Logical Formalism A Proof Pattern Compendium

Adrien Pommellet, LRE

September 3, 2024

Goal. Prove that $P \implies Q$ is true.

If *P* is true . . .

 \dots then Q is true.

∧ as a Conclusion

Goal. Prove that $P \implies (Q \land R)$ is true.

Suppose that P is true . . .

Subgoal 1. Prove that Q is true.

Subgoal 2. Prove that *R* is true.

\wedge as a Hypothesis

Goal. Prove that $(P \land Q) \implies R$ is true.

```
If P is true ... ... and Q is true ... ... then R is true.
```

∨ as a Conclusion

Goal. Prove that $P \implies (Q \vee R)$ is true.

If P is true . . .

Assume that Q is true.

Then obviously $Q \vee R$ is true. No further proof is needed.

Assume that Q is false.

If P is true and Q is false \dots

...then R must be true.

∨ as a Hypothesis

Goal. Prove that $(P \lor Q) \implies R$ is true.

Subgoal 1. Prove that $P \implies R$ is true.

If P is true . . . then R is true.

Subgoal 2. Prove that $Q \implies R$ is true.

If Q is true then R is true.

Goal. Prove that $P \iff Q$ is true.

Subgoal 1. Prove that $P \implies Q$ is true.

Subgoal 2. Prove that $Q \implies P$ is true.

If Q is true . . . then P is true.

Proof by Contradiction

Goal. Prove that $P \implies Q$ is true.

If P is true . . .

Assume that $\neg Q$ is true . . .

 \dots then prove something that contradicts P or a true property.

Therefore Q cannot be false, thus must be true.

Proof by Contraposition

Goal. Prove that $P \implies Q$ is true.

Equivalent goal. Prove that $\neg Q \implies \neg P$ is true.

If $\neg Q$ is true then $\neg P$ is true.

Case Disjunction

Goal. Prove that $P \implies Q$ is true.

Consider a proposition R.

Subgoal 1. Prove that $(P \land R) \implies Q$.

If P and R are true . . .

 \dots then Q is true.

Subgoal 2. Prove that $(P \land \neg R) \implies Q$.

If P is true and R is false . . .

 \dots then Q is true.

Simple Inclusion

Goal. Prove that $A \subseteq B$.

Let $x \in A \dots$

... then $x \in B$.

Double Inclusion

Goal. Prove that A = B.

Subgoal 1. Prove that $A \subseteq B$.

Let $x \in A \dots$

... then $x \in B$.

Subgoal 2. Prove that $B \subseteq A$.

Let $x \in B \dots$

 \dots then $x \in A$.

Goal. Prove that $\forall x \in E, P(x)$.

Let $x \in E \dots$

... then P(x) is true.

∀ in a Conclusion

Goal. Prove that $P \implies (\forall x \in E, Q(x))$.

Assume that P is true.

Let $x \in E \dots$

... then Q(x) is true.

∀ in a Hypothesis

Goal. Prove that $(\forall x \in E, P(x)) \implies Q$.

Assume that $\forall x \in E, P(x)$ is true.

Consider one or more particular $x_0, x_1 \dots \in E$.

Obviously, $P(x_0), P(x_1) \dots$ are true \dots

 \dots then Q is true.

Goal. Prove that $\exists x \in E, P(x)$.

Exhibit a particular value $x_0 \in E \dots$

... then $P(x_0)$ is true.

∃ in a Hypothesis

Goal. Prove that $(\exists x \in E, P(x)) \implies Q$.

Assume that $\exists x \in E, P(x)$ is true.

Consider a particular $x_0 \in E$ such that $P(x_0)$ is true . . .

 \dots then Q is true.

∃ in a Conclusion

Goal. Prove that $P \implies (\exists x \in E, Q(x))$.

Assume that P is true.

Exhibit a particular value $x_0 \in E \dots$

... $Q(x_0)$ is proven true.

Goal. Prove that $\exists ! x \in E, P(x)$.

Subgoal 1. Prove that $\exists x \in E, P(x)$.

As described previously . . .

Subgoal 2. Prove that $\forall x_1, x_2 \in E, P(x_1) \land P(x_2) \implies x_1 = x_2$.

We can rely on the usual implication pattern, a proof by contradiction, or a proof by contraposition ...

Goal. Prove that $E = \emptyset$.

Let us suppose that $E \neq \emptyset$.

Consider $\exists x \in E \dots$

...then prove something that is blatantly false.

