EQUIVARIANT CHOW POLYNOMIALS OF MATROIDS

NUTAN NEPAL

Abstract. beeboop beeboop...

1. Introduction

1.1. **Overview.** Given a matroid $M = (E, \mathcal{F})$, we can define its Chow ring \underline{CH} and augmented Chow ring CH for which the bases are given by:

$$\mathrm{FY} = \{ x_{F_1}^{m_1} x_{F_2}^{m_2} \cdots x_{F_k}^{m_k} : \ (\emptyset = F_0) \subset F_1 \subset F_2 \subset \cdots \subset F_k, \ \text{and} \ m_i \leq \mathrm{rk}(F_i) - \mathrm{rk}(F_{i-1}) - 1 \},$$

and

$$\widetilde{FY} = \{x_{F_1}^{a_1} x_{F_2}^{a_2} \cdots x_{F_m}^{a_m} \mid \emptyset \subset F_1 \subset \cdots \subset F_m, \ 1 \le a_1 \le \operatorname{rk}(F_1), \ a_i \le \operatorname{rk}(F_i) - \operatorname{rk}(F_{i-1}) - 1 \text{ for } i > 1\}$$

respectively. Here $\emptyset \subset F_1 \subset \cdots \subset F_m$ is a strictly increasing chain of flats of the matroid M. The following theorems were proved in [FMSV24]:.

Theorem 1.1 There is a unique way to assign to each loopless matroid M a palindromic polynomial $\underline{\mathbf{H}}_{\mathsf{M}}(x) \in \mathbb{Z}[x]$ such that the following properties hold:

- (i) If $\operatorname{rk}(M) = 0$, then $\underline{H}_{M}(x) = 1$.
- (ii) If $\operatorname{rk}(M) > 0$, then $\operatorname{deg} \underline{H}_{M}(x) = \operatorname{rk}(M) 1$.
- (iii) For every matroid M, the polynomial

$$H_{\mathsf{M}}(x) := \sum_{F \in \mathscr{Z}(\mathsf{M})} x^{\mathrm{rk}(F)} \, \underline{H}_{\mathsf{M}/F}(x)$$

is palindromic.

Theorem 1.2 There is a unique way to assign to each loopless matroid M a polynomial $\underline{H}_{M}(x) \in \mathbb{Z}[x]$ such that the following conditions hold:

- (i) If rk(M) = 0, then $\underline{H}_{M}(x) = 1$.
- (ii) For every matroid M, the following recursion holds:

$$\underline{\mathbf{H}}_{\mathsf{M}}(x) = \sum_{\substack{F \in \mathcal{Z}(\mathsf{M}) \\ F \neq \emptyset}} \overline{\chi}_{\mathsf{M}|_F}(x) \, \underline{\mathbf{H}}_{\mathsf{M}/F}(x).$$

It was shown in [FMSV24] that these polynomials H_M and \underline{H}_M are the Hilbert-Poincare series for the augmented Chow ring CH and the Chow ring CH respectively. In other words,

$$\underline{\mathbf{H}}_{\mathsf{M}}(x) = |FY^{0}| + |FY^{1}|x + \dots + |FY^{r-1}|x^{r-1}$$

where $|FY^i|$ denotes the number of fy-monomials of degree i (which equals the dimension of the degree i piece of the Chow ring).

2 N. NEPAL

2. Matroids

2.1. **Action.** Given a finite set E with n elements, the symmetric group \mathfrak{S}_n can always act on E by permutation and this induces an action on the power set 2^E . If $\mathsf{M} = (E,\mathcal{F})$ is a matroid, let G be the stabilizer subgroup $\mathsf{Stab}_{\mathfrak{S}_n}(\mathcal{F})$ of \mathfrak{S}_n that stabilizes the set $\mathcal{F} \subseteq 2^E$. Then, we say that the group G acts on the matroid M .

The action of *G* on M induces an action on the Chow ring and the augmented Chow ring of M by permuting the fy-monomials. Since the action doesn't affect the degree of the monomials, it is clear that *G* acts on the Chow ring by acting separately on each graded piece of CH.

