CS 223 Computer Architecture and Organization

Instruction Sets: Characteristics and Functions

Professor

Department of Computer Science & Engineering Indian Institute of Technology Guwahati, Assam.

Instructions

- Instruction Set
- Format of Instructions

How many Addresses

- More addresses
 - More complex (powerful?) instructions
 - More registers
 - Inter-register operations are quicker
 - Fewer instructions per program
- Fewer addresses
 - Less complex (powerful?) instructions
 - More instructions per program
 - Faster fetch/execution of instructions

Design Decisions

- Operation repertoire
 - How many ops?
 - What can they do?
 - How complex are they?
- Data types
- Instruction formats
 - Length of op code field
 - Number of addresses

Design Decisions

- Registers
 - Number of CPU registers available
 - Which operations can be performed on which registers?
- Addressing modes

Types of Operand

- Addresses
- Numbers
 - Integer/floating point
- Characters
 - ASCII etc.
- Logical Data
 - Bits or flags

Specific Data Types

- General arbitrary binary contents
- Integer single binary value
- Ordinal unsigned integer
- Unpacked BCD One digit per byte
- Packed BCD 2 BCD digits per byte
- Near Pointer offset within segment
- Bit field
- Byte String
- Floating Point

Integer Representation

- Only have 0 & 1 to represent everything
- Positive numbers stored in binary
 - e.g. 41=00101001
- Sign-Magnitude
- Two's compliment

BCD Representation

- Unpacked BCD One digit per byte
- Packed BCD 2 BCD digits per byte

Real Numbers

- Numbers with fractions
- Could be done in pure binary
 - $-1001.1010 = 2^4 + 2^0 + 2^{-1} + 2^{-3} = 9.625$
- Where is the binary point?
- Fixed?
 - Very limited
- Moving?
 - How do you show where it is?

Floating Point

- +/- .significand x 2^{exponent}
- Misnomer
- Point is actually fixed between sign bit and body of mantissa
- Exponent indicates place value (point position)
- IEEE 754 single format
- IEEE 754 double format (64bits = 1+11+52)

Types of Operation

- Data Transfer
- Arithmetic
- Logical
- Conversion
- I/O
- System Control
- Transfer of Control

Data Transfer

- Specify
 - Source
 - Destination
 - Amount of data
- May be different instructions for different movements
 - e.g. IBM 370
- Or one instruction and different addresses
 - e.g. VAX

Arithmetic

- Add, Subtract, Multiply, Divide
- Signed Integer
- Floating point
- May include
 - Increment (a++)
 - Decrement (a--)
 - Negate (-a)

Shift and Rotate Operations

Logical

- Bitwise operations
- AND, OR, NOT

Input/Output

- May be specific instructions
- May be done using data movement instructions (memory mapped)
- May be done by a separate controller (DMA)

Systems Control

- Privileged instructions
- CPU needs to be in specific state
 - Kernel mode
- For operating systems use

Transfer of Control

- Branch
 - e.g. branch to x if result is zero
- Skip
 - e.g. increment and skip if zero
- Conditional Instruction
 - ISZ Register1
 - Branch xxxx
 - BNZ xxxx
 - BP xxxx
- Subroutine call
 - interrupt call

Branch Instruction

Nested Procedure Calls

Computer System

Hardware: Implement the Instruction Set

Software: Program consists of instructions

- To solve a particular problem

Computer System

How to start a computer?

- Is it possible to provide all required instruction?
- We write software for some function

Firmware:

BIOS (Basic Input/Output System)

OS (Operating System)

May be considered as extended machine instructions

Computer Paradigm

CISC: Complex Instruction Set Computer

RISC: Reduced Instruction Set Computer

CPU Organization

CPU

Fetch Cycle:

MAR <- PC Read PC <- PC+1 IR <- MBR

Discussion

Instruction: MOV R1, R2

Fetch phase:

Execution Phase

T1: MAR <- PC, Read

T4: R1 <- R2

T2: MBR <- Memory

PC <- PC + 1

T3: IR <- MBR

Operating frequency of the processor: 2 GHz

Discussion

Reference

Computer Organization and Architecture –
Designing for Performance
William Stallings

Chapter 10: Page no. 347 – 359 (Seventh Edition) Page No:. 356 – 374 (Eighth Edition)