Chapter 9-10 Confidence Intervals and Hypothesis Testing Goodness of Fit Tests

Statistics *Mehmet Güray Güler, PhD*

Last updated 28.07.2020

Goodness of Fit Tests

- Goodness of fit test used to determine if a population has a specified theoretical (hypothesized) distribution.
- For that reason we need to have a random sample from the population.
- The test is based on how good a fit we have between
 - the frequency of occurrence of observations in the sample and
 - the expected frequencies obtained from the hypothesized distribution.
- For example, suppose a gambler wishes to see if a given die is balanced.

Goodness of Fit Tests

- EXAMPLE 1. How to test if a given die is balanced.
- We may first roll the die (say) 120 times and count the frequency of occurrence of each face value to obtain a sample distribution as follows:

Face:	1	2	3	4	5	6
Observed	20	22	17	18	19	24
Expected	20	20	20	20	20	20

- Balanced die means all faces have the same probability of occurrence.
- Hence we expect the same frequency for each face.

Goodness of Fit Tests

- H_0 : The sample data come from the specified distribution.
- H_1 : The sample data do not come from the specified distribution.
- Test statistic: $\chi^2 = \sum_{i=1}^k \frac{(o_i e_i)^2}{e_i}$
- Decision Rule: Reject H_0 if $\chi^2_{obs} > \chi^2_{\alpha}(k-1)$
- o_i represent the observed frequencies for the *i*th cell.
- e_i represent the expected frequencies for the ith cell.
- Why should we reject the null hypothesis if the test statistic is larger than the χ^2_{α} value with (k-1) degrees of freedom?

Goodness of Fit Test – Example 1

• EXAMPLE 1. The data for the die rolling experiment:

Face:	1	2	3	4	5	6	
Observed	20	22	17	18	19	24	$\rightarrow o_{i}$
Expected	20	20	20	20	20	20	$\rightarrow e_{i}$

- We want to test:
- H_0 : The die is balanced (all faces have equal chance)
- H_1 : The die is not balanced (some faces appear more frequently than others)

Goodness of Fit Test – Example 1

Let's calculate the test statistic:

$$X^{2} = \mathop{a}\limits_{i=1}^{k} \frac{(o_{i} - e_{i})^{2}}{e_{i}} = \frac{(20 - 20)^{2}}{20} + \frac{(22 - 20)^{2}}{20} + \Box + \frac{(24 - 20)^{2}}{20} = 1.7$$

- Here we have 6 cells (possible face values), hence the degrees of freedom for the chi-squared statistic is 5. Assume $\alpha=0.01$.
- **Decision Rule:** Do not reject H_0 since $X^2 = 1.7 < \chi^2_{0.01}(5) = 15.086$.
- P-value = $P(X^2 > 1.7) \approx 0.89$.
- Conclusion: The die seems to be balanced.

Chi-Square Goodness of Fit Test

- EXAMPLE 2. It is claimed that the frequency distribution of the lifetime of a certain brand and model of car battery may be approximated by a normal distribution with the mean $\mu = 3.5 \ \mathrm{yrs}$ and the st. Dev. $\sigma = 0.7 \ \mathrm{yrs}$.
- Let's test this by using chi-square goodness of fit test.
- A random sample of 40 batteries were followed and their lifetimes (duration from initial installment time until they fail) were recorded.
- The data are summarized in the frequency table below.

The lifetime data for the sample of batteries:

Lifetime (yrs) o_i = Number of Batteries

Class Boundaries	o_i
1.45 - 1.95	2
1.95 – 2.45	1
2.45 – 2.95	4
2.95 – 3.45	15
3.45 – 3.95	10
3.95 – 4.45	5
4.45 - 4.95	3

- Let's write the hypotheses to be tested:
 - H_0 : The data come from $N(\mu = 3.5, \sigma = 0.7)$
 - H_1 : No, the data do not come from this distribution.
- The data table shows the observed frequencies for n = 40.
- We need to calculate the **expected frequencies** first.
- The test becomes better (more sensitive) when we combine the intervals with small frequency so that expected frequency for each cell / class will be at least 5

The lifetime data for the sample of batteries:

Lifetime (yrs) o_i = Number of Batteries

Class Boundaries	o_i
1.45 - 1.95	2
1.95 – 2.45	1
2.45 – 2.95	4
2.95 – 3.45	15
3.45 – 3.95	10
3.95 – 4.45	5
4.45 - 4.95	3

- The specified distribution is normal, we will calculate the probability for each interval using EXCEL (or we may look at the table of course)
- Calculate the exp. freq. for the 2nd interval (2.95, 3.45) assuming
 - X is $N(\mu = 3.5, \sigma = 0.7)$.
- From EXCEL we find : $P(2.95 < X < 3.45) \approx 0.2555$.
- Hence the expected frequency for the second class is:
 - e_2 = Probability×Sample Size = $0.2555 \times 40 = 10.2204$
- It is customary to round these frequencies to one decimal, hence use 10.2

- Now we calculate the probability for 3rd class:
- $P(3.45 < X < 3.95) \approx 0.2683$.
- Hence the expected frequency is: $e_3 = 40 \times 0.2683 \approx 10.7$.
- The first and the last one are calculated somewhat differently.
 - First One: P(X<2.95) = 0.216 \Rightarrow $e_1 = 40 \times 0.216 \approx 8.7$
 - Last One: P(X>3.95) = 0.260 \Rightarrow $e_1 = 40 \times 0.260 \approx 10.4$
- Note that $e_1 + e_2 + e_3 + e_4 = 8.7 + 10.2 + 10.7 + 10.4 = 40.$

Class Boundaries	o_i	e_i
1.45 - 1.95	2	
1.95 - 2.45	1 > 7	8.7
2.45 - 2.95	4	
2.95 – 3.45	15	10.2
3.45 – 3.95	10	10.7
3.95 – 4.45	5) 。	40.4
4.45 – 4.95	$\begin{bmatrix} 3 \end{bmatrix} $ 8	10.4

We now place the expected frequencies in the table and calculate the test statistic using:

$$X^{2} = \sum_{i=1}^{k} \frac{(o_{i} - e_{i})^{2}}{e_{i}}$$

- The degrees of freedom for the chi-squared statistic is one less than the number of terms in the calculation = 3.
- Now we compare the computed value of the test statistic with the critical value from the chi-squared distribution with 3~df and the level of significance $\alpha=0.05$.

•
$$\chi_{obs}^2 = \frac{(7-8.7)^2}{8.7} + \frac{(15-10.2)^2}{10.2} + \frac{(10-10.7)^2}{10.7} + \frac{(8-10.4)^2}{10.4} = 3.15$$

- Decision: Since $\chi^2 = 3.15 < \chi^2_{0.05} (3) = 7.815$,
- We don't reject H_0 .
- P-value = $P(\chi^2 > 3.15) \approx 0.37$.
- Conclusion: The battery life may have the normal distribution with mean life $\mu = 3.5$ years and the standard deviation $\sigma = 0.7$ years.