Cryptography

RSA
Cryptography and Network Security William Stallings

Content

Content

Introduction

Principles of Public-Key Cryptosystems

The RSA Algorithm

The Chinese Remainder Theorem

Computational Aspects

The Security of RSA

Introduction

- Public key algorithms = asymmetric algorithms
- Public key cryptography relies on number theory
- Misconception: asymmetric crypto is more secure than symmetric crypto
 - The security relies on the the length of the key and the computational work to break
- Misconception: asymmetric crypto made symmetric crypto obsolete
 - Symmetric crypto is still in use, sometimes preferable over the asymmetric crypto
- Misconception: it's easy to distribute the keys of public key crypto
 - Some protocols are still needed involving a central agent

Content

Content

Introduction

Principles of Public-Key Cryptosystems

The RSA Algorithm

The Chinese Remainder Theorem

Computational Aspects

The Security of RSA

- Public key cryptography evolved to solve two issues:
- 1. Key distribution under symmetric encryption
 - The communicants already share a key
 - Or the use of a key distribution center
- 2. Digital signatures:
 - Signing electronic documents

- Asymmetric crypto uses two keys:
 - One for encryption
 - Another different but related key for decryption
- Characteristics:
 - Cannot compute the decryption key given only the algorithm and the encryption key
 - o Either of the two keys can be used for encryption, with the other used for decryption
 - RSA exhibits this characteristic

- A public-key encryption scheme has six ingredients:
 - Plaintext
 - Encryption algorithm
 - Public and private keys
 - Ciphertext
 - Decryption algorithm

Basic steps

Publish public key Keep private key

Bob sends to Alice:
Bob encrypts the
message using
Alice's PK

Any user can update his key pair:

- Change the private key
- Keep the private key secret
- Publish the companion public key

Alice decrypts it using her private key

A public-key encryption: confidentiality

- Encryption → Public key
- Decryption → Private key

- The cryptanalyst tries to:
 - \circ Guess the plaintext, \widehat{X}
 - \circ Guess the private key, $\widehat{PR_h}$

• A public-key encryption: authentication — **Digital Signature**

- Encryption → Private key
- Decryption → Public key

- The cryptanalyst tries to:
 - \circ Guess the private key, \widehat{PR}_a

A public-key encryption: authentication and confidentiality

What are the requirements for public key cryptography?

1. Computationally easy for party B to generate key pair (PU_B, PR_B)

- 1. Computationally easy for party B to generate key pair (PU_B, PR_B)
- 2. Computationally easy for a sender to encrypt a message: $C = E(PU_B, M)$

- 1. Computationally easy for party B to generate key pair (PU_B, PR_B)
- 2. Computationally easy for a sender to encrypt a message: $C = E(PU_B, M)$
- 3. Computationally easy for a receiver to decrypt a message: $M = D(PR_B, C)$

- 1. Computationally easy for party B to generate key pair (PU_B, PR_B)
- 2. Computationally easy for a sender to encrypt a message: $C = E(PU_B, M)$
- 3. Computationally easy for a receiver to decrypt a message: $M = D(PR_B, C)$
- 4. Computationally hard to get PR_B given only the PU_B

- 1. Computationally easy for party B to generate key pair (PU_B, PR_B)
- 2. Computationally easy for a sender to encrypt a message: $C = E(PU_B, M)$
- 3. Computationally easy for a receiver to decrypt a message: $M = D(PR_B, C)$
- 4. Computationally hard to get PR_B given only the PU_B
- 5. Computationally hard to decrypt a C using PU_B

- 1. Computationally easy for party B to generate key pair (PU_B, PR_B)
- 2. Computationally easy for a sender to encrypt a message: $C = E(PU_B, M)$
- 3. Computationally easy for a receiver to decrypt a message: $M = D(PR_B, C)$
- 4. Computationally hard to get PR_B given only the PU_B
- 5. Computationally hard to decrypt a C using PU_B

Trap-door one-way function

• Trapdoor function: maps the domain to the range

 Trapdoor function: maps the domain to the range but impossible to calculate from the other direction

$$y = f_k(x)$$

$$x \neq f_{?}^{-1}(y)$$
Easy
$$f(x)$$

$$hard$$
Domain
Range

• Trapdoor function: maps the domain to the range but impossible to calculate from the other direction unless some information is known.

$$y = f_k(x)$$

$$x \neq f_?^{-1}(y)$$

$$x = f_k^{-1}(y)$$

• Trapdoor function: maps the domain to the range but impossible to calculate from the other direction unless some information is known.

