# Выделение сигнала в случае неравноотстоящих наблюдений

Иванова Полина Максимовна, 422-я группа

Санкт-Петербургский Государственный Университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доц. **Н.Э. Голяндина** Рецензент: ассистент **А.Ю. Шлемов** 



Санкт-Петербург 2015 г.



### Постановка задачи

Наблюдается временной ряд  $F_N = (f_1, \dots, f_N)$ .

Пусть функция u достаточно гладкая на  $\mathbb{R}.$ 

Рассмотрим модели временного ряда:

$$(X_A)$$
:  $f_i = u(i\Delta + \varepsilon_i),$   
 $(X_A Y_A)$ :  $f_i = u(i\Delta + \varepsilon_i) + \delta_i,$ 

где  $i=\overline{1,N},~\Delta_{(N)}=\Delta$  — некоторый шаг,  $arepsilon_i\sim\mathcal{N}(0,\sigma_arepsilon^2),~\delta_i\sim\mathcal{N}(0,\sigma_arepsilon^2),~\delta_i\sim\mathcal{N}(0,\sigma_\delta^2)$ ,  $arepsilon_i$  и  $\delta_i$  независимые в совокупности.

Значения  $u(i\Delta)$  неизвестны.

Предположение: Есть метод, умеющий оценивать математическое ожидание наблюдаемого временного ряда.

Это означает, что есть метод, умеющий оценивать  $s_i = \mathbb{E} x_i$ , если наблюдаются

$$x_i = s_i + \zeta_i$$
, где  $\mathbb{E}\zeta_i = 0$ ,  $s_i = s(i\Delta)$ ,

s — гладкая функция на  $\mathbb{R}$ .

Задача: Построить алгоритм, оценивающий значения  $u(i\Delta)$  и зависящий только от наблюдаемых значений элементов ряда  $F_N$  в предположении, что есть метод, умеющий оценивать м.о. наблюдаемого ряда.

## Выделение математического ожидания ряда

Что означает предположение о существовании метода, умеющего оценивать математическое ожидание ряда?

Рассмотрим функцию  $u(x)=\sin\left(\frac{2\pi x}{10}\right)$  в точках  $i\Delta$ , где  $i=\overline{1,100},\,\Delta=1.$  Ряд  $F_N=(f_1,\ldots,f_N)$ :  $f_i=u(i\Delta)+\delta_i$ , где  $\delta_i\sim\mathcal{N}(0,1)$  и независимы.

Выделим математическое ожидание ряда с помощью метода «Гусеница»-SSA.

 $\widehat{E(f_i)}$ , где  $f_i$  = u(i) +  $\delta_i$ . i =  $\overline{1:100}$ . Метод Гусеница-SSA. Длина окна L = 50.



### Рассмотрим следующие модели ряда:

## Модели I порядка:

$$(X_A)_1$$
:  $h_i = u(i\Delta) + u'(i\Delta)\varepsilon_i$ ,  
 $(X_AY_A)_1$ :  $h_i = u(i\Delta) + u'(i\Delta)\varepsilon_i + \delta_i$ ,

## Модели II порядка:

$$(X_A)_2: g_i = u(i\Delta) + u'(i\Delta)\varepsilon_i + \frac{1}{2}u''(i\Delta) \varepsilon_i^2,$$

$$(X_AY_A)_2: g_i = u(i\Delta) + u'(i\Delta)\varepsilon_i + \frac{1}{2}u''(i\Delta) \varepsilon_i^2 + \delta_i.$$

где  $i=\overline{1,N}$ ,  $\Delta_{(N)}=\Delta$  — некоторый шаг,  $arepsilon_i\sim\mathcal{N}(0,\sigma_arepsilon^2)$ ,  $\delta_i\sim\mathcal{N}(0,\sigma_\delta^2)$ ,  $\delta_i$  и  $\delta_i$  независимые в совокупности.

## План доклада

Наблюдения, зависящие от функции u и значений  $i\Delta$  и  $\varepsilon_i$  могут быть упорядочены разными способами:

- $oldsymbol{\circ}$  по значениям  $i\Delta + \varepsilon_i$ .

Стандартным считаем упорядочивание по индексу.

