

EL901563767US

728928 v1

IN SITU PLASMA PROCESS TO REMOVE FLUORINE RESIDUES FROM THE INTERIOR SURFACES OF A CVD REACTOR

William R. Entley

5

John G. Langan

Randy Hall

BACKGROUND

In the fabrication of semiconductor integrated circuits on silicon wafers, chemical vapor deposition (CVD) or plasma-enhanced chemical vapor deposition (PECVD) forms dielectric or metallic films on the wafers at relatively low temperatures, such as 400°C. During the deposition process, the films are deposited not only on the wafers but also on the interior surface of CVD or PECVD reactor/chamber, in which the deposition process occurs. The deposition residue on the interior surface of the chamber can be a contamination source that may reduce the yield of subsequent deposition processes in the reactor. Thus, the residue is periodically removed.

The periodic removal of the deposition residue is performed by a chamber cleaning that uses a fluorine-based plasma. The reaction between the plasma and the deposition residue forms volatile products, which are evacuated from the chamber. For example, the fluorine-based chamber cleaning may be carried out after every fifty wafers have been processed. However, the fluorine-based plasma leaves sorbable contaminants and residues on the interior surface of the chamber. Normally, these contaminants and residues are removed only during primary

maintenance, where the chamber is vented to the atmosphere and the interior surface of the chamber is physically scrubbed. Primary maintenance is performed far less frequently, e.g., after every 10,000 wafers.

5 The fluorine residue tenaciously adheres to the interior reactor surfaces of the CVD chamber and is extremely difficult to remove. Further, the fluorine residue can generate significant localized concentrations of HF when the chamber is opened to the atmosphere for
10 the primary maintenance. Accordingly, the fluorine residue needs to be removed between the primary maintenance procedures, and a number of methods for removing fluorine residue have been developed.

15 The methods include purging the chamber with a hydrogen-containing or reducing gas, dissociating a reducing gas in a remote plasma source and then introducing it into the chamber, generating an H₂ plasma in the chamber followed by purging the chamber with a dilute SiH₄ mixture, generating a plasma of an inert gas in the chamber, and coating the interior surfaces of the CVD chamber with an oxide layer to trap the residual fluorine.

20 U.S. Patent No. 5,647,953, which is incorporated herein by reference in its entirety, discloses a method for removing oxide and fluorine residues in a plasma process chamber. The method energizes fluorine containing gas into plasma and, using the plasma, removes oxide residue from interior surfaces of a CVD chamber. Then the interior surfaces are coated with silicon
25 dioxide in order to trap fluorine impurities from the prior fluorine plasma-cleaning step. The silicon dioxide coating often leaves some of the fluorine impurities

without the coating. Finally, a hydrogen-containing gas (SiH₄, Si₂H₆, H₂, and/or H₂O) is introduced into the chamber in non-plasma state to remove the fluorine impurities uncoated in the prior coating step. This 5 final step may be done as a purge, or the chamber may be pressurized and then evacuated.

U.S. Patent No. 5,935,340, which is incorporated herein by reference in its entirety, describes a method for removing residues from the interior surfaces of a CVD 10 chamber. This method dissociates a fluorine containing gas such as NF₃ in a remote plasma source and then introduces the dissociated gas into the chamber to clean residues from the interior chamber surfaces. NH₃, H₂, and/or SiH₄, are then introduced into the chamber to 15 remove fluorine residue remaining from the prior step. In the removal of the fluorine residue, in order to cause a heat-induced chemical reaction between fluorine and NH₃, H₂, and/or SiH₄ without in situ plasma excitation, a heater in the chamber maintains a temperature greater 20 than 550 °C and less than about 600 °C. NH₃, H₂, and/or SiH₄ may first be dissociated in a remote plasma source before being introduced into the chamber. The clean reactants produced in the heat-induced chemical reaction, such as HF, SiF₄, and/or an ammonium fluoride compound, 25 are then evacuated from the chamber.

