VEŽBE IZ MATEMATIČKE ANALIZE I

Blesić Andrija, Dedeić Jovana, Dragić Đorđe, Janjoš Aleksandar, Miščević Irena, Ostojić Tijana, Prokić Aleksandar, Tošić Stefan, Vuković Manojlo

> Katedra za matematiku Fakultet tehničkih nauka

Novi Sad, 2020.

Sadržaj

1	Vež	be III.4
	1.1	Određeni integral
		Površina ravnih likova
	1.3	Zadaci za samostalni rad
2	Vež	ibe III.5
	2.1	Dužina luka krive
	2.2	Zapremina obrtnih tela
	2.3	Površina omotača obrtnih tela
	2.4	Dodatak
	2.5	Zadaci za samostalni rad

1. Vežbe III.4

1.1. Određeni integral

Uočimo zatvoren interval $[a,b] \subset \mathbb{R}$. Konačan skup tačaka $P = \{x_0, x_1, \ldots, x_n\}$, takav da je $a = x_0 < x_1 < \ldots < x_n = b$, zovemo podela intervala [a,b]. Sa $\Delta x_i = x_i - x_{i-1}$, $i = 1,2,\ldots,n$ označimo dužinu intervala $[x_{i-1},x_i]$. Pod parametrom podele P podrazumevamo $\lambda(P) = \max_{i=1,2,\ldots,n} \Delta x_1$ (maksimalna dužina intervala podele P).

Na svakom intervalu $[x_{i-1}, x_i]$, i = 1, 2, ..., n izaberemo $\xi = (\xi_1, \xi_2, ..., \xi_n) \in \mathbb{R}^n$. Na ovaj način dobija se podela intervala [a, b] sa izabranom tačkom koju označavamo sa (P, ξ) .

Neka je $f:[a,b]\to\mathbb{R}$ i neka je (P,ξ) podela sa izabranom tačkom intervala [a,b]. Zbir $S(f,P,\xi)=\sum_{i=1}^n f(\xi_i)\Delta x_i$ se naziva integralna ili Rimanova suma funkcije f(x) za datu podelu (P,ξ) .

Primetimo da je $f(\xi_i)\Delta x_i$ jednako površini pravougaonika sa stranicama $f(\xi_i)$ i Δx_i , što nam govori da će nam integralna suma (odnosno određeni integral) koristiti da izračunamo površinu dvodimenzionalnih figura.

Definicija 1.1. Za broj I kažemo da je limes (granična vrednost) integralnih suma $S(f,P,\xi)$ funkcije $f:[a,b]\to\mathbb{R}$, za $\lambda(P)\to 0$ i pišemo $\lim_{\lambda(P)\to 0}S(f,P,\xi)$, ako za svako $\varepsilon>0$ postoji $\delta>0$, takvo da za svaku podelu P i svaku izabranu tačku $\xi\in \xi(P)$, kada $\lambda(P)<\delta$, važi nejednakost $|S(f,P,\xi)-I|<\varepsilon$. Ako postoji $\lim_{\lambda(P)\to 0}S(f,P,\xi)=I$, onda se kaže da je f(x) integrabilna u Rimanovom smislu nad intervalom [a,b]. Broj I se naziva Rimanov ili određeni integral funkcije f(x) nad intervalom [a,b] i piše se $I=\int\limits_a^b f(x)dx$. Pri tom se a i b nazivaju donja odnosno gornja granica integrala, respektivno.

Podela intervala [a, b] na n jednakih delova se naziva ekvidinstantna podela i zbog jednostavnijeg zapisa samo ćemo nju koristiti kod zadataka. Za nju važi da su dužine svih podintervala $\Delta x_i = \frac{b-a}{n}$, 1 = 1, 2, ..., n. Zbog lakšeg zapisa ćemo takođe umesto $S(f, P, \xi)$ koristiti oznaku S_n , gde je n broj delova na koliko je podeljen interval [a, b].

• Darbuove sume

Neka je funkcija f(x) definisana i ograničena nad intervalom [a,b] i neka je $P = \{x_0, x_1, \dots, x_n\}$ podela tog intervala. Uvedimo sledeće oznake:

$$m_i = \inf_{x \in [x_{i-1}, x_i]} f(x), \ m = \inf_{x \in [a, b]} f(x),$$

$$M_i = \sup_{x \in [x_{i-1}, x_i]} f(x), \ M = \sup_{x \in [a, b]} f(x).$$

Sume $s=s(f,P)=\sum\limits_{i=1}^n m_i\Delta x_i$ i $S=S(f,P)=\sum\limits_{i=1}^n M_i\Delta x_i$, nazivamo donja i gornja Darbuova suma funkcije f(x) nad intervalom [a,b], respektivno. Primetimo da važi $m\leq m_i$ i $M_i< M$ za $i=1,2,\ldots,n$ i da je $b-a=\sum\limits_{i=1}^n \Delta x_i$, pa dobijamo

$$m(b-a) = \sum_{i=1}^{n} m\Delta x_i \le \sum_{i=1}^{n} m_i \Delta x_i = s \le I$$

$$\le S = \sum_{i=1}^{n} M_i \Delta x_i \le \sum_{i=1}^{n} M\Delta x_i = M(b-a).$$

Njutn-Lajbnicova formula

Ako je funkcija f(x) integrabilna nad zatvorenim intervalom [a, b] i ako f(x) ima primitivnu funkciju F(x) nad intervalom [a, b], tada je

$$\int_{a}^{b} f(x)dx = F(x) \Big|_{a}^{b} = F(b) - F(a).$$

Ova formula i znanje iz rešavanja neodređenog integrale će nam koristiti da rešavamo i određeni integral.

• Smena promenljive

Ako je funkcija $f:[a,b]\to\mathbb{R}$ neprekidna, a funkcija $\varphi:[\alpha_0,\beta_0]\to[a,b]$ ima neprekidan izvod. Ako je $\alpha\in[\alpha_0,\beta_0],\beta\in[\alpha_0,\beta_0],a=\varphi(\alpha),b=\varphi(\beta),$ onda važi jednakost $\int\limits_a^b f(x)dx=\int\limits_\alpha^\beta f(\varphi(t))\varphi'(t)dt.$ Voditi računa da se sa smenom menjaju i granice integrala.

• Parcijalna integracija

Neka funkcije u(x) i v(x) imaju neprekidne izvode nad intervalom [a,b]. Tada važi jednakost $\int\limits_a^b u(x)dv(x)=u(x)v(x)\bigg|_a^b-\int\limits_a^b v(x)du(x)$. Formula se kraće piše u obliku $\int\limits_a^b udv=uv\bigg|_a^b-\int\limits_a^b vdu$.

• Osobine određenog integrala

- 1. Ako je funkcija f(x) definisana u tački a onda je $\int_a^a f(x) = 0$.
- 2. Ako je a < b i $\int_a^b f(x)dx$ postoji, onda je $\int_a^b f(x)dx = -\int_b^a f(x)dx$.
- 3. $\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx.$
- 4. $\int_{a}^{b} \alpha f(x) dx = \alpha \int_{a}^{b} f(x) dx, \ \alpha \in \mathbb{R}.$
- 5. Neka tačke a,b i $c\in\mathbb{R}$ predstavljaju krajeve za tri zatvorena intervala. Ako je funkcija f(x) integrabilna na najvećem od ovih intervala, onda je ona integrabilna i na ostala dva. Pri tom važi jednakost

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

6. Ako je funkcija f(x) parna, tada je $\int_{-a}^a f(x)dx=2\int_0^a f(x)dx$, a ako je neparna, tada je $\int_{-a}^a f(x)dx=0$.

Zadatak 1.2. Izračunati po definiciji $\int_{-1}^{2} x^2 dx$.

Rešenje.

Interval [-1,2] podelimo na n jednakih delova. Tada je $\Delta x_i = \frac{2-(-1)}{n} = \frac{3}{n}$, a za tačke ξ_i izaberimo desne krajeve intervala $[x_{i-1},x_i]$, tj. $\xi_i = x_i$. Izvedimo izraz za x_i . Kako je $x_1 = -1 + \frac{3}{n}, x_2 = x_1 + \frac{3}{n} = -1 + 2 \cdot \frac{3}{n}, \ldots$ vidimo da je $x_k = -1 + \frac{3k}{n}, \ k = 1, 2, \ldots, n$. Dakle,

$$S_n = \sum_{i=1}^n f(x_i) \Delta x_i = \sum_{i=1}^n \left(-1 + \frac{3i}{n} \right)^2 \cdot \frac{3}{n} = \frac{3}{n} \sum_{i=1}^n \left(1 - \frac{6i}{n} + \frac{9i^2}{n^2} \right)$$

$$= \frac{3}{n} \left(\sum_{i=1}^n i - \frac{6}{n} \sum_{i=1}^n i + \frac{9}{n^2} \sum_{i=1}^n i^2 \right)$$

$$= \frac{3}{n} \left(n - \frac{6}{n} \cdot \frac{n(n+1)}{2} + \frac{9}{n^2} \cdot \frac{n(n+1)(2n+1)}{6} \right)$$

$$= 3 - 9 \frac{n^2 + n}{n^2} + \frac{9}{2} \frac{2n^2 + 3n + 1}{n^2}$$

$$= 3 + \frac{-19n^2 - 18n + 18n^2 + 27n + 9}{2n^2} = 3 + \frac{9(n+1)}{2n^2}.$$

Konačno,
$$\int_{-1}^{2} x^2 dx = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(3 + \frac{9(n+1)}{2n^2} \right) = 3.$$

Napomena 1.3. Koristeći Njutn-Lajbnicovu formulu dobijamo

$$\int_{-1}^{2} x^{2} dx = \frac{x^{3}}{3} \Big|_{-1}^{2} = \frac{2^{3}}{3} - \frac{(-1)^{3}}{3} = 3.$$

Zadatak 1.4. Odrediti $\lim_{n\to\infty} a_n$ ako je $a_n = \frac{n}{n^2+1} + \frac{n}{n^2+2^2} + \ldots + \frac{n}{n^2+n^2}$. **Rešenje.** $\lim_{n\to\infty} a_n$ ćemo odrediti pomoću određenog integrala i Njutn-Lajbnicove formule.

$$a_n = \frac{n}{n^2 + 1} + \frac{n}{n^2 + 2^2} + \dots + \frac{n}{n^2 + n^2}$$
$$= \frac{n}{n^2} \left(\frac{1}{1 + \frac{1}{n^2}} + \frac{1}{1 + \frac{2^2}{n^2}} + \dots + \frac{1}{1 + \frac{n^2}{n^2}} \right) = \frac{1}{n} \sum_{i=1}^n \frac{1}{1 + (\frac{i}{n})^2}.$$

Vidimo da je to integralna suma za funkciju $f(x) = \frac{1}{1+x^2}$ nad [0,1] sa ekvidistantnom podelom $P = \{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\}, \ x_i = x_i = \frac{i}{n}$ i $\Delta x_i = \frac{1}{n}$. Dakle,

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \frac{1}{1 + (\frac{i}{n})^2} = \int_0^1 \frac{1}{1 + x^2} = \operatorname{arctg} x \Big|_0^1 = \frac{\pi}{4}.$$

Napomena 1.5. Kod ovih zadataka obično se izraz zapiše kao suma, a zatim ispred sume izvuče $\frac{1}{n}$ (ili $\frac{2}{n}$ ili $\frac{k}{n}$ za neki pozitivan broj k) što bi predstavljalo dužinu podintervala Δx_i kod ekvidistante podele. Onda se opšti član sume zapiše tako da se u tom izrazu pojavljuju i i n zajedno i to u obliku $\frac{i}{n}$ (ili $\frac{k\cdot i}{n}$ za neko k) tako da se dobije $x_i=\frac{i}{n},$ a granice integrala su i granice intervala [a,b], pa je $a=x_0=\frac{0}{n}=0$ i $b=x_n=\frac{n}{n}=1$ (ili ako je $x_i=\frac{k\cdot i}{n}$ onda je $b=x_n=\frac{k\cdot n}{n}=k$ za neko k). Kada to sredimo, opšti član sume a_i posmatramo kao $a_i=f(i),$ tj. od njega dobijamo podintegralnu funkciju f(x).

Zadatak 1.6. Primenom određenog integrala odrediti $\lim_{n\to\infty} a_n$ ako je

$$a_n = \frac{1}{n^2} + \frac{2}{n^2} + \ldots + \frac{n}{n^2}.$$

Rešenje. Zapišimo $a_n = \frac{1}{n}(\frac{1}{n} + \frac{2}{n} + \ldots + \frac{n}{n}) = \frac{1}{n}\sum_{i=1}^n \frac{i}{n}$. Dobili smo integralnu sumu funkcije y = x nad intervalom [0,1] sa podelom $P = \{0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}, 1\}$, $\xi_i = x_i = \frac{i}{n}$ i $\Delta x_i = \frac{1}{n}$. Dakle,

$$\lim_{n \to \infty} a_n = \int_0^1 x dx = \frac{x^2}{2} \Big|_0^1 = \frac{1}{2}.$$

Zadatak 1.7. Odrediti $\lim_{n\to\infty} b_n$ ako je

$$b_n = n^2 \left(\frac{1}{(n+1)(n^2+1)} + \frac{1}{(n+2)(n^2+2^2)} + \dots + \frac{1}{4n^3} \right).$$

Rešenje. Vidimo da ima n sabiraka zato što je $4n^3 = (n+n)(n^2+n^2)$. Slično kao u prethodnim zadacima imamo $b_n = \sum_{i=1}^n \frac{n^2}{(n+i)(n^2+i^2)}$, a kada podelimo i imenilac i brojilac sa n^3 dobijamo

$$b_n = \sum_{i=1}^n \frac{\frac{1}{n}}{\frac{n+i}{n} \cdot \frac{n^2 + i^2}{n^2}} = \frac{1}{n} \sum_{i=1}^n \frac{1}{(1 + \frac{i}{n})(1 + (\frac{i}{n})^2)}.$$

Vidimo da je b_n jednako integralnoj sumi funkcije $f(x) = \frac{1}{(1+x)(1+x^2)}$ nad [0,1] sa istom podelom kao u prethodnim zadacima. Tako da je

$$\lim_{n \to \infty} b_n = \int_0^1 \frac{dx}{(1+x)(1+x^2)}.$$

Iz $\frac{1}{(1+x)(1+x^2)} = \frac{A}{1+x} + \frac{Bx+C}{1+x^2}$ dobija se da je $A=C=\frac{1}{2}$ i $B=-\frac{1}{2}$. Konačno,

$$\lim_{n \to \infty} b_n = \frac{1}{2} \int_0^1 \frac{dx}{1+x} + \frac{1}{2} \int_0^1 \frac{-x+1}{1+x^2} dx$$

$$= \frac{1}{2} \ln|1+x| \Big|_0^1 - \frac{1}{2} \cdot \frac{1}{2} \ln|1+x^2| \Big|_0^1 + \frac{1}{2} \arctan x \Big|_0^1$$

$$= \frac{\ln 2}{2} - \frac{\ln 2}{4} + \frac{1}{2} \cdot \frac{\pi}{4} = \frac{\ln 2}{4} + \frac{\pi}{8}.$$

Zadatak 1.8. Primenom određenog integrala naći graničnu vrednost niza sa opštim članom

$$a_n = 2n\Big(\frac{1}{(2+n)(2+2n)} + \frac{1}{(4+n)(4+2n)} + \frac{1}{(6+n)(6+2n)} + \dots + \frac{1}{12n^2}\Big).$$

