CONSTRAINING MAPPING CLASS GROUP HOMOMORPHISMS USING FINITE SUBGROUPS

LEI CHEN AND JUSTIN LANIER

ABSTRACT. In this paper, we use finite subgroups of the mapping class groups to constrain homomorphisms from these groups. First, we give a new proof of a result of Aramayona–Souto that constrains homomorphisms between mapping class groups of closed surfaces. Second, we prove that for any dimension n, only finitely many mapping class groups have non-trivial homomorphisms to the homeomorphism group of the n-sphere. We also give some specific bounds when n is small, extending work of Franks–Handel.

0. Introduction

Let S_g be the connected, closed, orientable surface of genus g and let \mathbb{S}^n be the n-sphere. The groups $\operatorname{Homeo}^+(X)$ and $\operatorname{Diff}^+(X)$ are, respectively, the groups of orientation-preserving homeomorphisms and diffeomorphisms of a given orientable manifold X. The mapping class group $\operatorname{Mod}(X)$ is $\pi_0(\operatorname{Homeo}^+(X))$, the group of isotopy classes of orientation-preserving homeomorphisms of X.

In this paper we analyze torsion to prove theorems about homomorphisms from $\operatorname{Mod}(S_g)$ to mapping class groups and to homeomorphism and diffeomorphism groups of spheres. Much has been learned about homomorphisms of mapping class groups by analyzing torsion. Several examples appear later in the introduction, and other examples include work by Markovic, Mann–Wolff, and the first author [24, 23, 9]. For the problems we consider it is not sufficient to analyze individual periodic elements in isolation. As a consequence, we proceed instead by analyzing non-cyclic finite subgroups of $\operatorname{Mod}(S_g)$. Our theorems are as follows.

Theorem 1. For $g \geq 3$ and $0 \leq h < 2g - 1$ with $h \neq g$, every homomorphism $\phi : \operatorname{Mod}(S_g) \to \operatorname{Mod}(S_h)$ is trivial. When $g \geq 3$ is odd, the same conclusion holds for the bounds $0 \leq h < 2g + 1$ with $h \neq g$.

For homeomorphism groups as target groups, we prove the following theorem, suggested to us by Mattia Mecchia.

Theorem 2. For any n, there are only finitely many g such that there exists a nontrivial homomorphism $\phi : \text{Mod}(S_q) \to \text{Homeo}^+(\mathbb{S}^n)$.

For some small values of n, we give some specific bounds on g.

Theorem 3. For $g \geq 3$, every homomorphism from $\operatorname{Mod}(S_g)$ to $\operatorname{Homeo}^+(\mathbb{S}^2)$, $\operatorname{Homeo}^+(\mathbb{R}^3)$ or $\operatorname{Homeo}^+(\mathbb{S}^3)$ is trivial. For $g \geq 3$, every homomorphism from $\operatorname{Mod}(S_g)$ to $\operatorname{Diff}^+(\mathbb{S}^4)$ is trivial, with the possible exceptions g = 4 and 11.

Note that since $\operatorname{Mod}(S_g)$ is perfect for $g \geq 3$, every homomorphism to a homeomorphism group has image in the subgroup of orientation-preserving homeomorphisms.

Our proofs of Theorems 1, 2, and 3 use the following result of the second author and Margalit. A group element is said to normally generate if its normal closure equals the group.

Theorem 4 (Theorem 1.1, [21]). For $g \ge 3$, every nontrivial periodic mapping class that is not a hyperelliptic involution normally generates $\text{Mod}(S_g)$.

It follows immediately from this theorem that any homomorphism from $\operatorname{Mod}(S_g)$ that has a nontrivial nonhyperelliptic periodic element in its kernel is trivial. The strong constraints on homomorphisms provided by Theorem 4 are not, however, immediately applicable to the settings of Theorems 1, 2, and 3. Under the hypotheses of each of these theorems, there are cases where, a priori, there could be a homomorphism to the target group where no nontrivial periodic mapping class of $\operatorname{Mod}(S_g)$ would lie in the kernel. For instance, for every periodic element in $\operatorname{Mod}(S_7)$, there is an element of $\operatorname{Mod}(S_9)$ of the same order. For Theorems 2 and 3, the situation is more extreme, as homeomorphism groups of spheres contain elements of every finite order.

Despite these obstacles, we are still able to apply Theorem 4 to these situations by analyzing non-cyclic finite subgroups of $Mod(S_g)$. Our analysis builds upon prior work on these finite subgroups by a number of authors: May–Zimmerman, Müller–Sarkar, Accola, Maclachlan, and Weaver. Our work was facilitated by the cataloging of finite subgroup of $Mod(S_g)$ up to g=48 by Breuer and by Paulhus; see [4, 32, 31]. And finally, for Theorems 2 and 3 we rely on work by a number of authors on classifying finite groups acting on spheres; some is classical and some is relatively recent work by Mecchia, Zimmermann, and Pardon.

In the remainder of the introduction, we discuss prior results that motivated our work, give some additional context, and point out some questions that are related to our results.

Homomorphisms between mapping class groups.

Aramayona–Souto proved a rigidity theorem for homomorphisms between the mapping class groups of surfaces $S_{g,n,b}$, which are surfaces of genus g with n punctures and b boundary components [2]. The mapping class groups they consider are pure, in that they require mapping classes to fix punctures and boundary components pointwise.

Theorem 5 (Aramayona–Souto, Theorem 1.1, [2]). Let $S = S_{g,n,b}$ and $S' = S'_{g',n',b'}$, such that $g \ge 6$ and $g' \le 2g-1$. If g' = 2g-1, suppose also that S' is not closed. Then every nontrivial homomorphisms $\phi : \text{Mod}(S) \to \text{Mod}(S')$ is induced by an embedding $S \to S'$.

Aramayona–Souto also prove that the conclusion of this theorem holds when $g = g' \in \{4,5\}$. They explain the necessity of their upper bound of 2g - 1 by observing that there is a "double embedding" homomorphism $\text{Mod}(S_{q,0,1}) \to \text{Mod}(S_{2q,0,0})$.

