

Solution to Homework 2 (Graded)

Friday, November 29, 2019

Exercise 1. Quick Review of Chapter 2

- (i) In the following, we have to check that the system is linear $(A(\alpha x + \beta y) = \alpha Ax + \beta Ay)$ for any scalars α, β and shift invariant $(A(x(t-\tau)) = (Ax)(t-\tau))$:
 - We can use the fact that convolution is linear and shift invariant. But we can also show this directly:

$$A(\alpha x + \beta y)(k) = \sum_{n} (\alpha x[n] + \beta y[n]) h_A[k - n]$$

$$= \sum_{n} \alpha x[n] h_A[k - n] + \sum_{n} \beta y[n] h_A[k - n]$$

$$= \alpha \sum_{n} x[n] h_A[k - n] + \beta \sum_{n} y[n] h_A[k - n]$$

$$= \alpha A x(k) + \beta A y(k)$$

And similarly:

$$A(x[n-m]) = \sum_{n} x[n-m]h_{A}[k-n]$$

$$= \sum_{n} x[n-m]h_{A}[(k-m) - (n-m)]$$

$$= Ax[k-m]$$

- B is not linear, because for $\alpha = 0$ and any x we have $B(0 \cdot x)(t) = \operatorname{sinc}(t) \neq 0 = 0 \cdot B(x)(t)$
- C is not shift invariant. Consider indicator function $x = \mathbb{I}_{[-1,1]}$, depicted below. Then $C(x)(t) = \mathbb{I}_{[-0.5,0.5]}$, and consequently $C(x)(t-1) = \mathbb{I}_{[0.5,1.5]}$. On the other hand $x(t-1) = \mathbb{I}_{[0,2]}(t)$, and $C(x(t-1)) = I_{[0,1]}$, so $C(x)(t-1) \neq C(x(t-1))$.

• D is linear and shift invariant (from the definition of the derivative). The linearity of derivative should be clear, but for shift invariance, let $s = t - \tau$. Then $D(x)(s) = \frac{dx}{ds}(s) = \frac{dx}{dt}(t - \tau) = D(x(t - \tau))$.

(ii) Rewriting the adjoint definition using the inner product of $\mathcal{L}^2[a,b]$ gives

$$\langle h, \mathcal{T}f \rangle = \langle \mathcal{T}^*h, f \rangle \Longleftrightarrow \int_a^b \overline{h(x)}(\mathcal{T}f)(x)dx = \int_a^b \overline{(\mathcal{T}^*h)(r)}f(r)dr,$$

Substituting the kernel representations for \mathcal{T} and \mathcal{T}^* , we obtain

$$\int_{a}^{b} \overline{h(x)} \Big(\int_{a}^{b} T(x,y) f(y) dy \Big) dx = \int_{a}^{b} \overline{\Big(\int_{a}^{b} T^{*}(r,\rho) h(\rho) d\rho \Big)} f(r) dr$$

$$\implies \int_{a}^{b} \int_{a}^{b} \overline{h(x)} T(x,y) f(y) dy dx = \int_{a}^{b} \int_{a}^{b} \overline{h(\rho)} \overline{T^{*}(r,\rho)} f(r) dr d\rho$$

which can be written as

$$\int_{a}^{b} \int_{a}^{b} \overline{h(x)} \left(T(x,y) - \overline{T^{*}(y,x)} \right) f(y) dy dx = 0$$

which leads to $T^*(y,x) = \overline{T(x,y)}$.

(iii) Again, from the definition of adjoint operator, we are looking for an operator C^* such that $\langle y, Cx \rangle = \langle C^*y, x \rangle$. Expanding the inner product we get:

$$\langle y, Cx \rangle = \int_{-\infty}^{\infty} y^*(t)x(2t)dt$$
$$= \int_{-\infty}^{\infty} \frac{1}{2} y^*\left(\frac{s}{2}\right)x(s)ds,$$

where the second equality comes from the change of variables. We get that the adjoint is $C^*x(t) = \frac{1}{2}x\left(\frac{t}{2}\right)$.

