Clase nº12

Cálculo II

Universidad de Valparaíso Profesor: Juan Vivanco

24 de Septiembre 2021

Objetivo de la clase

 Comprender el teorema fundamental del cálculo y Regla de Barrow.

Teorema 26 (Teorema del valor Medio para integrales)

Sea $f:[a,b]\to\mathbb{R}$ una función continua, entonces existe $c\in[a,b]$

tal que
$$\int_{a}^{b} f(x) dx = f(c)(b-a).$$

Observación

Al número f(c) se le llama valor promedio o medio de f en [a, b]

Definición 27

Si f es una función integrable sobre el intervalo $[a, b], a \le b$, entonces se define el número

$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx.$$

Observación

Al considerar a=b en la definición anterior, tenemos que

$$\int_a^a f(x) dx = -\int_a^a f(x) dx.$$

Por lo tanto,

$$\int_{a}^{a} f(x) dx = 0.$$

Ejemplo 49

el punto medio del intervalo [a, b].

Verifique que el valor promedio de la función f(x) = x en [a, b] es

Por $f(c) = \frac{1}{b-a} \cdot \int_{a}^{b} f(x) dx$

Definición 28

Si $f:[a,b]\to\mathbb{R}$ es una función integrable entonces, ella es

integrable en los subintervalos
$$[a, x]$$
, para todo $x \in [a, b]$. Luego, tiene sentido la siguiente definición,

 $F(x) = \int_{-\infty}^{x} f(s) \, ds.$ F resulta ser una función con dominio [a, b] y los extremos del intervalo toma valores: F(a) = 0, $F(b) = \int_{a}^{b} f(s) ds$. Llamaremos a F la función integral de f.

Teorema 29(Teorema Fundamental del Cálculo)

Sea
$$f:[a,b] \to \mathbb{R}$$
 integrable y $F:[a,b] \to \mathbb{R}$ la función integral de f . Si f es continua en $x_0 \in [a,b]$, entonces F es derivable en x_0 y $F'(x_0) = f(x_0)$.

 $|x-x|<\xi = |f(x)-f(x_0)|<\xi$.

Pune o < h < S se tiene $\left| \frac{F(x_0+h) - F(x_0)}{h} - \frac{f(x_0)}{h} - \frac{\int_a^{x_0+h} f(s)ds}{h} - \frac{\int_a^{x_0} f(s)ds}{h} \right| = \int_a^{x_0+h} \frac{f(x_0)}{h} ds$

Teorema 29 (Teorema Fundamental del Calculo)

$$= \frac{\int_{x}^{x} f(s) ds + \int_{x_{o}}^{x} f(s) ds - \int_{x_{o}}^{x} f(s) ds}{h} - \frac{\int_{x_{o}}^{x} f(s) ds - \int_{x_{o}}^{x} f(s) ds}{h}$$

$$= \frac{\int_{x_{o}}^{x} f(s) ds - \int_{x_{o}}^{x} f(s) ds}{h} = \frac{\int_{x_{o}}^{x} f(s) ds - \int_{x_{o}}^{x} f(x_{o}) ds}{h}$$

$$= \frac{\int_{x_{o}}^{x} f(s) - f(x_{o}) ds}{h} \leq \int_{x_{o}}^{x} \frac{\int_{x_{o}}^{x} f(s) ds - \int_{x_{o}}^{x} f(x_{o}) ds}{h}$$

$$= \frac{\int_{x_{o}}^{x} f(s) - f(x_{o}) ds}{h} \leq \int_{x_{o}}^{x} \frac{\int_{x_{o}}^{x} f(s) ds - \int_{x_{o}}^{x} f(s) ds}{h}$$

$$= \frac{\int_{x_{o}}^{x} f(s) - f(x_{o}) ds}{h} \leq \int_{x_{o}}^{x} \frac{\int_{x_{o}}^{x} f(s) ds}{h} = \frac{\int_{x_{o}}^{x} f(s) ds}{h}$$

$$\int_{\mathcal{L}} f(s)ds + \int_{x_0}^{x_0} f(s)ds - \int_{x_0}^{x} f(s)ds - \int_{x_0}^{x} f(s)ds$$

$$\frac{1}{\int_{\mathcal{X}} \frac{1}{1} \left(2 \right) dt} + \int_{\mathcal{X}_{0}} \frac{1}{1} \frac{1}{1} \left(2 \right) dt}{1} = \frac{1}{1} \frac{$$

