You want to fly What Kind of Hardware?

By:

Keith A Tucker

L. S Gavalas

Hardware Types

- Hardware Categories
 - Information Technology (Computers: Phones, tablets laptops)
 - Custom Developed
 - General Use: Modified commercial product, referred to as MOTS
 - COTS
- Each category has its own set of challenges.
- Bad news is ISS is filled with requirements that are seemingly designed to only be understood by those extremely close to the program.
- Good news is all categories have seen a relaxing of requirements in general.

Generic Challenges

- Material Compatibility
 - If the product is extremely small it is not a concern.
 - Stay away from thin brittle plastics
 - If 3D printing Ultem is the only approved plastic.
 - Gels, Solvents: No alcohols
 - Use conformal coating and treat capacitors as toxic, design to contain.
- Electromagnetic Compatibility
 - Avoid magnets
 - Requirements have heavily relaxed below 100 MHz
 - Start intentional transmitter discussion early.
 - Standard Bluetooth okay

Generic Challenges

Batteries

- Custom battery designs are ill advised.
- Even COTS solutions must be lot tested
- Button cells, alkaline have no circuit design constraint, all others do.
- Do not develop a custom piece of hardware that charges a Lithium cell, testing will destroy multiple units, not just the cell is damaged but the hardware as well.

Acoustic

- Stay under NC 34
- Or 59 dBA, it is limited to 2 hours of operation per 24-hour period

Microgravity

• Items with single axis accelerometers are ineffective, Triaxial needed

Generic Challenges continued

- Structures
 - For portable equipment the only real concern is kick loads.
 - But if the item is controlling a safety hazard, fasteners must be tested.
- Thermal
 - Consider small fans to aid in heat rejection
 - Touch temperature
- Containment: Liquids, Toxins, capacitors etc
 - Tox level hazard dictates the number of redundant levels of containment.
- Servicing of hardware how easily can the hardware be repaired or subcomponents replaced (Orbital Replaceable Unit (ORU))
 - Use of captive fasteners
- Human Factors
 - Usability for a wide range of sizes of humans

IT Hardware

- The ISS program provides a suite of IT equipment, overall the rationale to fly a custom piece of IT equipment makes this challenging enough.
 - Currently the primary station laptop is a Lenovo T61p model but being changed shortly to a Z-Book.
 - Any attempt to fly a different COTS based solution will be frowned upon.
 - The station community and crew office does wants little variety of products to minimize crew training and maximize throughput.
 - If another asset is required, note no spares will be available in the pantry.
 - Radiation testing of these types of assets is essential to mitigate risks.
 - System must permit remote virus definition updates if any data is to interface with station assets.
 - Suite includes Ipads with different IOS (use of such devices is discouraged)
 - The station architecture due to security requirements does not interface with the apple store
 - If an IOS based device is absolutely essential to your science data gathering work will be required to update the application as certificates and operating systems expire or are upgraded
 - If the application suite requires a server to gather data, minimize interaction with server.

IT Continued

- If you are flying IT hardware you undoubtedly will be flying software.
 - Software performance requirements are easy.
 - Software documentation and configuration management requirements are arduous.
 - NPR 1750.2 treats all "flight software" as class C or better
 - Previously payload experiment software was class D.
- ISSMP will provide guidance on what the requirements mean and also how to meet their intent with minimum cost.
- PI software development should include the capability how to downlink data to the ground.

Custom Developed

- If custom developed hardware is required, emphasis should be on minimizing the crew participation for setup and maintenance.
 - Think automation outside of necessary data gathering
 - Crew training is not necessarily time intensive, and often scheduled many months before flight. Also crew time onboard is at a premium complicated tasks are hard to plan and impact console support times.
 - Remember that the longer it takes to obtain science data, less chance it will be obtained.
- Custom developed hardware should assume a 2 year development / integration window.
 - With no heritage of COTS, the process of approval of the system through the safety organization is difficult particularly if there is a direct invasive interface with the crew for obtaining crew physiological data.
 - ISSMP participation is needed very early in this development process to assure smooth integration and verification.

