Advanced Numerical Analysis

Vladimir Kazeev

March 18, 2025

1 Linear algebra

1.1 Vectors and matrices

In this section the field \mathbb{F} is \mathbb{R} or \mathbb{C} . m and n always denote natural numbers.

Definition 2.1. Let V be a vector space over \mathbb{F} . A function $\|\cdot\|:V\to\mathbb{R}$ is called a norm on V if for all $v,w\in V$ and $\alpha\in\mathbb{F}$ the following properties hold:

- 1. $||v|| \ge 0$
- $2. ||v|| \neq 0 \quad \forall v \neq 0$
- 3. $\|\alpha v\| = |\alpha|\|v\|$
- 4. $||v + w|| \le ||v|| + ||w||$

Example 2.2. Let $V = \mathbb{F}^n$

- $\|\cdot\|_{\infty}: V \to \mathbb{R}: \|v\|_{\infty} = \max_{i=1}^n |v_i| \quad \forall v \in V$
- $\|\cdot\|_p: V \to \mathbb{R}: \|v\|_p = \sqrt[p]{\sum_{i=1}^n |v_i|^p} \quad \forall v \in V \text{ and } p \in [1, \infty)$

Also $\lim_{p\to\infty} ||v||_p = ||v||_\infty$

Example 2.3. $V = \mathbb{F}^{m \times n}$. Then we define $\|\cdot\|_{\max}, \|\cdot\|_{\mathrm{F}} : \mathbb{F}^{m \times n} \to \mathbb{R}$ as follows:

- $||A||_{\max} = \max_{i,j} |a_{ij}|$ (maximum absolute value norm / Chebyshev norm)
- $||A||_{\mathrm{F}} = \sqrt{\sum_{i,j} |a_{ij}|^2}$ (Frobenius norm)

Proposition 2.4. Let V, U be \mathbb{F} -vector spaces. \mathcal{L} denotes the space of continuous $(w.r.t. \|\cdot\|_V, \|\cdot\|_U)$ linear mappings from V to U. Then $\|\cdot\|: \mathcal{L} \to \mathbb{R}$ given by

$$\|\varphi\| = \sup_{\substack{v \in V \\ \|v\|_V = 1}} \|\varphi(v)\|_U \quad \forall \varphi \in \mathcal{L}$$

is a norm.

Definition 2.5. The norm given in Proposition 2.4 is called the *operator norm* on \mathcal{L} induced by the norms $\|\cdot\|_V$ and $\|\cdot\|_U$.

Definition 2.6. $V = \mathbb{F}^n$, $U = \mathbb{F}^m$. \mathcal{L} is identified with $W = \mathbb{F}^{m \times n}$ using the standard basis.

$$\varphi \in \mathcal{L} \quad \longleftrightarrow \quad A = \operatorname{Mat}(\varphi) \in W$$

$$\varphi(v) = Av$$

Let $\|\cdot\|$ be the operator norm on \mathcal{L} induced by $\|\cdot\|_V$ and $\|\cdot\|_U$. Then $\|\cdot\|\cdot \operatorname{Mat}^{-1}:\mathbb{F}^{m\times n}\to\mathbb{R}$ is called the *matrix operator norm* induced by $\|\cdot\|_V$ and $\|\cdot\|_U$.

Example 2.7. For $p, q \in [1, \infty], W = \mathbb{F}^{m \times n}$

$$\|\cdot\|_{p,q}:\ W\to\mathbb{R}\ \text{given by}\ \|A\|_{p,q}=\max_{\substack{v\in\mathbb{F}^n\\\|v\|_q=1}}\|Av\|_p\quad\forall A\in W$$

is an (matrix) operator norm induced by $\|\cdot\|_p$ and $\|\cdot\|_q$.

Definition 2.8. For $p = q \in [1, \infty]$ we write $\|\cdot\|_{p,q} = \|\cdot\|_p$ and $\|\cdot\|_p$ is called the matrix p-norm on $\mathbb{F}^{m \times n}$.

Proposition 2.9. $\mathbb{F}^{n\times 1} \simeq \mathbb{F}^n$. The matrix p-norm on $\mathbb{F}^{n\times 1}$ coincides with the vector p-norm on \mathbb{F}^n .

Proposition 2.10. For $A \in \mathbb{F}^{m \times n}$ the following holds:

$$||A||_{1} = \max_{j=1,\dots,n} \sum_{i=1}^{m} |a_{ij}| \qquad (column \ sum \ norm)$$

$$||A||_{\infty} = \max_{i=1,\dots,m} \sum_{j=1}^{n} |a_{ij}| \qquad (row \ sum \ norm)$$

$$||A||_{2} = \sqrt{\lambda_{\max}(A^*A)} = \sigma_{\max}(A) \quad (spectral \ norm)$$

$$= \max_{\substack{v \in \mathbb{F}^n \\ ||u||_{2} = ||v||_{2} = 1}} u^*Av$$

where λ_{max} is the largest eigenvalue and σ_{max} is the largest singular value of A.

Definition 2.11. $U = \mathbb{F}^{k \times m}, V = \mathbb{F}^{m \times n}, W = \mathbb{F}^{k \times n}$. Let $\|\cdot\|_U, \|\cdot\|_V, \|\cdot\|_W$ be norms on U, V, W respectively. These norms are called *consistent* (or *submultiplicative*) if

$$||AB||_W < ||A||_U ||B||_V \quad \forall A \in U, B \in V$$

For U = V = W and $\|\cdot\|_U = \|\cdot\|_V = \|\cdot\|_W$ this reduces to

$$||AB||_W \le ||A||_W ||B||_W \quad \forall A, B \in W.$$

Proposition 2.12.

- p-norm on $\mathbb{F}^{n\times n}$ is consistent for $p\in\{1,2,\infty\}$
- Frobenius norm on $\mathbb{F}^{n\times n}$ is consistent
- Chebyshev norm on $\mathbb{F}^{n\times n}$ is not consistent

e.g.
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
: $\|A \cdot A\|_{\max} = \|\begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}\|_{\max} = 2 \nleq 1 = \|A\|_{\max} \|A\|_{\max}$

Proposition 2.13. $U \in \mathbb{F}^{n \times n}$ invertible and $\|\cdot\|$ a norm on $\mathbb{F}^{n \times n}$. Consider $\|\cdot\|_*$, $\|\cdot\|_{**}$, $\|\cdot\|_{**}$: $\mathbb{F}^{n \times n} \to \mathbb{R}$ given by $\|A\|_* = \|UA\|$, $\|A\|_{**} = \|AU\|$, $\|A\|_{***} = \|U^{-1}AU\|$. These 3 functions are norms on $\mathbb{F}^{n \times n}$ and they are consistent if $\|\cdot\|$ is consistent.

1.2 Eigenvalues of matrices

Definition 2.14. $A \in F^{n \times n}, \lambda \in \mathbb{F}$. If $\ker(A - \lambda I) \neq \{0\}$ then λ is called an eigenvalue of A and every non-zero vector from $\ker(A - \lambda I)$ is called an eigenvector of A associated with the eigenvalue λ .

Definition 2.15. $A \in \mathbb{F}^{n \times n}$. $\chi_A : \mathbb{F} \to \mathbb{F}$ given by $\chi_A(\lambda) = \det(A - \lambda I) \ \forall \lambda \in \mathbb{F}$ is called *characteristic polynomial*.

Proposition 2.16. $A \in \mathbb{F}^{n \times n}$. χ_A is an algebraic polynomial of degree n with leading coefficient $(-1)^n$. For any $\lambda \in \mathbb{F}$, λ is an eigenvalue of A if and only if $\chi_A(\lambda) = 0$.

Definition 2.17. $A \in \mathbb{F}^{n \times n}, \lambda \in \mathbb{F}$ eigenvalue of A. The algebraic multiplicity of λ is the multiplicity of λ as a root of χ_A .

Definition 2.18. The geometric multiplicity of λ is the dimension of $\ker(A - \lambda I)$. λ is called defective if its geometric multiplicity is less than its algebraic multiplicity. If the geometric multiplicity of λ is equal to its algebraic multiplicity then λ is called non-defective eigenvalue of A.

Example. $A = I \in \mathbb{F}^{n \times n}$. $\chi_A(\lambda) = \det(I - \lambda I) = (1 - \lambda)^n$. So $\lambda = 1$ is the only eigenvalue of I with algebraic multiplicity n. We have that $\dim(\ker(A - I)) = \dim(\ker(0)) = n$.

