GATE PROBABILITY

Through Simulations

G. V. V. Sharma

Copyright ©2022 by G. V. V. Sharma.

https://creative commons.org/licenses/by-sa/3.0/

 $\quad \text{and} \quad$

 $\rm https://www.gnu.org/licenses/fdl-1.3.en.html$

Contents

Int	roduction	iii
1	Axioms	1
2	Distributions	3
3	Conditional Probability	9
4	Moments	11
5	Random Algebra	13
6	Hypothesis Testing	17
7	Bivariate Random Variables	19
8	Random Processes	21
9	Convergence	23
10	Information Theory	29

Introduction

This book solves probability problems in GATE question papers.

Axioms

Distributions

1. Let $\phi(.)$ denote the cumulative distribution function of a standard normal random variable. If the random variable X has the cumulative distribution function

$$F(x) = \begin{cases} \phi(x), & x < -1 \\ \phi(x+1), & x \ge -1 \end{cases}$$
 (2.1)

then which one of the following statements is true?

(a)
$$P(X \le -1) = \frac{1}{2}$$

(b)
$$P(X = -1) = \frac{1}{2}$$

(c)
$$P(X < -1) = \frac{1}{2}$$

(d)
$$P(X \le 0) = \frac{1}{2}$$

(GATE ST 2023)

Solution: Gaussian

Q function is defined

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_{r}^{\infty} e^{\frac{-u^2}{2}} du \tag{2.2}$$

From question and (2.2);

$$F_X(x) = \begin{cases} Q(-x), & x < -1 \\ 1 - Q(x+1), & x \ge -1 \end{cases}$$
 (2.3)

From (2.3);

(a)

$$\Pr\left(X \le -1\right) = F_X(-1) = 1 - Q\left(0\right) \tag{2.4}$$

$$=0.5 \tag{2.5}$$

So Option A i.e., $P(X < -1) = \frac{1}{2}$ is correct

(b) The pdf of X can be defined in terms of cdf as

$$\Pr(X = b) = F_X(b) - \lim_{x \to b^-} F_X(x)$$
 (2.6)

From (2.6);

$$\Pr(X = -1) = F_X(-1) - \lim_{x \to -1^-} F_X(x)$$
 (2.7)

$$= 1 - Q(0) - Q(-(-1))$$
(2.8)

$$=0.341$$
 (2.9)

So Option B i.e., $P(X = -1) = \frac{1}{2}$ is incorrect

(c)

$$\Pr(X < -1) = \lim_{x \to -1^{-}} F_X(x) = F_X(-1)$$
 (2.10)

$$= Q(-(-1)) (2.11)$$

$$= 0.159 (2.12)$$

So Option C i.e., $P(X < -1) = \frac{1}{2}$ is incorrect

(d)

$$Pr(X \le 0) = F_X(0) = 1 - Q(1)$$
(2.13)

$$= 0.8413 \tag{2.14}$$

So Option D i.e., $P(X \le 0) = \frac{1}{2}$ is incorrect

Guassian CDF plot of X is given in fig2.1

Figure 2.1:

2. Let X be a random variable with the probability density function f(x) such that

$$f(x) = \begin{cases} \frac{1}{2\sqrt{3}}, & -\sqrt{3} \le x \le \sqrt{3} \\ 0, & \text{otherwise} \end{cases}$$
 (2.15)

Then the variance of X is?

