Resumen Switches Cisco

1. Elementos Básicos de Interconexión

1.1 Tarjeta de Red

Es el elemento que debe tener un equipo para estar conectado a una red.

- El modelo se identifica por las siglas NIC → Network Interface Card.
- Cada NIC tiene su propia identificación llamado MAC (código de 48 bits).
- Se encarga, en el nivel físico, de transformar el flujo de información (1 y 0), en una señal electromagnética que se propague a través del medio de transmisión.

1.1.1 Funciones de la Tarjeta de Red

Transformar la Información interna del ordenador en una señal que hace posible que se entienda con el resto de dispositivos de la red.

- 1. Recepción y almacenamiento de los datos desde la memoria o desde la red.
- 2. Construcción o interpretación de la trama de datos.
- 3. Controlar el momento en que es posible acceder al medio de comunicación de manera que se eviten colisiones.
- 4. Convierte los datos que recibe la memoria del ordenador de paralelo (16 / 32 bits) a serie (1 bit).
- 5. Codificar y descodificar.
- 6. Transmisión de los datos.

1.1.2 Estructura de la Tarjeta de Red

- Es una interfaz de entrada, salida y procesamiento de información. Debe incorporar elementos que formen una puerta de entrada, una puerta de salida y una circuitería.
- Debe incluir un elemento de conexión a un slot del PC (PCI) y otro mecanismo que permita la comunicación (RJ45).

1.1.3 Tipos de Tarjeta de Red

- Ethernet → Más usado con conector RJ45.
 - Es el protocolo usado en la capa 2 del modelo OSI.
 - La velocidad depende del medio utilizado, modo y protocolo empleado.
- Wifi → Usado como extensión del Ethernet
 - o Diferentes variedades dependiendo del estándar utilizado.

1.2 Repetidores y Amplificadores

Utilizados cuando la distancia entre estaciones es muy elevadas y la señal se atenúa.

- Se utilizan en transmisión digital y los amplificadores en analógica.
- Están formados por una conexión de entrada y otra de salida.
- Los tramos de cable siempre tienen una longitud máxima.
- La señal no puede atravesar un número infinito de amplificadores por lo que los componentes se van multiplicando conforme la señal que los atraviesa.

1.3 Concentradores de Cableado (HUBS)

- Dispositivo con escasa inteligencia electrónica. La aparición de los switches y conmutadores más sofisticados ha hecho que los hubs desaparezcan prácticamente.
- Trabajaba en la capa física.

1.4 Switches

- Dispositivo que permite la interconexión de redes a nivel de enlace de datos. Su principal función es segmentar una red para aumentar su rendimiento.
- Se consigue un rendimiento mayor ya que analiza los mensajes que recibe y los envía al destinatario, disminuyendo las colisiones que supone un medio compartido.
- Envía tramas por el puerto de salida que va hacia la estación destinataria, comprobando el campo de dirección de destino.
- Integra un mecanismo de autoaprendizaje que le permite construir tablas con las direcciones MAC de los equipos de cada segmento de red.
- Trabaja a diferentes velocidades.
- Algunos switches ofrecen prestaciones que corresponden a la capa 3 de OSI, se le conocen como → Switch Gestionable → Incorpora gestión de red, seguridad, fiabilidad, etc.

2. Interconexión de Redes Distintas

2.1 Puentes o Bridges

Elemento genérico para interconectar redes de diferentes topologías y distintos protocolos a nivel MAC y a nivel enlace.

Permiten un mayor rendimiento en la LAN.

Suelen traer dos puertos para conectar dos redes distintas, aunque pueden traer más.

2.1.1 Tipos

- Puentes Homogéneos → Interconectar LAN con el mismo protocolo MAC.
 - Switch Ethernet.
- Puentes Heterogéneos → Interconectar LAN con distinto protocolo MAC.
 - De WiFi a Ethernet a través de los RJ45.

2.2 Encaminadores o Routers

El router es un dispositivo crucial para la interconexión de redes que operan en diferentes capas de red. Sus principales funciones incluyen:

- Enrutamiento de paquetes → Determina la mejor ruta para que los datos lleguen a su destino.
- Interconexión de redes → Conecta redes locales (LAN) con redes externas (WAN).
- Seguridad → Actúa como firewall, protegiendo la red de accesos no autorizados.
- Asignación de direcciones IP → Utiliza direcciones IP para identificar dispositivos y enrutar paquetes.

