SBML Model Report

Model name: "Zeilinger2006_PRR7-PRR9light-Y"

May 5, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by Harish Dharuri¹ at March third 2007 at 6:07 a. m. and last time modified at July fifth 2012 at 2:47 p. m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	2
species types	0	species	19
events	2	constraints	0
reactions	46	function definitions	0
global parameters	94	unit definitions	5
rules	0	initial assignments	0

Model Notes

The model reproduces the time profile of cYm and cTm under light-dark cycles as depicted in Fig 4 and Fig 5 respectively. 12 hour light-dark cycles are accomplished using a simple algorithm in the event section. The model was successfully tested using MathSBML.

 $^{^{1}} California\ Institute\ of\ Technology, {\tt hdharuri@cds.caltech.edu}$

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of eight unit definitions of which three are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name nanomoles

Definition nmol

2.2 Unit time

Name hour

Definition 3600 s

2.3 Unit Hr_inv

Name Hour_inv

Definition $(3600 \text{ s})^{-1}$

2.4 Unit nM

Name nM

Definition $nmol \cdot l^{-1}$

2.5 Unit nM_per_hour

Name nM_per_hour

Definition $n \text{mol} \cdot l^{-1} \cdot (3600 \text{ s})^{-1}$

2.6 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.7 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.8 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
cytoplasm nucleus	cytoplasm nucleus		3 3	1	litre litre	Z	cytoplasm

3.1 Compartment cytoplasm

This is a three dimensional compartment with a constant size of one litre.

Name cytoplasm

3.2 Compartment nucleus

This is a three dimensional compartment with a constant size of one litre, which is surrounded by cytoplasm (cytoplasm).

Name nucleus

4 Species

This model contains 19 species. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
cLc	cLc	cytoplasm	$nmol \cdot l^{-1}$	\Box	\Box
cLm	cLm	nucleus	$\operatorname{nmol} \cdot 1^{-1}$		\Box
cLn	cLn	nucleus	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		\Box
cP7c	cP7c	${\tt cytoplasm}$	$nmol \cdot l^{-1}$		\Box
cP7m	cP7m	nucleus	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		\Box
cP7n	cP7n	nucleus	$nmol \cdot l^{-1}$		\Box
cP9c	cP9c	${\tt cytoplasm}$	$\operatorname{nmol} \cdot 1^{-1}$		\Box
cP9m	cP9m	nucleus	$\operatorname{nmol} \cdot 1^{-1}$		\Box
cP9n	cP9n	nucleus	$\operatorname{nmol} \cdot 1^{-1}$		
cPn	cPn	nucleus	$nmol \cdot l^{-1}$		\Box
сТс	сТс	cytoplasm	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		\Box
cTm	cTm	nucleus	$nmol \cdot l^{-1}$		\Box
cTn	cTn	nucleus	$nmol \cdot l^{-1}$		\Box
cXc	cXc	${\tt cytoplasm}$	$\operatorname{nmol} \cdot 1^{-1}$		\Box
cXm	cXm	nucleus	$\operatorname{nmol} \cdot 1^{-1}$		\Box
cXn	cXn	nucleus	$\operatorname{nmol} \cdot 1^{-1}$		\Box
cYc	cYc	cytoplasm	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		
cYm	cYm	nucleus	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$		
cYn	cYn	nucleus	$nmol \cdot l^{-1}$		

5 Parameters

This model contains 94 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO Val	ue Unit	Constant
q1	q1	7.9	$980 (3600 \text{ s})^{-1}$	Ø
n1	n1	2.3	$100 \text{ nmol} \cdot 1^{-1}$	· 🗹
			$(3600 \text{ s})^{-1}$	
g1	g1	16.3		
m1	m1	8.0	057 nmol \cdot 1^{-1}	· 🗹
			$(3600 s)^{-1}$	
k1	k1	22.3		
p1	p1	1.2	$(3600 \text{ s})^{-1}$	
r1	r1	31.5		
r2	r2	9.1	$(3600 \text{ s})^{-1}$	
m2	m2	10.4		
			$(3600 \text{ s})^{-1}$	
k2	k2	32.7		$ \overline{\mathbf{Z}} $
m3	m3	12.7	785 nmol \cdot 1^{-1}	· 🗹
			$(3600 \text{ s})^{-1}$	_
k3	k3	29.0		Ø
n2	n2	7.5	543 nmol \cdot 1 ⁻¹	. 🗹
0	2	16.5	$(3600 \text{ s})^{-1}$	
g2	g2	16.7		
g3	g3 m4	11.5		
m4	III 4	0.0	$\frac{519 \text{ nmol} \cdot 1^{-1}}{(3600 \text{ s})^{-1}}$	
k4	k4	4.0	$055 \text{nmol} \cdot l^{-1}$	\neg
	p2		$(3600 \text{ s})^{-1}$	☑
p2	p2 p3		$(3600 \text{ s})^{-1}$	Z
p3 r5	р3 r5	27.8	` ' •	Z
	r6		· 1	
r6 m10	m10		$(3600 \text{ s})^{-1}$ 251 nmol · 1^{-1}	
што	IIIIU	9.2	$(3600 \text{ s})^{-1}$. 🔼
k8	k8	13.4		\square
m11	m11		$907 \text{nmol} 1^{-1}$	· 🗹
	11111	7.5	$(3600 \text{ s})^{-1}$	₩
k9	k9	14.6		
q2	q2		$(3600 \text{ s})^{-1}$	\mathbf{Z}
n4	n4		$529 \text{nmol} \cdot 1^{-1}$	· 💆
		1.0	$(3600 \text{ s})^{-1}$	
			()	

