Радиотехническая работа 23 Безынерционные линейные цепи Выполнил Жданов Елисей Б01-205

1 Оборудование:

Макетная плата

Электронный осциллограф на печатной плате

Электронный генератор сигналов на печатной плате

Набор резисторов различных номиналов

Коаксиальный кабель

Программное обеспечение Micro-Cap

2 Задание

2.1 Измерение параметров линии

Рис. 10. Схема эксперимента

2.1.1 Теория

Измерения проводить на частоте f=1.0-1.5 МГц при высоком уровне входного сигнала порядка 2-3 В. Эффективные значения напряжения источника е и напряжения на входе линии u измерять параллельно двумя каналами осциллографа, используя входы с делением на 10. Имеет смысл предварительно проверить тождественность показаний в каналах и, при необходимости, ввести поправочный коэффициент. Для достижения достаточной точности измерений сопротивление источника R_s подбирать так, чтобы напряжение u на входе линии составляло порядка $\frac{e}{\sqrt{2}}$. В режиме короткого замыкания на выходе потребуется $R_s \simeq 30$ - 50 Ом, в режиме холостого хода - $R_s \simeq 250$ - 400 Ом.

Для вычисления входного сопротивления линии R_0 по измеренным значениям e и u использовать приведенную на рис формулу, которая учитывает факт ортогональности напряжений u_s и u на резисторе R_s и входе линии следствие мнимости входного импеданса линии в отсутствие потерь.

2.1.2 Выполнение

- 1) Длина кабеля составляет L = 5.9 метра.
- 2) Используем сопротивления для короткого замыкания и холостого хода

$$R_{s0} = 29 \text{ Om}$$

$$R_{\rm so} = 352 \, \mathrm{Om}$$

Частота генератора $f = 1 \, \text{МГц}$.

Для короткого замыкания(R_{s0}), e=3.09 Вольта, u=1.955 Вольта. Тогда

$$R_0 = R_{s0} \frac{u}{\sqrt{e^2 - u^2}} = 287 \text{ Om}$$

Для холостого хода(R_{s0}), e = 3.09 Вольта, u = 1.855 Вольта. Тогда

$$R_{\infty} = R_{s\infty} \frac{u}{\sqrt{e^2 - u^2}} = 21.8 \text{ Om}$$

3) Волновое сопротивление линии

$$\omega = \sqrt{\frac{L}{C}} = \sqrt{R_0 \cdot R_\infty} = 79 \text{ Om}$$

Скорость распространения волны

$$v = \frac{1}{\sqrt{I.C}} \approx 2\pi f l \frac{\omega}{R_0} = 0.45c$$

Погонные емкость и индуктивность

$$=\frac{1}{\omega v}=9.42\cdot 10^{-11} \, \Phi$$

$$L = \frac{\omega}{v} = 5.88 \cdot 10^{-7}$$
 Гн

4) Исследуем резонансный пик на частоте $f_0 = 7.4~{
m M}$ Гц и $R_s = 1.1~{
m k}$ Ом. Тогда сопротивление

$$R_0 = R_s \frac{u}{e - u} = 1$$
 кОм

Ширина в результате

$$\Delta f = 0.75 \,\mathrm{MГц}$$

5) Погонное сопротивление

$$R = \frac{\omega^2}{Rol} = 0.9 \text{ Om}$$

, что неплохо согласуется с прямым замером мультиметром.

Добротность

$$Q = \frac{f_0}{\Delta f} \left(1 + \frac{R_0}{R_s} \right) \approx 10$$

Результат второй формулы $Q=\frac{\pi}{4}\frac{\omega}{Rl}$ эквивалентен полученному.

Шунтирование ожидаемо расширяет полосу пропускания в $\simeq 1.9$ раз.

2.1.3 Вывод

2.2 Исследование переходных процессов

2.2.1 Теория

Исследования проводятся в режиме Transient MicroCap.

