Исследование шкал в методе анализа иерархий

Воеводин Георгий Дмитриевич, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: д. ф.-м. н., профессор Ю. А. Сушков Рецензент: мл. научный сотрудник Г. С. Тамазян

Санкт-Петербург 2014

Тезис

Любая задача принятия решения может быть сведена к задаче выбора наилучшей в определенном смысле альтернативы из множества имеющихся.

Решение задачи принятия решений с помощью МАИ

Три этапа

- построение иерархии,
- проведение попарных сравнений,
- синтез результатов.

Тезис

Любая задача принятия решения может быть сведена к задаче выбора наилучшей в определенном смысле альтернативы из множества имеющихся.

Решение задачи принятия решений с помощью МАИ

Три этапа:

- построение иерархии,
- проведение попарных сравнений
- синтез результатов.

Тезис

Любая задача принятия решения может быть сведена к задаче выбора наилучшей в определенном смысле альтернативы из множества имеющихся.

Решение задачи принятия решений с помощью МАИ

Три этапа:

- построение иерархии,
- проведение попарных сравнений,
- синтез результатов.

Тезис

Любая задача принятия решения может быть сведена к задаче выбора наилучшей в определенном смысле альтернативы из множества имеющихся.

Решение задачи принятия решений с помощью МАИ

Три этапа:

- построение иерархии,
- проведение попарных сравнений,
- синтез результатов.

Иерархия задачи

Рис.: Структура иерархии, состоящей из 3 уровней

Кошелек Миллера, 1956

Кратковременная человеческая память способна одновременно хранить и обрабатывать 7 ± 2 объекта.

Иерархия задачи

Рис.: Структура иерархии, состоящей из 3 уровней

Кошелек Миллера, 1956

Кратковременная человеческая память способна одновременно хранить и обрабатывать 7 ± 2 объекта.

Попарные сравнения элементов задачи

Попарные сравнения позволяют использовать качественные суждения о сравниваемых объектах в процессе диалога.

Качественные оценки превосходства и обозначающие их числа

	эквивалентность
± 2	слабое превосходство
± 4	сильное превосходство
±6	очень сильное превосходство
±8	абсолютное превосходство
$\pm 1, \pm 3, \pm 5, \pm 7$	промежуточные оценки

Попарные сравнения элементов задачи

Попарные сравнения позволяют использовать качественные суждения о сравниваемых объектах в процессе диалога.

Качественные оценки превосходства и обозначающие их числа

0	эквивалентность	
± 2	слабое превосходство	
± 4	сильное превосходство	
± 6	очень сильное превосходство	
±8	абсолютное превосходство	
$\pm 1, \pm 3, \pm 5, \pm 7$ промежуточные оценки		

Функцией шкалы назовем функцию φ , отображающую множество качественных оценок Λ в множество положительных вещественных чисел: $\varphi:\Lambda\to\mathbb{R}^+$, а множество значений φ назовем шкалой.

- Шкала Брука: $\varphi_B(\lambda) = c_B + \lambda x_B, \ \varphi_B > 0, \ \lambda \in \Lambda,$
- Шкала Саати: $\varphi_S(\lambda) = (1+x_S|\lambda|)^{sign\lambda}, \ \varphi_S > 0, \ \lambda \in \Lambda,$
- Логистическая шкала: $\varphi_{log}(\lambda) = \frac{2}{1+e^{-\mu\lambda}}$.

Функцией шкалы назовем функцию φ , отображающую множество качественных оценок Λ в множество положительных вещественных чисел: $\varphi:\Lambda\to\mathbb{R}^+$, а множество значений φ назовем шкалой.

- Шкала Брука: $\varphi_B(\lambda) = c_B + \lambda x_B, \ \varphi_B > 0, \ \lambda \in \Lambda,$
- Шкала Саати: $\varphi_S(\lambda) = (1+x_S|\lambda|)^{sign\lambda}, \ \varphi_S > 0, \ \lambda \in \Lambda,$
- Логистическая шкала: $\varphi_{log}(\lambda) = \frac{2}{1+e^{-\mu\lambda}}$.

Функцией шкалы назовем функцию φ , отображающую множество качественных оценок Λ в множество положительных вещественных чисел: $\varphi:\Lambda\to\mathbb{R}^+$, а множество значений φ назовем шкалой.

- Шкала Брука: $\varphi_B(\lambda) = c_B + \lambda x_B, \ \varphi_B > 0, \ \lambda \in \Lambda,$
- Шкала Саати: $\varphi_S(\lambda) = (1+x_S|\lambda|)^{sign\lambda}, \ \varphi_S > 0, \ \lambda \in \Lambda,$
- Логистическая шкала: $\varphi_{log}(\lambda) = \frac{2}{1+e^{-\mu\lambda}}$.

