Anil Akyildirim & Sie Siong Wong
DATA 612
Summer 2020

Movie Lens In House Recommender Systems

Introduction

What is requested?

- Create Multiple Recommender Systems using Movie Lens Data Set
- Create Recommendation and Evaluation to pick a system with the best performance.

Our approach solving it

- Data Collection and Preparation
- Data Exploration
- Non-Distributed Recommender System
 - Recommender Development & Evaluation
- Distributed Recommender Systems
 - Recommender Development
 - Recommender Evaluation
- Conclusion

Data Collection

```
# Load movies and ratings datasets
movies <- fread("https://raw.githubusercontent.com/SieSiongWong/DATA-612/master/movies.csv")</pre>
ratings <- fread("https://raw.githubusercontent.com/SieSiongWong/DATA-612/master/ratings 1m.csv")
head(movies)
```

1193

661

914 3408

2355

1197

```
movieId
                                              title
                                  Toy Story (1995)
## 1:
                                    Jumanji (1995)
## 2:
                                                                                  userId movieId rating
## 3:
                          Grumpier Old Men (1995)
                         Waiting to Exhale (1995)
## 4:
                                                                            ## 1:
            5 Father of the Bride Part II (1995)
## 5:
                                                                            ## 2:
                                       Heat (1995)
## 6:
            6
                                                                            ## 3:
##
                                              genres
                                                                            ## 4:
## 1: Adventure | Animation | Children | Comedy | Fantasy
                                                                            ## 5:
## 2:
                        Adventure | Children | Fantasy
                                                                            ## 6:
                                     Comedy Romance
## 3:
                               Comedy | Drama | Romance
## 4:
                                              Comedy
## 5:
                              Action | Crime | Thriller
## 6:
```

The ratings dataset has 1 million ratings from 6000 users on 9743 movies.

Data Exploration and Preparation

```
## Classes 'data.table' and 'data.frame': 9742 obs. of 3 variables:
                                             ## $ movieId: int 1 2 3 4 5 6 7 8 9 10 ...
# Summary of movies and ratings datasets
                                             ## $ title : chr "Toy Story (1995)" "Jumanji (1995)" "Grumpier Old Men (1995)" "Waiting to Exhale (1995)"
str(movies)
                                             ## $ genres : chr "Adventure | Animation | Children | Comedy | Fantasy" "Adventure | Children | Fantasy" "Comedy | Romanc
                                             e" "Comedy | Drama | Romance" ...
str(ratings)
                                             ## - attr(*, ".internal.selfref")=<externalptr>
                                                                                                                   ## ratings$rating
# Statistical summary of rating variable
                                                                                                                             n missing distinct
                                             ## Classes 'data.table' and 'data.frame': 1000209 obs. of 3 variables:
                                                                                                                                                     Info
                                                                                                                                                                         Gmd
describe(ratings$rating)
                                                                                                                      1000209
                                            ## $ userId : int 1 1 1 1 1 1 1 1 1 1 ...
                                                                                                                                                    0.927
                                                                                                                                                              3.582
                                                                                                                                                                       1.219
                                             ## $ movieId: int 1193 661 914 3408 2355 1197 1287 2804 594 919 ...
                                            ## $ rating : int 5 3 3 4 5 3 5 5 4 4 ...
                                                                                                                   ## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
                                            ## - attr(*, ".internal.selfref")=<externalptr>
                                                                                                                   ## Value
                                                                                                                   ## Frequency 56174 107557 261197 348971 226310
                                                                                                                   ## Proportion 0.056 0.108 0.261 0.349 0.226
   # Convert to rating matrix
   ratings matrix <- dcast(ratings, userId~movieId, value.var = "rating", na.rm = FALSE)
   # Remove user Id column
   ratings matrix <- as.matrix(ratings matrix[,-1])</pre>
                                                                                                      6040 x 3706 rating matrix of class 'realRatingMatrix' with 1000209
                                                                                                      ratings.
   # Convert rating matrix into a recommenderlab sparse matrix
   ratings matrix <- as(ratings matrix, "realRatingMatrix")
   ratings matrix
```



```
# Convert the ratings matrix into a vector
vec_ratings <- as.vector(ratings_matrix@data)
# Unique ratings
unique(vec_ratings)</pre>
```

```
# Count the occurrences for each rating
table_ratings <- table(vec_ratings)
table_ratings</pre>
```

```
# Remove zero rating and convert the vector to factor
vec_ratings <- vec_ratings[vec_ratings != 0] %>% factor()

# Visualize through applot
qplot(vec_ratings, fill = I("steelblue")) +
    ggtitle("Distribution of the Ratings") +
    labs(x = "Ratings")
```

Majority of the movies get rating 4.


```
# Search for the top 10 most viewed movies
most_views <- colCounts(ratings_matrix) %>% melt()

most_views <- tibble::rowid_to_column(most_views, "movieId")
names(most_views)[2] <- 'count'
most_views <- most_views %>%
    merge(movies, by = "movieId") %>%
    top_n(count, n = 10)

# Visualize the top 10 most viewed movies
ggplot(most_views, aes(x = reorder(title, count), y = count, fill = 'lightblue')) +
    geom_bar(stat = "identity") +
    theme(axis.text.x =element_text(angle = 60, hjust = 1)) +
    ggtitle("Top 10 Most Viewed Movies") +
    theme(legend.position = "none", axis.title.x = element_blank())
```

