# Face Mask Detection

Shania Dhani Michelle Lucero Xuejin Gao



# **Problem Description**

Mask Restrictions in public areas & Contact Tracing for COVID-19



# State of the Art/Related Work

"A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic" (Loey, Manogaran, Taha and Khalifa)

Does not account for wearing masks incorrectly

Has up to a 100% accuracy across one of the three tested datasets

# Member

### Role

Michelle

**Data Preprocessing and SVM** 

Shania

**KNN and Decision Tree Models** 

Xuejin

**CNN and Naive Bayes Models** 

# **Data Preprocessing**



# **KNN Progression**



### No Hyperparameter Tuning

~15 mins

Reduced images to 64X64 pixels to reduce dimensionality in the dataset.

GridSearchCV
Hyperparameter Tuning

**82**%

Not Normalized

Phase 1

Manhattan, Neighbors: 5

~15 hours; Memory Intensive

Computationally Expensive for Predictions

Dimensionality
Reduction Phase 2

~83%

**Normalized Dataset** 

PCA transformation w/ 90% variance preservation over the training set RandomizedSearchCV
Hyperparameter
Tuning Phase 3

86.7%

Normalized Dataset

Manhattan, Neighbors: 2, weight: distance

Less computationally expensive + memory intensive

### **KNN Model Evaluation**



GridSearchCV Hyperparameter Tuning



Principal Component Analysis



RandomizedSearchCV Hyperparameter Tuning

# **Decision Trees Progression**



### **No Hyperparameter Tuning**

Fast

**Default Scikit Parameters** 

Normalized

Tree is more shallow

# Dimensionality Reduction: PCA

Fast

Transformation improved accuracy

Normalized

### **Hyperparameter Tuning**

Fast

Gini, max depth = 10, max features = 1138

Searching for the model's best parameters was a ~1 hour computation

### **Decision Trees Model Evaluation**





Predicted label

797.000

- 200

82% No hyperparameter tuning

- 1000

- 800





84%, Max-Depth=10, Max Features=1138

| Hyperparameter |     | Tuning Class |        |          |         |
|----------------|-----|--------------|--------|----------|---------|
|                |     |              | recall | f1-score | support |
|                |     |              |        |          |         |
|                | 0   | 0.82         | 0.85   | 0.84     | 1178    |
|                | 1   | 0.92         | 0.90   | 0.91     | 1180    |
|                | 2   | 0.78         | 0.76   | 0.77     | 1180    |
|                |     |              |        |          |         |
| accur          | acy |              |        | 0.84     | 3538    |
| macro          | avg | 0.84         | 0.84   | 0.84     | 3538    |
| weighted       | avg | 0.84         | 0.84   | 0.84     | 3538    |
|                |     |              |        |          |         |

# **CNN Metrics**

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.99      | 0.98   | 0.99     | 1154    |
| 1            | 1.00      | 0.99   | 0.99     | 1179    |
| 2            | 0.98      | 0.99   | 0.98     | 1205    |
| accuracy     |           |        | 0.99     | 3538    |
| macro avg    | 0.99      | 0.99   | 0.99     | 3538    |
| weighted avg | 0.99      | 0.99   | 0.99     | 3538    |



### **SVM Metrics**

#### Evaluate performance for using 100% of the dataset

```
### 1. Get and print a baseline accuracy score.
y_pred = model_100.predict(X_test)
accuracy = model_100.score(X_test, y_test)
print("Accuracy %f" % accuracy)
metrics.accuracy_score(y_true=y_test, y_pred=y_pred)
```

#### Accuracy 0.961556

5]: 0.9615558570782451

| M | <pre>print(metrics.classification_report(y_test,</pre> | y_pred)) |
|---|--------------------------------------------------------|----------|
|---|--------------------------------------------------------|----------|

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.95      | 0.96   | 0.96     | 1489    |
| 1            | 0.99      | 0.98   | 0.99     | 1466    |
| 2            | 0.94      | 0.94   | 0.94     | 1467    |
| accuracy     |           |        | 0.96     | 4422    |
| macro avg    | 0.96      | 0.96   | 0.96     | 4422    |
| weighted avg | 0.96      | 0.96   | 0.96     | 4422    |

#### Evaluate performance for using 75% of the dataset

```
### 1. Get and print a baseline accuracy score.
y_pred = model_75.predict(X_test)
accuracy = model_75.score(X_test, y_test)
print("Accuracy %f" % accuracy)
metrics.accuracy_score(y_true=y_test, y_pred=y_pred)
```

Accuracy 0.951161

)]: 0.9511606873681037

#### Evaluate performance for using 50% of the dataset

```
### 1. Get and print a baseline accuracy score.
y_pred = model_50.predict(X_test)
accuracy = model_50.score(X_test, y_test)
print("Accuracy %f" % accuracy)
metrics.accuracy_score(y_true=y_test, y_pred=y_pred)
```

