1. <u>Úvod</u>	2
1.1.Autoři	2
1.2.Experimentální ověřování modelu	2
2. Rozbor tématu a použitých metod/technologií	3
2.1.Známá fakta vzorového systému	3
3. Koncepce - modelářská témata	5
3.1.Omezení a změny oproti vzorovému systému	7
3.2.Koncepce - implementační témata	7
Proces generování zásilek:	8
Proces pobočky:	9
Proces kalendáře:	10
Proces auta:	10
4. Architektura simulačního modelu/simulátoru	11
4.1.Přehled implementovaných tříd	11
Model	11
Param	11
Facts	11
Calendar	11
PacketGen a Packet	11
Office	12
Car	12
Statistics	12
4.2.Parametry spuštění programu	12
5. Podstata simulačních experimentů a jejich průběh	14
5.1.Postup a cíl experimentů	14
5.2.Popis experimentů	14
6.Shrnutí simulačních experimentů a závěr	20
6.1.Možná zlepšení	20
7.Zdroje	21

1. Úvod

V této práci je řešena implementace modelu logistické firmy s několika pobočkami rozmístěnými na území České a Slovenské republiky. Námi modelovaný systém vychází z existující firmy Uloženka.cz. Tato firma umožňuje podání zásilek na některou ze svých poboček a zajišťuje jejich rozvoz na libovolnou pobočku. Na základě modelu a simulačních experimentů se pokusíme zjistit optimální počty aut, jejich kapacitu a polohu centrálního skladu tak, aby 95 % zásilek bylo doručeno na cílovou pobočku před znovuotevřením poboček. Dále se v experimentech budeme snažit co nejvíce tyto parametry minimalizovat tak, aby byl navržený model do pěti let ziskový a 95 % zásilek bylo doručeno v době mezi uzavřením poboček a jejich znovuotevřením.

1.1.Autoři

Jiří Hon <u>xhonji01@stud.fit.vutbr.cz</u>
Vojtěch Šimetka xsimet00@stud.fit.vutbr.cz

1.2. Experimentální ověřování modelu

V důsledku omezeného množství informací o modelovaném systému nebylo možné plně ověřit validitu modelu vzhledem k reálné situaci ve firmě Uloženka.cz. Proto jsme model ověřovali na základě splnění základních podmínek, které by měly o modelu podobné logistické firmy obecně platit:

- 1. Máme-li k dispozici neomezený (obrovský) počet aut s dostatečnou kapacitou, měly by být všechny zásilky vždy doručeny do následujího dne.
- 2. Zvýšíme-li počet aut, zlepší se i úspěšnost doručení do následujícího dne.
- 3. Bude-li k dispozici příliš velký počet aut na počet zásilek, nadbytečná auta budou zaparkovaná (odpočívat) v centrále a nebudou bezúčelně jezdit mezi pobočkami.
- 4. Umístíme-li centrálu do optimální polohy z hlediska úspěšnosti doručení, zvýší se i finanční zisk v důsledku snížení najetého počtu kilometrů.

Tyto podmínky jsme experimentálně prověřili pomocí odpovídajícího počtu běhů simulace s různými parametry a výsledný model je splňuje.

2. Rozbor tématu a použitých metod/technologií

Pro implementaci modelu jsme využili programovací jazyk C++. Hlavním důvodem této volby je simulační knihovna SIMLIB[1], která poskytuje dostatečné rozhraní pro tvorbu a simulaci navrženého diskrétního modelu.

2.1.Známá fakta vzorového systému

Tento model se snaží popsat fungování existující firmy Uloženka.cz. Při jeho návrhu jsme proto vycházeli z informací dostupných na stránkách firmy [2]. Níže uvedené informace jsou z tohoto zdroje zjistitelné:

- Zásilky podané na jedné pobočce až do zavírací doby jsou připraveny k odběru na jiné pobočce další pracovní den.
- Převoz zásilek probíhá v úložných boxech.
- Každá zásilka je pojištěna.

