Ultrasonic Diffraction Experiment

BS192: Undergraduate Science Laboratory (Physics)

Group 7 (Wednesday)
Lab No. 4, Experiment No. 5

A laboratory report by

Aksh Kishor Solanki (24110023)

Akshat Vishal Wandalkar (24110024)

Akshay (24110025)

Akshit Chhabra (24110026)

Akul Gupta (24110027)

Indian Institute of Technology, Gandhinagar

Experiment No. 5

Ultrasonic Diffraction Experiment

I. Aim:

To determine the velocity of ultrasonic waves in liquid using an ultrasonic diffraction apparatus. Further, measure the bulk modulus of the given liquid and estimate the compressibility of the liquid.

II. Apparatus:

- 1. Laser Mount
- 2. Diode Laser
- 3. Power Supply for Laser
- 4. Glass Tank with Liquid
- 5. Glass Tank Holder
- 6. Crystal with Mount
- 7. RF Oscillator
- 8. Optical Rail (1500 mm)
- 9. Cell mount with linear translation stage and Pinhole detector
- 10. Output measurement unit

III. Theory:

Ultrasonic waves are generated by a transducer. They propagate through the liquid medium, get reflected at the bottom of the cell, which is a flat glass plate and lead to the formation of stationary or standing waves due to interference between incident and reflected waves. The velocity (v) of these ultrasonic waves in the liquid can be calculated using the formula,

$$v = f \times \Lambda$$

Where f is the frequency of the crystal oscillator, and Λ is the wavelength of the ultrasonic wave.

The wavelength Λ can be further expressed as:

$$\Lambda = (n \times \lambda) / \sin(\theta)$$

Where n is the order of diffraction, λ is the wavelength of the laser used and θ is the angle of diffraction. The angle of diffraction can be obtained by the equation,

$$\theta = (D/L)$$

Where D is the order length and L is the distance between the detector and the crystal oscillator.

The bulk modulus β of the liquid is related to the density ϱ and the velocity v of the ultrasonic wave by,

$$\beta = \rho \times v^2$$

The adiabatic compressibility κ of the liquid can be calculated by using the relation

$$\kappa = 1 / \beta = 1 / (\varrho \times v^2)$$

IV. Procedure:

- 1. Clean all the glass equipment and fix the laser mount on the optical rail.
- 2. Fill the glass tank with liquid and place it on the tank holder on the optical rail.
- 3. Place the laser on the mount properly.
- 4. Fix the crystal on the mount such that it is fully submerged in the liquid and connect it to the RF oscillator.
- 5. Set up the cell mount with the translation part on the rail. Insert the pinhole detector into the mount and connect the output probe to the measurement device.
- 6. Switch on the laser and output measurement device. Align the crystal and laser so that the laser beam is parallel to the face of the crystal. Adjust the setup provided on the laser mount to position the laser beam to create standing waves.
- 7. Keep the laser spot falling on the detector stage and adjust the frequency of the oscillator until you get a very good fringe pattern on both sides of the central bright spot. Utilize the micrometer-driven stage to move the detector to the edges of the diffraction pattern.
- 8. Scan the pattern at close intervals. Each time note the micrometer reading and corresponding output of the detector.
- 9. Plot a graph (Distance Vs detector current). Note the distance from the central bright spot to nth order spot.

V. Results and Discussion

	Micrometer Reading (mm)	Detector Output (µm)		Micromete r Reading (mm)	Detector Output (µm)		Micrometer Reading (mm)	Detector Output (μm)
1	0	1.3	24	1.15	3.8	47	2.3	50.2
2	0.05	1.4	25	1.2	4	48	2.35	50.7
3	0.1	1.4	26	1.25	4.4	49	2.4	45.6
4	0.15	1.4	27	1.3	4.6	50	2.45	45.2
5	0.2	1.4	28	1.35	4.8	51	2.5	44.3
6	0.25	1.7	29	1.4	5.5	52	2.55	44.1
7	0.3	1.8	30	1.45	6.7	53	2.6	44
8	0.35	2	31	1.5	8.1	54	2.65	43.7
9	0.4	2.2	32	1.55	12.4	55	2.7	43.2
10	0.45	2.5	33	1.6	14.6	56	2.75	41.9
11	0.5	3.1	34	1.65	14.9	57	2.8	44.5
12	0.55	3.9	35	1.7	14.8	58	2.85	44.8
13	0.6	4	36	1.75	16.2	59	2.9	42.8
14	0.65	4	37	1.8	18.7	60	2.95	45.2
15	0.7	4.2	38	1.85	21.7	61	3	55.4
16	0.75	4.5	39	1.9	21.9	62	3.05	63.4
17	0.8	4.2	40	1.95	23.5	63	3.1	75.3
18	0.85	3.8	41	2	28.7	64	3.15	83.6
19	0.9	3.7	42	2.05	35.3	65	3.2	98.6
20	0.95	3.8	43	2.1	37.8	66	3.25	112.7
21	1	4	44	2.15	39.2	67	3.3	117.6
22	1.05	3.9	45	2.2	43.4	68	3.35	138.4

