# Final Database Project

Kai Wong

CMPT308N112

Kai Wong Schwartz CMPT308N112 5 Dec 2016

# Wong 1

# **Table of Contents**

| Da  | atabase Model Description    | 3  |
|-----|------------------------------|----|
| E/F | R Diagram (Chen)             | 5  |
| Та  | ibles                        |    |
|     | Building Table               | 6  |
|     | Certification Table          | 7  |
|     | Department Table             | 8  |
|     | Emp_Award Table              | 9  |
|     | Emp_Cert Table               | 10 |
|     | Emp_Conducts Table           | 11 |
|     | Emp_Constructs_Payload Table | 12 |
|     | Emp_Constructs_Rocket Table  | 13 |
|     | Emp_Operates Table           | 14 |
|     | Employee Table               | 15 |
|     | Equipment Table              | 16 |
|     | Informs Table                | 17 |
|     | Job Table                    | 18 |
|     | Lab Table                    | 19 |
|     | Lab_Contains Table           | 20 |
|     | Launch Table                 | 21 |
|     | Manufacturer Table           | 22 |
|     | Medal Table                  | 23 |
|     | Mission Table                | 24 |
|     | Part Table                   | 25 |
|     | Payload Table                | 26 |
|     | Payload_Composed_Of Table    | 27 |
|     | Research Table               | 28 |

| _       | -                        | Wong 2 |  |
|---------|--------------------------|--------|--|
|         | Rocket Table             | 29     |  |
|         | Rocket_Composed_Of Table | 30     |  |
|         | Supplies_Equip           | 31     |  |
|         | Supplies_Parts Table     | 32     |  |
| Queries |                          |        |  |
|         | Query 1: All/every       | 33     |  |
|         | Query 2: Only            | 34     |  |
|         | Query 3: None            | 35     |  |
|         | Query 4: Left Join       | 36     |  |
|         | Query 5: Right Join      | 37     |  |
|         | Query 6: Full Join       | 38     |  |
|         | Query 7: 6 tables        | 39     |  |
|         | Query 8                  | 40     |  |
|         | Query 9                  | 41     |  |
|         | Query 10                 | 42     |  |

Kai Wong Wong 3 Schwartz

CMPT308N112 5 Dec 2016

#### **Database Model Description**

ASAN, a small space company, needs a system to effectively manage its research projects, construction projects, missions, launches, parts, equipment, funding, and staff. By using this system, ASAN will see greater efficiency in the work that the agency carries out. The system must be designed to satisfy the following requirements:

- 1. ASAN has employees. Each employee has a unique employee number, a first name, a last name, a job, a department they work for, the date they started working for ASAN, and the date they finish/will finish working for ASAN. An employee can be awarded medals, can be certified with different certifications, can work on rocket and payload constructions, can operate missions, and can conduct research.
- ASAN has multiple departments. Each department has a unique department number, a name, and an employee who chairs the department. An employee can only chair one department.
- ASAN gives medals to its employees. Each medal has a unique medal number, a medal year, and a medal name. Multiple employees can receive the same award.
- 4. ASAN has jobs. Each job has a unique job number, a job title, and an hourly salary. Multiple employees can hold the same job.
- 5. ASAN's employees are certified in different areas. Each certification has a unique certification number, and a name. Multiple employees can hold the same certification, and can hold multiple certifications.
- ASAN's employees can construct rockets, and they each construct rockets for a number of hours. Each rocket has a unique rocket number, an expense to build the rocket, the lab it is being built in, a name, whether it is relaunchable or not, and what fuel type it uses. An employee can be working on multiple rockets at the same time, and a rocket has multiple employees constructing it. Since a rocket can be relaunchable, a rocket can be launched multiple times carrying different payloads.
- 7. ASAN's employees can construct payloads, and they each construct payloads for a number of hours. Each payload has a unique payload number, an expense to build the payload, the lab it is being built in, and a name. An employee can be constructing multiple payloads at the same time, and a payload has multiple employees constructing it. A payload can only be launched once.
- 8. ASAN's employees can perform research, and they each perform research for a number of hours. Each research project performed has a research number, a name, a research expense, and the lab it is being performed in. An employee can be performing multiple research projects at the same time, and a research

Wong 4

- project can have multiple employees conducting research. Research projects also supply missions with information to work off of.
- 9. ASAN has buildings located all across the country in different states. Each building has a unique number, a name, and the location by state it is in. Each building has one or more labs. A lab has a unique number, a name, and the building number it is located in. Each lab contains equipment, and labs can be used to constructs rockets, payloads, or can be used to conduct research.
- 10. ASAN has equipment that is stored in labs. Each piece of equipment has a unique number and a name, and has a quantity. The same type of equipment can be stored in multiple labs.
- 11. ASAN has manufacturers that supply them their equipment and parts. Each manufacturer has a unique number, a name, and a location by state that they are in. ASAN is supplied parts and equipment by price and quantity.
- 12. ASAN has parts they use to construct their payloads and rockets. Each part has a unique number and a name. A part can be supplied by multiple manufacturers, and a part can be used in multiple payloads and rockets.
- 13. ASAN has launches for their rockets and payloads. Each launch has a unique number, the mission number it is associated with, the number of the payload it is carrying, the expense for the launch, the rocket number, the building where the launch is located at, the destination of the launch, and the date of the launch. Each launch can only have one rocket and one payload.
- 14. ASAN has missions. Each mission has a unique number, a name, a start date and an end date. A mission can have multiple launches, can be supported by multiple research projects, and are operated by employees. Employees operate missions for a certain number of hours.

