

算法设计与分析

作业(二)

姓	名	熊恪峥	
学	号	22920202204622	
日	期	2022年2月28日	
学	院	信息学院	
课程名称		算法设计与分析	

作业(二)

$\overline{}$	_
-	_
-	`\.L

1	题2.2	3
2	题2.9	3
3	题3.1	4
4	题3.2	Ę
5	题3.4	5
6	题3.6	6
7	题3.8	7

1 题2.2

由max的定义

$$f(x) \le \max(f(x), g(x))$$
$$g(x) \le \max(f(x), g(x))$$

则

$$f(x) + g(x) \le 2\max(f(x), g(x))$$

则有

$$\max(f(x),g(x)) \ge \frac{f(x) + g(x)}{2}$$

即

$$\max(f(x), g(x)) = \Omega(f(x), g(x)) \tag{1}$$

由非负性

$$\max(f(x), g(x)) \le f(x) + g(x)$$

即

$$\max(f(x), g(x)) = O(f(x) + g(x)) \tag{2}$$

由(1)和(1)可得

$$\max(f(x), g(x)) = \Theta(f(x) + g(x))$$

2 题2.9

必要性: 由 $f(n) = \Theta(g(n))$ 得

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = k, 0 < k < \infty$$

则由

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}\neq 0$$

得 $f(n) = \Omega(g(n))$,由

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}\neq\infty$$

得f(n) = O(g(n))

充分性: 由f(n) = O(g(n))且 $f(n) = \Omega(g(n))$ 得

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \neq \infty$$

且

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \neq 0$$

则 $\exists k > 0$ 且 $k < \infty$ 使

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = k$$

則 $f(n) = \Theta(g(n))$

3 题3.1

正好雇佣一次,则第一位面试的必须是最好的面试者。则

 $P(排在第1位的面试者是最好的面试者) = \frac{1}{n}$

正好雇佣两次,则已知排在第一位的人一定会被雇佣,最好的面试者一定会被雇佣。因此,第一位不能 是最好的的面试者,否则只能被雇佣一次。则设事件

 E_i : 第一个来面试的人的排名是i

其中i满足

$$i \le n - 1$$

则

$$P(E_i) = \frac{1}{n}$$

若第一个人的排名是i,只雇佣两个人要求第2,3...,j-1个面试者排名都不如第一个面试者,即最好的人必须在排名是i+1,i+2...n-1,n的人中第一个面试。设最好的人面试的次序是j,则事件

F: 第2,3...,j-1个面试者排名都不如第一个面试者

则

$$\underbrace{i+1,i+2,\ldots,n-1,n}_{\Rightarrow P(F|E_i)=\frac{1}{n-i}}$$

注意到 E_1, \ldots, E_{n-1} 是独立事件,则由全概率公式

$$P(恰好有两个人被雇佣) = \sum_{i=1}^{n-1} P(F|E_i) \times P(E_i)$$
$$= \sum_{i=1}^{n-1} \frac{1}{n} \cdot \frac{1}{n-i}$$
$$= \frac{1}{n} \sum_{i=1}^{n-1} \frac{1}{i}$$
$$= O(\frac{\log n}{n})$$

正好雇佣n次,则所有候选人按排名单调递增进行面试。总共有n!种排列,则概率为

$$P(恰好有 n 个人被雇佣) = $\frac{1}{n!}$$$

4 题3.2

FindMax算法如算法1

算法 1 查找最大值,返回下标

1: **procedure** FINDMAX(A)

2: $max \leftarrow 1$

3: **for** $j \leftarrow 2$ to n **do**

4: **if** A[j] > A[max] **then**

5: $max \leftarrow j$ return max

则max在位置k被赋予最大值时的概率为

$$P = \frac{1}{n}$$

如果max = A[k]则第3行的比较次数为n-1次,则平均的比较次数为

$$T(n) = \sum_{k=2}^{n} \frac{1}{n} \cdot k$$
$$= \frac{1}{n} \cdot \frac{(2+n)(n-1)}{2}$$
$$= \Theta(n)$$

5 题3.4

设运算i的开销为 c_i

$$c_i = \begin{cases} i \ i \rightarrow 2 \text{的整数幂} \\ 1 \ \text{其它} \end{cases}$$

则总开销为

$$C = \sum_{i=1}^{n} c_i$$

$$= \sum_{i=1}^{\lfloor \log_2 n \rfloor} 2^i + (n - \lfloor \log_2 n \rfloor)$$

$$= 2(n-1) + (n - \lfloor \log_2 n \rfloor)$$

则平均一次运算的开销为

$$\overline{c_i} = \frac{C}{n} = 3 + \frac{1}{n} + \frac{\lfloor \log_2 n \rfloor}{n}$$

当n较大时

$$\overline{c_i} = \lim_{n \to \infty} \frac{C}{n} = 3 + \lim_{n \to \infty} \left(\frac{1}{n} + \frac{\lfloor \log_2 n \rfloor}{n} \right)$$

$$= 3$$

6 题3.6

已知实际代价 c_i 为

$$c_i = \begin{cases} i \ i \to 2 \text{的整数幂} \\ 1 \ \text{其它} \end{cases}$$

对每一个操作收费 $3(\hat{c_i}=3)$,并且

- 当i为2的整数幂,使用存款支付i
- 当i不是2的整数幂,支付费用\$1,并且增减存款\$2

可以得到表1

表格 1: 每次操作的代价与存款

i	代价	存款
1	1	2
2	2	3
3	1	5
4	4	4
5	1	6

由表1可知 $\hat{c_i} = 3$ 满足

$$C = 3n = \sum_{i=0}^{n} \hat{c_i} \ge \sum_{i=0}^{n} c_i$$

则平均一次的开销为

$$\overline{c_i} = \frac{C}{n} = 3$$

7 题3.8

已知实际代价 c_i 为

$$c_i = \begin{cases} i \ i \rightarrow 2 \text{ in } 2 \text{ in$$

根据势能法,有

$$\hat{c_i} = c_i + D_i - D_{i-1}$$

$$= \begin{cases} i + D_i - D_{i-1} \ i$$
为2的整数幂
$$1 + D_i - D_{i-1} \ i$$
不是2的整数幂

$$D_i - D_{i-1} = \begin{cases} 0 - 2(2^j - 2^{j-1} - 1) = -i + 2 & i > 2$$
的整数幂
$$2k - 2(k-1) = 2 & i < 2$$
 i 不是2的整数幂

则

$$\hat{c_i} = c_i + D_i - D_{i-1}$$

$$= \begin{cases} i - i + 2 = 2 & i > 2 \text{ be } 2$$
 $i > 2$ 的整数幂
$$1 + 2 = 3 & i < 2$$
 亦是2的整数幂

求和可得

$$C = \sum_{i=0}^{n} \hat{c}_i = \sum_{j=0}^{\lfloor \log_2 n \rfloor} 2 + 3(n - \lfloor \log_2 n \rfloor)$$
$$= 2\lceil \log_2 n \rceil + 3(n - \lceil \log_2 n \rceil)$$

平均一次的代价

$$\overline{c_i} = \frac{C}{n} = \frac{2\lfloor \log_2 n \rfloor + 3(n - \lfloor \log_2 n \rfloor)}{n}$$

$$\leq \lim_{n \to \infty} 3 + \frac{2\lfloor \log_2 n \rfloor}{n} + \frac{\lfloor \log_2 n \rfloor}{n}$$

$$= 3 + 0 + 0 = 3$$