Lecture 7. VC Theory

COMP90051 Statistical Machine Learning

Semester 1, 2021 Lecturer: Ben Rubinstein

This lecture

- PAC learning bounds:
 - Countably infinite case works as we've done so far
 - * General infinite case? Needs new ideas!
- Growth functions for the general PAC case
 - Considering patterns of labels possible on a data set
 - Gives good PAC bounds provided possible patterns don't grow too fast in the data set size
- Vapnik-Chervonenkis (VC) dimension
 - Max number of points that can be labelled in all ways
 - Beyond this point, growth function is polynomial in data set size
 - Leads to famous, general PAC bound from VC theory
- Optional proofs at end (just for fun)

Countably infinite \mathcal{F} ?

• Hoeffding gave us for a single $f \in \mathcal{F}$

$$\Pr\left(R[f] - \widehat{R}[f] \ge \sqrt{\frac{\log\left(\frac{1}{\delta(f)}\right)}{2m}}\right) \le \delta(f)$$

...where we're free to choose (varying) $\delta(f)$ in [0,1].

Union bound "works" (sort of) for this case

$$\Pr\left(\exists f \in \mathcal{F}, R[f] - \widehat{R}[f] \ge \sqrt{\frac{\log\left(\frac{1}{\delta(f)}\right)}{2m}}\right) \le \sum_{f \in \mathcal{F}} \delta(f)$$

* E.g.
$$\delta(f) = \delta \cdot p(f)$$
 where $1 = \sum_{f \in \mathcal{F}} p(f)$

Josh Staiger (CCA2.0)

Try this for finite $\mathcal F$ with uniform p(f)

By inversion: w.h.p
$$1 - \delta$$
, for all f , $R[f] \le \widehat{R}[f] + \sqrt{\frac{\log\left(\frac{1}{p(f)}\right) + \log\left(\frac{1}{\delta}\right)}{2m}}$

Ok fine, but general case?

- Much of ML has continuous parameters
 - * Countably infinite covers only discrete parameters 🖰
- - * p(f) becomes a density

- Need a new argument!
- Idea introduced by VC theory: intuition
 - * Don't focus on whole class \mathcal{F} as if each f is different
 - * Focus on differences over sample Z_1, \dots, Z_m

Mini Summary

- Can eek out PAC bounds on countably infinite families using Hoeffding bound + union bound
- No good for general (uncountably infinite) cases
- Need another fundamentally new idea

Next: Organising analysis around patterns of labels possible on a data set, to avoid wort-case bad events

Growth Function

Focusing on the size of model families on data samples

Bad events: Unreasonably worst case?

- Bad event \mathcal{B}_i for model f_i $R[f_i] \hat{R}[f_i] \ge \varepsilon \text{ with probability} \le 2 \exp(-2m\varepsilon^2)$
- Union bound: bad events don't overlap!? $\Pr(\mathcal{B}_1 \text{ or } ... \text{ or } \mathcal{B}_{|\mathcal{F}|}) \leq \Pr(\mathcal{B}_1) + \cdots + \Pr(\mathcal{B}_{|\mathcal{F}|}) \leq 2|\mathcal{F}| \exp(-2m\varepsilon^2)$

Tight bound: No overlaps

Loose bound: Overlaps

How do overlaps arise?

Whole of population

On a sample

Significantly overlapping events \mathcal{B}_1 and \mathcal{B}_2

How do overlaps arise?

VC theory focuses on the pattern of labels any $f \in \mathcal{F}$ could make

Dichotomies and Growth Function

- <u>Definition</u>: Given sample $x_1, ..., x_m$ and family \mathcal{F} , a **dichotomy** is a $\left(f(x_1), ..., f(x_m)\right) \in \{-1, +1\}^m$ for some $f \in \mathcal{F}$.
- Unique dichotomies $\mathcal{F}(\mathbf{x}) = \{(f(x_1), ..., f(x_m)) : f \in \mathcal{F}\}$, patterns of labels possible with the family
- Even when \mathcal{F} infinite, $|\mathcal{F}(\mathbf{x})| \leq 2^m$ (why?)
 - And also (relevant for $\mathcal F$ finite, tiny), $|\mathcal F(\mathbf x)| \leq |\mathcal F|$ (why?)
 - Intuition: $|\mathcal{F}(x)|$ might replace $|\mathcal{F}|$ in union bound? How remove **x**?
 - <u>Definition</u>: The growth function $S_{\mathcal{F}}(m) = \sup_{\mathbf{x} \in \mathcal{D}^m} |\mathcal{F}(\mathbf{x})|$ is the max number of label patterns achievable by \mathcal{F} for any m sample.