5 Dec 2016

## E/R Diagram (Chen)



Follow this link (<a href="http://imgur.com/a/656hy">http://imgur.com/a/656hy</a>) to see a bigger version, or see iLearn submission.

Schwartz CMPT308N112 5 Dec 2016

#### **Building Table**

CREATE TABLE Building(
BUILDING\_ID INT PRIMARY KEY,
BUILDING\_NAME VARCHAR(255) NOT NULL,
BUILDING\_LOC VARCHAR(255) NOT NULL);

This table creates the Building entity, with BUILDING\_ID, BUILDING\_NAME, and BUILDING\_LOC as its attributes. BUILDING\_ID is the primary key and is an integer, BUILDING\_NAME is a string of the name of the building, and BUILDING\_LOC is a string of the location of the building by state.

This table is in 1NF, because there are no repeating groups, and a primary key is defined such that each record is uniquely identifiable.

This table is in 2NF, because it is in 1NF, and there are no partial dependencies (this is given because the primary key is not composite).

This table is in 3NF, because it is in 2NF, and there are no transitive dependencies (BUILDING\_NAME and BUILDING\_LOC are functionally dependent on BUILDING\_ID).

Schwartz
CMPT308N112
5 Dec 2016

#### **Certification Table**

CREATE TABLE Certification(
CERT\_ID INT PRIMARY KEY,
CERT\_NAME VARCHAR(255) NOT NULL);

This table creates the Certification entity. It has CERT\_ID and CERT\_NAME as its attributes. CERT\_ID is the primary key and is an integer, and CERT\_NAME is the string for the name of the certification.

This table is in 1NF, because there are no repeating groups, and a primary key is defined such that each record is uniquely identifiable.

This table is in 2NF, because it is in 1NF, and there are no partial dependencies (this is given because the primary key is not composite).

This table is in 3NF, because it is in 2NF, and there are no transitive dependencies (CERT\_NAME is functionally dependent on CERT\_ID).

Schwartz CMPT308N112 5 Dec 2016

#### **Department Table**

CREATE TABLE Department(

DEPART ID INT PRIMARY KEY,

DEPART\_NAME VARCHAR(255) NOT NULL,

DEPART\_CHAIR INT NOT NULL,

FOREIGN KEY (DEPART\_CHAIR) REFERENCES EMPLOYEE (EMP\_ID));

This creates the Department entity. It has DEPART\_ID, DEPART\_NAME, and DEPART\_CHAIR as its attributes. DEPART\_ID is the primary key and is an integer, DEPART\_NAME is a string of the department name, and DEPART\_CHAIR is an integer of the employee who chairs the department. DEPART\_CHAIR is a foreign key and references an employee number in the EMPLOYEE table.

This table is in 1NF, because there are no repeating groups, and a primary key is defined such that each record is uniquely identifiable.

This table is in 2NF, because it is in 1NF, and there are no partial dependencies (this is given because the primary key is not composite).

This table is in 3NF, because it is in 2NF, and there are no transitive dependencies (DEPART\_NAME and DEPART\_CHAIR are functionally dependent on DEPART\_ID).

#### **Emp\_Award Table**

CREATE TABLE Emp\_Award(

MEDAL\_ID INT NOT NULL,

EMP\_ID INT NOT NULL,

PRIMARY KEY (MEDAL\_ID, EMP\_ID),

FOREIGN KEY (MEDAL\_ID) REFERENCES MEDAL (MEDAL\_ID),

FOREIGN KEY (EMP\_ID) REFERENCES EMPLOYEE (EMP\_ID));

This creates the Emp\_Award entity. It has MEDAL\_ID and EMP\_ID as its attributes. This table was created out of the many-to-many relationship between EMPLOYEE and MEDAL. The primary key is MEDAL\_ID and EMP\_ID, which are both integers, and they represent the medal and the employee respectively. MEDAL\_ID is also a foreign key and references the medal number in the MEDAL table, and EMP\_ID is also a foreign key and references the employee number in the EMPLOYEE table.

This table is in 1NF, because there are no repeating groups, and a primary key is defined such that each record is uniquely identifiable.

This table is in 2NF, because it is in 1NF, and there are no partial dependencies (there are no non-prime attributes to functionally depend on part of the composite key).

This table is in 3NF, because it is in 2NF, and there are no transitive dependencies (there are no non-prime attributes to be functionally dependent on each other).

#### **Emp Cert Table**

This creates the Emp\_Cert entity. This table, created out of the many-to-many relationship between EMPLOYEE and CERTIFICATION, has CERT\_ID and EMP\_ID as its attributes. CERT\_ID and EMP\_ID make up the primary key, are both integers, and represent the certification and the employee respectively, CERT\_ID is a foreign key and references the certification number in CERTIFICATION, and EMP\_ID is a foreign key and references the employee number in EMPLOYEE.

This table is in 1NF, because there are no repeating groups, and a primary key is defined such that each record is uniquely identifiable.

This table is in 2NF, because it is in 1NF, and there are no partial dependencies (there are no non-prime attributes to functionally depend on part of the composite key).

