Elektrisches, stationäres Strömungsfeld

www.n.ethz.ch/~zrene/nus1/nus1.html

3.1 Strom

$$I = \frac{dQ}{dt} = \iint_A \vec{J} \cdot d\vec{A}, \quad [I] = A, \quad J = \frac{dI}{dA}, \quad [J] = \frac{A}{m^2}$$

Stat. Strömungsfeld, wenn *I* konst.: $\iint_A \vec{J} \cdot d\vec{A} = 0$

• Spezifische Leitfähigkeit:

Driftgeschw.
$$\vec{v}_{Drift} = -\mu_e \vec{E}$$
 wobei $\mu_e =$ "Beweglichkeit" $\vec{J} = \vec{V}_{Drift} \rho = \vec{v} n q = \underbrace{-\rho \mu_e}_{\kappa} \vec{E}$, $\kappa = \text{spez.Leitf.}$, $[\kappa] = \frac{A}{Vm} = \frac{1}{\Omega m}$

- Spezifischer Widerstand: $\rho_R = \frac{1}{\kappa}$, $[\rho_R] = \Omega m = \frac{Vm}{A}$
- Temperaturabhängigkeit:

$$\rho_R(T) = \rho_{R,20^{\circ}C} (1 + \alpha (T - 20^{\circ}C))$$

- Ohmsches Gesetzt: $U = R \cdot I$, $[R] = \frac{V}{A} = \Omega$ $\vec{J} = \kappa \vec{E}$, $R = \frac{U}{I} = \frac{l}{\kappa A} = \frac{\rho_R l}{A} = \frac{\int_S \vec{E} \cdot d\vec{s}}{\kappa \iint_A \vec{E} \cdot d\vec{A}}$
- Leitwert: $G = \frac{1}{R}$ [G] = S (Siemens)

3.2 Sprungstellen bei Materialübergängen

- *Normalkomponenten*. $J_{n1} = J_{n2}$, $\kappa_1 E_{n1} = \kappa_2 E_{n2}$ Die Normalkomponente der Stromdichte ist stetig.
- Tangentialkomp.: $E_{t1} = E_{t2}$, $\frac{J_{t1}}{J_{t2}} = \frac{\kappa_1}{\kappa_2}$

Die Tangentialkomponente des E-Feldes ist stetig.

3.3 Energie und Leistung (1-102)

$$W_e = \int_0^t P(\tau)d\tau \text{ und } P(t) = \frac{dW_e}{dt}$$

$$P = UI = I^2R = U^2/R$$
Vorlugtleistungsdichte: p. . –

Verlustleistungsdichte: $p_V = \frac{dP}{dV} = \vec{E} \cdot \vec{J}$

$$P = \iiint_{V} p_{V} dV = \iiint_{V} \vec{E} \cdot \vec{J} dV$$