第4讲-习题解析

战德臣

哈尔滨工业大学计算机学院 教授.博士生导师教育部大学计算机课程教学指导委员会委员

Research Center on Intelligent
Computing for Enterprises & Services,
Harbin Institute of Technology

- 1、关于"图灵机",下列说法不正确的是____。(A|B|C|D|E)
- (A)图灵机给出的是计算机的理论模型;
- (B)图灵机的状态转移函数<q, X, Y, R(或L或N), p>, 其实就是一条指令,即在q状态下,当输入为X时,输出为Y,读写头向右(R)、向左(L)移动一格或不动(N),状态变为p;
 - (C)图灵机是一种离散的、有穷的、构造性的问题求解思路;
- (D)凡是能用算法方法解决的问题也一定能用图灵机解决;凡是图灵机解决不了的问题,人和算法也解决不了;
 - (E)上述有不正确的。

<q, X, Y, R, p><q, X, Y, L, p><q, X, Y, N, p>

- 2、关于"图灵机"和"计算",下列说法不正确的是____。(A|B|C|D)
- (A)计算就是对一条两端可无限延长的纸带上的一串0和1,一步一步地执行指令,经过有限步骤后得到的一个满足预先规定的符号串的变换过程:
- (B)"数据"可被制成一串0和1的纸带送入机器中进行自动处理,被称为数据纸带;处理数据的"指令"也可被制作成一串0和1的纸带送入机器中,被称为程序纸带;机器一方面阅读程序纸带上的指令,并按照该指令对数据纸带上的数据进行变换处理。
- (C)计算机器可以这样来制造:读取程序纸带上的指令,并按照该指令对数据纸带上的数据做相应的变换,这就是图灵机的基本思想;
 - (D)上述有不正确的。

是关于数据、指令、程序及程序/指令自动执行的基本思想。

- ◆ 输入被制成一串0和1的纸带,送入机器中---数据。如00010000100011····
- ◆ 机器可对输入纸带执行的基本动作包括: "翻转0为1",或 "翻转1为0", "前移一位", "停止"。
- ◆ 对基本动作的控制——指令,机器是按照指令的控制选择执行哪一个动作,指令也可以用0和1来表示: 01表示"翻转0为1"(当输入为1时不变), 10表示"翻转1为0"(当输入0时不变), 11表示"前移一位", 00表示"停止"。
- ◆ 输入如何变为输出的控制可以用指令编写一个程序来完成, 如: 011110111011100.
- ◆ 机器能够读取程序、按程序中的指令顺序读取指令、
- 读一条指令执行一条指令。由此实现自动计算。

3、下图为用状态转换图示意的一个图灵机,其字母集合为 $\{0, 1, X,Y, B\}$,其中B为空白字符;状态集合 $\{S_1, S_2, S_3, S_4, S_5\}$,其中 S_1 为起始状态, S_5 为终止状态;箭头表示状态转换,其上标注的如<in, out, direction>表示输入是in时,输出out,向direction方向移动一格,同时将状态按箭头方向实现转换,其中in,out均是字母集中的符号,direction可以为R(向右移动)、L(向左移动)、N(停留在原处)。

该图灵机的功能是____。(A|B|C|D)

- (A)识别是否如0101,01010101的0、1串,即一个0接续一个1,且0的个数和1的个数相同;
- (B)识别是否如000111,00001111的0、1串,即左侧连续0的个数和右侧连续1的个数相同的0、1串;
- (C)将形如0101,01010101的0、1串,即一个0接续一个1,且0的个数和1的个数相同,转换为XYXY,XYXYXY的形式;
- (D)将形如000111,00001111的0、1串,即左侧连续0的个数和右侧连续1的个数相同的0、1串转换为XXXYYY,XXXXYYYY的形式。

从起始状态开始,对输入串进行处理,如果在待处理输入串结束时,图灵机能到终止状态,则说明其正确地处理了输入串。输出串就是其处理结果。如果遇到不在字母集合中的符号,或者遇到当前状态下不能处理的输入,则机器就终止执行,即未到终止状态而终止执行,则说明其不能处理此类输入串。

验证D选项:

000111,00001111的0、1串,即左侧连续0的个数和右侧连续1的个数相同的0、1串转换为XXXYYY,XXXXYYYY的形式。

			1		I	ı
当前状态	输入	输出	行动 方向	下一 状态	当前处 理位置	纸带上的 完整数据
S ₁	0	X	R	S ₂	1	000 111
S ₂	0	0	R	S ₂	2	X00 111
S ₂	0	0	R	S ₂	3	X00 111
S ₂	1	Y	L	S ₃	4	X00 111
S ₃	0	0	L	S ₃	3	X00 Y11
S ₃	0	0	L	S ₃	2	X00 Y11
S ₃	X	X	R	S ₁	1	X00 Y11
S ₁	0	X	R	S ₂	2	X00 Y11
S ₂	0	0	R	S ₂	3	XX0 Y11
S ₂	Y	Y	R	S ₂	4	XX0 Y11
S ₂	1	Y	L	S ₃	5	XX0 Y11
S ₃	Y	Y	L	S ₃	4	XX0 YY1
S ₂	1	Y	L	S ₃	6	XXX YY1
S ₃	Y	Y	L	S ₃	5	XXX YYY
S ₃	X	X	R	S ₁	3	XXX YYY
S ₁	Y	Y	R	S ₄	4	XXX YYY
S ₄	Y	Y	R	S ₄	5	XXX YYY
S ₄	Y	Y	R	S ₄	6	XXX YYY
S ₄	В	В	N	S ₅	7	XXX YYY

4、下图为用状态转换图示意的一个图灵机,其字母集合为 $\{0,1,X,Y,B\}$,其中B为空白字符;状态集合 $\{S_1,S_2,S_3,S_4,S_5,S_6\}$,其中 S_1 为起始状态, S_6 为终止状态;箭头表示状态转换,其上标注的如<in, out, direction>表示输入是in时,输出out,向direction方向移动一格,同时将状态按箭头方向实现转换,其中in,out均是字母集中的符号,direction可以为R(向右移动)、L(向左移动)、N(停留在原处)。

该图灵机的功能是_____。(**A|B|C|D**)

- (A)识别是否如0101,01010101的0、1串,即一个0接续一个1,且0的个数和1的个数相同;
- (B)识别是否如000111,00001111的0、1串,即左侧连续0的个数和右侧连续1的个数相同的0、1串;
- (C)将形如0101,01010101的0、1串,即一个0接续一个1,且0的个数和1的个数相同,转换为XYXY,XYXYXY的形式;
- (D)将形如000111,00001111的0、1串,即左侧连续0的个数和右侧连续1的个数相同的0、1串转换为XXXYYY,XXXXYYYY的形式。

5、下图为用状态转换图示意的一个图灵机,其字母集合为{V, C, +, =, "空格",;}; 状态集合 {S₁, S₂, S₃, S₄, S₅, S₆, S₇},其中S₁为起始状态,S₇为终止状态;箭头表示状态转换,其上标注的如<in, out, direction>表示输入是in时,输出out,向direction方向移动一格,同时将状态按箭头方向实现转换,其中in,out均是字母集中的符号,null表示什么也不写,direction可以为R(向右移动)、L(向左移动)、N(停留在原处)。

该图灵机的功能是____。(A|B|C|D)

- (A)能够识别"V=C+C;"形式的符号串;
- (B)能够识别"V=C;"形式的符号串;
- (C)能够将符号串中的空格去除掉;
- (D)上述全部能够识别。

6、下图为用状态转换图示意的一个图灵机,其字母集合为{V, C, +, =, "空格",;}; 状态集合 {S₁, S₂, S₃, S₄, S₅, S₆, S₇},其中S₁为起始状态,S₇为终止状态;箭头表示状态转换,其上标注的如<in, out, direction>表示输入是in时,输出out,向direction方向移动一格,同时将状态按箭头方向实现转换,其中in,out均是字母集中的符号,null表示什么也不写,direction可以为R(向右移动)、L(向左移动)、N(停留在原处)。

关于该图灵机的功能,说法不正确的是____。(A|B|C|D)

- (A)既能够识别"V=C+C;"形式的符号串,又能识别"V=V+C;"形式的符号串;
- (B)既能够识别"V=C;"形式的符号串,又能识别"V=V;"形式的符号串;
- (C)既能够识别"V=V+C;"形式的符号串,又能识别"V=C+V;"形式的符号串;
- (D)上述说法不正确,即有该图灵机不能识别的符号串形式。

- 7、关于"存储程序",下列说法不正确的是____。(A|B|C|D)
- (A)将"指令"和"数据"以同等地位保存在存储器中,以便于机器自动读取自动处理;
- (B)之所以将"程序"和"数据"事先存储于存储器中,是因为输入的速度满足不了机器处理的速度,为使机器连续自动处理,所以要"存储程序";
- (C)依据"存储程序"原理,机器可由四大部分构成:运算器、存储器、输入设备和输出设备;
- (D)冯.诺依曼计算机的本质就是"存储程序、连续自动执行"。

- 8、关于"冯.诺依曼计算机"的结构,下列说法正确的是____。(A|B|C|D)
- (A)冯.诺依曼计算机仅需要三大部件即可:运算器、控制器和存储器;
- (B)一般,个人计算机是由中央处理单元(CPU)、存储器、输入设备和输出设备构成,没有运算器和控制器,所以它不是冯.诺依曼计算机;
- (C)以"运算器"为中心的冯.诺依曼计算机和以"存储器"为中心的冯.诺依曼计算机是有差别的,前者不能实现并行利用各个部件,受限于运算器;后者可以实现并行利用各个部件;
- (D)冯.诺依曼计算机提出"运算"和"存储"分离完全没有必要。

