Two Perspectives to Learning with Circuits

Motivation

Given a selection of sushi...

...and people's preferences...

...how can we model this as a probability distribution...

$$\arg \max p(1^{st} =?, 2^{nd} =?, 3^{rd} =?, 4^{th} = \bigcirc, 5^{th} = \bigcirc)$$

$$p((\mathbf{3}^{\mathsf{rd}} = \bigcirc) \to \mathbf{1}^{\mathsf{st}} = \bigcirc) \lor \mathbf{2}^{\mathsf{nd}} = \bigcirc)$$

...and extract meaningful queries from it?

Motivation

Given a selection of sushi...

...and people's preferences...

Marginals

Conditionals

MPE

Logical events

...how can we model this as a probability distribution...

 $p(1^{st} = \bigcirc, 3^{rd} = \bigcirc)$

$$p(2^{nd} = P(1^{st} = P(1^{st}$$

 $\arg \max p(1^{st} =?, 2^{nd} =?, 3^{rd} =?, 4^{th} = 3, 5^{th} = 3$

$$p((\mathbf{3}^{\mathsf{rd}} = \bigcirc) \to \mathbf{1}^{\mathsf{st}} = \bigcirc) \lor \mathbf{2}^{\mathsf{nd}} = \bigcirc)$$

...and extract meaningful queries from it?

Probabilistic Circuits – Inputs

$$p(x) \longleftarrow x$$

Probabilistic Circuits – Sums

Probabilistic Circuits – Smoothness

Definition 1 (Smoothness). *Every sum node child mentions the <u>same</u> variables.*

Probabilistic Circuits – Determinism

Definition 2 (Determinism).

At most one sum node child has a positive value.

Probabilistic Circuits – Products

Probabilistic Circuits – Decomposability

Definition 3 (Decomposability). *Every product node child mentions <u>different</u> variables.*

Probabilistic Circuits – Structured Decomposability

Definition 4 (Structured decomposability). *Every product node follows a vtree decomposition.*

Probabilistic Circuits – Tractability

Query	+Sm?	+Dec?	+Det?	+Str Dec?
Evidence	√	√	√	√
Marginals	X	√	\checkmark	√
Conditionals	X	/	\checkmark	√
MPE	X	X	/	√
Shannon Entropy	X	X	/	√
Rényi Entropy	X	X	/	√
Cross Entropy	X	X	X	√
Kullback-Leibler Div	X	X	X	√
Rényi's Alpha Div	X	X	X	√
Cauchy-Schwarz Div	X	X	X	√
Logical Events	X	X	X	√
Mutual Information	X	X	X	√

Probabilistic Circuits – Logic Circuits

$\overline{\Delta}$	B	\overline{C}	$\phi(\mathbf{x})$
			$\varphi(\mathbf{A})$
0	0	0	1
1	0	0	1
0	1	0	0
1	1	0	0
0	0	1	1
1	0	1	1
0	1	1	0
1	1	1	1

$$\phi(A, B, C) = (A \lor B) \land (\neg B \lor C)$$

Probabilistic Circuits – Support

\overline{A}	B	C	$\phi(\mathbf{x})$	$p(\mathbf{x})$
0	0	0	1	0.140
1	0	0	1	0.024
0	1	0	0	0.000
1	1	0	0	0.000
0	0	1	1	0.560
1	0	1	1	0.096
0	1	1	0	0.000
_1	1	1	1	0.180

$$\phi(A, B, C) = (A \vee B) \wedge (\neg B \vee C)$$

Learning Probabilistic Circuits – Where are we right now?