When restricted to the case of closed surfaces, Theorem 5 says that for $g \geq 6$ and h < 2g - 1, every homomorphism $\phi : \operatorname{Mod}(S_g) \to \operatorname{Mod}(S_h)$ is trivial, except for the possibility of an isomorphism in the case g = h. Some cases of this result for closed surfaces were previously known. The case h = g was previously treated by Ivanov–McCarthy under the further hypothesis that the homomorphism is injective [17]. The range h < g was previously handled by Harvey–Korkmaz [16]. Our proof strategy for Theorem 1 is similar to their approach: they observe that some non-identity power of elements of order 4g + 2 must lie in the kernel of any map $\phi : \operatorname{Mod}(S_g) \to \operatorname{Mod}(S_h)$, h < g; that these powers are all normal generators of $\operatorname{Mod}(S_g)$ except when the power is a hyperelliptic involution; and that an additional argument handles this last case where the map factors through the symplectic representation.

Theorem 1 gives a new proof of Theorem 5 when restricted to the case where S and S' are closed surfaces and $g \neq g'$. Further, it is an easy consequence of the proof of Theorem 1 that we may replace S_h with a surface of genus h and arbitrarily many punctures and boundary

components, since $\operatorname{Mod}(S_{h,n,b})$ has no additional finite subgroups compared to $\operatorname{Mod}(S_h)$. For this replacement, note that it is not necessary for us to restrict to $\operatorname{Mod}(S_{h,n,b})$ being pure. Our Theorem 1 also covers the additional small values of g of 3, 4, and 5, confirming an expectation that Aramayona–Souto state in their paper. We also extend their upper bounds for g' slightly when g is odd. This is possible because, for closed surfaces, their upper bound of 2g-1 does not have the same natural justification that appears for surfaces with boundary.

It is important to note that, even for closed surfaces, some upper bound is necessary on h to ensure that the homomorphism is trivial. First, since $\operatorname{Mod}(S_g)$ is residually finite, it has a rich supply of finite quotients [15]. As every finite group is a subgroup for some $\operatorname{Mod}(S_h)$, we obtain for all g>0 non-trivial homomorphisms $\operatorname{Mod}(S_g)\to\operatorname{Mod}(S_h)$ that factor through finite quotients. An even more striking reason why some upper bound on h is necessary is a result of Aramayona–Leininger–Souto: that for all $g\geq 2$, there exists a nontrivial connected cover S_h of the surface S_g such that $\operatorname{Mod}(S_g)$ injects into $\operatorname{Mod}(S_h)$ [1]. All of these sources of nontrivial homomorphisms between mapping class groups are in accord with the conjectural picture proposed by Mirzakhani and recorded in [2] that every homomorphism between mapping class groups of sufficiently high genus has either finite image or is induced by some manipulation of surfaces. Regarding finite quotients, see also Section 3 of Birman's problem paper [3].

The preceding results raise the following natural question:

Question 6. For each $g \ge 3$, what is the smallest h > g such that there exists a nontrivial homomorphism $\phi : \text{Mod}(S_q) \to \text{Mod}(S_h)$?

We point out that while our Theorem 1 gives approximately the same lower bound on h as that of Aramayona–Souto of about 2g, our approach suggests that the true bound ought to be higher. Using the work of Breuer and Paulhus that catalogues the finite subgroups of $\operatorname{Mod}(S_g)$ for $g \leq 48$, the following chart indicates for small values of g the smallest h for which $\operatorname{Mod}(S_h)$ contains all of the finite subgroups that are contained in $\operatorname{Mod}(S_g)$. By Theorem 4 and our Corollary 11, for all smaller h we have that $\phi: \operatorname{Mod}(S_g) \to \operatorname{Mod}(S_h)$ is trivial as long as $h \leq 3^{g-1}$. This last condition holds for all $g \geq 4$ in the table, while for $\operatorname{Mod}(S_3)$ the table implies that the first candidate target for a non-trivial homomorphism is $\operatorname{Mod}(S_{10})$. We observe that for these limited data points, the first values for h that are candidates for a nontrivial homomorphism $\phi: \operatorname{Mod}(S_g) \to \operatorname{Mod}(S_h)$ are notably larger than 2g.

g	h
3	15
4	16
5	21
6	> 48
7	> 48
8	40

Homomorphisms to homeomorphism groups of spheres.

Franks-Handel prove a number of theorems showing that homomorphisms from mapping class groups to homeomorphism and diffeomorphism groups are trivial [14]. Their main result is that homomorphisms $\text{Mod}(S) \to \text{GL}(n,\mathbb{C})$ are trivial for S a finite-type surface whenever $g \geq 3$ and n < 2g. They also apply the theorem of Aramayona-Souto to

show that, with the same genus bounds and the added requirement that g' > 1, every homomorphism $\text{Mod}(S_g) \to \text{Homeo}(S_{g'})$ is trivial. As these bounds exclude g' = 0, 1, they go on to show that for $g \geq 3$, all homomorphisms from $\text{Mod}(S_g)$ to each of $\text{Homeo}(\mathbb{S}^1)$ and $\text{Homeo}(S_1)$ are trivial, and they also show the following theorem.

Theorem 7 (Franks-Handel, Theorem 1.4, [14]). For $g \geq 7$, every homomorphism $\phi : \operatorname{Mod}(S_q) \to \operatorname{Diff}^+(\mathbb{S}^2)$ is trivial.

Note that Franks–Handel consider only orientation-preserving homeormorphisms and diffeomorphisms throughout their paper.

Our Theorem 3 includes an extension of this theorem of Franks-Handel to the target $\mathrm{Homeo}^+(\mathbb{S}^2)$ and also covers several additional small genus cases. Note that the lower bound of $g \geq 3$ in the statement of Theorem 3 is necessary, since in the cases g = 1, 2 there are nontrivial homomorphisms that factor through the abelianization of $\mathrm{Mod}(S_g)$.

In Theorem 3, one of our target groups is a diffeomorphism group rather than a homeomorphism group. Unlike in the case of $\operatorname{Homeo}^+(\mathbb{S}^2)$, for higher-dimensional spheres there exist actions by finite groups that have wildly embedded fixed point sets, and such actions cannot be smooth; see the survey article by Zimmermann for a discussion [38]. Recent work of Pardon has as a consequence that there do not exist any isomorphism types of finite subgroups of $\operatorname{Homeo}^+(\mathbb{S}^3)$ that do not also occur in $\operatorname{Diff}^+(\mathbb{S}^3)$ [30]; this result allows us to drop the assumption of smoothness in the case of \mathbb{S}^3 . On the other hand, the finite subgroups of $\operatorname{Homeo}^+(\mathbb{S}^4)$ are not yet classified. Under the further hypothesis of smoothness, however, there are results classifying finite group actions on \mathbb{S}^4 ; we use these in our proof of Theorem 3. Also, despite there not being a full classification of the finite subgroups of $\operatorname{Homeo}^+(\mathbb{S}^n)$, for some classes of groups there are lower bounds on the n for which these groups act faithfully by homeomorphisms on \mathbb{S}^n . Results in this direction by Zimmermann are what allow us to prove Theorem 2.

There do exist examples of nontrivial homomorphisms from mapping class groups to homeomorphisms groups of spheres. Again, there exist many that factor through finite quotients. Another example is to take the symplectic representation $\operatorname{Mod}(S_g) \to \operatorname{Sp}(2g, \mathbb{R})$ given by the action of $\operatorname{Mod}(S_g)$ on the homology of S_g . This gives a homomorphisms $\operatorname{Mod}(S_g) \to \operatorname{Diff}(S^{2g})$ by one-point compactification of \mathbb{R}^{2g} . Is dimension 2g the minimal dimension of a non-trivial homomorphism? Another interesting example is that $\operatorname{Mod}(S_g)$ acts by homeomorphisms on $\mathcal{PMF}(S_g) \cong \mathbb{S}^{6g-7}$, the space of projective measured foliations on S_g . It would be remarkable if these geometric examples are minimal or special in some sense.

Question 8. For a fixed g, what is the minimal n such that there is a nontrivial homomorphism $\phi : \text{Mod}(S_q) \to \text{Homeo}(\mathbb{S}^n)$? What about a faithful one?

Outline. After proving some preliminary lemmas, we prove Theorem 1 in Section 1. We then prove Theorems 2 and 3 in Section 2.

Acknowledgments. We thank Dan Margalit for a number of helpful conversations and for comments on a draft of this article. We thank Samuel Taylor for suggesting that we consider maps to homeomorphism groups of higher-dimensional spheres. We thank Mattia Mecchia for a helpful correspondence about these groups and for suggesting the statement and approach to Theorem 2. We also thank Jürgen Müller for suggesting a way to treat some small values of g in the proof of Theorem 3. The first author acknowledges support from NSF Grant DMS-2005409. The second author acknowledges support from NSF Grants DGE-1650044 and DMS-2002187.

1. Homomorphisms between mapping class groups

The strategy for proving Theorem 1 is straightforward. We first show that some periodic element is in the kernel of the given homomorphism $\operatorname{Mod}(S_g) \to \operatorname{Mod}(S_h)$. We then show that this implies that the homomorphism is trivial. We lay the groundwork for these two steps in two lemmas, Lemmas 9 and 10. We then prove Theorem 1.

We first show that a nontrivial periodic element must lie in the kernel of the homomorphism, for the simple reason that there exists a finite subgroup of $Mod(S_g)$ that does not exist in any $Mod(S_h)$ for h in the specified range. The finite subgroups that we use lie in two infinite families, one for when g is even, the other for when g is odd. These families of subgroups were studied by May–Zimmerman; we will draw out the salient features of their work and will repeat some of their arguments for the sake of clarity, but we refer the reader to their papers for full details.

For $n \geq 2$, let DC_n be the dicyclic group of order 4n, given by the presentation

$$\langle x, y \mid x^{2n} = 1, x^n = y^2, y^{-1}xy = x^{-1} \rangle.$$

May-Zimmerman showed that when n is even, DC_n has strong symmetric genus n; that is, the first genus g for which DC_n appears as a subgroup of $\operatorname{Mod}(S_g)$ is when g=n [25, Theorem 1]. Similarly, they show that when n is odd, $C_4 \times D_n$ has strong symmetric genus n, where C_n is the cyclic group of order n and D_n is the dihedral group of order 2n [26, Theorem 3]. Let G stand for any one of these finite groups. In proving their results, May-Zimmerman first show that G does in fact appear as a subgroup of the specified mapping class group $\operatorname{Mod}(S_g)$. To guarantee that this is the first appearance, they then give lower bounds on h for any other $\operatorname{Mod}(S_h)$ containing G as a subgroup, showing that h > g. In the proof of Lemma 9, we follow their method and keep track of lower bounds on h, showing that there exists a gap between the first appearance of G as a subgroup and its next appearance within the family of mapping class groups.

Lemma 9. When $g \geq 2$ is even, DC_g appears as a subgroup of $Mod(S_g)$ and does not appear in any other $Mod(S_h)$ with h < 2g - 1. When $g \geq 3$ is odd, $C_4 \times D_g$ appears as a subgroup of $Mod(S_g)$ and does not appear in any other $Mod(S_h)$ with h < 2g + 1.

Before proving Lemma 9, we require some preliminaries; see the article of Broughton as a reference [5]. Recall that for any faithful orientation-preserving action of a finite group G on a hyperbolic surface S_q by isometries, we have that

(1)
$$A = 2g_0 - 2 + \sum_{i=1}^{r} \left(1 - \frac{1}{\lambda_i}\right)$$

where the normalized area A is the hyperbolic area of the quotient orbifold scaled by $\frac{1}{2\pi}$, the g_0 is the genus of the quotient orbifold, the λ_i are the orders of the cone points, and the r is the number of cone points. The data of this action is called its signature and it is often encoded as $(g_0; \lambda_1, \ldots, \lambda_r)$. The normalized area, group order, and genus g of the original surfaces are related by the equation

$$|G| \cdot A = 2g - 2.$$

Finally, for a signature of $(g_0; \lambda_1, \ldots, \lambda_r)$ to arise from an action of G, these values must satisfy the Riemann–Hurwitz equation and there must be elements $a_1, \ldots, a_g, b_1, \ldots, b_g, c_1, \ldots, c_r \in G$ that together generate G, where $|c_i| = \lambda_i$, and that satisfy

(2)
$$\prod_{i=1}^{g} [a_i, b_i] \cdot \prod_{j=1}^{r} c_j = 1.$$

This equation follows from the fact that a finite group acting on a hyperbolic surface must arise as a quotient of a Fuchsian group.

