Algorithmic Challenges: From Suffix Array to Suffix Tree

Michael Levin

Higher School of Economics

Algorithms on Strings Data Structures and Algorithms

Outline

1 Suffix Array and Suffix Tree

2 LCP Array Computation

3 Constructing Suffix Tree

Construct suffix Tree

Input: String *S*

Output: Suffix tree of *S*

- You already know how to construct suffix tree
- But $O(|S|^2)$ will only work for short strings
- You will learn to build it in $O(|S| \log |S|)$ which enables very long texts!

General Plan

- Construct suffix array in $O(|S| \log |S|)$
- Compute additional information in O(|S|)
- Construct suffix tree from suffix array and additional information in O(|S|)

Definition

The longest common prefix (or just "lcp") of two strings S and T is the longest such string u that u is both a prefix of S and T. We denote by LCP(S, T) the length of the "lcp" of S and T.

Example

$$LCP("ababc", "abc") = 2$$

 $LCP("a", "b") = 0$

Definition

Consider suffix array A of string S in the raw form, that is $A[0] < A[1] < A[2] < \cdots < A[|S| - 1]$ are all the suffixes of S in lexicographic order. LCP array of string S is the array *lcp* of size |S|-1 such that for each i such that 0 < i < |S| - 2

$$lcp[i] = LCP(A[i], A[i+1])$$

S = ababaa\$

0 \$

5 *baa*\$

6 babaa\$

lcp = [, , , , ,]

S = ababaa\$

0 \$

5 *baa*\$

6 babaa\$

S = ababaa\$

0 \$

5 *baa*\$

6 babaa\$

S = ababaa\$

0 \$

2 aa\$

5 *baa*\$

6 babaa\$

lcp = [0, 1, , ,]

S = ababaa\$

0 \$

1 a\$

5 *baa*\$

6 babaa\$

lcp = [0, 1, 1, ,]

S = ababaa\$

0 \$

5 *baa*\$

6 babaa\$

lcp = [0, 1, 1, 3, ,]

S = ababaa\$

0 \$

2 aa\$

5 *baa*\$

6 babaa\$

lcp = [0, 1, 1, 3, 0,]

S = ababaa\$

0 \$ 1 a\$

5 baa\$

6 babaa\$

lcp = [0, 1, 1, 3, 0, 2]

LCP array property

Lemma

For any i < j, $LCP(A[i], A[j]) \le lcp[i]$ and $LCP(A[i], A[j]) \le lcp[j-1]$.

```
• •
```

i ababababa

i+1 abababc

abbcabab

```
• •
```

i ababababa

i+1 abababc

abbcabab

i ababababa

If LCP(A[i], A[j]) > LCP(A[i], A[i+1])

If
$$LCP(A[i], A[j]) > LCP(A[i], A[i + 1])$$

Consider $k = LCP(A[i], A[i + 1])$

```
i ababababa i+1 a\_ k=1 \dots
```

i abbcabab

If k = |A[i+1]|, then A[i+1] < A[i] - contradiction

$$i$$
 ababababa $i + 1$ axxxxxxxx $k = 1$

Otherwise
$$A[j][k] = A[i][k] \neq A[i+1][k]$$

$$i+1$$
 acxxxxxxx $k=1$... \bigvee i abbcabab

If A[j][k] = A[i][k] < A[i+1][k], then A[j] < A[i+1] — contradiction

$$i$$
 ababababa $i+1$ aaxxxxxxx $k=1$ \dots

If A[i][k] > A[i+1][k], then A[i] > A[i+1]contradiction

Computing LCP array

- For each i, compute LCP(A[i], A[i+1]) via comparing A[i] and A[i+1] character-by-character
- O(|S|) for each i, O(|S|) different i total time $O(|S|^2)$
- How to do this faster?

Outline

Suffix Array and Suffix Tree

2 LCP Array Computation

3 Constructing Suffix Tree

Idea

Lemma

Let h be the longest common prefix between S_{i-1} and its adjacent (next) suffix in the suffix array of string S. Then the longest common prefix between S_i and its adjacent (next) suffix in the suffix array is at least h-1.

index	sorted suffix	LCP
 <i>i</i> = 10 7	a\$ abra\$	
 j = 3	 acadabra\$	
i - 1 = 9 j - 1 = 2	ra\$ racadabra\$	•••

index	sorted suffix	LCP
i = 10	a\$	
7	abra\$	
j=3	acadabra\$	 h = 2
i - 1 = 9 $j - 1 = 2$	ra\$ racadabra\$	n=2

index	sorted suffix	LCP
 i = 10	a\$	•••
7 — 10 7	abra\$	
 j = 3	 acadabra\$	
i - 1 = 9 $j - 1 = 2$	ra\$ racadabra\$	 h = 2

index	sorted suffix	LCP
	• • •	• • •
i = 10	a\$	$1 \ge h - 1$
7	abra\$	
j = 3	acadabra\$	
i - 1 = 9	ra\$	h = 2
j - 1 = 2	ra\$ racadabra\$	

Idea

- Start by computing LCP(A[0], A[1]) directly
- Instead of computing to LCP(A[1], A[2]), move A[0] one position to the right **in the string**, get some A[k] and compute LCP(A[k], A[k+1])
- Repeat this until LCP array is fully computed
- Length of the LCP never decreases by more than one each iteration

Notation

Let $A_{n(i)}$ be the suffix starting in the next position in the string after A[i]

Example

- lacktriangledown A[0] = ``ababdabc'', A[1] = ``abc''
- Compute LCP(A[0], A[1]) = 2 directly
- $LCP(A_{n(0)}, A_{n(1)}) \ge LCP(A[0], A[1]) 1$
- $lacksquare A[0] < A[1] \Rightarrow A_{n(0)} < A_{n(1)}$
- LCP of $A_{n(0)}$ with the next **in order** A[j] is also at least LCP(A[0], A[1]) 1

