ECS 020 Midterm1 Solution

Question 1 (20 points)

Expand the following notation:

a)
$$\sum_{i=1}^{i=3} ((2y)(i) - 1)$$

b)
$$\frac{(n+y)!}{(n+y-2)!}$$

Solution:

Assuming y = 4

a)
$$((2y)(1)-1)+((2y)(2)-1)+((2y)(3)-1)=((2*4)(1)-1)+((2*4)(2)-1)+((2*4)(3)-1)=((12*4)-3)$$

b)
$$\frac{(n+4)!}{(n+2)!} = \frac{(n+4)(n+3)(n+2)!}{(n+2)!} = (n+4)(n+3)$$

Question 2 (30 points)

Determine if the following statements are propositions if yes, determine the truth value, if no explain why

- a) $(2+7=9) \rightarrow (1+1=3)$
- b) There exist a number y that is less than x, where $(x,y) \in R$
- c) x + 3 = 1 is a proposition
- d) $\sqrt{2}$ is a rational number
- e) x + 3 = 2 is solvable if x is in the domain of real numbers
- f) 2+3=2 is and only if 1+1=3

Solution:

Question	Proposition	Truth Value	Why
a	yes	F	(2+7=9) is true and $(1+1=)$
			\mid 3) is $false$, from the truth table \mid
			for the conditional statement, we
			know that the truth value would
			be $false$
b	yes	Т	there exists a number y in R
			which is less than x in R there-
			fore, this is declarative statement
			that is true.
c	yes	F	" $x + 3 = 1$ is a proposition" is
			a declarative statement that can
			be either $true$ or $false$ but not
			both, which in this case is true
d	yes	F	" $\sqrt{2}$ is a proposition" as it is a
			declarative statement which can
			be either true or false but not
			both. In this case, it is $false$ as
			$\sqrt{2}$ is a irrational number
e	yes	Т	Given " $x+3=2$ is solvable" is q
			and "x is in the domain of real
			number" is p . This is a condi-
			tional statement $p \to q$, and the
			truth value of q is $true$, there-
			fore no matter what the truth
			value of p is, from the truth table
			of the conditional statement, we
			know that the truth value would
			be true
f	yes	Т	2+3=2 is false and 1+1=3
			is $false$, from the truth table for
			the biconditional statement, we
			know that the truth value would
			be true

Question 3 (15 points)

Let a, b, and c be three propositions. Show that this is a tautology, using a truth table. Decide if it is satisfiable- explain your answer.

$$(a \oplus b) \land (b \lor c) \longrightarrow (\neg a \lor c)$$

Solution:

Let $A = (a \oplus b) \land (b \lor c)$

The truth table is as follows:

a	b	c	$a \oplus b$	$b \lor c$	A	$\neg a \lor c$	$A \longrightarrow (\neg a \lor c)$
T	T	T	F	T	F	T	T
T	T	F	F	T	F	F	T
T	F	T	T	T	T	T	T
T	F	F	T	F	F	F	T
F	T	T	T	T	T	T	T
F	T	F	T	T	T	T	T
F	F	T	F	T	F	T	T
\overline{F}	F	F	F	F	F	T	T

Since the last column of the above truth table has all True values, the expression is a tautology. Yes, it is satisfiable because we were able to prove that the expression is a tautology.

Question 4 (15 points)

Restate the propositions in English:

p = "I love cats and dogs"

q = "I love all animals"

Solutions

1. $(\neg p) \to (\neg q)$

If I don't love cats or I don't love dogs, then I don't love all animals.

 $2. (\neg p) \iff q$

I love all animals if and only if I don't love cats or I don't love dogs.

3. $p \wedge (\neg q)$

I love cats and dogs, and I don't love all animals

Question 5 (10 points)

This exercise relates to the inhabitants of the island of knights and knaves created by Smullyan, where knights always tell the truth and knaves always lie. You encounter two people, A and B. Determine, if possible, what A and B are if they address you in the way described. If you cannot determine what these two people are, can you draw any conclusions?

A says "We are both the same"

B says "A is a knight."

Solution

Let K represent knight and N represent knave.

P₁: A says "We are both the same"

P₂: B says "A is a knight."