Let V^i denote the permutation representation of G on the set FY^i . Then $\dim(V^i) = |FY^i|$, the dimension of the i-th piece. We define the polynomial $V^0 + V^1x + \cdots + V^{r-1}x^{r-1} \in \mathrm{VRep}_G[x]$ to be the equivariant Chow polynomial of the matroid M. In this paper, we will prove the following theorems:

Theorem 2.1 Let M be a loopless matroid and \underline{H}_{M}^{G} be its equivariant Chow polynomial. Then \underline{H}_{M}^{G} is given by

$$(1) \quad \underline{\mathbf{H}}_{\mathsf{M}}^{G}(x) = \sum_{\varnothing = F_{0} \subset F_{1} \subset \cdots \subset F_{m}} \frac{|G_{F_{0} \cdots F_{m}}|}{|G|} \left(\prod_{i=1}^{m} \frac{x(1 - x^{\mathsf{rk}(F_{i}) - \mathsf{rk}(F_{i-1}) - 1})}{1 - x} \right) \mathsf{Ind}^{G} \left(1_{G_{F_{0} \cdots F_{m}}} \right).$$

Here, $G_{F_0\cdots F_m}=G_{F_0}\cap\cdots\cap G_{F_m}$ denotes the stabilizer of the chain $(F_0\subset F_1\subset\cdots\subset F_m)$ and the sum is taken over all nonempty chains of flats starting at \emptyset .

Theorem 2.2 Let M be a loopless matroid and H_M^G be its equivariant augmented Chow polynomial. Then H_M^G is given by

$$\mathbf{H}_{\mathsf{M}}^{G}(x) = \mathbf{1}_{G} + \sum_{F_{0} \subset F_{1} \subset \cdots \subset F_{m}} \frac{|G_{F_{0} \cdots F_{m}}|}{|G|} \frac{x(1 - x^{\mathrm{rk}(F_{0})})}{1 - x} \left(\prod_{i=1}^{m} \frac{x(1 - x^{\mathrm{rk}(F_{i}) - \mathrm{rk}(F_{i-1}) - 1})}{1 - x} \right) \mathrm{Ind}^{G} \left(\mathbf{1}_{G_{F_{0} \cdots F_{m}}} \right).$$

Here, $G_{F_0\cdots F_m}=G_{F_0}\cap\cdots\cap G_{F_m}$ denotes the stabilizer of the chain $(F_0\subset F_1\subset\cdots\subset F_m)$ and the sum is taken over all nonempty chains of flats.

Theorem 2.3 There is a unique way to assign to each loopless matroid M a palindromic polynomial $H_M^G(x) \in VRep_G[x]$ such that the following properties hold:

- (i) If $\operatorname{rk}(M) = 0$, then $\underline{H}_{M}^{G}(x) = 1_{G}$.
- (ii) If $\operatorname{rk}(M) > 0$, then $\operatorname{deg} H_M^G(x) = \operatorname{rk}(M) 1$.
- (iii) For every matroid M, the polynomial

$$H_{\mathsf{M}}^{G}(x) := \sum_{F \in \mathscr{C}(\mathsf{M})} x^{\mathsf{rk}(F)} \frac{|G_{F}|}{|G|} \mathsf{Ind}^{G} \left(\underline{H}_{\mathsf{M}/F}^{G_{F}}(x) \right)$$

is palindromic.

Theorem 2.4 There is a unique way to assign to each loopless matroid M a polynomial $\underline{H}_{M}^{G}(x) \in VRep_{G}[x]$ such that the following conditions hold:

- (i) If $\operatorname{rk}(M) = 0$, then $\underline{H}_{M}^{G}(x) = 1_{G}$.
- (ii) For every matroid M, the following recursion holds:

$$\underline{\mathbf{H}}_{\mathsf{M}}^{G}(x) = \sum_{F \in \mathscr{L}(\mathsf{M})} \frac{|G_F|}{|G|} \operatorname{Ind}^{G} \left(\overline{\chi}_{\mathsf{M}|_F}^{G_F}(x) \otimes \underline{\mathbf{H}}_{\mathsf{M}/F}^{G_F}(x) \right).$$

3. Scratch

Proposition 3.1 Let M be a loopless matroid. The Hilbert–Poincare series of the Chow ring CH(M) is given by

$$\underline{\mathbf{H}}_{\mathsf{M}}(x) = \sum_{\varnothing = F_0 \subset F_1 \subset \cdots \subset F_m} \left(\prod_{i=1}^m \frac{x(1 - x^{\mathrm{rk}(F_i) - \mathrm{rk}(F_{i-1}) - 1})}{1 - x} \right).$$

Here, the sum is taken over all nonempty chains of flats starting at \emptyset .

