Universal hash-based post-quantum cryptography

Peter P. Rohde^{1, 2, 3, 4}

¹BTQ Technologies, 16-104 555 Burrard Street, Vancouver BC, V7X 1M8 Canada

² Center for Engineered Quantum Systems, School of Mathematical & Physical Sciences,

Macquarie University, NSW 2109, Australia

³Centre of Excellence in Engineered Quantum Systems, Brisbane,

Australia

⁴ Hearne Institute for Theoretical Physics, Department of Physics & Astronomy, Louisiana State University, Baton Rouge LA, United States

I. DIFFERENTIAL HASH CODES

A pair of bit-strings $\{x, y\}$ may be expressed differentially using the tuple,

$$[x, x \oplus y]_{\oplus}, \tag{1.1}$$

where the differential term $x \oplus y$ alone reveals no information about x or y while the non-differential term unlocks the code to reveal both. The validity of differentially encoded tuples may be trivially confirmed given knowledge of both terms.

We define the differential hash operators,

$$\Delta(x) = h(x) \oplus x,$$

$$\Delta_{\pi}(x) = h(x_{\pi}) \oplus x,$$
(1.2)

where $\pi \in S_n$ for $x \in \{0,1\}^n$ is a permutation over the elements of x. These encode a hash's image and pre-image together while revealing neither assuming hash pre-image resistance. We have the properties,

$$h(x) = \Delta(x) \oplus x,$$

$$x = \Delta(x) \oplus h(x).$$
 (1.3)

The Δ operator inherits pre-image resistance from $h(\cdot)$. Knowing $\Delta(x)$ alone reveals neither x nor h(x), however additionally knowing x or h(x) enables verification of $\Delta(x)$. Finding x for given $\Delta(x)$ reduces to the pre-image resistance of the hash function $h(\cdot)$.

The non-differentially encoded tuple $\{x, h(x)\}$ allows x to unlock h(x), while h(x) cannot unlock x. The second element reveals h(x) alone, but not x via pre-image resistance. Under the differential encoding,

$$[x, \Delta(x)]_{\oplus} = [x, h(x) \oplus x]_{\oplus}, \tag{1.4}$$

the second element reveals neither x nor h(x), while the first element reveals both, given that h(x) can be efficiently forward-evaluated. Alternately, under the differential encoding,

$$[h(x), \Delta(x)] = [h(x), h(x) \oplus x], \tag{1.5}$$

the non-differential term h(x) affords unlocking the code but does not on its own reveal x via hash pre-image resistance. Under both encodings knowing either x or h(x)alone enables verification. The differential operator is distributive only over its unhashed components,

$$\Delta(x \oplus y) = h(x \oplus y) \oplus x \oplus y$$

$$\Delta(x) \oplus \Delta(y) = h(x) \oplus h(y) \oplus x \oplus y.$$
 (1.6)

The symmetric difference between $\Delta(x \oplus y)$ and $\Delta(x) \oplus \Delta(y)$ gives the 'distributor' (equivalent of commutator for distributivity),

$$\Delta(x \oplus y) \oplus \Delta(x) \oplus \Delta(y) = h(x \oplus y) \oplus h(x) \oplus h(y),$$
(1.7)

defining the distributivity of Δ operator over the action of \oplus .

Standard differential codes are composable,

$$[x, x \oplus y)]_{\oplus} \oplus [x', x' \oplus y']_{\oplus}$$

$$\sim [x \oplus x', x \oplus y \oplus x' \oplus y']_{\oplus}. \tag{1.8}$$

For differential hash codes,

$$[x, \Delta(x)]_{\oplus},$$

 $[y, \Delta(y)]_{\oplus},$ (1.9)

we have distinct composition rules,

$$[x \oplus y, \Delta(x \oplus y)]_H,$$

$$[x \oplus y, \Delta(x) \oplus \Delta(y))]_{\oplus}.$$
 (1.10)

The $[\cdot,\cdot]_H$ composition is verifiable by hashing the left hand term. The $[\cdot,\cdot]_{\oplus}$ composition is not hash-verifiable but preserves all differential encoding constraints.

Permutations π are distributive over \oplus but not commutative,

$$\pi(x \oplus y) = \pi(x) \oplus \pi(y),$$

$$\pi(x) \oplus y \neq x \oplus \pi(y),$$
(1.11)

whereas \oplus is commutative but not distributive (in general, depending on parity of number of terms under distribution),

$$x \oplus y = y \oplus x. \tag{1.12}$$

• $h(m \oplus s)$ will reveal the private h(s) for chosen m = 0.

- $h(m \oplus s \oplus x)$ will reveal the private h(x) for chosen m = x if x is public.
- $h(\pi(m \oplus s)) = h(m_{\pi} \oplus s_{\pi})$ can only reveal $h(s_{\pi})$ (not secret) for public π and chosen m, but cannot reveal secret h(s).