Rešenje. Iz $12n^2 = (2k+n)(2k+2n)$ sledi da je k=n odnosno imamo n sabiraka.

$$a_n = 2n \left(\frac{1}{n(\frac{2}{n}+1)n(\frac{2}{n}+2)} + \frac{1}{n(\frac{4}{n}+1)n(\frac{4}{n}+2)} + \dots + \frac{1}{n^2 \cdot 12} \right)$$
$$= \frac{2n}{n^2} \sum_{i=1}^n \frac{1}{(\frac{2i}{n}+1)(\frac{2i}{n}+2)} = \frac{2}{n} \sum_{i=1}^n \frac{1}{(\frac{2i}{n}+1)(\frac{2i}{n}+2)}.$$

Ako uzmemo $\Delta x_i=\frac{2}{n}$ i $x_i=\frac{2i}{n}$, dobijena suma je integralna suma funkcije $f(x)=\frac{1}{(x+1)(x+2)}$ nad [0,2], pa je

$$\lim_{n\to\infty} a_n = \int_0^2 \frac{dx}{(x+1)(x+2)}.$$

Kako je $\frac{1}{(x+1)(x+2)}=\frac{1}{x+1}-\frac{1}{x+2}$ (što se lako pokaže predstavljanjem $\frac{1}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}$). Konačno dobijamo

$$\lim_{n \to \infty} a_n = \int_0^2 \frac{dx}{x+1} - \int_0^2 \frac{dx}{x+2} = \ln|x+1| \Big|_0^2 - \ln|x+2| \Big|_0^2$$
$$= \ln 3 - (\ln 4 - \ln 2) = \ln 3 - (2\ln 2 - \ln 2) = \ln \frac{3}{2}.$$

Napomena 1.9. U ovom zadatku smo integralnu sumu mogli zapisati i kao $2 \cdot \frac{1}{n} \sum_{i=1}^{n} \frac{1}{(2 \cdot \frac{i}{n} + 1)(2 \cdot \frac{i}{n} + 2)}$ i uzeti da je $\Delta x_i = \frac{1}{n}$ i $x_i = \frac{i}{n}$, tako da bi dobili da je

 $\lim_{n\to\infty} a_n = 2\int_0^1 \frac{dx}{(2x+1)(2x+2)}$. Ovaj integral se smenom 2x = t svodi na integral koji smo rešili.

Zadatak 1.10. Izračunati određeni integral $\int_{2}^{3} |x| dx$.

Rešenje. Koristićemo Njutn-Lajbnicovu formulu, tako da nam treba neodređeni integral od |x|. Kako je $|x|=\left\{ egin{array}{ll} x, & x\geq 0, \\ -x, & x<0, \end{array}
ight.$ sledi da se početni integral rastavlja na dva integrala

$$\begin{split} \int_{-2}^{3} |x| dx &= -\int_{-2}^{0} x dx + \int_{0}^{3} x dx = -\frac{x^{2}}{2} \Big|_{-2}^{0} + \frac{x^{2}}{2} \Big|_{0}^{3} \\ &= -\frac{1}{2} (0^{2} - (-2)^{2}) + \frac{1}{2} (3^{2} - 0^{2}) = \frac{4}{2} + \frac{9}{2} = \frac{13}{2}. \end{split}$$

Zadatak 1.11. Izračunati određeni integral $\int_{1}^{e} |\ln x| dx$.

Rešenje. Slično kao u prethodnom zadatku imamo da je

$$|\ln x| = \begin{cases} \ln x, & \ln x \ge 0 \text{ tj. } x \ge 1, \\ -\ln x, & \ln x < 0 \text{ tj. } 0 < x < 1, \end{cases}$$

pa je

$$\int_{\frac{1}{e}}^{e} |\ln x| dx = -\int_{\frac{1}{e}}^{1} \ln x dx + \int_{1}^{e} \ln x dx = \begin{bmatrix} u = \ln x, & du = \frac{dx}{x} \\ dv = dx, & v = x \end{bmatrix}$$

$$= -(x \ln x \Big|_{\frac{1}{e}}^{1} - \int_{\frac{1}{e}}^{1} dx) + x \ln x \Big|_{1}^{e} - \int_{1}^{e} dx$$

$$= -(0 - \frac{1}{e} \ln \frac{1}{e} - x \Big|_{\frac{1}{e}}^{1}) + e - 0 - x \Big|_{1}^{e}$$

$$= -(\frac{1}{e} - (1 - \frac{1}{e})) + e - (e - 1) = 1 - \frac{2}{e} + 1 = 2 - \frac{2}{e}.$$

Zadatak 1.12. Izračunati određeni integral $\int_{1}^{2} \ln(x+1)dx$.

Rešenje. Izračunajmo ovaj integral pomoću smene

$$\int_{1}^{2} \ln(x+1)dx = \begin{bmatrix} x+1=t, & dx = dt \\ x=1 \Rightarrow t=2 \\ x=2 \Rightarrow t=2 \end{bmatrix} = \int_{2}^{3} \ln t dt = \begin{bmatrix} u = \ln t, & du = \frac{dt}{t} \\ dv = dt, & v=t \end{bmatrix}$$
$$= t \ln t \Big|_{2}^{3} - t \Big|_{2}^{3} = 3 \ln 3 - 2 \ln 2 - (3-2)$$
$$= \ln 9 - \ln 4 - 1 = \ln \frac{9}{4} - 1.$$

Vidimo da se prilikom smene menjaju i granice određenog integrala, kao i to da na kraju nema vraćanja smene kao kod neodređenog integrala.

1.2. Površina ravnih likova

• Pravougli koordinatni sistem

Neka su funkcije f(x) i g(x) neprekidne nad zatvorenim intervalom [a, b]. Tada su površine osenčenih figura jednake

Napomena 1.13. Svi navedeni slučajevi se mogu posmatrati kao:

ako je $g(x) \leq f(x)$ za sve $x \in [a,b]$, odnosno ako je f(x) iznad g(x) na intervalu [a,b] onda se površina oblasti između funkcija g(x) i f(x) na intervalu [a,b] računa kao $P = \int\limits_a^b (f(x)-g(x))dx$, odnosno kao određeni integral na intervalu [a,b] od 'gornja funkcija minus donja funkcija'. U prvom primeru na slici donja funkcija je y=0, a na drugoj slici je gornja funkcija y=0.

Zadatak 1.14. Izračunati površinu ograničenu parabolom $y=x^2$, i pravama $x=-1,\,x=2$ i y=0.

Rešenje.

Primetimo, traži se površina koju funkcija $y=x^2$ zahvata sa x-osom, na intervalu $-1 \le x \le 2$. Po definiciji određenog integrala, da bi došli do tražene površine, potrebno je izračunati integral funkcije date funkcije na tom intervalu, tj.,

$$P = \int_{-1}^{2} x^{2} dx = \frac{x^{3}}{3} \Big|_{-1}^{2} = \frac{8}{3} - \frac{-1}{3} = 3.$$

Zadatak 1.15. Izračunati površinu koju sinusoida $y = \sin x$ zahvata na intervalu $[0, 2\pi]$ sa x-osom.

Rešenje.

Traženu površinu ćemo izračunati kao zbir površina nad intervalima $[0,\pi]$, i $[\pi,2\pi]$. Naime, dati interval $[0,2\pi]$ moramo razdvojiti, jer se sinusna funkcija na intervalu $[\pi,2\pi]$ nalazi ispod x-ose, te imamo,

$$P = P_1 + P_2 = \int_0^{\pi} \sin x dx + \left(-\int_{\pi}^{2\pi} \sin x dx \right) = -\cos x \Big|_0^{\pi} + \cos x \Big|_{\pi}^{2\pi}$$
$$= 1 + (-1) + 1 - (-1) = 2.$$

Zadatak 1.16. Izračunati površinu figure ograničene parabolom $y = 2x - x^2$ i pravom x + y = 0.

