

GT9110P

单芯片带手写笔 10 点电容触控芯片

Rev.03——2013年07月31日

===== 免责声明=====

本出版物中所述的器件应用信息及其他类似内容仅为您提供,它们可能由更新之信息所替代。确保应用符合技术规范,是您自身应负的责任。GOODIX对这些信息不作任何明示或暗示、书面或口头、法定或其他形式的声明或担保,包括但不限于针对其使用情况、质量、性能、适销性或特定用途的适用性的声明或担保。GOODIX 对因这些信息及使用这些信息而引起的后果不承担任何责任。未经GOODIX书面批准,不得将GOODIX 的产品用作生命维持系统中的关键组件。在GOODIX 知识产权保护下,不得暗中或以其他方式转让任何许可证。

景

1.	概述	4
2.	产品特点	4
	2.1. GT9110P	4
	2.2. GT930	5
3.	芯片原理图	6
4.	管脚定义	6
	4.1. GT9110P	6
	4.2. GT930	7
5.	传感器设计	8
	5.1. 感应通道排布	8
	5.2. 驱动通道排布	8
	5.3. 传感器设计参数要求	
6.	I ² C 通讯	10
	6.1. I ² C 通讯	10
,	数据传输	
,	对 GT9110P 写操作	
c)	对 GT9110P 读操作	
	6.2. GT9110P 的寄存器信息	
-	实时命令	
,	配置信息	
	坐标信息	
7.	工作模式	
	1.1. GT9110P 工作模式	19
	1.2. 各模式说明	
	a) Finger + Stylus Mode	
	b) Green Mode	
	c) Finger Mode	
	d) Stylus Mode	
	e) Sleep Mode	
	1.3. GT930 工作模式	
	a) Normal Mode	
	b) Green Mode	
	c) Sleep Mode	
	1.4. 中断触发方式	
	1.5. 自动校准	
	a) 初始化校准	
	b) 自动温漂补偿	
	1.6. 固化配置功能	
_	1.7. 跳频功能	
8.	参考电路图	
	8.1. GT9110P 参考电路图	
	8.2. GT930 参考电路图	24

9. 电气特性	27
9.1. GT9110P 电气特性	27
a) 极限电气参数	
b) 推荐工作条件	
c) AC 特性	
d) DC 特性	27
9.2. GT930 电气特性	
a) 最大额定值	
b) 标准工作条件	
10. 产品封装	
10.1. GT9110P 封装	
10.2. GT930 封装	
11. 版本记录	32
12. 联系方式	33

1. 概述

GT9110P 是专为平板电脑设计的新一代单芯片 10 点电容触控方案,多达 42 个驱动通道和 30 个感应通道,实现平板电脑的高精度 touch。

与 GT9110P 相配合的电容屏专用电容笔控制芯片 GT930,采用压敏电阻检测压力方式,可实现电容屏上笔写的精细操作,能够增加用户体验。

2.产品特点

2.1. GT9110P

- ◆ 内置电容检测电路及高性能 MPU
 - ▶ 触摸扫描频率: 100Hz
 - ▶ 10点触控,触摸点坐标实时输出
 - > 统一软件版本适用于多种尺寸的电容屏
 - ▶ 单电源供电,内置 1.8V LDO
 - ▶ Flash 工艺制程,支持在线烧录
- ◆ 电容屏传感器
 - 检测通道: 42(驱动通道)*30(感应通道)
 - ▶ 电容屏尺寸范围: 8.9"~12.1"
 - ▶ 同时支持 ITO 玻璃和 ITO Film
 - CoverLens 厚度支持: 0.7mm ≤ Glass ≤ 2mm; 0.5mm ≤ PMMA≤1.2mm
 - > 内置跳频功能
- ◆ 环境适应性能
 - > 初始化自动校准
 - ▶ 自动温漂补偿
 - 工作温度: -40℃~+85℃,湿度: ≦95%RH
 - ▶ 储存温度: -60℃~+125℃, 湿度: ≦95%RH
- ◆ 通讯接口
 - ▶ 标准 I²C 通讯接口
 - ▶ 从设备工作模式
 - ▶ 支持 1.8V~3.3V 接口电平
- ◇ 响应时间

Green mode: 40msSleep mode: 200msInitialization: 200ms

- ◆ 电源电压:
 - ▶ 单电源供电: 2.8V~3.3V
- ◆ 电源纹波:
 - Vpp≤50mV
- ◆ 封装: 88 pins, 10mm*10mm QFN_0.4P
- ◆ 应用开发支持工具
 - ▶ 触摸屏模组参数侦测及配置参数自动生成
 - ▶ 触摸屏模组性能综合测试工具
 - ▶ 模组量产测试工具
 - > 主控软件开发参考驱动代码及文档指导

