Sunday, 13 April 2025 4:42 pm

The Gradient Vector

8 Definition If f is a function of two variables x and y, then the **gradient** of f is the vector function ∇f defined by

$$\nabla f(x, y) = \langle f_x(x, y), f_y(x, y) \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}$$

EXAMPLE 3 If $f(x, y) = \sin x + e^{xy}$, then

$$\nabla f(x, y) = \langle f_x, f_y \rangle = \langle \cos x + y e^{xy}, x e^{xy} \rangle$$

and

$$\nabla f(0, 1) = \langle 2, 0 \rangle$$

Directional Derivatives

Recall that if z = f(x, y), then the partial derivatives f_x and f_y are defined as

$$f_x(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$

$$f_y(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}$$

2 Definition The **directional derivative** of f at (x_0, y_0) in the direction of a unit vector $\mathbf{u} = \langle a, b \rangle$ is

$$D_{\mathbf{u}} f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

if this limit exists.

Theorem If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\mathbf{u} = \langle a, b \rangle$ and

$$D_{\mathbf{u}} f(x, y) = f_{\mathbf{x}}(x, y) a + f_{\mathbf{y}}(x, y) b$$

EXAMPLE 2 Find the directional derivative $D_{\mathbf{u}} f(x, y)$ if

$$f(x, y) = x^3 - 3xy + 4y^2$$

and **u** is the unit vector given by angle $\theta = \pi/6$. What is $D_{\mathbf{u}} f(1, 2)$?

SOLUTION Formula 6 gives

$$D_{\mathbf{u}} f(x, y) = f_{x}(x, y) \cos \frac{\pi}{6} + f_{y}(x, y) \sin \frac{\pi}{6}$$
$$= (3x^{2} - 3y) \frac{\sqrt{3}}{2} + (-3x + 8y) \frac{1}{2}$$
$$= \frac{1}{2} \left[3\sqrt{3} x^{2} - 3x + \left(8 - 3\sqrt{3} \right) y \right]$$

Therefore

$$D_{\mathbf{u}} f(1, 2) = \frac{1}{2} \left[3\sqrt{3}(1)^2 - 3(1) + \left(8 - 3\sqrt{3}\right)(2) \right] = \frac{13 - 3\sqrt{3}}{2}$$

$$D_{\mathbf{u}} f(\mathbf{x}, \mathbf{y}) = \nabla f(\mathbf{x}, \mathbf{y}) \cdot \mathbf{u}$$

EXAMPLE 4 Find the directional derivative of the function $f(x, y) = x^2y^3 - 4y$ at the point (2, -1) in the direction of the vector $\mathbf{v} = 2\mathbf{i} + 5\mathbf{j}$.

SOLUTION We first compute the gradient vector at (2, -1):

$$\nabla f(x, y) = 2xy^3 \mathbf{i} + (3x^2y^2 - 4)\mathbf{j}$$

 $\nabla f(2, -1) = -4\mathbf{i} + 8\mathbf{j}$

Note that ${\bf v}$ is not a unit vector, but since $|\,{\bf v}\,|=\sqrt{29}$, the unit vector in the direction of ${\bf v}$ is

$$\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{2}{\sqrt{29}} \mathbf{i} + \frac{5}{\sqrt{29}} \mathbf{j}$$

Therefore, by Equation 9, we have

$$D_{\mathbf{u}} f(2, -1) = \nabla f(2, -1) \cdot \mathbf{u} = (-4\mathbf{i} + 8\mathbf{j}) \cdot \left(\frac{2}{\sqrt{29}}\mathbf{i} + \frac{5}{\sqrt{29}}\mathbf{j}\right)$$
$$= \frac{-4 \cdot 2 + 8 \cdot 5}{\sqrt{29}} = \frac{32}{\sqrt{29}}$$

EXAMPLE 5 If $f(x, y, z) = x \sin yz$, (a) find the gradient of f and (b) find the directional derivative of f at (1, 3, 0) in the direction of $\mathbf{v} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$.

SOLUTION

(a) The gradient of f is

$$\nabla f(x, y, z) = \langle f_x(x, y, z), f_y(x, y, z), f_z(x, y, z) \rangle$$
$$= \langle \sin yz, xz \cos yz, xy \cos yz \rangle$$

(b) At (1, 3, 0) we have $\nabla f(1, 3, 0) = \langle 0, 0, 3 \rangle$. The unit vector in the direction of $\mathbf{v} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$ is

$$\mathbf{u} = \frac{1}{\sqrt{6}}\mathbf{i} + \frac{2}{\sqrt{6}}\mathbf{j} - \frac{1}{\sqrt{6}}\mathbf{k}$$

Therefore Equation 14 gives

$$D_{\mathbf{u}} f(1, 3, 0) = \nabla f(1, 3, 0) \cdot \mathbf{u}$$

$$= 3\mathbf{k} \cdot \left(\frac{1}{\sqrt{6}}\mathbf{i} + \frac{2}{\sqrt{6}}\mathbf{j} - \frac{1}{\sqrt{6}}\mathbf{k}\right)$$

$$= 3\left(-\frac{1}{\sqrt{6}}\right) = -\sqrt{\frac{3}{2}}$$

Maximizing the Directional Derivative

What Does the Gradient Tell Us?

The fact that $f_{\vec{u}} = \operatorname{grad} f \cdot \vec{u}$ enables us to see what the gradient vector represents. Suppose θ is the angle between the vectors $\operatorname{grad} f$ and \vec{u} . At the point (a,b), we have

$$f_{ec{u}} = \operatorname{grad} f \cdot ec{u} = \|\operatorname{grad} f\| \underbrace{\|ec{u}\|}_{1} \cos \theta = \|\operatorname{grad} f\| \cos \theta.$$

Zero $f_{ec{u}}$ Max $f_{ec{u}}$ $ec{u}$ θ grad f

Figure 14.31: Values of the directional derivative at different angles to the gradient

Geometric Properties of the Gradient Vector in the Plane

If f is a differentiable function at the point (a, b) and grad $f(a, b) \neq \vec{0}$, then:

- The direction of grad f(a, b) is
 - · Perpendicular 1 to the contour of f through (a, b);
 - In the direction of the maximum rate of increase of f.
- The magnitude of the gradient vector, || grad f ||, is
 - The maximum rate of change of f at that point;
 - · Large when the contours are close together and small when they are far apart.

Figure 14.32: Close-up view of the contours around (a, b), showing the gradient is perpendicular to the contours

Figure 14.33: A temperature map showing directions and relative magnitudes of two gradient vectors