STATISTICAL INFERENCES (2cr)

Chapter 9 One- and Two-Sample Estimation Problems

Zhong Guan

Math, IUSB

Outline

- 9.3 Classical Methods of Estimation
 - Point Estimation
 - Unbiasedness of a Point Estimate
 - Efficiency
 - Interval Estimation
- 9.4 Single Sample: Estimating the Mean
 - Sample Size
 - One-Sided Confidence Bounds with Known σ

Outline

- 9.3 Classical Methods of Estimation
 - Point Estimation
 - Unbiasedness of a Point Estimate
 - Efficiency
 - Interval Estimation
- 9.4 Single Sample: Estimating the Mean
 - Sample Size
 - One-Sided Confidence Bounds with Known σ

A **point estimate** of some population parameter θ is a single value $\hat{\theta}$ of a statistic $\widehat{\Theta}$ calculated based on observed values x_1, \ldots, x_n of sample X_1, \ldots, X_n .

- Sample mean \bar{x} is observed value of statistic X and point estimate of population mean μ .
- Sample proportion $\hat{p} = x/n$ is a point estimate of population proportion p.
- Sample variance s^2 is a point estimate of population variance σ^2 .

A **point estimate** of some population parameter θ is a single value $\hat{\theta}$ of a statistic $\hat{\Theta}$ calculated based on observed values x_1, \dots, x_n of sample X_1, \dots, X_n .

- Sample mean \bar{x} is observed value of statistic \overline{X} and point estimate of population mean μ .
- Sample proportion $\hat{p} = x/n$ is a point estimate of population proportion p.
- Sample variance s^2 is a point estimate of population variance σ^2 .

A **point estimate** of some population parameter θ is a single value $\hat{\theta}$ of a statistic $\hat{\Theta}$ calculated based on observed values x_1, \dots, x_n of sample X_1, \dots, X_n .

- Sample mean \bar{x} is observed value of statistic \bar{X} and point estimate of population mean μ .
- Sample proportion $\hat{p} = x/n$ is a point estimate of population proportion p.
- Sample variance s^2 is a point estimate of population variance σ^2 .

A **point estimate** of some population parameter θ is a single value $\hat{\theta}$ of a statistic $\widehat{\Theta}$ calculated based on observed values x_1, \dots, x_n of sample X_1, \dots, X_n .

- Sample mean \bar{x} is observed value of statistic \overline{X} and point estimate of population mean μ .
- Sample proportion $\hat{p} = x/n$ is a point estimate of population proportion p.
- Sample variance s^2 is a point estimate of population variance σ^2 .

Outline

- 9.3 Classical Methods of Estimation
 - Point Estimation
 - Unbiasedness of a Point Estimate
 - Efficiency
 - Interval Estimation
- 9.4 Single Sample: Estimating the Mean
 - Sample Size
 - One-Sided Confidence Bounds with Known σ

Point Estimation
Unbiasedness of a Point Estimate
Efficiency
Interval Estimation

Unbiased Estimator

Definition 1. A statistic $\widehat{\Theta}$ is said to be an **unbiased** estimator of the parameter θ if the expected value of $\widehat{\Theta}$ equals θ , that is

$$\mu_{\widehat{\Theta}} = E(\widehat{\Theta}) = \theta.$$

Example 1. Sample mean X is an unbiased estimator of population mean μ .

Definition 1. A statistic $\widehat{\Theta}$ is said to be an **unbiased** estimator of the parameter θ if the expected value of $\widehat{\Theta}$ equals θ , that is

$$\mu_{\widehat{\Theta}} = E(\widehat{\Theta}) = \theta.$$

Example 1. Sample mean \overline{X} is an unbiased estimator of population mean μ .

If $\hat{\Theta}$ is an unbiased estimator of θ , then $a\hat{\Theta} + b$ is an unbiased estimator of $a\theta + b$. But $\hat{\Theta}^r$ is a biased estimator of θ^r , $r \neq 1$.

Example 2. Sample variance S^2 is an unbiased estimator of population variance σ^2 . However, sample standard deviation S is not an unbiased estimator of population standard deviation σ In fact, if sample is drawn from normal population, then

$$E(S) = \frac{\sqrt{2} \Gamma(n/2)}{\sqrt{n-1} \Gamma[(n-1)/2]} \sigma < \sigma.$$

50

$$\hat{\sigma} = \frac{\sqrt{n-11}\left[(n-1)/2\right]}{\sqrt{2}\Gamma(n/2)}S$$

is an unbiased estimator of σ

If $\hat{\Theta}$ is an unbiased estimator of θ , then $a\hat{\Theta}+b$ is an unbiased estimator of $a\theta+b$. But $\hat{\Theta}^r$ is a biased estimator of θ^r , $r\neq 1$. **Example 2.** Sample variance S^2 is an unbiased estimator of population variance σ^2 . However, sample standard deviation S is not an unbiased estimator of population standard deviation σ .

In fact, if sample is drawn from normal population, then

$$E(S) = \frac{\sqrt{2} \Gamma(n/2)}{\sqrt{n-1} \Gamma[(n-1)/2]} \sigma < \sigma.$$

So

$$\hat{\sigma} = \frac{\sqrt{n-1}\,\Gamma[(n-1)/2]}{\sqrt{2}\,\Gamma(n/2)}S$$

is an unbiased estimator of σ .

If $\hat{\Theta}$ is an unbiased estimator of θ , then $a\hat{\Theta} + b$ is an unbiased estimator of $a\theta + b$. But $\hat{\Theta}^r$ is a biased estimator of θ^r , $r \neq 1$. **Example 2.** Sample variance S^2 is an unbiased estimator of population variance σ^2 . However, sample standard deviation S is not an unbiased estimator of population standard deviation σ . In fact, if sample is drawn from normal population, then

$$E(S) = \frac{\sqrt{2} \Gamma(n/2)}{\sqrt{n-1} \Gamma[(n-1)/2]} \sigma < \sigma.$$

So

$$\hat{\sigma} = \frac{\sqrt{n-1}\,\Gamma[(n-1)/2]}{\sqrt{2}\,\Gamma(n/2)}S$$

s an unbiased estimator of σ .

If $\hat{\Theta}$ is an unbiased estimator of θ , then $a\hat{\Theta} + b$ is an unbiased estimator of $a\theta + b$. But $\hat{\Theta}^r$ is a biased estimator of θ^r , $r \neq 1$. **Example 2.** Sample variance S^2 is an unbiased estimator of population variance σ^2 . However, sample standard deviation S is not an unbiased estimator of population standard deviation σ . In fact, if sample is drawn from normal population, then

$$E(S) = \frac{\sqrt{2} \Gamma(n/2)}{\sqrt{n-1} \Gamma[(n-1)/2]} \sigma < \sigma.$$

So

$$\hat{\sigma} = \frac{\sqrt{n-1}\,\Gamma[(n-1)/2]}{\sqrt{2}\,\Gamma(n/2)}S$$

is an unbiased estimator of σ .

Outline

- 1 9.3 Classical Methods of Estimation
 - Point Estimation
 - Unbiasedness of a Point Estimate
 - Efficiency
 - Interval Estimation
- 9.4 Single Sample: Estimating the Mear
 - Sample Size
 - One-Sided Confidence Bounds with Known σ

Variance of an Unbiased Estimator

The **most efficient unbiased estimator** of θ is such an unbiased estimator, $\widehat{\Theta}$, of θ that has the smallest variance among all possible unbiased estimators of θ , that is,

 $Var(\widehat{\Theta}) \leqslant Var(\widetilde{\Theta})$, for any unbiased estimator $\widetilde{\Theta}$ of θ .

