A CPU FOR EASY **TECHNOLOGY MIGRATION** Dr. Richard Herveille 3rd RISC-V Workshop

Roa Logic

- Privately held and financed consultancy firm
- Specialized in custom IP and FPGA migrations
- Incorporated in 2014
- Strong industry basis
 - Founded by one of the original OpenCores members
 - Engaged in FPGA migrations since 2003.
 - Largely academic team

Freedom of Design

- Different hardware platforms are suited for different needs
 - FPGAs: prototyping, low volume, no NRE, fast TTM
 - Platform ASIC: high performance, low power, fast TTM
 - Std.cell ASICs: highest performance, lowest power, lowest unit price
- Market conditions dictate freely migrating between these technologies is highly desirable
 - E.g. price pressure, power reduction, ASIC EOL, security
- FPGA Vendor specific macros limit the migration to another vendor/technology.
 - Most notably FPGA vendor provided CPUs (e.g. Nios, Microblaze) restrict their usage in other technologies.

Why Migrate FPGAs to ASICs?

- 4P's
 - Price
 - Performance
 - Power
 - Protection
 - IP theft by copying bitstream
 - Security breach by snooping bitstream or hijacking FPGA
 - SEU/MBU sensitivity
 - Platform availability

Alternatives Study

- Many proprietary and open source alternatives
 - ARM, MIPS, ARC
 - OpenRisc, Leon 2/3
 - OpenSparc, T1
- All have limitations on usability
 - High NREs, limiting ROI
 - Technology applicability/availability
 - Outdated ISAs
 - Potential legal issues due to (L)GPL licensing

Why RISC-V

- CPU requirements
 - Royalty free
 - Target technology independent
 - Equally well suited for FPGA and ASIC
 - Low resource requirements
 - Flexible instruction/feature set
 - Support for multiple bus interfaces
- The RISC-V ISA allows us to fulfill all of the above

RV11

- Roa Logic's RVI32/64 implementation
 - RV11 = in-order, single issue, single thread
 - RV22 = in-order, dual issue, dual thread
- 'Folded' optimizing, 5 stage Pipeline
 - Some classic RISC stages are folded together for performance reasons
 - ID stage decides if instruction sequence can be optimized.
 Improves IPC by hiding stalls
- Designed for FPGA to ASIC migration
 - Technology independent
 - Parameters allows trade offs between features, ISA extensions, and performance vs area
 - Flexible bus interface allows virtual drop-in into any existing system

Architecture

Customer Case Study

- Replace NIOS-II 32-bit Control Plane CPU
 - >100DMIPS
 - No MMU, No Caches
 - AHB3 Interfaces
- Replaced NIOS in the FPGA
 - HW/SW development, test and debug
- Migration to eASIC's Nextreme-3 Platform ASIC

Replacement Flow

- Parallel flow
 - Verify & Debug on FPGA
 - Implement Platform ASIC
- Once FPGA verification completed Platform ASIC can be taped-out

Implementation Results

	Logic Cells	Flipflops	bRAM	Fmax	Power
Cyclone-V	1923 ALMs	1561	4	114MHz	556mW
Nextreme-3	7924 eCells	2386	1	649MHz	170mW
64bit	14721 eCells	4249	1	578MHz	221mW

- Cyclone-V was customer's current FPGA
- Nextreme-3 chosen for price, performance, and power
 - 5.7x performance increase while reducing power by 70%
- ToDo:
 - Nextreme implements register file in flip flops

Summary

- Implemented RISC-V in a technology independent manner
- Successfully replaced existing FPGA CPU
- Successfully migrated FPGA to Platform ASIC thereby improving CPU performance by 5x and power by 70%
- Next steps
 - Improve resource utilization
 - Increase extensions offerings
 - Add multi-threading, multi-issue

