PART A: Multiple choice or Short answer

(5 mark for each correct answer/choice)

Problem A1. Let p and q be the propositions:

p: 113 is a prime number.

q: $x^2 - 3x + m = 0$ always has a real solution for any real number m.

Circle the best answer.

A. $\neg p \rightarrow \neg q$ is true and $p \rightarrow q$ is false.

B. $\neg p \rightarrow \neg q$ is true and $p \rightarrow q$ is true.

C. $\neg p \rightarrow \neg q$ is false and $p \rightarrow q$ is false.

D. $\neg p \rightarrow \neg q$ is false and $p \rightarrow q$ is true.

<u>Problem A2</u>. Find the cardinality of 2^A , where A is the set of all even integers between 1 and 9.

Circle the best answer.

A. 32

B. 16

C. 4

D. 8

Problem A3. Express the negations of the following statement so that all negation symbols immediately precede predicates

$$\exists x \forall y ((xy = 0) \rightarrow (x + y = 2))$$

Write your answer here:

Problem A4. Let

 $X = \{x \mid 0 \le x \le 2, x \text{ are intergers}\}, \text{ and }$

 $Y = \{y \mid 0 \le y^2 \le 3, y \text{ are integers}\}.$

Find the product $X \times Y$ (list all its elements).

Write your answer here: $X \times Y =$

Problem A5. Let $f: \mathbf{R} \to \mathbf{R}$ be a real valued function, $f(x) = \ln x$, and g:

 $\mathbf{R} \to \mathbf{R}$ the ceiling function of x. Find g(f(1/2)).

Write your answer here: g(f(1/2)) =

Problem A6. Find the proposition(s) which is logically equivalent to the following proposition:

`Every CSE student takes a calculus course.'

p(x): 'x is a CSE student'

q(x): `x takes a calculus course.'

Circle the best answer.

 $A. \forall x (p(x) \land q(x))$ B. $\nexists x (p(x) \rightarrow q(x))$

C. $\forall x (p(x) \rightarrow q(x))$ D. The correct answer is different from A,B,C.

Problem A7. Find the possible cardinality of a domain U for the quantifiers in

 $\exists x \exists y (x \neq y \land \forall z (x = z) \lor (y = z))$ such that this statement is true. Write your answer here: |U| =

Problem A8. Let $f, g: X \to X$ be two functions.

Circle the incorrect stamen(s)

A. f is NOT onto if and only if

$$\exists y \forall x (f(x) \neq y),$$

B. f is injective if and only if

$$\forall y \forall x ((x \neq y) \rightarrow (f(x) \neq f(y)),.$$

- C. If f and $g^{\circ}f$ are both bijective then g is one to one.
- D. $f \circ g$ is onto if and only if both f and g are onto.

PART B: WRITE YOUR FULL ANSWERS.

Problem B1. Let A, B, C be subsets of U (Universal). Prove

- a. Prove $\overline{A \cup B \cup C} = \overline{A} \cap \overline{B} \cap \overline{C}$
- b. Prove $B A = B \cap \bar{A}$
- c. If |A| = 5, |B| = 7, |C| = 8, $|A \cap B| = 3$, $|B \cap C| = 3$ and $|A \cap C| = 3$ and $|A \cap C| = 3$. Find $|A \cup B \cup C|$?

Problem B2. Use rules of inference to show that if $\forall x (P((x) \rightarrow Q(x)))$ and $\forall x (P((x) \land Q(x) \rightarrow R(x)))$ are true, then $\forall x (\neg R((x) \rightarrow \neg P(x)))$ is also true, where the domains of all quantifiers are the same.

Problem B3. Prove that if x^5 is irrational then x is irrational using

- a. a proofs by contraposition (indirect proof).
- b. a proofs by contradiction.

<u>Problem B4.</u> Let p, q and r be propositions. Prove or disprove that the following propositions are logical equivalent (Justify your answer):

$$(\neg p \land \neg r) \lor q$$
 and $(p \rightarrow q) \lor (r \rightarrow q)$?

Problem B5. Let $f, g: \mathbb{R} \to \mathbb{R}$ be functions defined by

$$f(x) = e^x$$
, $g(x) = 3x^3 - x$.

- a. [5 marks] Find the formula of $g^{\circ}f$ and $f^{\circ}g$.
- b. [10 marks] Find the inverse of $f^{\circ}g$ if exists. Justify your answer.

