

TABLE OF CONTENTS

- Problem statement.
- Analyzing the data.
 - Info, Shape, Describe, datatype, null values
- **❖** EDA
 - Univariate, Bivariate, and multivariate analysis.
- **❖** Sales Trends
 - Weekly, Monthly, Quarterly, Yearly
- Market Basket Analysis
- * Associations Identified
 - > Support, confidence, & lift values are calculated
- **!** Inferences and recommendations
 - Possible Combos with Lucrative Offers.

PROBLEM STATEMENT

A Grocery Store shared the transactional data with you. Your job is to identify the most popular combos that can be suggested to the Grocery Store chain after a thorough analysis of the most commonly occurring sets of menu items in the customer orders. The Store doesn't have any combo meals. Can you suggest the best combo meals?

Data information:

RangeIndex: 20641 entries, 0 to 20640

Data columns (total 3 columns):

Column

0 Date

1 Order_id

2 Product

dtypes: int64(1), object(2)

memory usage: 483.9+ KB

Non-Null Count Dtype

20641 non-null int64

20641 non-null int64

20641 non-null float64

❖ Data head:

Date	Order_id	Product
01-01-2018	1	yogurt
01-01-2018	1	pork
01-01-2018	1	sandwich bags
01-01-2018	1	lunch meat
01-01-2018	1	all- purpose

Data shape: (20641, 3)

Describe the data:

	count	unique	top	freq	mean	std	min	25.00%	50.00%	75.00%	max
Date	20641	603	08-02-2019	183	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Order_id	20641	NaN	NaN	NaN	575.986289	328.557078	1	292	581	862	1139
Product	20641	3 7	poultry	640	NaN	NaN	NaN	NaN	NaN	NaN	NaN

Interpretation:

- > The data has 20641 rows and 3 columns with int and object as the data type.
- We have no non-null data with 3 variables. Ordinal 1 variables, 1 date-time and 1 object types.
- > The summary stats: 37 unique items in the dataset.
- The orders date with most orders is 08-02-2019.
- > The most orders item is: Poultry.

EDA - Univariate Analysis: Product Categories

Univariate Analysis: Order ID

20,641

Univariate Analysis: Date

Date Year. Color shows details about Date Year. Size shows count of Record. The marks are labeled by Date Year. Order count 2018>2019>2020

Univariate Analysis: Order ID

- > The Boxplot tells us there are no outliers.
- > The distplot distribution can be said to be a normal distribution. The distribution ranges mostly between 1 to 1139.

Bivariate Analysis: Product recommendation

Multivariate Analysis: Product/orderID running total

❖ Days:

Count of Order id for each Product. Color shows details about Date-Day. The view is filtered on Product, which keeps 37 of 37 members. We can see a drop i trend at the end of the month.

❖ Weekly:

***** Monthly:

Quarterly:

trend decreases each quarter, also Q4, has no product order listed.

* Yearly:

Count of Order id for each Product. The color shows details about Date-year. The view is filtered on Product, which keeps 37 of 37 members. We can see the trend decreases each passing year.

EDA AND TRENDS

! Interpretation:

- > The orders most received are for Poultry and the least is for hand soap. Though there isn't much difference in the total. The orders of medium size are received mostly.
- > The store receives order Id varies from 1-500. 34 is the highest item list on orders and 3 is the least.
- > The store is facing a Deline in order on 2020. Compared to the last 2 years.
- > The end of the week we see a raise in trend.
- > Same cannot be said for the end on the month, there is a decrease.
- > There no record are there for Q4 and Q1> Q3> Q2 we see the decrease.

MBA

❖ What is MBA?

- Market Basket Analysis is a data mining technique used by retailers to increase sales by better understanding customer purchasing patterns.
- It involves analysing large data sets, such as purchase history, to reveal product groupings, as well as products that are likely to be purchased together.
- > Association Rules: are widely used to analyse retail basket, association between different objects in a set, find frequent patterns in a transaction database.
- > For our Grocery Store problem, this will help us identify combo and best suggestion to improve sales.
- > The Apriori algorithm is commonly used in research articles about market basket analysis. There are three components in Apriori algorithm:
- > Support: It is the ratio of transactions involving number of transaction of the item by the total number of transactions made.
- > Confidence: It is whether the product sales are popular on individual sales or through combined sales has been calculated.
- Lift: It calculated for knowing the ratio for the sales. (confidence percent/ support percent).

