GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: January 14, 2004, 10:28:18; Search time 26.7788 Seconds

(without alignments)

165.965 Million cell updates/sec

Title: US-09-843-221A-168

Perfect score: 2

Sequence: 1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched: 1107863 seqs, 158726573 residues

Word size : 0

Total number of hits satisfying chosen parameters: 75810

Minimum DB seq length: 28 Maximum DB seq length: 40

Post-processing: Listing first 1000 summaries

Database : A Geneseq 19Jun03:*

2: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1981.DAT:*
3: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1982.DAT:*
4: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1983.DAT:*
5: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1984.DAT:*
6: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1985.DAT:*
7: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1986.DAT:*
8: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1987.DAT:*

/SIDS1/qcqdata/geneseq/geneseqp-embl/AA1980.DAT:*

9: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1988.DAT:*
10: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1989.DAT:*

11: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1990.DAT:*

12: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1991.DAT:*
13: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1992.DAT:*

14: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1993.DAT:*

15: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1994.DAT:*

16: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1995.DAT:*

17: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1996.DAT:*
18: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1997.DAT:*

19: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1998.DAT:*

19: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1998.DAT:*
20: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1999.DAT:*

21: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA2000.DAT:*

22: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA2001.DAT:*
23: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA2002.DAT:*

24: /SIDS1/qcqdata/geneseq/geneseqp-embl/AA2003.DAT:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed,

and is derived by analysis of the total score distribution.

SUMMARIES

					DOMESTICA	S
		8				
Result	_	Query		22		5
No.	Score	Match	Length	DB	ID	Description
	20	100 0		17	77000027	Ilyman manathymaid
1	28	100.0	28	17	AAR88837	Human parathyroid
2	28	100.0	28	21	AAY98052	Human parathyroid
3	28	100.0	28	23	AAU73064	Parathyroid hormon
4	28	100.0	29	12	AAR11731	Adenine-rich PTH-(
5	28	100.0	29	17	AAR88836	Human parathyroid
6	28	100.0	29	23	AAU73063	Parathyroid hormon
7	28	100.0	29	23	AAU73179	Parathyroid hormon
8	28	100.0	30	17	AAR88832	Human parathyroid
9	28	100.0	30	23	AAU73051	Parathyroid hormon
10	28	100.0	30	23	AAU73178	Parathyroid hormon
11	28	100.0	31	19	AAW42059	Human parathyroid
12	28	100.0	31	19	AAW42051	Human parathyroid
13	28	100.0	31	20	AAY02578	N-terminal 31 resi
14	28	100.0	31	22	AAB81080	Human parathyroid
15	28	100.0	31	22	AAB91097	Parathyroid hormon
16	28	100.0	31	23	AAE23720	Human parathyroid
17	28	100.0	31	23	AAU73039	Parathyroid hormon
18	28	100.0	31	23	AAU73177	Parathyroid hormon
19	28	100.0	32	23	AAU73176	Parathyroid hormon
20	28	100.0	33	21	AAY98018	Human amino-termin
21	28	100.0	34	4	AAP30022	Human parathyroid-
22	28	100.0	34	6	AAP50377	[Met(O)8,18]hPTH-(
23	28	100.0	34	7	AAP60031	Sequence of the fi
24	28	100.0	34	11	AAR07919	Human parathyroid
25	28	100.0	34	11	AAR07922	Human parathyroid
26	28	100.0	34	13	AAR22283	Parathyroid hormon
27	28	100.0	34	14	AAR41549	[D-Ser3]hPTH (1-34
28	28	100.0	34	14	AAR41570	[Gln25]hPTH (1-34)
29	28	100.0	34	15	AAR58291	[Lys(For)26, Lys(F
30	28	100.0	34	15	AAR58228	[D-Asp30]-hPTH(1-3
31	28	100.0	34	15	AAR58232	[Lys32] -hPTH(1-34)
32	28	100.0	34	15	AAR58181	[Thr33, Ala34]-hPT
33	28	100.0	34	15	AAR58016	N-alpha-Isopropyl-
34	28	100.0	34	15	AAR58017	[Lys(N-epsilon-Iso
35	28	100.0	34	15	AAR55724	Parathormone N-ter
36	28		34	16	AAR74521	Human parathyroid
37	28	100.0	34	17	AAW99449	Human parathyroid
38	28	100.0	34	17	AAR99978	Human parathyroid
39	28	100.0	34	17	AAR98951	Target peptide (PT
40	28	100.0	34	17	AAR98966	PTH(1-34). Not sp
41	28	100.0	34	17	AAR88835	Human parathyroid
42	28	100.0	34	18	AAW24273	Wild type parathyr
43	28	100.0	34	18	AAW19994	
44	28	100.0	34	18	AAW20000	Cyclised human par
						Cyclised human par
45 46	28	100.0	34	18	AAW20006	Cyclised human par
46	28	100.0	34	18	AAW17948	Human parathyroid
47	28	100.0	34	18	AAW17968	Human parathyroid
48	28	100.0	34	18	AAW17955	Human parathyroid
49	28	100.0	34	18	AAW01610	Parathryoid hormon
50	28	100.0	34	19	AAW67283	Parathyroid hormon

