FACULTAT DE MATEMÀTIQUES I ESTADÍSTICA

Universitat Politècnica de Catalunya - BarcelonaTech

Geometría Afín y Euclídea (Q2)

Àlex Batlle Casellas

$\mathbf{\acute{I}ndex}$

1	Espacio Afín.			2	
			ciones		
	1.2	Combi	naciones afines de puntos.	3	
	1.3	Coorde	enadas	5	
	1.4	Variedades lineales			
		1.4.1	Variedades lineales y combinaciones de puntos	9	
		1.4.2	Ecuaciones de variedades lineales	10	
		1.4.3	Suma, intersección y fórmula de Grassmann	12	
2	Afinidades.				
	2.1	2.1 Definición y propiedades			

1 Espacio Afín.

1.1 Definiciones.

Definición:

Sea E un \mathbb{K} -e.v. Un **espacio afín** asociado a E es una triple $\mathbb{A}=(A,E,\delta)$ donde A es un conjunto y δ es una aplicación

$$\begin{split} \delta &: A \times A \to E \\ (p,q) &\mapsto \delta(p,q). \end{split}$$

que cumple con las siguientes propiedades:

- 1. $\forall p_1, p_2, p_3 \in A, \ \delta(p_1, p_2) + \delta(p_2, p_3) = \delta(p_1, p_3).$
- 2. $\forall p \in A$, la siguiente aplicación es biyectiva:

$$\delta_p : A \to E$$

$$q \mapsto \delta_p(q) := \delta(p, q).$$

A los elementos de A les llamaremos **puntos**. Usaremos la siguiente notación:

- 1. $\dim A := \dim E$.
- 2. Si $\vec{u} = \delta(p, q)$, p es el **origen** de \vec{u} y q es su **extremo**.
- 3. $\delta(p,q) := \vec{pq} = q p$.
- 4. Usando la anterior notación, la propiedad (1): $(p_2 p_1) + (p_3 p_2) = (p_3 p_1)$.
- 5. Si $\vec{u} = p\vec{q} = q p \implies q = p + \vec{u}$.

Ejemplos:

1. $\mathbb{A} = ((0, \infty), \mathbb{R}, \delta)$:

$$\delta: A \times A \to E$$

$$(p,q) \mapsto \delta(p,q) := \ln q - \ln p.$$

Comprobemos las propiedades:

- Propiedad 1: $\delta(p_1, p_2) + \delta(p_2, p_3) = (\ln p_2 \ln p_1) + (\ln p_2 \ln p_3) = \ln p_3 \ln p_1 = \delta(p_1, p_3)$.
- Propiedad 2: Si fijamos p,

$$\delta_p : A \to E$$

$$q \mapsto \delta_p(q) := \ln q - \ln p$$

es biyectiva. \square

2. $\mathbb{A}=(\mathbb{R}^2,\mathbb{R}^2,\delta),$ y δ es la aplicación tal que si $p=(x_1,y_1),q=(x_2,y_2),$ entonces

$$\delta: A \times A \to E$$
$$(p,q) \mapsto \delta(p,q) := (x_2 - x_1, y_2 - y_1).$$

Definición:

 $\mathbb{A}^n_{\mathbb{K}}$ es el espacio afín definido como $\mathbb{A}=(\mathbb{K}^n,\mathbb{K}^n,\delta)$, y δ es la aplicación de **resta de coordenadas**.

Propiedades:

Sea A un espacio afín:

- 1. $\delta(p,q) = \vec{0} \iff q = p$.
- 2. $\delta(p,q) = -\delta(q,p)$.
- 3. $\delta(p_1, p_2) = \delta(p_3, p_4) \iff \delta(p_1, p_3) = \delta(p_2, p_4)$. (regla del paralelogramo)

Demostración:

- 1. (a) \Leftarrow) Cojamos $\vec{u} \in E$. Recordemos que δ_p es biyectiva para todo $p \in A$ fijado. Entonces, $\exists q \in A$ tal que $\vec{u} = \delta(p,q)$. Entonces, $\delta(p,p) + \vec{u} = \delta(p,p) + \delta(p,q) = \delta(p,q) = \vec{u} \implies \delta(p,p) = \vec{0}$.
 - (b) \Rightarrow) Por hipótesis, $\delta(p,q) = \vec{0}$, y como ya hemos visto, $\delta(p,p) = \vec{0}$. Como δ_p es biyectiva, $p = q.\square$
- 2. $\delta(p,q) + \delta(q,p) = \delta(p,p) = \vec{0} \implies \delta(p,q) = -\delta(q,p).\Box$
- 3. Por simetría, solo hace falta demostrar una dirección. Por tanto, demostremos \Rightarrow , con hipótesis $\delta(p_1, p_2) = \delta(p_3, p_4)$:

$$\delta(p_1, p_3) = \delta(p_1, p_2) + \delta(p_2, p_3) = \delta(p_3, p_4) + \delta(p_2, p_3) = \delta(p_2, p_4).\square$$

