Prescriptive Analytics - HW 1

Saundarya Badhrinathan, Nabeel Ahmed, Divya Chandramohan, Uttara Thiagarajan, Megan Mugavero

- 1. Reading Completed
- 2. Summary of the information provided in the following table:

Discovery	Weight (pounds)	Volume (cubic feet)	Unit Price
Coconut	5	1/8	40
Lion Skin	12	1	250
Availability	300	11	

Decision Variables:

x = Number of coconuts that can be brought back from the trip

y = Number of lion skins that can be brought back from the trip

Objective Function:

$$Z = f(x,y) = 40x + 250y$$

Constraints:

Structural Constraints:

$$5x + 12y \le 300$$

 $x/8 + y \le 11$

Non-Negativity Constraints:

$$x \ge 0$$

$$y \ge 0$$

Final LP Model:

Maximize
$$Z = 40x + 250y$$

Subject to: $5x + 12y \le 300$,
 $x/8 + y \le 11$,
 $x, y \ge 0$

3. Summary of the information provided in the following table:

Nutrients	Cottage Cheese (milligrams)	Scrambled Eggs (milligrams)	Minimum Requirement
Vitamin E	1.5	2	23
Iron	5	7	49
Cost per scoop (dollars)	0.26	0.22	

Decision Variables:

x = Scoops of cottage cheese

y = Scoops of scrambled eggs

Objective Function:

$$Z = f(x,y) = 0.26x + 0.22y$$

Constraints:

Structural Constraints:

$$1.5x + 2y \ge 23$$

$$5x + 7y \le 49$$

$$x \ge 4$$

$$x \le 8$$

Non-Negativity Constraints:

$$x \ge 0$$

$$y \ge 0$$

Final LP Model:

$$Minimize Z = 0.26x + 0.22y$$

Subject to:
$$1.5x + 2y \ge 23$$
, $5x + 7y \le 49$,

$$x \geq 4$$
,

$$x \leq 8$$

$$x, y \ge 0$$

4. Summary of the information provided in the following table:

Bank	Interest Rate	Maximum			
	A_1	A_2	A_3	A_4	Credit (dollars)
\mathbf{B}_1	11	8	10	11	130,000
B_2	8	9	10	8	80,000
B_3	12	10	10	9	120,000
Selling Price (dollars)	50,000	60,000	70,000	130,000	

Decision Variables:

 B_1A_1 = Interest Rate provided by bank B_1 for Apartment A_1

 B_1A_2 = Interest Rate provided by bank B_1 for Apartment A_2

 B_1A_3 = Interest Rate provided by bank B_1 for Apartment A_3

 B_1A_4 = Interest Rate provided by bank B_1 for Apartment A_4

 B_2A_1 = Interest Rate provided by bank B_2 for Apartment A_1

 B_2A_2 = Interest Rate provided by bank B_2 for Apartment A_2

 B_2A_3 = Interest Rate provided by bank B_2 for Apartment A_3

 B_2A_4 = Interest Rate provided by bank B_2 for Apartment A_4

 B_3A_1 = Interest Rate provided by bank B_3 for Apartment A_1

 B_3A_2 = Interest Rate provided by bank B_3 for Apartment A_2

 B_3A_3 = Interest Rate provided by bank B_3 for Apartment A_3

 B_3A_4 = Interest Rate provided by bank B_3 for Apartment A_4

Objective Function:

$$Z = f(B_1A_1, B_1A_2, B_1A_3, B_1A_4, B_2A_1, B_2A_2, B_2A_3, B_2A_4, B_3A_1, B_3A_2, B_3A_3, B_3A_4)$$

$$= 11B_1A_1 + 8B_1A_2 + 10B_1A_3 + 11B_1A_4 + 8B_2A_1 + 9B_2A_2$$

$$+ 10B_2A_3 + 8B_2A_4 + 12B_3A_1 + 10B_3A_2 + 10B_3A_3 + 9B_3A_4$$

Constraints:

