ECON 6130: Neoclassical growth model

Mathieu Taschereau-Dumouchel

Moving from endowment economies

So far, we have only studied economies with no production. These were useful to familiarize ourselves with

- ► Equilibrium concept
- Consumption smoothing across time and across histories
- Asset pricing
- Efficiency of allocations

These models are obviously not very good at explaining growth. We now introduce production.

We will use the growth model as a gateway to study dynamic programming.

Main facts about long-run growth

Kaldor (1959) popularized the following six stylized facts concerning long run economic growth

- 1. Output per capita, Y/N, grows at a constant rate
- 2. The capital to labor ratio, K/N, grows at constant rate
- 3. The interest rate, R, is fairly constant
- 4. The output to capital ratio, Y/K, is fairly constant
- 5. The share of value added going to labor and capital are fairly constant
- 6. There are wide dispersion in Y_i/N_i across countries

Neoclassical growth model in discrete time

- ightharpoonup Time is discrete, t = 0, 1, 2, ...
- ▶ In each period, three goods are traded:
 - labor services n_t
 - capital services k_t
 - final good output y_t that can be consumed (c_t) or invested (i_t)
- ► Aggregate Production function *F*
 - output $y_t = F(k_t, n_t)$ is consumed or invested $y_t = c_t + i_t$
 - investment increases capital stock which depreciate at rate $\delta > 0$

$$k_{t+1} = (1 - \delta)k_t + i_t$$

Preferences: large number of identical, infinitely lived households:

$$u(\{c_t\}_{t=0}^{\infty}) = \sum_{t=0}^{\infty} \beta^t U(c_t)$$

Endowments: initial capital k_0 given and one unit of time each period.

Optimal growth

For now, we will concerned ourselves with *optimal growth*. We will study the problem of a social planner who maximizes total welfare.

Definition 1 (Feasible allocation)

An allocation $\{c_t, k_{t+1}, n_t\}_{t=0}^{\infty}$ is feasible if, for all $t \geq 0$

$$F(k_t, n_t) = c_t + k_{t+1} - (1 - \delta)k_t$$
 $c_t \ge 0, \ k_t \ge 0, \ 0 \le n_t \le 1$ k_0 given

Definition 2 (Pareto efficient allocation)

An allocation $\{c_t, k_{t+1}, n_t\}_{t=0}^{\infty}$ is Pareto efficient if it is feasible and there is no other feasible allocation $\{\hat{c}_t, \hat{k}_{t+1}, \hat{n}_t\}_{t=0}^{\infty}$ such that

$$\sum_{t=0}^{\infty} \beta^t U(\hat{c}_t) > \sum_{t=0}^{\infty} \beta^t U(c_t)$$

Social planner problem

The SP solves:

$$w(k_0) = \max_{\{c_t, k_{t+1}, n_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t U(c_t)$$

subject to:

$$F(k_t, n_t) = c_t + k_{t+1} - (1 - \delta)k_t$$
 $c_t \ge 0, \ k_t \ge 0, \ 0 \le n_t \le 1$ k_0 given

How can we interpret $w(\bar{k}_0)$?

Social planner problem

The SP solves:

$$w(k_0) = \max_{\{c_t, k_{t+1}, n_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t U(c_t)$$

subject to:

$$F(k_t, n_t) = c_t + k_{t+1} - (1 - \delta)k_t$$
 $c_t \ge 0, \ k_t \ge 0, \ 0 \le n_t \le 1$ k_0 given

How can we interpret $w(\bar{k}_0)$?

Function that gives the *total lifetime* utility of the *representative household* with initial capital stock \bar{k}_0 when the social planner is behaving *optimally*.

Assumptions

We make the following assumptions:

- Utility function
 - 1. U is continuously differentiable, strictly increasing, strictly concave and bounded
 - 2. Inada conditions: $\lim_{c\to 0} U'(c) = \infty$ and $\lim_{c\to \infty} U'(c) = 0$
 - 3. $\beta \in (0,1)$
- Production function
 - 1. *F* is continuously differentiable and homogenous of degree 1, strictly increasing and strictly concave
 - 2. F(0, n) = F(k, 0) = 0 for all k, n > 0
 - 3. Inada condition: $\lim_{k\to 0} F_k(k,1) = \infty$ and $\lim_{k\to \infty} F_k(k,1) = 0$

These assumptions imply:

- From the structure of U, $n_t = 1$ for all t
- ▶ We can write

$$f(k) = F(k,1) + (1-\delta)k$$

What properties does *f* have?

Since $c_t = f(k_t) - k_{t+1}$, we can write the SP problem as

$$w(k_0) = \max_{\{k_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t U(f(k_t) - k_{t+1})$$

subject to:

$$0 \le k_{t+1} \le f(k_t)$$

 k_0 given

Why do we care about this problem?

Since $c_t = f(k_t) - k_{t+1}$, we can write the SP problem as

$$w(k_0) = \max_{\{k_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t U(f(k_t) - k_{t+1})$$

subject to:

$$0 \le k_{t+1} \le f(k_t)$$

 k_0 given

▶ Why do we care about this problem? It turns out that the welfare theorems apply here. By solving the SP problem we solve for the competitive equilibrium.

Since $c_t = f(k_t) - k_{t+1}$, we can write the SP problem as

$$w(k_0) = \max_{\{k_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t U(f(k_t) - k_{t+1})$$

subject to:

$$0 \le k_{t+1} \le f(k_t)$$

 k_0 given

- ▶ Why do we care about this problem? It turns out that the welfare theorems apply here. By solving the SP problem we solve for the competitive equilibrium.
- ► How do we solve it?

