Übungsblatt 9

Uli Köhler (10580373), Tobias Harrer (10575835)

January 14, 2014

Aufgabe 1

Aufgabe 2

Beim siebten Wurf fiel eine "sechs". Die Wahrscheinlichkeit dafür ist gemäß der geometrischen Verteilung: $P(X=7) = (1-\tfrac{1}{6})^{7-1} * \tfrac{1}{6} = (\tfrac{5}{6})^6 * \tfrac{1}{6} = 0,055816329 \approx 5,58\%$

Dabei ist H_0 : "Würfel ist fair" und H_1 : "Würfel benachteiligt die sechs". Wir lehnen H_0 ab, falls $P(X=N) < \alpha = 0.05$ ist. Wie wir gesehen haben ist für N=7 das SIgnifikanzniveau noch nicht unterschritten. Für N=8 gilt hingegen $P(X=8)=(1-\frac{1}{6})^{8-1}*\frac{1}{6}=(\frac{5}{6})^7*\frac{1}{6}=0,046513608\approx 4,67\%$, das heißt der Signifikanzpunkt liegt bei k=8 und der kritische Bereich $C=\{8,\infty)$. Da das Ergebnis (7) unserer Teststatistik nahe bei, aber dennoch nicht in C liegt, müssen wir H_0 annehmen. (Verwendet wurde random.py statt eines Würfels, daher war das auch zu erwarten)

Aufgabe 3

a)

$$\alpha = 0.05, \ \phi_0 = \frac{1}{6}, \phi_1 = \frac{1}{7}$$

$$L(x; \frac{1}{6}) = \frac{1}{6} * (\frac{5}{6})^{x-1}, L(x; \frac{6}{7}) = \frac{1}{7} * (\frac{1}{7}^{x-1}).$$
Damit ist $\Lambda(x) = \frac{L(x;\phi_0)}{L(x;\phi_1)} = \frac{7}{6} * (\frac{35}{36})^{x-1}$, und $\alpha = 0.05 = P(\Lambda(x) \le \lambda | \phi_0)$. Daher liegt der kritische Punkt wieden bei S

b)

analog zu a), der kritische Punkt leigt dabei >8.

Aufgabe 4