Ensembles of Forecast Model Run Collections using pyFerret or Ferret

Steve Hankin
UW/JISAO
NOAA/PMEL/Sci.Dat.Integ.Grp.

Ensembles of FMRCs

A Forecast Model Run Collection

Every month, another run

The collected time axes are a 2D field

	Forecast Initialization Axis								
			RUN 1	RUN 2	RUN3	RUN4	RUN5	RUN6	RUN7
	1	-	744.	2184.	3648.	5112	6576.	8040.	9528.
	2	2	1440.	2904.	4368.	5856.	7320.	8784.	10200.
Axis	3	3	2184.	3648	5112.	6576.	8040.	9528.	10944.
ά	4	Ŀ	2904.	4368.	5856.	7320.	8784.	10200.	11664.
Time	5	5	3648,	5112.	6576.	8040.	9528.	10944.	12408.
⊢	ϵ	5	4368.	5856.	7320.	8784.	10200.	11664.	13128.
Run	7		5112	6576.	8040.	9528.	10944.	12408.	13872.
le l	8		5 856.	7320.	8784.	10200.	11664.	13128.	14616.
Model	9)	6576.	8040.	9528.	10944.	12408.	13872.	15336.
_	1	.0	7320.	8784.	10200.	11664.	13128.	14616.	16080.
\downarrow	1	.1	8040.	9528.	10944.	12408.	13872.	15336.	16800.
	1	.2	8784.	10200.	11664.	13128.	14616.	16080.	17544.

Define FMRCs of each ensemble member(*):

```
yes? FMRC e1 = nmme_1_files
yes? FMRC e2 = nmme_2_files
yes? FMRC e3 = nmme_3_files

yes? FMRC e12 = nmme_12_files
```

... and then define the ensemble:

yes? ENSEMBLE nmme = e1, e2,e3, ... ,e12

'Diagonal form' of the FMRCs; the ensemble average

twelve ensemble members, averaged

The individual forecast time series at this point

yes? SET REGION/x=180/y=0
yes? PLOT/ALONG=t/TITLE="Individual forecasts" diag
yes? PLOT/OVER/COLOR=red diag[m=@min,n=@min],diag[m=@max,n=@max]

1st ensemble member, only

'Skill form' of the FMRCs

LET ts_lead_view = ts[gt(time)=TF_CAL_T,gf(time)=TF_LAG_F]
FILL/X=180/Y=0 ts_lead_view [m=@ave]

LET ts_fe = ts_lead_view - ts_lead_view[N=1]
LET ts_stddev = ts_lead_view[N=1,L=@std]
LET/TITLE=... ts_nfe = ts_fe/ts_stddev
FILL/Y=180/Y=0 ts_nfe[m=@ave]

Normalized forecast error

Say, "good" == abs. val. of error within 0.5 std dev of 't_init' value

LET $ts_abs = ABS(ts_nfe)$ LET $ts_skill_day = ts_abs[F=@loc:.5]$ "F=@loc:.5" finds the location where the curve crosses .5

LET/title="..." $ts_skill_day/30.3$ PLOT/X=180/Y=0 $ts_skill[m=@ave]$

1st ensemble member, only

yes? FILL ts_skill[M=@ave,L=@ave]

Global "good" forecast lead time (months)

yes? FILL ts_skill[L=@ave,M=@std]

How robust is our forecast skill across ensemble members?

The ensemble standard deviation.

