1

Let K be the subfield of F. F is a vector space over K, finite-dimensional since F is finite. Denote this dimension by m. Then F has a basis over K consisting of m elementes. Let it be $b_1, b_2 \dots b_m$. Every element of F can be uniquely represented in the form $k_1b_1+\dots k_mb_m$ (where $k_1,\dots k_m\in K$) Since each $k_i\in K$ can take q values. Then F must have exactly q^m elements. \square

2

İ

Lemma

Let $g \in G$ and g have order n. Then $g^k = e$ if and only if $n \mid k$. If $n \mid k$, say k = nm, then $g^k = g^{nm} = (g^n)^m = e$. For the converse direction, we use the division theorem. Supposing that $g^k = e$, write k = nq + r with integers q and r such that $0 \le r < n$. Then

$$e = g^k = (g^n)^q g^r = g^r \tag{1}$$

Since $0 \leq r < n$, the minimality built into n as the order of g forces r to be zero. Thus k = nq, so $n \mid k$

Proof

From the problem we have g_1 has order n_1 and g_2 has order n_2 , with $(n_1, n_2) = 1$, we are to proof g_1, g_2 has order n_1, n_2 . Since

$$(g_1g_2)^{n_1n_2} = g_1^{n_1n_2}g_2^{n_1n_2} = (g_1^{n_1})^{n_2}(g_2^{n_2})^{n_1} = e$$
(2)

we see g_1g_2 has finite order, which must divide n_1n_2 by Theorem 3.4. Let n be the order of g_1g_2 . In particular, $(g_1g_2)^n=e$. From this we will show $n_1\mid n$ and $n_2\mid n$. Since g_1 and g_2 commute,

$$g_1^n g_2^n = e \tag{3}$$

Raising both sides of $g_1^ng_2^n=e$ to the power n_2 (to kill off the g_2 factor) gives

$$g_1^{nn_2} = e (4)$$

Therefore $n_1 \mid nn_2$ by Lemma. Since $(n_1,n_2)=1$, we conclude $n_1 \mid n$. Now raising both sides of $g_1^ng_2^n=e$ to the power n_1 gives $g_2^{nn_1}=e$, so $n_2 \mid nn_1$ by Lemma, and thus $n_2 \mid n$ Since $n_1 \mid n,n_2 \mid n$ and $(n_1,n_2)=1$, we conclude that $n_1n_2 \mid n$. Since we already showed $n \mid n_1n_2$ (in the first paragraph of the proof), we conclude $n=n_1n_2$. \square

ii

The proposition can be extended to a more general one. If F is a field and G a finite subgroup of F^{\times} , then G is cyclic. This follow from the same hint: With n=|G|, we have $g^n=1$ for all $g\in G$, hence all $g\in G$ are roots of the polynomial $X^n-1\in F[X]$.

Since there are at most n such roots, the elements of G are precisely the n roots of the polynomial X^n-1 . Now let g be a root of X^n-1 , but not of X^d-1 for any $d\mid n$

Then clearly $G=\langle g \rangle$. \square

3

i

Cite the algorithm from https://jtnb.centre-mersenne.org/article/JTNB_2015_27_1_245_0.pdf $P(x,y) = xy - y^2$

Check:

The latter is obviously satisfied.

For first equation: if $X=Y-1, P(x,y)=y^2-y-y^2 \ (mod \ y-1)\equiv 1$

ii

$$\begin{array}{l} n_1=7\\ n_2=16\\ n_3=10\\ N=n_1\cdot n_2\cdot n_3=1120\\ m_1=\frac{N}{n_1}=160\\ m_2=\frac{N}{n_2}=70\\ m_3=\frac{N}{n_3}=112\\ \gcd(m_1,n_1)=\gcd(160,7)=1 \text{ so }y_1=1 \text{ and }x_1=160\\ \gcd(m_2,n_2)=\gcd(70,16)=2 \text{ so }y_2=2 \text{ and }x_2=70\\ \gcd(m_3,n_3)=\gcd(112,10)=-2 \text{ so }y_3=-2 \text{ and }x_3=-112\\ \text{So }x=160\times 3+70\times 4-112\times 2\equiv 584 (\text{ mod }1120)\\ \end{array}$$

4

These are dihedral group:D8 and quaternion group

First let generalize the problem, let 8 be any prime number p^3 .

