Data Mining - Lab - 2

Numpy & Perform Data Exploration with Pandas

Numpy

- 1) NumPy (Numerical Python) is a powerful open-source library in Python used for numerical and scientific computing.
- 2) It provides support for large, multi-dimensional arrays and matrices, along with a collection of mathematical functions to operate on them efficiently.
- 3) NumPy is highly optimized and written in C, making it much faster than using regular Python lists for numerical operations.
- 4) It serves as the foundation for many other Python libraries in data science and machine learning, like pandas, TensorFlow, and scikit-learn.
- 5) With features like broadcasting, vectorization, and integration with C/C++ code, NumPy allows for cleaner and faster code in numerical computations.

Step 1. Import the Numpy library

```
In [2]: import numpy as np
```

Step 2. Create a 1D array of numbers

Step 3. Reshape 1D to 2D Array

Step 4. Create a Linspace array

Step 5. Create a Random Numbered Array

Step 6. Create a Random Integer Array

Step 7. Create a 1D Array and get Max, Min, ArgMax, ArgMin

```
In [80]: arr = np.random.randint(1,100,size=10)
arr
Out[80]: array([89, 26, 63, 69, 1, 28, 7, 87, 86, 90])
```

```
In [81]: arr.max()
Out[81]: 90
In [82]: arr.min()
Out[82]: 1
In [83]: arr.argmax()
Out[83]: 9
In [84]: arr.argmin()
```

Step 8. Indexing in 1D Array

```
In [85]: arr[8]
Out[85]: 86
In [86]: arr[1:5]
Out[86]: array([26, 63, 69, 1])
```

Step 9. Indexing in 2D Array

Step 10. Conditional Selection

```
In [91]: arr[arr>4]
Out[91]: array([89, 26, 63, 69, 28, 7, 87, 86, 90])
In [92]: arr2d[arr2d>2]
Out[92]: array([89, 26, 63, 69, 28, 7, 87, 86, 90])
```

♦ You did it! 10 exercises down — you're on fire! ♦

Pandas

Step 1. Import the necessary libraries

```
In [1]: import pandas as pd
```

Step 2. Import the dataset from this <u>address</u> (https://raw.githubusercontent.com/justmarkham/DAT8/master/dataset/

Step 3. Assign it to a variable called users and use the 'user_id' as index

```
In [2]: users = pd.read_csv('https://raw.githubusercontent.com/justmarkham/
```

Step 4. See the first 25 entries

In	[3]:	users.head(25)						
		13	47	М	educator	29206		
		14	45	М	scientist	55106		
		15	49	F	educator	97301		
		16	21	М	entertainment	10309		
		17	30	М	programmer	06355		
		18	35	F	other	37212		
		19	40	М	librarian	02138		
		20	42	F	homemaker	95660		
		21	26	М	writer	30068		
		22	25	М	writer	40206		
		23	30	F	artist	48197		
		24	21	F	artist	94533		
		25	39	M	enaineer	55107		

Step 5. See the last 10 entries

In [4]:	users.	tail	(10)			
Out[4]:		age	gender	occupation	zip_code	
	user_id					
	934	61	М	engineer	22902	
	935	42	М	doctor	66221	
	936	24	М	other	32789	
	937	48	М	educator	98072	
	938	38	F	technician	55038	
	939	26	F	student	33319	
	940	32	М	administrator	02215	
	941	20	М	student	97229	
	942	48	F	librarian	78209	
	943	22	М	student	77841	

Step 6. What is the number of observations in the dataset?

```
In [5]: users.shape[0]
```

Out[5]: 943

Step 7. What is the number of columns in the dataset?

```
In [6]: users.shape[1]
Out[6]: 4
```

Step 8. Print the name of all the columns.

```
In [7]: users.columns
Out[7]: Index(['age', 'gender', 'occupation', 'zip_code'], dtype='object')
```

Step 9. How is the dataset indexed?

Step 10. What is the data type of each column?

Step 11. Print only the occupation column

```
In [10]: users['occupation']
Out[10]: user_id
         1
                    technician
         2
                         other
         3
                        writer
         4
                    technician
                         other
         939
                       student
         940
                 administrator
         941
                       student
         942
                     librarian
         943
                       student
         Name: occupation, Length: 943, dtype: object
```

Step 12. How many different occupations are in this dataset?

```
In [11]: users.occupation.nunique()
Out[11]: 21
```

Step 13. What is the most frequent occupation?

Step 14. Summarize the DataFrame.

In [13]: users.describe() Out[13]: age count 943.000000 mean 34.051962 12.192740 std 7.000000 min 25% 25.000000 50% 31.000000 75% 43.000000 73.000000 max

Step 15. Summarize all the columns

In [14]: users.describe(include='all')

Out[14]:

	age	gender	occupation	zip_code
count	943.000000	943	943	943
unique	NaN	2	21	795
top	NaN	М	student	55414
freq	NaN	670	196	9
mean	34.051962	NaN	NaN	NaN
std	12.192740	NaN	NaN	NaN
min	7.000000	NaN	NaN	NaN
25%	25.000000	NaN	NaN	NaN
50%	31.000000	NaN	NaN	NaN
75%	43.000000	NaN	NaN	NaN
max	73.000000	NaN	NaN	NaN

Step 16. Summarize only the occupation column

Step 17. What is the mean age of users?

```
In [16]: users.age.mean()
Out[16]: 34.05196182396607
```

Step 18. What is the age with least occurrence?

You're not just learning, you're mastering it. Keep aiming higher!

```
In [ ]:
```