4강. Regression

2023.01.05.

양희철 hcyang@cnu.ac.kr

- 쌍으로 관찰된 연속형 변수들 사이의 관계에 있어서 한 변수를 원인으로 하고 다른 변수들을 결과 로 하는 분석
- 독립변수와 종속변수 사이 선형식을 구하고 그 식을 이용하여 변수값들이 주어졌을 때 종속변수의 변수 값을 예측하는 분석방법
- 독립변수의 개수에 따라 단순 선형과 다중 선형으로 구분

- Example: house pricing prediction
 - Problem formulation
 - $x^{(i)}$: input variables or input features (ex. living area)
 - $y^{(i)}$: an output or a target variable (ex. price)
 - $(x^{(i)}, y^{(i)})$: a training example
 - $\{(x^{(i)}, y^{(i)}); i = 1, ..., m\}$: a training set

- Example: house pricing prediction
 - Linear model
 - $\hat{y}^{(i)} = w_1 x^{(i)} + w_0$: linear model with two parameters w_1 and w_0
 - Prediction error
 - $e^{(i)} = y^{(i)} (w_1 x^{(i)} + w_0)$ for i = 1, ..., m.
 - $e = e^{(1)} + \dots + e^{(m)}$
 - We determine w_1 and w_0 which minimize e.

- Example: house pricing prediction
 - Portland의 living area와 price간의 관계

		nousing prices
Living area (feet ²)	Price (1000\$s)	1000-
2104	400	600 -
1600	330	700
2400	369	6 ecc -
1416	232	8. 400-
3000	540	300 -
:	:	100 -
		500 1000 1600 2000 2600 3000 3600 4000 4500

Linear regression

- Example: house pricing prediction
 - We can solve it by least squares (LS) method
 - Linear model

$$\hat{y} = h_{\mathbf{w}}(\mathbf{x}) = \sum_{k=0}^{1} w_k x_k = \mathbf{w}^T \mathbf{x} (x_0 = 1)$$

Mean square error

$$J(\mathbf{w}) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\mathbf{w}}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})^{2}$$

• To minimize mean square error, solve $\frac{\partial}{\partial w}J(w)=0$ for w. (Hard to solve!)

- Multivariable linear regression
 - 변수가 2개 이상인 경우

$$h_{\boldsymbol{w}}(x) = \sum_{i=1}^{n} w_i x_i = \boldsymbol{w}^T \boldsymbol{x}$$

Polynomial regression

- Regression with high-order polynomials
 - $\hat{y} = h_{\mathbf{w}}(\mathbf{x}) = \sum_{j=0}^{M} w_j x^j$

Polynomial regression

- Regression with high-order polynomials
 - $\hat{y} = h_{\mathbf{w}}(\mathbf{x}) = \sum_{j=0}^{M} w_j x^j$

- Practice 1: linear regression
 - 키와 몸무게 데이터에 대한 선형 회귀 분석

```
import numpy as np
from sklearn import linear_model # scikit-learn 모듈을 가져온다

regr = linear_model.LinearRegression()

X = [[164], [179], [162], [170]] # 다중회귀에도 사용하도록 함
y = [53, 63, 55, 59] # y = f(X)의 결과

regr.fit(X, y)
```

- Practice 1: linear regression
 - 키와 몸무게 데이터에 대한 선형 회귀 분석

```
coef = regr.coef_ # 직선의 기울기
intercept = regr.intercept_ # 직선의 절편
score = regr.score(X, y) # 학습된 직선이 데이터를 얼마나 잘 따르나
print("y =", coef, "* X + ", intercept)
print("The score of this line for the data: ", score)

y = [0.55221745] * X + -35.686695278969964
The score of this line for the data: 0.903203123105647
```

