SuGaR

SuGaR:Surface-Aligned Gaussian Splatting for Efficient 3D Mesh Reconstruction and High-Quality Mesh Rendering(CVPR 2024)

优化后的高斯并没有通常呈现出有序的结构,并且与场景的实际表面相符得不好

■ 对齐: 新的正则项鼓励高斯更好地分布在表面上,

定义密度函数 d,导出点到最近表面的距离函数f(d),最小化该sdf函数和理想情况下的值。

■ 提取: 从密度函数估计水平集, 更好地导出mesh

■ 绑定:将高斯绑定在mesh表面进行优化,提高渲染质量

高斯下的密度函数与SDF距离函数:

① 密度函数: 在任意空间位置 p 对高斯值及其 Alpha 混合系数进行加权求和计算 得到

$$d(p) = \sum_{a} \alpha_g \exp\left(-\frac{1}{2}(p - \mu_g)^T \Sigma_g^{-1}(p - \mu_g)\right) \;, \quad (1) \qquad \qquad C = \sum_{i \in N} c_i \alpha_i' \prod_{j=1}^{i-1} (1 - \alpha_j'), \qquad \alpha_i' = \alpha_i \times \exp\left(-\frac{1}{2}(x' - \mu_i')^T \Sigma_i'^{-1}(x' - \mu_i')\right),$$

② 理想紧贴表面情况下的密度函数 $\widehat{d(p)}$ 近似表达推导:

假设高斯完全贴合平面,有以下性质:

▶ 最近的高斯占比最大(鼓励均匀稀疏分布),进行近似:

$$\alpha_{g^*} \exp \left(-\frac{1}{2} (p - \mu_{g^*})^T \Sigma_{g^*}^{-1} (p - \mu_{g^*}) \right) \quad g^* = \arg \min_g \left\{ (p - \mu_g)^T \Sigma_g^{-1} (p - \mu_g) \right\}$$

▶ 高斯近似为一个圆盘,理想下有个缩放因子为0,协方差中它贡献最多

$$(p-\mu_g)^T \Sigma_g^{-1}(p-\mu_g) \approx \frac{1}{s_g^2} \langle p-\mu_g, n_g \rangle^2$$

▶ 不透明度为0或1

$$\bar{d}(p) = \exp\left(-\frac{1}{2s_{g^*}^2} \langle p - \mu_{g^*}, n_{g^*} \rangle^2\right)$$

高斯下的密度函数与SDF距离函数:

① 密度函数:

$$d(p) = \sum \alpha_g \exp\left(-\frac{1}{2}(p - \mu_g)^T \Sigma_g^{-1}(p - \mu_g)\right), \quad (1)$$

② 理想情况下的密度函数 $\widehat{d(p)}$:

$$\bar{d}(p) = \exp\left(-\frac{1}{2s_{g^*}^2} \langle p - \mu_{g^*}, n_{g^*} \rangle^2\right) .$$
 (5)

密度函数

■ 第一种正则: ■ 第二种正则: 距离函数f(p)

$$\widehat{f(p)} = |\langle p - \mu_g, n \rangle|$$
 点到平面距离公式

最小化 $|d(p) - \bar{d}(p)|$

$$\bar{f}(p) = \pm s_{g*} \sqrt{-2 \log \left(\bar{d}(p)\right)}$$

$$f(p) = \pm s_{g*} \sqrt{-2 \log \left(d(p)\right)}$$

$$(6)$$

$$(7)$$

$$f(p) = \pm s_{q*} \sqrt{-2\log\left(d(p)\right)}$$

最小化 $|\hat{f}(p) - f(p)|$

 $ar{f}(p)$ 直接使用采样点到depth map的距离来代替计算

距离函数的几何意义

$$\mathcal{R} = \frac{1}{|\mathcal{P}|} \sum_{p \in \mathcal{P}} |\hat{f}(p) - f(p)|,$$

$$\mathcal{R}_{\text{Norm}} = \frac{1}{|\mathcal{P}|} \sum_{p \in \mathcal{P}} \left\| \frac{\nabla f(p)}{\|\nabla f(p)\|_2} - n_{g^*} \right\|_2^2 \,.$$

距离函数正则和法线正则

计算水平点以进行泊松重建mesh

① 对像素对应的3D点,沿射线方向的±3σ内采样

② 找到这些点中密度函数最接近给定阈值λ的区间左右点

$$d_i < \lambda < d_i$$

③ 插值得到更精细的点,密度函数等于阈值,此点作为水平集点 $d(p + t^*v) = \lambda_{\circ}$

法向: $\frac{\nabla d(\hat{p})}{\|\nabla d(\hat{p})\|_2}$

泊松重建中水平集上的采样点

将高斯绑定在mesh 的三角内, 联合优化高斯和mesh

3D Gaussians 属性:

• 均值:sfm初始化

• 协方差矩阵: 平移和缩放

• 颜色: 球谐函数

• 不透明度

3D Gaussians 属性:

• 均值: 三角形内

🗦 • 协方差矩阵: 只在三角内缩放旋转

• 颜色: 不变

• 不透明度: 不变

绑定在三角内的高斯

1. 早期正则化方案的代表 调整高斯到表面上

2. 限制高斯的位置降低了渲染质量 没有最后的优化 渲染质量也不高

	Indoor scenes			Outdoor scenes			Average on all scenes		
	PSNR ↑	SSIM ↑	LPIPS ↓	PSNR ↑	SSIM↑	LPIPS ↓	PSNR ↑	SSIM ↑	LPIPS ↓
No mesh (except SuC	GaR)								
Plenoxels [42]	24.83	0.766	0.426	22.02	0.542	0.465	23.62	0.670	0.443
INGP-Base [23]	28.65	0.840	0.281	23.47	0.571	0.416	26.43	0.725	0.339
INGP-Big [23]	29.14	0.863	0.242	23.57	0.602	0.375	26.75	0.751	0.299
Mip-NeRF360 [2]	31.58	0.914	0.182	25.79	0.746	0.247	29.09	0.842	0.210
3DGS [15]	30.41	0.920	0.189	26.40	0.805	0.173	28.69	0.870	0.182
R-SuGaR-15K (Ours)	29.43	0.910	0.216	24.40	0.699	0.301	27.27	0.820	0.253
With mesh									
Mobile-NeRF [6]	-	_	-	21.95	0.470	0.470	-	_	_
NeRFMeshing [26]	23.83	_	_	22.23	_	_	23.15	_	_
BakedSDF [39]	27.06	0.836	0.258	-	_	_	-	_	_
R-SuGaR-2K (Ours)	26.29	0.872	0.262	22.97	0.648	0.360	24.87	0.776	0.304
R-SuGaR-7K (Ours)	28.73	0.904	0.226	24.16	0.691	0.313	26.77	0.813	0.263
R-SuGaR-15K (Ours)	29.43	0.910	0.216	24.40	0.699	0.301	27.27	0.820	0.253

Extraction method	PSNR ↑	SSIM↑	LPIPS \downarrow
Marching Cubes [21]	23.91	0.703	0.392
Poisson (centers) [14]	23.76	0.756	0.340
Ours (Surface level 0.1)	24.62	0.765	0.313
Ours (Surface level 0.3)	24.87	0.776	0.304
Ours (Surface level 0.5)	24.91	0.777	0.304