

Rosario Arquitectura del Computador 2019-2

Segundo parcial

2 de septiembre de 2019

1	Nombre del profesor: Cerman Chaudo
	Indicaciones generales
	Este es un examen individual con una duración de 1 hora y 50 minutos. No se permite el uso de libros, apuntes (excepto una hoja manuscrita), o cualquier medio electrónico incluyendo calculadoras. Los celulares deben estar apagados durante todo el examen. Cualquier incumplimiento de lo anterior conlleva la anulación del examen. Las respuestas deben estar totalmente justificadas.

El valor de cada punto es el que se indica al inicio del mismo. Tolerancia cero ante el fraude.

Problema 1: conversión entre bases numéricas

(0/10 a) (+0.5) Convierta 273₁₀ a hexadecimal

[0/10 b) (+0.5) Convierta $BECA_{16}$ a binario

(0/10c) (+0.5) Convierta 110111101011111102 a hex

Problema 2: sistemas posicionales

10/10a) (+0.5) Si $22_x + 11_{2x} = 16_{3x}$, ¿cuál es el valor de x?

[0/10b) (+0.5) Considere un sistema de numeración posicional con estos símbolos:

★ es cero△ es uno□ es dos○ es tres

¿Cuál es la base del sistema de numeración propuesto?. Calcule

Exprese el resultado usando el mismo sistema de numeración.

Problema 3: aritmética binaria

Para los literales a) y b), realice las operaciones usando el esquema complemento a 2. Exprese el resultado en formato signo/magnitud.

Arquitectura del Computador 2019-2

- 10/10 a) (+0.5) $-10_2 10_2$ usando 7 bits.
- $(0/10 \text{ b}) \text{ (+0.5)} \quad 10_{10} B_{16} \text{ usando 5 bits.}$
- $10/10 \,\mathrm{c}$) (+0.5) Sume $1010_2 + 1001_2$. Si se consideran números de 4 bits, ¿se produce over flow?

Problema 4: misceláneo

- 10/10 a) (+0.5) ¿Cuál es el resultado de dividir el número de 100 cifras 11111111 ... 1110₂ entre 2?. Exprese el resultado en binario.
- 5/10 b) (+0.5) ¿Cuál es el número más grande que puede almacenarse en una memoria USB de 8 GB?