1.2 Combinaciones afines de puntos.

Observación: Hasta ahora, las "operaciones" definidas son:

- 1. Combinaciones lineales de vectores en E.
- 2. $p, q \in A \implies \delta(p, q) = q p \in E$.
- 3. $p \in A, \vec{u} \in E \implies p + \vec{u} \in A$.

En general, hacer "combinaciones lineales" de una colección de puntos $p_1, \ldots, p_r \in A$, $\alpha_1, \ldots, \alpha_r \in \mathbb{K}$,

$$\alpha_1 p_1 + \ldots + \alpha_r p_r = \sum_{i=1}^r \alpha_i p_i$$

no tiene sentido, pero hay dos casos en los que sí lo tiene:

1. $\sum \alpha_i = 1$. **Definición**:

Sean $p_1, \ldots, p_r \in A, \alpha_1, \ldots, \alpha_r \in \mathbb{K}$ tales que $\sum_{i=1}^r \alpha_i = 1$. Entonces, por definición,

$$\sum_{i=1}^{r} \alpha_i p_i := \bar{p} + \sum_{i=1}^{r} \alpha_i (p_i - \bar{p}) \in A, \text{ cogiendo } \bar{p} \in A \text{ como punto auxiliar}.$$

Proposición:

El proceso anterior no depende del punto auxiliar \bar{p} que escojamos.

Demostración:

Sean $\bar{p}, \bar{\bar{p}} \in A$ puntos cualesquiera de A. Entonces,

$$\bar{p} + \sum \alpha_{i}(p_{i} - \bar{p}) = \bar{\bar{p}} + \sum \alpha_{i}(p_{i} - \bar{\bar{p}})$$

$$\iff (\bar{p} - \bar{\bar{p}}) + \sum \alpha_{i}(p_{i} - \bar{p})$$

$$= (\bar{\bar{p}} - \bar{\bar{p}}) + \sum \alpha_{i}(p_{i} - \bar{p})$$

$$\iff (\bar{p} - \bar{\bar{p}}) + \sum \alpha_{i}[(p_{i} - \bar{p}) - (p_{i} - \bar{\bar{p}})]$$

$$= \bar{0}$$

$$\iff (\bar{p} - \bar{\bar{p}}) + \sum \alpha_{i}[(p_{i} - \bar{p}) + (\bar{\bar{p}} - p_{i})]$$

$$= \bar{0}$$

$$\iff (\bar{p} - \bar{\bar{p}}) + \sum \alpha_{i}[(\bar{\bar{p}} - \bar{p})]$$

$$= \bar{0}$$

$$\iff (\bar{p} - \bar{\bar{p}}) + (\bar{\bar{p}} - \bar{p})$$

$$= \bar{0}$$

$$\iff \delta(\bar{p}, \bar{p})$$

$$= \bar{0}.\Box$$

Definición:

Dada una colección de puntos $p_1, \ldots, p_m \in A$, el baricentro de todos ellos es el punto b resultante de la combinación afín siguiente:

$$b = \frac{1}{m}p_1 + \frac{1}{m}p_2 + \ldots + \frac{1}{m}p_m = \sum_{i=1}^m \frac{1}{m}p_i \in A.$$

2. $\sum \alpha_i = 0$. **Definición**:

 $\overline{\text{Sean } p_1, \dots, p_r \in A, \, \alpha_1, \dots, \alpha_r \in \mathbb{K}}$ tales que $\sum_{i=1}^r \alpha_i = 0$. Entonces, por definición,

$$\sum_{i=1}^{r} \alpha_i p_i := \sum_{i=1}^{r} \alpha_i (p_i - \bar{p}) \in E, \text{ cogiendo } \bar{p} \in A \text{ como punto auxiliar.}$$

Proposición:

El proceso anterior no depende del punto auxiliar \bar{p} que escojamos.

Demostración:

Sean $\bar{p}, \bar{\bar{p}} \in A$ puntos cualesquiera de A. Entonces,

$$\sum \alpha_i(p_i - \bar{p}) = \sum_{\iff} \alpha_i(p_i - \bar{p}) \tag{2}$$

Observación: Combinaciones de puntos.

