Performance Metrics and Clustering Analysis

Lesson 7

PROFESSIONAL & CONTINUING EDUCATION
UNIVERSITY of WASHINGTON

Lecture Overview

- Performance Metrics of Models
- ROC / AUC
- Imbalanced Data
- Clustering Analysis
- K-means Clustering

PROFESSIONAL & CONTINUING EDUCATION UNIVERSITY of WASHINGTON

Performance Metrics

Performance Metrics in Classification

		Actual	
		Positive	Negative
Predicted	Pos	n ₁₁	n ₁₂
	Neg	n ₂₁	n ₂₂

Type I error (False positive):

$$\Pr(\hat{y} = Pos \mid y = Neg) = n_{12} / (n_{12} + n_{22}) = n_{12} / n_{\bullet 2}$$

Type II error(False negative):

$$\Pr(\hat{y} = Neg \mid y = Pos) = n_{21} / (n_{11} + n_{21}) = n_{21} / n_{\bullet 1}$$

- Accuracy: $(n_{11} + n_{22})/(n_{11} + n_{22} + n_{12} + n_{21})$
- Sensitivity (True Positive Rate, Recall): Among the $(n_{11}+n_{21})$ true positive cases, the percentage that is predicted as positive:

$$Pr(\hat{y} = Pos \mid y = Pos) = n_{11}/(n_{11} + n_{21}) = n_{11}/n_{\bullet 1} = 1 - Type II Error$$

• Precision: Among the $(n_{11}+n_{12})$ predicted positive cases, the percentage that is actually positive:

$$Pr(y = Pos \mid \hat{y} = Pos) = n_{11}/(n_{11} + n_{12}) = n_{11}/n_{1\bullet}$$

PROFESSIONAL & CONTINUING EDUCATION
UNIVERSITY of WASHINGTON

F-Score

• Sometimes we want a single number that informs us of the quality of the solution. A popular way to combine precision (P) and recall (R) into a single number is by taking their harmonic mean. This is known as the balanced f-measure:

$$F = \frac{2 \times P \times R}{P + R}$$

PROFESSIONAL & CONTINUING EDUCATION

Note: Precision, recall, f-measure depend on what class is considered.

Example:

- Binary data set, flip positive and negative >
 different precision and recall
- Precision on flipped task != recall on original task
 - Or vice versa

Best advice:

 If less sure, report 2 sets of precision/recall/fmeasure which vary based on the class to spot.

ROFESSIONAL & CONTINUING EDUCATION

Example of Flipping Positive and Negative, and the Impacts on Performance Metrics

		Actual		
		Positive	Negative	
Predicted	Pos	n ₁₁	n ₁₂	
	Neg	n ₂₁	n ₂₂	

•	Accuracy:	$(n_{11} + n_{22})/(n_{11} + n_{22} + n_{12} + n_{21})$)
•	Sensitivity	(True Positive Rate	R

• **Sensitivity** (True Positive Rate, Recall): Among the $(n_{11}+n_{21})$ true positive cases, the percentage that is predicted as positive:

$$Pr(\hat{y} = Pos \mid y = Pos) = n_{11}/(n_{11} + n_{21})$$

• **Precision**: Among the $(n_{11}+n_{12})$ predicted positive cases, the percentage that is actually positive:

$$\Pr(y = Pos \mid \hat{y} = Pos) = n_{11} / (n_{11} + n_{12})$$

· Recall:

$$Pr(\hat{y} = Pos \mid y = Pos) = n_{22} / (n_{12} + n_{22})$$

· Precision:

$$Pr(y = Pos \mid \hat{y} = Pos) = n_{22} / (n_{21} + n_{22})$$

PROFESSIONAL & CONTINUING EDUCATION
UNIVERSITY of WASHINGTON

$\begin{tabular}{c|cccc} \bf Actual \\ \hline Negative & Positive \\ \hline Predicted & Neg & n_{11} & n_{12} \\ \hline Pos & n_{21} & n_{22} \\ \hline \end{tabular}$

Accuracy, Recall, and Precision All Depend on Threshold

 Usually, classification model always outputs probability that an observation belongs to a class

- Whether we assign label 0 or 1 depends on whether the probability is greater than a threshold
 - -In many algorithms, 0.5 is the default threshold

PROFESSIONAL & CONTINUING EDUCATION

UNIVERSITY of WASHINGTON

Let's See How the Threshold Impacts the Performance Metrics

Education	Age	Employer Sector	Prob(Salary>65k)	Actual	Threshold
usak cakaad	50	Government	0.38	_	0.5
High-School					0.5
Bachelor		Private	0.69		
Associate	30	Non-profit	0.61	0	
Bachelor	36	Private	0.73	1	
Master	42	Private	0.82	1	
PhD	48	Government	0.7	1	
Master	25	Private	0.56	1	
Associate	20	Non-profit	0.48	0	
Bachelor	37	Private	0.92	0	
PhD	51	Government	0.79	1	
		Actual			
		Positive	Negative		
Predict	Positive	6	2		
	Negative	C	2		
Recall=	100				
Precision=	75				

Education	Age	Employer Sector	Prob(Salary>65k)	Actual	Threshold
High-School	50	Government	0.38	0	0.8
Bachelor		Private	0.69		0.0
Associate		Non-profit	0.61		
Bachelor		Private	0.73		
Master		Private	0.73		
PhD		Government	0.7		
Master	25	Private	0.56	1	
Associate	20	Non-profit	0.48	C	
Bachelor	37	Private	0.92	C	
PhD	51	Government	0.79	1	
		Actual			
		Positive	Negative		
Predict	Positive	1			
	Negative	5	3		
Recall=	16.6666 7				
Precision=	50				

- Different threshold, you may get different performance metrics
- Is there a performance metrics that is independent with the threshold?

Summary

- >Performance Metrics for Classification Problems
 - -Recall, Precision % of actual positive,
 - -F-Score combination of precision and recall
 - -Type I errors false positive
 - -Type II errors false negative
- >Dependencies of Recall, Precision, F-Score, and Accuracy on Probability Threshold

