BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

2018

Panchuk Georgy

HSE Research Seminar

2022

Plan

- Introduction
- Recap: NLP approaches
- Architecture
- Pre-training & Fine-tuning
- Ablation studies
- Feature-based
- Questions

NLP approaches

- BoW, TF-IDF
- Word2Vec, GloVe
- CoVe, ELMo
- GPT, BERT

Bidirectional vs unidirectional

Bidirectional Transformer

Left-to-right transformer

Concatenation of independently trained left-to-right and right-to-left LSTM

Output Transformer architecture Probabilities Softmax Linear Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Feed Attention $N \times$ Forward Add & Norm $N \times$ Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional 6 Positional Encoding Encoding Output Input Embedding Embedding Inputs Outputs (shifted right)

Input representation

Pre-training & Fine-tuning

Pre-training. Masked language modelling

1. 80% of the time:

Replace the word with the [MASK] token, e.g.: George is telling you about BERT -> [MASK] is telling you about BERT

- 2. 10% of the time: Replace the word with a random word, e.g.: George is telling you about BERT -> Crocodile is telling you about BERT
- 3. 10% of the time: Keep the word unchanged, e.g.: George is telling you about BERT (The purpose of this is to bias the representation towards the actual observed word)

Pre-training. Next sentence prediction

Input:

[CLS] the man wen to [MASK] store [SEP] he bought a gallon [MASK] milk [SEP]

Label:

IsNext

Input:

[CLS] the man [MASK] to the store [SEP] penguin [MASK] are flight ##less birds [SEP]

Label:

NotNext

Pre-training data

- 1. BooksCorpus (800M words)
- 2. English Wikipedia (2500M words)

It is crucial to use a document-level corpus rather than a shuffled sentence-level corpus in order to extract long contiguous sequences.

Fine-tuning

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b) Single Sentence Classification Tasks: SST-2, CoLA

Fine-tuning

(c) Question Answering Tasks: SQuAD v1.1

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Benchmarks. GLUE

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard). The number below each task denotes the number of training examples.

Benchmarks. SQuAD

SQuAD 1.1

SQ	uAD	2.0	

System		ev	Te		System	D	Dev Te		st
	EM	F1	EM	F1		EM	F1	EM	F1
Top Leaderboard System	s (Dec	10th,	2018)						
Human	-	-	82.3	91.2	Top Leaderboard Systems	(Dec	10th,	2018)	
#1 Ensemble - nlnet	-	-		91.7	Human	86.3	89.0	86.9	89.5
#2 Ensemble - QANet	-	-	84.5	90.5	#1 Single - MIR-MRC (F-Net)	_	_	74.8	78.0
Publishe	ed				#2 Single - nlnet	_	_	74.2	
BiDAF+ELMo (Single)	-	85.6	-	85.8	#2 Single - Innet			74.2	//.1
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5	Publishe	d			
Ours					unet (Ensemble)	_	_	71.4	74.9
BERT _{BASE} (Single)	80.8	88.5	-	-	SLQA+ (Single)	_		71.4	
BERT _{LARGE} (Single)	84.1	90.9	-	-	DEQTI (Bligie)			71.4	, 4.4
BERT _{LARGE} (Ensemble)	85.8	91.8	-	-	Ours				
BERT _{LARGE} (Sgl.+TriviaQA)						787	Q1 0	80.0	Q2 1
BERT _{LARGE} (Ens.+TriviaQA)	86.2	92.2	87.4	93.2	BERT _{LARGE} (Single)	70.7	01.9	00.0	05.1

Benchmarks. Ablation studies and feature-based approach

Ablation studies

	Dev Set							
Tasks	MNLI-m	QNLI	MRPC	SST-2	SQuAD			
	(Acc)	(Acc)	(Acc)	(Acc)	(F1)			
BERTBASE	84.4	88.4	86.7	92.7	88.5			
No NSP	83.9	84.9	86.5	92.6	87.9			
LTR & No NSP	82.1	84.3	77.5	92.1	77.8			
+ BiLSTM	82.1	84.1	75.7	91.6	84.9			

Feature-based approach

System	Dev F1	Test F1
ELMo (Peters et al., 2018a)	95.7	92.2
CVT (Clark et al., 2018)	-	92.6
CSE (Akbik et al., 2018)	-	93.1
Fine-tuning approach		
BERT _{LARGE}	96.6	92.8
BERT _{BASE}	96.4	92.4
Feature-based approach (BERT _{BASE})		
Embeddings	91.0	-
Second-to-Last Hidden	95.6	-
Last Hidden	94.9	-
Weighted Sum Last Four Hidden	95.9	-
Concat Last Four Hidden	96.1	-
Weighted Sum All 12 Layers	95.5	

Questions

- 1. В чем заключается главное архитектурное отличие BERT от GPT?
- 2. Для каких типов задач особенно важны bidirectionality и использование Next sentence prediction во время pre-training?
- 3. [MASK] токен используется во время pre-training, но не используется во время fine-tuning, что делается для того, чтобы смягчить последствия этого?

Resources

- 1. https://arxiv.org/pdf/1810.04805.pdf (original paper)
- 2. http://peterbloem.nl/blog/transformers (blog post)
- 3. https://arxiv.org/abs/1706.03762 (Attention is all you need)
- 4. https://lena-voita.github.io/nlp_course/transfer_learning.html (blog post / NLP textbook)