AI4DB:AI Meets Query Optimization

Luming Sun, Cuiping Li, Tao Ji, Hong Chen @ DWBI School of Information, Renmin University

2021/11/10

AI4DB

Database system & Data Management Powered by Artificial Intelligence

AI + DB

- AI:
 - Advance in CV, NLP, ...
 - Statistic, learning, inference, planning
- DB:
 - Static
 - Data volume, sophisticated workload, hardware
- AI4DB
 - Goal: Reduce labor costs & Improve system performance
 - Query workload, data distribution, hardware features, history performance

Artificial Intelligence for System

Al4DB Paper List https://github.com/LumingSun/ML4DB-paper-list

AI4DB

Andy Pavlo, et all. CIDR'17

Guoliang Li, et all. SIGMOD'19

Tim Kraska, et all. SIGMOD'18

Ryan Marcus, et all. VLDB'21

AI4DB

MOSE: A Monotonic Selectivity Estimator Using Learned CDF

What is Cardinality/Selectivity

```
Q: SELECT *
   FROM Student WHERE age > 15
   AND gender = 'Male';
```

Card(Q) = 4
Sel(Q) = Card(Q) / #row
=
$$4/9 = 0.444$$

age	gender	GPA
21	Female	3.42
20	Male	2.58
18	Female	2.79
20	Female	3.98
24	Female	3.71
20	Male	3.50
21	Male	4.0
23	Female	3.66
22	Male	3.12

Why Cardinality/Selectivity Estimation

2014

IS QUERY OPTIMIZATION A "SOLVED" PROBLEM?

Databases

Guy Lohman, IBM DB2 (40 years' experience)

"The root of all evil, the Achilles Heel of query optimization, is the estimation of the size of intermediate results, known as cardinalities."

How Good Are Query Optimizers, Really?

"We have also shown that relational database systems produce large estimation errors that quickly grow as the number of joins increases, and that these errors are usually the reason for bad plans."

2018

Multiple research groups consistently working on learned selectivity estimators

2021

Traditional Selectivity Estimation Methods

Histograms

- Sampling
- Most Common Values (MVC)

How Learned Selectivity Estimators Work

- Methodology 1: Query-driven
 - Key Idea: Model as a Regression problem

- Methodology 2: Data-driven
 - Key Idea: Model as a Joint Distribution Estimation problem

A_1	A ₂	 A _n	
			P(A ₁ , A ₁ , , A _n)

Methodology 1: Query-Driven

Methodology 1: Query-Driven

- MSCN [Kipf, A et all. CIDR 19]
 Neural Network + Sampling
- LW-XGB [Dutt, A et all. VLDB 19]

 XGBoost+ Histogram
- LW-NN [Dutt, A et all. VLDB 19]

 Neural Network + Histogram
- QuickSel [Yongjoo, P et all. SIGMOD 20]
 Mixture Model

Shortcomings:

- Require large amount of training data
- Violate basic rule of selectivity estimation
 - Monotonicity: $sel(1 < x < 2) \le sel(1 < x < 3)$
 - Validity: sel(1 < x < 0) = 0
 - Consistency: $sel(1 < x \le 2) + sel(2 < x < 3)$ = sel(1 < x < 3)

How Learned Selectivity Estimators Work

- Methodology 1: Query-driven
 - Key Idea: Model as a Regression problem

- Methodology 2: Data-driven
 - Key Idea: Model as a Joint Distribution Estimation problem

A_1	A ₂	 A _n	
			P(A ₁ , A ₁ , , A _n)

Methodology 2: Data-Driven

Methodology 2: Data-Driven

- Naru [Yang, Z et all. VLDB 20]
 Auto-regressive Model
- **DeepDB** [Hilprecht, B et all. VLDB 20]

 Sum Product Network
- FLAT [Rong, Z et all. VLDB 2021]
 Graphical Model

Shortcomings:

- Heavy costs on model training and inference
- Violate basic rule of selectivity estimation
 - Monotonicity: $sel(1 < x < 2) \le sel(1 < x < 3)$
 - Validity: sel(1 < x < 0) = 0
 - Consistency: $sel(1 < x \le 2) + sel(2 < x < 3)$ = sel(1 < x < 3)
 - **Stability**: sel(1 < x < 2) = sel(1 < x < 2)

MOSE: A Monotonic Selectivity Estimator Using Learned CDF

Aim

Reliable, accurate and efficient learned selectivity estimator

Problem Settings

Multi-dimensional predicates on single table

Methodology

Query-based

Key observation

The joint cumulative distribution function (CDF) of the data in a table can be used to compute the selectivity for query range predicates

CDF to Selectivity

Multi-dimensional CDF:

Random variable $X = (X_1, X_2, ..., X_d)$,

CDF:
$$F_X(x) = \Pr(X_1 \le x_1, X_2 \le x_2, ..., X_d \le x_d)$$

CDF to selectivity

$$sel(p) = \sum_{\forall x_i \in \{l_i - 1, u_i\}} \left\{ \left(\prod_{i=1}^d s(i) \right) F_X(x) \right\}$$

$$sel(p) = F_X([u_1, u_2]) - F_X([u_1, l_2 - 1]) - F_X([l_1 - 1, l_2 - 1]) - F_X([l_1 - 1, l_2 - 1])$$

