Interest Rate Model Calibration and Pricing Caps and Floors with QuantLib

Financial Algorithm - Final Project

台科大 M10808050 呂偉丞

Contents

01 02 03

Hull White Model and Black Karasinski Model Calibration

Pricing Caps with Constant volatility

Pricing Caps with volatility surface

首先會透過swaption 的market data 做calibration

WHY swaption?

會用swaption而不是cap/floor的原因有以下:

- 1. Swaption 流動性好
- 2. 交易量大
- 3. Information set 豐富

經過前面的環境設定,之後再define—個function建立swaptions

```
In [4]: def create swaption helpers(data, index, term structure, engine):
            swaptions = []
            fixed leg tenor = ql.Period(1, ql.Years)
            fixed leg daycounter = ql.Actual360()
            floating_leg_daycounter = ql.Actual360()
            for d in data:
                vol handle = ql.QuoteHandle(ql.SimpleQuote(d.volatility))
                helper = ql.SwaptionHelper(ql.Period(d.start, ql.Years),
                                           ql.Period(d.length, ql.Years),
                                            vol handle,
                                            index.
                                            fixed leg tenor,
                                            fixed_leg_daycounter,
                                            floating leg daycounter,
                                            term structure
                helper.setPricingEngine(engine)
                swaptions.append(helper)
            return swaptions
```

(二)Hull & White(1993)

◆ Hull & White 模型的短期利率連續極限如下,

$$dr = [\theta(t) - \alpha r] \cdot dt + \sigma \cdot dz \tag{8.4}$$

- ◆ 在 HW 模型中只有二個參數,可由市場上交易的利率選擇權價格來推估。
 - 》 假設市場上有 M 個零息債券選擇權,其價格分別為 Market_i,I=1...M。令 Model(α , σ)_i為由 HW 模型所求的的價格,則如下校準參數,

$$\min_{\alpha,\sigma} \sqrt{\sum_{i=1}^{M} \!\! \left(\frac{\mathsf{model}_i(\alpha,\sigma) \! - \! \mathsf{market}_i}{\mathsf{market}_i}\right)^2}$$

define 一個function做calibrate

```
In [5]: def calibration report(swaptions, data):
            print("-"*82)
            print("%15s %15s %15s %15s %15s" % \
            ("Model Price", "Market Price", "Implied Vol", "Market Vol", "Rel Error"))
            print("-"*82)
            cum err = 0.0
            for i, s in enumerate(swaptions):
                model_price = s.modelValue()
                market vol = data[i].volatility
                black_price = s.blackPrice(market_vol)
                rel_error = model_price/black_price - 1.0
                implied_vol = s.impliedVolatility(model_price,
                                                  1e-5, 50, 0.0, 0.50)
                rel error2 = implied vol/market vol-1.0
                cum err += rel error2*rel error2
                print("%15.5f %15.5f %15.5f %15.5f %15.5f" % \
                (model price, black price, implied vol, market vol, rel error))
            print("-"*82)
            print("Cumulative Error : %15.5f" % math.sqrt(cum err))
```

```
In [6]: model = ql.HullWhite(term structure);
       engine = ql.JamshidianSwaptionEngine(model)
       swaptions = create swaption helpers(data, index, term structure, engine)
       optimization_method = ql.LevenbergMarquardt(1.0e-8,1.0e-8,1.0e-8)
       end criteria = ql.EndCriteria(10000, 100, 1e-6, 1e-8, 1e-8)
       model.calibrate(swaptions, optimization_method, end_criteria)
       a, sigma = model.params()
       print("alpha = %6.5f, sigma = %6.5f" % (a, sigma))
       calibration report(swaptions, data)
       alpha = 0.04915, sigma = 0.00584
          Model Price Market Price Implied Vol Market Vol
                                                                  Rel Error
              0.00880
                           0.00951
                                      0.10620
                                                    0.11480
                                                                  -0.07488
                           0.01007 0.10632 0.11080
                                                                -0.04039
              0.00967
                      0.00871
                                  0.10635
                                                0.10700
                                                              -0.00606
             0.00866
                      0.00623
                                  0.10644
                                                0.10210
                                                              0.04234
              0.00650
                      0.00332
                                   0.10659
                                                      0.10000
                                                               0.06561
              0.00354
       Cumulative Error :
                        0.11594
```

由圖可知經過calibration,得到所需參數

$$a = 0.04915$$

$$\sigma = 0.00584$$

得到Model Price、Market Price、Implied vol、Market vol 由此計算模型價格與市場價格誤差

(四)Black & Karasinski(BK, 1991)

◆ BK 模型的短期利率連續極限如下,

```
d \ln r = [\theta(t) - \alpha(t) \ln r] \cdot dt + \sigma(t) \cdot dz 
(8.8)
```