Lemma

Given: A prime number p, a group P of order p^3 .

To prove: Either P is abelian, or we have: Z(P) is a cyclic group of order p and P/Z(P) is an elementary abelian group of order p^2

Proof: Let Z = Z(P) be the center of P.

P has order p^3 , specifically, a power of a prime, so Z is non trivial. P has order p^3 , P/Z exists by

the fact that center is normal and has order |P|/|Z| by Lagrange's theorem. If Z has order p^2 , the order of P/Z is $p^3/p^2=p$. By the quaivalence of definitions of group of prime order, P/Z must be cyclic. Then, by the fact that cyclic over central implies abelian, P would be abelian, but this would imply that Z=P, in which case the order of Z would have been p^3 . So, the order of Z can not be p^2

By Lagrange's theorem, the order of Z must divide the order of P. The only possibilities are $1, p, p^2, p^3$. Step the frist process eliminates the possibility of 1, and the second process eliminates the possibility of p^2 . This leaves only p or p^3 .

If Z has order p, then Z must be cyclic. P/Z exists and its order is $|P|/|Z| = p^3/p = p^2$. P/Z cannot be cyclic, because if it were cyclic, then P would be abelian, which would mean that Z=P has order p^3 . Thus, P/Z is a non-cyclic group of order p^2 . By classification of groups of primesquare order, the only non-cyclic group of order p^2 is the elementary abelian group, so P/Z must be the elementary abelian group of order p^2 . If Z has order p, then Z is cyclic of order p and the quotient P/Z is elementary abelian of order p^2

If Z has order p^3 , we get P=Z,P is abelian.

Classifying the non-abelian groups

Case A: a and b both have order p.

In this case, the relations so far give the presentation:

$$\langle a,b,z \mid a^p = b^p = z^p = e, az = za, bz = zb, [a,b] = z \rangle$$

These relations already restrict us to order at most p^3 , because we can use the commutation relations to express every element in the form $a^\alpha b^\beta z^\gamma$, where α,β,γ are integers mod p. To show that there is no further reduction, we note that there is a group of order p^3 satisfying all these relations, namely unitriangular matrix group:UT (3,p). This is the multiplicative group of unipotent upper-triangular matrices with entries from the field of p elements. Thus, Case A gives a unique isomorphism class of groups. Note that the analysis so far works both for p=2 and for odd primes. The nature of the group obtained, though, is different for p=2, where we get dihedral group:D8 which has exponent p^2 . For odd primes, we get a group of prime exponent.

Case B: a has order p^2 , b has order p In this case, we first note that $a^p \in Z = \langle z \rangle$. Since a^p is a non-identity element, there exists nonzero r (taken mod p) such that $a^p = z^r$. Consider the element $c = b^r$ Then, by Fact thatClass two implies commutator map is endomorphism, and the observation that P has class two (Step (1) in the above table), we obtain:

$$[a,c]=[a,b^r]=[a,b]^r=z^r=a^p$$

Consider the presentation:

$$\left\langle a,c\mid a^{p^2}=c^p=e,[a,c]=a^p
ight
angle$$

We see that all these relations are forced by the above, and further, that this presentation defines a group of order p^3 , namely semidirect product of cyclic group of prime-square order and cyclic group of prime order.

Thus, there is a unique isomorphism class in Case B. Note that the analysis so far works both for p=2 and for odd primes. The nature of the group, though, is different for p=2, we get dihedral group:D8, which is the same isomorphism class as Case A.

Case B2: a has order p, b has order p^2 . Interchange the roles of a, b and replace z by z^{-1} and we are back in Case B.

Case C: a and b both have order p^2 .

By Fact that Formula for powers of product in group of class two, we can show that for odd prime, it is possible to make a substitution and get into Case B.

For p=2, working out the presentation yields quaternion group.

Here is a summary of the cases: