

OL-OL LED DADIEREVIAU ARONEROD ED MORRENIO – ARONEDEAR AROTRERANDIO

AŞIGNATURA : ALGEBRA II

CÓDIGO : 240036

I. IDENTIFICACIÓN

1.1 CAMPUS : CHILLÁN

1.2 FACULTAD : CIENCIAS

1.3 UNIDAD : CIENCIAS BÁSICAS

1.4 CARRERA : INGENIERÍA CIVIL EN INFORMÁTICA

1.5 N° CRÉDITOS : 5

1.6 TOTAL DE HORAS: 06 HT: 04 HP: 02 HL:

1.7 PRERREQUISITOS DE LA ASIGNATURA:

1.7.1 ALGEBRA I 240013

II. DESCRIPCIÓN

En esta asignatura se analizan tópicos referentes a matrices, sistemas de ecuaciones lineales y su resolución en forma matricial, como asimismo la estructura de espacio vectorial, transformaciones lineales, valores y vectores propios y sus aplicaciones la diagonalización de matrices. También se estudian algunos métodos numéricos para resolver sistemas de ecuaciones lineales.

III. OBJETIVOS

a) Generales:

Entregar formación en matrices y en la teoría de espacios vectoriales de manera que el alumno adquiera.

b) Específicos

- Un manejo eficiente en las operaciones y propiedades de las matrices.
- Habilidad para plantear y resolver sistemas de ecuaciones.
- Una comprensión de los principios del Algebra Lineal para las aplicaciones como regresión lineal, programación lineal, etc.
- Habilidad en el manejo de software, como por ejemplo el Eureka, que le permita resolver sistemas de ecuaciones.
- Habilidad para aplicar sus conocimientos de programación, en la confección de pequeños programas que le permita solucionar algunos problemas de Algebra Lineal.

IV. UNIDADES PROGRAMÁTICAS

UNIDADES	HORAS
Unidad 1: Matrices y Sistemas de Ecuaciones.	22
Unidad 2: Espacios Vectoriales.	22
Unidad 3: Transformaciones Lineales y Matrices.	22
Unidad 4: Valores y Vectores Propios.	22
TOTAL:	96

V. CONTENIDO UNIDADES PROGRAMÁTICAS

UNIDADES	CONTENIDO
Unidad 1: Matrices y Sistemas	1. Definición de matriz. Motivación.
de Ecuaciones.	2. Matriz nula, idéntica, inversa, diagonal,
	triangular, simétrica, transpuesta, ortogonal.
	3. Operaciones con matrices: producto de Matriz
	por vector, producto de matriz por matriz,

	producto do Matriz por accolaros
	producto de Matriz por escalares. 4. Determinantes. Propiedades.
	5. Rango de una matriz. Cálculo de matrices
	inversas.
	6. Ecuaciones matriciales.
	7. Definiciones básicas sobre sistemas de
	ecuaciones lineales.
	8. Sistemas homogéneos y no homogéneos.
	9. Análisis sobre la existencia y número de
	soluciones de un sistema de ecuaciones.
	10. Algoritmo de Gauss y regla de Cramer.
Unidad 2: Espacios	1. Definición de espacio y subespacio vectorial.
Vectoriales.	Ejemplos clásicos
	2. Combinación lineal, dependencia e
	independencia lineal.
	3. Bases, coordenadas y dimensiones.
	4. Producto interior y vectorial. Propiedades.
Unidad 3: Transformaciones	1. Definición de ejemplos de transformaciones
Lineales y Matrices.	lineales.
	2. Núcleo, imagen, rango y nulidad.
	3. Transformación lineal inyectiva, su núcleo y
	la preservación de la independencia lineal.
	4. Correspondencia entre transformaciones lineales y matrices.
	5. Cambio de base y modificación de la Matriz
	asociada a una transformación lineal.
Unidad 4: Valores y Vectores	Definición de valor y vector propio de
Propios.	transformaciones lineales, motivación y
	ejemplo.
	Subespacio propio o invariante.
	3. Expresión matricial del problema de valores
	propios.
	4. Similaridad.
	5. Polinomio característico. Estudio de matrices
	definidas positivas.
	6. Independencia lineal de vectores propios,
	base de vectores propios, ortogonalidad. de
	subespacios propios, diagonalización de
	matrices.

VI. METODOLOGÍA

- Clases teóricas expositivas.
- Clases prácticas orientadas por el profesor.
- Talleres.
- Utilización de TIC.

VII. TIPOS DE EVALUACIÓN (PROCESO Y PRODUCTO)

- Certámenes
- Test o Pruebas

VIII. BIBLIOGRAFÍA:

a) Básica

- CARES, H. Algebra Lineal. Proyecto Docencia. 2000. Universidad del Bío-Bío.
- STRANG, G. Algebra Lineal y sus Aplicaciones. 1982. Fondo Educativo Interamericano.
- GROSSMAN S. Algebra Lineal. 1988. Grupo Editorial Ibero América.

b) Complementaria

- PAIGE, L./SWIFT, J. Elementos de Algebra Lineal. 1967. Editorial Revert.
- GARZA, E. Algebra Lineal y Aplicaciones a las Ciencias Sociales.
 1978. Editorial Limusa.
- FRALEIGH. J./BEANSEGARD R. Algebra Lineal. 1989. Addison Wesley Iberoamericana.
- NOBLE B./DANIEL S. Algebra Lineal Aplicada. 1989. Prentice-Hall Hispanoamérica S.A.
- HERSTEIN I.N./WINTER D. Algebra Lineal y Teoría de Matrices. 1989. Grupo Editorial Ibero América S.A.