part1 Frequent Itemset Mining & Association Rules

关联规则挖掘

Goal: 挖掘频繁被消费者同时购买的商品集合

Input:

Basket	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Output:

Rules Discovered:

{Milk} --> {Coke} {Diaper, Milk} --> {Beer}

Frequent Itemsets

Goal: 发现商品basket中的frequent items

定义 Support of itme I (支持度): 几个关联的数据在数据集中出现的次数占总数据集的比重

我们将support超过了阈值s的itemsete称之为frequent itemsets

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Support of {Beer, Bread} = 2

例如

- Items = {milk, coke, pepsi, beer, juice}
- Support threshold = 3 baskets

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, b\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 \neq \{m, c, b, j\}$
 $B_7 \neq \{c, b, j\}$ $B_8 = \{b, c\}$

Frequent itemsets: {m}, {c}, {b}, {j}, {m,b}, {b,c}, {c,j}.

Association Rules

 $\{i_1,i_2,\ldots,i_k\} o j$ 表示如果某个basket中已经包括了所有的 i_1 到 i_k 个item,那么这个basket很有可能包括 i_j

 $Confidence\ of\ association\ rules$ 表示给出basket $I=\{i_1,\ldots,i_k\}$ 时,含有i的概率

$$conf(I
ightarrow j) = rac{support(I igcup j)}{support(I)}$$

我们并不是关注所有的高概率关联规则,比如 $X \to milk$ 可能发生的概率很高,但是这仅仅是因为milk会被经常购买,即milk和X是独立的。因此我们需要定义 $Interest\ of\ an\ association\ rule I \to j$ 来平衡item本身被购买的概率和他成为某个basket的frequent item的概率,即找到那些"高价值的 Association Rules"。

$$Interest(I
ightarrow j) = |conf(I
ightarrow j) - Pr[j]|$$

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, b\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$
 $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

- Association rule: {m, b} →c
 - Support = 2
 - Confidence = 2/4 = 0.5
 - Interest = |0.5 5/8| = 1/8
 - Item c appears in 5/8 of the baskets
 - The rule is not very interesting!

Association Rule Mining

我们现在的目标为找到 $support >= s \exists confidence >= c$ 的关联规则

 $conf(I \to j) = \frac{support(I \cup j)}{support(I)}$

- Step 1: Find all frequent itemsets I
 - (we will explain this next)
- Step 2: Rule generation
 - For every subset A of I, generate a rule $A \rightarrow I \setminus A$
 - Since I is frequent, A is also frequent
 - Variant 1: Single pass to compute the rule confidence
 - confidence($A,B \rightarrow C,D$) = support(A,B,C,D) / support(A,B)
 - Variant 2:
 - Observation: If A,B,C \rightarrow D is below confidence, then so is A,B \rightarrow C,D
 - Can generate "bigger" rules from smaller ones!
 - Output the rules above the confidence threshold

第一步首先找到所有的频繁项集。第二步生成对应的关联规则。

Finding Frequent Itemsets

如果我们希望挖掘frequent itemsets,那么我们就需要去对每一个item进行count,那么我们就需要对于整个数据集进行遍历。

- Back to finding frequent itemsets
- Typically, data is kept in flat files rather than in a database system:
 - Stored on disk
 - Stored basket-by-basket
 - Baskets are small but we have many baskets and many items
 - Expand baskets into pairs, triples, etc. as you read baskets
 - Use k nested loops to generate all sets of size k

Items are positive integers,

通常来说我们的数据集会以basket-by-basket的方式存放在disk中,那么对于这些数据而言,花费时间最多的步骤就变成了I/Os的时间。在实践中,我们以某种顺序依次读取basket中的数据,称之为passes。我们对于某种关联挖掘算法的代价的定义按照passes的数目来衡量。

- For many frequent-itemset algorithms,
 main-memory is the critical resource
 - As we read baskets, we need to count something, e.g., occurrences of pairs of items
 - The number of different things we can count is limited by main memory
 - Swapping counts in/out is a disaster

因为main-memory的限制,所以我们不能以简单遍历的方式对于频繁项集进行挖掘。

Naïve Algorithm

- Naïve approach to finding frequent pairs
- Read file once, counting in main memory the occurrences of each pair:
 - From each basket b of n_b items, generate its n_b(n_b-1)/2 pairs by two nested loops
 - A data structure then keeps count of every pair
- Fails if (#items)² exceeds main memory
 - Remember: #items can be 100K (Wal-Mart) or 10B (Web pages)
 - Suppose 10⁵ items, counts are 4-byte integers
 - Number of pairs of items: $10^5(10^5-1)/2 \approx 5*10^9$
 - Therefore, 2*10¹⁰ (20 gigabytes) of memory is needed

假设我们对于某个basket寻找他们的frequent pairs,那么我们需要首先枚举所有潜在的frequent pairs 可能。通过两层嵌套的循环,我们可以遍历basket来枚举所有可能的pairs。但是在大数据量的情况下,我们需要(#items) 2 的内存容量来保存循环的结果,而这往往会超出内存限制。

- Approach 1: Count all pairs using a matrix
- Approach 2: Keep a table of triples [i, j, c] = "the count of the pair of items {i, j} is c."
 - If integers and item ids are 4 bytes, we need approximately 12 bytes for pairs with count > 0
 - Plus some additional overhead for the hashtable

- 1. 使用矩阵来保存所有可能出现的pairs数目
- 2. 使用三元元组的形式保存出现的pairs结果,即 (item i, item j, 共现次数)

Triangular Matrix

Triples (item i, item j, count)

Comparing the Two Approaches

- Approach 1: Triangular Matrix
 - n = total number items
 - Count pair of items {i, j} only if i<j</p>
 - Keep pair counts in lexicographic order:
 - **1**,2}, {1,3},..., {1,*n*}, {2,3}, {2,4},...,{2,*n*}, {3,4},...
 - Pair {i, j} is at position: [n(n 1) (n i)(n i + 1)]/2 + (j i)
 - Total number of pairs n(n-1)/2; total bytes= $O(n^2)$
 - Triangular Matrix requires 4 bytes per pair
- Approach 2 uses 12 bytes per occurring pair (but only for pairs with count > 0)
- Approach 2 beats Approach 1 if less than 1/3 of possible pairs actually occur

