	9	160	155	80	No
Male	27	19	1	5	170	140	90	No

Kualitas fitur berdampak besar pada kualiatas wawasan (insight) yang diperoleh saat pemodelan ML

Jenis-jenis Fitur

Jenis Fitur Kategoris

- Fitur Nominal: skala data yang berfungsi membedakan dan tidak ada tingkatan diantaranya. Contoh: gender, warna rambut, warna mata.
- Fitur Ordinal: data dikelompokan menjadi orde atau tingkatan.
 Contoh: jenjang pendidikan, kepuasan pelanggan.

Jenis Fitur Numerik

- Fitur Discrete: data diskrit mewakili item yang dapat dihitung. Contoh: jumlah siswa, jumlah kendaraan, dll
- Fitur Continuous: data kontinu mewakili item yang dapat diukur. Contoh: tinggi, suhu, kecepatan.

Data Preprocessing

- Data preprocessing merupakan sekumpulan teknik yang diterapkan pada dataset untuk menghapus noise, meng-handle missing value, dan data yang tidak konsisten.
- Data preprocessing diperlukan karena data mentah seringkali tidak lengkap dan memiliki format yang tidak konsisten.

Machine Learning Model

- Data cleaning
- Data integration
- Data reduction
- Data transformation

Data Preprocessing

- Peature engineering adalah proses mengubah data mentah menjadi fitur yang siap dipakai oleh model ML.
- Peature engineering terdiri dari pembuatan fitur, sedangkan data preprocessing melibatkan pembersihan data.

Tugas Utama Data Preprocessing

Data cleaning

- Fill in missing values,
- mooth noisy data,
- Identify or remove outliers, and
- Resolve inconsistencies

Data integration

Integration of multiple databases, or files Data reduction Dimensionality reduction

Data transformation

- Normalization
- Standardization
- Encoding

Data Cleaning

Data di dunia nyata itu 'kotor'

- Kosong atau tidak lengkap: pekerjaan=""
- Noisy (nilai yg salah atau outliers): gaji="-10"
- Nilai tidak konsisten: jenis kelamin="perempuan" vs. jenis kelamin="wanita"
- Data yang sama/ duplicate

No quality data, no quality mining results!

Sex	Age	BMI	DM type	DM duration	FBS	Sys BP	Dias BP	Retinopathy
Male	65	25	11	20	129	130	80	Yes
Male	42	27	11	300	210	140	90	No
Female	31	21	ı	11	164	145	80	Yes
Male	70	32	II	29	208	160	100	Yes
Female	54	34	II	6	183	155	95	No
	46	29	II	7	198	160	100	No
Female	16	24	I	-1	250	135	80	No
Male	67	30	II	12	243	165	90	Yes
Female	51	28	II	7	163	130	85	No
Girl	70	36	II	20	250	150	90	Yes
Female	63	35	II	14	203	160	110	No
Male	44	39	II	3	149	140	90	No
Boy	51	24	II	9	160	155	80	No
Male	27	19	1	5	170	140	90	No

Incomplete (Missing) Data

Data tidak selalu tersedia

Misalnya, banyak baris tidak memiliki nilai untuk beberapa atribut, seperti pendapatan pelanggan dalam data penjualan

Data yang hilang

- mungkin karena:
- Kerusakan peralatan
- Data tidak masuk karena ada kesalah pahaman
- Data tertentu mungkin tidak dianggap penting pada waktu proses entri

Handling Missing Data:

- Abaikan baris:
- Isi nilai yang hilang secara manual: butuh waktu lama?
- Isi secara otomatis dengan
 - konstanta global: misalnya,
 - "unknown",
 - atribut mean, median (untuk numerik)
 - orata-rata atribut untuk semua sampel
 - yang termasuk dalam kelas yang sama nilai yang paling sering muncul (untuk
 - kategoris)

Noisy Data

- Noise adalah data yang berisi nilai-nilai yang salah atau anomali, yang biasanya disebut juga outlier.
- Nilai atribut yang salah mungkin karena:
 - instrumen pengumpulan data yang salah
 - o terjadi masalah pada saat entri data
 - O terjadi masalah pada transmisi data

Handling Noisy Data:

- Binning:
 - urutkan data dan partisi terlebih dahulu ke dalam bin (frekuensi yang sama)
 - kemudian dapat mengganti nilai outlier dengan nilai rata rata atau median dalam bin tersebut.
- Regression: smooth training data dengan fungsi regresi / mengganti outlier berdasarkan fungsi regresi
- Clustering: mendeteksi dan menghapus outlier
- Combined computer and human inspection: mendeteksi nilai yang mencurigakan dan diperiksa oleh manusia (misalnya, menangani kemungkinan outlier)

Feature Encoding

One-Hot Encoding: mengubah setiap kategori sehingga memiliki nilai angka 1 atau angka 0

id	color		id	color_red	color_blue	color_gr
1	red		1	1	Θ	Θ
2	blue	One Hot Encoding	2	9	1	Θ
3	green		3	0	Θ	1
4	blue		4	Θ	1	Θ

Label Encoding: mengubah setiap kategori menjadi angka 1,2,3, ... dst

petallength	petalwidth	iris_class
1.4	0.2	Iris-setosa
1.4	0.2	Iris-versicolor
1.3	0.2	Iris-virginica

petallength	petalwidth	iris_class
1.4	0.2	1
1.4	0.2	2
1.3	0.2	3

Normalization dan Standardization

- Normalization: mengubah nilai-nilai suatu feature menjadi skala tertentu [0,1].
- Standardization: mengubah nilai-nilai feature sehingga mean = 0 dan standard deviation = 1

Min-Max Scaling

Uses MinMaxScaler

Transform to defined range

Standardization

Uses StandardScaler

Transform to mean=0, sd=0

$$y = \frac{x - \min x_i}{\max x_i - \min x_i}$$

$$y = \frac{x - \bar{x}}{s}$$

Where

 $ar{x}$ = mean

s = Standard deviation

Normalization dan Standardization

Tujuan:

- Data dengan skala yang sama akan menjamin algoritma pembelajaran memperlakukan semua fiture dengan adil
- Data dengan skala yang sama dan centered akan mempercepat algoritma pembelajaran Data dengan skala yang sama akan mempermudah interpretasi beberapa model ML

Kapan penggunaan:

Gunakan standardization bila kita tahu data punya sebaran normal/gaussian

Train test split

- Training adalah proses ketika model mempelajari data
- Hasil dari training disebut model machine learning (trained model)
- Untuk membuktikan keakuratan model, diperlukan data uji (test data)
- Training set: subset untuk melatih model.
- Test set: subset untuk menguji model yang dilatih.
- Karena kurangnya data, kita bisa memisahkan dataset menjadi dua bagian yaitu training dan testing

Testing / Proving

Imbalanced dataset

Imbalanced data mengacu pada masalah klasifikasi di mana jumlah pengamatan per kelas tidak merata.

(https://www.kaggle.com/fedesoriano/stroke-prediction-dataset?select=healthcare-dataset-strokedata.csv)

How to handle Imbalanced dataset

- **Under sampling** = Menyeimbangkan distribusi kelas dengan menghilangkan contoh kelas mayoritas secara acak.
- Oversampling = Meningkatkan jumlah instance di kelas minoritas dengan mereplikasinya secara acak

Thank you