Since $c_t = f(k_t) - k_{t+1}$, we can write the SP problem as

$$w(k_0) = \max_{\{k_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t U(f(k_t) - k_{t+1})$$

subject to:

$$0 \le k_{t+1} \le f(k_t)$$

 k_0 given

- ▶ Why do we care about this problem? It turns out that the welfare theorems apply here. By solving the SP problem we solve for the competitive equilibrium.
- ▶ How do we solve it? This is an infinite dimensional optimization problem. We will use *dynamic programming* to rewrite the problem in a much simpler form.

Dynamic programming

Main idea: Use the stationary nature of the economic environment to rewrite the problem in a *recursive* way.

$$w(k_0) = \max_{\substack{\{k_{t+1}\}_{t=0}^{\infty} \text{ s.t.} \\ 0 \le k_{t+1} \le f(k_t), k_0 \text{ given}}} \sum_{t=0}^{\infty} \beta^t U(f(k_t) - k_{t+1})$$

$$= \max_{\substack{k_1 \text{ s.t.} \\ 0 \le k_1 \le f(k_0), k_0 \text{ given}}} \left(U(f(k_0) - k_1) + \beta \left(\max_{\substack{\{k_{t+1}\}_{t=1}^{\infty} \text{ s.t.} \\ 0 \le k_{t+1} \le f(k_t), k_1 \text{ given}}} \sum_{t=1}^{\infty} \beta^{t-1} U(f(k_t) - k_{t+1}) \right) \right)$$

Dynamic programming

Intuitively, it looks like:

$$w(k_0) = \max_{\substack{0 \le k_1 \le f(k_0) \\ k_0 \text{ given}}} U(f(k_0) - k_1) + \beta w(k_1)$$

- ▶ When is the intuitive suggestion correct?
- ▶ Why is this new problem better than the old one?

Dynamic programming

Intuitively, it looks like:

$$w(k_0) = \max_{\substack{0 \le k_1 \le f(k_0) \\ k_0 \text{ given}}} U(f(k_0) - k_1) + \beta w(k_1)$$

- ▶ When is the intuitive suggestion correct?
- Why is this new problem better than the old one? much simpler than finding $\{k_{t+1}\}_{t=0}^{\infty}$

Denote by $v(\cdot)$ the <u>value function</u> for this new formulation of the problem:

$$v(k) = \max_{0 \le k' \le f(k)} \left\{ U(f(k) - k') + \beta v(k') \right\}$$
 (*)

Interpretation: v(k) is the discounted lifetime utility of the representative agent, from the current period onward, if the social planner has initial capital stock k and allocates consumption optimally.

- (*) is the <u>recursive formulation</u> of the planner's problem.
- ▶ (*) is a functional equation called the Bellman equation.
- \triangleright k is called the <u>state variable</u>. It completely describes the economy today.
- \triangleright k' is called the <u>control variable</u>. It is decided today by the planner.
- ▶ To solve (*) we need a value function and a policy function k' = g(k).

This new approach raises questions:

▶ Under what conditions does a solution to (*) exist and, if so, is it unique?

This new approach raises questions:

▶ Under what conditions does a solution to (*) exist and, if so, is it unique? Contraction Mapping Theorem

- ▶ Under what conditions does a solution to (*) exist and, if so, is it unique? Contraction Mapping Theorem
- Under what conditions can we solve (*) and be sure that we have solved the sequential problem? (i.e. v = w and g(k) generates the optimal $\{k_{t+1}\}_{t=0}^{\infty}$).

- ► Under what conditions does a solution to (*) exist and, if so, is it unique? Contraction Mapping Theorem
- ▶ Under what conditions can we solve (*) and be sure that we have solved the sequential problem? (i.e. v = w and g(k) generates the optimal $\{k_{t+1}\}_{t=0}^{\infty}$). Bellman's Principle of optimality

- ▶ Under what conditions does a solution to (*) exist and, if so, is it unique? Contraction Mapping Theorem
- ▶ Under what conditions can we solve (*) and be sure that we have solved the sequential problem? (i.e. v = w and g(k) generates the optimal $\{k_{t+1}\}_{t=0}^{\infty}$). Bellman's Principle of optimality
- ▶ Is there a simple algorithm that allows us to solve (*)?

- ▶ Under what conditions does a solution to (*) exist and, if so, is it unique? Contraction Mapping Theorem
- ▶ Under what conditions can we solve (*) and be sure that we have solved the sequential problem? (i.e. v = w and g(k) generates the optimal $\{k_{t+1}\}_{t=0}^{\infty}$). Bellman's Principle of optimality
- ► Is there a simple algorithm that allows us to solve (*)? Contraction Mapping Theorem

This new approach raises questions:

- ► Under what conditions does a solution to (*) exist and, if so, is it unique? Contraction Mapping Theorem
- Under what conditions can we solve (*) and be sure that we have solved the sequential problem? (i.e. v = w and g(k) generates the optimal $\{k_{t+1}\}_{t=0}^{\infty}$). Bellman's Principle of optimality
- ▶ Is there a simple algorithm that allows us to solve (*)? Contraction Mapping Theorem

Proving these results requires heavier mathematics that we will introduce later. For now, we will look at a few examples and show the link between the social planner problem and competitive equilibrium.

An example of a recursive problem

Let
$$U(c) = \log(c)$$
, $F(k,n) = k^{\alpha} n^{1-\alpha}$ and $\delta = 1$. Then $f(k) = k^{\alpha}$ and
$$v(k) = \max_{0 \le k' \le k^{\alpha}} \left\{ \log(k^{\alpha} - k') + \beta v(k') \right\}$$

First approach: Guess and verify

First approach: Guess and verify

Guess that v(k) has the form

$$v(k) = A + B\log(k)$$

for some constant A and B that we have to determine.

