# Red-Black Tree Example

## Remedying a Double Red

 Consider a double red with child z and parent v, and let w be the sibling of v

#### Case 1: *sibling of first red is black*

- The double red is an incorrect replacement of a 4-node
- Restructuring: we change the 4-node replacement



#### Case 2: sibling of first red is red

- The double red corresponds to an overflow
- Recoloring: we perform the equivalent of a split







#### insert 17









### Remedying a Double Black

• The algorithm for remedying a double black node w with sibling y considers three cases

Case 1: y is black and has a red child

We perform a restructuring, equivalent to a transfer, and we are done

Case 2: y is black and its children are both black

 We perform a recoloring, equivalent to a fusion, which may propagate up the double black violation

Case 3: y is red

- We perform an adjustment, equivalent to choosing a different representation of a 3-node, after which either Case 1 or Case 2 applies
- Deletion in a red-black tree takes  $O(\log n)$  time











delete 5

