

SEMINARARBEIT

Using PCA on EEG Data to Distinguish Sleep Stages

ausgeführt am

Institut für Analysis und Scientific Computing TU Wien

unter der Anleitung von

Assistant Prof.

Dipl.-Ing. Dipl.-Ing. Dr.techn. Andreas Körner, BSc

durch

Ida Hönigmann

Matrikelnummer: 12002348

Contents

1	Introduction 1.1 EEG Data and Sleep Stages	1 1								
2	Study of Literature 2.1 Principal Component Analysis	3 3								
3	Mathematical Basics 3.1 Covariance	5 5								
4	Principal Component Analysis	8								
5	5.1 Fourier Transformation	13 13 15								
6	6.1 Data	16 16 16								
7	7.1 Compression of Data	21 21 21 21								
8	Conclusion	24								
Bibliography										

1 Introduction

[TODO general introduction]

1.1 EEG Data and Sleep Stages

An electroencephalogram (EEG) records the variations in potential in the brain. A bipolar EEG measures the potential between two electrodes placed on the head. In comparison a unipolar measures the potential between a electrode on the head and one on some other part of the body. In this work we are only concerned with bipolar EEG measurements.

Ganong [Gan97, chapter 11] describes typical patterns observed in EEG data of a sleeping person. He describes the EEG patterns associated with rapid eye movement (REM) sleep and non-REM (NREM) sleep. NREM sleep is further partitioned into three stages, termed Stage 1 (S1) to Stage 3 (S3)¹. The EEG data of these stages is characterized by

S1: low amplitude, high frequency

S2: appearance of sleep spindles (bursts of higher amplitude, lower frequency waves)

S3: high amplitude, low frequency

In REM sleep the EEG data is that of high frequency and low amplitude patterns, resembling the data observed in alert humans.

Example EEG data of these different sleep stages can be seen in Figure 1.1.

¹some authors use four stages

Figure 1.1: Short data segments of the the different sleep stages.

2 Study of Literature

As shown in this chapter, the utilization of PCA to analyze EEG data has been used with success.

2.1 Principal Component Analysis

A substantial body of scientific research has been devoted to exploring Principal Component Analysis (PCA). The foundation of this method was laid by Pearson [Pea01] and Hotelling [Hot33].

An introduction to PCA, as well as a good overview on how to derive the formula used to compute the Principal Components (PC) is given by Shlens [Shl14]. Recent applications and variants of PCA are explored by Jolliffe et. al. [JC16].

Shlens discusses the limitations of PCA, as well as examples in which PCA fails, such as the requirement of linearly dependent data. Tenenbaum proposes a non-linear method to combat this problem [TDSL00].

Generally speaking the variables must not have third or higher order dependencies¹ between them. In some cases it is possible to reduce a problem with higher order dependencies to a second order one by applying a non-linear transformation beforehand. This method is called kernel PCA[SSM97].

Another method for dealing with this problem is Independent Component Analysis (ICA) which is discussed by Naik et. al.[NK11].

2.2 Using PCA on EEG Data

The given problem of distinguishing sleep stages given some EEG data has been investigated by use of PCA, as well as neural networks. Some of these works are summarized below.

A review of different methods in the preprocessing, feature extraction and classification is given by Boostani et. al.[BKN17]. They find that using a random forest classifier[Bre01] and entropy of wavelet coefficients[CMP94] as feature gives the best results.

Tăuţan et. al.[TRdFI21] compare different methods of dimensionality reduction on EEG data, such as PCA, factor analysis and autoencoders. They conclude that the use of PCA and factor analysis improves the accuracy of the model.

Putilov[Put15] used PCA to find boundaries between Stage 1, Stage 2 and Stage 3. Changes in the first two PC were related to changes between the Stage 1 and Stage 2, while changes in the fourth PC exhibited a change in sign at the boundary of Stage 2 and Stage 3. This suggests that changes between Stage 1 and Stage 2 are easier to detect that ones between Stage 2 and Stage 3.

 $^{^{1}\}text{e.g.}\ \mathbb{E}[x_{i}x_{j}x_{k}]\neq0$ for some i,j,k assuming mean-free variables

Metzner et. al.[MST⁺23] try to rediscover the different human-defined sleep stages. They find that using PCA on the results makes clusters apparent. These clusters could then be used as a basis for a redefinition of sleep stages.

