Concours Nationaux d'Entrée aux Cycles de Formations d'Ingénieurs Session: Juin 2014

Concours en Mathématiques Physique

Correction de l'Épreuve de Mathématiques I

Problème I:

Partie I (points)

1. Justifier l'existence de I.

L'application $t \mapsto e^{-t^2}$ est continue par morceaux sur \mathbb{R}_+ et $\lim_{t \to +\infty} t^2 e^{-t^2} = 0$, donc elle est intégrable sur R₊.

2. Montrer que la fonction $t \mapsto \frac{e^{-xt}}{\sqrt{t(t+1)}}$ est intégrable sur $]0, +\infty[$ si, et seulement si, $x \ge 0$.

L'application $t \mapsto \frac{e^{-xt}}{\sqrt{t(t+1)}}$ est continue par morceaux sur $]0, +\infty[$.

$$\frac{e^{-xt}}{\sqrt{t}(t+1)} \underset{t\mapsto 0^+}{\sim} \frac{1}{\sqrt{t}}.$$

Au voisinage de $+\infty$:

$$\lim_{t \to +\infty} t^2 \frac{e^{-xt}}{\sqrt{t}(t+1)} = 0 \text{ si } x > 0, \frac{1}{\sqrt{t}(t+1)} \underset{t \to +\infty}{\sim} \frac{1}{t^{\frac{3}{2}}} \text{ et } \lim_{t \to +\infty} \frac{e^{-xt}}{\sqrt{t}(t+1)} = +\infty \text{ si } x < 0.$$

Donc, $t \mapsto \frac{e^{-xt}}{\sqrt{t(t+1)}}$ est intégrable sur $[0, +\infty[$ si, et seulement si, $x \ge 0$.

3. Montrer que f est continue sur \mathbb{R}_+ .

Soit
$$g : \mathbb{R}_+ \times \mathbb{R}_+^* \longrightarrow \mathbb{R}$$

$$(x,t) \longmapsto \frac{e^{-xt}}{\sqrt{t(t+1)}}.$$

Soit $g: \mathbb{R}_+ \times \mathbb{R}_+^* \longrightarrow \mathbb{R}$ $(x,t) \longmapsto \frac{e^{-xt}}{\sqrt{t}(t+1)}.$ L'application g est continue sur $\mathbb{R}_+ \times \mathbb{R}_+^*$. De plus, on a: $\forall (x,t) \in \mathbb{R}_+ \times \mathbb{R}_+^*, \ \left| \frac{e^{-xt}}{\sqrt{t}(t+1)} \right| \leq \frac{1}{\sqrt{t}(t+1)}: \text{ continue par morceaux et intégrable sur }]0, +\infty[.$ Ainsi. f est continue sur \mathbb{R}_+

4. Montrer que $f(0) = \pi$.

$$f(0) = \int_0^{+\infty} \frac{dt}{\sqrt{t(1+t)}} = 2 \int_0^{+\infty} \frac{du}{1+u^2} = \pi.$$

5. Montrer que $\lim_{x \to +\infty} f(x) = 0$.

On, pour tout x > 0, $t \mapsto \frac{e^{-xt}}{\sqrt{t}}$ est intégrable sur $]0, +\infty[$ et,

$$0 \le f(x) \le \int_0^{+\infty} \frac{e^{-xt}}{\sqrt{t}} dt \underset{u=xt}{=} \frac{1}{x} \int_0^{+\infty} \frac{e^{-u}}{\sqrt{u}} du \underset{x \to +\infty}{\longmapsto} 0.$$

Donc, $\lim_{x \mapsto +\infty} f(x) = 0$.

Remarque: On peut aussi considérer une suite $(x_n)_n$ tendant vers $+\infty$ et utiliser le T.C.D.

6. Montrer que f est de classe C^1 sur \mathbb{R}_+^* et qu'elle vérifie l'équation différentielle

$$y'-y=-\frac{\alpha}{\sqrt{x}}, \ \text{où} \ \alpha=\int_0^{+\infty}\frac{e^{-u}}{\sqrt{u}}du.$$

L'application $g: (x,t) \longmapsto \frac{e^{-xt}}{\sqrt{t}(t+1)}$ est continue sur $\mathbb{R}_+^* \times \mathbb{R}_+^*$, vérifie l'hypothèse de domination et admet une dérivée partielle première, par rapport à la variable x:

$$\frac{\partial g}{\partial x}(x,t) = -\sqrt{t}\frac{e^{-xt}}{t+1} \text{ qui est continue sur } \mathbb{R}_+^* \times \mathbb{R}_+^*.$$
 De plus, pour tout segment $[a,b] \subset]0,+\infty[$, pour tout $x \in [a,b]$ et $t>0$, on a:

$$\left|\frac{\partial g}{\partial x}(x,t)\right| \leq \frac{\sqrt{t}\,e^{-at}}{t+1} \text{: continue par morceaux et intégrable sur }]0,+\infty[.$$

Ainsi, f est de classe C^1 sur \mathbb{R}_+^* et on a

$$f'(x) = -\int_0^{+\infty} \sqrt{t} \frac{e^{-xt}}{t+1} dt.$$

D'où

$$f'(x) - f(x) = -\int_0^{+\infty} \frac{e^{-xt}}{\sqrt{t}(t+1)} dt - \int_0^{+\infty} \frac{t e^{-xt}}{\sqrt{t}(t+1)} dt = -\int_0^{+\infty} \frac{e^{-xt}}{\sqrt{t}} dt \underset{u=xt}{=} -\frac{\alpha}{\sqrt{x}}.$$

$7. \ \ {\it R\'esoudre l'\'equation diff\'erentielle (1)} ({\it On donnera une solution particuli\`ere sous forme int\'egrale}).$

Les solutions générales de l'équation homogène sont données par $y_h(x) = \lambda e^x$, $\lambda \in \mathbb{K}$. Une fonction de la forme $y_0(x) = \lambda(x)e^x$ est une solution particulière de l'équation (1) si, et seulement si, $\lambda'(x) = -\frac{\alpha}{\sqrt{x}}e^{-x}$, x > 0.

