Задача 164

Рассмотрим молекулу CNCl

Валентный угол N-C-Cl равен180°

Краткие электронные формулы атомов:

 C^* [He] $2s^1 2p^3$ (атом углерода в возбужденном состоянии)

C1 [Ne] $3s^2 3p^5$

N [He] $2s^2 2p^3$

Механизм образования связей в молекуле CNCl:

Тип гибридизации атома углерода: sp-гибридизация.

Две sp—гибридные орбитали атома углерода перекрываются с двумя p-орбиталями атомов хлора и азота (показано черными линиями). Образуются σ -связи. Красными линиями показано перекрывание негибридных p-орбиталей атома углерода с p-орбиталями атома азота (образуются π -связи)

Геометрическая форма молекулы: линейная

Валентный угол Cl-I-Cl равен 180°

Комплексообразователь: I^+

Лиганды: Cl-

Координационное число: 2

Электронная формула иона комплексообразователя: I^+ [Kr $4d^{10}$] $5s^2 5p^4 5d^0$

Электронно-графическая формула иона І⁺:

$$I^+ \dots 5s$$
 $\uparrow \downarrow$ $5p$ $\uparrow \downarrow$ $\uparrow \downarrow$ $5d$

В результате комплексообразования электронные пары лигандов Cl^- заселяют вакантные орбитали комплексообразователя (одну 5р-орбиталь, одну 5d-орбиталь). Образуется 2 ковалентные связи по донорно-акцепторному механизму (σ -связи).

Тип гибридизации атомных орбиталей иона-комплексообразователя: sp^3d -гибридизация. На гибридизацию и форму частицы оказывают влияние 3 неподеленные электронные пары.

Геометрическая форма комплексного иона – линейная.

Таким образом, центральные атомы частиц имеют разный тип гибридизации