1-3.지수함수_천재(류희찬)

내 교과서 속 문제를 실제 기출과 유사 변형하여 구성한 단원별 족보

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2022-01-10

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다. ◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

단원 ISSUE

이 단원에서는 **지수함수의 그래프의 평행이동과 대칭이동에 대한** 문제, 지수방정식과 지수부등식을 계산하는 문제 등이 자주 출제 되며 응용문제의 경우, 고1에서 학습한 내용을 바탕으로 해결할 수 있습니다.

평가문제

[스스로 확인하기]

1. 다음 중 옳은 것은?

- ① $y = a^x 1$ 의 점근선은 x축이다.
- ② 0 < a < 1일 때, $y = a^x + 1$ 은 제 3사분면을 지난다.
- ③ 1 < a일 때, $y = a^x 1$ 은 제 2사분면을 지나지 않는다.
- ④ 0 < a일 때, $y = a^x$ 는 항상 증가함수이다.
- ⑤ $y = a^{x-2} 1$ 의 점근선은 x = 2이다.

[스스로 확인하기]

- **2.** 두 함수 $y=3^x-1$ 와 $y=9^x-1$ 가 y=26과 만나는 점이 각각 점 A, 점 B일 때, 점 O(0,-1)에 대하여 삼각형 O(AB)의 넓이를 구하면?
 - ① $\frac{39}{2}$
- ② 18
- $3\frac{77}{4}$
- $4 \frac{81}{4}$

[스스로 확인하기]

- **3.** $y=4^x$ 의 그래프를 x축으로 2만큼 평행이동 시키고, y축으로 k만큼 평행이동 시킨 후 원점에 대해 대칭이동 하였다. 대칭 이동한 함수가 점 (-3,-1)을 지날 때, k의 값을 구하면?
 - $\bigcirc -2$
- 3 4
- (4) -5
- (5) -6

[스스로 확인하기]

- **4.** 0 < a < 1일 때, $A = \sqrt[3]{\sqrt[3]{a^4}}$, $B = \sqrt[3]{a^2}$, $C = a^{\frac{k}{18}}$ 에서 C가 중간 값을 가지도록 하는 자연수 k의 값을 구하면?
 - ① 3

2 4

- 3 5
- **4**) 6
- ⑤ 7

[스스로 마무리하기]

- **5.** 1 < a < b이고 집합 $Z = \{a,b\}$ 일 때, 집합 $A \leftarrow A = \{x^y | x, y \in Z\}$ 로 정의가 된다. n(A) = 3을 만족할 때, $\frac{b}{a}$ 의 값과 같은 것을 고르면?
 - $\bigcirc a^b$
- $\bigcirc b^a$
- $\Im \log_a b$
- \bigcirc $\log_b a$

(5) 1

[스스로 마무리하기]

6. 다음 보기에서 함수 $y = \left(\frac{b}{a}\right)^{-x+4} - 2$ 에 대한 설명으로 옳은 것을 모두 고른 것은?

<보기>

- ㄱ. 점 (4,−1)을 지난다.
- $L. \ 0 < a < b$ 이면 증가함수이다.
- $c. \ a < b < 0$ 이면 제 2사분면을 지나지 않는다.
- (1) -

- ② ¬,∟
- ③ ¬,⊏
- ④ ∟,⊏
- ⑤ ┐,∟,⊏

[스스로 마무리하기]

- **7.** 함수 $y = a^{x-p} + q$ 는 점근선 y = -2를 가지고 a값 과 상관없이 점 (-1,-1)을 지나고, y절편이 1일 때, 상수 a의 값을 구하면? (단, 0 < a, $a \ne 1$)
 - ① 3
- 2 4
- 3 5
- **4**) 6
- ⑤ 7

- [스스로 확인하기]
- 8. 0 < a < b < 1이고, $A = \log_a b$, $B = \log_b a$, $C = \log_{\frac{1}{a}} \frac{1}{ab}$, $D = \log_b ab$ 에 대해 다음 중 가장 큰 값을 M, 가장 작은 값을 m이라 할 때, 순서쌍 (M, m)을 구하면?
 - \bigcirc (A, C)
- \bigcirc (A, D)
- $\Im(C, A)$
- (D, A)
- (D, B)