- 1. $\mathbb{A}^n_{\mathbb{K}}$. En esta situación, sean $p_1 = (a_1, \ldots, a_n)$, $p_2 = (b_1, \ldots, b_n)$. Entonces, $\alpha_1 p_1 + \alpha_2 p_2 = (\alpha_1 a_1 + \alpha_2 b_1, \ldots, \alpha_1 a_n + \alpha_2 b_n)$ (si $\alpha_1 + \alpha_2 = 0$ o $\alpha_1 + \alpha_2 = 1$).
- 2. Ejemplo: $p_1 \frac{3}{2}p_2 + \frac{1}{2}p_3 = (p_1 p_2) + \frac{1}{2}(p_3 p_2).$

1.3 Coordenadas.

Definición:

Sea $\mathbb A$ un espacio afín de dim $A=n<\infty$ asociado a un $\mathbb K$ -e.v. E.

1. Llamaremos sistema de referencia en \mathbb{A} a

$$\mathcal{R} = \{p; v_1, \dots, v_n\}, \text{ donde } p \in A, \mathcal{B} = \{v_1, \dots, v_n\} \text{ base de E.}$$

2. Dado $q \in A$, llamaremos coordenadas de q en \mathcal{R} a $q_{\mathcal{R}} = (\vec{pq})_{\mathcal{B}}$.

Observación:

1. Como δ_p es biyectiva y

$$E \to \mathbb{K}^n$$
$$v \mapsto v_B$$

también lo es, la asignación de coordenadas a un punto es biyectiva.

2.
$$q_R = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \iff q - p = \sum_{i=1}^n x_i v_i.$$

Ejemplos:

1.
$$\mathbb{A}^{2}_{\mathbb{R}}$$
.
 $\mathcal{R} = \{p = (1,3); \ v_{1} = (1,1), v_{2} = (2,1)\}, \ q = (4,5)$. Entonces, $q - p = (4,5) - (1,3) = (3,2) = v_{1} + v_{2} \implies q_{\mathcal{R}} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

2.
$$\mathcal{R} = \{(0,0); e_1 = (1,0), e_2 = (0,1)\}. q = (4,5) \implies q_{\mathcal{R}} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}.$$

Definición:

En $\mathbb{A}^n_{\mathbb{K}}$ llamaremos referencia ordinaria a

$$\mathcal{R}_{ord} := \{0; \ \mathcal{B}_{canónica}\}.$$

Observación:
$$q = (q_1, \dots, q_n) \in \mathbb{K}^n, \ q_{\text{ord}} = \begin{pmatrix} q_1 \\ \vdots \\ q_n \end{pmatrix}.$$

Proposición:

Sea \mathbb{A} un espacio afín de dimensión finita, y sea la referencia $\mathcal{R} = \{p; B\}$, con B una base de E. Entonces,

1.
$$p_1, \ldots, p_r \in A$$
, $\alpha_1, \ldots, \alpha_r \in \mathbb{K}$: $\sum \alpha_i = 1$. Entonces, $(\alpha_1 p_1 + \ldots + \alpha_r p_r)_{\mathcal{R}} = \alpha_1(p_1)_{\mathcal{R}} + \ldots + \alpha_r(p_r)_{\mathcal{R}}$.

2.
$$p_1, \ldots, p_r \in A$$
, $\alpha_1, \ldots, \alpha_r \in \mathbb{K}$: $\sum \alpha_i = 0$. Entonces, $(\alpha_1 p_1 + \ldots + \alpha_r p_r)_B = \alpha_1(p_1)_{\mathcal{R}} + \ldots + \alpha_r(p_r)_{\mathcal{R}}$.

3. Caso particular. $(p_2 - p_1)_B = (p_2)_{\mathcal{R}} - (p_1)_{\mathcal{R}}$

Demostración:

Proposición:

Cambio de sistema de referencia. Sea \mathbb{A} un espacio afín de dimensión finita n. Sean $\mathcal{R}_1 = \{p_1; v_1, \dots, v_n\}, \mathcal{R}_2 = \{p_2; w_1, \dots, w_n\}$ dos sistemas de referencia. Sean

$$(p_2)_{\mathcal{R}_1} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}, \text{ y } S = M_{B_2 \to B_1} = \begin{pmatrix} | & | & | \\ (w_1)_{B_1} & \cdots & (w_n)_{B_1} \\ | & | & | \end{pmatrix}. \text{ Sea } q \in A \text{ tal que } q_{\mathcal{R}_1} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, q_{\mathcal{R}_2} = \begin{pmatrix} \bar{x_1} \\ \vdots \\ \bar{x_n} \end{pmatrix}. \text{ Entonces,}$$

