MP21 @ II UWr 2021 r.

Lista zagadnień nr 2

Ćwiczenie 1.

W poniższych wyrażeniach zlokalizuj wolne i związane wystąpienia zmiennych. Które wystąpienia *wiążą* każde z wystąpień związanych?

```
(let ([x 3])
	(+ x y))
(let ([x 1]
		 [y (+ x 2)])
	(+ x y))
(let ([x 1])
	 (let ([y (+ x 2)])
	 (* x y)))
(lambda (x y)
	 (* x y z))
(let ([x 1])
	 (lambda (y z)
	 (* x y z)))
```

Ćwiczenie 2.

Złożenie funkcji f i g definiujemy (jak pamiętamy z logiki), jako funkcję $x\mapsto f(g(x))$. Zdefiniuj dwuargumentową procedurę compose, której wynikiem jest złożenie (jednoargumentowych) procedur przekazanych jej jako argumenty. Prześledź ewaluację wyrażeń ((compose square inc) 5) oraz ((compose inc square) 5) używając modelu podstawieniowego.

Ćwiczenie 3.

Zdefiniuj procedurę (repeated p n) obliczającą n-krotne złożenie procedury p z samą sobą. Nie używaj pomocniczych definicji procedur innych niż compose i

identity.

Ćwiczenie 4.

Zdefiniuj procedurę product analogiczną do procedury sum przedstawionej na wykładzie na dwa sposoby: jako procedurę generującą proces rekurencyjny i iteracyjny.

Użyj jednej z tych definicji do wyliczenia przybliżonej wartości π , używając wzoru $\frac{\pi}{4}=\frac{2\cdot 4\cdot 4\cdot 6\cdot 6\cdot 8\cdots}{3\cdot 3\cdot 5\cdot 5\cdot 7\cdot 7\cdots}$.

Ćwiczenie 5.

Zauważ że procedury sum i product są szczególnymi przypadkami jeszcze bardziej ogólnej procedury accumulate, wywoływanej w następujący sposób:

```
(accumulate combiner null-value term a next b)
```

W powyższym wyrażeniu combiner jest procedurą binarną określającą jak kolejny element ma być dołączony do dotychczas obliczonej wartości, null-value określa od jakiej wartości należy zacząć proces akumulacji, a pozostałe argumenty mają taką rolę jak w definicjach sum czy product. Zapisz definicję procedury accumulate na dwa sposoby, generujące odpowiednio proces rekurencyjny i iteracyjny, i pokaż jak zdefiniować sum i product jako szczególne przypadki akumulacji. Jakie własności muszą spełniać combine i null-value żeby wynik akumulacji z ich użyciem nie zależał od wyboru definicji (tj. był taki sam dla procesu iteracyjnego i rekurencyjnego).

Ułamki łańcuchowe

Interesującym pojęciem pojawiającym się w teorii liczb są *ułamki łańcuchowe* (ang. *infinite continued fractions*). W tej części listy zajmiemy się obliczaniem przybliżeń takich ułamków.

Nieskończonym ułamkiem łańcuchowym nazywamy wyrażenie postaci:

$$f = \frac{N_1}{D_1 + \frac{N_2}{D_2 + \frac{N_3}{D_3 + \dots}}}$$

Jednym ze sposobów przybliżenia wartości ułamka łańcuchowego jest obcięcie jego rozwinięcia na określonej głębokości. Takie skończone rozwinięcie o

głębokości k ma wówczas postać:

$$f_k = \frac{N_1}{D_1 + \frac{N_2}{\ddots + \frac{N_k}{D_k + 0}}}$$

(co oczywiście daje nam $f_0=0$). Przykładowo jeśli wszystkie wyrazy ciągów N_i i D_i są równe 1, można łatwo pokazać że

$$\frac{1}{1+\frac{1}{1+\cdots}} = \frac{1}{\varphi} \approx 0.618,$$

gdzie $\varphi=\frac{1+\sqrt{5}}{2}$ jest złotym podziałem. Kilka pierwszych wyrazów ciągu skończonych rozwinięć tego ułamka to

$$0, 1, \frac{1}{2}, \frac{2}{3}, \frac{3}{5}, \frac{5}{8}, \dots$$

Ćwiczenie 6.

Załóżmy że procedury jednoargumentowe num i den określają odpowiednio kolejne wyrazy ciągów liczników i mianowników ułamka łańcuchowego, N_i i D_i . Zdefiniuj na dwa sposoby procedurę cont-frac, taką że (cont-frac num den k) obliczy k-ty wyraz ciągu skończonych rozwinięć ułamka łańcuchowego reprezentowanego przez num i den. Jeden z procesów generowanych przez Twoje definicje powinien być rekurencyjny, zaś drugi — iteracyjny. Przetestuj swoje procedury aproksymując wartość $\frac{1}{\omega}$ obliczając wartość wyrażenia

Ćwiczenie 7.

