Bölüm 4 Matematik Dili

Kümeler

□ Küme(Set) = ayrık nesnelerden oluşmuş

topluluğa küme denir

■ Kümenin elemanları element olarak adlandırılır

- Kümeler nasıl gösterilir
 - Liste şeklinde
 - □ Örnek: A = {1,3,5,7}
 - Tanım şeklinde
 - □ Örnek: B = $\{x \mid x = 2k + 1, 0 \le k \le 3\}$

Sonlu ve Sonsuz Kümeler (Finite and İnfinite Sets)

- □ Sonlu kümeler (Finite sets)
 - Örnekler:
 - \triangle A = {1, 2, 3, 4}
 - \square B = {x | x is an integer, $1 \le x \le 4$ }
- Sonsuz kümeler (Infinite sets)
 - Örnekler:
 - \square Z = {integers} = {..., -3, -2, -1, 0, 1, 2, 3,...}
 - \square S={x| x is a real number and $1 \le x \le 4$ } = [0, 4]

Bazı önemli kümeler

- Boş küme (*empty* set Ø veya { }), elemanı olmayan küme
 Note: Ø ≠ {Ø}
 null set veya void set adını da alırlar
- □ Evrensel küme (Universal set): Bahsettiğimiz guruptaki bütün elemanları içine alır
- □ Örnekler:
 - U = {all natural numbers}
 - U = {all real numbers}
 - U = $\{x \mid x \text{ is a natural number and } 1 \le x \le 10\}$

Kardinalite

- Bir A kümesinin kardinalitesi o A kümesinin eleman sayısıdır. |A| olarak gösterilir
- □ Örnekler:

```
If A = \{1, 2, 3\} then |A| = 3
If B = \{x \mid x \text{ is a natural number and } 1 \le x \le 9\}
then |B| = 9
```

- Sonsuz (Infinite) kardinalitisi
 - Sayılabilir (Countable) (örnek, natural numbers, integers)
 - Sayılamayan (Uncountable) (örnek, real numbers)

If
$$S = \{1,2,3\}$$
 $|S| = 3$.
If $S = \{3,3,3,3,3,3\}$ $|S| = 1$.
If $S = \emptyset$ $|S| = 0$.
If $S = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$ $|S| = 3$.
If $S = \{0,1,2,3,...\}$, $|S|$ sonsuzdur

Altkümeler (Subsets)

Eğer X kümesinin bütün elemanları Y kümesi içerisinde yer alıyorsa X'e Y kümesinin bir alt (subset) kümesidir denir

(in symbols $X \subseteq Y$)

- \blacksquare *Eşitlik(Equality)*: X = Y if X \subseteq Y and Y \subseteq X
- Eğer X kümesi, Y kümesinin bir alt kümesi iken Y kümesi, X kümesinin bir alt kümesi değilse (x#y); X kümesi, Y kümesinin bir öz-alt kümesidir (proper subset) denir
- $\square \text{ if } X \subseteq Y \text{ but } Y \not\subseteq X$
 - Gözlem: Ø her kümenin bir alt kümesidir

 $x \in S$ anlamı "x, S kümesinin bir elemanıdır." $x \notin S$ anlamı "x, S kümesinin bir elemanı değildir." $A \subseteq B$ anlamı "A, B nin bir alt kümesidir."

or,
$$\forall x ((x \in A) \rightarrow (x \in B)).$$

Venn Diagram

Power set

- X kümesinin power set 'i, X kümesinin bütün alt kümelerinin kümesi olup, P(X) ile gösterilir
 - P(X)= {A | A ⊆ X}
 - Örnek: if X = {1, 2, 3}, then $P(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$
- □ Teorem: If |X| = n, then $|P(X)| = 2^n$

If S is a set, then the power set of S is $2^{5} = \{x : x \subseteq S\}.$

If
$$S = \{a\}$$
 $2^{S} = \{\emptyset, \{a\}\}.$

If
$$S = \{a,b\}$$
 $2^{S} = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}.$

If
$$S = \emptyset$$
 $2^{S} = {\emptyset}$.

If
$$S = \{\emptyset, \{\emptyset\}\}\}$$
 $2^{S} = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}, \{\emptyset, \{\emptyset\}\}\}\}$.

