Prof. Dr. Leandro Alves Neves

Bacharelado em Ciência da Computação

Processamento Digital de Imagens

Aula 04

^E Sumário

Métricas

- Entropia em Imagens
- Relacionamento entre Elementos da Imagem
- Medidas de Distância

- Entropia ou Incerteza
- Introduzido por Shannon (1948)
 - Medir a quantidade de informação transferida por um canal ou gerada por uma fonte.
 - Quanto maior o valor de entropia
 - Mais incerteza
 - Mais informação presente
 - Informação:
 - Modelada como probabilística

Imagem

- A distribuição dos níveis de intensidade da imagem
 - Transformada em uma função densidade de probabilidade
 - Dividindo:
 - O número de pixels de intensidade i, denotado por n_i, pelo número total n de pixels na imagem
- Portanto, a imagem é considerada um processo aleatório
 - Probabilidade p_i de um pixel assumir um valor i, em que i = 0, 1, ..., Lmax

$$p_i = \frac{n_i}{n}$$
, em que $\sum_{i=0}^{L \max} p_i = 1$.

□ A entropia de Shannon para imagem é calculada por: $H = -\sum_{i=0}^{L_{max}} p_i \log p_i$.

- Valores de Entropia: Medida Positiva
- Considerando a base do logaritmo como 2
 - A unidade resultante é dada em bits

- Menor valor : 0
 - Todos os pixels possuem o mesmo valor de luminância
- Máxima entropia
 - Mesma quantidade de pixels para todas as intensidades

Máxima entropia

Um elemento f:

- \Box Matriz bidimensional: pixel f(x,y)
- \Box Matriz tridimensional:voxel f(x,y,z)

Relacionamentos entre elementos:

- Vizinhança
- Conectividade
- Adjacência
- Caminho
- Componentes Conexos
- Borda e Interior

Vizinhança-4:

- \Box Quatro pixels vizinhos horizontais e verticais do pixel f(x,y)
- □ Coordenadas: N₄ (f)
 - (x+1, y), (x-1, y), (x, y+1), (x, y-1)

Vizinhança-8:

- \Box Oito pixels vizinhos: horizontais, verticais e diagonais do pixel f(x,y)
- □ Coordenadas: N_8 (f)= N_4 (f) \cup N_d (f)

Vizinhança para f(x,y,z):

- Exemplo,

Adjacência

□ Dois elementos f₁ e f₂ são adjacentes se:

0	1	0
0	1	0
1	0	0

- Conexos por alguma vizinhança
- □ Dois conjuntos de pixels C₁ e C₂ são adjacentes se:
 - Pelo menos um elemento de C1 é adjacente a um elemento de C2.

0	0	1	0	0	0
1	0	1	0	0	0
0	1	1	0	1	0
0	0	1	1	1	0
0	0	0	1	0	0

Conectividade

- Elementos conexos, se:
 - Vizinhos e
 - Atendem algum critério de similaridade,
 - □ Por exemplo, mesma profundidade (1)

0	1	0
0	1	0
0	0	0

Caminho

- □ Sequência de pixels entre dois elementos (x_0, y_0) e (x_n, y_n) :
 - $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n), \text{ tal que:}$
 - \square *n* é o comprimento do caminho
 - \Box (x_i, y_i) e (x_{i+1}, y_{i+1}) são adjacentes
- Exemplos,
 - Caminho-4: comprimento 8 ===

0	0	0	0	0	0
0	1	1	0	1	0
0	0	1	0	1	0
0	0	1	1	1	0

Caminho-8: comprimento 6

0	0	0	0	0	0
0	1	1	0	1	0
0	0	1	0	1	0
0	0	0	1	0	0

Componentes Conexos

- Definição: Subconjunto de elementos C da imagem que são conexos entre si
 - Dois elementos f₁ e f₂ são conexos se:
 - Existir caminho de f₁ a f₂ contido em C
 - 3 Componentes Conexos
 - Se vizinhança-4
 - 2 Componentes Conexos
 - Se vizinhança-8

Borda e Interior

Dado um conjunto C

Borda:

Pontos no contorno do componente conexo C.

