

Arduino-basic [wk03]

LCD

Learn how to code Arduino from scratch

Comsi, INJE University

1st semester, 2022

Email: chaos21c@gmail.com

My ID (ARnn, github repo)

- [AR01 김정헌]
- [AR02 유석진]
- [AR03 김기덕]
- [AR04 강대진]
- [AR05 김성우]
- [AR06 김창연]
- [AR07 김창욱]
- [AR08 김태화]
- [AR09 박세훈]
- [AR10 박신영]

- [AR11 박제홍]
- [AR12 이승무]
- [AR13 이승준]
- [AR14 이재하]
- [AR15 이준희]
- [AR16 이현준]
- [AR17 임태형]
- [AR18 정동현]
- [AR19 정희서]
- [AR20 이한글]
- [AR21 황혁준]
- [AR22 김동영]

wk02: Practice-01: ARnn_Rpt01

- [Target of this week]
 - Complete your works
 - Save your outcomes
 - Upload 4 figures & sources in Arduino folder

Upload 폴더 명 : ARnn_Rpt01

- 제출 할 파일들

- ① ARnn_blink.png
- 2 ARnn_sawtooth.png
- 3 ARnn_loop_escape.png
- 4 ARnn_sum100.png
- 5 All *.ino

Blink

aLED

Blink a LED!


```
Blink§
   Blink
   Turns on an LED on for one second, then off for one second, repeatedly.
7// the setup function runs once when you press reset or power the board
8 void setup() {
9 // initialize digital pin 13 as an output.
10 pinMode(13, OUTPUT);
11 }
13 // the loop function runs over and over again forever
| 14 | void | loop() {
digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
delay(1000);
                       // wait for a second
digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
delay(1000); // wait for a second
```


2. Serial comm.

monitor &

plotter

2. Serial comm.

시리얼 통신

- 2.1 Arduino에서 컴퓨터로 데이터 전송하기
- 2.2 변수 유형별로 컴퓨터에 전송하기
- 2.3 Arduinn에서 시리얼 통신을 이용하여 데이터 수신하기

2.1.3 Arduino에서 컴퓨터로 데이터 전송하기

DIY-1. sawtooth signal

Save ARnn_sawtooth.png

2. 시리얼 통신 (Serial comm.)

2.2

변수 유형별로 컴퓨터에 전송하기

```
*** Hello Arduino ***

*** char Value ***
Binary:1000001
Decimal:65
Hexadecimal:41
ASCII:A

*** int Value ***
int Value:65
char(intValue):A

*** float Value ***
float Value:65.00
```


DIY-2. Escape from loop()

응용 문제 [DIY-2] 0~15까지 10진수를 2진수와 16진수로 출력하는 스케치를 작성해보자

[Hint]

- 1. int number = 0; // starting number
- 2. loop()에서 1초 간격으로 number를 1씩 증가
- 3. 옆의 방식으로 결과 출력
- 4. number가 15를 초과하면 loop() 탈출 exit(0); // loop 탈출 함수

ARnn_loop_escape.png

DIY-2. Escape from loop() - code

응용 문제 [DIY-2] 0~15까지 10진수를 2진수와 16진수로 출력하는 스케치를 작성해보자

```
AR00_loop_escape
1 /*
2 DIY-2
3 */
5 // start number
6 int number = 0;
8 // 문자열 세가지를 설정한다.
9 String stringValue[]={"Binary:", "Hexadecimal:"};
10
11 void setup() {
    // 9600bps로 시리얼 통신 설정
   Serial begin (9600);
14}
```

```
16 void loop() {
17
   // 'char Value'를 출력하고 문자열과 숫자를 변수 유형별로 출력한다
19 Serial.print("Number = ");
20 Serial print (number);
21 Serial print(", ");
22 Serial print(stringValue[0]); // stringValue 중 첫 번째 문자열 출력
23 Serial print (number, BIN); // 2진수 형태로 출력
24 Serial print(", ");
25 Serial.print(stringValue[1]); // stringValue 중 첫 번째 문자열 출력
26 Serial print (number, HEX); // 16진수 형태로 출력
27 // 줄바꿈
   Serial printin();
29
   number++; // number 1 증가
    If (number > 15) {
     Serial print ("Mission completed!");
     delay(1000);
35
    exit(0);
38
38 delay(1000); // 1초동안 지연시킨다.
39 }
```