Функцией шкалы назовем функцию φ , отображающую множество качественных оценок Λ в множество положительных вещественных чисел: $\varphi:\Lambda\to\mathbb{R}^+$, а множество значений φ назовем шкалой.

- Шкала Брука: $\varphi_B(\lambda) = c_B + \lambda x_B, \ \varphi_B > 0, \ \lambda \in \Lambda,$
- Шкала Саати: $\varphi_S(\lambda) = (1+x_S|\lambda|)^{sign\lambda}, \ \varphi_S > 0, \ \lambda \in \Lambda,$
- Логистическая шкала: $\varphi_{log}(\lambda) = \frac{2}{1+e^{-\mu\lambda}}$.

Синтез результатов

Матрица попарных сравнений

 $A=\{a_{ij}\}, \quad a_{ij}=\varphi(\lambda_{ij})>0$ — результат сравнения i-ого объекта с j-ым.

Метод собственного вектора

Uтерированной силой порядка t объекта x_i назовем

$$p^{i}(t) = \sum\limits_{m=1}^{n} a_{im}p^{m}(t-1), p^{i}(0) = 1.$$
 Нормированна

итерированная сила объекта x_i порядка t стремится к i-и компоненте нормированного собственного вектора матрицы A соответствующего максимальному по модулю собственному числу.

$$\lim_{t \to \infty} \frac{p^i(t)}{\sum_{j=1}^n p^j(t)} = \omega_i$$

Синтез результатов

Матрица попарных сравнений

 $A=\{a_{ij}\}, \quad a_{ij}=\varphi(\lambda_{ij})>0$ — результат сравнения i-ого объекта с j-ым.

Метод собственного вектора

 $\it Итерированной силой порядка <math>\it t$ объекта $\it x_i$ назовем

$$p^{i}(t) = \sum_{m=1}^{n} a_{im} p^{m}(t-1), p^{i}(0) = 1.$$
 Нормированная

итерированная сила объекта x_i порядка t стремится к i-й компоненте нормированного собственного вектора матрицы A, соответствующего максимальному по модулю собственному числу.

$$\lim_{t \to \infty} \frac{p^{i}(t)}{\sum_{j=1}^{n} p^{j}(t)} = \omega_{i}.$$

Алгоритм случайного поиска

Постановка задачи

Пусть F — ограниченная снизу целевая функция, заданная на $X\in\mathbb{R}.$ Задача минимизации: $F(x)\to \min_{x\in X}.$

Описание алгоритма

Поиск разбивается на n_{step} шагов. На каждом шаге случайным образом выбираются значения вектора x^j (j — номер шага), подсчитывается $F^j=F(x^j)$ и наименьшее значение $F^j_{min}=\min\{F^j,F^{j-1}_{min}\}.$

Объем перспективной области

Пусть $I_j^i \subset [0,1]$ — перспективная область для x_i на шаге j.

Ширина интервала
$$s_j=2q_j$$
, где $q_j=\frac{1}{2}\bigg(1-\frac{1}{1+(\frac{1}{V_0-1})e^{-\mu j/n_{step}}}\bigg)$

Алгоритм случайного поиска

Постановка задачи

Пусть F — ограниченная снизу целевая функция, заданная на $X\in\mathbb{R}.$ Задача минимизации: $F(x)\to \min_{x\in X}.$

Описание алгоритма

Поиск разбивается на n_{step} шагов. На каждом шаге случайным образом выбираются значения вектора x^j (j — номер шага), подсчитывается $F^j=F(x^j)$ и наименьшее значение $F^j_{min}=\min\{F^j,F^{j-1}_{min}\}.$

Объем перспективной области

Пусть $I^i_j\subset [0,1]$ — перспективная область для x_i на шаге j. Ширина интервала $s_j=2q_j$, где $q_j=\frac{1}{2}\bigg(1-\frac{1}{1+(\frac{1}{V_0-1})e^{-\mu j/n_{step}}}\bigg)$

Алгоритм случайного поиска

Постановка задачи

Пусть F — ограниченная снизу целевая функция, заданная на $X\in\mathbb{R}.$ Задача минимизации: $F(x)\to \min_{x\in X}.$

Описание алгоритма

Поиск разбивается на n_{step} шагов. На каждом шаге случайным образом выбираются значения вектора x^j (j – номер шага), подсчитывается $F^j=F(x^j)$ и наименьшее значение $F^j_{min}=\min\{F^j,F^{j-1}_{min}\}.$

Объем перспективной области

Пусть $I_j^i \subset [0,1]$ — перспективная область для x_i на шаге j.

