Algoritmos y Programación II – Curso Buchwald Guía de Ejercicios

Todas las guías cuentan con un ejercicio resuelto y una tanda de ejercicios propuestos. Los ejercicios propuestos están puntuados del 1 a 5 estrellas (\star) en dificultad (no de forma exacta, sino para que usen de guía).

Los ejercicios de 1 estrellas son ejercicios muy básicos o introductorios que no entrarían en un examen, pero sirven para iniciarse en el tema.

La mayoría de los ejercicios de entre 2 y 4 estrellas han sido sacado de parcialitos de cuatrimestres anteriores.

Los ejercicios de 5 estrellas sólo serían tomados en exámenes finales.

Se recomienda utilizar la versión web de esta guía, puesto que el formato está pensado para verse mejor allí.

Resumen de temas vistos en la materia:

- Conceptos de TDAs, y TDAs Básicos (Pila, Cola y Lista)
- División y Conquista
- Ordenamientos comparativos y no comparativos
- Diccionarios, Hashing y Hashes
- Árboles Binarios, ABB, AVL, Árbol B
- Colas de Prioridad y heaps
- Grafos, primera parte: Usos, implementaciones y recorridos

Ejercicio resuelto

Implementar la primitiva de la pila func (pila PilaDinamica[T]) Miltitop(n int) []T, que devuelve un arreglo de tamaño n con los n topes de la pila (los primeros n elementos si estos fueran desapilados), sin utilizar estructuras auxiliares. Si la pila tiene menos de n elementos, el arreglo/slice debe ser del tamaño de la pila.

Indicar el orden de complejidad de la primitiva.

Solución

Dos cosas que es necesario entender desde el inicio del ejercicio:

- 1. En este ejercicio no se puede modificar la pila, pues el puntero recibido es de tipo constante (no tiene el asterisco de puntero); ello quiere decir que la pila a la que apunta es de sólo lectura, y por tanto sería erróneo modificar cualquiera de sus campos.
- 2. Además, no se debe modificarla pues, al ser una primitiva y tener acceso a los miembros internos de la estructura, no es necesario desapilar para acceder a los datos.

Una vez esto quede claro, la solución es bastante directa: si queremos que los elementos sean aquellos que desapilaríamos, simplemente tendríamos que iterar el arreglo en ese orden. Dada la implementación de la pila, deberíamos hacerlo de atrás hacia delante. Si fuera una pila enlazada, simplemente sería iterar por los nodos.

```
func (pila PilaDinamica[T]) Miltitop(n int) []T {
    cant := min(n, pila.cantidad)
    topes := make([]T, cant)
    for i := 0; i < cant; i++ {
        topes[cant - i - 1] = pila.datos[i]
    }
    return topes
}</pre>
```

Sobre la complejidad: Acceder a cada elemento de la pila, siendo que accedemos directamente, es $\mathcal{O}(1)$, y nunca vamos a ver más elementos de la pila si son más de n, por ende la primitiva es $\mathcal{O}(n)$. Podríamos considerar que va a ser el mínimo con la cantidad de elementos de la pila, pero si la cantidad de elementos de la pila fuera mucho más grande que n, de todas formas no superaría n. Es importante denotar que n en este caso no es la cantidad de elementos de la pila, sino la cantidad de elementos pedidos. Si quisiéramos hacer más clara la distinción, podríamos haber llamado a dicho parámetro con otro nombre. Tener cuidado con esto, porque si el parámetro tuviera otro nombre no sería correcto decir que es $\mathcal{O}(n)$, salvo que se aclare qué signifique n.

Ejercicios propuestos

1. (*) Implementar el TDA Fracción. Dicho TDA debe tener las siguientes primitivas, cuya documentación puede encontrarse aquí: CrearFraccion(numerador,

denominador int) Fraccion Sumar(otra Fraccion) Fraccion Multiplicar(otra Fraccion) Fraccion ParteEntera() int Representacion() string

Puede encontrarse la resolución de este ejercicio aquí.

- 2. (*) Implementar el TDA Numero Complejo. Dicho TDA debe tener las siguientes primitivas, cuya documentación puede encontrarse aquí: Crear Complejo (real float, img float) Complejo Multiplicar (otro Complejo) Sumar (otro Complejo) ParteReal() float ParteImaginaria() float Modulo() float Angulo() float
- 3. (★) Implementar una función que reciba un arreglo genérico e invierta su orden, utilizando los TDAs vistos. Indicar y justificar el orden de ejecución.
- 4. (**) Implementar en Go el TDA ComposiciónFunciones que emula la composición de funciones (i.e. f(g(h(x))). Se debe definir la estructura del TDA, y las siguientes primitivas: CrearComposicion() ComposicionFunciones AgregarFuncion(func (float64) float64) Aplicar(float64) float64 Considerar que primero se irán agregando las funciones como se leen, pero tener en cuenta el correcto orden de aplicación. Por ejemplo: para emular f(g(x)), se debe hacer:

```
composicion.AgregarFuncion(f)
composicion.AgregarFuncion(g)
composicion.Aplicar(x)
```

Indicar el orden de las primitivas.

5. $(\star\star\star)$ Dada una lista enlazada implementada con las siguientes estructuras:

```
type nodoLista[T any] struct {
    prox *nodoLista[T]
    dato T
}
type ListaEnlazada[T any] struct {
    prim *nodoLista[T]
}
```

Escribir una primitiva de lista que devuelva el elemento que esté a k posiciones del final (el ante-k-último), recorriendo la lista una sola vez y sin usar estructuras auxiliares. Considerar que k es siempre menor al largo de la lista. Por ejemplo, si se recibe la lista [1, 5, 10, 3, 6, 8], y k = 4, debe devolver 10. Indicar el orden de complejidad de la primitiva.

6. (***) Dada una pila de enteros, escribir una función que determine si sus elementos están ordenados de manera ascendente. Una pila de enteros está ordenada de manera ascendente si, en el sentido que va desde el tope de la pila hacia el resto de elementos, cada elemento es menor al elemento que le sigue. La pila debe quedar en el mismo estado que al invocarse la función. Indicar y justificar el orden del algoritmo propuesto.

- 7. (**) Implementar la primitiva func (cola *colaEnlazada[T]) Multiprimeros(k int) []T que dada una cola y un número k, devuelva los primeros k elementos de la cola, en el mismo orden en el que habrían salido de la cola. En caso que la cola tenga menos de k elementos. Si hay menos elementos que k en la cola, devolver un slice del tamaño de la cola. Indicar y justificar el orden de ejecución del algoritmo.
- 8. (**) Implementar la función func Multiprimeros[T any](cola Cola[T], k int) []T con el mismo comportamiento de la primitiva anterior.
- 9. (**) Implementar en Go una primitiva func (lista *ListaEnlazada) Invertir() que invierta la lista, sin utilizar estructuras auxiliares. Indicar y justificar el orden de la primitiva.
- 10. $(\star\star)$ Se quiere implementar un TDA ColaAcotada sobre un arreglo. Dicho TDA tiene un espacio para k elementos (que se recibe por parámetro al crear la estructura). Explicar cómo deberían implementarse las primitivas encolar y desencolar de tal manera que siempre sean operaciones de tiempo constante.
- 11. (****) Implementar una función que ordene de manera ascendente una pila de enteros sin conocer su estructura interna y utilizando como estructura auxiliar sólo otra pila auxiliar. Por ejemplo, la pila [4, 1, 5, 2, 3] debe quedar como [1, 2, 3, 4, 5] (siendo el último elemento el tope de la pila, en ambos casos). Indicar y justificar el orden de la función.
- 12. (**) Implementar una función func FiltrarCola[K any] (cola Cola[K], filtro func(K) bool), que elimine los elementos encolados para los cuales la función filtro devuelve false. Aquellos elementos que no son eliminados deben permanecer en el mismo orden en el que estaban antes de invocar a la función. No es necesario destruir los elementos que sí fueron eliminados. Se pueden utilizar las estructuras auxiliares que se consideren necesarias y no está permitido acceder a la estructura interna de la cola (es una función). ¿Cuál es el orden del algoritmo implementado?
- 13. (***) Sabiendo que la firma del iterador interno de la lista enlazada es:

Iterar(visitar func(K) bool)

Se tiene una lista en donde todos los elementos son punteros a números enteros. Implementar una función SumaPares que reciba una lista y, utilizando el iterador interno (no el externo), calcule la suma de todos los números pares.

- 14. $(\star\star\star\star\star)$ Diseñar un TDA PilaConMáximo, que tenga las mismas primitivas de la pila convencional, y además permita obtener el máximo de la pila. **Todas** las primitivas deben funcionar en $\mathcal{O}(1)$. Explicar cómo implementarías el TDA para que cumpla con todas las restricciones.
- 15. (***) Implementar el TDA Mamushka (matrioshka, o muñeca rusa), teniendo en cuenta que una Mamushka puede tener otra Mamushka dentro de si misma. Las primitivas deben ser:

- CrearMamushka(tam int, color Color) Mamushka: Crea una mamushka con un tamaño y color definido.
- ObtenerColor() Color: Obtiene el color de la Mamushka.
- Guardar (Mamushka) bool: Intenta guardar la segunda mamushka en la primera. Si la primera ya tiene una mamushka guardada, entonces debe intentar guardar la mamushka a_guardar dentro de la mamushka que ya estaba guardada. La operación falla (y devuelve false) si en algún momento se intenta guardar una mamushka en otra de menor o igual tamaño. Por ejemplo: si tenemos una mamushka de tamaño 10 que dentro tiene una de tamaño 8, y se intenta guardar una de tamaño 5, ésta debe guardarse dentro de la de tamaño 8. Si, luego, se intentara guardar una de tamaño 6, la operación debe fallar dado que no se puede guardar una mamushka de tamaño 6 dentro de una de tamaño 5.
- ObtenerGuardada() Mamushka: Devuelve un puntero a la mamushka guardada. NULL en caso de no tener ninguna guardada. En el ejemplo anterior, si utilizaremos esta primitiva con la Mamushka de tamaño 10, nos devolvería la Mamushka de tamaño 8 que guardamos (y que dentro tiene la de tamaño 5).

Definir la estructura (struct) del TDA, y escribir estas 5 primitivas. Indicar el orden de cada una de ellas.

Nota: Color corresponde a un enumerado, que está definido en algún lugar.

- 16. (***) Dadas dos pilas de enteros positivos (con posibles valores repetidos) cuyos elementos fueron ingresados de menor a mayor, se pide implementar una función func MergePilas(pila1, pila2 Pila[int]) []int que devuelva un array ordenado de menor a mayor con todos los valores de ambas pilas sin repeticiones. Detallar y justificar la complejidad del algoritmo considerando que el tamaño de las pilas es N y M respectivamente.
- 17. (**) Escribir una primitiva para la pila (dinámica) cuya firma es func (pila pilaDinamica[T]) Transformar(aplicar func(T) T) Pila[T] que devuelva una nueva pila cuyos elementos sean los resultantes de aplicarle la función aplicar a cada elemento de la pila original. Los elementos en la nueva pila deben tener el orden que tenían en la pila original, y la pila original debe quedar en el mismo estado al inicial. Indicar y justificar la complejidad de la primitiva.

Por ejemplo, para la pila de enteros [1, 2, 3, 6, 2] (tope es el número 2), y la función sumarUno (que devuelve la suma entre el número 1 y el número recibido), la pila resultante debe ser [2, 3, 4, 7, 3] (el tope es el número 3).