Rešenje.

Prvo je potrebno naći presek datih krivih, tj. tražimo x i y takve da zadovoljavaju $y=2x-x^2$ i x+y=0. Dobijamo da je $2x-x^2=-x$, tj. x(3-x)=0. Imamo dva rešenja x=0 i x=3. Sa slike se vidi da je $y=2x-x^2$ gornja, a da je y=-x donja funkcija. Tako da je površina ograničene oblasti jednaka

$$P = \int_0^3 (2x - x^2 - (-x))dx = \int_0^3 (3x - x^2)dx = \left(\frac{3}{2}x^2 - \frac{x^3}{3}\right)\Big|_0^3$$
$$= \frac{3}{2} \cdot 9 - \frac{27}{3} - 0 = \frac{27}{2} - 9 = \frac{9}{2}.$$

Zadatak 1.17. Izračunati površinu figure ograničene krivama $y=x^2,\,y=\frac{x^2}{2},$ i y=2x.

Rešenje.

Posmatrajući sliku, vidimo da su preseci odgovarajućih krivih x=0, x=2 i x=4, što implicira da je oblast integracije interval [0,4]. Takođe, primetimo da ćemo traženu površinu izračunati kao zbir površina nad intervalima [0,2], i [2,4]. Stoga imamo,

$$P = P_1 + P_2 = \int_0^2 (x^2 - \frac{x^2}{2}) dx + \int_2^4 (2x - \frac{x^2}{2}) dx = \frac{x^3}{3} \Big|_0^2 - \frac{x^3}{6} \Big|_0^2 + x^2 \Big|_2^4 + \frac{x^3}{6} \Big|_2^4$$
$$= \frac{8}{3} - 0 - (\frac{8}{6} - 0) + 16 - 4 - (\frac{64}{6} - \frac{8}{6}) = 4.$$

Zadatak 1.18. Izračunati površinu figure ograničene krivom $y = 2^x$ i pravama y = 2 i x = 0.

Rešenje.

Presečna tačka krivih $y=2^x$ i y=2 se dobija za x=1. Tako da je površina jednaka

$$P = \int_0^1 (2 - 2^x) dx = 2x \Big|_0^1 - \frac{2^x}{\ln 2} \Big|_0^1 = 2(1 - 0) - \left(\frac{2}{\ln 2} - \frac{1}{\ln 2}\right) = 2 - \frac{1}{\ln 2}.$$

Napomena 1.19. Nekada je lakše posmatrati funkciju u obliku x=x(y), tako da dobijamo integral po y, ali samo treba voditi računa šta je u tom slučaju gornja a šta donja funkcija. Npr. ovaj zadatak se može rešavati i kao

$$P = \int_{1}^{2} (\log_2 y - 0) dy.$$

Zadatak 1.20. Izračunati površinu figure ograničenu kružnicom $x^2 + y^2 = 8$ i parabolama $y^2 = 7x$ i $y = x^2 - x$, tako da tačka (1,1) pripada datoj figuri. **Rešenje.**

Da bismo mogli da skiciramo crtež potrebno je odrediti presečne tačke. U ovom primeru će dovoljno biti da odredimo presečne tačke kružnice sa parabolama.

Nađimo presek kružnice i parabole $y^2=7x$. Zamenom u jednačinu kružnice dobija se $x^2+7x=8$, tj. rešimo kvadratnu jednačinu $x^2+7x-8=0$, $x_{1,2}=\frac{-7\pm\sqrt{49+32}}{2}=\frac{-7\pm9}{2}$, dobijamo $x_1=1$ i $x_2=-8$. Kako x mora biti pozitivno zbog jednačine parabole $y^2=7x$ sledi da se parabola i prava seku u tačkama $(1,\sqrt{7})$ i $(1,-\sqrt{7})$.

Nađimo presek kružnice i parabole $y=x^2-x$. Ako zamenimo u jednačinu kružnice dobijamo $x^2+(x^2-x)^2=8$ dobijamo jednačinu četvrtog stepena što je teško rešiti, ali možemo uočiti da je jedno rešenje te jednačine x=2 i to je zapravo traženo x, drugo x je negativno što zaključujemo iz oblika parabole.

Kako nama treba oblast u kojoj je tačka (1,1) u unutrašnjosti kružnice i pošto tačke $(1,\sqrt{7})$ i (1,0) pripadaju prvoj, odnosno drugoj paraboli, iz odnosa njihovih y-koordinata $0<1<\sqrt{7}$ sledi da je tražena oblast baš osenčena oblast sa slike. Konačno,

$$\begin{split} P &= \int_0^1 (\sqrt{7x} - (x^2 - x)) dx + \int_1^2 (\sqrt{8 - x^2} - (x^2 - x)) dx \\ &= \left(\sqrt{7} \cdot \frac{x^{\frac{3}{2}}}{\frac{3}{2}} - \frac{x^3}{3} + \frac{x^2}{2} \right) \Big|_0^1 + \left(\frac{x}{2} \sqrt{8 - x^2} + \frac{8}{2} \cdot \arcsin \frac{x}{2\sqrt{2}} - \frac{x^3}{3} + \frac{x^2}{2} \right) \Big|_1^2 \\ &= \frac{2\sqrt{7}}{3} - \frac{1}{3} + \frac{1}{2} + 2 + 4 \arcsin \frac{\sqrt{2}}{2} - \frac{8}{3} + 2 - \left(\frac{\sqrt{7}}{2} + 4 \arcsin \frac{1}{2\sqrt{2}} - \frac{1}{3} + \frac{1}{2} \right) \\ &= \frac{(4 - 3)\sqrt{7}}{6} + \frac{13}{6} + 4 \cdot \frac{\pi}{4} - \frac{2}{3} - 4 \arcsin \frac{1}{2\sqrt{2}} - \frac{1}{6} \\ &= \frac{\sqrt{7}}{6} + \frac{4}{3} + \pi - 4 \arcsin \frac{1}{2\sqrt{2}}. \end{split}$$

Napomena 1.21. Morali smo da podelimo oblast (a onda i integral) na dva dela zato što gonja funkcija nije ista na intervalima [0, 1] i [1, 2]. Generalno, čim se negde promeni donja ili gornja funkcija koja ograničava oblast, potrebno je u toj tački promene podeliti oblast, a samim tim moramo i više integrala računati.

Takođe, voditi računa da parabola $y^2=7x$ ima dva kraka $y=\sqrt{7x}$ i $y=-\sqrt{7x}$, ali nama je u ovom zadatku trebao samo krak $y=\sqrt{7x}$.

1.3. Zadaci za samostalni rad

- 1. Koristeći integralnu sumu izračunati $\int_{0}^{1} 2^{x} dx$.
- 2. Primenom određenog integrala odrediti graničnu vrednost niza $\{a_n\}$, gde je

$$a_n = n\left(\frac{1}{1^2 + 4n^2} + \frac{1}{2^2 + 4n^2} + \frac{1}{3^2 + 4n^2} + \dots + \frac{1}{5n^2}\right).$$

- 3. Naći površinu ograničenu krivama $y=x^2-2x-1$ i $y=-x^2+3$.
- 4. Izračunati površinu između pravih x=a,~(0< a<1) i x=1, koju ograničavaju kriva $y=\sqrt{x}\ln^2 x$ i x-osa.