This table is in 3NF, because it is in 2NF, and there are no transitive dependencies (there are no non-prime attributes to functionally depend on each other).

#### **Emp\_Conducts Table**

This creates the Emp\_Conducts entity. This table was created out of the many-to-many relationship between RESEARCH and EMPLOYEE, and has EMP\_ID, RESEARCH\_ID, and CONDUCT\_HRS as its attributes. EMP\_ID and RESEARCH\_ID make up the primary key, are integers, and represent the employee and the research project respectively. EMP\_ID is a foreign key and references the employee number in EMPLOYEE, and RESEARCH\_ID is a foreign key and references the research number in RESEARCH. CONDUCT\_HRS is the integer number of hours an employee has conducted research.

This table is in 1NF, because there are no repeating groups, and a primary key is defined such that each record is uniquely identifiable.

This table is in 2NF, because it is in 1NF, and there are no partial dependencies (the non-prime attribute CONDUCT\_HRS functionally depends on the entire composite key).

#### **Emp\_Constructs\_Payload Table**

This creates the Emp\_Constructs\_Payload entity. This table was created from the many-to-many relationship between EMPLOYEE and PAYLOAD, and has EMP\_ID, PAYLOAD\_ID, and PAYLOAD\_HRS as its attributes. EMP\_ID and PAYLOAD\_ID make up its primary key, are integers, and represent the employee and the payload respectively, while EMP\_ID is a foreign key that references the employee number in EMPLOYEE, and PAYLOAD\_ID is a foreign key that references the payload number in PAYLOAD. PAYLOAD\_HRS is the integer number of hours an employee has constructed a payload.

This table is in 1NF, because there are no repeating groups, and a primary key is defined such that each record is uniquely identifiable.

This table is in 2NF, because it is in 1NF, and there are no partial dependencies (the non-prime attribute PAYLOAD\_HRS functionally depends on the entire composite key).

#### **Emp\_Constructs\_Rocket Table**

This creates the Emp\_Constructs\_Rocket entity. This table was created out of the many-to-many relationship between EMPLOYEE and ROCKET, and EMP\_ID, ROCKET\_ID, and ROCKET\_HRS make up its attributes. EMP\_ID and PAYLOAD\_ID make up its primary key, are integers, and represent the employee and the payload respectively. EMP\_ID is a foreign key that references the employee number in EMPLOYEE, and ROCKET\_ID is a foreign key that references the rocket number in ROCKET. ROCKET\_HRS is the integer number of hours that an employee has constructed a rocket.

This table is in 1NF, because there are no repeating groups, and a primary key is defined such that each record is uniquely identifiable.

This table is in 2NF, because it is in 1NF, and there are no partial dependencies (the non-prime attribute ROCKET\_HRS functionally depends on the entire composite key).

#### **Emp\_Operates Table**

This creates the Emp\_Operates entity. This table was created from the many-to-many relationship between MISSION and EMPLOYEE. Its attributes include EMP\_ID, MISSION\_ID, and OPERATE\_HRS. The primary key is made up of EMP\_ID and MISSION\_ID, are integers, and represent the employee and the mission respectively. EMP\_ID is a foreign key to the employee number in EMPLOYEE, and MISSION\_ID is a foreign key to the mission number in MISSION. OPERATE\_HRS is the integer number of hours that an employee has operated a mission.

This table is in 1NF, because there are no repeating groups, and a primary key is defined such that each record is uniquely identifiable.

This table is in 2NF, because it is in 1NF, and there are no partial dependencies (the non-prime attribute OPERATE\_HRS functionally depends on the entire composite key).

Schwartz

CMPT308N112

5 Dec 2016

#### **Employee Table**

CREATE TABLE Employee(

EMP\_ID INT PRIMARY KEY,

EMP\_FNAME VARCHAR(255) NOT NULL,

EMP\_LNAME VARCHAR(255) NOT NULL,

JOB ID INT NOT NULL,

DEPART ID INT NOT NULL,

EMP\_START\_DATE DATE NOT NULL,

EMP\_END\_DATE DATE NOT NULL,

FOREIGN KEY (JOB\_ID) REFERENCES JOB (JOB\_ID),

FOREIGN KEY (DEPART\_ID) REFERENCES DEPARTMENT (DEPART\_ID));

This creates the Employee entity. Its attributes are EMP\_ID (an integer), EMP\_FNAME (a string), EMP\_LNAME (a string), JOB\_ID (an integer), DEPART\_ID (an integer), EMP\_START\_DATE (a date), and EMP\_END\_DATE (a date). EMP\_ID is the primary key for this entity. JOB\_ID is a foreign key that references the job number in JOB, and DEPART\_ID is a foreign key that references the department number in DEPARTMENT. EMP\_FNAME and EMP\_LNAME is the employee's full name, JOB\_ID is the job that the employee has, DEPART\_ID is the department the employee works for, and EMP\_START\_DATE and EMP\_END\_DATE are the start and end dates for the employee.

This table is in 1NF, because there are no repeating groups, and a primary key is defined such that each record is uniquely identifiable.

This table is in 2NF, because it is in 1NF, and there are no partial dependencies (this is given because the primary key is not composite).

This table is in 3NF, because it is in 2NF, and there are no transitive dependencies (EMP\_FNAME, EMP\_LNAME, JOB\_ID, DEPART\_ID, EMP\_START\_DATE, and EMP\_END\_DATE all functionally depend on EMP\_ID).

