Spatial pattern of population movement during morning peak hours

STAT 5544 Final Report
Wenyu Gao, Danni Lu
Dec.1st, 2016

- Introduction
- Exploratory Data Analysis
- Spatial Trend
- Anisotropy
- Model Fitting
- Prediction
- Conclusion

Introduction

- Exploratory Data Analysis
- Spatial Trend
- Anisotropy
- Model Fitting
- Prediction
- Conclusion

INTRODUCTION

Data source

Shanghai

Area

• Municipality 6,341 km^2 Population (2015)

• Municipality 24 million

• Rank lst in China

• Density $3,800/km^2$

Cell Tower Data

Cell towers: 37,450

Density: $5.91 / km^2$

Time: consecutive 24 hour

Records: 1.1 billion (80 GB)

INTRODUCTION

Original Dataset

ID	LONG	LAT	DATE	TIME	EVENT
FEXIN12399865982DF	121.3535	31.13478	2014/4/3	0:56:21	12
ASKXIN1S23SDSD9986	121.3644	31.13478	2014/4/3	12:25:07	10
ASDSD2312KVH0JSD12	121.3753	31.13478	2014/4/3	11:34:11	10

Privacy

- ✓ Records are anonymized
- ✓ Records are aggregated by areal unit and time period
- √ No personal information is involved and displayed

INTRODUCTION

Research question

Where do people go during morning rush hours?

How does the pattern change over time?

- Introduction
- Exploratory Data Analysis
- Spatial Trend
- Anisotropy
- Model Fitting
- Prediction
- Conclusion

Data aggregation

Urban area

28*28 grid each areal unit is one square kilometer

0 5 10 20 Kilometers

- Data aggregation
- Calculate covariates:
 Distance to metro line
 Distance to expressway

POINT TO LINE

Longitude		La	titude	Density		
Min.	:121.4	Min.	:31.13	Min.	:	. 0
1st Qu	.:121.4	1st Qu	ı.:31.20	1st Qu		
Median	:121.5	Mediar	n :31.26	Mediar	n :	5894
Mean	:121.5	Mean	:31.26	Mean	-	9773
3rd Qu	.:121.6	3rd Qu	ı.:31.32	3rd Qu	ı. :1	L4575
Max.	:121.6	Max.	: 31 . 38	Max.	: 1	33822

D2Metro D2Road Hour 0.395 2.274 Min. Min. 1st Qu.: 387.974 1st Qu.: 397.764 1st Qu.:6 Median : 973.144 Median : 888.332 Median :7 :1373.922 :1126.451 Mean Mean Mean 3rd Qu.:8 3rd Qu.:1981.959 3rd Qu.:1609.672 :5607.713 :6852.305 Max. : 9 Max. Max.

OF PROSINGES

Population density at 5:00-6:00 am

Population density at each hour

	Min.	lst Qu.	Median	Mean	3rd Qu.	Max.
5:00-6:00	0	1378	4217	7003	11200	33550
6:00-7:00	0	1849	5322	8421	13430	36390
7:00-8:00	0	2452	6940	10550	16050	47720
8:00-9:00	0	2588	7033	11440	16990	68800
9:00-10:00	0	2554	6772	11450	17050	83820

Population density at each hour

38

121.40

121.50

7:00 ~ 8:00 am

121.60

Covariates – Distance to Metro Line

Covariates – Distance to Expressway

- Introduction
- Exploratory Data Analysis
- Spatial Trend
- Anisotropy
- Model Fitting
- Prediction
- Conclusion

SPATIAL TREND

Latitude

7:00 ~ 8:00 am

7:00 ~ 8:00 am

31.13 31.2 31.25 31.31 31.38

SPATIAL TREND

Longitude

Detrend

 $Y(s_i)$: Population density at aggregated cell tower s_i ;

 x_{1i} : latitude of site (s_i) ;

 x_{2i} : longitude of site (s_i) ;

$$Y(s_i) = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{1i}^2 + \beta_4 x_{2i}^2 + \beta_5 x_{1i} x_{2i} + \epsilon_i;$$

- Stepwise selection (AIC)
 - √ Full model selected
 - ✓ Define new response as residual from full model

```
Y(s_i) = Y(s_i)_{original} - \widehat{Y(s_i)}
```

> summary(fit1) call: $lm(formula = data \sim .^2 + I(long^2) + I(lat^2), data = gdata5)$ Residuals: Min 10 Median Max -11460 -3852 2726 20568 -555 coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -4.524e+09 4.241e+08 -10.669 long 6.932e+07 6.759e+06 10.256 lat 2.018e+07 4.428e+06 4.556 6.05e-06 I(long^2) -3.018e+05 2.755e+04 -10.954 < 2e-16 I(lat^2) -5.698e+05 4.062e+04 -14.030 < 2e-16 long:lat 1.271e+05 2.986e+04 4.255 2.35e-05 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 5361 on 778 degrees of freedom