Los routers almacenan información en tablas de enrutamiento, que contienen las direcciones IP de destino de los datos. A diferencia de las direcciones MAC de las tarjetas de red, las direcciones IP son asignadas por el administrador de la red.

Además, los routers ofrecen ventajas como:

- Implementación de filtros sofisticados (firewalls) para mayor seguridad.
- Integración de diferentes tecnologías de enlaces de datos.
- Creación de rutas alternativas para evitar congestiones y fallos en las comunicaciones.

2.3 Pasarelas o Gateways

Dispositivo que permite interconectar redes que utilizan arquitecturas diferentes con el propósito de intercambiar información.

El uso de sus dos tipos dependerá del tipo de redes que interconecten y de las similitudes que existan a nivel de red o de transporte.

- Pasarelas a nivel de Transporte
- Pasarelas a nivel de Aplicación

3. Dominios de Colisión

- La colisión sólo ocurre en un entorno con medios compartidos → Es una red en la que sus hosts comparten el mismo medio de transmisión.
- Son los segmentos de la red física conectados.
- Causa que la red sea ineficiente, deteniendo todas las transmisiones en un período de tiempo.
- Un solo dispositivo del dominio de colisión puede enviar datos en un determinado momento y el resto de dispositivos la reciben.
- Capa 1 → No divide los dominios de colisión → Repetidores y hubs
- Capa 2 y 3 → Si dividen los dominios de colisión → Segmentación

4. Dominios de Broadcast

- Se utilizan tramas de broadcast para comunicarse todos los dominios de colisión.
- Es un grupo de dominios de colisión conectados por la capa 2.
- Envía una trama broadcast con una MAC destino FFFFFFFFFF (x16F).
- Es una dirección a la que todas las tarjetas de red de cada host responden.
- Los dispositivos de capa 2 inundan todo el tráfico de broadcast y multicast.
- La acumulación de tráfico de broad y multi se llama radiación de broadcast.
- Cuando la radiación de broadcast satura la red y las conexiones se descartan, se la conoce como → tormenta de broadcast
- Las 3 fuentes de broadcast y multicast son:
 - Estaciones de trabajo → Envían en broadcast una petición de protocolo ARP cuando no tienen una dirección MAC en la tabla ARP.
 - ∘ Routers → Envían cada cierto tiempo protocolos de enrutamiento con el contenido de su tabla a otros routers.
 - Aplicaciones Multicast → Envío de datos a muchos usuarios puede causar congestión de la red.

5. Conmutación de Ethernet

5.1 Conmutación de capa 2

- Se utiliza para dividir segmentos grandes en dominios de colisión aislados, reduciendo así las colisiones y retransmisiones.
- Los conmutadores utilizan tablas CAM para almacenar direcciones MAC y sus puertos asociados.
- Las decisiones se basan en direccionamiento MAC (Capa 2) y no afectan el direccionamiento lógico (Capa 3).

5.2 Operación de un conmutador

- Inicialmente, la tabla CAM está vacía y se llena a medida que llega el tráfico.
- El conmutador decide cómo manejar las tramas basándose en la presencia de la MAC destino en su tabla CAM.

5.3 Microsegmentación

- Ocurre cuando solo un nodo está conectado a un puerto de switch, creando un dominio de colisión mínimo.
- En redes microsegmentadas con cableado de par trenzado, es posible la operación en fulldúplex, lo que teóricamente duplica el ancho de banda.

5.4 Modos de conmutación

5.4.1 Tres métodos:

- 1. De corte: Comienza a transferir la trama tan pronto como recibe la dirección MAC destino.
- 2. Almacenamiento y envío: Recibe toda la trama antes de enviarla, permitiendo verificar su integridad.
- 3. Libre de fragmentos: Lee los primeros 64 bytes antes de comenzar la conmutación.

5.5 Protocolo Spanning Tree

- Se utiliza para evitar bucles de conmutación en redes con rutas redundantes.
- Los conmutadores intercambian información para resolver y desconectar rutas redundantes, previniendo tormentas de broadcast.

