

目标检测性能指标

检测精度

- Precision, Recall, F1 score
- IoU (Intersection over Union)
- P-R curve (Precison-Recall curve)
- AP (Average Precision)
- mAP (mean Average Precision)

检测速度

- 前传耗时
- 每秒帧数 FPS (Frames Per Second)
- 浮点运算量(FLOPS)

混淆矩阵 (confusion matrix)

第一位T/F: 表示预测的对错

第二位P/N: 表示预测的结果

$$F1 \ score = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

- 精度Precision(查准率)是评估预测的准不准(看预测列)
- 召回率Recall(查全率)是评估找的全不全(看实际行)

relevant elements

How many selected items are relevant?

How many relevant items are selected?

IoU (Intersection over Union)

An IoU of 1 implies that predicted and the ground-truth bounding boxes perfectly overlap.

You can set a threshold value for the IoU to determine if the object detection is valid or not. Let's say you set IoU to 0.5, in that case

- if IoU ≥0.5, classify the object detection as True Positive(TP)
- if IoU <0.5, then it is a wrong detection and classify it as False Positive(FP)
- When a ground truth is present in the image and model failed to detect the object, classify it as False Negative(FN).
- **True Negative (TN**): TN is every part of the image where we did not predict an object. This metrics is not useful for object detection, hence we ignore TN.

· AP衡量的是学习出来的模型在每个类别上的好坏

• mAP衡量的是学出的模型在所有类别上的好坏。mAP就是取所有类别上AP的平均值。

net	data	mAP	areo	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv
VGG-16	07+12	73.2	76.5	79.0	70.9	65.5	52.1	83.1	84.7	86.4	52.0	81.9	65.7	84.8	84.6	77.5	76.7	38.8	73.6	73.9	83.0	72.6
ResNet-101	07+12	76.4	79.8	80.7	76.2	68.3	55.9	85.1	85.3	89.8	56.7	87.8	69.4	88.3	88.9	80.9	78.4	41.7	78.6	79.8	85.3	72.0
ResNet-101	COCO+07+12	85.6	90.0	89.6	87.8	80.8	76.1	89.9	89.9	89.6	75.5	90.0	80.7	89.6	90.3	89.1	88.7	65.4	88.1	85.6	89.0	86.8

AP (Average Precision) in PASCAL VOC challenge

• 对于PASCAL VOC挑战,如果IOU> 0.5,则预测为正样本(TP)。但是,如果检测到同一目标的多个检测,则视第一个检测为正样本(TP),而视其余检测为负样本(FP)。

AP@.50 means the AP with IoU=0.50.

AP@.75 means the AP with IoU=0.75.

For COCO, AP is the average over multiple IoU (the minimum IoU to consider a positive match).

AP@[.5:.95] corresponds to the average AP for IoU from 0.5 to 0.95 with a step size of 0.05.

For the COCO competition, AP is the average over 10 IoU levels on 80 categories (AP@[.50:.05:.95]: start from 0.5 to 0.95 with a step size of 0.05.

$$mAP_{\text{COCO}} = rac{mAP_{0.50} + mAP_{0.55} + \ldots + mAP_{0.95}}{10}$$

$$ext{AP[class]} = rac{1}{ ext{\#thresolds}} \sum_{ ext{iou} \in ext{thresholds}} AP[class, iou]$$

COCO AP


```
Average Precision (AP):
                          % AP at IoU=.50:.05:.95 (primary challenge metric)
   AΡ
  APIOU=.50
                          % AP at IoU=.50 (PASCAL VOC metric)
  \Delta PIoU=.75
                          % AP at IoU=.75 (strict metric)
AP Across Scales:
   AP<sup>small</sup>
                          % AP for small objects: area < 32^2
  APmedium
                          % AP for medium objects: 32^2 < area < 96^2
  APlarge
                           % AP for large objects: area > 96<sup>2</sup>
Average Recall (AR):
   AR<sup>max=1</sup>
                           % AR given 1 detection per image
  AR<sup>max=10</sup>
                           % AR given 10 detections per image
  ARmax=100
                           % AR given 100 detections per image
AR Across Scales:
  ARsmall
                          % AR for small objects: area < 32<sup>2</sup>
   AR<sup>medium</sup>
                           % AR for medium objects: 32^2 < area < 96^2
  ARlarge
                           % AR for large objects: area > 96<sup>2</sup>
```


Table 10: Comparison of the speed and accuracy of different object detectors on the MS COCO dataset (test-dev 2017). (Real-time detectors with FPS 30 or higher are highlighted here. We compare the results with batch=1 without using tensorRT.)

