End-Semester Test (AY21/22 S2)

EP0605 - Advanced Physics

Time Allowed: 1 hour 40 minutes

Instructions to Candidates

Max Marks: 100

- 1. All the Singapore Polytechnic examination rules must be strictly adhered to.
- 2. This paper consists of **6** questions. You are allowed one handwritten A4 cheat sheet.
- 3. Answer all the questions in this question booklet. All workings must be shown.
- 4. This paper consists of **7** pages (inclusive of the cover page).
- 5. Fill in your personal particulars below.

Name:			
Admission No:		S/No	
Class:	EL/EP0605/FT/01, EL/EP0605/FT/02	Date:	

Question	Marks
1	
2	
3	
4	
5	
6	
Total	

- 1. A particle moves such that its position vector is $\mathbf{r} = 2.0 \cos(3.0t) \mathbf{i} + 2.0 \sin(3.0t) \mathbf{j}$ where all the quantities are in SI units.
 - (a) Determine the velocity and acceleration vectors as a function of time.
 - (b) Determine the speed and magnitude of acceleration.
 - (c) Show that the acceleration vector points opposite to the position vector.

(15 marks)

2. An object of mass 46.0 kg is placed on a horizontal smooth floor. The object moves from rest due to a constant horizontal force of magnitude 225 N for 11.0 m. After that, the object encounters a rough surface and it continues to move under the effect of the 225 N force for 10.0 m. The coefficient of kinetic friction is 0.20.

When the block has travelled 21.0 m, calculate

- (a) the work done by the 225 N force,
- (b) the work done by the frictional force, and
- (c) the final speed of the object.

(17 marks)

- 3. Block M of mass 0.500 kg slides along a rough surface where $\mu_k = 0.300$ as shown below. The block has a speed $v_0 = 1.00$ m/s at the instant when it collides with a massless spring. The spring constant of the spring is 20 N/m.
 - (a) Find the frictional force acting on the block during the motion.
 - (b) Find the maximum compression of the spring, x_f .
 - (c) What is the minimum value of the μ_s required to keep the block from springing back to the left when it stops?

(17 marks)

- 4. (a) Two equal and opposite charges are separated by 0.160 m. At the midpoint, the magnitude of the net electric field due to the two charges is 586 N/C. What is the magnitude of each charge? Given: Coulomb's constant $k = 8.99 \times 10^9$ N m²/C².
 - (b) An electron is in an electric field of magnitude 696 N/C. What is the magnitude of the acceleration of the electron? What is the direction of the acceleration with respect to the electric field? The mass of an electron is 9.11×10^{-31} kg while the charge of an electron is -1.60×10^{-19} C.

(17 marks)

5. Charge $q_1 = 3.4 \,\mu\text{C}$ is located at the origin and charge $q_2 = -2.0 \,\mu\text{C}$ is located at $x = 5 \,\text{cm}$ as shown below. The Coulomb's constant is $8.99 \times 10^9 \,\text{N m}^2/\text{C}^2$.

- (a) At what points along the *x*-axis, is the net electric field zero?
- (b) At what point between the two charges is the electric potential zero?
- (c) Is there other point along the *x*-axis at which the electric potential zero? Explain.

(17 marks)

AY21/22 S2

6

6. A wire of length 2.0 m is in a uniform magnetic field and carries a current of 8.2 A. When this wire lies along the +x-axis, the force acting on the wire is $\mathbf{F} = (-2.5 \, \mathbf{j}) \, \text{N}$. When it lies along the +y-axis, the force acting on the wire is $\mathbf{F} = (2.5 \, \mathbf{i} - 5.0 \, \mathbf{k}) \, \text{N}$. Find the magnetic field in terms of the unit vectors.

(17 marks)

Answers:

1(a)	$\vec{v} = (-6.0)\sin(3.0t)\hat{i} + (6.0)\cos(3.0t)\hat{j}$ m/s
	$\vec{a} = (-18)\cos(3.0t)\hat{i} + (-18)\sin(3.0t)\hat{j}\text{m/s}^2$
1(b)	$v = 6.0 \text{ m/s}, a = 18 \text{ m/s}^2$
2(a)	4730 J
2(b)	−902 J
2(c)	13 m/s
3(a)	1.47 N
3(b)	0.101 m
3(c)	0.412
4(a)	$2.09 \times 10^{-10} \text{ C}$
4(b)	1.22×10^{14} m/s ² , direction: opposite of the electric field
5(a)	-16 cm
5(b)	1.85 cm
5(c)	Yes. The other point is at the left side of q_2 as this point is closer to the negative
	charge than the positive charge
6	$\vec{B} = (0.30\hat{\imath} + 0.15\hat{k}) \text{ T}$

AY21/22 S2

8