### COMS10015 lecture: week #7

► Concept: consider

$$\begin{array}{cccc} \hat{x} & \mapsto & x \\ \hat{y} & \mapsto & y \end{array}$$

### COMS10015 lecture: week #7

► Concept: consider

$$\begin{array}{cccc} \hat{x} & \longmapsto & x \\ \hat{y} & \longmapsto & y \\ & & r = x \times y \end{array}$$

► Concept: consider

### where f

- 1. has an action on  $\hat{x}$  and  $\hat{y}$  compatible with that of  $\times$  on x and y:
  - accepts n-bit
    - multiplier ŷ (that "does the multiplying"), and
    - **multiplicand**  $\hat{x}$  (that "is multiplied")
    - as input, and
- produces an  $(2 \cdot n)$ -bit **product**  $\hat{r}$  as output,
- 2. is a Boolean function:

$$f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^{2 \cdot n}$$

COMS10015 lecture: week #7

- ► Agenda: produce a design(s) for *f* , which
  - 1. functions correctly, and
  - 2. satisfies pertinent quality metrics (e.g., is efficient in time and/or space).

### COMS10015 lecture: week #7

### Quote

I do not like  $\times$  as a symbol for multiplication, as it is easily confounded with x; often I simply relate two quantities by an interposed dot and indicate multiplication by  $ZC \cdot LM$ .

- Leibniz (https://en.wikiquote.org/wiki/Gottfried\_Leibniz)

### Part 1: multiplication in theory (1)

#### Example $623_{(10)} \mapsto$ x = $567_{(10)} \mapsto$ × $p_0 = 7 \cdot 3 \cdot 10^0 =$ $21_{(10)} \mapsto$ $p_1 = 7 \cdot 2 \cdot 10^1 =$ $140_{(10)} \mapsto$ $p_2 = 7 \cdot 6 \cdot 10^2 =$ $4200_{(10)} \mapsto$ $p_3 = 6 \cdot 3 \cdot 10^1 =$ 8 $180_{(10)} \mapsto$ $p_4 = 6 \cdot 2 \cdot 10^2 =$ $1200_{(10)} \mapsto$ $p_5 = 6 \cdot 6 \cdot 10^3 = 36000_{(10)} \mapsto$ $p_6 = 5 \cdot 3 \cdot 10^2 =$ $1500_{(10)} \mapsto$ 5 $p_7 = 5 \cdot 2 \cdot 10^3 = 10000_{(10)} \mapsto$ $p_8 = 5 \cdot 6 \cdot 10^4 = 300000_{(10)} \mapsto$ $353241_{(10)} \mapsto$ r

### Part 1: multiplication in theory (2)

### Example (operand scanning)

Consider an example where where |x| = |y| = 3:



#### Notice that

- 1. an outer-loop steps through digits of y, say  $y_i$ ,
- 2. an inner-loop steps through digits of x, say  $x_j$ .

### Example (product scanning)

Consider an example where where |x| = |y| = 3:



#### Notice that

- 1. an outer-loop steps through digits of r, say  $r_i$ ,
- 2. two inner-loops step through matching digits of x and y, say  $x_j$  and  $x_i$ .

# Algorithm (operand scanning)

```
Input: Two unsigned, base-b integers x and y Output: An unsigned, base-b integer r = x \cdot y

1 l_x \leftarrow |x|, l_y \leftarrow |y|, l_r \leftarrow l_x + l_y

2 r \leftarrow 0

3 for j = 0 upto l_y - 1 step +1 do

4 | c \leftarrow 0

5 | for i = 0 upto l_x - 1 step +1 do

6 | u \cdot b + v = t \leftarrow y_j \cdot x_i + r_{j+i} + c

7 | r_{j+i} \leftarrow v
```

```
\begin{array}{c|c}
8 & c \leftarrow u \\
9 & end
\end{array}
```