$S_{\mathcal{F}}(3)$ for \mathcal{F} linear classifiers in 2D?

$S_{\mathcal{F}}(3)$ for \mathcal{F} linear classifiers in 2D?

$$|\mathcal{F}(\mathbf{x})| = 6$$

but still have
 $S_{\mathcal{F}}(3) = 8$

$S_{\mathcal{F}}(4)$ for \mathcal{F} linear classifiers in 2D?

- What about m = 4 points?
- Can never produce the criss-cross (XOR) dichotomy

- In fact $S_{\mathcal{F}}(4) = 14 < 2^4$
- Guess/exercise: What about general m and dimension?

PAC Bound with Growth Function

• Theorem: Consider any $\delta>0$ and any class $\mathcal F$. Then w.h.p. at least $1-\delta$: For all $f\in\mathcal F$

$$R[f] \le \widehat{R}[f] + 2\sqrt{2\frac{\log S_{\mathcal{F}}(2m) + \log(4/\delta)}{m}}$$

- Proof: out of scope ("only" 2-3pgs), optional reading.
- Compare to PAC bounds so far
 - * A few negligible extra constants (the 2s, the 4)
 - * $|\mathcal{F}|$ has become $S_{\mathcal{F}}(2m)$
 - * $S_{\mathcal{F}}(m) \leq |\mathcal{F}|$, not "worse" than union bound for finite \mathcal{F}
 - * $S_{\mathcal{F}}(m) \leq 2^m$, very bad for big family with exponential growth function gets $R[f] \leq \hat{R}[f] + Big\ Constant$. Even $R[f] \leq \hat{R}[f] + 1$ meaningless!!

Mini Summary

- The previous PAC bound approach that organises bad events by model and applies uniform bound is only tight if bad events are disjoint
- In reality some models generate overlapping bad events
- Better to organise families by possible patterns of labels on a data set: the dichotomies of the family
- Counting possible dichotomies gives the growth function
- PAC bound with growth function potentially tackles general (uncountably infinite) families provided growth function is sub-exponential in data size

Next: VC dimension for a computable bound on growth functions, with the polynomial behaviour we need! Gives our final, general, PAC bound

The VC dimension

Computable, bounds growth function

Vapnik-Chervonenkis dimension

- <u>Definition</u>: The VC dimension $VC(\mathcal{F})$ of a family \mathcal{F} is the largest m such that $S_{\mathcal{F}}(m)=2^m$.
 - * Points $\mathbf{x} = (x_1, ..., x_m)$ are shattered by \mathcal{F} if $|\mathcal{F}(\mathbf{x})| = 2^m$
 - * So $VC(\mathcal{F})$ is the size of the largest set shattered by \mathcal{F}
- Example: linear classifiers in \mathbb{R}^2 , $VC(\mathcal{F}) = 3$

Shattered

Not shattered

• Guess: VC-dim of linear classifiers in \mathbb{R}^d ?

Example: $VC(\mathcal{F})$ from $\mathcal{F}(\mathbf{x})$ on whole domain?

$\overline{x_1}$	x_2	x_3	x_4
0	0	0	0
0	1	1	0
1	0	0	1
1	1	0	1
0	1	0	0
1	0	1	0
1	1	1	1
0	0	1	1
0	1	0	1
1	1	1	0

Note we're using labels {0,1} instead of {-1,+1}. Why OK?

