3

INTRODUCTION

1AI	FIEN		
is ga	thered, a hypothesis is form	_	•
(A)	Scientific theory	(B)	Scientific law
(C)	Biological method	(D)	All choices are correct
		_	•
(A)	Vaccines	(B)	Anti-Toxins
(C)	Both (A) and (B)	(D)	Antibiotics
	_	s by a	pplying different strategic methods is
(A)	Hydroponics	(B)	Chemical control
(C)	Integrated disease managemen	t (D)	Crop rotation
Trea	at <mark>m</mark> ent of disease by x-rays or	r other	ionizing radiation is:
(A)	Chemotherapy	(B)	Radiotherapy
(C)	Gene therapy	(D)	All (A), (B) and (C)
Red	wood trees measure over:		
(A)	400 feet in height	(B)	200 meters in height
(C)	300 feet in height	(D)	All choices are incorrect
		e set	of observations to reach a general
(A)	Inductive reasoning	(B)	Deductive reasoning
(C)	Both (A) and (B)	(D)	None of the above
	Metris garexpectors (A) (C) Theorem (A) (C) Treators (A) (C) Red (A) (C) Theorem (A) (C) (A)	is gathered, a hypothesis is formed experimentally tested is called: (A) Scientific theory (C) Biological method The chemicals produced by micror inhibiting the growth of anoth (A) Vaccines (C) Both (A) and (B) Planning to reduce plant disease termed as: (A) Hydroponics (C) Integrated disease management Treatment of disease by x-rays of the conclusion is called: (A) 400 feet in height The reasoning from a specific conclusion is called: (A) Inductive reasoning	Method of research in which a biologic is gathered, a hypothesis is formulated experimentally tested is called: (A) Scientific theory (B) (C) Biological method (D) The chemicals produced by microorgar or inhibiting the growth of another orgation inhibiting the growth of another orgation inhibiting the growth of another orgation inhibiting to reduce plant diseases by a termed as: (A) Hydroponics (B) (C) Integrated disease management (D) Treatment of disease by x-rays or other (A) Chemotherapy (B) (C) Gene therapy (D) Red wood trees measure over: (A) 400 feet in height (B) (C) 300 feet in height (D) The reasoning from a specific set conclusion is called: (A) Inductive reasoning (B)

7.	prot			th the function of nucleic acids and ell replication and the transmission o	
	(A)	Micro-Biology	(B)	Environmental Biology	
	(C)	Molecular Biology	(D)	Parasitology	
8.		application of organisms, bid	_	eal systems, or biological processes to is called:	0
	(A)	Micro-Biology	(B)	Molecular Biology	
	(C)	Biotechnology	(D)	Social Biology	
9.		oebae are single-celled proto lting in two offspring with ide		which reproduce by binary fission genes. This is process of:	ı,
	(A)	Natural cloning	(B)	Cell transfer cloning	
	(C)	Artificial cloning	(D)	Both (A) and (B)	
10.	A co	ommunity along with its non liv	ving e	environmen <mark>t i</mark> s called as:	
	(A)	Habitat	(B)	Ecosystem	
	(C)	Ecological niche	(D)	All choices are correct	
11.	The	term Biology is of:			
	(A)	Greek origin	(B)	Latin origin	
	(C)	English origin	(D)	German origin	
12.		branch of Biology dealing wan beings is:	ith s	ocial behavior and communal life o	f
	(A)	Human Biology	(B)	Social Biology	
	(C)	Micro-Biology	(D)	Biotechnology	
13.	All t	th <mark>e living and no</mark> n-living matte	rs ar	e formed of:	
	(A)	Atoms and sub-atomic particles	(B)	A.M.P, A.T.P, A.D.P.	
	(C)	Cells and cell products	(D)	Organs and organelle	
14.	Ded	uctiv <mark>e</mark> reasoning is always fron	n:		
	(A)	Specific to general	(B)	Qualitative to quantitative	
	(C)	General to specific	(D)	Tentative to exact	
15.		ufficiently stable electrically in the strain of the strai		al group of at least two atoms in a chemical bonds:	a
	(A)	Proton	(B)	Neutron	
	(C)	Molecule	(D)	All options are incorrect	

16.		the part of the Earth, incl in which life occurs:	uding	g air, land, surface rocks, and wate	r,
	(A)	Biosphere	(B)	Atmosphere	
	(C)	Lithosphere	(D)	Hydrosphere	
17.	Coll	ection of inter-breeding organ	nisms	of same species:	
	(A)	Community	(B)	Biosphere	
	(C)	Population	(D)	Both (A) and (B)	
18.	It is	growing of plants without soi	l:		
	(A)	Crop rotation	(B)	Hydrostatics	
	(C)	Hydroponics	(D)	All (A), (B) and (C)	
19.	The	period from 600 million years	s ago t	to 270 million years ago is:	
	(A)	Azoic era	(B)	Paleozoic era	
	(C)	Cenozoic era	(D)	Jurassic era	
20.	20. The period of geologic time beginning 225 million years ago and endin million years ago, falling between the Paleozoic and Cenozoic Eras is cal				
	(A)	Proterozoic era	(B)	Azoic era	
	(C)	Tertiary era	(D)	Mesozoic era	
21.		period of geologic <mark>time begi</mark> i ion years a <mark>go</mark> and <mark>enc</mark> ompassi	_	after the end of the Mesozoic Era 7 e present is called:	' 0
	(A)	Proterozoic era	(B)	Paleozoic era	
	(C)	Cenozoic era	(D)	Mesozoic era	
22.	Livi	n <mark>g t</mark> ogether of <mark>tw</mark> o organisms	belon	iging to different species is termed as:	;
	(A)	Parasitism	(B)	Mutualism	
	(C)	Symbiosis	(D)	Commensalism	
23.	•	ymbi <mark>ot</mark> ic relationship in whic cte <mark>d:</mark>	h one	e species benefits and the other is no	ot
	(A)	Parasitism	(B)	Mutualism	
	(C)	Commensalism	(D)	None of these	
24.	A fo	rm of symbiosis in which both	spec	cies benefit:	
	(A)	Parasitism	(B)	Mutualism	
	(C)	Commensalism	(D)	None of these	

25.	A ty	pe of symbiosis in which one	organis	m benefits at the expense of the other:
	(A)	Parasitism	(B)	Mutualism
	(C)	Commensalism	(D)	None of these
26.	Life	emerges at the level of:		
	(A)	Atom	(B)	Cell
	(C)	Organ	(D)	Molecule
27.		an be defined as the use of n pest population:	atural	enemies to reduce th <mark>e d</mark> ama <mark>ge cau</mark> sed
	(A)	Chemical control	(B)	Biological control
	(C)	Chemotherapy	(D)	None of these
28.		practice of growing seve		ferent <mark>cro</mark> ps on the <mark>same</mark> land in ts <mark>and diseases i</mark> s ter <mark>me</mark> d as:
	(A)	Crop fixation	(B)	Crop rotation
	(C)	Both (A) and (B)	(D)	None of these
29.	29. The treatment of cancer using specific chemical agents or drugs t selectively destructive to malignant cells and tissues:			
	(A)	Chemotherapy	(B)	Biological control
	(C)	Radiotherapy	(D)	None of these
30.	Firs	t living organisms o <mark>rigin</mark> ated	l:	
	(A)	2000 M years ago	(B)	5000 M years ago
	(C)	3000 M years ago	(D)	8000 M years ago
31.				ed in ancestor to descendent sequence one that immediately preceded it:
	(A)	Hierarchy	(B)	Systematics
	(C)	Phyletic lineage	(D)	Nomenclature
32.	repl		,	lly identical copy of an organism by ovum with the nucleus of a body cell
	(A)	Syngamy	(B)	Cloning
	(C)	Both (A) and (B)	(D)	Allogamy
33.	The	first antibiotic to be discover	red was	:
	(A)	Streptomycin	(B)	Neomycin
	(C)	Penicillin	(D)	Chloromycetin

34.	Antigens in the form of modified or inactivated or killed pathogens that raise immunity against actual pathogens:							
	(A)	Antibiotics	(B)	Antibodies				
	(C)	Vaccines	(D)	None of these				
35.	Doll	y sheep was cloned in:						
	(A)	1993	(B)	1998				
	(C)	1996	(D)	1999				
36.	Biol	ogical applications provi	de:					
	(A)	Better health	(B)	Better food				
	(C)	Better environment	(D)	All choices are correct				
37.	petr	"If bacteriophages specifically target and destroy cells of Escherichia coli in petri dishes, then they will do the same in laboratory mice that have been infected by that strain". This statement is referred to as:						
	(A)	Observation	(B)	Hypothesis				
	(C)	Modeling	(D)	Conclusion				
38.	The	process of immunization	by vaccina	<mark>ation was fi</mark> rst introduc	ed by:			
	(A)	Buchner (1897)	(B)	Euler (1932)				
	(C)	Edward Jenner (1795)	(D)	Fisher (1898)				
39.		acellular, Eukaryotic <mark>org</mark> its or fung <mark>i a</mark> re placed in		ich are no longer classif	ied as animals,			
	(A)	Monera	(B)	Protista				
	(C)	Fungi	(D)	Plantae				
40.	What <mark>is</mark> true for N <mark>at</mark> ural Cloning?							
	(A)	Asexual reproduction in plants and animal						
	(B)	Regeneration and wound healing						
	(C)	Growth of tumor cells or cancers						
	(D)	All (A), (B) and (C)						
41.	The	term Biology is of:						
	(A)	Latin origin	(B)	German origin				
	(C)	English origin	(D)	Greek origin				

42.	The branch of Biology dealing with social behavior and communal life of human beings is:							
	(A)	Micro Biology	(B)	Human Biology				
	(C)	Bio technology	(D)	Social Biology				
43.	All t	the living and non-living matte	rs ar	e formed of:				
	(A)	A.M.P; A.T.P; A.D.P.	(B)	Cells and cell products				
	(C)	Atoms and sub-atomic particles	(D)	Organs and organelle				
44.	Ded	uctive reasoning is always from	n:					
	(A)	Tentative to exact	(B)	General to specific				
	(C)	Qualitative to quantitative	(D)	Specific to general				
45.	The	The plants having foreign D.N.A. in their cells are:						
	(A)	(A) Induced plants		Hydrophytic plants				
	(C)	Transgenic plants	(D)	Specific plants				
46.	AID	S is caused by:						
	(A)	D-virus	(B)	H.I.V.				
	(C)	H-virus	(D)	T.M.V.				
47.	Clo	ning is a technology for <mark>ac</mark> hievi	ng:					
	(A)	Eugenic aims	(B)	Integrated aims				
	(C)	Scientific aims	(D)	Biology aims				
48.	Which of following is a viral disease:							
	(A)	Tetanus	(B)	Typhoid				
	(C)	Meningitis	(D)	Cow pox				
49.	The	Integrated disease managemen	nt inv	volves:				
	(A)	Loss of microbes	(B)	Division of zygote				
	(C)	Extinction of species	(D)	Combating of disease				
50.	The	study of living organism:						
	(A)	Microbiology	(B)	Marine Biology				
	(C)	Parasitology	(D)	Biology				
51.	Mol leve		truct	ture of cells and their organelles at the				
	(A)	Molecular	(B)	Macro				
	(C)	Microbiology	(D)	Biome				

52.	The	study of micro-organ	isms, such as l	Bacteria, Viruses etc. is	called:			
	(A)	Molecular	(B)	Microbiology				
	(C)	Marine Biology	(D)	Macro				
53.	The	study of living organi	isms in seas an	d oceans is called:				
	(A)	Marine Biology	(B)	Macro				
	(C)	Molecular	(D)	Microbiology				
54.		study of Parasites, relled:	elating to thei	r structure and mode o	of transmission			
	(A)	Biology	(B)	Chemotherapy				
	(C)	Gene therapy	(D)	Parasitology				
55.	Bio	elements constitute 99	% of the total	mass:				
	(A)	Six	(B)	Five				
	(C)	Two	(D)	One				
56.	Eve	Every organism is composed of numer <mark>ous</mark> micro an <mark>d:</mark>						
	(A)	Heteromolecules	(B)	inorganic molecules				
	(C)	Macromolecules	(D)	molecules				
57.	A group of organisms of the same species located in the same place at the same time is called as:							
	(A)	Pasteurization	(B)	Community				
	(C)	Population	(D)	Phyletic lineage				
58.	Population of different species of plants and Animals in the same habitat is called:							
	(A)	Community	(B)	Phyletic lineage				
	(C)	Biome	(D)	Population				
59.	A la	rge r <mark>e</mark> gional commun	ity determined	l by climate is called as	•			
	(A)	Biome	(B)	community				
	(C)	Chemotherapy	(D)	Biosphere				
60.		ınbroken series of spe ed as:	ecies arranged	in ancestor to the desce	endant order is			
	(A)	Phyletic lineage	(B)	Parasitology				
	(C)	Population	(D)	Community				

61.	A st	atement based upon observa	tions a	nd experience is called as:
	(A)	Law	(B)	Experiment
	(C)	Hypothesis	(D)	Vaccination
62.	The	manipulation of desired gen	es in pl	ants and animals is called as:
	(A)	Genetic engineering	(B)	Vaccination
	(C)	Cloning	(D)	Chemotherapy
63.		production of genetically oduction is called as:	identi	cal copies of org <mark>anisms</mark> by asexual
	(A)	Biome	(B)	Phyletic lineage
	(C)	Genetic engineering	(D)	Cloning
64.		chnique involved in food proning bacteria is called:	eservati	ion from spoilage by killing non-spore
	(A)	Radiadions	(B)	Antibiotics
	(C)	Chemotherapy	(D)	Pasteurization
65.	Acqı	iired Immuno deficienc <mark>y s</mark> yn	drome	abbreviated as:
	(A)	HIV	(B)	AIDS
	(C)	ADS	(D)	AID
66.	_	air and isolation of <mark>defe</mark> ctive e marrow i <mark>s called:</mark>	genes	by introducing normal genes through
	(A)	Parasitology	(B)	Phyletic lineage
	(C)	Microbiology	(D)	Gene therapy
67.	The	species of plants and animal	s likely	to get extinct are called as:
	(A)	Extinct Species	(B)	Protected species
	(C)	Endangered Species	(D)	Aids
68.	Whi	ich o <mark>n</mark> e is used to control car	icer:	
	(A)	Parasitology	(B)	Community
	(C)	Chemotherapy	(D)	Gene therapy
69.	Edw	vard Jenner in 1795 develope	d a tec	hnique to control small pox called:
	(A)	Vaccination	(B)	Chemotherapy
	(C)	Antisepsis	(D)	Radiotherapy

70. Bio-filter:

- (A) Collection of tissues to shape a structure that forms a functional unit.
- **(B)** It involves the removal of environmental pollutions by the living organisms.
- **(C)** It involves the test to verify the significance of nutrients essential for the plants.
- **(D)** Is one of the techniques to avoid microbial ailments.

71. Organ:

- (A) Collection of tissues to shape a structure that forms a functional unit.
- **(B)** It involves the test to verify the significance of nutrients essential for the plants.
- (C) The part of earth inhabited biologically and A biologically to form a unit.
- (D) It involves the removal of environmental pollutions by the living organisms.

72. Hydroponic culture technique:

- (A) Collection of tissues to shape a structure that forms a functional unit.
- **(B)** It involves the test to verify the significance of nutrients essential for the plants.
- (C) The part of earth inhabited biologically and A biologically as a unit.
- (D) It involves the removal of environmental pollutions by the living organisms.

73. Immunization:

- (A) Is one of the techniques to avoid microbial ailments.
- **(B)** Collection of tissues to shape a structure that forms a functional unit.
- (C) The part of earth inhabited biologically and A biologically as a unit.
- (D) It involves the test to verify the significance of nutrients essential for the plants.

74. Bio remediation:

- (A) Is one of the techniques to avoid microbial ailments.
- **(B)** The part of earth inhabited biologically and A biologically as a unit.
- (C) Collection of tissues to shape a structure that forms a functional unit.
- **(D)** It involves the removal of environmental pollutions by the living organisms.

75. Radioactive isotopes:

- (A) Administrating anticancer radiations to the patients after regular intervals.
- **(B)** The hypothesis supported by the result of many tests.
- (C) Dating or age of rocks can by calculated.
- **(D)** One of the geological periods of Paleozoic era.

76. Devonian period:

- (A) The hypothesis supported by the result of many tests.
- **(B)** Dating or age of rocks can by calculated.
- **(C)** Administrating anticancer chemicals to the parents after regular intervals.
- (**D**) One of the geological periods of Paleozoic era.

77. Tissue culture:

- (A) Dating or age of rocks can by calculated.
- **(B)** The hypothesis supported by the result of many tests.
- (C) One of the geological periods of Paleozoic era.
- (D) One of the methods to produce genetically identical organisms by asexual method.

78. Chemotherapy technique:

- (A) One of the methods to produce genetically identical organisms by asexual method.
- **(B)** One of the geological periods of Paleozoic era.
- (C) Dating or age of rocks can by calculated.
- (D) Administrating anticancer chemicals to the patients after regular intervals.

79. Theory:

- (A) One of the geological periods of Paleozoic era.
- **(B)** The hypothesis supported by the result of many tests.
- (C) Dating or age of rocks can by calculated.
- (D) One of the methods to produce genetically identical organisms by asexual method.

Answers

Sr.	Ans.								
1.	(C)	2.	(D)	3.	(C)	4.	(B)	5.	(C)
6.	(A)	7.	(C)	8.	(C)	9.	(A)	10.	(B)
11.	(A)	12.	(B)	13.	(A)	14.	(C)	15.	(C)
16.	(A)	17.	(C)	18.	(C)	19.	(B)	20.	(D)
21.	(C)	22.	(C)	23.	(C)	24.	(B)	25.	(A)
26.	(B)	27.	(B)	28.	(B)	29.	(A)	30.	(C)
31.	(C)	32.	(B)	33.	(C)	34.	(C)	35.	(C)
36.	(D)	37.	(B)	38.	(C)	39.	(B)	40.	(D)
41.	(D)	42.	(D)	43.	(C)	44.	(B)	45.	(C)
46.	(B)	47.	(A)	48.	(D)	49.	(D)	50.	(D)
51.	(A)	52.	(B)	53.	(A)	54.	(D)	55.	(A)
56.	(C)	57.	(C)	58.	(A)	59.	(A)	60.	(A)
61.	(C)	62.	(C)	63.	(D)	64.	(D)	65.	(B)
66.	(D)	67.	(C)	68.	(C)	69.	(A)	70.	(B)
71.	(A)	72.	(B)	73.	(A)	74.	(D)	75.	(C)
76.	(D)	77.	(D)	78.	(D)	79.	(B)		<u></u>

BIOLOGICAL MOLECULES

1.	Whi	ch one is a protein?		
	(A)	Cholesterol		
	(B)	ATP		
	(C)	There is no way of known	owing withou	t seeing the chemical reaction
	(D)	Cellulase		
2.	Glyd	eogen is an example of:		
	(A)	Both a polysaccharide	and a carboh	ydrate
	(B)	Phospholipid		
	(C)	Polysaccharide (only)		
	(D)	Carbohydrate (only)		
3.	A tr	iglyceride is a:		
	(A)	Protein	(B)	Nucleic acid
	(C)	Simple sugar	(D)	Lipid
4.	Whi	c <mark>h is</mark> an organ <mark>ic</mark> molec	ule?	
	(A)	NO_2	(B)	$C_6H_{12}O_6$
	(C)	H ₂ O	(D)	H_2SO_4
5.	Whi	ch class of molecule is	the major co	emponent of cell membrane?
	(A)	Cellulose	(B)	Phospholipid
	(C)	Wax	(D)	Triglyceride
6.	Pept	ide bonds are found in	ı :	
	(A)	Proteins	(B)	Inorganic compounds
	(C)	Lipid	(D)	Carbohydrate

7.	Gly	Glycerol is the backbone molecule for:						
	(A)	ATP	(B)	DNA				
	(C)	Triglycerides	(D)	Disaccharides				
8.	Who	en a protein undergoes a hy	drolysis	reaction the end-products are:				
	(A)	Amino acid	(B)	Nucleotides				
	(C)	Fatty acid	(D)	Monosaccharide's				
9.	Тор	oroduce Lactose:						
	(A)	Glucose and galactose mus	t undergo	a dehydration reaction.				
	(B)	Glucose and fructose must	undergo a	a hydrolysis reaction.				
	(C)	Two amino acids must form a peptide bond.						
	(D)	(D) Pairing of nitrogenous bases must occur between nucleotides.						
10.	The	biological function of a pro	otein is d	etermined by its:				
	(A)	Primary structure	(B)	Quaternary structure				
	(C)	Secondary structure	(D)	Tertiary structure				
11.	Enz	ymes are:						
	(A)	Proteins	(B)	Triglycerides				
	(C)	Steroids	(D)	Polysaccharides				
12.	The	function of ATP is to:						
	(A)	Store energy						
	(B)	Act as a catalyst						
	(C)	Determine the function of a cell						
	(D)	Act as a template for produ	ction of p	protein				
13.	All	org <mark>anic compou</mark> nds contain	the elen	nents:				
	(A)	Iron and oxygen	(B)	Carbon and hydrogen				
	(C)	Carbon and nitrogen	(D)	Carbon and oxygen				
14.	All	o <mark>f the</mark> following are organic	compou	nds except:				
	(A)	Water	(B)	Enzyme				
	(C)	ATP	(D)	Glucose				
15.	Whi	ich of the following is consi	dered to	be neutral?				
	(A)	Cytoplasm	(B)	HC1				
	(C)	Urine	(D)	Pure water				

16.	Gly	Glyceraldehyde is one example of a group of sugers called:			
	(A)	Pentose	(B)	Tetrose	
	(C)	Triose	(D)	Octose	
17.	Nitr	ogen bases such as choline, eth	nanola	amine and serine are important of:	
	(A)	Sphingolipid	(B)	Phospholipid	
	(C)	Phosphatidycholine	(D)	Phosphodiester	
18.	Whi	ich molecule is used for short t	erm e	energy storage?	
	(A)	Chitin	(B)	Fat	
	(C)	Cellulose	(D)	Glycogen	
19.	The	functional group COOH is:			
	(A)	Basic	(B)	Never ionized	
	(C)	Acidic	(D)	All A, B and C	
20.	Whi	ich of these is an example of hy	droly	vsis?	
	(A)	Dipeptide + H ₂ O-amino acid +	Ami	no acid	
	(B)	Amino acid + Amino acid - D	ipepti	<mark>de</mark> + H ₂ O	
	(C)	Neither of these is correct			
	(D)	Both of these (A) and (B) are of	correc	t	
21.	A fa	tty acid is unsaturated if it:			
	(A)	Contain double bonds	(B)	Contains an acidic group	
	(C)	Bonds to glycogen	(D)	Contain hydrogen	
22.	Whi	ich is not a lipid?			
	(A)	Polysaccharides	(B)	Wax	
	(C)	Steroid	(D)	Fat	
23.	Nuc	leotide contains:			
	(A)	Sugar, nitrogen base and carbo	n		
	(B)	Sugar, nitrogen – containing ba	ase an	d a phosphate molecule	
	(C)	Monomer for fat and Polysacci	haride		
	(D) Sugar, glycerol and phosphate				

24.	ATP	:					
	(A)	Has a helical structure	(B)	is an amino acid			
	(C)	Provide enzyme for metabolism	(D)	is a high – energy molecule			
25.	A ho	ormone is an example of which	func	tional class of proteins?			
	(A)	Regulatory	(B)	Catalytic			
	(C)	Contractile	(D)	Structural			
26.	The	Sugar found in R.N.A. is:					
	(A)	Galactose	(B)	Fructose			
	(C)	Ribose	(D)	Deoxyribose			
27.	Ster	oids are classified as:					
	(A)	Lipids	(B)	Protein			
	(C)	Carbohydrate	(D)	Nucleic acid			
28.	Hen	noglobin is an example of whic	h fun	ctional class of protein?			
	(A)	Regulatory	(B)	Contractile			
	(C)	Transport	(D)	Structural			
29.	In R	NA the Nitrogen <mark>base that</mark> tak	es the	place of thymine is:			
	(A)	Adenine	(B)	Guanine			
	(C)	Cytosine	(D)	Uracil			
30.	Which of the following represent accurate pairing in D.N.A. molecules?						
	(A)	Adenine to cytosine and guanine to thymine					
	(B)	Adenine to uracil and cytosine to guanine					
	(C)	Adenine to adenine and guanine to guanine					
	(D)	Adenine to thymine and cytosis	ne to	guanue			
31.	The	Suffix that denotes a sugar is:					
	(A)	ide	(B)	ase			
	(C)	ose	(D)	amide			
32.	The	melting points of palmitic acid	l is:				
	(A)	80°C	(B)	72°C			
	(C)	63.1°C	(D)	70°C			

33.	Pola	r molecules:						
	(A)	Have a positive charge at one end and a negative charge at the other end						
	(B)	Are found at the ends of other	er molec	cules				
	(C)	Are pointed at both ends						
	(D)	None of the above						
34.	Met	abolic activities included:						
	(A)	Photosynthesis	(B)	Respiration				
	(C)	Digestions	(D)	All of the above				
35.	Larg	ge molecules with skeletons (of carbo	on atoms are said to be:				
	(A)	Carbonic	(B)	Inorganic				
	(C)	Carboxylate	(D)	Organic				
36.	The	Combining capacity of an a	tom or i	ion is called:				
	(A)	рН	(B)	Valency				
	(C)	Elemental balance	(D)	Bonding capacity				
37.	DNA	A model was suggested <mark>by:</mark>						
	(A)	Wilkins and Franklin	(B)	Hershey & Chase				
	(C)	Watson and crick	(D)	Char gaff				
38.	Con	jugated Hi <mark>ston Prote</mark> ins a <mark>re:</mark>						
	(A)	Transport protein						
	(B)	Only structured protein						
	(C)	Only regulatory protein						
	(D)	Structural and (Functional) r	egulator	y protein				
39.		nch of biology, which deals nical process in the living or		ne study of chemical components and , is called:				
	(A)	Ecology	(B)	Physiology				
	(C)	Biochemistry	(D)	Histology				
40.	Basi	s element of organic compou	ınd is:					
	(A)	Water	(B)	Aldo – sugar				
	(C)	Solid	(D)	Carbon				

41.	Car	bohydrates are also called:		
	(A)	Saccharides	(B)	Glycogen
	(C)	Glycosidic bond	(D)	Ribofuranose
42.	The	sugar with aldehyde group is	called	l:
	(A)	Aldo-sugar	(B)	Keto-suger
	(C)	Acylglycerol	(D)	Glycogen
43.	Ribo	ose form a ring structure when	n in so	olution known as:
	(A)	Hydrolysis	(B)	Biochemistry
	(C)	Ribofuranose	(D)	Carbon
44.	Olig	osaccharides yield from two to	o ten 1	monosaccharides on:
	(A)	Polymerization	(B)	Hydrolysis
	(C)	Glycosidic bond	(D)	Condensation
45.	The	covalent bond between two m	onosa	ccharides c <mark>al</mark> led:
	(A)	Phophodiester linkage	(B)	Peptide bond
	(C)	Hydrophobic interactions	(D)	Glycosidic bond
46.	Star	ches have unbranched <mark>c</mark> hains	of glu	cose and soluble in hot water are:
	(A)	Acylglycerol	(B)	Amylase
	(C)	Amylopectin	(D)	Herbivores
47.	Star	ches have b <mark>ranched</mark> chai <mark>ns a</mark> nd	d are i	insoluble in hot or cold water are:
	(A)	Amylopectin	(B)	Amylose
	(C)	Phospholipids	(D)	Acylglycerol
48.	Aniı	ma <mark>l starch is: </mark>		
	(A)	Carbon	(B)	Amylose
	(C)	Glycogen	(D)	Amylopectin
49.	Cell	ulos <mark>e i</mark> s digested because of mi	croor	ganism in their tract by:
	(A)	Omnivores	(B)	Carnivores
	(C)	Herbivores	(D)	Macrophages
50.	The	nature of Lipids is:		
	(A)	Inorganic	(B)	Carbon
	(C)	Heterogeneous	(D)	Proteinacous

51.	The	These are composed of glycerol and fatty acids:						
	(A)	Phospholipids	(B)	Waxes				
	(C)	Acylglycerol	(D)	Terpenoids				
52.	In a	nimal fatty acids are:						
	(A)	Solid	(B)	Ringed				
	(C)	Straight	(D)	None of these				
53.		bility of fatty acids in organic increasing number of:	c solv	ents and their melting points increase				
	(A)	Carbon	(B)	Hydrogen				
	(C)	Oxygen	(D)	All of the above				
54.	At r	oom temperature animal Fats	are:					
	(A)	Solid	(B)	liquids				
	(C)	Semi-solid	(D)	All of these				
55.	Fats	and oils are lighter than:						
	(A)	Air	(B)	Oil				
	(C)	Glycerol	(D)	Water				
56.	Deri	ivatives of phosph <mark>ati</mark> dic <mark>aci</mark> d a	re.					
	(A)	Waxes	(B)	Terpenoids				
	(C)	Phospholipids	(D)	Acylgycerols				
57.	Terj	Terpenoids are made up of simple repeating units called:						
	(A)	Isoprenoid units	(B)	Amino acid				
	(C)	Peptide unit	(D)	Glycosidic unit				
58.	Mos	Most abundant organic compound to be found in the cells is:						
	(A)	Proteins	(B)	Carbon				
	(C)	Nu <mark>cle</mark> ic acid	(D)	Lipids				
59.	Prot	t <mark>ein's</mark> polymers are:						
	(A)	Nucleotides	(B)	Amino acid				
	(C)	Glucose	(D)	Fatty acids				
60.	Nun	nber of peptide bonds in a dip	eptide	:				
	(A)	Four	(B)	Three				
	(C)	Two	(D)	One				

61.		ich structure of protein in a protein molecule?	comprises	the number and sequence of amino
	(A)	Primary	(B)	Secondary
	(C)	Tertiary	(D)	Quatenary
62.	Eac	h alpha chain of hemoglo	bin contair	ns ———— amino acid.
	(A)	141	(B)	142
	(C)	139	(D)	140
63.	Oxy prot		red blood	cells exhibits quaternary structure of
	(A)	Hemoglobin	(B)	Myoglobin
	(C)	Insulin	(D)	Fibrinogen
64.		ertiary structure of prot ning a shape:	ein polypep	tide chain bends and folds upon itself
	(A)	Ellipsoidal	(B)	Square
	(C)	Globular	(D)	Triangular
65.	In a	queous medium fibrous	proteins are	:
	(A)	Soluble	(B)	least soluble
	(C)	Insoluble	(D)	readily soluble
66.	Glol	bular prote <mark>ins</mark> are el <mark>lips</mark> c	oidal or:	
	(A)	Helix	(B)	linear
	(C)	Fiber like	(D)	Spherical
67.	DNA	A <mark>an</mark> d RNA are <mark>m</mark> ade up	of:	
	(A)	Nucleoside	(B)	Amino acids
	(C)	Nucleotide	(D)	Nucleic acid
68.		carb <mark>on</mark> monosaccharide units of:	, a nitrogen	base and a phosphoric acid are three
	(A)	Nucleoside	(B)	Nucleotide
	(C)	Nucleic acid	(D)	Carbohydrates
69.	The	compound formed by co	mbination o	of a base and a pentose sugar is called:
	(A)	Nucleic acid	(B)	ATP
	(C)	Nucleotide	(D)	Nucleoside

70.	DNA	A is?		
	(A)	Heredity material	(B)	proteinacous material
	(C)	Fatty material	(D)	Cellular material
71.	Nico	otinamide adenine dinucleotid	e abb	reviated as:
	(A)	DNA	(B)	NADH
	(C)	NAD	(D)	DAN
72.	The	amount of DNA is fixed for a	parti	cular species as:
	(A)	Centromere	(B)	Chromatids
	(C)	Chromosomes	(D)	Histones
73.	Hea	mophilus influenzae is?		
	(A)	Virus	(B)	Fungi
	(C)	prion	(D)	Bacteria
74.	RNA	A synthesis by DNA is known :	as:	
	(A)	Translation	(B)	Transcription
	(C)	Replication	(D)	Semi conservative replication
75.	t RN	NA comprises about 10 to 20%	of th	ne:
	(A)	Chromosome RNA	(B)	Conjugated RNA
	(C)	Cellular RNA	(D)	Globular RNA
76.		o <mark>dif</mark> ferent molecu <mark>le</mark> belongin t <mark>he</mark> r to forms:	g to	different categories, usually combine
	(A)	Protein molecules	(B)	Cellular molecules
	(C)	Conjugated molecules	(D)	Lipids molecules
77.	The	nucleohistone is present in:		
	(A)	Chromosome	(B)	Centromere
	(C)	Nucleus	` ′	Homologues Chromosomes
78.		ch one pick amino acid and to orm protein:	ansfe	er them to ribosome where they linked
	(A)	rRNA	(B)	tRNA
	(C)	mRNA	(D)	RNA

79.	Non	polar organic molecule:						
	(A)	CO_2	(B)	NAD				
	(C)	H_2O	(D)	dGTP				
80.	Cov	alent bond:						
	(A)	Result when atoms complete their electronic shell by sharing electron						
	(B)	Result when atoms complete t	heir el	ectronic shell by donating electron				
	(C)	Both A and B						
	(D)	None of these						
81.	Can	e suger is a/an:						
	(A)	Polysaccharides	(B)	Oligosaccharides				
	(C)	Monosaccharides	(D)	None of these				
82.	A nu	ucleotide of DNA:						
	(A)	Serine	(B)	ATP				
	(C)	dGTP	(D)	CTP				
83.	Car	bon is:						
	(A)	Bivalent	(B)	Tetravalent				
	(C)	Trivalent	(D)	All of the above				
84.	Tra	nslation:						
	(A)	Synthesis of RNA	(B)	Three adjacent nuclcotide on mRNA				
	(C)	Synthesis of protein	(D)	Structual component of ribosome				
85.	Cod	Codon:						
	(A)	Structual component of ribosc	me					
	(B)	Histone						
	(C)	Three adjacent nuclcotide on mRNA						
	(D)	Purine of DNA						
86.	Ade	nine:						
	(A)	Synthesis of protein	(B)	Histone				
	(C)	Purine of DNA	(D)	Pyrimidine of DNA				

87.	rRN	A :		
	(A)	Structual component of riboso	me	
	(B)	Histone		
	(C)	Purine of DNA		
	(D)	Synthesis of protein		
88.	Prot	tein attach to chromosome:		
	(A)	Three adjacent nuclcotide on r	nRNA	
	(B)	Purine of DNA		
	(C)	Histone		
	(D)	Structual component of riboso	me	
89.	Deo	xyribose:		
	(A)	Pentose sugar	(B)	Pyrimidine of DNA
	(C)	DNA	(D)	DNA model
90.	Con	tain an anticodon:		
	(A)	tRNA	(B)	DNA model
	(C)	mRNA	(D)	DNA
91.	Wat	son and crick:		
	(A)	DNA	(B)	DNA model
	(C)	Nucleotide	(D)	Pentose sugar
92.	Dou	ble helix:		
	(A)	DNA	(B)	Pentose sugar
	(C)	tRNA	(D)	DNA model
93.	Nuc	leo <mark>side + Phosph</mark> ate:		
	(A)	tRNA	(B)	DNA
	(C)	Nucleotide	(D)	mRNA
94.	Ster	<mark>iodes</mark> and triglycerides are exa	ample	:
	(A)	DNA	(B)	Lipids
	(C)	pH7	(D)	Disaccharide
95.	Star	rch:		
	(A)	pH7	(B)	Give blue colour with iodine
	(C)	Phoenholinid	(D)	Monosaccharide

96.	Suci	rose and Lactose are example	of:	
	(A)	Lipids	(B)	Phospholipid
	(C)	Monosaccharide	(D)	Disaccharide
97.	Glu	cose and fructose are example	of:	
	(A)	Monosaccharide	(B)	pH7
	(C)	Lipids	(D)	Disaccharide
98.	Nut	ral solution:		
	(A)	Disaccharide	(B)	pH7
	(C)	Lipids	(C)	Give blue colour with iodine
99.	The	cell energy currency:		
	(A)	(CH ₂ O) _n	(B)	Fibrous protein
	(C)	ATP	(D)	Water
100.	Car	boxyl group:		
	(A)	СООН	(B)	Fibrous protein
	(C)	ATP	(D)	Globular protein
101.	Fibr	rin:		
	(A)	СООН	(B)	ATP
	(C)	Fibrous protein	(D)	Globular protein
102.	Mor	nosaccharide:		
	(A)	СООН	(B)	(CH ₂ O) _n
	(C)	Water	(D)	Fibrous protein
103.	Act	as <mark>s</mark> olvent for i <mark>on</mark> ic compound	ls in b	ody fluid:
	(A)	Water	(B)	Globular protein.
	(C)	ATP	(D)	СООН
104.		bra <mark>nc</mark> h of biology that deal ecules that make up the body		the study of in-organic and organic ving organism is:
	(A)	Pharmacology	(B)	Biochemistry
	(C)	Both (A) and (B)	(D)	Pharmaco-dynamics
105.	The	six bio-elements that make up	p 98%	of protoplasm are:
	(A)	C, H, O, N, Mg^+, K^+	(B)	C, H, O, N, Mg ⁺ , Na ⁺
	(C)	C, H, O, N, Cl ⁻ , K ⁺	(D)	C, H, O, N, P, S

106. What is shown in the diagram below?

- (A) Even charge distribution
- **(B)** Uneven charge distribution
- (C) Polarity within water molecule (D) Both (B) and (C)
- 107. Atoms form bonds by:
 - (A) Gaining of electrons
- **(B)** Losing of electrons
- **(C)** Sharing of electrons
- **(D)** All (A), (B) and (C)
- 108. If atoms of different elements combine, the molecule can also be called a:
 - (A) Polymer

(B) Monomer

(C) Compound

- (D) All choices are incorrect
- 109. A ———— occurs as bonds are formed or broken between atoms, ions or molecules.
 - (A) Chemical reaction
- **(B)** Physical reaction
- (C) Thermal reaction
- (**D**) None of the above
- 110. Electrolytes that release hydrogen ions in water are called:
 - (A) Acids

(B) Bases

(C) Amphoteric

- **(D)** All options are correct
- 111. It is the most abundant compound in living organisms and makes up twothirds of the weight of adults:
 - (A) Protein

(B) Water

(C) Carbohydrate

- (D) Nucleic acid
- 112. ATP releases energy when:
 - (A) It undergoes a condensation reaction
 - **(B)** A hydroxyl group is added to it
 - **(C)** A phosphate group is added to it
 - **(D)** A phosphate group is removed from it

113.	A fa	tty acid is a compound made o	of a cl	nain (of carbon	atoms plus	}:	
	(A)	An acid group at one end	(B)	Acio	d group a	t both ends		
	(C)	An amino group	(D)	Ami	ino group	at both end	S	
114.		ond that forms between a pecule and a negative charged r	•	•	_	•		of one
	(A)	Ionic bond	(B)	Hyd	lrogen bo	nd		
	(C)	Covalent bond	(D)	Basi	ic bond			
115.	Deh	ydration and hydrolysis in the subsection of the subsection is a subsection of the s			involve	removing	or	adding
	(A)	CH and NH ₂	(B)	C ar	nd H			
	(C)	-COOH and H	(D)	ОН	and H			
116.	A ch	nemical "buffer":						
	(A)	can donate a H ⁺ when the solu	tion b	ecom	es too bas	sic		
	(B)	can absorb a H ⁺ when the solu	tion b	ecom	es too aci	dic		
	(C)	is utilized in living systems to	maint	ain co	orrect pH			
	(D)	all of the above are correct						
117.	Nuc	leotides have a nitro <mark>genou</mark> s ba	se att	ache	d to a sug	gar at the:		
	(A)	1' carbon	(B)	3' c	arbon			
	(C)	4' carbon	(D)	5' c	arbon			
118.	wer	hr <mark>ee</mark> molecules of a fatty acion in the property of a molecule of glycon in the formula:			_			
	(A)	C ₄₈ H ₆₈ O ₆	(B)	C ₄₈ I	$H_{74}O_6$			
	(C)	$C_{54}H_{71}O_{6}$	(D)	C ₅₄ I	$H_{68}O_{9}$			
119.	This	s aminoacid is called:						
		CH ₃						
		NH ₂ —CH—COOH						
	(A)	Glycine	(B)	Alaı	nine			
	(C)	Leucine	(D)	Vali	ine			

120. Monosaccharides contain carbon atoms:			:	
	(A)	3-7	(B)	3-6
	(C)	3-9	(D)	3-10
121.	Stea	rin is:		
	(A)	Fatty acid	(B)	Saturated acylglycerol
	(C)	Unsaturated acylglycerol	(D)	None of these
122.	Ene	rgy absorbed to change water	from	liquid to gas is called:
	(A)	Latent heat of fusion	(B)	High surface tension
	(C)	Heat of vaporization	(D)	High heat capacity
123.	The	sources of carbohydrates are g	green	plants. <mark>The</mark> se are prima <mark>ry prod</mark> uct of:
	(A)	Respiration	(B)	Catabolism
	(C)	Photosynthesis	(D)	All (A), (B) and (C)
124.	It is	most abundant carbohydrate	in the	e nature:
	(A)	Glycogen	(B)	Chitin
	(C)	Lignin	(D)	Cellulose
125.	It is	the most abundant org <mark>a</mark> nic co	mpor	<mark>en</mark> t in living cells:
	(A)	Lipid	(B)	Carbohydrate
	(C)	Water	(D)	Protein
126.	Eac	h of the 20 <mark>naturally occurri</mark> ng	g amii	no acids has a different:
	(A)	NH ₂ group	(B)	-COOH group
	(C)	R group	(D)	–OH group
127.	The	sum of all the chemical reaction	on tha	at occurs in the body is known as:
	(A)	Anabolism	(B)	Metabolism
	(C)	Catabolism	(D)	Differentiation
128.	Whi	ich is an organic molecule?		
	(A)	H ₂ O	(B)	H_2SO_4
	(C)	NO_2	(D)	$C_6H_{12}O_6$
129.	Whi	ich class of molecule is the maj	or co	mponent of cell membrane?
	(A)	Phospholipid	(B)	Cellulose
	(C)	Wax	(D)	Triglyceride

130.	Pept	tide bonds are found in:		
	(A)	Protein	(B)	Carbohydrate
	(C)	Lipids	(D)	Inorganic compounds
131.	Gly	cerol is the back bone molecule	e for:	
	(A)	Disaccharides	(B)	DNA
	(C)	Triglycerides	(D)	ATP
132.	Who	en a protein undergoes a hydro	olysis	reaction the end-products are:
	(A)	Amino acids	(B)	Monosaccharides
	(C)	Fatty acids	(D)	Nucleotides
133.	Whi	ch of the following is consider	ed to	be neutral?
	(A)	Urine	(B)	Pure water
	(C)	Cytoplasm	(D)	HCl
134.	The	functional group -COOH is:		
	(A)	Acidic	(B)	Basic
	(C)	Never ionized	(D)	all options are correct
135.	Whi	ich of these is an e <mark>xample</mark> of hy	droly	v <mark>si</mark> s?
	(A)	Amino acid + Amino acid → I	Dipept	tide $+ H_2O$
	(B)	Dipeptide $+ H_2O \rightarrow Amino acceptance Am$	id + A	amino acid
	(C)	Both (A) and (B)		
	(D)	Neither of these is correct		
136.	A fa	tt <mark>y acid is unsat</mark> urated if it:		
	(A)	Contains hydrogen	(B)	Contains double bonds
	(C)	Contains an acidic group	(D)	Bonds to glycogen
137.	A ho	orm <mark>on</mark> e is an example of which	func	tional class of proteins:
	(A)	Contractile	(B)	Structural
	(C)	Regulatory	(D)	Cyclic
138.	The	sugar found in RNA is:		
	(A)	Fructose	(B)	Galactose
	(C)	Deoxyribose	(D)	Ribose

139.	Ster	oids are classified as:			
	(A)	Carbohydrates	(B)	Lipids	
	(C)	Proteins	(D)	Nucleic acids	
140.	Hen	noglobin is an example o	of which fun	ctional class of protein:	
	(A)	Contractile	(B)	Structural	
	(C)	Regulatory	(D)	Transportive	
141.	In R	RNA the Nitrogen base t	hat takes th	e place of thymine is:	
	(A)	Adenine	(B)	Cytosine	
	(C)	Uracil	(D)	Guanine	
142.	The	Suffix that denotes a su	ıgar is:		
	(A)	ase	(B)	ose	
	(C)	ide	(D)	amide	
143.		o different molecule be other to form:	longing to	different ca <mark>te</mark> gories, us	sually combine
	(A)	Homomer molecule	(B)	Macro molecule	
	(C)	Conjugated molecule	(D)	All options are correct	
144.		an animal storage pro	duct that ac	cumulates in the verte	brate liver and
	(A)	Cellulose	(B)	Chitin	
	(C)	Glycogen	(D)	Fructose	
145.	•	m <mark>m</mark> etrical lipi <mark>d</mark> molecu wit <mark>h</mark> a phosph <mark>at</mark> e grouj		v 1	
	(A)	Wax	(B)	Terpenoid	
	(C)	Steroid	(D)	Phospholipid	
146.	Trig	glyce <mark>ri</mark> des that are solid	at room ten	perature:	
	(A)	Fats	(B)	Oils	
	(C)	Linoleic acid	(D)	None of these	
147.	Trig	glycerides that are liquio	d at room te	mperature:	
	(A)	Fats	(B)	Oils	
	(C)	Stearin	(D)	All of these	

148.	A chemical group composed of a central phosphorous bonded to four oxygens:			
	(A)	Carbonyl group	(B)	Sulfhydryl group
	(C)	Carboxylic	(D)	Phosphate group
149.	Nuc	leic acids are polymers compo	sed of	f monomer units known as:
	(A)	Amino acids	(B)	Nucleosides
	(C)	Nucleotides	(D)	Nitrogenous bases
150.	The	re are ———— nitrogenous	s base	es.
	(A)	Four	(B)	Five
	(C)	Six	(D)	Three
151.	The	form of RNA that delivers in	forma	ation fro <mark>m</mark> DNA to be u <mark>sed in</mark> making
	a pr	otein is:		
	(A)	mRNA	(B)	rRNA
	(C)	tRNA	(D)	All of these
152.	RNA	A occurs in:		
	(A)	Nucleus	(B)	Cytoplasm
	(C)	Both (A) and (B)	(D)	Nucleoplam
153.	The	monomer that makes up poly	sacch	<mark>ari</mark> des is:
	(A)	Amino acids	(B)	Glucose
	(C)	Fatty acids	(D)	Glycerol
154.	Whi	ich of these <mark>is not a function</mark> of	lipid	s?
	(A)	Long term energy storage	(B)	Structures in cells
	(C)	Sex hormones	(D)	Enzymes
155.	All I	iv <mark>in</mark> g things us <mark>e</mark> the same ——		— amino acids.
	(A)	4	(B)	20
	(C)	100	(D)	64
156.	Whi	ich o <mark>f t</mark> hese is not a nucleotide	base	found in DNA?
	(A)	Uracil	(B)	Adenine
	(C)	Guanine	(D)	Thymine
157.			ribos	e sugar, and phosphate group, PO ₄₋₂)
	_	two other phosphate groups.	(-)	
	(A)	Cytosine base	(B)	Guanine base
	(C)	Thymine base	(D)	Adenine base

1.50				
158.	Men	nbrane carbohydrates when lin	nked	to lipids are called:
	(A)	Sphingolipids	(B)	Glycolipids
	(C)	Phospholipids	(D)	Sterols
159.	Lact	tose is present in:		
	(A)	Sugarcane	(B)	Fruits
	(C)	Milk	(D)	Egg
160.	A di	saccharide that gives two mole	ecules	of glucose on hydro <mark>lysi</mark> s is:
	(A)	Sucrose	(B)	Lactose
	(C)	Maltose	(D)	None of these
161.	In su	igar cane and sugar beet, the s	torag	ge produ <mark>ct is:</mark>
	(A)	Maltose	(B)	Sucrose
	(C)	Lactose	(D)	Isomaltose
162.	One	molecule of glucose and one n	ıole <mark>c</mark> ı	ıle of galact <mark>os</mark> e form:
	(A)	Maltose	(B)	Sucrose
	(C)	Lactose	(D)	Isomaltose
163.	Nuc	leic acids are related w <mark>it</mark> h:		
	(A)	Respiration	(B)	Photosynthesis
	(C)	Heredity	(D)	None of these
164.	Wax	xes form protective coating on:		
	(A)	Leaves	(B)	Fruits
	(C)	Animal's skin	(D)	All of these
165.	The	fo <mark>ur nitrogenous</mark> bases which f	orm (the code words for DNA language are:
	(A)	ACTU	(B)	UTAC
	(C)	AGTU	(D)	AGCT
166.	DNA	A and RNA differ in:		
	(A)	Sugar only	(B)	Sugar and purines
	(C)	Sugar and pyrimindines	(D)	Sugar and phosphate
167.	` /	ond formed between carboxyli	. ,	
· ·	(A)	Ester bond	(B)	Amide bond
	` ′	Phosphate bond	` /	Ionic bond

168.	When amino acids in a polypeptide chain are arranged in spiral manner, it is called:								
	(A)	Primary structure	(B)	Secondary structure					
	(C)	Tertiary structure	(D)	Quaternary structure					
169.		step of protein synthesis in nent of DNA is copied into RN		h the information contained specific alled:					
	(A)	Transduction	(B)	Translation					
	(C)	Transformation	(D)	Transcription					
170.	Cho	ose the pair of terms that co	_	etes this sentence: nucleotides are to ins.					
	(A)	Amino acid Polypeptides	(B)	Genes Enzymes					
	(C)	Nucleic acids Amino acids	(D)	Polymers Peptides					
171.	Whi	ich of these terms includes all o	thers	s in the list?					
	(A)	Nucleic acid	(B)	Purine					
	(C)	Nucleotide	(D)	Nitrogenous base					
172.	The	compounds made up of simple	e repe	eating isoprenoid units are called:					
	(A)	Neutral lipids	(B)	Terpenoids					
	(C)	Waxes	(D)	All of these					
173.	The	term Protein was coined by:							
	(A)	Berzelius	(B)	G.J. Murlder					
	(C)	Bloor	(D)	T.H. Morgan					
174.	Wat	te <mark>r m</mark> olecule h <mark>as</mark> characteristics	s of:						
	(A)	Acid	(B)	Base					
	(C)	Both acid and base	(D)	None of these					
175.		amo <mark>u</mark> nt of heat must be abs ige its temperature by 1°C:	sorbe	d or lost by 1g of that substance to					
	(A)	Specific heat	(B)	Heat of vaporization					
	(C)	Both (A) and (B)	(D)	None of these					
176.	Dur	ing the conversion of ATP into	ADI	P, energy release is.					
	(A)	31.81 KJ / mole	(B)	7.3 K.Cal / mole					
	(C)	61.8 KJ / mole	(D)	Both (A) and (B)					

177.	Mol	ecular formula of Stea	rin fat is:			
	(A)	$C_{57}H_{110}O_6$	(B)	$C_{57}H_{98}O_{6}$		
	(C)	$C_{57}H_{104}O_8$	(D)	$C_{57}H_{104}O_6$		
178.		carbohydrate molecul rolysis are:	le which yield	2 to 10 mon	osaccharide	e molecules on
	(A)	Polysaccharides	(B)	Oligosaccha	rides	
	(C)	Monosaccharides	(D)	Heterosacch	arides	
179.		estimated that a persivalent to:	son of averag	ge size conta	ins 16 kg o	f fat w <mark>hich</mark> is
	(A)	244000 K.Cal of energ	gy (B)	164000 K.C	al of energy	
	(C)	144000 K.Cal of energ	gy (D)	188000 K.C	al of energy	
180.	The	four interconnected ri	ings of steroic	l molecule ha	ive:	
	(A)	12 carbons	(B)	15 carbons		
	(C)	16 carbons	(D)	17 carbons		
181.	ATI	is an example of:				
	(A)	Mononucleotide	(B)	Dinucleotide	e	
	(C)	Polynucleotide	(D)	None of the	se	
182.		process of maki <mark>ng a</mark> NA molecu <mark>le</mark> associat <mark>e</mark>				enetic code of
	(A)	Transduction	(B)	Translation		
	(C)	Transformation	(D)	Transcriptio	n	
183.	NAI	D is an example of:				
	(A)	Mononucleoti <mark>de</mark>	(B)	Dinucleotide	e	
	(C)	Coenzyme	(D)	Both (B) and	d (C)	

Answers

Sr.	Ans.								
1.	(D)	2.	(A)	3.	(D)	4.	(B)	5.	(B)
6.	(A)	7.	(C)	8.	(A)	9.	(A)	10.	(D)
11.	(A)	12.	(A)	13.	(B)	14.	(A)	15.	(D)
16.	(C)	17.	(B)	18.	(D)	19.	(C)	20.	(A)
21.	(A)	22.	(A)	23.	(B)	24.	(D)	25.	(A)
26.	(C)	27.	(A)	28.	(C)	29.	(D)	30.	(D)
31.	(C)	32.	(C)	33.	(A)	34.	(D)	35.	(D)
36.	(B)	37.	(C)	38.	(D)	39.	(C)	40.	(D)
41.	(A)	42.	(A)	43.	(C)	44.	(B)	45.	(D)
46.	(B)	47.	(A)	48.	(C)	49.	(C)	50.	(C)
51.	(C)	52.	(C)	53.	(A)	54.	(A)	55.	(D)
56.	(C)	57.	(A)	58.	(A)	59.	(B)	60.	(D)
61.	(A)	62.	(A)	63.	(A)	64.	(D)	65.	(C)
66.	(D)	67.	(D)	68.	(B)	69.	(D)	70.	(A)
71.	(C)	72.	(C)	73.	(B)	74.	(B)	75.	(C)
76.	(C)	77.	(A)	78.	(B)	79.	(C)	80.	(A)
81.	(B)	82.	(C)	83.	(B)	84.	(C)	85.	(C)
86.	(C)	87.	(A)	88.	(C)	89.	(A)	90.	(A)
91.	(B)	92.	(D)	93.	(C)	94.	(B)	95.	(B)
96.	(D)	97.	(A)	98.	(B)	99.	(C)	100.	(A)
101.	(C)	102.	(B)	103.	(A)	104.	(B)	105.	(D)
106.	(D)	107.	(D)	108.	(C)	109.	(A)	110.	(A)
111.	(B)	112.	(D)	113.	(A)	114.	(B)	115.	(D)
116.	(D)	117.	(A)	118.	(C)	119.	(B)	120.	(A)

Sr.	Ans.								
121.	(B)	122.	(C)	123.	(C)	124.	(D)	125.	(D)
126.	(C)	127.	(B)	128.	(D)	129.	(A)	130.	(A)
131.	(C)	132.	(A)	133.	(B)	134.	(A)	135.	(B)
136.	(B)	137.	(C)	138.	(D)	139.	(B)	140.	(D)
141.	(C)	142.	(B)	143.	(C)	144.	(C)	145.	(D)
146.	(A)	147.	(B)	148.	(D)	149.	(C)	150.	(B)
151.	(A)	152.	(C)	153.	(B)	154.	(D)	155.	(B)
156.	(A)	157.	(D)	158.	(B)	159.	(C)	160.	(C)
161.	(B)	162.	(C)	163.	(C)	164.	(D)	165.	(D)
166.	(C)	167.	(A)	168.	(B)	169.	(D)	170.	(C)
171.	(A)	172.	(B)	173.	(A)	174.	(C)	175.	(A)
176.	(D)	177.	(A)	178.	(B)	179.	(C)	180.	(D)
181.	(A)	182.	(B)	183.	(D)				

