

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

MR7487280

Met Ser Ile Gln His Phe Arg Val Ala Leu Ile Pro Phe Ala Ala Phe Cys Leu Pro Val Phe Ala His Pro Glu Thr
pBR322 ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTGC66CATTTGGCTTCCGTGTTTGGCTACCCAGAAACG
Leu Val 181 Pro Ala Met
CTGGTG... CCTGCAGCAATG...
Pst

Met Ser Ile Gln His Phe Arg Val Ala Leu Ile Pro Phe Phe Ala Ala Phe Cys Leu Pro Val Phe Ala His Arg Cys Ser Asn
pKT279 ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTGC66CATTGGCTTCCGTGTTTGGCTACCCGCTGAGGAATG...
Pst

Met Ser Ile Gln His Phe Arg Val Ala Leu Ile Pro Phe Phe Ala Ala Phe Cys Leu Pro Val Phe Ala His Pro Leu Glu Gln Cys
pKT280 ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTGC66CATTGGCTTCCGTGTTTGGCTACCCGCTGAGGAATG...
Pst

Met Ser Ile Gln His Phe Arg Val Ala Leu Ile Pro Phe Phe Ala Ala Phe Cys Leu Pro Val Phe Ala His Pro Glu Thr
pKT287 ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTGC66CATTGGCTTCCGTGTTTGGCTACCCAGAAACG...
Ala Ala Met
GCTGCAGCAATG...
Pst

FIG 6

187487280

FIG. 7

FIG. 8

୬୮

140 150 160 166
 540 560 580 590 600 610 620
 CYS AL TRP GLU VAL ARG ALA GLU ILE MET ARG SER LEU SER THR ASN LEU SER GLU ARG ARG GLY SG LU
TGT CCT GGG AGG TTG TCA GAG CAG AAT CAT GAG AT
CCT CT CCT TAT CA ACA AAC ACT TG CAA GAA AG ATT AAG GGA AGG AA TA AAC AT
EcoRI MboI

 630 640 650 660 670 680 690 700 710
CTGGTCCAACATGAAAACAATTCTTATTGACTCATACACCAGGTACAGCTTTCATGAATTCTGTCAATTCTCACCCCTGCTA
AvalI Hinf EcoRI EcoRI Hinf Hph

 720 730 740 750 760 770 780 790 800
 TA ACT AT GAC CAT GCT GATA AAC TGA ACT GTT TAA AT AAC GT
CAT GTC ACC TTAC AC TGT GG TTAG TGT TA AT AAA AC AT GTT CCT TAT ATT TACT CAA AAA AAC 15
AccI

FIG. 10

FIG. II

FIG. 12

FIG. 13

487280

<p>206(II)</p> <p style="text-align: center;">60 70 80 90 100 110 120 130 140</p> <p>GCAAGATGAGGAGAATCTCTTCTGCCATGGATGAGACATGGATGAGAGCTTCAGGAGATGATGGATGAGAGCTTCAGGAGACTCACTGGATGGAT</p> <p>ALA GLN MET ARG ILE SER PRO SER CYS LEU MET ASP ARG HIS ASP PHE GLY PHE PRO GLN GLU GLU PHE ASP GLY ASN GLN PHE</p>	<p>2h(I)</p> <p style="text-align: center;">20 30 40</p> <p>GCAAAATTGAGCAGAACATCTCCCTCCCTGATGGACAGAACATGGATGAGAGCTTCAGGAGACTCACTGGATGGATGGATGGAT</p> <p>ALA GLN MET SER ARG ILE SER PRO SER CYS LEU MET ASP ARG HIS ASP PHE GLY PHE PRO GLN GLU GLU PHE ASP GLY ASN GLN PHE</p>	<p>206(II)</p> <p style="text-align: center;">150 160 170 180 190 200 210 220 230</p> <p>CAAAGGCCTGAAACCATTCCCTGCTCTCACTGAGATGATGGAGATGATGGATGAGAGCTTCAGGACAAAGGAGACTCACTGGATGGAT</p> <p>GLN LYS ALA GLU THR ILE PRO VAL LEU HIS GLU MET ILE GLN GLN SER SER THR LYS ASP SER SER ALA ALA TRP ASP</p>	<p>2h(I)</p> <p style="text-align: center;">50 60 70</p> <p>CAGAAGGCCTCAGCCATCTCTGCTCTCACTGAGATGATGGAGACTCACTGGATGGATGGATGGAT</p> <p>GLN LYS ALA PRO ALA ILE SER VAL LEU HIS GLU LEU ILE GLN GLN ILE PHE ASN LEU PHE THR LYS ASP SER SER ALA ALA TRP ASP</p>
--	--	---	---

FIG. 14

2H(1)

ACTGGCTGATGAAGGAACTCCATTGCTGTGGCTGAAATACCTCTCAAGAATTCACCTCTGAAATACAGCCCT
THR PRO LEU MET ASN ALA ASP SER ILE LEU VAL LYS TRP PHE ARG ARG ILE THR LEU TYR ILE LEU TYR ILE THR SER PRO
110 120 130

2H(II)

ACTGGCTGATGAAGGAACTCCATTGCTGTGGCTGAAATACCTCTCAAGAATTCACCTCTGAAATACAGCCCT
THR PRO LEU MET ASN ALA ASP SER ILE LEU VAL LYS TRP PHE ARG ARG ILE THR LEU TYR ILE LEU TYR ILE THR SER PRO
110 120 130

206(II)

GAGGACCTCTAGACAAATTCTAACACTGAACTCTACCCCTGGAAAGCCCTGTTGATCAGGGCTGGGGTGACAGAG
GUU THR LEU ASP LYS TRP PHE TYR THR GLN GLN LEU ASP ILE ASN ASP ILE GLU ALA CYS VAL ILE GLN GLY VAL THR GLU
80 90 100

206(III)

GAGGACCTCTAGACAAATTCTAACACTGAACTCTACCCCTGGAAAGCCCTGTTGATCAGGGCTGGGGTGACAGAG
GUU ASP ILE LEU ASP LYS TRP PHE TYR GLN GLN LEU ASP ILE ASN ASP ILE GLU ALA CYS VAL ILE GLN GLY VAL THR GLU
240 250 260 270 280 290 300 310 320

320

330 340 350 360 370 380 390 400 410

390 400 410

FIG. 15

2H(1) CTGGGTCACATGGAAATGATTTCATTGCGTATGCCAGCTACCTTTATGA--TCTGCCATTCAAAGACTCATGTTCTGCTA
 510 520 530 540 550 560 570 580
 510 520 530 540 550 560 570 580

206(1) CTGGGTCACATGGAAATGATTTCATTGCGTATGCCAGCTACCTTTATGA--TCTGCCATTCAAAGACTCATGTTCTGCTA
 420 430 440 450 460 470 480 490 500
 420 430 440 450 460 470 480 490 500

2H(1) CTGGGTCACATGGAAATGATTTCATTGCGTATGCCAGCTACCTTTATGA--TCTGCCATTCAAAGACTCATGTTCTGCTA
 140 150 160 170 180 190 200 210 220
 140 150 160 170 180 190 200 210 220

206(1) CTGGGTCACATGGAAATGATTTCATTGCGTATGCCAGCTACCTTTATGA--TCTGCCATTCAAAGACTCATGTTCTGCTA
 140 150 160 170 180 190 200 210 220
 140 150 160 170 180 190 200 210 220

FIG. 16

2H(1) ATGGCACCTTACACTGGTTAGTGAAATAAACAGTTCCTTAATTACTCAAAAAAAC₁₅
 690 700 710 720 730 740

206(1) GACCATGCTGAC₂₉
 690

2H(1) TAACTATGACCATGCTGATAAACTGATTATCTATTTAAATATTAACTTACAATAAGATTAAATTATTTGTTCATATAACGTC
 600 610 620 630 640 650 660 670 680

206(1) TGACCATGACACGATTAAATCTTTCAAATGTTTAGGAGTATTAAATCAACATTGTATTAGCTCTTAAGGCACTAGTCCTTACAGAG
 590 600 610 620 630 640 650 660 670 680

