SUJET n°2 (CENTRALE PSI 2016)

I. Transformation de Fourier

I.A φ est continue sur $\mathbb{R} \setminus \{-\frac{1}{2}, \frac{1}{2}\}$ et en $\pm \frac{1}{2}$, elle admet des limites finies à droite et gauche. C'est donc une fonction continue par morceaux sur \mathbb{R} . Au voisinage de $\pm \infty$, φ est nulle et donc intégrable. Finalement :

$$\varphi \in E_{cnm}$$

On a immédiatement, pour tout $x \in \mathbb{R}^*$:

$$\mathcal{F}(\varphi)(x) = \int_{-\infty}^{+\infty} \varphi(t) e^{-2\pi i t x} dt = \int_{-1/2}^{1/2} e^{-2i\pi x t} dt = \left[-\frac{1}{2i\pi x} \right]_{-1/2}^{1/2} = -\frac{1}{2i\pi x} (e^{-i\pi x} - e^{i\pi x}) = \frac{\sin(\pi x)}{\pi x} .$$

De plus,

$$\mathcal{F}(\varphi)(0) = \int_{-1/2}^{1/2} dt = 1.$$

I.B

I.B.1 En utilisant directement le développement en série entière de la fonction sin, de rayon de convergence infini, on trouve que :

$$\forall x \neq 0, \ \psi(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} (\pi x)^{2n} = \sum_{n=0}^{+\infty} \frac{(-\pi^2)^n}{(2n+1)!} x^{2n},$$

et cette formule reste valable pour x=0. On a donc trouvé le développement en série entière de ψ et montré que le rayon de convergence est infini.

La somme d'une série entière étant de classe \mathscr{C}^{∞} sur l'intervalle ouvert de convergence, on a donc :

$$\psi \in \mathscr{C}^{\infty}(\mathbb{R}).$$

I.B.2 Soit $n \in \mathbb{N}$; sur [n; n+1], $\frac{1}{x} \geqslant \frac{1}{n+1}$. On en déduit que :

$$\int_{n}^{n+1} |\psi(x)| \, \mathrm{d}x \geqslant \frac{1}{\pi(n+1)} \int_{n}^{n+1} |\sin(\pi x)| \, \mathrm{d}x$$

Par le changement de variable $y = \pi x - n\pi$ on a :

$$\int_{n}^{n+1} |\sin(\pi x)| \, \mathrm{d}x = \frac{1}{\pi} \int_{0}^{\pi} |(-1)^{n} \sin y| \, \, \mathrm{d}y = \frac{1}{\pi} \int_{0}^{\pi} \sin y \, \mathrm{d}y = \frac{1}{\pi} \cdot \frac{1}{\pi} \int_{0}^{\pi} \sin y \, \mathrm{d}y = \frac{1}{\pi} \cdot \frac{1}{\pi} \int_{0}^{\pi} \sin y \, \mathrm{d}y = \frac{1}{\pi} \cdot \frac{1}{\pi} \int_{0}^{\pi} \sin y \, \mathrm{d}y = \frac{1}{\pi} \cdot \frac{1}{\pi} \int_{0}^{\pi} \sin y \, \mathrm{d}y = \frac{1}{\pi} \cdot \frac{1}{\pi} \int_{0}^{\pi} \sin y \, \mathrm{d}y = \frac{1}{\pi} \cdot \frac{1}{\pi} \int_{0}^{\pi} \sin y \, \mathrm{d}y = \frac{1}{\pi} \cdot \frac{1}{\pi} \int_{0}^{\pi} \sin y \, \mathrm{d}y = \frac{1}{\pi} \cdot \frac{1}{\pi} \cdot \frac{1}{\pi} \int_{0}^{\pi} \sin y \, \mathrm{d}y = \frac{1}{\pi} \cdot \frac{1}{\pi} \cdot \frac{1}{\pi} \cdot \frac{1}{\pi} \int_{0}^{\pi} \sin y \, \mathrm{d}y = \frac{1}{\pi} \cdot \frac{1}{\pi} \cdot \frac{1}{\pi} \cdot \frac{1}{\pi} \int_{0}^{\pi} \sin y \, \mathrm{d}y = \frac{1}{\pi} \cdot \frac{1}{\pi$$

Ainsi,

$$\int_{n}^{n+1} |\psi(x)| \, \mathrm{d}x \geqslant \frac{2}{\pi^2(n+1)} \cdot$$

On en déduit que

$$\forall n \in \mathbb{N}^*, \ \int_0^n |\psi(x)| \, \mathrm{d}x \geqslant \frac{2}{\pi^2} \sum_{k=1}^n \frac{1}{k}$$

Puisque la série harmonique diverge, on a donc $\lim_{n\to+\infty}\int_0^n |\psi(x)|\,\mathrm{d}x = +\infty$.

La fonction $X \mapsto \int_0^X |\psi(x)| \, \mathrm{d}x$ étant croissante sur \mathbb{R}_+ , on en déduit $\lim_{X \to +\infty} \int_0^X |\psi(x)| \, \mathrm{d}x = +\infty$. ψ n'est donc pas intégrable sur \mathbb{R}_+ . En particulier,

$$\psi \notin E_{cnm}$$
.

I.C Il s'agit d'utiliser le théorème de continuité des intégrales à paramètres. Soit donc $f \in E_{cpm}$.