Curse of Frankenstein is the highest Viewed Movies


```
# Average rating for each movie
avg_ratings_mv <- colMeans(ratings_matrix)</pre>
# Average rating for each user
avg ratings us <- rowMeans(ratings matrix)</pre>
# Visualize the distribution of the average movie rati
avg1 <- qplot(avg_ratings_mv) +
  stat bin(binwidth = 0.1) +
  ggtitle("Average Movie Rating Distribution") +
  labs(x = 'Average Rating', y = 'Frequency')
# Visualize the distribution of the average user ratin
avg2 <- qplot(avg ratings us) +
  stat bin(binwidth = 0.1) +
  ggtitle("Average User Rating Distribution") +
  labs(x = 'Average Rating', y = 'Frequency')
# Compare the average rating distribution plots
grid.arrange(avg1, avg2, nrow = 1)
```

- Some movies have only few ratings and some users only rated few movies.
- To avoid bias we remove the least watched movies and least rated users with a threshold of minimum number such as 50


```
# Filter users and movies more than 50
ratings_matrix <- ratings_matrix[rowCounts(ratings_matrix) > 50, colCounts(ratings_matrix) > 50]
# Average rating for each movie
avg_ratings_mv2 <- colMeans(ratings_matrix)</pre>
# Average rating for each user
avg_ratings_us2 <- rowMeans(ratings_matrix)</pre>
# Visualize the distribution of the average movie rating
avg3 <- qplot(avg_ratings_mv2) +
  stat bin(binwidth = 0.1) +
  ggtitle("Average Movie Rating Distribution") +
  labs(x = 'Average Rating', y = 'Frequency')
# Visualize the distribution of the average user rating
avg4 <- qplot(avg ratings us2) +
  stat bin(binwidth = 0.1) +
  ggtitle("Average User Rating Distribution") +
  labs(x = 'Average Rating', y = 'Frequency')
# Compare the average rating distribution plots
grid.arrange(arrangeGrob(avg1, avg2, ncol = 1, top=textGrob("Before")), arrangeGrob(avg3, avg4, ncol = 1, top=
textGrob("After")), ncol = 2)
```

After filtering and removing the least watched and least rated movies we see the curve is narrower and there is less variance.

Define Recommender Method

Focus on UBCF, SVDF and ALS with Recommenderlab

Recommender Method Evaluation

```
# Create a function to get average of precision, recall, TPR, FPR
avg_cf_matrix <- function(results) {
avg <- results %>%
  getConfusionMatrix() %>%
  as.list()
  as.data.frame( Reduce("+", avg) / length(avg)) %>%
  mutate(n = c(1, 3, 5, 10, 15, 20)) %>%
  select('n', 'precision', 'recall', 'TPR', 'FPR')
}
# Using map() to iterate the avg function across both models
results_tbl <- results %>% map(avg_cf_matrix) %>% enframe() %>% unnest()
```