U.S. Patent No. 5,824,375, which is incorporated herein by reference in its entirety, describes a method for removing sorbable contaminants from the interior surfaces of a chemical vapor deposition plasma reactor. 30 This method includes cleaning the reactor with a plasma of a cleaning gas having a fluorine source that leaves sorbable contaminants and removing the sorbable

contaminants with a plasma of a plasma of an inert gas, such as He. Then, a seasoning film is deposited on the interior reactor surfaces to block or retard remaining contaminants.

5 U.S. Patent No. 5,129,958, which is incorporated herein by reference in its entirety, discloses a method of treating the fluorine residues in a CVD chamber left from a prior fluorine plasma cleaning step. This method contacts the fluorine residues with one or more reducing
10 gases, such as SiH₄, NH₃, H₂, PH₃, B₂H₆, and/or AsH₃, to form one or more reaction products. The flow rate of the reducing gases is between 100 and 500 sccm (standard cubic centimeters per minute). While flowing the reducing gases, the CVD chamber is maintained at a
15 temperature of 250 to 500°C and a pressure of 10⁻³ to 100 Torr. The reducing gases react with the fluorine residues to form one or more gaseous and/or solid reaction products. Optionally at least a portion of the reaction products is removed from the CVD chamber.

20 U.S. Patent No. 5,207,836, which is incorporated herein by reference in its entirety, describes a procedure for a removal of tungsten or tungsten silicide deposits from the susceptor of a vacuum deposition chamber by fluorine plasma cleaning and a removal of
25 fluorine residues introduced by the plasma cleaning step. In this method, the tungsten-based residues are first removed by flowing a gaseous source of fluorine, such as SF₆, NF₃, C₂F₆, and/or CF₄, into the chamber and igniting a plasma. Then, in order to remove the fluorine residue,
30 a gaseous source of hydrogen, such as H₂, B₂H₆, PH₃, 1-2 carbon hydrocarbons, are flowed into the chamber at a rate of approximately 100 to 500 sccm, and a plasma is

728928 v1

ignited. While the gaseous source of hydrogen is flowed, the pressure in the chamber is maintained at a pressure from about 0.2 to 1 Torr and the susceptor is maintained at a temperature from about 150 to 525 °C.

5 U.S. Patent No. 5,326,723, which is incorporated herein by reference in its entirety, discloses a method for cleaning a chemical vapor deposition chamber following tungsten deposition. After the tungsten deposition, an in-situ cleaning with an NF₃ based plasma
10 is used to remove tungsten residue from the chamber. This cleaning step produces fluoride-containing by-products. In the next step, an in-situ cleaning with an H₂ based plasma is performed in the chamber. This plasma leaves hydrogen fluoride (HF), hydrogen (H), and fluorine
15 (F) species in the chamber. Finally the chamber is purged with a mixture of SiH₄, N₂, and Ar at a pressure between 0.1 to 5 Torr, wherein the silane is between 1 and 2% of the mixture. The result of the last step is to replace a portion of the fluorine containing compounds on
20 the interior chamber surfaces with SiF₄ and H₂. These gases (SiF₄ and H₂) and by-products are subsequently evacuated from the chamber.

U.S. Patent No. 6,020,035, which is incorporated herein by reference in its entirety, describes a method
25 for reducing the level of fluorine absorbed in films deposited on substrates in a PECVD (Plasma Enhanced CVD) chamber after a fluorine based chamber clean. In this method, a fluorine containing gas is introduced into the chamber to remove the deposition residue from the
30 interior chamber surfaces. This cleaning process leaves a residue including fluorine atoms on the interior chamber surfaces. In the next step, a plasma of a

process gas containing silicon and oxygen is used to deposit a silicon oxide film on the interior chamber surfaces. The plasma uses both low frequency (< 2 MHz) and high frequency (> 2 MHz) RF power sources, with the 5 low frequency power source providing a power density greater than 3.10 W/cm². The high power level of the low frequency RF signal increases the ion bombardment and favors the formation of stable SiF bonds between silicon and fluorine atoms. This leads to fewer loosely bonded 10 fluorine atoms being incorporated into the layer and fewer fluorine atoms outgassing in subsequent process steps.