If $A \in \mathbb{F}^{n \times n}$ is a Jordan block of size $n \geq 2$, then there is only one eigenvalue, $\lambda = 1$, with algebraic multiplicity n and geometric multiplicity $\dim(\ker(A - I)) = 1 < n$. So $\lambda = 1$ is a defective eigenvalue of A.

1.3 Schur canonical form

Definition 2.19. $A \in \mathbb{C}^{n \times n}$. Assume that $Q \in \mathbb{C}^{n \times n}$ is unitary and that $T = Q^*AQ$ (which is equivalent to $A = QTQ^*$) is upper triangular. Then the factorization $A = QTQ^*$ is called a Schur decomposition of A and T is called a Schur canonical form.

Proposition 2.20. In the context of the previous definition, the diagonal entries of T are the eigenvalues of A repeated according to their algebraic multiplicities.

Theorem 2.21. Let $A \in \mathbb{C}^{n \times n}$, $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A repeated according to their algebraic multiplicities. Then there exists a unitary matrix $Q \in \mathbb{C}^{n \times n}$ such that $T = Q^*AQ$ is upper triangular with diagonal entries $\lambda_1, \ldots, \lambda_n$.

Proof. Let x_1 be a normalized eigenvector of A associated with λ_1 . Consider a matrix $X = \begin{bmatrix} x_1 & X_1 \end{bmatrix} \in \mathbb{C}^{n \times n}$ unitary (with $X_1 \in \mathbb{C}^{n \times (n-1)}$). Then

$$X^*AX = \begin{bmatrix} x_1^* \\ \hline X_1 \end{bmatrix} A \begin{bmatrix} x_1 | X_1 \end{bmatrix} = \begin{bmatrix} x_1^*Ax_1 & x_1^*AX_1 \\ \hline X_1^*Ax_1 & X_1^*AX_1 \end{bmatrix}$$
$$= \begin{bmatrix} X^*Ax_1 & x_1^*AX_1 \\ X_1^*AX_1 & \end{bmatrix} = \begin{bmatrix} \frac{\lambda_1 & x_1^*AX_1 \\ 0 & X_1^*AX_1 \end{bmatrix} = \begin{bmatrix} \frac{\lambda_1 & t_1^*}{0 & A_1} \end{bmatrix}$$

where $t_1 = X_1^* A^* x_1 \in \mathbb{C}^{n-1}$ and $A_1 = X_1^* A X_1 \in \mathbb{C}^{(n-1)\times(n-1)}$. For any $\lambda \in \mathbb{C}$, we have that $\det(A - \lambda I) = \det(X^* A X - \lambda I) = (\lambda_1 - \lambda) \det(A_1 - \lambda I)$. The following are equivalent for all $\lambda \in \mathbb{C}$, $m \in \mathbb{N}$:

(i) λ is a root of χ_A of multiplicity m

(ii)
$$\lambda$$
 is a root of χ_{A_1} of multiplicity
$$\begin{cases} m & \text{if } \lambda \neq \lambda_1 \\ m-1 & \text{if } \lambda = \lambda_1 \end{cases}$$

Then by Proposition 2.16 and Definition 2.17 $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A repeated according to their algebraic multiplicities. Assume that there exists a unitary

matrix $Q_1 \in \mathbb{C}^{(n-1)\times(n-1)}$ such that $T_1 = Q_1^*A_1Q_1$ is upper triangular with diagonal entries $\lambda_2, \ldots, \lambda_n$. Then $Q = X\left[\begin{array}{c|c} 1 & \\ \hline & Q_1 \end{array}\right]$ and $T = \left[\begin{array}{c|c} \lambda_1 & t_1^*Q_1 \\ \hline & T_1 \end{array}\right]$ fullfill the claim for A:

$$Q^*AQ = \begin{bmatrix} 1 & \\ & Q_1^* \end{bmatrix} X^*AX \begin{bmatrix} 1 & \\ & Q_1 \end{bmatrix} = \begin{bmatrix} 1 & \\ & Q_1^* \end{bmatrix} \begin{bmatrix} \lambda_1 & t_1^* \\ & A_1 \end{bmatrix} \begin{bmatrix} 1 & \\ & Q_1 \end{bmatrix} = \begin{bmatrix} \lambda_1 & t_1^*Q_1 \\ & T_1 \end{bmatrix}$$

For n=1: Q=[1], T=A fullfill the claim. By induction the claim holds (for any $n \in \mathbb{N}$).

Remark. For square matrices $A \in \mathbb{C}^{n \times n}$ and $S \in \mathbb{C}^{n \times n}$ invertible, the following holds:

$$\det(S^{-1}AS) = \det(S^{-1}) \det(A) \det(S) = \det(A)$$

$$\chi_{S^{-1}AS}(\lambda) = \det(S^{-1}AS - \lambda I) = \det(S^{-1}(A - \lambda I)S)$$

$$= \det(S^{-1}) \det(A - \lambda I) \det(S) = \det(A - \lambda I) = \chi_A(\lambda)$$

That is, the eigenvalues of A and $S^{-1}AS$ coincide.

Theorem (Spectral theorem). Let $n \in \mathbb{N}$. $A \in \mathbb{F}^{n \times n}$ is diagonalizable by ...

 $\mathbb{F} = \mathbb{C}$: ... an unitary similarity transformation $\Leftrightarrow A$ is normal

 $\mathbb{F} = \mathbb{R}$: ... an orthogonal similarity transformation $\Leftrightarrow A$ is symmetric

Remark. There can be non-hermitian normal matrices, e.g. $A = \begin{pmatrix} i & 1 \\ 0 & i \end{pmatrix}$

Remark 3.1. For $A \in \mathbb{C}^{n \times n}$. By theorem 2.21 A has a Schur form T. It is easy to check that A is normal if and only if T is normal.

$$(A = QTQ^*, \text{ so } A^*A - AA^* = Q(T^*T - TT^*)Q^* = 0 \Leftrightarrow T^*T = TT^*)$$

It is left as an exercise to show that

T is normal $\Leftrightarrow T$ is diagonal.

So the Schur form is a generalization of diagonalization by unitary similarity transformations for normal matrices to abitrary matrices.

1.4 Spectral radius of a matrix: The behavior of matrix powers

Definition 3.2. For $A \in \mathbb{F}^{n \times n}$ the set of eigenvalues of A is called the *spectrum* of A. We will denote the spectrum of A by $\lambda(A)$. (i.e., $\lambda(A)$ is the zero set of χ_A).

Definition 3.3. For $A \in \mathbb{F}^{n \times n}$, $\rho(A) = \max_{\lambda \in \lambda(A)} |\lambda|$ is called the *spectral radius* of A. Any $\lambda \in \lambda(A)$ with $|\lambda| = \rho(A)$ is called a *dominant eigenvalue* of A.

Lemma 3.4. Let $\|\cdot\|$ be a consistent norm on $\mathbb{F}^{n\times n}$. Then $\rho(A) \leq \|A\|$ for all $A \in \mathbb{F}^{n\times n}$.

Proof. (Auxiliary result: Consider $y \in \mathbb{C}^n$ non-zero. Let $\|\cdot\|_* : \mathbb{F}^n \to \mathbb{R}$ be given by $\|x\|_* = \|xy^*\| \quad \forall x \in \mathbb{F}^n$. Then $\|Ax\|_* = \|(Ax)y^*\| = \|A(xy^*)\| \le \|A\|\|xy^*\| = \|A\|\|x\|_*$. So the norms $\|\cdot\|_*, \|\cdot\|_*$ are consistent norms.)

Let $\|\cdot\|_*$ be a norm on $\mathbb{F}^{n\times n}$ with which $\|\cdot\|$ is consistent (i.e. $\|\cdot\|_*, \|\cdot\|_* \|\cdot\|_*$ are consistent). Let $\lambda \in \mathbb{F}$ be an eigenvalue of A and $x \in \mathbb{F}^n$ an associated eigenvector of unit length w.r.t. $\|\cdot\|_*$. Then $\|A\| = \|A\| \|x\|_* \ge \|Ax\|_* = \|\lambda x\|_* = |\lambda| \|x\|_* = |\lambda|$. \square

Lemma 3.5. Let $A \in \mathbb{F}^{n \times n}$ and $\varepsilon > 0$. Then there exists a consistent norm $\|\cdot\|_{A,\varepsilon}$ on $\mathbb{F}^{n \times n}$ such that $\|A\|_{A,\varepsilon} \leq \rho(A) + \varepsilon$.

If the dominant eigenvalues of A are non-defective, then there exists a consistent norm $\|\cdot\|_A$ on $\mathbb{F}^{n\times n}$ such that $\|A\|_A = \rho(A)$.

