Разработка аналитического приложения для прогнозирования оттока клиентов и анализа розничных продаж

Партнер: Ростелеком

Наша команда: Скрытый пул

Артемий: Full-stack dev / аналитик

Сергей: Аналитик: проверка гипотез

Дмитрий: Аналитик / капитан

Марк: ML-инженер: Разработка модели

Илья: ML-инженер: оптимизация модели

Решение

Задача:

• Создание аналитического приложения прогнозной модели оттока клиентов и интерактивных дашбордов, позволяющие провести анализ розничных продаж товаров и клиентскую аналитику.

Решение данной задачи было реализовано следующим образом:

- Проведение аналитического исследования (RFM, ABCDX, ABC-XYZ аналитика, выстраивание гипотез)
- Разработка веб-приложения для прогнозирования оттока клиентов с поддержкой интерактивных дашбордов

Техническая реализация

Для решения поставленной задачи были использованы следующие инструменты:

- Аналитика: python (pandas, numpy, scipy), SQL
- Построение модели: scikit-learn, LightGBM, SHAP
- Визуализация: matplotlib, seaborn, plotly, Grafana

Архитектура приложения:

Python(FastAPI), PostgreSQL, Grafana, Nginx

Аналитическое исследование

Сильный дисбаланс

EDA

Анализ метрик

EDA

Анализ популярности категорий

EDA

Изучение геоданных

FRM-анализ

Кластеризация клиентской аудитории

Кластеризация на базе результатов FRM-анализа

ABC/XYZ-анализ по товарам

	ABC_XYZ	total_sales	average_sales
1	AZ	11895215.59	517183.286522
2	BZ	1521829.47	66166.498696
3	CZ	1521711.66	66161.376522
0	AY	277898.36	12082.537391

ABC/XYZ-анализ по категориям товаров

	ABC_XYZ	total_sales	average_sales
0	AY	12056297.55	524186.850000
1	BY	1367048.01	59436.870000
4	CZ	997390.62	43364.809565
3	CY	567569.14	24676.919130
2	BZ	228349.76	9928.250435

ABCDX-сегментация

По всем пользователям

По пользователям, совершившим более одного заказа

Зависимость показателей активности от города клиента

Зависимость показателей активности от категорий товаров

Сравнение распределений по выборкам активных и ушедших пользователей

Статистика по методам оплаты

Статистика по статусам заказов

Разработка модели

Разработка модели

- Итоговая модель: LightGBM
- Рассмотренные варианты: RandomForest, LinReg, SVM

Разработка модели

• Признаки

- customer_unique_id
- price
- freight_value
- order_purchase_timestamp
- order_delivered_customer_date
- product_category_name
- review_score

- order_id
- review_comment_message
- customer_city

	mean_delivery_time	n_categories	n_orders	avg_price	avg_freight	avg_review	most_common_category	most_common_city
customer_unique_id								
0000366f-3b9a-7992-bf8c-76cfdf3221e2	6.0	1	1	129.90	12.00	5.0	cama_mesa_banho	cajamar
0000b849-f77a-49e4-a4ce-2b2a4ca5be3f	3.0	1	1	18.90	8.29	4.0	beleza_saude	osasco
0000f46a-3911-fa3c-0805-444483337064	25.0	1	1	69.00	17.22	3.0	papelaria	sao jose
0000f6cc-b074-5a6a-4b88-665a16c9f078	20.0	1	1	25.99	17.63	4.0	telefonia	belem
0004aac8-4e0d-f4da-2b14-7fca70cf8255	13.0	1	1	180.00	16.89	5.0	telefonia	sorocaba

Оценка качества модели

Classification report:

		precision	recall	f1-score	support
	0 1	0.36 0.95	0.80 0.74	0.49 0.83	2462 13610
	1	0.93	0.74	0.03	13010
accui	racy			0.75	16072
macro	avg	0.66	0.77	0.66	16072
weighted	avg	0.86	0.75	0.78	16072

AUC-ROC: 0.8489660473286534

Оценка качества модели

Интерпретация результатов обучения модели

Оценка значимости признаков средствами LightGBM

Интерпретация результатов обучения модели

Оценка значимости признаков средствами SHAP

Предложения по снижению оттока клиентов

Результаты предсказаний модели

• Основное отличие в распределениях наблюдается у среднего времени доставки

Результаты предсказаний модели

• Анализ геоданных

Результаты предсказаний модели

• Анализ категорий товаров

Предложения по снижению оттока клиентов

- Оптимизация времени доставки
- Дальнейшее исследование геоданных (в совокупности с оптимизацией доставки, например, открытие логистических центров)
- Следует обратить внимание на категории товаров, с сильными различиями распределений пользователей
- Анализ действий пользователя (аналитика о действиях на сайте / в приложении), выявление паттернов поведения
- Оптимизация рекомендательной системы ленты товаров (при наличии таковой)

One more thing ...

One more thing ...

Login: admin

Password: kingkonghahaha

Выводы и результаты

Итоги работы: как и кому решение может быть полезно? В ходе работы над проектом было проведено

- Аналитическое исследование
- Разработка веб-приложения с поддержкой дашбордов;
- Разработка и оптимизация ML-модели
- Формирование практических рекомендаций на основе данных, полученных на предыдущих этапах