results_tbl

# /	A tibble: 18 x 6						
	name		n	precision	recall	TPR	FPR
	<chr></chr>		<dbl></dbl>	<db1></db1>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	User-Based CF		1	0.0597	0.000314	0.000314	0.000406
2	User-Based CF		3	0.0568	0.000894	0.000894	0.00122
3	User-Based CF		5	0.0560	0.00152	0.00152	0.00204
4	User-Based CF		10	0.0581	0.00331	0.00331	0.00407
5	User-Based CF		15	0.0602	0.00524	0.00524	0.00609
6	User-Based CF		20	0.0622	0.00726	0.00726	0.00810
7	Funk SVD		1	0.360	0.00265	0.00265	0.000272
8	Funk SVD		3	0.338	0.00748	0.00748	0.000846
9	Funk SVD		5	0.324	0.0119	0.0119	0.00144
10	Funk SVD		10	0.296	0.0214	0.0214	0.00300
11	Funk SVD		15	0.280	0.0301	0.0301	0.00461
12	Funk SVD		20	0.266	0.0378	0.0378	0.00627
13	Alternating Least	Squares	1	0.249	0.00188	0.00188	0.000322
14	Alternating Least	Squares	3	0.292	0.00680	0.00680	0.000910
15	Alternating Least	Squares	5	0.299	0.0115	0.0115	0.00150
16	Alternating Least	Squares	10	0.289	0.0219	0.0219	0.00304
17	Alternating Least	Squares	15	0.279	0.0313	0.0313	0.00463
18	Alternating Least	Squares	20	0.271	0.0401	0.0401	0.00624
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	<pre> <chr> Chr> Vser-Based CF Vser-Based CF</chr></pre>	name <chr> 1 User-Based CF 2 User-Based CF 3 User-Based CF 4 User-Based CF 5 User-Based CF 6 User-Based CF 7 Funk SVD 8 Funk SVD 9 Funk SVD 10 Funk SVD 11 Funk SVD 12 Funk SVD 13 Alternating Least Squares</chr>	name n <chr> <dbl> 1 User-Based CF 1 2 User-Based CF 3 3 User-Based CF 5 4 User-Based CF 10 5 User-Based CF 15 6 User-Based CF 20 7 Funk SVD 1 8 Funk SVD 3 9 Funk SVD 5 10 Funk SVD 10 11 Funk SVD 15 12 Funk SVD 20 13 Alternating Least Squares 1 14 Alternating Least Squares 3 15 Alternating Least Squares 5 16 Alternating Least Squares 5 17 Alternating Least Squares 10 17 Alternating Least Squares 15</dbl></chr>	name n precision <chr> <dbl><dbl><dbl><dbl> 1 User-Based CF 1 0.0597 2 User-Based CF 3 0.0568 3 User-Based CF 5 0.0560 4 User-Based CF 10 0.0581 5 User-Based CF 15 0.0602 6 User-Based CF 20 0.0622 7 Funk SVD 1 0.360 8 Funk SVD 3 0.338 9 Funk SVD 5 0.324 10 Funk SVD 10 0.296 11 Funk SVD 15 0.280 12 Funk SVD 15 0.280 13 Alternating Least Squares 1 0.249 14 Alternating Least Squares 1 0.292 15 Alternating Least Squares 0.299 16 Alternating Least Squares 0.289 17 Alternating Least Squares 10 0.289 17 Alternating Least Squares 15 0.279</dbl></dbl></dbl></dbl></chr>	name n precision recall <chr> 1 User-Based CF 1 0.0597 0.000314 2 User-Based CF 3 0.0568 0.000894 3 User-Based CF 5 0.0560 0.00152 4 User-Based CF 10 0.0581 0.00331 5 User-Based CF 15 0.0602 0.00524 6 User-Based CF 20 0.0622 0.00726 7 Funk SVD 1 0.360 0.00265 8 Funk SVD 3 0.338 0.00748 9 Funk SVD 5 0.324 0.0119 10 Funk SVD 10 0.296 0.0214 11 Funk SVD 15 0.280 0.0301 12 Funk SVD 15 0.280 0.0301 12 Funk SVD 10 0.296 0.0214 11 Funk SVD 10 0.296 0.0378 13 Alternating Least Squares 1 0.249 0.00188 14 Alternating Least Squares 1 0.299 0.0015 15 Alternating Least Squares 0 0.299 0.0115 16 Alternating Least Squares 10 0.289 0.0219 17 Alternating Least Squares 15 0.279 0.0313</chr>	name n precision recall TPR <chr><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl< td=""></dbl<></dbl></dbl></dbl></dbl></dbl></dbl></dbl></chr>

Recommender Method Evaluation

Model

- Alternating Least Squares
- Funk SVD
- User-Based CF

```
# Plot ROC curves for each model
results_tbl %>%
   ggplot(aes(FPR, TPR, color = fct_reorder2(as.factor(name), FPR, TPR))) +
   geom_line() +
   geom_label(aes(label = n)) +
   labs(title = "ROC Curves", color = "Model") +
   theme_grey(base_size = 14)
```

Recommender Method Evaluation

Precision-Recall Curves

Model

- Alternating Least Squares
- a Funk SVD
- User-Based CF

```
# Plot Precision-Recall curves for each model
results_tbl %>%
    ggplot(aes(recall, precision, color = fct_reorder2(as.factor(name), recall, precision))) +
    geom_line() +
    geom_label(aes(label = n)) +
    labs(title = "Precision-Recall Curves", colour = "Model") +
    theme_grey(base_size = 14)
```

ALS has the highest precision and sensitivity.

Recommender Model Improvement – ALS Optimization

```
## ALS run fold/sample [model time/prediction time]
## 1 [0.001sec/26.108sec]
   2 [0.001sec/26.172sec]
## 3 [0sec/26.28sec]
       [0sec/26.225sec]
       [0sec/25.273sec]
## ALS run fold/sample [model time/prediction time]
       [0sec/26.708sec]
## 2 [0.005sec/28.541sec]
## 3 [0.001sec/28.169sec]
## 4 [0.001sec/28.367sec]
## 5 [0sec/27.338sec]
## ALS run fold/sample [model time/prediction time]
       [0.001sec/28.21sec]
## 2 [0.001sec/27.624sec]
## 3 [0.006sec/27.646sec]
## 4 [0.007sec/27.343sec]
## 5 [0.007sec/26.892sec]
## ALS run fold/sample [model time/prediction time]
## 1 [0.007sec/35.459sec]
## 2 [0.006sec/36.177sec]
## 3 [0.006sec/35.912sec]
## 4 [0.007sec/36.003sec]
## 5 [0.006sec/27.868sec]
## ALS run fold/sample [model time/prediction time]
       [0.001sec/72.424sec]
## 2 [0.001sec/74.817sec]
## 3 [0.006sec/42.183sec]
       [0.006sec/41.797sec]
## 5 [0.006sec/40.444sec]
## ALS run fold/sample [model time/prediction time]
## 1 [0.006sec/1322.911sec]
## 2 [0sec/2708.106sec]
   3 [0.006sec/2355.103sec]
   4 [0.007sec/2348.893sec]
## 5 [0.006sec/2348.442sec]
```

```
## $normalize
## NULL
## $lambda
## [1] 0.1
##
## $n factors
## [1] 10
##
## $n iteration
## [1] 10
## $min item n
## [1] 1
## $seed
## NULL
```

