同学们好!

§ 10.5 磁介质

磁介质的磁化

 μ_r —相对磁导率

顺磁质 抗磁质 铁磁质

顺磁质 (例如铝)

$$\mu_r = 1 + 1.65 \times 10^{-5} > 1$$

抗磁质 (例如铜)

$$\mu_r = 1 - 1.0 \times 10^{-5} < 1$$

工程上取 $\mu_r \approx 1$

铁磁质 (铁、钴、镍及其合金,铁氧体)

$$\mu_r >> 1$$

纯铁

硅钢

坡莫合金

$$\mu_r$$
 5×10³ 7×10²

$$7\times10^2$$

$$1\times10^5$$

顺磁质和抗磁质的磁化

	电介质	磁介质
大王	电偶极子	分子 {分子中所有电子,原子核电流 {固有磁矩的等效电流
分类	有极分子 电 介 质 $\vec{p}_e \neq 0$, $\sum \vec{p}_e = 0$	顺磁质 $\vec{p}_m \neq 0$, $\sum \vec{p}_m = 0$
	无极分子 $\vec{p}_e = 0$, $\sum \vec{p}_e = 0$	抗磁质 $\vec{p}_m = 0$, $\sum \vec{p}_m = 0$

无外磁场:

顺磁质

抗磁质

外场中: 磁化

以顺磁质为例

$$\vec{M} = \vec{P}_m \times \vec{B}$$
 $\vec{M} = \frac{\mathrm{d} L}{\mathrm{d} t}$

(1) 转向

(2) 产生与 \vec{B}_0 反向的附加磁矩 $\Delta \vec{p}_m$

抗磁质:

相当于上图中两种情况叠加,仍产生与 \vec{B}_0 反向的附加磁矩

参考书中P271

宏观效果

1. 介质中总磁矩不为零

$$\sum \vec{p}_m + \sum \Delta \vec{p}_m \approx \sum \vec{p}_m \neq 0$$

与 \vec{B}_0 同向

抗磁质

$$\sum \Delta \vec{p}_m \neq 0$$
 与 \vec{B}_0 反向

2. 介质表面出现磁化电流(束缚电流)

磁化状态的描述

定义磁化强度:

$$\vec{M} = \frac{\sum \vec{p}_m + \sum \Delta \vec{p}_m}{\Delta V}$$

$$= \frac{I_s \cdot S\vec{n}}{LS} = j_s \vec{n}$$

磁化(束缚)电流线密度

磁化强度与磁化电流的关系:

$$\oint_{L} \vec{M} \cdot d\vec{l} = \sum_{(L \nmid 1)} I_{s}$$

顺磁质

	电介质	磁介质
与场相互	转向极化	均产生与 \vec{B}_0 反向的附加磁矩 $\Delta \vec{p}_m$
作用机制	位移极化	抗磁质: 只有 $\sum \Delta \vec{p}_m$
	$\sum \vec{p}_e \neq 0$	顺磁质:转向 + 附加磁矩 $\sum \vec{p}_m + \sum \Delta \vec{p}_m \approx \sum \vec{p}_m$
	极化强度:	磁化 $\vec{M} = \frac{\sum \vec{p}_m + \sum \Delta \vec{p}_m}{\Delta V}$
描述	$\vec{P} = \frac{\sum \vec{p}_e}{\Delta V}$	强度 ΔV 抗: $\vec{M} = \frac{\sum \Delta \vec{p}_{m}}{\Delta V} = \vec{B}_{0}$ 反向 顺: $\vec{M} \approx \frac{\sum \vec{p}_{m}}{\Delta V} = \vec{B}_{0}$ 同向
	极化电荷: $\sigma^{'}=P_{n}$	顺: $\vec{M} \approx \frac{\sum_{i} \vec{p}_{m}}{\Delta V}$ 与 \vec{B}_{0} 同向
	$\oint_{S} \vec{P} \cdot d\vec{S} = -\sum_{(S \nmid I)} q'$	磁化电流: $j_s = M \qquad \oint_L \vec{M} \cdot d\vec{l} = \sum_{(\hat{g}) \neq 1/3 \neq 2} I_s$

安培环路定理: 传导电流 磁化电流
$$\oint_L \vec{B} \cdot d\vec{l} = \mu_0 \sum_{(L \nmid h)} I = \mu_0 \sum_{(L \mid h)} (I_0 + I_s) = \mu_0 (\sum I_0 + \oint_L \vec{M} \cdot d\vec{l})$$

$$\oint_{L} \left(\frac{\vec{B}}{\mu_{0}} - \vec{M} \right) \cdot d\vec{l} = \sum_{(L \nmid 1)} I_{0}$$

$$\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M}$$
 与空间 I_0 . I_s 均有关。

$$\oint_{L} \vec{H} \cdot d\vec{l} = \sum_{(L \nmid 1)} I_{0}$$

介质中的安培环路定理

$$\underline{\int_{L} \vec{H} \cdot d\vec{l}} = \sum_{(Lh)} I_{0}$$
 介质中的安培环路定理

只与穿过L的传导电流代数和有关.

