

CESED - CENTRO DE ENSINO SUPERIOR E DESENVOLVIMENTO UNIFACISA – CENTRO UNIVERSITÁRIO CURSO DE BACHARELADO EM SISTEMAS DE INFORMAÇÃO

DOCUMENTAÇÃO DE SISTEMA PARA GERENCIAMENTO DE ACERVO DE UMA BIBLIOTECA

Competência Curricular: Aplicar Algoritmos de Apoio à Pesquisa Operacional.

Professor: Jonhnanthan Oliveira.

Equipe: Hugo Bezerra Figueiroa;

Kleiton da Silva Ferreira.

DOCUMENTAÇÃO DE SISTEMA DE GERENCIAMENTO DE ACERVO DE UMA BIBLIOTECA

1. INTRODUÇÃO

O sistema de gerenciamento de acervo de biblioteca foi desenvolvido em Java e permite adicionar, listar, buscar, ordenar por título e remover livros de um acervo. O objetivo principal foi implementar uma estrutura de dados personalizada, seguindo a exigência de utilizar uma lista encadeada ao invés de uma lista sequencial.

2. ESCOLHA DA ESTRUTURA DE DADOS

Lista Encadeada vs. Lista Sequencial

Optamos pela lista encadeada em vez de uma lista sequencial (array) para este sistema, devido às suas vantagens em termos de flexibilidade e eficiência:

- Tamanho Dinâmico: A lista encadeada não exige um tamanho fixo previamente definido, permitindo que o acervo cresça dinamicamente à medida que novos livros são adicionados. Em comparação, uma lista sequencial exige um tamanho inicial ou o redimensionamento constante do array, o que é custoso em termos de memória e processamento.
- Facilidade para Inserção e Remoção: Em uma lista encadeada, adicionar ou remover elementos em qualquer posição é mais eficiente, pois envolve apenas o ajuste dos ponteiros dos nós (endereços de memória) e não a realocação de elementos. Em uma lista sequencial, a remoção e inserção em posições intermediárias exigiriam o deslocamento dos elementos subsequentes, o que resulta em maior consumo de tempo e memória.
- Uso de Memória Contínua: A lista encadeada aloca memória conforme os elementos são adicionados, enquanto a lista sequencial exige um bloco de memória contínuo. Isso torna a lista encadeada mais adequada para sistemas com variação constante de tamanho, como uma biblioteca, onde o número de livros pode aumentar ou diminuir com frequência.

3. FUNCIONAMENTO DO CÓDIGO

Estrutura Principal do Código

O sistema foi implementado com as seguintes classes:

 Livro: Representa os dados de cada livro com os atributos título, autor e ano de publicação.

- **Node**: Representa um nó na lista encadeada, contendo um objeto Livro e uma referência (próximo) ao próximo nó na lista.
- **ListaEncadeada**: Contém os métodos principais para manipulação dos livros na lista, incluindo a ordenação dos livros por título.
- **Program**: Classe principal, que fornece uma interface de linha de comando para interação com o usuário.

Classes e Métodos

- Classe Livro: Define os atributos titulo, autor e anoPublicacao. Possui o método toString para exibir os dados de cada livro.
- Classe Node: Representa um nó da lista encadeada, com os atributos livro (para armazenar o livro) e proximo (para apontar ao próximo nó).
- Classe ListaEncadeada:
 - > adicionarLivro(Livro livro): Adiciona um novo livro ao final da lista encadeada.
 - listarLivros(): Percorre a lista e exibe os detalhes de cada livro; caso a lista esteja vazia, exibe uma mensagem apropriada.
 - > buscarLivroPorTitulo(String titulo): Busca um livro pelo título, percorrendo a lista encadeada.
 - > **ordenarPorTitulo()**: Este método utiliza o algoritmo Bubble Sort para ordenar os livros pelo título em ordem alfabética.
 - removerLivroPorTitulo(String titulo): Remove um livro pelo título, ajustando os ponteiros para "pular" o nó correspondente, removendo o livro desejado sem necessidade de realocação de outros elementos.
- Classe Program: Implementa o menu interativo com opções para adicionar, listar, buscar, ordenar e remover livros, usando a classe ListaEncadeada para armazenar e gerenciar o acervo. Utiliza um Scanner para receber as entradas do usuário e um loop do-while para manter o menu ativo até a opção de saída ser selecionada.

Fluxo de Execução do Código

O usuário interage com o menu do sistema na linha de comando. Ao adicionar um livro, ele é inserido no final da lista encadeada. A opção de listar exibe todos os livros na lista ou uma mensagem indicando que não há livros. A busca permite localizar um livro específico pelo título, retornando seus detalhes caso exista. A remoção de um livro ocorre ao buscar o título na lista encadeada e ajustar os ponteiros para remover o nó, garantindo eficiência sem deslocamentos de memória. A ordenação dos livros por título, com o método ordenarPorTitulo, organiza a lista em ordem alfabética de forma simples e eficiente.

4. ESCOLHA DO BUBBLE SORT PARA ORDENAÇÃO

Escolhemos o Bubble Sort por ser uma implementação simples e direta, suficiente para listas pequenas e facilmente aplicável a uma estrutura encadeada sem o uso de arrays auxiliares. O método usa um laço while, que facilita o

controle sobre a ordenação, parando automaticamente quando a lista estiver organizada, economizando comparações e tempo de execução

5. CONCLUSÃO

A implementação da lista encadeada atende aos requisitos de flexibilidade, eficiência e organização de dados. A escolha dessa estrutura permitiu desenvolver um sistema adequado para uma aplicação como um acervo de biblioteca, onde a quantidade de itens pode variar e operações dinâmicas são frequentes. A escolha do Bubble Sort para ordenar os livros permite uma organização básica e eficiente para listas pequenas, aproveitando o controle do laço while para otimizar o tempo de execução. A estrutura e o código foram organizados para facilitar a manutenção e possíveis expansões futuras.