R desde Cero

Yanina Bellini Saibene
@yabellini
bellini.yanina@inta.gob.ar

Antes de arrancar

un super repasito de la 1ra clase

¡Ayuda!

- Para ayuda con R la fuente principal es Google
 - Agregando "R tidy" a cualquier pregunta (mejor en inglés)
 - Incluyendo mensajes de error (mejor en inglés)
 - Los foros (StackOverflow, Rstudio Community)
 - Las hojas de referencia
 - La comunidad R

CalculadoRa

R también es una calculadora

```
> 1 + 2
```

Respuesta

```
[1] 3
```

• Si quiero guardar la respuesta

```
> resultado <- 1 + 2
```

Para ver la respuesta

```
> resultado
```


Variable: un solo dato.

Vector: varios datos.

Condición especial:

 Todo en el vector debe ser el mismo tipo de datos (double, integer, complex, logical o character)

data.frame: matriz de datos, varias filas y columnas

las columnas de datos que cargamos en los data frames son todos vectores

Por eso R hace que todo en una columna sea el mismo tipo de datos básicos.

mmmm.....y como es eso?

Entremos a Rstudio....

Cantidad de filas

filtro

R

> kable(aerolineas)

¿A qué hace referencia UNA fila en este conjunto de datos de vuelos?

- A. Datos de una aerolínea
- B. Datos de un vuelo.
- C. Datos de un aeropuerto.
- D. Datos de vuelos múltiples.

¿Cuáles son algunos ejemplos en este conjunto de datos de variables categóricas?

¿Qué las hace diferentes a las variables cuantitativas?

¿Qué ejemplos de variables **cuantitativas** encontramos en vuelos?

Importando y explorando datos propios

Mate break

Datos ordenados y datos limpios

El 80% del tiempo del **análisis de datos** se **utiliza** en el proceso de **limpieza y preparación** de los datos.

Esta tarea se realiza varias veces durante el análisis de los datos

Datos ordenados (Tidy Data): **estructuración** de conjuntos de datos para **facilitar el análisis.**

Principios de Tidy Data

CULTIVAR	Días a floración	Altura (cm)	Vuelco (%)	Densidad (pl/ha)	Humedad de grano	Rendimiento de granos (kg/ha)	Aceite (%)
ACA 203 CL	85	181	0	48554	6.1	2719	43.6
ACA 861	85	166	0	47521	6.1	2319	51.8
ACA 869	87	189	3	45455	6.0	2300	54.0

Observación

Variable ó Atributo

- 1. Cada variable es una columna.
- 2. Cada **observación** es una **fila**.
- 3. Cada **tipo de unidad de observación** forma una **tabla**.

- Los encabezados de columna son valores, no nombres de variables.
- Múltiples variables se almacenan en una columna.
- Las variables se almacenan tanto en filas como en columnas.
- Múltiples tipos de unidades de observación se almacenan en la misma tabla.
- Una sola unidad de observación se almacena en varias tablas.

Los encabezados de columna son valores, no nombres de variables

DEPART	CABECERA	SUP_JURI	AVENA	CEBADA	CENTENO	TRIGO	GIRASOL	MAIZ
CHICALCO	LA PASTORIL	9117	0	0	0	0	0	0
LIMAY MAHUIDA	LIMAY MAHUIDA	9985	0	0	0	0	0	0
CHALILEO	SANTA ISABEL	8917	0	0	0	0	0	0
HUCAL	BERNASCONI	6047	3363	182	219	12606	1289	226
LOVENTUE	VICTORICA	9235	208	39	77	1256	603	337
RANCUL	RANCUL	4933	2679	413	1614	12135	33910	14696

DEPART	CABECERA	SUP_JURI	CULTIVO	SUPERFICIE
CHICALCO	LA PASTORIL	9117	AVENA	0
CHICALCO	LA PASTORIL	9117	CEBADA	0
CHICALCO	LA PASTORIL	9117	CENTENO	0
CHICALCO	LA PASTORIL	9117	TRIGO	0
LOVENTUE	VICTORICA	9235	GIRASOL	0
CHICALCO	LA PASTORIL	9117	MAIZ	0

