PAT-NO:

JP401241811A

DOCUMENT-IDENTIFIER:

JP 01241811 A

TITLE:

ELECTRIC DOUBLE-LAYER CAPACITOR

PUBN-DATE:

September 26, 1989

INVENTOR - INFORMATION:

NAME

MORIMOTO, TAKESHI HIRATSUKA, KAZUYA SANADA, YASUHIRO ARIGA, HIROSHI

ASSIGNEE-INFORMATION:

NAME

ASAHI GLASS CO LTD

ELNA CO LTD

COUNTRY

N/A

N/A

APPL-NO:

JP63068247

APPL-DATE:

March 24, 1988

INT-CL (IPC): H01G009/00

US-CL-CURRENT: 361/502

ABSTRACT:

PURPOSE: To obtain an electrode capable of keeping a stable activity over a long period of time by using a polarizable electrode made of activated charcoal containing specific amounts of Fe, Cr, Ni, Na, K and Cl and having an component not greater than 0.5% as an impurity.

CONSTITUTION: In an electric double-layer capacitor using an electric double- layer formed in an interface between a polarizable electrode electrolytic solution, a polarizable electrode containing Fe (not greater than

200ppm), Cr (not greater than 10ppm), Ni (not greater than 10ppm), Na (not

greater than 200ppm), k (not greater than 200ppm), and Cl (not greater than

300ppm) as an impurity and having an ash component not greater than 0.5% is

used. For activated charcoal used for polarizable electrodes, woody phenol

resin as a material or the activated charcoal powders mixed with an electrolytic solution and formed into paste for an electrode containing pitch

resin may be used for electrodes. However, for an electrode excellent in size

per volume and having mechanical strength, an electrode for which activated

charcoal is formed into a sheet by using a binding agent, such as polytetrafluoroethlene, having resistance against chemicals, can be cited.

COPYRIGHT: (C) 1989, JPO&Japio

平1-241811 ⑫ 公 開 特 許 公 報(A)

@Int. Cl. 4

識別記号

广内整理番号

@公開 平成1年(1989)9月26日

H 01 G 9/00

301

7924-5E

審査請求 未請求 請求項の数 5 (全5頁)

60発明の名称 電気二重層コンデンサ

> ②特 顧 昭63-68247

@出 願 昭63(1988) 3月24日

(2)発明者 淼 本 神奈川県横浜市港南区日限山3-20-25

@発 明 者 平 塚 和批 神奈川県横浜市泉区弥生台72-7

20発 明 者 真 田 恭 宏 神奈川県横浜市保土ケ谷区川島町1404-1-11

個発 明 者 有質 広 志 神奈川県横浜市神奈川区片倉1-17-14

旭硝子株式会社 ⑪出 願 人

東京都千代田区丸の内2丁目1番2号

の出 顔 人 エルナー株式会社 四代 理 人

神奈川県藤沢市辻堂新町2丁目2番1号

弁理士 栂村 繁郎 外1名

1, 発明の名称

電気二重層コンデンサ

- 2、特許請求の範囲
 - 1. 分複性電板と電解液の界面で形成される電 気二重層を利用する電気二重層コンデンサに おいて、不純物として Fe 20Gppp 以下 Cr 10рры 以下 кі 10рры以下 на 200рры以下 K 200ppm以下, C1 300ppm以下を有し灰分が D.5 %以下である活性炭よりなる分核性電核 を用いることを特徴とする電気二重器コンデ
 - 2. 活性炭がヤシガラ炭である請求項1の電気 二重層コンデンサ。
 - 3. 活性炭の比表面積が1500~1800m²/g平均 細孔径が13~20A、全細孔容積が0.6~0.9 ml/8、細孔径20人以上の細孔の容度が全細孔 容積に対して30~50%の範囲である節求項1 又は2記載の電気二重層コンデンサ。

- 4. 世解液が非水溶媒系電解液である請求項 1 記載の電気二重層コンデンサ。
- 5. 電解液が水溶液系電解液である請求項 1 記 載の電気二重層コンデンサ。
- 3、発明の詳細な説明
- [産業上の利用分野]

本発明は電気二重層コンデンサに関するもの である.

