Representation Theory of Finite Groups - Assignment 4

Matteo Durante, s2303760, Leiden University

15th April 2019

Exercise 7.1

Proof. (a) We only have to prove that V is closed with respect to the action of $\mathbb{K}[G]$ onto itself. Seeing the $\lambda \sum_{g \in G} g \in V$ as elements of $\mathbb{K}[G]$, for any $h \in G$ we have that $h \cdot \lambda \sum_{g \in G} g = \lambda \sum_{g \in G} g$, that is h acts as Id_V .

 $\lambda \sum_{g \in G} hg = \lambda \sum_{g \in G} g, \text{ that is } h \text{ acts as } \text{Id}_V.$ We see that, given $\sum_{h \in G} c_h h \in \mathbb{K}[G]$, we have $(\sum_{h \in G} c_h h) \cdot (\lambda \sum_{g \in G} g) = \sum_{h \in G} \lambda c_h \sum_{g \in G} hg = (\sum_{h \in G} \lambda c_h) \sum_{g \in G} g \in V.$

Proof. (b) Consider a $\mathbb{K}[G]$ -linear map $\mathbb{K}[G] \xrightarrow{f} V$. We have that $f(\lambda \sum_{g \in G} g) = (\lambda \sum_{g \in G} g) \cdot f(1) = \lambda \sum_{g \in G} g \cdot f(1) = \lambda \sum_{g \in G} f(1) = \lambda |G| = 0$, thus $\lambda \sum_{g \in G} g \in \ker(f)$ and $V \subset \ker(f)$.

Proof. (c) Consider the surjective $\mathbb{K}[G]$ -linear map $\mathbb{K}[G] \xrightarrow{f} V$ s.t. $f(1) = \sum_{g \in G} g$. If $\mathbb{K}[G]$ was semi-simple, then the short exact sequence $0 \to \ker(f) \to \mathbb{K}[G] \xrightarrow{f} V \to 0$ would split and therefore there would be a map $V \xrightarrow{r} \mathbb{K}[G]$ s.t. $fr = \operatorname{Id}_V$.

We shall show that any $\mathbb{K}[G]$ -linear map $V \xrightarrow{h} \mathbb{K}[G]$ is s.t. $h(V) \subset V$ and therefore $fr = 0 \neq \mathrm{Id}_V$, which will give us a contradiction.

We know that, for any $g' \in G$, $\lambda \sum_{g \in G} g \in \mathbb{K}[G]$, we have that $h(\lambda \sum_{g \in G} g) = h(g' \cdot \lambda \sum_{g \in G} g) = g' \cdot h(\lambda \sum_{g \in G} g)$. Since $h(\lambda \sum_{g \in G} g) = \sum_{g \in G} c_g g$, this tells us that $c_g = c_{g'g}$ for any $g' \in G$, hence choosing $g' = g^{-1}$ we see that $c_g = c_1$ for every $g \in G$. It follows that $h(\lambda \sum_{g \in G} g) = \sum_{g \in G} \mu g = \mu \sum_{g \in G} g$ for some $\mu \in \mathbb{K}$, hence $h(V) \subset V$.

Exercise 7.8

Proof. (a) First of all, we shall determine the conjugacy classes of S_4 .

We see that the partitions of 4 are (1,1,1,1), (1,1,2), (2,2), (1,3), (4), which also describe how the elements of S_4 can be factored through disjoint cycles. By computations, we see that S_4 has 5 conjugacy classes:

- the one of the identity, having only the identity;
- the one of the swaps (a b), $a \neq b$, which contains $\frac{4\cdot 3}{2} = 6$ elements, i.e. one for every unordered pair of elements in $\{1, 2, 3, 4\}$;
- the one of the elements obtained by composing two disjoint swaps, that is $(a\ b)(c\ d)$ with a,b,c,d all distinct; here we have $\frac{1}{2}\cdot\frac{4\cdot 3}{2}\cdot 1=3$ elements;

- the one given by 3-cycles, which are $\frac{4\cdot 3\cdot 2}{3} = 8$;
- the one given by 4-cycles, which are $\frac{4!}{4} = 6$.

We want to prove that a finite group G has one irreducible \mathbb{K} -representation for every conjugacy class, which will conclude the proof.

We know that $\operatorname{Class}_{\mathbb{K}}(G) \cong \mathbb{K}^{G/\sim}$, thus $\dim_{\mathbb{K}}(\operatorname{Class}_{\mathbb{K}}(G)) = \dim_{\mathbb{K}}(\mathbb{K}^{G/\sim}) = |G/\sim|$.

