Phaco meta analysis

Patrick Mineault 14/02/2017

${\bf Contents}$

Analysis of full dataset	2
Main analysis: 12-month+ follow up	2
AACG	4
Meds	5
Correlation between meds and drop in IOP	7
Separate meta-analysis for each time period	9
6 month follow-up	9
12-month follow up	10
Last period	12
Correlation among time points	13
Multivariate inference	19
Meta-regression	22
Small study bias	29
Alternative filterings of the data	31
Prospective studies only	31
Meds	31
Excluding washout studies	32
Last period	32
Meds	34
Sensitivity to missingness	37
MIGS	40

Analysis of full dataset

Main analysis: 12-month+ follow up

```
df_ <- df %>%
 filter(!is.na(LastPeriodAbsIOPChangeMean), subtype != "AACG", MIGsYorN == 'N') %>%
 mutate(subtype=factor(subtype))
m <- metagen(LastPeriodAbsIOPChangeMean,</pre>
             LastPeriodAbsIOPChangeStdDev / sqrt(LastPeriodEyes),
             study.name,
             data=df_,
             byvar=subtype,
             n.e=LastPeriodEyes)
forest(m,
       comb.fixed=FALSE,
       digits=1,
       digits.se = 2,
       overall=FALSE,
       leftcols=c("studlab", "TE", "seTE", "n.e"),
       leftlabs=c("Study", "AIOP", "SE", "eyes"))
```

Study	ΔΙΟΡ	SE	eyes	ı	95%-CI
subtype = ACG Hayashi et al. (2001)† Lai et al. (2006) Mierzejewski et al. (2008) Tham et al. (2008) Tham et al. (2009) Liu et al. (2011) Tham et al. (2013) Dada et al. (2015) Dias-Santos (2015) Moghimi et al. (2015) Azuara-Blanco et al. (2016)** Lee et al. (2016) Siak et al. (2016) Random effects model Heterogeneity: /² = 99%, τ² = 2	-4.2 -5.1 -1.8 -8.3 -3.8 -8.4 -13.9 -5.4 -8.3 -12.9 -1.7 -2.1	2.07 0.94 0.59 0.62 0.94	72 21 25 35 27 30 20 44 15 46 182 56 24		-7.2 [-8.0; -6.4] -4.2 [-6.9; -1.5] -5.1 [-7.0; -3.2] -1.8 [-3.0; -0.6] -8.3 [-10.7; -5.9] -3.8 [-5.2; -2.4] -8.4 [-11.0; -5.8] -13.9 [-14.4; -13.4] -5.4 [-9.5; -1.3] -8.3 [-10.1; -6.5] -12.9 [-14.1; -11.7] -1.7 [-2.9; -0.5] -2.1 [-3.9; -0.3] -6.4 [-9.4; -3.4]
subtype = OAG Kim et al. (1999) Hayashi et al. (2001)† Leelachaikul et al. (2005) Mathalone et al. (2005) Damji et al. (2006) Shingleton et al. (2006) Shoji et al. (2007) Mierzejewski et al. (2008) Fea et. al (2010) Samuelson et al. (2011) Arthur et al. (2014) lancu et al. (2014) Pfeiffer et al. (2015)* Siegel et al. (2015) Siak et al. (2016) Vold et al. (2016) Random effects model Heterogeneity: I ² = 91%, τ ² = 3	-5.3 -1.6 -1.9 -1.5 -1.4 -1.0 -4.0 -1.6 -1.0 -2.1 -1.9 -7.4 -2.2 -2.1 -5.4	0.65 0.68 0.57 1.00 0.86 0.44 0.67 0.56 0.70 0.30 1.26 0.63 0.78 0.67 0.74 0.36	31 50 54 24 25 20 52 21 123 17 38 47 52 30 116		-2.9 [-4.2; -1.6] -5.3 [-6.6; -4.0] -1.6 [-2.7; -0.5] -1.9 [-3.9; 0.1] -1.5 [-3.2; 0.1] -1.4 [-2.3; -0.5] -1.0 [-2.3; 0.3] -4.0 [-5.1; -2.9] -1.6 [-3.0; -0.2] -1.0 [-1.6; -0.4] -2.1 [-4.6; 0.4] -1.9 [-3.1; -0.7] -7.4 [-8.9; -5.9] -2.2 [-3.5; -0.9] -2.1 [-3.5; -0.7] -5.4 [-6.1; -4.7] -2.7 [-3.7; -1.7]
subtype = PXG Jacobi et al. (1999) Damji et al. (2006) Mierzejewski et al. (2008) Shingleton et al. (2008) Random effects model Heterogeneity: $I^2 = 95\%$, $\tau^2 = 1$	-6.6 -1.1	0.78 0.81 0.63	13 27 23 51	-15 -10 -5 0 5	-14.0 [-18.0; -10.0] -3.1 [-4.7; -1.6] -6.6 [-8.2; -5.0] -1.1 [-2.3; 0.1] -5.8 [-9.5; -2.0]

AACG

```
df <- df %>%
 filter(!is.na(LastPeriodAbsIOPChangeMean), subtype == "AACG", MIGsYorN == 'N') %>%
  mutate(subtype=factor(subtype)) %>% dplyr::arrange(Year)
m <- metagen(LastPeriodAbsIOPChangeMean,
             LastPeriodAbsIOPChangeStdDev / sqrt(LastPeriodEyes),
             study.name,
             data=df_,
             n.e=LastPeriodEyes, comb.fixed = FALSE)
print(m)
df_ <- df %>%
 filter(!is.na(LastPeriodAbsIOPChangeMean), subtype == "AACG", MIGsYorN == 'N') %>%
 mutate(subtype=factor(subtype)) %>% dplyr::arrange(Year)
m <- metagen(RxChangeMean,
             RxChangeStdDev / sqrt(LastPeriodEyes),
             study.name,
             data=df ,
             n.e=LastPeriodEyes, comb.fixed = FALSE)
print(m)
df_ %>% dplyr::select(RxPreOpMean, RxPostOpMean)
                                               95%-CI %W(random)
##
## Lam et al. (2008)
                        -47.1000 [-50.0948; -44.1052]
                                                             26.8
                        -35.8000 [-39.6379; -31.9621]
## Lee et al. (2010)
                                                             25.9
## Husain et al. (2012) -44.5000 [-52.0026; -36.9974]
                                                             20.6
## Hou et al. (2015)
                        -35.9600 [-39.0429; -32.8771]
                                                             26.7
## Number of studies combined: k = 4
##
##
                                               95%-CI
                                                           z p-value
## Random effects model -40.665 [-47.1528; -34.1772] -12.28 < 0.0001
##
## Quantifying heterogeneity:
## tau^2 = 38.5307; H = 3.36 [2.26; 4.99]; I^2 = 91.1% [80.4%; 96.0%];
## Rb = 87.9% [68.9%; 100.0%]
##
## Test of heterogeneity:
        Q d.f. p-value
             3 < 0.0001
## 33.84
##
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
                                             95%-CI %W(random)
## Lam et al. (2008)
                        -0.3600 [-0.5876; -0.1324]
                                                         100.0
## Lee et al. (2010)
                                                           0.0
                             NΔ
## Husain et al. (2012)
                             NA
                                                           0.0
## Hou et al. (2015)
                                                           0.0
##
## Number of studies combined: k = 1
```

```
##
##
                                          95%-CI
                                                     z p-value
## Random effects model -0.36 [-0.5876; -0.1324] -3.10 0.0019
##
## Quantifying heterogeneity:
## tau^2 = 0; H = NA; I^2 = NA;
## Rb = NA
##
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
    RxPreOpMean RxPostOpMean
##
## 1
           0.39
                         0.10
## 2
             NA
## 3
             NA
                          NA
## 4
             NA
                         0.48
```

