General presentation guidelines:

- 1. Explain the problem description clearly with proper language and notations.
- 2. Design the algorithm with pseudo code and analyze the running time with accurate asymptotic notations.
- 3. Implement your algorithm using any programming language (Java, C++, Python, etc.) and illustrate the execution with an example input.
- 4. Document and upload your implementation codes to a public GitHub account.
- 5. Upload your presentation slides to Moodle.

The presentation is 12 minutes plus 2-3 minutes Q/A. Asking questions will get extra credit.

Problem: Given a set of n jobs indexed as 1, 2, \cdots , n. Each job j has a release time r_j indicating when it becomes available for processing, and a processing time p_j indicating how long it takes to complete. The machine can process jobs preemptively, meaning that it can interrupt the processing of a job to process another job and then resume the interrupted job later. There is no overhead in switching the processing of jobs. A job j is completed when it is processed for p_j units of time, and its completion time C_j is the time when it is completed. Our goal is to decide a schedule for all the jobs so as to minimize the total completion time of all jobs, i.e., $\sum_{j=1}^n C_j$. For example, consider 5 jobs with release times and processing times described in the following table:

$_{_j}$	1	2	3	4	5
r_{j}	0	10	30	50	100
p_j	60	30	30	10	20

Then, the optimum schedule for the instance is illustrated in the following figure:

The total completion time of the 5 jobs is 40 + 60 + 80 + 120 + 150 = 450.

Input:

- The input is taken from the standard input (console).
- The first line of input contains one integer n, the number of jobs.
- The next n lines give the description of the n jobs. Each line contains two integers r and p, denoting the release time and processing time of a job.

Output:

• The output is printed to the standard output (console). It contains a single line, which is the total completion time of the optimum schedule.

Example Input:	Example Output:		
5	450		
0 60			
10 30			
30 30			
50 10			
100 20			

Constraints:

- $1 \le n \le 10^6$.
- The release times are integers in $[0, 10^6]$ and the processing times are integers in $[1, 10^6]$.
- It is expected that your program will terminate in 10 seconds.