21-484 Notes JD Nir jnir@andrew.cmu.edu April 6, 2012

- \rightarrow Brooks Theorem: G is connected, not complete, not odd cycle $\chi(G) \leq \Delta(G)$.
- \rightarrow Assume that G is 2-connected.
- \rightarrow Assume that $\Delta(G) \geq 3$
- \rightarrow Assume that G is Δ -regular

- \rightarrow Once we have 3 vertices a, b, v such that $av, bv \in E(G)$, $ab \notin E(G)$ and G-a-b is connected, color a and b by color 1. Find a spanning tree for G-a-b; root the tree at v. Color vertices according to their place in the tree from leaves towards the root. This can be done becasue every vertex has at most $\Delta 1$ colored enighbors (its parent is not colored).
- \rightarrow Whe we try to color v, it has at most $\Delta 2$ colored neighbors besides a, b. But a and b are both colored 1.
- \rightarrow Consider a vertex x that is not adjacent to all ofther vertices.
- \rightarrow If G-x is still 2-connected, find a vertex of distance 2 from x (call it y). Let v be a common neighbor of x and y. Letting x and y have the roles of a ad b works. Indeed, G-x-y is connected because G-x is 2-connected.
- \rightarrow Assume that G-x is not 2-connected. Consider the block decomposition of G-x.

- \rightarrow We have a tree of blocks, there are at least two end blocks (because every tree has at least two leaves).
- \rightarrow An end block B_i has a vertex j_i such that every other block B_k is either disjoint from B_i , or they have j_i as their only common vertex.
- \rightarrow Let B_1 and B_2 be two end blocks. There are two vertices $b_1 \in B_2$, $b_2 \in B_2$ such that $b_1 \neq j_1$, $b_2 \neq j_2$, and $xb_1 \in E(G)$ and $xb_2 \in E(G)$.
- \rightarrow otherwise, if such b_1 does not exist, then j_1 is a cut vertex of $G \not\vdash G$ is 2-connected.
- $\rightarrow x, b_1, b_2$ can have the roles of v, a, b.
- $\rightarrow b_1$ and b_2 are neighbors of x, by the above. They are not adjacent because they are in different blocks in G.
- $\rightarrow G b_1 b_2 x$ is connected, because neither b_1 nor b_2 was a joint and $d_G(x) \geq 3$.

$$\chi(C_5) = 3$$

$$\omega(C_5) = 2$$

Theorem 10.10: \forall integer k there is a triangle free graph with chromatic number k.

 \rightarrow For every forest F, $\chi(F) \leq 2$.

Theorem (Erdős): For all integers $k, \ell, \exists G$ such that $girth(G) > \ell$ and $\chi(G) > k$.

<u>Proof:</u> \rightarrow set $0 < \theta < \frac{1}{\ell}$ constant

- \rightarrow define: $p = n^{-1+\theta}$
- \rightarrow Consider a graph on n vertices such that every possible edge is in G with probability P, independently of all other edges.

Let X be the number of short $(\leq \ell)$ cycles in G. X is a random variable.

$$\mathbb{E}[x] = \sum_{i=3}^{\ell} (\text{# of } i\text{-cycles in } K_n) \cdot p^i = \sum_{i=3}^{\ell} \frac{n(n-1)\cdots(n-i+1)}{2 \cdot i} \leq \sum_{i=3}^{\ell} n^i p^i \leq 2 \cdot (np)^{\ell} = 2n^{\theta\ell} \underset{\text{enough enough}}{<} \frac{n}{\log n}$$

$$\Pr[X \geq n/2] \leq \frac{\mathbb{E}[X]}{n/2} \leq \frac{2n}{\log n \cdot n} = \frac{2}{\log n} \overset{n \to \infty}{\to} 0$$

Markov's inequality: if X is a non-negative random variable with expectation then for any positive real a

$$\Pr[X > a] \le \frac{\mathbb{E}[X]}{a}$$