Summary of previous lecture

- Polarization measurement
 - Classical or quantum?
 - Consider the case when there is only single incoming photon to the measurement device
- Uncertainty principle
 - Measurements corresponding to two commuting Hermitian operators > order of the measurements does not matter
- Quantum bits

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$$

- Bloch sphere
- Single-qubit gates
 - X, Y, Z, Hadamard
 - Corresponds to a rotation on the Bloch sphere

Multiple qubits

- Section 1.2.1
- Assume there are two qubits:
 - In principle, we can treat the quantum states of each qubit separately: $|\psi\rangle_A = \alpha|0\rangle_A + \beta|1\rangle_A$, $|\psi\rangle_B = \alpha|0\rangle_B + \beta|1\rangle_B$
 - However, if there is any interaction between two qubits, we cannot treat each qubit separately. For example, if there is an operation which flips $0_B \rightarrow 1_B$ and $1_B \rightarrow 0_B$ when qubit A is 1_A , we need to consider the situation for $0_A 0_B$, $0_A 1_B$, $1_A 0_B$, $1_A 1_B$.
 - → Overall quantum state should be represented as a single vector in a Hilbert space.
 - $|\psi\rangle_{AB} = \alpha |0\rangle_A |0\rangle_B + \beta |0\rangle_A |1\rangle_B + \gamma |1\rangle_A |0\rangle_B + \delta |1\rangle_A |1\rangle_B$

Controlled-NOT gate

Input		Output	
Α	В	Α	В
0_{A}	0_B	0_{A}	0_B
0_{A}	1_{B}	0_{A}	1_{B}
1_{A}	0_{B}	1_{A}	1_{B}
1_{A}	1_{B}	1 _A	0_{B}

- Section 2.1.7
- Example: $|\psi\rangle_{AB} = \alpha|0\rangle_A \otimes |0\rangle_B + \beta|0\rangle_A \otimes |1\rangle_B + \gamma|1\rangle_A \otimes |0\rangle_B + \delta|1\rangle_A \otimes |1\rangle_B$
- Suppose $\mathbb V$ and $\mathbb W$ are Hilbert spaces of dimension m and n, respectively. Then $\mathbb V \otimes \mathbb W$ creates a new Hilbert space of dimension mn.
- The elements of $\mathbb{V} \otimes \mathbb{W}$ are linear combinations of 'tensor products' $|v\rangle \otimes |w\rangle$ of elements $|v\rangle$ of \mathbb{V} and $|w\rangle$ of \mathbb{W} .
- Basis of $\mathbb{V} \otimes \mathbb{W}$: $|i\rangle \otimes |j\rangle$ when $|i\rangle$ and $|j\rangle$ are orthonormal basis of space \mathbb{V} and \mathbb{W} , respectively.
- Linear operator
 - Assume A and B are linear operators on $\mathbb V$ and $\mathbb W$, respectively, then we can define a linear operator $A \otimes B$ on $\mathbb V \otimes \mathbb W$ by the equation, $A \otimes B(|v\rangle \otimes |w\rangle) \equiv A|v\rangle \otimes B|w\rangle$
 - Linearity of $A \otimes B$: $A \otimes B(\sum_i a_i | v_i) \otimes |w_i\rangle) \equiv \sum_i a_i A |v_i\rangle \otimes B |w_i\rangle$
- Simplified notations
 - $|v\rangle \otimes |w\rangle \rightarrow |v\rangle |w\rangle$ or $|v,w\rangle$ or $|vw\rangle$
 - Example: $|0\rangle_A \otimes |1\rangle_B \Rightarrow |0\rangle_A |1\rangle_B$ or $|0_A, 1_B\rangle$ or $|0,1\rangle_{AB}$ or $|01\rangle$ etc.

Example: Controlled-NOT gate

Input		Output	
C	Т	С	Т
0_C	0_T	0_C	0_T
0_C	1_T	0_C	1_T
1_C	0_T	1_C	1_T
1 _C	1_T	1_C	0_T

Control qubit C

Target qubit T

- When input qubits are $|\psi_{input}\rangle = |0\rangle_C |0\rangle_T \rightarrow |\psi_{output}\rangle = |0\rangle_C |0\rangle_T$
- When input qubits are $|\psi_{input}\rangle = |1\rangle_C |0\rangle_T \rightarrow |\psi_{output}\rangle = |1\rangle_C |1\rangle_T$
- When input qubits are $|\psi_{input}\rangle = (|0\rangle_C + |1\rangle_C)|0\rangle_T/\sqrt{2} = (|0\rangle_C|0\rangle_T + |1\rangle_C|0\rangle_T)/\sqrt{2}$ $\Rightarrow |\psi_{output}\rangle = (|0\rangle_C|0\rangle_T + |1\rangle_C|1\rangle_T)/\sqrt{2}$
- ⇔Gate operation will be linear on different states. Why?