We notice a few things about the formula in 3.1:

- (i) The chain corresponding to just the empty flat gives an empty product which equals 1.
- (ii) If $\operatorname{rk}(F_i) \operatorname{rk}(F_{i-1}) 1 = 0$ for some i in the chain $F_0 \subset F_1 \subset \cdots \subset F_m$, then the product is 0.
- (iii) So, given a chain $F_0 \subset F_1 \subset \cdots \subset F_m$ with $\operatorname{rk}(F_i) \operatorname{rk}(F_{i-1}) 1 > 0$ for all i, we can write the product as $a_1x + \cdots + a_{r-1}x^{r-1}$ for some positive integers a_i 's.

In particular, we can restate the equation 3 as

$$\underline{\mathbf{H}}_{\mathsf{M}}(x) = 1 + \sum_{P_{\varnothing}} a_1(P_{\varnothing})x + \dots + a_{r-1}(P_{\varnothing})x^{r-1},$$

where the sum is taken over all chains $P_{\emptyset} = (F_0 \subset F_1 \subset \cdots \subset F_m)$ starting at \emptyset with $\operatorname{rk}(F_i) - \operatorname{rk}(F_{i-1}) - 1 > 0$ for all i and $a_j(P_{\emptyset})$ are some integers depending on the chain.

$$S_0 + S_1 x + \dots + S_r x^r = \sum_{i \in I} \sum_{j=0}^r T_{ij} x^j$$

$$S_k = \sum_{i \in I} T_{ik}$$

$$|S_0| + |S_1| x + \dots + |S_r| x^r = \sum_{i \in I} p_i(x)$$

3.1. Continuing without the proof of 2.1 and 2.2. The transitivity of the Ind functor allows us to carry on analogously to the non-equivariant proof of Proposition 3.7 in [FMSV24]. Using $G_{F_0} = G$, we can rewrite the equation 1 in theorem 2.1 as:

$$\begin{split} & \underline{\mathbf{H}}_{\mathsf{M}}^{G}(x) = \sum_{\varnothing = F_{0} \subset F_{1} \subset \cdots \subset F_{m}} \frac{|G_{F_{0} \cdots F_{m}}|}{|G|} \left(\prod_{i=1}^{m} \frac{x(1 - x^{\operatorname{rk}(F_{i}) - \operatorname{rk}(F_{i-1}) - 1})}{1 - x} \right) \operatorname{Ind}^{G} \left(1_{G_{F_{0} \cdots F_{m}}} \right) \\ & = 1_{G} + \sum_{\varnothing = F_{0} \subset F_{1} \subset \cdots \subset F_{m}} \frac{|G_{F_{0}F_{1}}|}{|G|} \frac{x(1 - x^{\operatorname{rk}(F_{1}) - 1})}{1 - x} \\ & \operatorname{Ind}_{G_{F_{0}F_{1}}}^{G} \left(\frac{|G_{F_{0} \cdots F_{m}}|}{|G_{F_{0}F_{1}}|} \prod_{i=2}^{m} \frac{x(1 - x^{\operatorname{rk}(F_{i}) - \operatorname{rk}(F_{i-1}) - 1})}{1 - x} \operatorname{Ind}^{G_{F_{0}F_{1}}} \left(1_{G_{F_{0} \cdots F_{m}}} \right) \right) \\ & = 1_{G} + \sum_{F \neq \varnothing} \frac{|G_{F}|}{|G|} \frac{x(1 - x^{\operatorname{rk}(F) - 1})}{1 - x} \\ & \operatorname{Ind}_{G_{F}}^{G} \left(\sum_{F = F_{1} \subset \cdots \subset F_{m}} \frac{|G_{F_{1} \cdots F_{m}}|}{|G_{F}|} \left(\prod_{i=2}^{m} \frac{x(1 - x^{\operatorname{rk}(F_{i}) - \operatorname{rk}(F_{i-1}) - 1})}{1 - x} \right) \operatorname{Ind}^{G} \left(1_{G_{F_{1} \cdots F_{m}}} \right) \right) \\ & = 1_{G} + \sum_{F \neq \varnothing} \frac{|G_{F}|}{|G|} \frac{x(1 - x^{\operatorname{rk}(F) - 1})}{1 - x} \operatorname{Ind}_{G_{F}}^{G} \left(\underline{\mathbf{H}}_{\mathsf{M}/F}^{G_{F}} \right) \end{split}$$

