

Fixed-Parameter Algorithms

14 May 2025

Prof. Dr. Sebastian Wild

Outline

4 Fixed-Parameter Algorithms

- 4.1 Fixed-Parameter Tractability
- 4.2 Depth-Bounded Exhaustive Search I
- 4.3 Problem Kernels
- 4.4 Depth-Bounded Search II: Planar Independent Set
- 4.5 Depth-Bounded Search III: Closest String
- 4.6 Linear Recurrences & Better Vertex Cover
- 4.7 Interleaving

Philosophy of FPT

- ▶ **Goal:** Principled theory for studying complexity based on two dimensions: input size n = |x| (encoding length) and *some additional parameter* k
 - generalize ideas from k = MaxInt(x)
 - ightharpoonup investigate influence of k (and n) on running time

Philosophy of FPT

- ▶ **Goal:** Principled theory for studying complexity based on two dimensions: input size n = |x| (encoding length) and *some additional parameter k*
 - generalize ideas from k = MaxInt(x)
 - ▶ investigate influence of *k* (and *n*) on running time
 - \rightarrow Try to find a parameter k such that
 - (1) the problem can be solved efficiently as long as k is small, and
 - (2) practical instances have small values of k (even where n gets big).

Motivation: Satisfiability

Consider Satisfiability of CNF formula

the drosophila melanogaster of complexity theory

▶ general worst case: NP-complete

a-15 = 7a v 5

 \triangleright k = #literals per clause

► $k \le 2 \implies \text{in P}$ 2SAT $\times_i \vee \neg \times_j = \times_j \neg \times_i$

▶ $k \ge 3$ NP-complete

$$\times_i \vee \neg \times_j = \times_j \neg \times_i$$

= $\neg \times_i \neg \times_i$

Motivation: Satisfiability

Consider Satisfiability of CNF formula

the drosophila melanogaster of complexity theory

- general worst case: NP-complete
- ightharpoonup k = #literals per clause
 - ▶ $k \le 2 \iff \text{in P}$
 - ▶ $k \ge 3$ NP-complete
- \triangleright k = #variables
 - $ightharpoonup O(2^k \cdot n)$ time possible (try all assignments)
- \triangleright k = #clauses?
- \triangleright k = #literals?
- \blacktriangleright k = #ones in satisfying assignment
- ightharpoonup k =structural property of formula
- ▶ for Max-SAT, k = #optimal clauses to satisfy

Parameters

Definition 4.1 (Parameterization)

Let Σ a (finite) alphabet. A *parameterization* (of Σ^*) is a mapping $\kappa : \Sigma^* \to \mathbb{N}$ that is polytime computable.

Definition 4.2 (Parameterized problem)

A *parameterized (decision) problem* is a pair (L, κ) of a language $L \subset \Sigma^*$ and a parameterization κ of Σ^* .

Definition 4.3 (Canonical Parameterizations)

We can often specify a parameterized problem conveniently as a language of *pairs* $L \subset \Sigma^* \times \mathbb{N}$ with

$$(x,k) \in L \land (x,k') \in L \rightarrow k = k'$$

using the *canonical parameterization* $\kappa(x, k) = k$.

Examples

As before: Typically leave encoding implicit.

Definition 4.4 (p-variables-SAT)

Given: formula boolean ϕ (same as before)

Parameter: number of variables

Question: Is there a satisfying assignment $v : [n] \rightarrow \{0, 1\}$?

Definition 4.5 (p-Clique)

Given: graph G = (V, E) and $k \in \mathbb{N}$

Parameter: k

Question: $\exists V' \subset V : |V'| \ge k \land \forall u, v \in V' : \{u, v\} \in E$?

Canonical Parameterization

Definition 4.6 (Canonically Parameterized Optimization Problems)

Let $U = (\Sigma_I, \Sigma_O, L, L_I, M, cost, goal)$ be an optimization problem.

Then p-U denotes the (canonically) parameterized (decision) problem given by the threshold problem $Lang_U$.

Recall: $Lang_U$ is the set of pairs (x, k) of all instances $x \in L_I$ that have solutions that are weakly "better" than k.

4

Canonical Parameterization

Definition 4.6 (Canonically Parameterized Optimization Problems)

Let $U = (\Sigma_I, \Sigma_O, L, L_I, M, cost, goal)$ be an optimization problem.

Then p-U denotes the (canonically) parameterized (decision) problem given by the threshold problem $Lang_U$.

Recall: $Lang_U$ is the set of pairs (x, k) of all instances $x \in L_I$ that have solutions that are weakly "better" than k.

Examples:

- ▶ *p*-Clique
- ► *p*-Vertex-Cover
- ► p-Graph-Coloring
- ▶ ..

Naming convention for other parameters:

*p-clause-*CNF-SAT: CNF-SAT with parameter "number of *clauses*"

4.1 Fixed-Parameter Tractability

▶ *p-variables-*SAT

- \blacktriangleright *k* variables, *n* length of formula
- $\rightsquigarrow O(2^k \cdot n)$ running time