2.2. GT930

- ◆ 电阻式压力传感器
 - ▶ 256 级压力感应
 - ▶ 通过笔尖与屏通信传入触摸屏 IC
- ◇ 支持2个按键
 - ▶ 可根据需求自定义按键功能
- ◆ 3个通信频率可选
 - ➤ 通过切换频率按键,可在 666k、500k、400k 三个频率中选择 一个与 GT9110P 进行通信
- ◆ 低功耗特点
 - 系统 normal 模式耗电典型值为 502uA(9.6mm 笔输入电池电压 为 1.5V)
 - > 系统 sleep 模式耗电典型值仅为 40uA(9.6mm 笔输入电池电压 为 1.5V)
 - 系统 normal 模式耗电典型值为 300uA(5.4mm 笔输入超级锂电电压为 2-2.4V)
 - 系统 sleep 模式耗电典型值仅为 10uA(5.4mm 笔输入超级锂电电压为 2-2.4V)
- ♦ 供电电压
 - ➤ GT930 工作电压为 1.8V-3.6V, 典型值 2V
 - ▶ 两种供电方式:单电池供电:超级电容供电。
- ◆ 封装 8pins DFN 3*3*0.9mm

3. 芯片原理图

4. 管脚定义

4.1. GT9110P

管脚号.	名称	功能描述	备注
1~22	SENS8~SENS29	触摸模拟信号输入	
23	AVDD28	模拟电源正	接 2.2uF 滤波电容
24	AVDD18		接 2.2uF 滤波电容
25	DVDD12		接 2.2uF 滤波电容
26	DGND	数字信号地	
27	INT	中断信号	边沿触发寄存器可设
28	Sensor_OPT1	模组识别口	
29	Sensor_OPT2	模组识别口(备选)	需外部下拉
30	I2C_SDA	I ² C 数据信号	
31	I2C_SCL	I ² C 时钟信号	
32~33	NC		
34	VDDIO	GPIO 电平控制	接 2.2uF 滤波电容 悬空: 1.8V 接 AVDD: AVDD
35~36	NC		
37	/RSTB	系统复位脚	需外部 10K 上拉,拉低 复位
38~79	DRV41~DRV0	驱动信号输出	
80	AGND	模拟电源地	
81~88	SEN0~SEN7	触摸模拟信号输入	

4.2. GT930

VDD	1		8	GND
P5/DRV	2	GT930 8DFN	7	PO/WKUP_ADC
P4	3	3mmX3mm	6	P1/KEY1/CLC
P3/VPP	4	·	5	P2/KEY2

Pin	Name	功能描述	备注
1	VDD	电源电压 1.8-3.6V	
2	P5/DVR	PWM 输出	内部上拉
3	P4	压力 sensor 驱动	内部上拉
4	P3/VPP	调频按键	内部上拉
5	P2/KEY2	按键输入	内部上拉
6	P1/KEY1	按键输入	内部上拉
7	WKUP_ADC	压力检测输入	内部上拉
8	GND	电源地	_

5. 传感器设计

5.1. 感应通道排布

SENS0~SENS29 是 30 个电容检测输入通道,直接与触摸屏模组的 30 个感应 ITO 通道相连。模组上感应 ITO 通道按照顺序或逆序依次连接至芯片的 SENS0 至 SENS29。若 ITO 通道少于芯片检测通道,请按照《通道选择器》来选择通道。

● 排布方式示例:感应 ITO通道按照顺序接入芯片的SENS0至SENS29

5.2. 驱动通道排布

DRV0~DRV41 是 42 个电容检测驱动信号输出通道,直接与触摸屏模组的 42 个 ITO 驱动通道相连。驱动线请按照《通道选择器》来选择通道和排布通道,在确定排布方式后,需配置 GT9110P 芯片的相关寄存器来保证各驱动通道的逻辑位置关系与物理位置关系一致,以使输出坐标与物理坐标匹配。

Sensor 设计的更细规则,请参考具体 layout 指南。

5.3. 传感器设计参数要求

DITO

	GT9110P
驱动通道走线阻抗	≦3KΩ
驱动通道阻抗	≦10KΩ
感应通道走线阻抗	≦10KΩ
感应通道阻抗	≦40KΩ
节点电容	≦4pF
感应通道 RC 常数	≦6us. Typ.=3.6us

SITO

	OT0440D
	GT9110P
驱动通道走线阻抗	≦3KΩ
驱动通道阻抗	≦10KΩ
感应通道走线阻抗	≦10KΩ
感应通道阻抗	≦10KΩ
节点电容	≦4pF
感应通道 RC 常数	≦6us. Typ.=3.6us

通道走线采用金属走线时,由于工艺控制等原因会导致部分走线被氧化,阻抗变大,导致各通道走线存在差异;当采用 ITO 材料走线时,虽然设计时会尽力通过长度、宽度匹配使得各通道走线一致,但还是会存在不同程度的差异。为保证整屏数据一致性和均匀性,需要控制走线阻抗符合上表要求。

另外,驱动走线与感应走线相邻且平行时,需在两者间插入地线,且地线宽度至少为通道走线宽度的两倍,最小不得小于 0.2mm。

6.I²C 通讯

6.1. I²C 通讯

GT9110P 提供标准的 I^2 C 通讯接口,由 SCL 和 SDA 与主 CPU 进行通讯。在系统中 GT9110P 始终作为从设备,所有通讯都是由主 CPU 发起,建议通讯速度为 400Kbps 或以下。其支持的 I^2 C 硬件电路支持时序如下:

测试条件 1: 1.8V 通讯接口, 400Kbps 通讯速度, 上拉电阻 2K

Parameter	Symbol	Min.	Max.	Unit
SCL low period	t _{lo}	0.9	-	us
SCL high period	t _{hi}	0.8	-	us
SCL setup time for START condition	t _{st1}	0.4	-	us
SCL setup time for STOP condition	t _{st3}	0.4	-	us
SCL hold time for START condition	t _{hd1}	0.3	-	us
SDA setup time	t _{st2}	0.4	-	us
SDA hold time	t _{hd2}	0.4	-	us

测试条件 2: 3.3V 通讯接口, 400Kbps 通讯速度, 上拉电阻 2K

Parameter	Symbol	Min.	Max.	Unit			
SCL low period	t _{lo}	0.9	1	us			
SCL high period	t _{hi}	0.8	-	us			
SCL setup time for START condition	t _{st1}	0.4	1	us			
SCL setup time for STOP condition	t _{st3}	0.4	1	us			
SCL hold time for START condition	t _{hd1}	0.3	1	us			
SDA setup time	t _{st2}	0.4	-	us			
SDA hold time	t _{hd2}	0.4	-	us			

GT9110P 的 I^2 C 从设备地址有两组,分别为 0xBA/0xBB 和 0x28/0x29。主控在上电初始化时控制 Reset 和 INT 口状态进行设定,设定方法及时序图如下:

上电时序图:

设定地址为 0x28/0x29 的时序:

设定地址为 0xBA/0xBB 的时序:

a) 数据传输

(以设备地址为 0xBA/0xBB 为例)

通讯总是由主 CPU 发起,有效的起始信号为:在 SCL 保持为"1"时,SDA 上发生由"1"到"0"的跳变。地址信息或数据流均在起始信号之后传输。

所有连接在 I2C 总线上的从设备,都要检测总线上起始信号之后所发送的 8 位

地址信息,并做出正确反应。在收到与自己相匹配的地址信息时,GT9110P 在第 9 个时钟周期,将 SDA 改为输出口,并置"0",作为应答信号。若收到不与自己匹配的地址信息,即非 0XBA 或 0XBB,GT9110P 将保持闲置状态。

SDA 口上的数据按 9 个时钟周期串行发送 9 位数据: 8 位有效数据+1 位接收方发送的应答信号 ACK 或非应答信号 NACK。数据传输在 SCL 为"1"时有效。

当通讯完成时,由主 CPU 发送停止信号。停止信号是当 SCL 为"1"时,SDA 状态由"0"到"1"的跳变。

b) 对 GT9110P 写操作

(以设备地址为 0xBA/0xBB 为例)

写操作时序图

上图为主 CPU 对 GT9110P 进行的写操作流程图。首先主 CPU 产生一个起始信号,然后发送地址信息及读写位信息"0"表示写操作:0XBA。

在收到应答后,主 CPU 发送寄存器的 16 位地址,随后是 8 位要写入到寄存器的数据内容。

GT9110P 寄存器的地址指针会在写操作后自动加 1, 所以当主 CPU 需要对连续地址的寄存器进行写操作时,可以在一次写操作中连续写入。写操作完成,主 CPU 发送停止信号结束当前写操作。

c) 对 GT9110P 读操作

(以设备地址为 0xBA/0xBB 为例)

读操作时序图

上图为主 CPU 对 GT9110P 进行的读操作流程图。首先主 CPU 产生一个起始信号,然后发送设备地址信息及读写位信息"0"表示写操作: 0XBA。

在收到应答后,主 CPU 发送首寄存器的 16 位地址信息,设置要读取的寄存器地址。在收到应答后,主 CPU 重新发送一次起始信号,发送读操作: 0XBB。收到应答后,主 CPU 开始读取数据。

GT9110P 同样支持连续的读操作,默认为连续读取数据。主 CPU 在每收到一个 Byte 数据后需发送一个应答信号表示成功接收。在接收到所需的最后一个 Byte 数据后,主 CPU 发送"非应答信号 NACK",然后再发送停止信号结束通讯。

6.2. GT9110P 的寄存器信息

a) 实时命令

(Write Only)

Addr	Name	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0x8040	Command	6: 进入充 10: 进入	三新(内部》 五电模式 手模式 SD 保护机制	则试) 4: 县 7: 认 11:	差值原始值 基准校准(退出充电模: 进入自动切 驱动定时写	内部测试) 式 换模式	8: Rese 13: 进入氧	rved ┊模式	
0x8041	ESD_Check	ESD 保护	机制使用,	在初始化时	付清零,之)	后由驱动写	入 0xAA 并	完时读取检	 查查

b) 配置信息

(R/W)

