Profesor: Dr. Javier Miranda Martín del Campo

Materia: Laboratorio de Física Contemporánea II

Alumno: Orozco González Luis René Email: reneg@ciencias.unam.mx Tarea - #2

Fecha de entrega: 25 de mayo de 2020

Informe de Espectrometría R-X

Introducción

La emisión de rayos X característicos en un átomo ocurre por la incidencia de radiación primaria (un electrón, un fotón o un ion), que produce una vacante en una capa electrónica interna. Un electrón de una capa superior cubre la vacante y el átomo se deshace del exceso de energía con la emisión de un fotón de rayos X o de un electrón (efecto Auger). La energía del fotón es característica del átomo, igual a la diferencia de las energías de los niveles de energía.

Debido a la existencia de niveles de energía discretos en un átomo, el electrón expelido en el proceso descrito antes puede corresponder a diferentes capas, al igual que el electrón que ocupa la vacante. Esto da origen a grupos de líneas de rayos X bien determinadas, y que tienen una denominación acorde con la capa de la cual se removió el electrón original. Así, una línea que fue causada por una vacante en la capa K del átomo (número cuántico principal n=1), se llamará una línea K; una línea debida a una vacante en la capa L (número cuántico n=2) será una línea L, y así sucesivamente.

Recientemente se han necesitado métodos analíticos basados en rayos X que no requieran de equipo tan complejo como un acelerador de iones y que dé información semejante. Un ejemplo es la Fluorescencia de Rayos X (XRF), con radiación primaria consistente en un haz de rayos X, para ionizar con el efecto fotoeléctrico. Los fotones primarios se pueden obtener de tres formas: un tubo de rayos X, una fuente radiactiva o un acelerador sincrotrón. El equipo que procesa la radiación secundaria es esencialmente el mismo, aunque un sincrotrón permite mejor calidad, por la intensidad y las cualidades de sus rayos X.

En XRF hay dos modos de separación: por dispersión en longitud de onda o en energía. En el primero, los rayos X se dispersan con base en su longitud de onda por difracción en un cristal, usando la ley de Bragg. En la dispersión en energía se convierte la energía de los rayos X en un pulso de corriente eléctrica, con amplitud proporcional a la energía del fotón que llega a un detector. Éste generalmente es de estado sólido, como el Si(Li) (que ya son obsoletos), el de Ge de alta pureza, o bien compuestos como CdTe. Las diferencias se basan en su intervalo de eficiencia o su resolución en energía. Los detectores de rayos X modernos son pequeños (como los Si-PIN o SDD), por lo que son más manejables y baratos. Finalmente, los pulsos eléctricos se procesan con electrónica adecuada y colectados por un analizador multicanal (MCA), para así obtener el espectro de energías. Dicho espectro se analiza con programas apropiados.

Desarrollo experimental

El experimento por evaluar en este curso consiste, primero, en obtener un espectro de rayos X y gamma producidos por una fuente radiactiva de 241 Am, con un detector tipo SDD. Dicho espectro servirá para calibrar el eje horizontal, asignando a cada número de canal su equivalente en energía de los fotones registrados. Enseguida, se hace una irradiación de blancos de Mn, ThF₄ y UF₄ en el espectrómetro. Se obtienen espectros de rayos X, en los que las líneas de interés para el Mn son las K_{α} y K_{β} , mientras que para Th y U serán las series de líneas L. El haz primario fue producido por el tubo de rayos X con ánodo de Rh, a un potencial de 50 kV y una intensidad de corriente de 700 μ A, con la geometría mostrada en la Fig. 7. El tubo es marca Oxford Instruments (Scotts Valley, CA, EUA), mientras que el sistema de detección es un Amptek X123-SDD Fast SDD (Bedford, MA, EUA).

Problem 1

Se proporcionan espectros de rayos X para muestras de ²⁴¹Am, Mn, ThF₄ y UF₄, en una hoja Excel.

No es posible detectar los rayos X del F, por lo que en los tres últimos sólo se aprecian los rayos X de Mn, Th o U.

Problem 2

Los espectros del SDD tienen tanto el número de canal como el número de cuentas por canal, para un total de 2048 en cada caso.

Problem 3

Construya una gráfica para el espectro de 241 Am, de número de cuentas por canal como función del número de canal. Reduzca el intervalo por graficar en el eje horizontal entre los canales 200 y 800 y use escala vertical logarítmica. Con el artículo adjunto de Verma (2017), usando la Fig. 2. Identifique los picos más importantes del espectro experimental $(L_1, L_\alpha, L_\eta, L_{\beta 1}, L_{\beta 2, 15}, L_{\beta 9, 10}, L_{\gamma 1}, L_{\gamma 2}, L_{\gamma 4, 4}$ y la gamma del 241 Am). En el libro de Excel adjunto ya hay una tabla y sólo se debe completar.

Solution: La gráfica que se obtuvo es la siguiente:

Figura 1: Gráfica con los valores de numero de cuentas/canal en función del numero de canal. Gráfica generada con Python 3.7.x

La gráfica del articulo de Verma(2017) es:

Fig. 2. A typical L X-ray spectrum of 241 Am as recorded by a Si(Li)detector and the positions of various component lines obtained after fitting the spectrum in different groups (LL, L α , L β , L γ) of X-ray lines. Peaks marked (?) are the new but unassigned transitions.

Figura 2: Gráfica tomada del articulo de verna(2017) [1]

Figura 3: Gráfica generada con Python 3.7.x, del espectro del 241Am con sus picos más importantes.

Canal	Línea	Energía [KeV]
312	L_l	12
366	L_{α}	14
417	L_{η}	16
442	$L_{\beta 2,15}$	17
466	$L_{\beta 1}$	17.8
493	$L_{\beta 9,10}$	18.8
545	$L_{\gamma 1}$	20.8
556	$L_{\gamma 2}$	21.2
583	$L_{\gamma 4,4'}$	22.2
691	²⁴¹ Am γ	26.4

Figura 4: Tabla de calibración con respecto a los máximos del gráfico 3

Problem 4

Habiendo identificado los picos más importantes, use la Tabla 2 del artículo, con la columna que tiene título Lepy et al. (2008) para construir una nueva tabla, donde una columna es el número del canal del máximo del pico y la otra columna es la energía obtenida de la tabla. A partir de esto, construya una nueva gráfica de la energía como función del número de canal del máximo. Es posible ajustar una recta a estos datos, que es la calibración del eje horizontal de los espectros. Registrar la ecuación de la recta y el coeficiente de correlación.

Problem 5

Insertar una nueva columna en la hoja de los espectros. En esa columna se usa la ecuación obtenida para calcular la energía a la que corresponde cada canal de los espectros. Escriba la fórmula correspondiente, según el método de Excel u hoja de cálculo equivalente. Ahora es posible construir una gráfica para cada espectro (Mn, Th, U), donde el eje horizontal corresponde a las energías de los fotones.

Solution:

NumeroCanal	Energía [KeV]
312	11.87
366	13.95
417	15.86
442	16.84
466	17.75
493	18.58
545	20.78
556	21.1
583	3 22.12
691	26.345

Figura 5: Tabla con los valores de numero de canal y Energia en KeV.

Ajuste lineal de los valores de la energia como función del,número de canal máximo 26 Ajuste Lineal Y=((-0.0091(KeV))+(0.038(KeV/No. canal))*x 24 R^2=0.9997 22 Ay 20 By 18 16 14 12

Figura 6: Gráfica con los valores de la tabla anterior y con ajuste lineal. Gráfica generada con Python 3.7.x

Número de canal máximo

Se utilizo la siguiente ecuación 1:

300

$$Y = ((-0,0091) \, KeV) + \left((0,038) \, \frac{KeV}{No.Canal} \right) \cdot x \tag{1}$$

Se obtuvo los valores de la energía en KeV correspondiente al Mn, Th y U. Como se puede observar a continuación.

Número de canal	Energía	241Am	Mn	U	Th	
1	1 0.0289		0	0	0	
2	0.0669	0	0	0	0	
3	0.1049	0	0	0	0	
4	0.1429	0	0	0	0	
5	0.1809	0	0	0	0	
6	0.2189	0	0	0	0	
7	0.2569 0		0	0	0	
8	0.2949	0	0	0	0	
9	0.3329	0	0	0	0	
10	0.3709	0	0	0	0	
11	0.4089	0	0	0	0	
12	0.4469	0	0	0	0	
13	0.4849	0	0	0	0	
14	0.5229	0	0	0	0	
15	0.5609	29	0	4	2	
16	0.5989	56	0	4	2	
17	0.6369	46	2	2	8	
18	0.6749	59	0	2	4	
19	0.7129	59	1	2	5	
20	0.7509	52	1	6	7	
21	0.7889	44	5	4	3	
22	0.8269	53	3	4	1	
23	0.8649	34	2	2	3	
24	0.9029	60	0	2	5	

Figura 7: Tabla con los valores de Energía en KeV del Mn, Th
 y U. Para mayor detalles revísese el Excel: Ejercicio_Rayos_X.xlsx

Problem 6

En el caso de Mn, identificar las líneas $K_{\alpha}(5.90 \text{ keV})$ y $K_{\beta}(6.49 \text{ keV})$. Limite el intervalo del eje horizontal a las energías entre 5 keV y 8 keV y use una escala vertical logarítmica. Contar a cuántos canales corresponde el Ancho Total a la Mitad del Máximo (FWHM) de la línea K_{α} , para calcular con la ecuación de la recta a qué energía corresponde el FWHM. Con esto se determina la resolución del detector. Registre este resultado en su informe.

Solution:

Para el espectro del Mn:

Figura 8: Gráfica con las lineas K_{α} y K_{β} del espectro del Mn Gráfica generada con Python 3.7.x

Si utilizamos la ecuación 1 sustituyendo el No. de canales que corresponde al Ancho Total a la Mitad del Máximo (FWHM) de la línea K_{α} obtenemos la energía que corresponde el FWHM.

$$E_{FWHM} = Y = 0.038 \frac{KeV}{No.canal} \cdot (x) - 0.0091 KeV$$

= $0.038 \frac{KeV}{No.canal} \cdot (x) - 0.0091 KeV$
= $0.5989 KeV$

Problem 7

Construya gráficas de los espectros de Th y U. Limite el eje horizontal a energías entre 10 keV y 25 keV y use escala vertical logarítmica. Identificar las líneas principales de Th y U, con los valores de las tablas de Zschornack, que se adjuntan. Salvo las gammas de 241 Am del inciso 3, el nombre de las líneas debe ser el mismo con Th, U y Am.

Problem 8

Escriba una tabla con las líneas identificadas y sus energías para Th y U, comparando con las energías de Zschornack. Identifique entre qué niveles electrónicos se presenta la transición para producir esa línea.

Problem 9

El informe debe enfocarse en presentar la resolución del detector y la comparación de las líneas de rayos X para cada elemento.

Problem 10

En el informe deben incluir los espectros, con la escala horizontal en energías (keV), con las gráficas y letreros en un tamaño legible y marcando las líneas identificadas.

Solution: A continuación se presentan las gráficas obtenidas para los espectros del Th y U con sus principales lineas y su energía asociada en KeV. Ademas de que en las siguientes dos tablas se presentan los valores de las energías de las principales lineas del espectro del Th y U, determinadas a partir de la Figura 9 y de las tablas Zschornack^[2] en unidades de KeV y eV respectivamente.

Figura 9: Gráfica del espectro del Th
 entre 10 keV y 25 keV, con sus principales lineas. Gráfica generada con Python 3.7.x

Figura 10: Gráfica del espectro del U entre 10 keV y 25 keV, con sus principales lineas. Gráfica generada con Python 3.7.x

Línea	Energía [KeV]	Energía [eV]
L_l	11.58	11118.6
L_{α}	13.6	12968.7
L_{η}	16.4	14509.9
$L_{\beta 2,15}$	17.19	15623.7
$L_{\beta 1}$	18.86	16202.2
$L_{\beta 9,10}$	20.07	17139

Figura 11: Tabla con los valores de la energía de la principales lineas del espectro del Th y las energías con base a las tablas Zschornack

Línea	Energía [KeV]	Energía [eV]
L_l	11.6	11618.41
L_{α}	13.59	13614.87
L_{η}	16.38	15399.81
$L_{\beta 2,15}$	17.19	16428.44
$L_{\beta 1}$	18.86	17220.15
$L_{\beta 9,10}$	20.11	18205.55

Figura 12: Tabla con los valores de la energía de la principales lineas del espectro del U y las energías con base a las tablas Zschornack

Referencias

[1] HR Verma. Measurements of m and l x-ray energies and relative intensities emanating from 241am source. *Applied Radiation and Isotopes*, 122:41–46, 2017.

[2]	Günter	Н	Zschornack.	Handbook o	of X-ray	Data.	Springer	Science	& Business	Media,	2007.