(GATE XH-C1 2023)

Solution:

The mean of X

$$\mu_X = \int_{-\infty}^{\infty} x f(x) dx \tag{2.16}$$

As the integrand is odd

$$\implies \mu_X = 0 \tag{2.17}$$

The variance of X is:

$$\sigma_X^2 = \mathbb{E}\left(X - \mu_X\right)^2 \tag{2.18}$$

From (2.17)

$$\implies \sigma_X^2 = \mathbb{E}\left(X^2\right) \tag{2.19}$$

$$=\frac{1}{2\sqrt{3}}\int_{-\sqrt{3}}^{\sqrt{3}}x^2dx\tag{2.20}$$

$$=1 \tag{2.21}$$

Conditional Probability

Moments

Random Algebra

1. Let (X,Y) have joint probability density function

$$p_{XY}(x,y) = \begin{cases} 8xy & if 0 < x < y < 1\\ 0 & otherwise \end{cases}$$

$$(5.1)$$

if $E(X|Y=y_0)=\frac{1}{2}$, then y_0 equals

- (a) $\frac{3}{4}$
- (b) $\frac{1}{2}$
- (c) $\frac{1}{3}$
- (d) $\frac{2}{3}$

(GATE ST 2023)

Solution:

$$E(X|Y) = \int_{-\infty}^{\infty} x p_{X|Y} dx$$
 (5.2)

where

$$p_{X|Y} = \frac{p_{XY}(x,y)}{p_Y(y)} \tag{5.3}$$

$$p_Y(y) = \int_0^y p_{X|Y}(x, y) dx$$
 (5.4)

for 0 < y < 1

$$= \int_0^y 8xydx \tag{5.5}$$

$$=8y\left[\frac{x^2}{2}\right]_0^y\tag{5.6}$$

$$=4y^3\tag{5.7}$$

For 0 < x < y < 1, on substituting $p_{Y}\left(y\right)$ we get

$$p_{X|Y} = \frac{8xy}{4y^3}$$
 (5.8)
= $\frac{2x}{y^2}$

$$=\frac{2x}{y^2}\tag{5.9}$$

and

$$E(X|Y = y_0) = \int_0^{y_0} x \cdot \frac{2x}{y_0^2} dx$$

$$= \frac{2}{y_0^2} \left[\frac{x^3}{3} \right]_0^{y_0}$$

$$= \frac{2y_0}{3}$$

$$\Rightarrow \frac{2y_0}{3} = \frac{1}{2}$$

$$y_0 = \frac{3}{4}$$
(5.10)
$$(5.11)$$

$$(5.12)$$

$$(5.13)$$

$$=\frac{2}{y_0^2} \left[\frac{x^3}{3}\right]_0^{y_0} \tag{5.11}$$

$$=\frac{2y_0}{3} \tag{5.12}$$

$$\implies \frac{2y_0}{3} = \frac{1}{2} \tag{5.13}$$

$$y_0 = \frac{3}{4} \tag{5.14}$$

Hypothesis Testing

Bivariate Random Variables

Random Processes

Convergence

- 9.1 Let $\{X_n\}_{n\geq 1}$ and Let $\{Y_n\}_{n\geq 1}$ be two sequences of random variables and X and Y be two random variables, all of them defined on the same probability space. Which one of the following statements is true?
 - (A) If $\{X_n\}_{n\geq 1}$ converges in distribution to a real constant c, then $\{X_n\}_{n\geq 1}$ converges in probability to c.
 - (B) If $\{X_n\}_{n\geq 1}$ converges in probability to X, then $\{X_n\}_{n\geq 1}$ converges in 3^{rd} mean to X.
 - (C) If $\{X_n\}_{n\geq 1}$ converges in distribution to X and $\{Y_n\}_{n\geq 1}$ converges in distribution to Y, then $\{X_n+Y_n\}_{n\geq 1}$ converges in distribution to X+Y.
 - (D) If $\{E(X_n)\}_{n\geq 1}$ converges to E(X), then $\{X_n\}_{n\geq 1}$ converges in 1^{st} mean to X.

