TWISTS

PAVEL SAFRONOV

Compactification:

- Map $((N \times S^1)_{dR}, X)$ compactifies to Map $(N_{dR}, T[-1]X)$.
- If Σ is a complex curve and L a 1-manifold, $\operatorname{Map}(\Sigma, X)$ compactifies to $\operatorname{Map}(L_{dR}, X)$. If an anomaly is not listed, the theory is not anomalous.

1.
$$d = 2$$

To define an $\mathcal{N}=(2,0)$ σ -model need a complex manifold X with a holomorphic vector bundle \mathcal{E} . If $\mathcal{E}=\mathrm{T}_X$, we can enhance it to $\mathcal{N}=(2,2)$ supersymmetry. Let $E\to X$ be the total space.

- The rank (1,0) twist on Σ gives $T^*[-1]Map(\Sigma, E[-1])$. It only has a one-loop anomaly which is given by $\chi(\Sigma)c_1(E[-1])$ and $ch_2(E[-1])$.
- If $\mathcal{E} = T_X$, this is

$$T^*[-1]Map(\Sigma, T[-1]X) \cong Map(\Sigma_{Dol}, T^*[1]X).$$

It only has a one-loop anomaly given by $\chi(\Sigma)c_1(X)$.

- The rank (1,1) A-twist gives $T^*[-1]Map(\Sigma,X)_{dR}$.
- The rank (1,1) B-twist gives $Map(\Sigma_{dR}, T^*[1]X)$. The anomaly is the same as for the holomorphic twist.

To define an $\mathcal{N} = (2,2)$ Yang–Mills theory we need a compact group K and a complex K-representation V. Let G be the complexification of K.

• The rank (1,0) twist on Σ gives

$$\mathrm{T}^*[-1]\mathrm{Map}(\Sigma,\mathrm{T}[-1][V/G])\cong\mathrm{Map}(\Sigma_{\mathrm{Dol}},\mathrm{T}^*[1][V/G]).$$

It only has a one-loop anomaly given by $\chi(\Sigma)c_1([V/G])$.

- The rank (1,1) A-twist gives $T^*[-1]Map(\Sigma, [V/G])_{dR}$.
- The rank (1,1) B-twist gives $Map(\Sigma_{dR}, T^*[1][V/G])$. The anomaly is the same as for the holomorphic twist

$$2. d = 3$$

To define an $\mathcal{N}=2$ Yang–Mills theory we need a compact group K and a complex K-representation V. If V is the adjoint representation, the supersymmetry is enhanced to $\mathcal{N}=4$.

- The rank 1 twist on $\Sigma \times L$ where Σ is a CY curve and L is a 1-manifold gives $T^*[-1]Map(\Sigma \times L_{dR}, [V/G])$.
- For $V = \mathfrak{g}$ get

$$\mathrm{T}^*[-1]\mathrm{Map}(\Sigma \times L_{\mathrm{dR}}, \mathrm{T}[-1]\mathrm{B}G) \cong \mathrm{Map}(\Sigma_{\mathrm{Dol}} \times L_{\mathrm{dR}}, \mathrm{T}^*[2]\mathrm{B}G).$$

- The rank 2 A-twist gives $T^*[-1]Map(\Sigma \times L_{dR}, BG)_{dR}$.
- The rank 2 B-twist on a 3-manifold M gives Map $(M_{dR}, T^*[2]BG)$.

We can also add $\mathcal{N}=4$ matter. For this pick a complex K-representation W. If $W=\mathfrak{g}$ we obtain $\mathcal{N}=8$ supersymmetry. Then:

- The rank 2 A-twist gives $T^*[-1]Map(\Sigma \times L_{dR}, [W/G])_{dR}$.
- The rank 2 B-twist gives $Map(M_{dR}, T^*[2][W/G])$.

3.
$$d = 4$$

To define an $\mathbb{N}=1$ Yang–Mills theory we need a compact group K and a complex K-representation V. The theta-term is zero. If V is the adjoint representation, the supersymmetry is enhanced to $\mathbb{N}=2$. We consider a complex surface $M^4=\Sigma_1\times\Sigma_2$.

- The rank (1,0) twist gives $T^*[-1]Map(M^4, [V/G])$. It only has a one-loop anomaly which in flat space is given by $ch_3([V/G])$.
- For $V = \mathfrak{g}$ get

$$T^*[-1]Map(M, T[-1]BG) \cong T^*[-1]Map((\Sigma_1)_{Dol} \times \Sigma_2, BG).$$

It only has a one-loop anomaly given by $\chi(\Sigma_1) \operatorname{ch}_2(BG)$.

