

1 ATGATGAGCT CCATGGTGAG GTTTAGCTCG AGCCCGTGCT CTTTCACCGG
51 GTCGTTGTGC TCAACATCGC CGCAGTCGAT GCACCCCATG AGCTCTGTGCG
101 CGGCAAAGGT GACGAGGCAA TGTGGGTGCT TGAGAGCGGG GAATAAGCTG
151 GATAAGGACC AATTGTGGG TGATGGGAAA CCACTTATGC ATCAACAGAC
201 GCGGGGATGG AGTCAGGGGC GGGAGAGGTG TCACCGCAGGG AGGTCTGTGG
251 TGATGCCAG TATGAGTGGC GCCAAGATCA AGGTCAATTGG TGAGGCGGC
301 GGGGGCAACA ATGCTGTGAA CCGCATGATT GGGAGCGGCA TTCAGGGTGT
351 TGATTTTGG GCCATCAACA CAGATGTTCA AGCTTTGCAG AAATCACAAG
401 CCGAACATCG CGTTCAAATC GGCGAAGCTT TGACCCGAGG ACTTGGTACT
451 GGTGGAAAGC CATTCTTGG AGAACAAAGCA GCAGAGGAAT CGATAGAAAT
501 CATTGCACAG GCAGTGGTAG ATGCTGATCT TGTCTTCATT ACTGCCGGCA
551 TGGGTGGTGG AACGGGTCT GGGGCTGCC CGGTGTTGC CCGTGTGGCC
601 AAAGAGGCAG GGCAACTCAC TGTTGGTGTGTT GTCACTTATC CGTTACGTT
651 TGAGGGCCGT CGGAGAAGCC AGCAGGCAGT GGAGGCAATA GAGAATCTGC
701 GGAAGTCTGT CGACAGTCTT ATTGTCATTC CTAATGACCG TCTACTCGAT
751 GTCTCCGGAG ATAAAACCTCC TCTTCAGGAA GCATTTTCTC TAGCCGACGA
801 TGTTCTTAGG CAGGGAGTTC AAGGCATTT AGACATCATC ACAACGCCAG
851 GTCTTGTGAA TGTTGATTT GCAGATGTTA GAGCTGTAAT GAGTAACTCA
901 GGTACAGCCA TGCTTGGCGT TGGCTCCTCT AGTGGCAAGA ATCGTGCTGA
951 GGAGGCCGCT GTTCAAGCTG CTTCAGCCCC TCTTATTGAA CGCTCTATTG
1001 AACAAAGCAAC TGGCATTGTA TACAACATCA CTGGTGGACC GGACCTCACA
1051 TTGCAGGAAG TCAACACCGT GTCTGAGATT GTAACAGGTT TAGCTGACCC
1101 CTCAGCTAAT ATCATTTCG GAGCGGTAGT GGATGACAAA TATACAGGTG
1151 AAATCCATGT AACGATTATT GCCACGGGGT TCTCTCACAG TTTTCAGAAA
1201 TCACTAGTGG ACCCAAACGT TTCTAGGTG GAGAGGCAGG ACGCCCCGAG
1251 TAATGCACTC GAGAACCTT GGAAGCAACC AACTCCCACC TCATCAAGAT
1301 TTCTGTCAAGG CCTTAATAGC AAGGGGTTTT TGTAG

Fig. 1

BEST AVAILABLE COPY

2/16

```

1   ATGATCACGT GTAGGGTTG GGTTGGTTG GGGCCGGTGA GCCCTTCTT
51  GATTCTTCTG CCCTCGAAGA GTAACGGAGA ATGCGTCCTA AGTGCAAGAA
101 AAGCTGATTG GGGATTACTG AGCCAAGTGC AATGCCAACG CTTTCGATGT
151 CTATCTTCAG AATATAAGGG TCATAATCTT AAACTTAGAA GACGTAGCCG
201 TGTCTCAGCT TCCAACAGAG AAAACGGTAG TTTAAATGGG CGTTTCCAGG
251 AATCACTGAG TCAAGAGAAT GGGTATCCGG CACCAACTGA AGGGACTGAT
301 CCTCACACTT TCTCCACGGC GATGGACTCC TTAGCTATTA AAGCAGAGGA
351 AGCTTACAAT GACGTACAGG ATTCTTTGTC CAAGAGTAGT AAACAACGGA
401 GCTTATCTGG CTGCGCTTCT ATCAAAGTGT TCGGTGTCGG GGGTGGTGGA
451 TGCAATGCGG TAGACGAAAT GGTGAGGTCA GAACTATTGA ATGTTGAGTT
501 CTGGGCCGTC AATACTGACA AACAAAGCATT GAACAAGTCG CTGGCTCCCCA
551 ATAAAATTCA AATTGGACAG GACACGACAG CCGGCCGCGG TGCAGGTGGA
601 AGAAGTGCAA CCGGTGAGGA AGCAGCTACA GAGTCATTGG CGGAGCTTTC
651 GATGGCACTT GAAGGTGCCG ATTTAGTCTT CATCGCCTCC GGTATGGGTG
701 GCGGTACTGG TTCAGGAGCA GCTCCTGTGG TGGCTCGGTT GGCGAAGGCT
751 ATGGGAGCGT TAACGATTGG CATACTAACT GAACTTTCA CATTGAAGG
801 GTTCACCCGA GCTCGACAAG CTAGGAAAGC CATTGAGGAC ATGCGCCATG
851 CGGCTGACAC TGTGGTTGTA GTTCCAAATG ATCGGTTGCT CCAGACTGTA
901 GCACCTGACA CATCTATGCT GGAGGCTTTC CATTTGCAG ATGACGTCTT
951 GCGGCAGGGA GTGCAAGGAA TTTCAGACAT CATCACGATA CCCGGCTAG
1001 TCAACGTGCA CTTTGCAGGAT GTGAAAGCTA TCATGTAAA TGCAGGGAGT
1051 GCAATGTTGG GAATCGGCGC TGGTTTGGG AAGAAccgtg ctgagGAGGT
1101 GGCACGGTCA GCCATCATGT CTCCTCTACT CCGCTCCGTC TCGAGACCCA
1151 TGGGTATTGT GTACAATGTG ACAGGTGGGA GCGACCTAAC TCTtcacgag
1201 gtcaACATCG CTGCCGAAAT TGttCATGAC ATGGCTGATC CAAACGCAAA
1251 TGTTATCTT GGGGCCGTCA TTGATGAGAG CTTTAAGGGG ATGATACGTA
1301 TGACTGTCAT TGCAACTGGA TTtAGAGAGC CTGGAGAGGA GAAGgTCGTT
1351 GgTAGTGTTC GAACTGTAGA CGATGATATA TTCTACTGGG AACAGAATAA
1401 GAATAGGTCC GACCTTGGCA AAGTGCCGGA CGTTTGCGA AGAAAAGATC
1451 GAAGGCGTGG CAGTGGCAGG TAA