The PhysioNet/Computing in Cardiology Challange 2018[GMwHL⁺18] was a competition using a similar dataset. The goal was to identify arousal during sleep from EEG, EOG, EMG, ECG and SaO2 data given. The winning paper[HPPB18] of this competition describes the use of a dense recurrent convolutional neural network (DRCNN) comprised of multiple dense convolutional layers, a bidirectional long-short term memory layer and a softmax output layer.

3 Mathematical Basics

We define mathematical notation, which will be used in Section 4 to define PCA.

3.1 Covariance

Assume we have two sets of n observations of variables with mean 0. Let us call the first list of observations $\mathbf{a} = (a_1, ..., a_n)$ and the second $\mathbf{b} = (b_1, ..., b_n)$.

Definition 1 (Covariance). Let us define the covariance of $\mathbf{a} \in \mathbb{R}^n$ and $\mathbf{b} \in \mathbb{R}^n$ as

$$\sigma_{\mathbf{a}\mathbf{b}} := \frac{1}{n} \sum_{i=1}^{n} a_i b_i = \frac{1}{n} \mathbf{a} \cdot \mathbf{b}^T.$$

From the definition it is obvious that the covariance is symmetric, $\sigma_{\mathbf{ab}} = \sigma_{\mathbf{ba}}$. In the special case $\mathbf{a} = \mathbf{b}$ the covariance $\sigma_{\mathbf{aa}}$ is called *variance* $\sigma_{\mathbf{a}}^2$.

Definition 2 (Covariance Matrix). Generalizing to m variables $\mathbf{X} = (\mathbf{x_1}, ..., \mathbf{x_m})$, each having been observed n times, gives us the covariance matrix.

$$\mathbf{C}_{\mathbf{X}} := \begin{pmatrix} \sigma_{\mathbf{x_1 x_1}} & \cdots & \sigma_{\mathbf{x_1 x_m}} \\ \vdots & \ddots & \vdots \\ \sigma_{\mathbf{x_m x_1}} & \cdots & \sigma_{\mathbf{x_m x_m}} \end{pmatrix} = \frac{1}{n} \mathbf{X} \mathbf{X}^T$$

The covariance matrix is a symmetric $m \times m$ matrix.

3.2 Diagonalizable Matrix

Definition 3 (Diagonalizable Matrix). A square matrix \mathbf{A} is called diagonalizable, if there exists an invertable matrix \mathbf{P} and a diagonal matrix \mathbf{D} such that $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.

Definition 4 (Symmetric matrix). A square matrix **A** is called symmetric, if $\mathbf{A}^T = \mathbf{A}$.

Theorem 1. Every symmetric matrix is diagonalizable.

This is the main theorem we need in order to derive PCA. The proof of this theorem requires some preparation, which we will do now.

Definition 5 (Eigenvalues and Eigenvectors). Let **A** be a real $m \times m$ matrix. $\lambda \in \mathbb{C}$ is called a eigenvalue with eigenvector $\mathbf{v} \in \mathbb{C}^m \setminus \{\mathbf{0}\}$ if

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}.\tag{3.1}$$

Lemma 1. Every square $m \times m$ matrix has m (not necessarily unique) eigenvalues.

Proof. We can rewrite equation 3.1 as

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$$

This allows us to interpret $(\mathbf{A} - \lambda \mathbf{I})$ as a function, which takes vectors $\mathbf{v} \in \mathbb{C}^m$. For λ to be a eigenvalue of \mathbf{A} with eigenvector \mathbf{v} it has to satisfy $\mathbf{v} \in \ker(\mathbf{A} - \lambda \mathbf{I})$ and $\mathbf{v} \neq 0$. From this we gather that all λ with $\ker(\mathbf{A} - \lambda \mathbf{I}) \neq \{\mathbf{0}\}$ are eigenvalues. We know this holds if and only if $\det(\mathbf{A} - \lambda \mathbf{I}) = 0$. The determinant is a polynomial of degree m which can be expressed in the form $(\lambda - \lambda_1)...(\lambda - \lambda_m)$ with $\lambda_1,...,\lambda_m \in \mathbb{C}$. These $\lambda_1,...,\lambda_m$ are the m eigenvalues we wanted to find.

Lemma 2. A symmetric matrix has real eigenvalues.

