2^k Factorial Designs

- □ 2² Factorial Designs
- Model
- Computation of Effects
- □ Sign Table Method
- □ Allocation of Variation
- ☐ General 2^k Factorial Designs

2^k Factorial Designs

- □ k factors, each at two levels.
- Easy to analyze.
- □ Helps in sorting out impact of factors.
- □ Good at the beginning of a study.
- □ Valid only if the effect is unidirectional. E.g., memory size, the number of disk drives

©2010 Rai Jain www.raiiain.con

2² Factorial Designs

□ Two factors, each at two levels.

Performance in MIPS

Cache	Memory Size				
Size	4M Bytes	16M Bytes			
1K	15	45			
2K	25	75			

$$x_A = \begin{vmatrix} -1 & \text{if 4M bytes memory} \\ 1 & \text{if 16M bytes memory} \end{vmatrix}$$
 $x_B = \begin{vmatrix} -1 & \text{if 1K bytes cache} \\ 1 & \text{if 2K bytes cache} \end{vmatrix}$

Model

$$y = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B$$

Observations:

$$15 = q_0 - q_A - q_B + q_{AB}$$

$$45 = q_0 + q_A - q_B - q_{AB}$$

$$25 = q_0 - q_A + q_B - q_{AB}$$

$$75 = q_0 + q_A + q_B + q_{AB}$$

Solution:

$$y = 40 + 20x_A + 10x_B + 5x_A x_B$$

Interpretation: Mean performance = 40 MIPS Effect of memory = 20 MIPS; Effect of cache = 10 MIPS Interaction between memory and cache = 5 MIPS.

Computation of Effects

Experiment	A	В	У
1	-1	-1	y_1
2	1	-1	y_2
3	-1	1	y_3
4	1	1	y_4

$$y = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B$$

$$y_1 = q_0 - q_A - q_B + q_{AB}$$

$$y_2 = q_0 + q_A - q_B - q_{AB}$$

$$y_3 = q_0 - q_A + q_B - q_{AB}$$

$$y_4 = q_0 + q_A + q_B + q_{AB}$$

©2010 Raj Jain www.rajjain.com

Computation of Effects (Cont)

Solution:

$$q_0 = \frac{1}{4}(y_1 + y_2 + y_3 + y_4)$$

$$q_A = \frac{1}{4}(-y_1 + y_2 - y_3 + y_4)$$

$$q_B = \frac{1}{4}(-y_1 - y_2 + y_3 + y_4)$$

$$q_{AB} = \frac{1}{4}(y_1 - y_2 - y_3 + y_4)$$

Notice that effects are linear combinations of responses.

Sum of the coefficients is zero \Rightarrow contrasts.

Computation of Effects (Cont)

Experiment	A	В	У
1	-1	-1	$\overline{y_1}$
2	1	-1	y_2
3	-1	1	y_3
4	1	1	y_4

$$q_A = \frac{1}{4}(-y_1 + y_2 - y_3 + y_4)$$

$$q_B = \frac{1}{4}(-y_1 - y_2 + y_3 + y_4)$$

Notice:

 $q_A = Column A \times Column y$

 $q_B = Column B \times Column y$

Sign Table Method

I	A	В	AB	У
1	-1	-1	1	15
1	1	-1	-1	45
1	-1	1	-1	25
1	1	1	1	75
160	80	40	20	Total
40	20	10	5	Total/4

Allocation of Variation

Importance of a factor = proportion of the *variation* explained

Sample Variance of
$$y = s_y^2 = \frac{\sum_{i=1}^{2^2} (y_i - \bar{y})^2}{2^2 - 1}$$

Total Variation of
$$y = SST = \sum_{i=1}^{2^2} (y_i - \bar{y})^2$$

For a 2^2 design:

$$SST = 2^2 q_A^2 + 2^2 q_B^2 + 2^2 q_{AB}^2 = SSA + SSB + SSAB$$

- Variation due to $A = SSA = 2^2 q_A^2$
- Variation due to B = SSB = $2^2 q_B^2$
- □ Variation due to interaction = SSAB = $2^2 q_{AB}^2$ □ Fraction explained by A = $\frac{SSA}{SST}$ Var

