Propriedades Termodinâmicas de Fluidos

Professor: Ricardo Pires

SUMÁRIO

- identidades termodinâmicas
- relações de Maxwell
- funções termodinâmicas:
 - ▶ H, A, G, S, U
- grandezas residuais

OBJETIVO

Desenvolver a partir da 1ª e 2ª Lei da Termodinâmica as relações fundamentais entre as propriedades que fornecem a estrutura matemática da Termodinâmica. Delas, deduziremos por exemplo, as equações que permitem o cálculo de valores da entalpia e da entropia a partir de dados PVT e capacidades caloríficas.

1) Relações entre propriedades para fases homogêneas

As leis da termodinâmica para um sistema fechado com n moles e para um processo reversível:

$$d(nU) = dQ_{rev} + dW_{rev}(1)$$

Em que:

$$dW_{rev} = -Pd(nV) (2)$$

$$dQ_{rev} = Td(nS) (2^a Lei) (3)$$

Combinando estas 3 equações:

(U,S e V :valores molares de energia interna, da entropia e volume)

$$d(nU) = Td(nS) - Pd(nV) (4)$$

propriedades primárias (P, V, T, U e S)

Esta equação não tem a sua "aplicação" restrita aos processos reversíveis.

Pode ser aplicada:

- qualquer processo
- sistemas com massa constante
- mudança diferencial de um estado de equilíbrio para outro.
- a sistema constituído por uma única fase (um sistema homogêneo)
 ou por várias fases.
- sistema quimicamente inerte ou podem ocorrer reações químicas no seu interior.

Porém, tem-se a exigência que o sistema seja fechado e que a mudança ocorra entre estados de equilíbrio.

Propriedades adicionais -> por definição

- Entalpia: H = U+PV(5)
- Energia livre de Helmholtz: A = U − TS (6)
- Energia livre de Gibbs: G = H TS (7)
- Diferenciando a equação (5) e multiplicando por n:
 - b d(nH) = d(nU) + Pd(nV) + (nV)dP
- Substituindo d(nU) pela equação (4) temos:
 - b d(nH) = Td(nS) Pd(nV) + Pd(nV) + (nV)dP,

$$d(nH) = Td(nS) + (nV)dP(8)$$

- ▶ Também da equação (6): d(nA) = d(nU)-Td(nS)-(nS)dT
- → Substituindo d(nU) pela equação (4) temos:
- b d(nA) = Td(nS)-Pd(nV)-Td(nS)-(nS)Td,
- Então:

$$d(nA) = -Pd(nV) - (nS)dT (9)$$

De modo similar a equação (7):

$$d(nG) = (nV)dP-(nS)dT (10)$$

As equações 8, 9 e 10 estão sujeitas às mesmas restrições da equação (4)

Relações fundamentais entre propriedades

Eq's 4, 8, 9 e 10 para um mol (ou para uma unidade de massa) de um fluido homogêneo com composição constante, assumem as formas simplificadas

$$dU = TdS - PdV$$
 (11)

$$A = -PdV - SdT$$
 (13)

$$b dG = VdP - SdT$$
 (14)

Outro conjunto de equações é originado delas com a aplicação do critério de

RELAÇÕES DE MAXWELL

Se F = F(x,y), diferencial total de F é definida por:
$$dF = \left(\frac{\partial F}{\partial x}\right) dx + \left(\frac{\partial F}{\partial y}\right) dy$$

ou
$$dF = Mdx + Ndy$$
 (15)

Onde
$$M \equiv \left(\frac{\partial F}{\partial x}\right)_{V}$$
 e $N \equiv \left(\frac{\partial F}{\partial y}\right)_{V}$, differenciando novamente:

$$\left(\frac{\partial M}{\partial Y}\right)_{X} = \frac{\partial^{2} F}{\partial_{Y} \partial_{X}} \qquad \qquad \left(\frac{\partial N}{\partial x}\right)_{Y} = \frac{\partial^{2} F}{\partial_{X} \partial_{Y}}$$

Como a ordem da diferenciação não importa em segundas derivadas em relação a duas variáveis independentes:

$$\left(\frac{\partial M}{\partial y}\right)_X = \left(\frac{\partial N}{\partial x}\right)_Y$$
 (16) Critério de exatidão

Equações de Maxwell

U, H, A e G → funções de T, P, V e S (eq's 11 – 14)

Usando o critério de exatidão, tem-se as Equações de Maxwell

$$\left. \frac{\partial \mathbf{T}}{\partial \mathbf{v}} \right|_{\mathbf{S}} = -\frac{\partial \mathbf{P}}{\partial \mathbf{S}} \right|_{\mathbf{V}} \tag{18}$$

$$\frac{\partial P}{\partial T}\Big|_{V} = \frac{\partial S}{\partial V}\Big|_{T} \tag{18}$$

$$\frac{\partial V}{\partial T}\Big|_{P} = -\frac{\partial S}{\partial P}\Big|_{T} \tag{19}$$

Eq's 11-14 → base para outras equações que relacionam propriedades termodinâmicas, podendo ser avaliadas a partir de dados experimentais.

H e S em termos de T e P

- ▶ Determinação de △H e △S (equações de balanço de H e de S) → mais úteis quando são expressas em função de T e P
- Usualmente, as informações experimentais comuns disponíveis na literatura dizem respeito a Cp (ou Cv) e à relação P-V-T

$$H = H(T, P) \Rightarrow dH = \frac{\partial H}{\partial T} \Big|_{P} dT + \frac{\partial H}{\partial P} \Big|_{T} dP \qquad S = S(T, P) \Rightarrow dS = \frac{\partial S}{\partial T} \Big|_{P} dT + \frac{\partial S}{\partial P} \Big|_{T} dP$$
(20)

- Da Eq (12) dH = TdS + VdP
- Dividindo por dT e considerando P = constante

$$\frac{dH}{dT} = \frac{TdS}{dT} + \frac{VdP}{dT}$$

$$\frac{\partial H}{\partial T}\Big|_{P} = \frac{T\partial S}{\partial T}\Big|_{P} + \frac{V\partial P}{\partial T}\Big|_{P}$$

Sabendo que

$$\frac{\partial \mathbf{H}}{\partial \mathbf{T}}\Big|_{\mathbf{P}} = \mathbf{C}\mathbf{p}$$
 $\frac{\partial \mathbf{S}}{\partial T}\Big|_{\mathbf{P}} = \frac{\partial \mathbf{S}}{\partial T}$

$$\left| \frac{\partial S}{\partial T} \right| = \frac{C_P}{T}$$
 (22)

- Da Eq (12) dH = TdS + VdP
- Dividindo por dP e considerando T = constante

$$\frac{dH}{dP} = \frac{TdS}{dP} + \frac{VdP}{dP}$$

$$\left. \frac{\partial \mathbf{H}}{\partial \mathbf{P}} \right|_{\mathbf{T}} = \frac{\mathbf{T} \partial \mathbf{S}}{\partial \mathbf{P}} \right|_{\mathbf{T}} + \mathbf{V}$$

