

You are taking "Final Exam (TIMED)" as a timed exam. The timer on the right shows the time remaining in the exam. To receive credit for problems, you must select "Submit" for each problem before you select "End My Exam". **Show Less**

End My Exam

45:43:50 Ø

<u>Course</u> > <u>Final exam</u> > <u>Final Exam (TIMED)</u> > 4. F4.

4. F4.

4(a)

2/2 points (graded)

Find all negative real numbers λ_k for $k=1,2,3,\ldots$, for which the boundary value problem

$$egin{array}{lll} rac{d^2}{dx^2} v_k(x) &=& \lambda_k v_k(x) \ v_k(0) &=& 0 \ v_k(\pi/6) &=& 0 \end{array}$$

has a solution $v_k(x)$ that is not the zero function.

(Note that λ_k is negative, k is nonnegative, and $|\lambda_1|<|\lambda_2|<|\lambda_3|<\cdots$.)

$$\lambda_k = oxed{-36 ^* ext{k^2}}$$

Find the k=1 eigenfunction $v_{1}\left(x
ight)$ with amplitude 1.

$$v_1\left(x
ight) = egin{bmatrix} \sin\left(6^*\mathbf{x}
ight) \ & \sin\left(6\cdot x
ight) \end{bmatrix}$$

FORMULA INPUT HELP

Submit

You have used 1 of 3 attempts

✓ Correct (2/2 points)

4(b)

2/2 points (graded)

Find all negative real numbers λ_k for $k=0,1,2,3,\ldots$, for which the boundary value problem

$$egin{array}{lll} rac{d^2}{dx^2} v_k\left(x
ight) &=& \lambda_k v_k\left(x
ight) \ &v_k'\left(0
ight) &=& 0 \ &v_k\left(\pi
ight) &=& 0 \end{array}$$

has a solution $v_k\left(x
ight)$ that is not the zero function.

(Note that λ_k is negative, k is nonnegative, and $|\lambda_0|<|\lambda_1|<|\lambda_2|<\cdots$.)

Find the k=0 eigenfunction $v_{0}\left(x\right)$ with amplitude 1.

© All Rights Reserved