PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-193823

(43)Date of publication of application: 14.07.2000

(51)Int.CI.

G02B 5/30 G02B 27/28

(21)Application number: 10-371731

(71)Applicant: KYOCERA CORP

(22)Date of filing:

28.12.1998

(72)Inventor:

FUKANO TORU

SATO YASUSHI

SHINTANI MASATO

(54) POLARIZER, AND OPTICAL ISOLATOR USING IT

PROBLEM TO BE SOLVED: To provide a polarizer which are capable of preventing reflection on an interface between a polarizing layer and a substrate and low in insertion loss, and an optical isolator.

SOLUTION: In a polarizer H formed of at least two layers of a polarizing layer B in which metallic particles 2a with light absorption anisotropy are dispersed in a first dielectric body, and a reflection preventive layer formed of a second dielectric body are laminated on at least one main surface of a substrate 1 with transmissivity, the thickness of the first and second dielectric bodies satisfies the inequalities

0.15+0.39n≤d1/λ≤0.19+0.39n...(A), and 0.15+0.32n≤d2/λ≤0.17+0.32n,..(B), where d1 is the mean thickness of the first dielectric body, d2 is the mean thickness of the second dielectric body, λ is the wavelength of the transmitted light, and n is an arbitrary integer of not less than 0.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報 (A) (11) 特許出願公開番号

特開2000-193823 (P2000-193823A)

(43) 公開日 平成12年7月14日 (2000.7.14)

(51) Int. Cl. 7

識別記号

FI

テーマコード(参考)

G 0 2 B

5/30 27/28 G 0 2 B 5/30 2H049

27/28

A 2H099

審査請求 未請求 請求項の数2

ΟL

(全6頁)

(21)出願番号

特願平10-371731

(22)出願日

平成10年12月28日(1998, 12, 28)

(71)出願人 000006633

京セラ株式会社

京都府京都市伏見区竹田鳥羽殿町6番地

(72) 発明者 深野 徹

京都府相楽郡精華町光台3丁目5番地 京セ

ラ株式会社中央研究所内

(72)発明者 佐藤 恭史

京都府相楽郡精華町光台3丁目5番地 京セ

ラ株式会社中央研究所内

(72)発明者 新谷 真人

京都府相楽郡精華町光台3丁目5番地 京セ

ラ株式会社中央研究所内

最終頁に続く

(54) 【発明の名称】偏光子及びそれを用いた光アイソレータ

(57)【要約】

【課題】 偏光層と基板界面での反射を防ぎ、低挿入損 失な偏光子及び光アイソレータを実現すること。

【解決手段】 透光性を有する基板1の少なくとも一主 面上に、光吸収異方性を有する金属粒子2aが第1の誘 電体中に分散された偏光層Bと、第2の誘電体からなる 反射防止層の少なくとも2つの層が積層されて成る偏光 子Hであって、第1及び第2の誘電体の透過光の波長で 規格化した厚さが下記式(A), (B) を満たすことを 特徴とする。0.15+0.39 n $\leq d$ 1 / $\lambda \leq 0.19+0.39$ n · · · (A) $\sqrt{0.15+0.32}$ n $\leq d 2 / \lambda \leq 0.17+0$. 32 n · · · (B)

(ただし、d1:第1の誘電体の平均厚み、d2:第2 の誘電体の平均厚み、λ:透過光の波長、n : 0以上 の任意の整数)

【特許請求の範囲】

【請求項1】 透光性を有する基板の一主面側に、第1 の誘電体中に光吸収異方性を有する金属粒子を分散させ た偏光層と、第2の誘電体から成る反射防止層の少なく*

> $0.15+0.39 \,\mathrm{n} \le d \,1 / \lambda \le 0.19+0.39 \,\mathrm{n} \cdot \cdot \cdot$ (A)

> $0.15+0.32m \le d 2 / \lambda \le 0.17+0.32m \cdots$ (B)