Fact: if S is finite, $|2^{S}| = 2^{|S|}$. (if |S| = n, $|2^{S}| = 2^{n}$)

Venn şemaları (diagrams)

- Bir venn şeması verilen iki kümenin grafik olarak gösterilimini sağlar
- □ Bir kümenin birleşimi(union), kesişimi (intersection), farkı (difference), simetrik farkı (symmetric difference) ve tümleyeni (complement) tanımlanabilir

Küme İşlemleri (Set operations): Birleşim (Union)

X ve Y verilen iki küme olsun

■ X ve Y kümesinin birleşimi (union)

$$X \cup Y = \{ x \mid x \in X \text{ or } x \in Y \}$$

Küme İşlemleri (Set operations): Kesişim (Intersection)

X ve Y verilen iki küme olsun

X ve Y kümesinin kesişimi (intersection)

$$X \cap Y = \{ x \mid x \in X \text{ and } x \in Y \}$$

If
$$X = \{Ay\$e, Lale, Zeynep\}$$
,
and $Y = \{Lale, Deniz\}$, then
 $X \cap Y = \{Lale\}$

X ve Y verilen iki küme olsun

■ X ve Y gibi iki kümenin kesişimi boş küme ise X
ve Y kümeleri ayrık (disjoint-pairwise) kümeler olarak
adlandırılır

if
$$X \cap Y = \emptyset$$

If $X = \{z : z \text{ rekt\"{o}rd\"{u}r}\}$, and $Y = \{z : z \text{ buse } sinifta \text{ oturuyor}\}$, then

 $X \cap Y = \{z : z \text{ bu sinifta oturan bir rektördür}\} = \emptyset$

Tümleyen

Bir X kümesinin Tümleyeni:

$$X = \{ z : z \notin X \}$$

If $X = \{z : z \text{ uzun boyludur}\}$, then

 $X = \{z : z uzun boylu değildir.\}$

İki KümeninFarkı (Difference)

□ İki kümenin farkı

$$X - Y = \{ x \mid x \in X \text{ and } x \notin Y \}$$

Fark(difference), **X** kümesine göre **Y**'nin göreceli tümleyeni (relative complement) olarak da adlandırılır

□ Simetrik Fark (Symmetric difference)

$$X \oplus Y = (X - Y) \cup (Y - X)$$

$$X \oplus Y = \{ z : (z \in X \land z \notin Y) \lor (z \in Y \land z \notin X) \}$$

■ Evrensel küme (universal set) içerisinde yer alan A kümesinin tümleyeni (complement) A^c = U – A şeklinde gösterilir

Sembolü Ac = U - A

Küme işlemlerinin özellikleri (1)

Theorem: U, evrensel bir küme; A, B ve C evrensel kümenin bir alt kümesi olduğunda aşağıdaki özellikler mevcuttur

- a) Birleşim(Associativity): $(A \cup B) \cup C = A \cup (B \cup C)$ $(A \cap B) \cap C = A \cap (B \cap C)$
- b) Değişim(Commutativity): $A \cup B = B \cup A$ $A \cap B = B \cap A$

Küme işlemlerinin özellikleri(2)

c) Dağılma (Distributive):

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

d) Özdeşlik (Identity):

$$A \cap U = A$$

$$A \cup \emptyset = A$$

e) Tümleyeni(Complement):

$$A \cup A^c = U$$

$$A \cup A_c = \emptyset$$

Küme işlemlerinin özellikleri(3)

f) Idempotent:

$$A \cup A = A$$

$$A \cap A = A$$

g) Bound laws:

$$A \cup U = U$$

$$A \cap \emptyset = \emptyset$$

h) İçine alma (Absorption):

$$A \cup (A \cap B) = A$$
 $A \cap (A \cup B) = A$

$$A \cap (A \cup B) = A$$

Küme işlemlerinin özellikleri(4)

i) Gerektirme (Involution): $(A^c)^c = A$

j) 0/1 kanunu:
$$\varnothing^c = U$$
 $U^c = \varnothing$

k) Kümeler için De Morgan:

$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cap B)^c = A^c \cup B^c$$

Kartezyen Çarpım (Cartesian Product)

Verilen iki kümenin kartezyen çarpımı (cartesian product)

