Express Mail No. EV887976725US USAN: 10/618,073

REGISTRY OF PATENTS SINGAPORE

This is to certify that the annexed is a true copy of application as granted for the following Singapore patent application.

Date of Filing

17 NOVEMBER 2001

Application Number

200107115-8

P - No

103321

Date of Grant

31 MAY 2006

Applicant(s) /

STMICROELECTRONICS ASIA PACIFIC

Proprietor(s) of Patent

PTE LTD

NATIONAL UNIVERSITY OF SINGAPORE

Title of Invention

LOW-POWER CODE DIVISION MULTIPLE

ACCESS RECEIVER

CERTIFIED COPY OF PRIORITY DOCUMENT

Olun

SERENE CHAN (Ms)
Assistant Registrar
for REGISTRAR OF PATENTS
SINGAPORE

09 NOVEMBER 2006

THE REGISTRY OF PATENTS SINGAPORE

THE PATENTS ACT (CHAPTER 221)

CERTIFICATE OF GRANT OF PATENT

In accordance with section 35 of the Patents Act, it is hereby certified that a patent having the P-No. 103321 has been granted in respect of an invention having the following particulars:

Title

: LOW-POWER CODE DIVISION MULTIPLE

ACCESS RECEIVER

Application Number : 200107115-8

Date of Filing

: 17 November 2001

Priority Data

Name of Inventor(s) : KARTHIK SATHIAVAGEESWARAN; CHRIS

ALDRIDGE; MOHAMED IMTIYAZ IQBAL

Name(s)

STMICROELECTRONICS ASIA PACIFIC PTE

and Address(es) of

LTD

Proprietor(s) of Patent:

28 ANG MO KIO INDUSTRIAL PARK 2

SINGAPORE 569508;

NATIONAL UNIVERSITY OF SINGAPORE

10 KENT RIDGE CRESCENT

SINGAPORE 119260

Date of Grant

31 May 2006

Dated this 31st day of May 2006.

+174174*

Liew Woon Yin (Ms) Registrar of Patents, Singapore.

Low-Power Code Division Multiple Access Receiver

Field of the Invention

This invention relates to wireless communications systems, and in particular to 5 wireless communications signal receivers suitable for use in direct-sequence spread spectrum systems such as those employing code division multiple access (CDMA) techniques.

Background of the Invention

In a standard CDMA receiver, digital correlation techniques are conventionally employed, involving an analog-to-digital converter (ADC) that operates at typically four times the chip rate. In currently proposed third-generation communication systems that rate may be in the region of 16MHz. In addition to the ADC, a high-order square-root raised cosine filter is also required on the receiver side to obtain optimal performance. If this filter is implemented by digital means, it would also typically operate at four times the chip rate.

One of the primary applications for CDMA communications systems are in cellular telecommunications, where receiver circuitry is incorporated in a portable handset or the like. In order to extend the battery life for operation of the portable handset, it is desirable to utilise circuitry therein that is as power efficient as possible. It is therefore desirable for the handset circuitry, such as that in the CDMA receiver, to be low in power consumption. One way in which power consumption can be reduced is to reduce the rate of operation of processing components such as analog-to-digital converters and the like.

25

30

20

10

Summary of the Invention

According to the present invention, there is provided a code division multiple access (CDMA) RAKE receiver including:

a plurality of receivers;

amplifying and filtering circuitry for obtaining a direct sequence spread spectrum received signal;

a spreading code signal generator circuit for generating an analogue spreading code signal;

analogue correlation detection circuitry for detecting correlation between said received signal and said spreading code signal to produce an analogue correlation signal; and

5

analogue to digital conversion circuitry for generating a digital data signal from said analogue correlation signal.

The present invention also provides a method for receiving and decoding a direct sequence spread spectrum signal in a code division multiple access (CDMA) communications system in which a digital data signal having a baseband frequency is combined with a digital spreading code sequence and modulated for transmission at a carrier frequency, comprising:

amplifying and filtering a received direct sequence spread spectrum signal;

generating an analogue spreading code signal corresponding to the transmission spreading code sequence;

performing analogue correlation detection between the received signal and the spreading code signal to obtain a correlation signal; and

applying analog to digital conversion to the correlation signal to obtain a replica of the digital data signal.

