Universidad de Antioquia - Facultad de Ciencias Exactas y Naturales

Tarea 1. Física Computacional I. Semestre 2021-2

1. Los isótopos radiactivos a menudo se introducen en el cuerpo a través de la corriente sanguínea. Su dispersión dentro del cuerpo puede monitorearse detectando la aparición de radiación en diferentes órganos. La tasa de decaimiento o actividad del espécimen es representada por

$$-\frac{dN(t)}{dt} = \lambda N(t)$$

Donde λ es la contante de decaimiento y está relaciona con la vida media del espécimen $(T_{1/2})$ por medio de $T_{1/2}=\frac{\ln 2}{\lambda}$.

Si le han suministrado 10 mg de 131 I, un emisor β^- con vida media de 8 días. ¿Cuánto medicamento permanecerá en su organismo al cabo de 40 días?

Comparar los resultados de aplicar el método de Euler, de Euler mejorado y de Runge-Kutta de cuarto orden para encontrar una solución aproximada de $N(40\ días)$. Utilice h = 4.

- **a.** Dibuje N(t) en función del tiempo en un mismo gráfico.
- b. Entregue sus resultados de acuerdo con la siguiente tabla

x_n	Euler	Euler mejorado	RK4	Valor real $N(t) = N_0 e^{-(\lambda t)}$

2. El oscilador Duffing es un ejemplo de un oscilador no lineal amortiguado, el cual exhibe un comportamiento caótico. Está descrito por la ecuación diferencial

$$\frac{d^2x}{dt^2} = -2\gamma \frac{dx}{dt} - \alpha x - \beta x^3 + F\cos(\omega t)$$

donde F es la acción de una fuerza periódica de frecuencia ω .

Si $\alpha=-1$, $\beta=1$, $\gamma=0.15$, $\omega=1.2$, x(0)=1 y x'(0)=0. Usando el método de Runge-Kutta de cuarto orden, encuentre una solución aproximada para x(20T) donde $T=\frac{2\pi}{\omega}$, usando h=0.1 y diferentes valores de F (0.15, 0.20, 0.37, 0.50 y 0.65).

Para cada F, grafique $x(t)vs\ t\ y\ x'(t)\ vs\ x(t)$.

Entrega: 12/12/2021