ENGR-3000:

Renewable Energy, Technology, and Resource Economics

Introduction to Renewable Energy: Basic Energy Concepts

S. David Dvorak. Ph.D, P.E.

3 June 2019 Ísafjörður, Iceland

Basic Energy Concepts: Outline

- Basic Energy Concepts
 - Force, Weight, Pressure
 - Kinetic and Potential Energy
 - Conservation of Energy
 - Energy and Power
- Capacity Factor
- Levelized Costs: the price of energy
- Worldwide Energy Consumption
- Finite Resources

Basic Concepts: Force and Weight

• From Newton's Second Law of Motion:

Force = $mass \times acceleration$

units:
$$\left[kg\right]\left[\frac{m}{s^2}\right] = Newton$$

weight = mass × (gravitational acceleration), $g = 9.8 \frac{m}{s^2}$

weight = density × gravitational acceleration × volume

units:
$$\left[\frac{kg}{m^3}\right]\left[\frac{m}{s^2}\right]\left[m^3\right] = \left[\frac{kg \cdot m}{s^2}\right] = Newton$$

Pressure

• Pressure = force per unit area:

$$pressure = \frac{force}{area}$$

units:
$$\left\lceil \frac{\text{Newton}}{\text{m}^2} \right\rceil = \text{Pascal}$$

- Atmospheric pressure
 - one standard atmosphere = 101325 Pa
 - -1 "Bar" = 10^5 Pa, approximately equal to 1 atm.

Absolute and Gage Pressure

Absolute Pressure:

 Measured relative to a
 Measured relative to perfect vacuum

Gage Pressure:

atmospheric pressure

$$P_{\text{gage}} = P_{\text{abs}} - P_{\text{atm}}$$

Kinetic and Potential Energy

 The kinetic energy of an object is related to its mass and its velocity:

$$KE = \frac{1}{2}mV^2$$

 The change in potential energy of an object is related to its motion in a gravitational field

$$2 = Final State$$

$$\Delta PE = mgh_2 - mgh_1$$

Work, Energy, and Power

Work and Energy

Work = energy = force
$$\times$$
 distance
units: [Newton][m] = Joule

Power is energy in motion

Power =
$$\frac{\text{energy}}{\text{time}}$$
 = force × velocity = voltage × current

units:
$$\left[\frac{\text{Joule}}{\text{s}}\right] = \left[\text{Newton}\right] \left[\frac{\text{m}}{\text{s}}\right] = \left[\text{volt}\right] \left[\text{amp}\right] = \text{Watt}$$

Note: 1 hp = $550 \text{ ft} \cdot \text{lbf/s} = 746 \text{ Watts}$

Conservation of Energy

 Energy cannot be created or destroyed, only converted from one form to another:

$$mgh_1 + \frac{1}{2}mV_1^2 = mgh_2 + \frac{1}{2}mV_2^2 + losses$$

Set $V_1 = 0$, neglect losses: $gh_1 = gh_2 + \frac{1}{2}V_2^2$

$$gh_1 = gh_2 + \frac{1}{2}V_2^2$$

Exercise: Potential and Kinetic Energy

A roller coaster car is pulled up a track $(1\rightarrow 2)$ and then released to slide down the track $(2\rightarrow 3)$, neglect friction.

- Calculate the weight of the car (g = 9.8 m/s²)
- Determine the change in potential energy from 1 to 2
- Calculate the velocity of the car at 3
- Calculate the kinetic energy of the car at 3

Basic Units: Powers of Ten

deka (da) 10¹ deci (d) 10⁻¹ hecto (h) 10² centi (c) 10⁻² kilo (k) 10^3 milli (m) 10⁻³ Mega (M) 10⁶ micro (μ) 10⁻⁶ Giga (G) 10⁹ nano (n) 10⁻⁹ Tera (T) 10^{12} pico (p) 10⁻¹² 10^{15} femto (f) 10⁻¹⁵ Peta (P) Exa (E) 10^{18} atto (a) 10⁻¹⁸