II. ASYMMETRIC CODES

We define key-pairs as,

$$\begin{split} \mathbf{sk} &\in \{0,1\}^n, \\ \mathbf{pk} &= \{\mathbf{pk}_\Delta, \mathbf{pk}_\pi\}, \\ \mathbf{pk}_\Delta &= \Delta(\mathbf{sk}), \\ \mathbf{pk}_\pi &\in S_n, \end{split} \tag{2.1}$$

where sk be a secret bit-string, $h(\{0,1\}^n) \to \{0,1\}^n$ an n-bit endomorphic hash function, and $\pi \in S_n$ a permutation on n bits. Since $|S_n| = n!$ encoding π requires $\lceil \log_2(n!) \rceil$ bits. For n = 256 we have $\lceil \log_2(n!) \rceil = 1684$ bits.

Since $pk = \Delta(sk)$ is public both sk and h(sk) must be private to prevent unlocking the public key, both acting as trapdoors for the differential encoding.

$$[m_{\pi} \oplus s_{\pi}, \Delta_{\pi}(m_{\pi} \oplus s_{\pi})], \tag{2.2}$$

$$\Delta_{\pi}(m_{\pi} \oplus s_{\pi}) = \Delta_{\pi}(m_{\pi})\Delta_{\pi}(s_{\pi})$$

$$\oplus h(m_{\pi}) \oplus h(s_{\pi}) \oplus h(m_{\pi} \oplus s_{\pi}) \qquad (2.3)$$

III. DIGITAL SIGNATURES

To sign message $m \in \{0,1\}^n$ Alice makes public the differentially encoded, signed message $\Delta(m_{\pi})$ and signature,

$$\operatorname{sig}_{\pi}(m) = h(m_{\pi} \oplus \operatorname{sk}_{\pi}). \tag{3.1}$$

The signature has the property that when combined with public information it reveals the hash of the message being signed,

$$\operatorname{sig}_{\pi}(m) \oplus \Delta(m) \oplus \Delta(\operatorname{sk}_{\pi}) = h(m). \tag{3.2}$$

Employing the modulated public key $\Delta(sk_{\pi})$,

$$\operatorname{sk}_{\pi} \equiv \operatorname{sk} \oplus h(\operatorname{pk}),$$
 (3.3)

prevents the signature from revealing the trapdoor h(sk) which unlocks the public key,

$$\begin{split} h(\mathtt{sk}) \oplus \Delta(\mathtt{sk}) &= \mathtt{sk}, \\ h(\mathtt{sk}_\pi) \oplus \Delta(\mathtt{sk}) &\neq \mathtt{sk}. \end{split} \tag{3.4}$$

IV. ENCRYPTION

For asymmetric encryption we reverse the roles of m and h(m). Bob wishes to send message m to Alice and makes public,

$$enc(m) = {\Delta(m), h(m)}. \tag{4.1}$$

Alice now decrypts using the message hash h(m) to reveal the original message,

$$\Delta(s_{\pi}) \oplus \Delta(m) \oplus h(m) = m. \tag{4.2}$$

A. Multi-sigs

Signatures are commutative, additive and composable.

$$\operatorname{sig}_{\pi}(m) = \Delta(s_{\pi}) \oplus h(m), \tag{4.3}$$

B. Key-establishment & secret sharing

Using the asymmetric encryption protocol, Alice finally communicates the verification hash,

$$key = h(sk \oplus m), \tag{4.4}$$

back to Bob, who also able to verify its validity. The verification hash now provides confirmation of a jointly prepared hash-based random number given by the XOR-salted hash of Alice's secret key and Bob's chosen salt, which cannot be spoofed by either.

V. NOTES

* The hash collision space translates to decoding failure.

Differentially encoded tuples are composable under bitwise XOR.

$$[x, \Delta(x)] \oplus [y, \Delta(y)] = [x \oplus y, \Delta(x) \oplus \Delta(y)], \quad (5.1)$$

via the commutativity of \oplus .

Compare above rhs,

$$h(x \oplus y) \oplus x \oplus y = h(x \oplus y) \oplus h(x) \oplus h(y).$$
 (5.2)

 π known by inverting π and multiplying the tuple elements to confirm consistency. For unknown or incorrect π hash verification fails.

The bit permutation operator, $\pi(\cdot)$, is distribute over the bit-wise XOR operator, \oplus ,

$$\pi(x) \oplus \pi(y) = \pi(x \oplus y). \tag{5.3}$$

Hence differential encoding relationships are preserved under the uniform action of π ,

$$[x, x \oplus y] \sim [\pi(x), \pi(x \oplus y)],$$
 (5.4)

but are in general not preserved under non-uniform action of π ,

$$[x, x \oplus y] \nsim [\pi(x), x \oplus y]. \tag{5.5}$$

We'll employ the shorthand,

$$\pi \circ [x, y] = [\pi(x), \pi(y)], \tag{5.6}$$

to denote the uniform action of π over a differential code.

While permutations are distributive over \oplus they do not commute through hashes,

$$\pi(h(x)) \neq h(\pi(x)). \tag{5.7}$$

$$\Delta(\pi(x \oplus y)) = h(\pi(x \oplus y)) \oplus \pi(x) \oplus \pi(y). \tag{5.8}$$

REFERENCES