Classical and Open Problems about Billiard Dynamics

BIRKHOFF BILLIARDS:

The motion of a free particle in a bounded region reflecting elastically at the boundary is called a **billiard**. Convex two-dimensional convex regions in the plane define **Birkhoff billiards** (Birthplace: Harvard!)

EXAMPLES:

- 1) Elliptic billiard:
- $x^2/a^2 + y^2/b^2 = 1.$
- 2) Polygonal billiards:
- eg. triangle
- 3) Polygons with rounded corners: eg. stadium
- 7) Tolygons with rounded corners. cg. stadium
- 4) Tables of equal width: eg. Ruleaux triangle

BILLIARD PIONEERS:

Boltzmann (1844-1906) hard sphere gas Artin (1898-1962) in 1924, billiard in hyperbolic plane Hadamard (1865-1963)-Hedlund-Hopf, geodesic flow Birkhoff (1884-1944) in 1927, model for 3-body problem Poritski in 1950, integrability question

WHY STUDY BILLIARDS?

A beautiful and simple dynamical system featuring complexities of Hamiltonian systems in general. Limiting case of geodesic flow. Illustrates theorems in topology, geometry or ergodic theory. Related to Dirichlet problem $\Delta u = \lambda u$. Open problem "can one hear the shape of a **smooth** drum". Relation of quantum mechanics to classical mechanics.

THE BILLIARD MAP:

 $s \in \mathbf{T} = [0,1] \pmod{1}$: point on the boundary. $\phi \in [0,\pi]$: angle of velocity vector to the tangent at s. $u = \cos(\phi) \in [-1,1]$. s', new intersection with boundary. $u' = \cos(\phi')$ from impact angle ϕ' . Billiard map on annulus $X = \mathbf{T} \times [-1,1]$:

$$T:(s,u)\mapsto (s',u')$$

The boundaries $\mathbf{T} \times \{-1\}$, $\mathbf{T} \times \{1\}$ consist of **fixed points**.

 $T: X \to X$ AREA-PRESERVING.

Equivalent (by change of variable formula): Jacobian

$$DT(s,u) = \begin{pmatrix} \frac{\partial}{\partial s} s'(s,u) & \frac{\partial}{\partial u} s'(s,u) \\ \frac{\partial}{\partial s} u'(s,u) & \frac{\partial}{\partial u} u'(s,u) \end{pmatrix}$$

satisfies $\det DT(s,u)=1$. Exercise: calculate directly or follow Birkhoff, 1927. (There is an elegant proof using more advanced calculus.)

$\begin{array}{ll} {\rm THEOREM} & ({\rm BIRKHOFF}) \colon \ {\bf Elliptic} \\ {\bf billiards \ are \ integrable}. \end{array}$

PROOF. L(s, u) line connecting s_1 and s_2 , if $T(s_1, u_1) = (s_2, u_2)$. $d^{\pm}(s_i, u_i)$ oriented distances of $L(s_i, u_i)$ to focal points F^{\pm} of ellipse. The function $f(s, u) = d_1(s, u)d_2(s, u)$ is a real-analytic integral of the elliptic billiard.

ELLIPSE PROPERTY: $f_1 = f_2$ if $f_i = d^+(s_i, u_i)d^-(s_i, u_i)$. PROOF: Ellipse $t \mapsto s(t) = (a\cos(t), b\sin(t))$ has focal points $F^{\pm} = \pm \sqrt{|a^2 - b^2|}$, normal $n(t) = (b\cos(t), a\sin(t))$ and tangent $v(t) = (-a\sin(t), b\cos(t))$. Set B(t, r) = s(t) + n(t) + rv(t). If point in incoming ray is B(t, r), then point in outgoing ray is B(t, -r). Let $d^{\pm}(t, r)$ be the distance of F^{\pm} from A to B(t, r). Computation shows

 $d^+(t,r)d^-(t,r) = [b^2(1+2r^2) - a^2 + (a^2 - b^2)\cos(2t)]/2(1+r^2)$. This is even in r so that $d^+(t,r)d^-(t,r) = d^+(t,-r)d^-(t,-r)$.

