VPMP POLYTECHNIC, GANDHINAGAR

MATHEMATICS (SEM-1)

COURSE CODE: - 4300001

ASSIGNMENT

MARKS-16

DETERMINANT

&

FUNCTION

DETERMINANT

> MQC'S

1)
$$\begin{vmatrix} 2 & -3 \\ 5 & 4 \end{vmatrix} =$$

2)
$$\begin{vmatrix} 4 & 3 \\ -2 & -1 \end{vmatrix} =$$

3) If
$$\begin{vmatrix} x & 1 \\ 4 & 2 \end{vmatrix} = 0$$
 then $x =$ _____.

4) If
$$\begin{vmatrix} x & 3 \\ -2 & 2 \end{vmatrix} = 2$$
 then $x =$ ____.

5) If
$$\begin{vmatrix} 2 & x \\ -3 & 5 \end{vmatrix} = 13$$
 then $x =$ _____.

6) If
$$\begin{vmatrix} x & -3 \\ y & 3 \end{vmatrix} = 9$$
 then $x + y =$ _____.

7) If
$$\begin{vmatrix} x-2 & 3 \\ 0 & x+2 \end{vmatrix} = 0$$
 then $x =$ _____.

8)
$$\begin{vmatrix} \log 1 & x \\ 0 & y \end{vmatrix} = \underline{\qquad}$$

9)
$$\begin{vmatrix} 1 & 0 & y \\ \log_x y & 1 \end{vmatrix} = \underline{\qquad}.$$

10)
$$\begin{vmatrix} \log_6 3 & -1 \\ \log_6 2 & 1 \end{vmatrix} = \underline{\hspace{1cm}}$$

10)
$$\begin{vmatrix} \log_6 3 & -1 \\ \log_6 2 & 1 \end{vmatrix} =$$
_____.
11) $\begin{vmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{vmatrix} =$ _____.

12)
$$\begin{vmatrix} \sec \theta & \tan \theta \\ \tan \theta & \sec \theta \end{vmatrix} = \underline{\qquad}$$

13)
$$\begin{vmatrix} \log_e e & \log_{10} 10 \\ 4 & 4 \end{vmatrix} = \underline{\qquad}$$

14) If
$$D = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
 then co-factor of $5 =$ _____.

13)
$$\begin{vmatrix} \log_e e & \log_{10} 10 \\ 4 & 4 \end{vmatrix} =$$
_____.
14) If $D = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}$ then co-factor of $5 =$ _____.
15) If $D = \begin{vmatrix} 1 & -2 & 4 \\ 0 & 3 & 5 \\ -1 & 2 & 6 \end{vmatrix}$ then co-factor of $0 =$ _____.

- 1) Solve $\begin{vmatrix} x+1 \\ 2 \end{vmatrix} = 0$.

- 2) Solve $\begin{vmatrix} x & 3 \\ 4 & x \end{vmatrix} = \begin{vmatrix} 0 & -2 \\ 2x & 5 \end{vmatrix}$ 2) Solve $\begin{vmatrix} x & 3 \\ 4 & x \end{vmatrix} = \begin{vmatrix} 0 & -2 \\ 2x & 5 \end{vmatrix}$ 3) Evaluate $\begin{vmatrix} 2 & 6 & -3 \\ 1 & 2 & 0 \\ 3 & 4 & -2 \end{vmatrix}$ 4) Evaluate $\begin{vmatrix} 3 & 2 & 5 \\ 0 & -2 & 1 \\ 4 & 1 & 6 \\ 0 & -x & -y \\ x & 0 & z \\ y & -z & 0 \end{vmatrix}$ 5) Evaluate $\begin{vmatrix} 0 & -x & -y \\ x & 0 & z \\ y & -z & 0 \end{vmatrix}$

- 6) Evaluate $\begin{vmatrix} a & b & c \\ 1 & 2 & 1 \\ a & b & c \end{vmatrix}$ 7) Solve $\begin{vmatrix} 4 & 3 & 9 \\ 2 & 7 & 3 \\ 1 & x & 2 \end{vmatrix} = 2$ 8) If $\begin{vmatrix} x 2 & 2 & 2 \\ -1 & x & -2 \\ 2 & 0 & 4 \end{vmatrix} = 0$ then find the value of x.
- 9) Evaluate $\begin{vmatrix} a & b+c & 1 \\ b & c+a & 1 \\ c & a+b & 1 \end{vmatrix}$
- 10) Find the value by sarrus's Method $\begin{vmatrix} 2 & 3 & -1 \\ 4 & 0 & 5 \\ -3 & 2 & 4 \end{vmatrix}$
- 11) Expand $\begin{vmatrix} 5 & 3 & -1 \\ 4 & -3 & 0 \\ 6 & 1 & 2 \end{vmatrix}$ using sarrus's Method.