The present invention further provides a code division multiple access RAKE receiver including a plurality of receivers, wherein each receiver includes:

amplifying and filtering circuitry for obtaining a direct sequence spread spectrum 25 received signal;

a spreading code signal generator circuit for generating an analogue spreading code signal;

analogue correlation detection circuitry for detecting correlation between said received signal and said spreading code signal to produce an analogue correlation signal; and

analogue to digital conversion circuitry for generating a digital data signal from said analogue correlation signal; and

wherein the outputs from the plurality of receivers are combined to generate a single digital data signal output, and wherein time delay elements are arranged to delay the passage of the analogue spreading code signal to the analogue correlation detection circuitry for different receivers.

10

15

20

Embodiments of the present invention as disclosed in detail hereinbelow, include a new low-power receiver architecture which employs analogue correlation, with the implication that the ADCs operate at the symbol rate instead of the chip rate as required in convention receiver structures. In 3^{rd} generation systems spreading factors up to 256 are employed, and in the case of four times over-sampling the ADCs in the new receiver architecture could therefore operate at $1/1024^{th}$ (256 x 4) of the chip rate.

In this structure, the analogue correlation does not necessarily need to take place at base-band and correlation at an IF frequency (or at RF frequency itself) is considered. Similarly, it is not necessary to correlate the received signal using a digital chip sequence. The correlation signal can be an analogue equivalent to the digital chip sequence that may not even require pre-filtering using a square-root raised cosine filter. Using this method, the receiver RRC filter (as well as any alternate digital filter for that purpose) may be removed.

25

Applications for the low-power receiver architecture include portable telecommunications devices. The architecture may be used as front-end structure for multi-mode receivers.

Brief Description of the Drawings

The invention is described in greater detail hereinafter, by way of example only, and with reference to embodiments thereof illustrated in the accompanying drawings, wherein:

Figure 1 is a block diagram of a standard CDMA receiver;
Figure 2 is a block diagram of a correlator ("finger") of a RAKE receiver;

Figure 3 is a block diagram of a conventional receiver structure showing three fingers of the RAKE receiver;

Figure 4 is a block diagram of a receiver constructed according to an embodiment of the present invention;

Figure 5 is a block diagram illustrating the process of modulation and spreading of a communications signal at the transmitter side; and

Figure 6 is a more detailed block diagram of a receiver constructed according to an embodiment of the present invention, showing three fingers of the RAKE.

Detailed Description of the Preferred Embodiments

In order to provide a thorough understanding of the present invention, its operation and advantages, the concept and operation of a standard CDMA receiver is first described hereinbelow by way of background.

A conventional CDMA receiver circuit 10 is shown in block diagram form in Figure 1, which obtains a received signal (r(t)) from an antenna 12. The antenna 12 is coupled to pass the received signal to a low-noise amplifier (LNA) 14, having its output coupled to an input of a first mixer circuit 16. The first mixer circuit 16 mixes the amplified received signal with a signal derived from a first local oscillator LO1, and the output is passed to a lowpass filter 18. The output of the lowpass filter 18 is coupled to the input of an automatic gain control (AGC) circuit 20, which in turn provides input to a second mixer circuit 22.

At the second mixer 22, the signal is down-converted to base-band by mixing with a second local oscillator signal (LO2) and split into in-phase (I) and quadrature (Q) components, which are respectively passed to lowpass filters 24. The outputs of filters 24 are coupled to respective analog-digital converters (ADCs) 26, which are in turn connected to respective 48-tap finite impulse response (FIR) filters 28. The outputs derived from the FIR filters 28 are then provided to a RAKE receiver 30.

The operation of the conventional CDMA receiver 10 is described in greater detail below.

Generally, the signal received from the communications channel at the antenna 12 is corrupted by noise, delayed and attenuated. For the purposes of explanation, let the received signal be represented by r(t) = s(t) + n(t), where s(t) refers to the signal content and n(t) refers to the Additive White Gaussian Noise (AWGN). The AWGN is made up from thermal noise due to the receiver components, and interference. For the present discussion, it is acceptable to ignore the AWGN component.

