Staukontrolle durch Active Queue Management

Thomas Fischer

Betreuer: Martin Metzker 05/12.07.2014

- Einführung und Motivation
- Staukontrolle in Netzen
- Definition und Anwendung von AQM
- Drei Beispiele für AQM Algorithmen
 - RED
 - BLUE
 - AVQ
- Vergleich der vorgestellten Algorithmen
 - BLUE vs. RED
 - AVQ vs. RED
- Zusammenfassung

- Einführung und Motivation
- Staukontrolle in Netzen
- Definition und Anwendung von AQM
- Drei Beispiele für AQM Algorithmen
 - RED
 - BLUE
 - AVQ
- Vergleich der vorgestellten Algorithmen
 - BLUE vs. RED
 - AVQ vs. RED
- Zusammenfassung

Random Early Detection, Floyd und Van Jacobson 1993

Random Early Detection, Floyd und Van Jacobson 1993

Prinzip:

Ankommende Pakete werden mit bestimmter Wahrscheinlichkeit markiert, die sich proportional zum Anteil der Übertragungsrate verhält, welche diese Verbindung belegt.

Random Early Detection, Floyd und Van Jacobson 1993

Prinzip:

Ankommende Pakete werden mit bestimmter Wahrscheinlichkeit markiert, die sich proportional zum Anteil der Übertragungsrate verhält, welche diese Verbindung belegt.

"Markieren" kann dabei Fallenlassen des Pakets oder setzen des ECN-Bits sein

Messgröße: durchschnittliche Queuelänge Q_{avg} :

Messgröße: durchschnittliche Queuelänge Q_{avg} :

$$Q_{avg} = (1 - w_q) Q_{avg} + w_q \cdot q$$

, mit Queuelänge q und Gewicht der Queue w_q

Messgröße: durchschnittliche Queuelänge Q_{avg} :

$$Q_{avg} = (1 - w_q) Q_{avg} + w_q \cdot q$$

, mit Queuelänge q und Gewicht der Queue w_q

Vergleichsparameter Q_{min} und Q_{max} :

Messgröße: durchschnittliche Queuelänge Q_{avg} :

$$Q_{avg} = (1 - w_q) Q_{avg} + w_q \cdot q$$

, mit Queuelänge q und Gewicht der Queue w_q

Vergleichsparameter Q_{min} und Q_{max} :

- $Q_{min} > Q_{avg}$: keine Aktion

Messgröße: durchschnittliche Queuelänge Q_{avg} :

$$Q_{avg} = (1 - w_q) Q_{avg} + w_q \cdot q$$

, mit Queuelänge q und Gewicht der Queue w_q

Vergleichsparameter Q_{min} und Q_{max} :

- $-Q_{min} > Q_{avg}$: keine Aktion
- $-Q_{min} < Q_{avg} < Q_{max}$: markieren mit Wahrscheinlickeit p_a

Messgröße: durchschnittliche Queuelänge Q_{avg} :

$$Q_{avg} = (1 - w_q) Q_{avg} + w_q \cdot q$$

, mit Queuelänge q und Gewicht der Queue w_q

Vergleichsparameter Q_{min} und Q_{max} :

- $-Q_{min} > Q_{avg}$: keine Aktion
- $-Q_{min} < Q_{avg} < Q_{max}$: markieren mit Wahrscheinlickeit p_a
- $-Q_{ava} > Q_{max}$: immer markieren

Markierungswahrscheinlichkeit p_b :

Markierungswahrscheinlichkeit p_b :

$$p_b = max_b \cdot \frac{Q_{avg} - Q_{min}}{Q_{max} - Q_{min}}$$
, mit max_b , dem Maximum für p_b

Markierungswahrscheinlichkeit p_b :

$$p_b = max_b \cdot \frac{Q_{avg} - Q_{min}}{Q_{max} - Q_{min}}$$
, mit max_b , dem Maximum für p_b

finale Markierungswahrscheinlichkeit p_a :

