```
In [1]: # Import the Libraries
  import numpy as np
  import pandas as pd
  import seaborn as sns
  import matplotlib.pyplot as plt
```

In [2]: # Importing the dataset 2
happiness_report = pd.read_csv("D:/Python/worldwide_happiness_report.csv")
dataset = pd.read_csv("D:/Python/covid19_Confirmed_dataset.csv")

In [3]: happiness_report

Out[3]:

:	Overall	Country or region	Score	GDP per capita	Social support	Healthy life expectancy	Freedom to make life choices	Generosity	Perce
	rank								corr
0	1	Finland	7.769	1.340	1.587	0.986	0.596	0.153	
1	2	Denmark	7.600	1.383	1.573	0.996	0.592	0.252	
2	3	Norway	7.554	1.488	1.582	1.028	0.603	0.271	
3	4	Iceland	7.494	1.380	1.624	1.026	0.591	0.354	
4	5	Netherlands	7.488	1.396	1.522	0.999	0.557	0.322	
•••	•••	•••		•••	•••		•••	•••	
151	152	Rwanda	3.334	0.359	0.711	0.614	0.555	0.217	
152	153	Tanzania	3.231	0.476	0.885	0.499	0.417	0.276	
153	154	Afghanistan	3.203	0.350	0.517	0.361	0.000	0.158	
154	155	Central African Republic	3.083	0.026	0.000	0.105	0.225	0.235	
155	156	South Sudan	2.853	0.306	0.575	0.295	0.010	0.202	

156 rows × 9 columns

happiness_report.head()

```
In [4]: # Drop Useless Columns
    useless_cols = ["Overall rank", "Score", "Generosity", "Perceptions of corruption"]
In [5]: happiness_report.drop(useless_cols, axis=1, inplace = True)
```

Out[5]:	Country or region	GDP per capita	Social support	Healthy life expectancy	Freedom to make life choices				
	0 Finland	1.340	1.587	0.986	0.596				
	1 Denmark	1.383	1.573	0.996	0.592				
	2 Norway	1.488	1.582	1.028	0.603				
	3 Iceland	1.380	1.624	1.026	0.591				
	4 Netherlands	1.396	1.522	0.999	0.557				
In [6]:	<pre>happiness_report.set_index("Country or region", inplace = True) happiness_report.head()</pre>								
Out[6]:		GDP per capita	Social support	Healthy life expectancy	Freedom to make life choices				
	Country or region								
	Finland	1.340	1.587	0.986	0.596				
	Denmark	1.383	1.573	0.996	0.592				
	Norway	1.488	1.582	1.028	0.603				
	Iceland	1.380	1.624	1.026	0.591				
	Netherlands	1.396	1.522	0.999	0.557				
In [7]:	<pre># aggregate the rows by country corona_dataset_aggregated = dataset.groupby("Country/Region").sum()</pre>								
In [8]:	<pre>countries = list(corona_dataset_aggregated.index) max_infections_rates = []</pre>								
	<pre>for c in countries: max_infections_rates.append(corona_dataset_aggregated.loc[c].diff().max()) corona_dataset_aggregated["Max_infections_rates"] = max_infections_rates</pre>								
In [9]:	<pre># Create a new Data Frame corona_data = pd.DataFrame(corona_dataset_aggregated["Max_infections_rates"])</pre>								
In [10]:	#Join the dataset corona_data.shape								
Out[10]:	(187, 1)								
In [11]:	happiness_report.shape								
Out[11]:	(156, 4)								

In [12]: data = corona_data.join(happiness_report, how = "inner")
 data

Out[12]:

	Max_infections_rates	GDP per capita	Social support	Healthy life expectancy	Freedom to make life choices
Afghanistan	232.000000	0.350	0.517	0.361	0.000
Albania	34.000000	0.947	0.848	0.874	0.383
Algeria	199.000000	1.002	1.160	0.785	0.086
Argentina	291.000000	1.092	1.432	0.881	0.471
Armenia	134.000000	0.850	1.055	0.815	0.283
•••					
Venezuela	66.589700	0.960	1.427	0.805	0.154
Vietnam	92.000000	0.741	1.346	0.851	0.543
Yemen	32.963661	0.287	1.163	0.463	0.143
Zambia	43.700000	0.578	1.058	0.426	0.431
Zimbabwe	50.000000	0.366	1.114	0.433	0.361

143 rows × 5 columns

In [13]: data.corr()

Out[13]:

	Max_infections_rates	GDP per capita	Social support	Healthy life expectancy	Freedom to make life choices
Max_infections_rates	1.000000	0.251203	0.194233	0.291478	0.080998
GDP per capita	0.251203	1.000000	0.759468	0.863062	0.394603
Social support	0.194233	0.759468	1.000000	0.765286	0.456246
Healthy life expectancy	0.291478	0.863062	0.765286	1.000000	0.427892
Freedom to make life choices	0.080998	0.394603	0.456246	0.427892	1.000000

In [14]: data

	Max_infections_rates	GDP per capita	Social support	Healthy life expectancy	Freedom to make life choices
Afghanistan	232.000000	0.350	0.517	0.361	0.000
Albania	34.000000	0.947	0.848	0.874	0.383
Algeria	199.000000	1.002	1.160	0.785	0.086
Argentina	291.000000	1.092	1.432	0.881	0.471
Armenia	134.000000	0.850	1.055	0.815	0.283
•••					
Venezuela	66.589700	0.960	1.427	0.805	0.154
Vietnam	92.000000	0.741	1.346	0.851	0.543
Yemen	32.963661	0.287	1.163	0.463	0.143
Zambia	43.700000	0.578	1.058	0.426	0.431
Zimbabwe	50.000000	0.366	1.114	0.433	0.361

143 rows × 5 columns

```
In [15]: # Vizualisation
x = data["GDP per capita"]
y = data["Max_infections_rates"]
sns.scatterplot(x=x, y=y, color='red')
```

Out[15]: <Axes: xlabel='GDP per capita', ylabel='Max_infections_rates'>

In [16]: sns.regplot(x=x, y=np.log(y))

Out[16]: <Axes: xlabel='GDP per capita', ylabel='Max_infections_rates'>


```
In [17]: x = data["Social support"]
y = data["Max_infections_rates"]
sns.scatterplot(x=x, y=np.log(y))
```

Out[17]: <Axes: xlabel='Social support', ylabel='Max_infections_rates'>

In [18]: sns.regplot(x=x, y=np.log(y))

Out[18]: <Axes: xlabel='Social support', ylabel='Max_infections_rates'>


```
In [19]: x = data["Healthy life expectancy"]
y = data["Max_infections_rates"]
sns.scatterplot(x=x, y=np.log(y))
```

Out[19]: <Axes: xlabel='Healthy life expectancy', ylabel='Max_infections_rates'>

In [20]: sns.regplot(x=x, y=np.log(y))

Out[20]: <Axes: xlabel='Healthy life expectancy', ylabel='Max_infections_rates'>


```
In [21]: x = data["Freedom to make life choices"]
y = data["Max_infections_rates"]
sns.scatterplot(x=x, y=np.log(y))
```

Out[21]: <Axes: xlabel='Freedom to make life choices', ylabel='Max_infections_rates'>

In [22]: sns.regplot(x=x, y=np.log(y))

Out[22]: <Axes: xlabel='Freedom to make life choices', ylabel='Max_infections_rates'>

