

Práctica 3

2do cuatrimestre 2021 Álgebra I

Integrante	LU	Correo electrónico
Yago Pajariño	546/21	ypajarino@dc.uba.ar

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2610 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina Tel/Fax: (++54+11) 4576-3300

 $\rm http://www.exactas.uba.ar$

${\rm \acute{I}ndice}$

3.	Práctica	í.	2
	3.1. Ejere	cio 1	2
	3.2. Ejere	cio 2	2
	3.3. Ejere	cio 3	2
	3.4. Ejere	cio 4	2
	3.5. Ejere	$\mathrm{cio}\ 5$	3
	3.6. Ejere	cio 6	3
	3.7. Ejere	cio 7	3
	3.8. Ejere	cio 8	3
	3.9. Ejere	cio 9	3
	3.10. Ejere	cio 10	3
	3.11. Ejero	cio 11	4
	3.12. Ejero	cio 12	4
	3.13. Ejero	cio 13	4
	3.14. Ejero	cio 14	4
	3.15. Ejero	cio 15	4
	3.16. Ejero	cio 16	5
	3.17. Ejero	cio 17	5
	3.18. Ejere	cio 18	5
	3.19. Ejere	cio 19	5
	3.20. Ejere	cio 20	6
	3.21. Ejere	cio 21	6
	3.22. Ejere	cio 22	6
	3.23. Ejere	cio 23	6
	3.24. Eiero	cio 24	6

3. Práctica 3

3.1. Ejercicio 1

Por enunciado, $A = \{n \in V : n \ge 132\}$

Y también, $A^c = \{ n \in V : n < 132 \}$

Se que dado un elemento cualquiera, $x \in V \iff (x \in \mathbb{N} \land x \mod 15 = 0)$

Por lo tanto, $A^c = \{n \in V : (n < 132 \land n \mod 15 = 0)\}$

Así,
$$\#A^c = \lfloor \frac{132}{15} \rfloor = 8$$

Por extensión, $A^c = \{15, 30, 45, 60, 75, 90, 105, 120\}$

3.2. Ejercicio 2

Defino el conjunto universal $V = \{n \in \mathbb{N} : n \le 1000\}$

Defino el conjunto $T = \{n \in \mathbb{N} : n \mod 3 = 0\}$

Defino el conjunto $C = \{n \in \mathbb{N} : n \mod 5 = 0\}$

Luego busco $\#(T^c \cup C^c) = \#(T \cup C)^c$

Entonces $(T \cup C) = \{n \in \mathbb{N} : n \mod 15 = 0\}$ pues 3 y 5 son primos.

Por lo tanto $\#(T \cup C) = \lfloor \frac{1000}{15} \rfloor = 66$

Y así, $\#(T \cup C)^c = 1000 - 66 = 934$

3.3. Ejercicio 3

$$\#(A \cup B \cup C) = \#A + \#B + \#C - \#(A \cap B) - \#(A \cap C) - \#(B \cap C) + \#(A \cap B \cap C)$$

3.4. Ejercicio 4

3.4.A. Pregunta i

Datos del enunciado:

1.
$$\#V = 150$$

2.
$$\#A = 83$$

3.
$$\#B = 67$$

4.
$$\#(A \cap B) = 45$$

Luego,

$$#(A \cup B)^{c} = #V - #(A \cup B)$$

$$= #V - (#A + #B - #(A \cap B))$$

$$= 150 - (83 + 67 - 45)$$

$$= 45$$

3.4.B. Pregunta ii

TODO

3.5. Ejercicio 5

Datos del enunciado:

- 1. Rutas BSAS Ros = 3
- 2. Rutas Ros SF = 4
- 3. Rutas SF Req = 4

Por lo tanto hay $3 \cdot 4 \cdot 2 = 24$ formas de ir de Buenos Aires a Reconquista pasando por Rosario y Santa Fe.

3.6. Ejercicio 6

3.6.A. Pregunta i

Hay $8 \cdot 9 \cdot 9 \cdot 9 = 5832$ números.

3.6.B. Pregunta ii

Calculando por el complemento:

Hay $9 \cdot 10 \cdot 10 \cdot 10 = 9000$ números de cuatro cifras.