Thus by **contradiction** $E = \emptyset$.

Functions

Goal. Prove that the relation f is a function $E \rightarrow F$.

Subgoal 1. Prove that an image always exists.

Let
$$x \in E$$
 ...
...then $\exists y \in F$, $(x, y) \in f$.

Subgoal 2. Prove that the image is unique.

Let
$$(x, y), (x, z) \in f \dots$$

...then $y = z$.

Injectivity

Goal. Prove that a function $f: E \to F$ is injective.

Consider any $x, y \in Dom(f)$. Assume that $f(x) = f(y) \dots$ \dots then x = y.

Surjectivity

Goal. Prove that a function $f: E \to F$ is surjective.

Consider any $y \in F \dots$

... then exhibits x such that y = f(x).

Invertibility

Goal. Prove that $f: E \to F$ is a bijection.

Introduce a **candidate** $g \subseteq F \times E$ for the inverse function.

First **prove** that g is indeed a function $F \rightarrow E$. Then:

Subgoal 1. Prove that $f \circ g = Id_F$.

Let
$$y \in F \dots$$

... then $f(g(y)) = y$.

Subgoal 2. Prove that $g \circ f = Id_E$.

Let
$$x \in E$$
 ...
...then $g(f(x)) = x$.

Simple Induction

Goal. Prove that $\forall n \geq n_0, P(n)$.

We are going to use a proof by **simple induction** on n.

Base case. Prove that $P(n_0)$ holds.

Usually straightforward . . .

Inductive case. Prove that $\forall n \geq n_0, P(n) \implies P(n+1)$.

Assume that P(n) holds for some $n \ge n_0 \dots$...then P(n+1) holds.

Depth k Induction

Goal. Prove that $\forall n \geq n_0, P(n)$.

We are going to use a proof by **induction of depth** k.

Base case. Prove that $P(n_0), \ldots, P(n_0 + k - 1)$ hold.

Usually straightforward . . .

Inductive case. Prove that $\forall n \geq n_0, \boxed{P(n) \wedge \ldots \wedge P(n+k-1)} \Longrightarrow \boxed{P(n+k)}$

$$P(n+k)$$

Assume that $P(n), \ldots, P(n+k-1)$ hold for some $n \ge n_0 \ldots$ then P(n+k) holds.

Strong Induction

Goal. Prove that $\forall n \geq n_0, P(n)$.

We are going to use a proof by strong induction on n.

Base case. Prove that $P(n_0)$ holds.

Similar to simple inductive proofs ...

Inductive case. Prove that $\forall n \geq n_0, \forall k \in \{n_0, \dots, n\}, P(k)$ \Longrightarrow

$$P(n+1)$$

Assume that for some $n \ge n_0$, $\forall k \in \{n_0, ..., n\}$, P(k) holds then P(n+1) holds.

Equipotence

Goal. Prove that E and F are equipotent.

Introduce a candidate relation f.

Subgoal 1. Prove that f is a well-defined function $E \to F$.

As described previously ...

Subgoal 2. Prove that f is a bijection.

Apply the definition. Prove that f is **injective** and **surjective**.

Find the inverse. Exhibit g such that $g = f^{-1}$.

Partitions

Goal. Prove that \mathfrak{P} is a partition of E.

Subgoal 1. Prove that $\forall X \in \mathfrak{P}, X \subseteq E$ and $X \neq \emptyset$.

Let $X \in \mathfrak{P}$. Prove that $X \subseteq E$ and $X \neq \emptyset$.

Subgoal 2. Prove that $\forall X, Y \in \mathfrak{P}, X \neq Y \implies X \cap Y = \emptyset$.

By contradiction, consider $X,Y\in\mathfrak{P}$ such that $\exists x\in X\cap Y$. Then prove that X=Y.

Subgoal 3. Prove that $\forall x \in E, \exists X \in \mathfrak{P}, x \in X$.

Let $x \in E$. Exhibit $P \in \mathfrak{P}$ such that $x \in P$.

Analysis and Synthesis

Goal. Given P(x) of variable x, find a set S such that $P(x) \iff x \in S$.

Analysis step. Assume that P(x) is true . . .

... from there prove that $x \in R$ for some set R.

Find a proper subset $S \subseteq R$.

Synthesis step. Assume that $x \in R$.

Prove that if $x \in R \setminus S$ then $\neg P(x)$.

Also prove that if $x \in S$ then P(x).