- 9、下图是一个存储器的简单模型。围绕该存储器模型,回答下列问题。
- (1)下列说法不正确的是____。(A|B|C|D)
- (A)该存储器可存取4个4位的存储单元;
- (B)该存储器其中的一个存储单元的内容是1010;
- (C)该存储器既可读出,又可写入;
- (D)该存储器的地址码分别是00,01,10和11。

存储位、存储字存储单元 存储单元的地址编码A₁A₀ 存储单元的内容D₃D₂D₁D₀ 地址编码线,简称地址线A₁A₀ 地址控制线W₃,W₂,W₁,W₀ 数据线D₃,D₂,D₁,D₀

9、下图是一个存储器的简单模型。围绕该存储器模型,回答下列问题。

(2)内容为1010的存储单元的地址编码 A_1A_0 是____。(A|B|C|D)

(A)00; (B)01; (C)10; (D)11; (E)没有该存储单元。

存储位、存储字存储单元 存储单元的地址编码A₁A₀ 存储单元的内容D₃D₂D₁D₀ 存储单元的内容D₃D₂D₁D₀ 地址编码线,简称地址线A₁A₀ 地址控制线W₃,W₂,W₁,W₀ 数据线D₃,D₂,D₁,D₀

9、下图是一个存储器的简单模型。围绕该存储器模型,回答下列问题。

(3) A₁A₀为01的存储单元,其内容D₃D₂D₁D₀是____。(A|B|C|D)

(A)0101; (B)1010; (C)0111; (D)1110; (E)没有该存储单元。

存储位、存储字存储单元 存储单元的地址编码A₁A₀ 存储单元的内容D₃D₂D₁D₀ 存储单元的内容D₃D₂D₁D₀ 地址编码线,简称地址线A₁A₀ 地址控制线W₃,W₂,W₁,W₀ 数据线D₃,D₂,D₁,D₀

10、下图是一个存储器的简单模型。围绕该存储器模型,回答下列问题。

(1)当A₁A₀=10时,D₅D₄D₃D₂D₁D₀的内容是____。(A|B|C|D|E)

(A) 100101; (B)011101; (C)101010; (D)010101; (E)都不对。

存储位、存储字存储单元 存储单元的地址编码A₁A₀ 存储单元的内容D₃D₂D₁D₀ 地址编码线,简称地址线A₁A₀ 地址控制线W₃,W₂,W₁,W₀ 数据线D₃,D₂,D₁,D₀

- 10、下图是一个存储器的简单模型。围绕该存储器模型,回答下列问题。
- (2)当存储单元的内容是100101时,其存储单元的地址编码A₁A₀是____。 (A|B|C|D|E)

(A)00; (B)01; (C)10; (D)11; (E)没有该存储单元。

存储位、存储字存储单元 存储单元的地址编码A₁A₀ 存储单元的内容D₃D₂D₁D₀ 存储单元的内容D₃D₂D₁D₀ 地址编码线,简称地址线A₁A₀ 地址控制线W₃,W₂,W₁,W₀ 数据线D₃,D₂,D₁,D₀

11、下图是一个存储器的简单模型-与或阵列图。请回答下列问题。

(1)围绕该存储器模型,请写出由 A_1 、 A_0 产生 W_3 、 W_2 、 W_1 、 W_0 的逻辑表达式,

书写正确的是____。(A|B|C|D)

(A) $W_{00} = (NOT A_1) OR (NOT A_0);$

(B) $W_{01} = (NOT A_1) AND A_0$;

(C) $W_{10} = A_1 \text{ OR (NOT } A_0);$

(D) $W_{11} = A_1 \text{ AND (NOT } A_0)_{\circ}$

- 11、下图是一个存储器的简单模型-与或阵列图。请回答下列问题。
- (1)围绕该存储器模型,请写出由 A_1 、 A_0 产生 W_3 、 W_2 、 W_1 、 W_0 的逻辑表达式,
- 书写正确的是____。(A|B|C|D)
- (A) $W_{00} = (NOT A_1) OR (NOT A_0);$
- (B) $W_{01} = (NOT A_1) AND A_0$;
- (C) $W_{10} = A_1 \text{ OR (NOT } A_0);$
- (D) $W_{11} = A_1 \text{ AND (NOT } A_0)$.

- 11、下图是一个存储器的简单模型-与或阵列图。请回答下列问题。
- (1)围绕该存储器模型,请写出由 A_1 、 A_0 产生 W_3 、 W_2 、 W_1 、 W_0 的逻辑表达式,
- 书写正确的是____。(A|B|C|D)
- (A) $W_{00} = (NOT A_1) OR (NOT A_0);$
- (B) $W_{01} = (NOT A_1) AND A_0$;
- $(C) W_{10} = A_1 OR (NOT A_0);$
- (D) $W_{11} = A_1 \text{ AND (NOT } A_0)_{\circ}$