10 
$$r_{j+l_X} \leftarrow c$$

# Example (operand scanning)

Consider a case where b = 10,  $x = 623_{(10)}$  and  $y = 567_{(10)}$ :

| j | i | r                                  | С | $y_i$ | $x_j$ | $t = y_i \cdot x_i + r_{i+j} + c$ | r'                                 | c' |
|---|---|------------------------------------|---|-------|-------|-----------------------------------|------------------------------------|----|
|   |   | (0,0,0,0,0,0)                      |   |       |       |                                   |                                    |    |
| 0 | 0 | (0,0,0,0,0,0)                      | 0 | 7     | 3     | 21                                | $\langle 1, 0, 0, 0, 0, 0 \rangle$ | 2  |
| 0 | 1 | (1,0,0,0,0,0)                      | 2 | 7     | 2     | 16                                | (1,6,0,0,0,0)                      | 1  |
| 0 | 2 | (1,6,0,0,0,0)                      | 1 | 7     | 6     | 43                                | (1,6,3,0,0,0)                      | 4  |
| 0 |   | (1,6,3,0,0,0)                      | 4 |       |       |                                   | (1, 6, 3, 4, 0, 0)                 |    |
| 1 | 0 | (1,6,3,4,0,0)                      | 0 | 6     | 3     | 24                                | (1, 4, 3, 4, 0, 0)                 | 2  |
| 1 | 1 | (1,4,3,4,0,0)                      | 2 | 6     | 2     | 17                                | $\langle 1, 4, 7, 4, 0, 0 \rangle$ | 1  |
| 1 | 2 | $\langle 1, 4, 7, 4, 0, 0 \rangle$ | 1 | 6     | 6     | 41                                | (1,4,7,1,0,0)                      | 4  |
| 1 |   | $\langle 1, 4, 7, 1, 0, 0 \rangle$ | 4 |       |       |                                   | $\langle 1, 4, 7, 1, 4, 0 \rangle$ |    |
| 2 | 0 | $\langle 1, 4, 7, 1, 4, 0 \rangle$ | 0 | 5     | 3     | 22                                | $\langle 1, 4, 2, 1, 4, 0 \rangle$ | 2  |
| 2 | 1 | $\langle 1, 4, 2, 1, 4, 0 \rangle$ | 2 | 5     | 2     | 13                                | (1,4,2,3,4,0)                      | 1  |
| 2 | 2 | (1,4,2,3,5,0)                      | 1 | 5     | 6     | 35                                | (1, 4, 2, 3, 5, 0)                 | 3  |
| 2 |   | (1,4,2,3,5,0)                      | 3 |       |       |                                   | (1,4,2,3,5,3)                      | 3  |
|   |   | (1,4,2,3,5,3)                      |   |       |       |                                   |                                    |    |

# Algorithm (product scanning)

```
Input: Two unsigned, base-b integers x and y
    Output: An unsigned, base-b integer r = x \cdot y
 l_x \leftarrow |x|, l_y \leftarrow |y|, l_r \leftarrow l_x + l_y
 r \leftarrow 0, c_0 \leftarrow 0, c_1 \leftarrow 0, c_2 \leftarrow 0
 3 for k = 0 upto l_x + l_y - 1 step +1 do
        for j = 0 upto l_v - 1 step +1 do
             for i = 0 upto l_x - 1 step +1 do
                 if (j + i) = k then
                      u \cdot b + v = t \leftarrow y_i \cdot x_i
                      c \cdot b + c_0 = t \leftarrow c_0 + v
                      c \cdot b + c_1 = t \leftarrow c_1 + u + c
                      c_2 \leftarrow c_2 + c
                 end
             end
        end
        r_k \leftarrow c_0, c_0 \leftarrow c_1, c_1 \leftarrow c_2, c_2 \leftarrow 0
15 end
16 r_{l_x+l_y-1} \leftarrow c_0
```

