Module G12 : Probabilités de base.

Examen 2^e session : durée 2 heures.

Documents autorisés : notes personnelles de cours.

Lundi 13 juin 2005.

Exercice 1. Soit α un réel, $0 < \alpha < 2$, et f la densité de probabilité définie par

$$\forall x \in \mathbb{R}, \quad f(x) = \frac{c}{1 + |x|^{1+\alpha}}, \quad \text{où } c = \left(\int_{\mathbb{R}} \frac{dx}{1 + |x|^{1+\alpha}}\right)^{-1}.$$

On désigne par $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes et identiquement distribuées de densité f et on pose, pour $n\geq 1$, $S_n=X_1+\ldots+X_n$.

- 1. (a) Pour quelles valeurs de α la suite $\left(\frac{S_n}{n}\right)_{n\geq 1}$ converge-t-elle presque sûrement ?
 - (b) Peut-on appliquer le T.C.L. à la suite $(X_n)_{n\geq 1}$?
- 2. Soit φ la fonction caractéristique de X_1 .
 - (a) Vérifier que

$$\forall t \in \mathbb{R}, \qquad \varphi(t) - 1 = c \int_{\mathbb{R}} \frac{\cos(tx) - 1}{1 + |x|^{1+\alpha}} dx,$$

puis établir que, pour $t \neq 0$,

$$\frac{\varphi(t)-1}{|t|^{\alpha}}=c\int_{\mathbb{R}}\frac{\cos u-1}{|t|^{1+\alpha}+|u|^{1+\alpha}}\,du.$$

- (b) Justifier l'intégrabilité sur \mathbb{R} de la fonction γ , $\gamma(u) = \frac{\cos u 1}{|u|^{1+\alpha}}$, et prouver l'existence d'une constante $c_1 > 0$ telle que $\lim_{t \to 0} |t|^{-\alpha} \left(\varphi(t) 1 \right) = -c_1$.
- 3. Soit φ_n la fonction caractéristique de la variable aléatoire $\frac{S_n}{n^{1/\alpha}}$.
 - (a) Quelle relation existe-t-il entre φ_n et φ ?
- (b) On note log la fonction logarithme néperien sur \mathbb{R}_+^* . Pour t fixé et n assez grand, justifier l'écriture

$$\varphi_n(t) = \exp\left(n\log\varphi\left(\frac{t}{n^{1/\alpha}}\right)\right).$$

(c) En utilisant l'équivalence de $\log x$ et x-1 au voisinage de x=1, montrer que la suite $\left(\frac{S_n}{n^{1/\alpha}}\right)_{n\geq 1}$ converge en loi vers une variable aléatoire L dont on explicitera la fonction caractéristique ψ .

Exercice 2. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et de même loi de Bernoulli de paramètre $p\in]0,1[$. On pose $S_0=T_0=0$ et, pour tout $n\geq 1$, $S_n=X_1+\ldots+X_n$, $T_n=(1-X_1)+\ldots+(1-X_n)=n-S_n$.

- 1. Préciser la loi des variables aléatoires S_n et T_n . Sont-elles indépendantes ?
- 2. Soit N une variable aléatoire indépendante des variables aléatoires $(X_n)_{n\geq 1}$ suivant la loi de Poisson de paramètre $\lambda>0$. On pose

$$\forall \omega \in \Omega, \qquad U(\omega) = S_{N(\omega)}(\omega), \quad V(\omega) = N(\omega) - U(\omega).$$

(a) Justifier l'égalité, pour tout $k \in \mathbb{N}$,

$$\mathbb{P}(\mathbf{U}=k) = \sum_{n>0} \mathbb{P}(\mathbf{S}_n = k, \mathbf{N} = n),$$

et montrer que U suit la loi de Poisson de paramètre λp .

(b) Montrer que, pour $(k, l) \in \mathbb{N}^2$, $\mathbb{P}(U = k, V = l) = \mathbb{P}(N = k + l) \mathbb{P}(S_{k+l} = k)$. En déduire que les variables aléatoires U et V sont indépendantes et déterminer la loi de V.

Rappel : la fonction caractéristique de la loi de Poisson de paramètre $\lambda > 0$ est

$$\forall t \in \mathbb{R}, \qquad \varphi(t) = \exp \left\{ \lambda \left(e^{it} - 1 \right) \right\}.$$

- 3. Soit $(Y_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et identiquement distribuées suivant la loi de Poisson de paramètre 1 ; les variables aléatoires $(X_n)_{n\geq 1}$ et $(Y_n)_{n\geq 1}$ sont indépendantes. On note, pour tout $n\geq 1$, $N_n=Y_1+\ldots+Y_n$, $U_n=S_{N_n}$, $V_n=N_n-U_n$.
 - (a) Déterminer la loi de N_n et préciser celles de U_n et V_n .
 - (b) Montrer que la suite $(N_n/n)_{n\geq 1}$ converge presque sûrement vers 1.
- (c) En déduire que les suites $(U_n/n)_{n\geq 1}$ et $(V_n/n)_{n\geq 1}$ convergent presque sûrement et précisez leurs limites.
 - (d) On pose, pour $n \ge 1$,

$$P_n = \frac{U_n - np}{\sqrt{np}}, \quad Q_n = \frac{V_n - n(1-p)}{\sqrt{n(1-p)}}.$$

Montrer que la suite $(P_n)_{n\geq 1}$ converge en loi vers une variable aléatoire P dont on précisera la loi. Étudier la convergence en loi de $((P_n, Q_n))_{n\geq 1}$.

(e) En déduire la convergence en loi de $(P_nQ_n)_{n\geq 1}$ vers une variable aléatoire réelle dont on déterminera la fonction caractéristique.