 $W_{00} = (NOT A_1) AND (NOT A_0);$

 $W_{01} = (NOT A_1) AND A_0;$

 $W_{10} = A_1 \text{ AND (NOT } A_0);$

 $W_{11} = A_1 \text{ AND } A_0$

11、下图是一个存储器的简单模型-与或阵列图。请回答下列问题。

(2)围绕该存储器模型,请写出由 W_{11} 、 W_{10} 、 W_{01} 、 W_{00} 产生 D_4 、 D_3 、 D_2 、 D_1 、

 D_0 的逻辑表达式,书写不正确的是_____。(A|B|C|D|E)

(A) $D_4 = W_{00}$ OR W_{01} OR W_{11} ; (B) $D_3 = W_{10}$ OR W_{11} ;

(C) $D_2 = W_{01}$ OR W_{10} ;

(D) $D_1 = W_{00} OR W_{01} OR W_{11}$;

(E) $D_0 = W_{00}$ OR W_{10} ;

$$D_4 = W_{00} OR W_{01} OR W_{11};$$

$$D_3 = W_{10} OR W_{11};$$

$$D_2 = W_{01} OR W_{10};$$

$$D_1 = W_{00} OR W_{10} OR W_{11};$$

$$D_0 = W_{00} OR W_{10};$$

11、下图是一个存储器的简单模型-与或阵列图。

12、已知一个存储器芯片M的4位二进制地址编码为A₃A₂A₄A₀,其8条数据线为

 $D_7D_6D_5D_4D_3D_2D_1D_0$,回答下列问题。

- (1)下列说法正确的是____。(A|B|C|D)
- (A)该存储器共有28即256个存储单元;
- (B)该存储器共有24即16个存储单元;
- (C)该存储器存储单元的位数,即字长为4位;
- (D)该存储器的存储容量为24×8字节。

- 12、已知一个存储器芯片M的4位二进制地址编码为 $A_3A_2A_4A_0$,其8条数据线为 $D_7D_6D_5D_4D_3D_2D_1D_0$,回答下列问题。 (2)如果需要构造256个存储单元且每个存储单元的字长为16位的存储器,
- 说法正确的是 _。 (A|B|C|D)
- (A)总计需要M芯片16个;
- (B)总计需要M芯片8个;
- (C)总计需要M芯片32个;
- (D)总计需要M芯片64个。

12、已知一个存储器芯片M的4位二进制地址编码为 $A_3A_2A_1A_0$,其8条数据线为 $D_7D_6D_5D_4D_3D_2D_1D_0$,回答下列问题。

(*3)如果需要构造64个存储单元且每个存储单元的字长为16位的存储器,该存储器的6位二进制地址编码线为 $B_5B_4B_3B_2B_1B_0$,16条数据线为 $E_{15}\sim E_0$,问下列说法正确的是_____。(A|B|C|D)

12、已知一个存储器芯片M的4位二进制地址编码为 $A_3A_2A_1A_0$,其8条数据线为 $D_7D_6D_5D_4D_3D_2D_1D_0$,回答下列问题。

(*3)如果需要构造64个存储单元且每个存储单元的字长为16位的存储器,该存储器的6位二进制地址编码线为 $B_5B_4B_3B_2B_1B_0$,16条数据线为 $E_{15}\sim E_0$,问下列说法正确的是_____。(A|B|C|D)

(A)总计需要M芯片8个,将 $B_3B_2B_1B_0$ 分别连接到8个M芯片的 $A_3A_2A_1A_0$ 上,将 B_5B_4 用一个2-4译码器进行译码形成4条控制线,每一条控制两个M芯片,将8个芯片任意分成两组,将 $E_{15}\sim E_8$ 和 $E_7\sim E_0$ 分别连接到这2个组中的每个芯片的 $D_7\sim D_0$ 上。

(B)总计需要M芯片16个,分成8组,每组两个;将 $B_3B_2B_1B_0$ 分别连接到16个M芯片的 $A_3A_2A_1A_0$ 上;将 $B_5B_4B_3$ 用一个3-8译码器进行译码形成8条控制线,每一条控制一组中的两个M芯片;将 E_{15} ~ E_8 分别连接到这8个组中的第一个芯片的 D_7 ~ D_0 上,而将 E_7 ~ E_0 分别连接到这8个组中的另一个芯片的 D_7 ~ D_0 上。

(C)总计需要M芯片8个,分成4组,每组两个;将 $B_3B_2B_1B_0$ 分别连接到8个M芯片的 $A_3A_2A_1A_0$ 上;将 B_5B_4 用一个2-4译码器进行译码形成4条控制线,每一条控制一组中的两个M芯片;将 E_{15} ~ E_8 分别连接到这4个组中的第一个芯片的 D_7 ~ D_0 上,而将 E_7 ~ E_0 分别连接到这4个组中的另一个芯片的 D_7 ~ D_0 上。

(D)总计需要M芯片8个,分成2组,每组4个;将 $B_3B_2B_1B_0$ 分别连接到8个M芯片的 $A_3A_2A_1A_0$ 上;将 B_5B_4 用一个2-4 译码器进行译码形成4条控制线,每2条控制线控制一组M芯片;将 E_{15} ~ E_8 分别连接到第一组每个芯片的 D_7 ~ D_0 上,而将 E_7 ~ E_0 分别连接到第2组每个芯片的 D_7 ~ D_0 上。