Power and Energy

• If we multiply power by time we get energy:

$$1kW = 1\frac{kJ}{s}; \quad 1kW \cdot s = 1kJ$$

$$1 \text{kW} \cdot \text{s} \left(\frac{\text{h}}{3600 \text{s}} \right) = 1 \text{kJ}$$

so:
$$1kWh = 3600kJ$$

- Economics of Renewable Energy
 - We install power capacity (MW) capital costs
 - We sell energy (kWh) annual revenue

Capacity Factors: an Introduction

- The capacity factor of a device is the measured output divided by the maximum output based on the device's design specification
- The "Capacity factor" of a car could be determined as follows:

$$C = \frac{\text{miles driven in a year}}{\text{max. possible annual milage}}$$

- What kind of car do you have?
- How fast does it go?
- How many miles did you drive last year?
- From your answers (estimates) to the above questions, determine the capacity factor for your car

Capacity Factors of Energy Sources

Power Generation: Capital Costs and Capacity Factors

Example: Capacity Factor

 An 1800kW wind turbine has a capacity factor of 0.32. Determine the annual energy production.

$$1800 \text{kW} \left(8760 \frac{\text{h}}{\text{y}} \right) = 15.8 \times 10^6 \frac{\text{kWh}}{\text{y}}$$

$$\left(15.8 \times 10^6 \, \frac{\text{kWh}}{\text{y}}\right) \left(0.32\right) = 5.1 \times 10^6 \, \frac{\text{kWh}}{\text{y}}$$

$$5.1 \times 10^6 \frac{\text{kWh}}{\text{y}} \left(\frac{10^3 \text{W}}{\text{kW}} \right) = 5.1 \times 10^9 \frac{\text{Wh}}{\text{y}}$$

$$5.1 \times 10^9 \frac{\text{Wh}}{\text{y}} \left(\frac{\text{GW}}{10^9 \text{W}} \right) = 5.1 \frac{\text{GWh}}{\text{y}}$$

Exercise: Capacity Factor

 The London Array is an offshore wind farm comprised of 175 wind turbines, each rated at 3.6 MW. In 2015 this wind farm produced 2.49 TWh of electricity.

- Determine the total power capacity of this wind farm
- ➤ Using the 2015 energy output, estimate the capacity factor.

Power Generation: Levelized Costs \$/MWh

Estimated Costs for New Generation Resources, 2022: Plant Type (Capacity Factor)	Capital Cost	Fixed O&M	Variable O&M (Incl. Fuel)	Transmission Investment	Total System Levelized Cost
Dispatchable Technologies					
Coal (85%) ¹	60.4	4.2	29.4	1.2	95.2
Combined Cycle (87%)	8.1	1.5	32.3	0.9	42.8
Advanced Nuclear (90%) ²	69.4	12.9	9.3	1.0	92.6
Geothermal (90%)	24.6	13.3	0.0	1.4	39.4
Biomass (83%)	37.3	15.7	37.5	1.5	92.1
Hydro (75%)	29.9	6.2	1.4	1.6	30.1
Non-Dispatchable					
Wind (44%)	27.8	12.6	0.0	2.4	42.8
Offshore Wind (45%)	95.5	20.4	0.0	2.1	117.9
Solar PV (29%)	37.1	8.8	0.0	2.9	48.8
Solar Thermal, CSP (25%) ²	128.4	32.6	0.0	4.1	165.1

U.S. Energy Information Administration, Annual Energy Outlook 2015¹, 2018², &2019. https://www.eia.gov/outlooks/aeo/pdf/electricity_generation.pdf

World Primary Energy Consumption (2009)

- Total worldwide energy consumption = 502 EJ
- 2009 Worldwide population = 6.8 billion
- Average rate of energy consumption = 15.9 TW

Changes in Energy Supply Profile

• U.S. Net Electricity Generation (Billion kWh)

EIA Monthly Energy Review Feb 2019

World Population Trends

Country	2005	2015	2025	%
Japan	127.5	124.7	117.8	-7.6
Germany	82.4	81.9	80.6	-2.1
Russia	142.8	136.0	128.1	-10.3
USA	295.7	322.6	349.7	18.2
China	1306	1393	1453	11.2
India	1094	1274	1449	32.4
World	6449	7226	7959	23.4

Source: www.census.gov/ipc/www/idb/summaries.html; values in millions; percent change from 2005 to 2025