【従来の技術】

電気二重層コンデンサに従来用いられてきた - 分接性電極としては、活性炭、活性炭機維等 種々の案材があげられる。

括性炭を用いた例としては、活性炭の粉末を 電解液と混合してペースト化して用いる電板が 提婆されている(特公图 55-41D15号公報)。

[発明の解決しようとする課題]

しかしながら、このようなペースト電板に使 用される語性皮の比衷面粒は、1500m²/g以下で あり、この電極を用いたコンデンサは単位体統 当りの容量が必ずしも十分ではなかった。ま

—43—

た、活性皮の製造工程は、避常、原料の皮化・ 散活の工程と粉砕工程とよりなり、原料の炭 化・賦若には薬品試活あるいはガス緊括の方法 が適用されることが多い。したがって、高比安 面積を有する話性炭を得ようとする場合、高級 度で長時間の数括条件が要求されるため、反応 工程中に反応容器からの重金属分が活性皮粉末 中に瞿入して、塀られる活性炭の純底が低下す るという問題点があった。さらに粉砕工程中に 金属などの不純物が活性炭に混入することが少 なくなかった。このため、従来の電気二重層コ ンデンサにおいては、分板性電極を形成する活 性炭が多くの不純物を含有しており、特に高温 度負荷条件下において、電解液中に企属その他 の不純物が報出して電気化学的反応を引起こす ことによってコンデンサの長期信頼性が損なわ れるという問題点があった。

【課題を解決するための手段】

本発明者はこれら路問題を解決することを目 的として推々研究検討した結果、この様な陌性

3

があり、これらの齢欠点を有さない原料として ヤシガラを用いるのが最も好ましい。

本発明で使用するヤシガラを原料とする活性 皮が含有する不純物量としてはFeが200ppm以下 好ましくは100ppm以下、Ni.Cr が10ppm 以下好 ましくは5 ppm 以下、Naが200ppm以下好まし くは150ppm以下、K が200ppm以下好ましくは 100ppm以下、G1が300ppm以下好ましくは100ppm 以下であり灰分として0.5 米以下好ましくは 0.4 米以下が適当である。活性皮の不純物合有 最が前距範囲を逸脱すると、長期信頼性に登し い悪影響を及ぼすので不適当である。

また新性炭の物性としては比較面積が1500~ 1900==/s好ましくは1650~1850=2/sが適当である。

これ以上の比較面積を有する活性故を得ようとすると、収率が低下するので実際的ではない。又、平均細孔径としては13~20人好ましくは14~19Å、全細孔容積としては0.6~0.8 a1/sであり、細孔径

皮に対し、他の成分を膝加して悪影響を解決するよりも、前記不純物の許容量を特定化することにより、かえって安定した活性を長期にわたり持続し得る電極を得ることが可能になることを見し、本発明の目的を迷底し得ることを見出した。

かくして木発明は、分極性電極と電解液の界面で形成される電気二重層を利用する電気二重層コンデンサにおいて、不純物としてFe 200 pps 以下、 Cr10pps以下、 K! 10pps 以下、 Nz 200pps以下、 C1 300pps以下を有し灰分が 0.5 光以下である活性炭よりなる分極性電極を用いることを特徴とする電気二度層コンデンサを提供するにある。

本発明で分極性電極に用いる活性度は原料としてオガクズ等本質系フェノール樹脂、ピッチ系樹脂等があるが、前者は1500g=7g以上の高比表面積を得ることは難しく、また不純物合有量も大きく、また後者は比数面積を上げることは容易であるが、コストが非常に顧高となる欠点