Например, такими наблюдениями являются значения ряда

$$F_N = (f_1, \dots, f_N)$$
, где  $f_i = u(i\Delta + \varepsilon_i) + \delta_i$ .

### План доклада:

- ① Построим алгоритмы оценивания  $u(i\Delta)$  для моделей I и II порядка со стандартным упорядочиванием элементов ряда.
- Исследуем работу уже построенных алгоритмов при другом виде упорядочивания элементов ряда.

# I. Модели I порядка $(X_A)_1$ и $(X_AY_A)_1$

$$(X_A)_1: h_i = u(i\Delta) + u'(i\Delta)\varepsilon_i$$

$$(X_AY_A)_1: h_i = u(i\Delta) + u'(i\Delta)\varepsilon_i + \delta_i$$

### Алгоритм 1

Входные данные: ряд  $H_N=(h_1,\dots,h_N)$ , метод оценивания математического ожидания ряда.

Выход:  $\widehat{u}$ .

- lacktriangle Оцениваем математическое ожидание ряда:  $\widehat{\mathbb{E}h_i}$ .
- $oldsymbol{0}$  Оценка функции  $\widehat{u}$  по формуле  $\widehat{u}(i\Delta) = \widehat{\mathbb{E}h_i}.$

# I. Алгоритм для квадратичной модели $(X_A)_2$

$$(X_A)_2$$
:  $g_i = u(i\Delta) + u'(i\Delta)\varepsilon_i + u''(i\Delta)\varepsilon_i^2$ 

#### Алгоритм 2

Входные данные: ряд  $G_N=(g_1,\ldots,g_N)$ , шаг  $\Delta$ , метод оценивания математического ожидания.

Выход:  $\widehat{u}$ .

- f O Оцениваем  $\widehat{\mathbb{E}g_i}$ .
- $oldsymbol{2}$  Оцениваем производные  $\widehat{u'}$  и  $\widehat{u''}$ :

$$\widehat{u'}(i\Delta) = \frac{\widehat{\mathbb{E} g_{i+1}} - \widehat{\mathbb{E} g_{i-1}}}{2\Delta}, \qquad \qquad \widehat{u''}(i\Delta) = \frac{\widehat{\mathbb{E} g_{i-1}} - 2\widehat{\mathbb{E} g_i} + \widehat{\mathbb{E} g_{i+1}}}{\Delta^2}.$$

ullet Оцениваем дисперсию  $\sigma_{arepsilon}^2$  случайной величины  $arepsilon_i$  как:

$$\begin{split} \widehat{\sigma}_{\varepsilon}^2 &= \left( -\widehat{S}_{u'} + \sqrt{\left( \left( \widehat{S}_{u'} \right)^2 + 2 \cdot \widehat{S}_{u''} \cdot \widehat{S}_{\widehat{\mathbb{E}}} \right) \right)} \left/ \widehat{S}_{u''}, \\ \text{где } \widehat{S}_{u'} &= \frac{1}{N} \sum_{i=1}^N \left( \widehat{u'}(i\Delta) \right)^2, \ \ \widehat{S}_{u''} &= \frac{1}{N} \sum_{i=1}^N \left( \widehat{u''}(i\Delta) \right)^2, \ \widehat{S}_{\widehat{\mathbb{E}}} &= \frac{1}{N} \sum_{i=1}^N \left( g_i - \widehat{\mathbb{E}g_i} \right)^2. \end{split}$$

lacktriangle Оценка функции  $\widehat{u}$  по формуле  $\widehat{u}(i\Delta)=\widehat{\mathbb{E} g_i}-rac{1}{2}\widehat{u''}(i\Delta)\widehat{\sigma}_{arepsilon}^2.$ 



## І. Обоснование алгоритмов

#### Математическое ожидание элементов ряда

$$(X_A)_1, (X_AY_A)_1 \qquad \mathbb{E}h_i = u(i\Delta),$$

$$(X_A)_2, (X_AY_A)_2 \qquad \mathbb{E}g_i = u(i\Delta) + \frac{1}{2}u''(i\Delta) \ \sigma_{\varepsilon}^2.$$

