Tutorial 6 and 7 (Chapters 6 and 7)

1. If 50% of the population of a large community is in favour of a proposed rise in school taxes, approximate the probability that a random sample of 100 people will contain at least 60 who are in favour of the proposition.

Solution

The number of people in favor of the proposition is $X \sim Bin(100,0.5)$. The mean of X is 50 and standard deviation is 5. So $P(X \ge 60) = P(\frac{X-50}{5} > \frac{60-50}{5}) \approx 1 - \Phi(2) \approx 0.023$. (Since $P(X \ge 60) = P(X > 59)$, you can also plug in 59 in the approximation above.)

2. The lifetimes of interactive computer chips produced by a certain semiconductor manufacturer are normally distributed with parameters $\mu = 1.4 \times 10^6$ hours and $\sigma = 4 \times 10^5$. What is the approximate probability that a batch of 100 chips will contain at least 90 whose lifetimes are less than 1.8×10^6 ?

Solution The probability that a computer chip whose lifetime is less than 1.8×10^6 is $\Phi(\frac{1.8 \times 10^6 - 1.4 \times 10^6}{4 \times 10^5}) = \Phi(1) \approx 0.84$.

Denote by X the number of chips whose lifetimes are less than 1.8×10^6 , then $X \sim Bin(100, 0.84)$. And $P(X < 90) \approx \Phi(\frac{90-84}{\sqrt{100 \times 0.84 \times 0.16}}) \approx 0.95$, so the answer is approximately 0.05.

3. (Optional) Suppose $X \sim Binomial(n, p)$. Use CLT to find the minimum value of n that satisfies

$$P(|\frac{X}{n} - p| < \frac{\sqrt{Var(X)}}{2}) \ge 0.99$$

Solution

By CLT, $\frac{X/n-p}{\sqrt{Var(X/n)}} \sim N(0,1)$, thus $P(|\frac{X}{n}-p| < \frac{\sqrt{Var(X)}}{2}) = P(|\frac{X/n-p}{\sqrt{Var(X/n)}}| < \frac{\sqrt{Var(X)}}{2\sqrt{Var(X/n)}}) \approx 2\Phi(\frac{\sqrt{Var(X)}}{2\sqrt{Var(X/n)}}) - 1 \ge 0.99$. From $\Phi(2.58) = 0.995$, we get $\frac{\sqrt{Var(X)}}{2\sqrt{Var(X/n)}} \ge 2.58$, which implies $n \ge 5.16$, so we should have n > 6.

4. Let Y_1, \ldots, Y_n denote a random sample from the probability density function

$$f(y|\theta) = \begin{cases} (\theta+1)y^{\theta}, & 0 < y < 1; \theta > -1 \\ 0 & \text{otherwise} \end{cases}$$

Find an estimator for θ by the method of moments and find the MLE.

Solution. It is easy to show that $E[y] = \frac{\theta+1}{\theta+2}$ and thus the estimator is $\hat{\theta} = \frac{2\bar{Y}-1}{1-\bar{Y}}$. The likelihood is $L(\theta) = (\theta+1)^n (\prod_{i=1}^n Y_i)^{\theta}$ and the MLE is $\hat{\theta} = -\frac{n}{\sum_{i=1}^n \ln Y_i} - 1$.

5. If Y_1, \ldots, Y_n denote a random sample from the normal distribution with known mean $\mu = 0$ and unknown variance σ^2 , find the method-of-moments estimator of σ^2 .

Solution. Since E[Y] = 0 and $E[Y^2] = \sigma^2$, the estimator is $\frac{1}{n} \sum_{i=1}^n Y_i^2$.

6. If Y_1, \ldots, Y_n denote a random sample from the normal distribution with mean μ and variance σ^2 , find the method-of-moments estimators of μ and σ^2 .

Solution. Here, we have that $E[Y] = \mu$ and $E[Y^2] = \sigma^2 + \mu^2$. Thus $\hat{\mu} = \bar{Y}$ and $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n Y_i^2 - (\bar{Y})^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \bar{Y})^2$.

7. Let Y_1, \ldots, Y_n denote a random sample from the density function given by

$$f(y|\theta) = \begin{cases} \left(\frac{1}{\theta}\right) r y^{r-1} e^{-y^r/\theta}, & y > 0, \theta > 0 \\ 0 & \text{otherwise} \end{cases}$$

where r is a known positive constant. Find the MLE of θ .

