Set Cix, + (2 &2 + (3 x) = x

If C_1 , C_2 and C_3 exists and are unique, we can essay that the vector x is in the coupspace expanned by x, x, x, x, x.

$$2C_{1}-C_{2}+C_{3}=3.$$

$$-C_{1}+C_{2}+C_{3}=-1$$

$$3C_{1}+C_{2}+4C_{3}=0.$$

$$2C_{1}-3C_{2}-5C_{3}=-1.$$

$$2-1 \quad 1 \quad 3$$

$$-1 \quad 1 \quad -1$$

$$3 \quad 1 \quad 9 \quad 0$$

$$2 \quad -3 \quad -5 \quad -1$$

Finding Pow cerdured matrix

$$R_{1} \rightarrow \frac{R_{1}}{2} = \begin{bmatrix} 1 & -1/2 & 1/2 & 3/2 \\ -1 & 1 & -1 \\ 3 & 1 & 9 & 0 \\ 2 & -3 & -5 & -1 \end{bmatrix} \quad R_{2} \rightarrow R_{1} + R_{2} = \begin{bmatrix} 1 & -\frac{1}{2} & \frac{3}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{3}{2} & \frac{1}{2} \\ 3 & 1 & 9 & 0 \\ 2 & -3 & -5 & -1 \end{bmatrix}$$

$$-3R_{1} + R_{3} = \begin{bmatrix} 1 & -\frac{1}{2} & \frac{1}{2} & \frac{3}{2} \\ 0 & \frac{1}{2} & \frac{3}{2} & \frac{1}{2} \\ 0 & \frac{5}{2} & \frac{15}{2} & -\frac{9}{2} \\ 2 & -3 & -8 & -1 \end{bmatrix}$$

$$-2R_{1} + R_{4} = \begin{bmatrix} 1 & -\frac{1}{2} & \frac{3}{2} \\ 0 & \frac{1}{2} & \frac{3}{2} \\ 0 & \frac{1}{2} & \frac{3}{2} \\ 0 & \frac{5}{2} & \frac{15}{2} & -\frac{9}{2} \\ 0 & -2 & -6 & -4 \end{bmatrix}$$

$$R_{2} \rightarrow 2 R_{2} = \begin{bmatrix} 1 & -\frac{1}{2} & \frac{1}{2} & \frac{3}{2} \\ 0 & 1 & 3 & 1 \\ 0 & 5/2 & 15/2 & -9/2 \\ 0 & -2 & -6 & -4 \end{bmatrix} \qquad R_{3} \rightarrow \frac{-5 R_{2}}{R_{2}} + R_{3} = \begin{bmatrix} 1 & -\frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 3 \\ 0 & 0 & 0 \\ 0 & -2 & -6 \end{bmatrix}$$

$$R_{2} \rightarrow 2R_{2} = \begin{bmatrix} 1 & -\frac{1}{2} & \frac{1}{2} & \frac{3}{2} \\ 0 & 1 & 3 & 1 \\ 0 & 5/2 & 15/2 & -9/2 \\ 0 & -2 & -6 & -4 \end{bmatrix}$$

$$R_{3} \rightarrow -\frac{5R_{2}}{R_{1}} + R_{3} = \begin{bmatrix} 1 & -\frac{1}{2} & \frac{1}{2} & \frac{3}{2} \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & -\frac{7}{4} \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & -\frac{7}{4} \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

$$R_{4} \rightarrow 2R_{2} + R_{4} = \begin{bmatrix} 1 & -\frac{1}{2} & \frac{1}{2} & \frac{3}{2} \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & -\frac{7}{4} \\ 0 & 0 & 0 & -\frac{7}{4} \end{bmatrix}$$

$$R_{3} \rightarrow -\frac{R_{3}}{4} = \begin{bmatrix} 1 & -\frac{1}{2} & \frac{1}{2} & \frac{3}{2} \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -\frac{7}{2} \end{bmatrix}$$

$$R_{4} \rightarrow 2R_{3} + R_{4} = \begin{bmatrix} 1 & -1/2 & \frac{1}{2} & \frac{3}{2} \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} R_{1} \rightarrow -3R_{3} + R_{1} \begin{bmatrix} 1 & -1/2 & 1/2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$R_{1} \rightarrow -3R_{3} + R_{1} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$R_1 o \frac{R_2}{2} + R_1 = \begin{bmatrix} 0 & 0 & 2 & 0 \\ 0 & 1 & 3 & 0 \end{bmatrix}$$
 C, and $\begin{bmatrix} 2 & \text{are basic} \\ \text{unriable} & \text{ulrere as } \end{bmatrix}$ us Free unriable.

-: Infinitely many colutions.

i d'us un us the rembefare repanned by

(2) the the vectors dimensly undefendant in $R^{4?}$ Find the basis for the subspace of R^4 expanned by 4 unitors. $X_1 = (1, 1, 2, 4)$ $X_2 = (2, -1, -5, 2)$

d, , d2, d3, d4 are said to be clinearly undependent if the certical now exhelon Som of the matrin [x, x, x, x, x, x] has only bain variables and no fue variables.

