a) i)
$$\lim_{x\to 0} (\sinh x)^{x} = \lim_{x\to 0} \exp[x\ln(x\sinh x)]$$

$$= \lim_{x\to 0} \exp\left[\frac{x}{\sinh x} \times \left[(\sinh x) \ln(\sinh x)\right]\right]$$

$$= \exp(1 \times 0) = e^{6} = 1$$
Since $\lim_{x\to 0} x = 1$

Since
$$\lim_{x \to 0} \frac{x}{\sinh x} = 1$$

ii)
$$\lim_{\chi \to 0} \frac{\tanh(5\chi)}{\sinh(2\chi)} = \lim_{\chi \to 0} \frac{\tanh(5\chi)}{5\chi}$$

$$= \frac{5}{2} \times \lim_{\chi \to 0} \frac{(\tanh 5\chi)}{5\chi}$$

$$= \frac{5}{2} \times \lim_{\chi \to 0} \frac{(\sinh 5\chi)}{5\chi}$$

$$= \frac{5}{2} \times \frac{1}{1} = \frac{5}{2}$$

N.B: One can also use the L'hopital's rule provided a justification is given.

b) Let f(t) = (1 + t) In (1+t) + 70

Then f is continuous on Lo, ∞) and differentiable functions (1+t) and $\ln(1+t)$. Hence, in particular, for any x > 0, f is continuous on Lo, x] and differentiable on (o, x). Thus by the MVT, there exists $c \in (o, x)$ such that

(c) =
$$\frac{f(x) - f(0)}{x - 0} = \frac{(1+x)\ln(1+x)}{x}$$

if $f'(c) = \ln(1+c) + (1+c) \times \frac{1}{(1+c)}$
= $\ln(1+c) + 1 > 1$ since $c > 0$
ince,
 $1 < f'(c) = \frac{(1+x)\ln(1+x)}{x}$
which is equivalent to $\frac{x}{1+x} < \ln(1+x)$
incall that $\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots$ for $|x| < 1$
 $\ln(1+x) > \frac{x}{1+x} = x(1-x+x^2-x^3+\dots)$
is $\ln(1+x) > x - x^2 + x^3 - x^4 + \dots$
Let $f(x) = 3\cosh x - 5\sinh x$, $x > 0$
 $f(\ln x) = 3 \times \frac{e^{\ln x} + e^{-\ln x}}{2} = 5 \times \frac{e^{\ln x} - e^{-\ln x}}{2}$
 $= \frac{3}{2}(2 + \frac{1}{2}) - \frac{5}{2}(2 - \frac{1}{2})$
 $= \frac{15}{4} - \frac{15}{4}$
 $= 0$

Thus,
$$\ln 2$$
 satisfies the equation $f(x) = 0$
ii) By i), $f^{-1}(0) = \ln 2$
Hence, $(f^{-1})'(0) = \frac{1}{f'(f'(0))} = \frac{1}{f'(\ln 2)}$
but $f'(x) = 3 \sinh x - 5 \cosh x$
and so, $f'(\ln 2) = \frac{3}{2}(e^{\ln 2} - e^{-\ln 2}) - \frac{5}{2}(e^{\ln 2} + e^{-\ln 2})$
 $= \frac{3}{2}(2 - \frac{1}{2}) - \frac{5}{2}(2 + \frac{1}{2})$
 $= \frac{9}{4} - \frac{25}{4}$
 $= -\frac{16}{4}$
 $= -4$

a) By definition,

$$\ln (e^x) = \int_{1}^{e^x} \frac{1}{t} dt$$

b) Let
$$1x 1 < 1$$
 and put $y = \tanh^{-1}x$. Then $x = \tanh y = \frac{e^y - e^{-y}}{e^y + e^{-y}}$

$$(\chi - 1)e^{9} = -(\chi + 1)e^{-9}$$

$$\frac{OR}{C^{2y}} = \frac{2C+1}{1-2C}$$

$$e^{2y} = \exp\left[\ln\left(\frac{x+1}{1-x}\right)\right]$$

$$2y = \ln\left(\frac{x+1}{1-x}\right)$$

$$\frac{OR}{y} = \frac{1}{2} \ln \left(\frac{x+1}{1-x} \right)$$

ie tanh x =
$$\frac{1}{2} \ln \left(\frac{2c+1}{1-x} \right)$$

$$\tanh^{-1} x = 1 \iff \pm \ln\left(\frac{x+1}{1-x}\right) = 1$$

$$(=)$$
 $\frac{\chi+1}{1-\chi}=e^2$

$$\mathcal{X} = \frac{e^2 - 1}{e^2 + 1}$$