(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

庁内整理番号

(11)特許出願公開番号

特開平5-311386

(43)公開日 平成5年(1993)11月22日

(51) Int. Cl. 5

識別記号

FΙ

技術表示箇所

C23C 4/08

C22C 19/05

Н

27/06

審査請求 未請求 請求項の数4 (全4頁)

(21)出願番号

(22)出願日

特願平4-143400

平成4年(1992)5月8日

(71)出願人 000001199

株式会社神戸製鋼所

兵庫県神戸市中央区脇浜町1丁目3番18号

(72)発明者 橋本芳造

神奈川県藤沢市宮前字裏河内100-1株式

会社神戸製鋼所藤沢事業所内

(72)発明者 山本 明

神奈川県藤沢市宮前字裏河内100-1株式

会社神戸製鋼所藤沢事業所内

(74)代理人 弁理士 中村 尚

(54) 【発明の名称】高温での耐食・耐エロージョン性に優れた溶射用粉末材料

(57)【要約】

【目的】 高温での耐食性・耐エロージョン性に優れた 溶射用粉末材料を提供する。

【構成】 この溶射用粉末材料は、 $Cr:35\sim60\%$ を含有し、Ai、Mo、Nb、Ta、Ti、V、W及びZrのうちの1種又は2種以上を合計で $0.5\sim15.0\%$ を含有し、残部がNiと不可避的不純物からなることを特徴としている。 $(Ni/59)\times0.6>(A1/27)+(Mo/96)+(Nb/93)+(Ta/181)+(Ti/48)+(V/51)+(W/184)+(Zr/91)の関係を満たした範囲で添加するのが好ましい。必要に応じて更に<math>B:0.005\sim1.0\%$ を含有させることができる。不純物として $C\le1.0\%$ 、 $Si\le2.0\%$ 、 $Mn\le2.0\%$ を許容できる。特に低質の燃料を使用するガスタービン、ボイラーチューブ等の高温部品の被覆に適している。

【特許請求の範囲】

【請求項1】 重量%で(以下、同じ)、Cr:35~60%を含有し、Al、Mo、Nb、Ta、Ti、V、W及びZrのうちの1種又は2種以上を合計で0.5~15.0%を含有し、残部がNiと不可避的不純物からなることを特徴とする高温での耐食・耐エロージョン性に優れた溶射用粉末材料。

1

【請求項2】 Niと、Al、Mo、Nb、Ta、Ti、V、W及びZrのうちの1種又は2種以上の各合有量が、(Ni/59)×0.6>(Al/27)+(Mo/96)+(Nb/93)+(Ta/181)+(Ti/48)+(V/51)+(W/184)+(Zr/91)の関係を満たしている請求項1に記載の溶射用粉末材料。

【請求項3】 C≤1.0%、Si≤2.0%、Mn≤2. 0%に抑制されている請求項1又は2に記載の溶射用粉 末材料。

【請求項4】 更にB: 0.005~1.0%を含有する 請求項1、2又は3に記載の溶射用粉末材料。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はガスタービン、ボイラー チュープ等の高温部品の耐食、耐エロージョン被覆に適 用される溶射用粉末に関する。

[0002]

【従来の技術及び発明が解決しようとする課題】近年、エネルギー需要の逼迫及びエネルギーコストの低減のため、工場内自家発電が多く行われている。このような設備では、燃料費の低減のため、S、V、Naを多く含む燃料や、灰分を多く含む燃料が使用される。そのため、ガスタービンやボイラーチューブ等の高温部品は非常に30過酷なエロージョン、コロージョン環境下にさらされる。このような環境下では、今までの耐熱鋼や耐熱合金の母材では、充分な耐食性が得られないため、この母材の上にNi-50Cr系粉末、MCrAlY粉末等の材料を100~400μm程度溶射し、腐食を防いでいた。

【0003】しかし、最近では、更に低質の燃料が用いられ、燃料ガス中に多くの灰分を含むようになってきた。その結果、硬度の低い上述の従来材料では、摩耗により耐食コーティング層がすぐに損耗し、耐食性が維持できなくなってきた。そのため、従来材と同等かそれ以 40上の耐食性を有し、かつ耐摩耗性に優れた高温での耐食、耐摩耗コーティング層の得られる溶射材料が要求されるようになってきた。