LOGARITHM

- 1) If $\log_7 x = 1$ then x =_____.
- 2) If $\log_2 x = 5$ then $x = ____.$
- 3) If $\log_a 32 = 5$ then $a = ____.$
- 4) $\log m \log n =$ _____.
- 5) $\log a + \log \left(\frac{1}{a}\right) = \underline{\hspace{1cm}}$
- 6) $\log(\tan \theta) + \log(\cot \theta) =$ _____.
- 7) $\log 81 \div \log 27 =$ _____.
- **8**) $\log 32 \div \log 16 =$ _____.
- 9) $\log 27 \div \log 9 =$ _____.
- **10**) $\log_{15} 1 =$ _____.
- 11) $\log 1 \cdot \log 2 \cdot \log 3 \cdot \log 4 \cdot \log 5 =$ _____.
- 12) $\log_2 8 =$ _____.
- 13) $\log_5 125 =$ _____.
- **14**) Value of $\log_a \left(\frac{1}{a}\right) = \underline{\hspace{1cm}}$.
- **15**) $\log_{10} 0.0001 =$ _____.
- **16**) $\log_4\left(\frac{1}{2}\right) =$ _____.
- **17**) $a^{\log_a b} =$ ____.
- **18**) $1024^{\log_2 m} =$ _____.
- $19) \log_b a \times \log_a b = \underline{\hspace{1cm}}.$
- **20**) If $\log x + \log 2x = \log 18$ then $x = ____.$
- **21**) If $\log_{10}(x+1) + \log_{10}(x-1) = \log_{10} 3$ then x =____.
- **22**) If $\log_3(\log_2 x) = 1$ then x =_____.

1) Evaluate
$$\log \left(\frac{25}{32}\right) + \log \left(\frac{225}{64}\right) + \log \left(\frac{128}{25}\right) + \log \left(\frac{32}{450}\right)$$
.

2) Evaluate
$$\log\left(\frac{a-b}{b-c}\right) + \log\left(\frac{b-c}{c-a}\right) + \log\left(\frac{c-a}{a-b}\right)$$
.

3) Prove that
$$2\log\left(\frac{6}{7}\right) + \frac{1}{2}\log\left(\frac{81}{16}\right) - \log\left(\frac{27}{196}\right) = \log 12$$
.

4) Simplify
$$\log 2 + 16 \log \left(\frac{16}{15}\right) + 12 \log \left(\frac{25}{24}\right) + 7 \log \left(\frac{81}{80}\right)$$
.

5) Prove that
$$\log(x + \sqrt{x^2 - 1}) + \log(x - \sqrt{x^2 - 1}) = 0$$
.

6) Prove that
$$\log(\sqrt{x^2 + 1} + x) + \log(\sqrt{x^2 + 1} - x) = 0$$
.

7) Prove that
$$\frac{1}{\log_2 6} + \frac{1}{\log_3 6} = 1$$
.

8) Prove that
$$\frac{1}{\log_6 24} + \frac{1}{\log_{12} 24} + \frac{1}{\log_8 24} = 2$$
.

9) Prove that
$$\log_a p + \log_{a^2} p^2 + \log_{a^3} p^3 + \log_{a^4} p^4 = 4 \log_a p$$
.

10) Prove that
$$\frac{1}{\log_{xy}(xyz)} + \frac{1}{\log_{yz}(xyz)} + \frac{1}{\log_{zx}(xyz)} = 2$$
.

11) Prove that
$$\frac{1}{\log_x yz + 1} + \frac{1}{\log_y zx + 1} + \frac{1}{\log_z xy + 1} = 1$$
.

12) Prove that
$$\log_b a \cdot \log_c b \cdot \log_a c = 1$$
.

13) If
$$\log\left(\frac{a+b}{2}\right) = \frac{1}{2}(\log a + \log b)$$
 then prove that $a^2 + b^2 = 2ab$.

14) If
$$\log\left(\frac{a+b}{2}\right) = \frac{1}{2}(\log a + \log b)$$
 then prove that $a = b$.

15) If
$$\log \left(\frac{x+y}{3} \right) = \frac{1}{2} (\log x + \log y)$$
 then prove that $x^2 + y^2 = 7xy$ or $\frac{x}{y} + \frac{y}{x} = 7$.

16) If
$$\log(x + y) = \log 3 + \frac{1}{2} \log x + \frac{1}{2} \log y$$
 then prove that $x^2 + y^2 = 7xy$.

17) If
$$\frac{4 \log 3 \times \log x}{\log 9} = \log 27$$
 then find value of x.

18) If
$$\frac{\log x \times \log 16}{\log 32} = \log 256$$
 then find value of x.

19) Solve
$$\log(x) + \log(x - 5) = \log 6$$
.

20) Solve
$$\log_2(x+5) + \log_2(x-2) = 3$$
.

21) Solve
$$\log_2(\log_3(\log_2 x)) = 1$$
.

FUNCTION

- 1) If $f(x) = x^2 1$ then f(-1) =_____.
- 2) If $f(x) = x^3 1$ then $f(2) + f(-3) = ____.$
- 3) If $f(x) = 2^x x^2$ then f(2) =_____.
- 4) If $f(x) = 2^x \log_2 x$ then f(2) =_____.
- 5) If $f(x) = \log x$ then $f(1) = _____.$
- 6) If $f(x) = \log_x 1$ then f(100) =_____.
- 7) If $f(x) = \log x$ then $f(x) f(y) = ____.$
- 8) If $f(x) = \log x$ then $f(x) + f(y) = ____.$
- **9**) If $f(x) = \log(e^x)$ then f(0) =_____.
- **10**) If $f(x) = \frac{a^x + a^{-x}}{2}$ is ______function. (Odd, even).