Outline

- 9.3 Classical Methods of Estimation
 - Point Estimation
 - Unbiasedness of a Point Estimate
 - Efficiency
 - Interval Estimation
- 9.4 Single Sample: Estimating the Mean
 - Sample Size
 - One-Sided Confidence Bounds with Known σ

An Example

Example 1 Let x equal the weight in grams of 52-gram snack pack of candies. Assume that the distribution of X is normal with $\sigma=2$ but an unknown μ . If the quality inspector decides to select a random sample of size n=10, then he will get 10 observations X_1, X_2, \ldots, X_{10} and use \overline{X} as a point estimate of μ . Can he get an interval for μ ?

$$ar{X}, \quad Z = rac{ar{X} - \mu}{\sigma_{ar{X}}}, \quad P(-1.65 < Z < 1.65) = 0.90$$

where $\sigma_{\bar{x}} = \sigma/\sqrt{10}$.

$$-1.65 < \frac{X - \mu}{\sigma / \sqrt{10}} < 1.65$$

is equivalent to

$$\bar{X} - 1.65 \frac{2}{\sqrt{10}} < \mu < \bar{X} + 1.65 \frac{2}{\sqrt{10}}$$

So

$$P(\bar{X} - 1.65\frac{2}{\sqrt{10}} < \mu < \bar{X} + 1.65\frac{2}{\sqrt{10}}) = 0.90$$

Denote
$$E = 1.65 \frac{2}{\sqrt{10}} = 1.04$$

$$\hat{\mu}_L = \bar{X} - E$$
, and $\hat{\mu}_U = \bar{X} + E$

Then

$$P(\hat{\mu}_L < \mu < \hat{\mu}_U) = 0.90$$

Interval $(\hat{\mu}_L, \hat{\mu}_U)$ is called a confidence interval for μ with 90% confidence level.

Point Estimation Unbiasedness of a Point Estimate Efficiency Interval Estimation

Confidence Interval for θ

Definition. Let θ be a population parameter and $\hat{\Theta}_L$ and $\hat{\Theta}_U$ be two statistics and $0 < \alpha < 1$. If

$$P(\hat{\Theta}_L < \theta < \hat{\Theta}_U) = 1 - \alpha$$

then interval $(\hat{\Theta}_L, \hat{\Theta}_U)$ is called a 100(1 – α)% confidence interval for θ .

Confidence Interval for μ with Known σ

Confidence Interval for μ The $(1 - \alpha)100\%$ confidence interval for μ is

$$\bar{x} \pm z_{\alpha/2} \sigma_{\hat{\mu}}$$

where $E=z_{\alpha/2}\sigma_{\hat{\mu}}$ is the margin of error $\sigma_{\hat{\mu}}=\frac{\sigma}{\sqrt{n}}$ and $z_{\alpha/2}$ satisfies

z value with $\alpha = 0.05$

z value in the confidence interval for μ with $\alpha = 0.05$

$$1 - \alpha = 1 - 0.05 = 0.95, \quad \frac{\alpha}{2} = 0.025$$
 $z_{\alpha/2} = z_{0.025} = 1.96$

Commonly used z values

Table 8.1 z Values for Commonly Used Confidence Levels

Confidence Level	Areas to Look for in Table IV	z Value	
90%	.0500 and .9500	1.64 or 1.65	
95%	.0250 and .9750	1.96	
96%	.0200 and .9800	2.05	
97%	.0150 and .9850	2.17	
98%	.0100 and .9900	2.33	
99%	.0050 and .9950	2.57 or 2.58	

Error in Estimating μ by \overline{X}

The 100(1 $-\alpha$)% confidence interval

$$\bar{x} \pm z_{\alpha/2} \sigma / \sqrt{n}$$

also means that when we use \bar{x} to estimate μ , we can be $100(1-\alpha)\%$ confident that the error will not exceed the margin of error $E=z_{\alpha/2}\sigma/\sqrt{n}$

