

BEST AVAILABLE COPY

#4

PATENT APPLICATION

N THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of

Michio ONO

Appln. No.: 09/963,419

Confirmation No.: 8980

Filed: September 27, 2001

LIGHT-RECEIVING DEVICE AND IMAGE SENSOR

SUBMISSION OF PRIORITY DOCUMENTS

Commissioner for Patents Washington, D.C. 20231

Sir:

For:

Submitted herewith are two (2) certified copies of the priority documents on which claims to priority was made under 35 U.S.C. § 119. The Examiner is respectfully requested to acknowledge receipt of said priority documents.

SUGHRUE MION, PLLC

2100 Pennsylvania Avenue, N.W.

Washington, D.C. 20037-3213

Telephone: (202) 293-7060

Facsimile: (202) 293-7860

Enclosures:

Japan 2000-295255

Japan 2001-103858

PDO/slb

Date: January 11, 2002

Respectfully submitted,

Group Art Unit: 1745

Examiner: Not Yet Assigned

Peter D. Olexv

Registration No. 24,513

RECEIVED.

JAN 15 2002
TC 1700

ONO O66438
09/963,419
LIGHT-RECEIVING DEVICE AND IMAGE SENSOR
Peter D. Olexy 202-293-7060
1 of 2

本 国 特 許 庁 PATENT OFFICE

PATENT OFFICE JAPANESE GOVERNMENT

別紙添付め警額に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2000年 9月27日

出 願 番 号 Application Number:

特願2000-295255

出 願 人 Applicant (s):

富士写真フイルム株式会社

RECEIVED TO THE STORY

2001年 3月16日

特許庁長官 Commissioner, Patent Office

川輔

【書類名】

特許願

【整理番号】

FJ-0059

【提出日】

平成12年 9月27日

【あて先】

特許庁長官 殿

【国際特許分類】

G01J 1/02

G01J 1/48

H01L 31/08

【発明者】

【住所又は居所】

神奈川県南足柄市中沼210番地 富士写真フイルム株

式会社内

【氏名】

小野 三千夫

【特許出願人】

【識別番号】

000005201

【住所又は居所】 神奈川県南足柄市中沼210番地

【氏名又は名称】 富士写真フイルム株式会社

【代理人】

【識別番号】

100080012

【弁理士】

【氏名又は名称】

高石 橘馬

【電話番号】

03(5228)6355

【手数料の表示】

【予納台帳番号】

009324

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【物件名】

図面 1

【包括委任状番号】 9907443

【プルーフの要否】

要

【書類名】

明細書

【発明の名称】

髙感度受光素子およびイメージセンサー

【特許請求の範囲】

【請求項1】 導電層、イオン伝導性電解質層、色素で増感された半導体を含む感光層および対極を有し、光量変化に対して時間微分型の光電応答を出力することを特徴とする受光素子。

【請求項2】 請求項1に記載の受光素子において、イオン伝導性電解質層に レドックス種を含まないことを特徴とする受光素子。

【請求項3】 請求項1または2に記載の受光素子において、前記半導体が金属カルコゲニドであることを特徴とする受光素子。

【請求項4】 請求項1または2に記載の受光素子において、前記半導体がTi0 $_2$ 、Zn0、 $Sn0_2$ および $W0_3$ から選択される少なくとも一種の金属酸化物であることを特徴とする受光素子。

【請求項5】 請求項1~4のいずれかに記載の受光素子において、感光波長の異なる複数の半導体電極および対極を相互に間隙を設けて積層し、各半導体電極と対極との間隙にレドックス種を含まないイオン伝導性電解質層を設けたことを特徴とする受光素子。

【請求項6】 請求項5に記載の受光素子において、前記感光波長の異なる複数の半導体電極は、その感光波長領域が入射光側から短波長の順に積層されていることを特徴とする受光素子。

【請求項7】 請求項5または6に記載の受光素子において、入射光側から順にそれぞれ青色感光層、緑色感光層および赤色感光層を有する少なくとも3種の半導体電極を有することを特徴とする受光素子。

【請求光8】 請求項1~7に記載の受光素子を単位とする画素を複数配列させたことを特徴とするイメージセンサー。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、色素により増感された半導体電極を用いた受光素子に関するもので

、特に画像中の動く成分のみを選択的かつ即座に抽出することのできる新規な受 光素子に関する。

[0002]

【従来の技術】

近年、微細加工技術と光リソグラフィーの進歩によって画像情報の記録密度はますます向上する傾向にある。しかしながら現状の高感度センサーおよび高密度記録素子の開発は大部分をシリコンを基板とする微細加工技術に頼っており、シリコンとその接合素子の持つ特性が感光素子の機能を支配している現状である。従って、記録密度が向上しても、入力される画像情報の処理は回路とソフトウエアの側が負担することになる。

[0003]

例えば、シリコンを主体とする固体素子には、次世代の画像処理システムに要求されるさまざまな機能、すなわち動物の視覚が持つパターン認識や動きの抽出といった情報の識別に必要な処理機能が備わっておらず、視覚情報処理システムとして固体素子を働かせるためには、出力情報を処理するコンピューター側の負担が大きくならざるを得ない。

[0004]

ところで、光入力信号の変化を直接電気信号に変換する機能を有する、いわゆる微分応答型受光素子としては、透明電極/バクテリオロドプシン薄膜/電解質/対極の構成(特開平3-205520号)、および透明電極/電解質/シリコン基板の構成からなる電気化学セル(特開平11-37838号)が知られている。前者は、素子自体が光量変化に対して微分応答する最初の例として知られるものであるが、最大の欠点は感度が非常に低いことであり、またタンパク質を用いているため、その安定性も懸念される。一方後者の受光素子は、感度を改良するものであるが、シリコン基板を用いる故に、従来の光センサーと同様な以下のような欠点を持っている。第1にSiウエハの精密加工や蒸着が必要となりコストが高くなること、第2にシリコンを用いると赤外光(熱線)に敏感なために屋内の暗光源下では画像検出のS/N比が低下することから赤外カットフィルターが必要となることである。またいずれの受光素子においても、分光波長特性の選択肢が小さいため

、カラーセンサー用途には不向きである。

【発明が解決しようとする課題】

本発明の目的は、上記問題点を克服した新規な微分応答型受光素子を提供することである。さらには、色情報をも識別できるカラー微分応答センサーを提供することである。

[0005]

【課題を解決するための手段】

上記課題は、下記の本発明を特定する事項およびその好ましい態様により達成された。

- (1) 導電層、イオン伝導性電解質層、色素で増感された半導体を含む感光 層および対極を有し、光量変化に対して時間微分型の光電応答を出力することを 特徴とする受光素子。
- (2) (1) に記載の受光素子において、イオン伝導性電解質層にレドックス種を含まないことを特徴とする受光素子。
- (3) (1) または(2) に記載の受光素子において、前記半導体が金属カルコゲニドであることを特徴とする受光素子。
- (4) (1)または(2)に記載の受光素子において、前記半導体が TiO_2 、 ZnO_2 、 SnO_2 および WO_3 から選択される少なくとも一種の金属酸化物であることを特徴とする受光素子。
- (5) (1)~(4)のいずれかに記載の受光素子において、感光波長の異なる複数の半導体電極および対極を相互に間隙を設けて積層し、各半導体電極と対極との間隙にレドックス種を含まないイオン伝導性電解質層を設けたことを特徴とする受光素子。
- (6) (5) に記載の受光素子において、感光波長領域が入射光側から短波長の順に積層されていることを特徴とする受光素子。
- (7) (5)または(6)に記載の受光素子において、入射光側から順にそれ ぞれ青色感光層、緑色感光層および赤色感光層を有する少なくとも3種の半導体 電極を有することを特徴とする受光素子。
- (8) (1)~(7)に記載の受光素子を単位とする画素を複数配列させたこ

[0006]

【発明の実施の形態】

以下、本発明を詳細に説明する。

[0007]

本発明の受光素子の基本構成は、Nature (第353 巻、第737 ~740 頁、1991年) および米国特許4927721 号等に開示されている、色素増感された酸化物半導体を用いた光電変換素子(以後、色素増感光電変換素子と略す)と類似している。この色素増感光電変換素子は導電性支持体上の感光層(作用極)/電荷移動層/対極からなり、感光層は表面に色素が吸着した半導体を含む。電荷移動層は酸化還元体からなり、作用極で色素の光励起電荷分離で生成した色素ホールへの電子供与および対極側での電子受容を行い、作用極と対極との間での電荷輸送を担うことにより、作用極と対極間の回路に定常的な電流を流し続ける。

[0008]

これに対して、本発明の素子では、前記色素増感光電変換素子と異なり、酸化還元体を含む電荷移動層の代りに、色素ホールへの電子供与作用または対極からの電子受容作用の無い、あるいはいずれの作用も無いイオン伝導性電解質を用いる。本発明の素子の受光面に光が照射され感光層中の色素が励起されると、励起色素から電子が酸化物半導体に注入され、電子は回路を通し、対極側に移行する。その結果、感光層中には色素ホール(通常カチオンまたはカチオンラジカル)が生成し、対極側は負に分極した電荷分離状態が達成される。イオン伝導性電解質中のアニオンとカチオンは、電荷分離状態を安定化するように、作用極側と対極側に分配し、両極に電気2重層が形成される。光照射onでの電気2重層充電電流、および光照射offでの放電電流が、光強度に対して微分的な応答を示す。すなわち、換言すれば、本発明の受光素子は光を起電力とした電気2重層コンデンサーである。

[0009]

次に、本発明の受光素子について詳細に説明する。

[0010]

[1] 受光素子

本発明の受光素子は、好ましくは図1に示すように、導電層10、下塗り層60、感光層20、イオン伝導性電解質層30、対極導電層40の順に積層し、前記感光層20を色素22によって増感された半導体微粒子21と当該半導体微粒子21の間の空隙に浸透した電解質材料23とから構成する。電解質材料23は、イオン伝導性電解質層30に用いる材料と同じ成分からなる。また受光素子に強度を付与するため、導電層10および/または対極導電層40の下地として、基板50を設けてもよい。以下本発明では、導電層10および任意で設ける基板50からなる層を「導電性支持体」、対極導電層40および任意で設ける基板50からなる層を「対極」と呼ぶ。さらに、導電性支持体および感光層からなる層を「作用極」と呼ぶ。なお、図1中の導電層10、対極導電層40、基板50は、それぞれ透明導電層10a、透明対極導電層40a、透明基板50aであっても良い。