(ただし、d1:第1の誘電体の平均厚み、d2:第2 の誘電体の平均厚み、λ :透過光の波長、n, m : 0以上の任意の整数)

射側及び光出射側に偏光子を配設して成る光アイソレー タであって、前記ファラデー回転子の光入射側及び/又 は光出射側に、請求項1に記載の偏光子を配設して成る ことを特徴とする光アイソレータ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、光通信機器,光記 録機器、光センサー等に使用される偏光子、特に誘電体 中に異方性を有する金属粒子が分散された偏光子に関す である。

[0002]

【従来の技術】従来より、偏光子として、ある種の溶液 をセル内に入れたものや、プラスチックに着色剤を入れ たもののごとく着色イオンを利用した素子、基板上に誘 電体薄膜を多数積層し、多層薄膜の干渉を利用した素 子、複屈折性の大きな結晶で構成されたグラントムソン プリズムに代表される偏光プリズム、ブリュースター条 件を利用して偏光成分を分離するPBS(偏光ビームス プリッター)、あるいは、高分子材料を一定方向に配向 30 させ一方向の偏光成分を吸収する偏光フィルムなどが主 流を占めていた。

【0003】ところが、従来の偏光子では着色イオンを 利用したものは波長依存性が大きく、波長毎に最適な波 長特性を有するものを選択しなければならなかった。ま た、屈折率の大きな結晶で構成されたものは波長依存性 は小さいが、加工が困難で素子寸法に制限があり小型化 し難いなど、これまで小型で波長特性に優れた偏光子は なかった。

信用デバイスとして偏光ガラスが使用されている。これ は、例えば透明なガラスを透明固体媒体とし、この媒体 中に楕円状の銀粒子を一定方向に揃えて分散させ異方性 を持たせた構造としている(特公平2-40619号公

【0005】この偏光ガラスの製造方法は、まず銀およ び塩化物、臭化物およびヨウ化物より成る群から選択さ れた少なくとも一つのハロゲン化物より成るガラス用バ ッチを溶融し、必要とされる形状のガラス素地に成型す *とも2層を積層して成る偏光子であって、前記第1及び 第2の誘電体の規格化厚みが下記式 (A) ~ (B) を満 たすことを特徴とする偏光子。

い、ガラス中にハロゲン化銀粒子を析出させる。

【0006】さらに、ガラス素地を定められた温度範囲 において張力を加えて延伸し、ハロゲン化銀粒子を伸長 【請求項2】 光を透過させるファラデー回転子の光入 10 させ、張力方向へ整列させる。最後に、伸長されたガラ ス素地を定められた温度範囲内において還元雰囲気中に 暴露し、ハロゲン化銀の一部を金属銀粒子に還元するこ とによって、上記偏光素子を得ることができる。

【0007】また、近年、光通信用部品の小型化、低価 格化に伴い、偏光子の低背化、大面積化が要求されてい る。そこで、ガラス等の誘電体基板上に真空蒸着等の薄 膜製造プロセスを利用して不連続な島状金属粒子層と、 ガラス等の誘電体層を交互に形成し、加熱延伸によって 異方性を持たせるようにしたものが提案されている(例 るものであり、光アイソレータに好適に用いられるもの 20 えば、電子情報通信学会論文誌C-I Vol. J81-C-I NO4 p p. 247-253を参照)。この偏光子は、上記島状の金属粒 子層における各島が金属粒子の役割を果たし、金属粒子 を分散させたものと同じ構造になる。

[0008]

【発明が解決しようとする課題】しかしながら、上記方 法で作製した偏光子は、挿入損失が大きいという問題が あった。発明者らが鋭意研究を重ねた結果、反射防止膜 を施しているのにも関わらず、反射損失が発生している ことが確認された。さらに研究を重ねた結果、ガラス膜 中に金属粒子が分散することにより偏光層の屈折率が上 昇し、基板と偏光層の界面から反射が発生していること が確認された。この現象を図4を用いて説明する。