n5 n5 g5 g5 g6 g6 m12 m12 k10 k10 r3 r3 r4 r4 m5 m5 m6 m6	2.630 0.506 7.847 8.475 16.116 29.422 33.618 9.302 10.899 16.913	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
g6 g6 m12 m12 k10 k10 r3 r3 r4 r4 m5 m5	7.847 8.475 16.116 29.422 33.618 9.302 10.899	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
g6 g6 m12 m12 k10 k10 r3 r3 r4 r4 m5 m5	7.847 8.475 16.116 29.422 33.618 9.302 10.899	$\begin{array}{cccc} nmol \cdot l^{-1} & & \\ nmol & \cdot & l^{-1} \\ (3600 \text{ s})^{-1} & & \\ nmol \cdot l^{-1} & & \\ (3600 \text{ s})^{-1} & & \\ nmol & \cdot & l^{-1} \\ (3600 \text{ s})^{-1} & & \\ nmol & \cdot & l^{-1} \\ (3600 \text{ s})^{-1} & & \\ \end{array}$	
m12 m12 m12 k10 k10 r3 r3 r4 r4 m5 m5	8.475 16.116 29.422 33.618 9.302 10.899 16.913	$\begin{array}{c} nmol & \cdot & l^{-1} \\ (3600 \text{ s})^{-1} & \\ nmol \cdot l^{-1} & \\ (3600 \text{ s})^{-1} & \\ (3600 \text{ s})^{-1} & \\ nmol & \cdot & l^{-1} \\ (3600 \text{ s})^{-1} & \\ nmol & \cdot & l^{-1} \\ (3600 \text{ s})^{-1} & \\ \end{array}$	
k10 k10 r3 r3 r4 r4 m5 m5	16.116 29.422 33.618 9.302 10.899	$(3600 \text{ s})^{-1}$ $n\text{mol} \cdot l^{-1}$ $(3600 \text{ s})^{-1}$ $(3600 \text{ s})^{-1}$ $n\text{mol} \cdot l^{-1}$ $(3600 \text{ s})^{-1}$ $n\text{mol} \cdot l^{-1}$ $(3600 \text{ s})^{-1}$	
r3 r3 r4 r4 m5 m5	29.422 33.618 9.302 10.899 16.913	$\begin{array}{c} n mol \cdot l^{-1} \\ (3600 \text{ s})^{-1} \\ (3600 \text{ s})^{-1} \\ n mol \cdot l^{-1} \\ (3600 \text{ s})^{-1} \\ n mol \cdot l^{-1} \\ (3600 \text{ s})^{-1} \end{array}$	
r3 r3 r4 r4 m5 m5	29.422 33.618 9.302 10.899 16.913	$(3600 \text{ s})^{-1}$ $(3600 \text{ s})^{-1}$ nmol · I^{-1} $(3600 \text{ s})^{-1}$ nmol · I^{-1} $(3600 \text{ s})^{-1}$	✓ ✓ ✓
r4 r4 m5 m5	33.618 9.302 10.899 16.913	$(3600 \text{ s})^{-1}$ $n\text{mol} \cdot 1^{-1}$ $(3600 \text{ s})^{-1}$ $n\text{mol} \cdot 1^{-1}$ $(3600 \text{ s})^{-1}$. Z
m5 m5	9.302 10.899 16.913	$\begin{array}{ccc} \text{nmol} & \cdot & 1^{-1} \\ (3600 \text{ s})^{-1} & \\ \text{nmol} & \cdot & 1^{-1} \\ (3600 \text{ s})^{-1} & \end{array}$	· 🗹
	10.899 16.913	$(3600 \text{ s})^{-1}$ nmol · l^{-1} $(3600 \text{ s})^{-1}$	· 🗹
m6 m6	16.913	$nmol \cdot 1^{-1}$ $(3600 s)^{-1}$	
m6 m6	16.913	$(3600 \text{ s})^{-1}$. 🗹
		$nmol_{-}1^{-1}$	
k5 k5	0.752		
m7 m7	0.753	nmol \cdot 1^{-1}	· 🗹
		$(3600 \text{ s})^{-1}$	
m8 m8	13.746	nmol \cdot 1^{-1}	. 🗹
		$(3600 \text{ s})^{-1}$	
k6 k6	43.705	$nmol \cdot l^{-1}$	
n3 n3	0.670	nmol \cdot 1^{-1}	
		$(3600 \text{ s})^{-1}$	
g4 g4	11.363	$nmol \cdot l^{-1}$	
m9 m9	2.635	nmol \cdot 1^{-1}	
		$(3600 \text{ s})^{-1}$	
k7 k7	8.687	$n \mod \cdot 1^{-1}$	
p4 p4	14.683	$(3600 \text{ s})^{-1}$	
r7 r7	9.192	$(3600 \text{ s})^{-1}$	
r8 r8	25.896	$(3600 \text{ s})^{-1}$	
m13 m13	6.854	nmol \cdot 1^{-1}	
		$(3600 \text{ s})^{-1}$	
k11 k11	48.586	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$	
m14 m14	3.258	$nmol \cdot l^{-1}$	· 🗹
		$(3600 \text{ s})^{-1}$	
k12 k12	23.288	$nmol \cdot l^{-1}$	
p5 p5	0.500	nmol \cdot 1^{-1}	. 🗹
		$(3600 \text{ s})^{-1}$	
k13 k13	1.200	$nmol \cdot l^{-1}$	$ \overline{\mathcal{L}} $
q3 q3	1.000	$(3600 \text{ s})^{-1}$	
m15 m15	1.200	nmol \cdot 1 ⁻¹	· 🗹
		$(3600 \text{ s})^{-1}$	_
g7 g7	0.444	$nmol \cdot l^{-1}$	

Id	Name	SBO	Value	Unit	Constant
g8	g8		11.046	$\mathrm{nmol}\cdot\mathrm{l}^{-1}$	\square
n6	n6		11.312	nmol \cdot 1^{-1}	. 🛮
				$(3600 \text{ s})^{-1}$	
g9	g9		14.522	$nmol \cdot l^{-1}$	
m16	m16		9.531	nmol 1^{-1}	
				$(3600 \text{ s})^{-1}$	_
k14	k14		50.942	$nmol \cdot l^{-1}$	\square
p6	p6		6.774	$(3600 \text{ s})^{-1}$	\square
r9	r9		31.032	$(3600 \text{ s})^{-1}$	\square
r10	r10		0.456	$(3600 \text{ s})^{-1}$	
m17	m17		5.406	nmol \cdot 1^{-1}	
				$(3600 \text{ s})^{-1}$	
k15	k15		49.409	$nmol \cdot l^{-1}$	$\mathbf{Z}_{\underline{\cdot}}$
m18	m18		8.671	$nmol \cdot 1^{-1}$. 🗹
				$(3600 \text{ s})^{-1}$	_
k16	k16		42.484	$nmol \cdot l^{-1}$	$\mathbf{Z}_{}$
n7	n7		0.083	$nmol l^{-1}$	
	10		-	$(3600 \text{ s})^{-1}$	_
g10	g10		5.686	$nmol \cdot l^{-1}$	\square
m19	m19		6.116	$nmol \cdot l^{-1}$. 🗹
1-47	1-17		19 600	$(3600 \text{ s})^{-1}$	-
k17	k17		18.609	$nmol \cdot l^{-1}$	
p7	p7		10.453	$(3600 \text{ s})^{-1}$	
r11	r11		34.627	$(3600 \text{ s})^{-1}$	Ø
r12	r12		22.838	$(3600 \text{ s})^{-1}$	\square
m20	m20		3.415	nmol \cdot l^{-1}	. 🗹
1.40	1-10		16 041	$(3600 \text{ s})^{-1}$	
k18	k18		16.241	$n \mod \cdot 1^{-1}$ $n \mod \cdot 1^{-1}$	$ \mathbf{Z} $
m21	m21		0.028	$(3600 \text{ s})^{-1}$. 🛮
1 - 1 O	k19		26 580	(3000 s) nmol·1 ⁻¹	-
k19				$(3600 \text{ s})^{-1}$	
q4 n8	q4		7.455 2.074	(3600 s) $\text{nmol} \cdot \text{l}^{-1}$	
n8 ld	n8 ld		1.000	dimensionless	\mathbf{Z}
lmax	lmax		1.000	dimensionless	
a	a		2.280	dimensionless	
a b	a b		3.108	dimensionless	
С	c		1.681	dimensionless	
d	d		1.016	dimensionless	☑
e	e		1.494	dimensionless	
f	f		1.949	dimensionless	
_	1		1.ノサブ	difficitoffices	