- [스스로 확인하기]
- 9. 정의역이 $\{x|k\leq x\leq 2\}$ 이고 0<a<1인 상수 a 에 대해 $y=a^{-x^2+2x}$ 의 치역이 $\Big\{y|\frac{1}{2}\leq y\leq 8\Big\}$ 일 때, k의 값을 구하면?
 - $\bigcirc -1$
- $\bigcirc 0$
- 3 1
- **(4)** 2
- (5) 3

- [스스로 확인하기]
- 10. 어떤 밀폐된 공간에서 가스 누출사고가 일어났을 때, 누출로부터 경과된 시간 t초와 이 공간 안에 있는 가스의 양 a 사이에는 다음과 같은 식이 성립한다고 한다.

$$a = \frac{2^t}{3} - \frac{1}{3}$$

가스 누출사고가 일어나고 2초를 넘지 않는 시간 동안 누출이 가능한 가스의 양 a와 실수 x에 대하여 a^{-x^2+4x} 의 최솟값이 $\frac{1}{16}$ 이다. 실수 a의 값을 구하면?

- ① $\frac{1}{5}$
- ② $\frac{1}{4}$
- $3\frac{1}{3}$
- $4\frac{1}{2}$

⑤ 1

[스스로 확인하기]

- **11.** $f(x) = 2^x$, g(x) = x + k**0**|**2**,
 - $(f \circ g)(4) \leq \{f(4)\}^2$ 을 만족할 때, k의 최댓값을 고르면?
 - ① 3
- ② 4
- 3 5

4 6

(5) 7

- 실전문제
- **12.** 함수 $y=9^{3-x}+2$ 에 대한 설명으로 옳은 것을 모두 고르면? (정답 2개)
 - ① 치역은 $\{y|y<2\}$ 이다.
 - ② x의 값이 증가하면 y의 값은 감소한다.
 - ③ 그래프의 점근선은 직선 x=3이다.
 - ④ 그래프는 점 (3,3)을 지난다.
 - ⑤ 그래프는 함수 $y=9^x$ 의 그래프를 평행이동하면 겹쳐진 다.

13. 그림과 같이 함수 $y=2^{x+1}$ 의 그래프 위의 한 점 A와 함수 $y=2^{x-3}$ 의 그래프 위의 두 점 B, C에 대하여 선분 AB는 x축에 평행하고 선분 AC는 y축에 평행하다. $\overline{AB}=\overline{AC}$ 가 될 때, 점 C의 y좌표는? (단, 점 A는 제 1 사분면 위에 있다.)

- ① $\frac{5}{12}$
- ② $\frac{1}{6}$
- $3 \frac{1}{5}$
- $4 \frac{7}{30}$
- **14.** 자연수 n에 대하여 부등식 $3^{2k} (3^n + 3^{2n})3^k + 3^{3n} \le 1$ 을 만족시키는 모든 자연수 k의 개수를 f(n)이라 하자. f(2019)의 값은?
 - ① 2018
- ② 2019
- ③ 2020
- (4) 2021
- (5) 2022

- **15.** 정의역이 $\{x \mid -3 \le x \le 1\}$ 인 두 함수 $f(x) = a^{x+1}$, $g(x) = \left(\frac{1}{a}\right)^x$ 에 대하여 y = f(x), y = g(x)의 그래프의 교점의 y좌표가 1보다 작고, f(x)의 최댓값이 2일 때, g(x)의 최솟값은? (단, a는 1이 아닌 양수이다.)
 - $\bigcirc \frac{\sqrt{2}}{4}$
- $\sqrt{2}$
- **4**) 1
- ⑤ $2\sqrt{2}$

16. 함수 f(x) = |4x+8| 에 대하여

부등식 $3^{f(x)} \leq \left(\frac{1}{9}\right)^x$ 을 만족시키는 x의 최댓값과 최솟값을 각각 M, m이라 할 때, M+m의 값은?