▶ *p-variables-*SAT

- \blacktriangleright *k* variables, *n* length of formula
- \rightarrow $O(2^k \cdot n)$ running time
- ▶ *p*-Clique
 - ▶ *k* threshold (clique size); *n* vertices, *m* edges in graph
 - \rightsquigarrow $\binom{n}{k}$ candidates to check, each takes time $O(k^2)$ to check
 - \rightsquigarrow Total time $O(n^k \cdot k^2)$

$$\binom{n}{k} = \frac{\binom{n}{(n-1)(n-2)\cdots(n-h+1)}}{\binom{n}{k!}}$$

$$\sim \frac{n^{k}}{k!}$$

► p-variables-SAT

- \blacktriangleright *k* variables, *n* length of formula
- $\rightsquigarrow O(2^k \cdot n)$ running time
- ▶ *p*-Clique
 - ▶ *k* threshold (clique size); *n* vertices, *m* edges in graph
 - \rightarrow $\binom{n}{k}$ candidates to check, each takes time $O(k^2)$ to check
 - \rightsquigarrow Total time $O(n^k \cdot k^2)$
- ▶ *p*-VertexCover
 - ▶ *k* threshold (VC size); *n* vertices, *m* edges in graph
 - \rightarrow $\binom{n}{k}$ candidates to check, each takes time O(m) to check
 - \rightsquigarrow Total time $O(n^k \cdot m)$

- ► *p-variables-*SAT
 - \blacktriangleright *k* variables, *n* length of formula
 - \rightarrow $O(2^k \cdot n)$ running time

- ▶ *p*-Clique
 - ▶ *k* threshold (clique size); *n* vertices, *m* edges in graph
 - \rightarrow $\binom{n}{k}$ candidates to check, each takes time $O(k^2)$ to check
 - \rightsquigarrow Total time $O(n^k \cdot k^2)$
- ▶ *p*-VertexCover
 - ▶ *k* threshold (VC size); *n* vertices, *m* edges in graph
 - \rightarrow $\binom{n}{k}$ candidates to check, each takes time O(m) to check
 - \rightsquigarrow Total time $O(n^k \cdot m)$
- ► p-GraphColoring
 - ▶ *k* threshold (#colors); *n* vertices, *m* edges in graph
 - \rightsquigarrow k^n candidates to check, each takes time O(m)
 - \rightsquigarrow Total time $O(k_{\underline{-}}^n \cdot m)$

FPT Running Time

Definition 4.7 (fpt-algorithm)

Let κ be a parameterization for Σ^* .

A (deterministic) algorithm A (with input alphabet Σ) is a *fixed-parameter tractable algorithm* (*fpt-algorithm*) w.r.t. κ if its running time on $x \in \Sigma^*$ with $\kappa(x) = k$ is at most

only dipole of the p(|x|) =
$$O(f(k) \cdot |x|^c)$$

where p is a polynomial of degree c and f is an **arbitrary** computable function.

7

FPT Running Time

Definition 4.7 (fpt-algorithm)

Let κ be a parameterization for Σ^* .

A (deterministic) algorithm A (with input alphabet Σ) is a *fixed-parameter tractable algorithm* (*fpt-algorithm*) w.r.t. κ if its running time on $x \in \Sigma^*$ with $\kappa(x) = k$ is at most

$$f(k) \cdot p(|x|) = O(f(k) \cdot |x|^c)$$

where p is a polynomial of degree c and f is an **arbitrary** computable function.

Definition 4.8 (FPT)

A parameterized problem (L, κ) is *fixed-parameter tractable* if there is an fpt-algorithm that decides it.

The complexity class of all such problems is denoted by FPT.

Intuitively, FPT plays the role of P.

Theorem 4.9 (p-variables-SAT is FPT) p-variables-SAT \in FPT.

◂

Theorem 4.9 (p-variables-SAT is FPT)

p-variables-SAT \in FPT.

Proof:

Suffices to use brute force satisfiability for *p-variables*-SAT

```
1 procedure bruteForceSat(\varphi, \mathcal{X} = \{x_1, \dots, x_k\})
2 if k = 0
3 if \varphi = true return \emptyset else UNSATISFIABLE
4 for value in \{true, false\} do
5 A := \{x_1 \mapsto value\}
6 \psi := \varphi[x_1/value] // Substitute value for <math>x_1
7 B := bruteForceSat(\psi, \{x_2, \dots, x_k\})
8 if B \neq UNSATISFIABLE
9 return A \cup B
```

... but #variables not usually small

Theorem 4.9 (p-variables-SAT is FPT)

p-variables-SAT \in FPT.

Proof:

Suffices to use brute force satisfiability for *p-variables*-SAT

```
1 procedure bruteForceSat(\varphi, \mathcal{X} = \{x_1, \dots, x_k\})

2 if k = 0

3 if \varphi = = true return \emptyset else UNSATISFIABLE

4 for value in \{true, false\} do

5 A := \{x_1 \mapsto value\}

6 \psi := \varphi[x_1/value] // Substitute value for <math>x_1

7 B := bruteForceSat(\psi, \{x_2, \dots, x_k\})

8 if B \neq UNSATISFIABLE

9 return A \cup B \mathcal{L}(k)
```

Worst case running time: $O(2^k n)$ for $n = |\varphi|$.

 2^k recursive calls;

base case needs time $O(|\phi|)$ to check whether formula evaluates to *true*

Theorem 4.9 (p-variables-SAT is FPT)

p-variables-SAT \in FPT.

Proof:

Suffices to use brute force satisfiability for *p-variables*-SAT

```
1 procedure bruteForceSat(\varphi, \mathcal{X} = \{x_1, \dots, x_k\})

2 if k = 0

3 if \varphi = = true return \emptyset else UNSATISFIABLE

4 for value in \{true, false\} do

5 A := \{x_1 \mapsto value\}

6 \psi := \varphi[x_1/value] // Substitute value for <math>x_1

7 B := bruteForceSat(\psi, \{x_2, \dots, x_k\})

8 if B \neq UNSATISFIABLE

9 return A \cup B
```

Worst case running time: $O(2^k n)$ for $n = |\varphi|$.

 2^k recursive calls;

base case needs time $O(|\phi|)$ to check whether formula evaluates to *true*

... but #variables not usually small

Aren't we all FPT?

