$$p(A \mid B) = \frac{p(B \mid A)p(A)}{p(B)}$$

$$p(A | B, C) = \frac{p(B | A, C)p(A | C)}{p(B | C)}$$

$$p(\theta \mid D, M) = \frac{p(D \mid \theta, M)p(\theta \mid M)}{p(D \mid M)}$$

Posterior = Likelihood Prior Evidence

What we design:

$$p(D \mid \theta, M), p(\theta \mid M)$$

What we design:

 $p(D \mid \theta, M), p(\theta \mid M)$

What we want:

 $p(\theta | D, M), p(D | M)$

What we design:

 $p(D \mid \theta, M), p(\theta \mid M)$

What we want:

 $p(\theta | D, M), p(D | M)$

It is straightforward to compute $p(D \mid \theta, M)p(\theta \mid M)$ anywhere in $\{\theta\}$, but that doesn't give us much insight

 $p(\theta | D, M)$ is a probability density function

$p(\theta | D, M)$ is a probability density function

One way to get insight into a PDF is by computing moments

e.g.,
$$\langle \theta \rangle = \int \theta \, p(\theta \, | \, D, M) \, d\theta$$

$p(\theta | D, M)$ is a probability density function

One way to get insight into a PDF is by computing moments

e.g.,
$$\langle \theta \rangle = \int \theta \, p(\theta \, | \, D, M) \, d\theta$$

Even if we wanted to look at just one parameter

$$p(\theta^i|D) = \int p(\theta|D,M) d\theta^j d\theta^k d\theta^l \dots - \neg$$

But if somebody gave you a set of θ values <u>drawn</u> from $p(\theta^i | D, M)$

$$\{\theta^i\} \rightarrow \{\theta^i_0, \theta^i_1, \theta^i_2, \dots, \theta^i_N\}$$

But if somebody gave you a set of θ values $\underline{\mathbf{drawn}}$ $\underline{\mathbf{from}} \ p(\theta^i | D, M)$

$$\{\theta^i\} \rightarrow \{\theta^i_0, \theta^i_1, \theta^i_2, \dots, \theta^i_N\}$$

we can compute moments etc. the old fashioned way

$$\langle \theta^i \rangle \simeq \frac{\sum_n \theta_n^i}{N}$$

We want a procedure for generating independent identically distributed (iid) samples from $p(\theta \mid D, M)$

We want a procedure for generating independent identically distributed (iid) samples from $p(\theta | D, M)$

```
i.e., a random number generator for p(\theta | D, M)
```

```
numpy random normal() returns i.i.d. samples from N[0,1] numpy random uniform() returns i.i.d. samples from U[0,1]
```

We want a procedure for generating independent identically distributed (iid) samples from $p(\theta | D, M)$

i.e., a random number generator for $p(\theta | D, M)$

```
numpy random normal() returns i.i.d. samples from N[0,1] numpy random uniform() returns i.i.d. samples from U[0,1]
```

Sets from RNGs are a subset of a more general class called Markovian processes

$$p(\theta_N | \theta_0, \theta_1, ..., \theta_{N-1}) = p(\theta_N | \theta_{N-1})$$

A class of algorithms for generating (approximately) i.i.d. samples (i.e., a *Markov chain*) from some <u>target</u> distribution

$$p(y \mid x)p(x) = p(x \mid y)p(y)$$

$$p(y | x)p(x) = p(x | y)p(y)$$
 This is just Bayes' theorem again!

$$p(y|x)p(x) = p(x|y)p(y)$$
 This is just Bayes' theorem again!

Probability of y following x in the Markov Chain. We don't know this.

$$p(y|x)p(x) = p(x|y)p(y)$$
 This is just Bayes' theorem again!

Probability of y following x in the Markov Chain. We don't know this.

Replace p(y|x) with something we can calculate: q(y|x)

$$p(y|x)p(x) = p(x|y)p(y)$$
 This is just Bayes' theorem again!

Probability of y following x in the Markov Chain. We don't know this.