Для моделей  $(X_A)_2, (X_AY_A)_2$  производные функции u равны

$$u'(i\Delta) = \frac{\mathbb{E}g_{i+1} - \mathbb{E}g_{i-1}}{2\Delta} - R_1,$$
  
$$u''(i\Delta) = \frac{\mathbb{E}g_{i-1} - 2\mathbb{E}g_i + \mathbb{E}g_{i+1}}{\Delta^2} - R_2,$$

где 
$$R_1 = \frac{\sigma_{\varepsilon}^2}{2} u^{(3)}(i\Delta) + \frac{\sigma_{\varepsilon}^2}{2} \cdot \frac{u^{(5)}(\eta_i^{(1)}\Delta)\Delta^2}{6} + \frac{u^{(3)}(\theta_i^{(1)}\Delta)\Delta^2}{6},$$

$$R_2 = \frac{\sigma_{\varepsilon}^2}{2} u^{(3)}(i\Delta) + \frac{\sigma_{\varepsilon}^2}{2} \cdot \frac{u^{(6)}(\eta_i^{(2)}\Delta)\Delta^2}{12} + \frac{u^{(4)}(\theta_i^{(2)}\Delta)\Delta^2}{12},$$

$$\theta_i^{(1)}, \eta_i^{(1)}, \eta_i^{(2)} \in (i-1, i+1).$$



# I. Обоснование алгоритма. Оценки производных в моделях $(X_A)_2$ , $(X_AY_A)_2$

Оценки для  $u^{\prime}$  и  $u^{\prime\prime}$ :

$$\widehat{u'}(i\Delta) = \frac{\widehat{\mathbb{E}g_{i+1}} - \widehat{\mathbb{E}g_{i-1}}}{2\Delta}, \qquad \widehat{u''}(i\Delta) = \frac{\widehat{\mathbb{E}g_{i-1}} - 2\widehat{\mathbb{E}g_i} + \widehat{\mathbb{E}g_{i+1}}}{\Delta^2}.$$

- $lackbox{0}$  Если  $\widehat{\mathbb{E}g_i}=\mathbb{E}g_i$  и  $u^{(3)}\equiv 0$ , то  $\widehat{u'}(i\Delta)\equiv u'(i\Delta),\ \widehat{u''}(i\Delta)\equiv u''(i\Delta).$
- ullet Если  $\widehat{\mathbb{E}g_i} pprox \mathbb{E}g_i$  и остаточные члены в разложениях u' и u'' малы, то есть

$$\begin{split} R_1 &= \frac{\sigma_\varepsilon^2}{2} u^{(3)}(i\Delta) + \frac{\sigma_\varepsilon^2}{2} \cdot \frac{u^{(5)}(\eta_i^{(1)}\Delta)\Delta^2}{6} + \frac{u^{(3)}(\theta_i^{(1)}\Delta)\Delta^2}{6} \approx 0, \\ R_2 &= \frac{\sigma_\varepsilon^2}{2} u^{(3)}(i\Delta) + \frac{\sigma_\varepsilon^2}{2} \cdot \frac{u^{(6)}(\eta_i^{(2)}\Delta)\Delta^2}{12} + \frac{u^{(4)}(\theta_i^{(2)}\Delta)\Delta^2}{12} \approx 0, \end{split}$$
 где  $\theta_i^{(1)}, \eta_i^{(1)}, \eta_i^{(2)} \in (i-1,i+1), \end{split}$ 

то 
$$\widehat{u'}(i\Delta) \approx u'(i\Delta)$$
,  $\widehat{u''}(i\Delta) \approx u''(i\Delta)$ .



# I. Обоснование алгоритма. Оценки дисперсии в модели $(X_A)_2$

$$(X_A)_2$$
:  $g_i = u(i\Delta) + u'(i\Delta)\varepsilon_i + u''(i\Delta)\varepsilon_i^2$ 

Тождество для дисперсии:

$$\sigma_{\varepsilon}^2 = \left( -S_{u^{\prime}} + \sqrt{\left( \left( S_{u^{\prime}} \right)^2 + 2 \cdot S_{u^{\prime\prime}} \cdot S_{\mathbb{E}} \right)} \right) \bigg/ \left( S_{u^{\prime\prime}} \right),$$

где 
$$S_{u'} = \frac{1}{N} \sum_{i=1}^N (u'(i\Delta))^2$$
 ,  $S_{u''} = \frac{1}{N} \sum_{i=1}^N (u''(i\Delta))^2$ ,  $S_{\mathbb{E}} = \frac{1}{N} \sum_{i=1}^N \mathbb{E}(g_i - \mathbb{E}g_i)^2$ .