Proof. Let - denote the complex conjugate. Define a complex dot product

$$(\mathbf{u}, \mathbf{v}) := \sum_{i=1}^{m} u_i \bar{v_i}$$

This dot product has the following properties for all $\mathbf{A} \in \mathbb{C}^{m \times m}$, $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$, $\lambda \in \mathbb{C}$

- $\bullet (\mathbf{A}\mathbf{u}, \mathbf{v}) = (\mathbf{u}, \mathbf{A}^T \mathbf{v}),$
- $(\lambda \mathbf{u}, \mathbf{v}) = \lambda(\mathbf{u}, \mathbf{v}),$
- $(\mathbf{u}, \lambda \mathbf{v}) = \bar{\lambda}(\mathbf{u}, \mathbf{v})$
- $(\mathbf{u}, \mathbf{u}) = 0 \iff \mathbf{u} = 0$

Let **A** be a symmetric matrix with eigenvalue $\lambda \in \mathbb{C}$.

For all $\mathbf{u} \in \mathbb{C}^m$ we have

$$\lambda(\mathbf{u}, \mathbf{u}) = (\lambda \mathbf{u}, \mathbf{u}) = (\mathbf{A}\mathbf{u}, \mathbf{u}) = (\mathbf{u}, \mathbf{A}^T \mathbf{u}) = (\mathbf{u}, \mathbf{A}\mathbf{u}) = (\mathbf{u}, \lambda \mathbf{u}) = \bar{\lambda}(\mathbf{u}, \mathbf{u}).$$

For $\mathbf{u} \neq \mathbf{0}$ we get $\lambda = \bar{\lambda}$ and thus $\lambda \in \mathbb{R}$.

Are the corresponding eigenvectors real? From the proof of lemma 1 we know that the eigenvector \mathbf{v} of eigenvalue λ is in $\ker(\mathbf{A} - \lambda \mathbf{I})$. Both the matrix \mathbf{A} and λ are real, so \mathbf{v} must be in \mathbb{R}^m as well.

Lemma 3. The eigenvectors of a symmetric matrix with distinct eigenvalues are orthogonal.

Proof. Let λ_1, λ_2 be two distinct eigenvalues with eigenvectors $\mathbf{v}_1, \mathbf{v}_2$ of the matrix \mathbf{A} .

$$\lambda_1 \mathbf{v}_1 \cdot \mathbf{v}_2 = (\lambda_1 \mathbf{v}_1)^T \mathbf{v}_2 = (\mathbf{A} \mathbf{v}_1)^T \mathbf{v}_2 = \mathbf{v}_1^T \mathbf{A}^T \mathbf{v}_2 = \mathbf{v}_1^T \mathbf{A} \mathbf{v}_2 = \mathbf{v}_1^T (\lambda_2 \mathbf{v}_2) = \lambda_2 \mathbf{v}_1 \cdot \mathbf{v}_2$$

This shows $(\lambda_1 - \lambda_2)\mathbf{v}_1 \cdot \mathbf{v}_2 = 0$ and as λ_1 and λ_2 are distinct, \mathbf{v}_1 and \mathbf{v}_2 must be orthogonal.

What if the eigenvalues of the matrix are not distinct? In the proof of lemma 1 we showed that every $\mathbf{v} \in \ker(\mathbf{A} - \lambda \mathbf{I}) \setminus \{\mathbf{0}\}$ is a eigenvector. If and only if $(\lambda - \lambda_i)$ appears $k \geq 2$ times in the determinant of $(\mathbf{A} - \lambda \mathbf{I})$ then \mathbf{A} has a non unique eigenvalue λ_i . As $\dim(\ker(\mathbf{A} - \lambda_i \mathbf{I})) = k$ we can choose orthogonal eigenvectors.

Now we have everything we need to prove theorem 1.

Proof of Theorem 1. Let $\mathbf{A} \in \mathbb{R}^{m \times m}$ be a symmetric matrix. From lemma 1 we know that eigenvalues $\lambda_1, ..., \lambda_m$ with corresponding eigenvectors $\mathbf{v}_1, ..., \mathbf{v}_m$ exist.