DIY-3. sum from 1 to 100

응용 문제 [DIY-3] Results on serial monitor and plotter

DIY-3. sum from 1 to 100 - code

응용 문제 [DIY-3] Results on serial monitor and plotter

```
AR00_sum100

1 /*
2 DIY-3
3 */
4
5 // start number
6 int number = 0;
7 int sum = 0;
8
9 void setup() {
10 // 9600bps로 시리얼 통신 설정
11 Serial.begin(9600);
12 }
```

```
9 void setup() {
    // 9600bps로 시리얼 통신 설정
10
    Serial.begin(9600);
12]
13
14 void loop() {
15
16
    number++;
17
    sum += number;
    Serial.print("Number = ");
18
    Serial print (number);
19
    Serial.print(", Sum = ");
20
    Serial.printin(sum);
21
22
23
    if(number == 100) {
24
      Serial printin();
      Serial.print("ARnn: 1 + 2 + ... + 100 =");
25
26
      Serial printin(sum);
     delay(1000);
27
      exit(0);
28
29
   delay(100); // 0.1초동안 지연시킨다.
32 ]
```


2.3 Serial monitor & plotter

2.3

시리얼 통신을 이용하여 데이터 수신하기

2.3.1 시리얼 통신을 이용하여 데이터 수신하기

EX 2.3

변수 유형별 Arduino에서 컴퓨터로 전송하기 (1/3)

- 실습목표 1. 컴퓨터에서 Arduino로 0~9의 숫자를 전송한다.
 - 2. Arduino에서는 전송 받은 숫자만큼 Arduino 보드의 LED를 점멸시킨다.

Hardware Arduino와 PC를 USB 케이블로 연결한다.

그림 2.1 Arduino와 PC와의 연결

3.3.2 시리얼 통신을 이용하여 데이터 수신하기

EX 2.3

변수 유형별 Arduina에서 컴퓨터로 전송하기 (2/3)

- Commands Serial.available()
 - 시리얼 통신에 수신된 데이터가 있는지 확인한다. 있을 경우 참(true)의 값을 갖는다.
 - Serial.read()
 - 시리얼 통신을 통하여 수신된 값을 읽는다.
 - isDigit(변수)
 - 변수의 값이 ASCII 코드의 0~9의 숫자 범위에 있는지 여부를 판단, 범위에 있을 경우 참(true)의 값을 갖는다.
 - pinMode(핀번호, 설정)
 - 핀의 입출력 모드를 설정한다. '핀번호'에는 설정하고자 하는 핀의 번호와 '설정'에는 입 력으로 사용하기 위해선 'INPUT', 출력으로 사용하기 위해선 'OUTPUT', 입력이며 풀업 사용시'INPUT PULLUP'을 적는다.
 - digitalWrite(핀번호, 값)
 - 핀에 디지털 출력(High or Low)을 한다. '핀번호'에는 출력하고자 하는 핀의 번호를, '값 '에는 'HIGH' 혹은 'LOW'를 설정하여 High 혹은 Low 출력을 한다.