【0009】一般に、偏光層Bと基板1の屈折率が同一 と考え、基板1の屈折率、入射媒体(例えば空気) 9、 及び出射媒体(例えば空気)10の屈折率に基づき、反 射防止膜D(膜5、6)、E(膜7、8)を設計する。

【0010】しかしながら、偏光層Bと基板1の屈折率 が異なる場合、このような設計では、偏光層 Bと基板 1 との間、また、偏光層Bと入射媒体9(空気)との間の 【0004】このような各種偏光子に対して、最近光通 40 反射を抑制することができない。なお、図中Aは偏光子 Hの素体である。

> 【0011】そこで、本発明は誘電体基板の一主面に異 方性を有する金属粒子が誘電体中に分散された偏光層を 設けて成る偏光子において、基板と偏光層の界面の反射 をなくし、低挿入損失な偏光子及びそれを用いた光アイ ソレータを提供することを目的とする。

[0012]

【課題を解決するための手段】本発明の偏光子は、透光 性を有する基板の少なくとも一主面上に、光吸収異方性 る。次に、ガラス素地を定められた条件にて熱処理を行 50 を有する金属粒子が第1の誘電体中に分散された偏光層

と、第2の誘電体からなる反射防止層の少なくとも2つ の層が積層されて成る偏光子であって、第1及び第2の 誘電体の透過光の波長で規格化した厚さが下記式

*(A), (B) を満たすことを特徴とする。 [0013]

 $0.15+0.39 \,\mathrm{n} \le d \,1 / \lambda \le 0.19+0.39 \,\mathrm{n} \cdot \cdot \cdot$ (A)

 $0.15+0.32 \,\mathrm{n} \le d \, 2 / \lambda \le 0.17+0.32 \,\mathrm{n} \cdot \cdot \cdot$ (B)

(ただし、d1:第1の誘電体の平均厚さ、d2:第2 の誘電体の平均厚さ、λ : 透過光の波長 n : 0以上 の任意の整数)

また、本発明の光アイソレータは、光を透過させるファ 光子を配設して成ることを特徴とする。

【0014】上記構成の偏光子によれば、基板1と偏光 層Bの界面での反射を考慮する必要がなく、入射媒体9 と基板1の反射を極力低減することが可能となる。ま た、その他の効果として、偏光層Bが反射防止膜として 機能することにより、反射防止膜を成膜する工程を低減 することが可能となり、偏光子の低価格化を実現するこ とが可能となる。さらに、基板1上に膜を多層に成膜す ることは応力の増加につながり、剥離等の問題が発生す る為、最小限にすることが好ましいが、上記方法では、 基板1上の膜数を最小限にすることが可能となる。

[0015]

【発明の実施の形態】以下、本発明の実施の形態につい て図面に基づき説明する。

【0016】図1に示すように、偏光子Hは、透光性基 板であるガラス等の基板1の少なくとも一方の主面上に 第1の誘電体から成る偏光層 Bを設けたものであり、こ の偏光層Bは、基板1上に形状異方性を有する金属粒子 2 a が多数分散された層状をなす島状金属薄膜層という べき金属粒子層2と透光性を有する誘電体層3とが交互 30 に複数積層されてなるものである。なお、偏光層Bは、 偏光子として作用させるものの他、反射防止膜Cの一部 としても作用する。さらに、偏光層Bの上にはガラス等 の第2の誘電体の膜(反射防止層) 4を積層し、偏光層 Bと膜4で反射防止膜Cを形成する。また、偏光層が成 膜されていない、もう一方の基板 1 上には、ガラス等の 誘電体の膜(反射防止層) 5、6を成膜し、反射防止膜 Dを構成するものとする。

【0017】金属粒子2aは回転楕円体状で異方性を有 し、図1(但し、光の進行方向を2軸方向とし、これに 40 直行する平面をX-Y平面とする)では、金属粒子2a の長軸方向がX方向で、短軸方向がY方向である。ま た、金属粒子 2 a の長軸方向の長さと短軸方向の長さの 比をアスペクト比とし、ここでは、多数の金属粒子4a

