

Foley 1996:cap 12

Prof Marcelo Hounsell, PhD Prof Roberto Rosso, PhD (Revisão) DCC/UDESC

Modelagem Sólida Métodos de Criação de Objetos

Operações Booleanas Regularizadas

Operações Booleanas ₩UDESC

Operadores Booleanos

- Operações Booleanas são a composição de "objetos primitivos" usando-se as funções de União, Intersecção e Diferença para obter-se formas mais complexas
- Operações Booleanas
 - · 2D Diagramas de Venn
 - . 3D

Operadores Booleanos

- As Operações de <u>União</u> e <u>Interseção</u> são comutativas mas a <u>Diferença</u> NÃO
- Os objetos primitivos não são aproximações e sim definições precisas dos mesmos (para primitivas analítica)
- É um método bastante compacto e intuitivo
- Lento para questões de visualização e colorização

Problemas com as Operações Booleanas (2D)

Não tem **closure**: nem sempre a Operação Booleana ordinária/convencional/canônica/completa leva a um resultado válido, principalmente se consideramos Sólidos, identificados pela composição dos limites mais o interior

Solid = Boundary + Interior

Operações Booleanas Regularizadas

(Foley 1996: secão 12.2)

São operações booleanas em sólidos válidos que garantidamente geram objetos sólidos válidos (garante closure!)

U* = união regularizada

-* = diferença regularizada

∩* = interseção regularizada

Objeto Regularizado

- Um objeto regularizado, resultante de uma operação booleana regularizada, é aquele que não tem heterogenia dimensional (no dangling parts)
 - isto significa que todo seu interior é definido por limites fechados e;
 - todo limite contorna uma parte do interior

Regularizando Conceitualmente um Objeto

(Foley 2000:536)

Regularizando um objeto. (a) Objeto qualquer é definido pelos pontos do interior (em cinza), pontos de contorno que fazem parte do objeto (em preto) e outros pontos (em cinza escuro). (b) Fechamento do objeto: todos os pontos de contorno passam a fazer parte do objeto. (c) Interior do objeto: retira-se todos os pontos de contorno. (d) Regularização do objeto é o fechamento de seu interior.

Regularização (Zeid91:sec 7.5.2)

 $A op^* B = closure (interior (A op B))$

Um objeto regularizado não pode ter um limite (boundary) que não é adjacente a um interior (dangling elements)

Tratamento dos Contornos (limites)

- Faces com (interior de) objetos dos dois lados devem desaparecer
- Faces com (interior de) um dos objetos de um dos dois lados devem aparecer

Analisando uma UNIÃO (2/2)

- Situação 1 e 5
 - · Tem UM objeto de UM lado do limite
- Situação 2
 - · Tem pelo menos UM objeto de AMBOS os lados
- Situação 3
 - Tem AMBOS os objetos de AMBOS os lados
- Situação 4
 - · Tem AMBOS objetos de UM lado do limite

Operação Booleana Regularizada sobre **Sólidos**

Uma Operação Booleana Regularizada pode ser calculada pela união dos resultados das Operações Booleanas Canônicas "apropriadas", aplicadas ao interior e ao contorno (boundary)

TABLE 12.1 REGULARIZED BOOLEAN SET OPERATIONS

Set	$A \cup^* B$	$A \cap^* B$	A -*.B
$A_i \cap B_i$			
$A_i - B$			
$B_i - A$			
$A_b \cap B_i$			
$B_b \cap A_i$			
$A_b - B$			
$B_b - A$			
$A_b \cap B_b$ same			
$A_b \cap B_b $ diff			

Os índices b indicam contornos (boundaries);

Os índices i indicam interiores;

Onde tem-se same, significa do mesmo lado

Onde tem-se diff, significa de lados opostos

Operações Regularizadas (Foley2002:538)

TABLE 12.1 REGULARIZED BOOLEAN SET OPERATIONS

Set	$A \cup^* B$	$A \cap^* B$	A = *.B
$A_i \cap B_i$			
$A_i - B$			•
$B_i - A$			
$A_b \cap B_i$			
$B_b \cap A_i$			•
$A_b - B$			•
$B_b - A$			
$A_b \cap B_b$ same	•		
$A_b \cap B_b $ diff			•

Os índices b indicam contornos (boundaries);

Os índices i indicam interiores;

Onde tem-se same, significa do mesmo lado

Onde tem-se diff, significa de lados opostos

TABLE 12.1 REGULARIZED BOOLEAN SET OPERATIONS

Set	$A \cup^* B$	$A \cap^* B$	A = *.B
$A_i \cap B_i$		•	
$A_i - B$			•
$B_i - A$			
$A_b \cap B_i$		•	
$B_b \cap A_i$		•	•
$A_b - B$			•
$B_b - A$			
$A_b \cap B_b$ same		•	
$A_b \cap B_b diff$			•

Os índices b indicam contornos (boundaries);

Os índices i indicam interiores;

Onde tem-se same, significa do mesmo lado

Onde tem-se diff, significa de lados opostos

Operações Regularizadas (Foley2002:538)

TABLE 12.1 REGULARIZED BOOLEAN SET OPERATIONS

OLI OI LINAII	MATIONS			
Set	$A \cup^* B$	$A \cap^* B$	A - *.B	
$A_i \cap B_i$	•	•		
$A_i - B$	•		•	
$B_i - A$	•			
$A_b \cap B_i$		•		
$B_b \cap A_i$		•	•	
$A_b - B$	•		•	
$B_b - A$	•			
$A_b \cap B_b$ same	•	•		
$A_k \cap B_k diff$				

Os índices b indicam contornos (boundaries);

Os índices i indicam interiores;

Onde tem-se same, significa do mesmo lado

Onde tem-se diff, significa de lados opostos

Complemento

- Exercite fazer as mesmas operações anteriores mas, considerando o complemento de A, ou o complemento de B ou o complemento de AMBOS...
- O complemento seria basicamente inverter a área identificada como interior do objeto.

Um detalhe (Foley2002:539)

 $A - B \Leftrightarrow A \cap B$

Onde **B** é o complemento do interior de B com a inversão das normais de suas faces

