Contents

1	Rad	lial Density Function	2
	1.1	Calculation of Distances with Periodicity	2
	1.2	Adding Noise For Atom Vibration	3
	1.3	Cubane Example	3
		1.3.1 Cubane Radial Density Functions	4
	1.4	Experimental and Theoretical RDFs for Known Structures	6
		1.4.1 Ga As	6
		1.4.2 In As	7
		1.4.3 Si Lattice	7
2	D	odral Carra and Amalania	
2		ncipal Component Analysis	8
	2.1	Data Set	8
	2.2	Dimensionality	8
	2.3	Basis Vectors	9
	2.4	Projected RDFs	11
		2.4.1 SiLi Calc10136	11
		2.4.2 SiLi Expt1	12
		2.4.3 SiLi Expt8	13
		2.4.4 GaAs Expt	14
	2.5	Observations	15
•	NI.º.	A	1.5
3	NOIS	se Analysis	15
	3.1	Peak Counts	15
4	Rec	ognition Using Eigenfaces	17
	4.1	Mean Image	17
	4.2	Variance Explained by Principal Components	18
	4.3	Eigenfaces	
	4.4	Data in Eigenspace	
	4.5	Experimental Image Recognition	

4.6	Synthetic Experimental Image Recognition		27
-----	--	--	----

5 Sources 29

1 Radial Density Function

1.1 Calculation of Distances with Periodicity

Suppose a large chemical structure has uncountably many atoms but the follow a periodic pattern of n atoms every p Angstroms. The atom locations within a period are given by a_1, a_2, \ldots, a_n where $a_i \in \mathbb{R}^3$. The radial density function is the distribution of pairwise distances between these atoms.

The distances d between atoms a_i and a_j where $i \neq j$, atom a_i has been displaced by x, and atom a_j has been displaced by y per the periodicity is

$$d^{2} = \langle a_{i} + x - (a_{j} + y), a_{i} + x - (a_{j} + y) \rangle$$
$$= \langle a_{i} - a_{j}, a_{i} - a_{j} \rangle + \langle x - y, x - y \rangle + 2\langle a_{i} - a_{j}, x - y \rangle$$

where $x = (k_1 p, k_2 p, k_3 p)$ for $k_i \in \mathbb{Z}$ and $y = (l_1 p, l_2 p, l_3 p)$ for $l_i \in \mathbb{Z}$. Here $\langle x, y \rangle$ denotes the inner product between x and y.

Suppose D is a random variable that samples at random the distances, d, in the chemical structure. The radial density function is the probability density function of this random variable. This function can be estimated empirically via a histogram.

The histogram is then normalized by the volume a spherical shell.

$$\frac{4}{3}\pi(r+\Delta r)^3 - \frac{4}{3}\pi r^3$$

$$= \frac{4}{3}(3r^2\Delta r + 3r(\Delta r)^2 + (\Delta r)^3)$$

$$\approx 4\pi r^2\Delta r$$

where Δr tends to zero.

For a histogram with frequency, f, for bin $[d_i, d_{i+1}]$, we replace f with f/d_i^2 . And then normalize the histogram so that the sum over all bins is one.

1.2 Adding Noise For Atom Vibration

Due to the vibrations of the molecules, the radial density function will not be just the equilibrium positions. We can approximate this fluctuation in distances via a Gaussian filter or Weierstrass transform.

$$F(x) = \frac{1}{\sqrt{4\pi t}} \int_{-\infty}^{\infty} f(y)e^{-\frac{(x-y)^2}{4t}} dy$$

Given that the density function is only defined for a finite number of distances, we use a discrete version of the transform making sure to keep the sum of the weights equal to one.

$$F(d_k) = \frac{\sum_{d_i=d_0}^{d_n} f(d_i) \exp\left(-\frac{(d_k - d_i)^2}{4t}\right)}{\sum_{d_i=d_0}^{d_n} \exp\left(-\frac{(d_k - d_i)^2}{4t}\right)}$$

where d_0 is the minimum distance and d_n is the maximum distance.

1.3 Cubane Example

As an example of the above, below are the calculations for cubane (C_8H_8) .

Here are the coordinates of the elements in cubane in Angstroms.

```
Element, x, y, z
```

C, 1.2455, 0.5367,-0.0729

C, 0.9239,-0.9952, 0.0237

C,-0.1226,-0.7041, 1.1548

C, 0.1989, 0.8277, 1.0582

C, 0.1226, 0.7042,-1.1548

C,-0.9239, 0.9952,-0.0237

C,-1.2454,-0.5367, 0.0729

C,-0.1989,-0.8277,-1.0582

H, 2.2431, 0.9666,-0.1313

H, 1.6638,-1.7924, 0.0426

H,-0.2209,-1.2683, 2.0797

H, 0.3583, 1.4907, 1.9059

H, 0.2208, 1.2681,-2.0799

H,-1.6640, 1.7922,-0.0427

H,-2.2430,-0.9665, 0.1313

H,-0.3583,-1.4906,-1.9058

1.3.1 Cubane Radial Density Functions

Figure 1: Before Smoothing

Figure 2: After Smoothing

1.4 Experimental and Theoretical RDFs for Known Structures

For some structures, we are able to theoretically calculate the RDF from atom locations and also have the experimental RDF from Xray scattering. These known matches provide some insight into understanding how the experiments and theory align. The RDF comparison are shown below.