Da Eq (19) [Relação de Maxwell]

$$\left. \frac{\partial \mathbf{V}}{\partial \mathbf{T}} \right|_{\mathbf{P}} = -\frac{\partial \mathbf{S}}{\partial \mathbf{P}} \right|_{\mathbf{T}}$$

$$\left. \frac{\partial \mathbf{H}}{\partial \mathbf{P}} \right|_{\mathbf{T}} = \mathbf{V} - \frac{\mathbf{T} \partial \mathbf{V}}{\partial \mathbf{T}} \right|_{\mathbf{P}} \tag{23}$$

Substituindo os termos em destaque nas Eq's (20) e (21), tem-se;

$$dH = CpdT + \left[V - T \frac{\partial V}{\partial T} \Big|_{P} \right] dP$$
 (24)
$$dS = Cp \frac{dT}{T} - \frac{\partial V}{\partial T} \Big|_{P} dP$$

$$dS = Cp \frac{dT}{T} - \frac{\partial V}{\partial T} \Big|_{P} dP \qquad (25)$$

Eq's (24) e (25) relacionam H e S de fluídos homogêneos com composição constante à T e P

U em termos de P

Diferenciando a Eq.: U = H - PV

$$\left. \frac{\partial \mathbf{U}}{\partial \mathbf{P}} \right|_{\mathbf{T}} = \left. \frac{\partial \mathbf{H}}{\partial \mathbf{P}} \right|_{\mathbf{T}} - \mathbf{P} \frac{\partial \mathbf{V}}{\partial \mathbf{P}} \right|_{\mathbf{T}} - \mathbf{V}$$

• Da Eq (23)

$$\left. \frac{\partial \mathbf{H}}{\partial \mathbf{P}} \right|_{\mathbf{T}} = \mathbf{V} - \frac{\mathbf{T} \partial \mathbf{V}}{\partial \mathbf{T}} \right|_{\mathbf{P}}$$

$$\left. \frac{\partial \mathbf{U}}{\partial \mathbf{P}} \right|_{\mathbf{T}} = \mathbf{v} - \frac{\mathbf{T}\partial \mathbf{V}}{\partial \mathbf{T}} \right|_{\mathbf{p}} - \frac{\mathbf{P}\partial \mathbf{V}}{\partial \mathbf{P}} \right| - \mathbf{V}$$

$$\left. \frac{\partial \mathbf{U}}{\partial \mathbf{P}} \right|_{\mathbf{T}} = -\frac{\mathbf{T}\partial \mathbf{V}}{\partial \mathbf{T}} \right|_{\mathbf{p}} - \frac{\mathbf{P}\partial \mathbf{V}}{\partial \mathbf{P}} \right|_{\mathbf{T}} \tag{26}$$

Exemplo da aplicação: Gás ideal

Comportamento PVT de um fluido no estado de gás ideal \rightarrow $PV^{gi} = RT$

$$\left. \frac{\partial V^{gi}}{\partial T} \right|_{P} = \frac{R}{P}$$
 onde V^{gi} = volume molar do gás ideal

Substituindo em (24) e (25)

$$dH = CpdT + \left[V - T \frac{\partial V}{\partial T} \Big|_{P} \right] dP \qquad (24)$$

$$\mathrm{d} H^{\mathrm{gi}} = C p^{\mathrm{gi}} \, \mathrm{d} T + \left[V - T \frac{R}{P} \right] \mathrm{d} P \quad \Longrightarrow \quad \mathrm{d} H^{\mathrm{gi}} = C p^{\mathrm{gi}} \, \mathrm{d} T + \left[V - V \right] \mathrm{d} P \quad \Longrightarrow \quad \mathrm{d} H^{\mathrm{gi}} = C p^{\mathrm{gi}} \, \mathrm{d} T$$

$$dS = Cp \frac{dT}{T} - \frac{\partial V}{\partial T} \bigg|_{P} dP \qquad (25) \qquad \Longrightarrow \qquad dS^{gi} = Cp^{gi} \frac{dT}{T} - R \frac{dP}{P}$$

Exemplo da aplicação: Para líquidos

Compressibilidade isotérmica
$$\Rightarrow \kappa = -\frac{1}{V} \frac{\partial V}{\partial P}\Big|_{T}$$
 Expansividade volumétrica $\Rightarrow \beta = \frac{1}{V} \cdot \frac{\partial V}{\partial T}\Big|_{P}$

$$dH = CpdT + \left[V - T\frac{\partial V}{\partial T} \Big|_{P} \right] dP \quad (24) \qquad \qquad dH = CpdT + \left[V - T\beta V \right] dP$$

$$dH = CpdT + V\left[1 - \beta T \right] dP \quad (24.1)$$

$$dS = Cp \frac{dT}{T} - \frac{\partial V}{\partial T} \Big|_{P} dP \qquad (25) \qquad \Longrightarrow \qquad dS = Cp \frac{dT}{T} - \beta V dP \qquad (25.1)$$

$$\left. \frac{\partial U}{\partial P} \right|_{T} = v - \frac{T \partial V}{\partial T} \right|_{p} - \frac{P \partial V}{\partial P} \right|_{T} - V \quad (26) \qquad \Longrightarrow \qquad \left. \frac{\partial U}{\partial P} \right|_{T} = V - T \beta V + P \kappa V - V$$

β e V → normalmente considerados constantes na integração dos últimos termos das Eq.'s (24.l) e (25.l), e iguais a um valor médio apropriado.
 NULOS para fluidos incompressíveis

$$\left| \frac{\partial \mathbf{U}}{\partial \mathbf{P}} \right|_{\mathbf{T}} = (\kappa \mathbf{P} - \mathbf{T}\beta)\mathbf{V}$$

Exemplo 1: Determine as variações da H e da S da água líquida para uma mudança de estado de 1 bar e 25°C para 1000 bar e 50°C. Encontram-se disponíveis os seguintes dados para a água.

