中 国 科 学 技 术 大 学 2023 - 2024学年第二学期期末考试试卷

考试科目:

线性代数 (B1)

得分:	

所在院、系: ______

姓名:	
姓名:	

,	三一		_
i	六	总分	

题号	_	=	Ξ	四	五	六	总分
得分							
复查		•					

注: 若无特别说明、所有问题均在复数域 € 中考虑.

- 【每小题5分, 共30分】填空题:
- 1. 考虑 \mathbb{R}^3 中的线性变换 $\mathcal{A}(x, y, z)^{\mathrm{T}} = (-x + y + 2z, 2x + 2y 2z, x + 5y + z)^{\mathrm{T}}$. 则 A 将 \mathbb{R}^3 映射后的像的集合是 \mathbb{R}^3 的子空间, 称为 A 的像空间,记为 $\mathrm{Im}(A)$. 给出

Im(A) 的任意一组基_

2. 已知 $P^{-1}AP = \operatorname{diag}(1, 2, 3)$, 其中 $P = \begin{pmatrix} \alpha & \beta & \gamma \end{pmatrix}$. 取 $Q = \begin{pmatrix} \alpha - \beta & \beta & \beta + \gamma \end{pmatrix}$,

3. 已知矩阵
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & x & -2 \\ -2 & -2 & y \end{pmatrix}$$
 与 $B = \begin{pmatrix} 2 & & \\ & z & \\ & & 2 \end{pmatrix}$ 相似,则 $z = \underline{\qquad}$

4. 设 A 为 3 阶方阵, 满足 $\det(A + cI_3) = 0$, (c = 1, 2, 3). 则对任意的 k,

 $\det(A+kI_3)=\underline{\hspace{1cm}}.$

5. 设欧氏空间
$$V$$
 在基 α_1 , α_2 , α_3 下的度量矩阵为 $\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 1 \\ 0 & 1 & 4 \end{pmatrix}$. 考虑 V 中向量

 $\beta = \alpha_1 + 2\alpha_2 - \alpha_3$. 则 β 的长度为 _____.

6. 已知实二次型 $x_1^2 + 2x_2^2 + 2x_3^2 + tx_1x_2 - x_1x_3 + x_2x_3$ 正定. 则参数 t 的取值范围是

- 二、【每小题5分(判断正误2分,理由3分),共20分】 判断题:判断下列命题是否正确,并简要说明理由或举出反例.
- 1. 设 $A \in n$ 阶实对称矩阵, 则 A 与它的伴随矩阵 A^* 必相合.

2. 设 $V \neq n$ 维线性空间, $A \neq V$ 上的线性变换. 若 $A \neq V$ 的任意基下的矩阵都相等, 则 $A \neq V$ 上的数乘变换.

3. 设 A, B 为 n 阶正交矩阵, 满足 |A| + |B| = 0. 则 |A + B| = 0.

4. 设 $M = \begin{pmatrix} A & B \\ B^{\mathrm{T}} & D \end{pmatrix}$ 为实对称正定矩阵,其中 A, D 皆为 n 阶方阵. 则有 $|M| \leq |A||D|,$ 且等号成立当且仅当 B = O.

三、【5+10=15分】

设 №3 中的线性变换 A将

$$\alpha_1 = (0, 0, 1)^T$$
, $\alpha_2 = (0, 1, 1)^T$, $\alpha_3 = (1, 1, 1)^T$

变换到

$$\beta_1 = (-3, 1, 0)^T$$
, $\beta_2 = (-3, -1, 0)^T$, $\beta_3 = (5, 1, 4)^T$.

- (1) 求 A 在基 α_1 , α_2 , α_3 下的矩阵 A.
- (2) 求 \mathbb{R}^3 中的另一组基 ξ_1 , ξ_2 , ξ_3 , 使得 A 在 ξ_1 , ξ_2 , ξ_3 下的矩阵为对角阵 C, 并写出 C.

四、【2+8=10分】

记 V 为所有的 2 阶实对称方阵构成的实线性空间. 对于 V 中任意两个矩阵, 定义

$$(A, B) = \operatorname{tr}(AB)$$

易知 $(V, (\cdot, \cdot))$ 构成一个欧式空间.

- (1) 考虑 V 中向量 $A_1 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, $A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$. 将 A_1 , A_2 扩充成 V 的一组基 Γ_1 .
- (2) 利用 Schmidt 正交化, 从 Γ_1 构造 V 的一组标准正交基 Γ_2 .

五、【12+5=17分】考虑二次曲面

$$x^2 - y^2 - 4xz - 4yz + 2y + z = 0 \qquad (\star)$$

- (1) 通过旋转和平移变换将(*) 化为标准形式. 写清楚变换过程和最后的标准方程,并指出该曲面的类型.
- (2) 求(1)中所用旋转变换的旋转轴的方向及旋转角度.

六、【8分】考虑实对角阵
$$A=\begin{pmatrix}a_1\\a_2\\&\ddots\\&a_n\end{pmatrix}$$
,其中 $a_1>a_2>\cdots>a_n>0$. 设 P,Q 为 n 阶正交矩阵,且 $PA=AQ$. 证明: $P=Q$.