1) If
$$f(x) = \log x$$
 then prove that $(i)f(xy) = f(x) + f(y)$

$$(ii)f\left(\frac{x}{y}\right) = f(x) - f(y)$$

$$(iii)f(x^2) = 2f(x).$$

2) If
$$f(x) = e^x$$
 then prove that $(i)f(x).f(y) = f(x + y)$

$$(ii)\frac{f(x)}{f(y)} = f(x - y).$$

3) If
$$f(x) = a^x$$
 then prove that $(i)f(x + y) = f(x).f(y)$

$$(ii)f(x-y) = \frac{f(x)}{f(y)}.$$

4) If
$$f(x) = a^x$$
 then prove that $f(x + 1) - f(x) = (a - 1)f(x)$.

5) If
$$f(x) = 4^x$$
 then prove that $f(x + 1) - f(x) = 3f(x)$.

6) If
$$f(x) = \frac{1}{x+1}$$
 then prove that $f(x) + f\left(\frac{1}{x}\right) = 1$.

7) If
$$f(x) = \frac{ax+b}{bx+a}$$
 then prove that $f(x) \cdot f\left(\frac{1}{x}\right) = 1$.

8) If
$$f(x) = \frac{1-x}{1+x}$$
 then prove that $(i)f(x) + f\left(\frac{1}{x}\right) = 0$

$$(ii)f(x) - f\left(\frac{1}{x}\right) = 2f(x)$$

$$(iii)f(x)\cdot f(-x)=1.$$

9) If
$$f(x) = \log\left(\frac{x}{x-1}\right)$$
 then prove that $f(a+1) + f(a) = \log\left(\frac{a+1}{a-1}\right)$.

10) If
$$f(x) = \log\left(\frac{x-1}{x}\right)$$
 then prove that $f(x) + f(-x) = f(x^2)$.

11) If
$$f(x) = \frac{1+x}{1-x}$$
 then prove that $f\left(\frac{x+y}{1+xy}\right) = f(x) \cdot f(y)$.

12) If
$$f(x) = \log_2 x$$
 and $g(x) = x^4$ then find $f(g(2))$.

13) If
$$f(x) = \frac{\sin x}{\sin x + \cos x}$$
 then prove that $f(x) + f\left(\frac{\pi}{2} - x\right) = 1$.

MARKS-14

TRIGONOMETRY

TRIGONOMETRY

1)
$$\frac{4\pi}{9}$$
 radian = _____Degree.

2)
$$540^{\circ} = \underline{\qquad} radian.$$

3)
$$135^{\circ} = \underline{\qquad} radian.$$

4)
$$\cos(\pi + \theta) =$$
_____.

5)
$$tan(\pi + \theta) =$$
_____.

6)
$$\cos\frac{\pi}{6} \cdot \cos\frac{\pi}{4} \cdot \cos\frac{\pi}{3} \cdot \cos\frac{\pi}{2} = \underline{\hspace{1cm}}$$

7)
$$\cos\frac{\pi}{2} \cdot \sin\frac{3\pi}{2} \cdot \sin\frac{5\pi}{2} = \underline{\qquad}.$$

8)
$$\sin\frac{\pi}{8} + \sin\frac{9\pi}{8} =$$
_____.

9)
$$\sin 120^{\circ} =$$
_____.

10)
$$\sin 135^{\circ} =$$
 .

11)
$$sin^2 42^\circ + sin^2 48^\circ =$$
_____.

12)
$$sin^2 35^\circ + sin^2 55^\circ =$$
_____.

13)
$$sin^2 40^\circ + sin^2 50^\circ =$$
_____.

14) Period of
$$\cos(2x + 7)$$
 is _____.

15) Principal Period of
$$\cos\left(\frac{2x}{3} + 5\right)$$
 is _____

16) Period of
$$\sin(2x + 3)$$
 is _____.

17) The Period of
$$\tan 3x$$
 is _____.

18) The Period of
$$3\cos 2x$$
 is _____.

19) Period of
$$\cot \frac{x}{6}$$
 is _____.

$$21)\sin(A+B)\cdot\sin(A-B) = \underline{\hspace{1cm}}.$$

22)
$$\sin 3A =$$
_____.

23)
$$\cos 3A =$$
 _____.

24)
$$\sin 40^{\circ} + \sin 20^{\circ} =$$
_____.

25) If
$$\tan \theta = \frac{3}{4}$$
 then $\tan 2\theta = \underline{}$.

26)
$$\sin^{-1} x + \cos^{-1} x =$$
_____.

27)
$$tan^{-1} x + cot^{-1} x =$$
_____.

28)
$$tan^{-1}(\sqrt{3}) = \underline{\hspace{1cm}}$$
.

29)
$$\tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{4}{3}\right) = \underline{\hspace{1cm}}$$

30)
$$\sin^{-1}\left(\cos\frac{\pi}{3}\right) =$$
_____.

31) Value of
$$\cos \left(2 \tan^{-1} \left(\frac{1}{2}\right)\right) =$$
_____.

1) Simplify
$$\frac{\sin(\frac{\pi}{2}+\theta)}{\cos(\pi-\theta)} + \frac{\cot(\frac{3\pi}{2}-\theta)}{\tan(\pi-\theta)} + \frac{\csc(\frac{\pi}{2}-\theta)}{\sec(\pi+\theta)}$$
.