Comme, l'application $t \longmapsto \frac{\alpha}{\sqrt{t}}e^{-t}$ est intégrable au voisinage de 0, alors on peut choisir

$$\lambda(x) = -\alpha \int_0^x \frac{e^{-t}}{\sqrt{t}} dt.$$

Ainsi, les solutions de (1), sur $]0, +\infty[$, sont de la forme:

$$y(x) = \lambda e^x - \alpha e^x \int_0^x \frac{e^{-t}}{\sqrt{t}} dt, \ \lambda \in \mathbb{K}.$$

8. En déduire que:

$$\forall x \ge 0$$
, $e^{-x} f(x) = \pi - \alpha \int_0^x \frac{e^{-t}}{\sqrt{t}} dt$.

L'application
$$f$$
 est solution de (1), donc il existe $\lambda \in \mathbb{K}$, telle que $\forall x > 0$, $f(x) = \lambda e^x - \alpha e^x \int_0^x \frac{e^{-t}}{\sqrt{t}} dt$, $\lambda \in \mathbb{K}$.

Comme f est continue en 0 et $t \mapsto \frac{\alpha}{\sqrt{f}}e^{-t}$ est intégrable au voisinage de 0, alors, en faisant tendre x vers 0, on obtient $\pi = f(0) = \lambda$. On aura:

$$\forall x \ge 0, \quad e^{-x} f(x) = \pi - \alpha \int_0^x \frac{e^{-t}}{\sqrt{t}} dt.$$

0

0

9. Déterminer alors la valeur de α et déduire que $I=\frac{\sqrt{\pi}}{2}$.

En faisant tendre x vers $+\infty$ et en utilisant le fait que $\lim_{x \to +\infty} f(x) = 0$ et que $t \mapsto \frac{\alpha}{\sqrt{t}} e^{-t}$ est intégrable sur $]0, +\infty[$, on aura: $0=\pi-\alpha^2$, comme $\alpha\geq 0$ donc $\alpha=\sqrt{\pi}$. D'où:

$$I = \int_0^{+\infty} e^{-x^2} dx = \int_0^{+\infty} \frac{e^{-u}}{2\sqrt{u}} du = \frac{\alpha}{2} = \frac{\sqrt{\pi}}{2}.$$

Partie II (points)

Justifier l'existence de In et calculer I0.

Pour tout entier $n \in \mathbb{N}$ l'application $x \mapsto \frac{1}{(x^2+1)^{n+1}}$ est continue par morceaux sur \mathbb{R}_+ , de plus $\frac{1}{(x^2+1)^{n+1}} \underset{x \mapsto +\infty}{\sim} \frac{1}{x^{2n+2}}$, qui est intégrable au voisinage de $+\infty$ puisque 2n+2>1. $I_0 = \int_0^{+\infty} \frac{1}{1+r^2} dx = [\arctan x]_0^{+\infty} = \frac{\pi}{2}.$

2. Montrer que la suite $(I_n)_{n\geq 0}$ est décroissante et que $\lim_{n\to +\infty} I_n=0$.

On pose $f_n(x) = \frac{1}{(x^2+1)^{n+1}}$, $x \in \mathbb{R}_+$ et $n \in \mathbb{N}$. On a: $(f_n)_n$ est décroissante, donc la suite $(I_n)_n$

$$f_n \xrightarrow{C.S.} \varphi : \mathbb{R}_+ \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} 0 & si & x > 0 \\ 1 & si & x = 0 \end{cases}$$

Comme f_n et sa limite simple φ sont intégrables sur $[0, +\infty[$, alors, d'après, le T. C. M.:

$$\lim_{n \to +\infty} I_n = \lim_{n \to +\infty} \int_0^{+\infty} f_n(x) dx = \int_0^{+\infty} \varphi(x) dx = 0.$$

3. Montrer que la série $\sum_{n\geq 0} (-1)^n I_n$ est convergente et calculer sa somme.

D'après le critère des séries alternées (C. S. A.), et puisque la suite $(I_n)_n$ est décroissante et convergente vers 0, la série $\sum_{n>0} (-1)^n I_n$ est convergente.

D'autre part, la série des fonctions $\sum_{n=0}^{\infty} (-1)^n f_n$ est simplement convergente sur $]0,+\infty[$ (série géo-

métrique) et sa somme est
$$S(x) = \frac{1}{1+x^2} \cdot \frac{1}{1+\frac{1}{1+x^2}} = \frac{1}{2+x^2}$$
 qui est intégrable sur $]0, +\infty[$.

De plus son reste $R_n(x) = \sum_{k=n+1}^{+\infty} (-1)^k f_k(x)$, vérifie: $\forall x > 0, \forall n \in \mathbb{N}, |R_n(x)| \le f_{n+1}(x)$. (C. S. A.)