Meds

```
df_ <- df %>%
 filter(!is.na(LastPeriodAbsIOPChangeMean),
         df$subtype != "AACG", MIGsYorN == 'N') %>%
  mutate(subtype=factor(subtype))
m <- metagen(RxChangeMean,</pre>
             RxChangeStdDev / sqrt(LastPeriodEyes),
             study.name,
             data=df_,
             byvar=subtype,
             n.e=LastPeriodEyes)
forest(m,
       comb.fixed=FALSE,
       digits=1,
       digits.se = 2,
       overall=FALSE,
       leftcols=c("studlab", "TE", "seTE", "n.e"),
       leftlabs=c("Study", "AIOP", "SE", "eyes"))
```

Study	ΔΙΟΡ	SE	eyes	ı	95%-CI
subtype = ACG Hayashi et al. (2001)† Lai et al. (2006) Mierzejewski et al. (2008) Tham et al. (2008) Tham et al. (2009) Liu et al. (2011) Tham et al. (2013) Dada et al. (2015) Dias-Santos (2015) Moghimi et al. (2015) Azuara-Blanco et al. (2016)** Lee et al. (2016) Siak et al. (2016) Random effects model Heterogeneity: I² = 93%, τ² = 0	-1.4 -0.3 -1.1 -1.6 -0.5 -2.2 -1.9 -0.7 -1.1 -0.6 -0.4	0.16 0.25 0.18 0.24 0.33 0.24 0.35 0.10 0.34 0.17 0.09 0.14	56 24	**********************	-0.7 [-1.0; -0.4] -1.4 [-1.9; -0.9] -0.3 [-0.6; 0.1] -1.1 [-1.6; -0.6] -1.6 [-2.2; -1.0] -0.5 [-1.0; 0.0] -2.2 [-2.9; -1.5] -1.9 [-2.1; -1.7] -0.7 [-1.4; -0.1] -1.1 [-1.4; -0.8] -0.6 [-0.8; -0.4] -0.4 [-0.6; -0.1] -1.0 [-1.4; -0.6]
subtype = OAG Kim et al. (1999) Hayashi et al. (2001)† Leelachaikul et al. (2005) Mathalone et al. (2006) Shingleton et al. (2006) Shoji et al. (2007) Mierzejewski et al. (2008) Fea et. al (2010) Samuelson et al. (2011) Arthur et al. (2014) Iancu et al. (2014) Pfeiffer et al. (2015)* Siegel et al. (2015) Siak et al. (2016) Vold et al. (2016)* Random effects model Heterogeneity: I² = 91%, τ² = 0	-0.2 -0.4 -0.1 0.0 -0.2 -0.6 -1.1 0.1 0.2 -1.0 -0.2	. 0.21 0.15 0.29 . 0.11 0.27 0.08 0.39 0.14 0.21 0.13 . 0.12	31 50 54 24 24 55 20 52 21 123 17 38 47 52 30 116		-1.0 -0.6 [-1.0; -0.2] -0.2 [-0.5; 0.1] -0.4 [-1.0; 0.2] -0.1 [-0.3; 0.1] 0.0 -0.2 [-0.4; 0.1] -0.6 [-1.1; -0.1] -1.1 [-1.3; -0.9] 0.1 [-0.7; 0.9] 0.2 [0.0; 0.5] -1.0 [-1.4; -0.6] -0.2 [-0.5; 0.1] -0.7 [-0.9; -0.5] -0.4 [-0.7; -0.1]
subtype = PXG Jacobi et al. (1999) Damji et al. (2006) Mierzejewski et al. (2008) Shingleton et al. (2008) Random effects model Heterogeneity: $I^2 = 7\%$, $\tau^2 = 0.0$	-0.6 -0.6	0.31 0.22 0.20 = 0.34	13 27 23 51	-2 -1 0 1 2	-1.1 [-1.7; -0.5] -0.6 [-1.0; -0.1] -0.6 [-1.0; -0.2] -0.7 [-1.0; -0.4]

Correlation between meds and drop in IOP

How is IOP drop related to change in meds? Two hypotheses:

- Those studies that see the largest IOP drops also have drop in meds, as doctors see that can use the newfound *slack* to decrease the number of meds people take
- The studies that see the largest IOP drops are those that don't change meds, because dropping meds would also increase IOP

So which is it?

Warning: Removed 9 rows containing missing values (geom_errorbar).

Warning: Removed 7 rows containing missing values (geom_errorbarh).

OAG only

There is an apparent positive correlation between the two effect sizes: studies with larger drops in IOP also tend to see larger drops in Rx.

```
LastPeriodAbsIOPChangeStdDev / sqrt(LastPeriodEyes),
                                              RxChangeMean,
                                              RxChangeStdDev / sqrt(LastPeriodEyes))))
mean(drawn.corrs)
## [1] 0.3812048
sd(drawn.corrs)
## [1] 0.1348602
cat("Mean +- SE correlation, no washout\n")
## Mean +- SE correlation, no washout
df_ <- filter.data(df, 'nowashout') %>% filter(subtype=='OAG', MIGsYorN == 'N')
drawn.corrs <- with(df_, replicate(n = 100,</pre>
                                   draw.corr(LastPeriodAbsIOPChangeMean,
                                              LastPeriodAbsIOPChangeStdDev / sqrt(LastPeriodEyes),
                                              RxChangeMean,
                                              RxChangeStdDev / sqrt(LastPeriodEyes))))
mean(drawn.corrs)
## [1] -0.02253974
sd(drawn.corrs)
## [1] 0.1941081
```

However, this effect goes away when we focus on the studies which don't have washout.