2) Prove that
$$\frac{\sin(\pi+\theta)}{\sin(2\pi-\theta)} + \frac{\tan(\frac{\pi}{2}+\theta)}{\cot(\pi-\theta)} + \frac{\cos(2\pi+\theta)}{\sin(\frac{\pi}{2}+\theta)} = 3.$$

3) Simplify
$$\frac{\sin(180^{\circ}-\theta)\cdot\cos(270^{\circ}-\theta)\cdot\csc(90^{\circ}+\theta)}{\sec(270^{\circ}+\theta)\cdot\cos(90^{\circ}+\theta)\cdot\tan(360^{\circ}+\theta)}$$

3) Simplify
$$\frac{\sin(180^{\circ}-\theta)\cdot\cos(270^{\circ}-\theta)\cdot\csc(90^{\circ}+\theta)}{\sec(270^{\circ}+\theta)\cdot\cos(90^{\circ}+\theta)\cdot\tan(360^{\circ}+\theta)}$$
4) Evaluate
$$\frac{\sin\left(\theta-\frac{\pi}{2}\right)}{\cos\left(\theta-\frac{\pi}{2}\right)} + \frac{\tan\left(\frac{\pi}{2}+\theta\right)}{\cot(\pi+\theta)} + \frac{\csc\left(\frac{\pi}{2}+\theta\right)}{\sec(\pi+\theta)}$$

5) Find the value of
$$\frac{\sin\left(\theta - \frac{\pi}{2}\right)}{\cos(\theta - \pi)} + \frac{\sin\left(\frac{\pi}{2} - \theta\right)}{\cos(\pi - \theta)} + \frac{\csc\left(\frac{\pi}{2} - \theta\right)}{\sec(\pi + \theta)}.$$

6) Evaluate
$$\frac{\sin(-\theta)\cdot\tan\left(\frac{\pi}{2}+\theta\right)\cdot\sin(\pi+\theta)\cdot\sec\left(\frac{3\pi}{2}+\theta\right)}{\sin(2\pi-\theta)\cdot\cos\left(\frac{3\pi}{2}-\theta\right)\cdot\csc(\pi-\theta)\cdot\cot(2\pi-\theta)}.$$

7) Prove that
$$\cos \frac{19\pi}{6} \cdot \sin \frac{17\pi}{6} + \sin \frac{11\pi}{6} \cdot \cos \frac{13\pi}{6} = 0$$
.

8) Prove that
$$\sin^2 \frac{\pi}{4} + \sin^2 \frac{3\pi}{4} + \sin^2 \frac{5\pi}{4} + \sin^2 \frac{7\pi}{4} = 2$$
.

9) Prove that
$$\tan \frac{\pi}{20} \cdot \tan \frac{3\pi}{20} \cdot \tan \frac{5\pi}{20} \cdot \tan \frac{7\pi}{20} \cdot \tan \frac{9\pi}{20} = 1$$
.

10) Prove that
$$\cot \frac{\pi}{20} \cdot \cot \frac{3\pi}{20} \cdot \cot \frac{5\pi}{20} \cdot \cot \frac{7\pi}{20} \cdot \cot \frac{9\pi}{20} = 1$$
.

11) Draw the graph of
$$y = sinx$$
, $0 \le x \le \pi$.

12) Draw the graph of
$$y = sinx$$
, $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$.

13) Draw the graph of
$$y = \sin 2x$$
, $0 \le x \le \pi$.

14) Draw the graph of
$$y = \sin \frac{x}{2}$$
, $0 \le x \le 2\pi$.

15) Draw the graph of
$$y = cosx$$
, $0 \le x \le \pi$.

16) Draw the graph of
$$y = cosx$$
, $0 \le x \le 2\pi$.

17) Draw the graph of
$$y = \cos \frac{x}{2}$$
, $0 \le x \le 2\pi$.

18) Prove that
$$sin(A + B) \cdot sin(A - B) = sin^2 A - sin^2 B$$
.

18) Prove that
$$\sin(A + B) \cdot \sin(A - B) = \sin^2 A - \sin^2 A$$

19) Prove that $\frac{\sin(A-B)}{\cos A \cdot \cos B} + \frac{\sin(B-C)}{\cos B \cdot \cos C} + \frac{\sin(C-A)}{\cos C \cdot \cos A} = 0$.
20) Prove that $\tan 57^\circ = \frac{\cos 12^\circ + \sin 12^\circ}{\cos 12^\circ - \sin 12^\circ}$

20) Prove that
$$\tan 57^{\circ} = \frac{\cos 12^{\circ} + \sin 12^{\circ}}{\cos 12^{\circ} - \sin 12^{\circ}}$$

21) Prove that
$$\tan 55^{\circ} = \frac{\cos 10^{\circ} + \sin 10^{\circ}}{\cos 10^{\circ} - \sin 10^{\circ}}$$

22) Prove that
$$\tan 66^\circ = \frac{\cos 21^\circ + \sin 21^\circ}{\cos 21^\circ - \sin 21^\circ}$$

23) Prove that
$$(1 + \tan 25^{\circ})(1 + \tan 20^{\circ}) = 2$$
.

24) Prove that
$$\tan 20^{\circ} + \tan 25^{\circ} + \tan 20^{\circ} \tan 25^{\circ} = 1$$
.

25) Prove that
$$\tan 50^{\circ} = \tan 40^{\circ} + 2 \tan 10^{\circ}$$
.

26) For
$$\triangle ABC$$
 prove that $\tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C$.