Alors R_n est intégrable sur $]0, +\infty[$ et on a:

Alors
$$R_n$$
 est integrable sur $[0, +\infty]$ et on a .
$$\int_0^{+\infty} S(x)dx = \int_0^{+\infty} \sum_{k=0}^n (-1)^k f_k(x) dx + \int_0^{+\infty} R_n(x) dx = \sum_{k=0}^n \int_0^{+\infty} (-1)^k f_k(x) dx + \int_0^{+\infty} R_n(x) dx.$$

$$\forall n \in \mathbb{N}, \ \left| \int_0^{+\infty} R_n(x) dx \right| \le \int_0^{+\infty} f_{n+1}(x) dx = I_{n+1} \underset{n \to +\infty}{\longmapsto} 0. \ \text{Donc } \lim_{n \to +\infty} \int_0^{+\infty} R_n(x) dx = 0.$$

D'où,

$$\int_0^{+\infty} S(x)dx = \sum_{n=0}^{+\infty} \int_0^{+\infty} (-1)^n f_n(x)dx = \sum_{n=0}^{+\infty} (-1)^n I_n.$$
 Comme
$$\int_0^{+\infty} S(x)dx = \int_0^{+\infty} \frac{1}{2+x^2}dx = \frac{1}{\sqrt{2}} [\arctan(\frac{x}{\sqrt{2}})]_0^{+\infty} = \frac{\pi}{2\sqrt{2}}.$$
 On obtient finalement:
$$\sum_{n=0}^{+\infty} (-1)^n I_n = \frac{\pi}{2\sqrt{2}}.$$

4. Montrer que la série $\sum_{n>0} I_n$ est divergente.

La série des fonctions $\sum_{n=0}^{\infty} f_n$ est une série des fonctions positives et intégrables sur $]0, +\infty[$. De

plus, elle converge simplement, sur
$$]0, +\infty[$$
 vers la fonction $T: x \longmapsto T(x) = \frac{1}{1+x^2} \cdot \frac{1}{1-\frac{1}{1+x^2}} = \frac{1}{x^2}.$

séries des fonctions: La fonction T est intégrable sut $]0, +\infty[$ si, et D'après le T. C. M. pour les seulement si, la série $\sum_{n>0} \int_0^{+\infty} f_n(x) dx = \sum_{n>0} I_n$ est convergente.

Comme T est non intégrable sur $]0, +\infty[$, on conclut que la série $\sum_{i=1}^{n} I_n$ est divergente.

5. Montrer que, pour tout entier $n \ge 1$,

$$I_n = \frac{2n-1}{2n} I_{n-1}.$$

$$I_n = \int_0^\infty \frac{1}{(1+x^2)^{n+1}} dx = \int_0^\infty \frac{1+x^2-x^2}{(1+x^2)^{n+1}} dx = \int_0^\infty \frac{1}{(1+x^2)^n} dx - \int_0^\infty \frac{x^2}{(1+x^2)^{n+1}} dx.$$

On intègre par parties dans la dernière intégrale, on obtient, puisque $x \mapsto \frac{1}{(1+x^2)^n}$ est intégrable

$$\int_0^\infty \frac{x^2}{(1+x^2)^{n+1}} dx = \left[-\frac{1}{2n} \frac{x}{(1+x^2)^n} \right]_0^{+\infty} + \frac{1}{2n} \int_0^{+\infty} \frac{1}{(1+x^2)^n} dx = \frac{1}{2n} I_{n-1}.$$
 D'où: $I_n = I_{n-1} - \frac{1}{2n} I_{n-1} = \frac{2n-1}{2n} I_{n-1}.$

6. En déduire que, pour tout $n \in \mathbb{N}$,

$$I_n = \frac{(2n)!}{2^{2n} (n!)^2} \frac{\pi}{2}.$$

La relation demandée est vraie pour n = 0.

Supposons qu'elle est vraie pour un ceratin ordre n. On a:

$$I_{n+1} = \frac{2n+1}{2n+2}I_n = \frac{2n+1}{2n+2}\frac{(2n)!}{2^{2n}(n!)^2}\frac{\pi}{2} = \frac{(2n+2)(2n+1)}{(2n+2)^2}\frac{(2n)!}{2^{2n}(n!)^2}\frac{\pi}{2} = \frac{(2(n+1))!}{2^{2n+2}((n+1)!)^2}\frac{\pi}{2}$$
 D'où la relation est vraie pour l'ordre $n+1$.

7. Montrer que, pour tout $n \in \mathbb{N}$,

$$\sqrt{n+1} \ I_n = \int_0^{+\infty} \frac{dt}{(1+\frac{t^2}{n+1})^{n+1}}.$$

0

Pour tout $n \in \mathbb{N}$,

$$\int_0^{+\infty} \frac{dt}{(1+\frac{t^2}{n+1})^{n+1}} = \int_0^{+\infty} \frac{\sqrt{n+1}\,du}{(1+u^2)^{n+1}} = \sqrt{n+1}\ I_n.$$

8. Pour t>0 fixé, étudier les variations de la fonction: $x\longmapsto x\ln\left(1+\frac{t^2}{x}\right)$ sur \mathbb{R}_+^* et déduire que

$$\forall\,n\in\mathbb{N},\quad \left(1+\frac{t^2}{n+1}\right)^{-n-1}\leq\frac{1}{1+t^2},$$

Soit t>0. On pose $g_t(x)=x\ln\left(1+\frac{t^2}{x}\right)$. L'application g est deux fois dérivable sur \mathbb{R}_+^* et on a:

$$g'_t(x) = \ln\left(1 + \frac{t^2}{x}\right) - \frac{t^2}{x + t^2} \text{ et } g''_t(x) = -\frac{t^4}{x(x + t^2)^2} < 0.$$

Donc, g'_t est décroissante sur \mathbb{R}_+^* , comme $\lim_{x \mapsto +\infty} g'_t(x) = 0$, donc $g'_t(x)$ est positive, donc g_t est croissante sur \mathbb{R}_+^* .

