Machine-Level Programming I: Basics

Introduction to Computer Systems 4th Lecture, Sep. 19, 2022

Instructors:

Class 1: Chen Xiangqun, Liu Xianhua

Class 2: Guan Xuetao

Class 3: Lu Junlin

Today: Machine Programming I: Basics

- History of Intel processors and architectures
- C, assembly, machine code
- Assembly Basics: Registers, operands, move
- Arithmetic & logical operations

Intel x86 Processors

Dominate laptop/desktop/server market

Evolutionary design

- Backwards compatible up until 8086, introduced in 1978
- Added more features as time goes on
 - Now 3 volumes, about 5,000 pages of documentation

Complex instruction set computer (CISC)

- Many different instructions with many different formats
 - But, only small subset encountered with Linux programs
- Hard to match performance of Reduced Instruction Set Computers (RISC)
- But, Intel has done just that!
 - In terms of speed. Less so for low power.

Intel x86 Evolution: Milestones

Name Date Transistors MHz

■ 8086 1978 29K 5-10

- First 16-bit Intel processor. Basis for IBM PC & DOS
- 1MB address space
- 386 1985 275K 16-33
 - First 32 bit Intel processor, referred to as IA32
 - Added "flat addressing", capable of running Unix
- Pentium 4E 2004 125M 2800-3800
 - First 64-bit Intel x86 processor, referred to as x86-64
- Core 2 2006 291M 1060-3333
 - First multi-core Intel processor
- Core i7 2008 731M 1600-4400
 - Four cores

Intel x86 Processors, cont.

■ Machine Evolution

386	1985	0.3M
Pentium	1993	3.1M
Pentium/MMX	1997	4.5M
Pentium Pro	1995	6.5M
Pentium 4	2000	42M
Core 2 Duo	2006	291M
Core i7	2008	731M
Core i7 Skylake	2015	1.9B

Added Features

Xeon Skylake-SP 2017

- Instructions to support multimedia operations
- Instructions to enable more efficient conditional operations

8B

- Transition from 32 bits to 64 bits
- More cores

Intel x86 Processors, cont.

■ Past Generations Process technology

	1 st Per	ntium	Pro	1995	600 nm	
_	4 ct D			4000	0.50	

■ 1st Pentium III 1999 250 nm

■ 1st Pentium 4 2000 180 nm

■ 1st Core 2 Duo 2006 65 nm

■ Recent & Upcoming Generations

1.	Nehalem	2008	45 nm
2.	Sandy Bridge	2011	32 nm

2. Sandy Bridge 2011 32 nm
3. Ivy Bridge 2012 22 nm

4. Haswell 2013 22 nm

5. Broadwell 2014 14 nm

6. Skylake 2015 14 nm

7. Kaby Lake 2016 14 nm

8. Coffee Lake 2017 14 nm

9. Cannon Lake 2018 10 nm

10. Ice Lake 2019 10 nm

11. Tiger Lake 2020 10 nm

Process technology dimension = width of narrowest wires (10 nm ≈ 100 atoms wide)

2018 State of the Art: Coffee Lake

■ Mobile Model: Core i7

- 2.2-3.2 GHz
- **45 W**

Desktop Model: Core i7

- Integrated graphics
- 2.4-4.0 GHz
- **35-95 W**

Server Model: Xeon E

- Integrated graphics
- Multi-socket enabled
- 3.3-3.8 GHz
- **80-95 W**

x86 Clones: Advanced Micro Devices (AMD)

Historically

- AMD has followed just behind Intel
- A little bit slower, a lot cheaper

Then

- Recruited top circuit designers from Digital Equipment Corp. and other downward trending companies
- Built Opteron: tough competitor to Pentium 4
- Developed x86-64, their own extension to 64 bits

Recent Years

- Intel got its act together
 - 1995-2011: Lead semiconductor "fab" in world
 - 2018: #2 largest by \$\$ (#1 is Samsung)
 - 2019: reclaimed #1
- AMD fell behind
 - Relies on external semiconductor manufacturer GlobalFoundaries
 - ca. 2019 CPUs (e.g., Ryzen) are competitive again

Intel's 64-Bit History

- 2001: Intel Attempts Radical Shift from IA32 to IA64
 - Totally different architecture (Itanium)
 - Executes IA32 code only as legacy
 - Performance disappointing
- 2003: AMD Steps in with Evolutionary Solution
 - x86-64 (now called "AMD64")
- Intel Felt Obligated to Focus on IA64
 - Hard to admit mistake or that AMD is better
- 2004: Intel Announces EM64T extension to IA32
 - Extended Memory 64-bit Technology
 - Almost identical to x86-64!
- All but low-end x86 processors support x86-64
 - But, lots of code still runs in 32-bit mode