Replace p(y|x) with something we can calculate: q(y|x)

Proposal Distribution e.g. $N[\mu, \sigma^2]$, $U[x_{min}, x_{max}]$

$$q(y \mid x)p(x) > q(x \mid y)p(y)$$

$$q(y \mid x)p(x) > q(x \mid y)p(y)$$

The chain transitions from x to y too often, and y to x too rarely

$$q(y \mid x)p(x) > q(x \mid y)p(y)$$

The chain transitions from x to y too often, and y to x too rarely

To recover detailed balance, reweight by <u>transition</u> probability $\alpha \in [0,1]$

$$q(y \mid x)p(x)\alpha(x, y) = q(x \mid y)p(y)\alpha(y, x)$$

$$q(y \mid x)p(x) > q(x \mid y)p(y)$$

The chain transitions from x to y too often, and y to x too rarely

To recover detailed balance, reweight by <u>transition</u> probability $\alpha \in [0,1]$

$$q(y \mid x)p(x)\alpha(x,y) = q(x \mid y)p(y)\alpha(y,x)$$

probability of transitioning from x to y

probability of transitioning from y to x

$$q(y \mid x)p(x) > q(x \mid y)p(y)$$

The chain transitions from x to y too often, and y to x too rarely

To recover detailed balance, reweight by <u>transition</u> probability $\alpha \in [0,1]$

$$q(y | x)p(x)\alpha(x, y) = q(x | y)p(y)\alpha(y, x)$$

$$q(y \mid x)p(x) > q(x \mid y)p(y)$$

The chain transitions from x to y too often, and y to x too rarely

To recover detailed balance, reweight by <u>transition</u> probability $\alpha \in [0,1]$

$$\alpha(x, y) = \frac{p(y)q(x \mid y)}{p(x)q(y \mid x)}$$

$$q(y \mid x)p(x) > q(x \mid y)p(y)$$

The chain transitions from x to y too often, and y to x too rarely

To recover detailed balance, reweight by <u>transition</u> <u>probability</u> $\alpha \in [0,1]$

$$\alpha(x, y) = \frac{p(y)q(x \mid y)}{p(x)q(y \mid x)} \equiv H(x, y)$$

$$q(y \mid x)p(x) > q(x \mid y)p(y)$$

The chain transitions from x to y too often, and y to x too rarely

To recover detailed balance, reweight by <u>transition</u> <u>probability</u> $\alpha \in [0,1]$

$$\alpha(x,y) = \frac{p(y)q(x \mid y)}{p(x)q(y \mid x)} \equiv \frac{H(x,y)}{\text{Hasting's Ratio}}$$

Now reverse the inequality

$$H(x, y) > 1$$
 but $\alpha(x, y) \in [0, 1]$

Now reverse the inequality

$$H(x, y) > 1$$
 but $\alpha(x, y) \in [0, 1]$

To generalize:

$$\alpha(x, y) = \min \left[1, H(x, y)\right]$$

• Start at some state x

- Start at some state x
- Propose new state y with q(y | x)

- Start at some state x
- Propose new state y with q(y | x)
- Accept with probability $\alpha(x, y) = \min |1, H(x, y)|$

- Start at some state x
- Propose new state y with q(y|x)
- Accept with probability $\alpha(x, y) = \min |1, H(x, y)|$
 - if ACCEPT state $\rightarrow y$
 - if REJECT state $\rightarrow \chi$

- Start at some state x
- Propose new state y with q(y | x)
 Accept with probability α(x, y) = min [1, H(x, y)]
 - if ACCEPT state $\rightarrow y$
 - if REJECT state $\rightarrow \chi$

Markov Chain Monte Carlo (MCMC):

Now map to our inference problem:

State: Model parameters θ

Target Distribution: Posterior $p(\theta | D, M)$

Markov Chain Monte Carlo (MCMC):

Now map to our inference problem:

State: Model parameters θ

Target Distribution: Posterior $p(\theta | D, M)$

$$\alpha(\theta, \theta') = \frac{p(D \mid \theta', M) \ p(\theta' \mid M) \ q(\theta \mid \theta')}{p(D \mid \theta, M) \ p(\theta \mid M) \ q(\theta' \mid \theta)}$$

$$\alpha(\theta, \theta') = \frac{p(D \mid \theta', M) \ p(\theta' \mid M) \ q(\theta \mid \theta')}{p(D \mid \theta, M) \ p(\theta \mid M) \ q(\theta' \mid \theta)}$$

$$\alpha(\theta, \theta') = \frac{p(D \mid \theta', M) \ p(\theta' \mid M) \ q(\theta \mid \theta')}{p(D \mid \theta, M) \ p(\theta \mid M) \ q(\theta' \mid \theta)}$$

#1. Symmetric proposal, uniform priors

$$\alpha(\theta, \theta') = \frac{p(D | \theta', M)}{p(D | \theta, M)}$$

$$\alpha(\theta, \theta') = \frac{p(D \mid \theta', M) \ p(\theta' \mid M) \ q(\theta \mid \theta')}{p(D \mid \theta, M) \ p(\theta \mid M) \ q(\theta' \mid \theta)}$$