2.3.3 시리얼 통신을 이용하여 데이터 수신하기

변수 유형별 Arduinn에서 컴퓨터로 전송하기 (3/3) EX 2.3

- Sketch 구성 1. 13번 핀에 연결된 내장 LED를 이용한다.
 - 2. 시리얼 통신 상태를 감시한 후 시리얼 통신으로 입력되는 데이터가 있을 때 이를 저장한다.
 - 3. 전송된 값은 ASCII 코드값이므로 이를 숫자로 변경한다.
 - 4. 숫자만큼 LED를 0.2초 간격으로 점멸시킨다.
- 실습 결과 IDE의 시리얼 모니터를 실행시켜 전송란에 0~9의 값을 입력한 후 Arduino의 LED가 입력한 값 만큼 점멸하는지를 확인해 본다..
- 1. 0~9의 입력 값에 따라 점멸 주기가 변화하는 스케치를 작성해 보자. 응용 문제
 - 2. 0~9의 숫자를 전송하면 전송된 수의 2진수와 16진수를 컴퓨터로 전송하는 스케치를 만들어보자. (hint: 예제 2.2를 참고하자)

EX 2.3

2.3.3 시리얼 통신을 이용하여 데이터 수신하기

변수 유형별 Arduino에서 컴퓨터로 전송하기 (code)

```
ex_2_3_final
1 /*
   예제 2.3
   컴퓨터로부터 시리얼 통신을 통하여 데이터 수신하기
<u>6|// LED 출력을 할 핀 번호 설정</u>
 ᠯ const int ledPin = 13;
위// 점멸횟수 변수 설정·
1<mark>(|int blinkNumber = 0;</mark>
12 void setup() {
   // 9600bps로 시리얼 통신 설정
   Serial.begin(9600);
   // 13번 핀을 출력으로 설정
   pinMode(ledPin, OUTPUT);
17|}
```

```
19 void loop() {
   // 시리얼 통신으로 입력 받은 데이터가 있는지를 검사하여
   _// 데이터가 이용 경으에 if무 아이 명령어를 실해
  if (Serial.available()) {
23
     // val 변수에 시리얼 통신값 읽어오기
24
     char val = Serial.read();
25
     // 입력된 값이 0~9의 숫자인지를 판단
     if (isDigit(val)) {
26
27
       // val은 ASCII 코드값이므로 숫자로 바꿔주기 위하여
28
      -// '0'의 아스키 코드값을 빼줌
       // blinkNumber에는 실제 숫자가 저장된다.
29
       blinkNumber = (val - '0');
31
     Serial.print("입력한 수:");
32
     Serial.println(blinkNumber);
     // Serial.println();
34
     delay(2000);
35
36
     // blinkNumber 만큼 LED의 켬상태를 길게 유지.
37
38
     for (char i = 0; i < blinkNumber; i++) {</pre>
       digitalWrite(ledPin, HIGH);
39
       delay(100);
40
       digitalWrite(ledPin, LOW);
41
42
       delay(100);
43
44
    // 점멸 횟수를 리셋함
  iblinkNumber = 0;
47 }
```


DIY-4. 점멸 주기가 변화

응용문제 [DIY-4] 0~9의 입력 값에 따라 점멸 주기가 변화하는 스케치를 작성해 보자.

- 시리얼모니터에 입력한 수를 표시
- 입력한 수에 비례해서 LED 켬 상태를 길게 유지.

완성된 스케치 code를
ARnn_period.ino
로 저장해서 제출.

DIY-5. 입력된 수를 변환하여 출력

응용문제 [DIY-5] 0~9의 숫자를 전송하면 전송된 수의 2진수와 8진수를 컴퓨터로 전송하는 스케치를 만들어보자. (hint: 예제 2.2를 참고하자).

- 아래 출력 참조.

완성된 스케치 code를

ARnn_number.ino

로 저장해서 제출.

3. LCD

Liquid Crystal Display

핀에 직접 연결 7 핀

> I²C 통신 2 핀

얇은 액정판 아래 조명을 비추는 장치로서 액정판의 전류 흐름을 제어하여 문자나 그림을 표시

3. LCD

Liquid crystal display

- 3.1 입출력 핀을 이용하여 LCD 모듈에 표시하기
- 3.2 [인를 이용한 LCD 출력

3.1.1Introduction to LCD Module

3.1.2 Introduction to LCD Module

LCD (Liquid Crystal Display, 16 X 2)

