Loss Functions & Optimization

$$f(x,W) = W_X + b$$

子31先哲?

- 1. Define a loss function
- 2. Find the parameters that minimize the loss function: optimization

Loss function

Loss over dataset: sum of loss over examples

$$L = \frac{1}{N} \sum_{i} L_{i}(f(\alpha_{i}, W), y_{i})$$

Multiclass SUM Loss: using the shorthand for the scores vector $S = f(\alpha_T, W)$

$$Li = \sum_{j \neq yi} \begin{cases} 0 & \text{if } syi \geq sj+1 = \sum_{j \neq yi} \max(0, s_j - s_{yi} + 1) \\ syi \geq s_{j} + 1 & \text{otherwise} \end{cases}$$

cose of Syr

the true class

5j - Sy; + 1 Hz class true class salety margin 01 35:01 0 9H = 91 19230) Loss 9

true class score + FE class score & F-253 700

 $L(W) = \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$ $= \frac{1}{N} \sum_{i=1}^{N} Li(f(x_i, w), y_i) + \frac{1}{N} R(w)$

L2 Regularization: Enclidean norm of weight vector
$$W$$

 $R(W) = Z_k Z_l W_{k,l}^2$

Softmax Classifier (Multinomial Logistic Regression)

Scores = unnormalized log probabilities of the classes

$$P(Y=K \mid X=\pi i) = \frac{e^{s_e}}{Zje^{s_j}}$$
 where $S=f(\pi i)$

ex. [
$$e^{3.2}$$
]

Cat 3.2 $e^{3.2}$ 24.5 $e^{3.3}$ $e^{3.1}$ 164.0 notes 0.87 = 0.89

Now, How to find "W" that minimizes the loss

Optimization

Random Search (bod idea)

Follow the slope

4 derivative of Anotion

gradient is the vector of partial derivatives in multiple dim.

Current	W	Wth		gradient dw	
[0.34		[0.34+0.000		[-2.5	
		:			
1055 1.25		1005 1.25322		\frac{1}{2}	
				(ath)-f(a)	
			enconicted.	h	
				1.25322 - 1.253	47
				0.0001	= 7.5
-12+ 72 Numerical gradients one (21) import terribe idea					
12+ 72 Numerical gradient = 019-1217 1 mBor terrible idea In 2, Analytic gradient = exact, fast 5nm 42mon 400					
Gradient	Descent				
- Full sum expensive when N is large					
Stochostic Gradiet Descent (SGI) ÉLEZZ 764- 317543)					
- Approximate sum using a minibatch of examples					
	(1000000	0	CELOPOLOGICA DE L'ARREST POR CALLE SERVICA DE L'ARREST POR CALLES PER L'ARREST POR CALLES PER L'ARREST POR CALLES POR CAL		