Theorem 4.10 (k never decreases \rightarrow FPT)

Let $g : \mathbb{N} \to \mathbb{N}$ weakly increasing, unbounded and computable, and κ a parameterization with

$$\forall x \in \Sigma^* : \kappa(x) \ge g(|x|).$$

Then $(L, \kappa) \in \mathsf{FPT}$ for *any* decidable L.

g weakly increasing: $n \le m \to g(n) \le g(m)$

g unbounded: $\forall t \ \exists n : g(n) \ge t$

Proof: L'decidable no 3 alsorithm to decide L in time & T(1x1)

Aren't we all FPT? - Proof

Proof (cont.):

- (1) g weathly incr. & unbounded => h well-defined
- (2) h wealty increasing
- (3) g compréable => h compréable
- (4) h(g(n1) > n

time to decide whether
$$x \in \mathbb{Z}^m$$
 is in L $n = |\pi|$

$$k = \pi(x) \ge g(n)$$

$$\leq T(n) \leq T(h(g(n))) \leq T(h(h)) =: f(h)$$
Timer.
$$(4)$$

Back to "sensible" parameters

- → always check if parameter is reasonable (can be expected to be small)
 - ▶ if not, FPT might not even mean in NP!

Back to "sensible" parameters

- → always check if parameter is reasonable (can be expected to be small)
 - ▶ if not, FPT might not even mean in NP!
- ▶ but now, for some positive examples!

4.2 Depth-Bounded Exhaustive Search I

FPT Design Pattern

- ▶ The simplest FPT algorithms use exhaustive search
- **b** but with a search tree bounded by f(k)

FPT Design Pattern

- ► The simplest FPT algorithms use exhaustive search
- \blacktriangleright but with a search tree bounded by f(k)
- ▶ bruteforceSat was a typical example!
- does this work on other problems?

Depth-Bounded Search for Vertex Cover

Let's try p-VertexCover. by the force $\binom{n}{k} \cdot r \ell_y(u) = \Theta(u^k \cdot r \ell_y(u)) \neq f_p \ell$ where $\ell_y(u) = \ell_y(u) = \ell_y(u)$ for every edge $\ell_y(u)$, any vertex cover must contain v or w

Depth-Bounded Search for Vertex Cover

Let's try p-VertexCover.

Key insight: for every edge $\{v, w\}$, any vertex cover must contain v or w

Depth-Bounded Search for Vertex Cover

Let's try *p*-VertexCover.

Key insight: for every edge $\{v, w\}$, any vertex cover must contain v or w

```
1 procedure simpleFptVertexCover(G = (V, E), k):
2 if E = \emptyset then return \emptyset
3 if k = 0 then return NOT_POSSIBLE // truncate search
4 Choose \{v, w\} \in E (arbitrarily)
5 for u in \{v, w\} do:
6 G_u := \{V \setminus \{u\}, E \setminus \{\{u, x\} \in E\}\} // Remove u from G
7 C_u := \text{simpleFptVertexCover}(G_u, k - 1)
8 if C_v == \text{NOT_POSSIBLE} then return C_w \cup \{w\}
9 if C_w == \text{NOT_POSSIBLE} then return C_v \cup \{v\}
10 if |C_v| \le |C_w| then return C_v \cup \{v\} else return C_w \cup \{w\}
```

- ▶ Does not need explicit checks of solution candidates!
- ▶ runs in time $O(2^k)(n+m))$ \longrightarrow fpt-algorithm for p-Vertex-Cover $\in \exists r \vdash r$

Guessing the parameter

- ▶ Note: Previous algorithm only uses *k* to *truncate* branches.
- \rightsquigarrow We can *guess* a k and it still works

Guessing the parameter

- ▶ Note: Previous algorithm only uses k to *truncate* branches.
- \rightsquigarrow We can *guess* a k and it still works
- \rightsquigarrow Try all k!

```
1 procedure vertexCoverBfs(G = (V, E))

2 for k := 0, 1, ..., |V| do

3 C := simpleFptVertexCover(G, k)

4 if C \neq NOT\_POSSIBLE return C
```

Guessing the parameter

- ▶ Note: Previous algorithm only uses *k* to *truncate* branches.
- \rightsquigarrow We can *guess* a k and it still works
- \rightsquigarrow Try all k!

```
1 procedure vertexCoverBfs(G = (V, E))

2 for k := 0, 1, ..., |V| do

3 C := simpleFptVertexCover(<math>G, k)

4 if C \neq NOT_POSSIBLE return C
```

- ► Running time: $\sum_{k'=0}^{k} O(2^{k'}(n+m)) = O(2^{k}(n+m))$
- \rightarrow For exponentially growing cost, trying all values up to k costs only constant factor more

4.3 Problem Kernels

Preprocessing

- ► Second key fpt technique are *reduction rules*
- ► **Idea:** Reduce the size of the instance (in polytime) without changing its outcome

- Second key fpt technique are reduction rules
- ► **Idea:** Reduce the size of the instance (in polytime) without changing its outcome
- ► Trivial example for SAT:

If a CNF formula contains a single-literal clause $\{x\}$ resp. $\{\neg x\}$, set x to true resp. false and remove the clause.

▶ doesn't do anything in the worst case . . .

- Second key fpt technique are reduction rules
- ► **Idea:** Reduce the size of the instance (in polytime) without changing its outcome
- ► Trivial example for SAT:

If a CNF formula contains a single-literal clause $\{x\}$ resp. $\{\neg x\}$, set x to *true* resp. *false* and remove the clause.

