

CLASSROOM CONTACT PROGRAMME

(Academic Session: 2024 - 2025)

ENTHUSE COURSE

PHASE: MEA,B,C,D,L,M,N,O,P & MEQ TARGET: PRE-MEDICAL 2025

Test Type: SRG-MAJOR Test Pattern: NEET (UG)

TEST DATE: 25-12-2024

													A	INS	WE	R K	EY													
Q.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
A.	1	2	4	3	3	4	4	4	2	3	4	4	4	3	3	2	4	3	2	3	3	1	3	1	4	1	1	3	2	4
Q.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
A.	4	4	3	2	4	4	2	1	1	3	4	3	2	2	1	4	4	2	1	3	2	3	4	2	1	3	4	1	3	2
Q.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
A.	1	1	4	2	3	4	1	4	2	2	1	3	2	3	4	3	1	2	2	2	1	3	4	4	4	1	2	3	2	2
Q.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
A.	3	3	1	2	2	1	3	1	3	1	1	2	4	2	3	4	1	1	3	4	1	2	4	4	1	3	3	4	1	3
Q.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
A.	2	2	4	2	2	4	4	4	4	3	1	2	3	1	1	3	3	4	3	2	2	3	2	3	3	4	3	3	2	3
Q.	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
A.	3	1	1	3	1	4	1	3	4	2	3	1	3	4	2	4	3	1	2	3	4	2	2	2	2	2	3	1	3	3
Q.	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200										
A.	1	4	1	1	4	3	1	1	3	2	1	3	1	1	3	4	3	4	4	2										

HINT - SHEET

SUBJECT: PHYSICS

SECTION - A

1. Ans (1)

$$\varphi_{med} = \frac{\varphi_{air}}{\varepsilon_r} \implies \varepsilon_r = \frac{\varphi_{air}}{\varphi_{med}} = \frac{5}{3}$$

2. Ans (2)

For equilibrium of any one charge at corner, Net repulsion by other three charge = Attraction by q

3. Ans (4)

Electric field intensity at a point on the exis of a uniformly charged ring is given by

$$E = \frac{qr}{4\pi\epsilon_0(R^2 + r^2)^{3/2}}$$

where r is the distance of the point from the centre of the ring (radius R).

For this intensity to be maximum,

$$\frac{dE}{dr} = 0$$
Now $\frac{dE}{dr} = \frac{q}{4\pi\epsilon_0} \left[(R^2 + r^2)^{-3/2} + r \left(-\frac{3}{2} \right) (R^2 + r^2)^{-3/2} (2r) \right] = 0$

$$\Rightarrow \frac{q}{4\pi\epsilon_0} (R^2 + r^2)^{-5/2} \left[(R^2 + r^2) - 3r^2 \right] = 0$$

$$(R^2 + r^2) - 3r^2 = 0$$
or $r = \frac{R}{\sqrt{2}} = \frac{0.24}{1.414} = 0.17 \text{ m}$

4. Ans (3)

$$\begin{split} u_y &= v_0 \Rightarrow u_y = v_y = v_0 \quad [\because a_y = 0] \\ v_x^2 &= u_x^2 + 2a_x(x_0) \Rightarrow v_x^2 = 0 + \frac{2qE}{m} x_0 \Rightarrow v_x = v_0 \\ \therefore \text{Speed} &= \sqrt{v_x^2 + v_y^2} = \sqrt{2} v_0 \\ a_n &= \frac{qE_0}{m} \frac{v_0}{\sqrt{v_x^2 + v_0^2}} \\ R &= \frac{v^2}{a_n} = \frac{\left[m^2 v_0^2 + 2qE_0 m x_0\right]^{3/2}}{qE_0 v_0 m^2} = 4\sqrt{2} x_0; \ \therefore \ (C) \end{split}$$

5. Ans (3)

Using energy conservation:

$$KE_i + PE_i = KE_f + PE_f$$

$$\overrightarrow{P_1} = \overrightarrow{P_i}$$

$$\overrightarrow{P}_2 = -P \hat{i}$$

$$O + \frac{2KP}{a^3} \times P = \frac{1}{2}mv^2 \times 2 + 0$$

$$V = \sqrt{\frac{2P^2}{4\pi\epsilon_0 a^3 m}} = \frac{P}{a}\sqrt{\frac{1}{2\pi\epsilon_0 am}}$$

