AMENDMENTS TO THE SPECIFICATION

Please amend the paragraph at page 34, lines 12-14 to read as follows:

Proposition 6.1. For any real $n \times n$ matrix A of determinant ± 1 , there is a bijection $\psi: A\mathbb{Z}^n \to \mathbb{Z}^n$ which is optimal in the sense that $\sup_{\mathbf{x} \in A\mathbb{Z}^n} \|\psi \mathbf{x} \cdot \mathbf{x}\|$ is minimal over all such bijections.

Please amend the paragraph at page 45, lines 11-18 to read as follows:

A number of the calculations presented earlier can be applied without change in the present context, given suitable definitions. In particular, we define the norm ||A|| of a signal transformation A (or the norm ||A(z)|| of its associated z-transform matrix) to be the supremum of ||Ax||/||x|| over all nonzero bounded inputs x (where ||x|| is defined as in the preceding section). Then, if $A = A_1 A_2 \cdots A_k$ where each A_i can be approximated by an integer mapping φ_i with error bound C_i , then A can be approximated by the composition of these integer mappings with error bound

$$(9.1) \quad C_1 + \|A_1\|C_2 + \|A_1\|\|A_2\|C_3 + \dots + \|A_1\|\|A_2\|\dots\|A_{k-1}\|C_k.$$