Default n value is 10

```
knitr::opts chunk$set(cache=TRUE)
# Default parameter values for the ALS method
rec <- recommenderRegistry$get entries(dataType = "realRatingMatrix")
rec$ALS realRatingMatrix$parameters
```

```
# Random select 100,000 rows to optimize,
ratings matrix opt <- ratings matrix[sample(nrow(ratings matrix), 100,000), ]
# Setup a new evaluation scheme for paratmeter optimization
evaluation_opt <- evaluationScheme(ratings_matrix_opt,
                                                = "cross",
                                     method
                                                = 5,
                                     train
                                                = 0.8.
                                     given
                                                = 10.
                                    goodRating = 3
# Let set the n factors ranging from 1 to 20
nf \leftarrow c(1, 3, 5, 10, 15, 20)
# Using lapply to define a list of models to evaluate
als_models <- lapply(nf, function(n){</pre>
                                       list(name = "ALS",
                                            param = list(n factors = n))
                                      })
names(als_models) <- paste0("ALS_nf_", nf)</pre>
list_results <- evaluate(evaluation_opt,</pre>
                          method = als models.
                          n = c(1, 3, 5, 10, 15, 20)
```

Recommender Method Improvement ALS Optimization


```
# Plot ROC curve
plot(list_results, annotate = 1, legend = "topleft")
title("ROC Curve")
```

```
# Plot Precision-Recall curve
plot(list_results, "prec/rec", annotate = 1, legend = "bottomright")
title("Precision-Recall")
```

n_factors =20 has the highest AUC.

Model Development - ALS

```
knitr::opts_chunk$set(cache=TRUE)

set.seed(123)

# Create an item-based CF recommender using training data
tic()
rec_als <- Recommender(data = train, method = "ALS", parameter=list(n_factors = 20))
train_time_rec <- toc(quiet = TRUE)

# Create predictions for the test items using known ratings with type as ratings
tic()
pred_als_acr <- predict(object = rec_als, newdata = test_known, type = "ratings")
predict_time_rec <- toc(quiet = TRUE)

# Create predictions for the test items using known ratings with type as top n recommendation list
tic()
pred_als_n <- predict(object = rec_als, newdata = test_known, n = 5)
top_n_time_rec <- toc(quiet = TRUE)</pre>
```

```
knitr::opts chunk$set(cache=TRUE)
evaluation <- evaluationScheme(ratings_matrix, method = "split", train = 0.8, given = 10)
evaluation
## Evaluation scheme with 10 items given
## Method: 'split' with 1 run(s).
## Training set proportion: 0.800
## Good ratings: NA
## Data set: 4247 x 2499 rating matrix of class 'realRatingMatrix' with 918946 ratings.
train <- getData(evaluation, "train")</pre>
train
## 3397 x 2499 rating matrix of class 'realRatingMatrix' with 736876 ratings.
test_known <- getData(evaluation, "known")
test known
## 850 x 2499 rating matrix of class 'realRatingMatrix' with 8500 ratings.
test_unknown <- getData(evaluation, "unknown")
test_unknown
```

Split Test and Train

850 x 2499 rating matrix of class 'realRatingMatrix' with 173570 ratings.

Create ALS Model with n_factors=20

Model Evaluation

```
# Define a matrix with the recommendations to the test set users
rec_matrix <- as.matrix(data.frame(pred_als_n@items))

# Define a vector with all recommendations
num_of_items <- factor(table(rec_matrix))

# Visualize the distribution of the number of recommended movies
qplot(num_of_items) +
    ggtitle("Distribution of the Number of Recommended Movies") +
    labs(x = "Number of Count") +
    theme(axis.text.x = element_text(angle=45))</pre>
```

Distribution of the Number of Recommended Movies

Number of Count

```
# Recommendations for the first user.
first_user_rec <- pred_als_n@items[1:1] %>% data.frame()
colnames(first_user_rec) <- c("movieId")
first_user_rec <- first_user_rec %>%
   merge(movies, by = "movieId") %>%
   select(-movieId)
first_user_rec
```

```
## 1 To Die For (1995)
## 2 To Wong Foo, Thanks for Everything! Julie Newmar (1995)
## 3 Rudy (1993)
## genres
## 1 Comedy|Drama|Thriller
## 2 Comedy
## 3 Drama
```

Majority of the movies have been recommended many times, few movies have been recommended small amount of times.