- ① $-\frac{16}{3}$
- ② $-\frac{8}{3}$
- 3 0
- $4 \frac{8}{3}$
- **17.** 지수부등식 $\left(\sqrt{\frac{3}{2}}\right)^{-4x+6} \le \left(\frac{2}{3}\right)^x < \left(\frac{4}{9}\right)^{x-3}$ 을 만 족시키는 모든 자연수 x의 합은?
 - 1 8
- 2 10
- ③ 12
- 4 14
- ⑤ 16
- **18.** 함수 $y = a^x$ 의 그래프를 y축에 대하여 대칭이동 시킨 후, x축의 방향으로 3만큼, y축의 방향으로 2만큼 평행이동 하였더니 점 (1,4)를 지날 때, 양수 a의 값은?
 - ① $\sqrt{2}$
- ② 2
- $3 2\sqrt{2}$
- 4
- ⑤ $4\sqrt{2}$
- **19.** 1 이 아닌 양수 a 에 대하여 곡선 $y=a^x-10$ 과 직선 y=ax 가 한 점에서 만난다. 부등식 $\left(a^4\right)^{a^2+a-2} \geq a^{a^2-4}$ 을 만족시키는 a 의 최댓값을 m 이라 할 때, 30m 의 값은?
 - ① 5
- 2 10
- 3 15
- **4** 20
- **⑤** 25

- **20.** 어느 회사의 현재 총 자산은 1000억 원이다. 매 년 총 자산의 증가율이 r%로 일정하다고 할 때, n년 후의 그 회사의 총 자산은 $1000(1+\frac{r}{100})^n$ 억 원 이라고 한다. 이 회사의 총 자산이 10년 후에 현재 의 1.5배가 된다고 할 때, 지금부터 몇 년 후 총 자 산이 현재의 2배가 되겠는가? (단, $1.5^{1.7} = 2$ 로 계산 하시오.)
 - 15
- 2 16
- ③ 17
- **4**) 18
- **⑤** 19

4

정답 및 해설

1) [정답] ③

[해설] ① 함수 $y = a^x - 1$ 의 점근선은 y = -1 이다.

- ② 0 < a < 1일 때, $y = a^x + 1$ 은 제 3.4사분면을 지나지 않는다.
- ④ 0 < a < 1일 때, $y = a^x$ 는 감소함수이다.
- ⑤ 함수 $y = a^{x-2} 1$ 의 점근선은 y = -1이다.

2) [정답] ④

[해설] $y=3^x-1$ 와 y=26이 만나는 점은 A(3,26)이고, $y=9^x-1$ 과 y=26이 만나는 점이 B(a.26)

이라 하면

9^a-1=3^{2a}-1=27-1, 3^{2a}=3³으로
$$a=\frac{3}{2}$$
이다.

삼각형 OAB의 밑변의 길이는 선분 AB의 길이 와

같으므로 $\frac{3}{2}$ 이다.

삼각형 OAB의 높이는 27이므로 삼각형의 넓이는

$$\frac{1}{2} \times \frac{3}{2} \times 27 = \frac{81}{4}$$
 이다.

3) [정답] ②

[해설] $y=4^x$ 의 그래프를 x축의 방향으로 2만큼 평행이동하고, y축으로 k만큼 평행 이동한 함수 는

 $y=4^{x-2}+k$ 이다. 이를 원점에 대하여 대칭시킨 함수는 $y=-4^{-x-2}-k$ 이고,

이 함수가 점 (-3,-1)을 지나므로 -1=-4-k 이고, k=-3이다.

4) [정답] ⑤

[해설] $y=a^x$ 에서 0 < a < 1일 때, 함수 $y=a^x$ 는 감소함수이다. A,B,C 를 지수의 꼴로 나타내면

$$A = \sqrt[3]{\sqrt[3]{a^4}} = a^{\frac{4}{9}} B = \sqrt{\sqrt[3]{a^2}} = a^{\frac{1}{3}}$$
와 같다.
따라서 $A < B$ 를 만족한다.

A < C < B이도록 하는 $C = a^{\frac{k}{18}}$ 는 $\frac{1}{3} < \frac{k}{18} < \frac{4}{9}$ 이므로 6 < k < 8 에서 k = 7이다.

5) [정답] ③

[해설] 1 < a < b이고 집합 $Z = \{a,b\}, A = \{x^y | x,y \in Z\}$ 이므로 집합A의 원소는 a^a, a^b, b^a, b^b 이다.