# Example (product scanning)

Consider a case where b = 10,  $x = 623_{(10)}$  and  $y = 567_{(10)}$ :

| k | j | i | r                                  | $c_2$ | $c_1$ | $c_0$ | $y_i$ | $x_j$ | $t = y_i \cdot x_i$ | r'                                 | $c_2'$ | $c'_1$ | $c'_0$ |
|---|---|---|------------------------------------|-------|-------|-------|-------|-------|---------------------|------------------------------------|--------|--------|--------|
|   |   |   | (0,0,0,0,0,0)                      | 0     | 0     | 0     |       |       |                     |                                    |        |        |        |
| 0 | 0 | 0 | (0,0,0,0,0,0)                      | 0     | 0     | 0     | 7     | 3     | 21                  | (0,0,0,0,0,0)                      | 0      | 2      | 1      |
| 0 |   |   | (0,0,0,0,0,0)                      | 0     | 2     | 1     |       |       |                     | $\langle 1, 0, 0, 0, 0, 0 \rangle$ | 0      | 0      | 2      |
| 1 | 0 | 1 | (1,0,0,0,0,0)                      | 0     | 0     | 2     | 7     | 2     | 14                  | $\langle 1, 0, 0, 0, 0, 0 \rangle$ | 0      | 1      | 6      |
| 1 | 1 | 0 | (1,0,0,0,0,0)                      | 0     | 1     | 6     | 6     | 3     | 18                  | $\langle 1, 0, 0, 0, 0, 0 \rangle$ | 0      | 3      | 4      |
| 1 |   |   | (1,0,0,0,0,0)                      | 0     | 3     | 4     |       |       |                     | $\langle 1, 4, 0, 0, 0, 0 \rangle$ | 0      | 0      | 3      |
| 2 | 0 | 2 | $\langle 1, 4, 0, 0, 0, 0 \rangle$ | 0     | 0     | 3     | 7     | 6     | 42                  | $\langle 1, 4, 0, 0, 0, 0 \rangle$ | 0      | 4      | 5      |
| 2 | 1 | 1 | $\langle 1, 4, 0, 0, 0, 0 \rangle$ | 0     | 4     | 5     | 6     | 2     | 12                  | $\langle 1, 4, 0, 0, 0, 0 \rangle$ | 0      | 5      | 7      |
| 2 | 2 | 0 | $\langle 1, 4, 0, 0, 0, 0 \rangle$ | 0     | 4     | 7     | 5     | 3     | 15                  | $\langle 1, 4, 0, 0, 0, 0 \rangle$ | 0      | 7      | 2      |
| 2 |   |   | $\langle 1, 4, 0, 0, 0, 0 \rangle$ | 0     | 7     | 2     |       |       |                     | $\langle 1, 4, 2, 0, 0, 0 \rangle$ | 0      | 0      | 7      |
| 3 | 1 | 2 | $\langle 1, 4, 2, 0, 0, 0 \rangle$ | 0     | 0     | 7     | 6     | 6     | 36                  | $\langle 1, 4, 2, 0, 0, 0 \rangle$ | 0      | 4      | 3      |
| 3 | 2 | 1 | $\langle 1, 4, 2, 0, 0, 0 \rangle$ | 0     | 4     | 3     | 5     | 2     | 10                  | $\langle 1, 4, 2, 0, 0, 0 \rangle$ | 0      | 5      | 3      |
| 3 |   |   | $\langle 1, 4, 2, 0, 0, 0 \rangle$ | 0     | 5     | 3     |       |       |                     | $\langle 1, 4, 2, 3, 0, 0 \rangle$ | 0      | 0      | 5      |
| 4 | 2 | 2 | $\langle 1, 4, 2, 3, 0, 0 \rangle$ | 0     | 0     | 5     | 5     | 6     | 30                  | $\langle 1, 4, 2, 3, 0, 0 \rangle$ | 0      | 3      | 5      |
| 4 |   |   | (1, 4, 2, 3, 0, 0)                 | 0     | 3     | 5     |       |       |                     | (1, 4, 2, 3, 5, 0)                 | 0      | 0      | 3      |
|   |   |   | $\langle 1, 4, 2, 3, 5, 0 \rangle$ | 0     | 0     | 3     |       |       |                     | $\langle 1, 4, 2, 3, 5, 3 \rangle$ | 0      | 0      | 3      |
|   |   |   | (1,4,2,3,5,3)                      |       |       |       |       |       |                     | , ,                                |        |        |        |