Оценка для дисперсии:

$$\widehat{\sigma}_{\varepsilon}^2 = \left( -\widehat{S}_{u'} + \sqrt{\left( \left( \widehat{S}_{u'} \right)^2 + 2 \cdot \widehat{S}_{u''} \cdot \widehat{S}_{\widehat{\mathbb{E}}} \right)} \right) \bigg/ \widehat{S}_{u''},$$

где 
$$\widehat{S}_{u'} = \frac{1}{N} \sum_{i=1}^N \left(\widehat{u'}(i\Delta)\right)^2$$
,  $\widehat{S}_{u''} = \frac{1}{N} \sum_{i=1}^N \left(\widehat{u''}(i\Delta)\right)^2$ ,  $\widehat{S}_{\widehat{\mathbb{E}}} = \frac{1}{N} \sum_{i=1}^N \left(g_i - \widehat{\mathbb{E}g_i}\right)^2$ .

#### **Утверждение**

Оценка  $\widehat{S}^{(0)}_{\widehat{\mathbb{R}}}=rac{1}{N}\sum_{i=1}^{N}\left(g_i-\mathbb{E}g_i
ight)^2$  является несмещенной оценкой для  $S_{\mathbb{E}}.$ 

При этом, если 
$$u^{(3)}\equiv 0$$
 и  $\Delta=1/N$ , то  $\widehat{\mathbb{D}}\widehat{\widehat{S}}_{\widehat{\mathbb{R}}}^{(0)} \overset{}{\longrightarrow} 0.$ 

Тогда, при  $\widehat{\mathbb{E}g_i}=\mathbb{E}g_i,\ u^{(3)}\equiv 0$  и  $\Delta=1/N$ , оценка дисперсии  $\widehat{\sigma}_{\varepsilon}^2$  — состоятельная оценка для  $\sigma_{\varepsilon}^2$ .

# I. Обоснование алгоритма. Оценка функции в модели $(X_A)_2$

Модель  $(X_A)_2$ :  $g_i = u(i\Delta) + u'(i\Delta)\varepsilon_i + \frac{1}{2}u''(i\Delta)\ \varepsilon_i^2$ . Оценка функции:  $\widehat{u}(i\Delta) = \widehat{\mathbb{E}g_i} - \frac{1}{2}\widehat{u''}(i\Delta)\widehat{\sigma}_\varepsilon^2$ .

### Применимость алгоритма:

- Есть метод, достаточно точно оценивающий математическое ожидание ряда.
- ② Остаточные члены в разложении  $u^\prime$  и  $u^{\prime\prime}$  пренебрежимо малы:

$$\begin{split} R_1 &= \frac{\sigma_{\varepsilon}^2}{2} u^{(3)}(i\Delta) + \frac{\sigma_{\varepsilon}^2}{2} \cdot \frac{u^{(5)}(\eta_i^{(1)}\Delta)\Delta^2}{6} + \frac{u^{(3)}(\theta_i^{(1)}\Delta)\Delta^2}{6} \approx 0, \\ R_2 &= \frac{\sigma_{\varepsilon}^2}{2} u^{(3)}(i\Delta) + \frac{\sigma_{\varepsilon}^2}{2} \cdot \frac{u^{(6)}(\eta_i^{(2)}\Delta)\Delta^2}{12} + \frac{u^{(4)}(\theta_i^{(2)}\Delta)\Delta^2}{12} \approx 0, \\ \mathrm{rge} \; \theta_i^{(1)}, \eta_i^{(1)}, \eta_i^{(2)} \in (i-1,i+1) \,. \end{split}$$

# I. Пример для квадратичной модели $(X_A)_2$

Функция 
$$u(x) = \sin\left(200 \cdot \frac{2\pi x}{T}\right)$$
.

Данные: 
$$F_N=(f_1,\ldots,f_N)$$
, где  $f_i=u(i\Delta+arepsilon_i)$ ,  $i=\overline{1,N}$ ,  $N=200$ ,

$$\Delta = 1/N$$
,  $\varepsilon_i \sim \mathcal{N}(0, \sigma_\varepsilon^2)$  и независимые.