First approach: Guess and verify

Guess that v(k) has the form

$$v(k) = A + B\log(k)$$

for some constant A and B that we have to determine.

Now the maximization problem (taking k as given is)

$$\max_{0 \leq k' \leq k^{\alpha}} \left\{ \log(k^{\alpha} - k') + \beta \left(A + B \log(k') \right) \right\}$$

and the FOC is

$$k' = \frac{\beta B k^{\alpha}}{1 + \beta B}$$

The second step is to plug back the optimal k' into the Bellman equation:

$$\begin{split} v(k) &= \max_{0 \leq k' \leq k^{\alpha}} \left\{ \log(k^{\alpha} - k') + \beta v(k') \right\} \\ &= \log(k^{\alpha} - k') + \beta(A + B \log(k')) \\ &= \log\left(\frac{k^{\alpha}}{1 + \beta B}\right) + \beta A + \beta B \log\left(\frac{\beta B k^{\alpha}}{1 + \beta B}\right) \\ &= -\log(1 + \beta B) + \beta A + \beta B \log\left(\frac{\beta B}{1 + \beta B}\right) + \alpha \log(k) + \alpha \beta B \log(k) \end{split}$$

Was our guess correct?

The second step is to plug back the optimal k' into the Bellman equation:

$$\begin{split} v(k) &= \max_{0 \leq k' \leq k^{\alpha}} \left\{ \log(k^{\alpha} - k') + \beta v(k') \right\} \\ &= \log(k^{\alpha} - k') + \beta(A + B \log(k')) \\ &= \log\left(\frac{k^{\alpha}}{1 + \beta B}\right) + \beta A + \beta B \log\left(\frac{\beta B k^{\alpha}}{1 + \beta B}\right) \\ &= -\log(1 + \beta B) + \beta A + \beta B \log\left(\frac{\beta B}{1 + \beta B}\right) + \alpha \log(k) + \alpha \beta B \log(k) \end{split}$$

Was our guess correct? Yes!

$$egin{aligned} B &= lpha (1 + eta B) \ A &= rac{1}{1 - eta} \left(rac{lpha eta}{1 - lpha eta} \log(lpha eta) + \log(1 - lpha eta)
ight) \end{aligned}$$

Is the solution unique?

We now need to find the allocation. Remember that g(k) = k':

$$g(k) = rac{eta B k^{lpha}}{1 + eta B} = lpha eta k^{lpha}$$

How can we interpret this policy rule?

We now need to find the allocation. Remember that g(k) = k':

$$g(k) = \frac{\beta B k^{\alpha}}{1 + \beta B}$$
$$= \alpha \beta k^{\alpha}$$

How can we interpret this policy rule? Save a constant fraction $\alpha\beta$ of output k^{α} and consume what's left.

We can construct the whole sequence $\{k_{t+1}\}_{t=0}^{\infty}$

$$k_1 = g(k_0) = \alpha \beta k_0^{\alpha}$$

$$k_2 = g(k_1) = \alpha \beta k_1^{\alpha} = (\alpha \beta)^{1+\alpha} k_0^{\alpha^2}$$

$$k_3 = g(k_2) = \dots$$

How useful is the guess and verify approach? Unfortunately, it works in very few cases.

Value function iteration

- 1. Guess an arbitrary function $v_0(k)$, say $v_0(k) = 0$
- 2. Solve

$$v_1(k) = \max_{0 \le k' \le k^{\alpha}} \left\{ \log(k^{\alpha} - k') + \beta v_0(k') \right\}$$

The solution is $k' = g_1(k) = 0$ for all k. Therefore

$$v_1(k) = \log(k^{\alpha} - 0) = \alpha \log(k)$$

3. Since we know v_1 , now we can solve

$$v_2(k) = \max_{0 \le k' \le k^{\alpha}} \left\{ \log(k^{\alpha} - k') + \beta v_1(k') \right\}$$

4. Repeat for

$$v_{n+1}(k) = \max_{0 \le k' \le k^{\alpha}} \left\{ \log(k^{\alpha} - k') + \beta v_n(k') \right\}$$

to get $\{v_n\}_{n=0}^{\infty}$ and $\{g_n\}_{n=0}^{\infty}$.

5. Will these sequences converge to the optimum solution g^* and v^* ?

Value function iteration

- 1. Guess an arbitrary function $v_0(k)$, say $v_0(k) = 0$
- 2. Solve

$$v_1(k) = \max_{0 < k' < k^{\alpha}} \left\{ \log(k^{\alpha} - k') + \beta v_0(k') \right\}$$

The solution is $k' = g_1(k) = 0$ for all k. Therefore

$$v_1(k) = \log(k^{\alpha} - 0) = \alpha \log(k)$$

3. Since we know v_1 , now we can solve

$$v_2(k) = \max_{0 \le k' \le k^{\alpha}} \left\{ \log(k^{\alpha} - k') + \beta v_1(k') \right\}$$

4. Repeat for

$$v_{n+1}(k) = \max_{0 \le k' \le k^{\alpha}} \left\{ \log(k^{\alpha} - k') + \beta v_n(k') \right\}$$

to get $\{v_n\}_{n=0}^{\infty}$ and $\{g_n\}_{n=0}^{\infty}$.

5. Will these sequences converge to the optimum solution g^* and v^* ? Yes by the CMT.

A computer can only deal with finite-dimensional objects. We can only *approximate* the value function.

Here is an example from Dirk Krueger's notes.