The methods used here to constrain finite group actions on surfaces are similar to those used in the proofs of the classical 84(g-1) and 4g+2 theorems; see, for instance, [12, Theorems 7.4, 7.5].

Proof of Lemma 9. May–Zimmerman argue that when $g \geq 2$ is even and DC_g is a subgroup of $\operatorname{Mod}(S_h)$, either h=g or h>g. We will sharpen their second bound to show that in fact either h=g or $h\geq 2g-1$. Their arguments run by showing a dichotomy that either the normalized area A of a fundamental domain of the action of DC_g on S_h satisfies either $A=\frac{1}{2}-\frac{1}{2g}$ or else $A\geq \frac{1}{2}$. The value of h can then be computed from the Riemann–Hurwitz equation: h=1+2gA. We will improve the latter bound to $A\geq \frac{g-1}{g}$, which implies that $h\geq 2g-1$.

We consider cases based on the values of g_0 and r. By Equation (1), if $g_0 \geq 2$, then $A \geq 2$. Next, if $g_0 = 1$, then $r \geq 1$ since g is assumed to be at least 2. If $g_0 = 1$ and $r \geq 2$, then $A \geq 1$. If $g_0 = 1$ and r = 1, then DC_g has a generating set $\langle a, b \rangle$ where $[a, b] = c^{-1}$ and $|c| = \lambda_1$. It is straightforward to check that |[a, b]| = g for any generating pair for DC_g . This yields $A \geq \frac{g-1}{g}$.

Finally, consider the case $g_0 = 0$. Since A > 0, we know that $r \ge 3$. If $r \ge 5$, then we have $A \ge \frac{3}{4} \cdot 2 + \frac{1}{2} \cdot 3 - 2 = 1$. Now assume that $r \le 4$. There is a generating set of DC_g satisfying $\prod_{j=1}^r c_j = 1$. Any generating set for DC_g contains at least one generator outside of $\langle x \rangle$, and by the product restriction there are an even number of these in one of our generating sets. Further, each element outside of $\langle x \rangle$ has order 4. We now treat the cases r = 3 and r = 4 in turn.

Let r=3. Then exactly two c_i lie outside of $\langle x \rangle$ and these have order 4. These must generate DC_g , and a short computation shows that their product has order 2g. Therefore if r=3, the signature is (0;4,4,2g), $A=\frac{1}{2}-\frac{1}{2g}$, and h=g, as shown by May–Zimmerman.

Finally, let r=4. There are either two or four λ_i equal to 4 that correspond to elements outside of $\langle x \rangle$. If there are four, then A=1. If there are two and the corresponding c_i together form a generating pair for DC_g , then the order of their product is relatively prime to 2g. Then the product of the remaining c_i must equal the inverse of this product and so has the same order. If one of the remaining λ_i is either 2 or 3, then the last λ_i must be 2g or 2g/3, respectively. (The latter case is only possible when g is a multiple of 3.) These yield $A=\frac{2g-1}{2g}>\frac{g-1}{g}$ and $A=\frac{7}{6}-\frac{3}{2g}$. The latter is at least 1 when $g\geq 12$ and also satisfies the required bound when g=6.

The final possibility is that there are exactly two λ_i equal to 4 that correspond to elements outside of $\langle x \rangle$ and so that the corresponding c_i together do not form a generating pair for DC_g . Again, the product of the remaining c_i must equal the inverse of this product and so have the same order. Since a product in these remaining two c_i must generate $\langle x \rangle$, if one of the remaining λ_i is either 2 or 3, then the last λ_i must be again be 2g or 2g/3, respectively. The result follows.

Similarly, May–Zimmerman argue that when $g \geq 3$ is odd and $C_4 \times D_g$ is a subgroup of $\text{Mod}(S_h)$, either h = g or h > g. We will show how their arguments imply that h = g or

 $h \ge 2g+1$. Their proof proceeds by showing that the normalized area A of a fundamental domain of the action on S_h by $C_4 \times D_g$ is either exactly $\frac{1}{4} - \frac{1}{4g}$ or else $A \ge \frac{1}{2}$, leaving a few of the final cases as an exercise. These bounds imply that either $h = 1 + 4g(\frac{1}{4} - \frac{1}{4g}) = g$ or $h \ge 1 + 4g \cdot \frac{1}{2} = 2g + 1$ whenever $C_4 \times D_g$ is a subgroup of $\text{Mod}(S_h)$, as desired.

In what follows, we recap the arguments of May–Zimmerman and fill in the cases they leave as an exercise. If $g_0 \geq 1$, then $A \geq \frac{1}{2}$. Further, if $g_0 = 0$, then $r \geq 3$, and also the λ_i are all even. If $r \geq 4$, then $A \geq \frac{1}{2}$. If r = 3, they argue that if $\lambda_1 = 2$ then h = g, and if $\lambda_1 \geq 6$ then $A \geq \frac{1}{2}$. It remains to treat $\lambda_1 = 4$. For $\lambda_2 \geq 8$, they show that $A \geq \frac{1}{2}$; they leave $\lambda_2 = 4$, 6 as an exercise.

If $\lambda_1 = 4$ and $\lambda_2 = 4$, then each generator c_1, c_2 must be a generator of C_4 times a reflection in D_n , and necessarily the second factor of $c_1 \cdot c_2$ must be a rotation of order n. But a pair of such elements does not generate $C_4 \times D_g$; instead they generate an index 2 normal subgroup corresponding to a quotient to C_2 given by the parity of word length.

Similarly, if $\lambda_1 = 4$ and $\lambda_2 = 6$, then c_1 must be a generator of C_4 times a reflection in D_n , and c_2 must be either the identity or the square of a generator in the first factor and a rotation of order 3 in the second factor. This last condition is impossible unless n is a multiple of 3. But a rotation that does not generate the rotation subgroup in D_n cannot be a member of a generating pair for D_n . So this case is impossible as well.

We now prepare the second step, showing that a periodic element in the kernel of $\operatorname{Mod}(S_g) \to \operatorname{Mod}(S_h)$ implies that the homomorphism is trivial whenever h is in the specified range, even in the case when it contains a hyperelliptic involution. The following lemma is similar to a result proved and applied by Harvey–Korkmaz to show their result on homomorphisms $\operatorname{Mod}(S_g) \to \operatorname{Mod}(S_h)$ where g > h [16, Theorem 7]. Lemma 10 has the advantage of giving a uniform treatment for all $g \geq 3$.

Lemma 10. Let $g \geq 3$ and let $\psi : \operatorname{Sp}(S_g) \to G$ be a homomorphism. If G does not contain $(\mathbb{Z}/3\mathbb{Z})^g$ as a subgroup, then ψ is trivial.

Proof. We proceed by constructing normal generators of $Sp(2g, \mathbb{Z})$ and showing that one must be in the kernel of ψ .

The group $\operatorname{Sp}(2g,\mathbb{Z})$ contains $M=(\mathbb{Z}/3\mathbb{Z})^g$ as a subgroup, with generators m_1 to m_g of the form

$$m_i = \begin{bmatrix} I_{2i-2} & 0 & 0\\ 0 & A & 0\\ 0 & 0 & I_{2g-2i} \end{bmatrix}$$

Here A is the 2×2 matrix

$$\begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix}$$

of order 3 and I_n denotes the $n \times n$ identity matrix. Every nontrivial element in M is a normal generator of $\operatorname{Sp}(2g,\mathbb{Z})$, since it is the image of a normal generator of $\operatorname{Mod}(S_g)$, as we now show. The desired elements of $\operatorname{Mod}(S_g)$ are products of roots of Dehn twists about disjoint separating curves, as illustrated in Figure 1. For any nontrivial element $m \in M$, there is a corresponding mapping class \tilde{m} and a nonseparating curve c so that c and $\tilde{m}(c)$ intersect exactly once. By the well-suited curve criterion, it follows that the mapping class $\tilde{m}(c)$ is a normal generator of $\operatorname{Mod}(S_g)$ [20, Lemma 2.2]; so too is its image m in $\operatorname{Sp}(2g,\mathbb{Z})$, since normal generators descend to quotients.

As G contains no subgroup isomorphic to M, some normal generator of $\operatorname{Sp}(2g,\mathbb{Z})$ lies in the kernel of ψ ; therefore ψ is trivial.

FIGURE 1. The surface S_g , where each of g hexagons with sides identified as indicated yields a handle. Each nontrivial element $\tilde{m} \in \tilde{M}$ consists of 1/3 or 2/3 rotations about some of the hexagons; we have $i(c, \tilde{m}(c)) = 1$ for some nonseparating simple closed curve c.

The following corollary can be thought of as an amplification of a theorem of Farb–Masur in the case of $\operatorname{Sp}(2g,\mathbb{Z})$; they show that for any irreducible lattice Γ in a semisimple lie group G of \mathbb{R} -rank at least two, the image of any homomorphism $\phi:\Gamma\to\operatorname{Mod}(S)$ is finite [13, Theorem 1.1].

Corollary 11. Let $g \geq 3$ and let $h \leq 3^{g-1}$. Then every homomorphism $\psi : \operatorname{Sp}(2g, \mathbb{Z}) \to \operatorname{Mod}(S_h)$ is trivial.

Proof. This follows immediately from Lemma 10 by a result of Müller–Sarkar, who showed that the strong symmetric genus of $(\mathbb{Z}/3\mathbb{Z})^g$ is $1+3^{g-1}\cdot\mu_0(g)$, where $\mu_0(g)\geq 1$ when $g\geq 3$ [29, Section 9.1].

With these preliminaries established, the proof of Theorem 1 is straightforward.

Proof of Theorem 1. Let $g \geq 3$ be even and g < h < 2g - 1. By Lemma 9, $\operatorname{Mod}(S_g)$ contains DC_g as a subgroup and $\operatorname{Mod}(S_h)$ does not. Then for any homomorphism ϕ : $\operatorname{Mod}(S_g) \to \operatorname{Mod}(S_h)$, a nontrivial periodic element f lies in the kernel. If f is not a hyperelliptic involution, we conclude that ϕ is trivial by Theorem 4. If f is a hyperelliptic involution, then ϕ factors through the symplectic representation. Since $h < 2g - 1 \leq 3^{g-1}$, we conclude that ϕ is trivial by Corollary 11.

The proof for odd $g \geq 3$ proceeds in the same way using the finite group $C_4 \times D_g$. \square

2. Homomorphisms to homeomorphism groups of spheres

In this section we prove Theorems 2 and 3, which constrain homomorphisms from mapping class groups to homeomorphism groups of spheres.

We begin by introducing a class of groups that will play an important role in our proofs. The split metacyclic group $D_{p,q}$ of order pq with p and q prime is the group with presentation

(3)
$$D_{p,q} = \langle a, b \mid a^q = b^p = 1, bab^{-1} = a^r \rangle = \mathbb{Z}_p \rtimes \mathbb{Z}_q$$

where r is a solution (other than 1) to the congruence $r^p \equiv 1 \pmod{q}$. Such a solution exists exactly when q is 1 mod p, and different solutions yield isomorphic groups. Note that $D_{2,q}$ is a dihedral group.

Zimmermann showed that there are strong restrictions on which spheres the group $D_{p,q}$ has a faithful action [37]. While Zimmermann throughout his paper assumes smoothness of actions, the results that are relevant for us hold true for general actions by homeomorphisms. We summarize these here. Zimmermann shows the following preliminary homological proposition about free actions by $D_{p,q}$ on homology spheres using a spectral sequence argument.

Proposition 12 (Zimmermann, Proposition 2, [37]). Suppose that $D_{p,q}$ admits a faithful action on a manifold M with the mod p homology of the \mathbb{S}^n and that the group \mathbb{Z}_p acts freely on M. Then n+1 is a multiple of 2q if all elements of $D_{p,q}$ act as the identity on $H^n(M;\mathbb{Z}_p) \cong \mathbb{Z}_p$ (the orientation-preserving case), or an odd multiple of q if some element of $D_{p,q}$ acts as the minus identity (the orientation-reversing case).

J: [p is overloaded in the statement.]

We now give a proof of one of Zimmermann's main results [37, Theorem 1(i)], adapted to apply to actions by general homeomorphisms.

