Propositional Logic Resolution and DPLL

Mario Alviano

University of Calabria, Italy

A.A. 2013/2014

Outline

- 1 Introduction
- 2 Propositional resolution
 - Resolution
 - Refutations
 - Refinements and examples
- 3 DPLL
- 4 Theories with infinitely many formulas
- 5 Exercises

Satisfiability

- Validity, equivalence, entailment, ...
- Can be reduced to satisfiability testing (SAT)
 - Long tradition
 - Cook's Theorem implies that very efficient methods are unlikely to exist
 - But one can try to be as efficient as possible!

Satisfiability by truth tables

```
Algorithm: SAT by truth table

Input : a set Γ of wffs

Output: true if Γ is SAT; false otherwise

begin

foreach interpretation I do

if evaluate(Γ,I) then

return true;

return false
```

Simple method

2

4

5

- Usually quite inefficient
- Works on the semantic level (by trying interpretations)

Syntactic method

Observation

For all unsatisfiable sets Γ of wffs:

$$\Gamma \equiv \bot$$

- Can we find a transformation which takes Γ to \bot iff Γ is unsatisfiable?
- Can we use a normal form such as CNF?

Goal

- Start with any set Γ of wffs
- **2** Transform (in linear time) to Γ^{CNF}
- **3** Transform to \perp iff Γ is unsatisfiable

Main observation

$$(a \lor b) \land (\neg b \lor c) \equiv (a \lor b) \land (\neg b \lor c) \land (a \lor c)$$

$$(a \lor b) \land (\neg b \lor c) \models (a \lor c)$$

More general

$$C_1 \wedge \cdots \wedge C_k \wedge (L_1^1 \vee \ldots \vee L_n^1 \vee a) \wedge (\neg a \vee L_1^2 \vee \ldots \vee L_m^2) \\ \models \\ C_1 \wedge \ldots \wedge C_k \wedge (L_1^1 \vee \ldots \vee L_n^1 \vee L_1^2 \vee \ldots \vee L_m^2)$$

This is known as resolution!

Additional observation

$$(a \lor a \lor B) \equiv (a \lor B)$$

■ Remove duplicated literals in clauses (factorization)

Resolution

$$C_{1}, \dots, C_{k}, \{L_{1}^{1}, \dots, L_{n}^{1}, a\}, \{\neg a, L_{1}^{2}, \dots, L_{m}^{2}\} \\ \models \\ C_{1}, \dots, C_{k}, \{L_{1}^{1}, \dots, L_{n}^{1}, L_{1}^{2}, \dots, L_{m}^{2}\}$$

Resolvent

Given two clauses C_1 and C_2 such that $a \in C_1$ and $\neg a \in C_2$, $(C_1 \setminus \{a\}) \cup (C_2 \setminus \{\neg a\})$ is the resolvent of C_1 and C_2 .

Derivation

Given a set Γ of clauses, a derivation by resolution of a clause C from Γ , denoted $\Gamma \vdash_R C$, is a sequence C_1, \ldots, C_n such that $C_n = C$ and for each C_i $(1 \le i \le n)$ we have

- 1 $C_i \in \Gamma$, or
- 2 C_i is a resolvent of C_j and C_k , where j < i and k < i.

Lemma

If $\Gamma \vdash_R C$ then $\Gamma \models C$.

Proof. By induction on the sequence C_1, \ldots, C_n .

Derivation by resolution

Consider

- $\Gamma = \{ rain \rightarrow streetwet, rain \}, or equivalently$
- Γ = {¬rain ∨ streetwet, rain}, or equivalently
- $\Gamma = \{\{\neg rain, streetwet\}, \{rain\}\}$

The following is a derivation by resolution:

- lacksquare $C_1 = \{\neg rain, streetwet\}$
- lacksquare $C_2 = \{rain\}$
- lacksquare $C_3 = \{streetwet\}$

 $rain \rightarrow streetwet$, $rain \vdash_{R} streetwet$

- Our goal is to model $\Gamma \models \bot$
- Let □ be the empty clause
 - □ is like ⊥
 - ☐ is different from an empty set of formulas!

Refutation

A derivation by resolution of \square from Γ is called a refutation of Γ .

Resolution Theorem

 $\Gamma \vdash_R \square$ if and only if Γ is unsatisfiable.

Proof. Soundness: $\Gamma \vdash_R \Box$ implies $\Gamma \models \Box$ (by the previous Lemma).

Completeness: by induction over the number of variables in Γ .

```
Goal: \{rain \rightarrow streetwet, rain\} \models streetwet
```

IFF:
$$\{rain \rightarrow streetwet, rain\} \cup \{\neg streetwet\} \models \bot$$

The following is a refutation of

 $\{rain \rightarrow streetwet, rain, \neg streetwet\}$:

$$C_1 = \{\neg rain, streetwet\}$$

$$C_2 = \{rain\}$$

$$C_3 = \{\neg streetwet\}$$

$$C_4 = \{streetwet\}$$

•
$$C_5 = \{\} = \square$$

 $rain \rightarrow streetwet, rain, \neg streetwet \vdash_{B} \square$

Validity, equivalence, entailment, ...

