計量経済 I: 定期試験

村澤 康友

2024年7月23日

注意:3 問とも解答すること.結果より思考過程を重視するので,途中計算等も必ず書くこと(部分点は大いに与えるが,結果のみの解答は0点とする).

- 1. (20点) 以下で定義される計量経済学の専門用語をそれぞれ書きなさい.
 - (a) $\Pr[D=1|X]=\alpha+\beta X$ とするモデル
 - (b) 各説明変数を全ての操作変数に回帰して回帰予測を求め、それらに被説明変数を回帰する手法
 - (c) 確率的な個別効果
 - (d) 所与の共変量の下で処置を受ける条件付き確率
- 2. (30点)回帰分析の実践に関する以下の問いに答えなさい.
 - (a) 降圧薬(血圧を下げる薬)を服用している人と服用していない人の血圧を単純に比較しても、薬の効果が正しく測定できないのはなぜか?
 - (b) 所得を都道府県コードに単回帰しても,都道府県別の平均所得が正しく求まらないのはなぜか?
 - (c) ダミー従属変数だと条件付き不均一分散が必ず発生するのはなぜか? (次頁に続く)

3. (50 点) 所得の決定要因の男女差を検証したい. そこで「対数年収」を「婚姻ダミー」「大卒ダミー」「父親の大卒ダミー」「兄弟姉妹数」で説明する重回帰モデルを推定し、「女性ダミー」で標本を分割してチョウ検定を実行した. 分析結果のコンピューター出力は以下の通りであった.

チョウ (Chow) 検定のための拡張された回帰

最小二乗法 (OLS), 観測: 1-4371

従属変数: lincome

	係数	τ	標準	誤差		t l í	直		p 値	
const	5.26102		0.0401772		130	130.9		.0000	***	
married	0.429204		0.0325094		13	13.20		.72e-039	***	
cograd	0.468932		0.	0.0333917		14	14.04		.53e-044	***
pacograd	-0.203370		0.	0.0334120		-6	-6.087		.25e-09	***
sibs	0.00814176		0.	0.0203973		0	0.3992		0.6898	
female	-0.0786864		0.	0.0552876		-1	-1.423		. 1547	
fe_married	-0.711	096	0.	04583	67	-15	.51	7	.09e-053	***
fe_cograd	0.125091		0.	0.0509749		2	2.454		.0142	**
fe_pacograd	0.022	0078	0.	04735	52	0	.4647	0	. 6421	
fe_sibs	-0.048	6882	0.	02748	11	-1	.772	0	.0765	*
Mean dependent	var 5	.312317		S.D.	depe	nden	t var	0	.854006	
Sum squared resid 2457.16		457.166		回帰の標準誤差			0	.750627		
R-squared		.229040	Adjusted R			R-sq	uared	0	0.227449	
F(9, 4361)		43.9540	P-value(F))		1	1.1e-238	

F(5, 4361) = 121.357 なお、p値(p-value) 0.0000

データを無作為標本とみなし,回帰モデルの定式化が正しいと仮定して,以下の問いに答えなさい.

- (a)「大卒プレミアム」とは何かを説明し、男女別の大卒プレミアムの推定値を単位も含めて正確に(丸めずに)答えなさい.
- (b)「大卒プレミアム」と同様に「結婚プレミアム/ペナルティ」も定義できる. 男女別の結婚プレミアム/ペナルティの推定値を単位も含めて正確に答えなさい.
- (c) 高卒独身の男女の所得格差の有無について,有意水準 5% の片側 t 検定を行う.検定統計量と片側 p 値の値を示し,検定の結果を説明しなさい.
- (d)「父親の大卒ダミー」「兄弟姉妹数」は、直接的には所得に影響しないと考えられる。両者を説明変数に含める目的と、両者が間接的に所得に影響すると考える理由を説明しなさい。
- (e) チョウ検定統計量は帰無仮説の下で F(5,4361) にしたがう.この 5 と 4361 は,それぞれどのよう に得られる数値か?この分析に即して具体的に説明しなさい.

解答例

- 1. 計量経済学の基本用語
 - (a) 線形確率モデル
 - (b) 2 段階最小 2 乗法 (2SLS)
 - (c) 変量効果
 - (d) 傾向スコア
- 2. 回帰分析の実践
 - (a) 薬の服用が無作為でないと、薬を服用している人(処置群)と服用していない人(対照群)の平均 血圧の差に「元々の平均血圧の差」と「薬の効果(平均処置効果)」が同時に含まれる. したがっ て処置群と対照群の平均値を単純に比較しても、平均処置効果を正しく測定できない.
 - ●「無作為でない」で5点、降圧薬以外の要因(欠落変数)の指摘で5点.
 - 薬の服用の内生性による「内生性バイアス」も OK.
 - 平均処置効果の測定が目的なので、「処置効果の異質性」のみはダメ.
 - (b) 単回帰は都道府県コード($1\sim47$)を量的変数として扱うので誤り.都道府県コードから都道府県 ダミーを作成して重回帰するのが正しい.
 - (c) ダミー従属変数は条件付きベルヌーイ分布にしたがう. ベルヌーイ分布の分散は成功確率の2次関数なので,成功確率が説明変数に依存すれば,分散も説明変数に依存する. すなわち条件付き不均一分散が発生する.
 - var(D|X) = Pr[D = 1|X](1 Pr[D = 1|X]) \mathcal{C} OK.
- 3. チョウ検定
 - (a) 大卒と大卒未満(高卒)の賃金格差を大卒プレミアムという。その推定値は男性 46.8932%,女性 46.8932%+12.5091%=59.4023%.
 - 大卒プレミアムの定義 2点, 男女別推定値各 4点.
 - 推定値の単位なしは各1点.
 - 男女が不明確なら0点.
 - (b) 結婚プレミアムの推定値は男性 42.9204%, 女性 42.9204% 71.1096% = -28.1892% (負のプレミアムはペナルティ).
 - 男女別推定値各5点.
 - 推定値の単位なしは各1点.
 - 男女が不明確なら 0 点.
 - (c) 女性ダミーの係数の t 値は -1.423, 片側 p 値は 0.1547/2 = 0.07735. p 値>有意水準より係数 0 (所得格差なし) の帰無仮説は棄却されない.
 - t 値と(片側) p 値各 4 点,検定結果 2 点.
 - 両側 p 値は 1 点.
 - (d)「父親の大卒ダミー」「兄弟姉妹数」は「能力」の代理変数として、共変量調整のために説明変数に 含める. 例えば前者は遺伝、後者は教育投資額を通じて能力に影響し、間接的に所得に影響すると 考えられる.
 - 説明変数に含める目的 5 点, 間接的に所得に影響する理由 5 点.
 - ●「父親の学歴」「兄弟姉妹数」が「本人の学歴」を通じて所得に与える影響は、「大卒ダミー」で

考慮されており、両変数を説明変数に加える理由にならない. 本人の学歴と無関係に両変数が 所得に影響する理由(例えば能力)が必要.

- (e) 5 は検定の対象となる係数の数 (female, fe_married, fe_cograd, fe_pacograd, fe_sibs). 4361 は標本の大きさ (4371) から推定した係数の数 (10) を引いて得られる.
 - 自由度の説明各5点.
 - 検定の対象となる係数を具体的に示さなければ1点.