JP5088026

Title: OPTICAL WAVEGUIDE CONTAINING RARE EARTH METAL COMPLEX

Abstract:

PURPOSE:To obtain the optical waveguide contg. a rare earth metal complex which is low in loss from a visible light region to an IR region and exhibits light emitting and amplifying effects by incorporating the specific rare earth metal complex into a core part consisting of a polymer. CONSTITUTION:The rare earth metal complex expressed by formula I is incorporated into the optical waveguide having the core part consisting of the polymer and a clad part consisting of a polymer enclosing the core part and having the refractive index lower than the refractive index of the core part. In the formula I, R1, R2 are respectively the alkyl group expressed by CnY2n+1 (Y is hydrogen, deuterium or halogen atom, (n) is positive integer &It;=5), deuterated alkyl group or halogenated alkyl group or the phenyl group expressed by C6Y5, deuterated phenyl group or halogenated phenyl group; M denotes a rare earth metal atom selected from a group consisting of Er, Pr and Nd.

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-88026

(43)公開日 平成5年(1993)4月9日

(51)Int.Cl. ⁵ G 0 2 B 6/00 C 0 8 K 5/07 C 0 8 L 33/04 83/14 G 0 2 B 6/12	識別記号 庁内整理番号 3 9 1 7036-2K KAQ 7167-4 J LHV 7921-4 J LRT 8319-4 J N 7036-2K	技術表示箇所 技術表示箇所
		審査請求 未請求 請求項の数5(全 5 頁)
(21)出願番号 (22)出願日	特願平3-246245 平成3年(1991)9月25日	(71)出願人 000004226 日本電信電話株式会社 東京都千代田区内幸町一丁目 1番 6号
		(72)発明者 今村 三郎 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内
		(72)発明者 伊澤 達夫 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内
		(74)代理人 弁理士 谷 義一 (外1名)

(54) 【発明の名称 】 希土類金属錯体を含む光導波路

(57)【要約】

【目的】 可視光域から近赤外光域にわたり低損失で、 発光や増幅作用を示す希土類金属錯体を含む光導波路を 提供することを目的とする。

【構成】 本発明の光導波路はコア部がポリマからなる*

$$\left(\begin{array}{cccc} O & Y & O \\ \parallel & \parallel & \parallel \\ -C - C - C - C - R_{2} \end{array}\right)_{8} M$$

(ただし、R, およびR, はそれぞれC, Y,,, (Yは水素, 重水素あるいはハロゲン原子、nは5以下の正の整数)で表されるアルキル基, 重水素化アルキル基あるいはハロゲン化アルキル基またはC, Y, で表わされる

*コア部と、該コア部を囲みコア部より低い屈折率を有するポリマからなるクラッド部とを有する光導波路において、前記コア部は下記一般式(I) 【化10】

Л (І)

フェニル基、重水素化フェニル基またはハロゲン化フェニル基であり、MはEr、Pr およびNd からなる群から選ばれた希土類金属原子である。)で表わされる希土類金属錯体を含むことを特徴とする。

【特許請求の範囲】

【請求項1】 ポリマからなるコア部と、該コア部を囲 みコア部より低い屈折率を有するポリマからなるクラッ米 *ド部とを有する光導波路において、前記コア部は下記一 般式(1)

(化1)

$$\begin{pmatrix}
0 & Y & 0 \\
|| & | & || \\
R_1 & -C - C - C - C - R_2
\end{pmatrix}_3 M$$
(1)

水素, 重水素あるいはハロゲン原子、nは5以下の正の 整数)で表されるアルキル基、重水素化アルキル基ある いはハロゲン化アルキル基またはC。Y、で表わされる フェニル基、重水素化フェニル基またはハロゲン化フェ ニル基であり、MはEr, PrおよびNdからなる群か※

(ただし、R、およびR、はそれぞれC。Y $_{2n+1}$ (Yは 10% ら選ばれた希土類金属原子である。)で表わされる希土 類金属錯体を含むことを特徴とする光導波路。

> 【請求項2】 前記コア部の希土類金属錯体は下記一般 式(11) [{t2]

> > (II)

