علوم كامپيوتر نيمسال دوم ۲۰-۳۰ مبأنى منطق

اعضای گروه: محمد ملائی - داوود نصرتی امیرآبادی - حسنا سلطانالکتابی - فرزانه سلیمی - یگانه رستگاری

تمرین ۱

ثابت كنيد:

$$\neg A \equiv \neg B$$
 آنگاه $A \equiv B$. ۱

$$*\in\{\wedge,\vee,\to\}$$
 و $B\equiv A'*B'$ آنگاه $B\equiv B'$ که در آن $A\equiv A'$.۲

۳. تعریفی استقرایی برای جانشینی
$$B\{A\leftarrow A'\}$$
 ارائه دهید. (با استقرا روی فرمول B)

جواب

: 1

میدانیم که $A \equiv B$ نمادی است در فرازبان و معادل با این است که عبارت زیر به ازای هر تعبیری همچون $\mathscr S$ برقرار باشد:

$$v_{\mathscr{I}}(A) = v_{\mathscr{I}}(B)$$

از طرفی میدانیم که به ازای هر تعبیر داریم:

$$v_{\mathscr{I}}(\neg A) = 1 - v_{\mathscr{I}}(A)$$
$$v_{\mathscr{I}}(\neg B) = 1 - v_{\mathscr{I}}(B)$$

$$v_{\mathscr{I}}(\neg B) = 1 - v_{\mathscr{I}}(B)$$

و چون طبق فرض داریم $v_{\mathscr{I}}(\neg A)=v_{\mathscr{I}}(\neg B)$ پس دو عبارت فوق برابرند و $v_{\mathscr{I}}(A)=v_{\mathscr{I}}(B)$ یا $\neg A = \neg B$

: ٢

طبق فرض مسئله داريم $A \equiv A'$ و $B \equiv B'$ که يعنی:

$$v_{\mathscr{I}}(A) = v_{\mathscr{I}}(A')$$

 $v_{\mathscr{I}}(B) = v_{\mathscr{I}}(B')$

● برای ۸ داریم:

$$v_{\mathscr{I}}(A \wedge B) = v_{\mathscr{I}}(A) \cdot v_{\mathscr{I}}(B)$$
$$= v_{\mathscr{I}}(A') \cdot v_{\mathscr{I}}(B')$$
$$= v_{\mathscr{I}}(A' \wedge B')$$

در نتیجه ثابت شد که $A \wedge B \equiv A' \wedge B'$ و حکم ثابت است.

● برای ∨ داریم:

$$v_{\mathscr{I}}(A \vee B) = v_{\mathscr{I}}(A) + v_{\mathscr{I}}(B) - v_{\mathscr{I}}(A) \cdot v_{\mathscr{I}}(B)$$
$$= v_{\mathscr{I}}(A') + v_{\mathscr{I}}(B') - v_{\mathscr{I}}(A') \cdot v_{\mathscr{I}}(B')$$
$$= v_{\mathscr{I}}(A' \vee B')$$

که یعنی $A \lor B \equiv A' \lor B'$ و حکم ثابت است.

برای → داریم:

$$\begin{split} v_{\mathscr{I}}(A \to B) &= v_{\mathscr{I}}(\neg A \lor B) \\ &= 1 - v_{\mathscr{I}}(A) + v_{\mathscr{I}}(B) - (1 - v_{\mathscr{I}}(A)) \cdot v_{\mathscr{I}}(B) \\ &= 1 - v_{\mathscr{I}}(A') + v_{\mathscr{I}}(B') - (1 - v_{\mathscr{I}}(A')) \cdot v_{\mathscr{I}}(B') \\ &= v_{\mathscr{I}}(\neg A' \lor B') \\ &= v_{\mathscr{I}}(A' \to B') \end{split}$$

پس در نتیجه $A o B \equiv A' o B'$ و حکم ثابت است.

پس در نتیجه حکم به صورت کلی برای سه عملگر فوق ثابت میباشد.

:٣

پایه استقرا: فرمول B گزاره اتمی است، پس A همان B است. در این صورت B' همان A' است. از آنجایی که $A \equiv B'$ $B \equiv B'$ گام استقرا: فرض کنید B = -C. از اینکه $A \in sub(B)$ نتیجه میشود یا A همان B است و در نتیجه به وضوح $B \equiv B'$ در حالت دوم بنا بر فرض استقرا $A' \in C' \equiv C$ پس بنابر تمرین $A' \in C'$ همان $A' \in C'$ پس بنابر تمرین $A \in C'$ پس بنابر تمرین $A \in C'$ همان $A' \in C'$ پس بنابر تمرین $A \in C'$ در بالا حل شد:

$$\neg C' \equiv \neg C\{A \leftarrow A'\}$$

 $B' \equiv B\{A \leftarrow A'\}$ در نتیجه

فرض کنید $B \equiv C*D$. مسئله به سه دسته تقسیم میشود:

- $A \in sub(C)$ $C'*D \equiv C*D$ و میدانیم $D \equiv D$ پس بنابر تمرین ۲ که اثبات شد، داریم: $C'*D \equiv C*D$ پس $C'*D \equiv C*D$ هدید که $C'*D \equiv C*D$
- $A \in sub(D)$ $C*D' \equiv C*D$ دیدیم که $C*D' \equiv C*D$ و میدانیم $C*D' \equiv C*D$ پس بنابر تمرین ۲ که اثبات شد، داریم: $B' \equiv B$
 - $A \equiv C*D$. $B \equiv B'$ میشود اثبات میشود A' است و در نتیجه اثبات میشود

تمرین ۲

اگر $\mathscr{F} \subset U$ اثبات کنید:

- ۱. اگر U صدق پذیر باشد و $A \in U$ آنگاه $U \{A\}$ نیز صدق پذیر است.
- ر. اگر U صدق پذیر باشد و B معتبر باشد آنگاه $U \cup \{B\}$ نیز صدق پذیر است.
- ۳. اگر U صدق نایذیر باشد آنگاه برای هر فرمول B مجموعه $U \cup B$ نیز صدق نایذیر است.
- ۴. اگر U ناپذیر باشد و فرمول $A \in U$ معتبر باشد آنگاه $U \{A\}$ نیز صدق ناپذیر است.

جواب

١

داريم:

$$U = \{A_1, A_2, \cdots, A_n\}$$
$$v_{\mathscr{I}}(A_i) = \top, i \in \{1, 2, \cdots, n\}$$

از آنجا که مجموعه U صدق پذیر است پس تعبیری همچون $\mathscr D$ وجود دارد که تمامی اعضای U بر اساس آن تعبیر ارزشی معادل U دارند.

چون ارزش تمام فرمول های موجود در U درست است، اگر یکی از اعضای این مجموعه را حذف کنیم، مابقی اعضا همچنان ارزشی برابر با \top خواهند داشت. فرض کنیم یکی از اعضای مجموعه U مانند A_j را انتخاب و از مجموعه حذف کنیم:

$$U - A_j = \{A_1, A_2, \cdots, A_{j-1}, A_{j+1}, \cdots, A_n\}$$

ارزش تمام A_i های باقی مانده در تعبیر مشخص $\mathscr P$ ها درست است پس $U-\{A_j\}$ نیز صدق پذیر خواهد بود.

۲

داریم B در نتیجه B برای هر تعبیر $\mathscr V$ بدین صورت خواهد بود: T داریم $U=\{A_1,A_2,\cdots,A_n\}$ در نتیجه $U=\{A_1,A_2,\cdots,A_n\}$ را تشکیل میدهیم: $U=\{A_1,A_2,\cdots,A_n\}$

$$U \cup \{B\} = \{A_1, A_2, \dots, A_n, B\}$$

 $v_{\mathscr{I}}(A_i)= op$ صادق اند: $T=1,2,\ldots,n$ که تمام A_i که تمام $U\cup\{B\}$ صادق اند: $U\cup\{B\}$ صادق اند: $U\cup\{B\}$ برای تعبیر $U\cup\{B\}$ درست خواهد بود، در نتیجه همه اعضای مجموعه خواهد خواهد خواهند بود و این مجموعه صدق پذیر است.

٣

طبق فرض برای هر تعبیر $\mathscr V$ فرمول A_i که $\{1,2,\ldots,n\}$ وجود دارد که $V_\mathscr J(A_i)=F$ در این صورت اگر فرمول B را به $V_\mathscr J(A_i)=F$ اضافه کنیم فارغ از اینکه B برای تعبیر $\mathscr V$ درست یا غلط است، همچنان A_i وجود دارد که به ازای آن $V_\mathscr J(A_i)=F$ است و در نتیجه $U_{\mathscr J}(A_i)=F$ نتیجه $U_{\mathscr J}(A_i)=F$ نتیجه $U_{\mathscr J}(A_i)=F$ نتیجه و ناپذیر است.

۴

داریم $A \in U$ که $A \in I$ یعنی برای هر تعبیری $V_{\mathscr{J}}(A) = T$. از طرفی فرمولی چون A_i که $A \in U$ وجود دارد که در تعبیر ارزش نادرست دارد. چون A برای هر تعبیر \mathscr{D} ارزش درست دارد، پس A معادل با A_i نیست. در نتیجه اگر $A \in U$ را به دست آوریم، هنوز هم فرمول A_i وجود دارد که ارزش آن نادرست است و باعث میشود تا A_i هنوز هم صدق ناپذیر باقی بماند.