Problem

You are given an undirected, complete graph G that contains N vertices. Each edge is colored in either white or black. You are required to determine the number of triplets (i,j,k) $(1 \le i < j < k \le N)$ of vertices such that the edges (i,j),(j,k),(i,k) are of the same color.

There are M white edges and $\frac{N(N-1)}{2}-M$ black edges.

Input format

- First line: Two integers N and M ($3 \leq N \leq 10^5, 1 \leq M \leq 3 \cdot 10^5$)
- $(i+1)^{th}$ line: Two integers u_i and v_i $(1 \leq u_i, v_i \leq N)$ denoting that the edge (u_i, v_i) is white in color

Note: The conditions $(u_i, v_i) \neq (u_j, v_j)$ and $(u_i, v_i) \neq (v_j, u_j)$ are satisfied for all $1 \leq i < j \leq M$.

Output format

Print an integer that denotes the number of triples that satisfy the mentioned condition.

Additional information

- For 20 points: $N \leq 200$ is satisfied
- For additional 20 points: $N \leq 2000$ is satisfied
- · Original constraints for remaining points

Sample Input	8	Sample Output	90
5 3 1 5		4	
2 5 3 5			

Time Limits 7

The triplets are: $\{(1,2,3),(1,2,4),(2,3,4),(1,3,4)\}.$

The graph consisting of only white edges:

The graph consisting of only black edges:

The graph consisting of only black edges:

