Amtliche Bekanntmachungen der TU Bergakademie Freiberg

DE XADENIE.

Nr. 18, Heft 2 vom 04. Mai 2023

Modulhandbuch

für den

Masterstudiengang

Computational Materials

Science

Inhaltsverzeichnis

Abkürzungen	3
Atomistic Simulation Methods	4
Ceramic Engineering	5
Continuum Mechanics	6
Crystal Plasticity, Texture and Anisotropy	8
Deutsch A1/ 1. Semester	10
Discrete Element Method	11
Experimental Methods of Structure Characterization of Matters	12
Fracture Mechanics Computations	13
Fundamentals of Microstructures	14
Introduction to High Performance Computing and Optimization	15
Introduction to Scientific Programming	17
Machine Learning for Materials Scientists	18
Master Thesis Computational Science	20
Mechanics of Materials	21
Metallic Materials	22
Micromechanics and Homogenization Principles	23
Nonlinear Finite Element Methods	25
Numerical Analysis of Differential Equations	27
Parameter Identification in Nonlinear Solid Mechanics	28
Personal Programming Project	30
Plasticity	31
Research Seminar and Journal Club	32
Selected Topics of Solid State Physics	33
Semiconductors	34
Software Tools for Computational Materials Scientists	35
Stochastic Methods for Materials Science	37
Theory, Modelling and Simulation of Microstructures	38
Thermodynamics of Materials	40

Abkürzungen

KA: schriftliche Klausur / written exam

MP: mündliche Prüfung / oral examination

AP: alternative Prüfungsleistung / alternative examination

PVL: Prüfungsvorleistung / prerequisite

MP/KA: mündliche oder schriftliche Prüfungsleistung (abhängig von Teilnehmerzahl) / written or

oral examination (dependent on number of students)

SS, SoSe: Sommersemester / sommer semester WS, WiSe: Wintersemester / winter semester

SX: Lehrveranstaltung in Semester X des Moduls / lecture in module semester x

SWS: Semesterwochenstunden

Data:	ADVTCMS. MA. Nr. 3587 Version: 16.02.2022 Start Year: WiSe 2018
Data.	/ Examination number:
	44511
Module Name:	Atomistic Simulation Methods
(English):	
Responsible:	Eidel, Bernhard / Prof. DrIng. habil.
Lecturer(s):	Prakash, Aruna / DrIng.
	Eidel, Bernhard / Prof. DrIng. habil.
Institute(s):	Institute of Mechanics and Fluid Dynamics
Duration:	1 Semester(s)
Competencies:	Students will get familiar with the most recent developments in
	computational materials science and current state-of-the-art simulation
	methods for atomistic problems. They will learn the theoretical
	background of advanced methods on the nanoscale and will be able to
	apply those to new problems.
Contents:	This course will cover atomistics subjects such as atomic interactions,
	validation of potential functions, structure generation, surface energies
	as well as simulation and critical assessment of three-dimensional
	nanoscale specimens. Students will get an overview over current
	developments and will also be able to study such phenomena by hands-
	on simulations using open source software. Theoretical background and
	application of advanced methods for data analysis and visualization of
	atomic defect structures complement this course. The main emphasis of
	the exercises is on applying the methods from the lecture to problems
	with materials scientific relevance.
Literature:	with materials scientific relevance.
Types of Teaching:	S1 (WS): Lectures (2 SWS)
l ypes of reacting.	S1 (WS): Exercises (1 SWS)
Pre-requisites:	Recommendations:
i re requisites.	basic experience with a Linux environment (bash/shell); knowledge of
	crystallography
Frequency:	yearly in the winter semester
	For the award of credit points it is necessary to pass the module exam.
Points:	The module exam contains:
l offics.	MP/KA (KA if 8 students or more) [MP minimum 15 min / KA 90 min]
	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
	der Modulprüfung. Die Modulprüfung umfasst:
	MP/KA (KA bei 8 und mehr Teilnehmern) [MP mindestens 15 min / KA 90
Credit Points:	min] և
Grade:	The Grade is generated from the examination result(s) with the following
Grade:	
	weights (w):
Morkloadi	MP/KA [w: 1] The workload is 120b. It is the result of 45b attendance and 75b solf
Workload:	The workload is 120h. It is the result of 45h attendance and 75h self-
	studies.

Data:	CerEng. MA. Nr. / Ex- Version: 15.06.2016 📜 Start Year: WiSe 2016
Bata.	amination number:
	40912
Module Name:	Ceramic Engineering
(English):	Ceramic Engineering
Responsible:	Aneziris, Christos G. / Prof. DrIng.
Lecturer(s):	Aneziris, Christos G. / Prof. DrIng. Aneziris, Christos G. / Prof. DrIng.
Institute(s):	Institute of Ceramics, Refractories and Composite Materials
Duration:	1 Semester(s)
Competencies:	Students will understand, apply, improve and generate ceramic
Competencies.	materials:
	materials:
	a in micro etructural decian
	in micro structural design,
	ceramic processing,
	testing and
	• application
Contents:	Most important ingredients are:
	definition, bonding,
	 micro structure, density, porosity
	mechanical properties,
	 thermal and thermo mechanical properties
	chemical properties
	• sintering
	basics in ceramic technology, theoretical
	 ceramic technology pressing/extruding/casting, experimental
	engineering ceramics, alumina/zirconia
	engineering ceramics, silicon carbide
	 functional ceramics, non linear dielectric/piezoelectric properties
	- barium titanate
	 refractories, carbon bonded materials
	silicate ceramics
	Exercise: theoretical density / Enthalpy
	Visiting of ceramic plant or research institute
Literature:	Introduction to Ceramics, David Kingery
	Introduction to the Principles of Ceramic Processing, James Reed
	Physical Ceramics, Yet-Ming Chiang, Dunbar Birnie III, W. David Kingery
Types of Teaching:	S1 (WS): Incl. Exercises / Lectures (2 SWS)
Pre-requisites:	Recommendations:
l re requisites.	Basic fundamentals of materials science
Frequency:	yearly in the winter semester
	For the award of credit points it is necessary to pass the module exam.
Points:	The module exam contains:
i onics.	MP/KA (KA if 6 students or more) [MP minimum 30 min / KA 90 min]
	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
	der Modulprüfung. Die Modulprüfung umfasst:
	MP/KA (KA bei 6 und mehr Teilnehmern) [MP mindestens 30 min / KA 90
Crodit Points:	min]
Credit Points:	The Crede is generated from the aversination result/s) with the Collection
Grade:	The Grade is generated from the examination result(s) with the following
	weights (w):
AA/aaldaad	MP/KA [w: 1]
Workload:	The workload is 90h. It is the result of 30h attendance and 60h self-
	studies.

Data:	KOTM. MA. Nr. 3120 / Version: 18.05.2017 5 Start Year: SoSe 2018
Data.	Examination number:
	41907
Module Name:	Continuum Mechanics
(English):	Continuum Preenames
Responsible:	Kiefer, Björn / Prof. PhD.
Lecturer(s):	Kiefer, Björn / Prof. PhD.
Institute(s):	Institute of Mechanics and Fluid Dynamics
Duration:	1 Semester(s)
Competencies:	Students will elevate their understanding of the mathematical
competencies.	foundations of continuum solid mechanics. Moreover, they will be familiar with classical theoretical approaches that describe the kinematics, kinetics and constitutive behavior of three-dimensional continua at small and large deformations, including the governing balance laws. The successful participant will be able to apply this knowlegde to the modeling of specific problems in geometrically and physically nonlinear solid mechanics.
Contents:	Most important ingredients are:
	 tensor algebra and analysis balance laws (mass, momentum, energy, entropy) thermodynamic consistency spatial and material descriptions kinematics of continua at finite deformations definition of various stress measures constitutive theory
Literature:	P. Chadwick: Continuum Mechanics: Concise Theory and Problems,
	Dover Publications, 1999 Gurtin, Fried, Anand: The Mechanics and Thermodynamics of Continua, Cambridge University Press, 2009 Holzapfel: Nonlinear Solid Mechanics: A Continuum Approach For Engineering. John Wiley & Sons, 2000 Lai, Rubin, Krempl: Introduction to Continuum Mechanics. Butterworth-Heinemann, 1993 Malvern: Introduction to the Mechanics of a Continuous Medium, Prentice Hall, 1969
Types of Teaching:	S1 (SS): Lectures (2 SWS) S1 (SS): Taught in English and German. / Exercises (1 SWS)
Pre-requisites:	Recommendations:
r re-requisites.	Basic knowledge in engineering mechanics
Frequency:	yearly in the summer semester
	For the award of credit points it is necessary to pass the module exam.
Points:	The module exam contains:
i onics.	MP/KA (KA if 10 students or more) [MP minimum 30 min / KA 120 min]
	Possible in German.
	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: MP/KA (KA bei 10 und mehr Teilnehmern) [MP mindestens 30 min / KA 120 min] In Deutsch möglich.
Credit Points:	4
Grade:	The Grade is generated from the examination result(s) with the following weights (w):
	MP/KA [w: 1]

Workload:	The workload is 120h. It is the result of 45h attendance and 75h self-
	studies. To help deepen the understanding of the subject matter,
	(voluntary) homework problems are given out along with the exercise
	sheets.