- doesn't do anything in the worst case . . .
- ▶ special case of resolution calculus rule $\frac{a_1 \lor a_2 \lor \cdots \lor x, b_1 \lor b_2 \lor \cdots \lor \neg x}{a_1 \lor a_2 \lor \cdots \lor b_1 \lor b_2 \lor \cdots}$
- basis of practical <u>SAT solvers</u>

- Second key fpt technique are reduction rules
- ► **Idea:** Reduce the size of the instance (in polytime) without changing its outcome
- ► Trivial example for SAT:

If a CNF formula contains a single-literal clause $\{x\}$ resp. $\{\neg x\}$, set x to *true* resp. *false* and remove the clause.

- doesn't do anything in the worst case . . .
- ▶ special case of resolution calculus rule $\frac{a_1 \lor a_2 \lor \cdots \lor x, \quad b_1 \lor b_2 \lor \cdots \lor \neg x}{a_1 \lor a_2 \lor \cdots \lor b_1 \lor b_2 \lor \cdots}$
- basis of practical SAT solvers
- ► Trivial example for VertexCover

(never needed as part of optimal VC)

- Second key fpt technique are reduction rules
- ► **Idea:** Reduce the size of the instance (in polytime) without changing its outcome
- ► Trivial example for SAT:

If a CNF formula contains a single-literal clause $\{x\}$ resp. $\{\neg x\}$, set x to true resp. false and remove the clause.

- ▶ doesn't do anything in the worst case . . .
- ▶ special case of resolution calculus rule $\frac{a_1 \lor a_2 \lor \cdots \lor x, \quad b_1 \lor b_2 \lor \cdots \lor \neg x}{a_1 \lor a_2 \lor \cdots \lor b_1 \lor b_2 \lor \cdots}$
- basis of practical SAT solvers
- ► Trivial example for VertexCover

Remove vertices of degree 0 or 1. (never needed as part of optimal VC)

▶ Here: reduction rules that provably shrink an instance to size g(k)

Buss's Reduction Rule for VC

▶ Given a p-VertexCover instance (G, k)

"deg > k" Rule: If G contains vertex v of degree deg(v) > k, include v in potential solution and remove it from the graph.

- ightharpoonup Can apply this simultaneously to degree > k vertices.
- ► Either rule applies, or all vertices bounded degree(!)

Kernels

Definition 4.11 (Kernelization)

Let (L, κ) be a parameterized problem. A function $K: \Sigma^* \to \Sigma^*$ is <u>kernelization</u> of L w.r.t. κ if it maps any $x \in L$ to an instance x' = K(x) with $k' = \kappa(x')$ so that

- **1.** (self-reduction) $x \in L \iff x' \in L$
- **2.** (polytime) *K* is computable in polytime.
- **3.** (kernel-size) $|x'| \le g(k)$ for some computable function g

We call x' the (problem) kernel of x and g the size of the problem kernel.

Buss's Reduction for Vertex Cover: (repeatedly apply until no more changes)

- ightharpoonup deg > k rule
- ► Remove degree 0 and 1 vertices

Theorem 4.12 (Buss's Reduction is Kernelization)

Buss' reduction yields a kernelization for p-Vertex-Cover with kernel size $O(k^2)$.

Buss's Reduction for Vertex Cover: (repeatedly apply until no more changes)

- ▶ deg > k rule
- ► Remove degree 0 and 1 vertices

Theorem 4.12 (Buss's Reduction is Kernelization)

Buss' reduction yields a kernelization for p-Vertex-Cover with kernel size $O(k^2)$.

Proof:

After repeatedly applying Buss's rule as well as the isolated/leaf rule until neither applies further, we have $\forall v \in V : 2 \leq \deg(v) \leq k$.

(Note that the rule might reduce the parameter k).

Buss's Reduction for Vertex Cover: (repeatedly apply until no more changes)

- ightharpoonup deg > k rule
- ► Remove degree 0 and 1 vertices

Theorem 4.12 (Buss's Reduction is Kernelization)

Buss' reduction yields a kernelization for *p*-Vertex-Cover with kernel size $O(k^2)$.

Proof:

After repeatedly applying Buss's rule as well as the isolated/leaf rule until neither applies further, we have $\forall v \in V : 2 \leq \deg(v) \leq k$.

(Note that the rule might reduce the parameter k).

In the resulting graph, any VC of size $\leq k$ covers $\leq k^2$ edges.

Buss's Reduction for Vertex Cover: (repeatedly apply until no more changes)

- ightharpoonup deg > k rule
- ► Remove degree 0 and 1 vertices

Theorem 4.12 (Buss's Reduction is Kernelization)

Buss' reduction yields a kernelization for p-Vertex-Cover with kernel size $O(k^2)$.

Proof:

After repeatedly applying Buss's rule as well as the isolated/leaf rule until neither applies further, we have $\forall v \in V : 2 \le \deg(v) \le k$.

(Note that the rule might reduce the parameter *k*).

In the resulting graph, any VC of size $\leq k$ covers $\leq k^2$ edges.

If $m > k^2$, we output a trivial No-instance (e. g., a K_{k+1} a complete graph on k+1 vertices).

Buss's Reduction for Vertex Cover: (repeatedly apply until no more changes)

- ightharpoonup deg > k rule
- ► Remove degree 0 and 1 vertices

Theorem 4.12 (Buss's Reduction is Kernelization)

Buss' reduction yields a kernelization for *p*-Vertex-Cover with kernel size $O(k^2)$.

Proof:

After repeatedly applying Buss's rule as well as the isolated/leaf rule until neither applies further, we have $\forall v \in V : 2 \le \deg(v) \le k$.

(Note that the rule might reduce the parameter k).

In the resulting graph, any VC of size $\leq k$ covers $\leq k^2$ edges.

If $m > k^2$, we output a trivial No-instance (e.g., a K_{k+1} a complete graph on k+1 vertices).

If $m \le k^2$, then the input size is now bounded by $g(k) = 2k^2$.

FPT iff Kernelization

Theorem 4.13 (FPT ↔ kernel)

A computable, parameterized problem (L, κ) is fixed-parameter tractable if and only if there is a kernelization for L w.r.t. κ .

Proof:

"E" kernelization K for (L, x) given.

L has decider A of waring time T(n) (w.l.o.g. weakly increasing)

(1)
$$x \in \mathbb{Z}^4$$
 to check $x \in \mathbb{Z}$ $(x = x(x))$ $(x = |x|)$

compute $K(x) = x'$ polytime

 $|x'| \leq g(k)$

(2) where $(x = x')$ polytime

 $(x = x(x))$ increasing)

Fine $(x = x(x))$ increasing)

algorithm for (2, x) where $(x = x(x))$ polytime)

FPT iff Kernelization [2]

Proof (cont.):

(1) Simulate A for
$$\leq n^{c+1}$$
 steps (polytime)

(2) · (f A terminated)

if output Yes: output trivial Yes-instance

if $n^{c+1} \leq f(h) n^c = n \leq f(h)$

= output orisical input

Max-SAT Kernel

k = # (Remos to salasfy

Theorem 4.14 (Kernel for Max-SAT)

p-Max-SAT has a problem kernel of size $O(k^2)$ which can be constructed in linear time.

assumption: each variables occurs at most once pur clause $(x \vee \overline{x})$ so delete clause

Case 1: $k \leq \left[\frac{M}{2}\right]$ (output $\forall e_s$)

pick arbitrary assignment A of all variables under A, l claum are satisfied lik V

if
$$\ell < k \le \lfloor \frac{m}{2} \rfloor$$
 of them \overline{A} (inverse assignment) satisfies $m-\ell \ge \lfloor \frac{m}{2} \rfloor \ge k21$

Max-SAT Kernel [2]

Proof (cont.):

Case
$$k > \lfloor \frac{m}{2} \rfloor = 3$$
 $k > \frac{m}{2} = 3$ $\lceil m < 2k \rceil$

$$= 3 \text{ for classery but they could be by}$$

Max-SAT Kernel [3]

Corollary 4.15

p-Max-SAT \in FPT

4.4 Depth-Bounded Search II: Planar Independent Set

Deeper results (towards more shallow trees)

- ▶ Our previous examples of depth-bounded search were basically brute force
- ► Here we will see two more examples that exploit the problem structure in more interesting ways

Independent Set on Planar Graphs

We will see

Recall: general problem p-Independent-Set is W[1]-hard.

Definition 4.16 (p-Planar-Independent-Set)

Given: a *planar* graph G = (V, E) and $k \in \mathbb{N}$

Parameter: k

Question: $\exists V' \subset V : |V'| \ge k \land \forall u, v \in V' : \{u, v\} \notin E$?

planar graph G:

I embedding (placement) of vertices in R2 and a drawing of edges without crossings

Independent Set on Planar Graphs

Recall: general problem p-Independent-Set is W[1]-hard.

Definition 4.16 (p-Planar-Independent-Set)

Given: a *planar* graph G = (V, E) and $k \in \mathbb{N}$

Parameter: k

Question: $\exists V' \subset V : |V'| \ge k \land \forall u, v \in V' : \{u, v\} \notin E$?

Theorem 4.17 (Depth-Bounded Search for Planar Independent Set)

p-Planar-Independent-Set is in FPT and can be solved in time $O(6^k n)$.

Elementary Knowledge on Planar Graphs

Theorem 4.18 (Euler's formula)

In any finite, connected planar graph G with n nodes, m edges, f holds n - m + f = 2.

Proof idea, Induction on f

IB f=1 => G is a tree

=> n=m+1

IS "add a new face"

Elementary Knowledge on Planar Graphs

Theorem 4.18 (Euler's formula)

In any finite, connected planar graph G with n nodes, m edges f holds n-m+f=2.

Corollary 4.19

A simple planar graph G on $n \ge 3$ nodes has $m \le 3n - 6$ edges.

The average degree in G is < 6.

simple => every face is delawited by \$ 3 edges

of y wot simple

3f double counts each edge of most twice

$$3f \leq 2m$$
 $(2m + 1) = 6 - 3n + 3m$
 $(3n - 6)$
 $(3n - 6)$

avg deg < 6 = in any planer graph,
$$\exists v : deg(v) \leq 5$$

"degeneracy" $d = 5$

always find variex of degree $\leq d$ in G

and in any induced subgraph

G=(V,E) $G[V']=(V',\{\{a,v\}:a,v\in V',\{a,v\}\in E\})$

induced subgraph

V'SV

Depth-Bounded Search for Planar Independent Set

```
procedure planarIndependentSet(G = (V, E), k):

if k = 0 then return \emptyset

if k > |V| then return NOT_POSSIBLE // truncate search

Choose v \in V with minimal degree; let w_1, \ldots, w_d be v's neighbors

// By planarity, we know d \le 5.

for u in \{v, w_1, \ldots, w_d\} do

D := \{u\} \cup N(u) wishbors of u C_n = C[v \setminus 0]

8 C_u := (V \setminus D, E \setminus \{\{x, y\} \in E : x \in D\}) // Delete u and its neighbors

1 u := \{u\} \cup v planarIndependentSet(v, v) return largest v or NOT_POSSIBLE if none exists
```

(6 recursive calls

in w.c. record onthe k=0

=> 6k recursive calls in total

each take
$$\Theta(n+m) = \Theta(u)$$

=> botal from $O(6k.n)$

27

Summary Planar Independent Set

- ▶ Note: IndependentSet is NP-hard on planar graphs even with vertex degrees at most 3
- ▶ planarIndependentSet will often be faster than $O(6^k n)$
- works unchanged in $O((d+1)^k n)$ time for any degeneracy-d graph

every (induced) subgraph has vertex of degree at most *d*

4.5 Depth-Bounded Search III: Closest String

Closest String

Definition 4.20 (*p***-CLOSEST-STRING)**

Given: S set of m strings s_1, s_2, \ldots, s_m of length L over alphabet Σ and a $k \in \mathbb{N}$.

