Instytut Informatyki UWr

Wstęp do informatyki

Lista 3

- 1. Sprawdź czy zachodzą poniższe zależności. Odpowiedzi uzasadnij!
 - a. $[1] n^2 = O(2^n)$

Wskazówka: pokaż indukcyjnie, że $n^2 \le 2^n$.

b. $[1] 2^n = O(n^2)$

Wskazówka: pokaż indukcyjnie, że $2^n / n^2 > n$ dla odpowiednio dużych n.

- c. $[1] 100n^2 + 13n + 10 = O(n^3)$; $100n^2 + 13n + 10 = O(2n^2)$; $100n^2 + 13n + 10 = O(n)$
- d. [1] $2^n = O(3^n)$, $3^n = O(2^n)$
- e. [1] $\log n = O(n)$
- f. [1] $100 n \log n + 5n = O(n^2)$
- g. [1] $\log(n^n) = O(\log(n!))$ oraz $\log(n!) = O(\log(n^n))$

Uwaga: wszystkie logarytmy w tym zadaniu mają podstawę 2.

2. [1] Rozważmy następujący problem algorytmiczny

Wejście: *a* – liczba naturalna;

Wyjście: ciąg bitów $x_1...x_k$ tworzący binarną reprezentację liczby a.

Oszacuj złożoność czasową i pamięciową podanego na wykładzie algorytmu rozwiązującego ten problem.

Wskazówka: Pokaż, że długość reprezentacji binarnej liczby naturalnej a jest nie większa niż $1 + \log_2 a$.

3. [0] Podaj binarna reprezentację liczb o dziesiętnych zapisach:

Ustal, które z powyższych liczb mają skończoną reprezentację binarną.

4. [1] Podaj reprezentacje (o ile istnieja) następujących liczb

w kodzie uzupełnień do 2 (kod U2) dla podanych długości słów:

- a. 8
- b. 16
- c. 24
- 5. [1] Przyjmijmy, że stosujemy reprezentację stałopozycyjną, uzupełnieniową do 2 (U2) na 8 bitach, przy czym 3 bity reprezentują "ułamkową" część liczby. Podaj
 - a. najmniejszą i największą liczbę, którą można reprezentować w taki sposób
 - b. reprezentacje liczb o zapisie dziesiętnym
 - -7,125
 - 8,3
 - 16.75
 - -11,25
- 6. [1] Sformułuj specyfikację i podaj algorytm ją realizujący (w postaci listy kroków lub schematu blokowego) dla następującego problemu: dodaj dwie liczby naturalne podane na wejściu w zapisie binarnym, jako ciągi cyfr.
- 7. [2] Ustal warunki jakie muszą spełniać liczby naturalne a
b, aby ułamek a / b miał skończoną reprezentację binarną.

Zadania dodatkowe, nieobowiązkowe (nie wliczają się do puli punktów do zdobycia na ćwiczeniach, punktacja została podana tylko jako informacja o trudności zadań wg wykładowcy)

- 8. [1,5] Sprawdź czy $\log n = O(n^c)$ dla każdej stałej c>0.
- 9. [2] Udowodnij, że podany na wykładzie sposób wyznaczania liczby przeciwnej w zapisie U2 daje poprawne wyniki.
- 10. [2] Udowodnij, że podany na wykładzie sposób dodawania liczb w zapisie U2 daje poprawne wyniki.
- 11. [1] Wyjaśnij skąd pochodzą nazwy "kod uzupełnień do dwóch" i "kod uzupełnień do jedności".
- 12. [1] Sformułuj specyfikację i podaj algorytm ją realizujący (w postaci listy kroków lub schematu blokowego) dla następującego problemu: dodaj dwie liczby całkowite podane na wejściu w zapisie U2, jako ciągi cyfr.