Markierungswahrscheinlichkeit p_b :

$$p_b = max_b \cdot \frac{Q_{avg} - Q_{min}}{Q_{max} - Q_{min}}$$
, mit max_b , dem Maximum für p_b

finale Markierungswahrscheinlichkeit p_a :

$$p_a = \frac{p_b}{1 - z \cdot p_b}$$
 , mit Zähler z

RED kann auch Bytelänge (Anzahl an Bytes eines Pakets) anstatt Queuelänge in Paketen nutzen. Dafür Modifikation von p_b zu

RED kann auch Bytelänge (Anzahl an Bytes eines Pakets) anstatt Queuelänge in Paketen nutzen. Dafür Modifikation von p_b zu

$$p_b = p_b \cdot \frac{Paketbytes}{maximale \ Paketbytes}$$

Algorithmus:

Algorithmus:

for jedes ankommende Paket do

Berechne Q_{avg} ;

if $Q_{min} < Q_{avg} < Q_{max}$ then

Berechne p_a ;

Markiere ankommendes Paket mit Wahrscheinlichkeit p_a ;

else if $Q_{max} < Q_{avq}$ then

Markiere ankommendes Paket

end

1999, Feng et.al., University of Michigan mit IBM

1999, Feng et.al., University of Michigan mit IBM

entwickelt, um Schwachstellen von RED zu verbessern:

1999, Feng et.al., University of Michigan mit IBM

entwickelt, um Schwachstellen von RED zu verbessern:

RED benötigt viele Parameter, welche konfiguriert werden müssen

1999, Feng et.al., University of Michigan mit IBM

entwickelt, um Schwachstellen von RED zu verbessern:

- RED benötigt viele Parameter, welche konfiguriert werden müssen
- RED funktioniert nur gut, wenn richtig konfiguriert und ausreichend Pufferplatz

1999, Feng et.al., University of Michigan mit IBM

entwickelt, um Schwachstellen von RED zu verbessern:

- RED benötigt viele Parameter, welche konfiguriert werden müssen
- RED funktioniert nur gut, wenn richtig konfiguriert und ausreichend Pufferplatz

➡ BLUE als neues Verfahren

Kennt nur eine globale Markierungswahrscheinlichkeit p_m

Kennt nur eine globale Markierungswahrscheinlichkeit p_m

Nutzt Paketverlust und Verbindungsauslastung zur Berechnung von p_m

Kennt nur eine globale Markierungswahrscheinlichkeit p_m

Nutzt Paketverlust und Verbindungsauslastung zur Berechnung von $p_{\scriptscriptstyle m}$

Kann Pakete fallen lassen oder ECN-Bit setzen

Ablauf:

– Jedes ankommende Paket wird mit Wahrscheinlichkeit p_m markiert

- Jedes ankommende Paket wird mit Wahrscheinlichkeit p_m markiert
- p_m ändert sich auf Basis verloren gegangener Pakete bzw. ungenutzter Verbindungen:

- Jedes ankommende Paket wird mit Wahrscheinlichkeit p_m markiert
- p_m ändert sich auf Basis verloren gegangener Pakete bzw. ungenutzter Verbindungen:
 - Router erfährt, dass Paket verloren: p_m → p_m + d₁

- Jedes ankommende Paket wird mit Wahrscheinlichkeit p_m markiert
- p_m ändert sich auf Basis verloren gegangener Pakete bzw. ungenutzter Verbindungen:
 - Router erfährt, dass Paket verloren: p_m → p_m + d₁
 - Router erkennt ungenutzte Verbindung: $p_m \rightarrow p_m d_2$

- Jedes ankommende Paket wird mit Wahrscheinlichkeit p_m markiert
- p_m ändert sich auf Basis verloren gegangener Pakete bzw. ungenutzter Verbindungen:
 - Router erfährt, dass Paket verloren: p_m → p_m + d₁
 - Router erkennt ungenutzte Verbindung: $p_m \rightarrow p_m d_2$
- Zusätzlich $freeze_time$: Zeitintervall, dass zwischen Änderungen an p_m gewartet werden muss, damit Änderungen wirksam werden können

Algorithmus:

Algorithmus:

for jedes ankommende Paket do

if Paketverlust && (now – last_update) < freeze_time then</pre>

$$p_m = p_m + d_1;$$

last_update = now;

if Verbindung frei && (now – last_update) < freeze_time
then</pre>

$$\rho_m = \rho_m - d_2;$$

last update = now;

end

BLUE

Wahl der Parameter:

BLUE

Wahl der Parameter:

- d_1 (Erhöhung von p_m) sollte deutlich größer als d_2 (Reduzierung von p_m) sein, da auf Staus sehr schnell reagiert werden muss

BLUE

Wahl der Parameter:

- d_1 (Erhöhung von p_m) sollte deutlich größer als d_2 (Reduzierung von p_m) sein, da auf Staus sehr schnell reagiert werden muss
- freeze_time wurde von Autoren in Versuchen konstant gehalten; sollte aber zufällig gewählt werden, um globale Synchronisation zu vermeiden

Adaptive Virtual Queue, Kunniyur und Srikant, 2001

Adaptive Virtual Queue, Kunniyur und Srikant, 2001

Prinzip: nutze virtuelle Queue, deren Größe dynamisch angepasst wird, um bessere Leistungsgrenzen zu erhalten

Keine Markierungswahrscheinlichkeiten; Entscheidung über Markieren wird anhand der Kapazität der virtuellen Queue getroffen

Keine Markierungswahrscheinlichkeiten; Entscheidung über Markieren wird anhand der Kapazität der virtuellen Queue getroffen

Unterstützt Fallenlassen von Paketen und das Setzen des ECN-Bits

Virtuelle Queue mit Kapazität $C_{\nu} \le C$, C ist Kapazität der tatsächlichen Verbindung, zu Beginn $C_{\nu} = C$

Virtuelle Queue mit Kapazität $C_v \le C$, C ist Kapazität der tatsächlichen Verbindung, zu Beginn $C_v = C$

Überprüfe für ankommende Pakete, ob virtuelle Queue Paket aufnehmen könnte:

Virtuelle Queue mit Kapazität $C_{\nu} \le C$, C ist Kapazität der tatsächlichen Verbindung, zu Beginn $C_{\nu} = C$

Überprüfe für ankommende Pakete, ob virtuelle Queue Paket aufnehmen könnte:

- Falls ja: Paket in tatsächliche Queue einreihen

Virtuelle Queue mit Kapazität $C_{\nu} \le C$, C ist Kapazität der tatsächlichen Verbindung, zu Beginn $C_{\nu} = C$

Überprüfe für ankommende Pakete, ob virtuelle Queue Paket aufnehmen könnte:

- Falls ja: Paket in tatsächliche Queue einreihen
- Falls nein: Paket markieren

Kapazität der virtuellen Queue wird bei jedem ankommenden Paket angepasst gemäß

$$\dot{C}_{v} = \alpha (\gamma \cdot C - \lambda)$$

Kapazität der virtuellen Queue wird bei jedem ankommenden Paket angepasst gemäß

$$\dot{C}_{v} = \alpha (\gamma \cdot C - \lambda)$$

wobei

- α ein Glättungsparameter

Kapazität der virtuellen Queue wird bei jedem ankommenden Paket angepasst gemäß

$$\dot{C}_{v} = \alpha (\gamma \cdot C - \lambda)$$

wobei

- α ein Glättungsparameter
- γ die angestrebte Auslastung der Verbindung

Kapazität der virtuellen Queue wird bei jedem ankommenden Paket angepasst gemäß

$$\dot{C}_{v} = \alpha (\gamma \cdot C - \lambda)$$

wobei

- α ein Glättungsparameter
- γ die angestrebte Auslastung der Verbindung
- λ die Ankunftsrate der Verbindung

