Registration problem in robotics using quaternion representation of SO(3) group

Nili Abtahi*

August 30, 2025

^{*}abtahi.niloofar.me@gmail.com

Abstract

Let $\{\mathbf{a}_i\}_{i=1}^N$ and $\{\mathbf{A}_i\}_{i=1}^N$ be three dimensional position vectors of N points in two coordinate systems S_a and S_A , respectively, that are related to each other by an unknown element g of SE(3), special Euclidean group. The aim is solve the least square problem $\mathbf{A}_i \approx g.\mathbf{r}_i$ for $i=1,\cdots,N$. In this work the problem is formulated mathematically and the Matlab code is provided.

Data registration problem

Let $\{\mathbf{a}_i\}_{i=1}^N$ and $\{\mathbf{A}_i\}_{i=1}^N$ be two sets of position vectors of N points in \mathbb{R}^3 that are measured, respectively, in two coordinate systems S_a and S_A . Let SE(3), SO(3) and \mathbb{R}^3 be, respectively, special Euclidean, special orthogonal (rotation) and translation groups in three dimensional Euclidean space. The aim, in data registration algorithm, is to find an element $F = [R, \mathbf{t}] \in SE(3)$, with rotation matrix $R \in SO(3)$ and translation vector $\mathbf{t} \in \mathbb{R}^3$, that solves the least square problem

$$\mathbf{A}_i \approx R\mathbf{a}_i + \mathbf{t}, \qquad i = 1, \cdots, N,$$
 (1)

or,

$$\min_{[R,\mathbf{t}]\in SE(3)} \sum_{i=1}^{N} \|R\mathbf{a}_i + \mathbf{t} - \mathbf{A}_i\|^2.$$
(2)

To tackle the minimization problem (2), it is useful to firstly define mean values

$$\bar{\mathbf{A}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{A}_i, \qquad \bar{\mathbf{a}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{a}_i, \tag{3}$$

and then the deviation vectors

$$\mathbf{A}_i' = \mathbf{A}_i - \bar{\mathbf{A}}, \qquad \mathbf{a}_i' = \mathbf{a}_i - \bar{\mathbf{a}}. \tag{4}$$

The total error in (2) is rewritten in terms of mean vectors, i.e. $\mathbf{a}_i = \mathbf{a}_i' + \bar{\mathbf{a}}$ and $\mathbf{A}_i = \mathbf{A}_i' + \bar{\mathbf{A}}$, to get,

$$E(R, \mathbf{t}) = \sum_{i=1}^{N} \|R\mathbf{a}_{i} + \mathbf{t} - \mathbf{A}_{i}\|^{2} = \sum_{i=1}^{N} \|R\mathbf{a}_{i}' + R\bar{\mathbf{a}} + \mathbf{t} - \mathbf{A}_{i}' - \bar{\mathbf{A}}\|^{2}$$

$$= \sum_{i=1}^{N} \|R\mathbf{a}_{i}' - \mathbf{A}_{i}'\|^{2} + \sum_{i=1}^{N} \|\mathbf{t} - \bar{\mathbf{A}} + R\bar{\mathbf{a}}\|^{2} + 2\left(\mathbf{t} - \bar{\mathbf{A}} + R\bar{\mathbf{a}}\right) \cdot \sum_{i=1}^{N} (R\mathbf{a}_{i}' - \mathbf{A}_{i}')$$

$$= \sum_{i=1}^{N} \|R\mathbf{a}_{i}' - \mathbf{A}_{i}'\|^{2} + N\|\mathbf{t} - \bar{\mathbf{A}} + R\bar{\mathbf{a}}\|^{2}, \qquad (5)$$

in which the following identity was used, due to the definition of deviation vectors,

$$\sum_{i=1}^{N} (R\mathbf{a}_{i}' - \mathbf{A}_{i}') = R \sum_{i=1}^{N} \mathbf{a}_{i}' - \sum_{i=1}^{N} \mathbf{A}_{i}' = \mathbf{0}.$$
 (6)

It is clear that the minimum error in (5) occurs when $\mathbf{t} = \mathbf{t}^*$ such that

$$\mathbf{t}^* = \bar{\mathbf{A}} - R \; \bar{\mathbf{a}}.\tag{7}$$

Inserting $\mathbf{t} = \mathbf{t}^*$ in (5) leads to, defining $e(R) := E(R, \mathbf{t} = \mathbf{t}^*)$,

$$e(R) = \sum_{i=1}^{N} \|R\mathbf{a}_{i}' - \mathbf{A}_{i}'\|^{2} = \sum_{i=1}^{N} \|\mathbf{A}_{i}'\|^{2} + \sum_{i=1}^{N} \|\mathbf{a}_{i}'\|^{2} - 2\sum_{i=1}^{N} \mathbf{A}_{i}'.R\mathbf{a}_{i}'.$$
 (8)

The minimum of e(R) in (8) occurs where the term $\sum_{i=1}^{N} \mathbf{A}'_{i}.R\mathbf{a}'_{i}$ is maximized. The equivalent problem to be solved is, therefore,

$$\max_{R \in SO(3)} \sum_{i=1}^{N} \mathbf{A}_{i}' . R\mathbf{a}_{i}'. \tag{9}$$

Let $q = (q_0, \mathbf{q}) \in \mathbb{H}^4$ be the unit quaternion generating $R \in SO(3)$ and $q^* = (q_0, -\mathbf{q}) \in \mathbb{H}^4$ be its conjugate. For the vectors $\mathbf{a}_i', \mathbf{A}_i' \in \mathbb{R}^3$, let $a_i' = (0, \mathbf{a}_i') \in \mathbb{H}^4$ and $A_i' = (0, \mathbf{A}_i') \in \mathbb{H}^4$ be pure quaternions, i.e. their scalar parts are zero. Also, the multiplication of quanternions $p, q \in \mathbb{H}$ is defined by

$$q.p = (q_0p_0 - \mathbf{q}.\mathbf{p}, q_0\mathbf{p} + p_0\mathbf{q} + \mathbf{q} \times \mathbf{p}).$$

The vector $\mathbf{b}_i := R\mathbf{a}_i$ is the vector part of the quantiernion $b_i := qa_i'q^*$, i.e. $q.a_i'.q^* = (0, \mathbf{b}_i^T)$. Accordingly, one can extend three-dimensional vectors in (9) as pure quaternions and write corresponding expression

$$\sum_{i=1}^{N} \mathbf{A}'_{i}.R\mathbf{a}'_{i} = \sum_{i=1}^{N} (R\mathbf{a}'_{i}).\mathbf{A}'_{i} = \sum_{i=1}^{N} (0, R\mathbf{a}'_{i}).(0, \mathbf{A}'_{i}) = \sum_{i=1}^{N} (qa'_{i}q^{*}).A'_{i} = \sum_{i=1}^{N} (qa'_{i}).(A'_{i}q),$$

where
$$a'_i = (0, \mathbf{a}'_i) := (0, a'_{i,1}, a'_{i,2}, a'_{i,3})$$
 and $A'_i = (0, \mathbf{A}'_i) := (0, A'_{i,1}, A'_{i,2}, A'_{i,3})$.

To transform quaternion multiplication to matrix product, the two following matrices are defined,

$$P_{i} = \begin{pmatrix} 0 & -a'_{i,1} & -a'_{i,2} & -a'_{i,3} \\ a'_{i,1} & 0 & a'_{i,3} & -a'_{i,2} \\ a'_{i,2} & -a'_{i,3} & 0 & a'_{i,1} \\ a'_{i,3} & a'_{i,2} & -a'_{i,1} & 0 \end{pmatrix}, \qquad Q_{i} = \begin{pmatrix} 0 & -A'_{i,1} & -A'_{i,2} & -A'_{i,3} \\ A'_{i,1} & 0 & -A'_{i,3} & A'_{i,2} \\ A'_{i,2} & A'_{i,3} & 0 & -A'_{i,1} \\ A'_{i,3} & -A'_{i,2} & A'_{i,1} & 0 \end{pmatrix}.$$
(10)

The expression (9) then becomes,

$$\max_{R \in SO(3)} \sum_{i=1}^{N} \mathbf{A}_{i}' \cdot R \mathbf{a}_{i}' = \max_{q \in \mathbb{H}} \sum_{i=1}^{N} (q a_{i}') \cdot (A_{i}' q) = \max_{q \in \mathbb{H}} \sum_{i=1}^{N} (P_{i} q) \cdot (Q_{i} q) = \max_{q \in \mathbb{H}} \sum_{i=1}^{N} q^{T} P_{i}^{T} Q_{i} q$$

$$= \max_{q \in \mathbb{H}} q^{T} \left(\sum_{i=1}^{N} P_{i}^{T} Q_{i} \right) q := \max_{q \in \mathbb{H}} q^{T} M q, \tag{11}$$

