Statistics Review

for the De Veaux/Velleman/Bock Series

Data

Categorical data are information about characteristics or qualities falling into different classifications.

Quantitative data are information about a quantity or measurement (with units).

The W's describe the data's context—Who, What, Why, When, Where, and hoW.

Displaying Categorical Data

A bar chart displays the distribution of a categorical variable, showing the count or percentage of values in each category.

A **pie chart** displays the distribution of a categorical variable by slicing a circle into pieces whose areas are proportional to the fraction of values in each category.

A **contingency table** displays the distribution of observations categorized on two variables.

Describing Categorical Data

A distribution shows counts or percentages of observations in each category.

A **conditional distribution** shows the distribution of one variable within a single category of another variable.

Independence exists when the distribution of one variable is the same in all categories of another variable; if the distribution depends on the category, we say there's an association.

Displaying Quantitative Data

A **histogram** displays the distribution of a quantitative variable in bars showing counts or percentages of observations falling in each interval

A **stem-and-leaf display** records the actual data values falling in each interval by splitting the data into a stem (the tens digit, say) and a leaf (the units digit).

A dotplot displays dots (instead of bars or digits) for data values

A **boxplot** displays a box spanning the middle 50% of the data (extending from the first to third quartile and showing the median), with whiskers extending to the lowest and highest nonoutlier data values, and outliers plotted.

Describing Quantitative Data

www.pearsonhighered.com

Always mention shape (modes symmetry), center, spread, and **unusual features** (gaps, clusters, and outliers).

Quantitative Data Statistics

Minimum is the smallest data value.

Maximum is the largest data value.

Range: range = maximum - minimum

The **median** is the middle value (half the data are larger, half

The quartiles divide each half of the data in half; 25% of the data are smaller than Q_1 (the first quartile) and 25% larger than O_3 .

Interquartile range: $IQR = Q_3 - Q_1$

Outlier guideline: Data values that lie more than 1.5 IORs below O_1 or above O_3 may be outliers.

5-number summary: min, Q_1 , median, Q_3 , max

Mean:
$$\overline{y} = \frac{\sum y}{n}$$

Standard deviation: $s = \sqrt{\frac{\sum (y - \overline{y})^2}{n - 1}}$

Two Quantitative Variables

A **scatterplot** displays points corresponding to cases measured on two variables.

The **direction** is *positive* if higher values of one variable are generally associated with higher values of the other and *negative* if higher values of one variable are generally associated with lower values of the other.

Form: *linear* or *curved*

Strength: The less scatter, the stronger the association.

Unusual features: Look for *clusters*, *outliers*, and *influential*

Correlation: r is a number between -1 and +1 describing the direction and strength of a linear relationship between two quantitative variables.

$$r = \frac{\sum z_x z_y}{n - 1}$$

Straight Enough Condition: If the pattern in the scatterplot looks reasonably straight, it's okay to fit a linear model.

The **regression line** is a model that predicts a value of y for each x; $\hat{y} = b_0 + b_1 x$, where $b_1 = \frac{b_2}{s}$ and $b_0 = \overline{y} - b_1 \overline{x}$; the line passes through (\bar{x}, \bar{y}) .

Copyright © 2014 Pearson Education, Inc.

Residual: $e = y - \hat{y}$, the difference between the actual value of y and the value predicted by the model.

Least squares: The regression line minimizes the sum of the squared residuals.

Two Quantitative Variables (continued)

Slope: The slope models the relationship as y-units per x-unit.

Intercept: The *y*-intercept is the starting value (the value of \hat{y} predicted when x = 0).

R-squared: R^2 is the fraction of the variability in y explained by the regression model.

Modeling Wisdom

Residual plots appear as randomly scattered points when the model is appropriate.

Influential points distort the model; if you are suspicious, try creating regression models both with and without them.

Cause and effect: A strong association is *not* evidence of causation. **Subsets:** If a scatterplot shows distinct groups, it may be better to fit a model to each one separately.