[0011]

図1に示す本発明の受光素子において、半導体微粒子がn型である場合、色素22により増感された半導体微粒子21を含む感光層20に入射した光は色素22等を励起し、励起された色素22等中の高エネルギーの電子が半導体微粒子21の伝導帯に渡され、さらに拡散により導電層10に到達する。このとき色素22等の分子は酸化体となっている。本発明の受光素子においては、導電層10中の電子が外部回路を通って対極導電層40に到達する。イオン伝導性電解質層30は、イオン配向により、作用極-対極間の電荷分離状態を安定化する。それぞれの層の境界(例えば導電層10と感光層20との境界、感光層20とイオン伝導性電解質層30との境界、イオン伝導性電解質層30との境界、イオン伝導性電解質層30との境界、イオン伝導性電解質層30との境界、イオン伝導性電解質層30との境界、が相互に拡散混合していてもよい。以下各層について詳細に説明する。

[0012]

(A) 導電性支持体

導電性支持体は、(1)導電層の単層、又は(2)導電層及び基板の2層からなる。(1)の場合は、導電層として強度や密封性が十分に保たれるような材料が使用され、例えば、金属材料(白金、金、銀、銅、亜鉛、チタン、アルミニウム等又はこれらを含む合金)を用いることができる。(2)の場合、感光層側に導電剤を

含む導電層を有する基板を使用することができる。好ましい導電剤としては金属 (例えば白金、金、銀、銅、亜鉛、チタン、アルミニウム、インジウム等又はこ れらを含む合金)、炭素、又は導電性金属酸化物(インジウムースズ複合酸化物、 酸化スズにフッ素又はアンチモンをドープしたもの等)が挙げられる。導電層の 厚さは0.02~10μm程度が好ましい。

[0013]

導電性支持体は表面抵抗が低い程よい。好ましい表面抵抗の範囲は50Ω/ロ以 下であり、さらに好ましくは20Ω/口以下である。

[0014]

導電性支持体側から光を照射する場合には、導電性支持体は実質的に透明であ るのが好ましい。実質的に透明であるとは、可視~近赤外領域(400~1200nm)の 光の一部又は全域において透過率が10%以上であることを意味し、50%以上であ るのが好ましく、80%以上がより好ましい。特に、感光層が感度を有する波長域 の透過率が高いことが好ましい。

[0015]

透明導電性支持体としては、ガラス又はプラスチック等の透明基板の表面に導 電性金属酸化物からなる透明導電層を塗布又は蒸着等により形成したものが好ま しい。透明導電層として好ましいものは、フッ素もしくはアンチモンをドーピン グした二酸化スズあるいはインジウム-スズ酸化物(ITO)である。透明基板には 低コストと強度の点で有利なソーダガラス、アルカリ溶出の影響のない無アルカ リガラスなどのガラス基板のほか、透明ポリマーフィルムを用いることができる 。透明ポリマーフィルムの材料としては、トリアセチルセルロース(TAC)、ポリ エチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、シンジオタク チックポリステレン(SPS)、ポリフェニレンスルフィド(PPS)、ポリカーボネート (PC)、ポリアリレート(PAr)、ポリスルフォン(PSF)、ポリエステルスルフォン(P ES)、ポリイミド(PI)、ポリエーテルイミド(PEI)、環状ポリオレフィン、ブロム 化フェノキシ等がある。十分な透明性を確保するために、導電性金属酸化物の塗 布量はガラス又はプラスチックの支持体 1 m^2 当たり $0.01 \sim 100 \text{ g}$ とするのが好まし ٧١₀

[0016]

透明導電性支持体の抵抗を下げる目的で金属リードを用いるのが好ましい。金属リードの材質は白金、金、ニッケル、チタン、アルミニウム、銅、銀等の金属が好ましい。金属リードは透明基板に蒸着、スパッタリング等で設置し、その上に導電性の酸化スズ又はITO膜からなる透明導電層を設けるのが好ましい。金属リード設置による入射光量の低下は、好ましくは10%以内、より好ましくは1~5%とする。

[0017]

(B) 感光層

感光層において、半導体は感光体として作用し、光を吸収して電荷分離を行い、電子と正孔を生ずる。色素増感された半導体では、光吸収及びこれによる電子及び正孔の発生は主として色素において起こり、半導体微粒子はこの電子(又は正孔)を受け取り、伝達する役割を担う。本発明で用いる半導体は、光励起下で伝導体電子がキャリアーとなり、アノード電流を与えるn型半導体であることが好ましい。

[0018]

(1)半導体

半導体としては、シリコン、ゲルマニウムのような単体半導体、III-V系化合物半導体、金属のカルコゲニド(例えば酸化物、硫化物、セレン化物、又はそれらの複合物等)、又はペロブスカイト構造を有する化合物(例えばチタン酸ストロンチウム、チタン酸カルシウム、チタン酸ナトリウム、チタン酸バリウム、ニオブ酸カリウム等)等を使用することができる。

[0019]

好ましい金属のカルコゲニドとして、チタン、スズ、亜鉛、鉄、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、又はタンタルの酸化物、カドミウム、亜鉛、鉛、銀、アンチモン又はビスマスの硫化物、カドミウム又は鉛のセレン化物、カドミウムのテルル化物等が挙げられる。他の化合物半導体としては亜鉛、ガリウム、インジウム、カドミウム等のリン化物、ガリウムーヒ素又は銅ーイン

特2000-295255

ジウムのセレン化物、銅-インジウムの硫化物等が挙げられる。さらには、 M_x O_yS_z 又は $M_{1x}M_{2y}O_z$ (M、 M_1 及び M_2 はそれぞれ金属元素、Oは酸素、x、y、zは価数が中性になる組み合わせの数)の様な複合物も好ましく用いることができる。

[0020]

本発明に用いる半導体の好ましい具体例は、Si、 TiO_2 、 SnO_2 、 Fe_2O_3 、 WO_3 、ZnO0、 Nb_2O_5 、CdS、ZnS、PbS、 Bi_2S_3 、CdSe、CdTe、 $SrTiO_3$ GaP、InP、GaAs $CuInS_2$ $CuInSe_2$ 等であり、より好ましくは TiO_2 、ZnO0、 SnO_2 Fe_2O_3 WO_3 Nb_2O_5 CdS0 Spb0、 $SrTiO_3$ SnD_2 SnD_2 SnD_2 SnD_2 SnD_2 SnD_3 SnD_2 SnD_3 SnD_2 SnD_3 SnD_3

[0021]

本発明に用いる半導体は単結晶でも多結晶でもよいが、製造コスト、原材料確保、エネルギーペイバックタイム等の観点からは多結晶が好ましく、半導体微粒子からなる多孔質膜が特に好ましい。また、一部アモルファス部分を含んでいてもよい。

[0022]

半導体微粒子の粒径は一般にnm~μmのオーダーであるが、投影面積を円に換算したときの直径から求めた一次粒子の平均粒径は5~200nmであるのが好ましく、8~100nmがより好ましい。また分散液中の半導体微粒子(二次粒子)の平均粒径は0.01~30μmが好ましい。粒径分布の異なる2種類以上の微粒子を混合してもよく、この場合小さい粒子の平均サイズは25nm以下であるのが好ましく、より好ましくは10nm以下である。入射光を散乱させて光捕獲率を向上させる目的で、粒径の大きな、例えば100nm以上、300nm程度の半導体粒子を混合することも好ましい。

[0023]

半導体微粒子の種類も異なる2種以上の混合であってもよい。2種以上の半導体微粒子を混合して使用する場合、1種は ${
m Ti0}_2$ 、 ${
m Zn0}$ 、 ${
m Nb}_2{
m O}_5$ もしくは ${
m SrTi0}_3$ であることが好ましい。またもう1種としては ${
m Sn0}_2$ 、 ${
m Fe}_2{
m O}_3$ 、 ${
m WO}_3$ であることが好ましい。さらに好ましい組み合わせとしては、 ${
m Zn0}$ と ${
m Sn0}_2$ 、 ${
m Zn0}$ と ${
m WO}_3$ 又は ${
m Zn0}$ 、 ${
m Sn0}_2$ と ${
m WO}_3$ などの組み合わせを挙げることができる。2種以上の半導体微粒子を混合して用いる場合、それぞれの粒径が異なっていても良い。特に上記1種目で挙げた半導体微粒子の粒径が大きく、2種目以降で挙げた半導体微粒子が小さい組み合わせが好ましい。好ましくは大きい粒径の粒子が100nm以上で、小さい粒径の粒子が15nm以下の組み合わせである。

[0024]

半導体微粒子の作製法としては、作花済夫の「ゾルーゲル法の科学」アグネ承風社(1998年)、技術情報協会の「ゾルーゲル法による薄膜コーティング技術」(1995年)等に記載のゾルーゲル法、杉本忠夫の「新合成法ゲルーゾル法による単分散粒子の合成とサイズ形態制御」、まてりあ、第35巻、第9号、1012~1018頁(1996年)に記載のゲルーゾル法が好ましい。またDegussa社が開発した塩化物を酸水素塩中で高温加水分解により酸化物を作製する方法も好ましい。

[0025]

半導体微粒子が酸化チタンの場合、上記ゾルーゲル法、ゲルーゾル法、塩化物の酸水素塩中での高温加水分解法はいずれも好ましいが、さらに清野学の「酸化チタン 物性と応用技術」技報堂出版(1997年)に記載の硫酸法及び塩素法を用いることもできる。さらにゾルーゲル法として、Barbeらのジャーナル・オブ・アメリカン・セラミック・ソサエティー、第80巻、第12号、3157~3171頁(1997年)に記載の方法や、Burnsideらのケミストリー・オブ・マテリアルズ、第10巻、第9号、2419~2425頁に記載の方法も好ましい。

[0026]

(2)半導体微粒子層

半導体微粒子を導電性支持体上に塗布するには、半導体微粒子の分散液又はコロイド溶液を導電性支持体上に塗布する方法の他に、前述のゾルーゲル法等を使

用することもできる。受光素子の量産化、半導体微粒子液の物性、導電性支持体の融通性等を考慮した場合、湿式の製膜方法が比較的有利である。湿式の製膜方法としては、塗布法、印刷法、電解析出法及び電着法が代表的である。また、金属を酸化する方法、金属溶液から配位子交換等で液相にて析出させる方法(LPD法)、スパッタ等で蒸着する方法、CVD法、あるいは加温した基板上に熱分解する金属酸化物プレカーサーを吹き付けて金属酸化物を形成するSPD法を利用することもできる。