> Such ikien de szelligi oldugu fain de özelligi

A x B =
$$\{(a,b) \mid a \in A \land b \in B \}$$

şeklinde gösterilir

- \Box $A \times B \neq B \times A$
- \Box $A \times B = A \cdot B$

If $A = \{Celal, Lale, Lamia\}$, and $B = \{Banuse A = \{Banuse B = \{Banuse A = \{Banuse B = \{$ Vedat}, then A x B = {<Celal, Banu>, <Lale, Banu>, <Lamia, Kortes yen yapabiliyarsak Kortes yen yapabiliris Pontsiyon yapabiliris Banu>, < Celal, Vedat>, < Lale, Vedat>, < Lamia, Vedat>}

Genelleştirilmiş birleşim ve kesişim

- Birleşim ve Kesişim kümelerinin eleman sayısı
 s(A ∪B) = s(A) + s(B) s(A ∩B)

Örnek:

Bilgisayar Bilimlerinde 217 öğrenci var.

157 kişi cs125 kodlu dersi alıyor.

145 kişi cs173 kodlu dersi alıyor.

98 kişi her iki derside alıyor.

Kaç kişi her iki dersi de almıyor?

Farzedelim:

Bilmek istiyorum | A U B U C |

$$|A \cup B \cup C| = |A| + |B| + |C|$$

- $|A \cap B| - |A \cap C| - |B \cap C|$
+ $|A \cap B \cap C|$

Bit stringleri ile küme işlemleri

Örnek: If
$$U = \{x_1, x_2, x_3, x_4, x_5, x_6\}$$
,

$$A = \{x_1, x_3, x_5, x_6\}, \text{ ve B} = \{x_2, x_3, x_6\},$$

 $A \cup B$ ve $A \cap B$ bulmak istediğimizde...

						1	
	В	0	1	1	0	0	1
Bit-wise OR	$A \cup B$	1	1	1	0	1	1
Bit-wise AND	$A \cap B$	0	0	1	0	0	1

Düzenli Seriler ve Dizgiler (Sequences and Strings)

Düzenli Dizi (sequence) Sıralı bir listeyi göstermek için kullanılan ayrık yapıya denir. N elemanlı bir dizinin gösterilimi

 $s_n = n$ 'nin bir fonksiyonu olup n = 1, 2, 3,...

- □ Eğer s sıralı bir diziyse $\{s_n | n = 1, 2, 3, ...\}$,
 - s₁ birinci elemanı gösterir,
 - s₂ ikinci elemanı gösterir,...
 - s_n n. elemanı gösterir...
- n düzenli bir serinin indeksidir. N doğal sayılardan oluşur veya bu kümenin sonlu bir alt kümesidir

Düzenli serilere (sequences) örnek

Örnekler:

1. s = {s_n} aşağıdaki gibi tanımlanmış olsun

$$s_n = 1/n$$
, for $n = 1, 2, 3,...$

Sequence'ın ilk birkaç elementi: 1, ½, 1/3, ¼, 1/5,1/6,...

2. $s = \{s_n\}$ aşağıdaki gibi tanımlanmış olsun

$$s_n = n^2 + 1$$
, for $n = 1, 2, 3,...$

Sequence'ın ilk birkaç elementi : 2, 5, 10, 17, 26, 37, 50,...

Artan ve Azalan Diziler (Increasing and Decreasing)

 $s = \{s_n\}$ için aşağıdakiler söylenebilir

- *increasing* if $s_n \le s_{n+1}$
- decreasing is $s_n \ge s_{n+1}$, for every n = 1, 2, 3,...

Örnekler:

- $S_n = 4 2n, n = 1, 2, 3,...$ azalan: 2, 0, -2, -4, -6,...
- $S_n = 2n 1, n = 1, 2, 3,...$ artan: 1, 3, 5, 7, 9, ...

Düzenli altseriler (Subsequences)

- □ Bir s sequence'ının s = {s_n}, alt sequence'ı t = {t_n} ile gösterilir ve sıralama düzeni aynı kalmak şartıyla s sequence'ının elemanlarından elde edilir
 - Örnek: $s = \{s_n = n \mid n = 1, 2, 3, ...\}$ □ 1, 2, 3, 4, 5, 6, 7, 8,...
 - $t = \{t_n = 2n \mid n = 1, 2, 3, ...\}$
 - **2**, 4, 6, 8, 10, 12, 14, 16,...
 - □ t, s'nin bir düzenli altserisidir (Subsequences)

Toplam (Sigma) gösterilimi

□ Eğer {a_n} bir sequence ise, bu sequence'ın toplamı

$$\sum_{k=1}^{m} a_k = a_1 + a_2 + \dots + a_m$$

Bu toplam gösterilimi (sigma notation), olup Yunan alfabesindeki Σ ile gösterilir

Çarpım (Pi) gösterilimi

□ Eğer {a_n} bir sequence ise, bu sequence'ın çarpımı

$$\prod_{k=1}^{m} a_k = a_1 a_2 \dots a_m$$

Bu çarpım gösterilimi (pi notation), olup Yunan alfabesindeki Π ile gösterilir

$$\sum_{k=4}^{8} (-1)^k = 1$$

$$\sum_{i=1}^{4} \sum_{j=1}^{3} ij = \sum_{i=1}^{4} i + 2i + 3i = \sum_{i=1}^{4} 6i = 6 + 12 + 18 + 24 = 60$$

Dizgi-Katar (String)

- X sonlu elemanlardan oluşan bir küme olsun
 - Örnek: if X = {a, b, c}
 - $lacktriangleq \alpha$ = bbaccc **X** kümesi üzerinden tanımlanmış olsun
 - Gösterilim: bbaccc = b²ac³
 - ullet α string'inin uzunluğu (length) α string'inin eleman sayısını verir ve $|\alpha|$ ile gösterilir.
 - Eğer α = b^2ac^3 ise $|\alpha|$ = 6.
- Eğer bir string eleman içermiyorsa boş string (null string) adını alır ve Yunan alfabesindeki λ (lambda) ile gösterilir

- \square X* = {all strings over X dahil λ }
- \square X⁺ = X* { λ }, the set of all non-null strings
- □ Örnek: α = bbaccc ve β = caaba, $\alpha\beta$ = bbaccccaaba = $b^2ac^4a^2ba$ Kısaca, $|\alpha\beta|$ = $|\alpha|$ + $|\beta|$

Sayı Sistemleri (Number systems)

- □ İkili (Binary) sayılar: 0 ve 1, bits adını alır.
- □ Binary (base 2), hexadecimal (base 16) ve octal (base 8) sayı sistemleri

Decimal(base 10) sistem:

Örnek: 45,238

8	bir	8 x 1 =	8
3	on	3 x 10 =	30
2	yüz	2 x 100 =	200
5	bin	5 x 1000 =	5000
4	on bin	4 x 10000 =	40000

İkili (Binary) sayı sistemi

- Binary'den decimal'a:
- □ İki tabanındaki sayı 1101011 olsun

```
■ 1 bir 1 \times 2^{0} = 1
■ 1 iki 1 \times 2^{1} = 2
■ 0 dört 0 \times 2^{2} = 0
■ 1 sekiz 1 \times 2^{3} = 8
■ 0 on-altı 0 \times 2^{4} = 0
■ 1 otuz-iki 1 \times 2^{5} = 32
■ 1 almış-dört 1 \times 2^{6} = \frac{64}{107} (taban 10)
```

Decimal'den binary'e

□ Decimal sayı 73₁₀ olsun

$$\blacksquare$$
 36 = 2 x 18 + kalan 0

$$=$$
 4 = 2 x 2 + kalan 0

$$=$$
 2 = 2 x 1 + kalan 0

$$\Rightarrow$$
 73₁₀ = 1001001₂

(kalanlar ters sırada yazılır)

İkili (Binary) toplama (addition) tablosu

\oplus	0	1
0	0	1
1	1	10

İkili (binary) sayılarda toplama

□ Örnek: add 100101₂ + 110011₂

```
111 ← elde birler 100101_2 110011_2 1011000_2
```

Hexadecimal sayı sistemi

Decimal sistem															
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Ш	F
Hexadecimal sistem															

Hexadecimal'den decimal'e

■ Hexadecimal sayımız 3A0B₁₆ olsun

$$11 \times 16^{0} =$$
 11
 $0 \times 16^{1} =$ 0
 $10 \times 16^{2} =$ 2560
 $3 \times 16^{3} =$ 12288
 14859_{10}

