

How to use ST's intelligent sensors in

MEMS Studio

Steven Bakker
Product Marketing Engineer

Jeffrey Edrington
Field Application Engineer

Accelerometers Inclinometers

LIS2DH12

LIS2DW12 / LIS2DTW12

LIS2DU12

LIS2DUX12 / LIS2DUXS12

H3LIS331DL

ST1VAFE3BX

IIS2DH

IIS2DLPC

IIS2DULPX

IIS2ICLX

IIS3DWB

AIS2DW12

AIS2IH

6-axis IMUs

LSM6DSO / LSM6DSOX LSM6DSO32 / LSM6DSO32X

LSM6DSR / LSM6DSRX

LSM6DSV / LSM6DSV16X LSM6DSV16BX / LSM6DSV32X

LSM6DSO16IS

LSM6DSV256X/320X

ISM330DHCX

ISM330BX

ISM330IS

ASM330LHH / ASM330LHHX ASM330LHHXG1

ASM330LHB/ASM330LHBG1

Magnetometers

LIS2MDL	IIS2MDC
LSM303AGR	ISM303DAC

Absolute Pressure

LPS22DF

ILPS22QS

LPS28DFW

ILPS28QSW

Temperature

STLM20 / STTS751

STTS22H

IR Presence

STHS34PF80

Microphones

MP23ABS1

IMP23ABSU

MP34DT06J

IMP34DT05

MP23DB01HP

ST MEMS and Sensors

Proximity and Ranging

VL53L4ED

VL53L4CX

VL53L4CD

VL53L7CX

VL53L7CH

VL53L8CX

VL53L8CH

Ambient Light Sensor

VD6283TX

Bringing intelligence and integration in the edge

Smart Sensors

MLC & FSM

Machine learning core and finite state machine for in-the-edge processing

Sensor Fusion

Embedded in the sensor to be fast, accurate, and low power

ASC

Adaptive self-configuration.

Smart sensors reconfigure themselves

ISPU

Intelligent sensor processing unit. Standard and Al programming in sensors!

Vertical AFE Vertical analog front end with motion detection for specific applications (verticals)

ECG

IR sensor Infrared Sensor based on Thermal MOS technology. Innovative sensing of biometrics and presence detection

Sensors evaluation and development platforms

Professional MEMS tool STEVAL-MKI109V3

ST MEMS adapters
motherboard based on the
STM32F401VE and
compatible with all ST
MEMS adapters

Expansion Boards X-NUCLEO-IKS02A1, X-NUCLEO-IKS4A1, X-STM32MP-MSP01

MEMS and sensor expansion board for STM32 Nucleo and STM32MPU Disco

Small Form Factor SensorTile.box PRO STWIN.box

Motion MEMS and environmental sensors in a compact package for quick prototyping

IoT Discovery Board B-U585I-IOT02A

Sensors IoT Node with cloud connectivity to major cloud providers

Sensors evaluation and development SW packages

MEMS-Studio

Unico-GUI

MEMS evaluation kit software package for Linux, Mac OSX and Windows

Unicleo-GUI

Graphical user interface to configure and display sensors data

AlgoBuilder

Application for the graphical design and testing of algorithms

Function Packs

FP-SNS-STBOX1
FP-ATR-BLE1
FP-IND-PREDMNT1
FP-SNS-DATALOG2

SW packages

X-CUBE-MEMS1
X-CUBE-MEMSMIC1
X-CUBE-ALGOBUILD
X-CUBE-ISPU
ISPU-TOOLCHAIN

Mobile Apps

ST BLE Sensor ST Asset Tracking

Cloud Apps

DSH-PREDMNT DSH-ASSETRACKING

What's MEMS Studio?

One desktop software solution for a 360° experience of ST's entire **MEMS** sensor portfolio

Discover the all-in-one solution that includes Unico-GUI, Unicleo-GUI and AlgoBuilder

All-in-one software solution

From 3 different tools

All the functionalities of Unico-GUI, Unicleo-GUI & AlgoBuilder

Other additional features

Why MEMS Studio?

Reduced effort

Single software download Seamless experience from evaluation to programming Single GUI

Scalable

Covers sensor programming, evaluation, and firmware generation

Improved functionalities

Runtime and offline data analysis

MEMS

Studio

Wide support

Multiplatform operating systems (Windows, macOS, and Linux)

MEMS Studio journey

Sensor

configuration

- Access to the full sensor register map
- Interrupt status monitoring

Sensor data analysis

- Visualization charts of runtime sensor data (line charts, bar graphs, 3D plots)
- Data logging
- Time & frequency domain offline data visualization, data labeling, and editing
- Fast Fourier transform (FFT) analysis
- Spectrogram analysis

Application development

- Testing of advanced embedded features (FIFO, pedometer, free fall, ...)
- In-sensor AI & ML algorithm design and programming
- Visualization and data logging of the output of the embedded libraries
- Development of no-code algorithms for data processing in STM32 MCUs

How to get start quickly with MEMS Studio

Intelligent Sensors

What is AI?

Al Development Timeline and Some Definitions

Any technique that enables computer to mimic **human behavior**

Subset of Al. Algorithms and methodologies that improve over time through **learning from data**

Subset of ML. Learning algorithms that derive meaning out of data, by using a hierarchy of multiple layers that mimic the neural networks of the human brain

More data = more power consumption

Data to process are increasing exponentially

With a centralized processing approach, the required cloud infrastructure is huge

Associated power consumption is not sustainable

Adding intelligence to make sensorization sustainable

In-sensor processing

Optimize current consumption and latency

FSM = Finite State Machine
MLC = Machine Learning Core
ISPU = Intelligent Sensor Processing Unit
AI = Artificial Intelligence

Must consider the full system consumption, not just the single device

Why MLC and FSM?