# Part 2: multiplication in practice: an algorithm (5) Repeated addition

- ► Idea:
  - multiplication means repeated addition, i.e.,

$$y \times x = \underbrace{x + x + \dots + x}_{y \text{ terms}},$$

so if  $y = 14_{(10)}$  we have

expressing y in base-2, we can rewrite this as

$$y \times x = (\sum_{i=0}^{n-1} y_i \cdot 2^i) \times x$$

$$= (y_{n-1} \cdot 2^{n-1} + \dots + y_1 \cdot 2^1 + y_0 \cdot 2^0) \times x$$

$$= (y_{n-1} \cdot 2^{n-1} \cdot x) + \dots + (y_1 \cdot 2^1 \cdot x) + (y_0 \cdot 2^0 \cdot x)$$

# Part 2: multiplication in practice: an algorithm (5) Repeated addition

- ► Idea:
  - given  $y = 14_{(10)} = 1110_{(2)}$  we can see that

• given  $y = 14_{(10)} = 1110_{(2)}$  we can see that

$$\begin{array}{rcl} y \cdot x & = & y_0 \cdot x + 2 \cdot (y_1 \cdot x + 2 \cdot (y_2 \cdot x + 2 \cdot (y_3 \cdot x + 2 \cdot (0)))) \\ & = & 0 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (0)))) \\ & = & 0 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (1 \cdot x + 0))) \\ & = & 0 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (1 \cdot x + 0))) \\ & = & 0 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot x \\ & = & 0 \cdot x + 2 \cdot (1 \cdot x + 2 \cdot (3 \cdot x + 2 \cdot$$

via application of **Horner's rule**.

# Part 3: multiplication in practice: a circuit (1) A combinatorial, bit-parallel design

▶ Idea: for b = 2 we now know

$$r = y \times x = \left(\sum_{i=0}^{n-1} y_i \cdot 2^i\right) \times x = \sum_{i=0}^{n-1} y_i \cdot x \cdot 2^i,$$

### plus

▶ for any *t*,

$$y_i \cdot t = \begin{cases} 0 & \text{if } y_i = 0 \\ t & \text{if } y_i = 1 \end{cases}$$

► for any *t*,

$$t\cdot 2^i \equiv t \ll i,$$

### so we can compute *r* via

- 1. some AND gates to generate partial products (i.e.,  $y_i \cdot x$ ),
- 2. some left-shift components to scale the partial products correctly (i.e.,  $y_i \cdot x \cdot 2^i$ ), and
- 3. some adder components to sum the scaled partial products.

# Part 3: multiplication in practice: a circuit (2)

A combinatorial, bit-parallel design

### Design:



### ► Evaluation:

- -ve: requires a larger data-path
- +ve: requires a smaller control-path (i.e., none at all),
- +ve: requires less steps (i.e., 1),
- -ve: has a longer critical path (meaning each step is longer).

# Part 3: multiplication in practice: a circuit (3) An iterative, bit-serial design

▶ Idea: for b = 2 we now know

$$r = y \times x = \left(\sum_{i=0}^{n-1} y_i \cdot 2^i\right) \times x = \sum_{i=0}^{n-1} y_i \cdot x \cdot 2^i,$$

so we can compute *r* by evaluating the Horner expansion step-by-step in an "inside-out" order, applying

$$r \leftarrow \begin{cases} 2 \cdot r & \text{if } y_i = 0 \\ 2 \cdot r + x & \text{if } y_i = 1 \end{cases}$$

so as to accumulate the result.