Data:	CPTA MA Nr. 3658 / Ex- Version: 16.02.2022 📜 Start Year: SoSe 2019
	amination number:
	44509
Module Name:	Crystal Plasticity, Texture and Anisotropy
(English):	Crystal Plasticity, Texture and Anisotropy
Responsible:	Eidel, Bernhard / Prof. DrIng. habil.
Lecturer(s):	Prakash, Aruna / DrIng.
	<u> Eidel, Bernhard / Prof. DrIng. habil.</u>
Institute(s):	Institute of Mechanics and Fluid Dynamics
Duration:	1 Semester(s)
Competencies:	Students will be exposed to the materials scientific fundamentals of
	plasticity in single and polycrystals. They will learn mathematical and
	conceptual concepts concerning orientation distributions, texture and
	anisotropy and will be able to apply this knowledge for understanding
	material properties. They will learn about experimental methods for
	synthesis of polycrystalline materials, for testing and characterization.
	Students will be introduced to different types of representing the
	particular deformation behaviour in polycrystalline materials, i.e., mean
	field and full field approaches. They will be able to understand positive
	and negative aspects of these models and can transfer their knowlege
	to new models. An other emphasis is on fundamental concepts of grain
	boundaries together with approaches towards modeling them. The
	students will get acquainted with various tools for data analysis and
	simulations and will be able to apply them to new problems.
Contents:	Mathematical concepts of orientation distributions, description
Contents.	and characterization of grain distributions
	Texture: Definition, typical textures
	Experimental methods for synthesis, testing and characterization
	Basics of most commonly used crystal plasticity models
	Grain boundaries, 5-parameter description, experimental and
	modeling aspects
	modeling aspects
	The above topics will be extended in the hands-on
	tutorial/exercise/programming sessions, where the emphasis will be on
	applying the methods learnt in the lecture.
Literature:	Crystal Plasticity Finite Element Methods: In Materials Science
Literature.	and Engineering; F. Roters, P. Eisenlohr, T. Bieler and D. Raabe,
	2010, Wiley Publishers
	2. Texture and Anisotropy; U.F. Kocks, C. Tomé and HR. Wenk,
	1998, Cambridge University Press
	3. The measurement of grain boundary geometry; V. Randle, 1993,
	CRC Press
	4. Texture Analysis in Materials Science, HJ. Bunge, 1983, Elsevier
	5. Grain Boundary and Crystalline Plasticity, L. Priester, 2013, Wiley
	Publishers
Types of Teaching:	S1 (SS): Lectures (2 SWS)
l ypes or reaching.	S1 (SS): Exercises (1 SWS)
 Pre-requisites:	Recommendations:
r i e-i equisites:	Mechanics of Materials, 2022-02-16
	Minimum requirements are scientific programming skills (as, e.g.,
	agcuired during "Software Tools for Computational Materials Scientists
	1") and a basic understanding of plasticity (as, e.g., aqcuired from
-	"Fundamentals of Microstructures").
Frequency:	yearly in the summer semester
	dit For the award of credit points it is necessary to pass the module exam.

Points:	The module exam contains: PVL: Calculation and simulation MP/KA (KA if 6 students or more) [MP minimum 30 min / KA 90 min] PVL have to be satisfied before the examination. Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst:
	PVL: Berechnungen und Simulation MP/KA (KA bei 6 und mehr Teilnehmern) [MP mindestens 30 min / KA 90 min] PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.
Credit Points:	4
Grade:	The Grade is generated from the examination result(s) with the following weights (w): MP/KA [w: 1]
Workload:	The workload is 120h. It is the result of 45h attendance and 75h self- studies. Der Zeitaufwand beträgt 150h und setzt sich zusammen aus 60h Präsenzzeit und 90h Selbststudium.

Daten:	DEU A1/ 1.Sem. BA. Nr. Stand: 04.08.2017 Start: WiSe 2016 Start: WiSe 2016 71101
Modulname:	Deutsch A1/ 1. Semester
(englisch):	German A 1/ 1st Semester
Verantwortlich(e):	<u>Polanski, Katja</u>
Dozent(en):	
Institut(e):	Internationales Universitätszentrum/ Sprachen
Dauer:	1 Semester
Qualifikationsziele / Kompetenzen:	Im Kurs werden Grundlagen in Phonetik, Orthographie, Grammatik und Lexik vermittelt. Die Teilnehmer erwerben Grundkenntnisse und
	Grundfertigkeiten im Hören, Sprechen, Lesen und Schreiben auf der Basis der Allgemeinsprache sowie landeskundliche Kenntnisse.
Inhalte:	Kommunikation im Alltag (Menschen kennen lernen, Einkaufen, Restaurantbesuch, Tagesabläufe, Uhrzeit); Grammatik: zum Beispiel
	Fragestellungen, Zahlen, Konjugation der Verben, Präsenz und Präteritum, Mengenangaben, Plural der Nomen, Komposita
Typische Fachliteratur:	Begegnungen A1+, Schubert Verlag
Lehrformen:	S1 (WS): Übung (4 SWS)
Voraussetzungen für	Empfohlen:
die Teilnahme:	Keine Vorkenntnisse der deutschen Sprache notwendig
Turnus:	jährlich im Wintersemester
Voraussetzungen für	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
die Vergabe von	der Modulprüfung. Die Modulprüfung umfasst:
Leistungspunkten:	KA [90 min]
	PVL: Aktive Teilnahme an mindestens 80% des Unterrichts
	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.
Leistungspunkte:	4
Note:	Die Note ergibt sich entsprechend der Gewichtung (w) aus folgenden(r) Prüfungsleistung(en): KA [w: 1]
Arbeitsaufwand:	Der Zeitaufwand beträgt 120h und setzt sich zusammen aus 60h Präsenzzeit und 60h Selbststudium.

Data:	DisTheo. MA. Nr. 3206 / Version: 08.06.2017 🥦 Start Year: WiSe 2017
	Examination number:
	45102
Module Name:	Discrete Element Method
(English):	
Responsible:	Schwarze, Rüdiger / Prof. DrIng.
Lecturer(s):	Schwarze, Rüdiger / Prof. DrIng.
Institute(s):	Institute of Mechanics and Fluid Dynamics
Duration:	1 Semester(s)
	Students should remember the fundamentals of the discrete element
Competencies:	method. They should be able to distinguish the different numerical techniques and algorithms applied in the discrete element method. They should be able to apply the discrete element method to simple problems in the field of granular materials.
Contents:	Most important ingredients are:
	 modeling strategy (conceptual and numerical model); classification of DEM contact detection; interaction force-displacement laws, contact and friction laws algorithms for solving the equations of motion modelling of granular material introduction to simulation tools and software (Yade, LIGGHTS, etc.) practical hints; applications; practical exercises in 2d and 3d.
Literature:	Pöschel, T. & Schwager, T.: Computational Granular Dynamics, Springer Jing, L & Stephansson, O.: Fundamentals of Discrete Element Methods
	for Rock Engineering, Elsevier Matuttis, H.G. & Chen, J.: Understanding the Discrete Element Method, Wiley
Types of Teaching:	S1 (WS): Discrete Element Method / Lectures (2 SWS)
l pes of reaching.	S1 (WS): Discrete Element Method / Exercises (1 SWS)
Pre-requisites:	Recommendations:
rre-requisites.	Fundamental of Microstructures, 2010-12-02 Continuum Mechanics, 2016-07-11 Introduction to Scientific Programming, Fundamentals in mechanics
Frequency:	yearly in the winter semester
	For the award of credit points it is necessary to pass the module exam.
Points:	The module exam contains: MP/KA (KA if 5 students or more) [MP minimum 30 min / KA 60 min] Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: MP/KA (KA bei 5 und mehr Teilnehmern) [MP mindestens 30 min / KA 60
	min]
Credit Points:	4
Grade:	The Grade is generated from the examination result(s) with the following
	weights (w): MP/KA [w: 1]
Workload:	The workload is 120h. It is the result of 45h attendance and 75h selfstudies.

