Phong Reflection Model

Production Computer Graphics
Eric Shaffer

Shading

The first step in determining the appearance of a rendered object is to choose a *shading model* to describe how the object's color should vary based on factors such as surface orientation, view direction, and lighting.

Akenine-Moeller, Tomas; Haines, Eric; Hoffman, Naty. *Real-Time Rendering*, Fourth Edition

Phong Reflection

We model three types of light reflected by surfaces:

- Ambient (light that has bounced around a scene...environmental light)
- Specular (light reflected in a mirror-like fashion at surface)
- Diffuse (light scattered uniformly in all directions)

Here we can see diffuse reflection and maybe ambient.

How many lights are in the scene?

$$I_{
m p} = k_{
m a} i_{
m a} + \sum_{m \in ext{limber}} (k_{
m d} (\hat{L}_m \cdot \hat{N}) i_{m,
m d} + k_{
m s} (\hat{R}_m \cdot \hat{V})^lpha i_{m,
m s})$$

Phong Reflection Model

$$I_{ ext{p}} = k_{ ext{a}} i_{ ext{a}} + \sum_{m \; \in \; ext{lights}} (k_{ ext{d}} (\hat{L}_m \cdot \hat{N}) i_{m, ext{d}} + k_{ ext{s}} (\hat{R}_m \cdot \hat{V})^lpha i_{m, ext{s}})$$

Ambient Light

- Result of multiple interactions between light sources and surfaces
- Amount and color depend on the color of the light(s) and the material properties
- Add k_a l_a to diffuse and specular terms
 reflection intensity of ambient light

Remember that k_i multiplications are component-wise multiplications of rgb values $(k_r, k_g, k_b)(i_r, i_g, i_b) = (k_r i_r, k_g i_g, k_b i_b)$

Specular and Diffuse Surfaces

- Most surfaces are neither ideal diffusers nor perfectly specular (ideal reflectors)
- Smooth surfaces show specular highlights
 - incoming light is reflected in directions concentrated close to the direction of a perfect reflection

Modeling Diffuse Reflection

- Perfectly diffuse reflector
- Light scattered equally in all directions
- Amount of light reflected is affected by the angle of incidence
 - reflected light proportional to cosine of angle between I and n
 - if vectors normalized

$$\cos(\theta) = n \cdot l$$

- ullet Amount of reflected light also affected by k_d and i_d
 - Each is an rgb value with each channel in [0,1]

Specular Reflection

- Perfect specular reflection
 - Light is reflected in the single direction r
 - ...the mirror reflection direction
- Glossy specular reflection
 - Scattering clustered around mirror reflection direction

Specular Reflection

- Reflectance determined by
 - Alignment of view vector with mirror reflection vector
 - Shininess coefficient
- High coefficient means smoother look
 - Maybe 100 for metal
 - Maybe 10 for plastic

Phong Reflection Model

$$I_{
m p} = k_{
m a} i_{
m a} + \sum_{m \; \in \; ext{lights}} (k_{
m d} (\hat{L}_m \cdot \hat{N}) i_{m,
m d} + k_{
m s} (\hat{R}_m \cdot \hat{V})^lpha i_{m,
m s})$$

Shading vs. Shadows

You should clamp negative cosine values to zero

The darkness on the far side of the sphere is from the shading...NOT shadows...

$$I_{
m p} = k_{
m a} i_{
m a} + \sum_{m \; \in \; ext{lights}} (k_{
m d} (\hat{L}_m \cdot \hat{N}) i_{m,
m d} + k_{
m s} (\hat{R}_m \cdot \hat{V})^lpha i_{m,
m s})$$

Diffuse Reflection aka Lambertian Reflection

Model published by Johann Heinrich Lambert in 1760