[0027]

半導体微粒子の分散液を作製する方法としては、前述のゾルーゲル法の他に、 乳鉢ですり潰す方法、ミルを使って粉砕しながら分散する方法、あるいは半導体 を合成する際に溶媒中で微粒子として析出させそのまま使用する方法等が挙げら れる。

[0028]

分散媒としては、水又は各種の有機溶媒(例えばメタノール、エタノール、イソプロピルアルコール、シトロネロール、ターピネオール、ジクロロメタン、アセトン、アセトニトリル、酢酸エチル等)が挙げられる。分散の際、必要に応じて例えばポリエチレングリコール、ヒドロキシエチルセルロース、カルボキシメチルセルロースのようなポリマー、界面活性剤、酸、又はキレート剤等を分散助剤として用いてもよい。ポリエチレングリコールの分子量を変えることで、分散液の粘度が調節可能となり、さらに剥がれにくい半導体層を形成したり、半導体層の空隙率をコントロールしたりできるので、ポリエチレングリコールを添加することは好ましい。

[0029]

塗布方法としては、アプリケーション系としてローラ法、ディップ法等、メータリング系としてエアーナイフ法、ブレード法等、またアプリケーションとメータリングを同一部分にできるものとして、特公昭58-4589号に開示されているワイヤーバー法、米国特許2681294号、同2761419号、同2761791号等に記載のスライドホッパー法、エクストルージョン法、カーテン法等が好ましい。また汎用機としてスピン法やスプレー法も好ましい。温式印刷方法としては、凸版、オフセ

[0030]

半導体微粒子の層は単層に限らず、粒径の違った半導体微粒子の分散液を多層塗布したり、種類が異なる半導体微粒子(あるいは異なるバインダー、添加剤)を含有する塗布層を多層塗布したりすることもできる。一度の塗布で膜厚が不足の場合にも多層塗布は有効である。

[0031]

一般に半導体微粒子層の厚さ(感光層の厚さと同じ)が厚くなるほど単位投影面積当たりの担持色素量が増えるため、光の捕獲率が高くなるが、生成した電子の拡散距離が増すため電荷再結合によるロスも大きくなる。したがって、半導体微粒 粒子層の好ましい厚さは $0.1\sim100\,\mu$ mである。光電池に用いる場合、半導体微粒子層の厚さは $1\sim30\,\mu$ mが好ましく、 $2\sim25\,\mu$ mがより好ましい。半導体微粒子の支持体 $1\,\mathrm{m}^2$ 当たり塗布量は $0.5\sim100\,\mathrm{g}$ が好ましく、 $3\sim50\,\mathrm{g}$ がより好ましい。

[0032]

半導体微粒子を導電性支持体上に塗布した後で半導体微粒子同士を電子的に接触させるとともに、塗膜強度の向上や支持体との密着性を向上させるために、加熱処理するのが好ましい。好ましい加熱温度の範囲は40℃以上700℃以下であり、より好ましくは100℃以上600℃以下である。また加熱時間は10分~10時間程度である。ポリマーフィルムのように融点や軟化点の低い支持体を用いる場合、高温処理は支持体の劣化を招くため、好ましくない。またコストの観点からもできる限り低温(例えば50℃~350℃)であるのが好ましい。低温化は、5 nm以下の小さい半導体微粒子や鉱酸、金属酸化物プレカーサーの存在下での加熱処理等により可能となり、また、紫外線、赤外線、マイクロ波等の照射や電界、超音波を印加することにより行うこともできる。同時に不要な有機物等を除去する目的で、上記の照射や印加のほか加熱、減圧、酸素プラズマ処理、純水洗浄、溶剤洗浄、ガス洗浄等を適宜組み合わせて併用することが好ましい。

[0033]

加熱処理後、半導体微粒子の表面積を増大させたり、半導体微粒子近傍の純度を高め、色素から半導体微粒子への電子注入効率を高める目的で、例えば四塩化チタン水溶液を用いた化学メッキ処理や三塩化チタン水溶液を用いた電気化学的メッキ処理を行ってもよい。また、半導体微粒子からイオン伝導性電解質層へ逆電流が流れるのを防止する目的で、粒子表面に色素以外の電子電導性の低い有機物を吸着させることも有効である。吸着させる有機物としては疎水性基を持つ物が好ましい。

[0034]

半導体微粒子層は、多くの色素を吸着することができるように大きい表面積を 有することが好ましい。半導体微粒子の層を支持体上に塗布した状態での表面積 は、投影面積に対して10倍以上であるのが好ましく、さらに100倍以上であるの が好ましい。この上限は特に制限はないが、通常1000倍程度である。

[0035]

(3)色素

感光層に用いる増感色素は、可視域や近赤外域に吸収を有し、半導体を増感し うる化合物なら任意に用いることができるが、有機金属錯体色素、メチン色素、 ポルフィリン系色素又はフタロシアニン系色素が好ましく、特に有機金属錯体色 素が好ましい。また、光電変換の波長域をできるだけ広くし、かつ変換効率を上 げるため、二種類以上の色素を併用又は混合することができる。この場合、目的 とする光源の波長域と強度分布に合わせるように、併用又は混合する色素とその 割合を選ぶことができる。

[0036]

こうした色素は半導体微粒子の表面に対して吸着能力の有る適当な結合基(interlocking group)を有しているのが好ましい。好ましい結合基としては、COOH基、OH基、SO3H基、 $-P(0)(OH)_2$ 基又は $-OP(0)(OH)_2$ 基のような酸性基、あるいはオキシム、ジオキシム、ヒドロキシキノリン、サリチレート又は α -ケトエノレートのような π 伝導性を有するキレート化基が挙げられる。なかでもCOOH基、 $-P(0)(OH)_2$ 基又は $-OP(0)(OH)_2$ 基が特に好ましい。これらの基はアルカリ金属等と塩を形成していてもよく、また分子内塩を形成していてもよい。またポリメチン

色素の場合、メチン鎖がスクアリリウム環やクロコニウム環を形成する場合のように酸性基を含有するなら、この部分を結合基としてもよい。

[0037]

以下、感光層に用いる好ましい増感色素を具体的に説明する。

(a)有機金属錯体色素

色素が金属錯体色素である場合、金属フタロシアニン色素、金属ポルフィリン 色素又はルテニウム錯体色素が好ましく、ルテニウム錯体色素が特に好ましい。 ルテニウム錯体色素としては、例えば米国特許4927721号、同4684537号、同5084 365号、同5350644号、同5463057号、同5525440号、特開平7-249790号、特表平10 -504512号、W098/50393号、特開2000-26487号等に記載の錯体色素が挙げられる

[0038]

さらに本発明で用いるルテニウム錯体色素は下記一般式(I):

$$(A_1)_{\mathbf{p}} \mathbf{R} \mathbf{u} (\mathbf{B} - \mathbf{a}) (\mathbf{B} - \mathbf{b}) (\mathbf{B} - \mathbf{c})$$
 $\cdot \cdot \cdot (\mathbf{I})$

により表されるのが好ましい。一般式(I)中、 A_1 は1又は2座の配位子を表し、C1、SCN、 H_2 0、Br、I、CN、NCO及びSeCN、ならびに β ージケトン類、シュウ酸及びジチオカルバミン酸の誘導体からなる群から選ばれた配位子が好ましい。pは $0\sim3$ の整数である。B-a、B-b及びB-cはそれぞれ独立に下記式 $B-1\sim B-10$:

[0039]

【化1】

[0040]

(ただし、 R_{11} は水素原子又は置換基を表し、置換基としてはたとえば、ハロゲン原子、炭素原子数 $1\sim12$ の置換又は無置換のアルキル基、炭素原子数 $7\sim12$ の置換又は無置換のアラルキル基、炭素原子数 $6\sim12$ の置換又は無置換のアリール基、あるいは前述の酸性基(これらの酸性基は塩を形成していてもよい)やキレート化基が挙げられ、アルキル基及びアラルキル基のアルキル部分は直鎖状でも分

岐状でもよく、またアリール基及びアラルキル基のアリール部分は単環でも多環 (縮合環、環集合)でもよい。)により表される化合物から選ばれた有機配位子を表す。B-a、B-b及びB-cは同一でも異なっていてもよく、いずれか1つ又は2つでもよい。

[0041]

有機金属錯体色素の好ましい具体例を以下に示すが、本発明はこれらに限定されるものではない。

[0042]

【化2】

 $(A_1)_p$ Ru(B-a)(B-b)(B-c) $\cdot \cdot \cdot (1)$

	A ₁	Р	B-a	B-b	В-с	R ₁₁
R-1	SCN	2	B-1	B-1		_
R-2	CN	2	B-1	B-1	_	
R-3	CI	2	B-1	B-1	_	_
R-4	CN	2	B-7	B-7		_
R-5	SCN	2	B-7	B-7		_
R-6	SCN	2	B-1	B-2	_	Н
R-7	SCN	1	B-1	B-3		_
R-8	CI	. 1	B-1	B-4	_	Н
R-9	1	2	B-1	B-5	_	Н
R-10	SCN	3	B-8			
R-11	CN	3	B-8	-	_	_
R-12	SCN	1	B-2	B-8	_	н
R-13		0	B-1	B-1	B-1	

[0043]

【化3】

R-15

$$H_3C$$
 CH_2
 CH_3
 CH_3
 CH_2
 CH_2
 CH_3
 CH_2
 $COOH$
 $COOH$
 $COOH$
 $COOH$

R-16

HOOC
$$H_3$$
C H_3 C $H_$

[0044]

(b)メチン色素

特2000-295255

本発明に使用する色素の好ましいメチン色素は、シアニン色素、メロシアニン色素、スクワリリウム色素などのポリメチン色素である。本発明で好ましく用いられるポリメチン色素の例は、特開平11-35836号、特開平11-67285号、特開平11-86916号、特開平11-97725号、特開平11-158395号、特開平11-163378号、特開平11-214730号、特開平11-214731号、特開平11-238905号、特開2000-26487号、欧州特許892411号、同911841号及び同991092号の各明細書に記載の色素である。好ましいメチン色素の具体例を下に示す。

[0045]

【化4】

M-1 H₃C CH₃ OH CH O

M-2 HO_2C $C_3H_7(n)$ $C_3H_7(n)$ $C_3H_7(n)$ $C_3H_7(n)$ $C_3H_7(n)$

M-3 CH-CH $C_2H_4CO_2H$

M-4 HO_2C S CH-CH N PO_3H_2

M-5 HO_2C $(n)C_3H_7$ $C_3H_7(n)$ O $(n)C_3H_7$ $C_3H_7(n)$ CO_2H CH_3 O CH_3

[0046]