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = S \begin{pmatrix} \bar{x_1} \\ \vdots \\ \bar{x_n} \end{pmatrix} + \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}, \quad q_{\mathcal{R}_1} = Sq_{\mathcal{R}_2} + (p_2)_{\mathcal{R}_2}.$$

Demostración:

$$q_{\mathcal{R}_1} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
. $q - p_1 = (q - p_2) + (p_2 - p_1)$. Entonces,

$$(q-p_1)_{B_1} = (q-p_2)_{B_1} + (p_2-p_1)_{B_1} \implies \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = q_{\mathcal{R}_1} = S(q-p_2)_{B_2} + (p_2)_{\mathcal{R}_1} = S\begin{pmatrix} \bar{x_1} \\ \vdots \\ \bar{x_n} \end{pmatrix} + \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}. \square$$

Observación: Fórmula matricial de cambio de referencia.

$$\begin{pmatrix} q_{\mathcal{R}_1} \\ 1 \end{pmatrix} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \\ 1 \end{pmatrix} = \begin{pmatrix} S \mid (p_2)_{\mathcal{R}_1} \\ 0 \mid 1 \end{pmatrix} \begin{pmatrix} \bar{x_1} \\ \vdots \\ \bar{x_n} \\ 1 \end{pmatrix}, \quad \tilde{S} = \begin{pmatrix} S \mid (p_2)_{\mathcal{R}_1} \\ 0 \mid 1 \end{pmatrix} \in \mathcal{M}_{n+1}(\mathbb{K}).$$

También definiremos $\tilde{S} := M_{\mathcal{R}_2 \to \mathcal{R}_1}$. Esta matriz cumple det $\tilde{S} = \det S$.

Definición:

Coordenadas ampliadas. $\mathcal{R} = \{p; B\}, q \in A, v \in B,$

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = q_{\mathcal{R}} \longmapsto q_{\mathcal{R}} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} \alpha 1 \\ \vdots \\ \alpha_n \end{pmatrix} = v_B \longmapsto v_B = \begin{pmatrix} \alpha 1 \\ \vdots \\ \alpha_n \\ 0 \end{pmatrix}.$$

Llamaremos a los elementos de la derecha las **coordenadas ampliadas** de un punto y un vector.

Observación:

- 1. $\mathcal{R}_1 \stackrel{\tilde{S}}{\leftarrow} \mathcal{R}_2 \stackrel{\tilde{T}}{\leftarrow} \mathcal{R}_3$, entonces $M_{\mathcal{R}_3 \to \mathcal{R}_1} = \tilde{S}\tilde{T}$.
- 2. Otras ventajas de las coordenadas ampliadas: ecuaciones de variedades lineales, afinidades, cuádricas.
- 3. Las coordenadas ampliadas son coherentes con las combinaciones afines de puntos. Si $p_1, \ldots, p_m \in A, \alpha_1, \ldots, \alpha_m \in \mathbb{K}$, entonces

$$(\alpha_1 p_1 + \ldots + \alpha_m p_m)_{\mathcal{R}} = \alpha_1(p_1)_{\mathcal{R}} + \ldots + \alpha_m(p_m)_{\mathcal{R}} = \alpha_1 \begin{pmatrix} | \\ | \\ 1 \end{pmatrix} + \ldots + \alpha_m \begin{pmatrix} | \\ | \\ 1 \end{pmatrix} = \begin{pmatrix} | \\ | \\ | \\ \sum \alpha_i \end{pmatrix} = \begin{pmatrix} | \\ | \\ 1 \end{pmatrix}.$$

1.4 Variedades lineales.

Definición:

Sea $\mathbb A$ un espacio afín asociado a un $\mathbb K$ -e.v. E. Entonces, una **variedad lineal** de $\mathbb A$ es un subconjunto:

$$V := p + F = \{p + \vec{u} | \vec{u} \in F\}, \ p \in A, \ F \subseteq E \text{ subespacio vectorial.}$$

Definimos $\dim V := \dim F$.

Ejemplos:

- 1. Variedades lineales de dimensión 0: **puntos**, $\{p\}$.
- 2. Variedades lineales de dimensión 1: rectas, $\{p\} + [\vec{u}]$.
- 3. Variedades lineales de dimensión 2: **planos**, $\{p\} + [\vec{u}, \vec{v}]$.
- 4. Variedades lineales de dimensión n-1: hiperplanos.
- 5. A = p + E.