Kai Wong Wong 16

Schwartz CMPT308N112 5 Dec 2016

#### **Equipment Table**

CREATE TABLE Equipment(

EQUIP\_ID INT PRIMARY KEY,

EQUIP\_NAME VARCHAR(255) NOT NULL);

This creates the Equipment entity. Its attributes include EQUIP\_ID and EQUIP\_NAME. EQUIP\_ID is an integer and the primary key, and EQUIP\_NAME is a string of the name of the equipment.

This table is in 1NF, because there are no repeating groups, and a primary key is defined such that each record is uniquely identifiable.

This table is in 2NF, because it is in 1NF, and there are no partial dependencies (this is given because the primary key is not composite).

This table is in 3NF, because it is in 2NF, and there are no transitive dependencies (EQUIP\_NAME is functionally dependent on EQUIP\_ID).

#### **Informs Table**

CREATE TABLE Informs(

RESEARCH\_ID INT NOT NULL,
MISSION\_ID INT NOT NULL,
PRIMARY KEY (RESEARCH\_ID, MISSION\_ID),
FOREIGN KEY (RESEARCH\_ID) REFERENCES RESEARCH (RESEARCH\_ID),
FOREIGN KEY (MISSION\_ID) REFERENCES MISSION (MISSION\_ID));

This creates the Informs entity. This table was created due to the many-to-many relationship between RESEARCH and MISSION. Its attributes include the integers RESEARCH\_ID and MISSION\_ID, and they make up the primary key. RESEARCH\_ID represents the research project, and MISSION\_ID represents the mission. RESEARCH\_ID is a foreign key that references the research number in RESEARCH, and MISSION\_ID is a foreign key that references the mission number in MISSION.

This table is in 1NF, because there are no repeating groups, and a primary key is defined such that each record is uniquely identifiable.

This table is in 2NF, because it is in 1NF, and there are no partial dependencies (there are no non-prime attributes to functionally depend on part of the composite key).

This table is in 3NF, because it is in 2NF, and there are no transitive dependencies (there are no non-prime attributes to functionally depend on each other).

Kai Wong Wong 18

Schwartz CMPT308N112 5 Dec 2016

#### Job Table

CREATE TABLE Job(

JOB\_ID INT PRIMARY KEY,

JOB\_TITLE VARCHAR(255) NOT NULL,

SALARY INT NOT NULL);

This creates the Job entity. Its attributes include JOB\_ID (an integer and the primary key), JOB\_TITLE (a string of the name of the job), and SALARY (an integer of the hourly rate).

This table is in 1NF, because there are no repeating groups, and a primary key is defined such that each record is uniquely identifiable.

This table is in 2NF, because it is in 1NF, and there are no partial dependencies (this is given because the primary key is not composite).

This table is in 3NF, because it is in 2NF, and there are no transitive dependencies (JOB\_TITLE AND SALARY are functionally dependent on JOB\_ID).

Kai Wong Wong 19

Schwartz CMPT308N112

5 Dec 2016

#### Lab Table

CREATE TABLE Lab(

LAB\_ID INT PRIMARY KEY,
LAB\_NAME VARCHAR(255) NOT NULL,
BUILDING\_ID INT NOT NULL,
FOREIGN KEY (BUILDING\_ID) REFERENCES BUILDING (BUILDING\_ID));

This creates the Lab entity. It is made up of LAB\_ID (an integer and the primary key), LAB\_NAME (a string of the name of the lab), and BUILDING\_ID (an integer that represents the building the lab is in). BUILDING\_ID is a foreign key that references the building number in BUILDING.

This table is in 1NF, because there are no repeating groups, and a primary key is defined such that each record is uniquely identifiable.

This table is in 2NF, because it is in 1NF, and there are no partial dependencies (this is given because the primary key is not composite).

This table is in 3NF, because it is in 2NF, and there are no transitive dependencies (LAB\_NAME AND BUILDING ID are functionally dependent on LAB ID).

#### **Lab Contains Table**

CREATE TABLE Lab\_Contains(
 LAB\_ID INT NOT NULL,
 EQUIP\_ID INT NOT NULL,
 EQUIP\_QUANT INT NOT NULL,
 PRIMARY KEY (LAB\_ID, EQUIP\_ID),
 FOREIGN KEY (LAB\_ID) REFERENCES LAB (LAB\_ID),
 FOREIGN KEY (EQUIP\_ID) REFERENCES EQUIPMENT (EQUIP\_ID));

This creates the Lab\_Contains entity. This table was created from the many-to-many relationship between LAB and EQUIPMENT. Its attributes consist of LAB\_ID, EQUIP\_ID, and EQUIP\_QUANT. The primary key consists of LAB\_ID and EQUIP\_ID, both integers that represent the lab and the equipment respectively, and EQUIP\_QUANT is the integer quantity of equipment in that lab. LAB\_ID is a foreign key that references the lab number in LAB, and EQUIP\_ID is a foreign key that references the equipment number in EQUIPMENT.

This table is in 1NF, because there are no repeating groups, and a primary key is defined such that each record is uniquely identifiable.

This table is in 2NF, because it is in 1NF, and there are no partial dependencies (the non-prime attribute EQUIP\_QUANT functionally depends on the entire composite key).