【化5】

M-7
$$HO_2C$$
 $(n)C_3H_7$ $(n)C_3H_7$ $C_3H_7(n)$ $(n)C_3H_7$ CO_2 CH_3 CH_3

[0047]

(4)半導体微粒子への色素の吸着

半導体微粒子に色素を吸着させるには、色素の溶液中に良く乾燥した半導体微粒子層を有する導電性支持体を浸漬するか、色素の溶液を半導体微粒子層に塗布する方法を用いることができる。前者の場合、浸漬法、ディップ法、ローラ法、エアーナイフ法等が使用可能である。浸漬法の場合、色素の吸着は室温で行ってもよいし、特開平7-249790号に記載されているように加熱還流して行ってもよい。また後者の塗布方法としては、ワイヤーバー法、スライドホッパー法、エクストルージョン法、カーテン法、スピン法、スプレー法等がある。色素を溶解する溶媒として好ましいのは、例えば、アルコール類(メタノール、エタノール、tーブタノール、ベンジルアルコール等)、ニトリル類(アセトニトリル、プロピオニトリル、3-メトキシプロピオニトリル等)、ニトロメタン、ハロゲン化炭化水素(ジクロロメタン、ジクロロエタン、クロロホルム、クロロベンゼン等)、エーテル類(ジエチルエーテル、テトラヒドロフラン等)、ジメチルスルホキシド、アミド類(N,N-ジメチルホルムアミド、N,N-ジメチルアセタミド等)、N-メチルピロリドン、1,3-ジメチルイミダゾリジノン、3-メチルオキサゾリジノン、エステル類

(酢酸エチル、酢酸ブチル等)、炭酸エステル類(炭酸ジエチル、炭酸エチレン、炭酸プロピレン等)、ケトン類(アセトン、2-ブタノン、シクロヘキサノン等)、炭化水素(ヘキサン、石油エーテル、ベンゼン、トルエン等)やこれらの混合溶媒が挙げられる。

[0048]

色素の全吸着量は、多孔質半導体電極基板の単位表面積(1 m²)当たり0.01~10 0mmolが好ましい。また色素の半導体微粒子に対する吸着量は、半導体微粒子1g 当たり0.01~1 mmolの範囲であるのが好ましい。このような色素の吸着量とすることにより半導体における増感効果が十分に得られる。これに対し、色素が少なすぎると増感効果が不十分となり、また色素が多すぎると半導体に付着していない色素が浮遊し、増感効果を低減させる原因となる。色素の吸着量を増大させるためには、吸着前に加熱処理を行うのが好ましい。加熱処理後、半導体微粒子表面に水が吸着するのを避けるため、常温に戻さずに、半導体電極基板の温度が60~150℃の間で素早く色素の吸着操作を行うのが好ましい。また、色素間の凝集などの相互作用を低減する目的で、無色の化合物を色素に添加し、半導体微粒子に共吸着させてもよい。この目的で有効な化合物は界面活性な性質、構造をもった化合物であり、例えば、カルボキシル基を有するステロイド化合物(例えばケノデオキシコール酸)や下記の例のようなスルホン酸塩類が挙げられる。

[0049]

【化6】

[0050]

未吸着の色素は、吸着後速やかに洗浄により除去するのが好ましい。湿式洗浄槽を使い、アセトニトリル等の極性溶剤、アルコール系溶剤のような有機溶媒で

洗浄を行うのが好ましい。色素を吸着した後にアミン類や4級塩を用いて半導体 微粒子の表面を処理してもよい。好ましいアミン類としてはピリジン、4-t-ブチ ルピリジン、ポリビニルピリジン等が挙げられ、好ましい4級塩としてはテトロ ブチルアンモニウムヨージド、テトラヘキシルアンモニウムヨージド等が挙げら れる。これらが液体の場合はそのまま用いてもよいし、有機溶媒に溶解して用い てもよい。

[0051]

(C) イオン伝導性電解質層

イオン伝導性電解質層に用いる電解質としては、イオン伝導性材料であれば特に限定されるものではなく、従来公知の電解質であれば何れを用いても構わない。電解質中に含まれるイオンの種類は特に限定されないが、本発明の作動電圧(素子に使用する材料や構成により変化するが通常1V以下)において酸化も還元も受けず、電子伝導性の無い安定なものが好ましい。本発明で用いることのできる代表的な電解質の例としては、イオンが溶解した溶液(電解液)、電解液をポリマーマトリクスのゲルに含浸したいわゆるゲル電解質、溶融塩電解質、さらにはポリマー電解質や無機固体電解質(伝導性のイオン結晶など)などの固体電解質が挙げられる。

[0052]

(1)溶融塩電解質

溶融塩電解質とは、室温において液状であるか、または低融点の塩であり、例えばW095/18456号、特開平8-259543号、電気化学,第65巻,11号,923頁(1997年)等に記載されているピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩等の既知の電解質を挙げることができる。100℃以下、特に室温付近において液状となる溶融塩が好ましい。

[0053]

好ましく用いることのできる溶融塩としては、下記一般式(Y-a)、(Y-b)及び(Y-c)のいずれかにより表されるものが挙げられる。

[0054]

【化7】

$$\begin{pmatrix}
Q_{y1} \\
N^{+} \\
R_{y1}
\end{pmatrix} X^{-} \qquad (Y-a)$$

$$R_{y2} \xrightarrow{R_{y1}} R_{y4} \qquad X \qquad \cdots \qquad (Y-b)$$

$$R_{y3}$$

$$R_{y_1}$$
 R_{y_2} R_{y_6} R_{y_5} R_{y_4} R_{y_4} R_{y_5} R_{y_4} R_{y_5} R_{y_4}

[0055]

一般式(Y-a)中、 Q_{y1} は窒素原子と共に5又は6員環の芳香族カチオンを形成しうる原子団を表す。 Q_{y1} は炭素原子、水素原子、窒素原子、酸素原子及び硫黄原子からなる群から選ばれる1種以上の原子により構成されるのが好ましい。 Q_{y1} により形成される5員環は、オキサゾール環、チアゾール環、イミダゾール環、ピラゾール環、イソオキサゾール環、チアジアゾール環、オキサジアゾール環、トリアゾール環、インドール環またはピロール環であるのが好ましく、オキサゾール環、チアゾール環又はイミダゾール環であるのがより好ましく、オキサゾール環又はイミダゾール環であるのが特に好ましい。 Q_{y1} により形成される6員環は、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環又はトリアジン環であるのが好ましく、ピリジン環であるのがより好ましい。

[0056]

一般式 (Y-b) 中、 A_{y1} は窒素原子又はリン原子を表す。

[0057]

一般式 (Y-a)、 (Y-b) 及び (Y-c) 中の X はアニオンを表し、ハロゲン化物

イオン(C1¯、Br¯、I¯等)、SCN¯、BF $_4$ ¯、PF $_6$ ¯、C10 $_4$ ¯、(CF $_3$ S0 $_2$) $_2$ N¯、(CF $_3$ CF $_2$ S 0 $_2$) $_2$ N¯、CH $_3$ S0 $_3$ ¯、CF $_3$ S0 $_3$ ¯、CF $_3$ CO0¯、Ph $_4$ B¯、(CF $_3$ S0 $_2$) $_3$ C¯等が好ましい例として挙げられ、SCN¯、CF $_3$ S0 $_3$ ¯、CF $_3$ CO0¯、(CF $_3$ S0 $_2$) $_2$ N¯又はBF $_4$ ¯であるのがより好ましい。

[0058]

一般式(Y-a)、(Y-b)及び(Y-c)中のR_{y1}~R_{y6}はそれぞれ独立に置換又は無置換のアルキル基(好ましくは炭素原子数 1 ~ 24、直鎖状であっても分岐状であっても、また環式であってもよく、例えばメチル基、エチル基、プロピル基、イソプロピル基、ペンチル基、ヘキシル基、オクチル基、2-エチルヘキシル基、t-オクチル基、デシル基、ドデシル基、テトラデシル基、2-ヘキシルデシル基、オクタデシル基、シクロヘキシル基、シクロペンチル基等)、或いは置換又は無置換のアルケニル基(好ましくは炭素原子数 2 ~ 24、直鎖状であっても分岐状であってもよく、例えばビニル基、アリル基等)を表し、より好ましくは炭素原子数 2 ~ 18のアルキル基又は炭素原子数 2 ~ 18のアルケニル基であり、特に好ましくは炭素原子数 2 ~ 6のアルキル基である。

[0059]

また、一般式(Y-b)中の $R_{y1}\sim R_{y4}$ のうち2つ以上が互いに連結し TA_{y1} を含む非芳香族環を形成してもよく、一般式(Y-c)中の $R_{y1}\sim R_{y6}$ のうち2つ以上が互いに連結して環構造を形成してもよい。

[0060]

一般式(Y-a)、(Y-b)及び(Y-c)中のQy1及びRy1~Ry6は置換基を有していてもよく、好ましい置換基の例としては、ハロゲン原子(F、Cl、Br、I等)、シアノ基、アルコキシ基(メトキシ基、エトキシ基、メトキシエトキシ基、メトキシエトキシ基等)、アリーロキシ基(フェノキシ基等)、アルキルチオ基(メチルチオ基、エチルチオ基等)、アルコキシカルボニル基(エトキシカルボニル基等)、炭酸エステル基(エトキシカルボニルオキシ基等)、アシル基(アセチル基、プロピオニル基、ベンゾイル基等)、スルホニル基(メタンスルホニル基等)、スルホニルオキシ基、ベンゾイルオキシ基等)、スルホニルオキシ基、トルエンス

ルホニルオキシ基等)、ホスホニル基(ジエチルホスホニル基等)、アミド基(アセチルアミノ基、ベンゾイルアミノ基等)、カルバモイル基(N,N-ジメチルカルバモイル基等)、アルキル基(メチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、2-カルボキシエチル基、ベンジル基等)、アリール基(フェニル基、トルイル基等)、複素環基(ピリジル基、イミダゾリル基、フラニル基等)、アルケニル基(ビニル基、1-プロペニル基等)、シリル基、シリルオキシ基等が挙げられる。

[0061]

一般式(Y-a)、(Y-b)又は(Y-c)により表される化合物は、 Q_{y1} 又は R_{y1} ~ R_{y1} 0 R_{y1} 0R

[0062]