Definición:

Sea \mathbb{A} un espacio afín. Sean V y W variedades lineales, V = p + F, W = q + G. Entonces, definimos las siguientes **posiciones relativas** de dos variedades lineales:

- 1. V y W son paralelas $\iff F \subseteq G \circ G \subseteq F$.
- 2. $V \subseteq W$: V está **incluída** en W.
- 3. $V \cap W \neq \emptyset \implies V \vee W$ se **cortan**.
- 4. V y W se **cruzan** $\iff V \not \mid W \land V \cap W = \emptyset$.

Proposición:

Sean V = p + F, W = q + G variedades lineales. Entonces,

- 1. $V \subseteq W \iff F \subseteq G \land p-q \in G$. En particular, $V = W \iff F = G \land p-q \in F$.
- 2. $V \subseteq W \implies \dim V \le \dim W$.
- 3. $V \subseteq W \wedge \dim V = \dim W \implies V = W$.

Demostración:

1. \Rightarrow) Si $V \subseteq W$, $p+F \subseteq q+G$. Veamos que $p-q \in G$:

$$p \in V \subseteq W = q + G \implies \exists \vec{v} \in G : p = q + \vec{v} \implies p - q = \vec{v} \in G.$$

Veamos ahora que $F \subseteq G$: sea $\vec{u} \in F \implies (p + \vec{u}) \in V \subseteq W \implies \exists \vec{w} \in G : (p + \vec{u}) = (q + \vec{w}) \implies \vec{u} = (q - p) + \vec{w} = -(p - q)(\in G) + \vec{w}(\in G) \implies \vec{u} \in G \implies F \subseteq G.$

- $\iff \text{Sea } \bar{p} \in V = p + F \implies (\vec{u} \in F) \bar{p} = p + \vec{u} = q + (p q) (\in G) + \vec{u} (\in F \subseteq G) \in q + G = W. \square$
- 2. $V \subseteq W \implies F \subseteq G \implies \dim F \le \dim G \implies \dim V \le \dim W.\Box$
- 3. $V \subseteq W \wedge \dim V = \dim W \implies F \subseteq G \wedge \dim F = \dim G \implies F = G$. Como $V \subseteq W \implies p-q \in F \implies V = W.\square$.

Proposición:

Sean V = p + F, W = q + G variedades lineales. Entonces, $V \cap W \neq \emptyset \iff p - q \in F + G$. **Demostración**:

$$\Rightarrow) \text{ Sea } a \in V \cap W \implies \begin{cases} a \in V \implies V = a + F \implies a = p + \vec{u} (\in F) \\ a \in W \implies W = a + G \implies a = q + \vec{v} (\in G) \end{cases} \text{ Entonces,}$$

$$p - q = a - \vec{u} - (a - \vec{v}) = \vec{v} - \vec{u} \in F + G.\square$$

$$\iff \text{Si } p-q=\vec{w_1}(\in F)+\vec{w_2}(\in G) \implies (V=p+F\ni)p-\vec{w_1}=q+\vec{w_2}(\in q+G=W) \implies \exists p\in A: p\in W \land p\in V \implies V\cap W\neq\emptyset.\square$$

1.4.1 Variedades lineales y combinaciones de puntos.

Proposición:

Sea V = p + F una variedad lineal de A. Sean $p_1, \ldots, p_m \in V$. Entonces $\forall \alpha_1, \ldots, \alpha_m \in \mathbb{K}$: $\sum \alpha_i = 1, \ \alpha_1 p_1 + \ldots + \alpha_m p_m \in V$.

Demostración:

 $\forall i \ p_i \in V = p + F \implies \forall i \exists \vec{u_i} \in F : p_i = p + \vec{u_i}$. Entonces, $\alpha_1 p_1 + \ldots + \alpha_m p_m = p + \sum \alpha_i (p_i - p) = p + \sum \alpha_i \vec{u_i} (\in F) \in V.\square$

Definición:

Sea \mathbb{A} un espacio afín. Sea $S \subseteq A$ un subconjunto de puntos no vacío. Entonces, la variedad lineal más pequeña que contiene a S se denota $\langle S \rangle$.