ENZYMES

1.	The	catalytic activity of an enzyme	e is re	stricted to its small portion called:					
	(A)	Intermediate	(B)	Above all					
	(C)	Passive site	(D)	Active site					
2.	An a	activated enzyme made of poly	pepti	de chain and a co-factor is:					
	(A)	Co-enzyme	(B)	Substrate					
	(C)	Apoenzyme	(D)	Holoenzyme					
3.	The	rate of reaction of enzyme dir	ectly	depends upon:					
	(A)	Maximum pH level							
	(B)	Amount of enzyme present concentration	at a	specific time at unlimited substrate					
	(C)	Nature of substrate							
	(D)	Low temperature							
4.	Kosl	Koshland in 1959 proposed the modified form of:							
	(A)	Unit membrane model		Reflective index model					
	(C)	Fluid mosaic model	(D)	Induce fit model					
5.	The	The reversible inhibitors usually constitute:							
	(A)	No linkage with enzyme		Weak linkage with enzyme					
	(C)	Medium linkage	(D)	Strong linkage with enzyme					
6.	The	detachable co-factor of an enz	yme ((if it is an inorganic ion) is called as:					
	(A)	Activator	(B)	Catalytic					
	(C)	Aqueous medium	(D)	Apoenzyme					

7.	If the non-protein part is covalently bonded to the protein part of an enzyme it is called as:								
	(A)	Prosthetic group	(B)	Catalytic					
	(C)	Activator	(D)	Optimum					
8.	An enzyme with its coenzyme or prosthetic group, removed is called as:								
	(A)	Apoenzyme	(B)	Aqueous medium					
	(C)	Activator	(D)	Prosthetic group					
9.	The	active site of an enzyme is con	npose	d of binding site and:					
	(A)	Apoenzyme	(B)	Catalytic site					
	(C)	Prosthetic site	(D)	Substrate site					
10.	Med	lium required for Enzymes vig	gorou	s activity:					
	(A)	Colloidal	(B)	Transparent					
	(C)	Aqueous	(D)	Gel					
11.	Eve	ry enzyme functions effectively	at:						
	(A)	9.00 pH	(B)	Optimum pH					
	(C)	2.00 pH	(D)	7.00 pH					
12.	Alm	ost all enzymes are:							
	(A)	Fibrous proteins		Globular proteins					
	(C)	Triangular proteins	(D)	All of the above					
13.	The optimum pH value for pancreatic lipase is:								
	(A)	8.00		10.00					
	(C)	7.00	(D)	9.00					
14.	The	enzymes involved in the cellul	ar re	spiration in eukaryotes are found in:					
	(A)	Chloroplast	(B)	Aqueous medium					
	(C)	Mit <mark>oc</mark> hondria	(D)	Nucleoplasm					
15.	Eve	n traces of enzymes can bring	abou	t change in large amount of:					
	(A)	Catalytic	(B)	Activator					
	(C)	Substrate	(D)	Optimum					
16.	Co-	enzymes:							
	(A)	Globular protein	(B)	Oral cavity					
	(C)	Vitamin	(D)	Co-factors					

17.	Salivary amylase:				
	(A) Ora	al cavity	(B)	Co-factors	
	(C) Vit	amin	(D)	Globular protein	
18.	Metal io	ns:			
	(A) Vit	amin	(B)	Oral cavity	
	(C) Glo	obular protein	(D)	Co-factors	
19.	Amino a	icids:			
	(A) Glo	obular protein	(B)	Oral cavity	
	(C) Ch	loroplast	(D)	Vitamin	
20.	Photosy	nthesis:			
	(A) Ora	al cavity	(B)	Vitamin	
	(C) Glo	obular protein	(D)	Chloroplast	
21.	Emil Fis	scher:			
	(A) Cy:	anide	(B)	Lock and key model	
	(C) Ter	mperature	(D)	Specific in action	
22.	Inhibito	rs:			
	(A) Ten	mperature	(B)	Cyanide	
	(C) Loc	ck and key model	(D)	Specific in action	
23.	Activation	on energy:			
	(A) Ter	mperature	(B)	Cyanide	
	(C) Lo	ck and key model	(D)	Specific in action	
24.	Enzyme	s:			
	(A) Ten	mperature	(B)	Specific in action	
	(C) Re	versible inhibitors	(D)	Cyanide	
25.	Competi	itive:			
	(A) Rev	versible inhibitors	(B)	Lock and key model	
	(C) Spe	ecific in action	(D)	Temperature	
26.	The cata	alytic activity of an enzyme	e is re	estricted to its small portion called:	
	(A) Ac	tive site	(B)	Passive site	
	(C) All	osteric site	(D)	All Choices are correct	

27.	7. An activated enzyme made of polypeptide chain and a co-factor is:			de chain and a co-factor is:
	(A)	Coenzyme	(B)	Substrate
	(C)	Apoenzyme	(D)	Holoenzyme
28.	Kos	hland in 1959 proposed:		
	(A)	Fluid mosaic model	(B)	Induce fit model
	(C)	Lock and key model	(D)	Reflective index model
29.	Cher	nical nature of enzymes is:		
	(A)	Lipids	(B)	Steroids
	(C)	Proteinacous	(D)	All (A), (B) and (C)
30.	Who	o proposed "lock and key" mo	del to	study enzyme-substrate interaction?
	(A)	Koshland (1959)	(B)	Wilhelm Kuhne (1878)
	(C)	Fischer (1898)	(D)	None of these
31.	In h	uman body the optimum temp	eratu	re for enzy <mark>m</mark> atic activities is:
	(A)	37°C	(B)	40°C
	(C)	25°C	(D)	30°C
32.	Opt	imum pH value for pep <mark>si</mark> n is:		
	(A)	5.5	(B)	7.4
	(C)	4.1	(D)	1.4
33.	Con	npetitive inh <mark>ibitors</mark> stop a <mark>n e</mark> nz	yme	from working by:
	(A)	Changing the shape of the enzy	yme	
	(B)	Merging with the substrate ins	tead	
	(C)	Blocking the active site of the	enzyn	ne
	(D)	Combining with the product of	f the r	eaction
34.	The	enzymes are sensitive to:		
	(A)	Changes in pH	(B)	Changes in temperature
	(C)	Both (A) and (B)	(D)	None of these
35.		yme B requires Zn ²⁺ in order zinc is best identified as:	to ca	ntalyze the conversion of substrate X.
	(A)	Coenzyme	(B)	Activator
	(C)	Substrate	(D)	Product

36. The enzyme minus its coenzyme is r	referred to as the:
--	---------------------

(A) Iso-enzyme

(B) Metalloenzyme

(C) Apoenzyme

(D) All of these

37. The "lock and key" model of enzyme action illustrates that a particular enzyme molecule:

- (A) Forms a permanent enzyme-substrate complex
- **(B)** May be destroyed and resynthesized several times
- **(C)** Interacts with a specific type of substrate molecule
- (D) Reacts at identical rates under all conditions

38. Consider this reaction. $A + B \longrightarrow C + D + energy$.

- (A) This reaction is exergonic
- **(B)** An enzyme could still speed the reaction
- (C) A and B are reactants; C and D are products
- **(D)** All of these are correct

39. An inhibitor that changes the overall shape and chemistry of an enzyme is known as:

- (A) Auto-steric inhibitor
- **(B)** Competitive inhibitor
- (C) Steric inhibitor
- **(D)** Noncompetitive inhibitor

40. Non-protein components of enzymes are known as:

(A) Coenzymes

(B) Activators

(C) Cofactors

(D) All (A), (B) and (C)

41. The reaction below occurs within the cells to prevent the accumulation of hydrogen peroxide. In this reaction, catalase functions as an:

$$2H_2O_2 \xrightarrow{Catalase} 2H_2O + O_2$$

- (A) Enzyme in the breakdown of hydrogen peroxide
- **(B)** Enzyme in the synthesis of hydrogen peroxide
- (C) Emulsifier in the digestion of hydrogen peroxide
- **(D)** Indicator in the detection of hydrogen peroxide

	enzyme is generally named by	y addi	ng ——— to the end of the name
(A)	"-ase". coenzyme	(B)	"-ase". cell in which it is found
(C)	"-ose". substrate	(D)	"-ase". substrate
The	minimum amount of energy	needec	I for a process to occur is called the:
(A)	Minimal energy theory	(B)	
(C)	Kinetic energy	(D)	Activation energy
	-		est the efficiency <mark>of a ce</mark> rtain en <mark>zy</mark> me. hange in the enzyme's e <mark>fficiency?</mark>
(A)	Adding an acidic solution to t	he setu	up .
(B)	Adding more substrate but no	t enzyı	me
(C)	Increasing temperature of sol	ution	
(D)	All (A), (B) and (C) change e	nzym <mark>e</mark>	's efficiency
Enz	ymes function as:		
(A)	Organic catalysts	(B)	Inorganic catalysts
(C)	Inhibitors	(D)	All of these
A ca	italyst is a chemica <mark>l i</mark> nvo <mark>lve</mark> d ir	ı, but n	ot ———by, a chemical reaction.
(A)	Supported	(B)	Changed
(C)	Controlled	(D)	All of these
Mar	ny enzymes function by ———		the activation energy of reactions.
(A)	Increasing	(B)	Promoting
(C)	Lowering	(D)	Both (A) and (B)
Anı	unc <mark>at</mark> alysed re <mark>ac</mark> tion requires	a:	
(A)	Higher activation energy	(B)	Lower activation energy
(C)	Balanced activation energy	(D)	All of these
The	binding of the substrate to the	e enzyı	me alters the structure of the enzyme:
(A)	Lock and key hypothesis	(B)	Induced fit hypothesis
(C)	Fischer's hypothesis	(D)	D.D. Wood's hypothesis
The	y are non-protein organic mol	lecules	bound to enzymes near the active site:
(A)	Activators	(B)	Coenzymes
(C)	Holoenzymes	(D)	All of these

51. The first step in any reaction catalysed by an enzyme is the formati specific association between the molecules called:			•						
	(A)	Enzyme-product complex	(B)	Enzyme-intermediate complex					
	(C)	Enzyme-substrate complex	(D)	None of these					
52.	The bind	-	tors i	s defined by their ability to interact or					
	(A)	The active site of an enzyme	(B)	Regulatory sub-units of an enzyme					
	(C)	Non-competitive inhibitor	(D)	Enzyme cofactors					
53.		n enzyme solution is saturated iin an even faster yield of prod		h substrate, the most effective way to would be:					
	(A)	Add more of the enzymes	(B)	Add more substrate					
	(C)	Add an allosteric inhibitor	(D)	Add a non-competitive inhibitor					
54.		-	tabol	ic pathway turn off the first step of					
		abolic pathway it is:							
	` ,	Positive feed back	(B)	Negative feed back					
	(C)	Competitive feed back	(D)	Both (A) and (C)					
55. When the inhibitory chemical, which does not have to resemble binds to the enzyme other than at the active site is called:									
	(A)	Noncompetitive Inhibition	(B)	Competitive Inhibition					
	(C)	Uncatalysed reaction	(D)	All (A), (B) and (C)					
56.	Which one is not attribute of enzyme?								
	(A)	Specific in nature	(B)	Protein in chemistry					
	(C)	Consumed in reaction	(D)	Increases rate of reaction					
57.		ich <mark>one inactiva</mark> tes an enzyme ve site of an enzyme?	e by	indirectly changing the shape of the					
	(A)	Non-competitive inhibitor	(B)	Competitive inhibitor					
	(C)	Co <mark>en</mark> zyme	(D)	Activator					
58.	The	enzymes are classified into:							
	(A)	Five groups	(B)	Three groups					
	(C)	Six groups	(D)	Four groups					
59.	Non	-proteinaceous part of holoenz	zyme	is:					
	(A)	Prosthetic group	(B)	Apoenzyme					
	(C)	Tubulin	(D)	None of these					

Multip	ole Choi	ice Questions	44	Biology F.Sc. Part-I				
60.		Enzymes are highly specific for a given substrate which is due to the shape of their:						
	(A)	Active site	(B)	Allosteric site				
	(C)	Non-competitive site	(D)	None of these				
61.	The	name enzyme was suggeste	d in 187	8 by the German physiologist:				
	(A)	Wilhelm Kuhne	(B)	Koshland				
	(C)	Fischer	(D)	Paul Filder				
62.	Prot	teinaceous part of holoenzyı	ne is:					
	(A)	Prosthetic group	(B)	Apoenzyme				
	(C)	Lecithin	(D)	None of these				
63.	The	"lock and key hypothesis" at	tempts to	explain the mechanism of:				
	(A)	Vacuole formation	(B)	Pinocytosis				
	(C)	Sharing of electrons	(D)	Enzyme sp <mark>ec</mark> ificity				
64.		enzyme that hydrolyzes procation that enzymes are:	otein wil	l not act upon starch. This fact is an				
	(A)	Hydrolytic	(B)	Specific				
	(C)	Catalytic	(D)	Synthetic				
65.	The	site where enzyme catalyze	d reactio	on takes place is called:				
	(A)	Active site	(B)	Allosteric site				
	(C)	Denatures site	(D)	Dead site				
66.	Wha	at <mark>is</mark> a cofactor <mark>?</mark>						
	(A)	Inorganic ions	(B)	Organic molecules				
	(C)	Both (A) and (B)	(D)	None of the above				
67.	Mg^{+}	Mg ⁺² is an inorganic activator for the enzyme:						
	(A)	Phosophatase	(B)	Carbonic anhydrase				
	(C)	Enterokinase	(D)	Amylase				
68.	$\mathbf{Z}\mathbf{n}^{+2}$	² is an inorganic activator fo	r enzyn	ne:				
	(A)	Carbonic anhydrase	(B)	Phosophatase				
	(C)	Chymotrypsin	(D)	Maltase				

- 69. Which antibiotic blocks the active site of an enzyme that many bacteria used to make cell-walls?
 - (A) Amphotericin

(B) Gentamicin

(C) Penicillin

- **(D)** Cephalosporin
- **70.** DDT and Parathion are inhibitors of key enzymes in:
 - (A) Nervous system
- **(B)** Respiratory system
- **(C)** Digestive system
- **(D)** Circulatory system
- 71. At high temperature the rate of enzyme action decreases because the increased heat:
 - (A) Changes the pH of the system
 - **(B)** Alters the active site of the enzyme
 - (C) Neutralize acids and bases in the system
 - **(D)** Increases the concentration of enzymes
- 72. Which of the following enzymes would digest a fat?
 - (A) Sucrase

(B) Protease

(C) Ligase

- (D) Lipase
- In the lock and key model of enzyme action, the part of the enzyme that 73. recognizes the substrate is known as the:
 - (A) Enzyme-substrate complex
- **(B)** Product
- (C) Enzyme-product complex (D) Active site
- 74. Which model of enzyme action is represented in this diagram?

- (A) Fluid mosaic model
- **(B)** Induce fit model
- (C) Lock and key model
- **(D)** Reflective index model
- 75. A certain enzyme will hydrolyze egg white but not starch. Which statement best explains this observation?
 - (A) Starch molecules are too large to be hydrolyzed
 - **(B)** Enzyme molecules are specific in their actions
 - **(C)** Egg white acts as a coenzyme for hydrolysis
 - (D) Starch is composed of amino acids

- 76. At about 0°C, most enzymes are:
 - (A) Inactive

(B) Active

(C) Destroyed

- (D) Replicated
- 77. Vitamins are essential for the survival of organisms because vitamins usually function as:
 - (A) Substrates

(B) Nucleic acids

(C) Co-enzymes

- (D) Nucleosides
- 78. When a molecule binds to an area of an enzyme that is not the active site, and changes the shape of the enzyme so that it no longer can work, this is called:
 - (A) Denaturation

- (B) Competitive inhibition
- **(C)** Noncompetitive inhibition
- (D) Substrate delocation
- 79. What is a coenzyme?
 - (A) Inorganic ion

- (B) Organic molecule
- **(C)** Both (A) and (B)
- (D) None of these
- 80. Which statement best expresses the information represented in the graph shown?

- (A) The action of enzymes varies with pH
- **(B)** A pH of 7 provides the optimum environment for digestive enzymes
- (C) Gastric juice is active at a pH extending from 0 to 12
- (D) Acids have a pH greater than 7
- 81. Which type of inhibitor is shown in this diagram?
 - (A) Competitive

(B) Non-competitive

(C) Allosteric

(D) Both (B) and (C)

82. Which enzyme represents an enzyme functioning in this reaction?

- **(A)** E
- **(C)** B

- **(B)** C
- **(D)** A

Answers

Sr.	Ans.								
1.	(D)	2.	(D)	3.	(B)	4.	(D)	5.	(B)
6.	(A)	7.	(A)	8.	(A)	9.	(B)	10.	(C)
11.	(B)	12.	(B)	13.	(D)	14.	(C)	15.	(C)
16.	(C)	17.	(A)	18.	(D)	19.	(A)	20.	(D)
21.	(B)	22.	(B)	23.	(A)	24.	(B)	25.	(A)
26.	(A)	27.	(D)	28.	(B)	29.	(C)	30.	(C)
31.	(A)	32.	(D)	33.	(C)	34.	(C)	35.	(B)
36.	(C)	37.	(C)	38.	(D)	39.	(D)	40.	(D)
41.	(A)	42.	(D)	43.	(D)	44.	(D)	45.	(A)
46.	(B)	47.	(C)	48.	(A)	49.	(B)	50.	(B)
51.	(C)	52.	(A)	53.	(A)	54.	(B)	55.	(A)
56.	(C)	57.	(A)	58.	(C)	59.	(A)	60.	(A)
61.	(A)	62.	(B)	63.	(D)	64.	(B)	65.	(A)
66.	(C)	67.	(A)	68.	(A)	69.	(C)	70.	(A)
71.	(B)	72.	(D)	73.	(D)	74.	(C)	75.	(B)
76.	(A)	77.	(C)	78.	(C)	79.	(B)	80.	(A)
81.	(D)	82.	(C)						

THE CELL

1.	Which one of following is true about chloroplast?				
	(A)	It is underground part	(B)	It helps in pollination	
	(C)	Self replicating organelle	(D)	Involve in Lipid synthesis	
2.	One	of the following is not double	mem)	branous structure:	
	(A)	Mitochondrion	(B)	Vacuole	
	(C)	Chloroplast	(D)	Nucleus	
3.	Tay	Sach's disease is because of:			
	(A)	Accumulation of proteins	(B)	Accumulation of glycogen	
	(C)	Accumulation of lipids	(D)	Accumulation of vitamins	
4.	Mod	ification of proteins and lipids a	as gly	copeptides and lipo-proteins occurs in:	
	(A)	Ribosomes	(B)	Golgi apparatus	
	(C)	SER	(D)	All (A), (B) and (C)	
5.	Ribo	os <mark>om</mark> es are che <mark>m</mark> ically compos	ed of:		
	(A)	Protein	(B)	Only DNA	
	(C)	RNA	(D)	Both $(A) + (C)$	
6.	Deto	oxifi <mark>ca</mark> tion of harmful drugs is	the fu	inction:	
	(A)	RER	(B)	SER	
	(C)	Both (A) and (B)	(D)	None of the above	
7.	Whi	ch type of cell would probably	be m	ost appropriate to study chloroplasts?	
	(A)	Conducting cell	(B)	Photosynthetic cell	
	(C)	Pericycle cell	(D)	All options are correct	

8.	Cell	wall consists of:		
	(A)	One main layer	(B)	Two main layers
	(C)	Three main layers	(D)	Four main layers
9.	Leu	coplasts are found in:		
	(A)	Petals	(B)	Ripened fruits
	(C)	Underground parts	(D)	Leaves
10.	The	intake of solid food by inflod	ing of	cell membrane is called:
	(A)	Exocytosis	(B)	Pinocytosis
	(C)	Phagocytosis	(D)	Both (B) and (C)
11.		structure within a cell that di	istingı	nishes the <mark>cell</mark> as being eukaryotic, and
	(A)	Ribosomes	(B)	Cell membrane
	(C)	Cell wall	(D)	Nucleus
12.	Mic	rotubules consist of heli <mark>cally</mark> s	stacke	d molecules of the protein:
	(A)	Actin	(B)	Myosin
	(C)	Keratin	(D)	Tubulin
13.	The	microfilaments are composed	l of:	
	(A)	Actin protein	(B)	Gelatin protein
	(C)	Keratin protein	(D)	Tubulin protein
14.	Lyso	osomes have:		
	(A)	Single-layered membrane	(B)	Double-layered membrane
	(C)	Three-layered membrane	(D)	No membrane
15.	Whi cycl	9	arly as	sembled and disassembled during cell
	(A)	Microtubules	(B)	Intermediate filaments
	(C)	Both (A) and (B)	(D)	None of these
16.	Plan	nt cell wall:		
	(A)	Provide rigidity to the cell	(B)	Maintains cell shape
	(C)	Prevents expansion of cell	(D)	All (A) (B) and (C)

17.	In w	In which organelle following reaction takes place?							
	6CO	$6CO_2 + 6H_2O + Energy (from sunlight) \longrightarrow C_6H_{12}O_6 + 6O_2$							
	(A)	Mitochondrion	(B)	Peroxisome					
	(C)	Chloroplast	(D)	Glyoxysome					
18.	SER	R is abundant in cells that are in	volv	ed in:					
	(A)	Lipid metabolism	(B)	Protein metabolism					
	(C)	Glucose metabolism	(D)	Calcium metabolism					
19.	The	transport vesicles from the Ed	-	lasmic Reticulum (ER)	fuse with the				
	(A)	Cis face	(B)	Trans face					
	(C)	Coated face	(D)	Both (A) and (B)					
20.	The	door to your house is like the –		—— of a cell membra	ne.				
	(A)	Phospholipid bilayer	(B)	Integral protein					
	(C)	Recognition protein	(D)	Peripheral protein					
21.	The	mi permeable membra <mark>ne</mark> is str membrane is only per <mark>m</mark> eable t of the chamber. Which of the f	to wa	<mark>ite</mark> r. 60 mg of salt is ad					
	(A)	Water will move toward the right side							
	(B)	Salt will move toward the right	side						
	(C)	Water will move toward the left side							
	(D)	Salt will move toward the left side							
22.	Dye	in <mark>jected into a pl</mark> ant cell might l	be ab	le to enter an adjacent o	cell through a:				
	(A)	Tight junction	(B)	Microtubule					
	(C)	Desmosome	(D)	Plasmodesma					
23.	Wha	at a <mark>re</mark> the two faces of the Golgi	bod	y?					
	(A)	Funny face and goofy face	(B)	Coated face and non-coa	ated face				
	(C)	Saving face and loosing face	(D)	Cis face and Trans face					
24.	Adja	acent plant cells are "cemented	" tog	ether by:					
	(A)	Their primary walls	(B)	Their secondary walls					
	(C)	A middle lamella	(D)	Plasmodesmata					

Multip	Iultiple Choice Questions			Biology F.Sc. Part-i		
25.		at is a microscope's ability to close together?) disti	nguish between separate objects that		
	(A)	Magnification	(B)	Contrast		
	(C)	Resolving power	(D)	Scanning power		
26.		at is the power of the object er 10x is used and the total m		ns of a microscope if an eyepiece of cation of the object is $40x$?		
	(A)	4	(B)	10		
	(C)	40	(D)	400		
27.	Witl	hin chloroplasts, light is captu	red by	y:		
	(A)	Grana within cisternae	(B)	Thylakoids within grana		
	(C)	Cisternae within grana	(D)	Grana within thylakoids		
28.		gene mutation prevents for somes, a disease may result kn		n of an enzyme normally used by a as:		
	(A)	Lysosomal abstracted disease	(B)	Lysosomal secretory disease		
	(C)	Lysosomal storage disease	(D)	All (A), (B) and (C)		
29.	of h		_	on of lower concentration to a region cells of humans. This process is an		
	(A)	Diffusion	(B)	Passive transport		
	(C)	Osmosis	(D)	Active transport		
30.	The as x		ucture	e of chloroplast. The structure labeled		
	(A)	Granum	(B)	Stroma		
	(C)	Frets	(D)	Lamella		

31.	Whi	ich of the following correctly m	atch	es an organelle with its function?		
	(A)	Mitochondrion photosynthe	sis			
	(B)	Nucleus cellular respiration				
	(C)	Ribosome manufacture of li	pids			
	(D)	Central vacuole storage				
32.	-	which of the following can nonderanes be accomplished?	nover	ment of materials across animal cell		
	I. A	ctive transport, II. Diffusion,	III.	Pinocytosis		
	(A)	I only	(B)	II only		
	(C)	I and II only	(D)	All I, II, and III		
33.	Hyd	rogen peroxide degradation in	a cel	l is a function of:		
	(A)	Ribosomes	(B)	Mitochondria		
	(C)	Peroxisomes	(D)	Glyoxisomes		
34.	4. Cells are commonly studied in the lab. If you were examining various unlabelled slides of cells under the microscope, you could tell if the cell was from a plant by the presence of:					
	(A)	A nucleus	(B)	A cell membrane		
	(C)	Cytoplasm	(D)	A cell wall		
35.	Ribo	osomes are constructed in the:				
	(A)	Endoplasmic reticulum	(B)	Nucleoid		
	(C)	Nucleolus	(D)	Nuclear pore		
36.	Eacl	h <mark>ch</mark> loroplast e <mark>nc</mark> loses a system	of fla	attened, membranous sacs called:		
	(A)	Cristae	(B)	Thylakoids		
	(C)	Plastids	(D)	Cisternae		
37.	Whi	ich o <mark>ne</mark> of the following is an ex	cepti	on to cell theory?		
	(A)	Bacteria	(B)	Viruses		
	(C)	Protists	(D)	Protozoans		
38.		site of enzymes directing the hesis and considered as power		etabolic oxidation (respiration), ATP e of cell are:		
	(A)	Lysosomes	(B)	Microsomes		
	(C)	Mitochondria	(D)	Golgi apparatus		

39.	Dict	yosome is also known as:							
	(A)	Golgi body	(B)	Ribosome					
	(C)	Lysosome	(D)	Peroxisome					
40.	Biod	chemically the ribosome cons	ists o	f ——— and some 50 structura					
		 ,							
	(A)	mRNA, carbohydrates	(B)	tRNA, lipids					
	(C)	mRNA, proteins	(D)	rRNA, proteins					
41.		s a mesh of interconnected metein synthesis and transport.	iembi	ranes that serve a function involving					
	(A)	Endoplasmic reticulum	(B)	Cytoskeleton					
	(C)	Golgi apparatus	(D)	Both (A) and (B)					
42.	Plan	nt cells contain the following 3 t	things	not found in animal cells:					
	(A)	Plastids / Chlorophyll / Memb	rane						
	(B)	Chloroplast / Cell wall / Golgi body							
	(C)	Plastids / Cell wall / Chlorophyll							
	(D)	Mitochondria / Cell wa <mark>ll</mark> / Nuc	leus						
43.	The largest organelle in a mature living plant cell is the:								
	(A)	Chloroplast	(B)	Nucleus					
	(C)	Central vacuole	(D)	Dictyosomes					
44.	Whi	ich of the foll <mark>owing</mark> structu <mark>r</mark> e-f	uncti	on pairs is mismatched?					
	(A)	Lysosome-intracellular digesti	on						
	(B)	Golgi body-secretion of cell pr	oduct	s					
	(C)	Ribosome-protein synthesis							
	(D)	Glyoxysome-detoxification							
45.		thre <mark>e-</mark> dimensional network o aryotic cells is called the:	f prot	tein filaments within the cytoplasm of					
	(A)	Endoplasmic reticulum	(B)	Golgi apparatus					
	(C)	Cytoskeleton	(D)	None of these					
46.	Whi	ich of the following is not a me	mbra	nous organelle?					
	(A)	Lysosomes	(B)	Peroxisomes					
	(C)	Centrioles	(D)	Mitochondria					

47.	A ce	A cell that is missing lysosomes would have difficulty doing what?							
	(A)	Digesting food	(B)	Storing energy					
	(C)	Packaging proteins	(D)	Moving cytoplasm					
48.	Whi	ich of the following cell part	t is descr	ibed as a "fluid mosaic"?					
	(A)	Chloroplast	(B)	Vacuole					
	(C)	Cell membrane	(D)	Endoplasmic reticulum					
49.	Wha	at part of the cell serves as t	he intra	cellular highway?					
	(A)	Endoplasmic reticulum	(B)	Golgi apparatus					
	(C)	Cell membrane	(D)	Mitochondria					
50.	Whi	ich of the following would y	ou not fi	nd in a b <mark>act</mark> erial cell?					
	(A)	DNA	(B)	Cell membrane					
	(C)	Golgi apparatus	(D)	Ribosomes					
51.	Som	atic cells of a human have-	— chromosomes and are called:						
	(A)	10, haploid	(B)	92, diploid					
	(C)	23, haploid	(D)	46, diploid					
52.	Eacl	Each chromosome consists of two identical:							
	(A)	Genes	(B)	Nuclei					
	(C)	Chromatids	(D)	Bases					
53.	An animal has 80 chromosomes in its gametes, how many chromosomes would you expect to find in this animal's brain cells?								
	(A)	120	(B)	240					
	(C)	40	(D)	160					
54.	The	leng <mark>th</mark> of each mitochondri	on is abo	out:					
	(A)	1.0 μm	(B)	0.2 μm					
	(C)	10 μm	(D)	2.0 μm					
55.	Isola calle		ts to det	ermine their chemical composition is					
	(A)	Cell differentiation	(B)	Chromatography					
	(C)	Cell fractionation	(D)	All of these					

56.		ording to mosaic model by posed of:	Singer	and Nicholson plasma membrane is
	(A)	Phospholipids	(B)	Extrinsic proteins
	(C)	Intrinsic proteins	(D)	All of these
57.	Rob	ert Brown is well known for	r his disc	covery of:
	(A)	Chloroplast	(B)	Photometer
	(C)	Nucleus	(D)	Nucleolus
58.	Whi	ich organelle releases oxyge	n?	
	(A)	Mitochondrion	(B)	Chloroplast
	(C)	Glyoxysome	(D)	Both (A) and (B)
59.	End	oskeleton of a cell is made u	ıp of:	
	(A)	Microtubules	(B)	Microfilaments
	(C)	Intermediate filaments	(D)	All of these
60.	Ribo	osomes are attached with E	R by:	
	(A)	Larger subunit	(B)	Smaller subunit
	(C)	Na ⁺ ions	(D)	None of these
61.	The	outer most layer of cell wal	l is:	
	(A)	Primary wall	(B)	Secondary wall
	(C)	Middle lamella	(D)	Plasma membrane
62.	Info	ll <mark>din</mark> gs of inner membrane i	n mitoch	ondria are called:
	(A)	Grana	(B)	Thyallkoids
	(C)	Cristae	(D)	Frets
63.	Chr	omosome with equal arms i	s called:	
	(A)	Metacentric	(B)	Sub-metacentric
	(C)	Acrocentric	(D)	Telocentric
64.		nromosome with the centro ter arm is very small is term		ated very close to one end so that the
	(A)	Telocentric	(B)	Sub-telocentric
	(C)	Acrocentric	(D)	Both (B) and (C)

65.	The	The matrix surrounding the grana in the inner membrane of chloroplasts is:							
	(A)	Cytosol	(B)	Frets					
	(C)	Stroma	(D)	Inter-granal lamellae					
66.	A ch	nromosome whose centrome	ere lies a	t one end:					
	(A)	Sum-metacentric	(B)	Metacentric					
	(C)	Telocentric	(D)	Acrocentric					
67.	Lyso	osomes arise from:							
	(A)	Nucleus	(B)	Endoplasmic reticulum					
	(C)	Golgi apparatus	(D)	Cell membrane					
68.	The	primary structural compon	nents of o	centrioles are:					
	(A)	Microtubules	(B)	Microfilaments					
	(C)	Intermediate filaments	(D)	Basal bodies					
69.		_		<mark>re non-functi</mark> onal organelles by a n <mark>g within th</mark> e cell is referred to as					
	(A)	Pinocytosis	(B)	Endocytosis					
	(C)	Autophagy	(D)	Cytotoxicity					
70.	"Pro	otein's icebergs in a <mark>sea</mark> of li	pids" is	stated by:					
	(A)	Lamellar model		Unit-membrane model					
	(C)	Fluid-mosaic model	(D)	Micellar model					
71.	The	chloroplasts develop from:							
	(A)	ER	(B)	Golgi complex					
	(C)	Nuclear membrane	(D)	Proplastids					
72.	Pero	oxiso <mark>m</mark> es and Glyoxisomes ε	re:						
	(A)	Energy transducers	(B)	Membrane-less organelles					
	(C)	Micro bodies	(D)	Basal bodies					
73.	The fats:		ion of fa	ats to carbohydrates by oxidatio	n of				
	(A)	Peroxisomes	(B)	Microsomes					
	(C)	Glyoxisomes	(D)	Phagosomes					

- 74. Xanthophyll is a pigment having:
 - (A) Yellow colour

(B) Green colour

(C) Red colour

- (D) Blue colour
- 75. The covering of vacuole is known as:
 - (A) Chromoplast

(B) Chloroplast

(C) Amyloplast

- **(D)** Tonoplast
- 76. Insulin is secreted from cells by a process called:
 - (A) Endocytosis

(B) Pinocytosis

(C) Phagocytosis

- **(D)** Exocytosis
- 77. ———increases size of an object.
 - (A) Magnification

- **(B)** Resolution
- **(C)** Resolving power
- (D) Contrast
- 78. The chromosome "B" in this diagram is:

(A) Metacentric

(B) Sub-metacentric

(C) Acrocentric

- (D) Telocentric
- 79. Select the correct for label "B" in this diagram:

- (A) Endoplasmic reticulum
- (B) Peroxisome
- (C) Golgi apparatus
- **(D)** Glyoxysome

80.	Which of the following organelles or structures is found in both plant and animal cells?								
	(A)	Central vacuole	(B)	Tonoplast					
	(C)	Cell wall	(D)	Peroxisomes					
81.	Ery	throcytes have:							
	(A)	Only 5 or 6 pores/nucleue	(B)	Only 3 or 4 pores/nucleus					
	(C)	Only 2 or 4 pores/nucleus	(D)	Only 4 or 5 pores/nucleus					
82.	Chi	mpanzee has:							
	(A)	44 chromosomes		47 chromosomes					
	(C)	48 chromosomes	(D)	46 chromosomes					
83.	Which statement about nucleolus is not true?								
	(A)) Without membranous boundary		Hereditary center					
	(C)	Synthesize site for rRNA	(D)	Composed of two regions					
84.	Whi	Which one of following is true about chloroplast?							
	(A)	Self replicating organelles							
	(B)	Found in underground parts of plants							
	(C)	Involve in protein synthesis							
	(D)	Help in pollination and dispers	al of	seeds.					
85.	One of the following is not double membranous structure:								
	(A)	Chloroplast	(B)	Nucleus					
	(C)	Mitochondria Mitochondria	(D)	Vacuole					
86.	Tay	Tay Sach's disease is because of:							
	(A)	Accumulation of glycogen	(B)	Accumulation of vitamins					
	(C)	Accumulation of lipids	(D)	Accumulation of proteins					
87.	Lyso	osomal sacs are rich in:							
	(A)	Acid Phosphotase and hydroly	tic en	zymes					
	(B)	None of above							
	(C)	Acid oxidase and hydrolytic en	zyme	es					
	(D)	• • •							

88.	Mod	copeptides and glycoproteins occur in:							
	(A)	Golgi apparatus	(B)	Ribosomes					
	(C)	SER	(D)	All of above					
89.	Ribe	Ribosomes are chemically composed of:							
	(A)	Only Protein	(B)	Only DNA					
	(C)	Only RNA	(D)	Both $(A) + (C)$					
90.	Gol	gi apparatus was discovered b	y Gol	gi in:					
	(A)	1889	(B)	1897					
	(C)	1896	(D)	1898					
91.	Deto	oxification of harmful drugs is	the f	unction of:					
	(A)	RER	(B)	SER					
	(C)	(A) and (B) both	(D)	None of above					
92.	Gro	wth and development of plant	is the	function o <mark>f:</mark>					
	(A)	Parenchymatous cells	(B)	Chlorenchymatous cells					
	(C)	Meristematic cells	(D)	Sclerenchymatous cells					
93.	Omnis callula e cellula is h <mark>yp</mark> othesized b <mark>y</mark> :								
	(A)	Schleiden	(B)	Lorenz Oken					
	(C)	Louis pasture	(D)	Rudolph Virchow					
94.	Mite	ochondria are composed of:							
	(A)	Proteins only							
	(B)	DNA only							
	(C)	(C) Enzyme, coenzyme, inorganic and organic salts							
	(D)	All of above							
95.	Whi	ch ty <mark>p</mark> e of cell would probably	be m	ost appropriate to study chloroplasts?					
	(A)	Conducting cell	(B)	Epidermal cell					
	(C)	Photosynthetic cell	(D)	None of above					
96.		ert Hooke in 1665 reporte lication:	ed hi	is work about cell in his famous					
	(A)	Insectia	(B)	Virology					
	(C)	Micrographia	(D)	Ecology					

97.	. Who reported the presence of nucleus in the cell.			
	(A)	Robert Hook	(B)	Robert Brown
	(C)	Rudolph Virchow	(D)	Lorenz Oken
98.	In a	typical compound microscope	e the r	esolution is:
	(A)	4 μm	(B)	20 μm
	(C)	2 μm	(D)	60 μm
99.	Var	ious parts of cells are separate	d by:	
	(A)	Passive transport	(B)	Density gradient centrifugation
	(C)	Active transport	(D)	Homogenization
100.	Cell	membrance is chemically con	apose	d of lipid <mark>s and:</mark>
	(A)	Phagocytosis	(B)	Protoplasm
	(C)	Active transport	(D)	Protein
101.	The	movement of material, requir	es e <mark>nc</mark>	ergy is calle <mark>d:</mark>
	(A)	Active transport	(B)	Osmosis
	(C)	Passive transport	(D)	Diffusion
102.	The	intake of solid food by <mark>in</mark> flodi	ng of	<mark>ce</mark> ll membrane is called:
	(A)	Chitin	(B)	Protein
	(C)	Phagocytosis	(D)	Protoplasm
103.	Cell	wall is secreted by:		
	(A)	Phagocytosis	(B)	Protoplasm
	(C)	Chitin	(D)	Polysomes
104.	Fun	ga <mark>l c</mark> ell wall co <mark>n</mark> tains:		
	(A)	Chitin	(B)	Polysomes
	(C)	Cytosole	(D)	Cisternae
105.	The	soluble part of cytoplasm is:		
	(A)	Cytosole	(B)	Polysomes
	(C)	Cisternae	(D)	Chitin
106.	The	most important function of cy	topla	sm for vital chemicals is to act as:
	(A)	Activity site	(B)	Store house
	(C)	Wastes	(D)	None of the above

107.		E.R. material is separated llar membranes, called:	from	cytoplasmic material by spherical or
	(A)	Chitin	(B)	Cytosole
	(C)	Cisternae	(D)	Protoplasm
108.	A gr	oup of ribosomes attached to	m.R.	N.A. are known as:
	(A)	Phagocytosis	(B)	Protein
	(C)	Protoplasm	(D)	Polysomes
109.	The	eukaryotic larger sub unit se	edimen	its at:
	(A)	60S	(B)	50S
	(C)	70S	(D)	40S
110.	Ribo	osomes are synthesized in:		
	(A)	Nucleolus	(B)	Polysomes
	(C)	Cisternae	(D)	Active transport
111.	The	factory for protein synthesis	is:	
	(A)	Store house	(B)	Ribosomes
	(C)	Cisternae	(D)	Phagocytosis
112.	The	cisternae with associated ver	ricles is	s <mark>c</mark> alled:
	(A)	Glyoxisomes	(B)	Cisternae
	(C)	Golgi complex	(D)	Lysosomes
113.	Whi	ich one is concerned with cell	secret	ion:
	(A)	Lysosomes	(B)	Golgi complex
	(C)	I <mark>nt</mark> ermediate f <mark>il</mark> ament	(D)	Plant seedling
114.	Pha	goc <mark>ytosis, autop</mark> hagy and ext	racellu	llar digestion are the functions of:
	(A)	Lysosomes	(D)	Exterior
	(C)	Intermediate filament	(D)	Plant seedling
115.	Pero	oxis <mark>om</mark> es, in diameter, are ap	proxin	nately:
	(A)	0.5 μm	(B)	1.5 μm
	(C)	2.00 μm	(D)	1.00 μm
116.	Gly	oxisomes are most abundantl	ly foun	d in:
	(A)	Golgi complex	(B)	Ribosomes
	(C)	Actin	(D)	Plant seedling

117.	plant is contributed by:			
	(A)	Microtubules	(B)	Mitochondria
	(C)	Actin	(D)	Glyoxisomes
118.	Lon	g, unbranched, slender tubuli	n pro	tein structure is:
	(A)	Lysosomes	(B)	Microtubules
	(C)	Mitochondria	(D)	Nucleolus
119.	Mic	ro filaments are composed of	contra	actile ——— prote <mark>in</mark> .
	(A)	Intensor	(B)	Exterior
	(C)	Actin	(D)	Ribosomal
120.	Mai	ntenance of cell shape is the re	ole of:	
	(A)	Cristae	(B)	Microtubules
	(C)	Glyoxisomes	(D)	Intermediate filament
121.	In a	nimal cell, two centrioles locat	ted ne	ar the — of nucleus.
	(A)	Exterior	(B)	Nuclear membrane
	(C)	Nuclear pore	(D)	Nucleolus
122.	Whi	ich organelle is kn <mark>own as po</mark> w	er hou	ise of cell?
	(A)	Chloroplast	(B)	Glyoxisome
	(C)	Mitochondria	(D)	Microtubules
123.	Mite	oc <mark>hondrial infolds are</mark> called:		
	(A)	Cisternae	(B)	Cristae
	(C)	Matrix	(D)	Grana
124.		inner surface of crystal in cture known as:	mitoc	hondrial matrix has small knob like
	(A)	Cisternae	(B)	Cristae
	(C)	Grana	(D)	F ₁ particles
125.		nbranes bounded, mostly pig are:	mente	ed bodies in cytoplasm of plants cells
	(A)	Lysosomes	(B)	Cristae
	(C)	Ribosomes	(D)	Plastids

126.	Under electron microscope, a chloroplast shown three main components, the envelope, the stroma and the:							
	(A)	Thylakoid	(B)	F ₁ particles				
	(C)	Granum	(D)	Centerosome.				
127.	On a	are average, there are 50 or mo	re thy	ylakoids piled to form one:				
	(A)	Granum	(B)	Centerosome				
	(C)	Centerosome.	(D)	Multinucleate				
128.	Gra	na is the site for:						
	(A)	Binary Fission	(B)	Dark reaction				
	(C)	Centerosome	(D)	Light reaction				
129.	A ce	ll with many nucleus is called:						
	(A)	Nucleoplasm	(B)	A nucleate				
	(C)	Multinucleate	(D)	Binucleate				
130.	The	soluble sap of nucleus is called	l:					
	(A)	Cytoplasm	(B)	Nucleoplasm				
	(C)	Protoplasm	(D)	Protoplast				
131.	Chr	omatids are held togeth <mark>er</mark> at:						
	(A)	Centerosome	(B)	Loci				
	(C)	Centromere	(D)	None of the above				
132.	The diploid number of potato is:							
	(A)	41	(B)	42				
	(C)	48	(D)	43				
133.	The Haploid chromosomal number of human sperms and eggs is:							
	(A)	22	(B)	23				
	(C)	21	(D)	24				
134.	Prol	karyotic cell wall is composed	of:					
	(A)	Lignin	(B)	Chitin				
	(C)	Polysaccharide	(D)	Peptidoglycan or murein				
135.	Prol	karyotes divided by:						
	(A)	Binary Fission	(B)	Spores				
	(C)	Mitosis	(D)	Meiosis				

136.	Con	trary idea to abiogenesis was j	propo	sed by:
	(A)	Robert Hook	(B)	Robert Brown
	(C)	Rudolph virchow	(D)	Lorenz Oken
137.	Aug	ust weismann:		
	(A)	1885	(B)	Rudolph virchow
	(C)	Drosophila melanogaster	(D)	1880
138.	1805	5:		
	(A)	Lorenz Oken	(B)	Drosophila melanogaster
	(C)	Streaming movement	(D)	Rudolph virchow
139.	Cyto	oplasm:		
	(A)	Streaming movement	(B)	Rudolph virchow
	(C)	Lorenz Oken	(D)	Drosophila melanogaster
140.	Frui	t fly:		
	(A)	Drosophila melanogaster	(B)	Streaming movement
	(C)	Rudolph virchow	(D)	Lorenz Oken
141.	Phlo	em cell:		
	(A)	Lysosomes	(B)	Translocation of food
	(C)	Nerve cells	(D)	Golgi Apparatus
142.	Plas	ma membr <mark>ane:</mark>		
	(A)	Lysosomes	(B)	Differentially permeable
	(C)	Golgi apparatus	(D)	Nerve cells
143.	De-c	lu <mark>ve (1949):</mark>		
	(A)	Nerve cells	(B)	Differentially permeable
	(C)	Golgi apparatus	(D)	Lysosomes
144.	Con	duct <mark>io</mark> n of impulse:		
	(A)	Differentially permeable	(B)	Nerve cells
	(C)	E.R.	(D)	Translocation of food
145.	Fori	ning face:		
	(A)	Translocation of food	(B)	Golgi Apparatus
	(C)	Lysosomes	(D)	Nerve cells

Answers

Sr.	Ans.	Sr.	Ans.	Sr.	Ans.	Sr.	Ans.	Sr.	Ans.
1.	(C)	2.	(B)	3.	(C)	4.	(B)	5.	(D)
6.	(B)	7.	(B)	8.	(C)	9.	(C)	10.	(C)
11.	(D)	12.	(D)	13.	(A)	14.	(A)	15.	(A)
16.	(D)	17.	(C)	18.	(A)	19.	(A)	20.	(B)
21.	(C)	22.	(D)	23.	(D)	24.	(C)	25.	(C)
26.	(A)	27.	(B)	28.	(C)	29.	(D)	30.	(A)
31.	(D)	32.	(D)	33.	(C)	34.	(D)	35.	(C)
36.	(B)	37.	(B)	38.	(C)	39.	(A)	40.	(D)
41.	(A)	42.	(C)	43.	(C)	44.	(D)	45.	(C)
46.	(C)	47.	(A)	48.	(C)	49.	(A)	50.	(C)
51.	(D)	52.	(C)	53.	(D)	54.	(C)	55.	(C)
56.	(D)	57.	(C)	58.	(B)	59.	(D)	60.	(A)
61.	(C)	62.	(C)	63.	(A)	64.	(D)	65.	(C)
66.	(C)	67.	(C)	68.	(A)	69.	(C)	70.	(C)
71.	(D)	72.	(C)	73.	(C)	74.	(A)	75.	(D)
76.	(D)	77.	(A)	78.	(B)	79.	(C)	80.	(D)
81.	(B)	82.	(C)	83.	(B)	84.	(A)	85.	(D)
86.	(C)	87.	(A)	88.	(A)	89.	(C)	90.	(D)
91.	(D)	92.	(A)	93.	(D)	94.	(B)	95.	(C)
96.	(C)	97.	(B)	98.	(C)	99.	(B)	100.	(D)
101.	(A)	102.	(C)	103.	(B)	104.	(A)	105.	(A)
106.	(A)	107.	(C)	108.	(D)	109.	(A)	110.	(A)
111.	(B)	112.	(C)	113.	(B)	114.	(A)	115.	(A)
116.	(D)	117.	(D)	118.	(B)	119.	(C)	120.	(D)
121.	(A)	122.	(C)	123.	(B)	124.	(D)	125.	(D)
126.	(A)	127.	(A)	128.	(D)	129.	(C)	130.	(A)
131.	(C)	132.	(B)	133.	(D)	134.	(A)	135.	(A)
136.	(C)	137.	(D)	138.	(A)	139.	(A)	140.	(A)
141.	(B)	142.	(B)	143.	(D)	144.	(B)	145.	(B)

VARIETY OF LIFE

1.	Scientific name has advantages of:					
	(A) Same name applied to different organism					
	(B) Same organism have different name in different areas					
	(C)	Has not scientific basis				
	(D)	Has scientific basis and universally accepted.				
2.	In th	ne two kingdom systems which	of th	ese would c <mark>ha</mark> racterize an animal:		
	(A)	Photosynthesis	(B)	Inability to move		
	(C)	Cellulose cell wall	(D)	Ingestion of food		
3.	In 19	966 Ernst Haeckel pro <mark>po</mark> sed a	third	kingdom called:		
	(A)	Monera	(B)	Protoctista		
	(C)	Fungi	(D)	Plantae		
4.	The	fine kingdom system of classif	icatio	on was proposed by:		
	(A)	Robert Whittaker	(B)	Karlene and Margulis		
	(C)	E-chattas	(D)	Linnaeus		
5. Organism with prokaryotic cells belong to the kingdom:			to the kingdom:			
	(A)	Protoctista	(B)	Monera		
	(C)	Fungi	(D)	Animalia		
6. A set of related genera would be grouped into a:			ed into a:			
	(A)	Family	(B)	Order		
	(C)	Species	(D)	Class		
7.	A cla	ass is a group of related:				
	(A)	Species	(B)	Order		
	(C)	Families	(D)	Genera		

8.	Linnaeus developed the system of nomenclature which we still use today:				
	(A)	Scientific	(B)	Phase	
	(C)	Common	(D)	Binomial	
9. In the scientific name of onion, Allium cepa, the Allium belongs to			cepa, the Allium belongs to its:		
	(A)	Genus	(B)	Order	
	(C)	Species	(D)	Family	
10.	The mode of nutrition related to fungi in 5 kingdom classification is:			n 5 kingdom clas <mark>s</mark> ificat <mark>io</mark> n is:	
	(A)	Photosynthesis	(B)	Absorption	
	(C)	Ingestion	(D)	Chemosynthesis	
11.	Whi	ich of the following illness is ca	used	by a retrovirus?	
	(A)	AIDS	(B)	Malaria	
	(C)	Typhoid	(D)	Sleeping sickness	
12.	Whi	ich does not describe viruses?			
(A) They exhibit some but not the entire characteristic associate organism.				ire characteristic associated with living	
	(B)	They are obligate intracellular parasite.			
(C) Each has both DNA and RNA in it.					
	(D)	A protein capsid surrounds the	nucle	eic acid portion.	
13.	Whi	ic <mark>h d</mark> isease is c <mark>au</mark> sed by param	yxovi	ruses?	
	(A)	Herpes simplex	(B)	Tetanus	
	(C)	Measles and mumps	(D)	Influenza	
14.	Whi	ich is <mark>a</mark> n infectious protein par	ticle?		
	(A)	Capsid	(B)	Virion	
	(C)	Retrovirus	(D)	Prion	
15.	Wha	at is the most effective protecti	on ag	ainst viral infections?	
	(A)	Antibiotic	(B)	Washing Hands	
	(C)	Natural immunity of the host	(D)	Disinfectants	

10.	1 ne	le function of the enzyme reverse transcriptase in HIV infection is to:					
(A) Convert host RNA into viral RNA							
	(B) Produce DNA that can be incorporated into the host cell's DNA from RNA						
	(C) Attach the virus to the host cell's plasma membranes						
	(D)	Produce new viral RNA from the host cell's DNA					
17.	The	human immunodeficiency virus primarily infects:					
	(A)	Helper T cells	(B)	Red blood cell			
	(C)	Plasma cells	(D)	Killer T cell			
18.	Viru	ises are considered nonliving be	ecaus	se:			
	(A)	Their nucleic acid does not code	e for	protein			
	(B)	They cannot reproduce independ	dentl	у			
	(C)	They don't mutate					
	(D)	They do not locomote					
19.	Whi	ch of these are found in <mark>all vir</mark> u	ises?				
	(A)	Protein, Nuclic acids, Carbohyd	lrates				
	(B)	DNA, RNA and Protein					
	(C)	Protein and nuclic acid					
	(D)	Envelope, nucleic acid, capsid					
20.	Which step in the lytic cycle follows attachment of virus and release of into the host cell?				elease of DNA		
	(A)	Assemblage	(B)	DNA replication			
	(C)	Production of Lysozyme	(D)	Disintegration of host D	NA		
21.	Whi	ich of these is a true statement?					
(A) New viral ribosomes form after viral DNA enters in the cell							
	(B)	B) Viruses carry with them their own machinery for protein formation					
	(C) Viruses do not need ribosome for protein formation						
	(D) Viruses use the hosts ribosomes for their own ends						
22.		ch part of animal virus is not p					
	(A)	1	(B)	DNA			
	(C)	Protein	(D)	Capsid			

23.	RNA	RNA retroviruses have a special enzyme that:						
	(A)	Polymerizes host RNA	(B)	Synthesis host DNA.				
	(C)	Transcribes viral RNA to cDNA	(D)	Translate host DNA				
24.	Whi	Which is not true of prokaryotes?						
	(A)	Are living cells						
	(B)	Are both archaea and bacteria						
	(C)	All are parasitic						
	(D)	Lack a membranous bounded s	tructi	ıre				
25.	Vac	cin is not available for which v	irus:					
	(A)	HBV	(B)	HCV				
	(C)	HAB	(D)	HIV				
26.	A di	sease tobacco mosaic virus is c	ause	d by:				
	(A)	Virus	(B)	Genus				
	(C)	Parasite	(D)	Charles Chamberland				
27.	In 1935 — isolated crystal of virus from infected leaf of tobacco.							
	(A)	Twort	(B)	D'Herelle				
	(C)	Stanley	(D)	Robert Hook				
28.	The	The virus that can pass through porcelain filters is called:						
	(A)	Parasite	(B)	Filterable				
	(C)	Transducer	(D)	Soluble				
29.	Virus are strict — that require the enzyme of the host cell for their life process.							
	(A)	Symbiont	(B)	Saprophyte				
	(C)	Parasite	(D)	Predators				
30.	Whi	Which one is composed of one or more species?						
	(A)	Genus	(B)	Order				
	(C)	Family	(D)	group				
31.	Who introduce the system for naming of organisms known as binomial nomenclature?							
	(A)	Carolus Linnaeus	(B)	D'Herelle				
	(C)	Twort	(D)	Stanley				

32.	Who proposed a third kingdom to accommodate Euglena like organism and bacteria?						
	(A)	Carolus Linnaeus	(B)	D'Herelle			
	(C)	Twort	(D)	Ernst Haeckel			
33.	The	The eukaryotic multicelluar reducers are:					
	(A)	Parasite	(B)	Autotrophic, Photosynt	hesis		
	(C)	Carolus Linnaeus	(D)	Fungi			
34.	Plan	Plants are:					
	(A)	Heterotrophic	(B)	Chemosynthetic			
	(C)	Autotrophic	(D)	All of the above			
35.	The	The word virus is derived from Latin word:					
	(A)	Virion	(B)	Verb			
	(C)	Venome	(D)	None of the above			
36.	Edward Jenner first vaccinated an 08 years old boy with pus from cowpox lesion.						
	(A)	1796	(B)	1797			
	(C)	1794	(D)	1795			
37.	In 1884 one of Pasteur's associate ————————————————————————————————————						
	(A)	Twort	(B)	Carolus Linnaeus			
	(C)	Edward Jenner	(D)	Charles Chamberland			
38.	Which disease is transferred to human by bites of dogs?						
	(A)	Anthrax	(B)	Rabies			
	(C)	Cholera	(D)	Botulism			
39.	Obligate intracellular parasite because they lack metabolic machinery are:						
	(A)	Bacteria	(B)	Fungi			
	(C)	Plants	(D)	Virus			
40.	How many caspomeres are present in the capsid of herpes virus?						
	(A)	163	(B)	161			
	(C)	162	(D)	160			