6. Ans (4)

$$\int E ds \cos 0 = \frac{q}{\epsilon_0}$$

$$\Rightarrow E.2\pi xh = \frac{\rho \times \pi x^2 h}{\epsilon_0}$$

$$\Rightarrow E = \frac{\rho x}{2\epsilon_0}$$

$$\Rightarrow E = \frac{\rho}{2\epsilon_0} \times \frac{2\epsilon_0}{\rho} = 1$$

7. Ans (4)

Now using ohm's law $i = \frac{25}{R + R'} \implies 0.5 = \frac{25}{R + A'}$

$$\Rightarrow R + 4 = \frac{25}{0.5} = 50$$

$$\Rightarrow$$
 R = 50 -4 = 46 Ω

Current through 20Ω resistor =

$$\frac{0.5 \times 5}{20 + 5} = \frac{2.5}{25} = 0.1$$
A

Potential difference across middle resistor =

Potential difference across $20\Omega = 20 \times 0.1 = 2V$

8. Ans (4)

$$i_5 = \frac{16 - 8}{4} = 2A$$

$$i_4 = \frac{16-0}{8} = 2A$$

 A_4 will show 2A; A_2 will show 2+2=4A

Redraw in expanded form.

Current A₄ can now be redistributed as per KCL,

this gives;

Current show by ammeter

$$A_1 \Rightarrow 1A$$

$$A_3 \Rightarrow 0.5A$$

Hence readings shown will be

$$A_1 \Rightarrow 1A ; A_2 \Rightarrow 4A ; A_3 \Rightarrow 0.5 ;$$

$$A_4 \Rightarrow 2A$$

Ans (2)

$$V = E - Ir$$

$$I = 0, V = E = 2 \text{ Volt}$$

$$emf = 2V$$

If
$$V = 0$$
, $E - Ir = 0$

$$Ir = E$$

$$5(r) = 2$$

$$r = 2/5 = 0.4 \Omega$$

When current 1A

$$V = 2 - 1 \times 0.4$$

$$= 1.6 \text{ V}$$

10. Ans (3)

To check correctness of reading, examiner estimated the value of unknown resistance × fresh reading:

Reading 1 :
$$X = R \times \frac{(100 - \ell_1)}{\ell_1}$$

$$500 \times \frac{60}{40} = 750\Omega$$

Reading 2 :
$$X = 375 \times \frac{67}{33} = 727\Omega$$

Reading 3:
$$X = 200 \times \frac{33}{79} = 752\Omega$$

Reading 4: $X = 100 \times \frac{82}{18} = 455\Omega$

Reading 4 :
$$X = 100 \times \frac{82}{18} = 455\Omega$$

Thus 4th reading suggested that it was manipulated.

Ans (4) 11.

$$G = \frac{RS}{R - S}$$

$$G_1 = \frac{(3300)(80)}{(3300 - 80)} \approx 82\Omega$$

$$G_2 = \frac{(5000)(80)}{(5000 - 80)} \approx 81\Omega$$

$$G = \frac{G_1 + G_2}{2} \approx 80\Omega$$

12. Ans (4)

After closing the switch inner sphere is grounded.

Hence
$$V_{inner} = 0$$

Let after closing the switch, charge on inner sphere be q then

$$V_{inner} = \frac{Kq}{R} + \frac{KQ}{3R} = 0$$
$$q = \frac{-Q}{3}$$

13. Ans (4)

Before closing switch

After closing

(P) Charge flown through battery after closing switch = (CE/2)

(Q) (W.D)_{battery} =
$$\left(\frac{CE}{2}\right) \times E = \left(\frac{CE^2}{2}\right)$$