Ширина интервала
$$s_j=2q_j$$
, где $q_j=rac{1}{2}igg(1-rac{1}{1+(rac{1}{V_0-1})e^{-\mu j/n_{step}}}igg).$

Основные определения

Определение

Ошибкой данных назовем случайную величину $\epsilon_{ij} \in \Lambda$, имеющую равномерное распределение на $\Lambda = \{-8 \dots 8\}$.

$$\widetilde{A} = \{\widetilde{a}_{ij}\}_{ij=1}^n = \{\varphi(\lambda_{ij} + \epsilon_{ij})\}_{ij=1}^n$$

Определение

Ошибкой метода назовем упорядочивание объектов, отличное от упорядочивания, полученного методом собственного вектора без введения ошибки данных.

Основные определения

Определение

Ошибкой данных назовем случайную величину $\epsilon_{ij} \in \Lambda$, имеющую равномерное распределение на $\Lambda = \{-8 \dots 8\}$.

$$\widetilde{A} = {\{\widetilde{a}_{ij}\}_{ij=1}^n} = {\{\varphi(\lambda_{ij} + \epsilon_{ij})\}_{ij=1}^n}.$$

Определение

Ошибкой метода назовем упорядочивание объектов, отличное от упорядочивания, полученного методом собственного вектора без введения ошибки данных.

Основные определения

Определение

Ошибкой данных назовем случайную величину $\epsilon_{ij} \in \Lambda$, имеющую равномерное распределение на $\Lambda = \{-8 \dots 8\}$.

$$\widetilde{A} = {\{\widetilde{a}_{ij}\}_{ij=1}^n = \{\varphi(\lambda_{ij} + \epsilon_{ij})\}_{ij=1}^n}.$$

Определение

Ошибкой метода назовем упорядочивание объектов, отличное от упорядочивания, полученного методом собственного вектора без введения ошибки данных.

Цель исследования

Рассмотрим два упорядоченных набора объектов:

$$X_1 = < x_{i_1} \succ \cdots \succ x_{i_n} >$$
, $X_2 = < x_{j_1} \succ \cdots \succ x_{j_n} >$, $i,j=1\dots n$. Функция J показывает, насколько похожи упорядочивания в двух наборах объектов:

$$J(X_1, X_2) = |\{k \mid i_k = j_k, \quad k \in 1 \dots n\}|.$$
 (1)

Критерий устойчивости

Критерием устойчивости МАИ к введенной ошибке данных назовем вероятность полного совпадения упорядочиваний X_0 и X_i , то есть $P(J(X_0,X_i)=n), \quad i=1\dots n_{step}.$

Постановка задачи

$$1 - P(J(X_0, X_i) = n) \underset{\varphi}{\to} min, \quad i = 1 \dots n_{step}.$$
 (2)

Цель исследования

Рассмотрим два упорядоченных набора объектов:

$$X_1=< x_{i_1}\succ\cdots\succ x_{i_n}>$$
, $X_2=< x_{j_1}\succ\cdots\succ x_{j_n}>$, $i,j=1\ldots n$. Функция J показывает, насколько похожи упорядочивания в двух наборах объектов:

$$J(X_1, X_2) = |\{k \mid i_k = j_k, \quad k \in 1 \dots n\}|.$$
 (1)

Критерий устойчивости

Критерием устойчивости МАИ к введенной ошибке данных назовем вероятность полного совпадения упорядочиваний X_0 и X_i , то есть $P(J(X_0,X_i)=n), \quad i=1\dots n_{step}.$

Постановка задачи

$$1 - P(J(X_0, X_i) = n) \underset{\varphi}{\to} min, \quad i = 1 \dots n_{step}.$$
 (2)

Цель исследования

Рассмотрим два упорядоченных набора объектов:

$$X_1=< x_{i_1}\succ\cdots\succ x_{i_n}>$$
, $X_2=< x_{j_1}\succ\cdots\succ x_{j_n}>$, $i,j=1\ldots n$. Функция J показывает, насколько похожи упорядочивания в двух наборах объектов:

$$J(X_1, X_2) = |\{k \mid i_k = j_k, \quad k \in 1 \dots n\}|.$$
 (1)

Критерий устойчивости

Критерием устойчивости МАИ к введенной ошибке данных назовем вероятность полного совпадения упорядочиваний X_0 и X_i , то есть $P(J(X_0,X_i)=n), \quad i=1\dots n_{step}.$

<u>Пост</u>ановка задачи

$$1 - P(J(X_0, X_i) = n) \underset{\varphi}{\to} min, \quad i = 1 \dots n_{step}.$$
 (2)

Определение

Набор параметров шкалы, удовлетворяющий условию (2), назовем **оптимальным**.