The AWGN that enters the receiver along with the signal is typically filtered and becomes band-limited. Finally, when it is split into in-phase and quadrature-phase elements, the statistics of the noise contained in the in-phase and quadrature-phase signals remain orthogonal to one another and retain AWGN properties.

The received signal r(t) is first amplified by the low-noise amplifier (LNA) 14 and output to the first mixing stage 16. The noise figure of the receiver tells us how much the thermal noise will deteriorate the incoming signal. Since the overall noise figure of the system is greatly contributed by the first component, it is essential that the LNA 14 have very low noise characteristics (typically between 1 and 4 dB).

At the input of the first mixer 16, the received signal is analogue and is at a carrier frequency of $\omega_c = 2\pi f_c$. This is mixed with $\omega_{LOI} = \omega_c - \omega_I$, where ω_I is the first intermediate frequency (IF) and where ω_{LOI} is derived from the local oscillator LO1.

Expressing these operations mathematically:

$$let r(t) = cos(\omega_c t + \phi(t) + \zeta), \tag{1}$$

where $\phi(t)$ is the modulation phase and ξ is any arbitrary phase delay. After mixing, we obtain

$$x(t) = \cos(\omega_c t + \phi(t) + \xi) \cdot \cos((\omega_c - \omega_l)t)$$

$$x(t) = 0.5 \cos((2\omega_c - \omega_l)t + \phi(t) + \xi) + 0.5 \cos(\omega_l t + \phi(t) + \xi). \tag{2}$$

The first term of Equation (2), above, is a high frequency term and is subsequently filtered off by the lowpass filter 18. Only the second term, which is basically the received signal down-converted to ω_I , remains and is passed to the next stage.

An Automatic Gain Control (AGC) stage 20 after the lowpass filter 18 is used to increase the signal amplitude and is generally applied after the first mixer. In second and third generation communication systems, the control mechanism for the AGC is typically derived from the power measurement of the demodulated in-phase (I) and quadrature (Q) signals. These algorithms are normally performed by a baseband digital signal processor.

The signal is then presented to a second mixer (complex) 22 that down-coverts the signal to base-band and also splits it into its in-phase and quadrature components. Thus, the signal is orthogonalized. The second mixing frequency ω_{LO2} is at ω_I and is derived from the local oscillator LO2.

From Equation (2), after the low-pass filter and AGC stages, the second term can be obtained as:

$$y(t) = 0.5\cos(\omega_1 t + \phi(t) + \xi). \tag{3}$$

This is mixed with $\cos \omega_1 t$ to obtain the in-phase component and with $\sin \omega_1 t$ for the quadrature component. The resulting orthogonal components can be expressed as:

$$z_I(t) = 0.25\cos(2\omega_1 t + \phi(t) + \xi) + 0.25\cos(\phi(t) + \xi)$$
 and

$$z_Q(t) = 0.25 \sin(2\omega_1 t + \phi(t) + \xi) - 0.25 \sin(\phi(t) + \xi)$$
 (5)

The respective in-phase and quadrature lowpass filters 24 remove the $2\omega_I$ term from the components represented above, and only the base band part of the received signal is retained. After the filtering, the base-band analogue received signal is digitized by the respective analogue-digital converters (ADCs) 26 before being filtered by respective 48-tap FIR filters 28 programmed with a root-raised cosine (RRC) profile.

In third generation systems currently proposed, the chip-rate of the signal is 3.84 Mcps. As stated by Nyquist, the sampling rate must be at least twice the bandwidth of the signal. Typically, the ADC samples are at four times the chip rate and the output signal is 4-8 bits per sample. The purpose of the FIR filter is to band-limit the noise to the same bandwidth as that of the signal, and to give a raised cosine transfer function when the path from the transmitter to the receiver is considered.

After passing through the FIR filter, the digitized in-phase and quadrature components of the signal are available for despreading by a RAKE receiver. The RAKE receiver utilizes the concept of "time diversity" to combine signals that have been delayed due to various paths between the transmitter and the receiver. It has a number of correlators or "fingers", and each finger is used to despread one of the paths. Typical RAKE receiver designs use 3, 4 or 5 fingers to deal with signals that have multipath components. One such finger is shown in block diagram form in Figure 2.