2. Vežbe III.5

• Polarni koordinatni sistem

Neka je data kriva $\rho = \rho(\varphi)$, $\alpha \leq \varphi \leq \beta$, $|\beta - \alpha| \leq 2\pi$, u polarnom koordinatnom sistemu, gde je $\rho = \rho(\varphi)$ neprekidna funkcija. Geometrijsku figuru OAB, ograničenu popupravama $\varphi = \alpha$, $\varphi = \beta$ i krivom $\rho = \rho(\varphi)$ nazvaćemo krivolinijski trougao. Površina P tog krivolinijskog trougla iznosi

$$P = \frac{1}{2} \int_{\alpha}^{\beta} \rho^{2}(\varphi) d\varphi.$$

Pri crtanju krivih u xy-ravni, treba da imamo u vidu da je ρ rastojanje tačke od koordinatnog početka, a φ ugao između pozitivnog dela x-ose i duži koja spaja tačku sa koordinatnim početkom, kao i da je $x = \rho \cos \varphi$ i $y = \rho \sin \varphi$.

Zadatak 2.1. Izračunati površinu ograničenu kardioidom

$$\rho = a(1 + \cos \varphi), \ a > 0, \ \varphi \in [0, 2\pi].$$

Rešenje. Da bi dobili neku pretpostavku kako kardioida izgleda možemo nacrtati neke tačke na kardioidi. Tako se za $\varphi=0,\frac{\pi}{6},\frac{\pi}{4},\frac{\pi}{3},\frac{\pi}{2},\frac{2\pi}{3},\frac{5\pi}{6},\pi$ dobijaju tačke na slici.

Vidimo da je $\rho = \rho(\varphi)$ parna funkcija, tj. važi $\rho(\varphi) = \rho(-\varphi)$, tako da se druga polovina krive dobija kada se gornja polovina preslika osnosimetrično u

odnosu na x-osu. Površinu cele oblasti možemo računati kao dva puta gornja polovina oblasti, tj.

$$\begin{split} P &= 2 \cdot \frac{1}{2} \int_0^\pi a^2 (1 + \cos \varphi)^2 d\varphi = a^2 \int_0^\pi (1 + 2 \cos \varphi + \cos^2 \varphi) d\varphi \\ &= a^2 \int_0^\pi d\varphi + 2a^2 \int_0^\pi \cos \varphi d\varphi + \frac{a^2}{2} \int_0^\pi (1 + \cos 2\varphi) d\varphi \\ &= a^2 \varphi \bigg|_0^\pi + 2a^2 \sin \varphi \bigg|_0^\pi + \frac{a^2}{2} \varphi \bigg|_0^\pi + \frac{a^2}{2} \cdot \frac{1}{2} \sin 2\varphi \bigg|_0^\pi = a^2 \pi + \frac{a^2 \pi}{2} = \frac{3}{2} a^2 \pi. \end{split}$$

• Parametarski oblik

Ako je funkcija y=f(x) data u parametarskom obliku $x=\varphi(t),\ y=\psi(t),\ t\in [a,b],$ pri čemu funkcije $\varphi(t)$ i $\psi(t)$ zadovoljavaju uslove:

- a) funkcija $\varphi(t)$ ima neprekidan prvi izvod nad zatvorenim intervalom $[\alpha, \beta]$,
- b) funkcija $\varphi(t)$ je monotono rastuća nad zatvorenim intervalom $[\alpha, \beta]$,
- c) funkcija $\psi(t)$ je neprekidna nad zatvorenim intervalom $[\alpha, \beta]$,
- d) $\psi(t) \geq 0$ za svako $t \in [\alpha, \beta]$.

Tada je

$$P = \int_{0}^{\beta} \psi(t)\varphi'(t)dt$$
, tj. $P = \int_{0}^{\beta} y \cdot x'_{t}dt$.

Zadatak 2.2. Naći površinu ograničenu x-osom i jednim lukom cikloide

$$x = a(t - \sin t), y = a(1 - \cos t), a \in \mathbb{R}.$$

Rešenje. Cikloida je kriva koja opisuje kretanje tačke na kružnici dok se kružnica kreće (kotrlja) po pravoj liniji. Tako da ako uzmemo da je t=0 dobijamo početnu tačku (0,0). Treba nam još jedna tačka za koju važi y=0 i vidimo da je sledeća takva $(2a\pi,0)$ za $t=2\pi$. Ako želimo da nacrtamo cikloidu možemo ponovo za par vrednosti parametra t da nađemo koje vrednosti uzimaju x i y.

Kako treba izračunati površinu između jednog luka cikloide i x-ose i kako je $x'(t) = a - a\cos t = a(1 - \cos t)$ dobijamo da je površina

$$\begin{split} P &= \int_0^{2\pi} a(1-\cos t) \cdot a(1-\cos t) dt = a^2 \int_0^{2\pi} (1-2\cos t + \cos^2 t) dt \\ &= a^2 \int_0^{2\pi} d\varphi - 2a^2 \int_0^{2\pi} \cos\varphi d\varphi + \frac{a^2}{2} \int_0^{2\pi} (1+\cos 2\varphi) d\varphi \\ &= a^2 \bigg|_0^{2\pi} - 2a^2 \sin\varphi \bigg|_0^{2\pi} + \frac{a^2}{2} \varphi \bigg|_0^{2\pi} + \frac{a^2}{2} \cdot \frac{1}{2} \sin 2\varphi \bigg|_0^{2\pi} = 2a^2\pi + a^2\pi = 3a^2\pi. \end{split}$$

2.1. Dužina luka krive

Pravougli koordinatni sistem

Pretpostavimo da je u ravni definisana kriva sa y = f(x), $a \le x \le b$, gde funkcija f(x) ima neprekidan prvi izvod f'(x) nad zatvorenim intervalom [a, b]. Dužina luka krive y = f(x) nad zatvorenim intervalom [a, b] je

$$l = \int_{a}^{b} \sqrt{1 + (f'(x))^2} dx.$$

Zadatak 2.3. Naći dužinu luka krive $y^2 - 2 \ln y - 4x = 0$ od $x = \frac{1}{4}$ do $x = \frac{e^2}{4} - \frac{1}{2}$.

Rešenje. Pošto je teško ovu krivu izraziti kao y = y(x), izrazićemo je kao x=x(y), tj. $x=rac{y^2}{4}-rac{\ln y}{2}$. Znači, x i y će zameniti uloge. Treba nam i $x'=rac{y}{2}-rac{1}{2y}=rac{y^2-1}{2y}$.

Za $x=\frac{2y}{4}$ imamo $y^2-2\ln y=1 \Rightarrow y=1$. Za $x=\frac{e^2}{4}-\frac{1}{2}$ imamo $y^2-2\ln y=e^2-2 \Rightarrow y=e$. Kako iz izvoda inverzne fukcije znamo $y'=\frac{1}{x'}$ sledi dx=x'dy odnosno $\sqrt{1+(y')^2}dx = \sqrt{1+\frac{1}{(x')^2}} \ x'dy = \sqrt{1+(x')^2}dy$. Vidimo da, ako x i y zamene uloge, nova formula za dužinu luka je veoma slična početnoj. Konačno, dužina luka jednaka je

$$\begin{split} l &= \int_{1}^{e} \sqrt{1 + (x')^{2}} dy = \int_{1}^{e} \sqrt{1 + \left(\frac{y^{2} - 1}{2y}\right)^{2}} dy = \int_{1}^{e} \sqrt{\frac{4y^{2} + y^{4} - 2y^{2} + 1}{4y^{2}}} \\ &= \int_{1}^{e} \sqrt{\frac{(y^{2} + 1)^{2}}{(2y)^{2}}} dy = \int_{1}^{e} \frac{y^{2} + 1}{2y} dy = \frac{1}{2} \int_{1}^{e} y dy + \frac{1}{2} \int_{1}^{e} \frac{dy}{y} \\ &= \frac{1}{4} y^{2} \Big|_{1}^{e} + \frac{1}{2} \ln|y| \Big|_{1}^{e} = \frac{1}{4} (e^{2} - 1) + \frac{1}{2} (1 - 0) = \frac{e^{2} + 1}{4}. \end{split}$$

Voditi računa da je $\sqrt{a^2} = |a|$, ali za $y \in [1, e]$ imamo da je $\frac{y^2+1}{2y}$ pozitivno pa možemo skratiti kvadrat i koren.

