第四节 等可能概型(古典概型)

- 一、等可能概型
- 二、典型例题
- 三、几何概率

四、小结

一、等可能概型(古典概型)

1. 定义

- (1) 试验的样本空间只包含有限个元素;
- (2) 试验中每个基本事件发生的可能性相同. 具有以上两个特点的试验称为等可能概型或 古典概型.

2. 古典概型中事件概率的计算公式

设试验 E 的样本空间由n 个样本点构成, A 为 E 的任意一个事件,且包含 m 个样本点,则事件 A 出现的概率记为:

$$P(A) = \frac{m}{n} = \frac{A \text{ 所包含样本点的个数}}{\text{样本点总数}}.$$

称此为概率的古典定义.

3. 古典概型的基本模型:摸球模型

(1) 无放回地摸球

问题1 设袋中有4只白球和2只黑球,现从袋中无放回地依次摸出2只球,求这2只球都是白球的概率.

解 设 $A = \{ 摸得 2 只球都是白球 \},$

基本事件总数为
$$\begin{pmatrix} 6 \\ 2 \end{pmatrix}$$
,

A 所包含基本事件的个数为 $\binom{4}{2}$

故
$$P(A) = {4 \choose 2} / {6 \choose 2} = \frac{2}{5}$$
.

(2) 有放回地摸球

问题2 设袋中有4只红球和6只黑球,现从袋中有放回地摸球3次,求前2次摸到黑球、第3次摸到红球的概率.

解 设 $A = \{$ 前 2 次 摸 到 黑 球 , 第 3 次 摸 到 红 球 $\}$

第3次摸到红球 4种 第2次摸到黑球 6种 第3次摸球 — 10种

基本事件总数为 10×10×10=103,

A所包含基本事件的个数为 6×6×4,

故
$$P(A) = \frac{6 \times 6 \times 4}{10^3} = 0.144.$$

课堂练习

1º 电话号码问题 在7位数的电话号码中,第一位 不能为0,求数字0出现3次的概率.

(答案:
$$p = \binom{9}{1} \binom{6}{3} \cdot 1^3 \cdot 9^3 / 9 \times 10^6$$
)

掷3颗均匀骰子,求点数之和为4的 骰子问题 概率. (答案: $p = 3/6^3$)

4.古典概型的基本模型:球放入杯子模型

(1)杯子容量无限

问题1 把 4 个球放到 3个杯子中去,求第1、2个杯子中各有两个球的概率,其中假设每个杯子可放任意多个球.

4个球放到3个杯子的所有放法 3×3×3×3=3⁴种,

因此第1、2个杯子中各有两个球的概率为

$$p = {4 \choose 2} {2 \choose 2} / 3^4 = \frac{2}{27}.$$

(2) 每个杯子只能放一个球

问题2 把4个球放到10个杯子中去,每个杯子只能 放一个球, 求第1至第4个杯子各放一个球的概率.

第1至第4个杯子各放一个球的概率为

$$p = \frac{p_4^4}{p_{10}^4} = \frac{4 \times 3 \times 2 \times 1}{10 \times 9 \times 8 \times 7}$$

$$=\frac{1}{210}.$$

课堂练习

1°分房问题 将张三、李四、王五3人等可能地分配到3间房中去,试求每个房间恰有1人的概率.

(答案:2/9)

2° 生日问题 某班有20个学生都是同一年出生的,求有10个学生生日是1月1日,另外10个学生生日是12月31日的概率.

(答案:
$$p = \binom{20}{10} \binom{10}{10} / 365^{20}$$
)

二、典型例题

例1 将一枚硬币抛掷三次.(1) 设事件 A_1 为 "恰有一次出现正面",求 $P(A_1)$. (2) 设事件 A_2 为"至少有一次出现正面",求 $P(A_2)$.

解 (1)设 H 为出现正面, T 为出现反面.

则 $S = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$.

而 $A_1 = \{HTT, THT, TTH\}$. 得 $P(A_1) = 3/8$.

(2) $A_2 = \{HHH, HHT, HTH, THH, HTT, THT, TTH\}.$

因此 $P(A_2) = 7/8$.

例2 设有 N 件产品,其中有 D 件次品,今从中任取 n 件,问其中恰有 $k(k \le D)$ 件次品的概率是多少?

解在N件产品中抽取n件的所有可能取法共有

$$\binom{N}{n}$$
 m ,

在N件产品中抽取n件,其中恰有k件次品的取法

$$\binom{D}{k}\binom{N-D}{n-k}$$
 \neq

于是所求的概率为
$$p = \binom{D}{k} \binom{N-D}{n-k} / \binom{N}{n}$$
.

