

Тема 8.

Понятие о векторной модели коррекции ошибками (VECM)

53

Коинтеграция: обобщение

Опр 8.1. I(1)-процессы $y_{1t},...,y_{Nt}$ являются **коинтегрированными,** если существует вектор $\beta = (\beta_1,...,\beta_N)^T$, отличный от нулевого, для кот. $(\beta_1 y_{1t} + ... + \beta_N y_{Nt}) \sim I(0) - cmay.npoyecc$

β – коинтегрирующий вектор.

-Долговременное положение равновесия системы:

$$c = E(\beta_1 y_{1t} + ... + \beta_N y_{Nt})$$

- Отклонение системы от положения равновесия

$$z_{t} = (\beta_{1}y_{1t} + ... + \beta_{N}y_{Nt} - c) - cmay.npoyecc$$

$$E(z_{t}) = 0$$

Ранг коинтеграции

Для I(1)-процессов y_{1t} ,..., y_{Nt} в общем случае существует несколько ин. незав. коинтегрирующих векторов β .

- Пример коинтегрирующих векторов. *Сколько существует в-ров β?*

Опр. 8.2. Ранг коинтеграции r (cointegrating rank)— максимальное количество лин.незав. коинтегрирующих векторов для процессов $y_{1t},...,y_{Nt}$

Какие значения принимает r?

-r=1,...,N-1 (r<N) – ряды коинтегрированы

-r=0 – ряды не коинтегрированы

-r=N – ряды стационарны

Опр.8.3. Коинтеграционное пространство — совокупность всех зозможных коинтегрирующих векторов для коинтегр. с-мы I(1)-процессов, образующих r-мерн. лин. векторн. пр-во.

Ранг коинтеграции

Случай двух рядов.

Какие значения принимает r?

r=0 (ряды не коинтегрированы)

r=1 (ряды коинтегрированы)

r=2 (ряды стационарны)

Ранг матрицы – количество линейно независимых строк (столбцов) матрицы.

Определение ранга методом Гаусса:

- 1) с помощью элементарных преобразований приводим матрицу к ступенчатому виду;
- 2) ранг матрицы равен количеству строк.

$$\begin{pmatrix} 1 & -1 & 2 \\ 2 & -2 & 4 \\ -1 & 1 & -2 \end{pmatrix} \xrightarrow{(1)} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{(2)} (1 & -1 & 2)$$

Представление VECM: случай VAR(1)

$\overline{VAR(1)}$

$$\begin{aligned}
\mathbf{x}_{t} &= \alpha_{1} + \beta_{11} \mathbf{x}_{t-1} + \beta_{12} \mathbf{y}_{t-1} + \mathcal{E}_{1t} \\
\mathbf{y}_{t} &= \alpha_{2} + \beta_{21} \mathbf{x}_{t-1} + \beta_{22} \mathbf{y}_{t-1} + \mathcal{E}_{2t} \\
\mathbf{\mathcal{E}}_{1t}, \mathbf{\mathcal{E}}_{2t} \sim \mathbf{WN}
\end{aligned}$$

$$\begin{aligned}
\mathbf{x}_{t} - \mathbf{x}_{t-1} &= \alpha_{1} + \beta_{11} \mathbf{x}_{t-1} - \mathbf{x}_{t-1} + \beta_{12} \mathbf{y}_{t-1} + \mathcal{E}_{1t} \\
\mathbf{y}_{t} - \mathbf{y}_{t-1} &= \alpha_{2} + \beta_{21} \mathbf{x}_{t-1} + \beta_{22} \mathbf{y}_{t-1} - \mathbf{y}_{t-1} + \mathcal{E}_{2t} \\
\Delta \mathbf{x}_{t} &= \alpha_{1} + (\beta_{11} - 1) \mathbf{x}_{t-1} + \beta_{12} \mathbf{y}_{t-1} + \mathcal{E}_{1t} \\
\Delta \mathbf{y}_{t} &= \alpha_{2} + \beta_{21} \mathbf{x}_{t-1} + (\beta_{22} - 1) \mathbf{y}_{t-1} + \mathcal{E}_{2t}
\end{aligned}$$

