原子間·分子間相互作用

山内 仁喬

2021年6月25日

分子シミュレーションを行うために、事前に計算を行う系をモデル化して相互作用の関数を定める必要がある。本章では、生体分子系に対するポテンシャル関数や力・ビリアルの計算方法を解説する。

1 生体分子に対する全原子モデル

現在, 生体分子のモデルには AMBER [1] や CHARMM [2], GROMOS, OPLS [3] といった様々なモデルが提案されている。タンパク質などの生体分子で広く使われるポテンシャルは一般に次のような関数形で与えられる。

$$U_{\text{total}} = \sum_{\text{bonds}} k_r (r_{ij} - r_{\text{eq}})^2 + \sum_{\text{angles}} k_{\theta} (\theta_{jik} - \theta_{\text{eq}})^2 + \sum_{\text{dihedrals}} \frac{V_n}{2} [1 + \cos(n\phi_{ijkl} - \gamma)]$$

$$+ \sum_{\text{nonbonds}} \left[4\epsilon_{ij} \left\{ \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right\} + \frac{q_i q_j}{4\pi \epsilon_0 r_{ij}} \right]$$

$$(1)$$

第1項から第3項までは結合性の相互作用を表し、第4項目は非結合性の相互作用を表す。第1項目は結合長、2項目は結合角、第3項目は二面角に関するエネルギーである。第4項目はファンデル・ワールス相互作用と静電相互作用エネルギーである。ファンデル・ワールス相互作用には通常レナード・ジョーンズ (LJ) ポテンシャルを使用する。式 (1) で表される生体分子モデルを図1に示す。以下、各相互作用項について具体的に取り扱っていく。静電相互作用については別途扱う。

図 1: 生体分子の相互作用の模式図.

2 様々なポテンシャル関数: 力・ヴィリアルの表式

この章では、様々なポテンシャル関数を詳しく見ている。また分子動力学シミュレーションの時間積分に必要な力や圧力計算に必要となるヴィリアルの表式を解説する。このノートでは位置ベクトルとして $\mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i$ の定義を使用する。

2.1 結合長ポテンシャル:調和振動子型

■結合長ポテンシャル

共有結合をしている 2 原子間の相互作用は、調和振動子で近似したポテンシャル関数を用いる.

$$U_{\text{bond}}(r_{ij}) = k_r(r_{ij} - r_{\text{eq}})^2 \tag{2}$$

ここで, k_r はばね定数, r_{ij} は原子 i と原子 j の距離, r_{eq} は平衡結合距離である.

■結合長ポテンシャルの力

結合長による力は以下のように計算される.

$$\mathbf{F}_{i}^{\text{bond}} = -\frac{dU_{\text{bond}}(r_{ij})}{d\mathbf{r}_{i}} = 2k_{r}(r_{ij} - r_{\text{eq}})\frac{\mathbf{r}_{ij}}{r_{ij}}$$
(3)

$$\mathbf{F}_{j}^{\text{bond}} = -\frac{dU_{\text{bond}}(r_{ij})}{d\mathbf{r}_{j}} = -2k_{r}(r_{ij} - r_{\text{eq}})\frac{\mathbf{r}_{ij}}{r_{ij}}$$

$$\tag{4}$$

ただし,

$$\boldsymbol{r}_{ij} = \boldsymbol{r}_j - \boldsymbol{r}_i \tag{5}$$

と定義した.

■結合長ポテンシャルのヴィリアル

ヴィリアルは

$$-\left\langle \sum_{i=1}^{N} \mathbf{r}_{i} \cdot \frac{\partial U(\mathbf{r})}{\partial \mathbf{r}_{i}} \right\rangle = \left\langle \sum_{i=1}^{N} \mathbf{r}_{i} \cdot \mathbf{F}_{i} \right\rangle$$
 (6)

で定義される. したがって、結合長ポテンシャルに由来するヴィリアルは

$$\left\langle \sum_{i=1}^{N} \mathbf{r}_{i} \cdot \mathbf{F}_{i} \right\rangle = \left\langle \sum_{\text{bonds}} \left(\mathbf{r}_{i} \cdot \mathbf{F}_{i}^{\text{bond}} + \mathbf{r}_{j} \cdot \mathbf{F}_{j}^{\text{bond}} \right) \right\rangle$$
(7)

$$= \left\langle \sum_{\text{bonds}} \left(\mathbf{r}_{ij} \cdot \mathbf{F}_j^{\text{bond}} \right) \right\rangle \tag{8}$$

$$= \left\langle -\sum_{\text{bonds}} 2k_r (r_{ij} - r_{\text{eq}}) r_{ij} \right\rangle \tag{9}$$

と計算される.

結合角ポテンシャル: 調和振動子型

■結合角ポテンシャル

共有結合をしている3つの原子間に関しては調和振動子で近似したポテンシャル関数を用いる.

$$U_{\text{angle}}(\theta_{ijk}) = k_{\theta}(\theta_{ijk} - \theta_{\text{eq}})^2 \tag{10}$$

ここで, k_{θ} はばね定数, θ_{eq} は平衡結合角, θ_{ijk} は結合角である. また,

$$\boldsymbol{r}_{ji} = \boldsymbol{r}_i - \boldsymbol{r}_j \tag{11}$$

$$\boldsymbol{r}_{jk} = \boldsymbol{r}_k - \boldsymbol{r}_j \tag{12}$$

$$\theta_{ijk} = \arccos\left(\frac{\mathbf{r}_{ji} \cdot \mathbf{r}_{jk}}{r_{ji}r_{jk}}\right) \tag{13}$$

と定義した.

■結合角ポテンシャルの力

結合角による力は以下のように計算される.

$$\boldsymbol{F}_{i}^{\text{angle}} = -\frac{dU_{\text{angle}}(\theta_{ijk})}{d\boldsymbol{r}_{i}} = 2k_{\theta}(\theta_{ijk} - \theta_{\text{eq}}) \frac{1}{r_{ji}\sin\theta_{ijk}} \left(\frac{\boldsymbol{r}_{jk}}{r_{jk}} - \cos\theta_{ijk}\frac{\boldsymbol{r}_{ji}}{r_{ji}}\right)$$
(14)

$$\mathbf{F}_{k}^{\text{angle}} = -\frac{dU_{\text{angle}}(\theta_{ijk})}{d\mathbf{r}_{k}} = 2k_{\theta}(\theta_{ijk} - \theta_{\text{eq}}) \frac{1}{r_{jk}\sin\theta_{ijk}} \left(\frac{\mathbf{r}_{ji}}{r_{ji}} - \cos\theta_{ijk}\frac{\mathbf{r}_{jk}}{r_{jk}}\right)$$

$$\mathbf{F}_{j}^{\text{angle}} = -\frac{dU_{\text{angle}}(\theta_{ijk})}{d\mathbf{r}_{j}} = -\mathbf{F}_{i}^{\text{angle}} - \mathbf{F}_{k}^{\text{angle}}$$
(15)

$$F_j^{\text{angle}} = -\frac{dU_{\text{angle}}(\theta_{ijk})}{d\mathbf{r}_i} = -F_i^{\text{angle}} - F_k^{\text{angle}}$$
 (16)

■結合角ポテンシャルのヴィリアル

結合角ポテンシャルに由来するヴィリアルは,

$$\begin{aligned} \boldsymbol{r}_i \cdot \boldsymbol{F}_i^{\text{angle}} + \boldsymbol{r}_j \cdot \boldsymbol{F}_j^{\text{angle}} + \boldsymbol{r}_i \cdot \boldsymbol{F}_i^{\text{angle}} &= (\boldsymbol{r}_i - \boldsymbol{r}_j) \cdot \boldsymbol{F}_i^{\text{angle}} + (\boldsymbol{r}_k - \boldsymbol{r}_j) \cdot \boldsymbol{F}_k^{\text{angle}} \\ &= 2k_{\theta}(\theta_{ijk} - \theta_{\text{eq}}) \frac{1}{\sin \theta_{ijk}} \\ &\qquad \times \left(\frac{\boldsymbol{r}_{ji} \cdot \boldsymbol{r}_{jk}}{r_{ji}r_{jk}} - \cos \theta_{ijk} + \frac{\boldsymbol{r}_{jk} \cdot \boldsymbol{r}_{ji}}{r_{jk}r_{ji}} - \cos \theta_{ijk} \right) \\ &= 0 \end{aligned}$$

であることからヴィリアルの値はゼロとなる.

2.3 二面角ポテンシャル: フーリエ級数型

■二面角ポテンシャル

共有結合した4原子が作る二面角に対するポテンシャルは次の関数形で与える.

$$U_{\text{dihedral}}(\phi_{ijkl}) = \frac{V}{2} [1 + \cos(n\phi_{ijkl} - \gamma)]$$
(17)

ここで, V はエネルギーバリア, n は周期, γ は位相である. 二面角 ϕ_{ijkl} は

$$\boldsymbol{r}_{ji} = \boldsymbol{r}_i - \boldsymbol{r}_j \tag{18}$$

$$\boldsymbol{r}_{kj} = \boldsymbol{r}_j - \boldsymbol{r}_k \tag{19}$$

$$\boldsymbol{r}_{lk} = \boldsymbol{r}_k - \boldsymbol{r}_l \tag{20}$$

$$\boldsymbol{n}_j = \boldsymbol{r}_{ji} \times \boldsymbol{r}_{jk} \tag{21}$$

$$\boldsymbol{n}_k = \boldsymbol{r}_{kj} \times \boldsymbol{r}_{kl} \tag{22}$$

$$\phi_{ijkl} = -\operatorname{sign}\left[\arccos\left(\frac{\boldsymbol{n}_j \cdot \boldsymbol{n}_k}{n_j n_k}\right), \ \boldsymbol{r}_{kj} \cdot \boldsymbol{n}_j \times \boldsymbol{n}_k\right]$$
(23)

で定義される. ただし, sign[a, b] は (b の符号) × (a の絶対値) と計算される.

■二面角ポテンシャルの力

二面角による力は以下のように計算される.

$$\mathbf{F}_{i}^{\text{dihedral}} = -\frac{dU_{\text{dihedral}}(\phi_{ijkl})}{d\mathbf{r}_{i}} = f_{0}(\mathbf{r}_{kj} \times \mathbf{f}_{kj})$$
(24)

$$\boldsymbol{F}_{j}^{\text{dihedral}} = -\frac{dU_{\text{dihedral}}(\phi_{ijkl})}{d\boldsymbol{r}_{j}} = f_{0} \left(\boldsymbol{r}_{lk} \times \boldsymbol{f}_{jk} - \boldsymbol{r}_{kj} \times \boldsymbol{f}_{kj} - \boldsymbol{r}_{ji} \times \boldsymbol{f}_{kj} \right)$$
(25)

$$\boldsymbol{F}_{k}^{\text{dihedral}} = -\frac{dU_{\text{dihedral}}(\phi_{ijkl})}{d\boldsymbol{r}_{k}} = f_{0}\left(\boldsymbol{r}_{ji} \times \boldsymbol{f}_{kj} - \boldsymbol{r}_{lk} \times \boldsymbol{f}_{jk} - \boldsymbol{r}_{kj} \times \boldsymbol{f}_{jk}\right)$$
(26)

$$\boldsymbol{F}_{l}^{\text{dihedral}} = -\frac{dU_{\text{dihedral}}(\phi_{ijkl})}{d\boldsymbol{r}_{l}} = f_{0}(\boldsymbol{r}_{kj} \times \boldsymbol{f}_{jk})$$
(27)

ただし,

$$f_0 = \frac{nV}{2} \frac{\sin(n\phi - \gamma)}{\sin \phi} \tag{28}$$

$$\mathbf{f}_{kj} = \frac{1}{n_j} \left(\frac{\mathbf{n}_k}{n_k} - \cos \phi \frac{\mathbf{n}_j}{n_j} \right) \tag{29}$$

$$\mathbf{f}_{jk} = \frac{1}{n_k} \left(\frac{\mathbf{n}_j}{n_j} - \cos \phi \frac{\mathbf{n}_k}{n_k} \right) \tag{30}$$

である. $f_{\alpha}(\alpha = 1, 2, 3, 4)$ を

$$\mathbf{f}_1 = f_0(\mathbf{r}_{kj} \times \mathbf{f}_{kj}) \tag{31}$$

$$\mathbf{f}_2 = f_0(\mathbf{r}_{lk} \times \mathbf{f}_{jk}) \tag{32}$$

$$\mathbf{f}_3 = f_0(\mathbf{r}_{ji} \times \mathbf{f}_{kj}) \tag{33}$$

$$\mathbf{f}_4 = f_0(\mathbf{r}_{kj} \times \mathbf{f}_{jk}) \tag{34}$$

のように定義すると、二面角による力は

$$F_i = f_1 \tag{35}$$

$$F_i = f_2 - f_1 - f_3 \tag{36}$$

$$F_k = f_3 - f_2 - f_4 \tag{37}$$

$$F_l = f_4 \tag{38}$$

と書くことができる.

■二面角ポテンシャルのヴィリアル

ベクトル三重積の公式

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \cdot \mathbf{C})\mathbf{B} - (\mathbf{A} \cdot \mathbf{B})\mathbf{C}$$
(39)

を用いると, f_{kj} と f_{jk} は

$$\mathbf{f}_{kj} = \frac{1}{n_i^3 n_k} \left\{ \mathbf{n}_j \times (\mathbf{n}_k \times \mathbf{n}_j) \right\}$$
(40)

$$\mathbf{f}_{jk} = \frac{1}{n_j n_k^3} \left\{ \mathbf{n}_k \times (\mathbf{n}_j \times \mathbf{n}_k) \right\}$$
(41)

と書き直せる. さらに, 右辺に 2 つある n_j あるいは n_k に定義式 (21), (22) を代入して, ベクトル三重積の公式を繰り返し適用させると,

$$\boldsymbol{n}_{j} \times (\boldsymbol{n}_{k} \times \boldsymbol{n}_{j}) = -(\boldsymbol{n}_{k} \cdot \boldsymbol{r}_{ji}) \left\{ (\boldsymbol{r}_{jk} \cdot \boldsymbol{r}_{jk}) \boldsymbol{r}_{ji} - (\boldsymbol{r}_{jk} \cdot \boldsymbol{r}_{ji}) \boldsymbol{r}_{jk} \right\}$$
(42)

$$\boldsymbol{n}_k \times (\boldsymbol{n}_j \times \boldsymbol{n}_k) = -(\boldsymbol{n}_j \cdot \boldsymbol{r}_{kl}) \left\{ (\boldsymbol{r}_{kj} \cdot \boldsymbol{r}_{kl}) \boldsymbol{r}_{kj} - (\boldsymbol{r}_{kj} \cdot \boldsymbol{r}_{kj}) \boldsymbol{r}_{kl} \right\}$$
(43)

が得られ,

$$\mathbf{f}_1 = \frac{f_0}{n_j^3 n_k} (\mathbf{n}_k \cdot \mathbf{r}_{ji}) (\mathbf{r}_{jk} \cdot \mathbf{r}_{jk}) (\mathbf{r}_{kj} \times \mathbf{r}_{ji})$$
(44)

$$\mathbf{f}_2 = \frac{-f_0}{n_j n_k^3} (\mathbf{n}_j \cdot \mathbf{r}_{kl}) (\mathbf{r}_{kj} \cdot \mathbf{r}_{kl}) (\mathbf{r}_{lk} \times \mathbf{r}_{kj})$$
(45)

$$\mathbf{f}_3 = \frac{-f_0}{n_i^3 n_k} (\mathbf{n}_k \cdot \mathbf{r}_{ji}) (\mathbf{r}_{jk} \cdot \mathbf{r}_{ji}) (\mathbf{r}_{ji} \times \mathbf{r}_{jk})$$
(46)

$$\mathbf{f}_{3} = \frac{f_{0}}{n_{j}n_{k}^{3}}(\mathbf{n}_{j} \cdot \mathbf{r}_{kl})(\mathbf{r}_{kj} \cdot \mathbf{r}_{kj})(\mathbf{r}_{kj} \times \mathbf{r}_{kl})$$

$$(47)$$

と計算される. これらを用いると,

$$\mathbf{r}_i \cdot \mathbf{F}_i^{\text{dihedral}} + \mathbf{r}_j \cdot \mathbf{F}_i^{\text{dihedral}} + \mathbf{r}_k \cdot \mathbf{F}_k^{\text{dihedral}} + \mathbf{r}_l \cdot \mathbf{F}_l^{\text{dihedral}} = 0$$
 (48)

となることが確認できるため、二面角ポテンシャルに由来するヴィリアルはゼロとなる.

2.4 ファンデル・ワールス相互作用: 12-6 型

■ファンデル・ワールス相互作用

ファンデル・ワールス相互作用によるポテンシャルは、レナード・ジョーンズポテンシャル用いて以下で与えられる.

$$U_{\rm LJ}(r_{ij}) = 4\epsilon_{ij} \left\{ \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right\}$$
(49)

 ϵ_{ij} はポテンシャルの深さ, σ_{ij} は粒子間の最小相互作用距離, r_{ij} は粒子間の距離を表している. 第 1 項目は電子雲の重なりに起因する反発項, 第 2 項目は分散力に起因する引力項である. ϵ_{ij} と σ_{ij} はローレンツ・ベルテロー則を用いて各原子についてのポテンシャルの深さ ϵ_i と粒子の直径 σ_i から

$$\epsilon_{ij} = \sqrt{\epsilon_i \epsilon_j} \tag{50}$$

$$\sigma_{ij} = \frac{\sigma_i + \sigma_j}{2} \tag{51}$$

で与えられることが多い。LJ 相互作用の計算は $\mathcal{O}(N^2)$ となり計算コストがかかる。しかし、収束の速い関数であるため通常はカットオフを設定し、カットオフ半径内に存在する粒子対のみ計算することで計算コストを抑えることができる。カットオフ半径 r_c は系のボックスサイズの半分以下の大きさの値に設定する。

■ファンデル・ワールス相互作用の力

レナード・ジョーンズ相互作用による力は以下のように計算される.

$$\boldsymbol{F}_{i}^{\mathrm{LJ}} = -\frac{dU_{\mathrm{LJ}}(r_{ij})}{d\boldsymbol{r}_{i}} = -24\epsilon_{ij} \left\{ 2 \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right\} \frac{\boldsymbol{r}_{ij}}{r_{ij}^{2}}$$
(52)

$$\boldsymbol{F}_{j}^{\mathrm{LJ}} = -\frac{dU_{\mathrm{LJ}}(r_{ij})}{d\boldsymbol{r}_{j}} = 24\epsilon_{ij} \left\{ 2\left(\frac{\sigma_{ij}}{r_{ij}}\right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}}\right)^{6} \right\} \frac{\boldsymbol{r}_{ij}}{r_{ij}^{2}}$$
(53)

■ファンデル・ワールス相互作用のヴィリアル

ファンデル・ワールス相互作用に由来するヴィリアルは,

$$\left\langle \sum_{i=1}^{N} \sum_{j>i}^{N} 24\epsilon_{ij} \left\{ 2 \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right\} \right\rangle \tag{54}$$

$$= \left\langle \sum_{\text{nonbonds}} 24\epsilon_{ij} \left\{ 2 \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right\} \right\rangle$$
 (55)

で計算される.

2.5 モースポテンシャル

■モースポテンシャル モースポテンシャルは 2 原子の結合・解離を記述するときに使用されるポテンシャル である. 具体的なポテンシャル関数は,

$$U_{\text{morse}}(r_{ij}) = \epsilon \left\{ 1 - e^{-\alpha(r_{ij} - r_0)} \right\}^2$$
(56)

とかける.ここで, r_{ij} は 2 原子間の距離, ϵ はポテンシャルの深さ, α はポテンシャルの幅, r_i は 2 原子の平衡 結合距離を表す.

■モースポテンシャルによる力 モースポテンシャルによって原子がうける力は以下のように計算される.

$$\mathbf{F}_{i} = 2\epsilon \alpha \left\{ e^{-\alpha(r_{ij} - r_{0})} - e^{-2\alpha(r_{ij} - r_{0})} \right\} \frac{\mathbf{r}_{ij}}{r_{ij}}$$

$$\mathbf{F}_{j} = -2\epsilon \alpha \left\{ e^{-\alpha(r_{ij} - r_{0})} - e^{-2\alpha(r_{ij} - r_{0})} \right\} \frac{\mathbf{r}_{ij}}{r_{ij}}$$

$$(58)$$

$$\mathbf{F}_{j} = -2\epsilon\alpha \left\{ e^{-\alpha(r_{ij} - r_{0})} - e^{-2\alpha(r_{ij} - r_{0})} \right\} \frac{\mathbf{r}_{ij}}{r_{ij}}$$

$$(58)$$

ただし,

$$\boldsymbol{r}_{ij} = \boldsymbol{r}_j - \boldsymbol{r}_i \tag{59}$$

と定義した.

2.6 静電相互作用

■静電ポテンシャル

電磁気でよく知られるように静電ポテンシャルは

$$U_{\text{elec}}(r_{ij}) = \frac{q_i q_j}{4\pi\epsilon_0} \frac{1}{r_{ij}} \tag{60}$$

とかける. q_i と q_j はそれぞれ原子 i と原子 j の電荷, ϵ_0 は真空中の誘電率, r_{ij} は原子 i と原子 j の距離である. 静電相互作用はレナードジョーンズ相互作用と比較して、減衰が遅いポテンシャル関数である. そのため計 算コストを減少するためのカットオフをしてしまうと誤差を生み出す原因となる. このような問題を回避する ための方法として、Ewald 法や Particle Mesh Ewald 法、多極子展開法など様々な取扱方法がこれまでに提案 されてきている [4].

■静電ポテンシャルによる力

静電相互作用による力は以下のように計算される.

$$\mathbf{F}_{i}^{\text{elec}} = -\frac{dU_{\text{elec}}(r_{ij})}{d\mathbf{r}_{i}} = -\frac{q_{i}q_{j}}{4\pi\epsilon_{0}r_{ij}^{2}} \frac{\mathbf{r}_{ij}}{r_{ij}}
\mathbf{F}_{j}^{\text{elec}} = -\frac{dU_{\text{elec}}(r_{ij})}{d\mathbf{r}_{j}} = \frac{q_{i}q_{j}}{4\pi\epsilon_{0}r_{ij}^{2}} \frac{\mathbf{r}_{ij}}{r_{ij}}$$
(61)

$$\mathbf{F}_{j}^{\text{elec}} = -\frac{dU_{\text{elec}}(r_{ij})}{d\mathbf{r}_{j}} = \frac{q_{i}q_{j}}{4\pi\epsilon_{0}r_{ij}^{2}} \frac{\mathbf{r}_{ij}}{r_{ij}}$$

$$(62)$$

(63)

■静電ポテンシャルによるヴィリアル

静電相互作用に由来するヴィリアルは、

$$\left\langle \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{q_i q_j}{4\pi\epsilon_0} \frac{1}{r_{ij}} \right\rangle = \left\langle \sum_{\text{nonbonds}} \frac{q_i q_j}{4\pi\epsilon_0} \frac{1}{r_{ij}} \right\rangle$$
 (64)

となる.

3 計算ノート: 微分・力・ヴィリアルの導出

3.1 2 点間の距離 r_{ij} を粒子の位置ベクトル $m{r}_{lpha}$ で微分する

3.1.1 ベクトルの定義

2 点間の距離を

$$\boldsymbol{r}_{ij} = \boldsymbol{r}_j - \boldsymbol{r}_i \tag{65}$$

と定義する.

3.1.2 座標ベクトル微分の計算

$$\frac{dr_{ij}}{d\mathbf{r}_i} = \left[\frac{d}{d\mathbf{r}_i} \left\{ (\mathbf{r}_j - \mathbf{r}_i)^2 \right\}^{\frac{1}{2}} \right] = \frac{1}{2} \frac{-2(\mathbf{r}_j - \mathbf{r}_i)}{\left\{ (\mathbf{r}_j - \mathbf{r}_i)^2 \right\}^{\frac{1}{2}}} = -\frac{\mathbf{r}_{ij}}{r_{ij}}$$
(66)

$$\frac{dr_{ij}}{d\mathbf{r}_j} = \left[\frac{d}{d\mathbf{r}_j} \left\{ (\mathbf{r}_j - \mathbf{r}_i)^2 \right\}^{\frac{1}{2}} \right] = \frac{1}{2} \frac{2(\mathbf{r}_j - \mathbf{r}_i)}{\left\{ (\mathbf{r}_i - \mathbf{r}_i)^2 \right\}^{\frac{1}{2}}} = \frac{\mathbf{r}_{ij}}{r_{ij}}$$
(67)

3.2 3 点間の角度 $heta_{ijk}$ を粒子の位置ベクトル $m{r}_{lpha}$ で微分する

3.2.1 ベクトルと角度の定義

3点間の角度 θ_{ijk} を

$$\boldsymbol{r}_{ji} = \boldsymbol{r}_i - \boldsymbol{r}_j \tag{68}$$

$$\boldsymbol{r}_{jk} = \boldsymbol{r}_k - \boldsymbol{r}_j \tag{69}$$

$$\theta_{ijk} = \arccos\left(\frac{\mathbf{r}_{ji} \cdot \mathbf{r}_{jk}}{r_{ji}r_{jk}}\right) \tag{70}$$

$$\cos(\theta_{ijk}) = \frac{\mathbf{r}_{ji} \cdot \mathbf{r}_{jk}}{r_{ji}r_{jk}} = \frac{(\mathbf{r}_i - \mathbf{r}_j) \cdot (\mathbf{r}_k - \mathbf{r}_j)}{\{(\mathbf{r}_i - \mathbf{r}_j)\}^{\frac{1}{2}} \{(\mathbf{r}_k - \mathbf{r}_j)\}^{\frac{1}{2}}}$$
(71)

と定義する.

3.2.2 座標ベクトル微分の計算

3点間の角度 θ_{ijk} を粒子の位置ベクトル ${m r}_{lpha}$ で微分すると

$$\frac{d\theta_{ijk}}{d\mathbf{r}_{\alpha}} = \frac{d}{d\mathbf{r}_{\alpha}} \arccos\left(\frac{\mathbf{r}_{ji} \cdot \mathbf{r}_{jk}}{r_{ji}r_{jk}}\right)
= -\frac{1}{\sqrt{1 - \left(\frac{\mathbf{r}_{ji} \cdot \mathbf{r}_{jk}}{r_{ji}r_{jk}}\right)^{2}}} \left\{ \frac{d}{d\mathbf{r}_{\alpha}} \left(\frac{\mathbf{r}_{ji} \cdot \mathbf{r}_{jk}}{r_{ji}r_{jk}}\right) \right\}
= -\frac{1}{\sin\theta_{ijk}} \left\{ \frac{d}{d\mathbf{r}_{\alpha}} \left(\frac{\mathbf{r}_{ji} \cdot \mathbf{r}_{jk}}{r_{ji}r_{jk}}\right) \right\}$$

を得る. 第2式から第3式において, arccos(x)の微分公式

$$\frac{d}{dx}\arccos(x) = -\frac{1}{\sqrt{1-x^2}}$$

を用いた. 続いて

$$\frac{d}{d\boldsymbol{r}_{\alpha}} \left(\frac{\boldsymbol{r}_{ji} \cdot \boldsymbol{r}_{jk}}{r_{ji}r_{jk}} \right)$$

を各粒子i,j,kについて計算していく.