Data:	MechTest. MA. Nr. 3207 Version: 05.04.2018 Start Year: WiSe 2018
Data.	/ Examination number:
	50409
Module Name:	
	Experimental Methods of Structure Characterization of Matters
(English):	Defeie Devid / Bust Du non not bobil
Responsible:	Rafaja, David / Prof. Dr. rer. nat. habil.
Lecturer(s):	Wüstefeld, Christina / DrIng.
Institute(s):	Institute of Materials Science
Duration:	1 Semester(s)
Competencies:	Students get familiar with basic principles and applications of selected
	methods for microstructure analysis of matters (mainly optical, scanning
	and transmission electron microscopy, diffraction methods) and learn
	how these methods can be used for analysis of the real structure of
	materials.
Contents:	- Crystal symmetry operations, point and space groups in
	crystallography
	- Interaction of electrons, X-rays and neutrons with matter
	- Applications of optical, scanning and transmission electron microscopy,
	and X-ray, electron and neutron diffraction in the analysis of real
	structure and microstructure of matters:
	- Phase identification and quantification, use of
	crystallographic databases
	- Determination of the grain and crystallite size,
	- Global and local preferred orientation of crystallites
	- Residual stress analysis
Literature:	- L. Reimer: Scanning Electron Microscopy, Springer, Berlin 2010
	- V. Randle, O. Engler: Introduction to texture analysis, macrotexture,
	microtexture and orientation mapping, Gordon & Breach, Amsterdam,
	2000.
	- H.P. Klug, L.E. Alexander: X-ray diffraction procedures for
	polycrystalline and amorphous materials, New York, Wiley, 2nd edition
	1974.
	- C. Giacovazzo, H.L. Monaco, G. Artioli et al.: Fundamentals of
	Crystallography, IUCr Texts on Crystallography 15, 3rd edition, 2011
	- D.B. Williams, C.B. Carter: Transmission Electron Microscopy: A
Turn and af Tanadainan	Textbook for Materials Science, Springer, New York 2016
Types of Teaching:	S1 (WS): Lectures (3 SWS)
Pre-requisites:	Recommendations:
	Profound knowledge of English, basics in materials science, mechanics,
=	advanced mathematics, physics for scientists.
Frequency:	yearly in the winter semester
•	For the award of credit points it is necessary to pass the module exam.
Points:	The module exam contains:
	MP/KA (KA if 5 students or more) [MP minimum 30 min / KA 120 min]
	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
	der Modulprüfung. Die Modulprüfung umfasst:
	MP/KA (KA bei 5 und mehr Teilnehmern) [MP mindestens 30 min / KA
	120 min]
Credit Points:	4
Grade:	The Grade is generated from the examination result(s) with the following
	weights (w):
	MP/KA [w: 1]
Workload:	The workload is 120h. It is the result of 45h attendance and 75h self-
	studies.

Data:	FMC. MA. Nr. 3208 / Ex- Version: 01.11.2019 5 Start Year: WiSe 2017
	amination number:
	41908
Module Name:	Fracture Mechanics Computations
(English):	
Responsible:	Kiefer, Björn / Prof. PhD.
Lecturer(s):	<u>Kiefer, Björn / Prof. PhD.</u>
Institute(s):	Institute of Mechanics and Fluid Dynamics
Duration:	1 Semester(s)
Competencies:	Development of an understanding of the fracture of materials and
	structures from the point of view of a design engineer; students acquire
	knowledge about theoretical (numerical) stress analysis of cracked
	structures as well as fracture mechanics concepts of brittle, ductile and
	fatigue failure. Development of the ability to design fail-safe structures
	with defects, qualitatively assess the safety and durability as well as
	estimate the duration of life for subcritical crack growth under (random)
	in-service loads.
Contents:	Most important ingredients are: fundamentals of fracture mechanics,
	including fracture mechanics concepts and relevant load parameters for
	elastic and plastic materials under static as well as cyclic loading.
	Suitable Finite-Element techniques for the calculation of load
	parameters are introduced. The application of fracture mechanics
	concepts to the assessment of safety and durability of structures is
	demonstrated with the help of real-world examples.
Literature:	M. Kuna: Finite Elements in Fracture Mechanics: Theory - Numerics -
	Applications, Springer, 2013
	D. Gross, T. Seelig: Bruchmechanik – Mit einer Einführung in die
	Mikromechanik, Springer, 2011
	M. Kuna: Numerische Beanspruchungsanalyse von Rissen, FEM in der
	Bruchmechanik, Vieweg-Teubner 2010
	T. L. Anderson: Fracture Mechanics: Fundamentals and Applications,
	CRC Press 2004
Types of Teaching:	S1 (WS): Lectures (2 SWS)
Dan and in the	S1 (WS): Taught in English and German. / Exercises (2 SWS)
Pre-requisites:	Recommendations:
F	Basic knowledge in theoretical mechanics
Frequency:	yearly in the winter semester
Points:	For the award of credit points it is necessary to pass the module exam. The module exam contains:
Points:	
	MP/KA (KA if 12 students or more) [MP minimum 30 min / KA 120 min] Possible in German.
	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
	der Modulprüfung. Die Modulprüfung umfasst:
	MP/KA (KA bei 12 und mehr Teilnehmern) [MP mindestens 30 min / KA 120 min]
	In Deutsch möglich.
Credit Points:	F
Grade:	The Grade is generated from the examination result(s) with the following
oraue.	weights (w):
	MP/KA [w: 1]
 Workload:	The workload is 150h. It is the result of 60h attendance and 90h self-
WOI NIOUU.	studies.
	pradico.

D - L -	FUNDALCEO MA N	
Data:	FUNMICRO. MA. Nr. Version: 28.03.2022 5 Start Year: WiSe 2018	
	3209 / Examination	
	number: 44501	
Module Name:	Fundamentals of Microstructures	
(English):		
Responsible:	<u>Eidel, Bernhard / Prof. DrIng. habil.</u>	
Lecturer(s):	<u>Eidel, Bernhard / Prof. DrIng. habil.</u>	
Institute(s):	Institute of Mechanics and Fluid Dynamics	
Duration:	1 Semester(s)	
Competencies:	The students will learn theoretical aspects of microstructural elements in real crystalline materials and their links to different physical properties. They will become able to solve problems of materials scientific relevance. Furthermore, students will be able to transfer their	
	knowledge to new problems. During the practical part of this module, students will additionally learn to apply computational methods that can be used to visualize, analyze and model chosen aspects of microstructures.	
Contents:	Most important topics are: Atomic interactions, crystallography, point defects, dislocations, grain boundaries, strengthening mechanisms, diffusion characteristics and the characteristic length scale associated with each of these elements.	
Literature:	W.D. Callister and D.G. Rethwisch: Materials Science and Engineering, an introduction D. Hull and D.J. Bacon: Introduction to dislocations R. Phillips: Crystals, Defects and Microstructures, Modeling across length scale.	
Types of Teaching:	A.S. Argon: Strengthening Mechanisms in Crystal Plasticity S1 (WS): Lectures (2 SWS) S1 (WS): Exercises (2 SWS)	
Pre-requisites:	Recommendations:	
	basic programming/scripting experience in Python (which will be used throughout the lecture and tutorials). This is satisfied by simultaneously participating in the module "Software Tools for Computational Materials Scientists".	
Frequency:	yearly in the winter semester	
Requirements for Credi Points:	For the award of credit points it is necessary to pass the module exam. The module exam contains: MP/KA (KA if 6 students or more) [MP minimum 30 min / KA 120 min] PVL: Home work assignments PVL have to be satisfied before the examination.	
	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: MP/KA (KA bei 6 und mehr Teilnehmern) [MP mindestens 30 min / KA 120 min] PVL: Hausarbeit PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.	
Credit Points:	5	
Grade:	The Grade is generated from the examination result(s) with the following weights (w): MP/KA [w: 1]	
Workload:	The workload is 150h. It is the result of 60h attendance and 90h self-studies.	

Data:	IHPC. MA. Nr. 3210 / Ex-Version: 05.03.2015 📜 Start Year: WiSe 2012		
Data.	amination number:		
	11110		
Module Name:	Introduction to High Performance Computing and Optimization		
(English):	introduction to riight refrormance computing and optimization		
Responsible:	Rheinbach, Oliver / Prof. Dr.		
Lecturer(s):	Rheinbach, Oliver / Prof. Dr.		
Institute(s):	Institute of Numerical Mathematics and Optimization		
Duration:	1 Semester(s)		
Competencies:	The students shall have an understanding of and ability to apply:		
	January 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		
	parallel computing on shared and distributed memory		
	multiprocessor systems		
	parallel algorithms		
	The students know relevant terms in English.		
Contents:	Ingredients can be:		
	Portable parallel programming with OpenMP and MPI (Message)		
	Passing Interface); hybrid parallelization; accelerators		
	 Code profiling, tracing and optimization methods using tools 		
	(profiler, VAMPIRE, etc.);		
	 Relevant software libraries (e.g., BLAS, LAPACK, SCALAPACK, 		
	etc.)		
	Design and analysis of algorithms		
	 Parallel solution of linear systems (dense/sparse systems) 		
	International literature and relevant terms in English		
Literature:	Georg Hager, Gerhard Wellein, Introduction to High Performance		
	Computing for Scientists and Engineers, Chapman & Hall, 2010		
	OpenMP Standard, www.openmp.org		
	Barbara Chapman, Gabriele Jost, Ruud van der Pas, Using OpenMP:		
	portable shared memory parallel programming, MIT Press, 2008		
	William Gropp, Ewing Lusk, Anthony Skjellum, Using MPI: Portable		
	Parallel Programming with the Message-Passing Interface, MIT press,		
	2000		
	Michael Quinn, Parallel Programming in C with MPI and OpenMP, McGraw		
	Hill, 2003		
	Anne Greenbaum, Iterative Methods for Solving Linear Systems, SIAM,		
Types of Teaching	1997 \$1 (W\$): Loctures (2.5W\$)		
Types of Teaching:	S1 (WS): Lectures (2 SWS) S1 (WS): Exercises (1 SWS)		
Pre-requisites:	Recommendations:		
rie-requisites.	Basics knowledge in scientific programming and algorithms.		
Frequency:	yearly in the winter semester		
	lit For the award of credit points it is necessary to pass the module exam.		
Points:	The module exam contains:		
i onics.	MP/KA: MP = individual examination (KA if 30 students or more) [MP		
	minimum 30 min / KA 120 min]		
	PVL: Programming Project		
	PVL have to be satisfied before the examination.		
	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen		
	der Modulprüfung. Die Modulprüfung umfasst:		
	MP/KA: MP = individuelle Prüfung (KA bei 30 und mehr Teilnehmern) [MP]		
	mindestens 30 min / KA 120 min]		
	PVL: Programmierprojekt		
I	gg. a		

	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.
Credit Points:	4
Grade:	The Grade is generated from the examination result(s) with the following weights (w): MP/KA: MP = individual examination [w: 1]
Workload:	The workload is 120h. It is the result of 45h attendance and 75h selfstudies.

