	Note
	I II
N X	1 11
Name Vorname	
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)	2
	3
Unterschrift der Kandidatin/des Kandidaten	4
TECHNISCHE UNIVERSITÄT MÜNCHEN	5
Fakultät für Mathematik	6
Klausur	7
MA9202 Mathematik für Physiker 2 (Analysis 1)	8
Prof. Dr. M. Keyl	9
5. April 2016, $8:00 - 9:30$ Uhr	
Hörsaal: Platz:	\sum
Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 9 Aufgaben	I Erstkorrektur
Bearbeitungszeit: 90 min Erlaubte Hilfsmittel: \mathbf{ein} selbsterstelltes DIN A4 Blatt	II
Nur von der Aufsicht auszufüllen:	_
Hörsaal verlassen von bis	
Vorzeitig abgegeben um	
Besondere Bemerkungen:	

 $Musterl\ddot{o}sung \quad \ \ ({\rm mit\;Bewertung})$

1. Vollständige Induktion

[8 Punkte]

Beweisen Sie mittels vollständiger Induktion, dass für alle $n \geq 2$ gilt:

$$\prod_{k=2}^{n} \left(1 - \frac{1}{k}\right) = \frac{1}{n}$$

$$\prod_{k=2}^{n} \left(1 - \frac{k-1}{k}\right) = \frac{1}{n!}$$

LÖSUNG:

(a) Induktions beginn: 1 - 1/2 = 1/2. [1] Induktions schritt: [2]

$$\prod_{k=2}^{n+1} \left(1 - \frac{1}{k}\right) = \prod_{k=2}^{n} \left(1 - \frac{1}{k}\right) \left(1 - \frac{1}{n+1}\right) = \frac{1}{n} \left(1 - \frac{1}{n+1}\right) = \frac{1}{n} \frac{n+1-1}{n+1} = \frac{1}{n+1}$$

(b) Induktions beginn: 1 - 1/2 = 1/2. [1]

Induktionsschritt: [2]

$$\prod_{k=2}^{n+1} \left(1 - \frac{k-1}{k}\right) = \prod_{k=2}^{n} \left(1 - \frac{k-1}{k}\right) \left(1 - \frac{n}{n+1}\right) = \frac{1}{n!} \left(1 - \frac{n}{n+1}\right) = \frac{1}{n!} \frac{n+1-n}{n+1} = \frac{1}{(n+1)!}$$

2. Komplexe Zahlen

[8 Punkte]

(a) Bestimmen Sie Real– und Imaginärteil von $x=\bar{z}^2+z^{-2},\,z\in\mathbb{C}\setminus\{0\},\,z=a+ib.$

Re
$$(x) = (a^2 - b^2) \left(1 + \frac{1}{|z|^4} \right)$$
 [2] Im $(x) = -2ab \left(1 + \frac{1}{|z|^4} \right)$ [2]

$$\operatorname{Im}(x) = -2ab\left(1 + \frac{1}{|z|^4}\right)$$
 [2]

(b) Geben Sie Betrag und Argument von $\left(\frac{1-i}{1+i}\right)$ an.

$$\left|\frac{1-i}{1+i}\right| = 1$$
 [2]

$$\arg\left(\frac{1-i}{1+i}\right) = -\frac{\pi}{2} \quad [2]$$

LÖSUNG:

(a) Es ist

$$\bar{z}^2 + \frac{1}{z^2} = \bar{z}^2 + \frac{\bar{z}^2}{z^2 \bar{z}^2} = \bar{z}^2 \left(1 + \frac{1}{|z|^4} \right) = (a^2 - b^2 - 2iab) \left(1 + \frac{1}{|z|^4} \right)$$

(b) Folgt aus

$$\frac{1-i}{1+i} = \frac{1-i}{1+i} \frac{1-i}{1-i} = \frac{-2i}{2} = -i$$

3. Konvergenz von Folgen und Reihen [6 Punkte]	
(a) Bestimmen Sie den Grenzwert $\lim_{n\to\infty} \sqrt{3n} - \sqrt{2n}$. [2]	
$\square = -\infty$ $\square = 0$ $\square = 2$ $\square = \frac{1}{2}$ $\square = 1$ $\square = \infty$ \square existient nicht	
(b) Bestimmen Sie den Grenzwert $\lim_{n\to\infty} \sum_{j=1}^n \frac{j}{n^2}$ [2]	
$\boxtimes \frac{1}{2} \Box 1 \Box 3 \Box 0 \Box -\frac{1}{2} \Box \frac{2}{3} \Box \infty \Box \text{ existiert nicht}$	
(c) Gegen welchen Wert ist die Reihe $\sum_{n=0}^{\infty} \frac{\cos(n\pi)}{3^n}$ eigentlich oder uneigentlich konvergent? [2]	
$\square=-\infty$ $\square=3$ $\boxtimes=\frac{3}{4}$ $\square=\frac{4}{3}$ $\square=1$ $\square=\infty$ \square keiner der angegebenen Werte	
Lösung:	
(a) Es ist: $\sqrt{3n} - \sqrt{2n} = (\sqrt{3} - \sqrt{2})\sqrt{n}.$	
Da \sqrt{n} streng monton steigend und unbeschränkt ist, konvergiert die Folge uneigentlich gegen ∞ .	

