Association Analysis

Brian Onchweri

2022-06-10

Part 2: Association Rules

This section will require that we create association rules that will allow us to identify relationships between variables in the dataset. We are provided with a separate dataset that comprises groups of items that will be associated with others. Just like in the other sections, we will also be required to provide insights for our analysis.

Loading Required Libraries

```
library(relaimpo)
```

```
## Loading required package: MASS
## Loading required package: boot
## Loading required package: survey
## Loading required package: grid
## Loading required package: Matrix
## Loading required package: survival
## Attaching package: 'survival'
## The following object is masked from 'package:boot':
##
##
       aml
##
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
##
##
       dotchart
```

```
## Loading required package: mitools
## This is the global version of package relaimpo.
## If you are a non-US user, a version with the interesting additional metric pmvd is available
## from Ulrike Groempings web site at prof.beuth-hochschule.de/groemping.
library(data.table)
library(ggplot2) # Data visualization
library(ggthemes) # Plot themes
library(plotly) # Interactive data visualizations
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
##
       last_plot
## The following object is masked from 'package:MASS':
##
##
       select
## The following object is masked from 'package:stats':
##
##
       filter
## The following object is masked from 'package:graphics':
##
##
       layout
library(dplyr) # Data manipulation
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:data.table':
##
       between, first, last
##
## The following object is masked from 'package:MASS':
##
##
       select
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
```

```
library(psych) # Will be used for correlation visualization
##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
##
       %+%, alpha
## The following object is masked from 'package:boot':
##
##
       logit
library(arules)# for association
##
## Attaching package: 'arules'
## The following object is masked from 'package:dplyr':
##
##
       recode
## The following objects are masked from 'package:base':
##
##
       abbreviate, write
Reading the URL
path <-"http://bit.ly/SupermarketDatasetII"</pre>
df<-read.transactions(path, sep = ",")</pre>
## Warning in asMethod(object): removing duplicated items in transactions
Displaying first few rows of our Dataset
head(df)
## transactions in sparse format with
## 6 transactions (rows) and
## 119 items (columns)
# previewing the column names
colnames(df)
```

```
##
     [1] "almonds"
                                  "antioxydant juice"
                                                          "asparagus"
##
     [4] "avocado"
                                  "babies food"
                                                          "bacon"
                                                          "blueberries"
##
     [7] "barbecue sauce"
                                  "black tea"
                                  "bramble"
                                                          "brownies"
##
    [10] "body spray"
##
    [13] "bug spray"
                                  "burger sauce"
                                                          "burgers"
   [16] "butter"
                                  "cake"
                                                          "candy bars"
##
   [19] "carrots"
                                  "cauliflower"
                                                          "cereals"
   [22] "champagne"
                                  "chicken"
                                                          "chili"
##
##
    [25] "chocolate"
                                  "chocolate bread"
                                                          "chutney"
##
   [28] "cider"
                                                          "cookies"
                                  "clothes accessories"
   [31] "cooking oil"
                                  "corn"
                                                          "cottage cheese"
                                  "dessert wine"
##
   [34] "cream"
                                                          "eggplant"
##
   [37] "eggs"
                                  "energy bar"
                                                          "energy drink"
                                  "extra dark chocolate"
                                                          "flax seed"
##
   [40] "escalope"
##
   [43] "french fries"
                                  "french wine"
                                                          "fresh bread"
##
    [46] "fresh tuna"
                                  "fromage blanc"
                                                          "frozen smoothie"
##
   [49] "frozen vegetables"
                                  "gluten free bar"
                                                          "grated cheese"
   [52] "green beans"
                                  "green grapes"
                                                          "green tea"
   [55] "ground beef"
                                  "gums"
                                                          "ham"
##
##
   [58] "hand protein bar"
                                  "herb & pepper"
                                                          "honey"
##
  [61] "hot dogs"
                                  "ketchup"
                                                          "light cream"
  [64] "light mayo"
                                  "low fat yogurt"
                                                          "magazines"
  [67] "mashed potato"
##
                                  "mayonnaise"
                                                          "meatballs"
    [70] "melons"
                                  "milk"
                                                          "mineral water"
  [73] "mint"
##
                                                          "muffins"
                                  "mint green tea"
   [76] "mushroom cream sauce"
                                  "napkins"
                                                          "nonfat milk"
##
  [79] "oatmeal"
                                  "oil"
                                                          "olive oil"
  [82] "pancakes"
                                                          "pasta"
##
                                  "parmesan cheese"
##
  [85] "pepper"
                                  "pet food"
                                                          "pickles"