これらの溶融塩は、単独で使用しても、2種以上混合して使用してもよい。また、LiIやCF $_3$ COOLi、CF $_3$ COONa、LiSCN、NaSCNなどのアルカリ金属塩を添加することもできる。アルカリ金属塩の添加量は、 $0.02\sim2$ 質量%程度であるのが好ましく、 $0.1\sim1$ 質量%がさらに好ましい。

[0063]

本発明で好ましく用いられる溶融塩の具体例を以下に挙げるが、これらに限定されるわけではない。

[0064]

【化8】

[0065]

【化9】

(Y7)Y7-1 X=BF₄ Y7-2 $X=N(SO_2CF_3)_2$ Y7-3 X=CF3COO Y7-4 X=SCN (8)Y8-1 X=BF₄ Y8-2 $X=N(SO_2CF_3)_2$ Y8-3 X=PF6 Y8-4 X=CF3COO Y8-5 X=SCN Y8-6 X=CF₃SO₃ (Y9) Y9-1 X=BF₄ X $Y9-2 X=N(SO_2CF_3)_2$ Y9-3 X=CF3COO CH2CH2O)2C2H5 Y9-4 X=SCN Y9-5 X=CF₃SO₃ (Y10) Y10-1 X=BF₄ Y10-2 X=N(SO₂CF₃)₂ (CH₂CH₂O)₃CH₃ (Y11)Y11-1 X=BF₄ Y11-2 X=N(SO₂CF₃)₂ CH₂CH₂O)₃CH₃ [0066]

【化10】

(Y12)
$$(n)C_4H_9 \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} C_4H_9(n)$$

$$(CH_2)_6 \xrightarrow{N} C_4H_9(n)$$

$$(Y13) \xrightarrow{N+} C_4H_9(n)$$

$$(Y13) \xrightarrow{N+} C_4H_9(n)$$

$$(Y14) \xrightarrow{N+} C_6H_{13}(n)$$

$$(Y14) \xrightarrow{N+} C_6H_{13}(n)$$

$$(Y15) \xrightarrow{N+} (CH_2)_6 \xrightarrow{N} CH_3$$

$$(Y15-2 X=N(SO_2CF_3)_2$$

$$(Y16) \xrightarrow{X} \xrightarrow{N} (CH_2)_6 \xrightarrow{N} CH_3$$

$$(Y16-1 X=BF_4 Y16-2 X=N(SO_2CF_3)_2$$

[0067]

【化11】

【化12】

(Y23) $C_4H_9(n)$ X Y23-1 X=BF₄ Y23-2 X=N(SO₂CF₃)₂ (Y24) $C_4H_9(n)$ Y24-1 X=BF₄ Y24-2 X=N(SO₂CF₃)₂ CH₃CH₂(OCH₂CH₂)₂ (CH₂CH₂O)₂CH₂CH₃

(Y25)
$$X^{-}$$
 Y25-1 X=BF₄ Y25-2 X=N(SO₂CF₃)₂ (CH₂CH₂O)₂OCH₂CH₃

[0069]

【化13】

(Y28)

$$X^{-}$$
 $Y28-1$
 $X=BF_4$
 $Y28-2$
 $X=N(SO_2CF_3)_2$

(Y29)

 X^{-}
 $Y28-1$
 $Y28-2$
 $X=N(SO_2CF_3)_2$
 $Y29-1$
 $Y29-1$
 $Y29-2$
 $Y29-2$

[0070]

上記溶融塩電解質は常温で溶融状態であるものが好ましく、溶媒を用いない方が好ましい。後述する溶媒を添加しても構わないが、溶融塩の含有量は電解質組成物全体に対して50質量%以上であるのが好ましく、90質量%以上であるのが特に好ましい。

[0071]

(2) 電解液

イオン伝導性電解質層に電解液を使用する場合、電解液は電解質塩、溶媒、および添加物から構成されることが好ましい。

[0072]

電解質塩は、溶媒に溶解し、電離するものであれば、特に限定されない。具体的には、前記溶融塩の項(1)で例示したような有機カチオンあるいは金属カチオン(Li^+ 、 K^+ 、 Na^+ 、 Ce^{2+} など)と一般式(Y-a)、(Y-b)、(Y-c)のアニオン X^- を組み合わせた電解質塩が好ましい例として挙げられる。

[0073]

電解質に使用する溶媒は、粘度が低くイオン移動度を向上したり、もしくは誘電率が高く有効キャリアー濃度を向上したりして、優れたイオン伝導性を発現できる化合物であることが望ましい。このような溶媒としては、エチレンカーボネート、プロピレンカーボネートなどのカーボネート化合物、3-メチル-2-オキサゾリジノンなどの複素環化合物、ジオキサン、ジエチルエーテルなどのエーテル

化合物、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテルなどの鎖状エーテル類、メタノール、エタノール、エチレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテルなどのアルコール類、エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリンなどの多価アルコール類、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル化合物、ジメチルスルホキシド、スルホランなど非プロトン極性物質、水などが挙げられ、これらを混合して用いることもできる。

[0074]

(3) ゲル電解質

本発明では、電解質はポリマー添加、オイルゲル化剤添加、多官能モノマー類を含む重合、ポリマーの架橋反応等の手法により、前述の溶融塩電解質や電解液をゲル化(固体化)させて使用することもできる。ポリマー添加によりゲル化させる場合は、 "Polymer Electrolyte Reviews-1 および 2" (J.R.MacCallumとC. A. Vincentの共編、ELSEVIER APPLIED SCIENCE)に記載された化合物を使用することができるが、特にポリアクリロニトリル、ポリフッ化ビニリデンを好ましく使用することができる。オイルゲル化剤添加によりゲル化させる場合はJ. Chem Soc. Japan, Ind. Chem.Sec., 46,779(1943), J. Am. Chem. Soc., 111,5542(1989), J. Chem. Soc., Chem. Commun., 1993, 390, Angew. Chem. Int. Ed. Engl., 35,1949(1996), Chem. Lett., 1996, 885, J. Chm. Soc., Chem. Commun., 1997,545に記載されている化合物を使用することができるが、好ましい化合物は分子構造中にアミド構造を有する化合物である。電解液をゲル化した例は特開平11-185863号に、溶融塩電解質をゲル化した例は特開2000-58140号に記載されており、本発明にも適用できる。

[0075]

また、ポリマーの架橋反応により電解質をゲル化させる場合、架橋可能な反応

性基を含有するポリマーおよび架橋剤を併用することが望ましい。この場合、好ましい架橋可能な反応性基は、アミノ基、含窒素複素環(例えば、ピリジン環、イミダゾール環、チアゾール環、オキサゾール環、トリアゾール環、モルホリン環、ピペリジン環、ピペラジン環など)であり、好ましい架橋剤は、窒素原子に対して求電子反応可能な 2 官能以上の試薬(例えば、ハロゲン化アルキル、ハロゲン化アラルキル、スルホン酸エステル、酸無水物、酸クロライド、イソシアネート、 α 、 β -不飽和スルホニル基、 α 、 β -不飽和カルボニル基、 α 、 β -不飽和ニトリル基など)であり、特開2000-17076号、同2000-86724号に記載されている架橋技術も適用できる。

[0076]

(4) 高分子固体電解質

高分子化合物としては、高分子化合物自体が電解質塩を溶解してイオン伝導性を示すもの、或いは、高分子化合物自体は電解質を溶解できないものであっても 電解質を溶解することができる溶媒を用いて、高分子化合物がイオン伝導性を示すようになるものを用いることができる。

[0077]

前者の高分子化合物としては、例えば、ポリエチレングリコール、主鎖にポリアクリル酸、ポリメタクリル酸、ポリエチレンオキシド、ポリプロピレンオキシド、ポリビニルアルコール、ポリフォスファゼン、ポリシラン等、また、それらの共重合体等の構造を有し、側鎖にポリオキシエチレン構造を有する高分子化合物等を用いることができる。これらの電解質を溶解できる高分子化合物であっても、前述の電解質塩を溶解することができる溶媒を併用することができる。

[0078]

これに対して、後者の高分子化合物としては、例えば、ポリ塩化ビニル、ポリアクリロニトリル、ポリエチレン、ポリプロピレン、ポリエステル、ポリアクリレートまた、それらの共重合体等を用いることができる。なお、上述の高分子化合物は、架橋構造を有するものであっても良い。

[0079]

(5)電解質中の添加物

また、本発明では、J. Am. Ceram. Soc .,80 (12)3157-3171(1997)に記載されているようなtert-ブチルピリジンや、2-ピコリン、2,6-ルチジン等の塩基性化合物を前述の溶融塩電解質や電解液に添加することが好ましい。塩基性化合物を添加する場合の好ましい濃度範囲は0.05M以上2M以下である。

[0080]

(6) イオン伝導性電解質層の形成

イオン伝導性電解質層の形成方法に関しては2通りの方法が考えられる。1つは感光層の上に先に対極を貼り合わせておき、その間隙に液状の電解質を挟み込む方法である。もう1つは感光層上に直接、電解質を付与する方法で、対極はその後付与することになる。

[0081]

前者の場合、電解質の挟み込み方法として、浸漬等による毛管現象を利用する 常圧プロセス、または常圧より低い圧力にして間隙の気相を液相に置換する真空 プロセスを利用できる。

[0082]

後者の場合、湿式のイオン伝導性電解質層においては未乾燥のまま対極を付与し、エッジ部の液漏洩防止措置を施すことになる。またゲル電解質の場合には湿式で塗布して重合等の方法により固体化する方法があり、その場合には乾燥、固定化した後に対極を付与することもできる。

[0083]

固体電解質の場合には真空蒸着法やCVD法等のドライ成膜処理でイオン伝導性電解質層を形成し、その後対極を付与することもできる。

[0084]

(D) 対極

対極は前記の導電性支持体と同様に、導電性材料からなる対極導電層の単層構造でもよいし、対極導電層と支持基板から構成されていてもよい。対極導電層に用いる導電材としては、金属(例えば白金、金、銀、銅、アルミニウム、マグネシウム、インジウム等)、炭素、または導電性金属酸化物(インジウムースズ複合酸化物、フッ素ドープ酸化スズ等)が挙げられる。この中でも白金、金、銀、銅