Tabulka 2.1: Adresy a otevírací doby provozoven.

Pobočka	Adresa Otevírací doba		
Praha 9	Kolbenova 931/40b, Praha 9, PSČ 190 00	Po - Pá: So:	8:00 - 20:00 8:00 - 12:00
Praha 4	5. května 1109/63, Praha 4, PSČ 140 00	Po - Pá:	11:00 - 19:00
Brno	Leitnerova 975/34 / Kopečná, Brno - město, PSČ 602 00	Po - Pá:	11:00 - 19:00
Brno 2	Černopolní 54/245, Brno - Černé Pole, PSČ 613 00	Po - Pá:	11:00 - 19:00
Ostrava	Chopinova 483/8, Ostrava - Přívoz, PSČ 702 00		11:00 - 19:00
Hradec Králové	ilové Pražská třída 293, Hradec Králové, PSČ 500 04		11:00 - 19:00
Olomouc	Olomouc Wellnerova 1322/3c, Olomouc – Nová ulice, PSČ 779 00 Po - Pa		11:00 - 19:00
Plzeň Tovární 280/7, Plzeň - město, PSČ 301 00		Po - Pá:	11:00 - 19:00
Bratislava	Chorvátska 1, Bratislava - SK, PSČ 811 07 Po - Pá: 11:0		11:00 - 19:00

Tabulka 2.2: Informace o zásilkách.

Celkem zásilek	290 000 od července 2010 ≈ exp(1,6min)
Cena / zásilka	29 Kč
Cena / zásilka + dobírka	45 Kč
Maximální hmotnost	15 Kg
Maximální rozměry	80 x 60 x 42
Maximální výše dobírky	50 000 Kč
Maximální hodnota přepravované zásilky	50 000 Kč

Tabulka 3.2: Přehled úložných boxů

Вох	Vnitřní rozměry	Objem (I)
1	40 x 30 x 12	14
2	40 x 30 x 22	26
3	40 x 30 x 32	38
4	60 x 40 x 12	29
5	60 x 40 x 22	53
6	60 x 40 x 42	101
7	80 x 60 x 42	202

3. Koncepce - modelářská témata

Na základě dostupných informací o modelovaném logistickém systému jsme navrhli odpovídající výchozí parametry modelu. Většinu parametrů modelu lze dodatečně změnit v souboru param.c.

Tabulka 3.1: Přehled implicitních hodnot modelu

	Hodnota
Počet aut:	9
Kapacita auta:	60 zásilek
Doba nakládání jedné zásilky:	1,5 minuty
Pauza řidiče na pobočce:	10 minut
Pracovní doba:	denně 8 hodin (včetně víkendů a svátků)
Centrální pobočka:	Brno
Počet poboček:	9
Pracovníků na jednu pobočku:	2
Rozložení příchodů zásilek na pobočku:	exponenciálně se středem 0,75 minuty
Doba zpracování zásilky na pobočce:	exponenciálně se středem 3 minuty
Cena zásilky:	35 Kč
Provoz pobočky:	150 Kč/den
Hrubý plat řidiče/pracovníka pobočky:	80 Kč
Provozní náklady auta:	2,5 Kč/km + 0,02 Kč/km
Jednorázová pořizovací cena auta:	200 000 Kč

