A Mixed Boundary Value Problem That Arises in the Study of Adhesively Bonded Structures

R. Malek-Madani, and J.J. Radice

US Naval Academy

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comment arters Services, Directorate for Inf	s regarding this burden estimate formation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE OCT 2010		2. REPORT TYPE		3. DATES COVE 00-00-2010	red to 00-00-2010		
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER		
A Mixed Boundary Value Problem That Arises in the Study of Adhesively Bonded Structures					5b. GRANT NUMBER		
Donaca Structures					5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)					5d. PROJECT NUMBER		
					5e. TASK NUMBER		
					5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) US Naval Academy, Annapolis, MD, 21402					8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)			
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT		
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release; distributi	ion unlimited					
13. SUPPLEMENTARY NO Presented at the 20	OTES OTO COMSOL Confe	erence, 7-9 Oct, Bo	ston, MA.				
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER	19a. NAME OF				
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 17	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188 Given a physics-based problem, we often have choices in deciding

- a) which Reduced-Order Model to use
- b) which mathematical method to use to analyze the ROM

Examples come from Ocean Modeling, Electromagnetism, and Structural Mechanics

Typical Problem Genesis:

Adhesively Bonded Joints

Aerospace Sandwich Structures

Boundary Value Problem: Mixed form in terms of Stress, Infinitesimal Strain, and Displacement

Boundary Value Problem: Expressed in terms of Displacement

Boundary Value Problem: Expressed in terms of Displacement Potential

$$\frac{\partial \Psi}{\partial x}(x,z) = u(x,z)$$
$$\frac{\partial \Psi}{\partial z}(x,z) = w(x,z)$$

Boundary Value Problem: Expressed in terms of Airy's Stress Function and Solution Ansatz

$$\nabla^{4}\Phi = 0; \left\{0 \le x \le L, 0 \le z \le \eta\right\}$$

$$\frac{\partial^{2}\Phi}{\partial z^{2}}(0,z) = 0 \quad \frac{\partial^{2}\Phi}{\partial x\partial z}(0,z) = 0$$

$$\frac{\partial^{2}\Phi}{\partial z^{2}}(L,z) = 0 \quad \frac{\partial^{2}\Phi}{\partial x\partial z}(L,z) = 0$$

$$\left[\frac{1}{E}\int \left(\frac{\partial^{2}\Phi}{\partial x^{2}} - v\frac{\partial^{2}\Phi}{\partial z^{2}}\right)dz\right]_{z=0}^{z} + C_{1}(x) = w_{b}(x)$$

$$\left[\frac{1}{E}\int \left(\frac{\partial^{2}\Phi}{\partial x^{2}} - v\frac{\partial^{2}\Phi}{\partial z^{2}}\right)dz\right]_{z=\eta}^{z} + C_{1}(x) = w_{t}(x)$$

$$\left[-\frac{1}{G}\int \left(\frac{\partial^{2}\Phi}{\partial x\partial z}\right)dz - \frac{1}{E}\int \int \left(\frac{\partial^{3}\Phi}{\partial x^{3}} - v\frac{\partial^{3}\Phi}{\partial x\partial z^{2}}\right)dzdz\right]_{z=0}^{z} + C_{2}(x) = u_{b}(x)$$

$$\left[-\frac{1}{G}\int \left(\frac{\partial^{2}\Phi}{\partial x\partial z}\right)dz - \frac{1}{E}\int \int \left(\frac{\partial^{3}\Phi}{\partial x^{3}} - v\frac{\partial^{3}\Phi}{\partial x\partial z^{2}}\right)dzdz\right]_{z=\eta}^{z} + \eta\frac{dC_{1}}{dx}(x) + C_{2}(x) = u_{t}(x)$$

$$\Phi(x,z) = A_0(x) + zA_1(x) + \sum_{n=1}^{\infty} F_n(x) \sin\left(\frac{n\pi z}{\eta}\right)$$

Example Loading Case: Displacements, Geometry, and Properties

Е	υ	L	η	δ
344.6 MPa	0.3	8.333 mm	0.25 mm	0.00025 mm

$u_b(x)$	$u_t(x)$	$w_b(x)$	$w_t(x)$
0 mm	0.00025 mm	0 mm	0 mm

Spectral-Collocation Analysis Results: Mid-plane Shear Stress $\sigma_{xz}(x,\eta/2)$ and Interfacial Shear Stresses $\sigma_{xz}(x,0)$

COMSOL Structural Mechanics Mesh: Shown in vicinity of stress free surface

COMSOL Structural Mechanics 2D Plane-Stress Analysis Results: Mid-plane Shear Stress $\sigma_{xz}(x,\eta/2)$

COMSOL Structural Mechanics 2D Plane-Stress Analysis Results: Interfacial Shear Stress $\sigma_{xz}(x,0)$

Back to Displacement BVP

$$(\lambda + 2G)\frac{\partial u}{\partial x}(0,z) + \lambda \frac{\partial w}{\partial z}(0,z) = 0$$

$$(\lambda + 2G)\frac{\partial u}{\partial x}(0,z) + \lambda \frac{\partial w}{\partial z}(0,z) = 0$$

$$(\lambda + 2G)\frac{\partial^{2} u}{\partial x^{2}} + G\frac{\partial^{2} u}{\partial z^{2}} + (\lambda + G)\frac{\partial^{2} w}{\partial x \partial z} = 0$$

$$(\lambda + 2G)\frac{\partial^{2} u}{\partial x} + G\frac{\partial^{2} w}{\partial z^{2}} + (\lambda + G)\frac{\partial^{2} u}{\partial x \partial z} = 0$$

$$(\lambda + 2G)\frac{\partial u}{\partial x}(L,z) + \lambda \frac{\partial w}{\partial z}(L,z) = 0$$

$$u(x,0) = u_{b}(x) \qquad w(x,0) = w_{b}(x)$$

$$L \qquad x$$

$$abla \cdot \Gamma = \mathbf{F}$$

Use COMSOL's General PDE Solver

Gamma is a 2 x 2 tensor

COMSOL PDE (General Form) Solver Mesh: Shown in vicinity of stress free surface

COMSOL PDE Solver Analysis Results: Mid-plane Shear Stress $\sigma_{xz}(x,\eta/2)$

COMSOL PDE Solver Analysis Results: Interfacial Shear Stress $\sigma_{x_7}(x,0)$

Some Conclusions/Observations

The Spectral Collocation method describes a shear stress that does not have a singularity at the corners; this seems to be the expected result from a mechanical point of view.

The Structural Mechanics result seems to suffer from artificially large singularities at the corners; did we implement it poorly?

The General PDE solver seems to be a natural way to pose this pose this problem In COMSOL. It gives good result, although it seems to still suffer from some level of Numerical singularity at the corners.