Curvature: If the relationship is curved, re-express one or both variables to straighten the relationship. Possible approaches

include the **Ladder of Powers** (re-express y as y^2 , \sqrt{y} , $\log y$, $\frac{-1}{\sqrt{y}}$, $\frac{-1}{y}$, etc.) or use $\log y$ and $\log x$.

Simulations

Steps in a simulation: To investigate the distribution of outcomes for a situation of interest, create a simulation model based on random numbers.

- . **Model a component:** Explain how you will interpret random numbers to represent the most basic event of interest.
- Simulate a trial: Explain how you will use random numbers to model one outcome.
- . Define your response variable.
- **Run many trials**, recording the outcome for each.
- **Analyze the response variable** by graphing the data and calculating summary statistics.
- **State a conclusion** in the context of the original question.

Sampling

A **sample** is a subset of a **population** for which data are collected and analyzed in an effort to learn about unknown (unknowable) properties of the population. We use sample statistics to estimate population parameters.

Property	Statistic	Parameter
Proportion	ρ̂	р
Mean	\overline{y}	μ
Standard deviation	S	σ
Slope	b_1	$oldsymbol{eta}_1$
		more

Sampling (continued)

Sampling error is sample-to-sample variation in a statistic.

Bias is found in sampling methods that systematically misrepresent characteristics of the population.

- Undercoverage limits (or omits) some subpopulation.
- Voluntary response allows individuals to self-select their participation.
- Nonresponse bias occurs when many of those sampled elect not to participate.
- **Response bias** influences people's answers.

Random sampling gives each member of the population the same chance of being selected.

- In a **simple random sample**, each subset of size *n* is equally likely to be selected.
- A **stratified sample** draws random samples from each of several homogeneous subpopulations (strata).
- A **cluster sample** randomly selects entire heterogeneous subpopulations (clusters) from among many.
- A systematic sample selects (for example) every 12th individual from a list of the population starting from a randomly determined case.

Observational Studies

A **retrospective** study collects information looking into the past; a **prospective** study follows subjects over time.

Observational studies can spot associations between variables but can neither reach conclusions about populations nor establish cause and effect. A **lurking variable** that influences both x and y can make it appear that x causes y.

Experiments

An experiment applies treatments to randomly assigned subiects to observe the response.

A **factor** is a variable manipulated by the experimenter, applied at several different levels.

A **treatment** is the combination of factor levels applied to a

The **response variable** is the (usually quantitative) outcome we measure to compare effects of the treatments.

A **control group** receives no treatment (or a null treatment) to provide a baseline for purposes of comparison.

Principles of Design:

- Control known sources of variability whenever possible.
- Randomize subjects to treatments to balance unknown sources of variability (subjects needn't be a random sample).
- Replicate each treatment on many subjects. • **Block** subjects with respect to preexisting sources of
- variability we can't control. **Blinding** is keeping people involved with the experiment

unaware of treatment assignments, both (1) during the experiment (subjects and others in contact with them, often accomplished with **placebos**) and (2) during evaluation of the response. An experiment is **double blind** when both classes are kept unaware.

A **confounding variable** is a variable that influences the response variable in ways that we can't separate from the effects of the experimental factor.

Probability

Probability is the long-run frequency of an event's occurrence; $0 \le P(A) \le 1$

A sample space is the set of all possible outcomes; P(S) = 1.

Complement Rule: $P(A^C) = 1 - P(A)$ Addition Rule: P(A OR B) = P(A) + P(B) - P(A AND B)

Multiplication Rule: $P(A \text{ AND B}) = P(A) \times P(B|A)$

Conditional probability: $P(\mathbf{B} \mid \mathbf{A}) =$

Disjoint (mutually exclusive) events cannot both happen: $P(\mathbf{A} \mathbf{A} \mathbf{N} \mathbf{D} \mathbf{B}) = 0$