				1				
23	1.1	3.9	46	2.25	46.2	69	3.4	157.3
70	3.45	166.9	95	4.7	700	120	5.95	2100
71	3.5	183.2	96	4.75	900	121	6	2000
72	3.55	500	97	4.8	1000	122	6.05	1800
73	3.6	500	98	4.85	1100	123	6.1	1900
74	3.65	500	99	4.9	1200	124	6.15	2000
75	3.7	600	100	4.95	1500	125	6.2	2000
76	3.75	600	101	5	1600	126	6.25	2000
77	3.8	700	102	5.05	1700	127	6.3	2100
78	3.85	800	103	5.1	1900	128	6.35	2600
79	3.9	800	104	5.15	2000	129	6.4	2700
80	3.95	800	105	5.2	2200	130	6.45	2800
81	4	700	106	5.25	2300	131	6.5	3000
82	4.05	700	107	5.3	2400	132	6.55	3600
83	4.1	600	108	5.35	2500	133	6.6	3700
84	4.15	600	109	5.4	2700	134	6.65	3800
85	4.2	600	110	5.45	3000	135	6.7	4000
86	4.25	600	111	5.5	3200	136	6.75	4500
87	4.3	600	112	5.55	3000	137	6.8	5000
88	4.35	600	113	5.6	2800	138	6.85	5300
89	4.4	600	114	5.65	2600	139	6.9	5500
90	4.45	500	115	5.7	2500	140	6.95	5800
91	4.5	500	116	5.75	2400	141	7	6600
92	4.55	600	117	5.8	2400	142	7.05	7500
93	4.6	600	118	5.85	2300	143	7.1	7400

94	4.65	600	119	5.9	2200	144	7.15	7100
145	7.2	6600	170	8.45	2400	195	9.7	700
146	7.25	6000	171	8.5	2500	196	9.75	700
147	7.3	5600	172	8.55	2800	197	9.8	600
148	7.35	5400	173	8.6	3100	198	9.85	600
149	7.4	5300	174	8.65	3300	199	9.9	600
150	7.45	4800	175	8.7	3300	200	9.95	600
151	7.5	4500	176	8.75	3100	201	10	600
152	7.55	4100	177	8.8	2800	202	10.05	600
153	7.6	3800	178	8.85	2500	203	10.1	700
154	7.65	3600	179	8.9	2400	204	10.15	700
155	7.7	3400	180	8.95	2300	205	10.2	800
156	7.75	3300	181	9	2100	206	10.25	700
157	7.8	3100	182	9.05	1800	207	10.3	700
158	7.85	2700	183	9.1	1700	208	10.35	600
159	7.9	2500	184	9.15	1600	209	10.4	600
160	7.95	2500	185	9.2	1500	210	10.45	600
161	8	2300	186	9.25	1400	211	10.5	600
162	8.05	2100	187	9.3	1300	212	10.55	500
163	8.1	2100	188	9.35	1300	213	10.6	400
164	8.15	2100	189	9.4	1100	214	10.65	400
165	8.2	2100	190	9.45	1000	215	10.7	400
166	8.25	2000	191	9.5	900	216	10.75	198.4
167	8.3	2100	192	9.55	800	217	10.8	186.4
168	8.35	2300	193	9.6	700	218	10.85	169.2
_			_					

169	8.4	2300	194	9.65	700	219	10.9	163.5
220	10.95	163.2	232	11.55	46.7			
221	11	138.1	233	11.6	47.3			
222	11.05	113.2	234	11.65	49.5			
223	11.1	105.5	235	11.7	51.4			
224	11.15	98.6	236	11.75	51.9			
225	11.2	91.8	237	11.8	55.2			
226	11.25	78.1	238	11.85	54.3			
227	11.3	69.3	239	11.9	50.1			
228	11.35	62.5	240	11.95	47.6			
229	11.4	57.1	241	12	45.2			
230	11.45	50.3						
231	11.5	48.4						

