Nombre: Jose Manuel Martinez del Campo Gonzalez Examen : Final Curso: Teoria de la Medida Fecha: May 27, 2022

Problema 1

a) Sea $\epsilon > 0$. Entonces:

$$\exists N_1 \in \mathbb{N} \quad tq \quad \forall n \ge N_1, \ m(|f_n - f| \ge \epsilon/2) < \epsilon/2$$

 $\exists N_2 \in \mathbb{N} \quad tq \quad \forall n \ge N_2, \ m(|g_n - g| \ge \epsilon/2) < \epsilon/2$

Sea $N = max\{N_1, N_2\}$ y $n \ge N$. Entonces:

$$m(|(f_n + g_n) - (f + g)| \ge \epsilon) \le m(|(f_n + g_n) - (f + g)| \ge \epsilon/2)$$

$$\le m(|f_n - f| + |g_n - g| \ge \epsilon/2)$$

$$\le m(|f_n - f| \ge \epsilon/2) + m(|g_n - g| \ge \epsilon/2)$$

$$\le \epsilon$$

b) No es cierto que $f_n g_n$ convergen en medida a fg. Es necesario pedir como hipótesis que f y g sean acotadas casi donde quiera. Supongamos que f y g estan acotadas c.d. Entonces $\exists M > 0$ tal que $f \leq M$ y $g_n \leq M$

c.d. Como $f_n \to f$ y $g_n \to g$, sea $\epsilon > 0$, entonces:

$$\exists N_1 \in \mathbb{N} \quad tq \quad \forall n \geq N_1, \ m(|f_n - f| \geq \epsilon/2) < \epsilon/2$$

 $\exists N_2 \in \mathbb{N} \quad tq \quad \forall n \geq N_2, \ m(|g_n - g| \geq \epsilon/2) < \epsilon/2$

Sea $N = max\{N_1, N_2\}$ y $n \ge N$. Entonces, como f y g estan acotadas c.d. tenemos que g_n y f_n estan tambien acotadas c.d. Entonces

$$m(|f_{n}g_{n} - fg| \ge \epsilon) \le m(|f_{n}g_{n} - fg| \ge \epsilon/2)$$

$$\le m(|f_{n}||g_{n} - g| \ge \epsilon/2) + m(|g||f_{n} - f| \ge \epsilon/2)$$

$$\le m(|f_{n}| > M) + m(|f_{n}||g_{n} - g| \ge \epsilon/2) + m(|g| > M) + m(|g||f_{n} - f| \ge \epsilon/2)$$

$$= m(|f_{n}||g_{n} - g| \ge \epsilon/2) + m(|g||f_{n} - f| \ge \epsilon/2)$$

$$= m(|g_{n} - g| \ge \frac{\epsilon}{2M}) + m(|f_{n} - f| \ge \frac{\epsilon}{2M})$$

$$< \epsilon$$

c) Esto es cierto. :) Como $f_n \to f$, entonces $\exists N \in \mathbb{N} \quad tq \quad \forall n \geq N, \ m(|f_n - f| \geq \epsilon) < \epsilon$. Sea n > N y $\epsilon > 0$, entonces:

$$m(||f_n| - |f|| \ge \epsilon) \le m([|f_n - f| \ge \epsilon) < \epsilon$$

Problema 2

 \Rightarrow)

Supongamos que $(f_n) \to f$ en medida. Sea (f_{n_k}) una subsucesión de (f_n) . Entonces $(f_{n_k}) \to f$ en medida c.d. Luego, existe una subsucesion de (f_{n_k}) tal que converge en medida a f c.d.. $\therefore \forall (f_{n_k})$ subsucesion de (f_n) existe una subsucesion que converge a f c.d.

