LLIN_Analses

Steven Gan

2024-10-30

Table of contents

Load the Data	2
IG2 Data Preliminary Analyses	3
Strucutre of IG2 Data	3
Plot mortality at 24h and 72h v.s. round by type and mosquito species strain	4
Plot mortality at 24h and 72h v.s. drug conc. by round and mosquito species strain	5
PN3 Data Preliminary Analyses	7
Plot knock out rate at 60 min and moratality v.s. round by type and mosquito species strain	8
Plot knock out rate at 60 min and mortality v.s. drug conc. by round and mosquito species strain	9
Comparison of IG2 and PN3 Data	12
Data structure	12
Dot plot Mortality Comparison of IG2 and PN3 Data	13
Statistical inference	14
Violin plot Mortality Comparison of IG2 and PN3 Data	16
Box plot Mortality Comparison of IG2 and PN3 Data	17
Interceptor Data Preliminary Analyses	18
Structure of Interceptor Data	18

Load the Data

```
library(readr)
ig2.df <- read_csv("Burkina Faso_bio_ig2_master_m36_anonym.csv")</pre>
Rows: 322 Columns: 35
-- Column specification ------
Delimiter: ","
chr (4): Province, netid, Mosquitospeciesstrain, NetType
dbl (31): round, loc, splace, splacegr, uselast, usergr, usegr2, freq, seaso...
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
pn3.df <- read_csv("Burkina Faso_bio_pn3_master_m36_anonym.csv")</pre>
Rows: 590 Columns: 33
-- Column specification ------
Delimiter: ","
chr (4): Province, netid, Mosquitospeciesstrain, NetType
dbl (29): round, loc, splace, splacegr, uselast, usergr, usegr2, freq, seaso...
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
interceptor.df <- read_csv("Burkina Faso_bio_interceptor_master_m36_anonym.csv")</pre>
Rows: 120 Columns: 26
-- Column specification ------
Delimiter: ","
chr (3): Province, netid, Mosquitospeciesstrain
dbl (23): round, loc, splace, splacegr, uselast, usergr, usegr2, freq, seaso...
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

IG2 Data Preliminary Analyses

Strucutre of IG2 Data

colnames(ig2.df)

[1]	"Province"	"netid"	"round"
[4]	"loc"	"splace"	"splacegr"
[7]	"uselast"	"usergr"	"usegr2"
[10]	"freq"	"season"	"wash"
[13]	"times"	"soap"	"soapgr"
[16]	"dried"	"res"	"Mosquitospeciesstrain"
[19]	"NetType"	"nettype"	"ig2_filter"
[22]	"n"	"n_penetrated"	"n_blood_fed"
[25]	"n_dead24h"	"n_dead72h"	"penetrated"
[28]	"bloodfed"	"mort24h"	"mort72"
[31]	"bfi"	"alpha_g_kg"	"alpha_mg_m2"
[34]	"chlor_g_kg"	"chlor_mg_m2"	

table(ig2.df\$NetType, ig2.df\$Mosquitospeciesstrain)

```
An. coluzzii VKPER An. gambiae Kisumu An.kisumu
                               1
                                                            2
Interceptor
                              14
                                                 10
Interceptor G2
                             133
                                                 96
                                                           32
                                                            3
New
                              0
                                                 0
                              2
                                                  0
                                                            2
Untreated
Untreated net
                              13
                                                 14
                                                            0
```

```
# An.kisumu is the same as An.gambiae Kisumu in "Mosquitospeciesstrain".
# Merge them.
ig2.df$Mosquitospeciesstrain[
   ig2.df$Mosquitospeciesstrain == "An. gambiae Kisumu"] <- "An. Kisumu"
ig2.df$Mosquitospeciesstrain[
   ig2.df$Mosquitospeciesstrain == "An.kisumu"] <- "An. Kisumu"
# Untreated and Untreated net are the same as in "NetType".
ig2.df$NetType[ig2.df$NetType == "Untreated"] <- "Untreated Net"
ig2.df$NetType[ig2.df$NetType == "Untreated net"] <- "Untreated Net"</pre>
```

```
# One "NetType" is . and another is New. Remove it.
ig2.df <- ig2.df[ig2.df$NetType != ".", ]
ig2.df <- ig2.df[ig2.df$NetType != "New", ]

# Filter > 100 vales in "mort24h" and "mort72"
ig2.df <- ig2.df[ig2.df$mort24h <= 100, ]
ig2.df <- ig2.df[ig2.df$mort72 <= 100, ]

table(ig2.df$NetType, ig2.df$Mosquitospeciesstrain)</pre>
```

	An.	coluzzii	VKPER	An.	Kisumu
Interceptor			14		12
Interceptor G2			133		127
Untreated Net			15		16

Plot mortality at 24h and 72h v.s. round by type and mosquito species strain