Addr	name	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
0x8047	Config_Version					于原版本, -'Z',发送 0x				
0x8048	X Output Max_L				V 从标绘	出最大值				
0x8049	X Output Max_H				入生你制	山取八直				
0x804A	Y Output Max_L				V从标输	出最大值				
0x804B	Y Output Max_H				1 主 小	山取八直				
0x804C	Touch Number		Rese	erved		输	ì出触点个数	女上限: 1~ ′		
0x804D	Module_Switch1	Stylus_pri 定义)	iority(预	Stretch_r	ank	X2Y (X、Y 坐标交 换)	Sito (软件 降噪)	INT 触 00: 上月 01: 下阝 02: 低『 03: 高『	锋沿触发 电平查询	
0x804E	Module_switch2	Reserved	Reserved							
0x804F	Shake_Count		Rese	erved		3	手指按下/松	开去抖次数	Į	
0x8050	Filter	First_	Filter	N	lormal_Filte	er(原始坐标	窗口滤波值	1,系数为1)		
0x8051	Large_Touch				大面积触	摸点个数				
0x8052	Noise_Reduction		Rese	erved		噪声消	i除值(系数	女为 1,0-15	有效)	
0x8053	S_Touch_Level			屏	上触摸点从	.无到有的阈	l值			
0x8054	S_Leave_Level			屏	上触摸点从	有到无的阈	l值			
0x8055	Low_Power_Control		Rese	erved			进低功耗时	け间(0∼15s)		
0x8056	Refresh_Rate		Rese	erved		坐村	示上报率(周	期为 5+N r	ns)	
0x8057	x_threshold	X坐标轴	俞出门限:	0-255(以	1 个最终坐	标点为单位	,配置为0	则一直输出	坐标)	
0x8058	y_threshold	Y坐标轴	俞出门限:	0-255(以	1 个最终坐	标点为单位	,配置为0	则一直输出	坐标)	
0x8059	X_Speed_Limit	Reserved								
0x805A	Y_Speed_Limit	Reserved								
0x805B	Space	上边机	医的空白区	(以32为)	系数)	下边村	医的空白区	(以32为)	系数)	
0x805C	Орасе	左边框的空白区(以32为系数) 右				右边村	右边框的空白区(以32为系数)			
0x805D	Mini_Filter	Reserved 划线过程中的小 filter 设置,最小为 4								
0x805E	Stretch_R0		区间 1 系数							

					F 3→	- T W		
0x805F	Stretch_R1	区间2系数						
0x8060	Stretch_R2	区间 3 系数 各区间基数						
0x8061	Stretch_RM	All Drive			各区「			
0x8062	Drv_GroupA_Num	All_Driv ing	Reserved			Driver_	_Group_A_r	number
0x8063	Drv_GroupB_Num	Reserved	Reserved Dual_Fr Priver_Group_B_number					number
0x8064	Sensor_Num	Sensor_Group_B_Number Sensor_Group_A_Number						p_A_Number
0x8065	FreqA_factor	羽	区动组 A 的引	区动频率倍级	频系数 Gro	oupA_Frequ	uence = 倍频	颎系数*基频
0x8066	FreqB_factor	羽	区动组 B 的引	区动频率倍级	频系数 Gro	oupB_Frequ	uence = 倍频	颎系数*基频
0x8067	Pannel_BitFreqL		ц	区动组 A、E	3 的基频(15	526HZ<基步	页<14600Hz	<u>r</u>)
0x8068	Pannel_BitFreqH							<u></u>
0x8069	Pannel_Sensor_Ti meL	相邻两次	驱动信号输	出时间间隔	ら(以 us 为	单位),Res	served (be	ta版占用,发布版无
0x806A	Pannel_Sensor_Ti meH				效	()		12000
0x806B	Pannel_Tx_Gain						nel_DAC_Gain : Gain 最大 : Gain 最小	
0x806C	Pannel_Rx_Gain	Pannel _PGA_ C	Pannel_	_PGA_R	_	Rx_Vcmi 可调)		nel_PGA_Gain (8 档可调)
0x806D	Pannel_Dump_Shift		Rese	erved		原始	值放大系数	(2的N次方)
0x806E	Drv_Frame_Control	Reserv ed	SubFram	e_DrvNum		A		Reserved
0x806F	Stylus_Stretch_R0	(RC)/R1/R2 都之			区间1系数伸相同,笔		etch_RM 共用)
0x8070	Stylus_Stretch_R1				主动笔拉伸	区间2系数	Ţ.	
0x8071	Stylus_Stretch_R2		V /		主动笔拉伸	区间3系数	Ţ	
0x8072	Stylus_PGA_R	PGA_R _En	1:666K;2	FreqSel 2:400K;其化	也: 500K		Stylus_	PGA_R
0x8073	Stylus_Rx_Gain	PGA_ Gain_E n	笔(耳	us_SLineP S型改善系 X值范围 0~ SLineAdj_E 有效)	·数 7 ,		Stylus_P	GA_Gain
0x8074	Stylus_Dump_Shift			Stylus 原	見始值放大!	系数(2的1	Ⅵ次方)	
0x8075	Stylus_Driver_Touc h_Level			-	有效阈值(驱动方向)		
0x8076	Stylus_Sensor_Tou ch_Level			:	有效阈值((感应方向)		
0x8077	Stylus_Control			触摸笔超	时退出时间](以 10ms	为单位)	
0x8078	Stylus_Decode_ Level	Decode _Tip	Soft SITO_E n		解码阈值	直(配置为()时内部默认	人为 20)
0x8079	Module_ Switch3	Reserved Stylus_ SLineA Reserved dj_En					erved	
0x807A	Freq_Hopping_Start	跳频范围的起点频率(Range Ext-0 时上以 2KHz 为单位,例如 50 表示 100KHz。						
0x807B	Freq_Hopping_End	Range_Ext=1 时,以BitFreq 为单位)						
0x807C	Noise_Detect_Tims	s(一次) 中每个频 测次数,			次噪声检测			有效,建议 20)
0x807D	Hopping_Flag	Hoppin	Range_	Dis_	Reserv		Detect_T	ime_Out