Zadatak 2.4. Izračunati dužinu luka krive $y = \frac{x^2}{4} - \frac{1}{2} \ln x, \ 1 \le x \le e.$

Rešenje. Kako je $y'(x) = \frac{x}{2} - \frac{1}{2x} = \frac{x^2 - 1}{2x}$, traženu dužinu luka krive računamo na sledeći način:

$$\begin{split} l &= \int_{1}^{e} \sqrt{1 + (y'(x))} dx = \int_{1}^{e} \sqrt{1 + \left(\frac{x^{2} - 1}{2x}\right)^{2}} dx = \int_{1}^{e} \sqrt{\left(\frac{x^{2} + 1}{2x}\right)^{2}} dx \\ &= \int_{1}^{e} \frac{x^{2} + 1}{2x} dx = \frac{1}{2} \left(\int_{1}^{e} x dx + \int_{1}^{e} \frac{1}{x} dx\right) = \frac{1}{2} \left(\frac{x^{2}}{2}\Big|_{1}^{e} + \ln|x|\Big|_{1}^{e}\right) \\ &= \frac{1}{2} \left(\frac{e^{2}}{2} - \frac{1}{2} + \ln e - \ln 1\right) = \frac{e^{2}}{4} + \frac{1}{4}. \end{split}$$

2.2. Zapremina obrtnih tela

• Pravougli koordinatni sistem

Neka je funkcija $f:[a,b]\to\mathbb{R}$ neprekidna nad intervalom [a,b]. Ako je krivolinijski trapez, čije stranice su interval [a,b], delovi pravih x=a i x=b i kriva $y=f(x), a\le x\le b$, obrće oko x-ose, dobija se obrtno telo.

Zapremina tela dobijenog obrtanjem krive y = f(x) oko x-ose nad zatvorenim intervalom [a,b] je

$$V = \pi \int_{a}^{b} f^{2}(x)dx.$$

Zadatak 2.5. Izračunati zapreminu tela koje nastaje rotacijom figure ograničene sa parabolom $y=x^2$, i pravama x=0, x=1,

- a) oko x-ose,
- b) oko y-ose.

Rešenje.

Telo, predstavljeno na slici pod a), ima zapreminu jednaku,

$$V = \pi \int_0^1 (f(x))^2 dx = \pi \int_0^1 x^4 dx = \pi \frac{x^5}{5} \Big|_0^1 = \pi (\frac{1}{5} - 0) = \frac{\pi}{5}.$$

S obzirom da je posmatrano telo određeno rotacijom figure oko y-ose neophodno je prethodno odrediti inverznu funkciju funkcije $y=x^2$. Tako za $y(x)=x^2$: $[0,1] \to [0,1]$, imamo $x=\sqrt{y}:[0,1] \to [0,1]$. Dalje, kao što se sa slike može uočiti, imamo da tražena zapremina predstavlja razliku zapremina tela koja nastaju rotacijom prave x=1 i krive krive $x=\sqrt{y};y\in[0,1]$ okoy-ose, te imamo

$$V = V_1 - V_2 = \pi \int_0^1 1^2 dy - \pi \int_0^1 (\sqrt{y})^2 dy = \pi \left(y \Big|_0^1 - \frac{y^2}{2} \Big|_0^1\right)$$
$$= \pi \left(1 - 0 - \frac{1}{2} - 0\right) = \frac{\pi}{2}.$$

Zadatak 2.6. Izračunati zapreminu tela koje nastaje rotacijom elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, oko x ose, i y-ose.

a) Da bismo odredili zapreminu posmatanog tela, odnosno elipsoida neophodno je prethodno jednačinu elipse predstaviti kao familju odgovarajućih krivih određenih na sledeći način:

$$\begin{split} \frac{x^2}{a^2} + \frac{y^2}{b^2} &= 1 \Leftrightarrow \frac{y^2}{b^2} = 1 - \frac{x^2}{a^2} \\ \Leftrightarrow y^2 &= b^2 \Big(1 - \frac{x^2}{a^2} \Big) \\ \Leftrightarrow y &= \pm \sqrt{b^2 \Big(1 - \frac{x^2}{a^2} \Big)} \end{split}$$

gde $y=+\sqrt{b^2\Big(1-\frac{x^2}{a^2}\Big)}$ i $y=-\sqrt{b^2\Big(1-\frac{x^2}{a^2}\Big)}$, određuju gornju tj. pozitivnu, i donju tj. negativnu granu elipse. Posmatrani elipsoid je tada određen rotacijom bilo koje od dve pomenute grane, pa zapreminu dobijamo na sledeći način,

$$\begin{split} V &= \pi \int_{-a}^{a} (y(x))^2 dx = \pi \int_{-a}^{a} b^2 \Big(1 - \frac{x^2}{a^2} \Big) dx \\ &= b^2 \pi \int_{-a}^{a} dx - \frac{b^2}{a^2} \pi \int_{-a}^{a} x^2 dx \\ &= b^2 \pi x \bigg|_{-a}^{a} - \frac{b^2}{a^2} \pi \frac{x^3}{3} \bigg|_{-a}^{a} \\ &= b^2 \pi (a - (-a)) - \frac{b^2}{a^2} \pi (\frac{a^3}{3} - \frac{-a^3}{3}) \\ &= \frac{4}{3} a b^2 \pi. \end{split}$$

b) Za razliku od zadatka pod a), sada je potrebno najpre izraziti x preko y, na sledeći način,

$$\begin{split} \frac{x^2}{a^2} + \frac{y^2}{b^2} &= 1 \Leftrightarrow \frac{x^2}{a^2} = 1 - \frac{y^2}{b^2} \\ \Leftrightarrow x^2 &= a^2 \Big(1 - \frac{y^2}{b^2}\Big) \\ \Leftrightarrow x &= \pm \sqrt{a^2 \Big(1 - \frac{y^2}{b^2}\Big)}. \end{split}$$

Primetimo, $x=+\sqrt{a^2\Big(1-\frac{y^2}{b^2}\Big)}$ i $x=-\sqrt{a^2\Big(1-\frac{y^2}{b^2}\Big)}$, određuju desnu tj. pozitivnu, i levu tj. negativnu granu elipse. Posmatrani elipsoid je tada određen rotacijom bilo koje od dve pomenute grane, pa zapreminu dobijamo na sledeći način,

$$V = \pi \int_{-b}^{b} (x(y))^{2} dy = \pi \int_{-b}^{b} a^{2} \left(1 - \frac{y^{2}}{b^{2}}\right) dy$$

$$= a^{2} \pi \int_{-b}^{b} dy - \frac{a^{2}}{b^{2}} \pi \int_{-b}^{b} y^{2} dy$$

$$= a^{2} \pi y \Big|_{-b}^{b} - \frac{a^{2}}{b^{2}} \pi \frac{y^{3}}{3} \Big|_{-b}^{b}$$

$$= a^{2} \pi (b - (-b)) - \frac{a^{2}}{b^{2}} \pi (\frac{b^{3}}{3} - \frac{-b^{3}}{3})$$

$$= \frac{4}{3} a^{2} b \pi.$$

Zadatak 2.7. Naći zapreminu tela koje nastaje obrtanjem oko x-ose površi između krivih $f(x) = 3 - x^2 + 2\sqrt{2 - x^2}$ i $g(x) = 2 - x^2 - 2\sqrt{2 - x^2}$.

Rešenje. Primetimo da su zbog korena koji se pojavljuju u izrazu, domeni obe funkcije jednaki intervalu $[-\sqrt{2},\sqrt{2}]$, kao i to da je $f(x) \geq g(x)$ za svako $x \in [-\sqrt{2},\sqrt{2}]$.