- ▶ Discretize the space: $k, k' \in K = \{0.04, 0.08, 0.12, 0.16, 0.2\}$
- \triangleright Value functions v_n :

$$(v_n(0.04), v_n(0.08), v_n(0.12), v_n(0.16), v_n(0.2))$$

▶ Pick values for the parameters. Say, $\alpha = 0.3$ and $\beta = 0.6$.

Numerical algorithm

- 1. Initial guess $v_0(k) = 0$ for all $k \in K$.
- 2. Solve

$$v_1(k) = \max_{0 \le k' \le k^{0.3}} \left\{ \log(k^{0.3} - k') + 0.6 \times 0 \right\}$$

Optimal policy $k'(k) = g_1(k) = 0.04$ for all $k \in K$. Plugging back in:

$$u_1(0.04) = \log(0.04^{0.3} - 0.04) = -1.077$$
 $u_1(0.08) = \log(0.08^{0.3} - 0.04) = -0.847$
 $u_1(0.12) = \log(0.12^{0.3} - 0.04) = -0.715$
 $u_1(0.16) = \log(0.16^{0.3} - 0.04) = -0.622$
 $u_1(0.20) = \log(0.20^{0.3} - 0.04) = -0.55$

Next iteration

$$v_2(k) = \max_{0 \le k' \le k^{0.3}} \left\{ \log(k^{0.3} - k') + 0.6v_1(k') \right\}$$

Start with k = 0.04:

$$v_2(0.04) = \max_{0 \le k' \le 0.04^{0.3}} \left\{ \log(0.04^{0.3} - k') + 0.6v_1(k') \right\}$$

Value function iteration a numerical example Let's try different values for k'.

If k' = 0.04, then

$$11 \text{ K} = 0.04$$
, 111

If k' = 0.16, then

If k' = 0.20, then

 $v_2(0.04) = -1.71$

If k' = 0.08, then

If k' = 0.12, then

 $v_2(0.04) = \log(0.04^{0.3} - 0.16) + 0.6(-0.62) = -1.88$

 $v_2(0.04) = \log(0.04^{0.3} - 0.20) + 0.6(-0.55) = -2.04$

Therefore, for k = 0.04 the optimal choice is $k'(0.04) = g_2(0.04) = 0.08$ and

 $v_2(0.04) = \log(0.04^{0.3} - 0.04) + 0.6(-1.08) = -1.72$

$$v_2(0.04) = \log(0.04^{0.3} - 0.12) + 0.6(-0.72) = -1.77$$

$$(35) = -1$$

24 / 64

Summary of the second iteration: Table below shows the value of

$$(k^{0.3}-k')+0.6v_1(k')$$

for different values of k and k'.

(k, k')	0.04	0.08	0.12	0.16	0.2
0.04	-1.72	-1.71*	-1.77	-1.88	-2.04
0.08	-1.49	-1.45*	-1.48	-1.55	-1.64
0.12	-1.36	-1.31*	-1.32	-1.37	-1.44
0.16	-1.27	-1.21*	-1.21	-1.25	-1.31
0.20	-1.20	-1.13	-1.13*	-1.16	-1.20

Back to original problem:

$$w(k_0) = \max_{\{k_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t U(f(k_t) - k_{t+1})$$

subject to:

$$0 \le k_{t+1} \le f(k_t)$$

 k_0 given

We cannot use the standard Kuhn-Tucker theorem to solve the optimization problem. Why?

Back to original problem:

$$w(k_0) = \max_{\{k_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t U(f(k_t) - k_{t+1})$$

subject to:

$$0 \le k_{t+1} \le f(k_t)$$

 k_0 given

We cannot use the standard Kuhn-Tucker theorem to solve the optimization problem. Why? Infinite-dimensional object

Back to original problem:

$$w(k_0) = \max_{\{k_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t U(f(k_t) - k_{t+1})$$

subject to:

$$0 \le k_{t+1} \le f(k_t)$$

 k_0 given

We cannot use the standard Kuhn-Tucker theorem to solve the optimization problem. Why? Infinite-dimensional object

But we can solve the SP problem if there is a final period, T.

In which case:

$$w^{T}(k_{0}) = \max_{\{k_{t+1}\}_{t=0}^{T}} \sum_{t=0}^{T} \beta^{t} U(f(k_{t}) - k_{t+1})$$

subject to:

$$0 \le k_{t+1} \le f(k_t)$$
 and k_0 given

- ▶ We obviously have $k_{T+1} = 0$ (right?).
- ► The problem is now optimization of a continuous function in a finite-dimensional space on a compact set: a solution exists (Extreme Value Theorem).
- ▶ Since the constraint set is convex (right?) and *U* is strictly concave (by assumption) there is a unique optimum and the FOCs are necessary and sufficient.

We can use the usual tools:

$$L = U(f(k_0) - k_1) + \dots + \beta^t U(f(k_t) - k_{t+1}) + \beta^{t+1} U(f(k_{t+1}) - k_{t+2}) + \dots + \beta^T U(f(k_T) - k_{T+1})$$

FOCs

$$\frac{\partial L}{\partial k_{t+1}} = -\beta^t U'(f(k_t) - k_{t+1}) + \beta^{t+1} U'(f(k_{t+1}) - k_{t+2}) f'(k_{t+1}) = 0$$

$$\underbrace{U'(f(k_t)-k_{t+1})}_{\text{Cost in utility of saving 1 unit more capital for }t+1} = \underbrace{\beta\,U'(f(k_{t+1})-k_{t+2})}_{\text{Discounted add. utility}} \underbrace{f'(k_{t+1})}_{\text{Add. prod. with one from 1 more unit of cons. more unit of cap. in }t+1}$$