Proof. By theorem 2.21, A has a Schur decomposition $A = QTQ^*$ with $Q \in \mathbb{C}^{n \times n}$ unitary and $T \in \mathbb{C}^{n \times n}$ upper triangular. Let $\Lambda = \operatorname{diag}(T)$ and $U = T - \Lambda = \operatorname{offdiag}(T)$ (so $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ in the context of theorem 2.21, U is strictly upper triangular).

For $\eta > 0$ consider $D_{\eta} = \operatorname{diag}(\eta^0, \eta^1, \dots, \eta^{n-1}) \in \mathbb{C}^{n \times n}$ then, for all $i, j \in \{1, \dots, n\}$, we have

$$(D_{\eta}^{-1}UD_{\eta})_{ij} = \eta^{1-i}U_{ij}\eta^{j-1} = \begin{cases} 0 & \text{if } i \ge j\\ \eta^{j-i}U_{ij} & \text{if } i < j \end{cases}$$

So there exists $\eta_* > 0$ such that $||D_{\eta_*}^{-1}UD_{\eta_*}||_{\infty} < \varepsilon$. Let $D = D_{\eta_*}$. Then

$$||D^{-1}Q^*AQD||_{\infty} = ||D^{-1}\Lambda D + D^{-1}UD||_{\infty} = ||\Lambda + D^{-1}UD||_{\infty}$$

$$\leq ||\Lambda||_{\infty} + ||D^{-1}UD||_{\infty} < \rho(A) + \varepsilon$$

Let us define $\|\cdot\|_{A,\varepsilon}: \mathbb{C}^{n\times n} \to \mathbb{R}$ by $\|B\|_{A,\varepsilon} = \|D^{-1}Q^*BQD\|_{\infty}$. By proposition 2.13 $\|\cdot\|_{A,\varepsilon}$ is a consistent norm on $\mathbb{C}^{n\times n}$. On the other hand, $\|\cdot\|_A < \rho(A) + \varepsilon$.

For the second claim, let us assume that $\lambda_1, \ldots, \lambda_k$ with $k \in \{1, \ldots, n\}$ are the dominant eigenvalues of A (i.e. $|\lambda_1| = \ldots = |\lambda_k| = \rho(A) > |\lambda_{k+1}|, \ldots, |\lambda_n|$) and that they are non-defective.

If $\rho(A) = 0$, then $\lambda_1 = \ldots = \lambda_n = 0$, so 0 is a non-defective eigenvalue of A with algebraic multiplicity = geometric multiplicity = n, so A = 0. Then any consistent norm fullfills the claim.

If k = n, all eigenvalues are non-defective. Then A is diagonalizable, i.e. there is $S \in \mathbb{C}^{n \times n}$ invertible such that $A = S\Lambda S^{-1}$ with $\Lambda = S^{-1}AS$ diagonal. Let $\|\cdot\|_A : \mathbb{C}^{n \times n} \to \mathbb{R}$ be given by $\|B\|_A = \|S^{-1}BS\|_{\infty}$ for all $B \in \mathbb{C}^{n \times n}$. As discussed earlier, $\|\cdot\|_A$ is a consistent norm and $\|A\|_A = \|\Lambda\|_{\infty} = \rho(A)$.

For the remainder of the proof, assume that k < n. Let $\Lambda_1 = \operatorname{diag}(\lambda_1, \dots, \lambda_k) \in \mathbb{C}^{k \times k}$ and $\Lambda_2 = \operatorname{diag}(\lambda_{k+1}, \dots, \lambda_n) \in \mathbb{C}^{(n-k) \times (n-k)}$. Then $\Lambda = \left[\begin{array}{c|c} \Lambda_1 & \\ \hline & \Lambda_2 \end{array} \right] \in \mathbb{C}^{n \times n}$. We consider a Schur decomposition $A = QTQ^*$ with Q unitary and T upper triangular with $\operatorname{diag}(T) = \Lambda$. Partition T as $T = \left[\begin{array}{c|c} T_1 & T_{12} \\ \hline & T_2 \end{array} \right]$ with $T_{11} \in \mathbb{C}^{k \times k}$. We have:

- (i) Every dominant eigenvalue of A is not an eigenvalue of T_2 but is an eigenvalue of T_1 .
- (ii) For all $\lambda \in \{\lambda_1, \dots, \lambda_k\}$, $T_2 \lambda I$ is invertible, so we have $\dim(\ker(A \lambda I)) = \dim(\ker(T \lambda I)) = \dim(\ker(T_1 \lambda I))$.