FIG. 17

FIG. 18

PARTIAL RESTRICTION MAPS OF CLONED, IFN- α RELATED
CHROMOSOMAL DNA SEGMENTS

E : EcoRI, Ba : BamHI, Bg : BgIII, H : HincII, T : TaeI

FIG. 19

The diagram illustrates the 5' end of a pGK-Luciferase construct. The sequence starts with a poly-A tail (AAA) followed by a Kozak sequence (AUA), a start site (ATG), and the GK promoter (GGGCTCTAA). The construct includes a cassette with a BspI site, a HinfI site, and a DdeI site. Four sequencing primers are shown: S1 (reverse), S10 (forward), S20 (reverse), and 1 (forward). S1 and S10 are used to sequence the region upstream of the BspI site. S20 and 1 are used to sequence the region downstream of the HinfI site. The BspI site is located between positions -140 and -120. The HinfI site is located between positions 40 and 60. The DdeI site is located between positions 100 and 120.

FIG. 20

20 40 60 80 100

140
160
180
200

**GLNLYSALAPROAILESERVALLEUHISGLULEUFILEGLNLNILEPHEASNLEUPHEASPPHEGLYPLHEPROGLNLGUGLUPHEASPGLYASNGLNPHF
GCACAAATGAGGAGAATCTCCTTCTGTCGATGGATTCTGACTTGAGAGACATGACTTGAGGAGTTTCCCAGGAGGATTTGATGGCAACCAGTTC**

HINF

EcoRII

220 240 260 280 300

CAGAAGGCTCCAGGCCATCTCTGCTCTCATGAGCTGATCCAGCAGATCTTCAACCTCTTACCAAAAAGATTICATCTGCTGCTTGGAAT

ALU MboI / BglII HINF

EcoP15 MboI MboI

20 40 60 80 100

320 340 360 380

**GLUASPLEULEUASPLYSPHECYSTHRGLLULUTYRGLNLNLEUASWASPLEUGLULACYSVALMETGLNGLUGLUARGVALGLYGLU
GAGGACCTCCTAGACAAATTCTGCACCGAACTTACCCAGCAGCTGAATGACTGGAAGGCTGTGATGCAGGAGGAGGGTGGGAGAA**

AVAI

EcoP15 PvuII AluI

SFANI

FIG. 21

110 120 130 140 150 160 166
 400 420 440 460 480
 T H R P R O L E U M E T A S N A A S P S E R I L E E U A L A V A L L Y S L Y S T Y R P H A R G A C I L E T H R L E U T H R G L U L Y S L Y S T Y R S E R P R O
 A C T C C C C T G A T G A A T G C G G A C T C C A T C T G G C T G T G A A G A A A T A C T T C C G A A G A A T C A C T C T C A T C T G A C A G A A G A A T A C A G G C C T
 Hinf MboI Hinf

 110 120 130 140 150 160 166
 400 420 440 460 480
 C Y S A L A T R P G L U V A L V A L A R G A L A G L U I L E M E T A R G S E R L E U S E R T H R A S N L E U G L N G L D U A R G L E U A R G A R G L Y S G L U
 T G T G C T G G G A G G T T G T C A G A G C G A A A T C A T G A A T C A T G A A T C C T C T C T T A C A A C A A C T T G C A A G A A A G G T T A A G G A G G A A T A A C A T
 EcoRI MboI

 110 120 130 140 150 160 166
 400 420 440 460 480
 C T G G T C A A C A T G A A A A C A A T T C T T A T T G A C T C A T A C C A G G T C A C G C T T C A T G A T T C A T G T C A T T C A A A G A C T C T C A C C C C T G C T A
 AvaiI Hinf EcoRI Hinf EcoRI Hinf Hph

 110 120 130 140 150 160 166
 400 420 440 460 480
 T A A C T A T G A C C A T G C T G A T A A A C T G A T T T A C T G A T T T A A T T T A A C T A T T C A T A A G A T T T A A T T T T G T C A T A A C G T
 HgIA

FIG. 22

FIG. 23

CTATAGGAACTTCC⁸⁶⁰TGTTCATTC⁸⁸⁰TTAAATA⁹⁰⁰GAAATTCTAGCCTGACTG⁹²⁰CACCTGAAACCTGATTAGAGAATA⁹⁴⁰AGGGTATATTAA
TTTGCT⁹⁴⁰ATCATTATTATA⁹⁵⁹TGTAAGA