Data:	ISP. MA. Nr. 3211 / Ex-	Version: 18.05.2017	Start Year: WiSe 2017
	amination number: 11609		
Module Name:	Introduction to Scientific Programming		
(English):			
Responsible:	Rheinbach, Oliver / Prof.	. Dr.	
Lecturer(s):	Prüfert, Uwe / Dr. rer. na	<u>at.</u>	
	Rheinbach, Oliver / Prof.	<u>. Dr.</u>	
Institute(s):	Institute of Numerical M	athematics and Optimiza	ation_
Duration:	1 Semester(s)	•	
Competencies:	Students will get familiar with the syntax and semantic of multi		mantic of multi
	paradigm programming structures and the choic learn. Based on this, the	languages. Construction ce of adequate algorithm e students should be able	of suitable data s are further skills to e to implement
		ving a graphical user int	
Contents:	Part programming language: Data types and variables, pointer and arrays, expressions, statements, operators, control structures, functions, objects and classes, encapsulation, access rights, inheritance, polymorphism, overloading of functions an operators, type casting, templates; Part algorithms: Iteration, recursion, special functions; Part GUI programming: User—software interaction, use of standard class		
_	<u> </u>	ng graphical user interfac	
Literature:	Stroustrup, Bjarne . The C++ programming language		
		de to MATLAB object orie	ented programming
Types of Teaching:	S1 (WS): Lectures (2 SWS)		
	S1 (WS): Practical Application (2 SWS)		
Pre-requisites:		Ingenieure 1, 2015-03-12 Ingenieure 2, 2015-03-12	
Frequency:	yearly in the winter sem	nester	
Requirements for Credit	tFor the award of credit t	points it is necessary to p	bass the module exam.
Points:			
	der Modulprüfung. Die N KA [120 min] PVL: Programmierprojek	Modulprüfung umfasst:	
Credit Points:	4		
Grade:	The Grade is generated weights (w): KA [w: 1]	from the examination re	sult(s) with the following
Workload:		is the result of 60h atte	ndance and 60h self-

Data:	MLMS MA Nr. 3659 / Ex-Version: 28.03.2022		
	amination number:		
	44510		
Module Name:			
(English):	Machine Learning for Materials Scientists Machine Learning for Materials Scientists		
Responsible:			
Lecturer(s):	Brakash Aruna / Dr. Ing.		
Lecturer(s).	<u>Prakash, Aruna / DrIng.</u> <u>Eidel, Bernhard / Prof. DrIng. habil.</u>		
Institute(s):	Institute of Mechanics and Fluid Dynamics		
Duration:	·		
	1 Semester(s)		
Competencies:	Students will be exposed to fundamental knowledge in stochastics,		
	statistics and combinatorics and will be able to apply this knowledge		
	using the programming language Python. They will accuire an overview		
	over machine learning approaches and algorithms and will be able to		
	choose the appropriate algorithm for a specific problem. Furthermore,		
	they will be able to use existing machine learning libraries and to		
	independently solve problems of materials scientific relevance. Students		
	will be able to judge the quality of their results.		
Contents:	basics of stochastics and statistics: events, probability,		
	conditional probability, variance, mean, median, likelyhood		
	fundamentals of regression and classification		
	concepts of linear approaches, neural networks, Bayesian		
	methods, convolutional networks, support vector machines		
	training validation, testing, overfitting		
	selection of appropriate algorithms		
	• implementation, e.g., using PyTorch, scikit-learn, or TensorFlow		
Literature:	1. M. P. Deisenroth, A.A. Faisal, Ch.S. Ong: Mathematics for		
	Machine Learning, 2019, Cambridge University Press, UK		
	2. Sebastian Raschka, Vahid Mirjalili, Python Machine Learning,		
	2017, Packt Publishing, Birminham, UK		
	3. Phuong Vo. T. H, Martin Czygan, Getting Started with Python		
	Data Analysis, 2015, Packt Publishing, Birminham, UK		
Types of Teaching:	S1 (SS): Lectures (2 SWS)		
	S1 (SS): Exercises (1 SWS)		
Pre-requisites:	Recommendations:		
	Good foundation in mathematics and Python programming (as, e.g.,		
	acquired during "Software Tools for Computational Materials Scientists		
	[1")		
Frequency:	yearly in the summer semester		
· •	For the award of credit points it is necessary to pass the module exam.		
Points:	The module exam contains:		
	MP/KA (KA if 5 students or more) [MP minimum 30 min / KA 90 min]		
	PVL: Coding		
	PVL have to be satisfied before the examination.		
	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen		
	der Modulprüfung. Die Modulprüfung umfasst:		
	MP/KA (KA bei 5 und mehr Teilnehmern) [MP mindestens 30 min / KA 90		
	min]		
	PVL: Programmierung		
	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.		
Credit Points:	4		
Grade:	The Grade is generated from the examination result(s) with the following		
	weights (w):		
	MP/KA [w: 1]		
Workload:	The workload is 120h. It is the result of 45h attendance and 75h self-		

|--|

Data:	MasThesis. MA. Nr.	Version: 08.03.2022	Start Year: SoSe 2012	
	3212 / Examination			
	number: 9900			
Module Name:	Master Thesis Computational Science			
(English):		•		
Responsible:	Eidel, Bernhard / Prof. D	rIng. habil.		
Lecturer(s):				
Institute(s):	Institute of Mechanics a	nd Fluid Dynamics		
Duration:	6 Month(s)			
Competencies:	The objective of the master thesis is to give the students the opportunit		students the opportunity	
	to apply the knowledge	acquired during their stu	udies on a research	
	project.			
Contents:	Not Applicable			
Literature:	Not Applicable			
Types of Teaching:	S1: Thesis (6 Mon)			
Pre-requisites:	Mandatory:			
·	Personal Programming I	Project, 2016-07-11		
			. Semesters sowie Antritt	
	aller Modulprüfungen de	es 3. Semesters und dav	on höchstens drei offene	
	Prüfungsleistungen, Kol	loquium: Abschluss aller	Module (Master Thesis:	
	Compare to § 19 sup-pa	ragraph 3 clause 5. Collo	oquium: Compare to § 19	
	sup-paragraph 10 claus	e 3 of the Examinations	Regulations)	
Frequency:	constantly			
	t For the award of credit	points it is necessary to p	pass the module exam.	
Points:	The module exam conta			
	AP*: Master Thesis			
	AP*: Colloquium [40 to 6	60 min]		
			s exam has to be passed	
		ast "ausreichend" (4,0), r		
		ergabe von Leistungspu	nkten ist das Bestehen	
	der Modulprüfung. Die N	Modulprüfung umfasst:		
	AP*: Masterarbeit			
	AP*: Kolloquium [40 bis	60 min]		
	* Bei Modulen mit mehr	eren Prüfungsleistungen	muss diese	
	Prüfungsleistung bestanden bzw. mit mindestens "ausreichend" (4,0)			
	bewertet sein.			
Credit Points:	30			
Grade:	The Grade is generated	from the examination re	esult(s) with the following	
	weights (w):			
	AP*: Master Thesis [w: 3	3]		
	AP*: Colloquium [w: 1]			
	* In modules requiring r	nore than one exam. this	s exam has to be passed	
		ast "ausreichend" (4,0), r	•	
Workload:	The workload is 900h.	, , - 77	. ,	
	1			

Data:	WERKMEC. BA. Nr. 253 / Version: 16.02.2022 5 Start Year: WiSe 2018	
	Examination number:	
	41906	
Module Name:	Mechanics of Materials	
(English):		
Responsible:	<u> Eidel, Bernhard / Prof. DrIng. habil.</u>	
Lecturer(s):	Prakash, Aruna / DrIng.	
	<u>Eidel, Bernhard / Prof. DrIng. habil.</u>	
Institute(s):	Institute of Mechanics and Fluid Dynamics	
Duration:	1 Semester(s)	
Competencies:	Development of an understanding of the deformation behavior and failure mechanisms of technological materials; students will get familiar with elastic, plastic, viscous, viscoelastic and viscoplastic behaviors of materials; development of the ability to assess the behavior of materials and to design structures accordingly.	
Contents:	Most important ingredients are:	
	 continuum mechanics foundations of stress, strain and displacements rheological models for elastic, plastic, viscous, viscoelastic, and viscoplastic deformation behavior multi-axial continuum laws for anisotropic elasticity and plasticity extended strength and failure theories / criteria for multiaxial loading 	
Literature:	J. Lemaitre and JL. Chaboche: Mechanics of Solid Materials, Cambridge	
	University Press,2000	
Types of Teaching:	S1 (WS): Lectures (2 SWS)	
	S1 (WS): Exercises (2 SWS)	
Pre-requisites:	Recommendations:	
	Basic knowledge in engineering mechanics	
Frequency:	yearly in the winter semester	
Requirements for Credi	t For the award of credit points it is necessary to pass the module exam.	
Points:	The module exam contains:	
	KA [120 min]	
	PVL: Home work assignments	
	PVL have to be satisfied before the examination.	
	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen	
	der Modulprüfung. Die Modulprüfung umfasst:	
	KA [120 min]	
	PVL: Hausarbeit	
	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.	
Credit Points:	5	
Grade:	The Grade is generated from the examination result(s) with the following weights (w): KA [w: 1]	
Workload:	The workload is 150h. It is the result of 60h attendance and 90h self-	
	studies.	