Theorem 13. For p and q odd primes, the minimal n such that there is an orientation-preserving topological action of the group $D_{p,q}$ on \mathbb{S}^n is when n = 2q - 1.

Proof. The group $\mathbb{Z}_p \rtimes \mathbb{Z}_q$ contains a normal subgroup $Z \cong \mathbb{Z}_p$. Let F be the fixed point of Z. If F is empty, then Proposition 12 implies that n+1 is a multiple of 2q. If F is not empty, then F is \mathbb{Z}_p homology sphere by Smith theory. By Alexander Duality theorem, we know that the complement has the same J: [mod p?] homology as a sphere of dimension less than n. Since Z acts on $\mathbb{S}^n - F$ freely and $\mathbb{S}^n - F$ is $D_{p,q}$ -invariant, again Proposition 12 implies that $n+1 \geq 2q$. Finally, $D_{p,q}$ admits a faithful, linear action on \mathbb{S}^n when n=2q-1; see for instance [7, Example 9.2.3, p.155].

We are now prepared to prove Theorem 2.

Proof of Theorem 2. For any n and an odd prime p, take a prime q > n + 1. As observed by Weaver [35], a result of Kulkarni implies that any group $D_{p,q}$ is a subgroup of $\operatorname{Mod}(S_g)$ for all g sufficiently large [18]. Then for all g sufficiently large the group $D_{p,q}$ does not appear in $\operatorname{Homeo}^+(\mathbb{S}^n)$ but is a subgroup of $\operatorname{Mod}(S_g)$. For all of these g and for any $\phi: \operatorname{Mod}(S_g) \to \operatorname{Homeo}^+(\mathbb{S}^n)$ there is a nontrivial periodic element in its kernel. Every nontrivial element of $D_{p,q}$ has odd order, so Theorem 4 implies that ϕ is trivial.

For some small values of n, we are able to give sharp or nearly-sharp bounds on the values of g in Theorem 2 that yield trivial homomorphisms. In proving Theorem 3, we consider each of the four target groups in turn: $\operatorname{Homeo}^+(\mathbb{S}^2)$, $\operatorname{Homeo}^+(\mathbb{R}^3)$, $\operatorname{Homeo}^+(\mathbb{S}^3)$, and then $\operatorname{Diff}^+(\mathbb{S}^4)$. The constraining finite subgroups are the same for the first two target groups; when the target groups are $\operatorname{Homeo}^+(\mathbb{S}^3)$ and $\operatorname{Diff}^+(\mathbb{S}^4)$, a deeper analysis of finite subgroups is required.

Proof of Theorem 3. Let $g \geq 3$ and let $\phi : \operatorname{Mod}(S_g) \to \operatorname{Homeo}^+(\mathbb{S}^2)$ be a homomorphism. It is a classical result of Brouwer, Eilenberg, and de Kerékjártó [6, 10, 11] that every finite subgroup of $\operatorname{Homeo}^+(\mathbb{S}^2)$ is conjugate to a finite subgroup of $\operatorname{SO}(3)$. These are the cyclic groups C_n , the dihedral groups D_n , and the tetrahedral, octahedral, and icosahedral groups A_4 , Σ_4 , and A_5 . This classification goes back to the work of Klein; see [8, Chapter 19] or [4, Sect.I.3.4] for treatments.

When $g \geq 3$, $\operatorname{Mod}(S_g)$ contains a finite subgroup that is not isomorphic to any subgroup of $\operatorname{SO}(3)$. For instance, we have the Accola–Maclachlan subgroup $C_2 \times C_{2g+2}$ of $\operatorname{Mod}(S_g)$,

which attains the 4g + 4 bound on its largest abelian subgroup (see, for instance, [36]). This implies that ϕ has a nontrivial periodic element in its kernel. If this element is not a hyperelliptic involution, Theorem 4 implies that ϕ is trivial. Otherwise, ϕ factors through the symplectic representation. Since SO(3) does not contain $(C_3)^g$ as a subgroup for $g \geq 3$, Lemma 10 implies that ϕ is again trivial.

We next consider homomorphisms to $\operatorname{Homeo}^+(\mathbb{R}^3)$. Zimmermann showed that every orientation-preserving action by homeomorphisms of a finite group on \mathbb{S}^3 that has a global fixed point is a finite subgroup of $\operatorname{SO}(3)$; he therefore also concludes that every finite subgroup of $\operatorname{Homeo}^+(\mathbb{R}^3)$ is a finite subgroup of $\operatorname{SO}(3)$ [39, Corollary 1]. This was also shown independently by Kwasik–Sun [19]. Therefore we may conclude just as we did for $\operatorname{Homeo}^+(\mathbb{S}^2)$ above that ϕ is trivial.

Next we consider homomorphisms to $\operatorname{Homeo}^+(\mathbb{S}^3)$. By recent work of Pardon, every continuous action of a finite group on a smooth 3-manifold is a uniform limit of smooth actions [30]. Pardon's result guarantees that the isomorphism types of the finite subgroups of $\operatorname{Homeo}^+(\mathbb{S}^3)$ are identical to those of $\operatorname{Diff}^+(\mathbb{S}^3)$. By the Geometrization Theorem, every finite group acting smoothly or locally linearly on \mathbb{S}^3 is geometric, that is, it is conjugate to a finite subgroup of $\operatorname{SO}(4)$. Every finite subgroup of $\operatorname{SO}(4)$ is a subgroup of some central product $P_1 \times_{C_2} P_2$, where each P_i is one of the binary polyhedral groups: the cyclic groups C_{2n} , the binary dihedral groups D_n^* , and the binary tetrahedral, binary octahedral, and binary icosahedral groups A_4^* , Σ_4^* , and A_5^* . These facts are exposited in a survey article by Zimmermann [38], and a list of subgroups of the binary groups is in the Appendix of [22]. (Note that $D_n^* \cong DC_n$.)