Figure 2 is a representation of a typical single finger 32 of a RAKE receiver. The digitised signal in the form of I and Q components must be correlated in order to achieve despreading so as to yield the desired information bits following signal processing. The I and Q signal components are multiplied (34) with an exact replica of the complex OVF + scrambling code signal (represented in complex form as pni and pnq, and correlation is performed via the integrator 35. The integrator 35 is constructed from an adder (36) and delay element (38) with a particular time delay D that is estimated from baseband algorithms. The correlated signal is then subjected to signal processing (40) to obtain the reconstructed information bits. Other RAKE fingers perform the same operation with different delays to achieve the despreading. The signal processing block (40) illustrated represents all of the processes that are involved following the correlation process required to reconstruct the originally transmitted data sequence. In the immediate context of the RAKE receiver, this would include a channel-decoder for forward-error correction.

In each finger of the RAKE receiver, the received signal is correlated against the combined scrambling and OVSF codes. This sequence is termed (pni + j.pnq). Here, we assume that the (pni + j.pnq) is time-synchronised with the transmitter to result in demodulation.

Expressed mathematically, the output from the correlator can be given as:

$$\sum_{0}^{255} (I + jQ) \cdot (pni - jpnq)$$

$$\cong \sum_{0}^{255} ((I \cdot pni + Q \cdot pnq) + j(Q \cdot pni + I \cdot pnq))$$
(6)

From Equation (6), take the real part to arrive at the final despread signal. Then, after each RAKE receiver finger, the real part of each signal can be summed directly to arrive at the final despread signal in what is known as a non-coherent receiver.

In a coherent receiver, the pilot code determines the amplifier gain and these amplifiers, placed after the correlator, can amplify both the real and imaginary parts of the correlated signal. Used typically in CDMA, the pilot code helps to obtain a form of weighting based on the quality of the despread signal (also the SNR). This helps to provide an optimum signal to the subsequent stages of the receiver. A detailed diagram of the conventional receiver showing the RAKE (with three fingers) is presented Figure 3.

The above described receiver structure is commonly used in current CDMA receivers. However, because of the high sampling rate of the ADCs (26), and the size and operating speed of the FIR filters involved, the power consumption is relatively high. Reduction of power consumption is one of the ways of optimizing receiver architectures and the present trends in receiver design are towards low power architectures. A low-power receiver may be the distinguishing feature in a successful product. Accordingly, a new low power receiver structure is disclosed herein which employs analogue correlation with the implication that the ADCs can operate at the symbol rate instead of the chip rate. In third generation systems where spreading factors up to 256 are employed, this means that the ADCs can operate at 256 times less frequency.

Using this structure, the analogue correlation does not necessarily need to take place at base-band and correlation at an IF frequency (or at RF frequency itself) is possible. Similarly, it is not necessary to correlate the received signal using a digital chip sequence. The correlation signal can be an analogue sequence that is a digital chip sequence that may not even require pre-filtering using the square-root raised cosine filter. Using this method, the receiver RRC filter (as well as any alternate digital filter for that purpose) may be removed.

In the above description of the conventional CDMA receiver, it was mentioned that the use of digital correlation techniques requires sampling to be performed at four times the chip rate, and subsequent digital circuits have to operate at this rate until the symbol is despread. This high rate implies the usage of much power.

A block diagram of a receiver circuit 100 constructed according to an embodiment of the present invention is shown in Figure 4. The circuit 100 resembles the conventional receiver circuit in some respects, although in this case most of the elements employed therein operate in the analogue rather than digital domain. Figure 6 represents a more detailed block diagram of the receiver circuit of the present invention, illustrating the generation of the despreading sequence, which is assumed to be time-synchronised to the transmission source.

The structure of the receiver circuit 100 shown in Figure 4 is as follows. An antenna 102 is provided to obtain a received signal r(t) which is provided to a low-noise amplifier (LNA) circuit 104. The amplified signal is output from the LNA 104 to a bandpass filter 106. The bandpass filter 106 is required to filter the incoming RF signal to the frequency band that is intended for the system and architecture. In the case of a wideband code division multiple access (WCDMA) system, for example, the receiver bandwidth might typically be of 60MHz bandwidth between 2110MHz and 2170MHz. The function of the bandpass filter is to reject out-of-band signals, which may be spurious emissions or other unwanted signals. The preferable characteristics of the bandpass filter are low-loss, minimum ripple in the passband and good roll-off characteristics.