Múltiples variables se almacenan en una columna

CULTIVAR	Días a floración	Días a madurez	Altura (cm)	Vuelco (%)
ACA 203 CL (ACA)	85	122	181	0
ACA 861 (ACA)	85	122	166	0
Aguara 6 (ADVANTA)	85	126	174	0
CACIQUE 312 CL (EL CENCERRO)	90	127	161	1
KWS 480 CL (KWS)	90	127	164	1
LG 56.78 CLP (LIMAGRAIN)	88	127	188	4

CULTIVAR	EMPRESA	Días a floración	Días a madurez	Altura (cm)	Vuelco (%)
ACA 203 CL	ACA	85	122	181	0
ACA 861	ACA	85	122	166	0
Aguara 6	ADVANTA	85	126	174	0
CACIQUE 312 CL	CENCERR	90	127	161	1
KWS 480 CL	KWS	90	127	164	1
LG 56.78 CLP	LIMAGRAIN	88	127	188	4

Síntomas comunes de datos desordenados Las variables se almacenan tanto en filas como

en co	lum	ınas	•										٦
id	año	mes	elemento	1	2	3	4	5	6	7	8		
MX17004	2010	1	tmax		_	_					_		
MX17004	2010	1	$_{ m tmin}$	_	_	_	_	_	_	_	_		
MX17004	2010	2	tmax	—	27.3	24.1	_	_	_	_	_		
MX17004	2010	2	$_{ m tmin}$	-	14.4	14.4	_	_	_	_	_		
MX17004	2010	3	$_{ m tmax}$	_	_	_	_	32.1	_	-	_		
MX17004	2010	3	tmin	—	-	_	_	14.2	_	+	_		
										<u></u>			
							i	d	→	fecha		$_{ m tmax}$	tmin
							1	MX1700	4	2010-	01-30	27.8	14.5
							I	MX1700	4	2010-	02-02	27.3	14.4
								MX1700	-		02-03	24.1	14.4
								MX1700		2010-		29.7	13.4
								MX1700	100		02-23	29.9	10.7
								MX1700			03-05	32.1	14.2
								MX1700			03-10	34.5	16.8
TAI								MX1700			03-16	31.1	17.6
								MX1700			04-27	36.3	16.7
_							1	MX1700	4	2010-	05-27	33.2	18.2

Múltiples tipos de unidades de observación se almacenan en la misma tabla.

ID	∇	PROVIN	CAP_PROV	DEPART	CABECERA	SUP_JURI	AVENA	CEBADA	CENTENO
42	2063	LA PAMPA	SANTA ROSA	CHICALCO	LA PASTORIL	9117	0	0	0
42	2091	LA PAMPA	SANTA ROSA	LIMAY MAHUIDA	LIMAY MAHUIDA	9985	0	0	0
42	2049	LA PAMPA	SANTA ROSA	CHALILEO	SANTA ISABEL	8917	0	0	0
42	2077	LA PAMPA	SANTA ROSA	HUCAL	BERNASCONI	6047	3363	182	219

Los datos de provincia y capital de la provincia se repite por cada departamento

Tabla Provincias

Tabla Departamentos

Tabla CultivosXDeptos

Múltiples tipos de unidades de observación se almacenan en la misma tabla.

Los datos de provincia y capital de la provincia se repite por cada departamento

Tabla Departamentos

Tabla CultivosXDeptos

Múltiples tipos de unidades de observación se almacenan en la misma tabla.

Tabla Provincias

PROVIN	CAP_PROV
LA PAMPA	SANTA ROSA

Tabla Departamentos

ID	_	PROVIN	DEPART	CABECERA	SUP_JURI
	42063	LA PAMPA	CHICALCO	LA PASTORIL	9117
	42091	LA PAMPA	LIMAY MAHUIDA	LIMAY MAHUIDA	9985
	42049	LA PAMPA	CHALILEO	SANTA ISABEL	8917
	42077	LA PAMPA	HUCAL	BERNASCONI	6047

Tabla CultivosXDeptos

DEPART	CULTIVO	SUPERFICIE
42077	AVENA	3363
42077	CEBADA	182
42077	CENTENO	219

Tidy Data

- Cuando se recolectan datos por primera vez, siempre es mejor pensar una estructura ordenada desde el inicio
- Cuando nos envían datos ya registrados, debemos analizar su estructura y generar una que sea ordenada
- La estructura ordenada hará la tarea de manejo de datos mucho más sencilla.

