NUMERICAL ANALYSIS QUALIFYING EXAM Spring, 2003

(do at least 3 problems from problems 1-4, and do at least 3 problems from problems 5-8, you may do as many as you can)

1. Find analytically the solution of this difference equation with the given initial values:

$$\begin{cases} x_{n+1} = -0.2x_n + 0.99x_{n-1} \\ x_0 = 1, & x_1 = 0.9 \end{cases}$$

Determine whether a computation using the difference equation is stable. Justify your answer.

2. Let α be a double root of the equation f = 0, where f is sufficiently smooth near α . Show that if the "doubly-relaxed" Newton method

$$x_{n+1} = x_n - 2\frac{f(x_n)}{f'(x_n)}$$

converges to α , it does so at least quadratically.

- 3. Suppose that k and n are positive integers with k < n and that f is a real valued function continuous on the interval [-1,2]. For each integer $m \ge n$, S_m is a piecewise polynomial approximation to f on [0,1] defined as follows: First, set up a mesh $\{x_j\}_{j\in\mathbf{Z}}\cap[-1,2]$ where $x_j=jh$ with h=1/m. Then on each subinterval $[x_j,x_{j+1}]\cap[0,1]$ define $S_m(x)=p_j(x)$ where $p_j(x)$ is the polynomial of degree at most n that interpolate f at the n+1 consecutive points x_{j-k},\ldots,x_{j-k+n} . Show that S_m converges to f uniformly on [0,1] as $m\to\infty$. (Hint: Use the Lagrange interpolation formula and change the variable x to s by $x=x_{j-k}+sh$.)
- 4. Let q_k , k = 0, 1, ..., n be a set of orthogonal polynomials on (-1, 1) with weight function w(x) = |x|, where q_k has degree k and leading term x^k .
 - (a). Find q_0 , q_1 and q_2 .
 - (b). Find the Gaussian quadrature formula for

$$\int_{-1}^{1} |x| f(x) dx$$

using the roots of q_2 and verify its degree of precision.

(c). Show that the Gaussian quadrature rule

$$\int_{-1}^{1} |x| f(x) dx \approx G_n(f) k = \sum_{k=1}^{n} A_k f(x_k)$$

has all positive coefficients A_k .

5. Let A and B be two $n \times n$ real matrices. Show that H = A + iB is Hermite positive definite if and only if $\begin{bmatrix} A & -B \\ B & A \end{bmatrix}$ is symmetric positive definite.

- 6. Let \mathbf{q}_j , $j=1,\ldots,n$ be the columns of an $n\times n$ orthogonal matrix Q, and K be the $n\times n$ Krylov matrix whose first column is \mathbf{q}_1 and the jth column is $A^{j-1}\mathbf{q}_1$ for $1< j\leq n$. Show that $H=Q^TAQ$ is an unreduced Hessenberg matrix if and only if $Q^TK=R$ is nonsingular and upper triangular. (**Hint:** A Hessenberg matrix H is unreduced if $r_{j+1,j}\neq 0$ for $1\leq j\leq n-1$.)
- 7. Suppose that a method solving linear system $A\mathbf{x} = \mathbf{b}$ yields a numerical solution $\hat{\mathbf{x}}$ that is the exact solution of the linear system $(A + \delta A)\hat{\mathbf{x}} = \mathbf{b}$ where δA is some $n \times n$ matrix.
 - (a) Give s suitable description for the method to be backwardly stable.
 - (b) Assume μ is a positive number with $\|\delta A\| \leq \mu \|A\|$. Show that the relative error of $\hat{\mathbf{x}}$ is bounded by

$$\frac{\mu\kappa(A)}{1-\mu\kappa(A)}$$
, if $\mu\kappa(A) < 1$

where $\kappa(A)$ is the condition number of A under the norm $\|\cdot\|$.

8. Show that the Jacobi iteration converges for 2 by 2 symmetric positive definite systems.