Separate meta-analysis for each time period

```
df <- read.data(fill.last = FALSE)</pre>
```

6 month follow-up

```
n.e=SixMoEyes)
forest(m,
    comb.fixed=FALSE,
    digits=1,
    digits.se = 2,
    overall=FALSE,
    leftcols=c("studlab", "TE", "seTE", "n.e"),
    leftlabs=c("Study", "AIOP", "SEM", "eyes"))
```


12-month follow up

```
study.name,
data=df_,
byvar=subtype,
n.e=OneYEyes)

forest(m,

comb.fixed=FALSE,
digits=1,
digits.se = 2,
overall=FALSE,
leftcols=c("studlab", "TE", "seTE", "n.e"),
leftlabs=c("Study", "AIOP", "SEM", "eyes"))
```


Last period

```
df_ <- df %>%
 filter(!is.na(LastPeriodAbsIOPChangeMean), subtype != "AACG", MIGsYorN == 'N') %>%
  mutate(subtype=factor(subtype))
m <- metagen(LastPeriodAbsIOPChangeMean,</pre>
             LastPeriodAbsIOPChangeStdDev / sqrt(LastPeriodEyes),
             study.name,
             data=df_,
             byvar=subtype,
             n.e=LastPeriodEyes)
forest(m,
       comb.fixed=FALSE,
       digits=1,
      digits.se = 2,
       overall=FALSE,
       leftcols=c("studlab", "TE", "seTE", "n.e"),
      leftlabs=c("Study", "AIOP", "SEM", "eyes"))
```


Correlation among time points

Measure the correlation between different outcomes (IOP at 6 months vs. 12 months).

```
y = OneYAbsIOPChangeMean,
ymin= OneYAbsIOPChangeMean - 1.96*OneYAbsIOPChangeStdDev / sqrt(OneYEyes),
ymax= OneYAbsIOPChangeMean + 1.96*OneYAbsIOPChangeStdDev / sqrt(OneYEyes),
label=study.name,
color=subtype
)) +
geom_abline(slope = 1, color="gray70") +
geom_errorbar() +
geom_errorbarh() +
xlab('AIOP at 6 months') +
ylab('AIOP at one year') +
coord_fixed(xlim=c(-18, 0), ylim=c(-18,0))
```

- ## Warning: Removed 15 rows containing missing values (geom_errorbar).
- ## Warning: Removed 15 rows containing missing values (geom_errorbarh).

It's very clear that six months and 12 months IOP are highly correlated.

Similarly for one-year vs. last period:

Warning: Removed 15 rows containing missing values (geom_errorbar).

Warning: Removed 15 rows containing missing values (geom_errorbarh).

Again, correlations are very high. Present this in another way.

library(reshape2)

```
##
## Attaching package: 'reshape2'
## The following object is masked from 'package:tidyr':
##
## smiths
```

```
nd <- melt(df %>%
             filter(MIGsYorN == 'N',
                    subtype != 'AACG',
                    1*is.na(SixMoAbsIOPChangeMean) +
                    1*is.na(OneYAbsIOPChangeMean) +
                    1*is.na(LastPeriodAbsIOPChangeMean) < 2) %>%
             mutate(SixMoChangeSEM = SixMoAbsIOPChangeStdDev / sqrt(SixMoEyes),
                    OneYChangeSEM = OneYAbsIOPChangeStdDev / sqrt(OneYEyes),
                    LastPeriodChangeSEM = LastPeriodAbsIOPChangeStdDev / sqrt(LastPeriodEyes)) %%
             select(study.name, subtype,
                    SixMoAbsIOPChangeMean,
                    OneYAbsIOPChangeMean,
                    LastPeriodAbsIOPChangeMean,
                    SixMoChangeSEM,
                    OneYChangeSEM,
                    LastPeriodChangeSEM), id.vars=c("study.name", "subtype"))
nd$metric <- substr(nd$variable, nchar(as.character(nd$variable)) - 3, nchar(as.character(nd$variable))</pre>
nd$period <- substr(nd$variable, 0, 4)</pre>
df_ <- dcast(nd, formula = study.name + subtype + period ~ metric)</pre>
df_ <- df_ %>% mutate(period = factor(period, c('SixM', 'OneY', 'Last')),
                      g = paste(study.name, as.character(subtype))) %>% filter(!is.na(Mean))
ggplot(df_, aes(y =Mean,
               ymin=Mean - 1.96*eSEM,
               ymax=Mean + 1.96*eSEM,
               x = period,
               label=study.name,
               group=g)) +
  geom_ribbon(alpha=.02) +
  geom_line(alpha=.5, aes(color=subtype)) +
  coord_cartesian(y=c(-15, 0)) + ggtitle('Time course of IOP per study') + theme(plot.title = element_t
```

Time course of IOP per study

It's remarkable how consistent measurements are between time periods. At most, we find a change of +- 2.5 mm Hg between the first and last period.

Mean +- SE correlation, OAG only

```
print(mean(drawn.corrs))
## [1] 0.6294788
print(sd(drawn.corrs))
## [1] 0.1801284
df_ <- df
drawn.corrs <- with(df_, replicate(n = 100,</pre>
                                   draw.corr(SixMoAbsIOPChangeMean,
                                             SixMoAbsIOPChangeStdDev / sqrt(SixMoEyes),
                                             OneYAbsIOPChangeMean,
                                             OneYAbsIOPChangeStdDev / sqrt(OneYEyes))))
cat("Mean +- SE correlation, All subtypes\n")
## Mean +- SE correlation, All subtypes
print(mean(drawn.corrs))
## [1] 0.9906161
print(sd(drawn.corrs))
## [1] 0.004530372
cat("Regression of one year against 6 months")
## Regression of one year against 6 months
print(summary(lm(OneYAbsIOPChangeMean ~ SixMoAbsIOPChangeMean,
                 weights = OneYAbsIOPChangeStdDev / sqrt(OneYEyes))))
##
## Call:
## lm(formula = OneYAbsIOPChangeMean ~ SixMoAbsIOPChangeMean, data = df,
       weights = OneYAbsIOPChangeStdDev/sqrt(OneYEyes))
##
##
## Weighted Residuals:
       Min
                 1Q
                      Median
## -1.54354 -0.22175 0.06606 0.24424 2.17907
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
                         -0.18172 0.25885 -0.702
                                                        0.492
## (Intercept)
## SixMoAbsIOPChangeMean 0.98209
                                     0.01326 74.083
                                                       <2e-16 ***
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8044 on 18 degrees of freedom
## (17 observations deleted due to missingness)
## Multiple R-squared: 0.9967, Adjusted R-squared: 0.9965
## F-statistic: 5488 on 1 and 18 DF, p-value: < 2.2e-16</pre>
```

This is also reflected in the correlations - even accounting for noise, the correlations are > .9 between month 6 and month 12.

Multivariate inference

data=df_,
method="reml")

Let's use mymeta to infer the effect size for all periods together.

```
library(mvmeta)
```