T(°C)	P(bar)	Cp (Jmol ⁻¹ K ⁻¹)	V(cm³mol-1)	β (K -1)
25	1	75,305	18,071	256×10 ⁻⁶
25	1000		18,012	366×10 ⁻⁶
50	1	75,314	18,234	458×10 ⁻⁶
50	1000		18,174	568×10 ⁻⁶

A energia livre de Gibbs como função de geração

A relação fundamental (14)

Expressa a relação:

damental (14) Expressa a
$$dG = VdP - SdT$$

$$G = G(P,T)$$

As variáveis canônicas (específicas) de G são P e T → diretamente medidas e controladas

Forma alternativa → relação entre as propriedades originais e da identidade $d\left(\frac{G}{RT}\right) = \frac{1}{RT}dG - \frac{G}{RT^2}dT$

$$d\left(\frac{G}{RT}\right) = \frac{1}{RT}dG - \frac{G}{RT^2}dT$$

Substituindo dG e G:

$$d\left(\frac{G}{RT}\right) = \frac{1}{RT}\left(VdP - SdT\right) - \frac{(H - TS)}{RT^2}dT \qquad \Longrightarrow \qquad \boxed{d\left(\frac{G}{RT}\right) = \frac{V}{RT}dP - \frac{H}{RT^2}dT} \tag{27}$$

$$d\left(\frac{G}{RT}\right) = \frac{V}{RT}dP - \frac{H}{RT^2}dT$$
 (27)

G/RT = f(P,T)

Relação adimensional com H

$$d\left(\frac{G}{RT}\right) = \left(\frac{\partial (G/RT)}{P}\right)_{T} dP + \left(\frac{\partial (G/RT)}{T}\right)_{P} dT$$

$$\frac{V}{RT} = \left(\frac{\partial \left(G/RT\right)}{\partial P}\right)_{T} \qquad \frac{H}{RT} = -T\left(\frac{\partial \left(G/RT\right)}{\partial T}\right)_{P} \quad \text{diferenciação de G} \rightarrow G \text{ \'e}$$

$$\downarrow 17 \quad RT = \left(\frac{\partial \left(G/RT\right)}{\partial P}\right)_{T} \quad \frac{H}{RT} = -T\left(\frac{\partial \left(G/RT\right)}{\partial T}\right)_{P} \quad \text{diferenciação de geração}$$

Conhecendo G é possível determinar H e V por uma função de geração

Por definição:

$$\frac{S}{R} = \frac{H}{RT} - \frac{G}{RT}$$

$$\frac{U}{R} = \frac{H}{RT} - \frac{PV}{RT}$$

A ENERGIA DE GIBBS QUANDO FORNECIDA COMO FUNÇÃO DE T E P SERVE COMO UMA FUNÇÃO DE GERAÇÃO PARA AS OUTRAS PROPRIEDADES TERMODINÂMICAS.

2) PROPRIEDADES RESIDUAIS

M → valor molar de qualquer propriedade termodinâmica extensiva (V, U, H, S, G.). Grandeza residual correspondente é definida pela relação:

$$M^R \equiv M - M^{ig} \tag{28}$$

M^R → diferença entre o valor da propriedade correspondente ao estado real e o seu valor, nas mesmas condições de T e P, caso o sistema seja considerado um gás ideal. • energia de Gibbs residual :

$$G^R \equiv G - G^{ig}$$

- $ightharpoonup G \Rightarrow$ valores de energia de Gibbs real
- $ightharpoonup G^{gi} \Rightarrow$ valores de energia de Gibbs de gás ideal
- Volume residual é.

$$V^{R} \equiv V - V^{ig} = V - \frac{RT}{P}$$
$$V^{R} = \frac{RT}{P}(Z - 1)$$

PROPRIEDADES RESIDUAIS

$$d\left(\frac{G^{R}}{RT}\right) = \frac{V^{R}}{RT}dP - \frac{H^{R}}{RT^{2}}dT = \frac{V^{R}}{RT}dP \quad \text{(const T)}$$

$$\frac{G^{R}}{RT} = \int_{0}^{P} \frac{V^{R}}{RT} dP = \int_{0}^{P} (Z-1) \frac{dP}{P} \qquad \text{(const T)} \quad (29) \quad \text{(6.49)}$$
 Derivando a Eq. 29 e combinando com
$$\frac{H}{RT} = -T \left(\frac{\partial \left(G/RT \right)}{\partial T} \right)_{P}$$

$$\frac{H^{R}}{RT} = -T \int_{0}^{P} \left(\frac{\partial Z}{\partial T} \right)_{P} \frac{dP}{P} \qquad \text{(const T)} \quad (30) \quad (6.46)$$

$$\frac{S^{R}}{R} = -T \int_{0}^{P} \left(\frac{\partial Z}{\partial T} \right)_{P} \frac{dP}{P} - \int_{0}^{P} (Z - 1) \frac{dP}{P} \qquad \text{(const T)} \quad (31) \quad (6.48)$$

O fator de compressibilidade é definido como:
$$Z = \frac{PV}{RT}$$
 Os valores de Z e $\left. \frac{\partial Z}{\partial T} \right|_P$

São obtidos a partir de dados experimentais P-V-T:

- •As integrais são avaliadas por métodos numéricos ou gráficos.
- •Alternativamente, quando Z encontra-se representado por uma equação de estado, as duas integrais são avaliadas analiticamente.

Aplicada à entropia e à entalpia a equação: $M^R = M - M^{gi}$, temos:

$$H = H^{gi} + H^R e S = S^{gi} + S^R$$

$$\begin{split} H^{gi} &= \boldsymbol{H}_{0}^{gi} + \int_{T_{0}}^{T} Cp^{gi} dT \\ & \qquad \qquad S^{gi} = \boldsymbol{S}_{0}^{gi} - \int_{T_{0}}^{T} Cp^{gi} \, \frac{dT}{T} - R\ell n \, \frac{P}{P_{0}} \end{split}$$

$$H &= \boldsymbol{H}_{0}^{gi} + \int_{T_{0}}^{T} Cp^{gi} dT + H^{R} \qquad \qquad S = \boldsymbol{S}_{0}^{gi} - \int_{T_{0}}^{T} Cp^{gi} \, \frac{dT}{T} - R\ell n \, \frac{P}{P_{0}} + S^{R} \end{split}$$

Propriedades Residuais a partir da EQUAÇÃO DO VIRIAL EM FUNÇÃO DE P

$$\frac{G^R}{RT} = 2B\rho + \frac{3}{2}C\rho^2 - \ln Z$$

$$\frac{H^{R}}{RT} = T \left[\left(\frac{B}{T} - \frac{dB}{dT} \right) \rho + \left(\frac{C}{T} - \frac{1}{2} \frac{dB}{dT} \right) \rho^{2} \right]$$

$$\frac{S^{R}}{R} = \ln Z - T \left[\left(\frac{B}{T} + \frac{dB}{dT} \right) \rho + \frac{1}{2} \left(\frac{C}{T} + \frac{dB}{dT} \right) \rho^{2} \right]$$

densidade molar

Propriedades Residuais a partir de EQUAÇÕES DE ESTADO CUBICAS

$$\frac{G^{R}}{RT} = Z - 1 - \ln(Z - \beta) - qI$$

$$\frac{H^{R}}{RT} = Z - 1 + \left[\frac{d \ln \alpha(T_{r})}{d \ln T_{r}} - 1 \right] q I$$

$$\frac{S^{R}}{R} = \ln(Z - \beta) + \frac{d \ln \alpha(T_{r})}{d \ln T_{r}} q I$$

Para vdw:
$$I = \frac{\beta}{Z + \varepsilon \beta}$$
 $q = \frac{\Psi \alpha(T_r)}{Q T}$

$$q = \frac{\Psi \alpha(T_r)}{\Omega T_r}$$

São úteis para gases até pressões moderadas, porem requerem dados do segundo e terceiro coeficientes do virial.