Id	Name	SBO	Value	Unit	Constant
h	h		2.212	dimensionless	
i	i		1.107	dimensionless	\square
j	j		2.558	dimensionless	\square
k	k		3.395	dimensionless	\square
Day_in_hour	s		24.000	3600 s	\Box

6 Events

This is an overview of two events. Each event is initiated whenever its trigger condition switches from false to true. A delay function postpones the effects of an event to a later time point. At the time of execution, an event can assign values to species, parameters or compartments if these are not set to constant.

6.1 Event event_0000001

Trigger condition

$$Day_in_hours - t \le 0 \tag{1}$$

Assignments

$$Day_in_hours = Day_in_hours + 24$$
 (2)

$$ld = 1 \tag{3}$$

6.2 Event event_0000002

Trigger condition

$$(Day_in_hours - t \leq 12) \land (Day_in_hours - t > 0) \tag{4}$$

Assignment

$$ld = 0 (5)$$

7 Reactions

This model contains 46 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N₀	Id	Name	Reaction Equation	SBO
1	R1	Light dependent cLm synthesis	$\emptyset \xrightarrow{cPn} cLm$	
2	R2	Light independent cLm synthesis	$\emptyset \xrightarrow{\text{cXn, cP7n, cP9n}} \text{cLm}$	
3	R3	cLm degradation	$cLm \longrightarrow \emptyset$	
4	R4	cLc synthesis	$\emptyset \xrightarrow{\operatorname{cLm}} \operatorname{cLc}$	
5	R5	cLc transport into nucleus	$cLc \longrightarrow cLn$	
6	R6	cLn transport into cytoplasm	$cLn \longrightarrow cLc$	
7	R7	cLc degradation	$\mathrm{cLc} \longrightarrow \emptyset$	
8	R8	cLn degradation	$cLn \longrightarrow \emptyset$	
9	R9	cTm transcription	$\emptyset \xrightarrow{\text{cYn, cLn}} \text{cTm}$	
10	R10	cTm degradation	$cTm \longrightarrow \emptyset$	
11	R11	cTc synthesis	$\emptyset \xrightarrow{\operatorname{cTm}} \operatorname{cTc}$	
12	R12	cTc transport into nucleus	$cTc \longrightarrow cTn$	
13	R13	cTn transport into cytoplasm	$cTn \longrightarrow cTc$	
14	R14	cTc degradation	$cTc \longrightarrow \emptyset$	
15	R15	cTn degradation	$cTn \longrightarrow \emptyset$	
16	R16	cXm transcription	$\emptyset \xrightarrow{cTn} cXm$	
17	R17	cXm degradation	$cXm \longrightarrow \emptyset$	
18	R18	cXc transcription	$\emptyset \xrightarrow{cXm} cXc$	
19	R19	cXc transport into nucleus	$cXc \longrightarrow cXn$	
20	R20	cXn transport into cytoplasm	$cXn \longrightarrow cXc$	

Nº I	Id	Name	Reaction Equation SBO
21 F	R21	cXc degradation	$cXc \longrightarrow \emptyset$
22 F	R22	cXn degradation	$cXn \longrightarrow \emptyset$
23 F	R23	cYm transcription	$\emptyset \xrightarrow{cTn, cLn, cPn} cYm$
24 F	R24	cYm degradation	$cYm \longrightarrow \emptyset$
25 F	R25	cYc transcription	$\emptyset \xrightarrow{\text{cYm}} \text{cYc}$
26 F	R26	cYc transport to nucleus	$cYc \longrightarrow cYn$
27 F	R27	cYn transport to cytoplasm	$cYn \longrightarrow cYc$
28 F	R28	cYc degradation	$cYc \longrightarrow \emptyset$
29 F	R29	cYn degradation	$cYn \longrightarrow \emptyset$
30 F	R30	cPn synthesis	$\emptyset \longrightarrow cPn$
31 F	R31a	cPn degradation	$cPn \longrightarrow \emptyset$
32 F	R31b	Light dependent cPn degradation	$cPn \longrightarrow \emptyset$
33 F	R32	cP7m transcription	$\emptyset \xrightarrow{\text{cLn}} \text{cP7m}$
34 F	R33	cP7m degradation	$cP7m \longrightarrow \emptyset$
35 F	R34	cP7c synthesis	$\emptyset \xrightarrow{\text{cP7m}} \text{cP7c}$
36 F	R35	cP7c transport to nucleus	$cP7c \longrightarrow cP7n$
37 F	R36	cP7n transport to cytoplasm	$cP7n \longrightarrow cP7c$
38 F	R37	cP7c degradation	$cP7c \longrightarrow \emptyset$
39 F	R38	cP7n degradation	$cP7n \longrightarrow \emptyset$
40 F	R39	cP9m transcription	$\emptyset \xrightarrow{\text{cPn, cLn}} \text{cP9m}$
41 F	R40	cP79m degradation	$cP9m \longrightarrow \emptyset$
42 F	R41	cP9c synthesis	$\emptyset \xrightarrow{\text{cP9m}} \text{cP9c}$
43 F	R42	cP9c transport to nucleus	$cP9c \longrightarrow cP9n$
44 F	R43	cP9n transport to cytoplasm	$cP9n \longrightarrow cP9c$
45 F	R44	cP9c degradation	$cP9c \longrightarrow \emptyset$
46 F	R45	cP9n degradation	$cP9n \longrightarrow \emptyset$

7.1 Reaction R1

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name Light dependent cLm synthesis

Reaction equation

$$\emptyset \xrightarrow{cPn} cLm \tag{6}$$

Modifier

Table 6: Properties of each modifier.