Метод оценивания математического ожидания ряда — «Гусеница»-SSA.

Длина окна L=100. Восстановление ряда по двум компонентам.

Таблица 1 : Сравнение оценок значений  $u(i\Delta)$  по алгоритму 1 (модель  $(X_A)_1$ ) и по алгоритму 2 (модель  $(X_A)_2$ ). Число повторов равно 1000.

| $\sigma_{arepsilon}$              | 0.5     | 0.6     | 0.7     | 0.8     | 0.9     | 1       |
|-----------------------------------|---------|---------|---------|---------|---------|---------|
| Т                                 | 7       | 8       | 9       | 11      | 13      | 14      |
| $MSE_{(X_A)_1}$                   | 7.3e-03 | 8.2e-03 | 9.4e-03 | 7.6e-03 | 6.4e-03 | 7.2e-03 |
| $MSE_{(X_A)_2}$                   | 3.1e-03 | 3.4e-03 | 3.7e-03 | 3e-03   | 2.7e-03 | 2.8e-03 |
| $bias^2_{(X_A)_1}$                | 4.7e-03 | 5.4e-03 | 6.4e-03 | 4.9e-03 | 4e-03   | 4.8e-03 |
| $bias^2_{(X_A)_2}$                | 4.8e-05 | 2.3e-05 | 4.2e-06 | 3e-06   | 1.3e-06 | 1e-05   |
| $\mathbb{D}\widehat{u}_{(X_A)_1}$ | 2.6e-03 | 2.8e-03 | 3.1e-03 | 2.6e-03 | 2.4e-03 | 2.5e-03 |
| $\mathbb{D}\widehat{u}_{(X_A)_2}$ | 3.1e-03 | 3.4e-03 | 3.7e-03 | 3.1e-03 | 2.7e-03 | 2.8e-03 |
| $\widehat{\sigma}_{arepsilon}$    | 0.5596  | 0.6509  | 0.7435  | 0.8317  | 0.92    | 1.023   |

# I. Модель II порядка $(X_AY_A)_2$

$$(X_A Y_A)_2$$
:  $g_i = u(i\Delta) + u'(i\Delta)\varepsilon_i + u''(i\Delta)\varepsilon_i^2 + \delta_i$ 

Тождество для дисперсии  $\sigma_{\varepsilon}^2$ :

$$\sigma_{\varepsilon}^2 = \frac{-S_{u^{'}} + \sqrt{\left(\left(S_{u^{'}}\right)^2 + 2 \cdot S_{u^{'''}} \cdot \left(S_{\mathbb{E}} - \sigma_{\delta}^2\right)\right)}}{S_{u^{''}}},$$

где 
$$S_{u'}=\frac{1}{N}\sum_{i=1}^N(u'(i))^2$$
 ,  $S_{u''}=\frac{1}{N}\sum_{i=1}^N(u''(i))^2$ ,  $S_{\mathbb{E}}=\frac{1}{N}\sum_{i=1}^N\mathbb{E}(h_i-\mathbb{E}h_i)^2$ .

Для оценки дисперсии  $\sigma_{\varepsilon}^2$  необходимо оценить дисперсию  $\sigma_{\delta}^2$ . Можно рассмотреть ОМП для  $\sigma_{\varepsilon}^2$  и  $\sigma_{\delta}^2$ , полученные для модели II порядка  $(X_A Y_A)_2$  в работе Абрамовой (2015).

Работающий алгоритм оценивания  $u(i\Delta)$  построить не удалось.

## II. Упорядочивание точек

Наблюдения, зависящие от функции u и значений  $i\Delta$  и  $\varepsilon_i$  могут быть упорядочены разными способами:

Стандартным считаем упорядочивание по индексу.

Например, такими наблюдениями являются значения ряда

$$F_N=(f_1,\ldots,f_N)$$
, где  $f_i=u(i\Delta+arepsilon_i)+\delta_i.$ 

Упорядочивание вторым способом:

- $\bullet (t_1,\ldots,t_N)\longmapsto (t_{(1)},\ldots,t_{(N)})$
- ullet Обозначая  $k_i$  ранг точки  $t_i$ :

$$(f_1,\ldots,f_N)\longmapsto (\tilde{f}_1,\ldots,\tilde{f}_N),$$

где 
$$ilde{f}_i = f_{k_i}.$$

Вопрос: как изменится модель ряда?



