Question number	Answer	Mark
14(a)	 Only a few particles were deflected So only a few came close enough to be deflected (so the charge must occupy a small volume) 	(2)
14 (b)		
	 Max 3 Alpha particles close to a -ve nucleus would experience a force towards it and be deviated slightly (ii) 1 Alpha particles close to a +ve nucleus would experience a force away from it and be deviated slightly (v) 1 Alpha particles very close to a -ve nucleus would experience a force towards it and be deviated right around it and back again (iii) Alpha particles approaching a +ve nucleus directly would experience a force away from it and be deviated right back again (vi) 	
14 (c)	 And All of the possible observed paths can be explained by both types of nucleus, so the suggestion is correct Calculates E_K in J 	(4)
17 (0)	• Use of $V = kq_1/r$ Or $E_{pot} = kq_1q_2/r$ • $r = 3.6 \times 10^{-14}$ m	(3)
	Example of calculation $E_{\rm K} = (6.29 \times 10^6) \ {\rm eV} \times 1.6 \times 10^{-19} \ {\rm C}$ $= 1.01 \times 10^{-12} \ {\rm J}$ $1.01 \times 10^{-12} \ {\rm J} = 8.99 \times 10^9 \times 2 \times 1.6 \times 10^{-19} \ {\rm C} \times 78 \times 1.6 \times 10^{-19} \ {\rm C} \ / {\rm r}$ $r = 3.6 \times 10^{-14} \ {\rm m}$ Total for question 14	9