Ispitajmo još da li funkcija g(x) u nekim tačkama ima negativnu vrednost što bi dovelo do preklapanja pri rotiranju oko x-ose. Kako je u krajnim tačkama $x = \pm \sqrt{2}$ funkcija $g(\pm \sqrt{2}) = 1$, nađimo i presek g(x) sa x-osom.

$$g(x)=0 \quad \Rightarrow \quad 2-x^2=2\sqrt{2-x^2},$$
kvadriranjem dobijamo $9-6x^2+x^4=8-4x^2$

$$x^4 - 2x^2 + 1 = 0$$
, tj. $(x^2 - 1)^2 = 0 \implies x = \pm 1$.

Proverom dobijamo da su to nule funkcije g(x), a kako su to jedine nule i $g(0)=3-2\sqrt{2}>0$, sledi da $g(x)\geq 0$ za sve $x\in [-\sqrt{2},\sqrt{2}]$. Tako da smo i bez crtanja funkcija izvukli sve potrebne informacije za računanje zapremine.

Neka je $V_1=\pi\int\limits_{-\sqrt{2}}^{\sqrt{2}}f^2(x)dx$ zapremina koja nastaje obrtanjem funkcije f(x)

oko x-ose, a $V_2=\pi\int\limits_{-\sqrt{2}}^{\sqrt{2}}g^2(x)dx$ zapremina koja nastaje obrtanjem funkcije g(x) oko x-ose. Tada je tražena zapremina

$$V = V_1 - V_2 = \pi \int_{-\sqrt{2}}^{\sqrt{2}} (f^2(x) - g^2(x)) dx = \pi \int_{-\sqrt{2}}^{\sqrt{2}} (f(x) - g(x)) (f(x) + g(x)) dx$$

$$= \pi \int_{-\sqrt{2}}^{\sqrt{2}} 4\sqrt{2 - x^2} \cdot 2(3 - x^2) dx = 8\pi \int_{-\sqrt{2}}^{\sqrt{2}} (3 - x^2) \sqrt{2 - x^2} \cdot \frac{\sqrt{2 - x^2}}{\sqrt{2 - x^2}} dx$$

$$= 8\pi \int_{-\sqrt{2}}^{\sqrt{2}} \frac{(3 - x^2)(2 - x^2)}{\sqrt{2 - x^2}} dx = 8\pi \int_{-\sqrt{2}}^{\sqrt{2}} \frac{x^4 - 5x^2 + 6}{\sqrt{2 - x^2}} dx.$$

Rešimo prvo neodređen integral

$$\int \frac{x^4 - 5x^2 + 6}{\sqrt{2 - x^2}} dx = (Ax^3 + Bx^2 + Cx + D)\sqrt{2 - x^2} + \lambda \int \frac{dx}{\sqrt{2 - x^2}} dx.$$

$$\int \frac{x^4 - 5x^2 + 6}{\sqrt{2 - x^2}} = (3Ax^2 + 2Bx + C)\sqrt{2 - x^2}$$

$$+ (Ax^3 + Bx^2 + Cx + D) \cdot \frac{-2x}{2\sqrt{2 - x^2}} + \frac{\lambda}{\sqrt{2 - x^2}} / \cdot \sqrt{2 - x^2}$$

$$x^{4} - 5x^{2} + 6 = (3Ax^{2} + 2Bx + C)(2 - x^{2}) - Ax^{4} - Bx^{3} - Cx^{2} - Dx + \lambda$$

$$= 6Ax^{2} + 4Bx + 2C - 3Ax^{4} - 2Bx^{3} - Cx^{2}$$

$$- Ax^{4} - Bx^{3} - Cx^{2} - Dx + \lambda$$

$$= -4Ax^{4} - 3B^{3} + (6A - 2C)x^{2} + (4B - D)x + 2C + \lambda$$

Izjednačavanjem odgovarajućih koeficijenata početnog i krajnjeg polinoma lako se dobija da je $A=-\frac{1}{4},\ B=0,\ C=\frac{7}{4},\ D=0$ i $\lambda=-\frac{5}{2}.$ Dakle,

$$\int_{-\sqrt{2}}^{\sqrt{2}} \frac{x^4 - 5x^2 + 6}{\sqrt{2 - x^2}} dx = \left(-\frac{x^3}{4} + \frac{7x}{4} \right) \sqrt{2 - x^2} \Big|_{-\sqrt{2}}^{\sqrt{2}} + \frac{5}{2} \int_{-\sqrt{2}}^{\sqrt{2}} \frac{dx}{\sqrt{(\sqrt{2})^2 - x^2}}$$

$$= \frac{5}{2} \arcsin \frac{x}{\sqrt{2}} \Big|_{-\sqrt{2}}^{\sqrt{2}} = \frac{5}{2} (\arcsin 1 - \arcsin(-1))$$

$$= \frac{5}{2} \left(\frac{\pi}{2} - \frac{-\pi}{2} \right) = \frac{5\pi}{2}.$$

Tako da je zapremina jednaka $V = 8\pi \cdot \frac{5\pi}{2} = 20\pi^2$.

Napomena 2.8. Voditi računa da se pri ovakvim 'prstenastim' telima (koja nastaju oduzimanjem manjeg obrtnog tela od većeg) ne koristi formula $\pi \int\limits_a^b (f(x)-g(x))^2 dx$, zato što ne daje zapreminu traženog tela.

2.3. Površina omotača obrtnih tela

• Pravougli koordinatni sistem

Definišimo površinu omotača obrtnog tela, koje se dobija obrtanjem krivolinijskog trapeza, čije stranice su interval [a,b], delovi pravih x=a i x=b i kriva $y=f(x),\ a\leq x\leq b$, oko x-ose. Funkcija f(x) je nenegativna i ima neprekidan prvi izvod nad zatvorenim intervalom [a,b]. Površina M omotača obrtnog tela je

$$M = 2\pi \int_{a}^{b} y\sqrt{1 + (y')^2} dx.$$

Zadatak 2.9. Izračunati površinu omotača tela koje nastaje rotacijom figure ograničene slede 'cim krivama:

- a) Krivom $y=x^3,$ i pravama $x=-\frac{2}{3}$ i $x=\frac{2}{3},$ oko x-ose.
- b) Krivom $x = \sqrt{y}$ i pravom y = 1 oko y-ose.

Rešenje.

(a) Primetimo prvo da je telo koje se dobija rotacijom oko x-ose dela krive $y=x^3$ za $x\in [-\frac{2}{3};\frac{2}{3}]$ osno-simetrično u odnosu na y-osu. Tada tražena površina omotača tela $M=2\cdot M_1$, gde M_1 predstavlja površinu omotača tela određenog rotacijom dela posmatranog luka krive $y=x^3$ koji se nalazi u prvom kvadrantu. Otuda, imamo sledeće:

$$M = 2 \cdot M_1 = 2 \cdot 2\pi \int_0^{\frac{2}{3}} y(x) \sqrt{1 + (y'(x))^2} dx$$
$$= 4\pi \int_0^{\frac{2}{3}} x^3 \sqrt{1 + 9x^4} dx.$$

Uvođenjem smene $t = 9x^4$, dobijamo,

$$M = 4\pi \cdot \frac{1}{36} \int_{1}^{\frac{25}{9}} \sqrt{t} dt = \frac{\pi}{9} \frac{t^{\frac{3}{2}}}{\frac{3}{2}} \Big|_{1}^{\frac{25}{9}} = \dots = \frac{196\pi}{729}.$$

- (b) Kako je posmatrano telo određeno rotacijom osenčene figure na slici pod
- (b) oko y-ose, tada za njegovu površinu omotača imamo sledeće:

$$\begin{split} M &= 2\pi \int_0^1 x(y) \sqrt{1 + (x'(y))^2} dy = 2\pi \int_0^1 \sqrt{y} \sqrt{1 + \left(\frac{1}{2\sqrt{y}}\right)^2} dy \\ &= 2\pi \int_0^1 \sqrt{y} \sqrt{1 + \frac{1}{4y}} dy = 2\pi \int_0^1 \sqrt{y + \frac{1}{4}} dy. \end{split}$$

Smenom $t = \frac{1}{4} + y$ dobijamo,

$$M = 2\pi \int_{\frac{1}{4}}^{\frac{5}{4}} \sqrt{t} dt = 2\pi \frac{t^{\frac{34}{2}}}{\frac{3}{2}} \Big|_{\frac{1}{4}}^{\frac{5}{4}} = \dots = \frac{\pi}{6} (5\sqrt{5} - 1)$$

Zadatak 2.10. Izračunati površinu omotača paraboličnog ogledala dubine 1m, prečnika $D=2\sqrt{2}m$.