 \Leftarrow)

Supongamos que (f_n) no converge a f en medida. Entonces, existe una constante c > 0 tal que para todo n se tiene que $m\{x : |f_n - f(x)| \ge c\} > c$. De esta manera, existe una constante c > 0 tal que para todo k se tiene que $m\{x : |f_{n_k} - f(x)| \ge c\} > c$. De aqui que la subsucesion f_{n_k} no tiene ninguna subsucesion que converge a f en medida.

 \therefore si $\forall (f_{n_k})$ subsucesion de (f_n) existe una subsucesion que converge a f c.d., entonces $(f_n) \to f$ en medida.

Problema 3

Sea D tal que $m(D) < \infty$, con $1 \le r \le p < \infty$, y $f \in L_p$. Definimos por comodidad a $q = \frac{p}{r} > 1$ y a $q' = \frac{p}{p-r} > 1$. Notamos que $\frac{1}{q} + \frac{1}{q'} = \frac{p}{r} + \frac{p}{p-r} = 1$. Gracias a esto podemos usar la desigualdad de Hölder de la siguiente manera:

$$\int |f|^r dm \le \left(\int (|f|^r)^q dm \right)^{\frac{1}{q}} \left(\int (\mathbf{1}_D)^{q'} dm \right)^{\frac{1}{q'}} = \left(\int |f|^p dm \right)^{\frac{r}{p}} m(D)^{\frac{p-r}{p}}$$

Elevando a $\frac{1}{r} < 1$

$$||f||_r = \left(\int |f|^r dm\right)^{\frac{1}{r}} \le \left(\int |f|^p dm\right)^{\frac{1}{p}} m(D)^{\frac{p-r}{pr}} = ||f||_p m(D)^{\frac{1}{r} - \frac{1}{p}}$$

Como $m(D) < \infty$ y $||f||_p < \infty$ entonces $||f||_r < \infty$.

Como tenemos que si $f \in L_p$ entonces $f \in L_r$, luego que $L_p(D) \subset L_r(D)$.

Problema 4

- a) Claramente, $M = supesen\{|f(x)| : x \in D\} = inf\{M \ge 0 : |f| < Mc.d.\}$ es mayor o igual que 0. Como f es una funcion esencialmente acotada, entonces $f \in L_{\infty}(D) = \{f \in L_{0}(D, \mathbb{R} : D) \in \mathbb{R} : D \in \mathbb{R} \}$
 - Como f es una función esenciamiente acotada, entonces $f \in L_{\infty}(D) = \{f \in L_0(D), \mathbb{R} : \exists M > 0 \quad tq \quad |f| < Mc.d.\}$. Esto es que $||f||_{\infty} < \infty$ y de aqui que $0 \le M < \infty$
- b) \Rightarrow) Sea f = 0 c.d.. Entonces, $M = supesen\{|f(x)| : x \in D\} = inf\{M \ge 0 : |f| < 0$

$$Mc.d.$$
 = $inf{M \ge 0 : 0 < Mc.d.} = 0.$

 \Leftarrow

Sea M = 0. Sea $N_k \subset D$, tal que $m(N_k) = 0$ y $|f(x)| < 1/2^k \quad \forall x \in D \setminus N_k$; para todo $k \in \mathbb{N}$.

Sea $N = \bigcup_{k=1}^{\infty} N_k$. Entonces, m(N) = 0y si $x \in D \setminus N$ tenemos que f(x) = 0. f(x) = 0 c.d.

c) Supongamos que existe una constante M', tal que $0 \le M' < M$ y tal que m([|f| > M']) = 0. Entonces f(x) < M' c.d.. Luego,

$$\begin{split} M &= supese(f) \\ &= \inf \left\{ M \geq 0 : |f| < M \quad c.d. \right\} \\ &\leq M' \\ &< M \quad \bot \end{split}$$

De aqui que m([|f| > M']) > 0. Tenemos tambien que $|f(x)| \le M \quad \forall x \in D \setminus N$, con N un conjunto nulo. Luego, $|f| < ||f||_{\infty} c.d$. Por lo visto en este inciso, M es la menor constante que cumple que |f| < M c.d., ya que de otro modo tendremos una contradiccion.