(R) Charge on capacitor A on closing switch = CE

(S)
$$(WD)_{Battery} = \Delta U + Heat$$

$$\frac{CE^2}{2} = \left[\frac{1}{2}CE^2 - \frac{1}{2}\frac{CE^2}{4} \times 2\right] + \text{Heat}$$

$$\Rightarrow$$
 Heat = $\frac{CE^2}{4}$

14. Ans (3)

: All resistors are in parallel

$$R_{Net} = R/3 \implies \tau = \frac{RC}{3}$$

 $Q = CV \left[1 - e^{\frac{-t}{RC} \times 3}\right]$

15. Ans (3)

It's charging circuit so

$$V_C = V \left[1 - e^{-\frac{t}{R_C}} \right]$$

$$V_C = 63 \% \text{ of } V$$

So,
$$t = \tau = RC$$

As per

Graph
$$V = 100$$

$$10 \times 10^{-6} = 10 \times C$$

$$C = 1 \mu F$$

16. Ans (2)

$$E_{\text{net}} = \frac{E_1 r_2 + E_2 r_1}{r_1 + r_2} = 3 \text{volt}$$

$$U = \frac{1}{2}CV^2 = \frac{1}{2} \times \frac{2A\epsilon_0}{d} \times (1.5)^2 = \frac{9}{4} \frac{A\epsilon_0}{d}$$

17. Ans (4)

$$\lambda = \frac{v}{n} \Rightarrow \frac{\lambda_A}{\lambda_B} = \frac{v_A}{v_B} \times \frac{n_B}{n_A}$$

$$\frac{\lambda_A}{\lambda_B} = \sqrt{\frac{\mu_B}{\mu_A}} \times \frac{n_B}{n_A} \qquad \left[v = \sqrt{\frac{T}{\mu}}\right]$$

$$\frac{\lambda_A}{\lambda_B} = \frac{1}{\sqrt{n}} \times \frac{1}{1/k} = \frac{k}{\sqrt{n}}$$

18. Ans (3)

$$\frac{1}{2(n_1 \sim n_2)} = 0.2 \Rightarrow \frac{1}{(n_1 \sim n_2)} = 0.4$$

So Beats freq. = $n_1 \sim n_2 = \frac{1}{0.4} = 2.5 \text{ Hz}$

19. Ans (2)

$$\Rightarrow \lambda = 6 \text{ cm}$$

Both particle are in opposite phase so $\Delta \phi = \pi$

20. Ans (3)

$$L = \lambda/2 = 100 \text{ cm}$$

$$\Rightarrow \lambda = 2m$$

$$v = n\lambda = 2550 \times 2 = 5100 \text{ m/s}$$

21. Ans (3)

Ans (1) 22.

23. Ans (3)

We know that

$$(N+1) T_s = N T_{\ell}$$

$$(N+1)4 = N \times 4.2$$

$$4N + 4 = 4.2 N$$

$$0.2 N = 4$$

$$N = 20$$

∴ Pendulum 'x' will vibrate

$$(N+1) = 20 + 1 = 21$$

24. Ans (1)

Time taken to travel from extreme to mean position

$$is = \frac{T}{4}$$

Time taken to travel from mean position to $\frac{A}{2}$ is $\frac{T}{12}$

Total time
$$t = \frac{T}{4} + \frac{T}{12} = \frac{T}{3}$$

$$t = \frac{2\pi}{3} \sqrt{\frac{\ell}{g}} \quad \left(: T = 2\pi \sqrt{\frac{\ell}{g}} \right)$$

25. Ans (4)

$$Q = \frac{K\gamma}{\gamma - 1}$$

$$Q = \frac{K\frac{C_P}{C_V}}{\frac{C_P}{C_V} - 1}$$

$$Q = \frac{KC_P}{C_P - C_V}$$

$$Q = \frac{KC_P}{KC_P}$$

$$Q = \frac{1}{C_P - C_V}$$

$$= \frac{KnC_P \Delta T}{nC_P \Delta T - nC_V \Delta T}$$

$$Q = \frac{KQ}{Q - \Delta U} \qquad [Q = W + \Delta U]$$

$$Q = \frac{KQ}{W}$$

$$K = W$$

26. Ans (1)

$$4\pi r^2 \rightarrow \sigma AT^4$$

$$1 \rightarrow \frac{\sigma A T^2}{4\pi r^2}$$

$$\pi r_0^2 \rightarrow \frac{\pi r_0^2 \sigma \left(4\pi R^2\right) T^4}{2\pi r_0^2 \sigma \left(4\pi R^2\right) T^4}$$

$$=\frac{\sigma\pi r_0^2R^2T^4}{2}$$

27. Ans (1)

Water Tank

Suppose only inter mediate time temperature of

Body is T

$$\begin{split} \frac{dQ}{dt} &= \frac{KA}{L}(400 - T) \\ ms. \left(\frac{-dT}{dt} \right) &= K \frac{A}{L}(400 - T) \\ -\frac{dT}{dt} &= \frac{KA}{mLS}(400 - T) \\ \int_{300}^{T} \frac{dT}{400 - T} &= -0.25 \int_{0}^{t} dt \\ \ln(400 - T)|_{300}^{T} &= -0.25t \\ \ln\left(\frac{400 - T}{400 - 300} \right) &= -0.25t \\ 400 - T &= 100e^{-0.25t} \end{split}$$

 $T = 400 - 100 e^{-0.25t}$

Hint: At $t = \infty$, temp of body should be 400 K

∴ Option (1) is correct

28. Ans (3)

Heat given by water $Q_1 = 10 \times 1 \times 10 = 100$ cal Heat taken by ice $Q_2 = 10 \times 0.5 \times 20 + 10 \times 80$ = 900 cal

Here, heat available Q₁ only provide heat required to increase temperature of ice from -20°C to 0°C, so final mixture is "10 gm ice and 10 gm water at 0°C".

29. Ans (2)

$$\begin{split} \gamma_{mix} &= \frac{n_1 C_{P_1} + n_2 C_{P_2}}{n_1 C_{v_1} + n_2 C_{v_2}} \\ 1 &+ \frac{2}{f_{mix}} = \frac{n \left(\frac{5}{2}R\right) + \frac{n}{2}\left(\frac{7R}{2}\right)}{n \left(\frac{3R}{2}\right) + \frac{n}{2}\left(\frac{5R}{2}\right)} \\ 1 &+ \frac{2}{f_{mix}} = \frac{\frac{5}{2} + \frac{7}{4}}{\frac{3}{2} + \frac{5}{4}} = \frac{17}{11} \\ f_{mix} &= \frac{11}{3} \end{split}$$

30. Ans (4)

$$W = \frac{R(T_i - T_f)}{\gamma - 1} \Rightarrow 6R = \frac{R(T - T_f)}{\left(\frac{5}{3} - 1\right)}$$
$$\Rightarrow T_f = (T - 4)K$$

31.

Ans (4) For path ab: $(\Delta U)_{ab} = 7000 \text{ J}$ By using $\Delta U = \mu C_V \Delta T$ $7000 = \mu \times \frac{5}{2} R \times 700 \Rightarrow \mu = 0.48$ For path ca: $(\Delta Q)_{ca} = (\Delta U)_{ca} + (\Delta W)_{ca}$...(i) $\therefore (\Delta U)_{ab} + (\Delta U)_{bc} + (\Delta U)_{ca} = 0$ \therefore 7000 + 0 + (ΔU)_{ca} = 0 \Rightarrow (ΔU)_{ca} = -7000 J ...(ii) Also $(\Delta W)_{ca} = P_1(V_1 - V_2) = \mu R(T_1 - T_2)$ $= 0.48 \times 8.31 \times (300 - 1000) = -2792.16 \text{ J...}(iii)$ on solving equations (i), (ii) and (iii) $(\Delta Q)_{ca} = -7000 - 2792.16 = -9792.16 J$

32. Ans (4)

= -9800 J

$$\begin{split} &\mu_1 + \mu_2 = {\mu_1}^{'} + {\mu_2}^{'} \\ &\frac{P_1 V}{R T_1} + \frac{P_2 V}{R T_2} = \frac{P V}{R T} + \frac{P V}{R T} \\ &\frac{P_1}{T_1} + \frac{P_2}{T_2} = \frac{2P}{T} \\ &\frac{P}{T} = \frac{P_1}{2 T_1} + \frac{P_2}{2 T_2} \end{split}$$

33. Ans (3)

 $(\Delta L)_{\text{due to temp}} = (\Delta L)_{\text{due to compressive force}}$ $L\alpha T = \frac{FL}{}$ $\alpha = \frac{F}{\pi r^2 Y T}$ $\gamma = 3\alpha = \frac{3F}{\pi r^2 Y T}$

