Data for Decision Makers: Data Concepts and Applications

Course Handbook

Proochista Ariana Ernest Guevarra

25 May 2025

Table of contents

Preface			5		
ı	Da	ata Concepts	7		
1	Introduction		8		
	1.1	Data-driven decision-making			
	1.2	About this course	1		
		1.2.1 Objective	1		
		1.2.2 Case studies	1		
		1.2.3 The who, what, when, where, how, and			
		why framework	1		
		References	1		
2	Case study: Data use and analytics in water qual-				
_	ity management				
	2.1	Leadership role	1		
	2.2	Balancing existing practices	1		
	2.3	Measuring success	1		
	2.4	Conclusion	1		
		References	1		
3	Case Study: Enhancing Local Governance				
	Through Data-Driven Decision-Making in In-				
	donesia				
	3.1	Context	1		
	3.2	Current Situation	1		
	3.3	Challenges	2		
	3.4	Opportunities	2		
	3.5	Recommendations	2		
	3.6	Conclusion	2		
		References	2		
4	Case Study: The Use of Data in Local Gover-				
		ce - A Michigan Perspective	2		
	4.1	Michigan Public Policy Survey	2		

	4.2	Current Situation of Policy and Decision-		
		Making in Michigan Local Governments	22	
	4.3	Challenges and Concerns	23	
	4.4	Opportunities and Benefits	23	
	4.5	Conclusion	24	
	4.6	Recommendations	24	
		References	25	
5	Cas	e Study: Enhancing Data-Driven Decision-		
	Mak	king in Local Governance - A Focus on		
	Turl	kana County	26	
	5.1	Introduction	26	
	5.2	Background	26	
	5.3	Current Situation of Policy and Decision-Making	27	
	5.4	Challenges in Data Utilisation for Governance	27	
	5.5	Opportunities for Enhancing Data Use	27	
	5.6	Conclusion	28	
	5.7	Recommendations	28	
		References	28	
6	Case	e Study: Indigenous Data Governance in the		
		ted States	29	
	6.1	Introduction	29	
	6.2	Current Strategies	29	
	6.3	Challenges	30	
	6.4	Opportunities	30	
	6.5	Conclusion	31	
		References	31	
7	7 All about data		32	
	7.1	Data Sources	32	
	7.2	Data Formats	32	
	7.3	Data Structures	33	
	7.4	Data Types	33	
	7.5	Data Systems	34	
	7.6	Integration and Considerations	34	
		7.6.1 Data flow	34	
		7.6.2 Interconnected Components	34	
II	Da	ita Management	35	
8	Dat	a privacy, security, and protection	36	

9	Data tools	37
10	Data entry system	38
Ш	Data Analysis and Visualisation	39
11	Introduction to data analysis	40
Ex	ploratory data analysis	41
Ind	lex	42

Preface

In today's data-driven world, the responsibility of public service demands more than experience and intuition; it requires evidence-based decision-making grounded in a deep understanding of data. For government officials at all levels, from local administrators to national policymakers, data is not just a tool - it is an indispensable asset in crafting policies that are effective, equitable, and accountable. Data for Decision Makers is developed with you in mind: to support those entrusted with public leadership in leveraging data to serve communities more effectively.

Across the domains of public health, education, transportation, environmental policy, and beyond, the availability of data has never been greater. But with this abundance comes complexity. Making sense of it - identifying relevant patterns, understanding root causes, evaluating outcomes, and anticipating future trends - requires more than access. It demands a strong foundation in the principles and practices of modern data use.

This course highlights how data literacy empowers government officials to navigate uncertainty, combat misinformation, and design policies that truly respond to the needs of the public. From statistical reasoning and geographic information systems to predictive modelling and real-time dashboards, the tools of data are transforming governance. Understanding these tools is essential to strengthening transparency, accountability, and public trust.

This course bridges the gap between technical expertise and policy leadership. It offers clear, accessible explanations of core data concepts alongside practical examples from the public sector. Whether your role involves strategic planning, budget allocation, programme evaluation, or legislative development, this course will help you make more informed, timely, and impactful decisions.

Public service is a profound responsibility. By embracing the potential of data, government leaders can enhance their ability to meet that responsibility with clarity, foresight, and integrity.