(ただし、X、およびX、はそれぞれ重水素あるいはハ ロゲンであり、R¹ は重水素、CD, あるいはハロゲン のいずれかであり、R, はC, Y,,,,(Yはハロゲン、 nは5以下の正の整数)で表わされるハロゲン化アルキ ル基である。)で表わされる化学構造を繰り返し単位と★

★して有するポリアクリレート中に含まれていることを特 徴とする請求項1記載の光導波路。

【請求項3】 前記コア部の希土類金属錯体は下記一般 式(III)

【化3】

(III)

(ただし、R, およびR, はそれぞれC, Y,,,, (Yは 水素, 重水素あるいはハロゲン原子、nは5以下の正の 整数)で表わされるアルキル基、重水素化アルキル基あ るいはハロゲン化アルキル基またはC、Y、で表わされ るフェニル基、重水素化フェニル基またはハロゲン化フ ェニル基である。) で表わされる化学構造を繰り返し単☆

☆位として有するポリシロキサン中に含まれていることを 特徴とする請求項1記載の光導波路。

【請求項4】 前記コア部の希土類金属錯体は下記一般 式(IV)

[化4]

(IV)

(ただし、R₁ およびR₂ はそれぞれC₂ Y_{2n+1} (Yは 水素、重水素あるいはハロゲン原子、nは5以下の正の 整数)で表わされるアルキル基,重水素化アルキル基あ 50 ェニル基である。)で表わされる化学構造を繰り返し単

るいはハロゲン化アルキル基またはC、Y、で表わされ るフェニル基、重水素化フェニル基またはハロゲン化フ

位として有するポリシロキサン中に含まれていることを

特徴とする請求項1記載の光導波路。

【請求項5】 前記コア部の希土類金属錯体は下記一般 式(III)および(IV)で表わされる化学構造を繰来

ただし、R. およびR. はそれぞれC. Y.n.i (Yは水 素, 重水素あるいはハロゲン原子、n は5以下の正の整 数)で表わされるアルキル基,重水素化アルキル基ある いはハロゲン化アルキル基またはC。Y、で表わされる フェニル基、重水素化フェニル基またはハロゲン化フェ ニル基である。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は光集積回路用導波路やプ ラスチック光ファイバなどの光学材料として使用可能な 希土類金属錯体を含む光導波路に関するものである。

[0002]

【従来の技術】光学部品や光ファイバの基材としては光 伝送損失が小さく、伝送帯域が広いことから一般に石英 ガラスや多成分ガラス等の無機系のものが使用されてい る。これらの光ファイバや光導波路に希土類元素を添加 することにより、レーザや増幅作用などの機能化を図る 試みがなされている(例えば日比野らによる1989年 度電子情報通信学会予稿集4-293参照)。充分な効 果を引き出すためには光部品あるいはファイバに髙濃度 の希土類元素を均一に添加する必要がある。ファイバの 場合、希土類元素を含む部分を長くすることにより濃度 を髙められるため、増幅作用が大きく、一部実用化され ているものがある。しかし、光導波路の場合、希土類元 素を髙濃度にしかも均一には添加できず、充分な効果を あげていない。これを解決できる方法としてゾルーゲル 法が提案されている(星野らによる1991年度電子情 40 般式(1) 報通信学会予稿集4-232,D. J. DIgiova nniら、OFC'91WA2)。金属アルコキシドと※

$$\left(\begin{array}{cccc}
0 & Y & 0 \\
\parallel & \mid & \parallel \\
1 & & \downarrow \\
Y
\end{array}\right)_{3} M$$

* り返し単位として有するシロキサンの共重合体中に含ま れていることを特徴とする請求項1記載の光導波路: 【化5】

※希土類元素の塩化物を原料とし、均質な溶液中で加水分 解、重縮合反応を起こさせるものである。この方法をも ちいれば髙濃度にしかも均一に希土類元素を含む石英膜 を作製できる。しかし、クラッキングや基板からの剥離 のため厚い膜は形成できない。