#### Launch Table

CREATE TABLE Launch(

LAUNCH\_ID INT PRIMARY KEY,

MISSION\_ID INT NOT NULL,

PAYLOAD\_ID INT NOT NULL,

LAUNCH\_DATE DATE NOT NULL,

DESTINATION VARCHAR(255) NOT NULL,

ROCKET ID INT NOT NULL,

BUILDING\_ID INT NOT NULL,

LAUNCH EXPENSE INT NOT NULL,

FOREIGN KEY (MISSION ID) REFERENCES MISSION (MISSION ID),

FOREIGN KEY (PAYLOAD ID) REFERENCES PAYLOAD (PAYLOAD ID),

FOREIGN KEY (BUILDING ID) REFERENCES BUILDING (BUILDING ID),

FOREIGN KEY (ROCKET ID) REFERENCES ROCKET (ROCKET ID));

This creates the Launch entity. Its attributes include LAUNCH\_ID (an integer and the primary key), MISSION\_ID (an integer representing the mission the launch belongs to), PAYLOAD\_ID (an integer representing the payload being launched), LAUNCH\_DATE (a date representing day of launch), DESTINATION (a string representing where the payload of the launch is headed to), ROCKET\_ID (an integer representing the rocket used for the launch), BUILDING\_ID (an integer representing what building the launch is taking place at), and LAUNCH\_EXPENSE (an integer representing the cost for the launch). MISSION\_ID is a foreign key that references the mission number in MISSION, PAYLOAD\_ID is a foreign key that references the payload number in PAYLOAD, BUILDING\_ID is a foreign key that references the building number in BUILDING, and ROCKET\_ID is a foreign key that references the rocket number in ROCKET.

This table is in 1NF, because there are no repeating groups, and a primary key is defined such that each record is uniquely identifiable.

This table is in 2NF, because it is in 1NF, and there are no partial dependencies (this is given because the primary key is not composite).

This table is in 3NF, because it is in 2NF, and there are no transitive dependencies (MISSION\_ID, PAYLOAD\_ID, LAUNCH\_DATE, DESTINATION, ROCKET\_ID, BUILDING\_ID, and LAUNCH\_EXPENSE are all functionally dependent on LAUNCH\_ID).

Schwartz CMPT308N112 5 Dec 2016

#### Manufacturer Table

CREATE TABLE Manufacturer(

MAN\_ID INT PRIMARY KEY,

MAN\_NAME VARCHAR(255) NOT NULL,

MAN\_LOC VARCHAR(255) NOT NULL);

This creates the Manufacturer entity. Its attributes consist of MAN\_ID (an integer and the primary key), MAN\_NAME (a string representing the name of the manufacturer), and MAN\_LOC (a string representing the location of the manufacturer by state).

This table is in 1NF, because there are no repeating groups, and a primary key is defined such that each record is uniquely identifiable.

This table is in 2NF, because it is in 1NF, and there are no partial dependencies (this is given because the primary key is not composite).

This table is in 3NF, because it is in 2NF, and there are no transitive dependencies (MAN\_NAME AND MAN\_LOC are functionally dependent on MAN\_ID).

Schwartz CMPT308N112 5 Dec 2016

#### Medal Table

CREATE TABLE Medal(

MEDAL\_ID INT PRIMARY KEY,

MEDAL\_YEAR INT NOT NULL,

MEDAL\_NAME VARCHAR(255) NOT NULL;

This creates the Medal entity. Its attributes consist of MEDAL\_ID (an integer and the primary key), MEDAL\_YEAR (an integer representing the year of the medal), and MEDAL\_NAME (a string representing the name of the medal)

This table is in 1NF, because there are no repeating groups, and a primary key is defined such that each record is uniquely identifiable.

This table is in 2NF, because it is in 1NF, and there are no partial dependencies (this is given because the primary key is not composite).

This table is in 3NF, because it is in 2NF, and there are no transitive dependencies (MEDAL\_YEAR and MEDAL\_NAME are functionally dependent on MEDAL\_ID).

Schwartz CMPT308N112 5 Dec 2016

#### Mission Table

CREATE TABLE Mission(
 MISSION\_ID INT PRIMARY KEY,
 MISSION\_NAME VARCHAR(255) NOT NULL,
 MISS\_START\_DATE DATE NOT NULL,
 MISS\_END\_DATE DATE DATE NOT NULL);

This creates the Mission entity. Its attributes consist of MISSION\_ID (an integer and the primary key), MISSION\_NAME (a string representing the name of the mission), MISS\_START\_DATE (a date representing the start date of the mission) and MISS\_END\_DATE (a date representing the end date of the mission).

This table is in 1NF, because there are no repeating groups, and a primary key is defined such that each record is uniquely identifiable.

This table is in 2NF, because it is in 1NF, and there are no partial dependencies (this is given because the primary key is not composite).

This table is in 3NF, because it is in 2NF, and there are no transitive dependencies (MISSION\_NAME, MISS\_START\_DATE, and MISS\_END\_DATE are all functionally dependent on MISSION\_ID).

Kai Wong Wong 25

Schwartz CMPT308N112 5 Dec 2016

#### **Part Table**

CREATE TABLE Part(
PART\_ID INT PRIMARY KEY,
PART\_NAME VARCHAR(255) NOT NULL);

This creates the Part entity. Its attributes are made up of PART\_ID (an integer and the primary key), and PART\_NAME (a string representing the name of the part).