Parameter: k

Question: Is there a string *s* for which $d_H(s, s_i) \le k$ holds for all i = 1, ..., m?

Dirty Columns

Definition 4.21 (Dirty Column)

A column of the $m \times L$ matrix corresponding to m strings of length L is called *dirty* if it contains at least 2 different symbols.

Dirty Columns

Definition 4.21 (Dirty Column)

A column of the $m \times L$ matrix corresponding to m strings of length L is called *dirty* if it contains at least 2 different symbols.

Lemma 4.22 (Many Dirty Columns → No)

Let an instance to Closest-String with m strings of length L and parameter k be given. If the corresponding $m \times L$ matrix contains more than $m \cdot k$ dirty columns, then no solution for the given instance exists.

Depth-Bounded Search for Closest String

```
procedure closestStringFpt(s , d):
        if d < 0 then return NOT POSSIBLE
        if d_H(s, s_i) > k + d for an i \in \{1, ..., m\} then
 3
            return NOT POSSIBLE
        if d_H(s, s_i) \le k for all i = 1, ..., m then return s
 5
        Choose i \in \{1, ..., m\} arbitrarily with d_H(s, s_i) > k
            P := \{p : s[p] \neq s_i[p]\}
            Choose arbitrary P' \subseteq P with |P'| = k + 1
8
            for p in P' do
9
                                                                            search space (k+1) = O(k)
                 s' := s
10
                 s'[p] := s_i[p]
11
                 s_{ret} := closestStringFpt(s', d - 1)
12
                                                                                     lum \frac{(k+1)^k}{k} = k \left(\frac{(k+1)^k}{k}\right) = k \left(1 + \frac{1}{k}\right)
                 if s_{ret} \neq NOT POSSIBLE then return s_{ret}
13
        return NOT POSSIBLE
14
```

ightharpoonup initial call closestStringFpt(s_1, k)

$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x.$$

$$\left(1 + \frac{1}{n} \right)^n < e < \left(1 + \frac{1}{n} \right)^{n+1}.$$

Too Much Dirt

Lemma 4.23 (Pair Too Different \rightarrow No)

Let $S = \{s_1, s_2, \dots, s_m\}$ a set of strings and $k \in \mathbb{N}$. If there are $i, j \in \{1, \dots, m\}$ with $d_H(s_i, s_j) > 2k$, then there is no string s with $\max_{1 \le i \le m} d_H(s, s_i) \le k$.

Depth-Bounded Search for Closest String

Theorem 4.24 (Search Tree for Closest String)

There is a search tree of size $O(k^k)$ for problem *p*-Closest-String.

4

Depth-Bounded Search for Closest String

Theorem 4.24 (Search Tree for Closest String)

There is a search tree of size $O(k^k)$ for problem *p*-Closest-String.

Corollary 4.25 (Closest String is FPT)

p-Closest-String can be solved in time $O(mL + mk \cdot k^k)$.

▶ preprocessing (O(mL) time)

may be cauget down ho m. k

- ▶ ignore any clean columns
- ightharpoonup reject if more than mk dirty columns
- \rightarrow effective string length after preprocessing is $L' \leq mk$
- ightharpoonup call closestStringFpt(s_1, k)
 - ightharpoonup maintain $d_H(s,s_i)$ in an array
 - \rightarrow checking any distance $d_H(s, s_i)$ takes O(1) time
 - ▶ before and after recursive call, update array to reflect $d_H(s', s_i)$ Single character changed, so update only needs to check single position
 - \rightarrow Can maintain distances in O(m) time per recursive call
 - ightharpoonup P' can be computed in O(mk) time

4.6 Linear Recurrences & Better Vertex Cover

A Better Algorithm for Vertex Cover

Recall: Branching on endpoints of k edges gives search space of size 2^k for Vertex-Cover. Can we do better?

A Better Algorithm for Vertex Cover

Recall: Branching on endpoints of k edges gives search space of size 2^k for Vertex-Cover. Can we do better?

Idea: Enlarge base case with "easy inputs"

Here: Consider graphs *G* with $deg(v) \le 2$ for all $v \in V(G)$.

