Paper No: 20PESGM0225

External System Generator Outage Localization Based on Tie-line Synchrophasor Measurements

Zhen Dai, Joseph Euzebe Tate

Department of Electrical and Computer Engineering

University of Toronto

zhen.dai@mail.utoronto.ca

IEEE

Background

- Problems: limited observability and information of the external system
- Proposed method: solve for the largest injection change

Group Injection change due to outage

Approximate CISFs based on QR decomposition

Tie-line PMU measurements Outage originating Group

Results (68-bus system)

Power & Energy Society®

Group injection change estimation:

$$\Delta \hat{\boldsymbol{P}}_r = \operatorname{Re}\{\tilde{\boldsymbol{A}}_l\}^{-1}\Delta \boldsymbol{P}_l$$

Estimated group injection change

Approximate ISFs

Tie-line PMU measurements

	Mean estimation error
3 tie-line PMUs	22%
3 tie-line PMUs + 3 PMUs	10%

100% localization accuracy

Results (500-bus system)

6 tie-line PMUs: 6 groups Highly similar CISFs within each group

100% localization accuracy

Mean group injection change estimation error: 5.4%

Conclusions/Recommendations

- Localize external system generator outage to the originating cluster given limited PMU measurements with great accuracy
- Provide estimation of the group injection loss
- Great for online application and as a complementary approach to frequency-based methods
- Provide incentives to share CISFs and PMU data between operators