This is mvmeta 0.4.7. For an overview type: help('mvmeta-package').

```
fill.na <- function(x, y, z) {</pre>
  return(ifelse(!is.na(x),
                    ifelse(is.na(y),
                           z,
                           ifelse(is.na(z),
                             sqrt((y**2 + z**2) / 2 )))))
}
get.correlation.matrices.tri <- function(x, y, z, assumed.rho) {</pre>
 S <- list()
 for(i in 1:length(x)) {
    xx \leftarrow fill.na(x[i], y[i], z[i])
    yy <- fill.na(y[i], x[i], z[i])</pre>
    zz <- fill.na(z[i], x[i], y[i])</pre>
    S[[i]] \leftarrow matrix(c(xx ** 2, xx * yy * assumed.rho, xx * zz * assumed.rho ** 2,
                        xx * yy * assumed.rho, yy ** 2, zz * yy* assumed.rho,
                        xx * zz * assumed.rho ** 2, zz * yy * assumed.rho, zz * zz), ncol=3)
 }
 S
}
df_ <- df %>% filter(!is.na(LastPeriodAbsIOPChangeStdDev) |
                      !is.na(SixMoAbsIOPChangeStdDev) |
                      !is.na(OneYAbsIOPChangeStdDev), subtype %in% c('OAG', 'ACG'), MIGsYorN == 'N')
thefit <- mvmeta(cbind(SixMoAbsIOPChangeMean, OneYAbsIOPChangeMean, LastPeriodAbsIOPChangeMean) ~ subty
       S=get.correlation.matrices.tri(df_$SixMoAbsIOPChangeStdDev / sqrt(df_$SixMoEyes),
                                        df_$OneYAbsIOPChangeStdDev / sqrt(df_$OneYEyes),
                                        df_$LastPeriodAbsIOPChangeStdDev / sqrt(df_$LastPeriodEyes), .7),
```

summary(thefit)

```
## Call: mvmeta(formula = cbind(SixMoAbsIOPChangeMean, OneYAbsIOPChangeMean,
           LastPeriodAbsIOPChangeMean) ~ subtype, S = get.correlation.matrices.tri(df_$SixMoAbsIOPChangeStdDev/
##
           \label{localization} $$df_$OneYAbsIOPChangeStdDev/sqrt(df_$OneYEyes), df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqrt(df_$LastPeriodAbsIOPChangeStdDev/sqr
##
               0.7), data = df , method = "reml")
##
## Multivariate random-effects meta-regression
## Dimension: 3
## Estimation method: REML
##
## Fixed-effects coefficients
## SixMoAbsIOPChangeMean :
                                  Estimate Std. Error
                                                                                              z Pr(>|z|)
                                                                                                                          95%ci.lb
                                                                                                                                                95%ci.ub
                                                                                                         0.0000
                                                                                                                            -8.0084
                                                                                                                                                  -4.2970
## (Intercept)
                                    -6.1527
                                                                0.9468
                                                                                 -6.4985
                                      3.0974
                                                                1.2675
                                                                                                         0.0145
                                                                                                                              0.6133
                                                                                                                                                    5.5816
## subtypeOAG
                                                                                   2.4438
##
## (Intercept)
## subtypeOAG
## OneYAbsIOPChangeMean :
                                  Estimate
                                                      Std. Error
                                                                                                    Pr(>|z|)
                                                                                                                          95%ci.lb
                                                                                                                                                95%ci.ub
                                    -6.3420
                                                                0.9507
                                                                                 -6.6711
                                                                                                         0.0000
                                                                                                                             -8.2053
                                                                                                                                                  -4.4787
## (Intercept)
## subtypeOAG
                                      3.5915
                                                                1.2659
                                                                                   2.8370
                                                                                                         0.0046
                                                                                                                               1.1103
                                                                                                                                                    6.0727
##
## (Intercept)
## subtypeOAG
## LastPeriodAbsIOPChangeMean :
##
                                  Estimate Std. Error
                                                                                              z Pr(>|z|)
                                                                                                                          95%ci.lb
                                                                                                                                                95%ci.ub
## (Intercept)
                                    -6.4786
                                                                0.8303
                                                                                -7.8028
                                                                                                         0.0000
                                                                                                                             -8.1059
                                                                                                                                                  -4.8512
                                      3.7624
                                                                1.1006
                                                                                   3.4186
                                                                                                         0.0006
                                                                                                                               1.6053
                                                                                                                                                    5.9194
## subtypeOAG
## (Intercept)
## subtypeOAG
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Between-study random-effects (co)variance components
        Structure: General positive-definite
##
                                                                  Std. Dev
                                                                                                                             Corr
## SixMoAbsIOPChangeMean
                                                                       3.2298
                                                                                       SixMoAbsIOPChangeMean
## OneYAbsIOPChangeMean
                                                                       3.2590
                                                                                                                        0.9985
## LastPeriodAbsIOPChangeMean
                                                                                                                        0.9929
                                                                       2.7968
##
## SixMoAbsIOPChangeMean
                                                                   OneYAbsIOPChangeMean
## OneYAbsIOPChangeMean
## LastPeriodAbsIOPChangeMean
                                                                                                0.9848
## Multivariate Cochran Q-test for residual heterogeneity:
## Q = 1318.4650 (df = 55), p-value = 0.0000
## I-square statistic = 95.8%
##
## 29 studies, 61 observations, 6 fixed and 6 random-effects parameters
##
            logLik
                                          AIC
                                                                  BTC
```

```
newdata <- data.frame(subtype=c('OAG', 'ACG'))
pred <- predict(thefit, newdata, se=TRUE)
newdata$SixMoAbsIOPChangeMean <- pred$fit[,1]
newdata$OneYAbsIOPChangeMean <- pred$fit[,2]
newdata$LastPeriodAbsIOPChangeMean <- pred$fit[,3]
newdata$SixMoAbsIOPChangeSEM <- pred$se[,1]
newdata$OneYAbsIOPChangeSEM <- pred$se[,2]
newdata$LastPeriodAbsIOPChangeSEM <- pred$se[,3]</pre>
library(reshape2)
nd <- melt(newdata)
```