Part I Data Concepts

1 Introduction

In an era defined by information, the ability to make sound decisions increasingly hinges on the intelligent use of data. Across sectors and industries, from healthcare and education to finance and public policy, decision-makers are confronted with unprecedented volumes of information. Yet, it is not the sheer quantity of data that holds value, but our capacity to interpret, understand, and apply it effectively.

Data is more than numbers on a spreadsheet; it is the language of modern insight. When approached with the right tools and understanding, it becomes a powerful asset for identifying patterns, predicting outcomes, evaluating strategies, and ultimately, improving results. For decision-makers, this means developing fluency not just in reading reports, but in questioning assumptions, validating sources, and interpreting results within context.

Understanding modern data concepts - from statistical reasoning and data visualisation to machine learning and real-time analytics - is no longer optional. It is foundational. These concepts empower leaders to move beyond intuition and anecdote, and toward evidence-based action. As data continues to shape the world around us, the ability to engage with it critically and creatively is becoming an essential skill.

This course aims to equip its participants with both the conceptual grounding and practical knowledge to navigate this landscape. Whether you are a seasoned executive, a policy analyst, or an emerging leader, this course is designed to bridge the gap between data science and decision-making. It demystifies the tools and techniques of modern data analysis and offers real-world applications that demonstrate how data can drive progress and innovation.

Good decisions are not just supported by data; they are shaped by those who know how to use it wisely.

1.1 Data-driven decision-making

Data-driven decision-making or DDDM refers to the process of making decisions based on data and information rather than intuition or experience alone. It involves collecting, analysing, interpreting, and presenting data to support decision-making processes^{1–3}.

In this approach, decisions are made by relying on facts, figures, trends patterns, and insights derived from data. The goal is to make objective, evidence-based decisions that are more accurate, consistent, and transparent.

Note 1: Features of data-driven decision-making

Data-driven decision-making is widely used in various fields such as business, healthcare, finance, education, and government. It allows organisations and individuals to:

- 1. **Informed Decisions** make decisions based on data rather than assumptions or guesswork;
- 2. **Improved Accuracy** educe errors and biases by relying on objective information;
- 3. **Efficiency** Optimise resources and processes by identifying trends, patterns, and inefficiencies;
- 4. **Transparency** ensure that decisions are made in an open and transparent manner; and,
- 5. **Scalability** Apply to large-scale operations or complex problems where traditional methods may be insufficient.

Data-driven decision-making often involves the use of tools, techniques, and technologies such as data analytics, machine learning, artificial intelligence, and visualisation software. By leveraging these tools, organisations can transform raw data into actionable insights that drive better outcomes.

In today's organisations, this approach has become increasingly important as it allows for more objective and accurate decision-making. The process typically includes identifying relevant data sources, applying analytical techniques, and

leveraging technologies like machine learning, artificial intelligence, and visualisation tools to transform raw data to actionable insights that drive better outcomes.

An organisation that is data-driven also benefits in being able to spot opportunities and threats early. By analysing data regularly, organisations can anticipate changes and act before problems arise.

Saving costs is another advantage. In a survey of executives of Fortune 1000 companies regarding their data investments since 2012 commissioned by the Harvard Business Review, nearly half (48.4%) of respondents report that they are documenting measurable results from their investments in big data and 80.7% of the executives describing their investments in big data as being successful^{1,4}.

1.2 About this course

In this course, we will explore everything from the basics such as what data is and why it matters to more advanced topics like data collection, storage, analysis, and visualisation. Through practical examples and real-world applications, you'll learn how to harness the power of data to drive insights, solve problems, and make informed decisions in fields ranging from business and technology to healthcare and beyond. By the end of this course, you'll not only understand the importance of data but also be prepared to apply these concepts in your own work.

1.2.1 Objective

All these towards the overall objective of making a case for shifting to more data-driven decision-making processes.

Specifically, by the end of the course, participants are expected to be able to:

- 1. Articulate the value of data driven decision making and programming;
- 2. Critically assess a data by it source, format, structure, types, and classes;

- 3. Critically evaluate the state of their own dataset based on stated best practices;
- 4. Outline the strengths and weaknesses of various types of data tools;
- 5. Demonstrate capacity to use spreadsheet software to clean, process, and structure data; and,
- 6. Demonstrate capacity to use spreadsheet software to perform data analysis.