Decimal'den hexadecimal'e

Verilen sayı 2345₁₀ olsun

$$2345 = 146x16 + remainder 9$$

$$146 = 9x16 + remainder 2$$

$$2345_{10} = 929_{16}$$

Hexadecimal sayılarda toplam

Toplam
$$23A_{16} + 8F_{16}$$

$$23A_{16}$$
 + $8F_{16}$ $2C9_{16}$

Bağıntılar (Relations)

- X ve Y verilen iki küme olsun, bunların Kartezyen
 Çarpımı (Cartesian Product) XxY olup, (x,y) çiftlerinden oluşur, x∈X ve y∈Y
 - XxY = {(x, y) | x∈X and y∈Y}
- R, XxY kartezyen çarpımının bir alt kümesi olup, X'den Y'ye, bir ikili bağıntı (binary relation) olarak verilmiş olsun
 - Örnek: $X = \{1, 2, 3\}$ ve $Y = \{a, b\}$
 - $R = \{(1,a), (1,b), (2,b), (3,a)\}$ X ve Y arasında bir bağıntıdır

Tanım ve Değer Kümesi (Domain and Range)

- X'den Y'ye verilen bir R bağıntısında,
- □ R'nin tanım kümesi (domain)

$$Dom(R) = \{ x \in X \mid (x, y) \in R \text{ for some } y \in Y \}$$

□ R'nin değer kümesi (range)

$$Rng(R) = \{ y \in Y \mid (x, y) \in R \text{ for some } x \in X \}$$

- □ Örnek:
 - $X = \{1, 2, 3\} \text{ ve } Y = \{a, b\}$
 - \blacksquare $R = \{(1,a), (1,b), (2,b)\}$
 - Dom(R)= {1, 2}, Rng(R) = {a, b}

Bağıntılara örnek

- \square X = {1, 2, 3} ve Y = {a, b, c, d}
- \square $R = \{(1,a), (1,d), (2,a), (2,b), (2,c)\}$
- Verilen bağıntıyı graf kullanarak çizersek:

Bağıntıların özellikleri

- R, A kümesi üzerinde bir bağıntı olsun Örnek: R, AxA kartezyen çarpımının bir alt kümesi
- □ A relation R on a set A is called *reflexive* (*yansıma*) if $(x,x) \in R$ for every element $x \in A$.
- □ A relation \mathbf{R} on a set \mathbf{A} is called *nonreflexive* if $(x,x) \notin \mathbb{R}$ for some element $x \in \mathbf{A}$.
- □ A relation \mathbf{R} on a set \mathbf{A} is called *irreflexive* if $(x,x) \notin \mathbb{R}$ for every element $x \in \mathbf{A}$.

□ A relation **R** on a set **A** is called **symmetric** (simetrik)

if
$$[(y,x) \in R$$
 whenever $(x,y) \in R]$ or $[(y,x) \notin R$ whenever $(x,y) \notin R]$ or $(x=y)$, for $x,y \in A$.

□ A relation \mathbf{R} on a set \mathbf{A} such that $(x,y) \in \mathbf{R}$ and $(y,x) \in \mathbf{R}$ only if x=y, for $x,y \in \mathbf{A}$, is called **antisymmetric** (antisimetrik).

□ A relation \mathbf{R} on a set \mathbf{A} is called *transitive* (*geçişkenlik*) if whenever $(x,y) \in \mathbf{R}$ and $(y,z) \in \mathbf{R}$ then $(x,z) \in \mathbf{R}$, for $x,y,z \in \mathbf{A}$

AxA

Örnek: if $a=b^2$, $(a,b) \in R$ $A=\{1,2,3,4\}$

İlgili bağıntıyı yazınız ve hangi özelliklerin mevcut olduğunu söyleyiniz.

$$R = \{(1,1), (4,2)\}$$
Reflexive

Transitive , Var

Nonreflexive Var

Irreflexive Yok

Symmetric Yok

Antisymmetric Var

A={} Transitive? EVET

(K,S)

Bağıntının tersi

X'den Y'ye bir R bağıntısı verilmiş olsun, bu bağıntının tersi (inversi) Y'den X'e olup R⁻¹ ile gösterilir