13、已知某机器的指令集合及指令格式如下表示意。已经编制好并存储在存储器中的一段程序如下表示意,请阅读这段程序,并回答下述问题。

机	器指令	¬-I+r>÷fdmt.e%
操作码	地址码	对应的功能
取数	α	将c号存储单元的数,现出送到运算器的寄存器 A中;c是任何一个十位
000001	000000100	的存储产品的地址;
存数	β	将运算器的寄存器 A中的数,保存到6号存储单元中;6是任何一个十位
000010	0000010000	的存储产品的地址;
加法	γ	将运算器中寄存器 A的数,加上污存储单元的数,结果保留在运算器的
000011	0000001010	寄存器 A 中;
乘法	δ	将运算器中寄存器 A的数,乘以 6号存储单元的数,结果保留在运算器
000100	0000001001	的寄存器A中。
打印		打哨铃
000101	0000001100	114ABS
停机		位和化久
000110	0000000000	停机指令

SECTION LANGUAGE	存储单元的地址	存任	神 元的内容
对应的十进制地址		操作码	地址码
0	00000000 00000000	000001	0000001000
1	00000000 00000001	000100	0000001001
2	00000000 00000010	000011	0000001010
3	00000000 00000011	000100	0000001000
4	00000000 00000100	000011	0000001011
5	00000000 00000101	000010	0000001100
6	00000000 00000110	000101	0000001100
7	00000000 00000111	000110	
8	00000000 00001000	00000	0 0000000111
9	00000000 00001001	00000	0 0000000010
10	00000000 00001010	000000 0000000110	
11	00000000 00001011	000000 0000000011	
12	00000000 00001100		

- **13**、已知某机器的指令集合及指令格式如下表示意。已经编制好并存储在存储器中的一段程序如下表示意,请阅读这段程序,并回答下述问题。
- (1) 关于存储器存放的内容,下列说法正确的是____。(A|B|C|D)
 - (A) 3号存储单元存放的是数据,而8号存储单元存放的是指令;
 - (B) 3号存储单元存放的是数据,而8号存储单元存放的是数据;
 - (C) 3号存储单元存放的是指令,而8号存储单元存放的是数据;
 - (D) 3号存储单元存放的是指令,而8号存储单元存放的是指令。

机器指令		~++ > 6/ m+-26
操作码	地址码	对应的功能
取数	α	将a号存储单元的数,取出送到运算器的寄存器 A 中;a是任何一个十位
000001	000000100	的存储元的地址;
存数	β	将运算器的寄存器 A中的数,保存到6号存储单元中;6是任何一个十位
000010	0000010000	的存储元的地址;
加法	γ	将运算器中寄存器 A的数,加上污存储单元的数,结果保留在运算器的
000011	0000001010	寄存器 A 中;
乘法	δ	将运算器中寄存器 A的数,乘以 δ号存储单元的数,结果保留在运算器
000100	0000001001	的寄存器A中。
打印		打哨铃
000101	0000001100	TIPHEZ
停机		位和代本
000110	0000000000	· 停机指令

-1-44 30441411	存储单元的地址	存任	海单元的内容
对应的十进制地址		操作码	地址码
0	00000000 00000000	000001	0000001000
1	00000000 00000001	000100	0000001001
2	00000000 00000010	000011	0000001010
3	00000000 00000011	000100	0000001000
4	00000000 00000100	000011	0000001011
5	00000000 00000101	000010	0000001100
6	00000000 00000110	000101	0000001100
7	00000000 00000111	000110	
8	00000000 0000 1000	00000	0 0000000111
9	00000000 00001001	000000 0000000010	
10	00000000 00001010	000000 0000000110	
11	00000000 00001011	00000	0 0000000011
12	00000000 00001100		

- **13**、已知某机器的指令集合及指令格式如下表示意。已经编制好并存储在存储器中的一段程序如下表示意,请阅读这段程序,并回答下述问题。
- (2) 存储器1号存储单元中存放的指令功能是____。(A|B|C|D)
- (A) 将运算器中寄存器A的数,加上9号存储单元的数2,结果保留在运算器的寄存器A中;
- (B) 将运算器中寄存器A的数,乘以9号存储单元的数7,结果保留在运算器的寄存器A中;
- (C) 将运算器中寄存器A的数,乘以10号存储单元的数6,结果保留在运算器的寄存器A中;
- (D) 将运算器中寄存器A的数,乘以9号存储单元的数2,结果保留在运算器的寄存器A中。

000100 0000001001

机器指令		对成的能
操作码	地址码	XIERINAIRE
取数	α	将c号存储单元的数,现出送到运算器的寄存器 A中;c是任何一个十位
000001	000000100	的存储单元的地址;
存数	β	将运算器的寄存器 A 中的数,保存到6号存储单元中;6是任何一个十位
000010	0000010000	的存储产品的地址;
加法	7	将运算器中寄存器 A的数,加上产号存储单元的数,结果保留在运算器的
000011	0000001010	寄存器 A 中;
乘法	δ	将运算器中寄存器 A的数,乘以 6号存储单元的数,结果保留在运算器
000100	0000001001	的寄存器A中。
4 4 4 4		
打印		4TCHEA
000101	0000001100	打印管
停机		為和松久
000110	0000000000	停机指令

