Some Comments

■ Physics in the interaction model

Model

$$\dot{\rho_c} + 3H\,\rho_c = Q_c \tag{1}$$

$$\dot{\rho_d} + 3H(1+w)\rho_d = Q_d$$
 (2)

Forms used

1. $Q_c = \xi H \rho_c$, energy transfer: $\xi > 0$, DE->DM; $\xi < 0$, DM->DE

2.
$$Q_c = \xi H \rho_d$$
, energy transfer: ξ >0, DE->DM; ξ <0, DM->DE

However, the conservation of energy is always satisfied. So

$$Q_c + Q_d = 0$$

■ Physics

1.
$$Q_c = \xi H \rho_c$$

Energy transfer is proportional to DM. In this case, the physics behind it is probabily a decay of DM. Ignoring the expansion effect, equation 1 is essentially the decay process of DM only when $Q_c > 0$. In an expotentional decay process, the decay rate is proportional to the total particle number (total energy) of the species, i.e., $Q_c = \Gamma \rho_c$ with $\Gamma > 0$.

From this point of view, it is more natural to choose ξ >0. But, this does NOT exclude ξ <0 of course.

2.
$$Q_c = \xi H \rho_d$$

Similarly, it is better to choose ξ <0 in this condition. This does NOT exclude ξ <0 neither.

- How to determine transition redshift.
- **■** Some tips
- More about ICC and I2CC
- ICC
- I2CC

The following are the results of different EoS w for I2CC.

 $\lab{si2CCSum2d}, \{tab{si2CCSum2d}\}, \{tab{si2CCSum2c}\}, \{tab{si2CCSum2b}\}, \\ \{tab{si2CCSum2}\}, \{tab{si2CCSum2e}\}, \{tab{si2CCSum2e}\}\}]$

For $\Omega m0 \in \{0.261, 0.274, 0.287\}$, w=-0.7 Table of ξ for different $\Omega m0 \sim Transition$ combination			
Ωm0:.Transition	0.426	0.376	0.508
0.261	-0.414982	-0.551355	-0.249743
0.274	-0.351859	-0.482765	-0.193228
0.287	-0.287785	-0.413122	-0.135889

For $\Omega m0 \in \{0.261, 0.274, 0.287\}, w=-0.8$				
Table of ξ for different Ω m0~Transition combination				
Ωm0:.Transition	0.426	0.376	0.508	
0.261	-0.596208	-0.773551	-0.381502	
0.274	-0.531577	-0.703492	-0.323418	
0.287	-0.465997	-0.63238	-0.264512	

For $\Omega m0 \in \{0.261, 0.274, 0.287\}, w=-0.9$				
Table of ξ for different Ω m0~Transition combination				
Ωm0:.Transition	0.426	0.376	0.508	
0.261	-0.730803	-0.94401	-0.472902	
0.274	-0.66466	-0.872481	-0.413236	
0.287	-0.597567	-0.799899	-0.352751	

For $\Omega m0 \in \{0.261, 0.274, 0.287\}, w=-1$ Table of ξ for different $\Omega m0 \sim Transition$ combination 0.426 0.376 0.508 Ωm0:.Transition 0.261 -0.828666 -1.07368-0.5325640.274 -0.760999 -1.00068 -0.471298 -0.692386 0.287 -0.92662 -0.409217

Out[847]=

For $\Omega m0 \in \{0.261, 0.274, 0.287\}$, w=-1.1 Table of ξ for different $\Omega m0 \sim Transition$ combination					
Ωm0'.Transition 0.426 0.376 0.508					
0.261	-0.896881	-1.17039	-0.566664		
0.274	-0.827676	-1.0959	-0.503776		
0.287	-0.757528	-1.02037	-0.440076		

For $\Omega m0 \in \{0.261, 0.274, 0.287\}, w=-1.2$				
Table of ξ for different Ω m0~Transition combination				
Ωm0:.Transition	0.426	0.376	0.508	
0.261	-0.940694	-1.23995	-0.579778	
0.274	-0.869934	-1.16396	-0.515241	
0.287	-0.798235	-1.08693	-0.449899	

For $\Omega m0 \in \{0.261, 0.274, 0.287\}, w=-1.3$				
Table of ξ for different Ω m0~Transition combination				
Ωm0:.Transition	0.426	0.376	0.508	
0.261	-0.964104	-1.28676	-0.575397	
0.274	-0.891769	-1.20926	-0.509183	
0.287	-0.8185	-1.13072	-0.44217	

All lines with the same color intersect at the same point because all lines with the same color have the same transition redshift. This is a good check of the calcuation.

The smaller the EoS is, the steeper the lines are at about $z\sim0.5$.

-0.3

What about the redshift range when ξ =0. The results show redshift is quite sensitive with respect to EoS.

 $\label{eq:loss_sign} $$ \ln[994] = Grid[{\{\xi I2CCSum2noint1\}, \{\xi I2CCSum2noint2\}, \{\xi I2CCSum2noint3\}\}}]$$

For $\Omega m0 \in \{0.261, 0.274, 0.287\}$, w=-0.9 Table of transition redshift for different ξ and $\Omega m0$ combination			
Ωm0	0.261	0.274	0.287
ξ=0	0.789618	0.746172	0.705001
0bs	0.508	0.426	0.376
∆=obs-row1	-0.281618	-0.320172	-0.329001
$\frac{\triangle}{\text{obs}} = \left \frac{\text{obs-rowl}}{\text{obs}} \right $	0.554366	0.751578	0.875003

 Q_c = ξ H ρ_d , ξ =0, constant w=-0.9: Deceleration~Redshift

0.5

For Ωm0∈{0.261,0.274,0.287},w=-0.8 Table of transition redshift for different S and Om0 combination				
for different ξ and Ω m0 combination $\varepsilon \cdot \Omega$ m0 0.261 0.274 0.287				
0	0.775095	0.726689	0.680957	
Obs	0.508	0.426	0.376	
∆=obs-row1	-0.267095	-0.300689	-0.304957	
$\frac{\Delta}{\text{obs}} = \left \frac{\text{obs-rowl}}{\text{obs}} \right $	0.525778	0.705844	0.811055	

 Q_c = ξ H ρ_d , ξ =0, constant w=-0.8: Deceleration~Redshift

For $\Omega m0 \in \{0.261, 0.274, 0.287\}$, w=-0.7 Table of transition redshift for different ξ and $\Omega m0$ combination			
<i>ξ</i> ∙.Ωm0	0.261	0.274	0.287
0	0.717714	0.664286	0.614005
Obs	0.508	0.426	0.376
∆=obs-row1	-0.209714	-0.238286	-0.238005
$\frac{\triangle}{\text{obs}} = \left \frac{\text{obs-row1}}{\text{obs}} \right $	0.412822	0.559357	0.632992

 Q_c = ξ H ρ_d , ξ =0, constant w=-0.7: Deceleration~Redshift