  [88] "protein bar"
                                  "red wine"
                                                          "rice"
##
   [91] "salad"
                                  "salmon"
                                                          "salt"
##
   [94] "sandwich"
                                  "shallot"
                                                          "shampoo"
  [97] "shrimp"
                                  "soda"
                                                          "soup"
## [100] "spaghetti"
                                  "sparkling water"
                                                          "spinach"
## [103] "strawberries"
                                  "strong cheese"
                                                          "tea"
## [106] "tomato juice"
                                  "tomato sauce"
                                                          "tomatoes"
## [109] "toothpaste"
                                  "turkey"
                                                          "vegetables mix"
## [112] "water spray"
                                  "white wine"
                                                          "whole weat flour"
## [115] "whole wheat pasta"
                                  "whole wheat rice"
                                                          "yams"
## [118] "yogurt cake"
                                  "zucchini"
dim(df)
## [1] 7501 119
# Previewing our first 5 transactions
inspect(df[1:5])
##
       items
## [1] {almonds,
##
        antioxydant juice,
##
        avocado,
##
        cottage cheese,
```

```
##
        energy drink,
##
        frozen smoothie,
        green grapes,
##
##
        green tea,
##
        honey,
##
        low fat yogurt,
##
        mineral water,
##
        olive oil,
##
        salad,
##
        salmon,
##
        shrimp,
##
        spinach,
##
        tomato juice,
##
        vegetables mix,
##
        whole weat flour,
##
        yams}
##
   [2] {burgers,
##
        eggs,
##
        meatballs}
  [3] {chutney}
##
##
   [4] {avocado,
##
        turkey}
##
   [5] {energy bar,
##
        green tea,
##
        milk,
##
        mineral water,
##
        whole wheat rice}
\# Generating a summary of the dataset
summary(df)
## transactions as itemMatrix in sparse format with
  7501 rows (elements/itemsets/transactions) and
   119 columns (items) and a density of 0.03288973
##
## most frequent items:
## mineral water
                                     spaghetti french fries
                                                                   chocolate
                           eggs
##
            1788
                           1348
                                          1306
                                                         1282
                                                                        1229
##
         (Other)
##
           22405
##
## element (itemset/transaction) length distribution:
## sizes
##
      1
           2
                 3
                      4
                           5
                                6
                                      7
                                           8
                                                9
                                                     10
                                                          11
                                                               12
                                                                     13
                                                                          14
                                                                               15
                                                                                     16
## 1754 1358 1044
                   816 667
                              493 391 324
                                                                          22
                                              259
                                                   139
                                                         102
                                                                               17
##
     18
          19
                20
##
      1
           2
##
##
      Min. 1st Qu.
                     Median
                               Mean 3rd Qu.
                                                Max.
##
             2.000
                     3.000
                              3.914
                                       5.000 20.000
##
## includes extended item information - examples:
                labels
## 1
               almonds
```

```
## 2 antioxydant juice
## 3
             asparagus
# Exploring the frequency of some articles
itemFrequency(df[, 8:10],type = "absolute")
##
     black tea blueberries body spray
##
           107
                        69
                                    86
round(itemFrequency(df[, 8:10],type = "relative")*100,2)
##
     black tea blueberries
                           body spray
##
          1.43
                      0.92
# Producing a chart of frequencies and fitering
# Displaying top 10 most common items in the transactions dataset
# and the items whose relative importance is at least 10%
par(mfrow = c(1, 2))
# plot the frequency of items
itemFrequencyPlot(df, topN = 10,col="darkgreen")
itemFrequencyPlot(df, support = 0.1,col="darkred")
```



```
# Building a model based on association rules using the apriori function
# We use Min Support as 0.001 and confidence as 0.8
rules <- apriori (df, parameter = list(supp = 0.001, conf = 0.8))
## Apriori
##
## Parameter specification:
   confidence minval smax arem aval original Support maxtime support minlen
##
           0.8
                  0.1
                         1 none FALSE
                                                 TRUE
                                                                0.001
##
   maxlen target ext
        10 rules TRUE
##
##
## Algorithmic control:
   filter tree heap memopt load sort verbose
       0.1 TRUE TRUE FALSE TRUE
##
                                    2
                                         TRUE
##
## Absolute minimum support count: 7
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[119 item(s), 7501 transaction(s)] done [0.00s].
## sorting and recoding items ... [116 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 5 6 done [0.01s].
## writing ... [74 rule(s)] done [0.00s].
## creating S4 object ... done [0.04s].
rules
## set of 74 rules
# using the measures of significance and interest on the rules, determining which ones are interesting
# Building a apriori model with Min Support as 0.002 and confidence as 0.8.
rules2 <- apriori (df,parameter = list(supp = 0.002, conf = 0.8))
## Apriori
## Parameter specification:
##
   confidence minval smax arem aval original Support maxtime support minlen
##
           0.8
                  0.1
                         1 none FALSE
                                                 TRUE
                                                            5
                                                                0.002
   maxlen target ext
        10 rules TRUE
##
##
## Algorithmic control:
   filter tree heap memopt load sort verbose
##
       0.1 TRUE TRUE FALSE TRUE
                                    2
                                         TRUE
##
## Absolute minimum support count: 15
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[119 item(s), 7501 transaction(s)] done [0.00s].
## sorting and recoding items ... [115 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
```

```
## checking subsets of size 1 2 3 4 5 done [0.00s].
## writing ... [2 rule(s)] done [0.00s].
## creating S4 object ... done [0.00s].
# Building apriori model with Min Support as 0.002 and confidence as 0.6.
rules3 <- apriori (df, parameter = list(supp = 0.001, conf = 0.6))
## Apriori
##
## Parameter specification:
   confidence minval smax arem aval original Support maxtime support minlen
##
          0.6 0.1
                        1 none FALSE
                                                TRUE
                                                               0.001
## maxlen target ext
       10 rules TRUE
##
##
## Algorithmic control:
## filter tree heap memopt load sort verbose
      0.1 TRUE TRUE FALSE TRUE
##
##
## Absolute minimum support count: 7
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[119 item(s), 7501 transaction(s)] done [0.00s].
## sorting and recoding items ... [116 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 5 6 done [0.01s].
## writing ... [545 rule(s)] done [0.00s].
## creating S4 object ... done [0.00s].
rules2
## set of 2 rules
rules3
## set of 545 rules
# performing an exploration of our model through the use of the summary function as shown
summary(rules)
## set of 74 rules
##
## rule length distribution (lhs + rhs):sizes
## 3 4 5 6
## 15 42 16 1
##
##
     Min. 1st Qu. Median
                            Mean 3rd Qu.
    3.000 4.000 4.000
                            4.041 4.000
##
                                            6.000
## summary of quality measures:
      support
                                                               lift
##
                        confidence
                                          coverage
```

```
## Median :0.001133
                       Median :0.8333
                                        Median :0.001333
                                                            Median : 3.795
## Mean
           :0.001256
                       Mean
                              :0.8504
                                        Mean
                                                :0.001479
                                                            Mean
                                                                  : 4.823
##
   3rd Qu.:0.001333
                       3rd Qu.:0.8889
                                        3rd Qu.:0.001600
                                                            3rd Qu.: 4.877
  Max.
           :0.002533
                       Max.
                              :1.0000
                                               :0.002666
                                                            Max.
                                                                   :12.722
##
                                        {\tt Max.}
##
        count
## Min.
          : 8.000
   1st Qu.: 8.000
##
##
  Median : 8.500
## Mean
          : 9.419
## 3rd Qu.:10.000
## Max.
           :19.000
##
## mining info:
  data ntransactions support confidence
##
                  7501
                         0.001
                                      0.8
##
                                                               call
   apriori(data = df, parameter = list(supp = 0.001, conf = 0.8))
# Observing rules built in our model i.e. first 5 model rules
inspect(rules[1:5])
##
       lhs
                                                                     confidence
                                        rhs
                                                         support
## [1] {frozen smoothie, spinach}
                                     => {mineral water} 0.001066524 0.8888889
## [2] {bacon, pancakes}
                                     => {spaghetti}
                                                         0.001733102 0.8125000
## [3] {nonfat milk, turkey}
                                     => {mineral water} 0.001199840 0.8181818
## [4] {ground beef, nonfat milk}
                                     => {mineral water} 0.001599787 0.8571429
## [5] {mushroom cream sauce, pasta} => {escalope}
                                                         0.002532996 0.9500000
                             count
##
       coverage
                   lift
## [1] 0.001199840 3.729058 8
## [2] 0.002133049 4.666587 13
## [3] 0.001466471 3.432428 9
## [4] 0.001866418 3.595877 12
## [5] 0.002666311 11.976387 19
# Ordering these rules by a criteria such as the level of confidence
# then looking at the first five rules.
rules<-sort(rules, by="confidence", decreasing=TRUE)</pre>
inspect(rules[1:5])
##
       lhs
                                  rhs
                                                       support confidence
                                                                             coverage
                                                                                            lift count
## [1] {french fries,
##
        mushroom cream sauce,
##
                                                   0.001066524
                                                                     1.00 0.001066524 12.606723
        pasta}
                               => {escalope}
                                                                                                     8
##
   [2] {ground beef,
##
        light cream,
##
        olive oil}
                               => {mineral water} 0.001199840
                                                                     1.00 0.001199840 4.195190
## [3] {cake,
##
        meatballs,
                               => {milk}
                                                   0.001066524
##
        mineral water}
                                                                     1.00 0.001066524 7.717078
                                                                                                     8
## [4] {cake,
##
       olive oil,
```