对应的上进制地址	**************************************	存储单元的内容	
NJ DOGRA POZNEJANJE	存储单元的地址	操作码	地址码
•	00000000 00000000	000001	0000001000
ţ	00000000 00000001	000100	0000001001
2	00000000 00000010	000011	0000001010
3	00000000 00000011	000100	0000001000
4	00000000 00000100	000011	0000001011
5	00000000 00000101	000010	0000001100
6	00000000 00000110	000101	0000001100
7	00000000 00000111	000110	
8	00000000 00001000	00000	0 0000000111
9	00000000 00001001	00000	0 0000000010
10	00000000 00001010	000000 0000000110	
11	00000000 00001011	00000	0 0000000011
12	00000000 00001100		

- **13**、已知某机器的指令集合及指令格式如下表示意。已经编制好并存储在存储器中的一段程序如下表示意,请阅读这段程序,并回答下述问题。
- (3) 存储器2号存储单元中存放的指令功能是____。(A|B|C|D)
- (A) 将10号存储单元的数,取出送到运算器的寄存器A中;
- (B) 将运算器中寄存器A的数,加上10号存储单元的数,结果保留在运算器的寄存器A中;
- (C) 将运算器的寄存器A中的数,保存到10号存储单元中;
- (D) 将运算器中寄存器A的数,乘以10号存储单元的数,结果保留在运算器的寄存器A中。

000011 0000001010

机器指令		对除的地能
操作码	地址码	XIETIMIE
取数	α	将c号存储单元的数,现出送到运算器的寄存器 A中;c是任何一个十位
000001	000000100	的存储元的地址;
存数	β	将运算器的寄存器 A中的數,保存到6号存储单元中; 6是任何一个十位
000010	0000010000	的存储单元的地址;
加法	7	将运算器中寄存器 A的数,加上房存储单元的数,结果保留在运算器的
000011	000001010	寄存器 A 中;
	•	
乘法	δ	将运算器中寄存器 A的数,乘以 6号存储单元的数,结果保留在运算器
000100	0000001001	的寄存器A中。
打印		打哨铃
000101	0000001100	114484
停机		位和化心
000110	0000000000	停机指令

TESTAL LABORATION	存储单元的地址	存储单元的内容	
对应的十进制地址		操作码	地址码
3	00000000 00000000	000001	0000001000
t	00000000 00000001	000100	0000001001
2	00000000 00000010	000011	0000001010
3	00000000 00000011	000100	0000001000
4	00000000 00000100	000011	0000001011
5	00000000 00000101	000010	0000001100
6	00000000 00000110	000101	0000001100
7	00000000 00000111	000110	
8	00000000 0000 1000	00000	0 0000000111
9	00000000 00001001	000000 0000000010	
10	00000000 00001010	00000	0 0000000110
11	00000000 00001011	00000	0 00000000011
12	00000000 00001100		

- (*4)该程序所能完成的计算是____。(A|<mark>B</mark>|C|D|E)
- (A) $7 \times 2^2 + 6 \times 2 + 3$;
- (B) $2 \times 7^2 + 6 \times 7 + 3$;
- (C) $6 \times 3^2 + 2 \times 3 + 7$;
- (D) $6 \times 3^2 + 7 \times 3 + 2$;
- (E) 以上都不正确。

运算器

寄存器A「

机器指令		¬++>
操作码	地址码	对应的功能
取数	α	将a号存储单元的数,取出送到运算器的寄存器 A 中;a是任何一个十位
000001	000000100	的存储单元的地址;
存数	β	将运算器的寄存器 A中的数,保存到号存储单元中; 6是任何一个十位
000010	0000010000	的存储元的地址;
加法	γ	将运算器中寄存器 A的数,加上1号存储单元的数,结果保留在运算器的
000011	0000001010	寄存器 A 中;
乘法	δ	将运算器中寄存器 A的数,乘以 δ号存储单元的数,结果保留在运算器
000100	0000001001	的寄存器A中。
打印		打印管
000101	0000001100	11-hH44
停机		信机化公
000110	0000000000	· 停机指令

A = 7;
A = 7*2
A = (7*2)+6
A = ((7*2)+6)*7
A = (((7*2)+6)*7)+3
$= 2*7^2 + 6*7 + 3$

对应的十进制地址	存储单元的地址		举单元的内容
AT LEGIS I ALIPTAINE.		操作码	地址码
0	00000000 00000000	000001	0000001000
1	00000000 00000001	000100	0000001001
2	00000000 00000010	000011	0000001010
3	00000000 00000011	000100	0000001000
4	00000000 00000100	000011	0000001011
5	00000000 00000101	000010	0000001100
6	00000000 00000110	000101	0000001100
7	00000000 00000111	000110	
8	00000000 00001000	00000	0 0000000111
9	00000000 00001001	000000	0 0000000010
10	00000000 00001010	000000 0000000110	
11	00000000 00001011	00000	0 0000000011
12	00000000 00001100		