En el inciso anterior se calculó la cantidad de números que no tienen cierto dígito (calculado por 5, vale para 7).

Luego habrá 9000 - 5832 = 3168 números.

3.7. Ejercicio 7

Puede distribuirlos en 3¹⁷ formas.

3.8. Ejercicio 8

Defino $A = \{materias\}$, se que #A = 5

Luego las posibles elecciones están dadas por $\#P(A)=2^5=32$

Si tiene que cursar al menos dos materias, no puede elegir las opciones de cursar ninguna materia o una sola materia.

Así tiene 32 - 5 - 1 = 26 formas de cursar al menos dos materias.

3.9. Ejercicio 9

Se que A es de la forma $A = \{a_1, a_2, ..., a_n\}$

R es una relación en $A \times A \iff R \subseteq A \times A$: si R es un subconjunto del producto cartesiano $A \times A$

Luego la cantidad de relaciones en A será: $\#P(A\times A)=2^{n^2}$

- 1. Reflexivas: 2^{n^2-2}
- 2. Simétricas: $2^{\sum_{k=1}^{n} k} = 2^{\frac{n(n+1)}{2}}$
- 3. Simétricas: $2^{\sum_{k=1}^{n-1} k} = 2^{\frac{n(n-1)}{2}}$

3.10. Ejercicio 10

- 1. $\#\{f \in F/f \text{ es función}\} = 12^5$
- 2. $\#\{f \in F/10 \not\in Im(f)\} = 11^5$

3. $\#\{f \in F/10 \in \text{Im}(f)\} = 12^5 - 11^5$

4. $\#\{f \in F/f(1) \in \{2,4,6\}\} = 3 \cdot 12^4$

3.11. Ejercicio 11

1. 7! = 5040 functiones.

2. $3! \cdot 4! = 144$ functiones.

3.12. Ejercicio 12

De cinco cifras usando los dígitos $\{1, 2, 3, 4, 5\}$: 5!

De cinco cifras usando los dígitos $\{1, 2, 3, 4, 5, 6, 7\}: \frac{5!}{2!}$

De cinco cifras usando los dígitos $\{1,2,3,4,5,6,7\}$ sin 2 en las cententas: $\frac{7!}{2!} \cdot \frac{4}{5}$

3.13. Ejercicio 13

Rdo. funciones inyectivas: Una función $f: A \to B$ es inyectiva sii $(x \in A) \land (y \in A) \land (x \neq y) \implies f(x) \neq f(y)$

1. $\frac{10!}{(10-7)!} = \frac{10!}{3!}$

2. Para f(1) tengo 5 opciones. Al resto todas menos las que ya fueron asignadas $(9.8,7,...) \implies 5 \cdot \frac{9!}{3!}$

3.14. Ejercicio 14

Defino $A = \{1, 2, 3, 4, 5, 6, 7\}$ y $B = \{1, 2, 3, 4, 5, 6, 7\}$

Luego #A = #B = 7

 $f: A \to B$ es viyectiva $\iff \forall x \in A; \exists ! y \in B : f(x) = y$

Y además me piden que $f(\{1, 2, 3\}) \subseteq \{3, 4, 5, 6, 7\}$

Luego habrá $\frac{5!}{2!} \cdot 4!$ funciones que cumplen lo pedido.

3.15. Ejercicio 15

Tengo R relación de equivalencia en $A = \{f : \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4, 5, 6, 7, 8\} : f \text{ es inyectiva}\}$

Por definición, $fRg \iff f(1) + f(2) = g(1) + g(2)$

Necesito saber cuantas $g \in A$ se relaciones con f(n) = n + 2

Pero,

$$fRg \iff f(1) + f(2) = g(1) + g(2)$$

 $3 + 4 = g(1) + g(2)$
 $7 = g(1) + g(2)$

Entonces, busco las $g \in A : g(1) + g(2) = 7$

Hay seis funciones de $\{1,2\} \rightarrow \{2,3,4,5,6\}$ que cumplen con esto.

Completo el total de funciones asignando el resto de los elementos de forma inyectiva.