4

20人以上の細孔の全細孔容積に対して30~50% 好ましくは35~45%のものが好適である。

本発明で用いる電板としては、この活性性を電極を関係被と混合している。したかからないである。とも可能を数がいません。したのでは、ボリテを関係をでは、ボリテを関係を関係をしては、ボリテを対した、サロートは影響を用いる。とは、アプFEEと略称いる。とは、アプFEEと略がある。とは、アプFEEと解析がある。とは、アプテEを報がある。とは、アプテEを表がある。とは、アプテEを表がある。とは、アプテEを表がある。とは、アプテEを表がある。とは、アプテEを表がある。とは、アプテEを表がある。とは、アプテEを表がある。とは、アプテEを表がある。というには、アプテEを表がある。というには、アプテEを表がある。では、アプテEを記録をは、アプテEを記録をは、アプテートは、アプテートは、アプテートは、アプテートは、アプテートは、アプテートは、アプテートは、アプテートは、アプテートは、アプテートは、アプテートは、アプテートは、アプテートには、アプラテートには、アプテートには、アプラテートには、アプテートには、アプラテートには、アプテートには、アプテートには、アプラテートには、アプラテートには、アプラテートには、アプラテートには、アプラテートには、アプラテートには、アプラテートには、アプラテートには、アプラテートには、アプテートには、アプラテートには、アプラテートには、アプラテートには、アプラテートには、アプラテートには、アプラテートには、アプラーには、アプラテートには、アプラーには、アプ

このシート状成形物は、さらに必要に応じて一軸方向、または二軸方向に延伸処理される。 この延伸処理は、20~380 C舒ましくは20~ 200 でにおいて、好ましくは原長の1.1 ~5.0 倍、特に好ましくは1.2 ~2.8 倍になるように公知の方法(たとえば、特開限59-186541 号公報)により行なわれる。このようにして得られた延伸処理物は、そのまま使用することもできるが、必要に応じて、さらにロール、プレスなどにより圧延または圧縮処理した後、焼成または半抗成処理して使用する。

本発明で活性炭よりなる分極性電極と組合せて使用する電解液は特に限定されるものではなく、電気二重層コンデンサ用として使用可能なもの、すなわら、非水溶投系または水溶液系電解液が適宜使用される。

本発明で活性決よりなる分極性電極と組合せて使用される非水溶媒系電解液としては、たとえば過塩素酸、6 フッ化リン酸、4 フッ化ホウ酸、パーアルキルスルホン酸、トリフルオロメタンスルホン酸などのテトラアルキルアンモニウム塩、テトラアルキルホスホニウム塩、またはアミン塩などの容質を、プロビレンカーボ

7

水溶液系電解液の濃度は、10~30重量%の範囲で選定選定することができ、一般に30重量%以上の濃度になると寒冷時に溶質が折出するなどの問題が発生し、また10重量%以下の濃度では、電速度が低下してコンデンサの内部抵抗を増大させるので好ましくない。

前述のシート状物をコンデンサの形状に合せて加工・成形した電極間に多孔質のセバレータを挟み、前記のような電解液を含得または満たしてケース中に密閉することによって本発明による電気二低器コンデンサが得られる。

多孔質セパレータとしては、たとえば、ポリプロピレン繊維不識市、ガラス繊維混抄不識市などが好選に使用できる。また、セパレータの厚みは50~200 μmが適当であり、100~150μmとするのが特に好適である。

また本発明で用いる分極性電極からの集電方法も特に限定されるものではなく、従来から問知、公知の方法が使用可能である。例えば金属ケースに金属網を溶接しその上に電板を圧着し

ネート、ァーブチロラクトン、アセトニトリル、ジメチルホルムアミド、1,2 ージメトキシエタン、スルホラン、ニトロメタンなどの極性 有機溶媒に0.3 ~1.5 M/2 程度溶解させたものがあげられる。

