Prácticas de Matlab

Resolución de EDO con métodos implícitos Hoja 5 A

1.1 Práctica 3 (Ecuación no rígida con Euler implícito)

1.1.1 Objetivo

Vamos a comparar, mediante diagramas de eficiencia, diferentes implementaciones del método del Euler implícito

$$y_{k+1} = y_k + h\left(f(t_{k+1}, y_{k+1})\right) \tag{1}$$

mediante:

- Punto fijo
- Punto fijo+Euler (PC)
- Newton
- Newton + Euler (PC)

Lo vamos a hacer para una ecuación no rígida y una rígida.

1.1.2 Caso no rígido

Consideramos el siguiente sistema

$$y'(t) = Ay(t) + B(t) \quad t \in [0, 10]$$
 (2)

$$A = \begin{pmatrix} -2 & 1\\ 1 & -2 \end{pmatrix} \qquad B(t) = \begin{pmatrix} 2\sin(t)\\ 2(\cos(t) - \sin(t)) \end{pmatrix}$$
 (3)

$$y(0) = \begin{pmatrix} 2\\3 \end{pmatrix} \tag{4}$$

La solución exacta es:

$$y = 2e^{-t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} \sin(t) \\ \cos(t) \end{pmatrix}$$
 (5)

1.1.3 Resultados de los errores

h _{vect}	0.05	0.025	0.0125	0.00625	0.003125	0.0015625	0.00078125	0.000390625
$err_{elimpfx}$	0.0152631	0.00784367	0.00510129	0.00360051	0.00311607	0.00180795	0.000964515	0.000482232
$err_{elimpfxpc}$	0.0175537	0.00840571	0.00406073	0.00199587	0.000989447	0.000492617	0.000245784	0.000122761
err _{elimpnwt}	0.0154744	0.00779209	0.00391016	0.00195858	0.000980165	0.000490302	0.000245206	0.000122617
$err_{elimpnwtpc}$	0.0154744	0.00779209	0.00391016	0.00195858	0.000980165	0.000490302	0.000245206	0.000122617

1.1.4 Gráficas

Figure 1: El método del Euler implícito punto fijo vs PC

Figure 2: El método del Euler implícito-punto-fijo-PC vs Euler-Imp-Nwt

Sistema no rigido intv=[0 10] Error maximo vs h M=8 $N_0=200$ orden EulImpNwt=-0.90648 orden EulNwtPC=-1.00308,

Figure 3: El método del Euler implícito Nwt vs Euler-imp Nwt-PC

1.2 Práctica 5 (Ecuación rígida con Euler implícito)

$$y'(t) = Ay(t) + B(t) \quad t \in [0, 10]$$
 (6)

$$\begin{pmatrix} A = -2 & 1\\ 998 & -999 \end{pmatrix} \quad B(t) = \begin{pmatrix} 2\sin(t)\\ 999(\cos(t) - \sin(t)) \end{pmatrix} \qquad B(t) = \begin{pmatrix} 2\sin(t)\\ 2(\cos(t) - \sin(t)) \end{pmatrix} \tag{7}$$

$$y(0) = \begin{pmatrix} 2\\3 \end{pmatrix} \tag{8}$$

La solución exacta es:

$$y = 2e^{-t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} \sin(t) \\ \cos(t) \end{pmatrix}$$
 (9)

1.2.1 Resultados de los errores

h_{vect}	0.1	0.05	0.025	0.0125	0.00625	0.003125	0.0015625	0.00078125
$err_{elimpfxpc}$	Inf	Inf	Inf	Inf	Inf	Inf	Inf	0.000275157
$err_{elimpnwt}$	0.0342405	0.0173753	0.00883207	0.00487825	0.00303301	0.0040913	0.00221767	0.00110785
$err_{elimpnwtpc}$	0.0337565	0.0172859	0.00830651	0.00427411	0.00216756	0.00109144	0.000547636	0.000274298

1.2.2 Gráficas

Sistema rigido intv=[0 10] Error maximo vs h M=8 $N_0=200$ orden orden EulImpPC=NaN Tol=0.001 $n_{max}=10$

Figure 4: Euler Implicito Punto fijo
+ ${\rm PC}$

Figure 5: Euler Implicito Newton+ Newton-PC