Our Coverage

■ IA32

- The traditional x86
- For this course: RIP, Fall 2016

■ x86-64

- The standard
- Server> gcc hello.c
- Server> gcc -m64 hello.c

Presentation

- Book covers x86-64
- Web aside on IA32
- We will only cover x86-64

Today: Machine Programming I: Basics

- History of Intel processors and architectures
- C, assembly, machine code
- Assembly Basics: Registers, operands, move
- Arithmetic & logical operations

Definitions

- Architecture: (also ISA: instruction set architecture) The parts of a processor design that one needs to understand for writing correct machine/assembly code
 - Examples: instruction set specification, registers
 - Machine Code: The byte-level programs that a processor executes
 - Assembly Code: A text representation of machine code
- Microarchitecture: Implementation of the architecture
 - Examples: cache sizes and core frequency
- Example ISAs:
 - Intel: x86, IA32, Itanium, x86-64
 - ARM: Used in almost all mobile phones
 - RISC V: New open-source ISA

Assembly/Machine Code View

Programmer-Visible State

- PC: Program counter
 - Address of next instruction
 - Called "RIP" (x86-64)
- Register file
 - Heavily used program data
- Condition codes
 - Store status information about most recent arithmetic or logical operation
 - Used for conditional branching

Memory

- Byte addressable array
- Code and user data
- Stack to support procedures

Turning C into Object Code

- Code in files p1.c p2.c
- Compile with command: gcc -Og p1.c p2.c -o p
 - Use basic optimizations (-Og) [New to recent versions of GCC]
 - Put resulting binary in file p

Compiling Into Assembly

C Code (sum.c)

Generated x86-64 Assembly

```
sumstore:
   pushq %rbx
   movq %rdx, %rbx
   call plus
   movq %rax, (%rbx)
   popq %rbx
   ret
```

Obtain (on our server machine) with command

Produces file sum.s

Warning: Will get very different results on our server machines (Andrew Linux, Mac OS-X, ...) due to different versions of gcc and different compiler settings.

What it really looks like

```
.globl sumstore
       .type sumstore, @function
sumstore:
.LFB35:
       .cfi startproc
       pushq %rbx
       .cfi def cfa offset 16
       .cfi offset 3, -16
       movq %rdx, %rbx
       call plus
       movq %rax, (%rbx)
       popq %rbx
       .cfi def cfa offset 8
       ret
       .cfi endproc
.LFE35:
       .size sumstore, .-sumstore
```

What it really looks like

.type sumstore, @function

.size sumstore, .-sumstore

.globl sumstore

```
sumstore:
.LFB35:
       .cfi startproc
       pushq %rbx
       .cfi def cfa offset 16
       .cfi offset 3, -16
       movq %rdx, %rbx
       call plus
       movq %rax, (%rbx)
       popq %rbx
       .cfi def cfa offset 8
       ret
```

.cfi endproc

.LFE35:

Things that look weird and are preceded by a ". are generally directives.

```
sumstore:
   pushq %rbx
   movq %rdx, %rbx
   call plus
   movq %rax, (%rbx)
   popq %rbx
   ret
```

Assembly Characteristics: Data Types

- "Integer" data of 1, 2, 4, or 8 bytes
 - Data values
 - Addresses (untyped pointers)
- Floating point data of 4, 8, or 10 bytes
- (SIMD vector data types of 8, 16, 32 or 64 bytes)
- **■** Code: Byte sequences encoding series of instructions
- No aggregate types such as arrays or structures
 - Just contiguously allocated bytes in memory

Assembly Characteristics: Operations

- Transfer data between memory and register
 - Load data from memory into register
 - Store register data into memory
- Perform arithmetic function on register or memory data
- Transfer control
 - Unconditional jumps to/from procedures
 - Conditional branches
 - Indirect branches

Object Code

Code for sumstore

0x0400595: 0x53 0x48 0x89 0xd3 0xe8 0xf2 0xff 0xff

0x48

0x5b

0xc3

- Total of 14 bytes
- 0x89 Each instruction 0x03 1, 3, or 5 bytes
 - Starts at address 0x0400595

Assembler

- Translates .s into .o
- Binary encoding of each instruction
- Nearly-complete image of executable code
- Missing linkages between code in different files

Linker

- Resolves references between files
- Combines with static run-time libraries.
 - E.g., code for malloc, printf
- Some libraries are dynamically linked
 - Linking occurs when program begins execution

Machine Instruction Example

0x40059e: 48 89 03

C Code

Store value t where designated by dest

Assembly

- Move 8-byte value to memory
 - Quad words in x86-64 parlance
- Operands:

t: Register %rax

dest: Register %rbx

*dest: Memory M[%rbx]

