Math 5600

5/20/14

Nonlinear Equations (in 1 variable)

Suppose we want to solve y = f(x) = 0

f: R>R (1 real variable, 1 equation)

d is a roct, a zero, or un x-intercept, of f

d = 2

Then may be one, none, or several, roots.

we want to find one

Most trequently used; Newton's Method.

But there are alternatives.

- Bisection: suppose flas and flb)
have opposite signs

faif(b) < 0

- Also suppose f is continuous
- WE ALWAYS ASSUME SUFFICIENT SMOOTHNESS
- Then let $C = \frac{a+b}{2}$
- Fraluate fle) and throw away

 a or b. (unless fle) = 0, the stop)

X X S

- Proceed until the interce is sufficiently small

- It's not recelly an iteractical since we know beforeheard how two to go.

- Bisection is also a frequently used debuesging method.

- Continuity is of course essential - consider $f(x) = \frac{1}{2}$ $\alpha = -1$ b=1

- no root in [-1,1], and $f(\frac{-1+1}{2})$

is undefined.

- Let's review Newton's Met and-

×₀ given. ×₀,×₁,×₂, → < converges hopefully

5tep from
$$x_{k}$$
 to x_{k+1}

0 x $f(x_{k+1}) = f(x_{k}) + f(x_{k})(x_{k+1} - x_{k}) + HOT$
 $f(x_{k}) + f(x_{k})(x_{k+1} - x_{k}) = 0$
 $x_{k+1} = x_{k} - \frac{f(x_{k})}{f'(x_{k})}, k = 0, 1, \dots$

Example
$$f(x) = x^2 - 2$$
 $x_0 = 1$
 $k \cdot x_k$ $\sqrt{27} - x_k$
 $0 \cdot 1$ 0.414

Observations?

- Idea: use the last two points and approximate the slope of the tangent with the slope of the sleet.

9

$$f(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

$$x_{k+1} = x - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} f(x_k)$$

$$= \frac{\times_{k-1}f(x_k) - \times_{k}f(x_{k-1})}{f(x_k) - f(x_{k-1})}$$

- The Secont Method

Exercise: vun SM on x-2=0

- what can go wrong?

- So far un have done the first) part of numerical ancelegois: design an algorithm

- 2 nd part analyze its properties

we'll do those two poores meaning traces

_		Sterting	speed	convergence	Complex	Syster	w	17
	Bisectivy	6	slow	49	compliculat	compli	2.	I
	NM	(1)	faste	usually	wor45	ecrsy		1>
	SM	//	feest	usually	works	very		Á
)						subt 4	e	
			-					

All 3 methods here a starting

- Bisection: need opposite signs
- NM, SM: may not converge
 will converge if "sufficiently dose"

- Let's look closer at NM. It's an exemple) of a fixed point iteration

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = g(x_k)$$

$$f(x) = 0 \qquad \langle \Rightarrow \rangle \qquad x = g(x)$$

problem

Fixed point iteration: *o given ** = 9(%)

There are many ways to converx

a fixed point problem.

- Exercise 9, hw 1 (+p) (scatellele progresse)

ty : time vehicle receives sutellete signal

Xv 10 location of vehicle at time to

ts: time sutellite sends signal

Xslts): location of sutellile

to is unknown

$$\times_{S}(t) = \left(R+h\right)\left[u\cos\left(\frac{2\pi t}{P}+\theta\right) + v\sin\left(\frac{2\pi t}{P}+\theta\right)\right]$$
 formula (20) in tp.

We need to solve the equation
$$F(t_s) = t_V - \frac{\|x_s(t_s) - x_V\|}{c} - t_s = 0 \quad (*)$$

could use Newton's Method. (exercise)

- Here is a much easier approace.

- unite t=to and remnite (*)

$$t = t_V - \frac{\|x_3(t) - x_V\|}{c}$$

- Iterale:

For k = 0,1,2,...

$$t_{k+1} = t_V - \frac{||x_S(t_k) - x_V||}{C}$$

- stop when

- Does not require derivatives.

- Typical: starting point, terminætice criteriou, Actual iteration, depended on the problem.

) - We don't just apply a formuler.

- when does X = g(x4) converge