Teorema 29(Teorema Fundamental del Cálculo)

anable mente,
$$s: -f < h < 0$$
,
$$\left| \frac{F(x_{s+h}) - f(x_{s})}{h} - f(x_{s}) \right| = \frac{1}{|h|} \left| \int_{x_{s}}^{x_{s+h}} f(s) - f(x_{s}) ds \right|$$

$$= \frac{1}{|h|} \left| -\int_{x_{s+h}}^{x_{s}} f(s) - f(x_{s}) ds \right| = \frac{1}{|h|} \left| \int_{x_{s+h}}^{x_{s}} f(s) - f(x_{s}) ds \right|$$

$$\leq \frac{1}{|h|} \int_{x_{s+h}}^{x_{s}} |f(s) - f(x_{s})| ds < \frac{1}{|h|} \int_{x_{s+h}}^{x_{s}} f(s) ds$$

$$= \frac{1}{|h|} \left(\chi_{\bullet} - (\chi_{\bullet} + h) \right) \mathcal{E} = \frac{-h}{|h|} \mathcal{E} = \mathcal{E}.$$

$$= \frac{1}{|h|} \left(x_0 - (x_0 + h) \right) \mathcal{E} = -\frac{h}{|h|} \mathcal{E} = \mathcal{E}.$$

Page (24) | b| < f = 5 = comple

.. , Pure
$$0<|h|< f$$
 Se cumple
$$\left|\frac{F(x_{e}+h)-F(x_{e})}{h}-f(x_{o})\right|< \mathcal{E}.$$

$$|\frac{F(x_0+h)-F(x_0)}{h}-f(x_0)| < \mathcal{E}.$$
Es decir,
$$F(x_0) = \lim_{h \to 0} \frac{F(x_0+h)-F(x_0)}{h} = f(x_0)$$

Teorema 30(Regla de Barrow)

Sea $f:[a,b]\to\mathbb{R}$ continua y $g:[a,b]\to\mathbb{R}$ una función tal que g'(x) = f(x), entonces

$$g'(x) = f(x)$$
, entonces
$$\int_{a}^{b} f(x) dx = g(b) - g(a).$$

$$\int_a^b f(x) dx = g(b) - g(a).$$

$$\text{The : See } \overline{f}(x) = \int_a^x f(s) ds \quad \text{on } x \in [a,b].$$

Tenemos une F es derivable en [a,b] y $F'(x) = f(x) | x \in [a,b].$

par lo tents, F'(x)=g'(x) \ \tau x \in \ \ \ z

como f es continua en Caiso entonces portific.

Teorema 30(Regla de Barrow) Luego F(x) = y(x)+ (. Comp F(a) = g(a)+c y Fle)=0 entonces c=-y(a).

 $\int_{-\infty}^{\infty} f(s) ds = g(x) - g(e).$

En perticular, 5: x=5 se tiene

(f (s) = s = g(b) - g(R)

Ejemplo 50

Calcular la siguiente integral utilizando la Regla de Barrow.

$$\int_{a}^{b} x^{n} dx \qquad n \in \mathbb{N}.$$
 Sent $f(x) = x^{n}$, $h \in \mathbb{N}$ $y = x^{n+1}$.
 $L \vee \varrho_{7}$, $g(x) = \frac{x^{n+1}}{n+1}$.

Sent
$$f(x) = x^n$$
, $h \in IN$ $y = y^n = x^n$.
Luego, $g(x) = \frac{x^{n+1}}{n+1}$.

Bibliografía

		Autor	Título	Editorial	Año
	1	Stewart, James	Cálculo de varias variables:	México: Cengage	2021
			trascendentes tempranas	Learning	
ľ	2	Burgos Román,	Cálculo infinitesimal	Madrid: McGraw-	1994
		Juan de	de una variable	Hill	
ľ	3	Zill Dennis G.	Ecuaciones Diferenciales	Thomson	2007
			con Aplicaciones	THOMSON	
	4	Thomas, George B.	Cálculo una variable	México: Pearson	2015

Puede encontrar bibliografía complementaria en el programa.