【0003】ガラス系の他に、プラスチックを基材とす 20 る光学材料も開発されている。とれらのプラスチック光 学材料は、無機系に比べ加工性が良く、取扱易い等の特 徴を持つことから注目されている。しかしこれらのプラ スチック光部品は、無機系に比べて内部を伝達する光の 減衰度合が大きい、すなわち損失が大きいという欠点が ある。またポリマに希土類元素を導入するには有機金属 あるいは有機キレートの形にしてから混入する必要があ る。しかし希土類の有機金属はプラスチックと相溶性が 悪く、また酸化されやすい欠点があった。

[0004]

30 【発明が解決しようとする課題】本発明は上記の事情に 鑑みてなされたものであり、その目的とするところは可 視光域から近赤外光域にわたり低損失で、発光や増幅作 用を示す希土類金属錯体を含む光導波路を提供すること にある。

[0005]

【課題を解決するための手段】上記目的を達成するため に、本発明は、ポリマからなるコア部と、該コア部を囲 みコア部より低い屈折率を有するポリマからなるクラッ ド部とを有する光導波路において、前記コア部は下記―

[0006] [1t6]

(I)

[0007] (ただし、R, およびR, はそれぞれC。 5以下の正の整数)で表されるアルキル基, 重水素化ア Yz...(Yは水素、重水素あるいはハロゲン原子、nは 50 ルキル基あるいはハロゲン化アルキル基またはC。Y,

で表わされるフェニル基、重水素化フェニル基またはハ ロゲン化フェニル基であり、MはEr, PrおよびNd からなる群から選ばれた希土類金属原子である。)で表 わされる希土類金属錯体を含むことを特徴とする。

【0008】これら錯体を含む媒体として適当なものと*

* して下記一般式(1 1) で表わされるポリアクリレー ト、一般式(I I I) および(I V) で表わされるポリ シロキサンを用いるものである。

(II)

【0010】ただし、X、およびX、はそれぞれ重水素 あるいはハロゲンであり、R1 は重水素、CD, あるい はハロゲンのいずれかであり、R、はC、Y1,11(Yは ハロゲン、nは5以下の正の整数)で表わされるハロゲ※

※ン化アルキル基である。

(III)

【0012】ただし、R、およびR、はそれぞれC。Y 20+1 (Yは水素, 重水素あるいはハロゲン原子、nは5 以下の正の整数)で表わされるアルキル基、重水素化ア ルキル基あるいはハロゲン化アルキル基またはC。Y、★

> R_1 Si-0-0 -Si - 0 -R₂

★で表わされるフェニル基、重水素化フェニル基またはハ ロゲン化フェニル基である。

【化9】

(IV)

【0014】ただし、R、およびR、はそれぞれC。Y 2n+1 (Yは水素, 重水素あるいはハロゲン原子、nは5 以下の正の整数)で表わされるアルキル基,重水素化ア ルキル基あるいはハロゲン化アルキル基またはC。Y。 で表わされるフェニル基、重水素化フェニル基またはハ ロゲン化フェニル基である。

[0015]

【作用】先に述べたように従来の希土類金属の錯体や有 機金属は限られた有機溶媒にしか溶けず、しかも非常に 酸化され易く、沈殿が生じるなど保存安定性や均一性に 問題があった。しかし本発明の希土類金属錯体は多くの 有機溶媒に溶解可能であり、また酸化も起こりにくく、 導波路に均一に分散することができる。

【0016】本発明者らは先に上記一般式(II)。 (111) および(1V) で示したポリアクリレート. に伴うOH振動吸収の影響が少ないものであり、プラス チック光導波路として優れていることを見いだした(特 開平3-188402号および特願平2-282023 号参照)。

【0017】本発明はこれらを媒体として希土類元素が 40 高濃度でしかも均一に入ったボリマを得、それを使用し て発光、増幅作用を起こすことのできる導波路とすると とを本質としている。すなわち、従来は希土類元素を溶 かす有機溶媒が少なく、高濃度、均一に混ぜることはで きなかったが、本発明によりそれが解決できる。またこ のブラスチック光導波路を基板上に形成する場合、基板 はシリコン基板、ガラス基板のように硬い基板ばかりで なくプラスチック基板などフレキシブルなものが使用可 能である。

