GAALOP for Different Programming Languages

May 08th., 2019

Dr.-Ing. Dietmar Hildenbrand

TU Darmstadt, Germany

GAALOP

- Software to
 - visualize (2D) Geometric Algebra
 - compute with Geometric Algebra (of arbitrary dimension/signature)
 - generate optimized source code from Geometric Algebra

GAALOP (free download from www.GAALOP.de)

Conformal Geometric Algebra in 2d

Compass Ruler Algebra

Entity	IPNS representation	OPNS representation
Point	$P = \mathbf{x} + \frac{1}{2}\mathbf{x}^2 e_{\infty} + e_0$	
Circle	$C = P - \frac{1}{2}r^2e_{\infty}$	$C^* = P_1 \wedge P_2 \wedge P_3$
Line	$L = \mathbf{n} + de_{\infty}$	$L^* = P_1 \wedge P_2 \wedge e_{\infty}$
Point pair	$P_p = C_1 \wedge C_2$	$P_p^* = P_1 \wedge P_2$

GAALOP reference

Focus on "Symbolic Geometric Algebra Calculator"

- "Introduction to Geometric Algebra Computing"
- Dietmar Hildenbrand
- CRC Press, 2019

Indices of blades of compass ruler algebra for GAALOP

Index	Blade
0	1
1	e_1
2	e_2
3	e_{∞}
4	e_0
5	$e_1 \wedge e_2$
6	$e_1 \wedge e_{\infty}$
7	$e_1 \wedge e_0$
8	$e_2 \wedge e_{\infty}$
9	$e_2 \wedge e_0$
10	$e_{\infty} \wedge e_0$
11	$e_1 \wedge e_2 \wedge e_\infty$
12	$e_1 \wedge e_2 \wedge e_0$
13	$e_1 \wedge e_\infty \wedge e_0$
14	$e_2 \wedge e_\infty \wedge e_0$
15	$e_1 \wedge e_2 \wedge e_\infty \wedge e_0$

GAALOP Code

```
P1 = createPoint(x1,y1);

P2 = createPoint(x2,y2);

S1 = P1 - 0.5*r*r*einf;

S2 = P2 - 0.5*r*r*einf;

PP = S1^S2;

?L = *(*PP^einf);
```


Additional GAALOP Code for Visualizations

Generated Latex Code

Generated Latex Code

\begin{align*}

 $L_{1}&= x2-x1$

 $L_{2}&= y2-y1$

 $L_{3}&= \cfrac{y2*y2}{2}-\cfrac{y1*y1}{2}+\cfrac{x2*x2}{2}-\cfrac{x1*x1}{2}\\ \end{align*}$

What can we show with this result?

$$L_1 = x2 - x1$$

$$L_2 = y2 - y1$$

$$L_3 = \frac{y2 * y2}{2} - \frac{y1 * y1}{2} + \frac{x2 * x2}{2} - \frac{x1 * x1}{2}$$

GAALOP code can be shorter

```
P1 = createPoint(x1,y1);
P2 = createPoint(x2,y2);
S1 = P1 - 2*einf;
S2 = P2 - 2*einf;
PP = S1^S2;
?L = *(*PP^einf);
```

P1 = createPoint(x1,y1); P2 = createPoint(x2,y2); ?L= P2-P1;

 $2L = *(*PP^einf);$

GAALOP code can be shorter

```
P1 = createPoint(x1,y1);

P2 = createPoint(x2,y2);

S1 = P1 - 2*einf;

S2 = P2 - 2*einf;

PP = S1^S2;
```

Whatever approach we use, at the end GAALOP is optimizing for some kind of minimum of needed operations P1 = createPoint(x1,y1); P2 = createPoint(x2,y2); ?L= P2-P1;

GAALOP Architecture

Application Geometric Algebra Algorithm Symbolically optimized Code Programming Languages Computing Devices

GAALOP Architecture

Application Geometric Algebra Algorithm Symbolically optimized Code (Maple (+ CliffordLib) Based / Table Based) Programming Languages Computing Devices

GAALOP Architecture

Application

Geometric Algebra Algorithm

(CLUCalc notation)

Symbolically optimized Code

(GAPP Geometric Algebra Parallelization Programs)

Programming Languages

(C, C++, C++ AMP, Java, OpenCL, GAPPCO, Matlab, Python ...)

Computing Devices

Is GAALOP just another Geometric Algebra tool?

GAALOP

Precomputations before runtime

C FPGA Matlab Python

Computations at runtime

Is GAALOP just another Geometric Algebra tool?

On the machine at runtime only a small amount of computation is needed (the most is already symbollically precomputed)

GAALOP

before runtime

C FPGA Matlab Python

at runtime

Advantage of precomputation?

- Fast implementations
- Robust implementations

GAALOP

before runtime

C FPGA Matlab Python

at runtime

Why is GAALOP so fast?

Two-Stages Optimization

Optimization of products of multivectors

Optimization of parts of algorithms (with many products of multivectors)

Everything is precomputed before runtime (during compile time)

Symbolic optimization of products

I Geometric product multiplication table in 3D GA:

		b		b ₁	$\mathbf{b_2}$	b ₃				
			E_1	E_2	E_3	E_4	E_5	E_6	E_7	E_8
a			1	e_1	e_2	e_3	e_{12}	e_{23}	e_{13}	e_{123}
	E_1	1	0	0	0	0	0	0	0	0
a ₁	E_2	e_1	0	E_1	E_5	E ₇	0	0	0	0
a ₂	E_3	e_2	0	$-E_5$	E_1	E_6	0	0	0	0
аз	E_4	e_3	0	-E ₇	-E ₆	E_1	0	0	0	0
	E_5	e_{12}	0	0	0	0	0	0	0	0
	E_6	e_{23}	0	0	0	0	0	0	0	0
	E_7	e_{13}	0	0	0	0	0	0	0	0
	E_8	e_{123}	0	0	0	0	0	0	0	0

GA algorithm

```
a=a1*e1+a2*e2+a3*e3;
b=b1*e1+b2*e2+b3*e3;
?c=a*b;
```

Symbolic optimization of products

I Geometric product multiplication table in 3D GA:

		b		b ₁	b ₂	b ₃				
			E_1	E_2	E_3	E_4	E_5	E_6	E_7	E_8
a			1	e_1	e_2	e_3	e_{12}	e_{23}	e_{13}	e_{123}
	E_1	1	0	0	0	0	0	0	0	0
a ₁	E_2	e_1	0	E_1	E_5	E ₇	0	0	0	0
a ₂	E_3	e_2	0	$-E_5$	E_1	E_6	0	0	0	0
аз	E_4	e_3	0	-E ₇	$-E_6$	(E_1)	0	0	0	0
	E_5	e_{12}	0	0	0	0	0	0	0	0
	E_6	e_{23}	0	0	0	0	0	0	0	0
	E_7	e_{13}	0	0	0	0	0	0	0	0
	E_8	e_{123}	0	0	0	0	0	0	0	0

GA algorithm

resulting C code

Second Optimization step for algorithms

GAALOP Code for the Bisector Example

```
P1 = createPoint(x1,y1);

P2 = createPoint(x2,y2);

S1 = P1 - 0.5*r*r*einf;

S2 = P2 - 0.5*r*r*einf;

PP = S1^S2;

?L = *(*PP^einf);
```

Only the multivectors with a leading? are really computed

Generated C-Code

```
void calculate(float x1, float x2, float y1, float y2, float L[16]) {
    L[1] = x2 - x1; // e1
    L[2] = y2 - y1; // e2
    L[3] = (y2 * y2) / 2.0 - (y1 * y1) / 2.0 + (x2 * x2) / 2.0 - (x1 * x1) / 2.0; // einf
}
```

- Only the multivector L is computed
- x1, x2, y1, y2, r are variables
- P1, P2, S1, S2, PP are only intermediate results

Where can we use this C code?