- 1. GND
- 2. VCC (+5V)
- 3. Vo (contrast, 가변저항기 연결)
- 4. RS
- 5. R/W
- 6. E
- > D0 ~ D7 (data, 7~14)
- A (15, Backlight+, 220 or 330Ω)
- K (16, Backlight-)

3.1.3 Introduction to LCD Module

LCD (Liquid Crystal Display, 16 X 2)

Pin 1 to Arduino GND
Pin 2 to Arduino +5V
Pin 3 to wiper
Pin 4 to Arduino pin D12
Pin 5 to Arduino GND
Pin 6 to Arduino pin D11
Pin 11 to Arduino pin D5
Pin 12 to Arduino pin D4
Pin 13 to Arduino pin D3
Pin 14 to Arduino pin D2
Pin 15 to +5V (with 220 or 330 Ω)
Pin 16 to GND

(pin-1, 2, 3, 5, 15,16)

Pin 1 to Arduino GND Pin 2 to Arduino +5V Pin 3 to wiper (potentiometer) Pin 5 to Arduino GND Pin 15 to +5V Pin 16 to GND

> 전원 연결 후 LCD 초기화

○○○ 3.1.5 데이터 입력 초기화 (pin-4, 6,

Pin 1 to Arduino GND

Pin 2 to Arduino 5V

Pin 3 to wiper

Pin 4 to Arduino pin D12

Pin 5 to Arduino GND

Pin 6 to Arduino pin D11

Pin 11 to Arduino pin D5

Pin 12 to Arduino pin D4

Pin 13 to Arduino pin D3

Pin 14 to Arduino pin D2

Pin 15 to +5V

Pin 16 to GND

DIY-6. LCD module circuit

3.1.6 Introduction to LCD – code "Hello ARnn'

- LiquidCrytral lcd(rs, en, d4, d5, d6, d7) lcd란 이름으로 I2C에 연결된 LCD 모듈 객체.
- lcd.begin(행, 열)lcd란 이름의 LCD 모듈의 크기를 정의한다.
- lcd.clear() lcd란 이름의 LCD 모듈의 화면의 모든 표시를 지우고 커서를 왼쪽 위로 옮긴다.
- lcd.home() lcd란 이름의 LCD 모듈의 커서를 왼쪽 위로 옮긴다.
- lcd.setCursor(행, 열) lcd란 이름의 LCD 모듈의 커서를 원하는 위치로 이동시킨다.
- lcd.print(데이터) lcd란 이름의 LCD 모듈에 데이터를 출력한다.
- lcd.noBacklight(); lcd란 이름의 LCD 모듈의 백라이트를 소등한다.
- lcd.backlight(); lcd란 이름의 LCD 모듈의 백라이트를 점등한다.

3.1.7 Introduction to LCD – code "Hello ARnn"

```
hello_LCD
 7 // include the library code:
 8 #include <LiquidCrystal.h>
10// initialize the library with the numbers of the interface pins
13 void setup() {
    // set up the LCD's number of columns and rows:
    - Icd.begin(16, 2);
15
    // Print a message to the LCD.
    lcd.print("Hello, ARnn!");
18|}
19
20 void loop() {
     // set the cursor to column 0, line 1
22
     lcd.setCursor(0, 1); // second line, first column
     // print the number of seconds since reset:
23
24
     lcd.print(millis() / 1000);
     lcd.print(" sec");
26|}
```


3.2 I²C를 이용한 LCD 출력

I²C(^{아이스케어드시}, Inter-Integrated Circuit)는 필립스에서 개발한 직렬 버스이다. 마더보드, 임베디드 시스템, 휴대 전화 등에 저속의 주변 기기를 연결하기 위해 사용된다.