The output from the bandpass filter 106 is provided to respective in-phase and quadrature analog mixer circuits 108, 110. At the in-phase mixer circuit 108 the received signal is mixed with an in-phase component of an analog replica of the spreading code sequence A(t), whilst at mixer 110 the received signal is mixed with a quadrature component of the analog spreading code sequence B(t). The outputs from the mixers 108, 110 are coupled to respective analog integrator circuits 112, 114 where integration of the respective mixed signals takes place over a symbol period to yield the in-phase and quadrature despread signals. These signals are combined by an analog summing circuit 116, the output of which is coupled to the input of an analog-digital converter (ADC) 118. The output of ADC 118 is coupled to signal processing circuitry 120 which provides the decoded data signal. The signal processing circuitry 120 may perform processing operations in a similar manner to the

signal processing performed in connection with a conventional receiver architecture such as that shown and described in relation to Figures 1-3.

It is apparent that one of the differences in the receiver circuit 100 as compared to the circuit structure of the conventional receiver is that the FIR filters have been removed from the structure. This is made possible due to the fact that correlation is done in the analogue domain rather than the digital domain. This also means that correlation does not necessarily have to be done at base-band. Correlation can thus be carried out at any intermediate frequency or even at the carrier frequency.

With exception to the correlation being performed in the analogue domain and the fact that FIR filter has been removed from the structure, the architecture of the receiver circuit 100 is actually quite similar to the conventional receiver circuit architecture 10. Functionally, however, the ADCs in the new receiver circuit 100 are able to sample at the symbol rate of the system, as opposed to a multiple of the chip rate required of the ADCs in the conventional receiver circuit. Even though the number of ADCs is increased in the new circuit structure, the power consumed will be lower due to the drastic reduction in the speed of operation (to the order of the spreading factor of the system).

In order to illustrate that the correlation of the received signal can be accomplished at any intermediate frequency including the carrier frequency, the entire process of transmission to correlation is briefly explained hereinbelow, having reference to a simple block diagram of the transmitter-end circuitry shown in Figure 5.

In Figure 5, the incoming symbols represented by a_n are data-modulated (typically by QPSK) and are also split into in-phase and quadrature components before they are multiplied by the in-phase (ϕ_i) and quadrature (ϕ_q) code vectors (orthogonalised scrambling codes + OVF). Once the signal has been spread in this manner, it is transmitted.

As mentioned earlier, the transmitted signal passes through the communications channel and is corrupted by noise (the treatment of which is not dealt with in this context) and also undergoes phase delays and attenuation.

At the transmitter antenna, the signal may be represented as:

as mentioned above.

$$s(t) = \alpha_n \cdot \phi_i \cdot \cos(\omega_c t) + \alpha_n \cdot \phi_q \cdot \sin(\omega_c t)$$
where α_n represents the incoming symbols, ϕ_i , ϕ_q the spreading sequence elements.

At the receiver side, the received spread signal may be represented as

$$r(t) = a_n \cdot \phi_i \cdot \cos(\omega_c t + \xi) + a_n \cdot \phi_q \cdot \sin(\omega_c t + \xi) \tag{8}$$
 where ξ stands for the delay in phase (and the error in phase) incurred during the transmission

In order to derive symbol a_n from this signal, analogue correlation with a time-synchronised copy of the code is performed and the integration is done over a symbol period.

Figure 6 is a block diagram of the low-power CDMA receiver circuit 100 according to the present invention, illustrating analog conversion of the code sequences and including three RAKE finger circuits. Referring to Figure 6, the code replicas are produced as analogue quadrature signals to be correlated with the incoming signal. If there is more than one data channel, there will be more than one PN code and the circuit size will increase, however the simple case of a single data channel is considered herein.

