Задача на построение модели линейной регрессии

Постановка задачи

Пусть нам заданы значения входного признака $X = \{x_1, \dots, x_{10}\}$ и значения выходного признака $Y = \{y_1, \dots, y_{10}\}$

		0	1	2	3	4	5	6	7	8	9
				2.69							
Ī	y_i	1.11	3.53	2.42	1.99	3.18	3.31	2.90	2.27	4.09	3.47

Необходимо проверить, есть ли линейная зависимость между этими признаками. Если линейная зависимость присутствует, то построить модель линейной регрессии, проверить адекватность построенной модели, статистическую значимость коэффициентов и самой модели. Предполагается возможность оценки корреляции по Пирсону. Вычислить с помощью регрессионной модели значение выходного признака при x=5.1.

Решение задачи

Чтобы выяснить наличие линейной зависимости между X и Y, нам нужно вычислить значение коэффициента корреляции. Оценивать значение коэффициента мы будем по Пирсону, то есть

 $r_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y},$

где стандартная ошибка среднего

$$\sigma_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \overline{xy} - \overline{x} \cdot \overline{y},$$

$$\sigma_x^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 = \overline{x^2} - (\overline{x})^2,$$

$$\sigma_y^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \overline{y})^2 = \overline{y^2} - (\overline{y})^2,$$

а среднее

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \ \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i,$$
$$\overline{xy} = \frac{1}{n} \sum_{i=1}^{n} x_i y_i,$$
$$\overline{x^2} = \frac{1}{n} \sum_{i=1}^{n} x_i^2, \ \overline{y^2} = \frac{1}{n} \sum_{i=1}^{n} y_i^2.$$

Таким образом, чтобы вычислить значение коэффициента корреляции Пирсона, нам нужно вычислить все 5 значений, которые определены по формулам выше. Начнем с вычисления средних значений:

$$\overline{x} = \frac{1}{10}(1.29 + 4.51 + 2.69 + 1.80 + 4.28 + 3.83 + 3.51 + 2.30 + 4.80 + 4.60) = 3.361,$$

$$\overline{y} = \frac{1}{10}(1.11 + 3.53 + 2.42 + 1.99 + 3.18 + 3.31 + 2.90 + 2.27 + 4.09 + 3.47) = 2.827,$$

$$\overline{xy} = \frac{1}{10}(1.29 \cdot 1.11 + \dots + 4.60 \cdot 3.47) = 10.472.$$

$$\overline{x^2} = \frac{1}{10}(1.29^2 + \dots + 4.60^2) = 12.728,$$

$$\overline{y^2} = \frac{1}{10}(1.11^2 + \dots + 3.47^2) = 8.691,$$

Теперь вычислим стандартные ошибки

$$\sigma_x^2 = 12.728 - 3.361^2 \approx 1.431,$$

$$\sigma_y^2 = 8.691 - 2.827^2 \approx 0.699,$$

$$\sigma_{xy} = 10.472 - 3.361 \cdot 2.827 = 0.971.$$

Теперь мы можем вычислить коэффициент парной корреляции

$$r_{xy} = \frac{0.971}{\sqrt{1.431} \cdot \sqrt{0.699}} = 0.971.$$

Таким образом, мы имеем сильную прямую (положительную) линейную зависимость. Следовательно, имеет смысл построить модель линейной регрессии. Модель двумерной линейной регрессии имеет вид

$$y = ax + b, \ a = \frac{\sigma_{xy}}{\sigma_x^2}, \ b = \overline{y} - a\overline{x}.$$

Таким образом, подставляя в эти формулы известные нам значения, получим

$$a = \frac{0.971}{1.431} = 0.679,$$

$$b = 2.827 - 0.679 \cdot 3.361 = 0.484.$$

Таким образом, модель линейной регрессии имеет вид

$$y = f(x) = 0.679x + 0.484.$$

Проверим адекватность построенной линейной модели. Чтобы модель была адекватна, необходимо, чтобы

$$\sigma_{\varepsilon} = \sqrt{\sigma_y^2 (1 - r_{xy}^2)} < 0.67 \sigma_y.$$

Таким образом, подставляя известные значения, получим

$$\sqrt{0.699 \cdot (1 - 0.971^2)} < 0.67 \cdot \sqrt{0.699},$$

$$0.199 < 0.560,$$

что верно. Следовательно, модель можно считать адекватной. Также адекватность модели нам позволяет определить коэффициент детерминации

$$R^2 = r_{xu}^2,$$

а именно если $R^2>0.7$, то линейную модель можно считать адекватной. Вычислим коэффициент детерминации

$$R^2 = 0.971^2 = 0.942 > 0.7.$$

то есть в силу этого мы также можем считать модель адекватной.

Теперь проверим статистическую значимость коэффициентов построенной линейной модели. Для этого вычислим стандартное отклонение параметров линейной модели

$$\sigma_a = \frac{\sigma_{\varepsilon}}{\sigma_r \sqrt{n-2}} = \frac{0.199}{\sqrt{1.431}\sqrt{8}} = 0.059,$$

$$\sigma_b = \frac{\sigma_{\varepsilon}}{\sqrt{n-2}} \sqrt{1 + \frac{\overline{x^2}}{\sigma_x^2}} = \frac{0.199}{\sqrt{8}} \cdot \sqrt{1 + \frac{12.728}{1.431}} = 0.221.$$

Определим пороговый уровень значимости $\alpha = 0.05$. Тогда оценим значимость коэффициентов при заданном уровне значимости α :

$$T_a = \frac{a}{\sigma_a} = 11.5,$$

$$T_b = \frac{b}{\sigma_b} = 2.19.$$

По таблице t-распределения Стъюдента можно найти

$$t(n-2, \alpha) = t(8, 0.05) = 2.306.$$

Тогда, сравнивая полученные статистики с табличным значением, получим

$$|T_a| = 11.5 > 2.306 = t(8, 0.05),$$

то есть коэффициент а является статистически значимым.

$$|T_b| = 2.19 < 2.306 = t(8, 0.05),$$

то есть коэффициент b не является статистически значимым. Таким образом, отбросив из модели коэффициент b=0.484 адекватность модели не сильно ухудшится, а может даже и улучшится.

Оценим статистическую значимость уравнения регрессии с помощью F-критерия Фишера. F-статистика вычисляется по формуле

$$F = \frac{(n-2)\overline{\delta}^2}{\overline{D}},$$

где остаточная (необъясненная) дисперсия, которая характеризует отклонение от выбранной модели регрессии,

$$\overline{D} = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2,$$

а объясненная дисперсия, при которой вариация обусловлена уравнением регрессии,

$$\overline{\delta}^2 = \frac{1}{n} \sum_{i=1}^n (f(x_i) - \overline{y})^2,$$

где $f(x_i)$ – это значения модели, найденные при известных x_i по уравнению регрессии. Вычислим значение F-статистики

$$\overline{D} = \frac{(1.11 - 0.679 \cdot 1.29 - 0.484)^2 + \dots + (3.47 - 0.679 \cdot 4.60 - 0.484)^2}{10} \approx 0.251,$$

$$\overline{\delta}^2 = \frac{(0.679 \cdot 1.29 + 0.484 - 2.827)^2 + \ldots + (0.679 \cdot 4.60 + 0.484 - 2.827)^2}{10} \approx 0.501,$$

отсюда

$$F = \frac{8 \cdot 0.501}{0.251} = 15.968.$$

По статистическим таблицам критических значений F-критерия Фишера, по заданному уровню значимости $\alpha=0.05$ и степеням свободы $df_1=1,\ df_2=n-2,$ найдем критическую точку

$$F(1, 8, 0.05) = 5.7.$$

Следовательно, поскольку

$$F = 15.968 > 5.7 = F(1, 8, 0.05),$$

то построенная регрессионная модель является статистически значимой.

Остается лишь найти неизвестное значение y при x=5.1. Подставляя это значение x в регрессионную модель, получим

$$0.679 \cdot 5.1 + 0.484 = 0.830.$$