- The rank (2,0) twist gives $T^*[-1]Map(M^4, BG)_{dR}$. It compactifies to the 3d A-twist.
- The rank (1,1) twist gives $T^*[-1]Map((\Sigma_1)_{dR} \times \Sigma_2, BG)$. It compactifies to the 3d B-twist or the 3d holomorphic twist. The anomaly is the same as in the holomorphic twist.

We can again add $\mathcal{N} = 2$ matter given a complex K-representation W:

- The rank (2,0) twist gives $T^*[-1]Map(M^4, [W/G])_{dR}$.
- The rank (1,1) twist gives $T^*[-1]Map((\Sigma_1)_{dR} \times \Sigma_2, [W/G])$.

In the case $W = \mathfrak{g}$ (i.e. we have $\mathfrak{N} = 4$)

• The rank (1,0) twist gives

$$T^*[-1]Map((\Sigma_1)_{Dol} \times (\Sigma_2)_{Dol}, BG).$$

• The rank (1,1) twist gives

$$T^*[-1]Map((\Sigma_1)_{dR} \times (\Sigma_2)_{Dol}, BG).$$

• The rank (2,0) twist gives

$$T^*[-1]Map((\Sigma_1)_{Dol} \times \Sigma_2, BG)_{dR}.$$

• The special rank (2,2) twist gives

$$T^*[-1]Map((\Sigma_1)_{dR} \times (\Sigma_2)_{dR}, BG).$$

• The generic rank (2,2) twist gives

$$T^*[-1]Map((\Sigma_1)_{dR} \times \Sigma_2, BG)_{dR}.$$

TWISTS 3

4.
$$d = 5$$

We consider $M^5 = M^4 \times L$ where $M^4 = \Sigma_1 \times \Sigma_2$ is a complex surface and L is a 1-manifold.

- The rank 1 twist gives $T^*[-1]Map(M^4 \times L_{dR}, [W/G])$.
- If $W = \mathfrak{g}$ get $T^*[-1]Map(M \times L_{dR}, T[-1]BG)$.
- The rank 2 topological twist gives $T^*[-1]Map(M^4 \times L_{dR}, BG)_{dR}$.
- The rank 2 partially topological twist gives $T^*[-1]Map((\Sigma_1)_{dR} \times \Sigma_2 \times L_{dR}, BG)$.
- The rank 4 twist gives $\mathrm{Map}(M_{\mathrm{dR}}^5,\mathrm{B}G)$. This is $\mathbf{Z}/2$ -graded.

5.
$$d = 6$$

Let $M^6 = M^4 \times \Sigma$ be a complex 3-fold.

 $\mathcal{N} = (1,0)$ Yang-Mills:

• The rank (1,0) twist gives $T^*[-1]Map(M^6, [W/G])$. It only has a one-loop anomaly. In flat spacetime it is given by $ch_4([W/G])$.

 $\mathcal{N} = (1, 1)$ Yang-Mills:

- The rank (1,1) topological twist gives $T^*[-1]Map(M^6, BG)_{dR}$.
- The rank (1, 1) partially topological twist gives $T^*[-1]Map(M^4 \times \Sigma_{dR}, BG)$. It only has a one-loop anomaly when $\chi(\Sigma) \neq 0$ and $c_1(M) \neq 0$ in which case it is $ch_2(BG)$.
- The rank (2,2) twist gives $Map(M^2 \times (M^4)_{dR}, BG)$. This is $\mathbb{Z}/2$ -graded. It has a one-loop anomaly given by $\chi(M^4) \operatorname{ch}_2(BG)$.

6.
$$d = 7$$

- The topological twist is $Map(M^6 \times L_{dR}, BG)_{dR}$.
- The holomorphic rank 1 twist is $T^*[-1]Map(M^6 \times L_{dR}, BG)$.
- The rank 2 twist is $Map(M^4 \times (M^3)_{dR}, BG)$. This is $\mathbb{Z}/2$ -graded.

7.
$$d = 8$$

- The twist by a pure spinor rank (1,0) supercharge gives $T^*[-1]Map(M^8, BG)$.
- The twist by an impure spinor rank (1,0) supercharge gives $Map(M^8, BG)_{dR}$.
- The twist by a rank (1,1) supercharge gives $Map((M^6) \times (M^2)_{dR}, BG)$. This is $\mathbb{Z}/2$ -graded. Its one-loop anomaly vanishes for instance when M^2 is flat. If M^2 is not flat while M^6 is, the one-loop anomaly is given by $ch_4(BG)$.

8.
$$d = 9$$

• The twist by a pure spinor supercharge gives $Map(M^8 \times L_{dR}, BG)$. This is $\mathbb{Z}/2$ -graded.

9.
$$d = 10$$

• The rank 1 twist gives $Map(M^{10}, BG)$. This is $\mathbb{Z}/2$ -graded. Its one-loop anomaly in flat spacetime is $ch_6(BG)$.