Решающие деревья

Виктор Китов

victorkitov.github.io

Победитель конкурса VK среди курсов по IT

Курс поддержан фондом 'Интеллект'

Содержание

- Понятие решающего дерева
- 2 Правила спуска
- Выбор критерия ветвления
- 4 Назначение прогнозов листьям
- 5 Критерий остановки
- б Анализ решающих деревьев

Пример решающего дерева

Определение решающего дерева

- Прогнозы строятся деревом T.
- Для каждого внутреннего узла t задана функция ветвления $Q_t(x)$.
- Для каждого ребра $1,...K_t$ ассоциирован набор множеств $S_t(1),...S_t(K_t)$.
 - $Q_t(x) \in S_t(i) = >$ спуститься в узел i.
 - $\bigcup_k S_t(k) = range[Q_t(\cdot)]$
 - $S_t(i) \cap S_t(j) = \emptyset \ \forall i \neq j$

Построение прогноза

- множество вершин разделяется на:
 - ullet внутренние вершины int(T), каждая имеет ≥ 2 потомков
 - терминальные вершины terminal(T), которые не имеют дочерних, а ассоциированы с прогнозами.

Построение прогноза

- множество вершин разделяется на:
 - \bullet внутренние вершины int(T), каждая имеет ≥ 2 потомков
 - терминальные вершины terminal(T), которые не имеют дочерних, а ассоциированы с прогнозами.
- Прогноз для дерева Т:
 - t = root(T)
 - пока t не терминальная вершина:
 - рассчитать $Q_t(x)$
 - определить i такой, что $Q_t(x) \in S_t(i)$
 - спуститься в j-ую дочернюю вершину $t := t_i$
 - вернуть прогноз, ассоциированный с листом t.

Спецификация решающего дерева

Спецификация решающего дерева:

- ullet функции ветвления $Q_t(x) \ orall t \in IntNodes$
- в каждом внутреннем узле t:
 - число дочерних вершин: K_t
 - разбиение: $S_t(1), ... S_t(K_t)$
- прогноз в каждом листе дерева

Спецификация решающего дерева

Спецификация решающего дерева:

- ullet функции ветвления $Q_t(x) \ orall t \in IntNodes$
- в каждом внутреннем узле t:
 - ullet число дочерних вершин: K_t
 - разбиение: $S_t(1), ... S_t(K_t)$
- прогноз в каждом листе дерева

Спецификация обучения:

- критерий остановки
 - когда узел становится терминальным при построении top-down

Содержание

- Понятие решающего дерева
- 2 Правила спуска
- Выбор критерия ветвления
- 4 Назначение прогнозов листьям
- 5 Критерий остановки
- 6 Анализ решающих деревьев

Возможные правила спуска (предикаты)

- $S_t(1) = \{x^{i(t)} \le h_t\}, \ S_t(2) = \{x^{i(t)} > h_t\}$
- $Q_t(x) = x^{i(t)}$, где $S_t(j) = v_j$, $v_1, ... v_K = unique(x^{i(t)})$.
- $oldsymbol{\circ} S_t(j) = \{h_j < x^{i(t)} \leq h_{j+1}\}$ для набора порогов $h_1, h_2, ... h_{K_t+1}.$
- $S_t(1) = \{x : \langle x, w \rangle \leq h\}, \quad S_t(2) = \{x : \langle x, w \rangle > h\}$
- $S_t(1) = \{x : ||x|| \le h\}, \quad S_t(2) = \{x : ||x|| > h\}$
- и т.д.

