

Dati

- File
- Formato
- Dataset

DATI

File

- Dataset Amazon con recensioni di prodotti
- Selezionati 9 file, uno per categoria

Formato

- Dati originali in formato JSON
- Dopo il caricamento le recensioni sono state memorizzate in un file pandas

Dataset

- Campionamento casuale senza reinserimento
- Variabili:
 - TextReview
 - Category

Text preprocessing Tokenization Normalization Lemmatization Stopwords removal

TEXT PREPROCESSING - 1

Tokenizzazione

- Applicate non singelarmente ma nel preprocessing ad ogni step
- Per ogni documento
 - Split
 - Funzione di preprocessing
 - Join

Normalizzazione

Due funzioni:

- Lower case: parole in minuscolo
- Rimozione della punteggiatura e dei caratteri speciali

TEXT PREPROCESSING - 2

Lemmatizzazione

Parole riportate nella loro forma base eliminando le inflessioni del contesto.

Applicato su:

- Verbi
- Sostantivi
- Aggettivi

Stopwords

Rimosse le stopwords utilizzando una lista predefinita

Lista estesa con altri termini dopo un primo step.

02 TEXT PREPROCESSING - 3

Esempio di text preprocessing su una recensione del dataset:

1. Documento originale:

GREAT light so far....after 8 months it is going strong ...i hope it lasts....i can believe it has a motion sensor....!!

2. Testo convertito a lower case:

great light so far....after 8 months it is going strong ...i hope it lasts....i can believe it has a motion sensor....!!

3. Rimozione punteggiatura:

great light so far after 8 months it is going strong i hope it lasts i can believe it has a motion sensor

4. Testo lemmatizzato:

great light so far after 8 month it be go strong i hope it last i can believe it have a motion sensor

5. Rimozione stopwords:

great light far month strong hope last believe motion sensor

TEXT REPRESENTATION

Train & test

L'interno dataset è stato diviso in due parti:

- Train: contenente il 75% delle osservazioni, sarà utilizzato per allenare i modelli.
- Test: contiene il 25% delle osservazioni, dati di classe «ignota» su cui si valuteranno le performance dei modelli.
- Stratificato per categorie

Bag of words

- Rappresentazione più consona per il task. Ogni recensione viene convertita in un vettore con componenti date dai pesi TF-IDF.
- Algoritmo TfidfVectorizer
- addestrato sul train, restituisce una rappresentazione dei dati in forma matriciale (document-term matrix).
- Scelta delle 5000 features più rilevanti

Modelli

- Descrizione
- Naïve Bayes
- Random Forest
- Logistic

MODELLI

- Probabilità di appartenenza calcolata sfruttando il teorema di Bayes
- Correzione di Laplace per ovviare alla presenza di parole sconosciute

Random Forest

- Media i risultati di n alberi classificativi
- Ogni albero contiene un subset di massimo \sqrt{k} features
- Split dei nodi in base all'Indice di Gini

Metodo Multinomial

- Probabilità di appartenenza calcolata con la funzione softmax
- Recensione assegnata alla classe con probabilità più elevata

Analisi & risultati Precision/Recall Confusion matrix Commenti

ANALISI & RISULTATI - 1

Test χ^2 per rilevanza condizionata:

$$X^{2}(f,t) = \frac{N(AD - CB)^{2}}{(A+C)(B+D)(A+B)(C+D)}$$

Baby:

- 1. baby
- 2. diaper
- 3. bottle

Cell Phones and Accessories:

- 1. phone
- 2. case
- 3. charge

Digital Music:

- 1. album
- 2. song
- 3. quot

Musical Instruments:

- 1. guitar
- 2. string
- 3. pedal

Office Products:

- 1. printer
- 2. ink
- 3. paper

Pet Supplies:

- 1. dog
- 2. cat
- 3. treat

Tools and Home Improvement:

- 1. tool
- 2. light
- 3. Bulb

Toys and Games:

- 1. doll
- 2. toy
- 3. kid

Video Games:

- 1. game
- 2. graphic
- 3. play

ANALISI & RISULTATI - 2

Performance modelli

Tutti i modelli registrano buone performance classificative in termini di accuracy:

- Random forest (100 alberi), meno performante
- Accuracy più elevata con il logistico

Precision & recall

La classe *Musical Instruments* presenta un problema:

- Alta precision
- Bassa recall

Il numero di osservazioni in questa classe è significativamente minore rispetto a tutte le altre

ANALISI & RISULTATI - 3

Ricampionamento

Per avere una migliore recall si sono prese tutte le osservazioni disponibili per *Musical Instruments*

La numerosità diventa uguale a quella della seconda classe meno numerosa

Nuovo dataset con solo questa categoria

Preprocessing

- Si sono svolti tutti gli step di preprocessing elencati in precedenza
- Dal dataset originale sono rimosse le osservazioni relative a Musical Instruments e sostituite con il nuovo dataset
- Nuovo split train/test

ANALISI & RISULTATI - 4

Accuracy

	Accuracy globale		
Modello	Dataset originale	Dataset ricampionato	
Naive Bayes	0.883	0.883	
Random Forest	0.864	0.864	
Logistic	0.908	0.906	

Precision & recall

Recall relativa alla classe ricampionata, *Musical Instruments*:

	Dataset originale		Dataset ricampionato	
Modello	Precision M.I.	Recall M.I.	Precision M.I.	Recall M.I.
Naive Bayes	0.94	0.31	0.97	0.78
Random Forest	0.93	0.34	0.92	0.82
Logistic	0.91	0.62	0.94	0.85

I valori medi rimangono invariati fra nuovo e vecchio dataset

ANALISI & RISULTATI - 4

Confusion matrix e riassunto della classificazione del miglior modello (logistic new dataset)

	precision	recall
Baby Cell_Phones_and_Accessories Digital_Music Musical_Instruments Office_Products Pet_Supplies Tools_and_Home_Improvement Toys_and_Games Video Games	0.90 0.89 0.98 0.94 0.93 0.94 0.83 0.87 0.95	0.88 0.94 0.97 0.85 0.85 0.92 0.88 0.86 0.94
micro avg macro avg weighted avg	0.91 0.91 0.91	0.91 0.90 0.91

CONCLUSIONI

- Si è rivelato interessante l'esito dei termini più rilevanti per ciascuna categoria, che ha permesso di dare una visione sintetica delle features più rilevanti.
- Notevoli migliormenti con il ricampionamento.
- Random Forest modello «peggiore».
- Al variare del numero di features considerate, le performance del modello logistico rimangono stabili.

Grazie dell'attenzione