Define the following matrices

$$\mathbf{D} := \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_m \end{pmatrix} \qquad \mathbf{V} := \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_m \end{pmatrix}$$

The definition of eigenvalues and eigenvectors gives us

$$\mathbf{AV} = (\mathbf{Av}_1 \quad \cdots \quad \mathbf{Av}_m) = (\lambda_1 \mathbf{v}_1 \quad \cdots \quad \lambda_m \mathbf{v}_m) = \mathbf{VD}. \tag{3.2}$$

From lemma 3 we know that the eigenvectors, and therefore the columns of \mathbf{V} , are orthogonal. It follows that $rank(\mathbf{V}) = m$ which gives us the existence of \mathbf{V}^{-1} .

Rearranging equation 3.2 now gives us $\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}^{-1}$ which is what we wanted to show. This shows that \mathbf{A} is diagonalizable.

Lemma 4. If the columns of matrix **A** are orthonormal, then $\mathbf{A}^{-1} = \mathbf{A}^T$.

Proof. Let $(\mathbf{a}_i)_{i=1,\dots,m}$ be the columns of the matrix. The columns are orthogonal and normed, therefore

$$\forall i, j : \mathbf{a}_i^T \mathbf{a}_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases} \implies \mathbf{A}^T \mathbf{A} = \mathbf{I}$$

This shows $\mathbf{A}^{-1} = \mathbf{A}^T$.

4 Principal Component Analysis

Combining the concepts in section 3 we derive the ideas and implementation of PCA.

Assume we have gathered observations of different variables as part of an experiment. If we have n variables, each having been observed m times, we can create a $m \times n$ matrix of this data. The goal is to get more insight and find underlying patterns in the collected data. For n = 2 we could try to plot the data, with the first variable as the x-axis and the second as the y axis. An exemplary plot of some data can be seen in figure 4.1.

For larger values of n this gets increasingly difficult¹. PCA tries to solve this problem by transforming the data in such a way that the most interesting features are in the first few axis of the transformed m dimensional space. This makes it easy to look at a low dimension representation of the data, without loosing much information.

An example of PCA being applied to the data from figure 4.1 can be seen in figure 4.2. In the top figure the normed data and the direction of the new axis (called Principal Components (PC)) in relation to the two original axis are shown. The bottom figure depicts the transformed data. One can see that the variance is maximal in the PC 1 axis.

Now we derive how to compute PCA. First we formulate a goal and define some assumptions.

We assume that the most interesting features are those that have a large variance². Our goal is to find a transformation into new coordinates such that:

- the variance in the each axis is as large as possible.
- the axis are all orthogonal to each other.
- the axis are sorted (descending) by the variance in the axis.

From this we gather that another assumption is, that the axis are orthogonal. Lastly we are only concerned with linear dependent features in the data. Some example cases in which PCA fails are shown in figure 4.3.

One way to achieve the goal is as follows:

- 1. Find the direction which maximizes the variance.
- 2. Save this direction as the next axis.
- 3. Determine the subspace that is orthogonal to all axis we found so far.
- 4. If the subspace is non-trivial start at the first step again.

¹For higher dimensionality we have to use some projection. Depending on the chosen projection the interpretation changes making it difficult to interpret the resulting image.

²This assumption can be false. For data where the noise has a larger variance than the feature we are trying to observe, PCA fails because this assumption is not met.

Figure 4.1: Randomly generated sample data. The data lies along a line with slope 1 and has mean **0**.

5. If the subspace is trivial we have found all axis.

While this algorithm shows us what conceptually has to be done, we do not know how to compute the axis yet. We will now investigate this problem using the mathematical concepts from section 3. This will lead us to an algorithm in which all axis can be computed simultaneously.

Let $\mathbf{X} \in \mathbb{R}^{m \times n}$ be the data matrix. We want to find some orthonormal matrix \mathbf{P} such that $\mathbf{Y} := \mathbf{P}\mathbf{X}$ has a diagonal covariance matrix $\mathbf{C}_{\mathbf{Y}}$.

$$\begin{split} \mathbf{C}_{\mathbf{Y}} &= \frac{1}{n} \mathbf{Y} \mathbf{Y}^T = \frac{1}{n} (\mathbf{P} \mathbf{X}) (\mathbf{P} \mathbf{X})^T = \frac{1}{n} \mathbf{P} \mathbf{X} \mathbf{X}^T \mathbf{P}^T = \\ &= \mathbf{P} (\frac{1}{n} \mathbf{X} \mathbf{X}^T) \mathbf{P}^T = \mathbf{P} \mathbf{C}_{\mathbf{X}} \mathbf{P}^T \end{split}$$

