HDE 040 154 SBIN/NORDA

AD-A244 456

FINAL REPORT

OSIRRUS: OCEANIC SYMBOLIC IMAGE REPRESENTATION, RECOGNITION AND UNDERSTANDING SOFTWARE

Applied for polic release;
Distribution Unlimited

91-17531

		7	_
REPORT	DOCUMEN	NTATION PAGE	

Form Approved OBM No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. Agency Use Only (Leave blank).	December 1990	Contractor Report	Final	
4. Title and Subtitle. OSIRRUS: Oceanic Symbolic Ima	age Representation, Recog		5. Funding Numb Program Element N	
Understanding Software			Project No.	3587
6. Author(s).			Task No.	MOGO
Lee A. Atkinson*			Accession No.	DN259048
			Work Unit No.	13210R
7. Performing Organization Name(s) a Consultant's Choice, Inc. 8800 Rowsell Road Atlanta, GA 30350	and Address(es).		8. Performing Or Report Number	
9. Sponsoring/Monitoring Agency Na Naval Oceanographic and Atmos Ocean Sciences Directorate, Coc Stennis Space Center, MS 39529	spheric Research Laboraton de 321	у	10. Sponsoring/I Report Num CR 001:92	Monifering Agency ber.
11. Supplementary Notes. *Consultant's Choice, Inc., Atla Contract Number N00014-89-C	-6027		12b. Distribution	n Code.
Approved for public release; di	istribution is unlimited.			
13. Abstract (Maximum 200 words). Detection and proper labelii Science Directorate. Automated interest) in infrared satellite imag of work done by Consultant's Chanalysis on detection features to detached ocean stream undul surrounding waters. Warm eddy Oceanic Symbolic Image R "symbolic form" in the sense the temperature on a thermal topole mesoscale features, such as temperature profile to confirm especialist.	didentification of eddy rings a gery using isotherm shape ide hoice, Inc. (CCI), concentrati o reduce false alarms. An e lations, having a trapped o y rings have warm cores, ar Representation, Recognition hat data are converted to a logy, which is termed an iso eddy rings. Shapes identify	and Gulf Stream walls (two of entification is a viable approaching on eddy ring detection used by ring is a large parcel of core of water whose temper and cold eddy rings have cold and Understanding Softwallist of contiguous pixel poin otherm. Ideally, isotherms to ying potential areas of inte	oceanic mesoscale ch. This report pressing shape identified circulating ocean erature is marked dicores. are (OSIRRUS) counts representing a reministration of the corest are analyzed.	e features of specific sents the completion cation and statistical water, created from ly different from its enverts imagery to a contour of constant shapes that enveloped with an additional

14. Subject Terms.

Remote sensing, image segmentation, symbolic representation

15. Number of Pages.

51

16. Price Code.

17. Security Classification of Report.
Unclassified

18. Security Classification of Abstract.
Unclassified

20. Limitation of Abstract.
SAR

1/

FINAL REPORT OSIRRUS: OCEANIC SYMBOLIC IMAGE REPRESENTATION, RECOGNITION AND UNDERSTANDING SOFTWARE

Contract No. N00014-89-C-6027

01 AUG 89 - 10 NOV 90

Prepared By

Lee A. Atkinson

of

Consultant's Choice, Inc. 8800 Roswell Road, Suie 130 Atlanta, Georgia 30350

for

Naval Oceanographic and Atmospheric Research Laboratory (NOARL) Department of the Navy Stennis Space Center, MS 39529

ACKNOWLEDGMENTS

This project was funded under contract to NOARL, Contract No. N00014-89-C-6027. The author wishes to express thanks to Matthew Lybanon for continued interest and support of OSIRRUS. Acknowledgments also go to Bennett Teates and Paul Lampru for acquisition and guidance, and to Kathie Speas for the manuscript and graphics.

TABLE OF CONTENTS

Section		<u>Page</u>
1.0	INTRODUCTION	1
2.0	GENERAL METHOD	2
2.1	Preprocessing	2
2.2	Image-to-List Transformation	3
2.3	Eddy-Shape Detection	5
2.4	Feature Modeling	7
2.5	Detection Results	8
3.0	IMPROVEMENTS	
3.1	Modulation	 9
3.2	Special Gaussian	10
4.0	STATISTICAL ANALYSIS	10
4.1	OSIRRUS Results	
4.2	Potential Predictor Variables (PPVs)	12
4.3	Semi-Automated Groundtruth Correlation	13
4.4	Data Preparation for GOPAD	14
4.5	GOPAD Results	
4.5.1	Module I	
4.5.2	Module II	
4.5.3	Module III	
4.6	Probability Forecast	16
4.7	Relative Operating Characteristics	17
5.0	CONCLUSIONS	17
6.0	RECOMMENDATIONS	

LIST OF FIGURES

		Page
Figure 1.	Thresholding for Contours (Isotherms)	3
Figure 2.	Contours (Isotherms)	4
Figure 3.	Bottleneck Filter	ŝ
Figure 4.	Thermal Profile of Eddy Ring	13
Figure 5.	Warm Model for Bottle Shape Recognizer	18
Figure 6.	Cold Model for Bottle Shape Recognizer	19
	LIST OF TABLES	
Table I.	General Method	2
Table II.	Current Detection Rules	7
Table III.	Feature Assignment for Each Eddy Ring Detection (Isotherm Group)————————————————————————————————————	8
Table IV.	Results Showing Before and After Optimization and Improvement of Algorithms	9
Table V.	Raw OSIRRUS Results	11

OSIRRUS: OCEANIC SYMBOLIC IMAGE REPRESENTATION, RECOGNITION AND UNDERSTANDING SOFTWARE

1.0. INTRODUCTION

Detection and proper labeling of oceanic mesoscale features in remotely sensed data is a mission of NOARL's Ocean Science Directorate. Automated identification of eddy rings and Gulf Stream walls (two oceanic mesoscale features of specific interest) in infrared satellite imagery using isotherm shape identification is a viable approach. This report presents the completion of work done by Consultant's Choice, Inc. (CCI), concentrating on eddy ring detection, using shape identification and statistical analysis on detection features to reduce false alarms. An eddy ring is a large parcel of circulating ocean water, created from detached ocean stream undulations, having a trapped core of water whose temperature is markedly different from its surrounding waters. Warm eddy rings have warm cores, and cold eddy rings have cold cores.

Oceanic Symbolic Image Representation, Recognition and Understanding Software (OSIRRUS) converts imagery to a "symbolic form" in the sense that data are converted to a list of contiguous pixel points representing a contour of constant temperature on a thermal topology, which is termed an isotherm. Ideally, isotherms form characteristic shapes that envelop mesoscale features, such as eddy rings. Shapes identifying potential areas of interest are analyzed with an additional temperature profile to confirm eddy ring detection and provide automatically extracted measurements useful to a mission specialist.

Since isotherms are acquired easily for all thermal values in the image domain, OSIRRUS has the advantage of avoiding scale-dependent problems usually associated with feature-edge detection. Moreover, isotherms ensure unique labeling of edges (mixed labeling does not occur). OSIRRUS does not attempt to detect and label under one process. The technique of first performing shape extraction and then specific shape detection is more natural in the understanding of information presented, and leads to robust heuristics of detection and analysis. Also, since the techniques are separated, OSIRRUS has the capacity to detect and analyze a wider variety of thermal structures than using a finely-tuned specific detector. Even though shape recognition is of main interest, the isotherm representation still retains thermal information so that intelligent decisions using known physical and oceanographic properties may be made.

Isotherm extraction and identification involves processing of thousands of lists, each with varied lengths of possibly several hundred elements. Although difficult to manage in some programming environments, lists may be combined with data of varied form and type to form complex and powerful data structures. The development of OSIRRUS was performed on an Integrated Inference Machine (IIM)-Inferstar LISP machine capable of managing complex data structures in an interpretive environment with dynamic memory allocation and automatic variable typing. This platform allowed rapid prototyping of OSIRRUS and, therefore, rapid development of eddy ring shape identification. However, the algorithms that have been developed are not LISP nor LISP-machine specific, may be ported to the C language or assembly, and will operate on most microcomputers.

2.0 GENERAL METHOD

Described herein are the general steps (see Table I) for preprocessing, symbolic transformation, eddy ring detection, and detection analysis performed by OSIRRUS. Improvements concerning speed and quality of identification are described in Section 4.0.

TABLE I GENERAL METHOD

STEP	OPERATIONS	TYPE	RESULT
1. PREPROCESSING	FILTER	SPATIAL	MEDIAN 5X5
	FILTER	SPATIAL	GAUSSIAN 5x5
2 IMAGE-TO-UST XFORM	THRESHOLD	DOWN	BINARY
	EDGE	4 CONN	ISOTHERM IMAGE
	CONTOURIZE	PASTER SEARCH	ISOTHERM LIST
	FILTER	RULES	ISOTHERM LIST
	RECONNECT	SEARCH	ISOTHERM LIST
	FILTER	RULES	ISOTHERM LIST
3. DETECT-EDDYS	BOTTLENECK	RULES	BOTTLES
a Detect-EDDYS		1	
	RING FILTER	RULES	RINGS
I. DETECTION-ANALYSIS	GROUPING	CALC	FEATURE OBJECTS
	FEATURE ASSIGN	CALC	FEATURE OBJECTS

2.1 <u>Preprocessing</u>

OSIRRUS typically processes 256x256 pixel images with infrared intensity 0 to 255, representing coldest to warmest thermal signature, respectively. The original image is

processed using a median 5x5 filter to eliminate shot noise and ensure local continuity. This filter is best, since a median 3x3 does not filter typical images enough and a 7x7 does not gain much beyond a 5x5. It was found that, without this filter, many pygmy isotherms are created and large (long) isotherms are contaminated with spurious loops that do not yield general information about the thermal topology. To assist the median 5x5 filter, a Gaussian (binomial 5x5) filter evens out local small-scale features and digitization noise. While these two filters may lose information and gradient detail, feature shapes become much more apparent for recognition, and granularity of information is reduced.

2.2 <u>Image-to-List Transformation</u>

OSIRRUS transforms the preprocessed image into lists of isotherms by intensity levels. A given level (L) is processed to obtain all usable isotherms, and then the process is repeated for each intensity level. Isotherms from a given level or temperature are grouped together into a temperature-labeled list.

Assurance of unbroken isotherms is made by thresholding intensity values (T) to obtain a binary image (B) using the following rule:

$$T(x,y) > L \rightarrow B(x,y) = 0$$
 (1)
 $T(x,y) \le L \rightarrow B(x,y) = 1$

Thresholding thus interpolates for areas where large gradients skip over intermediate intensity values. Isotherms are that set of pixels with intensity values not greater than L, which neighbor pixels with intensity levels greater than L (see Figure 1).

Figure 1. Thresholding for Contours (Isotherms)

Isotherms are formed from the resulting binary image B(x,y) by an edge operator. Edge pixels are only those pixels with a four-connected zero-valued neighbor. The simplest edge operator is the best! At this point, viewing the edge image results in display of image isotherms, revealing the shape of the thermal topography at the processed level (see Figure 2). The edge image is converted to symbolic format which is a list of lists of pixel coordinates, as illustrated in the LISP list below:

```
( ( (Xa Ya) (Xb Yb)...(Xn Yn) )
 ( (Xc Yc) (Xd Yd)...(Xm Ym) )
 .
 .
 ( (Xe Ye) (Xf Yf)...(Xp Yp) ) ).
```


Figure 2. Contours (Isotherms)

Transformation to symbolic format is accomplished by performing a raster search to find at least one point on an edge contour (image isotherm). From this one point, a typical contourfollowing algorithm collects contiguous pixels into a list and eliminates or marks their extraction from the edge image. The raster search continues until all pixels are extracted.

The resulting collected lists contain numerous short isotherms such as those formed about cloud noise and "loose ends" left from the raster-scanning transformation process. Currently, OSIRRUS uses a rule that eliminates isotherms shorter than four points in length.

Clouds often leave streaks through otherwice uncontaminated thermal signature, breaking isotherms, and forming false termini of isotherms. A reconnection process ties isotherm termini together within a local neighborhood (without interpolating). The search process is on lists rather than contour following on the image, and is, therefore, an N² process where N equals number of isotherm termini. For a large number of termini, search becomes a compute intensive process. However, reconnection is not compute intensive since the original contourfollowing algorithm uses the same neighborhood to recursively trail and join isotherm termini. Reconnection, however, ensures unbroken isotherms and thus preserves whole shapes.

Finally, all collected isotherms are filtered a second time for length greater than or equal to 18 points. Generally, short isotherms will not embody enough shape to be recognized by the remaining detection scheme. Should additional algorithms be developed, groups of short isotherms (with adjacency) may be useful to detect partially occluded features. However, for the present time, this rule serves as a dividing line and data reduction limit.

2.3 Eddy-Shape Detection

Once isotherms are acquired in a symbolic format, shape recognition may begin. Eddy rings apparently have two major isotherm shape structures. The first of these structures is due to a turbulent swirling and mixing of cold and warmer waters. In such a case, isotherms tend to form a crested spiral or hook shape. During the development of OSIRRUS, a hook shape detector was developed and tested. However, simple schemes of hook and spiral detection failed to produce robust results. The reason for difficulty is probably that there are many subclasses of hook and spiral shapes. For example, warm eddy rings near the Gulf Stream pull colder slope water around from one side while pulling warmer water from near the north wall to the other side (see Figure 2). The shifting of waters in such fashion often creates apparent irregularities in the sensed gradient field.

The second major structure occurs when eddy rings no longer pull neighboring waters into shallow spirals. In this case, the core appears homogeneous and thermal gradients converge (or diverge) evenly from the ring center. One expects that isotherms would form concentric contours about the eddy ring. In general, the second structure is typified by concentric

open-ended bottles containing the eddy ring (see Figure 3). Currently, OSIRRUS uses only a bottle shape detector to filter isotherms with this type of major structure.

Figure 3. Bottleneck Filter

Currently, OSIRRUS employs an algorithm similar to a hill-climbing procedure which is faster than N^2 search. The algorithm finds the closest points (with euclidean separation S) that have at least a minimum arc length, L, between them. The two closest points generally mark the "neck" of the bottle or isotherm structure. Points between these bottleneck points are retained if local curvature is less than some threshold, $S/L < C_{Th}$. Thresholds governing the hill-climbing search serve as rules for detection.

Eddy rings are not always blessed with circular or ellipsoidal symmetry. Another filter involved in detection eliminates "bottles" that are considered extremely eccentric. The "ring filter" rule decides if a bottle-shaped isotherm is a possible component of an eddy ring:

$$(Rmax - Rmin)/RMS < \varepsilon$$
 (2)

where Rmax (Rmin) is the maximum (minimum) distance from the centroid of the bottle and RMS is the root-mean-square of all radii from the controid of the bottle. Epsilon is proportional to the maximum allowable eccentricity of the bottle.

Once bottles have been detected at all intensity (thermal) levels, OSIRRUS performs a grouping of concentric isotherms to strengthen or rank detection. Observations have indicated that centroids of isotherms about an eddy ring are not co-located. Therefore, bottles are grouped if within a neighborhood of radius = 16. Each group is then considered as one detection for analysis. A summary of detection rules is in Table II.

TABLE II OSIRRUS DETECTION RULES

MINIMUM ISOTHERM LENGTH (1ST) = 4MINIMUM ISOTHERM LENGTH (2ND) = 18
- MAXIMUM BOTTLE SIZE = 80 - MAXIMUM NECKSIZE = 16 - MINIMUM BOTTLE LENGTH = 32 - MAXIMUM BOTTLE LENGTH = 256
— (Rmax-Rmin)/RMS < .75
— <u>R</u> G; DUP < 16
-

2.4 <u>Feature Modeling</u>

Feature modeling labels each detection with associated feature measurements which may: (a) help eliminate false detections; and (b) be of interest to an analyst reviewing the automatic interpretation. The feature suite is listed in Table III. The features are calculated by OSIRRUS from the grouped isotherms for each detection. Features form a structural list that represent an individual detection. The last feature, thermal profile, consists of 59 temperature-related measurements and is a temporary addition to the feature suite. The thermal profile feature is discussed in detail in Section 4.2.

A multiple discriminant analysis program called GOPAD has been used to determine the manner in which features can be combined to form identification rules. GOPAD processed features of each detection together with groundtruth (i.e., known eddy rings). The result is a statistical model from a database of 117 images that provide distinguishability of actual eddy rings from false alarms. The effort to perform a statistical analysis was provided under extension of the OSIRRUS contract and is discussed at length in Section 4.0.

¹ Goal Oriented Pattern Detection, ThinkNet, Inc.

TABLE III FEATURE ASSIGNMENT FOR EACH EDDY RING DETECTION (ISOTHERM GROUP)

- MAXIMUM ISOTHERM LENGTH
- MINIMUM ISOTHERM LENGTH
- MAXIMUM EPSILON (OVALNESS)
- MINIMUM EPSILON (OVALNESS)
- MAXIMUM RADIUS
- MINIMUM RADIUS
- NUMBER OF ISOTHERMS IN GROUP
- THERMAL PROFILE (59 PARAMETERS)

2.5 Detection Results

Table IV shows results of detection prior to feature modeling. The table refers to results before and after optimizations and fine-tuning of rules, thresholds, etc., had been implemented. Four images are warmest-pixel composite (designated with an A---), and six are single images (designated with an M---). When comparing results, there are indications that combined results over a few days would be better than processing composite images where isotherms apparently broaden and smear.

These results have high false alarm rates since, to date, rules and methods have not been employed to eliminate detections due to noise. Many detections are too small to be eddy rings or have inconsistent thermal signature. The continuing effort to find elimination rules from a database of 100 images should bring false alarm rates down significantly.

TABLE IV
RESULTS SHOWING BEFORE AND AFTER OPTIMIZATION
AND IMPROVEMENT OF ALGORITHMS

IMAGE	Ē	EF	OR	<u>E</u>		AFTER
NAME	<u>A</u>	<u>D</u>	<u>F</u>	<u>M</u>	<u>E</u>	<u>ADFME</u>
A1T2	2	5	3	0		2 17 15 0
A6Y7	1	5	4	0		1 11 10 0
A17T18	2	5	4	1		2 7 5 0
A21T23	1	6	6	1	clouds	1 15 15 1
M09	3	4	3	2	clouds	3 18 17 2 clouds
M10B	4	6 6	4	2		4 15 11 0
M10D	4	7	3 5	1	clouds	4 11 7 0
M11A	3	5	2	2	ciouas	4 11 8 1 clouds
M11C	٠ •	8	7	0		3 11 8 4
M12	<u> </u>					1 13 12 0
	25	57	41	9		25 129 108 4
HITS= D-F=16						HITS= D-F=21
POD= HITS/ACTUAL	L=64%					POD= HITS/ACTUAL=84%
FAR= F/D=72%						FAR=F/D=84% A - ACTUAL D - DETECTED F - FALSE ALARM M - MISS E - POSSIBLE REASON FOR MISSES POD - PROBABILITY OF DETECTION FAR - FALSE ALARM RATE

3.0 IMPROVEMENTS

Processing each intensity level to acquire isotherms is very time consuming. Yet, peculiar eddy rings may have domains over most of the 256 intensity levels. In order not to skip over possible detections and at the same time expedite processing, techniques were devised to process all intensity levels while clarifying information content that led to two major improvements in the speed of obtaining isotherms and improving isotherm representation for better eddy ring detection.

3.1 Modulation

The first technique may improve use of symbolic contours for many applications other than eddy ring detection. The process of "Image Modulation" for isotherm contour processing is based upon the following premise: "If the image topology is smooth and there are very few strong gradients over a base distance, B, then isotherms at a thresholding of t_1 are spatially separated from isotherms at a thresholding of $t_2 = t_1 + B$ at distances most like B." Thus, if B is large enough, the two isotherms at t_1 and at t_2 are almost always spatially separated. This separation allows the processing of more than one thresholding of an image at once without the

usual problems of adjacent and overlapping contours (isotherms). A pixel of intensity I(x,y) becomes:

$$I(X,Y) = MOD_{B}[I(X,Y)] + 1$$
(3)

where B is the base. After this modulation has been accomplished, B levels may be processed instead of 256! In order to ensure that the image is smooth, a specialized binomial filter is applied (see Section 3.2 below) before the modulation processing is completed.

Prior to implementing the image modulation scheme, the time to process ten levels of an image was 20 to 40 minutes. Thus, the expected time to process all 256 levels was about 8 to 17 hours. After implementation, images have been processed in full range (all 256 levels or 12 modulated levels) within an hour. Using this powerful approach, eddy rings are detected (both warm and cold rings), regardless of their internal or background temperature. Combined with other optimizations (not discussed herein), OSIRRUS currently can process 48 modulated levels in 15 minutes.

3.2 Special Gaussian

The second technique is required for the image modulation and further reduces noise and data representation. The method begins with a Gaussian filter (binomial 5x5) and normalizes the sum of weights corresponding to non-zero pixels. Using only non-zero pixels prevents cloud contaminated areas from becoming too smooth (like eddy rings) or blending with neighboring features. Isotherm representation is benefited because isotherms are smoother and represented with fewer points. Finally, isotherms are well separated before symbolic transformation takes place, resulting in less ambiguous shapes.

4.0 STATISTICAL ANALYSIS

The preliminary results discussed above have high false alarm rates since, to date, OSIRRUS has not employed rules and methods to eliminate false detections. Many detections are too small to be eddy rings or have inconsistent thermal signature. Further research was performed using a multiple discriminant analysis program called GOPAD to determine the manner in which features can be combined to form identification rules. GOPAD processed features of 1,107 detections together with ground truth (i.e., known eddy rings) resulting in two statistical models. The detections and associated features were obtained by using OSIRRUS to process a database of 117 images. Each model (one for warm eddy rings and one for cold eddy rings) provides a probability rule to distinguish actual eddy rings from false alarms.

4.1 OSIRRUS Results

The results of using OSIRRUS to process 117 256x256 images are presented below. Misses are considered to be any eddy rings unobscured and recognizable, correlating to charted analysis as groundtruth that were not detected by OSIRRUS. Eddy rings only partially in the image or more than 50% obscured by clouds are not considered detectable. The false alarms are those detections not eliminated by OSIRRUS and not correlating with groundtruth. The raw OSIRRUS results are in Table V.

TABLE V
RAW OSIRRUS RESULTS

	RA	W OSIRRUS I	RESULTS		
ALL EDDY RINGS		OSII	RRUS		
		ER	NOT	TTL	•
<u>ACTUAL</u>	ER	87	42	129	•
<u> ACTONE</u>	NOT	1020	x	х	
	TTL	1107	х	х	•
			F.A.	AR = 92.1%	POD = 67.4%
WARM EDDY RINGS		OSII	RRUS		
		ER	NOT	TTL	
ACTUAL	ER	30	26	56	
1.0.10.11	NOT	581	Х	х	•
	TTL	611	х	х	•
			F.A	R = 95.0%	POD = 53.6%
COLD EDDY RINGS		OSIF	RUS		
		ER	NOT	TTL	
ACTUAL	ER	57	16	73	
<u> NOTONI</u>	NOT	439	X	x	
	TTL	496	Х	х	
			FA	IR = 88.5%	POD = 78.1%

LEGEND: ER = eddy rings; NOT = not eddy rings, TTL = total

FAR = False Alarm Rate
POD = Probability of Detection

These results reflect the ability of OSIRRUS to identify sets of concentric isotherms using only the bottle shape detector. Other shape detectors should increase the total number of hits and consequently reduce the number of misses for both cold and warm eddy rings.

4.2 Potential Predictor Variables (PPVs)

The potential predictor variables (PPVs) represent a set of measurements made for each detection that are to be used by GOPAD to establish a prediction model. The prediction model may then be used to provide the probability that a given detection is an eddy ring. The feature suite listed in Table III corresponds to the PPVs used to train GOPAD. The first nine PPVs provide location, shape and concentration of isotherms making up the detection. The next 59 PPVs provide a thermal profile of the detection.

The thermal profile PPVs are temperature-related measurements in the vicinity of the detection. Technically, these measurements are features (discussed in Section 2.4) and have been temporarily computed for the sake of the GOPAD statistical analysis. Assuming the detection is an eddy ring entirely enclosed by the maximum radius (RMAX) and that the eddy ring is approximately circular, regions of the image about the centroid are partitioned for measurement (see Figure 4). The CORE is arbitrarily defined as the inner circular area with radius half RMAX. The gradient region (GRD) is defined as an annulus between the core and radius RMAX, and the environment region (ENV) is defined as an annulus from radius RMAX to three halves RMAX. While these divisions and assumptions may oversimplify the actual thermal structure of eddy rings, they provide a consistent basis upon which to make comparisons. Each circular region is further partitioned into eight subregions. For each subregion, the mean temperature (intensity) and temperature variance is calculated to provide a total of 48 of the 59 thermal profile PPVs. By combining opposing core subregions, four core temperature slopes and four associated standard deviations may be calculated to provide eight more thermal profile PPVs. An additional three variables are formed by summing the mean temperatures of each subregion together for each circular region.

Although imagery should be processed in a standard fashion for consistent results, for our experimentation, OSIRRUS occasionally processed images with 256 compliment intensity values (reverse fielded). For these cases, the measured temperature means and slopes were easily corrected. However, a boolian variable (the only one) was provided to take into account any possible bias introduced by OSIRRUS. Altogether, there are 69 PPVs that are provided to GOPAD (see Appendix A for PPV names).

Figure 4. Thermal Profile of Eddy Ring

4.3 <u>Semi-Automated Groundtruth Correlation</u>

Using groundtruth charts (analyses) for imagery previously processed by OSIRRUS, a query program provided a semi-automated way of integrating groundtruth and OSIRRUS results, allowing for verification of integrated data. The query program begins by selecting an image from the database and displays the image on the screen and retrieves the corresponding OSIRRUS output for that image. The user is queried to process the image or skip to another image. If chosen, the query program asks if the image is reverse fielded and requests the x and y offsets. The program then displays detected eddy rings, with a Mercator grid overlaying the image showing latitude/longitude (lat/long) per grid line. The user may then mouse-click on each detected eddy ring corresponding to charted groundtruth. For each detection selected, lat/long values are displayed for verification of position. The user then specifies type (cold or warm) for the selection. After all detections are selected, the user terminates the selection loop

and all unselected detections are marked as false. The query program combines groundtruth information with the corresponding OSIRRUS output for that image and saves the resulting groundtruthed detections of all images in one file.

4.4 <u>Data Preparation for GOPAD</u>

After combining groundtruth with OSIRRUS detections using the query program, the data is formatted for GOPAD. Formatting the data included standardizing the PPVs for each detection and selecting groups of PPVs (indices) from which GOPAD will create optimized linear combinations. The indices selected are included in Appendix B. During the data preparation stage, detections were separated into a warm detections file and a cold detections file in order to create two independent prediction models. The method used to separate detections simply used the sign of the difference between the core and environment mean temperatures.

Standardization of a potential predictor variable is accomplished by computing the mean and standard deviation of that predictor variable value for all data points. The variable is then transformed by

$$X'=A^{*}X+B \tag{4}$$
 where
$$A=1/\sigma \tag{5}$$

$$B=\overline{X}/\sigma. \tag{6}$$

4.5 GOPAD Results

GOPAD is a statistical analysis and modeling tool consisting of three major modules. The following paragraphs briefly describe the output from each module for both warm and cold models. The corresponding output data are listed in Appendices C, D, E, F, G, and H.

4.5.1 Module I

The first GOPAD module measures the statistical discriminatory ability of each individual predictor variable (including selected indices) to group detections in accordance with groundtruth. The value DSQ is a measure of separation between groups. After review of the set of predictor variables, GOPAD lists only those variables with a DSQ value greater than 5.00. Variables with values of DSQ less than 10.00 are not statistically significant as sole predictors

of groundtruth. However, all predictors listed with DSQ values are considered for inclusion in the model by the second GOPAD module.

The analysis conducted by the first GOPAD module clearly indicates the SHAPE index as having the highest discrimination ability in both warm and cold models. Although all variables combined to produce the SHAPE index have high DSQ values, the variable RMAX provides most of the discrimination. This result strongly suggests that the outermost contour detected (from a set of concentric contours combined using the bottle shape detector) must have a mean radius of sufficient size so that the contour contains or envelops an entire eddy ring. Also selected with high DSQ values were indices relating temperature variance, most significantly contributed by the core temperature variances. A high core variance may indicate a detection indicative of cloud cover, while a low core variance may indicate a smooth and near constant central temperature. Individually, the remaining predictor variables with low DSQ values are not good discriminators of eddy rings.

4.5.2 Module II

The second GOPAD module determines a near optimum combination of predictor variables from those provided from the first module. This module begins by creating combinations of two predictor variables and calculating respective DSQ values for each combination. Only the best pair of predictor variables is considered for further combination with a third predictor variable. The number of variables used in combination are increased until the improvement in DSQ is not statistically significant.

The warm model second module output selected only the SHAPE index (see Appendix B) in combination with the TCV3 predictor variable (variance of core temperature in the third octant), while the cold model second module output selected a combination of SHAPE and TENV (mean environment temperature in all octants) indices and the TCV8 and TCV6 predictor variables as having the best discriminatory power. These selected variables are passed on to the third GOPAD module.

4.5.3 Module III

The third module determines optimum scaling and orthogonalization of model predictor variables and determines optimal neighborhood size used in determining the probability that a given detection is an eddy ring. The orthogonalized predictor variables are given for each data

point and associated groundtruth. Module III provides a listing for each model predictor variable containing raw predictor variables, weights, and standardization coefficients. Also listed are the appropriate scale factors and eigenvectors for orthogonalization.

Reviewing the listings for both cold and warm models, one notices that only the first model predictor vector has non-zero values. This result indicates that all pertinent discriminatory information lies along a straight line in predictor variable space. Thus it is possible to establish a simple thresholding heuristic for discriminating actual eddy ring from false alarms. The prediction equations for both warm and cold models compute the magnitude of the first vector for a given detection, and are provided below.

PREDICTION EQUATIONS FOR COLD MODEL

```
PV1 = (0.5966E+00*RMAX) - (0.3618E-02*MINLEN) + (0.7114E+00*MAXEPSLN) + (0.5617E-02*NCTRS) + (0.2940E-02*TE4) - (0.2357E-02*TE6) + (0.2110E-06*TCV8) - (0.1860E-06*TCV6) - 0.1399E-01
```

PV2 = PV3 = PV4 = 0

PREDICTION EQUATIONS FOR WARM MODEL

```
PV1 = (0.6204E+00*RMAX) - (0.5938E+00*MAXLEN) - (0.3752E+00*MINEPSLN) - (0.2410E-06*TCV3) - (0.2269E+00)
```

PV2 = 0

4.6 Probability Forecast

Using the prediction equations above, it is possible to obtain a probability that a given detection is an eddy ring. The probability is generated from a K-Nearest-Neighbor algorithm. In general, the predictor vectors generated from a detection point to a place in predictor variable space from which K number of closest modeled data point neighbors (analogues) are referenced. The K neighbors will contain N actual eddy rings. The probability that the detection is an eddy ring is just P = N/K. GOPAD has determined the optimum number of neighbors used for both warm and cold models:

WARM MODEL K = 22 COLD MODEL K = 20 Therefore, using the appropriate prediction equation and modeled data points for a detection, a probability can be associated and indicated to the user. An interactive display could allow a threshold to be set, displaying only those detections above chosen probability.

4.7 Relative Operating Characteristics

Often, one desires to know the number of false alarms one must tolerate in order to retain a given percent of actual positive detections (eddy rings). Eliminating all false alarms may result in few positive detections, while retaining most positive detections could result in keeping most false alarms. A graph of false alarm rate verses percent detections reflects the relative operating characteristics for a particular model. The amount the curve deviates from the diagonal indicates the amount the prediction model may discriminate detections better than random chance. Figures 5 and 6 depict the relative operating characteristics for the warm and cold models.

5.0 CONCLUSIONS

OSIRRUS has proven the capability of symbolic processing to identify thermal structures for intelligent discrimination of eddy rings by shape recognition of image isotherms and by feature model identified regions. OSIRRUS can preprocess, transform image to list format, identify eddy shapes, and model extracted features in approximately 22 minutes per 256x256 image. In order to appreciate OSIRRUS' capability of shape recognition, one must consider that only one shape recognizer, the bottle filter, is employed. The results from processing 117 images show that this shape recognizer alone can achieve recognition of more than half of actual eddy rings presented. The overall performance of OSIRRUS on these images without any reduction of false alarms is as follows:

WARM EDDIES	53.6% POD	95.1% FAR
COLD EDDIES	78.1% POD	88.5% FAR
TOTAL EDDIES	67.4% POD	92.1% FAR

POD = Frobability of Detection
FAR = False Alarm Rate

Figure 5. Warm Model Relative Operating Characteristics

Figure 6. Cold Model Relative Operating Characteristics

A consequence of research in developing OSIRRUS is the implementation of special preprocessing of imagery by smoothing and Image Modulation to reduce processing time. The Image Modulation technique allows time-efficient, scale independent processing of all 256 intensity levels. Thus, OSIRRUS avoids submission to edge detection techniques that may be scale dependent. The acquisition of all isotherms in an image reduces the chance of loosing pertinent information. Furthermore, the transformation of imagery into isotherms as symbolic imagery provides for ease of efficient shape recognition and avoids mixed labeling of thermal structures.

Statistical analysis of detection-extracted features indicate that the overall size and shape is the most significant feature to discriminate false detections from actual eddy rings. Also there is some discriminate ability found in using the core temperature variance. Optimum prediction equations were established for both warm and cold detections. These equations and mcdeled data points allow a K-Nearest-Neighbor algorithm to calculate the eddy ring probability for a given detection. The probability could be displayed beside each circled detection for an analysts' review or thresholded for automatically deciding which detections are to be recorded in a database. Elimination of all but 10% of false alarms retains 53% of cold eddy rings and 42% of warm eddy rings. These results indicate that OSIRRUS is more likely to detect cold eddy rings than warm ones. This capability complements analysts who are prone to detect warm eddy rings more often than cold ones.

6.0 RECOMMENDATIONS

The above results were obtained from only one shape recognizer, the bottle filter. Continued research to create and test new shape recognizers would bring probability of detection to near 100% for eddy rings in the data provided. There are two possible shape recognizers that will detect characteristics of eddy ring thermal structure. One ne¹⁷ shape detector would be a recreation of the previously developed hook detector. The hook detector developed early in the OSIRRUS project performed crudely and was abandoned for the more successful bottle shape detector. However, recreation of this filter would allow detections of spiral structured eddy rings. This structure is found in many of the warm eddy rings that pull cold slope water around in a fashion that causes an overall gradient across the warm ring. Another new shape detector would recognize adjacent isotherms with the proper curvature and thermal gradient as an eddy ring section (i.e., a pie slice). The pie filter would allow detection of partially obscured eddy rings from clouds or subduction by the Gulf Stream. These two new shape features (and possibly others) would provide independent detections of eddy rings, thereby increasing the

overall POD. For each shape filter, a groundtruth correlation and GOPAD analysis would be performed. Therefore, three shape detectors for warm and cold eddy rings would require six models. A seventh combined model, would provide a statistically sound basis for highest POD and lowest false alarm rate (FAR).

In order to achieve a more accurate statistical model using detection features, CCI recommends that a more refined database of detections be presented. Multiple detections result from differing image cuts (regions) of the same main image. Elimination of duplicate detections will result in a statistical model that is not biased from over emphasized features. CCI also recommends that detections correlated with groundtruth data be chosen to reflect the shape recognizers' intended function in order to eliminate coincidental hits from biasing the discriminatory ability of the statistical model.

Symbolic isotherm shape recognition may be extended to locate features within the Gulf Stream as an assist to temporal interpolation schemes. Thermal features currently not explored by NOARL can be extracted if characterized by shape, size, and thermal profile. Furthermore, CCI suggests that isotherm shape recognition has potential in the areas of image classification and image repair.

APPENDIX A

VARIABLE NAMES

Number	Name	Number	Name
1	MEANX	36	TGV3
1 2 3 4 5	MEANY	37	TGV4
3	MAXLEN	38	TGV5
4	MINLEN	39	TGV6
5	MAXEPSLN	40	TGV7
6	MINEPSLN	41	TGV8
7	RMAX	42	TC1
8	RMIN	43	TC2
9	NUMCTRS	44	TC3
10	TE1	45	TC4
11	TE2	46	TC5
12	TE3	47	TC6
13	TE4	48	TC7
14	TE5	49	TC8
15	TE6	50	TCV1
16	TE7	51	TCV2
17	TE8	52	TCV3
18	TEV1	53	TCV4
19	TEV2	54	TCV5
20	TEV3	55	TCV6
21	TEV4	56	TCV7
22	TEV5	57	TCV8
23	TEV6	58	TCM1
24	TEV7	59	TCM2
25	TEV8	60	TCM3
26	TG1	61	TCM4
27	TG2	62	TCMSTD1
28	TG3	63	TCMSTD2
29	TG4	64	TCMSTD3
30	TG5	65	TCMSTD4
31	TG6	66	REVP
32	TG7	67	TENV
33	TG8	68	TGRD
34	TGV1	69	TCORE
35	TGV2		

APPENDIX B INDICES

```
SHAPE
  (3
     4
            5
                6
                     7
                         8
                              9)
   TEMP
            3
 (67 68
           69)
   TENV
           8
 (10 11
           12
               13
                    14
                        15
                             16
                                 17)
 TENVV
            8
 (18 19
           20
               21
                        23
                    22
                             24
                                 25)
  TGRD
           8
 (26 27
          28
               29
                        31
                    30
                             32
                                 33)
 TGRDV
           8
 (34 35
          36
               37
                        39
                    38
                             40
                                 41)
  TCOR
           8
 (42 43
          44
               45
                    46
                        47
                             48
                                 49)
 TCORV
           8
 (50 51
          52
               53
                   54
                        55
                            56
                                 57)
   TCM
           4
(58 59
          60
               61)
TCMSTD
           4
(62 63
          64
               65)
 TEGC0
           3
(10 26)
          42)
TEGCV0
          3
(18 34
          50)
 TEGC1
           3
(11 27
         43)
TEGCV1
           3
(19 35
          51)
 TEGC2
          3
(12 28
          44)
TEGCV2
           3
(20 36
          52)
 TEGC3
          3
(13 29
          45)
TEGCV3
           3
(21 37
          53)
 TEGC4
           3
(14 30
          4)6
TEGCV4
           3
(22 38
          54)
 TEGC5
          3
(15 31
          47)
TEGCV5
           3
(23 39
          55)
TEGC6
           3
(16 32
          48)
TEGCV6
          3
(24 40
          56)
TEGC7
          3
(17 33
          49)
TEGCV7
          3
```

(25 41

57)

LEGEND:

1st Line: Index Name, #PVS 2nd Line: (List of PV #s)

APPENDIX C

WARM MODEL MODULE I OUTPUT

SELECTED	PREDICT	OR VARIA	BLES
NAME	SEPARA	TION	LINEARITY
MAXLEN	DSQ =	133.17	0
MINLEN	DSQ =	73.21	0
MINEPSLN	DSQ =	16.73	0
RMAX	DSQ =	171.18	0
RMIN	DSQ =	100.48	0
NUMCTRS	DSQ =	25.19	0
TEV1	DSQ =	5.24	0
TCV1	DSQ =	117.65	0
TCV2	DSQ =	99.34	C
TCV3	DSQ =	145.16	0
TCV4	DSQ =	94.47	0
TCV5	DSQ =	132.91	0
TCV6	DSQ =		0
TCV7	DSQ =		0
TCV8	DSQ =	102.79	0
SELECTED	PREDICTO	OR INDICE	7.0
NAME	SEPARAT		23
SHAPE	DSQ =		
TENVV	DSQ =	9.55	
TEGCV0	DSQ =		
TEGCV5	DSQ =		
	202 -	T03.T0	

APPENDIX D

WARM MODEL MODULE II OUTPUT

```
SELECTED VARIABLES
                     SHAPE
Overall
           DSQ is
                     225.41
MAXLEN
           DSQ =
                    224.70
                               Delta =
                                          -0.71
MINLEN
           DSQ =
                    225.41
                               Delta =
                                           0.00
MINEPSLN
           DSQ =
                    224.71
                            0
                               Delta =
                                          -0.70
RMAX
           DSQ =
                    224.69
                            0
                               Delta =
                                          -0.72
RMIN
           DSQ =
                    224.81
                            0
                               Delta =
                                          -0.60
NUMCTRS
           DSQ =
                   228.30
                            0
                               Delta =
                                           2.89 BEST
TEV1
           DSQ =
                   230.53
                            0
                               Delta =
                                           5.12 BEST
TCV1
           DSQ =
                   230.35
                            0
                               Delta =
                                           4.94
TTCV2
           DSQ =
                   225.25
                            0
                               Delta =
                                          -0.16
TCV3
           DSO =
                   238.64
                            0
                               Delta =
                                          13.23 BEST
TCV4
           DSQ =
                   226.39
                            0
                               Delta ≈
                                           0.98
TCV5
           DSQ =
                   235.83
                            0
                               Delta =
                                          10.42
TCV6
           DSQ =
                   226.29
                            0
                               Delta =
                                           0.88
TCV7
           DSQ =
                   227.56
                            0
                               Delta =
                                           2.15
TCV8
           DSO =
                   226.70
                            0
                               Delta =
                                           1.29
TENVV
          DSQ =
                   229.27
                            0
                               Delta =
                                           3.86
TEGCV0
                   234.18
          DSQ =
                            0
                               Delta =
                                           8.77
TEGCV5
          DSQ =
                   226.52
                            0
                               Delta =
                                           1.11
SELECTED VARIABLES
                     SHAPE
                             TCV3
Overall
          DSQ is
                    238.64
NUMCTRS
          DSQ =
                   243.61
                            0
                               Delta =
                                           4.96 BEST
TEV1
          DSQ =
                   244.67
                            0
                               Delta =
                                           6.03 BEST
TCV1
          DSQ =
                   239.77
                            0
                               Delta =
                                           1.13
TCV5
          DSQ =
                   237.85
                            0
                               Delta =
                                          -0.79
TENVV
          DSQ =
                   243.18
                            0
                               Delta =
                                           4.54
TEGCV0
          DSQ =
                   237.90
                            0
                               Delta =
                                          -0.74
```

APPENDIX E

WARM EDDY MODEL

```
NUMBER OF MODEL PREDICTOR VARIABLES
                                        2
NUMBER OF DATA POINTS 611
NUMBER OF NEIGHBORS
FIRST MODEL PREDICTOR VARIABLE
NAME SHAPE
COMBINED FROM 3 PREDICTOR VARIABLES
     NAME
               WEIGHT
                               Α
                                          В
                     0.90465978E-01 -0.87163365E+00
     RMAX
                1.00
               -0.60
                      0.14433134E-01 -0.84933436E+00
     MAXLEN
     MINEPSLN -0.35
                      0.15631469E+01 -0.98760617E+00
SECOND MODEL PREDICTOR VARIABLE
NAME TCV3
COMBINED FROM 1 PREDICTOR VARIABLES
     NAME
                WEIGHT
                               Α
                                          В
     TCV3
                1.00
                     0.42875152E-06
                                       0.22322698E+00
DIMENSIONAL SCALE FACTORS
 0.10000000E+01 0.0000000E+00
EIGENVECTORS
     VECTOR1
                     VECTOR2
                  0.36706083E+01
 0.68588500E+01
-0.51472348E+00
                  0.89091492E+00
MODELED DATA POINTS
                         VEC2
NAME
         GNDTH VEC1
          1.00 -0.641
                         0.000
JN0101
                         0.000
          1.00 - 0.272
JN0121
          1.00 -0.208
                         0.000
JN0122
JN0123
          1.00 - 0.775
                         0.000
JN0124
          1.00 - 0.043
                         0.000
          1.00 0.407
JN0125
                         0.000
JN0145
          1.00 1.105
                         0.000
          1.00 - 0.531
                         0.000
JN0168
JL0401
          1.00 - 1.271
                         0.000
                         0.000
JL0405
          1.00 - 0.996
          1.00 - 0.420
                         0.000
JL0406
          1.00 0.031
JL0408
                         0.000
          1.00 -1.422
JL04011
                         0.000
          1.00 - 0.853
                         0.000
JN0611
JN0612
          1.00 0.593
                         0.000
          1.00 - 1.245
                         0.000
JN0614
          1.00 - 0.695
                         0.000
JN0618
          1.00 - 0.539
                         0.000
JN0619
                         0.000
MY0542
          1.00 - 0.518
          2.00 7.810
                         0.000
MY0543
          1.00 - 0.930
                         0.000
MY0544
          1.00 - 0.849
                         0.000
MY0545
          1.00 0.448
                         0.000
MY0546
          1.00 - 0.462
                         0.000
MY0547
                         0.000
          1.00 - 0.133
```

MY0549

JL0601 JL0602 JL0603 JL0604 JL0621 JL0622 JL0623 JL0627 JL0628 JL0629	1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 -	0.037 0.403 0.972 2.135 0.416 0.489 1.160 0.581 0.793 0.150	0.000	000
JL06211 JN0601 JN0604 JN0607 JN06E1 JN06E3 JN06E4 JN06E5 JN06E7 JN06G1	1.00 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 -	2.191 0.873 0.113 1.004 1.398 0.187 0.540 0.579 0.520 0.532 1.237		000 000 000 000 000 000 000 000
JN06G5 DE0702 DE0703 DE0704 DE0707 DE0721 DE0722 DE0723 DE0724 DE0725	1.00 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 -	0.593 0.672 0.309 0.826 0.622 0.560 1.735 1.016 2.214 1.127	0.	000 000 000 000 000 000 000 000
DE0726 DE0727 DE0729 DE07211 AG0802 AG0803 AG0804 AG0805 AG0806 AG0808	1.00	2.357 1.240 0.887 2.938 0.511 0.891 0.528 1.392 1.225	0.	000 000 000 000 000 000 000
AG08010 AG0821 AG0822 AG0825 AG0826 AG0828 AG0829 AG08211 AG08212 DE0802 DE0804	1.00 -0 1.00 -1 1.00 -0 1.00 -0 1.00 -0 1.00 -0 2.00 -0	0.375 0.796 1.563 1.008 0.459 0.511 0.813 0.686 0.862 3.300 1.752	0000	000 000 000 000 000 000 000 000
DE0821 DE0825	1.00 -0	0.869 1.752	0.	000

DE0826	1.00	0.321	0.000
MY1142	1.00	-0.389	0.000
	1.00	-0.552	
MY1143			0.000
MY1144	1.00	-1.088	0.000
MY1145	1.00	0.732	0.000
MY1147	1.00	0.795	0.000
MY1149	1.00	-0.138	0.000
MY11410	2.00	1.811	0.000
MY11411	2.00	2.496	0.000
MY1162	2.00	1.618	0.000
MY1164	2.00	0.732	0.000
MY1166	1.00	-0.614	0.000
MY1167	1.00	-0.810	0.000
MY1168	1.00	-0.830	0.000
MY11610	1.00	0.547	0.000
JN0803	1.00	-0.298	0.000
JN0805	2.00	0.229	0.000
JN0807	1.00	0.024	0.000
JN0822	1.00	0.282	0.000
JN0823	1.00	4.225	0.000
JN0824	1.00	-0.982	0.000
JN0825	1.00	-0.721	0.000
JN0826	1.00	-0.292	0.000
JN0828	2.00	7.439	0.000
JN0842	1.00	-0.882	0.000
JN0843	1.00	-0.384	0.000
JN0844	1.00	-0.573	
			0.000
JN0845	1.00	0.338	0.000
JN0847	1.00	2.151	0.000
JN0849	1.00	-1.422	0.000
JN08411	2.00	4.749	0.000
JN0863	1.00	-1.366	0.000
JN0864	1.00	-0.650	0.000
JN0865	1.00	0.322	0.000
JN0866	1.00	-0.626	0.000
JN0868	1.00	0.696	0.000
JN08610	1.00	3.013	0.000
JN08612	1.00	-1.422	0.000
JN08613	1.00	-1.269	0.000
JN08616	1.00	0.169	0.000
JN08617	1.00	-0.214	0.000
			0.000
JN08618	1.00	1.186	
AG1003	1.00	-1.174	0.000
MY1102	1.00	0.318	0.000
MY1106	1.00	0.092	0.000
MY1121	1.00	-0.662	0.000
MY1122	1.00	-0.549	0.000
JN1241	1.00	-0.789	0.000
JN1242	1.00	0.392	0.000
JN1243	1.00	0.069	0.000
JN1244	1.00	1.935	0.000
JN1245	1.00	-0.555	0.000
JN1246	1.00	-0.854	0.000
JN1247	1.00	0.306	0.000

JN1248 JN12410 MY1102	1.00 -1.005 1.00 -0.956 1.00 -1.174	0.000 0.000 0.000
MY1102 MY1103 MY1106	1.00 -0.794 1.00 -0.758	0.000
MY1108	1.00 0.509 1.00 -0.086	0.000
MY1109 MY11010	1.00 -0.075	0.000
MY11011 MY11012	1.00 -1.453 1.00 -0.637	0.000
MY11013 MY11014	1.00 -0.043 1.00 1.261	0.000
MY1121 MY1124	1.00 -1.113 1.00 -1.303	0.000
MY1126 MY1127	1.00 0.032 2.00 10.130	0.000
MY1129	1.00 0.240	0.000
MY11210 MY11211	1.00 -0.651 1.00 -0.738	0.000
MY1141 MY1143	1.00 -0.849 1.00 -0.924	0.000
MY1144 MY1166	1.00 -0.799 1.00 -1.338	0.000
MY1167 JN1201	1.00 -0.325 1.00 0.568	0.000
JN13C2	1.00 0.955	0.000
JN13C5 JN13C7	1.00 0.882	0.00J
JN13E1 JN13E5	1.00 -0.498 1.00 0.462	0.000
JN13E7 JN13E8	1.00 -0.306 1.00 0.341	0.000
JN13E9 JN13G1	1.00 3.430 1.00 -0.874	0.000
JN13G2 JN13G3	1.00 -0.291 1.00 -0.916	0.000
JN13G4 JN13G5	1.00 -1.787 1.00 0.098	0.000
JN13G6	1.00 1.533	0.000
JN1301 JN1303	1.00 -0.388 1.00 0.067	0.000
JN1304 JN1305	2.00 5.199 1.00 0.239	0.000
JN1321 JN1322	1.00 1.627 1.00 0.384	0.000
JN1323 JN1324	1.00 -0.455 1.00 -1.231	0.000
JN1326	1.00 0.359 1.00 -0.479	0.000
JN1328 JN13210	1.00 -0.921	0.000
JN1343 JN1344	1.00 -1.618 1.00 -1.422	0.000
JN1345 JN1347	1.00 -1.211 1.00 -0.455	0.000 0.000

JN13412 JN13416 JN1361 JN1362 JN1363 JN1364 JN1365 JN1366 JN1367 JN1368 JN1369 JN13610 JN13611 JN1381 JN1381 JN1382 JN1384 JN1385 JN1387	1.00 -0.97 2.00 1.38 1.00 -0.92 1.00 -0.75 1.00 -0.20 1.00 -1.18 1.00 -1.05 2.00 5.88 1.00 0.06 1.00 -0.40 1.00 -0.78 1.00 -0.78 1.00 0.62 1.00 -0.78 1.00 0.35 2.00 5.34 1.00 -0.54 1.00 -0.54 1.00 -0.54	4 0.000 0.000 0.000 9 0.000 1 0.000 0.000 0.000 9 0.000 9 0.000 9 0.000 9 0.000 9 0.000 9 0.000 9 0.000
JN13A1 JN13A12 NO1542 NO1544 NO1546 NO1547 NO1549 NO1562 NO1563 NO1564 NO1565 NO1567 NO1568 OC1601 OC1603 OC1605 OC1607 JN13I1 JN13I3	1.00 1.270 1.00 -0.971 1.00 -0.570 1.00 1.040 1.00 -0.544 1.00 -0.761 1.00 0.800 1.00 0.341 1.00 1.412 1.00 -0.033 1.00 -1.014 1.00 1.468 1.00 -0.055 1.00 -1.930 1.00 -2.055 1.00 -2.055 1.00 -2.055 1.00 -0.034	7 0.000 9 0.000 6 0.000 1 0.000 0 0 0.0000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0 0.000 0 0 0.000 0 0 0 0.000 0 0 0 0.000 0 0 0 0.000 0 0 0 0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JN1314 JN1319 JN13110 JN13111 NO1402 NO1404 NO1421 NO1423 NO1426 NO1521 NO1522 NO1527 JL2301 JL2302 JL2303 JL2305	1.00 0.290 1.00 -0.931 1.00 -0.016 1.00 -1.257 1.00 -0.257 1.00 0.197 1.00 -0.607 1.00 0.393 1.00 0.014 1.00 0.128 1.00 0.797 1.00 -1.041 1.00 -0.761 1.00 -0.761 1.00 -0.188 1.00 0.604	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

JL2307	1.00	-1.026	0.000
JL2308 JL2309	1.00	-1.636 1.963	0.000
JL2321 JL2324	1.00	1.398 -0.838	0.000
JL2325	1.00	-1.000	0.000
JL2327	1.00	0.604	0.000
MY2402 MY2407	1.00	0.622 -0.587	0.000
MY2409	1.00	-1.166	0.000
MY24010 MY2421	1.00	-0.925 -0.879	0.000
MY2422	1.00	-0.650	0.000
MY2423 MY2427	1.00	-0.468 -0.627	0.000
MY2428	1.00	-0.702	0.000
MY24210 MY24211	1.00	-1.294 -1.098	0.000
MY24212	1.00	-0.315	0.000
MY24214 MY24218	1.00	-1.184 -1.184	0.000
MY24220	1.00	-0.499	0.000
JL2101 JL2103	1.00	-0.438 -1.066	0.000
JL2104	1.00	-0.888	0.000
JL2105 JL2121	1.00	-0.438 -0.414	0.000
JL2122	1.00	-1.247	0.000
JL2126 JL21210	1.00	-0.226 -0.999	0.000
JL21212 JL2141	1.00	0.160	0.000
JL2144	1.00	0.164 0.374	0.000
JL2146	1.00	0.707	0.000
JL2147 NO2621	1.00	-0.019 0.191	0.000
NO2622	1.00	1.304	0.000
NO2624 NO2625	1.00	1.425 1.099	0.000
NO2641	1.00	0.890	0.000
NO2642 SE2601	1.00	-0.794 -0.020	0.000
SE2602	1.00	-0.606	0.000
SE2603 SE2604	1.00	-0.272 0.478	0.000
SE2607	1.00	-0.435	0.000
SE2608 SE2609	1.00	0.021 -0.531	0.000
SE26011	1.00	0.991	0.000
SE2621 SE2622	1.00	-0.115 -0.071	0.000
SE2623	1.00	1.312	0.000
SE2625 SE2626	1.00	0.191 - 0.075	0.000

SE2628 SE26210 SE26212 SE26213 SE26214 MY2442 MY24445 MY24445 MY24446 MY24411 MY24411 AP2601 AP2602 AP2603 AP2604 AP2605 AP2604 AP2620	1.00	0.000 0.000
MY3002	1.00 -0.209	0.000
MY3005	1.00 -1.041	0.000
MY3021	1.00 -0.209	0.000
MY3022	1.00 0.756	0.000
SE2804	1.00 -2.474	0.000
SE2805	1.00 -0.421	0.000
SE2809	1.00 -0.094	0.000
SE28010	1.00 0.265	0.000

SE2823 SE2824 SE2842 SE2843 SE2844 SE2845 JL3122 JN0111	1.00 1.00 1.00 1.00 1.00	-0.094 -0.657 -0.840 -0.937 -0.400 0.085 0.952 -0.935	0.000 0.000 0.000 0.000 0.000 0.000
JN0112 JN0113 JN0118 JN0132 JN0133 JN0137	1.00 1.00 1.00 1.00	-0.381 -0.497 -0.231 0.168 -1.466 1.433	0.000 0.000 0.000 0.000 0.000
JN0138 JN01312 JN01315 JN01H1 JN01H2 JN01H4 JN01H7	1.00 1.00 1.00	0.898 -0.497 2.926 -1.181 -1.366 0.125 -0.948	0.000 0.000 0.000 0.000 0.000
JN01H8 JN01H9 JN01H10 JN01H11 JN01H12 JN01H14	1.00 - 1.00 - 1.00 -	-1.468 0.194 -1.664 -0.847 -1.622 0.263	0.000 0.000 0.000 0.000 0.000
MY3042 MY3043 MY3047 MY3049 MY3063 MY3064	1.00 - 1.00 - 1.00 - 1.00 -	-0.015 -1.772 2.980 -0.828 -0.890 -0.181	0.000 0.000 0.000 0.000 0.000
MY3066 JL3101 JL3102 JL3103 JL3104 JL3105	1.00 1.00 1.00	0.022 -0.442 0.023 -0.930 -0.371 -1.381	0.000 0.000 0.000 0.000 0.000
JL3106 JL3107 JL3108 JL3109 JL31010 JL31011	1.00 - 1.00 - 1.00 -	0.528 -1.399 -1.119 -0.816 3.017 -1.141	0.000 0.000 0.000 0.000 0.000
JL31012 JL31013 JL31014 JL31016 MY1015 MY1032	1.00 1.00	0.239 0.146 -0.622 0.176 -0.146 -1.444	0.000 0.000 0.000 0.000 0.000
MY1033 MY1035 MY1037	1.00 1.00	3.420 -0.918 -0.876	0.000 0.000 0.000

MY1039 MY10311 MY10313 MY1051 MY1052 MY1053 MY1054 MY1055 MY1058 MY1073 MY1074 MY1076	1.00 -0.71 1.00 -1.36 1.00 -0.78 1.00 -0.80 1.00 -0.79 1.00 -0.71 1.00 -0.71 1.00 -0.96 1.00 -0.35 1.00 -1.06 1.00 -0.85	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
JN1111 JN1113 JN1115 JN1117 JN11110 JN11111 JN11112 JN11113 JN11115 JN11116 JN1132 JN1137 JN11310 JN01J1	1.00 -1.52 1.00 -1.73 1.00 -1.30 1.00 -1.25 1.00 -1.25 1.00 0.71 2.00 4.06 1.00 -0.62 1.00 -0.54 1.00 -0.49 1.00 -0.72 1.00 -1.86 1.00 -1.08	9 0.000 7 0.000 3 0.000 5 0.000 4 0.000 9 0.000 5 0.000 9 0.000 8 0.000 1 0.000
JN01J5 JN01J6 JN01J7 JN01J8 JN01J9 JN0915 JN09110 JN09111 JN0931 JN0932 JN0933 JN0934 JN0935	1.00 5.64 1.00 -1.41 1.00 -0.33 1.00 -0.92 1.00 -1.45 1.00 -0.57 1.00 -1.57 2.00 4.61 1.00 -0.52 1.00 -0.67 1.00 -0.52 1.00 -0.52 1.00 -0.94	3 0.000 6 0.000 7 0.000 0 0.000 4 0.000 8 0.000 6 0.000 2 0.000 5 0.000 1 0.000
JN0936 JN0939 MY1111 MY1112 MY1113 MY1114 MY1115 MY1117 MY1119 MY11111 MY1134 MY1136 MY1136 MY1153	1.00 -0.673 1.00 -0.443 1.00 -0.413 1.00 -0.623 1.00 -1.123 1.00 -0.173 1.00 5.483 1.00 -0.383 1.00 -0.383 1.00 -0.513 2.00 0.973 1.00 -0.178	3 0.000 1 0.000 5 0.000 8 0.000 7 0.000 7 0.000 1 0.000 5 0.000 1 0.000 9 0.000 7 0.000

MY1155 MY1157 MY1171 MY11712 MY11715 MY11716 MY11716 MY11F3 MY11F4 MY11F5 MY11H2 MY11H5 MY11H1 MY11H1 MY11H11 MY11H11 MY11H12 MY11H13 JN1171 JN1172 JN1173 JN1176 JN1176	1.00 1.073 1.00 2.531 1.00 3.518 1.00 -1.076 1.00 -1.351 1.00 -0.725 1.00 -0.921 1.00 -0.262 1.00 -1.067 1.00 0.099 2.00 6.141 1.00 -0.665 1.00 -0.205 1.00 -0.800 1.00 0.609 1.00 -1.239 1.00 -1.239 1.00 -1.524 1.00 -1.535 1.00 -1.631 1.00 -0.693 1.00 -1.463	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
JN1179 JN11710 SE1611	1.00 -1.369 1.00 -0.127 1.00 -0.796	0.000
SE1615	1.00 0.105	0.000
SE1618 SE1619	1.00 -1.881 1.00 -1.649	0.000
SE16110	1.00 -0.811	0.000
SE1635 SE1636	1.00 -0.585 1.00 -0.076	0.000
SE1637	1.00 -1.114	0.000
SE1639	1.00 0.414	0.000
SE16312 SE16315	1.00 0.037 1.00 -0.301	0.000
JN3014	1.00 -1.457	0.000
JN3017	1.00 -1.566	0.000
JN3018 JN3019	1.00 -1.314 1.00 -0.160	0.000
JN30110	1.00 -0.367	0.000
JN30111	1.00 -1.135	0.000
JN3032 JN3033	1.00 0.043 1.00 -0.679	0.000
JN3034	1.00 -0.712	0.000
JN3037	1.00 -0.142	0.000
JN3038	1.00 -0.132	0.000
JN3052 JN3053	1.00 -0.993 1.00 -0.013	0.000
JN3054	2.00 5.625	0.000
JN3057	1.00 0.704	0.000
JN3071	1.00 -1.254	0.000

JN3072 JN3073 JN3074 JN3075 JN3093 JN3095 JN3097 JN3099 JN3099 JN30910 JN30911 JN30913 JN30914 MY11J1 MY11J3 MY11J5	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.454 1.909 -1.049 1.334 -0.821 7.531 -0.131 -1.160 -1.383 1.349 -1.018 0.308 -1.169 -1.424 -0.693 0.037 -0.510	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MY11J8 MY11L2 MY11L4 MY11L5 MY11L6 MY11L7	1.00 1.00 1.00 1.00 2.00 1.00	1.174 -0.792 -0.424 0.648 17.931 -0.686	0.000 0.000 0.000 0.000 0.000
MY11L9 MY11L11 MY11L12 JL0422 JL0424 JL0425	1.00 1.00 1.00 1.00 1.00	-0.835 1.495 -0.046 -1.070 -0.149 -0.926	0.000 0.000 0.000 0.000 0.000
JL0426 JL0427 JL0429 JL04210 JL04212 AP29E2	1.00 1.00 2.00 1.00 1.00	-0.888 0.031 0.436 0.121 -0.567 2.733	0.000 0.000 0.000 0.000 0.000
AP29E3 AP29E5 AP29E7 AP29E8 AP29E10 AP29E13	1.00 1.00 1.00 1.00 1.00	1.236 3.011 0.651 -0.881 -0.450 -0.078	0.000 0.000 0.000 0.000 0.000
AP29E15 AP29E17 JN1152 JN1154 JN1157	1.00 1.00 1.00 1.00	5.204 1.435 -1.631 9.036 -0.790	0.000 0.000 0.000 0.000
JN1158 JN01F1 JN01F4 JN01F5 JN01F6 JN01F9	1.00 1.00 1.00	9.947 5.367 -0.435 -1.064 -0.681 -0.998	0.000 0.000 0.000 0.000 0.000
JN01F10 AP2801	1.00 1.00	1.937 -1.243	0.000 0.000

AP2805 AP2807 AP2808 AP2809 AP28010 AP28011 AP28015 AP28017 AP28019 AP28021 AP28021 AP28022 AP28024 AP2301 AP2303 AP2304 AP2305 AP2306 AP23014 AP23014 AP23016 AP23014 AP23016 AP23014 AP23016 AP2203 AP23016 AP2201 AP23016 AP2201 AP23016 AP2201 AP23016 AP2201 AP23016 AP2306 JN10618 JN106	1.00 0.398 1.00 -1.724 1.00 -0.867 1.00 -1.086 1.00 -0.424 1.00 1.661 1.00 -0.565 1.00 -0.394 1.00 -0.576 1.00 -0.576 1.00 -0.576 1.00 -0.576 1.00 -0.551 1.00 -1.376 2.00 7.457 1.00 -1.366 1.00 -1.303 1.00 -0.712 1.00 -0.677 1.00 -1.114 1.00 0.374 1.00 -1.307 1.00 -2.479 1.00 -1.307 1.00 -2.479 1.00 -1.403 1.00 -2.479 1.00 -1.403 1.00 -1.285 1.00 -0.486 1.00 -1.285 1.00 -0.486 1.00 -1.285 1.00 -0.539 1.00 -0.539 1.00 -0.539 1.00 -0.539 1.00 -0.539 1.00 -0.539 1.00 -0.539 1.00 -0.539 1.00 -0.539 1.00 -0.539 1.00 -0.539 1.00 -0.539 1.00 -0.539 1.00 -0.539 1.00 -0.539	0.000 0.000
MY0523 MY0524	1.00 -0.428 1.00 0.095	0.000
		0.000

NAME LEGEND:

MMDDCN(N)

M = Month

D = Day

C = Year & Type Code N = Nth Image Detection

APPENDIX F

COLD MODEL MODULE I OUTPUT

SELECTED		OR VARIA	BLES
NAME	SEPARA		
MAXLEN	DSQ =	195.36	0
MINLEN	DSQ =	54.78	Ô
MINEPSLN	DSQ =	30.88	Ŏ
RMAX	DSQ =	228.58	ŏ
RMIN			
	DSQ =	64.29	0
NUMCTRS	DSQ =	64.90	0
TE1	DSQ =	7.17	0
TE2	DSQ =	7.70	0
TE3	DSQ =	7.85	0
TE4	DSQ =	8.94	0
TE5	DSQ =	8.16	0
TE6	DSQ =	6.81	0
TE7	DSQ =	6.64	Ö
TE8	DSQ =	7.41	Ŏ
TEV1	DSQ =	6.64	ŏ
TEV6	DSQ =	6.14	ŏ
TG1	DSQ =	6.39	0
TG2	DSQ =	7.02	
TG3	DSQ =	7.02	0
TG4	DSQ =		0
TG5	_	7.17	0
	DSQ =	6.75	0
TG6	DSQ =	6.72	0
TG7	DSQ =	6.48	0
TG8	DSQ =	6.68	0
TC1	DSQ =	6.58	0
TC2	DSQ =	7.34	0
TC3	DSQ =	6.40	0
TC4	DSQ =	7.10	0
TC5	DSQ =	6.47	0
TC6	DSQ =	7.03	0
TC7	DSQ =	6.85	0
TC8	DSQ =	7.63	0
TCV1	DSQ =	104.48	0
TCV2	DSQ =	31.31	Ŏ
TCV3	DSQ =	106.57	Ö
TCV4	DSQ =	47.66	ŏ
TCV5	DSQ =	110.47	Ŏ
TCV6	DSQ =	39.31	ŏ
TCV7	DSQ =	107.97	Ŏ
TCV8	DSQ =	35.68	Ö
TCMSTD1			
ICMSIDI	DSQ =	6.56	0
REVP	DSQ =	7.86	0
TENV	DSQ =	7.66	0
TGRD			0
TCORE		6.86	
TOUR	DSQ =	6.97	0

SELECT	ED PREDIC	TOR INDICES
NAME	SEPAR	ATION
SHAPE	DSQ =	263.23
TENV	DSQ =	13.15
TCORV	DSQ =	123.04
TCMSTD	DSQ =	10.86
TEGCV4	DSQ =	114.74
TECCV5	DSO =	44 48

APPENDIX G

COLD MODEL MODULE II OUTPUT

```
SELECTED VARIABLES
                        SHAPE
 Overall
            DSQ is
                      263.23
MAXLEN
            DSQ =
                     262.67
                              0
                                  Delta =
                                             -0.56
MINLEN
            DSO =
                     263.00
                               0
                                  Delta =
                                             -0.23
MINEPSLN
            DSQ =
                     264.94
                               0
                                  Delta =
                                              1.71
RMAX
            DSQ =
                     262.82
                               0
                                  Delta =
                                             -0.41
RMIN
            DSQ =
                     263.09
                              0
                                  Delta =
                                             -0.14
NUMCTRS
            DSO =
                     262.77
                              0
                                  Delta =
                                             -0.46
TE1
            DSQ =
                     265.32
                              0
                                  Delta =
                                              2.09
TE2
            DSQ =
                     265.48
                              0
                                  Delta =
                                              2.25
TE3
            DSQ =
                     266.19
                              0
                                  Delta =
                                              2.96 BEST
TE4
            DSQ =
                     266.73
                              0
                                  Delta =
                                              3.50 BEST
TE5
            DSQ =
                     266.00
                              0
                                 Delta =
                                              2.77
TE6
            DSQ =
                     265.07
                              0
                                 Delta =
                                              1.84
TE7
            DSQ =
                     264.89
                              0
                                 Delta =
                                              1.66
TE8
                     265.55
            DSQ =
                              0
                                 Delta =
                                              2.32
TEV1
            DSQ =
                     266.16
                              0
                                 Delta =
                                              2.93
TEV6
           DSQ =
                     265.05
                              0
                                 Delta =
                                              1.82
TG1
           DSQ =
                     264.98
                                 Delta =
                              0
                                              1.75
TG2
           DSQ =
                     265.10
                              0
                                 Delta =
                                              1.87
TG3
           DSQ =
                     265.54
                              0
                                 Delta =
                                              2.31
TG4
           DSQ =
                     265.42
                              0
                                 Delta =
                                              2.19
TG5
           DSQ =
                     265.02
                              0
                                 Delta =
                                              1.79
TG6
           DSQ =
                     265.21
                              0
                                 Delta =
                                              1.98
TG7
           DSQ =
                     265.41
                              0
                                 Delta =
                                              2.18
TG8
           DSQ =
                     265.01
                                 Delta =
                              0
                                              1.78
TC1
           DSQ =
                     265.64
                              0
                                 Delta =
                                              2.41
TC2
           DSQ =
                     264.86
                              0
                                 Delta =
                                              1.63
TC3
           DSQ =
                     265.22
                              0
                                 Delta =
                                              1.99
TC4
           DSQ =
                     264.78
                              0
                                 Delta =
                                              1.55
TC5
                     265.28
           DSQ =
                              0
                                 Delta =
                                              2.05
TC6
           DSQ =
                     265.21
                              0
                                 Delta =
                                              1.98
TC7
                    266.03
           DSQ =
                              0
                                 Delta =
                                              2.80
TC8
           DSQ =
                     265.36
                                              2.13
                              0
                                 Delta =
TCV1
                    262.30
           DSO =
                              0
                                 Delta =
                                             -0.93
TCV2
           DSQ =
                    270.36
                              0
                                 Delta =
                                              7.13 BEST
TCV3
           DSQ =
                    262.24
                              0
                                 Delta =
                                             -0.99
TCV4
           DSQ =
                    265.83
                              0
                                 Delta =
                                              2.60
TCV5
           DSQ =
                    265.96
                              0
                                 Delta =
                                              2.73
TCV6
           DSQ =
                    267.56
                                 Delta =
                                              4.33
TCV7
           DSQ =
                    262.26
                             0
                                 Delta =
                                             -0.97
TCV8
           DSQ =
                    270.54
                             0
                                 Delta =
                                             7.31 BEST
TCMSTD1
           DSQ =
                    264.58
                             0
                                 Delta =
                                             1.35
REVP
           DSQ =
                    265.52
                             0
                                 Delta =
                                             2.29
TENV
           DSQ =
                    265.67
                             0
                                 Delta =
                                             2.44
TGRD
           DSQ =
                    265.22
                             0
                                 Delta =
                                             1.99
TCORE
           DSQ =
                    265.31
                             0
                                 Delta =
                                             2.08
```

```
271.73 0 Delta =
TENV
          DSQ =
                                        8.50 BEST
TCORV
          DSQ =
                  263.94
                         0
                             Delta =
                                        0.71
TCMSTD
          DSQ =
                  264.39
                         0
                             Delta =
                                        1.16
TEGCV4
          DSQ =
                  268.84
                          0
                             Delta =
                                        5.61
TEGCV5
          DSQ =
                  264.32
                          0 Delta =
                                        1.09
SELECTED VARIABLES SHAPE TENV
Overall
          DSQ is
                   271.73
TE3
          DSQ =
                  271.50
                         0
                             Delta =
                                       -0.23
TE4
          DSQ =
                  271.63
                          0
                             Delta =
                                       -0.10
TE5
          DSO =
                  271.72
                          0
                             Delta =
                                       -0.01
TEV1
          DSQ =
                  273.76
                          0
                             Delta =
                                       2.03
TC1
          DSQ =
                  271.57
                          0
                             Delta =
                                       -0.16
TC7
          DSQ =
                  271.21
                          0
                             Delta =
                                       -0.52
TCV2
          DSO =
                  282.17
                         0
                             Delta =
                                       10.44 BEST
TCV4
          DSQ =
                  276.86
                         0 Delta =
                                       5.13
TCV5
          DSQ =
                  273.25
                         0
                            Delta =
                                        1.52
TCV6
          DSQ =
                  279.54
                         0
                             Delta =
                                       7.81
TCV8
          DSQ =
                  282.95
                         0
                             Delta =
                                       11.22 BEST
TENV
          DSQ =
                  271.75
                         0
                             Delta =
                                       0.02
TEGCV4
          DSQ =
                  275.25
                          0
                             Delta =
                                        3.52
SELECTED VARIABLES SHAPE TENV TCV8
Overall
          DSQ is
                  282.95
TCV2
         DSQ =
                  281.86
                          0
                            Delta =
                                       -1.09
TCV4
         DSQ =
                  295.65
                          0 Delta =
                                       12.70 BEST
TCV6
         DSQ =
                  295.89
                          0 Delta =
                                       12.94 BEST
TEGCV4
         DSQ =
                  289.47
                          0
                             Delta =
                                       6.52
SELECTED VARIABLES SHAPE
                           TENV TCV8
                                       TCV6
         DSQ is
                   295.89
Overall
TCV4
         DSQ =
                  297.42 0 Delta =
TEGCV4
         DSQ =
                 294.94 0 Delta =
                                       -0.95
```

APPENDIX H

COLD EDDY MODEL

```
NUMBER OF MODEL PREDICTOR VARIABLES
NUMBER OF DATA POINTS 496
NUMBER OF NEIGHBORS
                      20
FIRST MODEL PREDICTOR VARIABLE
NAME
      SHAPE
COMBINED FROM 4 PREDICTOR VARIABLES
     NAME
                WEIGHT
                               Α
                                          В
     RMAX
                1.00
                      0.78082673E-01 -0.83893758E+00
               -0.30
     MINLEN
                      0.15784204E-01 -0.85743874E+00
     MAXEPSLN -0.65
                      0.14323337E+01 -0.99510837E+00
     NUMCTRS
               0.10
                      0.73499016E-01 -0.36971784E+00
SECOND MODEL PREDICTOR VARIABLE
NAME
      TENV
COMBINED FROM 2 PREDICTOR VARIABLES
     NAME
               WEIGHT
                               Α
                                         B
     TE4
               1.00 0.11317214E-01 -0.58443499E+00
              -0.80
     TE6
                      0.11345428E-01 -0.59607500E+00
THIRD MODEL PREDICTOR VARIABLE
NAME
      TCV8
COMBINED FROM 1 PREDICTOR VARIABLES
     NAME
                WEIGHT
                               Α
                                         В
               1.00 0.32789899E-06 -0.98725162E-01
     TCV8
FOURTH MODEL PREDICTOR VARIABLE
      TCV6
NAME
COMBINED FROM 1 PREDICTOR VARIABLE
                WEIGHT
                                         В
                              Α
                0.32333392E-06 -0.96740544E-01
          1.00
DIMENSIONAL SCALE FACTORS
 0.10000000E+01 0.00000000E+00 0.0000000E+00 0.0000000E+00
EIGENVECTORS
     VECTOR1
                     VECTOR2
                                    VECTOR3
                                                    VECTOR4
                 0.11384188E+01
 0.76423985E+00
                                  0.11384188E+01 -0.60486352E+00
 0.25971833E+00
                 0.18380252E+01
                                  0.18380252E+01
                                                   0.13676803E+01
                 0.27418742E+01
 0.64493215E+00
                                  0.27418742E+01 -0.12933538E+01
-0.57809085E+00 -0.11791501E+01 -0.11791501E+01
                                                   0.75909460E+00
MODELED DATA POINTS
NAME
         GNDTH VEC1
                         VEC2
                                 VEC3
                                         VEC4
JN0102
          2.00
                         0.000
                                 0.000
                                          0.000
               0.711
JN0103
          1.00 - 0.224
                         0.000
                                 0.000
                                          0.000
JN0141
          1.00 - 0.264
                         0.000
                                 0.000
                                          0.000
          1.00 - 0.365
JN0142
                         0.000
                                 0.000
                                          0.000
                                 0.000
JN0143
          2.00
                         0.000
               0.529
                                          0.000
JN0144
          1.00 - 0.271
                         0.000
                                 0.000
                                          0.000
JN0146
          2.00
               0.789
                         0.000
                                 0.000
                                          0.000
                         0.000
JN0147
          1.00 - 0.102
                                 0.000
                                          0.000
JN0161
          1.00 - 0.365
                         0.000
                                 0.000
                                          0.000
JN0162
          2.00 - 0.171
                         0.000
                                 0.000
                                          0.000
JN0163
          1.00 - 0.311
                         0.000
                                 0.000
                                          0.000
```

JN0164	1.00 -0.154	0.000	0.000	0.000
JN0165	1.00 -0.264	0.000	0.000	0.000
JN0166	1.00 -0.231	0.000	0.000	0.000
JN0167	2.00 0.378	0.000	0.000	0.000
JN0169	1.00 -0.052	0.000	0.000	0.000
JL0402	1.00 0.649	0.000	0.000	0.000
	1.00 0.049	0.000	0.000	
JL0403				0.000
JL0404	1.00 -0.082	0.000	0.000	0.000
JL0407	1.00 0.221	0.000	0.000	0.000
JL0409	1.00 -0.272	0.000	0.000	0.000
JL04010	1.00 -0.373	0.000	0.000	0.000
JN06I3	1.00 0.033	0.000	0.000	0.000
JN0615	1.00 0.657	0.000	0.000	0.000
JN0616	1.00 0.063	0.000	0.000	0.000
JN06I7	1.00 -0.080	0.000	0.000	0.000
JN06I10	1.00 - 0.214	0.000	0.000	0.000
MY0541	1.00 -0.198	0.000	0.000	0.000
MY0548	1.00 0.427	0.000	0.000	0.000
JL0624	1.00 0.037	0.000	0.000	0.000
JL0625	1.00 -0.176	0.000	0.000	0.000
JL0626	1.00 0.028	0.000	0.000	0.000
JL06210	1.00 -0.036	0.000	0.000	0.000
JL06212	1.00 0.395	0.000	0.000	0.000
JL06213	1.00 -0.056	0.000	0.000	0.000
JL06214	1.00 0.036	0.000	0.000	0.000
JL06214	1.00 0.078	0.000	0.000	0.000
JN0602	1.00 -0.263	0.000	0.000	0.000
JN0603	1.00 -0.126	0.000	0.000	0.000
JN0605	1.00 -0.029	0.000	0.000	0.000
JN0608	1.00 -0.114	0.000	0.000	0.000
JN0609	1.00 -0.132	0.000	0.000	0.000
JN06010	2.00 0.785	0.000	0.000	0.000
JN06011	1.00 -0.080	0.000	0.000	0.000
JN06012	1.00 -0.202	0.000	0.000	0.000
JN06013	1.00 -0.277	0.000	0.000	0.000
JN06E2	1.00 - 0.259	0.000	0.000	0.000
JN06E6	1.00 - 0.219	0.000	0.000	0.000
JN06G2	1.00 0.039	0.000	0.000	0.000
JN06G3	1.00 - 0.097	0.000	0.000	0.000
JN06G4	1.00 - 0.259	0.000	0.000	0.000
JN06G6	1.00 -0.185	0.000	0.000	0.000
JN06G7	1.00 - 0.248	0.000	0.000	0.000
DE0701	1.00 -0.038	0.000	0.000	0.000
DE0705	1.00 -0.015	0.000	0.000	0.000
DE0706	1.00 -0.020	0.000	0.000	0.000
DE0708	2.00 0.804	0.000	0.000	0.000
DE0700	1.00 0.004	0.000	0.000	0.000
DE0728 DE07210			0.000	0.000
	2.00 0.049	0.000		
DE07212	2.00 0.021	0.000	0.000	0.000
AG0801	1.00 -0.037	0.000	0.000	0.000
AG0807	1.00 -0.201	0.000	0.000	0.000
AG0809	1.00 -0.255	0.000	0.000	0.000
AG08011	1.00 - 0.107	0.000	0.000	0.000
AG08012	1.00 -0.215	0.000	0.000	0.000

AG0823 AG0824 AG0827 AG08210 DE0801 DE0803	1.00 -0.201 1.00 -0.264 1.00 0.087 1.00 0.016 1.00 -0.132 2.00 0.117	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000
DE0805 DE0822 DE0823	1.00 0.222 1.00 -0.188	0.000	0.000	0.000
DE0824	1.00 0.023 2.00 0.132	0.000 0.000	0.000 0.000	0.000
MY1141	1.00 -0.019	0.000	0.000	0.000
MY1146 MY1148	1.00 -0.220 2.00 0.338	0.000	0.000	0.000
MY1161	2.00 0.338 1.00 -0.052	0.000	0.000 0.000	0.000
MY1163	2.00 -0.157	0.000	0.000	0.000
MY1165	1.00 0.114	0.000	0.000	0.000
MY1169 MY11611	1.00 -0.196	0.000	0.000	0.000
MY11612	1.00 0.240 1.00 -0.334	0.000	0.000	0.000
JN0801	1.00 0.316	0.000	0.000	0.000
JN0802	1.00 -0.189	0.000	0.000	0.000
JN0804 JN0806	1.00 -0.308 2.00 1.023	0.000	0.000	0.000
JN0821	1.00 -0.110	0.000 0.000	0.000 0.000	0.000
JN0827	1.00 -0.037	0.000	0.000	0.000
JN0841	1.00 -0.127	0.000	0.000	0.000
JN0846 JN0848	1.00 -0.201 2.00 0.948	0.000 0.000	0.000 0.000	0.000
JN08410	1.00 0.046	0.000	0.000	0.000 0.000
JN0861	1.00 -0.322	0.000	0.000	0.000
JN0862	1.00 -0.160	0.000	0.000	0.000
JN0867 JN0869	1.00 -0.188 1.00 -0.122	0.000 0.000	0.000 0.000	0.000
JN08611	1.00 -0.159	0.000	0.000	0.000 0.000
JN08614	1.00 0.069	0.000	0.000	0.000
JN08615 AG1001	1.00 0.593 2.00 0.243	0.000	0.000	0.000
AG1001 AG1002	1.00 -0.166	0.000 0.000	0.000 0.000	0.000 0.000
MY1101	1.00 -0.145	0.000	0.000	0.000
MY1103	1.00 -0.081	0.000	0.000	0.000
MY1104 MY1105	1.00 -0.087 1.00 -0.085	0.000 0.000	0.000	0.000
MY1123	1.00 -0.046	0.000	0.000 0.000	0.000 0.000
MY1124	2.00 0.819	0.000	0.000	0.000
MY1125	1.00 -0.239	0.000	0.000	0.000
JN1249 JN12411	1.00 -0.272 1.00 0.051	0.000 0.000	0.000 0.000	0.000
MY1101	1.00 -0.274	0.000	0.000	0.000
MY1104	1.00 - 0.242	0.000	0.000	0.000
MY1105	1.00 -0.165	0.000	0.000	0.000
MY1107 MY11015	1.00 -0.300 1.00 -0.058	0.000 0.000	0.000 0.000	0.000
MY11016	1.00 -0.248	0.000	0.000	0.000 0.000
MY1122	1.00 0.205	0.000	0.000	0.000

MY1123	1.00 -0.	.270	0.000	0.000	0.000
MY1125		283	0.000	0.000	0.000
MY1128	1.00 0.	.740	0.000	0.000	0.000
MY1142	1.00 -0.	.294	0.000	0.000	0.000
MY1161		300	0.000	0.000	0.000
MY1162		.078	0.000	0.000	0.000
MY1163		.202	0.000	0.000	0.000
MY1164	1.00 -0.	.247	0.000	0.000	0.000
MY1165		102	0.000	0.000	0.000
JN13C1		.241	0.000	0.000	0.000
JN13C3	1.00 -0.	.305	0.000	0.000	0.000
JN13C4	1.00 0.	.378	0.000	0.000	0.000
JN13C6		257	0.000	0.000	0.000
JN13E2		.259	0.000	0.000	0.000
JN13E3	2.00 0.	.220	0.000	0.000	0.000
JN13E4	1.00 -0.	.303	0.000	0.000	0.000
JN13E6		137	0.000	0.000	0.000
JN1302		.067	0.000	0.000	0.000
JN1325	1.00 - 0.	.269	0.000	0.000	0.000
JN1327	1.00 0.	.051	0.000	0.000	0.000
JN1329		608	0.000	0.000	0.000
JN1341		182	0.000	0.000	0.000
JN1342	1.00 -0.	250	0.000	0.000	0.000
JN1346	1.00 -0.	.297	0.000	0.000	0.000
JN1348		127	0.000	0.000	0.000
				0.000	0.000
JN1349		182	0.000		
JN13410		179	0.000	0.000	0.000
JN13411	1.00 - 0.	.174	0.000	0.000	0.000
JN13414	1.00 -0.	134	0.000	0.000	0.000
JN13415		157	0.000	0.000	0.000
				0.000	
JN1383		429	0.000		0.000
JN1386		.187	0.000	0.000	0.000
JN13A2	1.00 -0.	.182	0.000	0.000	0.000
JN13A3	1.00 0.	.597	0.000	0.000	0.000
JN13A4		305	0.000	0.000	0.000
JN13A5		090	0.000	0.000	0.000
JN13A6		.110	0.000	0.000	0.000
JN13A7	1.00 -0.	146	0.000	0.000	0.000
JN13A8		.297	0.000	0.000	0.000
JN13A9		174	0.000	0.000	0.000
JN13A10		179	0.000	0.000	0.000
JN13A11	1.00 - 0.	157	0.000	0.000	0.000
NO1541	1.00 -0.	175	0.000	0.000	0.000
NO1543		054	0.000	0.000	0.000
			0.000	0.000	0.000
NO1545		037			
NO1548		268	0.000	0.000	0.000
NO1561	1.00 - 0.	.126	0.000	0.000	0.000
NO1566		153	0.000	0.000	0.000
					0.000
NO1569		626	0.000	0.000	
OC1602		.071	0.000	0.000	0.000
OC1604	1.00 -0.	.129	0.000	0.000	0.000
OC1606		.397	0.000	0.000	0.000
OC1608		580	0.000	0.000	0.000
OC1609	1.00 -0.	.036	0.000	0.000	0.000

OC16010	1.00 0.101	0.000	0.000	0.000
JN13I2	2.00 0.438	0.000	0.000	0.000
JN13I5	1.00 - 0.152	0.000	0.000	0.000
JN13I6	1.00 -0.132	0.000	0.000	0.000
JN13I7	1.00 -0.229	0.000	0.000	
JN1318	1.00 0.089			0.000
		0.000	0.000	0.000
NO1401	1.00 -0.067	0.000	0.000	0.000
NO1403	1.00 0.091	0.000	0.000	0.000
NO1405	1.00 - 0.143	0.000	0.000	0.000
NO1406	1.00 -0.085	0.000	0.000	0.000
NO1407	1.00 0.160	0.000	0.000	0.000
NO1408	2.00 1.764	0.000	0.000	0.000
NO1422	1.00 0.090	0.000	0.000	0.000
NO1424	1.00 -0.063	0.000	0.000	0.000
NO1425	1.00 -0.110	0.000		
NO1427			0.000	0.000
	2.00 0.619	0.000	0.000	0.000
NO1501	1.00 -0.192	0.000	0.000	0.000
NO1502	1.00 0.041	0.000	0.000	0.000
NO1503	1.00 - 0.162	0.000	0.000	0.000
NO1504	1.00 -0.117	0.000	0.000	0.000
NO1505	1.00 0.096	0.000	0.000	0.000
NO1506	2.00 1.738	0.000	0.000	0.000
NO1507	1.00 0.250	0.000	0.000	0.000
NO1523	1.00 -0.126	0.000	0.000	0.000
NO1523				
	1.00 -0.179	0.000	0.000	0.000
NO1525	2.00 0.626	0.000	0.000	0.000
NO1526	1.00 -0.117	0.000	0.000	0.000
JL2304	1.00 0.249	0.000	0.000	0.000
JL2306	1.00 - 0.277	0.000	0.000	0.000
JL2322	1.00 - 0.150	0.000	0.000	0.000
JL2323	1.00 - 0.102	0.000	0.000	0.000
JL2326	1.00 -0.037	0.000	0.000	0.000
MY2401	1.00 -0.183	0.000	0.000	0.000
MY2403	1.00 -0.220	0.000	0.000	0.000
MY2404	1.00 -0.120	0.000	0.000	0.000
MY2405	1.00 -0.291	0.000	0.000	0.000
MY2406	1.00 -0.110	0.000	0.000	0.000
MY2408	1.00 0.006			
		0.000	0.000	0.000
MY24011	1.00 -0.195	0.000	0.000	0.000
MY24012	1.00 -0.130	0.000	0.000	0.000
MY2424	1.00 -0.220	0.000	0.000	0.000
MY2425	1.00 - 0.044	0.000	0.000	0.000
MY2426	1.00 -0.369	0.000	0.000	0.000
MY2429	1.00 - 0.255	0.000	0.000	0.000
MY24213	1.00 -0.189	0.000	0.000	0.000
MY24215	1.00 -0.314	0.000	0.000	0.000
MY24216	1.00 -0.221	0.000	0.000	0.000
MY24217				
		0.000	0.000	0.000
MY24219	1.00 -0.229	0.000	0.000	0.000
JL2102	1.00 -0.232	0.000	0.000	0.000
JL2123	1.00 -0.163	0.000	0.000	0.000
JL2124	1.00 -0.021	0.000	0.000	0.000
JL2125	1.00 -0.187	0.000	0.000	0.000
JL2127	1.00 -0.125	0.000	0.000	0.000

JL2128 JL2129 JL21211	1.00 -0.187 1.00 -0.285 1.00 -0.271	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000
JL2142 JL2143	1.00 -0.224 1.00 -0.119	0.000 0.000	0.000	0.000
JL2145	1.00 -0.090	0.000	0.000	0.000
NO2623 NO2626	1.00 0.015 2.00 1.905	0.000 0.000	0.000	0.000
NO2643	2.00 1.688	0.000	0.000	0.000
SE2605 SE2606	2.00 0.061 1.00 -0.075	0.000 0.000	0.000	0.000
SE26010	1.00 -0.078	0.000	0.000	0.000
SE2624 SE2627	1.00 -0.058 1.00 -0.020	0.000	0.000	0.000
SE2627	1.00 -0.020 1.00 -0.176	0.000 0.000	0.000 0.000	0.000
SE26211	1.00 0.176	0.000	0.000	0.000
MY2441 MY2443	1.00 -0.155 1.00 -0.076	0.000 0.000	0.000 0.000	0.000
MY2444	1.00 -0.079	0.000	0.000	0.000
MY2448 MY2449	1.00 -0.009 1.00 -0.219	0.000 0.000	0.000 0.000	0.000
MY24410	1.00 -0.219	0.000	0.000	0.000
MY24412 MY24414	1.00 -0.040	0.000	0.000	0.000
MY24414	1.00 -0.293 1.00 0.043	0.000 0.000	0.000 0.000	0.000
AP2607	1.00 -0.195	0.000	0.000	0.000
AP2608 AP2628	1.00 -0.313 1.00 -0.233	0.000 0.000	0.000	0.000
AP26210	1.00 -0.117	0.000	0.000	0.000
AP26211 NO2601	1.00 -0.348 1.00 0.045	0.000 0.000	0.000	0.000
NO2603	1.00 0.043	0.000	0.000	0.000
NO2604	1.00 0.161	0.000	0.000	0.000
NO2606 NO2607	1.00 -0.054 2.00 1.884	0.000 0.000	0.000	0.000
NO2608	2.00 1.854	0.000	0.000	0.000
JL3002 JL3006	1.00 -0.056 1.00 0.017	0.000 0.000	0.000	0.000
JL3024	1.00 -0.157	0.000	0.000	0.000
JL3025	1.00 -0.276	0.000	0.000	0.000
JL3027 MY3003	1.00 -0.220 1.00 0.097	0.000 0.000	0.000 0.000	0.000
MY3004	1.00 -0.082	0.000	0.000	0.000
MY3026 MY3027	1.00 0.511 1.00 -0.192	0.000 0.000	0.000 0.000	0.000 0.000
MY3028	1.00 -0.028	0.000	0.000	0.000
MY3029	1.00 -0.285	0.000	0.000	0.000
MY30210 SE2802	2.00 0.022 1.00 -0.063	0.000 0.000	0.000	0.000
SE2806	1.00 -0.069	0.000	0.000	0.000
SE2807 SE2808	1.00 -0.082 1.00 -0.056	0.000 0.000	0.000 0.000	0.000
SE2821	1.00 0.011	0.000	0.000	0.000 0.000
SE2822	1.00 -0.184	0.000	0.000	0.000

SE2841 SE2846 JL3121 JL3123 JL3124 JN0114 JN0115 JN0116 JN0117 JN0131	1.00 0.090 1.00 -0.133 1.00 0.160 1.00 0.550 1.00 0.188 1.00 -0.172 1.00 -0.068 1.00 -0.040 1.00 -0.184 1.00 -0.193	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000
JN0134	1.00 -0.149	0.000	0.000	0.000
JN0135	1.00 0.045	0.000	0.000	0.000
JN0136	1.00 -0.106	0.000	0.000	0.000
JN0139	1.00 0.331	0.000	0.000	0.000
JN01310	1.00 -0.029	0.000	0.000	0.000
JN01311	1.00 -0.144	0.000	0.000	0.000
JN01313	1.00 0.022	0.000	0.000	0.000
JN01314	1.00 0.071	0.000	0.000	0.000
JN01H3	1.00 0.374	0.000	0.000	0.000
JN01H5	1.00 -0.310	0.000	0.000	0.000
JN01H6	1.00 -0.289	0.000	0.000	0.000
JN01H13	1.00 -0.263	0.000	0.000	0.000
MY3041	1.00 -0.099	0.000	0.000	0.000
MY3044	1.00 -0.111	0.000	0.000	
MY3045	1.00 0.168	0.000	0.000	
MY3046	2.00 1.229	0.000	0.000	0.000
MY3048	1.00 -0.274	0.000		0.000
MY3061	1.00 0.081	0.000		0.000
MY3062	1.00 0.151	0.000	0.000	0.000
MY3065	1.00 -0.099	0.000		0.000
MY3067	1.00 -0.225	0.000		0.000
MY3068	2.00 1.179	0.000	0.000	0.000
MY3069	2.00 1.155	0.000	0.000	
MY30610	1.00 -0.270	0.000	0.000	
JL31015	1.00 0.839	0.000	0.000	0.000
MY1011	1.00 -0.179	0.000	0.000	
MY1012	1.00 0.004	0.000	0.000	
MY1013	1.00 -0.041	0.000	0.000	0.000
MY1014	2.00 0.999	0.000	0.000	0.000
MY1031	1.00 -0.109	0.000	0.000	0.000
MY1034	1.00 -0.172	0.000	0.000	0.000
MY1036	1.00 -0.179	0.000	0.000	0.000
MY1038	1.00 0.085	0.000	0.000	0.000
MY10310 MY10312 MY1056	1.00 -0.192 1.00 0.138 2.00 0.452	0.000	0.000	0.000
MY1057 MY1059 MY10510	1.00 -0.179 1.00 0.088	0.000	0.000 0.000 0.000	0.000 0.000 0.000
MY1071 MY1072	1.00 -0.212 1.00 0.087 1.00 -0.244	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000
MY1075	2.00 0.437	0.000	0.000	0.000
MY1077	2.00 -0.061	0.000	0.000	0.000
MY1078	1.00 0.086	0.000	0.000	0.000

MY1079	1.00	-0.212	0.000	0.000	0.000
		-0.093	0.000	0.000	0.000
JN1112					
JN1114	1.00	-0.238	0.000	0.000	0.000
JN1116	1.00	-0.043	0.000	0.000	0.000
JN1118		-0.265	0.000	0.000	0.000
JN1119	1.00	0.032	0.000	0.000	0.000
JN11114	1.00	-0.061	0.000	0.000	0.000
JN1131	1.00	0.136	0.000	0.000	0.000
JN1133		-0,118	0.000	0.000	0.000
JN1134	1.00	0.497	0.000	0.000	0.000
JN1135	1.00	-0.222	0.000	0.000	0.000
JN1136	1.00	-0.300	0.000	0.000	0.000
JN1138		-0.007	0.000	0.000	0.000
JN1139		-0.288	0.000	0.000	0.000
JN01J2		-0.045	0.000	0.000	0.000
JN01J3	1.00	-0.167	0.000	0.000	0.000
JN01J4	1.00	0.120	0.000	0.000	0.000
	2.00	0.373	0.000	0.000	0.000
JN0911					
JN0912		-0.048	0.000	0.000	0.000
JN0913	1.00	-0.325	0.000	0.000	0.000
JN0914	1.00	-0.231	0.000	0.000	0.000
JN0916	1.00	0.081	0.000	0.000	0.000
JN0917		-0.192	0.000	0.000	0.000
JN0918	1.00	0.017	0.000	0.000	0.000
JN09112	1.00	-0.137	0.000	0.000	0.000
JN09113	1.00	-0.199	0.000	0.000	0.000
JN0937		-0.242	0.000	0.000	0.000
JN0938		-0.316	0.000	0.000	0.000
JN09310		-0.096	0.000	0.000	0.000
MY1116	1.00	0.056	0.000	0.000	0.000
MY1118	1.00	-0.291	0.000	0.000	0.000
MY11110	2.00	1.262	0.000	0.000	0.000
MY1131		-0.020	0.000	0.000	0.000
MY1132		-0.102	0.000	0.000	0.000
MY1133	1.00	0.051	0.000	0.000	0.000
MY1151	2.00	0.166	0.000	0.000	0.000
MY1152	1.00	0.051	0.000	0.000	0.000
MY1154		0.228	0.000	0.000	0.000
MY1156	2.00	0.550	0.000	0.000	0.000
MY1172		-0.261	0.000	0.000	0.000
MY1173	1.00	-0.159	0.000	0.000	0.000
MY1174	2.00	-0.204	0.000	0.000	0.000
MY1175		-0.145	0.000	0.000	0.000
				0.000	0.000
MY1176		-0.078	0.000		
MY1177	2.00	1.248	0.000	0.000	0.000
MY1179	1.00	-0.140	0.000	0.000	0.000
MY11710	1.00	-0.202	0.000	0.000	0.000
MY11713		-0.205	0.000	0.000	0.000
MY11714	1.00	0.041	0.000	0.000	0.000
MY11F1	1.00	0.010	0.000	0.000	0.000
MY11F2	2.00	0.844	0.000	0.000	0.000
MY11H1	1.00	0.237	0.000	0.000	0.000
	1.00	0.179		0.000	0.000
MY11H3			0.000		
MY11H4	1.00	-0.127	0.000	0.000	0.000

MY11H6	2.00 -0.036	0.000	0 000	0 000
MY11H8	2.00 0.050	0.000	0.000 0.000	0.000
MY11H10	1.00 0.172	0.000	0.000	0.000
MY11H14	2.00 0.037	0.000	0.000	0.000
MY11H15	2.00 0.847	0.000	0.000	0.000
JN1174	1.00 -0.157	0.000	0.000	0.000
SE1612	1.00 -0.255	0.000	0.000	0.000
SE1613	2.00 0.870	0.000	0.000	0.000
SE1614	1.00 -0.268	0.000	0.000	0.000
SE1616	1.00 - 0.174	0.000	0.000	0.000
SE1617	1.00 -0.080	0.000	0.000	0.00s
SE1631	1.00 -0.143	0.000	0.000	0.000
SE1632	1.00 0.242	0.000	0.000	0.000
SE1633	1.00 0.906	0.000	0.000	0.000
SE1634 SE1638	1.00 0.200 1.00 -0.085	0.000	0.000	0.000
SE16310	1.00 0.085	0.000	0.000 0.000	0.000
SE16311	1.00 0.031	0.000	0.000	0.000
SE16313	1.00 -0.194	0.000	0.000	0.000
SE16314	1.00 -0.151	0.000	0.000	0.000
JN3011	1.00 -0.182	0.000	0.000	0.000
JN3012	1.00 -0.211	0.000	0.000	0.000
JN3013	1.00 -0.038	0.000	0.000	0.000
JN3015	1.00 -0.040	0.000	0.000	0.000
JN3016	1.00 -0.280	0.000	0.000	0.000
JN30112	1.00 -0.220	0.000	0.000	0.000
JN30113 JN3031	1.00 -0.190 1.00 -0.208	0.000	0.000	0.000
JN3035	1.00 -0.208	0.000 0.000	0.000	0.000
JN3036	1.00 0.399	0.000	0.000	0.000
JN3051	1.00 -0.099	0.000	0.000	0.000
JN3055	1.00 -0.241	0.000	0.000	0.000
JN3056	2.00 -0.164	0.000	0.000	0.000
JN3076	1.00 - 0.241	0.000	0.000	0.000
JN3077	2.00 -0.164	0.000	0.000	0.000
JN3091	1.00 -0.231	0.000	0.000	0.000
JN3092 JN3094	1.00 -0.176	0.000	0.000	0.000
JN3096	1.00 -0.172 1.00 -0.098	0.000	0.000	0.000
JN30912	1.00 0.271	0.000	0.000	0.000 0.000
JN30915	1.00 -0.085	0.000	0.000	0.000
JN30916	1.00 -0.175	0.000	0.000	0.000
JN30917	1.00 -0.092	0.000	0.000	0.000
MY11J2	1.00 -0.212	0.000	0.000	0.000
MY11J4	1.00 0.210	0.000	0.000	0.000
MY11J6	1.00 - 0.107	0.000	0.000	0.000
MY11J7	1.00 -0.078	0.000	0.000	0.000
MY11J9	1.00 -0.239	0.000	0.000	0.000
MY11L1	1.00 -0.258	0.000	0.000	0.000
MY11L3	2.00 -0.099	0.000	0.000	0.000
MY11L8 MY11L10	1.00 -0.212 1.00 -0.138	0.000 0.000	0.000 0.000	0.000
MY11L13	1.00 -0.138	0.000	0.000	0.000 0.000
JL0421	1.00 -0.190	0.000	0.000	0.000
	· · · · · · ·			

JL0423 JL0428 JL04211	1.00 -0.224 2.00 1.516 1.00 -0.220	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000
AP29E1	1.00 -0.195	0.000	0.000	0.000
AP29E4 AP29E6	1.00 -0.192 1.00 0.043	0.000	0.000	0.000
AP29E9	1.00 -0.277	0.000	0.000	0.000
AP29E11	1.00 -0.303	0.000	0.000	0.000
AP29E12 AP29E14	1.00 -0.351	0.000	0.000	0.000
AP29E14	1.00 0.174 1.00 -0.169	0.000 0.000	0.000	0.000
JN1151	1.00 -0.072	0.000	0.000 0.000	0.000
JN1153	1.00 -0.225	0.000	0.000	0.000
JN1155	1.00 0.003	0.000	0.000	0.000
JN1156 JN01F2	1.00 -0.088 1.00 -0.290	0.000	0.000	0.000
JN01F3	1.00 -0.290	0.000 0.000	0.000 0.000	0.000
JN01F7	2.00 0.791	0.000	0.000	0.000
JN01F8	1.00 - 0.176	0.000	0.000	0.000
JN01F11	1.00 -0.345	0.000	0.000	0.000
JN01F12 AP2802	1.00 -0.365 1.00 -0.251	0.000 0.000	0.000	0.000
AP2803	1.00 -0.191	0.000	0.000 0.000	0.000
AP2804	1.00 -0.190	0.000	0.000	0.000
AP2806	1.00 -0.001	0.000	0.000	0.000
AP28012 AP28013	1.00 0.021 1.00 -0.023	0.000	0.000	0.000
AP28016	1.00 -0.023 1.00 -0.253	0.000 0.000	0.000 0.000	0.000
AP28020	1.00 -0.145	0.000	0.000	0.000
AP28023	1.00 0.036	0.000	0.000	0.000
AP28025 AP28026	1.00 -0.229	0.000	0.000	0.000
AP2307	1.00 -0.165 1.00 -0.204	0.000 0.000	0.000 0.000	0.000
AP23011	1.00 -0.094	0.000	0.000	0.000
AP23013	1.00 -0.198	0.000	0.000	0.000
AP23015	2.00 -0.138	0.000	0.000	0.000
AP2201 AP2202	1.00 -0.214 1.00 -0.003	0.000	0.000	0.000
AP2205	1.00 -0.003	0.000 0.000	0.000 0.000	0.000
AP2207	1.00 0.009	0.000	0.000	0.000
JN1226	1.00 0.025	0.000	0.000	0.000
N0613 JN0615	1.00 0.033	0.000	0.000	0.000
JN0616	1.00 0.657 1.00 0.063	0.000 0.000	0.000	0.000
JN0617	1.00 -0.080	0.000	0.000 0.000	0.000 0.000
JN06I10	1.00 -0.214	0.000	0.000	0.000
MY0521	1.00 -0.149	0.000	0.000	0.000
MY0522	1.00 -0.280	0.000	0.000	0.000
MY0525 MY0527	1.00 -0.290 1.00 -0.144	0.000	0.000	0.000
MY0501	1.00 -0.144 2.00 0.400	0.000 0.000	0.000 0.000	0.000
MY0504	1.00 -0.087	0.000	0.000	0.000 0.000
MY0506	1.00 0.604	0.000	0.000	0.000