关于最近做的一些计算

黄应生

目录

1	辞廷	污污柱的数值解	1
	1.1	第一个尝试: 一维有限深方势阱	1
	1.2	氢原子库伦势	
	1.3	Short-Range Potential	3
		1.3.1 势 V_s 为 $\frac{0.1}{r^2}$	3
		1.3.1 势 V_s 为 $\frac{0.1}{r^2}$	4
2	关于	Lepage 文的数据计算	4
	2.1	对三组数据的拟合	1
	2.2	重现 Lepage 文中的 S 波能量本征态	6
		2.2.1 拟合 TrueV	6
		2.2.2 拟合的 TrueV 函数为 $-\frac{1.38622}{r^{1.21524}}$	7
		2.2.3 拟合的 TrueV 函数为 $-\frac{1}{r} - \frac{1.04152e^{-0.9991r}}{r}$	7
3	日前	· 存在的一些问题	5

1 薛定谔方程的数值解

目前我采用的方法还只是利用 Mathematica 预置的 NDSolve 函数求解薛定谔方程,基本步骤是以能量本征值 E 为参数求解微分方程的数值解,并用 FindRoot 函数求出满足波函数边值条件的 E 的值。

1.1 第一个尝试:一维有限深方势阱

一维有限深方势阱是我所做的第一个尝试。

方势阱 V(x) 势函数为:

$$V(x) = \begin{cases} V_0, & |x| \le a \\ 0, & |x| > a \end{cases} , \tag{1}$$

其中 $V_0 = -3eV$, a = 2Å。将之代入一维定态薛定谔方程

$$\left[-\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2} + V(x) \right] \psi(x) = E\psi(x) \tag{2}$$

中,进行求解,可以得到含参数 E 的微分方程如下:

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}\psi(x) + \alpha[E - V(x)]\psi(x) = 0 \tag{3}$$

其中 $\alpha = \frac{\hbar^2}{2m}$ 。

要对(3)进行求解,可以使用 ParameterNDSolve 函数或者 NDSolve 函数(采取边界条件为 $\psi(x_1)=\psi_0$, $\frac{\mathrm{d}}{\mathrm{d}x}\psi(x_1)=\sqrt{-\alpha[E-V(x_1)]}$ (根据 Sturm 引理), $\psi_0=1.0\times 10^{-3}$)。前者只需规定参数为 E 后直接进行求解,后者则需要设一个以 E 为变量的函数 f(e),即为解出的带参数 E 的波函数在边界如 $x_2=a$ 处的值,最后只需令 ParameterNDSolve 函数解出的含参数函数在如 $x_2=a$ 这样的边界上的值或者是 f(e) 满足题设的边界条件,利用 FindRoot 函数即可解出最终的能量本征值,两种方法本质上区别不大。在这里以 $x_2=a$ 处为例,考虑 x_2 处需满足的边界条件:偶宇称情况下,由对称性及之前所设初值条件,波函数值可设为 ψ_0 , $\psi_0=1.0\times 10^{-3}$;奇宇称情况下,波函数值可设为 $-\psi_0$ 。由此解出两个能量本征值(在后面的部分均默认能量单位为 eV):

$$\begin{cases} E_1 = -2.07927 \ eV \\ E_2 = -0.0930281 \ eV \end{cases}$$

1.2 氢原子库伦势

与上面的讨论类似,对于氢原子的库伦势,可以把三维定态薛定谔方程进行分离变量,得到径向 方程

$$-\frac{\hbar^2}{2m}\frac{d^2u}{dr^2} + \left[V(r) + \frac{\hbar^2}{2m}\frac{l(l+1)}{r^2}\right]u = Eu$$
 (4)

其中 $u(r) \equiv rR(r)$ 。相似地,利用 u(r) 在无穷远处函数值趋于 0,导数是负的且同样趋于 0,在原点处函数值趋于 0 的性质,可以写出边界条件

$$\begin{cases} u(r_1) &= u0\\ u'(r_1) &= -\sqrt{-\alpha[E - V(r_1)]} \end{cases},$$

