1	IN RE: The application of Dominick Amari
2	TITLE OF THE INVENTION
3	Artificial Island And Method Of Construction Thereof
4	CROSS REFERENCE TO RELATED APPLICATIONS
5	Not Applicable
6 7	STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT
8	Not Applicable
9	BACKGROUND OF THE INVENTION
10	Field of the invention
11	This invention relates to a method of construction of an artificial island.
12	BRIEF DESCRIPTION OF THE INVENTION
13	Along the coastlines of the United States and other countries, barrier islands
14	protect the mainland and wetlands from damage caused by storms. In locations where
15	no barrier islands exist, shore erosion is a serious problem. To reduce the impact of
16	storms on the shoreline wetlands, the instant invention is a method of making artificial
17	barrier islands. The method consists of driving a series of piles in the shape of the
18	island, attaching a number of wire mesh sections, to form a fence around the perimeter
19	of the piles, connecting the tops of the piles with cables, and then filling the formed
20	enclosure with rock, reworked concrete or suitable fill material. Once the fill material
21	has reached the water surface, it can be covered with suitable soil and vegetation to
	The Application of Dominic Amari

1	create the island. When complete, the piles and mesh are hidden below the surface and
2	the formed island takes on a natural appearance.
3	In this way, the artificial island acts as a barrier to storms, thus protecting the
4	shoreline wetlands. Moreover, the artificial island creates an ideal habitat for birds, fish
5	and amphibians. It is estimated that one island protects 10 times the amount of
6	shoreline that lies behind it in certain applications.
7	BRIEF DESCRIPTION OF THE DRAWINGS
8	Figure 1 is a side sectional view of he invention.
9	Figure 2 is a diagrammatic plan view of the invention showing the plan of cross
10	ties.
11	Figure 3 is a side view of a portion of a typical island fence section.
12	Figure 4 is a detail side view of a typical pile.
13	Figure 5 is a plan view of a typical pile.
14	Figure 6 is a perspective view of a typical pile.
15	Figure 7 is a plan environmental view of a typical shoreline with wetlands,
16	showing the placement of the invention is open water in from of the shore.
17	Figure 8 is an environmental view of a series of islands formed using the
18	invention.
19	Figure 9 is a side detail view of an alternative embodiment, in which the
20	invention is used to form an artificial reef.
21	
	The Application of Dominic Amari

The Application of Dominic Amari Page 2

	DETAILED DESCRIPTION OF THE INVENTION
1	Referring now to fig. 1, a side view of the island is presented showing the interior
2	
3	and exterior structure. Figure 1 shows an assembled island 1. The island has a number
4	of piles 2 formed about a perimeter; see also below. The piles are driven into the sub
5	bottom 100. A mesh fence 3 is attached to the piles, as discussed below. The fence
6	extends from below the muckline (when present) 101 to the top surface of the water 102,
7	(see figure 3). In figure 1, the mesh is only partially shown to allow the inner
8	components to be shown. The combination of piles and fencing forms a "corral"
9	structure (see fig. 2) to hold the island components in place.
10	The island components are placed within the "corral" structure. Extending from
11	the muckline to a point near the surface of the water is a mass of riprap material 5.
12	Above the riprap is a layer of geotextile fabric 16 that is used to retain the cover soil 6.
13	Above the geotextile fabric 16 is a layer of cover fill 6 . The cover fill extends
14	above the water line for a specific distance to form the portion of the island that is
15	visible. This cover may then be planted with indigenous vegetation 7 to prevent
16	erosion and to create habitat for wildlife (birds, reptiles and amphibians).
17	Figure 2 is a plan view of the basic "corral" structure. Note that the piles are tied
18	together by cables (stainless steel cables for marine environment) 8, which are discussed
19	below. The cables 8 extend around the perimeter of the island 1 as shown and they run
20	across the center of the island to anchor opposite pilings as shown. The details of the

cables and their connections are discussed below.

	Figure 3 is a side detail view showing three piles and two mesh sections. The
1	Figure 3 is a side detail view snowing time piles and two meets as a side
2	piles 2 can be made of steel, wood or concrete, depending on the location and site-
3	specific design considerations. Although all of the piles may be made of the same
4	material, it is also possible to alternate piles of different materials. For example,
5	concrete piles can be alternated with wooden piles or steel point bearing piles. The
6	mesh fence 3 is made of a wire mesh. In the preferred embodiment, the fence 3 is made
7	of stainless steel welded wire mesh that is reinforced with stainless steel cables 8 for
8	marine environment. Wire mesh of 8 gauge is preferred but mesh strength is calculated
9	for site-specific environments. The mesh is attached to the piles using a clip system that
10	is described below.
11	Figure 4 is a detail side view of a typical pile 3. A stainless steel "T"-rail 10 is
12	installed in two sides (see fig. 5). The "T"-rail 10 is used to secure the wire mesh 3 with
13	stainless steel clips 11 (see also fig. 6). A header 12 is formed onto the pile. The header
14	is used to secure clamps for the stainless steel cable ties 5.
15	Figure 5 is a plan view of a typical pile 2. Figure 6 is a perspective view of a
16	typical pile. In these views, the stainless steel "T"-rails 10 are clearly shown. The wire
17	mesh 3 is shown extending out from the pile laterally. Behind the wire mesh is a layer
18	of riprap material 5. Note the shackles 15 that are connected to the header 12. Note also
19	the stainless steel cables 5 that extend out from the shackles to connect to other piles
20	(see fig. 2). Note also that fig. 6 shows the stainless steel clips 11 that secure the mesh 3
	to the piles 2.
21	to me knes =-