P/ as demais:
$$I = \frac{1}{\sigma - \varepsilon} \ln \left(\frac{Z + \sigma \beta}{Z + \varepsilon \beta} \right) \left[\beta = \Omega \frac{P_r}{T_r} \right]$$

Raízes com características do Vapor da equação de estado cúbica genérica

Primeiro chute: Z=1
$$Z = 1 + \beta - q\beta \frac{Z - \beta}{(Z + \epsilon\beta)(Z + \sigma\beta)}$$

$$q = \frac{\Psi \alpha(T_r)}{\Omega T_r}$$

$$\beta = \Omega \frac{P_r}{T_r}$$

$$eta = \Omega rac{P_r}{T_r}$$

Raízes com características do Liquido da equação de estado cúbica genérica

Primeiro chute: Z=
$$\beta$$
 $Z = \beta + (Z + \epsilon \beta)(Z + \sigma \beta) \left(\frac{1 + \beta - Z}{q\beta}\right)$

Table 3.1: Parameter Assignments for Equations of State

For use with Eqs. (3.49) through (3.56)

Eq. of State	$\alpha(T_r)$	σ	ϵ	Ω	Ψ	Z_c
vdW (1873)	1	0	0	1/8	27/64	3/8
RK (1949)	$T_r^{-1/2}$	1	0	0.08664	0.42748	1/3
SRK (1972)	$\alpha_{ m SRK}(T_r;\omega)^{\dagger}$	1	0	0.08664	0.42748	1/3
PR (1976)	$\alpha_{\mathrm{PR}}(T_r;\omega)^{\ddagger}$	$1 + \sqrt{2}$	$1-\sqrt{2}$	0.07780	0.45724	0.30740
† <i>(T</i>	<u> </u>	10 123 <u>-</u> 0 16	0.176	p. (1/	/2\7 ²	

$$^{\dagger}\alpha_{\text{SRK}}(T_r; \,\omega) = \left[1 + (0.480 + 1.574 \,\omega - 0.176 \,\omega^2) \left(1 - T_r^{1/2}\right)\right]^2$$

$$^{\dagger}\alpha_{\text{SRK}}(T; \,\omega) = \left[1 + (0.37464 + 1.54226 \,\omega - 0.26992 \,\omega^2) \left(1 - T_r^{1/2}\right)\right]^2$$

$$^{\ddagger}\alpha_{\text{PR}}(T_r;\;\omega) = \left[1 + (0.37464 + 1.54226\;\omega - 0.26992\;\omega^2)\left(1 - T_r^{1/2}\right)\right]^2$$

Ex. 6.4

Find values for the H^R and S^R for n-butane gas at 500 K 50 bar as given by the Redlich/Kwong Equation.

Solution

$$T_r = 500/425.1 = 1.176,$$
 $P_r = 50/37.96 = 1.317$

From Table 3.1:

Eq.(3.53);
$$\beta = \Omega \frac{P_r}{T_r} = 0.08664 \frac{1.317}{1.176} = 0.09703$$

Eq.(3.54);
$$q = \frac{\Psi \alpha(T_r)}{\Omega T_r} = \frac{0.42748}{(0.08664)(1.176)^{3/2}} = 3.8689$$

Eq.(3.52):
$$Z = 1 + \beta - q\beta \frac{Z - \beta}{(Z + \varepsilon\beta)(Z + \sigma\beta)}$$

= $1 + 0.09703 - (3.8689)(0.09703) \frac{Z - 0.09703}{Z(Z + 0.09703)}$

Solution of this Eq. yields Z = 0.6850. Then:

$$I = \ln \frac{Z + \beta}{Z} = 0.13247$$

With
$$\ln \alpha(T_r) = -\frac{1}{2} \ln T_r$$
, $d \ln \alpha(T_r) / d \ln T_r = -\frac{1}{2}$. Then:

Eq.(6.67):
$$\frac{H^R}{RT} = 0.6850 - 1 + (-0.5 - 1)(3.8689)(0.13247) = -1.0838$$

Eq.(6.68):
$$\frac{S^R}{R} = \ln(0.6850 - 0.09703) - [0.5(3.8689)0.13247] = -0.78735$$

Thus,
$$H^R = 8.314(500)(-1.0838) = -4,505 \ Jmol^{-1}$$

$$S^{R} = 8.314(-0.78735) = -6.546 \ Imol^{-1}K^{-1}$$

These results are compared with those of other calculation in Table 6.3.

Table 6.3: Values for Z, H^R , and S^R for n-Butane at 500 K and 50 bar

Method	Z	$H^R/J \text{ mol}^{-1}$	$S^R/J \text{ mol}^{-1} \text{K}^{-1}$
vdW Eqn.	0.6608	-3,937	-5.424
RK Eqn.	0.6850	-4,505	-6.546
SRK Eqn.	0.7222	-4,824	-7.413
PR Eqn.	0.6907	-4,988	-7.426
Lee/Kesler†	0.6988	-4,966	-7.632
Handbook [‡]	0.7060	-4,760	-7.170

[†] Described in Sec. 6.7.

[‡] Values derived from numbers in Table 2–240, p. 2–223, Chemical Engineers' Handbook, 7th ed., Don Green (ed.), McGraw-Hill, New York, 1997.

3) Sistemas Bifásicos

Diagrama P_{sat} x T para uma substância pura

Transição de Fase → ocorre quando uma das curvas é cruzada a P e T constante, e os valores molares ou específicos das propriedades termodinâmicas extensivas (H, U, V) variam bruscamente.

Exceção → energia de Gibbs molar ou específica, que para espécies puras não varia durante uma mudança de fase, como fusão, vaporização ou sublimação.

$$d(nG)=(nV)dP-(nS)dT$$
 p/ n, T e P constantes \Rightarrow $G^{\alpha}=G^{\beta}$ (6.69) $dG^{\alpha}=dG^{\beta}$

▶ Para duas fases α e β em equilíbrio, onde M → grandeza de mudança de fase:

$$\Lambda M^{fase} = M^{\alpha} - M^{\beta}$$

- ▶ Da relação (6.69): $dG^{\alpha} = dG^{\beta} \rightarrow -S^{\alpha}dT + V^{\alpha}dP^{sat} = -S^{\beta}dT + V^{\beta}dP^{sat}$
- Da definição de: G = H −TS → H^α-TS α = H^β -TS β → Δ H^{fase} = T(Δ S^{fase}) → Δ S^{fase} = $\frac{\Delta H^{asc}}{T}$

$$\frac{dP^{sat}}{dT} = \frac{\Delta S^{fase}}{\Delta V^{fase}} = \frac{\Delta H^{fase}}{T\Delta V^{fase}}$$

(6.71)

Equação de Clapeyron

- Caso particular de transição de fase do líquido (I) para o vapor (v):
- Fazendo $\Delta V^{lv} = \Delta Z^{lv}RT/P^{Sat}$:

$$\frac{dP^{sat}}{dT} = \frac{\Delta H^{\ell v}}{T\Delta V^{\ell v}}$$

(6.72)

$$\frac{d\ell n P^{sat}}{d(1/T)} = -\frac{\Delta H^{lv}}{R\Delta Z^{lv}} \tag{6.74}$$