```

Fig. 2

3/16

1 MMSSMVRFSS SPCSFTGSLC STSPQSMHPM SSVAAKVTRQ CGCLRAGNKL
51 DKDQFVGDGK PLMHQQTRGW SQGRERCHAG RSVVMASMSG AKIKVIGVGG
101 GGNNAVNRMI GSGIQGVDFW AINTDVQALQ KSQAEHRVQI GEALTRGLGT
151 GGKPFLGEQA AEESEIIIAQ AVVDADLVFI TAGMGGGTGS GAAPVVARVA
201 KEAGQLTVGV VTYPFTFEGR RRSQQAVEAI ENLRKSVDL IVIPNDRLLD
251 VSGDKTPLQE AFSLADDVLR QGVQGISDII TTPGLVNVDF ADVRAVMSNS
301 GTAMLGVGSS SGKNRAEEAA VQAASAPLIE RSIEQATGIV YNITGGPDLT
351 LQEVNTVSEI VTGLADPSAN IIFGAVVDDK YTGEIHVTII ATGFSHSFQK
401 SLVDPNVSRSL ERQDAPSNAL EKPWKQPTPT SSRFRQGLNS KGFL

Fig. 3

1 MITCRWWVGL GPVSPSLILL PSKSNGECL SARKADWGLL SQVQCQRFRC
51 LSSEYKGHN LKRRRSRVSA SNRENGSLNG RFQESLSQEN GYPAPTEGTD
101 PHTFSTAMDS LAIKAAEAYN DVQDSFAKSS KQRSLSGCAS IKVFGVGGGG
151 CNAVDEMVR S ELLNVEFWAV NTDKQALNKS LAPNKIQIGQ DTTAGRGAGG
201 RSATGEEAAT ESLAEISMAL EGADLVFIAS GMGGGTGSGA APVVARLAKA
251 MGALTIGIVT EPFTFEGFTR ARQARKAIED MRHAADTVVV VPNDRLLQTV
301 APDTSMLEAF HLADDVLRQG VQGISDIITI PGLVNVDFA D VKAIMSNAGS
351 AMLGIALVLG KNRAEEVARS AIMSPLLRSV SRPMGIVYNV TGGSDLTLHE
401 VNIAAEIVHD MADPNANVIF GAVIDESFKG MIRMTVIATG FREPGEKVV
451 GSVRTVDDDI FYWEQNKNRS DLGKVPDVLR RKDRRRGSGR

Fig. 4

108 MDS LAIKAAEAYN DVQDSFAKSS KQRSLSGCAS IKVFGVGGGG
151 CNAVDEMVR S ELLNVEFWAV NTDKQALNKS LAPNKIQIGQ DTTAGRGAGG
201 RSATGEEAAT ESLAELSMAL EGADLVFIAS GMGGGTGSGA APVVARLAKA
251 MGALTIGIVT EPFTFEGFTR ARQARKAIED MRHAADTVVV VPNDRLLQTV
301 APDTSMLEAF HLADDVLRQG VQGISDIITI PGLVNVDFA D VKAIMSNAGS
351 AMLGIALVLG KNRAEEVARS AIMSPLLRSV SRPMGIVYNV TGGSDLTLHE
401 VNIAAEIVHD MADPNANVIF GAVIDESFKG MIRMTVIATG FREPGEEKVV
451 GSVRTVDDDI FYWEQNKNRS DLGKVPDVLR RKDRRRGSGR

Fig. 5

Fig. 6b oder

Fig. 6a

Fig. 6c

Fig. 6d

FtsZ1-2/Met2mut

Fig. 7b

Fig. 7a

FtsZ1-2/Transit

1 107

Fig. 8 Exon-intron structure

៤

Fig. 9

Schematic representation of FtsZ subfamilies and patterns, based on an alignment (580aa) of chlorobiont FtsZ proteins

Figure 10

Figure 11**A****Subcellular localization of FtsZ fusion proteins****Non-transfected****Cytosol + chloroplasts (1-2)****Cytosol (1-2)****Chloroplasts (1-2)****Cytosol (2-1)**

Figure 12

Figure 13

Figure 14

A Spectra of bleached region (CFP-YFP)**B****D****C****E****F****G****H****I****J****K****L**

Spectra of bleached region (FtsZ1-2-CFP/YFPmcs)

M**O****N****P**

Figure 15

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.