The digital code sequences I_{code1} and Q_{code1} are input to respective digital-analog converters (DACs) 130, 132. The resulting analog signals are subjected to lowpass filtering through lowpass filter circuits 134, 136. By mixing of those signals with selected frequency signals $cos(\omega_c t)$ and $sin(\omega_c t)$, the analog the code replicas are generated as orthogonal inphase and quadrature elements $A_{1,I}(t)$, $B_{1,I}(t)$, $A_{1,Q}(t)$, $B_{1,Q}(t)$ (where the numerical subscript denotes the RAKE finger for which the code replica signals are designated).

Since a code-shift in the digital domain implies a time-delay in the analogue domain, analogue time-delay circuits (D_1, D_2) are used to provide the shifted codes for the other RAKE fingers. This reduces the number of mixers and DACs used in code replica generation. Moreover, the provision of analogue time-delays is feasible even at very high frequencies, wherein transmission lines can be used to provide the necessary time-delays.

Assuming accurate time-synchronisation, the code replicas are generated as orthogonal in-phase and quadrature elements. In the analysis below, the generation of the in-phase code element only is shown. In a similar fashion, the Q- (Scrambling code + OVSF) can also be generated.

Expressed mathematically:

$$A(t) = \phi_i \cos(\omega_c t) -$$

and

$$B(t) = \phi_i \sin(\omega_c t).$$

After this stage, the received signal from Equation (8) is multiplied by A(t) and integrated over a symbol period to yield the in-phase despread signal and similarly with B(t) to yield the quadrature despread signal.

Considering the in-phase portion of the despreading yields:

$$I = \int_{0}^{T} [\phi_{i} \cdot \cos \omega_{c} t] \cdot [\alpha_{n} \cdot \{\phi_{i} \cos(\omega_{c} t + \xi) + \phi_{q} \sin(\omega_{c} t + \xi) \}] dt$$

$$I = \int_{0}^{T} [\{\phi_{i} \cdot \cos(\omega_{c} t) \cdot \} \cdot \{\alpha_{n} \cdot \phi_{i} (\cos \omega_{c} t \cdot \cos \xi - \sin \omega_{c} t \cdot \sin \xi) \} + \{\phi_{i} \cdot \cos(\omega_{c} t)\} \cdot \{\alpha_{n} \cdot \phi_{i} (\sin \omega_{c} t \cdot \cos \xi - \cos \omega_{c} t \cdot \sin \xi) \} dt$$

$$(9)$$

In the Equations (9) and (10) above, correlation is done with $\phi_i \cos(\omega_c t)$ and the received signal has been expanded using $\cos(A + B)$ and $\sin(A + B)$ trigonometric identities.

Splitting the whole integral into four parts, it can be seen that only one term containing the ϕ_i^2 along with a squared cosine will yield a high correlation value, while the other terms will be close to zero given the orthogonality between the in-phase and quadrature components of the code replicas.

Expressing the above statement mathematically:

$$\int_{0}^{T} \cos(\omega_{c}t) \cdot \sin(\omega_{c}t) dt = 0 \qquad and \qquad \int_{0}^{T} \phi_{t} \cdot \phi_{q} dt = 0$$

the required term is given by

$$I = \int_{0}^{r} \phi_{t}^{2} \cdot \alpha_{n} \cdot \cos^{2} \omega_{c} t \cdot \cos \xi \cdot dt$$
 (11)

The terms in the above expression, ϕ_i^2 , a_n and $\cos \xi$ are constants over a symbol period.

Therefore, the integral is much simplified and it can be seen clearly that this term yields a high correlation value that gives the in-phase despread symbol:

$$I = \alpha_n \cdot K \cdot \cos \xi \tag{12}$$

Similarly, if the correlation of the received signal is done with $\phi_i \sin(\omega_c t)$, the final term left after correlation would be:

$$Q = \alpha_n \cdot K \cdot \sin \xi \tag{13}$$

So, according to the value of the phase-error ξ , either the in-phase or the quadrature element of the despread signal will dominate. I and Q from Equations (12) and (13) along with other corresponding correlation results can be summed to yield the final despread signal.

From the above analysis, it can inferred that correlation in the described receiver architecture need not necessarily occur at base-band. It can occur at any intermediate (IF) frequency including the carrier frequency as has been shown in the Equations (7) - (13).