▶ Caso particular: fase vapor = gás ideal e V¹ <<< V²</p>

$$\Delta V^{lv} = V^{v} = \frac{RT}{P^{sat}} \qquad \Delta Z^{lv} = 1$$

$$\Delta H^{\rm lv} = -\frac{Rd\ln P^{\rm sat}}{d(1/T)} \qquad \qquad \text{equação de Clausius/Clapeyron}$$

relaciona diretamente o calor latente de vaporização à curva de pressão de vapor Válida para baixas P's

Para representação gráfica de In Psat versus I/T

Lembrando da hipótese adicional ∆H^{fase} = constante, a integração da equação de Clausius/Clapeyron resulta em:

$$\ln P^{\text{sat}} = A - \frac{B}{T}$$
(6.75)

- A e B são constantes para uma dada espécie.
- Obtenção de modelos mais precisos para a relação P^{sat} (T), na faixa de temperatura entre o ponto triplo e o ponto crítico → Eq. de Antoine :

$$\ln P^{sat} = A - \frac{B}{T + C} \tag{6.76}$$

Correlações dos estados correspondentes para pressão de vapor

$$\ln P_r^{Sat}(T_r) = \ln P_r^0(T_r) + \omega \ln P_r^1(T_r)$$

$$\ln P_r^0(T_r) = 5,92714 - \frac{6,09648}{T_r} - 1,28862 \ln T_r + 0,169347 T_r^6$$

$$\ln P_r^1(T_r) = 15,2518 - \frac{15,6875}{T_r} - 13,4721 \ln T_r + 0,43577 T_r^6$$

$$\omega = \frac{\ln P_{rn}^{Sat} - \ln P_r^0(T_{rn})}{\ln P_r^1(T_{rn})}$$

Relação em sistemas bifásicos

- Sistema → constituído pelas fases líquido saturado e vapor saturado coexistindo em equilíbrio
- O valor total de qualquer propriedade extensiva do sistema bifásico (U, H, V, S) é igual à soma das propriedades totais das fases.

$$M = (1 - x^{v})M^{l} + x^{v}M$$
ou
$$M = M^{l} + x^{v}.\Delta M^{lv}$$
(6.82)

4) Diagramas termodinâmicos

- São gráficos que representam a temperatura, a pressão, o volume, a entalpia e a entropia de uma substância
- Diagramas mais comuns:
 - Temperatura/entropia
 - Pressão/entropia
 - Entalpia/entropia (Mollier)

Fig. 6.2: Diagrama *TS*

Fig. 6.3: Diagrama PH

Fig. 6.4: Diagrama de Mollier

Table F.I Saturated Steam, SI Units

 $V = \text{SPECIFIC VOLUME} \quad \text{cm}^3 \text{ g}^{-1}_{\text{p}}$

U = SPECIFIC INTERNAL ENERGY kJ kg

 $\begin{array}{ll} \mathsf{H=SPECIFIC\,ENTHALPY} & \mathsf{kJ\,kg} \\ \mathsf{S=SPECIFIC\,ENTROPY} & \mathsf{kJ\,kg^{-1}\,K^{-1}} \end{array}$

			SPE	CIFIC VOL	UME ∨	INTER	NAL ENE	RGY <i>U</i>	Е	NTHALPY	Ή	ENTROPY S			
	K	<i>P</i> kPa	sat. liq.	evap.	sat. vap.	sat. liq.	evap.	sat. vap.	sat. Iiq .	evap.	sat. vap.	sat. liq.	evap.	sat. vap.	
0 0.01 1 2 3 4	273.15 273.16 274.15 275.15 276.15 277.15	0.611 0.611 0.657 0.705 0.757 0.813	1.000 1.000 1.000 1.000 1.000 1.000	206300. 206200 . 192600. 179900. 168200. 157300.	206300. 206200. 192600. 179900. 168200. 157300.	-0.04 0.00 4.17 8.39 12.60 16.80	2375.7 2375.6 2372.7 2369.9 2367.1 2364.3	2375.6 2375.6 2376.9 2378.3 2379.7 2381.1	-0.04 0.00 4.17 8.39 12.60 16.80	2501.7 2501.6 2499.2 2496.8 2494.5 2492.1	2501.6 2501.6 2503.4 2505.2 2507.1 2508.9	0.0000 0.0000 0.0153 0.0306 0.0459 0.0611	9.1578 9.1575 9.1158 9.0741 9.0326 8.9915	9.1578 9.1575 9.1311 9.1047 9.0785 9.0526	

Table F.2 Superheated Steam, SI Units

					TEMPERATURE: T kelvins (TEMPERATURE: t°C)											
P/kPa 7 ^{sat} /K(t ^{sat} /°C)		sat. Iiq.	sat. vap.	348.15 (75)	373.15 (100)	398.15 (125)	423.15 (150)	448.15 (175)	473.15 (200)	498.15 (225)	523.15 (250)					
1 280.13(6.98)	VUHS	1.000 29.334 29.335 0.1060	129200. 2385.2 2514.4 8.9767	160640. 2480.8 2641.5 9.3828	172180. 2516.4 2688.6 9.5136	183720. 2552.3 2736.0 9.6365	195270. 2588.5 2783.7 9.7527	206810. 2624.9 2831.7 9.8629	218350. 2661.7 2880.1 9.9679	229890. 2698.8 2928.7 10.0681	241430. 2736.3 2977.7 10.1641					
10 318.98(45.83)	V U H S	1.010 191.822 191.832 0.6493	14670. 2438.0 2584.8 8.1511	16030. 2479.7 2640.0 8.3168	17190. 2515.6 2687.5 8.4486	18350. 2551.6 2735.2 8.5722	19510. 2588.0 2783.1 8.6888	20660. 2624.5 2831.2 8.7994	21820. 2661.4 2879.6 8.9045	22980. 2698.6 2928.4 9.0049	24130. 2736.1 2977.4 9.1010					

Exemplo 6.7

Т	S	Н	
240	6,8825	2920,6	S1= 6,9252 kJ/kg K = S2 \rightarrow P2= 200 kPa
250	S1	H1	H1= 2942,9 kJ/kg