Example

Example 1(cont.) Find the 99% confidence interval for μ based on the data of Example 1:

Solution

$$\bar{x} = 56.8, \quad \alpha = 0.01,$$
 $z_{\alpha/2} = z_{0.005} = 2.57$

The 99% confidence interval for μ is

$$\left[\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \ \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right] = [55.17, 58.43]$$

Example

Example 1(cont.) Find the 99% confidence interval for μ based on the data of Example 1:

Solution

$$\bar{x} = 56.8, \quad \alpha = 0.01,$$

$$z_{\alpha/2} = z_{0.005} = 2.57$$

The 99% confidence interval for μ is

$$\left[\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \ \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right] = [55.17, 58.43]$$

Using TI-8x to Obtain CI: ZInterval

```
ZInterval
 Inpt:Data Signs
 C-Level:.95∎
Calculate
```

Using Excel to Obtain CI: CONFIDENCE

TINV \bullet \times \checkmark f_{\times} =CONFIDENCE(0.05, 2, 65)								
4	Α	В	С	D	Е	F		
1	Mean	11						
2	Std. Dev.	2						
3	Size	65						
4	Alpha	0.05						
5								
6	Margin of Error E:	=CONFIDENCE(0.05, 2, 65)						
7		CONFIDENCE(alpha, standard_dev, size)						
8								
9								

Using Excel to Obtain CI: CONFIDENCE

	C10	- (•	f _x				
	Α	В	С	D	Е	F	G
1	Mean	11					
2	Std. Dev.	2					
3	Size	65					
4	Alpha	0.05					
5							
6	Margin of Error E:	0.486207					
7							
8							

Outline

- 9.3 Classical Methods of Estimation
 - Point Estimation
 - Unbiasedness of a Point Estimate
 - Efficiency
 - Interval Estimation
- 9.4 Single Sample: Estimating the Mean
 - Sample Size
 - ullet One-Sided Confidence Bounds with Known σ

Sample size, confidence level and width of confidence interval

The CI $\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ is centered at \bar{x} with width $w_n(\alpha) = 2E = 2z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$.

- (a) when α is fixed, as $n \nearrow \infty$, $w_n(\alpha) \searrow 0$.
- (b) when n is fixed, there is a **trade-off** between confidence level and width of confidence interval. As $1 \alpha \nearrow 1$ ($\alpha \searrow 0$), then $z_{\alpha/2} \nearrow \infty$, so $w_n(\alpha) \nearrow \infty$.

Sample size, confidence level and width of confidence interval

The CI $\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ is centered at \bar{x} with width $w_n(\alpha) = 2E = 2z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$.

- (a) when α is fixed, as $n \nearrow \infty$, $w_n(\alpha) \searrow 0$.
- (b) when n is fixed, there is a **trade-off** between confidence level and width of confidence interval. As $1 \alpha \nearrow 1$ ($\alpha \searrow 0$), then $z_{\alpha/2} \nearrow \infty$, so $w_n(\alpha) \nearrow \infty$.

Sample size, confidence level and width of confidence interval

The CI $\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ is centered at \bar{x} with width $w_n(\alpha) = 2E = 2z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$.

- (a) when α is fixed, as $n \nearrow \infty$, $w_n(\alpha) \searrow 0$.
- (b) when n is fixed, there is a **trade-off** between confidence level and width of confidence interval. As $1 \alpha \nearrow 1$ $(\alpha \searrow 0)$, then $z_{\alpha/2} \nearrow \infty$, so $w_n(\alpha) \nearrow \infty$.