D'où, pour tout $n \in \mathbb{N}$,

$$\left(1+\frac{t^2}{n+1}\right)^{-n-1}=e^{-(n+1)\ln(1+\frac{t^2}{n+1})}=e^{-g_t(n+1)}\leq e^{-g_t(1)}=\frac{1}{1+t^2}.$$

9. Montrer alors que:

$$\lim_{n \to +\infty} \sqrt{n+1} \ I_n = \frac{\sqrt{\pi}}{2}.$$

Soit $h_n(t) = \frac{1}{(1+\frac{t^2}{n+1})^{n+1}}$, $t \ge 0$ et $n \in \mathbb{N}$. On a:

$$\lim_{n \to +\infty} h_n(t) = \lim_{n \to +\infty} e^{-(n+1)\ln(1+\frac{t^2}{n+1})} = e^{-t^2} \text{ et } |g_n(t)| \le \frac{1}{1+t^2}: \text{ intégrable sur } \mathbb{R}_+.$$

Donc, d'après le T. C. D.,

$$\lim_{n \to +\infty} \sqrt{n+1} \ I_n = \lim_{n \to +\infty} \int_0^{+\infty} h_n(t) dt = \int_0^{+\infty} \lim_{n \to +\infty} h_n(t) dt = \int_0^{+\infty} e^{-t^2} dt = I = \frac{\sqrt{\pi}}{2}.$$

10. En déduire la formule de Wallis:

$$\sqrt{\pi} = \lim_{n \to +\infty} \frac{2^{2n} (n!)^2}{(2n)!} \frac{1}{\sqrt{n}}$$

D'après la question précédente et l'équivalence $\sqrt{n+1} \underset{n \mapsto +\infty}{\sim} \sqrt{n}$, on a $\lim_{n \mapsto +\infty} \frac{1}{\sqrt{n} I_n} = \frac{2}{\sqrt{\pi}}$.

En remplaçant I_n par son expression, $I_n = \frac{(2n)!}{2^{2n}(n!)^2} \frac{\pi}{2}$, on obtient:

$$\sqrt{\pi} = \lim_{n \to +\infty} \frac{2^{2n} (n!)^2}{(2n)!} \frac{1}{\sqrt{n}}$$

Partie III (points)

1. Montrer que:

$$u_n - u_{n-1} \underset{n \mapsto +\infty}{\sim} \frac{1}{12n^2}.$$

$$u_n - u_{n-1} = -(n - \frac{1}{2})\ln(1 - \frac{1}{n}) - 1 = (n - \frac{1}{2})\left(\frac{1}{n} + \frac{1}{2n^2} + \frac{1}{3n^3} + o(\frac{1}{n^3})\right) - 1 = \frac{1}{12n^2} + o(\frac{1}{n^2}).$$

D'où
$$u_n - u_{n-1} \underset{n \mapsto +\infty}{\sim} \frac{1}{12n^2}$$
.

2. En déduire que la suite $(u_n)_{n\geq 1}$ est convergente.

D'après l'équivalence précédente, la série $\sum_{n\geq 2} (u_n-u_{n-1})$ converge, donc la suite des sommes par-

tielles $\left(\sum_{k=2}^{n} (u_k - u_{k-1})\right)$ est convergente et par suite la suite $(u_n)_n$ est convergente.

3. Montrer que $n! \underset{n \to +\infty}{\sim} e^{-\ell} n^{n+\frac{1}{2}} e^{-n}$.

On a:

$$\ell = \lim_{n \mapsto +\infty} u_n = \lim_{n \mapsto +\infty} \ln \left(\frac{n^{n+\frac{1}{2}}}{e^n n!} \right), \text{ donc } \lim_{+\infty} \frac{n^{n+\frac{1}{2}}}{e^n n!} = e^{\ell}.$$

Ainsi, $\frac{n^{n+\frac{1}{2}}}{e^n n!} \underset{+\infty}{\sim} e^{\ell}$, c'est à dire $n! \underset{n \mapsto +\infty}{\sim} e^{-\ell} n^{n+\frac{1}{2}} e^{-n}$

4. En utilisant la formule de Wallis (3), montrer que $\ell = -\frac{1}{2}\ln(2\pi)$.

On remplace dans la formule de Wallis,
$$n!$$
 et $(2n)!$ par leurs équivalents respectifs, on obtient:
$$\sqrt{\pi} = \lim_{n \to +\infty} \frac{2^{2n}(n!)^2}{(2n)!} \frac{1}{\sqrt{n}} = \lim_{n \to +\infty} \frac{2^{2n}(e^{-\ell} \, n^{n+\frac{1}{2}} \, e^{-n})^2}{e^{-\ell} \, (2n)^{2n+\frac{1}{2}} \, e^{-2n} \sqrt{n}} = \frac{e^{-\ell}}{\sqrt{2}}.$$

D'où $\ell = -\frac{1}{2} \ln(2\pi)$.

5. En déduire la formule de Stirling:

$$n! \underset{n \mapsto +\infty}{\sim} n^n e^{-n} \sqrt{2\pi n}.$$

En remplaçant $e^{-\ell}$ par $\sqrt{2\pi}$ dans l'équivalence de la question 3.)-partie III, on obtient la formule demandée.