I²C 는 <u>물업 저항</u>이 연결된 직렬 데이터(SDA)와 직렬 클럭(SCL)이라는 두 개의 양 방향 <u>오픈 컬렉터</u> 라인을 사용한다. 최대 전압은 +5 V 이며, 일반적으로 +3.3 V 시스템이 사용되지만 다른 전압도 가능하다.

https://ko.wikipedia.org/wiki/I%C2%B2C

http://www.ifuturetech.org/product/16x2-lcd-i2c-lcd/

3.2.1 I²C를 이용한 LCD 출력

표 3.1 LCD 모듈 문자표

특수문자나 기호는 LCD 모듈 문자표를 참고하여 출력

Lower Upper 4	0000	0001	0010	0011	0100	0101	0110	0111	1000	100)	1010	1011	1100	1101	1110	1111
xxx0000	CG. RAM (1)			0	a	Р	`	P				_	夕	Ę	α	p
xxxx0001	(2)		!	1	А	Q	а	9			•	7	チ	L_{k}	ä	q
xxxx0010	(3)		11	2	В	R	Ь	r			Г	4	y	, K	ß	θ
xxx0011	(4)		#	3	С	5	C	s			J	ウ	テ	Ŧ	ϵ	00
xxxx0100	(5)		\$	4	D	T	d	t			N	I	 -	ł	μ	Ω
xxxx0101	(6)		%	5	E	U	e	U				才	ナ	ュ	G	ü
xxxx0110	(7)		&	6	F	Ų	f	Ų			Ŧ	力		3	ρ	Σ
xxx0111	(8)		7	7	G	W	9	W			7	丰	又	ラ	9	N
xxx1000	(1)		(8	H	X	h	×			4	ク	未	IJ	Ţ	$\overline{\mathbf{x}}$
xxx1001	(2))	9	Ι	Υ	i	У			÷	ታ	Į	Jb	-1	У
xxx1010	(3)		*		J	Ζ	j	Z			I	コ	/\	L	j	手
xxx1011	(4)		+	7	K		k	{			才	サ	Ł	口	×	Я
xxx1100	(5)		7	<	L	¥	1				42	シ	フ	7	¢	Ħ
xxx1101	(6)		_	=	М]	M	}			ı	ス	^	ン	ŧ	÷
xxx1110	(7)			>	N	^	n	÷			3	乜	朩	4,4	ñ	
xxxx1111	(8)		/	?	0	_	0	÷			עי	ソ	マ	•	Ö	

3.2.2 I²C를 이용한 LCD 출력

I²C (Inter Integrated Circuit)

그림 3.2 fC를 이용한 네트워크

- ✓ Phillips사에서 개발된 규격이며 TWI라고도 함.
- ✓ SDA(Serial Data line), SCL(Serial Clock Line) 두 선으로 통신
- ✓ Master와 Slave로 구분되어 Master에서 통신을 주관
- ✓ 최대 112개의 노드를 연결 가능하고 최고 3.4Mbps의 속도
- ✓ LCD 모듈을 I²C 통신으로 제어하기 위해선PCF8574 IC를 사용
- ✓ SDA, SCL 두 개의 입출력 핀만 필요

3.2.3 I²C를 이용한 LCD 출력

라이브러리 매니저를 이용하여 I2C LCD용 라이브러리(LiquidCrystal I2C)를 설치

스케치 > 라이브러리 포함하기 > 라이브러리 관리

3.2.4 I²C를 이용한 LCD 출력

EX 3.2

12C를 이용한 LCD 출력 (1/3)

- 실습목표 1. 16X2 도트매트릭스 LCD를 I²C를 이용하여 제어한다.
 - 2. 'Welcome' 메시지와 함께 백라이트를 점멸시킨다.
 - 3. 시리얼 포트로 입력 받은 값을 LCD에 출력한다.

Hardware

- 1. I²C LCD 모듈과 Arduino는 전원핀 Vcc(5 V), GND와 I²C 통신핀 SDA, SCL이 연결되어야 한다.
- 2. I²C LCD 모듈의 Vcc와 GND를 Arduino의 5V와 GND에 연결한다.
- 3. SDA는 A4에, SCL은 A5에 연결한다.