The truth table is as follows:

A	В	$P_1 \wedge P_2$
K	K	True
K	N	False
N	K	False
N	N	False

From the table, we can say that both A and B are knights.

Question 6 (40 points)

- a) Prove $\exists n \in \mathbb{N}, 4+n=13$
- b) Prove $\neg(\forall n \in N4 + n = 8)$
- c) Prove that if n is a positive integer, then n is even if and only if 5n + 8 is even
- d) Let n be a natural number and let $a_1, a_2, a_3, ..., a_n$ be a set of n real numbers. Prove that at least one of these numbers is more than, or equal to the average of these numbers.
- e) let n be an integer. Show that if $n^2 + 1$ is even, then n is odd, using: a proof by contradiction.

Solutions:

a)

If n=9, then 4+9=13. Since 9 is in the set of \mathbb{N} , then $\exists n\in\mathbb{N},\,4+n=13$

b)

We want to prove that the statement $\neg(\forall n \in \mathbb{N} \ 4 + n = 8)$ is true. In other words, we want to show that there exists at least one natural number n for which $4 + n \neq 8$.

Let n = 2, which is in N. Then, we have:

$$4 + n = 4 + 2 = 6 \tag{1}$$

Since $6 \neq 8$, we have shown that there exists at least one natural number n for which $4 + n \neq 8$. Therefore, the statement $\neg(\forall n \in \mathbb{N} \ 4 + n = 8)$ is true.

c)

We have to prove two implications.

- If n is even, then 5n + 8 is even
- If 5n + 8 is even, then n is even

First, we know that n is even. Therefore, we can express n as n = 2a, where a is any positive integer. We need to show that 5n+8 is even. If n = 2a, then 5n+8 = 5(2a)+8. After further simplification, 5n+8 = 10a+8. We can say that 5n+8 = 2(5a+4). Since 2(5a+4) is an even integer, 5n+8 is even.

Second, we will prove using the contrapositive.

Contrapositive- "If n is odd, then 5n + 8 is odd."

We know that n is odd. Therefore, we can express n as n = 2b + 1, where b is any positive integer. We need to show that 5n + 8 is odd. If n = 2b + 1, then 5n + 8 = 5(2b + 1) + 8. After further simplification, 5n + 8 = 10b + 5 + 8. We can say that 5n + 8 = 10b + 12 + 1. Next, 5n + 8 = 2(5b + 6) + 1 Since 2(5b + 6) + 1 is an odd integer, 5n + 8 is odd.

d)

We use a proof by contradiction. Suppose none of the real numbers a_1, a_2, \ldots, a_n is greater than or equal to the average of these numbers, denoted by a. By definition, we have:

$$a = \frac{a_1 + a_2 + \dots + a_n}{n} \tag{2}$$

Our hypothesis is that:

$$a_1 < a$$

$$a_2 < a$$

$$\dots$$

$$a_n < a$$

We sum up all these equations and get the following:

$$a_1 + a_2 + \dots + a_n < n \cdot a \tag{3}$$

Replacing a in equation (3) by its value given in equation (2), we get:

$$a_1 + a_2 + \dots + a_n < a_1 + a_2 + \dots + a_n$$
 (4)

This is not possible: a number cannot be strictly smaller than itself: we have reached a contradiction. Therefore, our hypothesis was wrong, and the original statement was correct.

e)

Suppose $P(n) \to Q(n)$ is false, i.e., that $\neg(P(n) \to Q(n))$ is true, i.e., that $P(n) \land \neg Q(n)$ is true. This is only the case if P(n) is true and $\neg Q(n)$ is true.

If $\neg Q(n)$ is true, then n is even. By definition of even numbers, there exists an integer k such that n = 2k. Then,

$$n^2 + 1 = (2k)^2 + 1 = 4k^2 + 1 (5)$$

 $4k^2 + 1 = 2(2k^2) + 1$ can be written in the form of 2k' + 1, where k' is an integer; therefore, by the definition of odd, $n^2 + 1$ is odd, i.e., $\neg P(n)$ is true. However, we have supposed that P(n) is true: we have reached a contradiction. Hence, the original statement is true.