Τυπολόγιο για Πιθανοθεωρία και Στατιστική

Συνδυαστική	με διάταξη	με οποιαδήποτε σειρά
με επανάθεση	n^k	$\binom{n+k-1}{k}$
χωρίς επανάθεση	$n(n-1)\cdots(n-k+1)$	$\binom{n}{k}$

Πιθανοθεωρία

$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	προσθετικό θεώρημα
$P(B A) = P(A \cap B)/P(A)$	δεσμευμένη πιθανότητα
$P(A) = \sum_{i=1}^{n} P(B_i) P(A B_i)$	θεώρημα ολικής πιθανότητας
$P(B_r A) = \frac{P(B_r)P(A B_r)}{P(A)}$	θεώρημα Bayes
$F_X(x) = P(X \le x) = \begin{cases} \sum_{x_i \le x} P(X = x_i) \\ \int_{-\infty}^x f_X(u) du \end{cases}$	αθροιστική διακριτού τύπου συνάρτηση συνεχούς τύπου
$\mathbf{E}(X) = \mu_X = \begin{cases} \sum_x x P(X = x) \\ \int_{-\infty}^{+\infty} x f(x) dx \end{cases}$	μέση τιμή της X $\left\{ \begin{array}{l} διακριτού τύπου \\ συνεχούς τύπου \end{array} \right.$
$\operatorname{Var}(X) = \sigma_X^2 = \begin{cases} \sum_{i=1}^n (x_i - \mu_X)^2 P(X = x_i) \\ \int_{-\infty}^{+\infty} (x - \mu_X)^2 f(x) dx \end{cases}$	διασπορά της X $\left\{ \begin{array}{l} διακριτού τύπου \\ συνεχούς τύπου \end{array} \right.$

Θεωρητικές κατανομές

Θεωρητικές κατανομές		
$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \left[\binom{n}{k} = \frac{n!}{k!(n-k)!} \right]$	διωνυμική κατανομή	
E(X) = np, Var(X) = np(1-p)	Χ: # επιτυχιών	
$P(X = x) = \frac{\binom{a}{x} \binom{N-a}{n-x}}{\binom{N}{n}}$	υπεργεωμετρική κατανομή	
$0 \le x \le a, 0 \le n - x \le N - a$	Χ: # επιτυχιών	
$E(X) = n\frac{a}{N}, Var(X) = \frac{na(N-a)(N-n)}{N^2(N-1)}$	TTT // OTTLOGALWY	
$P(X = x) = (1 - p)^x p, x \in \{0, 1, 2,\}$	γεωμετρική κατανομή	
$E(X) = q/p, Var(X) = q/p^2, q = 1 - p$	Χ: # αποτυχιών	
$P(X = x) = {x + r - 1 \choose r - 1} p^r (1 - p)^x, x \in \{0, 1, 2, \ldots\}$	αρνητική διωνυμική κατανομή	
$\operatorname{E}(X) = rq/p, \operatorname{Var}(X) = rq/p^2, q = 1 - p$	Χ: # αποτυχιών	
$P(X = x) = e^{-\lambda} \frac{\lambda^x}{x!}$ $x \in \{0, 1, 2,\}$	κατανομή Poisson	
$E(X) = \lambda, Var(X) = \lambda$	Χ: # επιτυχιών	
$f_X(x) = \frac{1}{b-a}$ $P(X \le x) = \frac{x-a}{b-a}$	ομοιόμορφη κατανομή	
$E(X) = (b+a)/2, Var(X) = (b-a)^2/12$	στο διάστημα $[a,b]$	
$f_X(x) = \lambda e^{-\lambda x}$ $P(X \le x) = 1 - e^{-\lambda x}$	εκθετική κατανομή	
$\mathrm{E}(X) = 1/\lambda, \mathrm{Var}(X) = 1/\lambda^2$		
$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$	κανονική κατανομή	
$\mathrm{E}(X) = \mu, \mathrm{Var}(X) = \sigma^2$		

Σημειακή εκτίμηση

$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	δειγματική μέση τιμή του X
$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} (\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}^{2})$	δειγματική διασπορά του X
$s_{\bar{x}}^2 = s^2/n$	δειγματική διασπορά του $ar{x}$
$\sigma_{ar{x}}^2 = \sigma^2/n$	διασπορά του $ar{x}$

Διαστήματα εμπιστοσύνης

Διαστηματα εμπιστοσονής	
$\bar{x} \pm z_{1-a/2} \sigma / \sqrt{n}$	για μέση τιμή, γνωστή διασπορά του X , χρήση τυπικής κανονικής κατανομής
$\bar{x} \pm z_{1-a/2} s / \sqrt{n}$	για μέση τιμή, άγνωστη διασπορά του X , χρήση τυπικής κανονικής κατανομής
$\bar{x} \pm t_{1-a/2,n-1} s / \sqrt{n}$	για μέση τιμή, άγνωστη διασπορά του X , χρήση κατανομής student
$\left[\frac{(n-1)s^2}{x_{n-1,1-a/2}^2}, \frac{(n-1)s^2}{x_{n-1,a/2}^2}\right]$	για διασπορά, χρήση κατανομής X^2
$\hat{p} \pm z_{1-a/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	για αναλογία, χρήση τυπικής κανονικής κατανομής
$(\bar{x}_1 - \bar{x}_2) \pm z_{1-a/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	για διαφορά δύο μέσων τιμών, γνωστές διασπορές, χρήση τυπικής κανονικής κατανομής
$(\bar{x}_1 - \bar{x}_2) \pm z_{1-a/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	για διαφορά δύο μέσων τιμών, άγνωστες διασπορές, χρήση τυπικής κανονικής κατανομής
$(\bar{x}_1 - \bar{x}_2) \pm t_{n_1 + n_2 - 2, 1 - a/2} s \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	για διαφορά δύο μέσων τιμών, κοινή κι άγνωστη διασπορά, χρήση κατανομής student $s^2 = \frac{(n_1-1)s_1^2+(n_2-1)s_2^2}{n_1+n_2-2}$
$(\hat{p}_1 - \hat{p}_2) \pm z_{a/2} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$	για διαφορά δύο αναλογιών, χρήση τυπικής κανονικής κατανομής

Συσχέτιση - Παλινδρόμηση

$s_{XY} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$ = $\frac{1}{n-1} (\sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y})$	δειγματική συνδιασπορά των X,Y
$r = \frac{s_{XY}}{s_X s_Y}$ $r = \sqrt{1 - \frac{s_{Y X}^2}{s_Y^2}} = b \frac{s_X}{s_Y}$	εκτίμηση συντελεστή συσχέτισης
$b = \frac{s_{XY}}{s_X^2}$	εκτίμηση συντελεστή παλινδρόμησης
$a = \bar{y} - b\bar{x}$	εκτίμηση σταθερού όρου παλινδρόμησης
$\hat{y} = a + bx$	εκτίμηση γραμμής παλινδρόμησης
$s_{Y X}^2 = s^2 = \frac{n-1}{n-2} \left(s_Y^2 - \frac{s_{XY}^2}{s_X^2} \right) = \frac{n-1}{n-2} (s_Y^2 - b^2 s_X^2)$	εκτίμηση διασποράς σφάλματος παλινδρόμησης