

Running Apache Airflow Workflows as ETL Processes on Hadoop

By: Robert Sanders

CLAIRVOYANT

Agenda

- What is Apache Airflow?
 - Features
 - Architecture
 - Terminology
 - Operator Types
- ETL Best Practices
 - How they're supported in Apache Airflow
- Executing Airflow Workflows on Hadoop
- Use Cases
- Q&A

Robert Sanders

- Big Data Manager, Engineer, Architect, etc.
- Work for Clairvoyant LLC
- 5+ Years of Big Data Experience
- Email: robert.sanders@clairvoyantsoft.com
- LinkedIn: https://www.linkedin.com/in/robert-sanders-61446732
- Slide Share: http://www.slideshare.net/RobertSanders49

What's the problem?

- As a Big Data Engineer you work to create jobs that will perform various operations
 - Ingest data from external data sources
 - Transformation of Data
 - Run Predictions
 - Export data
 - Etc.
- You need to have some mechanism to schedule and run these jobs
 - Cron
 - Oozie
- Existing Scheduling Services have a number of limitations that make them difficult to work with and not usable in all instances

What is Apache Airflow?

- Airflow is an Open Source platform to programmatically author, schedule and monitor workflows
 - Workflows as Code
 - Schedules Jobs through Cron Expressions
 - Provides monitoring tools like alerts and a web interface
- Written in Python
 - As well as user defined Workflows and Plugins
- Was started in the fall of 2014 by Maxime Beauchemin at Airbnb
- Apache Incubator Project
 - Joined Apache Foundation in early 2016
 - https://github.com/apache/incubator-airflow/

Why use Apache Airflow?

- Define Workflows as Code
 - Makes workflows more maintainable, versionable, and testable
 - More flexible execution and workflow generation
- Lots of Features
- Feature Rich Web Interface
- Worker Processes Scale Horizontally and Vertically
 - Can be a cluster or single node setup
- Lightweight Workflow Platform

Apache Airflow Features (Some of them)

- Automatic Retries
- SLA monitoring/alerting
- Complex dependency rules: branching, joining, subworkflows
- Defining ownership and versioning
- Resource Pools: limit concurrency + prioritization
- Plugins
 - Operators
 - Executors
 - New Views
- Built-in integration with other services
- Many more...

Airflow Architecture

Multi-node

What is a DAG?

- Directed Acyclic Graph
 - A finite directed graph that doesn't have any cycles
- A collection of tasks to run, organized in a way that reflects their relationships and dependencies
 - Defines your Workflow

What is an Operator?

- An operator describes a single task in a workflow
- Operators allow for generation of certain types of tasks that become nodes in the DAG when instantiated
- All operators derive from BaseOperator and inherit many attributes and methods that way

Workflow Operators (Sensors)

- A type of operator that keeps running until a certain criteria is met
- Periodically pokes
- Parameterized poke interval and timeout
- Example
 - HdfsSensor
 - HivePartitionSensor
 - NamedHivePartitionSensor
 - S3KeyPartition
 - WebHdfsSensor
 - Many More...

Workflow Operators (Transfer)

- Operator that moves data from one system to another
- Data will be pulled from the source system, staged on the machine where the executor is running and then transferred to the target system
- Example:
 - HiveToMySqlTransfer
 - MySqlToHiveTransfer
 - HiveToMsSqlTransfer
 - MsSqlToHiveTransfer
 - S3ToHiveTransfer
 - Many More...

Defining a DAG

```
from airflow.models import DAG
from airflow.operators import ...
from datetime import datetime, timedelta
default args = dict(
      'owner'='Airflow',
      'retries': 1,
      'retry delay': timedelta(minutes=5),
# Define the DAG
dag = DAG('dag id', default args=default args, schedule interval='0 0 * * *')
# Define the Tasks
task1 = BashOperator(task id='task1', bash command="echo 'Task 1'", dag=dag)
task2 = BashOperator(task id='task2', bash command="echo 'Task 2'", dag=dag)
task3 = BashOperator(task id='task3', bash command="echo 'Task 3'", dag=dag)
# Define the task relationships
task1.set downstream(task2)
task2.set downstream(task3)
```

Defining a DAG (Dynamically)

```
dag = DAG('dag_id', default_args=default_args, schedule_interval='0 0 * * *')

last_task = None

for i in range(1, 3):
    task = BashOperator(
        task_id='task' + Str(i),
        bash_command="echo 'Task" + Str(i) + "'",
        dag=dag)

if last_task is None:
    last_task = task

else:
    last_task.set_downstream(task)
    last_task = task
```


ETL Best Practices (Some of Them)

- Load Data Incrementally
 - Operators will receive an execution_date entry which you can use to pull in data since that date
- Process historic Data
 - Backfill operations are supported
- Enforce Idempotency (retry safe)
- Execute Conditionally
 - Branching, Joining
- Understand SLA's and Alerts
 - Alert if Failures
- Sense when to start a task
 - Sensor Operators
- Build Validation into your Workflows

Executing Airflow Workflows on Hadoop

- Airflow Workers should be installed on a edge/gateway nodes
 - Allows Airflow to interact with Hadoop related commands
 - Utilize the BashOperator to run command line functions and interact with Hadoop services
- Put all necessary scripts and Jars in HDFS and pull the files down from HDFS during the execution of the script
 - Avoids requiring you to keep copies of the scripts on every machine where the executors are running
- Support for Kerborized Clusters
 - Airflow can renew Kerberos tickets for itself and store it in the ticket cache

 $\langle \langle \rangle \rangle$

Use Case (BPV)

- Daily ETL Batch Process to Ingest data into Hadoop
 - Extract
 - 23 databases total
 - 1226 tables total
 - Transform
 - Impala scripts to join and transform data
 - Load
 - Impala scripts to load data into common final tables
- Other requirements
 - Make it extensible to allow the client to import more databases and tables in the future
 - Status emails to be sent out after daily job to report on success and failures
- Solution
 - Create a DAG that dynamically generates the workflow based off data

Use Case (BPV) (Architecture)

Page: 19

Use Case (BPV) (DAG)

100 foot view

10,000 foot view

Use Case (Kogni)

- New Product being built by Clairvoyant to facilitate:
 - kogni-inspector Sensitive Data Analyzer
 - kogni-ingestor Ingests Data
 - kogni-guardian Sensitive Data Masking (Encrypt and Tokenize)
 - Others components coming soon
- Utilizes Airflow for Data Ingestion and Masking
- Dynamically creates a workflow based off what is in the Metastore
- Learn More: http://kogni.io/

Use Case (Kogni) (Architecture)

References

- https://pythonhosted.org/airflow/
- https://gtoonstra.github.io/etl-with-airflow/principles.html
- https://github.com/apache/incubator-airflow
- https://media.readthedocs.org/pdf/airflow/latest/airflow.pdf

Q&A