- $\forall x \in \mathbb{R}, \ t \mapsto f(t)e^{-2i\pi xt}$ est continue (par morceaux) sur \mathbb{R} .
- $\forall t \in \mathbb{R}, \ x \mapsto f(t)e^{-2i\pi xt} \text{ est continue sur } \mathbb{R}.$

 $- \ \forall x \in \mathbb{R}, \ \forall t \in \mathbb{R}, \ |f(t)e^{-2\mathrm{i}\pi xt}| = |f(t)|, \ \text{et la fonction dominante} \ t \mapsto |f(t)| \ \text{est intégrable sur } \mathbb{R}.$

Le théorème s'applique et donne :

$$\mathcal{F}(f) \in \mathscr{C}^0(\mathbb{R}).$$

- **I.D** Soit $f \in \mathcal{S}$.
- **I.D.1** Soit $n \in \mathbb{N}$. $x \mapsto x^n f(x)$ est continue sur \mathbb{R} et les seuls problèmes d'intégrabilité sont au voisinage de $\pm \infty$.

 $x \mapsto x^{n+2} f(x)$ étant bornée sur \mathbb{R} , on a $x^n f(x) = \mathcal{O}\left(\frac{1}{x^2}\right)$ au voisinage de $\pm \infty$; la fonction $x \mapsto \frac{1}{x^2}$ étant une fonction de Riemann positive et intégrable au voisinage de $\pm \infty$, les théorèmes de comparaison nous donnent l'intégrabilité voulue.

- I.D.2 On veut maintenant utiliser le théorème de régularité des intégrales à paramètres.
 - $\forall t \in \mathbb{R}, x \mapsto f(t)e^{-2i\pi xt}$ est de classe \mathscr{C}^{∞} sur \mathbb{R} , et pour tout $n \in \mathbb{N}$ sa dérivée n-ième est $x \mapsto (-2i\pi)^n t^n f(t) e^{-2i\pi xt}$.
 - $-\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ t \mapsto (-2i\pi)^n t^n f(t) e^{-2i\pi xt}$ est continue (par morceaux) sur \mathbb{R} .
 - $\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ \forall t \in \mathbb{R}, \ \left| (-2i\pi)^n t^n f(t) e^{-2i\pi xt} \right| = (2\pi)^n |t^n f(t)|, \text{ et la fonction dominante } t \mapsto (2\pi)^n |t^n f(t)| \text{ est indépendant de } x \text{ et intégrable sur } \mathbb{R} \text{ (on vient de le voir).}$

Le théorème s'applique et donne $\mathcal{F}(f) \in \mathscr{C}^{\infty}(\mathbb{R})$ avec :

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ (\mathcal{F}(f))^{(n)}(x) = (-2i\pi)^n \int_{-\infty}^{+\infty} t^n f(t) e^{-2i\pi x} dt.$$

I.E

I.E.1 θ est continue et $\theta(x)$ est négligeable devant toute puissance de x au voisinage de $\pm \infty$ par croissances comparées. En particulier pour tout $n \in \mathbb{N}$, $x \mapsto x^n \theta(x)$ est continue et de limite finie (et même nulle) en $\pm \infty$ et donc bornée. Ainsi :

$$\theta \in \mathcal{S}$$
.

La question précédente donne alors la dérivabilité de $y = \mathcal{F}(\theta)$ avec :

$$\forall x \in \mathbb{R}, \ y'(x) = (-2i\pi) \int_{-\infty}^{+\infty} t e^{-\pi t^2} e^{-2i\pi xt} dt.$$

On a alors:

$$\forall x \in \mathbb{R}, \ y'(x) + 2\pi xy(x) = i \int_{-\infty}^{+\infty} (-2\pi t - 2i\pi x)e^{-\pi t^2 - 2i\pi xt} dt$$

La fonction (de t) sous l'intégrale est la dérivée de $t \mapsto e^{-\pi t^2 - 2i\pi xt}$ dont la limite en $\pm \infty$ est nulle (son module vaut $\theta(t)$). L'intégrale est donc nulle et

$$\forall x \in \mathbb{R}, \ y'(x) + 2\pi x y(x) = 0.$$

I.E.2 On résout cette équation différentielle linéaire homogène d'ordre 1. Il existe une constante C telle que

$$\forall x \in \mathbb{R}, \ y(x) = Ce^{-\pi x^2}.$$

Avec l'intégrale de Gauss rappelée dans l'énoncé, on sait que y(0) = 1 et donc que C = 1. On a ainsi :

$$\forall x \in \mathbb{R}, \ y(x) = e^{-\pi x^2},$$

ce qui s'écrit, en revenant aux notations de l'énoncé : $\mathcal{F}(\theta) = \theta$.

II. Formule d'inversion de Fourier

 $\mathbf{II.A}$ On veut utiliser le théorème de convergence dominée sur $\mathbb R$ avec la suite de fonctions :

$$u_n : x \mapsto \mathcal{F}(f)(x)\theta\left(\frac{x}{n}\right)$$
.

On vérifie les hypothèses de ce théorème :

- Pour tout n, u_n est continue sur \mathbb{R} (en utilisant **I.C.**).
- Comme θ est continue en 0, la suite $(u_n)_{n\in\mathbb{N}^*}$ converge simplement sur \mathbb{R} vers $\mathcal{F}(f)$ (car $\theta(0)=1$) et cette limite simple est continue sur \mathbb{R} .

- Pour tout $n, |u_n| \leq |\mathcal{F}(f)|$ ($|\theta|$ est majorée par 1) et le majorant est intégrable sur \mathbb{R} .

