IEEE 802.15.4

IEEE 802.15.4

- Defines PHYS and MAC layer for wireless Personal Area networks (PAN)
 - In the license-free ISM radio bands
 - Low range: max. 75m
 - Low rate: max. 250 kbits/s
 - Designed for low-power devices
- What would be the alternatives?
 - IEEE 802.15.1 (Bluetooth). Energy-saving, simplified version: BLE (Bluetooth Low Energy)
 - IEEE 802.11 (WiFi)
 - Advantage of IEEE 802.15.4:
 - networks can form different types of topologies, not only master-slave binding like Bluteooth
 - easier to implement, much less complex than WiFi with its base stations, network associations, etc.

Physical Layer

- In the 868 MHz 868.6 MHz band (only in Europe)
 - 1 channel ("channel 0")
 - 20 kbit/s
- In the 902 MHz 928 MHz band (only in USA)
 - 10 channels ("channels 1 − 10")
 - 30 kbit/s
- In the 2.4 GHz band
 - 16 channels ("channels 11 26)
 - 250 kbit/s
 - Quadrature Phase Shift Keying + Direct-Sequence Spread Spectrum modulation (one form of CDMA)

Physical Layer (2)

- The devices we use in this course use the 2.4 GHz frequency band
 - Note that a device can only send and receive on one channel at a given time
 - By default, Contiki uses channel 26
- Be carefull: channels 11-14, 16-19, 21-24 of 802.15.4 overlap with the popular channels 1,6,11 of IEEE 802.11b/g (WiFi)

Source: V. Kotsiou et al.

Network Topology

- Two types of nodes:
 - Full Functional Devices: can act as PAN coordinators
 - Reduced Functional Devices: simple & cheep
- Different topologies supported:

 Many upper-layer protocols define their own topologies on top of the Peer-to-Peer topology

Addresses

- 64-bit unique MAC address
- To save space in the frame header:
 - Nodes get 16-bit short address assigned by coordinator when joining the network
 - Short address is only valid inside PAN
- Inter-PAN communication possible:
 - Frames can contain an (optional) 16-bit PAN identifier

Frame Format

octets: 2	1 0/2		0/2	0/2/8		0/2	0/2/8	variable	2		
Frame Sequence control number		DA	N add	Destination address		ource PAN Intifier	Source address	Frame payload	Frame sequence check		
bits: 0-2	3	4	5	6		7–9	10–11	12–13	14–15		
Frame type	Security enabled	Frame pending	Ack. requested	Intr PAI		Reserved	Dst addr mode	Reserved	Src addr mode		

Source: Jürgen Schönwälder

- Maximum frame size: only 127 bytes!
- Different frame types: Beacon frames, Command frames, Data frames, ACK frames
- Optional frame encryption supported with various ciphers, e.g. AES-CCM 128 bit
 - Frame header is authenticated, payload is encrypted
 - Key management must be provided by higher layers

Medium Access Control

- Typically implemented in software (feasible since slow)
- CSMA/CA
 - 1. Wait until channel is idle: measure signal strength at antenna
 - 2. Once channel is free: first wait random backoff interval (0-2.24ms), then start sending
 - 3. Receiver checks CRC: if wrong, frame is discarded
- MAC layer can send ACK frame
 - ACK frames are optional. Many upper-layer protocols (e.g. TCP) implement their own ACK mechanism

Unslotted Mode

- In unslotted mode, only CSMA/CA is used
- Advantage:
 - Very simple to implement
- But:
 - Receiver has to listen continuously (60mW) and can't sleep (<5mW)
 - Not suitable for real-time applications due to delays caused by collisions

Slotted Mode

Superframe structure

Source: Jürgen Schönwälder

B = Beacon frame periodically sent by coordinator

CAP = "Contention Access Period" = CSMA/CA period

CFP = "Contention Free Period" = Guaranteed timeslots assigned by coordinator to nodes

Properties:

- Complex. Requires coordinator to assign timeslots.
- Allows real-time applications: nodes know exactly when they can send without collisions
- Nodes can sleep during inactivity period

Time Slotted Channel Hopping (TSCH)

- In Unslotted and Slotted Mode, all devices use the same channel
- In TSCH, all 16 IEEE 802.15.4 channels are used with timeslots
 - typical timeslot length: 10ms (= 1 frame)
 - a timeslot can be shared with other nodes (with CSMA/CA) or be exclusively dedicated to a sender node
- A scheduling scheme decides which timeslots are used by which sender→receiver pair
- Example scheduling (with dedicated timeslots):

Source: Duquennoy et al., 2017

Time Slotted Channel Hopping (TSCH) (2)

TSCH uses channel hopping: the scheduling cycle repeats, but on a different frequency in each cycle!

Offset	A->B	B->C	C->D							
Ö			A->B	B->C	C->D					
Channel										
har										
0										
	Time Offset									

- Advantages of TSCH:
 - Thanks to channel hopping, if a channel (a certain frequency band) has a lot of external interferences, the impact on the communication is smaller
 - Nodes know exactly when they have to wake up to send or receive. They can sleep during the other timeslots

Time Slotted Channel Hopping (TSCH) (3)

- How is the scheduling determined?
- Many implementations possible. Active research topic!
 - Static approach: schedule predetermined by owner
 - Centralized approach: Nodes send their communication requests to a scheduler (e.g. the PAN coordinator device) which calculates a schedule and sends it to all nodes
 - Decentralized approach: nodes exchange information about their communication demands
- TSCH development happens in Contiki-NG:

https://github.com/contiki-ng/contiki-ng/wiki/Documentation:-TSCH-and-6TiSCH

Above IEEE 802.15.4

- IEEE 802.15.4 only defines PHYS and MAC layer
- What to run on top of it?
 - Rime (protocol stack in old Contiki 3.0)
 - ISA100 (used in industrial automation)
 - WirelessHART
 - MiWi
 - ZigBee: used in some Smart Home products. Not free. Defines protocols as well as a high-level application framework.
 - IPv6 with 6LoWPAN (more on this next week)