2.2.2 Выполнение. Согласованная линия

Проанализируем графики и получим: v(u) = 0.5~B и $i(l) \cdot \omega = 0.5~B$. Убедимся, что источник отражает предельную мощность

$$P=v(u)i(l)=rac{V^2}{4R_s}$$
, где $V=1$ B

$$P\omega = v(u)i(l)\omega = 0.5 \cdot 0.5 = 0.25 = \frac{V^2}{4R_s}\omega,$$

Источник отражает предельную мощность.

2.2.3 Рассогласованный источник

Установим $R_s = \frac{\omega}{3} = \frac{50}{3}$ Ом. Выведем график в режиме *Transient*.

Проанализируем графики и получим: u(v)=0.75~B и $i(l)\cdot\omega=0.75~B$. Проверим, что отдаваемая мощность P меньше мощности источника в $(1-\rho_s^2)$ раз:

$$\rho_s = \frac{R_s - \omega}{R_s + \omega} = -\frac{1}{2}$$

$$P\omega = v(u)i(l)\omega = 0.75 \cdot 0.75 = 0.5625 = \frac{V^2}{4R_s}\omega(1-\rho_s^2),$$

Повторим все это при $R_s = 3\omega = 150~$ Ом

Проанализируем графики и получим: u(v)=0.25~B и $i(l)\cdot\omega=0.25~B$. Проверим, что отдаваемая мощность P меньше мощности источника в $(1-\rho_s^2)$ раз:

$$\rho_s = \frac{R_s - \omega}{R_s + \omega} = \frac{1}{2}$$

$$P\omega = v(u)i(l)\omega = 0.25 \cdot 0.25 = 0.0625 = \frac{V^2}{4R_s}\omega(1 - \rho_s^2)$$

Равенства справедливы.

2.2.4 Рассогласованная нагрузка

Установим варьированием $R_l=\frac{\omega}{3}=\frac{50}{3}$ Ом $[\rho_l=-\frac{1}{2}]$, $R_l=0$ Ом $[\rho_l=0]$, $R_l=3\omega=150$ Ом, $[\rho_l=\frac{1}{2}]$ $R_l=\frac{\omega}{3}=50$ кОм $[\rho_l=+1]$ ($R_s=50$ Ом). Измерим установившиеся значения амплитуд волн, напряжений и токов.

Рис. 1: $R_l = \frac{\omega}{3}$

Рис. 2: $R_l = 0$

Рис. 3: $R_l = 3\omega$

Рис. 4: $R_l = 50k$

Запишем данные в таблицу:

R_l/ω	1/3	0	3	∞
A	0.5	0.5	0.5	0.5
В	-0.25	-0.5	0.25	0.5
v(u)	0.25	0	0.75	1
$i(l)\omega$	0.75	1	0.25	0

2.2.5 Рассогласованные источник и нагрузка

Установим на схеме $R_s=50/3$ [$\rho_s=-\frac{1}{2}$]. Установим варьированием $R_l=0$ [$\rho_l=-1$], $\rho_s\rho_l=\frac{1}{2}$, выведем графики.

Рис. 5: $R_l = 0$, $R_s = 50/3$

Убедимся в том, что амплитуда пдающей волны нарастает, как последовательных частичных сумм прогрессии:

$$A = \frac{\omega}{\omega + R_s} \left(1 + \rho_s \rho_l + (\rho_s \rho_l)^2 + \dots \right) = \frac{3}{4} \left(1 + \frac{1}{2} + \frac{1}{4} + \dots \right) = 1.5$$

Первый шаг (n = 1): A = 0.75.

Второй шаг (n = 2): A = 1.125.

Третий шаг (n = 3): A = 1.3125.

Установившееся значение: $(n = \infty)$: A = 1.5.