Le théorème s'applique et indique que :

$$\lim_{n \to +\infty} I_n = \int_{-\infty}^{+\infty} \mathcal{F}(f)(x) \, \mathrm{d}x.$$

II.B On veut utiliser le théorème de convergence dominée sur $\mathbb R$ avec la suite de fonctions :

$$v_n : t \mapsto \mathcal{F}(\theta)(t) f\left(\frac{t}{n}\right) = \theta(t) f\left(\frac{t}{n}\right)$$

On vérifie les hypothèses de ce théorème :

- Pour tout n, v_n est continue sur \mathbb{R} .
- Comme f est continue en 0, la suite $(v_n)_{n\in\mathbb{N}^*}$ converge simplement sur \mathbb{R} vers $f(0)\theta$ et cette limite simple est continue sur \mathbb{R} .
- f étant dans S, elle est bornée sur \mathbb{R} $(f(t) = t^0 f(t))$. Pour tout n, $|v_n| \leq ||f||_{\infty} \theta$ et le majorant est intégrable sur \mathbb{R} .

Le théorème s'applique et indique que :

$$\lim_{n \to +\infty} J_n = f(0) \int_{-\infty}^{+\infty} \theta(t) \, \mathrm{d}t = f(0).$$

II.C En revenant à la définition de $\mathcal{F}(f)$, on a :

$$I_n = \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(t) e^{-2i\pi xt} \theta\left(\frac{x}{n}\right) dt \right) dx.$$

La formule de Fubini donne alors :

$$I_n = \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(t) e^{-2i\pi xt} \theta\left(\frac{x}{n}\right) dx \right) dt.$$

Dans l'intégrale intérieure, on effectue le changement de variable linéaire (donc licite) u=x/n pour obtenir :

$$I_n = n \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(t) e^{-2in\pi u t} \theta(u) du \right) dt.$$

Dans l'intégrale extérieure, on effectue le changement de variable linéaire v=nt pour obtenir :

$$I_n = \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f\left(\frac{v}{n}\right) e^{-2i\pi u t} \theta(u) du \right) dv = \int_{-\infty}^{+\infty} f\left(\frac{v}{n}\right) \underbrace{\left(\int_{-\infty}^{+\infty} e^{-2i\pi u t} \theta(u) du \right)}_{=\mathcal{F}(\theta)(u)} dv.$$

En conclusion:

$$I_n = J_n$$

II.D Il suffit de combiner les trois questions qui précèdent pour conclure que :

$$f(0) = \int_{-\infty}^{+\infty} \mathcal{F}(f)(x) \, \mathrm{d}x$$

Soit $x \in \mathbb{R}$ fixé, et posons $h \colon t \mapsto f(x+t)$. h est continue, comme f. De plus, pour |t| assez grand,

$$t^n h(t) = \frac{t^n}{(x+t)^n} (x+t)^n f(x+t) \underset{t \to \pm \infty}{\sim} (x+t)^n f(x+t)$$

ce qui montre que $t \mapsto t^n h(t)$ est bornée, comme f, au voisinage de $\pm \infty$ et donc sur \mathbb{R} (puisque continue et donc bornée sur tout segment). On peut alors appliquer ce qui précède à h et affirmer que :

$$f(x) = h(0) = \int_{-\infty}^{+\infty} \mathcal{F}(h)(y) \, \mathrm{d}y.$$

On remarque alors, avec le changement de variable affine u = x + t, que :

$$\mathcal{F}(h)(y) = \int_{-\infty}^{+\infty} f(x+t)e^{-2\mathrm{i}\pi ty} \, \mathrm{d}t = e^{2\mathrm{i}\pi yx} \int_{-\infty}^{+\infty} f(u)e^{-2\mathrm{i}\pi uy} \, du = e^{2\mathrm{i}\pi yx} \mathcal{F}(f)(y).$$

On a ainsi montré que

$$f(x) = \int_{-\infty}^{+\infty} e^{2i\pi yx} \mathcal{F}(f)(y) \, \mathrm{d}y.$$

II.E La fonction $x \mapsto \frac{1}{2}e^{-|x|}$ est dans S (elle est continue sur \mathbb{R} et dominée au voisinage de $\pm \infty$ par toute puissance de x par croissances comparées). De plus,

$$\forall x \in \mathbb{R}, \ \mathcal{F}(f)(x) = \frac{1}{2} \int_{-\infty}^{+\infty} e^{-|t| - 2\pi i t x} \, \mathrm{d}t.$$

On calcule cette intégrale en utilisant la relation de Chasles, et en utilisant le fait que $\lim_{t\to\pm\infty}e^{-|t|-2\pi\mathrm{i}tx}=0$ (module égal à $\mathrm{e}^{-|t|}$):

$$\begin{split} \mathcal{F}(f)(x) &= \frac{1}{2} \int_{-\infty}^{0} e^{t(1-2\pi \mathrm{i}x)} \, \mathrm{d}t + \frac{1}{2} \int_{-\infty}^{0} e^{t(-1-2\pi \mathrm{i}x)} \, \mathrm{d}t \\ &= \frac{1}{2} \left(\left[\frac{1}{1-2\pi \mathrm{i}x} e^{t(1-2\pi \mathrm{i}x)} \right]_{t=-\infty}^{t=0} - \left[\frac{1}{1+2\pi \mathrm{i}x} e^{t(-1-2\pi \mathrm{i}x)} \right]_{t=0}^{t=+\infty} \right) \\ &= \frac{1}{2} \left(\frac{1}{1-2\pi \mathrm{i}x} + \frac{1}{1+2\pi \mathrm{i}x} \right) = \frac{1}{1+4\pi^2 x^2} \, . \end{split}$$

On a donc avec la question précédente :

$$\forall x \in \mathbb{R}, \ \frac{1}{2}e^{-|x|} = \int_{-\infty}^{+\infty} \frac{e^{2i\pi yx}}{1 + (2\pi y)^2} \, dy.$$

