```
In [1]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression
    from sklearn.linear_model import Ridge,Lasso
    from sklearn.linear_model import ElasticNet
    from sklearn import metrics
    from sklearn.linear_model import LogisticRegression
    from sklearn.preprocessing import StandardScaler
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import GridSearchCV
    from sklearn.tree import plot_tree
```

Out[2]:

	date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	
0	2011-11- 01 01:00:00	NaN	1.0	NaN	NaN	154.0	84.0	NaN	NaN	NaN	6.0	NaN	NaN	2
1	2011-11- 01 01:00:00	2.5	0.4	3.5	0.26	68.0	92.0	3.0	40.0	24.0	9.0	1.54	8.7	2
2	2011-11- 01 01:00:00	2.9	NaN	3.8	NaN	96.0	99.0	NaN	NaN	NaN	NaN	NaN	7.2	2
3	2011-11- 01 01:00:00	NaN	0.6	NaN	NaN	60.0	83.0	2.0	NaN	NaN	NaN	NaN	NaN	2
4	2011-11- 01 01:00:00	NaN	NaN	NaN	NaN	44.0	62.0	3.0	NaN	NaN	3.0	NaN	NaN	2
209923	2011- 09-01 00:00:00	NaN	0.2	NaN	NaN	5.0	19.0	44.0	NaN	NaN	NaN	NaN	NaN	2
209924	2011- 09-01 00:00:00	NaN	0.1	NaN	NaN	6.0	29.0	NaN	11.0	NaN	7.0	NaN	NaN	2
209925	2011- 09-01 00:00:00	NaN	NaN	NaN	0.23	1.0	21.0	28.0	NaN	NaN	NaN	1.44	NaN	2
209926	2011- 09-01 00:00:00	NaN	NaN	NaN	NaN	3.0	15.0	48.0	NaN	NaN	NaN	NaN	NaN	2
209927	2011- 09-01 00:00:00	NaN	NaN	NaN	NaN	4.0	33.0	38.0	13.0	NaN	NaN	NaN	NaN	2

209928 rows × 14 columns

localhost:8888/notebooks/F11.ipynb

```
In [3]: df.info()
```

8/4/23, 1:52 PM

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 209928 entries, 0 to 209927
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	date	209928 non-null	object
1	BEN	51393 non-null	float64
2	CO	87127 non-null	float64
3	EBE	51350 non-null	float64
4	NMHC	43517 non-null	float64
5	NO	208954 non-null	float64
6	NO_2	208973 non-null	float64
7	0_3	122049 non-null	float64
8	PM10	103743 non-null	float64
9	PM25	51079 non-null	float64
10	S0_2	87131 non-null	float64
11	TCH	43519 non-null	float64
12	TOL	51175 non-null	float64
13	station	209928 non-null	int64

dtypes: float64(12), int64(1), object(1)

memory usage: 22.4+ MB

In [4]: df=df.dropna()
df

Out[4]:

	date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	
1	2011-11- 01 01:00:00	2.5	0.4	3.5	0.26	68.0	92.0	3.0	40.0	24.0	9.0	1.54	8.7	280
6	2011-11- 01 01:00:00	0.7	0.3	1.1	0.16	17.0	66.0	7.0	22.0	16.0	2.0	1.36	1.7	280
25	2011-11- 01 02:00:00	1.8	0.3	2.8	0.20	34.0	76.0	3.0	34.0	21.0	8.0	1.71	7.4	280
30	2011-11- 01 02:00:00	1.0	0.4	1.3	0.18	31.0	67.0	5.0	25.0	18.0	3.0	1.40	2.9	280
49	2011-11- 01 03:00:00	1.3	0.2	2.4	0.22	29.0	72.0	3.0	33.0	20.0	8.0	1.75	6.2	280
209862	2011- 08-31 22:00:00	0.4	0.1	1.0	0.06	1.0	13.0	33.0	21.0	6.0	5.0	1.26	0.7	280
209881	2011- 08-31 23:00:00	0.9	0.1	1.8	0.16	11.0	45.0	30.0	32.0	17.0	3.0	1.34	4.9	280
209886	2011- 08-31 23:00:00	0.6	0.1	1.1	0.05	1.0	12.0	48.0	19.0	7.0	5.0	1.26	0.9	280
209905	2011- 09-01 00:00:00	0.6	0.1	1.3	0.15	6.0	35.0	34.0	21.0	12.0	3.0	1.32	3.8	280
209910	2011- 09-01 00:00:00	0.7	0.1	1.1	0.04	1.0	12.0	46.0	8.0	5.0	5.0	1.25	0.9	280