Proposición:

 $\overline{\text{Sea } S = \{p_1, \dots, p_m\}}$. Entonces,

$$\langle S \rangle = \{ \text{combinaciones lineales de } S \} = p_1 + [p_2 - p_1, \dots, p_m - p_1]$$

Demostración:

 $W = \{\text{c.l. de } \{p_1, \dots, p_m\}\} = \{\sum \alpha_i p_i | \sum \alpha_i = 1\} = \{p_1 + \alpha_2 (p_2 - p_1) + \dots + \alpha_m (p_m - p_1) | \sum \alpha_i = 1\} = p_1 + [p_2 - p_1, p_3 - p_1, \dots, p_m - p_1]. \text{ Por tanto, } W \text{ es una variedad lineal.}$ Por construcción, $S = \{p_1, \dots, p_m\} \subseteq W.$ Sea V una variedad lineal tal que $S \subseteq V$. Por la proposición anterior, $W = \{\text{c.l. de } S\} \subseteq V \implies W \subseteq V \implies W = \langle S \rangle. \square$

Definición:

 $\{p_1, \ldots, p_m\}, m \geq 2 \text{ son linealmente independientes} \iff \{p_2 - p_1, \ldots, p_m - p_1\} \text{ son vectores l.i. Si } m < 2, \text{ el conjunto siempre es l.i.}$

Observación: $\{p_1, \ldots, p_m\}$ l.i. \iff (Fijado i_0) $\{p_1-p_{i_0}, \ldots, p_{i_0-1}-p_{i_0}, p_{i_0+1}-p_{i_0}, \ldots, p_m-p_{i_0}\}$ es un conjunto de vectores l.i.

Corolario:

Si p_1, \ldots, p_m son l.i., dim $\langle p_1, \ldots, p_m \rangle = m - 1$. Ejemplos:

 $\overline{\mathbb{A}^n_\mathbb{K}}$:

- 1. $\langle p_1 \rangle = \{p_1\}$, variedad lineal de dimensión 0.
- 2. 2 puntos p_1, p_2 son l.i. $\iff p_1 \neq p_2$. $\langle p_1, p_2 \rangle$, variedad lineal de dimensión 1.
- 3. 3 puntos p_1, p_2, p_3 l.i. $\implies \langle p_1, p_2, p_3 \rangle$ plano, variedad lineal de dimensión 2.

Ecuaciones de variedades lineales.

Sea \mathbb{A} un espacio afín de dim $\mathbb{A}=n$. Sea $\mathcal{R}=\{p;B=\{u_1,\ldots,u_n\}\}$ un sistema de referencia en A. Sea $V = q + F = q + [v_1, ..., v_r]$, dim $V = r, \{v_1, ..., v_r\}$ base de F.

(A) Ecuaciones paramétricas de V. $\bar{q} \in V \iff \bar{q} = q + \alpha_1 v_1 + \ldots + \alpha_r v_r, \alpha_i \in \mathbb{K} \iff$

$$q_{\mathcal{R}} = q_{\mathcal{R}} + \alpha_1(v_1)_B + \ldots + \alpha_r(v_r)_B = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 (ecuaciones paramétricas de V) (3)

Ejemplos:

$$\overline{\mathbb{A}^3_{\mathbb{K}}: V = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}} + \left[\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \right] \cdot \mathcal{R} = \mathcal{R}_{\text{ord}}. \text{ Entonces, } \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \alpha_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}.$$

Haciendo el proceso anterior.

$$\bar{q}_{\mathcal{R}} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in V \iff \exists \alpha_1, \alpha_2 : \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \alpha_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \iff \begin{pmatrix} x_1 - 1 \\ x_2 - 2 \\ x_3 - 3 \end{pmatrix} \text{ es c.l. de } \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \iff \text{rg} \begin{pmatrix} x_1 - 1 & 1 & 1 \\ x_2 - 2 & 1 & 2 \\ x_3 - 3 & 1 & 0 \end{pmatrix} = 2 \iff Ax_1 + Bx_2 + Cx_3 + D = 0.$$

(B) Ecuaciones cartesianas/implícitas de
$$V$$
. $V = q + [v_1, \dots, v_r]$. $\bar{q} \in A$, $\bar{q} = \begin{pmatrix} x_1 \\ \vdots \\ x \end{pmatrix}$