Liczbę π możemy zapisać używając ułamków łańcuchowych w następującej postaci:

$$\pi = 3 + \frac{1^2}{6 + \frac{3^2}{6 + \frac{5^2}{6^{11}}}}.$$

Użyj tego rozwinięcia i procedury z poprzedniego zadania aby obliczyć przybliżoną wartość π . Którego przybliżenia potrzeba aby wartość była dokładna do czterech miejsc po przecinku?

Ćwiczenie 8.

Ułamki łańcuchowe często stosuje się do aproksymacji funkcji. Przykładowo, w 1770 niemiecki matematyk J.H. Lambert opublikował poniższą reprezentację funkcji arcus tangens:

$$\arctan x = \frac{x}{1 + \frac{(1x)^2}{3 + \frac{(2x)^2}{5 + \dots}}}$$

Używając wcześniej zdefiniowanej procedury cont-frac zdefiniuj procedurę atan-cf, taką że (atan-cf x k) przybliża funkcję arcus tangens przez k-ty wyraz ciągu skończonych rozwinięć ułamka z powyższej reprezentacji. Przetestuj swoją procedurę dla różnych wartości x: użyj wbudowanej procedury atan aby sprawdzić jak dokładne są otrzymane przybliżenia.

Ćwiczenie 9.

Zajmiemy się teraz szczególnym przypadkiem ułamków łańcuchowych dla których ciągi N_i i D_i są ciągami stałymi. Wygodnie wtedy myśleć że skończone rozwinięcie takiego ułamka jest zbudowane z pewnej wartości bazowej za pomocą powtarzalnej operacji: mając podstawę B i wartości N i D, możemy zbudować wartość $\frac{N}{D+B}$. Łatwo zdefiniować procedurę build obliczającą taką wartość:

```
(define (build n d b) (/ n (+ d b)))
```

Aby obliczyć skończone rozwinięcie ułamka o głębokości dwa wystarczy wtedy obliczyć wartość (build n d (build n d b)).

Zdefiniuj czteroargumentową procedurę repeated-build, która stosując procedurę repeated z ćw. 3 obliczy k-ty wyraz ciągu skończonych rozwinięć ułamka łańcuchowego, k-krotnie stosując procedurę build. W szczególności, wyrażenie (repeated-build 2 n d b) powinno mieć tę samą wartość co wcześniejsze (build n d (build n d b)).

Zadanie domowe (na pracownie) nr 2

Metoda prostokątów to chyba najprostsza metoda przybliżania całki oznaczonej na funkcjach rzeczywistych: dzielimy przedział całkowania na *p* prostokątów, każdy "dotykający" wykresu funkcji "lewym" bokiem:

Źródło ilustracji: Wikipedia

Przybliżeniem całki jest wówczas suma pól tych prostokątów.

W tym zadaniu należy zaimplementować metodę prostokątów. Rozwiązanie powinno zawierać dwuargumentową procedurę integral taką, że w (integral f prec):

- f to funkcja (czyli racketowa procedura), którą całkujemy
- prec to liczba prostokątów

Wynikiem powyższej aplikacji powinna być dwuargumentowa procedura, której dwa argumenty to początek i koniec przedziału całkowania. Np.

```
> (define foo (integral (lambda (x) 10) 1000))
> (foo 0 10)
99.999999999986
> (define foo (integral (lambda (x) x) 1000))
> (foo 9 10)
9.4995000000000001
> (foo 0 10)
49.95000000000001
> (define foo (integral sin 1000))
> (foo 0 (* pi 2))
1.0951119568461398e-16
> (foo 0 (/ pi 2))
0.9992143962198352
> ((integral tan 1000) (/ pi -2) (/ pi 2))
-51306101576015.1
```

W swojej implementacji użyj procedury sum zdefiniowanej na wykładzie (i w podręczniku).

W pliku zamieść też kilka testów. Opisz te z nich, w których metoda prostokątów daje niesatysfakcjonujące przybliżenie.

Uwaga! Plik o nazwie solution. rkt zawierający definicję procedury integral i przykłady testowe należy przesłać w systemie Web-CAT dostępnym na SKOSowej stronie przedmiotu w *nieprzekraczalnym* terminie **15 marca 2021 r., godz. 05.30**. W pliku zamieść dodatkową klauzulę

(provide integral)

Sprawia ona, że procedura jest widoczna dla sprawdzaczki (dostępny też jest szablon rozwiązania na SKOS-ie). Pamiętaj o zasadach współpracy opisanych w regulaminie