Quiz

- ▶ What are the three components of GLM?
- ▶ What is the expression of the canonical link function (in terms of $b(\theta)$)? $y_i = b \frac{1}{(\mu)}$ • What is the diagram among $y_i, \mu_i, \theta_i, \eta_i$?

Model Diagnostics

Check how well a model fits data

- Goodness-of-fit statistics
- Residuals

Compare different candidate models

- nested models
- hypothesis testing

Data: n independent observations (y_i, x_i) , $i = 1, \dots, n$,

$$\mathbf{x}_i = (x_{i1}, \cdots, x_{ip})^T$$
.

Model: GLM

- ► Two extreme models:
 - ▶ Null Model: Common μ for y_1, \ldots, y_n ; only 1 parameter.
 - ▶ Full (Saturated) Model: $\mu_i = y_i$ for $i = 1, \dots, n$; n parameters.
 - the null model is too simple,
 - ▶ the full model is uninformative and not generalizable.
- We need something in between: an intermediate p-parameter model (1

$$\eta_i = \mathbf{g}(\mu_i) = \mathbf{x}_i \boldsymbol{\beta},$$

where β is *p*-dimensional.

degree of freedom

• Assume the following log-likelihood (dispersion $\phi = 1$),

$$l(y, \mu) = y\theta - b(\theta) + c(y).$$

Let $I(y, \hat{\mu})$ denote the maximized log-likelihood over β , where

$$\hat{\boldsymbol{\mu}} = g^{-1}(\boldsymbol{X}\hat{\boldsymbol{\beta}})$$

- ▶ The maximum possible value of the log-likelihood is I(y, y), i.e. the full (saturated) model.
- ▶ The full model fits each data point exactly.

Deviance

(scaled)

Deviance measures the discrepancy between the two fits, which is twice the difference between l(y, y) and $l(y, \hat{\mu})$:

$$D(\mathbf{y}, \hat{\boldsymbol{\mu}}) = 2\{\underbrace{I(\mathbf{y}, \mathbf{y})}_{\text{def} = \rho} - \underbrace{I(\mathbf{y}, \hat{\boldsymbol{\mu}})}_{\text{def} = \rho}\}.$$

- Deviance can be interpreted as the likelihood ratio between the full model and the p-parameter model.
- When the <u>p</u>-parameter model is true, the deviance <u>may</u> be approximately distributed as χ^2_{n-p} .
- ▶ Deviance is commonly used to check the goodness of fit. A large value (compared to the quantile of χ^2_{n-p}) means lack of fit.

Example

Normal linear regression: $y_i = \mathbf{x}_i^T \boldsymbol{\beta} + \epsilon_i \ (\epsilon_i \sim N(0, 1))$

$$I(\mathbf{y}, \boldsymbol{\mu}) = -\frac{n}{2} \log(2\pi) - \sum_{i=1}^{n} \frac{(y_i - \mu_i)^2}{2}$$

$$\lim_{\boldsymbol{\mu} \in \mathcal{P}} \sum_{i=1}^{n} \frac{(y_i - \mu_i)^2}{2}$$

$$\lim_{\boldsymbol{\mu} \in \mathcal{P}} \sum_{i=1}^{n} \frac{(y_i - \mathbf{x}_i^{\mathbf{x}})^2}{2}$$

$$\lim_{\boldsymbol{\mu} \in \mathcal{P}} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\mathbf{x}})^2$$

▶ Poisson log linear regression: $\theta_i = \log \mu_i = \mathbf{x}_i^T \boldsymbol{\beta}$

$$\hat{\mu} = e^{x_i^T \hat{\beta}}$$

$$D(\mathbf{y}, \hat{\boldsymbol{\mu}}) = 2\sum_{i=1}^{n} \left(y_i \log y_i - y_i - y_i \mathbf{x}_i^T \hat{\boldsymbol{\beta}} + \exp(\mathbf{x}_i^T \hat{\boldsymbol{\beta}}) \right)$$

Analysis of Deviance

- Deviance can be used for model selection (comparing nested models)
- \triangleright Suppose we want to compare model M_0 (smaller model) to model M_1 (larger model)
- ▶ The difference in deviances between M_0 and M_1 is $\frac{2(\frac{l_{\text{pw}}-l_{\text{g}}}{D_{M_0}})}{D_{M_0}-\frac{2(\frac{l_{\text{pw}}-l_{\text{p}}}{D_{M_1}}\overset{d}{\approx}\chi^2_{p-q}, \text{ under } M_0}$ where $\stackrel{d}{\approx}$ denotes "approx. distributed as".

- Related to likelihood ratio test
- \triangleright Reject the smaller model M_0 is the difference in deviances is large

Generalized Pearson's χ^2 statistic

 This is another important measure of discrepancy, which takes the following form,

$$G = \sum_{i=1}^{n} (y_i - \hat{\mu}_i)^2 / \underline{V(\hat{\mu}_i)},$$

where $V(\cdot)$ is the variance function, and $\hat{\mu}_i = g^{-1}(\mathbf{x}_i^T \hat{\boldsymbol{\beta}})$.

- ▶ If the *p*-parameter model is true, *G* may have an approximate distribution of $\chi^2(n-p)$.
- ▶ Both the deviance and the generalized Pearson χ^2 statistic have exact χ^2 distributions for normal linear models.

Residuals

- Normal residuals: $\epsilon_i = y_i \hat{\mu}_i$; important diagnostic tool: normality, dependence, homoscedastic.
- ▶ For GLM, we define two forms of generalized residuals:
 - Pearson residual
 - Deviance residual

Pearson Residual

▶ Define Pearson residual as:

$$r_{P_i} = \frac{y_i - \hat{\mu}_i}{\sqrt{V(\hat{\mu}_i)}}$$

- ▶ The raw residual scaled by the estimated sd.
- ▶ Relation to the Generalized Pearson χ^2 statistic G:

$$G=\sum_i r_{P_i}^2.$$

▶ For normal dist., this reduces to the ordinary residual.