- Columns are all points in domain
- Each row is a dichotomy on entire input domain
- Obtain dichotomies on a subset of points $\mathbf{x}' \subseteq \{x_1, ..., x_4\}$ by: drop columns, drop dupe rows
- \mathcal{F} shatters \mathbf{x}' if number of rows is $2^{|\mathbf{x}'|}$

$\overline{x_1}$	x_2	x_4
$\frac{x_1}{0}$	$\frac{x_2}{0}$	$\frac{x_4}{0}$
0	1	0
1	0	1
1	1	1
0	1	0
1	0	0
1	1	1
0	0	1
0	1	1
1	1	0

This example:

- Dropping column 3 leaves 8 rows behind: \mathcal{F} shatters $\{x_1, x_2, x_4\}$
- Original table has $< 2^4$ rows: \mathcal{F} doesn't shatter more than 3
- $VC(\mathcal{F}) = 3$

Sauer-Shelah Lemma

- <u>Lemma (Sauer-Shelah)</u>: Consider any \mathcal{F} with finite $VC(\mathcal{F}) = k$, any sample size m. Then $S_{\mathcal{F}}(m) \leq \sum_{i=0}^k \binom{m}{i}$.
- From basic facts of Binomial coefficients
 - * Bound is $O(m^k)$: finite VC \Rightarrow eventually polynomial growth!
 - * For $m \ge k$, it is bounded by $\left(\frac{em}{k}\right)^k$
- Theorem (VC bound): Consider any $\delta > 0$ and any VC-k class \mathcal{F} . Then w.h.p. at least 1δ : For all $f \in \mathcal{F}$

$$R[f] \le \widehat{R}[f] + 2\sqrt{2\frac{k\log\frac{2em}{k} + \log\frac{4}{\delta}}{m}}$$

- (Uniform) difference between R[f], $\widehat{R}[f]$ is $O\left(\sqrt{\frac{k \log m}{m}}\right)$ down from ∞
- Limiting complexity of \mathcal{F} leads to better generalisation
- VC dim, growth function measure "effective" size of ${\cal F}$
- VC dim doesn't count functions, but uses geometry of family: projections
 of family members onto possible samples
- Example: linear "gap-tolerant" classifiers (like SVMs) with "margin" Δ have VC = $O(1/\Delta^2)$. Maximising "margin" reduces VC-dimension.

Mini Summary

- VC-dim is the largest set size shattered by a family
 - * It is d+1 for linear classifiers in \mathbb{R}^d
 - Can calculate it on entire-domain dichotomies of a family by dropping columns and counting unique rows
- Sauer-Shelah: The growth function grows only polynomially in the set size beyond the VC-dim
- As a result, VC PAC bounds uniform risk and empirical risk deviation by $O(\sqrt{(VC(\mathcal{F})\log m)/m})$

Next: Two selected proofs. Optional but beautiful.

Two Selected Proofs

Green slides: Not examinable. Food for thought. Soul food.

Linear classifiers in d-dim: $VC(\mathcal{F}) \ge d + 1$

• Goal: construct m=d+1 specific points in \mathbb{R}^d that are shattered by the linear classifier family

• Data in rows of
$$\mathbf{X} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ 1 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & 1 \end{pmatrix}$$
 is invertible!

- Any dichotomy $y \in \{-1,1\}^{d+1}$, need **w** with sign(**Xw**) = **y**
- $\mathbf{w} = \mathbf{X}^{-1}\mathbf{y} \text{ works}!! \operatorname{sign}(\mathbf{X}\mathbf{w}) = \operatorname{sign}(\mathbf{X}\mathbf{X}^{-1}\mathbf{y}) = \operatorname{sign}(\mathbf{y}) = \mathbf{y}$
- We've shown that \mathcal{F} can shatter d+1 points: $VC(\mathcal{F}) \geq d+1$

Linear classifiers in d-dim: $VC(\mathcal{F}) \leq d+1$

- Goal: cannot shatter any set of d + 2 points
- Any $\mathbf{x}_1, \dots, \mathbf{x}_{d+2}$, have more pts than dims: linear dependent $\mathbf{x}_j = \sum_{i \neq j} a_i \mathbf{x}_i$, for some j, where not all a_i 's are zero
- Possible dichotomy **y**? $y_i = \begin{cases} sign(a_i), & \text{if } i \neq j \\ -1, & \text{if } i = j \end{cases}$
 - * Suppose w generated $i \neq j$: $sign(a_i) = sign(w'x_i)$ so $a_iw'x_i > 0$
 - * Can w generate i = j??
 - * $\mathbf{w}'\mathbf{x}_j = \mathbf{w}' \sum_{i \neq j} a_i \mathbf{x}_i = \sum_{i \neq j} a_i \mathbf{w}' \mathbf{x}_i > 0$ so $\operatorname{sign}(\mathbf{w}' \mathbf{x}_j) \neq y_i$
- We've shown $VC(\mathcal{F}) < d + 2$, in other words $VC(\mathcal{F}) = d + 1$