(GATE ST 2023) Solution:

(a) X_n converges in distribution to $X, X_n \xrightarrow{d} X$, then for all x,

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x) \tag{9.1}$$

(b) X_n converges in probability to $X, X_n \xrightarrow{p} X$, then for all $\epsilon > 0$,

$$\lim_{n \to \infty} \Pr\left(|X_n - X| > \epsilon \right) = 0 \tag{9.2}$$

(c) X_n converges in p^{th} mean to X, then we have

$$\lim_{n \to \infty} E(|X_n - X|^p) = 0 \tag{9.3}$$

(A) For $\epsilon > 0$, B be defined as

$$B = \{x : |x - c| \ge \epsilon\} \tag{9.4}$$

Now,

$$\Pr(|X_n - c| \ge \epsilon) = \Pr(X_n \in B)$$
(9.5)

Using Portmanteau Lemma, if $X_n \xrightarrow{d} c$, we have

$$\limsup_{n \to \infty} \Pr(X_n \in B) \le \Pr(c \in B)$$
(9.6)

$$\leq \Pr(|0 - 0| \geq \epsilon) \tag{9.7}$$

$$\leq \Pr\left(0 \geq \epsilon\right) \tag{9.8}$$

$$\leq 0 \tag{9.9}$$

$$=0 (9.10)$$

$$\lim_{n\to\infty} \Pr\left(|X_n - c| > \epsilon\right) = 0 \tag{9.11}$$

From (9.2), $X_n \xrightarrow{p} c$. So, we have

$$X_n \xrightarrow{d} c \implies X_n \xrightarrow{p} c$$
 (9.12)

Option (A) is correct.

(B) Statement (B) is may or may not correct. Counter Example: Consider distribution

X_n	0	n
$\Pr\left(X_n\right)$	$1 - \frac{1}{n}$	$\frac{1}{n}$

For $\epsilon > 0$, X_n converges in probability to X = 0

$$\lim_{n \to \infty} \Pr\left(|X_n - X| > \epsilon\right) = \lim_{n \to \infty} \Pr\left(X_n > \epsilon\right) \tag{9.13}$$

 $X_n > \epsilon$ vis subset of $X_n = n$ since every time X_n equals n, it's also true that X_n is greater than ϵ . But there may be times when X_n is greater than ϵ without X_n being equal to n. So,

$$\Pr\left(X_n > \epsilon\right) \le \Pr\left(X_n = n\right) \tag{9.14}$$

$$\lim_{n\to\infty} \Pr\left(|X_n - X| > \epsilon\right) \le \lim_{n\to\infty} \Pr\left(X_n = n\right)$$
 (9.15)

$$\leq \lim_{n \to \infty} \frac{1}{n} \tag{9.16}$$

$$\leq 0 \tag{9.17}$$

$$=0 (9.18)$$

But X_n does not converges in 3^{rd} mean to X=0.

$$\lim_{n \to \infty} E(|X_n - X|^3) = \lim_{n \to \infty} E(X_n^3)$$
(9.19)

$$= \lim_{n \to \infty} 0^3 \left(1 - \frac{1}{n} \right) + n^3 \left(\frac{1}{n} \right) \tag{9.20}$$

$$= \lim_{n \to \infty} n^2 \neq 0 \tag{9.21}$$

(C) Statement (C) is may or may not correct. Counter Example: Consider distribution

$$Z \sim \mathcal{N}(0,1) \tag{9.22}$$

Let $\{X_n\}_{n\geq 1}$ and $\{Y_n\}_{n\geq 1}$ be sequences of random variables such that they both converge in distribution as Z and $(-1)^n Z$. Proof that Y_n converges in distribution.

