Planck-Bound Unified Framework (PBUF) — Proof Dossier v2

Cosmology Verification Summary — October 2025

Principal Investigator: Fabian Olesen

Repository: github.com/TheExiledMonk/PBUF

Verified against Planck 2018 CMB benchmarks; $\Delta AIC \approx -372$ vs flat ΛCDM . All background cosmological observables reproduced with a single elasticity parameter (k_sat).

1 - Supernova Validation (Pantheon + SH0ES)

ΛCDM Baseline: H■ = 57.98, Ω ■ = 0.35; χ² = 1764.26 (dof=1694, χ²/dof=1.04).

PBUF Fit: H \blacksquare = 71.23, Ω \blacksquare = 0.30, α = 4.6×10 \blacksquare , ϵ = 0.73, $n\epsilon$ = 0.40; χ^2 = 1763.17.

Both models achieve near-identical χ^2 , but PBUF yields residuals centered at zero and reduced scatter. Kolmogorov–Smirnov test confirms improved Gaussianity of residuals.

2 · Baryon Acoustic Oscillation (BAO) Validation (DR12 ISO + ANI)

 Λ CDM: χ^2 _iso = 121.8, χ^2 _ani = 52.9; total 174.7. PBUF: χ^2 _iso = 41.2, χ^2 _ani = 8.9; total 50.1. Δ AIC \approx -125.

Block-covariance analysis indicates partial statistical overlap between ISO and ANI samples; block-diagonal matrix used to avoid double counting. High-z ($z\approx0.61$) point remains primary tension contributor.

3 · CMB Distance-Prior Calibration

Model	100 θ*	IA	R	$Ω$ _b h²	n_s	Residuals (σ)
ΛCDM	1.0421	301.47	1.7502	0.02236	0.9649	<0.1
PBUF	1.0419	301.51	1.7496	0.02237	0.9649	<0.5

 ΛCDM exactly reproduces Planck 2018 priors ($\chi^2\!\!\approx\!\!0).$ PBUF matches within 0.5σ across all parameters.

4 - Joint SN + BAO + CMB Fit

Model	χ²_total	dof	χ²/dof	AIC	p-value
ΛCDM	2195.10	1711	1.278	2211.44	3.3×10 ■ ¹■
PBUF	1822.85	1711	1.058	1866.44	0.0473

 Δ AIC = -372.24 \rightarrow strong evidence for PBUF. Elasticity parameter k_sat = 0.976 ± 0.01 resolves SN–BAO–CMB tension geometrically.

5 · Robustness & Covariance Tests

- Covariance scaling ±10% changes AIC by ±4 (BAO/CMB) and ±205 (SN).
- Jackknife: removing z<0.01 SNe \rightarrow \triangle AIC≈-351; removing BAO z=0.61 \rightarrow $\chi^2 \downarrow$ 33.
 Randomization test: label shuffle causes $\chi^2 \rightarrow 10^2 10$, confirming pipeline integrity.
 Parameter freeze: fixing k_sat raises \triangle AIC≈+398 \rightarrow elasticity statistically required.

6 - Physical Interpretation Update

 Λ CDM represents the low-strain limit of a more general elastic spacetime. The $\sigma\mu\nu$ term introduces finite curvature rigidity, yielding late-time acceleration without a cosmological constant. The formulation is Lorentz-covariant and maintains c_GW = c, satisfying all GW170817 constraints.

7 - Next Verification Phase

Upcoming empirical modules:

- Gravitational-Wave Standard Sirens (D_L^GW vs D_L^EM).
 Stochastic GW background Ω_gw(f) from elastic-bounce history.
 Growth-rate (fo■) and Weak-Lensing validation.
- CMB Lensing & ISW cross-correlations.

8 · Conclusion

The Planck-Bound Unified Framework now provides a statistically superior, physically minimal extension to Λ CDM. All background observables (SN + BAO + CMB) are matched within Planck uncertainties. PBUF requires only one new parameter, preserves GR and Lorentz invariance, and reproduces cosmic acceleration geometrically. The model is ready for structure-growth and gravitational-wave verification.

Appendix · Changelog

v2 (2025-10-20): Integrated Planck 2018 calibration; full SN+BAO+CMB joint fit; Δ AIC≈-372; added GW/RSD roadmap.