41.	Bacteriophage occurs in two structural form having:							
	(A)	Spherical symmetry	(B)	Rectangular symmetry				
	(C)	Cubical symmetry	(D)	All of the above				
42.	In go	In general appearance cubical phase are regular solid or:						
	(A)	Triangular	(B)	Ellipsoidal				
	(C)	Rectangular	(D)	Icosahedral				
43.		Tail of bacteriophage has an enzyme for dissolving a portion of bacterial cell wall:						
	(A)	Tylin	(B)	Lipases				
	(C)	Ribozymes	(D)	Lysozyme				
44.	The	The phage which causes lysis of the host cell is known as:						
	(A)	Lytic	(B)	Lysogenic				
	(C)	Non-virulent	(D)	Prophage				
45.	_	ocess in which DNA of vir cycle:	rus detac <mark>l</mark>	ned from host's chromosome and start				
	(A)	Filtration	(B)	Lysis				
	(C)	Induction	(D)	Lysogenic				
46.	Jelly	fish:						
	(A)	Amaltas	(B)	Vertebrate				
	(C)	Invertebrate	(D)	Organelles of symbiotic origin				
47.	Cass	sia fistula:						
	(A)	Invertebrate	(B)	1758				
	(C)	Organelles of symbiotic of	rigin (D)	Amaltas				
48.	Rob	ert <mark>Whittaker:</mark>						
	(A)	Amaltas	(B)	1758				
	(C)	Invertebrate	(D)	1969				
49.	List	List of names of animal:						
	(A)	1758	(B)	1969				
	(C)	1789	(D)	1858				
50.	Mito	ochondria, chloroplast:						
	(A)	Vertebrate	(B)	Invertebrate				
	(C)	Amaltas	(D)	Organelles of symbiotic origin				

51. T4 Phages:

- (A) Double Stranded DNA
- **(B)** Mysterious brain infection in man
- (C) DNA incorporated in to host chromosome
- **(D)** Protective agent used to stimulate immune system

52. Virion:

- (A) Protective agent used to stimulate immune system
- (B) Nucleocapsid
- (C) Lytic Phage
- (D) Double Stranded DNA

53. Prophage:

- (A) Nucleocapsid
- (B) Lytic Phage
- (C) Double Stranded DNA
- (D) DNA incorporated into host chromosome

54. Vaccine:

- (A) Mysterious brain infection in man
- **(B)** Protective agent used to stimulate immune system
- (C) Double Stranded DNA
- (D) Nucleocapsid

55. Prion:

- (A) Double Stranded DNA
- (B) Mysterious brain infection in man
- (C) DNA incorporated in to host chromosome
- (D) Protective agent used to stimulate immune system

56. Hepatitis A:

- (A) Infectious hepatitis
- **(B)** Serum virus
- **(C)** D'Herelle 1917
- **(D)** Twort 1915

57. Adenovirus:

(A) Twort 1915

- **(B)** Common cold
- **(C)** Infectious hepatitis
- **(D)** Serum virus

58.	Bac	teriophage:		
	(A)	D'Herelle 1917	(B)	Serum virus
	(C)	Infectious hepatitis	(D)	Common cold
59.	HIV:			
	(A)	Common cold	(B)	Failure of immune system
	(C)	Infectious hepatitis	(D)	Serum virus
60.	Нер	atitis B:		
	(A)	Infectious hepatitis	(B)	D'Herelle 1917
	(C)	Serum virus	(D)	Common cold
61.	Phy	la:		
	(A)	Decomposer	(B)	Kingdom Animalia
	(C)	Monera	(D)	Related classes
62.	Mul	ticuller Eukaryotic heterotrop	ohs:	
	(A)	Related classes	(B)	Decomposer
	(C)	Kingdom Animalia	(D)	Monera
63.	Yell	ow fever:		
	(A)	1801	(B)	1901
	(C)	1900	(D)	1892
64.	Bac	teria:		
	(A)	Kingdom Monera	(B)	Kingdom Animalia
	(C)	Kingdom Fungi	(D)	Kingdom Protoctista
65.	Fun	gi:		
	(A)	Monera	(B)	Kingdom Animalia
	(C)	Related classes	(D)	Decomposer
66.	Prot	tista:		
	(A)	Euglena and Amoeba	(B)	Dicotydledonae
	(C)	Mushroom	(D)	Monocotyledonae
67.	Rele	ease by Lysis or Budding:		
	(A)	Virion	(B)	Dicotydledonae
	(C)	Monocotyledonae	(D)	Euglena and Amoeba

68.	Chit	tin in cell wall:					
	(A)	Dicotydledonae	(B)	Mushroom			
	(C)	Cd4 recepter	(D)	Virion			
69.	Zea	mays:					
	(A)	Monocotyledonae	(B)	Dicotyledonae			
	(C)	Euglena and Amoeba	(D)	Virion			
70.	T lyı	mphocyte:					
	(A)	Virion	(B)	Dicotyledonae			
	(C)	Monocotyledonae	(D)	Cd4 recepter			
71.	In th	e two kingdom systems which	of th	ese wou <mark>ld</mark> characterize <mark>an ani</mark> mal:			
	(A)	Photosynthesis	(B)	Ingestion of food			
	(C)	Cellulose cell wall	(D)	Inability to move			
72.	The	five kingdom system of classif	icat <mark>io</mark>	n was prop <mark>os</mark> ed by:			
	(A)	E-chattas	(B)	Robert Whittaker			
	(C)	Linnaeus	(D)	Karlene and Margulis			
73.	Orga	anism with prokaryoti <mark>c c</mark> ells b	elong	to the kingdom:			
	(A)	Protista	(B)	Fungi			
	(C)	Monera	(D)	Animalia			
74.	Polic	virus is:					
	(A)	Rod like	(B)	Tadpole like			
	(C)	Brick like	(D)	Spherical			
75.	AID	S <mark>spread by: </mark>					
	(A)	Homosexuality	(B)	Immortal way of life			
	(C)	Infected needles and syringes	(D)	All of these			
76.	Whi	ch o <mark>f t</mark> he following is the corre	ect arı	rangement of kingdoms?			
	1.	Monera Protista Animaliao I	Tungi	Plantae			
	2.	Protista Monera Fungi Plant	ae An	imalia			
	3.	Monera Protista Fungi Plant	ae An	imalia			
	4.	Monera Protista Plantae Fun	ıgi Mo	onera			
	(A)	1	(B)	2			
	(C)	3	(D)	4			

77.	Linnaeus developed the system of nomenclature which we still use today is:					
	(A)	Common	(B)	Binomial		
	(C)	Scientific	(D)	Phase		
78.	The	organisms are grouped into la	rger,	more inclusive categories:		
	(A)	Species	(B)	Division		
	(C)	Phylum	(D)	Taxa		
79.	The	mode of nutrition related to fu	ıngi i	n 5 kingdom classif <mark>icati</mark> on is:		
	(A)	Photosynthesis	(B)	Absorption		
	(C)	Ingestion	(D)	Chemosynthesis		
80.	A g		rticu	lar level in a classification system is		
	(A)	Species	(B)	Taxon		
	(C)	Genus	(D)	Phylum		
81.	Whi	ch of the following is not true	about	viruses?		
	(A)	Obligate intracellular parasite	(B)	Contain DNA and RNA		
	(C)	Are acellular	(D)	Uses host machinery		
82.	A vi	rus which incorporate <mark>s i</mark> ts DN	A inte	the DNA of its host organism is a:		
	(A)	Virulent phage	(B)	Prophage		
	(C)	Lytic phage	(D)	None of these		
83.	Whi	ch virus is <mark>transmitted by fae</mark> c	al or	al route?		
	(A)	Influenza virus	(B)	Hepatitis A virus		
	(C)	Dengue virus	(D)	Hepatitis C virus		
84.	The	p <mark>lant kingdom i</mark> s first divided	into	which category of classification?		
	(A)	Family	(B)	Division		
	(C)	Order	(D)	Class		
85.	Iden	ntifyi <mark>ng</mark> organisms by their Gen	nus a	nd Species names is called:		
	(A)	Nomenclature	(B)	Systematic		
	(C)	Binomial Nomenclature	(D)	Succession		
86.		seven bones in the human neer, neck bones in the giraffe. T		orrespond with the same seven, much are:		
	(A)	Analogues	(B)	Homologues		
	(C)	Vestiges	(D)	All (A), (B) and (C)		

87.	the	•	kin-c	front leg of an alligator or horse, or overed wing then it will be helpful to s of:							
	(A)	Genetics	(B)	Analogy							
	(C)	Homology	(D)	Biochemistry							
88.		The fact that all land animals with backbones have the basic pattern of "five-boned" arms, this similarity is due to an inheritance from a:									
	(A)	Common ancestor	(B)	Different ancestors							
	(C)	Both (A) and (B)	(D)	(A) or (B)							
89.	Org	anisms in the Kingdom Anima	lia ar	·e:							
	(A)	Multicellular & heterotrophic	(B)	Multice <mark>ll</mark> ular & autotrophic							
	(C)	Unicellular & autotrophic	(D)	Unicellular & Heterotrophic							
90.		ich of the following groups anisms?	woi	<mark>ild contain the la</mark> rgest number of							
	(A)		(B)	Order							
	(C)	Phylum	(D)	Family							
91.	` ′	at do plants and animals have i	` \								
71.	(A)	-	(B)								
	(C)	Both are prokaryotic	(D)	Both are eukaryotic							
92.	` /		` ′	m, they must also be in the same:							
, 	(A)	Class Class	(B)	Species							
	(C)	Family	(D)	Kingdom							
93.	` '	level of hierarchy just below I	` /								
,		Order Order	(B)	Family							
	` '	Class	` ,	Kingdom							
94.		ich of the following is necessary									
		A living host cell	(B)	A vaccine							
	(C)	A high body temperature	(D)	Sunlight, water, and food							
95.	A —	is a submicroscopic	infe	ctious particle composed of a protein							
		and a nucleic acid core.		1 1							
	(A)	Virus	(B)	Bacterium							
	(C)	Slime mold	(D)	Water mold							

96.	All	viruses:				
	(A)	Contain DNA		(B)	Contain	RNA
	(C)	Contain protein		(D)	Are intr	racellular parasites
97.		example of laten A of host coli chro	-		DNA of	phage is integrated with the
	(A)	Lysis		(B)	Lysoge	nic-phase
	(C)	Prophage		(D)	Attenua	ated virus
98.	Whi	ich of the followin	ng is a un-m	atching	g set rega	arding v <mark>ir</mark> al dis <mark>e</mark> ases?
	(A)	Rhabdo virus —	Rabies	(B)	Paramy	xo virus — Mu <mark>m</mark> ps
	(C)	Rhino virus — y	ellow fever	(D)	Arbo vi	<mark>rus —</mark> Encephal <mark>itis</mark>
99.	HIV	is:				
	(A)	Plus strand virus		(B)	Un-env	eloped minus strand virus
	(C)	Retrovirus		(D)	Large g	eno <mark>m</mark> e virus
100.	Viru	ıs is a Latin word	meaning:			
	(A)	Minute creature		(B)	Poison	
	(C)	Medicine		(D)	Disease	
101.	Viro	oids differ from o	ther viruses	in hav	ing:	
	(A)	Only naked RNA	molecule		(B)	Only naked DNA molecule
	(C)	Virus genome wi	th satellite I	ONA	(D)	Virus genome with histone
102.	The	first to isolate a p	olant virus a	as cryst	tal:	
	(A)	W.M. Stanely		(B)	Smith	
	(C)	Stakmann		(D)	Ivanow	ski
103.	Gen	<mark>etic m</mark> aterial of to	bacco mos	aic viru	ıs is:	
	(A)	RNA		(B)	DNA	
	(C)	Fat		(D)	Protein	
104.	Can		DS, Measle		_	s, Tetanus, Mumps, Citrus mples of diseases, How many
	(A)	4		(B)	3	
	(C)	2		(D)	6	

105.	95. Herpes and shingles are caused by:									
	(A)	Medium and large genor	me DNA vir	us						
	(B)	Small genome DNA virus								
	(C)	Medium and large genor	me RNA vir	us						
	(D)	Small genome RNA viru	ıs							
106.		viruses whose genome cell are called:	act directly	as messenger RNA after infecting a						
	(A)	Plus strand DNA viruses	(B)	Minus strand RNA viruses						
	(C)	Plus strand RNA viruses	(D)	Minus strand DNA viruses						
107.	The	best known anti-HIV di	rug is:							
	(A)	Benzodiazephine	(B)	Leodopa						
	(C)	Azidothymidine	(D)	None of these						
108.	Livi	ng organisms can be cla	ssified on <mark>th</mark>	ne basis of:						
	(A)	Homology	(B)	Cytology						
	(C)	Biochemistry	(D)	All of these						
109.	Enc	ephalitis is caused by:								
	(A)	Arbo virus	(B)	Rhino virus						
	(C)	Rhabdo virus	(D)	Paramyxo virus						
110.	A pl	ant infecte <mark>d from an</mark> ext	ernal sourc	e of virus through injured parts is:						
	(A)	Vertical transmission	(B)	Horizontal transmission						
	(C)	Retrograde transmission	(D)	None of these						
111.	Dur	in <mark>g l</mark> ytic cycle <mark>ho</mark> w many	phages are	e released from infected host cell:						
	(A)	100-300	(B)	100-500						
	(C)	100-200	(D)	100-400						
112.	Whe	en a <mark>b</mark> acteriophage is int	egrated into	o a cellular genome it is called a:						
	(A)	Macrophage	(B)	Microphage						
	(C)	Prophage	(D)	Lytic-phage						
113.		——— are small naked	fragments	of RNA that infect plant cells.						
	(A)	Prions	(B)	Prophages						
	(C)	Macrophages	(D)	Viroids						

114.	Viru	ruses that cause lysis in host cells are called:			
	(A)	Temperate viruses	(B)	Phagocytic viruses	
	(C)	Virulent viruses	(D)	Infectious viruses	
115.	Whi	ich of the following is not a vir	al dis	ease?	
	(A)	Mumps	(B)	Measles	
	(C)	Chicken pox	(D)	Diphtheria	
116.	Cop	ying the HIV virus' nucleic ac	id de _l	pends on:	
	(A)	Replicase	(B)	Reverse transcriptase	
	(C)	Transcriptase	(D)	Reverse replicase	
117.	The	first virus to be purified was t	the:		
	(A)	Flu virus	(B)	Tobacco mosaic virus	
	(C)	Smallpox virus	(D)	Polio virus	
118.	Who	en a virus kills the infected	host	cell in which it is rep	olicating, the
	repr	oductive cycle is called a ——		— cycle.	
	(A)	Lysogenic	(B)	Phagocytic	
	(C)	Lytic	(D)	Endocytic	
119.	Whi	ich of the followin <mark>g are not</mark> ma	tched	correctly?	
	(A)	Virulent virus-lytic cycle			
	(B)	Temperate virus-non-infecting	virus		
	(C)	Lysogenic virus-genome become	mes pa	art of host genome	
	(D)	Lytic cycle-kills host cell			
120.	Whi	ich <mark>of the followi</mark> ng is not true	about	viruses?	
	(A)	Obligate intracellular parasite	(B)	Contain DNA and RNA	
	(C)	A cellular	(D)	Use host machinery	
121.	Whi	ich o <mark>f</mark> the following is not a vir	us str	ucture?	
	(A)	Capsid	(B)	Capsomere	
	(C)	Nucleoprotein	(D)	Mitochondria	
122.	The	virus capsid may be described	l as:		
	(A)	Outside protein coat	(B)	Phospholipid envelope	
	(C)	Virus protein spike	(D)	Nucleoprotein	

123.	Whi	nich is not true? Viruses are classified by:				
	(A)	Nucleic acid type	(B)	Morphology		
	(C)	Presence of envelope	(D)	Type of cytopathic effect		
124.	Wha	at is the distinguishing featu	re of re	troviruses?		
	(A)	Encode RNA polymerase	(B)	Encode reverse transcriptase		
	(C)	Lack an envelope	(D)	DNA virus		
125.	Whi	ch of the following is not a I	DNA vir	rus?		
	(A)	Herpes virus	(B)	Hepatitis B virus		
	(C)	Rabies virus	(D)	Bacteriophage virus		
126.	Pigs	are reservoir to:				
	(A)	Hepatitis B	(B)	Hepatitis C		
	(C)	Hepatitis D	(D)	Hepatitis E		
127.	Whi	ich of the following organs d	lo hepat	itis viruses <mark>in</mark> fect?		
	(A)	Lungs	(B)	Gut		
	(C)	Muscles	(D)	Liver		
128.	Whi	ich hepatitis virus is pa <mark>re</mark> nta	lly tran	smitted?		
	(A)	Hepatitis A	(B)	Hepatitis C		
	(C)	Hepatitis E	(D)	Hepatitis A and Hepatitis E		
129.	HIV	is not transmitted by:				
	(A)	Sexual contact	(B)	Parental route		
	(C)	Vertical transmission	(D)	Oro-faecal route		
130.	Mar	g <mark>uli</mark> s and Schwart <mark>z r</mark> ename	d Whitt	aker's kingdom Protista as:		
	(A)	Prokaryotae Prokaryotae	(B)	Plantae		
	(C)	Protoctista	(D)	Eukaryotae		
131.	The	basic unit of classification is	s:			
	(A)	Genus	(B)	Kingdom		
	(C)	Family	(D)	Species		
132.	Viru	ises are denied a kingdom o	f their o	wn because:		
	(A)	They are too poorly understo	ood			
	(B)	They are too small				
	(C)	Their genetics cannot be det	ermined			
	(D)	They are not organisms				

133.	Prol	okaryotic organisms make up the:									
	(A)	Archaebacteria, Eubacteria, an	Archaebacteria, Eubacteria, and Protists								
	(B)	Archaebacteria and Protists	chaebacteria and Protists								
	(C)	Protists and Eubacteria									
	(D)	Eubacteria, Archaebacteria and	d cyar	obacteria							
134.	In p	rinted scientific names, only th	ne —	——— is capitalize <mark>d.</mark>							
	(A)	Kingdom	(B)	Family							
	(C)	Genus	(D)	Species							
135.	Viru	ises range in size from:									
	(A)	20 nm to 250 nm	(B)	50nm to 400 nm							
	(C)	100 nm to 200 nm	(D)	50 nm to 300 nm							
136.	Con	nmon cold is caused by:									
	(A)	Arbo virus	(B)	Rhabdo virus							
	(C)	Rhino virus	(D)	Herpes virus							
137.	Mea	isles and mumps are ca <mark>u</mark> sed by	/:								
	(A)	Rhino virus	(B)	Paramyxo virus							
	(C)	Rhabdo virus	(D)	Arbo virus							
138.	Нер	atitis-B vir <mark>al genome contain</mark> s	:								
	(A)	259 nucleotides	(B)	459 nucleotides							
	(C)	359 nucleotides	(D)	159 nucleotides							
139.		im <mark>m</mark> une syste <mark>m</mark> protects the b kens t <mark>he immu</mark> ne system there	-	from diseases. Because the AIDS virus							
	(A)										
	(B)	The AIDS virus is spread very easily									
	(C)	People with AIDS are immune to all other diseases									
	(D)	All of the above									
140.	Viru	ises are symmetrical in structu	ıre. V	We know this because they can be:							
	(A)	Un-enveloped	(B)	Ionized							
	(C)	Crystallized	(D)	Both (A) and (C)							

munp	e enoi	ce questions		Biology 1 .Be. 1 unt 1
141.	Onc	e bound to the cell surface, the	virus	s must enter:
	(A)	The genetic material into the cell	(B)	The capsid into the host cell
	(C)	The envelope into the host cell	(D)	All of these
142.	The	transmission of virus from hos	st to p	progeny is:
	(A)	Vertical transmission	(B)	Horizontal transmission
	(C)	Both (A) and (B)	(D)	Neither (A) nor (B)
143.		e RNA viruses have no DNA s RNA template. These viruses ar	_	Messenger RNA is synthesized from
	(A)	Plus strand RNA viruses	(B)	Minus strand RNA viruses
	(C)	Bacteriophages	(D)	Variola viruses
144.	The	phage reproductive cycle that	kills	the bacterial host cell is:
	(A)	Temperate	(B)	Non virulent
	(C)	Lysogenic	(D)	Lytic
145.	Rev	erse transcription, carried out	by re	troviruses, <mark>is</mark> the process by which?
	(A)	RNA is duplicated		
	(B)	DNA is duplicated		
	(C)	RNA information is copied into	DNA	A
	(D)	DNA information is copied into	o RN	A
146.	Elec	trophoresis is used to:		
	(A)	Match a gene with its function	(B)	Clone genes
	(C)	Separate fragments of DNA	(D)	Cut DNA into fragments
147.	Cyc	le A is the ———— cycle an	d cyc	le B is the ——— cycle.

(B) Repressor Phage

(D) Repressor Lysogenic

(A) Lytic Lysogenic

(C) Lysogenic Lytic

148. The pointer is indicating the virus's:

25 sec.

(A) Envelope

- (B) Capsid
- **(C)** Contractile sheath
- (D) Tail
- 149. Hepatitis A is caused by:
 - (A) Enveloped RNA virus
- (B) Enveloped DNA virus
- (C) Un-enveloped RNA virus
- (D) Un-enveloped DNA virus
- 150. Colorado Tick fever is caused by:
 - (A) Double stranded RNA virus
- (B) Single stranded RNA virus
- (C) Double stranded DNA virus
- (D) Single stranded DNA virus

Answers

Sr.	Ans.								
1.	(D)	2.	(D)	3.	(B)	4.	(A)	5.	(B)
6.	(A)	7.	(B)	8.	(D)	9.	(A)	10.	(B)
11.	(A)	12.	(C)	13.	(C)	14.	(D)	15.	(D)
16.	(C)	17.	(B)	18.	(B)	19.	(C)	20.	(D)
21.	(D)	22.	(A)	23.	(C)	24.	(B)	25.	(C)
26.	(A)	27.	(C)	28.	(B)	29.	(C)	30.	(A)
31.	(A)	32.	(D)	33.	(D)	34.	(C)	35.	(C)
36.	(A)	37.	(D)	38.	(B)	39.	(D)	40.	(C)
41.	(C)	42.	(D)	43.	(D)	44.	(A)	45.	(C)
46.	(C)	47.	(D)	48.	(D)	49.	(A)	50.	(D)
51.	(A)	52.	(B)	53.	(D)	54.	(B)	55.	(B)
56.	(A)	57.	(B)	58.	(A)	59.	(B)	60.	(C)
61.	(D)	62.	(B)	63.	(B)	64.	(A)	65.	(D)
66.	(A)	67.	(A)	68.	(B)	69.	(A)	70.	(D)
71.	(B)	72.	(B)	73.	(C)	74.	(D)	75.	(D)
76.	(C)	77.	(B)	78.	(D)	79.	(B)	80.	(B)
81.	(B)	82.	(B)	83.	(B)	84.	(B)	85.	(C)
86.	(B)	87.	(C)	88.	(A)	89.	(A)	90.	(C)
91.	(D)	92.	(D)	93.	(C)	94.	(A)	95.	(A)
96.	(D)	97.	(B)	98.	(C)	99.	(C)	100.	(B)
101.	(A)	102.	(A)	103.	(A)	104.	(D)	105.	(A)
106.	(C)	107.	(C)	108.	(D)	109.	(A)	110.	(B)
111.	(C)	112.	(C)	113.	(D)	114.	(C)	115.	(D)

Sr.	Ans.								
116.	(B)	117.	(B)	118.	(C)	119.	(B)	120.	(B)
121.	(D)	122.	(A)	123.	(D)	124.	(B)	125.	(C)
126.	(D)	127.	(D)	128.	(B)	129.	(D)	130.	(C)
131.	(D)	132.	(D)	133.	(D)	134.	(C)	135.	(A)
136.	(C)	137.	(B)	138.	(C)	139.	(A)	140.	(C)
141.	(A)	142.	(A)	143.	(B)	144.	(D)	145.	(C)
146.	(C)	147.	(A)	148.	(A)	149.	(C)	150.	(A)

KINGDOM PROKARYOTAE (MONERA)

1.	1. Which of the following are true bacteria?					
	(A)	Arhcaeobacteria	(B)	Cyanobacteria		
	(C)	Eubacteria	(D)	None of the above		
2.	The	first scientist who observ	ved microb	es was:		
	(A)	Leeuwenhoek	(B)	Louis Pasteur		
	(C)	Robert Koch	(D)	Heckle		
3.	Vac	cine against anthrax wa <mark>s</mark>	developed	by:		
	(A)	Leeuwenhoek	(B)	Louis Pasteur		
	(C)	Robert Koch	(D)	Jenner		
4.	The	process of fermentation	was discov	ered by:		
	(A)	Leeuwenhoek	(B)	Louis Pasture		
	(C)	Robert Koch	(D)	Heckle		
5.	Ger	m <mark>th</mark> eory of dis <mark>e</mark> ases was	given by:			
	(A)	Leeuwenhoek	(B)	Louis Pasteur		
	(C)	Robert Koch	(D)	Heckle		
6.	The	sma <mark>ll</mark> est bacterium is:				
	(A)	E. Coli	(B)	Mycoplasma		
	(C)	Epulopiscum	(D)	Staphylococci		
7.	The	largest bacterium is:				
	(A)	E. Coli	(B)	Mycoplasma		
	(C)	Epulopiscum	(D)	Staphylococci		

8.	The	size of bacterium Escherichia	coli i	s:	
	(A)	2.1 to 1.5 μm	(B)	1.1 to 2.5 μm	
	(C)	1.1 to 1.5 μm	(D)	2.1 to 2.5 μm	
9.	The	rode shaped bacteria are:			
	(A)	Cocci	(B)	Bacilli	
	(C)	Sprillium	(D)	None of the above	
10.	The	pair of cocci bacteria in which	cell (division occurs in on <mark>e</mark> p	lane is called:
	(A)	Deplococcus	(B)	Streptrococcus	
	(C)	Tetrad	(D)	Sacreina	
11.		long chain of cocci bacteria i	n whi	ch cell division occurs	in one plane is
	calle				
	(A)	Deplococcus	(B)	Streptrococcus	
	(C)	Tetrad	(D)	Sacreina	
12.	The	pair of cocci bacteria in which	cell d	<mark>ivision occu<mark>rs</mark> in two pl</mark>	ane is called:
	(A)	Deplococcus	(B)	Streptrococcus	
	(C)	Tetrad	(D)	Sacreina	
13.	The	pair of cocci bacteria in which	cell d	<mark>iv</mark> ision occurs in three _l	plane is called:
	(A)	Deplococcus	(B)	Streptrococcus	
	(C)	Tetrad	(D)	Sacreina	
14.	Whi	ch of the foll <mark>owing</mark> bacteria ar	e coc	ci?	
	(A)	E. Coli	(B)	Pseudomonas	
	(C)	D. Pneumoniae	(D)	B. Subtilis	
15.	Whi	ch <mark>of the followi</mark> ngs is curved o	or coi	nma shaped spiral?	
	(A)	Vibiro	(B)	Spirllium	
	(C)	Spirochete	(D)	None of the above	
16.	Whi	<mark>ch of</mark> the following is thick rig	id spi	ral?	
	(A)	Vibiro	(B)	Spirllium	
	(C)	Spirochete	(D)	None of the above	
17.	A ba	ncterium with single polar flag	ellum	is called:	
	(A)	Atrichous	(B)	Monotrichous	
	(C)	Lophotrichous	(D)	Amphitrichous	

18.	A ba	acterium without flagellum is o	called	:
	(A)	Atrichous	(B)	Monotrichous
	(C)	Lophotrichous	(D)	Amphitrichous
19.	A ba	acteria in Which flagellum sur	round	d it is called:
	(A)	Atrichous	(B)	Monotrichous
	(C)	Lophotrichous	(D)	Amphitrichous
20.	A ba	acterium in which flagellum su	ırrouı	nds is called:
	(A)	Atrichous	(B)	Monotrichous
	(C)	Pritrichous	(D)	Amphitrichous
21.	The	structure used in the conjugat	tion o	f bacteri <mark>a</mark> are:
	(A)	Capsule	(B)	Slime
	(C)	Pili	(D)	Mesosome
22.	Whi	ich of the following structure r	nak <mark>es</mark>	the cell wa <mark>ll</mark> sticky?
	(A)	Capsule	(B)	Slime
	(C)	Pili	(D)	Mesosome
23.	The	major locomotory org <mark>an</mark> s in b	acter	<mark>ia</mark> are:
	(A)	Cilia	(B)	Slime
	(C)	Pili	(D)	Flagella
24.	Gra	m positive <mark>cell wall h</mark> ave <mark>pe</mark> pti	dogly	can:
	(A)	10%	(B)	20%
	(C)	40%	(D)	50%
25.	Gra	m <mark>ne</mark> gative cel <mark>l w</mark> all have Pept	idogly	ycan:
	(A)	10%	(B)	20%
	(C)	40%	(D)	50%
26.	The	thickness f cell wall of gram n	egativ	ve bacterium is:
	(A)	1-5 nm	(B)	1-7 nm
	(C)	8-9 nm	(D)	8-11 nm
27.	The	enzymes for respiratory meta	bolisr	n in bacteria are present in:
	(A)	Cell wall	(B)	Cell membrane
	(C)	Cytoplasmic matrix	(D)	Plasmid

28.	The	plasma membrane and every	thing	present in it is called:					
	(A)	Cytoplasm	(B)	Protoplast					
	(C)	Nucleoid	(D)	Matrix					
29.	Nuc	leoids of bacteria are stained v	vith:						
	(A)	Crystal violet stain	(B)	Feulgen stain					
	(C)	Eosin stain	(D)	None of the above					
30.	The	extra nuclear double stranded	I DNA	A in bacteria are call <mark>ed:</mark>					
	(A)	Nucleoid	(B)	Chromosome					
	(C)	Plasmid	(D)	None of the above					
31.	The	ribosome of bacteria are:							
	(A)	60S	(B)	70S					
	(C)	80S	(D)	90S					
32.	The	structure involved in the repli	catio	n of bacteri <mark>a a</mark> re:					
	(A)	Ribosomes	(B)	Cell membrane					
	(C)	Plasmid	(D)	Mesosomes					
33.		The resistant structure developed during reproduction of vegetative cells of bacteria is called:							
	(A)	Plasmids	(B)	Mesosomes					
	(C)	Slime	(D)	Cysts					
34.	The	bacteria which use decay mat	ter as	a food are called:					
	(A)	Saprophytes	(B)	Parasites					
	(C)	Saprozooic Saprozooic	(D)	None of the above					
35.	The	ph <mark>otosynthetic</mark> bacteria releas	se:						
	(A)	CO ₂	(B)	Oxygen					
	(C)	Sul <mark>ph</mark> ur	(D)	None of the above					
36.	In w	<mark>thich phase the growth of bact</mark>	eria i	s rapid?					
	(A)	Lag phase	(B)	Log phase					
	(C)	Stationary phase	(D)	Decline					
37.	In w	hich phase the growth of bact	eria i	s equal?					
	(A)	Lag phase	(B)	Log phase					
	(C)	Stationary phase	(D)	Decline					

38.	Whi	ch of the following is not steril	lizatio	on method for controllin	g bacteria?
	(A)	Filtration	(B)	High temperature	
	(C)	Antiseptics	(D)	Radiation	
39.	Hor	mones and serum are sterilize	d by:		
	(A)	High temperature	(B)	Low temperature	
	(C)	Filtration	(D)	Radiation	
40.	Whi	ch of the following antibiotic o	auses	s allergic reactions?	
	(A)	Streptomycin	(B)	Tetracycline	
	(C)	Penicillin	(D)	None of the above	
41.	The	filaments of cyanobacteria are	e calle	ed:	
	(A)	Heteroysts	(B)	Trichome	
	(C)	Hormogonia	(D)	Akintes	
42.	The	barrel shaped cells present in	the <mark>f</mark> i	laments of <mark>cy</mark> anobacteri	a are called:
	(A)	Heteroysts	(B)	Trichome	
	(C)	Hormogonia	(D)	Akintes	
43.	The	fragments of the filament of c	yanol	o <mark>ac</mark> teria are called:	
	(A)	Heterocysts	(B)	Trichome	
	(C)	Hormogonia	(D)	Akintes	
44.	The	accessory pigments of the cya	nobac	cteria are called:	
	(A)	Chlorophyll	(B)	Phycobilins	
	(C)	Xanthophylls	(D)	Carotene	
45.	The	ti <mark>ck</mark> wall repr <mark>od</mark> uctive cell of t	the cy	anobacteria are called:	
	(A)	Heterocysts	(B)	Trichome	
	(C)	Hor <mark>m</mark> ogonia	(D)	Akintes	
46.	Anto	one <mark>V</mark> an leeuwenhoek firstly o	bserv	ed small creatures in ra	in:
	(A)	Water	(B)	Rain water	
	(C)	Saliva	(D)	Infusion	
47.	Lou	is Pasteur did not discovered v	accin	e against the disease:	
	(A)	Anthrax	(B)	Fowl cholera	
	(C)	Foot and mouth disease	(D)	Rabies	

48.	The	aim of the germ plasma theor	y was	:
	(A)	To prove symptom of a disease	(B)	To discover the treatment of disease
	(C)	To prove the cause of a disease	(D)	To discover vaccine against a disease
49.	The	smallest bacteria on the earth	are:	
	(A)	Myco plasma	(B)	Escherichia coli
	(C)	Staphylococci	(D)	Epulopiscium fishlesoni
50.	The	largest bacteria on the earth a	re:	
	(A)	Mycoplasma	(B)	Escherichia coli
	(C)	Staphylococci	(D)	Epulopiscium fishlesoni
51.		ome bacteria division occurs : n. Such bacteria are called:	in on	e plane and bacteria are arranged in
	(A)	Diplococcus	(B)	Streptococcus
	(C)	Tetrad	(D)	Sarcina
52.	Whe		ı plaı	nes, it will produce an arrangement
	(A)	Diplococcus	(B)	Strptococcus
	(C)	Tetrad	(D)	Staphylococcus
53.	Whi	ch of the f <mark>ollo</mark> wing <mark>is flexibl</mark> e s	piral	?
	(A)	Vibrio	(B)	Spirillum
	(C)	Spirochete	(D)	None of the above
54.	The	condition in which bacteria ar	e wit	hout flagella is called:
	(A)	Atrichous	(B)	Monotrichous
	(C)	Lophotrichous	(D)	Ampitrichous
55.	Che	mota <mark>x</mark> is is phenomenon in whi	ch an	organism:
	(A)	Eat a chemical	(B)	Detect a chemical
	(C)	Show response to a chemical	(D)	Change a chemical
56.	Tuft	of flagella is present only at o	ne po	le of bacteria in case of:
	(A)	Atrichous	(B)	Monotrichous
	(C)	Lophotrichous	(D)	Ampitrichous

57.	Whi	ich of the following structure is	used	in sexual reproduction of bacteria?
	(A)	Cell wall	(B)	Endospore
	(C)	Capsule	(D)	Pili
58.	Whi	ch of the following is not inclu	de in	the envelope of the bacteria?
	(A)	Capsule	(B)	Slime
	(C)	Cell wall	(D)	Cell membrane
59.		ange the position of cell men er to inner surface:	ıbran	e, cell wall, slime and capsule from
	(A)	Cell wall – Cell membrane – S	lime -	- Capsule
	(B)	Capsule – Slime – Cell wall – C	Cell n	nembrane
	(C)	Slime – Capsule – Cell wall – C	Cell n	nembrane
	(D)	Cell wall – Capsule – Slime – G	Cell n	nembrane
60.	Whi	ch of the following are not the c	har <mark>ac</mark>	eteristics of <mark>cel</mark> l Gram positive cell all?
	(A)	It has two major layers	(B)	It is more permeable
	(C)	It has outer membrane	(D)	It has lipids 1 – 4%
61.	Whi	ich of the following are <mark>th</mark> e cha	racte	ristics of Gram negative cell wall?
	(A)	It has two major layers	(B)	It is more permeable
	(C)	It has outer membrane	(D)	It has lipids 1 –4%
62.	The	cell wall of Archeobactira doe	s not	contain:
	(A)	Lipids	(B)	Proteins
	(C)	Peptidoglycan	(D)	Carbohydrates
63.	Whi	ich <mark>of the followi</mark> ng is not the fu	ınctio	on of membrane?
	(A)	It regulate the control of materia	l (B)	It contain respiratory enzyme
	(C)	It plays role in division of cell	(D)	None of the above
64.	Nuc	leoid is stained with:		
	(A)	Gram positive Stain	(B)	Gram negative stain
	(C)	Feulgen stain	(D)	Eosin stain
65.	Whi	ch of the following contain DN	A ?	
	(A)	Slime	(B)	Plasmid
	(C)	Ribosome	(D)	Pili

66.	Whi	ch of the following are chemos	ynth	etic bacteria:					
	(A)	The bacteria which synthesize	food	from organic compounds					
	(B)	The bacteria which synthesize food form inorganic compounds							
	(C)	The bacteria which release energy from organic compounds							
	(D)	The bacteria which release ener	rgy fo	orm the inorganic compounds					
67.	Whi	ich of the bacteria can grow in	any o	condition?					
	(A)	Aerobic bacteria	(B)	Anaerobic bacteria					
	(C)	Facultative bacteria	(D)	Microaerophilic bacteria					
68.	The	generation time of bacteria is:							
	(A)	The interval of time between yo	oung	and old age of bacteria					
	(B)	The interval of time until the co	omple	etion of the next division					
	(C)	The interval of time between tw	vo ge	nerations					
	(D)	The interval of time between tw	vo di	visions					
69.	The	rapid growth of bacteria occur	rs in	the phase:					
	(A)	Lag phase	(B)	Log phase					
	(C)	Stationary Phase	(D)	Decline phase					
70.	The	bacterial growth becomes equa	al wi	t <mark>h</mark> the death rate in the:					
	(A)	Lag phase	(B)	Log phase					
	(C)	Stationary Phase	(D)	Decline phase					
71.	Sexu	ial reproduct <mark>ion in</mark> bacteria tal	kes p	lace by:					
	(A)	Fusion of gamete	(B)	Fusion of nuclei					
	(C)	Exchange of nucleic	(D)	Exchange of part of DNA					
72.	Whi	ich <mark>of the followi</mark> ng bacteria ar	e not	used in?					
	(A)	Food production	(B)	Drug production					
	(C)	Alcohol production	(D)	Antibiotics production					
73.	Whi	ch of the following methods do i	not co	ome within the method of sterilization?					
	(A)	Use of filter paper to filter water	(B)	Boiling of water					
	(C)	Washing the toilet with phenyl	(D)	Use of rays					
74.	Whi	ich of the following is antiseption	es?						
	(A)	Quinine	(B)	Phenyl					
	(C)	Dettol	(D)	Sodium bicarbonate					

75.	Whi	ch of following is Disinfectant:									
	(A)	Quinine	(B)	Phenyl							
	(C)	Dettol	(D)	Sodium bicarbonate							
76.	Whi	ch of following is Disinfectant:									
	(A)	Quinine	(B)	Phenyl							
	(C)	Dettol	(D)	Sodium bicarbonate							
77.	Which of the following is relevant to vaccine:										
	(A)	A vaccine is compound which kills germ									
	(B)	A vaccine is a name of a drug									
	(C)	A vaccine is synthesized from J	olants								
	(D)	A vaccine is drive from the ger	ms								
78.	Louis Pasteur did not synthesize the vaccine of:										
	(A)	Chicken cholera	(B)	Anthrax							
	(C)	Small pox	(D)	Rabies							
79.	The	antibiotic penicillin is not used	l toda	y because:							
	(A)	It has become ineffective	(B)	It is too costly to be used by the patients							
	(C)	It causes allergic reaction	(D)	It is not available in market							
80.	A person eats a drug and becomes deaf. Which drug he might have eaten?										
	(A)	Quinine	(B)	Streptomycin							
	(C)	Penicillin	(D)	Tetracycline							
81.	The cyanobacteria are also called blue green algae because:										
	(A)	They have blue green cell wall	(B)	They have blue green chloroplast							
	(C)	They have blue green pigments	(D)	None of the above							
82.	Rese	erve <mark>d</mark> food material in cyanoba	cteri	a is:							
	(A)	Glucose	(B)	Starch							
	(C)	Lipids	(D)	Glycogen							
83.	The	broken piece of filament of cya	anoba	acteria is called:							
	(A)	Trichome	(B)	Hormogonia							
	(C)	Heterocyst	(D)	Akinete							

84.	The t	thick	walled	enlarged	reproductive	cells a	re called:

(A) Trichome

(B) Hormogonia

(C) Heterocyst

(D) Akinete

85. The water bloom is a:

- (A) Water with bad smell
- **(B)** Water with a layer of organisms
- **(C)** Water cannot be drunk
- **(D)** Polluted water

86. Super blue green algae is cyanobacteria which:

(A) Pollute water

- (B) has nutritional value
- (C) Cause disease in man
- **(D)** None of the above

Answers

Sr.	Ans.								
1.	(B)	2.	(A)	3.	(B)	4.	(B)	5.	(C)
6.	(B)	7.	(C)	8.	(C)	9.	(B)	10.	(A)
11.	(B)	12.	(C)	13.	(D)	14.	(C)	15.	(A)
16.	(B)	17.	(B)	18.	(A)	19.	(C)	20.	(C)
21.	(C)	22.	(B)	23.	(D)	24.	(D)	25.	(A)
26.	(D)	27.	(B)	28.	(B)	29.	(B)	30.	(C)
31.	(B)	32.	(D)	33.	(D)	34.	(A)	35.	(C)
36.	(B)	37.	(C)	38.	(C)	39.	(C)	40.	(C)
41.	(B)	42.	(A)	43.	(C)	44.	(B)	45.	(C)
46.	(B)	47.	(C)	48.	(C)	49.	(A)	50.	(D)
51.	(B)	52.	(D)	53.	(C)	54.	(A)	55.	(C)
56.	(C)	57.	(D)	58.	(D)	59.	(C)	60.	(C)
61.	(C)	62.	(C)	63.	(D)	64.	(C)	65.	(B)
66.	(D)	67.	(C)	68.	(B)	69.	(B)	70.	(C)
71.	(D)	72.	(C)	73.	(C)	74.	(C)	75.	(B)
76.	(A)	77.	(D)	78.	(D)	79.	(C)	80.	(B)
81.	(C)	82.	(D)	83.	(B)	84.	(D)	85.	(B)
86.	(B)			_		_		_	

98

THE KINGDOM PROTISTA (OR PROTOCTISTA)

1.	Whi	ich of the following is not preso	ent in	protista?
	(A)	Photosynthesis	(B)	Embryo
	(C)	Flagella	(D)	Parasites
2.	Who 1861	0	ied gr	oup of prokaryotes within protista in
	(A)	John Hogg	(B)	Earnest Haeckel
	(C)	Herbert Copland	(D)	Robert Whittaker
3.		o amongst the followi <mark>ngs</mark> di roscopic organisms in <mark>18</mark> 66?	d pr	opose the formation of protista for
	(A)	Johan Hogg	(B)	Earnest Haekal
	(C)	Herbert Copland	(D)	Robert Whittaker
4.		o amongst <mark>th</mark> e foll <mark>owing se</mark> par e it the status o <mark>f ki</mark> ngdom?	ated 1	the prokaryotes from the protista and
	(A)	J <mark>oh</mark> an Hogg	(B)	Earnest Haekal
	(C)	Herbert Copland	(D)	Robert Whittaker
5.	Who	o a <mark>mong</mark> st the <mark>fo</mark> llowing placed	l only	unicellular eukaryotes in protista?
	(A)	Johan Hogg	(B)	Earnest Haekal
	(C)	Her <mark>be</mark> rt Copland	(D)	Robert Whittaker
6.	Hov	y <mark>man</mark> y phyla of protoctista for	rmed	by Margulis and Schwartz?
	(A)	17	(B)	23
	(C)	27	(D)	29
7.	Eug	lena belongs to phylum:		
	(A)	Zooflagellates	(B)	Amoebas
	(C)	Actinozoan	(D)	Foraminifer

8.	Rad	liolarians belong to:		
	(A)	Zooflagellates	(B)	Amoebas
	(C)	Actinozoan	(D)	Foraminifer
9.	Vor	ticella belongs to:		
	(A)	Ciliates	(B)	Amoebas
	(C)	Actinozoan	(D)	Foraminifer
10.	Am	oebic dysentery is caused by:		
	(A)	Amoeba	(B)	Trypanosoma
	(C)	Entamoeba	(D)	Stentor
11.	Whi	ich of the following is giant am	oebaʻ	?
	(A)	Vorticella	(B)	Pelomyxa
	(C)	Stentor	(D)	None of above
12.		ich of the following Zooflag	gellate	s lives as symbionts in the gut of
	(A)	Trichonymphas	(B)	Trypanosoma
	(C)	Choanflagellaes	(D)	None of above
13.		ich of the following Zooflagell nges?	ates a	re supposed to be the ancestors of the
	(A)	Trichonymphas	(B)	Trypanosoma
	(C)	Choanflagellaes	(D)	None of above
14.	Whi	ic <mark>h of</mark> the follo <mark>wi</mark> ng dose cause	sleep	ing sickness?
	(A)	Trichonymphas	(B)	Trypanosoma
	(C)	Choanflagellaes	(D)	None of above
15.	Whi	ich o <mark>f t</mark> he following group have	e two	nuclei?
	(A)	Ciliates	(B)	Amoebas
	(C)	Actinozoan	(D)	Foraminifer
16.	The	shape of the ciliates is mainta	ined l	ey:
	(A)	Cell wall	(B)	Cell membrane
	(C)	Pellicle	(D)	Cilia

17.	Conjugation takes place in which of the following protozoans?					
	(A)	Ciliates	(B)	Amoebas		
	(C)	Actinopoda	(D)	Formainifera		
18.	The	shell of foraminiferans is mad	le up	of:		
	(A)	Silica	(B)	Calcium carbonate		
	(C)	Sponging fibers	(D)	None of above		
19.	The	shell of actinopoda is made up	of:			
	(A)	Silica	(B)	Calcium carbonate		
	(C)	Spongin fibers	(D)	None of above		
20.	Loc	omotory organs are absent in:				
	(A)	Ciliates	(B)	Apicomplexans		
	(C)	Actinopoda	(D)	Forminifera		
21.	In n	nan, plasmodium first enters in	nto th	e:		
	(A)	RBC	(B)	Liver		
	(C)	Salivary gland	(D)	None of above		
22.	50 to	o 60% photosynthesis i <mark>n</mark> the ea	arth t	akes place by:		
	(A)	Plants	(B)	Algae		
	(C)	Photosynthetic bacteria	(D)	Cyanobacteria		
23.	The	filaments of algae which lack	cross	walls are called:		
	(A)	Thallus	(B)	Coenocytes		
	(C)	Colony	(D)	Plant like		
24.	Whi	c <mark>h of t</mark> he follo <mark>wi</mark> ngs have thall	us bo	dy?		
	(A)	Euglena	(B)	Volvox		
	(C)	See weed	(D)	Ceratium		
25.	Whi	ch o <mark>f</mark> the followings is a red pi	gmen	t?		
	(A)	Xanthophyll	(B)	Phycoerythrin		
	(C)	Phycocyanin	(D)	Carotene		
26.	Cera	atium belongs to which of the	follov	ving groups of algae?		
	(A)	Euqenophyta	(B)	Phyrrophyta		
	(C)	Chrysophyta	(D)	Phaeophyta		

27.	Pinr	ularia is belonged to which	of the f	ollowing groups?
	(A)	Eugenophyta	(B)	Phyrrophyta
	(C)	Chrysophyta	(D)	Phaeophyta
28.	Amo	oeba move and obtain food b	y mean	s of:
	(A)	Plasmodium	(B)	Flagella
	(C)	Cilia	(D)	Psuedopodia
29.	Ulva	belongs to which of the follo	owing g	groups?
	(A)	Chlorophyta	(B)	Phyrrophyta
	(C)	Chrysophyta	(D)	Phaeophyta
30.	Flag	gella are absent in which of the	he follo	wing groups of algae?
	(A)	Eugenophyta	(B)	Rhodophyta
	(C)	Chrysophyta	(D)	Phaeophyta
31.	Whi	ch of the following pigments	is ab <mark>se</mark>	nt in Dinof <mark>la</mark> gellates?
	(A)	Chlorophyll a	(B)	Carotenes
	(C)	Xanthophyll	(D)	Fucoxanthin
32.	Whi	ch of the followings ar <mark>e c</mark> alle	d kelps	3?
	(A)	Diatoms	(B)	Brown algae
	(C)	Red algae	(D)	Green algae
33.	Whi	ch of the f <mark>ollowings i</mark> s st <mark>em l</mark>	ike?	
	(A)	Blades	(B)	Holdfast
	(C)	Stipes	(D)	Kelps
34.	The	red algae attach with the ro	ck by:	
	(A)	Blades	(B)	Holdfast
	(C)	Stipes	(D)	Kelps
35.	Whi	ch of the followings is a colo	nial alg	a?
	(A)	Spirogyra	(B)	Chlorella
	(C)	Volvox	(D)	Ulva
36.	Whi	ch of the following is a unice	ellular a	ılga?
	(A)	Spirogyra	(B)	Chlorella
	(C)	Volvox	(D)	Ulva

37.	Afri	African sleeping sickness is caused by:						
	(A)	Entamoeba	(B)	Trypanosoma				
	(C)	Vorticella	(D)	Pelomyxa				
38.	Whi	ich of the followings is not obta	ained	from algae?				
	(A)	Algin	(B)	Carrageenan				
	(C)	Agar	(D)	None of above				
39.	The	closest relative of fungi is pro	bably	:				
	(A)	Animals	(B)	Slime mold				
	(C)	Brown Algae	(D)	Vascular plants				
40.	Phy	Phytophthora causes which of the following diseases in potato?						
	(A)	Fire blight	(B)	Late blight				
	(C)	Red rots	(D)	Mildew				
41.		ich of the following rea <mark>sons</mark> tista as a separate king <mark>do</mark> m?	is no	ot valid reason for the formation of				
	(A)	None of them could fit themselves in any other kingdom						
	(B)	They are unicellular organisms						
	(C)	They are ancestors of all other kingdoms						
	(D)	They do not produce blastula a	and en	nbryo				
42.	Which of the following reasons seems to be most reasonable for not placing protista in other kingdom?							
	(A)	None of them could fit themselves in any other kingdom						
	(B)	Most of them are unicellular or have simple multi cellular body						
	(C)	They are ancestors of all other kingdoms						
	(D)	They do not produce blastula a	and en	nbryo				
43.		o from the following scientist arate kingdom?	s pro	posed the formation of Monera as a				
	(A)	John Hogg	(B)	Ernst Heackel				
	(C)	Herbert Copeland	(D)	Robert Whittaker				

51.

(A) Control of nutrition

(C) Control of metabolism

Multip	ole Choi	ce Questions	103	Biology F.Sc. Part-I
44.		difference between the king gulis and Schwartz is:	ngdom	Protista of Robert whittaker and
	(A)	Whittaker placed simple organism in F		in Protista while Margulis and Schwartz
	(B)	Whittaker placed unicellular ounicellular, and simple multic	_	sm while Margulis and Schwartz placed organism
	(C)	Whittaker did not place fung Schwartz did	gi and	fungi like protists while Margulis and
	(D)	None of above		
45.	In w	hich character, protists do no	ot shov	v diversity?
	(A)	Ways of obtaining nutrients	(B)	Interaction with other organisms
	(C)	Mode of reproduction	(D)	None of the above
46.	Whi	ch of following groups does n	ot for	m pseudopodia?
	(A)	Amoebas	(B)	Actinopoda
	(C)	Forminifera	(D)	Apicomplexans
47.	Whi	ch of following characters is i	not of	zooflagellates?
	(A)	These protists are mostly unic	ellular	. A few organisms are colonial
	(B)	They have spherical or elonga	ited bo	<mark>die</mark> s
	(C)	They have single central nucle	eus	
	(D)	They have pseudopodia		
48.	Whi	ich of followin <mark>g ar</mark> e free living	zoofl	agellates?
	(A)	Trichonymphas	(B)	Trypanosoma
	(C)	Choanoflagell <mark>at</mark> es	(D)	None of above
49.	Whi	ich <mark>of the followi</mark> ng zooflagella	ates is	the possible ancestor of sponge?
	(A)	Trichonymphas	(B)	Trypanosoma
	(C)	Ch <mark>oa</mark> noflagellates	(D)	None of above
50.	Mici	ronuclei of ciliates are involve	ed in:	
	(A)	Control of nutrition	(B)	Sexual reproduction
	(C)	Asexual reproduction	(D)	Control of movement of cilia

(B) Sexual reproduction

(D) Control of movement of cilia

Which of the followings is not the function of macronucleus?

