Assignment 1

Bhupendra Kumar Agarwal (13115036)

$January\ 23,\ 2017$

Contents

1	Merge Sort				
	1.1	Algorithm	1		
	1.2		2		
	1.3	Analyzing Merge Sort	3		
2	Qui	Quick Sort 4			
	2.1	Algorithm	4		
	2.2	Correctness	4		
	2.3	Analyzing Quick Sort	5		
1	\mathbf{M}	Ierge Sort			
1.	1 A	$oxed{Algorithm}$			
1	# T	o sort A call MergeSort(A,O,len(A)-1)			
2	def	MergeSort(A,p,r):			
3		if p <r:< th=""><th></th></r:<>			
4		q=(p+r)/2			
5		<pre>MergeSort(A,p,q)</pre>			
6		<pre>MergeSort(A,q+1,r)</pre>			
7		Merge(A,p,q,r)			
8	# :	function to merge $A[p:q]$ and $A[q+1:r]$			
9	de:	f Merge(A,p,q,r):			
10		n1 = q-p+1			
11		n2 = r-q			
12		L = [None]*(n1+1)			
13		R = [None]*(n2+1)			

```
14
        for i in range(0,n1,1):
15
             L[i]=A[p+i]
16
        for j in range(0,n2,1):
             R[j] = A[q+j+1]
17
        L[n1] = float("inf")
18
        R[n2] = float("inf")
19
20
        i=0
21
        j=0
22
        for k in range(p,r+1,1):
             if L[i] <= R[j]:
23
24
                 A[k]=L[i]
25
                 i=i+1
26
             else:
27
                 A[k]=R[j]
28
                 j=j+1
```

1.2 Correctness

Defining the following loop invariant:

At the start of each iteration of the for loop of lines 22-28,

- 1. the subarray A[p..k-1] contains the k-p smallest elements of L[0..n1] and R[0..n2], in sorted order.
- 2. Moreover, L[i] and R[j] are the smallest elements of their arrays that have not been copied back into A.

Initialization: 1) k = p, A[p..k-1] is empty: k-p=0 smallest elements. 2)i = j = 1, L[1] and R[1] are the smallest elements that have not copied back to A.

Induction: Suppose $L[i] \leq R[j]$, then L[i] is the smallest element not yet copied back in A and line 24 do that. As subarray A[p..k-1] contained the k-p smallest element initially now it has k-p+1 smallest elements and then k is incremented to hold the 1st point of loop invariant. i is also incremented which maintain 2nd point of loop invariant. Similarly is L[i] > R[i] appropriate actions are taken to maintain the loop invariant.

Termination: k=r+1, at this point A[p..r] is sorted and contain r+1-p smallest element of L and R which are of A. So now we have sorted array A.

1.3 Analyzing Merge Sort

There are three steps:

1. Divide: $\emptyset(1)$

2. Conquer: 2T(n/2), solving two sub-problems of n/2 sizes.

3. Combine: $\mathcal{O}(n)$, In Merge for loop from lines 22 to 28 runs n times.

which gives

$$T(n) = \begin{cases} \theta(1), & \text{if } n = 1. \\ 2\theta(n/2) + \theta(n), & \text{if } n > 1. \end{cases}$$
 (1)

using recursion tree

Total: $cn \lg n + cn$

thus $T(n) = O(n \log n)$.

2 Quick Sort

2.1 Algorithm

```
# To sort A call (A,O,len(A)-1)
   def QuickSort(A,p,r):
3
       if p<r:
4
           q=Partion(A,p,r)
5
           QuickSort(A,p,q-1)
6
           QuickSort(A,q+1,r)
    # function to partion A and place pivot at an appropriate position
    def Partion(A,p,r):
9
        x=A[r]
        i=p-1
10
11
        for j in range(p,r):
            if A[j] \le x:
12
                 i=i+1
13
14
                A[i],A[j]=A[j],A[i]
15
        A[i+1], A[r] = A[r], A[i+1]
16
        return i+1
```

2.2 Correctness

loop invariant for line 11-15, let k be an index $0 \le k \le n$ then

```
1. if p \le k \le i then A[k] \le x
2. if i+1 \le k \le j-1 then A[k] > x
3. if k=r then A[k] = x
```

Initialization: initially i=p-1 and j=p then 1) no values between p and i implies A[k] \leq x, similarly between i+1 and j-1 no values implies A[k]>x, Also A[r]=x.

Induction:

a) Figure (a) shows what happens when A[j] > x;the only action in the loop is to increment j. After j is incremented, condition 2 holds for A[j-1] and all other entries remain unchanged.

>x

b) Figure (b) shows what happens when $A[j] \leq x$; the loop increments i, swaps A[i] and A[j], and then increments j. Because of the swap, we now have that $A[i] \leq x$, and condition 1 is satisfied. Similarly, we also have that A[j] > x, since the item that was swapped into A[j-1] is, by the loop invariant, greater than x.

Termination: when j=r and at that point. 1) $A[p...i] \le x$. 2) A[i+1...r-1] > x. 3) A[r]=x. At last we exchange pivot with leftmost element greater then x and move it to its correct position.

2.3 Analyzing Quick Sort

 $\leq x$

Running time of Partition(A,p,r) = θ (n) as for loop runs for n=r-p+1 times. 1 Worst case partitioning: Sub-problems have 0 and (n-1) size.

$$T(n) = T(n-1) + \theta(n)$$

whose solution is

$$T(n) = \theta(n^2) \tag{2}$$

2 Best Case Partitioning: when both problems have size of n/2 then

$$T(n) = 2T(n/2) + \theta(n)$$

whose solution by master theorem is

$$T(n) = (n\log n) \tag{3}$$

3 Average Case: if there is some partitioning lets us say in 9/10 and 1/10 then

which gives

$$T(n) = (n \log n) \tag{4}$$