Introduction to Electrical Engineering Practice

Course Code: EE 113

Department: Electrical Engineering

Instructor Name: B.G. Fernandes

E-mail id: bgf@ee.iitb.ac.in

Review of Previous Lecture

- Mesh Current Analysis ⇒ Apply KVL
- Node Voltage Analysis ⇒ Apply KCL
- Thevenin's Theorem

Thevenin's Equivalent Circuit

Norton's Theorem

 $I_N \rightarrow$ Current through the short circuit applied to the terminals AB

$$R_{N} = R_{TH}$$

$$I_{N} = \frac{V}{R_{1} + \frac{R_{2}R_{3}}{R_{3} + R_{2}}} \frac{R_{2}}{R_{3} + R_{2}}$$

Source Conversion:

Short circuit the terminals AB

Using Thevenin's theorem,
$$I_{AB} = \frac{V_{TH}}{R_{TH}}$$

From Norton's theorem, $I_{AB} = I_{N}$

$$\Rightarrow \frac{V_{TH}}{R_{TH}} = I_{N} \qquad \therefore V_{TH} = I_{N}R_{TH}$$

Superposition Theorem:

The response in any element of linear network having two or more sources is the sum of responses obtained by each source acting separately, with all other sources set equal to zero.

$$\mathbf{I}_{\mathsf{t}} = \mathbf{I}_1 + \mathbf{I}_2$$

If
$$x_1 \rightarrow y_1$$

& $x_2 \rightarrow y_2$

For a linear system, if
$$(x_1+x_2) \implies (y_1+y_2)$$

Time domain response of RC and RL circuit

- No transients in purely resistive circuit
- Current cannot change instantaneously in an inductor
- Voltage across a capacitor cannot change instantaneously

Series R-C Circuit

- Step response: DC voltage or current is suddenly applied to the circuit
- For a series R-C circuit

$$V_{c} = V_{f} + (V_{ci} - V_{f})e^{-\frac{l}{\tau}}$$

where, τ = time constant, V_{ci} is capacitor voltage at t = 0, (Intial Value) V_f is the final value

• Circuit is assumed to attain steady state at $t = 5\tau$

Step response of R-C circuit

Case (i) $\tau \ll T$

At t=0, capacitor voltage, $v_c=0$

At
$$t=0^+$$
, $v_c=0$, $v_R=V$ and $i=\frac{V}{R}$

In steady state $v_c=V$, i=0, $\therefore V_R=0$ Steady state is attained at $t\approx 5\tau$

At
$$t = T^+$$

$$v_R = -v_C$$
 and $i = -\frac{v_C}{R} = \frac{v_R}{R}$

At steady state, v_c and i = 0

Observation: 'i' through 'C' can change instantaneously

Step response of R-C circuit

Case (ii) $\tau \gg T$

- v_c increases gradually
- So, |v_c| is a small fraction of V
 at t = T
- Initial portion of v_c is linear
- v_c is the integral of V
- → Integrator

RC Differentiator Experimental Results

RC Integrator Experimental Results

 $T_s = 0.1\tau$ (τ is very large compared to T_s .)

$$T_{s} = 0.25\tau$$

$$T_s = 0.5\tau$$

RC Integrator Experimental Results

M Pos: 12,00ms MEASURE

MEASURE

Tek Trig'd M Pos: 12,00ms M Pos: 12,00ms M

P-N Junction Diode

Ideal diode equation: $I = I_0 \left(e^{\frac{V}{\eta V_t}} - 1 \right)$

Where:

I is the net current flowing through the diode;

 I_{θ} is reverse saturation current;

V is the applied voltage across the terminals of the diode;

 V_t =26mV at room temperature;

$$\eta$$
 = 1 for Ge
= 2 for Si

If $V \gg V_t \rightarrow I = I_0 e^{\frac{V}{\eta V_t}}$, I rises exponentially with V

When reverse biased $\rightarrow I \cong -I_0$, Independent of V till V_{PIV}

When $V > V_{PIV}$, large reverse current flows

 \rightarrow diode will get damaged if V applied is greater than V_{PIV}

PN Junction Diode Circuits

Diode **forward** biased Current flows

$$I_{Load} = \frac{2V - 0.7V}{R_{Load}}$$

Diode **reverse** biased Current does NOT flow

$$I_{Load} = \frac{2V - 2V}{R_{Load}} = 0$$

PN Diode Circuits

Common Cathode configuration

$$D_2$$
 is conducting $V_2 = 14.3$

Common Anode configuration

$$D_2$$
 is conducting $V_2 = -9.3$