52.	. Which group of the followings have outer shell or test?			er shell or test?
	(A)	Amoebas	(B)	Actinopoda, Forminifera
	(C)	Apicomplexans	(D)	Ciliates
53.	Whi	ch of the following take part in	n the	formation of coral reefs?
	(A)	Amoebas	(B)	Forminifera
	(C)	Apicomplexans	(D)	Ciliates
54.	Whi	ch group of the followings has	no lo	comotory organs?
	(A)	Amoebas	(B)	Actinopoda, Forminifera
	(C)	Apicomplexans	(D)	Ciliates
55.	The	coenocytes are:		
	(A)	An algae without nucleus	(B)	An algae with many nuclei
	(C)	An algae with on nucleus	(D)	None of above
56.	A th	allus is a body:		
	(A)	Having no specific structure		
	(B)	Having roots, but stem and lea	ves ar	e absent
	(C)	Having stem but no true leaves	or ro	ots
	(D)	Having no specific root, stem a	and le	aves
57.	Whi	ch of the following pigment is	abser	nt in algae:
	(A)	Carotenoids	(B)	Xanthophylls
	(C)	Ohycoerythrin	(D)	Phycocyanin
58.	Som	e <mark>biologists believe that Eugle</mark>	na is a	an animal, because:
	(A)	It can move	(B)	It lack cell wall
	(C)	It <mark>reproduce like</mark> plants	(D)	It can ingest food like animal
59.	Whi	ch of the following pigment is	not p	resent in dinoflagellates?
	(A)	Chl <mark>or</mark> ophyll a	(B)	Carotenes
	(C)	Fucoxanthin	(D)	Phycoerythrin
60.	Whi	ch characteristic of the follow	ing is	not shown by Diatoms?
	(A)	They are usually unicellular		
	(B)	The do not have cilia as locom	otory	organs
	(C)	Their pigments are chlorophyll	a, ch	lorophyll c, carotenes and fucoxanthin
	(D)	The cell wall of each diatom co	onsist	s of two shells

61.	The	kelps are:					
	(A)	Small red algae	(B)	Large red algae			
	(C)	Small brown algae	(D)	Large brown algae			
62.	The	red algae have a red pigment	called	l :			
	(A)	Chlorophyll a,	(B)	Carotenes			
	(C)	Fucoxanthin	(D)	Phycoerythrin			
63.	Mor	ophyletic lineage means:					
	(A)	Origin from one group	(B)	Origin form one phylum			
	(C)	Origin from one ancestor	(D)	Origin from many ancestor			
64.	Gre	en algae are supposed to be an	cesto	r of plants because:			
	(A)	They perform photosynthesis l	ike pl	ants			
	(B)	Their body is plant like					
	(C)	Their pigments are plant like					
	(D)	Some of them are multicellular	r like	plants			
65.	Which of the following algae is used as food source?						
	(A)	Volvox	(B)	Spirogyra			
	(C)	Ulva	(D)	Chlorella			
66.	Fungus like protists is not placed in Fungi because:						
	(A)	Their body is not fungi like					
	(B)	Their method of reproduction is not plant like					
	(C)	Their cell wall is not plant like					
	(D)	Their method of reproduction i	is not	plant like			
67.	The feeding stage of slime mold is called:						
	(A)	Trypanosoma	(B)	Plasmodium			
	(C)	Volvox	(D)	Swarm cells			
68.	Phys	sarum polycephalum is used as	mod	el organism in biology for the study of:			
	(A)	Mitosis	(B)	Streaming movement of cytoplasm			
	(C)	Methods of reproduction	(D)	Methods of locomotion			

69.	Phytophthora infestansi is notorious in human history because:							
	(A)	It has caused many disease in	man					
	(B)	It has caused famine for man						
	(C)	It has destroyed many animals						
	(D)	None of above						
70.		kingdom Protista contain nnisms.		m	ajor	groups	of	eukaryotio
	(A)	4	(B)	2				
	(C)	3	(D)	5				
71.	Tric	chonymphas are:						
	(A)	Symbiont	(B)	Parasites				
	(C)	Green Algae	(D)	Red Alga	ae			
72.	Who	o Proposed the Kingdom Proti	ista fo	r microsc	opic o	organisn	ıs?	
	(A)	Haeckel	(B)	Copeland	1			
	(C)	Whittaker	(D)	John Hog	gg			
73.	Afri	can sleeping sickness is caused	l by:					
	(A)	Pelomyxa	(B)	Stentor				
	(C)	Entamoeba	(D)	Trypanos	soma			
74.	These are unicellular organisms with a flexible flagella:							
	(A)	Actinopods	(B)	Foramini	iferan	S		
	(C)	Flagellates	(D)	Ciliates				
75.	The	cell wall consists of two over l	appin	g shell in:	•			
	(A)	Euglenoids	(B)	Brown al	lgae			
	(C)	Dinoflagellates	(D)	Diatoms				
76.	Poly	vsip <mark>ho</mark> nia is a representative of						
	(A)	Brown algae	(B)	Diatoms				
	(C)	Green algae	(D)	Red alga	e			
77.	It ha	as cells with two halves:						
	(A)	Desmid	(B)	Ulva				
	(C)	Dinoflagellats	(D)	Volvox				

78.	It is	a fungus like protist:		
	(A)	Chlorella	(B)	Physarum polycephalum
	(C)	Rhizopus	(D)	Penicillium
79.	Oon	nycotes show close relation wi	th fun	gi and their cell wall contains:
	(A)	Chitin	(B)	Muramic acid
	(C)	Silica	(D)	Cellulose
80.	Amo	oeba moves and obtains food b	y me	ans of:
	(A)	Cilin	(B)	Flagella
	(C)	Pseudopodia	(D)	Gametangia
81.	The	sexual process exhibited by m	ost ci	liates is called:
	(A)	Oogamy	(B)	Fertilization
	(C)	Binary Fission	(D)	Conjugation
82.	Para	asitic Protozoans that form sp	ores <mark>a</mark>	t some stag <mark>e i</mark> n their life belong to:
	(A)	Apicomplexans	(B)	Ciliates
	(C)	Actinopods	(D)	Diatoms
83.	Alga	ie in which body is diffe <mark>re</mark> ntiat	ed int	o blade, stipe and hold fast belong to:
	(A)	Kelps	(B)	Euglenoids
	(C)	Golden algae	(D)	Green algae
84.	The	feeding stage of a slime mold	is call	ed:
	(A)	Myceliun	(B)	Pseudopodium
	(C)	Hyphae	(D)	Plasmodium
85.	All _I	pr <mark>otist</mark> s have ev <mark>o</mark> lved from:		
	(A)	Protists	(B)	Prokaryotes
	(C)	Polyphyletic	(D)	Plants
86.	Euk	ary <mark>oti</mark> c kingdom arose from:		
	(A)	Prokaryotes	(B)	Polyphyletic
	(C)	Plasmodium	(D)	Protists
87.	The	protists are:		
	(A)	Eukaryotic	(B)	Prokaryotic
	(C)	Subcellular	(D)	All of the above

88.	Whi	Which one is not develop from a blastula?							
	(A)	Protists	(B)	Prokaryotes					
	(C)	Plasmodium	(D)	Polyphyletic					
89.		kingdom protista contain nisms?	s how	many major groups of eukaryotic					
	(A)	Five	(B)	Three					
	(C)	Two	(D)	Four					
90.		vhich year Herbert Copelar gdom?	nd eleva	ated the prokaryotes to the status of					
	(A)	1932	(B)	1938					
	(C)	1931	(D)	1929					
91.	Mos	t biologists regard the Protis	sts as a	group of organism.					
	(A)	Polyphyletic	(B)	Protists					
	(C)	Prokaryotes	(D)	Plasmodium					
92.	Whi	ch of these is an examp <mark>le</mark> of t	foramir	n <mark>if</mark> era?					
- - -	(A)	Plasmodium	(B)	Protists					
	(C)	Limestone	(D)	Foramis					
93.	A co	A common example of the group apicomplexans is:							
	(A)	Polyphyletic	(B)	Plasmodium					
	(C)	Limestone	(D)	Prokaryotes					
94.	Para	am <mark>ec</mark> ium, vorti <mark>ce</mark> lla and sten	tor belo	ong to the group:					
	(A)	Ciliata	(B)	Silica					
	(C)	Limestone	(D)	Tsetse					
95.	Whi	ch o <mark>f t</mark> hese causes amoebic d	lysenter	ry is human?					
	(A)	Zooflagelates	(B)	Euglenoid					
	(C)	Ciliates	(D)	Entamoeba histolytica					
96.	The	giant amoeba obtains its ene	ergy fro	m:					
	(A)	Methanogenic bacteria	(B)	Foramis					
	(C)	Trichonympha	(D)	Apicomplexans					

97.	Which of these has multiple membrane-bound nuclei but none of the other organelles?							
	(A)	Giant amoeba	(B)	Foramis				
	(C)	Ciliata	(D)	Plasmodium				
98.	Whi	ich of these live as symbio	nts in the	guts of termites?				
	(A)	Red	(B)	Trichonympha				
	(C)	Tsetse	(D)	Silica				
99.	Try	panosoma is trammitted b	y the bite	of infected:				
	(A)	Entamoeba histolytica	(B)	common fly				
	(C)	Tsetse fly	(D)	Trichonymphus				
100.	Shel	lls of actinopods are made	of:					
	(A)	Silica	(B)	Giant amoeba				
	(C)	Ciliata	(D)	Limestone				
101.	The	feeding stage of a slime m	old is:					
	(A)	Blastostyle	(B)	Gastrozoids				
	(C)	Plasmodium	(D)	Sporozoite				
102.	Whi	ich of these lack sp <mark>ec</mark> ifi <mark>c s</mark> t	ructure fo	or locomotion but move by flexing?				
	(A)	Kelps	(B)	Apicomplexans				
	(C)	Zooflagelates	(D)	Euglenoid				
103.	Whi	Which are the major producers in aquatic ecosystem?						
	(A)	Green Algae	(B)	Apicomplexans				
	(C)	Diatoms	(D)	Euglenoid				
104.	Phycoerythrin is found in:							
	(A)	Red algae.	(B)	Euglenoid algae.				
	(C)	Apicomplexans	(D)	Kelps				
105.	Whi	i <mark>ch of</mark> the following are tho	ought to b	e closely related to zooflagellats?				
	(A)	Euglenoid	(B)	Giant amoeba				
	(C)	Red algae	(D)	Apicomplexans				
106.	The	largest brown algae are ca	alled:					
	(A)	Kelps	(B)	Euglenoid				
	(C)	Plasmodium	(D)	Red				

107.	Which one red algae incorporate in their cell walls?			
	(A) COCa ₃	(B)	CaCO ₃	
	(C) Kelps	(D)	Plasmodium	
108.	Which is a naked mass of cytople	asm ha	ving many nuclei?	
	(A) Limestone	(B)	Plasmodium	
	(C) Kelps	(D)	Euglenoid	
109.	What was the cause of Irish pota	ito fami	ine of the 19th century?	
	(A) Polyphyletic	(B)	Phytophothora Infestans	
	(C) Prokaryotes	(D)	Euglenoid	
110.	Protists:			
	(A) Eukaryotic	(B)	Actinopod	
	(C) Euglena	(D)	Bacteria	
111.	Earnst Haeckel:			
	(A) 1865	(B)	1863	
	(C) 1864	(D)	1866	
112.	Monera:			
	(A) Actinopod	(B)	Eukaryotic	
	(C) Bacteria	(D)	Euglena	
113.	Radiolarians:			
	(A) Actinopod	(B)	Bacteria	
	(C) Euglena	(D)	Eukaryotic	
114.	Zooflagellate:			
	(A) Bacteria	(B)	Eukaryotic	
	(C) Euglena	(D)	Actinopod	
115.	Flagellates:			
	(A) Malaria	(B)	Symbionts	
	(C) Foraminiferans	(D)	Coordinated movement	
116.	Cilia:			
	(A) Symbionts	(B)	Saprophyte	
	(C) Malaria	(D)	Coordinated movement	

117.	Conjugation:		
	(A) Coordinated movement	(B) Ciliate	S
	(C) Symbionts	(D) Saprop	phyte
118.	Shell:		
	(A) Foraminiferans	(B) Ciliate	S
	(C) Saprophyte	(D) Malaria	a
119.	Plasmodium:		
	(A) Coordinated movement	(B) Forami	iniferans
	(C) Symbionts	(D) Malari	a
120.	Rhodophyta:		
	(A) Chrysophyta	(B) Oomyo	cotes
	(C) Chondrus	(D) Acetab	oularia
121.	Diatoms:		
	(A) Chondrus	(B) Oomyo	cotes
	(C) Acetabularia	(D) Chrysc	phyta
122.	Brown algae:		
	(A) Myxomycota	(B) Oomyo	cotes
	(C) Oomycotes	(D) Macro	cystis
123.	Green algae:		
	(A) Oomycotes	(B) Myxon	nycota
	(C) Macrocystis	(D) Acetab	oularia
124.	Slime mold:		
	(A) Macrocystis	(B) Chrysc	phyta
	(C) Myxomycota	(D) Chond	rus

FUNGI

1.	The number of species of fungi are:			
	(A)	80,000	(B)	90,000
	(C)	100,000	(D)	110,000
2.	Whi	ch of the following are pathog	enic f	fungi?
	(A)	Truffles	(B)	Morels
	(C)	Rust	(D)	Penicllium
3.	Whi	ch of the following fung <mark>i i</mark> s use	d in l	breweries?
	(A)	Truffles	(B)	Morels
	(C)	Rust	(D)	Penicllium
4.	Whi	ch of the following f <mark>ungi</mark> is a d	elicio	us fungus?
	(A)	Truffles	(B)	Morels
	(C)	Rust	(D)	Penicllium
5.	Whi	c <mark>h o</mark> f the follo <mark>wi</mark> ng is not prese	ent in	fungi?
	(A)	Cell wall	(B)	Centrioles
	(C)	Spores	(D)	Nuclei
6.	Whi	ch o <mark>f t</mark> he following is a resemb	lance	of fungi with animals?
	(A)	Mitosis	(B)	Spores
	(C)	Chitin	(D)	Hyphae
7.	Con	taminated milk, egg and meat	may	also have small amount of:
	(A)	Aspergillus	(B)	Mycorrhiza
	(C)	Yeast	(D)	Griscofulvin

8.	. Which of the followings is the special character of fungi, resent only i		aracter of fungi, resent only in it?	
	(A)	Chitin	(B)	Centrioles
	(C)	Hyphae	(D)	Nuclear mitosis
9.	The	body of fungus is called:		
	(A)	Hyphae	(B)	Thallus
	(C)	Mycelium	(D)	Ceonocytes
10.	The	mycelium is composed of:		
	(A)	Hyphae	(B)	Thallus
	(C)	Cells	(D)	Ceonocytes
11.	Whi	ich of the followings is a non-h	yphal	fungus?
	(A)	Truffles	(B)	Yeast
	(C)	Rust	(D)	Penicllium
12.	Whi	ich of the following may be cal	led w	orld's large <mark>st</mark> organism?
	(A)	Truffles	(B)	Yeast
	(C)	Armilaria	(D)	Penicillium
13.	The	fungi which absorb decompos	ed fo	o <mark>d</mark> are called:
	(A)	Saprotrophs	(B)	Parasites
	(C)	Predators	(D)	Mutualistic
14.	Rhiz	zoids are present in fungi:		
	(A)	Saprotrophs	(B)	Parasites
	(C)	Predators	(D)	Mutualistic
15.	Whi	ic <mark>h of the followi</mark> ng fungi have	haust	toria?
	(A)	Saprotrophs	(B)	Parasites
	(C)	Predators	(D)	Mutualistic
16.	The	fungi arthrobotrays are:		
	(A)	Saprotrophs	(B)	Parasites
	(C)	Predators	(D)	Mutualistic
17.	The	association in which both org	anism	s get benefits is called:
	(A)	Saprotrophs	(B)	Parasites
	(C)	Predators	(D)	Mutualistic

18.	The	The mutualistic associationis observed between fungi and algae called:				
	(A)	Lichens	(B)	Mycorrhizae		
	(C)	Arthrobotrys	(D)	None of the above		
19.	Whi	ich of the following is true for	mush	rooms whose gills glow in the dark?		
	(A)	Amanita verna	(B)	Truffles		
	(C)	Agaricus	(D)	Omphalotus olearius		
20.	The	lichens which form branching	g syste	em are called:		
	(A)	Crustose	(B)	Foliose		
	(C)	Fruticose	(D)	None of the above		
21.	The	lichens which are leaf like are	calle	d:		
	(A)	Crustose	(B)	Foliose		
	(C)	Fruticose	(D)	None of the above		
22.	The	structures produced inside th	e sp <mark>o</mark> i	rangia are <mark>call</mark> ed:		
	(A)	Crustose	(B)	Foliose		
	(C)	Fruticose	(D)	None of the above		
23.	An o	outgrowth in fungi whi <mark>ch</mark> deta	ches a	and forms new hyphae is called:		
	(A)	Spore	(B)	Conidia		
	(C)	Fragment	(D)	Bud		
24.	Nak	ed spores <mark>are called:</mark>				
	(A)	Spore	(B)	Conidia		
	(C)	Fragment	(D)	Bud		
25.	The	fusion of cytoplasm of fungi is	s calle	ed:		
	(A)	Plasmogamy	(B)	Karyogamy		
	(C)	Cytogamy	(D)	Oogamy		
26.	The	fusion of nuclei of fungi is cal	led:			
	(A)	Plasmogamy	(B)	Karyogamy		
	(C)	Cytogamy	(D)	Oogamy		
27.	, ,	dikaryotic hyphae is produce	d only	by:		
	(A)	Plasmogamy	(B)	Karyogamy		
	(C)	Cytogamy	(D)	Oogamy		

28.	Rhizopus belongs to which of the following groups?					
	(A)	Zygomycota	(B)	Ascomycota		
	(C)	Basidiomycota	(D)	Deutromycota		
29.	Peni	icillium belongs to which of the	e follo	owing groups?		
	(A)	Zygomycota	(B)	Ascomycota		
	(C)	Basidiomycota	(D)	Deutromycota		
30.	Rus	ts belongs to which of the follo	wing	groups?		
	(A)	Zygomycota	(B)	Ascomycota		
	(C)	Basidiomycota	(D)	Deutromycota		
31.	Con	jugation takes place in:				
	(A)	Zygomycota	(B)	Ascomycota		
	(C)	Basidiomycota	(D)	Deutromycota		
32.	The	number of species of ascomyc	ota <mark>is</mark>	· · · · · · · · · · · · · · · · · · ·		
	(A)	60,000	(B)	50,000		
	(C)	40,000	(D)	20,000		
33.	Asco	ospores are formed by <mark>m</mark> eiosis.	. The	number of Ascospores in an ascus is:		
	(A)	2	(B)	4		
	(C)	6	(D)	8		
34.	The asexual spore in Ascomycetes is:					
	(A)	Ascospore	(B)	Basidiospore		
	(C)	Conidia	(D)	Simple spore		
35.	Clul	o fungi are:				
	(A)	Zygomycota	(B)	Ascomycota		
	(C)	Basidiomycota	(D)	Deutromycota		
36.	Basi	diu <mark>m</mark> is present in:				
	(A)	Conjugation fungi	(B)	Sac fungi		
	(C)	Club fungi	(D)	Fungi imperfecti		
37.	Whi	ch of the followings is smut?				
	(A)	Ustilago	(B)	Aspergillus		
	(C)	Puccinia	(D)	None of the above		

38.	Whi	ch of the following is rust?		
	(A)	Ustilago	(B)	Aspergillus
	(C)	Puccinia	(D)	None of the above
39.	Sexu	ıal reproduction is absent in v	vhich	of the followings?
	(A)	Zygomycota	(B)	Ascomycota
	(C)	Basidiomycota	(D)	Deutromycota
40.	Whi	ch of the followings can act as	bioir	ndicators?
	(A)	Smut	(B)	Mycorrhizae
	(C)	Lichens	(D)	Aspergillus
41.	Whi	ch f the followings are poison	ous fu	ingi?
	(A)	Morels	(B)	Truffles
	(C)	Toadstools	(D)	Rust
42.	Whi	ch of the following fungi is us	ed to	give aroma <mark>to</mark> cheese?
	(A)	Yeasts	(B)	Penicillium
	(C)	Aspergillus	(D)	Neurospora
43.	Whi	ich of the followin <mark>g</mark> fun <mark>gi</mark> is us	ed for	producing Soya paste:
	(A)	Yeasts	(B)	Penicillium
	(C)	Aspergillus	(D)	Neurospora
44.	Citr	ic acid is obtained from:		
	(A)	Yeasts	(B)	Penicillium
	(C)	Aspergillus	(D)	Neurospora
45.	Nati	ura <mark>l d</mark> yes are o <mark>bt</mark> ained form fu	ıngi:	
	(A)	Yeasts	(B)	Penicillium
	(C)	Aspergillus	(D)	Neurospora
46.	Whi	ch of the following drugs is us	sed for	r lowering the blood pressure?
	(A)	Penicillin	(B)	Lovastatin
	(C)	Cyclosporine	(D)	Ergotine
47.	Whi	ch of the following drugs is us	sed to	relieve to relieve headache?
	(A)	Penicillin	(B)	Lovastatin
	(C)	Cyclosporine	(D)	Ergotine

48.	Which of the following is an oral or vaginal thrush?						
	(A)	Ringworm	(B)	Candidosis			
	(C)	Histoplasmosis	(D)	Ergotism			
49.	Whi AID	ich of the following becomes?	comes more a	active in defective in	ımune system like		
	(A)	Penicillin	(B)	Lovastatin			
	(C)	Cyclosporine	(D)	Aspergillosis			
50.	Mos	t of the visible part of l	ichen consist	es of?			
	(A)	Fungi	(B)	Algae			
	(C)	Roots	(D)	Bacteria			
51.	Whi	Which of the following fungi causes wood rotting?					
	(A)	Ustilago	(B)	Aspergillus			
	(C)	Puccinia	(D)	Shelf fungi			
52.	Which of the following is not a similarity of fungus with plants?						
	(A)	Both have cell wall	(B)	Both lack centrioles			
	(C)	Both are autotrophic	(D)	Both are non-motile			
53.	Which of the following is not a difference of fungi from animals?						
	(A)	Fungi have cell wall but absent in animals					
	(B)	Fungi are heterotrophs but the animals are not					
	(C)	Fungi are absorptive heterotrophs					
	(D)	Fungi are non-motile					
54.	In n	In mitosis of fungi:					
	(A)	Nuclear membrane dis	appear				
	(B)	Nucleoli disappear					
	(C)	Fungi are absorptive he	eterotrophs				
	(D)	Fungi are non-motile					
55.	A m	ycelium is a group of:					
	(A)	Cells	(B)	Fungi			
	(C)	Hyphae	(D)	Tissue			

56.	A co	enocytic hyphae:				
	(A)	With cross walls	(B)	Without cross walls		
	(C)	Without nuclei	(D)	Without cytoplasm		
57.	Allı	nuclei of the fungi are haploid	l excep	ot:		
	(A)	Nuclei of gametes	(B)	Nucleic of spores		
	(C)	Nuclei of zygote	(D)	None of the above		
58.	The	world's largest organism ma	y be:			
	(A)	An algae	(B)	A fungi		
	(C)	A plant	(D)	An animal		
59.	The	haustoria is special structure	which	1:		
	(A)	Penetrate into the soil	(B)	Penetrate into the plants		
	(C)	Penetrate into the host	(D)	None of the above		
60.	Rus	t fungi belong to genus?				
	(A)	Ustilago	(B)	Aspergillus		
	(C)	Puccinia	(D)	Yeast		
61.	Lov	astatin is fungal p <mark>roduct w</mark> hic	ch low	ers the blood.		
	(A)	Suger	(B)	Urea		
	(C)	Ca ⁺⁺	(D)	Cholestrol		
62.	Bioi	ndi <mark>cators a</mark> re the organisms v	which:			
	(A)					
	(B)	Indicate about the change in environment				
	(C)					
	(D)	None of the above				
63.	Whi	ich o <mark>f t</mark> he following Lichens is	attacl	hed with the rock:		
	(A)	Crustose lichens	(B)	Foliose lichens		
	(C)	Fruticose lichens	(D)	None of the above		
64.	Fun	gi store food in form of:				
	(A)	Starch	(B)	Glycogen		
	(C)	Cellulose	(D)	Glucose		

65.	The imperfect Fungi are also called:				
	(A)	Basidiomycetes	(B)	Ascomycetes	
	(C)	Deutromycetes	(D)	Zygomycetes	
66.	Sexu	ual reproduction in fungi takes	s plac	e by:	
	(A)	Fusion of gamates	(B)	Fusion of hyphae	
	(C)	Fusion of nuclei	(D)	Fusion of cytoplasm	
67.	Hete	erokaryotic hyphae are those l	ıypae	which have:	
	(A)	Nucleus of same hyphae	(B)	Nucleus of different hyphae	
	(C)	Two nuclei of same hyphae	(D)	Two nuclei of different hyphae	
68.	Whi	ich of the following is fruiting	body?	?	
	(A)	Condia	(B)	Basidiospore	
	(C)	Basidium	(D)	Sporangium	
69.	Whi	ich of the following groups is n	nultin	ucleate?	
	(A)	Zygomycota	(B)	Ascomycota	
	(C)	Basidiomycota	(D)	Deutromycota	
70.	Asco	ospores are:			
	(A)	Haploid	(B)	Diploid	
	(C)	Dikaryotic	(D)	None of the above	
71.	Usti	lago tritici is a:			
	(A)	Smut of wheat	(B)	Loose smut of wheat	
	(C)	Rust of wheat	(D)	None of the above	
72.	Deu	eutromycota is group of fungi in which:			
	(A)	Ascospores are present	(B)	Sexual reproduction is present	
	(C)	Sexual reproduction is absent	(D)	Basidiospores are present	
73.	Para	asexuality is a phenomenon in	whicl	h:	
	(A)	Exchange of gametes between	differ	ent hyphae	
	(B)	Exchange of gametes within the	ie sam	ne hyphae	
	(C)	Exchange of part of chromoso	me be	tween two hyphae	
	(D)	Exchange of part of chromosome in the same hyphae			

74.	The	blue green colour of pencill	colour of pencillium is due to the presence of:			
	(A)	Blue hyphae	(B)	Blue gametes		
	(C)	Blue spores	(D)	Blue conidia		
75.	The	rapid growth of hyphae of f	ungi tal	kes place due to:		
	(A)	Rapid cell division	(B)	Cytoplamic flow through the hypae		
	(C)	Rapid absorption of food	(D)	None of the above		
76.	Whi	ch function of the fungi do y	ou beli	eve to be most imp <mark>ortant</mark> ?		
	(A)	Decomposition	(B)	Fungi used as food		
	(C)	Bioindicator	(D)	Bioremediation		
77.	Peni	icillin was the first antibiotic	s discov	vered by:		
	(A)	Pasteur	(B)	Edward Jenner		
	(C)	A. Fleming	(D)	None of the above		
78.	Lov	astatin is used:				
	(A)	For lowering the blood press	sure			
	(B)	For lowering the blood chole	esterol			
	(C)	For removing germs form th	e body			
	(D)	For lowering body temperature				
79.	Hist	oplasmosi <mark>s is a:</mark>				
	(A)	Heart disease	(B)	Lung disease		
	(C)	Kidney disease	(D)	None of the above		
80.	Afla	to <mark>xins</mark> is a:				
	(A)	Disease	(B)	Toxin		
	(C)	Drug	(D)	None of the above		
81.	Whi	ich o <mark>f t</mark> he following is not syr	nptom (of Ergotism?		
	(A)	Convulsion	(B)	Psychotic delusion		
	(C)	Gangrene	(D)	Indigestion		
82.	Fun	gi resemble plants because t	hey:			
	(A)	Have cell wall	(B)	Lack centriole		
	(C)	Are non-motile	(D)	All of the above		

83. Fungi resemble animals because they are:			re:	
	(A)	Heterotrophs	(B)	Saprotrophs
	(C)	Heterosporous	(D)	Autotrophs
84.	Fun	gal cell walls contain chitin, w	hich i	s also found in exoskeleton of:
	(A)	Chordates	(B)	Molluscs
	(C)	Echinoderms	(D)	Arthropods
85.	Fun	gi are different from animals	becau	se they:
	(A)	Are non-motile	(B)	Have cell wall
	(C)	Are absorptive heterotrophs	(D)	All of the above
86.	In li	chens, fungus protects the alg	al par	tner from:
	(A)	Dessication	(B)	Strong light
	(C)	Both A and C	(D)	High temperature
87.	Fun	gi grow best in habitats which	i hav <mark>e</mark>	
	(A)	Moisture and organic food	(B)	Moisture and carbon dioxide
	(C)	Moisture and light	(D)	Moisture and Oxygen
88.	In fu	ungi, asexual reproduc <mark>tio</mark> n tal	kes pla	<mark>ice</mark> by:
	(A)	Conidia	(B)	Budding
	(C)	Fragmentation	(D)	All of the above
89.	Whi	ich of the f <mark>ollowing is</mark> not true	for sp	oores produced by fungi?
	(A)	They are non-motile	(B)	They need water for their dispersal
	(C)	They are haploid	(D)	They are produced in large number
90.	The	n <mark>um</mark> ber of asc <mark>os</mark> pores inside	each a	scus is commonly:
	(A)	12	(B)	10
	(C)	8	(D)	6
91.	In b	asidomycetes, fruiting body is	made	e up of mycelium which is:
	(A)	Polykaryotic	(B)	Monokaryotic
	(C)	Trikaryotic	(D)	Dikaryotic
92.	Pois	onous mushrooms are called	as:	
	(A)	Tuber	(B)	Truffles
	(C)	Morels	(D)	Toadstools

93.	Gris	Griseofulvin is obtained from fungi and is used to:					
	(A)	Relieve migraine	(B)	Lower blood cholestrol			
	(C)	Prevent transplant rejection	(D)	Inhibit fungal growth			
94.	Whi	ich of the following is not a fu	ngal d	isease of plants?			
	(A)	Potato wilt	(B)	Ergot of rye			
	(C)	Tobacco mosaic disease	(D)	Cotton root rot			
95.	Fun	gi can absorb the food from s	ubstra	ite because they have:			
	(A)	Ascospores	(B)	Conidia			
	(C)	Rhizoids	(D)	Sporangiophores			
96.	Whi	ich of the following is associat	ed wit	h asexual reproduction in fungi?			
	(A)	Ascospores	(B)	Zygosores			
	(C)	Conidia	(D)	Basidiospores			
97.		eelium consists of long, slended as:	er, br	anched tub <mark>ul</mark> ar thread like filaments			
	(A)	Sporangia	(B)	Karyogamy			
	(C)	Haustoria	(D)	Hyphae			
98.	Parasitic fungi absorb nutrients from the cytoplasm of living host with the help of special hyphal tips called:						
	(A)	Facultative	(B)	Hyphae			
	(C)	Haustoria	(D)	Karyogamy			
99.	The parasites which can grow on their host as well as by themselves by artificial growth media are called:						
	(A)	Facultative	(B)	Karyogamy			
	(C)	Rhizoids	(D)	Glycogen			
100.	Whi	ich o <mark>f t</mark> his mushroom is a carı	ivoro	us fungus?			
	(A)	Karyogamy	(B)	Sporangia			
	(C)	Glycogen	(D)	Oyster			
101.	Lich	nens are ecologically very imp	ortant	t as:			
	(A)	Bioinsecticide	(B)	Biofertilizer			
	(C)	Biological control	(D)	Bioindicators			

102.		ich one is mutualistic eular plants?	association	between certain fung	i and roots of
	(A)	Ascomycota / Ascomyc	etes (B)	Mycorrhizae	
	(C)	Puccinia	(D)	Migraine	
103.	Whi	ich of the following is a r	najor struct	tural component of fun	gus cell wall?
	(A)	Cellulose	(B)	Peptidoglycon	
	(C)	Chitin	(D)	Lignin	
104.	Spor	res are produced inside	the reprodu	ictive structures <mark>call</mark> ed:	
	(A)	Ascocarps	(B)	Cyclosporine	
	(C)	Ascomycota / Ascomyc	etes (D)	Sporangia	
105.	Fusi	on of nuclei is called as:			
	(A)	Rhizoids	(B)	Ascocarps	
	(C)	Dikaryotic / Heterokary	otic (D)	Karyoganny	
106.	A fu	ngal hypha having two	nuclei of d <mark>if</mark>	<mark>ferent genetic</mark> types is c	called as:
	(A)	Ascomycota / Ascomyc	etes (B)	Cyclosporine	
	(C)	Dikaryotic / Heterokary	otic (D)	A-Fleming	
107.	Asco	ospores are produced in	special frui	<mark>tin</mark> g bodies called as:	
	(A)	Ascocarps	(B)	Bacidiocarp	
	(C)	Conidia	(D)	Spores	
108.	Whi	ich is the larg <mark>est g</mark> roup o	f fungi, incl	luding over 60,000 spec	ies?
	(A)	Ascomycota / Ascomyco	etes (B)	Ascocarps	
	(C)	Conidia	(D)	Puccinia	
109.	Basi	idio <mark>m</mark> ycetes ar <mark>e</mark> also call	ed as:		
	(A)	Sac fungi.	(B)	Neutral fungi.	
	(C)	Clu <mark>b</mark> fungi.	(D)	All of the above	
110.	Whi	i <mark>ch sp</mark> ecies are the most (common ru	st fungi?	
	(A)	Ustilago	(B)	Pilobolus	
	(C)	Puccinia	(D)	Aspergillus	
111.	Imp	erfect fungi show specia	l kind of ge	netic recombination ca	lled as:
	(A)	Conidia	(B)	Rhizoids	
	(C)	Parasexuality	(D)	Puccinia	

112.	Penicillium reproduces asexually by means of naked spores called as:			
	(A)	Conidia	(B)	Buds
	(C)	Fragmengs	(D)	Rhizoids
113.	Whi	ch one are the modified hypha	e whi	ich anchor the fungus to substrate?
	(A)	Rhizoids	(B)	Stolon
	(C)	Ascus	(D)	Sporangiophore
114.		at percentage of all kinds of v ciation with fungi?	ascul	ar plants has my <mark>corrhiz</mark> al mut <mark>ualis</mark> tic
	(A)	93	(B)	95
	(C)	97	(D)	99
115.	How	w many species of mushrooms,	more	ls and truffles are edible?
	(A)	100	(B)	400
	(C)	200	(D)	300
116.	Whi	ich one is obtained from <mark>a soil</mark>	fungu	s used in organ transplantation?
	(A)	Ampiciline	(B)	Tetracyclin
	(C)	Puccinia	(D)	Cyclosporine
117.	Peni	icillin is th <mark>e fi</mark> rst ant <mark>ibiotic, dis</mark>	cover	ed by:
	(A)	A-Fleming	(B)	Al-Razi
	(C)	A-Humming	(D)	None of the above
118.	Erge	ot <mark>in</mark> e is used to <mark>r</mark> elieve:		
	(A)	Hepatitis C	(B)	Candodosis
	(C)	Skin cancer	(D)	Migraine
119.	In 1	983, <mark>a</mark> functional artificial chr	omoso	ome was made of:
	(A)	Haemophilus influenzae	(B)	Saccharomyces cirvisiae
	(C)	Homo sapiens	(D)	Cassia fistula
120.	Hist	oplasmosis is a serious infectio	on of:	
	(A)	Lung	(B)	Abdomen
	(C)	Heart	(D)	Small intestine

121.		ne strains of Aspergillotoxins called as:	lus flavor pr	oduce one o	of the mos	t carcinogeni	c
	(A)	Aflatoxins	(B)	Antitoxin			
	(C)	Detoxin	(D)	All of the ab	ove		
122.	Whi flou	ich is caused by eating r?	bread made	from purple	ergot – con	ntaminated ry	e
	(A)	Migraine	(B)	Lung cancer			
	(C)	Ergotism	(D)	Apendix			
123.	Up t	to which percentage of	world's fruit	is lost each y	ear due to	<mark>f</mark> ungal <mark>at</mark> tack	:
	(A)	48	(B)	50			
	(C)	52	(D)	54			
124.	Erge	otism:					
	(A)	A-Fleming	(B)	Toadstool			
	(C)	Carcinogenic	(D)	Contaminate	ed rye flour		
125.	Afla	toxin:					
	(A)	Morel	(B)	Contaminate	ed rye flour		
	(C)	Carcinogenic	(D)	A-Fleming			
126.	Peni	icillin:					
	(A)	Morel	(B)	Pink bread n	nold		
	(C)	Contaminated rye flou	r (D)	A-Fleming			
127.	Ama	anita:					
	(A)	A-Fleming	(B)	Toadstool			
	(C)	Morel	(D)	Contaminate	ed rye flour		
128.	Neu	rosp <mark>or</mark> a:					
	(A)	Pink bread mold	(B)	Morel			
	(C)	A-Fleming	(D)	Contaminate	ed rye flour		
129.	Bior	emediation:					
	(A)	Contaminated rye flou	r (B)	Degradation	of pollutan	ts	
	(C)	Imperfect fungi	(D)	Anchoring H	Iyphae		

130.	Rhiz	zoid:		
	(A)	Anchoring Hyphae	(B)	Septate hyphae
	(C)	Imperfect fungi	(D)	Coenocytic hyphae
131.	Deu	teromycetes:		
	(A)	Degradation of pollutants	(B)	Septate hyphae
	(C)	Imperfect fungi	(D)	Coenocytic hyphae
132.	Zyg	omycetes:		
	(A)	Septate hyphae	(B)	Imperfect fungi
	(C)	Coenocytic hyphae	(D)	Perfect fungi
133.	Asc	omycetes:		
	(A)	Septate hyphae	(B)	Perfect fungi
	(C)	Coenocytic hyphae	(D)	Imperfect fungi degradation of pollutants
134.	Con	idia:		
	(A)	7.1	(B)	Non-motile asexual spores
	(C)	Source of an antibiotic	(D)	Fruiting body
135.	Lich	nen:		
	(A)	Decomposer	(B)	Mutualist
	(C)	Fruiting body	(D)	Mass of hyphae
136.	Sap	robes:		
	(A)	Source of an antibiotic	(B)	Non-motile asexual spores
	(C)	Mass of hyphae	(D)	Decomposer
137.	My	celium:		
	(A)	Source of an antibiotic	(B)	Mass of hyphae
	(C)	Fruiting body	(D)	Mutualist
138.	Pen	icilli <mark>um:</mark>		
	(A)	Source of an antibiotic	(B)	Decomposer
	(C)	Fruiting body	(D)	Mutualist

Answers

Sr.	Ans.								
1.	(C)	2.	(C)	3.	(B)	4.	(A)	5.	(B)
6.	(C)	7.	(D)	8.	(D)	9.	(C)	10.	(A)
11.	(B)	12.	(C)	13.	(A)	14.	(A)	15.	(B)
16.	(C)	17.	(D)	18.	(A)	19.	(D)	20.	(C)
21.	(B)	22.	(A)	23.	(D)	24.	(B)	25.	(A)
26.	(B)	27.	(A)	28.	(A)	29.	(D)	30.	(C)
31.	(A)	32.	(A)	33.	(B)	34.	(C)	35.	(B)
36.	(C)	37.	(A)	38.	(C)	39.	(D)	40.	(C)
41.	(B)	42.	(B)	43.	(C)	44.	(C)	45.	(B)
46.	(B)	47.	(D)	48.	(C)	49.	(D)	50.	(A)
51.	(D)	52.	(C)	53.	(B)	54.	(C)	55.	(C)
56.	(B)	57.	(C)	58.	(B)	59.	(C)	60.	(C)
61.	(D)	62.	(B)	63.	(B)	64.	(B)	65.	(C)
66.	(C)	67.	(D)	68.	(C)	69.	(A)	70.	(A)
71.	(B)	72.	(C)	73.	(D)	74.	(D)	75.	(B)
76.	(A)	77.	(C)	78.	(B)	79.	(B)	80.	(B)
81.	(D)	82.	(C)	83.	(A)	84.	(D)	85.	(D)
86.	(C)	87.	(D)	88.	(D)	89.	(D)	90.	(C)
91.	(C)	92.	(C)	93.	(D)	94.	(C)	95.	(A)
96.	(D)	97.	(D)	98.	(B)	99.	(C)	100.	(D)
101.	(D)	102.	(B)	103.	(C)	104.	(A)	105.	(D)
106.	(C)	107.	(A)	108.	(A)	109.	(C)	110.	(C)
111.	(C)	112.	(A)	113.	(A)	114.	(B)	115.	(C)
116.	(D)	117.	(A)	118.	(D)	119.	(B)	120.	(A)
121.	(A)	122.	(C)	123.	(B)	124.	(D)	125.	(C)
126.	(D)	127.	(B)	128.	(A)	129.	(B)	130.	(A)
131.	(C)	132.	(C)	133.	(A)	134.	(B)	135.	(B)
136.	(D)	137.	(B)	138.	(A)				

KINGDOME PLANTAE

1.	The	number of species of p	lants is:	
	(A)	340,000	(B)	350,000
	(C)	30,000	(D)	370,000
2.	Whi	ch of the following is n	ot the charac	cteristic of the plants?
	(A)	Eukaryotic	(B)	Embryo
	(C)	Motile	(D)	Cellulose
3.	Mos	ses belongs to:		
	(A)	Bryopsida	(B)	Anthocerotae
	(C)	Hepaticopsida	(D)	Lycopsida
4.	Whi	ch of the f <mark>oll</mark> owings is	not a bryoph	yte?
	(A)	Bryopsida	(B)	Anthocerotae
	(C)	Hepaticopsida	(D)	Lycopsida
5.	Mar	c <mark>ha</mark> ntia is an e <mark>x</mark> ample	of:	
	(A)	Bryopsida	(B)	Anthocerotae
	(C)	Hepaticopsida	(D)	Lycopsida
6.	Funa	aria <mark>is</mark> an example of:		
	(A)	Bryopsida	(B)	Anthocerotae
	(C)	Hepaticopsida	(D)	Lycopsida
7.	Whi	ch of the following pla	nt is called ar	mphibious plant?
	(A)	Bryophytes	(B)	Embryophytes
	(C)	Tracheophytes	(D)	None of the above

8.	Whi	ch of the following is	a male reprod	uctive cell?	
	(A)	Antheridia	(B)	Archegonia	
	(C)	Anthrozooids	(D)	Oocyte	
9.	Whi	ch of the following is	a female repr	oductive organ?	
	(A)	Antheridia	(B)	Archegonia	
	(C)	Anthrozooids	(D)	Oocyte	
10.	Whi	ch of the following is	a male reprod	uctive cell?	
	(A)	Antheridia	(B)	Archegonia	
	(C)	Anthrozooids	(D)	Oocyte	
11.	Tha	llus body is present i	n which of the	following?	
	(A)	Bryopsida	(B)	Anthocerotae	
	(C)	Hepaticopsida	(D)	Lycopsida	
12.	Whi	ch of the following is	not a charac <mark>te</mark>	er of monocots:	
	(A)	Petals 5 or multiple of	of five (B)	Single cotyledon	
	(C)	Scattered vascular bu	ındle (D)	Parallel venation	
13.	Win	gs are involved in po	lli <mark>na</mark> tion in cas	e of:	
	(A)	Ferns	(B)	Gymnosperms	
	(C)	In only pinus	(D)	Angiosperms	
14.	Mer	istematic t <mark>issues are</mark>	present in:		
	(A)	Bryopsida	(B)	Anthocerotae	
	(C)	Hepaticopsida	(D)	None of the above	
15.	Whi	ch <mark>of the followi</mark> ng is	a diploid?		
	(A)	Antheridia	(B)	Oospore	
	(C)	Anthrozooids	(D)	Oocyte	
16.	The	vas <mark>cu</mark> lar plants are:			
	(A)	Bryophytes	(B)	Embryophytes	
	(C)	Tracheophytes	(D)	None of the above	
17.	Whi	ch of the following a	re called club r	nosses?	
	(A)	Bryopsida	(B)	Psilopsida	
	(C)	Sphenopsida	(D)	Lycopsida	

18.	Whi	ch of the following is called	d whisk fo	ern?
	(A)	Filicineae	(B)	Psilopsida
	(C)	Sphenopsida	(D)	Lycopsida
19.	Whi	ch of the following is called	l horse ta	il?
	(A)	Bryopsida	(B)	Psilopsida
	(C)	Sphenopsida	(D)	Lycopsida
20.	Whi	ch of the following are true	e ferns?	
	(A)	Filicineae	(B)	Psilopsida
	(C)	Sphenopsida	(D)	Lycopsida
21.	Rhiz	zome is present in:		
	(A)	Filicineae	(B)	Psilopsida
	(C)	Sphenopsida	(D)	Lycopsida
22.	Ligu	iles are present in:		
	(A)	Filicineae	(B)	Psilopsida
	(C)	Sphenopsida	(D)	Lycopsida
23.	Whi	ch of the following gro <mark>up</mark> o	of plants l	have microphylls?
	(A)	Rhynia	(B)	Llycopodium
	(C)	Adiantum	(D)	Gingko
24.	The	unequal growth during even	olution o	f megaphylls is called:
	(A)	Overtopping	(B)	Planation
	(C)	Webbing	(D)	Fusion
25.	Whi	ch <mark>of t</mark> he follo <mark>wi</mark> ng plants a	are also c	alled arthrophytes?
	(A)	Filicineae	(B)	Psilopsida
	(C)	Sph <mark>e</mark> nopsida	(D)	Lycopsida
26.	Whi	ch of the following is a clas	ss?	
	(A)	Filicineae	(B)	Psilopsida
	(C)	Sphenopsida	(D)	Lycopsida
27.	Circ	inate venation is present in	1:	
	(A)	Rhynia	(B)	Lycopodium
	(C)	Adiantum	(D)	Gingko

28.	Froi	nds are present in:		
	(A)	Filicineae	(B)	Psilopsida
	(C)	Sphenopsida	(D)	Lycopsida
29.	Whi	ch of the following is called m	aiden	hair fern?
	(A)	Rhynia	(B)	Lycopodium
	(C)	Adiantum	(D)	Gingko
30.	The	thin walled cells in the edge of	f the c	capsule of adiantum are:
	(A)	Annulus	(B)	Stomium
	(C)	Indusium	(D)	Frond
31.	Oos	phere is formed in the:		
	(A)	Neck	(B)	Venter
	(C)	Antheridium	(D)	Capsule
32.	The	plants which produce seeds a	re call	led:
	(A)	Bryophytes	(B)	Pteridophytes
	(C)	Tracheophytes	(D)	Spermatophytes
33.	The	evolution of seed occu <mark>rs</mark> in:		
	(A)	Triassic period	(B)	Carboniferous period
	(C)	Devonian period	(D)	Silurian period
34.	Mat	ch seed with <mark>one of t</mark> he f <mark>ollo</mark> wi	ng:	
	(A)	Ovary	(B)	Ovule
	(C)	Stamen	(D)	Carpel
35.	Mat	ch <mark>m</mark> egasporan <mark>g</mark> ium with one	of the	e following:
	(A)	Ovary	(B)	Ovule
	(C)	Stamen	(D)	Carpel
36.	Mat	ch <mark>ma</mark> le gametophytes with on	e of t	he followings:
	(A)	Stamen	(B)	Pollen
	(C)	Carpel	(D)	Ovary
37.	Whi	ch of the following structures	is abs	sent in gymnosperms?
	(A)	Pollen	(B)	Archegonium
	(C)	Pollen tube	(D)	Ovary

38.	The fer	nale gametophyte of angios	perm	s are composed of:
	(A) 3	cells	(B)	5 cells
	(C) 7	cells	(D)	9 cells
39.	The en	dosperm forms:		
	(A) T	esta	(B)	Tegmen
	(C) St	tore food	(D)	All of the above
40.	The nu	mber of petals in monocots	is:	
	(A) 4,	5 or multiple	(B)	3 or multiple
	(C) 4	or multiple	(D)	5 or multiple
41.	The nu	mber of species of family R	osace	ae is:
	(A) 10	000	(B)	15000
	(C) 20	000	(D)	3000
42.	Which Rosace	S	the cl	haracteristics of the leaves of family
	(A) A	lternate	(B)	Adnate
	(C) E:	x-stipulate	(D)	Compound
43.	Which	of the following is the chara	acteri	stic of the flower of the Rosaceae?
	(A) U	nisexual	(B)	Perigynous
	(C) A	ctinomorphic	(D)	Sessile
44.	Which	of the following is not the p	lacen	tation of the family Rosaceae?
	(A) B	asal	(B)	Axile
	(C) M	[arginal	(D)	All of the above
45.	Numbe	e <mark>r of petals in</mark> family Rosace	eae ar	e:
	(A) 3		(B)	4
	(C) 5		(D)	6
46.	Which	of the following fruits does	not b	elong to family Rosaceae?
	(A) A	pple	(B)	Mango
	(C) A	pricot	(D)	Peach
47.	The br	anches of which tree are us	ed as	walking sticks:
	(A) P	yrus	(B)	Crataegus
	(C) R	ose	(D)	Almond

48.	Whi	Which of the following trees is used for making tobacco pipes?							
	(A)	Pyrus	(B)	Crataegus					
	(C)	Rose	(D)	Almond					
49.	Cap	sicum frutenscens is a:							
	(A)	Potato	(B)	Tobacco					
	(C)	Tomato	(D)	Red pepper					
50.	Ova	ry is obliquely placed in which	of th	ne following families?					
	(A)	Rosaceae	(B)	Solanaceae					
	(C)	Poaceae	(D)	Fabaceae					
51.	Vita	min C is present in the fruit of	f:						
	(A)	Physalis	(B)	Solanum tubersum					
	(C)	Capsicum annum	(D)	Lysopersicum					
52.	Whi	ch of the following plants is ri	ch in	atropine?					
	(A)	Petunia	(B)	Datura					
	(C)	Solanum nigrum	(D)	Physalis					
53.	Whi	ch of the following is a <mark>n</mark> ornan	nenta	<mark>l p</mark> lant?					
	(A)	Petunia	(B)	Datura					
	(C)	Solanum nigrum	(D)	Physalis					
54.	The	number of species of family fa	bace	ae are:					
	(A)	3000	(B)	6000					
	(C)	9000	(D)	12000					
55.	Cice	er <mark>arietinum is:</mark>							
	(A)	Sweet pea	(B)	Peanut					
	(C)	Chick pea	(D)	Shisham					
56.	Whi	<mark>ch of t</mark> he following is not the fl	loral (character of the family Fabaceae?					
	(A)	Bisexual	(B)	Actinomorphic					
	(C)	Bracteate	(D)	Perigynous					
57.	Whi	ch of the following are the ant	erior	most petals?					
	(A)	Standard	(B)	Wing					
	(C)	Keel	(D)	None of the above					

58.	The	fruit of family Fabaceae is a:		
	(A)	Nut	(B)	Pod
	(C)	Cryopsis	(D)	None of the above
60.	Whi	ch of the followings is a fodder	crop	?
	(A)	Butea	(B)	Medicago
	(C)	Dalbergia	(D)	Clitoria
61.	Veg	etable oil is obtained from:		
	(A)	Hypogea	(B)	Medicago
	(C)	Dalbergia	(D)	Clitoria
62.	The	seed of plant used as "ratti":		
	(A)	Hypogea	(B)	Medicago
	(C)	Dalbergia	(D)	Clitoria
63.	The	number of species of Caesalpi	niace	ae present i <mark>n</mark> Pakistan is:
	(A)	300	(B)	500
	(C)	40	(D)	60
64.	The	biological name of Kachnar is	:	
	(A)	Tamarindus indica	(B)	Cassia fistula
	(C)	Bauhinia varigata	(D)	Cassia senna
65.	The	biological name of amaltas is:		
	(A)	Tamarindus indica	(B)	Cassia fistula
	(C)	B <mark>a</mark> uhinia varig <mark>a</mark> ta	(D)	Cassia senna
66.	Whi	ch <mark>of the followin</mark> g inflorescence	e is no	ot present in family Caesalpiniaceae?
	(A)	Panicle	(B)	Spike
	(C)	Terminal raceme	(D)	Helicoids
67.	Nun	nbe <mark>r o</mark> f calyx in family Caesalp	iniac	eae is:
	(A)	3	(B)	4
	(C)	5	(D)	6
68.	Nun	nber of corolla in family Caesa	lpinia	aceae are:
	(A)	5	(B)	10
	(C)	15	(D)	20

69.	The	The leaves of which of following plants are used for curing ring worms?					
	(A)	Tamarindus indica	(B)	Cassia fistula			
	(C)	Bauhinia varigata	(D)	Cassia senna			
70.	Whi	ch of the followings is used in	tanni	ng?			
	(A)	Acacia nilotica	(B)	Cassia fistula			
	(C)	Bauhinia varigata	(D)	Cassia senna			
71.	The	total number of species of Min	nosac	eeae is:			
	(A)	2000	(B)	2200			
	(C)	2800	(D)	2600			
72.	Whi	ch of the following plants is "t	ouch	me not"?			
	(A)	Acacia nilotica	(B)	Albizzia lebbek			
	(C)	Mimosa podica	(D)	Prosopis cineraria			
73.	Whi	ch of the followings plants is t	he " <mark>k</mark>	ikar":			
	(A)	Acacia nilotica	(B)	Albizzia lebbek			
	(C)	Mimosa podica	(D)	Prosopis cineraria			
74.	Whi	ch of the following is t <mark>he</mark> inflo	rescer	nce of family Mimosaceae?			
	(A)	Corymb	(B)	Cymose			
	(C)	Panicle	(D)	Spike			
<i>75</i> .	Whi	ch the followings is the floral c	chara	cter of family Mimosaceae?			
	(A)	Monosexual	(B)	Actinomorphic			
	(C)	Hypogynous	(D)	Perigynous			
76.	The	placentation in family Mimos	aceae	is:			
	(A)	Axile	(B)	Basal			
	(C)	Marginal	(D)	All of the above			
77.	Gun	n is <mark>o</mark> btained form:					
	(A)	Acacia nilotica	(B)	Albizzia lebbek			
	(C)	Mimosa podica	(D)	Prosopid cineraria			
78.	The	dye "katha" is obtained from:	:				
	(A)	Acacia nilotica	(B)	Albizzia lebbek			
	(C)	Acacia catechu	(D)	Prosopis cineraria			

79. The leaves of plants used as blood purifier:			ïer:	
	(A)	Acacia nilotica	(B)	Albizzia lebbek
	(C)	Mimosa podica	(D)	Prosopis cineraria
80.	The	number of genera of the famil	ly Gra	amineae is:
	(A)	300	(B)	500
	(C)	600	(D)	700
81.	The	biological name of rice is:		
	(A)	Triticum vulgare	(B)	Avena sativa
	(C)	Oryaz sativa	(D)	Bambusa
82.	The	biological name of oat is:		
	(A)	Triticum vulgare	(B)	Avena sativa
	(C)	Oryaz sativa	(D)	Bambusa
83.	The	grasses are:		
	(A)	Annual herbs	(B)	Annual tree
	(C)	Perennial tree	(D)	None of the above
84.	The	spiklets are arranged on slend	ler ax	<mark>is</mark> called:
	(A)	Thalamus	(B)	Pedicel
	(C)	Rachilla	(D)	Glumes
85.	Hair	r-like struc <mark>tures pre</mark> sent <mark>on s</mark> pi	ikelet	are called:
	(A)	Lemma	(B)	Palae
	(C)	Awn	(D)	Glumes
86.	The	bracts which cover the spikele	ets ar	e called:
	(A)	Lemma	(B)	Palae
	(C)	Awn	(D)	Glumes
87.	Whi	ch of the following is the char	acteri	stic of the flower of family Poaceae?
	(A)	Large	(B)	Pedicillate
	(C)	Complete	(D)	Hypogynous
88.	The	perianth of the family Poacea	e is ca	alled:
	(A)	Lemma	(B)	Palae
	(C)	Lodicules	(D)	Glumes

89.	The	fruit if family poaceae	is a:				
	(A)	Nut	(B)	Caryopsis			
	(C)	Pod	(D)	Legume			
90.	Whi	ch of the following is a	n ornamenta	l plant?			
	(A)	Zea mays	(B)	Festuca			
	(C)	Oryza	(D)	Avena			
91.	Suga	ar is obtained form:					
	(A)	Zea mays	(B)	Avena sativa			
	(C)	Saccharum munja	(D)	Saccharum officinarum			
92.	Rop	es are formed form:					
	(A)	Zea mays	(B)	Avena sativa			
	(C)	Saccharum munja	(D)	Saccharum officinarum			
93.		phylogenetic system oclassified on the basis o		on is a syste <mark>m</mark> in whicl	the organism		
	(A)	External similarities	(B)	Internal similarities			
	(C)	Similarity in origin	(D)	Similarity in organization	on		
94.	King	gdom plantae mainly i	ncludes:				
	(A)	Eukaryotic autotrophic	, multicellula	r, non-motile organisms			
	(B)	Develop from embryos					
	(C)	Have cell wall outer to cell membrane. This cell wall is made up cellulose.					
	(D)	They have vascular tissue (xylem and phloem)					
95.	Whi	ch <mark>of the followi</mark> ng div	isions of Tra	cheophyta is called Whi	sk ferns:		
	(A)	Psilopsida	(B)	Lycopsida			
	(C)	Sp <mark>he</mark> nopsida	(D)	Pteropsida			
96.	Whi	ch of the followings is	not the chara	acter of the bryophytes?	•		
	(A)	Vascular system absen	t				
	(B)	Gametophyte dominan	t				
	(C)	Gametophyte attached	to sporophyte	e			
	(D)	Homosporous					