$$y_t = \alpha + B_1 y_{t-1} + \mathcal{E}_t \qquad \text{VAR}$$

$$\Delta y_t = \alpha + \Pi y_{t-1} + \mathcal{E}_t$$
, Простейший пример VECM

$$\Pi = B_1 - I$$
. - Долгосрочная матрица, описывающая долгосрочные свойства

VECM - Vector error correction model – Векторная модель коррекции ошибками

Представление VECM: обобщение

$$y_{t} = \mu + B_{1}y_{t-1} + B_{2}y_{t-2} + ... + B_{p}y_{t-p} + \varepsilon_{t}$$
 VAR(p)

$$y_{t} = \mu + B_{1}y_{t-1} + B_{2}y_{t-2} + \dots + B_{p}y_{t-p} + \mathcal{E}_{t}$$

$$\Delta y_{t} = \mu + \Pi y_{t-1} + \Gamma_{1}\Delta y_{t-1} + \Gamma_{2}\Delta y_{t-2} + \dots + \Gamma_{p}\Delta y_{t-(p-1)} + \mathcal{E}_{t}$$

$$\Pi = -I_k + \sum_{i=1}^p B_i;$$

$$\Gamma_{j} = -\sum_{i=j+1}^{p} B_{i}$$

- Долгосрочная матрица, описывающая долгосрочные свойства

(8.2)**VECM**

- Краткосрочные матрицы

Представление VECM: пример

- Пример
$$VAR(3)$$
→ $VECM$

$$y_t = \mu + B_1 y_{t-1} + B_2 y_{t-2} + B_3 y_{t-3} + \varepsilon_t$$

$$\Delta y_t = \Pi y_{t-1} + \Gamma_1 \Delta y_{t-1} + \Gamma_2 \Delta y_{t-2} + \mathcal{E}_t$$
 стац стац стац стац

Ранг коинтеграции

$$\Delta y_{t} = \mu + \Pi y_{t-1} + \Gamma_{1} \Delta y_{t-1} + \Gamma_{2} \Delta y_{t-2} + \dots + \Gamma_{p} \Delta y_{t-(p-1)} + \mathcal{E}_{t}$$

$$\Pi = -I_k + \sum_{i=1}^p B_i; \Gamma_j = -\sum_{i=i+1}^p B_i$$

VECM

$$z_{1t-1} = \beta_1^T y_{t-1}, z_{2t-1} = \beta_2^T y_{t-2}, ..., z_{rt-1} = \beta_r^T y_{t-1}$$

отклонения от r долговременных соотношений между рядами

Связь между рангом матрицы П и коинтеграцией

1. $r(\Pi)=0 \to \Pi$ – нулевая матрица

$$\Delta y_t = \Gamma_1 \Delta y_{t-1} + \Gamma_2 \Delta y_{t-2} + \dots + \Gamma_p \Delta y_{t-(p-1)} + \mathcal{E}_t$$
 → VAR в разностях

- 2. $r(\Pi)=N \rightarrow p$ яды стационарны $\rightarrow VAR$
- 3. $r(\Pi)=r< N \rightarrow p$ яды коинтегрированы

Определение ранга $r(\Pi)$?

Ранг коинтеграции: пример

Связь между рангом матрицы П и коинтеграцией

- 1. $r(\Pi)=0 \to \Pi$ нулевая матрица $\to VAR$ в разностях
- 2. $r(\Pi)=N \rightarrow pяды стационарны \rightarrow VAR$
- 3. $r(\Pi)=r< N \rightarrow ряды коинтегрированы$

Пример

1.
$$VAR(1)$$
 $\begin{pmatrix} x_t \\ y_t \end{pmatrix} = \begin{pmatrix} 0.8 & 0.6 \\ 0.2 & 0.4 \end{pmatrix} \begin{pmatrix} x_{t-1} \\ y_{t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{pmatrix}$

$$2. VAR(1) \quad \begin{pmatrix} x_t \\ y_t \end{pmatrix} = \begin{pmatrix} 0.4 \\ 1 \end{pmatrix} + \begin{pmatrix} 0.8 & 0 \\ 0.2 & 0.8 \end{pmatrix} \begin{pmatrix} x_{t-1} \\ y_{t-1} \end{pmatrix} + \begin{pmatrix} \mathcal{E}_{1t} \\ \mathcal{E}_{2t} \end{pmatrix}$$