INTEGRABILITY:

 $T: X \to X$ is **integrable** if there exists a piecewise continuous $f: X \to \mathbf{R}$ such that each set $\{f(s, u) = c\}$ is a union of points or lines.

WARNING. Different definitions of "integrability" exist.

BIRKHOFF-PORITSKI CONJECTURE:

Any integrable smooth, convex billiard is an ellipse.

Formulated by Poritski (work at Harvard under Birkhoff ~ 1927 , published only in 1950).

PERIODIC ORBITS. A **nperiodic point** of the billiard map is a point $x = (s, u) \in X$ such that $T^n(x) = x$.

BIRKHOFF: a differentiable strictly convex billiard has for $n \geq 2$ and $r \leq n/2$, a *n*-periodic orbit rotating r times around the table. The proof uses that periodic points extremize the length of the billiard trajectory and that any differentiable function on the torus has a maximum.

POLYGONAL BILLIARDS. The billiard in a convex polygon is called a **polygonal billiard**. If all angles of the table are π -rational, the billiard is called a **rational billiard**.

EXAMPLE: **Square billiard**. The billiard is rational and integrable with integral $f(s,u) = u/\sqrt{1-u^2} =: \alpha \ s \in [0,1/4] \cup [1/2,3/4]$ and $f(s,u) = 1/\alpha$ else. The dynamics on $\{f = \alpha\}$ is conjugated to an irrational rotation $s \mapsto s + \alpha$ with angle α . A point $(s,u) \in X$ is periodic if and only if $\alpha = u/\sqrt{1-u^2}$ is rational.

PROBLEM FOR POLYGONAL BIL-LIARDS. Does every polygonal billiard have a periodic orbit? Not known even for triangles. (Yes, for right triangles). Can a smooth billiard have an open set of p-periodic points? RATIONAL BILLIARDS HAVE PERIODIC ORBITS. Proof. Take an initial condition (s,0). Area preservation and Poincare recurrence: $\exists T^n(s,0) = (s_n,u_n)$ with arbitrarily small $|u_n|$ and with s_n on same side as s. Rational billiard: $u_n = 0$ for large n. This orbit is periodic.

PERIODIC POINTS FOR SMOOTH BILLIARDS. Is the set of p-periodic orbits nowhere dense?

VARIATIONAL CONSTRUCTION: if $s = (s_1, \ldots, s_n, s_{n+1} = s_1)$ are points on **T**, let $\mathcal{L}(s_1, \ldots, s_n) = \sum_{k=1}^n \mathcal{L}(s_k, s_{k+1})$, where $\mathcal{L}(s, s') = |P(s) - P(s')|$. A periodic orbit $T^k(s, u) = (s_k, u_k)$ corresponds to a critical point of \mathcal{L} , a point, where the gradient $\nabla \mathcal{L}$ vanishes. There exists a maximum and so a critical point.

CAUSTICS:

Curves for which tangent billiard trajectories remains tangent after successive reflections.

EXAMPLES:

- 1) Ellipses have **conformal conics** $x^2/(a^2+\lambda)+y^2/(b^2+\lambda)=1$ as caustics, hyperbola for $-b^2<\lambda<-a^2$, ellipses for $-a^2<\lambda$.
- 2) γ convex curve, the **string construction** leads to table with γ as caustic.
- 3) Curves of equal width have caustics which agree with the evolute of the table.

INVARIANT CURVES-CAUSTICS.

 $\Gamma: s \mapsto (s, \cos(\theta(s)))$ invariant curve under T, v(s) unit vector in trajectory direction, P(s) point on table, $\kappa(s)$ curvature at s. Caustic: $\gamma(s) = P(s) + \sin(\theta(s)) / (\kappa(s) + \Gamma'(s))v(s)$

PROOF. $T(s, u) = (s_1, u_1)$. $\delta(s)$, angle of trajectory $L(s, s_1)$ to x-axes. $\gamma(s) = P(s) + b(s)u(s)$, where $b(s) = \sin(\theta)(d\delta/ds)^{-1}$. $\alpha(s)$: angle of tangent at T(s), then $\delta(s) = \theta(s) + \alpha(s)$. Furthermore $\delta'(s) = \theta'(s) + \alpha'(s) = \kappa(s) + \Gamma'(s)$, so that $b(s) = \sin(\theta)(\kappa(s) + \Gamma'(s))^{-1}$.