Variation ≠ Variance

Derivation

□ Model:

$$y_i = q_0 + q_A x_{Ai} + q_B x_{Bi} + q_{AB} x_{Ai} x_{Bi}$$

Notice

1. The sum of entries in each column is zero:

$$\sum_{i=1}^{4} x_{Ai} = 0; \sum_{i=1}^{4} x_{Bi} = 0; \sum_{i=1}^{4} x_{Ai} x_{Bi} = 0;$$

2. The sum of the squares of entries in each column is 4:

$$\sum_{i=1}^{4} x_{Ai}^{2} = 4$$

$$\sum_{i=1}^{4} x_{Bi}^{2} = 4$$

$$\sum_{i=1}^{4} (x_{Ai} x_{Bi})^2 = 4$$

Derivation (Cont)

3. The columns are orthogonal (inner product of any two columns is zero):

$$\sum_{i=1}^{4} x_{Ai} x_{Bi} = 0$$

$$\sum_{i=1}^{4} x_{Ai} \left(x_{Ai} x_{Bi} \right) = 0$$

$$\sum_{i=1}^{4} x_{Bi} \left(x_{Ai} x_{Bi} \right) = 0$$

Derivation (Cont)

 $lue{}$ Sample mean \bar{y}

$$= \frac{1}{4} \sum_{i=1}^{4} y_i$$

$$= \frac{1}{4} \sum_{i=1}^{4} (q_0 + q_A x_{Ai} + q_B x_{Bi} + q_{AB} x_{Ai} x_{Bi})$$

$$= \frac{1}{4} \sum_{i=1}^{4} q_0 + \frac{1}{4} q_A \sum_{i=1}^{4} x_{Ai}$$

$$+ q_B \frac{1}{4} \sum_{i=1}^{4} x_{Bi} + q_{AB} \frac{1}{4} \sum_{i=1}^{4} x_{Ai} x_{Bi}$$

$$= q_0$$

©2010 Rai Jain www.raijain.com

Derivation (Cont)

□ Variation of y

$$= \sum_{i=1}^{4} (y_i - \bar{y})^2$$

$$= \sum_{i=1}^{4} (q_A x_{Ai} + q_B x_{Bi} + q_{AB} x_{Ai} x_{Bi})^2$$

$$= \sum_{i=1}^{4} (q_A x_{Ai})^2 + \sum_{i=1}^{4} (q_B x_{Bi})^2$$

$$+ \sum_{i=1}^{4} (q_{AB} x_{Ai} x_{Bi})^2 + \text{Product terms}$$

$$= q_A^2 \sum_{i=1}^{4} (x_{Ai})^2 + q_B^2 \sum_{i=1}^{4} (x_{Bi})^2$$

$$+ q_{AB}^2 \sum_{i=1}^{4} (x_{Ai} x_{Bi})^2 + 0$$

$$= 4q_A^2 + 4q_B^2 + 4q_{AB}^2$$

Example 17.2

■ Memory-cache study:

$$\bar{y} = \frac{1}{4}(15 + 55 + 25 + 75) = 40$$
Total Variation
$$= \sum_{i=1}^{4} (y_i - \bar{y})^2$$

$$= (25^2 + 15^2 + 15^2 + 35^2)$$

$$= 2100$$

$$= 4 \times 20^2 + 4 \times 10^2 + 4 \times 5^2$$

□ Total variation= 2100

Variation due to Memory = 1600 (76%)

Variation due to cache = 400 (19%)

Variation due to interaction = 100 (5%)

Case Study 17.1: Interconnection Nets

- Memory interconnection networks: Omega and Crossbar.
- Memory reference patterns: *Random* and *Matrix*
- ☐ Fixed factors:
 - > Number of processors was fixed at 16.
 - > Queued requests were not buffered but blocked.
 - > Circuit switching instead of packet switching.
 - > Random arbitration instead of round robin.
 - > Infinite interleaving of memory \Rightarrow no memory bank contention.

2² Design for Interconnection Networks

Factors Used in the Interconnection Network Study

		Lev	el
Symbol	Factor	-1	1
A	Type of the network	Crossbar	Omega
В	Address Pattern Used	Random	Matrix

			Response	
A	В	Throughput T	90% Transit N	Response R
-1	-1	0.0641	3	1.655
1	-1	0.4220	5	2.378
-1	1	0.7922	2	1.262
1	1	0.4717	4	2.190

©2010 Raj Jain www.rajjain.com

Interconnection Networks Results

Para-	Mean Estimate			Variati	on Exp	plained
meter	T	N	R	Т	N	R
q_0	0.5725	3.5	1.871			
q_A	0.0595	-0.5	-0.145	17.2%	20%	10.9%
$\mid q_B \mid$	-0.1257	1.0	0.413	77.0%	80%	87.8%
q_{AB}	-0.0346	0.0	0.051	5.8%	0%	1.3%

- \square Average throughput = 0.5725
- \square Most effective factor = B = Reference pattern
 - \Rightarrow The address patterns chosen are very different.
- Reference pattern explains " 0.1257 (77%) of variation.
- \Box Effect of network type = 0.0595

Omega networks = Average + 0.0595

Crossbar networks = Average - 0.0595

□ Slight interaction (0.0346) between reference pattern and network type.

©2010 Raj Jain www.rajjain.com

General 2^k Factorial Designs

- □ k factors at two levels each.
 - 2^k experiments.
 - 2^k effects:

k main effects

$$\begin{pmatrix} k \\ 2 \end{pmatrix}$$
 two factor interactions $\begin{pmatrix} k \\ 3 \end{pmatrix}$ three factor interactions...

2^k Design Example

- □ Three factors in designing a machine:
 - > Cache size
 - > Memory size
 - > Number of processors

	Factor	Level -1	Level 1
A	Memory Size	4MB	16MB
В	Cache Size	1kB	2kB
\mathbf{C}	Number of Processors	1	2

©2010 Rai Jain www.rajjain.com

2^k Design Example (cont)

Cache	4M F	Bytes	16M	Bytes
Size	1 Proc	2 Proc	1 Proc	2 Proc
1K Byte	14	46	22	58
2K Byte	10	50	34	86

I	A	В	С	AB	AC	BC	ABC	y
1	-1	-1	-1	1	1	1	-1	14
1	1	-1	-1	-1	-1	1	1	22
1	-1	1	-1	-1	1	-1	1	10
1	1	1	-1	1	-1	-1	-1	34
1	-1	-1	1	1	-1	-1	1	46
1	1	-1	1	-1	1	-1	-1	58
1	-1	1	1	-1	-1	1	-1	50
1	1	1	1	1	1	1	1	86
320	80	40	160	40	16	24	9	Total
40	10	5	20	5	2	3	1	Total/8

©2010 Raj Jain www.rajjain.com

Analysis of 2^k Design

SST =
$$2^{3}(q_{A}^{2} + q_{B}^{2} + q_{C}^{2} + q_{AB}^{2} + q_{AC}^{2} + q_{BC}^{2} + q_{ABC}^{2})$$

= $8(10^{2} + 5^{2} + 20^{2} + 5^{2} + 2^{2} + 3^{2} + 1^{2})$
= $800 + 200 + 3200 + 200 + 32 + 72 + 8 = 4512$
= $18\% + 4\% + 71\% + 4\% + 1\% + 2\% + 0\%$
= 100%

■ Number of Processors (C) is the most important factor.

- □ 2^k design allows k factors to be studied at two levels each
- □ Can compute main effects and all multi-factors interactions
- Easy computation using sign table method
- Easy allocation of variation using squares of effects

Exercise 17.1

Analyze the 2^3 design:

	A_1		A_2	
	C_1 C_2		C_1	C_2
B_1	100	15	120	10
B_2	40	30	20	50

- > Quantify main effects and all interactions.
- > Quantify percentages of variation explained.
- > Sort the variables in the order of decreasing importance.

Homework

Modified Exercise 17.1 Analyze the 2³ design:

	A_1		A_2	
	C_1	C_2	C_1	C_2
B_1	110	15	120	10
B_2	60	30	40	50

- > Quantify main effects and all interactions.
- > Quantify percentages of variation explained.
- > Sort the variables in the order of decreasing importance.