III. Transformée de Fourier à support compact

III.A D'après 1.D, $\mathcal{F}(f) \in \mathscr{C}^{\infty}(\mathbb{R})$ (puisque $f \in \mathcal{S}$). De plus $\mathcal{F}(f)$ est nulle en dehors d'un segment et donc dominée par toute puissance de x au voisinage des infinis. On a donc $\mathcal{F}(f) \in \mathcal{S}$. En reprenant la même démarche qu'en I.D.2 (changer x en -x), la formule (2.1) de la question II.D montre que f est de classe \mathscr{C}^{∞} sur \mathbb{R} et que :

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ f^{(n)}(x) = \int_{-1/2}^{1/2} (2i\pi t)^n \mathcal{F}(f)(t) e^{2i\pi tx} dt.$$

III.B - 1ère solution : utilisation de la formule de Taylor

Rappelons la formule de Taylor avec reste intégrale : si h est une fonction de classe \mathscr{C}^{∞} sur \mathbb{R} alors pour tout entier n et tous $a,b\in\mathbb{R}$:

$$h(b) = \sum_{k=0}^{n} \frac{(b-a)^k}{k!} h^{(k)}(a) + \int_a^b \frac{(b-t)^n}{n!} h^{(n+1)}(t) dt.$$

On applique ceci avec f pour b = x et $a = x_0$:

$$\forall n \in \mathbb{N}, \ f(x) - \sum_{k=0}^{n} \frac{(x - x_0)^k}{k!} f^{(k)}(x_0) = \int_{x_0}^{x} \frac{(x - t)^n}{n!} f^{(n+1)}(t) \, \mathrm{d}t.$$

Montrons que ce terme est de limite nulle quand $n \to +\infty$. Pour cela, on le majore en module :

$$\left| \int_{x_0}^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) \, \mathrm{d}t \right| \le \left| \int_{x_0}^x \left| \frac{(x-t)^n}{n!} f^{(n+1)}(t) \right| \, \mathrm{d}t \right|$$

$$\le \|f^{(n+1)}\|_{\infty}^{[x;x_0]} \left| \int_{x_0}^x \frac{|x-t|^n}{n!} \right| = \frac{|x-x_0|^{n+1}}{n!} \|f^{(n+1)}\|_{\infty}^{[x;x_0]}.$$

Or $\mathcal{F}(f)$ est bornée sur \mathbb{R} (puisque continue et nulle en dehors d'un segment) donc la formule obtenue en III.A donne :

$$\forall y \in \mathbb{R}, |f^{(n)}(y)| \leq |\pi y|^n \int_{-1/2}^{1/2} |2t|^n |\mathcal{F}(f)(t)| \, \mathrm{d}t \leq |\pi y|^n ||\mathcal{F}(f)||_{\infty}.$$

On a donc:

$$||f^{(n)}||_{\infty}^{[x;x_0]} \le |\pi \max(|x|,|x_0|)|^n ||\mathcal{F}(f)||_{\infty}$$

et ainsi

$$\left| \int_{x_0}^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) \, \mathrm{d}t \right| \leqslant \frac{|\pi \max(|x|, |x_0|)(x-x_0)|^{n+1}}{n!} \|\mathcal{F}(f)\|_{\infty}.$$

Par croissances comparées des fonctions exponentielle et factorielle, ce terme tend vers 0 quand $n \to +\infty$. On peut ainsi passer à la limite et affirmer que :

$$f(x) = \sum_{k=0}^{+\infty} \frac{(x-x_0)^k}{k!} f^{(k)}(x_0).$$

En reprenant l'expression des dérivées de f, on trouve finalement :

$$f(x) = \sum_{k=0}^{+\infty} \frac{(x - x_0)^k}{k!} \int_{-1/2}^{1/2} (2i\pi t)^k \mathcal{F}(f)(t) e^{2i\pi t x_0} dt.$$

- 2ème solution

Il est également possible (je ne détaille pas) d'utiliser un des théorèmes d'interversion série-intégrale, en utilisant la suite de fonctions (h_k) définies par

$$h_k: t \mapsto \frac{(x-x_0)^k}{k!} (2i\pi t)^k \mathcal{F}(f)(t) e^{2i\pi t x_0}.$$

Les majorations utilisées sont semblables à celles faites dans la 1ère solution.

III.C Supposons f nulle sur un intervalle $|x_0 - r; x_0 + r|$ avec r > 0. On a alors

$$\forall x \in]-r; r[, \ 0 = f(x_0 + x) = \sum_{k=0}^{+\infty} \frac{x^k}{k!} \int_{-1/2}^{1/2} (2i\pi t)^k \mathcal{F}(f)(t) e^{2i\pi t x_0} dt.$$

Comme r>0, l'unicité du développement en série entière de la fonction nulle donne la nullité de $\int_{-1/2}^{1/2} (2\mathrm{i}\pi t)^k \mathcal{F}(f)(t) e^{2\mathrm{i}\pi t x_0} \,\mathrm{d}t \text{ pour tout } n. \text{ La question précédente donne alors la nullité de } f \text{ sur } \mathbb{R}.$

Ainsi, dès que f est nulle sur un intervalle d'intérieur non vide, elle est nulle, ce qui est un résultat plus fort que celui demandé (?).

IV. Cas de fonctions périodiques

Cette partie démontre des résultats classiques sur le développement d'une fonction périodique en série de Fourier.