Id	Name	SBO
cPn	cPn	

Product

Table 7: Properties of each product.

Id	Name	SBO
cLm	cLm	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{nmol}$

$$v_1 = \text{vol}(\text{nucleus}) \cdot \text{ld} \cdot \text{q1} \cdot [\text{cPn}] \tag{7}$$

7.2 Reaction R2

This is an irreversible reaction of no reactant forming one product influenced by three modifiers.

Name Light independent cLm synthesis

Reaction equation

$$\emptyset \xrightarrow{cXn, cP7n, cP9n} cLm$$
 (8)

Modifiers

Table 8: Properties of each modifier.

Id	Name	SBO
01 . 11	cXn cP7n cP9n	

Product

Table 9: Properties of each product.

Id	Name	SBO
cLm	cLm	

Kinetic Law

Derived unit contains undeclared units

$$v_{2} = vol (nucleus) \cdot \frac{n1 \cdot [cXn]^{a}}{g1^{a} + [cXn]^{a}} \cdot \frac{g7^{h}}{g7^{h} + [cP7n]^{h}} \cdot \frac{g8^{i}}{g8^{i} + [cP9n]^{i}}$$
(9)

7.3 Reaction R3

This is an irreversible reaction of one reactant forming no product.

Name cLm degradation

Reaction equation

$$cLm \longrightarrow \emptyset \tag{10}$$

Reactant

Table 10: Properties of each reactant.

Id	Name	SBO
cLm	cLm	

Kinetic Law

 $\textbf{Derived unit} \ \ 9.9999999999998 \cdot 10^{-10} \ mol \cdot \left(3600 \ s\right)^{-1}$

$$v_3 = \frac{\text{vol}(\text{nucleus}) \cdot \text{m1} \cdot [\text{cLm}]}{\text{k1} + [\text{cLm}]}$$
(11)

7.4 Reaction R4

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name cLc synthesis

Reaction equation

$$\emptyset \xrightarrow{\text{cLm}} \text{cLc} \tag{12}$$

Modifier

Table 11: Properties of each modifier.

Id	Name	SBO
cLm	cLm	

Product

Table 12: Properties of each product.

Id	Name	SBO
cLc	cLc	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{nmol}$

$$v_4 = \text{vol}(\text{cytoplasm}) \cdot \text{p1} \cdot [\text{cLm}]$$
 (13)

7.5 Reaction R5

This is an irreversible reaction of one reactant forming one product.

Name cLc transport into nucleus

Reaction equation

$$cLc \longrightarrow cLn$$
 (14)

Reactant

Table 13: Properties of each reactant.

Id	Name	SBO
cLc	cLc	

Product

Table 14: Properties of each product.

Id	Name	SBO
cLn	cLn	·

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{nmol}$

$$v_5 = \text{vol}(\text{cytoplasm}) \cdot \text{rl} \cdot [\text{cLc}]$$
 (15)

7.6 Reaction R6

This is an irreversible reaction of one reactant forming one product.

Name cLn transport into cytoplasm

Reaction equation

$$cLn \longrightarrow cLc$$
 (16)

Reactant

Table 15: Properties of each reactant.

Id	Name	SBO
cLn	cLn	

Product

Table 16: Properties of each product.

Id	Name	SBO
cLc	cLc	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{nmol}$

$$v_6 = \text{vol}(\text{nucleus}) \cdot \text{r2} \cdot [\text{cLn}]$$
 (17)

7.7 Reaction R7

This is an irreversible reaction of one reactant forming no product.

Name cLc degradation

Reaction equation

$$cLc \longrightarrow \emptyset$$
 (18)

Reactant

Table 17: Properties of each reactant.

Id	Name	SBO
cLc	cLc	

Kinetic Law

Derived unit $9.9999999999998 \cdot 10^{-10} \text{ mol} \cdot (3600 \text{ s})^{-1}$

$$v_7 = \frac{\text{vol}(\text{cytoplasm}) \cdot \text{m2} \cdot [\text{cLc}]}{\text{k2} + [\text{cLc}]}$$
(19)

7.8 Reaction R8

This is an irreversible reaction of one reactant forming no product.

Name cLn degradation

Reaction equation

$$cLn \longrightarrow \emptyset$$
 (20)

Reactant

Table 18: Properties of each reactant.

Id	Name	SBO
cLn	cLn	

Kinetic Law

 $\textbf{Derived unit} \ \ 9.9999999999998 \cdot 10^{-10} \ mol \cdot (3600 \ s)^{-1}$

$$v_8 = \frac{\text{vol}(\text{nucleus}) \cdot \text{m3} \cdot [\text{cLn}]}{\text{k3} + [\text{cLn}]}$$
(21)

7.9 Reaction R9

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name cTm transcription

Reaction equation

$$\emptyset \xrightarrow{cYn, cLn} cTm \tag{22}$$

Modifiers

Table 19: Properties of each modifier.

Id	Name	SBO
cYn	cYn	
cLn	cLn	

Product

Table 20: Properties of each product.

	•	
Id	Name	SBO
cTm	cTm	

Kinetic Law

Derived unit contains undeclared units

$$v_9 = \text{vol (nucleus)} \cdot \frac{n2 \cdot [cYn]^b}{g2^b + [cYn]^b} \cdot \frac{g3^c}{g3^c + [cLn]^c}$$
(23)

7.10 Reaction R10

This is an irreversible reaction of one reactant forming no product.

Name cTm degradation

Reaction equation

$$cTm \longrightarrow \emptyset \tag{24}$$

Reactant

Table 21: Properties of each reactant.

Id	Name	SBO
cTm	cTm	

Kinetic Law

 $\textbf{Derived unit} \ \ 9.9999999999998 \cdot 10^{-10} \ mol \cdot \left(3600 \ s\right)^{-1}$

$$v_{10} = \frac{\text{vol (nucleus)} \cdot \text{m4} \cdot [\text{cTm}]}{\text{k4} + [\text{cTm}]}$$
(25)

7.11 Reaction R11

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name cTc synthesis

Reaction equation

$$\emptyset \xrightarrow{cTm} cTc \tag{26}$$

Modifier

Table 22: Properties of each modifier.

Id	Name	SBO
cTm	cTm	

Product

Table 23: Properties of each product.