An iterative, bit-serial design

► Idea:

## Algorithm

**Input:** Two unsigned, n-bit, base-2 integers x and y

Output: An unsigned, 2n-bit, base-2 integer

$$r = y \cdot x$$

1 
$$r \leftarrow 0$$
  
2 for  $i = n - 1$  downto  $0$  step  $-1$  do

$$r \leftarrow 2 \cdot r$$

$$r \leftarrow 2 \cdot r$$

4 **if** 
$$y_i = 1$$
 **then** 5  $r \leftarrow r + x$ 

6 ena

7 enc

8 return r

# Example

Consider a case where  $y = 14_{(10)} \mapsto 1110_{(2)}$ :

|   | i | r            | $y_i$ | r'           |                               |
|---|---|--------------|-------|--------------|-------------------------------|
|   |   | 0            |       |              |                               |
|   | 3 | 0            | 1     | x            | $r' \leftarrow 2 \cdot r + x$ |
|   | 2 | x            | 1     | $3 \cdot x$  | $r' \leftarrow 2 \cdot r + x$ |
|   | 1 | $3 \cdot x$  | 1     | $7 \cdot x$  | $r' \leftarrow 2 \cdot r + x$ |
|   | 0 | $7 \cdot x$  | 0     | $14 \cdot x$ | $r' \leftarrow 2 \cdot r$     |
| L |   | $14 \cdot x$ |       |              |                               |

# Part 3: multiplication in practice: a circuit (4) An iterative, bit-serial design

An iterative, bit-serial design

### Design:



### ► Evaluation:

- +ve: requires a smaller data-path
- -ve: requires a larger control-path (i.e., an entire FSM),
- -ve: requires more steps (i.e., n),
- +ve: has a shorter critical path (meaning each step is shorter).

### Conclusions

### Take away points:

- 1. Computer arithmetic is a broad, interesting (sub-)field:
  - it's a broad topic with a rich history,
  - there's usually a large design space of potential approaches,
  - they're often easy to understand at an intuitive, high level,
  - correctness and efficiency of resulting low-level solutions is vital and challenging.
- 2. The strategy we've employed is important and (fairly) general-purpose:
  - explore and understand an approach in theory, translate, formalise, and generalise the approach into an algorithm,

  - translate the algorithm, e.g., into circuit,
  - refine (or select) the circuit to satisfy any design constraints.

### Additional Reading

- ▶ Wikipedia: Computer Arithmetic. URL: https://en.wikipedia.org/wiki/Category:Computer\_arithmetic.
- D. Page. "Chapter 7: Arithmetic and logic". In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009.
- B. Parhami. "Part 3: Multiplication". In: Computer Arithmetic: Algorithms and Hardware Designs. 1st ed. Oxford University Press, 2000.
- ▶ W. Stallings. "Chapter 10: Computer arithmetic". In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013.
- A.S. Tanenbaum and T. Austin. "Section 3.2.2: Arithmetic circuits". In: Structured Computer Organisation. 6th ed. Prentice Hall, 2012.

#### References

- [1] Wikipedia: Computer Arithmetic. URL: https://en.wikipedia.org/wiki/Category:Computer\_arithmetic (see p. 20).
- [2] D. Page. "Chapter 7: Arithmetic and logic". In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009 (see p. 20).
- [3] B. Parhami. "Part 3: Multiplication". In: Computer Arithmetic: Algorithms and Hardware Designs. 1st ed. Oxford University Press, 2000 (see p. 20).
- [4] W. Stallings. "Chapter 10: Computer arithmetic". In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013 (see p. 20).
- [5] A.S. Tanenbaum and T. Austin. "Section 3.2.2: Arithmetic circuits". In: Structured Computer Organisation. 6th ed. Prentice Hall, 2012 (see p. 20).