Application

Geometric Algebra Algorithm

(CLUCalc notation)

Symbolically optimized Code

(GAPP Geometric Algebra Parallelization Programs)

Programming Languages

(C, C++, C++ AMP, Java, OpenCL, GAPPCO, Matlab, Python ...)

Computing Devices

GAALOP -> C

Application

Geometric Algebra Algorithm

(CLUCalc notation)

Symbolically optimized Code

(GAPP Geometric Algebra Parallelization Programs)

Programming Languages

(C, C++, C++ AMP, Java, OpenCL, GAPPCO, Matlab, Python ...)

Computing Devices

GAALOP -> Matlab

Application

Geometric Algebra Algorithm

(CLUCalc notation)

Symbolically optimized Code

(GAPP Geometric Algebra Parallelization Programs)

Programming Languages

(C, C++, C++ AMP, Java, OpenCL, GAPPCO, Matlab, Python ...)

Computing Devices

GAALOP -> Matlab

1. Generate C code and save it (Bisector.c)

```
P1 = createPoint(x1,y1);

P2 = createPoint(x2,y2);

S1 = P1 - 0.5*r*r*einf;

S2 = P2 - 0.5*r*r*einf;

PP = S1^S2;

?L = *(*PP^einf);
```


2. Automatically import optimized Matlab Code

```
function [L] = Bisector (x1, x2, y1, y2) L(1) = x2 - x1; L(2) = y2 - y1; L(3) = (y2 * y2) / 2.0 - (y1 * y1) / 2.0 + (x2 * x2) / 2.0 - (x1 * x1) / 2.0; end
```

via

importGAALOP('L', 'Bisector')

Matlab Call

```
>> L = Bisector(1,2,3,4)
L =
    1    1    5
>>
```

Only after a change of Bisector.clu in GAALOP, you have to call >> importGAALOP('L', 'Bisector') again

Recall: Bisector Example

Generated C-Code

- Only the multivector L is computed
- x1, x2, y1, y2, r are variables

```
Line = strrep(Line, multivector, ");

delete the name of the multivector (L)

void calculate(float x1, float x2, float y1, float y2, float [16]) {

L[1] = 2.0 * x2 - 2.0 * x1; // e1

L[2] = 2.0 * y2 - 2.0 * y1; // e2

L[3] = y2 * y2 - y1 * y1 + x2 * x2 - x1 * x1; // einf
}
```

```
Line = strrep(Line, 'float', ");

delete all 'float's

void calculate( x1, x2, y1, y2, [16]) {

L[1] = 2.0 * x2 - 2.0 * x1; // e1

L[2] = 2.0 * y2 - 2.0 * y1; // e2

L[3] = y2 * y2 - y1 * y1 + x2 * x2 - x1 * x1; // einf
}
```

```
Line = strtrunc(Line,index(Line,', [') -1);

truncate starting with ', ['

void calculate( x1, x2, y1, y2

L[1] = 2.0 * x2 - 2.0 * x1; // e1

L[2] = 2.0 * y2 - 2.0 * y1; // e2

L[3] = y2 * y2 - y1 * y1 + x2 * x2 - x1 * x1; // einf
}
```

```
MatlabString = strcat('function [', multivector, '] = ', GAFunctionName,' ');
Line = strrep(Line, 'void calculate', MatlabString );

Replace 'void calculate' by 'function [L] = Bisector '

function [L] = Bisector( x1, x2, y1, y2
        L[1] = 2.0 * x2 - 2.0 * x1; // e1
        L[2] = 2.0 * y2 - 2.0 * y1; // e2
        L[3] = y2 * y2 - y1 * y1 + x2 * x2 - x1 * x1; // einf
}
```