4 N. NEPAL

Analogously, fixing a flat $F = F_0$ in the formula in theorem 2.2 we get,

$$\begin{split} \mathbf{H}_{\mathsf{M}}^{G}(x) &= \mathbf{1}_{G} + \sum_{F \in \mathcal{L}} \frac{|G_{F}|}{|G|} \frac{x(1 - x^{\operatorname{rk}(F)})}{1 - x} \\ & \left(\sum_{F \subset F_{1} \subset \cdots \subset F_{m}} \frac{|G_{F_{0} \cdots F_{m}}|}{|G_{F}|} \prod_{i=1}^{m} \frac{x(1 - x^{\operatorname{rk}(F_{i}) - \operatorname{rk}(F_{i-1}) - 1})}{1 - x} \right) \operatorname{Ind}^{G} \left(\mathbf{1}_{G_{F_{0} \cdots F_{m}}} \right) \\ &= \mathbf{1}_{G} + \sum_{F \in \mathcal{L}} \frac{|G_{F}|}{|G|} \frac{x(1 - x^{\operatorname{rk}(F)})}{1 - x} \\ & \operatorname{Ind}_{G_{F}}^{G} \left(\sum_{F \subset F_{1} \subset \cdots \subset F_{m}} \frac{|G_{F_{0} \cdots F_{m}}|}{|G_{F}|} \left(\prod_{i=1}^{m} \frac{x(1 - x^{\operatorname{rk}(F_{i}) - \operatorname{rk}(F_{i-1}) - 1})}{1 - x} \right) \operatorname{Ind}^{G_{F}} \left(\mathbf{1}_{G_{F_{0} \cdots F_{m}}} \right) \right) \\ &= \mathbf{1}_{G} + \sum_{F \in \mathcal{L}} \frac{|G_{F}|}{|G|} \frac{x(1 - x^{\operatorname{rk}(F)})}{1 - x} \operatorname{Ind}_{G_{F}}^{G} \left(\underline{\mathbf{H}}_{\mathsf{M}/F}^{G_{F}} \right) \\ &= \mathbf{1}_{G} + \sum_{F \in \mathcal{L}} \frac{|G_{F}|}{|G|} \frac{x(1 - x^{\operatorname{rk}(F)})}{1 - x} \operatorname{Ind}_{G_{F}}^{G} \left(\underline{\mathbf{H}}_{\mathsf{M}/F}^{G_{F}} \right). \end{split}$$

From these two equations we get:

$$H_{\mathsf{M}}(x) = \sum_{F \in \mathscr{S}} x^{\mathsf{rk}(F)} \frac{|G_F|}{|G|} \operatorname{Ind}^G \left(\underline{H}_{\mathsf{M}/F}^{G_F}(x) \right).$$

We now restate the following lemma from [FMSV24] that will help us prove theorem 2.3.

Lemma 3.2 Let p(x) be a polynomial of degree d. There exist unique polynomials a(x) of degree d and b(x) of degree at most d-1 with the properties that $a(x) = x^d a(x^{-1})$ and $b(x) = x^{d-1}b(x^{-1})$, and that satisfy

$$p(x) = a(x) + b(x).$$

We note that this lemma is true for polynomials over any ring. In particular, it is true for polynomials over $VRep_G$.

Theorem 3.3 There is a unique way to assign to each loopless matroid M a palindromic polynomial $\widetilde{\underline{H}}_{M}^{G}(x) \in VRep_{G}[x]$ such that the following properties hold:

- (i) If $\operatorname{rk}(M) = 0$, then $\underline{\widetilde{H}}_{M}^{G}(x) = 1_{G}$.
- (ii) If $\operatorname{rk}(M) > 0$, then $\operatorname{deg} \widetilde{\underline{H}}_{M}^{G}(x) = \operatorname{rk}(M) 1$.
- (iii) For every matroid M, the polynomial

$$\widetilde{\mathrm{H}}_{\mathsf{M}}^{G}(x) := \sum_{F \in \mathscr{L}(\mathsf{M})} x^{\mathrm{rk}(F)} \, \frac{|G_F|}{|G|} \, \mathrm{Ind}^G \left(\underline{\widetilde{\mathrm{H}}}_{\mathsf{M}/F}^{G_F}(x) \right)$$

is palindromic.

