Design and Analysis of Algorithms

L24: Prim's Algorithm Minimum Cost Spanning Tree

Dr. Ram P Rustagi
Sem IV (2019-H1)
Dept of CSE, KSIT/KSSEM
rprustagi@ksit.edu.in

Resources

- Text book 1: Sec 9.1-5.4 Levitin
- RI: Introduction to Algorithms
 - Cormen et al.
- MIT Open Course Ware
 - https://ocw.mit.edu/courses/civil-and-environmental-engineering/I-204-computer-algorithms-in-systems-engineering-spring-2010/lecture-notes/
 MITI_204S10_lec11.pdf

Spanning Tree

- Consider N number of villages in a district
- Government would like to ensure that these villages are connected by road
 - reachable from each other, may be via other villages
- The cost of laying road from one village to other villages is known
- Govt would like to incur minimum cost
- Which roads government should lay down
 - How many roads needs to be layed down.
- Answer: Minimum Cost Spanning Tree
- Q: Provide other examples:

Application of Spanning Trees

- Laying of utility lines
 - water,
 - electrical,
 - gas,
 - cable TV lines
 - **—** ...
- Road distribution network
- Building floor/room corridors with single entry/exit point.

Spanning Tree

- Graph: $G = \{ \forall, E \}$
 - − A set of nodes ∨
 - A set of edges E = (u, v) connecting node u to node v.
- Connected Graph:
 - each node is reachable from any other node via some path.
 - There may exist multiple paths, (have cycles)
- Spanning tree:
 - A subgraph T of G i.e. $T \subseteq G$ such that
 - It contains all the vertices V of G i.e. if $v \in G \Rightarrow v \in T$
 - Between any two nodes u and v, ∃ only one path
 - i.e. T is acyclic

Minimum Spanning Tree

- A minimum spanning tree of weighted connected graph G is a spanning tree T with minimum total weight.
- Examples:

- Q: Are other spanning trees possible?
- Q:What happens when all edges have same weight?

Prim's MST Algorithm

- Approach:
 - Start with tree \mathbb{T}_1 consisting of one (any) vertex, and
 - grow tree one vertex at a time to produce MST
 - through a series of expanding subtrees T_1 , T_2 , ..., T_n
- Greedy Appraoch:
 - On each iteration, construct T_{i+1} from T_i
 - Add a vertex not in \mathbb{T}_i which is
 - closest to those already in \mathbb{T}_{i}
 - this is a greedy step!
- Stop when all vertices are included.

Example 1: Prim's MST

Example 2: Prim's MST

Q: Construct an MST starting from vertex a

Example 2: Prim's MST

DAA/Greedy Algorithms

```
w(a):0, w(b):\infty, w(c):\infty, w(d)=\infty, w(e)=\infty, w(f)=\infty

w(a):0, w(b):3, w(c):\infty, w(d)=\infty, w(e)=6, w(f)=5

w(a):0, w(b):3, w(c):1, w(d)=\infty, w(e)=6, w(f)=4

w(a):0, w(b):3, w(c):1, w(d)=6, w(e)=6, w(f)=4

w(a):0, w(b):3, w(c):1, w(d)=5, w(e)=2, w(f)=4

w(a):0, w(b):3, w(c):1, w(d)=5, w(e)=2, w(f)=4

w(a):0, w(b):3, w(c):1, w(d)=5, w(e)=2, w(f)=4
```

RPR/

10

Prim's Algo: Proof by Induction

- Claim: Let G = (V,E) be a weighted graph and (X,Y) be a partition of V (called a cut).
- Suppose e = (x,y) is an edge of E across the cut, where
 - *x* is in *X*, and
 - *y* is in *Y*, and
 - e has the minimum weight among all such crossing edges (called a light edge).
- Then there is an MST containing e.

Prim's Algo

Needs priority queue for implementation

```
Algo: Prim (G)
// i/p:A weighted connected graph G = (\nabla, E)
// o/p: E_T, the set of edges composing an MST of G
V_{T} \leftarrow \{ v_0 \} # initialize with any vertex
E_{T}\leftarrow\emptyset
for i=1 to |V|-1 do
   find a min weight edge e^* = (v^*, u^*) among all
   edges (v, u) such that v \in V_T and u \in |V| - V_T
   V_T \leftarrow V_T \cup \{v^*\}
   E_T \leftarrow E_T \cup \{e^*\}
return \mathbb{E}_{\mathbb{T}}
```

Prim's Algo: Efficiency

- Efficiency depends upon implementation
- Maintain V-V_T in priority queue
- Initially, assign a weight(value) of ∞ to each vertex
- Weight of each edge is known (given graph G)
- Using Adjacency weight matrix
 - If priority queue is maintained in an unordered array
 - vertex can be accessed by index in the array
 - Picking min vertex u takes | V | time.
 - Requires linear search in array
 - For each edge (u, w), update the weight of w
 - weight (w) = min (weight (w), weight (u, w))
 - Total time: $O(|V|^2 + |E|) = O(|V|^2)$

Prim's Algo: Efficiency

- Efficiency depends upon implementation
- Maintain V-V_T in priority queue
- Initially, assign a weight(value) of ∞ to each vertex
- Weight of each edge is known (given graph G)
- Using Adjacency weight List
 - Maintain priority queue is BinSearch Tree
 - Height of the tree is lg|V|
 - Find vertex u with min weight is O(1) time
 - For each edge (u, w), update the weight of w
 - weight(w) = min(weight(w), weight(u, w))
 - Time taken to adjust BinSearch Tree is O(lg|V|)
 - Total time: O(E*lg|V|)

Summary

- Minimum Spanning Tree
- Prim's algorithm
- Time efficiency
 - Depends upon implementation