MOSE Overview

CDF Learner

Monotonic Lattice Regression Model

$$\hat{y} = F_X(x) = \sum_{j=1}^m \phi(x)_j \theta_j, \quad \sum_{j=1}^m \phi(x)_j C_j = x, \quad \sum_{j=1}^m \phi(x)_j = 1.$$

$$\theta = \arg\min_{\theta \in \mathbb{R}^m} \sum_{i=1}^n (\hat{y}_i - y_i)^2$$

=
$$\arg\min_{\theta \in \mathbb{R}^m} \sum_{i=1}^n \left(\left(\sum_{j=1}^m \phi(x)_{ij} \theta_j \right) - y_i \right)^2.$$

$$\theta = \arg\min_{\theta \in \mathbb{R}^m} \sum_{i=1}^n (\hat{y}_i - y_i)^2, s.t. A\theta^T \le 0.$$

C: Lattice Node

Theta: Lattice Parameter

Monotonic Constrain

C: Lattice Node

Theta: Lattice Parameter

$$\theta = \arg\min_{\theta \in \mathbb{R}^m} \sum_{i=1}^n (\hat{y}_i - y_i)^2, s.t. \ A\theta^T \le 0.$$

Attribute-Aware Calibration

$$\theta, \alpha = \arg\min_{\theta, \alpha} \sum_{i=1}^{n} \left(\left(\sum_{j=1}^{m} \phi(g(x, \alpha))_{ij} \theta_{j} \right) - y_{i} \right)^{2} + \lambda R(\theta)$$
s.t. $A\theta^{T} \leq 0$ and $B\alpha^{T} \leq 0$,

Cell-Wise Regularizer

Graph Laplacian:

flatter function

Penalizes:

$$(A-C)^2 + (A-B)^2 + (C-D)^2 + (B-D)^2$$

= $\Delta_{AC}^2 + \Delta_{AB}^2 + \Delta_{CD}^2 + \Delta_{BD}^2$

$$R(\theta) = \sum_{i=1}^{d} \sum_{\substack{C_r, C_s \text{ such that} \\ C_r \text{ and } C_s \text{ adjacent on dimension } i}} H_i(C_r, C_s)(\theta_r - \theta_s)^2$$

Lattice Ensemble

ACTIVE DATA GENERATOR

Challenges:

- Infinite query space (NOT pool based active learning)
- Regression problem (NO model uncertainty)

Solution

- Picking the lattice cells that are most valuable or necessary to optimize
- Two factors: (1) cell accuracy; (2) cell density
- Weighted lattice sampling

Weighted Lattice Sampling

Algorithm 2: Active Data Generator

```
input : X_L is the initial labeled data,
             \theta is model weight of CDF learner,
             \mathcal{T} is the cost threshold of data collection,
             \epsilon is the cost function to label a data instance.
             B is the number of data selected in one batch.
             \mathcal{P} is a function to calculate cell sampling weight
   output: X is the labeled training data
1 X \leftarrow X_L // total training set
2 t \leftarrow 0 // initialize total cost
3 while t < T do
        \theta \leftarrow \text{TrainModelWith}(X)
        Error \leftarrow \text{Evaluate}(\theta, X)
        P_{TopError} \leftarrow \text{Top}(X, Error, K)
       \mathcal{P}_c \leftarrow X, P_{TopError}
        cells \leftarrow WeightedSampling(\mathcal{P}_c, B)
        X_A \leftarrow \texttt{RandomPointGenerate}(cells)
        X_{AL} \leftarrow \text{ExecuteQuery}(X_A)
        t = t + \epsilon(X_A)
11
        X = X \cup X_{AL}
13 return X
```

$$\mathcal{P}_c = \frac{1 + \omega k_c}{1 + M_c} \;,$$

 M_c : points in cell C

 k_c : k points of C are in the TOP-K worst estimation

Accuracy

TABLE 2: Selectivity estimation accuracy on DMV

Estimator	Training data size				
	200	400	600	800	1000
LWM	0.03474	0.02576	0.01817	0.01758	0.01607
NN	0.04787	0.03082	0.02153	0.01803	0.01577
QuickSel	0.02151	0.01421	0.01296	0.01125	0.01027
MOSE	0.00674	0.00543	0.00463	0.00429	0.00393

TABLE 3: Selectivity estimation accuracy on Forest

Estimator	Range predicates dimension				
	2D	4D	6D	8D	10D
AVI	0.23020	0.06069	0.01060	0.00240	0.000582
Sampling	0.00642	0.01164	0.00452	0.00946	0.000718
Naru	0.20113	0.59320	0.56103	0.10131	0.308497
LWM	0.03125	0.01573	0.00729	0.00229	0.000574
NN	0.00638	0.01226	0.00943	0.00240	0.000582
QuickSel	0.00470	0.00773	0.00382	0.83949	0.000590
MOSE	0.00419	0.00544	0.00274	0.00223	0.000555

Ablation Experiments

TABLE 4: Combination of calibration and regularizer

Combination method	RMSE
Laplacian regularizer + Uniform calibration	0.00713
Laplacian regularizer + A-A calibration	0.00540
C-W regularizer + Uniform calibration	0.00530
C-W regularizer + A-A calibration	0.00393

Active Learning

Model Size

Summary

- Reliability: CDF --> selectivity: reliable
- Cell-wise regularizer + attribute-aware calibration: accurate
- Lattice ensemble based on mutual-information: efficient (model training)
- Active data generator: efficient (data collecting)
- Results:
 - Up to 62% less error
 - 1/15 number of parameters
 - 3.29x speedup

Thanks!