Продолжение временных параметоров

Параметры синхросигнала

- Частота (обратная величина периоду)
- Скважность (обратная величина коэффициенту заполнения)
- Джиттер
- Скорость нарастания и спада фронта (transition)

Figure 1. Jitter in the Time Domain

Причины возникновения джиттер

- Тепловой шум
- RC-цепь делать линии шире
- Большая выходная нагрузка элемента в пути синхросигнала уменьшать нагрузку.
- Низкая скорость нарастания фронта синхросигнала увеличить скорость нарастания фронта


```
<u>∃module</u> lesson_5f_0(
    clk,
    led1
    );
         wire clk;
 input
 output wire led1;
 reg [23:0] cnt = 24'h0000;
 always @(posedge clk)
∃begin
    cnt = cnt + 24'h1;
 end
 wire [31:0]ext;
 assign ext = {32{cnt[23]}};
 assign led1 = |ext;
 endmodule
```


Память

Что будем разбирать

- Flash для прошивки
- M9K (режимы работы ROM, RAM, SR, FIFO)
- Внешняя RAM

Прошивка ПЛИС

- SOF file конфигурирует SRAM (полупроводниковая память, энергозависимая, регенерация не нужна)
- JIC file конфигурирует flash (транзистор с плавающим затвором, энергонезависимая, регенерация не нужна)

(a) A floating gate flash memory cell

(b) I-V characteristics of memory cell

Конфигурация flash

- Implement altera serial flash loader ip
- Convert configuration file to .jic format
- Configure JTAG chain
- Configure memory

M9K

- SOF file конфигурирует SRAM (полупроводниковая память, энергозависимая, регенерация не нужна)
- JIC file конфигурирует flash (транзистор с плавающим затвором, энергонезависимая, регенерация не нужна)

Configurations (depth × width)	8192 × 1
	4096 × 2
	2048 × 4
	1024 × 8
	1024 × 9
	512 × 16
	512 × 18
	256 × 32
	256 × 36

M9K modes

Cyclone IV devices M9K memory blocks allow you to implement fully-synchronous SRAM memory in multiple modes of operation. Cyclone IV devices M9K memory blocks do not support asynchronous (unregistered) memory inputs.

M9K memory blocks support the following modes:

- Single-port
- Simple dual-port
- True dual-port
- Shift-register
- ROM
- FIFO

M9K implementatin

- При помощи ІР каталога
- Через HDL код

M9K Single-Port

M9K Single-Port

Example 13–11. Verilog HDL Single-Clock Simple Dual-Port Synchronous RAM with Old Data Read-During-Write Behavior

```
module single clk ram(
    output reg [7:0] q,
    input [7:0] d,
    input [6:0] write address, read address,
    input we, clk
    reg [7:0] mem [127:0];
    always @ (posedge clk) begin
        if (we)
            mem[write address] <= d;</pre>
        q <= mem[read_address]; // q doesn't get d in this clock cycle
    end
endmodule
```

M9K Simple Dual-Port data[] rdaddress[] wraddress[] rden q[] wren byteena[] rd_addressstall wr_addressstall rdclock < wrclock rdclocken wrclocken aclr wrclock wren a0 a3 а5 wraddress an-1 **a**1 a4 a6 an data din-1 din4 din5 din6 din rdclock rden rdaddress b2 b3 bn b0 b1 q (asynch) doutn-1 doutn dout0

M9K Simple Dual-Port

Example 13-15. Verilog HDL Simple Dual-Port, Dual-Clock Synchronous RAM

```
module dual clock ram(
   output reg [7:0] q,
   input [7:0] d,
   input [6:0] write_address, read_address,
   input we, clk1, clk2
);
   reg [6:0] read address reg;
   reg [7:0] mem [127:0];
   always @ (posedge clk1)
   begin
      if (we)
         mem[write address] <= d;</pre>
   end
   always @ (posedge clk2) begin
      q <= mem[read_address_reg];</pre>
      read address reg <= read address;</pre>
   end
endmodule
```

M9K True Dual-Port

a0

din

b0

doutn

an

din

din-1

a1

dout0

clk_a

wren_a

an-1

din-1

bn

doutn-1

address_a

data_a

rden_a

clk_b

wren_b

rden_b

address b

q_b (asynch)

q_a (asynch)

M9K True Dual-Port

Example 13–20. SystemVerilog Mixed-Width RAM with Read Width Smaller than Write Width

```
module mixed width ram // 256x32 write and 1024x8 read
       input [7:0] waddr,
       input [31:0] wdata,
       input we, clk,
       input [9:0] raddr,
       output [7:0] q
   logic [3:0] [7:0] ram[0:255];
   always ff@(posedge clk)
       begin
          if(we) ram[waddr] <= wdata;</pre>
          q <= ram[raddr / 4][raddr % 4];</pre>
       end
endmodule : mixed_width_ram
```

M9K Shift Register

M9K Shift Register

Example 13-33. Verilog HDL Single-Bit Wide, 64-Bit Long Shift Register

```
module shift_1x64 (clk, shift, sr_in, sr_out);
   input clk, shift;
   input sr in;
   output sr out;
   req [63:0] sr;
   always @ (posedge clk)
   begin
       if (shift == 1'b1)
      begin
          sr[63:1] <= sr[62:0];
          sr[0] <= sr in;</pre>
       end
   end
   assign sr out = sr[63];
endmodule
```