▶ 今波動性為常數可簡化模型成為,

$$d \ln r(t) = [\theta(t) - \alpha \ln r] \cdot dt + \sigma \cdot dz$$

```
In [7]: model = ql.BlackKarasinski(term_structure);
    engine = ql.TreeSwaptionEngine(model, 100)
    swaptions = create_swaption_helpers(data, index, term_structure, engine)

    optimization_method = ql.LevenbergMarquardt(1.0e-8,1.0e-8,1.0e-8)
    end_criteria = ql.EndCriteria(10000, 100, 1e-6, 1e-8, 1e-8)
    model.calibrate(swaptions, optimization_method, end_criteria)

a, sigma = model.params()
    print("alpha = %6.5f, sigma = %6.5f" % (a, sigma))
```

alpha = 0.04162, sigma = 0.11782

```
In [8]: calibration_report(swaptions, data)
                            Market Price
                                              Implied Vol
                 0.00874
                                                  0.10550
                                                                                   -0.08097
                                 0.00951
                                                                   0.11480
                                 0.01007
                                                  0.10633
                                                                                   -0.04026
                 0.00967
                                                                   0.11080
                 0.00867
                                 0.00871
                                                  0.10655
                                                                   0.10700
                                                                                   -0.00423
                 0.00651
                                 0.00623
                                                  0.10665
                                                                   0.10210
                                                                                    0.04443
                 0.00355
                                 0.00332
                                                  0.10675
                                                                   0.10000
                                                                                    0.06714
        Cumulative Error :
                                     0.12147
```

由圖可知經過calibration,得到所需參數

$$a = 0.04162$$

$$\sigma = 0.11782$$

得到Model Price、Market Price、Implied vol、Market vol 由此計算模型價格與市場價格誤差

這之後會以定價Caps為主題,分別以兩種cases作探討

- 1. Pricing Caps with Constant volatility
- 2. Pricing Caps with volatility surface

WHY?

因為Caps是由多個caplets組成,每一個caplet都應該要有不同的volatility,因此會先以constant volatility再延生到volatility surface

透過QuantLib評價Caps的步驟:

- 1. construct interest rate term structure for discounting
- 2. construct interest rate term structure for the floating leg
- 3. construct the pricing engine to value caps

```
In [9]: calc date = ql.Date(14, 6, 2021)
         al.Settings.instance().evaluationDate = calc date
In [10]: dates = [ql.Date(14,6,2021), ql.Date(14,9,2021),
                  ql.Date(14,12,2021), ql.Date(14,6,2022),
                  ql.Date(14,6,2024), ql.Date(14,6,2026),
                  ql.Date(15,6,2031), ql.Date(16,6,2036),
                  ql.Date(16,6,2041), ql.Date(14,6,2051)
         vields = [0.000000, 0.006616, 0.007049, 0.007795,
                   0.009599, 0.011203, 0.015068, 0.017583,
                   0.018998, 0.020080]
         day count = ql.ActualActual()
         calendar = ql.Taiwan()
         interpolation = ql.Linear()
         compounding = al.Compounded
         compounding frequency = al.Annual
         term structure = ql.ZeroCurve(dates, yields, day count, calendar,
                                interpolation, compounding, compounding frequency)
         ts handle = ql.YieldTermStructureHandle(term structure)
```

construct 一個十年期,每三個月比價一次的caps


```
In [12]: ibor index = ql.USDLibor(ql.Period(3, ql.Months), ts handle)
         ibor index.addFixing(ql.Date(10,6,2021), 0.0065560)
         ibor leg = ql.IborLeg([1000000], schedule, ibor index)
In [13]: strike = 0.02
         cap = ql.Cap(ibor_leg, [strike])
         vols = ql.QuoteHandle(ql.SimpleQuote(0.547295))
         engine = ql.BlackCapFloorEngine(ts handle, vols)
         cap.setPricingEngine(engine)
In [14]: cap.NPV()
Out[14]: 54408.95638684406
```

有了以上materials,即可計算出cap=54408.95

接著計算每個caplet都有不同的volatility

Construct a volatility matrix with different expires and strikes

```
In [15]: strikes = [0.01,0.015, 0.02]
    expiries = [ql.Period(i, ql.Years) for i in range(1,11)] + [ql.Period(12, ql.Years)]
    vols = ql.Matrix(len(expiries), len(strikes))
    data = [[47.27, 55.47, 64.07, 70.14, 72.13, 69.41, 72.15, 67.28, 66.08, 68.64, 65.83],
        [46.65,54.15,61.47,65.53,66.28,62.83,64.42,60.05,58.71,60.35,55.91],
        [46.6,52.65,59.32,62.05,62.0,58.09,59.03,55.0,53.59,54.74,49.54]
    ]

    for i in range(vols.rows()):
        for j in range(vols.columns()):
            vols[i][j] = data[j][i]/100.0
```

03 Pricing Caps with volatility surface

透過ql.OptionletStripper1 將每個
caplet/floorlet volatility從capfloor
vol中分開,再透過
ql.StrippedOptionletAdapter組成新的
optionlet vol才能建構term structure

透過matplotlib畫出capfloor vol and optionlet vol

```
In [17]: optionlet surf = ql.OptionletStripper1(capfloor vol, ibor index)
         ovs handle = ql.OptionletVolatilityStructureHandle(
              ql.StrippedOptionletAdapter(optionlet surf)
In [18]: tenors = np.arange(0,10,0.25)
         strike = 0.015
         capfloor vols = [capfloor vol.volatility(t, strike) for t in tenors]
         opionlet vols = [ovs handle.volatility(t, strike) for t in tenors]
         plt.plot(tenors, capfloor vols, "--", label="CapFloor Vols")
         plt.plot(tenors, opionlet vols,"-", label="Optionlet Vols")
         plt.legend(bbox to anchor=(0.5, 0.25))
Out[18]: <matplotlib.legend.Legend at 0x2076ebf8910>
          0.75
          0.70
          0.65
          0.60
          0.55
           0.50
           0.45
           0.40
```

03 Pricing Caps with volatility surface

即可將optionlet volatility surface評價caps or floors 由此可知cap=54427.26

