Санкт-Петербургский национальный исследовательский институт информационных технологий, механики и оптики

Физический факультет

ЛАБОРАТОРНАЯ РАБОТА №1.02

"Изучение скольжения тележки по наклонной плоскости"

Группа: Z3144

Студент: Евгений Турчанин

1 Цели работы

- Экспериментальная проверка равноускоренности движения тележки по наклонной плоскости.
- 2. Определение величины ускорения свободного падения д.

2 Задачи

- 1. Измерение времени движения тележки по рельсу с фиксированным углом наклона.
- 2. Измерение времени движения тележки по рельсу при разных углах наклона рельса к горизонту.
- Исследование движения тележки при фиксированном угле наклона рельса. Проверка равноускоренности движения тележки.
- 4. Исследование зависмости ускорения тележки от угла наклона рельса к горизонту. Определение ускорения свободного падения.

3 Теоретическое введение

Как известно, при поступательном равноускоренном движении тела вдоль оси 0x зависимость проекции его скорости v_x от времени t определяется выражением:

$$v_x(t) = v_{0x} + a_x t \tag{1}$$

Где v_{0x} - проекция скорости на ось 0x в момент времени $t=0,\,a_x$ - ускорение тела. З ависимость координаты тела x от времени t имеет вид:

$$x(t) = x_0 + v_{0x}t + \frac{a_x t^2}{2} (2)$$

Здесь x_0 - начальная координата. Если начальная скорость тела равна нулю, то из (2) следует:

$$x_2 - x_1 = \frac{a}{2}(t_2^2 - t_1^2) \tag{3}$$

Таким образом, существует линейная зависимость между перемещением $\Delta x = x_2 - x_1$ и полуразностью квадратов значений времени $\frac{t_2^2 - t_1^2}{2}$. Коэффициент пропорциональности этой зависимости равен ускорению тела. Если экспериментальный график этой зависимости будет представлять собой прямую линию, то это будет доказательством движения с постоянным ускорением.

В качестве объекта совершающего равнопеременное поступательное движение рассмотрим тележку, скользящую по наклонной плоскости (см. рис.1). Второй закон Ньютона, описывающий ее движение, имеет вид:

$$m\vec{a} = m\vec{q} + \vec{N} + \vec{F}_{TD} \tag{4}$$

где \vec{a} — ускорение тележки, \vec{N} - сила реакции опоры, а сила трения, возникающая при скольжения, по модулю равна произведению коэффициента трения на силу нормальной реакции: $F_{\rm Tp}=\mu N$. Проекции уравнения (4) на координатные оси:

$$\begin{cases} 0y: 0 = N - mg\cos\alpha\\ 0x: ma = mg\sin\alpha - \mu mg\cos\alpha \end{cases} \tag{5}$$

где α - угол между наклонной плоскостью и горизонталью. Из (5) следует выражение для модуля ускорения:

$$a = g\sin\alpha - \mu g\cos\alpha \tag{6}$$

Рис. 1: Векторная диаграмма сил, действующих на тело, расположенное на наклонной плоскости

Поскольку в лабораторной установке коэффициент трения μ и угол α достаточно малы, то $\cos \alpha$ в формуле (6) можно заменить единицей. С учетом этого выражение для ускорения будет иметь вид:

$$a = g(\sin \alpha - \mu) \tag{7}$$

Таким образом, теоретическая зависимость ускорения a от $\sin \alpha$ является линейной и угловой коэффициент этой зависимости равен ускорению свободного падения g.

4 Схема работы

Рис. 2: Общий вид экспериментальной установки

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Тележка
- 3. Воздушный насос
- 4. Источник питания насоса ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3
- 11. Линейка угольник

По рельсу «1» скользит тележка «2». Для уменьшения трения между поверхностями рельса и тележки создается воздушная подушка с помощью воздушного насоса «3», подключенного к источнику питания «4». Электрические провода, подключающие воздушный насос к источнику питания, на рисунке не показаны. Высота рельса над опорной плоскостью «6» регулируется с помощью винтовых ножек опор «5». Электромагнит «7» фиксирует тележку в начале шкалы. Тележка снабжена флажком с черными вертикальными рисками. Цифровой измерительный прибор «9» фиксирует момент времени, скорость и ускорение тележки при прохождении флажка через оптические ворота «8». Запуск тележки и изменение режимов осуществляется пультом дистанционного управления «10». Угольник «11» используется для измерения вертикальной координаты точек рельса.