$\blacksquare \alpha = i$ のとき

$$\frac{d}{d\mathbf{r}_{i}} \left(\frac{\mathbf{r}_{ji} \cdot \mathbf{r}_{jk}}{r_{ji}r_{jk}} \right) = \frac{d}{d\mathbf{r}_{i}} \left[\frac{(\mathbf{r}_{i} - \mathbf{r}_{j}) \cdot (\mathbf{r}_{k} - \mathbf{r}_{j})}{\{(\mathbf{r}_{i} - \mathbf{r}_{j})^{2}\}^{\frac{1}{2}} \{(\mathbf{r}_{k} - \mathbf{r}_{j})^{2}\}^{\frac{1}{2}}} \right]
= \frac{d}{d\mathbf{r}_{i}} \left[(\mathbf{r}_{i} - \mathbf{r}_{j}) \cdot (\mathbf{r}_{k} - \mathbf{r}_{j}) \{(\mathbf{r}_{i} - \mathbf{r}_{j})^{2}\}^{-\frac{1}{2}} \{(\mathbf{r}_{k} - \mathbf{r}_{j})^{2}\}^{-\frac{1}{2}} \right]
= \frac{(\mathbf{r}_{k} - \mathbf{r}_{j})}{r_{ji}r_{jk}} - \frac{1}{2} \frac{2(\mathbf{r}_{i} - \mathbf{r}_{j})\{(\mathbf{r}_{i} - \mathbf{r}_{j}) \cdot (\mathbf{r}_{k} - \mathbf{r}_{j})\}}{\{(\mathbf{r}_{i} - \mathbf{r}_{j})^{2}\}^{\frac{3}{2}} \{(\mathbf{r}_{k} - \mathbf{r}_{j})^{2}\}^{\frac{1}{2}}}
= \frac{\mathbf{r}_{jk}}{r_{ji}r_{jk}} - \frac{(\mathbf{r}_{ji} \cdot \mathbf{r}_{jk})\mathbf{r}_{ji}}{r_{ji}^{3}r_{jk}}
= \frac{1}{r_{ji}} \left\{ \frac{\mathbf{r}_{jk}}{r_{jk}} - \cos\theta_{ijk} \frac{\mathbf{r}_{ji}}{r_{ji}} \right\}$$

と計算できる.

 $\blacksquare \alpha = k$ のときの ${m F}^{
m angle}$ の導出

 $\alpha = i$ と同様の計算により、

$$\frac{d}{d\mathbf{r}_k} \left(\frac{\mathbf{r}_{ji} \cdot \mathbf{r}_{jk}}{r_{ji}r_{jk}} \right) = \frac{1}{r_{jk}} \left(\frac{\mathbf{r}_{ji}}{r_{ji}} - \cos \theta_{ijk} \frac{\mathbf{r}_{jk}}{r_{jk}} \right)$$

と計算される.

$\blacksquare \alpha = j$ のときの F^{angle} の導出

$$\begin{split} \frac{d}{d\mathbf{r}_{j}} \left(\frac{\mathbf{r}_{ji} \cdot \mathbf{r}_{jk}}{r_{ji}r_{jk}} \right) &= \frac{d}{d\mathbf{r}_{j}} \left[\frac{(\mathbf{r}_{i} - \mathbf{r}_{j}) \cdot (\mathbf{r}_{k} - \mathbf{r}_{j})}{\{(\mathbf{r}_{i} - \mathbf{r}_{j})^{2}\}^{\frac{1}{2}} \{(\mathbf{r}_{k} - \mathbf{r}_{j})^{2}\}^{\frac{1}{2}}} \right] \\ &= \frac{d}{d\mathbf{r}_{j}} \left[(\mathbf{r}_{i} - \mathbf{r}_{j}) \cdot (\mathbf{r}_{k} - \mathbf{r}_{j}) \{(\mathbf{r}_{i} - \mathbf{r}_{j})^{2}\}^{-\frac{1}{2}} \{(\mathbf{r}_{k} - \mathbf{r}_{j})^{2}\}^{-\frac{1}{2}}} \right] \\ &= -\frac{(\mathbf{r}_{k} - \mathbf{r}_{j})}{r_{ji}r_{jk}} - \frac{1}{2} \frac{-2(\mathbf{r}_{i} - \mathbf{r}_{j})\{(\mathbf{r}_{i} - \mathbf{r}_{j}) \cdot (\mathbf{r}_{k} - \mathbf{r}_{j})\}}{\{(\mathbf{r}_{i} - \mathbf{r}_{j})^{2}\}^{\frac{3}{2}} \{(\mathbf{r}_{k} - \mathbf{r}_{j})^{2}\}^{\frac{3}{2}}} \\ &= -\frac{(\mathbf{r}_{k} - \mathbf{r}_{j})}{r_{ji}r_{jk}} - \frac{1}{2} \frac{-2(\mathbf{r}_{k} - \mathbf{r}_{j})\{(\mathbf{r}_{i} - \mathbf{r}_{j}) \cdot (\mathbf{r}_{k} - \mathbf{r}_{j})\}}{\{(\mathbf{r}_{i} - \mathbf{r}_{j})^{2}\}^{\frac{3}{2}}} \\ &= -\left\{ \frac{\mathbf{r}_{jk}}{r_{ji}r_{jk}} - \frac{(\mathbf{r}_{ji} \cdot \mathbf{r}_{jk})\mathbf{r}_{ji}}{r_{ji}^{3}r_{jk}} \right\} - \left\{ \frac{\mathbf{r}_{ji}}{r_{ji}r_{ji}} - \frac{(\mathbf{r}_{ji} \cdot \mathbf{r}_{jk})\mathbf{r}_{jk}}{r_{ji}} \right\} \\ &= -\frac{1}{r_{ji}} \left\{ \frac{\mathbf{r}_{jk}}{r_{jk}} - \cos\theta_{ijk} \frac{\mathbf{r}_{ji}}{r_{ji}} \right\} - \frac{1}{r_{jk}} \left\{ \frac{\mathbf{r}_{ji}}{r_{ji}} - \cos\theta_{ijk} \frac{\mathbf{r}_{jk}}{r_{jk}} \right\} \end{split}$$

と計算できる.

■まとめ 以上をまとめると, 3 点間の角度 θ_{ijk} の粒子の位置ベクトル $m{r}_{lpha}$ 微分は,

$$\frac{d\theta_{ijk}}{d\mathbf{r}_i} = -\frac{1}{r_{ji}\sin\theta_{ijk}} \left(\frac{\mathbf{r}_{jk}}{r_{jk}} - \cos\theta_{ijk} \frac{\mathbf{r}_{ji}}{r_{ji}} \right) \tag{72}$$

$$\frac{d\theta_{ijk}}{d\mathbf{r}_{j}} = \frac{1}{r_{ji}\sin\theta_{ijk}} \left(\frac{\mathbf{r}_{jk}}{r_{jk}} - \cos\theta_{ijk} \frac{\mathbf{r}_{ji}}{r_{ji}} \right) + \frac{1}{r_{jk}\sin\theta_{ijk}} \left(\frac{\mathbf{r}_{ji}}{r_{ji}} - \cos\theta_{ijk} \frac{\mathbf{r}_{jk}}{r_{jk}} \right)$$
(73)

$$\frac{d\theta_{ijk}}{d\mathbf{r}_k} = -\frac{1}{r_{jk}\sin\theta_{ijk}} \left(\frac{\mathbf{r}_{ji}}{r_{ji}} - \cos\theta_{ijk} \frac{\mathbf{r}_{jk}}{r_{jk}} \right)$$
(74)

と計算される.

3.3 二面角 ϕ_{ijkl} を粒子の位置ベクトル $m{r}_{lpha}$ で微分する

3.3.1 ベクトルと二面角の定義

二面角 ϕ_{ijkl} を

$$\begin{aligned}
\mathbf{r}_{ji} &= \mathbf{r}_i - \mathbf{r}_j \\
\mathbf{r}_{kj} &= \mathbf{r}_j - \mathbf{r}_k \\
\mathbf{r}_{lk} &= \mathbf{r}_k - \mathbf{r}_l \\
\mathbf{n}_j &= \mathbf{r}_{ji} \times \mathbf{r}_{jk} \\
\mathbf{n}_k &= \mathbf{r}_{kj} \times \mathbf{r}_{kl} \\
\phi_{ijkl} &= -\text{sign} \left[\arccos \left(\frac{\mathbf{n}_j \cdot \mathbf{n}_k}{n_j n_k} \right), \mathbf{r}_{kj} \cdot \mathbf{n}_j \times \mathbf{n}_k \right]
\end{aligned}$$

と定義する.

3.3.2 座標ベクトル微分の計算

cos の微分

$$d\cos\phi = -\sin\phi d\phi$$

から、二面角 ϕ_{ijkl} の位置座標ベクトル微分は

$$\frac{d\phi_{ijkl}}{d\boldsymbol{r}_{\alpha}} = -\frac{1}{\sin\phi_{ijkl}} \frac{d\cos\phi_{ijkl}}{d\boldsymbol{r}_{\alpha}} = -\frac{1}{\sin\phi_{ijkl}} \frac{d}{d\boldsymbol{r}_{\alpha}} \left(\frac{\boldsymbol{n}_{j} \cdot \boldsymbol{n}_{k}}{n_{j}n_{k}}\right)$$

と計算できる. よって, $\alpha=i,j,k,l$ に対する二面角 ϕ_{ijkl} の位置座標ベクトル微分は

$$\frac{d}{d\boldsymbol{r}_{\alpha}}\left(\frac{\boldsymbol{n}_{j}\cdot\boldsymbol{n}_{k}}{n_{j}n_{k}}\right) = \frac{1}{n_{j}n_{k}}\left\{\frac{d}{d\boldsymbol{r}_{\alpha}}(\boldsymbol{n}_{j}\cdot\boldsymbol{n}_{k})\right\} + \frac{\boldsymbol{n}_{k}\cdot\boldsymbol{n}_{k}}{n_{k}}\left\{\frac{d}{d\boldsymbol{r}_{\alpha}}\frac{1}{n_{j}}\right\} + \frac{\boldsymbol{n}_{j}\cdot\boldsymbol{n}_{k}}{n_{j}}\left\{\frac{d}{d\boldsymbol{r}_{\alpha}}\frac{1}{n_{k}}\right\}$$

を求めることに帰着する. ここで,

$$\begin{aligned}
\boldsymbol{n}_{j} &= \boldsymbol{r}_{ji} \times \boldsymbol{r}_{jk} \\
&= \boldsymbol{r}_{i} \times \boldsymbol{r}_{k} - \boldsymbol{r}_{i} \times \boldsymbol{r}_{j} - \boldsymbol{r}_{j} \times \boldsymbol{r}_{k} \\
\boldsymbol{n}_{k} &= \boldsymbol{r}_{kj} \times \boldsymbol{r}_{kl} \\
&= \boldsymbol{r}_{j} \times \boldsymbol{r}_{l} - \boldsymbol{r}_{j} \times \boldsymbol{r}_{k} - \boldsymbol{r}_{k} \times \boldsymbol{r}_{l} \\
\frac{1}{n_{j}} &= \left\{ (\boldsymbol{r}_{i} \times \boldsymbol{r}_{k} - \boldsymbol{r}_{i} \times \boldsymbol{r}_{j} - \boldsymbol{r}_{j} \times \boldsymbol{r}_{k})^{2} \right\}^{-\frac{1}{2}} \\
\frac{1}{n_{k}} &= \left\{ (\boldsymbol{r}_{j} \times \boldsymbol{r}_{l} - \boldsymbol{r}_{j} \times \boldsymbol{r}_{k} - \boldsymbol{r}_{k} \times \boldsymbol{r}_{l})^{2} \right\}^{-\frac{1}{2}}
\end{aligned}$$

と書き下せる.

■いくつかの便利な公式 今後の計算の便利のためにベクトルの微分に関する公式を導出する. ベクトルa,b,c を考える.

$$m{a} = \left(egin{array}{c} a_x \ a_y \ a_z \end{array}
ight), \quad m{b} = \left(egin{array}{c} b_x \ b_y \ b_z \end{array}
ight), \quad m{c} = \left(egin{array}{c} c_x \ c_y \ c_z \end{array}
ight)$$

ベクトルの内積は

$$\mathbf{a} \cdot \mathbf{b} = a_x b_x + a_y b_y + a_z b_z$$

であるので.

$$\frac{d}{d\mathbf{a}}(\mathbf{a} \cdot \mathbf{b}) = \mathbf{b}$$
$$\frac{d}{d\mathbf{b}}(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a}$$

と計算できる. また,

$$\frac{d}{d\boldsymbol{a}}(\boldsymbol{a}\times\boldsymbol{b}) = \begin{pmatrix} \frac{dA_x}{da_x} & \frac{dA_y}{da_x} & \frac{dA_z}{da_x} \\ \frac{dA_x}{da_y} & \frac{dA_y}{da_y} & \frac{dA_z}{da_y} \\ \frac{dA_x}{da_z} & \frac{dA_y}{da_z} & \frac{dA_z}{da_z} \end{pmatrix} = \begin{pmatrix} 0 & -b_z & b_y \\ b_z & 0 & -b_x \\ -b_y & b_x & 0 \end{pmatrix}$$

$$\frac{d}{d\boldsymbol{b}}(\boldsymbol{a}\times\boldsymbol{b}) = \begin{pmatrix} \frac{dA_x}{db_x} & \frac{dA_y}{db_x} & \frac{dA_z}{db_x} \\ \frac{dA_x}{db_y} & \frac{dA_y}{db_y} & \frac{dA_z}{db_y} \\ \frac{dA_x}{db_z} & \frac{dA_y}{db_z} & \frac{dA_z}{db_z} \end{pmatrix} = \begin{pmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{pmatrix}$$

であるので,

$$\begin{cases}
\frac{d}{d\mathbf{a}}(\mathbf{a} \times \mathbf{b}) \\
\frac{d}{d\mathbf{a}}(\mathbf{a} \times \mathbf{b})
\end{cases} \cdot \mathbf{c} = \begin{pmatrix}
0 & -b_z & b_y \\
b_z & 0 & -b_x \\
-b_y & b_x & 0
\end{pmatrix} \begin{pmatrix}
c_x \\
c_y \\
c_z
\end{pmatrix} = \begin{pmatrix}
b_y c_z - b_z c_y \\
b_z c_x - b_x c_z \\
b_x c_y - b_y c_x
\end{pmatrix} = \mathbf{b} \times \mathbf{c}$$

$$\begin{cases}
\frac{d}{d\mathbf{b}}(\mathbf{a} \times \mathbf{b}) \\
\frac{d}{d\mathbf{b}}(\mathbf{a} \times \mathbf{b})
\end{cases} \cdot \mathbf{c} = \begin{pmatrix}
0 & -a_z & a_y \\
a_z & 0 & -a_x \\
-a_y & a_x & 0
\end{pmatrix} \begin{pmatrix}
c_x \\
c_y \\
c_z
\end{pmatrix} = \begin{pmatrix}
c_y a_z - c_z a_y \\
c_z a_x - c_x a_z \\
c_x a_y - c_y a_x
\end{pmatrix} = \mathbf{c} \times \mathbf{a}$$

を得る.

