Table 2 Stoichiometric matrix of processes and components in ASM3-ON

Process	So	S_I	S_S	S_{UAP}	S_{BAP}	S_{ND}	S_{NH}	S_N	S_{NO}	Salk	X_I	Xs	X_H	Xsto	X_A	Xss	X_{ND}
1 Hydrolysis	0	f_{SI}	$1-f_{SI}$	0	0	0	$i_{N,XS} - f_{SI}$ $i_{N,SI} - (I$ $-f_{SI}) \cdot i_{N,SS}$	0	0	$\frac{1}{14}[i_{N,XS} - f_{SI} \cdot i_{N,SI} - (I - f_{SI}) \cdot i_{N,SS}]$	0	-1	0	0	0	- i _{TS,XS}	0
2 Aerobic storage on S _S	<i>Y_{STO,O}</i> -1	0	-1	0	0	0	$i_{N,SS}$	0	0	$\frac{1}{14}i_{N,SS}$	0	0	0	$Y_{STO,O}$	0	$0.6Y_{STO,O}$	0
2.1 Aerobic storage on UAP	<i>Y_{STO,O}</i> -1	0	0	-1	0	0	$i_{N,UAP}$	0	0	$\frac{1}{14}i_{N,UAP}$	0	0	0	$Y_{STO,O}$	0	$0.6Y_{STO,O}$	0
2.2 Aerobic storage on BAP	<i>Y_{STO,O}</i> -1	0	0	0	-1	0	$i_{N,BAP}$	0	0	$\frac{1}{14}i_{N,BAP}$	0	0	0	$Y_{STO,O}$	0	0.6 <i>Y_{STO,O}</i>	0
3 Anoxic storage on S _S	0	0	-1	0	0	0	$i_{N,SS}$	$-\frac{1}{2.86} \times $ $(Y_{STO,NO}-1)$	$\frac{1}{2.86} \times (Y_{STO,NO} - 1)$	$\frac{1}{14}i_{N,SS} - \frac{1}{40.04}$ $(Y_{STO,NO} - 1)$	0	0	0	$Y_{STO,NO}$	0	$0.6Y_{STO,NO}$	0
3.1 Anoxic storage on UAP	0	0	0	-1	0	0	$i_{N,UAP}$	$-\frac{1}{2.86} \times (Y_{STO,NO}-1)$	$\frac{1}{2.86} \times (Y_{STO,NO} - 1)$	$\frac{1}{14}i_{N,UAP} - \frac{1}{14} \times \frac{1}{2.86}(Y_{STO,NO} - 1)$	0	0	0	$Y_{STO,NO}$	0	$0.6Y_{STO,NO}$	0
3.2 Anoxic storage on BAP	0	0	0	0	-1	0	$i_{N,BAP}$	$-\frac{1}{2.86} \times (Y_{STO,NO}-1)$	$\frac{1}{2.86} \times $ $(Y_{STO,NO}-1)$	$\frac{1}{14}i_{N,BAP} - \frac{1}{14} \times \frac{1}{2.86}(Y_{STO,NO} - 1)$	0	0	0	$Y_{STO,NO}$	0	$0.6Y_{STO,NO}$	0
4 Aerobic growth of $X_{\rm H}$	$k_{UAP,O}+1$ $-\frac{1}{Y_{H,O}}$	0	0	$k_{UAP,O}$	0	0	$-i_{N,BM}$ - $k_{UAP,O}$ $-i_{N,UAP}$	0	0	$\frac{1}{14}(-i_{N,BM}$ $-k_{UAP,O}\cdot i_{N,UAP})$	0	0	1	-1/Үн,о	0	$i_{TS,BM} - \frac{0.6}{Y_{H,O}}$	0

