Teórica 10

5 de julho de 2024

 $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$

- Estabelece-se, no [intervalo de amplitude zero], que
 - $\int_a^a f(x) dx = 0$, para qualquer $a \in \mathbb{R}$
- Por convenção, estabelece-se ainda a [ordem de integração]
 - $\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$, para quaisquer $a, b \in \mathbb{R}$
- $\int_a^b [f(x) \pm g(x)] dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx.$

Se fran un Márino a um Mínino am [a,b]

 $m(b-a) \leq \int_{a}^{b} \int_{a}$

Monotonicidade : gon) & for)

$$-\int_a^b g(x)\,dx \le \int_a^b f(x)\,dx.$$

$$\left| \int_a^b f(x) \, dx \right| \leq \int_a^b |f(x)| \, dx$$

Teoremas:

Se <u>f</u> é contínua em [a, b] ou aqui tem, quando muito, um número finito de decontinuidades de salto, então

$$\int_a^b f(x) dx \quad \underline{\text{existe e} \quad f \quad \text{\'e integr\'avel em}} \quad [a, b].$$

$$vm(f) := \frac{\int_{x=a}^{b} f(x) dx}{b-a}$$

 Exercício Calcule-se o valor médio da função, real de variável real, definida no intervalo [-2,2] por

$$f(x)=\sqrt{4-x^2}.$$

Ly mão i necessariamente o fonto médio

Nota

Observação: O ponto c não é necessariamente o ponto médio do intrevalo [a,b], nem é necessariamente único. A f(c) chamamos valor médio da função f, em [a,b].

Sendo $f:[a,b]\subset\mathbb{R}\longrightarrow\mathbb{R}$, neste caso com f(x)>0, $\forall x\in[a,b]$,

Que número representa a área de \mathcal{D} ?

F(b) - F(a) = 1

Comprimento de curva

Sejam

• f de classe C^1 em [a, b];

• \mathcal{P} uma partição de [a, b]:

$$a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b;$$

 \bullet P_k o ponto de coordenadas

$$(x_k, f(x_k)).$$

• A medida do comprimento da linha poligonal definida pelos pontos P_k é a soma da medida dos comprimentos dos segmentos de reta $\overline{P_k P_{k+1}}$, isto é

$$\sum_{k=0}^{n-1} \overline{P_k P_{k+1}} = \sum_{k=0}^{n-1} \sqrt{[x_{k+1} - x_k]^2 + [f(x_{k+1}) - f(x_k)]^2}.$$

• Pelo teorema do valor médio de Lagrange, existe $\widetilde{x_k} \in]x_k, x_{k+1}[$ tal que

$$f(x_{k+1}) - f(x_k) = f'(\widetilde{x_k})(x_{k+1} - x_k)$$

pelo que

$$[x_{k+1} - x_k]^2 + [f(x_{k+1}) - f(x_k)]^2 = [x_{k+1} - x_k]^2 + [f'(\widetilde{x_k})(x_{k+1} - x_k)]^2$$

= $(x_{k+1} - x_k)^2 (1 + [f'(\widetilde{x_k})]^2).$

Assim,

$$\sum_{k=0}^{n-1} \overline{P_k P_{k+1}} = \sum_{k=0}^{n-1} \sqrt{(x_{k+1} - x_k)^2 (1 + [f'(\widetilde{x_k})]^2)}$$
$$= \sum_{k=0}^{n-1} \sqrt{1 + [f'(\widetilde{x_k})]^2} (x_{k+1} - x_k)$$

$$\sum_{k=0}^{n-1} \sqrt{1 + (f'(\widetilde{x_k}))^2} \, (x_{k+1} - x_k)$$

é a soma de Riemann para a função

$$g(x) = \sqrt{1 + [f'(x)]^2}.$$

- A função $g(x) = \sqrt{1 + [f'(x)]^2}$ é contínua logo integrável.
- Fazendo $n \to \infty$, a medida do comprimento da linha poligonal (soma de Riemann) tende para a medida do comprimento da curva (integral).
- [Comprimento de uma curva]

Seja f de classe C^1 em [a, b]. A medida do comprimento L da curva definida pelo gráfico de f do ponto (a, f(a)) ao ponto (b, f(b)) é dado por

$$L = \int_{x=a}^{b} \sqrt{1 + [f'(x)]^2} \, dx.$$