1 Hidden Input Observability

Consider a dynamic system $\mathcal S$

$$\frac{\mathrm{d}x_w}{\mathrm{d}t} = Ax_w(t) + Bu(t) + Dw(t) \tag{1}$$

$$y_w(t) = Cx_w(t) \tag{2}$$

$$x_w(0) = x_0 \tag{3}$$

where x_w , u, w and y_w map [0,T] onto \mathbb{R}^n , $\mathbb{R}^{\hat{m}}$, \mathbb{R}^m and \mathbb{R}^p , respectively, and A, B, C, D are matrices of suitable dimensions. We assume the function u is known and called the *known input*, the function w is unknown called *hidden input*. The closed form solution for y_w is

$$y_w(t) = C \int_0^t \exp(A(t-\tau))(Bu(\tau) + Dw(\tau)) d\tau \quad . \tag{4}$$

Definition 1. If for \mathcal{S} the implication

$$y_w(t) = y_{\hat{w}}(t) \quad \forall t \in [0, T] \quad \Rightarrow \quad w = \hat{w} \quad \text{a.e.}$$
 (5)

holds, \mathcal{S} is called *hidden input observable (HIO)*. If this implication holds only for m-m' components of w, \mathcal{S} is called *limited hidden input observable by m'*.

Our aim is to find necessary or sufficient conditions for the hidden input observability of linear systems.

Due to linearity, \mathcal{S} is HIO if and only if

$$y(t) := C \int_0^t \exp(A(t-\tau))Dw(\tau) d\tau = 0 \quad \forall t \in [0,T] \quad \Rightarrow \quad w = 0 \quad \text{a.e.} \quad (6)$$

Rearranging the equation

By the Cayley-Hamilton theorem, for any $k \in \mathbb{N}_0$ there are coefficients $c_{k,l}$ such that

$$A^{k} = \sum_{l=0}^{n-1} c_{k,l} A^{l} \quad . \tag{7}$$

Defying

$$\Phi_{l}[w](t) := \int_{0}^{t} \sum_{k=0}^{\infty} c_{k,l} \frac{(t-\tau)^{k}}{k!} w(\tau) d\tau$$
 (8)

equation (6) can be written as

$$y(t) = \sum_{l=0}^{n-1} CA^l D\Phi_l[w](t) \quad . \tag{9}$$

1.1 Sufficient Condition

In most cases $D=\mathbb{1}$ is an appropriate choice, thus m=n and the μ -th column of CA^k can be written as

$$\left(CA^{k}\right)_{\mu} = \sum_{\omega=1}^{n} A_{\omega\mu}^{k} C_{\omega} \tag{10}$$

where $A_{\omega\mu}^k$ is the $(\omega\mu)$ component of A^k and C_{ω} is the ω -th column of C. Now we can write

$$y(t) = \sum_{\omega=1}^{n} \varphi_{\omega}(t) C_{\omega}$$
 (11)

where

$$\varphi_{\omega}(t) := \sum_{l=0}^{n-1} \sum_{\mu=1}^{n} \Phi_{l} \left[A_{\omega\mu}^{l} w_{\mu} \right] (t) \quad . \tag{12}$$

Now choose an index set $\mathscr{I} \subset \{1,2,\ldots,n\}$ such that $\{C_i | i \in \mathscr{I}\}$ are linearly independent and for any $H \in \mathscr{I}^c := \{1,2,\ldots,n\} \setminus \mathscr{I}$ there are unique coefficients Λ_i^H such that $C_H = \sum_{i \in \mathscr{I}} \Lambda_i^H C_i$. Furthermore introduce the index sets \mathscr{H}_i such that $H \in \mathscr{H}_i \Leftrightarrow \Lambda_i^H = 0$ and $\mathscr{H}_i^c := \mathscr{I}^c \setminus \mathscr{H}_i$. With this, (11) becomes

$$y(t) = \sum_{i \in \mathcal{I}} \left(\varphi_i(t) + \sum_{H \in \mathcal{H}_i^c} \Lambda_i^H \varphi_H(t) \right) C_i \quad . \tag{13}$$

To get a condition for HIO, let us set $y \equiv 0$ and by equation coefficients

$$\varphi_i + \sum_{H \in \mathcal{H}_i^c} \varphi_H \equiv 0 \quad \forall i \in \mathcal{I} \quad . \tag{14}$$

Proposition 1 (Without proof). Each operator Φ_l is injective, i.e.

$$\Phi_I[w] \equiv 0 \qquad \Rightarrow \qquad w \equiv 0 \tag{15}$$

and Φ_0 is surjective. Here " \equiv " denotes equality to the zero function and Φ_l operates component-wise on $(w_1, w_2, ..., w_m)^T : [0, T] \to \mathbb{R}^m$.

Definition 2. Let \mathcal{L} be an index set. A set

$$\{ \Phi_l : L^2([0,T]) \to L^2([0,T]) \mid l \in \mathcal{L} \}$$
 (16)

of linear operators is called *injective set*, if for any functions $\{v_l \in L^2([0,T]) | l \in \mathcal{L}\}$ the implication

$$\sum_{l \in \mathcal{L}} \Phi_l [v_l] \equiv 0 \quad \Rightarrow \quad v_l \equiv 0 \,\forall \, l \in \mathcal{L}$$
 (17)

holds.

