Room of Requirement

"It is a room that a person can only enter when they have real need of it. Sometimes it is there, and sometimes it is not, but when it appears, it is always equipped for the seeker's needs." - Dobby

EE 522 Spring 2020 Final Project By: Veena Vijai

Objectives

Design rooms

Design rooms

Calculate RIR

Designing rooms which exist

Designing rooms which exist

USC Housing

Designing rooms which exist

USC Housing

Designing rooms which exist

USC Housing

pyroomacoustics

Designing rooms which exist

Pinterest floor plans

pyroomacoustics

SPECIFICATIONS:

- Corners and height
- Position of source
- Position of mic(s)
- Absorption coefficient

FUNCTIONALITY:

- Viz of room
- Plot impulse response

R. Scheibler, E. Bezzam, I. Dokmanić, Pyroomacoustics: A Python package for audio room simulations and array processing algorithms, Proc. IEEE ICASSP, Calgary, CA, 2018.

SPECIFICATIONS:

- 8 room designs
- 5 sizes proportional
- 15 absorption coeffs (0.1 to 0.8)

R. Scheibler, E. Bezzam, I. Dokmanić, Pyroomacoustics: A Python package for audio room simulations and array processing algorithms, Proc. IEEE ICASSP, Calgary, CA, 2018.

CONTINENTAL SEATING

WIDE FAN

MULTIPLE AISLE

Source: https://blog.capterra.com/9-auditorium-plan-templates-to-inspire-your-next-project/
https://blog.capterra.com/9-auditorium-plan-templates-to-inspire-your-next-project/
https://blog.capterra.com/9-auditorium-plan-templates-to-inspire-your-next-project/
https://www.dimensions.guide/collection/theater-auditorium-layouts

ROOM 7

ROOM 8

ROOM 9

Correlation

- Correlation
- Time or frequency domain?

- Correlation
- Time or frequency domain?

PROBLEM: different lengths of freq response too

- Correlation
- Time or frequency domain?

PROBLEM: different lengths of freq response too

SOLUTION: bins!

```
# helper function to compute energy in bins
def get fr bin indices(FR, fs, num bins, multiples=100):
    freq bins = fs*np.arange(FR.shape[-1])/float(2*FR.shape[-1])
    for f in freq bins:
       f = round(f)
    #find the frequency index numbers to group in bins of 10 kHz width
    # from 0-100 Hz, 100-200 Hz, up to 8 kHz
    stop freq arr = np.zeros((num bins, ))
    start freq arr = np.zeros((num bins, ))
    for i in range(num bins):
        stop freq = multiples*(i + 1)
        stop freq arr[i] = freq bins.searchsorted(stop freq, side='right') - 1
       if (i < num bins - 1):
            start freq arr[i + 1] = stop freq arr[i] + 1
    return start freq arr.astype(int), stop freq arr.astype(int)
```

- Sampling frequency = 16 kHz
- Nyquist freq = 8 kHz
- 100 Hz evenly spaced bins
- = 8000/100, or, 80 bins
- Sum up energy carefully
- Calculate Pearson's coefficient

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.pearsonr.html

Test Set

RESULTS!

- Room of type 1
- Size scaling 2.5 (not in dataset)
- Absorption coefficient 0.25
- Height 9 (not in dataset)
- Source signal: noise (exercise bike) & voice

TEST DETAILS:

- Room of type 1
- Size scaling 2.5 (not in dataset)
- Absorption coefficient 0.25
- Height 9 (not in dataset)
- Source signal: noise (exercise bike) & voice
- Max correlation = 0.34

20 40 60 80 100 120

- Room of type 2
- Size scaling 3.5 (not in dataset)
- Absorption coefficient 0.4
- Height 9 (not in dataset)
- Source signal: noise (exercise bike) & voice

TEST DETAILS:

- Room of type 2
- Size scaling 3.5 (not in dataset)
- Absorption coefficient 0.4
- Height 9 (not in dataset)
- Source signal: noise (exercise bike) & voice
- Max correlation = 0.41

Result # 1 is the following room, whose absorption coeff is

Result # 2 is the following room, whose absorption coeff is 0.19

Result # 3 is the following room, whose absorption coeff is 0.2

- Room of type 3
- Size scaling 1.5 (not in dataset)
- Absorption coefficient 0.5
- Height 9 (not in dataset)
- Source signal: noise
- Max correlation = 0.497

- Room of type 4
- Size scaling 1.75 (not in dataset)
- Absorption coefficient 0.6
- Height 9 (not in dataset)
- Source signal: noise
- Max correlation = 0.36

- Room of type 5
- Size scaling 3.25 (not in dataset)
- Absorption coefficient 0.65
- Height 9 (not in dataset)
- Source signal: noise
- Max correlation = 0.33

Result # 2 is the following room, whose absorption coeff is 0.15

Result # 3 is the following room, whose absorption coeff is 0.25

TEST DETAILS:

- Room of type 6
- Size scaling 3.25 (not in dataset)
- Absorption coefficient 0.7
- Height 9 (not in dataset)
- Source signal: noise
- Max correlation = 0.33

Result # 2 is the following room, whose absorption coeff is 0.15

Result # 1 is the following room, whose absorption coeff is 0.2

Result # 3 is the following room, whose absorption coeff is 0.25

TEST DETAILS:

- Room of type 7
- Size scaling 5.25 (not in dataset)
- Absorption coefficient 0.75
- Height 17 (not in dataset)
- Source signal: noise
- Max correlation = 0.48

Result # 1 is the following room, whose absorption coeff is 0.65

Result # 2 is the following room, whose absorption coeff is 0.7

Result # 3 is the following room, whose absorption coeff is 0.6

- Room of type 8
- Size scaling 4.75 (not in dataset)
- Absorption coefficient 0.35
- Height 18 (not in dataset)
- Source signal: noise
- Max correlation = 0.34

Result # 2 is the following room, whose absorption coeff is 0.8

Result # 3 is the following room, whose absorption coeff is 0.6

TEST DETAILS:

- Room of type 9
- Size scaling 4.8 (not in dataset)
- Absorption coefficient 0.45
- Height 15 (not in dataset)
- Source signal: noise
- Max correlation = 0.37

Result # 2 is the following room, whose absorption coeff is 0.15

Result # 1 is the following room, whose absorption coeff is 0.75

Result # 3 is the following room, whose absorption coeff is 0.2

Acoustic Parameters

Recording Need	Reverb Time (seconds)
Broadcast	Low (below 0.8)
Speech / Vocals	Low (0.7-1.1)
Live instruments	Medium (1-1.4)
Symphony / Drama	High (1.4-2)

 T_{60} , C_{80} (clarity of music), C_{50} (clarity of speech)

Sources:

https://www.soundassured.com/blogs/blog/reverberation-and-its-application-in-recording-studios

https://www.encida.dk/2020/02/26/how-to-calculate-room-acoustic-parameters/

Patterns

Observations

#1

LESS ENERGY IN
FREQ

RESPONSE

OVERALL SIMILAR PATTERNS

#2

STAGGERING: PEAKS BECOME VALLEYS

#3

curved walls + varying height

Source:

http://www.deglerwhiting.com/auditorium-seating-layout-dimensions-the-complete-quide/

Alternative filterbanks:

- mel
- Bark
- gammatone

Source:

https://labrosa.ee.columbia.edu/doc/HTKBook21/node54.html

Listening test!

Alternative filterbanks:

- mel
- Bark
- gammatone

Source:

https://labrosa.ee.columbia.edu/doc/HTKBook21/node54.html

Conclusion

Questions?