例3 在1~2000的整数中随机地取一个数,问取到的整数既不能被6整除,又不能被8整除的概率是多少?

解 设A为事件"取到的数能被6整除",B为事件"取到的数能被8整除",则所求概率为 \overline{AB})。

$$P(\overline{AB}) = P(\overline{A \cup B}) = 1 - P(A \cup B)$$
$$= 1 - \{P(A) + P(B) - P(AB)\}.$$

因为
$$333 < \frac{2000}{6} < 334$$
,所以 $P(A) = \frac{333}{2000}$,

由于
$$\frac{2000}{8} = 250$$
, 故得 $P(B) = \frac{250}{2000}$.

由于
$$83 < \frac{2000}{24} < 84$$
, 得 $P(AB) = \frac{83}{2000}$.

于是所求概率为

$$P(\overline{AB}) = 1 - \{P(A) + P(B) - P(AB)\}$$

$$=1-\left(\frac{333}{2000}+\frac{250}{2000}-\frac{83}{2000}\right)=\frac{3}{4}.$$

例4 将 15 名新生随机地平均分配到三个班级中去,这15名新生中有3名是优秀生.问 (1) 每一个班级各分配到一名优秀生的概率是多少? (2) 3 名优秀生分配在同一个班级的概率是多少?

解 15名新生平均分配到三个班级中的分法总数:

$$\binom{15}{5}\binom{10}{5}\binom{5}{5} = \frac{15!}{5! \ 5! \ 5!}.$$

(1)每一个班级各分配到一名优秀生的分法共有 (3!×12!)/(4! 4! 4!)种.

因此所求概率为

$$p_1 = \frac{3! \times 12!}{4! \ 4! \ 4!} / \frac{15!}{5! \ 5! \ 5!} = \frac{25}{91}.$$

(2)将3名优秀生分配在同一个班级的分法共有3种,

对于每一种分法,其余12名新生的分法有 $\frac{12!}{2! \, 5! \, 5!}$ 种.

因此3名优秀生分配在同一个班级的分法共有

(3×12!)/(2!5!5!)种,因此所求概率为

$$p_2 = \frac{3 \times 12!}{2! \, 5! \, 5!} / \frac{15!}{5! \, 5! \, 5!} = \frac{6}{91}.$$

某接待站在某一周曾接待过12次来访,已知 所有这12次接待都是在周二和周四进行的,问是 否可以推断接待时间是有规定的.

假设接待站的接待时间没有 规定,且各来访者在一周的任一天 中去接待站是等可能的.

周二 周三 周四 周五 周六

故一周内接待 12 次来访共有 712种.

12 次接待都是在周二和周四进行的共有 212种.

故12次接待都是在周二和周四进行的概率为

$$p = \frac{2^{12}}{7^{12}} = 0.0000003.$$

小概率事件在实际中几乎是不可能发生的,从而可知接待时间是有规定的.

例6 假设每人的生日在一年 365 天中的任一天是等可能的,即都等于 1/365,求 64 个人中至少有2人生日相同的概率.

解 64个人生日各不相同的概率为

$$p_1 = \frac{365 \cdot 364 \cdot \cdots \cdot (365 - 64 + 1)}{365^{64}}.$$

故64个人中至少有2人生日相同的概率为

$$p=1-\frac{365\cdot 364\cdot \cdots \cdot (365-64+1)}{365^{64}}=0.997.$$

说明

随机选取 $n(\leq 365)$ 个人,他们的生日各不相同的概率为

$$p = \frac{365 \times 364 \times \cdots \times (365 - n + 1)}{365^{n}}.$$

而n个人中至少有两个人生日相同的概率为

$$p = 1 - \frac{365 \times 364 \times \cdots \times (365 - n + 1)}{365^{n}}.$$

我们利用软件包进行数值计算.

人数 生 日 相 同 的 1 0 2 0 1 1 0 1 2 0 1 3 0 1 5 0 1 6 0

三、几何概型

定义 当随机试验的样本空间是某个区域,并且任意一点落在度量(长度、面积、体积)相同的子区域是等可能的,则事件 A 的概率可定义为

$$P(A) = \frac{S_A}{S}.$$

(其中S 是样本空间的度量, S_A 是构成事件A的子区域的度量。)这样借助于几何上的度量来合理规定的概率称为几何概型。

说明 当古典概型的试验结果为连续无穷多个时, 就归结为几何概型.