Id	Name	SBO
сТс	сТс	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{nmol}$

$$v_{11} = \text{vol}\left(\text{cytoplasm}\right) \cdot \text{p2} \cdot [\text{cTm}]$$
 (27)

7.12 Reaction R12

This is an irreversible reaction of one reactant forming one product.

Name cTc transport into nucleus

Reaction equation

$$cTc \longrightarrow cTn$$
 (28)

Reactant

Table 24: Properties of each reactant.

Id	Name	SBO
сТс	сТс	

Product

Table 25: Properties of each product.

Id	Name	SBO
cTn	cTn	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{nmol}$

$$v_{12} = \text{vol}(\text{cytoplasm}) \cdot \text{r3} \cdot [\text{cTc}]$$
 (29)

7.13 Reaction R13

This is an irreversible reaction of one reactant forming one product.

Name cTn transport into cytoplasm

Reaction equation

$$cTn \longrightarrow cTc$$
 (30)

Reactant

Table 26: Properties of each reactant.

Id	Name	SBO
cTn	cTn	

Product

Table 27: Properties of each product.

Id	Name	SBO
сТс	сТс	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{nmol}$

$$v_{13} = \text{vol}\left(\text{nucleus}\right) \cdot \text{r4} \cdot [\text{cTn}]$$
 (31)

7.14 Reaction R14

This is an irreversible reaction of one reactant forming no product.

Name cTc degradation

Reaction equation

$$cTc \longrightarrow \emptyset$$
 (32)

Reactant

Table 28: Properties of each reactant.

Id	Name	SBO
сТс	сТс	

Kinetic Law

Derived unit $nmol \cdot (3600 \text{ s})^{-1}$

$$v_{14} = \text{vol}\left(\text{cytoplasm}\right) \cdot \left(\left(\text{lmax} - \text{ld}\right) \cdot \text{m5} + \text{m6}\right) \cdot \frac{[\text{cTc}]}{\text{k5} + [\text{cTc}]}$$
(33)

7.15 Reaction R15

This is an irreversible reaction of one reactant forming no product.

Name cTn degradation

Reaction equation

$$cTn \longrightarrow \emptyset$$
 (34)

Reactant

Table 29: Properties of each reactant.

Id	Name	SBO
cTn	cTn	

Kinetic Law

Derived unit $nmol \cdot (3600 \text{ s})^{-1}$

$$v_{15} = \text{vol}\left(\text{nucleus}\right) \cdot \left(\left(\text{lmax} - \text{ld}\right) \cdot \text{m7} + \text{m8}\right) \cdot \frac{[\text{cTn}]}{\text{k6} + [\text{cTn}]}$$
(35)

7.16 Reaction R16

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name cXm transcription

Reaction equation

$$\emptyset \xrightarrow{\text{cTn}} \text{cXm} \tag{36}$$

Modifier

Table 30: Properties of each modifier.

Id	Name	SBO
cTn	cTn	

Product

Table 31: Properties of each product.

Id	Name	SBO
cXm	cXm	

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = \text{vol}\left(\text{nucleus}\right) \cdot \frac{\text{n3} \cdot [\text{cTn}]^{\text{d}}}{\text{g4}^{\text{d}} + [\text{cTn}]^{\text{d}}} \tag{37}$$

7.17 Reaction R17

This is an irreversible reaction of one reactant forming no product.

Name cXm degradation

Reaction equation

$$cXm \longrightarrow \emptyset \tag{38}$$

Reactant

Table 32: Properties of each reactant.

Id	Name	SBO
cXm	cXm	

Kinetic Law

Derived unit $9.9999999999998 \cdot 10^{-10} \text{ mol} \cdot (3600 \text{ s})^{-1}$

$$v_{17} = \text{vol}\left(\text{nucleus}\right) \cdot \frac{\text{m9} \cdot [\text{cXm}]}{\text{k7} + [\text{cXm}]}$$
(39)

7.18 Reaction R18

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name cXc transcription

Reaction equation

$$\emptyset \xrightarrow{\text{cXm}} \text{cXc} \tag{40}$$

Modifier

Table 33: Properties of each modifier.

Id	Name	SBO
cXm	cXm	

Product

Table 34: Properties of each product.

Id	Name	SBO
сХс	cXc	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{nmol}$

$$v_{18} = \text{vol}\left(\text{cytoplasm}\right) \cdot \text{p3} \cdot [\text{cXm}]$$
 (41)

7.19 Reaction R19

This is an irreversible reaction of one reactant forming one product.

Name cXc transport into nucleus

Reaction equation

$$cXc \longrightarrow cXn \tag{42}$$

Reactant

Table 35: Properties of each reactant.

Id	Name	SBO
сХс	cXc	

Product

Table 36: Properties of each product.

Id	Name	SBO
cXn	cXn	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{nmol}$

$$v_{19} = \text{vol}\left(\text{cytoplasm}\right) \cdot \text{r5} \cdot [\text{cXc}]$$
 (43)

7.20 Reaction R20

This is an irreversible reaction of one reactant forming one product.

Name cXn transport into cytoplasm

Reaction equation

$$cXn \longrightarrow cXc$$
 (44)

Reactant

Table 37: Properties of each reactant.

Id	Name	SBO
\mathtt{cXn}	cXn	

Product

Table 38: Properties of each product.

Id	Name	SBO
сХс	cXc	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{nmol}$

$$v_{20} = \text{vol}(\text{nucleus}) \cdot \text{r6} \cdot [\text{cXn}] \tag{45}$$

7.21 Reaction R21

This is an irreversible reaction of one reactant forming no product.

Name cXc degradation

Reaction equation

$$cXc \longrightarrow \emptyset$$
 (46)

Reactant

Table 39: Properties of each reactant.

Id	Name	SBO
сХс	cXc	

Kinetic Law

Derived unit $9.9999999999998 \cdot 10^{-10} \text{ mol} \cdot (3600 \text{ s})^{-1}$

$$v_{21} = \frac{\text{vol}(\text{cytoplasm}) \cdot \text{m10} \cdot [\text{cXc}]}{\text{k8} + [\text{cXc}]}$$
(47)

7.22 Reaction R22

This is an irreversible reaction of one reactant forming no product.

Name cXn degradation

Reaction equation

$$cXn \longrightarrow \emptyset$$
 (48)

Reactant

Table 40: Properties of each reactant.

Id	Name	SBO
cXn	cXn	

Kinetic Law

 $\textbf{Derived unit} \ \ 9.9999999999998 \cdot 10^{-10} \ mol \cdot (3600 \ s)^{-1}$

$$v_{22} = \frac{\text{vol}(\text{nucleus}) \cdot \text{m11} \cdot [\text{cXn}]}{\text{k9} + [\text{cXn}]}$$
(49)

7.23 Reaction R23

This is an irreversible reaction of no reactant forming one product influenced by three modifiers.