6. En utilisant l'équivalence donnée par la formule (3), et en remarquant que $\frac{1}{n^2} \underset{n \to +\infty}{\sim} \frac{1}{n-1} - \frac{1}{n}$, montrer que:

$$\ln(\sqrt{2\pi}) + u_n \underset{n \mapsto +\infty}{\sim} -\frac{1}{12n}.$$

On a:

$$\frac{1}{n^2} \underset{n \mapsto +\infty}{\sim} \frac{1}{n-1} - \frac{1}{n} \text{ et } u_n - u_{n-1} \underset{n \mapsto +\infty}{\sim} \frac{1}{12n^2}.$$
 Comme les suites considérées sont à termes positifs et les séries associées sont convergentes, on aura:

$$\sum_{k=n+1}^{+\infty} \frac{1}{k^2} \underset{n \mapsto +\infty}{\sim} \sum_{k=n+1}^{+\infty} \left(\frac{1}{k-1} - \frac{1}{k} \right) \text{ et } \sum_{k=n+1}^{+\infty} \left(u_k - u_{k-1} \right) \underset{n \mapsto +\infty}{\sim} \frac{1}{12} \sum_{k=n+1}^{+\infty} \frac{1}{k^2}.$$

Par transitivité, on obtient

$$\sum_{k=n+1}^{+\infty} (u_k - u_{k-1}) \underset{n \mapsto +\infty}{\sim} \frac{1}{12} \sum_{k=n+1}^{+\infty} \left(\frac{1}{k-1} - \frac{1}{k} \right).$$

Or on a:

$$\sum_{k=n+1}^{+\infty} (u_k - u_{k-1}) = \lim_{N \to +\infty} \sum_{k=n+1}^{N} (u_k - u_{k-1}) = \lim_{N \to +\infty} (u_N - u_n) = -\frac{1}{2} \ln(2\pi) - u_n$$

et

$$\sum_{k=n+1}^{+\infty} \left(\frac{1}{k-1} - \frac{1}{k}\right) = \lim_{N \mapsto +\infty} \sum_{k=n+1}^{N} \left(\frac{1}{k-1} - \frac{1}{k}\right) = \lim_{N \mapsto +\infty} \left(\frac{1}{n} - \frac{1}{N}\right) = \frac{1}{n}.$$
 D'où $-\frac{1}{2} \ln(2\pi) - u_n \underset{n \mapsto +\infty}{\sim} \frac{1}{12n}$ c'est à dire $\ln(\sqrt{2\pi}) + u_n \underset{n \mapsto +\infty}{\sim} -\frac{1}{12n}.$

7. En déduire la formule asymptotique:

$$n! = n^n e^{-n} \sqrt{2\pi n} \left(1 + \frac{1}{12n} + o(\frac{1}{n})\right).$$

D'après la question précédente, on a:

$$-\ln(\sqrt{2\pi}) - u_n \underset{n \mapsto +\infty}{\sim} \frac{1}{12n} \text{ donc } e^{-\ln(\sqrt{2\pi}) - u_n} = e^{\frac{1}{12n} + o(\frac{1}{n})} = 1 + \frac{1}{12n} + o(\frac{1}{n}).$$

Donc.

$$\frac{e^n n!}{\sqrt{2\pi} n^{n+\frac{1}{2}}} = 1 + \frac{1}{12n} + o(\frac{1}{n}).$$

Soit encore: $n! = n^n e^{-n} \sqrt{2\pi n} \left(1 + \frac{1}{12n} + o(\frac{1}{n}) \right)$.

Problème II:

Partie I (points)

1. Montrer que ζ est de classe C^{∞} sur $]1,+\infty[$ et exprimer ses dérivées successives comme sommes de séries de fonctions.

On pose
$$f_n(x) = \frac{1}{n^x}, n \in \mathbb{N}^* \text{ et } x > 1.$$

- La série $\sum_{n\geq 1} f_n$ converge simplement sur $]1, +\infty[$.
- Pour tout $n \in \mathbb{N}^*$, la fonction $x \longmapsto f_n(x) = \frac{1}{n^x} = e^{-x \ln n}$ est de classe C^{∞} sur $]1, +\infty[$ et $\forall k \in \mathbb{N}^*$, $f_n^{(k)}(x) = \frac{(-1)^k \ln^k(n)}{n^x}$.
- Soit $[a,b] \subset]1, +\infty[$. On a:

$$\forall n \in \mathbb{N}^*, \forall x \in [a,b], \forall k \in \mathbb{N}, \quad \left| f_n^{(k)}(x) \right| \le \frac{\ln^k(n)}{n^x} \le \frac{\ln^k(n)}{n^a}.$$

Soit un réel λ tel que $1 < \lambda < a$. On a $\lim_{n \to +\infty} n^{\lambda} \frac{\ln^k(n)}{n^a} = 0$, donc la série $\sum_{n \geq 1} \frac{\ln^k(n)}{n^a}$ est

Ainsi, la série $\sum_{n\geq 1} f_n^{(k)}$ converge normalement, donc uniformément, sur tout segment de]1,+ ∞ [.

D'où
$$\zeta$$
 est de classe \mathcal{C}^{∞} sur $]1, +\infty[$ et $\zeta^{(k)}(x)=\sum_{n=1}^{+\infty}\frac{(-1)^k\ln^k(n)}{n^x}$

2. Montrer que $\lim_{x \to +\infty} \zeta(x) = 1$.

On a:
$$\lim_{x \to +\infty} f_n(x) = \begin{cases} 0 & \text{si} & n \ge 2\\ 1 & \text{si} & n = 1 \end{cases}$$

De plus, la série $\sum_{n\geq 1} f_n$ converge uniformément au voisinage de $+\infty$ puisque,

 $\forall a>1, \forall x\geq 1, \quad 0\leq f_n(x)\leq rac{1}{n^a}$: terme général d'une série convergente

D'après le théorème de la double limite: $\lim_{x \to +\infty} \zeta(x) = \lim_{x \to +\infty} \sum_{n=1}^{+\infty} f_n(x) = \sum_{n=1}^{+\infty} \lim_{x \to +\infty} f_n(x) = 1$.

3. Montrer que $\theta: x \longmapsto \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n^x}$ est bien définie sur $]0, +\infty[$ et que:

$$\forall x > 1, \ \theta(x) = (1 - 2^{1-x}) \zeta(x).$$

Pour tout x > 0, la suite $\frac{1}{n^x}$ est décroissante et converge vers 0. D'après le C. S. A., la série $\sum_{n \ge 1} \frac{(-1)^n}{n^x}$ converge pour tout x > 0. Donc θ est bien définie sur $]0, +\infty[$.