The fingers of the RAKE (Figure 6) are made of code replica generators and the analogue time-delays. The multiple paths with different delays and phase-errors are resolved by use of these branches. Effective multipath resolution (multipath diversity) is obtained by properly combining the resulting despread signal. A detailed diagram of the receiver structure 100 is illustrated in Figure 6 showing three fingers of the RAKE along with the novel way of reducing complexity of the code-replica generation.

After correlation, the despread signal is digitised by an ADC (118) before it is passed for further signal processing. As mentioned above, an advantage in this structure is the removal of the FIR filters that were previously working at four times the chip rate and consuming considerable power. Also, the architecture of a DAC is much simpler than that of an ADC and this makes the overall structure simpler. The use of such architecture therefore reduces the power consumption of the receiver to a great extent. Finally, the ADC operates at

the symbol rate of the communications system, which is a much lower rate than required of the ADCs in the convention receiver circuit structure.

Since correlation can practically be achieved at any intended frequency, the receiver structure can be simplified by omitting the need for down-converting mixers and corresponding low-pass filters. However, the new architecture is flexible in the sense that the same components can be incorporated if correlation has to be done after heterodyning operations.

The receiver architecture according to embodiments of the present invention enables several significant advantages as compared to conventional receiver circuitry, including:

- i. In third generation mobile communication systems, spreading factors of up to 256 are used. This clearly means that the ADCs in the receiver of the invention would operate at 1/1024th of the operating frequency of the conventional method that uses four-times over-sampling as mentioned earlier. Accordingly, the power consumed by the ADCs in the new architecture is lower when compared to that of the standard architecture.
- ii. As mentioned earlier, the rate at which the ADCs in the new architecture work (symbol rate) is much lower than the rate at which their counterparts in the standard structure work (four times chip rate). Thus, it could be possible to employ an analogue multiplexer and utilise a single ADC for more than one RAKE finger and route the signals accordingly.
- iii. The use of DACs in the new architecture does not increase the complexity of the overall structure, as the DACs are structurally simpler and consume lesser power compared the ADCs.
- iv. The method of using analogue time-delays to generate code-shifts in code replica generation reduces the number of DACs and mixers in the process. This technique is advantageous provided the delay spread is in the range of a few micro-seconds. Large delay spread reduces the advantage of utilising this technique.
- v. Digital techniques typically involve usage of more power compared to analogue techniques. Thus, the use of analogue correlators decreases the power consumption of the structure and justifies the use of the technique.

The foregoing detailed description of the invention, its principles, operation and embodiments, has been presented by way of example only, and is not intended to be considered limiting to the invention as defined in the appended claims.

Claims

25

- 1. A code division multiple access (CDMA) RAKE receiver including: a plurality of receivers;
- amplifying and filtering circuitry for obtaining a direct sequence spread spectrum received signal;

a spreading code signal generator circuit for generating an analogue spreading code signal;

analogue correlation detection circuitry for detecting correlation between said received signal and said spreading code signal to produce an analogue correlation signal; and

analogue to digital conversion circuitry for generating a digital data signal from said analogue correlation signal.

- 2. A CDMA RAKE receiver as claimed in claim 1, wherein the spreading code generator circuit includes a digital to analogue converter (DAC) for converting a digital spreading code sequence into a corresponding analogue signal.
- 3. A CDMA RAKE receiver as claimed in claim 2, wherein the spreading code generator circuit includes a signal mixer arranged to mix the output from said DAC with a frequency signal to generate said analogue spreading code signal.
 - 4. A CDMA RAKE receiver as claimed in claim 3, including two signal mixers generating orthogonal analogue spreading code signals.
 - 5. A CDMA RAKE receiver as claimed in claim 4, wherein two spreading code generator circuits are provided having respective orthogonal spreading code sequences as input.
- 30 6. A CDMA RAKE receiver as claimed in claim 1, wherein the analogue correlation detection circuitry includes a mixer for mixing the received signal with the analogue

spreading code signal, and an analogue integrator that generates said correlation signal from the output of said mixer.