Object Code

- 3-byte instruction
- Stored at address 0x40059e

Disassembling Object Code

Disassembled

```
0000000000400595 <sumstore>:
 400595:
          53
                            push
                                   %rbx
 400596: 48 89 d3
                                   %rdx,%rbx
                            mov
 400599: e8 f2 ff ff ff
                            callq 400590 <plus>
 40059e: 48 89 03
                                   %rax, (%rbx)
                            mov
 4005a1:
          5b
                                   %rbx
                            pop
 4005a2: c3
                            retq
```

Disassembler

```
objdump -d sum
```

- Useful tool for examining object code
- Analyzes bit pattern of series of instructions
- Produces approximate rendition of assembly code
- Can be run on either a .out (complete executable) or .o file

Alternate Disassembly

Object

Disassembled

```
0 \times 0400595:
    0 \times 53
    0x48
    0x89
    0xd3
    0xe8
    0xf2
    0xff
    0xff
    0xff
    0x48
    0x89
    0x03
    0x5b
    0xc3
```

```
Dump of assembler code for function sumstore:

0x00000000000400595 <+0>: push %rbx

0x0000000000400596 <+1>: mov %rdx,%rbx

0x0000000000400599 <+4>: callq 0x400590 <plus>
0x000000000040059e <+9>: mov %rax,(%rbx)

0x000000000004005a1 <+12>:pop %rbx

0x000000000004005a2 <+13>:retq
```

Within gdb Debugger

```
gdb sum
disassemble sumstore
```

Disassemble procedure

x/14xb sumstore

Examine the 14 bytes starting at sumstore

What Can be Disassembled?

```
% objdump -d WINWORD.EXE
WINWORD.EXE: file format pei-i386
No symbols in "WINWORD.EXE".
Disassembly of section .text:
30001000 <.text>:
30001000:
30001001:
               Reverse engineering forbidden by
30001003:
             Microsoft End User License Agreement
30001005:
3000100a:
```

- Anything that can be interpreted as executable code
- Disassembler examines bytes and reconstructs assembly source

Today: Machine Programming I: Basics

- History of Intel processors and architectures
- C, assembly, machine code
- Assembly Basics: Registers, operands, move
- Arithmetic & logical operations

x86-64 Integer Registers

%rax	%eax	% r8	%r8d
%rbx	%ebx	% r9	%r9d
%rcx	%ecx	%r10	%r10d
%rdx	%edx	%r11	%r11d
%rsi	%esi	%r12	%r12d
%rdi	%edi	%r13	%r13d
%rsp	%esp	% r14	%r14d
%rbp	%ebp	% r15	%r15d

Can reference low-order 4 bytes (also low-order 1 & 2 bytes)

Some History: IA32 Registers

Origin (mostly obsolete)

accumulate

counter

data

base

source index

destination index

stack pointer base pointer

Moving Data

Moving Data movq Source, Dest:

Operand Types

- Immediate: Constant integer data
 - Example: \$0x400, \$-533
 - Like C constant, but prefixed with \\$'
 - Encoded with 1, 2, or 4 bytes
- **Register:** One of 16 integer registers
 - Example: %rax, %r13
 - But %rsp reserved for special use
 - Others have special uses for particular instructions
- Memory: 8 consecutive bytes of memory at address given by register
 - Simplest example: (%rax)
 - Various other "address modes"

%rax %rcx %rdx %rbx %rsi %rdi %rsp %rbp

%rN

Warning: Intel docs use mov *Dest, Source*

movq Operand Combinations

```
Source Dest Src, Dest
                                                                                                                C Analog
| Imm | Reg | movq $0x4,%rax | temp = 0x4; |
| Mem | movq $-147,(%rax) | *p = -147; |
| Reg | Reg | movq %rax,%rdx | temp2 = temp1; |
| Mem | movq %rax,(%rdx) | *p = temp; |
| Mem | Reg | movq (%rax),%rdx | temp = *p; |
```

Cannot do memory-memory transfer with a single instruction

Simple Memory Addressing Modes

- Normal (R) Mem[Reg[R]]
 - Register R specifies memory address
 - Aha! Pointer dereferencing in C

```
movq (%rcx),%rax
```

- Displacement D(R) Mem[Reg[R]+D]
 - Register R specifies start of memory region
 - Constant displacement D specifies offset

```
movq 8(%rbp),%rdx
```

Example of Simple Addressing Modes

```
void swap
   (long *xp, long *yp)
{
   long t0 = *xp;
   long t1 = *yp;
   *xp = t1;
   *yp = t0;
}
```

void swap (long *xp, long *yp) { long t0 = *xp; long t1 = *yp; *xp = t1; *yp = t0; }

Register	Value
%rdi	хр
%rsi	ур
%rax	t0
%rdx	t1

Registers

%rdi	0x120
%rsi	0x100
%rax	
%rdx	

Memory

swap:

```
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret
```


swap:

```
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret
```


Simple Memory Addressing Modes

- Normal (R) Mem[Reg[R]]
 - Register R specifies memory address
 - Aha! Pointer dereferencing in C

```
movq (%rcx),%rax
```

- Displacement D(R) Mem[Reg[R]+D]
 - Register R specifies start of memory region
 - Constant displacement D specifies offset

```
movq 8(%rbp),%rdx
```

Complete Memory Addressing Modes

Most General Form

D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+D]

D: Constant "displacement" 1, 2, or 4 bytes

Rb: Base register: Any of 16 integer registers

■ Ri: Index register: Any, except for %rsp

Scale: 1, 2, 4, or 8 (why these numbers?)

