Lecture 2

$$\widehat{\mathcal{G}} \left(\bigcup_{i=1}^{n} \mathcal{E}_{i} \right) \Delta \left(\bigcup_{i=1}^{n} \mathcal{F}_{i} \right) \subseteq \bigcup_{i=1}^{n} \left(\mathcal{E}_{i} \Delta \mathcal{F}_{i} \right).$$
 $\left(\widehat{\mathcal{E}} \times \mathcal{E} \times \mathcal{E} \times \mathcal{E} \right)$

Defin A mont $A \subseteq X$ is called a $\frac{G_s-set}{s}$, if $A = \bigcap_{i=1}^{n} G_i$, for G_i open sets.

Def:- A humit $A \subseteq X$ is called an F_{-} set, if $A = \bigcup_{i=1}^{\infty} F_i$, for F_i closed sets.

Notation: A CR.

- . Supremum of A = the least upper bound of A & denote by Sup(A).
- . infimum of A = the greatest lower bound of A & denote by inf (A).

Properties:

Det E>0. Consider

Sup(A)-E < Sup(A).

There exists $x \in A$ such that sup(A) - E < x.

2 Let $\varepsilon > 0$, inf $(A) + \varepsilon > \inf(A)$. Then there exists $y \in A$ such that $\inf(A) + \varepsilon > y$.

Theorem (Heine-Borel Thm)

Let $A \subset \mathbb{R}$ be a closed & bound ret. Supru $A \subset \bigcup_{\alpha \in I} G_{\alpha}$, where the sets G_{α} are open & I is some index ret. Then there exists a finite subcollection of the peter G_{α} , soy $\{G_{\alpha}, \ldots, G_{n}\}$ such that $A \subseteq \bigcup_{i=1}^{n} G_{i}$.

Let {nn} be a segrance of real numbers.

*Dif- The apperlimit of {nn} is defined as

limbup $x_n := \inf \left\{ \sum_{m \ge n} \left\{ x_m \right\} / n \in \mathbb{N} \right\} \right\}$ $= \inf \left\{ \sum_{m \ge n} \left\{ x_m \right\} x_m - x_n - x_n - x_n - x_n \right\}$

Defin .

Liming In! = sup { inf (2m) / nEN) lower limit of {ns}. Simply we write lansup on & liming on. If $lim_{Np}(x_n) = lim_{hf}(x_n)$, then We write the comorvalu as lim_{x_n} . limsup(nn) = -liming(nn).Let J: IR -> R be a function. Then the upper limit of fat of is defined as $\limsup_{\alpha \to \alpha_0} (f^{\alpha}) := \inf_{\alpha \to \alpha_0} \left\{ \sup_{\alpha < |\alpha - \alpha_0| < h} \right\} h_{70}$ liming $(f(G)) := \sup_{\alpha \to \alpha_0} \{\inf_{\alpha \in [K-\alpha_0] < h} | h > 0 \}$ Let (X,d) be a rutric space.

· A C X. Then the Characteristic function of A.

X is defined as X; X -> R

 $\chi_{A}(n) = \begin{cases} \circ & \text{if } \pi \notin A \\ 1 & \text{if } \pi \in A \end{cases}$

Step furtion.

Then the Step furtion, $\sum_{i=1}^{n} a_i \times_{I_i}$.

Theorem (Lindslöf Theorem)

Let $y = \int I_{\alpha}/\alpha \in A_{\beta}$ be a collection of open intown in IR. Then there exists a subcollection say. $\{I_{i}, I_{2}, \dots \}$ of y at most Countable in number such that $\{I_{i}, I_{2}, \dots \} \subseteq I_{j}$. $\int_{i=1}^{\infty} I_{i} = \bigcup_{\alpha \in A} I_{\alpha}$ i = 1 $i \in A$

Theorem? Let G be a non-empty open set in R.
Then G is equal to remain of disjoint

·
open interals, at most countable in number,
in There exacts open intents I, Iz,, dejoint,
open interests, at the T_1, T_2, \dots , despiret, in there exists open intends T_1, T_2, \dots , despiret, but that $G = \bigcup_{t=1}^{n} T_t$.
Given that G C K Open.
Define a relation ~ on G as follows.
and if the closed interval [a,b] or [b,a]
and if the closed interval [a,b] or [b,a] lies in G. for if bear is a,b & G.
claimin v is an equivalence relation. (t)
a ~ a , Since [a, a] = {a} dond intent is G.
and = bna.
My anh & bac => arc. total
in G is the Union of dispoint
egrirdace classes.
Let $C(a) = 4ne$ equivolence class $a < c$. Containing a .
Then Clay is an interval.
Cif not then there exists two pts
b, c E ((a) such Yent
[b, c] is not containdin G
⇒ bやc ⇒年

Forther we show that C(a) is open. for if KECCa) to Mions, $(k-\epsilon, k+\epsilon) \subseteq ((a).$ Pf- het k & c(a) = G There exhib an Eso Isut That (k-ε, k+ε) ⊆ G. \interol & k = c(a). \Rightarrow $(k-\epsilon, k+\epsilon) \leq C(a) (: k \sim a)$ as required. [a,k] ar[k,a] Copen interval (k-g~a = Countrible disjoint union of (Ca) = () C(Qi) (by Lindelöf's 9hm) M= { (ca) } and disjoint fairly. $\exists \begin{cases} C(a), \dots, C(a_n), \dots \end{cases} \subseteq (3)$ Still disjoint.