16460 rows × 14 columns

localhost:8888/notebooks/F11.ipynb

```
In [5]: df.isnull().sum()
 Out[5]: date
                     0
                     0
         BEN
         CO
                     0
                     0
         EBE
         NMHC
                     0
         NO
                     0
         NO 2
                     0
         0_3
                     0
         PM10
                     0
         PM25
                     0
         SO_2
         TCH
                     0
         TOL
                     0
         station
                     0
         dtype: int64
In [21]: df.describe()
```

Out[21]:

	BEN	СО	EBE	NMHC	NO	NO_2	
cou	nt 16460.000000	16460.000000	16460.000000	16460.000000	16460.000000	16460.000000	164
mea	n 0.900680	0.015188	1.471871	0.167043	23.671810	44.583961	
st	d 0.768892	0.122305	1.051004	0.075068	44.362859	31.569185	
mi	n 0.100000	0.000000	0.200000	0.010000	1.000000	1.000000	
25	6 0.500000	0.000000	0.800000	0.120000	2.000000	19.000000	
50	6 0.700000	0.000000	1.200000	0.160000	7.000000	40.000000	
75	6 1.100000	0.000000	1.700000	0.200000	25.000000	63.000000	
ma	x 9.500000	1.000000	12.800000	0.840000	615.000000	289.000000	1
4							•

```
In [7]: df.columns
Out[7]: Index(['date', 'BEN', 'CO', 'EBE', 'NMHC', 'NO', 'NO_2', 'O_3', 'PM10', 'PM2
```

5', 'SO_2', 'TCH', 'TOL', 'station'], dtype='object')

In [8]: sns.pairplot(df)

Out[8]: <seaborn.axisgrid.PairGrid at 0x2ad9467b490>

In [9]: sns.distplot(df['PM10'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[9]: <AxesSubplot:xlabel='PM10', ylabel='Density'>

In [10]: sns.heatmap(df.corr())

Out[10]: <AxesSubplot:>

C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexing.py:1720: Sett
ingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

self. setitem single column(loc, value, pi)

C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexing.py:1720: Sett
ingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

self._setitem_single_column(loc, value, pi)
<ipython-input-18-dc2e98cdf216>:3: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df['CO']=df['CO'].astype(int)

Out[18]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	٤
1	2011-11- 01 01:00:00	2.5	0	3.5	0.26	68.0	92.0	3.0	40.0	24.0	9.0	0	8.7	280
6	2011-11- 01 01:00:00	0.7	0	1.1	0.16	17.0	66.0	7.0	22.0	16.0	2.0	0	1.7	280
25	2011-11- 01 02:00:00	1.8	0	2.8	0.20	34.0	76.0	3.0	34.0	21.0	8.0	0	7.4	280
30	2011-11- 01 02:00:00	1.0	0	1.3	0.18	31.0	67.0	5.0	25.0	18.0	3.0	0	2.9	280
49	2011-11- 01 03:00:00	1.3	0	2.4	0.22	29.0	72.0	3.0	33.0	20.0	8.0	0	6.2	280
209862	2011- 08-31 22:00:00	0.4	0	1.0	0.06	1.0	13.0	33.0	21.0	6.0	5.0	0	0.7	280
209881	2011- 08-31 23:00:00	0.9	0	1.8	0.16	11.0	45.0	30.0	32.0	17.0	3.0	0	4.9	280
209886	2011- 08-31 23:00:00	0.6	0	1.1	0.05	1.0	12.0	48.0	19.0	7.0	5.0	0	0.9	280
209905	2011- 09-01 00:00:00	0.6	0	1.3	0.15	6.0	35.0	34.0	21.0	12.0	3.0	0	3.8	280
209910	2011- 09-01 00:00:00	0.7	0	1.1	0.04	1.0	12.0	46.0	8.0	5.0	5.0	0	0.9	280
10100	44													