Bağıntının Bileşkesi(Composition)

□ Tanım

$$R^1 = R$$

$$R^2 = R \circ R$$

$$R^3 = R^2 \circ R$$

.....

$$R^n = R^{n-1} \circ R$$

Örnek: R={(1,1) (2,1)(3,2)(4,3)} için R² √e R³ bulunuz

$$R^2 = R \circ R = \{(1,1)(2,1)(3,1)(4,2)\}$$

$$R^3 = R^2 \circ R = \{(1,1)(2,1)(3,1)(4,1)\}$$

 $A = \{1,2,3,4\}$ NR,NS,NAS, $\{(2,2)(2,3)(2,4)(3,2)(3,3)(3,4)\}$ $\{(1,1)(1,2)(2,1)(2,2)(3,3)(4,4)\}$ R,S,NAS,T $\{(2,4)(4,2)\}$ IR,S,NAS,NT {(1,2)(2,3)(3,4)} IR,NS,AS,NT $\{(1,1)(2,2)(3,3)(4,4)\}$ R,S,AS,T $\{(1,3)(1,4)(2,3)(2,4)(3,1)(3,4)\}$ IR,NS,NAS,NT

Denklik Bağıntısı (Equivalence Relation)

ment of

X bir küme, R'de X üzerindeki bir bağıntı olsun

□ R bağıntısı üzerinde reflexive, symmetric ve transitive özellikleri mevcut ise bu bir denklik bağıntısı (equivalence relation) olup X ⇔ R şeklinde gösterilir

 $R = \{(1,1) (2,2)(3,3)(1,2)(2,1)(1,3)(3,1)(2,3)(3.2)\}$

Reflexive? Var

Symmetric ? Var

Transitive ? Var

Antisymmetric ? Yok

EQUIVALANCE RELATION?

reflex to

■ Örnek: $X = \{\text{integers}\}\ \text{ve } X \text{ kümesi üzerinde tanımlı olan}$ R bağıntısı da $xRy \Leftrightarrow x - y = 5$ olarak verilsin. R'nin equivalence relation olup olmadığını gösteriniz.

$$X = \{1,6\}$$

 $R = \{(6,1)\}$

Irreflexive

Antisymmetric +

Transitive -

Denklik Bağıntısı değildir.

Gordon on bis

Örnek:

 $X = \{1,2,3,4,5,6\}$ $R = \{(1,1)(1,3)(1,5)(3,1)(3,3)(3,5)(5,1)(5,3)(5,5)(2,2)(2,6)(6,2)(6,6)(4,4)\}$

EQUIVALENCE RELATION?

EVET

Reflexive - Symmetric - Transitive

Sıralama Bağıntısı (Partial Order Relation)

X bir küme, R'de X üzerindeki bir bağıntı olsun

- R bağıntısı üzerinde reflexive, antisymmetric ve transitive özellikleri mevcut ise bu bir sıralama bağıntısı (partial order relation) dır
- □ Hasse Diyagramları (partial order öz.)

Örnek:

R: if x divides y $(x,y) \in R$ A= $\{1,2,3,4\}$ $x,y \in A$

R={(1,1)(1,2)(1,3)(1,4)(2,2)(2,4)(3,3)(4,4)}

PARTIAL ORDER?

EVET

Reflexive – Antisymmetric - Transitive

Hasse Diyagramları

(Alman Matematikçi Helmut Hasse tarafından geliştirilmiştir)

Sıralama Bağıntısı Özelliğini Sağlarlar

Örnek

R: $\{(a, b) \mid a \le b, a \in X, b \in X\}$ $X = \{1, 2, 3, 4\}$ $R = \{(1,1)(2,2)(3,3)(4,4)(1,2)(1,3)(1,4)(2,3)(2,4)(3,4)\}$

Önce Yansıma Öz. Çıkaralım

Hasse

Kapalılık (Closure)

□ Verilmiş olan bağıntı üzerinde reflexive, symmetric ve transitive özellikleri mevcut değilse bağıntının bu özelliklere sahip olabilmesini sağlama işlemidir.