$$3. VAR(2) \begin{pmatrix} x_t \\ y_t \end{pmatrix} = \begin{pmatrix} 0.5 & 0.3 \\ 0 & 0.8 \end{pmatrix} \begin{pmatrix} x_{t-1} \\ y_{t-1} \end{pmatrix} + \begin{pmatrix} 0.5 & -0.3 \\ 0 & 0.2 \end{pmatrix} \begin{pmatrix} x_{t-1} \\ y_{t-1} \end{pmatrix} + \begin{pmatrix} \mathcal{E}_{1t} \\ \mathcal{E}_{2t} \end{pmatrix}$$

Анализ и интерпретация матрицы П

$$\Delta y_t = \mu + \Pi y_{t-1} + \Gamma_1 \Delta y_{t-1} + \Gamma_2 \Delta y_{t-2} + \dots + \Gamma_p \Delta y_{t-(p-1)} + \mathcal{E}_t$$

$$\Pi = -I_k + \sum_{i=1}^p B_i; \quad \Gamma_j = -\sum_{i=j+1}^p B_i; \quad \mathbf{VECM}$$

$$\Pi = \alpha \beta'$$
; Любую матрицу неполного ранга можно представить в виде произведения матриц полного ранга

$$z_{t-1} = \boldsymbol{\beta}' y_{t-1}$$

 $z_{t-1} = \beta' y_{t-1}$ отклонения от r долговременных соотношений между рядами

$$\Delta y_{t} = \mu + \alpha \beta' y_{t-1} + \Gamma_{1} \Delta y_{t-1} + \Gamma_{2} \Delta y_{t-2} + \dots + \Gamma_{p} \Delta y_{t-(p-1)} + \varepsilon_{t}$$

Опр. Матрица α – загрузочная матрица, элементы м-цы пок-т, сколь быстро компоненты Δ yt подвергаются корректировке при отклонении от долгосрочных соотношений. Другое название «корректирующий вектор».

Матрица неполного ранга → число столбцов(строк) = рангу

Анализ и интерпретация матрицы П

$$\Delta y_t = \mu + \Pi y_{t-1} + \Gamma_1 \Delta y_{t-1} + \Gamma_2 \Delta y_{t-2} + \dots + \Gamma_p \Delta y_{t-(p-1)} + \varepsilon_t$$

$$\Pi = -I_k + \sum_{i=1}^p B_i; \quad \Pi = \alpha \beta'; \quad z_{t-1} = \beta' y_{t-1}$$

VECM

$$VAR(1) \quad \begin{pmatrix} x_t \\ y_t \end{pmatrix} = \begin{pmatrix} 0.8 & 0.6 \\ 0.2 & 0.4 \end{pmatrix} \begin{pmatrix} x_{t-1} \\ y_{t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{pmatrix}$$

1. $r(\Pi)=1 \to ряды коинтегрированны$

2. VECM
$$\begin{pmatrix} \Delta y_t \\ \Delta x_t \end{pmatrix} = \begin{pmatrix} -0.2 & 0.6 \\ 0.2 & -0.6 \end{pmatrix} \begin{pmatrix} y_{t-1} \\ x_{t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{pmatrix}$$

3. Пусть П представили в виде произведения:

$$\begin{pmatrix} \Delta y_t \\ \Delta x_t \end{pmatrix} = \begin{pmatrix} -0.2 \\ 0.2 \end{pmatrix} (1 -3) \begin{pmatrix} y_{t-1} \\ x_{t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{pmatrix} = \begin{pmatrix} -0.2 \\ 0.2 \end{pmatrix} (y_{t-1} - 3x_{t-1}) + \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{pmatrix}$$

Скорость коррекции к равновесию для обеих переменных равна 0,2

Подход Йохансена: Оценивание ранга коинтеграции

$$\Delta y_{t} = \mu + \Pi y_{t-1} + \Gamma_{1} \Delta y_{t-1} + \Gamma_{2} \Delta y_{t-2} + \dots + \Gamma_{p} \Delta y_{t-(p-1)} + \varepsilon_{t}$$

$$\Pi = -I_k + \sum_{i=1}^p B_i; \Gamma_j = -\sum_{i=j+1}^p B_i$$
 VECM

Ранг коинтеграции г для ВР $y_{1t},...,y_{Nt}$: $r = rank\Pi < N$ Подход **Йохансена** (Johansen, 1988, 1991)

- -Критерий максимального собственного значения (Maximum eigenvalue statistic)
- Критерий следа (trace statistic)

Оценивание ранга коинтеграции через собственные значения

Что такое собственное значение?

