Wykład 8 - Zadania 2 i 5

Krystian Baran 145000 27 kwietnia 2021

Spis treści

1	Zad	lan	\mathbf{ie}	2	-	Ι	7u	ın	k	сj	\mathbf{e}	\mathbf{t}	es	t	óν	V	w	I	3											3
	1.1	t.	tes	st()																									3
	1.2	w	ilc	ΟX	.t	es	st(()																						4
	1.3	Vδ	ır.	tes	st	()																								5
	1.4	ks	s.te	est	t())																								6
2	Zadanie 4 - Studium przypadku															7														
	2.1)										_			_														7
	2.2	b)																												8
	2.3	c)																												8
	2.4	,)																											8
	2.5	e)																												9
	2.6	f)																												9
	2.7	g))																											9
	2.8)																											9
	2.9	i)																												10
3	Bib	lio	\mathbf{gr}	af	ìa	ι																								10

1 Zadanie 2 - Funkcje testów w R

W języku programowania R istnieją różne funkcji do wykonywania testów, natomiast zatrzymamy się na najważniejszych.

1.1 t.test()

Funkcja do wykonania testu t-Studenta dla którego zakłada się że dane pochodzą z rozkładu normalnego z parametrami nieznanymi. Parametry tej funkcj są następujące:

- x wektor wartości próby
- ullet y wektor wartości próby do porównania z próbą x. Opcjonalny
- alternative specyfikacja hipotezy alternatywnej przyjmujące wartości: "two.sided", "greater", "less"
- mu wartość prawdziwej wartości oczekiwanej lub różnica między wartościami oczekiwanymi dla dwóch prób
- paired logiczna wartość dla "paired" testu
- var.equal logiczna mówiąca czy traktować wariancje jako takie same lub nie. Gdy FALSE korzysta się z aproksymacja Welcha.
- conf.equal confidence level
- formula "lhs" dla numerycznej zmiennej oddającej wartości, "rhs" dla two pionowa korespondencji grup.
- data Opcjonalna macierz z wartościami użytych do polu formula
- **subset** Opcjonalny wektor z podzbiorem obserwacji do wykorzystania w teście
- na.
action funkcja definiująca co się dzieje gdy napotkane zostają wartości
 $N\!A$

Oddawane przez tą funkcje wartości są następujące:

- statistic wartość statystyki t
- parameter stopnie swobody statystyki t
- p.value p value wykonanego testu
- conf.int przedział ufności dla wartości oczekiwanej
- estimate estymowana wartość oczekiwana lub różnica wartości oczekiwanych dla testu dwóch prób

- $\bullet\,$ null.
value - podana wartość mu
- **stderr** standardowy błąd wartości oczekiwanej, używany jako mianownik statystyki t
- alternative opis hipotezy alternatywnej
- method typ wykonanego testu t
- data.name imię podanej macierz pod data

1.2 wilcox.test()

Test Wilcoxona wykorzystany jest do badania wartości oczekiwanej jak w teście t-Studenta ale nie zakłada się że próba ma rozkład normalny. Funkcja ta przyjmuje następujące parametry:

- x wektor liczb na podstawie której będzie test prowadzony
- y wektor liczb w przypadku testu dwóch prób
- mu wartość oczekiwana hipotezy zerowej
- paired logiczna dla testu "paired"
- \bullet exact logiczna mówiąca czy dokładna wartość p value powinna być liczona
- conf.int logiczna mówiąca czy powinien zostać liczony przedział ufności
- conf.level poziom ufności testu
- formula "lhs" dla numerycznej zmiennej oddającej wartości, "rhs" dla two pionową korespondencji grup.
- data Opcjonalna macierz z wartościami użytych do polu formula
- subset Opcjonalny wektor z podzbiorem obserwacji do wykorzystania w teście
- na.action funkcja definiująca co się dzieje gdy napotkane zostają wartości $N\!A$

Funkcja ta oddaje podobne wartości jak test t-Studenta:

- statistic wartość statystyki z imieniem opisującym
- parameter parametry dokładnego rozkładu statystyki testowej
- p.value p value wykonanego testu

- \bullet null.value podana wartość mu
- alternative opis hipotezy alternatywnej
- method typ wykonanego testu
- data.name imię podanej macierz pod data
- conf.int przedział ufności dla wartości oczekiwanej
- estimate estymowana wartość oczekiwana lub różnica wartości oczekiwanych dla testu dwóch prób

1.3 var.test()

Test ten jest testem F Snedecora dla porównania wariancji pomiędzy dwoma populacjami. Funkcja ta przyjmuje następujące wartości:

- \mathbf{x} , \mathbf{y} wektory liczb dla których przeprowadzony jest test
- ratio hipotetyczny "ratio" pomiędzy badanymi wariancjami
- alternative hipoteza alternatywna, przyjmuje wartości: "two.sided", "greater", "less"
- conf.level poziom ufności testu
- formula "lhs" dla numerycznej zmiennej oddającej wartości, "rhs" dla two pionowa korespondencji grup.
- data Opcjonalna macierz z wartościami użytych do polu formula
- **subset** Opcjonalny wektor z podzbiorem obserwacji do wykorzystania w teście
- $\bullet\,$ na.
action funkcja definiująca co się dzieje gdy napotkane zostają wartości
 NA

Funkcja ta zwraca listę typu "htest" zawierająca następujące komponenty:

- statistic wartość statystyki F-test
- parameter stopnie swobody rozkładu F dla testu
- ullet p.value p value wykonanego testu
- conf.int przedział ufności dla wartości oczekiwanej
- estimate estymowana wartość oczekiwana lub różnica wartości oczekiwanych dla testu dwóch prób
- null.value "ratio" wariancji populacji podane
- alternative opis hipotezy alternatywnej
- method typ wykonanego testu
- data.name imię podanej macierz pod data

1.4 ks.test()

Funckja do wykonania testu na dwóch próbach w celu sprawdzenia czy mają ten sam rozkład. Funkcja ta przyjmuje następujące wartosci:

- $\bullet~\mathbf{x}$ wektor wartości
- $\bullet\,$ y wektor wartości lub łańcuch opisujący dystrybuantę rozkładu
- alternative hipoteza alternatywna, przyjmuje wartości: "two.sided", "greater", "less"
- exact logiczna mówiąca czy dokładna wartość p value powinna być liczona
- tol górny koniec przedziału dla błędu zaokrąglania
- simulate.p.value logiczna mówiąca czy symulować $p\ value$ według Monte Carlo
- \bullet B liczba replikatów dla testu Monte Carlo

Funkcja ta zwraca listę typu "htest" zawierająca następujące komponenty:

- statistic wartość statystyki testowej
- p.value p value wykonanego testu
- alternative opis hipotezy alternatywnej
- method typ wykonanego testu
- data.name imię podanej macierz pod data

2 Zadanie 4 - Studium przypadku

Pascal jest językiem programowania wysokiego poziomu, stosowanym często do oprogramowywania mikrokomputerów. W celu zbadania wskaźnika p zmiennych pascalowych typu tablicowego został przeprowadzony eksperyment. Dwadzieścia zmiennych zostało losowo wybranych ze zbioru programów pascalowych i liczba X zmiennych typu tablicowego została odnotowana. Celem poznawczym jest zweryfikowanie hipotezy, że pascal jest językiem o większej wydolności (tj. ma większy udział zmiennych typu tablicowego) niż algol, dla którego, jak pokazało doświadczenie, jedynie 20% zmiennych jest typu tablicowego.

- a) Skonstruować test statystyczny do zweryfikowania postawionej hipotezy.
- b) Znaleźć α dla zbioru odrzuceń $X \geq 8$.
- c) Znaleźć α dla zbioru odrzuceń $X \ge 5$.
- d) Znaleźć β dla zbioru odrzuceń $X \ge 8$, jeżeli p = 0, 5 (doświadczenie pokazuje, że około połowa zmiennych w programach pascalowskich jest typu tablicowego).
- e) Znaleźć β dla zbioru odrzuceń $X \ge 5$, jeżeli p = 0, 5.
- f) Który ze zbiorów odrzuce
ń $X\geqslant 8$ czy $X\geqslant 5$ jest bardziej pożądany, jeżeli minimalizowany
jest:
 - A) błąd I rodzaju?
 - B) błąd II rodzaju?
- g) Znaleźć jednostronny zbiór odrzuceń postaci $X \ge a$, tak aby poziom ufności był w przybliżeniu równy $\alpha = 0,01$.
- h) Dla zbioru odrzuceń wyznaczonego w poprzednim punkcie znaleźć moc testu, jeżeli p=0,4.
- i) Dla zbioru odrzuceń wyznaczonego w punkcie g) znaleźć moc testu, jeżeli p=0,7.