Problema 5

a)

$$|(f * g)(x)| := |\int_{\mathbb{R}} f(t)g(x+t)dt|$$

$$= |\lim_{b \to \infty} \int_{-b}^{b} f(t)g(x+t)dt|$$

$$= |\lim_{b \to \infty} \int fg \circ (\mathbf{1}_{[-\mathbf{b}+\mathbf{x},\mathbf{b}+\mathbf{x}]})dt|$$

$$= |\int_{\mathbb{R}} (fg)dm|$$

$$\leq \int_{\mathbb{R}} |fg|dm$$

$$\leq (\int_{\mathbb{R}} |f|^{p}dm)^{\frac{1}{p}} (\int_{\mathbb{R}} |g|^{q})^{\frac{1}{q}}$$

$$< \infty$$

Entonces f * g esta acotado, pues $f \in L_p$ y $g \in L_q$.

Queremos ver que cuando $|x-y| \to 0$ entonces $|(f*g)(x) - (f*g)(y)| \to 0$.

$$\begin{aligned} |(f*g)(x) - (f*g)(y)| &= |\int_{\mathbb{R}} f(t)g(x+t)dt - \int_{\mathbb{R}} f(t)g(y+t)dt| \\ &= |\int_{\mathbb{R}} f(t)g(x+t) - f(t)g(y+t)dt| \\ &= |\int_{\mathbb{R}} f(t)[g(x+t) - g(y+t)]dt| \\ &\leq \int_{\mathbb{R}} |f(t)[g(x+t) - g(y+t)]|dt \\ &= \lim_{b \to \infty} \int_{[-b,b]} |f(g \circ (\mathbf{1}_{[-\mathbf{b}+\mathbf{x},\mathbf{b}+\mathbf{x}])}) - g \circ (\mathbf{1}_{[-\mathbf{b}+\mathbf{y},\mathbf{b}+\mathbf{y}]})|dm \\ &\leq \lim_{b \to \infty} \Big(\int_{[-b,b]} |f|^p dm\Big)^{\frac{1}{p}} \Big(\int_{[-b,b]} |(g \circ (\mathbf{1}_{[-\mathbf{b}+\mathbf{x},\mathbf{b}+\mathbf{x}])}) - g \circ (\mathbf{1}_{[-\mathbf{b}+\mathbf{y},\mathbf{b}+\mathbf{y}]})|^q dm\Big)^{\frac{1}{q}} \\ &= \Big(\int_{\mathbb{R}} |f|^p dm\Big)^{\frac{1}{p}} \Big(\int_{\mathbb{R}} |g(x+t) - g(y+t)|^q dm\Big)^{\frac{1}{q}} \end{aligned}$$

Por la pregunta 8 del examen 3, sabemos que el segundo termino de esta ultima igualdad $\to 0$. Como $f \in L_p$ se sigue que $|(f * g)(x) - (f * g)(y)| \to 0$.

b)