Because

$$E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \longrightarrow E^2 = z_{\alpha/2}^2 \frac{\sigma^2}{n}$$

In order to obtain an CI with a given margin of error *E*, the sample size should be

$$n = \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2 = z_{\alpha/2}^2 \frac{\sigma^2}{E^2}$$

- 1. Take preliminary sample of any size(better be 30 or greater). Use sample standard deviation s to estimate σ .
- 2. Estimate σ based on other study done earlier
- 3. $\sigma \approx \text{range/4}$

Because

$$E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \longrightarrow E^2 = z_{\alpha/2}^2 \frac{\sigma^2}{n}$$

In order to obtain an CI with a given margin of error *E*, the sample size should be

$$n = \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2 = z_{\alpha/2}^2 \frac{\sigma^2}{E^2}$$

- 1. Take preliminary sample of any size(better be 30 or greater). Use sample standard deviation s to estimate σ .
- 2. Estimate σ based on other study done earlier.
- 3. $\sigma \approx \text{range/4}$

Because

$$E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \longrightarrow E^2 = z_{\alpha/2}^2 \frac{\sigma^2}{n}$$

In order to obtain an CI with a given margin of error *E*, the sample size should be

$$n = \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2 = z_{\alpha/2}^2 \frac{\sigma^2}{E^2}$$

- 1. Take preliminary sample of any size(better be 30 or greater). Use sample standard deviation s to estimate σ .
- 2. Estimate σ based on other study done earlier
- 3. $\sigma pprox$ range/4.

Because

$$E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \longrightarrow E^2 = z_{\alpha/2}^2 \frac{\sigma^2}{n}$$

In order to obtain an CI with a given margin of error *E*, the sample size should be

$$n = \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2 = z_{\alpha/2}^2 \frac{\sigma^2}{E^2}$$

- 1. Take preliminary sample of any size(better be 30 or greater). Use sample standard deviation s to estimate σ .
- 2. Estimate σ based on other study done earlier
- 3. $\sigma pprox$ range/4.

Because

$$E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \longrightarrow E^2 = z_{\alpha/2}^2 \frac{\sigma^2}{n}$$

In order to obtain an CI with a given margin of error *E*, the sample size should be

$$n = \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2 = z_{\alpha/2}^2 \frac{\sigma^2}{E^2}$$

- 1. Take preliminary sample of any size(better be 30 or greater). Use sample standard deviation s to estimate σ .
- 2. Estimate σ based on other study done earlier.
- 3. $\sigma \approx \text{range/4}$

Because

$$E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \longrightarrow E^2 = z_{\alpha/2}^2 \frac{\sigma^2}{n}$$

In order to obtain an CI with a given margin of error *E*, the sample size should be

$$n = \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2 = Z_{\alpha/2}^2 \frac{\sigma^2}{E^2}$$

What if σ is unknown?

- 1. Take preliminary sample of any size(better be 30 or greater). Use sample standard deviation s to estimate σ .
- 2. Estimate σ based on other study done earlier.

3. $\sigma \approx \text{range/4}$

Because

$$E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \longrightarrow E^2 = z_{\alpha/2}^2 \frac{\sigma^2}{n}$$

In order to obtain an CI with a given margin of error *E*, the sample size should be

$$n = \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2 = Z_{\alpha/2}^2 \frac{\sigma^2}{E^2}$$

- 1. Take preliminary sample of any size(better be 30 or greater). Use sample standard deviation s to estimate σ .
- 2. Estimate σ based on other study done earlier.
- 3. $\sigma \approx \text{range/4}$.

Example 2 Let x be the excess weight of soap in a 1000-gram bottle. Assume that the distribution of x is normal with μ and standard deviation of $\sigma = 13$. What sample size is required so that we have 95% CI for μ with margin of error 1.5?

Solution $\sigma^2 = 169$. E = 1.5. $\alpha = 0.05$, $z_{\alpha/2} = 1.96$

$$n = \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2 = \frac{1.96^2(169)}{1.5^2} = 288.5468.$$

So we should choose n = 289.