 $\sum_{j=1}^{n} \frac{j}{n^2} = \frac{1}{n^2} \sum_{j=1}^{n} j = \frac{1}{n^2} \frac{1}{2} n(n+1) = \frac{1}{2} \left(1 + \frac{1}{n} \right)$

 $\sum_{n=0}^{\infty} \frac{\cos(n\pi)}{3^n} = \sum_{n=0}^{\infty} \left(\frac{-1}{3}\right)^n = \frac{1}{1 + \frac{1}{3}} = \frac{3}{4}$

(c) Offenbar ist $\cos(n\pi) = (-1)^n$. Somit erhalten wir eine geometrische Reihe:

(b) Es ist:

4. Potenzreihe

[8 Punkte]

Bestimmen Sie den Konvergenzradius R der Potenzreihe

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \left(\sqrt{n^2 + n} - \sqrt{n^2 + 1} \right)^n x^n$$

Hinweis: Benutzen Sie (ohne Beweis), dass $\lim_{n\to\infty} \sqrt[n]{n} = 1$ ist.

Mit der Formel von Cauchy-Hadamard ist [1]:

$$R = \limsup_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}}.$$

Also: [2]:

$$\sqrt[n]{\frac{1}{n^2} \left(\left| \sqrt{n^2 + n} - \sqrt{n^2 + 1} \right| \right)^n} = \frac{1}{\left(\sqrt[n]{n} \right)^2} \frac{n - 1}{\sqrt{n^2 + n} + \sqrt{n^2 + 1}}$$

$$= \frac{1}{\left(\sqrt[n]{n} \right)^2} \frac{n - 1}{n} \frac{1}{\sqrt{1 + 1/n} + \sqrt{1 + 1/n^2}}$$

Wegen Steitgkeit von $x \mapsto 1/x^2$ ist [1]:

$$\lim_{n \to \infty} \frac{1}{\left(\sqrt[n]{n}\right)^2} = 1.$$

Ferner ist [2]:

$$\lim_{n \to \infty} \frac{n-1}{n} = 1 \quad \text{und} \quad \lim_{n \to \infty} \frac{1}{\sqrt{1 + 1/n} + \sqrt{1 + 1/n^2}} = \frac{1}{2}$$

Grenzwertarithmetik liefert daher [2]:

$$R = \lim_{n \to \infty} \left[\sqrt[n]{\frac{1}{n^2} \left(\left| \sqrt{n^2 + n} - \sqrt{n^2 + 1} \right| \right)^n} \right]^{-1} = 2$$

5. Gleichmäßige Stetigkeit

[4 Punkte]

Negieren Sie die Aussage: f ist auf dem Intervall [0,1] gleichmäßig stetig.

Hinweis: Benutzen Sie die Defintion der gleichmäßigen Stetigkeit mittels Quantoren.

LÖSUNG:

Gleichmäßige Stetigkeit bedeutet [1]:

$$\forall \epsilon > 0 \ \exists \delta > 0$$
, so dass für alle $x, y \in [0, 1]$ gilt: $|x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon$.

Die Negierung dieser Aussage ist [3]:

$$\exists \epsilon > 0$$
, so dass $\forall \delta > 0$ gilt: $\exists x, y \in [0, 1]$ mit $|x - y| < \delta$ und $|f(x) - f(y)| > \epsilon$.

6. Grenzwerte von Funktionen

[8 Punkte]

Prüfen Sie ob die folgenden Grenzwerte existieren, und berechnen Sie sie gegebenenfalls.

(a)
$$\lim_{x \to 0} \frac{\sqrt{1 + \sin(x)} - \cos(x)}{\arcsin(x)}$$

(b)
$$\lim_{x \to 2} \frac{x^2 - 4x + 3}{x^2 - 4}$$

LÖSUNG:

(a) Es gilt f(0) = 0 und g(0) = 0 für $f = \sqrt{1 + \sin(x)} - \cos(x)$ und $g(x) = \arcsin(x)$. Ferner sind f und g auf einer Umgebung von 0 differenzierbar und es gilt $g'(x) \neq 0$ für $x \in (-1,1) \setminus \{0\}$. Damit sind die Voraussetzungen für den Satz von L'Hospital erfüllt [1].