Ans (2)

(a) K. E = $\frac{3}{2}$ kT does not depends on mass of gas molecule

(b)
$$v_{rms} = \sqrt{\frac{3RT}{M_{W}}}$$

(c) PV =
$$\frac{mRT}{M_W}$$

(d)
$$n = \frac{m}{M_W} = \frac{N}{N_A}$$

35. Ans (4)

$$\lambda = \frac{V}{f} = \frac{340}{340} = 1$$
m = 100cm

As the pipe is closed so its

resonating length is

$$\frac{\lambda}{4}, \frac{3\lambda}{4}, \frac{5\lambda}{4}, \frac{7\lambda}{4}$$

$$\frac{5\lambda}{4}$$
 is closed to length of pipe

= 120 cm

$$L + e = 125 \text{ cm}$$

$$e = 125 - 120 = 5 \text{ cm}$$

After pouring water the 1st resonance is obtained at

$$120 - 70 = 50$$
 cm from lower end.

Distance between two consecutive resonance points

=50 cm

Maximum length of water columns

$$= 120 - 20 = 100$$
 cm

SECTION - B

36. Ans (4)

 $V_A =$ (potential due to charge +q on ring A)

+ (potential due to charge -q on ring B)

$$\begin{split} V_A &= \frac{1}{4\pi\epsilon_0} \left(\frac{q}{R} - \frac{q}{d_1}\right); \ d_1 = \sqrt{R^2 + d^2} \\ &= \frac{1}{4\pi\epsilon_0} \left(\frac{q}{R} - \frac{q}{\sqrt{R^2 + d^2}}\right) \end{split}$$

similarly,

$$V_{B} = \frac{1}{4\pi\epsilon_{0}} \left(-\frac{q}{R} + \frac{q}{\sqrt{R^{2} + d^{2}}} \right)$$

Potential difference $V_A - V_B$

$$\begin{split} &=\frac{1}{4\pi\epsilon_0}\frac{q}{R}+\frac{1}{4\pi\epsilon_0}\frac{q}{R}-\frac{1}{4\pi\epsilon_0}\frac{q}{\sqrt{R^2+d^2}}-\frac{1}{4\pi\epsilon_0}\frac{q}{\sqrt{R^2+d^2}}\\ &=\frac{1}{2\pi\epsilon_0}\left(\frac{q}{R}-\frac{q}{\sqrt{R^2+d^2}}\right) \end{split}$$

37. Ans (2)

Field due to complete sphere at B will be

$$E' = \frac{kQ}{4R^2} = \frac{\rho R}{12\epsilon_0}$$

Field due to half sphere at B will be E

$$\therefore \text{ Net field at B} = \frac{\rho R}{12\epsilon_0} - E$$

38. Ans (1)

(Properties of conductor)

Statement – I, true as body of conductor acts as equipotential surface.

Statement – 2 True, as conductor is equipotential. Tangential component of electric field should be zero. Therefore electric field should be perpendicular to surface.

39. Ans (1)

NODAL METHOD

$$\frac{3-x}{10} + \frac{4.5-x}{3} + \frac{0-x}{6} = 0$$

$$\frac{9-3x+45-10x-5x}{30} = 0$$

$$\therefore x = 3 \text{ volts } \therefore I_1 = \frac{3-3}{10}$$

=0

40. Ans (3)

$$V = iR$$

 $3 = 3 \times R \implies R = 1\Omega$

Q = constant.
$$U = \frac{Q^2}{2C}$$
; $C \uparrow$; $U \downarrow$

$$C = C_1 + C_2$$
= $\frac{6 \in {}_{0}A}{2d} + \frac{\in {}_{a}A/2}{\frac{d}{2\sqrt{6}} + \frac{d}{2\sqrt{2}}} = \frac{5 \in {}_{0}A}{d}$

43. Ans (2)

$$\frac{1}{C_{net}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots + \frac{1}{C_7}$$

$$\frac{1}{C_{net}} = \frac{1}{C} + \frac{2}{C} + \frac{3}{C} + \frac{4}{C} + \frac{5}{C} + \frac{6}{C} + \frac{7}{C} = \frac{28}{C}$$
So $C_{net} = \frac{C}{28}$