Deviance Residual

▶ Define Deviance residual as:

$$r_{D_i} = \underbrace{\mathrm{sign}(y_i - \hat{\mu}_i)} \sqrt{\frac{d_i}{d_i}},$$
 where $d_i = D(y_i, \hat{\mu}_i).$

- ▶ The deviance is $D(\mathbf{y}, \hat{\boldsymbol{\mu}}) = \sum_i d_i = \sum_i r_{D_i}^2$.
- $ightharpoonup r_D$ is generally preferred

GLM Model Inference

$$\frac{\sum (\beta) = -E\left(\frac{\partial^2 \log f}{\partial \beta^2}\right) = E\left(\left(\frac{\partial \log f}{\partial \beta}\right)^2\right)}{Score : S(\beta) = \frac{\partial \log f}{\partial \beta}}$$

According to general likelihood theory,

$$\hat{eta} - eta \stackrel{\mathsf{asy}}{\sim} \mathsf{N}(0, \mathcal{I}(eta)^{-1}),$$
 $\mathsf{I}(eta : \mathsf{Vor}(\hat{eta}))$

where $\mathcal{I}(\beta)$ is the Fisher information.

• We can obtain asymptotic $100(1-\alpha)\%$ confidence intervals for β_j using

$$\hat{\beta}_j \pm Z_{1-\alpha/2} se(\hat{\beta}_j),$$

where $Z_{1-\alpha/2}$ denotes the $(1-\alpha/2)$ -th percentile of the N(0,1) density.

▶ Standard packages usually provide the estimate of $\mathcal{I}(\beta)$

Hypothesis Tests

- ▶ Interested in testing H_0 : $\beta = \beta_0$ vs H_1 : $\beta \neq \beta_0$.
- Recall log likelihood function $I(y, \beta)$, score vector $s(\beta)$, Fisher Information matrix $\mathcal{I}(\beta)$, and MLE $\hat{\beta}$.
- ▶ We will introduce three asymptotically equivalent tests.
 - Wald Test
 - Score Test
 - Likelihood Ratio Test

Wald test statistic:

$$TS_W = (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)^T \underline{\mathcal{I}(\hat{\boldsymbol{\beta}})} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)$$

Score test statistic (preferred):

UB

$$TS_S = s(\boldsymbol{\beta}_0)^T \mathcal{I}^{-1}(\boldsymbol{\beta}_0) s(\boldsymbol{\beta}_0)$$

or sometimes replace $\mathcal{I}^{-1}(oldsymbol{eta}_0)$ with $\mathcal{I}^{-1}(\hat{oldsymbol{eta}})$

Likelihood ratio test statistic (preferred):

$$TS_{LR} = 2[I(\mathbf{y}, \hat{\boldsymbol{\beta}}) - I(\mathbf{y}, \boldsymbol{\beta}_0)]$$

Under the null hypothesis $H_0: \beta = \beta_0$ and some regularity conditions, all three test statistics have asymptotic $\chi^2(p)$ distributions.

Poisson Example

 $(y_1, \dots, y_n) \sim_{iid} Poisson(\lambda)$. We are interested in testing $H_0: \lambda = \lambda_0$. Questions:

▶ What are the expressions for different statistics?

Poisson Example

 $(y_1, \dots, y_n) \sim_{iid} Poisson(\lambda)$. We are interested in testing $H_0: \lambda = \lambda_0$. What are the expressions of different statistics?

Answer:

The problem can be viewed as a hypothesis testing problem of a null Poisson regression model. In order to obtain different test statistics, we need to calculate the key quantities first. Assume $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$,

$$I(\mathbf{y}, \lambda) = \sum_{i=1}^{n} [y_i \log \lambda - \lambda - \log(y_i!)]$$

$$s(\lambda) = \frac{\partial I(\mathbf{y}, \lambda)}{\partial \lambda} = \frac{\sum_{i=1}^{n} y_i}{\lambda} - n = \frac{n(\bar{y} - \lambda)}{\lambda}$$

$$\mathcal{I}(\lambda) = \mathbb{E}\left(-\frac{\partial^2 I(\mathbf{y}, \lambda)}{\partial \lambda^2}\right) = \frac{\mathbb{E}(\sum_{i=1}^{n} y_i)}{\lambda^2} = \frac{n}{\lambda}$$

$$\hat{\lambda}_{MLE} = \bar{y}$$

Now we can derive the expressions of different test statistics:

▶ Wald:

$$TS_W = (\hat{\lambda}_{MLE} - \lambda_0) * \mathcal{I}(\hat{\lambda}_{MLE}) * (\hat{\lambda}_{MLE} - \lambda_0) = \frac{n(\bar{y} - \lambda_0)^2}{\bar{y}}$$

Score:

$$TS_S = s(\lambda_0) * \mathcal{I}^{-1}(\lambda_0) * s(\lambda_0) = \frac{n(\bar{y} - \lambda_0)^2}{\lambda_0}$$

► LR:

$$TS_{LR} = 2[I(\boldsymbol{y}, \hat{\lambda}_{MLE}) - I(\boldsymbol{y}, \lambda_0)] = 2n \left[\bar{\boldsymbol{y}} \log \frac{\bar{\boldsymbol{y}}}{\lambda_0} - (\bar{\boldsymbol{y}} - \lambda_0) \right]$$

They all asymptotically follow χ_1^2 ! We reject the null hypothesis (i.e., $\lambda=\lambda_0$) if a test statistic is too large (recall the graphical representation of different statistics).