

本科生毕业设计(论文)

题目:

导师姓名	张三		
学 号	114514		
学生姓名	张三		
专业班级	母猪的产后护理		
学院名称	兽医学部		

2023年5月15日

目 录

	摘 要	1
	ABSTRACT · · · · · · · · · · · · · · · · · · ·	2
	第一章 绪论 ·····	3
1.1	课题研究的背景与意义	3
1.2	国内外学者研究现状	3
1.3	行内公式与行间公式	3
1.4	插图	3
1.5	代码环境	3
1.6	普通表格的绘制方法 · · · · · · · · · · · · · · · · · ·	3
	参考文献	5
	附 录	6
	· · · · · · · · · · · · · · · · · · ·	6

摘 要

这是一个摘要

关键词: 关键词1; 关键词2; 关键词3

ABSTRACT

Here is the content of English abstract.

Key words: keyword1; keyword2; keyword3

第一章 绪论

- 1.1 课题研究的背景与意义
- 1.2 国内外学者研究现状
- 1.3 行内公式与行间公式

考虑整个供应链的利润函数 β_{SC} 。因为 $\frac{\partial \beta_{SC}}{\partial p_1} = q - \int_0^q F(x) dx > 0$,所以 β_{SC} 对 p_1 单调递增,所以:

$$\beta_{SC}(q_s, p_{1s}, p_{2s}) < \beta_{SC}(q_s, p_{1n}, p_{2n})$$
(1-1)

因为对于 $\forall q \in [q_s, q_n)$, 有:

$$\left. \frac{\partial \beta_{SC}}{\partial q} \right|_{(q,p_{1n},p_{2n})} = p_{1n} - c + c_L + (p_{2n} - p_{1n} - c_L)F(q)$$

销售商决策如式 (1-2) 所示:

$$\begin{cases} p_{1s} = v_h - (v_h - p_2) \mathbb{E}(\varphi) \\ p_{2s} = v_l \\ q_s \in \underset{q \ge 0}{\operatorname{argmax}} \beta_R(q, p_1, p_2) \end{cases}$$
 (1-2)

1.4 插图

当 q = 5190 时, $p_{1s} = 5.78$, $p_{2s} = 2.95$,图像如图 ?? 所示。

1.5 代码环境

很多和计算机专业背景相关的同学都会使用到代码环境,使用 \verb 指令或者是 verbatim 环境固然是一种选择,但是比不上专门的 lstlisting 环境这么专业。

```
int main(int argc, char ** argv) {
  printf("Hello world!\n");
  return 0;
4 }
```

1.6 普通表格的绘制方法

表格应具有三线表格式,其标准格式如表 1-1 所示。

表 1-1 符合本科生毕业论文绘图规范的表格

D(in)	$P_u(lbs)$	$u_u(in)$	β	$G_f(psi.in)$
5	269.8	0.000674	1.79	0.04089
10	421.0	0.001035	3.59	0.04089
20	640.2	0.001565	7.18	0.04089
5	269.8	0.000674	1.79	0.04089
10	421.0	0.001035	3.59	0.04089
20	640.2	0.001565	7.18	0.04089
5	269.8	0.000674	1.79	0.04089
10	421.0	0.001035	3.59	0.04089
20	640.2	0.001565	7.18	0.04089
5	269.8	0.000674	1.79	0.04089
10	421.0	0.001035	3.59	0.04089
20	640.2	0.001565	7.18	0.04089

参考文献

[1] Girshick R, Donahue J, Darrell T, *et al.* Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation [C]. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580–587.

附 录

smile.py

致 谢

向前看,别回头!