IV.A.1 Par théorèmes généraux, g est de classe \mathscr{C}^{∞} sur $]-1;1[\setminus\{0\}$ (quotient de deux telles fonctions avec le dénominateur qui ne s'annule pas). De plus,

$$\forall x \in]-1; 1[\setminus \{0\}, \ g(x) = \frac{f(x) - f(0)}{x} \frac{x}{\sin(\pi x)} \underset{0}{\sim} \frac{1}{\pi} \frac{f(x) - f(0)}{x} \underset{x \to 0}{\rightarrow} \frac{f'(0)}{\pi} = g(0),$$

ce qui montre que g est continue en 0.

IV.A.2 On calcule:

$$\forall x \in]-1; 1[\setminus \{0\}, \ g'(x) = \frac{f'(x)\sin(\pi x) - \pi\cos(\pi x)(f(x) - f(0))}{\sin^2(\pi x)}$$

Par formule de Taylor-Young, au voisinage de 0,

$$f'(x) = f'(0) + xf''(0) + o(x)$$
, $f(x) - f(0) = xf'(0) + \frac{x^2}{2}f''(0) + o(x^2)$,

et on a aussi $\sin(\pi x) = \pi x + o(x^2)$ et $\cos(\pi x) = 1 + o(x)$. On en déduit :

$$f'(x)\sin(\pi x) - \pi\cos(\pi x)(f(x) - f(0)) = \frac{\pi f''(0)}{2}x^2 + o(x^2).$$

Comme $\sin^2(\pi x) \sim \pi^2 x^2$, on trouve que :

$$\lim_{x \to 0} g'(x) = \frac{f''(0)}{2\pi} \cdot$$

On est alors (avec la question précédente) dans le cadre d'utilisation du théorème de la limite de la dérivée qui nous dit que g est dérivable en 0 avec $g'(0) = \frac{f''(0)}{2\pi}$ et que g' est continue en 0. On a ainsi :

$$g \in \mathcal{C}^1(]-1;1[)$$
 et $g'(0) = \frac{f''(0)}{2\pi}$

La démonstration du fait que g est aussi dérivable en ± 1 est complètement similaire, c'est pour cette raison que cela est admis par l'énoncé.

IV.B Si $k \neq 0$, une primitive de $x \mapsto e^{2i\pi kx}$ est $x \mapsto \frac{1}{2i\pi k}e^{2i\pi kx}$. Cette primitive étant 1-périodique, l'intégrale de $e^{2i\pi kx}$ est nulle sur un intervalle de longueur 1. On a alors, par linéarité de l'intégrale :

$$\int_{-1/2}^{1/2} S_n(x) \, \mathrm{d}x = \int_{-1/2}^{1/2} \, \mathrm{d}x = 1.$$

 ${\bf IV.C}~\it Calcul~archi-classique\,!$ On remarque que :

$$S_n(x) = \mathcal{I}m\left(\sum_{k=-n}^n (e^{2i\pi x})^k\right).$$

Pour $x \in \left[-\frac{1}{2}; \frac{1}{2}\right] \setminus \{0\}$, on a une somme géométrique de raison $e^{2i\pi x} \neq 1$ d'où (factorisation par la demi-somme des angles et formule d'Euler) :

$$S_n(x) = \mathcal{I}m\left(\frac{e^{-2\mathrm{i}\pi nx} - e^{2\mathrm{i}\pi(n+1)x}}{1 - e^{2\mathrm{i}\pi x}}\right) = \mathcal{I}m\left(\frac{-2i\sin((2n+1)\pi x)}{-2i\sin(\pi x)}\right) = \frac{\sin((2n+1)\pi x)}{\sin(\pi x)} \cdot \frac{\sin((2n+1)\pi x)}{\sin(\pi x)}$$

IV.D Par linéarité de l'intégration on a :

$$\sum_{k=-n}^{n} c_k(f) = \int_{-1/2}^{1/2} f(x) \sum_{k=-n}^{n} e^{-2i\pi kx} dx = \int_{-1/2}^{1/2} f(x) S_n(-x) dx = \int_{-1/2}^{1/2} f(x) \frac{\sin((2n+1)\pi x)}{\sin(\pi x)} dx.$$

Avec la définition de g, ceci donne :

$$\sum_{k=-n}^{n} c_k(f) = \int_{-1/2}^{1/2} \left(g(x) + \frac{f(0)}{\sin(\pi x)} \right) \sin((2n+1)\pi x) dx$$

$$= \int_{-1/2}^{1/2} g(x) \sin((2n+1)\pi x) dx + f(0) \int_{-1/2}^{1/2} S_n(x) dx$$

$$= \int_{-1/2}^{1/2} g(x) \sin((2n+1)\pi x) dx + f(0).$$

IV.E g étant de classe \mathscr{C}^1 sur $\left[-\frac{1}{2};\frac{1}{2}\right]$, on peut intégrer par parties :

$$\int_{-1/2}^{1/2} g(x) \sin((2n+1)\pi x) dx = \left[-\frac{\cos((2n+1)\pi x)}{(2n+1)\pi} g(x) \right]_{-1/2}^{1/2} + \frac{1}{(2n+1)\pi} \int_{-1/2}^{1/2} g'(x) \cos((2n+1)\pi x) dx.$$

Avec le cosinus, le terme entre crochets est nul. g' étant continue sur le segment $\left[-\frac{1}{2};\frac{1}{2}\right]$, on peut alors majorer grossièrement :

$$\left| \int_{-1/2}^{1/2} g(x) \sin((2n+1)\pi x) \, \mathrm{d}x \right| \leqslant \frac{\|g'\|_{\infty}^{\left[-\frac{1}{2}; \frac{1}{2}\right]}}{(2n+1)\pi} = \frac{C}{2n+1} \quad \text{avec} \quad C = \frac{\|g'\|_{\infty}^{\left[-\frac{1}{2}; \frac{1}{2}\right]}}{\pi} \, .$$