Name cYm transcription

Reaction equation

$$\emptyset \xrightarrow{cTn, cLn, cPn} cYm$$
 (50)

Modifiers

Table 41: Properties of each modifier.

Id	Name	SBO
cTn	cTn	
cLn	cLn	
cPn	cPn	

Product

Table 42: Properties of each product.

Id	Name	SBO
cYm	cYm	

Kinetic Law

Derived unit contains undeclared units

$$v_{23} = \text{vol}\left(\text{nucleus}\right) \cdot \left(\text{ld} \cdot \text{q2} \cdot [\text{cPn}] + \frac{(\text{ld} \cdot \text{n4} + \text{n5}) \cdot \text{g5}^{\text{e}}}{\text{g5}^{\text{e}} + [\text{cTn}]^{\text{e}}}\right) \cdot \frac{\text{g6}^{\text{f}}}{\text{g6}^{\text{f}} + [\text{cLn}]^{\text{f}}}$$
(51)

7.24 Reaction R24

This is an irreversible reaction of one reactant forming no product.

Name cYm degradation

Reaction equation

$$cYm \longrightarrow \emptyset \tag{52}$$

Reactant

Table 43: Properties of each reactant.

Id	Name	SBO
cYm	cYm	

Kinetic Law

 $\textbf{Derived unit} \ \ 9.9999999999998 \cdot 10^{-10} \ mol \cdot (3600 \ s)^{-1}$

$$v_{24} = \frac{\text{vol (nucleus)} \cdot \text{m12} \cdot [\text{cYm}]}{\text{k10} + [\text{cYm}]}$$
(53)

7.25 Reaction R25

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name cYc transcription

Reaction equation

$$\emptyset \xrightarrow{\text{cYm}} \text{cYc} \tag{54}$$

Modifier

Table 44: Properties of each modifier.

Id	Name	SBO
cYm	cYm	

Product

Table 45: Properties of each product.

Id	Name	SBO
сҮс	cYc	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{nmol}$

$$v_{25} = \text{vol}(\text{cytoplasm}) \cdot \text{p4} \cdot [\text{cYm}]$$
 (55)

7.26 Reaction R26

This is an irreversible reaction of one reactant forming one product.

Name cYc transport to nucleus

Reaction equation

$$cYc \longrightarrow cYn$$
 (56)

Reactant

Table 46: Properties of each reactant.

Id	Name	SBO
сҮс	cYc	·

Product

Table 47: Properties of each product.

Id	Name	SBO
\mathtt{cYn}	cYn	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{nmol}$

$$v_{26} = \text{vol}(\text{cytoplasm}) \cdot \text{r7} \cdot [\text{cYc}]$$
 (57)

7.27 Reaction R27

This is an irreversible reaction of one reactant forming one product.

Name cYn transport to cytoplasm

Reaction equation

$$cYn \longrightarrow cYc$$
 (58)

Reactant

Table 48: Properties of each reactant.

Id	Name	SBO
cYn	cYn	

Product

Table 49: Properties of each product.

Id	Name	SBO
сҮс	cYc	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{nmol}$

$$v_{27} = \text{vol} \left(\text{nucleus} \right) \cdot \text{r8} \cdot \left[\text{cYn} \right] \tag{59}$$

7.28 Reaction R28

This is an irreversible reaction of one reactant forming no product.

Name cYc degradation

Reaction equation

$$cYc \longrightarrow \emptyset \tag{60}$$

Reactant

Table 50: Properties of each reactant.

Id	Name	SBO
сҮс	cYc	

Kinetic Law

 $\textbf{Derived unit} \ \ 9.9999999999998 \cdot 10^{-10} \ mol \cdot (3600 \ s)^{-1}$

$$v_{28} = \frac{\text{vol}(\text{cytoplasm}) \cdot \text{m13} \cdot [\text{cYc}]}{\text{k11} + [\text{cYc}]}$$
(61)

7.29 Reaction R29

This is an irreversible reaction of one reactant forming no product.

Name cYn degradation

Reaction equation

$$cYn \longrightarrow \emptyset \tag{62}$$

Reactant

Table 51: Properties of each reactant.

Id	Name	SBO
cYn	cYn	

Kinetic Law

 $\textbf{Derived unit} \ \ 9.9999999999998 \cdot 10^{-10} \ mol \cdot \left(3600 \ s\right)^{-1}$

$$v_{29} = \frac{\text{vol}(\text{nucleus}) \cdot \text{m14} \cdot [\text{cYn}]}{\text{k12} + [\text{cYn}]}$$
(63)

7.30 Reaction R30

This is an irreversible reaction of no reactant forming one product.

Name cPn synthesis

Reaction equation

$$\emptyset \longrightarrow cPn$$
 (64)

Product

Table 52: Properties of each product.

Id	Name	SBO
cPn	cPn	

Kinetic Law

Derived unit $nmol \cdot (3600 \text{ s})^{-1}$

$$v_{30} = \text{vol}(\text{nucleus}) \cdot (\text{lmax} - \text{ld}) \cdot \text{p5}$$
 (65)

7.31 Reaction R31a

This is an irreversible reaction of one reactant forming no product.

Name cPn degradation

Reaction equation

$$cPn \longrightarrow \emptyset \tag{66}$$

Reactant

Table 53: Properties of each reactant.

Id	Name	SBO
cPn	cPn	

Kinetic Law

 $\textbf{Derived unit} \ \ 9.9999999999998 \cdot 10^{-10} \ mol \cdot (3600 \ s)^{-1}$

$$v_{31} = \frac{\text{vol (nucleus)} \cdot \text{m15} \cdot [\text{cPn}]}{\text{k13} + [\text{cPn}]}$$
(67)

7.32 Reaction R31b

This is an irreversible reaction of one reactant forming no product.

Name Light dependent cPn degradation

Reaction equation

$$cPn \longrightarrow \emptyset \tag{68}$$

Reactant

Table 54: Properties of each reactant.

Id	Name	SBO
cPn	cPn	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{nmol}$

$$v_{32} = \text{vol}(\text{nucleus}) \cdot \text{q3} \cdot \text{ld} \cdot [\text{cPn}]$$
 (69)

7.33 Reaction R32

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name cP7m transcription

Reaction equation

$$\emptyset \xrightarrow{\text{cLn}} \text{cP7m} \tag{70}$$

Modifier

Table 55: Properties of each modifier.