8

たり、電板上にプラズマ溶射・メッキ等によって金属集電を形成したり、或は導電性接着剤によって接着する方法等が好ましく使用可能である。特に皮薬質を含む導電性接着剤を用いる方法が好ましい。

Conduch. Adhesive

本発明に用いられる導電性接着剤としては、 パインダーをほとんど含まない高純度高鉛系の ものが好ましいが、フェノールなどの樹脂系パインダもしくは水ガラスなどの無機質パインダ を含む黒鉛あるいはカーボンブラック系の薄電 性接着剤なども用いることができる。

[实施例]

第1表に示した名種の活性皮70重量%、カーボンブラック、20重量%およびPTFE(粒子径0、3μm)10重量%よりなる粉末混合物100 重量器に対して水200 重量部を添加し、V形プレンダー中で混和した。役られたベースト状混和物をロール成形様を用いて圧延し、厚さ1、1 macの

70 C/O & Cachinal 20% Carlo Bink

シートとした。このシートを 300 ℃に子熟した 状態で一動方向に 1.1 倍の倍率で延伸処理して 厚さ 0.6 mmのシート状電板材料を得た。

このシート状電極材料を使用して第1図に示・すようなコイン型電気二重層コンデンサのユニットセル(直径20mm、厚さ2.6 mm)を下記の手順で作製した。

ポリプロピレン製パッキング 6 を介してキャップ 4 および缶 5 の鱗部をかしめて對ロした。

前述のようにして作製した電気二重暦コンデンサのユニットセルを使用し、20 ℃において実施例1、20 ℃において実施例1、20 ℃においては2.8 V、実施例3。4と比較例2では0.9 Vで、それぞれ10分間の定電圧充電を行い、その後1 1Aを電流放電間に、放電時の場子開電圧が0 Vに至るまでの時間に、改定して初期容量(F)を算出した。さらにおいて1000時間実施日本に、同セルを70℃において1000時間実施例1、2 と比較例1 では2.8 V、実施例3。4と比較例2では0.3 V連続印加した後の容量のではでは2.8 V、実施例3。4と比較例2では0.3 V連続印加したで多場では2.8 V、実施例3。4と比較例2では0.3 V連続印加したで多場では2.8 V、実施例3。4と比較例2では0.3 V連続印加したで多場のでは2.8 V、実施例3。4と比較例2では0.3 V連続印加したの容量のでは2.8 V、共変を可能にして過程し、初期値と比較して多場のである。

1 1

12

第 1 表

\ 3	(B	電解液	灰分 (%)							ח	ン デ	ン サ 特	性
/				不 純 物 含 有 疑 (ppm)						初期値		1000hr後	
Нo.				Fe	Cr	ЖI	Жa	К	Cl	内部抵抗(Q)	容量(F)	内部抵抗(Q)	容量劣化率 (%)
Ì	1	非水镕液	0.5	03	2.0	1.0	140	30	60	5.3 ·	2.27	18.3	15.2
変	2	יו	0.3	32	1.7	1.0	120	60	15	5.2	2.28	14.2	11.3
施	3	水溶液	0.4	60	2.0	1.0	120	60	45	2.8	2.63	5.9	15.3
例	4	n	0.3	32	1.7	1.0	120	80	15	2.0	2.72	4.3	10-2
H.	1	非水溶液	0.8	220	35	40	260	310	350	0.2	2.02	58.3	40.2
敷例	.2	水寂液	0.9	270	50	70	300	320	410	3.0	2.22	32.4	33.8

[発明の効果]

以上説明したように本発明によれば、高程条件下での容量劣化率が低く且つ内部抵抗の増大 も少ない長期信頼性の高い電気二重層コンデン サが积られる。

4.図面の簡単な説明

第1図は本発明による電気二重層コンデンサ の一実施態様を示す部分断面図である。

- 1,2…分極性電極
- 3…セパレータ
- 4--キャップ
- 5 --- 缶
- B --- バッキング

代班人。母村紫原鄉往

1 4

第 1 図

ELECTRIC DOUBLE LAYER CAPACITOR [Denki nijuusou kondensa]

Tsuyoshi Morimoto, et al.