Independent events: The occurrence of one event has no impact on the probability of the other: $P(\mathbf{A} \mid \mathbf{B}) = P(\mathbf{A})$ For random variables:

$$\mu = E(X) = \sum (x \times P(x))$$

$$\sigma^2 = Var(X) = \sum ((x - \mu)^2 P(x))$$

$$E(X + c) = E(X) + c$$

$$Var(X + c) = Var(X)$$

$$E(aX) = aE(X)$$

$$Var(aX) = a^2 Var(X)$$

$$E(X \pm Y) = E(X) \pm E(Y)$$

Pythagorean Theorem of Statistics:

If random variables X and Y are independent, then

$$Var(X \pm Y) = Var(X) + Var(Y)$$

$$SD(X \pm Y) = \sqrt{SD^2(X) + SD^2(Y)}.$$

Normal model:

A Normal model, $N(\mu, \sigma)$, is unimodal, symmetric, and bell-shaped and is specified by its mean, μ , and standard deviation, σ .

68% of values lie within $\mu \pm 1\sigma$;

95% of values lie within $\mu \pm 2\sigma$;

99.7% lie within $\mu \pm 3\sigma$.

Bernoulli trials:

- two outcomes (success, failure)
- known probability of success p
- trials are independent

Geometric model:

X = number of Bernoulli trials until the first success

$$P(x) = q^{x-1}p$$
$$E(X) = \frac{1}{p}$$

Binomial model:

X = number of successes in n Bernoulli trials

$$P(x) = \binom{n}{x} p^{x} q^{n-x}$$

$$E(X) = np \quad SD(X) = \sqrt{npq}$$

Normal approximation: If we expect at least 10 successes and 10 failures, then binomial probabilities may be approximated using the Normal model $N(pq, \sqrt{npq})$

Sampling Distribution Models

For a sample proportion: Provided that the sampled values are independent and the sample size is large enough, the sampling distribution of \hat{p} can be modeled by a Normal model with

$$\mu(\hat{p}) = p \text{ and } SD(\hat{p}) = \sqrt{\frac{pq}{n}}.$$

For a sample mean: The Central Limit Theorem If a random sample of size n is drawn from a population with mean μ and standard deviation σ , then as n increases the sampling distribution of the sample mean, \overline{y} , approaches the Normal model $N(\mu, \frac{\sigma}{\sqrt{\rho}})$ regardless of the shape of the population.

Confidence Intervals

If the appropriate assumptions and conditions are met, we can have a specified level of confidence that the interval

estimate \pm (critical value) \times SE (estimate) captures the value of a population parameter.

Hypothesis Tests

The four steps:

Hypotheses: Write a null hypothesis for the value of the population parameter and specify the alternative hypothesis (upper tail, lower tail, or two-tailed).

Model: Check assumptions and conditions, then specify the type of test and the sampling model.

Mechanics: Calculate the test statistic and find the P-value. Conclusion: Link the P-value to your decision (reject or fail to reject H_0) and state your conclusion in the proper context.

The **null hypothesis** (H_0) specifies a parameter and a hypothesized value for that parameter.

The **alternative hypothesis** (H_A) is a statement indicating what values of the parameter are of interest (different from, smaller than, or larger than that specified in H_0).

The **P-value** is the probability that results at least as extreme as those we observed could have occurred if the null hypothesis

Type I error is rejecting the null hypothesis when it is true. **Type II error** is failing to reject the null hypothesis when it is false. **Power** is the probability the test rejects a false null hypothesis.

Effect size is the difference between the hypothesized value of the parameter and its true value.

PEARSON ALWAYS LEARNING

Copyright © 2014 Pearson Education, Inc.

Copyright © 2014 Pearson Education, Inc.

