Department of Computer Science & Engineering Indian Institute of Technology Kharagpur

Part-IV Machine Learning with Pandas

Instructions:

- Solve the problems using "Jupyter Notebook" linked to "Anaconda Navigator".
- For each problem, create a "Markdown" window, mention the problem you have asked to solve followed by "Code" window containing your program and output of the program.
- As comments as much as you can.
- Upload the .ipynb file. Give the name of your file as A8-<RollNo>.ipynb. You have to upload only one file in this lab.

Time: 2 hours Full Marks: 100

Problem 1:

(a) Create a emp.csv file with the following data.

ID Name			Gender	Age	Score	City
1	Alice		Female		9.8	NY
2	Bob	Male	27	6.5	MN	
3	Tom		Male	24		PA
4	Jerry			26	8.4	PN
5	Kim	Female	7.9		NY	
6	Honey	7		25		MM
7	Jisa	Female	21	9.0	PA	

- (b) Create a data frame from this emp.csv file.
- (c) Replace 'Female' as 0 and 'Male' as 1
- (d) Filling all the missing values in the column 'Score' with the average value in that column
- (e) Fill all the missing value in the column 'Gender' as 2
- (f) Change the name of the column 'Gender' as 'Sex'
- (g) Arrange the data group by 'City'
- (h) Add a column, say 'YOA' which is initially empty
- (i) Fill the values in each row of the column 'YOA' with data in the range [2022, 2023, 2024] at random.
- (j) Modify all the values in each row of the column 'Score' by adding 0.5 to each
- (k) Modify a specific entry, say Tom's age by 28
- (I) Save the data frame as emp2.csv

[36 points]

Problem 2:

Consider the "Breast Cancer data" from the link HERE.

- (a) Read the .csv file as a Pandas dataframe.
- (b) Convert all categorical attribute values to numerical values
- (c) Remove the column ID from the dataframe.
- (d) Split the dataframe into training and test sets using random sampling and in the ration 2:1.
- (e) Normalize the training and test data using "Standard Scaling"
- (f) Build the classification models using SVM, LR, RF, DT, XGBoost, Gradient Boosting algorithm.

- (g) Print the Confusion Matrix for each model
- (h) Store Accuracy, Precision, Recall and F1 Score for all the models in the form of a table.
- (i) Draw a group bar chart showing the comparison of all the models with respect to each performance estimation.

[64 points]