So T_1 is diagonalizable: $\exists S_1 \in \mathbb{C}^{k \times k}$ invertible such that $S_1^{-1}T_1S_1 = \Lambda_1$. Let us consider the matrix $S = \begin{bmatrix} S_1 & \\ & I_2 \end{bmatrix}$ with $I_2 \in \mathbb{C}^{(n-k) \times (n-k)}$ the identity matrix. We have

$$S^{-1}Q^*AQS = S^{-1}TS = \begin{bmatrix} \Lambda_1 & \\ & \Lambda_2 \end{bmatrix} + \begin{bmatrix} 0 & T_{12} \\ \hline & 0 & U_2 \end{bmatrix}$$

where $U_2 = T_2 - \Lambda_2 = \text{offdiag}(T_2)$ is strictly upper triangular.

Consider $\eta > 0, D = \operatorname{diag}(\eta^0, \dots, \eta^{n-1}) = \begin{bmatrix} D_1 & D_2 \\ D_2 & D_2 \end{bmatrix}$ with $D_1 \in \mathbb{C}^{k \times k}$.

$$D^{-1}S^{-1}Q^*AQSD = \begin{bmatrix} \Lambda_1 & \\ & \Lambda_2 \end{bmatrix} + \begin{bmatrix} 0 & Z_{12} \\ 0 & Z_2 \end{bmatrix}$$

where $Z_{12} = D_1^{-1}T_{12}D_2$ and $Z_2 = D_2^{-1}U_2D_2$. We will consider $\|\cdot\|_A : \mathbb{C}^{n\times n} \to \mathbb{R}$ given by $\|B\|_A = \|D^{-1}S^{-1}Q^*BQSD\|_1$ for all $B \in \mathbb{C}^{n\times n}$. Again, $\|\cdot\|_A$ is a consistent norm.

Block Z_2 : U_2 is strictly upper triangular, so Z_2 is strictly upper triangular. For all $i, j \in \{1, ..., n-k\}$ such that i < j we have

$$(Z_2)_{ij} = \eta^{j-i} (U_2)_{ij} \xrightarrow{\eta \to 0} 0$$

Block Z_{12} : For all $i \in \{1, ..., k\}$ and $j \in \{1, ..., n-k\}$ we have

$$(Z_{12})_{ij} = \frac{\eta^{k+j}}{\eta^i} (T_{12})_{ij} = \eta^{k-i} \eta^j (T_{12})_{ij} \xrightarrow{\eta \to 0} 0$$

So $\left\| \begin{bmatrix} Z_{12} \\ Z_2 \end{bmatrix} \right\|_1 \xrightarrow{\eta \to 0} 0$. So there exists $\eta_* > 0$ such that $\left\| \begin{bmatrix} Z_{12} \\ Z_2 \end{bmatrix} \right\|_1 < \frac{1}{2} (\|\Lambda_1\|_1 - \|\Lambda_2\|_1)$. For D defined with $\eta = \eta_*$ we have

$$||A||_A = ||D^{-1}S^{-1}Q^*AQSD||_1 = \left\| \left[\frac{\Lambda_1}{\Lambda_2} \right] + \left[\frac{0 |Z_{12}|}{0 |Z_2|} \right] \right\|_1$$
$$= \max \left\{ ||\Lambda_1||_1, \left\| \left[\frac{Z_{12}}{\Lambda_2 + Z_2} \right] \right\|_1 \right\} = ||\Lambda_1||_1 = \rho(A)$$

where we used

$$\left\| \left[\frac{Z_{12}}{\Lambda_2 + Z_2} \right] \right\|_1 \le \|\Lambda_2\|_1 + \left\| \left[\frac{Z_{12}}{Z_2} \right] \right\|_1 < \|\Lambda_2\|_1 + \frac{1}{2} (\|\Lambda_1\|_1 - \|\Lambda_2\|_1)$$

$$= \frac{1}{2} (\|\Lambda_1\|_1 + \|\Lambda_2\|_1) < \|\Lambda_1\|_1 = \|\Lambda\|_1 = \rho(A)$$

