Recap: Optimization Techniques

Regression

Programming for Data Science

Warm Up

Answer the following statements! Give reason for your answers.

- 1. Why is matrix multiplication a good way for solving regression?
- 2. Why is matrix multiplication fast in R/python?
- 3. Why does Lasso/Elastic Net regression prefer some parameters to be 0?
- 4. How do you implement an optimization problem?
- 5. How do you model an constant factor (i.e. n) in matrix multiplication?

Ordinary Least Squares (OLS)

Estimator for linear regression based on minimizing the sum of squared errors (SSE) for a set of observations $X = \{\vec{x}_1, ..., \vec{x}_n\}$ with $\vec{x}_i = (x_{i1}, ..., x_{id})$ and values $Y = \{y_1, ..., y_n\}$

- X: independent variable, Y: dependent variable, α : regression coefficients
- Linear model: $y_i = \alpha_1 \mathbf{x}_{i1} + \alpha_2 \mathbf{x}_{i2} + \dots + \alpha_d \mathbf{x}_{id}$ or $y_i = \vec{x}_i \alpha^T$ with $\alpha = (\alpha_1, \dots, \alpha_d)$

$$\hat{\alpha} = \underset{\alpha}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - \vec{x}_i \alpha^T)^2$$

Ordinary Least Squares (OLS)

Given
$$X = {\vec{x}_1, ..., \vec{x}_n}$$
 with $\vec{x}_i = (x_{i1}, ..., x_{id})$ and $Y = {y_1, ..., y_n}$

- X: independent variable, Y: dependent variable, α : regression coefficients, $\hat{\alpha}$: coefficient estimator
- SSE: Sum of squared errors
- Minimization problem has unique solution (if all *d* features are linear independent):

$$\hat{\alpha} = \underset{\alpha}{\operatorname{argmin}} SSE$$

$$= \underset{\alpha}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - \vec{x}_i \alpha^T)^2$$

$$= (X^T X)^{-1} X^T Y^T$$

Ridge Regression

Introduces regularization for regression models

- OLS is prone to overfitting and underfitting
- Idea: Prefer a certain solution for α with limited variation

• argmin
$$\sum_{i=1}^{n} (y_i - \vec{x}_i \alpha^T)^2 + \lambda \sum_{j=1}^{d} \alpha_j^2$$

Example for $j \in \{1,2\}$

More Regularization

Lasso Regression

- argmin $\sum_{i=1}^{n} (y_i \vec{x}_i \alpha^T)^2 + \lambda \sum_{j=1}^{d} |\alpha_j|$
- advantage: some α_i can be 0 (feature reduction)

Flastic Net

- $= \underset{\alpha}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i \vec{x}_i \alpha^T)^2 + \lambda_1 \sum_{j=1}^{d} \alpha_j^2 + \lambda_2 \sum_{j=1}^{d} |\alpha_j|$
- advantage: even more α_i can be 0

Task

Step 0

- You will get a csv file from us. Load it in your language/environment.
- Explore the data in it.

Step 1

- Implement a function* for OLS using optim/minimize.
- Find $\hat{\alpha} = (m, n), y_i = mx_i + n$

Step 2

- Implement a function* for OLS using the matrix solution.
- Find $\hat{\alpha}$ and compare its run time to your other OLS function

Step 3

- Implement Ridge, Lasso, and Elastic Net regression* using optim/minimize.
- Compare their resulting $\hat{\alpha}$ to each other and to OLS. Use different values for λ , λ_1 , and λ_2 .

^{*}use your own implementation

Package suggestions

R

microbenchmark

python3

- numpy
- scipy
- timeit
- (matplotlib.pyplot)

Exercise Appointment

We compare and discuss the results

- Tuesday, 24.11.2019,
- Consultation: Please use the forum in Opal.
- Please prepare your solutions! Send us your code!

If you have questions, please mail us:

<u>claudio.hartmann@tu-dresden.de</u> Orga + Code + R <u>lucas.woltmann@tu-dresden.de</u> Tasks + Python