1.2.2 Case studies

To achieve these objectives, the course employs the **case-study method**, an approach that involves in-depth examination of a specific individual, group, organisation, or event to understand a complex issue in its real-life context.

For this course, the **five case studies** (one for each of the next five chapters) provide a more nuanced narrative of opportunities and challenges of adopting a data-driven approach to decision-making specifically in the context of governance within governments (rather than just in businesses).

1.2.3 The who, what, when, where, how, and why framework

When going through these five case studies, it is recommended to first go through them using the *who*, *what*, *when*, *where*, *how*, and *why* framework as a way to get a firm grounding on the case study details.

The "who, what, when, where, how, and why" framework is a systematic approach to understanding and analysing data. Another term that can be used for this framework is descriptive metadata which is data that provides information about other data, but not the content itself. So, if I have an image, the metadata wouldn't be the actual picture, but the details about who took it, when, or where.

Here's a structured explanation of each component within this framework:

Who

Refers to the individuals or entities involved with the data. This includes stakeholders, users, customers, employees, or business partners who interact with or are affected by the data. More specifically, this may include, among others, information on:

- who owns the data;
- who manages the data;
- who collects the data;
- who stores the data; and,
- who protects/safeguards the data.

What

Describes what the data is about and its type, nature, and provenance. It specifies what information is available, such as numerical data, text, images, etc., which helps in understanding the scope and relevance of the data, and how to work with the data.

When

Pertains to the timing, period, and/or frequency in which the data was/is being collected, recorded, or analysed.

Where

Indicates the location where the data is stored or accessed. This could be within a database, on a server, or even from external sources like devices or sensors, providing context about data accessibility and storage.

How

Focuses on the methods used to collect, process, or extract the data. This includes techniques such as surveys, sensor readings, or existing records, which helps in understanding how reliable and comprehensive the data is.

Why

Asks for the purpose behind collecting and analysing the data. It clarifies why this information is being gathered i.e., whether it's for reporting, decision-making, monitoring performance, or other objectives. This in turn guides appropriate actions based on the data insights.

Summary

Using this structured approach helps clarify each aspect of data, ensuring clarity and focus. It is particularly useful for complex datasets and can help address varying questions based on the user's role, such as an analyst versus a stakeholder.

In summary, using the "who, what, when, where, how, and why" framework provides a systematic method to identify key elements of data, ensuring clarity and focus in data management and analysis.

References

2 Case study: Data use and analytics in water quality management

This is a case study about the Division of Water (DOW), a local government agency in the State of New York, which has attempted to improve its analytic capabilities by developing efficient data management practices, suggest governance models, and identify analytic techniques potentially beneficial to addressing harmful algal blooms (HABs; see Figure 2.1) and high chloride concentrations³.

Figure 2.1: Harmful algal blooms (HABs) may look like green dots, clumps or globs on the water surface.

The DOW faces challenges in using its legacy systems and traditional analytical methods effectively in addressing the problems of HABs and high chloride levels. DOW aims to enhance its decision-making processes through DDDM by improving its ability to gather and analyse data more effectively, beyond their current capabilities, to better inform policy decisions.

From this process, nine key factors across four overarching determinants have been observed and articulated as being crucial to consider by an organisation in implementing a comprehensive strategy for DDDM (see Note 2). These factors interrelate and influence each other, requiring a holistic approach to ensure successful adoption.

Note 2: Nine key factors for an effective DDDM strategy

Data determinants

DOW bases its decisions on internal water data from sampling and assessments, supported by a quality assurance process ensuring reliability and compliance with federal standards like those of the Environmental Protection Agency (EPA). Despite these strengths, challenges include manual sampling processes, incomplete data coverage, missing values, compatibility issues, and interoperability problems that hinder seamless data exchange and system integration.

1. Data quality and coverage Ensuring robust data infrastructure is foundational, as it supports the collection, storage, and accessibility of high quality data necessary for effective analysis.

