Pollen transfer efficiency

as a function of pollen deposition and removal

Pollen presentation

Pollen removal

Nearly all pollen is lost!

Pollen presentation

by eating

Pollen

removal

during transport

Nearly all pollen got lost

What we want to know

 How many pollen grains are present in every step of the pollination (ie. pollen removal, transport, deposition)

How many pollen grains are lost inbetween these steps

 How are these pollen counts influenced by time and pollinators

How we want to find out

sampled data

of pollen grains presented

of pollen remaining after one visit

of pollen on pollinator's body

of pollen grains deposited

Per visit

In total

How we want to find out

sampled data - for losses

of pollen in pollinator's gut

Overall # of pollen missing inbetween steps

Time matters: Deposited pollen

Diurnal pollen availability on flowers

Štenc, J., L. Janošík, E. Matoušková, J. Hadrava, M. Mikát, and Z. Janovský. 2023. Pollinator visitation closely tracks diurnal patterns in pollen release. American Journal of Botany

Pollen grains on pollinator's body

- Apis mellifera
- Bombus spp.
- Eristalis nemorum
- Eristalis tenax
- Helophilus spp.

Pollinator species matters: but...

But deposition success rate depends on time

Quantity of deposited pollen from zero is determited by pollinators

Non-zero d	eposition succe	es rate is determin	ea
by time			

Hurdle model

Count model coefficients (truncated poisson with log link)

	P-value	
Eristalis interuptus-intercept	0.000426 ***	
Eristalis tenax	0.004948 **	
Helophilus trivittatus	2.57e-06 ***	
time	0.055872.	

Hurdle model

Zero hurdle model coefficients (binomial with logit link)

	P-value
Eristalis interuptus-intercept	0.0286 *
Eristalis tenax	0.5701
Helophilus trivittatus	0.4688
time	0.0234 *

And a lot of visits are not succesfull

Only 57 % of visits resulted into pollen deposition

Succisa needs many visits to obtain pollen

Single visit

3.355

pollen grains deposited

Total per floret

20.54

pollen grains deposited

Inflorescence with 100 florets

2054

pollen grains deposited

Presented and Removed pollen

pollen grains presented

Presented pollen and Pollen after visit does not differ enough

pollen grains med

Presented		
median	mean	
230	305	

After visit		
median	mean	
180	242	

pollen remaining after one visit

Wilcoxon rank sum test

P-value = 0.201

Calculating pollen removal is problem now

We can also calculate Removed pollen from production

Pollen presented

Pollen remainning after visit

Pollen removal

Pollen produced

The interpretation changes dramatically

Pollinators remove nearly nothing
Pollen presented – after visit

Pollinators remove nearly everything Pollen production – after visit

pollen grains presented

Presented		
median	mean	
230	305	

pollen remaining after one visit

After visit		
median	mean	
180	242	

What is the correct approach To deal with "the removal dilemma"?

Pollinators remove nearly nothing
Pollen presented – after visit

Pollinators remove nearly everything
Pollen production – after visit

Why pollen counts are similar before and after visit

- Pollinators mostly remove pollen from floret in front of the visited one
- Mistakes during methodology were done
- Pollinators really remove small quantity of pollen and inflorescence variability in pollen presented is greater

Pollen presentation

Pollen removal

To do:

Pollen lost by eating

Thank you for your attention!

Švanda Petr

E-mail: svandapetr@natur.cuni.cz

Jakub Štenc - supervisor (thank you so much!)

E-mail: jakubstenc@gmail.com

Charles University
Department of botany