27) Prove that
$$\tan 70^{\circ} - \tan 50^{\circ} - \tan 20^{\circ} = \tan 70^{\circ} \cdot \tan 50^{\circ} \cdot \tan 20^{\circ}$$
.

28) Prove that
$$\tan 5A - \tan 3A - \tan 2A = \tan 5A \cdot \tan 3A \cdot \tan 2A$$
.

29) Prove that (i)
$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$$
 (ii) $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$.

30) If
$$\tan \theta = \frac{1}{2}$$
 then prove that $7 \cos 2\theta + 8 \sin 2\theta = \frac{53}{5}$.

31) Prove that
$$\frac{1+\sin 2A - \cos 2A}{1+\sin 2A + \cos 2A} = \tan A$$
.

- 32) Prove that $\frac{1+\sin\theta \cos\theta}{1+\sin\theta + \cos\theta} = \tan\frac{\theta}{2}$. 33) Prove that $\frac{\sin A + \sin 2A}{1+\cos A + \cos 2A} = \tan A$. 34) Prove that $\frac{\cos A + \cos 3A + \cos 5A}{\sin A + \sin 3A + \sin 5A} = \cot 3A$ 35) Prove that $\frac{\cos 3A + 2\cos 5A + \cos 7A}{\sin 3A + 2\sin 5A + \sin 7A} = \cot 5A$
- 36) Prove that $\frac{\sin 4A + 2\sin 5A + \sin 6A}{\cos 4A + 2\cos 5A + \cos 6A} = \tan 5A$ 37) Prove that $\frac{\sin \theta + \sin 2\theta + \sin 4\theta + \sin 5\theta}{\cos \theta + \cos 2\theta + \cos 4\theta + \cos 5\theta} = \tan 3\theta$ 38) Prove that $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$
- **39**) Prove that $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$
- **40**) Prove that $\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4}$
- **41**) Prove that $\tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right) = \tan^{-1}\left(\frac{1}{2}\right)$
- **42**) Prove that $2 \tan^{-1} \left(\frac{1}{3}\right) + \tan^{-1} \left(\frac{1}{7}\right) = \frac{\pi}{4}$
- **43**) Prove that $2 \tan^{-1} \left(\frac{2}{3}\right) = \tan^{-1} \left(\frac{12}{5}\right)$
- **44**) Prove that $\tan^{-1}\left(\frac{1}{2}\right) \tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}\left(\frac{1}{7}\right)$
- **45**) Prove that $\sin^{-1}\left(\frac{3}{5}\right) + \tan^{-1}\left(\frac{4}{3}\right) = \frac{\pi}{2}$
- **46**) Prove that $\cos^{-1}\left(\frac{2}{\sqrt{5}}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4}$

MARKS-14

VECTORS

VECTORS

- 1) If $\bar{a} = j + k i$ and $\bar{b} = 2i + j 3k$ then find $|2\bar{a} + 3\bar{b}|$.
- 2) If $\bar{a} = (1,2,1)$, $\bar{b} = (1,-1,2)$ and $\bar{c} = (3,2,-1)$ then find $|3\bar{a} + \bar{b} 2\bar{c}|$.
- 3) If $\bar{a} = (3, -1, -4)$, $\bar{b} = (-2, 4, -3)$ and $\bar{c} = (-1, 2, -5)$ then find magnitude of $\bar{a} + 2\bar{b} \bar{c}$.
- **4)** If $\bar{a} = 3i 2j + k$, $\bar{b} = 2i 4j 3k$ and $\bar{c} = -i + 2j + 2k$ then find $|2\bar{a} 3\bar{b} 5\bar{c}|$.
- 5) If $\bar{a}=i+2j-k$, $\bar{b}=3i+j+2k$ and $\bar{c}=-2i-j+5k$ then find $|2\bar{a}+3\bar{b}-\bar{c}|$..
- 6) If $\bar{a} = (3, -1, -4)$, $\bar{b} = (-2, 4, -3)$ and $\bar{c} = (-1, 2, 1)$ then find $|3\bar{a} 2\bar{b} + 4\bar{c}|$.
- 7) If $\bar{a} = 3i j 4k$, $\bar{b} = -2i + 4j 3k$ and $\bar{c} = i + 2j k$ then find the direction cosines of the vector $3\bar{a} 2\bar{b} + 4\bar{c}$.
- 8) If $\bar{a} = (-4,9,6)$, $\bar{b} = (0,7,10)$ and $\bar{c} = (-1,6,6)$ then show that $(\bar{a} \bar{c}) \cdot (\bar{b} \bar{c}) = 0$.
- **9**) If $\bar{x} = (1, -2, 3)$ and $\bar{y} = (-2, 3, 1)$ then find $(\bar{x} + \bar{y}) \cdot (\bar{x} \bar{y})$.
- **10**) If $\bar{x} = (1, -2, 3)$ and $\bar{y} = (1, 2, -2)$ then find $(\bar{x} + \bar{y}) \cdot (\bar{x} \bar{y})$.
- 11) If $\bar{a} = (1, -1, 1), \bar{b} = (2, -1, 1)$ and $\bar{c} = (1, 1, -2)$ then find $\bar{a} \cdot (\bar{b} + \bar{c})$.
- 12) If $\bar{x} = (1, -2, -3)$ and $\bar{y} = (2, p, 4)$ then for what value of p vectors \bar{x} and \bar{y} are perpendicular to each other.
- 13) For what value of m, the vectors 2i 3j + 5k and mi 6j 8k are perpendicular to each other?
- 14) For what value of p, the vectors 2i + 3j + k and pi j 3k are perpendicular to each other?
- 15) If (m, 2m, 4) and (m, -3, 2) are perpendicular to each other than find m.
- **16**) Simplify $(10i + 2j + 3k) \cdot [(i 2j + 2k) \times (3i 2j 2k)]$
- 17) If $\bar{a} = 2i j$ and $\bar{b} = i + 3j 2k$ then find $|(\bar{a} + \bar{b}) \times (\bar{a} \bar{b})|$.
- **18**) If $\bar{a} = (2, -3, -1)$ and $\bar{b} = (1, 4, -3)$ then find $(\bar{a} + \bar{b}) \times (\bar{a} \bar{b})$. Also find modulus of $(\bar{a} + \bar{b}) \times (\bar{a} \bar{b})$.
- **19**) If $\bar{x} = 3i j + 2k$ and $\bar{y} = 2i + j k$ then find the unit vector perpendicular to both \bar{x} and \bar{y} .
- **20**) Find a unit vector perpendicular to the both vectors $\bar{a} = (5,7,-2)$ and $\bar{b} = (3,1,-2)$.
- 21) Find a unit vector perpendicular to the both vectors $\bar{a} = (1, -1, 1)$ and $\bar{b} = (2, 3, -1)$.
- 22) If $\bar{a} = 2i 3j + 4k$ and $\bar{b} = i j + k$ then find the unit vector perpendicular to $\bar{a} + \bar{b}$ and $\bar{a} \bar{b}$.
- 23) If $\bar{x} = (1,1,1)$ and $\bar{y} = (2,-1,-1)$ then prove that \bar{x} is perpendicular to \bar{y} . Also find the unit vector perpendicular to both \bar{x} and \bar{y} .
- **24**) Find the angle between (1,2,4) and (3,1,2).
- **25**) Find the angle between (1,2,3) and (-2,3,1).
- **26)** Find the angle between two vectors 2i + j 3k and 2i 2j + 4k.
- 27) Show that angle between two vectors i + j k and 2i 2j + k is $\sin^{-1} \sqrt{\frac{26}{27}}$.
- **28**) Prove that angle between two vectors i + 2j and i + j + 3k is $\sin^{-1} \sqrt{\frac{46}{55}}$.