- 18. (**) Implementar una función recursiva que reciba una pila y devuelva la cantidad de elementos de la misma. Al terminar la ejecución de la función la pila debe quedar en el mismo estado al original.
- 19. (***) Implementar una función func balanceado (texto string) boolean, que retorne si texto esta balanceado o no. texto sólo puede contener los

siguientes caracteres: [,],{,}(,). Indicar y justificar la complejidad de la función implementada. Un texto esta balanceado si cada agrupador abre y cierra en un orden correcto. Por ejemplo:

- balanceado("[{([])}]") => true
- balanceado("[{}") => false
- balanceado("[(])") => false
- balanceado("()[{}]") => true
- balanceado("()()(())") => true
- 20. (**) Carlos es nuevo en la empresa en la que trabajan Alan y Bárbara. Alan va a ser el mentor de Carlos, quien debe implementar un nuevo TDA Gatito. Alan, revisando el trabajo que hizo Carlos, nota que este agregó una primitiva Redimensionar, pública en la interfaz Gatito, para que la use Bárbara. Alan lo increpa a Carlos, preguntando para qué es dicha primitiva, y este le contesta "Tal como dice la documentación, es para que Bárbara me diga cómo redimensionar el arreglo de pelos que tiene el gatito". Alan, que conoce bien el temperamento de Bárbara, decide evitar que echen a Carlos en su segunda semana de trabajo.

Escribir una explicación de por qué esto que está haciendo Carlos está mal. Considerá que Carlos es muy testarudo (incluso, a pesar de su propio bien), así que tu argumentación deberá ser muy clara y contundente.

Ejercicio resuelto

Implementar un algoritmo en Go que reciba un arreglo de enteros de tamaño n, ordenado ascendentemente y sin elementos repetidos, y determine en $\mathcal{O}(\log n)$ si es mágico. Un arreglo es mágico si existe algún valor i tal que $0 \le i < n$ y arr[i] = i. Justificar el orden del algoritmo.

Ejemplos:

- A = [-3, 0, 1, 3, 7, 9] es mágico porque A[3] = 3.
- B = [1, 2, 4, 6, 7, 9] no es mágico porque B[i]!= i para todo i.

Solución

Como es mencionado en clase, al ver que se nos pide:

- Un algoritmo de división y conquista,
- Un orden $\mathcal{O}(\log n)$

Si no se nos pidiera que sea de división y conquista, y más aún que su orden sea logarítimico, podríamos simplemente ir elemento por elemento chequeando si se cumple la condición:

```
func ArregloEsMagico(arr []int) bool {
    for elem, i := range(arr) {
        if elem == i {
            return true
        }
    }
    return false
}
```

Por supuesto, esta sería la solución trivial, casi con nulo esfuerzo de pensar y aprovechar la cualidad de que el arreglo se encuentre ordenado y sin repetidos. Se podría hasta implementar con división y conquista, pero no dejará de ser $\mathcal{O}(n)$. Como en otros problemas, vamos a buscar aprovechar las precondiciones que nos dan para el arreglo.

Lo primero que tenemos que pensar es en el algoritmo estrella de división y conquista que tiene ese orden: Búsqueda Binaria. Al ver que se nos pide eso, seguramente nuestro algoritmo no sea muy distinto al de búsqueda binaria (o bien, que la forma de la función va a ser similar). Pero para poder aplicar un algoritmo así, necesariamente tenemos que poder desechar toda una proporción del problema original en cada iteración. Ya vemos que tenemos la condición de que el arreglo se encuentra ordenado ascendentemente, y no cuenta con repetidos. Veremos si esa última restricción es realmente necesaria, pero al menos con la primera ya contamos con una restricción bastante fuerte.

Lo primero a pensar es el caso base: si se nos da vuelta el inicio y fin, significa que nunca nos topamos con un índice que cumpla la condición (no siempre va a ser este

nuestro caso base, ojo).

Ahora, lo crucial: pensar la condición de éxito. Acá es donde analizamos qué resuelve nuestro algoritmo. Vamos al medio, y lo que tenemos que verificar es si arr[medio] == medio. Si eso sucede, jéxito! Entonces, por ahora tenemos:

```
func ArregloEsMagico(arr []int) bool {
    return arregloEsMagico(arr, 0, len(arr) - 1)
}

func arregloEsMagico(arr []int, inicio int, fin int) {
    if inicio > fin {
        return false
    }
    medio := (inicio + fin) / 2
    if arr[medio] == medio {
        return true
    }
    // nos falta el caso sin exito
}
```

Ahora, pensemos que eso no sucede. Necesitamos quedarnos con una sola de las mitades, lo cual implica descartar la otra. Pero ¿cómo descartamos una mitad? Bueno, podemos ver qué pasó con arr[medio] que no cumple con la condición de éxito. ¿Qué sucede si arr[medio] < medio? ¿Puede suceder que algún elemento anterior sí cumpla la condición? ¡NO!, porque al no poder haber repetidos, si arr[medio] < medio, entonces arr[medio - 1] < medio - 1, y tambien para todos los anteriores. Por eso, podemos simplemente ver de la mitad en adelante, descartando la primera mitad. Ahí vemos que la condición extra era necesaria; si no, no podríamos descartar la primera mitad. Podemos hacer el mismo análisis al revés, vamos a ver que si arr[medio] > medio, no puede ser que se cumpla la condición para los elementos siguientes.

Luego de este análisis, podemos escribir el código:

```
func ArregloEsMagico(arr []int) bool {
    return arregloEsMagico(arr, 0, len(arr) - 1)
}

func arregloEsMagico(arr []int, inicio int, fin int) {
    if inicio > fin {
        return false
    }
    medio := (inicio + fin) / 2
    if arr[medio] == medio {
        return true
    }
    if (arr[medio] < medio) {
        return arregloEsMagico(arr, medio + 1, fin);</pre>
```

```
} else {
    return arregloEsMagico(arr, inicio, medio - 1);
}
```

Demostración del orden Veamos la ecuación de recurrencia. Hay escritos dos llamados recursivos, cada uno se invoca con la mitad del problema (mitad izquierda o derecha), y todo lo que cuesta *partir y juntar* no son más que algunas operaciones básicas de tiempo constante. Lo importante es que si bien hay escritos dos llamados recursivos, nunca se llamará a ambos. Siempre se llamará bien para el lado izquierdo, bien para el derecho. Por lo tanto, la ecuación de recurrencia quedará:

$$\mathcal{T}(n) = \mathcal{T}\left(\frac{n}{2}\right) + \mathcal{O}(1)$$

Es, evidentemente, igual a la de Búsqueda Binaria, por lo que tendrá el mismo orden, pero aplicamos el Teorema Maestro para corroborar:

$$A = 1; B = 2; C = 0 \rightarrow \log_B(A) = \log_2(1) = 0 = C$$

Caemos en el caso de $\log_B(A) = C$, por lo que el orden del algoritmo será $\mathcal{O}(n^C \log n) = \mathcal{O}(\log n)$

Ejercicios propuestos

1. (\star) Explicar por qué el siguiente siguiente código **no** es de división y conquista.

```
// Algoritmo ¿por D&C? para obtener el máximo de un arreglo
func maximo(arreglo []int) int {
   if len(arreglo) == 1 {
      return arreglo[0]
   }
   max_restante := maximo(arreglo[0:len(arreglo)-1])
   if arreglo[len(arreglo) - 1] > max_restante {
      return arreglo[len(arreglo) - 1]
   } else {
      return max_restante
   }
}
```

2. (*) Explicar por qué el siguiente siguiente código **no** es de división y conquista.

```
// Algoritmo ¿por D&C? para obtener el máximo de un arreglo
func maximo(arreglo []int) int {
   medio = len(arreglo) / 2
   max_izquierda := _maximo(arreglo, 0, medio)
   max_derecha := _maximo(arreglo, medio + 1, len(arreglo) - 1)
   if max_izquierda > max_derecha {
       return max_izquierda
   } else {
      return max derecha
```

```
}
  }
  func maximo(arreglo []int, inicio int, fin int) int {
      max := arreglo[inicio]
      for i := inicio + 1; i <= fin; i++ {
           if max < arreglo[i] {</pre>
               max = arreglo[i]
           }
      return max
  }
3. (\star\star) Indicar la complejidad del siguiente algoritmo, utilizando el teorema
  maestro:
  // Busca un elemento usando D&C. El arreglo se encuentra ordenado.
  func elementoEsta(arreglo []int, inicio int, fin int, elem int) bool {
      if inicio > fin {
           return false
      }
      medio := (inicio + fin) / 2
      if arreglo[medio] == medio {
           return true
      if arreglo[medio] < elem {</pre>
           return elementoEsta(arreglo, medio + 1, fin, elem)
      for i := medio - 1; i > inicio; i-- {
           if arreglo[i] == elem {
               return true
           }
      return false
  }
4. (\star) Hacerle el seguimiento al siguiente algoritmo:
  func imprimirDyC(m int) {
       if m < 4 {
           return
       fmt.Println(m)
       imprimirDyC(m / 4)
       imprimirDyC(m - (m / 4))
  }
```

5. (\star) Indicar, utilizando el Teorema Maestro, la complejidad del ejercicio anterior.

- 6. $(\star\star)$ Indicar cuál es la complejidad de un algoritmo cuya ecuación de recurrencia es: $\mathcal{T} = 2\mathcal{T}\left(\frac{2}{3}n\right) + \mathcal{O}\left(\sqrt{n}\right)$.
- 7. (**) Nos dan para elegir entre los siguientes 3 algoritmos para solucionar el mismo problema. ¿Cuál elegirías? Justificar calculando el orden de los algoritmos.
 - 1. El algoritmo A resuelve el problema dividiéndolo en 5 subproblemas de la mitad del tamaño, resolviendo cada subproblema de forma recursiva, y combinando las soluciones en tiempo lineal.
 - 2. El algoritmo B resuelve el problema (de tamaño n) dividiéndolo en 9 subproblemas de tamaño $\frac{n}{3}$, resolviendo cada subproblema de forma recursiva y combinando las soluciones en tiempo cuadrático de n.
 - 3. El algoritmo C resuelve el problema (de tamaño n) eligiendo un subproblema de tamaño n-1 en tiempo $\mathcal{O}(n)$, y luego resolviendo recursivamente ese subproblema.
- 8. (**) Implementar, por división y conquista, una función que determine el mínimo de un arreglo. Indicar y justificar el orden.
- (★★) Implementar, por división y conquista, una función que dado un arreglo y su largo, determine si el mismo se encuentra ordenado. Indicar y justificar el orden.
- 10. (***) Implementar, por división y conquista, una función que dado un arreglo sin elementos repetidos y *casi ordenado* (todos los elementos se encuentran ordenados, salvo uno), obtenga el elemento fuera de lugar. Indicar y justificar el orden.
- 11. $(\star\star\star)$ Se tiene un arreglo tal que [1, 1, 1, ..., 0, 0, ...] (es decir, unos seguidos de ceros). Se pide:
 - 1. una función de orden $\mathcal{O}(\log n)$ que encuentre el índice del primer 0. Si no hay ningún 0 (solo hay unos), debe devolver -1.
 - 2. demostrar con el Teorema Maestro que la función es, en efecto, $\mathcal{O}(\log n)$.

Ejemplos:

$$[1, 1, 0, 0, 0] \rightarrow 2$$

 $[0, 0, 0, 0, 0] \rightarrow 0$
 $[1, 1, 1, 1, 1] \rightarrow -1$

- 12. $(\star\star\star\star)$ Implementar un algoritmo que, por división y conquista, permita obtener la parte entera de la raíz cuadrada de un número n, en tiempo $\mathcal{O}(\log n)$. Por ejemplo, para n=10 debe devolver 3, y para n=25 debe devolver 5.
- 13. $(\star\star\star)$ Se tiene un arreglo de N>=3 elementos en forma de pico, esto es: estrictamente creciente hasta una determinada posición p, y estrictamente decreciente a partir de ella (con 0). Por ejemplo, en el arreglo [1, 2, 3, 1, 0, -2] la posición del pico es <math>p=2. Se pide:

- Implementar un algoritmo de división y conquista de orden O(log n) que encuentre la posición p del pico: func PosicionPico(v []int, ini, fin int) int. La función será invocada inicialmente como: PosicionPico(v, 0, len(v)-1), y tiene como pre-condición que el arreglo tenga forma de pico.
- 2. Justificar el orden del algoritmo mediante el teorema maestro.
- 14. (★★) Se quiere implementar MergeSort pero, en vez de dividir en dos partes el arreglo, dividirlo en tres, llamando recursivamente al algoritmo para cada una de las partes y luego uniéndolas.
 - 1. Suponiendo que el merge de las tres partes se realiza en tiempo lineal, calcular el orden del algoritmo.
 - 2. Si en vez de dividir en tres partes, se dividiera el arreglo en n, siendo n la cantidad de elementos del arreglo ¿a qué otro algoritmo de ordenamiento se asemeja esta implementación? ¿Cuál es el orden de dicho algoritmo?
 - 3. Dado lo obtenido en los puntos anteriores ¿tiene sentido implementar MergeSort con k separaciones, para k > 2?
- 15. $(\star\star\star)$ Un algoritmo sencillo para multiplicar matrices de $n\times n$ demora $\mathcal{O}(n^3)$. El algoritmo de Strassen (que utiliza División y Conquista) lo hace en $\mathcal{O}(n^{\log_2 7})$. La profesora Manterola quiere implementar un algoritmo de División y Conquista que sea aún más veloz, donde divida al problema en A subproblemas de tamaño de $\frac{n}{4}$, y que juntar las soluciones parciales sea $\mathcal{O}(n^2)$. ¿Cuál es el máximo A para que el orden del algoritmo sea menor que el del algoritmo de Strassen? Justificar.
- 16. $(\star\star\star\star\star)$ Implementar una función (que utilice división y conquista) de orden $\mathcal{O}(n\log n)$ que dado un arreglo de n números enteros devuelva true o false según si existe algún elemento que aparezca más de la mitad de las veces. Justificar el orden de la solución. Ejemplos:

```
[1, 2, 1, 2, 3] -> false
[1, 1, 2, 3] -> false
[1, 2, 3, 1, 1, 1] -> true
[1] -> true
```

Aclaración: Este ejercicio puede resolverse, casi trivialmente, ordenando el arreglo con un algoritmo eficiente, o incluso se puede realizar más rápido utilizando una tabla de hash. Para hacer interesante el ejercicio, resolver sin ordenar el arreglo, sino puramente división y conquista.

17. (*****) Tenemos un arreglo de tamaño 2n de la forma {C1, C2, C3, ... Cn, D1, D2, D3, ... Dn}, tal que la cantidad total de elementos del arreglo es potencia de 2 (por ende, n también lo es). Implementar un algoritmo de División y Conquista que modifique el arreglo de tal forma que quede con la forma {C1, D1, C2, D2, C3, D3, ..., Cn, Dn}, sin utilizar espacio adicional (obviando el utilizado por la recursividad). ¿Cual es la complejidad del algoritmo?

Pista: Pensar primero cómo habría que hacer si el arreglo tuviera 4 elementos ({C1, C2, D1, D2}). Luego, pensar a partir de allí el caso de 8 elementos, etc... para encontrar el patrón.

18. (****) Debido a la trágica situación actual, es necesario realizar tests para detectar si alguna persona está contagiada de COVID-19. El problema es que los insumos tienden a ser bastante caros, y no vivimos en un país al que los recursos le sobren.

Supongamos que por persona se toma más de una muestra (lo cual es cierto, pero a fines del ejercicio supongamos que son muchas muestras), y que podemos realizar un testeo a más de una persona al mismo tiempo mezclando las muestras (lo cual también es cierto): determinamos un conjunto de personas a testear, obtenemos una muestra de cada una de ellas, las "juntamos", y al conjunto le realizamos el test. Si el test resulta negativo, implica que todas las personas testeadas en conjunto resultaron negativas. Si resulta positivo, implica que al menos una de las personas testedas resulta positiva.

Suponer que existe una función pcr(grupo), que devuelve true si al menos una persona del grupo es COVID-positivo, y false en caso contrario (los grupos pueden estar formados por 1 o más personas). Suponer que la positividad es extremadamente baja, e inclusive pueden suponer que va a haber una única persona contagiada (por simplicidad).

Implementar un algoritmo que dado un conjunto de n personas, devuelva la o las personas contagiadas, utilizando la menor cantidad de tests posibles (considerando la notación Big Oh). En dicha notación, ¿cuántos tests se estarán utilizando?

Pueden considerar que habrá una única persona contagiada, pero esto no cambiará el análisis a realizar.

- 19. (****) Se sabe, por el teorema de Bolsano, que si una función es continua en un intervalo [a, b], y que en el punto a es positiva y en el punto b es negativa (o viceversa), necesariamente debe haber (al menos) una raíz en dicho intervalo. Implementar una función func raiz(f func(int)int, a int, b int) int que reciba una función (univariable) y los extremos mencionados y devuelva una raíz dentro de dicho intervalo (si hay más de una, simplemente quedarse con una). La complejidad de dicha función debe ser logarítmica del largo del intervalo [a, b]. Asumir que por más que se esté trabajando con números enteros, hay raíz en dichos valores: Se puede trabajar con floats, y el algoritmo será equivalente, simplemente se plantea con ints para no generar confusiones con la complejidad. Justificar la complejidad de la función implementada.
- 20. (***) Es el año 1700, y la pirata Barba-ra Verde atacó un barco de la Royal British Shipping & Something, que transportaba una importante piedra preciosa de la corona británica. Al parecer, la escondieron en un cofre con muchas piedras preciosas falsas, en caso de un ataque. Barba-ra Verde sabe que los refuerzos británicos no tardarán en llegar, y deben uir lo más rápido posible.

El problema es que no pueden llevarse el cofre completo por pesar demasiado. Necesita encontrar rápidamente la joya verdadera. La única forma de descubrir la joya verdadera es pesando. Se sabe que la joya verdadera va a pesar más que las imitaciones, y que las imitaciones pesan todas lo mismo. Cuenta con una balanza de platillos para poder pesarlas (es el 1700, no esperen una balanza digital).

- a. Escribir un algoritmo de división y conquista, para determinar cuál es la verdadera joya de la corona. Suponer que hay una función balanza(grupo_de_joyas1, grupo_de_joyas2) que devuelve 0 si ambos grupos pesan lo mismo, mayor a 0 si el grupo1 pesa más que el grupo2, y menor que 0 si pasa lo contrario, y realiza esto en tiempo constante.
- b. Indicar y justificar (adecuadamente) la complejidad de la función implementada.

Ejercicio resuelto

Se tiene un arreglo de cadenas que representan fechas de la forma YYYYMMDD (ej: 20110626 representa el 26/06/2011). Implementar un algoritmo lineal que las ordene de forma creciente.

Solución

Dado que todos los elementos van a ser fechas en un formato fijo, de mismo largo para cada uno, y bien definido qué es cada dígito, podemos aplicar Radix Sort. Ahora bien, tenemos dos formas:

- 1. Vamos de cifra menos significativa a más significativa, así como está definido, aplicando el ordenamiento interno. Esto sería, aplicar en cada una de las posiciones según el orden: 7, 6, 5, 4, 3, 2, 1, 0. No hay muchas más vueltas.
- 2. Considerar que no es necesario trabajar en base 10. Sabemos que si o si los días están en el rango 1-31. Los meses en el rango 1-12. Luego, en los años podríamos no tener esto acotado, y no conviene trabajar con un rango 1-9999 porque puede ser más grande que la cantidad de elementos a ordenar. Pero cuanto menos, nos ahorramos dos pasadas.

Algunas preguntas:

- ¿Cuál es la mejor opción? La segunda, claramente. No sólo por hacerlo más rápido, sino por mostrar un entendimiento tanto del problema como del algoritmo.
- ¿La otra opción está mal? No. Pero considerar que si nos piden un seguimiento, si no consideramos estas cosas vamos a demorar más. Y es tiempo que se nos consume del parcialito. Conviene más pensar primero, y luego ponerse a aplicar, que aplicar de entrada. Se termina ganando más tiempo. Ahora bien, si además es una cuestión de implementación, podría restar un poco no haberlo pensado de la mejor forma (esta es una aclaración general que puede depender de lo evidente que sea la mejora según el caso particular).

Aclaración: en general este tipo de ejercicios pueden directamente implementarse en pseudo código, pero aquí proponemos una solución en Go para que puedan ver una resolución completa en dicho lenguaje.

Aplicamos la primer solución, que es más corta:

```
func OrdenarFechas(fechas []string) {
    for i := 0; i < 8; i++ {
        ordenarPorDigito(fechas, 7 - i)
    }
}
func ordenarPorDigito(fechas []string, digito int) {
    digitos := make([]Lista[string], 10)
    for i := 0; i < 10; i++ {</pre>
```

```
digitos[i] = CrearListaEnlazada[string]()
    }
    for fecha := range fechas {
        digitos[int(fecha[digito])],InsertarUltimo(fecha)
    }
    indice := 0
    for lista := range digitos {
        for iter := lista.Iterador(); iter.HaySiguiente(); indice++ {
            fechas[indice] = iter.Siguiente()
        }
    }
}
Aplicamos la segunda solución, que es más rápida, pero hay que rebuscarse un poco
más para no repetir 3 veces lo mismo:
func OrdenarFechas(fechas []string) {
    ordenarPorTiempo(fechas, 31, 6, 8);
    ordenarPorTiempo(fechas, 12, 4, 6);
    ordenarPorTiempo(fechas, 10000, 0, 4);
}
func ordenarPorTiempo(fechas []string, largo int, indiceIni int, indiceFin int) {
    tiempos := make([]Lista[string], largo)
    for i := 0; i < largo; i++ {
        tiempos[i] = CrearListaEnlazada[string]()
    }
    for fecha := range fechas {
        tiempo = int(fecha[indiceIni:indiceFin])
        tiempos[tiempo].InsertarUltimo(fecha)
    }
    indice := 0
    for lista := range dias {
        for iter := lista.Iterador(); iter.HaySiguiente(); indice++ {
            fechas[indice] = iter.Siguiente()
        }
    }
}
```

Ejercicios propuestos

1. (*) Realizar un seguimiento de ordenar el siguiente arreglo utilizando Inserción, Selección, MergeSort, QuickSort y HeapSort. Contar la cantidad de operaciones (aproximadamente) para validar empíricamente la diferencia en el orden de cada uno, y poder comparar aquellos que sean iguales: [1, 7, 5, 8, 2, 4,

- 9, 6, 5].
- 2. (*) Implementar un algoritmo que permita ordenar de menor a mayor en $\mathcal{O}(n)$ un arreglo casi ordenado de mayor a menor.
- 3. (*) Se tiene un arreglo de números, como el del primer ejercicio (no necesariamente ese). Indicar cuál sería un algoritmo eficiente para ordenar dicho arreglo. Aquí la solución del ejercicio.
- 4. (**) Se tiene un arreglo de estructuras de la forma type Evento struct {anio long, evento string}, que indica el año y evento de un hecho definido a lo largo de la historia de la Tierra. Indicar y justificar cuál sería un algoritmo de ordenamiento apropiado para utilizar para ordenar dicho arreglo por año. Indicar también, si en vez de ordenar por año se decide ordenar por evento (lexicográficamente). Si se quiere ordenar por año y dentro de cada año, por evento: ¿Deben utilizarse para ambos campos el mismo algoritmo de ordenamiento? ¿Que característica/s deben cumplir dicho o dichos algoritmos para que quede ordenado como se desea? ¿En qué orden deben aplicarse los ordenamientos?
- 5. (**) Hacer el seguimiento de counting sort para ordenar por año las siguientes obras:

1988 - Crónicas del Ángel Gris

2000 - Los Días del Venado

1995 - Alta Fidelidad

1987 - Tokio Blues

2005 - En Picada

1995 - Crónica del Pájaro que Da Cuerda al Mundo

1995 - Ensayo Sobre la Ceguera

2005 - Los Hombres que No Amaban a las Mujeres

¿Cuál es el orden del algoritmo? ¿Qué sucede con el orden de los elementos de un mismo año, respecto al orden inicial, luego de finalizado el algoritmo? Justificar brevemente.

6. (★★) Realizar el seguimiento de ordenar por Radix Sort el siguiente arreglo de cadenas que representan versiones. Cada versión tiene el formato a.b.c, donde cada valor a, b y c puede tener un valor entre 0 y 99. Considerar que se quiere que quede ordenado primero por la primera componente (a), luego por la segunda (b) y finalmente por la tercera (c). Tener en cuenta que, por ejemplo 1.1.3 < 1.1.20, 2.20.8 < 3.0.0.</p>

```
["4.3.2", "5.1.2", "10.1.4", "2.1.20", "2.2.1", "4.2.3", "2.1.5", "8.1.2", "5.30.1", "10.0.23"]
```

- 7. $(\star\star)$ Indicar Verdadero o Falso, justificando de forma concisa en cualquier caso.
 - a. Podríamos mejorar el orden de complejidad de QuickSort si contaramos con más información sobre cómo son los datos a ordenar.

- b. No siempre conviene utilizar Counting Sort para ordenar un arreglo de números enteros.
- c. Que un algoritmo de ordenamientos sea estable implica que el algoritmo ordena sobre el arreglo original (sin utilizar otro adicional). Por ejemplo, Counting Sort no es estable.
- 8. (****) Se quiere ordenar un arreglo de películas por su género. No se conoce cuántos, ni cuáles son estos géneros, pero se sabe que son muy pocos comparando con la cantidad de películas a ordenar. Diseñar un algoritmo que permita ordenar las películas en tiempo lineal de la cantidad de películas y explique como funcionaría sobre las siguientes películas:
 - Donnie Darko (2001): Thriller psicológico
 - Juno (2007): Coming of age
 - The Shining (1980): Thriller psicológico
 - Labyrinth (1986): Fantasía
 - Ferris Bueller's Day Off (1986): Coming of age
- 9. $(\star\star\star)$ Se tiene una larga lista de números de tres cifras abc que representan números en notación científica de la forma: $a, b \cdot 10^c$. Por ejemplo 123 representaría el número $1, 2 \cdot 10^3$.
 - 1. Diseñe un algoritmo para ordenar los números según su valor en notación científica. ¿De qué orden es?
 - 2. Muestre cómo se ordena la siguiente lista de números con el algoritmo que diseñó:

```
[122, 369, 332, 180, 486, 349, 326, 101] que representan [1, 2 \cdot 10^2; 3, 6 \cdot 10^9; 3, 3 \cdot 10^2; 1, 8 \cdot 10^0; 4, 8 \cdot 10^6; 3, 4 \cdot 10^9; 3, 2 \cdot 10^6; 1, 0 \cdot 10^1],
```

y equivalen a [120; 3600000000; 330; 1, 8; 4800000; 3400000000; 3200000; 10].

10. $(\star\star\star\star)$ Suponer que se tiene un arreglo de n elementos ordenados, seguido de f(n) elementos desordenados. Cómo ordenarías el arreglo según si f(n) es:

a.
$$f(n) = O(1)$$

b.
$$f(n) = \mathcal{O}(\log n)$$

c.
$$f(n) = \mathcal{O}(\sqrt{n})$$

- 11. $(\star\star\star\star\star)$ Implementar un algoritmo que, dado un arreglo de n números enteros cuyos valores van de 0 a K (constante conocida), procese dichos números en tiempo $\mathcal{O}(n+K)$, devuelva alguna estructura que permita consultar cuántos valores ingresados están en el intervalo (A, B), en tiempo $\mathcal{O}(1)$. Explicar cómo se usaría dicha estructura para poder realizar tales consultas.
- 12. $(\star\star)$ ¿Puede aplicarse counting sort a un arreglo de *floats* cuyos valores se encuentran entre 0 y 1? En caso de poderse, explicar cómo lo harías. En

caso de no poderse, explicar por qué y mencionar un algoritmo que resuelva el problema, en un orden semejante al de counting sort. ¿Necesitarías más información para aplicar dicho algoritmo, o con saber que el rango es de 0 a 1 es suficiente?

- 13. $(\star\star\star\star\star)$ Se tiene un conjunto de n tuercas y otro conjunto de n tornillos. No podemos comparar a los tornillos entre sí, ni a las tuercas entre sí, pero podemos comparar un tornillo con una tuerca (ver si un tornillo y una tuerca hacen pareja, si el tornillo es más grande o más chico de lo debido). Implementar un algoritmo que en $\mathcal{O}(n \log n)$ determine todas las parejas de tuercas-tornillos.
- 14. (***) Implementar en Go un algoritmo de RadixSort para ordenar un arreglo de Alumnos (estructuras) en función de sus notas en parcialitos, de menor a mayor. Los alumnos tienen su nombre y las notas (numéricas, 0-10) de los 3 parcialitos (tenemos las notas finales). El arreglo debe quedar ordenado primero por el promedio de notas. No importan los decimales, nada más si tuvo "promedio 9", "promedio 8", etc., es decir la parte entera del promedio. Luego, en caso de igualdad en este criterio, los alumnos deben quedar ordenados por la nota del parcialito 1, en caso de persistir la igualdad, la del parcialito 2, y finalmente por la del 3. En ningún caso se utiliza el nombre para desempatar. Suponer que cualquier algoritmo de ordenamiento auxiliar que se requiera ya se encuentra implementado. Sí justificar por qué se utiliza el o los algoritmos auxiliares utilizados, y no otros. Indicar y justificar la complejidad del algoritmo. El desarrollo de la complejidad debe estar completo, no se aceptan resultados parciales. Hacer un seguimiento sobre el siguiente ejemplo. No es necesario hacer el seguimiento de cómo funciona el o los algoritmos auxiliares.

Juan Pérez, 7, 4, 5
María Gómez, 5, 7, 4
Germán González, 4, 8, 5
Elián Valenzuela, 4, 2, 0
Bobo Weghorst, 0, 0, 0

Hector Fernández, 8, 9, 10 Martina Giménez, 7, 4, 4 Mirtha Legrand, 10, 8, 10 Ricardo Bonafide, 4, 6, 8

Ejercicio resuelto

- Para un hash cerrado, implementar una primitiva func (hash hashCerrado[K, V]) Claves() Lista[K] que reciba un hash y devuelva una lista con sus claves, sin utilizar el iterador interno.
- 2. Repetir lo mismo para un hash abierto.
- 3. Implementar de nuevo la operación, en este caso como una función.

Solución

Partiendo del punto a), es importante notar que no podemos utilizar el iterador externo, ya que se trata de una primitiva para el hash (y es una mala práctica que, dado que el iterador dependa del hash, ahora hagamos que el hash dependa del iterador).

Hash Cerrado Para este punto, sólo es necesario iterar campo por campo, considerando únicamente aquellos que están ocupados.

```
func (hash hashCerrado[K, V]) Claves() Lista[K] {
   claves := CrearListaEnlazada[K]()
   for celda := range hash.tabla {
      if celda.estado == OCUPADO {
         claves.InsertarUltimo(celda.clave)
      }
   }
   return claves
}
```

Es importante notar que en este ejercicio se está evaluando que sabemos trabajar internamente con el hash cerrado. Los puntos importantes:

- Sabemos cuáles son los campos de la estructura.
- Sabemos que la tabla es de tipo []campo[K, V] o bien []celda[K, V], y no []*celda[K, V], puesto que es completamente innecesario otro grado de indirección (como se analiza en la respectiva clase práctica).
- Entendemos que el estado correcto a considerar es el de OCUPADO, que es un enumerativo. Cuanto mucho, una constante. Definitivamente no un "ocupado".

Hash Abierto Para este caso, consideramos todas las listas, las cuales podemos ir iterando utilizando el iterador externo o interno. Aquí mostramos una implementación utilizando el iterador interno, no porque sea mejor implementación, sino para que tengan un ejemplo de uso (ya que probablemente la primera idea que tengan ustedes será con el externo).

```
func (hash hashAbierto[K, V]) Claves() Lista[K] {
   claves := CrearListaEnlazada[K]()
   for lista := range hash.tabla {
```

```
lista.Iterar(func (par parClaveValor[K, V]) bool {
         claves.InsertarUltimo(par.clave)
         return true
     })
}
return claves
}
```

Aclaración: Hay quienes deciden implementar el Hash Abierto de tal forma que no tenga listas vacías (esto es, si una posición aún no ha sido utilizada, entonces se guarda nil y se crea la lista cuando sea necesaria). Esto es totalmente válido, y en todo caso con aclararlo en algún lado es suficiente (pero debe hacerse la validación contra nil en ese caso).

Función En este caso, no sólo sí está permitido utilizar el iterador externo del hash, sino que **no nos queda otra opción**, dado que no es posible acceder a los campos internos de la estructura. Además, en particular no se nos dice cuál es la implementación, cosa que no es necesario conocer.

Entonces, simplemente iteramos utilizando el iterador externo y guardamos en una lista.

```
func ClavesDiccionario(dic Diccionario) Lista[K] {
    claves := CrearListaEnlazada[K]()
    for iter := dic.Iterador(); iter.HaySiguiente(); {
        claves.InsertarUltimo(iter.Siguiente())
    }
    return claves
}
```

Utilizando el iterador interno Ahora implementamos también (ya sea como función o primitiva) utilizando el iterador interno exclusivamente:

```
func (hash hashAbierto[K, V]) Claves() Lista[K] { // Vale también para el cerrado y
    claves := CrearListaEnlazada[K]()
    hash.Iterar(func (clave K, valor V) bool {
        claves.InsertarUltimo(clave)
        return true
    })
    return claves
```

Ejercicios propuestos

}

1. (\star) Suponer que se tiene un hash cerrado que se redimensiona cuando el factor de carga llega a 0.75, y que no se tienen en cuenta los elementos borrados a la hora de calcular el factor de carga.

- 1. Describir, en términos generales, el peor escenario posible para esta implementación.
- 2. Dado un hash de estas características, con capacidad inicial 100, calcular el número máximo de casillas que podría llegar a visitar hash_obtener() si la cantidad actual de elementos en el hash es 1, y no se realizó ningúna redimensión, pero sí se insertaron y borraron elementos. (En otras palabras, poner una cota superior al caso peor de este hash.)
- 2. (*) ¿Para qué casos la función hash_obtener() tiene una complejidad peor que $\mathcal{O}(1)$? Explicar tanto para el hash abierto, como el cerrado.
- 3. (*) Justificar si la siguiente función de hashing es correcta o no: golang
 func calcularHash(string clave) int { // rand.Intn(x)
 devuelve un numero entero entre 0 y x return rand.Intn(10000)
 }
- 4. (★★) a. Mostrar el resultado de las siguientes operaciones tanto para un hash cerrado como para un hash abierto, ambos de capacidad 9 e inicialmente vacíos (los números son también el resultado de la función de hashing): insertar 17, insertar 22, insertar 35, borrar 17, insertar 52, insertar 54.
 - b. Tras estas inserciones ¿qué pasos hay que seguir para verificar si el 70 pertenece al hash?
 - c. Posteriormente se realizan más inserciones. ¿Cuándo redimensionaría cada hash? ¿Qué pasos hay que seguir para hacerlo?
- 5. $(\star\star)$ Implementar una función de orden $\mathcal{O}(n)$ que dado un arreglo de n números enteros devuelva **true** o **false** según si existe algún elemento que aparezca más de la mitad de las veces. Justificar el orden de la solución. Ejemplos:

```
[1, 2, 1, 2, 3] -> false
[1, 1, 2, 3] -> false
[1, 2, 3, 1, 1, 1] -> true
[1] -> true
```

- 6. (**) Asumiendo que se tiene disponible una implementación completa del TDA Hash, se desea implementar una función que decida si dos Hash dados representan o no el mismo Diccionario. Considere para la solución que es de interés la mejor eficiencia temporal posible. Indique, para su solución, eficiencia en tiempo y espacio. Nota: Dos tablas de hash representan el mismo diccionario si tienen la misma cantidad de elementos; todas las claves del primero están en el segundo; todas las del segundo, en el primero; y los datos asociados a cada una de esas claves son iguales (se pueden comparar los valores con "==").
- 7. (**) Implementar el TDA MultiConjunto. Este es un Conjunto que permite más de una aparición de un elemento, por lo que eliminando una aparición, el elemento puede seguir perteneciendo. Dicho TDA debe tener como primitivas:
 - CrearMulticonj[K](): crea un multiconjunto.
 - Guardar(elem K): guarda un elemento en el multiconjunto.

- Pertence(elem K) bool: devuelve true si el elemento aparece al menos una vez en el conjunto.
- Borrar(elem K) bool: elimina una aparición del elemento dentro del conjunto. Devuelve true si se eliminó una aparición del elemento.

Dar la estructura del TDA y la implementación de las 4 primitivas marcadas, de forma tal que todas sean $\mathcal{O}(1)$.

- 8. (***) Se tiene un hash que cuenta con una función de hashing que, recibida una clave, devuelve la posición de su inicial en el abecedario. La capacidad inicial del hash es 26. Para los puntos B, C y D indicar y justificar si las afirmaciones son verdaderas o falsas. Se puede considerar que todas las claves serán palabras (sólo se usan letras para las claves).
 - a. Mostrar cómo quedan un hash abierto y un hash cerrado (sólo el resultado final) tras guardar las siguientes claves: Ambulancia (0), Gato (6), Manzana (12), Ananá (0), Girasol (6), Zapato (25), Zapallo (25), Manzana (12), Bolso (1). Aclaración: No es necesario hacer una tabla de 26 posiciones, lo importante es que quede claro en cuál posición está cada elemento.
 - b. En un hash **abierto** con dicha función de hashing, se decide redimensionar cuando la cantidad alcanza la capacidad (factor de carga = 1). El rendimiento de **hash_obtener()** es mejor en este caso respecto a si se redimensionara al alcanzar un factor de carga 2.
 - c. En un hash **cerrado** con dicha función de hashing, si se insertan n + 1 claves diferentes (considerar que se haya redimensionado acordemente), n con la misma letra inicial, y 1 con otra distinta, en el primer caso Obtener() es $\mathcal{O}(n)$ y en el segundo siempre $\mathcal{O}(1)$.
 - d. En un hash **abierto** con dicha función de hashing, si se insertan n + 1 claves diferentes (considerar que se haya redimensionado acordemente), n con la misma letra inicial, y 1 con otra distinta, en el primer caso Obtener() es $\mathcal{O}(n)$ y en el segundo siempre $\mathcal{O}(1)$.
- 9. (***) El Ing. Musumeci quiere implementar un hash abierto, pero en el que las listas de cada posición se encuentren ordenadas por clave (se le pasa por parmámetro la función de comparación, por ejemplo strcmp). Explicar cómo mejora o empeora respecto a la versión que vemos en clase para el caso de inserciones, borrados, búsquedas con éxito (el elemento se encuentra en el hash) y sin éxito (no se encuentra).
- 10. (★★) En un diccionario todas las claves tienen que ser diferentes, no así sus valores. Escribir en Go una primitiva para el hash cerrado func (dicc *hashCerrado[K, V]) CantidadValoresDistintos() int que, sin usar el iterador interno, dado un hash devuelva la cantidad de valores diferentes que almacena. Se puede suponer que el tipo V (el genérico de los valores) en este caso también es comparable, como lo son las claves. Indicar y justificar el orden del algoritmo.

11. (***) La diferencia simétrica entre dos conjuntos A y B es un conjunto que contiene todos los elementos que se encuentran en A y no en B, y viceversa.

Implementar una función DiferenciaSimetricaDict[K comparable, V any] (d1, d2 Diccionario[K, V]) Diccionario[K, V] que devuelva un nuevo Diccionario (puede ser el hash que hayas implementado) con la diferencia simétrica entre los dos recibidos por parámetro. La diferencia tiene que ser calculada teniendo en cuenta las claves, y los datos asociados a las claves deben ser los mismos que estaban en cada uno de los hashes originales. Ejemplo:

```
d1 = { "perro": "guau", "gato": "miau", "vaca": "mu" }
d2 = { "perro": "woof", "zorro": "ding-ding" }
DiferenciaSimetricaDict(d1, d2) => { "gato": "miau", "vaca": "mu", "zorro": "d
Indicar y justificar el orden de la función implementada.
```

- 12. (**) Una fábrica de pastas de Lanús le pide a alumnos de Algoritmos y Programación II que le solucionen un problema: sus dos distribuidoras de materias primas le enviaron un hash cada una, dónde sus claves son los nombres de los productos, y sus valores asociados, sus precios. La fábrica de pastas le pide a los alumnos que le implementen una **función** que le devuelva un nuevo hash con la unión de todos esos productos, y en caso de que una misma materia prima se encuentre en ambos hashes, elegir la que tenga el precio más barato. Indicar y justificar el orden del algoritmo.
- 13. (*****) Se quiere implementar un TDA Diccionario con las siguientes primitivas: Obtener(x) devuelve el valor de x en el diccionario; Insertar(x, y) inserta en el diccionario la clave x con el valor y (entero); Borrar(x) borra la entrada de x; Add(x, n) le suma n al contenido de x; AddAll(m) le suma m a todos los valores.

Proponer una implementación donde **todas** las operaciones sean $\mathcal{O}(1)$. Justificar el orden de las operaciones.

14. $(\star\star\star\star)$ Implementar un algoritmo que reciba un arreglo desordenado de enteros, su largo (n) y un número K y determinar en $\mathcal{O}(n)$ si existe un par de elementos en el arreglo que sumen exactamente K.

Ejercicio resuelto

Se tiene un árbol binario de búsqueda con cadenas como claves y función de comparación strcmp. Implementar una primitiva func (abb *abb[K, V]) Mayores(cadena K) Lista[K] que, dados un ABB y una clave, devuelva una lista ordenada con las claves del árbol estrictamente mayores a la recibida por parámetro (que no necesariamente está en el árbol). Implementar sin utilizar el iterador Interno del ABB.

Suponer que la estructura del TDA es:

```
type abb struct {
    clave string
    izq *abb
    der *abb
}
```

Aclaración: se debe realizar la menor cantidad posible de comparaciones.

Solución

La aclaración hace mención a que utilicemos la propiedad de ABB: sabemos que los nodos a izquierda son menores al actual, y los que estén a derecha son mayores. En particular, si estamos en un nodo cuya clave es menor (o igual) a la buscada, entonces es innecesario revisar a izquierda: todos esos nodos también serán menores. Sí tendremos siempre que revisar a derecha, porque no es posible descartar. Esto es similar a una búsqueda por rango, solo que sin un límite superior.

```
lista_t* abb_mayores(const abb_t* abb, const char* clave) {
    lista t* mayores = lista crear();
    if (!mayores) {
        return NULL;
    _abb_mayores(abb, clave, mayores);
    return claves:
}
void abb mayores(const abb t* abb, const char* clave, lista t* claves) {
    // caso base SIEMPRE
    if (abb == NULL) {
        return:
    // si la actual es mayor, llamamos a la izquierda y guardamos la actual
    if (strcmp(abb->clave, clave) > 0) {
        _abb_mayores(abb->izq, clave, claves);
        lista insertar primero(claves, abb->clave);
    _abb_mayores(abb->der, clave, claves);
}
```

Ya que estamos, vemos la complejidad: En el peor de los casos, se pasa una clave que es menor a la mínima, por lo que se ven todos los nodos, así que será $\mathcal{O}(n)$. Por si nos interesara el mejor caso, esto sería con una clave mayor o igual a la máxima clave del árbol, por lo que recorreríamos la rama derecha, haciéndose en $\Omega(\log n)$ (recordar, la notación Ω es una cota inferior, a diferencia de \mathcal{O} que es una cota superior).

Ejercicios propuestos

- 1. (\star) Dado un árbol binario, escribir una primitiva recursiva que determine la altura del mismo. Indicar y justificar el orden de la primitiva.
- 2. (*) Implementar una primitiva que devuelva la suma de todos los datos (números) de un árbol binario. Indicar y justificar el orden de la primitiva.
- 3. (*) Se tiene un AB con números enteros como datos, y se quiere reemplazar cada dato por el resultado de multiplicarlo con los datos de los hijos. Hacer un seguimiento de hacer dicho procesamiento con un preorder, inorder o postorder. A continuación se deja la implementación mediante cada recorrido:

```
func datoONeutro(ab *arbol[int]) int {
    if ab == nil {
        return 1
    } else {
        return ab.dato
    }
}
func MultiplicarConHijosPre(arbol *Arbol[int]) {
    if arbol == nil {
        return
    }
    valor_izq := datoONeutro(arbol.izq)
    valor der := datoONeutro(arbol.der)
    arbol.dato *= valor_izq * valor_der
    MultiplicarConHijosPre(arbol.izq)
    MultiplicarConHijosPre(arbol.der)
}
func MultiplicarConHijosIn(arbol *Arbol[int]) {
    if arbol == nil {
        return
    }
    MultiplicarConHijosIn(arbol.izq)
    valor izq := datoONeutro(arbol.izq)
    valor der := datoONeutro(arbol.der)
    arbol.dato *= valor izg * valor der
    MultiplicarConHijosIn(arbol.der)
}
```

```
func MultiplicarConHijosPos(arbol *Arbol[int]) {
    if arbol == nil {
        return
    }
    MultiplicarConHijosPos(arbol.izq)
    MultiplicarConHijosPos(arbol.der)
    valor_izq := datoONeutro(arbol.izq)
    valor_der := datoONeutro(arbol.der)
    arbol.dato *= valor_izq * valor_der
}
```

- 4. (★★) Dado un árbol binario, escriba una *primitiva* recursiva que cuente la cantidad de nodos que tienen exactamente dos hijos directos. ¿Qué orden de complejidad tiene la función implementada?
- 5. (**) Escribir una *primitiva* con la firma func (arbol *Arbol) Invertir() que invierta el árbol binario pasado por parámetro, de manera tal que los hijos izquierdos de cada nodo se conviertan en hijos derechos.

La estructura Arbol respeta la siguiente definición:

```
type Arbol struct {
    izq *Arbol
    der *Arbol
}
```

Indicar el orden de complejidad de la función implementada.

- 6. (★★) Suponer que se tiene un ABB A con una función de comparación cmp1 con n claves. También, se tiene otro ABB vacío B con función de comparación cmp2 (con cmp1 y cmp2 diferentes). ¿Es posible insertar en algún orden todas las claves de A en B de tal forma que ambos tengan exactamente la misma estructura? Si es posible, describir un algoritmo que permita lograr esto; si no lo es, razonar por qué. (Considerar que la lógica a emplear debe funcionar para cualquier valor de n y cualquier estructura que tenga el ABB A.)
- 7. (***) Se tiene un AVL con números enteros como claves (su función de comparación simplemente compara dichos valores de la forma tradicional). Su estado inicial puede reconstruirse a partir del preorder: 15 6 4 7 50 23. Hacer el seguimiento de las siguientes inserciones, incluyendo rotaciones intermedias: 71 27 38 19 11 21 24 25.
- 8. (***) Mostrar cómo se modifica la estructura de un árbol B (incluyendo los pasos intermedios) con tamaño para 3 claves por nodo que inicialmente se encuentra vacío, al aplicar las siguientes operaciones: insertar 14, insertar 2, insertar 10, insertar 6, insertar 7, insertar 1, insertar 4, insertar 8, insertar 11, insertar 19, insertar 9, insertar 5, insertar 15, insertar 3.
- 9. (***) Definimos como quiebre en un árbol binario cuando ocurre que:

- un hijo derecho tiene un solo hijo, y es el izquierdo
- un hijo izquierdo tiene un solo hijo, y es el derecho

Implementar una *primitiva* para el árbol binario func (arbol Arbol) Quiebres() int que, dado un árbol binario, nos devuelva la cantidad de quiebres que tiene. La primitiva no debe modificar el árbol. La estructura del tipo Arbol es:

```
type Arbol struct {
    izq *Arbol
    der *Arbol
}
```

Indicar y justificar el orden de la primitiva, e indicar el tipo de recorrido implementado.

- 10. $(\star\star)$ Indicar si las siguientes afirmaciones son verdaderas o falsas. En caso de ser verdaderas, justificar, en caso de ser falsas poner un contraejemplo:
 - 1. Si dos árboles binarios tienen el mismo recorrido inorder, entonces tienen la misma estructura.
 - 2. Si dos árboles binarios tienen el mismo recorrido preorder, entonces tienen la misma estructura.
 - 3. Si dos árboles binarios de búsqueda (e idéntica función de comparación) tienen el mismo recorrido preorder, entonces tienen la misma estructura.
- 11. (**) Implementar una primitiva para el ABB, que reciba el ABB y devuelva una lista con las claves del mismo, ordenadas tal que si insertáramos las claves en un ABB vacío (con la misma función de comparación), dicho ABB tendría la misma estructura que el árbol original. ¿Qué tipo de recorrido utilizaste? Indicar y justificar el orden de la primitiva.
- 12. (****) Implementar una primitiva para el AB que reciba dos arreglos (o listas) de cadenas. El primer arreglo corresponde al preorder de un árbol binario. El segundo al inorder del mismo árbol (ambos arreglos tienen los mismos elementos, sin repetidos). La función debe devolver un árbol binario que tenga dicho preorder e inorder. Indicar y justificar el orden de la primitiva (tener cuidado con este punto). Considerar que la estructura del árbol binario es:

```
type Arbol struct {
    izq *Arbol
    der *Arbol
}
```

13. (****) Implementar una función que reciba un arreglo ordenado y devuelva un arreglo o lista con los elementos en orden para ser insertados en un ABB, de tal forma que al insertarlos en dicho orden se asegure que el ABB quede balanceado. ¿Cómo cambiarías tu resolución si en vez de querer guardarlos en un ABB se fueran a insertar en un AVL?

- 14. $(\star\star\star)$ Determinar cómo es el Árbol cuyo pre order es EURMAONDVSZT, e in order es MRAUOZSVDNET, e indicar su recorrido post order.
- 15. (***) En un árbol binario, dado un nodo con dos hijos, explicar por qué su predecesor en el recorrido inorder no puede tener hijo derecho, y que su sucesor (también, en el recorrido inorder) no puede tener hijo izquierdo.

Ejercicio resuelto

Implementar en Go una primitiva para el heap (siendo este un max-heap) que reciba una función de comparación y lo reordene de manera tal que se se comporte como max-heap para la nueva función de comparación (se cambia la función de prioridad). El orden de dicha primitiva debe ser $\mathcal{O}(n)$.

Solución

La única dificultad de este ejercicio radica en entender verdaderamente qué es lo que se nos pide: darle a un arreglo ya existente (el interno del heap) forma de heap, dada por una función de comparación (la nueva función de comparación del heap). Entonces, esto no es más que invocar a heapify, y ya. Eso es todo. También, es la única forma de darle ese orden a la primitiva.

```
func (heap *Heap[T]) CambiarPrioridad(func cmp(T, T) int) {
   heap.cmp = cmp
   heapify(heap.datos, heap.cantidad, cmp)
}
```

Obviamente, la primitiva es $\mathcal{O}(n)$ dado que heapify (bien implementado) tiene dicha complejidad. Por supuesto, este ejercicio involucra más pensar bien cuáles son las operaciones que se pueden hacer con el heap (y, especialmente, cuál es la única con el orden pedido).

Ejercicios propuestos

1. (*) Implementar en lenguaje Go una función recursiva con la firma func esHeap(arr []int). Esta función debe devolver true o false de acuerdo a si el arreglo que recibe como parámetro cumple la propiedad de heap (de mínimos).

```
Hacer el seguimiento de la función para el arreglo [ 1, 7, 2, 8, 7, 6, 3, 3, 9, 10 ].
```

- 2. (*) Implementar una primitiva para el heap (de máximos) que obtenga los 3 elementos más grandes del heap en $\mathcal{O}(1)$.
- 3. $(\star\star)$ Si en el ejercicio anterior en vez de quererse los 3 elementos más grandes, se quisieran los K elementos más grandes ¿cómo se debería proceder? ¿Cuál terminaría siendo la complejidad del algoritmo?
- 4. (★★) En un heap de máximos ¿cuáles son las posibles posiciones del arreglo donde podría encontrarse el mínimo?
- 5. (**) Realizar el seguimiento del algoritmo *heapsort* para ordenar el siguiente arreglo: [4, 7, 8, 14, 10, 9, 16, 2, 3, 1].
- 6. (***) ¿Puede utilizarse un Heap para implementar el TDA cola (en el que se extraen los elementos en el orden en que fueron insertados)? ¿Y para implementar el TDA pila?

- 7. (**) Hacer el seguimiento de las siguientes operaciones sobre un heap (de mínimos), mostrando el estado de la estructura después de cada modificación:
 - 1. Crear un heap de mínimos desde el arreglo [8, 2, 1, 5, 10, 6, 14, 4].
 - 2. Sobre el heap resultante del punto anterior, realizar las siguientes operaciones: encolar(6), encolar(3), encolar(17), desencolar(), encolar(7), desencolar().
- 8. $(\star\star\star)$ Escribir una función en Go que, dado un arreglo de n cadenas y un entero positivo k, devuelva una lista con las k cadenas más largas. Se espera que el orden del algoritmo sea $\mathcal{O}(n+k\log n)$. Justificar el orden.
- 9. (***) Para implementar un TDA Cola de prioridad, nos proponen la siguiente solución: usar un arreglo desordenado (arr) para insertar los datos, y una variable (maximo) para poder obtener el máximo en $\mathcal{O}(1)$. Se mantiene actualizada la variable maximo cada vez que se encola o desencola. ¿Es una buena solución en el caso general? Justificar (recomendación: comparar contra la implementación de colas de prioridad vista en clase).
- 10. $(\star\star\star\star)$ Se tienen k arreglos de enteros previamente ordenados y se quiere obtener un arreglo ordenado que contenga a todos los elementos de los k arreglos. Sabiendo que cada arreglo tiene tamaño h, definimos como n a la sumatoria de la cantidad de elementos de todos los arreglos, es decir, $n=k\times h$.
 - Escribir en Go una función func KMerge(arr [][]int) que reciba los k arreglos y devuelva uno nuevo con los n elementos ordenados entre sí. La función debe ser de orden $\mathcal{O}(n \log k)$. Justificar el orden del algoritmo propuesto.
- 11. $(\star\star\star\star\star)$ Diseñar el TDA Mediana. Dicho TDA debe poder recibir un flujo de números y, en cualquier momento, debe poder consultársele cuál es la mediana de **todos** los elementos vistos hasta ese momento. La primitiva para agregar un nuevo número debe poder hacerse en $\mathcal{O}(\log n)$ mientras que la operación de consultar la mediana debe ser $\mathcal{O}(1)$. Recordar que la mediana de una secuencia de números es el elemento que se encontraría a la mitad si la secuencia se encontrara ordenada (en caso de ser una cantidad par, se puede definir como el promedio entre ambos valores adyacentes del medio, o como uno de los dos de ellos de forma arbitraria).
- 12. (***) Implementar un algoritmo que reciba un arreglo de n números, y un número k, y devuelva los k números dentro del arreglo cuya suma sería la máxima (entre todos los posibles subconjuntos de k elementos de dicho arreglo). La solución **debe ser mejor** que $\mathcal{O}(n \log n)$ si k << n. Indicar y justificar la complejidad de la función implementada.
- 13. (****) Dado un arreglo de enteros y un número K, se desea que todos los elementos del arreglo sean mayores a K. Aquellos números que sean menores o iguales a K deberían combinarse de la siguiente forma: buscar los dos números más chicos del vector, sacarlos y generar uno nuevo de la forma Nuevo número = número-más-chico + 2 x segundo-más-chico. Por ejemplo, si K = 10 y

los números más chicos del arreglo son 3 y 4: 3+2*4=11. Los números combinados pueden volver a ser combinados con otros en caso de ser necesario (en el ejemplo no lo es), aplicando la misma lógica hasta que el número resultante sea mayor a K.

Implementar una función que reciba un arreglo de enteros, su largo y un número K, y devuelva una lista con los elementos que quedarían luego de aplicar las modificaciones. El arreglo original debe quedar en el estado original. El orden de la lista no es importante. En caso de no poderse combinar todos los elementos para que todos los elementos sea mayores a K, devolver nil. Determinar y justificar la complejidad del algoritmo implementado.

```
Ejemplo: Entrada: [11, 14, 8, 19, 42, 3, 1, 9]; K = 13:

[11, 14, 8, 19, 42, 3, 1, 9] - (1,3) -> 1 + 2*3 = 7

[11, 14, 8, 19, 42, 9, 7] - (7,8) -> 7 + 8*2 = 23

[11, 14, 19, 42, 9, 23] - (9,11) -> 9 + 11*2 = 31

[14, 19, 42, 23, 31]
```

Notar que si el 9 no estuviera en el arreglo, no se podría resolver el problema (debemos devolver nil), ya que el 11 no podría combinarse con ningún otro número.

Grafos: Usos, implementaciones, recorridos, aplicaciones

Ejercicio resuelto

Implementar un algoritmo que, dado un grafo no dirigido, nos devuelva un ciclo dentro del mismo, si es que los tiene. Indicar el orden del algoritmo.

Solución

Antes que nada, debemos entender que el ejercicio en sí es el mismo, se trate de un grafo dirigido o uno no dirigido. La única diferencia se encuentra en que un ciclo por definción necesita contar con al menos dos aristas. Esta definición en sí no nos importaría mucho en el caso de un grafo dirigido, pero si en el de uno no dirigido. Si no lo tuviéramos en cuenta, todo grafo no dirigido, con al menos una arista, va a tener un ciclo, lo cual no es cierto.

Para resolver este problema, podemos pensar en simplemente recorrer el grafo no dirigido, sea con un recorrido BFS o DFS. Una vez que nos topemos con un vértice ya visitado, ahí tenemos un posible ciclo. Esto es, si estoy viendo los adyacentes a un vértice dado, y dicho vértice está visitado, uno se apresuraría a decir que ahí se cierra un ciclo. Esto es cierto, salvo un caso: que dicho vértice visitado sea el antecesor a nuestro vértice en el recorrido (BFS o DFS). Recordar que se trata de un grafo no dirigido, por ende si v tiene de adyacente a w, entonces también vale la recíproca, y no por ello se crea un ciclo. El problema se da con la arista de la que vengo. Básicamente, deberíamos obviar al vértice del que vengo en el recorrido, que justamente es el padre. Si nosotros ya tenemos que padre[W] = V, entonces simplemente tenemos que saltearnos a V cuando veamos a los adyacentes ya visitados.

Lo resolvemos con ambos recorridos. Por *DFS*:

```
def obtener_ciclo_dfs(grafo):
    visitados = {}
    padre = {}
    for v in grafo:
        if v not in visitados:
            ciclo = dfs_ciclo(grafo, v, visitados, padre)
        if ciclo is not None:
            return ciclo
        return None

def dfs_ciclo(grafo, v, visitados, padre):
    visitados[v] = True
    for w in grafo.adyacentes(v):
        if w in visitados:
            # Si w fue visitado y es padre de v, entonces es la arista de donde
            # vengo (no es ciclo).
```

```
# Si no es su padre, esta arista (v, w) cierra un ciclo que empieza
      # en w.
      if w != padre[v]:
        return reconstruir ciclo(padre, w, v)
    else:
      padre[w] = v
      ciclo = dfs ciclo(grafo, w, visitados, padre)
      if ciclo is not None:
        return ciclo
  # Si llegamos hasta acá es porque no encontramos ningún ciclo.
  return None
def reconstruir ciclo(padre, inicio, fin):
  v = fin
  camino = []
  while v != inicio:
    camino.append(v)
    v = padre[v]
  camino.append(inicio)
  return camino.invertir()
```

Por *BFS*, la solución sería similar, pero tenemos que tener noción de la distancia/orden. Esto es porque podríamos terminar sin encontrar un ciclo correctamente. Por ejemplo, si tenemos un grafo con 4 vértices en forma de cuadrado (aristas A-B, B-C, C-D, D-A), y empezamos a hacer el recorrido desde A, eventualmente en el *BFS* vamos a encontrar el ciclo (ej, al ver desde C para ir a D), pero al reconstruir el camino probablemente falle. Es necesario modificar el algoritmo para reconstruir el camino:

```
def obtener ciclo bfs(grafo):
  visitados = {}
  for v in grafo:
    if v not in visitados:
      ciclo = bfs ciclo(grafo, v, visitados)
      if ciclo is not None:
        return ciclo
  return None
def bfs_ciclo(grafo, v, visitados):
  q = Cola()
  q.encolar(v)
  visitados[v] = True
  padre = {} # Para poder reconstruir el ciclo
  orden = \{\}
  padre[v] = None
  orden[v] = 0
```

```
while not q.esta vacia():
    v = q.desencolar()
    for w in grafo.adyacentes(v):
      if w in visitados:
        # Si w fue visitado y es padre de v, entonces es la arista
        # de donde vengo (no es ciclo).
        # Si no es su padre, esta arista (v, w) cierra un ciclo que
        # empieza en w.
        if w != padre[v]:
          return reconstruir ciclo(padre, orden, w, v)
      else:
        q.encolar(w)
        visitados[v] = True
        padre[w] = v
        orden[w] = orden[v] + 1
  # Si llegamos hasta acá es porque no encontramos ningún ciclo.
  return None
def reconstruir_camino(padre, orden, v1, v2):
    ciclo = []
    if orden[v1] != orden[v2]: # no puede haber más que 1 de diferencia
        if orden[v1] > orden[v2]:
             ciclo.append(v1)
             v1 = padre[v1]
        else:
             ciclo.append(v2)
             v2 = padre[v2]
    while v1 != v2:
        ciclo.append(v1)
        ciclo.append(v2)
        v1 = padre[v1]
        v2 = padre[v2]
    ciclo.append(v1)
    return ciclo
```

Ahora bien, para ver el orden, podemos ver que en el caso feliz, vamos a encontrar un ciclo muy rapido. Pero claramente eso no nos cambia mucho. Pensemos el caso de, a lo sumo, encontrar el ciclo muy tarde en el recorrido (también veremos el caso de no haber ciclo). En ese caso, en cualquiera de los dos recorridos vamos a pasar por cada vértice una vez, y solo una vez (a fin de cuentas, no volvemos a estar sobre un vértice ya visitado). Por cada vértice vemos sus aristas. Recordar que es muy importante no caer en la tentación de decir que entonces el algoritmo es $\mathcal{O}(V \times E)$, porque si bien es cierto, es una muy mala cota. Por cada vértice pasamos por sus aristas, que distan de ser las totales del grafo. Si por cada vértice vemos sus aristas (y no las de todo el grafo), en total estamos viendo todas las aristas del grafo, dos veces (una por cada extremo). Entonces, el orden será $\mathcal{O}(V + 2E) = \mathcal{O}(V + E)$. Todo esto,

considerando que la implementación es con listas de adyacencias (implementadas con diccionarios, o bien siendo los vértices valores numéricos para indexar en un arreglo). Si fuera otra la implementación, obtener los adyacentes a un vértice dado nos costará más $(\mathcal{O}(V)$, en el caso de una matriz de adyacencia, u $\mathcal{O}(E)$ en el caso de una matriz de incidencia).

Haciendo un poco más de análisis: ¿es acaso el caso de no tener ciclos nuestro peor caso? Supongamos que el grafo es conexo, por simplificación. Si el grafo no tiene ciclos, y es conexo, necesariamente se trata de un árbol. Para este caso, |E| = |V| - 1, por ende nuestro orden a fin de cuentas terminaría siendo $\mathcal{O}(V)$. ¿Esto implica que entonces nuestro algoritmo es en realidad $\mathcal{O}(V)$? No, significa que ese, que a priori podíamos pensar que era nuestro peor caso, en realidad no lo es. Nuestro peor caso implica que haya un ciclo, pero tener la mala suerte de tardar en encontrarlo. Ya sea porque el vértice en el que se empieza el recorrido está lejos del ciclo, o por el orden aleatorio de las cosas.

¿Cuáles serían las diferencias si en vez de trabajar con un grafo no dirigido, lo hiciéramos sobre un grafo dirigido? Notar que la solución no debería ser demasiado distinta a estas propuestas, pero tienen sus pequeñas diferencias que dejamos para resolver en los ejercicios propuestos.

Ejercicios propuestos

- 1. (\star) a. Dibujar un grafo no dirigido que:
 - Tenga 6 vértices
 - Tenga un ciclo que incluya 4 de dichos vértices
 - Sea conexo
 - Haya un vértice de grado 1
 - Haya un vértice de grado 4
 - b. Escribir la representación de matriz de incidencia y matriz de adyacencia del grafo resultante del punto anterior.
- 2. (\star) a. Dibujar un grafo dirigido que:
 - Tenga 7 vértices
 - Tenga un ciclo que incluya 3 de dichos vértices
 - Tenga un ciclo que incluya 2 de dichos vértices
 - Haya un vértice de grado de entrada 0
 - Haya un vértice de grado de salida 4
 - b. Escribir la representación de matriz de incidencia y matriz de adyacencia del grafo resultante del punto anterior.
- 3. (*) Implementar una función que determine el:
 - a. El grado de todos los vértices de un grafo no dirigido.
 - b. El grado de salida de todos los vértices de un grafo dirigido.
 - c. El grado de entrada de todos los vértices de un grafo dirigido.

- 4. (⋆) Implementar un algoritmo que determine si un grafo no dirigido es conexo o no. Indicar la complejidad del algoritmo si el grafo está implementado con una matriz de adyacencia.
- 5. (***) Implementar un algoritmo que, dado un grafo dirigido, nos devuelva un ciclo dentro del mismo, si es que lo tiene. Indicar el orden del algoritmo.
- 6. $(\star\star)$ Un árbol es un grafo no dirigido que cumple con las siguientes propiedades:
 - a. ||E|| = ||V|| 1
 - b. Es acíclico
 - c. Es conexo

Por teorema, si un grafo cumple dos de estas tres condiciones, será árbol (y por consiguiente, cumplirá la tercera). Haciendo uso de ésto (y únicamente de ésto), se pide implementar una función que reciba un grafo no dirigido y determine si se trata de un árbol, o no. Indicar el orden de la función implementada.

- 7. $(\star\star)$ Proponer una función para calcular el grafo traspuesto G^T de un grafo dirigido G. El grafo traspuesto G^T posee los mismos vértices que G, pero con todas sus aristas invertidas (por cada arista (v, w) en G, existe una arista (w, v) en G^T). Indicar la complejidad para un grafo implementado con:
 - a. lista de adyancencias
 - b. matriz de advacencias
- 8. (***) La teoría de los 6 grados de separación dice que cualquiera en la Tierra puede estar conectado a cualquier otra persona del planeta a través de una cadena de conocidos que no tiene más de cinco intermediarios (conectando a ambas personas con solo seis enlaces). Suponiendo que se tiene un grafo G en el que cada vértice es una persona y cada arista conecta gente que se conoce (el grafo es no dirigido):
 - a. Implementar un algoritmo para comprobar si se cumple tal teoría para todo el conjunto de personas representadas en el grafo G. Indicar el orden del algoritmo.
 - b. Suponiendo que en el grafo G no habrán altas ni bajas de vértices, pero podrían haberla de aristas (la gente se va conociendo), explicar las ventajas y desventajas que tendría implementar al grafo G con una matriz de adyacencia.
- 9. (***) Matías está en Barcelona y quiere recorrer un museo. Su idea es hacer un recorrido bastante lógico: empezar en una sala (al azar), luego ir a una adyacente a ésta, luego a una adyacente a la segunda (si no fue visitada aún), y así hasta recorrer todas las salas. Cuando no tiene más salas adyacentes para visitar (porque ya fueron todas visitadas), simplemente vuelve por donde vino buscando otras salas adyacentes. Teniendo un grafo no dirigido, que representa el mapa del museo (donde los vértices son salas, y las aristas (v, w) indican que las salas v y w se encuentran conectadas), implementar un algoritmo que nos

devuelva una lista con un recorrido posible de la idea de Matías para visitar las salas del museo. Indicar el recorrido utilizado y el orden del algoritmo. Justificar.

- 10. (★★) Escribir una función bool es_bipartito(grafo) que dado un grafo no dirigido devuelva true o false de acuerdo a si es bipartito o no. Indicar y justificar el orden del algoritmo. ¿Qué tipo de recorrido utiliza?
- 11. (***) Implementar un algoritmo que reciba un grafo dirigido, un vértice V y un número N, y devuelva una lista con todos los vértices que se encuentren a exactamente N aristas de distancia del vértice V. Indicar el tipo de recorrido utilizado y el orden del algoritmo. Justificar.
- 12. (**) Implementar una función que permita determinar si un grafo puede ser no dirigido. Determinar el orden del algoritmo implementado.
- 13. (★★) a. Dada la siguiente matriz de adyacencias, escribir la representación del grafo como una lista de adyacencias:

			Α		В		C		D		E		F	
-		- -		- -		- -		- -		- -		- -		-
	Α	-	0		7		5		0		3		8	
	В	-	7		0		0		0		1		3	
	С	-	5		0		0		5		3		2	
	D		0		0		5		0		2		0	
	Ε	-	3		1		3		2		0		0	
	F	I	8		3		2		0		0		0	

- b. ¿Qué complejidad tiene hacer esta traducción?
- c. ¿Qué ventajas y desventajas encuentra en cada representación? Explicar teniendo en cuenta cuestiones de espacio y tiempo según las operaciones que admite un grafo y considerar que las listas de adyacencias es un diccionario de listas.
- 14. $(\star\star)$ Explicar las ventajas y desventajas de un grafo implementado con listas de adyacencia (lista de listas) por sobre una implementación de matriz de adyacencia, sabiendo que su densidad es $\frac{|E|}{max\;|E|} > 0.75$ o superior.
- 15. (***) Un autor decidió escribir un libro con varias tramas que se puede leer de forma no lineal. Es decir, por ejemplo, después del capítulo 1 puede leer el 2 o el 73; pero la historia no tiene sentido si se abordan estos últimos antes que el 1.

Siendo un aficionado de la computación, el autor ahora necesita un orden para publicar su obra, y decidió modelar este problema como un grafo dirigido, en dónde los capítulos son los vértices y sus dependencias las aristas. Así existen, por ejemplo, las aristas (v1, v2) y (v1, v73).

Escribir un algoritmo que devuelva un orden en el que se puede leer la historia sin obviar ningún capítulo. Indicar la complejidad del algoritmo.

- 16. (**) Implementar una función que reciba un grafo no dirigido y no pesado implementado con listas de adyacencia (diccionario de diccionarios) y devuelva una matriz que sea equivalente a la representación de matriz de adyacencia del mismo grafo. Indicar y justificar el orden del algoritmo implementado.
- 17. (**) Implementar una función que reciba un grafo no dirigido, y que compruebe la siguiente afirmación: "La cantidad de vértices de grado IMPAR es PAR". Indicar y justificar el orden del algoritmo si el grafo está implementado como matriz de adyacencia.
- 18. (****) Dado un número inicial X se pueden realizar dos tipos de operaciones sobre el número:
 - Multiplicar por 2
 - Restarle 1.

Implementar un algoritmo que encuentra la menor cantidad de operaciones a realizar para convertir el número X en el número Y, con tan solo las operaciones mencionadas arriba (podemos aplicarlas la cantidad de veces que querramos).

- 19. (*****) Se tiene un arreglo de palabras de un lenguaje alienigena. Dicho arreglo se encuentra ordenado para dicho idioma (no conocemos el orden de su abecedario). Implementar un algoritmo que reciba dicho arreglo y determine un orden posible para las letras del abecedario en dicho idioma. Por ejemplo: {"caa", "acbd", "acba", "bac", "bad"} --> ['c', 'd', 'a', 'b']
- 20. (**) Implementar un algoritmo que reciba un grafo dirigido y nos devuelva la cantidad de componentes débilmente conexas de este. Indicar y justificar la complejidad del algoritmo implementado.
- 21. (***) Contamos con un grafo **dirigido** que modela un ecosistema. En dicho grafo, cada vértice es una especie, y cada arista (v, w) indica que v es depredador natural de w. Considerando la horrible tendencia del ser humano por llevar a la extinción especies, algo que nos puede interesar es saber si existe alguna especie que, si llegara a desaparecer, rompería todo el ecosistema: quienes la depredan no tienen un sustituto (y, por ende, pueden desaparecer también) y/o quienes eran depredados por esta ya no tienen amenazas, por lo que crecerán descontroladamente. Implementar un algoritmo que reciba un grafo de dichas características y devuelva una lista de todas las especies que cumplan lo antes mencionado. Indicar y justificar la complejidad del algoritmo implementado.
- 22. (***) Implementar una función que reciba un grafo no dirigido y determine si el mismo *no tiene* ciclos de una cantidad impar de vértices. Indicar y justificar la complejidad de la función.
- 23. (***) El diámetro de una red es el máximo de las distancias mínimas entre todos los vértices de la misma. Implementar un algoritmo que permita obtener el diámetro de una red, para el caso de un grafo no dirigido y no pesado. Indicar el orden del algoritmo propuesto.
- 24. $(\star\star)$ a. Obtener una representación del camino mínimo desde el vértice A en el

siguiente grafo (representado con una matriz de adyacencias), hacia todos los demás vértices, utilizando el algoritmo de Dijkstra:

-			Α		В		С		D		Ε		F	
-		- -		- -		- -		- -		- -		- -		-
	Α		0		7		5		0		3		8	
	В	-	7		0		0		0		1		3	
	С		5		0		0		5		3		2	
	D	-	0		0		5		0		2		0	
	Ε	-	3		1		3		2		0		0	
	F	-	8	-	3		2		0		0		0	

- b. ¿Qué condiciones debe cumplir el grafo para poder aplicar el algoritmo de Dijkstra? ¿Qué característica tiene el grafo si al finalizar la ejecución del algoritmo, uno o más vértices quedan a distancia infinita?
- 25. (***) a. Obtener una representación del camino mínimo desde el vértice A en el siguiente grafo (representado con una matriz de adyacencias), hacia todos los demás vértices, utilizando el algoritmo de Bellman-Ford.

Figura 1: grafo bf

- b. Volver a realizar, suponiendo que la arista de B
 a $\mathbb A$ ahora tiene un peso de 1.
- 26. (**) Obtener el Árbol de Tendido Mínimo del siguiente grafo:
 - a. Utilizando el Algoritmo de Kruskal.
 - b. Utilizando el Algoritmo de Prim.
- 27. (***) Dadas las matrices de adyacencia M1, M2 y M3, responder las siguientes preguntas (recomendamos pasar los grafos a una representación visual para mayor facilidad):
 - a. ¿Puede ser el grafo definido por M2 un árbol de tendido mínimo de M1? Justificar.

Figura 2: grafo mst

b. Realizar un seguimiento de aplicar el algoritmo de Kruskal para obtener un árbol de tendido mínimo del grafo definido por M3.

	M1		Α						D		E	Ċ	F		G		
-		٠١.				:		:		:		·- ·		•		· -	
1	A	1	0		3		4		0		(0		0	1	
1	В				0		5		3		3		0		0	1	
1	C		4	1	5		0		2		(•	0		6	1	
1	D	1	0	1	3		2		0		4	:	2		1	1	
1	E		0		3		0		4			•	6		0	1	
1	F	1	0		0		0		2		6		0		0	1	
١	G	ı	0	1	0		6		1		C)	0	١	0	ı	
ı	M2	ı	Δ	ī	R	1	C	1	D	ī	F	7	F	ı	C	ı	
' -																	
i	Α	i	0	i	3	i	4	i	0	i	C	:	0	i	0	i	
i	В	i	3	i	0	i	0	i	0	i	3	•	0	i	0	i	
i	С	i	4	i	0	i	0	i	2	İ	(0	i	6	İ	
ì	D	İ	0	i	0	İ	2	İ	0	İ	C)	2	İ	0	İ	
i	E	i	0	i	3	i	0	i	0	İ	(0	i	0	İ	
i	F	İ	0	i	0	İ	0	İ	2	İ	C	:	0	i	0	İ	
i	G	i	0	i	0	i	6	i	0	i	(0	i	0	i	
		•		•		•		•		•		·		·		•	
	МЗ	1	Α		В		С	1	D		l	Ε		F		G	
-		- -		- -		- -		- -		_	-		- -				1
	Α		0	-	6		0		4			0		0		0	
	В		6		0		7		8			6		0		0	
	С		0		7		0		0			4		0		0	
	D		4		8		0		0			14		5		0	
-	Ε		0		6		4		14			0		7		8	
-	F		0		0		0		5			7		0		10	

- 28. (**) Analizar la complejidad del algoritmo de Prim según si el grafo está implementado con listas de adyacencia o matriz de adyacencia.
- 29. (**) Responder las siguientes preguntas, justificando la respuesta:
 - a. Al aplicar sobre un grafo el algoritmo de Dijkstra para encontrar caminos mínimos desde un vértice v cualquiera, se obtiene un árbol definido por el diccionario de padres (que permite reconstruir dichos caminos mínimos). Dicho árbol, ¿es siempre de tendido mínimo?
 - b. Al obtener un árbol de tendido mínimo de un grafo, se asegura que la suma de los pesos de las aristas sean mínimos. ¿Es posible utilizar el árbol de tendido mínimo para encontrar el camíno mínimo entre dos pares de vértices cualesquiera?
 - c. Si un grafo es no pesado, ¿Se puede utilizar el Algoritmo de Dijkstra para obtener los caminos mínimos en dicho grafo?
- 30. (****) Se cuenta con un grafo en el que sus aristas tiene peso 1 o 2, únicamente. Implementar un algoritmo que permita obtener el camino mínimo de un vértice hacia todos los demás, en tiempo $\mathcal{O}(V+E)$.
- 31. $(\star\star\star\star\star)$ Implementar un algoritmo que, dado un grafo dirigido, un vértice s y otro t determine la cantidad mínima de aristas que deberían cambiar de sentido en el grafo para que exista un camino de s a t.

Los Siguiente ejercicios son del tema Backtracking. Si durante el actual cuatrimestre no se da dicho tema, obviar los ejercicios.

- 1. $(\star\star\star)$ Implementar por **backtracking** un algoritmo que, dado un grafo no dirigido y un número $n<|\mathcal{V}|$, nos permita obtener un subconjunto de n vértices tal que ningún par de dichos vértices sean adyacentes entre sí. Se puede suponer que los vértices están identificados con números de 0 a $|\mathcal{V}|-1$.
- 2. $(\star\star\star)$ Implementar un algoritmo que reciba un grafo y un número n que, utilizando **backtracking**, indique si es posible pintar cada vértice con n colores de tal forma que no hayan dos vértices adyacentes con el mismo color.
- 3. (****) Problema del viajante (TSP): Dada una lista de ciudades y la distancia entre cada par de ellas, ¿Cuál es la ruta más corta posible que visita cada ciudad exactamente una vez y al finalizar regresa a la ciudad de origen?