$\blacksquare \alpha = i$ のとき

$$\frac{d}{d\mathbf{r}_i}(\mathbf{n}_j \cdot \mathbf{n}_k) = \frac{d}{d\mathbf{r}_i} \left\{ (\mathbf{r}_i \times \mathbf{r}_k - \mathbf{r}_i \times \mathbf{r}_j - \mathbf{r}_j \times \mathbf{r}_k) \cdot \mathbf{n}_k \right\}$$

$$= \frac{d}{d\mathbf{r}_i} \left\{ (\mathbf{r}_i \times \mathbf{r}_{jk}) \cdot \mathbf{n}_k \right\}$$

$$= \left\{ \frac{d}{d\mathbf{r}_i} (\mathbf{r}_i \times \mathbf{r}_{jk}) \right\} \cdot \mathbf{n}_k$$

$$= \mathbf{r}_{jk} \times \mathbf{n}_k$$

$$\begin{split} \frac{d}{d\mathbf{r}_i} \left(\frac{1}{n_j} \right) &= \frac{d}{d\mathbf{r}_i} \left\{ (\mathbf{r}_i \times \mathbf{r}_k - \mathbf{r}_i \times \mathbf{r}_j - \mathbf{r}_j \times \mathbf{r}_k)^2 \right\}^{-\frac{1}{2}} \\ &= -\frac{1}{2} \frac{1}{n_j^3} \left\{ \frac{d}{d\mathbf{r}_i} \left(\mathbf{r}_i \times \mathbf{r}_k - \mathbf{r}_i \times \mathbf{r}_j - \mathbf{r}_j \times \mathbf{r}_k \right)^2 \right\} \\ &= -\frac{1}{2} \frac{1}{n_j^3} 2 \mathbf{n}_j \cdot \left\{ \frac{d}{d\mathbf{r}_i} (\mathbf{r}_i \times \mathbf{r}_{jk}) \right\} \\ &= -\frac{1}{n_j^3} \mathbf{r}_{jk} \times \mathbf{n}_j \end{split}$$

$$\frac{d}{d\mathbf{r}_i}\left(\frac{1}{n_k}\right) = \frac{d}{d\mathbf{r}_i}\left\{ (\mathbf{r}_j \times \mathbf{r}_l - \mathbf{r}_j \times \mathbf{r}_k - \mathbf{r}_k \times \mathbf{r}_l)^2 \right\}^{-\frac{1}{2}} = 0$$

であるので,

$$\frac{d}{d\mathbf{r}_i} \left(\frac{\mathbf{n}_j \cdot \mathbf{n}_k}{n_j n_k} \right) = \frac{1}{n_j n_k} (\mathbf{r}_{jk} \times \mathbf{n}_k) - \frac{\mathbf{n}_j \cdot \mathbf{n}_k}{n_j^3 n_k} (\mathbf{r}_{jk} \times \mathbf{n}_j)$$
$$= \mathbf{r}_{jk} \times \left\{ \frac{1}{n_j} \left(\frac{\mathbf{n}_k}{n_k} - \cos \phi \frac{\mathbf{n}_j}{n_j} \right) \right\}$$

を得る.

$\blacksquare \alpha = j$ のとき

$$\begin{split} \frac{d}{d\boldsymbol{r}_{j}}(\boldsymbol{n}_{j}\cdot\boldsymbol{n}_{k}) &= \left(\frac{d}{d\boldsymbol{r}_{j}}\boldsymbol{n}_{j}\right)\cdot\boldsymbol{n}_{k} + \left(\frac{d}{d\boldsymbol{r}_{j}}\boldsymbol{n}_{k}\right)\cdot\boldsymbol{n}_{j} \\ &= \left\{\frac{d}{d\boldsymbol{r}_{j}}(\boldsymbol{r}_{i}\times\boldsymbol{r}_{k}-\boldsymbol{r}_{i}\times\boldsymbol{r}_{j}-\boldsymbol{r}_{j}\times\boldsymbol{r}_{k})\right\}\cdot\boldsymbol{n}_{k} \\ &+ \left\{\frac{d}{d\boldsymbol{r}_{j}}(\boldsymbol{r}_{j}\times\boldsymbol{r}_{l}-\boldsymbol{r}_{j}\times\boldsymbol{r}_{k}-\boldsymbol{r}_{k}\times\boldsymbol{r}_{l})\right\}\cdot\boldsymbol{n}_{j} \\ &= \left\{\frac{d}{d\boldsymbol{r}_{j}}(\boldsymbol{r}_{j}\times\boldsymbol{r}_{ki})\right\}\cdot\boldsymbol{n}_{k} + \left\{\frac{d}{d\boldsymbol{r}_{j}}(\boldsymbol{r}_{j}\times\boldsymbol{r}_{kl})\right\}\cdot\boldsymbol{n}_{j} \\ &= \boldsymbol{r}_{ki}\times\boldsymbol{n}_{k} + \boldsymbol{r}_{kl}\times\boldsymbol{n}_{j} \end{split}$$

$$\begin{split} \frac{d}{d\boldsymbol{r}_{j}} \left(\frac{1}{n_{j}} \right) &= \frac{d}{d\boldsymbol{r}_{j}} \left\{ (\boldsymbol{r}_{i} \times \boldsymbol{r}_{k} - \boldsymbol{r}_{i} \times \boldsymbol{r}_{j} - \boldsymbol{r}_{j} \times \boldsymbol{r}_{k})^{2} \right\}^{-\frac{1}{2}} \\ &= -\frac{1}{2} \frac{1}{n_{j}^{3}} \left\{ \frac{d}{d\boldsymbol{r}_{j}} \left(\boldsymbol{r}_{i} \times \boldsymbol{r}_{k} - \boldsymbol{r}_{i} \times \boldsymbol{r}_{j} - \boldsymbol{r}_{j} \times \boldsymbol{r}_{k} \right)^{2} \right\} \\ &= -\frac{1}{2} \frac{1}{n_{j}^{3}} 2\boldsymbol{n}_{j} \cdot \left\{ \frac{d}{d\boldsymbol{r}_{j}} (\boldsymbol{r}_{j} \times \boldsymbol{r}_{ki}) \right\} \\ &= -\frac{1}{n_{j}^{3}} \boldsymbol{r}_{ki} \times \boldsymbol{n}_{j} \end{split}$$

$$\begin{split} \frac{d}{d\boldsymbol{r}_{j}} \left(\frac{1}{n_{k}} \right) &= \frac{d}{d\boldsymbol{r}_{j}} \left\{ (\boldsymbol{r}_{j} \times \boldsymbol{r}_{l} - \boldsymbol{r}_{j} \times \boldsymbol{r}_{k} - \boldsymbol{r}_{k} \times \boldsymbol{r}_{l})^{2} \right\}^{-\frac{1}{2}} \\ &= -\frac{1}{2} \frac{1}{n_{k}^{3}} \left\{ \frac{d}{d\boldsymbol{r}_{j}} \left(\boldsymbol{r}_{j} \times \boldsymbol{r}_{l} - \boldsymbol{r}_{j} \times \boldsymbol{r}_{k} - \boldsymbol{r}_{k} \times \boldsymbol{r}_{l} \right)^{2} \right\} \\ &= -\frac{1}{2} \frac{1}{n_{k}^{3}} 2\boldsymbol{n}_{k} \cdot \left\{ \frac{d}{d\boldsymbol{r}_{j}} (\boldsymbol{r}_{j} \times \boldsymbol{r}_{kl}) \right\} \\ &= -\frac{1}{n_{k}^{3}} \boldsymbol{r}_{kl} \times \boldsymbol{n}_{k} \end{split}$$

であるので,

$$\frac{d}{d\mathbf{r}_{j}}\left(\frac{\mathbf{n}_{j} \cdot \mathbf{n}_{k}}{n_{j}n_{k}}\right) = \frac{1}{n_{j}n_{k}}(\mathbf{r}_{ki} \times \mathbf{n}_{k} + \mathbf{r}_{kl} \times \mathbf{n}_{j}) - \frac{\mathbf{n}_{j} \cdot \mathbf{n}_{k}}{n_{j}^{3}n_{k}}(\mathbf{r}_{ki} \times \mathbf{n}_{j}) - \frac{\mathbf{n}_{j} \cdot \mathbf{n}_{k}}{n_{j}n_{k}^{3}}(\mathbf{r}_{kl} \times \mathbf{n}_{k})$$

$$= \mathbf{r}_{kl} \times \left\{\frac{1}{n_{k}}\left(\frac{\mathbf{n}_{j}}{n_{j}} - \cos\phi\frac{\mathbf{n}_{k}}{n_{k}}\right)\right\} + \mathbf{r}_{ki} \times \left\{\frac{1}{n_{j}}\left(\frac{\mathbf{n}_{k}}{n_{k}} - \cos\phi\frac{\mathbf{n}_{j}}{n_{j}}\right)\right\}$$

を得る.

$\blacksquare \alpha = k$ のとき

$$\begin{split} \frac{d}{d\boldsymbol{r}_k}(\boldsymbol{n}_j \cdot \boldsymbol{n}_k) &= \left(\frac{d}{d\boldsymbol{r}_k}\boldsymbol{n}_j\right) \cdot \boldsymbol{n}_k + \left(\frac{d}{d\boldsymbol{r}_k}\boldsymbol{n}_k\right) \cdot \boldsymbol{n}_j \\ &= \left\{\frac{d}{d\boldsymbol{r}_k}(\boldsymbol{r}_i \times \boldsymbol{r}_k - \boldsymbol{r}_i \times \boldsymbol{r}_j - \boldsymbol{r}_j \times \boldsymbol{r}_k)\right\} \cdot \boldsymbol{n}_k \\ &+ \left\{\frac{d}{d\boldsymbol{r}_k}(\boldsymbol{r}_j \times \boldsymbol{r}_l - \boldsymbol{r}_j \times \boldsymbol{r}_k - \boldsymbol{r}_k \times \boldsymbol{r}_l)\right\} \cdot \boldsymbol{n}_j \\ &= \left\{\frac{d}{d\boldsymbol{r}_k}(\boldsymbol{r}_{ji} \times \boldsymbol{r}_k)\right\} \cdot \boldsymbol{n}_k + \left\{\frac{d}{d\boldsymbol{r}_k}(\boldsymbol{r}_{jl} \times \boldsymbol{r}_k)\right\} \cdot \boldsymbol{n}_j \\ &= -\boldsymbol{r}_{ji} \times \boldsymbol{n}_k - \boldsymbol{r}_{jl} \times \boldsymbol{n}_j \end{split}$$

$$\begin{split} \frac{d}{d\boldsymbol{r}_k} \left(\frac{1}{n_j} \right) &= \frac{d}{d\boldsymbol{r}_k} \left\{ (\boldsymbol{r}_i \times \boldsymbol{r}_k - \boldsymbol{r}_i \times \boldsymbol{r}_j - \boldsymbol{r}_j \times \boldsymbol{r}_k)^2 \right\}^{-\frac{1}{2}} \\ &= -\frac{1}{2} \frac{1}{n_j^3} \left\{ \frac{d}{d\boldsymbol{r}_k} \left(\boldsymbol{r}_i \times \boldsymbol{r}_k - \boldsymbol{r}_i \times \boldsymbol{r}_j - \boldsymbol{r}_j \times \boldsymbol{r}_k \right)^2 \right\} \\ &= -\frac{1}{2} \frac{1}{n_j^3} 2\boldsymbol{n}_j \cdot \left\{ \frac{d}{d\boldsymbol{r}_k} (\boldsymbol{r}_{ji} \times \boldsymbol{r}_k) \right\} \\ &= \frac{1}{n_s^3} \boldsymbol{r}_{ji} \times \boldsymbol{n}_j \end{split}$$

$$\begin{split} \frac{d}{d\boldsymbol{r}_k} \left(\frac{1}{n_k} \right) &= \frac{d}{d\boldsymbol{r}_k} \left\{ (\boldsymbol{r}_j \times \boldsymbol{r}_l - \boldsymbol{r}_j \times \boldsymbol{r}_k - \boldsymbol{r}_k \times \boldsymbol{r}_l)^2 \right\}^{-\frac{1}{2}} \\ &= -\frac{1}{2} \frac{1}{n_k^3} \left\{ \frac{d}{d\boldsymbol{r}_k} \left(\boldsymbol{r}_j \times \boldsymbol{r}_l - \boldsymbol{r}_j \times \boldsymbol{r}_k - \boldsymbol{r}_k \times \boldsymbol{r}_l \right)^2 \right\} \\ &= -\frac{1}{2} \frac{1}{n_k^3} 2 \boldsymbol{n}_k \cdot \left\{ \frac{d}{d\boldsymbol{r}_k} (\boldsymbol{r}_{jl} \times \boldsymbol{r}_k) \right\} \\ &= \frac{1}{n_k^3} \boldsymbol{r}_{jl} \times \boldsymbol{n}_k \end{split}$$

であるので,

$$\frac{d}{d\mathbf{r}_k} \left(\frac{\mathbf{n}_j \cdot \mathbf{n}_k}{n_j n_k} \right) = \frac{1}{n_j n_k} (-\mathbf{r}_{ji} \times \mathbf{n}_k - \mathbf{r}_{jl} \times \mathbf{n}_j) + \frac{\mathbf{n}_j \cdot \mathbf{n}_k}{n_j^3 n_k} (\mathbf{r}_{ji} \times \mathbf{n}_j) + \frac{\mathbf{n}_j \cdot \mathbf{n}_k}{n_j n_k^3} (\mathbf{r}_{jl} \times \mathbf{n}_k)$$

$$= -\mathbf{r}_{ji} \times \left\{ \frac{1}{n_j} \left(\frac{\mathbf{n}_k}{n_k} - \cos \phi \frac{\mathbf{n}_j}{n_j} \right) \right\} - \mathbf{r}_{jl} \times \left\{ \frac{1}{n_k} \left(\frac{\mathbf{n}_j}{n_j} - \cos \phi \frac{\mathbf{n}_k}{n_k} \right) \right\}$$

を得る.

$\blacksquare \alpha = l$ のとき

$$\begin{split} \frac{d}{d\mathbf{r}_l}(\mathbf{n}_j \cdot \mathbf{n}_k) &= \frac{d}{d\mathbf{r}_l} \left\{ \mathbf{n}_j \cdot (\mathbf{r}_j \times \mathbf{r}_l - \mathbf{r}_j \times \mathbf{r}_k - \mathbf{r}_k \times \mathbf{r}_l) \right\} \\ &= \left\{ \frac{d}{d\mathbf{r}_l} (\mathbf{r}_{kj} \times \mathbf{r}_l) \right\} \cdot \mathbf{n}_j \\ &= -\mathbf{r}_{kj} \times \mathbf{n}_j \end{split}$$

$$\frac{d}{d\mathbf{r}_l} \left(\frac{1}{n_j} \right) = \frac{d}{d\mathbf{r}_l} \left\{ (\mathbf{r}_i \times \mathbf{r}_k - \mathbf{r}_i \times \mathbf{r}_j - \mathbf{r}_j \times \mathbf{r}_k)^2 \right\}^{-\frac{1}{2}} = 0$$

$$\begin{split} \frac{d}{d\boldsymbol{r}_{l}} \left(\frac{1}{n_{k}} \right) &= \frac{d}{d\boldsymbol{r}_{l}} \left\{ (\boldsymbol{r}_{j} \times \boldsymbol{r}_{l} - \boldsymbol{r}_{j} \times \boldsymbol{r}_{k} - \boldsymbol{r}_{k} \times \boldsymbol{r}_{l})^{2} \right\}^{-\frac{1}{2}} \\ &= -\frac{1}{2} \frac{1}{n_{k}^{3}} \left\{ \frac{d}{d\boldsymbol{r}_{l}} \left(\boldsymbol{r}_{j} \times \boldsymbol{r}_{l} - \boldsymbol{r}_{j} \times \boldsymbol{r}_{k} - \boldsymbol{r}_{k} \times \boldsymbol{r}_{l} \right)^{2} \right\} \\ &= -\frac{1}{2} \frac{1}{n_{k}^{3}} 2\boldsymbol{n}_{k} \cdot \left\{ \frac{d}{d\boldsymbol{r}_{l}} (\boldsymbol{r}_{kj} \times \boldsymbol{r}_{l}) \right\} \\ &= \frac{1}{n_{k}^{3}} \boldsymbol{r}_{kj} \times \boldsymbol{n}_{k} \end{split}$$

であるので,

$$\begin{split} \frac{d}{d\boldsymbol{r}_l} \left(\frac{\boldsymbol{n}_j \cdot \boldsymbol{n}_k}{n_j n_k} \right) &= \frac{1}{n_j n_k} (-\boldsymbol{r}_{kj} \times \boldsymbol{n}_j) + \frac{\boldsymbol{n}_j \cdot \boldsymbol{n}_k}{n_j n_k^3} (\boldsymbol{r}_{kj} \times \boldsymbol{n}_k) \\ &= -\boldsymbol{r}_{kj} \times \left\{ \frac{1}{n_k} \left(\frac{\boldsymbol{n}_j}{n_j} - \cos \phi \frac{\boldsymbol{n}_k}{n_k} \right) \right\} \end{split}$$

を得る.

■まとめ 以上をまとめると、二面角 ϕ_{ijkl} の粒子の位置ベクトル r_{α} 微分は

$$\frac{d\phi_{ijkl}}{d\mathbf{r}_i} = -\frac{1}{\sin\phi_{ijkl}} \mathbf{r}_{jk} \times \left\{ \frac{1}{n_j} \left(\frac{\mathbf{n}_k}{n_k} - \cos\phi \frac{\mathbf{n}_j}{n_j} \right) \right\}$$
 (75)

$$\frac{d\phi_{ijkl}}{d\mathbf{r}_{j}} = -\frac{1}{\sin\phi_{ijkl}} \left[\mathbf{r}_{kl} \times \left\{ \frac{1}{n_{k}} \left(\frac{\mathbf{n}_{j}}{n_{j}} - \cos\phi \frac{\mathbf{n}_{k}}{n_{k}} \right) \right\} + \mathbf{r}_{ki} \times \left\{ \frac{1}{n_{j}} \left(\frac{\mathbf{n}_{k}}{n_{k}} - \cos\phi \frac{\mathbf{n}_{j}}{n_{j}} \right) \right\} \right]$$
(76)

$$\frac{d\phi_{ijkl}}{d\boldsymbol{r}_k} = \frac{1}{\sin\phi_{ijkl}} \left[\boldsymbol{r}_{ji} \times \left\{ \frac{1}{n_j} \left(\frac{\boldsymbol{n}_k}{n_k} - \cos\phi \frac{\boldsymbol{n}_j}{n_j} \right) \right\} + \boldsymbol{r}_{jl} \times \left\{ \frac{1}{n_k} \left(\frac{\boldsymbol{n}_j}{n_j} - \cos\phi \frac{\boldsymbol{n}_k}{n_k} \right) \right\} \right]$$
(77)

$$\frac{d\phi_{ijkl}}{d\mathbf{r}_l} = \frac{1}{\sin\phi_{ijkl}} \mathbf{r}_{kj} \times \left\{ \frac{1}{n_k} \left(\frac{\mathbf{n}_j}{n_j} - \cos\phi \frac{\mathbf{n}_k}{n_k} \right) \right\}$$
 (78)

と計算できる.

3.4 結合長ポテンシャル:調和振動子型

■ポテンシャル

$$U_{\text{bond}}(r_{ij}) = k_r(r_{ij} - r_{\text{eq}})^2$$

■力の導出 $\alpha = i, j$ について、ポテンシャルを座標ベクトルで微分する. 連鎖律を使うと

$$\boldsymbol{F}_{\alpha}^{\mathrm{bond}} = -\frac{dU_{\mathrm{gauss}}(r_{ij})}{d\boldsymbol{r}_{\alpha}} = -\frac{dU_{\mathrm{gauss}}(r_{ij})}{dr_{ij}}\frac{dr_{ij}}{d\boldsymbol{r}_{\alpha}}$$

となる. 具体的に計算をすると,

$$\frac{dU_{\text{bond}}(r_{ij})}{d\mathbf{r}_i} = 2k_r(r_{ij} - r_{\text{eq}})$$

を得る. また 2 点間の距離を座標ベクトル r_{α} で微分すると, 式 (66), (67) より

$$\frac{dr_{ij}}{d\mathbf{r}_i} = -\frac{\mathbf{r}_{ij}}{r_{ij}}$$
$$\frac{dr_{ij}}{d\mathbf{r}_j} = \frac{\mathbf{r}_{ij}}{r_{ij}}$$

であるので、粒子i, jに加わる力はそれぞれ

$$\boldsymbol{F}_{i}^{\mathrm{bond}} = 2k_{r}(r_{ij} - r_{\mathrm{eq}})\frac{\boldsymbol{r}_{ij}}{r_{ij}}$$

$$\boldsymbol{F}_{j}^{\mathrm{bond}} = -2k_{r}(r_{ij} - r_{\mathrm{eq}})\frac{\boldsymbol{r}_{ij}}{r_{ij}}$$

と計算される.

■ヴィリアルの導出

$$\begin{split} \boldsymbol{r}_i \cdot \boldsymbol{F}_i^{\text{bond}} + \boldsymbol{r}_j \cdot \boldsymbol{F}_j^{\text{bond}} &= (\boldsymbol{r}_i - \boldsymbol{r}_j) \cdot \boldsymbol{F}_i^{\text{bond}} \\ &= 2k_r(r_{ij} - r_{\text{eq}}) \frac{\boldsymbol{r}_{ji} \cdot \boldsymbol{r}_{ij}}{r_{ij}} \\ &= -2k_r(r_{ij} - r_{\text{eq}})r_{ij} \end{split}$$

であるので, ヴィリアルは,

$$\left\langle \sum_{i=1}^{N} \mathbf{r}_{i} \cdot \mathbf{F}_{i} \right\rangle = -\left\langle \sum_{\text{bonds}} 2k_{r}(r_{ij} - r_{\text{eq}})r_{ij} \right\rangle$$

3.5 結合長ポテンシャル: ガウス分布型

■ポテンシャル

$$U_{\text{gauss}}(r_{ij}) = \epsilon e^{-\frac{1}{2\sigma^2}(r_{ij} - r_0)^2}$$

■力の導出 $\alpha = i, j$ について、ポテンシャルを座標ベクトルで微分する. 連鎖律を使うと

$$m{F}_{lpha} = -rac{dU_{
m gauss}(r_{ij})}{dm{r}_{lpha}} = -rac{dU_{
m gauss}(r_{ij})}{dr_{ij}}rac{dr_{ij}}{dm{r}_{lpha}}$$

となる. 具体的に計算すると

$$\frac{dU_{\text{gauss}}(r_{ij})}{dr_{ij}} = -\frac{1}{2\sigma^2} \cdot 2(r_{ij} - r_0) \cdot \epsilon e^{-\frac{1}{2\sigma^2}(r_{ij} - r_0)^2}$$
$$= -\frac{\epsilon}{\sigma^2}(r_{ij} - r_0) \cdot e^{-\frac{1}{2\sigma^2}(r_{ij} - r_0)^2}$$

を得る. また 2 点間の距離を座標ベクトル r_{α} で微分すると, 式 (66), (67) より

$$\frac{dr_{ij}}{d\boldsymbol{r}_i} = -\frac{\boldsymbol{r}_{ij}}{r_{ij}}$$
$$\frac{dr_{ij}}{d\boldsymbol{r}_j} = \frac{\boldsymbol{r}_{ij}}{r_{ij}}$$

であるので、粒子i, jに加わる力はそれぞれ

$$\mathbf{F}_{i} = -\frac{\epsilon}{\sigma^{2}} (r_{ij} - r_{0}) \cdot e^{-\frac{1}{2\sigma^{2}} (r_{ij} - r_{0})^{2}} \frac{\mathbf{r}_{ij}}{r_{ij}}$$
$$\mathbf{F}_{j} = \frac{\epsilon}{\sigma^{2}} (r_{ij} - r_{0}) \cdot e^{-\frac{1}{2\sigma^{2}} (r_{ij} - r_{0})^{2}} \frac{\mathbf{r}_{ij}}{r_{ij}}$$

と計算される.

3.6 結合角ポテンシャル:調和振動子型

■ポテンシャル

$$U_{\text{angle}}(\theta_{ijk}) = k_{\theta}(\theta_{ijk} - \theta_{\text{eq}})^2$$

ここで,

$$egin{aligned} oldsymbol{r}_{ji} &= oldsymbol{r}_i - oldsymbol{r}_j \ oldsymbol{r}_{jk} &= oldsymbol{r}_k - oldsymbol{r}_j \ eta_{ijk} &= rccos\left(rac{oldsymbol{r}_{ji} \cdot oldsymbol{r}_{jk}}{r_{ji}r_{jk}}
ight) \ \cos(heta_{ijk}) &= rac{oldsymbol{r}_{ji} \cdot oldsymbol{r}_{jk}}{r_{ji}r_{jk}} = rac{(oldsymbol{r}_i - oldsymbol{r}_j) \cdot (oldsymbol{r}_k - oldsymbol{r}_j)}{\{(oldsymbol{r}_i - oldsymbol{r}_j)\}^{rac{1}{2}}} \left\{(oldsymbol{r}_k - oldsymbol{r}_j)\}^{rac{1}{2}} \end{aligned}$$

である.

■力の導出

 $\alpha = i, j, k$ について、ポテンシャルを座標ベクトルで微分する. 連鎖律を使うと

$$\boldsymbol{F}_{\alpha}^{\mathrm{angle}} = -\frac{dU_{\mathrm{angle}}(\theta_{ijk})}{d\boldsymbol{r}_{\alpha}} = \frac{dU_{\mathrm{angle}}(\theta_{ijk})}{d\theta_{ijk}} \frac{d\theta_{ijk}}{d\boldsymbol{r}_{\alpha}}$$

となる. 具体的に計算すると,

$$\frac{dU_{\text{angle}}(\theta_{ijk})}{d\theta_{ijk}} = 2k_{\theta}(\theta_{ijk} - \theta_{\text{eq}})$$

となる. また、3 点間の角度 θ_{ijk} を粒子の位置ベクトル r_{α} で微分すると、式 (72)、(73)、(74) より

$$\begin{split} \frac{d\theta_{ijk}}{d\boldsymbol{r}_{i}} &= -\frac{1}{r_{ji}\sin\theta_{ijk}} \left(\frac{\boldsymbol{r}_{jk}}{r_{jk}} - \cos\theta_{ijk} \frac{\boldsymbol{r}_{ji}}{r_{ji}}\right) \\ \frac{d\theta_{ijk}}{d\boldsymbol{r}_{j}} &= \frac{1}{r_{ji}\sin\theta_{ijk}} \left(\frac{\boldsymbol{r}_{jk}}{r_{jk}} - \cos\theta_{ijk} \frac{\boldsymbol{r}_{ji}}{r_{ji}}\right) + \frac{1}{r_{jk}\sin\theta_{ijk}} \left(\frac{\boldsymbol{r}_{ji}}{r_{ji}} - \cos\theta_{ijk} \frac{\boldsymbol{r}_{jk}}{r_{jk}}\right) \\ \frac{d\theta_{ijk}}{d\boldsymbol{r}_{k}} &= -\frac{1}{r_{jk}\sin\theta_{ijk}} \left(\frac{\boldsymbol{r}_{ji}}{r_{ji}} - \cos\theta_{ijk} \frac{\boldsymbol{r}_{jk}}{r_{jk}}\right) \end{split}$$

であるため、各粒子i, j, kにかかる力は

$$\begin{aligned} & \boldsymbol{F}_{i}^{\mathrm{angle}} = 2k_{\theta}(\theta_{ijk} - \theta_{\mathrm{eq}}) \frac{1}{r_{ji}\sin\theta_{ijk}} \left(\frac{\boldsymbol{r}_{jk}}{r_{jk}} - \cos\theta_{ijk} \frac{\boldsymbol{r}_{ji}}{r_{ji}} \right) \\ & \boldsymbol{F}_{k}^{\mathrm{angle}} = 2k_{\theta}(\theta_{ijk} - \theta_{\mathrm{eq}}) \frac{1}{r_{jk}\sin\theta_{ijk}} \left(\frac{\boldsymbol{r}_{ji}}{r_{ji}} - \cos\theta_{ijk} \frac{\boldsymbol{r}_{jk}}{r_{jk}} \right) \\ & \boldsymbol{F}_{j}^{\mathrm{angle}} = -\boldsymbol{F}_{i}^{\mathrm{angle}} - \boldsymbol{F}_{k}^{\mathrm{angle}} \end{aligned}$$

と計算できる.

