## Superficies paramétricas

Jana Rodriguez Hertz Cálculo 3

**IMERL** 

14 de marzo de 2012

## parametrización de una superficie

definición (parametrización de una superficie)

## parametrización de una superficie

### definición (parametrización de una superficie)

ullet  $\Phi: D \subset \mathbb{R}^2 \to \mathbb{R}^3$  continua e inyectiva

## parametrización de una superficie

### definición (parametrización de una superficie)

- $\Phi: D \subset \mathbb{R}^2 \to \mathbb{R}^3$  continua e inyectiva
- o parametrización de una superficie si

### definición (parametrización de una superficie)

- $\Phi: D \subset \mathbb{R}^2 \to \mathbb{R}^3$  continua e inyectiva
- parametrización de una superficie si
- $\Phi(u,v) = (x,y,z) \text{ con}$

$$(S) \left\{ \begin{array}{l} x = x(u, v) \\ y = y(u, v) \\ z = z(u, v) \end{array} \right.$$

## parametrización de una superficie



### esfera



esfera centro 0 radio r

#### esfera



$$\begin{cases} x = r \cos u \cos v \\ y = r \sin u \cos v \\ z = r \sin v \end{cases}$$
$$u \in (0, 2\pi), \ v \in (-\frac{\pi}{2}, \frac{\pi}{2})$$

esfera centro 0 radio r

#### esfera



$$\begin{cases} x = r \cos u \cos v \\ y = r \sin u \cos v \\ z = r \sin v \end{cases}$$

$$u\in(0,2\pi),\ v\in(-rac{\pi}{2},rac{\pi}{2})$$
 falta una curva

esfera centro 0 radio r

#### esfera



$$\begin{cases} x = r \cos u \cos v \\ y = r \sin u \cos v \\ z = r \sin v \end{cases}$$

 $u \in (0, 2\pi), \ v \in (-\frac{\pi}{2}, \frac{\pi}{2})$  falta una curva parametrizar la curva que falta

esfera centro 0 radio r



parametrizar el elipsoide

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = \frac{1}{2}$$

cilindro

## cilindro



cilindro elíptico centro 0, radios a y b



cilindro

#### cilindro



$$\begin{cases} x = a\cos u \\ y = b\sin u \\ z = v \end{cases}$$

$$u \in (0, 2\pi), v \in (-1, 1)$$

cilindro elíptico centro 0, radios a y b

toro

### toro



toro

#### toro



$$\begin{cases} x = (a + r \cos u) \cos v \\ y = (a + r \cos u) \sin v \\ z = r \sin u \end{cases}$$

$$u \in (-\pi, \pi), \ v \in (0, 2\pi)$$

toro

## observación

#### observación

hay infinitas formas de parametrizar una misma superficie

## vectores tangentes

```
definición (vectores tangentes)
```

## vectores tangentes

### definición (vectores tangentes)

ullet  $\Phi: D \subset \mathbb{R}^2 \to \mathbb{R}^3$  diferenciable en  $(u_0, v_0)$ 

- $\Phi: D \subset \mathbb{R}^2 \to \mathbb{R}^3$  diferenciable en  $(u_0, v_0)$
- $u \mapsto \Phi(u, v_0) y$

- $\Phi: D \subset \mathbb{R}^2 \to \mathbb{R}^3$  diferenciable en  $(u_0, v_0)$
- $u \mapsto \Phi(u, v_0)$  y
- $v \mapsto \Phi(u_0, v)$  curvas diferenciables en  $(u_0, v_0)$

- $\Phi: D \subset \mathbb{R}^2 \to \mathbb{R}^3$  diferenciable en  $(u_0, v_0)$
- $u \mapsto \Phi(u, v_0)$  y
- $v \mapsto \Phi(u_0, v)$  curvas diferenciables en  $(u_0, v_0)$
- llamamos vectores tangentes en las direcciones u y v:

- $\Phi: D \subset \mathbb{R}^2 \to \mathbb{R}^3$  diferenciable en  $(u_0, v_0)$
- $u \mapsto \Phi(u, v_0) y$
- $v \mapsto \Phi(u_0, v)$  curvas diferenciables en  $(u_0, v_0)$
- llamamos vectores tangentes en las direcciones u y v:

•

$$\Phi_u(u_0, v_0) = \frac{\partial \Phi}{\partial u} = (x_u, y_u, z_u)$$

- $\Phi: D \subset \mathbb{R}^2 \to \mathbb{R}^3$  diferenciable en  $(u_0, v_0)$
- $u \mapsto \Phi(u, v_0)$  y
- $v \mapsto \Phi(u_0, v)$  curvas diferenciables en  $(u_0, v_0)$
- llamamos vectores tangentes en las direcciones u y v:

•

$$\Phi_u(u_0, v_0) = \frac{\partial \Phi}{\partial u} = (x_u, y_u, z_u)$$

0

$$\Phi_{\nu}(u_0, v_0) = \frac{\partial \Phi}{\partial \nu} = (x_{\nu}, y_{\nu}, z_{\nu})$$

## vectores tangentes en las direcciones u y v



## vector tangente a la superficie

vector tangente a la superficie

## vector tangente a la superficie

## vector tangente a la superficie

•  $\Phi: D \subset \mathbb{R}^2 \to \mathbb{R}^3$  diferenciable en  $(u_0, v_0)$ 

### vector tangente a la superficie

- $\Phi: D \subset \mathbb{R}^2 o \mathbb{R}^3$  diferenciable en  $(u_0, v_0)$
- $t \mapsto \Phi(u(t), v(t)) = \alpha(t)$  curva en la superficie

### vector tangente a la superficie

- $\Phi: D \subset \mathbb{R}^2 \to \mathbb{R}^3$  diferenciable en  $(u_0, v_0)$
- $t \mapsto \Phi(u(t), v(t)) = \alpha(t)$  curva en la superficie
- ullet vector tangente  ${\bf a} \ \alpha$

$$\left. \frac{d\alpha}{dt} \right|_{t=t_0} = \dot{\alpha}(t_0)$$

### vector tangente a la superficie

- $\Phi: D \subset \mathbb{R}^2 \to \mathbb{R}^3$  diferenciable en  $(u_0, v_0)$
- $t \mapsto \Phi(u(t), v(t)) = \alpha(t)$  curva en la superficie
- ullet vector tangente **a**  $\alpha$

$$\left. \frac{d\alpha}{dt} \right|_{t=t_0} = \dot{\alpha}(t_0)$$

llamamos vector tangente a la superficie a todos los  $\dot{\alpha}$ 

## proposición

#### proposición

todos los vectores tangentes a  $\Phi(D)$  son combinación lineal de

$$\Phi_u(u_0, v_0)$$

$$\Phi_{\nu}(u_0,v_0)$$

## proposición

### proposición

todos los vectores tangentes a  $\Phi(D)$  son combinación lineal de

$$\Phi_u(u_0, v_0)$$

У

$$\Phi_{\nu}(u_0, v_0)$$

concretamente,

## proposición

```
proposición
```

# proposición

### proposición

 $\quad \Phi: D \subset \mathbb{R}^2 \to \mathbb{R}^3 \text{ diferenciable en } (u_0, v_0)$ 

### proposición

- $\Phi: D \subset \mathbb{R}^2 \to \mathbb{R}^3$  diferenciable en  $(u_0, v_0)$
- $\dot{\alpha}(t_0)$  vector tangente a  $t \mapsto \Phi(u(t), v(t))$

- $\Phi: D \subset \mathbb{R}^2 \to \mathbb{R}^3$  diferenciable en  $(u_0, v_0)$
- $\dot{\alpha}(t_0)$  vector tangente a  $t \mapsto \Phi(u(t), v(t))$

$$\dot{\alpha}(t_0) = \dot{u}(t_0)\Phi_u(u_0, v_0) + \dot{v}(t_0)\Phi_v(u_0, v_0)$$

puntos regulares

## puntos regulares

definición (punto regular)

puntos regulares

## puntos regulares

#### definición (punto regular)

ullet  $\Phi: D \subset \mathbb{R}^2 o \mathbb{R}^3$  diferenciable en  $(u_0, v_0)$ 

puntos regulares

## puntos regulares

#### definición (punto regular)

- $\Phi: D \subset \mathbb{R}^2 \to \mathbb{R}^3$  diferenciable en  $(u_0, v_0)$
- $\Phi(u_0, v_0)$  punto regular de la superficie  $\Phi(D)$

# puntos regulares

### definición (punto regular)

- $\Phi: D \subset \mathbb{R}^2 \to \mathbb{R}^3$  diferenciable en  $(u_0, v_0)$
- $\Phi(u_0, v_0)$  punto regular de la superficie  $\Phi(D)$
- si

$$\Phi_u \wedge \Phi_v \neq \vec{0}$$
 en  $(u_0, v_0)$ 

### ejemplo

## ejemplo

#### ejemplo

considerar

$$(\Phi) \left\{ \begin{array}{l} x = u \cos v \\ y = u \sin v \\ z = u \end{array} \right.$$

## ejemplo

### ejemplo

considerar

$$(\Phi) \begin{cases} x = u \cos v \\ y = u \sin v \\ z = u \end{cases}$$

• qué superficie representa?

## ejemplo

#### ejemplo

considerar

$$(\Phi) \begin{cases} x = u \cos v \\ y = u \sin v \\ z = u \end{cases}$$

- qué superficie representa?
- es diferenciable?

## ejemplo

#### ejemplo

considerar

$$(\Phi) \left\{ \begin{array}{l} x = u \cos v \\ y = u \sin v \\ z = u \end{array} \right.$$

- qué superficie representa?
- es diferenciable?
- es regular?











#### versores normales

```
definición (versor normal)
```

#### versores normales

definición (versor normal)

Φ superficie paramétrica

#### versores normales

#### definición (versor normal)

- Φ superficie paramétrica
- regular en  $(u_0, v_0)$

#### versores normales

#### definición (versor normal)

- Φ superficie paramétrica
- regular en  $(u_0, v_0)$
- Ilamamos versores normales a los vectores  $\vec{n}$  y  $-\vec{n}$

#### versores normales

#### definición (versor normal)

- Φ superficie paramétrica
- regular en  $(u_0, v_0)$
- Ilamamos versores normales a los vectores  $\vec{n}$  y  $-\vec{n}$
- donde

$$\vec{n} = \frac{\Phi_u \wedge \Phi_v}{\|\Phi_u \wedge \Phi_v\|}$$

#### vector normal



#### vector normal



## ejemplo

## ejemplo

#### ejemplo

 S superficie dada por el gráfico de una función diferenciable

## ejemplo

- S superficie dada por el gráfico de una función diferenciable
- $f: D \subset \mathbb{R}^2 \to \mathbb{R}$

- S superficie dada por el gráfico de una función diferenciable
- $f: D \subset \mathbb{R}^2 \to \mathbb{R}$

•

$$(S) \begin{cases} x = u \\ y = v \\ z = f(u, v) \end{cases}$$

## ejemplo



## ejemplo



S es regular

## ejemplo

### ejemplo

100(x\*x + y\*y) / (x\*x + y\*y) ----



• S es regular

•

$$\vec{n} = \frac{(-f_u, -f_v, 1)}{\|(-f_u, -f_v, 1)\|}$$

### orientación

```
definición (orientación)
```

### orientación

#### definición (orientación)

• Φ diferenciable y regular en D

### orientación

#### definición (orientación)

- Φ diferenciable y regular en D
- orientación de Φ

### orientación

#### definición (orientación)

- Φ diferenciable y regular en D
- orientación de Φ
- elección continua de  $\vec{n}$  o  $-\vec{n}$

### observación

• la banda de Moebius

### observación

#### la banda de Moebius



### observación

• la banda de Moebius



• es una superficie no paramétrica

### observación

la banda de Moebius



- es una superficie no paramétrica
- (se puede armar con 2 superficies paramétricas)

orientación

### observación

• la banda de Moebius no es orientable

orientación

#### observación

• la banda de Moebius no es orientable



definición (plano tangente)

### definición (plano tangente)

•  $\Phi$  regular en  $(u_0, v_0)$ 

#### definición (plano tangente)

- $\Phi$  regular en  $(u_0, v_0)$
- plano tangente a  $\Phi(D)$  en  $(u_0, v_0)$

#### definición (plano tangente)

- $\Phi$  regular en  $(u_0, v_0)$
- plano tangente a  $\Phi(D)$  en  $(u_0, v_0)$

0

$$(x-x_0, y-y_0, z-z_0)\vec{n}=0$$

#### definición (plano tangente)

- $\Phi$  regular en  $(u_0, v_0)$
- plano tangente a  $\Phi(D)$  en  $(u_0, v_0)$

0

$$(x-x_0, y-y_0, z-z_0)\vec{n}=0$$

• donde  $(x_0, y_0, z_0) = \Phi(u_0, v_0)$ 





ejemplo

#### ejemplo

• en el ejemplo de hoy

$$(S) \begin{cases} x = u \\ y = v \\ z = f(u, v) \end{cases}$$

#### ejemplo

• en el ejemplo de hoy

$$(S) \begin{cases} x = u \\ y = v \\ z = f(u, v) \end{cases}$$

• la ecuación del plano tangente en el punto  $(u_0, v_0)$ 

#### ejemplo

• en el ejemplo de hoy

$$(S) \begin{cases} x = u \\ y = v \\ z = f(u, v) \end{cases}$$

- la ecuación del plano tangente en el punto  $(u_0, v_0)$
- es

$$(x - u_0, y - v_0, z - f(u_0, v_0))(-f_u, -f_v, 1) = 0$$

# proposición

```
proposición
```

### proposición

#### proposición

• el plano tangente es el plano que pasa por  $\Phi(u_0, v_0)$  generado por los vectores

$$\Phi_u$$
 y  $\Phi$ 

### proposición

#### proposición

• el plano tangente es el plano que pasa por  $\Phi(u_0, v_0)$  generado por los vectores

$$\Phi_u$$
 y  $\Phi_v$ 

• evaluados en  $(u_0, v_0)$