Data:	MetMat. MA. Nr. 3213 / Version: 27.06.2016 Start Year: WiSe 2016 Examination number: 50114		
Module Name:	Metallic Materials		
(English):			
Responsible:	Biermann, Horst / Prof. DrIng. habil		
Lecturer(s):	Weidner, Anja / DrIng. habil.		
Institute(s):	Institute of Materials Engineering		
Duration:	1 Semester(s)		
Competencies:	Students will get familiar with metallic materials (ferrous materials, non- ferrous metals, light metals, high-temperature metals), their microstructure and mechanical properties as well as heat treatment. Focus is given to plastic deformation and failure. The module will enable the students to differentiate the different groups of metallic construction materials.		
Contents:	Most important topics are: Ferrous metals (plain carbon steels, high-alloyed steels, cast irons); Non-ferrous metals (e.g. copper, nickel) Light metals (aluminum, titanium, magnesium) High-temperature alloys (superalloys, intermetallic alloys)		
Literature:	M. F. Ashby, D.R.H. Jones, Engineering materials 2, 2nd ed., Butterworth- Heinemann, Oxford, 1998 James F. Shackelford, Introduction to Materials Science for Engineers, 7th ed. Addison Wesley., 2009		
Types of Teaching:	S1 (WS): Metallic Materials / Lectures (2 SWS)		
Pre-requisites:	Recommendations: Basic fundamentals of physics, chemistry and solid materials		
Frequency:	yearly in the winter semester		
Requirements for Credit Points:	For the award of credit points it is necessary to pass the module exam. The module exam contains: KA [90 min] Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen		
	der Modulprüfung. Die Modulprüfung umfasst: KA [90 min]		
Credit Points:	3		
Grade:	The Grade is generated from the examination result(s) with the following weights (w): KA [w: 1]		
Workload:	The workload is 90h. It is the result of 30h attendance and 60h self- studies.		

Data:	MHP. MA. Nr. 3615 / Ex-Version: 06.06.2018 5 Start Year: WiSe 2018		
Data.	amination number:		
	41913		
Module Name:	Micromechanics and Homogenization Principles		
(English):	3		
Responsible:	Kiefer, Björn / Prof. PhD.		
Lecturer(s):	<u>Kiefer, Björn / Prof. PhD.</u>		
	Kozinov, Sergii / DrIng.		
Institute(s):	Institute of Mechanics and Fluid Dynamics		
Duration:	1 Semester(s)		
Competencies:	Successful participants of this course are able to apply fundamental		
	concepts of micromechanics to determine effective properties of multiphase elastic solids such as composite materials. They understand the theoretical foundations as well as the advantages and shortcomings of classical micromechanics techniques. The students are also familiar with advanced homogenization principles—both analytical and numerical in nature—that incorporate the influence of micro-defects (inclusions, cavities, cracks) and inelastic behavior. They have further acquired first experience with numerical implementation of these		
Contents:	modeling concepts through simple programing examples. The main ingredients are:		
Literature:	 Micromechanics techniques for computing effective elastic properties of composite media Fundamental Eshelby solutions, inclusions, inhomogeneities Dilute distribution, Mori-Tanaka, and self-consistent approaches Energetic bounds on effective properties General averaging theorems, Hill-Mandel Principle, periodic homogenization, asymptotic expansions Direct numerical homogenization schemes, including the FE²-method Numerical examples (programing in Matlab /Mathematica/Python Strength and failure, localization S. Nemat-Nasser and M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials, Second Edition, North-Holland Series in Applied Mathematics and Mechanics, 1999 Christensen, Mechanics of Composite Materials, Dover Publications, 2005 D. Gross and T. Seelig, Bruchmechanik — mit einer Einführung in die Mikromechanik, Springer-Verlag Berlin Heidelberg, 2016 		
Types of Teaching:	S1 (WS): Lectures / Lectures (2 SWS) S1 (WS): Excercises / Exercises (1 SWS)		
Pre-requisites:	Recommendations:		
	Continuum Mechanics, 2017-05-18		
Frequency:	yearly in the winter semester		
Requirements for Credit	For the award of credit points it is necessary to pass the module exam.		
Points:	The module exam contains: MP/KA (KA if 10 students or more) [MP minimum 30 min / KA 120 min] Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: MP/KA (KA bei 10 und mehr Teilnehmern) [MP mindestens 30 min / KA 120 min]		
Credit Points:	4		
Grade:	The Grade is generated from the examination result(s) with the following		
oraue.	weights (w):		

	MP/KA [w: 1]
Workload:	The workload is 120h. It is the result of 45h attendance and 75h self-studies. To help deepen the understanding of the subject matter, (voluntary) homework problems are given out along with the exercise sheets.

Data:	TAFEM. MA. Nr. 3219 / Version: 08.06.2017 5 Start Year: SoSe 2018	
	Examination number: 42605	
Module Name:	Nonlinear Finite Element Methods	
(English):		
Responsible:	Kiefer, Björn / Prof. PhD.	
Lecturer(s):	Hütter, Geralf / Dr. Ing.	
	Kiefer, Björn / Prof. PhD.	
	Roth, Stephan / Dr. Ing.	
Institute(s):	Institute of Mechanics and Fluid Dynamics	
Duration:	1 Semester(s)	
Competencies:	This course will enable students to understand and apply the theoretical	
	foundations of Finite Elements Methods (FEM) for geometrically and	
	physically nonlinear problems, with a particular focus on solid	
	mechanics. Hands-on experience will be obtained in the exercises and	
	practical application sessions regarding the coding of custom finite	
	element routines as well as using commercial FE-analysis software	
	packages. The students will thus be capable of selecting appropriate FE	
	formulations for specific nonlinear mechanics problems, of developing	
	and implementing the associated algorithms, and of verifying and	
	analysing the numerical results. This knowledge is transferable to a	
	broad spectrum of nonlinear problems described by partial differential	
	equations in engineering and the natural sciences.	
Contents:	Most important ingredients are:	
Contents.		
	Weak form of the equilibrium conditions	
	FEM for physically nonlinear problems	
	FEM for coupled problems	
	FEM for dynamic problems	
	FEM for finite deformations	
	Programming of FEM codes with MATLAB.	
Literature:	Belytschko, Liu, Moran: Nonlinear Finite Elements for Continua and	
Erterature.	Structures, John Wiley & Sons, 2000	
	Bonet, Wood: Nonlinear Continuum Mechanics for Finite Element	
	Analysis, Cambridge University Press, 2008	
	Reddy: An Introduction to Nonlinear Finite Element Analysis, Oxford	
	University Press, 2015	
	Wriggers: Nonlinear Finite Element Methods, Springer, 2008	
	Zienkiewicz, Taylor: The Finite Element Method, Butterworth-	
	Heinemann, 2000	
Types of Teaching:	S1 (SS): Lectures (2 SWS)	
l pes of reacting.	\$1 (\$5): Taught in English and German. / Exercises (1 SWS)	
	\$1 (\$5): Taught in English and German. / Practical Application (1 SWS)	
Pre-requisites:	Recommendations:	
r re-requisites.	Einführung in die Methode der finiten Elemente, 2017-06-08	
	Numerische Methoden der Mechanik, 2017-06-08	
	Basic knowledge in engineering mechanics	
 Frequency:	yearly in the summer semester	
	tFor the award of credit points it is necessary to pass the module exam.	
Points:	The module exam contains:	
i Ullico.	MP/KA (KA if 10 students or more) [MP minimum 30 min / KA 120 min]	
	PVL: Preparation of an FEM coding assignment in MATLAB/Octave	
	Possible in German.	
	PVL have to be satisfied before the examination.	
	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen	
l	proraussetzung für die vergabe von Leistungspunkten ist das Bestenen	

	der Modulprüfung. Die Modulprüfung umfasst: MP/KA (KA bei 10 und mehr Teilnehmern) [MP mindestens 30 min / KA 120 min] PVL: FEM-Programmieraufgabe in MATLAB/Octave In Deutsch möglich. PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.
Credit Points:	4
Grade:	The Grade is generated from the examination result(s) with the following weights (w): MP/KA [w: 1]
Workload:	The workload is 120h. It is the result of 60h attendance and 60h self-studies. The time needed for the preparation and reworking of lectures and exercises is rather extensive due to the complexity of the topics addressed within this course and because of the programming exercises involved.