Name	Class	Time Complexity	# hyperparams	Accepts logic?	Sm?	Dec?	Det?	Str Dec?	$\{0,1\}$?	№?	ℝ?	Reference
LEARNSPN	DIV	$egin{cases} \mathcal{O}\left(nkmc ight) & ext{, if sum} \ \mathcal{O}\left(nm^3 ight) & ext{, if product} \end{cases}$	≥ 2	×	1	1	Х	X	1	✓	/	Gens and Domingos [2013]
ID-SPN	DIV	$ \begin{cases} \mathcal{O}\left(nkmc\right) & \text{, if sum} \\ \mathcal{O}\left(nm^3\right) & \text{, if product} \\ \mathcal{O}\left(ic(rn+m)\right) & \text{, if input} \end{cases} $	$\geq 2+3$	х	1	1	X	Х	✓	✓	X	Rooshenas and Lowd [2014]
PROMETHEUS	DIV	$\begin{cases} \mathcal{O}\left(nkmc\right) & \text{, if sum} \\ \mathcal{O}\left(m(\log m)^2\right) & \text{, if product} \end{cases}$	≥ 1	X	1	✓	X	×	1	✓	✓	Jaini et al. [2018]
LEARNPSDD	INCR	$ \begin{cases} \mathcal{O}\left(m^2\right) & \text{, top-down vtree} \\ \mathcal{O}\left(m^4\right) & \text{, bottom-up vtree} \\ \mathcal{O}\left(i \mathcal{C} ^2\right) & \text{, circuit structure} \end{cases} $	1	✓	1	1	✓	✓	1	Х	Х	Liang et al. [2017]
STRUDEL	INCR	$ \begin{cases} \mathcal{O}\left(m^2n\right) & \text{, CLT + vtree} \\ \mathcal{O}\left(i\left(\mathcal{C} n+m^2\right)\right) & \text{, circuit structure} \end{cases} $	1	✓	1	✓	1	✓	✓	X	X	Dang et al. [2020]
RAT-SPN	RAND	$\mathcal{O}\left(rd(s+l)\right)$	4	×	1	√	X	×	✓	✓	✓	Peharz et al. [2020]
XPC	RAND	$\mathcal{O}\left(i(t+kn)+ikm^2n\right)$	3	×	1	✓	1	✓	✓	X	X	Mauro et al. [2021]
SAMPLEPSDD	RAND	$\begin{cases} \mathcal{O}\left(m\right) & \text{, random vtree} \\ \mathcal{O}\left(kc\log c + \log_2^2 k\right) & \text{, per call} \end{cases}$	1	✓	1	1	✓	√	1	Х	X	Geh and Mauá [2021]
LEARNRP	RAND	$\begin{cases} \mathcal{O}\left(m^2\right) & \text{, top-down vtree} \\ \mathcal{O}\left(m^4\right) & \text{, bottom-up vtree} \\ \mathcal{O}\left(knm\right) & \text{, per call} \end{cases}$	0	×	1	√	X	✓	1	✓	1	To appear

A Logical Perspective

Motivation

Bob: 🥮

Carol:

If we assume

- n sushi types,
- k sized rankings with $k \leq n$,
- X_{ij} binary variables; i is sushi type, j is position in ranking;

then the total number of possible assignments of the $n \cdot k$ variables is 2^{nk} ...

...but many of these are zero probability assignments!

If we can embed total ranking constraints...

...we go down to <u>k!</u> total assignments!

Takeaway: models which exploit domain knowledge are much more efficient!

Example:

$$n = 3, k = 3$$

X_{11}	X_{12}	X_{13}	X_{21}	• • •	X_{33}	$p(\mathbf{x}) > 0$
0	0	0	0	0	0	0
1	0	0	0	0	0	0
0	1	0	0	0	0	0
1	1	0	0	0	0	0
0	0	1	0	0	0	0
:	:	:	÷	÷	:	:
0	1	1	1	1	1	0
1	1	1	1	1	1	0

Assignments: $2^{3\cdot 3} = 512$

Positive assignments: 3! = 6

Motivation

Existing approaches:

LEARNPSDD (Liang et al. [2017]):

- Requires initial logic circuit encoding the support...
- Scales poorly to complex formulae and/or high dimension...
- Costly whole circuit evaluation at every iteration...
- ✓ Very good performance!

STRUDEL (Dang et al. [2020]):

- ✓ Constructs an initial structure (from a CLT)!
- But does not encode constraints...
- Scales to high dimension!
- As long as the circuit doesn't get too big...

SAMPLEPSDD (Geh and Mauá [2021]):

- ✓ Scales to high dimension and complex formulae!
- ✓ Constructs a structure consistent with constraints!
- But does so by relaxing the formula...
- Performance varies on set bounds and vtree structure...

Common assumption: p_i are conjunctions of literals.

Problem: size of circuit is exponential in the size of p_i 's scope.

Solution: randomly sample a bounded number (k) of p_i

But: this violates structured decomposability:

 $\neg C \land D$ contains C, and $C \notin \mathbf{S}$ $\neg B \land \neg C \land D$ contains B and C, and $B, C \notin \mathbf{S}$

New solution: relax logical constraints ϕ

Now all s_i respect S

Apply **local transformations** for variety and size reduction

Evaluation: we sample 30 PSDDs and use 5 ensemble strategies:

- Likelihood weighting (LLW),
- Uniform weights,
- Expectation Maximization (EM),
- Stacking,
- ▼ Bayesian Model Combination (BMC);

comparing against STRUDEL, LEARNPSDD and LEARNSPN.

