12	A student	determined	the s	viscosity	of a 1	himid	using	the	falling-ball	method
14	11 Studellt	acterminea	tiic	VISCOSILY	OI a I	iquiu	using	tiic	raining ban	memou.

(a) When the ball is falling at terminal velocity the following equation applies

drag force = weight of ball – upthrust

The density of the liquid was known.

The student used a balance and a digital calliper to make measurements on the ball.

Describe how the student could use her measurements to calculate a value for the drag force acting on the ball.

(4)

 	 	 	• • • • • •	 	 	 	 	 	 	 	 	 • • • • • •	 	 	 •••••	• • • • • • • • • • • • • • • • • • • •	 	• • • • • •	 	
 	 	 	• • • • • •	 •	 	 	 	 		 		 	 							

(b) When falling through the liquid, the ball reached terminal velocity.

The flow of liquid around the ball was laminar.

Calculate the viscosity of the liquid.

terminal velocity of ball = $5.4 \times 10^{-4} \, \text{m s}^{-1}$ radius of ball = $0.50 \times 10^{-2} \, \text{m}$ drag force = $1.1 \times 10^{-2} \, \text{N}$

(2)

|
 |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | |
|
 |

Viscosity of liquid =

(Total for Question 12 = 6 marks)