The De Veaux/Velleman/Bock Series Statistics Review

	Series Statistics Iteview
Assumptions for Inference	And the Conditions That Support or Override Them
PROPORTIONS (z)	
One sample	
1. Individuals are independent.	1. SRS and $n < 10\%$ of the population.
2. Sample is sufficiently large.	2. Successes and failures each ≥ 10 .
• Two groups	
 Groups are independent. 	1. (Think about how the data were collected.)
2. Data in each group are independent.	2. Both are SRSs and $n < 10\%$ of populations OR random allocation.
3. Both groups are sufficiently large.	3. Successes and failures each \geq 10 for both groups.
MEANS (t)	
• One Sample $(df = n - 1)$	
1. Individuals are independent.	1. SRS and $n < 10\%$ of the population.
2. Population has a Normal model.	2. Histogram is unimodal and symmetric.*
• Matched pairs $(df = n - 1)$	
1. Data are matched.	1. (Think about the design.)
2. Individuals are independent.	2. SRS and $n < 10\%$ OR random allocation.
3. Population of differences is Normal.	3. Histogram of differences is unimodal and symmetric.*
 Two independent samples (df from technology) 	
 Groups are independent. 	1. (Think about the design.)
2. Data in each group are independent.	2. SRSs and $n < 10\%$ OR random allocation.
3. Both populations are Normal.	3. Both histograms are unimodal and symmetric.*
DISTRIBUTIONS/ASSOCIATION (χ^2)	
• Goodness-of-fit ($df = \#$ of cells -1 ; one variable, one san	nple compared with population model)
1. Data are counts.	1. (Are they?)
2. Data in sample are independent.	2. SRS and $n < 10\%$ of the population.
3. Sample is sufficiently large.	3. All expected counts ≥ 5 .
• Homogeneity [$df = (r - 1)(c - 1)$; many groups compared	ared on one variable]
1. Data are counts.	1. (Are they?)
2. Data in groups are independent.	2. SRSs and $n < 10\%$ OR random allocation.
3. Groups are sufficiently large.	3. All expected counts ≥ 5 .
• Independence [df = $(r-1)(c-1)$; sample from one po	opulation classified on two variables]
1. Data are counts.	1. (Are they?)
2. Data are independent.	2. SRSs and $n < 10\%$ of the population.
3. Sample is sufficiently large.	3. All expected counts ≥ 5 .
REGRESSION $(t, df = n - 2)$	
• Association of each <i>quantitative variable</i> ($\beta = 0$?)	
1. Form of relationship is linear.	1. Scatterplot looks approximately linear.
Errors are independent.	2. No apparent pattern in residuals plot.
3. Variability of errors is constant.	3. Residuals plot has consistent spread.
4. Errors have a Normal model.	4. Histogram of residuals is approximately unimodal and
	symmetric, or Normal probability plot reasonably straight.*
	(*less critical as <i>n</i> increases)

