PLANO DE ENSINO

Disciplina: INTERNET DAS COISAS (IoT)

Período: 5º

Carga Horária: 60h Semestre: 2025/1

EMENTA

Estudo dos conceitos fundamentais da Internet das Coisas (IoT), arquitetura de sistemas conectados, sensores, atuadores, protocolos de comunicação e plataformas de IoT. Aborda o ciclo completo desde a coleta de dados até o processamento, armazenamento e visualização. Aplicações práticas em diversas áreas (indústria, agricultura, cidades inteligentes, saúde). Estudo de segurança e privacidade em IoT. Desenvolvimento de projetos com dispositivos embarcados e plataformas em nuvem.

OBJETIVOS DA DISCIPLINA

Capacitar o aluno a entender os princípios da IoT, seus componentes e aplicações, assim como desenvolver soluções básicas utilizando sensores, microcontroladores e serviços em nuvem. Promover uma visão integrada de hardware, software e comunicação.

COMPETÊNCIAS A SEREM DESENVOLVIDAS PELOS ALUNOS

- Entender os fundamentos da Internet das Coisas e seu ecossistema.
- Identificar e utilizar sensores, atuadores e microcontroladores.
- Compreender protocolos de comunicação utilizados em IoT (MQTT, HTTP, CoAP).
- Integrar dispositivos físicos a plataformas de software.
- Coletar, processar, armazenar e visualizar dados em tempo real.
- Desenvolver soluções práticas com Arduino, ESP32, Raspberry Pi ou similares.
- Aplicar princípios de segurança e privacidade em projetos de IoT.

METODOLOGIA DE ENSINO E ESTRUTURA DA DISCIPLINA

Aulas serão conduzidas de forma híbrida, com momentos teóricos, práticos e experimentação em laboratório virtual e/ou físico. O curso é dividido em 4 módulos de 5 semanas

CONTEÚDO PROGRAMÁTICO

Módulo 1: Fundamentos de IoT e Arquitetura

- Conceitos de IoT e principais aplicações
- 2. Arquitetura da IoT e camadas (percepção, rede, aplicação)
- 3. Sensores, atuadores e microcontroladores (Arduino, ESP32)
- 4. Protocolos de comunicação (HTTP, MQTT, CoAP)
- 5. Plataformas de IoT (ThingSpeak, Blynk, Firebase, etc.)

Módulo 2: Coleta, Processamento e Visualização de Dados

- 6. Aquisição e envio de dados em tempo real
- 7. Armazenamento de dados em nuvem
- 8. Visualização de dados com dashboards
- 9. Estudo de caso: monitoramento de temperatura/umidade
- 10. Avaliação N1 + Trabalho prático com sensores conectados a plataforma na nuvem

Módulo 3: Integração Inteligente e Aplicações

- 11. Integração de múltiplos sensores e atuadores em um único sistema
- 12. Edge Computing e processamento local: quando e por que processar dados no dispositivo
- 13. IA e IoT: introdução a modelos simples de ML para previsão/anomalias
- 14. APIs e serviços externos: conectando IoT a assistentes virtuais, Telegram, WhatsApp, Google Sheets
- 15. Segurança em IoT: principais vulnerabilidades (ataques físicos, rede, firmware)

Módulo 4: Segurança, Escalabilidade e Projeto Final

Objetivo: preparar os alunos para pensar loT de forma profissional, com foco em segurança, boas práticas e projeto completo.

- 16. Criptografia e autenticação prática: uso de tokens, TLS em MQTT/HTTP
- 17. Escalabilidade de sistemas IoT: de 1 protótipo para 1000 dispositivos
- 18. Discussão de ética e privacidade em IoT, boas práticas de arquitetura: modularidade, versionamento e manutenção
- 19. Projeto Final sistema IoT funcional com relatório/documentação
- 20. Avaliação Final N2 + Projeto final de sistema IoT funcional com documentação

SISTEMA DE AVALIAÇÃO

- Participação e exercícios semanais: 10%
- Trabalho prático M2 (sensor + nuvem): 20%

- Avaliação N1: 20%
- Projeto Final M4 (solução IoT): 20%
- Avaliação N2: 30%

REFERÊNCIAS BIBLIOGRÁFICAS

BÁSICA

- PETHURU, Raj; ANAND, C. *Internet of Things: Principles and Paradigms*. Elsevier, 2016.
- MCGRATH, Michael. Arduino para iniciantes. Novatec, 2018.
- TANENBAUM, Andrew S.; WETHERALL, David J. *Redes de computadores*. Pearson, 2019.

