Conferencia 5 - Sistemas Residuales

October 15, 2025

Definición. Un **Sistema Residual Completo** módulo n, SRC(n), con $n \in \mathbb{Z}_+$, es un conjunto de n enteros incongruentes módulo n

Teorema. Sean $n \in \mathbb{Z}_+$, $k \in \mathbb{Z}$, (k,n) = 1 y $\{a_1, a_2, \ldots, a_n\}$ un sistema residual completo módulo n, entonces $\{ka_1, ka_2, \ldots, ka_n\}$ es también un sistema residual completo módulo n.

Demostración

```
Supongamos que \{ka_1, ka_2, \ldots, ka_n\} no es un SRC(n) entonces existen i,j tales que ka_i \equiv ka_j(n) como (k,n) = 1 entonces a_i \equiv a_j(n) luego \{a_1, a_2, \ldots, a_n\} tampoco es un SRC(n), por tanto, por contrarecíproco, si \{a_1, a_2, \ldots, a_n\} es un SRC(n) entonces \{ka_1, ka_2, \ldots, ka_n\} también lo es
```

Definición. Una ecuación de la forma $ax \equiv b(n)$ con $a, b \in \mathbb{Z}$ y $n \in \mathbb{Z}_+$ es una ecuación lineal congruencial si se trata de resolver en enteros. Dos soluciones se consideran distintas si son incongruentes módulo n.

Teorema. La ecuación lineal congruencial $ax \equiv b(n)$ es soluble si y solo si (a, n)|b

Demostración

```
ax \equiv b(n) tiene solución si existe x_0 tal que ax_0 \equiv b(n) entonces n|ax_0 - b por lo que existe y_0 tal que ax_0 - b = ny_0 entonces como ax_0 - ny_0 = b esta ecuación tiene solución si y solo si (a, n)|b
```

Note que si x_0 es solución de $ax \equiv b(n)$ y $x_1 \equiv x_0(\frac{n}{mcd(a,n)})$ entonces x_1 es también solución.

Ejemplo

```
3x \equiv 9 (7)

3x \equiv 2 (7)

y se cumple que mcd(3,7)|2

por tanto 3x - 7q = 2 y x = 3 y q = 1 son solución

por lo que x \equiv 3 (7)
```

Teorema. La ecuación lineal congruencial $ax \equiv b(n)$ donde d = (a, n) y d|b tiene exactamente d soluciones

Demostración

Ya se observó que la ecuación de congruencia lineal es equivalente a la ecuación lineal Diofantina ax - ny = b y esta ecuación se resuelve si (a, n)|b y como d = (a, n) entonces d|b.

Esta ecuación tiene entonces las soluciones $x = x_0 + \frac{n}{d}t$ $y = y_0 + \frac{a}{d}t$ donde x_0 y y_0 es una solución de la ecuación Diofantina.

Si se considera $t=0,1,2,\ldots,d-1$ entonces $x_0,\,x_0+\frac{n}{d},\,x_0+\frac{2n}{d},\ldots,\,x_0+\frac{(d-1)n}{d}$ son soluciones.

Ahora hay que verificar que estas d soluciones son incongruentes entre ellas y cualquier otra fuera de ellas es congruente con alguna de ellas.

Verifiquemos lo primero, si asumimos que no se cumple entonces $x_0 + \frac{t_1 n}{d} \equiv x_0 + \frac{t_2 n}{d}(n) \text{ con } 0 \leq t_1 < t_2 \leq d-1$ entonces se tiene que $\frac{t_1 n}{d} \equiv \frac{t_2 n}{d}(n)$ como se tiene que $(\frac{n}{d}, n) = \frac{n}{d}$ luego se llega a que $t_1 \equiv t_2(d)$ y esto implica que $d|t_2 - t_1$ pero esto es una contradicción pues se cumple que $0 < t_2 - t_1 < d$