对各向同性磁介质: $\vec{M} = \chi_m \vec{H}$

$$\vec{B} = \mu_0 (\vec{H} + \vec{M})$$

$$= \mu_0 (1 + \chi_m) \vec{H}$$

$$= \mu_0 \mu_r \vec{H}$$

$$= \mu \vec{H}$$

$$\mu_r = 1 + \chi_m$$

磁化率

介质相对磁导率

$$\mu = \mu_0 \mu_r$$

介质磁导率

由
$$\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M}$$

$$\vec{B} = \mu_0 (\vec{H} + \vec{M})$$

$$= \mu_0 (1 + \chi_m) \vec{H}$$

$$= \mu_0 \mu_r \vec{H}$$

$$= \mu \vec{H}$$

$$\mu_r = 1 + \chi_m$$
介质相对磁导率
$$\mu = \mu_0 \mu_r$$
介质磁导率

对于顺磁质和抗磁质来说磁化率都是很小的,因而顺磁质相对磁化率比1略大,而抗磁质来说磁化率比1略小。

	电介质	磁介质
介中的场	$\vec{E}_0 \rightarrow \vec{P} \rightarrow q'(\sigma', \rho')$ $\uparrow \qquad \downarrow$ $\vec{E} \leftarrow \vec{E}' + \vec{E}_0$	$\vec{B}_0 \to \vec{M} \to I_s(j_s)$ $\uparrow \qquad \downarrow$ $\vec{B} \leftarrow \vec{B}' + \vec{B}_0$
基本规律	电位移矢量: $\vec{D}=arepsilon_0 \vec{E} + \vec{P}$ 介质中的高斯定理: $\int_{\mathcal{S}} \vec{D} \cdot \mathrm{d}\vec{S} = \sum_{(S \mid \Lambda)} q_0$	磁场强度: $\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M}$ 介质中的安培环路定理: $\oint_L \vec{H} \cdot d\vec{l} = \sum_{(\hat{g} \not \supseteq L)} I_0$

	电介质	磁介质
其它对应	$ec{P}=\chi_earepsilon_0ec{E}$	$ec{M}=\chi_{\scriptscriptstyle m}ec{H}$
关 系	$\varepsilon_r = 1 + \chi_e$	$\mu_r = 1 + \chi_m$
	$\vec{D} = \varepsilon_0 \varepsilon_r \vec{E}$	$\vec{B} = \mu_0 \mu_r \vec{H}$
	(1) 对称性分析, 选高斯面	(1) 对称性分析,选安培环路
求解思路	(2) 由 $\int_{S} \vec{D} \cdot d\vec{S} = \sum_{(S A)} q_0$	(2) 由 $\oint_{L} \vec{H} \cdot d\vec{l} = \sum_{(\hat{g} \uplus L)} I_{0}$
	求 \vec{D}	求 \vec{H}
	$(3) \text{if} \vec{E} = \vec{D} / \varepsilon_0 \varepsilon_r$	
	求 \vec{E}	(3) 由 $\vec{B} = \mu_0 \mu_r \vec{H} $

例1:

已知:正方形截面螺绕环 $(R_1 \cdot R_2 \cdot N \cdot I \cdot \phi_m)$

求:
$$\mu_r = ?$$

解:对称性分析 选如图同心圆环为安培环路

$$\oint_{L} \vec{H} \cdot d\vec{l} = H \cdot 2\pi r = NI$$

$$H = \frac{NI}{2\pi r}$$

$$B = \frac{\mu_0 \mu_r NI}{2\pi r}$$

$$R_2$$
 R_2
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2

$$\phi_{m} = \int_{S} \vec{B} \cdot d\vec{S} = \int_{R_{1}}^{R_{2}} \frac{\mu_{0}\mu_{r}NI}{2\pi r} (R_{2} - R_{1}) dr$$

$$= \frac{\mu_{0}\mu_{r}NI}{2\pi} (R_{2} - R_{1}) \ln \frac{R_{2}}{R_{1}}$$

$$\mu_{r} = \frac{2\pi\phi_{m}}{\mu_{0}NI(R_{2} - R_{1}) \ln \frac{R_{2}}{R_{1}}}$$
代入数据: $R_{1} = 10^{-2} \,\mathrm{m}$. $R_{2} = 2 \times 10^{-2} \,\mathrm{m}$

$$N = 200 . \qquad I = 0.1 \,\mathrm{A}$$

$$\phi_{m} = 6 \times 10^{-5} \,\mathrm{Wb}$$

得: $\mu_r = 2160$

 μ_r 很大且与I有关,非常数,说明该磁介质非顺磁质,也非抗磁质,而是铁磁质。

§ 10.6 铁磁质*

要点: 高 μ 值 非线性 磁滞回线 居里点 磁畴理论

小结

一. 磁介质

 $\begin{cases} 顺 磁 质 <math>\mu_r > 1 \\ 抗 磁 质 \mu_r < 1 \\ 铁 磁 质 \mu_r \gg 1 \end{cases}$

二. 磁化机理

顺磁质 $\sum \vec{p}_m + \sum \Delta \vec{p}_m \approx \sum \vec{p}_m \neq 0$ 与 \vec{B}_0 同向抗磁质 $\sum \Delta \vec{p}_m \neq 0$ 与 \vec{B}_0 反向

三. 磁化状态的描述

磁化强度:
$$\vec{M} = \frac{\sum \vec{p}_m}{\Delta V} = j_s \vec{n}$$

磁化强度与磁化电流的关系:
$$\oint_L \vec{M} \cdot d\vec{l} = \sum_{(L, d)} I_s$$

四. 磁介质中安培环路定理

$$\oint_{L} \vec{H} \cdot d\vec{l} = \sum_{(L|\Delta)} I_{0}$$
 其中
$$\vec{H} = \frac{\vec{B}}{\mu_{0}} - \vec{M}$$

$$\vec{M} = \chi_m \vec{H}$$
 $\mu_r = 1 + \chi_m$ $\vec{B} = \mu_0 \mu_r \vec{H}$

五. 磁介质中的磁场

(1) 对称性分析, 选安培环路

(2) 由
$$\oint_L \vec{H} \cdot d\vec{l} = \sum_{(\hat{g} \downarrow L)} I_0$$
 求 \vec{H}

(3) 由
$$\vec{B} = \mu_0 \mu_r \vec{H}$$
 求 \vec{B}