并用 FindRoot 函数类似进行求解。

计算出的能量本征值(l=0)如表 1,从计算值和理论值的对比可以看出仍然存在一定误差,但是总体来说比较接近。误差的存在主要是因为所引用的 Schrodinger Constant 不够精确,在加大其精度后计算结果的精度得到了很大改善。

能组	B	1	2	3	4	5	6
计算	值	-13.6182	-3.40456	-1.51314	-0.851141	-0.544731	-0.378285
理论	值	-13.6057	-3.4014	-1.5117	-0.8503	-0.5442	-0.3779

表 1: 氢原子能级

1.3 Short-Range Potential

仍然类似之前的解法,将氢原子的库伦势改写为

$$V = -\frac{e^2}{4\pi\epsilon_0 r} + V_s(r) \tag{5}$$

代入径向方程(4)中,即可按微分方程的初值问题求解。

1.3.1 势 V_s 为 $\frac{0.1}{r^2}$

首先设

$$V_s = \frac{0.1}{r^2} \tag{6}$$

系数设为 0.1 是出于能够利用微扰论验证的目的。类似求解,得到能量本征值。又知若将 $V_s=\frac{0.1}{r^2}$ 看作微扰,则能量的一级微扰(根据 F-H 定理)为

$$\langle \psi_n^{(0)} | V_s | \psi_n^{(0)} \rangle = \langle nlm | \frac{0.1}{r^2} | nlm \rangle$$

= $\frac{0.2}{(2l+1)a^2n^3}$

其中 a 为玻尔半径, n 为氢原子能级。

最终解出计算值与微扰值 (l=0) 见表 2:

能级	1	2	3	4	5
计算值	-12.9465	-3.34907	-1.48763	-0.840345	-0.539192
微扰值	-12.8853	-3.31066	-1.48464	-0.838833	-0.538282
相对误差	0.472517%	1.1469%	0.200812%	0.1799%	0.168726%

表 2:
$$V_s = \frac{0.1}{r^2}$$
 下的能级

两组数据的相关性达到 0.999998。虽然仍存在一定误差,但用作验证的仅是一级微扰,本身不够精确,可以认为计算值有一定参考价值。

1.3.2 势 V_s 为 $\frac{0.1}{r^3}$

同上, 若设

$$V_s = \frac{0.1}{r^3},\tag{7}$$

将 V_s 看作微扰,由 Kramers 关系 $\left(\frac{s+1}{n^2}\left\langle r^s\right\rangle - (2s+1)a\left\langle r^{s-1}\right\rangle + \frac{s}{4}\left[(2l+1)^2 - s^2\right]a^2\left\langle r^{s-2}\right\rangle = 0\right)$ 及 之前所得出的 $\langle V_s\rangle$,有

$$\langle \psi_n^{(0)} | V_s | \psi_n^{(0)} \rangle = \langle nlm | \frac{0.1}{r^3} | nlm \rangle$$

$$= \frac{0.1}{l(l+1)a} \left\langle \frac{1}{r^2} \right\rangle_{nlm}$$

$$= \frac{0.2}{l(l+1)(2l+1)a^3n^3}$$

由于 l=0 时一级微扰趋于无穷,故计算 l=1 时的能量。

最终得到结果如表 3:

能级	1	2	3	4	5	6	7
计算值		-3.37725	-1.50504	-0.847725	-0.542981	-0.377272	-0.277286
微扰值	-13.3748	-3.37185	-1.50277	-0.846482	-0.542199	-0.376735	-0.276895
相对误差		0.159701%	0.151035%	0.14667%	0.144081%	0.142375%	0.14117%

表 3:
$$V_s = \frac{1}{r^3}$$
 下的能级

两组数据相关度为 0.9999999994。基态能量计算时由于 f(e) 在 e 接近 -6 时就开始上扬,从函数图像上看在 -13 处并无交点,没有计算出结果。