	In
ups.	PRO
metric.*	ı
	DIST (one
	indi cat va
dal and bly	ASS qu v
	In a

	Think				Show	1		
Inference about?	One group or two?	Procedure	Model	Parameter	Estimate			
	One sample	1-Proportion z-Interval	z	р	ρ̂	$\sqrt{\frac{\hat{p} \; \hat{q}}{n}}$		
PROPORTIONS		1-Proportion z-Test				$\sqrt{\frac{p_0q_0}{n}}$		
	Two independent	2-Proportion z-Interval	z	$p_1 - p_2$	$\hat{p}_1 - \hat{p}_2$	$\sqrt{\frac{\hat{\rho}_1\hat{q}_1}{n_1} + \frac{\hat{\rho}_2\hat{q}_2}{n_2}}$		
	groups	2-Proportion z-Test	_	P1 P2	P1 P2	$\sqrt{\frac{pq}{n_1} + \frac{pq}{n_2}}, \ \hat{p} = \frac{y_1 + y_2}{n_1 + n_2}$		
	One sample	t-Interval t-Test	df = n - 1	μ	\overline{y}	$\frac{s}{\sqrt{n}}$		
MEANS	Two independent groups	2-Sample <i>t-</i> Test 2-Sample <i>t-</i> Interval	t df from technology	$\mu_1 - \mu_2$	$\overline{y}_1 - \overline{y}_2$	$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$		
	Matched pairs	Paired <i>t-</i> Test Paired <i>t-</i> Interval	df = n - 1	μ_d	d	$\frac{s_d}{\sqrt{n}}$		
DISTRIBUTIONS	One sample	Goodness- of-Fit	χ^2 $df = cells - 1$					
(one categorical variable)	Many independent groups	Homogeneity χ^2 Test	χ^2	$\sum \frac{(\mathit{Obs} - \mathit{Exp})^2}{\mathit{Exp}}$				
(two categorical variables)	One sample	Independence χ^2 Test	df = (r - 1)(c - 1)					
ASSOCIATION		Linear Regression t -Test or Confidence Interval for β		$oldsymbol{eta}_1$	b_1	$\frac{s_{\rm e}}{s_{\rm x}\sqrt{n-1}}$ (compute with technology)		
(two quantitative variables)	One sample	*Confidence Interval for $\mu_{ u}$	df = n - 2	$\mu^{ u}$	$\hat{y}_{ u}$	$\sqrt{SE^2(b_1) \times \left(x_v - \overline{x}\right)^2 + \frac{s_e^2}{n}}$		
		*Prediction Interval for y_v		Уv	\hat{y}_{v}	$\sqrt{SE^2(b_1) \times (x_v - \bar{x})^2 + \frac{s_e^2}{n} + s_e^2}$		
Inference about?	One group or two?	Procedure	Model	Parameter	Estimate	SE		

				Se	econd d	ecimal	place ir	ı z				Two tail pro One tail pro
0.0)9	0.08	0.07	0.06	0.05	0.04	0.03	0.02	0.01	0.00	z	
Z = 0.00		0.0001						0.0001			-3.8	T
re 0.00		0.0001				0.0001		0.0001		0.0001	-3.7	Value
0.00		0.0001						0.0001				
0.00		0.0002						0.0002			-3.5	
0.00		0.0003 0.0004						0.0003			-3.4 -3.3	$\frac{a}{2}$
— 0.00 — 0.00		0.0004						0.0003			-3.3 -3.2	-t _{a/2} 0
0.00		0.0007						0.0009				Two tai
0.00		0.0010				0.0012		0.0013				\sim
0.00)14	0.0014	0.0015	0.0015	0.0016	0.0016	0.0017	0.0018	0.0018	0.0019	-2.9	/ \
0.00		0.0020						0.0024			-2.8	
0.00	026	0.0027	0.0028	0.0029	0.0030	0.0031	0.0032	0.0033	0.0034	0.0035	-2.7	
0.00		0.0037						0.0044				One tail
0.00)48	0.0049	0.0051	0.0052	2 0.0054	0.0055	0.0057	0.0059	0.0060	0.0062	1	One tail
0.00		0.0066						0.0078			-2.4	
0.00		0.0087						0.0102			-2.3	
0.01		0.0113						0.0132			-2.2 -2.1	
0.01		0.0146 0.0188						0.0170 0.0217			-2.1 -2.0	
0.02		0.0239						0.0274			-1.9	
0.02		0.0239						0.0274				
0.03		0.0375				0.0329		0.0344				
0.04		0.0465						0.0526			1	
0.05		0.0571						0.0643				
0.06	581	0.0694	0.0708	0.0721	0.0735	0.0749	0.0764	0.0778	0.0793	0.0808	-1.4	
0.08	323	0.0838	0.0853	0.0869	0.0885	0.0901	0.0918	0.0934	0.0951	0.0968	-1.3	
0.09	985	0.1003	0.1020	0.1038	0.1056	0.1075	0.1093	0.1112	0.1131	0.1151	-1.2	
0.11		0.1190						0.1314			-1.1	
0.13	379	0.1401	0.1423	0.1446	0.1469	0.1492	0.1515	0.1539	0.1562	0.1587	-1.0	
0.16	511	0.1635				0.1736		0.1788			-0.9	
0.18		0.1894						0.2061			-0.8	
0.21		0.2177						0.2358			-0.7	
0.24		0.2483						0.2676				
		0.2810						0.3015			-0.5	
0.31		0.3156 0.3520						0.3372 0.3745			-0.4 -0.3	
0.38		0.3320						0.3743			-0.3 -0.2	
0.42		0.4286						0.4129				
0.46		0.4681						0.4920				
_							nal place					
	1	/										
—							lace in 2					
he $\frac{z}{z}$	_	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07		0.09	
$_{ m ve}$ 0.0			0.5040	0.5080						0.5319		Confi
0.1	0	.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714 ().5753	