13、已知某机器的指令集合及指令格式如下表示意。已经编制好并存储在存储器中的一段程序如下表示意,请阅读这段程序,并回答下述问题。

(*5)若要使该程序完成计算8×3²+2×3+6,则需修正存储的数据,正确的修正是__。(A|B|<mark>C</mark>|D)

(A) 8号存储单元存放数00000000 00000110,9号存储单元存放数00000000 00001000,

10号存储单元存放数00000000 00000010,11号存储单元存放数 00000000 00000011;

(B) 8号存储单元存放数00000000 00001000,9号存储单元存放数00000000 0000011,

10号存储单元存放数00000000 00000010, 11号存储单元存放数 00000000 00000110;

(C) 8号存储单元存放数00000000 00000011,9号存储单元存放数00000000 00001000,

10号存储单元存放数00000000 00000010, 11号存储单元存放数 00000000 00000110;

(D) 8号存储单元存放数00000000 00000010, 9号存储单元存放数00000000 00000011,

10号存储单元存放数00000000 00000110, 11号存储单元存放数 00000000 00001000。

$$2 \times 7^{2} + 6 \times 7 + 3$$

 $a \times x^{2} + b \times x + c$

A选项: 8*6²+2*6+3。

B选项: 3*82+2*8+6。

C选项: 8*32+2*3+6。

D选项: 3*2²+6*2+8。

对应的十进制地址	存储单元的地址	存储单元的内容	
		操作码	地址码
0	00000000 00000000	000001	0000001000
1	00000000 00000001	000100	0000001001
2	00000000 00000010	000011	0000001010
3	00000000 00000011	000100	0000001000
4	00000000 00000100	000011	0000001011
5	00000000 00000101	000010	0000001100
6	00000000 00000110	000101	0000001100
7	00000000 00000111	000110	
8 3	00000000 0000 1000	7 000000 0000000111	
9	00000000 00001001	00000 00000000010	
10 2	00000500 00001010	6 000000 0000000110	
11 6	00000000 00001011	200000 0000000011	
12	00000000 00001100	1	

13、已知某机器的指令集合及指令格式如下表示意。已经编制好并存储在存储器中的一段程序如下表示意,请阅读这段程序,并回答下述问题。

(*6)若要使该程序完成任意方程式 ax^2+bx+c ,则需修正存储的数据,正确的修正是___。(A|B|C|D)

(A) 8号存储单元存放数a的二进制数,9号存储单元存放数x的二进制数,

10号存储单元存放数b的二进制数,11号存储单元存放数c的二进制数;

(B) 8号存储单元存放数a的二进制数,9号存储单元存放数b的二进制数,

10号存储单元存放数c的二进制数,11号存储单元存放数 x的二进制数:

(C) 8号存储单元存放数x的二进制数,9号存储单元存放数a的二进制数,

10号存储单元存放数b的二进制数,11号存储单元存放数c的二进制数:

(D) 8号存储单元存放数c的二进制数,9号存储单元存放数b的二进制数,

10号存储单元存放数a的二进制数,11号存储单元存放数 x的二进制数。

$$2 \times 7^{2} + 6 \times 7 + 3$$

 $a \times x^{2} + b \times x + c$

A选项: x*a²+b*a+c。

B选项: b*a²+c*a+x。

C选项: a*x²+b*x+c。

D选项: b*c²+a*c+x。

对应的十进制地址	存储单元的地址	存储单元的内容	
		操作码	地址码
0	00000000 00000000	000001	0000001000
1	00000000 00000001	000100	0000001001
2	00000000 00000010	000011	0000001010
3	00000000 00000011	000100	0000001000
4	00000000 00000100	000011	0000001011
5	00000000 00000101	000010	0000001100
6	00000000 00000110	000101	0000001100
7	00000000 00000111	000110	
8 X	00000000 00001000	7 000000 0000000111	
9		00000 0000000010	
10	00000000 00001010	000000 0000000110	
11	00000000 00001011	200000 0000000011	
12	00000000 00001100		

14、已知某机器的核心部件及其结构关系如下图示意。请仔细理解该结构图,并回答下述问题。

- **14**、已知某机器的核心部件及其结构关系如下图示意。请仔细理解该结构图,并回答下述问题。
- (1) 保存下一条将要执行的指令地址的寄存器是____。(A|B|C|D)
 - (A) IR; (B) R₀或R₁; (C) 存储器的地址寄存器; (D) PC。
- (2)保存正在执行指令的寄存器是____。(A|B|C|D)
 - (A) IR; (B) R₀或R₁; (C) 存储器的地址寄存器; (D) PC。

- **14**、已知某机器的核心部件及其结构关系如下图示意。请仔细理解该结构图,并回答下述问题。
- (3) 当CPU在执行000100 0000001001指令时,PC的值是____。(A|B|C|D)
 - (A) 00000000 00000001; (B) 00000000 00000010;
 - (C) 00000000 00000011; (D) 00000000 00000100.