2 关于 Lepage 文的数据计算

根据所给的三组数据,我首先对其进行了拟合,画出 Lepage 文中 TrueV 与 a^2 、 a^4 的有效势的对照图,然后根据拟合得到的 TrueV 势函数求解薛定谔方程尝试得到 Lepage 所给出的几个 S 波能量本征值。关于相移,因为能量的计算还有一些问题没有解决,暂时没有着手计算。

2.1 对三组数据的拟合

已知有效势的形式:

$$V_{eff}(\mathbf{r}) = -\frac{\alpha}{r} \operatorname{erf}\left(\frac{r}{\sqrt{2}a}\right)$$

$$+c \ a^{2} \ \delta_{a}^{3}(\mathbf{r})$$

$$+d_{1} \ a^{4} \ \nabla^{2} \delta_{a}^{3}(\mathbf{r}) + d_{2} \ a^{4} \ \nabla \cdot \delta_{a}^{3}(\mathbf{r}) \nabla$$

$$+ \dots$$

$$+g \ a^{n+2} \ \nabla^{n} \delta_{a}^{3}(\mathbf{r})$$

其中 smeared delta functon 定义为 $\delta_a^3(\mathbf{r}) = \frac{e^{-\frac{r^2}{2a^2}}}{(2\pi)^{\frac{3}{2}} a^3}$ 。

在精确到 a^2 的情况下,

$$V_{eff}^{(a^2)} = -\frac{\alpha}{r} \operatorname{erf}\left(\frac{r}{\sqrt{2}a}\right) + c \, a^2 \, \delta_a^3(\mathbf{r}) \tag{8}$$

精确到 a^4 的情况下,

$$V_{eff}^{(a^4)} = -\frac{\alpha}{r} \operatorname{erf}\left(\frac{r}{\sqrt{2}a}\right) + c \, a^2 \, \delta_a^3(\mathbf{r}) + d_1 \, a^4 \, \nabla^2 \delta_a^3(\mathbf{r}) + d_2 \, a^4 \, \boldsymbol{\nabla} \cdot \delta_a^3(\mathbf{r}) \boldsymbol{\nabla}$$
(9)

将之分别作为 model 代入 FindFit 函数中求拟合参数,由 Lepage 给出的条件 a=1 得到最终结果:

$$V_{eff}^{(a^2)} = -2.74316 e^{-\frac{r^2}{2}} - \frac{erf\left(\frac{r}{\sqrt{2}}\right)}{r}$$
 (10)

$$V_{eff}^{(a^4)} = -2.55773 e^{-\frac{r^2}{2}} + 2.36456 \left(-\frac{3 e^{-\frac{r^2}{2}}}{2\sqrt{2} \pi^{\frac{3}{2}}} + \frac{e^{-\frac{r^2}{2}} r^2}{2\sqrt{2} \pi^{\frac{3}{2}}} \right) - \frac{erf\left(\frac{r}{\sqrt{2}}\right)}{r}$$
(11)

如图 1 所示。TrueV 的曲线拟合因为没有模型,留待下一节解决。

图 1: TrueV、 $V_{eff}^{(a^2)}$ 、 $V_{eff}^{(a^4)}$ (原始数据点按顺序分别为紫、黑、红,后两者的拟合曲线分别为橙、粉)