(B) Ecuaciones cartesianas/implícitas de
$$V$$
. $V = q + [v_1, \dots, v_r]$. $\bar{q} \in A$, $\bar{q} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in V \iff \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = q_{\mathcal{R}} + \alpha_1(v_1)_B + \dots + \alpha_r(v_r)_B \text{ para algunas } \alpha_i \in \mathbb{K} \iff \begin{pmatrix} x_1 - a_1 \\ \vdots \\ x_n - a_n \end{pmatrix} \in [(v_1)_B, \dots, (v_r)_B] \iff \operatorname{rg} \begin{pmatrix} x_1 - a_1 & | & | \\ \vdots & (v_1)_B & \dots & (v_r)_B \\ x_n - a_n & | & | & | \end{pmatrix} = r \iff \operatorname{Sus menores de orden } r + 1$

$$[(v_1)_B, \dots, (v_r)_B] \iff \operatorname{rg} \begin{pmatrix} x_1 - a_1 & | & | \\ \vdots & (v_1)_B & \dots & (v_r)_B \\ x_n - a_n & | & | & | \end{pmatrix} = r \iff \operatorname{Sus\ menores\ de\ orden} r +$$

1 son cero:

$$\begin{cases} \dots \dots = 0 \\ \dots = 0 \\ \vdots \\ \dots = 0 \end{cases}$$
 sistema lineal.

Observación: Método de "orlar" un menor. $A \in \mathcal{M}_{m,n}(\mathbb{K}), \Delta_r = \det \begin{pmatrix} \cdots \\ \cdots \\ \cdots \end{pmatrix} \neq 0$. rg $A = r \iff$ todos los menores que contienen a Δ_r de orden r+1 son cero. $V = p+F = p+[v_1,\ldots,v_r], \ r = \dim F = \dim V. \ q \in V \iff q_{\mathcal{R}} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}; \ p_{\mathcal{R}} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \cdot \operatorname{rg} \begin{pmatrix} x_1-a_1 & | & | & | \\ \vdots & (v_1)_B & \cdots & (v_r)_B \\ x_n-a_n & | & | & | & | \end{pmatrix} = r.$

 \implies Los menores $(r+1) \times (r+1)$ que contienen a uno de orden r no nulo fijado deben ser cero \implies En total, n-r ecuaciones.

Proposición:

Sea $\mathbb A$ un espacio afín de dimensión n. Sea $\mathcal R$ un sistema de referencia. Sea $V\subseteq A$. Entonces, V es una variedad lineal de dimensión $r\iff \operatorname{Los}$ puntos $q\in V$ (sus coorde-

nadas $q_{\mathcal{R}}$) verifican un sistema de ecuaciones lineales compatible, $A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_r \end{pmatrix}$, con rg A = n - r.

Demostración:

$$\Leftarrow) \ A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_k \end{pmatrix} \text{ s.l. compatible, } k = \operatorname{rg} A \implies \text{ sus soluciones se escriben } \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} + \operatorname{Nuc} A = p + F \text{ variedad lineal. } \dim(p + F) = \dim F = \dim \operatorname{Nuc} A = n - \operatorname{rg} A = n - \operatorname{rg} A = n - k.$$

$$\Rightarrow) \ \underline{\text{Visto.}} \ V = p + F, \dim F = r \ \Longrightarrow \ \{\text{SEL compatible}\} \rightarrow n - r \ \text{ecuaciones.} \square$$

Definición

$$\overline{A\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \to \text{ecuaciones implícitas (o cartesianas) de } V.$$

Ejemplos:

1. $\mathbb{A}^3_{\mathbb{K}}$, \mathcal{R}_{ord} .

$$V = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 3 \end{pmatrix} + \begin{bmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix} \end{bmatrix} \text{ (plano). rg} \begin{pmatrix} x_1 - 1 & 1 & 1 \\ x_2 - 2 & 2 & 2 \\ x_3 - 1 & 3 & 1 \\ x_4 - 3 & 4 & 1 \end{pmatrix} = 2 \iff \begin{cases} \begin{vmatrix} x_1 - 1 & 1 & 1 \\ x_3 - 1 & 3 & 1 \\ x_4 - 3 & 4 & 1 \end{vmatrix} = 0. \\ \begin{vmatrix} x_2 - 2 & 2 & 2 \\ x_3 - 1 & 3 & 1 \\ x_4 - 3 & 4 & 1 \end{vmatrix} = 0. \\ \begin{vmatrix} x_1 - 1 & 1 & 1 \\ x_2 - 2 & 2 & 2 \\ x_3 - 1 & 3 & 1 \\ x_4 - 3 & 4 & 1 \end{vmatrix} = 0.$$

 $2. \mathbb{A}^2_{\mathbb{K}}.$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 5. \\ 2x_1 + 3x_2 - x_3 + x_4 = 1. \end{cases}$$
 Esto se puede escribir:
$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 5 \\ 1 \end{pmatrix}.$$

Observación:

- 1.
- 2.
- 3.
- 4.
- 5.
- 1.4.3 Suma, intersección y fórmula de Grassmann.