UNITED STATES PATENT AND TRADEMARK OFFICE Washington, D.C. August 2006

Translated by: FLS, Inc.

PUBLICATION COUNTRY	(19):	JP
DOCUMENT NUMBER	(11):	010241811
DOCUMENT KIND	(12):	A [PUBLISHED UNEXAMINED APPLICATION]
PUBLICATION DATE	(43):	19890926
APPLICATION NUMBER	(21):	63068247
APPLICATION DATE	(22):	19880324
INTERNATIONAL CLASSIFICATION	(51):	H 01 G 9/00
INVENTORS	(72):	MORIMOTO, TSUYOSHI; HIRATSUKA, KAZUYA; MADA, YASUHIRO; ARIGA, HIROSHI
APPLICANTS	(71):	ASAHI GLASS CO., LTD.; ELNA CO., LTD.
TITLE	(54):	ELECTRIC DOUBLE LAYER CAPACITOR
FOREIGN TITLE	(54A):	DENKI NIJUUSOU KONDENSA

SPECIFICATION

1. Title of the Invention

ELECTRIC DOUBLE LAYER CAPACITOR

2. Claims

- 1. With respect to an electric double layer capacitor that uses electric double layers formed on the boundary between a polarizable electrode and an electrolyte, an electric double layer capacitor characterized by utilizing a polarizable electrode that contains as impurities 200ppm or less of Fe, 10ppm or less of Cr, 10ppm or less of Ni, 200ppm or less of Na, 200ppm or less of K, and 300ppm or less of Cl and that contains 0.5% or less of an ash content.
- 2. An electric double layer capacitor of Claim 1 in which the activated carbon is carbon made of palm-kernel shells.
- 3. An electric double layer capacitor of Claim 1 or 2 in which the specific surface area of the activated carbon is between 1500 and 1900m2/g, in which the average pore diameter is between 13 and 20Å, in which the total pore volume is between 0.6 and 0.9m1/g, and in which the volume of the pores that are at least 20Å in diameter is between 30 and 50% of the total pore volume.
- 4. An electric double layer capacitor of Claim 1 in which the electrolyte is an electrolytic solution of a nonaqueous medium type.
- 5. An electric double layer capacitor of Claim 1 in which the electrolyte is an electrolytic solution of an aqueous solution type.

3. Detailed Explanation of the Invention

[Industrial Field of Application]

The present invention relates to an electric double layer capacitor.
[Related Art]

As polarizable electrodes conventionally utilized as electric double layer capacitors, various materials such as activated carbon and activated carbon fiber can be mentioned.

As an example in which activated carbon is utilized, an electrode used in the form of a paste obtained by combining activated carbon powder and electrolyte has been suggested (Kokoku No.55-41015).

[Problems that the Invention is to Solve]

However, the specific surface area of such activated carbon utilized as a paste electrode is 1500m²/g or less, and the capacitor equipped with such electrode does not necessary have a sufficient capacity per unit volume. Moreover, an activated carbon manufacturing process normally consists of a process in which the raw material is carbonated and activated and a process in which it is pulverized, and for the carbonation and activation of the raw material, a chemical activation or gas activation method is often utilized. Therefore, the activation needs to be carried out at a high temperature for a long time in order to obtain activated carbon having a large specific area. For this reason, there is a problem in that the heavy metal content of the reaction container blends with the activated carbon powder during the reaction process and causes the purity of the obtained activated carbon to decrease. Moreover, impurities, such as metal, often blend with the activated carbon during the pulverizing

process. For this reason, a conventional electric double layer capacitor has a problem in that the activated carbon forming the polarizable electrode contains many impurities and in that the long-term reliability of the capacitor becomes spoiled by the metal or other impurities being eluted out into the electrolyte and causing an electrochemical reaction in a particularly-high-temperature load condition.

