Electrical Engineering Technology

Transformers

Spring 2019 (2185)

Transformers

- □ Analysis
 - Voltage ratio
 - Current ratio
 - Turns ratio
 - Dot convention
- □ Transformer Example Problem
- □ Transformer In Class Problem

Ŋ

Transformer Analysis (voltage-ratio)

Consider the following transformer (ideal model, k=1):

"Ohm's Law" for magnetic circuits (from Chapter 12):

Effect = cause/opposition

$$\phi = \frac{\chi}{K} = \frac{MAGNETOMOTIVE}{FORCE} (A.Z)$$
 (12.5)

FLUX

(WERFRS) (A.Z./WERER)

ensformer

1):

1. THE FLUX GENERATED By
$$\overrightarrow{V}_{p}$$
, \overrightarrow{T}_{p} WILL HAVE

THE FORM:

$$\phi = \underbrace{N_{p} \cdot I_{p}(x)}_{R}$$

OR
$$\phi = \underbrace{(N_{p} \cdot I_{m})SIN(wx)}_{R} (wxx)$$

$$\phi_{m} = \underbrace{(N_{p} \cdot I_{m})SIN(wx)}_{R} (wxx)$$

Cuits

OR
$$\phi_{p}(x) = N_{p} \cdot \underbrace{J}_{dx} \left[\Phi_{m}^{SIN(wx)} \right] Volts$$

Cuits

OR
$$\phi_{p}(x) = N_{p} \cdot \underbrace{J}_{dx} \left[\Phi_{m}^{SIN(wx)} \right] Volts$$

$$\theta_{p}(x) = N_{p} \cdot \underbrace{J}_{dx} \left[\Phi_{m}^{SIN(wx)} \right] Volts$$

$$\theta_{p}(x) = N_{p} \cdot \underbrace{J}_{dx} \left[\Phi_{m}^{SIN(wx)} \right] Volts$$

$$\theta_{p}(x) = N_{p} \cdot \underbrace{J}_{dx} \left[\Phi_{m}^{SIN(wx)} \right] Volts$$

$$\theta_{p}(x) = N_{p} \cdot \underbrace{J}_{dx} \left[\Phi_{m}^{SIN(wx)} \right] Volts$$

$$\theta_{p}(x) = N_{p} \cdot \underbrace{J}_{dx} \left[\Phi_{m}^{SIN(wx)} \right] Volts$$

$$\theta_{p}(x) = N_{p} \cdot \underbrace{J}_{dx} \left[\Phi_{m}^{SIN(wx)} \right] Volts$$

$$\theta_{p}(x) = N_{p} \cdot \underbrace{J}_{dx} \left[\Phi_{m}^{SIN(wx)} \right] Volts$$

$$\theta_{p}(x) = N_{p} \cdot \underbrace{J}_{dx} \left[\Phi_{m}^{SIN(wx)} \right] Volts$$

$$\theta_{p}(x) = N_{p} \cdot \underbrace{J}_{dx} \left[\Phi_{m}^{SIN(wx)} \right] Volts$$

$$\theta_{p}(x) = N_{p} \cdot \underbrace{J}_{dx} \left[\Phi_{m}^{SIN(wx)} \right] Volts$$

$$\theta_{p}(x) = N_{p} \cdot \underbrace{J}_{dx} \left[\Phi_{m}^{SIN(wx)} \right] Volts$$

$$\theta_{p}(x) = N_{p} \cdot \underbrace{J}_{dx} \left[\Phi_{m}^{SIN(wx)} \right] Volts$$

$$\theta_{p}(x) = N_{p} \cdot \underbrace{J}_{dx} \left[\Phi_{m}^{SIN(wx)} \right] Volts$$

$$\theta_{p}(x) = N_{p} \cdot \underbrace{J}_{dx} \left[\Phi_{m}^{SIN(wx)} \right] Volts$$

$$\theta_{p}(x) = N_{p} \cdot \underbrace{J}_{dx} \left[\Phi_{m}^{SIN(wx)} \right] Volts$$

$$\theta_{p}(x) = N_{p} \cdot \underbrace{J}_{dx} \left[\Phi_{m}^{SIN(wx)} \right] Volts$$

$$\theta_{p}(x) = N_{p} \cdot \underbrace{J}_{dx} \left[\Phi_{m}^{SIN(wx)} \right] Volts$$

$$\theta_{p}(x) = N_{p} \cdot \underbrace{J}_{dx} \left[\Phi_{m}^{SIN(wx)} \right] Volts$$

$$\theta_{p}(x) = N_{p} \cdot \underbrace{J}_{dx} \left[\Phi_{m}^{SIN(wx)} \right] Volts$$

$$\theta_{p}(x) = \underbrace{J}_{dx} \left[\Phi_{m}^{SIN(wx)} \right] Volts$$

Transformer Analysis (voltage-ratio)

Consider the following transformer (ideal model, k=1):

$$I_{p}(x) = I_{m} S_{ln}(\omega x)$$

$$\mathcal{E}_{p}(z) \stackrel{\sim}{=} (6.283(fN_{p}) \Phi_{m} S_{ln}(\omega x + 90^{\circ}) V$$

So,
$$V_{p} = (4.44 + N_{p} \Phi_{m}) \chi 90^{\circ}$$

Note:

Looking at the secondary:

$$e_{s} = N_{s} \frac{d\phi_{m}}{dx} \quad \text{Becomes:}$$

$$e_{s}(\overline{x}) = N_{s} (2\pi f) \Phi_{m} Sin(wx + 90^{\circ}) \quad V$$

$$+ \left[\overrightarrow{V_s} \stackrel{\sim}{=} 4.44 + N_s \Phi_m \stackrel{\sim}{\downarrow} 90^{\circ}\right]$$

So we have the relationship:

$$\frac{\overline{V_{\rho}}}{V_{s}} = \frac{N_{\rho}}{N_{s}}$$

Ŋ

Transformer Analysis (turns ratio, dot convention)

Consider the following transformer (ideal model, k=1):

$$\frac{\overline{V_{\rho}}}{V_{S}} = \frac{N_{\rho}}{N_{S}}$$

$$\vec{V}_p = a\vec{V}_s$$

$$a < 1: |\vec{V}_s| = |\vec{V}_p|, STEP UP$$

$$V_s = \frac{\vec{V}_p}{a}$$

$$a > 1: |\vec{V}_s| < |\vec{V}_p|, STEP DOWN$$

Transformer Analysis (current ratio)

$$a = \frac{N\rho}{Ns} = 10, STEP DOWN$$

$$EIND: Vs, Is, Ip (RMS VALUES)$$

$$Vs = VQ - 120Vems - [12Vems]$$

$$V_s = V_p = \frac{120V_{RMS}}{10} = \frac{12V_{RMS}}{10}$$

$$T_s = \frac{V_s}{R_L} = \frac{12V_{RMS}}{100N} = \frac{120M_{RMS}}{100N}$$

What about Ip?

An iron-core, **lossless** transformer (k=1)

Therefore, Pin = Pout

$$P_{RL} = I_{S}^{2} \cdot R_{L}$$

$$= (20 \text{ mA})^{2} \cdot 100 \text{ n} = 1.44 \text{ W}$$

$$\stackrel{\circ}{=} (120 \text{ Vpms}) (I_{p})$$

$$\stackrel{\circ}{=} I_{p} = 12 \text{ mApms}$$

$$OR I_{p} = I_{s}$$

$$OR I_{p} = I_{s}$$

So, we have established:

$$\frac{V_{p}}{V_{s}} = \frac{N_{p}}{N_{s}} = a = \frac{I_{s}}{I_{p}}$$

Electrical Engineering Technology

Transformer Analysis (example)

$$\frac{V_p}{V_s} = \frac{N_p}{N_s} = \alpha = \frac{I_s}{I_p}$$

What's the magnitude of the input impedance?

$$\frac{V_p}{I_p} = \frac{120V_{PMS}}{12 M_{PMS}} = \frac{10,000 n}{2000 n}$$

Transformer Analysis (In Class Problem)

Find:

- a) Vp
- b) Is
- c) Ip
- d) Psupplied by Vp