This table is in 1NF, because there are no repeating groups, and a primary key is defined such that each record is uniquely identifiable.

This table is in 2NF, because it is in 1NF, and there are no partial dependencies (this is given because the primary key is not composite).

This table is in 3NF, because it is in 2NF, and there are no transitive dependencies (PART\_NAME is functionally dependent on PART\_ID).

Kai Wong Wong 26

Schwartz
CMPT308N112
5 Dec 2016

#### **Payload Table**

CREATE TABLE Payload(
PAYLOAD\_ID INT PRIMARY KEY,

PAYLOAD\_NAME VARCHAR(255) NOT NULL,

LAB\_ID INT NOT NULL,

PAYLOAD EXPENSE INT NOT NULL,

FOREIGN KEY (LAB\_ID) REFERENCES LAB (LAB\_ID));

This creates the Payload entity. Its attributes consist of PAYLOAD\_ID (which is the primary key and an integer), PAYLOAD\_NAME (a string representing the name of the payload), LAB\_ID (an integer representing what lab the payload is being built in), and PAYLOAD\_EXPENSE (an integer representing the cost to building the payload). LAB\_ID is a foreign key that references the lab number in LAB.

This table is in 1NF, because there are no repeating groups, and a primary key is defined such that each record is uniquely identifiable.

This table is in 2NF, because it is in 1NF, and there are no partial dependencies (this is given because the primary key is not composite).

This table is in 3NF, because it is in 2NF, and there are no transitive dependencies (PAYLOAD\_NAME, LAB\_ID, and PAYLOAD\_EXPENSE are all functionally dependent on PAYLOAD\_ID).

#### Payload\_Composed\_Of Table

This creates the Payload\_Composed\_Of entity. This table was created from the many-to-many relationship between PAYLOAD and PART. Its attributes consist of PAYLOAD\_ID (an integer representing the payload), PART\_ID (an integer representing the part), and COMP\_QUANT (an integer representing the number of each part that composes the payload). The primary key is made up of PAYLOAD\_ID and PART\_ID, PAYLOAD\_ID is a foreign key that references the payload number in PAYLOAD, and PART\_ID is a foreign key that references the part number in PART.

This table is in 1NF, because there are no repeating groups, and a primary key is defined such that each record is uniquely identifiable.

This table is in 2NF, because it is in 1NF, and there are no partial dependencies (the non-prime attribute COMP\_QUANT functionally depends on the entire composite key).

#### Research Table

CREATE TABLE Research(

RESEARCH\_ID INT PRIMARY KEY,
RESEARCH\_NAME VARCHAR(255) NOT NULL,
RESEARCH\_EXPENSE INT NOT NULL,
LAB\_ID INT NOT NULL,
FOREIGN KEY (LAB\_ID) REFERENCES LAB (LAB\_ID));

This creates the Research entity. Its attributes include RESEARCH\_ID (an integer and the primary key), RESEARCH\_NAME (a string representing the name of the research project), RESEARCH\_EXPENSE (an integer representing the cost of the research project), and LAB\_ID (an integer representing the lab the research is taking place in). LAB\_ID is a foreign key that references a lab number in LAB.

This table is in 1NF, because there are no repeating groups, and a primary key is defined such that each record is uniquely identifiable.

This table is in 2NF, because it is in 1NF, and there are no partial dependencies (this is given because the primary key is not composite).

This table is in 3NF, because it is in 2NF, and there are no transitive dependencies (RESEARCH\_NAME, RESEARCH\_EXPENSE, and LAB\_ID are functionally dependent on RESEARCH\_ID).

#### Rocket Table

CREATE TABLE Rocket(

ROCKET\_ID INT PRIMARY KEY,
ROCKET\_NAME VARCHAR(255) NOT NULL,
ROCKET\_EXPENSE INT NOT NULL,
FUEL\_TYPE VARCHAR(255) NOT NULL,
RELAUNCHABLE CHAR(1) NOT NULL,
LAB\_ID INT NOT NULL,
FOREIGN KEY (LAB\_ID) REFERENCES LAB (LAB\_ID));

This creates the Rocket entity. Its attributes include ROCKET\_ID (an integer and the primary key), ROCKET\_NAME (a string representing the name of the rocket), ROCKET\_EXPENSE (an integer representing the cost of the rocket), FUEL\_TYPE (a string representing the type of fuel the rocket consumes), RELAUNCHABLE (a single character value, either Y or N, that represents whether or not the rocket is relaunchable), and LAB\_ID (an integer representing what lab the rocket is being built in). LAB\_ID is a foreign key that references a lab number in LAB.

#### Rocket\_Composed\_Of Table

This creates the Rocket\_Composed\_Of entity. This table was created from the many-to-many relationship between ROCKET and PART. Its attributes consist of ROCKET\_ID (an integer representing the rocket), PART\_ID (an integer representing the part), and COMP\_QUANT (an integer representing the number of each part that composes the rocket). The primary key is made up of ROCKET\_ID and PART\_ID, ROCKET\_ID is a foreign key that references the rocket number in ROCKET, and PART\_ID is a foreign key that references the part number in PART.

This table is in 1NF, because there are no repeating groups, and a primary key is defined such that each record is uniquely identifiable.

This table is in 2NF, because it is in 1NF, and there are no partial dependencies (the non-prime attribute COMP\_QUANT functionally depends on the entire composite key).

