ORDINAL LOGISTIC REGRESSION – EXTRA CONTENT

Dr. Aric LaBarr
Institute for Advanced Analytics

PROPORTIONAL ODDS MODEL

What if Assumption Fails?

- The proportional odds assumption may not be met for all variables.
- 2 Approaches:
 - Partial Proportional Odds Model
 - 2. Multinomial Logistic Regression

What if Assumption Fails?

- The proportional odds assumption may not be met for all variables.
- 2 Approaches:
 - Partial Proportional Odds Model
 - 2. Multinomial Logistic Regression

Some variables fail assumption

Partial Proportional Odds – SAS

Partial Proportional Odds – SAS

Analysis of Maximum Likelihood Estimates							
Parameter		wallet	DF	Estimate	Standard Error	Wald Chi- Square	Pr > ChiSq
Intercept		1	1	-2.6695	0.4491	35.3260	<.0001
Intercept		2	1	-0.7730	0.3714	4.3318	0.0374
male			1	1.0707	0.3282	10.6426	0.0011
business		1	1	0.9722	0.4838	4.0389	0.0445
business		2	1	0.6376	0.3810	2.7996	0.0943
punish	2		1	0.6300	0.4048	2.4224	0.1196
punish	3		1	1.3956	0.4829	8.3523	0.0039
explain			1	-1.0532	0.3405	9.5660	0.0020

Partial Proportional Odds – R

Partial Proportional Odds – R

```
## Pearson residuals:
                              10 Median
##
                      Min
                                             30
                                                 Max
## logitlink(P[Y<=1]) -1.241 -0.4759 -0.1765 -0.1099 3.899
## logitlink(P[Y<=2]) -1.850 -0.6623 -0.3859 0.6425 2.730
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
##
## (Intercept):1 -2.6695
                           0.4466 -5.978 2.26e-09 ***
## (Intercept):2 -0.7730
                          0.3678 -2.102 0.03557 *
                          0.3258 3.287 0.00101 **
## male
              1.0707
## business:1 0.9722 0.4789 2.030 0.04236 *
## business:2 0.6376 0.3810 1.674 0.09423 .
                          0.4008 1.572 0.11594
## punish2
           0.6300
## punish3
             1.3956
                          0.4727 2.952 0.00316 **
## explain
                           0.3413
                                  -3.086 0.00203 **
         -1.0532
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
```

Partial Proportional Odds – R

```
## Names of linear predictors: logitlink(P[Y<=1]), logitlink(P[Y<=2])
##
## Residual deviance: 306.8392 on 382 degrees of freedom
##
## Log-likelihood: -153.4196 on 382 degrees of freedom
##
## Number of Fisher scoring iterations: 5
##
## No Hauck-Donner effect found in any of the estimates
##
##
   Exponentiated coefficients:
##
        male business:1 business:2
                                                 punish3
                                                            explain
                                      punish2
                                    1.8776731 4.0373205
##
   2.9174165 2.6438481 1.8918696
                                                          0.3488076
```

INTERPRETATION

Model Notation – SAS Option

 With cumulative logits, increasing the right-hand side of the equation leads to an increased log(odds) of higher outcome category:

$$\log\left(\frac{p_{i,1}}{p_{i,2} + p_{i,3}}\right) = \beta_{0,1} - \beta_1 \text{male}_i - \beta_2 \text{business}_i$$
$$-\beta_3 \text{punishM}_i - \beta_4 \text{punishH}_i - \beta_5 \text{explain}_i$$

$$\log\left(\frac{p_{i,1} + p_{i,2}}{p_{i,3}}\right) = \beta_{0,2} - \beta_1 \text{male}_i - \beta_2 \text{business}_i$$
$$-\beta_3 \text{punishM}_i - \beta_4 \text{punishH}_i - \beta_5 \text{explain}_i$$

Model Notation – SAS Option

 With cumulative logits, increasing the right-hand side of the equation leads to an increased log(odds) of higher outcome category:

$$\log \begin{pmatrix} p_{i,1} \\ p_{i,2} + p_{i,3} \end{pmatrix} = \beta_{0,1} - \beta_1 \text{male} - \beta_2 \text{business}_i \\ -\beta_3 \text{punishM}_i - \beta_5 \text{explain}_i$$

$$\log\left(\frac{p_{i,1} + p_{i,2}}{p_{i,3}}\right) = \beta_{0,2} - \beta_1 \text{male} - \beta_2 \text{business}_i$$
$$-\beta_3 \text{punishM}_i - \beta_5 \text{explain}_i$$

Model Notation – R Default

 With cumulative logits, increasing the right-hand side of the equation leads to an increased log(odds) of higher outcome category:

$$\log \left(\frac{p_{i,1}}{p_{i,2} + p_{i,3}}\right) = \beta_{0,1} - \beta_1 \text{male} - \beta_2 \text{business}_i$$
$$-\beta_3 \text{punishM}_i - \beta_5 \text{explain}_i$$

$$\log\left(\frac{p_{i,1} + p_{i,2}}{p_{i,3}}\right) = \beta_{0,2} - \beta_1 \text{male} - \beta_2 \text{business}_i$$
$$-\beta_3 \text{punishM}_i - \beta_5 \text{explain}_i$$

Odds Ratio Interpretation – Descending

• Interpretation is still an odds ratio: $100 * (e^{\hat{\beta}_j} - 1)\%$ higher expected odds of being in a higher category.

Odds Ratios Descending – SAS

Odds Ratios Descending – SAS

Type 3 Analysis of Effects					
Effect	DF	Wald Chi-Square	Pr > ChiSq		
male	1	10.6047	0.0011		
business	1	4.4167	0.0356		
punish	2	9.4185	0.0090		
explain	1	9.4925	0.0021		

Analysis of Maximum Likelihood Estimates						
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	3	1	0.7890	0.3675	4.6107	0.0318
Intercept	2	1	2.5678	0.4169	37.9321	<.0001
male		1	-1.0598	0.3254	10.6047	0.0011
business		1	-0.7389	0.3516	4.4167	0.0356
punish	2	1	-0.6277	0.4005	2.4564	0.1170
punish	3	1	-1.4031	0.4721	8.8330	0.0030
explain		1	1.0518	0.3414	9.4925	0.0021

Odds Ratios Descending – SAS

Association of Predicted Probabilities and Observed Responses					
Percent Concordant	69.0	Somers' D	0.465		
Percent Discordant	22.5	Gamma	0.508		
Percent Tied	8.5	Tau-a	0.249		
Pairs	10154	С	0.732		

Odds Ratio Estimates and Profile-Likelihood Confidence Intervals					
Effect	Unit	Estimate	95% Confidence Limits		
male	1.0000	0.347	0.180	0.652	
business	1.0000	0.478	0.238	0.963	
punish 2 vs 1	1.0000	0.534	0.242	1.193	
punish 3 vs 1	1.0000	0.246	0.094	0.632	
explain	1.0000	2.863	1.469	5.612	

Odds Ratios – R

Odds Ratios – R

```
## male 0.3465172 0.17995548 0.6522567

## business 0.4776512 0.23775967 0.9626137

## punish2 0.5338490 0.24246863 1.1934058

## punish3 0.2458364 0.09418942 0.6315739

## explain 2.8630214 1.46945567 5.6121973
```