Using subtype as id variables

Meta-regression

Consider relationships between different covariates and outcomes. Focus on the IOP drop at one year and its correlation with different factors.

```
df <- read.data()</pre>
## These retrospective studies are losing eyes per period - not impossible, but unusual:
## Mathalone et al. (2005)
## Leelachaikul et al. (2005)
## Shoji et al. (2007)
## Liu et al. (2011)
## Arthur et al. (2014)
## Tetz et al. (2015)
## These retrospective studies are gaining eyes as the study goes
## Samuelson et al. (2011)
df_ <- df %>% filter(!is.na(LastPeriodAbsIOPChangeMean),
                     subtype != "AACG",
                     MIGsYorN == 'N') %>%
  mutate(coarseWashoutType=factor(washout.type, c("None", "Partial", "Pre", "Both")),
         subtype=relevel(factor(subtype), ref="OAG"))
levels(df_$coarseWashoutType) <- c("None", "None", "Pre", "Both")</pre>
m <- metagen(LastPeriodAbsIOPChangeMean,
             LastPeriodAbsIOPChangeStdDev / sqrt(LastPeriodEyes),
             study.name,
             data=df_,
             byvar=subtype,
             n.e=OneYEyes)
# Leveled against OAG
print(metareg(~ LastPeriodEyes, x=m))
## Mixed-Effects Model (k = 33; tau^2 estimator: DL)
                                                            25.5650 (SE = 9.4030)
## tau^2 (estimated amount of residual heterogeneity):
## tau (square root of estimated tau^2 value):
                                                            5.0562
## I^2 (residual heterogeneity / unaccounted variability): 98.53%
## H^2 (unaccounted variability / sampling variability):
                                                            67.85
## R^2 (amount of heterogeneity accounted for):
                                                            0.00%
## Test for Residual Heterogeneity:
## QE(df = 31) = 2103.4367, p-val < .0001
## Test of Moderators (coefficient(s) 2):
## QM(df = 1) = 0.8172, p-val = 0.3660
##
```

```
## Model Results:
##
##
                   estimate
                                 se
                                        zval
                                                pval
                                                        ci.lb
                    -3.5035 1.4564
                                    -2.4055 0.0161
                                                     -6.3580 -0.6489 *
## intrcpt
## LastPeriodEyes
                   -0.0231 0.0256
                                    -0.9040 0.3660
                                                      -0.0733
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
print(metareg(~ Year, x=m))
##
## Mixed-Effects Model (k = 33; tau^2 estimator: DL)
## tau^2 (estimated amount of residual heterogeneity):
                                                           21.8899 (SE = 8.0755)
## tau (square root of estimated tau^2 value):
                                                           4.6787
## I^2 (residual heterogeneity / unaccounted variability): 98.30%
## H^2 (unaccounted variability / sampling variability):
                                                           58.68
## R^2 (amount of heterogeneity accounted for):
                                                           7.84%
## Test for Residual Heterogeneity:
## QE(df = 31) = 1818.9826, p-val < .0001
## Test of Moderators (coefficient(s) 2):
## QM(df = 1) = 0.0863, p-val = 0.7690
## Model Results:
##
##
           estimate
                                                               ci.ub
                                   zval
                                           pval
                                                     ci.lb
                            se
## intrcpt
            90.1158 322.2445
                                 0.2797 0.7797
                                                 -541.4717
                                                            721,7034
## Year
             -0.0471
                        0.1603 -0.2937 0.7690
                                                   -0.3614
                                                              0.2672
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
print(metareg(~ PreOpIOPMean * subtype + coarseWashoutType + AgeMean + Male, x=m))
## Warning in metafor::rma.uni(yi = TE, sei = seTE, data = dataset, mods =
## formula, : Studies with NAs omitted from model fitting.
## Mixed-Effects Model (k = 28; tau^2 estimator: DL)
## tau^2 (estimated amount of residual heterogeneity):
                                                           0.7168 \text{ (SE = } 0.4429)
## tau (square root of estimated tau^2 value):
## I^2 (residual heterogeneity / unaccounted variability): 60.81%
## H^2 (unaccounted variability / sampling variability):
                                                           2.55
## R^2 (amount of heterogeneity accounted for):
                                                           97.28%
##
## Test for Residual Heterogeneity:
## QE(df = 18) = 45.9263, p-val = 0.0003
##
```

```
## Test of Moderators (coefficient(s) 2,3,4,5,6,7,8,9,10):
## QM(df = 9) = 316.5158, p-val < .0001
##
## Model Results:
##
##
                           estimate
                                                zval
                                                        pval
                                                                 ci.lb
                                         se
## intrcpt
                           -4.5154 6.4041 -0.7051 0.4808 -17.0672
                                                               -0.4721
## PreOpIOPMean
                            -0.1719 0.1532 -1.1223 0.2617
## subtypeACG
                            9.9779 3.3923
                                             2.9414 0.0033
                                                                3.3292
## subtypePXG
                            12.4617 4.6754
                                             2.6654 0.0077
                                                                3.2980
## coarseWashoutTypePre
                            1.3583 1.4319
                                              0.9486 0.3428
                                                               -1.4481
                            -1.8649 1.3670 -1.3642 0.1725
## coarseWashoutTypeBoth
                                                               -4.5442
                                             1.3042 0.1922
## AgeMean
                             0.0891 0.0683
                                                               -0.0448
                                            -0.9748 0.3297
## Male
                            -0.0232 0.0238
                                                               -0.0698
                            -0.6667 0.1807 -3.6904 0.0002
## PreOpIOPMean:subtypeACG
                                                               -1.0208
## PreOpIOPMean:subtypePXG
                            -0.6791 0.2347 -2.8933 0.0038
                                                               -1.1391
##
                             ci.ub
## intrcpt
                            8.0364
## PreOpIOPMean
                            0.1283
## subtypeACG
                           16.6266
## subtypePXG
                           21.6253
                                     **
## coarseWashoutTypePre
                            4.1647
## coarseWashoutTypeBoth
                            0.8144
## AgeMean
                            0.2229
## Male
                            0.0234
## PreOpIOPMean:subtypeACG -0.3126
## PreOpIOPMean:subtypePXG
                          -0.2191
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# Leveled against ACG
df_ <- df_ %>% mutate(subtype=relevel(factor(subtype), ref="ACG"))
m <- metagen(LastPeriodAbsIOPChangeMean,
            LastPeriodAbsIOPChangeStdDev / sqrt(LastPeriodEyes),
            study.name,
            data=df ,
            byvar=subtype,
            n.e=OneYEyes)
print(metareg(~ LastPeriodEyes, x=m))
##
## Mixed-Effects Model (k = 33; tau^2 estimator: DL)
## tau^2 (estimated amount of residual heterogeneity):
                                                          25.5650 (SE = 9.4030)
## tau (square root of estimated tau^2 value):
                                                          5.0562
## I^2 (residual heterogeneity / unaccounted variability): 98.53%
## H^2 (unaccounted variability / sampling variability):
                                                          67.85
## R^2 (amount of heterogeneity accounted for):
                                                          0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 31) = 2103.4367, p-val < .0001
```

```
##
## Test of Moderators (coefficient(s) 2):
## QM(df = 1) = 0.8172, p-val = 0.3660
##
## Model Results:
##
##
                   estimate
                                                pval
                                                        ci.lb
                                                                 ci.ub
                                        zval
                                 se
## intrcpt
                   -3.5035 1.4564
                                    -2.4055 0.0161
                                                      -6.3580
                                                               -0.6489 *
## LastPeriodEyes
                   -0.0231 0.0256 -0.9040 0.3660 -0.0733
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
print(metareg(~ Year, x=m))
## Mixed-Effects Model (k = 33; tau^2 estimator: DL)
## tau^2 (estimated amount of residual heterogeneity):
                                                           21.8899 (SE = 8.0755)
## tau (square root of estimated tau^2 value):
                                                           4.6787
## I^2 (residual heterogeneity / unaccounted variability): 98.30%
## H^2 (unaccounted variability / sampling variability):
                                                           58.68
## R^2 (amount of heterogeneity accounted for):
                                                           7.84%
##
## Test for Residual Heterogeneity:
## QE(df = 31) = 1818.9826, p-val < .0001
## Test of Moderators (coefficient(s) 2):
## QM(df = 1) = 0.0863, p-val = 0.7690
##
## Model Results:
##
##
            estimate
                                   zval
                                           pval
                                                     ci.lb
                                                               ci.ub
                            se
                                 0.2797 0.7797
                                                -541.4717 721.7034
## intrcpt
           90.1158 322.2445
             -0.0471
                        0.1603 -0.2937 0.7690
                                                   -0.3614
## Year
                                                              0.2672
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