Outside of these structures, there are not many other known matches. There are a few reasons for this. First, if a structures is already known at the atomic level then there is no need to run an xray diffraction experiment. Second, if a structure is periodic as in a lattice, the atomic structure can be determined by xray diffraction which is easier and cheaper than xray scattering.

1.4.1 Ga As

Experimental Data: Pair Distribution Functions Analysis, Valeri Petkov

Calculated Data: Maria Chan

Figure 3: Ga As

1.4.2 In As

Experimental Data: Pair Distribution Functions Analysis, Valeri Petkov

Calculated Data: Maria Chan

Figure 4: In As

1.4.3 Si Lattice

Experimental Data: J. AM. CHEM. SOC. VOL. 133, NO. 3, 2011, P: 503-512

Calculated Data: http://materialsproject.org/materials/mp-149/

Figure 5: Si Lattice

2 Principal Component Analysis

2.1 Data Set

For the analysis following, a data set of radial density functions was used that contained 3,491 theoretical SiLi structures, 8 experimental SiLi structures, a pair of theoretical and calculated GaAs structures, and a pair of theoretical and calculated InAs structures. Each image had 128 evenly distances from 1.92 to 7 angstroms.

2.2 Dimensionality

To discover the minimal dimensionality of the RDF data, I charted the cumulative proportion of variance explained by adding successive principal components. We can see from Figure 6 that around 30 principal components explain 99% of the variance.

Figure 6: Proportion of Variance Explained

2.3 Basis Vectors

Sometimes PCA analysis gives intelligible basis vectors that identify a key characteristic in the data set. In the case of the RDF images, the basis vectors appear to be nonsensical. The first four principal component basis vectors are show in Figure 7.

Figure 7: PCA Basis Vectors

2.4 Projected RDFs

To further assess the capacity of PCA to reduce the dimensionality of the data, I sampled a few images and projected them onto PCA space with decreasing dimensions.

2.4.1 SiLi Calc10136

Figure 8: SiLi Calc10136 Projections

2.4.2 SiLi Expt1

Figure 9: SiLi Expt1 Projections

2.4.3 SiLi Expt8

Figure 10: SiLi Expt8 Projections

2.4.4 GaAs Expt

Figure 11: GaAs Expt Projections

2.5 Observations

From the proportion of variance explained and the selected projections, clearly thirty principal components are sufficient to capture the essence of the image. Also, it shows that one principal component is not sufficient in most cases. It is strange however that the first principal component captures so clearly SiLi Calc10136. Further investigation is needed to determine whether this is due the large number of images similar to Calc10136 in the data set.

3 Noise Analysis

3.1 Peak Counts

Figure 12: InAs Expt, Max 7 Angstroms

Figure 13: InAs Expt, Max 10 Angstroms

4 Recognition Using Eigenfaces

4.1 Mean Image

Figure 14: All Calculated Images with Mean

4.2 Variance Explained by Principal Components

Figure 15: Cumulative Variance Explained by Principal Components

4.3 Eigenfaces

Figure 16: Eigenface Images

4.4 Data in Eigenspace

Figure 17: Loading 1 vs Loading 2

Label	Loading 1	Loading 2
SiLiExpt1	-0.0893	0.00982
SiLiExpt2	-0.0794	-0.006
SiLiExpt3	-0.0616	-0.0055
SiLiExpt4	-0.0522	-0.0086
SiLiExpt5	-0.0356	-0.0128
ExptGaAs	-0.0288	0.00994
SiLiExpt7	-0.0258	-0.0101
SiLiExpt6	-0.0231	-0.0051
SiLiExpt8	-0.0226	-0.0111
ExptInAs	-0.0038	-0.0044

Table 1: Experimental Data Sorted by Loading 1

Label	Loading 1	Loading 2
SiLiExpt5	-0.0356	-0.0128
SiLiExpt8	-0.0226	-0.0111
SiLiExpt7	-0.0258	-0.0101
SiLiExpt4	-0.0522	-0.0086
SiLiExpt2	-0.0794	-0.006
SiLiExpt3	-0.0616	-0.0055
SiLiExpt6	-0.0231	-0.0051
ExptInAs	-0.0038	-0.0044
SiLiExpt1	-0.0893	0.00982
ExptGaAs	-0.0288	0.00994