Tabulka 3.2: Vzdálenosti a časové náročnosti přejezdu mezi pobočkami

	Praha 9	Praha 4	Brno	Brno 2	Ostrava	Hradec Králové	Olomouc	Plzeň	Bratislav a
Praha 9		0h 19m 0s	2h 9m 0s	2h 4m 0s	3h 29m 0s	1h 2m 0s	2h 42m 0s	1h 20m 0s	3h 12m 0s
		10,8km	213km	212km	377km	100km	286km	110km	335km
Praha 4	0h 19m 0s		1h 54m 0s	1h 59m 0s	3h 23m 0s	1h 14m 0s	2h 35m 0s	1h 9m 0s	3h 3m 0s
	10,8km		204km	205km	370km	112km	279km	96,7km	327km
Brno	2h 9m 0s	1h 54m 0s		0h 6m 0s	1h 39m 0s	2h 23m 0s	0h 51m 0s	2h 50m 0s	1h 22m 0s
	213km	204km		2,6km	169km	167km	77,9km	296km	132km
Brno 2	2h 4m 0s	1h 59m 0s	0h 6m 0s		1h 40m 0s	2h 28m 0s	0h 52m 0s	2h 55m 0s	1h 25m 0s
	212km	205km	2,6km		170km	143km	78,3km	297km	132km
Ostrava	3h 29m 0s	3h 23m 0s	1h 39m 0s	1h 40m 0s		3h 1m 0s	1h 2m 0s	4h 15m 0s	2h 48m 0s
	377km	370km	169km	170km		240km	100km	461km	293km
Hradec Králové	1h 2m 0s	1h 14m 0s	2h 23m 0s	2h 28m 0s	3h 1m 0s		2h 6m 0s	2h 10m 0s	3h 31m 0s
	100km	112km	167km	143km	240km		141km	203km	290km
Olomouc	2h 42m 0s	2h 35m 0s	0h 51m 0s	0h 52m 0s	1h 2m 0s	2h 6m 0s		3h 28m 0s	2h 0m 0s
	286km	279km	77,9km	78,3km	100km	141km		370km	202km
Plzeň	1h 20m 0s	1h 9m 0s	2h 50m 0s	2h 55m 0s	4h 15m 0s	2h 10m 0s	3h 28m 0s		3h 58m 0s
	110km	96,7km	296km	297km	461km	203km	370km		419km
Bratislav a	3h 12m 0s	3h 3m 0s	1h 22m 0s	1h 25m 0s	2h 48m 0s	3h 31m 0s	2h 0m 0s	3h 58m 0s	
	335km	327km	132km	132km	293km	290km	202km	419km	

Tabulka 3.3: Rozložení příchodů zásilek na pobočky. Využívá se jak k příchodu zásilek na pobočky, tak ke generování cílové pobočky

Pobočka	Rozložení příchodu zásilek
Praha 9	12 %
Praha 4	12 %
Brno	9 %
Brno 2	9 %
Ostrava	13 %
Hradec Králové	9 %
Olomouc	11 %
Plzeň	9 %
Bratislava	16 %

3.1. Omezení a změny oproti vzorovému systému

- 1. V našem modelu zanedbáváme existenci dobírky. Na základě odhadů jsme se rozhodli navýšit cenu zásilky na 35 Kč oproti původním 29 Kč jako kompenzaci.
- 2. V našem modelu nijak explicitně nemodelujeme existenci úložných boxů pro zásilky.
- 3. Model neuvažuje hmotnosti zásilek. Tuto skutečnost částečně supluje dodatečný výdaj při převozu zásilek ve vozidle (0,02 Kč/km za zásilku).
- 4. Všechny pobočky jsou v rámci systému otevřeny po stejnou dobu, tj 8 hodin včetně víkendů a svátků.
- 5. Program zanedbává jakékoliv nepředvídatelné události jako jsou poruchy aut, onemocnění lidí, vliv přírodních živlů...

3.2.Koncepce - implementační témata

Na základě navržených hodnot jsme celý systém rozdělili na 4 procesy:

Proces generování zásilek:

Graf 3.1: Petriho síť popisující chování generátoru zásilek

Zásilky se generují pouze v pracovní době (tedy jsou-li pobočky otevřené). Po vytvoření nové zásilky, se s pravděpodobností z tabulky 3.3 umístí do některé z poboček, kde prochází její další obsluha.

