プロジェクト実習||| 論理設計

第3,4週「プロセッサ」

今回(と次回)の実習

- 1. プロセッサの設計(前半)
 - レジスタ部
 - ALU部
- 2. プロセッサの設計(後半)
 - 制御部

これまでの実習の総まとめを行う

プロセッサの構成

- 8bitレジスタRO~R3
- 算術論理演算ユニットALU
- 命令レジスタIR
- マルチプレクサ

これまでの実習で作成し たものと基本的に同じ

入力制御信号をもつレジスタ

- 入力制御信号Enableが 1のときのみ,クロッ クの立ち上がり時にD を取り込む
- Enable==0ならば,クロックの立ち上がりでもDを取り込まない(入力を無視する)

なぜ必要か

- 例えばROからR3へ値をコ ピーする場合
 - ROの出力をマルチプレ クサが選択する
 - 2. ROの内容がバスに流れ る
 - 3. R3**だけ**がバスから信号を取り込むように、入力制御信号を設定(R3のEnableはOff)

実習の手順

- 実習1
 - レジスタとMUX
- 実習2
 - 実習1+ALU
 - 前半(第3週)はここまでが目標
- 実習3
 - 実習2+制御ユニット

各段階でのコードと動作確認結果を示し、レポートで報告する

実習1

- レジスタ間でデータを コピーできるか確認
 - DIN→レジスタ
 - レジスタ→レジスタ
- 目標のレジスタにデータが入っているか
- 目標以外のレジスタに データが入っていない か

実習2

- 実習1の結果に「ALUとA, Gレジスタ」を加える
 - R*→Aレジスタ
 - 演算結果→Gレジスタ
 - Gレジスタ→R*
- ・ALUは第2週「演算回路」の結果を再利用して構わない
- ここまでで全体の上半 分が完成

実習3

- マシン命令の動作を実現する
 - 1. MUXでどの信号を選択するか
 - 2. どのレジスタの「入口」を開けるか
 - 3. 上記1,2の操作を「いつ」行うか
- ・制御ユニットで上記1~3の制御を行う

命令コード	命令	動作
000	mv Rx, Ry	Rx←[Ry]
001	mvi Rx, #D	Rx←D
010	add Rx, Ry	$Rx \leftarrow [Rx] + [Ry]$
011	sub Rx, Ry	$Rx \leftarrow [Rx] - [Ry]$

制御ユニット

- MUXの選択信号
- 各レジスタの入力制御信号

を各タイムステップ($T_0 \sim T_3$)でコントロールする

	命令	T_0	T_1	T_2	T_3
			RY_{out} ,		
現	$\mathbf{m}\mathbf{v}$		$RX_{in},$	-	-
在			Done		
			$DIN_{out},$		
美	\mathbf{mvi}		$RX_{in},$	-	-
実行		IR_{in}	Done		
100		$ In_{in} $			$G_{out},$
中	add		RX_{out}, A_{in}	RY_{out}, G_{in}	RX_{in} ,
\mathcal{O}					Done
命				RY_{out} ,	$G_{out},$
	\mathbf{sub}		RX_{out}, A_{in}	$G_{in},$	RX_{in} ,
令				Mode	Done

【例】add命令の動作

add R0, R3

命令	T_0	T_1	T_2	T_3
mv	IR_{in}	$RY_{out}, \ RX_{in}, \ Done$	-	-
mvi		$DIN_{out}, \ RX_{in}, \ Done$	-	-
add		RX_{out}, A_{in}	RY_{out}, G_{in}	$G_{out}, \ RX_{in}, \ Done$
sub		RX_{out}, A_{in}	$RY_{out}, \ G_{in}, \ Mode$	$G_{out}, \ RX_{in}, \ Done$

制御ユニットの構成方法

- ① 有限状態機械でタイムステップの遷移を管理 ⇒ **順序回路**
- ② 「現在のタイムステップ」と「現在実行中の命令」 (入力)が分かれば,1に設定すべき信号(出力)が 一意に決まる ⇒ **組み合わせ回路**
- ①と②は分離して記述するとよい

【注意】②で「1にしない信号」には明示的に0を設定すること(そうしないと前回の信号値を記憶しておく必要が生じるため、組み合わせ回路にならない)

レポートについて

- •「プロセッサ」2回目の実習実施後に提出
- 実習1~3:必須
- 演習1, 2:解答必須
- 選択課題1~3:余力があれば実施する. 加点あり