Kapazität der virtuellen Queue wird bei jedem ankommenden Paket angepasst gemäß

$$\dot{C}_{v} = \alpha (\gamma \cdot C - \lambda)$$

wobei

- α ein Glättungsparameter
- γ die angestrebte Auslastung der Verbindung
- λ die Ankunftsrate der Verbindung

Da keine Pakete in virtuelle Queue eingereiht werden ist lediglich die Kapazität von Interesse

Algorithmus:

Algorithmus:

for jedes ankommende Paket do

if
$$VQ = max(VQ - C_v(t - s), 0)$$
 then

Paket markieren;

else

$$VQ = VQ + b;$$

$$C_{v} = max(min(C_{v} + \alpha \cdot \gamma \cdot C(t - s), C) - \alpha \cdot b, 0);$$

$$s = t;$$

end

Algorithmus:

for jedes ankommende Paket do

if
$$VQ = max(VQ - C_v(t - s), 0)$$
 then

Paket markieren;

else

$$VQ = VQ + b;$$

$$C_{v} = max(min(C_{v} + \alpha \cdot \gamma \cdot C(t - s), C) - \alpha \cdot b, 0);$$

$$s = t;$$

end

B: Puffergröße, s: Ankunftszeit des letzten Pakets,

t: aktuelle Zeit, b: Paketgröße, VQ: Bytes in virt. Queue

- Einführung und Motivation
- Staukontrolle in Netzen
- Definition und Anwendung von AQM
- Drei Beispiele für AQM Algorithmen
 - RED
 - BLUE
 - AVQ
- Vergleich der vorgestellten Algorithmen
 - BLUE vs. RED
 - AVQ vs. RED
- Zusammenfassung

Von den Autoren von BLUE

Von den Autoren von BLUE

Aufbau:

- ECN aktiviert

- ECN aktiviert
- Messen der Auslastung und Paketverluste nach 100s Übertragung + 100s Warten

- ECN aktiviert
- Messen der Auslastung und Paketverluste nach 100s Übertragung + 100s Warten
- RED: $Q_{min} = 20\%$, $Q_{max} = 80\%$

- ECN aktiviert
- Messen der Auslastung und Paketverluste nach 100s Übertragung + 100s Warten
- RED: $Q_{min} = 20\%$, $Q_{max} = 80\%$
- BLUE: $d_1 = 10 \cdot d_2$

- ECN aktiviert
- Messen der Auslastung und Paketverluste nach 100s Übertragung + 100s Warten
- RED: $Q_{min} = 20\%$, $Q_{max} = 80\%$
- BLUE: $d_1 = 10 \cdot d_2$
- Variation der Buffergröße von 100 KB bis 1000 KB, entspricht Verzögerung von 17,8 ms bis 178 ms

1000 Quellen:

1000 Quellen:

Auslastung bei beiden 100%

1000 Quellen:

Auslastung bei beiden 100%

05/12.07.2014

Active Queue Management

1000 Quellen:

4000 Quellen:

Auslastung bei beiden 100%

05/12.07.2014

Active Queue Management

1000 Quellen:

50.0

Auslastung bei beiden 100%

100.0

Buffer Size (in ms of delay)

150.0

4000 Quellen:

Auslastung bei beiden 100%

0.0

200.0

1000 Quellen:

Auslastung bei beiden 100%

4000 Quellen:

Auslastung bei beiden 100%

05/12.07.2014

Active Queue Management

AVQ vs. RED

Von den Autoren von AVQ

AVQ vs. RED

Von den Autoren von AVQ

Aufbau:

- Versuch A: ECN aktiviert, B: ECN deaktiviert

AVQ vs. RED

Von den Autoren von AVQ

- Versuch A: ECN aktiviert, B: ECN deaktiviert
- Messen der Auslastung und Paketverluste nach 30 60 ms