97.	The	bryophytes are also called am	phibi	ious plants because:				
	(A)	Their shape is amphibian like	(B)	They live in water				
	(C)	They cannot live without water	(D)	The live both in water and land				
98.	The	heteromorphic alternation of	gener	ration are those in which:				
	(A)	Gametophyte and sporophyte a	ire sin	milar in structure and size				
	(B)	Gametophyte and sporophyte a	re dis	ssimilar structure but similar in size				
	(C)	Gametophyte and sporophye are similar in structure but dissimilar in size						
	(D)	Gametophyte and sporophyte a	re dis	ssimilar in both structure and size				
99.		ich of the followings is no ophytes?	t th	e characteristic of gametophyte o) f			
	(A)	Haploid	(B)	Dominant				
	(C)	Dependent	(D)	Free living generation				
100.	Whi	ich of the followings is the char	acter	<mark>r</mark> istic of the <mark>sp</mark> orophyte of bryophytes	?			
	(A)	Haploid	(B)	Dominant				
	(C)	Dependent	(D)	Free living generation				
101.	Whi	ich stage of the followin <mark>g</mark> s is ha	ploid	<mark>l i</mark> n bryophytes?				
	(A)	Sporophyte	(B)	Gametophyte				
	(C)	Zygote	(D)	Embryo				
102.	Whi	ich of the f <mark>ollo</mark> wing <mark>s is not th</mark> e s	adapt	tation of bryophytes on land?				
	(A)	They have compact body						
	(B)	They have pores in their body						
	(C)	They transfer their sperms by v	vater					
	(D)	They have rhizoids						
103.		tonema stage is produced in:						
	(A)	Hepaticeae	(B)	Musci				
	(C)	Anthocerotae	(D)	Pteridophytes				
104.		.		n the Musci and Hepaticeae due to:				
	(A)	Sporophyte is dominant over g						
	(B)	Gametophyte is dominant over	sapro	ophyte				
	(C)	Sporophyte has chloroplast						
	(D)	Gametophyte has chloroplast						

Multip	le Choi	ce Questions		14	0		1	Biolog	y F.Sc. F	Part-I
105.		s believed the			ı of	generation	increase	the	chance	e of
	(A)	Gametes and	d spores at	the same	time	2				
	(B)	Gametes								
	(C)	Spores								
	(D)	Zygote								
106.	Whi	ich of the foll	owing cha	racteristi	cs is	s absent in tr	acheophy	tes?		
	(A)	They have ro	oot, stem aı	nd leaves						
	(B)	They have v	ascular sys	tems in s	ems	s, roots and le	aves			
	(C)	They have p	rotected sp	orangia						
	(D)	Their gameto	ophyte is d	ominant						
107.	Whi	ich of the foll	owing plar	its are ro	otle	ss?				
	(A)	Psilopsida		(B)	Lycopsida				
	(C)	Sphenopsida	ı	(D)	Pteropsida				
108.	Rhiz	zome is:								
	(A)	Under groun	d stem	(B)	Under groun	nd root			
	(C)	Under groun	d fruit		D)	None of the	above			
109.	The evolution of leaf took place in some primitive fern like plants approximately:									
	(A)	350 million	years ago	(B)	360 million	years ago			
	(C)	370 million	years ago	(D)	None of abo	ve			
110.	Une	qu <mark>al</mark> growth	ta <mark>k</mark> es place	e during	whi	ch stage duri	ing evolut	ion o	f seed?	
	(A)	Overtopping	5	(B)	Planation				
	(C)	Fusion or we	edding	(D)	None of the	above			
111.	The	sporophylls a	are:							
	(A)	Reproductiv	e stem	(B)	Reproductiv	e leaves			
	(C)	Reproductive	e roots	(D)	None of the	above			
112.	Ligu	ıles are prese	nt in the le	eaves of:						
	(A)	Psilopsida		(B)	Lycopsida				
	(C)	Sphenopsida	1	(D)	Pteropsida				

113.	Which of the following are also called arthrophytes?				
	(A)	Psilopsida	(B)	Lycopsida	
	(C)	Sphenopsida	(D)	Pteropsida	
114.	The	sporangia of class Filicinea	ae is calle	d foliar sporangia because:	
	(A)	The sporangia are flower li	ke		
	(B)	The sporangia develop from	n leaves		
	(C)	The sporangia are attached	with leav	res	
	(D)	None of the above			
115.		pattern of development of nis case,	the leave	e of ferns is called circinate vernation	
	(A)	Leaves coil over others			
	(B)	Leaf coil on itself			
	(C)	Leaves are arranged on ster	n in a c <mark>oi</mark>	l pattern	
	(D)	None of the above			
116.	Soru	ıs in Adiantum is a:			
	(A)	Group of leaves	(B)	Group of stems	
	(C)	Group of spores	(D)	Group of sporangia	
117.	Mei	osis in Adiantum ta <mark>kes</mark> pl <mark>ac</mark>	ce during	:	
	(A)	Spermatozoa formation	(B)	Egg formation	
	(C)	Spore formation	(D)	None of the above	
118.	A m	onoecious plant is the one i	in which:		
	(A)	Male and female reproduct	ive organ	s are present on different plants	
	(B)		_		
	(C)	-	ive organ	s are present on same stem or leaf	
	(D)	None of the above			
119.		unfertilized egg is called:			
	(A)	Oospore	(B)	Oosphere	
	(C)	Zygote	(D)	None of the above	
120.				55 million years ago during late:	
	(A)	Devonian period	(B)	Jurassic period	
	(C)	Triassic period	(D)	None of the above	

121.	Seed	l may be defined as:				
	(A)	A fertilized ovule	(B)	A fertilized ovary		
	(C)	A fertilized zygote	(D)	A fertilized embryo		
122.	Hete	erosporous condition is necess	sary fo	or the evolution of seed because:		
	(A)	Two types of spore become m	otile			
	(B)	Only smaller spore is motile a	nd lar	ger spore remains immotile		
	(C)	Only larger spore become mo	tile an	d smaller spore becomes immotile		
	(D)	Larger spore stores food and s	smalle	r spore becomes motile		
123.	Meg	aspores are retained within t	he me	gasporangium, so that:		
	(A)	It stores food	(B)	It protects Zygote		
	(C)	It changes into seed	(D)	None of the above		
124.	Red	uction to a single functional mo	egaspo	<mark>re per sporangium takes</mark> place so that		
	(A)	Seed has only one embryo	(B)	Fruit can be formed		
	(C)	The healthy embryo is produce	d (D)	None of above		
125.	Fem	ale gametophyte is:				
	(A)	Carpel	(B)	Ovule		
	(C)	Ovary	(D)	Embryo sac		
126.	Mal	e Gametophyte is:				
	(A)	Pollen grain	(B)	Anther		
	(C)	Stamen	(D)	Pollen sac		
127.	Whi	ich <mark>of the following structure</mark>	is not	present in Gymnosperm?		
	(A)	Pollen grain	(B)	Ovule		
	(C)	Ovary	(D)	Archegonium		
128.	How	<mark>v many species</mark> of Angiosperm	s are	present?		
	(A)	235,000	(B)	250,000		
	(C)	230,000	(D)	260,000		
129.	Whi	ich of the following characteri	istics i	s not of the monocot?		
	(A)	They have single cotylendon	in the s	seed		
	(B)	The number of sepals or petal	s is 3 c	or multiple of 3		
	(C)	The vascular bundles are scatt	tered in	n the stem		
	(D)	They have reticulate veins in the leaves				

130.	Which of the following plants do not belong to family Rosaceae?						
	(A)	Orange	(B)	Pyrus			
	(C)	Rosa	(D)	Apple			
131.	The	floral characteristic not four	nd in fa	mily Solanaceae:			
	(A)	They have five sepals	(B)	They have five petals			
	(C)	They have five stamens	(D)	They have five carpals			
132.	Whi	ich of following plants is a wo	eed?				
	(A)	Solanum tubersum	(B)	Nocotiana tovacum			
	(C)	Lycopersicum esculentum	(D)	Solanum nigrum			
133.	Leg	ume is the characteristic of f	ruit in 1	the family:			
	(A)	Rosaceae	(B)	Solanceae			
	(C)	Fabaceae	(D)	Poaceae			
134.	Fan	nily poaceae has a characteri	stic in <mark>f</mark> l	orescence c <mark>al</mark> led:			
	(A)	Spike	(B)	Spikelet			
	(C)	Raceme	(D)	Umbel			
135.	Hov	v many species of plant <mark>s a</mark> re l	known				
	(A)	412000	(B)	227000			
	(C)	360000	(D)	120000			
136.	Whi	isk ferns be <mark>long to th</mark> e gr <mark>oup</mark>	:				
	(A)	Lycopsida	(B)	Filicinae			
	(C)	Psilopsida Psilopsida	(D)	Pteropsida			
137.	Bry	op <mark>hytes are gene</mark> rally though	it to ha	ve evolved from:			
	(A)	Golden algae	(B)	Green algae			
	(C)	Red algae	(D)	Brown algae			
138.	Gan	neto <mark>ph</mark> yte in bryophytes is:					
	(A)	Diploid	(B)	Pentaploid			
	(C)	Haploid	(D)	Triploid			
139.	The	class hepaticae includes abo	ut:				
	(A)	1100 sps.	(B)	600 sps.			
	(C)	1200 sps.	(D)	900 sps.			

140.	Pteropsida is divided into how many classes?			
	(A)	3	(B)	5
	(C)	4	(D)	6
141.	Whi	ch of the following are highly	evolv	ed of all the plants on earth?
	(A)	Gymnosperms	(B)	Bryophytes
	(C)	Pteridophytes	(D)	Angiosperms
142.	Fam	nily Rosaceae has how many go	enera	in Pakistan?
	(A)	30	(B)	29
	(C)	27	(D)	31
143.	The	botanical name of egg plants i	is:	
	(A)	Atropa bellodone	(B)	Capsicum annum
	(C)	Solanum melangena	(D)	Datura.
144.	It be	elongs to family caesalpinacea	e:	
	(A)	Cassia fistula	(B)	Lupinus
	(C)	Arachis hypogaea	(D)	Butea
145.	Hor	nworts are placed in the class:		
	(A)	Antheridia	(B)	Anthocerotae
	(C)	Axile	(D)	Arthrophytes
146.	The	male sex organs of bryphytes	are ca	alled:
	(A)	Anthocerotae	(B)	Axile
	(C)	Arthrophytes	(D)	Antheridia
147.	The	sex organs in a moss plant are	mixe	d with sterile hairs called:
	(A)	Fronds	(B)	Paraphyses
	(C)	Protonema	(D)	Psilopsida
148.	The	spores of a moss develop into	an alş	ga-like structure called:
	(A)	Paraphyses	(B)	Fronds
	(C)	Protonema	(D)	Psilopsida

149.	Which of the following are called vascular plants because of the presence of vascular tissue?					
	(A)	Arthrophytes	(B)	Fronds		
	(C)	Tracheophytes	(D)	Psilopsida		
150.	Whi	ich is considered to be t	he earliest g	roup of vascular plants?		
	(A)	Protonema	(B)	Paraphyses		
	(C)	Fronds	(D)	Psilopsida		
151.	Whi	ich were the first land p	olants that fo	rmed the true leaves and roots?		
	(A)	Lycopods	(B)	Spermatophytes		
	(C)	Protonema	(D)	Heterosporous		
152.	The	gametophyte of Lycop	sida is mainl	y:		
	(A)	Protonema	(B)	Lycopods		
	(C)	Tracheophytes	(D)	Under ground		
153.	Sph	enopsida or horsetails a	are also calle	d:		
	(A)	Arthrophytes	(B)	Arthrophytes		
	(C)	Anthocerotae	(D)	Antheridia		
154.	The	leaves of class Filicinae	e are called –	 ,		
	(A)	Ramenta	(B)	Arthrophytes		
	(C)	Circinate vernation	(D)	Fronds		
155.	The	pattern of development	t in a young, i	immature frond is called:		
	(A)	Spermatophytes	(B)	Ramenta		
	(C)	Circinate vernation	(D)	Solanaceae		
156.	In A	diantum, the rhizome i	is covered by	brownish scales called:		
	(A)	Spermatophytes	(B)	Ramenta		
	(C)	Circinate vernation	(D)	Fronds		
157.	Firs	t complete seeds appea	red about ho	w many million years ago?		
	(A)	365	(B)	366		
	(C)	364	(D)	367		

158.	8. Which is an integumented indehiscent megasporangium?			
	(A)	Heterosporous	(B)	Ramenta
	(C)	Fronds	(D)	Ovule
159.	Alls	seeds producing plants are call	led:	
	(A)	Spermatophytes	(B)	Circinate vernation
	(C)	Ramenta	(D)	Heterosporous
160.	The	gymnosperms produce seeds,	but n	o fruitsthats why called as:
	(A)	Ramenta	(B)	Heterosporous
	(C)	Enclosed Seeded	(D)	Open Seeded
161.	The	term Angiosperm literally me	ans:	
	(A)	Ramenta	(B)	Enclosed seeded
	(C)	Circinate vernation	(D)	Fronds
162.	Fam	nily Rosaceae has about how m	any s	species?
	(A)	2001	(B)	2003
	(C)	2000	(D)	2002
163.	Cap	sicum frutescence b <mark>elongs to t</mark>	he fa	mily:
	(A)	Spermatophytes	(B)	Circinate vernation
	(C)	Heterosporous	(D)	Solanaceae
164.	Plac	e <mark>nt</mark> ation in fa <mark>mil</mark> y <mark>Sol</mark> anaceae	is:	
	(A)	Basal	(B)	Marginal
	(C)	Axile	(D)	All of these
165.	Fan	nily <mark>Fa</mark> baceae has about ———		- genera in Pakistan.
	(A)	83	(B)	85
	(C)	82	(D)	84
166.	Clit	oria ternatea belongs to the fa	mily:	
	(A)	Fabaceae	(B)	Mimosaceae
	(C)	Dissimilar	(D)	Cassia alata

167.	The	The leaves of which plant are use to cure ring worm and skin diseases.							
	(A)	Cassia fistula	(B)	Capsicum annum					
	(C)	Cassia alata	(D)	None of these					
168.	Albi	zzia lebbek is a member of the	e fami	ily:					
	(A)	Fabaceae	(B)	Poacaea					
	(C)	Mimosaceae	(D)	None of the above					
169.		sexual reproduction is said tng gametes are:	o be o	oogamous or heterogamous if the two					
	(A)	In bundle	(B)	In circle					
	(C)	Scattered	(D)	In periphery					
170.	The	vascular bundles in a monoco	t sten	n are:					
	(A)	Mimosaceae	(B)	Heterospory					
	(C)	Scattered	(D)	Angiosperms					
171.	Whi	ch is the phenomenon o <mark>f prod</mark>	uction	of two types of spores?					
	(A)	Heterogametic	(B)	Homospory					
	(C)	Homo gametic	(D)	Heterospory					
172.	Dou	ble fertiliz <mark>ati</mark> on is th <mark>e ch</mark> aracte	eristic	e feature of:					
	(A)	Axile	(B)	Solanaceae					
	(C)	Angiosperms	(D)	Scattered					
173.	Trac	ch <mark>e</mark> ophytes:							
	(A)	N <mark>on-vascular pl</mark> ants	(B)	Psilopsida					
	(C)	Anthocerus	(D)	Vascular plants					
174.	Нер	atice <mark>a</mark> e:							
	(A)	Psilopsida	(B)	Antheridia					
	(C)	Non-vascular plants	(D)	Anthocerus					
175.	Ant	herozoids:							
	(A)	Vascular plants	(B)	Anthocerus					
	(C)	Non-vascular plants	(D)	Antheridia					

176. Hornwort:

- (A) Non-vascular plants
- **(B)** Anthocerus

(C) Antheridia

(D) Psilopsida

177. Rootless sporophyte:

- (A) Non-vascular plants
- **(B)** Anthocerus

(C) Antheridia

(D) Psilopsida

178. Cooksonia:

(A) Picea

- (B) Stigma
- (C) Double fertilization
- (**D**) Dichotomously branched

179. Seeds:

- (A) Double fertilization
- (B) Late Devonian
- (C) Dichotomously branched
- (D) Stigma

180. Hemlock:

(A) Stigma

- (B) Dichotomously branched
- (C) Double fertilization
- (D) Picea

181. Carpel:

- (A) Dichotomously branched
- (B) Picea

(C) Late Devonian

(D) Stigma

Answers

Sr.	Ans.								
1.	(C)	2.	(C)	3.	(A)	4.	(D)	5.	(C)
6.	(A)	7.	(A)	8.	(A)	9.	(B)	10.	(C)
11.	(C)	12.	(A)	13.	(B)	14.	(B)	15.	(B)
16.	(C)	17.	(D)	18.	(B)	19.	(C)	20.	(A)
21.	(B)	22.	(D)	23.	(B)	24.	(A)	25.	(C)
26.	(A)	27.	(C)	28.	(A)	29.	(A)	30.	(B)
31.	(B)	32.	(D)	33.	(C)	34.	(B)	35.	(B)
36.	(B)	37.	(D)	38.	(B)	39.	(C)	40.	(B)
41.	(C)	42.	(C)	43.	(C)	44.	(C)	45.	(C)
46.	(B)	47.	(B)	48.	(A)	49.	(D)	50.	(B)
51.	(C)	52.	(B)	53.	(B)	54.	(C)	55.	(C)
56.	(B)	57.	(C)	58.	(B)	59.	(C)	60.	(B)
61.	(A)	62.	(B)	63.	(D)	64.	(C)	65.	(B)
66.	(D)	67.	(C)	68.	(B)	69.	(B)	70.	(C)
71.	(B)	72.	(C)	73.	(A)	74.	(D)	75.	(B)
76.	(C)	77.	(A)	78.	(C)	79.	(A)	80.	(C)
81.	(C)	82.	(B)	83.	(A)	84.	(C)	85.	(C)
86.	(D)	87.	(D)	88.	(C)	89.	(B)	90.	(B)
91.	(D)	92.	(C)	93.	(C)	94.	(D)	95.	(A)
96.	(C)	97.	(C)	98.	(D)	99.	(C)	100.	(C)
101.	(B)	102.	(C)	103.	(B)	104.	(C)	105.	(C)
106.	(D)	107.	(A)	108.	(A)	109.	(A)	110.	(A)
111.	(B)	112.	(B)	113.	(C)	114.	(C)	115.	(B)
116.	(D)	117.	(C)	118.	(B)	119.	(B)	120.	(A)

Sr.	Ans.								
121.	(A)	122.	(D)	123.	(C)	124.	(C)	125.	(D)
126.	(A)	127.	(C)	128.	(A)	129.	(D)	130.	(A)
131.	(D)	132.	(D)	133.	(C)	134.	(B)	135.	(C)
136.	(C)	137.	(B)	138.	(C)	139.	(D)	140.	(A)
141.	(D)	142.	(B)	143.	(C)	144.	(A)	145.	(B)
146.	(D)	147.	(B)	148.	(C)	149.	(C)	150.	(D)
151.	(A)	152.	(D)	153.	(B)	154.	(D)	155.	(C)
156.	(B)	157.	(A)	158.	(D)	159.	(A)	160.	(D)
161.	(B)	162.	(C)	163.	(D)	164.	(C)	165.	(C)
166.	(A)	167.	(C)	168.	(C)	169.	(A)	170.	(C)
171.	(D)	172.	(C)	173.	(D)	174.	(C)	175.	(D)
176.	(B)	177.	(D)	178.	(D)	179.	(B)	180.	(D)
181.	(D)								

KINGDOME ANIMALIA

1.	Which of the following is not the characteristic of the grade Radiata?						
	(A)	Diploblastic	(B)	Radial symmetry			
	(C)	Cnidaria	(D)	Sponges			
2.	Whi	ich of the following is no	t the charac	teristic of grade Radiata?			
	(A)	Bilateral Symmetry	(B)	Anterior end			
	(C)	Diploblastic	(D)	Ventral			
3.	Whi	ich of the following does	not belong	to series Proterostomia?			
	(A)	Aschelminthes	(B)	Annelida			
	(C)	Echinodermata	(D)	Mollusca			
4.	Whi	ich of the f <mark>oll</mark> owing serie	s is Deutero	stomia?			
	(A)	Aschelminthes	(B)	Annelida			
	(C)	Hemichordata	(D)	Mollusca			
5.	Whi	ic <mark>h o</mark> f the follo <mark>wi</mark> ngs is th	ie character	istic of the diploblastic organ	nization?		
	(A)	Mesoglea	(B)	Gastrovascular cavity			
	(C)	Tube like	(D)	Acoelomate			
6.	Whi	ich of the following phyla is acoelomate?					
	(A)	Annelida	(B)	Nematoda			
	(C)	Platyhelminthes	(D)	Arthropoda			
7.	Whi	ich of the following phyl	a is pseudoc	coelomate?			
	(A)	Annelida	(B)	Nematoda			
	(C)	Platyhelminthes	(D)	Arthropoda			

8.	Which of the following phyla is coelomate?							
	(A)	Annelida	(B)	Nematoda				
	(C)	Mollusca	(D)	Arthropoda				
9.	Spic	ules are present in which of	the foll	owing phyla?				
	(A)	Annelida	(B)	Mollusca				
	(C)	Porifera	(D)	Echinodermata				
10.	Whi	ch of the following structure	is not	present in sponges?				
	(A)	Spicule	(B)	Ostia				
	(C)	Mesoglea	(D)	Osculum				
11.	Ase	Asexual reproduction in sponges take place by:						
	(A)	Fragmentation	(B)	Gemmule				
	(C)	Gonad	(D)	Binary fission				
12.	The calle	e e e e e e e e e e e e e e e e e e e	onads b	become ma <mark>tur</mark> e earlier than female is				
	(A)	Hermaphrodite	(B)	Protoandrous				
	(C)	Oogamy	(D)	Misogamy				
13.	Whi	ch of the followings is <mark>not</mark> a s	sponge'	?				
	(A)	Scone	(B)	Leucosolenia				
	(C)	Physalia	(D)	Euplectella				
14.	Whi	Which of the followings is not the use of sponges?						
	(A)	Sound absorption	(B)	Surgical operation				
	(C)	Edible	(D)	None of the above				
15.	Whi	ch <mark>of the followi</mark> ngs is the ch	aracter	istic feature of the phylum Cnidaria?				
	(A)	Mesoglea	(B)	Nematocysts				
	(C)	Tentacles	(D)	Polyp				
16.	Mat	ch gastrozooid with:						
	(A)	Polyps	(B)	Medusa				
	(C)	Zooid	(D)	None of the above				
17.	Whi	ch of the following takes par	t in nu	trition in coelentrates?				
	(A)	Balstostyle	(B)	Gastrozooid				
	(C)	Gonozooid	(D)	None of the above				

18.	Mat	ch calcium ca	rbonate '	with one	of th	e follow	ing:				
	(A)	Polyp			(B)	Corals					
	(C)	Medusa			(D)	Gemmi	ule				
19.		ch of the fo enterates?	llowing	structur	es is	used	for	asexual	repro	duction	in
	(A)	Balstostyle			(B)	Gastroz	zooid	1			
	(C)	Gonozooid			(D)	None o	f the	above			
20.		ch of the foenterates?	llowing	structur	es i	s used	for	sexual	repro	duction	in
	(A)	Balstostyle			(B)	Gastroz	zooic	l			
	(C)	Gonozooid			(D)	Medusa	a				
21.	Whi	ch of the follo	wing is s	ea anemo	one?						
	(A)	Obelia			(B)	Actinia	ı				
	(C)	Madrepore			(D)	Physali	ia				
22.	Whi	ch of the follo	wing is a	coral?							
	(A)	Obelia			(B)	Actinia	l				
	(C)	Madrepore			(D)	Physali	ia				
23.	Alte	Alternation of generation is present in which of the following?									
	(A)	Obelia			(B)	Actinia	ı				
	(C)	Madrepore			(D)	Physali	ia				
24.	Poly	m <mark>or</mark> phism is p	resent i	n which (of the	e followi	ing?				
	(A)	Obelia			(B)	Actinia	ı				
	(C)	Madrepore			(D)	Hydra					
25.	Mes	ente <mark>ri</mark> es are pi	resent in	:							
	(A)	Obelia			(B)	Actinia	l				
	(C)	Madrepore			(D)	Hydra					
26.	Whi	ch of the follo	wing ani	mals doe	s not	belong	to p	hylum P	latyhel	minthes	s?
	(A)	Taenia			(B)	Fasciol	a				
	(C)	Schistosoma			(D)	Madrer	ore				

27.	Which of the followings is liver fluke?							
	(A)	Taenia	(B)	Fasciola				
	(C)	Schistosoma	(D)	Dugesia				
28.	Whi	ch of the following is planaria						
	(A)	Taenia	(B)	Fasciola				
	(C)	Schistosoma	(D)	Dugesia				
29.	Whi	ch of the followings is tape wo						
	(A)	Taenia	(B)	Fasciola				
	(C)	Schistosoma	(D)	Dugesia				
30.	The	excretory system of flat worm	s is c	omposed of:				
	(A)	Ganglia	(B)	Flamae cell				
	(C)	Nephridia	(D)	Nephron				
31.	Match proglottids with one of the following:							
	(A)	Taenia	(B)	Fasciola				
	(C)	Schistosoma	(D)	Dugesia				
32.	Whi	ch of the followings is <mark>ho</mark> ok wo						
	(A)	Taenia	(B)	Fasciola				
	(C)	Schistosoma	(D)	Ancyclostoma				
33.	Whi	ch of the f <mark>ollowings</mark> is the <mark>ch</mark> ai	istic feature of the phylum Annelida?					
	(A)	Nephridia	(B)	Metameirc segmentation				
	(C)	P <mark>a</mark> rapodia 💮	(D)	Setae				
34.	Whi	ich <mark>of the followi</mark> ngs is a parasi	ite?					
	(A)	Nereis	(B)	Stylaria				
	(C)	Hirudo	(D)	Earth worm				
35.	Hyd	rost <mark>at</mark> ic skeleton is present in:						
	(A)	Annelida	(B)	Nematoda				
	(C)	Mollusca	(D)	Arthropoda				
36.	Mat	ch digestive system with one o	f the	following:				
	(A)	Nephrida	(B)	Parapodia				
	(C)	Prostomium	(D)	Metameric				

37.	Excretion in annelids take place by:							
	(A)	Flame cells	(B)	Nephrida				
	(C)	Malpighian tubes	(D)	None of above				
38.	Whi	ch of the followings is locomot	ory o	rgan in annelids?				
	(A)	Palps	(B)	Tentacles				
	(C)	Parapodia	(D)	Prostomium				
39.	Whi	ch of the following coeloms is j	prese	nt phylum Arthropoda?				
	(A)	Segmentation	(B)	Jointed foot				
	(C)	Haemocoel	(D)	Malphighian tubes				
40.	Whi	ch of the following coeloms is j	prese	nt phylu <mark>m</mark> Arthropoda?				
	(A)	Simple coelom	(B)	Pseudocoel				
	(C)	Haemocoel	(D)	Acoelomate				
41.	The	excretory system of arthropod	ls is <mark>c</mark>	omposed of:				
	(A)	Malpighian tubules	(B)	Flame cell				
	(C)	Nephridia	(D)	Nephron				
42.	Whi	ch of the followings is <mark>no</mark> t the 1	respii	ratory organ in arthropods?				
	(A)	Gills	(B)	Tracheae				
	(C)	Book lungs	(D)	None of above				
43.	The	respiratory organ in scorpion	is:					
	(A)	Gills	(B)	Tracheal system				
	(C)	Book lungs	(D)	None of above				
44.	The	ex <mark>os</mark> keleton o <mark>f a</mark> rthropods is c	ompo	osed of:				
	(A)	Bones	(B)	Cartilage				
	(C)	Cutin	(D)	Chitin				
45.	Whi	ch of the following developme	ntal s	tages in insects is similar to adult?				
	(A)	Egg	(B)	Larve				
	(C)	Pupa	(D)	Nymph				
46.	Whi	ch of the followings in not crus	stacea	an?				
	(A)	Daphnia	(B)	Cyclops				
	(C)	Spider	(D)	Prawn				

47.	. Which of the following classes of arthropods have pairs of antennae?			pods have pairs of antennae?
	(A)	Crustacea	(B)	Insecta
	(C)	Arachnida	(D)	None of above
48.	Whi	ch of the following structure is	s abse	ent in class Arachnida?
	(A)	Chelicerae	(B)	Pedipalps
	(C)	Legs	(D)	Antennae
49.	Whi	ch of the following insects doe	s spre	ead cholera?
	(A)	House fly	(B)	Tsetse fly
	(C)	Mosquito	(D)	None of above
50.	The	body of mollusks is covered by	y glar	idular ep <mark>ith</mark> elial membr <mark>ane ca</mark> lled:
	(A)	Shell	(B)	Mantle
	(C)	Cuticle	(D)	None of above
51.	Rasj	oing tongue like structure is p	rese <mark>nt</mark>	in the mou <mark>th</mark> of mollusks called:
	(A)	Radula	(B)	Mantle
	(C)	Cuticle	(D)	None of above
52.	The	excretory system of phylum n	ıollus	<mark>ca</mark> is composed of:
	(A)	Malpighian tubules	(B)	Flame cell
	(C)	Nephridia	(D)	Nephron
53.	Whi	ch of the f <mark>ollowings is called</mark> sl	hipwo	orm?
	(A)	Slug	(B)	Teredo
	(C)	Loligo	(D)	Sepia
54.	Whi	ch <mark>of the followi</mark> ng phyla is ca	lled s _l	piny skinned animals?
	(A)	Aschelminthes	(B)	Annelida
	(C)	Ech <mark>in</mark> odermata	(D)	Mollusca
55.	Whi	<mark>ch of</mark> the following echinoderr	ns ha	ve globular shape?
	(A)	Cake urchin	(B)	Starfish
	(C)	Brittle star	(D)	Sea urchin
56.	Whi	ch of the following echinoderr	ns ha	ve long arms?
	(A)	Cake urchin	(B)	Starfish
	(C)	Brittle star	(D)	Sea urchin

57.	The	The origin of exoskeleton of echinoderms is:							
	(A)	Ectoderm	(B)	Mesoderm					
	(C)	Endoderm	(D)	All of the above					
58.	Wat	er enters into the water vascul	lar sy	stem through:					
	(A)	Ostia	(B)	Spines					
	(C)	Madreporite	(D)	Mouth					
59.	Wat	er vascular system in echinod	erms	is used for:					
	(A)	Digestion	(B)	Respiration					
	(C)	Locomotion	(D)	All of above					
60.	Whi	ch of the following larvae is p	roduc	e by the echinoderms?					
	(A)	Trochophore	(B)	Bipinnaria					
	(C)	Brachiolaria	(D)	B and C					
61.	Which of the following processes is not present in echinoderms?								
	(A)	Radial cleavage	(B)	Radial symmetry					
	(C)	Enterocoelous	(D)	Proterostomia					
62.	Which is wrongly placed in following for hemichordates?								
	(A)	Proboscis	(B)	Collar					
	(C)	Thorax	(D)	Trunk					
63.	Exc	Excretory system of hemichordates is composed of:							
	(A)	Kidney	(B)	Glomerulus					
	(C)	Nephron	(D)	Nephridia					
64.		Which of the following characteristic is not fundamental characteristic for chordates in the following?							
	(A)	Notochord	(B)	Hollow dorsal CNS					
	(C)	Ver <mark>te</mark> bral column	(D)	Gill slits					
65.	Whi	ch of the followings is not sub	phylu	ım of chordata?					
	(A)	Urochordata	(B)	Cephalochordata					
	(C)	Protochordata	(D)	Vertebrata					
66.	Whi	ch of the following sub phyla i	s also	called tunicata:					
	(A)	Urochordata	(B)	Cephalochordata					
	(C)	Protochordata	(D)	Vertebrata					

67.	Amj	Amphioxus belongs to which of the following subphyla?							
	(A)	Urochordata	(B)	Cephalochordata					
	(C)	Protochordata	(D)	Vertebrata					
68.	Whi	ch of the following	s is not anamnio	te?					
	(A)	Cyclostomata	(B)	Amphibia					
	(C)	Reptiles	(D)	Osteichythes					
69.	Lan	preys belong to:							
	(A)	Cyclostomata	(B)	Amphibia					
	(C)	Chondrichthyes	(D)	Osteichythes					
70.	Swi	m bladder is presei	nt in which of the	e following fishes?					
	(A)	Cyclostomata	(B)	Osteichythes					
	(C)	Chondrichthyes	(D)	None of above					
71.	Sha	rks belong to:							
	(A)	Cyclostomata	(B)	Osteichythes					
	(C)	Chondrichthyes	(D)	None of above					
72.	The scales present in the chondrichthyes are:								
	(A)	Ganiod	(B)	Cycloid					
	(C)	Ctenoid	(D)	Placoid					
73.	Anc	Ancestors of the amphibians:							
	(A)	Lamprey	(B)	Shark					
	(C)	Dipnoi	(D)	Salmon					
74.	Whi	ch <mark>of the followi</mark> ng	characteristics i	s absent in amphibians?					
	(A)	Lung	(B)	Gill					
	(C)	Larvae	(D)	None of above					
75.	Whi	ch of the following	s is not the chara	acteristic of the amphibians?					
	(A)	Larva	(B)	Pokiliothermic					
	(C)	Amniotes	(D)	Double circulation					
76.	Men	nbrane present arc	ound the embryo	:					
	(A)	Amnion	(B)	Allantois					
	(C)	Chorion	(D)	None of above					

77.	Whi	Which of the followings is tuatara?							
	(A)	Lizard	(B)	Snake					
	(C)	Sphenodon	(D)	Crocodile					
78.	Archaeopteryx is:								
	(A)	Amphibian	(B)	Reptile					
	(C)	Bird	(D)	Mammal					
79.	Whi	Which of the following is not relevant to birds:							
	(A)	Feathers	(B)	Airs sacs					
	(C)	Bladder	(D)	Syrinx					
80.	Whi	Which of the following structures is used for crushing of food in birds?							
	(A)	Syrinx	(B)	Gizzard					
	(C)	Neck	(D)	None of above					
81.	Mat	ch "running bird" with one of	the f	ollowings:					
	(A)	Sparrow	(B)	Hen					
	(C)	Kiwi	(D)	Parrot					
82.	The	The possible ancestors of the mammals are:							
	(A)	Amphibians	(B)	Reptiles					
	(C)	Birds	(D)	Fish					
83.	Whi	Which of the followings in not relevant to ear?							
	(A)	Pinnae	(B)	Incus					
	(C)	Ossicle	(D)	Stapes					
84.	Whi	ich <mark>of the followi</mark> ngs is not rele	vant 1	to mammals?					
	(A)	Ear pinna	(B)	Homeothermic					
	(C)	Ma <mark>m</mark> mary gland	(D)	Right aortic arch					
85.	The	pouched mammals are:							
	(A)	Prototheria	(B)	Metatheira					
	(C)	Eutheria	(D)	None of above					
86.	The	placental mammals are:							
	(A)	Prototheria	(B)	Metatheria					
	(C)	Eutheira	(D)	None of above					

87.	Which of the	followings are	not pouched	mammal?
-----	--------------	----------------	-------------	---------

(A) Opossum

(B) Kangaroo

(C) Echidna

(D) Tasmania wolf

88. According to W. Whittaker, Animals are placed:

- (A) Only in kingdom animalia
- **(B)** Only in kingdom protista
- **(C)** Both in kingdom animalia and protista
- (D) Only in monera

89. Sub-kindom Parazoa have animals which:

- (A) Are unicellular
- **(B)** Are without tissue
- (C) Tissues are not organized into organs
- **(D)** None of the above

90. Pseudocoel is a false coelom because:

- (A) It is a reduced cavity
- **(B)** It is not derived form true body cavity
- (C) It is not derived form the mesoderm
- (D) It is not derived form true coelom

91. Which of the following characteristics is not of the Bilateria?

- (A) They have bilateral symmetry
- **(B)** They have anterior and posterior ends
- (C) They may be triploblastic or diploblastic
- (D) They have dorsal and ventral sides

92. Which of the following characteristics is of Deuterostomia?

- (A) Cleavage or division of the zygote is spiral or determinate
- **(B)** The mouth arises form the blastopore
- (C) Mesoderm is derived form the wall of developing gut
- (D) Coelom or body cavity is formed by the splitting of the mesoderm

93. Which of the following phyla is not Proterostomia?

- (A) Phylum Aschelminthes
- **(B)** Phylum Annelida
- **(C)** Phylum Echinodermata
- **(D)** Phylum Arthropoda

(C) Euplectella

		2				
94.	In c	ase of radial and indeterminate	e clea	vage:		
	(A)	The planes of division are diag	onal t	o the polar axis		
	(B) The cleavage produces tiers of the cells on top of each other					
	(C)	The line or planes of cleavage	are no	ot symmetrical		
	(D)	They produce unequal cells are	ound t	he axis of polarity		
95.	Whi	ich of the following is not the c	harac	ter of the diploblastic organization?		
	(A)	They belong to division radiata	ı			
	(B)	They show higher degree of sp	eciali	zation		
	(C)	They have no special transport	syste	m		
	(D)	Mesoderm is absent in them				
96.	Whi	ich of the following phyla does	not s	how triploblastic organization?		
	(A)	Pylum Cnidaria	(B)	Phylum Annelida		
	(C)	Phylum Arthropoda	(D)	Phylum Mollusca		
97.	In A	Acoelomate:				
	(A)	Coelom is formed of blastocoel	(B)	Coelom is not formed from mesoderm		
	(C)	Coelom is filled by mesenchyma	(D)	Coelom is in highly reduced form		
98.	Whi	ich of the f <mark>ollowings is the s</mark> kel	eton (of sponges?		
	(A)	Coral	(B)	Spicule		
	(C)	Spine	(D)	Chitin		
99.	Prot	to <mark>an</mark> drous is a <mark>co</mark> ndition in whi	ch:			
	(A)	(A) Both male and female sex organs are present				
	(B)	Both male and female sex organs are present but male sex organs become mature first				
	(C)	Both male and female sex organs are present but female sex organs become mature first				
	(D)	In which sex organs are absent	at all			
100.	Whi	ich of the following is the beau	tiful s	ponge?		
	(A)	Sycon	(B)	Leucoselenia		

(D) Spongilla

101. Which of the following is a fresh water sponge?							
	(A)	Sycon	(B)	Leucoselenia			
	(C)	Euplectella	(D)	Spongilla			
102.	The	coelenterates were named as o	coelen	terate due to:			
	(A)	Presence of nematocyst	(B)	Presence of coelom			
	(C)	Presence of enteron	(D)	None of above			
103.	The	mesoglea is a:					
	(A)	Group of cells	(B)	Group of tissues			
	(C)	Group of organs	(D)	Neither of above			
104.	Whi colo	ich of the following function inv?	is not	performed by polyps	of coelenterate		
	(A)	It is responsible for nutrition					
	(B)	It is responsible for asexual rep	orodu	ction			
	(C)	It is responsible for sexual reproduction					
	(D)	It is responsible for defence of the colony					
105.	Whi	ich of the following is the funct	tion o	f medusa of coelenterate	e colony?		
	(A)	It is responsible for nutrition					
	(B)	It is responsible for asexual reproduction					
	(C)	It is responsible for sexual repr	roduct	tion			
	(D)	It is responsible for defence of the colony					
106.	The	zooid is:					
	(A)	A polyp	(B)	A medusa			
	(C)	Any polyp or medusa	(D)	Base of the colony			
107.	Whi	ich o <mark>f</mark> the following is the Porto	ugues	e man of war?			
	(A)	Hydra	(B)	Physalia			
	(C)	Obelia	(D)	Jelly fish			
108.	Whi	ch of the following is involved	in fo	rmation of coral reefs?			
	(A)	Madrepore	(B)	Actinia			
	(C)	Physalia	(D)	Aurelia			

109.	Cor	al reef is:				
	(A)	An animal	(B)	A plant		
	(C)	A stone	(D)	None of above		
110.	Whi	ich of the following is the free l	iving	platyhelminthes?		
	(A)	Taenia solium	(B)	Fasciola hepatica		
	(C)	Schistosoma	(D)	Dugesia		
111.	Whi	ich of the following is the chara	acteri	stic of parasite?		
	(A)	It does not have well developed	d resp	iratory system		
	(B)	It does not have well developed	d dige	estive system		
	(C)	It does not have well developed	d repr	roductive system		
	(D)	It does not have well developed	d circ	ulatory system		
112.	The	excretory system of flat worm	is co	mposed of:		
	(A)	Nephridia	(B)	Nephron		
	(C)	Flame cells	(D)	None of above		
113.	Whi	ich of the followings is n <mark>ot the</mark> j	paras	i <mark>tic adaptati</mark> on of parasite?		
	(A)	The epidermis is absent in them	(B)	The have developed adhesive organs		
	(C)	They show simple life cycles	(D)	They depend on host for food		
114.	Whi	ich of the following methods is	used	for disinfestations of flat worms?		
	(A)	Use boiled milk	(B)	Use boiled water		
	(C)	Use boiled meat	(D)	Use boiled food		
115.	Tub	e <mark>within tube type dig</mark> estive sys	stem	is:		
	(A)	In which one digestive tube is present within another tube				
	(B)	In which one digestive has two	open	ing		
	(C)	In which one digestive system	is pre	sent within the outer body wall		
	(D)	In which fluid is present betwe	en the	e digestive tube and outer body wall		
116.	Whi	i <mark>ch of</mark> the following is also calle	ed pin	worm?		
	(A)	Ascaris lumbericoides	(B)	Enerobius vermicularis		
	(C)	Rhabditis	(D)	Acyclomstoma duodenale		
117.	In n	netameric segmentation:				
	(A)	The body is divided externally	(B)	The body is divided internally		
	(C)	Both A and B	(D)	None of above		

118.	18. Which of the followings is fresh water annelid?			nnelid?			
	(A)	Nereis	(B)	Stylaria			
	(C)	Hirudo	(D)	Earthworm			
119.	The	hydrostatic skeleton is a:					
	(A)	Skeleton produced due to some	e solic	l object			
	(B)	Skeleton produced due to some	e fluid	1			
	(C)	Skeleton produced due to press	sure o	f fluid			
	(D)	None of above					
120.	Whi	ich of the followings is called n	atura	l plough?			
	(A)	Nereis	(B)	Stylaria			
	(C)	Hirudo	(D)	Earthworm			
121.	In w	which of the following classes or	f the .	Annelida, p <mark>ar</mark> apodia are present:			
	(A)	Class Polychaeta	(B)	Class Oligochaeta			
	(C)	Class Hirudinea	(D)	None of above			
122.	In w	which of the following c <mark>la</mark> sses o	f the .	Annelida head is absent?			
	(A)	Class Polychaeta	(B)	Class Oligochaeta			
	(C)	Class Hirudinea	(D)	None of above			
123.	It is generally believed that annelids and arthropods have common origin because:						
	(A)	Both have coelom	(B)	Both are segmented			
	(C)	Both have blood vascular system	(D)	Both produce larva			
124.	The coelom of the arthropods is called haemocoel because:						
	(A)	They do not have true coelom					
	(B)	Their coelom contain blood					
	(C)	Their coelom is not mesodermal in origin					
	(D)	None of above					
125.	The	nitrogenous waste of arthropo	ds is	:			
	(A)	Urea	(B)	Uric acid			
	(C)	Ammonia	(D)	None of above			

126. Exchange of gases in arthropods takes by:							
	(A)	Blood	(B)	Trachea			
	(C)	Vessels	(D)	None of above			
127.	The	nymph or instar is:					
	(A)	An arthropod	(B)	A larva			
	(C)	An adult animal	(D)	Reproductive cell			
128.	Whi	ich of the following class of Ar	throp	oda has gills for respira	ation?		
	(A)	Crustacean	(B)	Insecta			
	(C)	Arachnida	(D)	Myriapoda			
129.	Wh	ich of the following class of Ar	throp	ooda has <mark>gill</mark> s for respir	r <mark>ation?</mark>		
	(A)	Crustacean	(B)	Insecta			
	(C)	Arachnida	(D)	Myriapoda			
130.		ich of the following factors l nals?	nas n	nade the ar <mark>th</mark> ropods r	nost successful		
	(A)	They have jointed appendages	(B)	They have wings			
	(C)	They have exoskeleton of chitin	(D)	They have layer of cuti	n		
131.	The	importance of Moulting or eco	dysis	in arthropods is that:			
	(A)) It makes the body of arthropods more strong					
	(B)	It helps the arthropods to grow					
	(C)	It is used for reproduction					
	(D)	None of the above					
132.	Whi	ich <mark>of the followi</mark> ng is the signi	ficant	factor in importance o	of insects?		
	(A)	The locust damage the crops	(B)	They act as scavengers			
	(C)	They cause many diseases	(D)	None of the above			
133.	Whi	i <mark>ch is t</mark> he largest invertebrate a	nima	1?			
	(A)	Sea anemone	(B)	Squids			
	(C)	Earthworm	(D)	Star fish			
134.	Whi	ich of the followings is a differe	ence i	n molluses and arthrop	oods?		
	(A)	Exoskeleton	(B)	Segmentation			
	(C)	Coelom	(D)	None of above			

135.	The	color of blood of Mollusca:				
	(A)	Red	(B)	White		
	(C)	Blue	(D)	Green		
136.	Whi	ch of the followings is a similar	rity b	etween annelids and molluscs?		
	(A)	Both have segmentation	(B)	Both have similar larva		
	(C)	Both reproduce asexually	(D)	Both live on land		
137.	Whi	ch of the followings destroy ou	r gar	den?		
	(A)	Loligo	(B)	Sepia		
	(C)	Octopus	(D)	Slug		
138.	Whi	ch of the followings form pearl	l?			
	(A)	Loligo	(B)	Sepia		
	(C)	Octopus	(D)	Slug		
139.	Whi	ch of the following echinodern	ıs is <mark>s</mark>	tar shaped <mark>w</mark> ith long arm?		
	(A)	Cake urchin	(B)	Starfish		
	(C)	Brittle Star	(D)	Sea urchin		
140.	Wat	er canal system i <mark>n e</mark> chi <mark>no</mark> derm	is us	<mark>ed</mark> for:		
	(A)	Digestion	(B)	Locomotion		
	(C)	Reproduction	(D)	Respiration		
141.	Which of the followings is the primitive character in echinoderms?					
	(A)	They do not have exoskeleton	(B)	They have radial symmetry		
	(C)	They have no true coelom	(D)	Regeneration take place in them		
142.	Whi	ich <mark>of the followi</mark> ngs is advance	char	racter in echinoderms?		
	(A)	They have mesodermal skeleton	(B)	They have radial symmetry		
	(C)	They have no true coelom	(D)	Regeneration take place in them		
143.		ch of the following is not sinichordata?	milar	ity between the Echinodermata and		
	(A)	Both have similarity in the form	natio	n of coelom		
	(B)	Both have similarity in formation	on of	mouth		
	(C)	Both have radial symmetry				
	(D)	Both have mesodermal endoske	eletor	ı		

144.	Con	vergent is an evolution in which	n:	
	(A)	Two similar groups		
	(B)	Two similar groups have differ	ent o	rigin
	(C)	Two different group shave sam	e orig	gin
	(D)	None of the above		
145.	Whi	ch of the followings is not a ch	ordat	te character?
	(A)	Gill slits are present in all the c	horda	ntes throughout their life
	(B)	Gill silts are present only in lov	ver cl	nordates
	(C)	Gill silts are present only in hig	gher c	hordates
	(D)	Gill slits are present in only in	embr	yonic stage
146.	The	lower chordates are:		
	(A)	Without notochord	(B)	Without skull
	(C)	Without gill slits	(D)	Without nerve chord
147.	The	higher chordates have:		
	(A)	Notochord in adults		
	(B)	Vertabral column in ad <mark>ul</mark> ts		
	(C)	Gill slits is present in all adult of	chord	ates
	(D)	All of the above		
148.	The	Urochordata have:		
	(A)	Notochord in larva	(B)	notochord in adult
	(C)	Notochord is not produced at all	(D)	Notochord is present in larva and adult
149.	Whi	ch <mark>of the followi</mark> ng is not an-ar	nniot	e?
	(A)	Amphibia	(B)	Reptiles
	(C)	Birds	(D)	Mammals
150.	Whi	ch <mark>of</mark> the following is the chara	cteri	stic of the class Cyclostomata?
	(A)	Bony skeleton	(B)	Scales are present
	(C)	Unpaired fins are present	(D)	Fertilization is internal
151.	Swii	m bladder is present in:		
	(A)	Cyclostomata	(B)	Chondrichthyes
	(C)	Osteichythes	(D)	None of above

152.	Bon	ey skeleton is present in:		
	(A)	Cyclostomata	(B)	Chondrichthyes
	(C)	Osteichythes	(D)	None of above
153.	Whi	ich of the followings has single	chan	nbered heart?
	(A)	Cyclostomata	(B)	Chondrichthyes
	(C)	Osteichythes	(D)	None of above
154.	Whi	ich of followings is not the adap	ptatio	on in fish for aquat <mark>ic mod</mark> e of <mark>life:</mark>
	(A)	They have gills	(B)	They have fins
	(C)	They have cartilaginous skeleton	(D)	They have streamline body
155.	Whi	ch of the following fishes is tal	ken a	s ancesto <mark>r</mark> of the amphib <mark>ian?</mark>
	(A)	Sharks	(B)	Dipnoi
	(C)	Trout	(D)	Carps
156.	Whi	ich of the followings is fish like	char	acteristics i <mark>n</mark> amphibian:
	(A)	They have gills	(B)	They have tail
	(C)	They have limbs	(D)	None of above
157.	Tua	tara (Sphenodon) is fo <mark>un</mark> d in:		
	(A)	Pakistan	(B)	Australia
	(C)	New Zealand	(D)	America
158.	The	modern birds have evolved fro	om w	hich of the following reptiles?
	(A)	Dinosaurs	(B)	Crocodiles
	(C)	Lizards	(D)	Sphenodon
159.		ic <mark>h of the follow</mark> ing characteri racte <mark>ristic?</mark>	istics	of the Archaeopteryx is the reptilian
	(A)	Feathers on the body	(B)	It has beak
	(C)	It has teeth	(D)	It has tail
160.	The	voice organ of birds is:		
	(A)	Larynx	(B)	Pharynx
	(C)	Syrinx	(D)	Vocal cord
161.	The	reptilian ancestor of the mam	mals	is:
	(A)	Dinosaurs	(B)	Crocodiles
	(C)	Cotylosaurs	(D)	Lizards

162.	62. Mammals have become dominant in the:			2:
	(A)	Cenozoic era	(B)	Paleozoic era
	(C)	Mesozoic era	(D)	None of above
163.	The	mammals have:		
	(A)	Right aortic arch	(B)	Left aortic arch
	(C)	Both right and left	(D)	None of above
164.	The	birds have:		
	(A)	Right aortic arch	(B)	Left aortic arch
	(C)	Both right and left	(D)	None of the following
165.	The	voice organ in mammals is:		
	(A)	Larynx	(B)	Pharynx
	(C)	Syrinx	(D)	Vocal cord
166.	Whi	ch of the following mammals l	have c	eloaca?
	(A)	Prototheria	(B)	Metatheria
	(C)	Eutheria	(D)	None of above
167.	Whi	ich of the followin <mark>gs is an</mark> egg l	ying 1	nammal?
	(A)	Echidna	(B)	Kangaroo
	(C)	Sphenodon	(D)	Mice
168.	Stig	ma:		
	(A)	Late	(B)	Devonian
	(C)	Double fertilization	(D)	Dichotomously branched
169.	Whi	ch o <mark>f the follow</mark> ing is not inclu	ded i	n grade Bilateria?
	(A)	Nematods	(B)	Coelentrates
	(C)	Molluscs	(D)	Annelids
170.	Whi	ch of the following is a feature	of se	ries Deuterostomia?
	(A)	Mouth arises from blastopore of	or ante	erior margin
	(B)	Mesoderm is derived from wal	l of de	eveloping gut
	(C)	Cleavage of zygote is spiral an	d dete	erminate
	(D)	Coelom is formed due to splitt	ing of	mesoderm

171.	Pseu	idocoelom is non-homologous	to tru	e coelom because:
	(A)	It has no relation with reproduc	ctive a	and excretory organs
	(B)	It is not lined by coelomic epithelium		
	(C)	It develops from blastocoel		
	(D)	All of the above		
172.	Whi	ch of the following are called a	ıs spo	onges?
	(A)	Coelentrata	(B)	Porifera
	(C)	Nematoda	(D)	Protozoa
173.		food of Porifera consists of m percentage ratio of:	icros	copic organisms and or <mark>g</mark> anic particles
	(A)	10% & 90% respectively	(B)	20% & 80% respectively
	(C)	30% & 70% respectively	(D)	40% & 60% respectively.
174.	Prot	coandrous means:		
	(A)	Male sex cells develop first		
	(B)	Male and female sex develop s	imult	aneously
	(C)	Female sex cells develop first		
	(D)	None of the above		
175.	The	shell of sponges is composed o	f:	
	(A)	Silica	(B)	Chitin
	(C)	Calcium carbonate	(D)	Both A and D
176.	Whi	ic <mark>h of</mark> the follo <mark>wi</mark> ng is a motile	coele	ntrate?
	(A)	Jelly fish	(B)	Hydra
	(C)	Obelia	(D)	Corals
177.	Mod	le o <mark>f n</mark> utrition in coelentrates i	s:	
	(A)	Herbivorous	(B)	Detrivorous
	(C)	Omnivorous	(D)	Carnivorous
178.	Whi	ch of the following is a unisexu	ıal gr	oup?
	(A)	Porifera	(B)	Annelida
	(C)	Nematoda	(D)	Platyhelminthes

179.	Which of the following is not a parasite?					
	(A)	Liver fluke	(B)	Blood fluke		
	(C)	Tape worm	(D)	Planaria		
180.		ich of the following are yhelminthes?	e adaptat	tions for parasitic mode of life in		
	(A)	Resistant cuticle	(B)	Adhesive organs like suckers		
	(C)	Simplified digestive system	m (D)	All of the above		
181.	Whi	ich of the following is not a	class of p	phylum Annelida?		
	(A)	Oligochaeta	(B)	Polychaeta		
	(C)	Hirudinea	(D)	Crustacea		
182.	Ann havo	-	e belived	to have common origin because both		
	(A)	Segmented body	(B)	Cuticle		
	(C)	Appendages	(D)	All of the above		
183.	Cut	tle fish is included in class:				
	(A)	Gastropoda	(B)	Myriapoda		
	(C)	Cephalopoda	(D)	Pelecypoda		
184.	Which of the following is not a similarity between echinoderms & chordates?					
	(A)	Biochemical peculiarities				
	(B)	Radial cleavage during development of embryos				
	(C)	Water vascular system				
	(D)	Formation of anus from bl	astobpore			
185.	Which of the following is not a sub-phylum of phylum Chordata?					
	(A)	Cephalochordata	(B)	Hemichordata		
	(C)	Cra <mark>ni</mark> ata	(D)	Urochordata		
186.	Whi	i <mark>ch of</mark> the following is a cla	ss of Pisco	es?		
	(A)	Cyclostomata	(B)	Osteichthyes		
	(C)	Chondrichthyas	(D)	All of the above		
187.	The	adaptive character which	helps the	fish to live in water is:		
	(A)	Non-paired appendages	(B)	External fertilization		
	(C)	Stream-lined body	(D)	Ventral suctorial mouth		