- Случайным образом генерируется матрица A, для которой при помощи МАИ находится итоговый вектор упорядочиваний X_0 длины n.
- Добавлением *ошибки данных* получается матрица $\widetilde{A_i}$, для которой находится ветор $X_i, \quad i=1\dots 20000.$
- Вычисляется значение $1 P(J(X_0, X_i) = n)$,
- Методом случайного поиска находятся параметры шкалы, удовлетворяющие условию

$$1 - P(J(X_0, X_i) = n) \underset{\varphi}{\to} min, \quad i = 1 \dots 20000.$$

Определение

Набор параметров шкалы, удовлетворяющий условию (2), назовем **оптимальным**.

- Случайным образом генерируется матрица A, для которой при помощи МАИ находится итоговый вектор упорядочиваний X_0 длины n.
- ullet Добавлением *ошибки данных* получается матрица $\widetilde{A_i}$, для которой находится ветор $X_i, \quad i=1\dots 20000.$
- Вычисляется значение $1 P(J(X_0, X_i) = n)$,
- Методом случайного поиска находятся параметры шкалы, удовлетворяющие условию

$$1 - P(J(X_0, X_i) = n) \underset{\varphi}{\to} min, \quad i = 1 \dots 20000.$$

Определение

Набор параметров шкалы, удовлетворяющий условию (2), назовем **оптимальным**.

- Случайным образом генерируется матрица A, для которой при помощи МАИ находится итоговый вектор упорядочиваний X_0 длины n.
- Добавлением *ошибки данных* получается матрица $\widetilde{A_i}$, для которой находится ветор $X_i, \quad i=1\dots 20000$.
- Вычисляется значение $1 P(J(X_0, X_i) = n)$,
- Методом случайного поиска находятся параметры шкалы, удовлетворяющие условию

$$1 - P(J(X_0, X_i) = n) \underset{\varphi}{\to} min, \quad i = 1 \dots 20000.$$

Определение

Набор параметров шкалы, удовлетворяющий условию (2), назовем **оптимальным**.

- Случайным образом генерируется матрица A, для которой при помощи МАИ находится итоговый вектор упорядочиваний X_0 длины n.
- Добавлением *ошибки данных* получается матрица $\widetilde{A_i}$, для которой находится ветор $X_i, \quad i=1\dots 20000.$
- Вычисляется значение $1 P(J(X_0, X_i) = n)$,
- Методом случайного поиска находятся параметры шкалы, удовлетворяющие условию

$$1 - P(J(X_0, X_i) = n) \underset{\varphi}{\to} min, \quad i = 1 \dots 20000.$$

Определение

Набор параметров шкалы, удовлетворяющий условию (2), назовем **оптимальным**.

- Случайным образом генерируется матрица A, для которой при помощи МАИ находится итоговый вектор упорядочиваний X_0 длины n.
- Добавлением *ошибки данных* получается матрица $\widetilde{A_i}$, для которой находится ветор $X_i, \quad i=1\dots 20000.$
- Вычисляется значение $1 P(J(X_0, X_i) = n)$,
- Методом случайного поиска находятся параметры шкалы, удовлетворяющие условию

$$1 - P(J(X_0, X_i) = n) \underset{\varphi}{\to} min, \quad i = 1 \dots 20000.$$

Для шкалы Саати:

 $arphi_S(\lambda)=(1+x_S|\lambda|)^{sign\lambda},\ arphi_S>0,\ \lambda\in\Lambda$ значения $1-P(J(X_0,X_i)=n)$ наименьшие для трех шкал и достигаются при значении параметра $x_S\in[0.5,1.5].$

Для шкалы Брука:

 $arphi_B(\lambda)=c_B+\lambda x_B,\ arphi_B>0,\ \lambda\in\Lambda$ изменение параметров c_B и x_B ведет к незначительному изменению значений функции $1-P(J(X_0,X_i)=n)$, которые являются наименьшими для трех шкал.

Для шкалы Саати:

 $arphi_S(\lambda)=(1+x_S|\lambda|)^{sign\lambda},\ arphi_S>0,\ \lambda\in\Lambda$ значения $1-P(J(X_0,X_i)=n)$ наименьшие для трех шкал и достигаются при значении параметра $x_S\in[0.5,1.5].$

Для шкалы Брука:

 $arphi_B(\lambda)=c_B+\lambda x_B,\ arphi_B>0,\ \lambda\in\Lambda$ изменение параметров c_B и x_B ведет к незначительному изменению значений функции $1-P(J(X_0,X_i)=n)$, которые являются наименьшими для трех шкал.