Ordenemos datos juntos

• ¿Esta tabla está ordenada (Tidy)?

ID del envío	3651	3655	3662	3663
Título	Telemetría L	Evaluación d	Desarrollo de	Caminos Rura
Resumen	Organizacion	La evapotran	Existe una br	En un país tar
Primer nombre (Autor 1)	Pablo	Mónica	Santiago	diego
Segundo Nombre (Autor 1)	Guillermo			gabriel
Apellidos (Autor 1)	Di Nanno	Воссо	Lombardo	giordano
País (Autor 1)	AR	AR	UY	AR
Filiación (Autor 1)	INTA - Institu	Facultad de (Instituto Plai	26884654
Correo electrónico (Autor 1)	pablo.dinani	mbocco@gm	slombardo@	dgiordano@t
URL (Autor 1)			http://www.	planagropecu
Resumen biográfico (Autor 1)	Investigador	en tecnologí	Agrónomo	Director de C
Primer nombre (Autor 2)		Miguel	Federico	Maria
Segundo Nombre (Autor 2)				Beatriz
Apellidos (Autor 2)		Nolasco	Arias	Rodulfo
País (Autor 2)		AR	UY	AR
Filiación (Autor 2)		Facultad de (Instituto Plan	n Agropecuari
Correo electrónico (Autor 2)		mnolasconqu	farias@plana	miriambrodu
URL (Autor 2)				
Resumen biográfico (Autor 2)			Desarrollado	Directora de
Primer nombre (Autor 3)		Silvina		Griselda
Segundo Nombre (Autor 3)				
Apellidos (Autor 3)		Sayago		Galeano

Mate break

Seguimos ordenando: Proyectos

La vida de muchos proyectos comienza como notas aleatorias, algún código, luego un manuscrito, y eventualmente **todo está mezclado.**

Carpeta: ProyectoAnalisisDeDatos

Informe1.docx Informe2.pdf Grafico1.jpg Nuevografico1.jpg Informeconcorrecciones.docx Informe_final2-docx Informemasfinal.docx Tabla1.xlsx Resultados.xlsx Informe ultimodeverdad.docx Informe listoparaentregar.docx ProcesoData.R Resultados final.xlsx

Seminario.pptx
PresentacionDirector.pptx
Para_leer_urgente
Datosnuevos.xlsx

Hay muchas razones de porqué debemos siempre evitar esto

- Es realmente difícil saber cuál versión de tus datos es la original y cuál es la modificada;
- Es muy complicado porque se mezclan archivos con varias extensiones juntas;
- Probablemente te lleve mucho tiempo encontrar lo que necesitas, y relacionar las figuras correctas con el código exacto que ha sido utilizado para generarlas.
- Imaginate 3, 6 0 12 meses después de haberlo hecho.

Un buen diseño del proyecto hará tu vida más fácil

- Ayudará a garantizar la integridad de tus datos;
- Hace que sea más simple compartir tu código con alguien más (un compañero de trabajo, colaborador o supervisor);
- Permite relacionar fácilmente tu código con las partes y versiones de tu informe;
- Hace que sea más fácil retomar un proyecto después de un descanso.

A ver...vamor a ordenarnos un poquitito

Entremos a RStudio

Recomendaciones para la organización de proyectos

- Coloque cada proyecto en su propio directorio, el cual lleva el nombre del proyecto.
- Coloque documentos de texto asociados con proyecto en el directorio doc.
- Coloque los datos sin procesar y los metadatos en el directorio data, y archivos generados durante la limpieza y análisis en el directorio resultados.
- Coloque los scripts fuente del proyecto y los programas en el directorio codigo, y programas traídos de otra parte o compilados localmente en el directorio bin.
- Nombre todos archivos de tal manera que reflejen su contenido o función.

¿Preguntas, comentarios?

Eso es todo por hoy

Fuentes de esta ppt:

- https://swcarpentry.github.io/rnovice-gapminder-es/
- https://moderndive.com/index.html
- https://flor14.github.io/Fundament os de R/
- https://vita.had.co.nz/papers/tidydata.pdf