Повторим наблюдения при $R_l = 50k \simeq \infty$ [$\rho_l = 1$], $\rho_s \rho_l = -\frac{1}{2}$:

Рис. 6: $R_l = 50k$, $R_s = 50/3$

$$A = \frac{\omega}{\omega + R_s} \left(1 + \rho_s \rho_l + (\rho_s \rho_l)^2 + \dots \right) = \frac{3}{4} \left(1 - \frac{1}{2} + \frac{1}{4} - \dots \right) = \frac{3}{4} \cdot \frac{2}{3} = \frac{1}{2}$$

Первый шаг (n = 1): A = 0.75.

Второй шаг (n = 2): A = 0.375.

Третий шаг (n = 3): A = 0.5625.

Установившееся значение: $(n = \infty)$: A = 0.5.

Установим на схеме $R_s=50\omega$ [$\rho_s=\frac{1}{2}$] и повторим наблюдения при $R_l=0$ [$\rho_l=-1$].

Рис. 7:
$$R_l = 50k$$
, $R_s = 50/3$

$$A = \frac{\omega}{\omega + R_s} \left(1 + \rho_s \rho_l + (\rho_s \rho_l)^2 + \dots \right) = \frac{1}{4} \left(1 - \frac{1}{2} + \frac{1}{4} - \dots \right) = \frac{1}{4} \cdot \frac{2}{3} = \frac{1}{6}$$

Первый шаг (n = 1): A = 0.25.

Второй шаг (n=2): A=0.125.

Третий шаг (n = 3): A = 0.1875.

Установившееся значение: $(n = \infty)$: $A = \frac{1}{6}$.

Установить на схеме $R_s=0$ [$\rho_s=-1$] (предельно сильное рассогласование на источнике) и повторить наблюдения при

$$R_l = 50k, [\rho_l = 1] \implies A = (1 - 1 + 1 - ...),$$

$$R_l = 500, \; [\rho_l = 0.8] \quad \Rightarrow A = (1 - \rho_l + \rho_l^2 - ...),$$

$$R_l = 0, \ [\rho_l = 1] \implies A = (1 + 1 + 1 + ...),$$

$$R_l = 5, \ [\rho_l = -0.8] \implies A = (1 + \rho_l + \rho_l^2 + ...),$$

Рис. 8: $R_l = 50k$, $R_s = 0$

•

Рис. 9: $R_l = 500$, $R_s = 0$

Рис. 10: $R_l = 0$, $R_s = 0$

12

Рис. 11: $R_l = 5$, $R_s = 0$

2.2.6 Емкостная нагрузка

Установить на схеме $R_s=50$ (согласованный источник), $R_l=50k\simeq\infty$, C=100 $n\Phi$.

Рис. 12: $R_l = 50k$, $R_s = 50$

Измерим установившееся значения амплитуд волн напряжений и токов:

$$A = 0.5 \, B$$

$$B = 0.5 \, B$$

$$u = 1 B$$

$$i\omega = 0 B$$

Оценим по графику постоянную времени au экспоненциального переходного процесса:

$$u=u_0\left(1-\frac{1}{e}\right),\,$$

где $u_0 = 1 \, B \implies u = 0.63 \, B$, тогда:

$$\tau_{\rm ЭКСП} = 5.1~$$
 HC

$$\tau_{\text{reop}} = \omega C = 5 \, \text{HC}$$

Варьированием установим $R_s = 50/3$, проанализируем графики переходных процессов.

Рис. 13:
$$R_l = 50k$$
, $R_s = 50/3$

$$A = 0.5 \, B$$

$$B = 0.5 \, B$$

$$u = 1 B$$

$$i\omega = 0 B$$

Проанализируем графики незатухающего переходного процесса при $R_s=0$.

Рис. 14: $R_l = 50k$, $R_s = 0$

2.2.7 Вывод

Моделирование полностью сходится с теорией, что вполне ожидаемо, разумно и естественно.

3 Вывод

Результаты моделирования, как и ожидается, тождественны теории, в то время как замеры на макетной плате незначительно от нее отличаются. Все это позволяет сказать, что использованные методы расчета и анализа безинерционных линейных цепей дают хорошие результаты в области применимости.