3.2.5 I²C를 이용한 LCD 출력

EX 3.2

l²C를 이용한 LCD 출력 (2/3)

Commands

- LiquidCrytral_I2C(I2C 주소, 가로 글자수, 세로 글자수) LCD 모듈이 연결된 I2C 주소와 LCD의 가로, 세로 글자수를 설정한다.
- lcd.init(); LCD 모듈을 설정한다.
- lcd.clear(): lcd란 이름의 LCD 모듈의 화면의 모든 표시를 지우고 커서를 왼쪽 위로 옮긴다.
- lcd.home(): lcd란 이름의 LCD 모듈의 커서를 왼쪽 위로 옮긴다.
- Icd.setCursor(행, 열): Icd란 이름의 LCD 모듈의 커서를 원하는 위치로 이동시킨다.
- lcd.print(데이터): lcd란 이름의 LCD 모듈에 데이터를 출력한다.
- lcd.noBacklight(): lcd란 이름의 LCD 모듈의 백라이트를 소등한다.
- lcd.backlight(); lcd란 이름의 LCD 모듈의 백라이트를 점등한다.

Sketch 구성

- 1. I2C 방식의 LCD 모듈을 사용하기 위해 앞서 다운받은 라이브러리를 추가해 준다.
- 2. 라이브러리의 함수를 이용하여 LCD를 설정해 준다.
- 3. setup()에서 'Welcome'메시지와 백라이트를 점멸시킨다.
- 4. 시리얼 통신으로 데이터를 입력받기 위해서 시리얼 통신 설정을 해 준다.
- 5. 데이터 입력이 있을 때 이를 LCD에 출력해 준다.

3.2.6 I²C를 이용한 LCD 출력 (code-1)

EX 3.2 | 『C를 이용한 LCD 출력 (code)

```
6 // I2C 통신 라이브러리 설정
7 #Include <Wire.h>
8 // I2C LCD 라리브러리 설정
9 #Include <LiquidCrystal_I2C.h>
10
11 // LCD I2C address 설정 PCF8574:0x27, PCF8574A:0x3F
12 LiquidCrystal_I2C Icd(0x3F,16,2); // LCD address:0x27,
```



```
14 void setup()
15 {
    // 9600 bps로 시리얼 통신 설정
    Serial begin (9600);
    Icd. Init(): // LCD 설정
    Icd.clear(); // LCD를 모두 지운다.
    Icd.backlight(); // 백라이트를 켠다.
    // Arduino LCD, Welcome 丑人
    lcd.setCursor(0,0);
    lcd.print("Arduino LCD");
    delay(3000);
    lcd.setCursor(0,1);
    lcd.print("Welcome");
    delay(250);
27
    // LCD 백라이트를 두 번 점멸
   lcd.noBacklight();
  delay(250);
   lcd.backlight();
   delay(250);
   lcd.noBacklight();
   delay(250);
   lcd.backlight();
   delay(3000);
   // Open Serial Monitor, Type to display 丑人
   lcd.clear();
   lcd.setCursor(0,0); //Start at character 0 on line 0
   !cd.print("Open Serial Mntr");
43 | Icd.setCursor(0,1);
   lcd.print("Type to display");
```


3.2.6 I²C를 이용한 LCD 출력 (code-2)

EX 3.2 I²C를 이용한 LCD 출력 (code)


```
47 void loop()
48 {
49
    // 시리얼 통신 수신 값이 있을 때
    if (Serial.available()) {
50
      delay(100);
52
     // 모두 삭제
     lcd.clear();
53
54
     // 커서를 좌측 상단으로
     lcd.setCursor(0,0);
55
      // "Message from PC" 출력
56
      lcd.print("Message from PC");
     // 커서를 두 번째 줄로
58
     lcd.setCursor(0,1);
59
60
      // LCD에 PC에서 전송된 데이터를 출력
61
     while (Serial.available() > 0) {
62
       lcd.write(Serial.read());
63
64
65
66 ]
```


3.2.6 I²C를 이용한 LCD 출력

FX 3 7

|²C를 이용한 LCD 출력 (3/3)

- 실습 결과 1. Arduino LCD 표시 후 백라이트가 2회 점멸한다.
 - 2. 시리얼 모니터를 실행 시킨 후 메시지를 입력하여 보자. → "Hello ARnn"
 - 3. 메시지가 LCD에 출력되는지를 확인해 보자.