Proces pobočky:

Graf 3.2: Petriho síť popisující chování příchodu zásilky na pobočku

Každá nově příchozí zásilka si zabere právě jednoho zaměstnance a tři minuty trvá její zpracování. Následně je uložena do skladu pobočky podle místa jejího určení. Místo určení se vybere s pravděpodobností podle tabulky 3.3.

Proces kalendáře:

Graf 3.3: Petriho síť popisující chování kalendáře

Kalendář řídí cyklus poboček a aut. Zákazníci chodí na pobočky se zásilkami pouze v pracovní době, zatímco auta doručují zásilky pouze mimo pracovní dobu poboček.

Proces auta:

Graf 3.4: Petriho síť popisující chování auta

Proces auto zařizuje rozvoz zásilek mezi pobočkami. Jeho chování je popsáno grafem 3.4. Auto začíná prázdné na pobočce. Pokud je pobočka zavřená a všichni zákazníci odešli, vybere si balíčky k naložení dokud nejsou všechny balíčky pro danou pobočku naloženy nebo dokud nedosáhneme kapacitu auta. Všechny balíčky následně naložíme a auto odjede na další pobočku. Po příjezdu na pobočku balíčky vyloží a vrací se do počátečního stavu.

4. Architektura simulačního modelu/simulátoru

Graf 4.1: Znázornění modelu

Hierarchii objektů v rámci každé instance modelu znázorňuje graf 4.1.

4.1. Přehled implementovaných tříd

Model

Základem implementovaného systému je třída model. Každá instance této třídy v sobě obsahuje všechny procesy modelovaného systému: pobočky, auta, zásilky a kalendář. Parametry modelu popisuje konstantní objekt model_parameters třídy Param. Je proto možné současně simulovat více modelů s různými parametry (kvůli počtu procesů to však nedoporučujeme).

Param

Tato třída slouží jak ke zpracování parametrů z příkazové řádky, tak k řízení simulace (počtu iterací a změny parametrů simulace) a nastavení proměnných hodnot. Na rozdíl od třídy Facts lze všechny hodnoty v třídě Param měnit bez nutnosti úpravy kódu modelu.

Facts

Třída Facts obsahuje neměnné údaje pro náš model jako je například počet poboček, jejich pozice na mapě, rozložení příchodu zásilek na pobočky atd.

Calendar

Nastavování pracovních hodin má v modelu na starost proces třídy Calendar. Tento proces aktivuje vždy buď proces generování zásilek a nebo procesy aut. Délku pracovní doby lze nastavit v třídě Param.

PacketGen a Packet

Třídy PacketGen a Packet popisují chování zásilek. PacketGen je generátor nových zásilek. Zásilky se generují jen když jsou pobočky otevřeny. Generátor zásilek vytvoří v časových odstupech daných exponenciálním rozložením se středem 0,75 minut (tato hodnota je nastavitelná v třídě Param) nový proces Packet. Proces packet modeluje zásilku. Každá zásilka přijde na některou z poboček, kde je zpracována a uložena do skladu. Na kterou pobočku zásilka přijde a její cíl řídí funkce Facts::officeGen() implementující výše uvedenou tabulku 3.2.

Office

Třída Office modeluje pobočky. Každá pobočka má pracovníky a sklad. Pro jednodušší a přehlednější práci s balíčky je sklad rozdělen na tolik částí, kolik je poboček v modelu. Každý příchozí balíček je proto zařazen podle místa doručení do adekvátní části skladu.

Car

Chování aut zaznamenává třída Car. Auta cestují pouze v době, kdy nejsou otevřeny pobočky a jen mezi centrálou a pobočkami. Inteligence, kterou jsou auta řízena, se snaží neplýtvat auty a zbytečně neplánovat jejich přejezdy. To lze vysledovat ve funkci Behavior(). Auta zůstanou v pobočkách pokud už jsou všechny pobočky prázdné a žádné naložené auto nesměřuje do centrály. Nejsou-li výše uvedené podmínky splněny auto se vždy vrací do centrály kde se rozhoduje o další akci. Je-li auto v centrále a jsou-li všechny pobočky prázdné a zároveň je i centrála prázdná, auto v centrále zůstává a čeká na změnu v systému (odpočívá). Pokaždé, když dojede nějaké auto do centrály, aktivují se všechna odpočívající auta a probíhá opět kontrola výše uvedených podmínek.