Proposition 2. If $\{\Phi_l | l \in \{0, 1, ..., n-1\}\}$ defined by (8) is a injective set and if the functions $\{w_{\mu}\}$ are linearly independent, then:

If for a
$$\mu \in \{1, 2, ..., n\}$$
 \exists $(i, l) \in \mathcal{I} \times \{0, 1, ..., n-1\}$ such that $A_{i\mu}^l + \sum_{H \in \mathcal{H}_i^c} \Lambda_i^H A_{H\mu}^l \neq 0$ (18) then $w_\mu \equiv 0$.

Proof. Starting with (14) we have for all $i \in \mathcal{I}$

$$\sum_{l=0}^{n-1} \sum_{\mu=1}^{n} \Phi_l \left[\left(A_{i\mu}^l + \sum_{H \in \mathcal{H}_i^c} \Lambda_i^H A_{H\mu}^l \right) w_\mu \right] \equiv 0 \tag{19}$$

and by the definition of an injective set, we get for all $i \in \mathcal{I}$

$$\sum_{\mu=1}^{n} \left(A_{i\mu}^{l} + \sum_{H \in \mathcal{H}_{i}^{c}} \Lambda_{i}^{H} A_{H\mu}^{l} \right) w_{\mu} \equiv 0$$
 (20)

and since $\{w_{\mu}\}$ is a linearly independent set we can treat each μ separately, hence each function w_{μ} must vanish at all times if

$$A_{i\mu}^l + \sum_{H \in \mathcal{H}_i^c} \Lambda_i^H A_{H\mu}^l \neq 0 \quad . \tag{21}$$

Therefore it is sufficient to find one pair $(i, l) \in \mathcal{I} \times \{0, 1, ..., n-1\}$ for which this coefficient is not zero to argue, that w_{μ} must be zero at all times.

Theorem 1. Let $\{\Phi_l | l \in \{0, 1, ..., n-1\}\}$ defined by (8) be an injective set and $\{w_{\mu} | \mu \in \{1, 2, ..., n\}\}$ linearly independent functions. If

$$\forall \mu \in \mathcal{M} \exists (i, l) \in \mathcal{I} \times \{0, 1, \dots, n-1\} \middle| A_{i\mu}^l + \sum_{H \in \mathcal{H}_i^c} \Lambda_i^H A_{H\mu}^l \neq 0$$
 (22)

then the system is limited HIO by $n - |\mathcal{M}|$. If $|\mathcal{M}| = n$ then the system is HIO.

Proof. Using the preceding proposition the proof is trivial.

1.1.1 Nilpotent Dynamics

Let A be a nilpotent matrix, i.e. there is a regular $n \times n$ matrix P such that

$$A = P^{-1} A_{\triangle} P \tag{23}$$

with $A_{\triangle\omega\mu} = 0$ when $\omega \le \mu$. As a graphical condition this means, that A can be represented by a directed acyclic graph. This yields

$$y(t) = \sum_{l=0}^{n-1} \underbrace{CP^{-1}}_{\text{rank}CP^{-1} = \text{rank}C} A_{\Delta}^{l} \Phi_{l} [\underbrace{Pw}_{\text{bijection}}](t) . \tag{24}$$

Thus without loss of generality we can assume that *A* is strictly lower triangular. Furthermore we see that (8) reduces to

$$\Phi_{l}[w_{\mu}](t) = \int_{0}^{t} \frac{(t-\tau)^{l}}{l!} w_{\mu}(\tau) d\tau \quad . \tag{25}$$

Lemma 1 (Without proof). The operators defined by (25) have the properties

$$\frac{d}{dt}\Phi_{l}[w_{\mu}](t) = \Phi_{l-1}[w_{\mu}](t) \quad \text{and} \quad \frac{d}{dt}\Phi_{0}[w_{\mu}](t) = w_{\mu}(t) \quad . \tag{26}$$

Proposition 3. The operators $\{\Phi_l | l \in \{0, 1, ..., n-1\}\}$ from a nilpotent matrix form an injective set.

Proof. Let $\{v_l\}$ be a set of functions with $l \in \mathcal{L} = \{0, 1, ..., n-1\}$. Set

$$\sum_{l \in \mathcal{S}} \Phi_l[v_l] \equiv 0 \quad . \tag{27}$$

Writing this as integral equation

$$\int_{0}^{t} \sum_{l \in \mathcal{L}} \frac{(t-\tau)^{l}}{l!} \nu_{l}(\tau) d\tau = 0 \quad \forall t \in [0, T]$$
(28)

which means

$$\sum_{l \in \mathscr{L}} \frac{(t-\tau)^l}{l!} \nu_l(\tau) = 0 \quad \forall (t,\tau) \in [0,T] \times [0,t] \quad . \tag{29}$$

Now let l_{\min} be the smallest l in \mathcal{L} . This leads to

$$\frac{1}{l_{\min}!} \nu_l(\tau) = -\sum_{l_{\min} < l \in \mathcal{L}} \frac{(t-\tau)^{l-l_{\min}}}{l!} \nu_l(\tau) \quad . \tag{30}$$

Since the left hand side of this equation is independent from t, so must the right hand side. Evaluating the derivatives with respect to t leads to

$$\nu_l(\tau) = 0 \quad \forall \tau \in [0, T] \tag{31}$$

for all $l \in \mathcal{L}$ separately. This means $\{I_l\}$ is an injective set.

References

- $[1] \quad J.\ et\ al.\ Gao.\ ``Target\ control\ of\ complex\ networks".\ In:\ \textit{Nat.\ Commun.}\ (2014).$
- [2] David G. Luenberg. *Introduction to Dynamic Systems*. 1979.