Example 2 Let x be the excess weight of soap in a 1000-gram bottle. Assume that the distribution of x is normal with μ and standard deviation of $\sigma = 13$. What sample size is required so that we have 95% CI for μ with margin of error 1.5? **Solution** $\sigma^2 = 169$. E = 1.5. $\alpha = 0.05$, $z_{\alpha/2} = 1.96$.

$$n = \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2 = \frac{1.96^2(169)}{1.5^2} = 288.5468.$$

So we should choose n = 289.

Example 3: Price of Textbook If we know that the maximum price is \$170 and the cheapest textbook is \$10. We want to estimate the mean(average) price μ of the college textbooks. Confidence level is 99% with margin of error E =\$5. What is the sample size?

Solution Since we know that the maximum price is \$170 and the cheapest textbook is \$10, we can estimate σ by

$$\sigma = \frac{\text{range}}{4} = (170 - 10)/4 = 40.$$

$$\alpha = 0.99, z_{\alpha/2} = 2.575, E = 5,$$

$$n = \left(\frac{Z_{\alpha/2}\sigma}{E}\right)^2 = (2.575(40)/5)^2 = 424.36 \approx 425$$

Example 3: Price of Textbook If we know that the maximum price is \$170 and the cheapest textbook is \$10. We want to estimate the mean(average) price μ of the college textbooks. Confidence level is 99% with margin of error E =\$5. What is the sample size?

Solution Since we know that the maximum price is \$170 and the cheapest textbook is \$10, we can estimate σ by

$$\sigma = \frac{\text{range}}{4} = (170 - 10)/4 = 40.$$

$$\alpha = 0.99, z_{\alpha/2} = 2.575, E = 5,$$

$$n = \left(\frac{Z_{\alpha/2}\sigma}{E}\right)^2 = (2.575(40)/5)^2 = 424.36 \approx 425.$$

Example 4: A light bulb manufacturer sells a light bulb that has a mean life of 1450 hours with standard deviation of 33.7 hours. A new manufacturing process is being tested and there is interest in knowing the mean life μ of the new bulbs. How large a sample is required so that $\bar{x} \pm 5$ is a 95% CI for μ ? You may assume that the standard deviation is still the same.

Solution
$$\sigma = 33.7$$
. $E = 5$. $\alpha = 0.05$, $z_{\alpha/2} = 1.96$.

$$n = \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2 = \frac{1.96^2(33.7)^2}{5^2} = 174.5147.$$

So we should choose n=175.

Example 4: A light bulb manufacturer sells a light bulb that has a mean life of 1450 hours with standard deviation of 33.7 hours. A new manufacturing process is being tested and there is interest in knowing the mean life μ of the new bulbs. How large a sample is required so that $\bar{x} \pm 5$ is a 95% CI for μ ? You may assume that the standard deviation is still the same.

Solution $\sigma = 33.7$. E = 5. $\alpha = 0.05$, $z_{\alpha/2} = 1.96$.

$$n = \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2 = \frac{1.96^2(33.7)^2}{5^2} = 174.5147.$$

So we should choose n = 175.

Outline

- 9.3 Classical Methods of Estimation
 - Point Estimation
 - Unbiasedness of a Point Estimate
 - Efficiency
 - Interval Estimation
- 9.4 Single Sample: Estimating the Mean
 - Sample Size
 - One-Sided Confidence Bounds with Known σ

Confidence Bounds (Limits)

- Sometimes, we are only interested in an upper/lower limits for μ .
- A 100(1 $-\alpha$)% lower confidence bound for μ with known σ^2 is

$$\overline{X} - z_{\alpha} \frac{\sigma}{\sqrt{n}}$$

• A 100(1 $-\alpha$)% upper confidence bound for μ with known σ^2 is

$$\overline{X} + Z_{\alpha} \frac{\sigma}{\sqrt{n}}$$

Confidence Bounds (Limits)