MBA

- ❖ I have used Python and Tableau for data read and EDA
- * In this project I have used, KNIME is used to perform the MBA and I have used support = 0.05 and confidence = 0.60 for this dataset.
- * Here is the workflow diagram:

MBA OUTPUT

* Association Rule output: 15

Rules	Support	Confidence	Lift	Recommended_item	Recommended_with		
Rule 1	0.050043898156278	0.640449438202247	1.70040072287263	juice	<	[yogurt,toiletpaper,aluminumfoil]	
Rule 2	0.050043898156278	0.619565217391304	1.64495287321374	juice	<	[yogurt,poultry,aluminumfoil]	
Rule 3	0.050043898156278	0.612903225806452	1.61596475507766	coffee/tea	<	[yogurt,cheeses,cereals]	
Rule 4	0.050043898156278	0.6	1.42375	poultry	<	[dishwashing liquid/detergent, laundry detergent, mixes]	
Rule 5	0.050921861281826	0.630434782608696	1.67772247054043	mixes	<	[yogurt,poultry,aluminumfoil]	
Rule 6	0.050921861281826	0.610526315789474	1.65964074864967	sandwich bags	<	[cheeses, bagels, cereals]	
Rule 7	0.050921861281826	0.674418604651163	1.72620851842174	cheeses	<	[bagels, cereals, sandwich bags]	
Rule 8	0.050921861281826	0.617021276595745	1.55828654998349	cereals	<	[cheeses, bagels, sandwich bags]	
Rule 9	0.050921861281826	0.630434782608696	1.62091471194425	dinnerrolls	<	[spaghetti sauce, poultry, cereals]	
rule 10	0.050921861281826	0.637362637362637	1.51240842490842	poultry	<	[dinnerrolls, spaghetti sauce, cereals]	
Rule 11	0.050921861281826	0.604166666666667	1.58925134719015	m ilk	<	[poultry,laundry detergent,cereals]	
Rule 12	0.051799824407375	0.627659574468085	1.61014471918727	eggs	<	[dinnerrolls,poultry,soda]	
Rule 13	0.051799824407375	0.641304347826087	1.6488615173226	dinnerrolls	<	[spaghetti sauce, poultry, ice cream]	
Rule 14	0.051799824407375	0.686046511627907	1.62793120155039	poultry	<	[dinnerrolls, spaghetti sauce, ice cream]	
Rule 15	0.051799824407375	0.627659574468085	1.61377935737957	dinnerrolls	<	[spaghetti sauce, poultry, juice]	

MBA- ASSOCIATIONS IDENTIFIED

- Support: It's popularity of an item. In mathematical terms, the support of item A is the ratio of transactions of A to the total number of transactions.
- The higher support the item is more likely to be ordered.
- Confidence: Probability that customer who bought both A and B. It is the ratio of the number of transactions of A and B by the number of transactions involving B.
- Confidence(A => B) = Support(A, B)/Support(A)
- The higher the probability more likely the combo will works.
- > Lift: One product effect the sale of other in a positive direction. Increase in the sale of A when you sell B.
- Lift(A => B) = Confidence(A, B)/Support(B)
- \triangleright Lift (A => B) = 1 means that there is no correlation within the itemset.
- Lift (A => B) > 1 means that there is a positive correlation within the itemset, i.e., products in the itemset, A, and B, are more likely to be bought together.
- Lift (A => B) < 1 means that there is a negative correlation within the itemset, i.e., products in itemset, A, and B, are unlikely to be bought together.</p>
- Mostly like we would want Lift to be higher than 1.
- \succ Hence I have chosen the minimum support = 0.055 at the highest possible confidence = 0.60 for this dataset.

INTERPRETATION

Recommendations:

- At support: 0.5 and confidence: 0.60, our 15 rules lift values are above 1. i.e. there is a positive correlation within the itemset.
- > The rules have most set to have poultry as recommend item. It also being the most sold item, creating combo with poultry will be highly beneficial.
- > The introductory offer for new customer with point rewarding scheme for next purchase.
- > The order drop during Q4 and year end, end of season sales will be profitable during this time.
- Rise is sales are seen at the year start, discounts or limited time period event price that would be helpful during end of the year or weekdays to boost sales.
- > Sandwich bag placed between Cheeses and Bagels. Would increase Sandwich bag sale.

Possible Combos with Lucrative Offers:

- Giving buy one get one free for paper towel with eggs, ice cream.
- > 15% off on poultry purchased with dinner rolls.
- > 10% off on hand soap with poultry purchase.
- > Loyalty points to redeem at the end of the month/year regular customer. Would import retention rate.
- Free spaghetti Sause with Dinner rolls+poultry+eggs combo.