- **29**) Prove that angle between two vectors $\bar{a} = i + 2j 3k$ and $\bar{b} = 2i + j k$ is $\sin^{-1} \sqrt{\frac{35}{84}}$.
- **30)** Prove that angle between two vectors 3i + j + 2k and 2i 2j + 4k is $\sin^{-1}\left(\frac{2}{\sqrt{7}}\right)$.
- 31) The forces 3i 2j + k and -i j + 2k act on a particle and particle moves from the point (2,2,-3) to the point (-1,2,4) under the effect of these forces. Find the work done.
- **32**) A particle moves from the point (-1,2,1) to (2,3,-1) under the effect of the forces (1,2,1) and (2,-1,0) find work done.
- 33) The constant forces (1,2,3) and (3,1,1) act on a particle and particle moves to the point (5,1,2) from the point (0,1,-2) under the effect of these forces. Find the total work done.
- **34**) A particle moves from the point (0,1,-2) to (-1,3,2) under the action of the forces (1,2,3), (-1,2,3) and (-1,2,-3) find the work done.
- **35**) A particle moves from the point 3i 2j + k to the point i + 3j 4k under the effect of constant forces i j + k, i + j 3k and 4i + 5j 6k find the work done.
- **36**) The constant forces 2i + k + j, i + j + 2k and 2j 3k acting on a particle and particle moves from the point (5,3,2) to the point (1,-1,2). Find the work done.
- 37) A force $\bar{F} = 2i + j + k$ is acting at a point (-3,2,1). Find the magnitude of the moment of force about the point (2,1,2).

MARKS-14

CO-ORDINATE GEONETRY

CO-ORDINATE GEOMETRY

- 1) The distance between the points (1,3) and (0,-4) is____.
- 2) The distance between the points (1,1) and (2,-1) is____.
- 3) If A(7, -5) and B(3, -2) then $AB = ____.$
- **4)** The slope of the line 2x 5y + 3 = 0 is_____.
- 5) The slope of the line 2x + y 8 = 0 is_____.
- 6) The slope of the line 3x 2y + 8 = 0 is____.
- 7) The slope of the line $(\cos \alpha)x + (\sin \alpha)y = 5$ is .
- 8) X-intercept of the line 2x + 3y 4 = 0 is_____.
- 9) Slope of the line passing through the points (8,5) and (1,-2) is _____.
- 10) Find the equation of the line passing through the point (1,6) and (-2,5).
- 11) The Slope of st-line perpendicular to st-line 5x 7y + 3 = 0 is _____.
- 12) The Slope of line perpendicular to 2x + 3y = 7 is _____.
- 13) The angle between the st-lines x + y = 0 and x y = 0 is _____.
- **14**) The co-ordinate of midpoint of \overline{AB} , where A(1,3) and B(5,7) is
- 15) If the midpoint of line segment AB is (1,1) and B(4,3) then the co-ordinate of A =____.
- **16**) If P is the midpoint of a line segment \overline{AB} for the points A(-2,-1) and B(4,3) then P=____.
- 17) The slope of the line passing through the point (x, 6) and (-2,5) is $\frac{1}{2}$ then $x = \underline{\hspace{1cm}}$.
- **18**) The slope of line x + ky + 1 = 0 is $\frac{-2}{3}$ then k =_____.
- 19) The radius of the circle $x^2 + y^2 = 18$ is_____.
- 20) The centre of the circle $x^2 + y^2 = 25$ is_____.
- 21) Equation of circle having centre (0,0) and radius 3 is_____.
- 22) The centre of a circle $(x-2)^2 + (y+1)^2 = 9$ is_____.
- 23) Centre of a circle $x^2 + y^2 2x + 4y + 1 = 0$ is _____.
- **24**) Centre of a circle $x^2 + y^2 + 3x 4y 4 = 0$ is_____.
- **25**) The radius of a circle $x^2 + y^2 4x 6y + 4 = 0$ is _____. **26**) Midpoint of a diameter of circle $x^2 + y^2 - 2x + 6y - 15 = 0$ is _____.
- **27**) If the radius of the circle $x^2 + y^2 4x 8y + k = 0$ is $\sqrt{19}$ then $k = ____$.

