TECHNISCHE UNIVERSITÄT BERLIN

WiSe 2018/19

Fakultät II - Mathematik und Naturwissenschaften

Institut für Mathematik

Dozent: W. König

Assistent: A. Schmeding Abgabe: 28.01.-01.02.2019

13. Übung Analysis III für Mathematiker(innen)

(Konvergenz in L^p -Räumen, Bildmaß, Satz von Radon-Nikodym)

Themen der großen Übung am 21.01.

Sei $(\Omega, \mathcal{F}, \mu)$ ein Maßraum und $f_n \in L^1(\mu)$ für $n \in \mathbb{N}$. Wir vergleichen verschiedene Arten der Konvergenz der Funktionenfolge.

- (i) Ist $(f_n)_{n\in\mathbb{N}}$ von beschränkter L^1 -Variation (d.h. $\sum_{n=1}^{\infty} ||f_{n+1} f_n||_{L^1} < \infty$ gilt), dann konvergiert f_n μ -fast überall und in $L^1(\mu)$ gegen ein $f \in L^1(\mu)$.
- (ii) Sei f_n gleichmäßig gegen eine Funktion g konvergent, dann gilt:
 - ist $\mu(\Omega) < \infty$, so gilt $g \in L^1(\mu)$ und $f_n \to g$ in $L^1(\mu)$.
 - ist μ nur σ -endlich, so gilt im Allgemeinen **nicht** $g \in L^1(\mu)$.
- (iii) Im Allgemeinen folgt weder punktweise Konvergenz aus der Konvergenz in $L^1(\mu)$, noch umgekehrt die L^1 -Konvergenz aus der punktweisen Konvergenz.

Wir betrachten die relative Entropie eines Wahrscheinlichkeitsmaßes ν bezüglich eines Wahrscheinlichkeitsmaßes μ :

$$H(\nu|\mu) := \int \log\left(\frac{\mathrm{d}\nu}{\mathrm{d}\mu}\right) \mathrm{d}\nu = \int \log\left(\frac{\mathrm{d}\nu}{\mathrm{d}\mu}\right) \frac{\mathrm{d}\nu}{\mathrm{d}\mu} \mathrm{d}\mu$$

(sofern die Dichte $f=\frac{\mathrm{d}\nu}{\mathrm{d}\mu}$ existiert; sonst $H(\nu|\mu)=\infty$) und zeigen, dass die Entropie nichtnegativ und die Funktion $H(\cdot|\mu)$ konvex ist.

Tutoriumsvorschläge

42. Aufgabe

Sei $f: \mathbb{R} \to \mathbb{R}$ differenzierbar. Zeigen Sie, dass dann die Ableitung f' Borel messbar ist.

43. Aufgabe

Untersuchen Sie, ob das Dirac Maß auf $(\mathbb{R}, \mathcal{B})$ eine Dichte bezüglich des Lebesgue Maßes λ hat.

44. Aufgabe

Benutzen Sie die Young'sche Ungleichung, um die Hölder'sche Ungleichung zu zeigen.

Young'sche Ungleichung:

Für alle $x, y \in [0, \infty)$ und alle $p, q \in (1, \infty)$ mit $\frac{1}{p} + \frac{1}{q} = 1$ gilt $x^{\frac{1}{p}}y^{\frac{1}{q}} \leq \frac{x}{p} + \frac{y}{q}$.

45. Aufgabe

Sei $(\Omega, \mathcal{F}, \mu)$ ein Maßraum und $(\tilde{\Omega}, \tilde{\mathcal{F}})$ ein messbarer Raum, sowie $f \colon \Omega \to \tilde{\Omega}$ eine \mathcal{F} - $\tilde{\mathcal{F}}$ -messbare Abbildung. Zeigen Sie

- (i) μ ist endlich genau dann, wenn $\mu \circ f^{-1}$ endlich ist.
- (ii) Ist $\mu \circ f^{-1}$ σ -endlich, so ist auch μ σ -endlich.
- (iii) Die Umkehrung von (ii) ist im Allgemeinen falsch.

Hausaufgaben

48. Aufgabe (6 Punkte)

Wir betrachten ein Maß μ auf $(\mathbb{R}, \mathcal{B})$ und definieren die zugehörige Momenten erzeugende Funktion $M(t) := \int_{\mathbb{R}} e^{tx} \mu(dx) \in [0, \infty]$. Sei nun $I := \{t \in \mathbb{R} \mid M(t) < \infty\}$.

- (i) Zeigen Sie, dass I ein Intervall ist und M auf I konvex. Zeigen Sie mit der Hölder'schen Ungleichung, dass auch $\log M$ auf I konvex ist.
- (ii) Zeigen Sie, dass M(t) in jedem inneren Punkt $t \in I^{\circ}$ beliebig häufig differenzierbar ist mit

$$M^{(k)}(t) = \int x^k e^{tx} \mu(dx), \qquad k \in \mathbb{N}_0.$$

49. Aufgabe (5 Punkte)

Wir betrachten auf $\Omega := \mathbb{R}$ die (aus dem Kurztest bekannte) σ -Algebra

$$\mathcal{F} := \{ A \subseteq \Omega \mid A \text{ ist abz\"{a}hlbar}, \text{ oder } A^{\text{c}} \text{ ist abz\"{a}hlbar} \}.$$

Die Maße ν und μ seien auf \mathcal{F} definiert durch

$$\nu(A) := \begin{cases} 0, & \text{falls A abz\"{a}hlbar,} \\ \infty & \text{sonst,} \end{cases} \quad \text{und} \quad \mu(A) := \begin{cases} |A|, & \text{falls A endlich,} \\ \infty & \text{sonst.} \end{cases}$$

Zeigen Sie Folgendes:

- (i) ν ist absolutstetig bzgl. μ , also $\nu \ll \mu$.
- (ii) ν besitzt keine Dichte bezüglich μ .
- (iii) Widersprechen die Aussagen (i) und (ii) dem Satz von Radon-Nikodym?

50. Aufgabe (4 Punkte)

Seien μ, ν und ξ σ -endliche Maße auf einem messbaren Raum (Ω, \mathcal{F}) mit der Eigenschaft $\mu, \nu \ll \xi$ und Dichten $f_{\mu} := \frac{\mathrm{d}\mu}{\mathrm{d}\xi}$ und $f_{\nu} := \frac{\mathrm{d}\nu}{\mathrm{d}\xi}$. Beweisen Sie:

- (i) $f_{\mu} > 0$ gilt μ -fast überall,
- (ii) Ist $\mu(A) \leq \xi(A)$ für alle $A \in \mathcal{F}$, so gilt $f_{\mu} \leq 1$ μ -fast überall
- (iii) Für alle $a,b \in [0,\infty)$ ist auch $a\mu + b\nu \ll \xi$ und es gilt $\frac{\mathrm{d}(a\mu + b\nu)}{\mathrm{d}\xi} = af_{\mu} + bf_{\nu}$.

51. Aufgabe (5 Punkte)

Wir betrachten die Kugelschale $S_{r,R} := \{x \in \mathbb{R}^4 \mid r \leq ||x|| \leq R\}$, wobei 0 < r < R gelte. Ferner sei λ_4 das vierdimensionale Lebesgue-Maß. Berechnen Sie die Werte der folgenden Integrale:

$$A_{r,R} = \int e^{-\|x\|^2} \mathbb{1}_{S_{r,R}}(x) \lambda_4(dx),$$

$$B_{r,R} = \int \log(\|x\|) \mathbb{1}_{S_{r,R}}(x) \lambda_4(dx),$$

$$C_{r,R} = \int x_i^2 e^{-\|x\|^2} \mathbb{1}_{S_{r,R}}(x) \lambda_4(dx), \qquad 1 \le i \le 4.$$

Gesamtpunktzahl: 20