		g_En Ext	Force_ Ref	ed	(噪声监测超时时间,以秒为单位)
0x807E	Hopping_Threshold		ping_Limit 的干扰值大于 *4 的时候才会	会启动快	Hopping_Hit_Threshold (最优频率选定条件,当前工作频率干扰 量-最小干扰量>设定值 x4,则选定最优 频率和跳频)
0x807F	Noise_Threshold	判别有干	忧的门限(身	f有频率点	上干扰量小于此值认为无干扰)
0x8080	NC			Rese	erved
0x8081	NC			Rese	erved
0x8082	Hopping_Sensor_ Group		跳频 Nois	e 侦测分剧	设数(建议分 4 段)
0x8083	Hopping_seg1_ Normalize	Seg1 Normaliz	e 系数(乘以	从此数,然	后除以 128,得到最终的 Rawdata)
0x8084	Hopping_seg1_ Factor	跳频检测区间频段 1			用于驱动 A, 驱动 B 在此基础上换算出来)
0x8085	Main_Clock_Ajdust		微认	問主频配置	,范围-7~+8
0x8086	Hopping_seg2_ Normalize	Seg2 Normaliz	e 系数(乘り	从此数,然	后除以 128,得到最终的 Rawdata)
0x8087	Hopping_seg2_ Factor	跳频检测区间频段 2	中心点倍频		月于驱动 A, 驱动 B 在此基础上换算出来)
0x8088	NC			Rese	erved
0x8089	Hopping_seg3_ Normalize	Seg3 Normaliz	e 系数(乘以	从此数,然	后除以 128,得到最终的 Rawdata)
0x808A	Hopping_seg3_ Factor	跳频检测区间频段 3	中心点倍频		月于驱动 A,驱动 B 在此基础上换算出来)
0x808B	NC			Rese	erved
0x808C	Hopping_seg4_ Normalize	Seg4 Normaliz	e 系数(乘以	从此数,然	后除以 128,得到最终的 Rawdata)
0x808D	Hopping_seg4_ Factor	跳频检测区间频段 4	中心点倍频	系数(适用	月于驱动 A, 驱动 B 在此基础上换算出来)
0x808E	NC			Rese	erved
0x808F	Hopping_seg5_ Normalize	Seg5 Normaliz	e 系数(乘以	以此数,然	后除以 128,得到最终的 Rawdata)
0x8090	Hopping_seg5_ Factor	跳频检测区间频段 5	中心点倍频	系数(适用	月于驱动 A,驱动 B 在此基础上换算出来)
0x8091	NC			Rese	erved
0x8092	Hopping_seg6_ Normalize	Seg6 Normaliz	e 系数(乘以	从此数,然	后除以 128,得到最终的 Rawdata)
0x8093	NC			Rese	
0x8094	NC			Rese	
0x8095	NC			Rese	
0x8096	NC			Rese	erved
0x8097	NC	Reserved			
0x8098	NC			Rese	
0x8099	NC			Rese	erved
0x809A	NC	Reserved			
0x809B	NC NC	Reserved			
0x809C	NC NC	Reserved		-	
0x809D	NC NC			Rese	
0x809E	NC NC			Rese	
0x809F	NC NC			Rese	
0x80A0	NC NC			Rese	
0x80A1	NC NC			Rese	
0x80A2	NC			Rese	ervea

0x80A3	NC	Reserved
0x80A4	NC	Reserved
0x80A5	NC	Reserved
0x80A6	NC	Reserved
0x80A7	NC	Reserved
0x80A8	NC	Reserved
0x80A9	NC	Reserved
0x80AA	NC	Reserved
0x80AB	NC	Reserved
0x80AC	NC	Reserved
0x80AD	NC	Reserved
0x80AE	NC	Reserved
0x80AF	NC	Reserved
0x80B0	NC	Reserved
0x80B1	NC	Reserved
0x80B2	NC	Reserved
0x80B3	NC	Reserved
0x80B4	NC	Reserved
0x80B5	NC	Reserved
0x80B6	NC	Reserved
0x80B7~ 0x80C4	Sensor_CH0~ Sensor_CH13	ITO Sensor 对应的芯片通道号
0x80C5~ 0x80D4	NC	Reserved
0x80D5~ 0x80EA	Driver_CH0~ Driver_CH21	ITO Driver 对应的芯片通道号
0x80EB~ 0x80FE	NC	Reserved
0x80FF	Config_Chksum	配置信息校验
0x8100	Config_Fresh	配置已更新标记(由主控写入标记)
c)	坐标信息	

