宁波工程学院 <u>2015—2016</u>学年第<u>二</u>学期 《大学物理 B》期末试卷 A 卷

题	号		<u>-</u>	三	四	五.	六	七	总分	复核人
满	分	30	21	9	10	10	10	10	100	
得	分									
评卷人										

一、 填空题(每空3分,总共30分)

1 、位矢 $\vec{r}=x\vec{i}+y\vec{j}$ 用于描述质点的位置,意味着质点距离参考原点
$ \bar{r} $ =,位矢与 x 轴的夹角 θ = arctan。
2、一质点沿半径为 0.1m 的圆周运动,其运动方程为 $\theta=2+t^2$ (式中的 θ 以弧度
计, t 以秒计), 质点在第一秒末的速度大小为。
3、质点沿半径为R做圆周运动,运动方程为 $\theta=3+4t^2$ (SI制),则 t 时刻质点切
向加速度大小为。
4 、一小球与轻弹簧组成的系统,按 $x=0.01\cos(2\pi-\frac{\pi}{2})$ 的规律振动,式中时间 t 以
秒为单位,位移 x 以米为单位。则振动的周期为; 计时起点
的振动相位为。
5、请写出真空中描述静电场性质的高斯定理(数学表达式):。
6、一列平面简谐波的波速为 4m/s,波长为 1m,该平面简谐波的 角 频率为
o
7、均匀无限长带电直线,线电荷密度 λ , 距直线距离为 \mathbf{r} 处 \mathbf{P} 点的场强大小
是,方向为。

二、选择题(每题3分,总共21分)

答案请填入以下表格:

是	5号	1	2	3	4	5	6	7
答	答案							

1、一质点在 xov 平面内运动,其运动方程为 $x = at, v = b + ct^2$,式中 a, b, c 均为常数。

当运动质点的运动方向与 x 轴成 45 度角时,它的速率为

(A) a

(B) 2c

(C) $\sqrt{2}a$

- (D) $\sqrt{a^2 + 4c^2}$
- 2、 以下几种表述正确的是
 - (A) 质点系总动量的改变与内力无关;
 - (B) 质点系总动能的改变与内力无关:
 - (C) 质点系机械能的改变与非保守内力无关;
 - (D) 质点系中一对内力所做的总功一定等于零。
- 3、用余弦函数描述简谐振子的振动, 若初始时刻在平衡位置, 且朝着负方向运动, 则该简 谐振动的初相位为
 - (A) $\pi/6$ (B) $\pi/3$
 - (C) $\pi/2$
- (D) $2\pi/3$
- 4、光的衍射条纹都可用
 - (A) 波传播的独立性原理解释 (B) 惠更斯原理解释
 - (C) 惠更斯-菲涅耳原理解释 (D) 半波带法解释
- 5、以下说法正确的是
- (A) 电场和磁场都是有源场 (B) 电场和磁场都是无源场
- (C) 电场和磁场都是保守场 (D) 磁场是无源场,电场是有源
- 6、平板电容器,二极板电荷密度为 $\pm \sigma$,则两板间任意点的场强为
 - (A) $\sigma/2\varepsilon_0$
- (B) σ/ε_0
- (C) $\sigma/3\varepsilon_0$
- (D) $\sigma/4\varepsilon_0$

- 7、光强为 I_0 的自然光依次通过两个偏振片 P1 和 P2,若 P1 和 P2 的偏振化方 向间夹角 $\alpha = 60^{\circ}$, 则透射光的强度是

 - (A) $I_0/8$ (B) $\sqrt{3}I_0/4$ (C) $\sqrt{3}I_0/2$ (D) $3I_0/8$

三、计算题(共9分)

- 一质点沿x轴运动,运动方程为 $x=4t-2t^3$ (SI),求
- (1) 质点在最初2秒内的平均速度; (3分)
- (2) 质点在3秒末的瞬时加速度。(6分)

四、计算题(共10分)

用空气劈尖的干涉法测细丝直径, 今观测垂直入射光形成的相干反射光的干涉条 纹,测得相邻明纹间距为 2.0×10^{-3} m,已知 $L=10.0\times10^{-2}$ m, $\lambda=590$ nm,求细丝直 径 d.

五、计算题(共10分)

若有一波长为 600nm 的单色平行光,垂直入射到缝宽 a=0.6mm 的单缝上,缝后有一焦距 f=40 cm 透镜。试求:

(1) 屏上中央明纹的宽度; (5)

(2)第三明条纹的位置。(5)

六、综合计算题(共10分)

已知波源在坐标原点的平面简谐波的波函数为 $y = A\cos(Bt - Cx)$,式中 A、B、C 为正值恒量。试求:

(1) 振幅、波速、圆频率、周期、波长; (5分)

(2) 距波源为L(坐标x=L) 处的振动表达式。(5分)

七、综合计算题(共10分)

已知均匀带电球面半径为R,带电量为q,求:

(1) 空间场强分布(6分)

(2)空间电势分布(4分)