Bartosz Antczak Instructor: Troy Vasiga March 7, 2017

# 16.1 More on 2-D Range Search

#### 16.1.1 Kd-trees

#### Search complexity

We define Q(n) to be the maximum number of regions in a kd-tree with n points that intersect a vertical (horizontal) line. Q(n) satisfies

$$Q(n) = 2Q(n/4) + O(1)$$

It solves that  $Q(n) = O(\sqrt{n})$ .

### 16.1.2 Range Trees

We have n points  $P = \{(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})\}$ . A range tree is a *tree of trees*. This tree is determined by the x-coordinates. We build it using the following steps:

- Build a balanced binary search tree  $\tau$  determined by the x-coordinates
- For every node  $v \in \tau$ , build a balanced binary search tree  $\tau_{assoc}(v)$  (associated structure of  $\tau$ ) determined by the y-coordinates of the nodes in the subtree of  $\tau$  with root node v

**Example 16.1.1.** A sample range tree. This tree is ordered by the x-coordinates (i.e., all x values less than the root's x-value are to the left, and the greater values to the right)



Now if we consider the node (4, 15), we will draw its associated tree  $(\tau_{(4,15)})$ :



In short, every node in a range tree has two sets of children that compose of two different trees ( $\tau$  and  $\tau_{assoc}$ ). One tree orders all of its children plus the root based on the order on the x and y coordinates respectively.

#### Range Tree Operations

- Search: trivially as in a binary search tree  $(O(\log n))$
- Insert: insert a point in  $\tau$  by x-coordinate. From the inserted leaf, walk back up to the root and insert the point in all associated trees  $\tau_{assoc}(v)$  of nodes v on path to the root (there are  $\log n$  trees and each insertion takes  $O(\log n)$ . So our running time is  $O(\log^2 n)$ )
- Delete: analogous to insertion

Note: rebalancing a range tree will be problematic! We must use another method, which we will not cover in this course.

The main operation which will concern us will be range search.

### 16.1.3 Range Search on a Range Tree

It is a two stage process. To perform a range search query  $R = [x_1, x_2] \times [y_1, y_2]$ :

- Perform a range search (on the x-coordinates) for the interval  $[x_1, x_2]$  in  $\tau$
- For every outside node, do nothing (O(1))
- For every "top" inside node v, perform a range search (on the y-coordinates) for the interval  $[y_1, y_2]$  in  $\tau_{assoc}(v)$ . During the range search of  $\tau_{assoc}(v)$ , do not check any x-coordinates (they are all within range) ( $\log n \times \log n = O(\log^2 n)$ )
- For every boundary node, test to see if the corresponding point is within the region  $R\left(O(\log n)\right)$

The running time of search if  $O(k + \log^2 n)$ . We need  $O(n \log n)$  space. Why do we need that much space? Intuitively, you'd think we would need  $O(n^2)$  space, but think about it: there are n nodes, and each node is in at most  $\log n$  trees, ergo  $O(n \log n)$ .  $\log^2 n < \sqrt{n}$ .

## 16.1.4 Higher Dimensions

For every node, there are a total of d trees (where d is the dimension).



Figure 16.1: A 4-dimensional tree

## 16.2 Tries and String Matching

I sense this will merge topics with CS 241 (and the first few weeks of CS 246 too).

### 16.2.1 Pattern Matching

Involves searching for a string in a large body of text. Say our text is in  $T[0, \dots, n-1]$  (the *haystack*), and our pattern is  $P[0, \dots, m-1]$  (the *needle*). These strings are over the alphabet  $\Sigma$ . We want to return the first i such that

$$P[j] = T[i+j] \quad (0 \le j \le m-1)$$

This is the first occurrence of P in T. If P does not occur in T, then we return FAIL. Some applications involving pattern matching include:

- Information Retrieval (text editors, search engines)
- Bioinformatics (your DNA is nothing more than C, G, T, A)
- Data Mining

Example 16.2.1. Pattern matching on a particular string

- T = "Where is he?"
- $P_1 =$  "he"
- $P_2 =$  "who"

The search for  $P_1$  returns 1 (index 1 in T), and the search for  $P_2$  returns **FAIL**.

#### **Some Definitions**

- **Prefix**: a substring T[0...i] of T
- Suffix: a substring T[i...n-1] of T

### 16.2.2 General Idea of Pattern Matching Algorithms

Pattern matching algorithms consist of guesses and checks:

- A guess is a position i such that P might start at T[i]
- A check of a guess is a single position j with  $0 \le j < m$  where we compare T[i+j] to P[j]. We must perform m checks of a single correct guess, but we may make (many) fewer checks of an incorrect guess

So how do we implement these algorithms?

### 16.2.3 Approach 1: brute force

We scan the entire string and check every index. We start at the 0th index, and check every single one until we match: Obviously, we can better than brute force. We will focus on four, more sophisticated algorithms. We'll dive into them starting in the next lecture.

T = abbbababbab, P = abba

| a  | b   | b | b | a | b | a | b | b | a | b |
|----|-----|---|---|---|---|---|---|---|---|---|
| a  | b   | b | a |   |   |   |   |   |   |   |
|    | a   |   |   |   |   |   |   |   |   |   |
|    |     | a |   |   |   |   |   |   |   |   |
|    |     |   | a |   |   |   |   |   |   |   |
|    |     |   |   | a | b | b |   |   |   |   |
|    |     |   |   |   | a |   |   |   |   |   |
| 21 | - 5 |   |   |   |   | а | b | b | а |   |