- **14**、已知某机器的核心部件及其结构关系如下图示意。请仔细理解该结构图,并回答下述问题。
- (4) 当CPU在执行000100 0000001001指令时,IR的值是____。(A|B|C|D)
 - (A) 00000100 00001000; (B) 00010000 00001001;
 - (C) 00001100 00001010; (D) 00010000 00001000.

- **14**、已知某机器的核心部件及其结构关系如下图示意。请仔细理解该结构图,并回答下述问题。
- (*5) 当CPU在读取指令阶段,下列说法正确的是____。(A|B|C|D)
 - (A) 第1个节拍进行A1, C3; 第2个节拍进行D1, C2, D6;
 - (B) 第1个节拍进行A2, C3; 第2个节拍进行D1, C2, D6;
 - (C) 第1个节拍进行A1, C3; 第2个节拍进行D1, C4, D2或D3;
- (D) 第1个节拍进行A1, C3, C1; 第2个节拍进行D1, C2, D6。
- A1: 是将PC的值传送给存储器的地址寄存器;
- **C3**: 通知存储器开始工作;如果没有此信号,存储器是不会工作的;
- D1: 将存储器的内容寄存器的值传输到数据总线上。
- **D6**: 将数据总线上的值传送给指令寄存器。指令寄存器是否接受,看其是否接到接受的控制信号。
- C2: 控制指令寄存器接收数据总线上的值。如果没有此信号,即使传送给指令寄存器,指令寄存器也不接受。
- **A2**: 将指令寄存器的地址码中的地址送给存储器的地址寄存器:
- C4: 控制运算器中的寄存器接收数据的控制信号;
- D2: 将数据总线上的值传送给R1 寄存器。
- D3: 将数据总线上的值传送给R0 寄存器。
- C1: PC程序计数器自动加1。
- C5: 通知运算器开始计算。

- **14**、已知某机器的核心部件及其结构关系如下图示意。请仔细理解该结构图,并回答下述问题。
- (*6) 当CPU在执行指令阶段,假设当前执行的指令"00000100 00001000—将8号单元内容取出到寄存器 R_1 中并与运算器中寄存器 R_0 的值相乘,结果保留在 R_0 中",则下列说法正确的是____。 (A|B|C|D)
- (A) 第3个节拍进行A2, C3, C1; 第4个节拍进行D1, C4, D2; 第5个节拍进行C5;
- (B) 第3个节拍进行A1, C3; 第4个节拍进行D1, C4, D2; 第5个节拍进行C5;
- (C) 第3个节拍进行A2, C3, C1; 第4个节拍进行D1, C5, D2;
- (D) 第3个节拍进行A2, C3, C1; 第4个节拍进行D1, C4, D4; 第5个节拍进行C5。
 - A1: 是将PC的值传送给存储器的地址寄存器;
- **C3**: 通知存储器开始工作; 如果没有此信号,存储器 是不会工作的:
- D1: 将存储器的内容寄存器的值传输到数据总线上。
- **D6**: 将数据总线上的值传送给指令寄存器。指令寄存器是否接受,看其是否接到接受的控制信号。
- **C2**: 控制指令寄存器接收数据总线上的值。如果没有此信号,即使传送给指令寄存器,指令寄存器也不接受。
- **A2**: 将指令寄存器的地址码中的地址送给存储器的地址寄存器:
- C4: 控制运算器中的寄存器接收数据的控制信号;
- D2: 将数据总线上的值传送给R1 寄存器。
- D3: 将数据总线上的值传送给R0 寄存器。
- C1: PC程序计数器自动加1。
- C5: 通知运算器开始计算。

- **14**、已知某机器的核心部件及其结构关系如下图示意。请仔细理解该结构图,并回答下述问题。
- (*7) 关于机器指令的执行,则下列说法不正确的是____。(A|B|C|D)
- (A) 控制器不断地从存储器中读取指令,并按照指令的内容进行执行;
- (B) 机器指令的执行即是在时钟节拍控制下产生一系列信号的过程;
- (C) 没有时钟与节拍发生器,机器的指令也能正确地执行;
- (D) 没有PC, 机器就不能正确地执行程序。

- 15、关于"存储在存储器中程序的执行"问题,下列说法不正确的是____。(A|B|C|D|E)
- (A) 机器需要提供一个其可以执行的指令集合;
- (B) 人们用指令集合中的指令编写程序,并将编写好的程序和数据事先存放于存储器中;
- (C) 控制器一条接一条的从存储器中读取指令,读取一条指令则执行一条指令,一条指令执行完成后,再读下一条指令;
- (D) 当读取一条指令后,程序计数器PC的值自动加1,以指向下一条将要读取的指令;当程序需要转往它处执行时,则可以它处存放指令的地址来修改PC的值即可;
- (E)上述说法有不正确的。

