Supervised Learning: PART 1: KNN

Mahesh Mohan M R
Centre of Excellence in Al
Indian Institute of Technology Kharagpur

Iris versicolor

Iris setosa

K Nearest Neighbour (KNN) Classifier

KNN Rule: Assign to a test sample the majority category label of its *k* nearest training samples

(a) 1-nearest neighbor

(b) 2-nearest neighbor

(c) 3-nearest neighbor

Noise in Datasets

Voronoi Diagram

http://vision.stanford.edu/teaching/cs231n-demos/knn/

Optimal K

Distance Measures

Distance Measures

$$d = \max_{i} (|x_i - y_i|) \qquad d = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

$$= \frac{\langle xy \rangle}{\|x\| \|y\|} \qquad d = \sum_{i=1}^{n} [(x_i - y_i)]$$

Distance Measures for Binary Data

Movies						
Parasite	Joker	Avengers	Spotlight	The Great Beauty	There will be blood	Rating
1	0	0	0	0	0	5
0	1	0	0	0	0	4
0	0	1	0	0	0	4
1	0	0	0	1	0	2
0	0	0	1	0	0	4
0	0	0	0	1	0	3
0	0	1	0	0	0	5
0	0	0	0	0	1	4
0	0	1	0	0	0	4

$$D(w_i, w_j) = 3$$

Distance Measures for Binary Data

Movies							
Parasite	Joker	Avengers	Spotlight	The Great Beauty	There will be blood	Rating	
1	0	0	0	0	0	5	
0	1	0	0	0	0	4	
0	0	1	0	0	0	4	
1	0	0	0	1	0	2	
0	0	0	1	0	0	4	
0	0	0	0	1	0	3	
0	0	1	0	0	0	5	
0	0	0	0	0	1	4	
0	0	1	0	0	0	4	

What if data is a combination of real and binary values?

Hamming

$$D(w_i, w_i) = 3$$

Distance-weighted KNN

(b) 2-nearest neighbor

Distance-weighted KNN: Classification

Uniform K-NN (k=5)

Distance-weighted K-NN (k=5)

Problem of Measurement Scales

- Different features may have different measurement scales
 - E.g., patient weight in kg (range [50,200]) vs. blood protein values in ng/dL (range [-3,3])

Consequences

- Patient weight will have a much greater influence on the distance between samples
- May bias the performance of the classifier

Min-Max Normalization

 $rac{value-min}{max-min}$

For every feature,

Minimum value – ?

Maximum value – ?

In-between Min and Max – ?

Min-Max Normalization

 $rac{value-min}{max-min}$

For every feature,

Minimum value – 0

Maximum value – 1

In-between Min and Max – (0,1)

Z-score Normalization

$$rac{value-\mu}{\sigma}$$

 $\boldsymbol{\mu}\,$ - Mean of the training data

 σ - Std deviation of the training data

For every feature,

Mean value -?

Below the mean -?

Above the mean -?

Range -?

Z-score Normalization

$$rac{value - \mu}{\sigma}$$

For every feature, μ - Mean and σ - Std deviation of the data

For every feature,

Mean value – 0

Below the mean – less than zero

Above the mean – more than zero

Drawback 1: Curse of Dimensionality

Drawbacks 2-3: Expensive and Storage Need