Example

- A[0] = ``ababdabc'', A[1] = ``abc''
- Compute LCP(A[0], A[1]) = 2 directly
- $LCP(A_{n(0)}, A_{n(1)}) \ge LCP(A[0], A[1]) 1$
- \bullet $A[0] < A[1] \Rightarrow A_{n(0)} < A_{n(1)}$
- LCP of $A_{n(0)}$ with the next **in order** A[j] is also at least LCP(A[0], A[1]) 1

Example

- $LCP(A_{n(0)}, A_{n(1)}) \ge LCP(A[0], A[1]) 1$
- $A[0] < A[1] \Rightarrow A_{n(0)} < A_{n(1)}$ ■ LCP of $A_{n(0)}$ with the next **in order**
- A[j] is also at least LCP(A[0], A[1]) 1
- Compute $LCP(A_{n(0)}, A[j])$ directly, but don't compare first LCP(A[0], A[1]) 1 characters: they are equal

Algorithm

- Compute *LCP*(*A*[0], *A*[1]) directly, save as *lcp*
- First suffix goes to the next in the string
- Second suffix is the next in the order
- Compute LCP knowing that first lcp 1 characters are equal, save lcp
- Repeat

LCPOfSuffixes(S, i, j, equal)

```
lcp \leftarrow \max(0, equal)
while i + lcp < |S| and j + lcp < |S|:
```

if S[i + lcp] == S[j + lcp]:

 $lcp \leftarrow lcp + 1$

else:

return *lcp*

break

InvertSuffixArray(order)

```
pos \leftarrow \text{ array of size } |order| for i from 0 to |pos| - 1: pos[order[i]] \leftarrow i
```

return pos

```
ComputeLCPArray(S, order)
lcpArray \leftarrow array of size |S| - 1
lcp \leftarrow 0
posInOrder ← InvertSuffixArray(order)
suffix \leftarrow order[0]
for i from 0 to |S|-1:
  orderIndex \leftarrow posInOrder[suffix]
```

if orderIndex == |S| - 1: $lcp \leftarrow 0$

 $nextSuffix \leftarrow order[orderIndex + 1]$

 $lcpArray[orderIndex] \leftarrow lcp$ $suffix \leftarrow (suffix + 1) \mod |S|$

return *lcpArray*

 $lcp \leftarrow LCPOfSuffixes(S, suffix, nextSuffix, lcp - 1)$

 $suffix \leftarrow (suffix + 1) \mod |S|$ continue

Analysis

Lemma

This algorithm computes LCP array in O(|S|)

- Each comparison increases *lcp*
- $lcp \leq |S|$
- Each iteration *lcp* decreases by at most
- Number of comparisons is O(|S|)

Outline

Suffix Array and Suffix Tree

2 LCP Array Computation

3 Constructing Suffix Tree

Building suffix tree S = ababaa\$

1 babaa\$

Building suffix tree S = ababaa\$

- 4 aa\$
- 2 abaa\$
- 0 ababaa\$ 3 *baa*\$

1 babaa\$

3 *baa*\$

1 babaa\$

Algorithm

- Build suffix array and LCP array
- Start from only root vertex
- Grow first edge for the first suffix
- For each next suffix, go up from the leaf until *LCP* with previous is below
- Build a new edge for the new suffix

class SuffixTreeNode:

SuffixTreeNode parent Map<char, SuffixTreeNode> children integer stringDepth

integer edgeStart integer edgeEnd

STFromSA(S, order, lcpArray)

```
root ← new SuffixTreeNode(
  children = \{\}, parent = nil, stringDepth = 0,
  edgeStart = -1, edgeEnd = -1)
IcpPrev \leftarrow 0
curNode \leftarrow root
for i from 0 to |S|-1:
  suffix \leftarrow order[i]
  while curNode.stringDepth > lcpPrev:
     curNode \leftarrow curNode.parent
  if curNode.stringDepth == lcpPrev:
     curNode \leftarrow CreateNewLeaf(curNode, S, suffix)
  else:
     edgeStart \leftarrow order[i-1] + curNode.stringDepth
     offset \leftarrow IcpPrev - curNode.stringDepth
     midNode \leftarrow BreakEdge(curNode, S, edgeStart, offset)
     curNode \leftarrow CreateNewLeaf(midNode, S, suffix)
  if i < |S| - 1:
     IcpPrev \leftarrow IcpArrav[i]
return root
```

CreateNewLeaf(node, S, suffix)

leaf ← new *SuffixTreeNode*($children = \{\},$ parent = node,

stringDepth = |S| - suffix,edgeStart = suffix + node.stringDepth,edgeEnd = |S| - 1 $node.children[S[leaf.edgeStart]] \leftarrow leaf$ return leaf

BreakEdge(node, S, start, offset)

```
startChar \leftarrow S[start]
midChar \leftarrow S[start + offset]
midNode ← new SuffixTreeNode(
  children = \{\},
  parent = node,
  stringDepth = node.stringDepth + offset,
  edgeStart = start,
```

 $midNode.children[midChar] \leftarrow node.children[startChar]$

 $node.children[startChar].edgeStart \leftarrow start + offset$

edgeEnd = start + offset - 1)

 $node.children[startChar] \leftarrow midNode$

return midNode

 $node.children[startChar].parent \leftarrow midNode$

Analysis

Lemma

This algorithm runs in O(|S|)

- Total number of edges in suffix tree is O(|S|)
- For each edge, we go at most once down and at most once up
- Constant time to create a new edge and possibly a new node

Conclusion

- Can build suffix tree from suffix array in linear time
- Can build suffix tree from scratch in time $O(|S| \log |S|)$