

Algèbre linéaire et analyse 1

(HLMA101 – Année universitaire 2020–2021)

Feuille d'exercices Nº8

1. ÉCHAUFFEMENT (AVANT LES TD)

Question 1. Vrai ou faux?

- (a) La fonction $x \mapsto \frac{1}{x}$ est continue.
- (b) La somme de deux fonctions continues en un point est continue en ce point.
- (c) La somme d'une fonction continue et d'une fonction discontinue en un point est discontinue en ce point.
- (d) La somme de deux fonctions discontinues en un point est discontinue en ce point.
- (e) Toute fonction croissante est continue.
- (f) Si $f: \mathbb{R} \to \mathbb{R}$ est croissante, elle admet en tout point de \mathbb{R} des limites épointées à droite et à gauche.
- (g) Soient f et g deux fonctions de $\mathbb R$ dans $\mathbb R$ qui admettent des limites ℓ et ℓ' en $+\infty$. On suppose que pour tout $x \in \mathbb R$, $f(x) \leq g(x)$. Alors $\ell \leq \ell'$.
- (h) Soient f et g deux fonctions de $\mathbb R$ dans $\mathbb R$ qui admettent des limites ℓ et ℓ' en $+\infty$. On suppose que pour tout $x \in \mathbb R$, f(x) < g(x). Alors $\ell < \ell'$.

2. Travaux dirigés

Exercice 1. Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction croissante. Déterminer les limites de la fonction $x \mapsto f(x) + x$ en $+\infty$ et en $-\infty$.

Exercice 2. Déterminer la limite en $+\infty$ de la fonction $f: \mathbb{R}_+^* \to \mathbb{R}$ définie par $f(x) = \frac{\cos(x)}{\sqrt{x}}$.

Exercice 3. La fonction $x \mapsto \frac{x^2 + |x-1| - 1}{x-1}$ admet-elle une limite épointée à droite ou à gauche quand x tend vers 1? Existe-t-il $\lim_{\substack{x \to 1 \\ x \neq 1}} \frac{x^2 + |x-1| - 1}{x-1}$?

Exercice 4. Soit h la fonction définie par h(x) = 2x - 1 si x < 1, $h(x) = x^2$ si $1 \le x \le 4$ et $h(x) = 8\sqrt{x}$ si x > 4. Étudier sa continuité.

Exercice 5. Expliciter le domaine de définition et le domaine de continuité des fonctions :

$$f: x \mapsto \sqrt[4]{x^3 + x^2}, \qquad g: x \mapsto \sqrt[5]{x^3 + x^2}, \qquad h: x \mapsto \frac{1}{\ln(\cos(x + \pi))}$$

Exercice 6 (Examen de session 2, juin 2018). Soient a et b deux réels et f la fonction définie sur \mathbb{R} par :

$$f(x) = \frac{3}{1-x} - \frac{6}{1-x^2} \text{ si } x \in \mathbb{R} \setminus \{-1,1\}, \quad f(-1) = a \text{ et } f(1) = b.$$

- (a) Soit $\varepsilon > 0$. Déterminer un réel A tel que $|f(x)| < \varepsilon$ pour tout x > A. Que démontre-t-on ainsi ?
- (b) En réglant les valeurs de a et b, peut-on rendre f continue en -1? Et en 1?

3. Révisions et approfondissement

Exercice 7. Les fonctions suivantes de \mathbb{R}^* dans \mathbb{R} peuvent-elles être prolongées en des fonctions continues dont le domaine de définition est \mathbb{R} ?

- (a) La fonction u définie par $u(x)=\frac{1}{|x|}$ pour tout $x\neq 0.$
- (b) La fonction v définie par $v(x) = x \left| 1 + x^{-1} \right|$ pour tout $x \neq 0$.
- (c) La fonction w définie par $w(x) = x \cos\left(\frac{1}{x}\right)$ pour tout $x \neq 0$.
- (d) La fonction z définie par $z(x) = e^{-1/x^2}$ pour tout $x \neq 0$.

Exercice 8. Donner un exemple de fonction définie sur \mathbb{R} , continue nulle part, telle que |f| soit continue.

Exercice 9 (critère de convergence de Cauchy). Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction. On considère la propriété :

$$(C): \forall \varepsilon > 0, \exists A \in \mathbb{R}, \forall x \geq A, \forall y \geq A, |f(x) - f(y)| \leq \varepsilon.$$

- 1) Montrer que si f a une limite finie en $+\infty$, alors f vérifie la propriété (C).
- 2) On suppose que f vérifie la propriété (C).

- (a) Montrer qu'il existe un réel A_0 tel que f soit bornée sur $[A_0, +\infty[$.
- (b) On définit une fonction $s: [A_0, +\infty[\to \mathbb{R} \text{ par la formule }$

$$s(x) = \sup f([x, +\infty[).$$

Expliquer pourquoi s est bien définie sur $[A_0, +\infty[$.

- (c) Montrer que la fonction s est décroissante et minorée. En déduire qu'elle admet une limite $\ell \in \mathbb{R}$ en $+\infty$.
- (d) Montrer que f tend vers ℓ en $+\infty$ et conclure.

Exercice 10. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction 2-périodique qui tend vers 0 en $+\infty$. Montrer que f est constante.

Exercice 11. Étudier la continuité de la fonction $x \mapsto E(\sin x)$ (où E désigne la partie entière).

Exercice 12 (d'après Contrôle continu, Novembre 2014). Soit la fonction définie par $f(x) = \frac{x^2 + |x|}{x}$.

- (a) Montrer qu'elle est bien définie sur \mathbb{R}^* .
- (b) Quelles sont ses limites, si elles existent, en $\pm \infty$?
- (c) Est-il possible de prolonger f par continuité en 0 (c'est-à-dire de trouver un réel a tel qu'en posant f(0) = a on obtienne une fonction continue en 0)?

Exercice 13. Soit f la fonction définie par f(x) = 0 si x est rationnel et f(x) = x si x est irrationnel. Étudier la continuité de f (on rappelle que \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans \mathbb{R}).

Défi. On définit une fonction $f: \mathbb{R} \to \mathbb{R}$ de la manière suivante. Si $x \in \mathbb{R}$ est irrationnel on pose f(x) = 0. Si x est un rationnel on pose f(x) = 1/q où q est le plus petit entier strictement positif tel que $qx \in \mathbb{Z}$. Montrer que f est continue en tout point irrationnel et discontinue en tout point rationnel.