Although the prior art described above removes fluorine residue from CVD chambers, the effectiveness of 15 fluorine residue removal process and the speed of the process still need improvement.

SUMMARY

The present invention is directed to a method for 20 removing fluorine residues from a process chamber used in fabricating a semiconductor wafer. After chemical vapor deposition (CVD) or plasma-enhanced chemical vapor deposition (PECVD) for depositing silicon or tungsten containing films on a semiconductor substrate in a CVD 25 chamber, a fluorine-based plasma is often introduced into the CVD chamber to remove the silicon or tungsten containing deposits on the interior surface of the CVD chamber. This fluorine-based plasma cleaning leaves 30 fluorine residues, which can be removed by the method of the present invention.

The method includes: supplying an oxygen-containing gas and a hydrogen-containing gas into a CVD chamber;

producing a plasma of a mixture of the oxygen-containing gas and the hydrogen-containing gas, so that the plasma reacts with the fluorine residue, exothermically generating water; and evacuating from the CVD chamber a
5 product of the reaction between the plasma and the fluorine residue. For the hydrogen-containing gas, NH₃ is often used, and for the oxygen-containing gas, N₂O, O₂, or air is used. Exemplary mixtures of the oxygen-containing and the hydrogen-containing gases include 70
10 mol % N₂O/NH₃, 50 mol % N₂O/NH₃, and 52 mol % O₂/NH₃. An inert gas, such as He, Ne, Ar, or Kr, can be optionally supplied into the chamber to stabilize the plasma.

The fluorine residue removing method according to the present invention can utilize the source gases, such 15 as N₂O, O₂, and NH₃, already plumbed to a CVD chamber for standard deposition processes. That is, no additional gases or modifications of the existing gas manifold are necessary. N₂O is preferred to O₂ as the oxygen-containing source gas, because N₂O produces a relatively 20 electronegative discharge that is very stable and diffuse.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a flow chart illustrating a fluorine residue removing method in accordance with the present invention.
25

Figure 2 is a graph illustrating relative volumetric quantities of HF removed in fluorine residue removing methods in accordance with the present invention.

30 Figure 3 is a graph illustrating relative volumetric quantities of H₂O produced in the fluorine residue removing methods of Figure 2.

Figure 4 is a graph illustrating relative volumetric quantities of H₂ produced in the fluorine residue removing methods of Figure 2.

5 Figure 5 is a graph illustrating relative volumetric quantities of HF removed in another fluorine residue removing method in accordance with the present invention.

Figure 6 is a graph illustrating relative volumetric quantities of H₂O produced in the fluorine residue removing method of Figure 5.

10 Figure 7 is a graph illustrating relative volumetric quantities of H₂ produced in the fluorine residue removing method of Figure 5.

DETAILED DESCRIPTION

15 The present invention is directed to a method for removing fluorine residues from the interior surfaces of a CVD chamber prior to primary maintenance. The method eliminates fluorine residues adhering to the interior reactor surfaces of the CVD chamber and prevents the 20 formation of localized concentration of HF when the chamber is opened to atmosphere for primary maintenance.

The method generates a plasma and creates a very aggressive chemical environment that rapidly reacts with residual fluorine. The plasma exothermically generates 25 water in the chamber to purge the fluorine residues. Any CVD chamber that has a supply of a hydrogen-containing gas, such as NH₃, and an supply of an oxygen-containing gas, such as O₂, N₂O, or air, can employ the method according to the present invention to remove the fluorine 30 residues in the CVD chamber. In order to implement the method, the CVD chamber must be equipped with a RF power source. For instance, the method can be immediately

implemented in a Concept Two Sequel Express™ reactor, available from Novellus Systems, Inc., of San Jose, California.

