Computer Architecture Homework #3

Verilog RISC-V Decoder

TA: Yan-Lun Wu (<u>r08943016@ntu.edu.tw</u>) If you have any problem, contact me by email first. Due 2020/12/1 13:00 Tuesday (CEIBA, no late homework is allowed.)

1. Introduction

In this exercise, we ask you to write a RISC-V instruction decoder. Reading instructions one by one and decode the instruction type and format. After reading each instructions, you have to decode instructions and type.

We ask you to decode 23 instructions, "JAL, JALR, BEQ, BNE, LD, SD, ADDI, SLTI, XORI, ORI, ANDI, SLLI, SRLI, SRAI, ADD, SUB, SLL, SLT, XOR, SRL, SRA, OR, AND" and output instruction_type as below.

{JAL,JALR,BEQ,BNE,LD,SD,ADDI,SLTI,XORI,ORI,ANDI,SLLI,SRLI,SRAI,ADD,SUB,SLL,SLT,XOR,SRL,SRA,OR,AND};

Ex. For JAL we have to send {1'b1,22'b0} to instruction_type next cycle Ex. ADDI: {6'b0, 1'b1, 16'b0}, AND: {22'b0, 1'b1}

Besides, instruction_format output should be like {R type, I type, S type, B type, J type} Ex. ADDI(I type): {5'b01000} JAL(J type): {5'b00001}

Make sure you understand and check the instructions and it's answer in pattern folder.

2. Specification

The input/output pins are defined in Table1:

Tabel1:I/O pins specification

Signal name	1/0	Bit width	Description
clk	1	1	Clock signal.
			Positive edge trigger.
rst_n	1	1	Active low asynchronous reset signal.
mem_addr_I	0	30	Output address of the instruction
			memory
mem_rdata_I	1	32	Instruction read from instruction
			memory
instruction_type	0	23	Decode and output which type of
			instruction
instruction_format	0	5	Decode and output R/I/S/B/J type

3. Timing Diagram for Memory

Below figure shows the timing diagram for our HW. After reset, rst_n is positive and you can start to send mem_addr_I. Then the testbench will give you mem_rdata_I instructions code. You have to decode it and output corresponding format and type.

We will check your instruction answer after your mem_addr_I is not zero. Don't stop counting up your mem_addr_I(Program Counter), just fetch instructions line by line.

4. Simulation Scripts

4.1 Sample Code: findmax

Circuit findmax.v finds the max and argmax value for eight continuous inputs. Visit folder sample/findmax and run the following script.

ncverilog testfixture.v findmax.v +access+r

4.2 Sample Code: matvec2x2

Circuit matvec2x2.v computes matrix-vector multiplication Ax. In this sample, the size of matrix A is 2x2 and the size of vector x is 2x1. Visit folder sample/matvec2x2 and run the following script.

ncverilog testfixture.v matvec2x2.v +access+r +define+tb1 +notimingchecks

4.3 RTL-SYN Read the README.txt

4.4 Debug

Use program nWave to view the simulated signals. This will be very helpful for this exercise.

nWave &

5. Files

- The deadline for this exercise is 13:00, Dec. 1th. Your work should be submitted in a compressed file following the naming convention, HW3_yourID.zip (for example, HW1_b07901999.zip). The file should look like: (5% penalty for wrong format) There's a 10% penalty for incorrect upload format. No late submission is accepted.
 - HW3_yourID.zip
 - HW3_yourID/
 - CHIP.v (RTL file)
 - CHIP syn.v (synthesized gate-level netlist)
 - CHIP_syn.ddc (Design database generated by Synopsys

Design Compiler)

• CHIP_syn.sdf (Pre-layout gate-level sdf)

• yourID.pdf (Report)

6. Grading Criteria

Don't try to pass your code by modifying decoder_tb.v except cycle time. We will check by our testbench. We encourage you to generate testing file by RARS.

Plagiarism is prohibited!

Item	Description	
RTL correctness(20%)	Your CHIP.v should give correct answer.	
RTL tb(hidden) (20%)	Additional test case besides the provided files	
Gate level no latch(20%)	There are no latches in your gate level.	
Gate-level correctness (20%)	Your CHIP_syn.v should give correct answer.	
Report (20%)	Snapchat:	
	1. RTL(Pass)	
	2. SYN(Pass)	
	3. no latch	
	4. Timing report → report_timing	
	5. Area report → report_area	
	Please describe how you design this circuit and	
	what difficulties you encountered when working	
	on this exercise.	
	(Please write down your Verilog experiences.)	

Ref:

RTL:

SYN:

No latch:

```
Inferred memory devices in process
in routine CHIP line 76 in file
'/home/raid7_2/user08/r08016/Test_HW3/v1_2/CHIP.v'.
        Register Name
                                      Type
                                                | Width | Bus
                                                                  | MB | AR
                                                                                 AS | SR | SS
                                                                                                     ST |
  instruction_type_reg
instruction_format_reg
                                   Flip-flop
                                                    23
                                                                    N
                                                                                                     Ν
                                   Flip-flop
                                                     5
                                                                    N
                                                                                 N
                                                                                        N
                                                                                              N
                                                                                                     Ν
                                                                    N
             PC_reg
                                   Flip-flop
                                                    32
                                                                                 Ν
                                                                                              N
                                                                                                     Ν
Presto compilation completed successfully.
Current design is now '/home/raid7_2/user08/r08016/Test_HW3/v1_2/CHIP.db:CHIP'
Loaded 1 design.
Current design is 'CHIP'.
Current design is 'CHIP'.
```

Timing report:

CHIP	tsmc13_wl10	slow	
Point		Incr	Path
clock CLK (rise e	0.00	0.00	
clock network delay (ideal)		0.50	0.50
input external delay		0.10	0.60 f
mem rdata I[3] (in)		0.02	0.62 f
U65/Y (CLKINVX8)		0.03	0.66 r
U69/Y (AND3X8)		0.09	0.75 r
U43/Y (NOR3BX4)		0.11	0.86 r
U66/Y (BUFX16)		0.09	0.96 r
U121/Y (NAND3X8)		0.09	1.05 f
U175/Y (NOR3X1)		0.20	1.25 r
	reg 10 /D (DFFRX1)	0.00	1.25 r
data arrival time			1.25
clock CLK (rise e	edge)	1.00	1.00
clock network del	ay (ideal)	0.50	1.50
clock uncertainty		-0.10	1.40
instruction type	reg 10 /CK (DFFRX1)	0.00	1.40 r
library setup tim	ie	-0.15	1.25
data required tim	ie		1.25
data required tim	ie		1.25
data arrival time	:		-1.25
slack (MET)			0.00
	•	·	•.••

Area report:

Area report:					
**************************************	0				
Library(s) Used:					
typical (File: /home/raid7_2/course/cvsd/C					
Number of ports:	153				
Number of nets:	438				
Number of cells:	354				
Number of combinational cells:	290				
Number of sequential cells:	63				
Number of macros/black boxes:	0				
Number of buf/inv:	134				
Number of references:	48				
Combinational area:	3376.128590				
Buf/Inv area:	1363.012206				
	2393.333981				
Macro/Black Box area:	0.000000				
Net Interconnect area:	32993.498932				
Total cell area:	5769.462571				
Total area:	38762.961503				