EE2003: Computer Organisation

Assignment 3 EE15B025 | Ganga Meghanath

Question

Design a 4-bit Adder/ Subtractor using 2's complement method. The implementation should have a add/subtract control bit. Write a separate implementation (Behavioral) for the Full Adder and instantiate it in the final design as required.

Answer

In digital circuits, an adder–subtractor is a circuit that is capable of adding or subtracting numbers (in particular, binary). Below is a circuit that does adding or subtracting depending on a control signal.

We use four full-adders with a 4-bit input A, and a 4-bit input B whose bits may be XOR'd based on the mode chosen. The mode will be decided by bit M in the circuit below.

For subtraction M = 1.1 is chosen because M acts as the carry-in. Therefore, all bits of B will be inverted and 1 will be added to the LSB to find the 2's complement.

This works because when M=1, the A input to the adder is really A and the carry in is 1. Adding B to A and 1 yields the desired subtraction of B-A.

For addition, M = 0. Therefore, carry-in is set to zero as desired.

If the inputs A and B are unsigned, the answer will give A - B if A \geq B OR the 2's complement of (B-A) if A \leq B.

If the inputs A and B are signed, the range of values I could use are from 0 - 7 and the result will give signed A - B as long as there is no overflow.

Examples:

0101 5	0111 7
+ 1010 -6	+ 1101 -3
1111 -1	10100 -> 0100 : 4

So we conclude that the circuit is controlled by the control bit in the following manner:

- Addition when M = 0
- Subtraction when M = 1

Full Adder:

Full Adder truth table:

Cases	y□- 1	X□-1	C□-1	сП	S□-1
1	0	0	0	0	0
2	0	0	1	0	1
3	0	1	0	0	1
4	0	1	1	1	0
5	1	0	0	0	1
6	1	0	1	1	0
7	1	1	0	1	0
8	1	1	1	1	1

Full Adder Implementation using Half Adders :

Half adder circuit:

Half Adder truth table:

Cases	A (Input)	B (Input)	S (Output)	C (Output)
1	0	0	0	0
2	0	1	1	0
3	1	0	1	0
4	1	1	0	1

Overflow:

 $c\square \oplus c\square_{-1}$ is a correct indicator of overflow in the addition of 2's complement integers.

Truth Table

Cases	y□- 1	X□-1	C□-1	сП	SII - 1	C□⊕C□ - 1
1	0	0	0	0	0	0
2	0	0	1	0	1	1
3	0	1	0	0	1	0
4	0	1	1	1	0	0
5	1	0	0	0	1	0
6	1	0	1	1	0	0
7	1	1	0	1	0	1
8	1	1	1	1	1	0

As we can see from the truth table, when the output sign bit is different from that of the inputs, $c\square \oplus c\square_{-1}$ becomes 1. Hence, we can check for overflow using $c\square \oplus c\square_{-1}$.

Results obtained:

```
ganga@ganga-GL502VMK: ~/Documents/Academics/5th Semester/EE2003 : Computer Organisation/Assignments/Assignment 3/
ganga@ganga-GL502VMK: ~/Documents/Academics/5th Semester/EE2003 : Computer Organisation/Assignments/Assignment 3/
ganga@ganga-GL502VMK:~/Documents/Academics/5th Semester/EE2003 : Computer Organisation/Assignments/Assignment 3/EE158025$ ive
ganga@ganga-GL502VMK:~/Documents/Academics/5th Semester/EE2003 : Computer Organisation/Assignments/Assignment 3/EE158025$ vvp
VCD info: dumpfile testbench.vcd opened for output.
Control bit : 1 A = 0000 B = 0000 Result = 0000 Carry = 1 Overflow bit = 0
Control bit : 1 A = 0011 B = 0010 Result = 0001 Carry = 1 Overflow bit = 0
Control bit : 1 A = 0101 B = 1010 Result = 1011 Carry = 0 Overflow bit = 1
Control bit : 0 A = 1111 B = 0011 Result = 0010 Carry = 1 Overflow bit = 0
ganga@ganga-GL502VMK:~/Documents/Academics/5th Semester/EE2003 : Computer Organisation/Assignments/Assignment 3/EE15B025$
```