이므도 접접A의 현소는 a ,a ,b ,b 이드 원소에서 가장 작은 수는 a^a 이고,

가장 큰 수는 b^b 이다.

 a^b 와 b^a 는 대소를 가릴 수 없다.

n(A) = 3 이므로 $a^b = b^a$ 를 만족해야한다.

양변에 로그를 취하면

$$\log a^b = \log b^a$$
$$b\log a = a\log b$$

$$\frac{b}{a} \! = \! \frac{\log b}{\log a} \! = \! \log_a \! b \! \stackrel{\textstyle =}{=} \; \mathbb{C}$$
 만족한다.

6) [정답] ③

[해설] ㄱ. $y = \left(\frac{b}{a}\right)^{-x+4} - 2$ 에 x = 4를 대입하면

$$y=1-2=-1$$
이 되어 점 $(4,-1)$ 을 지난다. (참)

$$\cup$$
. $0 < a < b$ 이면 $0 < \frac{a}{b} < 1$ 이다.

함수
$$y = \left(\frac{b}{a}\right)^{-x+4} - 2 = \left(\frac{a}{b}\right)^{x-4} - 2$$
 이므로

감소함수이다 (거짓)

$$\Box$$
. $a < b < 0$ 이면 $1 < \frac{a}{b}$ 이다.

따라서 함수 $y = \left(\frac{b}{a}\right)^{-x+4} - 2 = \left(\frac{a}{b}\right)^{x-4} - 2 = \frac{a}{b}$

증가함수가 되고 점근선이 y=-2이며 y절편은

$$\left(\frac{a}{b}\right)^{-4} - 2$$
이코, $1 < \frac{a}{b}$ 이므로

$$-1 > \left(\frac{a}{b}\right)^{-4} - 2 > -2$$
을 만족한다.

따라서 제 2사분면을 지나지 않는다. (참)

7) [정답] ①

[해설] 함수 $y=a^{x-p}+q$ 의 점근선은 y=q이므로 q=-2가 된다. 또한 함수 $y=a^{x-p}+q$ 는 a값에 상관없이 점 (p,q+1)을 지난다. 따라서 p=-1이다. $y=a^{x-p}+q=a^{x+1}-2$ 이 점 (0,1)을 지나므로 a=3이다.

8) [정답] ④

[해설] 0 < a < b < 1 이므로 $\frac{1}{a} > \frac{1}{b} > 1$ 를 만족한다.

$$A = \log_a b = \log_{\frac{1}{a}} \frac{1}{b}$$
으로 1보다 작다.

$$B = \log_b a = \frac{1}{\log_b b} > 1$$
을 만족한다.

$$C = \log_{\frac{1}{a}} \frac{1}{ab} = \log_a ab = 1 + \log_a b > A$$

 $D = \log_b ab = 1 + \log_b a > B$

따라서 A < C, B < D 이고, A < B, C < D 를 만족하므로 가장 작은 수는 A, 가장 큰 수는 D가 된다. 따라서 (M,m) = (D,A)가 된다.

9) [정답] ①

[해설] $y = a^{-x^2+2x} = a^{-(x-1)^2+1}$ 이고, 0 < a < 1이므로 x = 1일 때 지수가 최대이고, 이 때 y는 최솟값

 $\frac{1}{2}$

을 가지므로 $a = \frac{1}{2}$ 이다.

$$y=\left(\frac{1}{2}\right)^{-(x-1)^2+1}$$
의 최댓값이 8이므로 $-(x-1)^2+1$ 의 최솟값은 -3 이 된다. 정의역 $\{x|k\leq x\leq 2\}$ 에서 $-(x-1)^2+1$ 는 $x=k$ 이거나 $x=2$ 일 때 최솟값을 갖는다. $x=2$ 일 때, $-(x-1)^2+1=0$ 이므로 $-(k-1)^2+1=-3$ 이어야 한다, 따라서 $k=-1$ 또는 $k=3$ 이다. 조건에 의해 $k<2$ 이어야 하므로 $k=-1$ 이다.