[Means for Solving the Problems]

As a result of conducting various studies in order to solve these problems, the present inventors discovered that it is possible to obtain an electrode capable of retaining stable activation for a long time by specifying the allowable amount of said impurities rather than resolving the adverse effects by combining other components to the activated carbon. Thus, they found out that the purpose of the present invention could be achieved.

With respect to an electric double layer capacitor that uses electric double layers formed on the boundary between a polarizable electrode and an electrolyte, the present invention supplies an electric double layer capacitor characterized by utilizing a polarizable electrode that contains as impurities 200ppm or less of Fe, 10ppm or less of Cr, 10ppm or less of Ni, 200ppm or less of Na, 200ppm or less of K, and 300ppm or less of Cl and that contains 0.5% or less of an ash content.

Examples of the raw material of the activated carbon used for the polarizable electrode in this invention include a ligneous phenol resin, such as sawdust, and a pitch resin. However, it is difficult to achieve a large specific area of at least 1500m²/g with the former, and its impurity

content is also high. As for the latter, it is easy to increase the specific area, but there is a shortcoming in that the cost becomes extremely high. Therefore, as a raw material free of these shortcomings, it is most desirable to use palm-kernel shells.

The amounts of impurities contained in the activated carbon of the present invention obtained from palm-kernel shells as the raw material are 200ppm or less, preferably 100ppm or less, of Fe, 10ppm or less, preferably 5ppm or less, of Ni and Cr, 200ppm or less, preferably 150ppm or less, of Na, 200ppm or less, preferably 100ppm or less, of K, and 300ppm or less, preferably 100ppm or less, of Cl, and the ash content should be 0.5% or less, preferably 0.4% or less. The impurity contents of the activated carbon should not deviate from the above ranges since such deviation will severely compromise the long-term reliability.

As for the physical properties of the activated carbon, the specific surface area should be between 1500 and 1900m²/g, preferably between 1650 and 1850m²/g.

Obtaining activated carbon having a specific surface area larger than this will lower the yield and is therefore not practical. Moreover, it is appropriate to use one in which the average pore diameter is between 13 and 20Å, preferably between 14 and 19Å, in which the total pore volume is between 0.6 and 0.9ml/g, preferably between 0.65 and 0.8ml/g, and in which the volume of the pores that are at least 20Å in diameter is between 30 and 50%, preferably between 35 and 45%, of the total pore volume.

As the electrode used in this invention, it is possible to utilize it in the form of a paste obtained by combining the activated carbon powder

with an electrolyte. However, an example of an electrode that has even more preferable capacity per unit volume and mechanical strength is an electrode obtained by converting the activated carbon powder into a sheet by using a binder having excellent chemical resistance such as polytetrafluoroethylene (henceforth PTFE). Such sheet electrode can be preferably obtained by first combining 1 ~ 50 weight%, more preferably 5 ~ 30 weight%, of PTFE with the activated carbon powder, by then molding the obtained viscous mixture into a sheet shape by means of compression, extrusion, rolling, or the combination of these means.

As necessary, this sheet-like molded article is further drawn monoaxially or biaxially. This drawing is carried out by a commonly known method (e.g. Kokai No.59-166541) at 20 ~ 380°C, preferably 20 ~ 200°C, in a manner such that it becomes 1.1 ~ 5.0 times longer, preferably 1.2 ~ 2.0 times longer, than the original length. The thus-obtained drawn article can be utilized as it is, but if necessary, it becomes further rolled or compressed by means of a roll or a press and then becomes baked or semi-baked before being used.

The electrolyte used in the present invention in combination with the polarizable electrode composed of active carbon is not particularly specified, and one that is usable as an electric double layer capacitor, in other words, an electrolyte of a nonaqueous medium type or aqueous solution type is utilized appropriately.