【0004】本発明は、かゝる要請に応えるべくなされたものであって、高温で従来材と同等以上の耐食性を有し、かつ耐エロージョン性に優れた溶射用粉末材料を提供することを目的とするものである。

[0005]

【課題を解決するための手段】本発明者は、前記課題を解決するために鋭意研究を重ねた結果、ここに本発明を 50

完成したものである。

【0006】すなわち、本発明は、 $Cr:35\sim60\%$ を含有し、Al、Mo、Nb、Ta、Ti、V、W及びZrのうちの1種又は2種以上を合計で $0.5\sim15.0\%$ を含有し、必要に応じて更に、 $B:0.005\sim1.0\%$ を含有し、残部がNiと不可避的不純物からなることを特徴とする高温での耐食・耐エロージョン性に優れた溶射用粉末材料を要旨とするものである。

【0007】以下に本発明を更に詳述する。

10 [0008]

【作用】

【0009】本発明における化学成分の限定理由は以下のとおりである。

【0010】Crは、V、Na、S、O等よりなる酸化物、硫化物による腐食、酸化に対して耐食性、耐酸化性を得るために必要な元素であり、そのためには最低35%が必要である。しかし、60%を超えると、かえって耐食性を劣化させ、また靭性の低下につながり、熱衝撃性を劣化させる。よって、Crは35~60%の範囲と20する。

【0011】AI、Mo、Nb、Ta、Ti、V、W、Zr は、それぞれ高温で安定な金属間化合物をNiと、或いはこれら添加元素間で形成し、組織中に微細分散し、その結果、高温での硬度が向上する効果がある。そのためには、これらの元素の1種又は2種以上を合計で0.5%以上必要である。しかし、15.0%を超えると靭性を損ね、熱衝撃性を劣化させるので好ましくない。よって、AI、Mo、Nb、Ta、Ti、V、W及びZrの1種又は2種以上を合計で0.5~15.0%の範囲とする。

【0012】これらのA!、Mo、Nb、Ta、Ti、V、W、ZrはNiと金属間化合物を形成するが、金属間化合物は脆く、靭性は良くない。そのため、多すぎる金属間化合物は、皮膜の靭性を劣化させる。この点について試作、研究を進めた結果、 $(Ni/59) \times 0.6 > (A1/27) + (Mo/96) + (Nb/93) + (Ta/181) + (Ti/48) + (V/51) + (W/184) + (Zr/91) の関係を満たす範囲で添加することにより、靭性を損なわずに所期の目的の特性を発揮させるのに最も良いことが判明した。$

【0013】Bは粉末を球状化し、粉末の流動性を向上させ、その結果、溶射作業性が向上する効果があるので、必要に応じて添加することができる。添加する場合、上記効果を得るためには0.005 %以上必要であるが、1.0% を超えて添加すると皮膜が脆くなり、靭性が劣化するので好ましくない。よつて、B 量は0.005 ~ 1.0% の範囲とする。

【0014】NiはCrを固溶し、皮膜の耐食性を均一にすると共に、上記添加元素と金属間化合物を形成して組織中に微細に分散し、高温での硬度を向上させるのに必要であることから、残部は実質的にNiとする。

【0015】なお、不純物はできるだけ少ないことが望

3

ましいが、例えば、Cは1%以下、Siは2%以下、Mnは2%以下であれば、耐食性、靭性を損なわないので許容し得る。

【0016】次に本発明の実施例を示す。

[0017]