CURVES OF EQUAL WIDTH.

 α angle of tangent. $\rho(\alpha) = 1/\kappa(\alpha) > 0$ radius of curvature at α . $P(\alpha) = P(0) + \int_0^{\alpha} \rho(\beta)e^{i\beta} \ d\beta$ defines a closed convex curve if $\int_0^{2\pi} \rho(\beta)e^{i\beta} \ d\beta = 0$. If additionally $\rho(\alpha) + \rho(\alpha + \pi) = \text{const}$, this is a **table of equal width**.

CAUSTIC AND EVOLUTE:

 $\gamma(\alpha) = P(\alpha) + \rho(\alpha)ie^{i\alpha}$ defines caustic to invariant curve $\{u = 0\} \subset X$. This is the **evolute** of the curve. $\gamma'(\alpha) = \rho'(\alpha)ie^{i\alpha}$ shows ρ and γ have identical critical points. **Vertices** of table \Leftrightarrow **cusps** of γ .

ARE THERE FRACTAL CAUSTICS?

Are there caustics which are fractals? Are there fractal evolutes of convex curves of equal width?

DEFINITION OF FRACTALS.

Z subset of an Euclidean space. For $\epsilon > 0$, s > 0, define $h_{\epsilon}^s(Z) = \inf_{\{U_j\}} \sum_{U \in \{U_j\}} |U|^s$, where $\{U_j\}$ runs over all open ϵ -covers of Z. $(|U_j| < \epsilon, U_j \text{ open and } Z \subset \bigcup_j U_j)$. The limit $h^s(Z) = \lim_{\epsilon \to 0} h_{\epsilon}^s(Z)$ is called **s-dimensional Hausdorff measure** of Z. It exists in $[0, \infty]$ because $\epsilon \mapsto h_{\epsilon}^s(Z)$ increases for $\epsilon \to 0$. If $h^s(Z) < \infty$, then $h^t(Z) = 0$ for all t > s. Define the **Hausdorff dimension** $\dim_H(Z) \ge 0$ by $s < \dim_H(Z) \Rightarrow h^s(Z) = \infty$, $s > \dim_H(Z) \Rightarrow h^s(Z) = 0$. **Fractals** are sets Z with non-integer $\dim_H(Z)$.

LYAPUNOV EXPONENT.

 $\lambda(s,u) = \limsup_{n \to \infty} n^{-1} \log ||dT^n(s,u)||$ is called the **Lyapunov exponent** of T at (s,u). It measures **sensitive dependence on initial conditions**.

CHAOS. A billiard is **chaotic** if the **Pesin set** $\{\lambda(s, u) > 0\}$ has positive Lebesgue measure. No smooth, convex chaotic billiard is known!

SUMMARY: OPEN PROBLEMS.

- 1) Birkhoff-Poritski: a smooth, integrable Birkhoff billiard is an ellipse.
- 2) Chaotic billiards: there exist smooth Birkhoff billiards with positive Lyapunov exponents on a set of positive Lebesgue measure.
- 3) **Periodic points for polygons**: every polygonal billiard has a periodic orbit.
- 4) Fractal caustic problem: there exists a Birkhoff billiard with fractal caustic.
- 5) **Algebraic return map problem**: if a Birkhoff billiard map T is conjugated to an algebraic map, then the table is an ellipse.
- 6) Guillemin problem: T_1, T_2 smooth Birkhoff billiard maps. If $T_1 = ST_1S^{-1}$ with a homeomorphism S, then the tables are similar.
- 7) Size of periodic orbits: the set of n-periodic orbits of a smooth strictly convex Birkhoff billiard is nowhere dense for all n.

FURTHER READING:

G. Birkhoff, Acta Math, 50, 1927

Ya.G. Sinai, Introduction to ergodic theory, 1976

S. Tabachnikov. Billiards, 1995

D.V. Treshchev, V.V. Kozlov, Billiards, Transl. Math. Monog., 89