#### Supplies\_Equip

CREATE TABLE Supplies\_Equip(
 MAN\_ID INT NOT NULL,
 EQUIP\_ID INT NOT NULL,
 SUPPLY\_QUANT INT NOT NULL,
 SUPPLY\_PRICE INT NOT NULL,
 PRIMARY KEY (MAN\_ID, EQUIP\_ID),
 FOREIGN KEY (MAN\_ID) REFERENCES MANUFACTURER (MAN\_ID),
 FOREIGN KEY (EQUIP\_ID) REFERENCES EQUIPMENT (EQUIP\_ID));

This creates the Supplies\_Equip entity. This table was created from the many-to-many relationship between MANUFACTURER and EQUIPMENT. Its attributes consist of MAN\_ID (an integer representing the manufacturer), EQUIP\_ID (an integer representing the piece of equipment), SUPPLY\_QUANT (an integer representing the amount of equipment that has been supplied), and SUPPLY\_PRICE (an integer representing the price of each piece of equipment that was supplied). MAN\_ID is a foreign key that references the manufacturer number in MANUFACTURER, and EQUIP\_ID is a foreign key that references the equipment number in EQUIPMENT.

This table is in 1NF, because there are no repeating groups, and a primary key is defined such that each record is uniquely identifiable.

This table is in 2NF, because it is in 1NF, and there are no partial dependencies (the non-prime attributes SUPPLY\_QUANT and SUPPLY\_PRICE functionally depend on the entire composite key).

This table is in 3NF, because it is in 2NF, and there are no transitive dependencies (Neither SUPPLY\_QUANT nor SUPPLY\_PRICE are functionally dependent on each other.).

#### Supplies\_Parts Table

CREATE TABLE Supplies\_Parts(
 MAN\_ID INT NOT NULL,
 PART\_ID INT NOT NULL,
 SUPPLY\_QUANT INT NOT NULL,
 SUPPLY\_PRICE INT NOT NULL,
 PRIMARY KEY (MAN\_ID, PART\_ID),
 FOREIGN KEY (MAN\_ID) REFERENCES MANUFACTURER (MAN\_ID),
 FOREIGN KEY (PART\_ID) REFERENCES PART (PART\_ID));

This creates the Supplies\_Parts entity. This table was created from the many-to-many relationship between MANUFACTURER and PART. Its attributes consist of MAN\_ID (an integer representing the manufacturer), PART\_ID (an integer representing the part), SUPPLY\_QUANT (an integer representing the amount of each part that has been supplied), and SUPPLY\_PRICE (an integer representing the price of each part that was supplied). MAN\_ID is a foreign key that references the manufacturer number in MANUFACTURER, and PART\_ID is a foreign key that references the part number in PART.

This table is in 1NF, because there are no repeating groups, and a primary key is defined such that each record is uniquely identifiable.

This table is in 2NF, because it is in 1NF, and there are no partial dependencies (the non-prime attributes SUPPLY\_QUANT and SUPPLY\_PRICE functionally depend on the entire composite key).

This table is in 3NF, because it is in 2NF, and there are no transitive dependencies (Neither SUPPLY\_QUANT nor SUPPLY\_PRICE are functionally dependent on each other.).

Kai Wong Wong 33

Schwartz CMPT308N112 5 Dec 2016

# Queries

# Query 1: All/every

List the first and last names of employees who work on the construction of every payload.

```
SELECT Employee.EMP_FNAME, Employee.EMP_LNAME
FROM Employee
WHERE NOT EXISTS
(SELECT *
FROM Payload
WHERE NOT EXISTS
(SELECT *
FROM Emp_Constructs_Payload
WHERE Employee.EMP_ID = Emp_Constructs_Payload.EMP_ID
AND Emp_Constructs_Payload.PAYLOAD_ID = Payload.PAYLOAD_ID));
```

Kai Wong Wong 34

Schwartz CMPT308N112 5 Dec 2016

# Query 2: Only

List research names that only has employees from the computing department working on it.

SELECT Research.RESEARCH\_NAME
FROM Research
WHERE Research.RESEARCH\_ID NOT IN
 (SELECT Emp\_Conducts.RESEARCH\_ID
 FROM Emp\_Conducts
 WHERE Emp\_Conducts.EMP\_ID NOT IN
 (SELECT Employee.EMP\_ID
 FROM Employee, Department
 WHERE Department.DEPART\_ID = Employee.DEPART\_ID
 AND Department.DEPART\_NAME = 'Computing'));

# **Query 3: None**

List the first and last names of employees who hold no certifications.

SELECT Employee.EMP\_FNAME, Employee.EMP\_LNAME
FROM Employee
WHERE Employee.EMP\_ID NOT IN
 (SELECT Emp\_Cert.EMP\_ID
 FROM Emp\_Cert, Certification
 WHERE Emp\_Cert.CERT\_ID = Certification.CERT\_ID);

Schwartz CMPT308N112 5 Dec 2016

# **Query 4: Left Join**

List all medal names and years, and the full names of any employees who have earned it.

SELECT Medal.MEDAL\_NAME, Medal.MEDAL\_YEAR, Employee.EMP\_FNAME,
Employee.EMP\_LNAME
FROM Medal LEFT JOIN Emp\_Award ON Medal.MEDAL\_ID = Emp\_Award.MEDAL\_ID LEFT
JOIN Employee ON Emp\_Award.EMP\_ID = Employee.EMP\_ID;

# **Query 5: Right Join**

List the names of all parts and the names of any payloads that compose of them.

