

# Redis - From Documents to Vectors and Natural Language APIs

Suyog Kale Solution Architect Manager, Redis India | Organizer, Pune Developer's Community (PDC)

Ravi Joshi Technologist Architect

# Agenda

- Introduction
- Redis
- SQL to NoSQL
- Redis JSON and Search
- Redis Vector database
- Demos
- ABQ •



© 2024 Redis Ltd. All rights reserved.

INTRODUCTION Introduction



# Before, you knew us for caching.





## But we do a lot more.





© 2024 Redis Ltd. All rights reserved.

# Redis Data Structures - Use Case Driven Design





# Multiple Data Models, Unprecedented Performance



- Dedicated engine for each data model
- Models engines can be selectively loaded, according to use case
- All model engines access the same data, eliminating the need for transferring data between them

# Relational vs NoSQL

|                   | Relational Database                                                                                        | NoSQL Database                                                               |  |
|-------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|
| Type              | Relational data models                                                                                     | Nonrelational data models                                                    |  |
| Schema            | Pre-defined schema                                                                                         | Schema is flexible                                                           |  |
| Data structure    | Data is stored in tables, the schema is identified by column names.                                        | No fixed structure, data can be stored as key-value, graph or documents.     |  |
| Scalability       | Limited scope to scale. Most of the time adding more infra is the only possible option. (vertical scaling) | Supports vertical as well as horizontal scaling                              |  |
| Property followed | ACID properties (Atomicity, Consistency, Isolation, and Durability)                                        | CAP theorem (Eventual Consistency,<br>Availability and Partition tolerance). |  |
| Support           | Great support by the community as well as enterprises                                                      | Only few NoSQL databases have good support by community and enterprises      |  |
| Example           | PostgreSQL, MySQL, Oracle and Microsoft SQL<br>Server                                                      | Redis, Cassandra, MongoDB, BigTable, HBase,<br>Neo4j and CouchDB             |  |



# Relational vs NoSQL





# Relational vs NoSQL

Time series Key value pairs Value Key Relational Data Value Key Key Value Graph Documents

# Why You Need SQL to RedisJSON and RediSearch

- Traditional RDBMS struggles with performance at scale.
- JSON document modeling matches modern app needs.
- RedisJSON stores rich objects; RediSearch provides fast querying.
- Enables schema-less, nested object storage with full-text search and filtering.

| Feature                            | SQL (Relational)         | RedisJSON + RediSearch (NoSQL) |  |
|------------------------------------|--------------------------|--------------------------------|--|
| Schema                             | Fixed                    | Dynamic / Flexible             |  |
| Relationships JOINs Embedded docum |                          | Embedded documents             |  |
| Performance                        | Disk-based, slower       | In-memory, fast                |  |
| Horizontal scaling Complex         |                          | Built-in (Redis Enterprise)    |  |
| Search capabilities                | Limited full-text search | Advanced with RediSearch       |  |



## **RedisJSON**

- It's a Redis Module that implements JSON as a native data structure
- JSON Path syntax for selecting fields within documents
- Documents are stored as binary data in a tree structure allowing fast access to sub-elements
- Typed atomic operations for all JSON value types.

#### Advantages of RedisJSON:

- Nesting
- In-place updates
- Atomic Read operations
- Indexing, Querying and Full-text Search with RediSearch
- 12.7x faster than MongoDB

```
127.0.0.1:6379> JSON.SET doc . '( "foo": "bar", "baz": 42 )'
OK
127.0.0.1:6379> JSON.GET doc .foo
"bar"
127.0.0.1:6379> JSON.NUMINCRBY doc .baz 1
43
127.0.0.1:6379> JSON.SET doc .arr '[1,2]'
OK
127.0.0.1:6379> JSON.GET doc NEWLINE "\n" SPACE " " INDENT "\t'
( "foo": "bar",
 "baz": 43,
 "arr": [
 1,
 2
 ]
}
127.0.0.1:6379> JSON.ARRAPPEND doc .arr true null false
5
127.0.0.1:6379> JSON.ARRAPPEND doc .arr
false
127.0.0.1:6379> ECHO "That's all folks! ;)"
That's all folks! ;)
127.0.0.1:6379>
```

# RediSearch Fast creation and automatic indexing of secondary keys

- Index any field in the database in real time for faster search results and unique data views
- Multi-field queries with no application code changes
- Once defined indexes are automatically updated, never manage indexes again





# Redis Enterprise real time search capabilities

#### Indexing



Secondary index structures for numeric data, text values (tags), and geo locations

