Exercices Chapitre 4 : Optimisation du transport de l'électricité

Exercice 1: Effet Joule

<u>Problématique (mode expert)</u>: Calculer la puissance dissipée par effet Joule dans une ligne électrique de résistance $R = 0.40 \Omega$ parcourue par un courant d'intensité I = 26 A.

Différentiation:

- 1) Donner la relation d'Ohm
- 2) Donner la relation reliant la puissance, la tension et le courant.
- 3) En déduire la relation de de la puissance perdue par effet Joule.
- 4) Calculer la puissance dissipée par effet Joule dans une ligne électrique de résistance R=0,40 Ω parcourue par un courant d'intensité I=26 A.

Exercice 2: Pertes sur les lignes du tramway

L'alimentation en courant continu d'un moteur électrique de tramway se fait grâce au caténaire et aux rails. Le tramway est à une distance $d=4,0\ km$ de l'alimentation.

Données : $U_{CD}=750\,V$, Intensité du courant : $I=500\,A$, Résistance linéaire du caténaire : $0,020\,\Omega.\,km^{-1}$, Résistance linéaire des rails : $0,032\,\Omega.\,km^{-1}$,

- 1) Réaliser le circuit électrique de l'alimentation du tramway. La caténaire et les rails sont représentés respectivement par des résistances. On reliera le circuit à la terre.
- 2) Calculer les valeurs des tensions U_{CA} et U_{BD}
- 3) Exprimer U_{AB} U_{AB} en fonction de U_{CD} , U_{CA} et U_{BD}
- 4) Calculer la valeur de la tension U_{AB} et expliquer le terme « chute de tension » aux bornes du caténaire et des rails.
- 5) Calculer la valeur de la puissance électrique P_a fournie par l'alimentation et celle P_t transmise au tramway.
- 6) A partir des résultats obtenus, proposer une ou plusieurs solutions pour réduire les pertes.

Exercice 3 : Un réseau de distribution

Un réseau de distribution électrique est modélisé par deux sources distributrices S_1 et S_2 , un nœud intermédiaire N et deux cibles destinatrices C_3 et C_4 avec :

P _{1max} = 18000 W	P _{2max} = 9000 W	P ₃ = 3 kW	P ₄ = 15 kW
$U_1 = 360 \text{ V et } R_1 = 0.6\Omega$	$U_2 = 260 \text{ V et } R_2 = 0.8 \Omega$	U ₃ = 230 V	U ₄ = 230 V

<u>Problématique (mode expert)</u>: A partir du graphe orienté qui modélise le réseau de distribution électrique, déterminer s'il existe une valeur de l'intensité I_1 pour que soient minimisées les pertes par effet Joule P entre la source S_1 et le nœud N sur l'intervalle [0; 50,0].

Différentiation:

1) Modéliser le réseau par un graphe orienté.

Contraintes à respecter pour minimiser les pertes par effet Joule

- 2) Calculer I_{1max} et I_{2max} les intensités du courant sortant des deux sources S_1 et S_2 .
- 3) Calculer I₃ et I₄ les intensités du courant arrivant aux deux cibles C₃ et C₄.
- 4) En appliquant la loi des nœuds (au nœud intermédiaire N), exprimer l₂ en fonction de l₁.

Déterminer la fonction en l₁ à minimiser

- 5) Donner la relation la puissance perdue par effet Joule issue des deux sources.
- 6) Vérifier que P = $f(I_1) = 1.4 I_1^2 125.12 I_1 + 4892.20$
- 7) Déterminer les valeurs de l₁ et de l₂ afin de minimiser les pertes.

Déterminer s'il existe une solution au problème posé

- 8) Comparer I₁ à I_{1max} et I₂ à I_{2max}. Les pertes par effet Joule peuvent donc être minimisées ?
- 9) Calculer les puissances minimums des deux sources P_{1min} et P_{2min}.

Exercice 4 : Un réseau de distribution

Un réseau de distribution électrique est modélisé par deux sources distributrices S_1 et S_2 , un nœud intermédiaire N et deux cibles destinatrices C_3 et C_4 avec :

<u> </u>			
P _{1max} = 18000 W	P _{2max} = 15000 W	P ₃ = 12 kW	P ₄ = 12 kW
$U_1 = 260 \text{ V et } R_1 = 0.1\Omega$	$U_2 = 260 \text{ V et } R_2 = 0.2 \Omega$	U ₃ = 230 V	U ₄ = 230 V

<u>Problématique (mode expert)</u>: A partir du graphe orienté qui modélise le réseau de distribution électrique, déterminer s'il existe une valeur de l'intensité I_1 pour que soient minimisées les pertes par effet Joule P entre la source S_1 et le nœud N sur l'intervalle [0; 69,2].

Différentiation:

1) Modéliser le réseau par un graphe orienté.

Contraintes à respecter pour minimiser les pertes par effet Joule

- 2) Calculer I_{1max} et I_{2max} les intensités du courant sortant des deux sources S_1 et S_2 .
- 3) Calculer I₃ et I₄ les intensités du courant arrivant aux deux cibles C₃ et C₄.
- 4) En appliquant la loi des nœuds (au nœud intermédiaire N), exprimer l2 en fonction de l1.

Déterminer la fonction en l₁ à minimiser

- 5) Donner la relation la puissance perdue par effet Joule issue des deux sources $P = f(I_1)$
- 6) Déterminer les valeurs de l₁ et de l₂ afin de minimiser les pertes.

Déterminer s'il existe une solution au problème posé

- 7) Comparer I₁ à I_{1max} et I₂ à I_{2max}. Les pertes par effet Joule peuvent donc être minimisées ?
- 8) Calculer les puissances minimums des deux sources P_{1min} et P_{2min} .