In a method according to the present invention, a
5 hydrogen-containing gas, such as NH₃, and an oxygen-containing gas, such as O₂ or N₂O, are fed into a CVD chamber and ignited to form a plasma. N₂O is preferred for the oxygen containing gas. An inert gas, such as He, Ne, Ar, or Kr, can be introduced into the chamber to
10 stabilize the plasma discharge. The plasma exothermically forms H₂O in the CVD chamber. The exemplary exothermic H₂O formations are illustrated below as equations (1) to (7). The components of the reactions are at gaseous state during the reactions.

15

- (1) NH₃+1.5N₂O→1.5H₂O+2N₂
- (2) 2.2NH₃+97.8N₂O→3.3H₂O+98.9N₂+47.25O₂
- (3) 72NH₃+28N₂O→28H₂O+64N₂+80H₂
- (4) 73.4NH₃+26.6N₂O→26.6H₂O+63.3N₂+83.5H₂
- 20 (5) H₂+0.5O₂→H₂O
- (6) 4NH₃+3O₂→2N₂+6H₂O
- (7) 4NH₃+5O₂→4NO+6H₂O

The exothermic generation of H₂O in the presence of
25 H, OH, and O radicals and ions creates a very aggressive chemical environment that rapidly reacts with the fluorine residues in the CVD chamber. The heat produced from the exothermic H₂O generation increases the reaction rate between the plasma and the fluorine residue. It is believed that this aggressive chemical environment results not only from the exothermic formation of H₂O,

but also from the presence of an energetic ion flux moving toward the surface, which results in an ion-enhanced chemical reaction. In addition, the plasma produces extremely reactive radicals and ions, such as OH
5 radicals and ions. These radicals and ions, which are coordinately and electronically unsaturated, can rapidly react with the fluorine residue. Although the exact nature of the fluorine residue is not known, the residue rapidly reacts to form HF and other fluorine-containing
10 products, such as ammonium fluorides, when NH₃ is employed as the hydrogen-containing source gas. The HF and other volatile fluorine products are then evacuated from the chamber prior to opening it for primary maintenance.

15 In the method of the present invention, the combined effect of the plasma-produced reactants, a flux of energetic ions on the interior surface of CVD chamber, and the exothermic formation of H₂O results in the aggressive environment that significantly enhances the
20 removal rate of fluorine residue.

Figure 1 illustrates a flow chart of a fluorine residue removing method in accordance with the present invention. After chemical vapor deposition (CVD) or plasma-enhanced chemical vapor deposition (PECVD) for
25 depositing silicon or tungsten containing films on a semiconductor substrate in a CVD chamber, a fluorine-based plasma is introduced into the CVD chamber to remove the silicon or tungsten containing deposits on the interior surface of the CVD chamber. The fluorine-based
30 plasma cleaning, which can be performed in-situ or remote, uses a fluorine containing gas such as CF₄, C₂F₆, C₃F₈, C₄F₈, C₄F₈O, SF₆, NF₃, or F₂ for the plasma source,

and optionally adds an oxygen containing gas such as O₂ and/or a carrier gas such Ar, Ne, Kr, or He. The plasma cleaning time depends on the thickness of the deposits in the CVD chamber.

5 After the fluorine-based plasma cleaning, fluorine residues, which may be the combinations of the residual gases (SiF₄, HF, F₂, COF₂, etc.) from the fluorine-based chamber deposition cleaning, remain in the chamber.
Thus, as shown in Figure 1, in-situ fluorine residue
10 cleaning (or removing) is performed to remove the fluorine residues. In this embodiment of the invention, a hydrogen-containing gas, NH₃, and an oxygen-containing gas, N₂O, are supplied into the CVD chamber so as to form 70 mol % N₂O/NH₃ gas mixture, and the mixture is ignited
15 to form an in-situ 13.56 MHz plasma. Exemplary process conditions of the fluorine residue cleaning are described below with reference to Figures 2 to 7.