Solution. The likelihood function is $L(\theta) = \theta^{-n} r^n (\prod_i Y_i)^{r-1} \exp\{-\sum_i Y_i^r/\theta\}$. The loglikelihood is $\ln L(\theta) = -n \ln \theta + n \ln r + (r-1) \ln(\prod_i Y_i) - \sum_i Y_i^r/\theta$. By taking a derivative w.r.t. θ and equating to 0, we find $\hat{\theta} = \frac{1}{n} \sum_i Y_i^r$.

8. Suppose that Y_1, \ldots, Y_n constitute a random sample from a uniform distribution with probability density function

$$f(y|\theta) = \begin{cases} \frac{1}{2\theta+1} & 0 < y < 2\theta+1\\ 0 & \text{otherwise} \end{cases}$$

- (i) Obtain the MLE of θ .
- (ii) Obtain the MLE for the variance of the this distribution.

Solution. (i) The likelihood function is $L(\theta) = (2\theta+1)^{-n}I\{Y_{(n)} \le 2\theta+1\}$. The likelihood is maximized for small values of θ . The smallest value that can maximize the likelihood is $\hat{\theta} = \frac{1}{2}(Y_{(n)} - 1)$, which is the MLE. (ii) Since $Var(Y) = \frac{(2\theta+1)^2}{12}$, by the invariance principle the MLE is $(Y_{(n)})^2/12$.

- 9. Suppose Y_1, \ldots, Y_n is a random sample from the uniform distribution on $(\theta, \theta + 1)$.
 - (i) Show that \bar{Y} is a biased estimator and compute the bias (the bias is defined as $E(\hat{\theta}) \theta$).
 - (ii) Find a function of \bar{Y} that is an unbiased estimator of θ .
 - (iii) Find $MSE(\bar{Y})$ when \bar{Y} is used as an estimator of θ .

Solution (i) $E[\bar{Y}] = \theta + 0.5$ and thus the bias is 0.5. (ii) $\bar{Y} - 0.5$ is an unbiased estimator. (iii) $Var(\bar{Y}) = \frac{1}{12n}$ and thus $MSE(\bar{Y}) = \frac{1}{12n} + 0.25$.

- 10. Suppose $Y \sim Bin(n, p)$. Then Y/n is an unbiased estimator of p. To estimate the variance of Y, we can use n(Y/n)(1-Y/n).
 - (i) Show that the suggested estimator is a biased estimator of Var(Y).
 - (ii) Modify n(Y/n)(1-Y/n) slightly to form an unbiased estimator of Var(Y).

Solution $E\{n(Y/n)(1-Y/n)\} = EY - \frac{1}{n}E[Y^2] = np - p(1-p) - np^2 = (n-1)p(1-p)$. So the estimator $\frac{n}{n-1}n(Y/n)(1-Y/n)$ is unbiased.

11. Let Y_1, \ldots, Y_n be a random sample from a population with mean μ and variance σ^2 . Consider the following estimators for μ :

$$\hat{\mu}_1 = \frac{1}{2}(Y_1 + Y_2), \ \hat{\mu}_2 = \frac{1}{4}Y_1 + \frac{Y_2 + \dots + Y_{n-1}}{2(n-2)} + \frac{1}{4}Y_n, \ \hat{\mu}_3 = \bar{Y}.$$

- (i) Show that all estimators defined above are unbiased.
- (ii) Find the variances of the estimators.

Solution (i) $E(\hat{\mu}_1) = \frac{1}{2}(E[Y_1] + E[Y_2]) = \mu$; $E(\hat{\mu}_2) = \frac{\mu}{4} + \frac{(n-2)\mu}{2(n-2)} + \frac{\mu}{4}$; $E(\hat{\mu}_3) = E(\bar{Y}) = \mu$. (ii) $Var(\hat{\mu}_1) = \sigma^2/2$, $Var(\hat{\mu}_2) = \frac{\sigma^2}{8} + \frac{\sigma^2}{4(n-2)}$, $Var(\hat{\mu}_3) = \frac{\sigma^2}{n}$.