REKURSIV VA REKURSIV SANALUCSHI TOʻPLAMLAR.

Agar $f(x_1,x_2,...,x_n)$ funksiya φ va ψ funksiyalardan (1) munosabat orqali hosil etilsa, u holda f funksiya φ va ψ funksiyalardan **primitiv** (oʻta sodda) **rekursiya sxemasi** orqali hosil etilgan deyiladi.

Agar φ va ψ funksiyalar intuitiv hisoblanuvchi funksiyalar bo'lsa, u holda f ham intuitiv hisoblanuvchi funksiya bo'ladi.

Haqiqatan ham, $x_1, x_2, ..., x_n$ argumentlarning qiymatlar majmuasi $a_1, a_2, ..., a_n$ boʻlsin. U vaqtda ketma-ket quyidagilarni topamiz:

$$f(0, a_2, a_3, ..., a_n) = \varphi(a_2, a_3, ..., a_n) = b_0,$$

$$f(1, a_2, a_3, ..., a_n) = \psi(0, b_0, a_2, a_3, ..., a_n) = b_1,$$

$$f_2(2, a_2, a_3, ..., a_n) = \psi(1, b_1, a_2, a_3, ..., a_n) = b_2 \text{ Va hokazo.}$$

Ravshanki, agar φ va ψ funksiyalar argumentlarning barcha qiymatlarida aniqlangan boʻlsa, u holda f funksiya ham argumentlarning barcha qiymatlarida aniqlangan boʻladi.

Agar $f(x_1,x_2,...,x_n)$ funksiyani boshlang'ich (oddiy) funksiyalardan superpozitsiya va primitiv rekursiya sxemasi amallarini chekli sonda qo'llash natijasida hosil etish mumkin bo'lsa, u holda $f(x_1,x_2,...,x_n)$ ga primitiv rekursiv funksiya deb aytamiz.

Boshlang'ich 0(x) = 0, $\lambda(x) = x + 1$, $I_n^m(x_1, x_2, ..., x_n) = x_m$ $(1 \le m \le n)$ funksiyalar va $f(x_1, x_2, ..., x_n) = a$ $(a \in N)$, f(x, y) = x + y, $f(x, y) = x \cdot y$, $f(x, y) = x^y$ $(x^0 = 1)$ funksiyalar primitiv rekursiv funksiyalar boʻladi.

Agar $f(x_1,x_2,...,x_n)$ funksiyani boshlang'ich funksiyalardan superpozitsiya, primitiv rekursiya sxemasi va minimallash operatori (μ -operatori) amallarini chekli sonda qo'llash natijasida hosil etish mumkin bo'lsa, u holda $f(x_1,x_2,...,x_n)$ ga **qismiy rekursiv (rekursiv) funksiya** deb aytamiz.

Bu keyingi ta'rif primitiv rekursiv funksiyaning ta'rifidan faqat boshlang'ich funksiyalarga qo'shimcha ravishda μ -operatorini qo'llashga ruxsat berilgani bilan farq qiladi. Shuning uchun ham har qanday primitiv rekursiv funksiya o'z navbatida qismiy rekursiv funksiya bo'ladi.

Agar $f(x_1,x_2,...,x_n)$ funksiya qismiy rekursiv va argumentlarning barcha qiymatlarida aniqlangan boʻlsa, u holda $f(x_1,x_2,...,x_n)$ ga **umumrekursiv funksiya** deb aytiladi.

Quyidagi funksiyalar:

$$\lambda(x)$$
, $0(x)$, $I_n^m(x)$, $f(y,x) = y + x$, $f(y,x) = x \cdot y$, $f(y,x) = x + n$ umumrekursiv funksiyalar boʻladilar.

A.Chyorch tezisi. Har qanday intuitiv hisoblanuvchi funksiya qismiy rekursiv funksiya boʻladi.

Bu tezisni isbotlash mumkin emasligini yuqorida aytgan edik, chunki u intuitiv hisoblanuvchi funksiya noqat'iy matematik tushunchasini qat'iy aniqlangan qismiy rekursiv funksiya matematik tushunchasi bilan bog'laydi.

Teorema. $g(y_1, y_2, ..., y_k)$ - primitiv rekursiv (qismiy rekursiv) funksiya va $x_1, x_2, ..., x_n$ - har xil oʻzgaruvchilar boʻlsin. U vaqtda, agar har bir i $(1 \le i \le k)$ uchun z_i oʻzgaruvchi $x_1, x_2, ..., x_n$ oʻzgaruvchilarning biri boʻlsa, u holda $f(x_1, x_2, ..., x_n) = g(z_1, z_2, ..., z_k)$ funksiya ham primitiv rekursiv (qismiy rekursiv) funksiya boʻladi.

Isbot. $z_i = x_{ji}$ $(1 \le j_i \le n)$ boʻlsin. U vaqtda $z_i = I_{ji}^n(x_1, x_2, ..., x_n)$ va $\psi(x_1, x_2, ..., x_n) = \varphi(I_{ji}^n(x_1, x_2, ..., x_n), ..., I_{jk}^n(x_1, x_2, ..., x_n)).$

Shunday qilib, ψ funksiyani φ , I_{ji}^n ,..., I_{jk}^n funksiyalardan superpozitsiya amali orqali hosil etish mumkin, ya'ni ψ primitiv rekursiv (rekursiv) funksiya bo'ladi.

Bu teorema soxta oʻzgaruvchilarni kiritish, oʻzgaruvchilarning oʻrnini almashtirish va ularni aynan tenglashtirish jarayoni primitiv rekursiv va qismiy rekursiv funksiyalarni oʻz sinflaridan chiqarmasligini bildiradi.

misol. (Soxta argumentlarni kiritish.) Agar $\varphi(x_1, x_3)$ -primitiv rekursiv funksiya va $\psi(x_1, x_2, x_3) = \varphi(x_1, x_3)$ boʻlsa, u holda $\psi(x_1, x_2, x_3)$ ham primitiv rekursiv funksiya boʻladi. Isbot qilish uchun $z_1 = x_1$ va $z_2 = x_3$ deb belgilab, teoremadan foydalanish kerak.

misol. (O'zgaruvchilarning o'rnini almashtirish.) Agar $\varphi(x_1, x_2)$ - primitiv rekursiv funksiya va $\psi(x_1, x_2) = \varphi(x_1, x_2)$ bo'lsa, u holda ψ ham primitiv rekursiv funksiya bo'ladi. Isbot qilish uchun $z_1 = x_2$ va $z_2 = x_1$ deb belgilab, teoremadan foydalanish kerak.

misol. (Oʻzgaruvchilarni aynan tenglashtirish.) Agar $\varphi(x_1, x_2, x_3)$ - primitiv rekursiv funksiya va $\psi(x_1, x_2) = \varphi(x_1, x_2, x_3)$ boʻlsa, u holda $\psi(x_1, x_2)$ ham primitiv rekursiv funksiya boʻladi. Isbotlash uchun teoremada n = 2, $z_1 = x_1$, $z_2 = x_2$, $z_3 = x_1$, deb qabul qilish kerak.