

Cours

THERMODYNAMIQUE

20.BILAN D'ENTROPLE

<u>Plan</u> (Cliquer sur le titre pour accéder au paragraphe)

I. REVERSIBILITE ET IRREVERSIBILITE

Une transformation est dite réversible si l'on peut envisager une autre transformation qui ramène à la fois le système et le milieu extérieur à leur état initial.

Les causes d'irréversibilité sont :

- L'existence de forces de frottement visqueux ou solide dont le travail se transforme systématiquement en chaleur.
- La non uniformité des grandeurs intensives dans le système que l'on considère.

II. ENONCE DU DEUXIEME PRINCIPE

Pour tout système fermé, il existe une fonction S, appelée entropie, fonction extensive de variables d'état qui peut évoluer :

Par suite de transfert thermique avec le milieu extérieur, il s'agit d'entropie échangée ou reçue. Par production à l'intérieur du système, à la suite de phénomènes irréversibles.

$$\Delta S = S^r + S^p$$

 S^r désigne l'entropie reçue par le système de la part du milieu extérieur. S^p désigne l'entropie produite , $S^p \ge 0$.

Pour une transformation élémentaire on a : $dS = \delta S^r + \delta S^p$

- $\delta S^r = \frac{\delta Q}{T_e}$ où δQ est le transfert thermique élémentaire reçue par le système et T_e est la température du thermostat avec lequel le système est en contact.
- $\delta S^{p} \geq 0$

$$\Delta S = \int \frac{\delta Q}{T_e} + S^p$$

Si la transformation est réversible alors l'entropie produite est nulle

Cours

THERMODYNAMIQUE

Conséquences:

- L'entropie d'un système isolé ne peut qu'augmenter par production
- Dans une transformation réversible l'entropie ne peut varier que par échange.
- Dans une transformation adiabatique l'entropie ne peut qu'augmenter par production
- Dans une transformation adiabatique et réversible l'entropie ne varie pas on dit que la transformation est isentropique.

III. RELATION ENTRE L'ENTROPIE ET LES VARIABLES D'ÉTAT

Pour une transformation réversible, $\delta Q_{r\acute{e}v}=TdS$, T désigne la température du système Le travail élémentaire des forces de pression est $\delta W_{r\acute{e}v}=-pdV$ en conséquence :

$$dU = TdS - pdV$$

Cette relation est toujours vraie, que la transformation soit réversible ou non, car U est une fonction d'état, c'est l'identification terme à terme qui ne peut se faire que pour une transformation réversible.

La quantité T définie par : $T = \left(\frac{\partial U}{\partial S}\right)_V$ est appelée **température thermodynamique**.

METHODES DE CALCUL DE LA VARIATION D'ENTROPIE

Pour une transformation quelconque le terme de production d'entropie est impossible à évaluer directement, on le calculera par :

$$S^{p} = \Delta S - S^{r}$$

avec
$$\Delta S = \int \frac{\delta Q_{r\acute{e}v}}{T} et S^r = \int \frac{\delta Q}{T_e}$$

III.1. Cas du gaz parfait

$$dU = \frac{nR}{\gamma - 1}dT \text{ et } dS = \frac{\delta Q_{r\acute{e}v}}{T} = \frac{dU}{T} + \frac{p}{T}dV$$

Ce qui donne après utilisation de l'équation d'état des gaz parfaits, et en supposant les capacités thermiques indépendantes de la température :

$$\Delta S = nR \left(\frac{1}{\gamma - 1} ln \left(\frac{T_f}{T_i} \right) + ln \left(\frac{V_f}{V_i} \right) \right)$$

Cas particulier un gaz parfait de capacités thermiques constantes subissant une transformation isentropique vérifie la loi de Laplace :

$$PV^{\gamma} = cte \quad TV^{\gamma - l} = cte \quad T^{\gamma}P^{l - \gamma} = cte$$

III.2. Cas d'une phase condensée

On suppose que le volume du solide ou du liquide ne varie pas donc :

Cours

THERMODYNAMIQUE

$$C = \frac{dU}{dT}$$
 avec $dU = TdS$ soit $dS = \frac{CdT}{T}$

la variation d'entropie d'une phase condensée de capacité thermique constante s'écrit :

$$\Delta S = C \ln \left(\frac{T_F}{T_I} \right)$$

IV. NOTIONS SUR L'ENTROPIE STATISTIQUE

Il existe plusieurs micro-états (ou complexions) pour réaliser un état macroscopique donné. On admet que l'évolution spontanée d'un système se fait vers l'état macroscopique le plus désordonné, c'est à dire celui pour lequel le nombre de complexions Ω est le plus grand. Boltzmann a postule que $S=k_B \ln \Omega$ k_B, étant la constante de Boltzmann Ainsi l'entropie est une mesure du manque d'information car plus le nombre de complexions est grand plus notre connaissance du système est faible.

V. LE TROISIEME PRINCIPE DE LA THERMODYNAMIQUE

Ce principe, appelé principe de Nernst, stipule qu'à *température nulle* l'*entropie de tout corps pur est nulle*