ELECTROMAGNETIC EMISSIONS COMPLIANCE REPORT INTENTIONAL RADIATOR CERTIFICATION TO FCC PART 15 SUBPART C REQUIREMENT

OF

Car DVD Player

MODEL No.: DV7950, DV7951, DV7952, DV7953, DV7954, DV7955, DV7956, DV7957, DV7958, DV7959, ICBM-9772, BMWX-4755, ICBM-9776, BMWX-4759, ICBM-9777, BMWX-4767, ATV74, NS-985, ICBM-N.B, BMWX-4754, NS-969, IV-7104

BRAND NAME: N/A

FCC ID: YQTDV7952

REPORT NO: ED100820096E

ISSUE DATE: August 31, 2010

Prepared for

HuaSheng Audio Products Co., Ltd. No.2, Fuk Lung Ind. Estates, Shuk Pai Town, Dongguan, China

Prepared by

DONGGUAN EMTEK CO., LTD

No.281, Guantai Road, Nancheng District, Dongguan, Guangdong, China TEL: 86-769-22807078 FAX: 86-769-22807079

VERIFICATION OF COMPLIANCE

Applicant:	HuaSheng Audio Products Co., Ltd. No.2, Fuk Lung Ind. Estates, Shuk Pai Town, Dongguan, China
Product Description:	Car DVD Player
Brand Name:	N/A
Model Number:	DV7950, DV7951, DV7952, DV7953, DV7954, DV7955, DV7956, DV7957, DV7958, DV7959, ICBM-9772, BMWX-4755, ICBM-9776, BMWX-4759, ICBM-9777, BMWX-4767, ATV74, NS-985, ICBM-N.B, BMWX-4754, NS-969, IV-7104 (Note: The samples are the same, except the model number is different; we prepare DV7952 for EMC test. The models are based on the same FCC ID No. YQTDV7952.)
Serial Number:	N/A
File Number:	ED100820096E
Date of Test:	August 25, 2010 to August 31, 2010

We hereby certify that:

The above equipment was tested by DONGGUAN EMTEK CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4 (2009) and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.247.

The test results of this report relate only to the tested sample identified in this report.

Approved By

Nicol Lee / Q.A. Manager DONGGUAN EMTEK CO., LTD.

Table of Contents

1.	GENERAL INFORMATION	5
1.1	PRODUCT DESCRIPTION	5
1.2	RELATED SUBMITTAL(S) / GRANT (S)	5
1.3	TEST METHODOLOGY	5
1.4	SPECIAL ACCESSORIES	5
1.5	EQUIPMENT MODIFICATIONS	5
1.6	TEST FACILITY	6
2.	SYSTEM TEST CONFIGURATION	7
2.1	EUT CONFIGURATION	
2.2	EUT Exercise	7
2.3	TEST PROCEDURE	
2.4	LIMITATION	
2.5	CONFIGURATION OF TESTED SYSTEM	11
3.	SUMMARY OF TEST RESULTS	12
4.	DESCRIPTION OF TEST MODES	12
5.	RADIATED EMISSION TEST	13
5.1	MEASUREMENT PROCEDURE	13
5.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	14
5.3	MEASUREMENT EQUIPMENT USED:	
5.4	MEASUREMENT RESULT	15
5.5 F	RADIATED MEASUREMENT PHOTOS:	19
6.	CHANNEL SEPARATION TEST	20
6.1	MEASUREMENT PROCEDURE	20
6.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	20
6.3	MEASUREMENT EQUIPMENT USED:	20
6.4	MEASUREMENT RESULTS:	20
7.	20DB BANDWIDTH TEST	23
7.1	MEASUREMENT PROCEDURE	23
7.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	23
7.3	MEASUREMENT EQUIPMENT USED:	23
7.4	MEASUREMENT RESULTS:	23
8.	QUANTITY OF HOPPING CHANNEL TEST	26
8.1	Measurement Procedure	26
8.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	26
8.3	MEASUREMENT EQUIPMENT USED:	26
8.4	MEASUREMENT RESULTS:	26

9.	TIME OF OCCUPANCY (DWELL TIME) TEST	28
9.1	MEASUREMENT PROCEDURE	28
9.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	28
9.3	MEASUREMENT EQUIPMENT USED:	28
9.4	MEASUREMENT RESULTS:	28
10.	M AX IMUM PEAK OUTPUT POWER TEST	31
10.1	MEASUREMENT PROCEDURE	31
10.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	31
10.3	MEASUREMENT EQUIPMENT USED:	31
10.4	MEASUREMENT RESULTS:	31
11.	BAND EDGE TEST	34
11.1	MEASUREMENT PROCEDURE	34
11.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	34
11.3	MEASUREMENT EQUIPMENT USED:	34
11.4	MEASUREMENT RESULTS:	34
12.	ANTENNA APPLICATION	36
12.1	Antenna requirement	36
12.2	RESULT	36
13.	RF EXPOSURE EVALUATION	37
13.1	FRIIS TRANSMISSION FORMULA: PD=(POUT*G)\(4*PI*R ²)	37
13.2	MEASUREMENT RESULT	37

1. GENERAL INFORMATION

1.1 Product Description

The HuaSheng Audio Products Co., Ltd. Model: DV7952 (referred to as the EUT in this report) The EUT is an short range, lower power, Car DVD Player designed as an "Input Device. It is designed by way of utilizing the GFSK, DQPSK and 8DPSK modulation achieves the system operating.

A major technical descriptions of EUT is described as following:

A). Operation Frequency: 2402-2480MHz

B). Modulation: GFSK, DQPSK, 8DPSK

C). Number of Channel: 79 D). Channel space: 1MHz

E). Rated RF Output Power: 4dBm

F). BIT Rate of Transmission: 2Mbps, 3Mbps

G). Antenna Type: PCB antenna

H). Antena GAIN: 4dBi I). Power Supply: DC 12V

1.2 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: YQTDV7952 filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules. The composite system (receiver) is compliance with Subpart B is authorized under a DoC procedure.

1.3 Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4 (2009). Radiated testing was performed at an antenna to EUT distance 3 meters.

1.4 Special Accessories

Not available for this EUT intended for grant.

1.5 Equipment Modifications

Not available for this EUT intended for grant.

DATE: 08/31/2010

1.6 Test Facility

Site Description

EMC Lab. : Accredited by CNAS, 2007.07.27

The certificate is valid until 2012.07.26

The Laboratory has been assessed and proved to be in compliance

with CNAS/CL01:2005

The Certificate Registration Number is L3150

Accredited by TUV Rheinland Shenzhen, 2009.9

The certificate is valid until 2011.3

The Laboratory has been assessed according to the requirements

ISO/IEC 17025

Accredited by FCC, Nov. 05, 2008

The Certificate Registration Number is 247565.

Accredited by Industry Canada, May 24, 2008 The Certificate Registration Number is 46405-4480

Name of Firm : DONGGUAN EMTEK CO., LTD

Site Location : No.281, Guantai Road, Nancheng District,

Dongguan, Guangdong, China

2. System Test Configuration

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The Transmitter was operated in the normal operating mode. the Tx frequency was fixed which was for the purpose of the measurements.

2.3 Test Procedure

2.3.1 Conducted Emissions

The EUT is a placed on as turn table which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4-2003. Conducted emissions from the EUT measured in the **frequency range between 0.15 MHz and 30MHz** using **CISPR Quasi-Peak and average detector mode**.

2.3.2 Radiated Emissions

The EUT is a placed on as turn table which is 0.8 m above ground plane. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter(EUT) was rotated through three orthogonal axes according to the requirements in Section 13.1.4.1 of ANSI C63.4-2003.

2.4 Limitation

(1) Channel Separation test

FCC Part 15, Subpart C Section 12.247(a)(1). Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20 Bandwidth of the hopping channel, whichever is greater.

Frequency Range (MHz)	Limit(kHz)
902-928	>25kHz
2400-2483.5	>25kHz
5725-5850	>25kHz

(2)		20dB Bandw	idth			
	Frequency	Lir	nit(kHz)			
	Range(MHz)	Quantity of Hopping Channel	50	25	15	75
		902-928	< 250	>250	NA	NA
		2400-2483.5	NA	NA	>1000	<1000

(3) Quantity of Hopping Channel

FCC Part 15, Subpart C Section 15.247

	Limit(Quantity of Hopping Channel)				
Frequency	20dB 20dB 20dB 20dB				
Range (MHz)	bandwidth	bandwidth	bandwidth	bandwidth	
	<250kHz	>250kHz	<1MHz	>1MHz	
902-928	50	25	NA	NA	
2400-2483.5	NA	NA	75	15	
5725-5850	NA	NA	75	NA	

(4) Time of Occupancy(Dwell Time)

FCC Part 15, Subpart C Section 12.247

Emagnanay Danga		LIMIT(rms)	
Frequency Range (MHz)	20aB banawiath	20dB bandwidth >250kHz(25Channel)	20dB bandwidth <1MHz(75Channel)
902-928	400(20S)	400(10S)	NA
2400-2483.5	NA	NA	400(30S)
5725-5850	NA	NA	400(30S)

Note: The "()" is all channel's average time of occupancy.

(5) Maximum Peak Output Power

FCC Part 15, Subpart C Section 12.247

LIMIT(W)				
Frequency Quantity of Range (MHz) Hopping Channel	50	25	15	75
902-928	1(30dBm)	0.125(21dBm)	NA	NA
2400-2483.5	NA	NA	0.125(21dBm)	1(30dBm)
5725-5850	NA	NA	NA	1(30dBm)

(6) Band edge

FCC Part15, Subpart C Section 15.247, In any 100kHz bandwidth outside the frequency band in with the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, attenuation below the general limits specified in section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in section 15.205(a), must also comply with the radiated emission limits specified in section 15.209(a).

Operating	Ci	Limit		
Frequency Range(MHz) Spurious emission frequency		Peak power ration to emission(dBc)	Emission level(dBuV/m)	
902-928	<902	>20	NA	
	>928	>20	NA	
	960-1240	NA	54	
2400-2483.5	<2400	>20	NA	
	>2483.5-2500	NA	54	
5725-5850	<5350-5460	NA	54	
	< 5725	>20	NA	
	>5850	>20	NA	

(7) Conducted Emission

Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

Note:

- 1. The lower limit shall apply at the transition frequencies
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

(8) Radiated Emission

FCC Part 15, Subpart C Section 15.209 limit of radiated emission for frequency below 1000GHz. The emissions from an intentional radiator shall not exceed the field strength level specified in the following table:

Frequency (MHz)	Field strength µV/m	Distance(m)	Field strength at 3m dBµV/m
30-88	100	3	40
88-216	150	3	43.5
216-960	200	3	46
Above 960	500	3	54

Remark: 1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

FCC Part 15, Section 15.35(b) limit of radiated emission for frequency above 1000MHz

Frequency(MHz)	Class $A(dB\mu V/m)(at 3m)$		Class B(dB	$\mu V/m$)(at 3m)
	PEAK	AVERAGE	PEAK	AVERAGE
Above 1000	80.0	60.0	74.0	54.0

FCC Part 15, Subpart C Section 15.249. The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Frequency(MHz)	Filed Strength of Fundamental(at 3m)		Filed Strength of Harmonics(at 3m)		
	PEAK	AVERAGE	PEAK	AVERAGE	
902-928	114	94	74.0	54.0	
2400-2483.5	114	94	74.0	54.0	
5725-5875	114	94	74.0	54.0	
24000-24250	128	108	88.0	68.0	

2.5 Configuration of Tested System

Fig. 2-1 Configuration of Tested System

EUT

Table 2-1 Equipment Used in Tested System

Item	Equipment		Mfr/Brand	Model/Type No.	FCC ID	Series No.	Note
1.	Car Player	DVD	VALOR	DV7952	YQTDV7952	N/A	EUT

Note:

(1) Unless otherwise denoted as EUT in [Remark] column, device(s) used in tested system is a support equipment.

3. Summary of Test Results

FCC Rules	Description Of Test	Result
§ 15.247(a)(1)	Channel Separation test	Compliant
§ 15.247(a)(1)	20dB Bandwidth	Compliant
§ 15.247(a)(1)(iii)	Quantity of Hopping Channel	Compliant
§ 15.247(a)(1)(iii)	Time of Occupancy(Dwell Time)	Compliant
§ 15.247(b)	Max Peak output Power test	Compliant
§ 15.247(d)	Band edge test	Compliant
§ 15.207	AC Power Conducted Emission	N/A
§ 15.247(d), § 15.209	Radiated Emission	Compliant
§ 15.203	Antenna Requirement	Compliant
§ 1.1310	RF Exposure	Compliant

4. Description of test modes

The EUT (Car DVD Player) has been tested under normal operating condition.

This EUT is a FHSS system, we use blue test to control the EUT with parallel port, Let EUT hopping on and transmit at every channel with highest power, Only output power use conducted method, others are using radiated method. After sirfdemo330R1 send the command to EUT, it can be removed, and the EUT keep hopping. 79 Channels are provided by EUT. The 3 channels of lower, medium and higher were chosen for best.

Channel	Frequency(MHz)
1	2402
40	2441
79	2480

DATE: 08/31/2010

5. Radiated Emission Test

5.1 Measurement Procedure

- 1 The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measured were complete.

5.2 Test SET-UP (Block Diagram of Configuration)

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

5.3 Measurement Equipment Used:

EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
TYPE		NUMBER	NUMBER	CAL.	
Spectrum Analyzer	Rohde & Schwarz	FSP7	839511/010	05/29/2010	05/29/2011
Spectrum Analyzer	HP	E4407B	839840481	05/29/2010	05/29/2011
EMI Test Receiver	Rohde & Schwarz	ESU	1302.6005.26	05/29/2010	05/29/2011
Pre-Amplifier	HP	8447D	2944A07999	05/29/2010	05/29/2011
Bilog Antenna	Schwarzbeck	VULB9163	142	05/29/2010	05/29/2011
Loop Antenna	ARA	PLA-1030/B	1029	05/29/2010	05/29/2011
Horn Antenna	Electro-Metrics	EM-6961	103314	05/29/2010	05/29/2011
Horn Antenna	Schwarzbeck	BBHA 9120	D143	05/29/2010	05/29/2011

5.4 Measurement Result

Operation Mode: RX Mode Test Date: August 28, 2010

Frequency Range: $30\sim1000 \text{MHz}$ Temperature: $28~^{\circ}\text{C}$ Test Result: PASS Humidity: $65~^{\circ}\text{M}$ Measured Distance: 3m Test By: Andy

Freq.	Ant.Pol.	Emission Level	Limit 3m	Margin	Note
(MHz)	H/V	(dBuV)	(dBuV/m)	(dB)	
167.740	V	22.20	43.50	-21.30	PK
202.660	V	23.69	43.50	-19.81	PK
419.940	V	33.18	46.00	-12.82	PK
742.950	V	35.47	46.00	-10.53	PK
756.530	V	40.61	46.00	-5.39	PK
66.860	Н	15.79	40.00	-24.21	PK
236.610	Н	20.25	46.00	-25.75	PK
269.590	Н	23.82	46.00	-22.18	PK
608.120	Н	27.89	46.00	-18.11	PK
810.850	Н	31.53	46.00	-14.47	PK

Note: (1) All Readings are Peak Value.

- (2) Emission Level= Reading Level+Probe Factor +Cable Loss
- (3) The average measurement was not performed when the peak measured data under the limit of average detection.

Operation Mode: CH1: 2402MHz Test Date: August 28, 2010

Frequency Range: 1-25GHz Temperature: 28 °C Test Result: PASS Humidity: 65 % Measured Distance: 3m Test By: Andy

Freq.	Ant.Pol.	Emission L	evel(dBuV)	Limit 3m(dBuV/m)	Margi	n(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV
2402.00(F)	V	76.75	71.10	114.00	94.00	-37.25	-22.90
2369.55	V	53.38	46.23	74.00	54.00	-20.62	-7.77
2387.40	V	52.61	42.78	74.00	54.00	-21.39	-11.22
2435.32	V	48.02	42.36	74.00	54.00	-25.98	-11.64
4694.22	V	50.39	40.52	74.00	54.00	-23.61	-13.48
7224.93	V	44.98	39.17	74.00	54.00	-29.02	-14.83
2402.00(F)	Н	76.00	70.18	114.00	94.00	-38.00	-23.82
2370.25	Н	52.66	46.90	74.00	54.00	-21.34	-7.10
2386.02	Н	51.49	41.65	74.00	54.00	-22.51	-12.35
2436.91	Н	49.35	42.88	74.00	54.00	-24.65	-11.12
4693.45	Н	51.08	41.05	74.00	54.00	-22.92	-12.95
7225.08	Н	45.23	38.67	74.00	54.00	-28.77	-15.33

Other harmonics emissions are lower than 20dB below the allowable limit.

Note: (1) All Readings are Peak Value and AV.

- (2) Emission Level= Reading Level+Probe Factor +Cable Loss
- (3) The average measurement was not performed when the peak measured data under the limit of average detection.

Operation Mode: CH40: 2441MHz Test Date: August 28, 2010

Frequency Range: 1-25GHz Temperature: 28 °C Test Result: PASS Humidity: 65 % Measured Distance: 3m Test By: Andy

Freq.	Ant.Pol.	Emission I	evel(dBuV)	Limit 3m(dBuV/m)	Margi	n(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV
2441.00(F)	V	76.24	69.62	114.00	94.00	-37.76	-24.38
2367.51	V	55.37	42.28	74.00	54.00	-18.63	-11.72
2390.33	V	48.47	40.55	74.00	54.00	-25.53	-13.45
2246.25	V	50.14	40.36	74.00	54.00	-23.86	-13.64
4808.38	V	49.89	40.98	74.00	54.00	-24.11	-13.02
7211.40	V	47.56	38.27	74.00	54.00	-26.44	-15.73
2441.00(F)	Н	75.33	68.88	114.00	94.00	-38.67	-25.12
2368.20	Н	54.48	43.14	74.00	54.00	-19.52	-10.86
2390.55	Н	48.88	40.30	74.00	54.00	-25.12	-13.70
2445.87	Н	50.39	40.54	74.00	54.00	-23.61	-13.46
4807.11	Н	49.16	40.38	74.00	54.00	-24.84	-13.62
7210.66	Н	48.27	38.66	74.00	54.00	-25.73	-15.34

Other harmonics emissions are lower than 20dB below the allowable limit.

Note: (1) All Readings are Peak Value and AV.

- (2) Emission Level= Reading Level+Probe Factor +Cable Loss
- (3) The average measurement was not performed when the peak measured data under the limit of average detection.

Operation Mode: CH79: 2480MHz Test Date: August 28, 2010

Frequency Range: 1-25GHz Temperature: 28 °C Test Result: PASS Humidity: 65 % Measured Distance: 3m Test By: Andy

Freq.	Ant.Pol.	Emission I	evel(dBuV)	Limit 3m(dBuV/m)	Margi	in(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV
2480.00(F)	V	77.31	76.45	114.00	94.00	-36.69	-17.55
2368.00	V	50.99	40.36	74.00	54.00	-23.01	-13.64
2347.30	V	48.68	41.52	74.00	54.00	-25.32	-12.48
2455.00	V	46.58	43.16	74.00	54.00	-27.42	-10.84
4800.00	V	47.42	41.17	74.00	54.00	-26.58	-12.83
7221.00	V	48.30	40.75	74.00	54.00	-25.70	-13.25
2480.00(F)	Н	76.57	75.30	114.00	94.00	-37.43	-18.70
2395.00	Н	50.22	40.57	74.00	54.00	-23.78	-13.43
2354.00	Н	48.36	42.31	74.00	54.00	-25.64	-11.69
2440.02	Н	47.55	43.20	74.00	54.00	-26.45	-10.80
4800.00	Н	48.59	41.62	74.00	54.00	-25.41	-12.38
7223.00	Н	47.61	41.21	74.00	54.00	-26.39	-12.79

Other harmonics emissions are lower than 20dB below the allowable limit.

Note: (1) All Readings are Peak Value and AV.

- (2) Emission Level= Reading Level+Probe Factor +Cable Loss
- (3) The average measurement was not performed when the peak measured data under the limit of average detection.

5.5 Radiated Measurement Photos:

DATE: 08/31/2010

6. Channel Separation test

6.1 Measurement Procedure

The EUT was operating in hopping mode or could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

6.2 Test SET-UP (Block Diagram of Configuration)

6.3 Measurement Equipment Used:

Same as 4.3 Radiated Emission Measurement.

6.4 Measurement Results:

Refer to attached data chart.

Spectrum Detector: PK Test Date: August 28, 2010

Test By: Andy Temperature: 28 °C Test Result: **PASS** Humidity: 65 %

Channel number	Channel frequency	Separation Read Value	Separation Limit
	(MHz)	(kHz)	(kHz)
1	2402	1000.00	>25 kHz
40	2441	1000.00	>25 kHz
79	2480	1000.00	>25 kHz

FCC ID:YQTDV7952

7. 20dB Bandwidth test

7.1 Measurement Procedure

The EUT was operating in hopping mode or could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

7.2 Test SET-UP (Block Diagram of Configuration)

EUT		Spectrum
-----	--	----------

7.3 Measurement Equipment Used:

Same as 4.3 Radiated Emission Measurement.

7.4 Measurement Results:

Refer to attached data chart.

Spectrum Detector: PK Test Date: August 29, 2010

Test By: Andy Temperature: 28 °C Test Result: PASS Humidity: 65 %

Channel number	Channel frequency	20dB Down BW(kHz)
	(MHz)	
1	2402	830
40	2441	824
79	2480	880

8. Quantity of Hopping Channel Test

8.1 Measurement Procedure

The EUT was operating in hopping mode or could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

8.2 Test SET-UP (Block Diagram of Configuration)

EUT Spectrum

8.3 Measurement Equipment Used:

Same as 4.3 Radiated Emission Measurement.

8.4 Measurement Results:

Refer to attached data chart.

Spectrum Detector: PK Test Date: August 29, 2010

Test By: Andy Temperature: $28 \degree \text{C}$ Test Result: PASS Humidity: 65 %

Hopping Channel	Quantity of Hopping Channel	Quantity of Hopping Channel
Frequency Range		
2402-2480	79	75

9. Time of Occupancy (Dwell Time) test

9.1 Measurement Procedure

- a. Check the calibration of the measuring instrument(SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

9.2 Test SET-UP (Block Diagram of Configuration)

9.3 Measurement Equipment Used:

Same as 4.3 Radiated Emission Measurement.

9.4 Measurement Results:

Refer to attached data chart.

Spectrum Detector: PK Test Date: August 28, 2010

Test By: Andy Temperature : 28 $^{\circ}$ C Test Result: PASS Humidity : 65 $^{\circ}$

Mode	Number of transmission in a	Length of	Result	Limit
	31.6(79 Hopping*0.4)	transmissions	(msec)	(msec)
		time(msec)		
DH1	51(times/5 sec)*6.32=322.32 times	0.460	148.267	400
DH3	26(times/5 sec)*6.32=164.32 times	1.730	284.274	400
DH5	15(times/5 sec)*6.32=94.80 times	2 970	281 556	400

This system hopping 51,26,15 hops in any 5s, and for each hop it transmit 2 pulses, the pulse dwell are $460\mu s$, 1.73ms, 2.97ms, so the dwell times are:

51/5*31.6*0.46=148.267ms 26/5*31.6*1.73=284.274ms

15/5*31.6*2.97=281.556ms

DH1

DH5

10. M AX IMUM PEAK OUTPUT POWER TEST

10.1 Measurement Procedure

- a. Check the calibration of the measuring instrument(SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. The center frequency of the spectrum analyzer is set to the fundamental frequency and using proper RBW and VBW setting.
- d. Measure the captured power within the band and recording the plot.
- e. Repeat above procedures until all frequencies required were complete.

10.2 Test SET-UP (Block Diagram of Configuration)

EUT	Spaatrum
EUI	Spectrum

10.3 Measurement Equipment Used:

EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
TYPE		NUMBER	NUMBER	CAL.	
Spectrum Analyzer	Rohde & Schwarz	FSP7	839511/010	05/29/2010	05/29/2011

10.4 Measurement Results:

Refer to attached data chart.

Spectrum Detector: PK Test Date: August 28, 2010

Test By: Andy Temperature : $28 \,^{\circ}$ C Test Result: PASS Humidity : $65 \,^{\circ}$

Channel	Channel	Peak Power	Peak Power	Peak Power	Pass/Fail
number	Frequency	output(mW)	output(dBm)	Limit(mW)	
	(MHz)	. , ,		` ,	
1	2402.00	0.705	-1.54	125	PASS
40	2441.00	0.644	-1.91	125	PASS
79	2480.00	0.637	-1.96	125	PASS

11. Band EDGE test

11.1 Measurement Procedure

- 1. The EUT was Operating in hopping mode or could be controlled its channel. Printed out test result from the spectrum by hard copy function.
- 2. The EUT was placed on a turn table which is 0.8m above ground plane.
- 3. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 4. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 5. Repeat above procedures until all frequency measured were complete.

11.2 Test SET-UP (Block Diagram of Configuration)

11.3 Measurement Equipment Used:

Same as 4.3 Radiated Emission Measurement.

11.4 Measurement Results:

Refer to attached data chart.

Spectrum Detector: PK Test Date: August 28, 2010

Test By: Andy Temperature : $28 \degree \text{C}$ Test Result: PASS Humidity : 65 %

1.Conducted Test

1.Conducted 105				
Frequency	requency Peak Power		Result of Band	Band edge
(MHz)	Output(dBm)	Value(dBm)	edge(dBc)	Limit(dBc)
<2400	-2.22	-40.16	37.94	>20dBc
>2483.5	-2.12	-30.70	28.58	>20dBc

2.Radiated emission test

Frequency	Antenna	Emission		Band e	dge Limit
(MHz)	polarization	(dBuV/m)		(dBi	uV/m)
	(H/V)	QP	AV	QP	AV
<2400	V	48.92	31.51	74.00	54.00
>2483.5	V	50.56	33.24	74.00	54.00

12. Antenna Application

12.1 Antenna requirement

The EUT'S antenna is met the requirement of FCC part 15C section 15.203 and 15.240.

FCC part 15C section 15.247 requirements:

Systems operating in the 2402-2480MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

12.2. Result

The EUT's antenna used a chip antenna and integrated on PCB, The antenna's gain is 4dBi and meets the requirement.

13. RF EXPOSURE EVALUATION

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency(RF) Radiation as specified in § 1.1307(b)

Limits for Maximum Permissible Exposure(MPE)

Frequency	Electric Field	Magnetic Field	Power	Average Time		
Range(MHz)	Strength(V/m)	Strength(A/m)	Density(mW/cm ²)	_		
	(A) Limits for Occupational/Control Exposures					
300-1500			F/300	6		
1500-100000			5	6		
	(B) Limits for General Population/Uncontrol Exposures					
300-1500			F/1500	6		
1500-100000			1	30		

13.1 Friis transmission formula: $Pd=(Pout*G)\setminus(4*pi*R^2)$

Where

Pd= Power density in mW/cm²

Pout=output power to antenna in Mw

G= gain of antenna in linear scale

Pi=3.1416

R= distance between observation point and center of the radiator in cm

Pd the limit of MPE, 1mW/cm2. If we know the maximum gain of the antenna and total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

13.2 Measurement Result

Antenna gain: 4 dBi

Channel	Channel	Output Peak	Antenna Gain	Power density at	Power density
	Frequency	power (mW)	(dBi)	$25 \text{cm} (\text{mW/cm}^2)$	Limits
	(MHz)				(mW/cm^2)
Low	2402	0.705	4	3.59e-4	1
Middle	2441	0.644	4	3.28e-4	1
High	2480	0.637	4	3.24e-4	1

General Appearance of the EUT