For n even

$$\lim_{n \to \infty} F_{Y_n}(x) = \Pr\left(Z \le x\right) \tag{9.23}$$

For n odd

$$\lim_{n \to \infty} F_{Y_n}(x) = \Pr\left(-Z \le x\right) \tag{9.24}$$

$$= \Pr\left(Z \le x\right) \tag{9.25}$$

Proved. So, we have

$$F_{X_n+Y_n}(x) = \Pr\left(X_n + Y_n \le x\right) \tag{9.26}$$

$$= \Pr(Z + (-1)^n Z \le x) \tag{9.27}$$

For n is even

$$F_{X_n+Y_n}(x) = \Pr\left(2Z \le x\right) \tag{9.28}$$

$$=\Pr\left(Z \le \frac{x}{2}\right) \tag{9.29}$$

$$=1-\Pr\left(Z>\frac{x}{2}\right) \tag{9.30}$$

$$\approx 1 - Q\left(\frac{x}{2}\right) \tag{9.31}$$

For n is odd

$$F_{X_n+Y_n}(x) = \Pr\left(0 \le x\right) \tag{9.32}$$

$$= \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases} = H(x) \tag{9.33}$$

So, on generalizing

$$F_{X_n+Y_n}(x) = \begin{cases} 1 - Q\left(\frac{x}{2}\right) & \text{if } n \text{ is even} \\ H(x) & \text{if } n \text{ is odd} \end{cases}$$
(9.34)

 $\lim_{n\to\infty} F_{X_n+Y_n}(x)$ oscillate between $1-Q\left(\frac{x}{2}\right)$ and H(x). This doesnot imply convergence.

(D) Statement (D) is may or may not correct. Counter Example: Consider

X_n	0	n
$\Pr\left(X_{n}\right)$	$1 - \frac{1}{n}$	$\frac{1}{n}$

$$\lim_{n\to\infty} E(X_n) = 0\left(1 - \frac{1}{n}\right) + n\left(\frac{1}{n}\right)$$
(9.35)

$$=1 (9.36)$$

As $n \to \infty$, $E(X_n)$ converges to E(X) = 1.

$$\lim_{n \to \infty} X_n = 0 = X \tag{9.37}$$

To find 1^{st} mean convergennce of X_n . From (9.36)

$$lim_{n\to\infty}E(|X_n - X|) = lim_{n\to\infty}E(X_n)$$
(9.38)

$$=1 \neq 0 \tag{9.39}$$

So, X_n does not converges in 1^{st} mean to X.

Information Theory

1. The frequency of occurrence of 8 symbols (a-h) is shown in the table below. A symbol is chosen and it is determined by asking a series of "yes/no" questions which are assumed to be truthfully answered. The average number of questions when asked in the most efficient sequence, to determine the chosen symbol, is

Symbols	Frequency of occurance
a	$\frac{1}{2}$
b	$\frac{1}{4}$
С	$\frac{1}{8}$
d	$\frac{1}{16}$
e	$\frac{1}{32}$
f	$\frac{1}{64}$
g	$\frac{1}{128}$
h	$\frac{1}{128}$

Solution:

Parameter	Value	Description
X	$1 \le X \le 8$	number of symbols
l	2	base of algorithm
H(X)	$\sum_{i} p_X(i) \log_l \left(\frac{1}{p_X(i)}\right)$	average number of question

$$H(X) = \sum_{i} p_X(i) \log_b \left(\frac{1}{p_X(i)}\right)$$
(10.1)

$$= \frac{1}{2}\log_2(2) + \frac{1}{4}\log_2(4) + \dots + \frac{1}{128}\log_2(128)$$
 (10.2)

$$= 0.5 + 0.5 + 0.375 + \dots + 0.0078125 \tag{10.3}$$

$$= 1.984375 \tag{10.4}$$

Now, finding the average using Huffman code,

Using the above binary table following code is generated;

Symbols	Frequency	Code	Size
a	$\frac{1}{2}$	1	0.5
b	$\frac{1}{4}$	01	0.25
c	$\frac{1}{8}$	001	0.125
d	$\frac{1}{16}$	0001	0.0625
e	$\frac{1}{32}$	00001	0.03125
f	$\frac{1}{64}$	000001	0.015625
g	$\frac{1}{128}$	0000001	0.0078125
h	$\frac{1}{128}$	0000000	0.0078125

Table 10.1: Huffman table

The average number of question = Weighted path length = 1.9844