Model Evaluation

```
# Top 10 most recommended movies
top10_rec <- num_of_items %>% data.frame()
top10_rec <- cbind(movieId = rownames(top10_rec), top10_rec)
rownames(top10_rec) <- 1:nrow(top10_rec)
colnames(top10_rec)[2] <- "count"
top10_rec <- top10_rec %>%
    mutate_if(is.factor, ~ as.integer(levels(.x))[.x]) %>%
    merge(movies, by = "movieId") %>%
    top_n(count, n = 10)

top10_rec <- top10_rec[order(top10_rec$count, decreasing = TRUE),] %>%
    select(title:genres)

top10_rec
```

```
title
##
                                                                       genres
                              Boys on the Side (1995)
                                                                Comedy Drama
## 4
                                           Rudy (1993)
## 6
                                                                       Drama
         Rosencrantz and Guildenstern Are Dead (1990)
                                                                Comedy Drama
## 10
                             Cold Comfort Farm (1995)
                                                                      Comedy
## 8
## 5
                                     Paper, The (1994)
                                                                Comedy Drama
                                                              Comedy Romance
## 3
                                      Mallrats (1995)
                                    To Die For (1995) Comedy | Drama | Thriller
## 1
                                     Barb Wire (1996)
                                                               Action | Sci-Fi
## 9
                    Terminator 2: Judgment Day (1991)
                                                               Action | Sci-Fi
## 7
## 2 Once Upon a Time... When We Were Colored (1995)
                                                               Drama Romance
```

Content Based Recommender System

```
# Map movie Id for ratings and movies dataset
movies new <- data.frame(movieId = unique(ratings$movieId)) %>% merge(movies, by = "movieId")
ratings_new <- merge(ratings, movies, by = "movieId") %>% select(-c(title, genres))
# Convert to data frame
genres <- as.data.frame(movies_new$genres, stringsAsFactors = FALSE)</pre>
# Split the genres fro each row and transpose
genres_2 <- as.data.frame(tstrsplit(genres[, 1], '[|]', type.convert = TRUE), stringsAsFactors = FALSE)</pre>
# Name the columns from 1 to 7
colnames(genres_2) <- c(1:7)</pre>
# Create a matrix with columns representing every unique genre, and indicate whether a genre was present or no
t in each movie
## Find unique genres
genre_list <- str_c(c(movies$genres),collapse = ',')</pre>
genre list <- gsub("\\|", ",", genre list)</pre>
genre_list <- unique(strsplit(genre_list, ",")[[1]])</pre>
genre_list
              Adventure Animation Children Comedy Fantasy Romance Drama Action Crime
          ## 1
          ## 3
          ## 4
          ## 5
          ## 6
              Thriller Horror Mystery Sci-Fi War Musical Documentary IMAX
          ## 1
          ## 3
          ## 4
              Film-Noir (no genres listed)
          ##
          ## 1
          ## 2
          ## 3
          ## 4
          ## 5
```

```
# Empty matrix
genre matrix <- matrix(0, length(movies new$movieId) + 1, length(genre list))</pre>
# Set first row to genre list
genre matrix[1, ] <- genre list
# Set column names to genre list
colnames(genre_matrix) <- genre_list
# Iterate through matrix
for (i in 1:nrow(genres 2)) {
for (c in 1:ncol(genres 2)) {
 genmat col = which(genre matrix[1, ] == genres 2[i, c])
 genre matrix[i + 1, genmat col] <- 1
# Convert into dataframe
## Remove first row (genre list)
genre matrix 2 <- as.data.frame(genre matrix[-1, ], stringsAsFactors = FALSE)</pre>
## Convert from characters to integers
for (c in 1:ncol(genre_matrix_2)) {
  genre matrix 2[, c] <- as.integer(genre matrix 2[, c])</pre>
head(genre matrix 2)
```

Content Based Recommender System

```
tic()
# Convert the ratings into a binary format, where ratings of 4 and 5 are mapped to 1, and ratings of 3 and bel
ow are mapped to -1
binary ratings <- ratings new
binary_ratings <- binary_ratings %>%
  mutate(rating = ifelse(rating==4|rating==5, 1,
                               ifelse(rating==1|rating==2|rating==3, -1, NA)))
# Transform from a long format to a wide format
binary ratings 2 <- dcast(binary ratings, movieId~userId, value.var = "rating", na.rm = FALSE)
# Convert NA to 0
binary_ratings_2[is.na(binary_ratings_2)] <- 0
# Remove movie Id column
binary_ratings_2 = binary_ratings_2[, -1]
# Calculate dot product of the movie genre matrix and the binary ratings matrix
x <- as.matrix(genre_matrix_2)</pre>
y <- as.matrix(binary_ratings_2)</pre>
result = t(x) %*% y
# Convert to binary scale
result <- ifelse(result > 0, 1, 0)
prof_mtx_time <- toc(quiet = TRUE)</pre>
```

```
# First user's profile
result_2 <- result[1, ]

# Calculate Jaccard Distance to measure the similarity between user profiles and the movie genre matrix
sim_mtx <- rbind.data.frame(result_2, genre_matrix_2)
sim_mtx <- data.frame(lapply(sim_mtx, function(x){as.integer(x)}))
sim_results <- dist(sim_mtx, method = "Jaccard")
sim_results <- as.data.frame(as.matrix(sim_results[1:nrow(binary_ratings_2)]))
rows <- which(sim_results == min(sim_results))
sim_dist_time <- toc(quiet = TRUE)</pre>
```

```
# Movies recommended to the first user
movies_rec <- movies_new[rows, ]

kable(movies_rec, format = "html", row.names = FALSE) %>%
   kable_styling(bootstrap_options = c("striped", "hover"))
```

movield	title	genres
1907	Mulan (1998)	Adventure Animation Children Comedy Drama Musical Romance