【実施例】 5 mm t × 5 0 mm w × 5 0 mm l の耐熱鋼(母材) に、

【表1】

3 3 3 3 5 7 6 7 7 8 8 8	
000000000000000000000000000000000000000	6/1
0.469 0.385 0.517 0.486 0.491 0.414 0.692 0.261 0.301	①:(Ni/59)×0.6 ②:(A1/27)+(Mo/96)+(Nb/93)+(Ta/181)+(Ti/48)+(V/51)+(W/184)+(2r/91)
Ni Bal. Bal. Bal. Bal. Bal. Bal. Bal. Bal.	(W / 18
Cr 49.0 55.2 38.9 44.7 42.6 50.1 25.2 70.3 46.8 58.9	751)+
B	/ \(\lambda\) +
Zr	/48)
W	-(Ti,
V	181)+
T.i 0.5 1.9 	Ta
Ta 3.5 3.5 7.2 7.2 7.2 7.3 7.5 7.0 0.5)+(8
Nb 3.4 - 1 - 1 - 2.2 - 1 - 1 - 1	rb / 93
Mo 1.2 	N)+(
A1 3.2 3.5 3.5 	6 5 / 96)
Mn 0.3 0.6 0.7 1.1 1.4 1.2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	+ (<u>M</u>
C Si 0.3 1.2 0.8 0.3 0.0 1.8 0.05 1.0 0.6 0.5 0.7 1.1 0.2 0.7 0.4 0.2 0.4 1.6 0.6 0.8	/59) /27)
No. C 1 0.3 2 0.8 3 0.3 4 0.05 6 0.5 6 0.5 7 0.4 8 0.07 1 0 0.7 1 1 0.4 8 0.07	(注) ①:(Ni/59)×0.6 ②:(A1/27)+(Mo⁄
X X X 4 X X X 1 1 0 0 0 1 </td <td>⊕ ⊗</td>	⊕ ⊗
区 本発明材 比較材 党	挺

に示す成分組成の粉末を大気プラズマ溶射によって厚さ約350μmに被覆して試験片を作成し、耐食性、耐熱衝撃性、耐エロージョン性を評価した。それぞれの試験は以下の条件で行った。

【0018】 ①耐食性: 学振法に準じて、Na, SO, - 分間保持後、水中浸漬する試験を80% V₁O₄ からなる合成腐食灰の0.05g/cm¹を溶 50 剥離やクラックの有無を調べた。

射皮膜表面に均一に塗布し、600℃に保った炉中に20hr保持後、空冷する試験(繰返し塗布、加熱試験)を4回繰り返し、腐食損傷量を測定した。

【0019】②熱衝撃性:800℃に保った炉中に10分間保持後、水中浸漬する試験を10回繰返し、皮膜の 剥離やクラックの有無を調べた。

【0020】30耐エロージョン性:800℃に加熱した 試験片に平均100μmのアルミナ粒子を垂直に5kg/c ㎡の圧力で10時間衝突させ、皮膜の減少量(摩耗損傷

量)を調べた。

【0021】以上の試験結果を

【表2】

	· · · · · · · · · · · · · · · · · · ·		132.27	
区分	No.	腐食損傷量	熱衝撃性	摩耗損傷量
		(μμ)		(µm)
	1	50	変化なし	3 0
j	2	60	н	4 0
İ	3	50	n	4 0
本発明材	4.	70	n	4 ()
	5	4 0	"	50 .
	6	60	n	5 ()
	7	50	n	40
比較材	8	300	n	70
	9	220	5回目で亀裂発生	140
	10	70	3回目で亀裂発生	180
	1 1	60	3回目で亀殺発生	180
従来材		60	変化なし	250

に示す。本発明材はいずれも良好な結果が得られている ことがわかる。

【0022】一方、比較例8は、Al、Taを添加してい るため摩耗量は少ないが、Crが少ないため、耐食性が 劣っている。比較例9はCrが多すぎるため、耐食性が かえって劣化している。また皮膜が脆化しているため、 熱衝撃、耐摩耗性が劣化している。比較例10は、Cr 以外の添加元素の総量が15%を超えているため、皮膜 30 で、特に低質の燃料を使用するガスタービン、ボイラー が脆化し、熱衝撃、耐摩耗性が共に劣化している。な お、比較例11はCr添加量及びCr以外の添加元素の総

量は本発明範囲内であるが、請求項2の関係式の範囲を 超えているため、皮膜が脆化し、熱衝撃、耐摩耗性とも 劣化している。

[0023]

【発明の効果】以上詳述したように、本発明によれば、 従来材と同等以上の耐食性を有し、かつ耐エロージョン 性に優れた溶射用粉末材料を提供することができるの チューブ等の髙温部品の被覆に適している。