重现 Lepage 文中的 S 波能量本征态

2.2.1 拟合 TrueV

Lepage 文中并没有给出 TrueV 的具体解析形式。所以我使用 Fit 函数、FindFit 函数进行其拟合 函数的试探。最终发现,具备

$$V(r) = -\frac{a}{r^b} + c \frac{e^{-dr}}{r}$$

形式的拟合函数表现最好,和原始数据的差别最小。由于 Lepage 原文中是在一个库伦势的基础上建 立的,可以作出假设 a=1 且 b=1。最终拟合结果(对不同的 model)为以下三个函数:

$$V_1(r) = -\frac{1.09835e^{-1.06921r}}{r} - \frac{1.00409}{r^{0.976102}}$$

$$V_2(r) = -\frac{1}{r} - \frac{1.04152e^{-0.9991r}}{r}$$
(13)

$$V_2(r) = -\frac{1}{r} - \frac{1.04152e^{-0.9991r}}{r} \tag{13}$$

$$V_3(r) = -\frac{1.38622}{r^{1.21524}} \tag{14}$$

 $V_2(r)$ 是在假设 a=1 且 b=1 下拟合出的, $V_3(r)$ 是以 $-\frac{a}{r^b}$ 为 model 拟合出的。

我同时还对三个函数和原始的 TrueV 数据在各点上进行了对比, 其函数值与原始数据的平方差 (为了易于观察)如图 2,可以看出其中 V_1 表现与 V_2 相差无几,但是考虑到库伦势的基础,故并不 采用 V_1 。 $V_3(r)$ 在前几个点由于差距较大,超出了图的范围,并未画出。

图 2: 三个函数在原始数据的各点上的对比(函数值平方差,按顺序分别为蓝、黑、红)

2.2.2 拟合的 TrueV 函数为 $-\frac{1.38622}{r^{1.21524}}$

采用 $V_3(r)$ 为 TrueV 的函数,类似之前的讨论求解。结果如表 4。

能级	能量计算值	Lepage 能量值	能级	能量计算值	Lepage 能量值
1S	1.31401	1.28711542	6S	0.0168508	0.0155492598
2S	0.213295	0.183325753			
3S	0.0749002	0.0703755485	10S	0.00536301	0.00534541931
4S	0.0387671	0.0371495726	20S	0.00126957	0.00129205010
5S	0.02289	0.0229268241			

表 4: V3 S 波能量对比

2.2.3 拟合的 TrueV 函数为 $-\frac{1}{r} - \frac{1.04152e^{-0.9991r}}{r}$

采用 $V_2(r)$ 为 TrueV 的函数,类似之前的讨论求解。结果如表 5。可以看出总体误差在 1% 左右,并且能级越高,误差越小,基态的误差最大。除了计算过程中可能的问题外,这也可能是由于 $V_2(r)$ 与 Lepage 实际使用的势函数仍有不同,且在 r 较小时差别较大的原因。

能级	能量计算值	Lepage 能量值	相对误差	能级	能量计算值	Lepage 能量值	相对误差
1S	1.33732	1.28711542	3.90057%	6S	0.0156184	0.0155492598	0.444587%
2S	0.186434	0.183325753	1.69544%				
3S	0.0710575	0.0703755485	0.968963%	10S	0.00535929	0.00534541931	0.259539%
4S	0.0374072	0.0371495726	0.693401%	20S	0.0012937	0.00129205010	0.127336%
5S	0.023051	0.0229268241	0.541494%				

表 5: V2 S 波能量对比

3 目前存在的一些问题

目前对于数值计算,我的程序在精度的控制上还有很大不足,另外对于高能级的计算仍然误差很大,目前的方法也很不方便,必须要一个能级一个能级地找,也容易出错;同时比较奇怪的一点是基态能量的误差一般偏大,能级变大之后误差会急剧下降。当然我也会继续尝试将微分方程离散后求本征值的方法。

参考文献

- [1] 董键. Mathematica 与大学物理计算第 2 版 [M]. 清华大学出版社, 2013.
- [2] Griffiths, David Jeffery. Introduction to quantum mechanics. Pearson Education India, 2013.
- [3] 徐安农. 科学计算引论: 基于 Mathematica 的数值分析 [M]. 机械工业出版社, 2010.
- [4] 张晓丹. 应用计算方法教程 [M]. 机械工业出版社, 2008.
- [5] Lepage P. How to Renormalize the Schrodinger Equation[J]. Nuclear Theory, 1997.