■ヴィリアルの導出

$$\begin{split} & \boldsymbol{r}_{i} \cdot \boldsymbol{F}_{i}^{\mathrm{angle}} + \boldsymbol{r}_{j} \cdot \boldsymbol{F}_{j}^{\mathrm{angle}} + \boldsymbol{r}_{k} \cdot \boldsymbol{F}_{k}^{\mathrm{angle}} \\ &= \boldsymbol{r}_{i} \cdot \boldsymbol{F}_{i}^{\mathrm{angle}} + \boldsymbol{r}_{j} \cdot (-\boldsymbol{F}_{i}^{\mathrm{angle}} - \boldsymbol{F}_{k}^{\mathrm{angle}}) + \boldsymbol{r}_{k} \cdot \boldsymbol{F}_{k}^{\mathrm{angle}} \\ &= (\boldsymbol{r}_{i} - \boldsymbol{r}_{j}) \cdot \boldsymbol{F}_{i}^{\mathrm{angle}} + (\boldsymbol{r}_{k} - \boldsymbol{r}_{j}) \cdot \boldsymbol{F}_{k}^{\mathrm{angle}} \\ &= (\boldsymbol{r}_{i} - \boldsymbol{r}_{j}) \cdot \boldsymbol{F}_{i}^{\mathrm{angle}} + \boldsymbol{r}_{jk} \cdot \boldsymbol{F}_{k}^{\mathrm{angle}} \\ &= \boldsymbol{r}_{ji} \cdot \boldsymbol{F}_{i}^{\mathrm{angle}} + \boldsymbol{r}_{jk} \cdot \boldsymbol{F}_{k}^{\mathrm{angle}} \\ &= 2k_{\theta}(\theta_{ijk} - \theta_{\mathrm{eq}}) \frac{1}{\sin \theta_{ijk}} \\ &\qquad \times \left\{ \frac{\boldsymbol{r}_{ji}}{r_{ji}} \cdot \left(\frac{\boldsymbol{r}_{jk}}{r_{jk}} - \cos \theta_{ijk} \frac{\boldsymbol{r}_{ji}}{r_{ji}} \right) + \frac{\boldsymbol{r}_{jk}}{r_{jk}} \cdot \left(\frac{\boldsymbol{r}_{ji}}{r_{ji}} - \cos \theta_{ijk} \frac{\boldsymbol{r}_{jk}}{r_{jk}} \right) \right\} \\ &= 2k_{\theta}(\theta_{ijk} - \theta_{\mathrm{eq}}) \frac{1}{\sin \theta_{ijk}} \\ &\qquad \times \left(\frac{\boldsymbol{r}_{ji} \cdot \boldsymbol{r}_{jk}}{r_{ji}r_{jk}} - \cos \theta_{ijk} + \frac{\boldsymbol{r}_{jk} \cdot \boldsymbol{r}_{ji}}{r_{jk}r_{ji}} - \cos \theta_{ijk} \right) \\ &= 0 \end{split}$$

であることから、結合角ポテンシャルに由来するヴィリアルはゼロである.

3.7 二面角ポテンシャル: フーリエ級数型

■ポテンシャル

$$U_{\text{dihedral}}(\phi_{ijkl}) = \frac{V}{2}[1 + \cos(n\phi_{ijkl} - \gamma)]$$

ここで,

$$\begin{aligned} & \boldsymbol{r}_{ji} = \boldsymbol{r}_i - \boldsymbol{r}_j \\ & \boldsymbol{r}_{kj} = \boldsymbol{r}_j - \boldsymbol{r}_k \\ & \boldsymbol{r}_{lk} = \boldsymbol{r}_k - \boldsymbol{r}_l \\ & \boldsymbol{n}_j = \boldsymbol{r}_{ji} \times \boldsymbol{r}_{jk} \\ & \boldsymbol{n}_k = \boldsymbol{r}_{kj} \times \boldsymbol{r}_{kl} \\ & \phi_{ijkl} = -\mathrm{sign} \left[\arccos \left(\frac{\boldsymbol{n}_j \cdot \boldsymbol{n}_k}{n_j n_k} \right), \boldsymbol{r}_{kj} \cdot \boldsymbol{n}_j \times \boldsymbol{n}_k \right] \end{aligned}$$

である.

■力の導出 $\alpha=i,j,k,l$ について、ポテンシャルを座標ベクトルで微分する. 連鎖律を使うと

$$\boldsymbol{F}_{\alpha} = -\frac{dU_{\text{gauss}}(r_{ij})}{d\boldsymbol{r}_{\alpha}} = -\frac{dU_{\text{gauss}}(\phi_{ijkl})}{d\phi_{ijkl}} \frac{d\phi_{ijkl}}{d\boldsymbol{r}_{\alpha}}$$

となる. 具体的に計算すると

$$\frac{dU_{\text{gauss}}(\phi_{ijkl})}{d\phi_{ijkl}} = \frac{d}{d\phi_{ijkl}} \left[\frac{V}{2} \left\{ 1 + \cos(n\phi_{ijkl} - \gamma) \right\} \right]$$
$$= -\frac{nV}{2} \sin(n\phi_{ijkl} - \gamma)$$

と計算される. さらに, 二面角 ϕ_{ijkl} を粒子の位置ベクトル ${m r}_{lpha}$ で微分すると, 式 (75), (76), (77), (78) より

$$\begin{split} \frac{d\phi_{ijkl}}{d\boldsymbol{r}_{i}} &= -\frac{1}{\sin\phi_{ijkl}}\boldsymbol{r}_{jk} \times \left\{ \frac{1}{n_{j}} \left(\frac{\boldsymbol{n}_{k}}{n_{k}} - \cos\phi \frac{\boldsymbol{n}_{j}}{n_{j}} \right) \right\} \\ \frac{d\phi_{ijkl}}{d\boldsymbol{r}_{j}} &= -\frac{1}{\sin\phi_{ijkl}} \left[\boldsymbol{r}_{kl} \times \left\{ \frac{1}{n_{k}} \left(\frac{\boldsymbol{n}_{j}}{n_{j}} - \cos\phi \frac{\boldsymbol{n}_{k}}{n_{k}} \right) \right\} + \boldsymbol{r}_{ki} \times \left\{ \frac{1}{n_{j}} \left(\frac{\boldsymbol{n}_{k}}{n_{k}} - \cos\phi \frac{\boldsymbol{n}_{j}}{n_{j}} \right) \right\} \right] \\ \frac{d\phi_{ijkl}}{d\boldsymbol{r}_{k}} &= -\frac{1}{\sin\phi_{ijkl}} \left[\boldsymbol{r}_{ji} \times \left\{ \frac{1}{n_{j}} \left(\frac{\boldsymbol{n}_{k}}{n_{k}} - \cos\phi \frac{\boldsymbol{n}_{j}}{n_{j}} \right) \right\} + \boldsymbol{r}_{jl} \times \left\{ \frac{1}{n_{k}} \left(\frac{\boldsymbol{n}_{j}}{n_{j}} - \cos\phi \frac{\boldsymbol{n}_{k}}{n_{k}} \right) \right\} \right] \\ \frac{d\phi_{ijkl}}{d\boldsymbol{r}_{l}} &= -\frac{1}{\sin\phi_{ijkl}} \boldsymbol{r}_{kj} \times \left\{ \frac{1}{n_{k}} \left(\frac{\boldsymbol{n}_{j}}{n_{j}} - \cos\phi \frac{\boldsymbol{n}_{k}}{n_{k}} \right) \right\} \end{split}$$

と計算される. ここで

$$f_0 \equiv rac{nV}{2} rac{\sin(n\phi - \gamma)}{\sin \phi} \ m{f}_{kj} \equiv \left\{ rac{1}{n_j} \left(rac{m{n}_k}{n_k} - \cos \phi rac{m{n}_j}{n_j}
ight)
ight\} \ m{f}_{jk} \equiv \left\{ rac{1}{n_k} \left(rac{m{n}_j}{n_j} - \cos \phi rac{m{n}_k}{n_k}
ight)
ight\}$$

を定義する. 各粒子i, j, k, lにかかる力はそれぞれ

$$F_i^{\text{dihedral}} = -\frac{nV}{2} \frac{\sin(n\phi - \gamma)}{\sin \phi} \left[\boldsymbol{r}_{jk} \times \left\{ \frac{1}{n_j} \left(\frac{\boldsymbol{n}_k}{n_k} - \cos \phi \frac{\boldsymbol{n}_j}{n_j} \right) \right\} \right]$$

$$= \frac{nV}{2} \frac{\sin(n\phi - \gamma)}{\sin \phi} \left[\boldsymbol{r}_{kj} \times \left\{ \frac{1}{n_j} \left(\frac{\boldsymbol{n}_k}{n_k} - \cos \phi \frac{\boldsymbol{n}_j}{n_j} \right) \right\} \right]$$

$$= f_0(\boldsymbol{r}_{kj} \times \boldsymbol{f}_{kj})$$

$$m{F}_j^{ ext{dihedral}}$$

$$= -\frac{nV}{2} \frac{\sin(n\phi - \gamma)}{\sin \phi} \left[\mathbf{r}_{kl} \times \left\{ \frac{1}{n_k} \left(\frac{\mathbf{n}_j}{n_j} - \cos \phi \frac{\mathbf{n}_k}{n_k} \right) \right\} + \mathbf{r}_{ki} \times \left\{ \frac{1}{n_j} \left(\frac{\mathbf{n}_k}{n_k} - \cos \phi \frac{\mathbf{n}_j}{n_j} \right) \right\} \right]$$

$$= \frac{nV}{2} \frac{\sin(n\phi - \gamma)}{\sin \phi} \left[\mathbf{r}_{lk} \times \left\{ \frac{1}{n_k} \left(\frac{\mathbf{n}_j}{n_j} - \cos \phi \frac{\mathbf{n}_k}{n_k} \right) \right\} - \mathbf{r}_{ki} \times \left\{ \frac{1}{n_j} \left(\frac{\mathbf{n}_k}{n_k} - \cos \phi \frac{\mathbf{n}_j}{n_j} \right) \right\} \right]$$

$$= f_0(\mathbf{r}_{lk} \times \mathbf{f}_{jk} - \mathbf{r}_{ki} \times \mathbf{f}_{kj})$$

$$= f_0(\mathbf{r}_{lk} \times \mathbf{f}_{jk} - \mathbf{r}_{kj} \times \mathbf{f}_{kj} - \mathbf{r}_{ji} \times \mathbf{f}_{kj})$$

 $F_{k}^{
m dihedral}$

$$= -\frac{nV}{2} \frac{\sin(n\phi - \gamma)}{\sin \phi} \left[-\mathbf{r}_{ji} \times \left\{ \frac{1}{n_j} \left(\frac{\mathbf{n}_k}{n_k} - \cos \phi \frac{\mathbf{n}_j}{n_j} \right) \right\} - \mathbf{r}_{jl} \times \left\{ \frac{1}{n_k} \left(\frac{\mathbf{n}_j}{n_j} - \cos \phi \frac{\mathbf{n}_k}{n_k} \right) \right\} \right]$$

$$= \frac{nV}{2} \frac{\sin(n\phi - \gamma)}{\sin \phi} \left[\mathbf{r}_{ji} \times \left\{ \frac{1}{n_j} \left(\frac{\mathbf{n}_k}{n_k} - \cos \phi \frac{\mathbf{n}_j}{n_j} \right) \right\} - \mathbf{r}_{lj} \times \left\{ \frac{1}{n_k} \left(\frac{\mathbf{n}_j}{n_j} - \cos \phi \frac{\mathbf{n}_k}{n_k} \right) \right\} \right]$$

$$= f_0(\mathbf{r}_{ji} \times \mathbf{f}_{kj} - \mathbf{r}_{lj} \times \mathbf{f}_{jk})$$

$$= f_0(\mathbf{r}_{ji} \times \mathbf{f}_{kj} - \mathbf{r}_{lk} \times \mathbf{f}_{jk} - \mathbf{r}_{kj} \times \mathbf{f}_{jk})$$

$$\begin{aligned} \boldsymbol{F}_{l}^{\text{dihedral}} &= -\frac{nV}{2} \frac{\sin(n\phi - \gamma)}{\sin \phi} \left[-\boldsymbol{r}_{kj} \times \left\{ \frac{1}{n_k} \left(\frac{\boldsymbol{n}_j}{n_j} - \cos \phi \frac{\boldsymbol{n}_k}{n_k} \right) \right\} \right] \\ &= f_0(\boldsymbol{r}_{kj} \times \boldsymbol{f}_{jk}) \end{aligned}$$

と計算される.

