

Introduction to Deep Learning

Chapter 4: CNN: Conv2D

Bernd Bischl

Department of Statistics – LMU Munich WS 2021/2022

- Filters are widely applied in Computer Vision (CV) since the 70's.
- One prominent example: Sobel-Filter.
- Detects edges in images.

Figure: Sobel-filtered image.

- Edges occur where the intensity over neighboring pixels changes fast.
- Thus, approximate the gradient of the intensity of each pixel.
- Sobel showed that the gradient image G_x of original image A in x-dimension can be approximated by:

$$G_{X} = \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix} * A = S_{X} * A$$

where * indicates a mathematical operation known as a **convolution**, not a traditional matrix multiplication.

 The filter matrix S_x consists of the product of an averaging and a differentiation kernel:

$$\underbrace{\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^T}_{averaging} \underbrace{\begin{bmatrix} -1 & 0 & +1 \end{bmatrix}}_{differentiation}$$

 Similarly, the gradient image G_y in y-dimension can be approximated by:

$$G_{y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ +1 & +2 & +1 \end{bmatrix} * A = S_{y} * A$$

 The combination of both gradient images yields a dimension-independent gradient information G:

$$G=\sqrt{G_x^2+G_y^2}$$

 These matrix operations were used to create the filtered picture of Albert Einstein.

HORIZONTAL VS VERTICAL EDGES

Figure: Sobel filtered images. Outputs are normalized in each case.

- Let's do this on a dummy image.
- How to represent a digital image?

0	0	0	0	255	255	0	0	0	0
0	0	0	255	255	255	255	0	0	0
0	0	0	0	255	255	0	0	0	0
0	0	0	255	255	255	255	0	0	255
0	0	255	255	255	255	255	255	0	0
0	255	0	255	255	255	255	0	255	0
0	0	0	255	255	255	255	0	0	0
0	0	0	255	255	255	255	0	0	0
255	0	0	255	0	0	255	0	0	0
0	0	255	255	0	0	255	255	0	0

• Basically as an array of integers.

• S_x enables us to to detect vertical edges!

Sobel-Operator

$$S_{\chi} = \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix}$$

0	0	0	0	255	255	0	0	0	0
0	0	0	255	255	255	255	0	0	0
0	0	0	0	255	255	0	0	0	0
255	0	0	255	255	255	255	0	0	0
0	0	255	255	255	255	255	255	0	0
0	255	0	255	255	255	255	0	255	0
0	0	0	255	255	255	255	0	0	0
0	0	0	255	255	255	255	0	0	0
0	0	0	255	0	0	255	0	0	255
a	a	255	255	a	a	255	255	а	a

$$(G_x)_{(i,j)} = (I \star S_x)_{(i,j)} = -1 \cdot 0 + 0 \cdot 255 + 1 \cdot 255$$

 $-2 \cdot 0 + 0 \cdot 0 + 2 \cdot 255$
 $-1 \cdot 0 + 0 \cdot 255 + 1 \cdot 255$

0	510	1020	510	-510	-1020	-510	0
-255	510	1020	510	-510	-1020	-510	0
-255	765	765	255	-255	-765	-765	-255
255	765	510	0	0	-510	-765	-510
255	510	765	0	0	-765	-510	-255
0	765	1020	0	0	-1020	-765	0
0	1020	765	-255	255	-765	-1020	255
255	1020	0	-765	765	0	-1020	255

 Applying the Sobel-Operator to every location in the input yields us the **feature map**.

128	64	0	64	191	255	191	128
128	64	0	64	191	255	191	96
96	32	32	96	159	223	223	96
64	32	64	128	128	191	223	159
96	64	32	128	128	223	191	159
128	32	0	128	128	255	223	128
159	0	32	159	96	223	255	128
159	0	128	223	32	128	255	159

- Normalized feature map reveals vertical edges.
- Note the dimensional reduction compared to the dummy image.

WHY DO WE NEED TO KNOW ALL OF THAT?