Ранг квадратной матрицы = кол-ву ненулевых собственных значений.

Опр. λ – **собственное значение** м-цы П, если существует ненулевой вектор –столбец С: Π **С**= λ **С**

Пример.
$$\Pi C = \begin{pmatrix} -1 & -6 \\ 2 & 6 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \end{pmatrix} = 2 \begin{pmatrix} 2 \\ -1 \end{pmatrix} \rightarrow \lambda = 2$$

Как определить λ?

Оценивание ранга коинтеграции

$$\Delta y_{t} = \mu + \Pi y_{t-1} + \Gamma_{1} \Delta y_{t-1} + \Gamma_{2} \Delta y_{t-2} + \dots + \Gamma_{p} \Delta y_{t-(p-1)} + \mathcal{E}_{t}$$

VECM

$$\Pi = -I_k + \sum_{i=1}^p B_i; \Gamma_j = -\sum_{i=j+1}^p B_i, r = r(\Pi)$$

Подход **Йохансена** (Johansen, 1988, 1991)

- 1. Вычисляют собственные значения $1 > \hat{\lambda}_1 > \hat{\lambda}_2 > ... > \hat{\lambda}_N > 0$
- 2. Статистика, основанная на собственных значениях

$$L(r) = -\frac{T}{2} \sum_{i=1}^{r} \ln(1 - \hat{\lambda}_i), \quad r = 1,...,N$$

3. Сравнение значений L(r) при различных r

Оценивание ранга коинтеграции

Подход **Йохансена** (Johansen, 1988, 1991) $r = rank\Pi < N$

Критерий максимального собственного значения

(Maximum eigenvalue statistic)

H₀:
$$r \le r^*$$
 H₁: $r = r^* + 1$

$$\lambda_{\max}(r^*) = 2[L(r^* + 1) - L(r^*)] = -\frac{T}{2}\ln(1 - \hat{\lambda}_{r^* + 1})$$

Ранг r – заранее не известен

Table A2.9 Quantiles of the asymptotic distribution of the Johansen cointegration rank test statistics (constant in cointegrating vectors only)

Йохансен: последовательная процедура проверки гипотез

$$H_0$$
: r=0 H_1 : r=1 H_0 : r=1 H_1 : r=2 H_1 : r=3 ...

p-r	50%	80%	90%	95%	97.5%	99%	Mean	Var
λ_{max}								
1	3.40	5.91	7.52	9.24	10.80	12.97	4.03	7.07
2	8.27	11.54	13.75	15.67	17.63	20.20	8.86	13.08
3	13.47	17.40	19.77	22.00	24.07	26.81	14.02	19.24
4	18.70	22.95	25.56	28.14	30.32	33.24	19.23	23.83
5	23.78	28.76	31.66	34.40	36.90	39.79	24.48	29.26
6	29.08	34.25	37.45	40.30	43.22	46.82	29.72	34.63
7	34.73	40.13	43.25	46.45	48.99	51.91	35.18	38.35
7 8 9	39.70	45.53	48.91	52.00	54.71	57.95	40.35	41.98
9	44.97	50.73	54.35	57.42	60.50	63.71	45.55	44.13
10	50.21	56.52	60.25	63.57	66.24	69.94	50.82	49.28
11	55.70	62.38	66.02	69.74	72.64	76.63	56.33	54.99

Тест Йохансена (Gretl)

Связь между рангом матрицы П и коинтеграцией

- 1. $r(\Pi)=0$ нет коинтеграции
- 2. $r(\Pi)=N \rightarrow p$ яды стационарны
- 3. $r(\Pi)=r< N \rightarrow ряды коинтегрированы$

Критерий максимального собственного значения

(Maximum eigenvalue statistic)