M9K FIFO

M9K ROM

ALTSHIFT_TAPS MegaFunction

M9K ROM

Example 13-31. Verilog HDL Dual-Port Synchronous ROM Using readmemb

```
module dual port rom (
   input [(addr width-1):0] addr a, addr b,
   input clk,
   output reg [(data width-1):0] q a, q b
   parameter data width = 8;
   parameter addr_width = 8;
   reg [data width-1:0] rom[2**addr width-1:0];
   initial // Read the memory contents in the file
           //dual port rom init.txt.
   begin
       $readmemb("dual port rom init.txt", rom);
   end
   always @ (posedge clk)
   begin
      q_a <= rom[addr_a];</pre>
      q b <= rom[addr b];
   end
endmodule
```

Memory Initialization

Example 13–26. Verilog HDL RAM with Initialized Contents

```
module ram with init(
   output req [7:0] q,
   input [7:0] d,
   input [4:0] write address, read address,
   input we, clk
   reg [7:0] mem [0:31];
   integer i;
   initial begin
      for (i = 0; i < 32; i = i + 1)
         mem[i] = i[7:0];
   end
   always @ (posedge clk) begin
      if (we)
         mem[write address] <= d;</pre>
      q <= mem[read address];</pre>
   end
endmodule
```

Example 13-27. Verilog HDL RAM Initialized with the readmemb Command

```
reg [7:0] ram[0:15];
initial
begin
   $readmemb("ram.txt", ram);
end
```

Атрибуты и параметры

```
(* ramstyle = "M144K" *) reg [0:7] my_ram[0:63];
reg [0:7] my_ram[0:63] /* synthesis ramstyle = "M144K" */;
```

- no_rw_check
- M9K
- logic

Внешняя SDRAM

- 8Mb
- Энергозависимая
- Интерфейс доступа специфицирован

lacktriangle

Внешняя SDRAM

PIN NUMBER	PIN NAME	FUNCTION	DESCRIPTION						
23 ~ 26, 22, 29 ~35			Multiplexed pins for row and column address.						
			Row address: A0-A11. Column address: A0-A7.						
	A0-A11	Address	A10 is sampled during a precharge command to determine if all banks are to be precharged or bank selected by BS0, BS1.						
20, 21	BS0, BS1	Bank Select	Select bank to activate during row address latch time or bank to read/write during address latch time.						
2, 4, 5, 7, 8, 10, 11, 13, 42, 44, 45, 47, 48, 50, 51, 53	DQ0-DQ15	Data Input/ Output	Multiplexed pins for data output and input.						
19	cs	Chip Select	Disable or enable the command decoder. When command decoder is disabled, new command is ignored and previous operation continues.						
18	RAS	Row Address Strobe	Command input. When sampled at the rising edge of the clock RAS, CAS and WE define the operation to be executed.						
17	CAS	Column Address Strobe	Referred to RAS						
16	WE	Write Enable	Referred to RAS						
39, 15	UDQM LDQM	Input/output mask	The output buffer is placed at Hi-Z (with latency of 2) when DQM is sampled high in read cycle. In write cycle, sampling DQM high will block the write operation with zero latency.						
38	CLK	Clock Inputs	System clock used to sample inputs on the rising edge of clock.						
37	CKE	Clock Enable	CKE controls the clock activation and deactivation. When CKE is low, Power Down mode, Suspend mode, or Self Refresh mode is entered.						
1, 14, 27	VDD	Power	Power for input buffers and logic circuit inside DRAM.						
28, 41, 54	Vss	Ground	Ground for input buffers and logic circuit inside DRAM.						
3, 9, 43, 49	VDDQ	Power for I/O buffer	Separated power from VDD, to improve DQ noise immunity.						
6, 12, 46, 52	Vssq	Ground for I/O buffer	Separated ground from Vss, to improve DQ noise immunity.						
36, 40	NC	No Connection	No connection.						

Внешняя SDRAM

COMMAND	DEVICE STATE	CKEn-1	CKEn	DQM	BS0, 1	A10	A0-A9, A11	cs	RAS	CAS	WE
Bank Active	Idle	Н	х	х	v	v	٧	L	L	Н	Н
Bank Precharge	Any	Н	х	х	v	L	х	L	L	Н	L
Precharge All	Any	Н	х	х	х	Н	х	L	L	Н	L
Write	Active (3)	Н	х	х	v	L	v	L	Н	L	L
Write with Auto-precharge	Active (3)	Н	х	х	v	Н	v	L	Н	L	L
Read	Active (3)	Н	х	х	v	L	v	L	Н	L	Н
Read with Auto-precharge	Active (3)	Н	х	х	v	Н	v	L	Н	L	Н
Mode Register Set	Idle	Н	х	х	v	v	v	L	L	L	L
No-Operation	Any	Н	х	х	х	х	х	L	Н	Н	Н
Burst Stop	Active (4)	Н	х	х	х	х	х	L	Н	Н	L
Device Deselect	Any	Н	х	х	х	х	х	Н	х	х	х
Auto-Refresh	Idle	Н	Н	х	х	х	х	L	L	L	Н
Self-Refresh Entry	Idle	Н	L	х	х	х	х	L	L	L	Н
Self Refresh Exit	idle	L	н	х	х	х	х	Н	х	х	х
Sell Hellesil Exit	(S.R)	L	Н	х	х	х	х	L	Н	Н	х
Clock suspend Mode Entry	Active	н	L	x	x	x	x	x	х	x	x
Power Down Mode Entry	Idle	Н	L	х	х	х	х	Н	х	х	Х
	Active (5)	н	L	х	х	х	х	L	н	Н	Н
Clock Suspend Mode Exit	Active	L	Н	х	х	х	х	х	х	х	Х
Power Down Mode Exit	Any	L	н	х	х	х	x	н	x	х	х
	(Power Down)	L	н	x	x	x	x	L	н	н	н
Data write/Output Enable	Active	Н	х	L	х	х	х	х	х	х	х
Data write/Output Disable	Active	Н	х	Н	х	х	х	х	х	х	х