where

$$M = \sum_{i=1}^{N} P_i^T Q_i. \tag{12}$$

It is easy to show, by direct evaluation, that the matrix $P_i^TQ_i$ is symmetric, i.e. $\left(P_i^TQ_i\right)^T=P_i^TQ_i$, hence M is also symmetre. Therefore, the eigenvalues of M are all real, say $\lambda_1\geq\lambda_2\geq\lambda_3\geq\lambda_4$. Also, let $\{w_1,w_2,w_3,w_4\}$ be set of corresponding

unit orthogonal eigenvectors. This set spans \mathbb{R}^4 , hence evey quaternion in $\mathbb{H} \subset \mathbb{R}^4$ can be expanded in terms of the eigenvectors. Writing $q = c_1w_1 + c_2w_2 + c_3w_3 + c_4w_4$ for unknown coefficients $\{c_i\}_{i=1}^4$, and using eigen-pair equation $Mw_i = \lambda_i w_i$, then the equation (11) gives

$$\max_{R \in SO(3)} \sum_{i=1}^{N} \mathbf{A}_{i}' \cdot R \mathbf{a}_{i}' = \max_{q \in \mathbb{H}} q^{T} M q = \max_{q \in \mathbb{H}} \left(\lambda_{1} c_{1}^{2} + \lambda_{2} c_{2}^{2} + \lambda_{3} c_{3}^{2} + \lambda_{4} c_{4}^{2} \right), \tag{13}$$

and the unit quaternion condition is $c_1^2 + c_2^2 + c_3^2 + c_4^2 = 1$, The inequality $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \lambda_4$ shows that the solution is $c_1 = 1$ and $c_2 = c_3 = c_4 = 0$. Therefore, $q = w_1$, i.e. the eigenvector of M with largest eigenvalue.

Also, this solution gives the global maximum of $\sum_{i=1}^{N} \mathbf{A}'_i \cdot R\mathbf{a}'_i$ or, equivalenty, the global minimum of total error function (5). To see this, one may take a solution (c_1, c_2, c_3, c_4) such that $c_1 = 1 - c_2^2 - c_3^2 - c_4^2$. Then, the inequality $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \lambda_4$ implies that

$$F(c_1, c_2, c_3, c_4) := \lambda_1 c_1^2 + \lambda_2 c_2^2 + \lambda_3 c_3^2 + \lambda_4 c_4^2$$

$$= \lambda_1 - (\lambda_1 - \lambda_2) c_2^2 - (\lambda_1 - \lambda_3) c_3^2 - (\lambda_1 - \lambda_4) c_4^2$$

$$\leq \lambda_1 = F(1, 0, 0, 0),$$

as $\lambda_1 - \lambda_i \geq 0$ or $-(\lambda_1 - \lambda_i) c_i^2 \leq 0$ for i = 2, 3, 4. This argument shows that $F(c_1, c_2, c_3, c_4) \leq F(1, 0, 0, 0)$ for arbitrary $\{c_i\}_{i=1}^4$ satisfying $c_1^2 + c_2^2 + c_3^2 + c_4^2 = 1$, or, the solution $q = w_1$ is the global maximum of $q^T M q$.

Writing the components $q=w_1=(q_0,\mathbf{q})=(q_0,q_1,q_2,q_3)$, the rotation matrix associated to q is

$$R^* = R(q) = \begin{pmatrix} 1 - 2(q_2^2 + q_3^2) & 2(q_1q_2 - q_3q_0) & 2(q_1q_3 + q_2q_0) \\ 2(q_1q_2 + q_3q_0) & 1 - 2(q_1^2 + q_3^2) & 2(q_2q_3 - q_1q_0) \\ 2(q_1q_3 - q_2q_0) & 2(q_2q_3 + q_1q_0) & 1 - 2(q_1^2 + q_2^2) \end{pmatrix}.$$
(14)

Inserting the rotation matrix $R = R^*$ in equation (7), i.e. $\mathbf{t} = \mathbf{t}^* = \bar{\mathbf{A}} - R.\bar{\mathbf{a}}$ also gives the translation vector \mathbf{t} that completes the data registration problem.

To estimate the accuracy of the registration problem, the mean Euclidean error is defined by

meanError =
$$\frac{1}{N} \sqrt{\sum_{i=1}^{N} \|\mathbf{e}_i\|^2} = \frac{1}{N} \sqrt{\sum_{i=1}^{N} \|R^* \mathbf{a}_i + \mathbf{t}^* - \mathbf{A}_i\|^2},$$
 (15)

that will be used to justify accuracy of the registration problem.