МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ Государственное образовательное учреждение высшего профессионального образования «ВЯТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Факультет прикладной математики и телекоммуникаций Кафедра прикладной математики и информатики

Концепции современного естествознания (математические модели в естествознании и экологии)

Методические указания к лабораторным работам

Киров 2010

Концепции современного естествознания (математические модели в естествознании и экологии): методические указания к лабораторным работам для студентов специальности 010500 – «Прикладная математика и информатика» / сост. доц. каф. ПМиИ, к.б.н., П.Г.Чупраков. – Киров: Изд-во ВятГУ, 2010.-11 с.

Методические указания предназначены для студентов специальности «Прикладная математика и информатика». Составлены в соответствии с Государственным стандартом высшего профессионального образования и рабочей программой дисциплины.

Лабораторная работа №1. «Исследование движения планет»

Цель: ознакомление с математическими моделями в естествознании. Студент должен научиться выполнять следующие задачи: строить аналитические решения предложенных дифференциальных уравнений, построить численные решения системы с использованием различных схем интегрирования, изучить устойчивость решений уравнения при относительно малых вариациях начальных данных.

Задание на лабораторную работу включает в себя индивидуальную для студента задачу.

Дана система, дифференциальных уравнений

$$m_i \frac{d^2 \mathbf{r}_i}{dt^2} = \sum_{j=1}^3 \mathbf{F}_{ij} , \quad \mathbf{F}_{ij} = -\gamma \frac{m_i m_j}{r_{ij}^3} \mathbf{r}_{ij} ,$$

$$\mathbf{r}_{ij} = \mathbf{r}_i - \mathbf{r}_j , \quad \mathbf{r}_i = (x_i, y_i) , \quad i, j = 1, 2, 3.$$
(1)

Вариант 1.

Задание:

- 1. Решить систему уравнений (1) методом Эйлера.
- 2. Проварьировать шаг, выбрав $h = 10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}$.
- 3. Построить траектории движения планет.
- 4. Исследовать устойчивость движения планет относительно малых изменений начальных данных.

Считать, что $m_3 = 0$, $\gamma = 1$.

Nº	m_1	m_2	<i>x</i> ₁₀	x ₂₀	\mathcal{Y}_{10}	y 20	\dot{x}_{10}	\dot{x}_{20}	$\dot{\mathcal{Y}}_{10}$	\dot{y}_{20}
1.1	10 ⁵	1	1	10	6	2	-2	0	2	-5
1.2	10 ⁴	1	1	29	4	2	-3	4	0	-4
1.3	10 ³	1	2	15	2	3	-2	2	2	-3
1.4	10^{2}	1	2	14	3	4	4	0	4	-1
1.5	10 ¹	1	4	18	2	3	-6	3	0	6
1.6	10 ⁵	10	1	9	1	2	2	3	3	0
1.7	10 ⁴	10	6	3	1	3	4	2	2	6
1.8	10^{3}	10	4	12	2	6	8	1	2	4
1.9	10^{2}	10	2	14	4	3	4	2	1	3
1.10	10 ¹	10	1	16	4	2	2	0	2	1

Вариант 2.

Задание:

- 1. Решить систему уравнений (1) методом Рунге—Кутта 2-го порядка.
- 2. Проварьировать шаг, выбрав $h = 10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}$.
- 3. Построить траектории движения планет.
- 4. Исследовать устойчивость движения планет относительно малых изменений начальных данных.

Считать, что $m_3 = 0$, $\gamma = 1$.

No	m_1	m_2	<i>x</i> ₁₀	x ₂₀	y_{10}	y ₂₀	\dot{x}_{10}	\dot{x}_{20}	\dot{y}_{10}	\dot{y}_{20}
2.1	10 ⁵	1	1	10	6	2	2	0	2	5
2.2	10 ⁴	1	1	29	4	2	3	4	0	4
2.3	10^{3}	1	2	15	2	2	2	2	2	3
2.4	10^{2}	1	2	14	3	4	4	0	4	1
2.5	10^{1}	1	4	18	2	3	6	3	0	6
2.6	10 ⁵	10	1	9	1	2	2	3	3	0
2.7	10 ⁴	10	6	3	1	3	4	2	2	6
2.8	10^{3}	10	4	12	2	2	8	1	2	4
2.9	10 ²	10	2	14	4	3	4	2	1	3
2.10	10 ¹	10	1	16	4	2	2	0	2	1

Лабораторной работе №2. «Взаимодействие двух вихрей»

Цель: ознакомление с математическими моделями явлений. Студент должен научиться выполнять следующие задачи: строить аналитические решения предложенных дифференциальных уравнений, построить численные решения системы с использованием различных схем интегрирования, изучить устойчивость решений уравнения при относительно малых вариациях начальных данных.