Id	Name	SBO
cLn	cLn	

Product

Table 56: Properties of each product.

Id	Name	SBO
cP7m	cP7m	

Kinetic Law

Derived unit contains undeclared units

$$v_{33} = \frac{\text{vol}(\text{nucleus}) \cdot \text{n6} \cdot [\text{cLn}]^{j}}{\text{g}^{\text{gj}} + [\text{cLn}]^{j}}$$
(71)

7.34 Reaction R33

This is an irreversible reaction of one reactant forming no product.

Name cP7m degradation

Reaction equation

$$cP7m \longrightarrow \emptyset \tag{72}$$

Reactant

Table 57: Properties of each reactant.

Id	Name	SBO
cP7m	cP7m	

Kinetic Law

Derived unit $9.99999999999998 \cdot 10^{-10} \text{ mol} \cdot (3600 \text{ s})^{-1}$

$$v_{34} = \frac{\text{vol (nucleus)} \cdot \text{m16} \cdot [\text{cP7m}]}{\text{k14} + [\text{cP7m}]}$$
(73)

7.35 Reaction R34

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name cP7c synthesis

Reaction equation

$$\emptyset \xrightarrow{\text{cP7m}} \text{cP7c} \tag{74}$$

Modifier

Table 58: Properties of each modifier.

Id	Name	SBO
cP7m	cP7m	

Product

Table 59: Properties of each product.

Id	Name	SBO
cP7c	cP7c	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{nmol}$

$$v_{35} = \text{vol}(\text{cytoplasm}) \cdot \text{p6} \cdot [\text{cP7m}]$$
 (75)

7.36 Reaction R35

This is an irreversible reaction of one reactant forming one product.

Name cP7c transport to nucleus

Reaction equation

$$cP7c \longrightarrow cP7n \tag{76}$$

Reactant

Table 60: Properties of each reactant.

Id	Name	SBO
cP7c	cP7c	

Product

Table 61: Properties of each product.

Id	Name	SBO
cP7n	cP7n	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{nmol}$

$$v_{36} = \text{vol}\left(\text{cytoplasm}\right) \cdot \text{r9} \cdot \left[\text{cP7c}\right]$$
 (77)

7.37 Reaction R36

This is an irreversible reaction of one reactant forming one product.

Name cP7n transport to cytoplasm

Reaction equation

$$cP7n \longrightarrow cP7c \tag{78}$$

Reactant

Table 62: Properties of each reactant.

Id	Name	SBO
cP7n	cP7n	

Product

Table 63: Properties of each product.

Id	Name	SBO
сР7с	cP7c	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{nmol}$

$$v_{37} = \text{vol}(\text{nucleus}) \cdot \text{r}10 \cdot [\text{cP7n}] \tag{79}$$

7.38 Reaction R37

This is an irreversible reaction of one reactant forming no product.

Name cP7c degradation

Reaction equation

$$cP7c \longrightarrow \emptyset \tag{80}$$

Reactant

Table 64: Properties of each reactant.

Id	Name	SBO
cP7c	cP7c	

Kinetic Law

 $\textbf{Derived unit} \ \ 9.9999999999998 \cdot 10^{-10} \ mol \cdot (3600 \ s)^{-1}$

$$v_{38} = \frac{\text{vol}(\text{cytoplasm}) \cdot \text{m17} \cdot [\text{cP7c}]}{\text{k15} + [\text{cP7c}]}$$
(81)

7.39 Reaction R38

This is an irreversible reaction of one reactant forming no product.

Name cP7n degradation

Reaction equation

$$cP7n \longrightarrow \emptyset \tag{82}$$

Reactant

Table 65: Properties of each reactant.

Id	Name	SBO
cP7n	cP7n	

Kinetic Law

 $\textbf{Derived unit} \ \ 9.9999999999998 \cdot 10^{-10} \ mol \cdot (3600 \ s)^{-1}$

$$v_{39} = \frac{\text{vol (nucleus)} \cdot \text{m18} \cdot [\text{cP7n}]}{\text{k16} + [\text{cP7n}]}$$
(83)

7.40 Reaction R39

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name cP9m transcription

Reaction equation

$$\emptyset \xrightarrow{\text{cPn, cLn}} \text{cP9m} \tag{84}$$

Modifiers

Table 66: Properties of each modifier.

Id	Name	SBO
cPn	cPn	
cLn	cLn	

Product

Table 67: Properties of each product.

Id	Name	SBO
cP9m	cP9m	

Kinetic Law

Derived unit contains undeclared units

$$v_{40} = \frac{(\text{ld} \cdot \text{q4} \cdot [\text{cPn}] + \text{n7} \cdot \text{ld} + \text{n8}) \cdot [\text{cLn}]^k}{\text{g10}^k + [\text{cLn}]^k}$$
(85)

7.41 Reaction R40

This is an irreversible reaction of one reactant forming no product.

Name cP79m degradation

Reaction equation

$$cP9m \longrightarrow \emptyset \tag{86}$$

Reactant

Table 68: Properties of each reactant.

Id	Name	SBO
cP9m	cP9m	

Kinetic Law

Derived unit $9.9999999999998 \cdot 10^{-10} \text{ mol} \cdot (3600 \text{ s})^{-1}$

$$v_{41} = \frac{\text{vol (nucleus)} \cdot \text{m19} \cdot [\text{cP9m}]}{\text{k17} + [\text{cP9m}]}$$
(87)

7.42 Reaction R41

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name cP9c synthesis

Reaction equation

$$\emptyset \xrightarrow{cP9m} cP9c \tag{88}$$

Modifier

Table 69: Properties of each modifier.

Id	Name	SBO
cP9m	cP9m	

Product

Table 70: Properties of each product.

Id	Name	SBO
сР9с	cP9c	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{nmol}$

$$v_{42} = \text{vol}\left(\text{cytoplasm}\right) \cdot \text{p7} \cdot \left[\text{cP9m}\right]$$
 (89)

7.43 Reaction R42

This is an irreversible reaction of one reactant forming one product.

Name cP9c transport to nucleus

Reaction equation

$$cP9c \longrightarrow cP9n \tag{90}$$

Reactant

Table 71: Properties of each reactant.

Id	Name	SBO
сР9с	cP9c	

Product

Table 72: Properties of each product.

_	Id	Name	SBO
_	cP9n	cP9n	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{nmol}$

$$v_{43} = \text{vol}(\text{cytoplasm}) \cdot \text{r}11 \cdot [\text{cP9c}]$$
 (91)

7.44 Reaction R43

This is an irreversible reaction of one reactant forming one product.