188.	Archaeopteryx resembles the present day bird in having similar:					
	(A)	Syrinx	(B)	Gizzard		
	(C)	Skull	(D)	None of above		
189.	The	reptilian features of protoher	ia are	:		
	(A)	Mammary glands and cloaca	(B)	Cloaca and cloacal opening		
	(C)	Bill and webbed toes.	(D)	Mammary glands and webbed toes.		
190.	In a	rthropods, the organs of excre	tion a	are:		
	(A)	Malpighian tubules	(B)	Nephridia		
	(C)	Flame cells	(D)	Kidneys		
191.	Acc	ording to Robert Whittaker's	classi	fication, <mark>Protozoa belong to ki</mark> ngdom:		
	(A)	Fungi	(B)	Protista/Protoctista		
	(C)	Monera	(D)	Pig/cattle		
192.	Whi	ch of the following have indet	erm <mark>i</mark> n	ate shape a <mark>nd</mark> are asymmerrical?		
	(A)	Porifera	(B)	Protista/Protoctista		
	(C)	Sponges/Porifera/Parazoa	(D)	Mesenchyma/Parenchyma		
193.	In p	latyhelminthes, mesode <mark>rm</mark> fori	ns a l	o <mark>o</mark> ps, cellular tissue called ————.		
	(A)	Protista	(B)	Mesenchyma/Parenchyma		
	(C)	Porifera	(D)	Protoctista		
194.	A tr	ue coclom <mark>is filled</mark> with a f <mark>lu</mark> id	calle	d:		
	(A)	Osculum	(B)	Coelomic fluid		
	(C)	Protoctista	(D)	Choanocytes		
195.	Cho	an <mark>oderm is mad</mark> e of flagellated	d coll	ar cells called:		
	(A)	Coelentrata	(B)	Chitin		
	(C)	Choanocytes	(D)	Coelomic fluid		
196.	In s	pon <mark>ge</mark> s, the pore through whic	h wat	er leaves the body is known as:		
	(A)	Osculum	(B)	Coelentrata		
	(C)	Coelomic fluid	(D)	Chitin		
197.	Eup	lectella belongs to phylum:				
	(A)	Porifera	(B)	Protoctista		
	(C)	Parazoa	(D)	Protista		

198.	Which is also known as cnidaria?				
	(A)	Urochordata	(B)	Sponges	
	(C)	Coelentrata	(D)	Parazoa	
199.	Tap	e worm completes its life cycle	in tw	o hosts, humans and:	
	(A)	Mosquito	(B)	Dog	
	(C)	Pig/cattle	(D)	Sheep	
200.	Sens	se organs of nematods are calle	ed as:		
	(A)	Protoctista	(B)	Porifera	
	(C)	Papillae	(D)	Parazoa	
201.	Anc	yclostoma duodenale is commo	only k	known as:	
	(A)	Pin worm	(B)	Ship worm	
	(C)	Hook worm	(D)	None of the above	
202.	For	locomotion the body wall of ar	ınel <mark>i</mark> d	s contains <mark>lon</mark> gitudinal	muscles and:
	(A)	Circular	(B)	Uric acid	
	(C)	Hook	(D)	Coelentrata	
203.	In a	rthropods, nitrogenou <mark>s w</mark> astes	are i	n the form of solid:	
	(A)	Ammonia	(B)	Ammonia with water	
	(C)	Urea	(D)	Uric acid	
204.	Wha inse	nt is the a <mark>bru</mark> pt change <mark>of f</mark> or ct?	m or	structure during the	ife cycle of an
	(A)	Mesenchyma	(B)	Mantle	
	(C)	Parenchyma	(D)	Metamorphosis	
205.	Wha	at t <mark>ype of blood circulatory sys</mark>	tem i	s in arthropods?	
	(A)	Open	(B)	Close	
	(C)	Mix	(D)	All of the above	
206.	Exo	sek <mark>ele</mark> ton of arthropds is made	up o	f:	
	(A)	Scales	(B)	Spicules	
	(C)	Bones	(D)	Chitin	
207.	The	body of molluscs is covered by	a gla	ndular epithelium called	l:
	(A)	Medreporite	(B)	Parenchyma	
	(C)	Mantle	(D)	Mesenchyma	

208. The giant squid is the largest invertebrate reaching a length of				te reaching a length of:
	(A)	13m	(B)	15m
	(C)	11m	(D)	17m
209.	The	ability of an organism t	o reform los	et organs is called:
	(A)	Regeneration	(B)	Fragmentation
	(C)	Budding	(D)	Metamorphosis
210.	The	hydrostatic organ of bo	ony fish is ca	lled:
	(A)	Osculum	(B)	Swim bladder
	(C)	Gills	(D)	None of the above
211.	Whi	ich of the following has	three chamb	ered heart?
	(A)	Reptiles	(B)	Fish
	(C)	Amphibians/Frog	(D)	All of the above
212.	Red	blood cells of are non-n	ucleated in.	
	(A)	Mammals	(B)	Amphibians
	(C)	Both A and B	(D)	None of the above
213.	Opo	ssum belongs to sub-cla	ss:	
	(A)	Eutheria	(B)	Prototheria
	(C)	Mesenchyma	(D)	Metatheria
214.		s <mark>ys</mark> tem in which wate wn as:	er moves in	side the body of an Enhinoderm is
	(A)	Mesenteries	(B)	Water vascular system
	(C)	Swim bladder	(D)	Radula
215.	Inse	ects h <mark>a</mark> ve how many pair	rs of leg?	
	(A)	9	(B)	5
	(C)	3	(D)	7
216.	Mol	luscs have rasping tong	ue like struc	ture — in the mouth cavity.
	(A)	Mollusca	(B)	Mammals
	(C)	Mantle	(D)	Radula

217.	Which	of	these	includes	50,000	living	species	and	is	the	second	largest
	phylum	of	invert	ebrates?								

(A) Mammals

(B) Mantle

(C) Metatheria

(D) Mollusca

218. The larva of molluscs is called as:

(A) Trochophore

(B) Acidia

(C) Pinnularia

(D) Brachiolaria

219. Robert Whittaker:

- (A) Tissues organized into organs and systems.
- **(B)** Do not have body cavity
- (C) 5-kingdom classification
- (D) Marine sponge

220. Acoelomata:

- (A) Do not have body cavity
- **(B)** Tissues organized into organs and systems
- (C) Have false body cavity
- (D) Ingestion of food

221. Eumetazoa:

- (A) Have false body cavity
- (B) Ingestion of food
- (C) Tissues organized into organs and systems
- **(D)** 5-kingdom classification

222. Choanocytes:

- (A) Tissues organized into organs and systems
- **(B)** 5-kingdom classification
- **(C)** Do not have body cavity
- (D) Ingestion of food

223. Sycon:

- (A) Ingestion of food
- **(B)** Have false body cavity
- (C) Tissues organized into organs and systems
- **(D)** Marine sponge

224. Nematocysts:

- (A) Umbrella like sexually reproducing individuals
- **(B)** Stinging cells
- **(C)** Excretion
- **(D)** Corals

225. Gastrozooids:

- (A) Hydra
- (B) Endoparasite
- (C) Umbrella like sexually reproducing individuals
- (D) Stinging cells

226. Madreporite:

(A) Corals

(B) Hydra

(C) Stinging cells

(D) Endoparasite

227. Flame cells:

(A) Excretion

(B) Endoparasite

(C) Stinging cells

(D) Hydra

228. Fasciola:

- (A) Endoparasite
- (B) Hydra
- (C) Stinging cells
- **(D)** Umbrella like sexually reproducing individuals

229.	Parapodia:					
	(A)	Breathing	(B)	Leech		
	(C)	Earth worm	(D)	Locomotion		
230.	Her	maphrodite:				
	(A)	Leech	(B)	Earth worm		
	(C)	Bisexual	(D)	Breathing		
231.	Hiri	ıdo medicinalis:				
	(A)	Earth worm	(B)	Bisexual		
	(C)	Uric acid	(D)	Leech		
232.	Nitr	ogenous waste:				
	(A)	Locomotion	(B)	Uric acid		
	(C)	Earth worm	(D)	Bisexual		
233.	Trac	cheae:				
	(A)	Leech	(B)	Locomotion		
	(C)	Breathing	(D)	Bisexual		
234.	Artl	ropoda:				
	(A)	Jointed appendages	(B)	Sieve like plate		
	(C)	Bisexual	(D)	Snail		
235.	Mol	lusca:				
	(A)	Snail	(B)	Spiny skinned animal		
	(C)	Sieve like plate	(D)	Larva		
237.	Tro	chop <mark>ho</mark> re:				
	(A)	Earth worm	(B)	Jointed appendages		
	(C)	Larva	(D)	Snail		
238.	Ech	inodermata:				
	(A)	Snail	(B)	Sieve like plate		
	(C)	Jointed appendages	(D)	Spiny skinned animal		

239. Madreporite:

- (A) Sieve like plate
- (C) Snail

- **(B)** Spiny skinned animal
- **(D)** Jointed appendages

240. Hemichordata:

- (A) Baleglossus
- **(C)** Cranium present
- (B) Snail
- **(D)** Marsupials

241. Acrania:

- (A) Warm blooded
- **(B)** Cranium present
- (C) Cranium absent
- (D) Baleglossus

242. Cyclostomata:

(A) Baleglossus

(B) Jaws absent

(C) Marsupials

(D) Warm blooded

243. Homeothermic:

- (A) Warm blooded
- (B) Baleglossus

(C) Marsupials

(D) Jaws absent

244. Metatheria:

- (A) Cranium absent
- (B) Warm blooded

(C) Marsupials

(D) Cranium present

Answers

Sr.	Ans.								
1.	(D)	2.	(C)	3.	(C)	4.	(C)	5.	(C)
6.	(C)	7.	(B)	8.	(B)	9.	(C)	10.	(C)
11.	(B)	12.	(B)	13.	(C)	14.	(C)	15.	(B)
16.	(A)	17.	(B)	18.	(B)	19.	(B)	20.	(D)
21.	(B)	22.	(C)	23.	(A)	24.	(A)	25.	(B)
26.	(D)	27.	(B)	28.	(D)	29.	(A)	30.	(D)
31.	(A)	32.	(D)	33.	(B)	34.	(C)	35.	(A)
36.	(C)	37.	(B)	38.	(C)	39.	(B)	40.	(C)
41.	(A)	42.	(D)	43.	(C)	44.	(D)	45.	(D)
46.	(C)	47.	(A)	48.	(D)	49.	(A)	50.	(B)
51.	(A)	52.	(C)	53.	(B)	54.	(C)	55.	(D)
56.	(C)	57.	(B)	58.	(C)	59.	(C)	60.	(D)
61.	(D)	62.	(C)	63.	(D)	64.	(C)	65.	(C)
66.	(A)	67.	(C)	68.	(C)	69.	(A)	70.	(B)
71.	(C)	72.	(D)	73.	(C)	74.	(D)	75.	(C)
76.	(A)	77.	(C)	78.	(C)	79.	(C)	80.	(B)
81.	(C)	82.	(B)	83.	(C)	84.	(D)	85.	(B)
86.	(C)	87.	(C)	88.	(C)	89.	(C)	90.	(C)
91.	(A)	92.	(C)	93.	(C)	94.	(C)	95.	(C)
96.	(C)	97.	(B)	98.	(B)	99.	(A)	100.	(C)
101.	(B)	102.	(B)	103.	(C)	104.	(D)	105.	(C)
106.	(D)	107.	(C)	108.	(C)	109.	(C)	110.	(B)
111.	(A)	112.	(C)	113.	(D)	114.	(C)	115.	(C)
116.	(C)	117.	(C)	118.	(D)	119.	(B)	120.	(C)

Sr.	Ans.	Sr.	Ans.	Sr.	Ans.	Sr.	Ans.	Sr.	Ans.
121.	(B)	122.	(C)	123.	(D)	124.	(A)	125.	(C)
126.	(B)	127.	(B)	128.	(B)	129.	(B)	130.	(B)
131.	(A)	132.	(C)	133.	(C)	134.	(B)	135.	(B)
136.	(B)	137.	(B)	138.	(C)	139.	(B)	140.	(D)
141.	(B)	142.	(C)	143.	(B)	144.	(B)	145.	(D)
146.	(B)	147.	(B)	148.	(A)	149.	(A)	150.	(C)
151.	(C)	152.	(C)	153.	(A)	154.	(C)	1 55.	(B)
156.	(A)	157.	(C)	158.	(B)	159.	(C)	160.	(C)
161.	(C)	162.	(B)	163.	(B)	164.	(A)	165.	(A)
166.	(C)	167.	(A)	168.	(C)	169.	(B)	170.	(B)
171.	(C)	172.	(B)	173.	(B)	174.	(A)	175.	(C)
176.	(A)	177.	(D)	178.	(C)	179.	(D)	180.	(B)
181.	(D)	182.	(D)	183.	(C)	184.	(C)	185.	(B)
186.	(D)	187.	(C)	188.	(C)	189.	(B)	190.	(A)
191.	(B)	192.	(C)	193.	(B)	194.	(B)	195.	(C)
196.	(A)	197.	(A)	198.	(C)	199.	(C)	200.	(C)
201.	(C)	202.	(C)	203.	(D)	204.	(D)	205.	(A)
206.	(D)	207.	(C)	208.	(B)	209.	(A)	210.	(B)
211.	(C)	212.	(D)	213.	(D)	214.	(B)	215.	(C)
216.	(D)	217.	(D)	218.	(A)	219.	(C)	220.	(A)
221.	(C)	222.	(D)	223.	(D)	224.	(B)	225.	(C)
226.	(A)	227.	(A)	228.	(A)	229.	(D)	230.	(C)
231.	(D)	232.	(B)	233.	(C)	234.	(A)	235.	(A)
236.	(D)	237.	(D)	238.	(A)	239.	(A)	240.	(C)
241.	(C)	242.	(B)	243.	(A)	244.	(C)		

BIOENERGETICS

1.	The quantitative study of energy relationship in the biological system called:								
	(A)	Biochemistry	(B)	Biotechnology					
	(C)	Bioenergetics	(D)	Biophysics					
2.	Whi	ch of the following processes is	s not	oxidation reduction reaction?					
	(A)	Photosynthesis	(B)	Respiration					
	(C)	Photorespiration	(D)	None of above					
3.	The	compensation point comes in t	the:						
	(A)	Morning	(B)	Evening					
	(C)	Dawn	(D)	Night					
4.	The	biologist wh <mark>o</mark> gave th <mark>e</mark> hypothesis	s that	plant spilt water and release water was:					
	(A)	Calvin	(B)	Krebs					
	(C)	Van Neil	(D)	Dixon					
5.	Whi	ch <mark>of</mark> the follow <mark>in</mark> g is electron acc	eptor:	during light reaction of photosynthesis?					
	(A)	NAD	(B)	FAD					
	(C)	NADP	(D)	NADPH					
6.	Chlorophyll is present in:								
	(A)	Stroma	(B)	Thylakoids					
	(C)	Granum	(D)	Intergranum					
7.	Whi	ch of the followings is not the	wavel	ength of visible light?					
	(A)	280 nm	(B)	380 nm					
	(C)	180 nm	(D)	580 nm					

8.	Which of the followings is not the wavelength of visible light?			
	(A)	Carotenoids	(B)	Carotenes
	(C)	Xanthophylls	(D)	None of the above
9.	Whi	ch of the following chlorophyl	ls is p	resent in bacteria?
	(A)	a	(B)	b
	(C)	c	(D)	None of the above
10.	Whi	ch of the following wavelength	ıs is le	east absorbed by <mark>the</mark> ch <mark>lo</mark> rphyull?
	(A)	Red	(B)	Blue
	(C)	Green	(D)	Orange
11.	Mat	ch haem group of haemoglobi	n with	one of the following:
	(A)	Chlorophyll	(B)	Chloroplast
	(C)	Porphyrin ring	(D)	Pyrrole
12.	Whi	ch of the followings is the sma	llest u	init?
	(A)	Chlorophyll	(B)	Phytol
	(C)	Porphyrin ring	(D)	Pyrrole
13.	Whi	ch of the followings is tail of th	ie chl	orophyll molecule b?
	(A)	Chlorophyll	(B)	Phytol
	(C)	Porphyrin ring	(D)	Pyrrole
14.	How	v <mark>m</mark> any atoms <mark>of</mark> oxy <mark>g</mark> en are pr	esent	in chlorophyll b?
	(A)	2	(B)	4
	(C)	6	(D)	8
15.	Whi	ch of the followings is not the	access	sory pigment?
	(A)	Chlorophyll a	(B)	Chlorophyll b
	(C)	Carotene	(D)	Xanthophylls
16.	Firs	t action spectrum was obtained	d by:	
	(A)	Calvin	(B)	Krebs
	(C)	Van Neil	(D)	Engelmann

17.	The percentage of photosynthesis in land plants is:							
	(A)	5%	(B)	10%				
	(C)	15%	(D)	20%				
18.		reduction of which of the tosynthesis?	follo	owing	molecules	takes	place	during
	(A)	Water	(B)	Carbo	on dioxide			
	(C)	Glucose	(D)	Oxyg	gen			
19.		oxidation of which of the tosynthesis?	follo	wing	molecules	takes	place	during
	(A)	Water	(B)	Carbo	on dioxide			
	(C)	Glucose	(D)	Oxyg	gen			
20.		ich of the following component ecules?	nts of	f the p	ohoto syst	em has	chlore	phyll b
	(A)	Antenna complex	(B)	Reac	tion c <mark>en</mark> ter			
	(C)	Primary electron acceptor	(D)	ETC				
21.	Photosystem I absorbs which of the following lights?							
	(A)	600 nm	(B)	680 r	ım			
	(C)	700 nm	(D)	720 r	ım			
22.	Photosystem Il absorbs which of the following lights?							
	(A)	600 nm	(B)	680 r	ım			
	(C)	7 <mark>0</mark> 0 nm	(D)	720 r	ım			
23.	The	sp <mark>litti</mark> ng of wa <mark>te</mark> r and release	of oxy	ygen d	uring ligh	t reactio	on is ca	lled:
	(A)	Hydrolysis	(B)	Photo	olysis			
	(C)	Oxi <mark>d</mark> ation	(D)	Redu	ction			
24.	The	synthesis of ATP during light	react	ion is	called:			
	(A)	Oxidative phosphorylation	(B)	Photo	ophosphory	lation		
	(C)	Substrate phosphorylation	(D)	None	of the abo	ve		
25.	Whi	ch of the following electron accep	otors i	s absei	nt during cy	yclic pho	sphory	lation?
	(A)	Cytochromes	(B)	Ferre	doxin			
	(C)	NADP	(D)	PC				

26. Which of the following mechanism is involved in the synthesis of ATP?			volved in the synthesis of ATP?	
	(A)	Reduction	(B)	Oxidation
	(C)	Chemiosmosis	(D)	None of above
27.	Whi	ch of the followings is irreleva	nt?	
	(A)	Calvin cycle	(B)	Dark reaction
	(C)	Light reaction	(D)	C ₃ pathway
28.	Mat	ch rubisco with one of the follo	owing	s:
	(A)	RUBP	(B)	RBP
	(C)	RUBP carboxylase	(D)	RUBP reductase
29.	Whi	ch of the following is the end p	orodu	ct of calvin cycle?
	(A)	Glucose	(B)	PGA
	(C)	G3P	(D)	Strach
30.	The	G3P molecules formed during	g Calv	in cycle are:
	(A)	3	(B)	4
	(C)	5	(D)	6
31.	The	carbon dioxide acceptor durir	ıg da	rk reaction is:
	(A)	Glucose	(B)	RuBP
	(C)	PGA	(D)	Rubisco
32.	Whi	c <mark>h o</mark> f the follo <mark>wi</mark> ng compound	s is fo	rmed during anaerobic reaction?
	(A)	Pyruvic acid	(B)	Lactic acid
	(C)	Ethyl alcohol	(D)	None of above
33.	Whi	ch o <mark>f t</mark> he following compound	s is fo	rmed during aerobic reaction?
	(A)	Pyruvic acid	(B)	Lactic acid
	(C)	Ethyl alcohol	(D)	None of above
34.	How	much Glucose is converted in	to A	ΓP during anaerobic reaction?
	(A)	1%	(B)	2%
	(C)	3%	(D)	4%

35.	A m	olecule of ATP releases energ	y:	
	(A)	6.3 Kcal	(B)	7.3 Kcal
	(C)	8.3 Kcal	(D)	9.3 Kcal
36.	The	removal of hydrogen is contro	olled l	by an enzyme called:
	(A)	Hydrogenase	(B)	Dehydrogenases
	(C)	Oxidase	(D)	Reductase
37.	Pyrt	uvic acid is produced as a resu	ılt of:	
	(A)	Glycolysis	(B)	Krebs cycle
	(C)	Respiratory chain	(D)	Phosphorylation
38.	Whi	ch of the followings is the end	prod	uct of ox <mark>idativ</mark> e phase of glycolysis?
	(A)	F-6-P	(B)	DAP
	(C)	G-6-P	(D)	PGAL
39.	Whi	ch of the following compounds	s is pr	<mark>oduced durin</mark> g pyruvic acid oxidation?
	(A)	DAP	(B)	PAGL
	(C)	Acetate	(D)	Acetyl CoA
40.	The	acetyl CoA unites with which	of fol	lowing molecule during Krebs cycle?
	(A)	Citrate	(B)	Oxaloacetate
	(C)	Keto - glutrae	(D)	Fumrate
41.		oxidation of whi <mark>ch</mark> of the fo bs cycle?	llowi	ng molecules produce FADH2 during
	(A)	Succinate	(B)	Fumrate
	(C)	Malate	(D)	Ketoglutrate
42.		oxid <mark>at</mark> ion of which of the follos cycle.	lowin	g molecule produce oxalocatate during
	(A)	Succinate	(B)	Fumrate
	(C)	Malate	(D)	Ketoglutrate
43.	Kre	bs cycle takes place in:		
	(A)	Cytosol	(B)	Matrix of mitochondria
	(C)	Inner membrane	(D)	Outer membrane of mitochondria

44.	Resp	piratory chain is present in:					
	(A)	Cytosol	(B)	Matrix of mitochondria			
	(C)	Inner membrane	(D)	Outer membrane of mitochondria			
45.	Dur	ing respiratory chain, coenz	zyme Q i	s reduced by:			
	(A)	Cytochrome a	(B)	Cytochrome b			
	(C)	Cytochrome c	(D)	Cytochrome a ₃			
46.	Whi	ich of the following electron	accepto	rs is oxidized by an atom of oxygen?			
	(A)	Cytochrome a	(B)	Cytochrome b			
	(C)	Cytochrome c	(D)	Cytochrome a ₃			
47.		number of ATPs produce gen is:	d during	g transfer of electron from NADH to			
	(A)	1	(B)	2			
	(C)	3	(D)	4			
48.	The	energy capturing process is	s:				
	(A)	Photosynthesis	(B)	Respiration			
	(C)	Metabolism	(D)	Bioenergetics			
49.	The	energy releasing process is					
	(A)	Photosynthesis	(B)	Respiration			
	(C)	Metabolsim	(D)	Bioenergetics			
50.	The biological energy transformation is called:						
	(A)	Photosynthesis	(B)	Respiration			
	(C)	Metabolsim	(D)	Bioenergetics			
51.	Whi	ich o <mark>f t</mark> he followings is not r	eactant i	in photosynthesis?			
	(A)	CO_2	(B)	Water			
	(C)	Light	(D)	Oxygen			
52.	Whi	ich of the following is the m	ost impo	rtant factor for photosynthesis?			
	(A)	CO_2	(B)	Water			
	(C)	Light	(D)	Oxygen			

53.	The difference between photosynthesis and respiration is:
	(A) Photosynthesis occurs at day time while respiration take place at night

- **(B)** Photosynthesis and respiration both occurs at daytime
- (C) Photosynthesis occurs at day while respiration occur day and night
- **(D)** None of the above
- 54. The compensation point is a point when:
 - (A) Intake of oxygen but not carbon dioxide
 - **(B)** Intake of carbon dioxide but not oxygen
 - (C) Intake of both oxygen and carbon dioxide
 - **(D)** None of the gases is taken inside
- 55. When does the rate of photosynthesis and respiration become equal?
 - (A) During day time
- (B) During night

(C) At dawn

- **(D)** In the morning
- 56. The source of oxygen during photosynthesis is:
 - (A) Carbon dioxide
- **(B)** Water

(C) Glucose

- (D) Light
- 57. During the isotope tracer technique one group of plants was given H_2O containing O_{18} with CO_2 containing common oxygen O_{16} . The oxygen released during photosynthesis would be:
 - (A) Radioactive
 - **(B)** Not radioactive
 - (C) Some amount radioactive some none-radioactive
 - **(D)** None of the above
- 58. During the isotope tracer technique second group of plant was given H₂O containing common oxygen with CO₂ containing O₁₈. The oxygen released during photosynthesis would be:
 - (A) Radioactive
 - **(B)** Not radioactive
 - (C) Some amount radioactive some non-radioactive
 - **(D)** None of the above

59.	59. A reducing agent is that compound which:			ch:
	(A)	Can remove electron from ano	ther c	ompound
	(B)	Can add electron into anther el	ectro	n
	(C)	Can absorb electron form another	her co	ompound
	(D)	None of the above		
60.	The	NADPH ₂ has:		
	(A)	Oxidizing power	(B)	Reducing power
	(C)	Redox power	(D)	None of above
61.	Mos	t of the photosynthetic enzymo	es are	present in:
	(A)	Stroma of chloroplast	(B)	Thylakoids of chloroplast
	(C)	Granum of chloroplast	(D)	Chlorophyll
62.	Chle	orophylls are present in the:		
	(A)	Stroma of chloroplast	(B)	Thylakoids of chloroplast
	(C)	Granum of chloroplast	(D)	Intergranum
63.	Che	miosmosis during phot <mark>os</mark> ynthe	esis ta	kes place in:
	(A)	Stroma of chloroplast	(B)	Thylakoid membranes of chloroplast
	(C)	Granum of chloroplast	(D)	Intergranum
64.	In p	rokaryotes <mark>chloroph</mark> ylls is pre	sent i	n the:
	(A)	Stroma of chloroplast	(B)	Thylakoid membranes of chloroplast
	(C)	Granum of chloroplast	(D)	Photosynthetic membranes
65.	The	y <mark>pigment with r</mark> ed colour is:		
	(A)	Carotenoids	(B)	Carotenes
	(C)	Xanthophylls	(D)	Chlorophyll
66.	The	pigment with yellow colour is	:	
	(A)	Carotenoids	(B)	Carotenes
	(C)	Xanthophylls	(D)	Chlorophyll
67.	whic	ch of the following wavelength	s is le	ast absorb by chlorophyll?
	(A)	Red	(B)	Green
	(C)	Yellow	(D)	Blue

68.	Whi	Which of the followings is maximum absorbed by chlorophyll?						
	(A)	Red	(B)	Green				
	(C)	Yellow	(D)	Blue				
69.	The	plants appear green because:						
	(A)	They absorb green light						
	(B)	They do not absorb green light						
	(C)	The chlorophyll has originally	green	colour				
	(D)	None of the above						
70.	The	leaves of the plants become ye	llow	due to deficiency of:				
	(A)	Magnesium	(B)	Iron				
	(C)	Sodium	(D)	Potassium				
71.	Whi	ich of the followings take part	direc	t <mark>l</mark> y in the photosynthetic reactions?				
	(A)	Chlorophyll a	(B)	Chlorophyll b				
	(C)	Chlorophyll c	(D)	Chlorophyll d				
72.	Whi	ich of the followings in <mark>no</mark> t an a	acces	sory pigment?				
	(A)	Chlorophyll a	(B)	Chlorophyll b				
	(C)	Carotenes	(D)	Xanthophylls				
73.	The	absorption spectrum of light i	s max	ximum in the wavelength of:				
	(A)	430 and 670 nm	(B)	330 and 660 nm				
	(C)	430 and 690 nm	(D)	550 and 580 nm				
74.	The peaks of the action spectrum of photosynthesis are comparatively broader than the absorption spectrum of chlorophylls due to:							
	(A)	Chlorophyll a	(B)	Chlorophyll b				
	(C)	Accessory pigment	(D)	None of the above				
75.	The	photosynthesis carried out by	the t	errestrial plants is:				
	(A)	5% of the total photosynthesis	(B)	10% of the total photosynthesis				
	(C)	15% of the total photosynthesis	(D)	20 % of the total photosynthesis				
76.	The	photosynthesis carried out by	the a	quatic plants is:				
	(A)	70% of the total photosynthesis	(B)	80% of the total photosynthesis				
	(C)	90% of the total photosynthesis	(D)	None of the above				

77.	Air contains carbon dioxide about:							
	(A)	0.03 to 0.04%	(B)	0.02 to 0.03%				
	(C)	0.03 to 0.05%	(D)	None of above				
78.	CO_2	is converted into sugar. This	CO ₂ i	s:				
	(A)	Reduced	(B)	Oxidized				
	(C)	Both (A) and (B)	(D)	None of above				
79.	ATI	is synthesized during chemios	smosi	s in:				
	(A)	Antenna complex	(B)	Reaction centre				
	(C)	Primary electron acceptor	(D)	Electron transport chain				
80.	Cyc	lic phosphorylation starts whe	n:					
	(A)	There is less amount of glucose	(B)	There is less amount of NADH				
	(C)	There is less amount of ATP	(D)	None of the above				
81.	Which of the following processes does not take place during chemiosmosis?							
	(A)	Synthesis of NADH						
	(B)	Movement of H* through electron transport chain						
	(C)	Synthesis of ATP						
	(D)	Movement of through ATP						
82.	Rubisco is:							
	(A)	A) Compound used during dark reaction						
	(B)	It is an electron acceptor						
	(C)	A coenzyme						
	(D)	An enzyme						
83.	Which of the followings is common in aerobic anaerobic respiration?							
	(A)	Glycolysis	(B)	Krebs cycle				
	(C)	Electron transport chain	(D)	Pyruvic acid oxidation				
84.	Whi	ich of the following reactions d	oes n	ot take place in animals?				
	(A)	Glycolysis	(B)	Lactic acid fermentation				
	(C)	Alcoholic fermentation	(D)	Krebs cycle				
85.	Whi	ch of the following reactions tak	ke pla	ce during fatigue in the muscle of man?				
	(A)	Glycolysis	(B)	Lactic acid fermentation				
	(C)	Alcoholic fermentation	(D)	Krebs cycle				

86.	In w	which reaction free energy is no	ot req	uired?			
	(A)	Respiration	(B)	Photosynthesis			
	(C)	Fermentation	(D)	None of above			
87.	Whi oxyg		takes	place in the presence and absence of			
	(A)	Glycolysis	(B)	Lactic acid fermentation			
	(C)	Alcoholic fermentation	(D)	Krebs cycle			
88.	Whi	ich of the following reaction is	includ	led in the oxidative pha <mark>se</mark> of glyco <mark>lysi</mark> s?			
	(A)	Glucose +ATP	(B)	Fructose +ATP			
	(C)	PAGL 6NAD	(D)	None of above			
89.	How	v many net ATPs are produce	d duri	ing glycolysis?			
	(A)	2	(B)	3			
	(C)	4	(D)	5			
90.	Dur	ing oxidation of which electro	n acce	<mark>ep</mark> tor, ATP <mark>is</mark> not produced:			
	(A)	Coenzyme Q	(B)	Cytochrome b			
	(C)	Cytochrome c	(D)	Cytochrome a and a ₃			
91.	Co-	enzyme Q is in tur <mark>n</mark> oxi <mark>di</mark> zed b	y cyt	o <mark>c</mark> hrome:			
	(A)	a_3	(B)	a			
	(C)	b	(D)	a			
92.	Glycolysis is the break down of:						
	(A)	Maltose	(B)	Lactose			
	(C)	Fructose	(D)	Glucose			
93.	The	power house of the cell is:					
	(A)	Ribosome	(B)	Mitochondria			
	(C)	SER	(D)	RER			
94.	Car	<mark>bon fi</mark> xation refers to the initia	al inco	orporation of:			
	(A)	Oxygen	(B)	Hydrogen			
	(C)	CO_2	(D)	Carbon			
95.	The	mechanism for ATP synthesis	s is:				
	(A)	Phosphorylation	(B)	Photosynthesis			
	(C)	Chemosmosis	(D)	Chemosynthesis			

96.	Car	Carbon dioxide enters the leaves through:					
	(A)	Stroma	(B)	Cuticle			
	(C)	Guard cells	(D)	Stomata			
97.	Hae	me portion of haemoglobin co	ntain	s:			
	(A)	Carbon atom	(B)	Iron atom			
	(C)	Phosphorous atom	(D)	Magnesium atom			
98.	Chle	orophyll absorbs light energy, v	which	is converted into chemical energy of:			
	(A)	ATP	(B)	ATP & NADPH			
	(C)	NADPH	(D)	None			
99.	Chle	orophyll b is found alongwith	chlor	ophyll a <mark>in a</mark> ll green pla <mark>nts and:</mark>			
	(A)	Golden algae	(B)	Blue green algae			
	(C)	Algae	(D)	Green algae			
100.	Pyr	uvic acid is the end product of	:				
	(A)	None	(B)	Electron transport chain			
	(C)	Glycolysis	(D)	Krebs cycle			
101.	Stro	oma is fluid in the chlor <mark>o</mark> plast v	which	surrounds the:			
	(A)	Thylakoids	(B)	Grana			
	(C)	Matrix	(D)	Envelop			
102.	Whi	ich is a kin <mark>d of chemi</mark> cal <mark>link</mark> b	etwee	en catabolism and anabolism?			
	(A)	Double	(B)	ATP			
	(C)	CO_2	(D)	Grana			
103.	Van	Niel hypothesized that plants	split	water as a source of:			
	(A)	Oxygen	(B)	ATP			
	(C)	Hydrogen	(D)	Both A and C			
104.	Cho	ropl <mark>as</mark> t has ———— memb	rane	envelop.			
	(A)	No	(B)	single			
	(C)	Hydrogen	(D)	Double			
105.	Thy	lakoid sacs are stacked in colu	mns	called:			
	(A)	Double	(B)	CO_2			
	(C)	Grana	(D)	ATP			

106.	Con	ventially "P" in ATP stands f	or:				
	(A)	ATP molecule	(B)	7.3 Kcal energy stored in it			
	(C)	Entire phosphate group	(D)	All these			
107.	Visi	ble light ranges from about 38	80 to h	ow many nm in wavelength?			
	(A)	755	(B)	745			
	(C)	750	(D)	760			
108.	Air	contains 0.03 – 0.04 % of:					
	(A)	Oxygen	(B)	Nitrogen			
	(C)	H_2O	(D)	CO_2			
109.	Eac	h ———— consist of light	gathe	ering antenna complex and a reaction			
	cent						
	(A)	Grana	(B)	Stroma			
	(C)	Photo system	(D)	ATP			
110.	Dar	k reactions take place in the –		—— of chlo <mark>r</mark> oplast.			
	(A)	ATP	(B)	Yellow			
	(C)	Stroma	(D)	CO ₂			
111.	Oxy	gen released duri <mark>ng</mark> ph <mark>ot</mark> osyn	thesis	comes from:			
	(A)	Radioactive isotop	(B)	water			
	(C)	Air	(D)	Lumen			
112.	Water containing O ¹⁸ :						
	(A)	Water	(B)	Radioactive			
	(C)	Photosystem Photosystem	(D)	Cyclic electron flow			
113.	Thy	lak <mark>oid interior s</mark> pace:					
	(A)	Water	(B)	Cyclic electron flow			
	(C)	Photosystem	(D)	Lumen			
114.	Pho	<mark>tosynt</mark> hetic pigments are orga	nized	into clusters:			
	(A)	Lumen	(B)	Radioactive			
	(C)	Water	(D)	Photosystem			
115.	Pho	to excited electrons take an al	ternat	ive path:			
	(A)	Cyclic electron flow	(B)	Radioactive			
	(C)	Water	(D)	Lumen			

116.	Pyrt	uvic acid:		
	(A)	Radioactive	(B)	Mitochondria
	(C)	Photon	(D)	End product of glycolysis
117.	Ligh	nt behaves as wave as well as p	articl	es:
	(A)	Photon	(B)	7.3 k.Cal.
	(C)	Mitochondria	(D)	Pyruvate
118.	Cris	tae:		
	(A)	7.3 k.Cal	(B)	End product of glycolysis
	(C)	Mitochondria	(D)	Pyruvate
119.	Brea	ak down of terminal phosphate	e of A	TP:
	(A)	Pyruvate	(B)	End product of glycolysis
	(C)	7.3 k.Cal	(D)	Photon
120.	Acet	tyl-CoA:		
	(A)	Mitochondria	(B)	Photon
	(C)	End product of glycolysis	(D)	Pyruvate Pyruvate
121.	Pho	tosynthetic prokar <mark>yotes:</mark>		
	(A)	Muscle cells of humans	(B)	Internal clock located in the guard cells
	(C)	End product of glycolysis	(D)	Unstacked photosynthetic membrane
122.	Dail	y <mark>Rh</mark> ythmic open <mark>ing</mark> and closin	ng of	stomata:
	(A)	Internal clock located in the gu	ard co	ells
	(B)	Unstacked photosynthetic men	nbrane	2
	(C)	Muscle cells of humans		
	(D)	Laws of thermodynamics		
123.	Lac	tic acid form of anaeroblic resp	pirati	on:
	(A)	Laws of thermodynamics		
	(B)	Unstacked photosynthetic men	ıbran	
	(C)	Internal clock located in the gu	ard co	ells
	(D)	Muscle cells of humans		

124. Biological energy transformation:

- (A) Electron transport intermediate
- **(B)** Muscle cells of humans
- **(C)** Laws of thermodynamics
- **(D)** Internal clock located in the guard cells

125. Cytochromes:

- (A) Unstacked photosynthetic membrane
- **(B)** Electron transport intermediate.
- **(C)** Laws of thermodynamics
- **(D)** Muscle cells of humans

Answers

Sr.	Ans.								
1.	(C)	2.	(C)	3.	(C)	4.	(C)	5.	(C)
6.	(A)	7.	(A)	8.	(D)	9.	(D)	10.	(C)
11.	(C)	12.	(D)	13.	(B)	14.	(C)	15.	(A)
16.	(D)	17.	(B)	18.	(B)	19.	(A)	20.	(A)
21.	(C)	22.	(B)	23.	(B)	24.	(B)	25.	(C)
26.	(C)	27.	(C)	28.	(C)	29.	(A)	30.	(D)
31.	(B)	32.	(D)	33.	(A)	34.	(B)	35.	(B)
36.	(B)	37.	(A)	38.	(D)	39.	(D)	40.	(B)
41.	(A)	42.	(C)	43.	(B)	44.	(C)	45.	(B)
46.	(D)	47.	(C)	48.	(A)	49.	(B)	50.	(D)
51.	(D)	52.	(C)	53.	(C)	54.	(D)	55.	(D)
56.	(B)	57.	(A)	58.	(B)	59.	(B)	60.	(B)
61.	(A)	62.	(B)	63.	(B)	64.	(D)	65.	(B)
66.	(D)	67.	(B)	68.	(A)	69.	(B)	70.	(A)
71.	(A)	72.	(A)	73.	(A)	74.	(C)	75.	(B)
76.	(B)	77.	(A)	78.	(A)	79.	(D)	80.	(C)
81.	(A)	82.	(D)	83.	(A)	84.	(C)	85.	(B)
86.	(B)	87.	(A)	88.	(C)	89.	(A)	90.	(A)
91.	(A)	92.	(D)	93.	(B)	94.	(C)	95.	(C)
96.	(D)	97.	(B)	98.	(B)	99.	(D)	100.	(C)
101.	(B)	102.	(B)	103.	(C)	104.	(D)	105.	(C)
106.	(C)	107.	(C)	108.	(D)	109.	(C)	110.	(C)
111.	(B)	112.	(B)	113.	(D)	114.	(D)	115.	(A)
116.	(D)	117.	(A)	118.	(C)	119.	(C)	120.	(D)
121.	(D)	122.	(A)	123.	(D)	124.	(C)	125.	(B)

NUTRITION

1.	Which of the followings does not come within nutrition?			
	(A)	Taking in	(B)	Utilization
	(C)	Growth	(D)	None of above
2.	The	elements present in protein:	:	
	(A)	Nitrogen	(B)	Phosphorus
	(C)	Magnesium	(D)	Iron
3.	The	elements present in cytochr	omes:	
	(A)	Nitrogen	(B)	Phosphorus
	(C)	Magnesium	(D)	Iron
4.	The	elements present in chlorop	hyll:	
	(A)	Nitrogen	(B)	Phosphorus
	(C)	Magnesium	(D)	Iron
5.	Whi	c <mark>h o</mark> f the follo <mark>wi</mark> ngs is not us	sed for 1	replenishment of minerals?
	(A)	Sewage sludge	(B)	Fertilizers
	(C)	Green manure	(D)	None of above
6.	The	deficiency of which element	causes	stunted growth?
	(A)	Nitrogen	(B)	Phosphorus
	(C)	Potassium	(D)	Mangnesium
7.	The	deficiency of which element	causes	yellowness of the leaf margins?
	(A)	Nitrogen	(B)	Phosphorus
	(C)	Potassium	(D)	Mangnesium

8.	The	The deficiency of which of the following elements causes chlorosis?						
	(A)	Nitrogen	(B)	Phosphorus				
	(C)	Potassium	(D)	Mangnesium				
9.	The	nutrition of feeding on dead	and de	ecay matter is called:				
	(A)	Saprophytic	(B)	Parasite				
	(C)	Symbiotic	(D)	None of above				
10.	The	nutrition of feeding on living	g organ	isms is called:				
	(A)	Saprophytic	(B)	Parasitic				
	(C)	Symbiotic	(D)	None of above				
11.	Lich	nens are:						
	(A)	Saprophytic	(B)	Parasitic				
	(C)	Symbiotic	(D)	None of above				
12.	The	association of fungi and alga	e is c <mark>a</mark> l	led:				
	(A)	Saprophytic	(B)	Parasite				
	(C)	Symbiotic	(D)	None of above				
13.	The	association of fungi and root	of hig	<mark>he</mark> r plants is called:				
	(A)	Saprophytic	(B)	Parasite				
	(C)	Mycorrhizae	(D)	Lichens				
14.	Whi	ich of the fo <mark>llowing is</mark> a p <mark>itch</mark> e	er plan	t?				
	(A)	Dionaea muscipula	(B)	Sarracenia pupurea				
	(C)	Drosera intermedia	(D)	None of the above				
15.	Whi	ich <mark>of t</mark> he follo <mark>wi</mark> ngs is a Vent	us fly t	rap?				
	(A)	Dionaea muscipula	(B)	Sarracenia pupurea				
	(C)	Drosera intermedia	(D)	None of above				
16.	The	animals which feed on plant	s are ca	alled:				
	(A)	Detritivores	(B)	Herbivores				
	(C)	Carnivores	(D)	Omnivores				
17.	Whi	ich of the followings is detriti	vore?					
	(A)	Mussels	(B)	Earth worm				
	(C)	Horse	(D)	Cat				

18.	Whi	Which of the followings is carnivore?					
	(A)	Mussels	(B)	Earth worm			
	(C)	Horse	(D)	Cat			
19.	Whi	ch of the following groups hav	e lar	ge premolar and molar teeth:			
	(A)	Detritivores	(B)	Herbivores			
	(C)	Carnivores	(D)	Omnivores			
20.	Whi	ch of the following animals is	not o	mnivore?			
	(A)	Fox	(B)	Man			
	(C)	Dog	(D)	Pig			
21.	Mat	ch female mosquito with one o	of the	following groups:			
	(A)	Macrophagous feeders	(B)	Fluid feeders			
	(C)	Ominivores	(D)	Herbivores			
22.	Whi	ch of the followings is not mad	erop <mark>h</mark>	agus feeder?			
	(A)	Hydra	(B)	Snail			
	(C)	Cat fish	(D)	Dog fish			
23.	Whi	ch of the following ani <mark>m</mark> als is	irrele	vant in method of feeding:			
	(A)	Flea	(B)	Ticks			
	(C)	Leech	(D)	Entamoeba			
24.	In w	hich proce <mark>ss of dige</mark> stion <mark>, ut</mark> ili	zatio	n of digested food take place?			
	(A)	Ingestion	(B)	Digestion			
	(C)	Absorption	(D)	Assimilation			
25.	Lyso	os <mark>omes</mark> are inv <mark>ol</mark> ved in which o	of the	following steps in amoeba?			
	(A)	Ingestion	(B)	Digestion			
	(C)	Absorption	(D)	Assimilation			
26.	Abs	orpt <mark>io</mark> n of food in planarians t	akes	place by:			
	(A)	Pharynx	(B)	Mouth			
	(C)	Intestine	(D)	Intestinal caecae			
27.	Abs	orption of food in planarian ta	ikes p	lace by:			
	(A)	Pharynx	(B)	Mouth			
	(C)	Intestine	(D)	Intestinal caecae			

28.	Whi	Which of the following structures is used for grinding of food in cockroach?						
	(A)	Stomach	(B)	Crop				
	(C)	Gizzard	(D)	Hepatic Caecae				
29.	Whi	ich of the followings is irreleva	nt ab	out the digestion in cockroach?				
	(A)	Intra cellular digestion	(B)	Extra cellular digestion				
	(C)	Gizzard	(D)	Rectum				
30.	Whi	ich of the followings function is	s irre	levant to oral cavity?				
	(A)	Grinding	(B)	Lubrication				
	(C)	Absorption	(D)	Digestion				
31.	Whi	ich of the following mucous gla	ınds i	s presen <mark>t in</mark> front of ear <mark>s?</mark>				
	(A)	Sublingual	(B)	Sub maxillary				
	(C)	Parotid	(D)	None of above				
32.	The	enzyme present in the saliva is	s:					
	(A)	Pepsin	(B)	Lipase				
	(C)	Ptyalin	(D)	Lactase				
33.	The	opening of the glottis is called	:					
	(A)	Glottis	(B)	Epiglottis				
	(C)	Larynx	(D)	Vocal cords				
34.	The	The flap like structure present in larynx is called:						
	(A)	Glottis	(B)	Eiglottis				
	(C)	Larynx	(D)	Vocal cords				
35.	Von	nit <mark>in</mark> g is caused by:						
	(A)	Peristalsis	(B)	Antiperistalsis				
	(C)	Hunger pang	(D)	Swallowing				
36.	The	cells secrete pepsinogen:						
	(A)	Mucous	(B)	Parietal				
	(C)	Zymogen	(D)	Oxyntic				
37.	The	ph of fresh HCl is:						
	(A)	1	(B)	3				
	(C)	4	(D)	5				

38.	Sem	Semi solid mass in the stomach is called:						
	(A)	Bolus	(B)	Chyme				
	(C)	Food	(D)	Serum				
39.	Pep	sin acts on:						
	(A)	Protein	(B)	Lipids				
	(C)	Carbohydrates	(D)	Nucleic acid				
40.	The	first part of small intestine is	called	l:				
	(A)	Duodenum	(B)	Jejunum				
	(C)	Ileum	(D)	None of above				
41.	The	length of Duodenum in cm is:						
	(A)	20-25	(B)	30-35				
	(C)	10-15	(D)	40-50				
42.	Whi	ich of the following enzymes is	not p	resent in pa <mark>n</mark> creatic juice?				
	(A)	Amylase	(B)	Erypsin				
	(C)	Lipase	(D)	Trypsin				
43.	Fats	are digested by:						
	(A)	Amylase	(B)	Erypsin				
	(C)	Lipase	(D)	Trypsin				
44.	Emu	ılsification <mark>is caused</mark> by:						
	(A)	Gastric juice	(B)	Pancreatic juice				
	(C)	Bile	(D)	Intestinal juice				
45.	Bile	secretes which of the followin	g enz	ymes?				
	(A)	Amylase	(B)	Erypsin				
	(C)	Lipase	(D)	None of above				
46.	The	hormone secretin stimulates t	he se	cretion of:				
	(A)	Gastric juice	(B)	Pancreatic juice				
	(C)	None of above	(D)	Intestinal juice				
47.	The	enzyme acts on proteins:						
	(A)	Erypsin	(B)	Lipase				
	(C)	Maltase	(D)	Lactase				

48.	In intestine, amino acids are absorbed by:			y:
	(A)	Capillary	(B)	Epithellium
	(C)	Lacteal	(D)	None of above
49.	The	largest part of the large intest	ine:	
	(A)	Caecum	(B)	Colon
	(C)	Rectum	(D)	Appendix
50.	Mos	t of the water in the digestive	tract	is absorbed in:
	(A)	Pharynx	(B)	Stomach
	(C)	Small intestine	(D)	Large intestine
51.	Botu	ılism is caused by:		
	(A)	Salmonella	(B)	Campylobacter
	(C)	Clostridium	(D)	None of above
52.	The	condition with abnormal amo	unt o	f fats is called:
	(A)	Anorexia	(B)	Obesity
	(C)	Bulima	(D)	Piles
53.	The	condition in which a person ea	ats to	o little is called:
	(A)	Anorexia	(B)	Obesity
	(C)	Bulimia	(D)	Piles
54.	The	condition of bout of overeatin	g is ca	alled:
	(A)	Anorexia	(B)	Obesity
	(C)	Bulimia	(D)	Piles
55.	Con	ce <mark>n</mark> tration of b <mark>il</mark> e is the functio	on of:	
	(A)	Liver	(B)	Gall bladder
	(C)	Pancreas	(D)	None
56.	The	sores in stomach or intestines	are c	alled:
	(A)	An <mark>ore</mark> xia	(B)	Obesity
	(C)	Ulcer	(D)	Piles
57.	Nuti	rition is the process which invo	olves:	
	(A)	Selection of different types of	food	
	(B)	Analysis of different types of f	ood	
	(C)	Intake and utilization of food		
	(D)	Breakdown food during respira	ation	

58.	Nitr	ogen is present in:					
	(A)	Carbohydrates	(B)	Protein			
	(C)	Nucleic acid	(D)	Lipids			
59.	Pho	sphorus is present in:					
	(A)	Carbohydrates	(B)	Protein			
	(C)	Nucleic acid	(D)	Lipids			
60.	In w	hich compound iron is not p	resent?	•			
	(A)	Chlorophyll	(B)	Cytochrome			
	(C)	Haemoglobin	(D)	None of above			
61.	In w	hich group of the following N	Mg is p	resent?			
	(A)	Chlorophyll	(B)	Cytochrome			
	(C)	Haemoglobin	(D)	None of above			
62.	Whi	ch of the followings is not the	e sourc	e of minera <mark>ls?</mark>			
	(A)	Animal manure	(B)	Sewage sludge			
	(C)	Water	(D)	Artificial fertilizer			
63.	Whi	ch of the followin <mark>gs is chlo</mark> ro	sis?				
	(A)	Shrinking of leaves	(B)	Lack of chlorophyll			
	(C)	Lack of cell wall	(D)	Lack of starch			
64.	The deficiency of phosphorus causes which of these diseases?						
	(A)	Stunted growth of root	(B)	Yellowish leaf margin			
	(C)	Chlorosis	(D)	Stunted growth of plant			
65.	Whi	Which of the followings is a parasitic mode of nutrition?					
	(A)	One organism gets food from the other					
	(B)	One organism gets protection from the other					
	(C)	One organism causes disease in the other					
	(D)	All the above					
66.	In sa	aprophytic nutrition, one org	anism:				
	(A)	Eats another organism	(B)	Kills and eats another organism			
	(C)	Eats a dead organism	(D)	None of the above			

6 7.	Lich	ien is an association between:				
	(A)	Algae and higher plants	(B)	Algae and fungi		
	(C)	Fungi and roots of higher plant	(D)	None of the above		
68.	Myc	corrhizae is an association bety	veen:			
	(A)	Algae and higher plants	(B)	Algae and fungi		
	(C)	Fungi and roots of higher plant	t (D)	None of above		
69.	The	bacteria in nodules of legumin	ious p	olants produce nitrates by:		
	(A)	Decomposition of dead organism	(B)	Fixing atmospheric nitrogen		
	(C)	Releasing nitrogen from the soil	(D)	None of the above		
70.	Inse	ctivore plants are:				
	(A)	Heterotrophich	(B)	Autotrophic		
	(C)	Parasitic	(D)	None of the above		
71.	Eart	thworm is:				
	(A)	Herbivore	(B)	Detritivores		
	(C)	Carnivore	(D)	Omnivore		
72.	Rod	ents are:				
	(A)	Herbivore	(B)	Detritivores		
	(C)	Carnivore	(D)	Omnivore		
73.	Whi	ch of the f <mark>ollowings is the ch</mark> ai	racter	of herbivores?		
	(A)) They have long incisors and small canines				
	(B)	The have small incisors but large canines				
	(C)	They have small incisors but without canines				
	(D)	They are without incisors but s	small	canines		
74.	Whi	ch of the followings is not the	chara	ecteristic of predator?		
	(A)	It eats the prey alive	(B)	It kills the prey but do not eat it		
	(C)	It kills and eats the prey readily	y (D)	It does not kill or eat the prey		
75.	Whi	ch of the followings is the char	racter	ristic of carnivores?		
	(A)	They have large incisors but sr	nall c	anines		
	(B)	They have small incisors but la	arge c	anines		
	(C)	They have large incisors and ca	anines	S		
	(D)	They have small incisors but without canines				

76.	Whi	Which of the followings is omnivore:						
	(A)	Dog	(B)	Rats				
	(C)	Sheep	(D)	Rabbit				
77.	Whi	ch of the followings is fluid filt	ter?					
	(A)	Earthworm	(B)	Sheep				
	(C)	Whale	(D)	Fish				
78.	Whi	ch of the followings is not the	chara	cter of the marcophagus?				
	(A)	They have tentacles	(B)	They scrape food				
	(C)	They seize their prey	(D)	They tear their prey				
79.	Rad	ula is a rasping organ, present	in th	e mollus <mark>ks.</mark> It is used to:				
	(A)	Scrape the food	(B)	Tear the food				
	(C)	Kill the prey	(D)	None of the above				
80.	Whi	ch of the followings is not ecto	par <mark>as</mark>	site?				
	(A)	Flea	(B)	Entamoeba				
	(C)	Tick	(D)	Mite				
81.	Whi	ch of the followings is <mark>no</mark> t the j	proce	ss included in the digestion?				
	(A)	Conversion of amino acid into	prote	in				
	(B)	Conversion of protein into ami	no ac	id				
	(C)	Conversion of glucose into starch						
	(D)	Conversion of fatty acid into lipids						
82.	The	r <mark>ea</mark> son why digestion takes pla	ace is:	:				
	(A)	Animals need food particles in the form of smaller molecules						
	(B)	The large food molecule cannot pass through their membrane						
	(C)	The small food molecules increase their membrane						
	(D)	None of the above						
83.	Intr	acellular is type of digestion w	hich 1	takes place:				
	(A)	Outside the cell and outside the	e body	ý				
	(B)	Outside the cell but within the	coelo	mic cavity				
	(C)	Outside the cell but within the digestive cavity						
	(D)	Inside the cell but outside the c	ligesti	ive cavity				

84.	Assi	milation is a process in the bo	dy of	amoeba in which:
	(A)	Food is broken into smaller pi	eces	
	(B)	Food is absorbed form the vac	uole	
	(C)	Food is absorbed and utilized	in diff	ferent activities
	(D)	None of above		
85.	Ege	stion is process in body in whi	ch:	
	(A)	Food is taken inside the body		
	(B)	Food is broken into smaller pi	eces	
	(C)	Food is absorbed and utilized	in the	body
	(D)	Undigested food is removed fi	om th	ne body
86.	Whi	ich of the followings is correct	abou	t the sac li <mark>ke dig</mark> estive system
	(A)	A system having single opening	ng call	led mouth for ingestion
	(B)	A system having single opening	ng call	led mouth for egestion
	(C)	A system having single opening	ig bot	h for ingestion and egestion
	(D)	None of the above		
87.	In h	ydra intracellular dige <mark>sti</mark> on ta	ke pl	a <mark>ce:</mark>
	(A)	In the cavity of coelenterons	(B)	In ectodermal cells
	(C)	In gastrodermal cells	(D)	None of the above
88.	The	function of the intestinal coec	ae of	the planarians is to:
	(A)	Absorb the digested food	(B)	Trasport the digested food
	(C)	Remove the undigested food	(D)	None of the above
89.	The	types of digestion in planaria	n are:	
	(A)	Intracellular digestion	(B)	Extracellular digestion
	(C)	Both A and B	(D)	None of the above
90.	The	function of the crop of the co	ekroa	ch is to:
	(A)	Ingest the food	(B)	Grind the food
	(C)	Store the food	(D)	Digest the food
91.	The	function of the Gizzard in coo	kroa	ch is to:
	(A)	Ingest the food	(B)	Grind the food
	(C)	Store the food	(D)	Digest the food