Depth-Bounded Search for Vertex Cover

```
procedure betterFptVertexCover(G = (V, E), k):
       if E = \emptyset then return \emptyset
       if k = 0 then return NOT POSSIBLE // truncate search
       if all node have degree \leq 2 then
            Find connected components of G
5
            for each component G_i do
                Fill C_i by picking every other node,
7
                starting with the neighbor of a degree-one node if one exists
8
            C := \bigcup C_i
9
            if |C| \le k then return C else return NOT POSSIBLE
10
       Choose v with maximal degree, let w_1, \ldots, w_d be its neighbors //d \ge 3
11
       For D in \{\{v\}, \{w_1, \dots, w_d\}\} do:
12
            G_D := (V \setminus D, E \setminus \{\{x, y\} \in E : x \in D\}) // Remove D from G
13
            C_D := D \cup \text{betterFptVertexCover}(G_u, k - |D|)
                                                                                          recurse on (we.)
14
       return smallest C_D or NOT POSSIBLE if none exists
15
                                                                                                                          16-3
```

Depth-Bounded Search for Vertex Cover

```
procedure betterFptVertexCover(G = (V, E), k):
        if E = \emptyset then return \emptyset
        if k = 0 then return NOT POSSIBLE // truncate search
        if all node have degree \leq 2 then
            Find connected components of G
 5
            for each component G_i do
                 Fill C_i by picking every other node,
                 starting with the neighbor of a degree-one node if one exists
 8
            C := \bigcup C_i
 9
            if |C| \le k then return C else return NOT_POSSIBLE
10
        Choose v with maximal degree, let w_1, \ldots, w_d be its neighbors //d \ge 3
11
        For D in \{\{v\}, \{w_1, \dots, w_d\}\} do:
12
            G_D := (V \setminus D, E \setminus \{\{x, y\} \in E : x \in D\}) // Remove D from G
13
            C_D := D \cup \text{betterFptVertexCover}(G_u, k - |D|)
14
        return smallest C_D or NOT POSSIBLE if none exists
15
```

How to analyze running time of betterFptVertexCover?

Analysis of betterFptVertexCover

worst case running time

- ▶ never have all degrees ≤ 2
- ▶ always need both recursive calls (until base case)
- ▶ ignore that graph gets smaller

$$T_0 = \Theta(1)$$

$$T_k = \Theta(|V| + |E|) + T_{k-3} + T_{k-1}$$

Analysis of betterFptVertexCover

worst case running time

- ▶ never have all degrees ≤ 2
- always need both recursive calls (until base case)
- ▶ ignore that graph gets smaller

$$T_0 = \Theta(1)$$

$$T_k = \Theta(|V| + |E|) + T_{k-3} + T_{k-1}$$

$$T_k = \Theta(n + \omega) \cdot \# \text{ won-base cases } S_n, \text{ we obtain } T_n = O(B_n n^2)$$

$$B_0 = 1, B_1 = 1, B_2 = 1$$

$$B_k = B_{k-3} + B_{k-1} \quad (k \ge 3)$$

$$B_k = \Theta(1 - 46 - k)$$

Solving Linear Recurrences

$$B_{2} = B_{1} = B_{0} = 1$$

$$B_{k} = B_{k-3} + B_{k-1} (k+3)$$

$$\begin{bmatrix}
z^{k} \end{bmatrix} B(z) := B_{k}$$

$$= \frac{B^{(k)}(\delta)}{k!}$$
(not normally
convenient to use)

ordinary generation function of sequence (BL)670

Taylor's series:
$$f(x) = f(a) + (x-a)f'(a) + \frac{(x-a)^2}{2}f''(a) + \dots = \sum_{i=0}^{\infty} \frac{(x-a)^i}{i!}f^{(i)}(a).$$
 approximate $f(x)$ by polynomial for x close to a

$$B(z) = B(0) + z \cdot B'(0) + z^{2} \frac{B''(0)}{z} + z^{3} \frac{B''(0)}{3!} + \cdots$$

$$= \sum_{k=0}^{\infty} \frac{B^{(k)}(0)}{k!} z^{k}$$

$$B(z) = \sum_{k \ge 0} B_k \cdot z^k = 1 \cdot z^0 + 1 \cdot z^1 + 1 \cdot z^2 + 1 \cdot z^2 + 1 \cdot z^3 + 1 \cdot z^4 + 1 \cdot z$$

$$= 1 + 2 + 2^{2} + \sum_{k \neq 3} B_{k \cdot 3}^{2^{k}} + \sum_{k \neq 3} B_{k \cdot 1}^{2^{k}}$$

$$= -11 - + 2^{3} \sum_{k \neq 3} B_{k \cdot 3}^{2^{k}} + 2 \sum_{k \neq 3} B_{k \cdot 1}^{2^{k}}$$

$$= -11 - + 2^{3} \sum_{k \neq 3} B_{k}^{2^{k}} + 2 \sum_{k \neq 3} B_{k \cdot 1}^{2^{k}}$$

$$= -11 - + 2^{3} \sum_{k \neq 3} B_{k}^{2^{k}} + 2 \sum_{k \neq 3} B_{k \cdot 2}^{2^{k}} + (B_{1}, 2^{1} + B_{0}, 2^{0} - B_{1}, 2^{1} - B_{0}, 2^{0})$$

$$= -11 - + 2^{3} \sum_{k \neq 3} B_{k}^{2^{k}} + 2 \sum_{k \neq 3} B_{k \cdot 2}^{2^{k}} + (B_{1}, 2^{1} + B_{0}, 2^{0} - B_{1}, 2^{1} - B_{0}, 2^{0})$$

$$= -11 - + 2^{3} \sum_{k \neq 3} B_{k}^{2^{k}} + 2 \sum_{k \neq 3} B_{k \cdot 2}^{2^{k}} + (B_{1}, 2^{1} + B_{0}, 2^{0} - B_{1}, 2^{1} - B_{0}, 2^{0})$$

$$= -11 - + 2^{3} \sum_{k \neq 3} B_{k}^{2^{k}} + 2 \sum_{k \neq 3} B_{k \cdot 1}^{2^{k}} + (B_{1}, 2^{1} + B_{0}, 2^{0} - B_{1}, 2^{1} - B_{0}, 2^{0})$$