Machine

learning core

logical processing

Activity Tracking

Data acquisition campaign

Engine identifies data pattern matching with user defined classes

Understand scenarios based on training data

Finite State Machine

Figure 2. Generic state machine START STATE Ves No STATE #1 Condition 3 unither Ves No STATE #3 Condition 3 unither Ves END STATE END STATE END STATE

Gesture Recognition

Series of state parameters with defined transitions

Recognize gestures

Multiple FSM programs in parallel

Labeled Sensor data with features

INPUT

Sensor Samples data

Machine Learning based logic

LOGIC

Events/Triggers based logic using thresholds / timers

Pattern classification using a Decision Tree*

OUTPUT

Event detection using commands and conditions

Sensors with Machine Learning Core (and Finite State Machine)

FSM = Finite State Machine
MLC = Machine Learning Core

Consumer

Industrial

Automotive AEC-Q100

MLC 1.0 & FSM 1.0

6-axis IMU * LSM6DSO32X

6-axis IMU *
LSM6DSR / LSM6DSRX

2-axis inclinometer * IIS2ICLX

6-axis IMU * ISM330DHCX

6-axis IMU * ASM330LHHX

6-axis IMU * ASM330LHB

MLC 2.0 & FSM 2.0

3-axis accelerometer LIS2DUX12 / LIS2DUXS12

6-axis IMU * LSM6DSV16X / LSM6DSV16BX

MLC 2.0 and FSM 2.0 improvements

- MLC data rate increase (spike detection)
- Processing of high-resolution sensors (i.e pressure sensor)
- Al data directly stored in FIFO and exportable
- Recursive sliding windows (short time events capture)
- Adaptive Self Configuration (ASC)

*sensor hub (connect ext. sensors)

LSM6DSV16X inertial sensor Gym activity recognition

Machine learning core (MLC) for gym activity recognition Wearable device (smartwatch / wristband)

Lateral raises

Squats

accelerometer

 $10.5 \mu A$ (@30Hz)

accelerometer

data

GitHub repository

ASM330LHHX inertial sensor Vehicle monitoring

Machine learning core (MLC) for tow detection Sensor placed on the vehicle

Forward/backward lift with flatbed

Front/back wheel lift

DIL24 adapter w/ASM330LHHX

Graphical User Interface

accelerometer

11 µA (@12.5Hz)

LIS2DUXS12 inertial sensor Asset tracking

Combined Machine Learning Core (MLC) and Finite State Machine (FSM) capabilities

Detect and track the various states of a package

- In motion
- Shaken
- Stationary Upright
- Stationary Not upright

Detect events

- Impact
- Free-fall

GitHub repository

LINK

MLC + FSM

accelerometer

Ultra low current consumption

14.5 μΑ

5.4 μA (@25Hz)

In-sensor processing with ISPU

Optimize current consumption and latency

FSM = Finite State Machine
MLC = Machine Learning Core
ISPU = Intelligent Sensor Processing Unit
AI = Artificial Intelligence

Must consider the full system consumption, not just the single device

What's inside the ISPU

Sensors with intelligent sensor processing unit (ISPU)

Ultra-low current consumption

Low latency

Easily programmable

- o commercial Al tools NANOEDGE AI STUDIO
- o open-source models
- C language

What's inside the ISPU

Sensors with intelligent sensor processing unit (ISPU)

Small Area: enhanced 32-bit RISC Harvard architecture

Full Precision: Floating Point Unit

Fast interrupt response: 4 cycles vs 15 (Cortex®)

RAM based: 40 kB (program + execution)

Binary Neural Network convolution accelerator: patented by ST

Frequency / Output data rate: 5MHz / 3.33kHz – 10 MHz / 6.66kHz

Sensors with Intelligent Sensor Processing Unit

Consumer

Industrial

6-axis IMU * LSM6DSO16IS

6-axis IMU * ISM330IS

LSM6DSO16IS inertial sensor Man-down detection

Intelligent sensor processing unit (ISPU)
Embedded DSP (digital signal processing) with sensor fusion

accelerometer data

pressure data

Man-down

Unicleo Graphical User Interface

ISPU

LSM6DSO16IS inertial sensor Sensor fusion on ISPU

Sensors with intelligent sensor processing unit (ISPU)

accelerometer data

gyroscope data

The head rotates following rotation of the SensorTile.Box PRO

ISPU fusion

Ultra low current consumption

226μΑ

180μA (@104Hz) 490μA (@104Hz)

gyroscope

Complete Ecosystem

All building blocks for devices

Lower barriers for developers getting started

Lower barriers from prototyping to first product

Pre-integrated software

for vertical applications

Enable product & service commercialization

Native Integration with Cloud

Microcontrollers

Secure solutions

Sensors & actuators

Connectivity solutions

Power management

Motor control

Analog components

STM32 Nucleo Development & Expansion Boards

Smart Things

Debug

solutions

Smart Home & City

Smart Industry

Development ecosystem

Development environments

Intelligence toolbox

Simulation and analysis tools

On-line design tools

Partner Program and ST community

ST has sensors and tools to help you add intelligence to the edge

Machine Learning solutions in sensors: Ecosystem

A complete suite to create ML applications in sensors

Programming with **ST Tools** and **ST Partners**

Getting start with ST development kit

Examples for motion recognition and context recognition

Videos, training material, in products campaign available

MEMS & Sensor community: MEMS Machine Learning & Al

Resources for MEMS Studio

One user-friendly tool for all sensors and ST ecosystem boards

Discover the databrief

Read our user manual

<u>ST Edge Al Suite</u> - set of tools for integrating Al features in embedded systems

Our technology starts with You

© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to www.st.com/trademarks.
All other product or service names are the property of their respective owners.

