CAMBRIDGE INTERNATIONAL EXAMINATIONS

NOVEMBER 2002

GCE Advanced Level

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT:9701/4

CHEMISTRY (STRUCTURED QUESTIONS (A2 CORE))

1 (a)	A :	voltmeter or V or	potentiometer [NO]	i meter, ammeter	galvanometer

salt bridge or potassium nitrate etc. (any sensible soluble salt, e.g. chloride, B: sulphate, nitrate or phosphate) [NOT just bridge, or filter paper]

C: 1 mol dm⁻³ (or 1M or M) H⁺ or H₃O⁺ or HCl or HNO₃ or 0.5 mol dm⁻³ H₂SO₄ (allow unit activity, allow 1.18 mol dm⁻³)

[3]

(b) diag

solution containing Fe³⁺/Fe²⁺ at equal or 1 mol dm⁻³ concentrations

(both correct) [1]

(d) (i)
$$2Fe^{3+} + Cu \longrightarrow 2Fe^{2+} + Cu^{2+}$$

or $2FeCl_3 + Cu \longrightarrow 2FeCl_2 + CuCl_2$
or $Fe^{3+} + Cu \longrightarrow Fe^{2+} + Cu^{+}$ (or with FeCl₃)

(ii)
$$E_{cell} = (0.77 - 0.34 = +)0.43 \text{ (V)}$$
 [1] $[or \ E_{cell} = (0.77 - 0.52 = +)0.25 \text{ if Cu has been oxidised to Cu}^{+} \text{ in (i)}]$

2

[1]

(e) (i) moles(MnO₄) =
$$0.02 \times 75/1000$$
 (or = 1.5 x 10⁻³) ([1] for working) [1]

moles(Fe²⁺) =
$$5 \times 1.5 \times 10^{-3}$$
 = 7.5×10^{-3} (mark is for x 5: allow ecf if n(MnO₄) is wrong) [1]

(ii) moles(Cu) =
$$(\text{moles(Fe)})/2$$
 = 3.75×10^{-3} [1]

mass(Cu) =
$$63.5 \times 3.75 \times 10^3$$
 = **0.24g** [1] (ignore sig figs. allow ecf from (i) – i.e. mark is for x 63.5 or x 64))

(if Cu has been oxidised to Cu^{+} , the corresponding answers are 7.5 x 10^{-3} [1] and 0.48g [1])

(if candidates have attempted to oxidise Cu by reducing Fe³⁺ to Fe, they lose the mark in d(i), but can gain ecf marks for d(ii), (-0.56V or -0.38V) and also for e(ii))

Total: 12

2	(a)	$2 \text{ Na}^+(g) + O^2(g)$	$g) \longrightarrow Na_2O(s)$	(must have all 3 state symbols)	[1]
	. *				1

- (b) (i) A: (2)Na(g) B: O(g) [NOT O (g)]
 - (ii) 1: (first) ionisation energy (of sodium) or IE or ΔH_i
 2: first and second electron affinities (of oxygen) or EA₁ + EA₂
 - (if B was stated as O (g) rather than O(g), allow ½-mark for EA₂ only)
 - 3: lattice energy (of Na₂O) or LE or ΔH_{lat}
 - 4: enthalpy change of formation or ΔH_f (of Na₂O) or $2\Delta H_c$ [for parts (i) and (ii) award ½ mark for each correct answer. Total the halves and round down]

s (1) and (11) award ½ mark for each correct answer. Total the halves and round down[3]

(c)
$$(\Delta H_f = 2\Delta H_{at}(Na) + 2 IE_1(Na) + \Delta H_{at}(O) + (EA_1 + EA_2)(O) + LE)$$

 $-414 = 2(107) + 2(494) + 496/2 + (-141 + 798) + LE$
 $\therefore LE = -2521 \text{ (kJ mol}^{-1})$
correct answer, including sign [3]

allow [1] for use of the 6 correct values, i.e. the 4 on the question paper and 2 obtained from the data book: 496 and 494 (be aware that the "494" may appear as "988" and the "496" as "248" and the "798-141" as "657")

allow [1] for use of the correct multipliers for the values used, (i.e. if IE(Na) has been omitted, don't penalise for not multiplying 494 by 2). There are three multipliers: x^2 , x^2 and $x^1/2$. Some candidates are using the bond energy of O-O rather than O=O, in which case you can allow 150/2 for this mark (they will have forfeited the previous mark)

allow [2] for a correctly calculated answer from just one incorrect piece of data.

