Seminar 10 and 11 - 2025

Theoretical aspects

A sequence $(X_n)_{n\in\mathbb{N}}$ of random variables converges in probability to a random variable X, denoted by $X_n \stackrel{\mathbb{P}}{\to} X$, if

$$\lim_{n \to \infty} \mathbb{P}\Big(|X_n - X| \le \varepsilon\Big) = 1 \quad \text{for every} \quad \varepsilon > 0.$$

A sequence $(X_n)_{n\geq 1}$ of random variables converges in mean square to a random variable X if

$$\lim_{n \to \infty} \mathbb{E}[|X_n - X|^2] = 0.$$

This convergence is denoted by $X_n \stackrel{L^2}{\to} X$.

A sequence $(X_n)_{n\geq 1}$ of random variables converges in distribution to a random variable X if

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$$

in each continuity point x of F_X . This convergence is denoted by $X_n \stackrel{d}{\to} X$.

- 1. A program returns a value according to a random variable X with $E(X) = m \in \mathbb{R}$ and $V(X) = \sigma^2$, $\sigma > 0$. Prove that X takes values in the interval $(m 3\sigma, m + 3\sigma)$ with more than 88% probability.
- 2. The number of items produced in a factory during a day is a random variable with mean 50. If we consider a day, which event is more likely: E_1 : "the production is more than 100 items in this day" or E_2 : "the production is at most 100 items in this day"?
- **3.** Let $(X_n)_{n \in \mathbb{N}^*}$ be a sequence of independent random variables with Unif[a, b] distribution, where a < b. Define for each $n \in \mathbb{N}^*$

$$Y_n = \max\{X_1, \dots, X_n\}$$
 and $Z_n = \min\{X_1, \dots, X_n\}$.

Prove that $Y_n \xrightarrow{P} b$ and $Z_n \xrightarrow{P} a$.

- **4.** Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of Bernoulli random variables. Prove that $X_n \stackrel{P}{\longrightarrow} 0$ if and only if $X_n \stackrel{L^2}{\longrightarrow} 0$.
- **5.** Let $\lambda > 0$. A calling center has the following property, for every $n \in \mathbb{N}$, $n \geq 100$, during an hour interval (0,1]: the calls arrive independently with at most one call in each time subinterval $(\frac{i}{n},\frac{i+1}{n}]$, one call has probability $\frac{\lambda}{n}$ to occur, $i = \overline{0, n-1}$. Let's denote by X_n the corresponding total number of calls. Prove that $X_n \xrightarrow{d} X$, where $X \sim Poiss(\lambda)$.
- **6.** Let $(X_n)_{n\in\mathbb{N}^*}$ be a sequence of independent random variables with Unif[0,1] distribution. Define for each $n\in\mathbb{N}^*$

$$Y_n = \max\{X_1, \dots, X_n\} \text{ and } Z_n = \min\{X_1, \dots, X_n\}.$$

Prove that $Y_n \xrightarrow{L^2} 1$ and $Z_n \xrightarrow{L^2} 0$.

- **7*.** Consider a sequence of distinct coins such that the probability of getting a head with the *n*th coin is $\frac{1}{n}$, $n \in \mathbb{N}^*$. Let X_n be 1, if the toss of the *n*th coin shows a head, and 0, otherwise. Do we have $X_n \xrightarrow{a.s.} 0$?
- **8.** Let $(X_n)_n$, be a sequence of random variables such that for each $n \in \mathbb{N}^*$: $X_n \sim Exp(n)$, i.e, X_n has the following density function

$$f_{X_n}(t) = \begin{cases} 0, & \text{if } t \le 0\\ ne^{-nt}, & \text{if } t > 0. \end{cases}$$

- (a) Prove that $X_n \stackrel{P}{\longrightarrow} 0$.
- (b) Consider $Y_n = nX_n$, for each $n \in \mathbb{N}^*$. Prove that $(Y_n)_n$ does not converge in probability to 0.
- (c) Write the cumulative distribution function (cdf) of $Z_n = \frac{1}{\sqrt{n}}Y_n$, $n \in \mathbb{N}^*$. Does $(Z_n)_n$ converge in probability to 0?