Assignment 1

Part I

phi/psi angles from PDB + secondary structure

Part II

amino acid propensities

Part III

- interpretation & propose methods
- (read book)

If you have trouble start with part II, 1.1 is probably the most difficult question!

Surface Accessible area

Mathematically, one calculates the surface by integrating a step function f() over all points X on the surface of a sphere of radius r(atom) + r(water) around atom i. f = 1 if a water sphere centered at x (by definition in contact with atom i) does not intersect with any other protein atom; otherwise f=0.

water molecules in contact with each residue:
$$W = \frac{\text{Area}}{V(\text{water molecule})^{2/3}} \approx \frac{\text{Area}}{10}$$

Amino Acid propensities

$$P_{s,a} = \frac{f_{s,a}}{f_a}$$

Vectors - Recap

Points:

Directional vector

$$v_1 = b - a$$

= (,) - (,)
= (,)

a vector has a

- direction
- magnitude (length)

Vectors - Recap

a vector has a

- direction
- magnitude (length)

$$\mathbf{v}_{1} = (x,y)$$

Magnitude vector:

$$|\mathbf{v}_1| = \sqrt{\mathbf{x}^2 + \mathbf{y}^2}$$

unit vector, vector of length 1

$$\mathbf{u}_{1} = \frac{\mathbf{v}_{1}}{|\mathbf{v}_{1}|}$$

Torsion or Dihedral

dot & cross product

$$\begin{pmatrix} a_{x} \\ a_{y} \\ a_{z} \end{pmatrix} \bullet \begin{pmatrix} b_{x} \\ b_{y} \\ b_{z} \end{pmatrix} = a_{x} . b_{x} + a_{y} . b_{y} + a_{z} . b_{z}$$

$$\begin{pmatrix} a_{x} \\ a_{y} \\ a_{z} \end{pmatrix} \times \begin{pmatrix} b_{x} \\ b_{y} \\ b_{z} \end{pmatrix} = \begin{pmatrix} a_{y}b_{z} - b_{y}a_{z} \\ a_{z}b_{x} - b_{z}a_{x} \\ a_{x}b_{y} - b_{x}a_{y} \end{pmatrix}$$

Angles between planes

cross product

The cross product will also give you a normal to the plane **a** and **b** lie in