Statistics

Třída Statistics je odpovědná za uchovávání informací o systému. Veškeré důležité akce jako je vytvoření zásilky, její doručení nebo naložení zásilek do auta se zde zaznamenává.

4.2.Parametry spuštění programu

Program lze spustit s několika parametry. Ty nastavují některé počáteční hodnoty modelu. Jejich přehled popisuje tabulka 4.1.

Tabulka 4.1: Parametry spuštění programu

Příkaz make	Parametry	Popis
make run	./model	Spustí model jedenkrát a vypíše statistiky.
make cars	./model -a n	Spustí model vícenásobně a iteruje počtem aut v modelu.
make capacity	./model -a k	Spustí model vícenásobně a iteruje kapacitou aut v modelu.
make packages	./model -a p	Spustí model vícenásobně a zrychluje čas generování (a tedy i jejich počet) balíčků v modelu.
make offices	./model-a o	Spustí model vícenásobně a mění pozici centrálního skladu.
	-n N	Nastaví počet aut na hodnotu N. Lze kombinovat s ostatními parametry (platí poslední nastavená hodnota).
	-k N	Nastaví kapacitu aut na hodnotu K. Lze kombinovat s ostatními parametry (platí poslední nastavená hodnota).
	-t N	Nastaví délku simulace na hodnotu N v minutách. Lze kombinovat s ostatními parametry (platí poslední nastavená hodnota).
	-0	Zapne debug mód.
	-s c	Vypíše podrobnější informace o naložení každého auta.
	-s c	Vypíše podrobnější informace o naložení všech souhrnně aut.
	-s puh	Vypíše histogram kolik zásilek nebylo před otevřením pobočky doručeno.

Tabulka 4.1: Parametry spuštění programu

Příkaz make	Parametry	Popis
	-s dph	Vypíše histogram zobrazující zásilky doručené se zpožděním jeden a více dní.

5. Podstata simulačních experimentů a jejich průběh

5.1.Postup a cíl experimentů

V úvodu jsme si řekli, že se v experimentech pokusíme nalézt nejmenší možný počet aut, jejich nejmenší kapacity a optimální polohu centrály tak, aby bylo alespoň 95 % zásilek doručeno do druhého dne a firma byla zisková. Tyto hodnoty získáme iterací přes hodnoty parametrů modelu.

5.2.Popis experimentů

Nejdříve se pokusíme zjistit nejlepší pozici centrálního skladu.

Graf 5.1: Závislost úspěšnosti doručení balíčků do následujícího dne na počtu aut a pozici centrálního skladu

Graf 5.1 popisuje závislost poměru doručených zásilek do následujícího pracovního dne ku celkovému počtu aut (osa y) a na počtu aut (osa x) a pozici centrály (barevné sloupečky). Veškeré neměnné parametry jsou shodné s tabulkou 3.1. Pro 9 aut zjišťujeme, že nejlepší pozice centrály je v Praze 4 (průměrná hodnota 95,4522%) nebo v Brně (průměrná hodnota 96,4661%). I pro více aut jsou hodnoty pro pobočku v Brně nejlepší. Pro další experimenty zvolíme centrálu Brno.

Graf 5.2: Závislost úspěšnosti doručení do druhého dne na počtu au

Graf 5.2 popisuje závislost úspěšnosti doručení zásilek do druhého dne (osa y) na počtu aut (osa x). Hodnoty do počtu 4 aut jsou chybné, protože se auta nepokusí doručit každou zásilku. Z hodnot a grafu zjišťujeme, že pro 13 aut, dojde vždy k doručení 100 % balíčků do druhého dne.