$$A = \begin{bmatrix} 1 & 1 & 2 & 4 \\ 2 & -1 & -5 & 1 \\ 1 & -1 & -4 & 0 \\ 2 & 1 & 1 & 6 \end{bmatrix}$$

$$R_2 \rightarrow -2R_1 + R_2 = \begin{bmatrix} 1 & 1 & 2 & 4 \\ 0 & -3 & -9 & -6 \\ 1 & -1 & -4 & 0 \\ 2 & 1 & 1 & 6 \end{bmatrix}$$

$$R_{3} \rightarrow -R_{1} + R_{3} = \begin{bmatrix} 1 & 1 & 2 & 4 \\ 0 & -3 & -9 & -6 \\ 0 & -2 & -6 & -4 \\ 2 & 1 & 16. \end{bmatrix} R_{4} \rightarrow -2R_{1} + R_{4} = \begin{bmatrix} 1 & 1 & 2 & 4 \\ 0 & -3 & -9 & -6 \\ 0 & -2 & -6 & -4 \\ 0 & -1 & -3 & -2. \end{bmatrix}$$

$$R_{2} \rightarrow -\frac{R_{2}}{3} = \begin{bmatrix} 1 & 1 & 2 & 4 \\ 0 & -3 & -9 & -6 \\ 0 & -2 & -6 & -4 \\ 0 & -1 & -3 & -2. \end{bmatrix} R_{3} \rightarrow 2R_{2} + R_{3} = \begin{bmatrix} 1 & 1 & 2 & 4 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & -3 & -2. \end{bmatrix}$$

$$R_{4} \rightarrow R_{2} + R_{4} = \begin{bmatrix} 1 & 1 & 2 & 4 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} R_{1} \rightarrow -R_{2} + R_{1} = \begin{bmatrix} 0 & 0 & -12 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Turo Larie variables, turo Lees.

.: L., d2, d3, d4 are not linearly undefendant.

L. and d2 are the westers with Fasic wariables.

: « a « 2 form the basis of the weether space R.

Basis =
$$\begin{bmatrix} 1 \\ 1 \\ 2 \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 2 \\ 4 \end{bmatrix}$$

Set v be the untos extrave of folynomials of degen 3. over R. Determine whether u, u & w are clinearly independant or not.

$$U = d^{3} - 3d^{2} + 5d + 1$$

$$U = d^{3} - d^{2} + 8d + 2.$$

$$W = 2d^{3} - 4d^{2} + 9d + 5.$$

$$2 - 4 9 8$$

$$R_{2} \rightarrow -R_{1} + R_{2} = \begin{bmatrix} 1 & -3 & 5 & 1 \\ 0 & 2 & 3 & 1 \\ 2 & -4 & 9 & 5 \end{bmatrix} R_{3} \rightarrow R_{2} - 2R_{1} + R_{3} = \begin{bmatrix} 1 & -3 & 5 & 1 \\ 0 & 2 & 3 & 1 \\ 0 & 2 & -1 & 3 \end{bmatrix}$$

$$R_{2} \rightarrow R_{2}/2$$

$$R_{3} \rightarrow -2 R_{2} + R_{3}$$

$$0 \quad 1 \quad \frac{3}{2} \quad \frac{1}{2}$$

$$R_{3} \rightarrow -\frac{R_{3}}{4} = \begin{bmatrix} 1 & -3 & 5 & 1 \\ 0 & 1 & \frac{5}{4} \\ 0 & 0 & -4 & 2 \end{bmatrix}$$

$$R_{1} \rightarrow -\frac{3}{2} \frac{R_{3}}{2} + R_{2}$$

$$0 \quad 0 \quad 1 \quad -\frac{1}{2}$$

$$-5 R_3 +3 R_2 +2 R_1 \rightarrow R_1 = \begin{bmatrix} 1 & 0 & 0 & \frac{29}{4} \\ 0 & 1 & 0 & 5/4 \\ 0 & 0 & 1 & -1/2 \end{bmatrix} \quad \text{i. } U, U \in W$$

$$\text{one dimenty}$$

$$\text{Independent}.$$

$$A = \begin{pmatrix} A1 & B1 & C1 & D1 \\ A2 & B2 & C2 & D2 \\ A3 & B3 & C3 & D3 \\ A4 & B4 & C4 & D4 \end{pmatrix}$$

$$\rightarrow \left(\begin{array}{cccc} 2 & -1 & 1 & 3 \\ -1 & 1 & 1 & -1 \\ 3 & 1 & 9 & 0 \\ 2 & -3 & -5 & -1 \end{array}\right)$$

 $\mathsf{m} 1 = \mathsf{ReducedRowEchelonForm}(\mathsf{A})$

$$\rightarrow \left(\begin{array}{cccc} 1 & 0 & 2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

•

No Solutions. There fore the vector (3,-1,0,-1) doesnt exists in the subspace spanned by α '1, α '2, α '3

	Α	В	С	D
1	2	-1	1	3
2	-1	1	1	-1
3	3	1	9	0
4	2	-3	-5	-1
5				
6	Ques	tion 1		
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				

$$m1 = \left(\begin{array}{cccc} A1 & B1 & C1 & D1 \\ A2 & B2 & C2 & D2 \\ A3 & B3 & C3 & D3 \\ A4 & B4 & C4 & D4 \end{array} \right)$$

$$\rightarrow \left(\begin{array}{cccc} 1 & 1 & 2 & 4 \\ 2 & -1 & -5 & 2 \\ 1 & -1 & -4 & 0 \\ 2 & 1 & 1 & 6 \end{array}\right)$$

$$m2 = ReducedRowEchelonForm(m1)$$

$$\rightarrow \left(\begin{array}{cccc} 1 & 0 & -1 & 2 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$m3 = \begin{pmatrix} A7 & B7 & C7 & D7 \\ A8 & B8 & C8 & D8 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 2 & 4 \\ 2 & -1 & -5 & 2 \end{pmatrix}$$

$$I1 = Dimension(m3)$$

$$\rightarrow$$
 {2, 4}

a = MatrixRank(m3)

	Α	В	С	D
1	1	1	2	4
2	2	-1	-5	2
3	1	-1	-4	0
4	2	1	1	6
5				
6				
7	1	1	2	4
8	2	-1	-5	2
9		_		
10	Question 2			
11				
12				
13				
14				
15				
16				
17				
18]			
19				
20				
21				
22				
23				
24				
25				