2.1 a)

Oznaczmy jako X liczbę zmiennych typu tablicowego w Pascal z losowo wybranych, wtedy X ma rozkład dwumianowy z nieznanym parametrem p. Załóżmy że liczby typu tablicowego wylosowane z programu Algog ma także rozkład dwumianowy gdzie natomiast jest znany parametr p=0.2. Wtedy hipoteza że Pascal jest językiem programowania o większej zdolności niż Algol, czyli że p liczb typu tablicowego w Pascal jest większa niż p dla liczb tablicowych w Algol. Jest to hipoteza alternatywa ponieważ wstępuje ostra nierówność, zatem stosując normy statystyki można wyznaczyć hipotezę zerowa.

$$H_0 \mid p \leqslant p_0 = 0.2$$

 $H_1 \mid p > p_0 = 0.2$

Znany jest rozkład ale nie znany jest parametr p, musimy sprawdzić poniższy warunek aby móc zastosować statystykę.

$$0 < p_0 \mp \sqrt{\frac{p_0(1-p_0)}{n}} = 0.2 \mp \sqrt{\frac{0.16}{20}} < 1$$

Spełniony jest warunek zatem możemy zastosować statystykę która jest zbliżona do rozkładu N(0,1):

$$Z = \frac{\overline{P}_n - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

2.2 b)

Zbiór odrzuceń jest zbiorem dla którego, jeżeli liczba liczb
 tablicowych się znajdzie odrzucamy hipotezę zerową t
j że Pascal jest mniej wydajny. Zatem dla $X \geqslant 8$ zbiór krytyczny jest następujący:

$$R = \{8, 9, \dots, 20\}$$

Wtedy błąd pierwszego rodzaju, zakładając że dla H_0 p=0.2 jest następujący:

$$\alpha = P(U_n \in R | H_0) = P(X \ge 8) = 1 - P(X \le 7)$$

$$\stackrel{R}{=} 1 - pbinom(7, 20, 0.2) \approx 0.03214266$$

2.3 c)

Podobnie jak w poprzednim podpunkcie wyznaczymy zbiór krytyczny:

$$R = \{5, 6, \dots, 20\}$$

Wtedy, zakładając jak poprzednio, błąd pierwszego rodzaju wynosi:

$$\alpha = P(U_n \in R|H_0) = P(X \ge 5) = 1 - P(X \le 4)$$

 $\stackrel{R}{=} 1 - pbinom(4, 20, 0.2) \approx 0.3703517$

2.4 d)

Jak dla podpunktu b, zbiór wartości krytycznych jest następujący:

$$R = \{8, 9, \dots, 20\}$$

Natomiast potrzebujemy obliczyć błąd drugiego rodzaju, to znaczy że zakładamy że hipoteza alternatywna jest prawdziwa, czyli że Pascal jest bardziej

wydajnym programem, i zakładamy że p=0.5. Wtedy szykane β wyraża się następującym wzorem:

$$\beta = 1 - P(U_n \in R|H_1) = 1 - P(X \ge 8) = P(X \le 7)$$

$$\stackrel{R}{=} pbinom(7, 20, 0.5) \approx 0.131588$$

Zatem β wynosi około 0.1326.

2.5 e)

Zbiór wartości krytycznych jest jak w podpunkcie c:

$$R = \{5, 6, \dots, 20\}$$

Natomiast obliczamy błąd drugiego rodzaju jak dla poprzedniego podpunktu, czyli:

$$\beta = 1 - P(U_n \in R|H_1) = 1 - P(X \ge 5) = P(X \le 4)$$

$$\stackrel{R}{=} pbinom(4, 20, 0.5) \approx 0.005908966$$

Zatem β wynosi około 0.0059.

2.6 f)

Nie rozwiązane.

2.7 g)

Szukamy wartość a taka aby błąd pierwszego rodzaju był równy 0.01. Zatem, korzystając z poprzednich podpunktów można tę wartość wyznaczyć:

$$\alpha = 0.01 = 1 - P(X \le a - 1)$$

$$P(X \le a - 1) = 0.99$$

$$a - 1 = F^{-1}(0.99) \stackrel{R}{=} qbinom(0.99, 20, 0.2) = 8$$

$$a = 9$$

Zatem dla $X \ge 9$ błąd pierwszego rodzaju wynosi 0.01.

2.8 h)

Jak w poprzednich podpunktach obliczymy błąd drugiego rodzaju i na jego podstawie moc testu. Przyjmujemy wartość p=0.4.

$$\beta = 1 - P(X \le 8) \stackrel{R}{=} 1 - pbinom(8, 20, 0.4) \approx 0.4044013$$

Wtedy moc testu wynosi $1 - \beta = 0.5955987$.

2.9 i)

Nie rozwiązane. Jak w poprzednim podpunkcie obliczymy moc testu na podstawie błędu drugiego rodzaju przyjmując p=0.7.

$$\beta = 1 - P(X \le 8) \stackrel{R}{=} 1 - pbinom(8, 20, 0.7) \approx 0.9948618$$

Wtedy moc testu wynosi $1 - \beta = 0.005138162$.

3 Bibliografia

- $\bullet \ \ https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/t.test$
- $\bullet\ https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/wilcox.test$
- $\bullet \ \ https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/var.test$
- $\bullet \ \ https://www.rdocumentation.org/packages/dgof/versions/1.2/topics/ks.test$