

June 2005 6685 Statistics S3 Mark Scheme

Question Number	Scheme	Marks
1.	(B) Population divides into motually exclusive; groups distinct strata - enables fieldwork to be close quickly	B1; B1 (2
and a state of the	- costs keft to a minimum - administration is telahely easy Any ONE Disadvantages - non-random so not possible to estimate coulling a scott	81
	- Subject to possible interviewer bior Any ONE - non-response not recorded	Z1 (2)
೩. │	X~H(10,32) :: X~H(10, 15) can be 10; 9/5	Bi; Bi
	$P(7 \le \times \le 10) = P(\frac{7-10}{\sqrt{2}} \le 2 \le 20)$ Standardsing with 10 & their 5	MI AI
	= P(-2.236 < Z < 0) = \(\bar{\Psi} (0) - \{ 1 - \bar{\Psi} (2.24 \}	MI (pcois)
	= 0.4875	A1 (6)
		ı

Question Number			Schen	ne		Marks
3.		the action	Remove dreased branches	Spray with Chricals	Total	
	True died within 1 year	10 (7)	5 (7)	6 (1)	21	
	Survived 1-4 years	5 (7)	9(7)	7(1)	51	
	Survind > 4 years	5(6)	6 (6)	7(6)	18	
	Totals	20	20	90	60	
	Ho: Treatment H: Treatment W= 0.05 W= (3-1)x CR: X2 > 9	(3-1) = 4 1.488	niral osc.	not independ	dent(astocia	B1 √,
		3.47619		·	AWRT 3	.48 AI
11	Since 3.47619 here is insofti There is no e and length of s	went evil	lence to re	tion betwee		mut MI

ć r			
		(e) Ho: P=0; Hr: P>0	Re
		Credical Value at 1% = 0.7155	Bi
		Reject Ho; Levels of seron & disease one positively	Bi (3)
		correlated (f) hinear correlation significant scatten diagram	B1 (1)
		boks non-linear.	·
	5.	Ho: Poisson distribution is not a suitable model both	81
		$\hat{\lambda} = \frac{(0\times99) + (1\times65) + \dots + (4\times2)}{200} = \frac{153}{200} = 0.765$	MI AI
		Using P(X=x) = 0.765 e where X refresents the	
		number of restacts gives	MI
	·	X Obsorra Frequency Expected Frequency	
		99 93.06678	Ai, Ai (-12.21)
		2 22	
		3 12	Aı
		1 2 41 = 3 CR: X > 7.815 Ga. Poisson (0.765) 5/0-5/-	BI; BI√
	ĺ	ALCO SERVICE S	Aı
		5.47 is not in the cretical region. 5.40-5.50 Howher of computer failures per day can be	A11 (12)
		modelled by a Poisson distribution	

	(-) / L X about of lose the	
6.	(a) Let X represent rejoir true $ \therefore \sum_{x=1435} = 1435 = 277 $	Bı
	$\sum x^2 = 442575 : S^2 = \frac{1}{4} \left\{ 442575 - \frac{1435^2}{5} \right\}$	MIA
	= 7682.5	A1 (4)
	(b) P(1p-jul) < 20 = 0.95 Use g 1920 or 40 with their 5 2 Vin	MI O
	1-96 7/Th 2 Solvey for n	Ai Ai
	$\therefore N = \frac{1.96 \times 100^{2}}{20^{2}} = \frac{1.96 \times 100^{2}}{400} = \frac{96.04}{400}$	AI
	:. Santer size (>)97 required	A1 (6)
7.	Let W= C1 - C2 18 N= C1+C2 => M1 AOMI only	
	(a) : W~ H(0, 16)	MI
	: P(w >6) = 2P(W>6)	PI; N Mi
	M W= C-L treat = 2×P(Z> 6-0) Standardising,	MI
	as MR = $2 \times P(Z > 1.5)$ There of the problem = $2 \times (1 - 0.9351) = 0.1336$	AI (6)
	(b) Let W= C-L	
	:- $W \sim H(S, 2S)$ $P(W > 0) = P(Z > \frac{\pm 6}{\sqrt{2S}})$	81; B1
	_	MIAI
	= !(Z < 1)	M1 (>>0.2)
	= 0.8413	A1 (6)

(g) Let W= C1++ C24+ B	
: E(W) = 24x350+100 = 8500	BI
Var(w) = 24x 8+ 22 = 196	BI
P(8510 < W < 8520) = P(8510-8500 < Z < 8520-8500)	MI
= P (0.71 & Z & 1.43) AWRT	Ay' Al
= 0.9236 - 0.7611	
= 0.1625 0.161 - 0.163	A1 (6)
(d) All random variables are independent.	B1 (1)
12/06/05	· ·