、アルミニウム、マグネシウムを対極層として好ましく使用することができる。 対極の好ましい支持基板の例は、ガラスまたはプラスチックであり、これに上記 の導電剤を塗布または蒸着して用いる。対極導電層の厚さは特に制限されないが 、3nm~10μmが好ましい。対極層の表面抵抗は低い程よい。好ましい表面抵抗 の範囲としては50Ω/ロ以下であり、さらに好ましくは20Ω/ロ以下である。

[0085]

導電性支持体と対極のいずれか一方または両方から光を照射してよいので、感光層に光が到達するためには、導電性支持体と対極の少なくとも一方が実質的に透明であれば良い。発電効率の向上の観点からは、導電性支持体を透明にして、光を導電性支持体側から入射させるのが好ましい。この場合対極は光を反射する性質を有するのが好ましい。このような対極としては、金属または導電性の酸化物を蒸着したガラスまたはプラスチック、あるいは金属薄膜を使用できる。

[0086]

対極は、イオン伝導性電解質層上に直接導電材を塗布、メッキまたは蒸着(PVD、CVD)するか、導電層を有する基板の導電層側を貼り付ければよい。また、導電性支持体の場合と同様に、特に対極が透明の場合には、対極の抵抗を下げる目的で金属リードを用いるのが好ましい。なお、好ましい金属リードの材質および設置方法、金属リード設置による入射光量の低下等は導電性支持体の場合と同じである。

[0087]

(E) その他の層

対極と導電性支持体の短絡を防止するため、予め導電性支持体と感光層の間に 緻密な半導体の薄膜層を下塗り層として塗設しておくことが好ましく、イオン伝 導性電解質層に電子輸送材料や正孔輸送材料を用いる場合は、特に有効である。 下塗り層として好ましいのは TiO_2 、 SnO_2 、 Fe_2O_3 、 WO_3 、ZnO、 Nb_2O_5 であり、さら に好ましくは TiO_2 である。下塗り層は、例えばElectrochim。Acta 40,643-652(1995)に記載されているスプレーパイロリシス法の他、スパッタ法等により塗設 することができる。下塗り層の好ましい膜厚は5~1000nm以下であり、10~500nm がさらに好ましい。

[0088]

また、設置される環境に応じて、電極として作用する導電性支持体と対極の一方または両方の外側表面、導電層と基板の間または基板の中間に、保護層、反射防止層等の機能性層を設けても良い。これらの機能性層の形成には、その材質に応じて塗布法、蒸着法、貼り付け法等を用いることができる。

[0089]

(F) 受光素子の内部構造の具体例

上述のように、受光素子の内部構造は目的に合わせ様々な形態が可能である。 大きく2つに分ければ、両面から光の入射が可能な構造と、片面からのみ可能な 構造が可能である。図2~図9に本発明に好ましく適用できる受光素子の内部構 造を例示する。

[0090]

図2は、透明導電層10aと透明対極導電層40aとの間に、感光層20と、イオン伝 導性電解質層30とを介在させたものであり、両面から光が入射する構造となって いる。図3は、透明基板50a上に一部金属リード11を設け、さらに透明導電層10a を設け、下塗り層60、感光層20、イオン伝導性電解質層30および対極導電層40を この順で設け、さらに支持基板50を配置したものであり、導電層側から光が入射 する構造となっている。図4は、支持基板50上にさらに導電層10を有し、下塗り 層60を介して感光層20を設け、さらにイオン伝導性電解質層30と透明対極導電層 40aとを設け、一部に金属リード11を設けた透明基板50aを、金属リード11側を内 側にして配置したものであり、対極側から光が入射する構造である。図5は、透 明基板50a上に一部金属リード11を設け、さらに透明導電層10a(または40a)を設 けたもの1組の間に下塗り層60と感光層20とイオン伝導性電解質層30とを介在さ せたものであり、両面から光が入射する構造である。図6は、透明基板50a上に 透明導電層10a、下塗り層60、感光層20、イオン伝導性電解質層30および対極導 電層40を設け、この上に支持基板50を配置したものであり導電層側から光が入射 する構造である。図7は、支持基板50上に導電層10を有し、下塗り層60を介して 感光層20を設け、さらにイオン伝導性電解質層30および透明対極導電層40aを設 け、この上に透明基板50aを配置したものであり、対極側から光が入射する構造

である。図8は、透明基板50a上に透明導電層10aを有し、下塗り層60を介して感 光層20を設け、さらにイオン伝導性電解質層30および透明対極導電層40aを設け 、この上に透明基板50aを配置したものであり、両面から光が入射する構造となっている。図9は、支持基板50上に導電層10を設け、下塗り層60を介して感光層 20を設け、さらに固体のイオン伝導性電解質層30を設け、この上に一部対極導電 層40または金属リード11を有するものであり、対極側から光が入射する構造となっている。

[0091]

[2] 積層型カラーセンサー

本発明の受光素子をカラーセンサーとして応用した例について述べる。これは、感光波長領域の異なる複数の半導体電極を光の入射方向に積層した新規な層構成を有するものである。

[0092]

本発明のカラー光センサーは、感光波長領域の異なる複数の半導体電極と、少なくとも1つの対極と、イオン伝導性電解質層とを有し、前記感光波長領域の異なる複数の半導体電極及び対極は相互に間隙を設けて積層され、各半導体電極と対極との間隙にはイオン伝導性電解質層が充填されている。それぞれの層の境界では、各層の構成成分同士が相互に拡散混合していてもよい。

[0093]

ここで用いる半導体電極およびイオン伝導性電解質層は、前述〔1〕で述べた ものと同様のものを用いることができる。

[0094]

対極は、感光波長領域の異なる半導体電極に対応して複数設けても良いし、複数の半導体電極に共通する共通対極を1層のみ設けてもよい。後者の場合、前記複数の半導体電極のすべてがイオン伝導性電解質層を介して対極と電気的に接触している必要があるため、半導体電極及び/または対極に電荷移動用のリーク孔を設ける。

[0095]

上記のカラー光センサーの構成に加えて、機械的強度を付与するため、必要に

応じて導電層および/または対極に支持体を設けてもよい。支持体の片面にのみ 半導体電極(対極)を設けても良いし、支持体の両面にそれぞれ感光波長領域の 異なる2層の半導体電極(対極)を設けても良い。

[0096]

本発明においては、感光波長領域の異なる複数の半導体電極のすべての感光層に光を到達させる必要があるため、前述の光入射側の半導体感光層(たとえば青色感光層)を担持した導電層(および必要に応じて用いるその支持体)が実質的に光学的に透明でなければならない。また、その他の色素増感半導体感光層を担持する導電層や支持体も同様に透明であり、上層の感光層を透過した光が導電層を透過し下層の感光層に至る状況が満足されていなければならない。ただし、最下層の感光層の導電層及びその支持体は、その下層に感光層が配置していない場合は、不透明であってもよい。同様に、最下層が対極である場合は、対極およびその支持体は不透明であってよい。

[0097]

カラー光センサーの分光性を向上するためには、各半導体電極がシャープな分光波長特性を有することが好ましく、半導体電極のうち少なくとも1層は、色素を吸着した半導体微粒子を感光層に含有することが好ましい。具体的には、青色(B)、緑色(G)、赤色(R)の3色の波長領域にそれぞれ独立に強い吸収を持った色素増感半導体電極を設けることが好ましい。なお、色素を吸着しない半導体電極とする場合、半導体層には可視光波長領域に光学吸収を持つ半導体が用いられ、このような半導体としては、例えばCdS,CdSe,GaAs、GaP,Siなどの半導体が有効である。

[0098]

また、感光波長領域の異なる半導体感光層が積層された構造において、光入射側に最も近い感光層から最も遠い感光層向かって、感光波長が長波長となる順序で配置することが好ましい。また、半導体感光層が青色感光層(B層)、緑色感光層(G層)、赤色感光層(R層)の3層からなる場合、光入射側から順次、B層、G層、R層の順で配置されていることが好ましい。

[0099]

本発明の受光素子の内部構造は、たとえば、図10~図12に示すように目的 に合わせ様々な形態が可能である。

[0100]

図10は本発明に基づいたもっとも単純な構成の例であり、3層の半導体電極と、1層の共通対極を用いた構成の例である。ガラスのような透明な支持体100を3枚使用し、第1の支持体100の下面に透明な青色半導体電極200aを設け、第2の支持体100の上面に透明な緑色半導体電極200bを設けるとともに下面に赤色半導体電極200cを設け、第3の支持体100の上面に対極400を設け、前記青色半導体電極200aと緑色半導体電極200bとの間及び、赤色半導体電極200cと対極400との間にそれぞれイオン伝導性電解質層300を充填した構成からなる。緑色半導体電極200b、第2の支持体及び赤色半導体電極200cを貫通する電荷移動用のリーク孔100aにより、青色半導体電極200aと、緑色半導体電極200bと、赤色半導体電極200cと対極400とは、それぞれイオン伝導性電解質層300を介して接している。ここで光は、青色半導体電極200a側から入射して、青色半導体電極200aを一部透過して緑色半導体電極200bへ、次いで赤色半導体電極200cへと到達する。

[0.101]

図11は、3層の半導体電極と、2層の対極を用いた構成の例である。透明な支持体100を3枚使用し、第1の支持体100の下面に透明な青色半導体電極200a、イオン伝導性電解質層300、透明対極400、イオン伝導性電解質層300の順に積層し、第2の支持体100の上面に透明な緑色半導体電極200bを設けるとともに下面に赤色半導体電極200cを設け、第3の支持体100の上面に対極400、イオン伝導性電解質層300の順に積層し、前記第1~第3の支持体を密着固定した構造からなる

[0102]

図12は、3層の半導体電極それぞれに対応して3層の対極を用いた構成の例である。透明な支持体100を4枚使用し、第1の支持体100の下面に透明な青色半導体電極200aを設け、第2の支持体100の上面に透明対極400を設けるとともに下面に透明な緑色半導体電極200bを設け、第3の支持体の上面に透明対極400を設けるとともに下面に赤色半導体電極200cを設け、第4の支持体の上面に対極400

[0103]

尚、本発明の光電変換型カラー光センサーの内部構造は、図10~図12に限定 されるものではなく、例えば積層順序を入れ替えたり、2層あるいは4層以上の 半導体電極を用いた構成にすることもできる。

[0104]

上記のような構成のカラー光センサーは、感光波長領域の異なる半導体電極において、各感光波長領域の光の強度に応じた光電流を発生させる。これを外部回路によって検知することにより、入射光の色(波長)とその強度をセンシングすることができる。

[0105]

感光波長域の異なる半導体電極を素子に用いることにより、それぞれ異なる波 長の光に対して上記の光電流を観測できるので、カラー光センサーとして機能す ることができる。