#1. Symmetric proposal, uniform priors

$$\alpha(\theta, \theta') = \frac{p(D | \theta', M)}{p(D | \theta, M)}$$

 $p(D | \theta') > p(D | \theta)$ ACCEPT \rightarrow Always go "uphill"

$$\alpha(\theta, \theta') = \frac{p(D \mid \theta', M) \ p(\theta' \mid M) \ q(\theta \mid \theta')}{p(D \mid \theta, M) \ p(\theta \mid M) \ q(\theta' \mid \theta)}$$

#1. Symmetric proposal, uniform priors

$$\alpha(\theta, \theta') = \frac{p(D | \theta', M)}{p(D | \theta, M)}$$

 $p(D | \theta') > p(D | \theta)$ ACCEPT \rightarrow Always go "uphill"

 $p(D \mid \theta'') < p(D \mid \theta')$ ROLL THE DICE \rightarrow Go "downhill" w/probability $\alpha(\theta', \theta'')$

$$\alpha(\theta, \theta') = \frac{p(D \mid \theta', M) \ p(\theta' \mid M) \ q(\theta \mid \theta')}{p(D \mid \theta, M) \ p(\theta \mid M) \ q(\theta' \mid \theta)}$$

#1. Symmetric proposal, uniform priors

$$\alpha(\theta, \theta') = \frac{p(D | \theta', M)}{p(D | \theta, M)}$$

 $p(D | \theta') > p(D | \theta)$ ACCEPT \rightarrow Always go "uphill"

$$p(D \mid \theta'') < p(D \mid \theta')$$
 ROLL THE DICE \rightarrow Go "downhill" w/ probability $\alpha(\theta', \theta'')$

This guarantees that MCMCs eventually converge

$$\alpha(\theta, \theta') = \frac{p(D \mid \theta', M) \ p(\theta' \mid M) \ q(\theta \mid \theta')}{p(D \mid \theta, M) \ p(\theta \mid M) \ q(\theta' \mid \theta)}$$

#2. Proposal distribution matches target distribution

$$\alpha(\theta, \theta') = \frac{p(D \mid \theta', M) \ p(\theta' \mid M) \ q(\theta \mid \theta')}{p(D \mid \theta, M) \ p(\theta \mid M) \ q(\theta' \mid \theta)}$$

#2. Proposal distribution matches target distribution

$$\alpha(\theta, \theta') = \frac{p(D \mid \theta', M)q(\theta \mid \theta')}{p(D \mid \theta, M)q(\theta' \mid \theta)}, \ q(\theta \mid \theta') = p(\theta \mid D)$$

$$\alpha(\theta, \theta') = \frac{p(D \mid \theta', M) \ p(\theta' \mid M) \ q(\theta \mid \theta')}{p(D \mid \theta, M) \ p(\theta \mid M) \ q(\theta' \mid \theta)}$$

#2. Proposal distribution matches target distribution

$$\alpha(\theta, \theta') = \frac{p(D \mid \theta', M)q(\theta \mid \theta')}{p(D \mid \theta, M)q(\theta' \mid \theta)}, \ q(\theta \mid \theta') = p(\theta \mid D)$$

$$\alpha(\theta, \theta') = 1$$
 Everything gets accepted! Maximally efficient

$$\alpha(\theta, \theta') = \frac{p(D \mid \theta', M) \ p(\theta' \mid M) \ q(\theta \mid \theta')}{p(D \mid \theta, M) \ p(\theta \mid M) \ q(\theta' \mid \theta)}$$

#2. Proposal distribution matches target distribution

$$\alpha(\theta, \theta') = \frac{p(D \mid \theta', M)q(\theta \mid \theta')}{p(D \mid \theta, M)q(\theta' \mid \theta)}, \ q(\theta \mid \theta') = p(\theta \mid D)$$

$$\alpha(\theta, \theta') = 1$$
 Everything gets accepted! Maximally efficient

Designing good proposal distributions is where the work hides

$$\alpha(\theta, \theta') = \frac{p(D \mid \theta', M) \ p(\theta' \mid M) \ q(\theta \mid \theta')}{p(D \mid \theta, M) \ p(\theta \mid M) \ q(\theta' \mid \theta)}$$

#3. Hammer at the true value θ^{TRUTH}

$$\alpha(\theta, \theta') = \frac{p(D \mid \theta', M) \ p(\theta' \mid M) \ q(\theta \mid \theta')}{p(D \mid \theta, M) \ p(\theta \mid M) \ q(\theta' \mid \theta)}$$

#3. Hammer at the true value θ^{TRUTH}

$$q(\theta' | \theta) = \delta(\theta' - \theta^{\text{TRUTH}})$$

$$\alpha(\theta, \theta') = \frac{p(D \mid \theta', M) \ p(\theta' \mid M) \ q(\theta \mid \theta')}{p(D \mid \theta, M) \ p(\theta \mid M) \ q(\theta' \mid \theta)}$$