- Transitive closure
- Warshall algoritması (by Stephen Warshall)

Verilen bağıntının Transitive özelliğini sağlamadığı görülmektedir Bu bağıntıya Transitive özelliği eklemek için ne yapabiliriz?

$$R = \{(b,a)(b,c)(c,a)(c,d)(d,c)(a,d)\}$$

Warshall algoritması

Yansıma ve simetri özelliklerini taşıyan küme içi bağıntılar

$$A=\{a_1, a_2, a_3, a_4, a_5, a_6\}$$
 Farklı ülkelerden kişiler

$$B=\{b_1, b_2, b_3, b_4, b_5\}$$
 Beş ayrı dil

Kim hangi dili konuşuyor? Hangi diller kimler tarafından konuşuluyor?

Kim kiminle konuşabiliyor?

Matris Bağıntıları

- X ve Y bir küme, R'de X'den Y'ye bir bağıntı olsun. Aşağıdaki bağıntılardan matris A = (a_{ii}) yazılır
 - X kümesinin elemanları, A matrisinin satırlarını oluşturur
 - Y kümesinin elemanları, A matrisinin kolonlarını oluşturur
 - i. satırdaki X'in elemanları ile j. kolondaki Y'nin elemanları birbirleriyle ilişkili değilse, a_{i,i} = 0 dır
 - i. satırdaki X'in elemanları ile j. kolondaki Y'nin elemanları birbirleriyle ilişkili ise, a_{i,i} = 1 dir

Matris bağıntıları (1)

Örnek:

$$X = \{1, 2, 3\}, Y = \{a, b, c, d\}$$

 $R = \{(1,a), (1,d), (2,a), (2,b), (2,c)\}$

R bağıntısının matrisi:

Matris Bağıntıları (2)

■ Eğer R bağıntısı, X kümesinden X kümesine ise bu bağıntının matrisi bir kare matristir Örnek:

$$X = \{a, b, c, d\} \text{ ve } R = \{(a,a), (b,b), (c,c), (d,d)\}$$

$$A =$$

	а	b	С	d
a	1	0	0	0
b	0	1	0	0
С	0	0	1	0
d	0	0	0	1

Fonksiyonlar (Functions)

- Fonksiyon bağıntının özel bir şeklidir.
- □ Bir f fonksiyonunun, X'den Y'ye bir bağıntısı olsun (f : X → Y)

Let A and B are sets. A *function* **f** from A to B is an assignment of exactly one element of B to each element of A.

X'e f'nin tanım kümesi (domain)Dom(f) = X

□ Ye fnin değer kümesi (range)

$$Rng(f) = Y$$

Örnek:

Dom(f) = X =
$$\{a, b, c, d\}$$
,
Rng(f) = Y = $\{1, 3, 5\}$
 $f(a) = f(b) = 3$, $f(c) = 5$, $f(d) = 1$

$$X=Dom(f)$$
 $Y=Rng(f)$

$$f_1(x)=x^2$$
 $f_2(x)=x-x^2$

$$f_1 + f_2 = ?$$
 $x^2 + x - x^2 = x$

$$f_1 * f_2 =? x^2(x-x^2)=x^3-x^4$$

$$X = \{1,2,3\}$$
 $Y = \{a,b,c\}$

 $R=\{(1,a)(2,b)(3,a)\}$ Bir fonksiyon mudur? EVET

$$X = \{1,2,3\}$$
 $Y = \{a,b,c\}$

 $R=\{(1,a)(2,b)(3,c)(1,b)\}$ Bir fonksiyon mudur? HAYIR

Bire-Bir Fonksiyonlar (One-to-one functions-injective)

- □ Bir fonksiyon f : X → Y bire-bir (one-to-one) ⇔ her y ∈ Y sadece bir x ∈ X değerine karşılık gelir.
- □ Alternatif tanım: $f: X \to Y$, one-to-one $\Leftrightarrow X$ kümesindeki her x değeri $x_1, x_2 \in X$, Y kümesindeki $y_1, y_2 \in Y$ gibi farklı iki değere karşılık gelir. $f(x_1) = y_1$ ve $f(x_2) = y_2$ gibi Örnekler:
 - 1. $f(x) = 2^x$ (from the set of real numbers to itself) one-to-one
 - 2. f : $R \to R$ defined by $f(x) = x^2$ not one-to-one çünkü for every real number x, f(x) = f(-x).