Method	Backbone	Size	FPS	AP	AP_{50}	AP_{75}	\mathbf{AP}_S	\mathbf{AP}_M	\mathbf{AP}_L
YOLOv4: Optimal Speed and Accuracy of Object Detection									
YOLOv4	CSPDarknet-53	416	96 (V)	41.2%	62.8%	44.3%	20.4%	44.4%	56.0%
YOLOv4	CSPDarknet-53	512	83 (V)	43.0%	64.9%	46.5%	24.3%	46.1%	55.2%
YOLOv4	CSPDarknet-53	608	62 (V)	43.5%	65.7%	47.3%	26.7%	46.7%	53.3%
EfficientDet: Scalable and Efficient Object Detection [77]									
EfficientDet-D0	Efficient-B0	512	62.5 (V)	33.8%	52.2%	35.8%	12.0%	38.3%	51.2%
EfficientDet-D1	Efficient-B1	640	50.0 (V)	39.6%	58.6%	42.3%	17.9%	44.3%	56.0%
EfficientDet-D2	Efficient-B2	768	41.7 (V)	43.0%	62.3%	46.2%	22.5%	47.0%	58.4%
EfficientDet-D3	Efficient-B3	896	23.8 (V)	45.8%	65.0%	49.3%	26.6%	49.4%	59.8%
Learning Spatial Fusion for Single-Shot Object Detection [48]									
YOLOv3 + ASFF*	Darknet-53	320	60 (V)	38.1%	57.4%	42.1%	16.1%	41.6%	53.6%
YOLOv3 + ASFF*	Darknet-53	416	54 (V)	40.6%	60.6%	45.1%	20.3%	44.2%	54.1%
YOLOv3 + ASFF*	Darknet-53	608×	45.5 (V)	42.4%	63.0%	47.4%	25.5%	45.7%	52.3%
YOLOv3 + ASFF*	Darknet-53	800×	29.4 (V)	43.9%	64.1%	49.2%	27.0%	46.6%	53.4%

用一个简单的例子来演示平均精度(AP)的计算。 假设数据集中总共有5个苹果。 我们收集模型为苹果作的所有预测,并根据预测的置信水平(从最高到最低)对其进行排名。 第二列表示预测是否正确。 如果它与ground truth匹配并且IoU≥0.5,则是正确的。

Rank	Correct?	Precision	Recall
1	True	1.0	0.2
2	True	1.0	0.4
3	False	0.67	0.4
4	False	0.5	0.4
5	False	0.4	0.4
6	True	0.5	0.6
7	True	0.57	0.8
8	False	0.5	0.8
9	False	0.44	0.8
10	True	0.5	1.0

Let's compute the precision and recall value for the row with rank #3.

Precision is the proportion of TP out of (TP+FP)= 2/3 = 0.67.

Recall is the proportion of TP out of the possible positives = 2/5 = 0.4.

Recall随着包含更多预测而增加,但Precision会上下波动。

AP (Average Precison)计算

AP在概念上可以视为在precision-recall curve(橙色线)下方的区域。

0.9 0.8 0.7 0.6 0.5 0.4 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Recall

首先通过平滑锯齿形图形来近似这样的计算

We plot the graph with recall value at 0, 0.1, 0.2, ..., 0.9 and 1.0 and we replace the precision value with the maximum precision for any recall $\geq \tilde{r}$

$$p_{interp}(r) = \max_{\tilde{r} \ge r} p(\tilde{r})$$

AP计算之11点法

AP(平均精度)计算为这11个recall级别的最大精度的

平均值: 11-point interpolated average precision

$$AP = \frac{1}{11} \times \left(AP_r(0) + AP_r(0.1) + \dots + AP_r(1.0) \right)$$

这近似于找到绿色曲线下的总面积并将其除以11。下面是更精确的定义:

$$AP = \frac{1}{11} \sum_{r \in \{0.0,...,1.0\}} AP_r$$
$$= \frac{1}{11} \sum_{r \in \{0.0,...,1.0\}} p_{interp}(r)$$

where

$$p_{interp}(r) = \max_{\widetilde{r} \ge r} p(\widetilde{r})$$

在本例中 AP =
$$\frac{5 \times 1.0 + 4 \times 0.57 + 2 \times 0.5}{11} \approx 75.3\%$$

AP计算之积分法 (Area under curve AUC)

PASCAL VOC CHALLENGE自2010年后换了一种计算方法。新的计算方法假设这N个样本中有M个正例,那么我们会得到M个recall值(1/M, 2/M, ..., M/M),对于每个recall值r,我们可以计算出对应 (r' > r)的最大precision,然后对这M个precision值取平均即得到最后的AP值。

$$AP = A1 + A2 + A3 + A4$$

小 结

- Pascal VOC2007 uses 11 Recall points on PR curve.
- Pascal VOC2010–2012 uses (all points) Area Under Curve (AUC) on PR curve.
- MS COCO uses 101 Recall points on PR curve as well as different IoU thresholds.

检测速度

- **前传耗时(ms):** 从输入一张图像到输出最终结果所消耗的时间,包括前处理耗时(如图像归一化)、网络前传耗时、后处理耗时(如非极大值抑制)
- 每秒帧数 FPS (Frames Per Second): 每秒钟能处理的图像数量
- **浮点运算量**(FLOPS):处理一张图像所需要的浮点运算数量,跟具体软硬件没有关系,可以公平地比较不同算法之间的检测速度。