print(metareg(~ PreOpIOPMean * subtype + coarseWashoutType + AgeMean + Male, x=m))
## Warning in metafor::rma.uni(yi = TE, sei = seTE, data = dataset, mods =
## formula, : Studies with NAs omitted from model fitting.
## Mixed-Effects Model (k = 28; tau^2 estimator: DL)
                                                           0.7168 \text{ (SE = } 0.4429)
## tau^2 (estimated amount of residual heterogeneity):
## tau (square root of estimated tau^2 value):
                                                           0.8466
## I^2 (residual heterogeneity / unaccounted variability): 60.81%
## H^2 (unaccounted variability / sampling variability):
                                                           2.55
## R^2 (amount of heterogeneity accounted for):
                                                           97.28%
```

```
##
## Test for Residual Heterogeneity:
## QE(df = 18) = 45.9263, p-val = 0.0003
##
## Test of Moderators (coefficient(s) 2,3,4,5,6,7,8,9,10):
## QM(df = 9) = 316.5158, p-val < .0001
## Model Results:
##
##
                            estimate
                                          se
                                                 zval
                                                         pval
                                                                  ci.lb
## intrcpt
                             5.4625 6.4172
                                               0.8512 0.3946
                                                                -7.1149
## PreOpIOPMean
                             -0.8386 0.1066 -7.8633 <.0001
                                                                -1.0476
## subtypeOAG
                            -9.9779 3.3923 -2.9414 0.0033 -16.6266
## subtypePXG
                             2.4838 4.0456
                                             0.6139 0.5393
                                                                -5.4455
                            1.3583 1.4319
                                             0.9486 0.3428
                                                                -1.4481
## coarseWashoutTypePre
## coarseWashoutTypeBoth
                             -1.8649 1.3670 -1.3642 0.1725
                                                                -4.5442
                                             1.3042 0.1922
## AgeMean
                             0.0891 0.0683
                                                                -0.0448
## Male
                             -0.0232 0.0238 -0.9748 0.3297
                                                                -0.0698
## PreOpIOPMean:subtypeOAG
                             0.6667 0.1807
                                             3.6904 0.0002
                                                                0.3126
                             -0.0124 0.1985 -0.0625 0.9501
## PreOpIOPMean:subtypePXG
                                                                -0.4014
##
                              ci.ub
## intrcpt
                            18.0399
## PreOpIOPMean
                            -0.6296
                                    ***
## subtypeOAG
                            -3.3292
## subtypePXG
                            10.4130
## coarseWashoutTypePre
                             4.1647
## coarseWashoutTypeBoth
                             0.8144
## AgeMean
                             0.2229
## Male
                             0.0234
## PreOpIOPMean:subtypeOAG
                             1.0208 ***
## PreOpIOPMean:subtypePXG
                             0.3765
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Leveled against PXG
df_ <- df_ %>% mutate(subtype=relevel(factor(subtype), ref="PXG"))
m <- metagen(LastPeriodAbsIOPChangeMean,</pre>
             LastPeriodAbsIOPChangeStdDev / sqrt(LastPeriodEyes),
             study.name,
             data=df ,
             byvar=subtype,
             n.e=OneYEyes)
print(metareg(~ LastPeriodEyes, x=m))
##
## Mixed-Effects Model (k = 33; tau^2 estimator: DL)
## tau^2 (estimated amount of residual heterogeneity):
                                                           25.5650 (SE = 9.4030)
## tau (square root of estimated tau^2 value):
                                                           5.0562
## I^2 (residual heterogeneity / unaccounted variability): 98.53%
## H^2 (unaccounted variability / sampling variability):
```

```
## R^2 (amount of heterogeneity accounted for):
                                                          0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 31) = 2103.4367, p-val < .0001
## Test of Moderators (coefficient(s) 2):
## QM(df = 1) = 0.8172, p-val = 0.3660
## Model Results:
##
##
                  estimate
                                               pval
                                                       ci.lb
                                                                ci.ub
                                se
                                       zval
                   -3.5035 1.4564 -2.4055
                                                     -6.3580 -0.6489
## intrcpt
                                            0.0161
## LastPeriodEyes
                   -0.0231 0.0256 -0.9040 0.3660 -0.0733
                                                               0.0270
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
print(metareg(~ Year, x=m))
## Mixed-Effects Model (k = 33; tau^2 estimator: DL)
##
                                                          21.8899 (SE = 8.0755)
## tau^2 (estimated amount of residual heterogeneity):
## tau (square root of estimated tau^2 value):
                                                          4.6787
## I^2 (residual heterogeneity / unaccounted variability): 98.30%
## H^2 (unaccounted variability / sampling variability):
                                                          58.68
## R^2 (amount of heterogeneity accounted for):
                                                          7.84%
##
## Test for Residual Heterogeneity:
## QE(df = 31) = 1818.9826, p-val < .0001
##
## Test of Moderators (coefficient(s) 2):
## QM(df = 1) = 0.0863, p-val = 0.7690
##
## Model Results:
##
           estimate
                                  zval
                                                    ci.lb
                                                              ci.ub
                           se
                                          pval
                                                           721.7034
## intrcpt
           90.1158 322.2445
                                0.2797 0.7797
                                                -541.4717
## Year
            -0.0471
                       0.1603 -0.2937 0.7690
                                                  -0.3614
                                                             0.2672
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
print(metareg(~ PreOpIOPMean * subtype + coarseWashoutType + AgeMean + Male, x=m))
## Warning in metafor::rma.uni(yi = TE, sei = seTE, data = dataset, mods =
## formula, : Studies with NAs omitted from model fitting.
##
## Mixed-Effects Model (k = 28; tau^2 estimator: DL)
## tau^2 (estimated amount of residual heterogeneity): 0.7168 (SE = 0.4429)
```

```
## tau (square root of estimated tau^2 value):
                                                          0.8466
## I^2 (residual heterogeneity / unaccounted variability): 60.81%
## H^2 (unaccounted variability / sampling variability):
## R^2 (amount of heterogeneity accounted for):
                                                          97.28%
## Test for Residual Heterogeneity:
## QE(df = 18) = 45.9263, p-val = 0.0003
## Test of Moderators (coefficient(s) 2,3,4,5,6,7,8,9,10):
## QM(df = 9) = 316.5158, p-val < .0001
## Model Results:
##
                           estimate
                                                zval
                                                        pval
                                                                 ci.lb
                                              1.1625 0.2450
                                                               -5.4515
## intrcpt
                             7.9463 6.8357
## PreOpIOPMean
                            -0.8510 0.1792
                                            -4.7490 <.0001
                                                               -1.2022
## subtypeACG
                            -2.4838 4.0456 -0.6139 0.5393
                                                              -10.4130
## subtypeOAG
                           -12.4617 4.6754
                                             -2.6654
                                                      0.0077
                                                              -21.6253
## coarseWashoutTypePre
                            1.3583 1.4319
                                             0.9486 0.3428
                                                               -1.4481
                            -1.8649 1.3670
## coarseWashoutTypeBoth
                                            -1.3642 0.1725
                                                               -4.5442
                                             1.3042 0.1922
## AgeMean
                             0.0891 0.0683
                                                               -0.0448
## Male
                            -0.0232 0.0238
                                            -0.9748 0.3297
                                                               -0.0698
## PreOpIOPMean:subtypeACG
                             0.0124 0.1985
                                             0.0625 0.9501
                                                               -0.3765
## PreOpIOPMean:subtypeOAG
                             0.6791 0.2347
                                              2.8933 0.0038
                                                                0.2191
##
                             ci.ub
## intrcpt
                           21.3441
## PreOpIOPMean
                           -0.4998
                                    ***
## subtypeACG
                            5.4455
## subtypeOAG
                           -3.2980
## coarseWashoutTypePre
                            4.1647
## coarseWashoutTypeBoth
                            0.8144
## AgeMean
                            0.2229
## Male
                            0.0234
## PreOpIOPMean:subtypeACG
                            0.4014
## PreOpIOPMean:subtypeOAG
                            1.1391
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# Restricted to OAG only
df %>%
  filter(subtype == 'OAG', washout.type != 'Both', !is.na(LastPeriodAbsIOPChangeStdDev)) %>%
  summarize(min = min(PreOpIOPMean),
           max = max(PreOpIOPMean),
            sd = sd(PreOpIOPMean),
           mean = mean(PreOpIOPMean))
      min max
```