Тест Йохансена: Количество уравнений = 2

Порядок лага = 1

Период оценки: 1949 - 1989 (Т = 41) Вариант 3: Неограниченная константа

Критерий максимального

собственного значения

Лог. правдоподобие = -314,704 (Включая константу: -431,057)

 H_0 : r=0 H_1 : r=1

Ранг Собственное значение Тест на след матрицы Р-значение Lmax test 28,053 [0,0003]

24,802 [0,0005] 3,2514 [0,0714]

 H_0 : r=1 H_1 : r=2

0,076239

3,2514 [0,0714]

Вывод: коинтеграционный ранг = 1, ряды коинтегрированы

Оценивание ранга коинтеграции

Критерий максимального собственного значения

(Maximum eigenvalue statistic)

Связь между рангом матрицы П и коинтеграцией

- 1. $r(\Pi)=0$ —нет коинтеграции
- 2. $r(\Pi)=N \rightarrow pяды стационарны$
- 3. $r(\Pi)=r< N \rightarrow ряды коинтегрированы$

. vecrank y i c, lags(5) max levela notrace

Johansen tests for cointegration

Trend: constant

Sample: 1960q2 - 1982q4

5% critical	1% critical
value	value
20.97	25.52
14.07	18.63
3.76	6.65

maximum				max
rank	parms	LL	eigenvalue	statistic
0	39	1231.1041		28.5682
1	44	1245.3882	0.26943	14.2346
2	47	1252.5055	0.14480	3.3465
3	48	1254.1787	0.03611	

Вывод: $\mathbf{r} = 2$ (5%), $\mathbf{r} = 3$ (1%), ряды коинтегрированы

Оценивание ранга коинтеграции

Подход **Йохансена** (Johansen, 1988, 1991)

$$r = rank\Pi < N$$

Критерий следа (trace statistic)

$$H_0: r=r^* \qquad H_1: r>r^*$$

След матрицы – сумма элементов, стоящих на главной диагонали.

$$\lambda_{trace}(r^*) = 2[L_{\max}(N) - L_{\max}(r^*)] = -\frac{T}{2} \sum_{i=r^*+1}^{N} \ln(1 - \hat{\lambda}_i)$$

последовательная

процедура

проверки гипотез

Rank	Trace test H0 H1	Lmax test H0 H1
0	c = 0 c = 3	c = 0 c = 1
1	c = 1 c = 3	c = 1 c = 2
2	c = 2 c = 3	c = 2 c = 3

Table A2.9 Quantiles of the asymptotic distribution of the Johansen cointegration rank test statistics (constant in cointegrating vectors only)

p-r	50%	80%	90%	95%	97.5%	99%	Mean	Var
λTrace								
1	3.40	5.91	7.52	9.24	10.80	12.97	4.03	7.07
2	11,25	15.25	17.85	19.96	22.05	24.60	11.91	18.94
3	23.28	28.75	32.00	34.91	37.61	41.07	23.84	37.98
4	38.84	45.65	49.65	53.12	56.06	60.16	39.50	59.42
5	58.46	66.91	71.86	76.07	80.06	84,45	59.16	91.65
5 6 7 8	81.90	91.57	97.18	102.14	106.74	111.01	82.49	126.94
7	109.17	120.35	126.58	131.70	136.49	143.09	109.75	167.91
8	139.83	152.56	159.48	165.58	171.28	177.20	140.57	208.09
9	174.88	198.08	196.37	202.92	208.81	215.74	175.44	257.84
10	212.93	228.08	236.54	244.15	251.30	257.68	213.53	317.24
11	254.84	272.82	282.45	291.40	298.31	307.64	256.15	413.35

Тест Йохансена (Gretl)

Связь между рангом матрицы П и коинтеграцией

- 1. $r(\Pi)=0$ —нет коинтеграции
- 2. $r(\Pi)=N \rightarrow pяды стационарны$
- 3. $r(\Pi)=r< N \rightarrow ряды коинтегрированы$

Критерий следа (trace statistic)

```
H_0: r=0 H_1: r=2 Тест Йохансена: Количество уравнений = 2 H_0: r=1 H_1: r=2 Порядок лага = 1 Период оценки: 1949 - 1989 (T = 41) Вариант 3: Неограниченная константа

Лог. правдоподобие = -314,704 (Включая константу: -431,057)

Ранг Собственное значение Тест на след матрицы Р-значение Lmax test Р-значение 0 0,45388 28,053 [0,0003] 24,802 [0,0005] 1 0,076239 3,2514 [0,0714] 3,2514 [0,0714]
```