Soit
$$x > 1$$
. On pose: $S_n(x) = \sum_{k=1}^{2n} \frac{1}{k^x}$ et $T_n(x) = \sum_{k=1}^{2n} \frac{(-1)^{k+1}}{k^x}$. On a:
$$S_n(x) = \sum_{k=1}^{n} \frac{1}{(2k)^x} + \sum_{k=1}^{n} \frac{1}{(2k-1)^x} = \frac{1}{2^x} \sum_{k=1}^{n} \frac{1}{k^x} + \sum_{k=1}^{n} \frac{1}{(2k-1)^x}$$
 et

$$T_n(x) = \sum_{k=1}^{n} \frac{(2k)^x}{(2k)^x} + \sum_{k=1}^{n} \frac{(2k-1)^x}{(2k-1)^x} = 2^x \sum_{k=1}^{n} \frac{1}{k^x} + \sum_{k=1}^{n} \frac{(2k-1)^x}{(2k-1)^x}$$
$$T_n(x) = -\sum_{k=1}^{n} \frac{1}{(2k)^x} + \sum_{k=1}^{n} \frac{1}{(2k-1)^x} = -\frac{1}{2^x} \sum_{k=1}^{n} \frac{1}{k^x} + \sum_{k=1}^{n} \frac{1}{(2k-1)^x}.$$

Donc,
$$S_n(x) - T_n(x) = \frac{1}{2^{x-1}} \sum_{k=1}^n \frac{1}{k^x}$$
.

En faisant tendre n vers $+\infty$, on obtient: $\zeta(x) - \theta(x) = \frac{1}{2^{x-1}}\zeta(x)$. Donc, $\theta(x) = (1 - 2^{1-x})\zeta(x)$.

4. Montrer que la fonction $x \longmapsto \frac{1}{F(x)}$ s'écrit, sur \mathbb{R} , comme somme d'une série entière.

Pour $x \neq 0$, on a:

$$\frac{1}{F(x)} = \frac{e^x - 1}{x} = \frac{1}{x} \sum_{n=0}^{+\infty} \frac{x^n}{n!} - 1 = \frac{1}{x} \sum_{n=1}^{+\infty} \frac{x^n}{n!} = \sum_{n=1}^{+\infty} \frac{x^{n-1}}{n!} = \sum_{n=1}^{+\infty} \frac{x^n}{(n+1)!}$$

La relation précédente est vraie pour x=0.

5. En déduire que F est de classe \mathcal{C}^{∞} sur \mathbb{R} .

La fonction $\frac{1}{F}$ est développable en série entière sur $\mathbb R$, donc de classe $\mathcal C^\infty$ sur $\mathbb R$ et donc F l'est.

Partie II (points)

1. Vérifier que $b_0=1$ et que $b_1=-\frac{1}{2}$.

On a, $b_0 = F(0) = 1$ et $b_1 = F'(0)$. Comme

$$F(x) = \frac{x}{e^x - 1} = \frac{x}{1 + x + \frac{x^2}{2} + o(x^2) - 1} = \frac{1}{1 + \frac{x}{2} + o(x)} = 1 - \frac{x}{2} + o(x). \text{ Donc } F'(0) = -\frac{1}{2}.$$

0

2. Montrer que la fonction $G: x \longmapsto F(x) + \frac{1}{2}x$ est paire sur $\mathbb R$ et déduire que: $\forall \, k \in \mathbb N^*, \quad b_{2k+1} = 0.$

On a
$$G(0) = 0$$
 et pour tout $x \in \mathbb{R}^*$,

$$G(x) - G(-x) = F(x) - F(-x) + x = x\left(\frac{1}{e^x - 1} + \frac{1}{e^{-x} - 1} + 1\right) = x\left(\frac{1}{e^x - 1} - \frac{e^x}{e^x - 1} + 1\right) = 0.$$

Donc G est paire. On dérive $2k+1, k \in \mathbb{N}^*$, dans l'égalité G(-x) = G(x), on obtient $(-1)^{2k+1}G^{(2k+1)}(-x) = G^{(2k+1)}(x)$, donc $-F^{(2k+1)}(-x) = F^{(2k+1)}(x)$.

Pour x = 0, on aura $b_{2k+1} = 0$, $k \in \mathbb{N}^*$.

3. Soit n un entier naturel supérieur ou égal à 2. En dérivant n-fois la formule:

$$\forall x \in \mathbb{R}, \quad (e^x - 1)F(x) = x,$$

montrer que:

$$\sum_{k=1}^{n} C_{n}^{k} b_{n-k} = 0, \text{ où } C_{n}^{k} = \frac{n!}{k!(n-k)!}.$$

On dérive n-fois la formule donnée $(n \ge 2)$, on obtient $\forall x \in \mathbb{R}, \frac{d^n}{dx^n}[(e^x - 1)F(x)] = 0$.

En utilisant la formule de Leibniz: $(f \cdot g)^{(n)}(x) = \sum_{k=0}^{n} C_n^k f^{(k)}(x) g^{(n-k)}(x)$, on obtient:

$$\sum_{k=0}^{n} C_{n}^{k} \frac{d^{k}}{dx^{k}} (e^{x} - 1) \frac{d^{n-k}}{dx^{n-k}} F(x) = 0, \text{ donc, en faisant } x = 0, \text{ on aura: } \sum_{k=1}^{n} C_{n}^{k} b_{n-k} = 0.$$

4. Calculer b2 et b4.

On applique la formule de la question précédente pour n=3, on aura:

$$C_3^1 b_2 + C_3^2 b_1 + C_3^3 b_0 = 0$$
, donc $3b_2 + 3b_1 + b_0 = Ainsi$, $b_2 = \frac{1}{6}$.