Популярные алгоритмы решающих деревьев

- CART (classification and regression trees)
 - реализован в scikit-learn
- C4.5

Правила спуска для CART

• рассматривается единственный признак:

$$Q_t(x) = x^{i(t)}$$

• бинарные разбиения:

$$K_t = 2$$

• спуск основан предикатах=сравнении с порогом h_t :

$$S_1 = \{x^{i(t)} \le h_t\}, S_2 = \{x^{i(t)} > h_t\}$$

- ullet достаточно выбрать порог из уникальных значений признака $x^{i(t)}$
 - применимо для вещественных, порядковых и бинарных признаков
 - категориальные признаки:

Правила спуска для CART

• рассматривается единственный признак:

$$Q_t(x) = x^{i(t)}$$

• бинарные разбиения:

$$K_t = 2$$

ullet спуск основан предикатах=сравнении с порогом h_t :

$$S_1 = \{x^{i(t)} \le h_t\}, S_2 = \{x^{i(t)} > h_t\}$$

- ullet достаточно выбрать порог из уникальных значений признака $x^{i(t)}$
 - применимо для вещественных, порядковых и бинарных признаков
 - категориальные признаки: one-hot, кодирование средним, частотное кодирование.

Пример обучающей выборки

Разбиение на классы (глубина=1)

Разбиение на классы (глубина=2)

Разбиение на классы (глубина=3)

Разбиение на классы (глубина=10)

Проблемы с аппроксимацией наклонных границ

CART для задачи регрессии (малая глубина)

CART для задачи регрессии (большая глубина)

Кусочно-постоянные прогнозы CART

Анализ критерия ветвления CART

Преимущества:

- интерпретируемость (визуализация)
- вычислительная простота прогнозирования
- отбор признаков
- работает для признаков разной природы
 - обрабатывает вещественные, упорядоченные и бинарные признаки
 - прогноз инвариантен к монотонным преобразованиям признака для $Q_t(x) = x^{i(t)}$:

$$x^{i(t)} \leq h \Leftrightarrow f\left(x^{i(t)}\right) \leq f\left(h\right) \ \forall \uparrow f(\cdot)$$

Недостатки:

- константные прогнозы в листьях
 - ullet можно в листах ассоциировать $\widehat{y}=f_t(x)$, а не константу \widehat{y}_t .
- много вершин для описания наклонных границ к осям

Содержание

- 1 Понятие решающего дерева
- 2 Правила спуска
- 3 Выбор критерия ветвления
- 4 Назначение прогнозов листьям
- 5 Критерий остановки
- б Анализ решающих деревьев

поор критерия ветвления

Определение критерия ветвления

ullet Из узла t перейти в: $egin{cases} \int$ левого потомка $t_L, & \text{если } x^{\widehat{l}_t} \leq \widehat{h}_t \\ \text{правого потомка } t_R, & \text{если } x^{\widehat{l}_t} > \widehat{h}_t \end{cases}$

Определение критерия ветвления

- ullet Из узла t перейти в: $\left\{ egin{align*} ext{левого потомка } t_L, & ext{если } x^{\widehat{l}_t} \leq \widehat{h}_t \ ext{правого потомка } t_R, & ext{если } x^{\widehat{l}_t} > \widehat{h}_t \ ext{} \end{array}
 ight.$
- Определим $\phi(t)$ ф-цию неопределенности (критерий информативности, impurity function)
 - измеряет степень неоднозначности y для объектов в узле t.

Определение критерия ветвления

- ullet Из узла t перейти в: $\left\{ egin{align*} ext{левого потомка } t_L, & ext{если } x^{\widehat{l_t}} \leq \widehat{h}_t \ ext{правого потомка } t_R, & ext{если } x^{\widehat{l_t}} > \widehat{h}_t \ ext{} \end{array}
 ight.$
- ullet Определим $\phi(t)$ ϕ -цию неопределенности (критерий информативности, impurity function)
 - измеряет степень неоднозначности y для объектов в узле t.
- \bullet Качество разбиения t:

$$\Delta\phi(t) = \phi(t) - \phi(t_L) \frac{N(t_L)}{N(t)} - \phi(t_R) \frac{N(t_R)}{N(t)}$$

Определение критерия ветвления

- ullet Из узла t перейти в: $\left\{ egin{align*} ext{левого потомка } t_L, & ext{если } x^{\widehat{i}_t} \leq \widehat{h}_t \ ext{правого потомка } t_R, & ext{если } x^{\widehat{i}_t} > \widehat{h}_t \ ext{} \end{array}
 ight.$
- Определим $\phi(t)$ ф-цию неопределенности (критерий информативности, impurity function)
 - измеряет степень неоднозначности y для объектов в узле t.
- \bullet Качество разбиения t:

$$\Delta\phi(t) = \phi(t) - \phi(t_L) \frac{N(t_L)}{N(t)} - \phi(t_R) \frac{N(t_R)}{N(t)}$$

