Lab. Programmazione (CdL Informatica) & Informatica (CdL Matematica) a.a. 2022-23

Monica Nesi

Università degli Studi dell'Aquila

5 Ottobre 2022

Algoritmi e diagrammi di flusso: contare elementi aventi una data proprietà

Esercizio 5. Data una sequenza finita (non vuota) di numeri interi (terminata da uno 0), *contare* quanti elementi della sequenza hanno o soddisfano una determinata proprietà *P*.

Esempi: calcolare quanti sono i numeri negativi, oppure quanti sono i numeri pari, oppure i numeri divisibili per un dato numero k, etc.

Input: $x_1 x_2 \dots x_n 0$ con $x_i \in \mathbb{Z}$ per ogni $i = 1, \dots, n$ Output: numero degli elementi x_i per i quali vale $P(x_i)$

Anche per questo problema è necessario scorrere tutta la sequenza.

Inoltre occorre *contare* quegli elementi che soddisfano la proprietà *P* data.

Contatori ed Accumulatori

Serve una locazione di memoria di tipo intero, detta contatore.

Un contatore è un particolare accumulatore (i.e. una locazione in cui si memorizzano i risultati parziali della computazione).

Un contatore viene inizializzato a 0.

Il suo valore è aggiornato incrementandolo di un'unità solo quando l'elemento in esame soddisfa la data proprietà P.

Il risultato sarà il valore finale del contatore.

Stesse operazioni elementari, oltre alle operazioni aritmetiche su $\mathbb Z$ (in particolare, quella di incremento di un'unità).

N.B. Il diagramma di flusso ha una struttura simile a quello del problema del massimo.

Occorrenze di un elemento in una sequenza

Esercizio 6. Dati un intero x ed una sequenza finita (non vuota) di numeri interi (terminata da uno 0), calcolare il numero delle occorrenze di x, ovvero quante volte x compare nella sequenza.

Input: $x \in \mathbb{Z}$, $x_1 x_2 \dots x_n 0$ con $x_i \in \mathbb{Z}$ per ogni $i = 1, \dots, n$ Output: numero di occorrenze di x nella sequenza

Caso particolare del problema generale precedente, dove P(n) è vera se e solo se n = x.

Il diagramma di flusso è un caso particolare del diagramma precedente, in cui P(n) è istanziato con n=x.

Esempio: dati x=4 e la sequenza 3 4 -1 5 4 4 -2 0, il risultato calcolato eseguendo le operazioni nel diagramma di flusso è 3.

Sommatoria degli elementi in una sequenza

Esercizio 7. Data una sequenza finita (non vuota) di numeri interi (terminata da uno 0), calcolare la somma dei numeri nella sequenza.

Input:
$$x_1 x_2 \dots x_n 0 \text{ con } x_i \in \mathbb{Z} \text{ per ogni } i = 1, \dots, n$$

Output: $x_1 + x_2 + \ldots + x_n$

Anche per questo problema è necessario scorrere tutta la sequenza.

Ed occorre accumulare il risultato in una locazione di memoria, in cui all'*i*-esimo passo è memorizzato il valore della somma parziale $x_1 + x_2 + \ldots + x_i$ relativa alla porzione di sequenza già visitata.

L'accumulatore viene inizializzato a 0 (identità per la somma).

Per essere sommati gli elementi non devono soddisfare alcuna proprietà.

Esempio: data la sequenza 3 -1 4 7 5 0, il risultato è 18.

Produttoria di interi

Variante del problema precedente: calcolare il prodotto $x_1 * x_2 * ... * x_n$ dei numeri nella sequenza.

Basta modificare alcune istruzioni nel diagramma: l'accumulatore viene inizializzato ad 1 (identità per il prodotto) e viene modificato assegnandogli il valore dell'espressione s*n.

Problemi con sequenze di stringhe

Esercizio: data una sequenza finita (non vuota) di stringhe $s_1 \ s_2 \ \dots \ s_n \ \epsilon$, calcolare la stringa risultante dalla concatenazione delle stringhe nella sequenza.

L'algoritmo è lo stesso della sommatoria: basta inizializzare l'accumulatore s (che ora deve essere una stringa) con la stringa vuota ϵ (identità per la concatenazione) e poi ad ogni passo all'accumulatore viene assegnato il risultato della concatenazione s n tra il valore di s e la stringa n in considerazione.

Esercizio: dati una sequenza finita (non vuota) di stringhe $s_1 \ s_2 \ \dots \ s_n \ \epsilon$ ed un intero k > 0, contare le stringhe s_i $(i = 1, \dots, n)$ la cui lunghezza è maggiore di k.

Algoritmi e diagrammi di flusso: problemi di verifica

Esercizio 8. Dati un intero x ed una sequenza finita (non vuota) di numeri interi (terminata da uno 0), dare come risultato true se x occorre nella sequenza, altrimenti (ovvero se x non compare nella sequenza) restituire false.

Input: $x \in \mathbb{Z}$, $x_1 x_2 \dots x_n 0$ con $x_i \in \mathbb{Z}$ per ogni $i = 1, \dots, n$ Output: true se x compare nella sequenza, false altrimenti

Questo problema non richiede di contare quante volte x occorre nella sequenza, ma solo di verificare se x vi compare.

Ciò significa che, quando si scorre la sequenza, non appena si incontra un numero uguale ad x, si restituisce subito il valore booleano true senza dover scorrere tutta la sequenza.

Verificare l'occorrenza di un elemento

Si ha il risultato *true* con la sequenza visitata fino in fondo solo quando l'elemento cercato compare proprio come *ultimo* elemento della sequenza.

Invece, per restituire il valore false (ovvero affermare che x non compare nella sequenza), è necessario scorrere tutta la sequenza fino in fondo senza aver trovato x.

Alle usuali operazioni elementari si aggiungono le operazioni di confronto tra valori booleani e le operazioni logiche basilari di negazione, congiunzione e disgiunzione tra espressioni booleane.

Verificare l'occorrenza di un elemento (cont.)

Utilizzo di una locazione di memoria contenente un valore booleano, riferita simbolicamente con trovato.

Se il valore di trovato è true, significa che abbiamo trovato un elemento nella sequenza che è uguale ad x.

Se il valore di trovato è false, significa che x non è stato ancora trovato.

Il valore iniziale di trovato è pertanto *false*, in quanto all'inizio non si è ancora trovato niente.

Verificare l'occorrenza di un elemento (cont.)

La sequenza viene scorsa fintantoché valgono *entrambe* le condizioni seguenti:

non si è arrivati alla fine della sequenza $(n \neq 0)$ e (inteso come congiunzione logica, AND) non è stato ancora trovato x (trovato vale false).

La congiunzione logica p AND q è vera se e solo se le due espressioni booleane p e q sono entrambe vere, mentre è falsa se almeno una tra p e q è falsa.

Quindi nell'algoritmo si hanno due condizioni di uscita dal ciclo:

- i) si è arrivati alla fine della sequenza (n eq 0 è falso) oppure
- ii) è stata trovata la prima occorrenza di x e trovato vale $\it true.$

Eseguire l'algoritmo con input x=4 e sequenza 3 11 8 4 -7 5 0, e successivamente con x=-2 e stessa sequenza.

Verificare l'occorrenza di un elemento con proprietà

Esercizio 9. Data una sequenza finita (non vuota) di numeri interi (terminata da uno 0), restituire *true* se *esiste almeno un* numero negativo nella sequenza, altrimenti restituire *false*.

Input: $x_1 x_2 \dots x_n 0$ con $x_i \in \mathbb{Z}$ per ogni $i = 1, \dots, n$ Output: true se $\exists x_i$ negativo, false altrimenti

Problema simile al precedente, cambia solo la proprietà da verificare: al posto di n=x abbiamo n<0.

Testare l'algoritmo con le seguenti sequenze in input: 3 4 -7 9 -1 3 0 e poi 5 7 1 4 0.

In generale, tale algoritmo risolve tutti i problemi in cui occorre verificare se in una sequenza di valori ne esiste almeno uno che soddisfa una determinata proprietà P.

Verificare tutti gli elementi con proprietà

Esercizio 10. Data una sequenza finita (non vuota) di numeri interi (terminata da uno 0), restituire *true* se *tutti* gli elementi della sequenza soddisfano una data proprietà P, altrimenti restituire *false*.

Input: $x_1 x_2 \dots x_n 0$ con $x_i \in \mathbb{Z}$ per ogni $i = 1, \dots, n$ Output: true se $\forall x_i$ si ha $P(x_i)$ vera, false altrimenti

Problema "speculare" rispetto ai problemi precedenti (in cui si verificava che almeno un elemento avesse una certa proprietà).

Qui occorre verificare che *tutti gli elementi* della sequenza abbiano una data proprietà *P*.

Per restituire *true* è quindi necessario scorrere tutta la sequenza fino in fondo e verificare che valga $P(x_i)$ per ogni elemento x_i .