2. Compatibility and operability

DOW manages water-related data through interconnected teams responsible for producing and analysing information from various sources like lakes and streams. While collaboration is facilitated by multiple analysts and teams, this setup poses challenges in maintaining consistent and compatible datasets due to differing file versions and a lack of field locking in their proprietary Filemaker system, risking data integrity. Additionally, varying levels of observation across systems complicate integration efforts.

Data compatibility and interoperability ensure that information flows freely, efficiently, and accurately across different systems, which is vital for organisations to function well, innovate, comply with regulations, and adapt as needed.

3. External data

DOW utilises external datasets to address complex environmental and social issues beyond its internal data. While this approach enhances knowledge creation by incorporating charts and maps that combine water chemistry with geographical data, it faces challenges. These include potential quality issues due to lack of control over external sources and incompatibility with specific analytical needs, as seen with United States Geological Survey (USGS) land-cover data not providing sufficient detail on farm types affecting water bodies.

Utilisation of external data potentiates and enriches an organisation's existing information which can lead to better and richer insights that can be derived from them.

Technological determinants

- 4. Information systems and software
- 5. Analytical techniques Investment in both skilled personnel and advanced tools is essential to transform raw data into actionable insights.

Organisational determinants

- 6. Cooperation
- 7. Culture

Institutional determinants Engaging with external institutions and navigating legal frameworks can provide resources and support, or pose restrictions, respectively.

- 8. Privacy and confidentiality Addressing legal requirements regarding data protection is crucial to ensure comprehensive analyses.
- Public procurement Navigating bureaucratic processes efficiently can accelerate tool adoption without unnecessary delays.

These key determinants are interrelated and interdependent. For example, if an organisation has strong data infrastructure (determinant 1) but lacks the right analytical tools or skilled personnel (determinant 2), their DDDM efforts will be hampered. Similarly, even with good internal structures (determinant 3), if external regulations make it hard to access necessary tools or collaborate externally (determinants 7 and 9), progress is still limited. Without proper stakeholder engagement (determinant 6) and user involvement (determinant 5), the organisation might develop solutions in isolation, leading to less effective decisions. Moreover, privacy constraints (determinant 8) can affect data availability, which in turn impacts analytical capabilities since data is a key input.

While DDDM is often seen as a technical issue involving tools and data, it's also deeply influenced by organisational and institutional factors. This makes sense because any significant change requires not just new technology but also cultural shifts within the organisation to embrace these changes.

These determinants also influence the ability of an organisation to adapt over time. For example, if the organisation faces challenges in public procurement, which is a structural issue, this could create delays that affect the organisation's overall strategy. Conversely, strong stakeholder engagement might mitigate some of these delays by providing alternative solutions or resources.

2.1 Leadership role

Leadership plays a critical part in driving organisational change. Without supportive leadership, many of these determinants could be obstacles rather than opportunities. For instance, if leaders aren't committed to DDDM, they might not push for necessary cultural shifts or investment in new tools.

2.2 Balancing existing practices

The balance between existing practices and new methods is important. While the state agency was implementing DDDM, traditional approaches were still relied upon. This blend can be beneficial initially but may need careful management to avoid conflicts or inefficiencies as newer methods prove their worth.

2.3 Measuring success

How would this state agency assess its progress in implementing DDDM? They might look at metrics like the quality and timeliness of decisions, reduction in issues (like HABs), efficiency improvements, and user satisfaction. These outcomes can help gauge whether their efforts are paying off despite facing various challenges.

2.4 Conclusion

A tailored strategy that evaluates specific organisational strengths and weaknesses across these determinants is essential for effective DDDM implementation. This approach ensures that each organisation maximises opportunities while minimising challenges, leading to more informed and efficient decision-making processes.

References

3 Case Study: Enhancing Local Governance Through Data-Driven Decision-Making in Indonesia

In an era where technology and data are transforming governance, adopting a data-driven approach is crucial for improving decision-making and fostering transparency. This case study explores Indonesia's journey toward integrating data into local governance, highlighting both challenges and opportunities, and offers recommendations for mid-level government officials to enhance their governance strategies⁵.

3.1 Context

Indonesia, the largest archipelagic nation in the world, operates under a federalist system with provinces and regencies. With a diverse population of over 270 million people, it faces significant challenges such as inequality, environmental degradation, and sustainable development. These issues necessitate effective local governance to ensure equitable growth and environmental preservation.

3.2 Current Situation

Currently, Indonesia's policy-making is often influenced by top-down directives rather than data-driven insights. Decisions are frequently based on the instructions of superior officials due to a history of autocratic administration. Additionally, there is a lack of standardised data quality frameworks, leading to fragmented and siloed data systems. Limited analytics capacity and reliance on outdated technologies further hinder effective decision-making.

3.3 Challenges

- 1. Autocratic Administration A cultural tendency towards hierarchical decision-making limits the use of data in governance.
- 2. Fragmented Data Systems Siloed systems across different levels of government result in data inconsistencies and inefficiencies.
- 3. Lack of Skilled Personnel Insufficient training and expertise in data analysis impede effective data utilisation.
- 4. **Public Distrust** Concerns about data accuracy and misuse erode public confidence in data-driven decisions.

3.4 Opportunities

- 1. **Recent Regulations** The 2022 Data Governance Regulation provides a framework to standardize data collection and use.
- 2. **International Collaboration** Partnerships with international organizations offer resources for capacity-building and technological support.
- 3. Available Data Sources Rich datasets on demographics, environment, and economy can enhance policy-making, such as managing forest fires or coral reef preservation.
- 4. Capacity-Building Training programs can equip officials with data analysis skills, fostering a culture of evidence-based decision-making.

3.5 Recommendations

- 1. **Develop Data Quality Frameworks** Establish standardized protocols to ensure data accuracy and consistency across all levels of government.
- 2. Enhance Analytical Skills Implement training programs to build expertise in data analysis and visualisation tools.
- 3. Foster Public Trust Promote initiatives that demonstrate the benefits of data-driven decisions, such as improving public services or environmental outcomes.
- 4. **Encourage Collaboration** Facilitate intergovernmental cooperation to share best practices and resources for effective data use.
- Adopt Technology Invest in integrated digital platforms to streamline data collection and sharing processes.
- 6. Establish Feedback Mechanisms Create channels for public input to ensure that data-driven policies reflect community needs and concerns.

3.6 Conclusion

Indonesia's shift towards data-driven governance presents a transformative opportunity to address pressing challenges and enhance decision-making effectiveness. By overcoming existing barriers and leveraging available resources, Indonesia can set a precedent for other developing nations. Mid-level officials worldwide are encouraged to consider these insights in their own governance strategies, fostering a global culture of transparency, collaboration, and innovation in public service.

References

4 Case Study: The Use of Data in Local Governance - A Michigan Perspective

This case study explores the current state of data-driven decision-making in Michigan's local governments, highlighting challenges and opportunities for integrating data into policy and governance based on the results of the Michigan Public Policy Survey (MPPS)².

4.1 Michigan Public Policy Survey

The MPPS, established post the 2009 Great Recession, is the first ongoing survey of local leaders across an entire state in the United States, involving over 1,856 jurisdictions in Michigan. It addresses a critical gap by providing insights into local officials' perspectives, crucial for informed policymaking. Conducted biannually, it tracks long-term trends on fiscal and operational policies while addressing current issues like the COVID-19 pandemic and infrastructure. Collaborations with key associations enhance its credibility and scope.

4.2 Current Situation of Policy and Decision-Making in Michigan Local Governments

Michigan's local governments have seen significant growth in data-driven decision-making (see Figure 4.1 and Figure 4.2).

This approach is now widespread across jurisdictions of all population sizes (see Figure 4.3) and across regions, with

Figure 4.1: Percentage of Michigan jurisdictions reporting use of performance data

many jurisdictions using data to inform budgeting and resource allocation.

Despite this progress, most data use remains informal or ad hoc (see Figure 4.4), particularly among smaller communities (see Figure 4.5).

The MPPS reveals that while larger jurisdictions are more likely to engage in formal performance measurement, over half of the state's smallest jurisdictions also incorporate some form of data into their decision-making processes (see Figure 4.2). This indicates a trend towards broader adoption, albeit at varying levels of formality.