• Оптимизация CART (регрессия, классификация): выбрать признак x_i и порог h, максимизирующие $\Delta \phi(t)$:

$$\widehat{i_t},\,\widehat{h}_t = rg\max_{i,h} \Delta\phi(t)$$

Функция информативности для регрессии

• пусть $I_t = \{i_1, ... i_K\}$ - множество индексов объектов узла t. Можно определить $\phi(t)$ как

$$\phi(t) = \min_{\widehat{y}} \frac{1}{|I_t|} \sum_{i \in I_t} (y_i - \widehat{y})^2$$
$$\phi(t) = \min_{\widehat{y}} \frac{1}{|I_t|} \sum_{i \in I_t} |y_i - \widehat{y}|$$

Функция информативности для регрессии

• пусть $I_t = \{i_1, ... i_K\}$ - множество индексов объектов узла t. Можно определить $\phi(t)$ как

$$\begin{split} \phi(t) &= \min_{\widehat{y}} \frac{1}{|I_t|} \sum_{i \in I_t} (y_i - \widehat{y})^2 = \frac{1}{|I_t|} \sum_{i \in I_t} (y_i - \mathsf{mean}_{i \in I_t}(y_i))^2 \\ \phi(t) &= \min_{\widehat{y}} \frac{1}{|I_t|} \sum_{i \in I_t} |y_i - \widehat{y}| = \frac{1}{|I_t|} \sum_{i \in I_t} |y_i - \mathsf{median}_{i \in I_t}(y_i)|, \end{split}$$

Функции информативности для классификации

- Классификация:
 - $p_1, ...p_C$ вероятности классов в узле t.
- Функция информативности $\phi(t) = \phi(p_1, p_2, ...p_C)$ должна удовлетворять:
 - ϕ определена для $p_i \ge 0$ и $\sum_i p_i = 1$.
 - ϕ достигает максимума при $p_i = 1/C, k = 1, 2, ... C$.
 - ϕ достигает минимума, когда $\exists j: p_i = 1, p_i = 0 \ \forall i \neq j.$
 - ϕ симметрична относительно $p_1, p_2, ... p_C$.

Визуализация основных функции информативности

Функции информативности для
$$y \in \{+1, -1\}$$
 с $p(y=+1|x)=p$ и $p(y=-1|x)=1-p$.

Классификационная ошибка

• **Классификационная ошибка:** как часто ошибаемся при константном прогнозе?

$$\phi(t) = \min_{\widehat{y}} \frac{1}{|I_t|} \sum_{i \in I_t} \mathbb{I}[y_i \neq \widehat{y}]$$

$$= \frac{1}{|I_t|} \sum_{i \in I_t} \mathbb{I}[y_i \neq y_{most.common}]$$

$$= 1 - \widehat{\rho}_{max}$$

Критерий Джини

• **Критерий Джини**: оценка Бриера¹

$$\phi(t) = \min_{p: \sum_{c} p_{c} = 1} \frac{1}{|I_{t}|} \sum_{i \in I_{t}} ||p - p_{i}^{true}||^{2} =$$

$$= \min_{p: \sum_{c} p_{c} = 1} \frac{1}{|I_{t}|} \sum_{i \in I_{t}} \sum_{c=1}^{C} (p_{c} - \mathbb{I}[y_{i} = c])^{2} =$$

$$= \sum_{i=1}^{C} \widehat{p}_{i} (1 - \widehat{p}_{i}) = 1 - \sum_{i=1}^{C} \widehat{p}_{i}^{2}$$

• Это вероятность ошибки при случайном угадывании с вероятностями $p(\hat{y}=1)=\hat{p}_1,...p(\hat{y}=C)=\hat{p}_C$

¹Докажите оптимальность выборочных оценок вероятностей классов и финальный вид критерия.