- What we just did was extracting pre-defined features from our input (i.e. edges).
- A convolutional neural network does almost exactly the same: "extracting features from the input".
 - \Rightarrow The main difference is that we usually do not tell the CNN what to look for (pre-define them), **the CNN decides itself**.
- In a nutshell:
 - We initialize a lot of random filters (like the Sobel but just random entries) and apply them to our input.
 - Then, a classifier which is generally a feed forward neural net, uses them as input data.
 - Filter entries will be adjusted by common gradient descent methods.

WHY DO WE NEED TO KNOW ALL OF THAT?

WHY DO WE NEED TO KNOW ALL OF THAT?

WORKING WITH IMAGES

- In order to understand the functionality of CNNs, we have to familiarize ourselves with some properties of images.
- Grey scale images:
 - Matrix with dimensions height × width × 1.
 - Pixel entries differ from 0 (black) to 255 (white).
- Color images:
 - Tensor with dimensions height × width × 3.
 - The depth 3 denotes the RGB values (red green blue).
- Filters:
 - A filter's depth is **always** equal to the input's depth!
 - In practice, filters are usually square.
 - Thus we only need one integer to define its size.
 - For example, a filter of size 2 applied on a color image actually has the dimensions 2 × 2 × 3.

- Suppose we have an input with entries *a*, *b*, . . . , *i* (think of pixel values).
- The filter we would like to apply has weights w_{11} , w_{12} , w_{21} and w_{22} .

Filter: 2x2x1

- Suppose we have an input with entries a, b, \ldots, i (think of pixel values).
- The filter we would like to apply has weights w_{11} , w_{12} , w_{21} and w_{22} .

- Suppose we have an input with entries *a*, *b*, . . . , *i* (think of pixel values).
- The filter we would like to apply has weights w_{11} , w_{12} , w_{21} and w_{22} .

To obtain s_{11} we simply compute the dot product:

$$s_{11} = a \cdot w_{11} + b \cdot w_{12} + d \cdot w_{21} + e \cdot w_{22}$$

- Suppose we have an input with entries a, b, ..., i (think of pixel values).
- The filter we would like to apply has weights w_{11} , w_{12} , w_{21} and w_{22} .

Same for s_{12} :

$$s_{12} = b \cdot w_{11} + c \cdot w_{12} + e \cdot w_{21} + f \cdot w_{22}$$

- Suppose we have an input with entries *a*, *b*, . . . , *i* (think of pixel values).
- The filter we would like to apply has weights w_{11} , w_{12} , w_{21} and w_{22} .

As well as for s₂₁:

$$s_{21} = d \cdot w_{11} + e \cdot w_{12} + g \cdot w_{21} + h \cdot w_{22}$$

- Suppose we have an input with entries *a*, *b*, . . . , *i* (think of pixel values).
- The filter we would like to apply has weights w_{11} , w_{12} , w_{21} and w_{22} .

And finally for s22:

$$s_{22} = e \cdot w_{11} + f \cdot w_{12} + h \cdot w_{21} + i \cdot w_{22}$$

- Suppose we have an input with entries *a*, *b*, . . . , *i* (think of pixel values).
- The filter we would like to apply has weights w_{11} , w_{12} , w_{21} and w_{22} .

$$s_{11} = a \cdot w_{11} + b \cdot w_{12} + d \cdot w_{21} + e \cdot w_{22}$$

$$s_{12} = b \cdot w_{11} + c \cdot w_{12} + e \cdot w_{21} + f \cdot w_{22}$$

$$s_{21} = d \cdot w_{11} + e \cdot w_{12} + g \cdot w_{21} + h \cdot w_{22}$$

$$s_{22} = e \cdot w_{11} + f \cdot w_{12} + h \cdot w_{21} + i \cdot w_{22}$$

- Suppose we have an input with entries a, b, ..., i (think of pixel values).
- The filter we would like to apply has weights w_{11} , w_{12} , w_{21} and w_{22} .

h i

More generally, let I be the matrix representing the input and W be the filter/kernel. Then the entries of the output matrix are defined by $s_{ij} = \sum_{m,n} l_{i+m-1,j+n-1} w_{mn}$ where m, n denote the image size and kernel size respectively.