(d) (i) higher/bigger/more (i.e. more negative) [1]

doubly charged cation or bigger charge (density) of cation or smaller cation [1]

(ii) furnace linings or refractory material or crucibles [1]

high melting point [1]

Total: 11

3

gives (HCl) fumes/gas or ppt/white solid/gel (of SiO₂)

[allow balanced equations giving H₂SiO₃ or Si(OH)₄, but not partial hydrolysis to SiOCl₂ etc]

[penalise other equations, e.g. $CCl_4 + H_2O$, only if mark in (i) HAS been awarded] Si has (available) d-orbitals (so attack by nucleophiles is easier)

 $SiCl_4 + 2H_2O \longrightarrow SiO_2 + 4HCl$

(ii)

(iii)

(iv)

Total: 9 max 8

[1]

[1]

[1]

		-www.studvanide.nk
Page 4	Mark Scheme	-www.stydyguid e.pk
	A Level Examinations – November 2002	9701 4

(a)	m.pt.: (due to:) stronger lattice/bonding or more delocalised electrons density:(due to:) heavier atoms/larger A _r but (roughly) the same/smaller radius/size or closer packing [both mass and size need to be referred to]			
		3		
(b)	The third IE is not much greater than the second IE for iron, or for Ca the third IE is much greater than the second IE or Fe can use/ionise d-electrons as well as 4s electrons			
	or d and s electrons/orbitals are of similar energies	[1] 1		
(c)	(i) $CaCO_3 \longrightarrow CaO + CO_2$	[1]		
	(ii) $2 \operatorname{FeCO}_3 + \frac{1}{2} \operatorname{O}_2 \longrightarrow \operatorname{Fe}_2 \operatorname{O}_3 + 2 \operatorname{CO}_2$	[1]		
	(iii) $FeCO_3 = 55.8 + 12 + 48 = 115.8$			
	$Fe_2O_3 = 2 (55.8) + 48 = 159.6$ (both M _r values) [2 x 115.8 \longrightarrow 159.6	[1]		
	$\therefore 10 \text{ tonnes} \longrightarrow 10 \times 159.6/(2 \times 115.8)$			
	= 6.89 (tonnes) (2 or more sig figs. allow ecf from wrong M_r values)	[1]		

[if candidates think iron carbonate is $Fe_2(CO_3)_3$ or $Fe(CO_3)_2$, they lose the mark for (ii), but can be awarded ecf marks in (iii) as follows: for $Fe_2(CO_3)_3$, $M_r = 291.6$ and mass = 5.47 tonnes, for $Fe(CO_3)_2$ $M_r = 175.8$ and mass = 4.54 tonnes]

[no units required, but if answer is given as 6890, kg must be specified; or 6.89 x 10⁶ g]

Total: 8

5	(a)	HNO ₃ + H ₂ SO ₄ conc acids (aq negates) and	T between 50	O - 60° C		• • • • • • • • • • • • • • • • • • • •	[1] [1] 2
	(b)	electrophilic substitution			£		[1]
	(c)	(i) structure:	H NO2				

look for the "horseshoe" of delocalised electrons (somewhere around the rest of the ring, away from the sp^3 carbon atom) and the (+) charge somewhere on/near the horseshoe (NOT on the sp^3 carbon. A (+) charge on H or NO_2 negates [1]

$$(ii) X^+ = NO_2^+ [1]$$

(iii)
$$Z^+ = H^+ (NOT H_3O^+)$$
 (penalise once only for absence of (+) signs) [1]

(iv)
$$2 \text{ H}_2\text{SO}_4 + \text{HNO}_3 \longrightarrow \text{NO}_2^+ + \text{H}_3\text{O}^+ + 2\text{HSO}_4^-$$
 [2] ([1] for species, [1] for balancing. Allow [1] for: the acids \longrightarrow NO₂⁺ + HSO₄⁻ (+H₂O)) 5

(d) (i)
$$CH_3$$

$$C(CH_3)_3$$

$$\begin{array}{c} \text{(ii)} \\ \text{H}_{2}\text{N} \\ \text{NH}_{2} \\ \end{array}$$

Ignore alkyl groups – these can be "R" or even incorrect. Allow NH₃⁺ or NH₃Cl instead of one or more NH₂ groups

[1] 2 Total: 10

		MANAGEL	ıdvanid	a nla
Page 6	Mark Scheme	₩₩_₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽		e.pr
	A Level Examinations – November 2002	9701	4	

(a)	nuc	leophilic substitution (NOT elimination, NOT condensation)	[1]
(b)		SOCl ₂ or PCl ₃ or PCl ₃ or PCl ₃ or PCl ₂ or PCl ₃ or PCl ₂ wen, formula takes precedence)	[1]
(c)	(i)	CH ₃ CH ₂ CN (if CN is shown in full, it must be C≡N, not C-N)	[1]
	(ii)	NaCN or KCN + heat/warm/reflux/T between 50° and 100° (in ethanol) (NOT CN: mention of acid negates mark)	[1]
	(iii)	H ₂ + Ni/Pt/Pd or LiAlH ₄ or Na + ethanol (NOT NaBH ₄)	[1]
(d)	(i)	condensation	[1]
	(ii)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[1]
	(iii)	Strong forces between chains or chains are rigid/inflexible	[1]
	(iv)	warm/heat/boil/reflux with aq/dilute acid/H ⁺ /H ₂ SO ₄ or base/OH ⁻ /NaOH [allow warm/heat/boil/reflux with conc HCl for [1] mark]	[1]
		Tot	5 al: 11