- 1) Prove that the points (1,4), (3,-2) and (-3,16) are co-linear.
- 2) Show that the points (a, b + c), (b, c + a) and (c, a + b) are co-linear.
- 3) If three points (-k, 1), (k, 3) and (6,5) are co-linear then find value of k.
- 4) Find the equation of straight line passing through the points (-2,5) and (1,6).
- 5) Find the equation of line passing through the points (-1,2) and (1,-2), also find the slope.
- 6) Find the equation of line passing through the points (-2, -3) and having slope $\frac{3}{2}$.
- 7) Find the angle between two straight line $\sqrt{3}x y + 1 = 0$ and $x \sqrt{3}y + 2 = 0$.
- 8) The angle between two lines is 45°. If the slope of first line is $\frac{2}{3}$ then find slope of other line.
- 9) Show that the line 3x 2y + 5 = 0 and 2x + 3y 7 = 0 are mutually perpendicular.
- 10) For what value of k the lines 7x + y = 1 and 3x ky = -2 are perpendicular to each other?
- 11) If two lines 5x py = 3 and 2x + 3y = 4 are (i) perpendicular to each other then find value of p. (ii) parallel then find value of p.
- 12) Find the equation of line which is parallel to the line 3x + 2y + 1 = 0 and passing through the point (1, -7).
- 13) Find the equation of line which is passing through (2,4) and is perpendicular to 5x 7y + 11 = 0.
- 14) Find the equation of line perpendicular to the 3x + 4y = 0 and passing through the point (1,5).
- 15) Find the equation of line perpendicular to the y 4x + 1 = 0 and passing through the point (2,1).
- 16) Find the equation of line which is perpendicular bisector of line joining points (8, -2) and (6,4).
- 17) Find the equation of line which is perpendicular bisector of line joining points (-1,2) and (1,-2).
- 18) Find the equation of line which is perpendicular bisector of line joining points (4,5) and (-2,0).
- 19) Find the equation of a circle passing through (3,4) and centre at (4,3).
- **20**) Find the equation of the circle passing through the points (4,0), (0,4) and (0,0).
- 21) Find centre and radius of the circle $x^2 + y^2 2x + 4y 1 = 0$.
- 22) Find centre and radius of the circle $4x^2 + 4y^2 + 8x 12y 3 = 0$.
- 23) Find m if the radius of the circle $x^2 + y^2 4x 8y + m = 0$ is 4 unit.
- **24)** If the radius of the circle $2x^2 + 2y^2 4x 8y + k = 0$ is 4 unit then find k.
- 25) Find the equation of tangent and normal to the circle $x^2 + y^2 2x + 4y 20 = 0$ at the point (-2.2).
- **26**) Find the equation of tangent and normal to the circle $x^2 + y^2 6x + 10y + 21 = 0$ at the point (1, -2).
- 27) Find the equation of tangent and normal to the circle $x^2 + y^2 2y 7 = 0$ at the point (2,3).

MARKS-12

1)
$$\lim_{x \to 1} \frac{x^2 - 4x + 3}{x + 1} = \underline{\qquad}$$

2)
$$\lim_{x \to 0} \frac{x^2 + 3x + 2}{5x + 2} = \underline{\hspace{1cm}}.$$

3)
$$\lim_{x \to -2} \frac{x^3 + 2x^2 - x - 1}{x - 2} = \underline{\qquad}.$$

4)
$$\lim_{x \to 2} \frac{x^3 - 8}{x - 2} = \underline{\qquad}$$

5)
$$\lim_{x \to 2} \frac{x^4 - 16}{x - 2} =$$
_____.
6) $\lim_{x \to 0} \frac{3^x - 1}{x} =$ _____.

