The Cooper Union Department of Electrical Engineering Prof. Fred L. Fontaine

ECE310 Digital Signal Processing

Problem Set V: Multidimensional Signals & Systems

November 18, 2019

1. Consider a medical CT (computerized tomography) scan which results in a set of twodimensional lateral image "slices" taken along a longitudinal axis. With reference to (x, y, z) coordinates, x, y are the lateral coordinates, and z the longitudinal coordinate. For simplicity assume the spacing between the slices has unit length.

We will model the resulting 3-D image as a signal $g(\vec{r}, n)$ with coordinate system $\vec{r} \in \mathbb{R}^2$ (the continuous lateral coordinates), and $n \in \mathbb{Z}$ (the discrete longitudinal coordinate). In what follows, do not separate \vec{r} into x, y coordinates, or join it with n to form a 3-D vector: keep \vec{r}, n separate. Let the corresponding frequency coordinates be denoted (\vec{k}_{xy}, k_z) , where $\vec{k}_{xy} = (k_x, k_y)$ is kept separate from k_z . Do not explicitly write x, y, k_x, k_y in any of the following,

- (a) Specify the domains of \vec{k}_{xy} and k_z , respectively.
- (b) Write the Fourier and inverse Fourier transforms.
- (c) State Parseval's theorem.
- (d) Write the formulas for convolution in the spatial and wavenumber domains.
- (e) Prove that convolution in the spatial domain leads to multiplication in the wavenumber domain.
- (f) Let $h(\vec{r}, n)$ denote the impulse response of an LTI system applied to such a 3-D object. Write the condition for stability as an explicit mathematical expression (i.e., do not simply write $h \in L^1$).

2. McClellan Transform Design Method for Multidimensional FIR Filters

The problem presents a technique for designing multidimensional FIR filters based on 1-D "prototypes". The approach described here can be used for 2-D, 3-D (or higher!) filters, but we will stay with a 2-D example. The idea is to start with a 1-D FIR filter "prototype", H(z), and make a substitution $z \leftarrow F(z_1, z_2)$ to obtain a 2-D filter:

$$G(z_1, z_2) = H(F(z_1, z_2))$$

The McClellan transform proposes the form of $F(\cdot)$ that we chose. Usually, the target filter G should be zero-phase with real coefficients, so we chose H to be zero-phase with real coefficients. The function F is also zero-phase with real coefficients, and it is usually designed to map "DC" to "DC" and high frequencies (say the points $(\omega_1, \omega_2) = (\pm \pi, \pm \pi)$) to $\omega = \pm \pi$. Thus, for example, if H is lowpass, so is G, if H is bandpass, so is G. In addition, F is often chosen to achieve certain desirable symmetries. For example, if F is nearly isotropic, so is G.

If we start with a zero-phase FIR filter with real coefficients, it can be expressed (in the frequency domain) as a polynomial¹ in $\cos \omega$. Specifically, if $h[\cdot]$ has support $\{-N \le n \le N\}$, h[n] = h[-n], then we can write:

$$H(\omega) = h_0 + 2h_1 \cos \omega + \dots + 2h_N \cos N\omega$$
$$= h_0 + 2\sum_{m=1}^{N} h_m T_m (\cos \omega)$$

where $T_m(\cdot)$ is the Chebyshev polynomial of degree m. Note that $H(\omega) = H(-\omega)$ is real. With the mapping $\cos \omega \longrightarrow (z+z^{-1})/2$ we get:

$$H(z) = h_0 + 2\sum_{m=1}^{N} h_m T_m \left(\frac{z + z^{-1}}{2}\right)$$
 (1)

Next, we make a substitution:

$$\cos \omega = F(\omega_1, \omega_2)$$

where $F(\omega_1, \omega_2)$ is a low degree polynomial in $\cos \omega_1, \cos \omega_2, \sin \omega_1, \sin \omega_2$. This results in $F(z_1, z_2)$ being a 2-D FIR filter (i.e., involving relatively low order positive and negative powers of z_1, z_2). For example, $\cos \omega_1 \longrightarrow \frac{z_1 + z_1^{-1}}{2}$, and $\sin \omega_1 \longrightarrow \frac{z_1 - z_1^{-1}}{2j}$, and similarly for $\cos \omega_2, \sin \omega_2$. Note that symmetries in F will ensure its final form will involve only real coefficients, however. This gives us the following formulas for the 2-D filter G in the frequency and transform domains:

$$G(\omega_1, \omega_2) = h_0 + 2 \sum_{m=1}^{N} h_m T_m (F(\omega_1, \omega_2))$$

 $G(z_1, z_2) = h_0 + 2 \sum_{m=1}^{N} h_m T_m (F(z_1, z_2))$

The function $F(\omega_1, \omega_2)$ is real and must satisfy:

$$-1 \le F(\omega_1, \omega_2) \le 1$$
 for $(\omega_1, \omega_2) \in [-\pi, \pi]^2$

Then, under the mapping $\cos \omega = F(\omega_1, \omega_2)$, for each $(\omega_1, \omega_2) \in [-\pi, \pi]^2$, there is a unique $\omega \in [0, \pi]$ to which it corresponds. Let us denote that as $\omega_{(\omega_1, \omega_2)}$. Then the value of the frequency response $G(\omega_1, \omega_2)$ at (ω_1, ω_2) is the value of the frequency response H at $\pm \omega_{(\omega_1, \omega_2)}$.

So here is some help with MATLAB. If x is a symbolic variable, T=chebyshev T(1:N,x) will create a vector of symbolic Chebyshev polynomials $T_m(x)$ for $1 \leq m \leq N$. Also, I have emailed you a MATLAB function sym2z2d that will map a symbolic 2D FIR transfer function $H(z_1, z_2)$ into the impulse response matrix $h[n_1, n_2]$; the script testsym2z2d gives an example of its use.

Let us take a specific example. Take:

$$F(\omega_1, \omega_2) = \frac{1}{2} \left(-1 + \cos \omega_1 + \cos \omega_2 + \cos \omega_1 \cdot \cos \omega_2 \right)$$

¹Since $\cos(m\omega) = T_m(\cos\omega)$ where T_m is the Chebyshev polynomial of degree m, the given formula is indeed a polynomial in $\cos\omega$.

- (a) Check the following:
 - 1. F has 8-fold symmetry, in that $F(\pm\omega_1, \pm\omega_2) = F(\pm\omega_2, \pm\omega_1)$ (i.e., replacing either ω_1 or ω_2 by its negative, or swapping them, does not change F). This is what leads to "approximately" isotropic behavior.
 - 2. Either $\omega_1 = \pi$ or $\omega_2 = \pi$ corresponds to $\omega = \pi$.
 - 3. $F(\omega_1, 0) = \cos \omega_1$, which means $G(\omega_1, 0) = H(\omega_1)$, i.e., the "slice" of G along the ω_1 axis is the same as the 1-D filter H, and similarly $G(0, \omega_2) = H(\omega_2)$.
- (b) Compute $F(\omega_1, \omega_2)$ on a 128x128 grid over $[-\pi, \pi]^2$, and graph a contour plot of it. Check that its values are bounded between -1 and 1.
- (c) Find $F(z_1, z_2)$ as a 2-D polynomial.
- (d) If the 1-D filter has support $\{-N \le n \le N\}$, what is the support of the 2-D filter designed using this method?
- (e) Write a MATLAB function that will do the following: given a zero-phase real 1-D FIR filter h[n] with support $\{-N \le n \le N\}$, it will use THIS SPECIFIC $F(\omega_1, \omega_2)$ (don't try to write a general purpose McClellan transform function!) and:
 - 1. Compute and graph the magnitude response of $H(\omega)$ over $[-\pi, \pi]$ (128 points equally spaced is fine). Use a linear (not decibel) scale.
 - 2. Compute and graph the magnitude response of $G(\omega_1, \omega_2)$ over $[-\pi, \pi]^2$. (a 128×128 grid). Also on a linear scale.
 - 3. Use the symbolic toolbox to find $G(z_1, z_2)$, and compute $g[n_1, n_2]$ (represented as a matrix). These two quantities should be returned by the function.
- (f) Apply your function to the following. Let h be a Hamming window of length 7, but centered so as to have support $\{-3 \le n \le 3\}$. This will serve as a lowpass prototype filter.
- (g) Now apply your function to the following bandpass filter: find the impulse response $h_0[n]$ of an ideal bandpass filter with $H_0(\omega) = 1$ if $\frac{\pi}{3} \leq \frac{2\pi}{3}$, and 0 otherwise (it will have the property $h_0[n] = h_0[-n]$); I expect you to use the exact formula (you can look it up); truncate it with your Hamming window function to obtain the length 7 prototype filter $h_{BP}[n]$.