

Universidad Nacional Autónoma de México Facultad de Ingeniería División de Ingeniería Eléctrica (DIE)

Organización y Arquitectura de Computadoras

Grupo: 3

Tarea 7: Diseño de máquinas de estado empleando memorias: Direccionamiento implícito modificado para soportar salidas condicionales

Alumno: Suxo Pérez Luis Axel

Maestro: M.I. Pedro Ignacio Rincón Gómez

Semestre 2022-2

Fecha de entrega: 21 de febrero de 2022

A) Diseñe una carta ASM con hasta 8 estados, 3 entradas (X, Y, Z) y 4 salidas (S0, S1, S2, S3) que cuente con salidas condicionales y determine la tabla de verdad por el método de Direccionamiento Implícito modificado para soportar salidas condicionales.

Er M	Salidas de Memoria															
Estado presente			Pru	eba	Liga			VF	Salidas Verdaderas				Salidas Falsas			
P_2	$\boldsymbol{P_1}$	P_0	K_1	K_0	V_2	V_1	V_0	VF	S_3	S_2	S_1	S_0	Z_3	$\boldsymbol{Z_2}$	Z_1	Z_0
0	0	0	1	1	*	*	*	1	0	0	0	1	0	0	0	1
0	0	1	0	0	1	0	1	1	1	0	0	0	1	0	0	0
0	1	0	0	1	1	1	1	1	0	0	1	1	0	0	1	0
0	1	1	1	1	0	0	0	0	1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0	0	0	0	1	0	0	0	1	0
1	0	1	1	0	1	0	0	1	0	1	0	0	0	1	0	1
1	1	0	1	1	0	0	0	0	1	0	0	0	1	0	0	0
1	1	1	1	1	0	0	0	0	0	1	0	0	0	1	0	0

B) Determine el número de bits de memoria que se ahorran al implementar una carta ASM que posee 4 entradas (X, Y, Z, W), 20 estados, 8 salidas (S0-S7), mediante el método de "direccionamiento implícito modificado para soportar salidas condicionales" respecto al método "direccionamiento por trayectoria" y "direccionamiento Entrada-Estado modificado".

R= Son 5856 bits los que se ahorran respecto al método "direccionamiento por trayectoria".

R= Son 96 bits los que se ahorran respecto al método "direccionamiento Entrada-Estado modificado".

$$(2^5 * 25) \ bits = 800 \ bits$$

 $(2^9 * 13) \ bits = 6656 \ bits$
 $\{(2^9 * 13) - (2^5 * 25)\} \ bits = 5856 \ bits$
 $(2^5 * 28) \ bits = 895 \ bits$
 $\{(2^5 * 28) - (2^5 * 25)\} \ bits = 96 \ bits$