会面问题

例7 甲、乙两人相约在 0 到 T 这段时间内,在预定地点会面. 先到的人等候另一个人,经过时间 t (t<T) 后离去.设每人在0 到T 这段时间内各时刻到达该地是等可能的,且两人到达的时刻互不牵连.求甲、乙两人能会面的概率.

解 设 x, y 分别为甲、乙两人到达的时刻,那么 $0 \le x \le T$, $0 \le y \le T$.

两人会面的充要条件为 $|x-y| \le t$,

若以 x, y 表示平面 上点的坐标,则有 故所求的概率为

$$p = \frac{阴影部分面积}{正方形面积}$$

$$= \frac{T^2 - (T - t)^2}{T^2}$$

$$= 1 - (1 - \frac{t}{T})^2.$$

例8 甲、乙两人约定在下午1时到2时之间到某 站乘公共汽车,又这段时间内有四班公共汽车, 它们的开车时刻分别为 1:15、1:30、1:45、2:00. 如果甲、乙约定(1)见车就乘;(2)最多等一辆 车. 求甲、乙同乘一车的概率. 假定甲、乙两人到达车站的时 刻是互相不牵连的, 且每人在 1时到2时的任何时刻到达车

站是等可能的.

解

设 x, y 分别为甲、乙两人到 比的时刻,

则有

$$1 \le x \le 2$$

$$1 \le y \le 2$$
.

见车就乘 的概率为 $p = \frac{阴影部分面积}{正方形面积} = \frac{4 \times (1/4)^2}{(2-1)^2} = \frac{1}{4}$.

最多等一辆车,甲、乙
同乘一车的概率为
$$p = \frac{1}{4} + \frac{3 \times (1/16)}{1} \times 2 = \frac{5}{8}$$
.

蒲丰投针试验

蒲丰资料

例9 1777年,法国科学家蒲丰(Buffon)提出了投针试验问题.平面上画有等距离为a(a>0)的一些平行直线,现向此平面任意投掷一根长为b(b<a)的针,试求针与某一平行直线相交的概率.

那么针落在平面上的位置可由 (x,φ) 完全确定.

投针试验的所有可能结果与 矩形区域

 $S = \{(x, \varphi) \mid 0 \le x \le \frac{a}{2}, 0 \le \varphi \le \pi\}$

中的所有点一一对应.

由投掷的任意性可知, 这是一个几何概型问题. 所关心的事件

 $A = \{ \text{针与某一平行直线相交} \}$ 发生的充分必要条件为S中的点满足

$$0 \le x \le \frac{b}{2}\sin\varphi, \quad 0 \le \varphi \le \pi.$$

概率论与数理统计

$$P(A) = \frac{\mu(G)}{\mu(S)} = \frac{G的面积}{S的面积}$$

$$=\frac{\int_0^{\pi} \frac{b}{2} \sin \varphi d\varphi}{\frac{a}{2} \times \pi}$$

$$=\frac{b}{\frac{a}{2}\times\pi}=\frac{2b}{a\pi}.$$

蒲丰投针试验的应用及意义

$$P(A) = \frac{2b}{a\pi}$$

根据频率的稳定性, 当投针试验次数 n 很大时,

测出针与平行直线相交的次数m,则频率值 $\frac{m}{n}$ 即可

作为P(A)的近似值代入上式,那么

$$\frac{m}{n} \approx \frac{2b}{a\pi} \implies \pi \approx \frac{2bn}{am}.$$

利用上式可计算圆周率 π的近似值.

历史上一些学者的计算结果(直线距离a=1)

试验者	时间	针长	投掷次数	相交次数	π的近似值
Wolf	1850	0.8	5000	2532	3.1596
Smith	1855	0.6	3204	1218	3.1554
De Morgan	1860	1.0	600	382	3.137
Fox	1884	0.75	1030	489	3.1595
Lazzerini	1901	0.83	3408	1808	3.1415929
Reina	1925	0.5419	2520	859	3.1795

利用蒙特卡罗(Monte Carlo)法进行计算机模拟.

取a=1,b=0.85. 单击图形播放/暂停 ESC键退出

投针次数n=100 $\pi \approx (2bn)/(am) = 3.38776$ 相交次数m=49

四、小结

最简单的随机现象→古典概型 连续无穷 几何概型

古典概率

$$P(A) = \frac{m}{n} = \frac{A \text{ 所包含样本点的个数}}{\text{样本点总数}}$$