10) [정답] ④

[해설]
$$a=\frac{2^t}{3}-\frac{1}{3}$$
는 t 의 값이 증가함에 따라 a 값이 증가하는 함수이고 $t=0$ 일 때 $a=0$, $t=2$ 일 때 $a=1$ 임을 생각해 보면 $0 < t < 2$ 일 때, $0 < a < 1$ 이므로 $y=a^X$ 는 X 의 값이 증가하면 y 의 값이 감소하는 함수이다. $y=a^{-x^2+4x}$ 에서 $X=-x^2+4x$ 로 치환하면 X 의 값이 최대일 때, 함수 $y=a^{-x^2+4x}$ 는 최솟값을 가진다. 따라서 $X=-(x-2)^2+4$ 이므로 X 의 최댓값은 4 이다. 그러므로 함수의 최솟값은 $a^4=\frac{1}{16}$ 이고, $a=\frac{1}{2}$ 이다.

11) [정답] ②

[해설]
$$f(x) = 2^x$$
, $g(x) = x + k$ 에서 $(f \circ g)(x) = 2^{x+k}$ $\{f(x)\}^2 = (2^x)^2 = 2^{2x}$ 이다. $(f \circ g)(4) \le \{f(4)\}^2$ 이므로 $2^{4+k} \le 2^8$ 를 만족한다. $4+k \le 8$ 임에서 $k \le 4$ 이고, 따라서 k 의 최댓값은 4이다.

12) [정답] ②, ④

[해설]
$$y=9^{3-x}+2=\left(\frac{1}{9}\right)^{x-3}+2$$

지수함수 $y=9^{3-x}+2$ 의 그래프는
함수 $y=\left(\frac{1}{9}\right)^x$ 의 그래프를
 x 축의 방향으로 3만큼
 y 축의 방향으로 2만큼 평행이동한 함수이다.

① 치역은 $\{y|y>2\}$ 이다.

- ③ 그래프의 점근선은 직선 y=2이다.
- ⑤ 그래프는 함수 $y = \left(\frac{1}{9}\right)^x$ 의 그래프를 평행이동하면 겹쳐진다.

13) [정답] ⑤

[해설] 함수 $y=2^{x+1}$ 의 그래프를 x축의 방향으로 4만큼 평행이동하면 함수 $y=2^{x-3}$ 의 그래프이다. $\therefore \overline{AB}=4$ $\overline{AB}=\overline{AC}$ 이므로 $\overline{AC}=4$ 이다. 점 A의 좌표를 $(a,2^{a+1})$ (단, a>0)이라고 하면 점 C의 좌표는 $(a,2^{a-3})$ 이므로 $\overline{AC}=2^{a+1}-2^{a-3}=2\times 2^a-\frac{1}{8}\times 2^a=\frac{15}{8}\times 2^a=4$ $\therefore 2^a=\frac{32}{15}$ 따라서 점 C의 y좌표는 $2^{a-3}=\frac{1}{8}\times 2^a=\frac{1}{8}\times \frac{32}{15}=\frac{4}{15}$ 이다.

14) [정답] ③

[해설]
$$3^{2k}-(3^n+3^{2n})3^k+3^{3n}\leq 1$$
에서
$$(3^k-3^n)(3^k-3^{2n})\leq 1$$

$$3^k=t(t>0)로 치환하면
$$(t-3^n)(t-3^{2n})\leq 1$$
이고,
$$y=(t-3^n)(t-3^{2n}) \Rightarrow y=1$$
의 그래프를 그리면$$

n=2019일 때, $y=(t-3^{2019})(t-3^{4038})$ 에 $t=3^{2018},3^{4039}$ 를 대입하면 두 값 모두 1보다 커지 므로 $(t-3^{2019})(t-3^{4038}) \le 1$ 일 때, 자연수 t의 범위는 $3^{2019} \le t \le 3^{4038}$ $3^{2019} \le 3^k \le 3^{4038}$ 이므로 $2019 \le k \le 4038$ 자연수 k의 개수 f(2019)는 4038-2019+1=2020

15) [정답] ①

[해설] (i) a>1인 경우 함수 y=f(x)의 최댓값이 2이므로 f(1)=2이다. 즉 $a^{1+1}=a^2=2$ 이므로 $a=\sqrt{2}$ 이다. $y=f(x),\ y=g(x)$ 의 그래프의 교점의 x좌표는 $\sqrt{2}^{\,x+1}=\left(\frac{1}{\sqrt{2}}\right)^x$ 에서 $\sqrt{2}=\frac{1}{2^x}$ 이므로 $x=-\frac{1}{2}$ 이다.