Multiple R-squared: 0.4494, Adjusted R-squared: 0.4458

F-statistic: 127 on 5 and 778 DF, p-value: < 2.2e-16

- Introduction
- Exploratory Data Analysis
- Spatial Trend
- Anisotropy
- Model Fitting
- Prediction
- Conclusion

ANISOTROPY

PROSIN ASSET

0.3

0.2

7:00 ~ 8:00 am

0.0

0.1

Directional semivariogram

ANISOTROPY

Contour Plot

- Introduction
- Exploratory Data Analysis
- Spatial Trend
- Anisotropy
- •Model Fitting
- Prediction
- Conclusion

Semivariogram

Classical & Cressie

Semivariogram

Trend: Homogenous to heterogeneous distribution of population density

Semivariogram fitting – WLS with Cressie weight

Residuals for fitted model:

	5 ‡	6	7	8 ‡	9	mean ‡
Spherical	1345.829	1492.512	1584.260	1087.853	1313.328	1364.756
Exponential	1784.886	1777.499	1737.484	1778.246	2688.834	1953.390
Gaussian	1585.495	1768.071	1850.299	1292.079	1369.624	1573.114
Cubic	1564.827	1744.105	1826.269	1236.830	1278.881	1530.182
Matern	1784.886	1777.499	1737.484	1778.246	2688.834	1953.390
Circular	1388.799	1544.079	1635.957	1082.567	1200.924	1370.465
Power	4369.290	4148.123	3914.707	4643.682	6112.160	4637.592
Powered.exponential	3177.101	3017.073	2784.187	3302.948	4695.429	3395.347

Semivariogram fitting – WLS with Cressie weight

Spherical model:


```
> semfit_s
  nugget sigma.sq
                     phi
                          range sum.of.sq
5 0.8011
          36.9817 0.1054 0.1054
                                  1345.829
6 1.9464
          45.9253 0.1074 0.1074
                                  1492.512
7 4.7192
          62.3882 0.1086 0.1086
                                  1584.260
8 1.9597
          82.1135 0.1037 0.1037
                                  1087.853
          90.8891 0.1047 0.1047
 0.0000
                                  1313.328
```


Likelihood method

AIC and BIC for fitted model:

	5 ‡	6	7	\$	9 ‡	mean ‡
Spherical AIC	4132.694	4342.548	4689.473	4830.251	4771.841	4553.361
Exponential AIC	4108.039	4315.906	4659.611	4805.030	4756.671	4529.051
Gaussian AIC	4859.872	5033.190	5318.416	5550.959	5661.542	5284.796
Cubic AIC	4123.605	4336.645	4684.590	4854.445	4831.221	4566.101
Matern AIC	4108.039	4315.906	4659.611	4805.030	4756.671	4529.051
Spherical BIC	4151.352	4361.206	4708.131	4848.909	4790.498	4572.019
Exponential BIC	4126.696	4334.564	4678.268	4823.687	4775.328	4547.709
Gaussian BIC	4878.530	5051.848	5337.074	5569.617	5680.200	5303.454
Cubic BIC	4142.262	4355.302	4703.247	4873.103	4849.879	4584.759
Matern BIC	4126.696	4334.564	4678.268	4823.687	4775.328	4547.709

Likelihood method

Exponential and Matern model:


```
nugget sigma.sq phi range AIC BIC 0 29.7172 0.0280 0.0838 4108.039 4126.696 0 36.8529 0.0264 0.0791 4315.906 4334.564 0 52.0373 0.0236 0.0707 4659.611 4678.268 0 67.6768 0.0259 0.0776 4805.030 4823.687 0 78.7829 0.0331 0.0991 4756.671 4775.328
```


Relation with covariates -- GAM model with Gamma family

```
Y(s_i) = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{1i}^2 + \beta_5 x_{1i} x_{2i} + S(lat, long) + \epsilon_i;
Y(s_i): Population density at a granded cell tower six
```

 $Y(s_i)$: Population density at aggregated cell tower s_i ;

 x_{1i} : distance to Metro at site (s_i) ;

 x_{2i} : distance to Expressway at site (s_i) ;

lat: latitude of site (s_i) ;

long: longitude of site (s_i) ;

Selection based on AIC

- Introduction
- Exploratory Data Analysis
- Spatial Trend
- Anisotropy
- Model Fitting
- Prediction
- Conclusion

PREDICTION

SSE for predict models:

	Spherical ‡	Exponential ‡	Matern [‡]
5	483239486	441347900	441347900
6	640487307	585196252	585196252
7	1018205620	917097306	917097306
8	1172933529	1074494482	1074494482
9	1071913221	980410306	980410306

PREDICTION

7:00~8:00

- Introduction
- Exploratory Data Analysis
- Spatial Trend
- Anisotropy
- Model Fitting
- Prediction
- Conclusion

CONCLUSION

- More and more people moving toward CBD
- Population density variation increases by time
- The closer to Metro or Expressway, the more people
- Movement along transportation corridor

Spatial pattern of population movement during morning peak hours

Wenyu Gao, Danni Lu Dec.1st, 2016