$$= -11 - + 2^{3} \sum_{k \neq 3} B_{k}^{2^{k}} + 2 \sum_{k \neq 3} B_{k}^{2^{k}} + (B_{1}, 2^{1} + B_{0}, 2^{0} - B_{1}, 2^{1} - B_{0}, 2^{0})$$

$$= -11 - + 2^{3} \sum_{k \neq 3} B_{k}^{2^{k}} + 2 \sum_{k \neq 3} B_{k}^{2^{k}} + (B_{1}, 2^{1} + B_{0}, 2^{0} - B_{1}, 2^{1} - B_{0}, 2^{0})$$

$$= -11 - + 2^{3} \sum_{k \neq 3} B_{k}^{2^{k}} + 2 \sum_{k \neq 3} B_{k}^{2^{k}} + (B_{1}, 2^{1} + B_{0}, 2^{0} - B_{1}, 2^{1} - B_{0}, 2^{0})$$

$$= -11 - + 2^{3} \sum_{k \neq 3} B_{k}^{2^{k}} + 2 \sum_{k \neq 3} B_{k}^{2^{k}} + (B_{1}, 2^{1} + B_{0}, 2^{0} - B_{1}, 2^{1} - B_{0}, 2^{0})$$

$$= 1 + 2^{3}B(2) + 2B(2)$$

$$B(2) \left(1 - 2^{2} - 2\right) = 1$$

$$B(2) = \frac{1}{1 - 2^{3} - 2}$$

 $R(2) = 1 + 2 + 2^{2} + 2^{3} B(2) + 2B(2) - 2^{2} - 2$

$$\frac{1}{1-z^{3}-2} = \frac{1}{2-2}, \quad \frac{1}{2-2} = \frac{1}{2-2}, \quad \frac{1}{2-2}, \quad \frac{1}{2-2} = \frac{1}{2-2}, \quad \frac{1$$

$$\frac{A/2_{o}}{\frac{2}{z_{o}}-1} = \frac{-A/2_{o}}{1-\frac{2}{z_{o}}} \qquad \left[z^{k}\right] \frac{A}{z_{o}-z_{o}} = -\frac{A}{z_{o}} \left[z^{k}\right] \frac{1}{1-\frac{z_{o}}{z_{o}}} \\
= -\frac{A}{z_{o}} \left(\frac{1}{z_{o}}\right)^{k} \\
= \left(z^{k}\right) B(z) = -\frac{A}{z_{o}} \left(\frac{1}{z_{o}}\right)^{k} - \frac{B}{z_{o}} \left(\frac{1}{z_{o}}\right)^{k} - \frac{C}{z_{o}} \left(\frac{1}{z_{o}}\right)^{k} = \Theta\left(\left(\frac{1}{z_{o}}\right)^{k}\right) \frac{assourting}{|z_{o}| < |z_{o}|}$$

Solving Linear Recurrences – Result

Theorem 4.26 (Linear Recurrences)

Let $d_1, \ldots, d_i \in \mathbb{N}$ and $d = \max d_i$.

The solution to the homogeneous linear recurrence equation

$$T_n = T_{n-d_1} + T_{n-d_2} + \cdots + T_{n-d_i}, \qquad (n \ge d)$$

is always given by

$$T_n = \sum_{\ell} \sum_{j=0}^{\mu_{\ell}-1} c_{\ell,j} \, z_{\ell}^n \, n^j$$

where we sum over all roots z_{ℓ} of multiplicity μ_{ℓ} of the so-called *characteristic polynomial* $z^{d} - z^{d-d_1} - z^{d-d_2} \cdots - z^{d-d_i}$.

The *d* coefficients $c_{\ell,i}$ are determined by the *d* initial values $T_0, T_1, \ldots, T_{d-1}$.

Corollary 4.27

 $T_n = O(z_0^n n^d)$ for z_0 the root of the characteristic polynomial with *largest absolute value*.

Analysis of betterFptVertexCover [2]

$$T_0 = \Theta(1)$$

 $T_k = \Theta(|V| + |E|) + T_{k-3} + T_{k-1}$

If we only number of base cases B_n , we obtain $T_n = O(B_n n^2)$

$$B_0 = 1$$
, $B_1 = 1$, $B_2 = 1$
 $B_k = B_{k-3} + B_{k-1}$ $(k \ge 3)$

Analysis of betterFptVertexCover [2]

$$T_0 = \Theta(1)$$

 $T_k = \Theta(|V| + |E|) + T_{k-3} + T_{k-1}$

If we only number of base cases B_n , we obtain $T_n = O(B_n n^2)$

$$B_0 = 1, \ B_1 = 1, \ B_2 = 1$$

 $B_k = B_{k-3} + B_{k-1} \qquad (k \ge 3)$

 \rightarrow $\vec{d} = (1,3)$; characteristic polynomial $z^3 - z^2 - 1$ roots at $z_0 \approx 1.4656$ and $z_{1,2} \approx -0.2328 \pm 0.7926i$

Analysis of betterFptVertexCover [2]

$$T_0 = \Theta(1)$$

$$T_k = \Theta(|V| + |E|) + T_{k-3} + T_{k-1}$$

If we only number of base cases B_n , we obtain $T_n = O(B_n n^2)$

$$B_0 = 1$$
, $B_1 = 1$, $B_2 = 1$
 $B_k = B_{k-3} + B_{k-1}$ $(k \ge 3)$

 \rightarrow $\vec{d} = (1,3)$; characteristic polynomial $z^3 - z^2 - 1$ roots at $z_0 \approx 1.4656$ and $z_{1,2} \approx -0.2328 \pm 0.7926i$

Theorem 4.28 (Depth-Bounded Search for Vertex Cover)

p-Vertex-Cover can be solved in time $O(1.4656^k n)$.

39