■ヴィリアルの導出

 f_{kj} の展開

 f_{ki} を以下のように展開する.

$$f_{kj} = \frac{1}{n_j} \left(\frac{\boldsymbol{n}_k}{n_k} - \cos \phi \frac{\boldsymbol{n}_j}{n_j} \right)$$

$$= \frac{\boldsymbol{n}_k}{n_j n_k} - \frac{\boldsymbol{n}_j \cdot \boldsymbol{n}_k}{n_j n_k} \frac{\boldsymbol{n}_j}{n_j^2}$$

$$= \frac{1}{n_j^3 n_k} \left\{ (\boldsymbol{n}_j \cdot \boldsymbol{n}_j) \boldsymbol{n}_k - (\boldsymbol{n}_j \cdot \boldsymbol{n}_k) \boldsymbol{n}_j \right\}$$

$$= \frac{1}{n_j^3 n_k} \left\{ \boldsymbol{n}_j \times (\boldsymbol{n}_k \times \boldsymbol{n}_j) \right\}$$

最後の変形において、ベクトル三重積の公式 $A \times (B \times C) = (A \cdot C)B - (A \cdot B)C$ を用いた. 続いて、最後

の変形によって現れた 2つの n_i に対して、その定義式を代入して、ベクトル三重積の公式を適用していく.

$$egin{aligned} m{n}_k imes m{n}_j &= m{n}_k imes (m{r}_{ji} imes m{r}_{jk}) \ &= (m{n}_k \cdot m{r}_{jk}) m{r}_{ji} - (m{n}_k \cdot m{r}_{ji}) m{r}_{jk} \ &= -(m{n}_k \cdot m{r}_{ji}) m{r}_{jk} \end{aligned}$$

 n_k と r_{jk} は直交するベクトルのため、その内積がゼロになることを使用した。さらに計算を進めていくと、

$$egin{aligned} oldsymbol{n}_j imes (oldsymbol{n}_k imes oldsymbol{n}_j) &= -oldsymbol{n}_j imes (oldsymbol{n}_k \cdot oldsymbol{r}_{ji}) oldsymbol{r}_{jk} \ &= -(oldsymbol{n}_k \cdot oldsymbol{r}_{ji}) \left\{ (oldsymbol{r}_{ji} imes oldsymbol{r}_{jk}) imes oldsymbol{r}_{jk}
ight\} \ &= -(oldsymbol{n}_k \cdot oldsymbol{r}_{ji}) \left\{ (oldsymbol{r}_{jk} \cdot oldsymbol{r}_{ji}) oldsymbol{r}_{jk} - (oldsymbol{r}_{jk} \cdot oldsymbol{r}_{jk}) oldsymbol{r}_{ji}
ight\} \ &= (oldsymbol{n}_k \cdot oldsymbol{r}_{ji}) \left\{ (oldsymbol{r}_{jk} \cdot oldsymbol{r}_{ji}) oldsymbol{r}_{jk} - (oldsymbol{r}_{jk} \cdot oldsymbol{r}_{jk}) oldsymbol{r}_{ji}
ight\} \end{aligned}$$

を得る. したがって,

$$oldsymbol{f}_{kj} = rac{(oldsymbol{n}_k \cdot oldsymbol{r}_{ji})}{n_j^3 n_k} \left\{ (oldsymbol{r}_{jk} \cdot oldsymbol{r}_{jk}) oldsymbol{r}_{ji} - (oldsymbol{r}_{jk} \cdot oldsymbol{r}_{ji}) oldsymbol{r}_{jk}
ight\}$$

と書き下すことができる.

f_{jk} の展開

 f_{ik} を以下のように展開する.

$$f_{jk} = \frac{1}{n_k} \left(\frac{\boldsymbol{n}_j}{n_j} - \cos \phi \frac{\boldsymbol{n}_k}{n_k} \right)$$

$$= \frac{\boldsymbol{n}_j}{n_j n_k} - \frac{\boldsymbol{n}_j \cdot \boldsymbol{n}_k}{n_j n_k} \frac{\boldsymbol{n}_k}{n_k^2}$$

$$= \frac{1}{n_j n_k^3} \left\{ (\boldsymbol{n}_k \cdot \boldsymbol{n}_k) \boldsymbol{n}_j - (\boldsymbol{n}_j \cdot \boldsymbol{n}_k) \boldsymbol{n}_k \right\}$$

$$= \frac{1}{n_j n_k^3} \left\{ \boldsymbol{n}_k \times (\boldsymbol{n}_j \times \boldsymbol{n}_k) \right\}$$

最後の変形において、ベクトル三重積の公式 $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \cdot \mathbf{C})\mathbf{B} - (\mathbf{A} \cdot \mathbf{B})\mathbf{C}$ を用いた. 続いて、最後の変形によって現れた 2 つの \mathbf{n}_k に対して、その定義式を代入して、ベクトル三重積の公式を適用していく.

$$egin{aligned} oldsymbol{n}_j imes oldsymbol{n}_k &= oldsymbol{n}_j imes (oldsymbol{r}_{kj} imes oldsymbol{r}_{kl}) \\ &= (oldsymbol{n}_j \cdot oldsymbol{r}_{kl}) oldsymbol{r}_{kj} - (oldsymbol{n}_j \cdot oldsymbol{r}_{kj}) oldsymbol{r}_{kl} \\ &= -(oldsymbol{n}_j \cdot oldsymbol{r}_{kl}) oldsymbol{r}_{kj} \end{aligned}$$

 n_j と r_{kj} は直交するベクトルのため、その内積がゼロになることを使用した。さらに計算を進めていくと、

$$egin{aligned} m{n}_k imes (m{n}_j imes m{n}_k) &= m{n}_k imes (m{n}_j \cdot m{r}_{kl}) m{r}_{kj} \ &= (m{n}_j \cdot m{r}_{kl}) (m{n}_k imes m{r}_{kj}) \ &= (m{n}_j \cdot m{r}_{kl}) \left\{ (m{r}_{kj} imes m{r}_{kl}) imes m{r}_{kj}
ight\} \ &= (m{n}_j \cdot m{r}_{kl}) \left\{ (m{r}_{kj} \cdot m{r}_{kj}) m{r}_{kl} - (m{r}_{kj} \cdot m{r}_{kl}) m{r}_{kj}
ight\} \end{aligned}$$

を得る. したがって,

$$oldsymbol{f}_{jk} = rac{(oldsymbol{n}_j \cdot oldsymbol{r}_{kl})}{n_j n_k^3} \left\{ (oldsymbol{r}_{kj} \cdot oldsymbol{r}_{kj}) oldsymbol{r}_{kl} - (oldsymbol{r}_{kj} \cdot oldsymbol{r}_{kl}) oldsymbol{r}_{kj}
ight\}$$

と書き下すことができる.

 $oldsymbol{f}_1 = f_0(oldsymbol{r}_{kj} imes oldsymbol{f}_{kj})$ の展開

$$egin{aligned} m{r}_{kj} imes m{f}_{kj} &= m{r}_{kj} imes \left[rac{(m{n}_k \cdot m{r}_{ji})}{n_j^3 n_k} \left\{ (m{r}_{jk} \cdot m{r}_{jk}) m{r}_{ji} - (m{r}_{jk} \cdot m{r}_{ji}) m{r}_{jk}
ight\}
ight] \ &= rac{1}{n_j^3 n_k} (m{n}_k \cdot m{r}_{ji}) (m{r}_{jk} \cdot m{r}_{jk}) (m{r}_{kj} imes m{r}_{ji}) \end{aligned}$$

と計算できる. ここで, 第 2 式から第 3 式の展開で ${m r}_{kj} \times {m r}_{jk} = 0$ であることを使用した. したがって, f_1 は定数 C_1 を用いて

$$f_1 \equiv C_1(\boldsymbol{r}_{ki} \times \boldsymbol{r}_{ii})$$

と書くことができる.

 $oldsymbol{f}_2 = f_0(oldsymbol{r}_{lk} imes oldsymbol{f}_{jk})$ の展開

$$egin{aligned} oldsymbol{r}_{lk} imes oldsymbol{f}_{jk} &= oldsymbol{r}_{lk} imes \left[rac{(oldsymbol{n}_j \cdot oldsymbol{r}_{kl})}{n_j n_k^3} \left\{ (oldsymbol{r}_{kj} \cdot oldsymbol{r}_{kj}) oldsymbol{r}_{kl} - (oldsymbol{r}_{kj} \cdot oldsymbol{r}_{kl}) oldsymbol{r}_{kj}
ight\}
ight] \ &= -rac{1}{n_j n_k^3} (oldsymbol{n}_j \cdot oldsymbol{r}_{kl}) (oldsymbol{r}_{kj} \cdot oldsymbol{r}_{kl}) (oldsymbol{r}_{lk} imes oldsymbol{r}_{kj}) \end{aligned}$$

と計算できる。ここで,第 2 式から第 3 式の展開で, $r_{lk} \times r_{kl} = 0$ であることを使用した。したがって, f_2 は定数 C_2 を用いて

$$f_2 \equiv C_2(\boldsymbol{r}_{lk} \times \boldsymbol{r}_{kj})$$

と書くことができる.

 $oldsymbol{f}_3 = f_0(oldsymbol{r}_{ji} imes oldsymbol{f}_{kj})$ の展開

$$egin{aligned} m{r}_{ji} imes m{f}_{kj} &= m{r}_{ji} imes \left[rac{(m{n}_k \cdot m{r}_{ji})}{n_j^3 n_k} \left\{ (m{r}_{jk} \cdot m{r}_{jk}) m{r}_{ji} - (m{r}_{jk} \cdot m{r}_{ji}) m{r}_{jk}
ight\}
ight] \ &= -rac{1}{n_j^3 n_k} (m{n}_k \cdot m{r}_{ji}) (m{r}_{jk} \cdot m{r}_{ji}) (m{r}_{ji} imes m{r}_{jk}) \end{aligned}$$

と計算できる。ここで, 第 2 式から第 3 式の展開で, ${m r}_{ji} \times {m r}_{ji} = 0$ であることを使用した。したがって, f_3 は定数 C_3 を用いて

$$f_3 \equiv C_3(\boldsymbol{r}_{ii} \times \boldsymbol{r}_{ik})$$

と書くことができる.

 $f_4 = f_0(r_{ki} \times f_{ik})$ の展開

$$egin{aligned} oldsymbol{r}_{kj} imes oldsymbol{f}_{jk} &= oldsymbol{r}_{kj} imes \left[rac{(oldsymbol{n}_j \cdot oldsymbol{r}_{kl})}{n_j n_k^3} \left\{ (oldsymbol{r}_{kj} \cdot oldsymbol{r}_{kj}) oldsymbol{r}_{kl} - (oldsymbol{r}_{kj} \cdot oldsymbol{r}_{kl}) oldsymbol{r}_{kj}
ight\}
ight] \ &= rac{1}{n_j n_k^3} (oldsymbol{n}_j \cdot oldsymbol{r}_{kl}) (oldsymbol{r}_{kj} \cdot oldsymbol{r}_{kj}) (oldsymbol{r}_{kj} imes oldsymbol{r}_{kl}) \end{aligned}$$

と計算できる。ここで,第 2 式から第 3 式の展開で, ${m r}_{kj} \times {m r}_{kj} = 0$ であることを使用した。したがって, f_4 は 定数 C_4 を用いて

$$f_4 \equiv C_4(\boldsymbol{r}_{kj} \times \boldsymbol{r}_{kl})$$

と書くことができる.

ヴィリアルの計算

以上の展開を利用すると,

$$\begin{split} \boldsymbol{r}_i \cdot \boldsymbol{F}_i^{\text{dihedral}} \boldsymbol{r}_j \cdot \boldsymbol{F}_j^{\text{dihedral}} \boldsymbol{r}_k \cdot \boldsymbol{F}_k^{\text{dihedral}} \boldsymbol{r}_l \cdot \boldsymbol{F}_l^{\text{dihedral}} \\ &= \boldsymbol{r}_i \cdot \boldsymbol{f}_1 + \boldsymbol{r}_j \cdot \{\boldsymbol{f}_2 - \boldsymbol{f}_1 - \boldsymbol{f}_3\} + \boldsymbol{r}_k \cdot \{\boldsymbol{f}_3 - \boldsymbol{f}_2 - \boldsymbol{f}_4\} + \boldsymbol{r}_l \cdot \boldsymbol{f}_4 \\ &= \boldsymbol{r}_{ji} \cdot \boldsymbol{f}_1 + \boldsymbol{r}_{kj} \cdot \boldsymbol{f}_2 + \boldsymbol{r}_{jk} \cdot \boldsymbol{f}_3 + \boldsymbol{r}_{kl} \cdot \boldsymbol{f}_4 \\ &= \boldsymbol{r}_{ji} \cdot \{C_1(\boldsymbol{r}_{kj} \times \boldsymbol{r}_{ji})\} + \boldsymbol{r}_{kj} \cdot \{C_2(\boldsymbol{r}_{lk} \times \boldsymbol{r}_{kj})\} \\ &\quad + \boldsymbol{r}_{jk} \cdot \{C_3(\boldsymbol{r}_{ji} \times \boldsymbol{r}_{jk})\} + \boldsymbol{r}_{kl} \cdot \{C_4(\boldsymbol{r}_{kj} \times \boldsymbol{r}_{kl})\} \\ &= 0 \end{split}$$

と計算される. ここで,全ての項において直交するベクトルの内積がゼロであることを利用した. したがって, 二面角に由来するヴィリアルはゼロである.

3.8 二面角ポテンシャル: ガウス分布型

■ポテンシャル

$$U_{\text{gauss}}(\phi_{ijkl}) = \epsilon e^{-\frac{1}{2\sigma^2}(\phi_{ijkl} - \phi_0)^2}$$

ただし,

$$\begin{aligned} & \boldsymbol{r}_{ji} = \boldsymbol{r}_i - \boldsymbol{r}_j \\ & \boldsymbol{r}_{kj} = \boldsymbol{r}_j - \boldsymbol{r}_k \\ & \boldsymbol{r}_{lk} = \boldsymbol{r}_k - \boldsymbol{r}_l \\ & \boldsymbol{n}_j = \boldsymbol{r}_{ji} \times \boldsymbol{r}_{jk} \\ & \boldsymbol{n}_k = \boldsymbol{r}_{kj} \times \boldsymbol{r}_{kl} \\ & \phi_{ijkl} = -\mathrm{sign} \left[\arccos \left(\frac{\boldsymbol{n}_j \cdot \boldsymbol{n}_k}{n_j n_k} \right), \boldsymbol{r}_{kj} \cdot \boldsymbol{n}_j \times \boldsymbol{n}_k \right] \end{aligned}$$

と定義する.