Для Логистической шкалы:

$$arphi_{log}(\lambda)=rac{2}{1+e^{-\mu\lambda}}$$
, при уменьшении параметра μ $arphi_{log}(\lambda)\underset{\mu o 0}{ o}1.$

Дополнительное условие

$$1 - P(J(X_0, X_i) = n) \underset{\varphi}{\to} min, \quad i = 1 \dots n_{step}, \quad \epsilon_{ij} \in \{0, 1, -1\}$$
$$P(J(X_0, X_i) = n) \underset{\varphi}{\to} min, \quad i = 1 \dots n_{step}, \quad \epsilon_{ij} \in \{0, 2, -2\}.$$

Результат

значения параметра, удовлетворяющие поставленной задаче, достигаются на $\mu \in [0.6, 1.1]$, при этом значения функции (2) больше, чем для шкалы Саати, но меньше, чем для шкалы Брука.

Для Логистической шкалы:

$$arphi_{log}(\lambda)=rac{2}{1+e^{-\mu\lambda}}$$
, при уменьшении параметра μ $arphi_{log}(\lambda)\underset{\mu o0}{ o}1.$

Дополнительное условие

$$1 - P(J(X_0, X_i) = n) \underset{\varphi}{\to} min, \quad i = 1 \dots n_{step}, \quad \epsilon_{ij} \in \{0, 1, -1\},$$
$$P(J(X_0, X_i) = n) \underset{\varphi}{\to} min, \quad i = 1 \dots n_{step}, \quad \epsilon_{ij} \in \{0, 2, -2\}.$$

Результа-

значения параметра, удовлетворяющие поставленной задаче, достигаются на $\mu \in [0.6, 1.1]$, при этом значения функции (2) больше, чем для шкалы Саати, но меньше, чем для шкалы Брука.

Для Логистической шкалы:

$$arphi_{log}(\lambda)=rac{2}{1+e^{-\mu\lambda}}$$
, при уменьшении параметра μ $arphi_{log}(\lambda)\underset{\mu o0}{ o}1.$

Дополнительное условие

$$1 - P(J(X_0, X_i) = n) \underset{\varphi}{\to} min, \quad i = 1 \dots n_{step}, \quad \epsilon_{ij} \in \{0, 1, -1\},$$
$$P(J(X_0, X_i) = n) \underset{\varphi}{\to} min, \quad i = 1 \dots n_{step}, \quad \epsilon_{ij} \in \{0, 2, -2\}.$$

Результат

значения параметра, удовлетворяющие поставленной задаче, достигаются на $\mu \in [0.6, 1.1]$, при этом значения функции (2) больше, чем для шкалы Саати, но меньше, чем для шкалы Брука.

Используя МАИ, сравним шкалы Брука, Саати и Логистическую по следующим критериям:

Критерии сравнения

- Устойчивость к ошибке данных,
- Дисперсия первого объекта в упорядочивании, полученном при использовании МАИ.

Параметры МАИ

- Критерии равновесны,
- ullet Используется Логистическая шкала с параметром $\mu = 0.9$.

Используя МАИ, сравним шкалы Брука, Саати и Логистическую по следующим критериям:

Критерии сравнения

- Устойчивость к ошибке данных,
- Дисперсия первого объекта в упорядочивании, полученном при использовании МАИ.

Параметры МАИ

- Критерии равновесны,
- ullet Используется Логистическая шкала с параметром $\mu=0.9$

Используя МАИ, сравним шкалы Брука, Саати и Логистическую по следующим критериям:

Критерии сравнения

- Устойчивость к ошибке данных,
- Дисперсия первого объекта в упорядочивании, полученном при использовании МАИ.

Параметры МАИ:

- Критерии равновесны,
- ullet Используется Логистическая шкала с параметром $\mu=0.9.$

Таблица: Сравнение шкал по критериям устойчивости к ошибке данных и уменьшения дисперсии первого объекта в упорядочивании

Шкала	Количественная оценка шкалы (X_i)	$i \in 1 \dots 3$
Брука	0.036	
Саати	0.438	
Логистическая	0.524	

Заключение

- В рамках поставленной задачи проведено статистическое исследование шкал МАИ,
- С помощью алгоритма случайного поиска найдены оптимальные (в данных условиях) параметры шкал МАИ,
- При помощи МАИ проведено сравнение шкал Саати, Брука и Логистической.