We must therefore produce for each $g \geq 3$ a finite subgroup G_g of $\operatorname{Mod}(S_g)$ that is not a subgroup of any $P_1 \times_{C_2} P_2$. (Note that the Accola–Maclachlan subgroup $C_2 \times C_{2g+2}$ no longer suffices.) Producing such subgroups proves the theorem, for then either a nontrivial nonhyperelliptic periodic element is in the kernel of ϕ , so that ϕ is trivial; otherwise ϕ factors through the symplectic representation, and since the group $(C_3)^g$ for $g \geq 3$ is not a subgroup of any $P_1 \times_{C_2} P_2$, we conclude by Lemma 10 that ϕ is trivial. Indeed, apart from $(\mathbb{Z}/2\mathbb{Z})^3$, the finite abelian subgroups of $\operatorname{SO}(4)$ can be written as the direct product of at most two finite cyclic groups.

For $g \geq 42$, we make take G_g to be the split metacyclic group $D_{3,7}$. Weaver computed the stable upper genus of all split metacyclic groups, and in particular he showed that $\text{Mod}(S_g)$ contains $D_{3,7}$ for all $g \geq 42$ [35, Corollary 4.8]. On the other hand, $D_{3,7}$ is a not a subgroup of Homeo⁺(S³), since all finite subgroups of SO(4) of odd order are abelian. The classification of finite subgroups of SO(4) goes back to work of Seifert–Threlfall [33, 34]; see the paper of Mecchia–Seppia for a contemporary treatment [27]. Alternatively, we may appeal to Theorem 13.

Weaver additionally shows how to compute the genus spectra of all split metacyclic groups [35, Theorem 4.7]. Using his formulas, it is straightforward to compute that $\text{Mod}(S_g)$ contains at least one of $D_{3,7}$, $D_{3,13}$, $D_{3,19}$, $D_{3,31}$, or $D_{3,37}$ as a subgroup for all $g \geq 3$ except for the following ten values:

$$\{4, 5, 7, 11, 13, 16, 23, 25, 34, 41\}$$

Since these $D_{p,q}$ are also non-abelian and of odd order, they are not subgroups of Homeo⁺(\mathbb{S}^3). We have therefore found the required G_g for all but these ten values of g.

For these remaining cases, we may proceed as follows, as suggested to us by Jürgen Müller. We begin by selecting the following groups for G_q :

for
$$g = 4, 11, 16, 25, 34, 41 : G_g = C_4 \rtimes C_4 = \text{SmallGroup}(16,4)$$

for $g = 5, 7, 13, 23 : G_g = C_5 \rtimes C_4 = \text{SmallGroup}(20,3)$

In these cases we have that G_g is a subgroup of $\text{Mod}(S_g)$ by consulting the catalogue of finite subgroups of $\text{Mod}(S_g)$ up to g=48 by Breuer. To see that these two finite groups are not subgroups of SO(4), it suffices to check that they have no real faithful characters in dimension at most 4, realizable over \mathbb{R} and with trivial determinant character. This is a finite check using the groups' character tables and where realizability can be determined using the Frobenius-Schur indicator.

Finally, let $\phi : \operatorname{Mod}(S_g) \to \operatorname{Diff}^+(\mathbb{S}^4)$ be a homomorphism. A theorem of Mecchia–Zimmermann [28] states that every finite group that acts smoothly on \mathbb{S}^4 and preserves orientation lies on the following list:

- (1) orientation-preserving finite subgroups of $O(3) \times O(2)$ and of $O(4) \times O(1)$,
- (2) orientation-preserving subgroups of the Weyl group $W = (C_2)^5 \rtimes \Sigma_5$,
- (3) $A_5, \Sigma_5, A_6, \Sigma_6, \text{ and }$
- (4) finite subgroups of SO(4) and 2-fold extensions thereof.

Since the group $(C_3)^g$ is not on this list for $g \geq 3$, as with target $\operatorname{Homeo}^+(\mathbb{S}^3)$ it again suffices to produce for $g \geq 3$ (except 4 and 11) a G_g that is a subgroup of $\operatorname{Mod}(S_g)$ and that is not a subgroup of $\operatorname{Diff}^+(\mathbb{S}^4)$. For all but the ten exceptional values of g we may take G_g to be some $D_{p,q}$, just as in the previous case. We have already established that they are subgroups of $\operatorname{Mod}(S_g)$. These G_g are not subgroups of $\operatorname{Diff}^+(\mathbb{S}^4)$, as follows. J: [In fact, it is enough to appeal to Theorem 13] These $D_{p,q}$ are semidirect products with prime-order non-commuting generators, so any isomorphism to a direct product restricts to an isomorphism on a factor. But $D_{p,q}$ is not a subgroup of any of $\operatorname{SO}(4)$, $\operatorname{SO}(3)$, $\operatorname{SO}(2)$ or $\operatorname{SO}(1)$, and since G has odd order it is also not a subgroup of the corresponding degree 2 extensions $\operatorname{O}(4)$, $\operatorname{O}(3)$, $\operatorname{O}(2)$ or $\operatorname{O}(1)$. So these G_q do not lie within (1) on the list.

The groups G_g do not lie within (2) on the list above, since they contains an element of prime order greater than 5. They are not isomorphic to any of the four permutation groups within (3) on the list. Finally, we argued in the Homeo⁺(\mathbb{S}^3) case that G_g is not a subgroup of SO(4), and G_g is not a 2-fold extension of any group, since it has odd order; it therefore does not lie within (4) on the list above.

For the remaining cases, we may take the following, again as suggested by Jürgen Müller:

for
$$g = 5, 13, 25, 41$$
: $G_g = (C_4 \times C_2) \times C_4 = \text{SmallGroup}(32,2)$
for $g = 7, 16, 34$: $G_g = C_9 \times C_3 = \text{SmallGroup}(27,4)$
for $g = 23$: $G_g = \text{SL}_2(3) \times C_4 = \text{SmallGroup}(96,66)$

Again, we can appeal to Breuer's catalog to see that G_g is a subgroup of $\text{Mod}(S_g)$, and the same character theory argument shows that they are not subgroups of SO(5).

For the excluded values g=4 and 11 in the last argument, every finite subgroup of $\text{Mod}(S_g)$ lies on the list of Mecchia–Zimmermann. It is possible that some of these finite groups do not in fact have a faithful smooth orientation-preserving action on \mathbb{S}^4 , as the list is not a collection of sufficient conditions, but only necessary ones. Or perhaps these

finite groups all do act smoothly, but homomorphisms are trivial for a different reason. Or finally, perhaps non-trivial homomorphisms do exist for these values of g.