Proof. We prove the theorem by induction on the size of the ground set of M. When the ground set has cardinality 0, the polynomial $\underline{\widetilde{H}}_{M}^{G}(x)$ is unique and equals 1_{G} by the first property. We now assume that the uniqueness has been established for all the matroids with cardinality less than n and consider the matroid of cardinality n. The polynomial

$$S_{\mathsf{M}}^{G}(x) = \sum_{F \neq \emptyset} x^{\mathsf{rk}(F)} \frac{|G_F|}{|G|} \mathsf{Ind}^{G} \left(\underbrace{\widetilde{\mathbf{H}}_{\mathsf{M}/F}^{G_F}}(x) \right)$$

is uniquely determined since $\underline{\widetilde{H}}$ is unique for all the matroids M/F by the inductive step. $S_{\mathrm{M}}^{G}(x)$ has a summand of degree $\mathrm{rk}(M)$ which we get when F = E. For all other flats, the summands have degree $\mathrm{rk}(F) + \mathrm{rk}(\mathrm{M}/F) - 1 = \mathrm{rk}(\mathrm{M}) - 1$.

Hence the degree of $S_{\mathsf{M}}^G(x)$ is $\mathsf{rk}(\mathsf{M})$, and we can decompose it into unique polynomials a(x) and $b(x) \in \mathsf{VRep}_G[x]$ such that a(x) is palindromic of degree $\mathsf{rk}(M)$ and b(x) has degree at most $\mathsf{rk}(\mathsf{M}) - 1$. Taking $\widetilde{\underline{H}}_{\mathsf{M}}^G(x) = -b(x)$ we get, $\widetilde{H}_{\mathsf{M}}^G(x) = S_{\mathsf{M}}^G(x) + \widetilde{\underline{H}}_{\mathsf{M}}^G(x) = a(x) + b(x) + \widetilde{\underline{H}}_{\mathsf{M}}^G(x) = a(x)$ which is palindromic. The uniqueness of $\widetilde{\underline{H}}$ also implies the uniqueness of $\widetilde{\mathbf{H}}$. Finally, since $\underline{\mathbf{H}}$ and \mathbf{H} satisfy these conditions, they must be the polynomials $\widetilde{\underline{H}}$ and $\widetilde{\mathbf{H}}$ respectively.

Theorem 3.4 *Let* M *be a loopless matroid. The equivariant Hilbert series of the Chow ring of* M *satisfies:*

$$\underline{\mathbf{H}}_{\mathsf{M}}^{G}(x) = \sum_{\substack{F \in \mathcal{Z}(\mathsf{M}) \\ F \neq \emptyset}} \frac{|G_F|}{|G|} \operatorname{Ind}^{G} \left(\overline{\chi}_{\mathsf{M}|_F}^{G_F}(x) \otimes \underline{\mathbf{H}}_{\mathsf{M}/F}^{G_F}(x) \right).$$

Proof. To prove this, we define the polynomials

$$\underline{\widetilde{\mathbf{H}}}_{\mathsf{M}}^{G}(x) := \begin{cases} 1_{G} & \text{if M is empty,} \\ \sum\limits_{F \in \mathcal{L}(\mathsf{M})} \frac{|G_{F}|}{|G|} \operatorname{Ind}^{G}\left(\overline{\chi}_{\mathsf{M}|_{F}}^{G_{F}}(x) \otimes \underline{\mathbf{H}}_{\mathsf{M}/F}^{G_{F}}(x)\right) & \text{if M is nonempty} \end{cases}$$

satisfy all the properties of that statement. The first two conditions are immediate to check, and for the last, it will suffice to verify that $\underline{\widetilde{H}}_{M}(x)$ satisfies the recursion of Remark We have a

6 N. NEPAL

chain of equalities:

$$\begin{split} &\mathbf{1}_{G} + x \sum_{F \in \mathcal{L}(\mathbb{M})} \frac{|G_{F}|}{|G|} \operatorname{Ind}^{G} \left(\underbrace{\underline{\mathbf{H}}_{\mathsf{M}/F}^{G_{F}}(x)} \right) \\ &= \mathbf{1}_{G} + x \sum_{F \in \mathcal{L}(\mathbb{M})} \frac{|G_{F}|}{|G|} \operatorname{Ind}^{G} \left(\sum_{F' \in \mathcal{L}(\mathbb{M}/F)} \frac{|G_{FF'}|}{|G_{F}|} \operatorname{Ind}_{G_{FF'}}^{G_{F}} \left(\overline{\chi}_{(\mathbb{M}/F)|_{F'}}^{G_{FF'}}(x) \otimes \underline{\mathbf{H}}_{\mathbb{M}/F/F'}^{G_{FF'}}(x) \right) \\ &= \mathbf{1}_{G} + x \sum_{F \in \mathcal{L}(\mathbb{M})} \sum_{F' \in \mathcal{L}(\mathbb{M})} \frac{|G_{FF'}|}{|G|} \operatorname{Ind}_{G_{FF'}}^{G} \left(\overline{\chi}_{(\mathbb{M}|_{F'})/F}^{G_{FF'}}(x) \otimes \underline{\mathbf{H}}_{\mathbb{M}/F'}^{G_{FF'}}(x) \right) \\ &= \mathbf{1}_{G} + x \sum_{F' \in \mathcal{L}(\mathbb{M})} \sum_{F \in \mathcal{L}(\mathbb{M})} \frac{|G_{FF'}|}{|G|} \operatorname{Ind}_{G_{F'}}^{G} \left(\operatorname{Ind}_{G_{F'}}^{G_{F'}} \left(\overline{\chi}_{(\mathbb{M}|_{F'})/F}^{G_{FF'}}(x) \otimes \underline{\mathbf{H}}_{\mathbb{M}/F'}^{G_{FF'}}(x) \right) \right) \\ &= \mathbf{1}_{G} + x \sum_{F' \in \mathcal{L}(\mathbb{M})} \operatorname{Ind}_{G_{F'}}^{G} \left(\sum_{F \in \mathcal{L}(\mathbb{M})} \frac{|G_{FF'}|}{|G|} \operatorname{Ind}_{G_{FF'}}^{G_{F'}} \left(\overline{\chi}_{(\mathbb{M}|_{F'})/F}^{G_{FF'}}(x) \right) \otimes \underline{\mathbf{H}}_{\mathbb{M}/F'}^{G_{F'}}(x) \right) \\ &= \mathbf{1}_{G} + x \sum_{F' \in \mathcal{L}(\mathbb{M})} \frac{|G_{F'}|}{|G|} \operatorname{Ind}_{G_{F'}}^{G} \left(\underline{\mathbf{H}}_{\mathbb{M}/F'}^{G_{F'}}(x) \otimes \sum_{F \in \mathcal{L}(\mathbb{M})} \frac{|G_{FF'}|}{|G_{F'}|} \operatorname{Ind}_{G_{FF'}}^{G_{F'}} \left(\overline{\chi}_{(\mathbb{M}|_{F'})/F}^{G_{FF'}}(x) \right) \right) \\ &= \mathbf{1}_{G} + x \sum_{F' \in \mathcal{L}(\mathbb{M})} \frac{|G_{F'}|}{|G|} \operatorname{Ind}_{G_{F'}}^{G} \left(\underline{\mathbf{H}}_{\mathbb{M}/F'}^{G_{F'}}(x) \otimes \left(\mathbf{1}_{F'} + \mathbf{1}_{F'}x + \dots + \mathbf{1}_{F'}x^{\operatorname{Ik}(F') - 1} \right) \right) \\ &(4) = \mathbf{1}_{G} + x \sum_{F' \in \mathcal{L}(\mathbb{M})} \frac{|G_{F'}|}{|G|} \operatorname{Ind}_{G_{F'}}^{G} \left(\underline{\mathbf{H}}_{\mathbb{M}/F'}^{G_{F'}}(x) \otimes \left(\mathbf{1}_{F'} + \mathbf{1}_{F'}x + \dots + \mathbf{1}_{F'}x^{\operatorname{Ik}(F') - 1} \right) \right) \\ &(5) = \mathbf{1}_{G} + x \sum_{F' \in \mathcal{L}(\mathbb{M})} \frac{|G_{F'}|}{|G|} \operatorname{Ind}_{G_{F'}}^{G} \left(\underline{\mathbf{H}}_{\mathbb{M}/F'}^{G_{F'}}(x) \otimes \left(\mathbf{1}_{F'} + \mathbf{1}_{F'}x + \dots + \mathbf{1}_{F'}x^{\operatorname{Ik}(F') - 1} \right) \right) \\ &= \mathbf{H}_{\mathbb{M}}^{G}(x), \end{aligned}$$

4. Going on a tangent

REFERENCES

[FMSV24] Ferroni, Luis and Matherne, Jacob P. and Stevens, Matthew and Vecchi, Lorenzo, *Hilbert–Poincaré series* of matroid Chow rings and intersection cohomology, Advances in Mathematics. **449** (2024) 1, 3, 4

(N. Nepal) North Carolina State University *Email address*: nnepal2@ncsu.edu