4.3 Challenges and Concerns

1. Cost Concerns

Many local governments, especially smaller ones with limited resources, perceive data use as costly. The MPPS found that 62% of non-data users cited cost concerns, though only 28% of current users reported significant issues, suggesting costs may be manageable.

2. Informal Practices

The reliance on informal methods can lead to inconsistent outcomes and less accountability. Only about 16% of jurisdictions have formal performance measurement practices, indicating a gap in structured data use.

3. Resource Constraints

Smaller jurisdictions often face limitations in staff and financial resources, hindering their ability to adopt more formal data practices.

4.4 Opportunities and Benefits

1. Fiscal Efficiency

Figure 4.3: Percentage of Michigan jurisdictions reporting data use, by population density

Figure 4.4: Percentage of Michigan jurisdictions reporting ad hoc vs. systematic data use (among data users)

Figure 4.5: Percentage of Michigan jurisdictions reporting ad hoc vs. systematic data use (among data users), by population size

Data-driven approaches help identify cost savings and program efficiencies, crucial for jurisdictions grappling with fiscal challenges.

2. Improved Service Delivery

By aligning services with community needs, data can enhance service quality and responsiveness.

3. Enhanced Transparency and Trust

Effective use of data fosters transparency, improving public trust in government decisions.

4. Policy Communication

Data provides a clear evidence base for policy-making, aiding communication between governments and stakeholders.

4.5 Conclusion

The integration of data into Michigan's local governance has proven valuable despite challenges like cost concerns and resource limitations. The broader adoption of data-driven practices, even informally, highlights its potential to improve decision-making and service delivery.

4.6 Recommendations

- 1. Capacity Building Invest in training to enhance technical and analytical skills among local officials.
- Encourage Collaboration Foster partnerships with academic institutions or tech firms to support data initiatives.
- 3. Leverage Resources Utilise available tools and frameworks, such as those provided by Michigan's MPPS, to guide data practices.
- 4. Promote Leadership and Cultural Change Champion leadership roles that prioritize data use and cultivate a culture of evidence-based decision-making.

By adopting these strategies, countries can effectively integrate data into local governance, enhancing policy outcomes and public trust.

References

5 Case Study: Enhancing Data-Driven Decision-Making in Local Governance - A Focus on Turkana County

This case study describes the significant steps that the Turkana County local government are taking to modernising early childhood development and education services management through the use of digital technology⁶.

5.1 Introduction

Turkana County, located in northwest Kenya, is a region marked by significant natural resource wealth and cultural diversity. However, it faces challenges such as poverty, infrastructure gaps, and governance inefficiencies. The county's recent efforts to embrace data-driven decision-making offer valuable insights for enhancing local governance through improved policy formulation and implementation.

5.2 Background

Turkana County was established under Kenya's devolution framework in 2013, with its administrative structure comprising several wards and sub-counties. The county has made strides in adopting digital tools like the Turkana Early Childhood Development and Education (ECDE) Management Information System or TECDEMIS and the Continuous Database Updating System or CODUSYS for education management, reflecting a commitment to modernise governance.

5.3 Current Situation of Policy and Decision-Making

Policy-making in Turkana County is characterised by structured processes involving the County Assembly and Executive. Data utilisation is integral to planning and budgeting, with systems like TECDEMIS facilitating real-time data collection and analysis. These tools support decision-makers in tracking program outcomes and resource allocation efficiency.

5.4 Challenges in Data Utilisation for Governance

Despite progress, several challenges impede effective data use:

- Technological Barriers: Limited internet access hampers system functionality.
- Institutional Weaknesses: Insufficient skilled personnel affect system implementation.
- Financial Constraints: Inadequate funding limits infrastructure development and capacity building.
- Socio-Political Factors: Resistance to change and lack of awareness about data's value.

5.5 Opportunities for Enhancing Data Use

The county presents several opportunities:

- Investments in Digital Infrastructure: Initiatives like TECDEMIS and CODUSYS provide a solid foundation.
- Partnerships with Development Agencies: Collaborations with organisations like the Japan International Cooperation Agency or JICA offer resources and expertise.

- Capacity Building: Training programs enhance staff skills in data management and analysis.
- Community Engagement: Involving citizens fosters trust and ownership of data initiatives.