Задание на лабораторную работу включает в себя индивидуальную для студента задачу.

Дана система, дифференциальных уравнений

$$\dot{\mathbf{r}}_{1} = -\frac{\Gamma_{2}}{2\pi} \frac{\mathbf{r}_{12} \times \mathbf{n}}{r_{12}^{2}} + \mathbf{V}_{1}, \quad \dot{\mathbf{r}}_{2} = \frac{\Gamma_{1}}{2\pi} \frac{\mathbf{r}_{12} \times \mathbf{n}}{r_{12}^{2}} + \mathbf{V}_{2},$$

$$\mathbf{r}_{ij} = \mathbf{r}_{i} - \mathbf{r}_{j}, \quad \mathbf{r}_{i} = (x_{i}, y_{i}), \quad i, j = 1, 2, 3.$$
(2)

где \mathbf{n} — нормаль к плоскости x,y.

Вариант 1.

Задание:

- 1. Решить систему уравнений (2) методом Рунге–Кутта 4-го порядка (проварьировать шаг, выбрав $h = 10^{-4}, 10^{-3}, 10^{-2}$) для случаев:
 - 1.1. $\mathbf{V}_1 = \mathbf{V}_2 = 0$.

1.2.
$$V_{1x} = V_{2x} = \varepsilon \sin \lambda t$$
 , принять $\varepsilon = 10^{-2}, 10^{-1}, 0, 5$.

- 2. Построить траектории движения вихрей.
- 3. Построить фазовые портреты в плоскостях: $x_1, y_1, x_2, y_2, x_{12}, y_{12}$.
- 4. Исследовать устойчивость движения вихрей относительно малых изменений начальных данных.

№	x_{10}	x_{20}	${\cal Y}_{10}$	y ₂₀	Γ_1	Γ_2	λ
1.1	-1	1	0	0	2π	2π	1/2
1.2	0	0	-1	1	2π	2π	1/4
1.3	-0.5	0.5	0	0	π	π	1/8
1.4	0	0	-2	2	π	π	1

Вариант 2.

Задание:

- 1. Решить систему уравнений (2) методом Рунге–Кутта 4-го порядка (проварьировать шаг, выбрав $h = 10^{-4}, 10^{-3}, 10^{-2}$) для случаев:
 - 1.1. $V_1 = V_2 = 0$.

1.2.
$$V_{1x}=V_{2x}=arepsilon\sin\lambda t$$
 , $V_{1y}=V_{2y}=arepsilon_1\sin\lambda t$, принять $arepsilon=10^{-2},10^{-1},0,5$.

- 2. Построить траектории движения вихрей.
- 3. Построить фазовые портреты в плоскостях: $x_1, y_1, x_2, y_2, x_{12}, y_{12}$.
- 4. Исследовать устойчивость движения вихрей относительно малых изменений начальных данных.

Таблица коэффициентов и значений начальных данных.

No	<i>x</i> ₁₀	x_{20}	y_{10}	y ₂₀	Γ_1	Γ_2	λ	ε_1
2.1	-1	1	0	0	2π	2π	1/2	ε
2.2	-1	1	0	0	2π	2π	1/2	2ε
2.3	0	0	-1	1	2π	2π	1/4	ε
2.4	-0.5	0.5	0	0	π	π	1/8	ε

Вариант 3.

- 1. Решить систему уравнений (2) методом Рунге–Кутта 4-го порядка (проварьировать шаг, выбрав $h = 10^{-4}, 10^{-3}, 10^{-2}$) для случаев:
 - 1.1. $\mathbf{V}_1 = \mathbf{V}_2 = 0$.

1.2.
$$V_{1x} = V_{2x} = \varepsilon \sin \lambda t$$
, принять $\varepsilon = 10^{-2}, 10^{-1}, 0, 5$.

- 2. Построить траектории движения вихрей.
- 3. Построить фазовые портреты в плоскостях: $x_1, y_1, x_2, y_2, x_{12}, y_{12}$.
- 4. Исследовать устойчивость движения вихрей относительно малых изменений начальных данных.

TD ~			U		
Гаппина	коэтти	HUPHTOR L	і знячении	начальных	панных.
т и Олинци	κυσφηι	циситова	i jiiu itiiiii	iiu iuuibiibiA	диниыла

No	x_{10}	<i>x</i> ₂₀	${\cal Y}_{10}$	y ₂₀	Γ_1	Γ_2	λ
3.1	0	0	-1	1	2π	-2π	1/2
3.2	0	0	-1	1	2π	-2π	1/2
3.3	0	0	-1	1	2π	-2π	1/4
3.4	0	0	-0.5	0.5	π	-π	1/8
3.5	-1	1	0	0	2π	-2π	1

Вариант 4.

Задание:

- 1. Решить систему уравнений (2) при $\Gamma_i = 2\pi/(1+t)$ методом Рунге–Кутта 4-го порядка (поварьировать шаг, выбрав $h = 10^{-4}, 10^{-3}, 10^{-2}$) для случаев:
 - 1.1. $V_1 = V_2 = 0$.

1.2.
$$V_{1x} = V_{2x} = \varepsilon \sin \lambda t$$
, принять $\varepsilon = 10^{-2}, 10^{-1}, 0, 5$.

- 2. Построить траектории движения вихрей.
- 3. Построить фазовые портреты в плоскостях: $x_1, y_1, x_2, y_2, x_{12}, y_{12}$.
- 4. Исследовать устойчивость движения вихрей относительно малых изменений начальных данных.

Таблица коэффициентов и значений начальных данных.

No	x_{10}	x_{20}	\mathcal{Y}_{10}	y 20	λ
4.1	0	0	-1	1	1/2
4.2	0	0	-1	1	1/2
4.3	0	0	-1	1	1/4
4.4	-1	1	0	0	1

Вариант 5.

- 1. Решить систему уравнений (2) при $\Gamma_i = 2\pi (1+t)$ методом Рунге–Кутта 4-го порядка (проварьировать шаг, выбрав $h = 10^{-4}, 10^{-3}, 10^{-2}$) для случаев:
 - 1.1. $\mathbf{V}_1 = \mathbf{V}_2 = 0$.

1.2.
$$V_{1x} = V_{2x} = \varepsilon \sin \lambda t$$
, принять $\varepsilon = 10^{-2}, 10^{-1}, 0, 5$.

- 2. Построить траектории движения вихрей.
- 3. Построить фазовые портреты в плоскостях: $x_1, y_1, x_2, y_2, x_{12}, y_{12}$.
- 4. Исследовать устойчивость движения вихрей относительно малых изменений начальных данных.

No	x_{10}	x_{20}	\mathcal{Y}_{10}	${\cal Y}_{20}$	λ
5.1	0	0	-1	1	1/2
5.2	0	0	-1	1	1/2
5.3	0	0	-1	1	1/4
5.4	-1	1	0	0	1

Лабораторной работе №3. «Автоколебательные системы»

Цель: ознакомление с математическими моделями явлений. Студент должен научиться выполнять следующие задачи: строить аналитические решения предложенных дифференциальных уравнений, построить численные решения системы с использованием различных схем интегрирования, изучить устойчивость решений уравнения при относительно малых вариациях начальных данных.

Задание на лабораторную работу включает в себя индивидуальную для студента задачу.

Вариант 1.

Дана нелинейная колебательная система, описываемая уравнением

$$\ddot{x} + (a_1 x + a_2 x^2) + b\dot{x} = f \cos \rho t.$$
 (3)

- 1. Исследовать линейный резонанс в системе, положив частоту вынужденных колебаний равной частоте собственных линейных колебаний системы и $a_2 = 0$, b = 0.
- 2. Исследовать линейный резонанс в системе, положив частоту вынужденных колебаний равной частоте собственных линейных колебаний системы и $a_2 = 0$.
- 3. Построить аналитическое решение уравнения (3), считая $a_2 = \varepsilon << 1$. Ограничиться учетом членов порядка ε . Положить f = 0 .
- 4. Построить аналитическое решение, соответствующее субгармоническому резонансу для случая, когда $b \neq 0$.
- 5. Построить численное решение уравнения (3).
 - 5.1. Рассмотреть случай $a_2 = b = f = 0$. Построить фазовый портрет системы.
 - 5.2. Рассмотреть случай b = f = 0. Построить фазовый портрет системы.
 - 5.3. Рассмотреть случай f = 0. Построить фазовый портрет системы.
 - 5.4. Построить полное решение уравнения (3). Построить фазовый портрет системы.
 - 5.5. Для уравнения (3) при b=0 построить решение, положив частоту вынужденных колебаний равной частоте собственных линейных колебаний системы. Построить фазовый портрет системы.
 - 5.6. Исследовать при каких значениях параметра $\varepsilon << 1$ для уравнения (3) при b=0 возможно резонансное явление, если положить $\rho = \sqrt{a_1} + \varepsilon$. Построить фазовый портрет системы.
 - 5.7. Для случая 5.5 изучить устойчивость решений относительно малых вариаций начальных данных.

- 5.8. Для полного уравнения (3) построить решение, положив частоту вынужденных колебаний равной частоте собственных линейных колебаний системы. Построить фазовый портрет системы.
- 5.9. При каком условии в уравнении (3) появляется субгармонический резонанс? Построить соответствующее численное решение для случая, когда b = 0 и $b \neq 0$.
- 5.10. Когда в уравнении (3) может возникнуть параметрический резонанс? Построить соответствующее численное решение для случая, когда b = 0 и $b \neq 0$.