Then, volatile fluorine products, primarily HF, that result from the reaction between the cleaning plasma and the fluorine residues are evacuated from the chamber.
20 The H₂O generated from the exothermic reactions discussed above is also evacuated with the volatile fluorine products from the chamber

Referring to Figures 2 to 4, the effectiveness of a
25 fluorine residue cleaning method, which uses an N₂O/NH₃ mixture to produce an N₂O/NH₃ plasma, is explained. Experiments, which used 70 mol % N₂O/NH₃, 50 mol % N₂O/NH₃, and 100 mol % NH₃, respectively, to produce a fluorine residue cleaning plasma, were performed in a
30 Concept Two Sequel Express™ chamber, available from Novellus Systems, Inc., of San Jose, California. In the

experiments, a CVD and a subsequent in-situ fluorine-based plasma cleaning using an NF_3/He mixture were commonly performed before the fluorine residue cleanings.

The flow rate of NH_3 was 1,500 sccm (standard cubic centimeter per minute), and the flow rate of N_2O was varied from 0 to 3,500 sccm. He gas was also introduced at a flow rate of 100 sccm into the chamber as an internal standard for the analysis of the Quadrupole Mass Spectrometer (QMS) data. A high frequency (13.56 MHz) RF power of 3,000 W was applied to the chamber to produce the plasmas, and the pressure of the chamber was 2 Torr. The emissions during the fluorine residue cleanings were characterized with a Quadrupole Mass Spectrometer (QMS) mounted directly to the chamber.

Figure 2 illustrates relative volumetric quantities of HF removed in the fluorine residue cleanings which used 70 mol % $\text{N}_2\text{O}/\text{NH}_3$, 50 mol % $\text{N}_2\text{O}/\text{NH}_3$, and 100 mol % NH_3 plasmas, respectively. The plasmas of $\text{N}_2\text{O}/\text{NH}_3$ mixtures resulted in more effective HF removal than the 100 mol % NH_3 plasma. For example, the volumetric HF emission by the 70 mol % $\text{N}_2\text{O}/\text{NH}_3$ plasma was the largest and approximately 316% greater than the volumetric HF emission of the 100 mol % NH_3 plasma. In addition, the plasma of 70 mol % $\text{N}_2\text{O}/\text{NH}_3$ was more effective in removing HF than the plasma of 50 mol % $\text{N}_2\text{O}/\text{NH}_3$.

Figures 3 and 4 respectively illustrate the relative quantities of H_2O and H_2 produced during the experiments of Figure 1, that is, during the discharges of the 70 mol % $\text{N}_2\text{O}/\text{NH}_3$, 50 mol % $\text{N}_2\text{O}/\text{NH}_3$, and 100 mol % NH_3 plasmas. The $\text{N}_2\text{O}/\text{NH}_3$ plasmas exothermically produced appreciable quantities of H_2O , while the NH_3 plasma produced almost no H_2O . The plasma of 70 mol % $\text{N}_2\text{O}/\text{NH}_3$ produced more H_2O

than the plasma of 50 mol % N₂O/NH₃ did. In contrast, the 100 mol % NH₃ plasma generated more H₂ molecules than the N₂O/NH₃ plasmas did. The plasma of 50 mol % N₂O/NH₃ produced more H₂ than the plasma of 70 mol % N₂O/NH₃ did.

5 Accordingly, Figures 3 and 4 show that the effectiveness of the fluorine residue cleaning process is related to the quantity of H₂O, not H₂, produced during the process.

Referring to Figures 5 to 7, the effectiveness of a fluorine residue cleaning method which uses O₂/NH₃

10 mixture to produce O₂/NH₃ plasma is explained.