- Sometimes, we are only interested in an upper/lower limits for μ .
- A 100(1 $-\alpha$)% lower confidence bound for μ with known σ^2 is

$$\overline{X} - z_{\alpha} \frac{\sigma}{\sqrt{n}}$$

• A 100(1 $-\alpha$)% upper confidence bound for μ with known σ^2 is

$$\overline{X} + z_{\alpha} \frac{\sigma}{\sqrt{n}}$$

Confidence Bounds (Limits)

- Sometimes, we are only interested in an upper/lower limits for μ .
- A 100(1 $-\alpha$)% lower confidence bound for μ with known σ^2 is

$$\overline{X} - z_{\alpha} \frac{\sigma}{\sqrt{n}}$$

• A 100(1 $-\alpha$)% upper confidence bound for μ with known σ^2 is

$$\overline{X} + z_{\alpha} \frac{\sigma}{\sqrt{n}}$$

Example 5: During the Friday night shift, n=28 mints were selected at random from a production line and weighted. They had an average weight of $\bar{x}=21.45$ grams. Assume that the weights of all the mints have a normal distribution with a unknown mean μ and a known standard deviation $\sigma=0.30$. Give a 90% lower confidence bound for μ .

Solution n=28, $\bar{x}=21.45$, $\sigma=0.30$, lpha=0.1. A 100(1-lpha)%=90% lower confidence bound for μ is

$$\bar{x} - z_{\alpha} \frac{\sigma}{\sqrt{n}} = 21.45 - 1.28 \frac{0.30}{\sqrt{28}} = 21.45 - 0.073 = 21.38$$

Example 5: During the Friday night shift, n=28 mints were selected at random from a production line and weighted. They had an average weight of $\bar{x}=21.45$ grams. Assume that the weights of all the mints have a normal distribution with a unknown mean μ and a known standard deviation $\sigma=0.30$. Give a 90% lower confidence bound for μ .

Solution n = 28, $\bar{x} = 21.45$, $\sigma = 0.30$, $\alpha = 0.1$. A $100(1 - \alpha)\% = 90\%$ lower confidence bound for μ is

$$\bar{x} - z_{\alpha} \frac{\sigma}{\sqrt{n}} = 21.45 - 1.28 \frac{0.30}{\sqrt{28}} = 21.45 - 0.073 = 21.38.$$

Confidence Interval for μ with Unknown σ

Replace σ and $z_{\alpha/2}$ with s and $t_{\alpha/2}$ respectively

If σ is not know, the $(1 - \alpha)100\%$ confidence interval for μ is

$$\bar{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$$

where $E=t_{lpha/2} rac{s}{\sqrt{n}}$ is the margin of error and $t_{lpha/2}$ satisfies

Large Sample Confidence Interval for μ w/ Unknown σ

If $n \geqslant 30$, replace σ with s

The $(1 - \alpha)100\%$ large sample confidence interval for μ is

$$ar{x}\pm z_{lpha/2}rac{s}{\sqrt{n}}$$

where $E=z_{\alpha/2} \frac{s}{\sqrt{n}}$ is the margin of error and $z_{\alpha/2}$ satisfies

Example 6: As a clue to the amount of organic waste in Lake Macatawa, a count was made of the number of bacteria colonies in 100 milliliters of water. The number of colonies, in hundreds, for n = 30 samples of water from the east basin yield

Find a 90% exact and large sample confidence interval for the mean number μ_E of colonies in 100 milliliters of water in the east basin.

Solution $\bar{x} = 60.37$, s = 39.62, Choose $\alpha = 0.1$.

The exact 90% confidence interval is

$$\bar{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}} = 60.37 \pm 1.70 \frac{39.62}{\sqrt{30}} = 60.37 \pm 12.29$$

$$= [48.08, 72.66].$$

A 90% large sample confidence interval for $\mu_{\it E}$ is

$$\bar{x} \pm z_{\alpha/2} \frac{s}{\sqrt{n}} = 60.37 \pm 1.65 \frac{39.62}{\sqrt{30}} = 60.37 \pm 11.899$$

$$= [48.468, 72.265].$$