Deep Active Learning using Monte Carlo Dropout

Lucas Moura

https://github.com/lucasmoura

Imoura@ime.usp.br

December 6, 2017

IME-USP: Institute of Mathematics and Statistics, University of São Paulo

Introduction

Motivation

- Deep Learning is a growing field with state-of-the-art results in several areas.
- Image Classification, Machine Translation

However...

- Training Deep Learning models require a huge amount of labeled data
- For the task of image classification on the ImageNet database, 1.2 million labeled images were used [1]
- This restriction causes huge difficulties on applying Deep Learning techniques to a wide range of problems, such as Sentiment Analysis

Sentiment Analysis

- Verify if a text is expressing negative or positive feelings.
- Huge amount of data, but few labeled.

Uncertainty measurement

 To select informative samples, it is necessary to measure the uncertainty of the model prediction.

Neural Network

Get T Classifications

$$Classifications = [\hat{y}_1]$$

Classifications =
$$\begin{bmatrix} \hat{y}_1 & \hat{y}_2 \end{bmatrix}$$

Classifications =
$$\begin{bmatrix} \hat{y}_1 & \hat{y}_2 & \hat{y}_3 \end{bmatrix}$$

Classifications =
$$\begin{bmatrix} \hat{y}_1 & \hat{y}_2 & \hat{y}_3 & ... & \hat{y}_T \end{bmatrix}$$

- Training Bayesian networks is a costly process
- Use techniques such as Variational Inference

- What if we could extract uncertainty measurements from current Deep Learning models if they use stochastic regularization techniques such as Dropout?
- Uncertainty in Deep Learning (Yarin Gal, 2017)

During training some weights are dropped from the network

- The optimization function of Neural Networks using Dropout is practically the same as the optimization function of a Network trained with Variational Inference.
- Therefore it is possible to extract uncertainty measures from these networks, a technique called Monte Carlo Dropout.

 $\emph{E} \sim \emph{Bernoulli}$

Get T Classifications

$$Classifications = [\hat{y}_1]$$

$$Classifications = \begin{bmatrix} \hat{y}_1 & \hat{y}_2 \end{bmatrix}$$

$$\textit{Classifications} = \begin{bmatrix} & \hat{y}_1 & \hat{y}_2 & \hat{y}_3 & \end{bmatrix}$$

Classifications =
$$\begin{bmatrix} \hat{y}_1 & \hat{y}_2 & \hat{y}_3 & ... & \hat{y}_T \end{bmatrix}$$

Research Questions

- Q1: On the task of sentiment analysis, can we achieve the same accuracy of a standard Deep Learning model by using Active Learning with uncertainty measurements, but with fewer labeled data?
- Q2: Does modelling uncertainty in a Deep Learning model helps achieving a better result when using Active Learning?

Dataset

- Large Movie Review Dataset
- 25000 train reviews and 25000 test reviews
- Both train and test datasets have an equal number of positive and negative reviews

Dataset

Q1: On the task of sentiment analysis, can we achieve the same accuracy of a standard Deep Learning model by using Active Learning with uncertainty measurements, but with fewer labeled data?

• Q2: Does modelling uncertainty in a Deep Learning model helps achieving a better result when using Active Learning?

Partial Results

LSTM model

Roadmap

Roadmap

	2017		2018							
	Nov	Dec	Jan	Feb	Mar	Apr	May	June	July	Aug
Implement LSTM model	х	X	х							
Implement ALU models				х	x					
Perform ALU experiments						х				
Implement ALS models							x			
Perform ALS experiments							x	x		
Update Models and Experiments								x	X	
Write thesis								x	x	
Masters defense										x

References

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks.

Commun. ACM, 60(6):84-90, May 2017.

Backup Slides

Architecture

