Integers

Arthur Ryman, arthur.ryman@gmail.com

February 14, 2022

Abstract

This article contains Z Notation type declarations for the integers, \mathbb{Z} , and some related objects. It has been type checked by fUZZ.

Contents

1	Inti	roducti	ion
2	Div	isibilit	ty and Prime Numbers
	2.1	Divisil	bility
		2.1.1	Divides
		2.1.2	divides
		2.1.3	\divides
		2.1.4	Divisor
		2.1.5	divisors
		2.1.6	positive_divisors
	2.2	Prime	Numbers
		2.2.1	<i>Prime</i>
		2.2.2	primes
3	Inte	eger Se	equences
	3.1	Additi	ion of Integer Sequences
		3.1.1	AddIntegerSequences
		3.1.2	add_int_seq
		3.1.3	+ \addSeqZ

1 Introduction

The integers, Z, are built-in to Z Notation. This article provides type declarations for some related objects so that they can be used and type checked in formal Z specifications.

2 Divisibility and Prime Numbers

2.1 Divisibility

This section specifies divisibility of integers.

2.1.1 *Divides*

Given integers x and y we say the x divides y if there is some integer q such that qx = y. Let the schema Divides denote this situation.

$$\begin{array}{c}
Divides \\
x, y, q : \mathbb{Z} \\
\hline
q * x = y
\end{array}$$

• y is a multiple of x.

2.1.2 *divides*

Let divides denote the divisibility relation between integers where $(x, y) \in divides$ means that x divides y.

2.1.3 | \divides

We introduce the usual notation $x \mid y$ to denote that $(x, y) \in divides$.

$$(| | |) == divides$$

Example. The integer 7 divides 42 because 6 * 7 = 42.

Remark. Every integer x divides 0 because 0 * x = 0.

$$\forall x : \mathbb{Z} \bullet x \mid 0$$

2.1.4 *Divisor*

Let x be a nonzero integer that divides the integer y. We say that x is a divisor of y. Let the schema Divisor denote this situation.

```
\begin{array}{c}
Divisor \\
x, y : \mathbb{Z} \\
\\
x \neq 0 \\
x \mid y
\end{array}
```

- \bullet x is nonzero.
- x divides y.

2.1.5 *divisors*

Let the set divisors(y) denote the set of all divisors of the integer y.

Example. The integer 6 has the following divisors.

$$divisors(6) = \{-6, -3, -2, -1, 1, 2, 3, 6\}$$

$\textbf{2.1.6} \quad positive_divisors$

Let the set $positive_divisors(y)$ denote the set of all positive divisors of the integer y.

$$\begin{array}{c} \textit{positive_divisors}: \mathbb{Z} \longrightarrow \mathbb{P} \, \mathbb{N}_1 \\ \hline \forall \, y: \mathbb{Z} \bullet \\ \textit{positive_divisors}(y) = \textit{divisors}(y) \cap \mathbb{N}_1 \end{array}$$

Example. The integer 6 has the following positive divisors.

$$positive_divisors(6) = \{1, 2, 3, 6\}$$

2.2 Prime Numbers

2.2.1 *Prime*

An integer p is prime if it is greater than one and only has one and itself as positive divisors. Let the schema Prime denote this situation.

```
\begin{array}{c} Prime \\ p: \mathbb{N} \\ \\ p>1 \\ positive\_divisors(p) = \{1, p\} \end{array}
```

- p is greater than 1.
- 1 and p are the only positive divisors of p.

Example. The integer 2 is prime.

let
$$p == 2 \bullet Prime$$

2.2.2 *primes*

Let *primes* denote the set of all primes.

$$primes : \mathbb{P} \mathbb{N}_1$$

$$primes = \{ Prime \bullet p \}$$

Example. The natural numbers 2, 3, 5, and 7 are primes.

$$\{2,3,5,7\}\subseteq primes$$

3 Integer Sequences

3.1 Addition of Integer Sequences

${\bf 3.1.1} \quad AddInteger Sequences$

Let l be a natural number and let x and y be two integer sequences of length l. Their sum z = x + y is the integer sequence of length l defined by pointwise addition of the terms in x and y. Let the schema AddIntegerSequences denote this situation.

ullet The sequence z is defined by pointwise addition of the sequences x and y.

3.1.2 *add_int_seq*

Let the function $add_int_seq(x,y) = z$ be the sum of two equal-length integer sequences.

$3.1.3 + \addSeqZ$

We introduce the notation $x + y = add_int_seq(x, y)$.

$$(-+-) == add_int_seq$$