[0106]

異なる感光波長領域を有する複数の半導体電極を積層させた上記のカラー光センサーをひとつの画素として、これを二次元的に複数個配列させることにより、カラーのイメージセンサーを形成することができる。これにより、二次元の画像情報を電気信号として得ることができる。

[0107]

イメージセンサーは、これを構成する画素、すなわち単位となるカラー光センサーを小さくし、その数を多くすることにより、画像の空間分解能を向上させることができ、大面積化を実現できる。イメージセンサーの構成においては、全ての画素の対極をひとつの共通対極とすることもできる。

[0108]

図13は本発明に基づいて作られる単純な構成のイメージセンサーの例の断面である。簡略化するためにB層、G層、R層それぞれに3個のピクセルを設けたユニットを示した。ガラスのような透明な支持体100に被覆した透明導電層210の

上に色素吸着半導体微粒子層を担持して青色感光層(B層)220aを形成し、別の透明支持体100の両面に透明導電層210を被覆してこれらの上にそれぞれ緑色感光層(G層)220bと赤色感光層(R層)220cを形成し、B層とG層との間およびR層と共通対極400との間にイオン伝導性電解質層300を介在させた積層構成からなる。イオン伝導性電解質層300はB層、G層、及びR層に接合すると同時に共通対極400に接合している。B層とG層、及びR層と共通対極とはそれぞれスペーサー500によって空間的に隔離されている。イオン伝導性電解質層はこの隔離された間隙を満たすと同時に、G層の側のイオン伝導性電解質層とR層の側のイオン伝導性電解質層間を連絡するためにG層とR層の共通支持体に設けられたリーク孔100aの中も満たす構造となっている。この構造によってイオン伝導性電解質層は全ての感光層と対極に同時に電気的に接合している。

[0109]

各ピクセルはそれぞれ電気的に独立しており、個々のピクセルで生じた光電流は下地の導電層を通って素子のターミナルに導かれるように、ピクセル下地の導電層と配線用の導電層のパターンがB層、G層、R層の二次元平面内に書きこまれている。

[0110]

カラーセンシングにおいて光は青色感光層側から入射し、青色感光層、緑色感光層を順次透過して、赤色感光層に到達し、ここで可視光の大部分が最終的に吸収される。残る透過光と迷光は最下層の共通対極400によって吸収される。導電層200は導電性酸化スズあるいは酸化インジウムスズのような透明導電膜であり、共通対極層400は白金や白金黒のような金属薄膜である。

[0111]

図14には、B層、G層、R層の光電流信号を外部回路で同時検出するための等価回路を単一ピクセルの感光層について示した。簡略化するために、各電極の間隙に存在するイオン伝導性電解質層を省略してある。光電流は外部回路に設けた電流計Aあるいはそれに代わる電流検出回路(たとえばオペレーションアンプと抵抗を用いる簡単な回路)で短絡電流として検出する。その電流値は感光層面内における電流密度(A/cm²)にピクセルの受光面積をかけて得られる値であり

、電流密度は本発明の方法によれば、感光層への1 mWの入射光強度のレベルにおいて通常 1 ~100 μ A/cm²の範囲である。また、電流値の検出は、各ピクセルの信号を並列回路で同時に検出する方法でも良いし、ピクセルの 2 次元アレイをシリアルにスキャンして逐次に電気的に読み取る方法でも良い。

[0112]

【実施例】

以下、本発明を実施例によって具体的に説明するが、本発明はこれらに限定されるものではない。

[0113]

実施例1. 微分応答型受光素子

1-1. 二酸化チタン分散液の調製

内側をテフロンコーティングした内容積200mlのステンレス製ベッセルに二酸化チタン (日本アエロジル社 Degussa P-25) 15g、水45g、分散剤 (アルドリッチ社製、Triton X-100) 1g、直径0.5mmのジルコニアビーズ (ニッカトー社製) 30gを入れ、サンドグラインダーミル (アイメックス社製) を用いて1500rpmにて2時間分散した。分散物からジルコニアビーズをろ過して除いた。この場合の二酸化チタンの平均粒径は2.5μmであった。このときの粒径はMALV ERN社製マスターサイザーにて測定したものである。

[0114]

1-2. 色素を吸着したTiO2 電極(電極A)の作成

フッ素をドープした酸化スズをコーティングした導電性ガラス(旭硝子製TCO ガラス-Uを20mm×20mmの大きさに切断加工したもの)の導電面側にガラス棒を用いて上記の分散液を塗布した。この際導電面側の一部(端から3 mm)に粘着テープを張ってスペーサーとし、粘着テープが両端に来るようにガラスを並べて一度に8枚ずつ塗布した。塗布後、粘着テープを剥離し、室温で1日間風乾した。次に、このガラスを電気炉(ヤマト科学製マッフル炉FP-32型)に入れ、450℃にて30分間焼成した。このガラスを取り出し冷却した後、色素 R-1 のエタノール溶液(3×10 $^{-4}$ mol/L)に3時間浸漬した。色素の染着したガラスを4-tert-ブチルピリジンに15分間浸漬した後、エタノールで洗浄し自然乾燥させた。このように

[0115]

1-3. 受光素子の作成

上述のようにして作成した色素増感された TiO_2 電極基板($2cm \times 2cm$)に、その電極と同じ大きさの白金蒸着ガラスと重ね合わせた後、両ガラスの隙間に毛細管現象を利用して表1に示した電解質($E-101\sim110$)を染み込ませ、受光素子(サンプルP- $101\sim110$)を作製した。なお、 $P-108\sim P-10$ は、増感色素を変更したものであるが、1-2. に示した色素R-1 と同様の方法にて作成した。

[0116]

【表1】

表 1. 回転円盤スリットによる光電流応答パターン

受光素子	電解質	增感色素	電解質組成
P-101	E-101	R-1	LiN(SO ₂ CF ₃) ₂ (0.5M)/メトキシアセトニトリル
P-102	E-102	"	Bu4NCIO4(0.5M)/メトキシアセトニトリル
P-103	E-103	"	Bu4NBF4(0.5M)/メトキシアセトニトリル
P-104	E-104	"	Y6-1 (0.5M)/メトキシアセトニトリル
P-105	E-105	"	Y6-2(0.5M)/メトキシアセトニトリル
P-106	E-106	"	Y6-1
P-107	E-107	"	Y6-2
P-108	E-108	DB-1	LiN(SO ₂ CF ₃) ₂ (0.5M)/メトキシアセトニトリル
P-109	E-109	DG-1	LiN(SO ₂ CF ₃) ₂ (0.5M)/メトキシアセトニトリル
P-110	E-110	DR-1	LiN(SO ₂ CF ₃) ₂ (0.5M)/メトキシアセトニトリル

[0117]

【化14】

(DG-1)
$$S$$
 $CH-CH$ N $COOH$ C_2H_5

EtOOC
$$C_4H_9$$
 C_4H_9 C_4H_9 C_4H_9 C_4H_9 $C_5H_{11}(n)$ $C_5H_{11}(n)$ $C_5H_{11}(n)$ $C_5H_{11}(n)$ $C_5H_{11}(n)$ $C_5H_{11}(n)$

[0118]

1-4. 受光素子の光-電流応答測定

上述のようにして作成した受光素子の透明電極側に0.5cm×0.5cmの正方形のマスクを設け、光源のランプ (92mW) と受光素子の間に、図15に示した回転円盤スリットを配置した。受光素子の作用極をデジタルマルチメータ (電流計)のプラス端子に、対極をマイナス端子に接続し、円盤スリットを任意の速さで回転させながら、光照射を行い、電流応答を検出した。

[0119]

図16に、スリット回転数60rpmにおけるサンプルP-101の電流応答を示した。受光素子を通過する光のパターンを反映した微分型の応答が観察された。P-102~110についても同様の電流応答が観察された。それらの結果を表2に示す。

[0120]

【表2】

表2. 回転円盤スリットによる光電流応答パターン U

受光素子	電流値(μA) 60rpm 20回転(20sec)の平均値									
	(A)on	(A)off	(B)on	(B)off	(C)on	(C)off	(D)on	(D)off		
P-101	70	-21	62	-21	42	-21	50	-18		
P-102	56	-25	66	-23	61	-23	70	-23		
P-103	81	-42	65	-35	45	-38	63	-25		
P-104	25	-21	24	-22	28	-20	25	-20		
P-105	66	-21	78	-34	65	-21	56	-20		
P-106	10	-15	20	-16	10	-11	6	-10		
P-107	150	-22	120	-30	141	-22	100	-15		
P-108	45	-18	56	-21	48	-23	45	-20		
P-109	65	-22	77	-23	66	-20	46	-21		
P-110	55	-18	46	-17	47	-24	34	-16		

[0121]

以上の結果から、本発明の受光素子は、光のon-offに感応する高感度な受光素子であることが明らかとなった。

[0122]

実施例2. 積層型カラーセンサー

2-1. 透明導電性ガラス支持体の作製

パターニング用のフォトマスクを用いて、厚さ1.9mmの無アルカリガラスの片面に、CVD法により、フッ素ドープ型の導電性の二酸化スズを蒸着することにより、図17に示したように64個の正方ピクセル610(ピクセルサイズ2.5×2.5mm)と、基板の4辺に配列した外部出力端子620と、各ピクセルと外部出力素子とを連結する配線630(幅100μm)とからなるパターン化導電膜を作成した。このパターン化導電膜は、厚さが600nm、面抵抗約10Ω/ロ、光透過率(500nm)が85%であった。つぎに、フォトレジスト法を利用して、このパターン膜のピクセルとエッジ部の端子の配列を除く領域(すなわち配線が敷かれた領域)に二酸化ケイ素を100nmの厚みで蒸着し絶縁膜で被覆した。

[0123]

2-2. 二酸化チタン粒子含有塗布液の作製

前述1-1. と同様の方法で調整した。

[0124]

2-3. 色素を吸着した青色感光層 (B層) の形成

この塗布液を、上記 1-1. で作製したパターン化透明導電性膜の 4 辺の端子部を除く面上にドクターブレード法で $70\,\mu$ mの厚みで塗布し、25 $\mathbb C$ で60 分間乾燥した後、電気炉で450 $\mathbb C$ にて30 分間焼成して二酸化チタン層を被覆した。二酸化チタンの被覆量は $7\,\mathrm{g/m}^2$ であり、膜厚は $3\,\mu$ mであった。次いでフォトレジスト法により、二酸化チタン層を図 1 7 0 64 個の正方ピクセルにパターニングした。二酸化チタン層のエッチングは濃硫酸と硫酸アンモニウムの混合溶液により行った

