CHAPTER FIVE

Curve Fitting

Objectives

Power Fit

Power Fit $y = Ax^M$

$$f(x) = Ax^M$$
 , where M is known constant

• Find least-square power curve best fit (Minimize error)

$$E(x) = \sum_{k=1}^{N} (Ax_k^M - y_k)^2$$

$$\frac{\partial E(A)}{\partial A} = 2\sum_{k=1}^{N} (Ax_k^M - y_k)^1 (x_k^M) = 0$$

$$(\sum_{k=1}^{N} x_k^{2M}) A - \sum_{k=1}^{N} x_k^M y_k = 0$$

$$A = \frac{\sum_{k=1}^{N} x_k^M y_k}{\sum_{k=1}^{N} x_k^{2M}}$$

Power Fit $y = Ax^M$ - Example

• Find least-square power curve $y = Ax^2$ for the data points: (0.2,0.196) (0.4,0.785) (0.6,1.7665) (0.8,3.1405) (1.0,4.9075) , N=5

$$A = \frac{\sum_{k=1}^{N} x_k^2 y_k}{\sum_{k=1}^{N} x_k^4}$$

- From Table 5.3

- $A = \frac{7.68680}{1.5664} = 4.9073$
- $y = 4.9073x^2$

Table 5.3 Obtaining the Coefficient for a Power Fit

Time, tk	Distance, d_k	$d_k t_k^2$	t_k^4
0.200	0.1960	0.00784	0.0016
0.400	0.7850	0.12560	0.0256
0.600	1.7665	0.63594	0.1296
0.800	3.1405	2.00992	0.4096
1.000	4.9075	4.90750	1.0000
		7.68680	1.5664

[1]

Note: d is y and t is x

References

• [1] Mathews J. H. and Fink K. D. (1999). Numerical Methods using MATLAB, NJ: Prentice Hall

