

UPLOAD

A Quicker Way to Upload and Share

Wildlife Insights

Anyone collecting camera trap photos can upload and share them with the global conservation community. Photos are stored online so you can access them from anywhere, from any device or computer, even out in the field.

Get Started

Monitor wildlife health via image classification

https://youtu.be/hUzODH3uGg0

Overview

#1 Training: builds an ML model

#2 Prediction: classifies images

 $\underline{https://github.com/GoogleCloudPlatform/python-docs-samples/tree/master/people-and-planet-ai/image-classification}$

LILA BC

Labeled Information Library of Alexandria: Biology and Conservation

WCS Camera Traps dataset

- Approximately 1.4 million images
- Around 675 species from 12 countries
- More than 560 GB of images total
- Very unbalanced
 - Some species have tens of thousands of images
 - Many species have only a couple images
- Approximately 50% of images are empty
- Image files live in Azure Storage

http://lila.science/datasets/wcscameratraps

Creating the images database

Creating the images database -- job graph

Preview of the images metadata table

category	file_name
tapirus bairdii	animals/0597/0707.jpg
equus quagga	animals/0377/1882.jpg
papio anubis	animals/0036/1687.jpg
dicerorhinus sumatrensis	animals/0329/0830.jpg
cephalophus nigrifrons	animals/0331/1215.jpg
tayassu pecari	animals/0174/0182.jpg
cephalophus nigrifrons	animals/0682/1295.jpg
giraffa camelopardalis	animals/0320/1392.jpg
panthera onca	animals/0564/0604.jpg
leopardus pardalis	animals/0576/0243.jpg

Training the model (part 1) -- balancing the dataset

Training the model (part 2) -- preparing for AutoML

Training the model -- job graph

Show debug panel

Training the model -- job metrics

Logs

■SHOW

gs://dcavazos-python-docs-samples-tests/samples/wildlife-insights/temp/\

gs://dcavazos-python-docs-samples-tests/samples/wildlife-insights/temp/\

staging_location

temp_location

Create an AutoML dataset

Training the model -- precision

aramides cajanea

0.92666

Show debug panel

Training the model -- confusion matrix

turtur turananistria

0.01507

Getting predictions

category:

dicerorhinus sumatrensis

file: 'animals/0325/1529.jpg'

prediction:

dicerorhinus sumatrensis: 92.79% confidence

Getting predictions

category:

leopardus wiedii

file: 'animals/0000/1705.jpg'

prediction:

leopardus pardalis: 55.56% confidence

leopardus wiedii: 33.45% confidence

Getting predictions

category:

dasypus novemcinctus

file: 'animals/0000/0425.jpg'

prediction:

procyon cancrivorus: 19.38% confidence

dasypus novemcinctus: 16.65% confidence

columba larvata: 10.84% confidence