Pracownia 36

Podstawy elektroniki, elektrotechniki i miernictwa

Rafał Łasocha

25 stycznia 2015

1 Zagadnienia teoretyczne

1.1 Elementy optoelektroniczne

Są to przyrządy, które wykorzystują światło w celu przetwarzania, gromadzenia, pozyskiwania, przesyłania i prezentowania informacji.

1.2 Dioda elektroluminescencyjne

Jest to dioda, która jest zaliczana do przyrządów optoelektronicznych. Emituje promieniowanie w zakresie światła widzialnego, podczerwieni i ultrafioletu.

1.3 Fotodetektory

Fotodetektor to czujnik reagujący na światło. Fotodetektory służą przetwarzaniu na inne sygnały, np. w tym na sygnały elektryczne. Fotodetektorem jest np. fotodioda, fotorezystor, fototranzystor czy fotoogniwo.

1.4 Transoptor

Jest to element optoelektroniczny złożony z jednego fotoemitera i jednego fotodetektora w jednej obudowie. Częstotliwość graniczna przenoszonego sygnału wynosi od kilkudziesięciu kHz do 100MHz w zależności od zastosowanych elementów.

1.5 Pasmo przenoszenia

Jest to zakres częstotliwości, w którym tłumienie sygnału jest nie większe niż 3dB.

2 Przebieg ćwiczenia

Najpierw złożyliśmy układ, a następnie dobraliśmy optymalne napięcie wstępnej polaryzacji diody. Wynosiło ono 2.25V. Następnie zmierzyliśmy czas narostu sygnału, wyniósł on 76 μ s. Następnie obliczyliśmy częstotliwość graniczną.

$$f_{gr} = \frac{0.35}{t_{gr}} = \frac{0.35}{0.000076s} \approx 4605 \text{Hz} \tag{1}$$

2.1 Pomiar amplitud

Następnie przeprowadziliśmy pomiar amplitudy wyjściowej dla różnych częstotliwości.

Częstotliwość (Hz)	Amp. wyj. (V)	Amp. wej. (V)
10.0	6.5	1.16
250.0	6.5	1.16
500.0	6.4	1.16
750.0	6.4	1.16
1000.0	6.4	1.16
1250.0	6.3	1.16
1500.0	6.2	1.16
1750.0	6.0	1.16
2000.0	5.9	1.16
2250.0	5.8	1.16
2500.0	5.6	1.16
2750.0	5.5	1.16
3000.0	5.3	1.16
3250.0	5.2	1.16
3500.0	5.1	1.16
3750.0	4.9	1.16
4000.0	4.8	1.16
4250.0	4.7	1.16
4500.0	4.6	1.16
4750.0	4.4	1.16
5000.0	4.3	1.16
5250.0	4.2	1.16
5500.0	4.1	1.16
6000.0	3.9	1.16
6500.0	3.7	1.16
7000.0	3.5	1.16
7500.0	3.4	1.16
8000.0	3.2	1.16

2.2 Obliczenie częstotliwości granicznej

W paśmie przenoszenia amplituda osiąga wartość nie mniejszą niż $\frac{1}{\sqrt{2}}$ swojej wartości maksymalnej. W naszym przypadku:

$$\frac{1}{\sqrt{2}} \ 6.5V = 4.59V \tag{2}$$

Z tabeli możemy odczytać że wartość 4.59V jest przyjmowana dla częstotliwości pomiędzy 4500 Hz (dla 4.5V) a 4750 Hz (dla 4.75V), co potwierdza, że wynik 4605 Hz jest najprawdopodobniej prawidłowy.

3 Wnioski

Jedna próba policzenia częstotliwości granicznej została częściowo (niedokładnie) potwierdzona przez drugą, więc można uznać laboratoria za udane. Można jednak było wykonywać obliczenia na bieżąco i sprawić, że druga próba dokładniej potwierdzi (lub zaprzeczy) wynikom ze wzoru.