Cours: Racines carrées

Quentin Canu

08 Janvier 2024

1 Questions Flash

 $\sqrt{4}$; $\sqrt{9}$; $\sqrt{16}$?

Quels sont les carrés parfaits suivants? 25; 36; 49; 64; 89; 100; 121; 144.

2 Cours : Definitions

Définition 1. Soit x un nombre réel positif. On définit la racine carrée de x, notée \sqrt{x} , le seul nombre positif tel qu'on obtient x en le mettant au carré.

Exemple. $\sqrt{4} = 2 \ car \ 2^2 = 4$

Remarque. Il faut donc toujours s'assurer que ce qui est à l'intérieur de la racine est un nombre positif.

Exemple. Les expressions suivantes sont-elles bien définies?

- 1. $\sqrt{10}$
- 2. $\sqrt{-2}$
- 3. $\sqrt{-3^2}$
- 4. $\sqrt{(-3)^2}$
- 5. $\sqrt{8-\pi}$
- 6. $\sqrt{\sqrt{3}}$

Proposition 1. Soit a et b deux nombres réels positifs. Alors

$$\sqrt{ab} = \sqrt{a}\sqrt{b}$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

$$\sqrt{a}^2 = \sqrt{a}\sqrt{a} = a$$

Exemple. Donner une forme simplifiée aux expressions suivantes, si possible :

1.
$$\sqrt{\frac{500}{5}}$$

2.
$$\sqrt{5} \times \sqrt{55}$$

3.
$$\sqrt{11} + \sqrt{13}$$

4.
$$-2\sqrt{11} \times 5\sqrt{11}$$

5.
$$(3\sqrt{13})^2$$

3 Cours: Savoir-Faire

Exemple. Face à une racine, il faut chercher à la mettre sous la forme $a\sqrt{b}$ pour la simplifier.

1.
$$\sqrt{18} = \sqrt{9 \times 2} = \sqrt{9}\sqrt{2} = 3\sqrt{2}$$

2.
$$\sqrt{216} = \sqrt{4 \times 54} = \sqrt{4}\sqrt{54} = 2\sqrt{54} = 2\sqrt{9 \times 6} = 6\sqrt{6}$$

3.
$$\sqrt{363} = \sqrt{121 \times 3} = 11\sqrt{3}$$

Exemple. Il faut être capable d'encadrer rapidement une racines par des entiers consécutifs, à l'aide des carrés parfaits.

- 1. $\sqrt{17}$ est à encadrer entre $4 = \sqrt{16}$ et 5.
- 2. $\sqrt{82}$
- 3. $\sqrt{103}$