따라서
$$x=-\frac{1}{2}$$
일 때 $y=\sqrt[4]{2}(>1)$ 이므로

y=f(x), y=g(x)의 그래프의 교점의 y좌표가 1보다 작다는 조건에 모순이다.

(ii) 0 < a < 1인 경우

함수 y = f(x)의 최댓값이 2이므로 f(-3) = 2이다.

즉
$$a^{-3+1} = a^{-2} = 2$$
이므로 $a = \frac{1}{\sqrt{2}}$ 이다.

따라서 $g(x)=(\sqrt{2})^x$ 가 되어 $-3 \le x \le 1$ 에서 함수 g(x)의 최솟값은

$$(\sqrt{2})^{-3} = \frac{1}{2\sqrt{2}} = \frac{\sqrt{2}}{4} \text{ ord.}$$

16) [정답] ①

[해설] $3^{f(x)} \le 3^{-2x}$ 에서 밑이 1보다 큰 양수이므로 $f(x) \le -2x$ 이다. 즉, $|4x+8| \le -2x$ 이다.

(i) $x \ge -2$ 일 때

$$4x + 8 \le -2x \qquad \therefore x \le -\frac{4}{3}$$

즉
$$-2 \le x \le -\frac{4}{3}$$
이다.

(ii) x < -2일 때

$$-4x-8 \le -2x$$
 $\therefore -4 \le x$

즉 $-4 \le x < -2$ 이다.

따라서 (i), (ii)에 의해

부등식의 해는
$$-4 \le x \le -\frac{4}{3}$$
이므로

최댓값 $M=-\frac{4}{3}$, 최솟값 m=-4이다.

$$\therefore M + m = -\frac{16}{3}$$

17) [정답] ③

[해설]
$$\left(\left(\frac{2}{3}\right)^{-\frac{1}{2}}\right)^{-4x+6} \le \left(\frac{2}{3}\right)^x < \left(\frac{2}{3}\right)^{2(x-3)}$$
 $2x-3 \ge x > 2x-6$ $-3 \ge -x > -6$, $\therefore 3 \le x < 6$ 따라서 지수부등식을 만족시키는 모든 자연수 x 의 합은 $3+4+5=12$

18) [정답] ①

[해설] 함수는 $y = a^{-(x-3)} + 2$ 이고, x = 1, y = 4를 대입하면 $4 = a^2 + 2, a = \sqrt{2}$ 이다.

19) [정답] ④

[해설] 함수 $y = a^x - 10$ 의 개형은 a의 값에 따라 나뉜다.

(i) a > 1

곡선 $y=a^x-10$ 과 직선 y=ax는 한 점에서 만날 수 없다.

(ii) 0 < a < 1

곡선 $y=a^x-10$ 과 직선 y=ax는 한 점에서 만난다.

그러므로 (i), (ii)에 의해 0 < a < 1이다.

즉, 0 < a < 1이므로

부등식
$$\left(a^4\right)^{a^2+a-2} = a^{4a^2+4a-8} \ge a^{a^2-4}$$
에서 $4a^2+4a-8 \le a^2-4$ 이다.

$$3a^2+4a-4=(3a-2)(a+2)\leq 0$$
이므로

$$0 < a \le \frac{2}{3}$$
이다. (∵ $0 < a < 1$)

그러므로 a의 최댓값 m의 값은 $\frac{2}{3}$ 이다.

따라서 30m = 20이다.

20) [정답] ③

[해설]
$$(1 + \frac{r}{100})^{10} = 1.5$$
이고 n 년 후 총 자산이

현재의 2배가 된다고 하면 $(1 + \frac{r}{100})^n = 2$ 이다.

$$(1 + \frac{r}{100}) = (1.5)^{\frac{1}{10}}$$
이므로

$$\{(1.5)^{\frac{1}{10}}\}^n = (1.5)^{\frac{n}{10}} = 2$$
 그런데 $1.5^{1.7} = 2$ 이므로
$$\frac{n}{10} = 1.7 \quad \therefore n = 17$$