无线通信实验在线开放课程

主讲人: 吴光 博士

广东省教学质量工程建设项目

$$s_m(t) = A_c(k_a m(t)) \cos(2\pi f_c t)$$

$$s_m(t) = A_c \cos[2\pi f_c t + 2\pi k_f \int m(t)dt]$$

Lab 4: Frequency Modulation

主讲人: 吴光 博士

Email: wug@sustech.edu.cn

- 1、FM调制系统——抗噪声性能强
- 2、是否可以通过增加贷款带宽的方式,换取性能

Demo: NBFM Simulation (Single Tone)

Simulation Model of FM System

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

$$s_{FM}(t) = A_c \cos[2\pi f_c t + 2\pi k_f \int m(t)dt]$$

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

$$s_{FM}(t) = A_{c} \cos \left[2\pi k_{f} \int m(\tau) d\tau \right] \cos (2\pi f_{c}t) - A_{c} \sin \left[2\pi k_{f} \int m(\tau) d\tau \right] \sin (2\pi f_{c}t)$$

$$f_{\rm i} = 2\pi f_{\rm c} + 2\pi k_f m(t)$$

$$\cos \left| 2\pi k_{\rm f} \int {\rm m}(\tau) {\rm d}\tau \right| \approx 1$$

$$\sin\left[2\pi k_{\mathrm{f}}\int m(\tau)\mathrm{d}\tau\right] \approx \left[2\pi k_{\mathrm{f}}\int m(\tau)\mathrm{d}\tau\right]$$

$$s_{FM}(t) = A_{c} \cos \left[2\pi k_{f} \int m(\tau) d\tau \right] \cos (2\pi f_{c}t) - A_{c} \sin \left[2\pi k_{f} \int m(\tau) d\tau \right] \sin (2\pi f_{c}t)$$

$$s_{\text{NBFM}}(t) = A_{\text{c}}\cos(2\pi f_{\text{c}}t) - A_{\text{c}} \left[2\pi k_{\text{f}} \int m(\tau) d\tau \right] \sin(2\pi f_{\text{c}}t)$$

Pre-Lab: NBFM Mathematical Model

Modulator

Demodulator

Phase Locked Loop (PLL)

$$s_{NBFM}(t) = A_c cos (2\pi f_c t) - A_c \left[2\pi k_f \int m(\tau) d\tau \right] sin(2\pi f_c t)$$

Analysis: Phase-Locked Loop

 $e(t) = \frac{1}{2} \{ \cos[2\pi (f_c - \hat{f}_c)t + (\varphi - \hat{\varphi})] + \cos[2\pi (f_c + \hat{f}_c)t + (\varphi + \hat{\varphi})] \}$

VCO Voltage Controlled Oscillator

Frequency Modulation

Demo: NBFM Simulation (Music)

Pre-Lab: General Mathematical Model

Modulator

Pre-Lab: General Mathematical Model

Frequency Modulation

Question ?

