Entwurf und Implementierung digitaler Schaltungen mit VHDL

Lösungen zur 1. Übung

1. Aufgabe:

1.1

		T
j (dez.) 0-9: Linie	x ₄ ,x ₃ ,x ₂ ,x ₁	у
0	0000	1
1	0001	0
2	0010	0
3	0011	1
4	0100	1
5	0101	1
6	0110	0
7	0111	0
8	1000	0
9	1001	1
10	1010	*
11	1011	*
12	1100	*
13	1101	*
14	1110	*
15	1111	*

Rest: *

$$\begin{split} \tau_{\text{max}}(\underline{E} \cup \underline{D})\text{: alle eingezeichneten Schleifen (gestrichelte und durchgezoge Linien)} \\ \tau_{\text{min}}(\underline{E} \cup \underline{D}') &= \{\ 0-00, -011, 1--1, -10-\ \} \\ &\qquad \qquad \text{(nur mit durchgezogener Linie gezeichnete Schleifen; ausschließlich Kernkuben; eindeutige Lösung)} \end{split}$$

2. Aufgabe:

2.1) Wie y_u und y_w am Ausgang von Zelle 1, können u_i und w_i am Ausgang der i-ten Zelle Auskunft darüber geben, ob $a_n...a_i$ grösser als, kleiner als oder gleich $b_n...b_i$ ist.

2.2

u _{i+1}	w _{i+1}	a _i	b _i	u _i	w _i
0	0	_	_	0	0
0	1	_	_	0	1
1	0	0	0	1	0
1	0	0	1	0	0
1	0	1	0	0	1
1	0	1	1	1	0
Rest				*	*

Konjunktive Minimalformen => maximale Nullkuben suchen!

$$\begin{split} u_i \colon \tau_{min}(\underline{N} \cup \underline{D}') &= \{\ 0 - - -, - - 01, - - 10\ \} \ \ \text{(jeder ein Kernkubus)} \\ &= > \text{einzige KMF: } u_i = \ u_{i+1} \bullet (a_i \ V \ \overline{b_i}) \bullet (\overline{a_i} \ V \ b_i) \\ w_i \colon \tau_{min1}(\underline{N} \cup \underline{D}'') &= \{\ \textbf{00} - -, - 0 - 1, - 00 - \ \}, \ \tau_{min2}(\underline{N} \cup \underline{D}''') = \{\ \textbf{00} - -, 1 - - 1, 1 - 0 - \ \} \\ \tau_{min3}(\underline{N} \cup \underline{D}'''') &= \{\ \textbf{00} - -, - 0 - 1, 1 - 0 - \ \}, \ \tau_{min4}(\underline{N} \cup \underline{D}''''') = \{\ \textbf{00} - -, 1 - - 1, - 00 - \ \} \\ &= > \ \text{KMF}_1 \colon w_i = (\textbf{u}_{i+1} \ \textbf{V} \ \textbf{w}_{i+1}) \bullet (w_{i+1} \ V \ \overline{b_i}) \bullet (w_{i+1} \ V \ a_i), \ \ \text{KMF}_3 = \dots \ , \ \ \text{KMF}_4 = \dots \end{split}$$

Ein ODER-UND-Netz lässt sich kostenneutral in ein strukturgleiches, äquivalentes NOR-NOR-Netz wandeln (Regel von de Morgan oder "Punkteschieben"). Bei Wahl von KMF₁ für w_i ergibt sich folgendes Netz:

2.3

- Zelle 1 lässt sich nicht vereinfachen; sie muss ja ggf. allein die Entscheidung treffen.
- Zelle n dagegen wäre mit $u_{n+1} = 1$ und $w_{n+1} = 0$ anzusteuern. Daraus ergibt sich für diese Zelle folgende Vereinfachung:

$$\begin{aligned} &u_n = 1 & \bullet (a_n \lor \overline{b}_n) \bullet (\overline{a}_n \lor b_n) \\ &w_n = (1 \lor 0) \bullet (0 \lor \overline{b}_n) \bullet (0 \lor a_n) = \overline{b}_n \bullet a_n = (\overline{b_n \lor \overline{a}_n}) \end{aligned} \quad \text{(aus KMF}_1)$$

3. Aufgabe:

3.1

x_i: i-te Komponente des Eingabevektors X

 I_i : Angabe, ob mindestens eine Komponente x_j rechts von x_i gleich 1 ist ($I_i = 1$) oder nicht ($I_i = 0$)

 I_{i+1} : Wie I_i , aber an die linke Zelle ($I_{i+1} = 1$: mindestens eine der Komponenten x_i ... x_2x_1 ist gleich 1; $I_{i+1} = 0$: keine der Komponenten x_i ... x_2x_1 ist gleich 1)

y_i: i-te Komponente von Y (Zweierkomplement von X)

3.2

l _i	x _i	I _{i+1}	Уi	Aus der Funktionstabelle ist unmittelbar abzulesen:
0	0	0	0	$y_i = I_i \neq x_i$ $I_{i+1} = I_i \lor x_i$ Für n-te Zelle: I_{n+1} entfällt (nicht erforderlich)
0	1	1	1	$I_{i+1} = I_i \vee x_i$
1	0	1	1	Für n-te Zelle: I _{n+1} entfällt (nicht erforderlich)
1	1	1	0	Für 1. Zelle: $I_1 = 0 \Rightarrow y_1 = 0 \neq x_1 = x_1$; $I_2 = 0 \lor x_1 = x_1$

3.3

4. Aufgabe:

x ₂ ,x ₁ ,x ₀	y ₂ ,y ₁ ,y ₀
0 0 0	0 * *
0 0 1	100
010	101
0 1 1	101
100	110
101	110
110	110
111	110

Kompakte Tabelle:

x_2, x_1, x_0	y ₂ ,y ₁ ,y ₀
0 0 0	0 * *
0 0 1	100
01-	101
1	1 1 0