Thompson Sampling

David S. Rosenberg

NYU: CDS

March 3, 2021

Contents

Bayesian updating for Gaussians

Thompson sampling

Experimental results

Bayesian updating for Gaussians

Review: Bayesian updating for Gaussians

- Consider $R \sim \mathcal{N}(\mu, \sigma^2)$.
- Suppose we know σ^2 , but don't know μ .
- We'll take a Bayesian approach.
- Put prior on μ : $p(\mu) = \mathcal{N}(\mu; 0, \sigma_0^2)$.
- Get data R_1, \ldots, R_{t-1} i.i.d. $\mathcal{N}(\mu, \sigma^2)$.
- Posterior on μ : $p(\mu \mid R_1, ..., R_{t-1}) = \mathcal{N}(\mu; \mu_t, \sigma_t^2)$, where

$$\mu_t = \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right)^{-1} \left(\frac{1}{\sigma_0^2} \mu_0 + \frac{n}{\sigma^2} \left(\frac{1}{n} \sum_{i=1}^n R_i\right)\right)$$

$$\sigma_t^2 = \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right)^{-1}$$

• Posterior mean μ_t is a weighted average of prior mean μ_0 and observed mean.

Gaussian prior distibution

- Consider sampling from $R_1, R_2, \ldots \sim \mathcal{N}(5, \sigma = 2)$.
- Use prior $\mathcal{N}(0, \sigma = 3)$.

David S. Rosenberg

Posterior after n=1 observations

Posterior after n = 5 observations

Posterior after n = 10 observations

Posterior after n = 50 observations

Thompson sampling

Working example: 10-armed bandit

Thompson sampling

- Want to choose action with largest expected reward.
- In Thompson sampling, we take a Bayesian approach.
- We start with a prior on the reward distribution for each action ("arm").
- In each round t, we play an action A_t (will see how later).
- We observe reward $R_t(A_t)$.
- We update our posterior reward distribution for action A_t .
- How to choose the action we play?

Gaussian priors

• For simplicity, we'll assume reward distribution is

$$\mathcal{N}(q_*(a), \sigma = 2),$$

for each action.

- The only thing we don't know is the expected reward $q_*(a)$.
- Let's put a $\mathcal{N}(0, \sigma = 5)$ prior on $q_*(a)$ for each action a.
- Let's write the posterior on $q_*(a)$ at start of round t as

$$\mathcal{N}(q_t(a), \sigma_t(a)),$$

where $q_t(a)$ and $\sigma_t(a)$ are updated based on

$$\mathfrak{D}_t = ((A_1, R_1(A_1)), \dots, (A_{t-1}, R_{t-1}(A_{t-1}))).$$

Action choice

- Ideally we'd choose action a with largest $q_*(a) = \mathbb{E}[R(a)]$.
- We only have a posterior on $q_*(a)$ for each a.
- We could choose a with maximum posterior mean $q_t(a)$.
- That would pure exploitation.

Thompson sampling action choice

Thompson sampling action choice

Sample action a with probability that a has the largest expected reward $q_*(a)$ (under our posterior).

- The more certain we are that a is the best, the more likely we are to select a.
- Thompson sampling amounts to a heuristic strategy.
- It's an approach to the explore/exploit tradeoff.
- How to sample from this particular distribution?

Thompson sampling recipe

- For each action a
 - sample synthetic reward R_a from the posterior over $q_*(a)$.
- Choose action A corresponding to $\arg \max_a R_a$.
- Turns out, A has the desired distribution.
- That is, A = a with probability that a has the largest expected reward, under our posterior.

Experimental results

Prior distributions

Posterior distributions n = 5

Posterior distribution n = 20

Posterior distribution n = 50

Posterior distribution n = 100

Posterior expected reward

Received rewards by action

Percent optimal action

Tuning parameter?

- What are the "hyperparameters" for Thompson sampling?
- Everything related to the prior distribution.
- In our setting, we can vary the prior variance and see the effect.

strategy	mean	SD	SE
Thompson sampling $\sigma_0 = 2$	5.129	0.306	0.022
Thompson sampling $\sigma_0=5$	5.229	0.214	0.015
Thompson sampling $\sigma_0=10$	5.279	0.169	0.012

References

Resources

- A Tutorial on Thompson Sampling by Russo et al is a nice [long] tutorial on Thompson sampling [RRK+18].
- You could take a look at Thompson's original work [Tho33] for fun.

References I

- [RRK⁺18] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen, *A tutorial on thompson sampling*, Foundations and Trends® in Machine Learning **11** (2018), no. 1, 1–96.
- [Tho33] William R. Thompson, On the likelihood that one unknown probability exceeds another in view of the evidence of two samples, Biometrika 25 (1933), no. 3/4, 285.