1. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
130	3	3
129	2	2
123	-4	4
126	-1	1
======	= ======	======
$\sum x = 500$ $\bar{x} = 127$	8	$\sum x - \bar{x} = 10$

We are ready for the formula.

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{10}{4}$$

2. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
92	-1	1
88	-5	25
89	-4	16
96	3	9
98	5	25
95	2	4
=======	=======	=======
$\sum x = 558$ $\bar{x} = 93$		$\sum (x - \bar{x})^2 = 80$

We are ready for the formula.

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{80}{6 - 1}}$$
$$= \sqrt{16}$$
$$= \boxed{4}$$