Analysis of transplantation effectiveness and its optimal timing in patients affected by Myelodysplastic Syndrome

Applied Statistics | 22 april 2021

Tutors: Prof. F. leva Dr. M. Spreafico Dr. C. Gregorio

Luca Caivano Taguhi Mesropyan Manfred Nesti Michele Precuzzi

Myelodysplastic Syndrome (MDS)

- rare disease
- can progress into Acute Myeloid
 Leukemia (AML)
- very high mortality in acute phase
- transplantation is the only cure

Transplantation effectiveness

Investigate the differences between 2 cohorts of the data: transplanted and not transplanted

Optimal timing

Build a model that optimizes the transplantation time for optimal survival

- early transplantation: risk of relapse (the disease reappears)
- **late** transplantation: risk of ineffectiveness

Data Exploration

Number of patients: 2876

HSCT = "Transplanted"
DNH = "Not Transplanted"

What's next?

Survival Analysis

- → Transplanted vs Not Transplanted
- → Genomic Groups
- → New Clusters

> PCA

o feature importances

Transplantation Timing Optimization Model

Clustering

References

M. Bersanelli et al. - Journal of Clinical Oncology, 2021 "Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes"

M. Cazzola et al. - American Society of Hematology, 2013 "The genetic basis of myelodysplasia and its clinical relevance"

R. C. Lindsley et al. - The New England Journal of Medicine, 2017

"Prognostic Mutations in Myelodysplastic Syndrome after Stem-Cell Transplantation"

