732A96/TDDE15 Advanced Machine Learning Gaussian Process Regression and Classification

Jose M. Peña IDA, Linköping University, Sweden

Lectures 11: Kernels, Hyperparameter Learning and More

Contents

- ▶ Three Common Covariance Functions
- ▶ Learning the Hyperparameters of the Covariance Function
- ▶ Lab: Algorithm 2.1 in Rasmussen and Williams

Literature

- Main source
 - Rasmussen, C. E. and Williams, K. I. Gaussian Processes for Machine Learning. MIT Press, 2006. Chapters 2.3, 5.1-5.4.1.
- Additional source
 - Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006. Chapters 6.4.3-6.4.4.

- Let r = ||x x'||.
- Squared exponential (SE):

$$k_{SE}(r) = \sigma_f^2 \exp\left\{-\frac{r^2}{2\ell^2}\right\}$$

where $\sigma_f^2 > 0, \ell > 0$. Very smooth.

Rational quadratic (RQ):

$$k_{RQ}(r) = \sigma_f^2 \left(1 + \frac{r^2}{2\alpha\ell^2}\right)^{-\alpha}$$

 $\sigma_f^2 > 0, \ell > 0, \alpha > 0$. k_{RQ} is an infinite sum of k_{SE} with different ℓ . As $\alpha \to \infty$, $k_{RQ}(r) \to k_{SE}(r)$.

Matérn:

$$k_{Matern} = \sigma_f^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu}r}{\ell}\right)^{\nu} K_{\nu} \left(\frac{\sqrt{2\nu}r}{\ell}\right)$$

where $\sigma_f^2 > 0, \ell > 0, \nu > 0$, and K_{ν} is the modified Bessel function. As $\nu \to \infty$, $k_{Matern}(r) \to k_{SE}(r)$.

Demo of GaussianProcesses.R and KernLabDemo.R.

Correlation functions

▶ The length scale ℓ determines the smoothness.

▶ The scale factor σ_f determines the variance.

▶ The mean can be arbitrary, e.g. sin(3x).

Learning the Hyperparameters of the Covariance Function

- Let θ denote the hyperparameters of the covariance function, i.e. $\theta = (\sigma_f, \ell)$ for k_{SE} , $\theta = (\sigma_f, \ell, \alpha)$ for k_{RQ} , and $\theta = (\sigma_f, \ell, \nu)$ for k_{Matern} .
- Choose the hyperparameters that maximize the marginal likelihood:

$$\log p(\mathbf{y}|X,\theta) = -\frac{1}{2}\mathbf{y}^{T}(K(X,X) + \sigma_{n}^{2}I)^{-1}\mathbf{y} - \frac{1}{2}\log|K(X,X) + \sigma_{n}^{2}I| - \frac{n}{2}\log 2\pi$$

which follows from

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N} \left(0, \begin{bmatrix} K(X,X) + \sigma_n^2 I & K(X,X_*) \\ K(X_*,X) & K(X_*,X_*) \end{bmatrix} \right).$$

- In general, this is a non-convex optimization problem, and gradient methods are typically used. For most common covariance functions, the derivative of K(X,X) wrt θ is easy to compute.
- For a Bayesian approach, choose the hyperparameters that maximize the posterior distribution $p(\theta|\mathbf{y},X) \propto p(\mathbf{y}|X,\theta)p(\theta)$. It typically requires MCMC sampling or Laplace approximation.
- The methods above can also be used to select among covariance functions, i.e. simply include them as hyperparameters. Cross-validation is also an option.

Learning the Hyperparameters of the Covariance Function

$$\begin{split} \log p(\mathbf{y}|X,\theta) &= -\frac{1}{2}\mathbf{y}^T (K(X,X) + \sigma_n^2 I)^{-1}\mathbf{y} - \frac{1}{2}\log |K(X,X) + \sigma_n^2 I| - \frac{n}{2}\log 2\pi \\ &= \text{ data fit - model complexity - normalization constant.} \end{split}$$

Lab: Algorithm 2.1 in Rasmussen and Williams

```
\begin{array}{c} \textbf{input:} \ X \ (\textbf{inputs}), \ \textbf{y} \ (\textbf{targets}), \ k \ (\textbf{covariance function}), \ \sigma_n^2 \ (\textbf{noise level}), \\ \textbf{x}_* \ (\textbf{test input}) \\ 2: \ L := \textbf{cholesky}(K + \sigma_n^2 I) \\ \boldsymbol{\alpha} := L^\top \backslash (L \backslash \textbf{y}) \\ 4: \ \bar{f}_* := \textbf{k}_*^\top \boldsymbol{\alpha} \\ \textbf{v} := L \backslash \textbf{k}_* \\ 6: \ \mathbb{V}[f_*] := k(\textbf{x}_*, \textbf{x}_*) - \textbf{v}^\top \textbf{v} \\ \log p(\textbf{y} | X) := -\frac{1}{2} \textbf{y}^\top \boldsymbol{\alpha} - \sum_i \log L_{ii} - \frac{n}{2} \log 2\pi \\ \text{s:} \ \textbf{return:} \ \bar{f}_* \ (\textbf{mean}), \ \mathbb{V}[f_*] \ (\textbf{variance}), \ \log p(\textbf{y} | X) \ (\textbf{log marginal likelihood}) \\ \end{array}
```

- K = K(X,X).
- $k_* = K(X, X_*).$
- ► $L = cholesky(A) \Rightarrow A = LL^T \Rightarrow A^{-1} = (L^T)^{-1}L^{-1} = (L^{-1})^TL^{-1}$ and $|A| = det(A) = det(L)det(L^T) = (\prod_i L_{ii})^2$.
- $L \setminus \mathbf{y} = solve(L, \mathbf{y}) = L^{-1}\mathbf{y}.$
- The algorithm uses Cholesky decomposition instead of matrix inversion because it is faster and numerically more stable.
- It returns the predictive distribution for noise-free test data, i.e. f_* . Add σ_n^2 to the predictive variances to obtain the distribution for noisy test data, i.e. y_*
- It is presented for a single test case but it also works for several test cases.

Contents

- ▶ Three Common Covariance Functions
- Learning the Hyperparameters of the Covariance Function
- Lab: Algorithm 2.1 in Rasmussen and Williams

Thank you