44. Ans (2)

$$\frac{3v}{2\ell_0} = \frac{5v}{4\ell_C} \Rightarrow \frac{\ell_0}{\ell_C} = \frac{6}{5}$$

$$\frac{f_0}{f_C} = \frac{\frac{v}{2\ell_0}}{\frac{v}{4\ell_C}} = \frac{2\ell_C}{\ell_0} = \frac{2\times 5}{6} = \frac{5}{3}$$

45. Ans (1) $I \propto a^2 n^2$

46. Ans (4)

The period of liquid executing SHM in a U-tube does not depends upon the density of the liquid. Therefore, time period will be the same, when mercury is filled up to the same height as the water in the U-tube.

Now, as the pendulum oscillates, it drags air along with it. Therefore, it's kinetic energy is dissipated in overcoming viscous drag due to air and hence, it's amplitude goes on decreasing.

47. Ans (4)

Given condition
$$|\mathbf{v}| = |\mathbf{a}|$$

 $\omega \sqrt{A^2 - \mathbf{x}^2} = \omega^2 \mathbf{x}$
 $\omega \mathbf{x} = \sqrt{A^2 - \mathbf{x}^2}$
 $\frac{2\pi}{T} \times 4 = \sqrt{5^2 - 4^2}$
 $T = \frac{8\pi}{3}$ sec

48. Ans (2)

$$U_1 = a + bP_1V_1$$

$$U_2 = a + bP_2V_2$$

$$\Delta U = b (P_2V_2 - P_1V_1)$$
and for adiabatic process
$$\Delta U = -W = \frac{P_2V_2 - P_1V_1}{\gamma - 1}$$
(2)
From (1) and (2)

$$\gamma = \frac{b+1}{b}$$

49. Ans (1)

Since
$$A_1B_1 > A_2B_2$$

So $L_1 > L_2$
and slope $\propto \frac{1}{\text{specific heat capacity}}$
So, $C_1 < C_2$

50. Ans (3)

$$W_{C} = W_{AB} + W_{BC} + W_{CD} + W_{DA}$$

$$W_{C} = 0 + \mu R(T_{C} - T_{B}) + 0 + \mu R(T_{A} - T_{D})$$

$$W_{C} = \mu R[T_{C} - T_{B} + T_{A} - T_{D}] = 6 \times \frac{25}{3} \times 800$$

$$= 40 \text{ kJ}$$

SUBJECT: CHEMISTRY

SECTION - A

2-Ethyl-5-methylcyclohexa-2, 5-diene-1, 4-dione

52. Ans (3)

53. Ans (4)

[HP]
$$HC \equiv C$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

E-isomer

55. Ans (1)

Ncert-Class 11th, Part-2, Pg.No: 273 Edition-2023-24

59. Ans (3)

Dehydration of alcohol ∝ stability of carbocation

63. Ans (4)

(a)	$ \begin{array}{c} \text{CH}_{3} \\ \hline \text{Conc. HNO}_{3} \\ \hline \text{Conc. H}_{2}\text{SO}_{4} \end{array} $	(q)	Nitration
(b)	CH ₃ −COOK electrolysis	(p)	Kolbe's electrolysis
(c)	CH_3 -Br \xrightarrow{Na} Dryether	(r)	Wurtz reaction
(d)	CH ₃ Cl	(s)	Friedal-craft
(a)	Anhyd. AlCl ₃		alkylation

- Ans (3) 65. Theory based NCERT page no. 349
- Ans (4) 66. NCERT XI Pg. #353

67. Ans (1)

% of Br =
$$\frac{\text{At wt of Br}}{\text{wt of AgBr}} \times \frac{\text{m}}{\text{w}} \times 100$$

= $\frac{80}{188} \times \frac{0.12}{0.15} \times 100$
= 34.04%

69. Ans (2)

For first order reaction $t_{1/2} = \frac{1}{3.33} t_{90\%}$

- 70. Ans (2) NCERT Pg.No.99
- 72. Ans (3)

From slow step $r = k_3[Q]^2(P)$...(i)

from reversible step $k_c = \frac{k_1}{k_2} = \frac{[Q]^2}{[P]}$...(ii) from (i) & (ii) $r = k_3 \cdot \frac{k_1}{k_2} [P]^2$

74. Ans (3)

Raoult's law is followed by ideal solution.