COMPLEMENTAR

- RAMASWAMY, Palanisamy; KUMAR, John. *Designing Connected Products*. O'Reilly, 2015.
- AL-FUQAHA, A. et al. *Internet of Things: A Survey on Enabling Technologies, Protocols and Applications*. IEEE Communications Surveys & Tutorials, 2015.

ROTEIRO DE AULAS

Cada aula tem os seguintes elementos:

Aul a	Tema	Objetivo	Atividades	Avaliação
1	Conceitos de IoT e aplicações	Apresentar a definição e as áreas de aplicação da IoT	Vídeo introdutório + fórum sobre aplicações reais	Participação e reflexão no fórum
2	Arquitetura da IoT	Compreender as camadas da arquitetura IoT	Estudo dirigido + questionário online	Questionário de verificação
3	Sensores, atuadores e microcontroladores	Identificar os principais componentes de hardware	Atividade prática com Arduino/ESP32	Envio de fotos/código do experimento
4	Protocolos de comunicação	Explicar os principais protocolos usados em IoT	Comparativo teórico + simulação em MQTTLens	Quiz com questões técnicas
5	Plataformas de IoT	Apresentar plataformas de integração e visualização de dados	Tutorial prático com ThingSpeak ou Blynk	Entrega de relatório com print do dashboard
6	Envio de dados em tempo real	Praticar a coleta e envio de dados para a nuvem	Montagem de circuito com sensor + conexão Wi-Fi	Relatório com dados coletados

7	Armazenamento na nuvem	Entender como armazenar dados recebidos em tempo real	Integração com Firebase ou banco em nuvem	Exercício prático com código comentado
8	Visualização com dashboards	Apresentar formas visuais de representar os dados	Criação de painel visual (gráfico, tabela etc.)	Print do dashboard + explicação
9	Estudo de caso: monitoramento	Consolidar os conhecimentos com aplicação prática	Projeto completo com sensor e nuvem	Apresentação curta do projeto
10	Avaliação N1 + Trabalho prático	Avaliar o conhecimento teórico e técnico	Prova objetiva + entrega de projeto	Nota de avaliação + nota do trabalho
11	IoT na Indústria	Explorar aplicações industriais da IoT	Leitura de artigo + discussão em grupo	Resumo crítico ou participação oral
12	IoT na agricultura	Estudar usos da IoT no campo e meio ambiente	Simulação de sensor de umidade + fórum	Participação + proposta de aplicação
13	IoT em cidades inteligentes	Apresentar soluções para cidades conectadas	Análise de casos reais + brainstorming	Apresentação de ideia para cidade inteligente
14	Integração com assistentes e APIs	Conectar dispositivos IoT com APIs externas	Testes com Webhooks e IFTTT	Relatório de integração realizada
15	Projeto guiado com ESP32	Consolidar habilidades com projeto funcional	Montagem de sistema de automação simples	Entrega de vídeo + código fonte
16	Riscos de segurança em IoT	Introduzir ameaças e falhas comuns	Estudo de caso + checklist de riscos	Quiz sobre vulnerabilidades
17	Criptografia e atualizações seguras	Compreender como proteger dispositivos e dados	Teste de comunicação criptografada	Demonstração com prints e código

18	Privacidade e ética	Debater o uso ético de dados de sensores	Fórum temático com estudo de caso	Participação + resposta reflexiva
19	Boas práticas de projeto	Apresentar diretrizes para sistemas confiáveis	Checklists e simulação de falhas	Avaliação prática de projeto fictício
20	Avaliação Final N2 + Projeto final	Consolidar o aprendizado com entrega final	Apresentação + documentação	Nota do projeto + avaliação objetiva

- 1 Objetiva **c)** Conexão de objetos físicos à internet para coleta e troca de dados
- 2 Discursiv A camada de percepção lida com sensores e coleta de dados físicos. A camada de aplicação entrega os dados ao usuário final por meio de aplicativos, dashboards, etc.
- 3 Objetiva **b)** Controlar sensores, processar dados e transmitir informações
- 4 Objetiva c) MQTT
- 5 Discursiv ThingSpeak, Firebase, Blynk, entre outras. Espera-se que o aluno a descreva que essas plataformas permitem visualização e/ou armazenamento em nuvem.
- 6 Objetiva **c)** Exibir dados em tempo real de forma compreensível
- 7 Discursiv Exemplo: Estufa inteligente que coleta temperatura e envia para o a Firebase. Importância: tomada de decisão automatizada.

