MT251P - Lecture 6

Fiacre Ó Cairbre

ASA.

Suppose we have two triangles $\triangle ABC$, $\triangle DEF$. If $|\angle ABC| = |\angle DEF|$, |BC| = |EF| and $|\angle BCA| = |\angle EFD|$, then $\triangle ABC$ is congruent to $\triangle DEF$.

SSS.

Suppose we have two triangles $\triangle ABC$, $\triangle DEF$. If |AB| = |DE|, |BC| = |EF| and |AC| = |DF|, then $\triangle ABC$ is congruent to $\triangle DEF$.

Proposition 1.3

Suppose we have an isosceles triangle $\triangle ABC$ with |AB| = |AC|. Then,

$$|\angle ABC| = |\angle BCA|$$

Proof.

Choose F on AD and G on AE such that |AG| = |AF| (by Proposition E.I.3). Join F to C and join B to G. Consider the triangles ΔABG , ΔACF . We have |AC| = |AB|, |AF| = |AG|, $|\angle FAC| = |\angle BAG|$ and so SAS implies that ΔABG is congruent to ΔACF . So, |FC| = |BG|, $|\angle AFC| = |\angle AGB|$.

Hence, $|\angle BFC| = |\angle CGB|$ and |FC| = |BG|. Also, since |AF| = |AG| and |AB| = |AC|, then we get |BF| = |CG| (by CN3). So, SAS implies that ΔBFC is congruent to ΔCGB .

Then,

$$|\angle ABC| = |\angle ABG| - |\angle CBG| = |\angle ACF| - |\angle FCB| = |\angle BCA|$$

Proposition 1.4

Suppose $\triangle ABC$ is a triangle with $|\angle ABC| = |\angle BCA|$. Then, |AB| = |AC|.

Proof.

We will prove this by contradiction. Suppose $|AB| \neq |AC|$. Then , we either have |AB| > |AC| or |AB| < |AC|.

CASE 1. Suppose |AB| > |AC|.

Choose D on AB with |BD| = |AC|. Join C to D and use SAS to get that $\triangle ABC$ is congruent to $\triangle DCB$ which contradicts CN5. Thus, |AB| > |AC| is false.

CASE 2. Suppose |AB| < |AC|.

Use a similar approach as in CASE 1 to get that |AB| < |AC| is false.

Overall then, we have |AB| = |AC| and we are done.

Section 2.3 – Some elementary constructions.

Proposition 1.5

To construct the bisector of a given angle $\angle BAC$.

Proof.

Choose D on AB and E on AC with |AE| = |AD|. Join D to E and construct the equilateral triangle ΔDEF on DE. Join A to F. By SSS we get that ΔADF is congruent to ΔAEF and so $|\angle DAF| = |\angle EAF|$. Hence, AF bisects $\angle DAE$ which equals $\angle BAC$ and we are done.

Section 2.4 – Angles and Parallels.

Remark 3.

We will use the following results:

- **1.** Suppose a line CD is drawn from a point C on the line AB between A and B. Then, $|\angle ACD| + |\angle DCB| = \pi$
- **2.** Suppose C is a point not on a line AB. Then, there exists a unique line through C that is parallel to AB.

Remark 4.

Result 2 in remark 3 above is equivalent to P5. It is a simpler version of P5.

Proposition 1.6

Suppose the line AB and CD intersect at the point E. Then $|\angle AEC| = |\angle BED|$.

The angles $\angle AEC$ and $\angle BED$ are called opposite angles.

Proof.

We have $|\angle AEC| + |\angle CEB| = \pi$ and $|\angle CEB| + |\angle BED| = \pi$. By CN1 we then get $|\angle AEC| + |\angle CEB| = |\angle CEB| + |\angle BED|$ Hence $|\angle AEC| = |\angle BED|$.