- 1. (5 punts) Considereu les funcions $f(x) = \frac{1}{e-1}(x-1)$ i $g(x) = \ln x$.
 - a) Doneu el domini de les dues funcions i representeu les dues corbes y=f(x) i y=g(x) en una mateixa gràfica.
 - b) Demostreu que l'equació f(x) g(x) = 0 té exactament dues solucions.
 - c) Calculeu els dos límits següents:

$$\lim_{x \to 1} \frac{g(x)}{f(x)}, \qquad \lim_{x \to +\infty} \frac{g(x)}{f(x)}.$$

- **2.** (5 punts) Sigui $f(x) = e^x$.
 - a) Escriviu el polinomi de Taylor de grau n de la funció f(x) a l'origen i el terme complementari corresponent.
 - b) Determineu el grau del polinomi de Taylor de la funció f(x) a l'origen per calcular $\frac{1}{\sqrt[4]{e}}$ amb una precisió de tres decimals correctes ($error \leq 0.5 \cdot 10^{-3}$).
 - c) Calculeu el valor aproximat de $\frac{1}{\sqrt[4]{e}}$ utilitzant el polinomi de Taylor del grau determinat en l'apartat anterior.
 - d) Doneu una cota superior de l'error més ajustada que la precisió demanada utilitzant el terme complementari.

- 1. (5 punts) Considereu les funcions $f(x) = \frac{1}{e-1}(x-1)$ i $g(x) = \ln x$.
 - a) Doneu el domini de les dues funcions i representeu les dues corbes y = f(x) i y = g(x) en una mateixa gràfica.
 - b) Demostreu que l'equació f(x) g(x) = 0 té exactament dues solucions.
 - c) Calculeu els dos límits següents:

$$\lim_{x \to 1} \frac{g(x)}{f(x)}, \qquad \lim_{x \to +\infty} \frac{g(x)}{f(x)}.$$

SOLUCIÓ:

a) Dom $f = \mathbb{R}$, Dom $g = \mathbb{R}^+ = (0, +\infty)$.

b) Sigui h(x) = f(x) - g(x).

Existència de les dues solucions: h és una funció contínua en $\mathbb{R}^+ = (0, +\infty)$ per ser resta de funcions contínues. Amb la calculadora s'obté h(0.5) > 0, h(1.5) < 0, h(3) > 0. Per tant, aplicant el Teorema de Bolzano, queda demostrat que $\exists c_1 \in (0.5, 1.5)$ tal que $h(c_1) = 0$ i $\exists c_2 \in (1.5, 3)$ tal que $h(c_2) = 0$.

Només hi ha dues solucions: Per reducció al absurd, si hi haguessin tres solucions diferents $a,b,c\in(0,+\infty)$, amb a< b< c, es tindria h(a)=h(b)=h(c)=0. Llavors, per ser h una funció contínua i derivable en $(0,+\infty)$, el teorema de Rolle assegura que existirien dos nombres $\alpha_1\in(a,b)$ i $\alpha_2\in(b,c)$ diferents amb $h'(\alpha_1)=h'(\alpha_2)=0$, però $h'(x)=\frac{1}{e-1}-\frac{1}{x}$ que s'anul·la en un únic punt (x=e-1).

c) Aplicant la Regla de L'Hôpital, que es pot aplicar donat que les dues funcions són derivables en $(0, +\infty)$, s'obté:

$$\lim_{x \to 1} \frac{g(x)}{f(x)} = \lim_{x \to 1} \frac{(e-1)\ln x}{x-1} = \lim_{x \to 1} \frac{e-1}{x} = e-1,$$

$$\lim_{x\to +\infty} \frac{g(x)}{f(x)} = \lim_{x\to +\infty} \frac{(e-1)\ln x}{x-1} = \lim_{x\to +\infty} \frac{e-1}{x} = 0.$$

- 2. (5 punts) Sigui $f(x) = e^x$.
 - a) Escriviu el polinomi de Taylor de grau n de la funció f(x) a l'origen i el terme complementari corresponent.
 - b) Determineu el grau del polinomi de Taylor de la funció f(x) a l'origen per calcular $\frac{1}{\sqrt[4]{e}}$ amb una precisió de tres decimals correctes ($error \le 0.5 \cdot 10^{-3}$).
 - c) Calculeu el valor aproximat de $\frac{1}{\sqrt[4]{e}}$ utilitzant el polinomi de Taylor del grau determinat en l'apartat anterior.
 - d) Doneu una cota superior de l'error més ajustada que la precisió demanada utilitzant el terme complementari.

SOLUCIÓ:

a) La funció exponencial té derivades de tots els ordres a tota la recta real. El polinomi de Taylor d'ordre n a l'origen d'una funció f(x) és: $P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \cdots + \frac{f^{(n)}(0)}{n!}x^n$. En el cas $f(x) = e^x$ i donat que totes les derivades de f(x) coincideixen amb f(x) i per tant $f^{(k)}(0) = 1 \,\forall k$, el polinomi és:

$$P_n(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}.$$

El reste o terme complementari del polinomi de Taylor d'ordre n a l'origen d'una funció f(x) és: $R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1}$, per a cert c entre 0 i x. En el cas $f(x) = e^x$, el terme complementari del polinomi és:

$$R_n = \frac{e^c}{(n+1)!} x^{n+1}$$
, per a cert c entre 0 i x .

b) L'error absolut de l'aproximació de $\frac{1}{\sqrt[4]{e}} = f(-0.25)$ per $P_n(-0.25)$, és:

$$\varepsilon = |R_n(-0.25)| = |\frac{e^c}{(n+1)!}(-0.25)^{n+1}| = \frac{e^c}{(n+1)!}(0.25)^{n+1},$$

amb $-0.25 \le c \le 0$. Per ser la funció exponencial creixent: $-0.25 \le c \le 0 \Rightarrow e^c \le e^0 = 1$, i per tant: $\varepsilon \le \frac{(0.25)^{n+1}}{(n+1)!}$, i el primer número natural que compleix $\frac{(0.25)^{n+1}}{(n+1)!} \le 0.0005$ és n=3. Per tant, el grau del polinomi de Taylor a l'origen de la funció $y=e^x$ necessari per calcular $\frac{1}{\sqrt[4]{e}}$ amb la precisió demanada és

c)
$$\frac{1}{\sqrt[4]{e}} \simeq P_3(-0.25) = 1 + (-0.25) + \frac{(-0.25)^2}{2!} + \frac{(-0.25)^3}{3!} = 0.77864583 \simeq 0.7786$$

d) L'error és: $|R_3(-0.25)| = |\frac{e^c}{(4)!}(-0.25)^4|$ amb $-0.25 \le c \le 0$. Per tant una cota superior de l'error més ajustada que la precisió demanada és $\frac{(0.25)^4}{(4)!} \simeq 0.00016 < 0.0005$