5.6 Conclusion

Embracing data-driven governance is crucial for Turkana County to overcome challenges and achieve sustainable development. Effective data use aligns with broader goals of accountability, service efficiency, and inclusive growth.

5.7 Recommendations

- 1. **Invest in IT Infrastructure:** Expand internet access and upgrade digital tools.
- 2. Enhance Training Programs: Prioritise skills development in data management and analysis.
- 3. Foster Multi-Sectoral Partnerships: Strengthen collaborations with development agencies and the private sector.
- 4. Improve Stakeholder Engagement: Involve communities to build trust and ownership of data initiatives.
- 5. **Establish Monitoring Frameworks:** Develop systems to evaluate the impact of data-driven policies.

References

6 Case Study: Indigenous Data Governance in the United States

This case study describes the challenges and opportunities with regard to Indigenous data governance in the United States⁷.

6.1 Introduction

Indigenous nations in the United States exercise sovereignty over their data, recognising their right to control and manage their own information. This sovereignty is supported by federal laws such as Native American Graves Protection and Repatriation Act or NAGPRA which provide frameworks for protecting Indigenous rights, including those related to data governance.

6.2 Current Strategies

1. Tribal Data Sovereignty

Indigenous nations establish policies and institutions, like tribal councils, to own and control their data, ensuring it aligns with cultural values.

2. Collaboration

Partnerships with federal and state governments are facilitated through initiatives like the National Historic Preservation Act or NHPA promoting shared goals in data governance.

3. Capacity Building

Training programs and technological infrastructure development enhance technical skills, though resources vary among tribes.

4. Legal Frameworks

Treaties and international agreements, such as the United Nations Declaration on the Rights of Indigenous Peoples or UNDRIP⁸, provide legal backing for data governance, ensuring respect for Indigenous rights.

6.3 Challenges

- Legal Complexities: Overlapping jurisdictions complicate data governance, requiring clear resolution mechanisms.
- Resource Limitations: Financial and technical constraints affect smaller tribes' ability to implement strategies.
- Cultural Preservation: Balancing modern data practices with cultural preservation is complex but crucial.

6.4 Opportunities

- Global Networks: Engagement with international bodies like the UNDRIP offers support and recognition, enhancing governance effectiveness.
- Capacity Building: Support through grants and partnerships can bridge resource gaps.
- Collaboration: Inter-tribal agreements strengthen collective data management efforts.

6.5 Conclusion

Indigenous data governance in the U.S. is advancing through sovereignty assertion collaboration, capacity building, and international frameworks. While challenges persist, opportunities for improvement are significant. Government officials must support Indigenous nations by respecting their sovereignty, providing resources, and fostering international engagement to enhance data governance effectively.

References

7 All about data

In this chapter, we go further into data concepts with a discussion on the **sources**, **formats**, **structures**, **types**, **classes**, and **systems** of data.

7.1 Data Sources

Data can be classified as either being of **primary** or **sec-ondary** source.

- Primary data includes original data collected directly from primary sources such as experiments surveys, or interviews.
- Secondary data exists in various forms like reports, government statistics, or academic publications which are data that have been already collected primarily by some other person and/or organisation/entity who make such data available for others to use for either the same purpose or a totally different use-case altogether from the original purpose.

Data sources also refer to where data was obtained or sourced from. These encompass a wide range of information repositories, from traditional databases and files to emerging online platforms and application programming interfaces (APIs).

7.2 Data Formats

Data formats define how information is organised, stored, and accessed within a file or database. They determine the structure of data, such as text, numbers, or multimedia, using common formats like CSV, JSON, and XML, each with unique methods for representing data.

Data formats may specifically refer to the following:

- Recording format a format for encoding data for storage on a storage medium
- **File format** a format for encoding data for storage in a computer file
- Container format (digital) a format for encoding data for storage by means of a standardised audio/video codecs file format
- Content format a format for representing media content as data
- Audio format format for encoded sound data

7.3 Data Structures

A data structure is an organised format for storing data, designed to allow efficient access and modification. It encompasses not just the storage of data but also the relationships between data elements and the operations that can be performed on them. These operations are structured with defined behaviors where operations have specific properties.