7. A CDMA RAKE receiver as claimed in claim 4, wherein the analogue correlation detection circuitry includes, for each of the orthogonal analogue spreading code signals, a mixer for mixing the received signal with the analogue spreading code signal and an analogue integrator, the analogue correlation detection circuitry further including an analogue summing circuit that generates said correlation signal from the outputs of said mixers.

10

25

- 8. A CDMA RAKE receiver as claimed in claim 1, wherein the analogue to digital conversion circuitry operates at the symbol frequency of said digital data signal.
- 9. A CDMA RAKE receiver as claimed in any one of claims 1 to 8, wherein the outputs from the plurality of receivers are combined to generate a single digital data signal output.
- 10. A RAKE receiver as claimed in claim 9, including time delay elements arranged to delay the passage of the analogue spreading code signal to the analogue correlation
 20 detection circuitry for different receivers.
 - 11. A method for receiving and decoding a direct sequence spread spectrum signal in a code division multiple access (CDMA) communications system in which a digital data signal having a baseband frequency is combined with a digital spreading code sequence and modulated for transmission at a carrier frequency, comprising:

amplifying and filtering a received direct sequence spread spectrum signal;

generating an analogue spreading code signal corresponding to the transmission spreading code sequence;

performing analogue correlation detection between the received signal and the spreading code signal to obtain a correlation signal; and

applying analog to digital conversion to the correlation signal to obtain a replica of the digital data signal.

- 12. A method as claimed in claim 11, wherein the analogue spreading code signal is5 modulated at said carrier frequency and the analogue correlation detection is performed at the carrier frequency.
- 13. A method as claimed in claim 11, wherein the analogue spreading code signal is modulated at intermediate frequency, the method including downmixing the received direct sequence spread spectrum signal to said intermediate frequency and performing the analogue correlation detection at said intermediate frequency.
 - 14. A method as claimed in claim 11, wherein the analogue to digital conversion of the correlation signal is performed at said baseband frequency.

15

20

- 15. A method as claimed in claim 11, wherein the analogue spreading code signal includes orthogonal in-phase and quadrature components for correlation detection with corresponding components of the received signal in the analogue domain, with the resulting correlation signals combined before application of the analogue to digital conversion.
- 16. A method as claimed in claim 11, wherein generation of the analogue spreading code signal includes digital to analogue conversion of the digital spreading code sequence.
- 25 17. A method as claimed in claim 16, wherein generation of the analogue spreading code signal includes modulation thereof at an intermediate frequency or the carrier frequency.
- 18. A method as claimed in claim 16 or 17, wherein generation of the analogue spreading code signal includes application of a time delay thereto before use in said correlation detection.

- 19. A method as claimed in claim 18, including generation of a plurality of time delayed analogue spreading code signals, and wherein said analogue correlation detection and analogue to digital conversion steps are performed separately with each spreading code signal on the form of a RAKE receiver.
- 20. A method as claimed in claim 19, implemented in a portable telecommunications device.
- 10 21. A code division multiple access communications system including a receiver as claimed in any one of claims 1 to 10.

15

30

- 22. A portable telecommunications device incorporating a receiver as claimed in any one of claims 1 to 10.
- 23. A code division multiple access RAKE receiver including a plurality of receivers, wherein each receiver includes:

amplifying and filtering circuitry for obtaining a direct sequence spread spectrum received signal;

a spreading code signal generator circuit for generating an analogue spreading code signal;

analogue correlation detection circuitry for detecting correlation between said received signal and said spreading code signal to produce an analogue correlation signal; and

analogue to digital conversion circuitry for generating a digital data signal from said analogue correlation signal; and

wherein the outputs from the plurality of receivers are combined to generate a single digital data signal output, and wherein time delay elements are arranged to delay the passage of the analogue spreading code signal to the analogue correlation detection circuitry for different receivers.

Figure 1

Figure 2

3/4

Figure 4

Figure 5

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but a	are not limited to the items checked:
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTT	OM OR SIDES
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT	OR DRAWING
☐ SKEWED/SLANTED IMAGES	
COLOR OR BLACK AND WHITE	PHOTOGRAPHS
GRAY SCALE DOCUMENTS	
LINES OR MARKS ON ORIGINAL	L DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S)	SUBMITTED ARE POOR QUALITY
□ other:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.