Data:	Examination number: 11109		Start Year: SoSe 2012
Module Name:	Numerical Analysis of	Differential Equation	S
(English):			
Responsible:	Aland, Sebastian / Prof.	Dr.	
Lecturer(s):	Rheinbach, Oliver / Prof.	<u>Dr.</u>	
	Aland, Sebastian / Prof. I	<u>Dr.</u>	
Institute(s):	Institute of Numerical Ma	athematics and Optimiza	<u>ation</u>
Duration:	1 Semester(s)		
Competencies:	Students shall understar of ordinary and partial d consistency, stability, ar methods to compute the equation. They can compefficiency for a given process.	ifferential equations, suc nd convergence. They ca e numerical solution of a pare various methods ar	ch as discretization, in apply discretization given differential nd evaluate their
Contents:	ODEs: Euler methods, Ru Stability, Stiffness; PDEs: Finite Difference t stability analysis. International literature a	echniques, time steppin	g, von Neumann
Literature:	Finite Difference Method von Randy Leveque, Uni	ds for Ordinary and Partia	
Types of Teaching:	S1 (SS): Lectures (2 SWS S1 (SS): Exercises (1 SW	-	
Pre-requisites:	Recommendations: Solid knowledge in compourse for scientists and applications of differenti	l engineers. Some familia	
Frequency:	yearly in the summer se	mester	
	For the award of credit p The module exam conta KA [120 min]	points it is necessary to points:	
	Voraussetzung für die Vo der Modulprüfung. Die M KA [120 min]		nkten ist das Bestehen
Credit Points:	3		
Grade:	The Grade is generated weights (w): KA [w: 1]	from the examination re	sult(s) with the following
Workload:	The workload is 90h. It is studies.	s the result of 45h attend	dance and 45h self-

Data:	PINSM. MA. Nr. 3589 / Version: 12.07.2017 🥦 Start Year: WiSe 2018	
Duta.	Examination number:	
	41910	
Module Name:	Parameter Identification in Nonlinear Solid Mechanics	
(English):		
Responsible:	Kiefer, Björn / Prof. PhD.	
Lecturer(s):	Kiefer, Björn / Prof. PhD.	
	Abendroth, Martin / Dr. Ing.	
Institute(s):	Institute of Mechanics and Fluid Dynamics	
Duration:	1 Semester(s)	
Competencies:	Successful participation will enable students to apply concepts of	
·	nonlinear optimization to the problem of parameter identification for	
	complex material models. In this context, they will be able to code, test	
	and use classical optimization methods - as well as employ more	
	advanced tools available in standard libraries (matlab, python) - and to	
	combine them with algorithmic materials models and experimental data	
	sets. The knowledge obtained in this course is transferrable to a broad	
	spectrum of inverse problems in technology and the natural sciences.	
Contents:	The calibration of parameters plays a central role in establishing	
	predictively accurate constitutive models for complex, nonlinear	
	material responses. In numerical optimization-based approaches to	
	parameter identification an objective function that measures deviations	
	between simulation results and experimental data is minimized to	
	compute optimal parameter sets.	
	After motivating the inverse problem of parameter identification the	
	course provides an introduction to fundamental theoretical and	
	algorithmic concepts of (constrained) nonlinear optimization. The	
	lectures are accompanied by programing exercises that lead to hands-	
	on experience with implementing and testing such optimization	
	methods.	
	In the second part of the course students learn to apply these numerical	
	tools to the specific problem of parameter identification for nonlinear	
	(elasto-plastic, visco-elastic etc.) material models. To obtain the	
	necessary experimental data, students will help conduct experiments in	
	the materials characterization laboratory of the solid mechanics group.	
	The lectures will further address advanced concepts, such as the	
	parameter identification via inhomogeneous deformation processes by	
	combining digital image correlation and finite element analysis. Lastly, it	
	is demonstrated that very similar numerical concepts can be employed	
	in solving structural optimization problems of nonlinear solid mechanics.	
Literature:	• D. P. Bertsekas, <i>Nonlinear Programming</i> , Athena Scientific,	
	Belmont, MA, 2nd edition, 1999.	
	• D. G. Luenberger, <i>Linear and Nonlinear Programming</i> , Addison-	
	Wesley, Reading, MA, 2nd edition, 1984.	
	R. Mahnken, Identification of Material Parameters for Constitutive	
	Equations, In Encyclopedia of Computational Mechanics, chapter	
	19, pages 637-655. John Wiley & Sons, New York, 2004.	
	• J. Nocedal and S. J. Wright, <i>Numerical Optimization</i> , Springer-	
	Verlag, Berlin, 2nd edition, 2006.	
Types of Teaching:	S1 (WS): Lectures (2 SWS)	
	S1 (WS): Taught in English and German. / Exercises (1 SWS)	
Pre-requisites:	Recommendations:	
	Continuum Mechanics, 2017-05-18	
	Mechanics of Materials, Basic Knowledge of Numerical Methods	
Frequency:	yearly in the winter semester	

Requirements for Credit	For the award of credit points it is necessary to pass the module exam.
Points:	The module exam contains:
	MP/KA (KA if 10 students or more) [MP minimum 30 min / KA 120 min]
	Possible in German.
	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
	der Modulprüfung. Die Modulprüfung umfasst:
	MP/KA (KA bei 10 und mehr Teilnehmern) [MP mindestens 30 min / KA
	120 min]
	In Deutsch möglich.
Credit Points:	4
Grade:	The Grade is generated from the examination result(s) with the following
	weights (w):
	MP/KA [w: 1]
Workload:	The workload is 120h. It is the result of 45h attendance and 75h self-
	studies.

Data:	PP. MA. Nr. 3215 / Ex- Version: 08.03.2022 🥦 Start Year: WiSe 2018
	amination number: 44504
Module Name:	Personal Programming Project
(English):	
Responsible:	Eidel, Bernhard / Prof. DrIng. habil.
Lecturer(s):	Rheinbach, Oliver / Prof. Dr.
	Kiefer, Björn / Prof. PhD.
	Prakash, Aruna / DrIng.
	Eidel, Bernhard / Prof. DrIng. habil.
Institute(s):	Institute of Numerical Mathematics and Optimization
, ,	Institute of Mechanics and Fluid Dynamics
Duration:	22 Week(s)
Competencies:	The students will develop and document their own software tool for a
	subject relevant to the course Computational Materials Science (e.g.,
	Dislocation or Molecular Dynamics, Finite Elements Method FEM,
	Discrete Element Method or advanced data analysis). Furthermore, they
	will use this method to simulate material behavior, to calculate a
	physical property or to analyze existing/own simulated data.
Contents:	Most important ingredients are: Developing the tool, commenting the
	source file, documentation and running a successful example to verify
	the code.
Literature:	None
Types of Teaching:	S1 (WS): By the end of the second semester, the students decide on a
	topic. Then, the students design a concept for their project, which has to
	be discussed and approved by the responsible lecturer. After approval,
	the students register at examination office for the project. The final
	report has to be delivered within 22 weeks. / project (22 Wo)
Pre-requisites:	Recommendations:
	None
Frequency:	yearly in the winter semester
	For the award of credit points it is necessary to pass the module exam.
Points:	The module exam contains:
	AP: Final Report (source code, documentation, analysis of an example
	solved with their numerical tool)
	AP: Presentation and defending of the project [20 min]
	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
	der Modulprüfung. Die Modulprüfung umfasst:
	AP: Abschlussbericht (Quellcode, Dokumentation, Analyse eines mit
	ihrem numerischen Tool gelösten Beispiels)
	AP: Präsentation und Verteidigung des Projekts [20 min]
Credit Points:	7
Grade:	The Grade is generated from the examination result(s) with the following
	weights (w):
	AP: Final Report (source code, documentation, analysis of an example
	solved with their numerical tool) [w: 4]
	AP: Presentation and defending of the project [w: 1]
Workload:	The workload is 210h.