• 1st Order of Diffraction

Average of the differences between the 1st order peek values (D) = 1.575 mm

Distance between the crystal and the detector (L) = 1100mm

To calculate the wavelength of sound Λ , we use

$$\Lambda = \frac{n\lambda}{\sin\theta}$$

where,

n = order of diffraction

 λ = wavelength of laser used

$$\sin \theta = \theta = \frac{D}{L} = 0.001432$$

In our case, we are observing the 1^{st} order diffraction, so n=1 Also, we are using a laser of $\lambda=650 \ nm$

Using these values,

$$\Lambda = 0.000454 \, m$$

Now, we can calculate the speed of the wave using:

$$v = \Lambda f$$

where,

f (frequency of the wave) = $3 MHz = 3 \times 10^6 Hz$

$$v = 1361.90 \, m/s$$

And the bulk modulus, compressibility of water are:

$$\beta = \rho v^2$$

$$\beta = 1.854 \times 10^9 Pa \text{ or } 1.854 GPa$$

$$k = \frac{1}{\beta}$$

$$k = 5.393 \times 10^{-8} Pa^{-1}$$

• 2nd Order of Diffraction

Average of the differences between the 2nd order peek values (D) = 3.15 mm

Distance between the crystal and the detector (L) = 1100mm

To calculate the wavelength of sound Λ , we use

$$\Lambda = \frac{n\lambda}{\sin\theta}$$

where,

n = order of diffraction

 λ = wavelength of laser used

$$\sin \theta = \theta = \frac{D}{L} = 0.002863$$

In our case, we are observing the 1^{st} order diffraction, so n=2 Also, we are using a laser of $\lambda=650~nm$

Using these values,

$$\Lambda = 0.000454 \, m$$

Now, we can calculate the speed of the wave using:

$$v = \Lambda f$$

where,

f (frequency of the wave) = $3 MHz = 3 \times 10^6 Hz$

$$v = 1361.90 \, m/s$$

And the bulk modulus of water is:

$$\beta = \rho v^2$$

$$\beta = 1.854 \times 10^9 \ Pa \ or \ 1.854 \ GPa$$

$$k = \frac{1}{\beta}$$

$$k = 5.393 \times 10^{-8} \ Pa^{-1}$$

VI. Error Analysis

Using the equation,

$$\Lambda = \frac{n\lambda}{\sin\theta}$$

We can take log on both sides and differentiate to get the error formula,

$$\Delta v = v \times \left(\frac{\Delta f}{f} + \frac{\Delta \lambda}{\lambda} + \cos^2(\theta) \times \left(\frac{\Delta D}{D} + \frac{\Delta L}{L} \right) \right)$$

Taking the errors as least count of the instruments,

 $\Delta f = 0.01 MHz$

 $\Delta \lambda = 0 nm$

 $\Delta D = 0.01 \, mm$

 $\Delta L = 1mm$

Plugging in the values into the derived formula,

$$\Delta v = 9.88 \, m/s$$

Similarly,

$$\frac{\Delta \beta}{\beta} = \frac{\Delta \rho}{\rho} + 2 \frac{\Delta v}{v}$$

Taking error in density to be zero,

$$\Delta \beta = 0.01 \times 10^9 Pa$$

For compressibility,

$$\frac{\Delta K}{K} = \frac{\Delta \beta}{\beta}$$
$$\Delta K = 4.22 \times 10^{-9} Pa^{-1}$$

Possible sources of error:

- **Alignment errors** Incorrect positioning of the transmitter, receiver, or sample.
- **Temperature variations** Affecting the speed of sound and diffraction pattern.
- **Electrical noise** Interference from surrounding electronic devices.
- Air gaps or coupling issues Poor contact between the transducer and the medium.
- **Multiple reflections** Unwanted echoes distorting measurements.

Conclusion

In conclusion, the ultrasonic diffraction experiment helped us understand wave behavior and measure the velocity of sound in a medium. We calculated the velocity as 1361.9 m/s, with a percentage error of 0.73%, which is fairly low. The accuracy of our results depended on proper alignment, minimizing interference, and ensuring good contact between the transducers and the medium. While there were some sources of error, careful setup and better control of conditions could improve the results. Overall, the experiment was a great way to explore the principles of wave diffraction and ultrasonic measurement.

VIII. Author Contributions:

Name Roll number Contribution		Contribution	Signature
Aksh Kishor Solanki	24110023	Creation of pre-report	
Akshat Vishal Wandalkar	24110024	Error analysis and possible sources of erors	
Akshay	24110025	Proofreading of reports and elimination of errors, drawing diagrams	
Akshit Chhabra	124110026	Results and discussion in the lap report, operation of equipment	
Akul Gupta	24110027	Documenting data during the experiment, sketching of graphs	