Энтропия

• **Энтропия**: -логарифм правдоподобия оптимальных вероятностей классов²

$$\phi(t) = \min_{p:\sum_{c} p_{c} = 1} -\frac{1}{|I_{t}|} \left(\sum_{i \in I_{t}} \sum_{c=1}^{C} \ln p_{c}^{\mathbb{I}[y_{i} = c]} \right) =$$

$$= \min_{p:\sum_{c} p_{c} = 1} -\frac{1}{|I_{t}|} \left(\sum_{i \in I_{t}} \sum_{c=1}^{C} \mathbb{I}[y_{i} = c] \ln p_{c} \right) = -\sum_{i=1}^{C} \widehat{p}_{i} \ln \widehat{p}_{i}$$

• Это среднее количество информации= $-\ln p_y$, которое получаем, узнав класс y.

²Докажите оптимальность выборочных оценок вероятностей классов и финальный вид критерия.

Комментарии

- Логичнее брать в качестве $\phi(t)$ пользовательскую ф-цию потерь (но может не существовать аналит. решения).
- Алгоритм \hat{i}_t , $\hat{h}_t = \arg\max_{i,h} \Delta \phi(t)$ применяется рекурсивно при построении дерева сверху вниз.
 - жадный алгоритм, см. только на 1 шаг вперед (глобально неоптимальный, зато быстрый)
 - можно заглядывать на 2 шага вперед
- Сложность подбора $\phi(t) \le h$: $O(N^2D)$
 - D признаков, O(N) значений порога, $\Delta \phi(t)$: O(N).
- Как её можно сократить?

Комментарии

- Логичнее брать в качестве $\phi(t)$ пользовательскую ф-цию потерь (но может не существовать аналит. решения).
- ullet Алгоритм $\widehat{i}_t,~\widehat{h}_t=rg \max_{i,h}\Delta\phi(t)$ применяется рекурсивно при построении дерева сверху вниз.
 - жадный алгоритм, см. только на 1 шаг вперед (глобально неоптимальный, зато быстрый)
 - можно заглядывать на 2 шага вперед
- Сложность подбора $\phi(t) \le h$: $O(N^2D)$
 - D признаков, O(N) значений порога, $\Delta \phi(t)$: O(N).
- Как её можно сократить?
 - \bullet экономный пересчет $\phi(t)$
 - при смещении порога 1 объект меняет вершину
 - дискретизация признака
 - квантили: 0.1, 0.2, ... 0.9

Содержание

- Понятие решающего дерева
- 2 Правила спуска
- Выбор критерия ветвления
- 4 Назначение прогнозов листьям
- Б Критерий остановки
- 6 Анализ решающих деревьев

Оптимальный прогноз в листьях: регрессия

• Регрессия:

$$\widehat{y} = \underset{f}{\operatorname{arg min}} \sum_{i:x_i \in t} \mathcal{L}(f - y_i)$$

Например³

$$\mathcal{L}(u) = u^2 : \widehat{y} = \mathsf{mean}_{i:x_i \in t} \{ y_i \}$$

$$\mathcal{L}(u) = |u| : \widehat{y} = \mathsf{median}_{i:x_i \in t} \{ y_i \}$$

³Докажите оптимальность среднего и медианы для соответствующих ф-ций потерь.

Оптимальный прогноз в листьях: классификация

В практических задачах классификации типы ошибок приводят к разным штрафам.

• например, при определении болен пациент или здоров.

Определим матрицу штрафов 4 $\Lambda \in \mathbb{R}^{C \times C}$, где $\lambda_{ii} = \operatorname{cost}(\widehat{y} = i | y = i)$:

			прогноз	
		$\hat{y} = 1$	• • •	$\widehat{y} = C$
	y = 1	λ_{11}		λ_{1C}
ракт		• • •		• • • •
	y = C	λ_{C1}		λ_{CC}

 4 Как эта матрица будет выглядеть в случае единичных потерь за любой тип ошибки?

