4 Абсолютная непрерывность и счетная аддитивность интеграла Лебега

Теорема 4.1. (Теорема об абсолютной непрерывности интеграла Лебега.) Пусть $f \in L(E)$. Тогда для всякого $\varepsilon > 0$ существует $\delta(\varepsilon) > 0$ такое, что

$$\left| \int_{e} f(x) \, dx \right| < \varepsilon$$

для всякого измеримого множества $e \subset E$ такого, что $|e| < \delta(\varepsilon)$.

Доказательство. Для всякого $\varepsilon > 0$ существует $M = M(\varepsilon) > 0$ такое, что

$$\int_{E \setminus E_M} |f| \, dx < \frac{\varepsilon}{3}.$$

Кроме того, существует $N = N(\varepsilon) > 0$ такое, что

$$\int_{E_M} (|f| - [|f|]_N) \, dx < \frac{\varepsilon}{3}.$$

Положим $\delta(\varepsilon)=\frac{\varepsilon}{3N(\varepsilon)}$. Пусть $e\subset E$ — произвольное измеримое множество такое, что $|e|<\delta(\varepsilon)$. Тогда

$$\left| \int_{e} f \, dx \right| \leqslant \int_{e} |f| \, dx \leqslant \int_{e \setminus E_{M}} |f| \, dx + \int_{e \cap E_{M}} |f| \, dx \leqslant$$

$$\leqslant \int_{E \setminus E_{M}} |f| \, dx + \int_{E_{M}} \left(|f| - \left[|f| \right]_{N} \right) \, dx + \int_{e \cap E_{M}} \left[|f| \right]_{N} \, dx <$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + N(\varepsilon) |e| < \varepsilon.$$

Теорема доказана.

Теорема 4.2. (Теорема о счетной аддитивности интеграла Лебега.)

Пусть $E = \bigcup_{k=1}^{\infty} E_k$, где $\{E_k\}_{k=1}^{\infty}$ – семейство попарно непересекающихся измеримых множеств.

а) Если $f \in L(E)$, то $f \in L(E_k)$ для всех $k \geqslant 1$, причем

$$\int_{E} f(x) dx = \sum_{k=1}^{\infty} \int_{E_k} f(x) dx. \tag{4.1}$$

б) Если $f \in L(E_k)$ для всех $k \geqslant 1$ и сходится ряд $\sum_{k=1}^{\infty} \int_{E_k} |f(x)| dx$, то $f \in L(E)$ и справедливо равенство (4.1).

Доказательство. а). Так как $E = E_k \cup (E \setminus E_k)$, то из $f \in L(E)$ следует, что $f \in L(E_k)$ для всех $k \geqslant 1$.

Положим $R_n = \bigcup_{k=n+1}^{\infty} E_k$.

В силу аддитивности интеграла Лебега

$$\int_{E} f \, dx = \sum_{k=1}^{n} \int_{E_k} f \, dx + \int_{R_n} f \, dx.$$

Равенство (4.1) будет установлено, если мы покажем, что $\int\limits_{R_n} f \, dx \to 0$ при $n \to \infty.$

Фиксируем $\varepsilon > 0$ и выберем $M = M(\varepsilon) > 0$ так, чтобы

$$\int_{E \setminus B_M} |f| \, dx < \frac{\varepsilon}{2}.$$

Положим $R_{n,M} = R_n \cap B_M(0)$. При фиксированном M последовательность $\{R_{n,M}\}_{n=1}^{\infty}$ представляет собой невозрастающую последовательность множеств конечной меры, для которой $\lim_{n\to\infty} R_{n,M} = \emptyset$. Следовательно $|R_{n,M}| \to 0$ при $n\to\infty$.

В силу абсолютной непрерывности интеграла Лебега существует $n_0(\varepsilon)$ такое, что

$$\left| \int_{R_{n,M}} f \, dx \right| < \frac{\varepsilon}{2} \quad \forall \, n > n_0(\varepsilon).$$

Из равенства

$$\int_{R_n} f \, dx = \int_{R_{n,M}} f \, dx + \int_{R_n \backslash B_M} f \, dx$$

следует, что

$$\left| \int\limits_{R_n} f \, dx \right| \leqslant \left| \int\limits_{R_{n,M}} f \, dx \right| + \int\limits_{E \setminus B_M} |f| \, dx \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \quad \forall \, n > n_0(\varepsilon).$$

б). Пусть $f\in L(E_k)$ для всех $k\geqslant 1$ и сходится ряд $\sum\limits_{k=1}^\infty\int\limits_{E_k}|f(x)|\,dx.$ Тогда для всех M>0 и N>0

$$\int\limits_{E\cap B_M} \left[|f|\right]_N dx = \sum_{k=1}^\infty \int\limits_{E_k\cap B_M} \left[|f|\right]_N dx \leqslant \sum_{k=1}^\infty \int\limits_{E_k} |f|\, dx.$$

Поэтому

$$\int\limits_{E}|f|\,dx\leqslant \sum\limits_{k=1}^{\infty}\int\limits_{E_{k}}|f|\,dx<\infty.$$

Следовательно $f \in L(E)$.

Теорема доказана.