Network Design Principles

Network Design Principles

Carrier grade

IP Address Management

Content

- Dynamic Routing Protocols
 - \circ BGP
 - o OSPF
- Logical Network Design
 - Switched
 - Statically Routed
 - o Dynamically Routed

• Why?

- Handle failover
- Discover remote networks
- Choose the best path to the destination
- Lower configuration costs
- Lower failure points?

- IGP = Interior Gateway Protocol
- EGP = Exterior Gateway Protocol

BGP

- Border Gateway Protocol
- Distance Vector Routing Protocol
- EGP
- Aggregates all vectors to the most simple one
- Pushes updates based on events
- Only talks to direct peers
- Prevents routing loops by checking the AS-Path
- Announces the configured routing table

BGP

Distance Vector Routing

Element	•							
	ı							
AS24940		AS3320						
AS24940		AS3320	->	AS2077	3	->	AS13	335
AS24940		AS3320	->	AS2077	3	->	AS12	99
AS24940		AS1299						
AS24940		AS1299	->	AS1333	5			

BGP

AS24940 IPv4 Route Propagation

© http://bgp.he.net/AS24941#_asinfo

BGP

© http://bgp.he.net/AS24940#_asinfo

BGP

Route Selection

- Ignores Link-State
- Ignores Hop Count
- Honors AS-Path
- Honors propritary values

• Open Shortest Path First

• Link-state routing protocol

• IGP

• Interval based

BGP

OSPF

BGP

OSPF

Link-state routing

- Every router in an AS talks to every other
- Uses SPF to create a tree
- Periodically sends a flood
 - Causes a huge amount of traffic

One Classroom in one house

Three classrooms in one house

A lot of classrooms

- Many SPOF, unable to mesh
 - would create loops
- CAM table size is limited
 - Content Addressable Memory = MAC table
- All switches hold up all MAC addresses in the same Layer2/VLAN
 - limit is around ~512-4096 addresses per device
 - o Juniper EX2200-48T: 16.000 entries, 864€
 - Juniper EX3200-48T (EOL): 32.000 entries, 1975€
 - o TP-Link T3700G-28TQ: 32.000 entries, 1698€
 - Netgear GS724Tv4: 16.000 entries, 150€

Switched

Statically Routed

• One Subnet for each switch

Switched

Statically Routed

- Static routes configured on all switches
- Works fine on Layer 2 until there are VLANs across routers
 - o CAM tables will again be too big
- Requires manual configuration for routes
- Redundant ring

Switched

Statically Routed

Dynamically Routed

- Less stuff to configure by hand
- Better failover for new links
- TOR switch for hypervisors is still a bottleneck
- We could use OSPF or RIP

23 / 31

Switched

Statically Routed

Dynamically Routed

Switched

Statically Routed

Dynamically Routed

and servers with virtual machines

Switched

Statically Routed

Dynamically Routed

Figure 1 Topology of Cisco MSDC Design Evolution—Phase 1

Figure 2 Topology of Cisco MSDC Design Evolution—Phase 2

- 16 Racks
- 16 Switches
- 8 Routers
- 16*40 = 640 Servers
- 640 * 100 = 64.000 Virtual Machines

Switched

Statically Routed

Dynamically Routed

- Impossible to have 64.000 Virtual Machines + Hypervisors in the same Layer 2
 - Would require switches with 64,000 MAC entries
 - o Juniper EX92008, 8RU, ~45.000€, per rack
- Dynamic routing protocols route prefixes to a next hop
- Normally used to route nets to a router
- You can route to any IP address?

Switched

Statically Routed

Dynamically Routed

Switched

Statically Routed

Dynamically Routed

BGP as IGP

- Bad: Every router would talk to every other router (fully meshed)
 - Fine for small networks, doesn't work in this size
 - Each hypervisor will act as a router
- Bad: Needs something to get the routing table
 - o "Announces the configured routing table" Slide 7
- Nice: Simple Table of: Sourcenet -> Next Hop

Switched

Statically Routed

Dynamically Routed

BGP route reflector

- Everybody sends updates to a central router
- Router pushes updates to all routers that need this information

Conclusion

- Dynamic routing is fun
- OSPF is fine for announcing hypervisor networks
- BGP is perfect for cloud
- Don't trust vendors for CAM table size