The covariance matrix $C_{\mathbf{X}}$ is symmetric and therefore has a decomposition into an orthogonal matrix of eigenvectors \mathbf{V} and a diagonal matrix of eigenvalues \mathbf{D} . We choose $\mathbf{P} = \mathbf{V}^T$. From lemma 4 it follows that $\mathbf{V}^{-1} = \mathbf{V}^T$.

$$\begin{split} \mathbf{P}\mathbf{C}_{\mathbf{X}}\mathbf{P}^T &= \mathbf{P}(\mathbf{V}\mathbf{D}\mathbf{V}^{-1})\mathbf{P}^T = \mathbf{P}(\mathbf{V}\mathbf{D}\mathbf{V}^T)\mathbf{P}^T = \\ \mathbf{P}(\mathbf{P}^T\mathbf{D}\mathbf{P})\mathbf{P}^T &= (\mathbf{P}\mathbf{P}^T)\mathbf{D}(\mathbf{P}\mathbf{P}^T) = \\ (\mathbf{P}\mathbf{P}^{-1})\mathbf{D}(\mathbf{P}\mathbf{P}^{-1}) &= \mathbf{D} \end{split}$$

(a) Normed data (mean is zero and variance is one) and direction of the two PCs in relation to the ${\bf x}$ and ${\bf y}$ position.

(b) The data after being transformed by PCA. The variance along the PC1 axis is maximal, therefore the data is spread out most along this axis.

Figure 4.2: Example application of PCA.

(a) Clearly the relationship in this figure is non-linear. PCA can not describe circular dependencies, as shown in this data.

(b) The two main axis along which the data is aligned are not orthogonal to each other. PCA always outputs orthogonal principal components, therefore it fails in this example.

Figure 4.3: Examples in which some of the assumptions of PCA are not valid. The results are sub-optimal.

In summary \mathbf{Y} has a diagonal covariance matrix if we choose $\mathbf{Y} = \mathbf{V}^T \mathbf{X}$, where \mathbf{V} is the matrix of eigenvectors of $\mathbf{C}_{\mathbf{X}}$. The eigenvectors are the PCs and the eigenvalues are the variance in each new axis.

As pseudo code we get the program from algorithm 1 for calculating the PCA.

Algorithm 1 Principal Component Analysis

Require: matrix $X \in \mathbb{R}^{m \times n}$

Normalize each row in the matrix XCalculate the covariance matrix C_X

Calculate the eigenvalues and eigenvectors of C_X

Sort the eigenvalues

Return sorted eigenvalues and corresponding eigenvectors

What happens if we skip the step in which we normalize each row in the matrix? A big variance is interpreted by the PCA algorithm as much information, thus the variance of the variables have an impact on how "important" the variable is deemed. As we do not want to prioritize certain variables we avoid this behavior by normalizing the data beforehand.

5 Methodology

For the algorithm in section 6 a few other methods will be used. As they are not the focus of this work we only give a short overview.

5.1 Fourier Transformation

Many applications are concerned with cyclic temporal data. Examples are sound waves or EEG data. This data can be represented as a function of amplitude over time. Most often we are not interested at the amplitudes at a specific point in time, as a temporal shift would represent a very similar information. This is demonstrated in figure 5.1.

Figure 5.1: Two signals that only differ by a temporal shift.

As the function is cyclic we might be interested in a decomposition into simple cyclic function, such as sin. We can then analyze the most prominent frequencies and their respective amplitudes. This gives a representation of the data, that can be easier to interpret.

We describe one approach to achieve this representation as a sum of sin functions, called Fast Fourier Transformation (FFT), in algorithm 2.

Figure 5.2 shows how an example input and output of the FFT algorithm looks.

Algorithm 2 FFT

```
function \operatorname{FFT}(x,N,s) if N=1 then X_0 \leftarrow x_0 else X_{0,\dots,N/2-1} \leftarrow FFT(x,N/2,2s) X_{N/2,\dots,N-1} \leftarrow FFT(x+s,N/2,2s) for k=0 to N/2-1 do p \leftarrow X_k q \leftarrow \exp(-2\pi i/Nk)X_{k+N/2} X_k \leftarrow p+q X_{k+N/2} \leftarrow p-q end for end if return X_{0,\dots,N-1} end function
```


Figure 5.2: A signal composed of different sin functions and the corresponding FFT output.