(iv) Yet again, from the definition of adjoint operator, we are looking for an operator D^* such that $\langle y, Dx \rangle = \langle D^*y, x \rangle$, where $x, y \in \mathcal{H}$. Expanding the inner product we get:

$$\langle y, Dx \rangle = \int_{-\infty}^{\infty} y^*(t) \frac{dx}{dt}(t) dt = \int_{-a}^{b} y^*(t) \frac{dx}{dt}(t) dt,$$

were a, b are some constants dependent on x, y. Integrating by parts we get that:

$$\langle y, Dx \rangle = [x(t)y(t)]_a^b - \int_{-a}^b \frac{dy^*}{dt}(t)x(t)dt$$
$$= \int_{-a}^b \frac{dy^*}{dt}(t)x(t)dt$$
$$= \int_{-\infty}^\infty \frac{dy^*}{dt}(t)x(t)dt,$$

so we get $D^*x = -\frac{dx}{dt} = -Dx$.

Solution 1. LCMV AND GSC DERIVATION

(i) Any x' for which Ax' = b can be written as x' = x + z, where $z \in \mathcal{N}(A)$ and x is the minimum norm solution of our optimization problem. The minimum norm solution x is given by projecting the zero vector onto the constraint hyperplane Ax = b. Vector x is thus orthogonal to $\mathcal{N}(A)$, i.e. $x \in \mathcal{R}(A^*)$. In other words, we can write $x = A^*y$, which brings us to

$$A A^* y = b$$
 and $x = A^* y$.

- (ii) If A is of full rank, AA^* is invertible and $x = A^*(AA^*)^{-1}b$.
- (iii) Since R_x is a positive definite covariance matrix, its eigenvalues are all positive and it can thus be written as $R_x = V \Lambda_s \Lambda_s V^*$, where V is an $M \times M$ matrix with orthonormal eigenvectors of R_x , while Λ_s is a diagonal matrix with positive entries equal to square roots of eigenvalues of R_x .

We define an $M \times M$ matrix B as $B = \Lambda_s V^*$. Matrix B contains scaled eigenvectors of R_x as columns and is of full rank; we also have $R_x = B^* B$. The inverse of B is given by $B^{-1} = V \Lambda_s^{-1}$, where Λ_s^{-1} is a diagonal matrix whose diagonal elements are reciprocals of elements of Λ_s .

The original optimization problem can then be rewritten in the following way:

$$h = \underset{h}{\operatorname{argmin}} h^* B^* B h$$
 subject to $C^* h = f$.

By noticing that any vector h can be written as $h = B^{-1} g$ (remember that B is a basis), the optimization problem can be rephrased as finding the vector g such that g = B h and

$$g = \underset{q}{\operatorname{argmin}} g^* g$$
 subject to $C^* B^{-1} g = f$.

This we recognize to be the optimization problem from the first part of the exercise, where the matrix C^*B^{-1} plays the role of the constraint matrix A. The fact that C and B^{-1} are of full rank then makes it possible to express the solution as

$$h = B^{-1}(B^*)^{-1} C(C B^{-1}(B^*)^{-1} C^*)^{-1} f.$$
 (1)

Since $R_x = B^* B$, we can replace $B^{-1}(B^*)^{-1}$ with R_x^{-1} to arrive at

$$h = R_x^{-1} C \left(C^* R_x^{-1} C \right)^{-1} f.$$

(iv) We denote by $\mathcal{L}(h_n)$ the cost function that is minimized, namely $\mathcal{L}(h_n) = (h_0 - C_n h_n)^* R_x (h_0 - C_n h_n)$. Since $\mathcal{L}(h_n)$ is a quadratic form, its minimum is given by its stationary point

$$\frac{\partial \mathcal{L}}{\partial h_n} = 2 C_n^* R_x C_n h_n - 2 C_n^* h_0 = 0.$$

Since C_n and R_x are of full rank, the matrix $C_n^* R_x C_n$ is invertible, so we have

$$h_n = (C_n^* R_x C_n)^{-1} C_n^* R_x h_0.$$