| ID: | Sec: | Name: |
|-----|------|-------|
|     |      |       |

Set: 02

## **Brac University**

Semester: Summer 2023 Course No: CSE251 Course Title: Electronic Devices and Circuits

Course Title: Electronic Devices and Circuits
Section: 1 to 10

BRAC UNIVERSITY Inspiring Excellence Midterm Exam Full Marks: 30

Time: 1 hour 30 minutes Date: 16 July, 2023

Answer any 3 questions. All the questions carry equal marks.

## Question 1 [CO2, CO3]

10



Figure 1: Circuit for Question 1

- (a) **Identify** Device-1 and **design** the circuit. Assume any value if necessary. [2]
- (b) **Identify** Device-2 and **design** the circuit. Assume any value if necessary. [2]
- (c) **Determine** the expression of the function, f. [1.5]
- (d) Assume, x = 1 V,  $y = \cos(8t) \text{ V}$  and  $z = -8\sin(30t) \text{ V}$ . **Determine** the expression of the function, f. [2.5]
- (e) **Draw** the Voltage Transfer Characteristics (VTC) of a non-inverting Op-Amp comparator and **explain** the VTC briefly. [2]

## Question 2 [CO1, CO2]

10

A voltage waveform  $v_i = 10\sin(200\pi t)$  V is fed into a Half-wave rectifier with a load resistor, R = 10 k $\Omega$ . Silicon diodes are used in this circuit where,  $V_{D_0} = 0.7$  V.

- (a) **Draw** the rectifier circuit. **Label** the input and output voltages properly. Briefly **explain** the application of the circuit. [1+1+1]
- (b) Calculate the DC value of the output voltage,  $V_{dc}$  and the output frequency,  $f_o$ . [1+1]
- (c) **Draw** the Voltage Transfer Characteristics (VTC) of the Half-wave rectifier and **label** it properly. [2]
- (d) Now, you have to connect a capacitor in parallel with the load resistor. You have two capacitors of  $4 \mu F$  and  $7 \mu F$  at your disposal. Which capacitor will you use? **Explain** briefly with necessary calculations. [3]
- (e) [Bonus] A different input waveform is fed into the half-wave rectifier. The new peak-to-peak ripple voltage is 50% of the previous one calculated from (d) with the 4 μF capacitor. The new output frequency is 300 Hz.
   Determine the equation of the input waveform.

Question 3 [CO3]

10

[2]

[3]

- (a) **Identify** the equivalent linear circuit model for the IV characteristics with brief explanation.
- (b) **Draw** the circuit and **calculate** the model parameters.

[1+2]

- (c) You are given two  $1k\Omega$  resistors, one 1V voltage source, one 5V voltage source. Can you design the circuit by only using these elements?
- (d) Analyze the diode logic circuit and determine the output voltage,  $V_o$ .



Figure 2: (i) IV Characteristics (ii) Diode Logic Circuit

## Question 4 [CO2]

**10** 

The voltage at the node,  $V_a$  of the resistor-diode network as exhibited in Figure 3 is fed into a circuit with an Ideal Op-Amp. In this circuit,  $V_{sat}^+ = +10$ V and  $V_{sat}^- = -10$ V,  $V_{D_0} = 0.7$ V.



Figure 3: Circuit for Question 4

- (a) **Analyze** the circuit to **determine** the operating mode of the diode,  $D_1$ . You must **validate** your assumption with necessary calculation. **Calculate** the voltage, " $V_a$ ". [2+2+1]
- (b) Calculate the voltages at: (i) non-inverting input terminal, (ii) inverting input terminal. [2]
- (c) **Determine** the output voltage, " $V_o$ ".

[3]