

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Atomic Pd-promoted $ZnZrO_x$ solid solution catalyst for CO_2 hydrogenation to methanol

Kyungho Lee a,1 , Uzma Anjum a,1 , Thaylan Pinheiro Araújo b , Cecilia Mondelli b , Qian He c , Shinya Furukawa d,e , Javier Pérez-Ramírez b,* , Sergey M. Kozlov a,* , Ning Yan a,*

- ^a Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- b Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
- c Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
- d Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- e Elements Strategy Initiative for Catalysis and Battery, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

ARTICLE INFO

Keywords: CO_2 hydrogenation Methanol synthesis $ZnZrO_x$ Palladium promoter Atomic dispersion

ABSTRACT

The development of efficient CO_2 conversion catalysts is a long-lasting desire. Herein, we introduce an atomic Pd-promoted $ZnZrO_X$ solid solution catalyst (Pd- $ZnZrO_X$), which shows markedly enhanced rate of methanol production compared to bare $ZnZrO_X$, as well as excellent stability over 100 h on stream. Up to 0.8 at% (i.e. 0.6 wt%), Pd can be atomically dispersed in $ZnZrO_X$, leading to more oxygen vacancies on the mixed oxide that foster methanol production. Kinetic analysis and in situ DRIFTS reveal that hydrogen activation is limited on $ZnZrO_X$, but Pd doping facilitates H_2 dissociation as well as the consequent formation of $HCOO^*$, thus boosting CO_2 conversion to methanol. DFT analyses suggest that the presence of atomic Pd enables a more exothermic H_2 dissociation, which increases the availability of surface H_1 and facilitates CO_2 hydrogenation on adjacent T_2 sites, providing rationale on the high activity and robustness of ToT_2 in ToT_3 in ToT_3 hydrogenation.

1. Introduction

Taking steps forward to a circular carbon economy is a prominent global agenda. Anthropogenic CO_2 emissions have been identified as a major cause of climate change and ocean acidification [1,2]. Paradoxically, CO_2 can also be regarded as an abundant and sustainable carbon source when coupled to an efficient transformation technology. CO_2 hydrogenation to methanol has received a lot of attention because methanol is a useful platform chemical in the petrochemical industry, as well as its potential as an energy carrier in a broad range of applications [3,4]. For these reasons, various CO_2 valorization routes relying on methanol as a key intermediate are being widely explored [5–11].

 ${\rm CO_2}$ hydrogenation to methanol is thermodynamically favored at low temperature and high pressure [12]. However, since exceedingly low temperature limits the reaction kinetics, high pressure (>5 MPa) and moderate temperature (473–573 K) conditions are typically required [12,13]. ${\rm Cu/ZnO/Al_2O_3}$ catalyst, commercially used for methanol synthesis from syngas, has been widely studied for ${\rm CO_2}$ conversion to methanol, however, a rapid and permanent deactivation

through sintering of Cu, or segregation of Cu and ZnO species has been pointed out as a major drawback [14–16]. It is thus desirable to develop more efficient catalytic systems that simultaneously satisfy high methanol productivity and long-term stability.

Encouragingly, several oxide-based catalysts such as In_2O_3 -based oxides, [17-25] and $MZrO_x$ solid solutions (M=Zn, Cd, Ga, etc.) [26-31] have been identified as promising catalysts owing to their superior methanol selectivity and lifetime. Nonetheless, metal oxide catalysts show relatively poor activity compared to $Cu/ZnO/Al_2O_3$ (which generally contains >60 wt% Cu), supposedly due to their inferior H_2 activation ability. Earlier literature indeed hints that the hydrogenation step over oxide-based catalysts is rate-determining. For example, Frei et al. observed that the reaction order of H_2 (0.3–0.5) is much larger than that of CO_2 (-0.1 to 0) for In_2O_3 -based catalysts [20]. More recently, numerous reports demonstrated that metal promoters (e.g. Pt, Pd, Rh, Ru, Ir, Ni, Au, etc.) on oxide catalyst (especially In_2O_3) could substantially improve methanol yield [32–48]. A highly dispersed metal promoter can maximize the metal–oxide and/or metal–metal interfaces as well as provide a stronger H_2 splitting capability, accelerating methanol

E-mail addresses: jpr@chem.ethz.ch (J. Pérez-Ramírez), cheserg@nus.edu.sg (S.M. Kozlov), ning.yan@nus.edu.sg (N. Yan).

^{*} Corresponding authors.

¹ These authors contributed equally