

Emil Björnson

Outline

- Power control
- Spectral efficiency (sum rate) maximization
 - Uplink, downlink
 - Simulation example
- Energy efficiency maximization
 - Definition
 - Impact of beamforming and multipleixng

Power control

- Effective SINRs depend on $\eta_1, ..., \eta_K$
 - Can be selected to achieve different operating points

Downlink sum rate maximization

- Optimization problem:
 - Find $\eta_1, ..., \eta_K$ that maximizes

MR	ZF
$a_k = M \rho_{dl} \gamma_k$	$a_k = (M - K)\rho_{dl}\gamma_k$
$b_k = \rho_{dl} \beta_k$	$b_k = \rho_{dl}(\beta_k - \gamma_k)$

$$\sum_{k=1}^{K} \log_2 \left(1 + \frac{a_k \eta_k}{1 + b_k \sum_{k'=1}^{K} \eta_{k'}} \right)$$

subject to $\sum_{k=1}^{K} \eta_k \le 1$, $\eta_k \ge 0$, k = 1, ..., K

- Property 1: Sum rate is larger with $(c\eta_1, ..., c\eta_K)$ than with $(\eta_1, ..., \eta_K)$, for $c \ge 1$.
 - Consequence: Use maximum power, $\sum_{k=1}^{K} \eta_k = 1$

Maximize:
$$\sum_{k=1}^{K} \log_2 \left(1 + \frac{a_k}{1 + b_k} \eta_k\right)$$
 using "waterfilling"

Sum rate maximizing waterfilling power allocation

• After some optimization:

$$\eta_k = \max\left(\mu - \frac{1 + b_k}{a_k}, 0\right)$$

where μ is selected such that $\eta_1 + \cdots + \eta_K = 1$

Properties:

- Larger $a_k/(1+b_k)$: More power
- Some users might get zero power

Users ordered based on channel quality

Uplink sum rate maximization

- Optimization problem:
 - Find η_1, \dots, η_K that maximizes

MR	ZF
$a_k = M \rho_{ul} \gamma_k$	$a_k = (M - K)\rho_{ul}\gamma_k$
$b_{k'} = \rho_{ul} \beta_{k'}$	$b_{k'} = \rho_{ul}(\beta_{k'} - \gamma_{k'})$

$$\sum_{k=1}^{K} \log_2 \left(1 + \frac{a_k \eta_k}{1 + \sum_{k'=1}^{K} b_{k'} \eta_{k'}} \right)$$

subject to $0 \le \eta_k \le 1, k = 1, ..., K$

- Property 1: Denominator $(1 + \sum_{k'=1}^{K} b_{k'} \eta_{k'})$ is the same for every user
 - Change of variable:

$$s = \frac{1}{1 + \sum_{k'=1}^{K} b_{k'} \eta_{k'}}, \qquad x_k = \eta_k b_k s$$

Maximize
$$\sum_{k=1}^{K} \log_2 \left(1 + \frac{a_k}{b_k} x_k \right)$$

Revised problem formulation

maximize
$$x_1, \dots, x_K, s \qquad \sum_{k=1}^K \log_2 \left(1 + \frac{a_k}{b_k} x_k \right)$$
 subject to $0 \le x_k \le sb_k$, $k = 1, \dots, K$
$$\sum_{k=1}^K x_k = 1 - s$$

Convex optimization problem

Maximize a concave function Linear constraints Solve with any convex optimization solver (e.g., CVX)

Simulation example: Urban deployment

- Single-cell setup
 - Circular cell with radius 500 m
 - Base station: M = 100 antennas
 - K = 10 uniformly users
- Important properties
 - Independent Rayleigh fading
 - No inter-cell interference
 - Carrier frequency: 2 GHz
 - Bandwidth 20 MHz

Same parameters as in last lecture

Uplink with power control

Sum rate maximization

Increase rates by sacrificing fairness Focused on long-term fairness

Downlink with power control

Sum rate maximizationSimilar to equal power allocation

350

Downlink sum rate [Mbit/s]

400

450

300

250

Power Control for Maximum Energy Efficiency

• Benefit-cost analysis:

• Benefit-cost ratio:

Energy efficiency [bit/Joule] =
$$\frac{\text{Data rate [bit/s]}}{\text{Energy consumption [Joule/s]}}$$

Environmental concerns

Energy production is mainly non-renewable

Economical concerns

Energy price: Joule/€
Other costs can also be included

Example: Energy efficiency of 4G base station

Reference:

Auer et al., "How much energy is needed to run a wireless network?," IEEE Wireless Communication, 2011

Power amplifiers

Radio transceivers

Baseband processors

Energy Efficient Power Control

• Consider point-to-point system:

Unimodal functions

Control transmit power to find optimum

Circuit power

Must be accurately modeled

$$B = 10 \text{ MHz}, \qquad \mu = 0.25, \qquad \frac{BN_0}{\beta} = 0 \text{ dBm}$$

Energy Efficiency and Beamforming

• Consider SIMO system:

Energy efficiency [bit/Joule] = $\frac{B \log_2 \left(1 + \frac{M \rho_{ul} \gamma}{1 + \rho_{ul} \beta}\right)}{\frac{P_{tx}}{\mu} + P_{circuit} + M P_{antenna}}$ $\rho_{ul} = \frac{P_{tx}}{B N_0}$ Circuit power per antenna

SINR with MR

Beamforming can help reduce power Received power proportional to MP_{tx}

$$B=10$$
 MHz, $\mu=0.25$, $\frac{BN_0}{\beta}=0$ dBm $P_{\rm circuit}=10$ W, $P_{\rm antenna}=0.1$ W

35

Energy Efficiency and Multiplexing

35

40

• Consider Massive MIMO system:

Energy efficiency [bit/Joule] =

 $= \frac{KB \log_2 \left(1 + \frac{M\rho_{ul}\gamma}{1 + \rho_{ul}K\beta}\right)}{\frac{KP_{tx}}{\mu} + P_{circuit} + (M + K)P_{antenna}}$

Uplink SINR with MR and K users

Total transmit power

Circuit power per antenna/users

$$\rho_{ul} = \frac{P_{tx}}{BN_0}$$

Energy efficiency $\frac{15}{10}$ From $\frac{1$

Transmit power per user P_{tx} [dBm]

Multiplexing increases efficiency Share power cost between users

$$B=10$$
 MHz, $\mu=0.25$, $\frac{BN_0}{\beta}=0$ dBm $P_{\rm circuit}=10$ W, $P_{\rm antenna}=0.1$ W, $M=64$

Summary

- Power control used to increase efficiency
 - Spectral or energy efficiency
- Sum rate power control
 - Downlink: Waterfilling
 - Uplink: Convex optimization
- Energy efficiency
 - Rate divided by energy consumption
 - Accurate circuit power models needed
 - Beamforming and multiplexing useful

Emil Björnson