Structural Constraints:

$$\begin{split} &B_1A_1 + B_1A_2 + B_1A_3 + B_1A_4 \leq 130000 \\ &B_2A_1 + B_2A_2 + B_2A_3 + B_2A_4 \leq 80000 \\ &B_3A_1 + B_3A_2 + B_3A_3 + B_3A_4 \leq 120000 \\ &B_1A_1 + B_2A_1 + B_3A_1 \leq 50000 \\ &B_1A_2 + B_2A_2 + B_3A_2 \leq 60000 \end{split}$$

$$\begin{split} B_1 A_3 + B_2 A_3 + B_3 A_3 &\leq 70000 \\ B_1 A_4 + B_2 A_4 + B_3 A_4 &\leq 130000 \end{split}$$

Non-Negativity Constraints:

$$\begin{split} B_1A_1,\,B_1A_2,\,B_1A_3,\,B_1A_4,\,B_2A_1,\,B_2A_2,\\ B_2A_3,\,B_2A_4,\,B_3A_1,\,B_3A_2,\,B_3A_3,\,B_3A_4 &\geq 0 \end{split}$$

Final LP Model:

5. Summary of the information provided in the following table:

Segment Number	Time	Number of nurses required
1	12:00 AM - 3:00 AM	15
2	3:00 AM - 6:00 AM	10
3	6:00 AM - 9:00 AM	22
4	9:00 AM - 12:00 PM	25
5	12:00 PM - 3:00 PM	30
6	3:00 PM - 6:00 PM	43
7	6:00 PM - 9:00 PM	42
8	9:00 PM - 12:00 AM	35

Decision Variables:

Let x_i be the number of nurses required at Segment i

Objective Function:

Z =
$$f(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8)$$

= $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8$

Constraints:

Structural Constraints:

$$x_1 + x_8 \ge 15$$

$$x_1 + x_2 \ge 10$$

$$x_2 + x_3 \ge 22$$

$$x_3 + x_4 \ge 25$$

$$x_4 + x_5 \ge 30$$

$$x_5 + x_6 \ge 43$$

$$x_6 + x_7 \ge 42$$

$$x_7 + x_8 \ge 35$$

Non-Negativity Constraints:

$$x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8 \ge 0$$

Final LP Model:

Minimize
$$Z = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8$$

Subject to: $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_5 + x_6 + x_7 + x_8 + x_5 + x_6 + x_7 + x_8 + x_$

6. The x and y values are formulated below:

$$5x + 10y \ge 75$$

$$2x - 3y \ge -12$$

$$(-6,0)(0,4)$$

$$x \ge 9$$

The iso-profit lines are formulated below:

$$10x + 4y = 40$$

$$10x + 4y = 20$$

The corner points:

$$5x + 10y = 75$$

$$2x - 3y = -12$$

$$10x + 20y - 10x + 15y = 150 + 60$$

$$35y = 210$$

$$y = 6$$

$$x = 3$$

$$2x - 3y = -12$$

(Given,
$$x = 9$$
)

$$y = 10$$

$$5x + 10y = 75$$

(Given,
$$x = 9$$
)

$$y = 3$$

Optimal Objective Calculation:

$$10(3) + 4(6) = 30 + 24 = 54$$

$$10(9) + 4(3) = 90 + 12 = 102$$
 (9, 3)

$$10(9) + 4(10) = 90 + 40 = 130$$
 (9, 10)