SELECT Part.PART\_NAME, Payload.PAYLOAD\_NAME
FROM Payload RIGHT JOIN Payload\_Composed\_Of ON Payload.PAYLOAD\_ID =
Payload\_Composed\_Of.PAYLOAD\_ID RIGHT JOIN Part ON Part.PART\_ID =
Payload\_Composed\_Of.PART\_ID

Kai Wong Schwartz

5 Dec 2016

CMPT308N112

## **Query 6: Full Join**

Wong 38

List the first and last names of every employee and the names of any certifications that they have, and list the names of every certification and the first and last names of any employee who have earned it.

SELECT Employee.EMP\_FNAME, Employee.EMP\_LNAME, Certification.CERT\_NAME FROM Certification FULL JOIN Emp\_Cert ON Certification.CERT\_ID = Emp\_Cert.CERT\_ID FULL JOIN Employee ON Employee.EMP\_ID = Emp\_Cert.EMP\_ID;

#### Query 7: 6 tables

List employees' first and last names who work in the engineering department who are certified spacecraft engineers, and the name of the payload they construct.

SELECT Employee.EMP\_FNAME, Employee.EMP\_LNAME, Payload.PAYLOAD\_NAME FROM Employee, Payload, Emp\_Constructs\_Payload, Department, Certification, Emp\_Cert WHERE Employee.EMP\_ID = Emp\_Cert.EMP\_ID

AND Emp\_Cert.CERT\_ID = Certification.CERT\_ID

AND Employee.EMP\_ID = Emp\_Constructs\_Payload.EMP\_ID

AND Emp Constructs Payload.PAYLOAD ID = Payload.PAYLOAD ID

AND Employee.DEPART\_ID = Department.DEPART\_ID

AND Department.DEPART\_NAME = 'Engineering'

AND Certification.CERT\_NAME = 'Certified Spacecraft Engineer';

#### **Query 8**

List missions names, the mission start and end dates, the first and last names of employees who operate them, the employee start date, their job titles, the salaries associated with the job titles, and the number of hours they have operated the mission, where the start date of the mission was before 1-Jan-2010 and the start date of the employee was before 1-Jun-1992.

SELECT Mission.MISSION\_NAME, Mission.MISS\_START\_DATE, Mission.MISS\_END\_DATE, Employee.EMP\_FNAME, Employee.EMP\_LNAME, Employee.EMP\_START\_DATE, Job.JOB\_TITLE, Job.SALARY, Emp\_Operates.OPERATE\_HRS FROM Mission, Employee, Emp\_Operates, Job WHERE Mission.MISSION\_ID = Emp\_Operates.MISSION\_ID AND Emp\_Operates.EMP\_ID = Employee.EMP\_ID AND Employee.JOB\_ID = Job.JOB\_ID AND Mission.MISS\_START\_DATE < '1-Jan-2010' AND Employee.EMP\_START\_DATE < '1-Jun-1992';

Kai Wong Wong 41

Schwartz

CMPT308N112

5 Dec 2016

#### Query 9

Get the manufacturer name of manufacturers who have supplied a part that is supplied by another manufacturer who supplies a part that goes to constructing a payload which is being constructed in the satellite construction lab.

SELECT DISTINCT Manufacturer.MAN NAME

FROM Manufacturer, Supplies\_Parts SupPar1, Supplies\_Parts SupPar2, Supplies\_Parts

SupPar3, Part, Payload\_Composed\_Of, Payload, Lab

WHERE Manufacturer.MAN\_ID = SupPar1.MAN\_ID

AND SupPar1.PART ID = SupPar2.PART ID

AND SupPar1.MAN\_ID <> SupPar2.MAN\_ID

AND SupPar2.MAN\_ID = SupPar3.MAN\_ID

AND SupPar3.PART\_ID = Part.PART\_ID

AND Part.PART\_ID = Payload\_Composed\_Of.PART\_ID

AND Payload\_Composed\_Of.PAYLOAD\_ID = Payload.PAYLOAD\_ID

AND Payload.LAB\_ID = Lab.LAB\_ID

AND Lab.LAB\_NAME = 'Satellite Construction';

#### Query 10

List the mission name, the launch id, and the rocket name of missions that have involved a launch with a relaunchable rocket that has been constructed only by employees from the engineering department.

SELECT Mission.MISSION\_NAME, Launch.LAUNCH\_ID, Rocket.ROCKET\_NAME
FROM Mission, Launch, Rocket
WHERE Mission.MISSION\_ID = Launch.MISSION\_ID
AND Launch.ROCKET\_ID = Rocket.ROCKET\_ID
AND Rocket.RELAUNCHABLE = 'Y'
AND Rocket.ROCKET\_ID NOT IN

(SELECT Emp\_Constructs\_Rocket.ROCKET\_ID
FROM Emp\_Constructs\_Rocket
WHERE Emp\_Constructs\_Rocket.EMP\_ID NOT IN

(SELECT Employee.EMP\_ID
FROM Employee, Department
WHERE Employee.DEPART\_ID = Department.DEPART\_ID
AND Department.DEPART\_ID = 'Engineering');