Example: Hadamard gate

Input	Output	
0>	$(0\rangle + 1\rangle)/\sqrt{2}$	
1>	$(0\rangle - 1\rangle)/\sqrt{2}$	

- Assume that at t_1 , $|\psi_{t_1}\rangle = |0\rangle_A |1\rangle_B$.
- At t_2 , only qubit A should be changed by Hadamard gate. How can we write such kind of situation in equation?

$$|\psi_{t_2}\rangle = (H_A \otimes I_B)(|0\rangle_A \otimes |1\rangle_B) = (H_A|0\rangle_A) \otimes (I_B|1\rangle_B) = \frac{|0\rangle_A + |1\rangle_A}{\sqrt{2}} \otimes |1\rangle_B$$

$$|\psi_{t_3}\rangle = (I_A \otimes H_B)|\psi_{t_2}\rangle = \left(I_A \frac{|0\rangle_A + |1\rangle_A}{\sqrt{2}}\right) \otimes (H_B|1\rangle_B) = \frac{|0\rangle_A + |1\rangle_A}{\sqrt{2}} \otimes \frac{|0\rangle_B - |1\rangle_B}{\sqrt{2}}$$

• Of course, this operation can be written as $H_A \otimes H_B$:

$$|\psi_{t_3}\rangle = (H_A \otimes H_B)(|0\rangle_A \otimes |1\rangle_B) = (H|0\rangle_A) \otimes (H|1\rangle_B) = \frac{|0\rangle_A + |1\rangle_A}{\sqrt{2}} \otimes \frac{|0\rangle_B - |1\rangle_B}{\sqrt{2}}$$

- Matrix representation (also known as Kronecker product)
 - When A is an $m \times n$ matrix and B is an $p \times q$ matrix,

$$nq \text{ columns}$$

$$A \otimes B \equiv \begin{bmatrix} A_{11}B & A_{12}B & \dots & A_{1n}B \\ A_{21}B & A_{22}B & \dots & A_{2n}B \\ \vdots & \vdots & \vdots & \vdots \\ A_{m1}B & A_{m2}B & \dots & A_{mn}B \end{bmatrix} \quad mp \text{ rows}$$

Examples

$$\cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} \otimes \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \times \begin{bmatrix} 2 \\ 3 \end{bmatrix} \\ 2 \times \begin{bmatrix} 2 \\ 3 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 1 \times 2 \\ 1 \times 3 \\ 2 \times 2 \\ 2 \times 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 4 \\ 6 \end{bmatrix}$$

•
$$X \otimes Y = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \otimes Y = \begin{bmatrix} 0 \cdot Y & 1 \cdot Y \\ 1 \cdot Y & 0 \cdot Y \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \end{bmatrix}$$
 where $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$

Multiple qubit gates

- Classical NAND gate: universal gate in classical digital logic
 - Is classical XOR gate universal?
- Controlled-NOT gate
 - □ $|C,T\rangle \rightarrow |C,T \oplus C\rangle$ Unitary gate \Leftrightarrow invertible gate

$$|0\rangle_{\mathcal{C}}\langle 0| \otimes I_{T} + |1\rangle_{\mathcal{C}}\langle 1| \otimes X_{T} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

• Is $|0\rangle_C\langle 0| \otimes I_T + |1\rangle_C\langle 1| \otimes X_T$ unitary?

Input		Output	
Control	Target	Control	Target
0>	0>	0>	0>
0>	1>	0>	1>
1>	0>	1>	1>
1>	1>	1>	0>

- Linear operator
 - Assume A and B are linear operators on \mathbb{V} and \mathbb{W} , respectively, then we can define a linear operator $A \otimes B$ on $\mathbb{V} \otimes \mathbb{W}$ by the equation, $A \otimes B(|v\rangle \otimes |w\rangle) \equiv A|v\rangle \otimes B|w\rangle$
 - Linearity of $A \otimes B$: $A \otimes B(\sum_i a_i | v_i) \otimes |w_i) \equiv \sum_i a_i A | v_i \otimes B | w_i$
 - □ Linear combination of tensor products of operators: $C = \sum_{j} c_{j} A_{j} \otimes B_{j}$

 - Example: Controlled-NOT gate: $|0\rangle_A\langle 0| \otimes I_B + |1\rangle_A\langle 1| \otimes X_B$

- Definition of inner product in the tensor product space
 - $(\sum_{i} a_{i}^{*} \langle v_{i} | \otimes \langle w_{i} |) (\sum_{j} b_{j} | v_{j}') \otimes | w_{j}')) \equiv \sum_{i,j} a_{i}^{*} b_{j} \langle v_{i} | v_{j}' \rangle \langle w_{i} | w_{j}' \rangle$
 - $|0\rangle \otimes |0\rangle$, $|0\rangle \otimes |1\rangle$, $|1\rangle \otimes |0\rangle$, $|1\rangle \otimes |1\rangle$ are all orthonormal to each other.

Notation

- $|\psi\rangle^{\otimes 2} = |\psi\rangle \otimes |\psi\rangle$, $|\psi\rangle^{\otimes k} = |\psi\rangle \otimes |\psi\rangle \otimes \cdots \otimes |\psi\rangle$
- $H^{\otimes 2} = H \otimes H, H^{\otimes k} = H \otimes H \otimes \cdots \otimes H$
- Frequently tensor product symbol \otimes is omitted, and the tensor product state is written as $|v\rangle|w\rangle$, $|v,w\rangle$, or $|vw\rangle$ etc.
- For example, $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$ are computational basis