2015 年高等概率论期末试题

(共 5 题, 每题 20 分, 病分 100 分, 答墓时间: 100 分钟)

胜名:(

)。学号:(

),本科生()研究生()

1. 设 $Z(\omega)$ 是概率空间 $(\Omega,\mathcal{F},\mathbb{P})$ 下的一个随机变量, 且 Z>0, a.e. 以及 $\mathbb{E}[Z]=1$. 对任

 $\mathbf{Q}(A) = \mathbb{E}\left[\mathbf{Z}\mathbf{1}_{A}\right].$

试回答以下问题:

- 证明 Q 是定义在 (Ω, F) 上的一个概率测度。
- (2) 证明 Q~P. 即证明 P << Q 以及 Q << P.
- (3) 设 $N(\omega)$ 为 (Ω, \mathcal{F}, P) 上的一个服从参数为 $\lambda > 0$ 的 Poisson 分布的随机变量, 设 b > -1, 计算數學期望: E [(1+b)]
- (4) 试建立一个 (Ω, F) 上的概率制度 Q 構足如下的性质:
 - (n) Q~P:
 - (b) 在概率空间 $(\Omega, \mathcal{F}, \mathbb{Q})$ 下, $N(\omega)$ 仍为一个服从 Poisson 分布的離机变量, 且

$$\int_{\Omega} N(\omega)d\mathbf{Q}(\omega) = (1+b)\lambda,$$

其中 6 > -1.

2. 设 $X=\{X_t;\ t\geq 0\}$ 是概率空间 $(\Omega,\mathcal{F},\mathbb{P})$ 下一个具有连续样本轨道的连续时间非负触 机过程且初始值 $X_0=x_0>0$. 设 $a\in(0,+\infty)$, 定义随机变量:

$$\tau_a(\omega) = \inf\{t \in [0,T]; X_t(\omega) = a\}, \quad \omega \in \Omega,$$

其中记 $\inf \emptyset = +\infty$. 已知随机过程 $\{M_{t\wedge \tau_n}; t \geq 0\}$ 是一个 $\{\mathcal{F}_t^X; t \geq 0\}$ 鞅, 其中 $\mathcal{F}_t^X =$ $\sigma(X_s; s \in [0, t])$, 这里 $t \wedge \tau_a = \min\{t, \tau_a\}$, 以及

$$M_t = f(t, X_t) - f(0, x_0) - \int_0^t \left(\frac{\partial f(s, X_s)}{\partial s} + \mu \frac{\partial f(s, X_s)}{\partial x} + \frac{\sigma^2}{2} \frac{\partial^2 f(s, X_s)}{\partial x^2} \right) ds, \quad t \in [0, T],$$

其中 $f(t,x) \in C^{1,2}([0,\infty) \times [0,\infty))$ 是任意的且满足 $\frac{2f(t,x)}{6x} = 0$. 如果 $x_0 < a$, 计算数学 期望 E [e-λr-], 其中 λ > 0, μ ∈ R, σ > 0 是已知常数.

- 3. 设 $X \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ 以及一列单增 σ -代数 $G_n \subset \mathcal{F}, n = 1, 2,$ 定义 $Y_n = \mathbb{E}[X|G_n]$, n = 1.2..... 试回答以下问题:
- (1) 证明对任意 $m, n = 1, 2, ..., \mathbb{E}[Y_{n+m}|\mathcal{G}_n] = Y_n$.

- (2) 证明随机变量列 $\{Y_n; n=1,2,...\}$ 是一致可积的. 如果 X 仅仅是可积的 (即 $X \in L^1(\Omega,\mathcal{F},P)$), 判别 $\{Y_n; n=1,2,...\}$ 是否还是一致可积的? 如果是, 请给出证明.
- (3) 定义条件方差 $CVar_n(X) = E[(X Y_n)^2 | G_n], n = 1, 2,$ 求证:
 - (a) 对每一个 n = 1,2,..., 随机变量 X 的方差:

$$Var(X) = \mathbb{E}\left[CVar_n(X)\right] + Var(Y_n).$$

- (b) n → Var(X) Var(Y_n) 是一个单减数列。
- 4. 证明如下的结论:
 - (1) 设 X,Y 是定义在概率空间 $(\Omega,\mathcal{F},\mathbb{P})$ 上取实值的随机变量以及 $F_X(\cdot),F_Y(\cdot)$ 分别表示它们的分布函数,用 $\mathcal{P}_X,\mathcal{P}_Y$ 分别表示它们的分布,即对任意 $B\in\mathcal{B}_R,\mathcal{P}_X(B)=\mathbb{P}(X\in B)$ 和 $\mathcal{P}_Y(B)=\mathbb{P}(Y\in B)$,则

$$F_X(x) = F_Y(x), \ \forall \ x \in \mathbb{R} \implies \mathcal{P}_X = \mathcal{P}_Y, \ \text{on } \mathcal{B}_R.$$

- (2) 设 (Ω, \mathcal{F}, P) 为一概率空间, 且 A_1, A_2, A_3 是包含在事件域 \mathcal{F} 中相互独立的 π -类, 则 $\sigma(A_1)$, $\sigma(A_2)$, $\sigma(A_3)$ 为包含在事件域 \mathcal{F} 中相互独立的 σ -代数.
- 5. 设 X, X_n , Y_n , $n=1,2,\ldots$ 为概率空间 (Ω,\mathcal{F},P) 上取实值的一**列随机变量**, $c\in \mathbb{Z}$ 表示一常数, $\mu_n(B)=\mathbb{P}(X_n\in B)$ 其中 $B\in B_n$. 证明如下的结论:
 - 如果 sup_{n>1} E||X_n|| < +∞, 则 {μ_n; n ≥ 1} 是一致胎質的.
 - (2) 如果 $|X_n Y_n| \stackrel{>}{\to} 0 \perp X_n \stackrel{\wedge}{\to} X$, 则 $Y_n \stackrel{\wedge}{\to} X$.
 - (3) 如果 X_n ⇒ X 及 Y_n ⇒ c, 则 (X_n, Y_n) ⇒ (X, c).