Experiments, which used 52 mol % O₂/NH₃ and 100 mol % NH₃, respectively, to produce a fluorine residue cleaning plasma, were performed in a Novellus Systems 200 mm

Sequel Express chamber. As in the experiments of Figures

15 2 to 4, a CVD and a subsequent in-situ fluorine-based plasma cleaning using an NF₃/He mixture were commonly performed before the fluorine residue cleanings using a 52 mol % O₂/NH₃ plasma and a 100 mol % NH₃ plasma. The

flow of NH₃ was 2,000 sccm, and the flow rate of O₂ was

20 varied from 0 to 2,170 sccm. He gas was also introduced at a flow rate of 100 sccm into the chamber as an internal standard for the analysis of the QMS data. A

high frequency (13.56 MHz) RF power of 2,000 W was

applied to the chamber to produce the plasmas, and the

25 pressure of the chamber was 3 Torr.

Figure 5 illustrates the relative volumetric quantities of HF removed in the fluorine residue cleanings which used the 52 mol % O₂/NH₃ plasma and the 100 mol % NH₃ plasma, respectively. The 52 mol % O₂/NH₃ plasma resulted in more effective HF removal than the 100 mol % NH₃ plasma. The volumetric HF emission by the 52

mol % O₂/NH₃ plasma was approximately 295% greater than the volumetric HF emission of the 100 mol % NH₃ plasma.

Figures 6 and 7, respectively, illustrate the relative quantities of H₂O and H₂ produced during the experiments of Figure 5, that is, during the discharges of the 52 mol % O₂/NH₃ and the 100 mol % NH₃ plasmas. The O₂/NH₃ plasma exothermically produced appreciable quantities of H₂O, while the NH₃ plasma produced almost no H₂O. In contrast, the 100 mol % NH₃ plasma generated more H₂ molecules than the O₂/NH₃ plasmas did.

Accordingly, Figures 6 and 7 show the same relationship between the effectiveness of the fluorine residue cleaning process and the quantity of H₂O produced during the process as the relationship shown by Figures 3 and 4.

The fluorine residue removing method according to the present invention can utilize the source gases, such as N₂O, O₂, and NH₃, already plumbed to a CVD chamber for standard deposition process. That is, no additional gases or modifications of the existing gas manifold are necessary. N₂O is preferred as the oxygen-containing source gas, because N₂O produces a relatively electronegative discharge that is very stable and diffuse. For CVD chambers that do not have an oxygen-containing source gas available, mixtures of air and a hydrogen-containing source gas may be employed to produce plasma.

Finally, when the fluorine residue removing method according to the present invention uses N₂O as the oxygen-containing gas and NH₃ as the nitrogen-containing gas, care must be taken to insure that the gas mixture is diluted since N₂O and NH₃ are incompatible gases. Adequate N₂ purge may accomplish the dilution before the

gas mixture enters the compressive stage of the mechanical backing pump. Similar consideration must be given to other gas mixtures employed.

For instance, the flammability triangle of N₂/N₂O/NH₃ mixtures shows that the LEL (Low Explosive Limit) depends upon the extent of nitrogen dilution. To stay at or below the LEL, 70%N₂O/NH₃ gas mixture must be diluted with N₂ until N₂ constitutes at least 85% of the gas mixture. In the absence of the N₂ dilution, the hazards associated with this gas mixture increase exponentially. To ensure an appropriate safety margin, a given flow rate of 70%N₂O/NH₃ gas mixture must be diluted with N₂ until N₂ constitutes a minimum of 90% of the gas mixture before the gas mixture enters the compressive stage of the mechanical backing pump.

In summary, the method of the present invention significantly enhances the removal rate of fluorine residue, compared to previously known methods, by creating the aggressive environment for fluorine residue removal reaction. This enhancement is the result of the combined effect of the plasma-produced reactants, a flux of energetic ions on the interior surface of CVD chamber, and the exothermic formation of H₂O.

The invention has been described using exemplary embodiments. However, it is to be understood that the scope of the invention is not limited to the disclosed embodiments. On the contrary, it is intended to cover various modifications and similar arrangements. The scope of the claims, therefore, should be accorded to the broadest interpretation so as to encompass all such modifications and similar arrangements.