*7*5. Ans (4)

For non-ideal solution $\Delta S_{mix} > 0$

Ans (3) *7*6.

$$\begin{split} \frac{M}{m} &= \left(\frac{n_{solute}}{V_{solution(L)}}\right) \left(\frac{m_{solvent (Kg)}}{n_{solute}}\right) \\ &= \frac{1.4}{1.5/1.5} = 1.4 \text{ kg/L} \end{split}$$

77. Ans (1)

$$\therefore \quad \alpha = \frac{i-1}{2-1} \text{ or } 0.8 = \frac{i-1}{2-1} \Rightarrow i = 1.8$$
Now $\Delta T_f = K_f \times \text{Molality} \times i$

$$= 1.86 \times 0.5 \times 1.8 = 1.674$$

freezing point of solution

$$= 273 - 1.674 = 271.326 \text{ K}$$

80. Ans (2)

For
$$A_x B_y \rightarrow xA^{+y} + yB^{-x}$$

 $\Lambda_M^o(A_x B_y) = x\Lambda_M^o(A^{y+}) + y\Lambda_M^o(B^{x-}) \dots (1)$
 $\Lambda_{eq}^o(A_x B_y) = \Lambda_{eq}^o(A^{y+}) + \Lambda_{eq}^o(B^{x-}) \dots (1)$

83. Ans (4)

 $\text{CuSO}_{4(s)} + 5\text{H}_2\text{O}_{(~\ell~)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{CuSO}_4.5\text{H}_2\text{O}_{(s)}$ is an example of $\Delta_{Hydration}\,H^{\circ}$ of $CuSO_{4}$

SECTION - B

87. Ans (2)

Stability of $C^{\bigoplus} \propto pK_a \propto \frac{1}{K_a}$ Stability of $C^{o} \propto +M / Resonance / +H.C. / +I$ Stability of $C^- \propto -M / Resonance / -I$

89. Ans (2)

NCERT-XII, Part-II; Page-330

90. Ans (2)

Na in liq NH₃

92.

$$CH_3-CH_2-CH_3 \xrightarrow{Br_2} CH_3-CH-CH_3 \xrightarrow{Na} Dry \text{ ether } A$$

$$CH_3-CH-CH-CH_3$$

$$CH_3-CH-CH-CH_3$$

$$CH_3-CH-CH-CH_3$$

$$CH_3-CH-CH-CH_3$$

$$CH_3-CH-CH-CH_3$$

$$CH_3-CH-CH-CH_3$$

$$CH_3-CH-CH-CH_3$$

$$CH_3-CH-CH-CH_3$$

$$CH_3-CH-CH-CH_3$$

93. Ans (1)

Chlorine is an electron withdrawing group but it is ortho, para directing in electrophilic aromatic substitution because Inductive effect of chlorine destabilises the intermediate carbocation formed during the electrophilic substitution, however due to the more pronounced resonance effect, the halogen stabilises the carbocation at ortho and para positions.

95. Ans (2)

$$-\frac{d \left[Cr_2O_7^{2^-}\right]}{dt} = -\frac{1}{3} \frac{d[HNO_2]}{dt}$$
$$-\frac{d \left[HNO_2\right]}{dt} = 3 \times \left(-\frac{d[Cr_2O_7^{2^-}]}{dt}\right)$$
$$= 3 \times 2.4 \times 10^{-4}$$
$$= 7.2 \times 10^{-4} \text{ mol L}^{-1}\text{s}^{-1}$$

SUBJECT: BOTANY

SECTION - A

- **101. Ans (1)** NCERT XI, Pg # 150
- **102. Ans (2)** NCERT XI, Pg # 139
- **103. Ans (4)** NCERT Pg. # 140-141
- **104.** Ans (2) NCERT XI, Pg # 140
- 105. Ans (3) NCERT XI Pg.# 143, 144
- **106.** Ans (4) NCERT XI, Pg # 160
- **107. Ans (1)** NCERT XI, Pg # 156
- 108. Ans (1) NCERT XI, Pg # 156
- **109. Ans (3)** NCERT Pg # 164