References

- [1] J. Aramayona, C. J. Leininger, and J. Souto. Injections of mapping class groups. *Geom. Topol.*, 13(5):2523–2541, 2009.
- [2] J. Aramayona and J. Souto. Homomorphisms between mapping class groups. Geom. Topol., 16(4):2285-2341, 2012.
- [3] J. S. Birman. The topology of 3-manifolds, Heegaard distance and the mapping class group of a 2-manifold. In *Problems on mapping class groups and related topics*, volume 74 of *Proc. Sympos. Pure Math.*, pages 133–149. Amer. Math. Soc., Providence, RI, 2006.
- [4] T. Breuer. Characters and automorphism groups of compact Riemann surfaces, volume 280 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2000.
- [5] S. A. Broughton. Classifying finite group actions on surfaces of low genus. J. Pure Appl. Algebra, 69(3):233-270, 1991.
- [6] L. E. J. Brouwer. Über die periodischen Transformationen der Kugel. Math. Ann., 80(1):39–41, 1919.
- [7] K. S. Brown. Cohomology of groups, volume 87 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1994. Corrected reprint of the 1982 original.
- [8] W. Burnside. Theory of groups of finite order. Dover Publications, Inc., New York, 1955. 2nd ed.
- [9] L. Chen. On the non-realizability of braid groups by homeomorphisms. *Geom. Topol.*, 23(7):3735–3749, 2019.
- [10] B. de Kerékjártó. Über die periodischen Tranformationen der Kreisscheibe und der Kugelfläche. Math. Annalen, 80(3-7), 1919.
- [11] S. Eilenberg. Sur les transformations périodiques de la surface de sphère. Fund. Math., 22:28–41, 1934.
- [12] B. Farb and D. Margalit. A primer on mapping class groups, volume 49 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 2012.
- [13] B. Farb and H. Masur. Superrigidity and mapping class groups. Topology, 37(6):1169–1176, 1998.
- [14] J. Franks and M. Handel. Triviality of some representations of $MCG(S_g)$ in $GL(n, \mathbb{C})$, $Diff(S^2)$ and $Homeo(\mathbb{T}^2)$. Proc. Amer. Math. Soc., 141(9):2951–2962, 2013.
- [15] E. K. Grossman. On the residual finiteness of certain mapping class groups. J. London Math. Soc. (2), 9:160–164, 1974/75.
- [16] W. J. Harvey and M. Korkmaz. Homomorphisms from mapping class groups. Bull. London Math. Soc., 37(2):275–284, 2005.
- [17] N. V. Ivanov and J. D. McCarthy. On injective homomorphisms between Teichmüller modular groups. I. *Invent. Math.*, 135(2):425–486, 1999.
- [18] R. S. Kulkarni. Symmetries of surfaces. *Topology*, 26(2):195–203, 1987.
- [19] S. Kwasik and F. Sun. Topological symmetries of R³. Q. J. Math., 70(1):201-224, 2019.
- [20] J. Lanier and D. Margalit. Normal generators for mapping class groups are abundant. https://arxiv.org/abs/1805.03666, to appear in Comment. Math. Helv.
- [21] C. J. Leininger and D. Margalit. On the number and location of short geodesics in moduli space. J. Topol., 6(1):30–48, 2013.
- [22] D. Lima Gonçalves and J. Guaschi. The classification of the virtually cyclic subgroups of the sphere braid groups. SpringerBriefs in Mathematics. Springer, Cham, 2013.
- [23] K. Mann and M. Wolff. Rigidity of mapping class group actions on S^1 . Geom. Topol., 24(3):1211–1223, 2020.
- [24] V. Markovic. Realization of the mapping class group by homeomorphisms. *Invent. Math.*, 168(3):523–566, 2007.
- [25] C. L. May and J. Zimmerman. Groups of small strong symmetric genus. J. Group Theory, 3(3):233–245, 2000.
- [26] C. L. May and J. Zimmerman. There is a group of every strong symmetric genus. Bull. London Math. Soc., 35(4):433–439, 2003.
- [27] M. Mecchia and A. Seppi. Fibered spherical 3-orbifolds. Rev. Mat. Iberoam., 31(3):811–840, 2015.
- [28] M. Mecchia and B. Zimmermann. On finite groups acting on homology 4-spheres and finite subgroups of SO(5). Topology Appl., 158(6):741–747, 2011.

- [29] J. Müller and S. Sarkar. A structured description of the genus spectrum of abelian p-groups. Glasg. Math. J., 61(2):381–423, 2019.
- [30] J. Pardon. Smoothing finite group actions on three-manifolds. Duke Math. J., 170(6):1043–1084, 2021.
- $[31] \ \ J. \ Paulhus. \ Branching \ data \ for \ curves \ up \ to \ genus \ 48. \ https://paulhus.math.grinnell.edu/monodromy.html.$
- [32] J. Paulhus. Branching data for curves up to genus 48. https://arxiv.org/abs/1512.07657v1, 2015.
- [33] W. Threlfall and H. Seifert. Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes. *Math. Ann.*, 104(1):1–70, 1931.
- [34] W. Threlfall and H. Seifert. Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes (Schluß). *Math. Ann.*, 107(1):543–586, 1933.
- [35] A. Weaver. Genus spectra for split metacyclic groups. Glasg. Math. J., 43(2):209-218, 2001.
- [36] A. Weaver. Automorphisms of surfaces. In Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), volume 296 of Contemp. Math., pages 257–275. Amer. Math. Soc., Providence, RI, 2002.
- [37] B. P. Zimmermann. On minimal actions of finite simple groups on homology spheres and Euclidean spaces. Rend. Circ. Mat. Palermo (2), 59(3):451–459, 2010.
- [38] B. P. Zimmermann. On finite groups acting on spheres and finite subgroups of orthogonal groups. Sib. Èlektron. Mat. Izv., 9:1–12, 2012.
- [39] B. P. Zimmermann. On topological actions of finite groups on S³. Topology Appl., 236:59–63, 2018.

LEI CHEN, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MARYLAND, 4176 CAMPUS DRIVE, COLLEGE PARK, MD 20742, CHENLEI1991919@GMAIL.COM

Justin Lanier, Department of Mathematics, University of Chicago, 5734 S. University Avenue, Chicago, IL 60637, Jlanier8@uchicago.edu