Graf 5.3: Zisk společnosti v závislosti na počtu aut

Výdělek za 5 let (Kč)

Pro doplnění Graf 5.3 zobrazuje rozpočet pro stejný scénář. Překvapující je zjištění, že zisk pro počet aut mezi 8 a 11 roste, což může být způsobeno menším počtem najetých kilometrů.

Graf 5.4: Závislost úspěšnosti doručení zásilek do druhého dne na kapacitě auto pro 9 aut

Doručených zásilek do následujícího pracovního dne (%)

Z grafu 5.4 (měřeno pro 9 aut) vyplývá, že optimální kapacita auta je 80 zásilek. Od této hodnoty úspěšnost doručení zásilek neroste.

Graf 5.5: Zisk společnosti v závislosti na kapacitě auta

Podíváme-li se na změnu v rozpočtu v závislosti na kapacitě (při 9 autech), je patrné, že nejlepší je kapacita auta kolem 110 zásilek. S větší kapacitou totiž auta najedou podstatně menší vzdálenost.

Na základě experimentů jsme zjistili následující hodnoty jako nejvíce ziskové.

Tabulka 5.1: Optimální hodnoty modelu

Popis	Hodnota
Délka simulace:	5 let
Počet kanceláří:	9
Počet pracovníků poboček:	18
Počet aut	11
Celková najetá vzdálenost:	5 643 398 km
Celkový čas strávený na cestě:	8 336 356 minut
Průměrné naložení aut:	38.19 zásilek
Maximální naložení aut:	110 zásilek
Počet vygenerovaných balíčků:	1167421
Počet doručených balíčků:	1167421
Počet včas doručených balíčků:	1167212
Poměr včas doručených ku doručeným:	99,98 %
Průměrné zpoždění balíčků:	0,0002 dní
Maximální zpoždění v doručení balíčků:	1 den
Maximální počet nedoručených balíčku souhrnně v pobočkách a autech za jeden den:	86
Průměrný počet nedoručených balíčků souhrnně v pobočkách a autech za jeden den:	0,09
Cena za jeden balíček:	35 Kč
Celkové příjmy:	+40 859 735 Kč
Celkové výdaje:	-28 978 254,29 Kč
z toho auta:	-16 421 362,96 Kč
z toho zaměstnanci a řidiči:	-12 283 141,33 Kč
z toho provoz poboček:	-273 750 Kč
Rozpočet:	11 881 480 Kč

6. Shrnutí simulačních experimentů a závěr

V rámci projektu vznikl nástroj přibližně modelující chování existující firmy a na základě známých faktů a navržených hodnot se pokouší optimalizovat počet aut, jejich kapacitu a pozici centrálního skladu, aby bylo dosaženo minimálních výdajů a rozvezlo se 95 % zásilek do druhého dne. Z experimentů jsme zjistili, že optimální počet aut je 11, jejich kapacita by měla být 110 zásilek a centrální sklad v Brně. S těmito parametry se nám podařilo dosáhnout zisku 11 881 480 Kč za 5 let. Hlavní myšlenkou modelu je nalezení těchto hodnot a proto se dopodrobna nezabývá optimalizací rozvozu zásilek. Domníváme se, že právě zde by se dalo více ušetřit v nákladech.

6.1. Možná zlepšení

- 1. Konfigurační soubor umožňující nastavování parametrů.
- 2. Propracovanější plánování centrály auta by měla začít rozvážet balíky z centrály až po svozu balíku ze všech ostatních poboček.
- 3. Přejezd aut mezi pobočkami okružní jízda bez centrální pobočky.

7. Zdroje
[1]http://www.fit.vutbr.cz/~peringer/SIMLIB/

[2]http://www.ulozenka.cz