

\	
	no Definate shape or volume (fill container)
6	Constituent particles are far apart
ð	Almost negligible intermolecular forces of attraction
0	Very high linetic Energy
0	Highly Compressible
0	High fluidity
	x X
L	D Physical Change - D is a change of phose/state
	and is reversable where energy is either given out or taken Pn. During this, only
	taken Pn. During this, only
	physical properties change where as Chemical properties
	remain the same.
L	D Chemical Change D is a change of properties or
	energy is either given out or
	Demical Change — D is a change of properties or nature of substance where energy is either given out or taken en. It is irreversable.

	State Classes — D
	D State Changes — D Sublimation
	Solid Melting point (Fusion) Liquid Boiling point (Vapour) Freezing Liquification
	Deposition
1	D Vapour Pressure - Pressure exerted by particles of liquid in vapour state over the surface of liquid at equillibrium
	rate of vapourisation = rate of condensation a
1_	
	DAt boiling point, particles throughout the
	DAt boiling point, particles throughout the liquid start escaping to vapour state.
	Melting Point) is the temperature of which vapour
1	D Cause of Sublimation) is when vapour pressure at
4	solid state is equal to the
	atmospheric pressure

L	Volatil	e - li	quids which	evepour	ate ct	room to	emperature
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		e — D E				
		, , , , ,		, , ,	IICO MOL		
	p Critica	al Tempen	cture —	Minimun	, temper	rature up	to which
			٩	gas r	hust be	cooled:	so that
				it can	be liqu	cooled : vified upo	n applying
			P	ressure	<u>'</u>		,,,,,
		. 5					
L	_p Critico	Pressure	→ Min	limum pre	essure u	opo nyich	م ودر
			M	ist be	compresse	a so the	xt ;₽
			— D Min	an be	liquified	upon a	cooling it
	x						Х
-,			Sinanlack	L _0		\ _L _	د میدد؛ این
	V EJEN	d and	Free of	Type of	pure s	substance	Whisting
	'	of same	Type of	enical o	merdies	TALL CH	71.00/61 12/1C
		prysical	Simplest type of and ch	Cir.i.co.(p	10pc 4,432	J	
	Metals		₩ →				
	116165		Metalo	dS		Non-meta	15
Elei	ments which	n are	Show pro	perties of	EI	ements whi	ul are
	ctro-positive		both m	etals and		lectro-negal	
	une solid a		non-met		n	stre, in	all three
ter	operature,	9009			1	ates, non-li	
Cor	brogar of	heat				itle, bad	
an	d electric	current,				etc.	
WWI	leable, Justi	ile, etc.					
		Best Conduct	tor o	Silver (A	9)		
		corest Conc	luctor —	Lead (Pi			

L_D Compour	10 — D W	hen two	or mor	e element	s combine
	togeth	er in a	definate p	roportion b properties is.	by Mass.
	J Th	ey have	different	properties	compared
	do it	's constitue	nt element	is,	
Г		1			
Organic				Inc	Drganic
compounds which	are gen	erally	compa	ounds which	ore
obtained from	organic N	ratter "	gener	ally obtained	from rocks
(plants, etc).	They are al	so known	and	minerals o	and contain
os hydro	combons sinc	e they	any	of the lenon	un elements
contain hydralong with or	rogen and	corbon	combh	in a d	efinate
along with or	without ?	O, N, P, Sf	propo	-tion by n	n 4 \$5.
and or hold	ogens.			9	
1 2 401	5	b		-1	1
LD Mixture =	— D When	Ono or	more o	John L	compounds
	are mix	ed objetive	nection of	~ Moephate	> propovinov
	Sc ma	s. Ice pro	conspignent	a mixture Substances.	2 15 100
	30,100	1 72	C51150100014	2007/12/1067	
11		•		\ L	
Homogenous				Hetr	ogenous
have uniform	Composition -	throughout	have	Non-unitarm	compatition
		. 554.551	throughou	non-uniform t te m/s	xture.
the mixtur			J		

