Aurora Hermoso Carazo y Ma Dolores Ruiz Medina

Parcial

Este examen pertenece al Banco de Exámenes de la Asociación de Estudiantes de Matemáticas de la Universidad de Granada. Si bien su autoría corresponde a los profesores ya citados, en la asociación nos encargamos de almacenarlos y ceder su uso a los estudiantes para que sea más satisfactoria su labor a la hora de preparar un examen.

- 1. Sea (X_1, \ldots, X_n) una muestra aleatoria simple de X con distribución en una familia $\{P_{\theta}/\theta \in \Theta\}$. Sea Θ_0 un subconjunto arbitrario de Θ y supongamos que se pretende contrastar la hipótesis $H_0: \theta \in \Theta_0$.
 - a) Especificar la hipótesis alternativa y dar la formalización matemática de cualquier procedimiento para la resolución del problema de contraste planteado.
 - b) Definir el nivel de significación, tamaño y función potencia de un test arbitrario usado para resolver el problema anterior. ¿Cuál es, bajo la perspectiva clásica, la forma óptima de resolver tal problema?
 - c) Especificar el test de razón de verosimilitudes para la resolución del problema propuesto. Justificar el uso de ese test mediante la interpretación del estadístico utilizado para el contraste.
- 2. Dado $(X_1, ..., X_n)$ una muestra aleatoria simple de X, X variable con $f_{\theta}(x) = e^{\theta x}, x \ge \theta$, encontrar el intervalo de confianza para θ de menor longitud media uniformemente a nivel de confianza 1α , basado en $T(X_1, ..., X_n) = \min\{X_i\}$
- 3. Construir el test de Neyman-Pearson de tamaño α para contrastar $H_0: \theta = \theta_0$ frente a $H_1: \theta = \theta_1$, siendo $\theta_1 < \theta_0$, basándose en una muestra de tamaño n de una variable aleatoria con función de densidad:

$$f_{\theta}(x) = \frac{1}{x \ln \theta}, \quad 1 < x < \theta$$

Calcular la potencia del test de tamaño α y representarla en función de α .

Aplicación: Especificar los test óptimos para niveles de significación 0'01 y 0'05, si se usa una muestra de tamaño 30 para contrastar $H_0: \theta = 6$ frente a $H_1: \theta = 5$.