Since the irreducible characters form a basis of $\mathrm{Class}_{\mathbb{K}}(G)$, $\dim_{\mathbb{K}}(\mathrm{Class}_{\mathbb{K}}(G))$ is also the number of irreducible characters, which correspond bijectively to irreducible representations.

Proof. (b) We already know from (a) that the irreducible \mathbb{K} -representations of S_4 are 5.

Remember that, since \mathbb{K} is an algebraically closed field and $char(\mathbb{K}) \nmid |G|$, |G| = 24 is the sum of the squares of the dimensions d_i of the irreducible \mathbb{K} -representations by [1, thm. 9.14].

As we know from the example concerning S_3 mentioned in class, there are two representations of dimension $d_1 = d_2 = 1$, namely the final representation, which takes every element of S_4 to the identity of \mathbb{K} , and the sign representation, which sends every $s \in S_4$ to the automorphism of \mathbb{K} given by $v \mapsto \text{sign}(s) \cdot v$. We denote their characters by χ_1^+ , χ_1^- respectively.

Trying different positive integer values for the remaining d_i , we see that this forces the other dimensions to be 2, 3 and 3.

The 2-dimensional irreducible representation will be given by $S_4 \xrightarrow{\alpha} \operatorname{Aut}_{\mathbb{K}}(V_2)$, its character by χ_2 .

The first 3-dimensional irreducible representation is given by the action of S_4 on the interior diagonals of a square centered at the origin. We denote its character by χ_3^+ , the morphism by ρ .

The second one is given by the tensor product of the first one with the sign representation and its character will be denoted by χ_3^- , the morphism by ρ' . This representation is distinct from the other 3-dimensional one because, for any swap $s \in S_4$, $\det(\rho(s)) = 1 \neq -1 = \det(\rho'(s))$.

Exercise 8.2

Proof. (a) Let $\psi \in X(G)$. Given any $f = \sum_{\chi \in X(G)} a_{\chi} \chi \in \operatorname{Class}_{\mathbb{C}}(G)$, since X(G) gives an orthonormal basis of $\operatorname{Class}_{\mathbb{C}}(G)$ with respect to the inner product, we have that $\langle \psi, f \rangle = \langle \psi, \sum_{\chi \in X(G)} a_{\chi} \chi \rangle = \sum_{\chi \in X(G)} a_{\chi} \langle \psi, \chi \rangle = \sum_{\chi \in X(G)} a_{\chi} \delta_{\psi,\chi} = a_{\psi}$.

Proof. (b) Suppose that $f = \sum_{\chi \in X(G)} a_{\chi} \chi$, $a_{\chi} \in \mathbb{Z}_{\geq 0}$, and let $M := \bigoplus_{S \in \mathcal{S}} S^{\langle f, \chi_S \rangle}$. Since there are finitely many χ , M is a finitely generated $\mathbb{C}[G]$ -module. By construction, $\chi_M = \sum_{S \in \mathcal{S}} \langle f, \chi_S \rangle \chi_S = f$.

Conversely, since $\mathbb{C}[G]$ is a semi-simple ring, any finitely generated $\mathbb{C}[G]$ -module M is s.t. $M \cong \bigoplus_{S \in \mathcal{S}} S^{n_s}$. It follows that $\chi_M = \sum_{S \in \mathcal{S}} n_S \chi_S$, which has positive integer coefficients.

Exercise 8.10

Proof. (a,b) First of all, we shall compute the character table of S_4 . From what we did for S_3 , we remember that χ_1^+ is associated to the final representation, χ_1^- to the alternating one and therefore $\chi_1^+(s) = \text{Tr}(1), \ \chi_1^-(s) = \text{Tr}(\text{sign}(s)) = \text{sign}(s)$.

Furthermore, by our earlier description, χ_3^+ is associated to the 3-dimensional permutation representation $S_4 \xrightarrow{\rho} \operatorname{Aut}_{\mathbb{C}}(V_4)$, where V_4 is the subspace of \mathbb{C}^4 given by the linear span of e_1 –

 e_2 , $e_2 - e_3$, $e_3 - e_4$ and $\rho(s)(e_i - e_{i+1}) = e_{s(i)} - e_{s(i+1)}$. Also, χ_3^- is obtained by considering the 3-dimensional representation given by $\rho'(s) = \text{sign}(s)\rho(s)$.