	0.277 0.312 0.348	1 0.315	6 0.319	2 0.322	8 0.326	4 0.330	0.333	6 0.337	2 0.3409	9 0.344	6 -0.4	
	0.385 0.424 0.464	7 0.428		5 0.436	4 0.440		3 0.448	3 0.452	2 0.4562	2 0.460	2 -0.1	
	For z	≤ -3.90), the are	eas are 0.	0000 to f	four deci	mal plac	es.				
				Sec	cond de	ecimal p	place in	ız				_
Table Z (cont.)	z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	_
Areas under the andard normal curve	0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359	
•	0.1	0.5398	0.5438	0.5478		0.5557	0.5596	0.5636	0.5675		0.5753	
	0.2	0.5793		0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103		
	0.3	0.6179		0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480		
	0.4	l	0.6591	0.6628	0.6664	0.6700	0.6736		0.6808		0.6879	
0 z	0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157		0.7224	
	0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517		
	0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823		
	0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078		0.8133	
	0.9	0.8159		0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365		
	1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599		V
	1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790		0.8830	0
	1.2		0.8869	0.8888	0.8907	0.8925	0.8944	0.8962			0.9015	
	1.3		0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162		
	1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319	
	1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441	
	1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545	
	1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633	
	1.8		0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699		
	1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767	
	2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817	
	2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857	
	2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890	
	2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916	
	2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936	
	2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952	
	2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964	
	2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974	
	2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981	
	2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986	
	3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990	
	3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993		
	3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995		
	3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996		
	3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997		
	3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998		
	3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999		
	3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999		0.9999	
	3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999		0.9999	
						ur decin						
									6	Со	pyright	© 20

_	Two tail probability One tail probability	0.20 0.10	0.10 0.05	0.05 0.025	0.02 0.01	0.01 0.005	
_	Table T $\frac{df}{1}$ Values of t_{α} $\frac{2}{3}$ $\frac{3}{4}$	3.078 1.886 1.638 1.533	6.314 2.920 2.353 2.132	12.706 4.303 3.182 2.776	31.821 6.965 4.541 3.747	63.657 9.925 5.841 4.604	df 1 2 3 4
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.476 1.440 1.415 1.397 1.383	2.015 1.943 1.895 1.860 1.833	2.571 2.447 2.365 2.306 2.262	3.365 3.143 2.998 2.896 2.821	4.032 3.707 3.499 3.355 3.250	5 6 7 8
,	10 11 12 12 13 One tail 14	1.372 1.363 1.356 1.350 1.345	1.812 1.796 1.782 1.771 1.761	2.228 2.201 2.179 2.160 2.145	2.764 2.718 2.681 2.650 2.624	3.169 3.106 3.055 3.012 2.977	10 11 12 13 14
	15	1.341	1.753	2.131	2.602	2.947	15
	16	1.337	1.746	2.120	2.583	2.921	16
	17	1.333	1.740	2.110	2.567	2.898	17
	18	1.330	1.734	2.101	2.552	2.878	18
	19	1.328	1.729	2.093	2.539	2.861	19
,	20	1.325	1.725	2.086	2.528	2.845	20
	21	1.323	1.721	2.080	2.518	2.831	21
	22	1.321	1.717	2.074	2.508	2.819	22
	23	1.319	1.714	2.069	2.500	2.807	23
	24	1.318	1.711	2.064	2.492	2.797	24
	25	1.316	1.708	2.060	2.485	2.787	25
	26	1.315	1.706	2.056	2.479	2.779	26
	27	1.314	1.703	2.052	2.473	2.771	27
	28	1.313	1.701	2.048	2.467	2.763	28
	29	1.311	1.699	2.045	2.462	2.756	29
	30	1.310	1.697	2.042	2.457	2.750	30
	32	1.309	1.694	2.037	2.449	2.738	32
	35	1.306	1.690	2.030	2.438	2.725	35
	40	1.303	1.684	2.021	2.423	2.704	40
	45	1.301	1.679	2.014	2.412	2.690	45
	50	1.299	1.676	2.009	2.403	2.678	50
	60	1.296	1.671	2.000	2.390	2.660	60
	75	1.293	1.665	1.992	2.377	2.643	75
	100	1.290	1.660	1.984	2.364	2.626	100
	120	1.289	1.658	1.980	2.358	2.617	120
-	140	1.288	1.656	1.977	2.353	2.611	140
	180	1.286	1.653	1.973	2.347	2.603	180
	250	1.285	1.651	1.969	2.341	2.596	250
	400	1.284	1.649	1.966	2.336	2.588	400
	1000	1.282	1.646	1.962	2.330	2.581	1000
=	Confidence levels	1.282 80%	1.645 90%	1.960 95%	2.326 98%	2.576 99%	000

