Congruence

Congruence (or modular arithmetic) is a useful tool and is a good playground for proving things.

Definition: Let $n \in \mathbb{N}$ and let a and b be integers. Then we say that a is congruent to b modulo N (or mod N) if a - b is divisible by N. We write this

$$a \equiv b \pmod{N}$$
.

Examples

- x is odd if and only if $x \equiv 1 \pmod{2}$.
- 37 is congruent to 3 mod 4.
- Every odd number is congruent to either 1 or 3 mod 4.

Proving the contrapositive

The **contrapositive** of an implication $P \implies Q$ is $\neg Q \implies \neg P$. These two statements are equivalent, so proving one is the same as proving the other.

WARNING: Don't confuse the contrapositive with the converse $Q \implies P$.

Problems.

- 1. Suppose a, b, and c are integers. If a does not divide bc, then a does not divide b.
- 2. Suppose $x \in \mathbb{R}$. If $x^5 4x^4 + 3x^3 x^2 + 3x 4 \ge 0$, then $x \ge 0$.
- 3. Suppose x is an integer. If $x^3 1$ is even, then x is odd.
- 4. If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then $ac \equiv bd \pmod{n}$.

Proof by contradiction

Strategy: Show $\neg P$ implies a falsehood (like $A \land \neg A$). Conclude P is true.

- 1. $\sqrt{2}$ is not a rational number.
- 2. There are infinitely many prime numbers.

Strategy: To show $P \implies Q$, show that $P \land \neg Q$ implies a falsehood.

• Show that there are no integers a and b such that 18a + 6b = 1.