# Communication [Lower] Bounds for Heterogeneous Architectures

Julian Bui

#### Outline

- Problem
- Goal
- MV multiplication w/i constant factor of the lower bound
- Matrix-matrix multiplication w/i constant factor of the lower bound
  - With Examples!
- If there's time: derivation of proofs of lower bounds for N<sup>2</sup> and N<sup>3</sup> problems

#### Problem

- N<sup>2</sup> problems like MV multiply
  - Dominated by the communication to read inputs and write outputs to main memory
- N<sup>3</sup> problems like matrix-matrix multiply
  - Dominated by communication between global and local memory (Loomis-Whitney)

### Architecture



#### Goal

- Let's create a model based on the communication scheme to minimize the overall time
- Execution time becomes a function of processing speed, bandwidth, message latency, and memory size.

# **Optimization Function**



# Heterogeneous MV multiply



Figure 3: HGEMV splitting

# Heterogeneous, recursive MM

#### Algorithm 2 Heterogeneous matrix-matrix multiplication

```
Require: Matrices A, B \in \mathbb{R}^{n \times n}, stored in block-recursive order, n is a power of two
```

- 1: Measure  $a_i, \beta_i, \gamma_i, M_i$  and set  $\delta_i$  according to equation (9) for each  $1 \le i \le P$
- 2: for i = 1 to P do
- Set F<sub>i</sub> according to equation (10) where G = n<sup>3</sup>
- 4: Set  $k_i$  to be the largest integer such that  $3(n/2^{k_i})^2 \ge M_i$
- 5: Convert  $F_i/G$  into octal and round to  $k_i^{th}$  digit:  $0.d_1^{(i)}d_2^{(i)}\cdots d_{k_i}^{(i)}$  in units of work that are multiples
- 6: end for
- 7: Initialize  $S = \{A \cdot B\}$
- 8: for j = 1 to  $\max k_i$  do
- 9: Subdivide all problems in S into 8 subproblems according to square recursive GEMM
- 10: Assign  $d_j^{(i)}$  subproblems to  $\operatorname{proc}_i$  and remove subproblems from S
- 11: end for
- 12: for all proc, parallel do
- 13: Compute assigned subproblems using square recursive GEMM
- 14: end for

Ensure: Matrix C = AB, stored in block-recursive order

Solve the optimization equation for each processor, then assign it an appropriate amount of work based in units of work that are multiples of 8 sub MM multiplication blocks

Recursively solve each sub-block using a divide and conquer method

Recursive, Parallel MM

| С | D | v | G | Н |   |
|---|---|---|---|---|---|
| E | F | Λ | Ι | J | = |

| CG | СН | L | DI | DJ |
|----|----|---|----|----|
| EG | EH | Τ | FI | FJ |

| 1  | 2  | 3  | 4  |
|----|----|----|----|
| 5  | 6  | 7  | 8  |
| 9  | 10 | 11 | 12 |
| 13 | 14 | 15 | 16 |

|   | 1  | 2  | 3  | 4  |
|---|----|----|----|----|
| X | 5  | 6  | 7  | 8  |
| ^ | 9  | 10 | 11 | 12 |
|   | 13 | 14 | 15 | 16 |

| 1  | 2  | 3  | 4   |   | 1  | 2  | 3  | 4  |
|----|----|----|-----|---|----|----|----|----|
| 5  | 6  | 7  | 8   | X | 5  | 6  | 7  | 8  |
| 9  | 10 | 11 | 12  | ^ | 9  | 10 | 11 | 12 |
| 13 | 14 | 15 | 16  |   | 13 | 14 | 15 | 16 |
| CD |    |    | (   | J | I  | Ή  |    |    |
| E  | 7  | ŀ  | [T. |   | ]  | [  |    | J  |

| 1  | 2  | 3  | 4  |
|----|----|----|----|
| 5  | 6  | 7  | 8  |
| 9  | 10 | 11 | 12 |
| 13 | 14 | 15 | 16 |