Rešenje.

Postavimo koordinatni sistem kao na slici. Kako parabola prolazi kroz koordinatni početak sledi da je njena jednačina $y^2=ax$, a kako prolazi i kroz tačke $(1,\pm\sqrt{2})$ dobijamo da je a=2, tj. jednačina parabole je $y^2=2x$. Pošto nam treba površina omotača za našu funkciju uzećemo samo pozitivan krak $y=\sqrt{2x}$ parabole i to na intervalu [0,1].

Potrebno je izračunati i $y'(x) = \frac{2}{2\sqrt{2x}} = \frac{1}{\sqrt{2x}}$, odakle

$$\sqrt{1+(y')^2} = \sqrt{1+\frac{1}{2x}} = \sqrt{\frac{2x+1}{2x}}.$$

$$\begin{split} M &= 2\pi \int\limits_0^1 \sqrt{2x} \cdot \sqrt{\frac{2x+1}{2x}} dx = 2\pi \int\limits_0^1 \sqrt{2x+1} dx = \left[\begin{array}{c} 2x+1=t \\ dx = \frac{dt}{2} \end{array} \right] \\ &= 2\pi \int\limits_1^3 t^{\frac{1}{2}} \cdot \frac{dt}{2} = \pi \cdot \frac{t^{\frac{3}{2}}}{\frac{3}{2}} \bigg|_1^3 = \frac{2\pi}{3} (3\sqrt{3}-1)m^2. \end{split}$$

2.4. Dodatak

Zadatak 2.11. Naći $I = \int \frac{dx}{\cos x + 2}$ nad intervalom $(0, \frac{3\pi}{2})$.

Rešenje. Funkcija f(x) je neprekidna za svako x, pa za nju postoji neodređeni integral nad zadatim intervalom. Kao i pre, uvodimo smenu $tg\frac{x}{2}=t,\cos x=\frac{1-t^2}{1+t^2}, dx=\frac{2dt}{1+t^2},$ ali se javlja problem što su u zadatom intervalu nalazi tačka $x=\pi,$ a tg $\frac{\pi}{2}$ nije definisan. Iz tog razloga interval ćemo podeliti na dva dela $(0,\pi)$ i $(\pi,\frac{3\pi}{2})$, a zatim odrediti koliko iznosi I u tački $x=\pi$. Za $x\in(0,\pi)$ imamo

$$I_{1} = \int \frac{dx}{\cos x + 2} = \int \frac{\frac{2dt}{1+t^{2}}}{\frac{1-t^{2}}{1+t^{2}} + 2} = \int \frac{\frac{2dt}{1+t^{2}}}{\frac{1-t^{2}+2+2t^{2}}{1+t^{2}}}$$
$$= \int \frac{2dt}{t^{2}+3} = \frac{2}{\sqrt{3}} \arctan \frac{t}{\sqrt{3}} + C_{1} = \frac{2}{\sqrt{3}} \arctan \frac{t g \frac{x}{2}}{\sqrt{3}} + C_{1}.$$

Slično, za $x \in (\pi, \frac{3\pi}{2})$

$$I_2 = \frac{2}{\sqrt{3}} \arctan \frac{\operatorname{tg} \frac{x}{2}}{\sqrt{3}} + C_2.$$

Treba još odrediti $I(\pi)$ i vezu između konstanti C_1 i C_2 , što se dobija iz

$$I(\pi) = \lim_{x \to \pi} I = \lim_{x \to \pi^{-}} I_{1} = \lim_{x \to \pi^{+}} I_{2}.$$

Kako je

$$\lim_{x \to \pi^{-}} I_{1} = \lim_{x \to \pi^{-}} \left(\frac{2}{\sqrt{3}} \arctan \frac{\operatorname{tg} \frac{x}{2}}{\sqrt{3}} + C_{1} \right) = \frac{2}{\sqrt{3}} \cdot \frac{\pi}{2} + C_{1} = \frac{\pi}{\sqrt{3}} + C_{1}.$$

$$\lim_{x \to \pi^{+}} I_{2} = \lim_{x \to \pi^{+}} \left(\frac{2}{\sqrt{3}} \arctan \frac{\operatorname{tg} \frac{x}{2}}{\sqrt{3}} + C_{2} \right) = \frac{2}{\sqrt{3}} \cdot \frac{-\pi}{2} + C_{2} = -\frac{\pi}{\sqrt{3}} + C_{2}.$$

Sledi da je $\frac{\pi}{\sqrt{3}} + C_1 = -\frac{\pi}{\sqrt{3}} + C_2$, odnosno $C_2 = \frac{2\pi}{\sqrt{3}} + C_1$. Konačno,

$$I = \begin{cases} \frac{2}{\sqrt{3}} \arctan \frac{\operatorname{tg} \frac{x}{2}}{\sqrt{3}} + C_1, & x \in (0, \pi) \\ \frac{\pi}{\sqrt{3}} + C_1, & x = \pi \\ \frac{2}{\sqrt{3}} \arctan \frac{\operatorname{tg} \frac{x}{2}}{\sqrt{3}} + C_1, & x \in (\pi, \frac{3\pi}{2}) \end{cases}.$$

2.5. Zadaci za samostalni rad

- 1. Naći površinu ograničenu krivom $\rho = a \sin 3\varphi, \ a \in \mathbb{R}, za \ \varphi \in [0, \frac{\pi}{3}].$
- 2. Naći površinu ograničenu krivom $x=a(2\cos t-\cos 2t),\ y=a(2\sin t-\sin 2t), a>0,$ za $t\in[0,2\pi].$
- 3. Naći dužinu astroide $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}, a > 0$.

- 4. Naći dužinu luka logaritamske spirale $\rho=e^{a\varphi}(a>0)$ od koordinatnog početka do tačke $A(\rho=1,\varphi=0)$.
- 5. Naći zapreminu tela koje nastaje rotacijom figure F oko x-ose, ako je figura F oblast ograničena krivama $y=e^x-1,\ y=\frac{x}{2}$ i pravom x=2.
- 6. Naći površinu torusa nastalog rotacijom kružnice $x^2 + (y-b)^2 = a^2$ oko x-ose (a>b).

Literatura

- [1] Ilija Kovačević, Nebojša Ralević, Biljana Carić, Vojislav Marić, Momčilo Novaković, Slavica Medić. *Matematička analiza 1, Uvodni pojmovi i granični procesi*. FTN Izdavaštvo, Novi Sad, 2018.
- [2] Ilija Kovačević, Nebojša Ralević, Biljana Carić, Vojislav Marić, Momčilo Novaković, Slavica Medić. *Matematička analiza 1, Diferencijalni i integralni račun; obične diferencijalne jednačine*. FTN Izdavaštvo, Novi Sad, 2018.
- [3] Ilija Kovačević, Biljana Carić, Slavica Medić, Vladmir Ćurić. *Testovi sa ispita iz Matematičke analize 1.* FTN Izdavaštvo, Novi Sad, 2018.
- [4] Ilija Kovačević, Biljana Carić, Slavica Medić, Vladmir Ćurić, Momčilo Novaković. Zbirka rešenih zadataka iz Matematičke analize 1. FTN Izdavaštvo, Novi Sad, 2018.