のアスペクト比の平均値を単にアスペクト比と呼ぶもの とする。

【0018】偏光子Hに入射光L1を入射させた場合、 光の波長に対し、金属粒子2aの大きさが十分に小さい ラデー回転子の光入射側及び/又は光出射側に、上記偏 10 場合、ある波長の光を吸収する。図1に示すように、金 属粒子2aが形状的異方性を有する場合、X方向の偏光 とY方向の偏光では、吸収量、また、吸収する波長が異 なり(X方向がより長波長帯にて大きな吸収を持ち、Y 方向の偏光は短波長帯にて小さな吸収を持つ)、ある波 長で見ると、出射光L2は偏光方向により透過率の差が 発生し、偏光子1として作用する。

> 【0019】ここで、この透過率の差を消光比、また、 Y方向の偏光の透過率を挿入損失と呼ぶ。

【0020】このような偏光子は同一誘電体層3に存在 20 する金属粒子の個数密度(分布密度)は3~37個/μ m² が好ましい。この範囲内であれば、消光比あたりの 挿入損失が最も低くなる。なお、良好な偏光特性が得ら れるのであれば、誘電体層3は1層でも、2層以上でも かまわない。ここで、金属粒子の個数密度(分布密度) は基板面内の各層の密度であって、少なくとも1個の金 属粒子2aの長軸を含み、且つ基板面Sに平行な面で切 断した場合に計測した密度である。

【0021】また、金属粒子2aが回転楕円体になるの は基板1上に偏光層Bの成膜後、延伸、もしくは押し出 し等の方法により、基板1とともに金属粒子2aが延伸 もしくは押し出し方向に引き伸ばされるからである。そ して、アスペクト比は、消光比の波長特性に大きく寄与 しており、光通信で利用される1310nmで動作させ る為には、3から30、好ましくは5~15が適当であ

【0022】次に、反射防止膜について説明する。

【0023】ある基板上に、2層の膜を成膜した場合、 基板の屈折率nsに対する反射率Rは、基板上に形成し た第1層の屈折率をn1、その厚さをd1、第1層上に 形成した第2層の屈折率 n 2、厚さを d 2、入射媒質 (例えば、空気等)の屈折率 n O とすると、

[0024]

【数1】

5

$$R = \frac{X}{1+X}$$

$$X = \frac{n_s}{4n_0} \left\{ \left[\left(\frac{n_0}{n_s} - 1 \right) \cos g_1 \cos g_2 + \left(\frac{n_1}{n_2} - \frac{n_0}{n_s} \frac{n_1}{n_1} \right) \sin g_1 \sin g_2 \right]^2 + \left[\left(\frac{n_0}{n_1} - \frac{n_1}{n_s} \right) \cos g_2 \sin g_1 + \left(\frac{n_0}{n_2} - \frac{n_2}{n_s} \right) \cos g_1 \sin g_2 \right]^2 \right\}$$

 $(EE \cup_{i} g_{i} = 2 \pi n_{i} d_{i} \lambda^{-1}, g_{2} = 2 \pi n_{2} d_{2} \lambda^{-1})$

【0025】と表される。

【0026】上記数式を用い、偏光層Bの膜厚、膜4の 10 に金属粒子を分散させた試料の屈折率をエリプソメータ 厚さを設計することができる。光アイソレータには低挿 により測定した結果である。その為、反射防止膜の構成 は、偏光層Bが屈折率が高い膜に分類され、膜4はSi とが必要となる。 O_2 、Mg F_2 のいずれかを使用することが好ましい。