Table χ	df						
ues of χ^2	1	2.706	3.841	5.024	6.635	7.879	
χ_{α}	2	4.605	5.991	7.378	9.210	10.597	
	3	6.251	7.815	9.348	11.345	12.838	
	4	7.779	9.488	11.143	13.277	14.860	
	5	9.236	11.070	12.833	15.086	16.750	
\searrow^{α}	6	10.645	12.592	14.449	16.812	18.548	
1/2	7	12.017	14.067	16.013	18.475	20.278	
χ^2_{α}	8	13.362	15.507	17.535	20.090	21.955	
	9	14.684	16.919	19.023	21.666	23.589	
	10	15.987	18.307	20.483	23.209	25.188	
	11	17.275	19.675	21.920	24.725	26.757	
	12	18.549	21.026	23.337	26.217	28.300	
	13	19.812	22.362	24.736	27.688	29.819	
	14	21.064	23.685	26.119	29.141	31.319	
	15	22.307	24.996	27.488	30.578	32.801	
	16	23.542	26.296	28.845	32.000	34.267	
	17	24.769	27.587	30.191	33.409	35.718	
	18	25.989	28.869	31.526	34.805	37.156	
	19	27.204	30.143	32.852	36.191	38.582	
	20	28.412	31.410	34.170	37.566	39.997	
	21	29.615	32.671	35.479	38.932	41.401	
	22	30.813	33.924	36.781	40.290	42.796	
	23	32.007	35.172	38.076	41.638	44.181	
	24	33.196	36.415	39.364	42.980	45.559	
	25	34.382	37.653	40.647	44.314	46.928	
	26	35.563	38.885	41.923	45.642	48.290	
	27	36.741	40.113	43.195	46.963	49.645	
	28	37.916	41.337	44.461	48.278	50.994	
	29	39.087	42.557	45.722	59.588	52.336	
	30	40.256	43.773	46.979	50.892	53.672	
	40	51.805	55.759	59.342	63.691	66.767	
	50	63.167	67.505	71.420	76.154	79.490	
	60	74.397	79.082	83.298	88.381	91.955	
	70	85.527	90.531	95.023	100.424	104.213	
	80	96.578		106.628			
	90	107.565		118.135			
	100	118.499	124.343	129.563	135.811	140.177	

20/03/15 2:21 PM

0.10 0.05 0.025 0.01 0.005

4 Copyright © 2014 Pearson Education, Inc.

5 Copyright © 2014 Pearson Education, Inc.

6 Copyright © 2014 Pearson Education, Inc.