Notes on Quantitative Topics

Sergey Barseghyan

2 октября 2019 г.

Глава 1

Теория Вероятностей

1.1 Функции распределения на **R**

1.1.1 Вероятностное пространство

Тройка (Ω, \mathcal{F}, P) называется вероятностным пространством.

- 1. Ω пространство элементарных событий
- 2. \mathcal{F} σ -алгебра подмножеств Ω

Определение 1. Произвольны элемент $A \in \mathcal{F}$ называвается *событием*

Определение 2. Система множеств \mathcal{A} называется алгеброй, если

- 1. $\Omega \in \mathcal{A}$
- 2. если $A \in \mathcal{A} \Longrightarrow \overline{A} \in \mathcal{A}$
- 3. $A,B \in \mathcal{A} \Longrightarrow A \cup B \in \mathcal{A}$

Определение 3. Система подмножеств \mathcal{F} называется σ -алгеброй если

- 1. $\Omega \in \mathcal{F}$
- 2. если $A \in \mathcal{F} \Longrightarrow \overline{A} \in \mathcal{F}$
- 3. $\{A_i\}_{i=0}^{\infty} \in \mathcal{F} \Longrightarrow \bigcup_{i=0}^{\infty} A_i \in \mathcal{F}$

Определение 4. Пара (\mathcal{F}, Ω) - измеримое пространство

Определение 5. Отображение $P: \mathcal{F} \to [0,1]$ - называется вероятностной мерой на (\mathcal{F}, Ω) если

- 1. $P(\Omega) = 1$
- 2. $\forall \{A_i\}_{i=0}^{\infty} : \forall i \neq j A_i \cap A_j = \varnothing \hookrightarrow P\left(\bigsqcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P\left(A_i\right)$

Ceoŭcmea. 1. $P(\varnothing) = 0$

- 2. $A \cap B = \emptyset \rightarrow P(AB) = P(A) \cdot P(B)$
- $3. P(\overline{A}) = 1 P(A)$

4.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

5.
$$A \subseteq B \to P(A) \le P(B)$$

Определение 6. Последовательность событий $\{A_n\}_{n\geq 1}$ убывает к $A, (A_n\downarrow A),$ если

1.
$$\forall n \in \mathbb{N} \quad A_n \supseteq A_{n+1}$$

$$2. \ A = \bigcap_{n=1}^{\infty} A_n$$

Определение 7. Последовательность событий $\{A_n\}_{n\geq 1}$ возрастает к $A, (A_n \uparrow A),$ если

1.
$$\forall n \in \mathbb{N} \quad A_n \subseteq A_{n+1}$$

$$2. \ A = \bigcup_{n=1}^{\infty} A_n$$

Теорема 1 (о непрерывности вероятностной меры). Вероятность (Ω, \mathcal{F}) -измеримое пространство а P удоволетворяет свойствам

1.
$$P(\Omega) = 1$$

2. $P - \kappa$ онечно-аддитивна

Тогда P - вероятностная мера $\iff P$ непрерывна в $0 \ ((A_n \downarrow \varnothing), \ mo \ P \ (A_n) \to 0)$

1.1.2 Верояностноя мера на $\mathbb R$

Пусть P вероятностноя мера на $(\mathbb{R}, \mathfrak{B}(\mathbb{R}))$

Определение 8. Функция F(x), $x \in \mathbb{R}$ определённая по правилу $F(x) = P\left((-\infty, x]\right)$ называется функицией распределения вероятностной меры P

Лемма 1 (Свойства функции распределения). Пусть F(x) - функция распределения на $\mathbb R$ вероятносной меры P Тогда

1.
$$F(x)$$
 -не убывает

2.
$$\lim_{x \to -\infty} F(x) = 0 \lim_{x \to +\infty} F(x) = 1$$

3. F(x) непрерывна справа

Доказательство. 1. Пусть $y \ge x$. Тогда $F(y) - F(x) = P((-\infty, y]) - P(-\infty, x]) = P([x, y]) \ge 0$

2. Пусть
$$x_n \to -\infty$$
 при $n \to \infty$. Тогда $((-\infty, x_0] \downarrow \varnothing) \Rightarrow F(x_n) = P(-\infty, x_n) \to P(\varnothing) = 0$
Аналогично, если $(-\infty, x_n] \uparrow \mathbb{R}$, то $F(x_n) \to 1$

3. Пусть
$$x_n \downarrow x + 0$$
, $(-\infty, x_n] \to (-\infty, x) \Rightarrow$ по непрерывности вероятностной меры, $F(x_n) = P((-\infty, x_n) \to P((-\infty, x]) = F(x)$

Определение 9. Любая функция F(x) удоволетворяющая свойства **Леммы 1** является функцией распределения

Определение 10 (Кольцо множеств). Непустая система множеств \mathfrak{R} называется *кольцом*, если она обладает тем свойством, что из $A \in \mathfrak{R}$ и $B \in \mathfrak{R}$ следует $A\Delta B \in \mathfrak{R}$ и $A \cap B \in \mathfrak{R}$

Определение 11 (Полукольцо множеств). Система множеств $\mathfrak S$ называется *кольцом*, если она содержит пустное множестов $\mathfrak S$, замкнута по отно- шению к образованию пересечений и обладает тем свойством, что из принадлежности к $\mathfrak S$ множествA и $A_1 \subset A$ вытекает возможность представления A в виде $A = \bigcup_{k=1}^n A_k$, где A_k попарно непересекающиеся множества из $\mathfrak S$, первое из которых есть заданное множество A_1 .

Теорема 2 (Теорема Каратеодори). Пусть Ω некоторое множество, S -полукольцо на Ω . P_{σ} вероятностная мера на (Ω, S) . Тогда \exists ! верояностная мера P на $(\Omega, \sigma(S))$, является продолжение меры P_{σ} ($\forall A \in S, P_{\sigma} = P$)

Теорема 3 (Теорма о взаимооднозначном соответсвтии функций распределения и вероятностных мер). Пусть F(x) - функция распределения на \mathbb{R} Тогда \exists ! вероятностная мера на $(\mathbb{R},\mathfrak{B}(\mathbb{R})): F(x)...F(x) = P((-\infty,x])$

1.1.3 Классификация вероятностных моделей и функций распределения на $(\mathbb{R},\mathfrak{B}(\mathbb{R}))$

1. Дискретное распределение Пусть на $X \subseteq \mathbb{R}$ не более чем счётное множество

Определение 12. Вероятностная мера P на $(\mathbb{R},\mathfrak{B}(\mathbb{R}))$ удоволетворяет свойству $P(\mathbb{R}/X)=0$ называется дискретной мерой на X

2.