As a nonaqueous-medium-type electrolytic solution used in the invention in combination with the polarizable electrode composed of active carbon, it is possible to use one that is obtained by dissolving about

0.3 ~ 1.5M/l of a solute, such as the tetraalkyl ammonium salt, tetraalkyl phosphonium salt, or amine salt of perchloric acid, hexafluorophosphoric acid, tetrafluoroboric acid, peralkyl sulfonic acid, trifluoromethanesulfonic acid, etc., with a polar organic solvent, such as propylene carbonate, γ -butyrolactone, acetonitrile, dimethyl formamide, 1,2-dimethoxyethane, sulfolane, nitromethane, etc.

As an aqueous electrolyte used in combination with a polarizable electrode composed of activated carbon, one that contains an inorganic acid, inorganic base, or inorganic salt as a medium is appropriate. As the solute (electrolyte) used for such electrolytic solution, the following examples can be suitably utilized: acids such as sulfuric acid, tetrafluoroboric acid, nitric acid, etc.; bases such as potassium hydroxide, sodium hydroxide, calcium hydroxide, and ammonium hydroxide; chlorides such as potassium chloride, sodium chloride, calcium chloride, and ammonium chloride; and carbonates such as potassium carbonate, sodium carbonate, calcium carbonate, and ammonium carbonate. From among these electrolytes, sulfuric acid, tetrafluoroboric acid, potassium hydroxide, and sodium hydroxide are particularly preferred since high degrees of conductivity can be obtained from them.

The concentration of the aqueous-solution-type electrolytic solution can be appropriately selected in the range between 10 and 90 weight%. In general, if the concentration is 90 weight% or higher, there is a problem in that the solute becomes deposited in a cold environment, and a concentration of 10 weight% or less is not preferred since the conductivity becomes low and the interval resistance of the capacitor increases.

By sandwiching a porous separator between electrodes obtained by processing and forming the above-described sheet-like article in accordance with the shape of the capacitor and by sealing them in a case after impregnating them or filling them with the above-mentioned electrolytic solution, an electric double layer capacitor of the present invention can be obtained.

As the porous separator, nonwoven fabric of polypropylene fiber, nonwoven fabric mixed with glass fiber, etc. can be utilized appropriately. Moreover, the appropriate thickness of the separator is between 50 and $200\mu\text{m}$, particularly between 100 and $150\mu\text{m}$.

Moreover, the method for collecting the electricity from the polarizable electrode used in the invention is not particularly specified, and a conventional, commonly known method can be utilized. For example, it is possible to weld a metal net onto a metal case and pressure-bond the electrodes to it or to form a metallic power collector on the electrodes by means of plasma spraying, plating, etc. or by adhering it by using a conductive adhesive.

As a conductive adhesive used in the present invention, a high-purity high-lead type that hardly contains a binder is preferred, although it is permissible to utilize a graphite or carbon black type conductive adhesive containing a resin binder of phenol or an inorganic binder of water glass.

[Embodiments of the Invention]

In the following, embodiments of the invention and comparative examples will be explained concretely by referring to drawings.

200 weight parts of water were combined with 100 weight parts of a powder mixture consisting of 70 weight% of each type of the activated carbon indicated in Table 1, 20 weight% of carbon black, and 10 weight% of PTFE (grain size = 0.3μm), and the mixture was blended in a V-shaped blender. The mixture obtained in the form of a paste was rolled by means of a roll forming machine, and a 1.1mm-thick sheet was obtained. After preheating this sheet to 300°C, it was monoaxially drawn by the magnification of 110%. As a result, a 0.6mm-thick sheet-like electrode material was obtained.

By using this sheet-like electrode material, a unit cell (diameter = 20mm, thickness = 2.0mm) of a coin-type electric double layer capacitor illustrated in Figure 1 was made by the following procedure.