#3. Hammer at the true value θ^{TRUTH}

$$q(\theta' | \theta) = \delta(\theta' - \theta^{\text{TRUTH}})$$

$$\alpha(\theta, \theta^{\text{TRUTH}}) = \frac{p(\theta^{\text{TRUTH}}|D)}{p(\theta|D)} \frac{\delta(\theta - \theta^{\text{TRUTH}})}{\delta(0)} = 0?!?!$$

$$\alpha(\theta, \theta') = \frac{p(D \mid \theta', M) \ p(\theta' \mid M) \ q(\theta \mid \theta')}{p(D \mid \theta, M) \ p(\theta \mid M) \ q(\theta' \mid \theta)}$$

#3. Hammer at the true value θ^{TRUTH}

$$q(\theta' | \theta) = \delta(\theta' - \theta^{\text{TRUTH}})$$

$$\alpha(\theta, \theta^{\text{TRUTH}}) = \frac{p(\theta^{\text{TRUTH}} | D)}{p(\theta | D)} \frac{\delta(\theta - \theta^{\text{TRUTH}})}{\delta(0)} = 0?!?!$$

The proposal is a teenager: The harder you push the harder it pushes back.

$$\alpha(\theta, \theta') = \frac{p(D \mid \theta', M) \ p(\theta' \mid M) \ q(\theta \mid \theta')}{p(D \mid \theta, M) \ p(\theta \mid M) \ q(\theta' \mid \theta)}$$

Always go uphill, but try going down as well

Counterbalance how hard you're pushing

INTERMISSION

What about p(D|M)?

$$p(D | M) = \int d\theta \ p(D | \theta, M) p(\theta | M)$$

$$p(D | M) = \int d\theta \ p(D | \theta, M) p(\theta | M)$$

Large-dimensional

integral == HARD

Recast as 1D integral

Recast as 1D integral

$$Z = \int L \, dX$$
 Evidence
$$dX = p(\theta | M)d\theta$$
 Prior volume element Likelihood

$$X \equiv X(\lambda) = \int_{L(\theta) > \lambda} p(\theta \mid M) d\theta$$

Recast as 1D integral

$$Z = \int L \, dX$$
 Evidence
$$dX = p(\theta \mid M)d\theta$$
 Prior volume element Likelihood

$$X \equiv X(\lambda) = \int_{L(\theta) > \lambda} p(\theta \mid M) d\theta$$

Cumulant prior mass covering all likelihood values $> \lambda$

As λ increases, X goes from $1 \to 0$

 λ is small: likelihood is low -> prior

so,
$$Z = \int_0^1 L(X) \ dX$$

 λ is large: likelihood is high

$$Z=0, X_0=1, i=1$$

• Start w/ N points sampling prior $\theta_1, \ldots, \theta_N$

$$Z=0, X_0=1, i=1$$

• Record the lowest $L(\theta_n)$ as L_i

$$Z=0, X_0=1, i=1$$

- Record the lowest $L(\theta_n)$ as L_i
- $X_i \sim e^{-i/N}$, $Z = Z + L_i(X_{i-1} X_i)$

$$Z=0, X_0=1, i=1$$

- Record the lowest $L(\theta_n)$ as L_i
- $X_i \sim e^{-i/N}$, $Z = Z + L_i(X_{i-1} X_i)$
- Draw new θ_N from prior constrained by $L(\theta_n) > L_i$

$$Z=0, X_0=1, i=1$$

- Record the lowest $L(\theta_n)$ as L_i $X_i \sim e^{-i/N}, Z = Z + L_i(X_{i-1} X_i)$ Draw new θ_N from prior constrained by $L(\theta_n) > L_i$

• Start w/ N points sampling prior $\theta_1, \ldots, \theta_N$

$$Z=0, X_0=1, i=1$$

•
$$X_i \sim e^{-i/N}$$
, $Z = Z + L_i(X_{i-1} - X_i)$

Record the lowest $L(\theta_n)$ as L_i $X_i \sim e^{-i/N}, \ Z = Z + L_i(X_{i-1} - X_i)$ Draw new θ_N from prior constrained by $L(\theta_n) > L_i$

•
$$Z = Z + \sum_{i} L(\theta_n)X_i/N$$

Generate posterior samples by reweighting $\{\theta_n\}$

$$p_i = L_i(X_{i-1} - X_i)/Z$$

ENCORE

Other evidence calculators/estimates

Other sampling algorithms