```
# Plot "mort24h" & "mort72" v.s. "round" by "NetType" & "Mosquitospeciesstrain"
library(ggplot2)
library(gridExtra)
m1 \leftarrow ggplot(ig2.df, aes(x = round, y = mort24h)) +
  geom_point() + geom_smooth(method = "lm") +
  facet_grid(NetType ~ Mosquitospeciesstrain) +
  ylim(0, 100) +
  ylab("Mortality at 24h") + xlab("Round") +
  theme_bw()
m2 \leftarrow ggplot(ig2.df, aes(x = round, y = mort72)) +
  geom_point() + geom_smooth(method = "lm") +
  facet_grid(NetType ~ Mosquitospeciesstrain) +
  ylim(0, 100) +
  ylab("Mortality at 72h") + xlab("Round") +
  theme_bw()
grid.arrange(m1, m2, ncol = 2,
             top = "Mortality vs Round of Ig2 Data")
```

Mortality vs Round of Ig2 Data


```
ggsave("1_IG2_Mortality_vs_Round.png", width = 8, height = 4)
```

Plot mortality at 24h and 72h v.s. drug conc. by round and mosquito species strain

Mortality vs Drug Concentration of IG2 Data

ggsave("2_IG2_Mortality_24h_vs_Drug_Concentration.png", width = 8, height = 5)

```
# Plot "mort24h" v.s. "alpha_g_kg" & "chlor_g_kg" by "Mosquitospeciesstrain".

n1.2 <- ggplot(ig2.df, aes(x = alpha_g_kg, y = mort24h)) +
    geom_point() + geom_smooth() +
    facet_wrap(~ Mosquitospeciesstrain) +
    ylim(0, 100) +
    ylab("Mortality at 24h") + xlab("Alpha concentration (g/kg)") +
    theme_bw()

n2.2 <- ggplot(ig2.df, aes(x = chlor_g_kg, y = mort24h)) +
    geom_point() + geom_smooth() +
    facet_wrap(~ Mosquitospeciesstrain) +
    ylim(0, 100) +
    ylab("Mortality at 24h") + xlab("Chlor concentration (g/kg)") +
    theme_bw()

grid.arrange(n1.2, n2.2, ncol = 2,
    top = "Mortality vs Drug Concentration of IG2 Data")</pre>
```

Mortality vs Drug Concentration of IG2 Data

ggsave("3_IG2_Mortality_vs_Drug_Concentration.png", width = 8, height = 3)

PN3 Data Preliminary Analyses

colnames(pn3.df)

[1]	"Province"	"netid"	"round"
[4]	"loc"	"splace"	"splacegr"
[7]	"uselast"	"usergr"	"usegr2"
[10]	"freq"	"season"	"wash"
[13]	"times"	"soap"	"soapgr"
[16]	"dried"	"res"	"Mosquitospeciesstrain"
[19]	"NetType"	"nettype"	"panel_1side_2roof"
[22]	"pn3_filter"	"n"	"n_kd"
[25]	"kd60"	"n_m"	"mort"
[28]	"delta_side_g_kg"	"delta_side_mg_m2"	"delta_roof_g_kg"
[31]	"delta_roof_mg_m2"	"pbo_roof_g_kg"	"pbo_roof_mg_m2"

table(pn3.df\$NetType, pn3.df\$Mosquitospeciesstrain)

	An.	coluzzii	VKPER	An.	gambiae	Kisumu
Contrôle			4			4
PermaNet 2.0			6			4
PermaNet 3.0			286			252
Untreated Net_Control			20			14

```
# Change An. gambiae Kisumu to An. kisumu in "Mosquitospeciesstrain".
pn3.df$Mosquitospeciesstrain[
    pn3.df$Mosquitospeciesstrain == "An. gambiae Kisumu"] <- "An. Kisumu"
# Contrôle is the same as Untreated Net_Control in "NetType".
# Merge them and name as "Untreated Net".
pn3.df$NetType[pn3.df$NetType == "Contrôle"] <- "Untreated Net"
pn3.df$NetType[pn3.df$NetType == "Untreated Net_Control"] <- "Untreated Net"
# Filter > 100 vales in "mort" and "kd60"
pn3.df <- pn3.df[pn3.df$mort <= 100, ]
pn3.df <- pn3.df[pn3.df$kd60 <= 100, ]
# Remove NA in "NetsType" and "Mosquitospeciesstrain"
pn3.df <- pn3.df[!is.na(pn3.df$NetType), ]
pn3.df <- pn3.df[!is.na(pn3.df$Mosquitospeciesstrain), ]

table(pn3.df$NetType, pn3.df$Mosquitospeciesstrain)</pre>
```

	An.	coluzzii	VKPER	An.	Kisumu
PermaNet 2.0			4		4
PermaNet 3.0			285		251
Untreated Net			22		16

Plot knock out rate at 60 min and moratality v.s. round by type and mosquito species strain