Validity

$$\models \phi \text{ iff } \neg \phi \models \bot$$

■ Test whether $\neg \phi \vdash_R \Box$

Equivalence

$$\phi \equiv \psi \text{ iff } \neg (\phi \leftrightarrow \psi) \models \bot$$

■ Test whether $\neg(\phi \leftrightarrow \psi) \vdash_R \Box$

Entailment

$$\Gamma \models \phi \text{ iff } \Gamma, \ \neg \phi \models \bot$$

■ Test whether Γ , $\neg \phi \vdash_R \Box$

Satisfiability

 ϕ is satisfiable iff $\neg \phi$ is not valid

■ Test whether $\phi \nvdash_B \square$

Function resolveAll(Γ^{CNF} : set of clauses)

Algorithm: SAT by resolution

```
Input : a set \Gamma of wffs
Output: true if \Gamma is SAT; false otherwise

1 begin
2 \Gamma^{CNF} := trasformToCNF(\Gamma);
3 repeat
4 \Gamma^{CNF} := \Gamma^{CNF} = \Gamma^{CNF} = \Gamma^{CNF} = \Gamma^{CNF};
6 \Gamma^{CNF} := \Gamma^{CNF} = \Gamma^{CNF};
8 until \Gamma_{old} = \Gamma^{CNF};
9 return true;
```

Complexity

Deciding $\Gamma \vdash_R \Box$ requires up to an exponential number of steps (with respect to the size of the formula)

Since unsatisfiability of a formula is coNP-complete, this is "reasonable"

Example

Is the following formula satisfiable?

$$(A \lor B) \land (A \leftrightarrow B) \land (\neg A \lor \neg B)$$

Refinements (1)

Drop tautological clauses

A clause C is a tautology if there is $a \in V$ such that $a \in C$ and $\neg a \in C$

Drop subsumed clauses

A clause C_1 subsumes a clause C_2 if $C_1 \subseteq C_2$

Linear Resolution

Any intermediate derivation uses the clause obtained in the previous step.

Theorem

Linear resolution is refutation complete: If a set of wffs is unsatisfiable then a refutation by linear resolution exists.

$$\{\{A,B\},\{A,\neg B\},\{\neg A,B\},\{\neg A,\neg B\}\}$$

Linear Input Resolution

Any intermediate derivation uses the clause obtained in the previous step and a clause of the original formula.

Theorem

Linear input resolution is refutation complete for (sets of) Horn clauses, where a Horn clause is a clause containing at most one positive atom.

Example

- 1 $\{\{A, B\}, \{A, \neg B\}, \{\neg A, B\}, \{\neg A, \neg B\}\}$
- $\{A\}, \{B\}, \{A, \neg B\}, \{\neg A, B\}, \{\neg A, \neg B\}\}$

Examples

- Is $(A_1 \lor A_2) \land (\neg A_2 \lor \neg A_3) \land (A_3 \lor A_4) \land (\neg A_4 \lor \neg A_1)$ satisfiable?
- 2 Does A follow from $(A \lor B \lor C) \land (\neg C \lor B) \land (A \lor \neg B)$?
- 3 Does $\neg A$ follow from $(A \lor B \lor C) \land (\neg C \lor B) \land (A \lor \neg B)$?
- 4 Does $P = A \land B$ follow from $(\neg A \rightarrow B) \land (A \rightarrow B) \land (\neg A \rightarrow \neg B)$?

DPLL algorithm

- By $\neg \ell$ we denote the opposite literal of ℓ
 - \blacksquare if $\ell = \neg a$ then $\neg \ell = a$
- Simplify is often called Unit Propagation
 - Call-by-name parameters (references)

Algorithm: DPLL

```
Input: a set \Gamma of clauses

Output: true if \Gamma is SAT; false otherwise

begin

Simplify(\Gamma);

if \Gamma = \emptyset then return true;

if \Box \in \Gamma then return false;

\ell := \text{ChooseLiteral}(\Gamma);

return DPLL(\Gamma \cup \{\ell\}) or DPLL(\Gamma \cup \{\neg\ell\});
```

Procedure Simplify(Γ)

```
\begin{array}{c|c} \mathbf{begin} \\ \mathbf{c} \\ \mathbf{c
```

Properties

- DPLL(Γ) returns *true* if Γ is satisfiable, and *false* otherwise
- DPLL(Γ) can be (easily) modified in order to compute one (or all) models of Γ
 - DPLL is sound and complete
- DPLL(Γ) works in polynomial-space

Features

Simplification

The input set of clauses is simplified at each branch using (at least) unit clause propagation

Branching

When no further simplification is possible, a literal is selected using some heuristic criterion (ChooseLiteral) and assumed as a unit clause in the current set of clauses

Backtracking

When a contradiction (empty clause) arises, the search resumes from some previous assumption ℓ by assuming $\neg \ell$ instead

Example

$$\Gamma = \{\{x_1, x_2, \neg x_3\}, \{\neg x_2\}, \{x_4, \neg x_3\}\}$$

- Simplify using $\{\neg x_2\}$: $\Gamma = \{\{x_1, \neg x_3\}, \{x_4, \neg x_3\}\}$
- ChooseLiteral returns $\neg x_3$: $\Gamma = \emptyset$, i.e., the formula is SAT!

