Московский физико-технический институт (государственный университет) Факультет биологической и медицинской физики Кафедра кафедра молекулярной и трансляционной медицины

зав	. кафедрой	
		Лазарев В.Н.
«		2017 r

Выпускная квалификационная работа на соискание степени МАГИСТРА

Тема: **Количественный протеогеномный** анализ туберкулеза и ещё чего-нибудь

Направление:	010900 -	- Прикладные математика и ф	ризика
Магистерская программа:	010982 -	- Физико-химическая биологи:	я и биотехнология
Выполнил студент гр. 111	4		Смоляков А.В.
Научный руководитель,			
к. б. н.			_ Лазарев В.Н.

Оглавление

1.	Спис	ок сокращений	4	
2.	Введе	ение	5	
3.	Обзор	р литературы	6	
	3.1.	Mycobacterium tuberculosis	6	
	3.2.	Применение масс-спекртрометрии в протеомике	6	
	3.3.	Orbitrap	6	
	3.4.	Протеогеномика	6	
		Подходы к созданию баз	6	
		Поиск новых генов и корректировка рамок	6	
4.	Мате	риалы и методы	7	
	4.1.	Получение бактерий	7	
	4.2.	Проведение масс-спектрометрического эксперимента	7	
	4.3.	Контроль качества	7	
	4.4.	Создание поисковых баз	7	
	4.5.	Идентификация пептидов и белков	7	
	4.6.	Протеогеномика W -148	8	
		Идентификация новых белков	8	
		Уточнение N-концов	8	
	4.7.	Сравнение идентификаций против W -148 и H 37 Rv	8	
		Поиск новый генов	8	
		Уточнение N-концов	8	
		Анализ SAP	8	
5.	Резул	Результаты и обсуждение		
	5.1.	Протеогеномика W -148	9	
		Идентификация	9	
		Новые гены и их валидация	9	
		Уточнение N-концов	9	
	5.2.	Сравнение идентификаций против W -148 и H 37 Rv	9	
		Новые гены и их валидация	9	
		Уточнение N-концов	9	

	Валидация SAP	9
6.	Выводы	10
Список	литературы	11

1. Список сокращений

GSSP - Genome Search Specific Peptides. Это пептиды, индетифициуремые при поиске против геномной базы, и не идентифицируемые при происке против протеомной.

2. Введение

3. Обзор литературы

- 3.1. Mycobacterium tuberculosis
- 3.2. Применение масс-спекртрометрии в протеомике
- 3.3. Orbitrap
- 3.4. Протеогеномика

Подходы к созданию баз

Поиск новых генов и корректировка рамок

4. Материалы и методы

4.1. Получение бактерий

4.2. Проведение масс-спектрометрического эксперимента

4.3. Контроль качества

4.4. Создание поисковых баз

В работе использовалось 2 типа баз: белковая и геномная. Белковая база - аннотированные последовательности, для данного штамма. Геноманя - база, полученная в результате транслирования генома в шести рамках. Белковые базы для *M.tuberculosis W-148* и *M.tuberculosis H37Rv* были составлены из аннотированных белков штаммов (NCBI Reference Sequence: NZ_CP012090.1, 4244 аминокислотных последовательностей для *W-148* и). Геномные базы были получены в результате 6 рамочного транслирования от стоп- до стоп-каднона геномов штаммов *M.tuberculosis W-148* и *M.tuberculosis H37Rv*, используя программу Artemis версия 16.0.0 [1]. При транслировании использовалась 11 трансляционная таблица NCBI. Минимальная длинна рамки была установлена в 100 нуклеиновых кислот. К каждой базе были добавлены последовательности 26 контаминантных белков (кератины, альбумины, трипин).

4.5. Идентификация пептидов и белков

Данные полученные в результате LC-MS/MS эксперимента (Raw формат) были сконвертированы в пик-лист (MGF формат), используя ProteoWizard msconvert [2]. Идентификация проходила против двух белковых и двух геномных баз с использованием Mascot Search Engine version 2.5.1 [3]. Параметры поиска были следующими: триптические пептиды, не более двух пропущенных сайтов трипсинолиза, ошибка массы прекурсера 20 ppm, ошибка массы фрагментов 0.5 Да, заряды прекурсера 2+, 3+, 4+. Oxidation(M), Carbamidomethylation(C) and Deamidated(NQ) были устанолвены как возможнные модификации пептидов. Для подсчета FDR и порогового скоринга использовался поиск против decoy-базы, полученной в результате реверса исходной базы. FDR был выбран на уровне 5%. Пептид считался идентифицированным, если его скор выше порогового скоринга и ранг равен еденице. Белок считался

идентифицированным, если для него нашлось два и более уникальых пептидов.

4.6. Протеогеномика W-148

Координаты аннотированных генов были пересечены с учетом стренда и фрейма с координатами ORF, полученными в результате шестирамочного транслирования. Для поиска GSSP из результатов поиска против геномной базы W-148 были исключены пептиды, идентифицированные против белковой базы W-148.

Идентификация новых белков

Рассматривались ORF, в которых было идентифицированно два и более уникальных пептидов.

Уточнение N-концов

4.7. Сравнение идентификаций против W-148 и H37Rv

Поиск новый генов

Уточнение N-концов

Анализ SAP

5. Результаты и обсуждение

5.1. Протеогеномика W-148

Идентификация

Новые гены и их валидация

Уточнение N-концов

5.2. Сравнение идентификаций против W-148 и H37Rv

Новые гены и их валидация

Уточнение N-концов

Валидация SAP

6. Выводы

Список литературы

- Rutherford K., Parkhill J., Crook J. et al. Artemis: sequence visualization and annotation // Bioinformatics. 2000. Vol. 16, no. 10. P. 944–945.
- 2. Chambers M. C., Maclean B., Burke R. et al. A cross-platform toolkit for mass spectrometry and proteomics // Nature biotechnology. 2012. Vol. 30, no. 10. P. 918–920.
- Cottrell J. S., London U. Probability-based protein identification by searching sequence databases using mass spectrometry data // electrophoresis. 1999. Vol. 20, no. 18. P. 3551–3567.