```
# Plot "kd60" & "mort" v.s. "round" by "NetType" & "Mosquitospeciesstrain"

o1 <- ggplot(pn3.df, aes(x = round, y = kd60)) +
    geom_point() + geom_smooth(method = "lm") +
    facet_grid(NetType ~ Mosquitospeciesstrain) +
    ylim(0, 100) +
    ylab("Knock Down Rate at 60 min") + xlab("Round") +
    theme_bw()

o2 <- ggplot(pn3.df, aes(x = round, y = mort)) +
    geom_point() + geom_smooth(method = "lm") +
    facet_grid(NetType ~ Mosquitospeciesstrain) +
    ylim(0, 100) +
    ylab("Mortality") + xlab("Round") +</pre>
```

Knock Down Rate and Mortality vs Round of PN3 Data


```
ggsave("4_PN3_Knock_Down_Rate_and_Mortality_vs_Round.png",
    width = 8, height = 4)
```

Plot knock out rate at 60 min and mortality v.s. drug conc. by round and mosquito species strain

```
# Plot "kd60" v.s. "delta_side_g_kg" & "delta_roof_g_kg" & "pbo_roof_g_kg"
# by "round" & "Mosquitospeciesstrain".

p1 <- ggplot(pn3.df, aes(x = delta_side_g_kg, y = kd60)) +
    geom_point() + geom_smooth() +
    facet_grid(round ~ Mosquitospeciesstrain) +
    ylim(0, 100) +
    ylab("Knock Down Rate at 60 min") + xlab("Delta Side concentration (g/kg)") +
    theme_bw()
p2 <- ggplot(pn3.df, aes(x = delta_roof_g_kg, y = kd60)) +
    geom_point() + geom_smooth() +</pre>
```



```
ggsave("5_PN3_Knock_Down_Rate_vs_Drug_Concentration.png",
    width = 12, height = 5)
```

```
# Plot "mort" v.s. "delta_side_g_kg" & "delta_roof_g_kg" & "pbo_roof_g_kg"
# by "round" & "Mosquitospeciesstrain".

q1 <- ggplot(pn3.df, aes(x = delta_side_g_kg, y = mort)) +
    geom_point() + geom_smooth() +
    facet_grid(round ~ Mosquitospeciesstrain) +
    ylim(0, 100) +
    ylab("Mortality") + xlab("Delta Side concentration (g/kg)") +
    theme_bw()
q2 <- ggplot(pn3.df, aes(x = delta_roof_g_kg, y = mort)) +</pre>
```


ggsave("6_PN3_Mortality_vs_Drug_Concentration.png", width = 12, height = 5)

```
# Plot "mort" v.s. "delta_side_g_kg" & "delta_roof_g_kg" & "pbo_roof_g_kg"
# by "Mosquitospeciesstrain".

q1.2 <- ggplot(pn3.df, aes(x = delta_side_g_kg, y = mort)) +
    geom_point() + geom_smooth() +
    facet_wrap(~ Mosquitospeciesstrain) +
    ylim(0, 100) +
    ylab("Mortality") + xlab("Delta Side concentration (g/kg)") +
    theme_bw()
q2.2 <- ggplot(pn3.df, aes(x = delta_roof_g_kg, y = mort)) +</pre>
```


ggsave("7_PN3_Mortality_vs_Drug_Concentration.png", width = 12, height = 3)

Comparison of IG2 and PN3 Data

Data structure

```
library(dplyr)
```

Attaching package: 'dplyr'

The following object is masked from 'package:gridExtra':

combine