Indexing on multiple fields in docs via a single index

Declarative indexes

Incremental synchronous indexing

Document deletion and updating with index

Garbage collection

#### Querying



Multi fields queries

Numeric filters and range queries

Geo radius queries

Complex Boolean queries with AND, OR, NOT operators between sub-queries

Optional query clauses

Ask for full document content or just ids

Aggregations across shards

#### Full-text search



Inverted index structure for full-text

Document ranking & field weights

Expansion and scoring

Prefix/Infix/Suffix based searches

Exact phrase search, or slop based search

Stemming based query expansion in many languages

Support for custom functions for query

Limiting searches to specific doc fields

Spell-checking and auto-completion dictionaries

Demo time Demo time

# SQL Entity Design - User, Portfolio, Transactions



#### SELECT

U.user\_id, <u>u.name</u>, u.email, u.phone, u.created\_at, P.portfolio\_id, p.stock\_symbol, p.shares, p.avg\_price, p.gain\_loss

FROM Users u

JOIN Portfolio p ON u.user\_id = p.user\_id

WHERE u.user\_id = 'u1';

# Challenges in SQL Model at Scale

- Complex JOINs across tables.
- Slower queries with increasing users and transactions.
- Multiple queries needed to retrieve full user context.
- Difficult to scale horizontally.



## RedisJSON Document Model

- Search Query:
  - List user portfolio by userId ordered by gain/loss:

FT.SEARCH idx:users "@userld:{u1}" SORTBY gainLoss DESC

List recent transactions by userId ordered by timestamp:

FT.SEARCH idx:users "@userId:{u1}" SORTBY timestamp DESC



Redis as vector database

Redis as vector database

# REDISS PING 66 P

### What is a Vector Database?

#### What is a Vector Database?

- A database for storing high-dimensional vectors.
- Supports KNN (k-nearest neighbors) search using cosine, Euclidean, IP distance.
- Used in AI/ML, recommendation, semantic search, NLP.

#### What are Dimensions in a Vector Database?

In a **vector database**, **dimensions** refer to the number of numerical values (features) in a **vector** that represents a piece of data (like text, image, audio, or user behavior). Each vector is a point in an *n-dimensional space*, and **n** is the number of dimensions.

- **Example:** A 3-dimensional vector might look like [0.2, 0.8, 0.1].
- A 768-dimensional vector might be generated by a large language model like BERT for a sentence.

**Importance:** The number of dimensions impacts **accuracy**, **storage**, **performance**, and the **relevance** of vector similarity search.

# Why Dimensions Matter?

| Dimension                | Pros                                          | Cons                                       | Example Usage                           |
|--------------------------|-----------------------------------------------|--------------------------------------------|-----------------------------------------|
| Count                    |                                               |                                            |                                         |
| Low (e.g. 3-10)          | Fast search, simple math                      | Poor representation of complex data        | IoT sensor data, GPS coordinates        |
| Medium (e.g.<br>128-300) | Good for small NLP models or image embeddings | Trade-off between speed & quality          | Face recognition, basic semantic search |
| High (e.g.<br>512-1536+) | Rich, accurate semantic understanding         | Higher compute, needs optimized ANN search | LLM embeddings, RAG, GenAl<br>apps      |

#### **Example Use Cases by Vector Dimension**

| Use Case                   | Description                                    | Typical Vector Dimension | Notes                                                |
|----------------------------|------------------------------------------------|--------------------------|------------------------------------------------------|
| _                          | Each face image is embedded into a vector      | 128 or 512               | Used in mobile devices and surveillance              |
|                            |                                                |                          | Higher dimensions offer better semantic quality      |
| Product<br>Recommendations | User behavior encoded into vectors             | 50-200                   | Used in retail and e-commerce                        |
|                            | Snippets of audio converted into embeddings    | 128–1024                 | Used for identifying songs or speakers               |
| Code Embeddings            | Code snippets embedded by models like CodeBERT | 768+                     | Used in code search and developer<br>tools           |
| Multimodal Search          | Combined embeddings                            |                          | Needs aligned embeddings from CLIP or similar models |
| Financial Fraud Detection  | Transaction patterns encoded                   | 30–100                   | Combines numerical, categorical, and temporal data   |

# Redis as Vector Database



# **Key Capabilities**



Geo-Spatial

Polygon

Tags

Numeric

**Types** 

# Redis powers a multitude of Al use cases.





# Faster than every other vector database. Period.





© 2024 Redis Ltd. All rights reserved.

# Redis Vector Library



#### What is RedisVL?

- The Al-native Python client for Redis.
- Designed for realtime Al applications utilizing Redis' data structures and powerful capabilities.

#### Links

- GitHub: <u>https://github.com/redis/redis-vl-python</u>
- Documentation: <a href="https://redisvl.com">https://redisvl.com</a>
- PyPI: <a href="https://pypi.org/project/redisvl/">https://pypi.org/project/redisvl/</a>

#### **Key Features**

- Native schema design and ergonomic query building.
- Lightning-fast information retrieval and vector similarity search.
- Built-in ecosystem integrations and utilities like common vectorizers and rerankers.
- Out-of-the-box extensions for common use cases like semantic caching, LLM memory, and more.

# Sample dataset

- Fake dataset of users/customers including name, age, job, credit\_score category, and a user embedding (vector).
- List of Python dictionaries.
- Numpy used to create vector embeddings and cast to bytes.

```
import numpy as np
data =
        'location': '-122.4194,37.7749',
        'user_embedding': np.array([0.1,0.2,0.3],dtype=np.float32).tobytes()
    },
        'user': 'mary',
        'credit_score': 'low',
        'user_embedding': np.array([0.2,0.1,0.4],dtype=np.float32).tobytes()
    },
# Additional records...
```

# RedisVL: define a schema

#### What is a schema in Redis?

- Defines field types, definitions, and index configuration.
- Required to enable search in Redis.

#### Methods to define schema:

- YAML: Easy to maintain and manage. Human-readable.
- Python Dictionary: Directly in code for dynamic schemas.

```
version: '0.1.0'
  name: customers
  - name: credit_score
    tupe: numeric
```

```
schema = {
    "index":
        "name": "customers",
        "prefix": "customer".
    "fields":
         "name": "user", "type": "taq"},
         "name": "credit_score", "type": "tag"},
         "name": "job", "type": "text"},
         "name": "age", "type": "numeric"},
         "name": "location", "tupe": "geo"},
            "attrs": |
                "distance metric": "cosine".
                "algorithm": "flat",
```

# RedisVL: create an index

#### What is a search index?

- Secondary index to enable efficient search across objects in Redis.
- Optionally overwrite existing index or delete existing data.

#### Methods to create:

- Init from schema YAML or dict.
- Init with your own Redis client object.
- Init with a connection string.

```
from redis import Redis
from redisvl.index import SearchIndex

# bring your own client
client = Redis.from_url("redis://localhost:6379")
index = SearchIndex(schema, client)

# OR bring your connection string
index = SearchIndex(schema, redis_url="redis://localhost:6379")
```

#### Create the search index

```
index.create(overwrite=True, drop=True)
```

#### Load data to Redis

```
index.load(data)
```

# RedisVL: query types

#### VectorQuery

- Standard KNN-style vector query.
- Uses vector index to compute K nearest neighbors based on the chosen distance metric.

```
from redisvl.query import VectorQuery

vector_query = VectorQuery(
    vector=[0.1, 0.2, 0.3],
    vector_field_name="user_embedding",
    return_fields=["user", "age"],
    num_results=3
)

results = index.query(vector_query)
```

#### VectorRangeQuery

 Yields search results within the semantic distance threshold. Not guaranteed to return anything.

```
from redisvl.query import VectorRangeQuery

range_query = VectorRangeQuery(
    vector=[0.1, 0.2, 0.3],
    vector_field_name="user_embedding",
    return_fields=["user", "age"],
    distance_threshold=0.2
)

results = index.query(range_query)
```

# RedisVL: query types

#### **FilterQuery**

 Standard search + query capabilities like tag-based filters, full-text search, numeric or geospatial search.

```
from redisvl.query import FilterQuery
from redisvl.query.filter import Tag

has_low_credit = Tag("credit_score") == "low"

filter_query = FilterQuery(
    return_fields=["user", "credit_score",
"age"],
    filter_expression=has_low_credit
)

results = index.query(filter_query)
```

#### CountQuery

 Count the number of records in the index that match a particular filter expression.

```
from redisv1.query import CountQuery
has_low_credit = Tag("credit_score") == "low"
filter_query = CountQuery(
    filter_expression=has_low_credit
)
count = index.query(filter_query)
```

# RedisVL: adding filters

#### All query types accept filter expressions

```
from redisvl.query import VectorQuery
from redisvl.query.filter import Taq, Text, Num, Geo, GeoRadius
has low credit = Tag("credit score") == "low"
is_engineer = Text("job") % "engine*"
is atleast 25 = Num("age") >= 25
geo filter = Geo("location") == GeoRadius(-122.4194, 37.7749, 10, "mi")
filters = (has low credit & is engineer & is atleast 25 & geo filter)
vector_query = VectorQuery(
    vector=[0.1, 0.2, 0.3],
    vector field name="user embedding",
    return_fields=["user", "age"],
    num results=3,
    filter expression=filters
results = index.query(vector_query)
```

### RedisVL: utilities

Convenience utils to help build complete workflows

#### Vectorizers

- Built-in vectorizers to simplify data embedding workflow.
- Support for Cohere, OpenAI, AzureOpenAI, VertexAI,
   MistralAI, and HuggingFace out of the box.
- Customizable vectorizer base class also available.

#### Rerankers

- Built-in rerankers to simplify search result reranking process.
- Support for Cohere and HuggingFace out of the box.
- Customizable reranker base class also available.

```
from redisvl.utils.rerank import \
HFCrossEncoderReranker

cross_encoder_reranker = HFCrossEncoderReranker(
    "BAAI/bge-reranker-base"
)
```

# RedisVL: Semantic Cache

#### What is a semantic cache?

- A cache for natural language questions/phrases.
   Semantic search is used to generate cache hits.
- Typically used in an NLP search OR RAG application where the inputs are human questions.
- Save on LLM costs and improve latency/responsiveness for redundant questions.

```
from redisvl.extensions.llmcache import SemanticCache
# init cache with TTL and semantic distance threshold
11mcache = SemanticCache(
   name="llmcache",
   ttl=360,
   redis url="redis://localhost:6379",
    distance_threshold=0.1
llmcache.store(
    prompt="What is the capital city of France?",
   response="Paris"
# check the cache with a slightly different prompt
response = llmcache.check(
    prompt="What is France's capital city?"
```

https://github.com/redis-developer/redis-ai-resources/tree/main/puthon-recipes/semantic-cache

# RedisVL: LLM Short-Term Memory

#### What is LLM Memory?

- LLMs are stateless.
- Your apps host multiple sessions for multiple users in production.
- Redis provides a fast, distributed memory layer for LLMs to recall conversation history associated with a user session.
- Sometimes called "LLM session management".

Fetch recent conversation history

```
session.get_recent(top_k=1)
```

Fetch conversation history relevant to the term "weather"

```
session.get_relevant("weather", top_k=1)
```

https://github.com/redis-developer/redis-ai-resources/tree/main/puthon-recipes/llm-session-manager

# RedisVL: Semantic Router

#### What is a semantic router?

Assign incoming queries to proper handlers based on semantics:

- Topic classification
- LLM selection: choose the right LLM for the given task
- Guardrails: Prevent access to undesirable topic areas
- Data segregation: route queries to appropriate data sources

```
from redisvl.extensions.router import Route, SemanticRouter
routes = [
    Route(
        name="greeting",
        references=["hello", "hi"],
        metadata={"type": "greeting"},
        distance_threshold=0.3,
    ),
    Route(
        name="farewell",
        references=["bye", "goodbye"],
        metadata={"type": "farewell"},
        distance threshold=0.3,
router = SemanticRouter(
    name="topic-router",
    routes=routes.
    redis url="redis://localhost:6379",
router ("Hi, good morning")
```

# When to use RedisVL?

#### Simplicity

User needs
easy-to-use, Al-native
capabilities out of the
box while keeping
dependencies light.

## Configurability

User wants more configurability than popular AI ecosystem integrations can offer.

#### Persona

User has a data science or machine learning background rather than software or data engineering.



# Supplemental resources

#### Redis AI Resource Repo

https://github.com/redis-developer/redis-ai-resources

Look here to find AI example code, recipes, and demos.

#### Redis - SQL to NoSQL sample code

https://github.com/suyogdilipkale/redis-document-data-to-vectorsearch

Step by step Redis JSON, Search and Vector database code samples

#### RedisVL

https://github.com/redis/redis-vl-puthon

The Redis Vector Library codifies best practices and makes it easier to get going in Python.



© 2024 Redis Ltd. All rights reserved.

# Join us.

A WORLDWIDE IN-PERSON EVENT SERIES

# REDIS RELEASED

#### Sign up here:



# Bengaluru

Sept 19, 2025 at 10 am Sheraton Grand Bengaluru

#### Sign up here:



#### Sign up here:



# Mumbai

November 13, 2025 at 10 am JW Marriott Mumbai Sahar

# Delhi

November 20, 2025 at 10 am The Leela Ambience Gurugram

# Join us.

A WORLDWIDE IN-PERSON EVENT SERIES



Sign up here:



- ☑ November 13, 2025 at 10:00 am
- JW Marriott Mumbai Sahar

# Join us.



- November 20, 2025 at 10:00 am
- The Leela Ambience Gurugram

# thank you.