## II. Упорядочивание точек

Рассмотрим модель I порядка  $(X_A)_1$ :  $H=(h_1,h_2)$ , где  $h_i=u(i\Delta)+u'(i\Delta)\varepsilon_i,\ \varepsilon_i\sim\mathcal{N}(0,\sigma^2).$ 

Определим ряд  $ilde{H}=( ilde{h}_1, ilde{h}_2)$ , где

$$\begin{split} \tilde{h}_1 &= u(\Delta) + u'(\Delta) \cdot \min\{\varepsilon_1, \Delta + \varepsilon_2\}, \\ \tilde{h}_2 &= u(2\Delta) + u'(2\Delta) \cdot \max\{\varepsilon_1 - \Delta, \varepsilon_2\}. \end{split}$$

Сравним MSE, смещения (bias) и дисперсии величин  $h_1$  и  $\tilde{h}_1.$ 

Для  $h_1$ :

$$\begin{aligned} \operatorname{\mathsf{bias}}\left(h_1\right) &= 0,\\ \mathbb{D}\left(h_1\right) &= \operatorname{\mathsf{MSE}}\left(h_1\right) = \left(u'(\Delta)\right)^2 \cdot \sigma^2. \end{aligned}$$

Чему равны эти величины для  $ilde{h}_1$ ?

В статье S. Nadarajah, S. Kotz (2008) приведены формулы первых двух моментов для  $\min$  и  $\max$  двух нормальных величин.

$$\mathbb{E}\min\{\varepsilon_1, 1 + \varepsilon_2\} = \Phi\left(-\frac{1}{\sigma\sqrt{2}}\right) - \sigma\sqrt{2} \cdot \phi\left(\frac{1}{\sigma\sqrt{2}}\right),$$

$$\mathbb{E}\left(\min\{\varepsilon_1, 1 + \varepsilon_2\}\right)^2 = \sigma^2 + \Phi\left(-\frac{1}{\sigma\sqrt{2}}\right) - \sigma\sqrt{2} \cdot \phi\left(\frac{1}{\sigma\sqrt{2}}\right),$$

где  $\Phi$  и  $\phi$  — функцию распределения и плотность  $\mathcal{N}(0,1)$ .

# II. Упорядочивание точек для модели I порядка

Для  $h_1$ :

$$\begin{aligned} \operatorname{bias}\left(h_{1}\right) &= 0,\\ \mathbb{D}\left(h_{1}\right) &= \operatorname{MSE}\left(h_{1}\right) = \left(u'(\Delta)\right)^{2} \cdot \sigma^{2}. \end{aligned}$$

Для  $\tilde{h}_1$ :

$$\begin{split} \operatorname{bias}\left(\tilde{h}_1\right) &= u'(\Delta) \left(\Phi\left(-\frac{1}{\sigma\sqrt{2}}\right) - \sigma\sqrt{2} \cdot \phi\left(\frac{1}{\sigma\sqrt{2}}\right)\right), \\ \mathbb{D}\left(\tilde{h}_1\right) &= (u'(\Delta))^2 \cdot \left(\sigma^2 + \Delta^2 \Phi\left(-\frac{\Delta}{\sigma\sqrt{2}}\right) - \frac{\Delta\sigma}{\sqrt{\pi}} \cdot e^{-\frac{\Delta}{4\sigma^2}}\right) - \\ &- (u'(\Delta))^2 \cdot \left(\Delta\Phi\left(-\frac{\Delta}{\sigma\sqrt{2}}\right) - \frac{\sigma}{\sqrt{\pi}} \cdot e^{-\frac{\Delta}{4\sigma^2}}\right)^2, \\ \operatorname{MSE}\left(\tilde{h}_1\right) &= (u'(i\Delta))^2 \left(\sigma^2 + \Delta^2 \cdot \Phi\left(-\frac{\Delta}{\sigma\sqrt{2}}\right) - \frac{\Delta\sigma}{\sqrt{\pi}} \cdot e^{-\frac{\Delta}{4\sigma^2}}\right). \end{split}$$