260 6,9680 2965,2

P/kPa $T^{sat}/K(t^{sat}/^{\circ}C)$		sat. Iiq.	sat. vap.	573.15 (300)	623.15 (350)	673.15 (400)	S2= 6,9252 kJ/kg K		
200 393.38(120.23)	V U H S	1.061 504.489 504.701 1.5301	885.44 2529.2 2706.3 7.1268	1316.2 2808.8 3072.1 7.8937	1432.8 2887.2 3173.8 8.0638	1549.2 2966.9 3276.7 8.2226	P2= 200 kPa		
	V	1.064	792.97	1169.2	1273.1	1376.6			

$$S = x S^{L,sat} + y S^{V,sat}$$

$$x+y=1$$

$$S= (1-y) S^{L,sat} + y S^{V,sat}$$

$$6,9252=(1-y)*1,5301+y7,1268$$

$$y = 0.9640$$

$$H= (1-y) H^{L,sat} + y H^{V,sat}$$

$$H = 0.0360 *504,701 + 0.9694 2706,3$$

$$H= 2627,0 \text{ kJ/kg}$$

$$\Delta H= 2627 - 2942,0 = -315,9 \text{ kJ/kg}$$

 ΔH = 2627 – 2942,0= -315,9 kJ/kg

 $\Delta H= 2610 - 2920,0 = -310,0 \text{ kJ/kg}$

y = 0.9640

y=0,96

Correlações Generalizadas para propriedades de Gases

$$\frac{H^{R}}{RT_{c}} = \frac{(H^{R})^{0}}{RT_{c}} + \omega \frac{(H^{R})^{1}}{RT_{c}}$$
(6.85)

$$\frac{S^R}{R} = \frac{(S^R)^0}{R} + \omega \frac{(S^R)^1}{R}$$
 (6.86)

Valores calculados para (HR)0/RTC, (HR)1/RTC, (SR)0/R, (SR)1/R com base nas Tabelas E.5 a E.12 como função de Tr e Pr.

$$Z = Z^{0} + \omega Z^{1} \rightarrow \left(\frac{\partial Z}{\partial T_{r}}\right)_{P} = \left(\frac{\partial Z^{0}}{\partial T_{r}}\right)_{P} + \omega \left(\frac{\partial Z^{1}}{\partial T_{r}}\right)_{P}$$
 Tabelas E.1 - E.4

$$Eq.(6.83): \frac{H^{R}}{RT_{c}} = \left[-T_{r}^{2} \int_{0}^{P_{r}} \left(\frac{\partial Z^{0}}{\partial T_{r}}\right)_{P_{r}} \frac{dP_{r}}{P_{r}}\right] - \omega \left[T_{r}^{2} \int_{0}^{P_{r}} \left(\frac{\partial Z^{1}}{\partial T_{r}}\right)_{P_{r}} \frac{dP_{r}}{P_{r}}\right]$$

$$\frac{H^{R}}{RT_{c}} = \frac{\left(H^{R}\right)^{0}}{RT_{c}} + \omega \frac{\left(H^{R}\right)^{1}}{RT_{c}} \dots (6.85)$$

$$Eq.(6.84): \quad \frac{S^R}{R} = \left[-\int_0^{P_r} \left\langle T_r \left(\frac{\partial Z^1}{\partial T_r} \right)_{P_r} + Z^0 - 1 \right\rangle \frac{dP_r}{P_r} \right] - \omega \left[\int_0^{P_r} \left\langle T_r \left(\frac{\partial Z^1}{\partial T_r} \right)_{P_r} + Z^1 \right\rangle \right] \frac{dP_r}{P_r}$$

$$\frac{S^R}{R} = \frac{\left(S^R \right)^0}{R} + \omega \frac{\left(S^R \right)^1}{R} \dots (6.86)$$
Tabelas F. 5. F. 12

Tabelas E.5 - E.12

Correlação Generalizada para o segundo coeficiente do virial generalizado

$$\frac{H^R}{RT_c} = P_r \left[B^0 - T_r \frac{dB^0}{dT_r} + \omega \left(B^1 - T_r \frac{dB^1}{dT_r} \right) \right]$$

$$\frac{S^R}{R} = -P_r \left[\frac{dB^0}{dT_r} + \omega \frac{dB^1}{dT_r} \right]$$

$$(6.88)$$

$$B^0 = 0.083 - \frac{0.422}{T_r^{1.6}} \tag{3.65}$$

$$B^{1} = 0,139 - \frac{0,172}{T_{r}^{4,2}} \tag{3.66}$$

$$\frac{dB^0}{dT_r} = \frac{0,675}{T_r^{2,6}} \tag{6.89}$$

$$\frac{dB^1}{dT_r} = \frac{0,722}{T_r^{5,2}} \tag{6.90}$$

Geralmente, válidas para baixas e moderadas pressões.

Trajetórias de Cálculo

$$H_1 = H_0^{ig} + \int_{T_0}^{T_1} C_p^{ig} dT + H_1^R$$

$$H_2 = H_0^{ig} + \int_{T_0}^{T_2} C_p^{ig} dT + H_2^R$$

$$\Delta H = \int_{T_1}^{T_2} C_p^{ig} dT + H_2^R - H_1^R$$

Extensão para misturas gasosas

Tpc e Ppc são as temperatura e pressão criticas da mistura gasosa.

$$\omega \equiv \sum_{i} y_{i} \omega_{i}$$

$$T_{pc} \equiv \sum_{i} y_{i} T_{c_{i}}$$

$$P_{pc} \equiv \sum y_i P_{c_i}$$

$$T_{pr} = \frac{T}{T_{pc}} \quad \searrow$$

 $T_{pr} = \frac{T}{T_{pc}}$ Parâmetros reduzidos da mistura gasosa $P_{pr} = \frac{P}{P_{rc}}$ Esses parâmetros substituem Tr e Pr nas entradas das tabelas do apêndice E.

Ex. 6.9: Estimate V, U, H and S for 1-butane vapor at 200°C, 70 bar if H and S are set equal to zero for saturated liquid at 0°C.

Assume: T_c =420.0 K, P_c =40.43 bar, T_n =266.9 K, ω =0.191 C_n^{ig}/R =1.967+31.630x10⁻³T-9.837x10⁻⁶T² (T/K)

Figure 6.7: Calculational path for Ex. 6.9.

▶ Step (a): Vaporization of saturated liquid I-butane at 0°C

$$\ln P^{sat} = A - \frac{B}{T} \qquad \dots (6.75)$$

▶ The vapor pressure curve contains both

the normal boiling point;
$$\ln 1.0133 = A - \frac{B}{266.9}$$

the critical point; $\ln 40.43 = A - \frac{B}{420.0}$
Whence, $A = 10.126$ $B = 2,699.11$

- Calcular o calor latente de vaporização:
- Equação de Riedel no ponto normal de ebulição:

$$\frac{\Delta H_n^{Iv}}{RT_n} = \frac{1.092(\ln P_c - 1.013)}{0.930 - T_{r_n}} = \frac{1.092(\ln 40.43 - 1.013)}{0.930 - 0.636} = 9.979$$

$$\Delta H_n^{Iv} = (9.979)(8.314)(266.9) = 22 \ 137 \ \text{J mol}^{-1}$$

Equação de Watson para T= 273,15 K

$$\frac{\Delta H^{Iv}}{\Delta H_n^{Iv}} = \left(\frac{1 - T_r}{1 - T_{r_s}}\right)^{0.38}$$

$$\Delta H^{Iv} = (22.137)(0.350/0.364)^{0.38} = 21.810 \text{ J mol}^{-1}$$

Na transição de fase:

$$\Delta S^{lv} = \Delta H^{lv}/T = 21.810/273.15 = 79.84 \text{ J mol}^{-1} \text{ K}^{-1}$$