6)
$$\lim_{x\to 0} \frac{3^{x}-1}{x} = \underline{\hspace{1cm}}$$

7)
$$\lim_{x \to 0} \frac{5^x - 1}{x} = \underline{\hspace{1cm}}.$$

8)
$$\lim_{x\to 0} \frac{e^x-1}{x} =$$
_____.

$$9) \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = \underline{\qquad}.$$

$$10) \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = \underline{\qquad}.$$

$$11) \lim_{x \to 0} \frac{\sin x}{x} = \underline{\qquad}.$$

12)
$$\lim_{\theta \to 0} \frac{\tan \theta}{\theta} = \underline{\qquad}.$$

13)
$$\lim_{x \to 0} \frac{\sin 3x}{x} = \underline{\qquad}.$$

$$14) \lim_{\theta \to 0} \frac{\sin 5\theta}{\theta} = \underline{\qquad}.$$

15)
$$\lim_{x \to 0} \frac{\sin 2x}{x} = \underline{\qquad}$$
16)
$$\lim_{\theta \to 0} \frac{\sin n\theta}{\theta} = \underline{\qquad}$$

$$16) \lim_{\theta \to 0} \frac{\sin n\theta}{\theta} = \underline{\hspace{1cm}}$$

17)
$$\lim_{x \to 0} \frac{x}{\sin x} =$$
_____.

18)
$$\lim_{x \to 0} \frac{\sin 3x}{2x} =$$
_____.

$$19) \lim_{\theta \to 0} \frac{\theta}{\tan 3\theta} = \underline{\qquad}.$$

$$20) \lim_{x \to 0} \left(\frac{\tan 5x}{\sin 3x} \right) = \underline{\qquad}.$$

- 1) Evaluate $\lim_{x \to 1} \frac{x^2 4x + 3}{x^2 + 2x 3}$
- 2) Evaluate $\lim_{x \to 1} \frac{x^3 3x + 2}{7x^2 6x 1}$
- 3) Evaluate $\lim_{x \to 1} \frac{x^3 x^2 + x 1}{x^2 1}$
- **4)** Evaluate $\lim_{x \to 2} \frac{x^3 x^2 5x + 6}{x^2 5x + 6}$
- 5) Evaluate $\lim_{x \to -2} \frac{x^3 + 2x^2 + x + 2}{x^2 + x 2}$
- **6**) Evaluate $\lim_{x \to 2} \frac{x^3 2x^2 + x 2}{x^2 x 2}$
- 7) Evaluate $\lim_{x \to -3} \frac{x^3 + 27}{x^2 + 5x + 6}$
- 8) Evaluate $\lim_{x \to -1} \frac{2x^3 + 5x^2 + 4x + 1}{3x^3 + 5x^2 + x 1}$
- **9)** Evaluate $\lim_{x \to 2} \frac{x^4 8x^2 + 16}{x^3 3x^2 + 4}$
- **10)** Evaluate $\lim_{x\to 0} \frac{\sqrt{9+x}-3}{x}$
- 11) Evaluate $\lim_{x\to 0} \frac{\sqrt{25+x}-5}{x}$
- **12)** Evaluate $\lim_{x \to a} \frac{\sqrt{2a x} \sqrt{x}}{a x}$
- **13**) Evaluate $\lim_{x \to \infty} \frac{5x^4 + 3x^2 2x + 1}{2x^4 + 3x 1}$
- **14)** Evaluate $\lim_{n\to\infty} \frac{4n^3 7n^2 + 5n 1}{8n^3 + 7n^2 4n + 1}$
- **15)** Evaluate $\lim_{x \to \infty} \frac{x(x+1)}{x^2 + 5x + 6}$
- **16**) Evaluate $\lim_{n\to\infty} \sqrt{n^2 + n + 1} n$
- 17) Evaluate $\lim_{x \to \infty} \sqrt{x^2 + x} x$
- **18**) Evaluate $\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^3}$
- **19)** Evaluate $\lim_{x \to 2} \frac{x^4 16}{x 2}$
- **20**) Evaluate $\lim_{x\to 3} \frac{x^3 27}{\sqrt[3]{x} \sqrt[3]{3}}$
- **21**) Evaluate $\lim_{x\to 2} \frac{x\sqrt{x}-2\sqrt{2}}{x-2}$
- 22) Evaluate $\lim_{x\to 0} \frac{4^x 3^x}{x}$
- **23**) Evaluate $\lim_{x \to 0} \frac{3^{x+3}-27}{x}$

- **24)** Evaluate $\lim_{x\to 0} \frac{15^x 5^x 3^x + 1}{x^2}$
- **25**) Evaluate $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^{4x}$
- **26**) Evaluate $\lim_{x \to 0} \left(1 + \frac{2x}{3}\right)^{\frac{5}{x}}$
- 27) Evaluate $\lim_{x \to 0} \left(1 + \frac{3x}{4}\right)^{\frac{5}{x}}$
- **28**) Evaluate $\lim_{x \to \infty} \left(\frac{x+1}{x+2} \right)^x$
- **29**) Evaluate $\lim_{x\to 0} \frac{3\sin x \sin 3x}{x^3}$
- **30**) Evaluate $\lim_{x\to 0} \frac{1-\cos x}{x^2}$
- **31)** Evaluate $\lim_{x\to 0} \frac{\sin x(1-\cos x)}{x^3}$
- **32**) Evaluate $\lim_{x\to 0} \frac{\csc x \cot x}{x}$
- **33**) Evaluate $\lim_{x\to 0} \frac{a^x \sin x 1}{x}$
- **34)** Evaluate $\lim_{x\to 0} \frac{e^x + \sin x 1}{x}$
- **35**) Evaluate $\lim_{x\to 0} \frac{e^x + \sin 2x 1}{x}$