Handle the first line of the C-file

```
Line = strcat(Line, ')');

add ')' at the end of the line

function [L] = Bisector( x1, x2, y1, y2)

L[1] = 2.0 * x2 - 2.0 * x1; // e1

L[2] = 2.0 * y2 - 2.0 * y1; // e2

L[3] = y2 * y2 - y1 * y1 + x2 * x2 - x1 * x1; // einf
}
```

first line completed

For all multivector coefficients

```
Line = strrep(Line, '//', '%'); % replace characters for comments  \begin{aligned} &\text{CoeffNo} = \text{CoeffNo+1}; \% \text{ CoeffNo} = \{1, 2, ...\} \\ &\text{Head} = \text{strcat}(\text{ multivector}, '(', \text{int2str}(\text{CoeffNo}), ')'); \% \text{ generate 'multivector}(\text{No})' \\ &\text{Line} = \text{substr}(\text{Line}, \text{index}(\text{Line}, ']')+1); \% \text{ substring after '}]' \\ &\text{Line} = \text{strcat}(\text{Head}, \text{Line}); \\ &\text{function} \text{ [L]} = \text{Bisector}(\text{ x1}, \text{ x2}, \text{ y1}, \text{ y2}) \\ &\text{L(1)} = 2.0 \text{ * x2} - 2.0 \text{ * x1}; \% \text{ e1} \\ &\text{L(2)} = 2.0 \text{ * y2} - 2.0 \text{ * y1}; \% \text{ e2} \\ &\text{L(3)} = \text{y2} \text{ * y2} - \text{y1} \text{ * y1} + \text{x2} \text{ * x2} - \text{x1} \text{ * x1}; \% \text{ einf} \\ \end{aligned}
```

Last line

fprintf(writeFile, 'end'); % this is working for Octave and Matlab

```
function [L] = Bisector( x1, x2, y1, y2) 
 L(1) = 2.0 * x2 - 2.0 * x1; \% e1 
 L(2) = 2.0 * y2 - 2.0 * y1; \% e2 
 L(3) = y2 * y2 - y1 * y1 + x2 * x2 - x1 * x1; \% einf end
```

M-file completed

showGAALOPCoefficients

Matlab Call

```
>> showGAALOPCoefficients('L', 'Bisector');
1:e1
2:e2
3:einf
>>
Based on a loop with
Line = strtrim(Line); # remove leading blanks
No = No+1; # indices 1..
myLine = strcat(No, ":");
Line = substr(Line, index(Line, "//")+2); # text after the comment
Line = strcat(myLine, Line); # concatenate index and its meaning
```

Detection of Circles and Lines in Images Using GAALOP

- CGAVS (Conformal Geometric Algebra Voting Scheme)
 - [65] G. Soria-Garcia, G. Altamirano-Gomez, S. Ortega-Cisneros, and Eduardo Bayro Corrochano. Fpga implementation of a geometric voting scheme for the extraction of geometric entities from images. In Advances in Applied Clifford Algebras Journal, Sept. 2016.
- Basis: edge image showing only the discontinuities of a photograph.
- https://en.wikipedia.org/wiki/Canny edge detector

The Canny edge detector applied to a color photograph of a steam engine.

The original image.

CGAVS (Conformal Geometric Algebra Voting Scheme)

- Select an edge pixel
- Look for tokens in neighborhood
- Map each point to a line
- Intersect lines
- Circles/lines?

CGAVS (Conformal Geometric Algebra Voting Scheme)

FIGURE 10.2 Visualization of *EntitiesExtraction.clu*: compute the circle through three points.

