Scuola di Dottorato di Ricerca in Fisica, XVIII ciclo

Giacomo Bighin

Università degli Studi di Padova

November 25, 2013

Contents

- Ultracold Fermi gases
- High- T_c superconducting cuprates
- Summer schools
- Exams
- Future work

Ultracold Fermi gases (1/4)

- My main research topic (supervisor: Prof. Luca Salasnich)
- Ultracold gases: experimental observation of quantum properties of matter.
 Vortices in a superfluid, BEC.
- Bose-Einstein condensation (1995), degenerate Fermi gas (2003)

Ultracold Fermi gases (2/4)

Why are ultracold Fermi gases interesting? The fermion-fermion attractive interaction can be tuned (using a Feshbach resonance), from weakly to strongly interacting: the **BCS-BEC** crossover.

BCS regime: coherence in momentum space.

4 of 13

BEC regime: coherence in coordinate space.

Ultracold Fermi gases (3/4)

Polarized Fermi gases

Ultracold Fermi gases (4/4)

My work on ultracold Fermi gases:

- Starting point: BCS-Leggett theory.
 The BCS trial wavefunction is valid throughout the crossover up to the strong-coupling regime at T = 0.
- Extension to the unbalanced case.
- Phase diagram: QPT.
- Condensate fraction, preliminary results, as a function of $y=\frac{1}{k_F a_s}$ and $P=\frac{N_\uparrow-N_\downarrow}{N_\uparrow+N_\downarrow}$

6 of 13

Condensate fraction for an unbalanced 3D Fermi gas

G. Bighin, L. Salasnich, G. Mazzarella, L. Dell'Anna Dipartimento di Fisica e Astronomia "Galileo Galilei" and CNISM, Università di Padova, Via Marzolo 8, 35131 Padova, Italy (Dated: November 18, 2013)

High- T_c superconducting cuprates (1/3)

- Very complicated phenomenology; superconducting up to 135 °K; no widely-accepted microscopical theoretical model.
- Discovered in 1985 (Bednorz, Müller), very active research field, over 100k scientific papers in ~ 25 years.
- I am continuing the work I began with my Master's thesis, supervisor: Prof. P.A. Marchetti.

High- T_c superconducting cuprates (2/3)

In the formalism I am working with the electron has a **composite** structure: spinon + holon.

Figure: The attractive potential between the spinons, essential for the SC, is mediated by a gauge field "binding" holon and spinons, and by the holon attraction.

As a consequence, the superconductivity is achieved in **three steps**: holon pairing (T_{ph}) , spinon pairing (T_{ps}) , phase coherence (T_c) :

$$\Delta_c \sim rac{|\Delta^s|}{|\Delta^h|} e^{\mathrm{i}(\phi_s - \phi_h)}$$
 $SC \Longleftrightarrow \langle \Delta_c
angle
eq 0$

8 of 13

High- T_c superconducting cuprates (3/3)

Figure: Superfluid density as a function of the temperature: our model (solid line) vs. experimental data (blue points).

- My focus: superfluid density (ρ_s) . $S_{\text{EFF}} = \frac{\rho_s}{2} \int d\tau d^d r (\nabla \theta)^2 + \cdots$
- Importance: lot of experimental data, $\rho_s \propto \lambda^{-2}$, very different from BCS.
- Summation formula (\sim loffe-Larkin)

$$\rho_{s} = \frac{\rho_{s}^{s} \rho_{s}^{h}}{\rho_{s}^{s} + \rho_{s}^{h}}$$

 Our results are in fairly good agreement with experimental data. The critical exponent is exactly reproduced:

$$ho_{\mathsf{s}} \sim \left| \frac{T - T_{\mathsf{c}}}{T} \right|^{\frac{2}{3}} \quad \text{for } T \longrightarrow T_{\mathsf{c}}$$

Summer school: Quantum Matter — Foundations and Applications

- Granada (Spain), September 15th-19th, 2013
- I presented a poster there:
 "Condensate fraction for an unbalanced Fermi gas".

Exams

- Fisica statistica dei fenomeni emergenti: dalla geometria delle reti fluviali alla biogeografia. (A. Maritan) √ 28/10/2013
- Risposta dei Sistemi Complessi: Teoria ed Esperimenti (F. Baldovin, M. Pierno) √ 12/11/2013
- Standard Model (M. Passera, E. Torassa) due on 16/12/2013
- Processi stocastici e dinamica dei mercati (A. Stella, F. Baldovin) attending now, exam due in late December or January.

Future work and plans

- Ultracold Fermi gases: role of fluctuations at finite temperature in 3D.
- Ultracold Fermi gases: two-dimensional case.
 - Phase (as opposed to modulus) fluctuations should play a key role in the finite-temperature behavior.
 - o Vortices in 2D.
 - o Finite temperature effects.
- The theoretical methods used for cuprates can also be applied in describing the dynamics of ultracold gases. The pseudogap region.
- Collaboration with Prof. Jacques Tempère, Universiteit Antwerpen, Belgium

Thanks for your attention.