【0027】そこで、反射防止膜として使用する材料は、使用波長帯にて光学的に透過であることや、成膜の容易性から、 SiO_2 、 MgF_2 、 TiO_2 、 ZrO_2 、 Al_2O_3 を用いるのがよい。これらの内、特に、屈折率が低い SiO_2 、 MgF_2 のいずれか、屈折率が高い TiO_2 、 ZrO_2 、 Al_2O_3 のいずれかを組み合わせて使用するとよい。

【0028】反射防止膜の一つとして構成される偏光層*

*Bの屈折率は、1.64程度である。これは、ガラス中

20 [0029]

(0.
$$15+0$$
. $39\times n$) $\leq d1/\lambda \leq (0.19+0.39\times n)$
· · · (A)

 $(0. 15+0. 32 \times m) \le d2/\lambda \le (0. 17+0. 32 \times m)$

(ただし、λは透過光の波長、n, mは0以上の任意の 整数)

次に、上記偏光子の作製方法について説明する。

【0030】基板1には、例えば、BK7, BK1 (ホーヤ株式会社の登録商標),パイレックスガラス (コーニング社の登録商標)等のほう珪酸塩ガラスを用いる。次に、スパッタ装置(好ましくは多元スパッタ装置)を用いて、金属粒子層2aを成膜する。次に、成膜された金属粒子2aを所望の金属粒子2aの大きさにする為、基板1の転移点以下の温度にて熱処理を行う。

・【0031】上記金属としてはAg, Cu, Fe等の1種を用いる。次に、多元スパッタ装置を使用し、誘電体層3を成膜するが、誘電体層3の材質としては、基板1と同じBK7, BK1, パイレックスガラス等のほう珪酸ガラスが好ましい。なぜならば、基板2の材料と誘電体層3の材質が異なると、熱膨張係数の違いから膜応力40が発生し、その結果、誘電体層間で剥離が生じ、金属粒子に異方性を与えることができない為である。その後、金属粒子層2と誘電体層3を所望の消光比が得られるように所定数の積層を繰り返し行い、さらに、成膜中にトラップされたスパッタリングガス(例えばAr)を追い出す為、300℃以上で且つガラス転位点以下(例えば580℃以下)にて熱処理を行う。Arの量としては、1.0×10¹⁵molecules/cm³以下であることが好ましい。さらに、基板の軟化点付近(例えば620℃)にて加勢しながら延伸を行うことにより金属粒子に異方性50

を持たせ、所望の偏光特性を得る。

【0032】次に、偏光層Bの上に膜4を成膜する。成膜には、スパッタ装置、蒸着機等が好ましい。

【0033】さらに、偏光層Bが成膜されている面とはもう一方の面に膜5、6を成膜する。なお、膜5はTi 30 O₂, ZrO₂, Al₂O₃、膜6については、SiO₂, MgF₂等が好ましい。これらはスパッタリング装置や蒸着機等を使用するものとする。

【0034】このような製造方法によって得られた偏光子は、光アイソレータや干渉計等の各種光学部品に用いることが可能となり、光通信の分野で広く使用することができる。

【0035】次に、本発明の光アイソレータについて説明する。図3に一部断面斜視図にて示すように、光アイソレータSは、NiーFe合金等から成るホルダ11内に、YIG (イットリウム・鉄・ガーネット) 結晶等から成るファラデー回転子13、ファラデー回転子13の光入射側に配設される第1の偏光子12、光出射側に配設される第2の偏光子14が光軸上に配置され、さらに、ネオジウムー鉄系やサマリウムーコバルト系の希土類系のエネルギー積の大きな材料から成る永久磁石15がこれら部材の周囲に配設されている。

方向が45°異なるように配設するものとする。

【0037】上記構成の光アイソレータSは、入射光し 3は最初偏光していないが、第1の偏光子12で偏光 し、さらに、ファラデー回転子13で偏光方向が45° 回転させられて、第2の偏光子14を介して出射光L4 として出射される。一方、逆光 (戻り光) L5は、第2 の偏光子14で偏光され、ファラデー回転子13で偏光 方向が45°回転させられるので、第2の偏光子14を 構成する金属粒子の配向方向とは異なる方向に配向して いる第1の偏光子12により光が遮断される。上記偏光 10 な値である。 子を用いることで、反射の非常に少ない優れた光アイソ レータを提供できる。