Average per capita energy consumption (2016 data)

$$611EJ = 611 \times 10^{18} J$$

Population = 7.46×10^9 persons

$$\frac{611 \times 10^{18} \text{ J}}{7.46 \times 10^{9} \text{ person}} = 81.9 \times 10^{9} \frac{\text{J}}{\text{person}}$$

$$81.9 \times 10^9 \frac{J}{\text{person}} \left(\frac{\text{GJ}}{10^9 \text{J}} \right) = 82 \frac{\text{GJ}}{\text{person}}$$

http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm

Per Capita Energy Consumption in GJ per Year (2006 → 2016 data)

Source http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm

Iceland: $568.6 \rightarrow 671.9$ Norway: $433.4 \rightarrow 391.9$

Kuwait: $495.6 \rightarrow 420.6$ Canada: $450.7 \rightarrow 429.5$

USA: $353.0 \rightarrow 323.8$ Australia: $292.1 \rightarrow 260.6$

Russia: $225.7 \rightarrow 230.8$ France: $190.6 \rightarrow 160.1$

Japan: $188.5 \rightarrow 162.3$ Germany: $187.3 \rightarrow 177.5$

UK: $170.6 \rightarrow 140.9$ S. Africa: $123.7 \rightarrow 114.3$

China: $59.3 \to 104.6$ Brazil: $54.0 \to 63.3$

Indonesia: $18.9 \rightarrow 29.3$ India: $16.8 \rightarrow 23.1$

Pakistan: $15.0 \rightarrow 17.0$ Nigeria: $8.3 \rightarrow 9.0$

Malawi: $2.0 \rightarrow 1.6$ Afghanistan: $0.6 \rightarrow 4.2$

Worldwide Primary Energy Consumption

http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm

https://www.eia.gov/beta/international/data

Energy Use vs. GNP

Tester, et. al., Sustainable Energy: Choosing Among Options, MIT Press, 2012

Social Progress Index vs Energy per Country

 Non-economic measures of societal well-being also correlate to energy use

Social Progress Index vs Energy per country

Logistics Curve and Production Rate for a Finite Resource

• Production (Q)

• Production Rate (P)

$$Q(t) = \frac{Q^{\infty}}{1 + ae^{-bt}}$$

$$P(t) = \frac{dQ(t)}{dt} \qquad Q^{\infty} = \int P(t)dt$$

US Oil Production: "Hubbert's Peak

• In 1956, Shell geophysicist M.King Hubbert predicted that US production (lower 48 states) would peak in the early 1970's. The actual peak occurred in 1970.

King Hubbert 1903-1989

Figure 21 - Ultimate United States crude-oil production based on assumed initial reserves of 150 and 200 billion barrels.

Hubbert, M.K., "Nuclear Energy and Fossil Fuels," American Petroleum Institute, 1956

World Oil Production

• Hubbert's 1956 prediction, based on an estimate of 1.25 trillion barrels of ultimate discoverable oil

Figure 20 - Ultimate world crude-oil production based upon initial reserves of 1250 billion barrels.

Worldwide Oil Production (Conventional)

• Recent calculations based on Hubbert's method:

Nashawi et al, "Forecasting Peak World Crude Oil Production Using Multicyclic Hubbert Model," Energy Fuels 2010, 24, pp1788–1800.

Past, Present, and Future Oil Production

Figure 1.4 An International Energy Agency chart indicating the challenges involved in maintaining current levels of conventional oil production (source: IEA, 2010a)

Crude Oil Prices: The Latest Data

• As of 24 May 2019: Crude Oil Price = \$68.69/bbl

http://www.bloomberg.com/energy/

http://www.tititudorancea.com/z/wti_cushing_crude_oil_prices_graphs_history.htm

Current Oil Price Projections

 Oil and natural gas are affected by assumptions about international supply and demand, and the development of U.S. shale resources

North Sea Brent oil price

2018 dollars per barrel

Natural gas price at Henry Hub

2018 dollars per million British thermal unit

Unconventional Sources of Oil

 As the price of oil increases, other sources of fossil energy become economically competitive:

New Power Plants

Renewable Energy: Example – Wind Power

• With current oil prices, land-based wind power is economically competitive as a source of energy.

London Financial Times, Dec 2008. www.ft.com