Distributed System – Spark – Data Preparation

```
# Connect to your Spark cluster
spark_conn <- spark_connect(master = "local")

# Copy ratings matrix to Spark
ratings_tbl <- copy_to(spark_conn, ratings, overwrite=TRUE)

# Remove least-watched movies and least-rated users less than 50
ratings_tbl <- ratings_tbl %>%
  group_by(userId) %>%
  dplyr::mutate(count = n()) %>%
  filter(count > 50)
```

```
ratings_tbl <- ratings_tbl %>%
  select(-count) %>%
  group_by(movieId) %>%
  dplyr::mutate(count = n()) %>%
  filter(count >50)
ratings_tbl <- ratings_tbl %>% select(-count)
```

```
# Split the dataset into training and test set
partitions <- ratings_tbl %>% sdf_random_split(training = 0.8, test = 0.2, seed = 123)
```

- Connect to spark
- Copy ratings data into spark
- Remove movies that have only few ratings and remove users who only rated few movies
- Split, test and train

Distributed System – Spark – Model Development - ALS

```
set.seed(456)
# Train the ALS model
tic()
als_model <- ml_als(partitions$training, rating_col = "rating", user_col = "userId", item_col = "movieId")
train_time_sp <- toc(quiet = TRUE)
# Predict rating using test set
tic()
als_pred <- ml_predict(als_model, partitions$test)
predict_time_sp <- toc(quiet = TRUE)
# Return the top 5 recommendations
tic()
als_rec <- ml_recommend(als_model, type = "item", 5) %>% select(-recommendations)
top_n_time_sp <- toc(quiet = TRUE)</pre>
```

```
# Recommendations for the first user.
first_user_sp <- als_rec %>%
  filter(userId==13) %>%
  select(-c(userId, rating)) %>%
  merge(movies, by = "movieId") %>%
  select(-movieId)

first_user_sp
```

```
##
                                                                                 title
                                           Star Wars: Episode IV - A New Hope (1977)
## 1
                                                    Shawshank Redemption, The (1994)
## 2
## 3
                                                              Schindler's List (1993)
## 4 Raiders of the Lost Ark (Indiana Jones and the Raiders of the Lost Ark) (1981)
## 5
                                                              Sixth Sense, The (1999)
                      genres
## 1 Action | Adventure | Sci-Fi
                 Crime | Drama
## 3
                   Drama War
            Action | Adventure
       Drama Horror Mystery
```

- Create the Recommender System
- Recommendations for the first user.

Distributed System – H2O – Data Preparation

```
# Specify H20 configuration needed the start and run of H20-3 cluster
h2oConf <- H2oConf()

# Create H20 Context
hc <- H2oContext.getOrCreate(h2oConf)</pre>
```

```
# Covert the ratings_tbl_2 Spark dataframe into an H2O frame
ratings_tbl_hf <- hc$asH2OFrame(ratings_tbl)
```

Split Dataset

```
# Split the dataset into training and test set
splits_2 <- h2o.splitFrame(ratings_tbl_hf, ratios = 0.8, seed = 123)</pre>
```

- Connect to H2O
- Convert the Spark ratings dataframe to H2O frame
- Split, test and train

```
## Connection successful!
## R is connected to the H2O cluster:
      H2O cluster uptime:
                               7 seconds 246 milliseconds
      H2O cluster timezone: Etc/UTC
      H2O data parsing timezone: UTC
      H2O cluster version: 3.30.0.6
      H2O cluster version age: 14 days, 10 hours and 25 minutes
                                 sparkling-water-rstudio_local-1594793430674
      H2O cluster name:
      H2O cluster total nodes: 1
      H2O cluster total memory: 1.78 GB
      H2O cluster total cores: 8
      H2O cluster allowed cores: 8
      H2O cluster healthy:
      H2O Connection ip:
                                172.31.35.234
      H2O Connection port:
                                 54325
      H2O Connection proxy:
      H2O Internal Security:
      H2O API Extensions:
                                 XGBoost, Algos, Amazon S3, Sparkling Water REST API Extensions, AutoML, Cor
e V3, TargetEncoder, Core V4
                                 R version 3.6.0 (2019-04-26)
## Reference class object of class "H2OContext"
## Field "jhc":
## <jobj[94]>
   org.apache.spark.h2o.H2OContext
## Sparkling Water Context:
## * Sparkling Water Version: 3.30.0.6-1-2.4
## * H2O name: sparkling-water-rstudio_local-1594793430674
## * cluster size: 1
## * list of used nodes:
    (executorId, host, port)
   (0,172.31.35.234,54325)
    -----
    Open H2O Flow in browser: http://localhost:54324 (CMD + click in Mac OSX)
```