IV.F Fixons x et t dans $\left[-\frac{1}{2};\frac{1}{2}\right]$. D'après l'égalité des accroissements finis, il existe $c_{x,t} \in [t;x+t]$ tel que $f(x+t) - f(t) = xf'(c_{x,t})$. On peut alors écrire que :

$$G_t(x) = (f'(x+t) - f'(c_{x,t}))\sin(\pi x) + f'(c_{x,t})(\sin(\pi x) - x\pi\cos(\pi x)).$$

Remarquons que chaque dérivée de f est bornée sur $\mathbb R$ puisque continue et périodique.

- Par inégalité des accroissements finis, on a

$$|f'(x+t) - f'(c_{x,t})| \le |x+t - c_{x,t}| ||f''||_{\infty} \le |x| ||f''||_{\infty}.$$

- De même,

$$|\sin(\pi x)| = |\sin(\pi x) - \sin(0)| \le |\pi x|.$$

- $\|f'(c_{x,t})\| \leq \|f'\|_{\infty}.$
- $-\sin(\pi x) x\pi\cos(\pi x) = (\pi x + o(x^2)) x\pi(1 + o(x)) = o(x^2). \frac{\sin(\pi x) x\pi\cos(\pi x)}{x^2} \text{ est donc prolongeable par continuité en 0 et est bornée sur le segment } \left[-\frac{1}{2}; \frac{1}{2}\right]:$

$$\exists c \text{ tel que } \forall x \in \left[-\frac{1}{2}; \frac{1}{2}\right], \ \left|\sin(\pi x) - x\pi\cos(\pi x)\right| \leqslant cx^2.$$

En utilisant alors l'inégalité triangulaire et les inégalités ci-dessus, on obtient :

$$|G_t(x)| \le (\pi ||f''||_{\infty} + c||f'||_{\infty})x^2 = Dx^2,$$

D étant indépendante de x et t.

IV.G Fixons $t \in \left[-\frac{1}{2}; \frac{1}{2}\right]$. La fonction $h_t \colon x \mapsto f(x+t)$ est de classe \mathscr{C}^{∞} sur \mathbb{R} et 1-périodique; on peut lui appliquer la question **IV.D**. En posant $g_t(x) = \frac{h_t(x) - h_t(0)}{\sin(\pi x)}$ pour $x \in]-1; 1[\setminus \{0\}, g_t(0) = \frac{h'_t(0)}{\pi}$ et $g_t(1) = g_t(-1) = -g_t(0)$ on a alors:

$$\sum_{k=-n}^{n} c_k(h_t) = h_t(0) + \int_{-1/2}^{1/2} g_t(x) \sin((2n+1)\pi x) dx.$$

Compte-tenu de l'expression de h_t , on a (changement de variable affine u = x + t):

$$c_n(h_t) = \int_{-1/2}^{1/2} f(x+t)e^{-2\pi i nx} dx = e^{2\pi i nt} \int_{t-1/2}^{t+1/2} f(u)e^{-2\pi i nu} du.$$

Comme l'intégrale d'une fonction périodique est la même sur tout segment de longueur la période, on trouve que $c_n(h_t) = e^{2\pi i nt} c_n(f)$ et ainsi

$$f(t) - \sum_{k=-n}^{n} c_k(f)e^{2i\pi kt} = -\int_{-1/2}^{1/2} g_t(x)\sin((2n+1)\pi x) dx.$$

Avec la question IV.E, on trouve alors que :

$$\left| f(t) - \sum_{k=-n}^{n} c_k(f) e^{2i\pi kt} \right| \leqslant \frac{\|g_t'\|_{\infty}^{\left[-\frac{1}{2}; \frac{1}{2}\right]}}{\pi} \frac{1}{2n+1} \cdot$$

Remarquons maintenant qu'avec la question précédente.

$$|g'_t(x)| = \frac{|G_t(x)|}{\sin^2(\pi x)} \le D \frac{x^2}{\sin^2(\pi x)}$$

 $x\mapsto \frac{x^2}{\sin^2(\pi x)}$ est continue sur $\left[-\frac{1}{2}\,;\frac{1}{2}\right]\setminus\{0\}$ et prolongeable par continuité en 0. C'est donc une fonction bornée sur le segment. Notons M sa norme infinie. On a alors $\|g'\|_{\infty}^{\left[-\frac{1}{2};\frac{1}{2}\right]}\leqslant M$ et enfin :

$$\left| f(t) - \sum_{k=-n}^{n} c_k(f) e^{2i\pi kt} \right| \leq \frac{DM}{\pi} \frac{1}{2n+1} = \frac{E}{2n+1},$$

où E est une constante (indépendante de x et t).

V. Formule d'échantillonage de Shannon

V.A $\mathcal{F}(f)$ étant nulle hors de $\left[-\frac{1}{2};\frac{1}{2}\right]$, ses dérivées à tout ordre à droite en $\frac{1}{2}$ et à gauche en $-\frac{1}{2}$ sont nulles. Comme c'est une fonction de classe \mathscr{C}^{∞} , on a donc :

$$\forall n \in \mathbb{N}, \ (\mathcal{F}(f))^{(n)} \left(\frac{1}{2}\right) = (\mathcal{F}(f))^{(n)} \left(-\frac{1}{2}\right) = 0.$$

V.B h est de classe \mathscr{C}^{∞} en tout point de l'ouvert $]-\frac{1}{2};\frac{1}{2}[$. Par périodicité, elle est indéfiniment en tout point hors de $\frac{1}{2} + \mathbb{Z}$.

