Basic Python

1. Split this string

```
In [86]:

s = "Hi there Sam!"

In [87]:

# Splits at space
s.split()

Out[87]:

['Hi', 'there', 'Sam!']
```

2. Use .format() to print the following string.

Output should be: The diameter of Earth is 12742 kilometers.

```
In [88]:
planet = "Earth"
diameter = 12742

In [89]:
# Reverse the index numbers with the
# parameters of the placeholders
'The diameter of {0} is {1} kilometer'.format(planet,diameter)

Out[89]:
'The diameter of Earth is 12742 kilometer'
```

3. In this nest dictionary grab the word "hello"

```
In [90]:
d =
{'k1':[1,2,3,{'tricky':['oh','man','inception',{'target':[1,2,3,'hello']}]}}
In [91]:
#In this nest dictionary grabing the word "hello"
print(d["k1"][3]["tricky"][3]["target"][3])
hello
```

Numpy

In [92]:

4.1 Create an array of 10 zeros?

4.2 Create an array of 10 fives?

5. Create an array of all the even integers from 20 to 35

```
In [95]: #array of all the even integers from 20 to 35 array3=np.arange(20,36,2) print(array3)

[20 22 24 26 28 30 32 34]
```

6. Create a 3x3 matrix with values ranging from 0 to 8

```
In [96]:
#3x3 matrix with values ranging from 0 to 8
x = np.arange(0, 9).reshape(3,3)
print(x)

[[0 1 2]
  [3 4 5]
  [6 7 8]]
```

7. Concatenate a and b

a = np.array([1, 2, 3]), b = np.array([4, 5, 6])

```
In [97]:
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
#Concatenate
np.concatenate((a,b),axis=None)
Out[97]:
array([1, 2, 3, 4, 5, 6])
```

Pandas

8. Create a dataframe with 3 rows and 2 columns

```
In [98]:
import pandas as pd
1.Numpy arrays
                                                                                In [99]:
A = np.random.randint(10, size=(3,2))
df = pd.DataFrame(A,columns=['cola', 'colb'])
df
                                                                               Out[99]:
    cola colb
      2
           3
      2
           5
     8
           9
2.Dictionary
                                                                               In [100]:
dict_a = {
   'col_a':[1,2,3],
   'col b': [2,5,6],
#dataframe
df = pd.DataFrame(dict_a)
                                                                              Out[100]:
    col_a col_b
     1
            2
      2
            5
     3 6
3.List
```

```
In [101]:
lst_a = [['John', 23], ['Jane', 25], ['Mary', 21]]
#dataframe
df = pd.DataFrame(lst_a,columns=['Name', 'Age'])
df

Out[101]:
    Name Age

John 23
Jane 25
Mary 21
```

9. Generate the series of dates from 1st Jan, 2023 to 10th Feb, 2023

```
In [102]:
import pandas as pd
# calling DataFrame constructor
df = pd.DataFrame()
# Create 6 dates
df['time'] = pd.date range(start="1/1/2023",end="2/10/2023", freq ='24H')
  # print dataframe
# Extract features - year, month, day, hour, and minute
df['year'] = df['time'].dt.year
df['month'] = df['time'].dt.month
df['day'] = df['time'].dt.day
# Show six rows
df.head(len(df["time"]))
                                                                          Out[102]:
         time year month day
 0 2023-01-01 2023
                      1
                           1
 1 2023-01-02 2023
                      1
                           2
```

	time	year	month	day
2	2023-01-03	2023	1	3
3	2023-01-04	2023	1	4
4	2023-01-05	2023	1	5
5	2023-01-06	2023	1	6
6	2023-01-07	2023	1	7
7	2023-01-08	2023	1	8
8	2023-01-09	2023	1	9
9	2023-01-10	2023	1	10
10	2023-01-11	2023	1	11
11	2023-01-12	2023	1	12
12	2023-01-13	2023	1	13
13	2023-01-14	2023	1	14
14	2023-01-15	2023	1	15
15	2023-01-16	2023	1	16
16	2023-01-17	2023	1	17
17	2023-01-18	2023	1	18
18	2023-01-19	2023	1	19

	time	year	month	day	
19	2023-01-20	2023	1	20	
20	2023-01-21	2023	1	21	
21	2023-01-22	2023	1	22	
22	2023-01-23	2023	1	23	
23	2023-01-24	2023	1	24	
24	2023-01-25	2023	1	25	
25	2023-01-26	2023	1	26	
26	2023-01-27	2023	1	27	
27	2023-01-28	2023	1	28	
28	2023-01-29	2023	1	29	
29	2023-01-30	2023	1	30	
30	2023-01-31	2023	1	31	
31	2023-02-01	2023	2	1	
32	2023-02-02	2023	2	2	
33	2023-02-03	2023	2	3	
34	2023-02-04	2023	2	4	
35	2023-02-05	2023	2	5	

	time	year	month	day
36	2023-02-06	2023	2	6
37	2023-02-07	2023	2	7
38	2023-02-08	2023	2	8
39	2023-02-09	2023	2	9
40	2023-02-10	2023	2	10

3 ccc

10. Create 2D list to DataFrame