Figure 5.3: Data points in three categories are given. The black point is classified as a blue, circular point by the k-nearest-neighbors algorithm for k = 10.

5.2 Classification

In classification the objective is to find assignments between data points and categories. In our context we are interested in finding an assignment which closely matches some already categorized data. One simple approach to this problem is the k-nearest-neighbors algorithm.

For data that can be represented in \mathbb{R}^m and l categories the pseudo code is shown in algorithm 3.

Algorithm 3 k Nearest Neighbors

Require: data points $(p_i)_{i\in\mathbb{N}} \in \mathbb{R}^m$, categories $(c_i)_{i\in\mathbb{N}} \in \{0,1,...,l\}$, point $x \in \mathbb{R}^m$, $k \in \mathbb{N}$ Calculate the distance between each point p_i and x

Take the k data points with the smallest distance to x

Return the category that most of the k points are assigned

Figure 5.3 shows a graphical representation of the algorithm for points in \mathbb{R}^2 and k=10. This algorithm is slow for big datasets as for each point the distance to x has to be calculated. One possibility to reduce calculation time is to partition space into smaller chunks. Then the loop only has to be over data points lying in the same or close chunks as the point we are interested in.

6 Data and Algorithm

This chapter describes the CAP Sleep Database used and the algorithm implemented. The algorithm uses FFT, PCA and k-nearest neighbor to guess the sleep stage from a recorded EEG signal.

6.1 Data

We use the CAP Sleep Database[TPS⁺01][GAG⁺] which provides 16 recordings of patients without pathology. Two of these recordings have corrupted files and thus could not be analyzed. The table 6.1 shows some meta data of the recordings.

The given dataset describes multiple channels of EEG data recorded during sleep. We are interested in the channels recording activity in the frontal area, as this is where differences in sleep stages are easier to detect[Gan97, chapter 11]. The figure 6.1 shows where the sensors were placed.

The data was recorded in different frequencies. To reduce data size and standardize all channels we resample to 200 Hz.

Very low and very high frequencies often stem from other sources, such as the measurement equipment, breathing of the patients or measuring inaccuracies. To get rid of these noises we apply a low pass filter of 30 Hz and a high pass filter of 0.5 Hz.

6.2 Algorithm

We now describe the general structure of the algorithm from reading the data files to the clustering.

First we split the recorded data into 30 second sections. For each of these sections we get the data as a function of amplitude over time. An example segment is shown in the upper figure of 6.2. We apply a Fourier transformation as described in section 5.1 and get a function of amplitude over frequency. This gives a frequency based representation of the data. As the sleep stages are characterized by different frequencies and amplitudes, as described in section 1.1, this will help us distinguishing them. The output of such an FFT can be seen in the lower figure of 6.2. The pseudo code for this processing is described in algorithm 4.

We now have high dimensional data points, as each 30 second segment is represented by the amplitudes for each of the distinct frequencies output by the FFT. Before we can start searching for cluster in the data we want to find a lower dimensional representation. This is were PCA can be used. From the output of algorithm 5 we get PCs, which reveal the frequencies were the most variance is shown. Under our assumptions this variation is caused

File Name	le Name Age Gender Leng		Length of Recording	Channel Name	Sampling Frequency	
$\overline{\mathrm{n1}}$	37	F	577 minutes	F2-F4	512 Hz	
n2	34	M	735 minutes	C4-A1	$512~\mathrm{Hz}$	
n3	35	F	551 minutes	FP1-F3	$512~\mathrm{Hz}$	
n4	25	F	596 minutes	Fp2-F4	$200~\mathrm{Hz}$	
n5	35	F	524 minutes	Fp2-F4	512 Hz	
n6	31	M	527 minutes	C3-A2	128 Hz	
$^{ m n7}$	31	M	492 minutes	C3-A2	128 Hz	
n8	42	F	501 minutes	C3-A2	200 Hz	
n9	31	M	532 minutes	C3-A2	128 Hz	
n10	23	M	490 minutes	C4-A1	512 Hz	
n11	28	F	527 minutes	Fp2-F4	$512~\mathrm{Hz}$	
n12	29	M	495 minutes	C4-A1	100 Hz	
n15	34	M	494 minutes	F3A2	200 Hz	
n16	41	F	513 minutes	Fp2-F4	100 Hz	

Table 6.1: Meta data of the 14 recordings from the CAP Sleep Database.