Par périodicité, pour montrer que h est de classse \mathscr{C}^{∞} sur \mathbb{R} , il suffit de montrer que h est indéfiniment dérivable à gauche en $\frac{1}{2}$ et à droite en $-\frac{1}{2}$ avec égalité des dérivées à tout ordre à droite et gauche en $-\frac{1}{2}$ et $\frac{1}{2}$ (par généralisation du théorème de prolongement de la dérivée). C'est ce que l'on a fait en question précédente.

V.C On peut ainsi appliquer l'identité (4.1) à h. En posant $d_k = c_k(h)$, on trouve que :

$$\left\| h - \sum_{k=-n}^{n} d_k e_k \right\|^{\left[-\frac{1}{2}; \frac{1}{2} \right]} \leqslant \frac{E}{2n+1} \text{ avec } e_k \colon t \mapsto e^{2ik\pi t} ,$$

ce qui prouve la convergence uniforme voulue sur $\left[-\frac{1}{2};\frac{1}{2}\right]$ (où h coïncide avec $\mathcal{F}(f)$).

V.D La formule (2.1) donne : $\forall x \in \mathbb{R}, \ f(x) = \int_{-1/2}^{1/2} h(\xi) e^{2i\pi x \xi} d\xi.$

D'autre part, si $x \neq -k$, on a

$$\int_{-1/2}^{1/2} e^{2i\pi(x+k)\xi} d\xi = \frac{1}{2i\pi(x+k)} (e^{i\pi(x+k)} - e^{-i\pi(x+k)}) = \psi(x+k) = \psi_k(x),$$

et cela reste vrai pour x = -k ($\psi(0) = 1$).

On a donc:

$$\forall x \in \mathbb{R}, \ f(x) - \sum_{k=-n}^{n} d_k \psi_k(x) = \int_{-1/2}^{1/2} \left(h(\xi) - \sum_{k=-n}^{n} d_k e^{2i\pi k\xi} \right) e^{2i\pi x\xi} \ d\xi$$

Une majoration grossière donne (l'exponentielle complexe est de module 1 et on intègre sur un intervalle de longueur 1) :

$$\left\| f - \sum_{k=-n}^{n} d_k \psi_k \right\|_{\infty}^{\mathbb{R}} \leqslant \left\| h - \sum_{k=-n}^{n} d_k e_k \right\|_{\infty}^{\left[-\frac{1}{2}, \frac{1}{2} \right]}$$

et on a la convergence uniforme voulue en utilisant la question précédente.

V.E La convergence uniforme entraînant la convergence simple, on a :

$$\forall j \in \mathbb{Z}, \ f(-j) = \sum_{k=-n}^{n} d_k \psi_k(-j) = d_j$$

puisque $\psi_k(-j) = \psi(k-j)$ vaut 1 si k=j et est nul sinon.

VI. Transformation de Laplace

VI.A On applique le théorème de régularité d'une intégrale à paramètre...

VI.B

VI.B.1 (Question de cours)

La fonction génératrice des variables X_i est :

$$G_{X_i}(t) = \mathbb{E}(t^{X_i}) = \sum_{k=0}^{+\infty} \mathbb{P}(X_i = k)t^k = \sum_{k=0}^{+\infty} e^{-\lambda} \frac{\lambda^k}{k!} t^k = e^{\lambda(t-1)}.$$

On sait aussi que si X et Y sont deux variables indépendantes, t^X et t^Y le sont et donc $\mathbb{E}(t^{X+Y}) = \mathbb{E}(t^X t^Y) = G_X(t) G_Y(t)$.

Montrons maintenant, par récurrence, que $S_n \hookrightarrow \mathcal{P}(n\lambda)$.

- C'est immédiat au rang n=1.
- Supposons le résultat vrai au rang $n \ge 1$. Comme S_n et X_{n+1} sont indépendantes,

$$G_{S_{n+1}}(t) = G_{S_n}(t)G_{X_{n+1}}(t) = e^{n\lambda(t-1)}e^{\lambda(t-1)} = e^{(n+1)\lambda(t-1)}$$

 S_{n+1} suit donc une loi de Poisson de paramètre $(n+1)\lambda$ puisque sa fonction génératrice est celle d'une telle loi.

VI.B.2 (Question de cours, cf. loi faible des grands nombres)

Par linéarité de l'espérance, $\mathbb{E}\left(\frac{S_n}{n}\right) = \lambda$ puisque l'espérance de chaque X_i est égale à λ .

De plus, les variables étant indépendantes, et puisque $\mathbb{V}(X_i) = \lambda$ pour tout i:

$$\mathbb{V}(S_n) = \sum_{i=1}^n \mathbb{V}(X_i) = n\lambda,$$

donc
$$\mathbb{V}\left(\frac{S_n}{n}\right) = \frac{1}{n^2}\mathbb{V}(S_n) = \frac{\lambda}{n}$$
.

