In [1]: import pandas as pd import numpy as np

In [2]: df=pd.read_csv(r'E:\python\2. Cars Data1.csv')

In [3]: df TOX TOT COUGHT / TOTA 3 Acura TL 4dr Sedan Asia Front \$33,195 \$30,299 3.2 6.0 4 Acura 3.5 RL 4dr Sedan 3.5 Asia Front \$43,755 \$39,014 6.0 C70 LPT 427 Volvo convertible Sedan Europe Front \$40,565 \$38,203 2.4 5.0 2dr C70 HPT Volvo convertible Sedan Europe Front \$42,565 \$40,083 2.3 5.0 2dr S80 T6 **429** Volvo Sedan Europe Front \$45,210 \$42,573 2.9 6.0 4dr V40 Wagon Europe 4.0 430 Volvo Front \$26,135 \$24,641 1.9 **431** Volvo XC70 Wagon Europe All \$35,145 \$33,112 2.5 5.0

432 rows × 15 columns

In [4]: df.head() # to see first 5 record

C	u	ıτ	4	:

	Make	Model	Туре	Origin	DriveTrain	MSRP	Invoice	EngineSize	Cylinders	Horsepower
0	Acura	MDX	SUV	Asia	All	\$36,945	\$33,337	3.5	6.0	265.0
1	Acura	RSX Type S 2dr	Sedan	Asia	Front	\$23,820	\$21,761	2.0	4.0	200.0
2	Acura	TSX 4dr	Sedan	Asia	Front	\$26,990	\$24,647	2.4	4.0	200.0
3	Acura	TL 4dr	Sedan	Asia	Front	\$33,195	\$30,299	3.2	6.0	270.0
4	Acura	3.5 RL 4dr	Sedan	Asia	Front	\$43,755	\$39,014	3.5	6.0	225.0
4										>

In [5]: df.info() # information regarding data

<class 'pandas.core.frame.DataFrame'> RangeIndex: 432 entries, 0 to 431 Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	Make	428 non-null	object
1	Model	428 non-null	object
2	Туре	428 non-null	object
3	Origin	428 non-null	object
4	DriveTrain	428 non-null	object
5	MSRP	428 non-null	object
6	Invoice	428 non-null	object
7	EngineSize	428 non-null	float64
8	Cylinders	426 non-null	float64
9	Horsepower	428 non-null	float64
10	MPG_City	428 non-null	float64
11	MPG_Highway	428 non-null	float64
12	Weight	428 non-null	float64
13	Wheelbase	428 non-null	float64
14	Length	428 non-null	float64
dtyp	es: float64(8), object(7)	

memory usage: 50.8+ KB

In [6]: df.describe()

Out[6]:

	EngineSize	Cylinders	Horsepower	MPG_City	MPG_Highway	Weight	Wheelbase
count	428.000000	426.000000	428.000000	428.000000	428.000000	428.000000	428.000000
mean	3.196729	5.807512	215.885514	20.060748	26.843458	3577.953271	108.154206
std	1.108595	1.558443	71.836032	5.238218	5.741201	758.983215	8.311813
min	1.300000	3.000000	73.000000	10.000000	12.000000	1850.000000	89.000000
25%	2.375000	4.000000	165.000000	17.000000	24.000000	3104.000000	103.000000
50%	3.000000	6.000000	210.000000	19.000000	26.000000	3474.500000	107.000000
75%	3.900000	6.000000	255.000000	21.250000	29.000000	3977.750000	112.000000
max	8.300000	12.000000	500.000000	60.000000	66.000000	7190.000000	144.000000

In [7]: # get the unique catgory counts df['Origin'].value_counts()

Out[7]: Asia 158 USA 147

Europe

Name: Origin, dtype: int64

123

```
In [8]: df[df['Cylinders']>5]
```

]:	Make	Model	Туре	Origin	DriveTrain	MSRP	Invoice	EngineSize	Cylinders
	0 Acura	MDX	SUV	Asia	All	\$36,945	\$33,337	3.5	6.0
	3 Acura	TL 4dr	Sedan	Asia	Front	\$33,195	\$30,299	3.2	6.0
	4 Acura	3.5 RL 4dr	Sedan	Asia	Front	\$43,755	\$39,014	3.5	6.0
	5 Acura	3.5 RL w/Navigation 4dr	Sedan	Asia	Front	\$46,100	\$41,100	3.5	6.0
	6 Acura	NSX coupe 2dr manual S	Sports	Asia	Rear	\$89,765	\$79,978	3.2	6.0
41	6 Volkswagen	Phaeton W12 4dr	Sedan	Europe	Front	\$75,000	\$69,130	6.0	12.0
41	9 Volkswagen	Passat W8	Wagon	Europe	Front	\$40,235	\$36,956	4.0	8.0
42	0 Volvo	XC90 T6	SUV	Europe	All	\$41,250	\$38,851	2.9	6.0
42	5 Volvo	S80 2.9 4dr	Sedan	Europe	Front	\$37,730	\$35,542	2.9	6.0
42	9 Volvo	S80 T6 4dr	Sedan	Europe	Front	\$45,210	\$42,573	2.9	6.0
28	2 rows × 15 cc	olumns							
4									

CSV

```
In [13]: pd.read_csv(StringIO(data))
Out[13]:
             col1 col2 col3
          0
               Х
                    У
                         1
          1
                         2
               а
                    b
          2
                С
                    d
                         3
In [14]: ## read from specific columns
         df=pd.read_csv(StringIO(data), usecols=['col1','col3'])
In [15]: df
Out[15]:
             col1 col3
          0
                    1
               Х
               а
                    2
          2
               С
                    3
In [16]: df=pd.read_csv(StringIO(data))
In [17]: df.to_csv('test.csv')
In [83]: ## specifying columns data types
         data=('a,b,c,d\n'
                      '1,2,3,4\n'
                      '5,6,7,8\n'
                      '9,10,11,12')
In [84]: print(data)
          a,b,c,d
          1,2,3,4
          5,6,7,8
         9,10,11,12
In [92]: df=pd.read_csv(StringIO(data),dtype=float)
In [93]: df
Out[93]:
                   b
                             d
              а
                        С
          0 1.0
                            4.0
                  2.0
                       3.0
          1 5.0
                  6.0
                      7.0
                            8.0
          2 9.0 10.0 11.0 12.0
```

```
In [ ]:
 In [94]: df['a'][1]
Out[94]: 5.0
 In [95]: df['a']
Out[95]: 0
                1.0
                5.0
           1
           2
                9.0
          Name: a, dtype: float64
 In [96]: | df=pd.read_csv(StringIO(data),dtype=float)
 In [97]: df
 Out[97]:
                    b
                             d
                         С
           0 1.0
                   2.0
                       3.0
                            4.0
           1 5.0
                  6.0
                       7.0
                            8.0
           2 9.0 10.0 11.0 12.0
 In [98]: | df=pd.read_csv(StringIO(data),dtype={'b':int,'c':float,'a':'Int64'})
 In [99]: df
 Out[99]:
              а
                 b
                      С
                         d
           0 1
                 2
                     3.0
                    7.0
           1 5
                6
           2 9 10 11.0 12
In [105]: type(df['c'][1])
Out[105]: numpy.float64
In [101]: ## check the datatype
          df.dtypes
Out[101]: a
                  Int64
                  int32
           b
                float64
           c
                  int64
           dtype: object
```

```
In [106]: data1=('index,a,b,c\n'
                    '4,apple,bat,5.7\n'
                      '8, orange, cow, 10')
In [103]: data1
Out[103]: 'index,a,b,c\n4,apple,bat,5.7\n8,orange,cow,10'
In [108]: |pd.read_csv(StringIO(data1))
Out[108]:
              index
                             b
                                  С
            0
                     apple
                            bat
                                 5.7
            1
                  8 orange cow 10.0
In [110]: pd.read csv(StringIO(data1),index col=1) # 0,1,2... use for making index colu
Out[110]:
                   index
                           b
                                С
             apple
                          bat
                              5.7
            orange
                         cow
                             10.0
                      8
In [113]: data=('a,b,c\n'
                 '4,apple,bat,\n'
                '8, orange, cow, ')
In [116]: pd.read_csv(StringIO(data))
Out[116]:
                       b
                            С
               apple
                      bat
                         NaN
            8 orange cow NaN
In [117]: |pd.read_csv(StringIO(data),index_col=False)
Out[117]:
              а
                     b
                          С
            0 4
                  apple
                        bat
            1 8 orange cow
In [118]:
           ## combining usecols and index col
           data=('a,b,c\n'
                '4,apple,bat,\n'
                '8, orange, cow, ')
```

```
In [119]: |pd.read csv(StringIO(data),usecols=['b','c'],index col=False)
Out[119]:
                  b
                      С
               apple
                     bat
           1 orange cow
In [128]: ## quoting and Escape characters very useful in NLP
          data='a,b\n"hello,\\"Bob\\", nice to see you",5'
In [129]: | data
Out[129]: 'a,b\n"hello,\\"Bob\\", nice to see you",5'
In [130]: |pd.read_csv(StringIO(data),escapechar='\\')
Out[130]:
                                a b
           0 hello,"Bob", nice to see you 5
In [131]: | ## URL to CSV
          df=pd.read_csv('https://download.bls.gov/pub/time.series/cu/cu.item',sep='\t')
          gaierror
                                                     Traceback (most recent call last)
          File E:\anaconda\lib\urllib\request.py:1346, in AbstractHTTPHandler.do_open
          (self, http class, req, **http conn args)
              1345 try:
                       h.request(req.get_method(), req.selector, req.data, headers,
          -> 1346
             1347
                                 encode chunked=req.has header('Transfer-encoding'))
             1348 except OSError as err: # timeout error
          File E:\anaconda\lib\http\client.py:1285, in HTTPConnection.request(self, m
          ethod, url, body, headers, encode chunked)
              1284 """Send a complete request to the server."""
          -> 1285 self. send request(method, url, body, headers, encode chunked)
          File E:\anaconda\lib\http\client.py:1331, in HTTPConnection. send request(s
          elf, method, url, body, headers, encode chunked)
                       body = encode(body, 'body')
             1330
          -> 1331 self.endheaders(body, encode chunked=encode chunked)
          File Filencendellibletolelient mindage in HITTDCommostics andbooksedens/eel
  In [ ]:
```