Content

Content

Introduction

Principles of Public-Key Cryptosystems

The RSA Algorithm

The Chinese Remainder Theorem

Computational Aspects

The Security of RSA

- RSA sees the plaintext and ciphertext as integers between [0: n-1]
- *n* is a large integer value; of size 1024 bits
 - A number that is 309 digits
 - $0 n < 2^{1024}$

24725387912226386773406422770506824337943430362146117585611811 53322971499614407180042227635152596218510405414532496746537437 34734188672138481874162250814304104733926303051948325997875058 56430815348087510866371728812805464582241735489450115288528172 8600701643105745461025953612473530075689406770397864088629194

- RSA math depends on modular exponentiation.
- The plaintext block must be less than n.

```
0 \log_2(n)+1 ...1001010111010110100...
```

- For example, if n=13, the plaintext block size = $\log_2(13)+1\cong 4$ bits
- Thus, the possible values can be $[0:12] \rightarrow [0000:1100]$

• Encryption:

$$C = M^e \mod n$$

• Decryption:

$$M = C^d \mod n = (M^e)^d \mod n = M^{ed} \mod n$$

- Public key: $PU = \{e, n\}$
- Private key: $PR = \{d, n\}$
- Both sender and receiver know e, n
- Only receiver knows d

- RSA requirements:
- 1. Possible to find value $e, d, n \mid M^{ed} \mod n = M \quad \forall M < n$

2. Easy to compute $M^e \mod n$ and $C^d \mod n$ $\forall M < n$

3. Infeasible to determine d given e and n

- RSA requirements:
- 1. Possible to find value $e, d, n \mid M^{ed} \mod n = M \quad \forall M < n$ How to find values e, d to satisfy $M^{ed} \mod n$?
- 2. Easy to compute $M^e \mod n$ and $C^d \mod n$ $\forall M < n$
- 3. Infeasible to determine d given e and n

• $M^{ed} \mod n \rightarrow \text{ if } e \text{ and } d \text{ are } \underline{\text{multiplicative inverses modulo}} \phi(n)$

$$ed \ mod \ \phi(n) = 1$$

$$ed \equiv 1 \ mod \ \phi(n)$$

$$d = e^{-1} \ mod \ \phi(n)$$

$$\circ \gcd(e, \phi(n)) = 1 \ \text{and} \ \gcd(d, \phi(n)) = 1$$

- $\phi(n)$ is Euler totient function
 - o If $n = p \times q$, where p and q are primes $\rightarrow \phi(pq) = (p-1)(q-1)$

• RSA parameters set

Prime numbers p , q	Private	Chosen
n = pq	Public	Calculated
$e \mid \gcd(\phi(n), e) = 1; 1 < \phi(n)$	Public	Chosen
$d \equiv e^{-1} \left(mod \ \phi(n) \right)$	Private	Calculated

Alice generates her keypair

Key Generation by Alice

Select p, q p and q both prime, $p \neq q$

Calculate $n = p \times q$

Calculate $\phi(n) = (p-1)(q-1)$

Select integer e $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$

Calculate $d \equiv e^{-1} \pmod{\phi(n)}$

Public key $PU = \{e, n\}$

Private key $PR = \{d, n\}$

Bob sends a message to Alice

Encryption by Bob with Alice's Public Key

Plaintext: M < n

Ciphertext: $C = M^e \mod n$

Alice decrypts the message

Decryption by Alice with Alice's Private Key

Ciphertext:

Plaintext: $M = C^d \mod n$

Key generation example

Find primes p, q $n = p \times q$ $\phi(n) = (p-1)(q-1)$ Find $e \mid \gcd(\phi(n), e) = 1$ $d \equiv e^{-1} \mod n$ Publish $PU\{e, n\}$ Keep $PR = \{d, n\}$

$$p = 17$$
$$q = 11$$

Key generation example

Find primes p, q $n = p \times q$ $\phi(n) = (p-1)(q-1)$ Find $e \mid \gcd(\phi(n), e) = 1$ $d \equiv e^{-1} \mod n$ Publish $PU\{e, n\}$ Keep $PR = \{d, n\}$

$$p = 17, q = 11$$

 $n = p \times q = 17 \times 11 = 187$

Key generation example

Find primes
$$p, q$$

$$n = p \times q$$

$$\phi(n) = (p-1)(q-1)$$
Find $e \mid \gcd(\phi(n), e) = 1$

$$d \equiv e^{-1} \mod n$$
Publish $PU\{e, n\}$
Keep $PR = \{d, n\}$

$$p = 17, q = 11$$

 $n = p \times q = 17 \times 11 = 187$
 $\phi(187) = (17 - 1)(11 - 1) = 160$

Key generation example

Find primes
$$p, q$$

$$n = p \times q$$

$$\phi(n) = (p-1)(q-1)$$
Find $e \mid \gcd(\phi(n), e) = 1$

$$d \equiv e^{-1} \mod n$$
Publish $PU\{e, n\}$
Keep $PR = \{d, n\}$

$$p = 17$$
, $q = 11$
 $n = p \times q = 17 \times 11 = 187$
 $\phi(187) = (17 - 1)(11 - 1) = 160$
 $e = 7 \mid \gcd(160, 7) = 1$

Key generation example

Find primes
$$p, q$$

$$n = p \times q$$

$$\phi(n) = (p-1)(q-1)$$
Find $e \mid \gcd(\phi(n), e) = 1$

$$d \equiv e^{-1} \mod \phi(n)$$
Publish $PU\{e, n\}$
Keep $PR = \{d, n\}$

$$p = 17, q = 11$$

 $n = p \times q = 17 \times 11 = 187$
 $\phi(187) = (17 - 1)(11 - 1) = 160$
 $e = 7 \mid \gcd(160, 7) = 1$
 $d = egcd(e, \phi(n)) = egcd(7, 160) = 23$

Key generation example

Find primes
$$p, q$$

$$n = p \times q$$

$$\phi(n) = (p-1)(q-1)$$
Find $e \mid \gcd(\phi(n), e) = 1$

$$d \equiv e^{-1} \mod n$$
Publish $PU\{e, n\}$
Keep $PR = \{d, n\}$

$$p = 17, q = 11$$

 $n = p \times q = 17 \times 11 = 187$
 $\phi(187) = (17 - 1)(11 - 1) = 160$
 $e = 7 \mid \gcd(160, 7) = 1$
 $d = egcd(e, \phi(n)) = egcd(7, 160) = 23$
 $PU = \{7, 187\}$

Key generation example

```
Find primes p, q
n = p \times q
\phi(n) = (p-1)(q-1)
Find e \mid \gcd(\phi(n), e) = 1
d \equiv e^{-1} \mod n
Publish PU\{e, n\}
Keep PR = \{d, n\}
```

$$p = 17, q = 11$$

 $n = p \times q = 17 \times 11 = 187$
 $\phi(187) = (17 - 1)(11 - 1) = 160$
 $e = 7 \mid \gcd(160, 7) = 1$
 $d = egcd(e, \phi(n)) = egcd(7, 160) = 23$
 $PU = \{7, 187\}$
 $PR = \{23, 187\}$

- Encrypt the message: "ABC" given $PU = \{7, 187\}$
- 1. Convert the string to numerical values:

А	В	С
65	66	67

2. Encrypt each character by computing: $M^7 \mod 187$

65	66	67
$65^7 \% 187 = 142$	$66^7 \% 187 = 110$	$67^7 \% 187 = 67$

3. Send ciphertext {142, 110, 67} to Alice

- Decrypt the message: $\{142, 110, 67\}$ given $PR = \{23, 187\}$
- 1. Read each ciphertext block and compute: $C^{23} \mod 187$

142	110	67
$142^{23} \% 187 = 65$	$110^{23} \% 187 = 66$	$67^{23} \% 187 = 67$

2. Decode the encrypted values

65	66	67
А	В	С

3. The plaintext is "ABC"

Content

Content

Introduction

Principles of Public-Key Cryptosystems

The RSA Algorithm

The Chinese Remainder Theorem

Computational Aspects

The Security of RSA

 CRT: Solves a set of congruences with one variable but different moduli, which are relatively prime.

$$\begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \\ x \equiv a_3 \pmod{m_3} \end{cases}$$

 CRT: Solves a set of congruences with one variable but <u>different moduli</u>, which are relatively prime.

$$\begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \\ x \equiv a_3 \pmod{m_3} \end{cases}$$
 Each of these is called a modulus,
$$m_1 \neq m_2 \neq m_3$$

 CRT: Solves a set of congruences with one variable but different moduli, which are <u>relatively prime</u>.

```
Relatively prime = coprime =  \begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \\ x \equiv a_3 \pmod{m_2} \end{cases}  e.g., \gcd(5,7) = 1
```

• Example:

$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{5} \\ x \equiv 2 \pmod{7} \end{cases}$$

Has a unique solution which is x = 23. Because:

$$23 \% 3 = 2 \rightarrow 23 \equiv 2 (\% 3)$$

 $23 \% 5 = 3 \rightarrow 23 \equiv 3 (\% 5)$
 $23 \% 7 = 2 \rightarrow 23 \equiv 2 (\% 7)$

How CRT works to find the solution:

Find
$$M_1 = M/m_1$$
, $M_2 = M/m_2$, ..., M/m_k

Find the multiplicative inverses: M_1^{-1} , M_2^{-1} , ..., M_k^{-1} using their corresponding moduli

Compute the solution:
$$x = (a_1 \times M_1 \times M_1^{-1} + a_2 \times M_2 \times M_2^{-1} + \dots + a_k \times M_k \times M_k^{-1}) \mod M$$

Example:

$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{5} \\ x \equiv 2 \pmod{7} \end{cases}$$

- 1. $M = 3 \times 5 \times 7 = 105$
- 2. $M_1 = 105/3 = 35, 105/5 = 21, 105/7 = 15$
- 3. $M_1^{-1} = Inv(35,3) = 2, M_2^{-1} = Inv(21,5) = 1, M_3^{-1} = mInv(15,7) = 1$
- 4. $x = (2 \times 35 \times 2 + 3 \times 21 \times 1 + 2 \times 15 \times 1) \mod 105 = 23$

• CRT can be used to represent large integers as a list of smaller integers.

• Example: Assume we need to calculate z = x + y where x = 123 and y = 334, but our system accepts only numbers less than 100.

- x = 123 and y = 334, the limit is 100
- 1. Represent the numbers as congruences

$$\begin{cases} x \equiv \alpha_1 \ (mod \ 99) \\ x \equiv \alpha_2 \ (mod \ 98) \\ x \equiv \alpha_3 \ (mod \ 97) \end{cases} \qquad \begin{cases} y \equiv \beta_1 \ (mod \ 99) \\ y \equiv \beta_2 \ (mod \ 98) \\ y \equiv \beta_3 \ (mod \ 97) \end{cases}$$

- x = 123 and y = 334, the limit is 100
- 1. Represent the numbers as congruences

$$\begin{cases} x \equiv \alpha_1 \ (mod \ 99) \\ x \equiv \alpha_2 \ (mod \ 98) \\ x \equiv \alpha_3 \ (mod \ 97) \end{cases} \qquad \begin{cases} y \equiv \beta_1 \ (mod \ 99) \\ y \equiv \beta_2 \ (mod \ 98) \\ y \equiv \beta_3 \ (mod \ 97) \end{cases}$$

$$\alpha_1 = 123 \mod 99 = 24$$
 $\beta_1 = 334 \mod 99 = 37$
 $\alpha_2 = 123 \mod 98 = 25$
 $\beta_2 = 334 \mod 98 = 40$
 $\alpha_3 = 123 \mod 97 = 26$
 $\beta_3 = 334 \mod 97 = 43$

- x = 123 and y = 334, the limit is 100
- 1. Represent the numbers as congruences

$$\begin{cases} x \equiv 24 \pmod{99} \\ x \equiv 25 \pmod{98} \\ x \equiv 26 \pmod{97} \end{cases} + \begin{cases} y \equiv 37 \pmod{99} \\ y \equiv 40 \pmod{98} \\ y \equiv 43 \pmod{97} \end{cases} = \begin{cases} z \equiv 61 \pmod{99} \\ z \equiv 65 \pmod{98} \\ z \equiv 69 \pmod{97} \end{cases}$$

- x = 123 and y = 334, the limit is 100
- 1. Represent the numbers as congruences

$$\begin{cases} x \equiv 24 \pmod{99} \\ x \equiv 25 \pmod{98} \\ x \equiv 26 \pmod{97} \end{cases} + \begin{cases} y \equiv 37 \pmod{99} \\ y \equiv 40 \pmod{98} \\ y \equiv 43 \pmod{97} \end{cases} = \begin{cases} z \equiv 61 \pmod{99} \\ z \equiv 65 \pmod{98} \\ z \equiv 69 \pmod{97} \end{cases}$$

2. Solve the z congruences using CRT to get z=457

Content

Content

Introduction

Principles of Public-Key Cryptosystems

The RSA Algorithm

The Chinese Remainder Theorem

Computational Aspects

The Security of RSA

Exponentiation in modular arithmetic

• $(large\ integer)^{large\ integer}\ mod\ (large\ integer)$ The intermediate values are too large to handle!

- **Solution**: reduce the intermediate results modulo *n*:
 - o For multiplication: $(a \times b) \mod n = [(a \mod n) \times (b \mod n)] \mod n$

Efficient operation using the public key

• To allow faster computations during encryption, specific *e* values can be chosen: 65537, 3, 17

• Each of these choices has only two 1 bits, so the number of multiplications required to perform exponentiation is minimized

Using small e values makes the RSA vulnerable to attacks

Efficient operation using the public key

- Three different RSA users use e=3 but have unique values of n: n_1 , n_2 , n_3 .
- If user A sends the same encrypted message M to all three users, then the ciphertexts are $C_1 = M^3 \mod n_1$, $C_2 = M^3 \mod n_2$, $C^3 = M^3 \mod n_3$.
- It is likely that n_1, n_2, n_3 are pairwise relatively prime. Therefore, one can use the CRT to compute $M^3 \mod (n_1 n_2 n_3)$.
- $M = \sqrt[3]{M^3}$
- **Solution**: pad each M with a unique random bit string to be encrypted

Efficient operation using the private key

- Small values of $d \rightarrow$ Brute force attacks
- To speed up the computation of $M = C^d \mod n$:
- 1. Define: (1) $V_p = C^d \mod p$, $V_q = C^d \mod q$ (2) $X_p = q \times (q^{-1} \mod p)$, $X_q = p \times (p^{-1} \mod q)$
- 2. Compute $M = (V_p X_p + V_q X_q) \mod n$

Efficient operation using the private key

- Small values of $d \rightarrow$ Brute force attacks
- To speed up the computation of $M = C^d \mod n$:
- 1. Define: (1) $V_p = C^d \mod p$, $V_q = C^d \mod q$ (2) $X_p = q \times (q^{-1} \mod p)$, $X_q = p \times (p^{-1} \mod q)$
- 2. Compute $M = (V_p X_p + V_q X_q) \mod n$
- Calculating V_p and V_q is 4X faster with **Fermat's little theorem**:
 - $\circ V_p = C^d \bmod p = C^{d \bmod (p-1)} \bmod q, \quad V_q = C^d \bmod q = C^{d \bmod (q-1)} \bmod q$

Key generation

Determining two prime numbers, p and q

- Selecting large primes to prevent factorizing n into p and q
- Use probabilistic primality test algorithms to test p, q
 - e.g., Miller-Rabin algorithm

Selecting either e or d and calculating the other

- We need to select e such that $\gcd(\phi(n), e) = 1$ and calculate $d \equiv e^{-1} \mod \phi(n)$
- The Extended Euclidean Algorithm can determine the *gcd* and the inverse at the same time

Content

Content

Introduction

Principles of Public-Key Cryptosystems

The RSA Algorithm

The Chinese Remainder Theorem

Computational Aspects

The Security of RSA

• Five possible approaches to attacking the RSA algorithm

Brute force

Trying all possible keys

Mathematical attacks

• Efforts to factorize *n* into *p*, *q*

Timing attacks

• Determine the run-time of the decryption algorithm to determine the decryption key

Hardware fault-based attack

• Inducing hardware faults in the processor that is generating digital signatures

Chosen Ciphertext attack

Exploiting properties of the RSA algorithm

The factoring problem

- Determining the factors of $n = pq \rightarrow$ calculating $\phi(n) = (p-1)(q-1)$
- Thus, it's easy to compute $d \equiv e^{-1} \mod \phi(n)$
- Fast algorithms to compute the factorization:
 - Generalized number field sieve (GNFS)
 - Specialized number field sieve (SNFS)
- ullet Researchers broke the modulus n up to 768-bits
- Governmental standards recommend using n of size 2048 or larger

Timing attacks

- Attackers observe the time to decrypt a message to recover the private key
- Exploit the square-multiply algorithm and similar algorithms that don't run in a fixed time
- Countermeasures:
 - Constant exponentiation time: Ensure that all exponentiations take the same amount of time before returning a result
 - 2. Random delay: add a random delay to the exponentiation algorithm to confuse the timing attack
 - **3. Blinding**: Multiply the ciphertext by a random number before performing exponentiation

 Blinding prevents knowing what ciphertext bits are being processed and therefore prevents the bit-by-bit analysis.

Fault-based attacks

Reduces the power to the processor → computing invalid signatures → attackers can recover the private key

Can take 100 hours to extract 1024-bit private key

 It requires the attacker to have physical access to the computer → not very practical

Chosen Ciphertext attacks

- We can decrypt $C = M^e \mod n$ using CCA as follows (we don't know M):
- 1. Compute $X = (C \times 2^e) \mod n$
- 2. Submit X as a chosen ciphertext and receive back $Y = X^d \mod n$
- 3. Now, $Y = X^{\overline{d}} \mod n \to (\operatorname{C mod } n) \times (2^e \mod n)$ = $(M^e \mod n) \times (2^e \mod n) \to (2M)^e \mod n$
- 4. The attacker deduces *M*
- Check this demo: https://asecuritysite.com/encryption/c c

Chosen Ciphertext attacks

- The goal of CCA is to model the attackers' capabilities
- Decrypting something is not always enough to break a system!
 - Example: Video-protection devices perform encryption/decryption queries using the device's chip.
 - But attackers are interested in the key to redistribute it;
 - In this case, decrypting "for free" isn't sufficient to break the system
 - Check this: https://crypto.stackexchange.com/questions/26689/easy-explanation-of-ind-security-notions/26738#26738
- To prevent CCA, use the optimal asymmetric encryption padding (OAEP)

- Write a python function to return a prime number of specific bit size.
 - Use sympy.isprime() function to check if a random value is prime or not.
- Implement the EGCD algorithm to return the modular inverse of a number.
- Implement a function that generate two RSA key pairs.
 - \circ Assume a default value for e = 65537
- Implement a function to encrypt an integer value using RSA.
- Implement a function to decrypt an integer value using RSA.