[0038]

【実施例】膜4にMgFz(n=1. 38)を用い、偏 光層Bの屈折率を1.64とし、反射率が0.2%以下 になる偏光層Bの厚さ、膜4の厚さを解析した。図2の その解析結果を示す。反射率は偏光層Bと基板1の界 面、及び偏光子Bの表面のトータルの反射を含む。図2 のグラフ縦軸の上の方ほど低い反射率を示すので、グラ 光層Bの平均厚さdBを0.62μm、膜4の平均厚さ をd4を 0.23μ mとすることとした。このように、 上記(A), (B) 式を満足する条件のときにのみ反射 率が極小となることが判明した。

【0039】基板1には76mm×10mm×1mmの 大きさのBK7ガラスを使用した。また、成膜装置とし ては、多元マグネトロンスパッタ装置を使用し、ターゲ ットには図1における金属層2をなす銅と誘電体層3を なすBK7ガラスを使用した。さらに、スパッタリング ガスには、Arを利用した。

【0040】銅の膜厚は50nmに設定し、成膜を行っ た。その後、銅粒子を球状に成長させる為、500℃に て60min成膜した。次に銅粒子をガラス中に埋め込 む為、上記条件にて作製した銅粒子の上から、基板材料 と同じBK 7 ガラスを 0. 15 μ m成膜した。このガラ ス膜の厚さは延伸後の偏光層の厚さが 0.62μmにな るよう考慮し設定した。上記工程を10回繰り返し、誘 電体層4を10層作製した。さらに、試料中に含まれて いるArガスを追い出す為、580℃にて20時間加熱 した。その後、これらのサンプルを625℃にて45k 40 S:光アイソレータ

g/mm² の応力で長さ50mmとなるように延伸を行 った。

【0041】次に、偏光層Bの上から、MgF。(n= 1. 38) を厚さ0. 23 μ m に成膜した。 さらに、 偏 光層Bが成膜されているもう一方の基板面に膜5とし T、 $Al_2 O_3$ (n=1. 70) を厚さ0. $15 \mu m$ に、その上から、膜6として、 MgF_2 (n=1.38) を厚さ0.26 µ mに成膜した。なお、膜5、6の 条件はn=1.51の基板の反射防止膜として、一般的

【0042】この結果、消光比40dB、挿入損失0. 01 d B以下の良好な特性を得ることができた。

[0043]

【発明の効果】本発明の偏光子及びそれを用いた光アイ ソレータによれば、偏光層とこの上に積層される反射防 止層の厚みを最適にしているので、基板と偏光層の界面 での反射を考慮する必要なく、入射媒体と基板の反射を 極力低減することが可能となる。

【0044】さらに、偏光層が反射防止層としての機能 フの山の部分が反射率の低い条件を示す。この結果、偏 20 を有することになるので、従来のように反射防止層を多 数層に形成する必要がなく、しかもいっそうの小型化を 図ることができる。

【図面の簡単な説明】

【図1】本発明に係る偏光子を模式的に説明する図であ り、(a)は断面図、(b)は(a)の一部を示す拡大 斜視図である。

【図2】本発明に係る偏光子の反射率の解析結果を示す グラフである。

【図3】本発明に係る光アイソレータを模式的に説明す 30 る一部断面斜視図である。

【図4】従来の偏光子を模式的に説明する図であり、

(a) は断面図、(b) は(a) の一部を示す拡大斜視 図である。

【符号の説明】

1:基板

2:金属粒子層

2 a:金属粒子

3:誘電体

H:偏光子

10

フロントページの続き

F ターム(参考) 2H049 BA02 BA08 BA23 BB03 BB63 BC03 BC25 2H099 AA01 BA02 CA02