- ► This equation is called the Euler equation
- System of T second order difference equations with T+1 unknowns $\{k_{T+1}\}_{t=0}^T$
- ▶ With $k_{T+1} = 0$ we can solve for $\{k_{t+1}\}_{t=0}^{T}$ (can be a huge pain)

Going back to our example with log utility: $U(c) = \log(c)$ and $f(k) = k^{\alpha}$. The Euler equation is

$$\frac{1}{k_t^{\alpha} - k_{t+1}} = \frac{\beta \alpha k_{t+1}^{\alpha - 1}}{k_{t+1}^{\alpha} - k_{t+2}}$$
$$k_{t+1}^{\alpha} - k_{t+2} = \alpha \beta k_{t+1}^{\alpha - 1} (k_t^{\alpha} - k_{t+1})$$

Going back to our example with log utility: $U(c) = \log(c)$ and $f(k) = k^{\alpha}$. The Euler equation is

$$\frac{1}{k_t^{\alpha} - k_{t+1}} = \frac{\beta \alpha k_{t+1}^{\alpha - 1}}{k_{t+1}^{\alpha} - k_{t+2}}$$
$$k_{t+1}^{\alpha} - k_{t+2} = \alpha \beta k_{t+1}^{\alpha - 1} (k_t^{\alpha} - k_{t+1})$$

Trick: Define $z_t \equiv \frac{k_{t+1}}{k_s^{\alpha}}$. Interpretation?

Going back to our example with log utility: $U(c) = \log(c)$ and $f(k) = k^{\alpha}$. The Euler equation is

$$\frac{1}{k_t^{\alpha} - k_{t+1}} = \frac{\beta \alpha k_{t+1}^{\alpha - 1}}{k_{t+1}^{\alpha} - k_{t+2}}$$
$$k_{t+1}^{\alpha} - k_{t+2} = \alpha \beta k_{t+1}^{\alpha - 1} (k_t^{\alpha} - k_{t+1})$$

Trick: Define $z_t \equiv \frac{k_{t+1}}{k^{\alpha}}$. Interpretation?

$$1 - z_{t+1} = \alpha \beta \left(\frac{1}{z_t} - 1\right)$$
$$z_{t+1} = 1 + \alpha \beta - \frac{\alpha \beta}{z_t}$$

Why is that a nicer equation?

We know that $z_T = 0$. Solve backwards from T. Since

$$z_t = \frac{\alpha\beta}{1 + \alpha\beta - z_{t+1}}$$

we get

$$z_t = \alpha \beta \frac{1 - (\alpha \beta)^{T - t}}{1 - (\alpha \beta)^{T - t + 1}}$$

and therefore

$$k_{t+1} = \alpha \beta \frac{1 - (\alpha \beta)^{T-t}}{1 - (\alpha \beta)^{T-t+1}} k_t^{\alpha}$$
$$c_t = \frac{1 - \alpha \beta}{1 - (\alpha \beta)^{T-t+1}} k_t^{\alpha}$$

Notice that

$$\lim_{t\to\infty} k_{t+1} = \alpha\beta k_t^{\alpha}$$

Looking familiar?

Graphical analysis

Drawing a little graph can bring big insights into the behavior of the economy.

$$z_{t+1} = 1 + \alpha\beta - \frac{\alpha\beta}{z_t}$$

Plotting z_{t+1} against z_t informs us about the dynamics of the system.

- ▶ Since $k_{t+1} \ge 0$ we have $z_t \ge 0$
- ightharpoonup $\lim_{z_t \to \infty} 1 + \alpha \beta \frac{\alpha \beta}{z_t} = 1 + \alpha \beta > 1$
- $ightharpoonup z_{t+1} = 0 ext{ for } z_t = rac{\alpha \beta}{1 + \alpha \beta} < 1$

Steady state

Define a steady state as:

$$z_{t+1} = z_t = z$$

There are two steady states in this economy:

$$z = 1 + \alpha \beta - \frac{\alpha \beta}{z}$$
 $(z - 1)(z - \alpha \beta) = 0$

Therefore z=1 and $z=\alpha\beta$ are steady states.

Going back to the infinite horizon case

$$w(k_0) = \max_{\{k_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t U(f(k_t) - k_{t+1})$$

subject to:

$$0 \le k_{t+1} \le f(k_t)$$

 k_0 given

The Euler equation

$$U'(f(k_t) - k_{t+1}) = \beta U'(f(k_{t+1}) - k_{t+2})f'(k_{t+1})$$

As before we have a second order difference equation but we are missing a terminal condition.

We impose on additional condition on the problem:

$$\lim_{t \to \infty} \underbrace{\beta^t U'(f(k_t) - k_{t+1}) f'(k_t)}_{\text{value in discounted utility terms}} \underbrace{k_t}_{\text{capital stock}} = 0$$

- ► Transversality plays the role of the missing terminal condition. It is an optimality condition.
- Meaning: shadow value of capital has to converge to zero.
- Mathematically it is a condition coming from the use of the Separating Hyperplane Theorem to find optimality conditions in an infinite-dimensional context. See note on Chris Sims website.
- ▶ Can also be: $\lim_{t\to\infty} \lambda_t k_{t+1} = 0$. Where λ is LM on $c_t + k_{t+1} = f(k_t)$.

Theorem 1

Let U, β and F satisfy our earlier assumptions. Then an allocation $\{k_{t+1}\}_{t=0}^{\infty}$ that satisfies the Euler equations and the transversality condition solves the sequential social planners problem, for a given k_0 .

See SLP Theorem 4.15 for a proof.

- Does not work for log utility (since not bounded) but a similar theorem exist for this case.
- ▶ The theorem gives *sufficient* conditions for optimality.
- ► The conditions of the theorem are *necessary* for the log-case (Ekelund and Scheinkman, 1985)

Going back to our log example: $U(c) = \log(c)$ and $f(k) = k^{\alpha}$. The TVC becomes

$$\lim_{t\to\infty}\beta^t U'(f(k_t)-k_{t+1})f'(k_t)k_t = \lim_{t\to\infty}\frac{\alpha\beta^t k_t^\alpha}{k_t^\alpha-k_{t+1}} = \lim_{t\to\infty}\frac{\alpha\beta^t}{1-z_t}$$

The Euler equation is still

$$z_{t+1} = 1 + \alpha\beta - \frac{\alpha\beta}{z_t}$$

How do we solve this?

Going back to our log example: $U(c) = \log(c)$ and $f(k) = k^{\alpha}$. The TVC becomes

$$\lim_{t\to\infty}\beta^t U'(f(k_t)-k_{t+1})f'(k_t)k_t = \lim_{t\to\infty}\frac{\alpha\beta^t k_t^\alpha}{k_t^\alpha-k_{t+1}} = \lim_{t\to\infty}\frac{\alpha\beta^t}{1-z_t}$$

The Euler equation is still

$$z_{t+1} = 1 + \alpha\beta - \frac{\alpha\beta}{z_t}$$

How do we solve this?

Guess z_0 , iterate and check if TVC holds.

We have already done part of the work for the previous graph:

- 1. If $z_0 < \alpha \beta$: in finite time $z_t < 0$ which violates $k_{t+1} \ge 0$
- 2. if $z_0>\alpha\beta$: we go to $\lim_{t\to\infty}z_t=1$ which violates TVC (take a few steps to show)
- 3. if $z_0 = \alpha \beta$: then $z_t = \alpha \beta$ for all t > 0. This satisfies Euler equation and the TVC

$$\lim_{t \to \infty} \frac{\alpha \beta^t}{1 - z_t} = \frac{\alpha \beta^t}{1 - \alpha \beta} = 0$$

The theorem tells us that $z_t = \alpha \beta$ is an optimal solution.

The log-case is basically the only example that can be done by hand. In general, we need to use computation methods.

Modified golden rule

Steady-state (SS): social optimum or CE with $c_t = c^*$ and $k_{t+1} = k^*$.

The Euler equation:

$$U'(f(k_t) - k_{t+1}) = \beta U'(f(k_{t+1}) - k_{t+2})f'(k_{t+1})$$

$$U'(c_t) = \beta U'(c_{t+1})f'(k_{t+1})$$

At a SS:

$$f'(k) = \frac{1}{\beta} \equiv 1 + \rho$$

where ρ is called the time discount rate. Since $f'(k) = F_k(k,1) + 1 - \delta$, we obtain the modified golden rule

$$F_k(k^*,1) - \delta = \rho$$

In our example

$$lpha(k^*)^{lpha-1}=
ho+1=rac{1}{eta}$$
 and $k^*=(lphaeta)^{rac{1}{1-lpha}}$

The planner's optimal sequence will converge to k^* regardless of k_0 .

Modified golden rule

Why is it called the *modified* golden rule? The resource constraint is

$$c_t = f(k_t) - k_{t+1}$$
$$c = f(k) - k$$

Therefore to maximize consumption per capita we need

$$f'(k^g) = 1$$
$$F_k(k^g, 1) - \delta = 0$$

where k^g is called the golden rule capital stock. Why does the SP find it optimal to pick $k^* < k^g$ in the long run?

Modified golden rule

Why is it called the *modified* golden rule? The resource constraint is

$$c_t = f(k_t) - k_{t+1}$$
$$c = f(k) - k$$

Therefore to maximize consumption per capita we need

$$f'(k^g) = 1$$
$$F_k(k^g, 1) - \delta = 0$$

where k^g is called the golden rule capital stock.

Why does the SP find it optimal to pick $k^* < k^g$ in the long run? Because the agent is impatient.

What do you think of our growth model so far?

What do you think of our *growth* model so far? Let's add population growth $(N_t = (1+n)^t)$ and labor-augmenting technological progress:

$$F(K_t, N_t(1+g)^t)$$

What's the utility function now? Either (c_t is per capita):

per capita lifetime utility

$$\sum_{t=0}^{\infty} \beta^t U(c_t)$$

or lifetime utility of the entire dynasty

$$\sum_{t=0}^{\infty} (1+n)^t \beta^t U(c_t)$$

Resource constraint

$$(1+n)^t c_t + K_{t+1} = F(K_t, (1+n)^t (1+g)^t) + (1-\delta)K_t$$

Define

$$egin{aligned} ilde{c}_t &= rac{c_t}{(1+g)^t} \ ilde{k}_t &= rac{k_t}{(1+g)^t} &= rac{K_t}{(1+n)^t(1+g)^t} \end{aligned}$$

We can rewrite the resource constraint as:

$$\tilde{c}_t + (1+n)(1+g)\tilde{k}_{t+1} = F(\tilde{k}_t, 1) + (1-\delta)\tilde{k}_t$$

In order to obtain a balanced growth path, we assume CRRA utility $U(c) = \frac{c^{1-\sigma}}{1-\sigma}$.

$$\sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\sigma}}{1-\sigma} = \sum_{t=0}^{\infty} \tilde{\beta}^t \frac{\tilde{c}_t^{1-\sigma}}{1-\sigma}$$

where
$$\tilde{\beta} = \beta (1+g)^{1-\sigma}$$

The social planner solves

$$\max_{\{k_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \tilde{\beta}^t \frac{(f(\tilde{k}_t) - (1+g)(1+n)\tilde{k}_{t+1})^{1-\sigma}}{1-\sigma}$$

subject to

$$0 \leq (1+g)(1+n) ilde{k}_{t+1} \leq f(ilde{k}_t)$$

 k_0 given

A balanced growth path is a socially optimal allocation where all variables grow at a constant rate. Here it corresponds to a steady state for $\{\tilde{c}_t, \tilde{k}_{t+1}\}$.