Verificare tutti gli elementi con proprietà (cont.)

Invece, per restituire false è sufficiente trovare il primo elemento che non soddisfa P senza dover scorrere tutta la sequenza.

Caso particolare: tutti gli elementi tranne l'ultimo soddisfano P, si restituisce false e la sequenza è stata visitata fino in fondo.

Un possibile algoritmo è simile a quelli precedenti con le stesse operazioni elementari.

La locazione booleana trovato è rimpiazzata da una locazione booleana ok, tale che:

se ok vale true, significa che tutti gli elementi già visitati soddisfano la proprietà P;

se ok vale *false*, significa che esiste almeno un elemento per il quale *P* risulta falsa (proprietà non verificata da tutti gli elementi).

La locazione ok è inizializzata a true.

Verificare almeno k elementi con proprietà

Esercizio 11. Data una sequenza finita (non vuota) di numeri interi (terminata da uno 0) ed un intero k > 0, restituire true se esistono almeno k elementi della sequenza che soddisfano una data proprietà P, altrimenti restituire false.

Input: $x_1 x_2 \dots x_n 0$, k > 0 con $x_i \in \mathbb{Z}$ per ogni $i = 1, \dots, n$ Output: true se per almeno k elementi vale P, false altrimenti

Problema "ibrido" o "misto" delle due tipologie considerate prima.

Occorre contare gli elementi che soddisfano una proprietà P, ma non necessariamente occorre scorrere tutta la sequenza.

N.B. Non appena sono contati k elementi per cui vale P, si smette di scandire la sequenza e si restituisce true.

Si restituisce false se si è raggiunta la fine della sequenza senza contare k elementi che soddisfano P.

Verificare almeno k elementi con proprietà: sol.1

Primo algoritmo (vedere diagramma di flusso Es.11): utilizzo di un contatore c per contare e di una locazione di tipo booleano trovato per segnalare che sono stati trovati k elementi che soddisfano P.

Nessuna nuova operazione elementare necessaria.

N.B. Il blocco di azione in cui viene assegnato ad n il numero successivo della sequenza può essere eliminato dai *due* punti in cui si trova e "messo a comune" alla fine del blocco condizionale esterno prima di tornare in ciclo.

Ciò significa che ad n si assegna sempre il numero successivo, anche nel caso in cui trovato sia stato messo a *true*.

Testare l'algoritmo con input: sequenza 3 -4 5 7 -11 5 2 0 e k=3 considerando la proprietà $P(x)=_{def}x>0$.

Verificare almeno k elementi con proprietà: sol.2

L'algoritmo può essere modificato per fare a meno della locazione booleana trovato (vedere diagramma di flusso Es.11 seconda versione)

Il concetto rappresentato da trovato viene rimpiazzato dal confronto c < k tra il valore del contatore e l'intero k dato in input.

Dire che trovato vale false significa che c ha un valore minore di k.

Se trovato è diventato true, significa che c ha raggiunto il valore k.

Verificare almeno k elementi con proprietà: sol.2 (cont.)

All'uscita dal blocco di iterazione è necessario distinguere per quale condizione l'iterazione è terminata.

Le condizioni di uscita sono due:

- i) vale $c \ge k$, quindi abbiamo trovato almeno k elementi che soddisfano P, per cui si restituisce true, oppure
- ii) $c \ge k$ risulta falso, ne segue che $c \le k$ è vero e quindi, affinché la condizione del ciclo sia falsa, si ha n=0.

Il caso ii) implica che è stata esaminata tutta la sequenza ed il valore del contatore è rimasto minore di k, quindi si restituisce false.

Verificare almeno k elementi con proprietà: sol.3

N.B. Il test finale su $c \ge k$ può essere sostituito da un blocco di output che restituisce il valore di $c \ge k$ (vedere diagramma di flusso Es.11 terza versione)

Osservazione: utilizzare il test n=0 all'uscita del blocco di iterazione, al posto della condizione $c \ge k$, può non essere corretto (diagramma di flusso Es.11 versione errata).

Ciò accade se i k elementi che soddisfano P sono ottenuti proprio sull'ultimo elemento della sequenza, poiché in questo caso le due condizioni in AND nel blocco iterativo diventano entrambe false alla stessa iterazione.

Esempio: sia data la proprietà $P(x) =_{def} x < 0$ e siano dati in input la sequenza -3 5 -1 7 -11 0 e k=3, verificare il risultato restituito.