Chi-Square Tests

(Source: Levine et al)

Contingency Tables

Contingency Tables

- Useful in situations comparing multiple population proportions
- Used to classify sample observations according to two or more characteristics
- Also called a cross-classification table.

Contingency Table Example

Left-Handed vs. Gender

Dominant Hand: Left vs. Right

Gender: Male vs. Female

- 2 categories for each variable, so this is called a 2 x 2 table
- Suppose we examine a sample of 300 children

Contingency Table Example

(continued)

Sample results organized in a contingency table:

sample size = n = 300:

120 Females, 12were left handed180 Males, 24 wereleft handed

	Hand Pre		
Gender	Left	Right	
Female	12	108	120
Male	24	156	180
	36	264	300

χ² Test for the Difference Between Two Proportions

```
H_0: p_1 = p_2 (Proportion of females who are left handed is equal to the proportion of males who are left handed)

H_1: p_1 \neq p_2 (The two proportions are not the same – hand preference is not independent of gender)
```

- If H₀ is true, then the proportion of left-handed females should be the same as the proportion of left-handed males
- The two proportions above should be the same as the proportion of left-handed people overall

The Chi-Square Test Statistic

The Chi-square test statistic is:

$$\chi^2_{CAL} = \sum_{all \text{ cells}} \frac{(f_o - f_e)^2}{f_e}$$

where:

f_o = observed frequency in a particular cell
 f_e = expected frequency in a particular cell if H_o is true

 χ_{CAL}^2 for the 2 x 2 case has 1 degree of freedom

(Assumed: each cell in the contingency table has expected frequency of at least 5)

Decision Rule

The χ^2_{CAL} test statistic approximately follows a chi-squared distribution with one degree of freedom

Computing the Average Proportion

120 Females, 12 were left handed

180 Males, 24 were left handed

Here:

$$\overrightarrow{p} = \frac{12 + 24}{120 + 180} = \frac{36}{300} = 0.12$$

i.e., based on all 300 children the proportion of left handers is 0.12, that is, 12%

Finding Expected Frequencies

- To obtain the expected frequency for left handed females, multiply the average proportion left handed (p) by the total number of females
- To obtain the expected frequency for left handed males, multiply the average proportion left handed (p̄) by the total number of males

If the two proportions are equal, then

P(Left Handed | Female) = P(Left Handed | Male) = .12

i.e., we would expect (.12)(120) = 14.4 females to be left handed (.12)(180) = 21.6 males to be left handed

Observed vs. Expected Frequencies

	Hand Pr			
Gender	Left	Right		
Female	Observed = 12	Observed = 108	120	
i emale	Expected = 14.4	Expected = 105.6	120	
Mala	Observed = 24	Observed = 156	180	
Male	Expected = 21.6	Expected = 158.4		
	36	264	300	

The Chi-Square Test Statistic

	Hand Preference		
Gender	Left	Right	
Female	Observed = 12 Expected = 14.4	Observed = 108 Expected = 105.6	120
Male	Observed = 24 Expected = 21.6	Observed = 156 Expected = 158.4	180
	36	264	300

The test statistic is:

$$\chi_{CAL}^{2} = \sum_{\text{all cells}} \frac{(f_{o} - f_{e})^{2}}{f_{e}}$$

$$= \frac{(12 - 14.4)^{2}}{14.4} + \frac{(108 - 105.6)^{2}}{105.6} + \frac{(24 - 21.6)^{2}}{21.6} + \frac{(156 - 158.4)^{2}}{158.4} = 0.7576$$

Decision Rule

The test statistic is $\chi = 0.7576$; $\chi_{0.05}^2$ with 1 d.f. = 3.841

Decision Rule:

If χ^2_{CAL} > 3.841, reject H₀, otherwise, do not reject H₀

Here, $\chi^2_{CAL} = 0.7576 < \chi^2_{0.05} = 3.841$, so we do not reject H_0 and conclude that there is not sufficient evidence that the two proportions are different at $\alpha = 0.05$

χ² Test of Independence

 Similar to the χ² test for equality of more than two proportions, but extends the concept to contingency tables with r rows and c columns

H₀: The two categorical variables are independent (i.e., there is no relationship between them)
 H₁: The two categorical variables are dependent (i.e., there is a relationship between them)

χ² Test of Independence

(continued)

The Chi-square test statistic is:

$$\chi_{CAL}^2 = \sum_{all \text{ cells}} \frac{(f_o - f_e)^2}{f_e}$$

where:

 f_o = observed frequency in a particular cell of the rxc table f_e = expected frequency in a particular cell if H_o is true

 χ^2_{CAL} for the r x c case has (r-1)(c-1) degrees of freedom

(Assumed: each cell in the contingency table has expected frequency of at least 1)

Expected Cell Frequencies

Expected cell frequencies:

row total = sum of all frequencies in the row column total = sum of all frequencies in the column n = overall sample size

Decision Rule

The decision rule is

If
$$\chi^2_{CAL} > \chi^2_{\alpha}$$
, reject H_0 , otherwise, do not reject H_0

Where χ_{α}^{2} is from the chi-squared distribution with (r-1)(c-1) degrees of freedom

Example

DC<mark>O</mark>VA

The meal plan selected by 200 students is shown below:

Class	Numbe			
Standing	20/week	10/week	none	Total
Fresh.	24	32	14	70
Soph.	22	26	12	60
Junior	10	14	6	30
Senior	14	16	10	40
Total	70	88	42	200

Example

(continued)

The hypothesis to be tested is:

H₀: Meal plan and class standing are independent (i.e., there is no relationship between them)

H₁: Meal plan and class standing are dependent (i.e., there is a relationship between them)

Example: Expected Cell Frequencies

Observed:

\Box	C() \/	/Δ
U		ノV	Δ

(continued)

Class	Number of meals per week			
Standing	20/wk	10/wk	none	Total
Fresh.	24	32	14	70
Soph.	22	26	12	60
Junior	10	14	6	30
Senior	14	16	10	40
Total	70	88	42	200

Example for one cell:

$$f_e = \frac{\text{row total} \times \text{column total}}{n}$$

$$=\frac{30\times70}{200}$$
 = 10.5

Expected cell frequencies if H₀ is true:

Class	Number of meals per week			
Standing	20/wk	10/wk	none	Total
Fresh.	24.5	30.8	14.7	70
Soph.	21.0	26.4	12.6	60
Junior	(10.5)	13.2	6.3	30
Senior	14.0	17.6	8.4	40
Total	70	88	42	200

Example: The Test Statistic

(continued)

DCOVA

The test statistic value is:

$$\chi_{CAL}^{2} = \sum_{\text{all cells}} \frac{(f_o - f_e)^2}{f_e}$$

$$= \frac{(24 - 24.5)^2}{24.5} + \frac{(32 - 30.8)^2}{30.8} + \mathbb{I} + \frac{(10 - 8.4)^2}{8.4} = 0.709$$

$$\chi^2_{0.05}$$
 = 12.592 from the chi-squared distribution with $(4-1)(3-1)=6$ degrees of freedom

Example: Decision and Interpretation

(continued)

The test statistic is $\chi_{CAL}^2 = 0.709$; $\chi_{0.05}^2$ with 6 d.f. = 12.592

Decision Rule:

If $\chi_{STAT}^2 > 12.592$, reject H₀, otherwise, do not reject H₀

Here,

 χ^2_{CAL} = 0.709 < $\chi^2_{0.05}$ = 12.592, so do not reject H₀ Conclusion: there is not sufficient evidence that meal plan and class standing are related at α = 0.05