The Application of Dominic Amari Page 4

1	As discussed below, the artificial islands are intended to be positioned in water
2	in front of or adjacent to wetland areas. Figure 7 is a plan environmental view of a
3	typical shoreline 110 with wetlands 111, showing the placement of the invention 1 is
	open water 112 in front of the shore. The islands are arraigned in a line to act as
4	shoreline protection and a barrier for storm surges. The water depth can vary from 5
5	feet to a maximum of about 45 feet. The minimum water depth is limited by the draft of
6	the barges needed for the construction of the island.
7	Figure 8 is an environmental view of a series of islands formed using the
8	invention. Here three islands 1 are shown in water 112 . In this way, a row of several
9	islands can be built to minimize damage from storms.
10	A typical island is formed as follows:
11	Typically, all work is done from a barge. First, a set of piles is positioned in the
12	shape of the island. The piles can be made of concrete, steel or wood, using well know
13	techniques. The shape of the island is dependent on a number of factors and is always
14	site-specific. Factors such as water depths and currents (speed and direction) as well as
15	wind velocity and storm surge are site specific and will determine the purpose of the
16	island (such as protecting eroding shoreline or wetlands). The environmental processes
17	shall determine the exact shape of the island. These factors are commonly used to
18	shall determine the exact shape of the interior structures and their calculations design structures such as bridges and other in-water structures and their calculations
19	
20	are well within the scope of ordinary skill in the art.

	Once the piles are positioned, they are driven into the bottom at a sufficient
1	depth to meet the design conditions. The length of the piles depends on the depth of
2	the water and subsurface conditions. In the preferred embodiment, the maximum
3	water depth is 45 feet. However, the island can be built in shallower water as needed.
4	Note also that the depth of the water determines the distance of the island from the
5	Note also that the depth of the water determines the distance of the water surface level (usually
6	mainland. The piles are driven so that their tops are at the water surface level (usually
7	measured at low tide for marine environments). Spacing of the piles also depends on
8	the design factors. For example, a spacing of 30 feet between piles is a typical measure.
9	However, this spacing will change with the conditions and is, again, entirely site-
10	specific.
11	The size of the island depends on the intended use and site-specific conditions.
12	The minimum diameter of the island is calculated, but is also dependent upon the water
13	denth. Typically, the diameter of the island shall be three times the depth of the water.
	Thus, for a 30-foot water depth, the island diameter should be considered to be at least
14	90 feet. Using the rule above provides an adequate base to make a stable island.
15	Once the piles are set, wire mesh is attached to the piles. This mesh runs around
16	Once the piles are set, whe mest is distributed and once the piles are set, whe mest is distributed and in the wire
17	the perimeter, forming a corral-like structure. In the preferred embodiment, the wire
18	mesh is stainless steel welded wire mesh, but mesh made of other materials can be
19	used. The wire mesh is pushed down into the bottom, to the level of the sub bottom. It
20	then extends up to the top of the piles, as shown.

The Application of Dominic Amari Page 6

1	Once the "corral" is formed, the tops of the piles are tied together using cables
2	that form tiebacks. The tiebacks are shown in figs. 2 and 5. In Figure 2, a top view of
3	the corral structure is shown. Note how the tiebacks run to piles that are positioned
4	opposite of each other. The tiebacks hold the piles in a vertical position when the island
5	is formed. They keep the piles from splaying out as the "corral" is filled.
6	Once the "corral" structure is complete, it is filled with riprap material (rock is
7	preferred). The riprap material is delivered on barges. Typically, riprap material is
8	added until it is almost to the surface of the water. The "rock" is then covered with a
9	geotextile mat that extends up to the top of the screen mesh. This matting retains the
10	cover soil in the corral and provides a base for natural vegetation. At that point, soils
11	can be added to build up the island above the surface of the water as desired.
12	Alterations and design considerations for marine environments shall include tidal
13	actions, storm surge and wave frequency.
14	Finally, the soil is planted with vegetation suitable for the location.
15	Figure 9 shows another embodiment of the invention. Here, the piles 20 are set
16	to a height below the surface of the water 120. For example, the tops of the piles might
17	be 8 feet below the surface at low tide. The "corral" is formed in the same way as
18	discussed above using the wire mesh 21. "Rock" 22 is placed in the structure to the top
19	of the piles 20, however no top cover is used. This structure forms an artificial reef,
20	which acts as a breakwater

1	An example of a typical construction follows: To make an island in
2	approximately 30-35 feet of water, fifteen of 70 foot concrete "I" piles are used (note:
3	pile depth is site specific). The piles are driven into the bottom until they extend up
4	from the bottom 30-35 feet, until that are at the level of the low tide. The piles are
5	spaced approximately 30 feet apart forming a shell with a perimeter of approximately
6	440 feet (this configuration is shown in figure 2). Next, 8 ga. stainless steel welded wire
7	mesh is attached to the piles. The mesh is approximately 35-40 feet in height. The mesh
8	is pushed down into the muck layer. A series of stainless steel cables is suspended
9	between the piles in a pattern as shown in figure 2. Once the cables are secure, barges
10	loaded with riprap material are positioned and the material is dumped into the
11	enclosure. The riprap is laid to a point approximately 1 foot above the water surface.
12	The rock is then covered with a geotextile mat that extends above the top of the screen
13	mesh. Then quantities of fill dirt are added as cover material until the cover material
14	extends to design height, (in this case approximately 5 feet above the high tide mark).
15	Finally, a number of indigenous plants and trees are added to the island to form a
16	vegetative cover to prevent erosion.
17	The present disclosure should not be construed in any limited sense other than
18	that limited by the scope of the claims having regard to the teachings herein and the
19	prior art being apparent with the preferred form of the invention disclosed herein and
20	which reveals details of structure of a preferred form necessary for a better

- 1 understanding of the invention and may be subject to change by skilled persons within
- the scope of the invention without departing from the concept thereof.