Вывод: r=1 (5%), ряды коинтегрированы

Оценивание ранга коинтеграции

1960q1

1970q1

1975q1

---- In(investment)

1980q1

1965q1

In(qdp)

····· In(consumption)

Подход Йохансена

Критерий следа (trace statistic)

Связь между рангом матрицы П и коинтеграцией

- 1. $r(\Pi)=0$ \rightarrow нет коинтеграции
- 2. $r(\Pi)=N \rightarrow pяды стационарны$
- 3. $r(\Pi)=r< N \rightarrow ряды коинтегрированы$
 - . use http://www.stata-press.com/data/r13/balance2
 (macro data for VECM/balance study)
 - . vecrank y i c, lags(5)

Johansen tests for cointegration

maximum parms LL eigenvalue 0 39 1231.1041 . 1 44 1245.3882 0.26943 2 47 1252.5055 0.14480 3 48 1254.1787 0.03611	5% trace critical statistic value 46.1492 29.68 17.5810 15.41 3.3465* 3.76
---	--

Вывод: r = 2 (5%), ряды коинтегрированы

1985a1

Оценивание ранга коинтеграции: проблемы спецификации

$$\Delta \mathbf{y}_t = \alpha(\beta \mathbf{y}_{t-1} + \mu + \rho t) + \sum_{i=1}^{p-1} \mathbf{\Gamma}_i \Delta \mathbf{y}_{t-i} + \gamma + \tau t + \epsilon_t$$

Five different trend specifications are available:

Option in trend()	Parameter restrictions	Johansen (1995) notation
trend	none	H(r)
rtrend	au = 0	$H^*(r)$
constant	$\rho = 0$, and $\tau = 0$	$H_1(r)$
rconstant	$\rho = 0, \ \gamma = 0 \ \text{and} \ \tau = 0$	$H_1^*(r)$
none	$\mu = 0$, $\rho = 0$, $\gamma = 0$, and $\tau = 0$	$H_2(r)$

Использование информационных критериев

```
. vecrank y i c, lags(5) ic notrace
                      Johansen tests for cointegration
Trend: constant
                                                       Number of obs =
Sample: 1960q2 - 1982q4
                                                                Lags =
maximum
 rank
                     LL
                              eigenvalue
                                             SBIC
                                                        HQIC
                                                                   AIC
         parms
           39
                  1231, 1041
                                          -25.12401 -25.76596 -26.20009
                  1245.3882
                                0.26943
                                          -25.19009 -25.91435 -26.40414
                                          -25.19781* -25.97144* -26.49463
                  1252.5055
                                0.14480
                  1254.1787
                                0.03611 -25.18501 -25.97511 -26.50942
```


DATA6-3: United Kingdom Annual data.

Cons = Per capita consumption expenditure in British pounds (Range 1858 - 4744)

DI = Per capita personal disposable income in British pounds (Range 1875 - 5084)

Source: Economic Trends, Annual Supplement 1991 Edition.

A publication of the Government Statistical Service, London, UK.

Определим лаг.

