TD III: Théorie générale de l'intégration

1 Intégrale par rapport à une mesure

Exercice 1. Soit (X, \mathcal{A}, μ) un espace mesuré. Prouver ou réfuter les assertions suivantes :

- 1. Si $f = a\mathbb{1}_A + b\mathbb{1}_B$ avec $a, b \in \mathbb{R}$ et $A, B \in \mathscr{A}$, alors $\int_X f d\mu = a\mu(A) + b\mu(B)$.
- 2. Si $f: X \to \overline{\mathbb{R}}_+$ est mesurable et $\mu(f^{-1}(\{+\infty\})) = 0$, alors $\int_X f d\mu < +\infty$.
- 3. Soit $f: X \to \mathbb{R}$. On a $\int_X f d\mu = 0$ si et seulement si f = 0 μ -pp.

Exercice 2. Mesures à densité Soit (X, \mathcal{A}, μ) un espace mesuré et $\varphi : X \to \mathbb{R}_+$ une fonction mesurable. Pour tout $A \in \mathcal{A}$, on note

$$\nu(A) = \int_X \mathbb{1}_A \varphi d\mu.$$

La fonction φ est appelée fonction densité.

- 1. Montrer que ν est une mesure sur (X, \mathscr{A}) .
- 2. Donner des examples de mesure à densité sur $(\mathbb{R}, \mathcal{B}, \lambda_1)$ et $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \chi)$.
- 3. On souhaite déterminer quelle est l'intégrale d'une fonction pour la mesure $\nu.$
 - (a) Pour toute fonction mesurable positive $f: X \to [0, +\infty]$, montrer qu'on a $\int_X f d\nu = \int_Y f \varphi d\mu$. On commencera par le montrer pour les fonctions étagées positives.
 - (b) Soit $f:X\to\mathbb{R}$ mesurable. Montrer que $f\in\mathscr{L}^1(X,\nu)$ si et seulement si $f\varphi\in\mathscr{L}^1(X,\mu)$. Lorsque c'est le cas, montrer que $\int_X fd\nu=\int_X f\varphi d\mu$.

2 Théorèmes limites

Exercice 3. Soit (X, \mathscr{A}, μ) un espace mesuré et $f: X \to \mathbb{R}_+$ une fonction mesurable. On note $A = f^{-1}([0, 1]), B = f^{-1}(\{1\})$ et $C = f^{-1}([1, +\infty[)$

- 1. Déterminer $\lim_{n\to+\infty} \int_{B\cup C} f^n d\mu$.
- 2. Montrer que la série $\sum_{n\in\mathbb{N}}\int_A f^n d\mu$ converge dans \mathbb{R} si et seulement si $\frac{\mathbb{1}_A}{1-f}\in\mathscr{L}^1(X)$.
- 3. On suppose que $f \in \mathcal{L}^1(X)$, déterminer $\lim_{n \to +\infty} \int_{A \cup B} f^n d\mu$.

Exercice 4. Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction intégrable. Calculer $\lim_{n \to +\infty} \int_{\mathbb{R}} f(x) \cos^n(\pi x) d\lambda_1(x)$.

Exercice 5. Soit f une fonction intégrable sur $(\mathbb{R}_+, \mathscr{B}(\mathbb{R}_+), \lambda_1)$.

1. Montrer que $\lim_{x\to +\infty} \int_{[x,+\infty[} f d\lambda_1 = 0.$

- 2. On suppose que f est décroissante. En déduire que f est positive et montrer qu'il existe une constante C telle que $f(x) \leqslant \frac{C}{x}$ pour tout x > 0.
- 3. Montrer que le résultat est faux si on suppose seulement f positive.

Exercice 6. On considère [-1,1] muni de sa tribu borélienne et de la mesure de Lebesgue λ_1 . Pour tout $n \ge 1$, soit f_n la fonction définie sur [-1,1] par $f_n(t) = n\mathbb{1}_{[-\frac{1}{2n},\frac{1}{2n}]}$.