1									
L	Ch	remica	Change			process	es Or	uring Wh	ilch
		cher	nical nat	ture	of	Substa	nces	changes	thus
		caus	ing sub	stances	, fz	1005	e the	in igenti	hies and
		for	new	Substr	nces.	Tley	are c	generally	
		ir	reversable	- 6~	na(pre of		J J	
									× ×
	^								
L	_ Kinetic	Thory	d Ma	te =	-	- D			
٥	Matter	consists	d sma	11 pc	rticles	calle	d at	2MG	
b	State of	matter	` depends	s upon	~ 46	u inter	molecu	lar for	ces of
	l l	attract	ion bet	ween	part	icles.			V
0	Average	leinetic	. energy	of	partic	les ~	đer	peratur	ف
								·	
0	linetic e	energy	= 1 mua						
	4 ———	- 1	J.						×
	^		NA 1 C						/\
L	Mole	and	Mole Co	ncept	 [>			
		-D funda	mental ur	ารี บร	ied	to m	eassure	de a	mount
		i of	mental un a si	ubs tanc	e.				
		~ 4	amont enditie present	· of	subs	tance	which	contains	00
		Mani	1 enditie	2 (ot	oms, c	ompoun	∂s, etz)	مع م	re
		\ \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	¹ present	34	190	વૃ	C-12	isotope	/-
L	D Ave go	l son6,	Jumber -	D	no.	4 0	ntities	present	in
	p Ave ge	one	mok of	S 8	<u>s</u> Jbsh	anie.		1	
		D	6.02X10	40					

<u> </u>	-D Stoichior	netric Form	ulas =	—D			
Mole	$L = \frac{Mass}{Mr}$	= Volum	ne =	Concent	ration x	Volume	
				D 99. +0	m		
	Stoichione	betw invoked	le mol	e-mass	or volv	ne relat	jonshif
		betw	reen vo	~~'ous	reactant	s or pa	sducts'
		Phuoled	Ph a	balanc	ed chei	nical equ	ation.
L	Limitine R	eagent in sn used up	D He	recuto	ant whi	uh is pri	esent
		in sn	naller	amount.	. It then	efore get	5
		used up	and l	nence 1	enits on	. reaction	
		smallest r	d d	10.	< faiching	bric coethicis	ent
						0,0	
L7	Percentage	, Yfeld — f	Actua	Yield x	100		
	•		Theorat	ical lield			
				→ the	amount	d product	
			whi	ich mu	sd be	produced (ng stoichi)ur¦ng
			G	real'	hion usi	ng sobichi	onetdi
				relations	hips.		

o Amonton hay Lussac Pressure Law = DP & T $\begin{array}{c|c}
\bullet & P = kT & \longrightarrow D & P = k & \longrightarrow D & P_1 & = P_2 \\
\hline
T_1 & T_2 & T_2
\end{array}$ D Significance - D Compressed gasses explode on heating. Laws under all conditions of temperatures and pressures. $\frac{1}{\sqrt{\frac{P_1 V_1}{T_1}}} = \frac{P_2 V_2}{T_2}$ $\frac{M_{ass}}{M_r} = Moles$

L	D Kinetic Theory of Greses
	Every gas is made - up of tiny particles called molecules which are considered hard Spheres.
0	These molecules are in contineous random motion during which they collide with each other and with the walks of the container.
0	Collisions between gos molecules are completely elostico
6	Pressure of the gas is the force with which the molecules collide with the wall of the container.
0	Actual volume of gos molecules is negligible compared to the volume occupied by them.
6	No attractive or repulsive force is exerted on gas molecules.
0	Negligible force of gravity exerted on gos molecules.
0	KE of gos molecules a temperature

L_D Real Grases	
Dasser which does all are law and himedic.	
theory of gosen under all conditions of pressure.	
and temperature are ideal gases but under	
conditions of low temperature and high pressure.	
Disases which does all gos laws and benefic theory of goses under all conditions of pressure and temperature are ideal gases but under conditions of low temperature and high pressure, gases deviate from ideal behaviour.	
D This is because, a force attraction develops between the molecules and the actual volume of the gas can no longer be considered negligible compared to the volume occupied by the gas.	
develops between the molecules and the actual volume	د
of the gas can no longer be considered negligible	
compared to the volume occupied by the gas.	
D Van der waal's correction D	
Doressing, concertion _ Dunder conditions of foressing	,
D pressure correction — D under conditions of 1 pressure and + temperature, when gos molecules are near	و
D pressure correction — D under conditions of 1 pressure and temperature, when gas molecules are near each other a force of attraction develops. Hence, a	و
D pressure correction — D under conditions of 1 pressure and temperature, when gas molecules are near each other, a force of attraction develops. Hence, a molecule moving towards the walls of a container	و
D pressure correction — D under conditions of 1 pressure and temperature, when gas molecules are near each other, a force of attraction develops. Hence, a molecule moving towards the walls of a container is pulled bock by the molecules present nearly is it	و
D pressure correction — D under conditions of 1 pressure and temperature, when gas molecules are near each other, a force of attraction develops. Hence, a molecule moving towards the walls of a container is pulled back by the molecules present nearly is it exerts less pressure.	و
D pressure correction — D under conditions of 1 pressure and temperature, when gas molecules are near each other, a force of attraction develops. Hence, a molecule moving towards the walls of a container is pulled back by the molecules present nearly is it exerts less pressure. D Pideal Pactual	e
each other, a force of attraction develops. Hence, a molecule moving towards the walls of a container is pulled bock by the molecules present nearly is it exerts less pressure. Pideal Pactual	
each other, a force of attraction develops. Hence, a molecule moving towards the walls of a container is pulled bock by the molecules present nearly is it exerts less pressure. Pideal Pactual	
each other, a force of attraction develops. Hence, a molecule moving towards the walls of a container is pulled bock by the molecules present nearly is it exerts less pressure. D Pideal > Pactual	
each other, a force of attraction develops. Hence, a molecule moving towards the walls of a container is pulled bock by the molecules present nearly is it exerts less pressure. Prideal Pactual Pa = Pi + ani	
each other, a force of attraction develops. Hence, a molecule moving towards the walls of a container is pulled bock by the molecules present nearly is it exerts less pressure. Prideal Pactual Pa = Pi + ani	
each other, a force of attraction develops. Hence, a molecule moving towards the walls of a container is pulled bock by the molecules present nearly is it exerts less pressure. Prideal Pactual Pa = Pi + ani	

pressure and low temperature, when gos molecules are close to each other, the actual volume can no longer be considered negligible. Hence the volume available for movement of gas molecules is less and is called excluded volume $\sqrt{V_i - nb}$ L_p Van der weal's Equation_____ $\left(P + \frac{\alpha n^2}{V^2} \right) (V - nb) = nRT$ ltere, a tells us about the margnitude of attractive forces between the gas indecules. a \(\text{intermolecular force of attraction} \) 'b' tells us about the effective size of gas molecules which is always in times of the actual volume of the gas.

Solutions	and Con	cendrat	ions =	D			
D Solution more	on to h	omøgen ents.	,ous 1	wixtuv	e of	two	OY
Solute					چ	<u>J</u>	
it is the dispers which is the operation small	phase component quantity			Wh	is the nich is the resent quantity	dispersi 2 com	onent
Types of	Solution -	D			· V		
· Unsaturated:			ich i	more T a	amount given	d so tem	olute perature.
o Saturated s	solution s Solute c tempera	in whi an be thre.	ch i	no m Ded	ore as	nount a	7
o Supersaturated:	solution	which	is lute	to a	ed, ~1' Dissolve.	lowing	more this
	amount Solution precipit	will whe or	cause	٠ 46	e exce	امّد هم	rte b

