KAUNDA SQUARE SECONDARY SCHOOL NOVEMBER, 2022

11A CHEMISTRY 5070 HOLIDAY ASSIGNMENT

Section A and B

Answer all questions.

Write your answers in the spaces provided in the Question Paper.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 20.

The number of marks is given in brackets [] at the end of each question or part question.

BLANK PAGE

Section A

Answer all the questions in this section in the spaces provided.

The total mark for this section is 45.

1 Choose from the particles shown to answer the questions.

CH₄ C l^- Fe²⁺ H⁺

H₂S MnO₄⁻

NH₄₊ P₃₋

Each particle can be used once, more than once or not at all.

(a) Which particle has only eighteen protons?

[1]

(b) Which particle is used to test for a reducing agent?

[1]

(c) Which particle is an ion that contains only ten electrons?

[1]

[Total: 3]

2 The table shows some of the properties of the elements in Group III of the Periodic Table.

element	proton (atomic) number	atomic radius / nm	melting point / °C
В	5	0.080	2306
Al	13	0.125	660
Ga	31	0.125	30
In	49	0.150	157
ТΙ	81	0.155	304
Nh	113		

(a) Nihonium, Nh, has only recently been discovered.

It has not been possible to measure its atomic radius and melting point because it is too radioactive.

	(i)	Estimate the atomic radius of Nh.	
		nm [1]
	(ii)	Explain, using data from the table, why it is difficult to estimate the melting point nihonium.	of
		[
(b)	Boron	has a giant covalent structure.	
Ε	xplain w	hy boron has a high melting point.	
		[
(c)	Alumin	nium is produced by the electrolysis of molten aluminium oxide.	
Α	luminiur	m oxide contains A l^{3+} and O $^{2-}$ ions.	
	(i)	Describe the composition of the electrolyte used in this electrolysis.	11
	(ii)	Name the material used for the electrodes in this electrolysis.	
	(iii)	Construct equations for the reactions taking place at the:	_
	Ū	tive electrode	
	posit	ive electrode. [[2]
(d)	Alumin	nium reacts with aqueous copper(II) chloride in a redox reaction.	
		$2Al(s) + 3Cu^{2+}(aq) \rightarrow 2Al^{3+}(aq) + 3Cu(s)$	
V	√hich pa	rticle is oxidised?	
Е	xplain y	our answer.	
		[1]
(e)	Explair	n why a piece of aluminium in water does not react.	

•••			
			[2]
(f)	Alumin	ium chloride is a soluble salt.	
De	escribe	how a pure sample of aluminium chloride crystals can be made from aluminiu	m.
			[4
			al: 14
Γitaniu	m, Ti, is	s a metallic element.	
(a)	Sugges	st one physical property of titanium.	
(b)		m(IV) chloride, TiC $\it l$ $\it l$, is a colourless liquid that has a low boiling point.	[1
	(i)	Suggest the structure and bonding in TiC $\it l_4$.	
		$\label{eq:continuous} \begin{tabular}{ll} Titanium(IV) chloride reacts with water to form hydrochloric acid and a precondition of titanium(IV) oxide. \end{tabular}$	_
	Const	truct the equation, including state symbols, for this reaction.	
(c)	 Titaniu	m is made by reducing TiC l_4 using magnesium.	[2]

© UCLES 2019 5070/22/M/J/19

$TiCl_4 + 2Mg \rightarrow 2MgCl_2 + Ti$ Calculate

the mass of titanium made from 1000 g of Ti	Cl 4.
---	-------

The reaction has a 90% percentage yield.

Give the answer to **two** significant figures.

[The relative atomic mass of titanium, Ti, is 48.]

mass of	Ti g [3]
	[Total: 7]
Petroleum (crude oil) is an important source of many ch	nemicals.

(a)	Outline the	separation	of	petroleum	(crude	oil)	into	fractions	such	as	petrol,	diesel	and
	bitumen.												

 	 [3]

(c) Long chain hydrocarbons can be cracked to produce hydrogen.

.....[1]

(b) State one large scale use of bitumen.

	(1)	A long chain hydrocarbon has the molecular formula C ₁₂ H ₂₆ .	
	Expla	ain how the formula shows that this hydrocarbon is an alkane.	
			[1]
	(ii)	Construct an equation to show the cracking of $C_{12}H_{26}$ to make hydrogen and least one alkene.	at
	 (d) Hydro	gen and petrol are both used as fuels.	[יי]
	State and	d explain one advantage of using hydrogen rather than petrol as a fuel.	
		[Total:	_
5 W	is a compo	ound containing carbon, hydrogen and oxygen.	
	(a) W con	ntains 57.1% carbon and 4.8% hydrogen by mass.	
Calcul	ate the em	pirical formula of W . empirical formula[3]	
	(b) A 0.19	94 g sample of W reacts completely with 18.5 cm ³ of 0.250 mol / dm ³ KOH.	
	One mole	e of W reacts with three moles of KOH.	
	Calculate	e the relative formula mass of W .	

rela	ative for	mula ma	ass[3] (c) Deduce the molecular formula	of W .
				[1]
			[To	tal: 7]
6	Drinkiı	ng water	is obtained by purification of sea water and river water.	
	(a)	Desalir	nation is used to convert sea water into drinking water.	
	V	/hat is d	esalination?	
				[1]
	(b)	River v	vater is often polluted by phosphates and nitrates.	
		(i)	Give the source of these two pollutants.	
				[1]
		(ii)	Name one environmental effect caused by these pollutants in river water.	
				[1]
	(c)	River v	vater can be converted into drinking water.	
		(i)	Describe how insoluble solids are removed from river water.	
				[1]
		(ii)	Name the substance used to remove bad tastes and odours from river water	r.
				[1]
		(iii)	Name the substance used to disinfect river water so it is safe to drink.	
				[1]
			[To	tal: 6]

Section B

Answer three questions from this section in the spaces provided.