Pour n = 5, on obtient:

$$C_5^1b_4 + C_5^2b_3 + C_5^3b_2 + C_5^4b_1 + C_5^5b_0 = 0$$
, donc $5b_4 + 10b_2 + 5b_1 + b_0 = 0$. D'où $b_4 = -\frac{1}{30}$.

5. Pour $n \in \mathbb{N}$, on pose

$$B_n(X) = \sum_{k=0}^{n} C_n^k b_{n-k} X^k.$$

(a) Calculer $B_0(X)$, $B_1(X)$. $B_2(X)$ et $B_3(X)$.

En utilisant les expressions de b_0, b_1, b_2 et b_3 , on obtient

$$B_0 = 1$$
, $B_1 = X - \frac{1}{2}$, $B_2 = X^2 - X + \frac{1}{6}$ et $B_3 = X^3 - \frac{3}{2}X^2 + \frac{1}{2}X$.

(b) Montrer que, pour tout $n \ge 2$, $B_n(0) = b_n = B_n(1)$.

On a $B_n(X) = \sum_{k=0}^n C_n^k b_{n-k} X^k$, donc $B_n(0) = C_n^0 b_n = b_n$. D'autre part,

$$B_n(1) = \sum_{k=0}^n C_n^k b_{n-k} = b_n + \sum_{k=1}^n C_n^k b_{n-k} = b_n, \text{ d'après la formule da la question 3. partie II.}$$

0

(c) Montrer que, pour tout $n \ge 0$, $B'_{n+1}(X) = (n+1)B_n(X)$.

On a, en remarquant que $kC_{n+1}^k = (n+1)C_n^{k-1}$,

On a, en remarquant que
$$kC_{n+1} = (n+1)C_n$$
, $B'_{n+1}(X) = \sum_{k=1}^{n+1} C_{n+1}^k b_{n+1-k} k X^{k-1} = \sum_{k=1}^{n+1} (n+1)C_n^{k-1} b_{n-(k-1)} X^{k-1} \underset{k \leftrightarrow k-1}{=} (n+1)B_n(X).$

(d) Montrer que, pour tout $n \ge 1$, $\int_0^1 B_n(t)dt = 0$.

Soit $n \in \mathbb{N}^*$. On a, d'après (b) - (c)

On a, d'après (0) – (c),

$$\int_0^1 B_n(t)dt = \frac{1}{n+1} \int_0^1 B'_{n+1}(t)dt = \frac{1}{n+1} \left(B_{n+1}(1) - B_{n+1}(0) \right) = 0.$$

Partie III (points)

I. Montrer que φ_n est continue et est de classe \mathcal{C}^1 par morceaux sur \mathbb{R} .

L'application φ_n est 1- périodique et de classe \mathcal{C}^1 sur [0,1] (fonction polynôme) donc elle est continue

2. Que peut-on dire de la série de Fourier de φ_n .

La série de Fourier de φ_n converge normalement vers φ_n sur \mathbb{R} .

(a) Montrer que $c_0(\varphi_n) = 0$.

Soit $n \in \mathbb{N}^*$, $c_0(\varphi_n) = \int_0^1 \varphi_n(t)dt = \int_0^1 B_n(t)dt = 0$.

(b) Montrer que, pour tout $p \in \mathbb{Z}^*$,

 $c_p(\varphi_{n+1}) = \frac{n+1}{2ip\pi}c_p(\varphi_n)$

$$c_{p}(\varphi_{n+1}) = \int_{0}^{1} \varphi_{n+1}(t)e^{-2i\pi pt}dt \underset{I.P.P.}{=} \frac{1}{-2i\pi p} \underbrace{\left[e^{-2i\pi pt}B_{n+1}(t)\right]_{0}^{1}}_{=0} + \frac{1}{2i\pi p} \int_{0}^{1} B'_{n+1}(t)e^{-2i\pi pt}dt = \underbrace{\frac{n+1}{2i\pi p} \int_{0}^{1} B_{n}(t)e^{-2i\pi pt}dt}_{=0} + \underbrace{\frac{n+1}{2ip\pi} c_{p}(\varphi_{n})}_{=0}.$$

(c) En déduire que, pour tout p ∈ Z*,

$$c_p(\varphi_n) = \frac{-n!}{(2ip\pi)^n}.$$

Par récurrence sur n. Pour n = 1,

$$c_p(\varphi_1) = \frac{1}{-2i\pi p} \left[e^{-2i\pi pt} \left(t - \frac{1}{2} \right) \right]_0^1 + \frac{1}{2i\pi p} \underbrace{\int_0^1 e^{-2i\pi pt} dt}_{=0} = \frac{1}{-2i\pi p}.$$

Soit $n \in \mathbb{N}^*$. On suppose que $c_p(\varphi_n) = \frac{-n!}{(2ip\pi)^n}$. On a:

$$c_p(\varphi_{n+1}) = \frac{n+1}{2ip\pi}c_p(\varphi_n) = \frac{n+1}{2ip\pi}\frac{-n!}{(2ip\pi)^n} = \frac{-(n+1)!}{(2ip\pi)^{n+1}}$$

0

Ainsi, la formule est valable pour tout entier non nul.

