# 머신 러닝 Machine Learning

#### Classification

Clustering



ensemble

**Assessment** 

Regression

### INDEX

- 머신 러닝이란?
- 지도학습과 비지도학습
- 교차검증



- 앙상블
- 실전! 머신러닝

## 머신 러닝이란?

#### 딥러닝과 머신러닝의 관계

1959년, 아서 사무엘은 기계 학습을 "기계가 일일이 코드로 명시하지 않은 동작을 데이터로부터 학습하여 실행할 수 있도록 하는 알고리즘을 개발하는 연구 분야"라고 정의하였다. 기계 학습의 핵심은 표현 (representation)과 일반화(generalization)에 있다. 표현이란 데이터의 평가이며, 일반화란 아직 알 수 없는 데이터에 대한 처리이다.



# 머신 러닝이란?

### 머신 러닝의 종류







|             | 지도학습<br>(Supervised Learning)            | 비지도학습<br>(Unsupervised Learning)                                                          | 강화학습<br>(Reinforcement Learning)       |
|-------------|------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------|
| 훈련 방식       | 정답이 있는 데이터로 훈련                           | 정답이 없는 데이터로 훈련                                                                            | 자신의 행동에 대한 보상을 받으며<br>목표를 달성하는 방향으로 학습 |
| 주요 알고리<br>즘 | 분류, 회귀                                   | 군집화, 차원축소                                                                                 | 로보틱스, 시뮬레이션                            |
| 예시          | • 강아지와 고양이 사진 분류하기(분류)<br>• 집 값 예측하기(회귀) | <ul> <li>라벨이 없는 데이터를 n개의 집단으로 구분(군집화)</li> <li>변수의 여러가지 특징을 보다 작은 수로 축소(차원 축소)</li> </ul> | <ul><li>자율주행 차</li><li>알파고 등</li></ul> |

### 머신 러닝의 핵심 개념

#### 독립변수와 종속변수



특징(feature), 독립변수

| 위치(X1) | 크기(X2) |
|--------|--------|
| 강남     | 32평    |

## 지도학습과 비지도학습



### 지도학습의 특징

- Y(output)가 존재
  - 종속변수, 타겟(target), 라벨(label)
- X(input)가 존재
  - 독립변수, 특징(feature)
- Classification(분류) 문제에서 Y는 범주형(이산형) 값
  - 붓꽃의 종류, spam메일인지 아닌지(Yes/No) 여부 등
- N개의 Training Data로 학습  $(x_1, y_2), \dots, (x_N, y_N)$

## 지도학습의 특징

#### N개의 training Data를 기반으로

- 본적이 없는(학습데이터에 없었던) test data의 output을 예측(prediction)
- 어떤 input이 output에 <u>어떻게 영향을 미쳤는지 이해하고 분석(inference)</u>
- 모델을 평가하고, 다시 훈련하는 반복과정을 거쳐 성능을 향상시킴



# 지도학습 - 종류

| 번호 | 알고리즘 명                                 | 분류 | 회귀 |
|----|----------------------------------------|----|----|
| 1  | 선형 회귀(Linear Regression)               | X  | 0  |
| 2  | 정규화 (Regularization)                   | X  | 0  |
| 3  | 로지스틱 회귀(Logistic Regression)           | 0  | X  |
| 4  | 서포트 벡터 머신(Support Vector Machine)      | 0  | 0  |
| 5  | 나이브 베이즈 분류(Naïve Bayes Classification) | 0  | X  |
| 6  | 랜덤 포레스트                                | 0  | 0  |
| 7  | K-최근접 이웃(K-neareast neighborhood)      | 0  | 0  |
| 8  | 신경망**                                  | 0  | 0  |

## 비지도학습의 특징

- Y(output)가 존재하지 않음
- X(input)만 존재
- 머신러닝의 목표가 지도학습에 비해 불명확함 차원 축소, 군집호
- 학습의 결과에 대해 평가하기 어려움
- 지도학습의 전처리(preprocessing) 과정으로 유용함

### 비지도학습의 특징

#### N개의 training Data를 기반으로

- 데이터의 특징을 활용하여 군집화/차원축소
- 분석가는 <u>군집화/차원축소의 결과물을 활용하여 데이터를 분석하거나, 지도학습을 수행</u>
- 목표와 일치하지 않는 군집화/차원축소인 경우, 다른 모델을 쓰거나 재군집화/차원축소

A selection from the 64-dimensional digits dataset







## 비지도학습의 종류

| 번호 | 알고리즘 명              | 차원 축소 | 군집화 |
|----|---------------------|-------|-----|
| 1  | 주성분 분석 (PCA)        | 0     | X   |
| 2  | 잠재 의미 분석 (LSA)      | 0     | X   |
| 3  | 음수 미포함 행렬 분해 (NMF)  | 0     | X   |
| 4  | 잠재 디리클레 할당 (LDA)    | 0     | X   |
| 5  | K-평균 알고리즘 (K-means) | X     | 0   |
| 6  | 가우시안 혼합 모델          | X     | 0   |
| 7  | 국소 선형 임베딩           | 0     | X   |
| 8  | T-분포 확률적 임베딩        | 0     | X   |

#### ■ 임금 예측

Data 미국 Central Atlantic 지역 남성의 임금 데이터

Input 나이, 연도, 교육수준

Label 임금



Q. 어떤 학습일까?

지도학습

#### **■** 우편번호 인식

Data 우편물로부터 수집한 숫자 데이터

Input 손글씨 이미지

Label 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

0123456789 0123456789 0123456789 0123456789 Q. 어떤 학습일까?