Figure 6.1: Scheme of sensor placement in recordings of EEG data.

Algorithm 4 EEG data processing

for each patient do

Read EEG data from file

Apply a 30 Hz low pass and a 0.5 Hz high pass filter

Resample with frequency 200 Hz

Get one of the channels Fp2-F4, Fp1-F3, C4-A1, F3A2 or C3-A2 (in this order)

Section out the part of data where the patient is asleep

for each 30 second segment of the data do

Do a Fourier transformation (FFT)

end for

Save all the outputs from the FFT to the patients file

end for

Figure 6.2: A 30 second segment of the data. The top shows the recorded signal of the EEG. The bottom shows the output of the Fourier transformation.

by the different sleep stages each recording goes through. We show a visual representation of the data in the first three PC axis in figure 6.3.

Algorithm 5 Apply PCA to the EEG data

for each patient do

Read FFT output from patients file

Read the sleep stages from another file

end for

Concatenate FFT data of all patients

Concatenate sleep stages of all patients

Do PCA on the combined FFT data

Transform data according to the PC from the PCA

Visualize the data in the first three axis, with the color corresponding to the sleep stage

If we have a new recording and want to know the sleep stages we have to follow similar steps. First the recording has to be split into 30 second segments. These have to be transformed by a FFT. The output can be converted to the PCA basis by multiplying with the matrix of PCs. Lastly we can get a guess of the sleep stage by using the k nearest neighbor algorithm. The pseudo code is shown in algorithm 6.

Algorithm 6 Get guess for sleep stage

Require: EEG recording of sleep

for each 30s segment do

Do FFT on the segment

Multiply FFT output by PCs matrix

Do k nearest neighbor

Save the result of k nearest neighbor

end for

Figure 6.3: Three dimensional representation of the data. Each 30 second segment is represented by a dot in the color corresponding to the sleep stage this segment is assigned to. Awake is represented by red, orange is REM, yellow is S1, green S2 and blue S3.

7 Results

In this chapter we will analyze with which accuracy the algorithm from chapter 6 classifies sleep stages. We will have a look into which frequencies differ most between the stages and whether the PCs of the PCA uses the same frequencies.

7.1 Compression of Data

From section 4 we know that it is possible to use PCA to reduce dimensions of data. We want to know how much information is still present in the compressed data. This can be calculated by testing how many dimensions it takes to retain a certain amount of variance in the data.

We find the first index for which the sum of eigenvalues from the PCA is bigger than a certain percentage. The output for a few values are shown in table 7.1. As only few dimensions are needed to preserve 90% of variance, which in our case means information, the PCA can successfully be used as a way to reduce the dimensions.

7.2 Testing the Accuracy

To test the accuracy of the algorithm from section 6.2 we divide the dataset into two partitions, one for training the PCA and one for validating the results. The training data contains 7 of the 14 patients and the validation data contains the other 7 patients.

Out of [TODO] 30 second segments the algorithm guessed the correct one [TODO] times, which corresponds to a success rate of [TODO]%. Table 7.2 shows the outcome in more detail.

7.3 Rhythm Analysis

There are four rhythms observed in the EEG[Gan97, chapter 11]. These rhythms differ in the frequency and are characterized as

percentage of variance	number of dimensions needed
50%	1 out of 3000
80%	4 out of 3000
90%	26 out of 3000
95%	60 out of 3000

Table 7.1: Percentage of variance retained after reducing the dimension.

	awake	S1	S2	S3	REM
awake	0	0	0	0	0
S1	0	0	0	0	0
S2	0	0	0	0	0
S3	0	0	0	0	0
REM	0	0	0	0	0

Table 7.2: Number of assignments for each stage, with the true value corresponding to the column and the guess from the algorithm corresponding to the row. [TODO fill this table]

Figure 7.1: Fourier transformed data with rhythms highlighted.

• Alpha: 8 - 12 Hz

• Beta: 18 - 30 Hz

• Theta: 4 - 7 Hz

• Delta: < 4 Hz

It is easy to analyze the presence of these rhythms when looking at the fourier transformed data, as shown in figure 7.1.

