

planetmath.org

Math for the people, by the people.

multiplicity

Canonical name Multiplicity

Date of creation 2013-03-22 14:24:18 Last modified on 2013-03-22 14:24:18

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 14

Author pahio (2872) Entry type Definition Classification msc 12D10

Synonym order of the zero Related topic OrderOfVanishing

 $Related\ topic \qquad Derivative Of Polynomial$

Defines zero of order
Defines multiple zero
Defines simple zero
Defines simple

If a polynomial f(x) in $\mathbb{C}[x]$ is divisible by $(x-a)^m$ but not by $(x-a)^{m+1}$ (a is some complex number, $m \in \mathbb{Z}_+$), we say that x=a is a zero of the polynomial with multiplicity m or alternatively a zero of order m.

Generalization of the multiplicity to http://planetmath.org/RealFunctionreal and complex functions (by rspuzio): If the function f is continuous on some open set D and f(a)=0 for some $a\in D$, then the zero of f at a is said to be of multiplicity m if $\frac{f(z)}{(z-a)^m}$ is continuous in D but $\frac{f(z)}{(z-a)^{m+1}}$ is not.

If $m \ge 2$, we speak of a multiple zero; if m = 1, we speak of a simple zero. If m = 0, then actually the number a is not a zero of f(x), i.e. $f(a) \ne 0$. Some properties (from which 2, 3 and 4 concern only polynomials):

- 1. The zero a of a polynomial f(x) with multiplicity m is a zero of the f'(x) with multiplicity m-1.
- 2. The zeros of the polynomial gcd(f(x), f'(x)) are same as the multiple zeros of f(x).
- 3. The quotient $\frac{f(x)}{\gcd(f(x),f'(x))}$ has the same zeros as f(x) but they all are .
- 4. The zeros of any irreducible polynomial are .