Special Cases

(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]

D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]

(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]

Address Computation Examples

%rdx	0xf000
%rcx	0x0100

Expression	Address Computation	Address
0x8(%rdx)	0xf000 + 0x8	0xf008
(%rdx,%rcx)	0xf000 + 0x100	0xf100
(%rdx,%rcx,4)	0xf000 + 4*0x100	0xf400
0x80(,%rdx,2)	2*0xf000 + 0x80	0x1e080

Today: Machine Programming I: Basics

- History of Intel processors and architectures
- C, assembly, machine code
- Assembly Basics: Registers, operands, move
- Arithmetic & logical operations

Address Computation Instruction

■ leaq Src, Dst

- Src is address mode expression
- Set Dst to address denoted by expression

Uses

- Computing addresses without a memory reference
 - E.g., translation of p = &x[i];
- Computing arithmetic expressions of the form x + k*y
 - k = 1, 2, 4, or 8

Example

```
long m12(long x)
{
   return x*12;
}
```

Converted to ASM by compiler:

```
leaq (%rdi,%rdi,2), %rax # t <- x+x*2
salq $2, %rax # return t<<2</pre>
```

Some Arithmetic Operations

Two Operand Instructions:

Computat	ion	
Src,Dest	Dest = Dest + Src	
Src,Dest	Dest = Dest – Src	
Src,Dest	Dest = Dest * Src	
Src,Dest	Dest = Dest << Src	Also called shiq
Src,Dest	Dest = Dest >> Src	Arithmetic
Src,Dest	Dest = Dest >> Src	Logical
Src,Dest	Dest = Dest ^ Src	
Src,Dest	Dest = Dest & Src	
Src,Dest	Dest = Dest Src	
	Src,Dest Src,Dest Src,Dest Src,Dest Src,Dest Src,Dest Src,Dest Src,Dest Src,Dest	Src,DestDest = Dest - SrcSrc,DestDest = Dest * SrcSrc,DestDest = Dest << Src

- Watch out for argument order!
 - (Warning: Intel docs use "op Dest,Src")
- No distinction between signed and unsigned int (why?)

Some Arithmetic Operations

One Operand Instructions

```
incq Dest Dest = Dest + 1

decq Dest Dest = Dest - 1

negq Dest Dest = -Dest

notq Dest Dest = \sim Dest
```

See book for more instructions

Arithmetic Expression Example

```
long arith
(long x, long y, long z)
{
  long t1 = x+y;
  long t2 = z+t1;
  long t3 = x+4;
  long t4 = y * 48;
  long t5 = t3 + t4;
  long rval = t2 * t5;
  return rval;
}
```

```
arith:
  leaq (%rdi,%rsi), %rax
  addq %rdx, %rax
  leaq (%rsi,%rsi,2), %rdx
  salq $4, %rdx
  leaq 4(%rdi,%rdx), %rcx
  imulq %rcx, %rax
  ret
```

Interesting Instructions

- **leaq**: address computation
- **salq**: shift
- **imulq**: multiplication
 - But, only used once

Understanding Arithmetic Expression Example

```
long arith
(long x, long y, long z)
  long t1 = x+y;
  long t2 = z+t1;
  long t3 = x+4;
  long t4 = y * 48;
  long t5 = t3 + t4;
  long rval = t2 * t5;
  return rval;
```

```
arith:
  leaq (%rdi,%rsi), %rax # t1
  addq %rdx, %rax # t2
  leaq (%rsi,%rsi,2), %rdx
  salq $4, %rdx # t4
  leaq 4(%rdi,%rdx), %rcx # t5
  imulq %rcx, %rax # rval
  ret
```

Register	Use(s)
%rdi	Argument x
%rsi	Argument y
%rdx	Argument z , t4
%rax	t1, t2, rval
%rdx	t4
%rcx	t5

Machine Programming I: Summary

History of Intel processors and architectures

Evolutionary design leads to many quirks and artifacts

C, assembly, machine code

- New forms of visible state: program counter, registers, ...
- Compiler must transform statements, expressions, procedures into low-level instruction sequences

Assembly Basics: Registers, operands, move

 The x86-64 move instructions cover wide range of data movement forms

Arithmetic

 C compiler will figure out different instruction combinations to carry out computation