(d) Montrer que, pour tout $t \in [0,1]$,

$$B_{2n}(t) = 2(-1)^{n+1}(2n)! \sum_{p=1}^{+\infty} \frac{\cos(2\pi pt)}{(2\pi p)^{2n}}.$$

La série de Fourier de φ_{2n} converge normalement vers φ_{2n} sur \mathbb{R} . En particulier, pour tout $t \in [0,1]$, on a:

$$\varphi_{2n}(t) = B_{2n}(t) = \underbrace{c_0(\varphi_{2n})}_{=0} + \sum_{p=1}^{+\infty} \left(c_p(\varphi_{2n}) e^{2i\pi pt} + c_{-p}(\varphi_{2n}) e^{-2i\pi pt} \right) = \\ -(2n)! \sum_{p=1}^{+\infty} \frac{1}{(2i\pi p)^{2n}} \left(e^{2i\pi pt} + e^{-2i\pi pt} \right) = -2(2n)! \frac{1}{i^{2n}} \sum_{p=1}^{+\infty} \frac{\cos(2\pi pt)}{(2\pi p)^{2n}} = \\ 2(-1)^{n+1} (2n)! \sum_{p=1}^{+\infty} \frac{\cos(2\pi pt)}{(2\pi p)^{2n}}.$$

(e) En déduire que:

$$b_{2n} = \frac{2(-1)^{n+1}(2n)!}{(2\pi)^{2n}} \zeta(2n).$$

On choisit t=0, dans l'égalité de la question précédente, on obtient:

$$b_{2n} = B_{2n}(0) = \frac{2(-1)^{n+1}(2n)!}{(2\pi)^{2n}} \sum_{p=1}^{+\infty} \frac{1}{p^{2n}} = \frac{2(-1)^{n+1}(2n)!}{(2\pi)^{2n}} \zeta(2n).$$

3. Donner les valeurs de $\zeta(2)$ et $\zeta(4)$. En déduire les valeurs des sommes

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n^2} \text{ et } \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n^4}.$$
On a $b_2 = -\frac{1}{6}$ et $b_4 = \frac{1}{30}$. Donc $\zeta(2) = \frac{\pi^2}{6}$ et $\zeta(4) = \frac{\pi^4}{90}$.

D'après la question 3), partie I:

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n^2} = \theta(2) = (1 - \frac{1}{2})\zeta(2) = \frac{\pi^2}{12} \text{ et } \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n^4} = \theta(4) = (1 - \frac{1}{8})\zeta(4) = \frac{7\pi^4}{720}.$$

4. Montrer que le rayon de convergence de la série entière $\sum_{n\geq 0} \frac{b_n}{n!} x^n$ est égal à 2π .

On pose,
$$u_n(x) = \left|\frac{b_n}{n!}x^n\right| = \frac{2}{(2\pi)^{2n}\zeta(2n)}|x|^{2n} \underset{x \mapsto +\infty}{\sim} \frac{2}{(2\pi)^{2n}}|x|^{2n} = v_n(x)$$
, car $\lim_{n \mapsto +\infty}\zeta(2n) = 1$.
Pour $x \neq 0$, on a $\lim_{n \mapsto +\infty} \frac{v_{n+1}(x)}{v_n(x)} = \frac{|x|^2}{4\pi^2}$.
Si $\frac{|x|^2}{4\pi^2} < 1$, la série entière $\sum_{n \geq 0} b_n x^n$ converge absolument et si $\frac{|x|^2}{4\pi^2} > 1$, la série $\sum_{n \geq 0} b_n x^n$ diverge.
D'où $R = 2\pi$.

5. Montrer que, pour tout $x \in]-2\pi.2\pi[$,

$$\left(\sum_{n=0}^{+\infty} \frac{x^n}{(n+1)!}\right) \cdot \left(\sum_{n=0}^{+\infty} \frac{b_n}{n!} x^n\right) = 1$$

0

Pour tout $x \in]-2\pi, 2\pi[$, les séries $\sum_{n\geq 0} \frac{x^n}{(n+1)!}$ et $\sum_{n\geq 0} \frac{b_n}{n!} x^n$ sont absolument convergentes et on a:

$$\left(\sum_{n=0}^{+\infty} \frac{x^n}{(n+1)!} \right) \cdot \left(\sum_{n=0}^{+\infty} \frac{b_n}{n!} x^n \right) = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \frac{1}{(k+1)!} \frac{b_{n-k}}{(n-k)!} \right) x^n =$$

$$b_0 + \sum_{n=1}^{+\infty} \left(\sum_{k=0}^{n} \frac{1}{(k+1)!} \frac{b_{n-k}}{(n-k)!} \right) x^n \underset{n \leftrightarrow n+1}{=} 1 + \sum_{n=2}^{+\infty} \left(\sum_{k=0}^{n-1} \frac{1}{(k+1)!} \frac{b_{n-1-k}}{(n-1-k)!} \right) x^{n-1} \underset{k \leftrightarrow k+1}{=} 1 + \sum_{n=2}^{+\infty} \left(\sum_{k=1}^{n} \frac{1}{k!} \frac{b_{n-k}}{(n-k)!} \right) x^{n-1} = 1 + \sum_{n=2}^{+\infty} \frac{1}{n!} \underbrace{\left(\sum_{k=1}^{n} C_n^k b_{n-k} \right)}_{=0, \text{d'après 3) partie II}} x^{n-1} = 1.$$

6. En déduire que F est développable en série en 0 et que pour tout $x \in]-2\pi, 2\pi[$,

$$F(x) = \sum_{n=0}^{+\infty} \frac{b_n}{n!} x^n.$$

L'égalité précédente s'écrit: $(e^x-1)\sum_{n=0}^{+\infty}\frac{b_n}{n!}x^n=x, \forall x\in]-2\pi, 2\pi[$, or on a $\forall x\in \mathbb{R}, (e^x-1)F(x)=x.$ Ainsi, on obtient:

$$\forall x \in]-2\pi, 2\pi[, \quad F(x) = \sum_{n=0}^{+\infty} \frac{b_n}{n!} x^n,$$

ce qui donne le développement en série entière en 0 de F.