Luego habrá $6 \cdot \frac{6!}{4!} = 180$ elementos dentro de la clase de equivalencia de f(n) = n + 2

3.16. Ejercicio 16

Defino $A = \{1, 2, 3, ... 8\}$ y $B = \{1, 2, 3, ..., 12\}$ con #A = 8 y #B = 12

Condiciones que me piden:

- 1. f inyectiva
- 2. f(5) + f(5) = 6
- 3. $f(1) \leq 6$

Primero busco asignaciones a f(5) y f(6) que cumplan lo pedido. Para esto hay cuatro opciones posibles.

Luego f(1) puede tomar cualquier valor menos los dos que ya fueron asignados ya que f(5); f(6) siempre toman valores ≤ 6 . Luego para f(1) hay 4 opciones.

Para los demás elementos de A pueden tomar alguno de los 9 elementos restantes de B.

Por lo tanto hay $4 \cdot 4 \cdot \frac{9!}{4!}$ opciones.

3.17. Ejercicio 17

- 1. $\binom{7}{4}$
- 2. $\binom{6}{3}$
- 3. $\binom{6}{4}$
- 4. $\binom{5}{3} \cdot 2$

3.18. Ejercicio 18

Por enunciado $A = \{n \in \mathbb{N} : n \le 20\}$ y #A = 20

3.18.A. Pregunta i

Defino $B_1 = \{n \in \mathbb{N} : n \le 20 \land n \mod 3 = 0\} = \{3, 6, 9, 12, 15, 18\}$

Luego para armar las funciones debo elegir 4 del conjunto B_1 y 6 elementos del conjunto $B-B_1$

Luego habrá $\binom{6}{4} \cdot \binom{14}{6}$ subconjuntos.

3.18.B. Pregunta ii

Hay suma impar de dos elementos si uno de ellos es par y el otro impar. Entonces, todos los elementos deben ser pares o impares.

Si son todos pares $\implies \binom{10}{5}$ subconjuntos.

Si son todos impares $\implies \binom{10}{5}$ subconjuntos.

Luego habrá $2 \cdot \binom{10}{5}$

3.19. Ejercicio 19

Cada punto de una recta se une a dos de la otra para formar un triángulo.

Es decir, para cada vértice en una recta, elijo dos en la otra recta para formar el triángulo.

Luego habrá $\binom{m}{2} \cdot n$ con $m \geq 2; n \in \mathbb{N}$

3.20. Ejercicio 20

Defino $A = \{1, 2, 3, ..., 11\}$ y $B = \{1, 2, 3, ..., 16\}$

Me piden:

- 1. f inyectiva
- 2. n, f(n) pares
- 3. f(1) < f(3) < f(5) < f(7)

La segunda condición me dice que los pares solo pueden tener imagen par, luego habrá #fp funciones para los pares.

$$\#fp = \frac{8!}{3!}$$

Para los impares tengo que considerar la tercera condición, esta implica que no me importa el orden de los elementos de B, sino que me voy a quedar con aquel que cumple la condición.

Así habrá #fi funciones para los impares.

$$\#fi = \binom{11}{4} \cdot 7 \cdot 6$$

Por lo tanto, hay $\frac{8!}{3!} \cdot \binom{11}{4} \cdot 7 \cdot 6$ funciones que cumplen lo pedido.

3.21. Ejercicio 21

- 1. 7!
- $2. \frac{7!}{3!}$
- 3. $\frac{12!}{3! \cdot 2!}$

3.22. Ejercicio 22

- 1. $\binom{7}{3} \cdot 3! \cdot 4!$
- 2. $\binom{7}{4} \cdot 3!$
- $3. \ 4! \cdot 4!$

3.23. Ejercicio 23

- 1. Por el complemento: $10! \binom{10}{2} \cdot 8!$
- 2. $\binom{10}{3} \cdot 3! \cdot 7!$

3.24. Ejercicio **24**

Defino $F = \{D, D, D, D, D, D, N, N, B, P, H, K, C, M\}$

Condiciones:

- 1. Dos frutas por día.
- 2. No más de una N por día.

Calculo por el complemento,

#Todas – #Dos naranjas por día = $14! - 7 \cdot 12!$