					1	1	1	
Addr	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0x8140			Prod	luct ID(first	byte, ASCII	码)	•	
0x8141			Produ	ct ID(second	byte, ASC	Ⅱ码)		
0x8142			Prod	uct ID(third	byte, ASCII	码)		
0x8143			Prod	uct ID(forth	byte, ASCII	码)		
0x8144			Firm	nware versio	n(HEX.low b	yte)		
0x8145		Firmware version(HEX.high byte)						
0x8146		x coordinate resolution (low byte)						
0x8147	~		х сос	ordinate reso	olution (high l	byte)		
0x8148		y coordinate resolution (low byte)						
0x8149		y coordinate resolution (high byte)						
0x814A		Vendor_id(当前模组选项信息)						
0x814B	Reserved							
0x814C	Reserved							
0x814D				Rese	erved			

0x814E	buffer large detect Reserved HaveKey number of touch points				
0x814F	track id(笔上报坐标 ID 复用此位置,为特殊的 128)				
0x8150	point 1 x coordinate (low byte)				
0x8151	point 1 x coordinate (high byte)				
0x8152	point 1 y coordinate (low byte)				
0x8153	point 1 y coordinate (high byte)				
0x8154	point 1 size (low byte) (track id 为 128 时,该位表示笔 weight)				
0x8155	point 1 size (high byte) (track id 为 128 时,该位表示笔 weight)				
0x8156	Reserved				
0x8157	track id				
0x8158	point 2 x coordinate (low byte)				
0x8159	point 2 x coordinate (high byte)				
0x815A	point 2 y coordinate (low byte)				
0x815B	point 2 y coordinate (high byte)				
0x815C	point 2 size (low byte)				
0x815D	point 2 size (high byte)				
0x815E	Reserved				
0x815F	track id				
0x8160	point 3 x coordinate (low byte)				
0x8161	point 3 x coordinate (high byte)				
0x8162	point 3 y coordinate (low byte)				
0x8163	point 3 y coordinate (high byte)				
0x8164	point 3 size (low byte)				
0x8165	point 3 size (high byte)				
0x8166	Reserved				
0x8167	track id				
0x8168	point 4 x coordinate (low byte)				
0x8169	point 4 x coordinate (high byte)				
0x816A	point 4 y coordinate (low byte)				
0x816B	point 4 y coordinate (high byte)				
0x816C	point 4 size (low byte)				
0x816D	point 4 size (high byte)				
0x816E	Reserved				
0x816F	track id				
0x8170	point 5 x coordinate (low byte)				
0x8171	point 5 x coordinate (high byte)				
0x8172	point 5 y coordinate (low byte)				
0x8173	point 5 y coordinate (high byte)				
0x8174	point 5 size (low byte)				
0x8175	point 5 size (high byte)				
0x8176	Reserved				
0x8177	Track id				
0x8178	point 6 x coordinate (low byte)				

0x8179	point 6 x coordinate (high byte)
0x817A	point 6 y coordinate (low byte)
0x817B	point 6 y coordinate (high byte)
0x817C	point 6 size (low byte)
0x817D	point 6 size (high byte)
0x817E	Reserved
0x817F	Track id
0x8180	point 7 x coordinate (low byte)
0x8181	point 7 x coordinate (high byte)
0x8182	point 7 y coordinate (low byte)
0x8183	point 7 y coordinate (high byte)
0x8184	point 7 size (low byte)
0x8185	point 7 size (high byte)
0x8186	Reserved
0x8187	Track id
0x8188	point 8 x coordinate (low byte)
0x8189	point 8 x coordinate (high byte)
0x818A	point 8 y coordinate (low byte)
0x818B	point 8 y coordinate (high byte)
0x818C	point 8 size (low byte)
0x818D	point 8 size (high byte)
0x818E	Reserved
0x818F	Track id
0x8190	point 9 x coordinate (low byte)
0x8191	point 9 x coordinate (high byte)
0x8192	point 9 y coordinate (low byte)
0x8193	point 9 y coordinate (high byte)
0x8194	point 9 size (low byte)
0x8195	point 9 size (high byte)
0x8196	Reserved
0x8197	Track id
0x8198	point 10 x coordinate (low byte)
0x8199	point 10 x coordinate (high byte)
0x819A	point 10 y coordinate (low byte)
0x819B	point 10 y coordinate (high byte)
0x819C	point 10 size (low byte)
0x819D	point 10 size (high byte)
0x819E	Reserved
0x819F	Key value

7.工作模式

1.1.GT9110P 工作模式

GT9110P 工作模式分为 Finger Mode、Stylus Mode、Finger+Stylus Mode、Green Mode、Sleep Mode 五种,根据不同的工作模式切换关系又分为笔检测状态、手检测状态、自动切换检测状态三种检测状态。使用实时命令(参考6.2 部分内容)可以选择芯片工作在不同的模式切换状态。

各检测状态的模式切换关系如下:

笔检测状态 (主控发送命令"13"):

该检测状态下只检测是否有笔接触,手指接触不响应。

手检测状态(主控发送命令"10"):

该检测状态下只检测是否有手接触,笔接触不响应。

自动切换检测状态(主控发送命令"11"):

在自动切换检测状态下,当主控下发充电模式命令后进入 Stylus Mode 需要无 手 Touch 的操作,模式切换如下:

在自动切换检测状态下, 进入/退出 Sleep Mode 的模式切换如下:

(Any Mode: 包括 Finger Mode、Stylus Mode、Finger+Stylus Mode、Green Mode。)

1.2. 各模式说明

a) Finger + Stylus Mode

GT9110P 在此模式下,扫描周期固定为 20ms,同时采集手指和笔的信号,检测到手指快速滑动,自动进入 Finger Mode; 检测到笔靠近,自动进入 Stylus Mode; 一段时间没有手指 Touch 和笔靠近,自动进入 Green Mode;

b) Green Mode

在 Green mode 下,扫描周期固定为 40ms;

在笔检测状态,只扫描笔信号,若检测到有笔接触,自动进入 Stylus Mode;

在手检测状态,只扫描手信号,若检测到有手接触,自动进入 Finger Mode;

在自动切换检测状态,同时扫描手和笔信号,若检测到有笔接触,自动进入 Stylus Mode,若检测到有手接触,自动进入 Finger Mode。

c) Finger Mode

在 Finger Mode 下,扫描周期根据配置获取;

在手检测状态,若检测一段时间无手接触,自动进入 Green Mode:

在自动切换检测状态,若检测到手指慢滑,自动进入 Finger + Stylus Mode。

d) Stylus Mode

在 Stylus Mode 下,只检测笔信号,扫描周期固定为 10ms;

在笔检测状态, 若检测一段时间无笔接触, 自动进入 Green Mode;

在自动切换检测状态,若检测一段时间无笔接触,自动进入 Finger + Stylus Mode。

e) Sleep Mode

主 CPU 通过 I2C 命令,使 GT9110P 进入 Sleep mode(需要先将 INT 脚输出低电平)。当需要 GT9110P 退出 Sleep mode 时,主机输出一个高电平到 INT 脚(主机打高 INT 脚 2~5ms)。

在笔检测状态,唤醒 GT9110P 后将进入 Stylus Mode;

在手检测状态,唤醒 GT9110P 后将进入 Finger Mode;

在自动切换检测状态,唤醒 GT9110P 后将进入 Finger + Stylus Mode。

1.3. GT930 工作模式

a) Normal Mode

在 Normal mode 状态,不断的发出 DRV 信号和压力参数。电容屏检测出 Touch 位置和力度的大小。当 1.5V 输入时,系统电流为 502uA, 2V 输入时, 系统耗电 300uA。

b) Green Mode

在 Green 状态,检查是否有写的动作,有则进入 Normal, 没有则 30s 后进入 Sleep Mode。

c) Sleep Mode

GT930 会定时苏醒以检查是否有书写动作。在这种情况下耗电最低, 1.5V 输入时, 系统电流 40uA, 2V 输入时, 系统电流 10uA。

1.4. 中断触发方式

为有效减轻主 CPU 负担,GT9110P 仅在输出信息有变化时,才会通知主 CPU 读取坐标信息。由 INT 口输出脉冲信号。主 CPU 可以通过相关的寄存器位 "INT"来设置触发方式。设为"0"表示上升沿触发,即在有用户操作时,GT9110P 会在 INT 口输出上升沿跳变,通知 CPU;设为"1"表示下降沿触发;设为"2"表示高电平查询;设为"3"表示低电平查询。

1.5. 自动校准

a) 初始化校准

不同的温度、湿度及物理空间结构均会影响到电容传感器在闲置状态的基准值。GT9110P 会在初始化的 200ms 内根据环境情况自动获得新的检测基准。完成触摸屏检测的初始化。

b) 自动温漂补偿

温度、湿度或灰尘等环境因素的缓慢变化,也会影响到电容传感器在闲置状态的基准值。GT9110P实时检测各点数据的变化,对历史数据进行统计分析,由

此来修正检测基准。从而降低环境变化对触摸屏检测的影响。

1.6. 固化配置功能

GT9110P 支持固化配置功能,当获取项目的配置参数后,GT9110P 会自动将版本较高的配置参数固化,固化了配置参数后的 GT9110P 只会与主控进行 I2C 通讯,不会接收主控下发的低版本配置。

1.7. 跳频功能

GT9110P 拥有很好的硬件抗干扰基础,当 GT9110P 的驱动频谱与干扰信号的峰值频谱叠加时,可通过自适应跳频机制来切换到另一个频率,从而避开干扰。

8.参考电路图

8.1. GT9110P 参考电路图

GT9110P 参考应用电路图

注:

- 1、 本电路仅表示基本应用方式,实际或根据应用环境需要对部分电路进行 调整。
- 2、 电容建议采用 X7R 材质。
- 8.2.GT930 参考电路图
- a) 典型电路

b) 供电方案

▶ 单节9号电池供电方案:

单节9号电池供电方案参考应用电路图

▶ 电容锂电供电方案:

超级锂电供电方案参考应用电路图

注:

- **1.** 本电路仅表示基本应用方式,实际或根据应用环境需要对部分电路进行调整。
- 2. 电容建议采用 X7R 材质。

9. 电气特性

9.1. GT9110P 电气特性

a) 极限电气参数

(环境温度为 25℃)