Accuracy 0.939846

#### Evaluate performance for using 25% of the dataset

```
### 1. Get and print a baseline accuracy score.
y_pred = model_25.predict(X_test)
accuracy = model_25.score(X_test, y_test)
print("Accuracy %f" % accuracy)
metrics.accuracy_score(y_true=y_test, y_pred=y_pred)
```

Accuracy 0.933996

5]: 0.933996383363472

### **SVM Metrics**

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.93      | 0.93   | 0.93     | 752     |
| 1            | 0.97      | 0.97   | 0.97     | 732     |
| 2            | 0.91      | 0.90   | 0.90     | 727     |
|              |           |        |          |         |
| accuracy     |           |        | 0.93     | 2211    |
| macro avg    | 0.93      | 0.93   | 0.93     | 2211    |
| weighted avg | 0.93      | 0.93   | 0.93     | 2211    |



### **KNN Model Bias Assessment**



| Classification             |     | Report POC precision |              | set<br>f1-score      | support           |
|----------------------------|-----|----------------------|--------------|----------------------|-------------------|
|                            | 0   | 0.39                 | 0.36         | 0.37                 | 100               |
|                            | 1   | 0.58                 | 0.82         | 0.68                 | 102               |
|                            | 2   | 0.49                 | 0.33         | 0.39                 | 107               |
| accur<br>macro<br>weighted | avg | 0.49<br>0.49         | 0.50<br>0.50 | 0.50<br>0.48<br>0.48 | 309<br>309<br>309 |



| Classification |     | Report W Test Dataset |        |          |         |  |
|----------------|-----|-----------------------|--------|----------|---------|--|
|                |     | precision             | recall | f1-score | support |  |
|                |     |                       |        |          |         |  |
|                | 0   | 0.38                  | 0.49   | 0.43     | 100     |  |
|                | 1   | 0.26                  | 0.21   | 0.23     | 103     |  |
|                | 2   | 0.37                  | 0.33   | 0.35     | 106     |  |
|                |     |                       |        |          |         |  |
| accur          | acy |                       |        | 0.34     | 309     |  |
| macro          | avg | 0.34                  | 0.34   | 0.34     | 309     |  |
| weighted       | avg | 0.34                  | 0.34   | 0.34     | 309     |  |
|                |     |                       |        |          |         |  |

### **Decision Trees Bias Assessment**





| W Classifi | cati | on Report<br>precision | recall | f1-score | support |
|------------|------|------------------------|--------|----------|---------|
|            | 0    | 0.27                   | 0.17   | 0.21     | 100     |
|            | 1    | 0.25                   | 0.12   | 0.16     | 103     |
|            | 2    | 0.34                   | 0.64   | 0.45     | 106     |
|            |      |                        |        |          |         |
| accura     | су   |                        |        | 0.31     | 309     |
| macro a    | vg   | 0.29                   | 0.31   | 0.27     | 309     |
| weighted a | vg   | 0.29                   | 0.31   | 0.27     | 309     |
|            |      |                        |        |          |         |

POC Dataset Accuracy 55.6%

W Dataset Accuracy 31.4.%

### **SVM Bias Assessment**





POC Dataset Accuracy 57.6%

W Dataset Accuracy 35.6%

### **CNN Bias Assessment**

POC: ~60% accuracy W: ~36% accuracy

# **Differences between Images**



Image from our training data of class "incorrectly wearing mask"



Image from our testing W data of class "incorrectly wearing mask"

### POSSIBLE REASONS BIAS ASSESSMENT PERFORMANCE:

- We overfitted our models to the training data
- The training images contain noise or features that differ dramatically from the new instances
- More Feature Selection was needed to reduce the importance of irrelevant features
- Simulated face masks in our training data, negatively affected our models ability to correctly classify certain types of instances

### What We Learned

- Feature Set Is Important.
  - Too many "unimportant" features can be noisy,
  - Too many features can be computationally expensive and memory intensive for certain models (KNN, SVM)
- Dataset Collection and Choice is Important.
  - Be picky about your training dataset.
  - Actively test more often for biases in dataset
- Hyperparameter Tuning is Hard.

# Flask App





# Thank You!

# The End

# References

- Loey, M., Manogaran, G., Taha, M., & Khalifa, N. (2021). A hybrid deep transfer learning
  - model with machine learning methods for face mask detection in the era of the COVID-19 pandemic.
  - Measurement: journal of the International Measurement Confederation, 167, 108288.
  - https://doi.org/10.1016/j.measurement.2020.108288

### **Evaluation**

"99.64% accuracy, with up to 100% accuracy on one of the three different datasets used in the baseline research."

We will use the performance metrics gathered on the:

- SVM
- KNN
- CNN
- Naive Bayes
- Decision Trees

To make our own ML Model and compare it to our baseline study.

# **Approach**

We plan to use a combination of different datasets available to create a new dataset that is labelled *for mask v. no mask v. incorrect wearing of a mask.* 

- KNN
- Different types of CNN to gauge which models are the best predictors.

We hope to create our own face-detection model.