BFS (Breadth First Search) on a Simple BST: Step-by-Step

The example BST

We will run BFS (level-order traversal) on this BST:

Levels (root has level 1):

Level 1: $\{4\}$ Level 2: $\{2,6\}$ Level 3: $\{1,3,5,7\}$

BFS idea

Goal. Visit nodes level by level from the root, left to right within each level.

- Put the root (4) with its level (1) into a queue.
- 2 While the queue is not empty:
 - Take the front node out and *visit* it (append to output).
 - Put its left child (if any) into the queue with level+1.
 - Put its right child (if any) into the queue with level+1.

Notation: we write a node value x at level ℓ as x_{ℓ} (e.g., 4_1 , 2_2).

BFS on the example: queue evolution (step-by-step)

Step	Queue before pop	Action	Queue after pop / Output
0	[41]	(init)	[4 ₁] / Output = []
1	[41]	pop 4_1 ; enqueue $2_2, 6_2$	$[2_2, 6_2] / Output = [4]$
2	[22,62]	pop 2_2 ; enqueue $1_3, 3_3$	$\begin{bmatrix} 6_2, 1_3, 3_3 \end{bmatrix}$ / Output $= [4, 2]$
3	$[6_2, 1_3, 3_3]$	pop 6_2 ; enqueue $5_3, 7_3$	$[1_3, 3_3, 5_3, 7_3]$ / Output $= [4, 2, 6]$
4	$[1_3, 3_3, 5_3, 7_3]$	pop 1 ₃ ; no children	$\begin{bmatrix} 3_3, 5_3, 7_3 \end{bmatrix}$ / Output $= [4, 2, 6, 1]$
5	[3 ₃ , 5 ₃ , 7 ₃]	pop 3 ₃ ; no children	[5 ₃ , 7 ₃] / Output = [4, 2, 6, 1, 3]
6	[5 ₃ , 7 ₃]	pop 5 ₃ ; no children	[7 ₃] / Output = [4, 2, 6, 1, 3, 5]
7	[7 ₃]	pop 7 ₃ ; no children	[] / Output = [4, 2, 6, 1, 3, 5, 7]

Final BFS order: 4, 2, 6, 1, 3, 5, 7 (level by level, left to right).

Level counts and sums (step outcome)

From the BFS view we can aggregate per level:

- Level 1: nodes $\{4\} \Rightarrow count = 1$, sum = 4
- Level 2: nodes $\{2,6\} \Rightarrow count = 2$, sum = 2 + 6 = 8
- Level 3: nodes $\{1, 3, 5, 7\}$ \Rightarrow count = 4, sum = 1 + 3 + 5 + 7 = 16

Number of levels: 3 Level sums: [4, 8, 16] Maximum level

width: 4 (at level 3)