L'inégalité de Bienaymé-Tchebychev appliquée à la variable aléatoire $\frac{S_n}{n}$ s'écrit :

$$\mathbb{P}\left(\left|\frac{S_n}{n} - \mathbb{E}\left(\frac{S_n}{n}\right)\right| \geqslant \varepsilon\right) \leqslant \frac{1}{\varepsilon^2} \mathbb{V}\left(\frac{S_n}{n}\right)$$

et en remplaçant par les valeurs ci-dessus on obtient :

$$\mathbb{P}\left(|S_n - \lambda| \geqslant n\varepsilon\right) \leqslant \frac{\lambda}{n\varepsilon^2} \cdot$$

VI.B.3 On a l'implication : $x > n(\lambda + \varepsilon) \Longrightarrow |x - n\lambda| \ge n\varepsilon$ d'où l'inclusion :

$$(S_n > n(\lambda + \varepsilon)) \subset (|S_n - n\lambda| \geqslant n\varepsilon)$$

De même on a l'implication : $x \leq n(\lambda - \varepsilon) \Longrightarrow |x - n\lambda| \geqslant n\varepsilon$. Ainsi :

$$(S_n \leqslant n(\lambda - \varepsilon)) \subset (|S_n - n\lambda| \geqslant n\varepsilon)$$

VI.B.4 Supposons $x \in [0; \lambda[$ et posons $\varepsilon = \frac{\lambda - x}{2}$. On a $\varepsilon > 0$ et $x < \lambda - \varepsilon$. On en déduit que $(S_n \leqslant nx) \subset (S_n \leqslant n(\lambda - \varepsilon))$ et donc :

$$0 \leqslant \mathbb{P}(S_n \leqslant nx) \leqslant \mathbb{P}(S_n \leqslant n(\lambda - \varepsilon)) \leqslant \mathbb{P}(|S_n - n\lambda| \geqslant n\varepsilon) \leqslant \frac{\lambda}{n\varepsilon^2}$$

Par théorème d'encadrement, on a donc :

$$\forall x \in [0; \lambda[, \lim_{n \to +\infty} \mathbb{P}(S_n \leqslant nx) = 0.$$

Supposons maintenant $x > \lambda$ et posons $\varepsilon = \frac{x-\lambda}{2}$. On a $\varepsilon > 0$ et $\lambda + \varepsilon < x$. On en déduit que $(S_n > nx) \subset (S_n > n(\lambda - \varepsilon))$ et donc :

$$0 \leqslant \mathbb{P}(S_n > nx) \leqslant \mathbb{P}(S_n > n(\lambda - \varepsilon)) \leqslant \mathbb{P}(|S_n - n\lambda| \geqslant n\varepsilon) \leqslant \frac{\lambda}{n\varepsilon^2}$$

Par théorème d'encadrement, $\mathbb{P}(S_n>nx)\to 0$ et donc $\mathbb{P}(S_n\leqslant nx)=1-\mathbb{P}(S_n>nx)\to 1$:

$$\forall x > \lambda, \lim_{n \to +\infty} \mathbb{P}(S_n \leqslant nx) = 1.$$

VI.C S_n étant à valeurs entières positives et suivant une loi de Poisson de paramètre $n\lambda$,

$$\mathbb{P}(S_n \leqslant nx) = \sum_{0 \leqslant k \leqslant \lfloor nx \rfloor} \mathbb{P}(S_n = k) = \sum_{0 \leqslant k \leqslant \lfloor nx \rfloor} \frac{(n\lambda)^k}{k!} e^{-n\lambda}$$

et la question précédente donne :

$$\lim_{n \to +\infty} \sum_{0 \le k \le \lfloor nx \rfloor} \frac{(n\lambda)^k}{k!} e^{-n\lambda} = \begin{cases} 0 & \text{si } 0 \le x < \lambda \\ 1 & \text{si } x > \lambda \end{cases}.$$

VI.D

VI.D.1 Avec la formule de **VI.A** pour $(\mathcal{L}(f))^{(k)}$, on a :

$$\sum_{0 \leqslant k \leqslant \lfloor nx \rfloor} (-1)^k \frac{n^k}{k!} (\mathcal{L}(f))^{(k)}(n) = \sum_{0 \leqslant k \leqslant \lfloor nx \rfloor} \int_0^{+\infty} \frac{(nt)^k}{k!} f(t) e^{-nt} dt$$
$$= \int_0^{+\infty} \left(\sum_{0 \leqslant k \leqslant \lfloor nx \rfloor} \frac{(nt)^k}{k!} f(t) e^{-nt} \right) dt.$$

Notons (x étant fixé) F_n la fonction (de t) sous l'intégrale. La question précédente indique que la suite (F_n) converge simplement sur $\mathbb R$ vers la fonction valant f sur $[0,x[,\frac{f(x)}{2}$ en x et nulle sur $]x;+\infty[$; nous noterons F cette fonction. Il nous suffit de pouvoir intervertir limite et intégrale pour pouvoir conclure. Les F_n et F et F étant continues par morceaux, il nous suffit de vérifier l'hypothèse de domination pour utiliser le théorème de convergence dominée. Or on a :

$$\forall n \in \mathbb{N}, \ \forall t \in \mathbb{R}_+, \ |F_n(t)| \leq |f(t)| \sum_{k=0}^{+\infty} \frac{(nt)^k}{k!} e^{-nt} = |f(t)|$$

et le majorant est intégrable sur \mathbb{R}^+ . On a ainsi prouvé que :

$$\lim_{n \to +\infty} \sum_{0 \le k \le |nx|} (-1)^k \frac{n^k}{k!} (\mathcal{L}(f))^{(k)}(n) = \int_0^x f(t) \, \mathrm{d}t.$$

VI.C.2 \mathcal{L} est linéaire donc il suffit de montrer que son noyau est réduit à $\{0\}$. Soit donc f une fonction continue nulle hors d'un segment et telle que $\mathcal{L}(f) = 0$. La question précédente montre que pour tout x réel, $\int_0^x f(t) dt = 0$. En dérivant, f est nulle sur \mathbb{R} .