▶ Step (b): Transformation of saturated vapor into an ideal gas at (T_1, P_1) .

$$\frac{H^{R}}{RT_{c}} = P_{r} \left[B^{0} - T_{r} \frac{dB^{0}}{dT_{r}} + \omega \left(B^{1} - T_{r} \frac{dB^{1}}{dT_{r}} \right) \right] \dots (6.87)$$

$$B^{0} = 0.083 - \frac{0.422}{T_{r}^{1.6}} \dots (3.65)$$

$$B^{1} = 0.139 - \frac{0.172}{T_{r}^{4.2}} \dots (3.66)$$

$$\frac{S^{R}}{R} = -P_{r} \left(\frac{dB^{0}}{dT_{r}} + \omega \frac{dB^{1}}{dT_{r}} \right) \dots (6.88)$$

$$\frac{dB^{0}}{dT_{r}} = \frac{0.675}{T_{r}^{2.6}} \dots (6.89)$$

$$\frac{dB^{1}}{dT_{r}} = \frac{0.722}{T_{r}^{5.2}} \dots (6.90)$$

 $T_r = 0.650$ and $P_r = 1.2771/40.43 = 0.0316$

So,
$$H_1^R = (-0.0985)(8.314)(420) = -344 \ Jmol^{-1}$$

 $S_1^R = (-0.1063)(8.314) = -0.88 \ Jmol^{-1}K^{-1}$

Step (c): Changes in the ideal gas state

Eq.(6.95):
$$\Delta H^{ig} = H_2^{ig} - H_1^{ig} = \int_{T_1}^{T_2} C_P^{ig} dT$$

Eq.(6.96):
$$\Delta S^{ig} = S_2^{ig} - S_1^{ig} = \int_{T_1}^{T_2} C_P^{ig} \frac{dT}{T} - R \ln \frac{P_2}{P_1}$$

$$C_p^{ig}/R = 1.967 + 31.630 \times 10^{-3} \text{T} - 9.837 \times 10^{-6} \text{T}^2$$
 (T/K)

$$\Delta H^{ig} = 20,564 \text{ J mol}^{-1}$$

 $\Delta S^{ig} = 22.18 \text{ J mol}^{-1} \text{ K}^{-1}$

Step (d):Transformation from the ideal gas to real gas state at T_2 and P_2 .

$$T_r = 1.127$$
 $P_r = 1.731$

At the higher P; Eqs.(6.85) and (6.86) with interpolated values from Table E.7, E.8, E.11 and E.12.

$$\begin{split} \frac{H_2^R}{RT_C} &= -2.294 + (0.191)(-0.713) = -2.430 \\ \frac{S_2^R}{R} &= -1.566 + (0.191)(-0.726) = -1.705 \\ \Rightarrow H_2^R &= (-2.430)(8.314)(420.0) = -8,485 \text{ Jmol}^{-1} \\ S_2^R &= (-1.705)(8.314) = -14.18 \text{ Jmol}^{-1} K^{-1} \end{split}$$

Cálculo do volume final

$$T_r = \frac{200 + 273.15}{420.0} = 1.127$$
 $P_r = \frac{70}{40.43} = 1.731$

Eq.(3.57) and Table E.3 and E.4;