6. Switching 2

6.1 Introducción a las LAN IEEE 802.3 (Ethernet)

6.1.1 Características de Ethernet

- Medio compartido → Topología Lógica en Bus.
- Protocolo de Control de Acceso al Medio: CSMA/CD (Acceso Múltiple por Detección de Portadora y Detección de Colisiones)
- Detección de Portadora para escuchar antes de transmitir.

- Detección de Colisiones que estropean la comunicación.
- Señal de Congestión.
- Autopostergación aleatoria.

6.1.2 Tipos de Ethernet

- Unicast → Un único emisor y un receptor.
- Broadcast → Un único emisor y todos receptores.
- Multicast → Un único emisor a un grupo de receptores.

6.1.3 Trama de Ethernet

- Incluye un CRC (código de control de errores) de la trama.
- Longitud mínima de 64 bytes y máxima de 1518 bytes.
- Runt → Trama menor de 64 bytes.
- Jumbo → Trama con más de 1500 bytes de datos.

6.1.4 Dirección MAC

Son 6 bytes divididos en 2 campos

- Los 3 primero bytes → OUI (Identificador Exclusivo de la Organización), identifica al fabricante.
- Los 3 últimos bytes → Identificación asignada por el fabricante.
- La MAC es una dirección grabada en cada dispositivo.

6.1.5 Configuración Half-Dúplex

- Un solo cable entre dos dispositivos, por lo que el cable "comparte" los dos sentidos de la comunicación.
- Si se emite y se recibe a la vez, se produce Colisión.

6.1.6 Configuración Full-Dúplex

- Dos cables entre cada dispositivo, uno por cada sentido de la comunicación.
- Se puede emitir y recibir sin problemas.

6.1.7 Configuración Automática

 Ambos dispositivos testean si pueden usar el modo Full-Dúplex. Si no es posible usarán Half-Dúplex.

6.1.8 Aparatos de Ethernet

- Hubs (Repetidores multipuerto)
 - Aparatos electrónicos.
 - o Amplifica y reenvía la señal que le llega.
 - Extienden las colisiones.
 - Funciona igual que una red con cable BUS.
- Switches (Puentes multipuerto)
 - Tienen CPU v memoria v ejecutan un algoritmo.
 - Mantiene una Tabla de Conmutación de dónde está enchufado cada aparato.
 - Reenvía la señal al puerto que se le haya solicitado.

- Usan buffers para las tramas que desean usar una línea ocupada.
- No extienden las colisiones.
- En una red totalmente conmutada y full-dúplex, No existen las colisiones.

6.1.9 Definiciones

Latencia de red → Retraso que añade a la comunicación el paso por un dispositivo.

Ancho de banda → Velocidad de la red.

Rendimiento → Velocidad efectiva a la que se transmiten los datos.

Congestión → Caída muy fuerte del rendimiento de la red.

6.1.10 Métodos de Reenvío de Tramas

- Almacenamiento y envío → Se retransmite después de que toda la trama haya llegado y se haya comprobado su validez.
- Método de Corte → Reenvía la trama antes de recibirla entera.
 - Envío rápido → Se empieza a reenviar después de que haya llegado la dirección de envío.
 - Conmutación libre de fragmentos → Se empieza a reenviar después de que hayan llegado los primeros 64 bytes.

7. Redes Virtuales VLAN's

- Es una agrupación lógica de estaciones, servicios y dispositivos de red.
- Su configuración se logra mediante un software.
- Facilita la administración de grupos lógicos.
- Segmentan de forma lógica la red en diferentes dominios de broadcast, de manera que los paquetes se conmutan entre puertos y se asignan a la misma VLAN.
- El router enruta el tráfico entre las VLAN en la capa 3.

7.1 Dominios de Broadcast con VLAN's y Routers

- El switch envía tramas a las interfaces del router cuando:
 - o Trama de broadcast.
 - Ruta a una de las direcciones MAC del router.
- El switch mantiene una tabla de puenteo separada para cada VLAN.

7.2 Tipos de VLAN's

- De asociación estática → El admin configura puerto por puerto asignándolo a una VLAN.
 Son seguras y fáciles de administrar y monitorear.
- De asociación dinámica → Los puertos se calculan dinámicamente. Se usa un mapeo de direcciones MAC a VLAN, que debe ser configurada previamente.

