LUCID SOLUTIONS

Predicting Electric Vehicle Ownership in U.S Market

Riad Rehman Kwang Heum (Sean) Yeon

Induranga (Indu) Jayewardene Tony Tan

Lorena Severino Yong Wu

Agenda

- Business Problem
 - Recap of business problem
- 02 Model
 - The models , results, and our interpretation
- Openition
 Openition
 - The effectiveness of the models & visuals

- **Conclusion**
 - Business implications & deployment of model
 - Concerns

Business Problem

As a consulting service, we want to help automakers of fully electric vehicles (EV) maximize their EV marketing budgets.

What if automakers could target marketing to just consumers that would be the most likely to buy an EV?

The solution?

 Create a model that can best predict who will purchase an EV

Model Results

Model	Accuracy	Precision	Recall	F1 Score	Support
Logistic Regression	97.00	97.00	97.00	97.00	72.00
Random Forest	97.00	97.00	97.00	97.00	72.00
SVM	96.00	96.00	96.00	95.00	72.00

The scores are high and similar across models, likely due to the imbalanced nature of the dataset.

Evaluation

Logistic Regression

	Actual Positive	Actual Negative		
Predicted Positive	64	0		
Predicted Negative	2	6		

Support Vector Machines

	Actual Positive	Actual Negative	
Predicted Positive	64	0	
Predicted Negative	2	6	

Random Forest

	Actual Positive	Actual Negative
Predicted Positive	64	0
Predicted Negative	2	6

Confusion Matrix: 70% Training 30% Testing

The cost of a False Positive (FP) is miniscule in front of the profit of a True Positive (TP).

ROC Curve

Our broader goal is to maximize True Positives and minimize False Positives by picking best tradeoff

Concerns

Overfit or Underfit

```
y_train_pred_rf = model.predict(X_train)
y_test_pred_rf = model.predict(X_test)

# Calculate the accuracy
from sklearn.metrics import accuracy_score
train_accuracy = accuracy_score(y_train, y_train_pred_rf)
test_accuracy = accuracy_score(y_test, y_test_pred_rf)
print('The training accuracy is', train_accuracy)
print('The test accuracy is', test_accuracy)
```


The training accuracy is 1.0 The test accuracy is 0.9375

- Utilized a 5-fold cross validation technique to attempt to prevent overfitting
- However, our training sets' accuracy is still higher than our test sets' accuracy with a discrepancy of 6%
- Overall, select a larger data set so we can train our model with more data

Business Implications & Deployment

- Overall, select a larger data set so we can train our model with more data
- Overfitting will eventually dissipate as our business grows and we have the financial capital to purchase more data
- Deliver and deploy our results as a consulting service
- Use our model to transform our client's automobile business and give them the competitive edge by helping them accurately market their products and services to the right consumers

Thank You Any Questions?

Thank You

APPENDIX

FEATURE SELECTION

Business Impact & Expected Value

The proposal has a positive expected value outcome of 48.48

	р	n	Totals			
Υ	64	0	64			
N	2	6	8	Confusion matrix (Logistic)		
Totals	66	6				
	TP=p(Y p)	FP=p(Y n)				
	0.97	0.00		Conditional probabilities		
	FN=p(N p)	TN=p(N n)				
	0.03	1.00				
	n6v 1	n/v 1				
	B(Y,p)	B(Y,n)		11		
	5000	-5		Hypothetical gain & loss per outcom		
	B(N,p)	B(N,n)				
	0	0				
	B(Y,p)	B(Y,n)				
	4848	0		Business impact		
	B(N,p)	B(N,n)				
	0	0				
	p(p)	p(n)				
	0.01	0.99		Priors for population		
	48.48	0.00		Expected value for the proposal (\$)		
	EV gain	EV loss				

Model

Results**

	model	accuracy	precision	recall	f1-score	support
0	LogisticRegression	97.00	97.00	97.00	97.00	72.00
1	RandomForestClassifier	97.00	97.00	97.00	97.00	72.00
2	SVC	96.00	96.00	96.00	95.00	72.00

Data Columns Tested