Оптимальный прогноз в листьях: классификация

В случае общих потерь $\lambda_{ij} = \cos (\widehat{y} = j | y = i)$

$$\widehat{y} = \arg\min_{j} \sum_{i \in I_t} \lambda_{y(i),j} = \arg\min_{j} \sum_{c=1}^{C} (N_t p_c) \lambda_{cj}$$

В случае $\lambda_{cj} = \lambda \mathbb{I}[c \neq j]$:

$$\widehat{y} = rg \min_{j} N_{t} \sum_{c=1}^{C} p_{c} \lambda \mathbb{I}[c \neq j] = rg \min_{c \neq j} \sum_{c \neq j} p_{c}$$

$$= rg \min_{j} (1 - p_{j}) = rg \max_{j} p_{j}$$

Использование CART для регрессии

```
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean absolute error
X train, X test, Y train, Y test =
   get demo regression data()
# иниц-ция, criterion - функция неопределённости:
model = \
   DecisionTreeRegressor(criterion='absolute error')
model. fit (X train, Y train) # обучение модели
Y hat = model.predict(X test) # построение прогнозов
print (f 'Средний модуль ошибки (MAE): \
{mean absolute error(Y test, Y hat):.2f}')
```

Больше информации. Полный код.

Использование CART для классификации

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy score
from sklearn.metrics import brier score loss
X train, X test, Y train, Y test =
   get demo classification data()
# иниц-ция, criterion - функция неопределённости:
model = DecisionTreeClassifier(criterion='gini')
model. fit (X train, Y train) # обучение модели
Y hat = model.predict(X test) # построение прогнозов
print (f 'Точность прогнозов:
\{100*accuracy score(Y test, Y hat):.1 f\}\%
P hat = model.predict proba(X test) # вер-ти классов
loss = brier score loss (Y test, P hat [:,1])
print (f'Mepa Бриера ошибки вероятностей: {loss:.2f}')
```

Больше информации. Полный код.

Содержание

- Понятие решающего дерева
- 2 Правила спуска
- 3 Выбор критерия ветвления
- 4 Назначение прогнозов листьям
- б Критерий остановки
 - Остановка, основанная на правилах
 - Алгоритм обрезки в CART
- 6 Анализ решающих деревьев

Критерий остановки

- Сложность модели должна соответствовать сложности данных:
 - слишком глубокие деревья -> переобучение
 - в крайнем случае: 1 лист содержит 1 объект, нет обобщающей способности.
 - слишком мелкие деревья -> недообучение
- Необходимо выбрать оптимальную глубину при построении дерева.
- Подходы к остановке построения:
 - основанные на правилах
 - обрезка деревьев (pruning)

- б Критерий остановки
 - Остановка, основанная на правилах
 - Алгоритм обрезки в CART

Остановка, основанная на правилах

- Остановка, когда критерий больше порога.
- Варианты критерия:
 - глубина дерева
 - #объектов в узле
 - минимальное #объектов в дочерних узлах после разбиения
 - значение информативности $\phi(t)$
 - ullet изменение информативности $\Delta\phi(t)$ после разбиения

Анализ подхода

Преимущества: простота, интерпретируемость. **Недостатки**:

- нужно подбирать порог
- изменение информативности $\Delta \phi(t)$ неоптимально: последующие разбиения могут привести к большему $\Delta \phi(t)$:

Решающие деревья - Виктор Китов Критерий остановки Алгоритм обрезки в CART

- 5 Критерий остановки
 - Остановка, основанная на правилах
 - Алгоритм обрезки в CART

Обрезка деревьев

Поскольку ранняя остановка по $\Delta \phi(t)$ может давать неоптимальный результат, часто:

- Дерево строится до самого низа.
- ② Потом лишние ветви обрезаются (tree pruning)

Простой подход - обрезать всевозможные деревья по валидации.

- нужно перебирать все поддеревья
- эффективнее использовать направленную обрезку с помощью алгоритма минимального штрафа за сложность (minimal cost-complexity pruning)

Алгоритм минимального штрафа за сложность