16460 rows × 14 columns

LogisticRegression

Out[22]: LogisticRegression()

```
In [23]: |lgr.predict(x_test)
Out[23]: array([0, 0, 0, ..., 0, 0, 0])
In [24]: |lgr.score(x_test,y_test)
Out[24]: 0.98440664236533
In [25]: | fs=StandardScaler().fit_transform(x)
         logr=LogisticRegression()
         logr.fit(fs,y)
Out[25]: LogisticRegression()
In [28]: o=[[1,2,3,4,5,6,7,8,9,10,11,12]]
         prediction=logr.predict(o)
         print(prediction)
         [1]
In [29]: logr.classes_
Out[29]: array([0, 1])
In [30]: |logr.predict_proba(0)[0][0]
Out[30]: 0.016059072791087203
In [31]: |logr.predict_proba(o)[0][1]
Out[31]: 0.9839409272089128
```

LinearRegression

```
In [34]: coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[34]:

	Co-emicient
BEN	-1.785725e-02
EBE	2.619629e - 02
NMHC	1.958372e-01
NO	1.989550e - 03
NO_2	-3.988913e-04
O_3	6.990414e - 04
PM10	2.781695e - 04
PM25	-7.692662e-05
SO_2	-2.268107e-03
тсн	7.285839e-16
TOL	-9.990132e-04
station	1.463619e-03

Co-efficient

```
In [35]: prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[35]: <matplotlib.collections.PathCollection at 0x2ad94ce4340>


```
In [36]: print(lr.score(x_test,y_test))
```

0.45150106570675164

Ridge,Lasso

```
F11 - Jupyter Notebook
In [37]: | rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[37]: Ridge(alpha=10)
In [38]: |rr.score(x_test,y_test)
Out[38]: 0.45001875708548655
In [39]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[39]: Lasso(alpha=10)
In [40]: la.score(x_test,y_test)
Out[40]: -2.1809593200528e-05
         ElasticNet
In [41]:
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[41]: ElasticNet()
          [ 0.
                        0.
                                    0.
                                                 0.00157729 -0.
                                                                         0.
```

```
In [42]: |print(en.coef_)
                                                                                    ]
           0.
                        0.
                                   -0.
                                                 0.
                                                             0.
                                                                         0.
In [43]: |print(en.intercept_)
          -0.022243373742065482
In [44]: |print(en.predict(x_train))
         [ 0.26955547 -0.02066608 -0.01435692 ... 0.04715743 -0.02066608
           0.00614787]
In [45]: |print(en.score(x_train,y_train))
         0.43705840003491625
         print("Mean Absolytre Error:",metrics.mean_absolute_error(y_test,prediction))
In [46]:
         Mean Absolytre Error: 0.04175415033672663
```

In [47]: print("Mean Square Error:",metrics.mean_squared_error(y_test,prediction))

Mean Square Error: 0.008419570991725502

```
In [48]: print("Root Mean Square Error:",np.sqrt(metrics.mean_absolute_error(y_test,pre
```