General use MOTS

- General use hardware that has been customized invariably gets labelled at MOTS
 - Asking vendor for custom mods is a great solution.
 - Most vendors will work with us
 - Simple things to consider are
 - Conformal coating, removing paint
 - More complicated items are
 - Replacing connectors to a SCOOP proof variety, changing the housing
 - Consider servicing related changes, like battery change out or cleaning methods
 - The more things done by the manufacturer the better for the overall risk and better warranty support.
 - Avoids questions of tampering or voiding the FDA approval
- This is largely the most flown type of hardware.

COTS

- For simple projects this is a perfectly fine alternative
- Tremendous upside to buy and fly.
 - Excellent choice for items developed for exercise where a great deal has been invested in the product being ruggedized and weather resistant.
- Many DoD products have been commercialized by vendors, which generally means they sell to aviation and marine communities already
- Be careful of these products in materials compatibility since the ISS environment is very closed loop.

Why it is best to work with ISSMP Early

• We know:

- How to make the hardware compatible with current ISSMP hardware.
- ISS architecture
 - Particular important when designing a pice of hardware to know its use environment.
 - ISS is not like your lab at all.
- Interfaces:
 - Power is limited to really just 28 V DC and some access is being provided to 120 AC
 - The 120 V AC must be floating neutral compatible, amongst other considerations
 - USB 5Volt power for rapid charging coming in 2017.
 - Data
 - Most like the lab in terms of options; Ethernet(including wireless), USB, Bluetooth and RS -422.

Why it is best to work with ISSMP Early

- Why duration from selection to flight is "so long".
 - Program interfaces
 - Non-HRP payloads have to get a Payload Integration Manager (PIM), we are our own PIM
 - Planning and development for operations and related products
 - Verification plan development, submittals and closure
 - Manifesting
 - Stowage
 - Crew time resources
 - Safety related process
 - 45 days from package submittal to actual review and can be multiple reviews.
 - Human Factors and labelling reviews
 - Certification process
- New development process Class I-E allows faster from ground to flight.

Good News

- A relatively new development process 1-E allows faster from ground to flight The new process is for non-critical experiment hardware
 - Allows ISSMP to quickly turn around lab like products to flight products.
 - Relax the detailed drawing requirements
 - Decreases the amount of documentation
 - Allows the procurement from unlimited suppliers (direct from China still not permitted).
 - DOES NOT RELAX SAFETY.
 - Allows direct to lab flight procurements.
 - Effectively takes away the unnecessary NASA slow down of receipt and fabrication
- Near term additions of AC power options
 - Will allow use of standard COTS AC powered items to be flown relatively as is.
 - Must be floating neutral compatible
 - UL listed, with ground wire
 - GFCI compatible

Requirements

- Most often hardware that is procured or developed by ISSMP is because of clearly defined REQUIREMENTS
 - Clearly defined is not always easy:
 - A product suite that was used in our lab is helpful:
 - Key requirements for science
 - ISSMP Engineering will take everything else in consideration.
 - ED requirements lead to hardware requirements documents
- Design reviews and Team meetings are your friends
 - Review, evaluate and participate.
 - Compare ED to hardware requirements documents for gaps.
- We deliver 6 months after the final review.
- Science Verfication Test is your final hardware acceptance.

Take Away

- IT hardware development is expensive and the use of common IT resources is strongly encouraged.
 - IOS discouraged STRONGLY
 - Deployment and other constraints make stand-alone IT developments challenging
 - If specialty IT hardware is required, avoid a direct interface to ISS avionics environment make it into an embedded system with the rest of the experiment architecture
 - Software best addressed thru a browser based interface
- Repacking COTS devices into a MOTS products is likely best done by the ISSMP team with technical inputs from the PI Team.
- Custom built hardware, after design complete recommend ISSMP personnel build and test flight units as Class I-E.
- COTS hardware best procured and final delivery by ISSMP personnel as Class I-E.
- All softgoods should be planned to be designed and manufactured by ISSMP.

Things to add

• Pictures