8.4. Шифрование/дешифрование с использованием эллиптических кривых

Рассмотрим самый простой подход к шифрованию/дешифрованию с использованием эллиптических кривых. Задача состоит в том, чтобы зашифровать сообщение M, которое может быть представлено в виде точки на эллиптической кривой P_m (x,y).

Как и в случае обмена ключом, в системе шифрования/дешифрования в качестве параметров рассматривается эллиптическая кривая E_p (a,b) и точка G на ней. Участник B выбирает закрытый ключ n_B и вычисляет открытый ключ $P_B = n_B \times G$. Чтобы зашифровать сообщение P_m используется открытый ключ получателя B P_B . Участник A выбирает случайное целое положительное число k и вычисляет зашифрованное сообщение C_m , являющееся точкой на эллиптической кривой.

$$C_m = \{k \times G, P_m + k \times P_B\}$$

Чтобы дешифровать сообщение, участник В умножает первую координату точки на свой закрытый ключ и вычитает результат из второй координаты:

 $P_m + k \times P_B$ - $n_B \times (k \times G) = P_m + k \times (n_B \times G)$ - $n_B \times (k \times G) = P_m$ Участник A зашифровал сообщение P_m добавлением к нему kxP_B . Никто не знает значения k, поэтому, хотя P_B и является открытым ключом, никто не знает $k \times P_B$. Противнику для восстановления сообщения придется вычислить k, зная G и $k \times G$. Сделать это будет нелегко.

Получатель также не знает k, но ему в качестве подсказки посылается $k \times G$. Умножив $k \times G$ на свой закрытый ключ, получатель получит значение, которое было добавлено отправителем k незашифрованному сообщению. Тем самым получатель, не зная k, но имея свой закрытый ключ, может восстановить незашифрованное сообщение.