:0.001067

1st Qu.:0.001333

Min.

: 3.356

1st Qu.: 3.432

Min.

##

:0.001067

1st Qu.:0.001067

Min.

:0.8000

1st Qu.:0.8000

```
##
        shrimp}
                               => {mineral water} 0.001199840
                                                                     1.00 0.001199840 4.195190
## [5] {mushroom cream sauce,
                               => {escalope}
       pasta}
                                                   0.002532996
                                                                     0.95 0.002666311 11.976387
# If we're interested in making a promotion relating to the sale of milk,
# we could create a subset of rules concerning these products
# ---
# This would tell us the items that the customers bought before purchasing milk
milk <- subset(rules, subset = rhs %pin% "milk")</pre>
# Then order by confidence
milk<-sort(milk, by="confidence", decreasing=TRUE)</pre>
milk
## set of 5 rules
inspect(milk[1:5])
##
       lhs
                                                      support
                                                                  confidence
                                              rhs
## [1] {cake, meatballs, mineral water}
                                           => {milk} 0.001066524 1.0000000
## [2] {escalope, hot dogs, mineral water} => {milk} 0.001066524 0.8888889
## [3] {meatballs, whole wheat pasta}
                                           => {milk} 0.001333156 0.8333333
## [4] {black tea, frozen smoothie}
                                           => {milk} 0.001199840 0.8181818
## [5] {burgers, ground beef, olive oil}
                                           => {milk} 0.001066524 0.8000000
##
       coverage
                  lift
                            count
## [1] 0.001066524 7.717078 8
## [2] 0.001199840 6.859625 8
## [3] 0.001599787 6.430898 10
## [4] 0.001466471 6.313973 9
## [5] 0.001333156 6.173663 8
# Determining items that customers might buy if they bought milk.
# Subset the rules
milk <- subset(rules, subset = lhs %pin% "milk")</pre>
# Order by confidence
milk <- sort (milk, by="confidence", decreasing=TRUE)
#Displaying top 5
inspect(milk[15:19])
##
       lhs
                                                              support
## [1] {chocolate, hot dogs, milk}
                                          => {mineral water} 0.001066524
## [2] {avocado, burgers, milk}
                                          => {spaghetti}
                                                              0.001066524
## [3] {cookies, green tea, milk}
                                          => {french fries} 0.001066524
## [4] {cake, eggs, milk, turkey}
                                          => {mineral water} 0.001066524
## [5] {chocolate, eggs, milk, olive oil} => {mineral water} 0.001066524
       confidence coverage lift
                                       count
                 0.001333156 3.356152 8
## [1] 0.8
```

19

Conclusion

Interpretation of the rules:

1: If someone buys frozen smoothie and spinach, they are 89% likely to buy mineral water too 1: If someone buys bacon and pancakes, they are 81% likely to buy spaghetti too 1: If someone buys nonfat milk and turkey, they are 82% likely to buy mineral water too 1: If someone buys ground beef and nonfat milk, they are 86% likely to buy mineral water too 1: If someone buys frozen mushroom cream sauce and pasta, they are 95% likely to buy escalope too