Camera & Image

Dr. Tushar Sandhan

FocusColorsMotions

- Pinhole camera
 - without lens
 - tiny aperture
 - o no lens distortions
 - o everything appears in focus
 - ∞ DOF

- Pinhole camera
 - without lens
 - tiny aperture
 - o no lens distortions
 - o everything appears in focus
 - ∞ DOF

- Photography camera
 - controllable aperture

- Pinhole camera
 - without lens
 - tiny aperture
 - o no lens distortions
 - o everything appears in focus
 - ∞ DOF

- Photography camera
 - controllable aperture

- Pinhole camera
 - without lens
 - tiny aperture
 - o no lens distortions
 - o everything appears in focus
 - ∞ DOF

- Photography camera
 - controllable aperture

Depth of Field

o aperture ↓ : DOF ↑

Depth of Field

o aperture ↓ : DOF ↑

Shutter

o optical ON OFF

o motion ↑: speed ↑

- Passive (self-generated sensors)
 - ➤ Not require external power
 - resistors
 - capacitors
 - o inductors, transformers
 - antennas
 - diodes

- Passive (self-generated sensors)
 - ➤ Not require external power
 - resistors
 - capacitors
 - o inductors, transformers
 - antennas
 - diodes
- Active (parametric sensors)
 - ➤ Require external power
 - o LED
 - o solenoid
 - LiDAR
 - CD

- Passive (self-generated sensors)
 - ➤ Not require external power
 - resistors
 - capacitors
 - o inductors, transformers
 - antennas
 - diodes
- Active (parametric sensors)
 - ➤ Require external power
 - o LED
 - solenoid
 - LiDAR
 - CD

- Passive (self-generated sensors)
 - ➤ Not require external power
 - resistors
 - capacitors
 - inductors, transformers
 - antennas
 - diodes
- Active (parametric sensors)
 - ➤ Require external power
 - o LED
 - solenoid
 - LiDAR
 - CD

- Which are energetically more efficient?
 - Nature's choice

Active sensing

- Precision
 - elevation mapping
- Safety
 - autonomous driving (LIDAR)
 - leader?

Active sensing

- Precision
 - elevation mapping
- Safety
 - autonomous driving (LIDAR)
 - leader?

Image display

- Active
 - C LCD
 - twisted nematic liquid
 - rotate the polarization of linearly polarized light
 - thin film transistors

LDR

- light dependent resistor
- cadmium sulphide (CdS)
- long response time
- o alarm detector?

LDR

- light dependent resistor
- cadmium sulphide (CdS)
- o long response time
- o alarm detector?

- LDR
 - light dependent resistor
 - cadmium sulphide (CdS)
 - o long response time
 - o alarm detector?

$$V_{out} = V_{in} \frac{R_2}{R_2 + R_{LDR}}$$

- Photodiode
 - usual PN junctions
 - o more responsive to longer λ (IR)
 - o response time: nanosec
 - cameras, scanners, fax machines, light meters, DVD drives

- Photodiode
 - usual PN junctions
 - \circ more responsive to longer λ (IR)
 - o response time: nanosec
 - cameras, scanners, fax machines, light meters, DVD drives

Photodiode

- usual PN junctions
- o more responsive to longer λ (IR)
- o response time: nanosec
- cameras, scanners, fax machines, light meters, DVD drives

Phototransistor

- o e.g. photodiode with inbuilt amp.
- 100times more current gains than photodiodes
- bipolar NPN transistor with optional base
- o opto-isolators, opto-switches fibre optics

Photodiode

- usual PN junctions
- o more responsive to longer λ (IR)
- o response time: nanosec
- cameras, scanners, fax machines, light meters, DVD drives

- o e.g. photodiode with inbuilt amp.
- 100times more current gains than photodiodes
- bipolar NPN transistor with optional base
- opto-isolators, opto-switches fibre optics

Photodiode

- usual PN junctions
- o more responsive to longer λ (IR)
- o response time: nanosec
- cameras, scanners, fax machines, light meters, DVD drives

- o e.g. photodiode with inbuilt amp.
- 100times more current gains than photodiodes
- bipolar NPN transistor with optional base
- opto-isolators, opto-switches fibre optics

Signal amplification

- High ISO
 - increased brightness sensitivity
 - better lowlight shots
 - o reduced dynamics range
 - reduced color accuracy

Signal amplification

High ISO

- increased brightness sensitivity
- better lowlight shots
- o reduced dynamics range
- reduced color accuracy

Light focusing element

- Lens
 - Lensmaker's eq

Light focusing element

- Lens
 - Lensmaker's eq

$$rac{1}{f} = (n-1) \left[rac{1}{R_1} - rac{1}{R_2} + rac{(n-1)d}{nR_1R_2}
ight]$$

f is the focal length of the lens n is the refractive index $R_1 \ R_2$ radius of curvature d is the thickness of the lens

sandhan@iitk.ac.in

Light focusing element

- Lens
 - o Lensmaker's eq

Refractive index

$$n(\lambda) = A + rac{B}{\lambda^2}$$

$$rac{1}{f} = (n-1) \left[rac{1}{R_1} - rac{1}{R_2} + rac{(n-1)d}{nR_1R_2}
ight]$$

f is the focal length of the lens n is the refractive index R_1 R_2 radius of curvature d is the thickness of the lens

A, B: material constants.

Single lens

- Chromatic aberrations
 - failure of lens to focus all colors to the same point
 - o fringes of color at image boundaries

Double lens

- Achromatic doublet
 - Littrow doublet : $R_1 = R_2$, $R_3 = -R_2$
 - \circ Fraunhofer doublet: small air between R_2 , R_3
 - more degree of freedom in design

Multi-Lens

Cameras

Eagle Vs Hummingbird

High precision lens

Scientific and precision imaging

Image sensing

- Array sensor
 - o 1D, 2D

Image sensing

- Array sensor
 - o 1D, 2D

Image sensing

Array sensor

o 1D, 2D

Image representations

Color sensing

Color sensing

Estimate the color

Image representations

credit: K. Plataniotis

EE604: IMAGE PROCESSING

Conclusion

- Camera systems
- Image representation

Conclusion

- Camera systems
- Image representation

- Camera systems
 - Aperture
 - Lens
 - Shutter
 - Light sensors

- ☐ Digital image representation
 - Grey
 - Color
 - Matrix (tensor)

EE604: IMAGE PROCESSING