

Introduction to image processing and analysis with ImageJ / Fiji. Part 6

Colocalisation, cell tracking, other software

Course by Dale Moulding

Session 6

15 minute lecture

Learning objectives:

- Correct background for better analysis
- Develop multiple strategies for image analysis
- Use filters to pre-process images
- Cell counting. Manually and automatic
- Thresholding to generate binary images and masks
- Identifying double / triple stained cells
- Explain the difference between colocalization and co-expression
- Track moving objects
- Access other useful (free) software

https://imagej.net/Colocalization_Analysis

- Identifying double stained cells is not measuring colocalisation
- Double stained cells are identified as overlapping objects
- Colocalisation analysis is a measure of the degree of overlap & the relationship in intensity between two channels.
- It is often measured as Pearson's correlation coefficient and Manders split coefficients.

Colocalisation v co-expression

https://imagej.net/Colocalization Analysis

- Pearson's gives a measure of the intensity relationship between 2 channels.
 - 1 = perfect correlation, 0 = n correlation, -1 = perfect exclusion
- Measured in every pixel (or voxel) of an image. Perfect colocalisation may be expected between 2 subunits of a protein complex.
- SubUnit-A & SubUnit-B are always found together in cells. If there is a lot of A in a particular pixel, there will be an equivalent amount of B. As the intensity of one Subunit rises or falls, the other does so to exactly the same degree.

https://imagej.net/Colocalization_Analysis

- Manders gives in indication of the amount of fluorescence (above a predefined background level) in each of 2 channels that is found in the same place as the other channel.
- It does not measure the relative amounts of each channel, rather it gives a value from 0 to 1 indicating the fraction of Channel A signal that overlaps with Channel B & vice versa. The values for each channel are likely to be different.
- The value given is not a statistical measure. You need to measure multiple images for a statistical analysis.

https://imagej.net/Colocalization_Analysis

- ImageJ / Fiji plugins Coloc 2 & JaCoP can be used for both Manders and Pearsons analysis.
- Great care must be taken in these measurements. Image noise, resolution, background, intensity (too bright / too dim) etc etc can all have a massive impact on the analysis.
- Get expert help!
- Read the link above very carefully.

https://imagej.net/Colocalization Analysis

- Co-expression: you get a count of the proportion of objects that overlap between two different channels
- Colocalisation: you get an indication of the interaction between two channels,
 either as the degree of agreement between the intensity in each channel
 (Pearson's) or the degree of overlap in signal between two channels (Manders).

Object tracking in time-lapse imaging

Objects (cells, organelles etc) can be tracked over time, to measure their movement.

- Speed steady? variable?
- Direction
- **Tortuosity**

Object tracking in time-lapse imaging – Image registration

- Multi-point time-lapse imaging may have image drift. The stage / sample may
 - move slightly between positions.
- This can be corrected: Image registration

Plugins / registration >

Linear Stack Alignment with SIFT

Or

Plugins / registration > StackReg

(Big-EPFL update site)

Object tracking in time-lapse imaging

https://imagescience.org/meijering/software/mtrackj/

Plugins / MTrackJ

(requires ImageScience update site in Fiji)

Extremely well documented on the website.

MTrackJ ·	- 🗆 ×	
Clear	Load	
Import	Save	
Add	Cluster	
Hide	Color	
Delete	Move	
Merge	Split	
Refer	ID	
Measure	Movie	
Tracking	Displaying	
Options	Help	

Manual tracking. Click an object, the image advances one frame click again, etc etc...

Object tracking in time-lapse imaging

https://imagej.net/TrackMate

Plugins / Tracking / TrackMate

Extremely well documented on the website.

Automatic tracking. Follow the step by step interface, fine tune the parameters to detect objects.

TrackMatev6.0.3	_	□ ×	
Please note that TrackMate is available through Fiji, and is based on a publication. If you use it successfully for your research please be so kind to cite our work: Tinevez, JY.; Perry, N. & Schindelin, J. et al. (2017), TrackMate: An open and extensible platform for single-particle tracking. Methods 115: 80-90. on PubMed (PMID 27713081)			
Target: neutrophils			
Calibration settings:			
Pixel width:	1.031	μm	
Pixel height:	1.031	μm	
Voxel depth:	1.031	μm	
Time interval:	60.000	sec	
Crop settings (in pixels, 0-based):			
X 0	to	1343	
Υ 0	to	1023	
Z 0	to	0	
T 0	to	59	
Refresh source			
Save (1)	-	⇒ Next	

Object tracking in time-lapse imaging

http://icy.bioimageanalysis.org/plugin/spot-tracking/

Automatic tracking.

Well documented on the website.

Light Microscopy Core Facility UCL Great Ormond St. Institute of Child Health Light Microscopy Core Facility

Other open source, free Image Analysis software

http://icy.bioimageanalysis.org/

- Great companion to Fiji
- 3D image analysis
- 3D visualisation
- Object tracking
- Segmentation etc
- Automation via scripts & protocols

Other open source, free Image Analysis software

https://qupath.github.io/

- Fantastic histopathology analysis
- H&E, DAB etc
- Segmentation, counting, machine learning
- Fluorescence

User guides, videos etc make learning the software very easy

Light Microscopy Core Facility UCL Great Ormond St. Institute of Child Health Light Microscopy Core Facility

Other open source, free Image Analysis software

https://cellprofiler.org/

- High content screen
- Designed to analyse massive data sets
- Well documented

- Templates for many standard analysis protocols
- Templates relatively easily adapted to your own analysis