Örten Fonksiyonlar (Onto functions-surjective)

Bir fonksiyon f : $X \rightarrow Y \ \textit{orten} \ (\textit{onto}) \Leftrightarrow$

Her $y \in Y$ için en az bir tane $x \in X$ mevcuttur

Bijective Fonksiyonlar

Bir fonksiyon $f: X \rightarrow Y$ bijective \Leftrightarrow f fonksiyonu one-to-one ve onto'dur

- Örnekler:
 - □ 1. Lineer bir fonksiyon f(x) = ax + b bijective fonksiyondur (from the set of real numbers to itself)
 - □ 2. Bir $f(x) = x^3$ bijective fonksiyondur (from the set of real numbers to itself)

Ters Fonksiyon (Inverse function)

- □ y = f(x) fonksiyonunun tersi(inverse) f⁻¹ olup {(y, x) | y = f(x)} olarak sembolize edilir.
- □ f⁻¹ in bir fonksiyon olması gerekmez
 - Örnek: if $f(x) = x^2$, then $f^{-1}(4) = \sqrt{4} = \pm 2$, tek bir değer olmadığından tersi bir fonksiyon değildir
- Eğer bir fonksiyon bijective (onto ve one to one) ise tersi de bir fonksiyondur

$$f=\{(1,a)(2,c)(3,b)\}$$

$$f(x)=x+1$$

$$f(x) = ax + b$$

$$f(x) = \frac{ax + b}{cx + d}$$

$$f(x) = ax^2 + bx + c$$

$$y = x^{2} - 6x + 13$$

$$y = x^{2} - 6x + 9 + 4$$

$$y = (x - 3)^{2} + 4$$

$$y - 4 = (x - 3)^{2}$$

$$\sqrt{y - 4} = x - 3$$

$$x = \sqrt{y - 4} + 3$$

$$f^{-1} = \{(a,1)(c,2)(b,3)\}$$

$$f^{-1} = x - 1$$

 $f^{-1} = ?$

$$f^{-1}(x) = \frac{x-b}{a}$$

$$f^{-1}(x) = \frac{-dx + b}{cx - a}$$

$$f^{-1}(x) = x \ yalnız \ bırakılacak$$

$$f^{-1}(x) = 3 + \sqrt{y - 4}$$

Fonksiyonların Bileşkesi

□ Verilen iki fonksiyon g : X → Y ve f : Y → Z olup, bileşkesi f ∘ g aşağıdaki gibi tanımlanır

$$f \circ g(x) = f(g(x))$$
 for every $x \in X$.

□ Örnek: $g(x) = x^2 - 1$, f(x) = 3x + 5. Then $f \circ g(x) = f(g(x)) = 3(x^2 - 1) + 5 = (3x^2 + 2)$

Fonksiyon bileşkesinde birleşim öz.:

$$f \circ (g \circ h) = (f \circ g) \circ h,$$

Fakat değişme özelliği yoktur:

$$f \circ g \neq g \circ f$$
.

Üstel ve Logaritmik Fonksiyonlar (Exponential and Logarithmic Functions)

$$\Box$$
 f(x) = 2^x ve g(x) = log₂ x = lg x

•
$$f \circ g(x) = f(g(x)) = f(\lg x) = 2^{\lg x} = x$$

$$g \circ f(x) = g(f(x)) = g(2^x) = \lg 2^x = x$$

Üstel ve Logaritmik fonksiyonlar birbirinin tersidir

String'in tersi (inverse)

- X herhangi bir küme olsun
- X üzerindeki tüm string'lerin kümesi de X* olsun

Eğer
$$\alpha = x_1 x_2 ... x_n \in X^*$$

 $f(\alpha) = \alpha^{-1} = x_n x_{n-1} ... x_2 x_1$

String'in inversi alınırken ters sırada yazılır

$$\alpha \alpha^{-1} = \alpha^{-1} \alpha = \lambda$$

Floor ve Ceiling Fonksiyonları

x'in $FLOOR'u \lfloor x \rfloor$ olarak gösterilir.

x'e EŞİT veya ondan KÜÇÜK EN BÜYÜK tamsayıyı verir.

x'in CEILING'i $\lceil x \rceil$ olarak gösterilir.

x'e EŞİT veya ondan BÜYÜK EN KÜÇÜK tamsayıyı verir.