АЛГЕБРАИЧЕСКОЕ РЕШЕНИЕ ЗАДАЧ СОСТАВЛЕНИЯ ОПТИМАЛЬНОГО ГРАФИКА ВЫПОЛНЕНИЯ ПРОЕКТА

Кривулин Н. К., д.ф.-м.н., профессор кафедры статистического моделирования СПбГУ, nkk@math.spbu.ru

Губанов С. А., СПб
Ф КБ "Луч" инженер-программист, segubanov@mail.ru

Аннотация

Предлагаются прямые решения на основе методов тропической оптимизации для задач оптимального планирования графика выполнения работ проекта при различных ограничениях на время выполнения работ. В качестве критериев оптимальности плана используются минимум максимального разброса времени начала всех работ и минимум общей продолжительности проекта.

Введение

Одной из основных проблем управления проектами является задача составления оптимального графика (календарного плана) выполнения работ проекта [1, 2]. Для решения задач календарного планирования находят применение модели и методы тропической математики, которая изучает полукольца и полуполя с идемпотентным сложением [3, 4, 5]. Задачи планирования сводятся к задачам оптимизации, которые формулируются и решаются в терминах тропической математики (задачи тропической оптимизации) [6, 7, 8, 9]. В настоящей работе рассматриваются обобщения задач минимизации максимального разброса времени начала работ проекта и общей продолжительности проекта при заданных временных ограничениях, которые изучались в работах [7, 8, 9], и предлагаются новые решения указанных задач.

Задачи оптимального календарного планирования

Изучаются две задачи, которые возникают при составлении оптимальных графиков выполнения работ проекта при необходимости синхронизировать время выполнения работ во времени. В первой задаче требуется минимизировать максимальный разброс времени начала всех работ, во второй – минимизировать общую продолжительность проекта. Заданы ограничения в форме минимальных допустимых временных интервалов между временем начала и завершения различных работ, а также границы для времени начала и завершения каждой работы.

Рассмотрим проект, который заключается в параллельном выполнении n работ при условии временных ограничений в виде отношений предшествования "старт-старт", "старт-финиш" и "финиш-старт", а также в виде границ для наиболее раннего и наиболее позднего времени начала и наиболее позднего времени завершения работы.

Для каждой работы i = 1, ..., n обозначим время начала и завершения через x_i и y_i . Пусть заданы величины g_i и h_i , которые определяют самое раннее и самое позднее время начала, а также f_i , которая определяет наиболее позднее время завершения работы. Эти величины задают границы для времени начала и завершения в виде неравенств

$$g_i \le x_i \le h_i, \quad y_i \le f_i.$$

Ограничения типа "старт-старт" для работы i определены в форме неравенств $b_{ij}+x_j \leq x_i$ для всех $j=1,\ldots,n$, где b_{ij} обозначает минимально допустимый интервал времени между началом работы i и началом работы j. Считаем $b_{ij}=-\infty$, если величина b_{ij} не задана. Объединение неравенств по всем j дает эквивалентное неравенство

$$\max_{1 \le j \le n} (b_{ij} + x_j) \le x_i.$$

Обозначим минимальный допустимый интервал между временем начала работы i и завершением работы j как c_{ij} ($c_{ij} = -\infty$, если интервал не задан) и запишем ограничение "старт-финиш" в виде неравенства $c_{ij} + x_j \leq y_i$. После объединения неравенств по всем j получим

$$\max_{1 \le j \le n} (c_{ij} + x_j) \le y_i.$$

Будем предполагать, что работа завершается немедленно при выполнении заданных для нее ограничений "старт-финиш", а тогда хотя бы для одного j выполняется равенство $c_{ij}+x_j=y_i$. В этом случае предыдущее неравенство следует заменить равенством

$$\max_{1 \le j \le n} (c_{ij} + x_j) = y_i.$$

Пусть d_{ij} обозначает минимальный допустимый интервал между временем завершения работы i и начала j ($d_{ij} = -\infty$, если интервал не

задан). Ограничения "финиш-старт" записываются в виде неравенств $d_{ij} + y_i \le x_i$, объединение которых дает неравенство

$$\max_{1 \le j \le n} (d_{ij} + y_j) \le x_i.$$

Определим критерий оптимальности, который требуется минимизировать, в виде максимального разброса времени начала работ

$$\max_{1 \le i \le n} x_i - \min_{1 \le i \le n} x_i = \max_{1 \le i \le n} x_i + \max_{1 \le i \le n} (-x_i).$$

В качестве другого критерия будем рассматривать общую продолжительность проекта, которая определяется по формуле

$$\max_{1 \le i \le n} y_i - \min_{1 \le i \le n} x_i = \max_{1 \le i \le n} y_i + \max_{1 \le i \le n} (-x_i).$$

Сформулируем задачу минимизации максимального разброса времени начала при заданных ограничениях, как задачу определения для всех $i=1,\ldots,n$ значений x_i и y_i , которые обеспечивают минимум

$$\min_{x_{i}, y_{i}} \max_{1 \leq i \leq n} x_{i} + \max_{1 \leq i \leq n} (-x_{i});$$

$$\max_{1 \leq j \leq n} (b_{ij} + x_{j}) \leq x_{i}, \quad \max_{1 \leq j \leq n} (c_{ij} + x_{j}) = y_{i},$$

$$\max_{1 \leq j \leq n} (d_{ij} + y_{j}) \leq x_{i}, \quad g_{i} \leq x_{i} \leq h_{i}, \quad y_{i} \leq f_{i}, \quad i = 1, \dots, n.$$
(1)

Задачу составления оптимального плана работ в соответствии с критерием минимума общей продолжительности всех работ проекта представим в виде

$$\min_{x_{i}, y_{i}} \max_{1 \leq i \leq n} y_{i} + \max_{1 \leq i \leq n} (-x_{i});$$

$$\max_{1 \leq j \leq n} (b_{ij} + x_{j}) \leq x_{i}, \quad \max_{1 \leq j \leq n} (c_{ij} + x_{j}) = y_{i},$$

$$\max_{1 \leq j \leq n} (d_{ij} + y_{j}) \leq x_{i}, \quad g_{i} \leq x_{i} \leq h_{i}, \quad y_{i} \leq f_{i}, \quad i = 1, \dots, n.$$
(2)

Ниже эти задачи будут сформулированы в терминах тропической математики и решены с помощью методов тропической оптимизации.

Элементы тропической математики

Приведем обзор основных определений и результатов тропической (идемпотентной) математики [7, 8, 4, 5], необходимых для описания и решения задач тропической оптимизации в следующем разделе.

Пусть множество $\mathbb X$ замкнуто относительно ассоциативных и коммутативных операций сложения \oplus и умножения \otimes , и содержит их нейтральные элементы ноль $\mathbb 0$ и единицу $\mathbb 1$. Сложение является идемпотентным (для каждого $x \in \mathbb X$ выполняется равенство $x \oplus x = x$), а умножение дистрибутивным относительно сложения и обратимым (для любого ненулевого $x \neq \mathbb 0$ существует элемент x^{-1} такой, что $x \otimes x^{-1} = \mathbb 1$). Алгебраическую систему $\langle \mathbb X, \mathbb 0, \mathbb 1, \oplus, \otimes \rangle$ обычно называют идемпотентным полуполем. Знак \otimes операции умножения далее будет опускаться.

Идемпотентное сложение задает частичный порядок: $x \leq y$ тогда и только тогда, когда $x \oplus y = y$. Будем предполагать, что указанный частичный порядок дополнен на $\mathbb X$ до линейного порядка.

Для любого $x \neq 0$ и целого p > 0 обычным путем определена целая степень: $x^0 = 1$, $x^p = x^{p-1}x$, $x^{-p} = (x^{-1})^p$, $0^p = 0$. Считается, что операция возведения в рациональную степень также определена.

Примером алгебраической системы $\langle \mathbb{X}, \mathbb{0}, \mathbb{1}, \oplus, \otimes \rangle$ является вещественное полуполе $\mathbb{R}_{\max,+} = \langle \mathbb{R} \cup \{-\infty\}, -\infty, 0, \max, + \rangle$, для которого $\mathbb{0} = -\infty, \mathbb{1} = 0, \oplus = \max$ и $\otimes = +$.

Множество матриц, состоящих из m строк и n столбцов с элементами из \mathbb{X} , обозначается через $\mathbb{X}^{m \times n}$. Операции сложения и умножения согласованных по размеру матриц $\mathbf{A} = (a_{ij}), \mathbf{B} = (b_{ij})$ и $\mathbf{C} = (c_{ij})$, а также умножение на скаляр x определяются формулами

$$\{\boldsymbol{A} \oplus \boldsymbol{B}\}_{ij} = a_{ij} \oplus b_{ij}, \quad \{\boldsymbol{B}\boldsymbol{C}\}_{ij} = \bigoplus_{k} b_{ik}c_{kj}, \quad \{x\boldsymbol{A}\}_{ij} = xa_{ij}.$$

Заданное выше отношение порядка обобщается на матрицы и понимается покомпонентно.

Рассмотрим квадратные матрицы в $\mathbb{X}^{n\times n}$. Матрица I с элементами, равными $\mathbb 1$ на главной диагонали и $\mathbb 0$ вне ее, является единичной.

Для любой квадратной матрицы $\boldsymbol{A}=(a_{ij})$ и целого p>0 определена степень: $\boldsymbol{A}^0=\boldsymbol{I},\,\boldsymbol{A}^p=\boldsymbol{A}^{p-1}\boldsymbol{A},$ а также следующие функции:

$$\operatorname{tr} \mathbf{A} = \bigoplus_{i=1}^{n} a_{ii}, \quad \operatorname{Tr} (\mathbf{A}) = \bigoplus_{k=1}^{n} \operatorname{tr} \mathbf{A}^{k},$$

Если $\mathrm{Tr}(\boldsymbol{A}) \leq \mathbb{1}$, то определена матрица Клини в форме

$$A^* = \bigoplus_{k=0}^{n-1} A^k.$$

Множество векторов-столбцов, состоящих из n элементов обозначается через \mathbb{X}^n . Вектор без нулевых элементов называется регулярным. Вектор, состоящий из единиц, обозначается как $\mathbf{1} = (\mathbb{1}, \dots, \mathbb{1})^T$.

Для вектора $\boldsymbol{x}=(x_i)\in\mathbb{X}^n$ транспонированный вектор обозначается как \boldsymbol{x}^T . Мультипликативно сопряженный вектор для \boldsymbol{x} — это векторстрока $\boldsymbol{x}^-=(x_i^-)$, где $x_i^-=x_i^{-1}$, если $x_i\neq\emptyset$, и $x_i^-=\emptyset$ — иначе.

Введем тропические аналоги нормы вектора и матрицы. Для любых вектора $x=(x_i)\in\mathbb{X}^n$ и матрицы $\mathbf{A}=(a_{ij})\in\mathbb{X}^{m\times n}$ имеем

$$||\boldsymbol{x}|| = \bigoplus_{i=1}^{n} x_i, \quad ||\boldsymbol{A}|| = \bigoplus_{i=1}^{m} \bigoplus_{j=1}^{n} a_{ij}.$$

Решение задач оптимального планирования

Рассмотрим задачи минимизации максимального разброса времени начала работ (1) и минимизации общей продолжительности проекта (2), в которых заданы ограничения вида "старт-старт", "старт-финиш", "финиш-старт" и границы для самого раннего и самого позднего допустимого времени начала работ. Представим эти задачи в векторной форме как задачи тропической оптимизации, а затем приведем результаты, которые описывают полное решение задач.

Сначала сформулируем задачу (1) в терминах идемпотентного полуполя $\mathbb{R}_{\max,+}$. Для этого введем следующие матрицы и векторы:

$$B = (b_{ij}), \quad C = (c_{ij}), \quad D = (d_{ij}),$$

 $x = (x_i), \quad f = (f_i), \quad g = (g_i), \quad h = (h_i).$

После замены арифметических операций на операции полуполя $\mathbb{R}_{\max,+}$ задачу можно представить в векторном виде в форме

$$\begin{aligned} & \min_{\boldsymbol{x}} \quad \boldsymbol{x}^{-} \mathbf{1} \mathbf{1}^{T} \boldsymbol{x}; \\ & \boldsymbol{B} \boldsymbol{x} \leq \boldsymbol{x}, \quad \boldsymbol{C} \boldsymbol{x} = \boldsymbol{y}, \\ & \boldsymbol{D} \boldsymbol{y} \leq \boldsymbol{x}, \quad \boldsymbol{g} \leq \boldsymbol{x} \leq \boldsymbol{h}, \quad \boldsymbol{y} \leq \boldsymbol{f}. \end{aligned} \tag{3}$$

На основе применения методов тропической оптимизации получен следующий результат.

Лемма 1 Пусть B и D – матрицы, а C – регулярная по столбцам матрица, такие, что для матрицы $R = B \oplus DC$ выполняется условие $\mathrm{Tr}(R) \leq \mathbb{1}$. Пусть g – вектор, а f и h – регулярные векторы такие, что для вектора $s^T = f^-C \oplus h^-$ выполняется условие $s^T R^* g \leq \mathbb{1}$.

Тогда минимальное значение целевой функции в задаче (3) равно

$$\theta = \|\boldsymbol{R}^*\| \oplus \bigoplus_{0 \leq i+j \leq n-2} \|\boldsymbol{s}^T \boldsymbol{R}^i\| \|\boldsymbol{R}^j \boldsymbol{g}\|,$$

а все регулярные решения имеют вид

$$oldsymbol{x} = oldsymbol{G} oldsymbol{u}, \quad oldsymbol{y} = oldsymbol{C} oldsymbol{G} oldsymbol{u}, \quad oldsymbol{G} = oldsymbol{R}^* \oplus \bigoplus_{0 \leq i+j \leq n-2} heta^{-1} oldsymbol{R}^i \mathbf{1} \mathbf{1}^T oldsymbol{R}^j,$$

 $zde\ u$ – любой регулярный вектор, который удовлетворяет условиям

$$g \le u \le (s^T G)^-$$
.

Задача минимизации общей продолжительности проекта (2) в векторной форме имеет вид

$$\min_{\mathbf{x}} \quad \mathbf{x}^{-} \mathbf{1} \mathbf{1}^{T} \mathbf{y};
\mathbf{B} \mathbf{x} \leq \mathbf{x}, \quad \mathbf{C} \mathbf{x} = \mathbf{y},
\mathbf{D} \mathbf{y} \leq \mathbf{x}, \quad \mathbf{g} \leq \mathbf{x} \leq \mathbf{h}, \quad \mathbf{y} \leq \mathbf{f}. \tag{4}$$

Решение задачи описывает следующее утверждение.

Пемма 2 Пусть B и D – матрицы, C – регулярная по столбцам матрица, такие, что матрица $R = B \oplus DC$ удовлетворяет условию $\mathrm{Tr}(R) \leq \mathbb{1}$. Пусть g – вектор, а f и h – регулярные векторы такие, что вектор $s^T = f^-C \oplus h^-$ удовлетворяет условию $s^T R^* g \leq \mathbb{1}$.

Тогда минимальное значение целевой функции в задаче (4) равно

$$heta = \|oldsymbol{C}oldsymbol{R}^*\| \oplus igoplus_{0 \leq i+j \leq n-2} \|oldsymbol{s}^Toldsymbol{R}^i\| \|oldsymbol{C}oldsymbol{R}^joldsymbol{g}\|,$$

а все регулярные решения имеют вид

$$oldsymbol{x} = oldsymbol{G} oldsymbol{u}, \quad oldsymbol{y} = oldsymbol{C} oldsymbol{G} oldsymbol{u}, \quad oldsymbol{G} = oldsymbol{R}^* \oplus igoplus_{0 \leq i+j \leq n-2} heta^{-1} oldsymbol{R}^i \mathbf{1} \mathbf{1}^T oldsymbol{C} oldsymbol{R}^j,$$

где $oldsymbol{u}$ – любой регулярный вектор, который удовлетворяет условиям

$$g \le u \le (s^T G)^-$$
.

Заключение

Рассмотрены задачи составления оптимального графика выполнения работ, которые заключаются в минимизации максимального разброса времени начала работ и минимизации общей продолжительности проекта при заданных ограничениях вида "старт-старт", "стартфиниш", "финиш-старт" и границах для самого раннего и самого позднего допустимого времени начала работ. Получены прямые решения задач, которые могут быть использованы для их формального анализа и непосредственных вычислений в практических приложениях.

Список литературы

- [1] T'kindt V. and Billaut J.-C. , Multicriteria Scheduling. 2 ed. Berlin: Springer, 2006.
- [2] Kerzner H. Project Management. 10 ed. Hoboken: Wiley, 2010. 1094 p.
- [3] Маслов В. П., Колокольцев В. Н. Идемпотентный анализ и его применение в оптимальном управлении. М.: Физматлит, 1994.
- [4] Кривулин Н. К. Методы идемпотентной алгебры в задачах моделирования и анализа сложных систем. СПб.: Изд-во С.-Петерб. ун-та., 2009.
- [5] Butkovič P., Max-linear Systems: Theory and Algorithms. Springer Monographs in Mathematics. London: Springer, 2010.
- [6] Krivulin N. Direct solution to constrained tropical optimization problems with application to project scheduling //Computational Management Science. 2017. Vol. 14. N 1. P. 91-113.
- [7] Krivulin N., Tropical optimization problems with application to project scheduling with minimum makespan // Annals of Operations Research. 2017. Vol. 256, N 1. P. 75-92.
- [8] Krivulin N., Tropical optimization problems in time-constrained project scheduling. // Optimization. 2017. Vol. 66, N 2. P. 205-224.
- [9] Кривулин Н. К., Губанов С. А. Алгебраическое решение задачи оптимального планирования сроков проекта в управлении проектами // Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия. 2021. Т. 8. Вып. 1. С. 73-87.