Carrying out the computations, we see that the character table of S_4 is the following one:

		1	6	8	6	3
	S_4	Id	$(1\ 2)$	$(1\ 2\ 3)$	$(1\ 2\ 3\ 4)$	$(1\ 2)(3\ 4)$
χ_1^+	V_1	1	1	1	1	1
χ_1^-	V_2	1	-1	1	-1	1
χ_2	V_3	2	0	-1	0	2
χ_3^+	V_4	3	1	0	-1	-1
χ_3^-	V_5	3	-1	0	1	-1

The row of χ_2 has been obtained by remembering that these characters are orthonormal, the one of χ_3^- by remembering that $\chi_3^-(s) = \chi_1^-(s)\chi_3^+(s)$ for all $s \in S_4$.

From the table we see that χ_2^2 takes values 4, 0, 1, 0, 4 on the conjugacy classes of Id, (1 2), (1 2 3), (1 2 3 4), (1 2)(3 4) respectively. This gives $\langle \chi_2^2, \chi_2^2 \rangle = \frac{1}{|S_4|} (4^2 \cdot 1 + 0^2 \cdot 6 + 1^2 \cdot 8 + 0^2 \cdot 6 + 4^2 \cdot 3) = \frac{1}{24} (16 + 8 + 48) = 3.$

Since the only way to express 3 as a sum of squares of integers is $3 = 1^2 + 1^2 + 1^2$, χ_2^2 is given by the direct sum of 3 irreducible representations.

Observe that, since $\langle f, h \rangle = \frac{1}{|S_4|} \sum_{g \in G} f(g) \overline{h(g)}$, we have the following:

$$\begin{split} \langle \chi_2^2, \chi_1^+ \rangle &= \frac{1}{|S_4|} (4 \cdot 1 \cdot 1 + 0 \cdot 1 \cdot 6 + 1 \cdot 1 \cdot 8 + 0 \cdot 1 \cdot 6 + 4 \cdot 1 \cdot 3) \\ &= \frac{1}{24} (4 + 8 + 12) \\ &= 1 \\ \langle \chi_2^2, \chi_1^- \rangle &= \frac{1}{|S_4|} (4 \cdot 1 \cdot 1 + 0 \cdot (-1) \cdot 6 + 1 \cdot 1 \cdot 8 + 0 \cdot (-1) \cdot 6 + 4 \cdot 1 \cdot 3) \\ &= \frac{1}{24} (4 + 8 + 12) \\ &= 1 \\ \langle \chi_2^2, \chi_2 \rangle &= \frac{1}{|S_4|} (4 \cdot 2 \cdot 1 + 0 \cdot 0 \cdot 6 + 1 \cdot (-1) \cdot 8 + 0 \cdot 0 \cdot 6 + 4 \cdot 2 \cdot 3) \\ &= \frac{1}{24} (8 - 8 + 24) \\ &= 1 \\ \langle \chi_2^2, \chi_3^+ \rangle &= \frac{1}{|S_4|} (4 \cdot 3 \cdot 1 + 0 \cdot 0 \cdot 6 + 1 \cdot 0 \cdot 8 + 0 \cdot (-1) \cdot 6 + 4 \cdot (-1) \cdot 3) \\ &= \frac{1}{24} (12 - 12) \\ &= 0 \end{split}$$

$$\begin{split} \langle \chi_2^2, \chi_3^- \rangle &= \frac{1}{|S_4|} (4 \cdot 3 \cdot 1 + 0 \cdot (-1) \cdot 6 + 1 \cdot 0 \cdot 8 + 0 \cdot 1 \cdot 6 + 4 \cdot (-1) \cdot 3) \\ &= \frac{1}{24} (12 - 12) \\ &= 0 \end{split}$$

It follows that the vector space $V = V_3 \otimes_{\mathbb{C}} V_3$ associated to the representation linked to χ^2_2 can be described by a copy of V_1 , V_2 and V_3 , that is $V = V_1 \oplus V_2 \oplus V_3$, with $S_4 \to \operatorname{Aut}_{\mathbb{C}}(V_1) \oplus \operatorname{Aut}_{\mathbb{C}}(V_2) \oplus \operatorname{Aut}_{\mathbb{C}}(V_3) \subset \operatorname{Aut}_{\mathbb{C}}(V)$ given by $s \mapsto (\operatorname{Id}, \operatorname{sign}(s), \alpha(s))$, a 4-dimensional representation. Also, χ^2_2 can be expressed as a linear combination of χ^+_1 , χ^-_1 and χ_2 , whose coefficients are given by the inner products, which gives us that $\chi^2_2 = \chi^+_1 + \chi^-_1 + \chi_2$.

References

[1] Dalla Torre Gabriele. Representation Theory. 2010.