Poliechnika Śląska Wydział Automatyki, Elektroniki i Informatyki Raport Zarządzanie Projektami

$\mathsf{PLANTIE}^{\mathsf{TM}}$

Autorzy: Kamil Choiński Oskar Stabla

Spis treści

1	Kar	rta projektu
	1.1	Cele projektu
	1.2	Produkty projektu
	1.3	Uproszczony harmonogram
		1.3.1 Tydzień 1
		1.3.2 Tydzień 2
		1.3.3 Tydzień 3
		1.3.4 Tydzień 4
	1.4	Budżet projektu
	1.5	Uproszczony opis zespołu projektowego
2	Opi	is merytoryczny
	2.1	Stan wiedzy w dziedzinie objętej projektem - podobne projekty
		2.1.1 Trutina
		2.1.2 Arduino Irrigator System
	2.2	Opis działań przeznaczonych do realizacji
	2.3	Uzasadnienie innowacyjności podjętych działań
	2.4	Spodziewany efekt

1 Karta projektu

1.1 Cele projektu

Nasz projekt ma na celu pomóc zabieganym ludziom, którzy nie mają czasu na zajmowanie się swoją roślinką przez swój częsty brak pobytu w domu. Wystarczy dostęp do internetu, nic więcej.

Powstała koncepcja opiera się na systemie zdalnego zarządzania rośliną. Chcemy mierzyć parametry gleby i otoczenia takie jak wilgotność, nasłonecznienie, a nawet poziom wody w zbiorniku do podlewania. W zależności od odczytanych wartości przez płytkę rozwojową UNO połączoną z modułem ESP8266, będzie możliwe sterowanie pompką wody i oświetleniem rośliny. Postanowiliśmy utworzyć panel sterowania na stronie internetowej.

1.2 Produkty projektu

- Zespół urządzeń akwizycyjno-wykonawczych
- Panel sterowania na stronie internetowej

1.3 Uproszczony harmonogram

1.3.1 Tydzień 1

Pomysł, przegląd podobych rozwiązań dostępnych na rynku. Próba dopasowania się do konkurencji z własnym rozwiązaniem.

Przeanalizowanie współpracy płytki rozwojowej UNO, modułu komunikacyjnego ESP8266, czujnika wilgotności gleby, czujnika wilgotności powietrza i czujnika nasłonecznienia oraz rozwiązanie techniczne doświetlania rośliny.

1.3.2 Tydzień 2

Stworzenie schematu elektrycznego projektu. Testowanie poprawności działania posiadanych czujników w warunkach domowych. Implementacja komunikacji z modułem ESP8266. Dopasowywanie czasów działania.

Równoczesne tworzenie aplikacji zajmującej się zarządzaniem zapytaniami i realizującej funkcję komunikacji z użytkownikiem opartej o websocket.

1.3.3 Tydzień 3

Realizacja połączeń elektrycznych na płytce stykowej i ostateczne testowanie poprawności działania aplikacji.

1.3.4 Tydzień 4

Przeniesienie projektu na płytkę uniwersalną. Przygotowanie obudowy i realizacja montażu systemu doświetlania. Prezentacja gotowego projektu.

1.4 Budżet projektu

Komponent projektu	Cena
Fizyczne części	100 PLN
Wynagrodzenie dla specjalistów	10000 PLN
Marketing	500 PLN
Suma	10600 PLN

Same komponenty projektu zostaną sprowadzone z Chin, poniżej przedstawiamy koszty samych cześci.

Przedmiot	Cena
Płytka rozwojowa UNO	15 PLN
Moduł ESP8266	18 PLN
Czujnik wilgotności i temperatury powietrza	5 PLN
Czujnik wilgotności gleby	5 PLN
Czujnik nasłonecznienia	$5~\mathrm{PLN}$
Czujnik poziomu wody	5 PLN
Przekaźnik	$5~\mathrm{PLN}$
Pompa wodna	22 PLN
Bateria 9V	2 PLN
Materiał na obudowę	$5~\mathrm{PLN}$
Przewody, płytka uniwersalna, cyna, klej na gorąco	10 PLN
Suma	97 PLN

Tablica 1: Zakupione produkty

1.5 Uproszczony opis zespołu projektowego

- Stefan Team lead, odpowiedzialny za organizację pracy zespołu
- Janusz Marketing manager, odpowiedzialny za marketing
- Kamil Elektryk, odpowiedzialny za hardware
- Oskar Programista, odpowiedzialny za software

2 Opis merytoryczny

2.1 Stan wiedzy w dziedzinie objętej projektem - podobne projekty

2.1.1 Trutina

'Trutina' z Gremon Systems przedstawiony na Rysunku nr 1, pozwala na automatyczne podlewanie danej rośliny, a także na pomiary parametrów za pomocą sensorów wbudowanych w urządzenie takich jak: pyranometer, E-box, GS3 które wysyłając pomiary, kontroluje system i wybiera kiedy podlać roślinę.

System posiada także aplikację na telefon, dzięki której możemy podglądać graficznie mierzone parametry, a także kontrolować system podlewający.

Różni sie od naszego projektu aplikacją, gdyż otrzymujemy wszystkie pomiary na stronie internetowej i samoistnym wyborem kiedy będzie włączone podlewanie. Jest to także dużo większy projekt od naszego gdyż jest przystosowany do pracy w warunkach terenowych, nasz zaś do domowych.

Rysunek 1: Trutina [1]

2.1.2 Arduino Irrigator System

Ten projekt przedstawiony na Rysunku nr 2, bazuje na płytce rozwojowej Arduino UNO i ma na celu automatyzację procesu pomiarów parametrów rośliny i jej podlewaniu. System bada wilgotność gleby i włącza pompę wodną jeśli wilgotność spadnie poniżej pewnego poziomu. Kiedy system wykryje wartość powyżej ustalonej wyłączy pompę. System posiada także wyświetlacz LCD 16x2 na którym są wyświetlane: poziom wody w zbiorniku, status czy pompka jest włączona, wilgotność gleby.

Projekt różni się od naszego sposobem wyświetlania danych - różnica wyświetlaczy, a także brakiem zapisywania pomiarów i połączeniem z siecią Wi-Fi.

Rysunek 2: Arduino Irrigator System [2]

2.2 Opis działań przeznaczonych do realizacji

- Zebranie drużyny projektowej
- Przegląd dostępnych rozwiązań
- Dopasowanie do rynku
- Realizacja projektu
- Marketing

2.3 Uzasadnienie innowacyjności podjętych działań

Nie ma na rynku tak taniego i tak dobrego rozwiazania.

Dodatkowo my jako młody i dynamiczny zespół wprowadzimy najnowsze rozwiązania dostępne na rynku przez co projekt będzie zgodny z najowszymi trendami programistycznymi.

2.4 Spodziewany efekt

Przyjecie produktu przez rynek, zadowolenie konsumenta. Wykup projektu przez większą firmę.

Literatura

- [1] Trutina z Gremon Systems gremonsystems.com/blog-en/things-you-didnt-know-about-automatic-watering-systems/
- $\label{lem:comparison} \begin{tabular}{l} [2] Arduino Irrigator System $http://www.circuitstoday.com/arduino-irrigation-plant-watering-using-soil-moisture-sensor \end{tabular}$