Math 362 Assignment 4

Due: Wednesday, October 30

- Answer all questions. Each question is worth 5 marks. Full marks will be awarded only for answers that are both mathematically correct and coherently written.
- Please consider the markers and write neatly and legibly! I have instructed the markers to ignore work they cannot read. (And I won't read it, either.)
- 1. Your public key for the RSA encryption algorithm is (1147, 463). Since you own the key, you know that $1147 = 31 \times 37$, hence you (should) know the secret decryption exponent j.
 - (a) What is j?
 - (b) SUMS (Students in Undergraduate Mathematics and Statistics Course Union) have organised a treasure hunt, in which they have hidden a new laptop computer in a house in a certain street in Greater Victoria. The first person to find the laptop can keep it. If they told you it was hidden in a house in 0904 0366 0406 1036 Avenue, where would you go to find it?
- 2. Given that 3 is a primitive root of 43, use Lemma 10.1 (and other arguments) to find
 - (a) all integers $a \in \Phi(43)$ such that $\operatorname{ord}_{43} a = 6$,
 - (b) all integers $a \in \Phi(43)$ such that $\operatorname{ord}_{43} a = 21$.
- 3. Let g be a primitive root of the odd prime p. Prove that
 - (a) if $p \equiv 1 \pmod{4}$, then p g is also a primitive root of p;
 - (b) if $p \equiv 3 \pmod{4}$, then $\operatorname{ord}_p(p-g) = \frac{p-1}{2}$.
- 4. How many primitive roots does 98 have? Find all of them. (That is, find one primitive root g, and then determine all exponents k such that the least residue of g^k is also a primitive root.)
- 5. Prove that if n > 2, then $\phi(n)$ is even. Proceed as follows.
 - (a) Assume $n=2^k$ for some $k\geq 2$ and prove that $\phi(n)$ is even.
 - (b) Assume n is not a power of 2. Then n can be written as $n = p^k m$, where p is an odd prime, $k \ge 1$ and (p, m) = 1. Now show that $\phi(n)$ is even.
- 6. Show that if p is an odd prime, then g is a primitive root of p if and only if exactly one of g and g + p is a primitive root of 2p. Proceed as follows.
 - (a) Show that $\phi(2p) = \phi(p)$.

- (b) Show that if g is a primitive root of p, then g is a primitive root of 2p if and only if g is odd, while g+p is a primitive root of 2p if and only if g is even. (The Binomial Theorem might be useful.)
- 7. Solve the quadratic congruence $5x^2 + 6x + 1 \equiv 0 \pmod{23}$. Show your work. No marks for trying all least residues of 23!