지도학습

#### 🧠 붓꽃 데이터의 차원 축소(dimensionality reduction)

Data

붓꽃의 꽃받침 길이와 너비, 꽃잎의 길이와 너비



PCA(Principal Component Analysis)를 적용하여 4 → 3차원으로 축소



Q. 어떤 학습일까?

비지도학습

#### ■ 농구선수 군집화(clustering)

Data 게임당 득점, 리바운드, 도움, 가로채기

Clustering을 적용하여 2~4개의 군집(cluster)으로 구분



Q. 어떤 학습일까?

비지도학습

## 머신 러닝의 단계

- 1 데이터 불러오기
- 2 데이터 확인하기(통계적 특징, 데이터의 크기 등)
- 3 데이터 전처리(결측치 및 이상값 정리, 스케일링 등)
- 4 train\_test\_split 및 x, y 데이터의 정의
- 5 머신러닝 모델 정의 및 훈련, 검증

### 지도학습 - 분류

#### 분류 문제는 Y가 이산적인 값

- Classifier(분류기)는 Training에 사용되지 않았던 새로운 데이터 X를 클래스 중 하나로 분류
- X가 각각의 클래스로 분류될 확률을 평가
- 각각의 input X=(X1, X2, ...Xp)의 역할을 이해
- 즉, X와 Y의 관계성을 파악
- 1, 2, ...k까지 K개의 클래스가 존재한다면, X가 클래스 K 일 확률을 다음과 같이 정의

$$p_k(x) = \Pr(Y = k | X = x), k = 1, 2, ..., K$$

### 지도학습 - 분류-로지스틱 회귀

| 번호 | 알고리즘 명                       | 분류 | 회귀 |
|----|------------------------------|----|----|
| 3  | 로지스틱 회귀(Logistic Regression) | 0  | X  |



- 이름은 회귀지만… 분류입니다.
- 데이터가 집단에 속할 확률을 계산
- 사건 발생 vs 사건 미 발생 이진 분류
- 0에서 1사이의 확률로 결과를 나타냄
- 손실함수 : 로그손실
- 경사 하강법을 통해 최솟값을 찾음

#### 지도학습 – 분류-나이브 베이즈 분류

| 번호 | 알고리즘 명                                 | 분류 | 회귀 |
|----|----------------------------------------|----|----|
| 5  | 나이브 베이즈 분류(Naïve Bayes Classification) | 0  | X  |

#### **Naive Bayes Classifier**



- 확률에 따른 결과 예측
- 주로 자연어 분류에 활용
- 데이터가 어떤 라벨에 속할지 확률 계산

### 지도학습 – 회귀 - 선형회귀

| 번호 | 알고리즘 명                   | 분류 | 회귀 |
|----|--------------------------|----|----|
| 1  | 선형 회귀(Linear Regression) | X  | 0  |



- 하나 이상의 독립변수를 사용하여 답을 찾음
- 하나일 때는 단순선형회귀 (simple LR)
- 여러 개는 다중선형회귀 (multiple LR)
- 독립변수(x)는 하나지만 n제곱 형태일 때 다항회귀
- loss : 평균제곱오차 => ((오차)제곱)평균

$$\frac{\sum_{i=1}^{n} \{y_i - (w_0 + w_1 x_i)\}^2}{n}$$

그림 출처: 머신러닝 도감, 아키바 신야 외, 2020, 제이펍

### 지도학습 - SVM(서포트 벡터 머신)

| 번호 | 알고리즘 명                            | 분류 | 회귀 |
|----|-----------------------------------|----|----|
| 4  | 서포트 벡터 머신(Support Vector Machine) | 0  | 0  |



- 데이터에서 되도록 먼 결정 경계를 학습
- 집단 사이의 마진을 최대화(더 명확한 분류)
- 소프트 마진 : 일부 데이터가 마진 안에 포함 되는 것을 허용 > 그리드 탐색, 랜덤 탐색
- 서포트 벡터 : 마진 데이터, 마진 안 데이터

### 지도학습 - 랜덤 포레스트

| 번호 | 알고리즘 명  | 분류 | 회귀 |
|----|---------|----|----|
| 6  | 랜덤 포레스트 | 0  | 0  |



### 지도학습 - K-최근접 이웃

| 번호 | 알고리즘 명                            | 분류 | 회귀 |
|----|-----------------------------------|----|----|
| 7  | K-최근접 이웃(K-neareast neighborhood) | 0  | 0  |



▲ 그림 2-45 다수결로 알 수 없는 데이터 분류

- 입력 데이터의 주변 k개를 통해 입력 데이터를 분류
- 데이터 개수가 적거나 차원이 낮을 때 적절함
- 데이터 개수가 많으면 -> 시간/공간의 소요가 늘어남
- 차원이 많은 경우 -> 근접을 찾기 어려움