$$Z = Z^{0} + \omega Z^{1} = 0.485 + 0.191(0.142) = 0.512$$

$$V = \frac{ZRT}{P} = \frac{0.512(83.14)(473.15)}{70} = 287.8 \ cm^3 mol^{-1}$$

Table E.3: Values of Z^0

Table E.4: Values of Z^1

$P_r =$	1.0000	1.2000	1.5000	2.0000	3.0000	5.0000	7.0000	10.000	_	$P_r =$	1.0000	1.2000	1.5000	2.0000	3.0000	5.0000	7.0000	10.000
T_r			1-16531361363						120	T_r								
0.30	0.2892	0.3479	0.4335	0.5775	0.8648	1.4366	2.0048	2.8507		0.30	-0.0806	-0.0966	-0.1207	-0.1608	-0.2407	-0.3996	-0.5572	-0.7915
0.35	0.2604	0.3123	0.3901	0.5195	0.7775	1.2902	1.7987	2.5539		0.35	-0.0921	-0.1105	-0.1379	-0.1834	-0.2738	-0.4523	-0.6279	-0.8863
0.40	0.2379	0.2853	0.3563	0.4744	0.7095	1.1758	1.6373	2.3211		0.40			-0.1414			-0.4603	-0.6365	-0.8936
0.45	0.2200	0.2638	0.3294	0.4384	0.6551	1.0841	1.5077	2.1338		0.45	-0.0929		-0.1387			-0.4475	-0.6162	-0.8608
0.50	0.2056	0.2465	0.3077	0.4092	0.6110	1.0094	1.4017	1.9801		0.50	-0.0893	-0.1069	-0.1330	-0.1762	-0.2611	-0.4253	-0.5831	-0.8099
0.55	0.1939	0.2323	0.2899	0.3853	0.5747	0.9475	1.3137	1.8520		0.55	-0.0849	-0.1015	-0.1263	-0.1669	-0.2465	-0.3991	-0.5446	-0.7521
0.60	0.1842	0.2207	0.2753	0.3657	0.5446	0.8959	1.2398	1.7440		0.60	-0.0803	-0.0960	-0.1192	-0.1572	-0.2312	-0.3718	-0.5047	-0.6928
0.65	0.1765	0.2113	0.2634	0.3495	0.5197	0.8526	1.1773	1.6519		0.65	-0.0759	-0.0906	-0.1122	-0.1476	-0.2160	-0.3447	-0.4653	-0.6346
0.70	0.1703	0.2038	0.2538	0.3364	0.4991	0.8161	1.1341	1.5729					-0.1057					-0.5785
0.75	0.1656	0.1981	0.2464	0.3260	0.4823	0.7854	1.0787	1.5047		0.75	-0.0681	-0.0808	-0.0996	-0.1298	-0.1872	-0.2929	-0.3901	-0.5250
0.80	0.1626	0.1942	0.2411	0.3182	0.4690	0.7598	1.0400	1.4456		0.80	-0.0648	-0.0767	-0.0940	-0.1217	-0.1736	-0.2682	-0.3545	-0.4740
0.85	0.1614	0.1924	0.2382	0.3132	0.4591	0.7388	1.0071	1.3943		0.85	-0.0622	-0.0731	-0.0888	-0.1138	-0.1602	-0.2439	-0.3201	-0.4254
0.90	0.1630	0.1935	0.2383	0.3114	0.4527	0.7220	0.9793	1.3496		0.90	-0.0604	-0.0701	-0.0840	-0.1059	-0.1463	-0.2195	-0.2862	-0.3788
0.93	0.1664	0.1963	0.2405	0.3122	0.4507	0.7138	0.9648	1.3257		0.93	-0.0602	-0.0687	-0.0810	-0.1007	-0.1374	-0.2045	-0.2661	-0.3516
0.95	0.1705	0.1998	0.2432	0.3138	0.4501	0.7092	0.9561	1.3108		0.95	-0.0607	-0.0678	-0.0788	-0.0967	-0.1310	-0.1943	-0.2526	-0.3339
0.97	0.1779	0.2055	0.2474	0.3164	0.4504	0.7052	0.9480	1.2968		0.97	-0.0623	-0.0669	-0.0759	-0.0921	-0.1240	-0.1837	-0.2391	-0.3163
0.98	0.1844	0.2097	0.2503	0.3182	0.4508	0.7035	0.9442	1.2901		0.98	-0.0641	-0.0661	-0.0740	-0.0893	-0.1202	-0.1783	-0.2322	-0.3075
0.99	0.1959	0.2154	0.2538	0.3204	0.4514	0.7018	0.9406	1.2835		0.99	-0.0680	-0.0646	-0.0715	-0.0861	-0.1162	-0.1728	-0.2254	-0.2989
1.00	0.2901	0.2237	0.2583	0.3229	0.4522	0.7004	0.9372	1.2772		1.00	-0.0879	-0.0609	-0.0678	-0.0824	-0.1118	-0.1672	-0.2185	-0.2902
1.01	0.4648	0.2370	0.2640	0.3260	0.4533	0.6991	0.9339	1.2710		1.01	-0.0223	-0.0473	-0.0621	-0.0778	-0.1072	-0.1615	-0.2116	-0.2816
1.02	0.5146	0.2629	0.2715	0.3297	0.4547	0.6980	0.9307	1.2650		1.02	-0.0062	-0.0227	-0.0524	-0.0722	-0.1021	-0.1556	-0.2047	-0.2731
1.05	0.6026	0.4437	0.3131	0.3452	0.4604	0.6956	0.9222	1.2481		1.05	0.0220	0.1059	0.0451	-0.0432	-0.0838	-0.1370	-0.1835	-0.2476
1.10	0.6880	0.5984	0.4580	0.3953	0.4770	0.6950	0.9110	1.2232		1.10	0.0476	0.0897	0.1630	0.0698	-0.0373	-0.1021	-0.1469	-0.2056
1.15	0.7443	0.6803	0.5798	0.4760	0.5042	0.6987	0.9033	1.2021		1.15	0.0625	0.0943	0.1548	0.1667	NOTIFICATION OF	-0.0611	-0.1084	
1.20	0.7858	0.7363	0.6605	0.5605	0.5425	0.7069	0.8990	1.1844		1.20	0.0719	0.0991	0.1477	0.1990	0.1095	-0.0141	-0.0678	-0.1231
1.30	0.8438	0.8111	0.7624	0.6908	0.6344	0.7358	0.8998	1.1580		1.30	0.0819	0.1048	0.1420	0.1991	0.2079	0.0875	0.0176	-0.0423
1.40	0.8827	0.8595	0.8256	0.7753	0.7202	0.7761	0.9112	1.1419		1.40	0.0857	0.1063	0.1383	0.1894	0.2397	0.1737	0.1008	0.0350
1.50	0.9103	0.8933	0.8689	0.8328	0.7887	0.8200	0.9297	1.1339		1.50	0.0854	0.1055	0.1345	0.1806	0.2433	0.2309	0.1717	0.1058
1.60	0.9308	0.9180	0.9000	0.8738	0.8410	0.8617	0.9518	1.1320		1.60	0.0855	0.1035	0.1303	0.1729	0.2381	0.2631	0.2255	0.1673
1.70	0.9463	0.9367	0.9234	0.9043	0.8809	0.8984	0.9745	1.1343		1.70	0.0838	0.1008	0.1259	0.1658	0.2305	0.2788	0.2628	0.2179
1.80	0.9583	0.9511	0.9413	0.9275	0.9118	0.9297	0.9961	1.1391		1.80	0.0816	0.0978	0.1216	0.1593	0.2224	0.2846	0.2871	0.2576
1.90	0.9678	0.9624	0.9552	0.9456	0.9359	0.9557	1.0157	1.1452		1.90	0.0792	0.0947	0.1173	0.1532	0.2144	0.2848	0.3017	0.2876
2.00	0.9754	0.9715	0.9664	0.9599	0.9550	0.9772	1.0328	1.1516		2.00	0.0767	0.0916	0.1133	0.1476	0.2069	0.2819	0.3097	0.3096
2.20	0.9856	0.9847	0.9826	0.9806	0.9827	1.0094	1.0600	1.1635		2.20	0.0719	0.0857	0.1057	0.1374	0.1932	0.2720	0.3135	0.3355
2.40	0.9941	0.9936	0.9935	0.9945	1.0011	1.0313	1.0793	1.1728		2.40	0.0675	0.0803	0.0989	0.1285	0.1812	0.2602	0.3089	0.3459
2.60	0.9993	0.9998	1.0010	1.0040	1.0137	1.0463	1.0926	1.1792		2.60	0.0634	0.0754	0.0929	0.1207	0.1706	0.2484	0.3009	0.3475
2.80	1.0031	1.0042	1.0063	1.0106	1.0223	1.0565	1.1016	1.1830		2.80	0.0598	0.0711	0.0876	0.1138	0.1613	0.2372	0.2915	0.3443
3.00	1.0057	1.0074	1.0101	1.0153	1.0284	1.0635	1.1075	1.1848		3.00	0.0535	0.0672	0.0828	0.1076	0.1529	0.2268	0.2817	0.3385
3.50	1.0097	1.0120	1.0156	1.0221	1.0368	1.0723	1.1138	1.1834		3.50	0.0497	0.0591	0.0728	0.0949	0.1356	0.2042	0.2584	0.3194
4.00	1.0115	1.0140	1.0179	1.0249	1.0401	1.0747	1.1136	1.1773	_	4.00	0.0443	0.0527	0.0651	0.0849	0.1219	0.1857	0.2378	0.2994

 $H = \Delta H = 21,810 - (-344) + 20,564 - 8,485 = 34,233 \text{ Jmol}^{-1}$

$$S = \Delta S = 79.84 - (-0.88) + 22.18 - 14.18 \text{ Jmol}^{-1}\text{K}^{-1}$$

$$U = H - PV = 34,233 - \frac{(70)(287.8)}{10 \text{ cm}^3 \text{barJ}^{-1}} = 32,218 \text{ Jmol}^{-1}$$

REFERÊNCIAS

- . VAN NESS, H.C.; SMITH J. M.; ABBOTT, M. M. Introdução à Termodinâmica da Engenharia Química, 7a Ed. Rio de Janeiro: LTC, 2009.
- . KORETSKY, M. D. Termodinâmica para Engenharia Química, 1ª ed. Rio de Janeiro: LTC, 2007.