Distributed System - H2O - Model Development - GLM

```
train_time_h2o <- toc(quiet =TRUE)

# Get top level summary information on our model
summary(glm_model)</pre>
```

- Create the recommender system
- Summary of the model

```
## ========
## H2ORegressionModel: glm
## Model Key: GLM model R 1594793458141 1
## GLM Model: summary
       family
               link
                                                    regularization
## 1 gaussian identity Elastic Net (alpha = 0.5, lambda = 0.03036 )
                                                                  lambda search
## 1 nlambda = 100, lambda.max = 0.1345, lambda.min = 0.03036, lambda.1se = -1.0
     number of predictors total number of active predictors
## 1
    number_of_iterations training_frame
                      17 RTMP sid 8b90 1
## 1
## H2ORegressionMetrics: glm
## ** Reported on training data. **
## MSE: 1.229628
## RMSE: 1.108886
## MAE: 0.9259446
## RMSLE: 0.2835432
## Mean Residual Deviance : 1.229628
## R^2 : 0.003459827
## Null Deviance :905653
## Null D.o.F. :733977
## Residual Deviance :902519.6
## Residual D.o.F. :733976
## AIC :2234667
## H20RegressionMetrics: glm
## ** Reported on validation data. **
## MSE: 1.226579
## RMSE: 1.10751
## MAE: 0.9245265
## RMSLE: 0.2832008
## Mean Residual Deviance : 1.226579
## R^2: 0.003648224
## Null Deviance :225385.5
## Null D.o.F. :183080
## Residual Deviance :224563.3
## Residual D.o.F. :183079
## AIC :556957.8
```

Distributed System – H2O – Model Development - GLM

- Rating prediction mostly between 3.3 and 3.8
- Improvement could done by tuning its hyperparameters such as alpha and lambda

```
# Convert from H2O Frame to Spark Data Frame
predicted <- hc$asSparkFrame(glm pred)</pre>
# Extract the true 'rating' values from our test dataset
actual <- hc$asSparkFrame(splits 2[[2]]) %>%
 select(rating) %>%
 collect() %>%
  `[[`("rating")
# Produce a data frame housing the predicted + actual 'rating' values
predict actual <- data.frame(predicted = predicted, actual = actual)</pre>
names(predict actual) <- c("predicted", "actual")</pre>
# Plot predicted vs. actual values
point plot <- ggplot(predict actual, aes(x = actual, y = predicted)) +</pre>
 geom point() +
 theme(plot.title = element text(hjust = 0.5)) +
  labs(
   x = "Actual Rating",
   y = "Predicted Rating",
   title = "Predicted vs. Actual Movies Rating")
# Plot predicted rating distribution
dist plot <- qplot(predict actual$predicted) +
 ggtitle("Predicted Rating Distribution") +
 labs(x = 'Predicted Rating')
grid.arrange(point plot, dist plot, nrow = 1)
```

Distributed System – Model Evaluation - Accuracy

	RMSE	MSE	MAE
Recommenderlab ALS	0.9404515	0.8844490	0.7491568
Spark ALS	0.8654353	0.7489783	0.6941973
H2O GLM	1.1075102	1.2265789	0.9245265

```
# Evaluate the accuracy for the Recommenderlab ALS model
acr als <- calcPredictionAccuracy(pred als acr, test unknown)</pre>
# Remove NaN values due to dataset splitting in Spark
als pred <- als pred %>% filter(!is.na(prediction))
# Evaluate the accuracy for the Spark ALS model
spark mae <- als pred %>%
 data.frame() %>%
  mutate(error = abs(rating - prediction)) %>%
  summarize(mean(error))
spark_mse <- als_pred %>%
  data.frame() %>%
  mutate(error = (rating - prediction)^2) %>%
  summarize(mean(error))
spark rmse <- als pred %>%
 data.frame() %>%
  mutate(error = (rating - prediction)^2) %>%
 summarize(sqrt(mean(error)))
Spark ALS <- data.frame(RMSE = spark_rmse, MSE = spark_mse, MAE = spark_mae)
colnames(Spark_ALS) <- c("RMSE", "MSE", "MAE")</pre>
# Evaluate the accuracy for the H2O GLM model
h2o_mse <- glm_perf@metrics$MSE %>% data.frame()
h2o_rmse <- glm_perf@metrics$RMSE %>% data.frame()
h2o mae <- glm perf@metrics$mae %>% data.frame()
H2O GLM <- data.frame(RMSE = h2o_rmse, MSE = h2o_mse, MAE = h2o_mae)
colnames(H2O_GLM) <- c("RMSE", "MSE", "MAE")
# Combine the RMSE, MSE, and MAE for both models
acr <- rbind("Recommenderlab ALS" = acr_als,</pre>
             "Spark ALS" = Spark ALS,
             "H20 GLM" = H20 GLM)
# Update column names to RMSE, MSE, and MAE
colnames(acr) <- c("RMSE", "MSE", "MAE")</pre>
kable(acr, format = "html") %>%
  kable styling(bootstrap options = c("striped", "hover"))
```