RandomForest

```
rfc=RandomForestClassifier()
In [49]:
         rfc.fit(x_train,y_train)
Out[49]: RandomForestClassifier()
In [50]: parameters={'max_depth':[1,2,3,4,5],
                      'min_samples_leaf':[5,10,15,20,25],
                      'n estimators':[10,20,30,40,50]}
In [51]: grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="acc
         grid_search.fit(x_train,y_train)
Out[51]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 3, 4, 5],
                                   'min samples leaf': [5, 10, 15, 20, 25],
                                   'n estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
In [52]: grid search.best score
Out[52]: 0.9961812185384482
In [53]: rfc_best=grid_search.best_estimator_
```

```
plt.figure(figsize=(80,40))
In [54]:
                                                    plot_tree(rfc_best.estimators_[5],class_names=['Yes','No','Yes','No'],filled=Ti
Out[54]: [Text(2525.684210526316, 1956.96, 'X[3] <= 192.5\ngini = 0.032\nsamples = 730
                                                    7\nvalue = [11334, 188]\nclass = Yes'),
                                                         Text(1527.157894736842, 1522.0800000000002, 'X[4] <= 142.5\ngini = 0.006\nsa
                                                    mples = 7203\nvalue = [11314, 37]\nclass = Yes'),
                                                         Text(939.7894736842105, 1087.2, 'X[7] <= 30.5 \setminus = 0.004 \setminus = 7181

  | value = [11295, 20] \\
  | value = [11
                                                        Text(469.89473684210526, 652.3200000000002, 'X[5] <= 9.5\ngini = 0.001\nsamp
                                                    les = 7087\nvalue = [11163, 8]\nclass = Yes'),
                                                         Text(234.94736842105263, 217.44000000000005, 'gini = 0.01\nsamples = 1015\nv
                                                    alue = [1587, 8]\nclass = Yes'),
                                                         Text(704.8421052631579, 217.44000000000005, 'gini = 0.0\nsamples = 6072\nval
                                                    ue = [9576, 0]\nclass = Yes'),
                                                         Text(1409.6842105263158, 652.3200000000002, 'X[4] <= 116.5\ngini = 0.153\nsa
                                                    mples = 94\nvalue = [132, 12]\nclass = Yes'),
                                                         Text(1174.7368421052631, 217.44000000000005, 'gini = 0.065\nsamples = 75\nva
                                                    lue = [115, 4]\nclass = Yes'),
                                                         Text(1644.6315789473683, 217.44000000000005, 'gini = 0.435\nsamples = 19\nva
                                                    lue = [17, 8]\nclass = Yes'),
                                                         Text(2114.5263157894738, 1087.2, X[0] <= 3.15 \neq 0.498 = 22 = 22 = 0.498 = 22 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.498 = 0.4
                                                    value = [19, 17]\nclass = Yes'),
                                                         Text(1879.578947368421, 652.3200000000000, 'gini = 0.105\nsamples = 11\nvalu
                                                    e = [17, 1]\nclass = Yes'),
                                                         Text(2349.4736842105262, 652.3200000000002, 'gini = 0.198\nsamples = 11\nval
                                                    ue = [2, 16] \setminus nclass = No'),
                                                         Text(3524.2105263157896, 1522.0800000000000, X[1] <= 5.0 \neq 0.207 \Rightarrow 0.207
                                                    ples = 104\nvalue = [20, 151]\nclass = No'),
                                                         value = [19, 29]\nclass = No'),
                                                         Text(2819.3684210526317, 652.3200000000000, 'X[7] <= 34.5\ngini = 0.498\nsam
                                                    ples = 22\nvalue = [18, 16]\nclass = Yes'),
                                                         Text(2584.4210526315787, 217.44000000000005, 'gini = 0.408\nsamples = 11\nva
                                                    lue = [10, 4]\nclass = Yes'),
                                                         Text(3054.315789473684, 217.44000000000005, 'gini = 0.48\nsamples = 11\nvalu
                                                    e = [8, 12] \setminus class = No'),
                                                         Text(3289.2631578947367, 652.3200000000002, 'gini = 0.133\nsamples = 10\nval
                                                    ue = [1, 13] \setminus nclass = No'),
                                                         Text(3994.1052631578946, 1087.2, X[6] <= 76.5 \le 0.016 \le 0.
                                                    value = [1, 122]\nclass = No'),
                                                         Text(3759.157894736842, 652.3200000000000, 'gini = 0.062\nsamples = 18\nvalu
                                                    e = [1, 30] \setminus class = No'),
                                                         Text(4229.0526315789475, 652.3200000000002, 'gini = 0.0\nsamples = 54\nvalue
                                                    = [0, 92] \setminus nclass = No')
```


In []: Best model:RandomForest