### **Утверждение**

$$|\mathit{bias}\left(\tilde{h}_i\right)| \geq |\mathit{bias}\left(h_i\right)| = 0, \ \mathbb{D}\left(\tilde{h}_i\right) \leq (u'(i\Delta))^2 \cdot \sigma^2 = \mathbb{D}\left(h_i\right),$$
  $\mathit{MSE}\left(\tilde{h}_i\right) \leq (u'(i\Delta))^2 \cdot \sigma^2 = \mathit{MSE}\left(h_i\right), \ i = \overline{1,2}.$ 



## II. Упорядочивание точек для модели I порядка



Рис. 1: Зависимость |bias  $\left(\tilde{h}_1\right)$ |,  $\sqrt{\mathbb{D}\left(\tilde{h}_1\right)}$  и  $\sqrt{\mathsf{MSE}\left(\tilde{h}_1\right)}$ , i=1,2, от  $\sigma$  — корня из дисперсии случайной величины  $\varepsilon_1$ , на примере функции u такой, что  $u'(\Delta)=1$ .

# II. Сравнение алгоритма аппроксимации для рядов с разными способами упорядочивания точек

Функция 
$$u(x) = \sin\left(200 \cdot \frac{2\pi x}{T}\right)$$
.

Данные: 
$$F=(f_1,\ldots,f_N)$$
, где  $f_i=u(i\Delta+\varepsilon_i)$ ,  $i=\overline{1,N}$ ,  $N=200$ ,  $\Delta=1/N$ ,  $\varepsilon_i\sim\mathcal{N}(0,\sigma^2)$  и независимые.

Метод оценивания математического ожидания ряда — «Гусеница»-SSA. Восстановление ряда по двум компонентам.

Таблица 2 : Сравнение оценок значений  $u(i\Delta)$  по алгоритму 2 (модель  $(X_A)_2$ ) в случае данных, упорядоченных по i, и данных, упорядоченных по  $i/N+\varepsilon_i$ ,  $i=\overline{1,N},\ N=200.$  Число повторов 1000.

| $\sigma_{arepsilon}$              | 0.5     | 0.6     | 0.7     | 0.8     | 0.9     | 1       |
|-----------------------------------|---------|---------|---------|---------|---------|---------|
| T                                 | 7       | 8       | 9       | 11      | 13      | 14      |
| MSE                               | 3.2e-03 | 3.2e-03 | 3.8e-03 | 3e-03   | 2.8e-03 | 3e-03   |
| MSE <sub>sort</sub>               | 2.8e-03 | 3e-03   | 3.3e-03 | 2.6e-03 | 2.4e-03 | 2.5e-03 |
| $bias^2$                          | 5e-05   | 2.5e-05 | 1.1e-05 | 3.3e-06 | 1.7e-06 | 5.4e-06 |
| bias <sup>2</sup> <sub>sort</sub> | 4.1e-05 | 2.3e-05 | 1.3e-05 | 3.1e-06 | 0.6e-06 | 2.7e-06 |
| $\mathbb{D}\widehat{u}$           | 3e-03   | 3.2e-03 | 3.6e-03 | 3e-03   | 2.7e-03 | 3e-03   |
| $\mathbb{D}\widehat{u}_{sort}$    | 2.8e-03 | 2.8e-03 | 3.1e-03 | 2.6e-03 | 2.4e-03 | 2.5e-03 |
| $\widehat{\sigma}$                | 0.558   | 0.652   | 0.742   | 0.832   | 0.925   | 1.02    |
| $\widehat{\sigma}_{sort}$         | 0.498   | 0.55    | 0.591   | 0.626   | 0.667   | 0.7     |

- Были рассмотрены четыре модели и для трех из них построены алгоритмы оценивания функции u в регулярной решетке.
- Для модели I порядка были получены теоретические заключения об уменьшении среднеквадратического отклонения от истинных значений при упорядочивании по возрастанию точек, в которых измерялась функция u.
- На ряде примеров было проведено сравнение работы построенных алгоритмов в различных моделях и при различном упорядочивании.
- Дополнительно были рассмотрены статистические критерии и была численно показана их применимость и мощность против альтернатив о несоответствии типа неравномерности точек, в которых измеряются данные.