【0018】本発明におけるポリマの製造法は、一般の ポリシロキサンが容易に屈折率を制御でき、しかも吸湿 50 ポリメタクリレートやポリシロキサンなどの製造法と同 様である。またシロキサンポリマの分子量は膜を形成したときのクラッキングを避けるため10万以上が望ましい。

[0019]

【実施例】以下、本発明の実施例を詳細に説明するが、 本発明はこれら実施例に限定されるものではない。

【0020】[実施例1] ジクロロフェニルシランとト リクロロフェニルシランの共重合体(共重合比1/9) にNdのアセチルアセトン錯体を分散させたものをコア 成分とし、ポリフェニルシルセスキオキサンをクラッド 10 成分とする導波路を作製した。すなわち、まず、共重合 体と1wt%のNd-アセチルアセトン錯体とをメチル イソブチルケトンに溶かし溶液とした。次に、クラッド 成分ポリマをプラスチック基板あるいは処理したシリコ ン基板上に約15μmの厚さに塗布した。ベーク, 乾燥 処理後クラッド成分ポリマ上にコア成分ポリマを約8μ mの厚さに塗布した。次に、ホトリソグラフィ、ドライ エッチングによりコア成分ポリマを長さ50mm、幅8 μm, 高さ8μmの直線矩形パターンに加工した。加工 後、クラッド成分をコア成分ポリマ上に塗布し導波路を 20 得た。導波路の両端面に誘電体ミラーを蒸着し、Ar⁺ レーザ、励起色素レーザやTi:Al,O,CWレーザ 光を導波路の一端から照射した。誘電体ミラーを用いて 出射光を励起光とレーザ光に分離し、レーザ光強度を測 定した。1.05および1.31μmでの利得はそれぞ れ7dBおよび2dBであった。

【0021】[実施例2]重水素化ジクロロフェニルシランと重水素化トリクロロフェニルシランの共重合体 *

* (共重合比 1/9) にErのジピバロイルメタン錯体を 分散させたものをコア成分、重水素化ポリフェニルシル セスキオキサンをクラッド成分とする導波路を作製し た。

【0022】共重合体と1wt%のEr-アセチルアセトン錯体とをメチルイソブチルケトンに溶かし溶液とした。以下、実施例1と同様にして得られた導波路のレーザ光強度を測定した。 $1.55\mu m$ での利得は8dBであった。

(0023) [実施例3] ヘブタフルオロイソプロビルメタクリレートーd5とパーデューテロメチルメタクリレートの共重合体(共重合比5/5) 重水素化ポリメチルメタクリレートにPrのジピバロイルメタン錯体を分散させたものをコア成分、ヘブタフルオロイソブロビルメタクリレートーd5とパーデューテロメチルメタクリレートの共重合体(共重合比6/4)をクラッド成分とする導波路を作製した。

【0024】共重合比5/5の共重合体と1wt%のPrのジピバロイルメタン錯体とをメチルイソブチルケトンに溶かし溶液とした。以下、実施例1と同様にして得られた導波路のレーザ光強度を測定した。1.31μm での利得は9dBであった。

【0025】[実施例4-7]ポリマをコア成分とし、 実施例1,2および3と同じように導波路を作製した。 それぞれ光利得を調べ、表1に示す値を得た。

[0026]

【表1】

発振波長と光利得

	導波路*	発振波長 (μm)	光利得
Eァーアセチルアセトン	2	1.55	7dB
Pァーアセチルアセトン	2	1.31	10dB
N d -ジピバロイルメタン	3	1.31	4dB
Pァージピバロイルメタン	1	1.31	6dB

*導波路の数字は実施例の導波路構造を示す

[0027]

【発明の効果】以上説明したように、本発明の光導波路は従来のものに比べ、可視~近赤外光域において優れた 光伝送特性を有するとともに、高い利得でレーザ発振が 可能である。そのため導波形レーザや増幅素子のような 能動型回路要素として使用できる。すなわち、これらの 光学材料を使って作製した光部品により、応用範囲の広 い光信号伝送システムを構成できる利点がある。