7.3 Ventajas de las VLAN's

- Trasladar fácilmente las estaciones de trabajo en la LAN.
- Agregar fácilmente estaciones de trabajo en la LAN.
- Cambiar la configuración de la LAN.
- Controlar el tráfico de red.
- Mejorar la seguridad.

7.4 Etiquetado de Tramas

- Cada trama lleva una etiqueta para saber el host que la envió.
- Para el etiquetado de las tramas se utiliza
 - ∘ Enlace Inter-Switch (ISL) → Protocolo de Cisco. Aumenta la longitud de la trama.
 - ∘ 802.1Q → Protocolo de IEEE. Modifica el encabezado.

8. Enlaces Troncales

- Es una conexión física y lógica entre dos switches a través de la cual viaja el tráfico de la red.
- En una red conmutada, el enlace troncal es un enlace punto a punto que admite VLAN's. Conservan los puertos.
- Agrupa múltiples enlaces virtuales en un enlace físico.

8.1 Operación del Enlace Troncal

- Los protocolos de enlace troncal se desarrollaron para administrar la transferencia de tramas de distintas VLAN en una sola línea física de forma eficaz.
- Es necesario rotular cada trama que se envía en el enlace para saber a qué VLAN pertenece.
- Esquemas de etiquetado
 - ∘ ISL → Protocolo de Cisco.
 - 802.1Q → Estándar IEEE.
- El identificador es comprendido y examinado por cada switch antes de enviar cualquier broadcast o transmisión a otros switches, routers o estaciones finales

8.2 Configuración VTP

- La estructura organizativa en VLAN's es un diseño común.
- VTP se organiza en dominios → Cada dominio estará formado por varios switches entre los que habrá al menos un servidor de dominio VTP y los demás serán clientes del dominio VTP.

8.3 VLAN Nativa

- Se utiliza para asignarle todo el tráfico de intercomunicación entre switches, que debe estar separado del resto de VLAN's.
- Las tramas de la VLAN Nativa se retransmiten sin etiquetar.
- Es recomendable modificarla y asignarle una distinta a la VLAN por defecto y distinta también a la VLAN de Administración.

9. Configuración de VTP

- VTP → Protocolo de administración de switches CISCO.
- Los switches se organizan en Dominios VTP:
 - ∘ Servidor VTP → Se configuran las VLAN y las propaga a los clientes.
 - ° Cliente VTP → Adopta automáticamente la configuración del Servidor VTP.
 - Transparente → Independiente. Tiene configuración propia, pero manda mensajes VTP para que los clientes se actualicen.

9.1 Modos VTP

	Servidor VTP	Cliente VTP	VTP Transparente
Descripción	Configurar VLAN y Dominio de Gestión	No cambian las configuraciones VLAN	Configura VLAN locales
Responde a publicaciones	Si	Si	Reenvía publicaciones VTP
Mantiene la configuración de VLAN Global	Si, en la NVRAM	No, está en la RAM, no en la NVRAM	No se almacena en la NVRAM
Actualiza otros switches con VTP	Si	Si	No

9.2 Ventajas VTP

- Consistencia en la configuración de VLAN a través de la red.
- Seguimiento y monitoreo preciso de las VLAN.
- Informes dinámicos sobre las VLAN que se agregan a una red.
- Configuración de enlace troncal dinámico cuando las VLAN's se agregan a la red.

9.3 Publicaciones VTP

- Resúmenes → Tras cambio de configuración → Cada 5 minutos por Servidor VTP.
- Subconjunto → Creación, eliminación o modificación de una VLAN → Enviada por Servidor VTP.
- Solicitud → Enviada por Cliente VTP.

9.4 Configuración

- 1. Configurar Servidor de Dominio.
 - 1.1. Nombre de Dominio.
 - 1.2. Versión de Dominio.
 - 1.3. Agregar VLAN's y Enlaces Troncales
- 2. Configurar Clientes de Dominio.
 - 2.1. Comprobar el estado de VTP.
- 3. Conectar los Switches
- 4. Comprobar Funcionamiento