Data:	PLAS. MA. Nr. 3216 / Ex-Version: 05.06.2018
Data.	amination number:
	44701
NA advida Nia sa a	
Module Name:	Plasticity
(English):	
Responsible:	Kiefer, Björn / Prof. PhD.
Lecturer(s):	<u>Kiefer, Björn / Prof. PhD.</u>
Institute(s):	Institute of Mechanics and Fluid Dynamics
Duration:	1 Semester(s)
Competencies:	Students understand theoretical concepts and fundamental ideas that
	are important for an advanced treatment of nonlinear constitutive laws
	for solids from the viewpoint of thermomechanics. Particular emphasis is
	placed on the formulation of rate-independent inelasticity.
	They can apply this knowledge to the development of new
	constitutive material behavior. They further acquire the relevant
	knowledge for the numerical implementation of such constitutive laws.
Contents:	The most important ingredients are:
	thermomechanics of solids:
	 thermodynamics with internal state variables
	 thermoelasticity
	small-strain elastoplasticity:
	particular models of elastoplasticity, evolution laws for
	internal state variables, hardening
	elastoplasticity at finite deformations:
	kinematics, thermodynamics, general principles
Literature:	J. Lubliner: Plasticity Theory
Literature.	f e
	G. A. Maugin: The Thermomechanics of Plasticity and Fracture
	H. Ziegler: An Introduction to Thermomechanics
	P. Haupt: Continuum Mechanics and Theory of Materials
	Ottosen and Ristinmaa: "The Mechanics of Constitutive Modeling"
	J. Lemaitre and JL. Chaboche: "Mechanics of Solid Materials"
Types of Teaching:	S1 (WS): Lectures (2 SWS)
	S1 (WS): Exercises (1 SWS)
Pre-requisites:	Mandatory:
	Continuum Mechanics, 2017-05-18
	or equivalent
Frequency:	yearly in the winter semester
· · · · · · · · · · · · · · · · · · ·	For the award of credit points it is necessary to pass the module exam.
Points:	The module exam contains:
	PVL: Mid-Term Exam [60 min]
	MP/KA: Final Exam (Oral/Written) (KA if 10 students or more) [120 min]
	PVL have to be satisfied before the examination.
	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
	der Modulprüfung. Die Modulprüfung umfasst:
	PVL: Test [60 min]
	MP/KA: Final Exam (Oral/Written) (KA bei 10 und mehr Teilnehmern)
	[120 min]
	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.
Credit Points:	4
Grade:	The Grade is generated from the examination result(s) with the following
	weights (w):
Morkload:	MP/KA: Final Exam (Oral/Written) [w: 1]
Workload:	The workload is 120h. It is the result of 45h attendance and 75h self-
	studies.

Data:	ResSem. MA. Nr. 3217 / Version: 16.02.2022 Start Year: WiSe 2016 Examination number: 44505
Module Name:	Research Seminar and Journal Club
(English):	
Responsible:	Eidel, Bernhard / Prof. DrIng. habil.
Lecturer(s):	<u>Prakash, Aruna / DrIng.</u>
	<u>Eidel, Bernhard / Prof. DrIng. habil.</u>
Institute(s):	Institute of Mechanics and Fluid Dynamics
Duration:	2 Semester(s)
Competencies:	Students are able to use scientific methods for literature research. They acquire presentation skills for scientific presentations and are able to solve a general scientific problems based on softskills introduced during this module. Their scientific writing skills allow them to compose their own scientific abstracts and reviews.
Contents:	Most important ingredients are:
	 Attending the seminar, where research results of CMS students are presented Interacting / discussion with the speakers 1. semester: Literature review on a general seminar topic 2. semester: Literature review on an individual topic written literature report and oral presentation
Literature:	None
Types of Teaching:	S1 (WS): Seminar (1,5 SWS) S2 (SS): Seminar (1,5 SWS)
Pre-requisites:	Recommendations:
•	None
Frequency:	yearly in the winter semester
Requirements for Cred	it For the award of credit points it is necessary to pass the module exam.
Points:	The module exam contains:
	AP: Literatur report
	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
	der Modulprüfung. Die Modulprüfung umfasst:
	AP: Literaturbericht
Credit Points:	3
Grade:	The Grade is generated from the examination result(s) with the following weights (w): AP: Literatur report [w: 1]
 Workload:	The workload is 90h. It is the result of 45h attendance and 45h self-
vvoi kiudu.	studies.

Data:	STSSP. MA. Nr. 3218 / Examination number: 42604	Version: 13.07.2016 🖫	Start Year: SoSe 2012
Module Name:	Selected Topics of So	lid State Physics	
(English):	•	-	
Responsible:	Rafaja, David / Prof. Dr.	rer. nat. habil.	
Lecturer(s):	Rafaja, David / Prof. Dr.		
Institute(s):	Institute of Materials Sci		
Duration:	1 Semester(s)		
Competencies:	structure, real structure thermal properties of so be able to recognise the	state physics, correlation and the electronic, mag lids. Absolving the cours e effect of the structure of ledge in materials design	netic, optical and e, the students should on materials properties
Contents:	electrical resistivity in m contact; superconductiv dia-, para-, ferro-, antife solids; complex index of free and bound electron optical theory of reflecti	rity (Landau theory); mag erro- and ferrimagnetism; frefraction; dispersion cu	rs; Schottky contact; p-n gnetic susceptibility; coptical properties of urves for systems with onship; colour of metals; s; thermal expansion;
Literature:	R.E. Hummel: Electronic C. Kittel: Introduction in	properties of materials	-
Types of Teaching:	S1 (SS): Lectures (3 SWS		
Pre-requisites:	Fundamental of Microstr Höhere Mathematik für	Ingenieure 2, 2015-03-12 he und Organische Chem lographie, 2009-10-14 chaftler I, 2012-05-10	2
Frequency:	yearly in the summer se		
Requirements for Cred Points:	TFor the award of credit parties the module exam contained MP/KA (KA if 10 students Voraussetzung für die Voraussetzung. Die Nodulprüfung. Die N	ooints it is necessary to p iins: s or more) [MP minimum ergabe von Leistungspui	30 min / KA 120 min] nkten ist das Bestehen
Credit Points:	4		
Grade:	weights (w): MP/KA [w: 1]		sult(s) with the following
Workload:	The workload is 120h. It studies.	is the result of 45h atte	ndance and 75h self-

Data:	SEMIC. MA. Nr. 3213 / Version: 20.07.2016 Start Year: WiSe 2016
	Examination number:
	22306
Module Name:	Semiconductors
(English):	
Responsible:	Gumeniuk, Roman / Prof.
Lecturer(s):	Gumeniuk, Roman / Prof.
Institute(s):	Institute of Experimental Physics
Duration:	1 Semester(s)
Competencies:	The module conveys basic knowledge on the principles of semiconductor materials and devices based on their crystallographic and electronic structures. Students will get familiar with the electronic properties of semiconductors and should be able to calculate charge carrier concentrations and to describe and understand semiconductor devices based on energy band schemes.
Contents:	The lecture is divided in four consecutive parts:
Literature:	 Structure of solids: crystal structure in general, examples of element structures and compound structures. Electrons in matter: energy bands, zone schemes, Brillouin zones, band structures, Fermi distribution, density of states, population density, effective mass, conductivity. Semiconductors: intrinsic vs. extrinsic semiconductors, band schemes, conductivity, possible defects. Semiconductor devices: metal-semiconductor contact, p-n junction, diodes, transistors, memory devices, device fabrication. Standard references on solid state physics and semiconductors for physicists, e.g.: R. E. Hummel: Electronic Properties of Materials (Springer) N. W. Ashcroft, N. D. Mermin: Solid State Physics (Brooks Cole)
	S. M. Sze: Physics of Semiconductor Devices (Wiley)
Types of Teaching:	S1 (WS): Semiconductors / Lectures (2 SWS)
Pre-requisites:	Recommendations:
	Fundamentals of physics, chemistry and solid materials
Frequency:	yearly in the winter semester
Requirements for Credit Points:	For the award of credit points it is necessary to pass the module exam. The module exam contains: KA [120 min] Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen der Modulprüfung. Die Modulprüfung umfasst: KA [120 min]
Credit Points:	В
Grade:	The Grade is generated from the examination result(s) with the following weights (w): KA [w: 1]
Workload:	The workload is 90h. It is the result of 30h attendance and 60h self-studies.

Data:	STCMS. MA. Nr. 3586 / Version: 16.02.2022 5 Start Year: WiSe 2019	
Data.	Examination number:	
	44506	
Module Name:	Software Tools for Computational Materials Scientists	
(English):		
Responsible:	Eidel, Bernhard / Prof. DrIng. habil.	
Lecturer(s):	Prakash, Aruna / DrIng.	
	Eidel, Bernhard / Prof. DrIng. habil.	
Institute(s):	Institute of Mechanics and Fluid Dynamics	
Duration:	2 Semester(s)	
Competencies:	The students will be able to interact with their computer using a Unix	
<u>'</u>	shell. This includes monitoring their system resources, interacting with	
	the file system, and setting up their work environment to their	
	needs. Participants will know how to use a high-level general-purpose	
	programming language and the fundamentals of software engineering	
	within the scientific ecosystem of that language. This comprises basic	
	design patterns, object-oriented programming, an introduction to	
	modern file formats, efficient data serialization, data visualization,	
	interfacing to other programs, and automated testing.	
	The participants will be able to use modern version control systems for	
	working in a collaborative fashion.	
Contents:	These courses will cover the software tools used within computational	
	materials science. The Unix shell will be introduced as a mean to	
	interact with the computer to promote automation of repetitive tasks	
	and working on remote systems, both for monitoring and file system	
	interaction purposes. Libraries and packages from the scientific	
	community will be utilized to pre- and postprocess data for third-party	
	simulation software and to write simulations from the ground up. The	
	underlying data structures that enable a high-level language to be	
	efficient enough for large-scale simulations will be	
	introduced. Techniques for collaboration with other software	
	contributors in form of modern version control systems in conjunction	
Literature:	with repository hosting will be outlined. http://www.tldp.org/LDP/intro-linux/intro-linux.pdf	
Literature.	https://www.python.org	
	https://matplotlib.org	
	http://www.numpy.org	
Types of Teaching:	S1 (WS): Lectures (1 SWS)	
l ypes or reaching.	S1 (WS): Exercises (1 SWS)	
	S2 (SS): Lectures (1 SWS)	
	S2 (SS): Exercises (1 SWS)	
Pre-requisites:		
Frequency:	yearly in the winter semester	
Requirements for Credit	For the award of credit points it is necessary to pass the module exam.	
Points:	The module exam contains:	
	KA: 2nd Semester [120 min]	
	PVL: Programming project	
	PVL have to be satisfied before the examination.	
	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen	
	der Modulprüfung. Die Modulprüfung umfasst:	
	KA: 2. Semester [120 min]	
	PVL: Programmierprojekt	
	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.	
Credit Points:		
Grade:	The Grade is generated from the examination result(s) with the following	

weights (w): KA: 2nd Semester [w: 1]
The workload is 180h. It is the result of 60h attendance and 120h self-studies.