Proof of Sauer-Shelah Lemma (by Haussler '95)

- To show that growth function $S_{\mathcal{F}}(m) \leq \sum_{i=0}^k {m \choose i}$ we prove the bound for any dichotomies $|\mathcal{F}(x_1, \dots, x_m)|$ since $|\mathcal{F}(x_1, \dots, x_m)| \leq S_{\mathcal{F}}(m)$
- Write $\mathbf{Y} = \mathcal{F}(x_1, ..., x_m) \subseteq \{0,1\}^m$, where $-1 \to 0$.
- <u>Definition</u>: Consider any column $1 \le i \le m$ and dichotomy $\mathbf{y} \in \mathbf{Y}$. The shift operator $H_i(\mathbf{y}; \mathbf{Y})$ returns \mathbf{y} if there exists some $\mathbf{y}' \in \mathbf{Y}$ differing to \mathbf{y} only in the i^{th} coordinate; otherwise it returns \mathbf{y} with $y_i = 0$. Define $H_i(\mathbf{Y}) = \{H_i(\mathbf{y}; \mathbf{Y}) : \mathbf{y} \in \mathbf{Y}\}$ the shifting all dichotomies.
 - * Intuition: Shifting along a column drops a +1 to 0 in that column so long as now other row would become duplicated.
- <u>Definition</u>: A set of dichotomies $\mathbf{V} \subseteq \{0,1\}^m$ is called closed below if for all $1 \le i \le m$, shifting does nothing $H_i(\mathbf{V}) = \mathbf{V}$.
 - * Intuition: Every $\mathbf{v} \in \mathbf{V}$ has, for every $1 \le i \le m$ for which $v_i = 1$, some $\mathbf{u} \in \mathbf{V}$ the same as \mathbf{v} except with $u_i = 0$.

Proof of Sauer-Shelah Lemma (by Haussler '95)

$\overline{x_1}$	x_2	<i>x</i> ₃
0	0	0
0	1	1
1	0	0
1	1	0
1	0	1
1	1	1

• Example set of 6 unique dichotomies on m=3 pts with VC=2

Shift down along i = 1

Shift down along i = 2

Closed below

Proof of Sauer-Shelah Lemma (by Haussler '95)

- Goal: show that (1) shifting almost maintains VC dimension and cardinality all the way to a closed-below end, (2) closed-below sets have the desired Sauer-Shelah bound
- Shifting property 1: $|H_i(\mathbf{Y})| = |\mathbf{Y}|$ for any \mathbf{Y} .
 - Proof: no two dichotomies in Y shift to the same dichotomy
- Shifting property 2: $VC(H_i(Y)) \le VC(Y)$ for any i, Y.
 - * Proof sketch: If $H_i(\mathbf{Y})$ shatters a subset of points, then so too does \mathbf{Y}
- Shifting property 3: if Y is closed below, then all dichotomies $y \in Y$ have at most VC(Y)-many $y_i = 1$ (the rest 0).
 - * Therefore: $|\mathbf{Y}| \leq {m \choose 0} + {m \choose 1} + \dots + {m \choose VC(\mathbf{Y})}$ by counting
 - * Proof sketch: if a $y \in Y$ had more 1s, all combinations would exist "below"
- Together: exists a shift sequence i_1, \dots, i_N to a closed below $H_{i_N}(\mathbf{Y})$: $|\mathbf{Y}| = |H_{i_1}(\mathbf{Y})| = \dots = |H_{i_N}(\mathbf{Y})| \leq \sum_{i=0}^{\text{VC}(H_{i_N}(\mathbf{Y}))} {m \choose i} \leq \dots \leq \sum_{i=0}^{\text{VC}(\mathbf{Y})} {m \choose i}$

Mini Summary

- Linear classifiers in \mathbb{R}^d have VC dimension d+1
 - Lower bound VC-dim with specific points that are shattered
 - * Upper bound VC-dim by lin. dependence of any d+2 points
- Sauer-Shelah lemma bounds a family's growth function by a polynomial in VC dimension.
 - Ingenious shifting operator transforms sets of dichotomies into boundable closed-below sets
 - Along the way keeps cardinality and VC-dim controlled

Next time: Support vector machines