Take a photo of LCD screen.

Save photo as ARnn_LCD_hello.png

[DIY-7] I²C를 이용한 LCD 출력

DIY-6

시리얼 통신으로 입력 받은 1~9의 숫자에 대하여 LCD의 백라이트가 입력된 숫자만큼 점멸하고 점멸 횟수를 표시하는 스케치를 작성해 보자.

(hint: 예제 2.3을 참고하자)

Save ARnn_LCD.ino

[Practice]

- ♦ [wk03]
- > Arduino LCD
- Complete your project
- Upload folder : ARnn_Rpt02

wk03: Practice-02: ARnn_Rpt02

- **◆** [Target of this week]
 - Complete your works
 - Save your outcomes
 - Upload figures & sources

Upload 폴더 명 : ARnn_Rpt02

- 제출할 파일들
 - ① ARnn_period.ino
 - 2 ARnn_number.ino
 - 3 ARnn_LCD_hello.png
 - 4 Arnn_LCD.ino
 - 5 All *.ino

Lecture materials

References & good sites

- http://www.nodejs.org/ko Node.js
- ✓ http://www.arduino.cc Arduino Homepage
- ✓ http://www.w3schools.com By w3schools.
- ✓ http://www.github.com GitHub
- http://www.google.com Googling

Github.com/Redwoods/Arduino

Github.com/Redwoods/Arduino

주교재

Uno team

아두이노 키트(Kit)

https://www.devicemart.co.kr/goods/view?no=12170416

아두이노 키트(Kit): Part-1

74HC595X1

X 1

아두이노 키트(Kit): Part-2

■ USB 케이블 ■ 아두이노 UNO $\times 1$ X1 ■ 830핀브레드보드 × 1 ■ 미니 브레드보드 ×1 ■ 점퍼와이어세트 ×1 $\times 80$ ■ 저항 ■ 듀폰케이블 $\times 30$ ■ 가변저항 $\times 1$ LED ×20 RGB LED $\times 1$ (M/F,M/M) 1digit FND(CA) × 1 4digit FND(CA) × 1 택트스위치 ■ 8×8도트 매트릭스 × 1 $\times 5$ ■ RGB LED 모듈 × 1 ■ 볼스위치 ■ 리드 스위치 센서 × 1 ■ 4×4 키 매트릭스 ×1 ■ 5V 릴레이 모듈 × 1 $\times 1$ ■ 택트 스위치 캡 $\times 5$ ■ 수위 센서 ■ 온도센서 LM35 × 1 X1 ■ 써미스터 ■ 온습도센서 X1 $\times 1$ ■ 조이스틱 모듈 \times 1 ■ 불꽃감지센서 ■ 적외선 수신기 X1 X1 ■ IR 리모컨 $\times 1$ ■ TCRT5000 $\times 1$ ■ CdS 조도센서 적외선 센서 \times 1 ■ 사운드센서 X1 ■ 능동부저 수동부저 X 1 X1 ■ 인체감자센서 모듈 × 1 ■ 초음파센서 $\times 1$ ■ 서보모터 ■ 스테퍼모터 ■ 스테퍼모터드라이버×1 X1 X 1 ■ PC 1602 LCD 모듈 × 1 ■ RFID 수신 모듈 ×1 ■ RFID 태그 ■ DS1302 RTC 모듈 × 1 1N4001 다이오드 × 1 X1 ■ RFID 카드X1 ■ 2N2222 트랜灰스터× 1 \times 1 ■ 1X40 핀헤더 ■ 9V 배터리 스냅 × 1 ■ 아크릴 고정판 $\times 1$ $\times 1$