Euler equations

$$(1+n)(1+g)(ilde{c}_t)^{-\sigma} = ilde{eta}(ilde{c}_{t+1})^{-\sigma}\left(F_k(ilde{k}_{t+1},1) + (1-\delta)
ight)$$

Steady state on $\{\tilde{c}, \tilde{k}\}$

$$(1+n)(1+g) = \widetilde{eta}\left(F_k(\widetilde{k}^*,1) + (1-\delta)\right)$$

Defining $\tilde{\beta} \equiv \frac{1}{1+\tilde{\rho}}$ we find

$$(1+n)(1+g)(1+ ilde{
ho})=\left(extstyle F_k(ilde{k}^*,1)+(1-\delta)
ight)$$

which is (approximately)

$$F_k(\tilde{k}^*,1) - \delta \approx n + g + \tilde{\rho}$$

Competitive equilibrium

So far we have been interested in the social planner's problem. Now we decentralize the Pareto allocation to a competitive equilibrium.

- Arrow-Debreu market structure
- Perfect competition
- Ownership
 - Households own firms (receive their profits)
 - Households own capital (they rent it to firms)
- ► Goods:
 - Final output y_t : Used for consumption and investment. Its price is p_t (quoted in period 0).
 - Labor n_t : Let w_t be the price of one unit of labor delivered in period t (quoted in period 0) in terms of the period t consumption good. w_t is called the real wage. The nominal wage is $w_t p_t$.
 - Capital services k_t : Let r_t be the rental price of one unit of capital services delivered in period t, quoted in period 0, in terms of the period t consumption good. r_t is the real rental rate, the nominal rate is $p_t r_t$

Firms

Firms behave competitively in output and factor markets.

The representative firm's problem is, given a sequence of price $\{p_t, w_t, r_t\}_{t=0}^{\infty}$:

$$\pi = \max_{\{y_t, n_t, k_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} p_t (y_t - r_t k_t - w_t n_t)$$

subject to

$$y_t = F(k_t, n_t)$$
 for all $t \ge 0$ $y_t, n_t, k_t \ge 0$

Households

Households own capital stock and supply labor and capital services. They decide how much to consume and how much to save (through capital accumulation). Taking prices $\{p_t, w_t, r_t\}_{t=0}^{\infty}$ as given the representative household solves

$$\max_{\{c_t, i_t, x_{t+1}, k_t, n_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t U(c_t)$$

subject to

$$\sum_{t=0}^{\infty} p_t(c_t + i_t) \le \sum_{t=0}^{\infty} p_t(r_t k_t + w_t n_t) + \pi$$
 $x_{t+1} = (1 - \delta)x_t + i_t$
 $0 \le n_t \le 1, \ 0 \le k_t \le x_t$
 $c_t, x_{t+1} \ge 0, x_0 \text{ given}$

Here we are being very careful. We will have $k_t = x_t$.

Definition on an equilibrium

Definition 3

A Competitive Equilibrium (Arrow-Debreu) is a set of prices $\{p_t, w_t, r_t\}_{t=0}^{\infty}$ and allocations for the firm $\{y_t^d, n_t^d, k_t\}_{t=0}^{\infty}$ and the household $\{c_t, i_t, x_{t+1}, k_t^s, n_t^s\}_{t=0}^{\infty}$ such that

- 1. Given prices, the allocation of the representative firm solves the firm's problem.
- 2. Given prices, the allocation of the representative household solves the household's problem.
- 3. Markets clear:

$$y_t = c_t + i_t$$
 (Goods market)
 $n_t^d = n_t^s$ (Labor market)
 $k_t^d = k_t^s$ (Capital services market)

Characterizing the equilibrium

In equilibrium:

$$k_t = k_t^d = k_t^s$$
$$n_t = n_t^d = n_t^s$$

All prices must be strictly positive: $p_t, r_t, w_t > 0$

Firm's problem

The firm problem is static

$$\max_{k_t,n_t\geq 0} p_t(F(k_t,n_t)-r_tk_t-w_tn_t)$$

Marginal product pricing

$$r_t = F_k(k_t, n_t)$$
$$w_t = F_n(k_t, n_t)$$

Using constant return to scale and Euler's theorem

$$\pi_t = p_t(F(k_t, n_t) - F_k(k_t, n_t)k_t - F_n(k_t, n_t)n_t) = 0$$

Indeterminacy of Number of Firms

Constant return to scale imply marginal products are homogeneous of degree 0. Differentiate

$$F(\lambda k, \lambda n) = \lambda F(k, n)$$

with respect to, say, k

$$\lambda F_k(\lambda k, \lambda n) = \lambda F_k(k, n)$$

$$F_k(\lambda k, \lambda n) = F_k(k, n)$$

Now take $\lambda = 1/n$:

$$F_k(k/n,1) = F_k(k,n)$$

All firms operate with same capital-labor ratio

$$r_t = F_k(k, n) = F_k(k/n, 1)$$

Indeterminacy of Number of Firms

As a consequence, total output could be produced by one representative firm or n_t firms with one worker:

$$F(k_t, n_t) = n_t F(k_t/n_t, 1)$$

Both number of firms as well as output per firm are indeterminate and irrelevant in equilibrium. Only determinate things are k/n and total output y.

