FYS4411 - COMPUTATIONAL QUANTUM MECHANICS SPRING 2016

Project 1; Variational Monte Carlo Studies of Bosonic systems

TEMPORARY REPORT

Sean Bruce Sangolt Miller s.b.s.miller@fys.uio.no

Filip Henrik Lasren filiphenriklarsen@gmail.com

Date: February 6, 2016

Abstract

Some text that is abstact

Contents

1	Introduction	1
2	Theory and methods 2.1 Preliminary derivations	1
3	Results	2
4	Conclusions	2
5	Appendix	2

1 Introduction

2 Theory and methods

Preliminary derivations 2.1

2.1.1Simplified problem

The local energy is defined as:

$$E_L(\mathbf{R}) = \frac{1}{\Psi_T(\mathbf{R})} H \Psi_T(\mathbf{R}), \tag{1}$$

As a first approximation, it is assumed there is no interaction term in the Hamiltonian, which means the hard sphere bosons have no physical size (the hard-core diameter is zero). It is also assumed that no magnetic field is applied to the bosonic gas, leaving a perfectly spherically symmetrical harmonic trap. Inserting this new Hamiltonian into the local energy gives:

$$E_L(\mathbf{R}) = \frac{1}{\Psi_T(\mathbf{R})} \sum_{i}^{N} \left(\frac{-\hbar^2}{2m} \nabla_i^2 + \frac{1}{2} m \omega_{ho}^2 r_i^2 \right) \Psi_T(\mathbf{R})$$
 (2)

The potential term is trivial since this is a scalar, i.e. the denominator will cancel the wavefunction. A more challenging problem is to find an expression for $\nabla_i^2 \Psi_T(\mathbf{R})$. The trial wavefunction shown in equation (...), with the aforementioned approximations, is:

$$\Psi_T(\mathbf{R}) = \prod_i e^{-\alpha r_i^2} \tag{3}$$

where α is the variational parameter for VCM. The first derivative is:

$$\nabla_{j} \prod_{i} e^{-\alpha r_{i}^{2}} = -2\alpha \mathbf{r}_{j} e^{-\alpha r_{j}^{2}} \prod_{i \neq j} e^{-\alpha r_{i}^{2}}$$

$$= -2\alpha \mathbf{r}_{j} \prod_{i} e^{-\alpha r_{i}^{2}}.$$
(4)

$$= -2\alpha \mathbf{r}_j \prod_i e^{-\alpha r_i^2}.$$
 (5)

The second derivative then follows:

$$\nabla_j^2 \prod_i e^{-\alpha r_i^2} = \nabla_j \left(-2\alpha \mathbf{r}_j \prod_i e^{-\alpha r_i^2} \right)$$
 (6)

$$= \left(4\alpha^2 r_j^2 - 2d\alpha\right) \prod_i e^{-\alpha r_i^2}.$$
 (7)

where d is the number of dimensions. Inserting this into back into the local energy (equation (2)), the final expression can be derived:

$$E_L(\mathbf{R}) = \frac{1}{\Psi_T(\mathbf{R})} \sum_{i}^{N} \left(\frac{-\hbar^2}{2m} \nabla_i^2 + \frac{1}{2} m \omega_{ho}^2 r^2 \right) \Psi_T(\mathbf{R})$$
$$= \sum_{i=1}^{N} \left[\frac{-\hbar^2}{2m} \left(4\alpha^2 r_i^2 - 2d\alpha \right) + \frac{1}{2} m \omega_{ho}^2 r_i^2 \right]$$

The drift force (quantum force), still with the approximations above, is defined by:

$$F = \frac{2\nabla \Psi_T}{\Psi_T} \tag{8}$$

The gradient here is defined as

$$\nabla \equiv (\nabla_1, \nabla_2, \dots, \nabla_N)$$

i.e. a vector of dimension Nd. The gradient with respect to a single particle's position is already given in equation 5, so it's not too hard to see the following is the necessary factor in the drift force:

$$F = \frac{-4\alpha}{\Psi_T} (\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N) \Psi_T$$
$$= -4\alpha (\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N)$$

2.1.2 Full problem

The full problem¹ is a bit more tedious to derive. The first step is to rewrite the trial wavefunction to the following form:

$$\Psi_T(\mathbf{R}) = \prod_i \phi(\mathbf{r}_i) e^{\sum_{i' < j'} u(r_{i'j'})}$$
(9)

where, in order for this to fit with the previous wavefunction, $u(r_{ij}) \equiv \ln(f(r_{ij}))$ and $\phi(\mathbf{r}_i) \equiv g(\alpha, \beta, \mathbf{r}_i)$. The gradient with respect to the k-th coordinate set is:

$$\nabla_k \Psi_T = \nabla_k \prod_i \phi(\mathbf{r}_i) e^{\sum_{i' < j'} u(r_{i'j'})}$$
(10)

$$= \nabla_k \phi_k \left[\prod_{i \neq k} \phi(\mathbf{r}_i) e^{\sum_{i' < j'} u(r_{i'j'})} \right] + \left[\prod_i \phi(\mathbf{r}_i) e^{\sum_{i' < j'} u(r_{i'j'})} \nabla_k \left(\sum_{i'' < j''} u_{i''j''} \right) \right]$$
(11)

$$= \nabla_k \phi_k \left[\prod_{i \neq k} \phi(\mathbf{r}_i) e^{\sum_{i' < j'} u(r_{i'j'})} \right] + \left[\prod_i \phi(\mathbf{r}_i) e^{\sum_{i' < j'} u(r_{i'j'})} \left(\sum_{i'' < j''} \nabla_k u_{i''j''} \right) \right]$$
(12)

The function u_{ij} is symmetric under permutation of i and j, as one can see from the definitions of itself and $f(r_{ij})$. This means that in the last sum above, one can always s

- 3 Results
- 4 Conclusions
- 5 Appendix

¹The "full problem" means not making any assumptions on the particle interactions or the potential.