Table 2: Experimental Data Sorted by Loading 2

Figure 18: Loading 2 vs Loading 3

Figure 19: Loading 3 vs Loading 4

Figure 20: Loading 4 vs Loading 5

4.5 Experimental Image Recognition

Image	Best Match	2	3	4	5
ExptGaAs	SiLiCalc11436	SiLiCalc11634	SiLiCalc11967	SiLiCalc12738	SiLiCalc10225
ExptInAs	SiLiCalc10643	SiLiCalc10560	SiLiCalc10693	SiLiCalc10617	SiLiCalc10621
SiLiExpt1	SiLiCalc10208	SiLiCalc10315	SiLiCalc10317	SiLiCalc10188	SiLiCalc10187
SiLiExpt2	SiLiCalc10317	SiLiCalc10287	SiLiCalc10320	SiLiCalc10283	SiLiCalc10273
SiLiExpt3	SiLiCalc10287	SiLiCalc10239	SiLiCalc10259	SiLiCalc10317	SiLiCalc10232
SiLiExpt4	SiLiCalc10229	SiLiCalc10225	SiLiCalc10232	SiLiCalc10239	SiLiCalc10259
SiLiExpt5	SiLiCalc10225	SiLiCalc10256	SiLiCalc10232	SiLiCalc10229	SiLiCalc10231
SiLiExpt6	SiLiCalc10322	SiLiCalc10225	SiLiCalc10247	SiLiCalc10229	SiLiCalc10256
SiLiExpt7	SiLiCalc10225	SiLiCalc10322	SiLiCalc10256	SiLiCalc10247	SiLiCalc10229
SiLiExpt8	SiLiCalc10225	SiLiCalc10322	SiLiCalc10247	SiLiCalc10337	SiLiCalc10256

Table 3: Recognition with 3 Principal Components

Image	Best Match	2	3	4	5
ExptGaAs	CalcGaAs	SiLiCalc10329	SiLiCalc11337	SiLiCalc11436	SiLiCalc10571
ExptInAs	SiLiCalc10646	SiLiCalc10805	SiLiCalc10792	SiLiCalc10836	SiLiCalc10767
SiLiExpt1	SiLiCalc10213	SiLiCalc10215	SiLiCalc10001	SiLiCalc10003	SiLiCalc10313
SiLiExpt2	SiLiCalc10001	SiLiCalc10003	SiLiCalc10209	SiLiCalc10317	SiLiCalc10313
SiLiExpt3	SiLiCalc10257	SiLiCalc10317	SiLiCalc10259	SiLiCalc10258	SiLiCalc10256
SiLiExpt4	SiLiCalc10257	SiLiCalc10258	SiLiCalc10256	SiLiCalc10229	SiLiCalc10232
SiLiExpt5	SiLiCalc10445	SiLiCalc10616	SiLiCalc11436	SiLiCalc10329	SiLiCalc11337
SiLiExpt6	SiLiCalc10445	SiLiCalc10616	SiLiCalc11436	SiLiCalc10693	SiLiCalc11337
SiLiExpt7	SiLiCalc10445	SiLiCalc10693	SiLiCalc11337	SiLiCalc10616	SiLiCalc10482
SiLiExpt8	SiLiCalc10445	SiLiCalc10693	SiLiCalc10329	SiLiCalc11337	SiLiCalc10482

Table 4: Recognition with 10 Principal Components

Image	Best Match	2	3	4	5
ExptGaAs	CalcGaAs	SiLiCalc10445	SiLiCalc11436	SiLiCalc10693	SiLiCalc11337
ExptInAs	SiLiCalc10429	SiLiCalc10838	SiLiCalc10602	SiLiCalc10836	SiLiCalc10833
SiLiExpt1	SiLiCalc10194	SiLiCalc10136	SiLiCalc10147	SiLiCalc10001	SiLiCalc10003
SiLiExpt2	SiLiCalc10001	SiLiCalc10003	SiLiCalc10136	SiLiCalc10194	SiLiCalc10147
SiLiExpt3	SiLiCalc10258	SiLiCalc10229	SiLiCalc10322	SiLiCalc10245	SiLiCalc11436
SiLiExpt4	SiLiCalc10258	SiLiCalc10229	SiLiCalc11436	SiLiCalc10322	SiLiCalc11337
SiLiExpt5	SiLiCalc10616	SiLiCalc11337	SiLiCalc10693	SiLiCalc11436	SiLiCalc11336
SiLiExpt6	SiLiCalc10616	SiLiCalc10693	SiLiCalc11337	SiLiCalc11436	SiLiCalc11336
SiLiExpt7	SiLiCalc10482	SiLiCalc10616	SiLiCalc10693	SiLiCalc11337	SiLiCalc10651
SiLiExpt8	SiLiCalc10482	SiLiCalc10693	SiLiCalc10616	SiLiCalc10651	SiLiCalc11337

Table 5: Recognition with 20 Principal Components

4.6 Synthetic Experimental Image Recognition

Figure 21: Synthetic Experimental Images Accuracy

Figure 22: Accuracy vs Number of Principal Components

5 Sources

http://en.wikipedia.org/wiki/Atom_vibrations

http://en.wikipedia.org/wiki/Radial_distribution_function

http://en.wikipedia.org/wiki/Weierstrass_transform

http://matplotlib.org/api/mlab_api.html

http://en.wikipedia.org/wiki/Principal_components_analysis