$$\begin{aligned} \|(f*g)(x) - (f*g)(y)\|_{\infty} &= \|\int_{\mathbb{R}} f(t)g(x+t)dt - \int_{\mathbb{R}} f(t)g(y+t)dt\|_{\infty} \\ &= \|\int_{\mathbb{R}} f(t)[g(x+t) - g(y+t)]dt\|_{\infty} \\ &\leq \|\int_{\mathbb{R}} |f(t)[g(x+t) - g(y+t)]|dt\|_{\infty} \\ &= \|\lim_{b \to \infty} \int_{[-b,b]} |f(g \circ (\mathbf{1}_{[-\mathbf{b}+\mathbf{x},\mathbf{b}+\mathbf{x}])}) - g \circ (\mathbf{1}_{[-\mathbf{b}+\mathbf{y},\mathbf{b}+\mathbf{y}]})|dm\|_{\infty} \\ &\leq \|\lim_{b \to \infty} \left(\int_{[-b,b]} |f|^p dm\right)^{\frac{1}{p}} \left(\int_{[-b,b]} |(g \circ (\mathbf{1}_{[-\mathbf{b}+\mathbf{x},\mathbf{b}+\mathbf{x}])}) - g \circ (\mathbf{1}_{[-\mathbf{b}+\mathbf{y},\mathbf{b}+\mathbf{y}]})|^q dm\right)^{\frac{1}{q}} \\ &\leq \|f\|_{\infty} \|\lim_{b \to \infty} \left(\int_{[-b,b]} |(g \circ (\mathbf{1}_{[-\mathbf{b}+\mathbf{x},\mathbf{b}+\mathbf{x}])}) - g \circ (\mathbf{1}_{[-\mathbf{b}+\mathbf{y},\mathbf{b}+\mathbf{y}]})|^q dm\right)^{\frac{1}{q}} \|_{\infty} \\ &\leq \|f\|_{\infty} \|\|g\|_{\infty} \|\end{aligned}$$

Problema 6

Desigualdad de Jensen:

Sea $f:I\subset\mathbb{R}\to\mathbb{R}$ una función convexa. Sean $x_1,..,x_n\in I$ y $\lambda_1,...,\lambda_n>0$, con $\lambda_1+...+\lambda_n=1$ Entonces:

$$f(\lambda_1 x_1 + \dots + \lambda_n x_n) \le \lambda_1 f(x_1) + \dots + \lambda_n f(x_n)$$

Demostración:

Procedemos por inducción. El primer caso es cuando n=2. Como $\lambda_1 + \lambda_2 = 1$ se tiene por la desigualdad por la definición de función convexa. Para la hipótesis de inducción, suponemos que $f(\lambda_1 x_1 + ... + \lambda_n x_n) \leq \lambda_1 f(x_1) + ... + \lambda_n f(x_n)$. Por demostrar para n+1.

$$f(\sum_{k=1}^{n+1} \lambda_k x_k) = f(\sum_{k=1}^{n} \lambda_k x_k + \lambda_{n+1} x_{n+1})$$

$$= f((1 - \lambda_{n+1}) \sum_{k=1}^{n} \frac{\lambda_k x_k}{1 - \lambda_{n+1}} + \lambda_{n+1} x_{n+1})$$

$$\leq (1 - \lambda_{n+1}) f(\sum_{k=1}^{n} \frac{\lambda_k x_k}{1 - \lambda_{n+1}}) + \lambda_{n+1} f(x_{n+1})$$

$$\leq (1 - \lambda_{n+1}) \sum_{k=1}^{n} \frac{\lambda_k}{1 - \lambda_{n+1}} f(x_k) + \lambda_{n+1} f(x_{n+1})$$

$$= \sum_{k=1}^{n} \lambda_k f(x_k) + \lambda_{n+1} f(x_{n+1})$$

$$= \sum_{k=1}^{n+1} \lambda_k f(x_k)$$

Desigualdad de Jensen en medida:

Sea (X,S,μ) un espacio de medida con $\mu(X)=1$ y $\phi:\mathbb{R}\to\mathbb{R}$ una función convexa . Sea $f\in L_1,$ Entonces:

$$\phi(\int f d\mu) \le \int \phi(f) d\mu$$

Demostración:

Como ϕ es convexa, entonces para cada $y \in \mathbb{R}$ tenemos que existe a, b tal que $\phi(y) = ay + b$. Por la convexidad de ϕ , $\phi(x) \ge ax + b$ para todo x. En particular, escojemos a $y = \int f d\mu \le \infty$. Luego,

$$\phi(\int f d\mu) = \phi(y) = ay + b = a((\int f d\mu)) + b = \int (af + b)d\mu \le \int \phi(f)d\mu$$