Interior:

Pixels de C que não estão em sua borda

Considere os pixels:

$$\Box$$
 $f1(x_1,y_1), f2(x_2,y_2) \in f3(x_3,y_3)$

Qualquer métrica de distância D deve satisfazer as propriedades:

```
□ D(f_1, f_2) \ge 0  (D(f_1, f_2) = 0 se, e somente se, f_1 = f_2)
□ D(f_1, f_2) = D(f_2, f_1)
□ D(f_1, f_3) \le D(f_1, f_2) + D(f_2, f_3)
```

Existem diferentes Métricas

Distância Euclidiana (D_E) entre $f_1(x_1,y_1)$ e $f_2(x_2,y_2)$ é dada por:

$$D_E(f_1, f_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

- Pixels D_E menor ou igual a algum valor d formam um disco de raio d centrado em f₁
 - □ Exemplo, considerando $D_E \le 3$ de um ponto central (x,y), temos:

■ Distância (D_4) ou City-block entre $f_1(x_1,y_1)$ e $f_2(x_2,y_2)$ é dada por:

$$D_4(f_1, f_2) = |x_1 - x_2| + |y_1 - y_2|$$

- Pixels D_E menor ou igual a algum valor d formam um losango centrado em f₁
 - Pontos com distância 1 são os pixels com vizinhança-4 do ponto central.
 - □ Exemplo, considerando $D_E \le 3$ de um ponto central (x,y), temos:

Caminho mais curto entre esses pixels, considerando-se a vizinhança-4

Distância (D₈) (Chessboard ou Chebyshev) entre f₁(x₁,y₁) e f₂(x₂,y₂) é dada por:

$$D_8(f_1, f_2) = \max(|x_1 - x_2|, |y_1 - y_2|)$$

- Pixels D_E menor ou igual a algum valor d formam um quadrado centrado em f₁
 - Pontos com distância 1 são os pixels com vizinhança-8 do ponto central.
 - \Box Exemplo, considerando $D_F \le 3$ de um ponto central (x,y), temos:

```
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
```

Exercícios

1. Calcule o valor da entropia para a imagem 4 x 8, de 256 tons de cinza, dada a seguir:

22	22	22	95	167	234	234	234
22	22	22	95	167	234	234	234
22	22	22	95	167	234	234	234
22	22	22	95	167	234	234	234

2. Reproduza as imagens apresentadas no slide 06, com dimensões: 256 x 256 e 256 níveis de profundidade. Escreva uma programa para calcular e fornecer o valor de entropia de cada imagem. Em seguida, aplique sobre cada imagem os ruídos aditivos: sal e pimenta; uniforme, gaussiano e poisson. As distribuições devem ser fornecidas pelo usuário. Após este processo, verifique o resultado obtido em cada imagem e calcule as entropias para cada uma. A entropia permitiu verificar a presença de ruído em cada imagem? Se sim, explique em quais casos e justifique suas respostas.

Exercícios

Reproduza as imagens a seguir, disponíveis no slide 06, considerando as dimensões 256x256 e profundidade 8 bits. Em seguida, desenvolva um programa para apresentar o total de componentes conexos em cada caso.

Exercícios

4. Reproduza a imagem a seguir e utilize o programa desenvolvido no exercício anterior para fornecer o total de componentes conexos existentes. Em seguida, o programa deve fornecer as distâncias D_E , D_4 e D_8 entre pontos escolhidos pelo usuário. O programa deve satisfazer as propriedades estabelecidas para o cálculo de uma distância, independente da métrica escolhida.

PDI

Referências

Pedrini, H., Schwartz, W. R. Análise de Imagens Digitais: Princípios Algoritmos e Aplicações. São Paulo: Thomson Learning, 2008.

Marques Filho, O., Vieira Neto, H. Processamento Digital de Imagens, Rio de Janeiro: Brasport, 1999.