1 16.2 23.8 2.012705 18.12571

Small study bias

Funnel plot ACG

Funnel plot OAG

Alternative filterings of the data

Prospective studies only

Meds

Excluding washout studies

Last period

```
df_ <- df %>%
  filter(!is.na(LastPeriodAbsIOPChangeMean), subtype != "AACG", MIGsYorN == 'N') %>%
```

Study	TE seTE T	Гotal	95%-CI
subtype = ACG Hayashi et al. (2001)† Lai et al. (2006) Mierzejewski et al. (2008) Tham et al. (2008) Tham et al. (2009) Liu et al. (2011) Tham et al. (2013) Dada et al. (2015) Dias-Santos (2015) Moghimi et al. (2015) Lee et al. (2016) Siak et al. (2016) Random effects model Heterogeneity: I ² = 99%, τ ²	-7.2 0.41 -4.2 1.36 -5.1 0.97 -1.8 0.62 -8.3 1.22 -3.8 0.73 -8.4 1.34 -13.9 0.25 -5.4 2.07 -8.3 0.94 -1.7 0.62 -2.1 0.94	72 21 25 35 27 30 20 44 15 46 56 24	-7.2 [-8.0; -6.4] -4.2 [-6.9; -1.5] -5.1 [-7.0; -3.2] -1.8 [-3.0; -0.6] -8.3 [-10.7; -5.9] -3.8 [-5.2; -2.4] -8.4 [-11.0; -5.8] -13.9 [-14.4; -13.4] -5.4 [-9.5; -1.3] -8.3 [-10.1; -6.5] -1.7 [-2.9; -0.5] -2.1 [-3.9; -0.3] -5.9 [-9.1; -2.6]
subtype = OAG Kim et al. (1999) Hayashi et al. (2001)† Leelachaikul et al. (2005) Mathalone et al. (2005) Damji et al. (2006) Shingleton et al. (2006) Shoji et al. (2007) Mierzejewski et al. (2008) Fea et. al (2010) Samuelson et al. (2011) Arthur et al. (2014) Iancu et al. (2014) Siegel et al. (2015) Siak et al. (2016) Random effects model Heterogeneity: $I^2 = 76\%$, τ^2	-2.9 0.65 -5.3 0.68 -1.6 0.57 -1.9 1.00 -1.5 0.86 -1.4 0.44 -1.0 0.67 -4.0 0.56 -1.6 0.70 -1.0 0.30 -2.1 1.26 -1.9 0.63 -2.2 0.67 -2.1 0.74	31	-2.9 [-4.2; -1.6] -5.3 [-6.6; -4.0] -1.6 [-2.7; -0.5] -1.9 [-3.9; 0.1] -1.5 [-3.2; 0.1] -1.4 [-2.3; -0.5] -1.0 [-2.3; 0.3] -4.0 [-5.1; -2.9] -1.6 [-3.0; -0.2] -1.0 [-1.6; -0.4] -2.1 [-4.6; 0.4] -2.1 [-4.6; 0.4] -1.9 [-3.1; -0.7] -2.2 [-3.5; -0.9] -2.1 [-3.5; -0.7] -2.2 [-2.8; -1.5]
subtype = PXG Jacobi et al. (1999) Damji et al. (2006) Mierzejewski et al. (2008) Shingleton et al. (2008) Random effects model Heterogeneity: $I^2 = 95\%$, τ^2	-1.1 0.63	13 — — — — — — — — — — — — — — — — — — —	-14.0 [-18.0; -10.0] -3.1 [-4.7; -1.6] -6.6 [-8.2; -5.0] -1.1 [-2.3; 0.1] -5.8 [-9.5; -2.0]

Meds

```
df_ <- df %>%
  filter(!is.na(RxChangeMean), !is.na(RxChangeStdDev),
```

```
df$subtype != "AACG", MIGsYorN == 'N') %>%
  mutate(subtype=factor(subtype))
m <- metagen(RxChangeMean,
             sqrt(RxPostOpStdDev** 2 + RxPreOpStdDev ** 2) / sqrt(LastPeriodEyes),
             study.name,
             data=df_,
             byvar=subtype,
             n.e=LastPeriodEyes)
forest(m,
       comb.fixed=FALSE,
      digits=1,
      digits.se = 2,
      overall=FALSE,
      leftcols=c("studlab", "TE", "seTE", "n.e"))
## Warning in grid.Call(L textBounds, as.graphicsAnnot(x$label), x$x, x
## $y, : conversion failure on 'Hayashi et al. (2001)†' in 'mbcsToSbcs': dot
## substituted for <e2>
## Warning in grid.Call(L_textBounds, as.graphicsAnnot(x$label), x$x, x
## $y, : conversion failure on 'Hayashi et al. (2001)†' in 'mbcsToSbcs': dot
## substituted for <80>
## Warning in grid.Call(L_textBounds, as.graphicsAnnot(x$label), x$x, x
## $y, : conversion failure on 'Hayashi et al. (2001)†' in 'mbcsToSbcs': dot
## substituted for <a0>
## Warning in grid.Call(L_textBounds, as.graphicsAnnot(x$label), x$x, x
## $y, : conversion failure on 'Hayashi et al. (2001)†' in 'mbcsToSbcs': dot
## substituted for <e2>
## Warning in grid.Call(L_textBounds, as.graphicsAnnot(x$label), x$x, x
## $y, : conversion failure on 'Hayashi et al. (2001)†' in 'mbcsToSbcs': dot
## substituted for <80>
## Warning in grid.Call(L textBounds, as.graphicsAnnot(x$label), x$x, x
## $y, : conversion failure on 'Hayashi et al. (2001)†' in 'mbcsToSbcs': dot
## substituted for <a0>
## Warning in grid.Call.graphics(L_text, as.graphicsAnnot(x$label), x$x, x
## $y, : conversion failure on 'Hayashi et al. (2001)†' in 'mbcsToSbcs': dot
## substituted for <e2>
## Warning in grid.Call.graphics(L_text, as.graphicsAnnot(x$label), x$x, x
## $y, : conversion failure on 'Hayashi et al. (2001)†' in 'mbcsToSbcs': dot
## substituted for <80>
## Warning in grid.Call.graphics(L_text, as.graphicsAnnot(x$label), x$x, x
## $y, : conversion failure on 'Hayashi et al. (2001)†' in 'mbcsToSbcs': dot
## substituted for <a0>
```

```
## Warning in grid.Call.graphics(L_text, as.graphicsAnnot(x$label), x$x, x
## $y, : conversion failure on 'Hayashi et al. (2001)†' in 'mbcsToSbcs': dot
## Warning in grid.Call.graphics(L_text, as.graphicsAnnot(x$label), x$x, x
## $y, : conversion failure on 'Hayashi et al. (2001)†' in 'mbcsToSbcs': dot
## Warning in grid.Call.graphics(L_text, as.graphicsAnnot(x$label), x$x, x
## $y, : conversion failure on 'Hayashi et al. (2001)†' in 'mbcsToSbcs': dot
## substituted for <ao>
```