| 1  | 2  | 3_ | <b>_</b> 4 |
|----|----|----|------------|
| 5  | 6  | 7  | 8          |
| 9  | 10 | 11 | 12         |
| 13 | 14 | 15 | 16         |

| 1  | 2  | 3  | 4  |
|----|----|----|----|
| 5  | 6  | 7  | 8  |
| 9  | 10 | 11 | 12 |
| 13 | 14 | 15 | 16 |

|   | 1  | 2  | 3  | 4  |
|---|----|----|----|----|
| X | 5  | 6  | 7  | 8  |
| ^ | 9  | 10 | 11 | 12 |
|   | 13 | 14 | 15 | 16 |

|  | ·- | ? |
|--|----|---|
|  | ?  | ? |

# Review

| С | D | v | G | Н |   |
|---|---|---|---|---|---|
| Е | F | Λ | I | J | = |

| CG | СН |   | DI | DJ |
|----|----|---|----|----|
| EG | EH | Т | FI | FJ |



| С | D | G | Н | CG | СН | DI | DJ |
|---|---|---|---|----|----|----|----|
| Е | F | Ι | J | EG | EH | FI | FJ |

So we need EH + FJ





$$CG = 9 * 3 = 27$$

$$CH = 9 * 4 = 36$$

$$CG = 9 * 3 = 27$$

$$CH = 9 * 4 = 36$$

CG = 11 \* 11 = 121

CH = 11 \* 12 = 132

EG = 15 \* 11 = 165

$$X \begin{vmatrix} G & H \\ \hline I & J \end{vmatrix}$$

$$X \left| \frac{G}{I} \right| =$$

$$CG = 9 * 3 = 27$$

CH = 9 \* 4 = 36

EH = 13 \* 4 = 52

DJ = 10 \* 8 = 80

$$\begin{vmatrix} C & D \\ E & F \end{vmatrix} X \begin{vmatrix} G & H \\ I & J \end{vmatrix} + \begin{vmatrix} C & D \\ E & F \end{vmatrix} X \begin{vmatrix} G & H \\ I & J \end{vmatrix} =$$

| CG | СН | DI | DJ | <b>-</b> | CG | СН | DI | DJ |
|----|----|----|----|----------|----|----|----|----|
| EG | EH | FI | FJ |          | EG | EH | FI | FJ |

| 1  | 2     | 3  | 4  |
|----|-------|----|----|
| 5  | 6     | 7  | 8  |
| 9  | 10    | 11 | 12 |
| 13 | 13 14 |    | 16 |

|   | 1  | 2  | 3  | 4  |
|---|----|----|----|----|
| X | 5  | 6  | 7  | 8  |
| ^ | 9  | 10 | 11 | 12 |
|   | 13 | 14 | 15 | 16 |

|  | 398 | 440 |
|--|-----|-----|
|  | 542 | 600 |

# **Derivation of Proofs**

- For a MM, the a node can only do
  O(N \*√N) useful arithmetic operations per phase
  - If a single processor accesses rows of matrix A and some of these rows have at least  $\sqrt{N_A}$  elements, then the processor will touch at most  $\sqrt{N_A}$  rows of matrix A.
  - Since each row of C is a product of a row in A and all of B, the number of useful multiplications on a single processor that involve rows of matrix A are bounded by  $O(N_B \sqrt{N_A})$  or  $O(N \sqrt{N})$

#### **Derivation Cont'd**

 Total amt. of communication = # phases times memory used per phase (~M)

$$\frac{G}{\sqrt{M}}$$

#### **Derivation Cont'd**

- Total # Words, W =  $\frac{G}{\sqrt{M}}$
- G / sqrt(M) = W = G \* M / (M \* sqrt(M))
- W >= ((G / (M \* sqrt(M)) 1) \* M
- W >= (G / sqrt(M)) M