Data:	STOMATE. MA. Nr. 3221 Version: 05.07.2016 Start Year: WiSe 2016 / Examination number: 11709
Module Name:	Stochastic Methods for Materials Science
(English):	Stochastic Methods for Materials Science
Responsible:	van den Boogaart, Gerald / Prof. Dr.
rtesponsible.	Ballani, Felix / Dr. rer. nat.
Lecturer(s):	van den Boogaart, Gerald / Prof. Dr.
Lecturer(3).	Ballani, Felix / Dr. rer. nat.
Institute(s):	Institute of Stochastics
Duration:	1 Semester(s)
Competencies:	The student will understand the role of stochastic modelling and
competencies.	stochastic algorithms for computational material sciences. He/she will learn to select, implement and test stochastic algorithms and models in an applied context.
Contents:	The lecture introduces examples of stochastic methods of material modeling, analysis and simulations: e.g. models and algorithms for the simulation of random structures (random mosaics, random composites, packing,) and random behavior (crack initiation, random loads, random fatigue,), statistical and stereological analysis of structural data and EBSD-crystal orientation measurements, Monte-Carle algorithms for material simulation, Markov-Chain-Monte-Carlo/Metropolis-Hastings algorithms for parameter estimation and structure reconstruction.
Literature:	e.g. Chiu, Stoyan, Kendall, Mecke: Stochastic geometry and its applications, 3 rd ed. Wiley, Chichester, 2013
Types of Teaching:	S1 (WS): Lectures (2 SWS)
Pre-requisites:	Recommendations: Basic knowledge of stochastic, statistic, geometry, continuum mechanics, computer programming, and either crystallography or basic group theory.
Frequency:	yearly in the winter semester
·	For the award of credit points it is necessary to pass the module exam. The module exam contains: MP [30 min] AP: Programming Project Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
	der Modulprüfung. Die Modulprüfung umfasst: MP [30 min] AP: Programmierprojekt
Credit Points:	4
Grade:	The Grade is generated from the examination result(s) with the following weights (w): MP [w: 1] AP: Programming Project [w: 1]
Workload:	The workload is 120h. It is the result of 30h attendance and 90h self-studies.

Data:	TMSMICS. MA. Nr. 3588 Version: 16.02.2022				
Data.					
	/ Examination number:				
Marakala Nama	44507				
Module Name:	Theory, Modelling and Simulation of Microstructures				
(English):					
Responsible:	Eidel, Bernhard / Prof. DrIng. habil.				
Lecturer(s):	<u>Prakash, Aruna / DrIng.</u>				
	<u>Eidel, Bernhard / Prof. DrIng. habil.</u>				
Institute(s):	Institute of Mechanics and Fluid Dynamics				
Duration:	1 Semester(s)				
Competencies:	Students will get familiar with some of the most relevant simulation				
·	methods for microstructures and will develop a fundamental				
	understanding for the role of computer-based simulation methods in modern materials science. They obtain a detailed overview over the				
	applications of most commonly used simulation together with their				
	respective ranges of applicability. They learn the practical realization of				
	simulation tasks based on analysis of materials science problems.				
	Through fundamental understanding of theory they will understand the				
	mechanisms behind simulation methods.				
Contents:	This course provides an overview of simulation methods operating on				
	length scales from the atomistic to the meso scale scale. Simulation				
	methods introduced include, e.g., Molecular Statics and Molecular				
	Dynamics as well as mesoscopic methods such as the Dislocation				
	Dynamics method. The introduction of methods operating on different				
	1 · · · · · · · · · · · · · · · · · · ·				
	scales is complemented by a discussion of multiscale approaches, i.e.				
	how models operating on different scales can be linked for increasing				
	the computational efficiency and/or the degree of detail. The lecture is				
	accompanied by hands-on tutorials where the students will implement				
	some simulation methods by themselves.				
Literature:	R. Lesar, Introduction to Materials Science, Cambridge University Press				
	A. R. Leach, Molecular modelling – principles and applications, Pearson				
	Education Ltd., Harlow				
Types of Teaching:	S1 (SS): Lectures (2 SWS)				
l ypes or reaching.	S1 (SS): Exercises (2 SWS)				
Pre-requisites:	Recommendations:				
l re-requisites.	Fundamentals of Microstructures, 2022-03-28				
	Knowledge of Python scripting, first Part of the Modul Software Tools for				
	Computational Materials Scientists				
Frequency:	yearly in the summer semester				
I	For the award of credit points it is necessary to pass the module exam.				
Points:	The module exam contains:				
	MP/KA (KA if 6 students or more) [MP minimum 20 min / KA 90 min]				
	PVL: Home work assignments				
	PVL have to be satisfied before the examination.				
	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen				
	der Modulprüfung. Die Modulprüfung umfasst:				
	, , , , , , , , , , , , , , , , , , , ,				
	MP/KA (KA bei 6 und mehr Teilnehmern) [MP mindestens 20 min / KA 90				
	min]				
	PVL: Hausarbeit				
	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.				
Credit Points:	5				
Grade:	The Grade is generated from the examination result(s) with the following				
weights (w):					
	MP/KA [w: 1]				
Workload:	The workload is 150h. It is the result of 60h attendance and 90h self-				
IVVOI NIOAU.	fine workload is 15011. It is the result of oon attendance and 9011 self-				

Lie e

Data:	TM MA Nr 2222 / Ev	Version: 05.04.2018	Start Year: WiSe 2016			
Data:		Version: 05.04.2018 🙎	Start fear: Wise 2016			
	amination number:					
0.0	51015					
Module Name:	Thermodynamics of Materials					
(English):						
Responsible:	<u>Leineweber, Andreas / Prof. Dr. rer. nat. habil.</u>					
Lecturer(s):	<u>Fabrichnaya, Olga / Dr.</u>					
Institute(s):	Institute of Materials Science					
Duration:	1 Semester(s)					
Competencies:	The students understand thermodynamic properties of materials and a					
	able to apply calculation methods of phase diagrams.					
Contents:	Most important topics are:					
	Thermodynamic laws an	nd quantities				
	Thermodynamic properties of materials Calculation of complex equilibria in multiphase and multicomponen systems Optimization of phase diagrams					
Literature:						
	Robert de Hoff, "Thermodynamics in Materials Science", 2nd Ed., Taylor					
	& Francis (2006)					
	Hans Leo Lukas, Suzana Fries, Bo Sundman, "Computational					
	Thermodynamics, the CALPHAD method", Cambridge (2007)					
Types of Teaching:	·					
	S1 (WS): Practical Application (1 SWS)					
Pre-requisites:	Recommendations:					
	Background in physical chemistry and materials science					
Frequency:	yearly in the winter semester					
	For the award of credit points it is necessary to pass the module exam.					
Points:	The module exam contains: MP/KA (KA if 6 students or more) [MP minimum 30 min / KA 120 min]					
		essful completing of all practical courses				
	PVL have to be satisfied before the examination.					
	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen					
	der Modulprüfung. Die Modulprüfung umfasst:					
	MP/KA (KA bei 6 und mehr Teilnehmern) [MP mindestens 30 min / KA					
	120 min]					
	PVL: Erfolgreiche Teilnahme an den Praktika.					
	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.					
Credit Points:	rve mussen vor Fruiungsantritt errunt sein bzw. nachgewiesen werden.					
Grade:	The Grade is generated from the examination result(s) with the following					
Graue.	suic(s) with the following					
	weights (w):					
Morkland	MP/KA [w: 1] The workload is 90h. It is the result of 45h attendance and 45h self-					
	studies.					

Freiberg, den 30. April 2023

gez. Prof. Dr. Klaus-Dieter Barbknecht

Rektor

Herausgeber: Der Rektor der TU Bergakademie Freiberg

Redaktion: Prorektor für Bildung

TU Bergakademie Freiberg 09596 Freiberg Anschrift:

Medienzentrum der TU Bergakademie Freiberg Druck: