

Benjamin Bach

June 2022 http://benjbach.me https://datavis-online.github.io

-- Not for external use --

Outline

How to visualize data with dimensions (many attributes)?

- Low-dimensions (<3)
- Higher dimensions (> 2)
- Dimensionality reduction (many!)

Outline

How to visualize data with dimensions (many attributes)?

- Low-dimensions (<3)
- Higher dimensions (> 2)
- Dimensionality reduction (many!)

Outline

How to visualize data with dimensions (many attributes)?

- Low-dimensions (<3)
- Higher dimensions (> 2)
- Dimensionality reduction (many!)

Benjamin Bach

June 2022 http://benjbach.me https://datavis-online.github.io

-- Not for external use --

1 Dimension

1 Dimension

2 Dimensions

Quant + Quant: Scatterplot

Simpson's Paradox

a trend appears in several different groups of data but disappears or reverses when these groups are combined.

Data types

Quantitative Categorical Quantitative Ordered Categorical

Quant x Quant: **Scatterplot**

Quant x Quant: Mekko Chart

Two quantities that if multiplied give a third quantity.

Quant x Quant: Mekko Chart

Two quantities that if multiplied give a third quantity.

Q/C/O + O/C: **Heatmaps**

A quantity (cells), depending on two factors (ordered or categorical)

Requires complete field.

Quant + Ordered/Categorical: **Beeplots**

Quant + Ordered/Categorical: **Swarm plots**

Categorical + Categorical: **Swarm plots???**

Categorical + Categorical: **Swarm plots???**

And again: bar charts

Compare X to a benchmark

Compare X to Y.
Fancier version
called a 'Bullet graph'

Compare X to Y (not recommended) ←

Interleaves two
categories into
one spatial
dimension.
Typically better to
use Bar Table
(above) instead

... and many more!

Categories **Ordered Categories Continuous Metrics** Metric, split by 1 category Bar (Row) Lollipop **Dot Plot** Bar (Column) Bar (Column) Area Line Α В В \$ \$\$ \$\$\$ Class 1 2 3 Month 1 2 3 1 2 3 Rows allow readable More focus on the A non-zero y-axis Histogram. Boxes Time moves Adds continuity to A non-zero y-axis labels, while columns positions of tops. base may be less help convey the horizontally. So use x-axis base may be less Fun factor +1 Column, not Row awkwardly turn text misleading here underlying bins misleading here Line Table Bar Table X,Y Mirror Bar Bar Table X,Y,Z,... Bar Table X,Y, Delta **Bar Table Bar Line Table** В Distance categories 2 1 2 1 2 3 Y Delta Compare X to Y, Comparisons are Compare a Compare two Compare X to Y Compare as many Trends visible, but 'Small multiples' as you like slow. Plot critical continuous metric metrics use Lines (below) if across a category Deltas explicitly precision is key Benchmark Bar Benchmarks Bar Interleaved Bar **Dual Axis** Lines Slopegraph Price Distance Interleaves two В В categories into one spatial dimension. Budget Xs 1 2 3 2 3 Ys Typically better to With two values, Compare X to a Compare X to Y. Compare X to Y use Bar Table Use (above) instead. Compare many. (not recommended) - (above) instead slope encodes Crossings here are Getting spaghetti? benchmark Fancier version delta salient, but Use Line-Table called a 'Bullet graph' meaningless (above)

Stacked Bar Charts

- Individual distributions
- Individual value comparison
- Details

Stacked Bar Charts

- Individual distributions
- Individual value comparison
- Details

- Sum comparison
- Overview

> requires good color pallette!

Benjamin Bach

June 2022 http://benjbach.me https://datavis-online.github.io

-- Not for external use --

3 Dimensions...

...4 Dimensions?

?

2-dimensional

3-dimensional

3-dimensional

1. Additional Visual Variable(s)

2-dimensional + 1 dimension (size)

2-dimensional+ 3 dimension (shape+ color + size)

1. Additional Visual Variable(s)

2-dimensional

+ 1 dimension (size)

2. Pairwise comparison: Scatterplot Matrix

- + Scalable
- + Provides overview
- + Can use additional visualizations
- + Easy to understand and decode

2. Pairwise comparison: Scatterplot Matrix

- + Scalable
- + Provides overview
- + Can use additional visualizations
- + Easy to understand and decode
 - Many
 dimensions
 require
 pan+zoom

Scatterplot Navigation: Scatterdice

https://www.youtube.com/watch?v=2bYIRcO-gwg

Elmqvist, Niklas, Pierre Dragicevic, and Jean-Daniel Fekete. "Rolling the dice: Multidimensional visual exploration using scatterplot matrix navigation." *IEEE transactions on Visualization and Computer Graphics* 14.6 (2008): 1539-1148.

4. Parallel Coordinates Plot (PCP)

4. Parallel Coordinates Plot (PCP)

4. Parallel Coordinates Plot (PCP)

Good overview

Visual path following can be hard

PCPs Pitfalls

Axis scales

Different dimensions usually have different scales and units.

1000

Truncated axes

values on axes can start form values other than 'o'.

Axes order

values on axes can be either decending or acending.

Fig. 3. PCP of sample data.

3. Glyphs: Star glyphs

technique, in which single data points are encoded individually by assigning their dimensions to one or more marks and their visual variables

3. Glyphs: Star glyphs

- 1) Data glyphs are [a] technique, in which single data points are encoded individually by assigning their dimensions to one or more marks and their visual variables
- 2) Each glyph can be placed spatially independently from others

3. Glyphs: Star glyphs

- + Comparison
- + Outlier, Trends
- Individual values

- Precise comparison
- Cluster dimensions

Weather glyphs

Chernoff Faces

(Glyphs for geodata)

Chernoff Faces (Glyphs for geodata)

- + Individual values
- + Spatial correlation
- Some vis-variables are more prominent
- Some vis-variables are hard to perceive and estimate

Glyphs for Temporal data

- Line glyhs for trends and peaks
- Radial for value look-up

Dear Data (fantastic glyphs)

Index

Respons

Displa

Glyphs in Scatterplots

Glyph Design

Benjamin Bach

June 2022 http://benjbach.me https://datavis-online.github.io

-- Not for external use --

5. Dimensionality Reduction: Similarity

5. Dimensionality Reduction: MDS

5. Dimensionality Reduction: MDS

- Dimension reduction
- + Can be 2D or 3D
- + Visual clustering

5. Dimensionality Reduction: MDS

- + Dimension reduction
- + Can be 2D or 3D
- + Visual clustering

- Information loss
- Artifacts: false
 neighbors and tears

5. Dimensionality Reduction: Glyphs

5. Dimensionality reduction: Interaction

Benjamin Bach

June 2022 http://benjbach.me https://datavis-online.github.io

-- Not for external use --

Outline

How to visualize data with dimensions (many attributes)?

- Low-dimensions
 - Scatterplot, Mekko chart, heatmap, Beeplots
- Higher dimensions (> 2)
 - Visual variables, scatterplot matrix, PCP, glyphs,
- Dimensionality reduction (many!)
 - + glyphs

Outline

How to visualize data with dimensions (many attributes)?

- Low-dimensions
 - Scatterplot, Mekko chart, heatmap, Beeplots
- Higher dimensions (> 2)
 - Visual variables, scatterplot matrix, PCP, glyphs,
- Dimensionality reduction (many!)
 - + glyphs

Outline

How to visualize data with dimensions (many attributes)?

- Low-dimensions
 - Scatterplot, Mekko chart, heatmap, Beeplots
- Higher dimensions (> 2)
 - Visual variables, scatterplot matrix, PCP, glyphs,
- Dimensionality reduction (many!)
 - + glyphs

Further Readings

- Shneiderman, Ben. "The eyes have it: A task by data type taxonomy for information visualizations." *Proceedings 1996 IEEE symposium on visual languages*. IEEE, 1996.
- Fuchs, Johannes, et al. "A systematic review of experimental studies on data glyphs." *IEEE transactions on visualization and computer graphics* 23.7 (2016): 1863-1879.
- Heinrich, Julian, and Daniel Weiskopf. "State of the Art of Parallel Coordinates." *Eurographics (STARs)*. 2013.
- https://visualizationcheatsheets.github.io/pcp.html