8	Objetiva	b) Firebase
9	Objetiva	c) Monitoramento em tempo real
1 0	Discursiv a	Possíveis desafios: perda de conexão, latência da rede, consumo energético dos dispositivos.
11	Objetiva	d) Agropecuária
1 2	Discursiv a	Exemplo 1: Sensores para tráfego inteligente. Exemplo 2: Lixeiras inteligentes com sensores de volume.
13	Objetiva	c) Integrar dispositivos com APIs e criar automações
14	Objetiva	c) Webhooks e APIs
1 5	Discursiv a	Projeto pode incluir: sensor de presença, relé, ESP32 e aplicativo Blynk. Objetivo: acender luz remotamente.
16	Objetiva	b) Atualizações automáticas com autenticação
1 7	Discursiv a	Privacidade dos dados pessoais, consentimento dos usuários, riscos de vigilância.
18	Objetiva	b) Atualizar firmware de dispositivos remotamente com segurança
19	Objetiva	c) Invasão, vazamento de dados ou controle indevido

- 2 Discursiv Exemplos: uso de autenticação forte, modularidade, escalabilidade
- 0 a horizontal, documentação clara.

21. (Objetiva)

Qual é o principal benefício do protocolo MQTT em sistemas IoT?

- a) Alta criptografia nativa
- b) Grande largura de banda
- c) Baixo consumo de energia e leveza na comunicação
- d) Integração com APIs REST
- ☑ Gabarito: c) Baixo consumo de energia e leveza na comunicação

22. (Discursiva)

Explique a diferença entre sensores digitais e sensores analógicos em sistemas IoT.

Gabarito:

Sensores digitais enviam sinais em valores binários (0 ou 1), enquanto sensores analógicos fornecem variações contínuas de sinal (por exemplo, entre 0V e 5V), exigindo conversores analógico-digitais para leitura em microcontroladores.

23. (Objetiva)

Em um projeto com ESP32, qual biblioteca é comumente usada para comunicação via Wi-Fi?

- a) Ethernet.h
- b) HTTPServer.h
- c) WiFi.h
- d) BluetoothSerial.h
- Gabarito: c) WiFi.h

24. (Objetiva)

O conceito de "edge computing" em IoT refere-se a:

- a) Computação feita na nuvem apenas
- b) Processamento centralizado em data centers
- c) Processamento de dados próximo ao dispositivo de origem
- d) Armazenamento de dados em blockchain
- Gabarito: c) Processamento de dados próximo ao dispositivo de origem

25. (Discursiva)

Descreva uma situação onde o uso de dashboards é essencial em um projeto IoT.

Gabarito:

Exemplo: Monitoramento ambiental em uma estufa. O dashboard mostra em tempo real a temperatura, umidade e status dos sensores, permitindo decisões rápidas de irrigação ou ventilação.

26. (Objetiva)

O que representa o conceito de "WIP" no Kanban aplicado à IoT?

- a) Quantidade de dados por segundo transmitidos
- b) Trabalhos em progresso no fluxo de desenvolvimento
- c) Peso ideal de um firmware
- d) Energia consumida por sensores
- ☑ Gabarito: b) Trabalhos em progresso no fluxo de desenvolvimento

27. (Discursiva)

Quais vantagens e limitações do uso do Arduino em projetos IoT comerciais?

Gabarito:

Vantagens: baixo custo, grande comunidade, fácil prototipagem.

Limitações: baixo poder de processamento, falta de conectividade nativa à nuvem, não ideal para aplicações industriais complexas.

28. (Objetiva)

Em relação à segurança, uma boa prática é:

- a) Usar apenas autenticação básica
- b) Compartilhar o mesmo token entre todos os dispositivos
- c) Criptografar a comunicação entre dispositivos e servidores
- d) Usar senhas padrão de fábrica para facilitar o desenvolvimento
- Gabarito: c) Criptografar a comunicação entre dispositivos e servidores

29. (Objetiva)

Qual alternativa apresenta apenas sensores comuns em IoT?

- a) Relé, LED, buzzer
- b) LDR, DHT11, MPU6050

- c) OLED, ESP32, GPIO
- d) WiFi, LCD, protoboard

☑ Gabarito: b) LDR, DHT11, MPU6050