92.	Grinding of food in man takes place by:						
	(A)	Incisor teeth	(B)	Canine teeth			
	(C)	Molar teeth	(D)	Premolar teeth			
93.	Whi	ch of the following salivary gla	ands i	is present below the tongue?			
	(A)	Sublingual glands	(B)	Submaxillary glands			
	(C)	Parotid glands	(D)	None of the above			
94.	The	function of the mucous of the	saliva	ary glands is to:			
	(A)	Digest the food	(B)	Make the food chew efficiently			
	(C)	Transport the food	(D)	Break the food			
95.	The	function of sodium bicarbona	te is t	o:			
	(A)	Digest the food	(B)	Stabilize the pH			
	(C)	Transport the food	(D)	Break the food			
96.	Whi	ich of the followings is not the	funct	ion of saliva <mark>?</mark>			
	(A)	Digestion of food	(B)	Lubrication of food			
	(C)	Stabilization of pH	(D)	Absorption of food			
97.	The	Amylase or ptyalin acts on:					
	(A)	Protein	(B)	Starch			
	(C)	Glucose	(D)	Lipids			
98.	Whi	Which of the following steps does not take place during act of swallowing?					
	(A)	Moving of tongue up and down	n				
	(B)	Upward movement of the larynx					
	(C)	Opening of the glottis					
	(D)	The movement of epiglottis in horizontal direction					
99.	Whi	i <mark>ch of</mark> t <mark>he follo</mark> wings is not true	abou	it the peristalsis?			
	(A)	It is a wave of contraction					
	(B)	Contraction start behind the bolus					
	(C)	Relaxation start behind the bolus					
	(D)	Squeezing of bolus forward					
100.	The	huger pang is caused due to:					
	(A)	Empty stomach	(B)	Low glucose level in the body			
	(C)	Secretion of gastric juice	(D)	None of the above			

101.	Whi	ich of the followings is not tru	ie abou	it the mucosa of the stomach
	(A)	It forms the inner lining of th	e stoma	ach
	(B)	It has many tubular glands		
	(C)	It is composed of epithellium		
	(D)	It is composed of connective	tissues	
102.	Whi	ich of the followings is not the	e functi	ion of gastric juice?
	(A)	Digestion of food	(B)	Protection of inner layer
	(C)	Transport of food	(D)	Making the pH acidic
103.	The	function of the pepsin is to c	onvert	the protein into:
	(A)	Amino acid	(B)	Peptones
	(C)	Dipeptides	(D)	None of above
104.	Hea	rt burn is caused due to:		
	(A)	Pain in heart	(B)	Pain in stomach
	(C)	Out flow of gastric juice	(D)	None of above
105.	Gas	trin is:		
	(A)	An Enzyme of gastric juice		
	(B)	It is a part of the stomach		
	(C)	It stimulates the secretion of	gastric	juice
	(D)	It promotes the digestion of p	roteins	
106.	The	length of duodenum is:		
	(A)	15 – 20cm	(B)	20-25 cm
	(C)	25 – 35cm	(D)	None of above
107.	Whi	ich <mark>of the followi</mark> ng enzymes :	acts on	fats?
	(A)	Amylase	(B)	Lipase
	(C)	Trypsin	(D)	Enterokinase
108.	Ente	ero <mark>kin</mark> ase acts on:		
	(A)	Proteins	(B)	Lipids
	(C)	Carbohydrates	(D)	None of above
109.	Bile	contains which of these enzy	me?	
	(A)	Amylase	(B)	Lipase
	(C)	Trypsin	(D)	None of above

110. Emulsification means:							
	(A)	Breakdown of proteins	(B)	Breakdown of starch			
	(C)	Breakdown of fats	(D)	None of the above			
111.	Gall	stone is caused due to precipi	tation	of:			
	(A)	Proteins	(B)	Cholesterol			
	(C)	Starch	(D)	Glycogen			
112.	Secr	etin is hormone produced by t	he in	testinal mucosa. It is secreted due to:			
	(A)	Portentous food	(B)	Acidic food			
	(C)	Alkaline food	(D)	Fatty food			
113.	Secr	etin is a hormone which:					
	(A)	Stimulates the section of saliva	ı				
	(B)	Stimulates the secretion of gast	tric ju	ice			
	(C)	Inhibits the secretion of gastric	juice				
	(D)	Stimulates the secretion of bile					
114.	The	length of the jejunum is about	:				
	(A)	1.5 metres	(B)	2.4 metres			
	(C)	3.4 metres	(D)	None of above			
115.	Whi	ch of the f <mark>ollowing enzsymes</mark> c	onvei	rt the dipeptides into amino acids?			
	(A)	Amylase	(B)	Amino peptidase			
	(C)	Erypsin	(D)	Trypsin			
116.	Most of the fatty acids are absorbed by:						
	(A)	Epithelium of the villi	(B)	Lacteals of the villi			
	(C)	Blood capillaries of the villi	(D)	None of the above			
117.	The	fats enter into blood in the for	m of:				
	(A)	Fatty acid	(B)	Lipo-proteins			
	(C)	Fats	(D)	None of above			
118.	Som	e humans consume milk and d	levelo	p diarrhea due to:			
	(A)	Milk proteins	(B)	Glycogen in milk			
	(C)	Lactose in milk	(D)	None of the above			

119.	Appendicitis is:			
	(A)	A part of large intestine	(B)	A part of caecum
	(C)	A disease	(D)	None of above
120.	Mos	t of the water is absorbed by:		
	(A)	Oral cavity	(B)	Stomach
	(C)	Small intestine	(D)	Large intestine
121.	Diar	rhoea is abnormality of large	intest	ine in which:
	(A)	Less water is absorbed by the l	arge i	ntestine
	(B)	Less salts are absorbed by the	large i	intestine
	(C)	More water is absorbed by the	large	intestine
	(D)	More salts are absorbed by the	large	intestine
122.	Con	stipation is abnormality of lar	ge int	estine in which:
	(A)	Less water is absorbed by the l	arge i	ntestine
	(B)	Less salts are absorbed by the	large	intestine
	(C)	More water is absorbed by the	large	intestine
	(D)	More salts are absorbed by the	large	intestine
123.	The	bacteria in large intestine pro	duce:	
	(A)	Vitamin A	(B)	Vitamin B
	(C)	Vitamin D	(D)	Vitamin K
124.	Whi	ch of the followings is not the	symp	tom of the dyspepsia?
	(A)	Abdominal discomfort	(B)	Flatulence
	(C)	Heartburn	(D)	Fever
125.	How	y d <mark>o humans dev</mark> elop food pois	oning	; ?
	(A)	Contaminated water	(B)	Contaminated milk
	(C)	Contaminated juice	(D)	None of the above
126.	Botu	ılis <mark>m i</mark> s caused due to:		
	(A)	Salmonella	(B)	Campylobacter
	(C)	Clostridium	(D)	None the above
127.	Ano	rexia nervosa is abnormality i	n whi	ch:
	(A)	A person eats too much	(B)	A person does not eat
	(C)	A person cannot digest food	(D)	None of the above

128.	8. Bulimia nerbvosa is an abnormality in which:			which:
	(A)	A person eats too much	(B)	A person does not eat
	(C)	A person cannot digest food	(D)	None of the above
129.	Nitr	ogen is present in:		
	(A)	Carbohydrates	(B)	Carbonates
	(C)	Proteins	(D)	Fats
130.	Chle	orophyll contains:		
	(A)	Sulphur	(B)	Calcium
	(C)	Nitrogen	(D)	Magnesium
131.	Lac	k of chlorophyll results in:		
	(A)	Phosphorus	(B)	Chlorosis
	(C)	Symbiosis	(D)	Diagonosis
132.	Rele	ease of nitrates by saprophytic	bacte	er <mark>ia helps in:</mark>
	(A)	Nitrogen cycle	(B)	Water cycle
	(C)	Oxygen cycle	(D)	Carbon cycle
133.	Feed	ding by living in or <mark>on</mark> oth <mark>er o</mark>	rganis	ms is a:
	(A)	Parasite	(B)	Fungicide
	(C)	Saprophyte	(D)	Insecticide
134.	Can	in <mark>es</mark> are missing in:		
	(A)	Lions	(B)	Cats
	(C)	Horse	(D)	Man
135.		animals having structurally a pivor <mark>es</mark> and carnivores are:	ınd fu	nctionally intermediate teeth between
	(A)	Omnivores	(B)	Saprozoic
	(C)	Detritivores	(D)	Insectivores
136.	A co	ommon mussel has two large g	ills w	ith:
	(A)	Pseudopodia	(B)	Parapodia
	(C)	Flagella	(D)	Cilia

137.	The are:	S .	cilia produ	ce sticky mucous with food pa	rticles
	(A)	Secretary	(B)	Respiratory	
	(C)	Regulatory	(D)	Excretory	
138.	A fl	uid feeder animal is:			
	(A)	Male mosquito	(B)	Female cat	
	(C)	Female mosquito	(D)	Male reptile	
139.	The	common ectoparasites i	n non-huma	an mammals are:	
	(A)	Lice & Mites	(B)	Mice & Mites	
	(C)	Lice & Kites	(D)	Ticks & Mites.	
140.	An e	ectoparasite attacking b	oth aquatic	and terrestrial animals is:	
	(A)	Leech	(B)	Dragon fly	
	(C)	Louse	(D)	Butter fly	
141.	It fa	cilitates diffusion of ma	terials to the	<mark>e</mark> body cells <mark>in</mark> planaria:	
	(A)	Chyme	(B)	Enzyme	
	(C)	Branched intestine	(D)	Intestine	
142.	The	food is ground in the co	ckroach in:		
	(A)	Crop	(B)	Mandible	
	(C)	Mesenteron	(D)	Gizzard	
143.	The	sac-like digestive system	n is:		
	(A)	Deficient	(B)	More efficient	
	(C)	Coefficient	(D)	Less efficient	
144.	The	digestive system of man	consists of	a long:	
	(A)	Inflated tube	(B)	Coiled tube	
	(C)	Spiral tube	(D)	Dilated tube	
145.	The	squeezing of food down a	along the ali	mentary canal is by the contraction	n of:
	(A)	Circular and longitudina	ıl muscles		
	(B)	Longitudinal muscles			
	(C)	Spiral and circular musc	eles		
	(D)	Circular muscles			

146. The human stomach is situated below:					
	(A)	Diaphragm	(B)	Nephron	
	(C)	Neuron	(D)	Picogram	
147.	HCI	adjusts pH of stomach rangin	g fro	m:	
	(A)	2-3	(B)	4 - 5	
	(C)	2 - 4	(D)	3 – 5	
148.	Pep	sinogen is activated to pepsin k	y:		
	(A)	HC1	(B)	Active secretin	
	(C)	Gastrin	(D)	HCl and active pepsin	
149.	Lipo	oproteins are subsequently hyd	drolys	sed by:	
	(A)	Lymph	(B)	Plasma	
	(C)	Blood	(D)	Blood plasma enzyme	
150.	Mas	stication and communication is	s the f	function of:	
	(A)	Keats	(B)	Leech	
	(C)	Peach	(D)	Teeth	
151.	Insu	ifficient quality or qua <mark>nti</mark> ty of	bile s	ecretions is responsible	for causing:
	(A)	Crustacean	(B)	Anorexia	
	(C)	Eschechia	(D)	Dyspepsia	
152.	Trea	atment is li <mark>kely to be</mark> pro <mark>lon</mark> ge	d in:		
	(A)	Epidemics	(B)	Ticks	
	(C)	Bulimics	(D)	Systemic	
153.	Live	er <mark>sec</mark> retes bile <mark>in</mark> to the:			
	(A)	Duodenum	(B)	Peritoneum	
	(C)	Peri <mark>c</mark> ardium	(D)	Zymogen	
154.	_	is the food that suppli	es the	body with elements for	metabolism.
	(A)	Egestion	(B)	Autrtrophs	
	(C)	Phosphorus	(D)	Nutrient	
155.	The	organisms capable of manufac	cturii	ng their own food are ca	lled.
	(A)	Autrtrophs	(B)	Assimilation	
	(C)	Mycorrhiza	(D)	Phosphorus	

156.	Whi	ch of there deficiencies ———		- causes stunted growth of roots?
	(A)	Assimilation	(B)	Phosphorus
	(C)	Saprophytic nutrition	(D)	Puccinia
157.	A ki	nd of feeding on dead and dec	aying	matter is called.
	(A)	Saprophytic nutrition	(B)	Puccinia
	(C)	Mycorrhiza	(D)	Leguminous
158.	Whi	ch parasitic fungus	destr	oys the wheat plant?
	(A)	Mycorrhiza	(B)	Dodder (Cuscuta)
	(C)	Puccinia	(D)	Leguminous
159.	Whi	ch ———is a leaf less pla	ant liv	ving as a twining parasite?
	(A)	Dodder (Cuscuta)	(B)	Omnivores
	(C)	Predator	(D)	Leguminous
160.	Nan	ne ——— the association be	tween	a fungus a <mark>nd</mark> roots of higher plants.
	(A)	Leguminous	(B)	Mycorrhiza
	(C)	Predator	(D)	Insectivorous
161.	Whi	ch ———— plants <mark>ha</mark> ve no	dules	on their roots?
	(A)	Insectivorous	(B)	Mycorrhiza
	(C)	Leguminous	(D)	Dodder (Cuscuta)
162.	Whi	ch of these <mark>plants</mark> are true aut	otrop	hs?
	(A)	Herbivorous	(B)	Detritivores
	(C)	Mycorrhiza	(D)	Insectivorous
163.	Whi	ch of there——has a l	oilobe	ed leaf with midrib.
	(A)	Venusflytrap	(B)	Herbivorous
	(C)	Ingestion	(D)	Facultative
164.	The	ani <mark>m</mark> als feeding on detritus ar	e call	ed:
	(A)	Facultative	(B)	Predator
	(C)	Filter feeders	(D)	Detritivores
165.	Rod	ents and ungulates are the gro	ups o	f ——— mammals.
	(A)	Macrophagus	(B)	Predator
	(C)	Filter feeders	(D)	Herbivorous

166.	Prey	is captured ar	nd killed by the	:		
	(A)	Macrophagus		(B)	Venusflytrap	
	(C)	Predator		(D)	Radula	
167.	Whi	ch ———	- animals eat bo	th pla	ents and animals?	
	(A)	Carnivores		(B)	Omnivores	
	(C)	Facultative		(D)	Both A and B	
168.	Whi	ch —	- animals extrac	t part	ticles from water <mark>and</mark> di	gest them?
	(A)	Filter feeders		(B)	Puccinia	
	(C)	Facultative		(D)	Predator	
169.	The	animals taking	g in large food p	ieces	are called:	
	(A)	Omnivores		(B)	Detritivores	
	(C)	Herbivorous		(D)	Macrophagus	
170.	Snai	il feeds by using	g rasping organ	calle	d the :	
	(A)	Filter feeders		(B)	Predator	
	(C)	Herbivorous		(D)	Radula	
171.	Whi time		- parasites are c	apabl	e of living independent	ly of its host at
	(A)	Filter feeders		(B)	Obligate	
	(C)	Facultative		(D)	Both B and C	
172.	The	o <mark>rg</mark> anism livin	<mark>g</mark> parasitically o	on hos	st at all the times is said	to be:
	(A)	Digestion		(B)	Insectivorous	
	(C)	Predator		(D)	Obligate parasite	
173. T	aking	g in <mark>of complex</mark>	food is called:			
	(A)	Ingestion		(B)	Insectivorous	
	(C)	Egestion		(D)	Digestion	
174.		break down o on of enzymes i		anic 1	food into diffusible mo	lecules by the
	(A)	Detritivores		(B)	Ingestion	
	(C)	Digestion		(D)	Both B and C	

175.	5. The utilization of digested food for producing energy is:			
	(A)	Assimilation	(B)	Ingestion
	(C)	Digestion	(D)	Egestion
176.	The	elimination of undigested mat	ter fr	om the body is:
	(A)	Egestion	(B)	Ingestion
	(C)	Digestion	(D)	Coelenteron
177.	The	mode of digestion in amoeba i	s:	
	(A)	Intracellular	(B)	Assimilation
	(C)	Lysosomes	(D)	Coelenteron
178.	In a	moeba, the hydrolytic enzyme	s are	secreted by:
	(A)	Assimilation	(B)	Lysosomes
	(C)	Facultative	(D)	Ingestion
179.	The	gastrovascular cavity in hydra	a is al	so known a <mark>s:</mark>
	(A)	Coelenteron	(B)	Gastrodermis
	(C)	Assimilation	(D)	Nematocysts
180.	The	stinging cells embedded in ten	tacle	s are called:
	(A)	Nematocysts	(B)	Obligate parasite
	(C)	Macrophagus	(D)	Facultative
181.		g <mark>lan</mark> dular cells in the which s pr <mark>es</mark> ent in:	secret	te enzymes for extracellular digestion
	(A)	Intracellular	(B)	Egestion
	(C)	Obligate parasite	(D)	Gastrodermis
182.	Whi	ch o <mark>ne</mark> engulfs the prey by pro	trudi	ng pharynx?
	(A)	Egestion	(B)	Facultative
	(C)	Planaria	(D)	Radula
183.	The	digestive system of cockroach	is:	
	(A)	Closed type	(B)	Egestion
	(C)	Sac like	(D)	Tubular type

184.	The	masticated, partly digested fo	od is	rolled into a small oval lump cal	lled
	(A)	Bolus	(B)	Omnivores	
	(C)	Gastrodermis	(D)	Digestion	
185.	Wha	at ——— assists the move	ement	t of materials through esophagus	s?
	(A)	Omnivores	(B)	Cardiac sphincter	
	(C)	Gravity	(D)	Gastrin	
186.	A ri	ng of muscles at the junction o	of stor	nach and esopha <mark>gus</mark> is <mark>ca</mark> lled:	
	(A)	Gastrin	(B)	Gravity	
	(C)	Gall bladder	(D)	Cardiac sphincter	
187.	The	gastric glands secrete a hormo	one ca	alled:	
	(A)	Gastrin	(B)	Gravity	
	(C)	Gall bladder	(D)	Cardiac sphincter	
188.	Wha	at hydrolyzes protein to yi <mark>eld</mark> p	pepto	nes and polypeptides?	
	(A)	Gastrin	(B)	Pepsin	
	(C)	Gravity	(D)	Lipase	
189.	Нер	atic and pancreatic secretions	are s	timulated by a hormone called:	
	(A)	Ileum	(B)	Gastrin	
	(C)	Secretin	(D)	Urea	
190.	Fat	di <mark>ge</mark> sting enzy <mark>m</mark> e is:			
	(A)	Trypsin	(B)	Amylopsin	
	(C)	Planaria	(D)	Lipase	
191.	Wha	at is the inactive form of trypsi	in?		
	(A)	Planaria	(B)	Pepsin	
	(C)	Trypsinogen	(D)	Bolus	
192.	Bile	is temporarily stored in the:			
	(A)	Pepsin	(B)	Gall bladder	
	(C)	Trypsinogen	(D)	Aminopeptidase	

193.	Live	er converts toxic ammonia into	:	
	(A)	Ileum	(B)	Urea
	(C)	Aminopeptidase	(D)	Goblet
194.	Poly	peptides are digested into dipo	eptide	es by:
	(A)	Lipase	(B)	Goblet
	(C)	Aminopeptidase	(D)	Both A and C
195.	Nea	rly all absorption of digested f	ood ta	akes place in the:
	(A)	Lipase	(B)	Rectum
	(C)	Ileum	(D)	Constipation
196.	The	enfolding of villi and microvill	i incr	eases the <mark>surfa</mark> ce area for:
	(A)	Constipation	(B)	Absorption
	(C)	Gravity	(D)	Cardiac sphincter
197.	Wha	at is caused by the excessive ab	sorpt	tion of water?
	(A)	Salmonella	(B)	Botulism
	(C)	Adipose	(D)	Constipation
198.	Whi	ch cells of large i <mark>ntestine secre</mark>	te mi	acous?
	(A)	Food Poisoning	(B)	Goblet
	(C)	Botulism	(D)	Adipose
199.		ch is an illness is caused fi sta <mark>n</mark> ces?	rom	indigestion of food containing toxic
	(A)	Bullimia nervosa	(B)	Salmonella
	(C)	Food Poisoning	(D)	Botulism
200.		ch d <mark>is</mark> ease is caused by toxi eria?	ns pi	oduced by a species of Clostridium
	(A)	Botulism	(B)	Absorption
	(C)	Salmonella	(D)	Constipation
201.	The	fat is stored in which tissue of	the a	bdomen?
	(A)	Aminopeptidase	(B)	Absorption
	(C)	Adipose	(D)	Constipation

202.	Slightly older girls may suffer a neurotic disorder called:								
	(A)	Botulism	(B)	Bullimia nervosa				
	(C)	Salmonella	((D)	Aminopeptidase				
203.	Defr	efrosting frozen meat releases liquid containing which bacteria?							
	(A)	Botulism	((B)	Bullimia nervosa				
	(C)	Salmonella	((D)	Absorption				
204.	Hete	erotrophic organ	nisms:						
	(A)	Incapable of ma	nufacturing orga	nic (compounds				
	(B)	Capable of man	ufacturing organ	ic lu	mps				
	(C)	Both A and B							
	(D)	None of the Abo	ove						
205.	Nuc	leic Acids:							
	(A)	Phosphorus	((B)	Older leaves				
	(C)	Suckers	(D)	Iron				
206.	Cyto	ochromes:							
	(A)	Older leaves							
	(B)	Incapable of ma	m <mark>ufacturin</mark> g orga	nic (compounds				
	(C)	Suckers							
	(D)	Iron							
207.	Stro	ng chlorosis:							
	(A)	Suckers	(B)	Phosphorus				
	(C)	Young leaves	(D)	Older leaves				
208.	Para	asites:							
	(A)	Older leaves	((B)	Phosphorus				
	(C)	Suckers	((D)	Iron				
209.	Mut	ual nutrition:							
	(A)	Prevent the inse	ects from climbin	g ou	t				
	(B)	Detritus feeder							
	(C)	A row of long s	tiff bristles						
	(D)	Organisms helo	nging to two diff	eren	t species				

210. Algae:

- (A) Photosynthesis
- **(B)** A row of long stiff bristles
- (C) Detritus feeder
- (D) Prevent the insects from climbing out

211. Stiff hairs:

- (A) A row of long stiff bristles
- **(B)** Prevent the insects from climbing out
- (C) Organisms belonging to two different species
- **(D)** Detritus feeder

212. Venus flytrap:

- (A) Organisms belonging to two different species
- **(B)** Photosynthesis
- (C) Prevent the insects from climbing out
- **(D)** A row of long stiff bristles

213. Earthworm:

- (A) Prevent the insects from climbing out
- **(B)** Photosynthesis
- (C) A row of long stiff bristles
- (D) Detritus feeder

214. Premolars and molars in herbivores:

- (A) Occur in both aquatic and terrestrial animals
- (B) Weakened the host or upset its metabolism
- (C) Have large grinding surfaces
- **(D)** Delicate stylets

215. Aphids:

- (A) Weakened the host or upset its metabolism
- **(B)** Occur in both aquatic and terrestrial animals
- (C) Delicate stylets
- **(D)** Have large grinding surfaces

216. Endoparasites:

- (A) Have large grinding surfaces
- **(B)** Occur in both aquatic and terrestrial animals
- **(C)** Delicate stylets
- **(D)** Weakened the host or upset its metabolism

217. Parasites excretory products:

- (A) Weakened the host or upset its metabolism
- **(B)** Have large grinding surfaces
- (C) Delicate stylets
- (D) Occur in both aquatic and terrestrial animals

218. Nematocyst:

- (A) Weakened the host or upset its metabolism
- **(B)** Delicate stylets
- (C) Occur in both aquatic and terrestrial animals
- (D) Consists of a hollow thread coiled within a capsule and a tiny trigger

219. Hydra:

- (A) A flap of cartilage
- **(B)** Eyespot
- (C) The opening of wind pipe
- **(D)** Grasps prey with tentacles

220. Planarian:

- (A) A flap of cartilage
- **(B)** The beginning of swallowing

(C) Eyespot

(D) The opening of wind pipe

221. Glottis:

- (A) The opening of wind pipe
- **(B)** A flap of cartilage

(C) Eyespot

(D) Grasps prey with tentacles

222. Epiglottis:

- (A) A flap of cartilage
- **(B)** Grasps prey with tentacles
- **(C)** The beginning of swallowing
- **(D)** Eyespot

223. Voluntary action:

(A) Eyespot

- **(B)** The beginning of swallowing
- **(C)** A flap of cartilage
- **(D)** Grasps prey with tentacles

224. Stomach:

- (A) Needs alkaline medium
- (B) Needs acidic medium
- (C) An elastic muscular bag that stores the food
- **(D)** Stimulates the pancreas, liver duodenal cells

225. Secretion of gastric Juice:

- (A) Stimulates the pancreas, liver duodenal cells
- **(B)** Regulated by smell, sight and quality of food
- (C) Needs alkaline medium
- **(D)** Needs alkaline medium

226. Pepsin:

- (A) An elastic muscular bag that stores the food
- **(B)** Needs alkaline medium
- (C) Regulated by smell, sight and quality of food
- **(D)** Needs acidic medium

227. Ptyalin:

- (A) Needs acidic medium
- **(B)** An elastic muscular bag that stores the food
- (C) Needs alkaline medium
- (**D**) Regulated by smell, sight and quality of food

228. Acidity of chyme:

- (A) Regulated by smell, sight and quality of food
- (B) Needs alkaline medium
- (C) An elastic muscular bag that stores the food
- (**D**) Stimulates the pancreas, liver duodenal cells

229. Pancreatic enzymes:

- (A) Lower three fifth of the small intestine
- (B) Digests all principal components of food
- (C) Accumulation of bile pigments in blood
- **(D)** Second portion of the small intestine

230. Enterokinase:

- (A) Digests all principal components of food
- **(B)** Accumulation of bile pigments in blood
- (C) Second portion of the small intestine
- **(D)** Enzyme secreted by the lining of duodenum

231. Jaundice:

- (A) Accumulation of bile pigments in blood
- **(B)** Enzyme secreted by the lining of duodenum
- (C) Digests all principal components of food
- **(D)** Second portion of the small intestine

232. Jejunum:

- (A) Accumulation of bile pigments in blood
- **(B)** Lower three fifth of the small intestine
- (C) Enzyme secreted by the lining of duodenum
- (**D**) Second portion of the small intestine

233. Ileum:

- (A) Enzyme secreted by the lining of duodenum
- **(B)** Second portion of the small intestine
- (C) Accumulation of bile pigments in blood
- (D) Lower three fifth of the small intestine

234. Ammonia:

- (A) No upper incisors
- **(B)** A waste product of amino acid metabolism
- (C) Absorbed into the blood stream
- (D) Consists of duodenum, Jejunum and Ileum

235. Small intestine:

- (A) No upper incisors
- **(B)** A waste product of amino acid metabolism
- **(C)** Absorbed into the blood stream
- (D) Consists of duodenum, Jejunum and Ileum

236. Lipoproteins:

- (A) Stored in the liver or under the skin
- **(B)** No upper incisors
- (C) A waste product of amino acid metabolism
- (D) Consists of duodenum, Jejunum and Ileum

237. Fatty acids and Glycerol:

- (A) Absorbed into the blood stream
- **(B)** No upper incisors
- (C) Consists of duodenum, Jejunum and Ileum
- (D) A waste product of amino acid metabolism

Answers

Sr.	Ans.								
1.	(C)	2.	(A)	3.	(D)	4.	(C)	5.	(D)
6.	(B)	7.	(C)	8.	(D)	9.	(A)	10.	(B)
11.	(C)	12.	(D)	13.	(C)	14.	(B)	15.	(A)
16.	(B)	17.	(B)	18.	(D)	19.	(B)	20.	(C)
21.	(B)	22.	(C)	23.	(D)	24.	(D)	25.	(B)
26.	(D)	27.	(A)	28.	(C)	29.	(A)	30.	(C)
31.	(C)	32.	(C)	33.	(A)	34.	(B)	35.	(B)
36.	(C)	37.	(B)	38.	(B)	39.	(A)	40.	(A)
41.	(A)	42.	(B)	43.	(C)	44.	(C)	45.	(D)
46.	(B)	47.	(A)	48.	(A)	49.	(B)	50.	(D)
51.	(C)	52.	(B)	53.	(A)	54.	(C)	55.	(B)
56.	(C)	57.	(B)	58.	(B)	59.	(C)	60.	(A)
61.	(A)	62.	(B)	63.	(B)	64.	(A)	65.	(D)
66.	(C)	67.	(B)	68.	(C)	69.	(B)	70.	(B)
71.	(B)	72.	(A)	73.	(C)	74.	(C)	75.	(C)
76.	(B)	77.	(C)	78.	(D)	79.	(A)	80.	(D)
81.	(A)	82.	(B)	83.	(C)	84.	(C)	85.	(D)
86.	(C)	87.	(C)	88.	(B)	89.	(C)	90.	(C)
91.	(B)	92.	(C)	93.	(A)	94.	(B)	95.	(B)
96.	(D)	97.	(B)	98.	(C)	99.	(C)	100.	(B)
101.	(C)	102.	(C)	103.	(B)	104.	(B)	105.	(C)
106.	(B)	107.	(B)	108.	(D)	109.	(D)	110.	(C)
111.	(B)	112.	(B)	113.	(C)	114.	(B)	115.	(C)
116.	(B)	117.	(B)	118.	(B)	119.	(C)	120.	(D)

Sr.	Ans.								
121.	(A)	122.	(C)	123.	(D)	124.	(D)	125.	(B)
126.	(C)	127.	(B)	128.	(A)	129.	(C)	130.	(D)
131.	(B)	132.	(A)	133.	(A)	134.	(C)	135.	(A)
136.	(D)	137.	(D)	138.	(A)	139.	(C)	140.	(D)
141.	(A)	142.	(C)	143.	(D)	144.	(B)	145.	(B)
146.	(A)	147.	(A)	148.	(A)	149.	(D)	150.	(D)
151.	(D)	152.	(D)	153.	(A)	154.	(D)	155.	(A)
156.	(D)	157.	(A)	158.	(B)	159.	(A)	160.	(C)
161.	(C)	162.	(D)	163.	(A)	164.	(D)	165.	(D)
166.	(C)	167.	(B)	168.	(A)	169.	(D)	170.	(D)
171.	(C)	172.	(D)	173.	(A)	174.	(C)	175.	(A)
176.	(A)	177.	(A)	178.	(B)	179.	(A)	180.	(A)
181.	(D)	182.	(C)	183.	(D)	184.	(A)	185.	(C)
186.	(D)	187.	(A)	188.	(B)	189.	(C)	190.	(D)
191.	(C)	192.	(B)	193.	(B)	194.	(C)	195.	(C)
196.	(B)	197.	(D)	198.	(B)	199.	(C)	200.	(A)
201.	(C)	202.	(B)	203.	(C)	204.	(A)	205.	(A)
206.	(D)	207.	(D)	208.	(C)	209.	(D)	210.	(A)
211.	(B)	212.	(D)	213.	(D)	214.	(C)	215.	(D)
216.	(B)	217.	(A)	218.	(D)	219.	(D)	220.	(C)
221.	(A)	222.	(C)	223.	(B)	224.	(C)	225.	(B)
226.	(D)	227.	(C)	228.	(D)	229.	(B)	230.	(D)
231.	(A)	232.	(D)	233.	(D)	234.	(B)	235.	(D)
236.	(A)	237.	(A)						

GASEOUS EXCHANGE

1.	Whi	ch of the following is irrelev	vant?	
	(A)	Breathing	(B)	Ventilation
	(C)	Organismic respiration	(D)	Cellular respiration
2.	In w	hich of the following proces	sses ATF	is produced?
	(A)	Breathing	(B)	Ventilation
	(C)	Organismic respiration	(D)	Cellular respiration
3.	Lent	ticels are present in:		
	(A)	Leaves	(B)	Roots
	(C)	Bark	(D)	Stem
4.	Num	iber of stomata per square	centimet	er of a leaf are:
	(A)	10,000	(B)	12,000
	(C)	14,000	(D)	16,000
5.	The	r <mark>es</mark> piratory ac <mark>ti</mark> vity during	day time	e is called:
	(A)	Organismic respiration	(B)	Cellular respiration
	(C)	Photophosphorylation	(D)	None of above
6.	Duri	ing p <mark>h</mark> otophosphorylation F	Rubisco a	acts as:
	(A)	Carboxylase	(B)	Dehydrogenase
	(C)	Oxygenase	(D)	None of above
7.	The	percentage of rubisco in the	e leave is	:
	(A)	10%	(B)	20%
	(C)	30%	(D)	40%

8.	Whi	ch of the following compour	nds is no	ot produced during photorespiration?
	(A)	Serine	(B)	Glycine
	(C)	Glucose	(D)	Glycolate
9.	Nun	nber of ATP produced durin	g photo	orespiration is:
	(A)	36	(B)	26
	(C)	16	(D)	None the above
10.	Whi	ch of the followings is the pr	roperty	of the respiratory surface of animals?
	(A)	Thin epithelium	(B)	Ventilation
	(C)	Capillary network	(D)	All the above
11.		ch of the following structure ockroach?	es is not	involved for the absorption of oxygen
	(A)	Tracheae	(B)	Skin
	(C)	Spiracles	(D)	Tracheoles
12.	Air	enters into the body of cocki	roach th	nrough:
	(A)	Tracheae	(B)	Skin
	(C)	Spiracles	(D)	Tracheoles
13.	The	respiratory organs in fishes	are:	
	(A)	Lungs	(B)	Air sac
	(C)	Gills	(D)	Tracheae
14.	Whi	ch type of respiration takes	place in	a frogs?
	(A)	Cutaneous	(B)	Buccal
	(C)	Pulmonary	(D)	All of above
15.	Whi of m	Ů,	tructur	es is present in the respiratory system
	(A)	Bronchi	(B)	Parabronchi
	(C)	Alveoli	(D)	Bronchi
16.	Whi bird		res is r	esponsible for one-way flow of air in
	(A)	Bronchi	(B)	Air sac
	(C)	Alveoli	(D)	Bronchi

17.	Whi	ch of the following structures	is also	called voice box?				
	(A)	Nose	(B)	Pharynx				
	(C)	Larynx	(D)	Tracheae				
18.	The	structures with a diameter les	s thai	1 1mm are:				
	(A)	Bronchioles	(B)	Bronchi				
	(C)	Alveoli	(D)	Air sac				
19.	The calle		etwee	n abdominal and thoracic cavity is				
	(A)	Pleura	(B)	Diaphragm				
	(C)	Air sac	(D)	Alveoli				
20.	Whi	ch of the followings is unit of l	ungs?					
	(A)	Bronchioles	(B)	Bronchi				
	(C)	Alveoli	(D)	Air sac				
21.	The	maximum capacity of 100 ml	blood	to absorb oxygen is:				
	(A)	10 ml	(B)	20 ml				
	(C)	30 ml	(D)	40 ml				
22.	Whi	ch of the following facto <mark>rs</mark> decr	ease 1	t <mark>h</mark> e oxygen saturation of haemoglobin?				
	(A)	CO_2	(B)	Temperature				
	(C)	pH of blood	(D)	All the above				
23.	The carbon dioxide transported in the form of carbonate ions is:							
	(A)	30%	(B)	50%				
	(C)	70%	(D)	90%				
24.	Asth	ım <mark>a releases whi</mark> ch of the follo [,]	wing	compounds?				
	(A)	Epinephrine	(B)	Histamine				
	(C)	He <mark>pa</mark> rin	(D)	Antibodies				
25.	The	break down of alveoli is called	l :					
	(A)	Tuberculosis	(B)	Asthma				
	(C)	Emphysema	(D)	Cancer				
26.	The	amount of oxygen in exhaled a	air is:					
	(A)	12%	(B)	14%				
	(C)	16%	(D)	18%				

27.	The	total lung capacity is:		
	(A)	3 liters	(B)	5 liters
	(C)	7 liters	(D)	9 liters
28.	Whi	ch of the followings is not resp	iratio	on?
	(A)	Exchange of gases	(B)	Break down of glucose
	(C)	Formation of glucose	(D)	Release of energy
29.	Whi	ch step does not take place du	ring c	cellular respiration?
	(A)	Exchange of gases	(B)	Break down of glucose
	(C)	Formation of glucose	(D)	Release of energy
30.	The	exchange of gases is more rapi	id in :	air than the water due to:
	(A)	Presence of water in liquid form	n but	air in gases form
	(B)	The rate of diffusion is high in	air th	an the water
	(C)	Air block the movement of oxy	gen a	<mark>n</mark> d carbon d <mark>io</mark> xide
	(D)	None of the above		
31.	It is	estimated that in number ston	nata p	peer square centimeter are is:
	(A)	10,000	(B)	12,000
	(C)	15,000	(D)	20,000
32.	The	lenticels are:		
	(A)	Special cells present in the stem	(B)	Special cells present in the leaves
	(C)	Special pores present in the stem	(D)	Special pores present in the leaves
33.	Phot	tor <mark>esp</mark> iration i <mark>s</mark> an activity whi	ch:	
	(A)	Takes place in the presence of	light	
	(B)	Takes place in dark		
	(C)	Can take place both in light and	d dark	K
	(D)	None of the above		
34.	Dur	ing photorespiration rubisco a	cts as	:
	(A)	Carboxylase	(B)	Oxygenase
	(C)	Hydrogenase	(D)	Dehydrogenases

35.	Dur	ing photosynthesis the rubisco	acts	as:
	(A)	Carboxylase	(B)	Oxygenase
	(C)	Hydrogenase	(D)	Dehydrogenases
36.	The	most abundant protein in wor	rld is:	
	(A)	Haemoglobin	(B)	Rubisco
	(C)	Fiber	(D)	Egg protein
37.	In w	hich of the following, reaction	s of p	hotorespiration do not take place?
	(A)	Chloroplast	(B)	Mitochondria
	(C)	Peroxisome	(D)	Cytoplasm
38.	Whi	ich of the followings is true abo	out pl	notorespi <mark>ration?</mark>
	(A)	It produces ATP	(B)	It uses ATP
	(C)	It neither produce nor use ATP	(D)	None of the above
39.	The	significance of the photorespi	ration	is:
	(A)	It produces energy	(B)	It produces glucose
	(C)	It destroy glucose	(D)	It has no significance for plant
40.	Whi	ich of the followings is <mark>no</mark> t proj	perty	of the respiratory surface of hydra:
	(A)	Large surface and moisture	(B)	Thick epithelium
	(C)	Gradient of gases	(D)	Capillary network
41.	Whi	ich of the o <mark>f followin</mark> gs is <mark>not</mark> r	espira	ntory surface of hydra:
	(A)	Ectodermal cells	(B)	Endodermal cells
	(C)	Mesoglea	(D)	All the above
42.	The	respiratory surface of the Coo	ckroa	ch is:
	(A)	Trachea	(B)	Tracheoles
	(C)	Spirachles Spirachles	(D)	Fluid filled ducts
43.	The	gases are transported in cock	roach	through:
	(A)	Blood	(B)	Trachea
	(C)	Spiracles	(D)	None of above
44.	The	respiratory surface of the fish	es is:	
	(A)	Gill	(B)	Gill slits
	(C)	Lungs	(D)	None of above

45.	The	passage of water current in fi	shes i	s:						
	(A)	Mouth-pharynx-gill-gill slits	(B)	Gill slits-gill-pharynx-mouth						
	(C)	Pharynx-gill-mouth-gill slits	(D)	None of the above						
46.	Whi	ich type of respiration takes pl	lace tl	nrough skin in frog?						
	(A)	Cutaneous respiration	(B)	Buccal respiration						
	(C)	Pulmonary respiration	(D)	None of the above						
47.	Whi	ich is not true about the respir	atory	system of birds?						
	(A)	It is composed of lung	(B)	Lungs are composed of alveoli						
	(C)	Lungs have air sac	(D)	Lungs have one way flow of gases						
48.	In c	ountercurrent flow of blood a	nd air	:						
	(A)	The direction of flow of blood	and a	ir is in the same direction						
	(B)	The direction of flow of blood	and a	ir is in the opposite direction						
	(C)	The direction of flow of blood	and a	ir is in the b <mark>ot</mark> h directions						
	(D)	None of the above								
49.	The	respiratory system of the bird i	is mor	e efficient than the mammals because:						
	(A)	It have air sacs	(B)	It has one way flow of gases						
	(C)	It does not have alveoli	(D)	It has countercurrent flow						
50.	Whi	Which of followings is not the function of nasal cavity?								
	(A)	Moisten the air	(B)	Warm or cool the air						
	(C)	Exchange of some gases	(D)	Removing dust particles						
51.	The	opening of the larynx is called	l:							
	(A)	Epiglottis	(B)	Glottis						
	(C)	Gullet	(D)	Vocal sac						
52.	Whi	ich of the following structures	is pre	esent in birds but absent in mammals?						
	(A)	Lung	(B)	Trachea						
	(C)	Bronchi	(D)	Parabronchi						
53.	The	wall of chest cavity is compos	ed of:							
	(A)	Ribs	(B)	Intercostal muscles						
	(C)	Both A and B	(D)	Diaphragm						

54.	The	lungs are covered by a double	mem	brane called:
	(A)	Pleura	(B)	Diaphragm
	(C)	Intercostal muscles	(D)	None of the above
55.	The	process of inspiration takes pl	ace a	s:
	(A)	The lungs pull air inside		
	(B)	Passive contraction of lungs tal	kes pl	ace
	(C)	Passive expansion of lungs take	es pla	ce
	(D)	Air is pushed inside		
56.	Dur	ing inspiration the diaphragm	:	
	(A)	Contracts	(B)	Relaxes
	(C)	Contracts and relaxes	(D)	None of the above
57.	Whi	ch of the following processes d	loes n	ot take place during expiration?
	(A)	The intercostals muscles are re	laxed	
	(B)	The ribs are relaxed		
	(C)	The muscles of the diaphragm	relaxe	ed
	(D)	The lungs are also relaxed		
58.	The	maximum capacity of the hae	moglo	bin to absorb oxygen is:
	(A)	19.6 ml / 100 ml blood	(B)	20 ml /100ml blood
	(C)	22 ml / 100 ml of blood	(D)	25 ml / 100 ml blood
59.	The	oxygen pressure in many of th	e cell	s is:
	(A)	40 mm Hg	(B)	50 mm Hg
	(C)	60 mm Hg	(D)	None of above
60.	Whi	ch of the following factors inci	reases	the carrying capacity of blood?
	(A)	High concentration of carbon d	lioxid	e
	(B)	High concentration of oxygen		
	(C)	High temperature		
	(D)	Low pH		
61.	Mos	t of carbon dioxide is transpor	ted in	n the form of:
	(A)	Carboxyhaemoglobin	(B)	With plasma proteins
	(C)	Bicarbonate ion	(D)	In dissolved form

62.	The	venous blood in tissues has car	rbon	dioxide:
	(A)	50 ml/100ml of blood	(B)	54ml/100ml of blood
	(C)	45ml/100ml of blood	(D)	35/ml/100ml of blood
63.	Can	cer is caused by metastasis wh	ich is	a process where:
	(A)	One cell controls the activities	of the	e others
	(B)	One cell transfers its activities	to the	others
	(C)	One cell destroys the other cell	s	
	(D)	One cell transfers germs to and	other o	eell
64.	Can	cer is basically a malignant tu	mor.	Which can:
	(A)	Control the other cells	(B)	Spread in all the body
	(C)	Remains in specific place	(D)	All of the above
65.	An i	nflammatory substance releas	ed du	ring the att <mark>ac</mark> k of asthma is:
	(A)	Mycobacterium	(B)	Salmonella
	(C)	Clostridium	(D)	Azobactor
66.	An i	nflammatory substanc <mark>e r</mark> eleas	ed du	ring the attack of asthma is:
	(A)	Interferon	(B)	Complement proteins
	(C)	Histamine	(D)	Acetylcholine
67.	Whi	ch of the fo <mark>llowings</mark> is a condit	cion o	f emphysema?
	(A)	Breakdown of the blood capilla	aries i	n lungs
	(B)	Breakdown of the alveoli in the	e lung	S
	(C)	Breakdown of pleura of the lur	ngs	
	(D)	None of the above		
68.	The	haemoglobin can carry:		
	(A)	One molecule of oxygen	(B)	Two molecules of oxygen
	(C)	Three molecules of oxygen	(D)	Four molecule of oxygen
69.	The	hemoglobin can carry:		
	(A)	One molecule of oxygen	(B)	Two molecules of oxygen
	(C)	Three molecules of oxygen	(D)	Four molecule of oxygen

70.	. The residual volume of the lungs is a volume:								
	(A)	Which is a maximum amount a	lway	s present in the lungs					
	(B)	Which is a minimum amount always present in the lung							
	(C)	Which is a variable volume, keep on changing							
	(D)	None of the above							
71.	. Which of the following characteristics is not shown by the diving mammals during act of diving?								
	(A)	They have twice volume of blood							
	(B)	Their rate of heart beat slow do	wn						
	(C)	The consumption of energy is i	ncrea	sed					
	(D)	Most of the blood go to heart a	nd br	ain					
72.	Wat	er is denser than air:							
	(A)	8000 times	(B)	800 times					
	(C)	80,000 times	(D)	1800 times					
73.	Xyle	em and phloem are not <mark>in</mark> volve	d:						
	(A)	In transport of liquids	(B)	In transport of minerals					
	(C)	In transport of gases	(D)	In transport of water					
74.	In tl	ne peroxiso <mark>mes</mark> the glycolate is	conv	erted into:					
	(A)	Serine	(B)	CO_2					
	(C)	Ethanolamine	(D)	Glycine					
75.	The	m <mark>ain</mark> tracheal trunk in cockro	ach c	ommunicates with exterior by:					
	(A)	8 pairs	(B)	4 pairs					
	(C)	10 pairs	(D)	100 pairs					
76.	The	heart of the fish is single circu	it and	d the blood flows in:					
	(A)	One and two directions	(B)	Two directions					
	(C)	Reverse direction	(D)	One direction					
77.	Wal	ls of the chest cavity are comp	osed	of:					
	(A)	Intercostal muscle	(B)	Ribs, intercostal muscles and diaphragm					
	(C)	Ribs and intercostal muscle	(D)	Ribs					

78.	The	normal human blood is about	:	
	(A)	02 ml / 100 ml of blood	(B)	200 ml / 100 ml of blood
	(C)	20 ml / 100 ml of blood	(D)	19.6 ml / 100 ml of blood
79.	Whe	en blood leaves the capillary bed	l mos	of the carbon dioxide is in the form of:
	(A)	Hydroxyl ions	(B)	Carbonate ions
	(C)	Hydrogen ions	(D)	Bicarbonate ions
80.	The	irritant substances of smoke g	genera	ally cause:
	(A)	Smokers yawning	(B)	Smoker's hiccough
	(C)	Smoker's cough	(D)	Smoker's sneeze
81.	Dur	ing exercise the breathing rate	may	rise to:
	(A)	30 times per minutes	(B)	35 times per minutes.
	(C)	20 times per minutes	(D)	25 times per minute
82.	Wha	nt is one of the most imp <mark>ortant</mark>	meta	bolic activities of all organism?
	(A)	Respiration	(B)	Photorespiration
	(C)	Respiratory	(D)	Earthwarm
83.	Excl	nange of gases durin <mark>g organisn</mark>	nic res	spiration is carried out by:
	(A)	Oxygen	(B)	Glycolate
	(C)	Tracheole	(D)	Diffusion
84.	Oxy	g <mark>en</mark> content of <mark>fresh a</mark> ir is abou	ut:	
	(A)	200 ml/lit	(B)	100 ml/lit
	(C)	300 ml/lit	(D)	400 ml/lit
85.	Wha	nt are the main source of excha	ange o	of gases in plants?
	(A)	Stomata	(B)	Tracheole
	(C)	Respiratory	(D)	RBC
86.	The	special pores involved in gase	ous ex	cchange:
	(A)	Lenticels	(B)	Stomata
	(C)	Earthworm	(D)	Ventilation

87.	Resp	piratory activity which occurs	in pla	ants during day time is calle	d:
	(A)	Respiratory	(B)	Oxyhaemoglobin	
	(C)	Photorespiration	(D)	Oxyhaemoglobin	
88.	Who	en RUBP reacts oxygen, two c	arbon	compound ———is p	roduced.
	(A)	Glycolate	(B)	Oxyhaemoglobin	
	(C)	Ventilation	(D)	Earthwarm	
89.	In a	hot and dry day level of which	h of tl	ne:	
	(A)	Glycolate	(B)	Organ	
	(C)	Ventilation	(D)	Oxygen	
90.	Whi	ch one is inhibited chemically	, so th	at plant can still grow?	
	(A)	Photorespiration	(B)	Photo synthesis	
	(C)	Oxyhemoglobin	(D)	Respiration	
91.	Wha	at maintains a step diffu <mark>sion g</mark>	radie	nt?	
	(A)	Ventilation	(B)	Parabronchi	
	(C)	Oxyhemoglobi	(D)	Organ	
92.	Hyd	ra has no specialized	f	or respiration.	
	(A)	Pumps	(B)	Parabronchi	
	(C)	Glycolate	(D)	Organ	
93.	Whi	ic <mark>h o</mark> ne is muc <mark>h c</mark> omplex than	hydra	?	
	(A)	Sponge	(B)	Glycolate	
	(C)	Amoeba	(D)	Earthwarm	
94.	Oxy	gen <mark>co</mark> mbines to haemoglobin	with	form:	
	(A)	Respiratory	(B)	Oxygen	
	(C)	Oxyhemoglobin	(D)	Organ	
95.	Whi	ich system of the cockroach is	very	specialized?	
	(A)	Digestive	(B)	Photo respiration	
	(C)	Respiratory	(D)	None of the above	

96.	Froi	m the spiracles air enters into	trach	ea and then:
	(A)	Bronchiolar	(B)	Tracheoles
	(C)	Both A and B	(D)	None of the above
97.	In fi	ing the pumps heart———	— th	e blood directly to the.
	(A)	RBC	(B)	Parabronchi
	(C)	Pleura	(D)	gills
98.	The	tiny thin walled ducts present	in th	e lungs of birds <mark>are</mark> cal <mark>le</mark> d:
	(A)	Oxyhemoglobin	(B)	Pleura
	(C)	Parabronchi	(D)	Earthwarm
99.	Lun	gs are covered with double la	yered	thin membranous sacs called
	(A)	Oxyhemoglobin	(B)	Pleura
	(C)	Glycolate	(D)	Earthwarm
100.	Car	bonic anhydrase is prese <mark>nt in:</mark>		
	(A)	RBC	(B)	Parabronchi
	(C)	Pleura	(D)	None of the above
101.	Nor	mally at rest we inha <mark>le</mark> and ex	hale h	owmany times per minute?
	(A)	16 – 22	(B)	18 - 25
	(C)	15 - 20	(D)	20 – 30
102.	Lun	g <mark>c</mark> apacity in a <mark>n</mark> adult human:	:	
	(A)	2 litres	(B)	10
	(C)	5 litres	(D)	20%
103.	Myo	olglo <mark>bi</mark> n is Iron containing pro	tein p	igment present in:
	(A)	Corncinoma	(B)	Sheet skeletal muscle
	(C)	Muscle fibre	(D)	Both B and C
104.	Can	cer is basically malignant tum	or:	
	(A)	Muscle fibre	(B)	20%
	(C)	Sheet skeletal muscle	(D)	Corneinoma

105.	Wha	at percentage of carbon dioxid	e is ca	arried as carboxy haemoglobin?
	(A)	15%	(B)	10%
	(C)	20%	(D)	12%
106.	The	floor of chest cavity called dia	phrag	gm composed of:
	(A)	5 litres	(B)	Corncinoma
	(C)	Muscle fibre	(D)	Sheet skeletal muscle
107.	Diffu	usion of oxygen in and Carbon	dioxi	ide out occurs when:
	(A)	The muscles of the ribs are con	tracte	ed
	(B)	The muscle of the ribs are relax	ked	
	(C)	Both A and B		
	(D)	Difference in partial pressure o	f the g	gases
108.	Duri	ing expiration air is given out v	when	
	(A)	The muscles of the ribs are con	tracte	ed
	(B)	The muscle of the ribs are relax	ked	
	(C)	Soon after its formation diffuse	s into	mitochondria
	(D)	Voccal cords		
109.	In th	ne glottis the muc <mark>ous mem</mark> brar	ie is s	tretched across into fibrous bands:
	(A)	The muscles of the ribs are con	tracte	ed
	(B)	The muscle of the ribs are relax	ced	
	(C)	Voccal cords		
	(D)	Difference in partial pressure o	f the g	gases
110.	Duri	in <mark>g</mark> inspiration <mark>t</mark> he air enters ir	ito th	e lungs:
	(A)	Difference in partial pressure o	f the g	gases
	(B)	The muscle of the ribs are relax	ked	
	(C)	The muscles of the ribs are con	tracte	ed
	(D)	None of the above		
111.	Glyc	ine is the simplest amino acid:		
	(A)	The muscle of the ribs are relax	ked	
	(B)	Soon after its formation diffuse	s into	mitochondria
	(C)	The muscles of the ribs are con	tracte	ed
	(D)	Voccal cords		

112. Their functional unit of the lungs:

- (A) Bronchioles
- **(B)** Lungs in the land vertebrates
- (C) Air existing in the spaces between the soil particles
- (D) Air sac

113. Number of stomata present on the leaves:

- (A) Air existing in the spaces between the soil particles
- **(B)** Lungs in the land vertebrates
- (C) Bronchioles are obstructed as a result of inflammation
- (D) 12000 per square centimeters of leaf in tobacco plant

114. The roots of the land plants get oxygen:

- (A) Air existing in the spaces between the soil particles
- **(B)** Lungs in the land vertebrates
- (C) Air sac
- (D) 12000 per square centimeters of leaf in tobacco plant

115. In respiratory properties the surface area should be large and moist:

- (A) Bronchioles are obstructed as a result of inflammation
- **(B)** Air existing in the spaces between the soil particles
- (C) Air sac
- **(D)** Lungs in the land vertebrates

116. Emphysema produces increased air way resistance:

- (A) Air sac
- **(B)** 12000 per square centimeters of leaf in tobacco plant
- (C) Air existing in the spaces between the soil particles
- (**D**) Bronchioles are obstructed as a result of inflammation

117. One polypeptide chain with iron containing ring structure is myoglobin:

(A) Cetaceans

- **(B)** Regulator of normal alveolar
- **(C)** Mycobacterium
- **(D)** Stores some oxygen

118. Tubernculosis:

(A) Cetaceans

- **(B)** Regulator of normal alveolar
- (C) Mycobacterium
- **(D)** Carried as bicarbonate ions

119. 70 % carbondioxide:

- (A) Regulator of normal alveolar
- **(B)** Stores some oxygen

(C) Cetaceans

(D) Carried as bicarbonate ions

120. Carbon dioxide:

(A) Cetaceans

- **(B)** Regulator of normal alveolar
- **(C)** Stores some oxygen
- (D) Mycobacterium

121. Aquatic mammals:

- (A) Carried as bicarbonate ions
- (B) Cetaceans
- (C) Mycobacterium
- (D) Regulator of normal alveolar