FIG. 24

LINKAGE OF IFN- α RELATED GENES

FIG. 25

FIG. 26

FIG. 27

CONSTRUCTION OF PLASMID LAC-AUG (α -2)

FIG. 28

187487280

FIG. 30

1120	<i>HSPPHESERCYSLEUlysASPARCIIISASPPHEP</i>	<i>PROGLUGLUPHEASPGLYHISGLNPHEGLNLYSTURGLNAAILESERVALL</i>	1180
	<i>CATTTCTCCCTGCCTGAAGGACAGACATGATTGGATCCCCGAGGAGGAGT</i>	<i>TGGCAACCAGTCCAGAAGACTAAGCCATCTGTCTCCATG</i>	
1140	<i>EcoRI</i>	<i>HHA[I]</i>	<i>MNL I</i>
1160	<i>BSPRI</i>	<i>AvaI</i>	<i>MboIII</i>
1190			<i>HHA[I]</i>
1220	<i>G LUMETILEGLNGLNTHRPEASNL</i>	<i>EPHESERTHRCLOUASPSER</i>	1280
	<i>AGA[GATC]AGACCTTCAATCTTCAGCACAGGACTCATCTGCTG</i>	<i>CGLNNSERLEULEGUGLULYSPESERTHRCLOUASPSER</i>	1300
1240	<i>DpnII</i>	<i>EcoRI</i>	<i>BAL I</i>
1260	<i>MboII</i>	<i>MNL I</i>	<i>BSPRI</i>
1290	<i>HHA[I]</i>	<i>HHA[I]</i>	<i>HHA[I]</i>
1320	<i>LEUASNASPLEUGLUALACYSVALILEGLNGLUVALGLYVALGLUGLUTHRPROLEUMETASSVALA</i>	<i>SPLSERLEUVALAVALARGLYSTYRPHEGLN</i>	1380
	<i>ACTGAATGACCTGGAAAGCATGTTGATACAGGAGGTTGGGGTGGAAAGAGACTCCCCTGATGAAATGGACTCCATCTGGCTGTGAGGAATACTTCCAA</i>	<i>AA</i>	
1340	<i>BSTnI</i>	<i>MNL I</i>	<i>MboIII HHA[I]</i>
1360		<i>HHA[I]</i>	<i>BstnI</i>
1390			<i>MNL I</i>
1420	<i>ARGILETHRLEUTHRGLULYSLYSTYRSERPROCYSALATRPGLUVALVALGALAGLVILEMETARGSERLEUSERPHESERTHRASNL</i>	<i>EV</i>	1480
	<i>AGAAATCACTCTTATCTAACAGAGAAATAACGAGGAGGTTGGCTGGGGTTGTCAGAGCAGAAATCATGAGATCCCTCTCGTTCAACAAACTTGC</i>	<i>MboII</i>	
1440	<i>HHA[I]</i>	<i>BstnI MNL I</i>	<i>EcoRI</i>
1460			<i>DpnII</i>
1490			<i>MNL I</i>
1520		1540	1560
			1580
			1600
	<i>CLNLYSARGLEUARGARGLYSASP</i>		
	<i>AAAAAGATTAAAGGAGAAAGGATTGAAACACTGGAAATGATTCCGACTGACTAAACATTATCTCACACCTTCAATGAGITCTTCCATTTC</i>		
			<i>MboII</i>

1620 1640 1660 1680 1700

AAGACTCACTTATAACCACACGAGTGAATCAAATTTTAAATGTTTCAGGAGTGTGAAGAAGCTTGGAGGTACTAGTTCCTTA

MboI BBRI
HHAI EcoRI AlUI

1720 1740 1760 1780 1800

CAGATGACAATGCTGATGTCCTGTATCTTAATTTAAATTAAATTTTAAATGTTAATTTAAATGTGATATCATGAGTACTTAC

EcoRI RSAI

1820 1840

ATTGGTGGATGTAACGATAATATGTCCTATATTTAGCCAAATA

MboII

FIG 32