Алгоритм минимального штрафа за сложность:

- Определим:
 - ullet А $_t$ поддерево с корнем t, \widetilde{A}_t его листья
 - ullet $R(A_t)$ мера ошибок дерева A_t
 - #ошибок классификации либо сумма квадратов ошибок
 - $R_{\alpha}(T)$ со штрафом за сложность ($+\alpha$ за каждый лист).

потери за ошибки :
$$R(A_t) = \sum_{ au \in ilde{A}_t} R(au)$$
 ошибки и сложность: $R_{lpha}(A_t) = R(A_t) + lpha | ilde{T}|$

• Целесообразность построения A_t вместо t определим по равновесному lpha из $R_lpha(A_t) = R_lpha(t)$:

$$R(A_t) + \alpha |\tilde{A}_t| = R(t) + \alpha \implies \alpha_t = \frac{R(t) - R(A_t)}{|\tilde{A}_t| - 1}$$

Пример вычисления $lpha_t$

Алгоритм обрезки

- ① Строим дерево T до самого низа (пока в листьях не останутся объекты с одинаковым откликом).
- ② Строим систему вложенных поддеревьев $T = T_0 \supset T_1 \supset ... \supset T_{|T|}$ содержащих |T|, |T|-1,...1 узлов, повторяя процедуру:
 - ullet заменить \mathcal{T}_t с самым малым $lpha_t$ её корнем \mathbf{t}
 - пересчитать α_t для всех предков t.
- **3** Выберем T_i , дающее минимальные потери на валидационной выборке.

Обработка пропущенных значений

Если проверяемый признак отсутствует:

- заполнить пропуски:
 - вещественные: средним, медианой
 - категориальные: модой или значением "пропущено"
- Можно предсказывать пропущенные значения по др. признакам (использовано в CART)
- C4.5: спускаемся из t по всем дочерним вершинам $t_1, ... t_S$, потом усредняем прогнозы с весами:

$$N(t_1)/N(t), N(t_2)/N(t), ... N(t_S)/N(t)$$

Решающие деревья - Виктор Китов

Критерий остановки Алгоритм обрезки в CART

Важность признаков: mean decrease in impurity

 Важность признаков по изменению критерия информативности (mean decrease in impurity, MDI).

Важность признаков: mean decrease in impurity

- Важность признаков по изменению критерия информативности (mean decrease in impurity, MDI).
 - рассмотрим признак f
 - пусть T(f)-множество всех вершин, использующих f в функции ветвления
 - эффективность разбиения в t:

$$\Delta\phi(t) = \phi(t) - \sum_{c \in childen(t)} \frac{N(c)}{N(t)} \phi(c)$$

 \bullet значимость f:

$$\frac{1}{N} \sum_{t \in T(f)} N(t) \Delta \phi(t)$$

 Поощряет признаки с большим количеством уникальных значений. Решающие деревья - Виктор Китов

Критерий остановки

Алгоритм обрезки в CART

Важность признаков: mean decrease in impurity

B sklearn:

- важность содержится с model.feature_importances_
- недостатки:
 - вычисляется на обучающей выборке
 - если модель переобучается на признаке, важность высока, но вклад в точность прогнозов мал.

Содержание

- Понятие решающего дерева
- 2 Правила спуска
- 3 Выбор критерия ветвления
- 4 Назначение прогнозов листьям
- 5 Критерий остановки
- 6 Анализ решающих деревьев

Преимущества решающих деревьев

- нелинейная модель с гибкой настройкой сложности
- вычислительная эффективность прогнозов
- интерпретируемость (для неглубоких деревьев)
- встроенный отбор признаков
- расчет важности признаков
- инвариантны к монотонным преобразованиям признаков
- работают с признаками разной природы
 - бинарные, вещественные, порядковые
 - категориальные->бинарные (one-hot) или вещественные (mean-value encoding)
 - категориальные->порядковые, упорядочив категории по \overline{y} при условии категории в рамках узла

Недостатки решающих деревьев

- нет динамической подстройки под потоковые данные
- сравнительно невысокая точность:
 - границы перпендикулярно осям признаков
 - "жадная" настройка сверху вниз глобально неоптимальна
 - точность повышается композицией решающих деревьев