Python

How to import GAALOP?

```
from clifford.g3c import * def Bisector( x1, x2, y1, y2 ):  MV = (\ 2.0\ ^*\ x2 - 2.0\ ^*\ x1)^*(\ e1) \\ MV += (\ 2.0\ ^*\ y2 - 2.0\ ^*\ y1)^*(\ e2) \\ MV += (\ y2\ ^*\ y2 - y1\ ^*\ y1 + x2\ ^*\ x2 - x1\ ^*\ x1)^*(\ einf) \\ return MV
```

Handle the first line of the C-file

```
line = line.replace(multivector, "")

delete the name of the multivector (L)

void calculate(float x1, float x2, float y1, float y2, float [16]) {

    L[1] = 2.0 * x2 - 2.0 * x1; // e1
    L[2] = 2.0 * y2 - 2.0 * y1; // e2
    L[3] = y2 * y2 - y1 * y1 + x2 * x2 - x1 * x1; // einf
}
```

Handle the first line of the C-file

```
line = line.replace('float', ")

delete all 'float's

void calculate( x1, x2, y1, y2, [16]) {
    L[1] = 2.0 * x2 - 2.0 * x1; // e1
    L[2] = 2.0 * y2 - 2.0 * y1; // e2
    L[3] = y2 * y2 - y1 * y1 + x2 * x2 - x1 * x1; // einf
}
```

Handle the first line of the C-file

```
line = line.split(', [',1)[0]

truncate starting with ', ['

void calculate( x1, x2, y1, y2
        L[1] = 2.0 * x2 - 2.0 * x1; // e1
        L[2] = 2.0 * y2 - 2.0 * y1; // e2
        L[3] = y2 * y2 - y1 * y1 + x2 * x2 - x1 * x1; // einf
}
```

Handle the first line of the C-file

```
line = line.replace('void calculate', 'def ' + GAFunctionName)
line = line + '):'
```

Complete first line in Python style

```
Def Bisector( x1, x2, y1, y2 ):
    L[1] = 2.0 * x2 - 2.0 * x1; // e1
    L[2] = 2.0 * y2 - 2.0 * y1; // e2
    L[3] = y2 * y2 - y1 * y1 + x2 * x2 - x1 * x1; // einf
}
```

Handle the second line

Initialize the multivector (according to the highest index of the multivector)

```
Def Bisector( x1, x2, y1, y2 ):
    L=[0,0,0,0]
    L[1] = 2.0 * x2 - 2.0 * x1; // e1
    L[2] = 2.0 * y2 - 2.0 * y1; // e2
    L[3] = y2 * y2 - y1 * y1 + x2 * x2 - x1 * x1; // einf
}
```

Python code for the second line

```
# compute string for multivector
line = Lines[length-2] # the line with the biggest index
Split str = line.split('[',1)
line = Split str[1]
                          # text after [
Split str = line.split(']',1)
                   # the coefficient of the multivector
No = Split str[0]
InitStr = '[0'
i=1
while i<= int(No):
  InitStr += '.0'
  i+=1
InitStr += ']'
# Complete second line
SecondLine = ' ' + multivector + '=' + InitStr + '\n'
```

For all multivector coefficients

```
line = line.replace('//', '#')
replace characters for comments

Def Bisector( x1, x2, y1, y2 ):

    L[1] = 2.0 * x2 - 2.0 * x1; # e1
    L[2] = 2.0 * y2 - 2.0 * y1; # e2
    L[3] = y2 * y2 - y1 * y1 + x2 * x2 - x1 * x1; # einf
}
```

Last line and definition of L

```
line = line + 'return' + multivector

Def Bisector( x1, x2, y1, y2 ):
    L=[0,0,0,0]
    L[1] = 2.0 * x2 - 2.0 * x1; # e1
    L[2] = 2.0 * y2 - 2.0 * y1; # e2
    L[3] = y2 * y2 - y1 * y1 + x2 * x2 - x1 * x1; # einf return L
```

Python-file completed

showGAALOPCoefficients()

Python Call

from GAALOP import *
importGAALOP('L', 'Bisector')
showGAALOPCoefficients('L', 'Bisector')

showGAALOPCoefficients()

Python Code

Loop over:

```
Split_str = line.split('[',1)
line = Split_str[1]  # text after [
Split_str = line.split(']',1)
No = Split_str[0]  # the coefficient of the multivector
line = Split_str[1]
Split_str = line.split('//',1)  # split the comment
print(No, ':', Split_str[1])  # index of the multivector and its meaning
```

Thanks a lot

