Computer Organisation and Architecture Lab

Group number: 65

Members: Pranav Mehrotra (20CS10085)

Saransh Sharma (20CS30065)

Q1) RCA using Verilog

i.) Half Adder

Truth Table of a Half Adder							
Input		Output					
A	b	s (Sum)	c (carry)				
0	0	0	0				
0	1	1	0				
1	0	1	0				
1	1	0	1				

ii.) Full Adder

Truth Table of a Full Adder							
Input			Output				
A	В	C_in	Sum	Carry_out			
0	0	0	0	0			
0	0	1	1	0			
0	1	0	1	0			
0	1	1	0	1			
1	0	0	1	0			
1	0	1	0	1			
1	1	0	0	1			
1	1	1	1	1			

iii.) 8 – Bit Ripple Carry Adder

iv.) 16- Bit RCA

v.) 32-Bit RCA

vi.) 64- Bit RCA

Question: How can you use the above circuit, to compute the difference between two n-bit numbers?

Answer: Ripple Carry adder with input a and b and initial carry bit c_0 actually computes the binary sum of a and b, also adding c_0 to the LSB of the sum. Thus, c_0 is set to 0 so that RCA adds a and b bitwise and output the result.

For finding difference between two number a and b i.e., a-b we will convert the subtraction problem into addition problem:

i.e.,
$$a - b = a + (-b)$$
 where (-b) is the 2's complement of b.

we know that 2's complement of any number can be calculated by computing 1's complement of that number and then adding 1 to the LSB of the 1's complement. That is, $(-b) = (\sim b) + 1$ where $(\sim b)$ is the 1's complement of b

let
$$a = 100$$
 (4) and $b = 010$ (2) and $n=3$
therefore, $a - b = 100 - 010$
 $-b = 101$ (= \sim b) + 1 = 110
 $a - b = 100 + (110) = 010$ (carry_out = 1)

To calculate 1's complement of a number, we simply have to flip all the bits of that number. That is, we pass every bit of b to a NOT gate to flip the bits of the b. Therefore, whenever we need to calculate difference between a and b i.e., a-b we would first calculate 1's complement of b by taking NOT of every bit of b with 1. Since we also need to add 1 to the 1's complement calculated, we would pass this 1 as c₀ to the RCA. Therefore, upon passing a, (~b) and 1 as input to RCA, the n-bit RCA can calculate the difference between a and b.

Synthesis Report

Circuit	Delay (in ns)	Logic Levels	Number of Slice LUTs	Number of bonded IOBs
Half Adder	1.066	3	2	4
Full Adder	1.246	3	2	5
8-Bit RCA	3.471	6	12	26
16-Bit RCA	6.167	10	24	50
32-Bit RCA	11.559	18	48	98
64- Bit RCA	22.343	34	96	194