CS 4602

Introduction to Machine Learning

NTHU / Autumn 2021-2022

Instructor: Po-Chih Kuo (郭柏志)

Human-Centered Machine Intelligence Lab https://pochihkuo.github.io/

Logistics

- Instructor: Po-Chih Kuo (郭柏志)
 - Email: kuopc@cs.nthu.edu.tw
 - Office: Delta 630
 - Office hours: Wednesdays 14:30-15:30

Po-Chih Kuo 郭柏志

• TA:

- TA hours: Thursday 17:00-18:00
- Make a reservation via google doc by Thursday 10am https://docs.google.com/spreadsheets/d/1aotMMgXQIMGPoycSLi_0rTm-KzJc_heHlozsOTpR0Jw/edit#gid=0

Ivan Lim Po-Chun Lin

Li-Ching Chen

Ryan Wang

Communication

- We will use eLearn for all communications: announcements and questions related to lectures, assignments, and projects.
 - You should be added to the eLearn automatically
- Teams will be used for remote lecture

Prerequisites

- This course covers a lot of ground
 - Calculus
 - Probability
 - Programming: Python

Rules

- Remote lecture
- English is the official language (some mandarin)
- No roll call but there might be bonus for attendance
- Ask and answer questions! (Mandarin is acceptable)
- It will be awesome if you can turn on you camera

Textbook

- There is no required textbook for this class
- You should be able to learn everything from the lecture slides and homework
- Lecture slides will be uploaded to eLearn

References

- "Pattern Recognition and Machine Learning"
- Christopher Bishop
- ISBN: 978-0387310732
- "Deep Learning"
- Ian Goodfellow, Yoshua Bengio, and Aaron Courville
- ISBN: 978-0262035613
- "Introduction to Machine Learning with Python"
- Andreas C. Müller, Sarah Guido
- ISBN: 978-1449369415
- "An Introduction to Machine Learning"
- Miroslav Kubat
- ISBN: 978-3319200101
- (Electronic version is available from the library)

Goals

- To understand the basic principles of machine learning
- To become familiar with widely used machine learning algorithms
- To learn how to use machine learning algorithms to solve real problems
- To properly evaluate the model performance
- Little math

Evaluation

• Exams: 30%

Assignments: 40%

• Term project: 30%

- 4 Exams: 30%
 - Answer by your smartphone or laptop

- 5 assignments: 40%
 - Due two weeks after the announcement
 - Google Colab is recommende
 - The scores will be given based on your model's performance on testing data, which are held in our hands (35%).
 - Hand in a brief report (5%)
 - Do not plagiarism

- Term project: 30%
 - Any ML-related projects are welcome
 - 3-6 members per team (Teamwork is recommended!)
 - Hand in your proposal during mid-term (10%)
 - 5 % from TAs and 5% from Lecturer.
 - Give a brief presentation in English on your project
 - 3 mins for each team by video.
 - Introduce your topics and team members "with Photo".
 - 10 top-ranked team will got extra 1 point to the total grade.

- Final presentation (in English, 5 mins presentation + 3 min QA) at the end of the semester
- Hand in a report (2-8 pages) with the format as an IEEE paper including Introduction, Methods, Results and Conclusions
- Evaluated by TAs and instructor (20%)

Syllabus

- Introduction and Basic Concepts
- Regression
- Bayesian Classifiers
- Decision Trees
- KNN
- Linear Classifier
- Neural Networks
- Deep learning
 - Convolutional Neural Networks
 - Autoencoder
 - Adversarial
 - RNN
- Reinforcement Learning
- Model Selection and Evaluation
- Clustering
- Dimensionality reduction

Error-Based Learning

Probability-Based Learning

Information-Based Learning

Similarity-Based Learning

Unsupervised Learning

September 2021

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30		

Introduction and Basic Concepts

Regression

December 2021

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30	31	

Reinforcement learning Model Selection & Evaluation Clustering

Dim. Reduction

Recap

October 2021

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30
31						

Bayesian Classifiers

Decision Trees

Linear Classifier

Neural Networks

JANUARY 2022							
SUN	MON	TUE	WED	THU	FRI	SAT	
						1	
2	3	4 💙	5	6 💙	7	8	
9	10	11 💙	12	13	14	15	
16	17	18	19	20	21	22	
23	24	25	26	27	28	29	
30	31						
30		rintable Calor					

Printable Calendars From 123Calendars.Com

November 2021

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25 💛	26	27
28	29	30				

Deep learning

Convolutional Neural Networks

Autoencoder

Adversarial

RNN (Transformer)

Quiz

Holiday

Upload proposal presentation

Project presentation

Human-Centered Machine Intelligence in Healthcare (HMIH) Workshop

Human-Centered Machine Intelligence in Healthcare (HMIH) Workshop

Leo Anthony Celi · 2nd Associate Professor Of Medicine, Part-Time at Harvard Medical School Cambridge, Massachusetts, United States ·

Harvard T.H. Chan School of Public Health

Kun-Hsing Yu · 3rd
Assistant Professor at Harvard Medical School
Boston, Massachusetts, United States · Contact info
500+ connections

Cameron Po-Hsuan Chen · 2nd

Contact info

Tech Lead Manager, ML&AI Researcher/Engineer, Google Health San Francisco Bay Area · Contact info

Quiz time!

Ginizizz

Questions?

When you get your first job with all the knowledge you got from your CS degree

