1 Uniqueness of JCF

1.1 Review

We have shown that, if λ_i are r distinct eigenvalues and \mathbb{F} is algebraically closed, then $V = \bigoplus_{i=1}^r K_{\lambda_i}$.

For each K_{λ} , there is a basis of a disjoint union of cycles. The union $\beta = \bigcup_{i=1}^{r} \beta_{\lambda_i}$ is a basis of V such that $[T]_{\beta}$ is in JCF.

Example 1.1

Consider the matrix
$$A = \begin{pmatrix} 2 & 2 & 3 \\ 1 & 3 & 3 \\ -1 & -2 & -2 \end{pmatrix}$$
 for $\mathbb{F} = \mathbb{R}$ and $V = \mathbb{F}^3$.

The characteristic polynomial $-(t-1)^3$ splits, and thus the only eigenvalue is 1. Hence, $V = K_1$.

We know that there is a basis which is a disjoint union of cycles. There are three possibilities:

- 1. one cycle of length 3
- 2. two cycles of length 2 and 1
- 3. three cycles of length 1

We compute the eigenspace:

$$A - I = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ -1 & -2 & -3 \end{pmatrix},\tag{1}$$

and thus rank(A - I) = 1, which means that nullity(A - I) = 2.

Therefore, the third case is not possible, since in this case there must be 3 linearly independent eigenvectors.

The first case is also not possible, since it implies that there must be at least two linearly independent vectors in the range, while $\operatorname{nullity}(A-I)=2$.

Therefore, the second case applies.

Note that therefore the basis must be of the form $\{(A-I)y, y, z\}$.

Try
$$y = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
. Therefore, $(A - I)y = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$.

Now take any vector $z \in \ker(A - I)$ that is orthogonal to the initial vector (A - I)y,

for example,
$$\begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$$
.

Therefore,
$$[A]_{\beta} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
.

Remark 1.2. Note that $(A - I)^2 = 0$, since $(A - I)^2$ sends every basis vector (A - I)y, y, z to 0.

We want to show that JCF is unique up to the reordering of blocks, given that the characteristic polynomial of $T \in \text{End}(V)$ splits.

For any eigenvalue λ we can draw a dot diagram of $T_{K_{\lambda}}: K_{\lambda} \to K_{\lambda}$.

Our plan is as follows:

• We can find a basis of K_{λ} which is a disjoint union of cycles. Call this basis a cycle basis $\beta = \bigcup_{i=1}^{r} \beta_{i}$.

- We will order cycles by length $l_1 \geq l_2 \cdots \geq l_r$, where l_i is the length of β_i .
- Let the end vector of the cycle β_i be v_I .

The dot diagram is then can be defined as follows

$$\begin{pmatrix} \bullet(T-\lambda I)^{l_1-1}v_1 & \bullet(T-\lambda I)^{l_2-1}v_2 & \dots & \bullet(T-\lambda I)^{l_r-1}v_r \\ \bullet(T-\lambda I)^{l_1-2}v_1 & * & \dots & \vdots \\ \vdots & \vdots & \dots & \bullet v_r \\ \bullet(T-\lambda I)^2v_1 & \bullet(T-\lambda I)^2v_2 & \dots \\ \bullet(T-\lambda I)v_1 & \bullet v_2 & \dots \\ \bullet v_1 & \dots & \dots \end{pmatrix}$$

The dot diagram consists only of the dots.

We will show that the dot diagram of $T_{K_{\lambda}}$ is unique, and does not depend on our choice of a cycle basis.

Theorem 1.3

For any $T \in \text{End}(V)$ and $s \ge 1$ such that the characteristic polynomial of T splits, vectors corresonding to the dots in the first s rows of $[T]_{\beta}$ form a basis of $\ker(T - \lambda I)^s$.

Proof.

Note that $\ker(T - \lambda I)^s \subseteq K_{\lambda}$.

Let $U = (T - \lambda I)^s \in \text{End}(K_\lambda)$, so that $\ker U = \ker(T - \lambda I)^s$.

In the dot diagram, $T - \lambda I$ moves up by one dot and sends the first row to 0. Therefore, $U = (T - \lambda I)^s$ moves up by s dots and sends first s rows to 0.

Let S_1, S_2 be such that $S_1 = \{x \in \beta \mid Ux = 0\}$ and $S_2 = \{x \in \beta \mid Ux \neq 0\}$.

Then $U \in \text{Hom}(S_2, \beta)$ is injective, because U shifs up s dots.

Therefore, the set $\{Ux \mid x \in S_2\}$ has a size of $|S_2|$ and is linearly independent in im U, which means that dim im $U \ge |S_2|$.

On the other hand, S_1 is linearly independent and is inside ker U. Thus, nullity $U \ge |S_1|$, which means that

$$\dim K_{\lambda} = \operatorname{rank} U + \operatorname{nullity} U \ge |S_1| + |S_2| = \beta = \dim K_{\lambda}.$$

By Rank-Nullity Theorem, nullity $U = |S_1|$, and thus S_1 is a basis of nullity U.

Corollary 1.4

 $\dim E_{\lambda} = \#$ columns in the dot diagram

Proof.

Note that $E_{\lambda} = \ker(T - \lambda I)$.

Applying the theorem for the case s=1, we obtain that $\ker(T-\lambda I)=\#$ dots in the first row.

Remark 1.5. Note that dim E_{λ} is also equal to the number of cycles in the cycle basis β for K_{λ} , which is also equal to the number of Jordan blocks in $[T|_{K_{\lambda}}]_{\beta}$.

Theorem 1.6

Let r_j be the number of dots in the jth row of the dot diagram of $T_{K_{\lambda}}$.

Then

$$r_{j} = \operatorname{rank}(T - \lambda I)^{j-1} - \operatorname{rank}(T - \lambda I)^{j} = \ker(T - \lambda I)^{j} - \ker(T - \lambda I)^{j-1}.$$

Proof.

By Theorem 1.3, $\ker(T - \lambda I)^j$ is the number of dots in the first j rows, which is equal to $\sum_{i=1}^{j} r_i$.

Applying the theorem again, we get that $\ker(T - \lambda I)^j - \ker(T - \lambda I)^{j-1}$.

By the Rank-Nullity Theorem, the rest follows.

Corollary 1.7

For any eigenvalue λ , the dot diagram for $T_{K_{\lambda}}$ is unique and thus does not depend on the choice of the cycle basis β .

Corollary 1.8

Suppose that $T \in \text{End}(V)$ and the characteristic polynomial of T splits.

Then the Jordan Canonical Form of T is unique up to the reordering of blocks.

If β, γ are bases of V such that $[T]_{\beta}$ consists of the Jordan blocks $\{J_i\}_1^t$ and $[T]_{\gamma}$ consists of the Jordan blocks $\{L_j\}_1^u$, then t = u and we can reorder $\{J_i\}_1^t$ to obtain $\{L_j\}_1^u$.

Proof.

Suppose that $[T]_{\beta}$ is in JCF, and $\beta = \bigcup_{i=1}^{r} \beta_i$ is a cycle basis. Then the number of times the $l \times l$ block with the eigenvalue λ occurs inside $[T]_{\beta}$ is equal to the number of cycles β_i , which in turn equals to the number of columns of length l in the dot diagram for $T_{K_{\lambda}}$, then this quantity is the same for $[T]_{\gamma}$.