Recommendation system for scientific tools and workflows

Master thesis

Anup Kumar

Adviser: Dr. Björn Grüning

Recommendation system

1. Find similar scientific tools

2. Predict tools for workflows

Find similar scientific tools

- Compute similarity among tools
- Recommend similar tools
- Replace a tool by its similar tool
- Provide more options for data processing

Approach

- 1. Collect tools metadata (~ 1,050 tools)
- 2. Three attributes input and output files, name and description and help text
- 3. Clean metadata stemming and stopwords
- 4. Learn vectors for tools
- 5. Find similarity among vectors similarity matrix
- 6. Combine similarity matrices

Tool, documents and tokens

Paragraph (document) vector

- Neural network approach [1]
- A dense vector for each paragraph
- Similar tools have similar vectors
- Encode variable length paragraphs
- Each tool has three paragraphs (documents)
- Input/output file types Bestmatch25 [2]

- 1. https://cs.stanford.edu/~quocle/paragraph_vector.pdf
- 2. https://dl.acm.org/citation.cfm?id=1704810

Similarity scores

- Jaccard index (input and output file types)
- Cosine angle (name and description and help text)
- Compute similarity matrix
- Three similarity matrices
- Simple average the matrices
- Better learn weights

$$j=rac{A\cap B}{A\cup B}$$

$$x \cdot y = |x| imes |y| imes \cos heta$$

Optimisation

- Gradient descent
- Learn weights on similarity scores

$$Error(w^k) = rac{1}{N} imes \sum_{j=1}^N [w^k imes SM^k - SM_{ideal})^2]_j$$

$$Gradient(w^k) = rac{\partial Error}{\partial w^k} = rac{2}{N} imes ((w^k imes SM^k - SM_{ideal}) \cdot SM^k)$$

$$w^k = w^k - \eta imes Gradient(w^k)$$

• Obtain a weighted average similarity matrix

Optimisation

Input and output (a)

1	0.34	0.65	0.44
0.34	1		
0.65		1	
0.44			1

Name and description (b)

1	0.76	0.63	0.85
0.76	1		***
0.63		1	
0.85	0.85		1

Help text (c)

1	0.06	0.1	0.17
0.06	1		
0.1		1	
0.17		•••	1

Similarity matrices

Distribution of weights

Summary

- Collect tools metadata
- Clean metadata
- Learn vector for each tool
- Get similarity matrix
- Combine similarity matrices

Conclusion and future work

- Paragraph vector
- Less data for name and description attribute
- No true similarity
- Create sets of similar tools
- Exclude low similarity values
- Run analysis on larger set of tools
- Compute similar tools using workflows

Predict tools in workflows

- Tough to assemble workflows
- Tools compatibility issues
- Loss of computation time
- Thousands of tools

Workflows

- Workflow a directed acyclic graph
- Paths in a workflow

Higher order dependency

- Not dependent only on immediate parent
- Dependent on all previous tools

Workflow preprocessing

No decomposition

Workflow preprocessing

Keep first tool fixed

- Classifier to learn on sequential data
- Multilabel, multiclass classification
- Recurrent neural network Gated recurrent units
- Learn long-range dependencies
- Two hidden layers, one embedding layer and one output layer
- Sigmoid output activation
- Cross-entropy loss
- Root mean square propagation (rmsprop) optimiser

Embedding and label vectors

Precision and prediction

- Absolute precision
- Compatible precision

Precision and loss for no decomposition of paths

Precision and loss for decomposition of train and test paths

Summary

- Workflows are directed acyclic graphs (193, 000 workflows)
- Extract paths from workflows
- Learn long-range dependencies
- Use recurrent neural network (gated recurrent units) as a classifier
- Multilabel, multiclass classification
- Absolute and compatible precision

Conclusion and future work

- Absolute precision ~90%, compatible precision ~99%
- Recurrent neural network suitable for sequential learning
- More workflows, better results
- Restore original distribution
- Decay prediction over time
- Integrate into Galaxy

Thank you for your attention Questions?

References

Stemming and stopwords

- Stemming converge all forms of a word into one basic form
- "Operate, operating, operates, operation, operative, operatives, operational" into "oper" [1]
- Stopwords "a, about, above, would, could ..." [2]

^{1. &}lt;a href="https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html">https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html

https://www.ranks.nl/stopwords

Bestmatch25 (bm25)

- Token frequency (tf)
- Document and inverted document frequency (idf)

$$egin{align} idf &= \log rac{N}{df} \ lpha &= (1-b) + rac{b \cdot |D|}{|D|_{avg}} \ tf^* &= tf \cdot rac{k+1}{k \cdot lpha + tf} \ bm25 &= tf^* \cdot idf \ \end{cases}$$

Bestmatch25 (bm25) scores

Tools/Tokens	Regress	Linear	Gap	Mapper	Perform
LinearRegression	5.22	4.1	0.0	0.0	3.84
LogisticRegression	3.54	0.0	0.0	0.0	2.61
Tophat2	0.0	0.0	1.47	1.47	0.0
Hisat	0.0	0.0	0.0	0.0	0.0

Latent Semantic Analysis

- Document-token matrix (*X*)
- Singular value decomposition

$$egin{aligned} X_{n imes m} &= U_{n imes n} \cdot S_{n imes m} \cdot V_{m imes m}^T \ U^T \cdot U &= I_{n imes n} \ V^T \cdot V &= I_{m imes m} \ X_{n imes m} &= U_k \cdot S_k \cdot V_k^T \end{aligned}$$

Paragraph vectors

- Softmax classifier
- Backpropagation
- Stochastic gradient descent
- Gensim*

$$rac{1}{T} \cdot \sum_{t=k}^{T-k} \log p(w_t|w_{t-k},\dots,w_{t+k})$$

Document-token and paragraph matrices

Optimisation

- Gradient descent
- Mean squared error
- Initial learning rate 0.05
- Decay learning rate
- Nesterov's accelerated gradient

$$update_{t+1} = \gamma \cdot update_t - \eta \cdot Gradient(w_t + \gamma \cdot update_t)$$

$$w_{t+1} = w_t + update_{t+1}$$

$$egin{aligned} h_t &= (1-z_t) imes h_{t-1} + z_t imes h_t^{'} \ &z_t &= \sigma(W_z imes x_t + U_z imes h_{t-1}) \ &r_t &= \sigma(W_r imes x_t + U_r imes h_{t-1}) \ &h_t^{'} &= anh(W imes x_t + U imes (r_t \odot h_{t-1}) \end{aligned}$$

 $p(x_T|x_1,x_2,\ldots,x_{T-1})$

- One embedding layer, two hidden layer and one output layer
- Recurrent layer activation exponential linear unit

$$f(x) = egin{cases} x, & ext{if } x > 0 \ lpha imes (e^x - 1), & ext{if } x \leq 0, lpha > 0 \end{cases}$$

• Output activation is sigmoid $f(x) = rac{1}{1 + e^{-x}}$

• Optimiser - Root mean square propagation (rmsprop)

$$MeanSquare(w,t) = 0.9 imes MeanSquare(w,t-1) + 0.1 imes (rac{\partial E}{\partial w}(t))^2$$

$$w_{t+1} = w_t - rac{\eta}{\sqrt{MeanSquare(w,t)+\epsilon}} imes rac{\partial E}{\partial w}(t)$$

Binary cross-entropy loss

$$loss_{mean} = -rac{1}{N}(\sum_{i=1}^{N}y_i imes log(p_i) + (1-y_i) imes log(1-p_i))$$

Precision and loss for various optimisers

Precision and loss using neural network with dense layers

Precision and loss using less data