Datasets: we evaluate with 5 data + knowledge as logic constraints:

	Dataset	#vars	#train	ϕ 's size
\Rightarrow	LED	14	5000	23
\Rightarrow	LED + IMAGES	157	700	39899
	Sushi Ranking	100	3500	17413
	Sushi Top 5	10	3500	37
	Dota 2 Games	227	92650	1308

Our approach fares **better** with **fewer** data , yet remains **competitive** under **lots of data** .

Mattei et al. [2020], Kamishima [2003], Shen et al. [2017], Choi et al. [2015], Gens and Domingos [2013], Dang et al. [2020]

Evaluation: we sample 30 PSDDs and use 5 ensemble strategies:

- Likelihood weighting (LLW),
- Uniform weights,
- Expectation Maximization (EM),
- Stacking,
- ▼ Bayesian Model Combination (BMC);

comparing against STRUDEL, LEARNPSDD and LEARNSPN.

Datasets: we evaluate with 5 data + knowledge as logic constraints:

	Dataset	#vars	#train	ϕ 's size
	LED	14	5000	23
	LED + IMAGES	157	700	39899
\Rightarrow	Sushi Ranking	100	3500	17413
\Rightarrow	Sushi Top 5	10	3500	37
	Dota 2 Games	227	92650	1308

Our approach fares **better** with **fewer** data , yet remains **competitive** under **lots of data** .

Mattei et al. [2020], Kamishima [2003], Shen et al. [2017], Choi et al. [2015], Gens and Domingos [2013], Dang et al. [2020]

Evaluation: we sample 30 PSDDs and use 5 ensemble strategies:

- Likelihood weighting (LLW),
- Uniform weights,
- Expectation Maximization (EM),
- Stacking,
- ▼ Bayesian Model Combination (BMC);

comparing against STRUDEL, LEARNPSDD and LEARNSPN.

Datasets: we evaluate with 5 data + knowledge as logic constraints:

Dataset	#vars	#train	ϕ 's size
LED	14	5000	23
LED + IMAGES	157	700	39899
Sushi Ranking	100	3500	17413
Sushi Top 5	10	3500	37
Dota 2 Games	227	92650	1308

Our approach fares **better** with **fewer** data , yet remains **competitive** under **lots of data** .

Mattei et al. [2020], Kamishima [2003], Shen et al. [2017], Choi et al. [2015], Gens and Domingos [2013], Dang et al. [2020]

What do we gain from this?

Available queries:

- ✓ Probability of Evidence;
- ✓ Marginal Probability;
- ✓ Conditional Probability;
- ✓ Most Probable Explanation;
- ✓ Shannon Entropy;
- Cross Entropy;
- ☑ Kullback-Leibler Divergence;
- ☑ Rényi's Alpha Divergence;
- ☑ Cauchy-Schwarz Divergence;
- ✓ Probability of Logical Events;
- Mutual Information.

Support:

- ☑ Defineable as a logic formula;
- Consistent with a relaxation;
- ☑ Ensembles mitigate relaxation.

A	B	C	$p(\mathbf{x})$
0	0	0	0.1
0	1	0	0.1
1	0	0	0.2
1	0	1	0.6

$$\phi(A, B, C) = (A \to \neg B) \land (C \to A)$$

A Data Perspective

Motivation

Density Estimation Trees...

- ✓ ...are fast;
- ✓ ...are interpretable;
- ✓ ...are (somewhat) explainable;
- ✓ ...have extensive literature coverage;
- ...are not so expressive;
- ...only accept marginalization queries;
- ...are not so accurate;

...but are subsumed by circuits!

Learn DETs ⊂ Learn PCs?

Can we take advantage of known learning procedures in DETs and transplant them to more general circuits?

Random Projections

Random projections

If the data has *intrinsic dimension* d, then with constant probability the part of the data at level d or higher of the tree has average diameter less than half of the data.

Random Projections

If the data has *intrinsic dimension* d, then with constant probability the part of the data at level d or higher of the tree has average diameter less than half of the data.

LearnRP

LearnRP

$$\mathbf{A}(x, y, z) = \begin{bmatrix} x & y & z \end{bmatrix} \cdot \begin{bmatrix} -0.31 \\ -0.40 \\ 0.85 \end{bmatrix} + 1$$

LearnRP