Linear regression

• Practice 2: linear regression

```
import matplotlib.pyplot as plt
import numpy as np
from sklearn import linear_model # scikit-learn 모듈을 가져온다
regr = linear_model.LinearRegression()
X = [[164], [179], [162], [170]] # 선형회귀의 입력은 2차원으로 만들어야 함
y = [53, 63, 55, 59] # y = f(X)의 결과값
regr.fit(X, y)
                                                62
# 학습 데이터와 y 값을 산포도로 그린다.__
plt.scatter(X, y, color='black')
                                                60
                                                58
# 학습 데이터를 입력으로 하여 예측값을 계산한다.
y_pred = regr.predict(X)
# 학습 데이터와 예측값으로 선그래프로 그린다.
# 계산된 기울기와 y 절편을 가지는 직선이 그려진다
                                                  162.5 165.0 167.5 170.0 172.5 175.0 177.5
plt.plot(X, y_pred, color='blue', linewidth=3)
plt.show()
```

Linear regression

• Practice 3: multivariable linear regression

```
import numpy as np
from sklearn import linear model
regr = linear model.LinearRegression()
# 남자는 0, 여자는 1을 넣어 차원을 추가하였음
# 입력데이터를 2차원으로 만들어야 함
X = [[164, 1], [167, 1], [165, 0], [170, 0], [179, 0], [163, 1], [159, 0], [166, 1]]
y = [43, 48, 47, 66, 67, 50, 52, 44] # y 값은 1차원 데이터
regr.fit(X, y) # 학습
print('계수 :', regr.coef_ )
print('절편 :', regr.intercept_)
print('점수 :', regr.score(X, y))
print('은지와 동민이의 추정 몸무게 :', regr.predict([[166, 1], [166, 0]]))
```

- Recap: house pricing prediction
 - 예시: Portland의 living area와 price간의 관계

Living area (feet ²)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
:	:

- 손실 함수(Loss function)
 - 선형회귀식과 실제 값의 오차
 - 선형회귀에서 평균제곱오차(mean square error)는 머신러닝 모델을 구축할 때 작을수록 원본과의 오차 가 적은 것이므로 추측한 값의 정확성이 높다고 할 수 있음

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

- Gradient descent
 - 손실 함수를 최소화하는 매개변수를 찾는 방법
 - 손실 함수 값이 가장 낮은 지점을 찾아가도록 손실 함수의 기울기를 구해 최적값을 찾아가는 방법

- Gradient descent
 - Decision 1. Where to go?
 - Gradient descent of the objective function

$$w_{k+1} = w_k + \left(-\frac{\partial J(w)}{\partial w}\right)$$

- Gradient descent
 - Decision 2. How far?
 - Introduce learning rate η

$$w_{k+1} = w_k + \eta \left(-\frac{\partial J(w)}{\partial w}\right)$$
$$= w_k - \eta \frac{\partial J(w)}{\partial w}$$

- Gradient descent
 - Decision 2. How far?
 - Learning rate의 영향

- Gradient descent
 - Decision 2. How far?
 - Learning rate의 영향

- Gradient descent
 - Batch GD vs Mini-batch GD vs SGD

Batch Gradient Descent

Mini-Batch Gradient Descent

Stochastic Gradient Descent

- Regularization
 - Overfitting: 모델이 훈련 데이터에 너무 잘 맞지만 일반성이 떨어지는 문제가 발생
 - Underfitting: 모델이 너무 단순해서 데이터의 포함된 의미를 제대로 학습하지 못하는 문제가 발생

- Regularization
 - Regularization improves the generalization of the regression model

Machine learning based regression

- Regularization
 - Norm penalties: limit to the model capacity
 - L1 norm regularization: Encourages sparsity

$$\hat{\mathcal{L}}(W) = \alpha ||W||_1 + \mathcal{L}(W)$$

• Squared L2 norm regularization: Encourages small weights

$$\hat{\mathcal{L}}(W) = \frac{\alpha}{2}||W||_2^2 + \mathcal{L}(W) = \frac{\alpha}{2}\sum_i \sum_j w_{ij}^2 + \mathcal{L}(W)$$

- Regularization
 - Norm penalties: limit to the model capacity

Summary

- 좋은 regression 모델이란?
 - 데이터의 양
 - 모델의 특징(feature) 개수
 - 적절한 규제(regularization)