2 Afinidades.

2.1 Definición y propiedades.

Definición:

Sean \mathbb{A}, \mathbb{A}' espacios afines con espacios vectoriales asociados E, E' (sobre el mismo cuerpo \mathbb{K}). Sea $f: \mathbb{A} \to \mathbb{A}'$ una función. Entonces, f es una **afinidad** $\iff \exists p \in \mathbb{A}: \tilde{f}_p(\vec{u}) := f(p+\vec{u}) - f(p) \ (\vec{u} \in E)$ es una aplicación lineal de E en E'.

Observación:

- 1. $A \xrightarrow{f} A'$. Entonces, $E \xrightarrow{\delta_p^{-1}} A \xrightarrow{f} A' \xrightarrow{\delta'_{f(p)}} E'$, y en total, $E \xrightarrow{\tilde{f}_p} E'$.
- 2. Si \tilde{f}_p es lineal $\implies \forall q \in \mathbb{A}$ $\tilde{f}_q = \tilde{f}_p$. Veámoslo: sea $\vec{u} \in E$, $\tilde{f}_q(u) = f(q+u) f(q) = f(p+(q-p+u)) f(p+(q-p)) = (f(p+(q-p+u)) f(p)) (f(p+(q-p)) f(p)) = \tilde{f}_p((q-p) + u) \tilde{f}_p(q-p) = \tilde{f}_p(u) + \tilde{f}_p(q-p) \tilde{f}_p(q-p) = \tilde{f}_p(u)$.
- 3. Entonces, $f(p+u) f(p) = \tilde{f}(u)(\text{def}) \leftrightarrow f(p+u) = f(p) + \tilde{f}(u) \leftrightarrow f(q) = f(p) + \tilde{f}(q-p)$.

Proposición:

- 1. f, g afinidades $\implies g \circ f$ es una afinidad y $g \circ f = \tilde{g} \circ \tilde{f}$.
- 2. Sea $f: \mathbb{A} \to \mathbb{A}'$ una afinidad. Entonces,
 - f inyectiva $\iff \tilde{f}$ inyectiva (y entonces $\dim \mathbb{A} \leq \dim \mathbb{A}'$).
 - f exhaustiva $\iff \tilde{f}$ exhaustiva (y entonces $\dim \mathbb{A} \ge \dim \mathbb{A}'$).
 - f biyectiva $\iff \tilde{f}$ biyectiva (y entonces $\dim \mathbb{A} = \dim \mathbb{A}'$).
- 3. Si dim $\mathbb{A} = \dim \mathbb{A}' < \infty \implies (f \text{ inyectiva} \iff f \text{ exhaustiva} \iff f \text{ biyectiva}).$
- 4. Si f biyectiva $\implies f^{-1}$ es una afinidad y $\tilde{f^{-1}} = \tilde{f}^{-1}$.

Demostración:

- 1.
- 2.
- 3.
- 4.

Proposición:

1. Sean $f, g: \mathbb{A} \to \mathbb{A}'$ afinidades. Entonces,

$$f = g \iff \exists p \in \mathbb{A} : f(p) = g(p) \text{ y } \tilde{f} = \tilde{g}.$$

- 2. Sean $p \in \mathbb{A}, q \in \mathbb{A}$ y $\varphi : E \to E'$ una aplicación lineal. Entonces, existe una única afinidad tal que $f(p) = q, \tilde{f} = \varphi$.
- 3. Sea \mathbb{A} tal que dim $\mathbb{A} = n$. Si p_0, p_1, \ldots, p_n son puntos independientes de \mathbb{A} , entonces dados q_0, q_1, \ldots, q_n puntos cualesquiera de \mathbb{A}' existe una única afinidad $f: \mathbb{A} \to \mathbb{A}'$ tal que $f(p_i) = q_i$.

Demostración:

Definición:

Sean \mathbb{A} , \mathbb{A}' espacios afines. Entonces,

$$\mathbb{A} \cong \mathbb{A}' \iff \exists f : \mathbb{A} \to \mathbb{A}' \text{ afinidad biyectiva.}$$

Corolario:

Sean A, A' espacios afines de dimensión finita. Entonces,

$$\mathbb{A} \cong \mathbb{A}' \iff \dim \mathbb{A} = \dim \mathbb{A}'.$$

En particular, si $n = \dim \mathbb{A}$, $\mathbb{A} \cong \mathbb{A}^n_{\mathbb{K}}$.