We have $n_t = 1$, $k_t = x_t$ and $i_t = k_{t+1} - (1 - \delta)k_t$ The budget constraint holds with equality, we can write:

$$\max_{\{c_t, k_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t U(c_t)$$

subject to

$$\sum_{t=0}^{\infty} p_t(c_t + k_{t+1} - (1-\delta)k_t) = \sum_{t=0}^{\infty} p_t(r_t k_t + w_t)$$
 $c_t, k_{t+1} \geq 0, \ k_0 \ ext{given}$

Using μ as the LM of the budget constraint, the FOC wrt to c_t , c_{t+1} and k_{t+1} are

$$eta^t U'(c_t) = \mu p_t \ eta^{t+1} U'(c_{t+1}) = \mu p_{t+1} \ \mu p_t = \mu (1 - \delta + r_{t+1}) p_{t+1}$$

Which yield

$$rac{eta U'(c_{t+1})}{U'(c_t)} = rac{
ho_{t+1}}{
ho_t} = rac{1}{1 - \delta + r_{t+1}} = rac{1}{1 - \delta + r_{t+1}} = rac{U'(c_t)}{U'(c_t)} = 1$$

Using our previous notation $(f(k) = F(k, 1) + (1 - \delta)k)$ and the marginal pricing equation:

$$r_t = F_k(k_t, 1) = f'(k_t) - (1 - \delta)$$

and goods market clearing

$$c_t = f(k_t) - k_{t+1}$$

we obtain

$$\frac{f'(k_{t+1})\beta U'(f(k_{t+1}) - k_{t+2})}{U'(f(k_t) - k_{t+1})} = 1$$

Which is exactly the same Euler equation as in the SP problem.

TVC for the household:

$$\lim_{t\to\infty} p_t k_{t+1} = 0$$

Using the FOC:

$$\lim_{t \to \infty} p_t k_{t+1} = \frac{1}{\mu} \lim_{t \to \infty} \beta^t U'(c_t) k_{t+1}$$

$$= \frac{1}{\mu} \lim_{t \to \infty} \beta^{t-1} U'(c_{t-1}) k_t$$

$$= \frac{1}{\mu} \lim_{t \to \infty} \beta^{t-1} \beta U'(c_t) (1 - \delta + r_t) k_t$$

$$= \frac{1}{\mu} \lim_{t \to \infty} \beta^t U'(f(k_t) - k_{t+1}) f'(k_t) k_t$$

Which is the same as the Planner's TVC.

We have loosely shown that the welfare theorems hold.

Rest of the economy

Notice that once we have determined the equilibrium capital stock we are done

$$c_t = f(k_t) - k_{t+1}$$

 $y_t = F(k_t, 1)$
 $i_t = y_t - c_t$
 $n_t = 1$
 $r_t = F_k(k_t, 1)$
 $w_t = F_n(k_t, 1)$

Sequential markets equilibrium

Household problem

$$\max_{\{c_t,k_{t+1}\}_{t=0}^{\infty}}\sum_{t=0}^{\infty}\beta^t U(c_t)$$

subject to

$$c_t + k_{t+1} - (1-\delta)k_t = w_t + r_t k_t$$
 $c_t, \ k_{t+1} \geq 0$ k_0 given

Firm's problem

$$\max_{k_t, n_t \geq 0} F(k_t, n_t) - w_t n_t - r_t k_t$$

Sequential markets equilibrium

Definition 4

A sequential markets equilibrium is prices $\{w_t, r_t\}_{t=0}^{\infty}$, allocations for representative household $\{c_t, k_{t+1}^s\}_{t=0}^{\infty}$ and for representative firm $\{n_t^d, k_t^d\}_{t=0}^{\infty}$ such that

- 1. Given k_0 and $\{w_t, r_t\}_{t=0}^{\infty}$, household allocations solves household maximization problem.
- 2. For each $t \ge 0$, given (w_t, r_t) firm allocation (n_t^d, k_t^d) solves firms' maximization problem.
- 3. Markets clear: for all $t \ge 0$

$$egin{aligned} n_t^d &= 1 \ k_t^d &= k_t^s \ F(k_t^d, n_t^d) &= c_t + k_{t+1}^s - (1 - \delta) k_t^s \end{aligned}$$

Recursive competitive equilibrium

- ▶ State variables (k, K). Control variables (c, k')
- Bellman equation

$$v(k,K) = \max_{c,k' \ge 0} U(c) + \beta v(k',K')$$
$$c + k' = w(K) + (1 + r(K) - \delta)k$$
$$K' = H(K)$$

- ightharpoonup K' = H(K) is the aggregate law of motion.
- ▶ Solution is a value function v and policy functions c = C(k, K) and k' = G(k, K).
- Firms

$$w(K) = F_l(K, 1)$$
$$r(K) = F_k(K, 1)$$

Recursive competitive equilibrium

Definition 5

A RCE is a value function $v: \mathbb{R}^2_+ \to \mathbb{R}$ and policy functions $C, G: \mathbb{R}^2_+ \to \mathbb{R}_+$ for the representative household, pricing functions $w, r: \mathbb{R}_+ \to \mathbb{R}_+$ and an aggregate law of motion $H: \mathbb{R}_+ \to \mathbb{R}_+$ such that

- 1. Given w, r and H, v solves the Bellman equation and C, G are the associated policy function.
- 2. The pricing functions satisfy the firms FOC
- 3. Consistency

$$H(K) = G(K, K)$$

4. For all $K \in \mathbb{R}_+$

$$c(K, K) + G(K, K) = F(K, 1) + (1 - \delta)K$$