Вывод: ряды коинтегрированны, r=1


```
VECM система, порядок лага 1
Метод оценки - Максимальное правдоподобие, наблюдения 1949-1989 (T = 41)
Ранг коинтеграции = 1
Вариант 3: Неограниченная константа
beta (Коинтегрирующие векторы, в скобках указаны стандартные ошибки)
                      →Долгосрочное соотношение
Cons
          1.0000
        (0,00000)
        -0,77501
DI
                                               Уравнение 1: d Cons
        (0.019687)
                                                                          Ст. ошибка
alpha (Корректирующие векторы)
                                                            -164,142
                                                                          42,6892
                                                                                          -3,845
                                                                                                       0.0004
Cons
         0,53363
                                                 const
DI
         0.55631
                                                                           0.0950094
                                                                                           5,617
                                                                                                       1,76e-06 ***
Лог. правдоподобие = -432,68226
                                               Среднее зав. перемен
                                                                       70,39024 Ст. откл. зав. перемен 75,45955
Определитель ковариационной матрицы = 5028828.2
                                                                       125914,8 Ст. ошибка модели
                                               Сумма кв. остатков
                                                                                                          56,82063
Крит. Акаике = 21,3991
                                               R-квадрат
                                                                       0,447174 Испр. R-квадрат
                                                                                                          0,432999
Крит. Шварца = 21,6499
                                                                       0,045915 Стат. Дарбина-Вотсона
                                               Параметр rho
                                                                                                         1,800054
Крит. Хеннана-Куинна = 21,4905
                                               Уравнение 2: d DI
   Скорость коррекции
                                                            Коэффициент Ст. ошибка t-статистика
                                                                          50,1910
                                                 const
                                                                                          -3,312
                                                                                                       0,0020
                                                                                           4,980
                                                 EC1
                                                               0,556314
                                                                           0,111705
                                                                                                       1,33e-05 ***
                                               Среднее зав. перемен
                                                                       78,26829 Ст. откл. зав. перемен 84,37269
                                                                       174057,2 Ст. ошибка модели
                                                                                                          66,80572
                                               Сумма кв. остатков
                                                                       0,388737
                                                                                  Испр. R-квадрат
                                                                                                          0,373064
                                               R-квадрат
                                               Параметр rho
                                                                       0,099212
                                                                                  Стат. Дарбина-Вотсона
                                                                                                          1,782948
```


Анализ и интерпретация матрицы П

$$\Delta y_t = \mu + \Pi y_{t-1} + \Gamma_1 \Delta y_{t-1} + \Gamma_2 \Delta y_{t-2} + \dots + \Gamma_p \Delta y_{t-(p-1)} + \mathcal{E}_t$$

$$\Pi = -I_k + \sum_{i=1}^p B_i; \quad \Pi = \alpha \beta^i; \quad z_{t-1} = \beta^i y_{t-1}$$

Пример 1. $r(\Pi)=1 \to ряды коинтегрированны$

2. VECM

$$\begin{pmatrix} \Delta y_t \\ \Delta x_t \end{pmatrix} = \begin{pmatrix} -164 \\ -166 \end{pmatrix} + \begin{pmatrix} 0.53 \\ 0.56 \end{pmatrix} (1)$$

$$\begin{pmatrix} \Delta y_t \\ \Delta x_t \end{pmatrix} = \begin{pmatrix} -164 \\ -166 \end{pmatrix} + \begin{pmatrix} 0.53 \\ 0.56 \end{pmatrix} (1 -0.77) \begin{pmatrix} y_{t-1} \\ x_{t-1} \end{pmatrix} = \begin{pmatrix} -164 \\ -166 \end{pmatrix} + \begin{pmatrix} 0.53 \\ 0.56 \end{pmatrix} (y_{t-1} - 0.77x_{t-1})$$

Скорость коррекции к равновесию для обеих переменных равна 0,5, период возврата к равновесному состоянию 2 года.

При ↑ дохода на 1 ед., потребление ↑ на 0,77ед.

VECM

Оценивание VECM: пример 2 (случай трех переменных)

use http://www.stata-press.com/data/r13/urates, clear vec missouri indiana kentucky illinois, rank(2) lags(4)

1980

1985

Оценивание VECM: пример 2 Определение лага

Уровень безработицы в штатах США

VAR система, максимальный порядок лага 12

Звездочка указывает на наилучшие (минимальные) значения информационных критериев Акаике (AIC), Шварца (BIC) и Хеннана-Куинна (HQC).

lags	loglik	p(LR)	AIC	BIC	HQC
1	299,51007		-1,916734	-1,768583	-1,857443
2	343,82998	0,00000	-2,152200	-1,892935*	-2,048442
3	365,76636	0,00000	-2,238442	-1,868064	-2,090217
4	381,52665	0,00024	-2,283511*	-1,802019	-2,090817*
5	385,94882	0,45177	-2,252992	-1,660387	-2,015831
6	393,70203	0,07793	-2,244680	-1,540962	-1,963051
7	404,42887	0,01078	-2,256192	-1,441360	-1,930095
8	414,38682	0,01844	-2,262579	-1,336633	-1,892014
9	419,86833	0,27825	-2,239122	-1,202063	-1,824090
10	432,08860	0,00366	-2,260591	-1,112418	-1,801090
11	437,93752	0,23088	-2,239583	-0,980297	-1,735615
12	442,71848	0,38710	-2,211457	-0,841057	-1,663021