Sensitivity to missingness

Simulate what the results would look like if there was no effect in the eyes lost to follow up $(\Delta IOP = 0)$.

```
meta.analysis.with.sensitivity <- function(missingness='zero') {
   df <- read.data()
   df <- filter.data(df, 'prospective')</pre>
```

```
df_ <- df %>%
    filter(!is.na(LastPeriodAbsIOPChangeMean), subtype != "AACG") %>%
    mutate(subtype=factor(subtype))
  # Simulate a O effect in the unobserved fraction.
  df.missing <- df_
  if(missingness == 'zero') {
    # Zero out.
    df.missing <- df.missing %>% mutate(LastPeriodEyes = PreOpEyes - LastPeriodEyes,
                           LastPeriodAbsIOPChangeMean = 0)
  } else {
    # Add 5 mm Hg to each missing eye.
    df.missing <- df.missing %% mutate(LastPeriodEyes = PreOpEyes - LastPeriodEyes,</pre>
                           LastPeriodAbsIOPChangeMean = LastPeriodAbsIOPChangeMean + 5)
 }
 df_ <- rbind(df_, df.missing)</pre>
  # Aggregate two by two
  for(i in seq(nrow(df.missing), 1)) {
    idx <- rep(FALSE, nrow(df_))</pre>
   idx[i] <- TRUE</pre>
   idx[i*2] <- TRUE</pre>
    df_ <- agg.arms(df_, idx)</pre>
  }
 df_ <- df_ %>% dplyr::arrange(Year, study.name)
 m <- metagen(LastPeriodAbsIOPChangeMean,</pre>
               LastPeriodAbsIOPChangeStdDev / sqrt(LastPeriodEyes),
               study.name,
               data=df_,
               byvar=subtype,
               n.e=LastPeriodEyes)
  forest(m,
         comb.fixed=FALSE,
         digits=1,
         digits.se = 2,
         overall=FALSE,
         leftcols=c("studlab", "TE", "seTE", "n.e"),
         leftlabs=c("Study", "AIOP", "SE", "eyes"))
}
meta.analysis.with.sensitivity()
grid.text(paste0("Simulated net change IOP when AIOP = 0 in eyes lost to follow up"), .5, .97, gp=gpar(
```

Simulated net change IOP when $\triangle IOP = 0$ in eyes lost to follow up

Study	ΔΙΟΡ	SE	eyes			95%-CI
subtype = ACG Hayashi et al. (2001)† Lai et al. (2006) Tham et al. (2008) Tham et al. (2009) Tham et al. (2013) Dada et al. (2015) Dias-Santos (2015) Moghimi et al. (2015) Azuara-Blanco et al. (2016)** Siak et al. (2016) Random effects model Heterogeneity: / 2 = 98%, \tau^2 = 26	-4.2 -1.8 -8.3 -6.5 -13.9 -5.4 -8.3 -11.3 -2.1	2.07 0.94 0.63 0.94	74 21 35 27 26 44 15 46 208 24	++++		-7.0 [-7.8; -6.2] -4.2 [-6.9; -1.5] -1.8 [-3.0; -0.6] -8.3 [-10.7; -5.9] -6.5 [-9.1; -3.8] -13.9 [-14.4; -13.4] -5.4 [-9.5; -1.3] -8.3 [-10.1; -6.5] -11.3 [-12.5; -10.1] -2.1 [-3.9; -0.3] -6.9 [-10.2; -3.6]
subtype = OAG Hayashi et al. (2001)† Damji et al. (2006) Fea et. al (2010) Samuelson et al. (2011) lancu et al. (2014) Pfeiffer et al. (2015)* Siak et al. (2016) Vold et al. (2016)* Random effects model Heterogeneity: $I^2 = 93\%$, $\tau^2 = 3$.	-1.3 -1.6 -1.1 -1.9 -7.0 -2.1 -4.8	0.65 0.79 0.70 0.30 0.63 0.80 0.74 0.37	68 29 21 117 38 50 30 131			-3.9 [-5.2; -2.6] -1.3 [-2.8; 0.3] -1.6 [-3.0; -0.2] -1.1 [-1.6; -0.5] -1.9 [-3.1; -0.7] -7.0 [-8.5; -5.4] -2.1 [-3.5; -0.7] -4.8 [-5.5; -4.1] -2.9 [-4.4; -1.5]
subtype = PXG Jacobi et al. (1999) Damji et al. (2006) Random effects model Heterogeneity: $I^2 = 82\%$, $\tau^2 = 13$	-2.9	2.16 0.77 = 0.02	22 29	-10 -5 0	5 10	-8.3 [-12.5; -4.0] -2.9 [-4.4; -1.4] -5.2 [-10.4; 0.0]

meta.analysis.with.sensitivity('five') grid.text(paste0("Simulated net change IOP when Δ IOP = 5 mm Hg higher in eyes lost to follow up"), .5,

Simulated net change IOP when $\triangle IOP = 5$ mm Hg higher in eyes lost to follow up

MIGS

We don't report these results because it's a bit misleading – the studies aren't very similar to each other, and we don't use the information in their control arms. We can do a much better job through, for example, network meta-analysis, which we plan to do in a future paper.

```
df <- read.data(drop.migs = FALSE)

## These retrospective studies are losing eyes per period - not impossible, but unusual:

## Mathalone et al. (2005)

## Leelachaikul et al. (2005)</pre>
```

```
## Arthur et al. (2014)
## Tetz et al. (2015)
## These retrospective studies are gaining eyes as the study goes
## Samuelson et al. (2011)
df_ <- df %>%
  filter(!is.na(LastPeriodAbsIOPChangeMean), subtype != "AACG", MIGsYorN == 'Y') %>%
  mutate(subtype=factor(subtype)) %>% dplyr::arrange(TypesofMIGSifany, Year)
m <- metagen(LastPeriodAbsIOPChangeMean,
             LastPeriodAbsIOPChangeStdDev / sqrt(LastPeriodEyes),
             study.name,
             data=df_,
             n.e=LastPeriodEyes)
forest(m,
       comb.fixed=FALSE,
       digits=1,
       digits.se = 2,
       overall=TRUE,
       leftcols=c("studlab", "TE", "seTE", "n.e", "TypesofMIGSifany"),
       leftlabs=c("Study", "TE", "seTE", "Total", "Type"))
```

Shoji et al. (2007) ## Liu et al. (2011)

