Thinking Outside the Die - Summary

The Grand ML Challenge

- Cerebras' goal: Accelerating AI with chip, system and software
- Exponential growth of memory requirements for NN over the years
- (Micro)architecture has improved over the years, however not in the same scale needed
 - O Cluster scale-up as an intermediate solution, but not future proof
- Massive models require massive memory, compute and communication
- New ways needed to scale up all of them

Amplifying Moore's Law

- Extending beyond a single die in the industry
 - At Cerebras: Wafer-Scale Engine
 - Largest chip in the world: Cluster scale acceleration on a single chip
 - Problems: Solved with co-design at TSMC etc.
 - Yield problem: Defects in the wafers
 - Redundant cores to replace defective cores
 - Lithography limitations
 - Using cross-die wires
 - Power and cooling
 - 3rd dimension with water cooling and power delivery perpendicular to wafer

Designing From Ground Up for Neural Networks

- NN expressed as GEMMs
- NN are naturally sparse or can be made sparse
 - O Up to 10x gains
- Existing GEMM architectures are dense-only
 - Memory bandwidth limitations and are structured in the computation
- Memory bandwidth limitations
 - Central shared memory is slow and far away
 - Need caching and date reuse
 - Better way: fully distributed memory with cores
 - Full memory bandwidth helps performance a lot
- Architecture for unstructured sparsity
 - Dataflow scheduling in hardware
 - Filter out 0s at hardware to skip unnecessary processing
- Near-linear sparsity acceleration

Inherently Scalable Clustering

- Challenges to existing scale-out solutions
 - o Data parallel, pipelined model parallel, tensor model parallel
 - Usually, high communication overhead or memory limits
 - Same limitations: memory tied to compute
- Cluster is the ML accelerator
 - o Disaggregation of memory and compute
 - o 850k compute cores in a single chip
 - o MemoryX technology, 120 trillion params
 - o SwarmX interconnect technology for near-linear performance scaling up to 192 CS-2s
- Solving latency problems
 - o Removing latency-sensitive communication
 - o Coarse-grained pipelining: no inter layer dependencies
 - Fine-grained pipelining
- MemoryX: scalable to extreme model sizes
 - o Independent from compute
- SwarmX: Weights are broadcast to all CS-2s and reduced on the way back
 - Independent from capacity