The above sheet-like electrode material was punched out into disk-shaped pieces as polarizable electrodes, [1] and [2] (diameter = 15mm, thickness = 0.6mm), and these polarizable electrodes, [1] and [2], were placed inside an external container, which was composed of a stainless-steel cap [4] and a stainless-steel can [5], with a separator consisting of nonwoven fabric of polypropylene fiber disposed between them. Next a predetermined electrolytic solution (In Embodiment 1 and 2 and Comparative Example 1, the solutions were tetrabutyl phosphonium tetrafluoroborate dissolved in propylene carbonate at a concentration of 1.0M/1; and in Embodiment 3 and 4 and Comparative Example 2, the solutions were aqueous solutions containing 30% of sulfuric acid) was injected into the unit cell, and the polarizable electrodes, [1] and [2], and the separator [3] were fully impregnated with this electrolytic

solution. Then, the article was sealed by crimping the end parts of the cap [4] and the can [5] by using a polypropylene packing [6].

Each of the unit cells of electric double layer capacitors prepared in the above manner was charged at a constant voltage (2.8V in Embodiment 1 and 2 and Comparative Example 1; 0.9V in Embodiment 3 and 4 and Comparative Example 2) for 30 minutes at 20°C. Then, by discharging a constant current of 1mA, the time it took until the voltage between the terminals reached 0V during the discharge was measured, and the initial capacity (F) was then calculated. Moreover, the internal resistance was also measured by an AC two-terminal method (frequency = 1kHz). Next, a voltage (2.6V in Embodiment 1 and 2 and Comparative Example 1; 0.9V in Embodiment 3 and 4 and Comparative Example 2) was applied continually to the above cell at 70°C for 1000 hours, and the capacity was then measured in the same manner. It was then compared with the initial value to calculate the capacity degradation (%). The results are indicated in Table 1.

Table 1

1	n#i	电神经	医# (%)	不 Me 物 告 村 是(1998)						
m	1	}		łe	ţ,	#1	jts	ľ	Çı	
	1	非水保油	D. \$	ш	1,6	3,0	163	30	83	
£	2	"	U.3	1!	L-T	1.4	120	to.	15	
M .	3	木市市	ŋκ	£1.	2,0	3.3	120	摊	45	
Ħ	4	-	0.3	32	1.7	1.0	120	E)	24	
란.	1	产水南縣	21	220	35	41	2100	312	250	
松 詞	3	* * #	5.	276		78:	208	att	450	

Kev:

	Item	Electrolytic	Ash	Impu	rity Co	ontents	{ppm}	
No.		Solution	Content					
Embodiments	1	Nonaqueous Solution						
	2	"						1
	3	Aqueous Solution					-	
	4	"						<u> </u>
Comparative Examples	1	Aqueous Solution		<u> </u>				
-	2	Aqueous Solution						

Table 1 (cont'd)

. 5	> 7	> + +	tt			
1-27 M	14	100000				
四角素化 (点)	存量(ド)	PINSM (O)	在社会代码(元)			
5 3	2 21	12.1	Hr			
32	1.25	14,2	11.1			
1.1	2.13	5-4	34 2			
2.2	2 72	1.3	14.7			
1,2	1.41	64.5	u t			
3.1	7.27	77.1	33.4			

Key:

tor Properties					
After 1000 hours					
Internal Resistance (Ω)	Capacity Degradation (%)				
	:				
	<u> </u>				
	Internal Resistance				

[Effects of the Invention]

As explained earlier, according to the present invention, it is possible to obtain an electric double layer capacitor that has a low capacity degradation percentage and only a small increase in the internal resistance at high temperatures and that therefore remains reliable for a long time.

4. Brief Explanation of the Drawing

Figure 1 is a partial cross-sectional drawing illustrating one embodiment of an electric double layer capacitor of the present invention.

- [1],[2] = polarizable electrode
- [3] = separator
- [4] = cap
- [5] = can
- [6] = packing

Figure 1

