Last name	
First name	

LARSON—MATH 610—CLASSROOM WORKSHEET 27 Real Spectral Theorem.

Concepts & Notation

- (Chp. 6) dot product, inner product, inner product space, norm, orthogonal representation, Cauchy-Schwartz, orthonormal list, Gram-Schmidt, orthogonal complement, orthogonal projection.
- (Chp. 7) adjoint, conjugate transpose.
- 1. What is the *conjugate transpose* A^* of an $m \times n$ matrix?

2. (Claim) If V, W are finite-dimensional inner-product spaces with orthonormal bases e_1, \ldots, e_n and f_1, \ldots, f_m and $T \in \mathcal{L}(V, W)$, then the matrix of T^* equals the conjugate transpose of the matrix of T.

3. What is a *self-adjoint* linear operator (on an inner product space)?

4. (Claim) Eigenvalues of self-adjoint operators are real.	
5. What is the med anatral theorem?	
5. What is the real spectral theorem?	