EHB372E Week 10

Consider a piecewise constant input signal

Applying the Haar FB, we obtain,

15

- The coarse approximation is also piecewise constant.
- The detail coefficients are mostly zero.

1D Haar Filter Bank

- 1. The coarse approximation is also piecewise constant.
- 2. The detail coefficients are mostly zero.
- The idea in multiresolution representations is to iterate on the coarse approximation to obtain sparse detail coefficients.
- For Haar DWT, this makes sense when the input can be well approximated by a piecewise constant function.

1D Haar Discrete Wavelet Transform

- The idea in multiresolution representations is to iterate on the coarse approximation to obtain sparse detail coefficients.
- For Haar DWT, this makes sense when the input can be well approximated by a piecewise constant function.

1D Inverse Haar Filter Bank/DWT

The Inverse Haar Filter Bank

The Inverse Haar Discrete Wavelet Transform

Input Image

Apply 1D Haar Wavelet Transform along the rows

Then, apply 1D Haar Wavelet Transform along the columns

Iterate on the coarse image...

Iterate on the coarse image...

Approximation at Level-5 (Projection to V_0)

Approximation at Level-4 (Projection to V_1)

Approximation at Level-3 (Projection to V_2)

Approximation at Level-2 (Projection to V_3)

Approximation at Level-1 (Projection to V_4)

Original Image (which we assumed was in V_5)