7

Symmetric Matrices and Quadratic Forms

7.2

QUADRATIC FORMS

• A quadratic formon \mathbb{R}^n is a function Q defined on \mathbb{R}^n whose value at a vector \mathbf{x} in \mathbb{R}^n can be computed by an expression of the form

$$Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$$

where A is an $n \times n$ symmetric matrix.

• The matrix A is called the matrix of the quadratic form.

Example 1: Let $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. Compute $\mathbf{x}^T A \mathbf{x}$ for the

following matrices.

a.
$$A = \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix}$$

b.
$$A = \begin{bmatrix} 3 & -2 \\ -2 & 7 \end{bmatrix}$$

Solution:

a.
$$\mathbf{x}^T A \mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 4x_1 \\ 3x_2 \end{bmatrix} = 4x_1^2 + 3x_2^2$$
.

b. There are two -2 entries in A.

$$x^{T}Ax = \begin{bmatrix} x_{1} & x_{2} \end{bmatrix} \begin{bmatrix} 3 & -2 \\ -2 & 7 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} x_{1} & x_{2} \end{bmatrix} \begin{bmatrix} 3x_{1} - 2x_{2} \\ -2x_{1} + 7x_{2} \end{bmatrix}$$

$$= x_{1}(3x_{1} - 2x_{2}) + x_{2}(-2x_{1} + 7x_{2})$$

$$= 3x_{1}^{2} - 2x_{1}x_{2} - 2x_{2}x_{1} + 7x_{2}^{2}$$

$$= 3x_{1}^{2} - 4x_{1}x_{2} + 7x_{2}^{2}$$

- The presence of $-4x_1x_2$ in the quadratic form in Example 1(b) is due to the -2 entries off the diagonal in the matrix A.
- In contrast, the quadratic form associated with the diagonal matrix A in Example 1(a) has no x_1x_2 *cross-product* term.

If x represents a variable vector in \mathbb{R}^n , then a **change** of variable is an equation of the form

$$x = Py$$
, or equivalently, $y = P^{-1}x$ (1)

where P is an invertible matrix and y is a new variable vector in \mathbb{R}^n .

- Here y is the coordinate vector of x relative to the basis of \mathbb{R}^n determined by the columns of P.
- If the change of variable (1) is made in a quadratic form $\mathbf{x}^T A \mathbf{x}$, then

$$(\mathfrak{D}^T A \mathbf{x} = (P \mathbf{y})^T A (P \mathbf{y}) = \mathbf{y}^T P^T A P \mathbf{y} = \mathbf{y}^T (P^T A P) \mathbf{y}$$

and the new matrix of the quadratic form is $P^T A P$.

- Since A is symmetric, Theorem 2 guarantees that there is an *orthogonal* matrix P such that P^TAP is a diagonal matrix D, and the quadratic form in (2) becomes $\mathbf{y}^TD\mathbf{y}$.
- **Example 4:** Make a change of variable that transforms the quadratic form $Q(x) = x_1^2 8x_1x_2 5x_2^2$ into a quadratic form with no cross-product term.
- Solution: The matrix of the given quadratic form is

$$A = \begin{bmatrix} 1 & -4 \\ -4 & -5 \end{bmatrix}$$

- The first step is to orthogonally diagonalize *A*.
- Its eigenvalues turn out to be $\lambda = 3$ and $\lambda = -7$.
- Associated unit eigenvectors are

$$\lambda = 3: \begin{bmatrix} 2/\sqrt{5} \\ -1/\sqrt{5} \end{bmatrix}; \lambda = -7: \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix}$$

• These vectors are automatically orthogonal (because they correspond to distinct eigenvalues) and so provide an orthonormal basis for \mathbb{R}^2 .

Let

$$P = \begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5} \\ -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}, D = \begin{bmatrix} 3 & 0 \\ 0 & -7 \end{bmatrix}$$

- Then $A = PDP^{-1}$ and $D = P^{-1}AP = P^{T}AP$.
- A suitable change of variable is

$$x = Py$$
, where $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$.

Then

$$x_{1}^{2} - 8x_{1}x_{2} - 5x_{2}^{2} = x^{T}Ax = (Py)^{T}A(Py)$$
$$= y^{T}P^{T}APy = y^{T}Dy$$
$$= 3y_{1}^{2} - 7y_{2}^{2}$$

To illustrate the meaning of the equality of quadratic forms in Example 4, we can compute $Q(\mathbf{x})$ for $\mathbf{x} = (2, -2)$ using the new quadratic form.

• First, since x = Py,

so
$$y = P^{-1}x = P^{T}x$$
$$y = \begin{bmatrix} 2/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix} \begin{bmatrix} 2 \\ -2 \end{bmatrix} = \begin{bmatrix} 6/\sqrt{5} \\ -2/\sqrt{5} \end{bmatrix}$$

Hence

$$3y_1^2 - 7y_2^2 = 3(6/\sqrt{5})^2 - 7(-2/\sqrt{5})^2 = 3(36/5) - 7(4/5)$$
$$= 80/5 = 16$$

• This is the value of $Q(\mathbf{x})$ when $\mathbf{x} = (2, -2)$.

THE PRINCIPAL AXIS THEOREM

See the figure below.

Change of variable in $\mathbf{x}^T A \mathbf{x}$.

• Theorem 4: Let A be an $n \times n$ symmetric matrix. Then there is an orthogonal change of variable, $\mathbf{x} = P\mathbf{y}$, that transforms the quadratic form $\mathbf{x}^T A \mathbf{x}$ into a quadratic form $\mathbf{y}^T D \mathbf{y}$ with no cross-product term.

THE PRINCIPAL AXIS THEOREM

- The columns of P in theorem 4 are called the **principal axes** of the quadratic form $\mathbf{x}^T A \mathbf{x}$.
- The vector \mathbf{y} is the coordinate vector of \mathbf{x} relative to the orthonormal basis of \mathbb{R}^n given by these principal axes.

CLASSIFYING QUADRATIC FORMS

- **Definition:** A quadratic form Q is:
 - a. positive definite if Q(x) > 0 for all $x \ne 0$,
 - **b.** negative definite if Q(x) < 0 for all $x \ne 0$,
 - c. indefinite if $Q(\mathbf{x})$ assumes both positive and negative values.
- Also, Q is said to be **positive semidefinite** if $Q(x) \ge 0$ for all x, and **negative semidefinite** if $Q(x) \le 0$ for all x.

QUADRATIC FORMS AND EIGENVALUES

- Theorem 5: Let A be an $n \times n$ symmetric matrix. Then a quadratic form $\mathbf{x}^T A \mathbf{x}$ is:
 - a. positive definite if and only if the eigenvalues of A are all positive,
 - b. negative definite if and only if the eigenvalues of A are all negative, or
 - c. indefinite if and only if A has both positive and negative eigenvalues.

QUADRATIC FORMS AND EIGENVALUES

• **Proof:** By the Principal Axes Theorem, there exists an orthogonal change of variable x = Py such that

$$Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} = \mathbf{y}^T D \mathbf{y} = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2 \quad (4)$$
where $\lambda_1, \dots, \lambda_n$ are the eigenvalues of A .

• Since *P* is invertible, there is a one-to-one correspondence between all nonzero **x** and all nonzero **y**.

QUADRATIC FORMS AND EIGENVALUES

• Thus the values of $Q(\mathbf{x})$ for $\mathbf{x} \neq 0$ coincide with the values of the expression on the right side of (4), which is controlled by the signs of the eigenvalues $\lambda_1, \ldots, \lambda_m$ in three ways described in the theorem.