We can now see if the output of the PCA gives importance to these rhythms. In figure 7.2 the sum of the absolute values of the first 26 PCs is shown. We chose 26 as from table 7.1 we gather that 90% of the variance is preserved. The most emphasis is given on the values from the theta rhythm. This was expected as the amplitudes in the FFT output are the highest in this region and we did not normalize the data before doing PCA.

Figure 7.2: Sum of the absolute values of the first 26 PCs.

8 Conclusion

[TODO]

In this chapter we summarize conclusions that can be drawn from this work and discuss possible future work on this topic.

future work:

- \ast use multiple channels at one to determine sleep stage
- * calculate power spectral density from fft output

Bibliography

- [BKN17] Reza Boostani, Foroozan Karimzadeh, and Mohammad Nami. A comparative review on sleep stage classification methods in patients and healthy individuals. Computer Methods and Programs in Biomedicine, 140:77 91, 2017. Cited by: 212.
- [Bre01] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.
- [CMP94] Charles K Chui, Laura Montefusco, and Luigia Puccio. Wavelets: theory, algorithms, and applications, volume 5. Academic press, 1994.
- [GAG⁺] Goldberger, L. Amaral A., L. Glass, J. Hausdorff, P. C. Ivanov, R. Mark, J. E. Mietus, G. B. Moody, C. K. Peng, and H. E. Stanley. Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals.
- [Gan97] William F. Ganong. Review of medical physiology. Appleton & Lange, Stamford, Conn, 18. ed edition, 1997.
- [GMwHL⁺18] Mohammad M Ghassemi, Benjamin E Moody, Li wei H Lehman, Christopher Song, Qiao Li, Haoqi Sun, Roger G Mark, M Brandon Westover, and Gari D Clifford. You snooze, you win: the physionet/computing in cardiology challenge 2018. 2018 Computing in Cardiology Conference (CinC), pages 1–4, 2018.
- [Hot33] Harold Hotelling. Analysis of a complex of statistical variables into principal components. *Journal of educational psychology*, 24(6):417, 1933.
- [HPPB18] Matthew Howe-Patterson, Bahareh Pourbabaee, and Frederic Benard. Automated detection of sleep arousals from polysomnography data using a dense convolutional neural network. In 2018 Computing in Cardiology Conference (CinC), volume 45, pages 1–4. IEEE, 2018.
- [JC16] I. T. Jolliffe and J. Cadima. Principal component analysis: a review and recent developments. *Royal Society*, 374(2065), 2016.
- [MST⁺23] Claus Metzner, Achim Schilling, Maximilian Traxdorf, Holger Schulze, Konstantin Tziridis, and Patrick Krauss. Extracting continuous sleep depth from eeg data without machine learning. *Neurobiology of Sleep and Circadian Rhythms*, 14, 2023. All Open Access, Gold Open Access, Green Open Access.

- [NK11] Ganesh R Naik and Dinesh K Kumar. An overview of independent component analysis and its applications. *Informatica*, 35(1), 2011.
- [Pea01] Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science, 2(11):559–572, 1901.
- [Put15] Arcady A. Putilov. Principal component analysis of the eeg spectrum can provide yes-or-no criteria for demarcation of boundaries between nrem sleep stages. Sleep Science, 8(1):16–23, 2015.
- [Shl14] Jonathon Shlens. A tutorial on principal component analysis. 2014.
- [SSM97] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Kernel principal component analysis. In *International conference on artificial neural networks*, pages 583–588. Springer, 1997.
- [TDSL00] J.B. Tenenbaum, V. De Silva, and J.C. Langford. A global geometric framework for nonlinear dimensionality reduction. *Science*, 290(5500):2319 2323, 2000. Cited by: 10812.
- [TPS⁺01] M G Terzano, L Parrino, A Sherieri, R Chervin, S Chokroverty, C Guilleminault, M Hirshkowitz, M Mahowald, H Moldofsky, A Rosa, R Thomas, and A Walters. Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (cap) in human sleep., 2001.
- [TRdFI21] Alexandra-Maria Tăuțan, Alessandro C. Rossi, Ruben de Francisco, and Bogdan Ionescu. Dimensionality reduction for eeg-based sleep stage detection: comparison of autoencoders, principal component analysis and factor analysis. Biomedical Engineering / Biomedizinische Technik, 66(2):125–136, 2021.