- **110. Ans (4)** NCERT Pg. # 156,159,160
- 111. Ans (1) NCERT XI, Pg # 157
- 112. Ans (2)
 NCERT XI, Pg # 177
- 113. Ans (4) NCERT XI, Pg # 173
- 114. Ans (4) NCERT XI, Pg # 174
- 115. Ans (1)

 NCERT XI, Pg # 172
- 116. Ans (3) NCERT XI, Pg # 170
- 117. Ans (3) NCERT-XI Pg. # 177
- 118. Ans (4) NCERT XI Pg.# 169, 172, 174
- 119. Ans (1) NCERT XI, Pg # 64
- **120. Ans (3)** NCERT XI, Pg. # 67
- 121. Ans (2) NCERT XI, Pg # 61
- 122. Ans (2) NCERT XI, Pg # 64
- 123. Ans (4) NCERT XI, Pg # 62, 63, 64
- 124. Ans (2) NCERT Pg. No. 64
- **125. Ans (2)** NCERT XI, Pg # 73
- **126. Ans (4)** NCERT XI Pg. No. # 62
- 127. Ans (4) NCERT, Pg. # 72

ALLEN®

- **128. Ans (4)** NCERT-XI, Pg. # 77
- **129. Ans (4)** NCERT-XI, Pg. # 76
- **130. Ans (3)** NCERT-XI Pg. # 75
- 131. Ans (1) NCERT (XII) Pg. # 15
- 133. Ans (3) NCERT (XIIth) Pg. # 6, 9, 19
- **134. Ans (1)**XII NCERT Pg # 10, 11
- **135. Ans (1)** NCERT-XII, Pg.# 10, 11

SECTION - B

- 136. Ans (3) NCERT XI, Pg # 145
- **137. Ans (3)** NCERT XI, Pg # 142
- 138. Ans (4) NCERT, Pg. # 137, 138
- 139. Ans (3) NCERT Pg # 145
- **140. Ans (2)** NCERT XI, Pg # 159
- **141. Ans (2)** NCERT XI, Pg # 177
- 142. Ans (3) NCERT XI, Pg # 64
- **143. Ans (2)**NCERT XI, Pg # 65
- **144. Ans (3)** NCERT XI, Pg # 62
- **145. Ans (3)** NCERT XI Pg. No. # 73

- **146. Ans (4)** NCERT XI, Pg # 74
- **147. Ans (3)** NCERT XI, Pg # 73
- **148. Ans (3)** NCERT (XII) Pg. # 3, 5
- **149. Ans (2)**XII NCERT Pg # 6
- 150. Ans (3) NCERT XII Page No. #7

SUBJECT: ZOOLOGY

SECTION - A

- **154. Ans (3)** NCERT, Pg # 231
- **156. Ans (4)** NCERT, Pg # 319
- **157. Ans (1)** NCERT Pg # 334 (E)
- 158. Ans (3) NCERT, Pg. # 338
- 159. Ans (4) NCERT, Pg. # 335
- **160. Ans (2)** NCERT XIth Pg. No.
- **164. Ans (4)** NCERT Pg. # 244
- **165. Ans (2)** NCERT Pg. No. # 310, 311
- **166. Ans (4)** NCERT XII Pg. # 306, 309 (Fig. 20.5)
- 167. Ans (3) NCERT, Pg # 225
- **169. Ans (2)** NCERT-XI, Pg.# 312
- 171. Ans (4) NCERT, Pg. # 227

ALLEN®

172. Ans (2)

NCERT Pg. No. # 218

173. Ans (2)

NCERT Page No. # 225 (E/H)

179. Ans (3)

NCERT XII - Pg. No - 27

181. Ans (1)

NCERT Pg#61

SECTION - B

187. Ans (1)

NCERT-XII, Pg. # 42

191. Ans (1)

NCERT, Pg # 222

192. Ans (3)

NCERT, Pg # 226

194. Ans (1)

Ncert Page 332.

195. Ans (3)

NCERT-XI, Pg. # 242

198. Ans (4)

NCERT Pg. # 321

199. Ans (4)

NCERT XI Pg.# 236

1001CMD303029240078 + HS-11/11