Lemma 3.6. Let $A \in \mathbb{C}^{n \times n}$ and $\|\cdot\|$ be a norm on $\mathbb{C}^{n \times n}$, $\varepsilon > 0$, then there exists c > 0 (depending on n, $\|\cdot\|$, but not on A or ε) and C > 0 (depending on n, $\|\cdot\|$, A and ε) such that

$$c\rho^k \le ||A^k|| \le C(\rho + \varepsilon)^k \quad \forall k \in \mathbb{N} \quad where \ \rho = \rho(A).$$

If the dominant eigenvalues of A are non-defective, the same holds with $\varepsilon = 0$.

Proof. (i) For the lowerbound, consider a dominant eigenvalue $\lambda \in \mathbb{C}$ of A and a corresponding eigenvector, s.t. $||x||_2 = 1$. Then $||A^k x||_2 = ||\lambda^k x||_2 = |\lambda^k||x||_2 = \rho^k$. By the equivalence of norms, there exists c > 0 such that $c||B||_2 \le ||B||$ for all $B \in \mathbb{C}^{n \times n}$. So $||A^k|| \ge c||A^k x||_2 = c\rho^k$ for all $k \in \mathbb{N}$.

- (ii) For the upperbound: Let $\|\cdot\|_{A,\varepsilon}$ be a consistent norm on $\mathbb{C}^{n\times n}$ such that $\|A\|_{A,\varepsilon} \leq \rho(A) + \varepsilon$ (Lemma 3.5). Consistency yields $\|A^k\|_{A,\varepsilon} \leq \|A\|_{A,\varepsilon}^k$, so $\|A^k\|_{A,\varepsilon} \leq (\rho + \varepsilon)^k$ for all $k \in \mathbb{N}$.
 - By the equivalence of norms, there exists C > 0 (depending on n, $\|\cdot\|$, A and ε) such that $\|B\| \le C\|B\|_{A,\varepsilon}$ for all $B \in \mathbb{C}^{n \times n}$. So $\|A^k\| \le C\|A^k\|_{A,\varepsilon} \le C(\rho + \varepsilon)^k$ for all $k \in \mathbb{N}$.
- (iii) If the dominant eigenvalues of A are non-defective, the same holds with $\varepsilon = 0$.

Remark. Taking k-th root and limit $k \to \infty$ in the previous lemma yields

$$\rho(A) \le \lim_{k \to \infty} ||A^k||^{1/k} \le \rho(A) + \varepsilon$$

if the middle limit exists.

Definition 3.7. $A \in \mathbb{C}^{n \times n}$ is called

• row-wise (non-)strictly diagonally dominant if

$$|a_{ii}| > (\geq) \sum_{j \in \{1,\dots,n\} \setminus \{i\}} |a_{ij}| \quad \forall i \in \{1,\dots,n\}$$

• column-wise (non-)strictly diagonally dominant if

$$|a_{jj}| > (\ge) \sum_{i \in \{1,\dots,n\} \setminus \{j\}} |a_{ij}| \quad \forall j \in \{1,\dots,n\}$$

Theorem 3.8 (Levy-Desplanques). For any $A \in \mathbb{C}^{n \times n}$, if A is row-wise or columnwise strictly diagonally dominant, then it is invertible.

Definition 3.9 (Gerschgorin dishes). Let $A \in \mathbb{C}^{n \times n}$. For each $k \in \{1, \dots, n\}$

$$\mathcal{R}_k = \left\{ z \in \mathbb{C} : |z - a_{kk}| \le \sum_{j \in \{1, \dots, n\} \setminus \{k\}} |a_{kj}| \subset \mathbb{C} \right\}$$

$$\mathcal{C}_k = \left\{ z \in \mathbb{C} : |z - a_{kk}| \le \sum_{i \in \{1, \dots, n\} \setminus \{k\}} |a_{ik}| \subset \mathbb{C} \right\}$$

are called the k-th row-wise and column-wise Gerschgorin dishes of A.

Theorem 3.10 (1st Gerchgorin theorem). Let $A \in \mathbb{C}^{n \times n}$. Then

$$\lambda(A) \subseteq \bigcup_{k=1}^n \mathcal{R}_k, \ \lambda(A) \subseteq \bigcup_{k=1}^n \mathcal{C}_k.$$