■力の導出 $\alpha = i, j, k, l$ について、ポテンシャルを座標ベクトルで微分する. 連鎖律を使うと

$$\boldsymbol{F}_{\alpha} = -\frac{dU_{\text{gauss}}(r_{ij})}{d\boldsymbol{r}_{\alpha}} = -\frac{dU_{\text{gauss}}(\phi_{ijkl})}{d\phi_{ijkl}} \frac{d\phi_{ijkl}}{d\boldsymbol{r}_{\alpha}}$$

となる. 具体的に計算すると

$$\frac{dU_{\text{gauss}}(\phi_{ijkl})}{d\phi_{ijkl}} = -\frac{1}{2\sigma^2} \cdot 2(\phi_{ijkl} - \phi_0) \cdot \epsilon e^{-\frac{1}{2\sigma^2}(\phi_{ijkl} - \phi_0)^2}$$
$$= -\frac{\epsilon}{\sigma^2}(\phi_{ijkl} - \phi_0) \cdot e^{-\frac{1}{2\sigma^2}(\phi_{ijkl} - \phi_0)^2}$$

を得る. また, 二面角 ϕ_{ijkl} を粒子の位置ベクトル r_{α} で微分すると, 式 (75), (76), (77), (78) より

$$\begin{split} \frac{d\phi_{ijkl}}{d\boldsymbol{r}_{i}} &= -\frac{1}{\sin\phi_{ijkl}}\boldsymbol{r}_{jk} \times \left\{ \frac{1}{n_{j}} \left(\frac{\boldsymbol{n}_{k}}{n_{k}} - \cos\phi \frac{\boldsymbol{n}_{j}}{n_{j}} \right) \right\} \\ \frac{d\phi_{ijkl}}{d\boldsymbol{r}_{j}} &= -\frac{1}{\sin\phi_{ijkl}} \left[\boldsymbol{r}_{kl} \times \left\{ \frac{1}{n_{k}} \left(\frac{\boldsymbol{n}_{j}}{n_{j}} - \cos\phi \frac{\boldsymbol{n}_{k}}{n_{k}} \right) \right\} + \boldsymbol{r}_{ki} \times \left\{ \frac{1}{n_{j}} \left(\frac{\boldsymbol{n}_{k}}{n_{k}} - \cos\phi \frac{\boldsymbol{n}_{j}}{n_{j}} \right) \right\} \right] \\ \frac{d\phi_{ijkl}}{d\boldsymbol{r}_{k}} &= -\frac{1}{\sin\phi_{ijkl}} \left[\boldsymbol{r}_{ji} \times \left\{ \frac{1}{n_{j}} \left(\frac{\boldsymbol{n}_{k}}{n_{k}} - \cos\phi \frac{\boldsymbol{n}_{j}}{n_{j}} \right) \right\} + \boldsymbol{r}_{jl} \times \left\{ \frac{1}{n_{k}} \left(\frac{\boldsymbol{n}_{j}}{n_{j}} - \cos\phi \frac{\boldsymbol{n}_{k}}{n_{k}} \right) \right\} \right] \\ \frac{d\phi_{ijkl}}{d\boldsymbol{r}_{l}} &= -\frac{1}{\sin\phi_{ijkl}} \boldsymbol{r}_{kj} \times \left\{ \frac{1}{n_{k}} \left(\frac{\boldsymbol{n}_{j}}{n_{j}} - \cos\phi \frac{\boldsymbol{n}_{k}}{n_{k}} \right) \right\} \end{split}$$

と計算される. ここで

$$f_0 \equiv \frac{\epsilon(\phi_{ijkl} - \phi_0)}{\sigma^2 \sin \phi_{ijkl}} e^{-\frac{1}{2\sigma^2}(\phi_{ijkl} - \phi_0)^2}$$

$$f_{kj} \equiv \left\{ \frac{1}{n_j} \left(\frac{\boldsymbol{n}_k}{n_k} - \cos \phi \frac{\boldsymbol{n}_j}{n_j} \right) \right\}$$

$$f_{jk} \equiv \left\{ \frac{1}{n_k} \left(\frac{\boldsymbol{n}_j}{n_j} - \cos \phi \frac{\boldsymbol{n}_k}{n_k} \right) \right\}$$

と定義すると、各粒子 i, j, k, l にかかる力は

$$\begin{aligned} & \boldsymbol{F}_{i} = & f_{0}(\boldsymbol{r}_{kj} \times \boldsymbol{f}_{kj}) \\ & \boldsymbol{F}_{j} = & f_{0}(\boldsymbol{r}_{lk} \times \boldsymbol{f}_{jk} - \boldsymbol{r}_{ki} \times \boldsymbol{f}_{kj}) = f_{0}(\boldsymbol{r}_{lk} \times \boldsymbol{f}_{jk} - \boldsymbol{r}_{kj} \times \boldsymbol{f}_{kj} - \boldsymbol{r}_{ji} \times \boldsymbol{f}_{kj}) \\ & \boldsymbol{F}_{k} = & f_{0}(\boldsymbol{r}_{ji} \times \boldsymbol{f}_{kj} - \boldsymbol{r}_{lj} \times \boldsymbol{f}_{jk}) = f_{0}(\boldsymbol{r}_{ji} \times \boldsymbol{f}_{kj} - \boldsymbol{r}_{lk} \times \boldsymbol{f}_{jk} - \boldsymbol{r}_{kj} \times \boldsymbol{f}_{jk}) \\ & \boldsymbol{F}_{l} = & f_{0}(\boldsymbol{r}_{kj} \times \boldsymbol{f}_{jk}) \end{aligned}$$

となる.

3.9 ファンデル・ワールスポテンシャル: 12-6 型

■ポテンシャル

$$U_{\rm LJ}(r_{ij}) = 4\epsilon_{ij} \left\{ \left(\frac{\sigma_{ij}}{r_{ij}}\right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}}\right)^{6} \right\}$$

■力の導出

$$\begin{split} \boldsymbol{F}_{i}^{\mathrm{LJ}} &= -\frac{dU_{\mathrm{LJ}}(r_{ij})}{d\boldsymbol{r}_{i}} = -\frac{dU_{\mathrm{LJ}}(r_{ij})}{dr_{ij}} \frac{dr_{ij}}{d\boldsymbol{r}_{i}} \\ &= -4\epsilon_{ij} \left(-12 \frac{\sigma_{ij}^{12}}{r_{ij}^{13}} + 6 \frac{\sigma_{ij}^{6}}{r_{ij}^{7}} \right) \left[\frac{d}{d\boldsymbol{r}_{i}} \left\{ (\boldsymbol{r}_{j} - \boldsymbol{r}_{i})^{2} \right\}^{\frac{1}{2}} \right] \\ &= -\frac{24\epsilon_{ij}}{\sigma_{ij}} \left\{ 2 \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{13} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{7} \right\} \frac{\boldsymbol{r}_{ij}}{r_{ij}} \\ &= -24\epsilon_{ij} \left\{ 2 \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right\} \frac{\boldsymbol{r}_{ij}}{r_{ij}^{2}} \end{split}$$

$$F_{j}^{\mathrm{LJ}} = -\frac{dU_{\mathrm{LJ}}(r_{ij})}{d\mathbf{r}_{j}} = \frac{24\epsilon_{ij}}{\sigma_{ij}} \left\{ 2\left(\frac{\sigma_{ij}}{r_{ij}}\right)^{13} - \left(\frac{\sigma_{ij}}{r_{ij}}\right)^{7} \right\} \frac{\mathbf{r}_{ij}}{r_{ij}}$$
$$= 24\epsilon_{ij} \left\{ 2\left(\frac{\sigma_{ij}}{r_{ij}}\right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}}\right)^{6} \right\} \frac{\mathbf{r}_{ij}}{r_{ij}^{2}}$$

■ヴィリアルの導出

$$\begin{aligned} \boldsymbol{r}_{i} \cdot \boldsymbol{F}_{i}^{\mathrm{LJ}} + \boldsymbol{r}_{j} \cdot \boldsymbol{F}_{j}^{\mathrm{LJ}} &= \boldsymbol{r}_{i} \cdot \boldsymbol{F}_{i}^{\mathrm{LJ}} - \boldsymbol{r}_{j} \cdot \boldsymbol{F}_{i}^{\mathrm{LJ}} \\ &= \boldsymbol{r}_{ji} \cdot \boldsymbol{F}_{i}^{\mathrm{LJ}} \\ &= \boldsymbol{r}_{ji} \cdot \left[-24\epsilon_{ij} \left\{ 2 \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right\} \frac{\boldsymbol{r}_{ij}}{r_{ij}^{2}} \right] \\ &= 24\epsilon_{ij} \left\{ 2 \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right\} \end{aligned}$$

したがって, ヴィリアルは

$$\left\langle \sum_{i=1}^{N} \mathbf{r}_{i} \cdot \mathbf{F}_{i}^{\mathrm{LJ}} \right\rangle = \left\langle \sum_{\mathrm{nonbonds}} 24\epsilon_{ij} \left\{ 2 \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right\} \right\rangle$$
 (79)

と計算することができる.

3.10 モースポテンシャル

■ポテンシャル

$$U_{\text{morse}}(r_{ij}) = \epsilon \left\{ 1 - e^{-\alpha(r_{ij} - r_0)} \right\}^2$$

■力の導出 $\alpha = i, j$ について、ポテンシャルを座標ベクトルで微分する. 連鎖律を使うと

$$m{F}_{lpha} = -rac{dU_{\mathrm{morse}}(r_{ij})}{dm{r}_{lpha}} = -rac{dU_{\mathrm{morse}}(r_{ij})}{dr_{ij}}rac{dr_{ij}}{dm{r}_{lpha}}$$

となる. 具体的に計算すると

$$\frac{dU_{\text{morse}}(r_{ij})}{dr_{ij}} = 2\epsilon \left\{ 1 - e^{-\alpha(r_{ij} - r_0)} \right\} \cdot \alpha e^{-\alpha(r_{ij} - r_0)}$$

を得る. また 2 点間の距離を座標ベクトル r_{α} で微分すると, 式 (66), (67) より

$$\frac{dr_{ij}}{d\mathbf{r}_i} = -\frac{\mathbf{r}_{ij}}{r_{ij}}$$
$$\frac{dr_{ij}}{d\mathbf{r}_j} = \frac{\mathbf{r}_{ij}}{r_{ij}}$$

と計算されるので、粒子i, jに加わる力はそれぞれ

$$\mathbf{F}_{i} = 2\epsilon\alpha \left\{ e^{-\alpha(r_{ij} - r_{0})} - e^{-2\alpha(r_{ij} - r_{0})} \right\} \frac{r_{ij}}{r_{ij}}$$
$$\mathbf{F}_{j} = -2\epsilon\alpha \left\{ e^{-\alpha(r_{ij} - r_{0})} - e^{-2\alpha(r_{ij} - r_{0})} \right\} \frac{r_{ij}}{r_{ij}}$$

である.

3.11 静電ポテンシャル

■ポテンシャル

$$U_{\rm elec}(r_{ij}) = \frac{q_i q_j}{4\pi\epsilon_0} \frac{1}{r_{ij}}$$

■力の導出

$$\begin{split} \boldsymbol{F}_{i}^{\text{elec}} &= -\frac{dU_{\text{elec}}(r_{ij})}{d\boldsymbol{r}_{i}} = -\frac{dU_{\text{elec}}(r_{ij})}{dr_{ij}} \frac{d\boldsymbol{r}_{i}}{dr_{ij}} \\ &= \frac{q_{i}q_{j}}{4\pi\epsilon_{0}} \frac{1}{r_{ij}^{2}} \left[\frac{d}{d\boldsymbol{r}_{i}} \left\{ (\boldsymbol{r}_{j} - \boldsymbol{r}_{i})^{2} \right\}^{\frac{1}{2}} \right] \\ &= -\frac{q_{i}q_{j}}{4\pi\epsilon_{0}} \frac{1}{r_{ij}^{2}} \frac{\boldsymbol{r}_{ij}}{r_{ij}} \end{split}$$

$$\mathbf{F}_{j}^{\text{elec}} = -\frac{dU_{\text{elec}}(r_{ij})}{d\mathbf{r}_{j}} = -\frac{dU_{\text{elec}}(r_{ij})}{dr_{ij}} \frac{d\mathbf{r}_{j}}{dr_{ij}}
= \frac{q_{i}q_{j}}{4\pi\epsilon_{0}} \frac{1}{r_{ij}^{2}} \left[\frac{d}{d\mathbf{r}_{j}} \left\{ (\mathbf{r}_{j} - \mathbf{r}_{i})^{2} \right\}^{\frac{1}{2}} \right]
= \frac{q_{i}q_{j}}{4\pi\epsilon_{0}} \frac{1}{r_{ij}^{2}} \frac{\mathbf{r}_{ij}}{r_{ij}}$$
(81)

■ヴィリアルの導出

$$egin{aligned} oldsymbol{r}_i \cdot oldsymbol{F}_i^{ ext{elec}} + oldsymbol{r}_j \cdot oldsymbol{F}_j^{ ext{elec}} &= oldsymbol{r}_i \cdot oldsymbol{F}_i^{ ext{elec}} - oldsymbol{r}_j \cdot oldsymbol{F}_i^{ ext{elec}} &= oldsymbol{r}_{ji} \cdot oldsymbol{F}_i^{ ext{elec}} - rac{q_i q_j}{4\pi\epsilon_0} rac{1}{r_{ij}^2} rac{oldsymbol{r}_{ij}}{r_{ij}} igg] &= rac{q_i q_j}{4\pi\epsilon_0 r_{ii}} \end{aligned}$$

したがって, ヴィリアルは

$$\left\langle \sum_{i=1}^{N} \mathbf{r}_{i} \cdot \mathbf{F}_{i}^{\text{elec}} \right\rangle = \left\langle \sum_{\text{nonbonds}} \frac{q_{i} q_{j}}{4\pi \epsilon_{0} r_{ij}} \right\rangle$$
(82)

と計算することができる.

参考文献

- [1] Wendy D. Cornell, Piotr Cieplak, Christopher I. Bayly, Ian R. Gould, Jr. Kenneth M. Merz, David M. Ferguson, David C. Spellmeyer, Thomas Fox, ames W. Caldwell, and Peter A. Kollman. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc, Vol. 117, pp. 5179–5197, 1995.
- [2] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus. Charmm: A program for macromolecular energy, minimization, and dynamics calculations. *J Comput Chem*, Vol. 4, No. 2, pp. 187–217, 1983.
- [3] W. L. Jorgensen and J. Tirado-Rives. The opls [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc, Vol. 110, No. 6, pp. 1657–66, 1988.
- [4] G. A. Cisneros, M. Karttunen, P. Ren, and C. Sagui. Classical electrostatics for biomolecular simulations. Chem Rev, Vol. 114, No. 1, pp. 779–814, 2014.