Ahora hay que demostrar que cualquier otra solución $x_0 + \frac{n}{d}t$ es congruente módulo n con una de las soluciones $x_0, x_0 + \frac{n}{d}, \dots, x_0 + \frac{(d-1)n}{d}$ Por el Algoritmo de la División t = qd + r donde $0 \le r \le d - 1$ entonces $x_0 + \frac{n}{d}t = x_0 + \frac{n}{d}(qd + r) = x_0 + nq + \frac{n}{d}r$ por tanto $x_0 + \frac{n}{d}t \equiv x_0 + nq + \frac{n}{d}r \equiv x_0 + \frac{n}{d}r$ (n) y $x_0 + \frac{n}{d}r$ es una de las soluciones de referencia

Ejemplo

 $18x \equiv 30(42)$ como (18,42) = 6 y 6|30 entonces la ecuación tiene exactamente 6 soluciones inconguentes entre ellas. Como una solución de la ecuación es 4 entonces las 6 soluciones son de la forma $x \equiv 4 + t \frac{42}{6} \equiv 4 + 7t (42)$ con $t = 0, 1, \dots, 5$ lo que es $x \equiv 4, 11, 18, 25, 32, 39 (42)$

Corolario. Si mcd(a, n) = 1 entonces la ecuación lineal congruencial $ax \equiv b(n)$ tiene una única solución módulo n

Teorema. Teorema Chino del Resto Sean $n_1, n_2, ..., n_k$ enteros positivos primos relativos 2 a 2, entonces el sistema de ecuaciones de congruencia lineal:

```
x \equiv a_1 (n_1)
x \equiv a_2 (n_2)
.....
x \equiv a_k (n_k)
tiene \ una \ única \ solución \ módulo (n_1 * n_2 * ... * n_k)
```

Demostración

```
Se tiene p = n_1 * n_2 * \ldots * n_k y p_j = \frac{p}{n_j} con 1 \le j \le k
como los n_j son primos relativos 2 a 2 entonces (n_j, p_j) = 1
por tanto existen r_j y s_j tales que r_j n_j + s_j p_j = 1 luego s_j p_j = -r_j n_j + 1
y con ello p_i x \equiv 1 (n_i) tiene solución única y si llamamos s_i a esa solución
se tiene que p_i s_i \equiv 1 (n_i)
pero también se sabe que para i \neq j se tiene que p_j s_j \equiv 0 (n_i) entonces si se conforma A = \sum_{i=1}^k a_i p_i s_i se tiene que A \equiv a_i (n_i)
Ahora hay que probar la unicidad de la solución,
o sea que todas las soluciones son congruentes entre ellas.
Asumamos que hay dos soluciones x y y diferentes,
entonces se debe cumplir que
x \equiv a_i (n_i)
y \equiv a_i (n_i)
esto implica que x - y \equiv 0 (n_i)
ahora como todos los n_i son primos relativos entonces n_1 n_2 \dots n_k | x - y
luego x \equiv y (n_1 n_2 \dots n_k)
por tanto las soluciones son congruentes entre ellas, como
```

Ejemplo

Encuentra un número que deja resto 2,3,2 cuando se divide por 3, 5 y 7 respectivamente.

Se tiene el sistema:

```
x \equiv 2 (3)

x \equiv 3 (5)

x \equiv 2 (7)

Entonces se tiene p = 3 * 5 * 7 = 105

Luego p_1 = 105/3 = 35 p_2 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5 = 105/5
```

Luego $p_1 = 105/3 = 35$, $p_2 = 105/5 = 21$ y $p_3 = 105/7 = 15$

A partir de esto se tienen las ecuaciones de congruencias lineal

 $35x_{1}\equiv1\left(3\right)$ donde $x_{1}=2$ es solución

 $21x_2 \equiv 1$ (5) donde $x_2 = 1$ es solución

 $15x_3 \equiv 1$ (7) donde $x_3 = 1$ es solución

Luego $A = a_1p_1x_1 + a_2p_2x_2 + a_3p_3x_3 = 2*35*2+3*21*1+2*15*1 = 233$ Entonces $A = 233 \equiv 23 (105)$