Name cP9n transport to cytoplasm

Reaction equation

$$cP9n \longrightarrow cP9c \tag{92}$$

Reactant

Table 73: Properties of each reactant.

Id	Name	SBO
cP9n	cP9n	

Product

Table 74: Properties of each product.

Id	Name	SBO
сР9с	cP9c	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{nmol}$

$$v_{44} = \text{vol}\left(\text{nucleus}\right) \cdot \text{r}12 \cdot [\text{cP9n}] \tag{93}$$

7.45 Reaction R44

This is an irreversible reaction of one reactant forming no product.

Name cP9c degradation

Reaction equation

$$cP9c \longrightarrow \emptyset \tag{94}$$

Reactant

Table 75: Properties of each reactant.

Id	Name	SBO
сР9с	cP9c	

Kinetic Law

Derived unit $9.9999999999998 \cdot 10^{-10} \text{ mol} \cdot (3600 \text{ s})^{-1}$

$$v_{45} = \frac{\text{vol}(\text{cytoplasm}) \cdot \text{m20} \cdot [\text{cP9c}]}{\text{k18} + [\text{cP9c}]}$$
(95)

7.46 Reaction R45

This is an irreversible reaction of one reactant forming no product.

Name cP9n degradation

Reaction equation

$$cP9n \longrightarrow \emptyset \tag{96}$$

Reactant

Table 76: Properties of each reactant.

Id	Name	SBO
cP9n	cP9n	

Kinetic Law

Derived unit $9.99999999999998 \cdot 10^{-10} \text{ mol} \cdot (3600 \text{ s})^{-1}$

$$v_{46} = \frac{\text{vol}(\text{nucleus}) \cdot \text{m21} \cdot [\text{cP9n}]}{\text{k19} + [\text{cP9n}]}$$
(97)

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

8.1 Species cLc

Name cLc

Initial concentration $0.0731 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R5, R7 and as a product in R4, R6).

$$\frac{d}{dt}cLc = v_4 + v_6 - v_5 - v_7 \tag{98}$$

8.2 Species cLm

Name cLm

Initial concentration $0.1114 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R3 and as a product in R1, R2 and as a modifier in R4).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{cLm} = v_1 + v_2 - v_3 \tag{99}$$

8.3 Species cLn

Name cLn

Initial concentration $0.2366 \text{ nmol} \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in R6, R8 and as a product in R5 and as a modifier in R9, R23, R32, R39).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{cLn} = v_5 - v_6 - v_8 \tag{100}$$

8.4 Species cP7c

Name cP7c

Initial concentration $0.0266 \text{ nmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in R35, R37 and as a product in R34, R36).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{cP7c} = v_{35} + v_{37} - v_{36} - v_{38} \tag{101}$$

8.5 Species cP7m

Name cP7m

Initial concentration $0.0204 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R33 and as a product in R32 and as a modifier in R34).

$$\frac{d}{dt}cP7m = v_{33} - v_{34} \tag{102}$$

8.6 Species cP7n

Name cP7n

Initial concentration $1.5103 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R36, R38 and as a product in R35 and as a modifier in R2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{cP7n} = v_{36} - v_{37} - v_{39} \tag{103}$$

8.7 Species cP9c

Name cP9c

Initial concentration $0.734 \text{ nmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in R42, R44 and as a product in R41, R43).

$$\frac{\mathrm{d}}{\mathrm{d}t}cP9c = v_{42} + v_{44} - v_{43} - v_{45} \tag{104}$$

8.8 Species cP9m

Name cP9m

Initial concentration $0.0020 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R40 and as a product in R39 and as a modifier in R41).

$$\frac{d}{dt}cP9m = v_{40} - v_{41} \tag{105}$$

8.9 Species cP9n

Name cP9n

Initial concentration $1.1162 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R43, R45 and as a product in R42 and as a modifier in R2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{cP9n} = v_{43} - v_{44} - v_{46} \tag{106}$$

8.10 Species cPn

Name cPn

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in R31a, R31b and as a product in R30 and as a modifier in R1, R23, R39).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{cPn} = v_{30} - v_{31} - v_{32} \tag{107}$$

8.11 Species cTc

Name cTc

Initial concentration 5.2235 nmol·l⁻¹

This species takes part in four reactions (as a reactant in R12, R14 and as a product in R11, R13).

$$\frac{\mathrm{d}}{\mathrm{d}t}cTc = v_{11} + v_{13} - v_{12} - v_{14} \tag{108}$$

8.12 Species cTm

Name cTm

Initial concentration $3.6732 \text{ nmol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in R10 and as a product in R9 and as a modifier in R11).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{cTm} = v_9 - v_{10} \tag{109}$$

8.13 Species cTn

Name cTn

Initial concentration $4.5333 \text{ nmol} \cdot 1^{-1}$

This species takes part in five reactions (as a reactant in R13, R15 and as a product in R12 and as a modifier in R16, R23).

$$\frac{\mathrm{d}}{\mathrm{d}t}c\mathrm{Tn} = v_{12} - v_{13} - v_{15} \tag{110}$$

8.14 Species cXc

Name cXc

Initial concentration $2.4188 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R19, R21 and as a product in R18, R20).

$$\frac{\mathrm{d}}{\mathrm{d}t}cXc = v_{18} + v_{20} - v_{19} - v_{21} \tag{111}$$

8.15 Species cXm

Name cXm

Initial concentration $0.652 \text{ nmol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in R17 and as a product in R16 and as a modifier in R18).

$$\frac{d}{dt}cXm = v_{16} - v_{17} \tag{112}$$

8.16 Species cXn

Name cXn

Initial concentration $14.7289 \text{ nmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in R20, R22 and as a product in R19 and as a modifier in R2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{cXn} = v_{19} - v_{20} - v_{22} \tag{113}$$

8.17 Species cYc

Name cYc

Initial concentration $49.2611 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R26, R28 and as a product in R25, R27).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{c}\mathbf{Y}\mathbf{c} = v_{25} + v_{27} - v_{26} - v_{28} \tag{114}$$

8.18 Species cYm

Name cYm

Initial concentration $0.2992 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R24 and as a product in R23 and as a modifier in R25).

$$\frac{d}{dt}cYm = v_{23} - v_{24} \tag{115}$$

8.19 Species cYn

Name cYn

Initial concentration $17.4355 \text{ nmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in R27, R29 and as a product in R26 and as a modifier in R9).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{cYn} = v_{26} - v_{27} - v_{29} \tag{116}$$

 $\mathfrak{BML2}^{d}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany