Innovation Booms, Easy Financing, and Human Capital Accumulation

Johan Hombert HEC Paris

Adrien Matray
Princeton University

Risk Forum, Paris, 20-21 March 2023

Motivation

- Intense technological change often comes with financial speculation
- ⇒ Easy financing for innovative firms
 - ... can pay high wages and attract talent
- ⇒ Reallocation of high-skill workers to booming innovative sector
 - ... exposes their human capital to new technologies

- Examples: current AI boom, late 1990s tech bubble, etc.

Questions

Effect of innovation booms and easy financing on human capital?

1. Effect of joining a booming new technology sector on skilled workers' human capital?

2. Role of financial capital flows?

- Allocative effect: does capital flow to firms whose effect on its workers' human capital is >0 or <0?
- Direct effect of capital flows on a firm's workers' human capital?
- → Matters for aggregate labor productivity

Effect on human capital ex ante unclear

- Potential upside
 - Exposure to new technologies ⇒ workers acquire valuable skills
 - ≈ Growth-enhancing tech bubbles (Olivier 2000; Caballero Farhi Hammour 2006)
- Potential downside

Effect on human capital ex ante unclear

- Potential upside
 - Exposure to new technologies ⇒ workers acquire valuable skills
 - ≈ Growth-enhancing tech bubbles (Olivier 2000; Caballero Farhi Hammour 2006)
- Potential downside
 - Skills rapidly lose value
 - Skills linked to rapidly evolving technology
 "vintage-specific human capital" (Chari Hopenhayn 1991; Deming Noray 2020)
 - Easy financing ⇒ lower quality projects

Empirical design

- Episode: Information and Communications Technology (ICT) late 1990s boom
 - Large
 - Plausibly accompanied by speculative capital flows
 - Possible to study long-run effects

- Data: Administrative employer-employee panel data for France (1994–2015)
 - Track workers from when they start in a sector
 - Compare cohorts of workers starting in ICT sector vs. other sectors

Roadmap

The ICT Boom

Wage Dynamics

Role of Financial Capita

Wrap-up

The Information and Communication Technology (ICT) Sector

ICT industries	Share of	Share of
	total employment	skilled employment
	(%)	(%)
ICT: Services	1.9	7.8
IT consultancy	0.7	3.4
Software	0.7	3.2
Data processing	0.3	0.8
Maintenance computers	0.1	0.2
Other data/computer-related services	0.1	0.2
ICT: Telecommunications	1.4	2.2
Telecommunications	1.4	2.2
ICT: Manufacturing	1.7	3.7
Electronic/communication equipment	0.8	1.8
Measurement/navigation equipment	0.5	1.2
Accounting/computing equipment	0.2	0.7
Insulated wire and cable	0.1	0.1
ICT: Wholesale	0.5	1.2
Computers, electronics, telecoms	0.5	1.2
ICT: Total	5.4	14.9

OECD (2002) definition, Universe of matched employer-employee data in France (1994–2008)

ICT boom: equity valuation

- Cumulative stock return: boom / bust / normalization
- (Similar pattern for stock price/sales)

ICT boom: capital reallocation

- Equity issuance/Total assets for universe of listed+private firms
- Similar pattern for firm creation rate

Labor reallocation: the role of extensive margin

Reallocation of skilled workers to ICT sector (% skilled employment in ICT)

Labor reallocation: the role of extensive margin

- Reallocation of skilled workers to ICT sector (% skilled employment in ICT)
- Dynamics driven by workers starting their career (= extensive margin)

Roadmap

The ICT Boom

Wage Dynamics

Role of Financial Capita

Wrap-up

Wage differences: across workers within boom cohort

- Sample: Skilled workers starting between 1998 and 2001

Baseline regression:

$$\log(wage_{i,t}) = \beta_t \cdot ICT_{i,0} + \delta_t + \delta_t \times X_i + \epsilon_{i,t}$$

 $ICT_{i,0} = 1$ if worker i starts career in ICT sector

→ wage premium can reflect sector reallocation post entry

 X_i = entry year, sex, age, age squared, two-digit occupation at entry

Wage dynamics of boom cohort

- 5% higher entry wage

Wage dynamics of boom cohort

- No premium after boom → standard boom-bust

Wage dynamics of boom cohort

- 6% lower wage fifteen years out

Candidate Explanations

- 1. Human capital accumulated in ICT during the boom rapidly loses value
- 2. Low labor demand/high labor supply in ICT after the boom
- 3. Selection: the booming ICT sector attracts low productivity workers

Tighter identification across cohorts to rule out 2. and 3.

Ruling out labor market imbalance

- Hypothesis: low labor demand/high labor supply in ICT after the boom
- Implication: post-boom cohort should also experience wage decline

Wage dynamics of **post-boom** cohort (2003–2005)

Inconsistent with labor supply / demand shock

Test statistical difference

Ruling out selection

- Hypothesis: boom attracts less able workers
- Implication: pre-boom cohort should not display wage decline

Wage dynamics of **pre-boom** cohort (1994–1996)

- Inconsistent with selection
 Test statistical difference
- Consistent with HK depreciation for all cohorts experiencing the boom

Candidate Explanations

- 1. Human capital accumulated in ICT during the boom rapidly loses value
- 2. Low labor demand/high labor supply in ICT after the boom
- 3. Selection: the booming ICT sector attracts low productivity workers

Main specification: across sectors + across cohorts

- Sample: boom cohort (1998–2001) + post-boom cohort (2003–2005)
- Estimating equation

$$log(wage_{i,c,t}) = \beta_t \cdot ICT_{i,0} \times BoomCohort_c + \delta_t \times ICT_{i,0} + \alpha_i + \gamma_c \times \delta_t \times X_{i,0} + \epsilon_{i,t}$$

 $-\beta_t$ = wage premium in year t

... of workers starting in ICT sector vs. in other sectors (first difference)

... of workers starting during the boom vs. after boom ends (second difference)

Long-term wage decline

- Starting in ICT during boom (98–01) \Rightarrow 7% slower long-term wage growth from 2003 to 2015

	log(wage)
$ICT_0 \times BoomCohort \times 2003\text{-}05$	0.001 (0.013)
$ICT_0 \times BoomCohort \times 2006\text{-}10$	-0.035** (0.014)
$ICT_0 \times BoomCohort \times 2011\text{-}15$	-0.073*** (0.019)
Worker controls	✓
ICT ₀ × Year FE	\checkmark
Cohort × Year FE	\checkmark
Worker FE	_
Observations	93,304

Long-term wage decline

- Starting in ICT during boom (98-01) ⇒ **7% slower** long-term wage growth from 2003 to 2015
- Worker FE → control for non-random attrition + selection on levels

	log(wage)			
$ICT_0 \times BoomCohort \times 2003-05$	0.001 (0.013)	ref.		
$ICT_0 \times BoomCohort \times 2006\text{-}10$	-0.035** (0.014)	-0.048*** (0.010)		
$ICT_0 \times BoomCohort \times 2011\text{-}15$	-0.073*** (0.019)	-0.077*** (0.015)		
Worker controls ICT ₀ × Year FE	√ √	√ √		
Cohort × Year FE Worker FE Observations	√ - 93,304	√ √ 92,901		

Selected Robustness Checks

- 1. In quantile regressions, the effect is there across the wage distribution → not a winner-take-all effect
- 2. No effect on low skill workers → consistent with a skill obsolescence mechanism
- 3. Robust to restricting the sample to US firms (e.g., Microsoft France) → not a French firm phenomenon

Roadmap

The ICT Boom

Wage Dynamics

Role of Financial Capital

Wrap-up

Is easy financing making things worse?

Do capital flows amplify the negative effect on aggregate HK?

- 1. Allocative effect: depends on which ICT firms receive the most capital
 - Firms whose workers' HK depreciate the most? The least?
 - → Cov[Capital flow, HK accumulation]?

(K flow versus L flow)

Allocative effect: capital flows to firms with largest HK depreciation

- Wage discount only in firms with above-median capital availability
- Cov[Capital flow, HK accumulation] < 0 ⇒ aggregate labor productivity ↓

	log(Wage)					
Proxy of capital availability:	1999 return 1999 P/S (Industry level) (Industry level)		Equity issuance (Industry×geo ×entry year level)			
	(1)	(2)	(3)			
$ICT_0 \times Boom \ cohort \times 2011-15$	0.022 (0.044)	0.007 (0.042)	-0.029 (0.025)			
$ICT_0 \times Capital \ availability \times Boom \ cohort \times 2011\text{-}15$	-0.129*** (0.049)	-0.113** (0.047)	-0.081*** (0.031)			
ICT ₀ × Year FE Worker controls×Cohort×Year FE Worker FE Observations	√ √ 60,420	√ √ 60,420	√ √ √ 85,128			

Direct effect: does capital flow cause faster HK depreciation?

- 2. Direct effect: easy financing may worsen average project quality and causally accelerates individual-level HK depreciation
 - Alternatively, Cov[Capital flow, HK depreciation] may be driven by omitted factor: technology change ⇒ capital flow and HK depreciation
 - Test: re-estimate Cov holding technology fixed → within narrow sectors

Direct effect: capital flow causes faster HK depreciation?

Industry × Cohort × Year FE = within industry, across geography → control for technology shocks

	log(Wage)			
Proxy of capital availability:	Equity issuance (Industry×geo×entry year le			
	(3)	(4)		
ICT ₀ × Boom cohort × 2011-15	-0.029 (0.025)			
$ICT_0 \times Capital \ availability \times Boom \ cohort \times 2011-15$	-0.081*** (0.031)	-0.083** (0.035)		
ICT ₀ × Year FE Worker controls×Cohort×Year FE Worker FE Industry×Cohort×Year FE Observations	√ √ √ − 85,128	√ √ √ 85,128		

Roadmap

The ICT Boom

Wage Dynamics

Role of Financial Capita

Wrap-up

Wrap-up

Two main results:

- 1. Skilled workers starting in booming tech sector eventually lose human capital
 - Wage 6%-8% lower fifteen years out
 - Not explained by labor market imbalance and selection
- 2. Aggregate skill obsolescence amplified by easy financing

Implications:

- Skill-biased technological change?
 - Our paper: within skilled workers, those who develop and implement new technologies (who represent one-third of the boom cohort) lose out
- Growth enhancing financial speculation?
 - Maybe positive externalities, but
 - Capital allocated to firms that do not enhance their workers' human capital → lower aggregate labor productivity

Skill obsolescence

- Universe of workers by occupation level: high / middle / low skill
- Wage decline largest in high-skill occupations

	log(Wage)					
	High-skill		Middle-skill		Low-skill	
	(1)	(2)	(3)	(4)	(5)	(6)
ICT ₀ × Boom cohort × 2011-15	-0.077*** (0.015)	-0.029 (0.025)	-0.068*** (0.014)	-0.039* (0.023)	-0.022 (0.020)	-0.027 (0.040)
$ICT_0 \times Capital \ availability \times Boom \ cohort \times 2011\text{-}15$		-0.081*** (0.031)		-0.033 (0.029)		-0.004 (0.041)
Worker controls×Cohort×Year FE Worker FE Observations	√ √ 92,901	√ √ 85,128	√ √ 206,918	√ √ 186,477	√ √ 250,620	√ √ 218,927

Skill obsolescence

- Universe of workers by occupation level: high / middle / low skill
- Wage decline largest in high-skill occupations
- ... particularly so if large inflow of capital

	log(Wage)					
	High-skill		Middle-skill		Low-skill	
	(1)	(2)	(3)	(4)	(5)	(6)
ICT ₀ × Boom cohort × 2011-15	-0.077*** (0.015)	-0.029 (0.025)	-0.068*** (0.014)	-0.039* (0.023)	-0.022 (0.020)	-0.027 (0.040)
$ICT_0 \times \textbf{Capital availability} \times \textbf{Boom cohort} \times \textbf{2011-15}$		-0.081*** (0.031)		-0.033 (0.029)		-0.004 (0.041)
Worker controls×Cohort×Year FE Worker FE Observations	92,901	√ √ 85,128	206,918	√ √ 186,477	250,620	√ √ 218,927

Winner-take-all?

- Quantile regressions
- Entire wage distribution shifts to the left

	Wage quantiles						
	P10	P25	P50	P75	P90		
$ICT_0 \times Capital \ availability \times Boom \ cohort \times 2011-15$	-0.056 (0.036)	-0.065** (0.026)	-0.077*** (0.018)	-0.089*** (0.023)	-0.098*** (0.032)		
Worker controls	✓	✓	✓	✓	✓		
Cohort × Year FE	✓	✓	✓	✓	✓		
Worker FE	✓	\checkmark	✓	✓	✓		
Observations	93,306	93,306	93,306	93,306	93,306		