参数	最小值	最大值	单位
模拟电源 AVDD28(参考 AGND)	2.66	3.47	V
VDDIO(参考 DGND)	1.7	3.47	V
数字 I/O 可承受电压	0	3.47	V
模拟 I/O 可承受电压	0	3.47	V
工作温度范围	-40	85	$^{\circ}$
存储温度范围	-60	125	$^{\circ}$ C
焊接温度(10秒钟)		300	$^{\circ}\mathbb{C}$
ESD 保护电压(HB Model)	_	±2	KV

b) 推荐工作条件

参数	最小值	典型值	最大值	单位
AVDD28	2.8	-	3.3	V
VDDIO	1.8	-	3.3	V
工作温度	-20	25	85	$^{\circ}\!\mathbb{C}$

c) AC 特性

(环境温度为 25℃, AVDD=2.8V, VDDIO=1.8V)

参数	最小值	典型值	最大值	单位
OSC 振荡频率	59	60	61	MHz
I/O 输出由低到高转换时间	_	-	0.5	ns
I/O 输出由高到低转换时间	-	-	0.5	ns

d) DC 特性

(环境温度为 25℃, AVDD=2.8V, VDDIO=1.8V)

参数	最小值	典型值	最大值	单位
Finger mode 工作电流	•	13	ı	mA
Stylus mode 工作电流		12	-	mA
Green mode 工作电流	-	8	ı	mA
Sleep mode 工作电流	70		120	Ua
数字输入为低电平电压值	-0.3	0	0.45	V
数字输入为高电平电压值	1.35	1.8	2.1	V

9.2. GT930 电气特性

a) 最大额定值

参数	最小值	最大值	单位
VDD(相对 VSS)	-0.3	4	V
I/O 引脚		VDD+0.3	V
功耗		800	mW
VDD 最大电流		70	mA
VSS 最大电流		95	mA
I/O 引脚的最大输出灌电流		25	mA
I/O 引脚的最大输出拉电流		25	mA
环境温度	-40	125	$^{\circ}$ C
储存温度	-65	150	°C

b) 标准工作条件

特性	最小值	典型值	最大值	单位
供电电压	1.8	2	3.6	V
上电复位电压		0.8		V
RAM 数据保持	1.5			V
工作温度	-40	25	85	$^{\circ}\!\mathbb{C}$
Normal 模式总电流①		502		uA
Sleep 模式总电流①		40		uA
Normal 模式总电流②		300		uA
Sleep 模式总电流②		10		uA

- ① 总电流指的是输入为 1.5V 时,输入端的总电流。电池供电方案
- ② 总电流指的是输入 2V 时,输入端总电流。锂电供电方案

10. 产品封装

10.1. GT9110P 封装

TOP VIEW

BOTTOM VIEW

QFN 10 X 10 88PIN 0.4 PITCH SQUARE

Symbol	Dimensions In Millimeters				
Symbol	Min. Normal		Max.		
Α	0.70	0.75	0.80		
A1	0.00	0.035	0.05		
b	0.40BSC				
D	10.00BSC				
D1	5.50	5.60	5.90		
E		10.00BSC			
E1	5.20	5.60	5.80		
е	0.15	0.20	0.25		
L	0.30	0.40	0.50		
K	0.203BSC				

10.2. GT930 封装

8 引脚塑封双列扁平无引脚封装——主体 3*3*0.9mm【DFN】

Units	MILLMETERS			
Dimension Limits		MIN	NOM	MAX
Number of pins	N		8	
Pitch	е	0.65BSC		
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20REF		
Overall Length	D	3.00BSC		
Exposed pad width	E2	0.00	-	1.60
Overall Width	Ę	3.0BSC		
Exposed pad length	D2	0.00	-	2.40
Contact Width	b	0.25	0.30	0.35
Contact Length	L	0.20	0.30	0.55
Contact-to-exposed pad	K	0.20	-	-

8 引脚塑封双列扁平无引脚封装——主体 3*3*0.9mm【DFN】 焊盘设计

Units	MILLIMETERS			
Dimension Limits	MIN	NOM	MAX	
Contact pith	E	0.	65BSC	
Optional Center Pad Width	W2	-	-	2.40
Optional Center Pad Length	T2	-	-	1.55
Contact Pad Spacing	C1	_	3.10	-
Contact Pad Width	X1	ı	-	0.35
Contant Pad Length	Y1	-	-	0.65
Distance Between Pads	G	0.30	-	-

11. 版本记录

文件版本	修改时间	修订		
Rev.00	2012-10-25	预发布		
Rev.01	2012-12-08	修改各模式下的耗电、状态转换图、存储温度及部分表述		
Rev.02	2013-04-11	 修改 GT930 描述、电路参考图; 更新 GT9110P 寄存器说明、工作模式说明; 		
Rev.03	2013-07-31	删除触摸按键相关内容; 更新配置信息内容; 修改 GT9110P 与 GT930 产品特点描述; 修改 GT9110P 工作模式说明; 更新 GT9110P 参考电路图;		

12. 联系方式

深圳市汇顶科技股份有限公司

深圳市福田保税区腾飞工业大厦 B 座 13 层 518000

Floor 13, Phase B, TengFei Industrial Building, FuTian Free Trade Zone, ShenZhen 518000

电话/TEL: +86-755-33338828 传真/FAX: +86-755-33338828

www.goodix.com

