Access answers to Maths NCERT Solutions for Class 7 Chapter 13 – Exponents and Powers Exercise 13.1

1. Find the value of:

(i) 26

Solution:-

The above value can be written as,

$$= 2 \times 2 \times 2 \times 2 \times 2 \times 2$$

= 64

(ii) 9₃

Solution:-

The above value can be written as,

$$=9\times9\times9$$

= 729

(iii) 11²

Solution:-

The above value can be written as,

$$=11\times11$$

= 121

(iv) 5₄

Solution:-

The above value can be written as,

$$=5\times5\times5\times5$$

= 625

2. Express the following in exponential form:

(i)
$$6 \times 6 \times 6 \times 6$$

Solution:-

The given question can be expressed in the exponential form as 6^4 .

(ii)
$$t \times t$$

Solution:-

The given question can be expressed in the exponential form as t₂.

(iii)
$$\mathbf{b} \times \mathbf{b} \times \mathbf{b} \times \mathbf{b}$$

Solution:-

The given question can be expressed in the exponential form as b₄.

(iv)
$$5 \times 5 \times 7 \times 7 \times 7$$

Solution:-

The given question can be expressed in the exponential form as $5^2 \times 7^3$.

(v)
$$2 \times 2 \times a \times a$$

Solution:-

The given question can be expressed in the exponential form as $2^2 \times a^2$.

(vi)
$$\mathbf{a} \times \mathbf{a} \times \mathbf{a} \times \mathbf{c} \times \mathbf{c} \times \mathbf{c} \times \mathbf{c} \times \mathbf{d}$$

Solution:-

The given question can be expressed in the exponential form as $a^3 \times c^4 \times d$.

3. Express each of the following numbers using exponential notation:

(i) 512

Solution:-

So it can be expressed in the exponential form as 2.

(ii) 343

Solution:-

The factors of $343 = 7 \times 7 \times 7$

So it can be expressed in the exponential form as 7³.

(iii) 729

Solution:-

The factors of $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3$

So it can be expressed in the exponential form as 3°.

(iv) 3125

Solution:-

The factors of $3125 = 5 \times 5 \times 5 \times 5 \times 5$

So it can be expressed in the exponential form as 5⁵.

4. Identify the greater number, wherever possible, in each of the following?

(i) 4³ or 3⁴

Solution:-

The expansion of $4^{\circ} = 4 \times 4 \times 4 = 64$

The expansion of $3^4 = 3 \times 3 \times 3 \times 3 = 81$

Clearly,

64 < 81

So, $4^{3} < 3^{4}$

Hence 34 is the greater number.

(ii) 53 or 35

Solution:-

The expansion of $5^{\circ} = 5 \times 5 \times 5 = 125$

The expansion of $3^{\circ} = 3 \times 3 \times 3 \times 3 \times 3 = 243$

Clearly,

125 < 243

So, $5^3 < 3^5$

Hence 3^s is the greater number.

(iii) 2⁸ or 8²

Solution:-

The expansion of $2^{s} = 2 \times 2 = 256$

The expansion of $8^2 = 8 \times 8 = 64$

Clearly,

256 > 64

So, $2^8 > 8^2$

Hence 2^s is the greater number.

(iv) 100² or 2¹⁰⁰

Solution:-

The expansion of $100^2 = 100 \times 100 = 10000$

The expansion of 2^{100}

Then,

$$2^{100}$$
 = $1024 \times 1024 \times 10$

Clearly,

 $100^{2} < 2^{100}$

Hence 2¹⁰⁰ is the greater number.

(v) 2^{10} or 10^{2}

Solution:-

The expansion of $10^2 = 10 \times 10 = 100$

Clearly,

1024 > 100

So, $2^{10} > 10^2$

Hence 2^s is the greater number.

5. Express each of the following as product of powers of their prime factors:

(i) 648

Solution:-

Factors of $648 = 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3$

 $=2^{3}\times3^{4}$

(ii) 405

Solution:-

Factors of $405 = 3 \times 3 \times 3 \times 3 \times 5$

 $=3^{5}\times3$

(iii) 540

Solution:-

Factors of $540 = 2 \times 2 \times 3 \times 3 \times 3 \times 5$

 $=2^2\times3^3\times5$

(iv) 3,600

Solution:-

Factors of $3600 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 5$

 $=2^{4}\times3^{2}\times5^{2}$

6. Simplify:

(i) 2×10^{3}

Solution:-

The above question can be written as,

$$= 2 \times 10 \times 10 \times 10$$

$$= 2 \times 1000$$

$$= 2000$$

(ii)
$$7^2 \times 2^2$$

Solution:-

The above question can be written as,

$$=7\times7\times2\times2$$

$$=49\times4$$

$$= 196$$

(iii)
$$2^3 \times 5$$

Solution:-

The above question can be written as,

$$= 2 \times 2 \times 2 \times 5$$

$$=8\times5$$

$$=40$$

(iv)
$$3 \times 4$$

Solution:-

The above question can be written as,

$$= 3 \times 4 \times 4 \times 4 \times 4$$

$$= 3 \times 256$$

$$= 768$$

$$(\mathbf{v})\ \mathbf{0} \times \mathbf{10}^{2}$$

Solution:-

The above question can be written as,

$$=0\times10\times10$$

$$=0\times100$$

$$= 0$$

(vi)
$$5^2 \times 3^3$$

Solution:-

The above question can be written as,

$$= 5 \times 5 \times 3 \times 3 \times 3$$

$$= 25 \times 27$$

$$= 675$$

(vii)
$$2^4 \times 3^2$$

Solution:-

The above question can be written as,

$$= 2 \times 2 \times 2 \times 2 \times 3 \times 3$$

$$= 16 \times 9$$

$$= 144$$

(viii)
$$3^2 \times 10^4$$

Solution:-

The above question can be written as,

$$= 3 \times 3 \times 10 \times 10 \times 10 \times 10$$

$$= 9 \times 10000$$

$$= 90000$$

7. Simplify:

$$(i) (-4)^{3}$$

Solution:-

The expansion of -4³

$$=$$
 $-4 \times -4 \times -4$

$$= -64$$

(ii)
$$(-3) \times (-2)^{3}$$

Solution:-

The expansion of $(-3) \times (-2)^3$

$$=$$
 $-3 \times -2 \times -2 \times -2$

$$= -3 \times -8$$

$$= 24$$

(iii)
$$(-3)^2 \times (-5)^2$$

Solution:-

The expansion of $(-3)^2 \times (-5)^2$

$$= -3 \times -3 \times -5 \times -5$$

$$=9\times25$$

$$= 225$$

(iv)
$$(-2)^3 \times (-10)^3$$

Solution:-

The expansion of $(-2)^3 \times (-10)^3$

$$=$$
 $-2 \times -2 \times -2 \times -10 \times -10 \times -10$

$$= -8 \times -1000$$

$$= 8000$$

8. Compare the following numbers:

(i)
$$2.7 \times 10^{12}$$
; 1.5×10^{8}

Solution:-

By observing the question

Comparing the exponents of base 10,

Clearly,

$$2.7 \times 10^{12} > 1.5 \times 10^{8}$$

(ii)
$$4 \times 10^{14}$$
; 3×10^{17}

Solution:-

By observing the question

Comparing the exponents of base 10,

Clearly,

 $4 \times 10^{14} < 3 \times 10^{17}$

Leave a Comment