Optimal Solution: (9, 10) Optimal Function Value: 130

7. The A and B values are formulated below:

$$-A + B \le 4$$

$$(-4, 0)(0, 4)$$

(3, 6)

$$A - B \le 4$$

$$(4, 0)(0, -4)$$

$$A+B\,\geq 6$$

$$B \le 3$$

The iso-profit lines are formulated below:

$$A - 2B = 10$$

$$(10, 0)(0, -5)$$

$$A - 2B = 6$$

$$(6,0)(0,-3)$$

The corner points:

$$A - B = 4$$

$$A + B = 6$$

$$A = 5, B = 1$$

$$A + B = 6$$

(Given,
$$B = 3$$
)

$$A = 3$$

$$A - B = 4$$

(Given,
$$B = 3$$
)

$$A = 7$$

Optimal Objective Calculation:

$$(3) - 2(3) = -3$$

$$(5) - 2(1) = 3$$

$$(7) - 2(3) = 1$$

Optimal Solution: (3, 3)
Optimal Function Value: -3

8. The LP is modified as follows:

(Max)
$$Z = 10x + 4y + 0C + 0D - ME + MF$$

 $x \le 9 \Rightarrow x + C + 0D + 0E + 0F = 9$
 $5x + 10y \ge 75 \Rightarrow 5x + 10y + 0C - D + E + 0F = 75$
 $-2x + 3y = 12 \Rightarrow -2x + 3y + 0C + 0D + 0E + F = 12$

The initial simplex tableau is as follows:

$\mathbf{C}_{\mathbf{j}}$		10	4	0	0	-M	-M	SQ	
VIS		x	у	С	D	Е	F	SQ	
0	С	1	0	1	0	0	0	9	9
-M	Е	5	10	0	-1	1	0	75	75/10
-M	F	-2	3	0	0	0	1	12	4
Z_{j}		-3M	-13M	0	M	-M	-M		
Z_j - C_j		-3M - 10	-13M - 4	0	M	0	0		

The current solution is not optimal since -13M - 4 < 0 with y being the pivot column and F will leave since 4 has the least ratio.

C_{j}		10	4	0	0	-M	-M	SQ	
VIS		x	y	С	D	Е	F	SQ	
0	С	1	0	1	0	0	0	9	9
-M	Е	35/3	0	0	-1	1	-10/3	35	3
4	y	-2/3	1	0	0	0	1/3	4	
$\mathbf{Z}_{\mathbf{j}}$		-35M-8/3	4	0	M	-M	10M+4/3		
Z_j - C_j		-35M-38/3	0	0	M	0	7M+4/3		

The current solution is not optimal since (-35M-38)/3 < 0 with x being the pivot column and E will leave since 3 has the least ratio.

C _j		10	4	0	0	-M	-M	SQ	
VIS		х	y	С	D	Е	F	SQ	
0	С	0	0	1	3/35	-3/35	10/35	6	70
10	X	1	0	0	-3/35	3/35	-10/35	3	
4	y	0	1	0	-2/35	2/35	15/105	6	
Z_{j}		10	4	0	-38/35	38/35	240/105	54	
$Z_j - C_j$		0	0	0	-38/35	35M+38/35	105M + 240/105		

The current solution is not optimal since -38/35 < 0 with D being the pivot column and C will leave since 70 has the least ratio.

C_{j}		10	4	0	0	-M	-M	SQ	
VIS		X	y	C	D	Е	F	SQ	
0	D	0	0	35/3	1	-1	10/3	70	
10	X	1	0	1	0	0	0	9	
4	y	0	1	2/3	0	0	1/3	10	
\mathbf{Z}_{j}		10	4	38/3	0	0	4/3	130	
Z_j - C_j		0	0	38/3	0	M	3M+4/3		

The current solution (10, 4) is the optimal solution with the optimal function value being 130.

Excel solver was used to verify this solution.

9. The solution was arrived at using solver.

The total minimum amount of nurses needed is 74.

Broken Down:

- At Segment 1, 6 nurses are reporting for duty.
- At Segment 2, 3 nurses are reporting for duty.
- At Segment 3, 13 nurses are reporting for duty.
- At Segment 4, 9 nurses are reporting for duty.
- At Segment 5, 8 nurses are reporting for duty.
- At Segment 6, 26 nurses are reporting for duty.
- At Segment 7, 8 nurses are reporting for duty.
- At Segment 8, 1 nurse is reporting for duty.

10. a. Multiple Optimal Solution

- b. No Optimal Solution
- c. Unbounded Optimal Solution