ABE 201 Biological Thermodynamics 1

Module 12: 2nd Law Balances

Outline

 Relationships between entropy and other state properties

Developing 2nd Law Balance equation.

- Applications of 2nd Law Equation
 - Closed systems
 - Open systems

Isentropic systems

T-s Diagram

$$ds = \left(\frac{\delta q}{T}\right)_{rev} \rightarrow \delta q_{rev} = T ds \rightarrow Q_{rev} = \int_{1}^{2} T ds$$

Area under the curve gives the heat exchanged in the process

h-s Diagram

Change related to energy balance of the process.

A measure of work

Change related to the irreversibility of the process.

A measure of irreversibilities.

Entropy Change for Universe

Entropy change of universe

$$\Delta S_{universe} = \sum_{i=1}^{N} \Delta S_i = S_{gen} > 0$$

 Entropy of universe (isolated, closed system) will always increase.

$$\Delta S_{univ} = \Delta S_{system} + \Delta S_{surroundings} > 0$$

Entropy of System Can Decrease Only If...

$$\Delta S_{univ} = \Delta S_{system} + \Delta S_{surroundings} > 0$$
+ +, -, 0 +, -, 0

- Entropy of a system can decrease if the system is not isolated from its surroundings.
 (S₁>S₂→ ΔS= S₂-S₁ <0).
- But this is only possible when there is a greater entropy increase in the surroundings so that the entropy change of universe (sum of the entropy change of system and surroundings) is greater than zero.

2nd Law of Thermodynamics and Entropy

- Entropy is a non-conserved property.
- The entropy of the system plus the surroundings (also called the universe) always increases.
- A process must proceed in the direction that increases the entropy of universe.
- •In an *Isolated System* (i.e. a system that does not exchange mass and energy with the surroundings) every <u>change within the system</u> <u>increases the entropy.</u>
- •If the system is not isolated from the surroundings, then the entropy in the system can decrease but at the expense of a greater entropy increase in surroundings so that the entropy of universe increases.

Entropy Balance

Accumulation=In-Out + Generation - Consumption

$$\Delta E_{sys} = E_{in} - E_{out} \ \Delta U + \Delta E_K + \Delta E_P = Q - W \quad \text{1st Law!}$$

$$\Delta S_{sys} = S_{in} - S_{out} + S_{gen}$$

$$\frac{dS_{sys}}{dt} = \dot{S}_{in} - \dot{S}_{out} + \dot{S}_{gen} \text{ (rate form)}$$

$$S_{gen} \ge 0 \qquad S_{gen} = 0 \text{ for a reversible process}$$

$$then, S_{in} - S_{out} = \Delta S_{sys}$$

S_{in} and S_{out}

1. Entropy transfer associated with heat transfer

$$S_{heat} = \frac{Q}{T}$$
 (T=constant) for adiabatic, $S_{heat} = 0$

$$S_{heat} = \int_{1}^{2} \frac{\delta Q}{T} \Box \sum_{k=1}^{\infty} \frac{Q_{k}}{T_{k}} \quad \text{(when T is not constant)}$$

2. Entropy transfer associated with mass flow

$$\dot{S}_{mass} = \dot{m}\hat{s}$$

$$\dot{S}_{mass} = \dot{m}\hat{s} = 0$$
 (for no mass flow, closed system)

Entropy Balance for Closed Systems

Closed system=no mass flow

$$S_{in} - S_{out} + S_{gen} = \Delta S_{sys}$$

$$\sum \frac{Q_k}{T_k} + \sum m_{in} \hat{s} - \sum m_{out} \hat{s} + S_{gen} = \Delta S_{sys}$$

$$\left(\frac{Q_{in}}{T_{in}} + m_{in}\hat{s}_{in}^{0}\right) - \left(\frac{Q_{out}}{T_{out}} + m_{out}^{0}\hat{s}_{out}\right) + S_{gen} = \Delta S_{sys}$$

Entropy Balance for Open Systems with Control Volumes

$$S_{in} - S_{out} + S_{gen} = \Delta S_{sys}$$

Control vol.= a fixed vol. in space through which fluid flows.

$$\sum \frac{\dot{Q}_k}{T_k} + \sum \dot{m}_{in} \hat{s}_{in} - \sum \dot{m}_{out} \hat{s}_{out} + \dot{S}_{gen} = \frac{dS_{sys}}{dt}$$

$$\left(\frac{\dot{Q}_{in}}{T_{in}} + \dot{m}_{in} S_{in}\right) - \left(\frac{\dot{Q}_{out}}{T_{out}} + \dot{m}_{out} S_{out}\right) + \dot{S}_{gen} = \Delta \dot{S}_{sys}$$

Entropy Balance for Open Systems with Control Volumes

Steady State or Steady Flow:

a process during which a fluid flows steadily through a control volume.

Turbines, compressors, nozzles, diffusers, heat exchanges, pipes, ducts usually operate steadily so they experience no entropy change.

$$\frac{dS_{sys}}{dt} = 0 \text{ for steady flow process,}$$

$$\dot{S}_{gen} = \sum \dot{m}_{out} S_{out} - \sum \dot{m}_{in} S_{in} - \sum \frac{Q_k}{T_k}$$

Isentropic Process

Entropy of a fixed mass does not change during a process that is

internally reversible and adiabatic.

Entropy remains constant.

$$\Delta S = S_2 - S_1 = 0$$
$$S_{gen} = 0$$

Pumps, turbines, nozzles and diffusers are essentially adiabatic.

•Serves as an idealized model for actual process.^T

•Defines efficiencies for processes to compare the actual performance of these devices to the performance under idealized conditions.

Summary

Entropy is <u>not</u> conserved (s_{gen} ≥ 0)

Entropy balances

• Steady state/flow:
$$\frac{dS_{sys}}{dt} = 0$$

• Isentropic: $\Delta S = S_2 - S_1 = 0$, closed system $S_{gen} = 0$, open system