Table 2 Stoichiometric matrix of processes and components in ASM3-ON

Process	So	S_I	Ss	S_{UAP}	S_{BAP}	S_{ND}	S_{NH}	S_N	S_{NO}	S_{ALK}	X_I	Xs	X_H	Xsto	X_A	Xss	X_{ND}
5 Anoxic growth of X_H	0	0	0	k _{UAP,NO}	0	0	$-i_{N,BM}$ $ k_{UAP,NO}$ $\cdot i_{N,UAP}$	$-\frac{1}{2.86} \times (k_{UAP,NO} + 1$ $-\frac{1}{Y_{H,NO}})$	$\frac{1}{2.86} \times (k_{UAP,NO} + 1 - \frac{1}{Y_{H,NO}})$	$\frac{1}{14} \binom{-i_{N,BM} - k_{UAP,NO}}{i_{N,UAP}}$ $-\frac{1}{40.04} (k_{UAP,NO} + 1)$ $-\frac{1}{Y_{H,NO}})$	0	0	1	-1/ <i>Y_{H,NO}</i>	0	$i_{TS,BM} - \frac{0.6}{Y_{H,NO}}$	0
6 Aerobic endogenous respiration of $X_{\rm H}$	$k_{BAP,O} + f_I - 1$	0	0	0	$k_{BAP,O}$	0	$i_{N,BM}$ $-f_I \cdot i_{N,XI}$ $-k_{BAP,O}$ $\cdot i_{N,BAP}$	0	0	$\frac{1}{14}(i_{N,BM} - f_I \cdot i_{N,XI} - k_{BAP,O} \cdot i_{N,BAP})$	f_I	0	1	0	0	$f_{I} \cdot i_{TS,XI}$ $-i_{TS,BM}$	0
$\begin{array}{c} 7 Anoxic \\ endogenous \\ respiration of \\ X_H \end{array}$	0	0	0	0	$k_{BAP,NO}$	0	$i_{N,BM} - f_I \cdot i_{N,XI}$ $-k_{BAP,NO} \cdot i_{N,BAP}$	$-\frac{1}{2.86} \times (k_{BAP,NO} + f_I - 1)$	$\frac{1}{2.86} \times (k_{BAP,NO} + f_I - 1)$	$\frac{1}{14} [i_{N,BM} - f_I \cdot i_{N,XI}$ $-k_{BAP,NO} \cdot i_{N,BAP} - \frac{1}{2.86}$ $(k_{BAP,NO} + f_I - 1)]$	f_I	0	- 1	0	0	$f_{I} \cdot i_{TS,XI} - i_{TS,BM}$	0
8 Aerobic growth on X _{STO}	-1	0	0	0	0	0	0	0	0	0	0	0	0	-1	0	-0.6	0
9 Anoxic growth on X _{STO}	0	0	0	0	0	0	0	1 2.86	$-\frac{1}{2.86}$	$\frac{1}{40.04}$	0	0	0	-1	0	-0.6	0
10Aerobic growth of X_A	$k_{UAPO,O} - \frac{4.57}{Y_A} + 1$	0	0	$k_{\mathit{UAPA,O}}$	0	0	$-k_{UAPA,O} \cdot i_{N,UAP}$ $-\frac{1}{Y_A} - i_{N,BM}$	0	$1/Y_A$	$\frac{1}{14}(-k_{UAPA,O})$ $i_{N,UAP} - \frac{2}{Y_A} - i_{N,BM}$	0	0	0	0	1	i _{TS,BM}	0

Table 2 Stoichiometric matrix of processes and components in ASM3-ON

Process	So	S_I	S_S	S_{UAP}	S_{BAP}	S_{ND}	S_{NH}	S_N	S_{NO}	SALK	X_I	X_S	X_H	Xsto	X_A	X_{SS}	X_{ND}
11 Aerobic endogenous respiration of X_A	$k_{BAPA,O} + f_I - 1$	0	0	0	k _{BAPA,O}	0	$i_{N,BM}$ — $k_{BAPA,O} \cdot i_{N,BAP}$ — $f_I \cdot i_{N,XI}$	0	0	$\frac{1}{14}(i_{N,BM} - k_{BAPA,O}$ $\cdot i_{N,BAP} - f_I \cdot i_{N,XI})$	fı	0	0	0	-1	f_{I} : $i_{TS,XI}$ $-i_{TS,BM}$	0
12 Anoxic endogenous respiration of X _A	0	0	0	0	$k_{BAPA,NO}$	0	$i_{N,BM}$ – $k_{BAPA,NO}$ $\cdot i_{N,BAP}$ $-f_I \cdot i_{N,XI}$	$-\frac{1}{2.86} \times (k_{BAPA,NO} + f_I - 1)$	2.86	$\frac{1}{14} [i_{N,BM} - k_{BAPA,NO}$ $\cdot i_{N,BAP} - f_I \cdot i_{N,XI} - \frac{1}{2.86}$ $(k_{BAPA,NO} + f_I - 1)]$	f_{l}	0	0	0	-1	f_{I} · $i_{TS,XI}$ $-i_{TS,BM}$	0
13 Ammonification of DON 14 Hydrolysis	0	0	0	0	0	-1	1	0	0	1/14	0	0	0	0	0	1	0
of entrapped ON	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	-1	-1