A visual method for generating the separating isosurface of two classes of objects in two-dimensional space using Marching Squares

Shawn Halayka*

Friday 22nd April, 2022 12:28

Abstract

With regard to the separating isosurface of two classes of objects in two-dimensional space, the transition from nonlinear to linear is documented.

1 Introduction

Iron out the wrinkles by downsizing. Can also convolve the images, like blurring, which can be used to melt away higher-frequency detail.

^{*}Independent-sjhalayka@gmail.com

References

[1] James, et al. An Introduction to Statistical Learning with Applications in R. ISBN: 978-1-0716-1417-4

Figure 1: Nonlinear, radial, separation. Grid resolution is 64.

Figure 2: Bitmap image used as input to the Marching Squares algorithm. Image size is 64×64 .

Figure 3: Nonlinear, radial, separation. Grid resolution is 16.

Figure 4: Bitmap image used as input to the Marching Squares algorithm. Image size is 16×16 .

Figure 5: Linear separation. Grid resolution is 2.

Figure 6: Bitmap image used as input to the Marching Squares algorithm. Image size is 2x2.

Figure 7: Bitmap image used as input to the Marching Squares algorithm.

Figure 8: Nonlinear, radial, separation.

Figure 9: Blurred bitmap image used as input to the Marching Squares algorithm.

Figure 10: Nonlinear, radial, separation. Note that the blurring of the bitmap image melts away the higher-resolution detail.