Example

$$\Gamma = \{\{x_1, x_2, \neg x_3, \neg x_4\}, \{\neg x_2\}, \{x_4, \neg x_3\}\}$$

- Simplify using $\{\neg x_2\}$: $\Gamma = \{\{x_1, \neg x_3, \neg x_4\}, \{x_4, \neg x_3\}\}$
- If ChooseLiteral returns $\neg x_3$, the process is the same as before; otherwise, if x_1 is returned, another choice has to be made

Branching order (ChooseLiteral) can make big differences!

- 1 $\{\{x_1, x_2, x_3\}, \{x_1, x_2, \neg x_3\}, \{x_1, \neg x_2, x_3\}, \{x_1, \neg x_2, \neg x_3\}, \{\neg x_1, x_4\}, \{x_1, \neg x_4, \neg x_5, x_6\}, \{\neg x_1, x_7\}\}$

Refinements

- How to efficiently detect unit clauses?
 - 2-watched literals
- How to implement ChooseLiteral?
 - Look-ahead heuristics
 - Look-back heuristics
- How to take advantage from conflicts?
 - Learning
 - Backjumping
- Can we reuse something from a previous computation?
 - Progressive SAT

Theories with infinitely many formulas

Compactness Theorem

A set Γ of wffs is satisfiable if and only if each finite subset of Γ is satisfiable.

Corollary

A set Γ of wffs is unsatisfiable if and only if there exists a finite subset of Γ which is unsatisfiable.

(From Logic for Computer Science: Foundations of Automatic Theorem Proving)

Show that the following set of clauses are unsatisfiable using the resolution method and the DPLL algorithm:

```
    {{A, B, ¬C}, {A, B, C}, {A, ¬B}, {¬A}}
    {{A, ¬B, C}, {B, C}, {¬A, C}, {B, ¬C}, {¬B}}
    {{A, ¬B}, {A, C}, {¬B, C}, {¬A, B}, {B, ¬C}, {¬A, ¬C}}
    {{A, B}, {¬A, B}, {A, ¬B}, {¬A, ¬B}, }
```

Find all resolvents of the following pairs of clauses:

```
1 {A, B}, {¬A, ¬B}
2 {A, ¬B}, {B, C, D}
3 {¬A, B, ¬C}, {B, C}
4 {A, ¬A}, {A, ¬A}
```

3 Find all resolvents of the following sets of clauses:

```
    {{A,¬B}, {A,B}, {¬A}}
    {{A,B,C}, {¬B,¬C}, {¬A,¬C}}
    {¬A,¬B}, {B,C}, {¬C,A}}
    {{A,B,C}, {A}, {B}}
```

- Show using resolution and DPLL whether the following statements hold
 - 1 $x \lor y \lor \neg z \models (x \lor z) \leftrightarrow (\neg y \rightarrow x)$
 - 2 $((\neg X \lor \neg Y) \to \neg(\neg Y \lor X))$ is satisfiable
- Write a CNF formula generator for the Bishop Independence Problem

Represent a 4×4 Sudoku with 2×2 squares using a propositional logic formula. This means that there is a 4×4 grid of fields, each of which should be filled with exactly one number between 1 and 4. The grid is divided into 4 non-overlapping regions of dimension 2×2 .

Generalize the formula for grids of $n^2 \times n^2$ fields, into each of which a number between 1 and n^2 should be written. The grid is divided into n^2 non-overlapping square regions of dimension $n \times n$. Here n is an arbitrary positive integer (so the previous example was a special case for n = 2).

Exercises (4)

Represent the following Boolean circuit using a set of wffs:

Each component of the circuit has inputs at its left-hand side and output at its right-hand side. The output of a component is 1 if and only if the sum of its inputs satisfies the condition written inside the component; so if the sum of the inputs does not satisfy the condition, the output is 0. The inputs and outputs of the circuit (A, B, C, D, E, F) may have values 1 or 0. Bifurcations are indicated using a dot; crossing wires without a dot.

The modelled formula must have models that correspond exactly to the admissible input and output values of the circuit.

Exercises (5

- 1 In the previous exercise, how can you find out whether the value of F can ever be 1 in an admissible state of the circuit?
- Whether the value of E can ever be equal to the value of A?
- Whether the value of F is 1 if and only if the value of D is 0?

QUESTIONS

END OF THE LECTURE