The total mark for this section is 30.

 $\label{eq:total_problem} \textbf{7} \quad \text{Ammonium iodide, NH_4I, is a white solid which decomposes when heated.}$

$$NH_4I(s) \longrightarrow NH_3(g) + HI(g)$$

	uiba bannan da kanan da da da kanan da da da kanan da da
Desc	cribe how you would know when all the ammonium iodide has decomposed.
	Calculate the volume of gas, measured at room temperature and pressure, forme g of ammonium iodide is completely decomposed.
of gov	
oi ya:	s
	[3] (c) Describe a chemical test for the iod
test	
test	
test	
test obse	rvation
test obse	Aqueous ammonium iodide reacts with aqueous bromine.
test obse	rvation
test obse	Aqueous ammonium iodide reacts with aqueous bromine.
test obse	Aqueous ammonium iodide reacts with aqueous bromine. Struct the ionic equation, including state symbols, for this reaction.
(d) Cons (e)	Aqueous ammonium iodide reacts with aqueous bromine. Struct the ionic equation, including state symbols, for this reaction.
test obse (d) Cons (e) Aque	Aqueous ammonium iodide reacts with aqueous bromine. Struct the ionic equation, including state symbols, for this reaction. Solid ammonium iodide does not conduct electricity.
test obse	Aqueous ammonium iodide reacts with aqueous bromine. Struct the ionic equation, including state symbols, for this reaction. Solid ammonium iodide does not conduct electricity.
test obse	Aqueous ammonium iodide reacts with aqueous bromine. Struct the ionic equation, including state symbols, for this reaction. Solid ammonium iodide does not conduct electricity.

[Total: 10]

8	Nitrogen	monoxide	reacts with	oxvaen t	o form	nitrogen o	dioxide.
-				, 5,			

If this reaction is investigated in a closed system, a dynamic equilibrium is established.

$$2NO(g) \ + \ O_2(g) \ \Longleftrightarrow \ 2NO_2(g)$$

(a)	Explain why it is important to have a closed system to establish a dynamic equilibrium	١.
(b)	The pressure of the equilibrium mixture is decreased.	
The	temperature of the equilibrium mixture is kept constant.	
mixt	Predict and explain what will happen, if anything, to the composition of the equilibriuure.	ım
pred	liction	
exp	anation	
•••••		[2]
(c)	The temperature of the equilibrium mixture is decreased.	
The	pressure of the equilibrium mixture is kept constant.	
	(i) Suggest why the position of equilibrium moves to the right.	[1]
	(ii) Explain why the rate of reaction decreases.	
(d)	Draw the 'dot-and-cross' diagram for a molecule of O_2 .	[2]

Only include the outer shell electrons.

	[1]
(e)	Nitrogen dioxide reacts with water to form nitric acid, HNO ₃ , and nitrous acid, HNO ₂ .
Con	struct an equation for this reaction.
	[1]
(f)	Nitric acid is a strong acid and nitrous acid is a weak acid.
Des	cribe the difference between a strong acid and a weak acid.
•••••	
	[2]
	[2]
	[Total: 10]

- **9** A sample of waste includes plastic and copper.
 - (a) One of the plastics is the addition polymer poly(chloroethene).

Complete the equation to show the formation of poly(chloroethene).

[2]

- (b) Plastic waste is disposed of by combustion.
 - (i) Complete the equation to show the complete combustion of poly(chloroethene).

The empirical formula of poly(chloroethene), C₂H₃Cl, is used in the equation.

		C_2H_3Cl + O_2 \rightarrow CO_2 + H_2O + HCl	[1]
	(ii)	Suggest why the combustion of poly(chloroethene) will contribute to the formatio acid rain.	
(c) Some	e wa	ste plastics, such as nylon, are polyamides.	
	(i)	Give one large scale use of nylon.	
			. [1]
	(ii)	The structure shows a monomer that can be used to make a polyamide.	
		CH_3 O $ - C - C$ H_2N	
		H ₂ N I \ OH H	
I	Drav	v the partial structure of this polyamide. Show two repeat units.	
			[1]
(d)	Col	oper waste is melted and then cooled to make new objects.	
	-	article theory to describe the changes in movement and arrangement of the participation iquid cools to become a solid.	cles

		[2]
	(e) Explain, in terms of structure and bonding, why copper has a high melting point.	
		[2] tal: 10]
10	The structures of cyclobutanol and butanoic acid are shown.	
	H—C—C—OH H—C—C—H H—H H—H H—H H—H H—H H—H H—H H—	
	cyclobutanol butanoic acid	
	(a) Explain why cyclobutanol is not a hydrocarbon.	
		[1]
	(b) Explain why butanoic acid is a saturated compound.	
	(c) Describe a chemical test that can distinguish cyclobutanol from butanoic acid.	[1]
	test	
	result for cyclobutanol	
	result for butanoic acid	

(d) (Calculate	the i	percentage	hν	mass	of	carbon	in	cyclobutai	nol

percentage by mass[2]

(e) Ethanol can be converted into methyl ethanoate in a two-step process.

(i) Identify compound X.

[1]		
	Identify the reagent used in step 1.	(ii)
[1]		
	Identify the reagent used in step 2.	(iii)
[1]		
[Total: 10]		