[0125]

つぎに、青色吸収のポリメチン系増感色素(DB-1)0.1mM及び添加剤としてケノデオキシコール酸20mM含むジメチルスルホキシド(DMSO): エタノール(1:20)の混合溶媒から成る溶液に、上記の二酸化チタン層を設けた基板を浸漬して、攪拌下 40° で10時間放置した。このようにして青色色素を染着させた基板をエタノールで洗浄し、乾燥させ、青色感光層を担持したガラス基板を作製した。色素の吸着量は、二酸化チタンの塗布面積 1 m^2 あたりおよそ $5 \times 10^{-4} \text{ mol}$ であった。

[0126]

2-4. 緑色感光層(G層) および赤色感光層(R層)の形成

厚さ50μmの無アルカリガラスの両面に、上記1.と同様な方法により図17と同様な64個のピクセルと配線からなる導電性酸化スズのパターンを蒸着し、ピクセルとエッジ部の端子の配列を除く領域(すなわち配線が敷かれた領域)を絶縁性の二酸化ケイ素の蒸着膜で覆った。なお、ピクセルの蒸着においては、シート両面のピクセルアレイの位置が互いに幾何学的に重なるように蒸着した。さらに、これらのパターンの上に、上記の3の方法に従いドクターブレード法による塗布と焼成によって片面に厚さが3μmの二酸化チタンの膜をG層用として、別の片面に厚さが4μmの膜をR層用として形成し、それぞれB層と同様にパターニングした。かくして、両面が厚みの違う二酸化チタンの半透明の薄膜で被覆されたガラスシートを得た。次いで、このシートの面内の隣り合うピクセルの間隙に

直径100μmの小孔を自作の掻き落し装置とレーザーを併用して均等間隔で開けた。この小孔は、後述する電解液がシートを横切って導通する連絡口として機能する。

[0127]

つぎにこのシートの両面に 2 個の角型テフロン製セルの口を向かい合わせてサンドイッチし、シートが隔壁となる形で 2 個のセルの間に固定した。両側のセルのチャンバーに 2 種の色素溶液を注入し、シートの両面が異種の色素溶液で浸漬される状態とした。ここで、G層側チャンバーには下記構造のR u 錯体からなる緑色吸収増感色素(DG-2)を0.3mM含むアセトニトリル:t-ブタノール(1:1)の混合溶媒から成る色素溶液を、R層側チャンバーには、下記構造のR u ナフタロシアニン色素(DR-2)を濃度 5×10^{-5} mol/L含むジメチルスルホキシド(DMSO):エタノール(1:10)の混合溶媒から成る色素溶液を満たし、40 で10 時間放置して、それぞれの二酸化チタン層に色素の吸着を行った。色素の吸着を終了後、二酸化チタン層をエタノールでリンスし、乾燥させた。

[0128]

(DG-2)

(DR-2)

2-5. 感光層の積層と組立て

下記の手順でイメージセンサーの組み立てを行った。B層を担持したガラス支持体上の二酸化チタン層が塗られた表面の周囲に厚みが25μmの熱収縮性樹脂シート(デュポン製商品名FUSABOND)を2mmの幅でスペーサーとして敷き、その上に、上記のG層とR層を被覆したガラスシートをピクセルアレイのパターンがB層と重なるようにG層をB層と対向させて重ね合せ、さらにその上に上記の熱収縮性樹脂シートを挿入して、最上部には白金蒸着膜を被覆した共通対極のガラス基板を重ねた。このように重ね合わせたセルを厚み方向に機械的に圧力をかけながら130℃で20秒間加熱し、スペーサーを融解して圧着させた。

[0130]

次に、あらかじめ設けてあったスペーサーの開口部から、溶融塩電解質 Y 6 - 2 を60℃のもとで毛細管現象を利用して電極間の空隙にしみこませ、電極間を電解液で満たした。以上のセル組立て工程と、電解液注入の工程をすべて上記の露点-60℃の乾燥空気中で実施した。溶融塩の注入後、真空下でセルを数時間吸引し色素吸着二酸化チタン多孔質電極および溶融塩を含めたセル内部の脱気を行った。最後に、セルの周囲を最外部の端子部周辺を除いてエポキシ系接着剤によってシールして固めた。このようにして、イメージセンサーを組立てた。

[0131]

イメージセンサーの外形は受光面積が12.3cm²、厚みが約3.9mmであり、上記の図14に示した本発明の基本層構成をもち、B,G,R各層の64ピクセルが作る合計192個の端子の配列が受光面の外に出た構造のアレイセンサーである。センサーの4辺の端子部をオペレーションアンプからなる短絡光電流計測のための並列回路につなぎ、64画素のカラー画像のセンシングのためのモデルシステムを試作した。

[0132]

2-6. 光電流の測定とカラー画像情報のセンシング

各ピクセルから生じる短絡光電流の測定にはオペレーションアンプと1 k Ωの 抵抗からなる回路を用い、直流電流(DC)を電圧に変換して計測した。この回

路により、1μAの電流信号が1mVの電圧出力となって計測される。

[0133]

100Wのタングステン/ハロゲンランプと平行光照射用のコリメータレンズを含む光学系からなる単純な光源を用い、カラーセンサーに色特性の異なるアルファベットの文字画像の複数を同時に入射し、文字情報のB層、G層、R層の2次元ピクセルマトリクス内で光が入射した瞬間に発生する光電流の強度分布をもとに、個々の文字情報の検出を行った。

[0134]

図18(a)~(c)は、このセンサーに青色のゴシック文字B、緑色の文字G、赤色の文字Rの画像をそれぞれ単独に入射した場合のB層、G層、R層におけるピクセルの光電流最大値を示したものである。

[0135]

これらの結果から、3色の画像情報が電気信号としてそれぞれの感光層においてイメージワイズに(すなわち信号の強度分布が画像の光量分布を反映する形で)検出されていることが分かる。

[0136]

【発明の効果】

以上のように、本発明の構造によるカラーイメージセンサーは、1)各感光層が、特定の波長領域に選択的に強いバンド吸収を持つ特長を利用し、カラーセンシングの色再現性を高めるとともに、感色性の調節を自在に実施できることと、2)感光層が光透過性であることを特長とし、重層構成により透過光を利用して光や画像の色情報と動的情報を同時に検出することが可能である。本発明によって、色情報をも識別できる新規な微分応答型受光素子が提供できた。

【図面の簡単な説明】

- 【図1】 本発明の好ましい受光素子の構造を示す部分断面図である。
- 【図2】 本発明の好ましい受光素子の構造を示す部分断面図である。
- 【図3】 本発明の好ましい受光素子の構造を示す部分断面図である。
- 【図4】 本発明の好ましい受光素子の構造を示す部分断面図である。
- 【図5】 本発明の好ましい受光素子の構造を示す部分断面図である。

特2000-295255

- 【図6】 本発明の好ましい受光素子の構造を示す部分断面図である。
- 【図7】 本発明の好ましい受光素子の構造を示す部分断面図である。
- 【図8】 本発明の好ましい受光素子の構造を示す部分断面図である。
- 【図9】 本発明の好ましい受光素子の構造を示す部分断面図である。
- 【図10】 本発明のカラー受光素子の一例を示す断面図である。
- 【図11】 本発明のカラー受光素子の他の一例を示す断面図である。
- 【図12】 本発明のカラー受光素子の他の一例を示す断面図である。
- 【図13】 本発明のイメージセンサーの基本構成の一例を示す概略断面図である。
- 【図14】 本発明のイメージセンサーの外部回路の一例を示す概略断面図である。
- 【図15】 実施例1に使用した円盤スリットの概略図である。
- 【図16】 実施例1における、受光素子P-101の光電流応答を示す図である。
- 【図17】 本発明のイメージセンサーの感光層に用いる導電性層のピクセルと 配線のパターンの一例を示す図である。
- 【図18】 実施例2において、本発明のイメージセンサーに、画像光情報をそれぞれ単独に入射した場合のB層、G層、R層におけるピクセルの光電流応答の値を示す図である。

【符号の説明】

- 10・・・導電層
- 10a・・・透明導電層
- 11・・・金属リード
- 20・・・感光層
- 21・・・半導体微粒子
- 22・・・色素
- 23・・・電解質材料
- 30・・・イオン伝導性電解質層
- 40・・・対極導電層

特2000-295255

40a···透明対極導電層

50・・・基板

50a・・・透明基板

60・・・下塗り層

100・・・支持体、透明支持体

100a・・・リーク孔

200・・・半導体電極、透明半導体電極

200a・・・青色半導体電極

200b・・・緑色半導体電極

200c・・・赤色半導体電極

210・・・導電層

220・・・感光層

220a・・・青色感光層

220b・・・緑色感光層

220c・・・赤色感光層

300・・・イオン伝導性電解質層

400・・・対極、透明対極

500・・・スペーサー

600・・・イメージセンサー用パターン

610・・・ピクセル

620・・・外部出力端子

630・・・配線

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

ピクセル出力(mV) 空白は10mV未満

(a) B型 (b) 61 62 15 (c2 20 61 (c1 60 60 (c1 10 59 21 (c1 61 62 60 23

	12	15	11		
	12			10	
	10	18	12		
	12			11	
	11			10	
	12	10	11		

G鬥

(b)

	12	80	85	83	25		
	79			10	83	10	
10	80						
11	81		81	80	80	10	
	80				81		
		82	83	82	82		
		10		18	45		

	18	15	17		
17				18	
17					
16		19	18	17	
16				16	
	15	15	17	17	

(c)

	11	12		
	13		45	
	14			
	13			
	15			
	12		45	

	45	45	46	10	
	44			45	
	45	38	40	44	
	45	39	39		
	45		40	43	
	45			45	,

【書類名】

要約書

【要約】

【課題】 感度及び安定性が高く、カラーセンサーに好適に使用できる新規な 微分応答型受光素子を提供する。

【解決手段】 導電層、イオン伝導性電解質層、色素で増感された半導体を含む感光層および対極を有し、光量変化に対して時間微分型の光電応答を出力することを特徴とする受光素子。

【選択図】 図1

出 願 人 履 歴 情 報

識別番号

[000005201]

1. 変更年月日

1990年 8月14日

[変更理由]

新規登録

住 所

神奈川県南足柄市中沼210番地

氏 名

富士写真フイルム株式会社