Sundry: I worked alone without any help.

1 Buffon's Needle on a Grids

(a) $\mathbb{P}[\text{no intersection at } \theta] = 1 - \sin \theta - \cos \theta + \sin \theta \cos \theta$

Note that a random throw of the needle is completely specified by 3 random variables:

- (1) the horizontal distance X between the midpoint of the needle and the closest vertical line;
- (2) the vertical distance Y between the midpoint of the needle and the closest horizontal line;
- (3) the angle θ between the needle and the horizontal lines.

Since we assume a perfectly random throw, so we may assume that the position of the center of the needle and its orientation are independent and uniformly distributed (i.e. X, Y, θ are i.i.d.). Then, since the r.v.s X and Y range between 0 and θ is fixed, so their joint distribution has density f(x,y) that is uniform over the square $[0, \frac{1}{2}] \times [0, \frac{1}{2}]$. Since this square has area $\frac{1}{4}$, so the density should be:

$$f(x, y, \theta) = 4$$
 for $(x, y) \in [0, \frac{1}{2}] \times [0, \frac{1}{2}]$

and
$$f(x, y, \theta) = 0$$
 otherwise

Sanity Check:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y, \theta) \ dxdy = \int_{0}^{\frac{1}{2}} \int_{0}^{\frac{1}{2}} 4 \ dxdy = 1$$

Now let E denote the event that the needle does NOT intersect a line. By elementary geometry the vertical distance of the endpoint of the needle from its midpoint is $\frac{1}{2}\sin\theta$, and the horizontal distance of the endpoint of the needle from its midpoint is $\frac{1}{2}\cos\theta$, so the needle will NOT intersect any grid lines if and only if $(X > \frac{1}{2}\cos\theta) \wedge (Y > \frac{1}{2}\sin\theta)$.

Therefore, with our density function and bounds, so we have that:

$$\mathbb{P}[E] = \mathbb{P}[(X > \frac{1}{2}\cos\theta) \wedge (Y > \frac{1}{2}\sin\theta)] = \int_{\frac{1}{2}\sin\theta}^{\infty} \int_{\frac{1}{2}\cos\theta}^{\infty} f(x, y, \theta) \ dxdy$$

$$\Longrightarrow \mathbb{P}[E] = \int_{\frac{1}{2}\sin\theta}^{\frac{1}{2}} \int_{\frac{1}{2}\cos\theta}^{\frac{1}{2}} 4 \ dxdy = 4 \cdot (\frac{1}{2} - \frac{1}{2}\cos\theta)(\frac{1}{2} - \frac{1}{2}\sin\theta) = 1 - \sin\theta - \cos\theta + \sin\theta\cos\theta$$

(b) $\mathbb{P}[\text{intersection}] = \frac{2}{\pi}$

Using a similar argument, we have that the r.v.s X and Y range between 0 and $\frac{1}{2}$, while θ ranges between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$. Since we assume a perfectly random throw, so we may assume that the position of the center of the needle and its orientation are independent and uniformly distributed (i.e. X,Y,θ are i.i.d.), and thus, their joint distribution has density $f(x,y,\theta)$ that is uniform over the cube $[0,\frac{1}{2}] \times [0,\frac{1}{2}] \times [-\frac{\pi}{2},\frac{\pi}{2}]$. Since this cube has volume $\frac{\pi}{4}$, so the density should be:

$$f(x, y, \theta) = \frac{4}{\pi} \quad \text{for } (x, y, \theta) \in [0, \frac{1}{2}] \times [0, \frac{1}{2}] \times [-\frac{\pi}{2}, \frac{\pi}{2}]$$

and
$$f(x, y, \theta) = 0 \quad \text{otherwise}$$

Sanity Check:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y, \theta) \ dx dy d\theta = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{\frac{1}{2}} \int_{0}^{\frac{1}{2}} \frac{4}{\pi} \ dx dy d\theta = 1$$

Now let E_2 denote the event that the needle does NOT intersect a line. By elementary geometry the vertical distance of the endpoint of the needle from its midpoint is $\frac{1}{2}\sin\theta$, and the horizontal distance of the endpoint of the needle from its midpoint is $\frac{1}{2}\cos\theta$, so the needle will NOT intersect any grid lines if and only if $(X > \frac{1}{2}\cos\theta) \wedge (Y > \frac{1}{2}\sin\theta)$.

Thus, with our density function and bounds, so we have that:

$$\mathbb{P}[E_{2}] = \mathbb{P}[(X > \frac{1}{2}\cos\theta) \land (Y > \frac{1}{2}\sin\theta)] = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{\frac{1}{2}\sin\theta}^{\infty} \int_{\frac{1}{2}\cos\theta}^{\infty} f(x,y,\theta) \, dxdyd\theta$$

$$\implies \mathbb{P}[E_{2}] = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{\frac{1}{2}\sin\theta}^{\frac{1}{2}} \int_{\frac{1}{2}\cos\theta}^{\frac{1}{2}} \frac{4}{\pi} \, dxdyd\theta = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{4}{\pi} \cdot (\frac{1}{2} - \frac{1}{2}\cos\theta)(\frac{1}{2} - \frac{1}{2}\sin\theta) \, d\theta$$

$$\implies \mathbb{P}[E_{2}] = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{\pi} \cdot (1 - \sin\theta - \cos\theta + \sin\theta\cos\theta) \, d\theta = \frac{1}{\pi} \cdot \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 - \sin\theta - \cos\theta + \frac{1}{2}\sin(2\theta) \, d\theta$$

$$\implies \mathbb{P}[E_{2}] = \frac{1}{\pi} \cdot (\theta + \cos\theta - \sin\theta - \frac{1}{4}\cos(2\theta)) \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{1}{\pi} \cdot \left((\frac{\pi}{2} + 0 - 1 + \frac{1}{4}) - (-\frac{\pi}{2} + 0 + 1 + \frac{1}{4})\right) = \frac{\pi - 2}{\pi}$$

Therefore, we have that the probability that the needle intersects a grid line is:

$$\mathbb{P}[\text{intersection}] = \mathbb{P}[\overline{E_2}] = 1 - \mathbb{P}[E_2] = 1 - \frac{\pi - 2}{\pi} = \frac{2}{\pi}$$