Таблица	коэффициентов	и значений	начальных данных
	T T		

No	a_1	a_2	b	f	x(t=0)	$\dot{x}(t=0)$
1.1	12	0.05	0.66	2	0	2
1.2	6	0.03	0.04	0.3	4	0
1.3	4	0.1	0.2	2	2	2
1.4	5	0.07	0.3	0.4	0	4
1.5	4	0.09	2	0.6	3	0
1.6	4	0.03	1	2	3	3
1.7	4	0.1	0.1	4	2	2
1.8	8	0.05	0.2	0.8	1	2
1.9	10	0.04	0.4	0.4	2	1
1.10	4	0.1	4	0.02	0	2

Вариант 2.

Дана нелинейная колебательная система, описываемая уравнением

$$\ddot{x} + (a_1 x + a_3 x^3) + b\dot{x} = f \cos \rho t. \tag{4}$$

- 1. Исследовать линейный резонанс в системе, положив частоту вынужденных колебаний равной частоте собственных линейных колебаний системы и $a_3 = 0$, b = 0.
- 2. Исследовать линейный резонанс в системе, положив частоту вынужденных колебаний равной частоте собственных линейных колебаний системы и $a_2 = 0$.
- 3. Построить аналитическое решение уравнения (4), считая $a_3 = \varepsilon << 1$. Ограничиться учетом членов порядка ε . Положить f = 0.
- 4. Построить аналитическое решение, соответствующее субгармоническому резонансу для случая, когда b = 0.
- 5. Построить численное решение уравнения (4).

- 5.1. Рассмотреть случай $a_3 = b = f = 0$. Построить фазовый портрет системы.
- 5.2. Рассмотреть случай b = f = 0. Построить фазовый портрет системы.
- 5.3. Рассмотреть случай f = 0. Построить фазовый портрет системы.
- 5.4. Построить полное решение уравнения (4). Построить фазовый портрет системы.
- 5.5. Для уравнения (4) при b=0 построить решение, положив частоту вынужденных колебаний равной частоте собственных линейных колебаний системы. Построить фазовый портрет системы.
- 5.6. Исследовать при каких значениях параметра $\varepsilon <<1$ для уравнения (4) при b=0 возможно резонансное явление, если положить $\rho = \sqrt{a_1} + \varepsilon$. Построить фазовый портрет системы.
- 5.7. Для случая 5.5 изучить устойчивость решений относительно малых вариаций начальных данных.
- 5.8. Для полного уравнения (4) построить решение, положив частоту вынужденных колебаний равной частоте собственных линейных колебаний системы. Построить фазовый портрет системы.
- 5.9. При каком условии в уравнении (4) появляется субгармонический резонанс? Построить соответствующее численное решение для случая, когда b = 0 и $b \neq 0$.
- 5.10. Когда в уравнении (4) может возникнуть параметрический резонанс? Построить соответствующее численное решение для случая, когда b = 0 и $b \neq 0$.

Таблица коэффициентов и значений начальных данных

№	a_1	a_3	b	f	x(t=0)	$\dot{x}(t=0)$
2.1	12	0.05	0.66	2	0	2
2.2	6	0.03	0.04	0.3	4	0
2.3	4	0.1	0.2	2	2	2
2.4	5	0.07	0.3	0.4	0	4
2.5	4	0.09	2	0.6	3	0
2.6	4	0.03	1	2	3	3
2.7	4	0.1	0.1	4	2	2
2.8	8	0.05	0.2	0.8	1	2
2.9	10	0.04	0.4	0.4	2	1
2.10	4	0.1	4	0.02	0	2

Лабораторная работа №4. Исследование динамики популяций хищников и жертв в зависимости от величин коэффициентов прироста жертв и смертности хищников.

Цель: приобретение навыков самостоятельного решения прикладной задачи математического моделирования путем применения технологии вычислительного эксперимента.

План выполнения работы.

- 1. Выписать уравнения динамики популяций для 2 видов.
- 2. Исследовать интегральные кривые полученной системы уравнений, установив тип особой точки.
- 3. Аппроксимировать полученные уравнения с использованием методов Рунге-Кутты.
- 4. Варьируя величины коэффициентов прироста жертв и смертности хищников, провести ряд вычислительных экспериментов.
- 5. Проанализировать результаты вычислительных экспериментов, сделать выводы.

Вычислительные эксперименты предлагается проводить следующим образом:

- 1. Выбрать по 3 значения величины коэффициентов прироста жертв и смертности хищников.
- 2. Провести численные эксперименты с различными сочетаниями выбранных значений, варьируя в каждом эксперименте начальные условия (по 4 условия).
- 3. По результатам экспериментов построить для каждого сочетания значений величин коэффициентов прироста жертв и смертности хищников фазовые траектории решений.
- 4. Объяснить характер изменения траекторий.