- 1. Calculer la limite simple de la suite $(f_n)_{n\in\mathbb{N}}$ et la limite de la suite $\left(\int_{[-1,1]} f_n d\lambda_1\right)_{n\in\mathbb{N}}$. Expliquer pourquoi ce résultat ne contredit pas les théorèmes de convergence monotone et de convergence dominée.
- 2. Soit $\varphi: [-1,1] \to \mathbb{R}$ une fonction continue. Montrer que $\lim_{n \to +\infty} \int_{[-1,1]} \varphi f_n d\lambda_1 = \varphi(0)$.

3 Intégrales à paramètres

Exercice 7. Soit μ une mesure finie sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Pour tout $t \geq 0$ on note $F(t) = \int_{\mathbb{R}} \arctan(x^2t)d\mu(x)$.

- 1. Montrer que F est bien définie et déterminer $\lim_{t\to +\infty} F(t)$.
- 2. Montrer que F est continue sur \mathbb{R}_+ .
- 3. Montrer que F est dérivable sur \mathbb{R}_+^* et exprimer F' sous la forme d'une intégrale dépendant d'un paramètre. Indication : montrer que F est dérivable sur tout intervalle de la forme $]a, +\infty[$ avec 0 < a.
- 4. Donner une condition suffisante pour que la fonction F soit dérivable en 0. Que vaut alors F'(0)?

4 Pour s'entrainer

Exercice 8. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction intégrable.

1. Montrer que pour tout $x \in \mathbb{R}$ on a $\lim_{x \to +\infty} \int_{[x-\varepsilon,x+\varepsilon[} f d\lambda_1 = 0.$

2. Soient $a, b \in \mathbb{R}$ tels que a < b. Que peut-on dire de $\lim_{x \to +\infty} \int_{[ax,bx]} f d\lambda_1$?

Exercice 9. Soit (X, \mathscr{A}, μ) un espace mesuré et $f \in \mathscr{L}^1(X, \mu)$. On suppose que $0 \leqslant f \leqslant 1$ et que $\int_X f d\mu = \int_X f^2 d\mu$. Montrer qu'il existe une partie mesurable $A \in \mathscr{A}$ telle que $f = \mathbb{1}_A$.

Exercice 10. Soit f une fonction intégrable sur \mathbb{R}_+ . On suppose que f est décroissante, montrer que f est positive et que $\lim_{x\to +\infty} xf(x)=0$. Indication : utiliser la première question de l'exercice f.

Exercice 11. Soit $f: \mathbb{R} \to \mathbb{C}$ un fonction Lebesgue intégrable sur \mathbb{R} , et soit $h \in \mathbb{R}_+^*$. Pour tout $x \in \mathbb{R}$, on pose $\phi_h(x) = \int_{\mathbb{R}} f \mathbb{1}_{[x,x+h]} d\lambda_1$.

- 1. Montrer que la fonction ϕ_h ainsi définie est continue sur \mathbb{R} .
- 2. Montrer que $\lim_{x\to+\infty} \phi_h(x) = 0$.

Exercice 12. Extrait d'un sujet d'examen Soit μ une mesure finie sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Pour tout $t \geqslant 0$ on note $F(t) = \int_{\mathbb{R}} \frac{1}{1+x^2t} d\mu(x)$.

- 1. Montrer que F est bien définie et déterminer $\lim_{t\to +\infty} F(t)$.
- 2. Montrer que F est continue sur \mathbb{R}_+ .
- 3. Montrer que F est dérivable sur \mathbb{R}_+^* et exprimer F' sous la forme d'une intégrale dépendant d'un paramètre. Indication : montrer que F est dérivable sur tout intervalle de la forme $|a, +\infty|$ avec 0 < a.
- 4. Donner une condition suffisante pour que la fonction F soit dérivable en 0. Que vaut alors F'(0) ?