Answers

Sr.	Ans.								
1.	(D)	2.	(D)	3.	(C)	4.	(B)	5.	(C)
6.	(C)	7.	(B)	8.	(C)	9.	(D)	10.	(D)
11.	(B)	12.	(C)	13.	(C)	14.	(D)	15.	(B)
16.	(B)	17.	(C)	18.	(A)	19.	(B)	20.	(D)
21.	(B)	22.	(D)	23.	(C)	24.	(B)	25.	(C)
26.	(C)	27.	(B)	28.	(C)	29.	(A)	30.	(B)
31.	(B)	32.	(C)	33.	(A)	34.	(B)	35.	(A)
36.	(B)	37.	(D)	38.	(B)	39.	(D)	40.	(B)
41.	(C)	42.	(D)	43.	(B)	44.	(A)	45.	(A)
46.	(A)	47.	(B)	48.	(B)	49.	(B)	50.	(A)
51.	(B)	52.	(D)	53.	(C)	54.	(A)	55.	(C)
56.	(A)	57.	(D)	58.	(B)	59.	(C)	60.	(B)
61.	(C)	62.	(B)	63.	(B)	64.	(B)	65.	(A)
66.	(C)	67.	(B)	68.	(D)	69.	(A)	70.	(B)
71.	(C)	72.	(A)	73.	(C)	74.	(D)	75.	(C)
76.	(D)	77.	(C)	78.	(C)	79.	(D)	80.	(C)
81.	(A)	82.	(A)	83.	(D)	84.	(A)	85.	(A)
86.	(A)	87.	(C)	88.	(A)	89.	(A)	90.	(B)
91.	(A)	92.	(D)	93.	(D)	94.	(C)	95.	(C)
96.	(B)	97.	(D)	98.	(C)	99.	(B)	100.	(A)
101.	(D)	102.	(C)	103.	(C)	104.	(D)	105.	(C)
106.	(D)	107.	(B)	108.	(D)	109.	(C)	110.	(A)
111.	(B)	112.	(D)	113.	(D)	114.	(A)	115.	(C)
116.	(D)	117.	(D)	118.	(C)	119.	(D)	120.	(B)
121.	(B)								

TRANSPORT

1.	Whi	ch of the following pro	cesses does n	eed energy?	
	(A)	Diffusion	(B)	Facilitated diffusion	
	(C)	Osmosis	(D)	Active transport	
2.	The	movement of minerals	or water thr	ough plasomdesmata is	s called:
	(A)	Symplast	(B)	Apoplast	
	(C)	Vascular	(D)	None the above	
3.	The	movement of minerals	or water thr	o <mark>ugh extrac</mark> ellular patl	nway is called:
	(A)	Symplast	(B)	Apoplast	
	(C)	Vascular	(D)	None the above	
4.	The	membrane of vacuole	is called:		
	(A)	Plasma membrane	(B)	Tonoplast	
	(C)	Epidermis	(D)	None of the above	
5.	Cas	pa <mark>ri</mark> an strips a <mark>re</mark> presei	nt in:		
	(A)	Epidermis	(B)	Endodermis	
	(C)	Cortex	(D)	Vascular bundle	
6.	The	tota <mark>l k</mark> inetic energy of	the water mo	lecules is called:	
	(A)	Water potential	(B)	Pressure potential	
	(C)	Osmotic potential	(D)	None of the above	
7.	The calle		rotoplast aga	ainst the cell wall of th	e plant cells is
	(A)	Water potential	(B)	Pressure potential	
	(C)	Osmotic potential	(D)	None of the above	

8.	The	upward movement of sap thi	rough	the xylem is:
	(A)	Ascent of sap	(B)	Plasmolysis
	(C)	Deplasmolysis	(D)	Guttation
9.	Whi	ich of the followings is misma	tched 1	for ascent of sap?
	(A)	Cohesion tension	(B)	Water potential
	(C)	Root pressure	(D)	Imbibition
10.	The	attraction between the water	molec	cules and cell wall o <mark>f xyl</mark> em is <mark>calle</mark> d
	(A)	Cohesion	(B)	Tension
	(C)	Adhesion	(D)	None of above
11.	The	attraction among the water i	nolecu	lles is:
	(A)	Cohesion	(B)	Tension
	(C)	Adhesion	(D)	None of above
12.	The	evaporation of water from th	ie ae <mark>ri</mark> :	al parts of t <mark>he</mark> plants is called:
	(A)	Ascent of sap	(B)	Plasmolysis
	(C)	Deplasmolysis	(D)	Plasmolysis
13.	The	loss of liquid through the hyd	dathod	l <mark>es</mark> is called:
	(A)	Ascent of sap	(B)	Plasmolysis
	(C)	Deplasmolysis	(D)	Guttation
14.	The	absorption of water by a con	npoun	d without dissolving in it is called:
	(A)	Ascent of sap	(B)	Plasmolysis
	(C)	Imbibition	(D)	Guttation
15.	The	fl <mark>ow of sap from</mark> cut plants is	s:	
	(A)	Bleeding	(B)	Plasmolysis
	(C)	<u>Imbibition</u>	(D)	Guttation
16.	Whi	ich <mark>of</mark> the following transpira	tions is	s 90% of the total transpiration?
	(A)	Cuticular	(B)	Lenticular
	(C)	Stomatal	(D)	None of above
17.	Star	ch sugar hypothesis was proj	posed l	by:
	(A)	Dixon	(B)	Mohi
	(C)	Sanger	(D)	Drebs

18.		ch of the following elements	has	role	in	the	openi	ing	and	closing	g of
	(A)	K	(B)	Mg							
	(C)	Cu	(D)	Fe							
19.	The	hormone which is involved in	the o	penin	g an	ıd c	losing	of s	toma	ıta is:	
	(A)	Citric acid	(B)	Oxal	oac	etic	acid				
	(C)	Abscisic acid	(D)	None	e of	abo	ve				
20.	The	stomata are closed at tempera	ture ((in cei	ntig	rad	e):				
	(A)	35	(B)	45							
	(C)	25	(D)	15							
21.	Whi	ch of the following cells is abse	nt in	the p	hloe	em?					
	(A)	Companion cell	(B)	Sieve	e tul	oe m	embe	rs			
	(C)	Vessels	(D)	Pare	nchy	/ma					
22.	Whi	ch of the followings can <mark>n</mark> ot bed	come	sink (duri	ng t	ranslo	ocat	ion?		
	(A)	Root	(B)	Fruit	S						
	(C)	Stem	(D)	Leav	es						
23.	Pres	sure flow theory wa <mark>s pr</mark> oposed	by:								
	(A)	Dixon	(B)	Moh	1						
	(C)	Sanger	(D)	Mun	ch						
24.	Inte	st <mark>in</mark> al coeca ar <mark>e</mark> present in:									
	(A)	H <mark>ydra</mark>	(B)	Plana	ariaı	1					
	(C)	Cockroach	(D)	None	e the	abo	ove				
25.	Whi	ch o <mark>f t</mark> he followings is irreleva	nt for	the c	ircu	ılato	ory sys	sten	n of c	ockroa	ch?
	(A)	Heart	(B)	Vent	ral l	3loc	d vess	sel			
	(C)	Aorta	(D)	Dors	al b	lood	l vesse	1			
26.	Nun	nber of hearts in earthworm ar	e:								
	(A)	5	(B)	6							
	(C)	7	(D)	8							

27.	Which of the following arteries supply blood to heart muscles?							
	(A)	Pulmonary	(B)	Coronary				
	(C)	Systemic	(D)	None the above				
28.	The	proximal swollen part of	of the heart (of fish is:				
	(A)	Sinus venous	(B)	Atrium				
	(C)	Ventricle	(D)	Conus arteriosus				
29.	Whi	ch of the followings is in	rrelevant for	the heart of amph <mark>ib</mark> ia <mark>r</mark>	ns?			
	(A)	Right auricle	(B)	Truncus arteriosus				
	(C)	Right ventricle	(D)	Sinus venosus				
30.	The	vein which brings back	blood from	all the body is:				
	(A)	Pulmonary	(B)	Systemic				
	(C)	Precavel / Postcavel	(D)	None the above				
31.	The	percentage of plasma in	n the blood i	s:				
	(A)	45	(B)	50				
	(C)	55	(D)	65				
32.	The	pH of blood is:						
	(A)	6.4	(B)	7				
	(C)	7.4	(D)	8.4				
33.		ch of the <mark>following</mark> pr hesis?	oteins acts	as catalyst in the proc	ess of protein			
	(A)	Antibodies	(B)	Prothrombin				
	(C)	Fibrinogen	(D)	None the above				
34.	Whi	ch <mark>of the followi</mark> ng is m	ismatched ir	the followings about R	BC?			
	(A)	Haemoglobin	(B)	Bone marrow				
	(C)	Transport of oxygen	(D)	Fibrinogen				
35.	Whi	<mark>ch of</mark> the followings is n	ot granulocy	yte?				
	(A)	Neutrophils	(B)	Eosinophils				
	(C)	Basophils	(D)	Monocytes				
36.	Whi	ch of the following RBC	Cs destroy th	e small particles by pha	agocytosis?			
	(A)	Neutrophils	(B)	Eosinophil				
	(C)	Basophil	(D)	Monocyte				

37.		ch of the following compour nism?	ids de	stroy the nucleic acid of the invading				
	(A)	Fibrinogen	(B)	Interferon				
	(C)	Heparin	(D)	Histamine				
38.	Mat	ch platelets with one of the fo	llowin	gs:				
	(A)	Fibrinogen	(B)	Interferon				
	(C)	Heparin	(D)	Histamine				
39.	Mai	ntaining of the internal condi	ition co	onstant is:				
	(A)	Buffer	(B)	Homeostasis				
	(C)	Osmoregulation	(D)	None the above				
40.	Mat	ch leucaemia with one of the	follow	ings:				
	(A)	RBC	(B)	WBC				
	(C)	Platelets	(D)	Interferon				
41.	The	chemical which maintain the	acid t	<mark>o</mark> ase concen <mark>tr</mark> ation is:				
	(A)	Buffer	(B)	Homeostasis				
	(C)	Osmoregulation	(D)	None the above				
42.	Mat	ch thalassaemia with o <mark>ne</mark> of t	he foll	o <mark>w</mark> ings:				
	(A)	RBC	(B)	WBC				
	(C)	Platelets	(D)	Interferon				
43.	Mat	Match microcytes with one of the followings:						
	(A)	RBC	(B)	WBC				
	(C)	Platelets	(D)	Interferon				
44.	The	presence of excessive fluid in	the tis	ssue is:				
	(A)	Thalasseamia	(B)	Oedma				
	(C)	Spl <mark>ee</mark> enomegaly	(D)	Leuceamia				
45.	The	cardiac muscles are:						
	(A)	Epicardium	(B)	Myocardium				
	(C)	Endocardium	(D)	None the above				
46.	The	fibrous chords in the heart a	re:					
	(A)	Papillary muscle	(B)	Tricusopid valve				
	(C)	Choradae tendinae	(D)	Bicuspid valve				

47.	Match semi lunar valve with one of the following:						
	(A)	Right auricle	(B)	Right ventricle			
	(C)	Pulmonary trunk	(D)	Left auricle			
48.	The	muscles present ins	ide the ventricle	are:			
	(A)	Cardiac muscle	(B)	Smooth muscles			
	(C)	Papillary muscles	(D)	Skeletal muscles			
49.	Whi	ch of the followings	is the largest ar	tery?			
	(A)	Coronary	(B)	Aorta			
	(C)	Iliac	(D)	Vena cava			
50.	The	artery which suppi	es blood to leg is	:			
	(A)	Coronary	(B)	Aorta			
	(C)	Iliac	(D)	Femoral			
51.	Whi	ch of the followings	supply blood to	liver?			
	(A)	Renal vein	(B)	Hepatic portal			
	(C)	Hepatic vein	(D)	Hepatic artery			
52.	Inte	rclated discs are pro	ese <mark>nt</mark> in:				
	(A)	Vein	(B)	Artery			
	(C)	Heart	(D)	Kidney			
53.	Whi	ch of the f <mark>ollowings</mark>	brings blood fo	rm liver?			
	(A)	Renal vein	(B)	Hepatic portal			
	(C)	Hepatic vein	(D)	Hepatic artery			
54.	Mat	ch <mark>c</mark> ynosis with one	of the following	s:			
	(A)	ECG	(B)	Artificial pace			
	(C)	Blue baby	(D)	SA node			
55.	The	recording of electri	cal potential is:				
	(A)	ECG	(B)	Artificial pace			
	(C)	Blue baby	(D)	SA node			
56.	Whi	ch of the followings	is not present in	the wall of artery?			
	(A)	Artery	(B)	Vein			
	(C)	Capillary	(D)	Heart			

57.	Sele	ct one of the followings for	· atherosc	lerosis:
	(A)	Artery	(B)	Vein
	(C)	Capillary	(D)	Heart
58.	The	exchange of material take	s place th	rough:
	(A)	Artery	(B)	Vein
	(C)	Capillary	(D)	Heart
59.	Puls	e is felt in:		
	(A)	Artery	(B)	Vein
	(C)	Capillary	(D)	Heart
60.	The	condition of high blood pr	essure is	called:
	(A)	Stroke	(B)	Oedma
	(C)	Hypertension	(D)	Myocardial infraction
61.	Mat	ch heart attack with one o	f the fol <mark>lo</mark>	wings:
	(A)	Stroke	(B)	Oedma
	(C)	Hypertension	(D)	Myocardial infraction
62.	A pl	ug of blood is called:		
	(A)	Clot	(B)	Bolus
	(C)	Embolus	(D)	Hypertension
63.	Bolu	is on new l <mark>ocation is</mark> called	:	
	(A)	Clot	(B)	Bolus
	(C)	Embolus	(D)	Hypertension
64.	Mat	ch <mark>st</mark> roke with <mark>o</mark> ne of the f	ollowings	:
	(A)	Stroke	(B)	Cerebral infraction
	(C)	Hypertension	(D)	Myocardial infraction
65.	Lac	teal is a:		
	(A)	Lymph capillary	(B)	Lymph vessel
	(C)	Lymph trunk	(D)	Lymph node
66.	The	discharge of blood from b	lood vess	els is called:
	(A)	Stroke	(B)	Oedma
	(C)	Hypertension	(D)	Haemorrhage

67.	Lyn	Lymphocytes are present at:					
	(A)	Lymph capillary	(B)	Lymph vessel			
	(C)	Lymph trunk	(D)	Lymph node			
68.	Match plasma cells with one of the following:						
	(A)	T lamphocyte	(B)	B lamphocyte			
	(C)	Basophils	(D)	Neutrophils			
69.	Which of the followings is used in active immunity?						
	(A)	Antibody	(B)	Vaccine			
	(C)	Antisera	(D)	Antigen			
70.	Which of the followings is used in passive immunity?						
	(A)	Antibody	(B)	Vaccine			
	(C)	Antisera	(D)	Antigen			
71.	Which of the followings is not transport in organisms?						
	(A)	The movement of material within the body					
	(B)	The movement of material form inside to out the body					
	(C)	The movement of material outside the body					
	(D)	The movement of material form outside to inside					
72.	Which of the following processes is not involved in transport of material within the body of plants:						
	(A)	Respiration	(B)	Transportation			
	(C)	Photosynthesis Photosynthesis Photosynthesis	(D)	Reproduction			
73.	Which of the following nutrient a plant does not need?						
	(A)	Carbon dioxide	(B)	Water			
	(C)	Ox <mark>yg</mark> en	(D)	Minerals			
74.	Symplest pathway is the pathway in which material:						
	(A)	Move through the plasmodesmata					
	(B)	Move through the spaced between the cells					
	(C)	Move through the tonoplast of the vacuole					
	(D)	All of the above					

75. Apoplast pathway is the pathway in which martial:

- (A) Move through the plasmodesmata
- **(B)** Move through the spaced between the cells
- **(C)** Move through the tonoplast of the vacuole
- **(D)** All of the above

76. The casparian strips are special structures which are present in the endodermis. These are used to:

- (A) Make the movement materials fast through the endodermis
- **(B)** Make the movement of materials slow through the endodermis
- (C) Block the movement of materials through the endodermis
- **(D)** None of the above

77. Which of the following processes does not take place during active transport?

- (A) The movement of materials form higher to lower concentration
- **(B)** The movement of materials form lower to higher concentration
- (C) The use of ATP during movement of materials
- **(D)** All of the above

78. Which of the followings is the process of osmosis?

- (A) The movement of materials from higher to lower concentration
- **(B)** The movement of materials from higher water potential to lower potential
- (C) The movement of material through semi permeable membrane
- (D) All of the above

79. The cytoplasmic strands which extend through the pores in adjacent cells are:

(A) Cell wall

- (B) Plasmodesmata
- (C) Endoplasmic reticulum
- (D) Cell skeleton

80. Which of the followings is water potential?

- (A) The change of water potential of a system due to presence of solute molecules
- **(B)** The pressure exerted by the protoplast against the cell wall of the plant cell
- **(C)** The total kinetic energy of the water molecules
- **(D)** None of the above

81.	Which	of the	followings	is osmotic	potential?
-----	-------	--------	------------	------------	------------

- (A) The change of water potential of a system due to presence of solute molecules
- **(B)** The pressure exerted by the protoplast against the cell wall of the plant cell
- **(C)** The total kinetic energy of the water molecules
- **(D)** None of the above

82. Which of the followings is pressure potential?

- (A) The change of water potential of a system due to presence of solute molecules
- (B) The pressure exerted by the protoplast against the cell wall of the plant cell
- **(C)** The total kinetic energy of the water molecules
- **(D)** None of the above

83. There are two cells A and B

A cell has water potential = -200 kPa

B cell has water potential = -300 kPa, then find:

- (A) Water will move form A to B
- **(B)** Water will move form B to A
- (C) Water will not move in any direction
- **(D)** None of the above
- 84. The solute potential of a cell = -1000 kPa, its pressure potential = 800 kPa, then its water potential will be:
 - (A) 1800 kPa

(B) -200 kPa

(C) -1800 kPa

- **(D)** 200 kPa
- 85. The solute potential of a cell = -2000, its pressure potential = 1300, then its water Solute potential will be:
 - (A) -3300

(B) −700

(C) 700

- **(D)** 3300
- 86. The incipient plasmolysis is a point at which:
 - (A) Plasmolysis starts
- **(B)** Plasmolysis stops
- **(C)** Plasmolysis is fast
- **(D)** Plasmolysis is slow
- 87. Maximum pressure potential is achieved when a cell is placed in:
 - (A) Distilled water
- **(B)** Water with low osmotic pressure

(C) Salty water

(D) None of the above

88.	Osn	Osmoregulation is a mechanism to:					
	(A)	Increase the osmotic pressure					
	(B)	Decrease the osmotic pressure					
	(C)	Make the osmotic pressure con	stant				
	(D)	All the above					
89.	9. The forces of attraction between the water molecule and trache						
	(A)	Adhesive forces	(B)	Cohesive forces			
	(C)	Tensile forces	(D)	Electrostatic forces			
90.	r molecule is:						
	(A)	Adhesive forces	(B)	Cohesive forces			
	(C)	Tensile forces	(D)	Electrostatic forces			
91.	Whi	ich of the followings is not rele	vant	to cohesion tension theory?			
	(A)	Transpiration	(B)	Adhesion			
	(C)	Diffusion	(D)	Tension			
92.	Hyd	lrostatic pressure in xyl <mark>em</mark> is ir	crea	sed when:			
	(A)	Root pressure is increased	(B)	Root pressure is decreased			
	(C)	Root pressure is static	(D)	All of the above			
93.	Gut	ttation is a process in which:					
	(A)	Water is lost from the stomata					
	(B)	Water is lost from the lenticels					
	(C)						
	(D) Water is lost from root						
94.	The	cause of Guttation is:					
	(A)	Transpiration	(B)	Ascent of sap			
	(C)	Root pressure	(D)	All of the above			
95.	Whi	hich of the following is relevant to lmbibition?					
	(A)	It is a process in which a substance absorbs water					
	(B)	swells					
	(C)	(C) It is a process in which a substance does not dissolve					
	(D)	All of the above					

96. Which of the followings is not an importance of imbibition?						bition?		
	(A)	It helps in the germination of seed						
	(B)	It helps in the osmosis of water						
	(C)	It helps in the ascent of	sap					
	(D)	It helps in the absorption of water by seed						
97.	Whi	ich of the pressures is re	esponsible	e fo	r the process	of bleedin	g?	
	(A)	Osmotic pressure	(1	B)	Solute pressu	ıre		
	(C)	Hydrostatic pressure	(1	D)	Tensile press	sure		
98. Which of the following transpirations is most abundant in plants?						ts?		
	(A)	Cuticular transpiration	(1	B)	Lenticular tra	anspiration		
	(C)	Stomatal transpiration	(1)	D)	None of the	above		
99.	The guard cells have special characteristics which help greatly in the opening and closing of stomata. This characteristic is:						ing	
	(A)	It has thick wall		B)	It has large s	ize		
	(C)	It has chloroplast	(1	D)	It has large v	acuole		
100.	Which of the followings in not true about the opening and closing of stomata?						of	
	(A)	Light helps in the opening and closing of stomata						
	(B)	K ion are responsible for the opening and closing of stomata						
	(C)	The osmosis of water is responsible for the opening and closing of stomata						
	(D)	All of the above						
101.	The	ra <mark>te</mark> of transpi <mark>r</mark> ation is	increased	d wl	ien:			
	(A)	Low light	(1	B)	Temperature	decrease		
	(C)	Humidity increased	(1	D)	CO ₂ is lower	red		
102.	The	hor <mark>m</mark> one abscisic acid	is respons	sibl	e for:			
	(A)	Opening of stomata	()	B)	Closing of st	omata		
	(C)	Both A and B	(1	D)	It never affect	et it		
103.	Whi	ich of the following is no	ot the imp	port	ance of trans	piration?		
	(A)	Ascent of sap	()	B)	Transport of	minerals		
	(C)	Exchange of gases	a	D)	Cooling of p	lants		

104.	Which of the following cells is not present in phloem cells?			
	(A)	Companion cells	(B)	Sieve tube cells
	(C)	Parenchyma cells	(D)	Sclerenchymatous cells
105.	Whi	ch of the following cells of phlo	oem :	are dead?
	(A)	Companion cells	(B)	Sieve tube cells
	(C)	Parenchyma cells	(D)	None of the above
106.	Whi	ch of the following is area of su	upply	of what?
	(A)	Leaf	(B)	Steam
	(C)	Root	(D)	Fruit
107.	Whi	ch of the following is area of si	ink of	f what?
	(A)	Leaf	(B)	Steam
	(C)	Root	(D)	Fruit
108.	The	average of the sugar movemen	ıt in t	<mark>che phloem is:</mark>
	(A)	1 meter per hour	(B)	2 meter per hour
	(C)	3 meter per hour	(D)	4 meter per hour
109.	Whi	ch of the followin <mark>g is not relev</mark>	ant to	pressure flow theory?
	(A)	Formation of starch from gluco	se	
	(B)	Consumption of glucose by res	pirati	on
	(C)	Increase of hydrostatic pressure	e in th	ne phloem cells
	(D)	Movement of water in to cells		
110.	A pl	an <mark>ari</mark> an does n <mark>o</mark> t need a separa	ate sy	stem for transportation because:
	(A)	It has flat body	(B)	It is acoelomate
	(C)	It has intestinal coeca	(D)	All of the above
111.	Whi	ch of the following animals has	s ope	n circulatory system?
	(A)	Hydra	(B)	Man
	(C)	House fly	(D)	Earthworm
112.	Whi	ch of the following animals ha	s clos	e circulatory system?
	(A)	Hydra	(B)	Snail
	(C)	House fly	(D)	Earthworm

113.	The	blood of the insects is called h	aemo	lymph because:
	(A)	It has hemoglobin	(B)	It is colorless
	(C)	It has lymph	(D)	It moves openly
114.	Whi	ch of the followings is not part	t of ha	nemocoel in cockroach?
	(A)	Perivisceral sinus	(B)	Perineural sinus
	(C)	Pericardial sinus	(D)	None of the above
115.		ich of the following functions in cockroach?	is not	performed by blood vascular system
	(A)	Transport of nutrients	(B)	Transport of gases
	(C)	Transport of waster material	(D)	Transport of water
116.		close circulatory system is em because it shows:	more	efficient than the open circulatory
	(A)	Rapid movement in body	(B)	Rapid exchange of material
	(C)	It does not come in contact	(D)	Economy of blood
117.	The	difference between the heart of	of ear	thworm and cockroach is that:
	(A)	The heart of earthworm is mor	e effic	eient than the cockroach
	(B)	The earth worm has more hear	ts whi	le cockroach has one heart
	(C)	The heart of earthworm is clos	ed wh	ile of cockroach is open
	(D)	None of the above		
118.	The	heart of which of the following	g anir	mals functions as single circuit heart?
	(A)	Fish	(B)	Amphibian
	(C)	Reptiles	(D)	Mammals
119.	The	number of chambers in the he	eart o	f the fishes is:
	(A)	Two	(B)	Three
	(C)	Four	(D)	Five
120.	The	number of chambers in the he	eart o	f Amphibians is:
	(A)	Two	(B)	Three
	(C)	Four	(D)	Five
121.	The	number of chambers in the he	eart o	f the Mammals is:
	(A)	Two	(B)	Three
	(C)	Four	(D)	Five

122.	The number of chambers in the heart of the birds is:					
	(A)	Two	(B)	Three		
	(C)	Four	(D)	Five		
123.	Whi	ch of the following arteries sup	pply k	plood to heart muscles?		
	(A)	Aorta	(B)	Pulmonary artery		
	(C)	Coronary artery	(D)	Renal artery		
124.	Whi	ch of the following chambers of	of the	heart of fish has oxyger	ated blood?	
	(A)	Sinus venosus	(B)	Atrium		
	(C)	Ventricle	(D)	None of the above		
125.	Whi bloo	ch of the following chambers d?	of the	heart of Amphibians h	as oxygenated	
	(A)	Right atrium	(B)	Left atrium		
	(C)	Ventricle	(D)	Sinus venosus		
126.		which animals of the following of does not take place in ventri	_	ing of oxygenated and	deoxygenated	
	(A)	Frog	(B)	Lizards		
	(C)	Crocodile	(D)	None of the above		
127.		ventricle <mark>of the crocodiles</mark> ar ing of oxygenate <mark>d</mark> and deoxyge		- · ·	ıt still there is	
	(A)	The membrane between the ventricles is very thin				
	(B)	The ventral aorta is undivided				
	(C)	The dorsal aorta is undivided				
	(D)	None of the above				
128.	There is separation of oxygenated and deoxygenated bloods in birds and mammals because:					
	(A)	The ventricles are completely of	divide	d		
	(B)	The ventral aorta is divided int	o aort	ic and pulmonary trunk		
	(C)	The aortic arch is divided into	two s	ystemic arches		
	(D)	None of the above				

129.	Which of the following blood vessels has oxygenated blood:			
	(A)	Pulmonary artery	(B)	Pulmonary vein
	(C)	Per-caval	(D)	Post-caval
130.	The	amount of plasma in blood is:		
	(A)	35%	(B)	45%
	(C)	55%	(D)	65%
131.	The	percentage of inorganic salts a	and ic	ons in the plasma is:
	(A)	0.6	(B)	0.7
	(C)	0.8	(D)	0.9
132.	The	normal pH of the human bloo	d is:	
	(A)	6.4	(B)	7.4
	(C)	8.4	(D)	9.4
133.	The	percentage of the plasma prot	ein <mark>i</mark> n	the blood i <mark>s:</mark>
	(A)	4-5	(B)	5-6
	(C)	7-8	(D)	7-9
134.	Whi	ich of the following pro <mark>te</mark> ins is	not p	resent in the plasma of the blood?
	(A)	Immunoglobulin or antibodie	s(B)	Prothrombin
	(C)	Haemoglobin	(D)	Fibrinogen
135.	Ster	oid hormo <mark>nes</mark> are synthes <mark>iz</mark> ed	from	:
	(A)	Nucleic acid	(B)	Cholesterol
	(C)	Amino acids	(D)	Carbohydrates
136.	Whi	ich <mark>of the followi</mark> ng substances	is no	t present in the plasma of blood?
	(A)	CO_2	(B)	Oxygen
	(C)	Urea	(D)	Proteins
137.	Whi	ich o <mark>f t</mark> he following cells is mos	t abu	ndant in the blood?
	(A)	Red blood cells	(B)	White blood cells
	(C)	Platelets	(D)	None of the above
138.	A cu	ibic millimeter blood of male c	ontai	ns RBC:
	(A)	5-5 ^{1/2} million	(B)	4-4 ^{1/2} million
	(C)	3-4 million	(D)	None of the above

139.	Whi	ich of the following not a Granul	locy	te?	
	(A)	Neutrophils ((B)	Eosinophils	
	(C)	Monocytes	(D)	Basophils	
140.	Pus	is formed from which of the foll	lowi	ng dead white blood cells	?
	(A)	Lymphocytes ((B)	Eosinophils	
	(C)	Monocytes	(D)	Basophils	
141.	Whi	ich of the following substances in	nhib	it the clotting of blood?	
	(A)	Histamine	(B)	Heparin	
	(C)	Interferon ((D)	None of the above	
142.	Whi	ich of the following structures is	not	cells?	
	(A)	Lymphocytes ((B)	Eosinophils	
	(C)	Monocytes	(D)	Platelets	
143.	Buf	fer is a substance which maintai	ns tl	he:	
	(A)	Concentration of proteins in bloo	od		
	(B)	pH of the blood			
	(C)	Amount of gases in the blood			
	(D)	Amount of water in the blood			
144.	Whi	ich of the following p <mark>rocesses is a</mark>	a ho	meostasis?	
	(A)	To maintain the amount of water	cor	nstant in the blood	
	(B)	To maintain the functioning of the	he b	ody	
	(C)	To maintain the process of respin	ratio	n	
	(D)	To maintain the muscular activit	У		
145.	Whi	ich o <mark>f the follo</mark> wings is not the fu	ncti	on of blood?	
	(A)	It transports gases in the body ((B)	It transports reproductive ce	ells in the body
	(C)	It transports food within the body ((D)	It transports waste materi	al in body
146.	Whi	ich of the followings is Leucaemi	ia?		
	(A)	Uncontrolled production of RBC	7		
	(B)	Uncontrolled production of WBG	С		
	(C)	Uncontrolled production of Plate	elets		
	(D)	All of the above			

147.	Tha	lassaemia is an abnormality of	:	
	(A)	RBC	(B)	WBC
	(C)	Platelets	(D)	None of the above
148.	Tha	lassaemia is indicated by:		
	(A)	Presence of leucocytes	(B)	Presence of microcytes
	(C)	Presence of Lymphocytes	(D)	Presence of Monocytes
149.	Whi	ch of the following is characte	ristic	of the oedema?
	(A)	Release of fluid from the body		
	(B)	Presence of excessive fluid in t	the tis	sues
	(C)	Presence of excessive proteins	in the	e body
	(D)	All of the above		
150.	Whi	ch of the followings is not the	reaso	<mark>n</mark> of the <mark>extracellular</mark> oedema?
	(A)	Abnormal leakage of fluid from	n th <mark>e</mark>	blood capill <mark>ari</mark> es
	(B)	Abnormal movement of fluid f	rom t	<mark>he outside of b</mark> ody
	(C)	Thy lymphatic system fails to l	oring	back fluid form the intestinal fluid
	(D)	The renal(kidney) retention of	slats	<mark>an</mark> d water
151.	Whi	ch of the followin <mark>gs is not th</mark> e	effect	of oedema?
	(A)	It disturbs the exchange and cocells	ncent	ration of minerals in the blood and body
	(B)	It affects the blood pressure		
	(C)	It increases the heart load		
	(D)	It destroy the cells		
152.	Whi	ch <mark>of the followi</mark> ng layers of ho	eart h	as intercalated discs?
	(A)	Epicardium	(B)	Myocardium
	(C)	En <mark>do</mark> cardium	(D)	None of the above
153.	The	valve present between right at	trium	and right ventricle is called:
	(A)	Tricuspid valve	(B)	Bicuspid valve
	(C)	Semilunar valve	(D)	None of the above
154.	The	valve present between left atr	ium a	nd left ventricle is called:
	(A)	Tricuspid valve	(B)	Bicuspid valve
	(C)	Semilunar valve	(D)	None of the above

155.	The	valve present at the base of ao	rta is	called:			
	(A)	Tricuspid valve	(B)	Bicuspid valve			
	(C)	Semilunar valve	(D)	None of the above			
156.	Whi	ich of the following arteries sup	ply l	blood to legs?			
	(A)	Femoral artery	(B)	Renal artery			
	(C)	Coronary artery	(D)	Pulmonary artery			
157.		Which of the following veins collects blood from the digestive system and supply blood to liver?					
	(A)	Hepatic vein	(B)	Hepatic portal vein			
	(C)	Renal veins	(D)	None of the above			
158.	The	voice of lubb is produced duri	ng th	e contraction of heats when:			
	(A)	Tricuspid valve is closed					
	(B)	Bicuspid valve is closed					
	(C)	Both tricuspid and bicuspid are	close	ed			
	(D)	Semilunar valves is closed					
159.	The	voice of dub is produced durin	ng the	e contraction of heart when:			
	(A)	Tricuspid valve is closed					
	(B)	Bicuspid valve is closed					
	(C)	Both tricuspid and bicuspid are	close	ed			
	(D)	Semilunar valves is close					
160.	The	heart of man contracts during	his l	ife for:			
	(A)	1.5 million	(B)	2.5 million			
	(C)	3.5 million	(D)	4.5 million			
161.	The	impulse of heart starts from:					
	(A)	Sino-atrial node	(B)	Atriventricular node			
	(C)	Bundle muscles	(D)	None of the above			
162.	Cya	nosis is a condition in which:					
	(A)	Oxygen supply to skin is stopped	(B)	The skin becomes blue			
	(C)	Blood supply to skin is stopped	(D)	None of the above			

163.	Which of the	following l	ayers is prese	nt in the arteries?
------	--------------	-------------	----------------	---------------------

- (A) Connective tissues
- **(B)** Smooth and circular muscles
- **(C)** Connective tissues
- **(D)** All of the above

164. Which of the followings is Atherosclerosis?

- (A) The breaking of the wall of the artery
- **(B)** The narrowness of the wall of the artery
- (C) The deposition of fats in the wall of the artery
- **(D)** None of the above

165. Which of the followings is the characteristic of capillaries?

- (A) It has three layers of endothelium
- **(B)** It has one layer of endothelium
- (C) It has one layer of connective tissues
- **(D)** It has one layer of elastic tissues

166. Which of the followings is the main function of capillaries?

- (A) Supply blood to tissues
- **(B)** Exchange of materials
- (C) Bring blood from tissues
- **(D)** Transport of materials

167. Interstitial is present:

- (A) With in the blood
- **(B)** With in capillaries
- (C) Among the cells
- **(D)** With in the cell

168. Which of the following layers is thin in veins?

- (A) Connective tissues and elastic fibers
- (B) Smooth and circular muscles
- (C) Connective tissues
- **(D)** All of the above

169. The movement of blood in veins takes place by the:

- (A) Contraction and relaxation of the wall of the vein
- **(B)** Contraction and relaxation of the skeletal muscles
- **(C)** Pressure of the blood in the vein
- **(D)** None of the above

170.	. Which of the following veins has oxygenated blood?			
	(A)	Renal vein	(B)	Hepatic vein
	(C)	Pulmonary vein	(D)	Coronary vein
171.	Whi	ich of the following materials i	s not	present in the interstitial fluid?
	(A)	Water	(B)	Salts
	(C)	Fats	(D)	Blood cells
172.	In w	which of the following blood ve	ssels v	valves are present?
	(A)	Artery	(B)	Vein
	(C)	Capillary	(D)	None the above
173.	Whi	ich of the following blood vesso	els ha	s high blood pressure?
	(A)	Artery	(B)	Vein
	(C)	Capillary	(D)	None the above
174.	In w	which of the following blood ve	ssels,	pulse is felt?
	(A)	Artery	(B)	Vein
	(C)	Capillary	(D)	None the above
175.	Whi	ich of the following blo <mark>od</mark> vesso	els is i	responsible for exchange of material?
	(A)	Artery	(B)	Vein
	(C)	Capillary	(D)	None of the above
176.	The	systolic pressure of the heart i	is:	
	(A)	80 mm Hg	(B)	100 mm Hg
	(C)	110 mmHg	(D)	120 mmHg
177.	The	diastolic pressure of the heart	is:	
	(A)	80 mm Hg	(B)	100 mm Hg
	(C)	110 mmHg	(D)	120 mmHg
178.	In v sam		owing	the systolic and diastolic pressure is
	(A)	Artery	(B)	Aorta
	(C)	Arterioles	(D)	Capillary
179.	Whi	ich of the following blood vesso	els ha	s greater cross sectional area?
	(A)	Artery	(B)	Vein
	(C)	Capillary	(D)	Aorta

180.	Whi	ich of the followings is hyperte	nsion	?		
	(A)	Low blood pressure	(B)	High blood pressure		
	(C)	Cholesterol	(D)	All of the above		
181.	Whi	ich of the followings is thromb	us?			
	(A)	A blockage of blood vessel	(B)	A clot in the vessel		
	(C)	A moving clot in vessel	(D)	None of the above		
182.	Whi	ich of the followings is embolus	s?			
	(A)	A blockage of blood vessel	(B)	A clot in the vessel		
	(C)	A moving clot in vessel	(D)	None of the above		
183.	Whi	ich of the following conditions i	s help	oful in th <mark>e</mark> prevention of <mark>heart</mark> attack?		
	(A)	Avoid too much fatty food rich	in ch	nolesterol		
	(B)	Maintain normal body weight				
	(C)	Control the blood pressure by i	egu <mark>l</mark> a	r walk and <mark>ex</mark> ercises		
	(D)	All of the above				
184.	Stro	ke is a condition in whic <mark>h:</mark>				
	(A)	Heart does not receive proper by	olood			
	(B)	Liver does not received proper	blood	1		
	(C)	Brain does not receive proper b	olood			
	(D)	None of the above				
185.	Whi	ich <mark>of the f</mark> ollow <mark>in</mark> gs is the char	acter	istic of the lymphatic system?		
	(A)	The system which transports m	ateria	al between two blood vessels		
	(B)	The system which transports m	nateria	al between the tissues		
	(C)	The system which transports material between the tissues and blood				
	(D)	None of the above				
186.	Whi	ich o <mark>f</mark> the followings is commoi	ı betv	veen lymph vessels and veins?		
	(A)	Both have small bore	(B)	Both have valves		
	(C)	Both have low blood pressure	(D)	Both are communicated		
187.	The	lymph vessels transfer the lym	ıph ir	nto the blood through:		
	(A)	Subclavian artery	(B)	Subclavian vein		
	(C)	Iliac artery	(D)	Iliac vein		

188. Which of the following organs filter the lymph?			lymph?	
	(A)	Heart	(B)	Liver
	(C)	Spleen	(D)	Pancreas
189.	Whi	ich of the followings is involved	d in h	umoral immune response?
	(A)	T-lymphocytes	(B)	Helper T-lymphocytes
	(C)	B-lymphocytes	(D)	None of the above
190.	Whi	ich of the followings is involve	d in c	ell mediated respons <mark>e?</mark>
	(A)	T-lymphocytes	(B)	Helper T-lymphocytes
	(C)	B-lymphocytes	(D)	None of the above
191.	The	T lymphocytes become matur	e in:	
	(A)	Thymus gland	(B)	Bursa of fabricius
	(C)	Bone marrow	(D)	Lymph node
192.	The	B-lymphocytes become matur	e in:	
	(A)	Thymus gland	(B)	Bursa of fa <mark>br</mark> icius
	(C)	Bone marrow	(D)	Lymph node
193.	Whi	ich of the followings is <mark>ac</mark> tive i	mmui	n <mark>it</mark> y?
	(A)	Injection of antibiotics	(B)	Injection of antigen
	(C)	Injection of antibody	(D)	None of the above
194.	Whi	ich of the f <mark>ollowings is passiv</mark> e	immı	ınity?
	(A)	Injection of antibiotics	(B)	Injection of antigen
	(C)	Injection of antibody	(D)	None of the above
195.		snake bites a person, which cted person?	of the	e following things is injected into the
	(A)	Antibody	(B)	Antigen
	(C)	Antisera	(D)	None the above
196.	The	main processes involved for g	etting	the material into and out of cells are:
	(A)	Endocytosis and exocytosis	(B)	Active and passive transport
	(C)	Diffusion and osmosis.	(D) .	All above
197.	Mos	t of the uptake of water and n	ninera	lls from soil takes place through:
	(A)	Roots	(B)	Epidermal layers
	(C)	Root cap	(D)	Root hair

198.	The	membrane of vacuole is name	d as:	
	(A)	Tonoplast	(B)	Apoplast
	(C)	Symplast	(D)	None of the above
199.	Myc	orrhizal fungi are present in h	ow m	any families of flowering plants?
	(A)	10%	(B)	80%
	(C)	100%	(D)	90%
200.	The	loss of liquid water through h	ydath	odes in plants is called:
	(A)	Imbibition	(B)	Transpiration
	(C)	Guttation	(D)	Bleeding
201.	In w	hich leaves the stomata are co	nfine	d to only <mark>the l</mark> ower epid <mark>erm</mark> is?
	(A)	Isobilateral	(B)	Dorsiventral
	(C)	Both A and B	(D)	None
202.	The	closing and opening of stomat	a is d	irectly controlled by:
	(A)	Temperature	(B)	Wind
	(C)	Light	(D)	Water
203.		pressure flow th <mark>eory is the nophloem of:</mark>	nost a	cceptable theory for the transport in
	(A)	Gymnosperm	(B)	Bryophytes
	(C)	Angiosperms	(D)	Pteridophyte
204.	In H	ly <mark>dr</mark> a ectoder <mark>ma</mark> l cells get food	l fron	n endodermal cells by:
	(A)	Exocytosis	(B)	Diffusion
	(C)	Endocytosis	(D)	Both A and B
205.		sites where exchange of mate e are:	rials	between blood and body tissues takes
	(A)	Arteries	(B)	Capillaries
	(C)	Lymph vessels	(D)	Veins
206.	The	heart of which of these function	ons as	a single circuit heart?
	(A)	Fishes	(B)	Reptiles
	(C)	Mammals	(D)	Birds

207.	The	The normal pH of human blood is:									
	(A)	4	(B)	7.4							
	(C)	7	(D)	4.7							
208.	The	average life span of RBC is ab	out:								
	(A)	06 months	(B)	04 months							
	(C)	One year	(D)	08 months							
209.	A w	hite substance called pus is pro	ed at infection sites due to killing of:								
	(A)	Monocytes	(B)	Erythrocytes							
	(C)	Leucocytes	(D)	Platelets							
210.	The	protective membrane of huma	an he	art is called:							
	(A)	Endocardium	(B)	Epicardium							
	(C)	Myocardium	(D)	Pericardium							
211.	Anti	iserum is a serum containing:									
	(A)	Haemoglobin	(B)	Antibodies							
	(C)	Lymph	(D)	Antigens							
212.	In h	umans the heart beat l <mark>as</mark> ts for	:								
	(A)	18 seconds	(B)	0.8 seconds							
	(C)	1.8 seconds	(D)	8 seconds							
213.	In tl	In the liver, every cell is in direct contact with:									
	(A)	None	(B)	Capillary							
	(C)	Artery	(D)	Vein							
214.	Hea	rt <mark>b</mark> eat involve <mark>s h</mark> ow many dis	tinct	stages.							
	(A)	One	(B)	Four							
	(C)	Three	(D)	Two							
215.	The	renal vein brings the impure l	blood	from:							
	(A)	Liver	(B)	Kidney							
	(C)	Lungs	(D)	Brain							
216.		roots of a plant not only —erals and water from the soil.		— the plant in soil, but also absorb							
	(A)	Acoelomate	(B)	Active							
	(C)	ATP	(D)	Anchor							

217.	The	root hair are extensions of —		—— cells of roots.					
	(A)	Acoelomate	(B)	Exosmosis					
	(C)	Epidermal	(D)	Isobilateral					
218.	The	passive uptake of minerals in	plant	s involves which process?					
	(A)	Exosmosis	(B)	Imbibition					
	(C)	Isobilateral	(D)	Diffusion					
219.		The passive and active uptake of minerals by root cells involve the use of energy in the form of:							
	(A)	ATP	(B)	Active					
	(C)	Anchor	(D)	Solute					
220.	Mos	at of ions are taken up by the re	oots b	y the process of:					
	(A)	Active transport	(B)	Epidermal					
	(C)	Anchor	(D)	ATP					
221.	Acti	Active transport is selective and is dependent on:							
	(A)	Exosmosis	(B)	Isobilateral					
	(C)	Respiration	(D)	Cuticular					
222.	The	movement of water out of the	e cell b	y osmosis is called:					
	(A)	Endosmosis	(B)	Leucaemia					
	(C)	Exosmosis	(D)	Isobilateral					
223.	Pur	e <mark>ha</mark> s maximum w	vater _l	potential.					
	(A)	Leucaemia	(B)	Water					
	(C)	Wind	(D)	Acoelomate					
224.	The	total water potential is sum o	f pres	sure potential and:					
	(A)	Xylem	(B)	Solute potential					
	(C)	Dixon	(D)	One					
225.	Coh	esion tension theory was prop	osed	by:					
	(A)	Palms	(B)	Diffusion					
	(C)	One	(D)	Dixon					

226.	The lignin and cellulose provide strength to cell wall of:									
	(A)	Splenn	(B)	Dixon						
	(C)	Xylem vessels	(D)	Diffusion						
227.	About what % of total water pulled up in the leaves is used by the plants in various activities including photosynthesis?									
	(A)	One	(B)	Three						
	(C)	Two	(D)	Four						
228.	The	volume of dry seed ma	y increase up	to 200 times by:						
	(A)	Imbibition	(B)	Palms						
	(C)	Osmosis	(D)	Splenn						
229.		The sap in some ———— contains sugar and water in addition to organic								
	and inorganic substances.									
	(A)	Dixon	(B)	Acoelomate						
	(C)	Splenn	(D)	Palms						
230.		night when the stomat s place in plants?	a are almos	t closed, through what	transpiration					
	(A)	Cuticular	(B)	Respiration						
	(C)	Water	(D)	Solute						
231.	In w	hich leave <mark>s the stom</mark> at	a are presen	t both in upper and low	er epidermis?					
	(A)) Isobilateral		Imbibition						
	(C)	Epidermal	(D)	Solute						
232.	The	ai <mark>r in</mark> motion is called:								
	(A)	Water	(B)	Solute						
	(C)	Wind	(D)	Wilting						
233.	Exce	ess l <mark>os</mark> s of water from t	he plant can	lead to:						
	(A)	Wind	(B)	Wilting						
	(C)	Water	(D)	Solute						
234.	Org	anic solutes are transp	orted by:							
	(A)	Isobilateral	(B)	Imbibition						
	(C)	Phloem tissue	(D)	Water						

235.	35. There is no body cavity in planaria hence, called as:						
	(A)	Pseudocoelomate	(B)	Cuticular			
	(C)	Acoelomate	(D)	Isobilateral			
236.	Mos	t of the plasma proteins are sy	sized in the:				
	(A)	Liver	(B)	Diffusion			
	(C)	Leucaemia	(D)	Systole			
237.	In tl	ne embryonic life RBC are for	med i	n liver and:			
	(A)	Imbibition	(B)	Leucaemia			
	(C)	Spleen	(D)	Diffusion			
238.	Wha	at is caused as a result of unco	ontrol	led production of white blood cells?			
	(A)	Blood clotting	(B)	Leucaemia			
	(C)	Imbibition	(D)	Isobilateral			
239.	One	complete heartbeat consists o	f one	diastole and one:			
	(A)	Cuticular	(B)	Systole			
	(C)	Nervous	(D)	Splenn			
240.	The	diameter of capillary can be c	hang	ed by:			
	(A)	Splenn	(B)	Leucaemia			
	(C)	Nervous stimulation	(D)	Phloem			
241.	Prot	th <mark>ro</mark> mbin:					
	(A)	Body defence	(B)	Blood clotting			
	(C)	Catalyst	(D)	Pace maker			
242.	Fibr	rinog <mark>in</mark> :					
	(A)	Blood clotting	(B)	Catalyst			
	(C)	Blueness of skin	(D)	Body defence			
243.	Imn	nunoglobulin:					
	(A)	Body defence	(B)	Blood clotting			
	(C)	Blueness of skin	(D)	Catalyst			

244.	Cho	lesterol:	
	())	D1 1	

- (A) Blood clotting
- (C) Body defence

- **(B)** Steroid hormones
- (D) Blueness of skin

245. Cyanosis:

- (A) Blood clotting
- (C) Pace maker

- (B) Blueness of skin
- (D) Body defence

246. Leucaemia:

- (A) High blood pressure
- (B) Cooley's anaemia

(C) Heart attack

(D) Blood cancer

247. Thalassaemia:

- (A) Excess of fluid in the body tissue
- (B) Cooley's anaemia
- (C) Low blood pressure
- (D) Blood cancer

248. Myocardial Infarction:

- (A) Low blood pressure
- (B) Heart attack
- (C) Cooley's anaemia
- **(D)** High blood pressure

249. Hypertension:

- (A) High blood pressure
- (B) Blood cancer
- (C) Cooley's anaemia
- **(D)** Low blood pressure

250. Oedema:

(A) Blood cancer

- **(B)** Low blood pressure
- (C) Cooley's anaemia
- **(D)** Excess of fluid in the body tissue

251. Cohesion tension theory:

- (A) Thomas B. Cooley
- (B) Sacks

(C) H. Van Mohl

(**D**) Dixon

252. Imbibition process:

(A) Dixon

(B) H. Van Mohl

(C) Sacks

(D) Thomas B. Cooley

(C) Blood formation

253.	Starch sugar Hypothesis:							
	(A)	H. Van Mohl	(B)	Ernst munch				
	(C)	Dixon	(D)	Sacks				
254.	Pres	ssure flow theory:						
	(A)	Ernst munch	(B)	Sacks				
	(C)	H. Van Mohl	(D)	Mandel				
255.	Sple	enomegaly:						
	(A)	Thomas B. Cooley	(B)	Dixon				
	(C)	Ernst munch	(D)	H. Van Mohl				
256.	Mye	elogenous cells:						
	(A)	Inactivate inflammation	(B)	Antibodies production				
	(C)	Blood formation	(D)	Bone marrow				
257.	Mic	rocytes:						
	(A)	Bone marrow	(B)	Enlargement of spleen				
	(C)	Transports oxygen	(D)	Blood formation				
258.	Lyn	nphocytes:						
	(A)	Enlargement of spleen	(B)	Antibodies production				
	(C)	Blood formation	(D)	Bone marrow				
259.	Eosi	inophil:						
	(A)	Inactivate inflammation	(B)	Transports oxygen				
	(C)	Bone marrow	(D)	Enlargement of spleen				
260.	Ery	th <mark>roc</mark> yte:						
	(A)	Bone marrow	(B)	Transports oxygen				

(D) Inactivate inflammation

Answers

Sr.	Ans.								
1.	(D)	2.	(A)	3.	(B)	4.	(B)	5.	(B)
6.	(B)	7.	(A)	8.	(B)	9.	(A)	10.	(B)
11.	(C)	12.	(A)	13.	(D)	14.	(D)	15.	(C)
16.	(A)	17.	(C)	18.	(B)	19.	(A)	20.	(C)
21.	(A)	22.	(C)	23.	(D)	24.	(D)	25.	(B)
26.	(C)	27.	(A)	28.	(B)	29.	(A)	30.	(C)
31.	(C)	32.	(C)	33.	(C)	34.	(B)	35.	(D)
36.	(D)	37.	(A)	38.	(B)	39.	(A)	40.	(B)
41.	(B)	42.	(A)	43.	(A)	44.	(A)	45.	(B)
46.	(B)	47.	(C)	48.	(C)	49.	(C)	50.	(B)
51.	(D)	52.	(D)	53.	(C)	54.	(D)	55.	(C)
56.	(A)	57.	(D)	58.	(A)	59.	(C)	60.	(A)
61.	(C)	62.	(D)	63.	(B)	64.	(C)	65.	(B)
66.	(A)	67.	(D)	68.	(D)	69.	(B)	70.	(B)
71.	(C)	72.	(D)	73.	(C)	74.	(A)	75.	(B)
76.	(C)	77.	(A)	78.	(D)	79.	(B)	80.	(C)
81.	(A)	82.	(A)	83.	(A)	84.	(B)	85.	(A)
86.	(A)	87.	(A)	88.	(C)	89.	(B)	90.	(B)
91.	(D)	92.	(A)	93.	(C)	94.	(C)	95.	(D)
96.	(B)	97.	(C)	98.	(C)	99.	(B)	100.	(D)
101.	(D)	102.	(B)	103.	(B)	104.	(D)	105.	(B)
106.	(A)	107.	(D)	108.	(A)	109.	(B)	110.	(D)
111.	(C)	112.	(D)	113.	(B)	114.	(D)	115.	(B)
116.	(D)	117.	(B)	118.	(A)	119.	(A)	120.	(A)
121.	(C)	122.	(C)	123.	(C)	124.	(D)	125.	(B)
126.	(D)	127.	(B)	128.	(B)	129.	(B)	130.	(C)

Sr.	Ans.								
131.	(D)	132.	(B)	133.	(D)	134.	(C)	135.	(D)
136.	(B)	137.	(A)	138.	(A)	139.	(C)	140.	(C)
141.	(B)	142.	(D)	143.	(B)	144.	(A)	145.	(B)
146.	(B)	147.	(A)	148.	(B)	149.	(B)	150.	(B)
151.	(D)	152.	(B)	153.	(A)	154.	(B)	155.	(C)
156.	(A)	157.	(B)	158.	(C)	159.	(D)	160.	(B)
161.	(A)	162.	(B)	163.	(D)	164.	(B)	165.	(B)
166.	(B)	167.	(C)	168.	(B)	169.	(B)	170.	(C)
171.	(D)	172.	(B)	173.	(A)	174.	(A)	175.	(C)
176.	(D)	177.	(A)	178.	(D)	179.	(C)	180.	(B)
181.	(B)	182.	(C)	183.	(D)	184.	(C)	185.	(C)
186.	(B)	187.	(B)	188.	(C)	189.	(B)	190.	(A)
191.	(A)	192.	(D)	193.	(B)	194.	(C)	195.	(C)
196.	(C)	197.	(D)	198.	(A)	199.	(D)	200.	(C)
201.	(B)	202.	(C)	203.	(C)	204.	(B)	205.	(B)
206.	(A)	207.	(B)	208.	(B)	209.	(C)	210.	(D)
211.	(D)	212.	(B)	213.	(C)	214.	(B)	215.	(D)
216.	(D)	217.	(C)	218.	(D)	219.	(A)	220.	(A)
221.	(C)	222.	(C)	223.	(B)	224.	(B)	225.	(D)
226.	(C)	227.	(A)	228.	(A)	229.	(D)	230.	(A)
231.	(A)	232.	(C)	233.	(B)	234.	(C)	235.	(C)
236.	(A)	237.	(C)	238.	(B)	239.	(B)	240.	(C)
241.	(C)	242.	(A)	243.	(A)	244.	(B)	245.	(B)
246.	(D)	247.	(B)	248.	(A)	249.	(D)	250.	(D)
251.	(C)	252.	(A)	253.	(A)	254.	(A)	255.	(A)
256.	(D)	257.	(B)	258.	(B)	259.	(A)	260.	(B)