

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS

Instituto de Ciências Exatas e de Informática

Exercício prático Arquitetura de Computadores - II

Vitor Costa Oliveira Rolla

Pontifícia Universidade Católica de Minas Gerais

09 de junho de 2024

Resumo

Este exercício prático tem como objetivo aplicar os conhecimentos adquiridos na disciplina de Arquitetura de Computadores, por meio da simulação de circuitos digitais utilizando o software Logisim. Mais precisamente, serão implementados um meio-somadore, um somador completo, um somador de quatro bits.

Meio-Somador

O meio-somador é um circuito lógico que realiza a soma de dois bits, produzindo um bit de soma e um bit de carry (vai-um). A seguir, temos a representação esquemática do meio-somador:

Figura 1: Circuito do meio-somador.

Somador Completo

O somador completo é um circuito lógico que realiza a soma de três bits: dois bits de entrada (A e B) e um bit de entrada de carry (C_{in}) . Ele produz dois bits de saída: o bit de soma (S) e o bit de carry (C_{out}) , que pode ser levado para a próxima posição de ordem superior na adição binária.

A seguir, temos a representação esquemática do somador completo:

Figura 2: Circuito do somador completo.

Experimento do somador de 4 bits

Figura 3: Circuito somador de 4 bits somando 8 + 5.

Um somador de 4 bits é um circuito lógico digital que realiza a soma de dois números binários de quatro bits cada. Ele é formado pela ligação em série de quatro somadores completos (full adders), onde o carry out de cada estágio é conectado ao carry in do próximo estágio, permitindo que o resultado da soma seja propagado corretamente ao longo dos bits

Perguntas para serem respondidas

Qual o problema de tempo associado a esse tipo de somador, considere o atraso médio de cada porta lógica de 10 ns.

Resposta: O principal problema de tempo no somador de 4 bits é o atraso do carry, pois cada bit depende do carry do bit anterior, que precisa passar por várias portas lógicas. Como cada porta tem um atraso de 10 ns, o carry pode levar até 90 ns para passar por todos os 4 bits, já que demora 30 ns para passar pelo primeiro e pelo resto mais 20 ns, ou seja 30 + 20 + 20 + 20. Isso faz com que o somador perca em termos de tempo para entregar o resultado final.

Qual o tempo necessário para a computação de uma soma e do vai-um em um somador de 4 bits?

Resposta: O tempo necessário para a computação da soma(s0) e o carry(Co) em um somador completo é de 30 ns e 20 ns, respectivamente, levando em conta um somador de 4 bits, é necessário considerar 4 somadores completos. Portanto, os tempos totais para ter a soma e o carry em um somador de 4 bits são, respectivamente, 120 ns e 90 ns.

O que seria necessário para um somador de 32 bits?

Resposta: Seriam necessários 32 somadores completos de 1 bit, ou 8 somadores de 4 bits conectados em série.

Considerando esses tempos acima, calcule a frequência de operação de um somador de 32 bits.?

Resposta: Considerando um somador de 32 bits, em que o carry se propaga sequencialmente de um bit para o próximo, e assumindo um atraso de 10 ns por porta, o tempo total para completar a operação é 30 mais os outros 31 somadores vezes 20, ou seja, 30 + (31 * 20), que resulta em 650 ns. Assim, a frequência máxima de operação desse somador é de aproximadamente 1,54 MHz.

Você consegue propor alguma forma de tornar essa soma mais veloz?

Resposta: Uma forma interessante seria diminuir o caminho entre os carrys, ou seja,

diminuir o tamanho do somador, assim o carry consegue passar de forma mais rápida para a próxima porta do somador.

Calculadora de 4 bits com display de 7 segmentos

Figura 4: Calculadora somando 3+9 e exibindo dados em display de 7 segmentos.