5 Полученные данные

х, м	х', м	h_0 , MM	h'_0 , MM
0.22	1.00	192	192

Погрешности: $\Delta x = \Delta x' = 5$ мм, $\Delta h_0 = \Delta h_0' = 0.5$ мм.

N	х1, м	х2, м	t1, c	t2, c
1	0.15	0.50	1.2	2.8
2	0.15	0.70	1.2	3.3
3	0.15	0.90	1.2	3.9
4	0.15	1.10	1.2	4.4
5	0.15	1.20	1.3	4.6

Погрешности: $\Delta x_1 = \Delta x_2 = 5$ мм, $\Delta t_1 = \Delta t_2 = 0.1$ с

№ Измерения	<i>h</i> , мм	h', мм	t_1 , c	t_2 , c
1	202	192	1.4	4.5
2	202	192	1.3	4.4
3	202	192	1.3	4.4
4	202	192	1.3	4.4
5	202	192	1.3	4.4
6	213	193	0.9	3.0
7	213	193	0.9	3.0
8	213	193	0.9	3.0
9	213	193	0.9	3.0
10	213	193	0.9	3.0
11	222	193	0.7	2.5
12	222	194	0.7	2.5
13	222	194	0.7	2.5
14	222	194	0.7	2.5
15	222	194	0.7	2.5
16	231	195	0.6	2.1
17	231	195	0.6	2.1
18	231	195	0.6	2.1
19	231	195	0.6	2.1
20	231	195	0.6	2.1
21	242	195	0.6	1.9
22	242	195	0.5	1.9
23	242	195	0.5	1.9
24	242	195	0.6	1.9
25	242	195	0.5	1.9

Погрешности: $\Delta h = \Delta h' = 5$ мм, $\Delta t_1 = \Delta t_2 = 0.1$ с

6 Обработка данных

С помощью питона обрабатываем данные и получаем:

Доверительный интервал для a ускорения: [0.105, 0.111] Относительная погрешность для a: 2.71~% $a=0.108 \mathrm{m/c^2}$

Значение ускорения свободного падения: $10.10~\rm m/c^2$ Абсолютная погрешность для g: $0.367~\rm m/c^2$ Абсолютная погрешность от табличного значения: $0.294~\rm m/c^2$ Относительная погрешность от табличного значения: 3%

Доверительный интервал для $g:10.098\pm0.366$

7 Заключение

- 1. Из выше приведенных графиков можно сделать вывод, что движение тележки равноускоренно, так как график прямая.
- 2. Так же можно утверждать, что ускорение свободного ускорения g примерно равно $10 \mathrm{m/c^2}$

Причины по которым ответ может отличаться от табличного значения:

- Так как все измерялось на столе который не был жестко закреплен, движение человека могли сказываться на движение тележки
- Сила трения на разных участках дороги может отличаться

8 Исправления

1. Схема работы:

- 2. Синус угла вычисяется по формуле: $\sin\theta = \frac{h'-h}{x_2-x_1}$
- 3. Ускорение свободного падения складывается из ускорения от гравитации и ускорения от центростремительного ускорения:

$$\Delta g = GM(\frac{1}{R_1^2} - \frac{1}{R_2^2}) - \frac{4\pi(R_1 - R_2)}{T}$$

Тогда вклад(%), который вносит центростремительный ускорение, ра $4\pi(R_1-R_2)$

вен:
$$\frac{\frac{4\pi(R_1-R_2)}{T}}{GM(\frac{1}{R_1^2}-\frac{1}{R_2^2})-\frac{4\pi(R_1-R_2)}{T}}\cdot 100$$