```
The following objects are masked from 'package:stats':
    filter, lag
The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union
# Select An. coluzzii VKPER from "Mosquitospeciesstrain" in ig2.df.
# Select Interceptor G2 from "NetType" in ig2.df.
# Extract "NetType", "round", and "mort24h" from ig2.df
# Name 3 columns as "NetType", "round", and "mort" respectively.
ig2.mort <- ig2.df %>%
  filter(Mosquitospeciesstrain == "An. coluzzii VKPER") %>%
  filter(NetType == "Interceptor G2") %>%
  select(NetType, round, mort24h) %>%
  rename(mort = mort24h)
# Select An. coluzzii VKPER from "Mosquitospeciesstrain" in pn3.df.
# Select PermaNet 3.0 from "NetType" in pn3.df.
# Extract "NetType", "round", and "mort" from pn3.df
pn3.mort <- pn3.df %>%
  filter(Mosquitospeciesstrain == "An. coluzzii VKPER") %>%
  filter(NetType == "PermaNet 3.0") %>%
  select(NetType, round, mort)
# Combine ig2.mort and pn3.mort
ig2.pn3.mort <- rbind(ig2.mort, pn3.mort)</pre>
```

Dot plot Mortality Comparison of IG2 and PN3 Data

```
# Plot "mort" v.s. "round" by "NetType" of ig2.pn3.mort.

ggplot(ig2.pn3.mort, aes(x = round, y = mort, color = NetType,)) +
    geom_point() + geom_smooth(method = "lm") +
    facet_wrap(~ NetType) +
    ylim(0, 100) +
    ylab("Mortality") + xlab("Round") +
    theme_bw() +
    ggtitle("Mortality Comparison of IG2 and PN3 Data")
```

Mortality Comparison of IG2 and PN3 Data

ggsave("8_Mortality_Comparison_of_IG2_and_PN3_Data.png", width = 6, height = 3)

Statistical inference

```
# Perform t-test to compare mortality between IG2 and PN3 for each round.
# t.test ~ 2 independent samples
cat("t-test: IG2 vs PN3\n")
```

t-test: IG2 vs PN3

```
cat("p-value for each round:\n")
```

p-value for each round:

```
t.test(mort ~ NetType, ig2.pn3.mort[ig2.pn3.mort$round == 0, ])$p.value
```

[1] 3.381515e-06

```
t.test(mort ~ NetType, ig2.pn3.mort[ig2.pn3.mort$round == 1, ])$p.value
[1] 0.08416484
t.test(mort ~ NetType, ig2.pn3.mort[ig2.pn3.mort$round == 2, ])$p.value
[1] 0.001256952
t.test(mort ~ NetType, ig2.pn3.mort[ig2.pn3.mort$round == 3, ])$p.value
[1] 3.384657e-05
cat("\n")
# Perform U-test to compare mortality between IG2 and PN3 for each round.
# wilcox.test ~ 2 independent samples
cat("U-test: IG2 vs PN3\n")
U-test: IG2 vs PN3
cat("p-value for each round:\n")
p-value for each round:
wilcox.test(mort ~ NetType, ig2.pn3.mort[ig2.pn3.mort$round == 0, ])$p.value
[1] 0.0006484355
wilcox.test(mort ~ NetType, ig2.pn3.mort[ig2.pn3.mort$round == 1, ])$p.value
[1] 0.0647963
wilcox.test(mort ~ NetType, ig2.pn3.mort[ig2.pn3.mort$round == 2, ])$p.value
[1] 0.002721057
```

```
wilcox.test(mort ~ NetType, ig2.pn3.mort[ig2.pn3.mort$round == 3, ])$p.value
```

[1] 2.463179e-06

Violin plot Mortality Comparison of IG2 and PN3 Data

Mortality Comparison of IG2 and PN3 Data An. coluzzii VKPER


```
ggsave("9_Mortality_Comparison_of_IG2_and_PN3_Data_Violin.png",
    width = 6, height = 4)
```

Box plot Mortality Comparison of IG2 and PN3 Data

Mortality Comparison of IG2 and PN3 Data


```
ggsave("10_Mortality_Comparison_of_IG2_and_PN3_Data_Box.png",
    width = 5, height = 3)
```

Interceptor Data Preliminary Analyses

Structure of Interceptor Data

colnames(interceptor.df)

```
[1] "Province"
                              "netid"
                                                       "round"
 [4] "loc"
                              "splace"
                                                       "splacegr"
 [7] "uselast"
                              "usergr"
                                                       "usegr2"
                                                       "wash"
[10] "freq"
                              "season"
[13] "times"
                              "soap"
                                                       "soapgr"
                              "Mosquitospeciesstrain" "n"
[16] "dried"
[19] "n_kd"
                              "n_m"
                                                       "kd60"
[22] "mort"
                              "opt"
                                                       "min"
[25] "g_kg"
                              "mg_m2"
```

table(interceptor.df\$Mosquitospeciesstrain)

```
An. gambiae Kisumu
120
```