Examples of data structures include:

- Relational Databases Organised into tables with defined relationships (e.g., SQL).
- NoSQL Systems Flexible storage solutions like document stores or key-value systems.
- **Hierarchical Structures** Data organised in a tree-like structure, such as XML or JSON.
- Flat Structures All data resides at the same logical level without hierarchy (e.g., JSON arrays).
- Semi-Structured Formats Use tags and nested structures for complex data (e.g., JSON).

7.4 Data Types

- Categorical Data divided into categories (e.g., gender, color).
- **Numerical** Involves numbers, which can be discrete or continuous.
- **Temporal** Data with time-based attributes (e.g., dates, times).

- **Textual** -Includes natural language text and speech data.
- Binary Represents presence/absence of a feature.
- **Spatial** Geospatial data indicating locations (e.g., coordinates).
- Multimedia Combines multiple types like images, audio, and video.

7.5 Data Systems

- Databases Platforms for managing and querying structured data, including relational (SQL) and NoSQL systems.
- Data Lakes repositories storing raw, unstructured, or semi-structured data in a lake-like structure.
- **Big Data Systems** Designed to handle large-scale datasets with distributed processing.
- Business Intelligence Tools Provide analytics capabilities for transforming data into actionable insights.

7.6 Integration and Considerations

7.6.1 Data flow

Data is collected from sources, processed or formatted as needed, organised into appropriate types and structures, and managed by suitable systems.

7.6.2 Interconnected Components

Each component (sources, formats, structures) plays a role in ensuring data compatibility with various systems, which are then used for classification based on specific needs.

Part II Data Management

8 Data privacy, security, and protection

9 Data tools

10 Data entry system

Part III Data Analysis and Visualisation

11 Introduction to data analysis

Exploratory data analysis

- 1. Stobierski, T. The advantages of data-driven decision-making. Business insights. https://online.hbs.edu/blog/post/data-driven-decision-making (2019).
- 2. Ivacko, T. M., Horner, D. & Crawford, M. Q. Datadriven decision-making in michigan local government. SSRN Journal (2013) doi:10.2139/ssrn.2351916.
- 3. Choi, Y. et al. Towards data-driven decision-making in government: Identifying opportunities and challenges for data use and analytics. in (2021). doi:10.24251/HICSS.2021.268.
- 4. Bean, R. How companies say they're using big data. Harvard Business Review (2017).
- 5. Sayogo, D. S., Yuli, S. B. C. & Amalia, F. A. Datadriven decision-making challenges of local government in indonesia. *TG* **18**, 145–156 (2024).
- 6. Onunga, J. & Odongo, P. Digital transformation in public administration and data-driven decision-making: A review of turkana county government. IJRIAS IX, 234–240 (2025).
- 7. Carroll, S. R., Rodriguez-Lonebear, D. & Martinez, A. Indigenous data governance: Strategies from united states native nations. *CODATA* **18**, 31 (2019).
- 8. United Nations General Assembly. United nations declaration on the rights of indigenous peoples: Resolution / adopted by the general assembly. (2007).

Index

accountability, 5	harmful algal blooms,	
budget allocation, 5	high chloride	
case-study method, 11 Continuous Database Updating System, 26	concentrations, 14 legislative development, 5	
data analysis, 8 Data for Decision Makers, 5 data literacy, 5 data science, 8 data visualisation, 8 data-driven	machine learning, 8 Michigan Public Performance Survey, 22 misinformation, 5 modern data, 5 National Historic Preservation Act 29 Native American Graves Protection and Repatriation Act 29	
education, 5 environmental policy, 5 evidence-based action, 8 evidence-based decision, 9 evidence-based decision-making, 5 geographic information systems, 5 governance, 5	policy leadership, 5 predictive modelling, 5 programme evaluation, 5 public health, 5 public service, 6 public trust, 5 real-time analytics, 8 real-time dashboards, 5 real-world applications, 8 root causes, 5	
governance, o	100t causes, 5	

spreadsheet, 8 transparency, 5 statistical reasoning, 5, 8 Turkana ECDE strategic planning, 5 Management Information technical leadership, 5 System, 26