PREDICTING NCAA MEN'S BASKETBALL TOURNAMENT RESULTS

Frederick McCollum

1

OVERVIEW

Background

Objectives

Methodology

Results

Uses of this Model

BACKGROUND

3

DATA OVERVIEW

- Data obtained from Kaggle (Andrew Sundberg)
- NCAA men's basketball team statistics
- •2015 2019 (5 years)
- Contains team's final result

5

Predict NCAA Men's
Basketball Tournament results

Identify the best type of predictive model

Determine variables with the most significant impact on predictions

FEATURE SELECTION TEAM CONF G W WINPERCENT ADJDE BARTHAG EFG_O EFG_D TOR TORD ORB DRB FTR FTRD TP_O 2P_D 3P_O 3P_D ADJ_T WAB ADJOE SEED YEAR POSTSEASON

11

DATA WAS PREPROCESSED TO INCREASE PREDICTIVE EFFICACY OF THE DATA

- Identify and remove near-zero variance predictors (none removed)
- Remove highly correlated predictors (none removed)
- Center and scale numeric predictors
- Apply Yeo-Johnson transformation to numeric predictors
- Convert factor variables to dummy variables

THREE DIFFERENT MODELS WERE CREATED

	RANDOM FOREST	NEURAL NETWORK	STOCHASTIC GRADIENT BOOSTING
•	Decision tree based	Constructed to resemble human brain	Decision tree based
•	Ensemble model (aggregate)	Highly complex	Ensemble model (stepwise)
•	Random sample each time	Large "network" of decision-making functions	Each tree improves on the last

13

THREE DIFFERENT MODELS WERE CREATED One hidden layer of Outlook unobserved variables RainPredictor₁ Overcast Sunny Z_1 Predictor₂ Humidity Wind Z_2 Outcome YesPredictor₃ Normal Weak Strong \mathbf{Z}_{H} Predictor_P Νo Yes Yes No towardsdatascience.com

THREE DIFFERENT MODELS WERE CREATED

RANDOM FOREST	NEURAL NETWORK	STOCHASTIC GRADIENT BOOSTING
Pros	Pros	Pros
Less prone to overfitting	Powerful learner	 Variance similar to random forest
Less variance	Flexible	
		 Perform well for
Handles noisy data well	Cons	unbalanced data
•	Complexity	
Cons		Cons
May not perform as well	Require more data to be	 More prone to overfitting
for regression models	effective	than RF
May not learn complexities	Processing power	More difficult to tune than
as well as GBM		RF

15

USES OF THIS MODEL