Distributed System – Model Evaluation - Performance

Method	Training	Predicting	Top_N
Recommenderlab	6644.53	416.14	412.45
Spark	7.22	0.07	3.57
H2O	2.23	1.06	NA

Method	Profile	Similarity
Content-Based	5.85	0.41

```
# Set up data frame for running time performance
runtime <- data.frame(Method=character(), Training=double(), Predicting=double(), Top N=double())
runtime_2 <- data.frame(Method=character(), Profile=double(), Similarity=double())
# Combine the running time for the Recommenderlab ALS model
runtime <- rbind(runtime, data.frame(Method = "Recommenderlab",
                                    Training = round(train_time_rec$toc - train_time_rec$tic, 2),
                                     Predicting = round(predict_time_rec$toc - predict_time_rec$tic, 2),
                                     Top N = round(top_n_time_rec$toc - top_n_time_rec$tic, 2)))
# Combine the running time for the Content-Based model.
runtime 2 <- rbind(runtime 2, data.frame(Method = "Content-Based",
                                     Profile = round(prof mtx time$toc - prof mtx time$tic, 2),
                                     Similarity = round(sim dist time$toc - sim dist time$tic, 2)))
# Combine the running time for the Spark ALS model
runtime<- rbind(runtime, data.frame(Method = "Spark",
                                    Training = round(train_time_sp$toc - train_time_sp$tic, 2),
                                    Predicting = round(predict time sp$toc - predict time sp$tic, 2),
                                    Top_N = round(top_n_time_sp$toc - top_n_time_sp$tic, 2)))
# Combine the running time for the H2O GLM model
runtime<- rbind(runtime, data.frame(Method = "H2O",
                                    Training = round(train_time_h2o$toc - train_time_h2o$tic, 2),
                                    Predicting = round(predict_time_h2o$toc - predict_time_h2o$tic, 2),
                                    Top N = NA)
# Remove row names
rownames(runtime) <- NULL
rownames(runtime_2) <- NULL
kable(runtime, format = "html", row.names = FALSE) %>%
  kable_styling(bootstrap_options = c("striped", "hover"))
```

Distributed System – Model Evaluation – 1st User

Evaluate the 1st User

kable(first_user_all, format = "html", row.names = FALSE) %>%
kable_styling(bootstrap_options = c("striped", "hover"))

```
first_user_all <- cbind(first_user_rec$title, movies_rec$title, first_user_sp$title)

colnames(first_user_all) <- c("Recommenderlab", "Content-Based", "Spark")</pre>
```

Recommenderlab	Content- Based	Spark
Mallrats (1995)	Mulan (1998)	Star Wars: Episode IV - A New Hope (1977)
Boys on the Side (1995)	Mulan (1998)	Shawshank Redemption, The (1994)
Paper, The (1994)	Mulan (1998)	Schindler's List (1993)
Cold Comfort Farm (1995)	Mulan (1998)	Raiders of the Lost Ark (Indiana Jones and the Raiders of the Lost Ark) (1981)
Mallrats (1995)	Mulan (1998)	Sixth Sense, The (1999)

Conclusion

- We created 4 different recommender systems, Distributed and Non-distributed.
 - Recommenderlab, ALS method
 - Content-Based, movie genres
 - Spark, ALS method
 - H2O, GLM method
- Spark ALS approach performs the best in term of accuracy and speed.
- Recommenderlab approach took the longest time to run, ~ 2 hours just for training a million rating data.
 - AWS EC2 Instance Type T2, 8 vCPU, 32gb Memory
 - Could be run faster on Instance Type G4, which designed to accelerate computing for machine learning inference for applications like recommender systems.
- We can further improve the distributed recommender systems by optimizing the algorithms hyperparameters.
- The content-based recommender engine can also be improved to include several other attributes such as movie overview, actors, directors, and keywords. This could be done with methods such as the Term Frequency–Inverse Document Frequency algorithm (TFIDF).

References

Gorakala, K.G. & Usuelli, M. (2015, Sept). Building a Recommendation System with R (pp. 50-92). Packt Publishing Ltd.

Hashler, M. & Vereet, B. (2019, Aug 27). Package 'recommenderlab'. CRAN. Retrieved from https://cran.r-project.org/web/packages/recommenderlab/recommenderlab.pdf.

Raela. (2015, Jun 7). Building a Movie Recommendation Engine with R. Muffynomster. Retrieved from https://muffynomster.wordpress.com/2015/06/07/building-a-movie-recommendation-engine-with-r/.

Boehmke, B. & Greenwell, B. (2020, Feb 1st). Hands-On Machine Learning with R. Taylor & Francis Group. Retrieved from https://bradleyboehmke.github.io/HOML/GLRM.html.

Generalized Linear Model (GLM). (2020, Jun 30). H2O.ai. Retrieved from https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/glm.html.

Usai, D. (2019, Mar 25). Market Basket Analysis with recommenderlab. Medium. Retrieved from https://towardsdatascience.com/market-basket-analysis-with-recommenderlab-5e8bdc0de236

Thank You for Listening