Es gilt nun [2]

$$f'(x) = \frac{\cos(x)}{2\sqrt{1 + \sin(x)}} + \sin(x)$$
 und $g'(x) = \frac{1}{\sqrt{1 - x^2}}$

Damit ist

$$\lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \left(\frac{\cos(x)}{2\sqrt{1 + \sin(x)}} + \sin(x) \right) \sqrt{1 - x^2} = \frac{1}{2}$$

Der gesuchte Grenzwert exisitiert daher und ist gleich

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{f'(x)}{g'(x)} = \frac{1}{2} \quad [1]$$

(b) Die Funktion

$$h(x) = \frac{x^2 - 4x + 3}{x^2 - 4} = \frac{x^2 - 4x + 3}{(x+2)(x-2)}$$

ist rational und das Zählerpolynom hat in x=2 keine Nullstelle. Damit ist der Satz von L'Hospital nicht anwendbar [1]. Vielmehr hat h in x=2 eine Polstelle 1. Ordnung, so dass die uneigentlichen rechts- und linksseitigen Grenzwerte existieren [2]:

$$\lim_{x \nearrow 2} \frac{x^2 - 4x + 3}{(x+2)(x-2)} = -\infty \qquad \lim_{x \searrow 2} \frac{x^2 - 4x + 3}{(x+2)(x-2)} = +\infty$$

Damit exisitiert $\lim_{x\to 2} h(x)$ nicht – auch nicht uneigentlich [1].

7. Taylorentwicklung

[6 Punkte]

Gegeben sei die Funktion $f: \mathbb{R} \to \mathbb{R}, x \mapsto \exp(-x^2)$.

(a) Bestimmen Sie die ersten vier Ableitungen von f.

[4]

(b) Bestimmen Sie das Taylorpolynom 4. Ordnung $T_4f(x,1)$ um den Entwicklungspunkt 1. [2]

LÖSUNG:

(a) Die Ableitungen sind:

$$f'(x) = -2x e^{-x^2}, f''(x) = (4x^2 - 2) e^{-x^2}$$

$$f^{(3)}(x) = -(8x^3 - 12x) e^{-x^2}, f^{(4)}(x) = (16x^4 - 48x^2 + 12) e^{-x^2}$$

(b) Das Taylorpolynom ist

$$T_4 f(x,1) = e^{-1} - 2e^{-1}(x-1) + e^{-1}(x-1)^2 + \frac{2(x-1)^3}{3e} - \frac{5(x-1)^4}{6e}$$

8. Stammfunktionen

[9 Punkte]

Gegeben Sie für die folgenden Funktionen Stammfunktionen an:

$$\int \sqrt{(1+x)^3} dx = \frac{2}{5} (1+x)^{5/2}$$
 [3]

$$\int x\sqrt{1+x}dx = \frac{-2}{3}(1+x)^{3/2} + \frac{2}{5}(1+x)^{5/2}$$
 [3]

$$\int \frac{x^3 dx}{1 + x^4} = \boxed{\frac{1}{4} \ln(1 + x^4)}$$
 [3]

LÖSUNG:

1. Integral. Mit der Substitution: y(x) = 1 + x ist

$$\int \sqrt{(1+x)^3} dx = \int y^{3/2} dy = \frac{2}{5} y^{5/2} = \frac{2}{5} (1+x)^{5/2}$$

2. Integral. Wir wählen:

$$f(x) = x$$
 $f'(x) = 1$ $g(x) = \frac{2}{3}(1+x)^{3/2}$ $g'(x) = \sqrt{1+x}$

Partielle Integration liefert somit:

$$\int x\sqrt{1+x}dx = \int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$
$$= \frac{2}{3} \left[x(1+x)^{3/2} - \int (1+x)^{3/2}dx \right] = \frac{2}{3} \left[x(1+x)^{3/2} - \frac{2}{5}(1+x)^{5/2} \right]$$

Für die Lösung bis zu diesem Punkt gibt es volle Punktzahl. Allerdings können wir den Ausdruck noch etwas umformen:

$$x(1+x)^{3/2} - \frac{2}{5}(1+x)^{5/2} = \left(x - \frac{2}{5}(1+x)\right)(1+x)^{3/2} = \left(\frac{3}{5}x - \frac{2}{5}\right)(1+x)^{3/2}$$
$$= \left(\frac{3}{5}(1+x) - 1\right)(1+x)^{3/2} = \frac{3}{5}(1+x)^{5/2} - (1+x)^{3/2}$$

Damit also

$$\int x\sqrt{1+x}dx = \frac{-2}{3}(1+x)^{3/2} + \frac{2}{5}(1+x)^{5/2}$$

3. Integral. Wir substituieren $y(x) = 1 + x^4$ mit $y'(x) = 4x^3$. Dies ergibt:

$$\int \frac{x^3 dx}{1+x^4} = \int \frac{1}{4} \frac{y'(x)}{y(x)} dx = \frac{1}{4} \ln(1+x^4)$$

9. Matrixexponential

[6 Punkte]

[1]

[1]

Berechnen Sie explizit $\exp \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & t & 1 \end{pmatrix}$.

LÖSUNG:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & t & 1 \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{=1} + \underbrace{\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & t & 0 \end{pmatrix}}_{=:B}$$

 $\mathbbm{1}$ und B kommutieren trivialerweise,

$$\text{und } B^2 = 0.$$

Somit ist

$$\exp\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & t & 1 \end{pmatrix} = \exp(\mathbb{1} + B) \stackrel{[1]}{=} \exp(\mathbb{1}) \exp(B) \stackrel{[2]}{=} e\mathbb{1}(\mathbb{1} + B) \stackrel{[1]}{=} \begin{pmatrix} e & 0 & 0 \\ 0 & e & 0 \\ 0 & te & e \end{pmatrix}.$$