Оценивание VECM: пример 2 Причинность по Гренджеру

Уровень безработицы в штатах США Уравнение 1: tenn (Tennessee)

F-тесты для нулевых ограничений:

Bce	лаги	для	tenn		F(2,	303)	=	2511,2	[0,0000]
Bce	лаги	для	missour	i	F(2,	303)	=	5,3995	[0,0050]
Bce	лаги	для	kentuck	ΣĀ	F(2,	303)	=	2,2640	[0,1057]
Bce	перем	еннь	ие, лаг	2	F(3,	303)	=	14,066	[0,0000]

Уравнение 2: missouri

F-тесты для нулевых ограничений:

Все лаги для tenn	F(2, 303) = 6,5283 [0,0017]
Все лаги для missouri	F(2, 303) = 1939,1 [0,0000]
Все лаги для kentucky	F(2, 303) = 0,26929 [0,7641]
Все переменные, лаг 2	F(3, 303) = 23,758 [0,0000]

Уравнение 2: kentucky

Экзогенность kentucky?

F-тесты для нулевых ограничений: Все лаги для tenn F(2, 303) = 11,506 [0,0000] Все лаги для missouri F(2, 303) = 7,5372 [0,0006] Все лаги для kentucky F(2, 303) = 1614,7 [0,0000] Все переменные, лаг 2 F(3, 303) = 10,519 [0,0000]

Уровень безработицы в штатах США

Краткосрочный эффект (по каждому уравнению)

	Коэффициент	CT. OI	ибка	t-статистика	Р-значение	
const	0,00699278	0,0100	208	0,6978	0,4858	
d_tenn_1	0,240853	0,0626	468	3,845	0,0001	***
d_missouri_1	0,160853	0,0548	3773	2,931	0,0036	***
d_kentucky_1	0,0257628	0,0503	903	0,5113	0,6095	
EC1	0,0174192	0,0090	4877	1,925	0,0552	*
Среднее зав. пер	ремен -0,00	0645	Cr. or	гкл. зав. пер	емен 0,17662	27
Сумма кв. остат	ков 8,16	8193	Cr. or	шибка модели	0,1636	49
R-квадрат	0,15	2666	Испр.	R-квадрат	0,1415	53
Параметр rho	-0,09	3505	CTar.	Дарбина-Вото	она 2,18248	82

Оценивание VECM: пример 2 Анализ остатков

Стационарность VAR Обратные корни VAR по отношению к единичной окружности

Уровень безработицы в штатах США

Уравнение 1: tenn (Tennessee), анализ автокорреляции остатков

!Необходимо наращивать лаговую структуру

Тест на нормальное распределение uhat1:

Тест Дурника-Хансена (Doornik-Hansen) = 6,21, р-значение 0,04

Тест Шапиро-Уилка (Shapiro-Wilk W) = 0,99, р-значение 0,11

Тест Лиллифорса (Lilliefors) = 0.037, p-значение $\sim = 0.34$

Тест Жака-Бера (Jarque-Bera) = 6,88, р-значение 0,032

Оценивание VECM: пример 2 интерпретация через IRF

Уровень безработицы в штатах США

Оценивание VECM: пример 2 интерпретация через IRF

Уравнение 1: tenn (Tennessee), IRF

Разложение дисперсии для tenn

Период	Ст. ошибк	a tenn	missouri	kentucky
1	0,162324	100,0000	0,0000	0,0000
2	0,266793	98,9167	1,0833	0,0000
3	0,355577	97,7836	2,2075	0,0089
4	0,433315	96,9039	3,0571	0,0389
5	0,502825	96,2306	3,6748	0,0946
6	0,566089	95,6920	4,1319	0,1761
7	0,624534	95,2368	4,4812	0,2820
8	0,679191	94,8326	4,7571	0,4103
9	0,730815	94,4596	4,9820	0,5584
10	0,779966	94,1058	5,1702	0,7241
11	0,827061	93,7638	5,3312	0,9050
12	0,872424	93,4295	5,4715	1,0991

Слабое влияние kentucky