Von den Autoren von AVQ

- Versuch A: ECN aktiviert, B: ECN deaktiviert
- Messen der Auslastung und Paketverluste nach 30 60 ms
- Flaschenhals Queuelänge: 100 Pakete bzw. 1000 bytes

Von den Autoren von AVQ

Aufbau:

- Versuch A: ECN aktiviert, B: ECN deaktiviert
- Messen der Auslastung und Paketverluste nach 30 60 ms
- Flaschenhals Queuelänge: 100 Pakete bzw. 1000 bytes
- RED: $Q_{min} = 37\%$, $Q_{max} = 75\%$

Von den Autoren von AVQ

Aufbau:

- Versuch A: ECN aktiviert, B: ECN deaktiviert
- Messen der Auslastung und Paketverluste nach 30 60 ms
- Flaschenhals Queuelänge: 100 Pakete bzw. 1000 bytes
- RED: $Q_{min} = 37\%$, $Q_{max} = 75\%$
- AVQ: A: $\gamma = 98\%$ B: $\gamma = 100\%$; $\alpha = 0.15$

Von den Autoren von AVQ

Aufbau:

- Versuch A: ECN aktiviert, B: ECN deaktiviert
- Messen der Auslastung und Paketverluste nach 30 60 ms
- Flaschenhals Queuelänge: 100 Pakete bzw. 1000 bytes
- RED: $Q_{min} = 37\%$, $Q_{max} = 75\%$
- AVQ: A: $\gamma = 98\%$ B: $\gamma = 100\%$; $\alpha = 0.15$
- A: Variation der FTP Verbindungen von 20 bis 180;
 - B: 40 FTP Verbindungen, steigende Anzahl an short-flows

A (FTP Variation):

A (FTP Variation):

Auslastung RED: 90% - 85%

Auslastung AVQ: 95% - 98%

A (FTP Variation):

Auslastung RED: 90% - 85%

Auslastung AVQ: 95% - 98%

05/12.07.2014

Active Queue Management

A (FTP Variation):

Auslastung RED: 90% - 85%

Auslastung AVQ: 95% - 98%

05/12.07.2014

Active Queue Management

B (short flows Variation):

A (FTP Variation):

Auslastung RED: 90% - 85%

Auslastung AVQ: 95% - 98%

B (short flows Variation):

Auslastung RED: 94% - 99 %

Auslastung AVQ: 100%

05/12.07.2014

Active Queue Management

05/12.07.2014

A (FTP Variation):

Auslastung RED: 90% - 85%

Auslastung AVQ: 95% - 98%

2 1.8 - 1.6 - 2 1.4 - 2 1.4 - 2 1.5 -

B (short flows Variation):

Auslastung RED: 94% - 99 %

Auslastung AVQ: 100%

Active Queue Management

Gliederung

- Einführung und Motivation
- Staukontrolle in Netzen
- Definition und Anwendung von AQM
- Drei Beispiele für AQM Algorithmen
 - RED
 - BLUE
 - AVQ
- Vergleich der vorgestellten Algorithmen
 - BLUE vs. RED
 - AVQ vs. RED
- Zusammenfassung

AQM Algorithmen notwendig

AQM Algorithmen notwendig

Es gibt zahlreiche, weitere Algorithmen

AQM Algorithmen notwendig

Es gibt zahlreiche, weitere Algorithmen

Wichtig für die Zukunft: Einführung von AQM im Internet auf allen Routern (RED bereits 1998 in RFC 2309 empfohlen, noch vor ECN, welches 1999 in RFC 2481 erwähnt)

AQM Algorithmen notwendig

Es gibt zahlreiche, weitere Algorithmen

Wichtig für die Zukunft: Einführung von AQM im Internet auf allen Routern (RED bereits 1998 in RFC 2309 empfohlen, noch vor ECN, welches 1999 in RFC 2481 erwähnt)

Alternative Verfahren zur Staukontrolle: z.B. Zugangssteuerung oder Routing unter Verkehrsberücksichtigung

Vielen Dank für Ihre Aufmerksamkeit!

Fragen?