51	28	100.0	34	19	AAW67291	Parathyroid hormon
52	28	100.0	34	19	AAW67293	Parathyroid hormon
53	28	100.0	34	19	AAW61658	Parathyroid hormon
54	28	100.0	34	19	AAW65975	Human parathyroid
55	28	100.0	34	19	AAW42614	Human parathyroid
						Human parathyroid
56	28	100.0	34	19	AAW48392	
57	28	100.0	34	20	AAY50593	Resin bound cyclic
58	28	100.0	34	20	AAY17752	Human parathyroid
59	28	100.0	34	20	AAY14151	Human parathyroid
60	28	100.0	34	20	AAY02579	N-terminal 34 resi
61	28	100.0	34	20	AAW81871	Human PTH N-termin
62	28	100.0	34	21	ABJ10712	Human parathyroid
63	28	100.0	34	21	AAB07454	Amino acids 1-34 o
64	28	100.0	34	21	AAY98017	Human amino-termin
65	28	100.0	34	21	AAY82631	Human parathyroid
66	28	100.0	34	21	AAY68763	Amino acids 1-34 o
				22		
67	28	100.0	34		AAB84778	Native rat parathy
68	28	100.0	34	22	AAB96898	Human parathyroid
69	28	100.0	34	22	AAB96929	Human parathyroid
70	28	100.0	34	22	AAB81079	Human parathyroid
71	28	100.0	34	22	AAB91098	Parathyroid hormon
72	28	100.0	34	23	ABJ05328	Human PTH(1-34) pe
73	28	100.0	34	23	AAE23727	Human parathyroid
74	28	100.0	34	23	ABB06329	Human parathyroid
75	28	100.0	34	23	ABB08595	C-terminal truncat
76	28	100.0	34	23	AAE18395	Human PTH peptide
77	28	100.0	34	23	ABB07147	Parathyroid hormon
78	28	100.0	34	23	AAU73028	Parathyroid hormon
78 79	28	100.0	34	24	ABP71500	Human parathyroid
80	28	100.0	34	24	ABG74235	Human parathyroid
81	28	100.0	35	22	AAB91112	Parathyroid hormon
82	28	100.0	35	23	AAU73172	Parathyroid hormon
83	28	100.0	36	14	AAR39450	Ser-Val-(hPTH 3-35
84	28	100.0	36	15	AAR58286	[D-Leu24]-hPTH(1-3
85	28	100.0	36	15	AAR58292	[D-Lys27]-hPTH(1-3)
86	28	100.0	36	15	AAR58293	[D-Leu28]-hPTH(1-3
87	28	100.0	36	15	AAR58294	[D-Phe34]-hPTH(1-3
88	28	100.0	36	15	AAR58295	[D-Val35]-hPTH(1-3
89	28	100.0	36	15	AAR58296	[Ala35] -hPTH(1-36)
90	28	100.0	36	15	AAR58297	[Pro35] -hPTH(1-36)
91	28	100.0	36	15	AAR58298	[NMeVal35] -hPTH(1-
92	28	100.0	36	15	AAR58299	[Thr35, Ala36] -hPTH
93	28	100.0	36			[D-Ala36] -hPTH(1-3
				15	AAR58300	
94	28	100.0	36	15	AAR58301	[NMeAla36] -hPTH(1-
95	28	100.0	36	15	AAR58260	[D-Val2] -hPTH(1-36
96	28	100.0	36	15	AAR58263	[D-Ile5]-hPTH(1-36
97	28	100.0	36	15	AAR58264	[D-Gln6]-hPTH(1-36
98	28	100.0	36	15	AAR58265	[D-Leu7]-hPTH(1-36
99	28	100.0	36	15	AAR58270	[D-Leull] -hPTH(1-3
100	28	100.0	36	15	AAR58272	[D-Lys13]-hPTH(1-3)
101	28	100.0	36	15	AAR58273	[D-Leu15] -hPTH(1-3
102	28	100.0	36	15	AAR58276	[Met (O2) 18] -hPTH(1
103	28	100.0	36	15	AAR58278	[D-Met18]-hPTH(1-3
104	28	100.0	36	15	AAR58280	[D-Arg20] -hPTH(1-3
104	28	100.0	36	15	AAR58281	[D-Val21] -hPTH(1-3
						[D-Vaizi] -NPTH(1-3 [D-Trp23] -hPTH(1-3
106	28	100.0	36 36	15	AAR58284	·
107	28	100.0	36	15	AAR58227	[D-Gln29]-hPTH(1-3

108	28	100.0	36	15	AAR58229	[Ala30] -hPTH(1-36)
109	28	100.0	36	15	AAR58230	[D-Val31]-hPTH(1-3
110	28	100.0	36	15	AAR58231	[Ala31] -hPTH(1-36)
111	28	100.0	36	15	AAR58233	[D-His32]-hPTH(1-3
112	28	100.0	36	15	AAR58234	[Ala32]-hPTH(1-36)
113	28	100.0	36	15	AAR58235	[D-Asn33] -hPTH(1-3
114	28	100.0	36	15	AAR58236	[Ala33]-hPTH(1-36)
115	28	100.0	36	15	AAR58237	[NMePhe34]-hPTH(1-
116	28	100.0	36	15	AAR58238	[D-Asp30]-hPTH(1-3
117	28	100.0	36	15	AAR58242	[Lys(Isopropyl)13]
118	28	100.0	36	15	AAR58246	Acetyl-hPTH $(1-36)$ -
119	28	100.0	36	15	AAR58249	[D-Ser1]-hPTH(1-36
120	28	100.0	36	15	AAR58190	[Ala29] -hPTH(1-36)
121	28	100.0	36	15	AAR58191	[Ala34] -hPTH(1-36)
122	28	100.0	36	15	AAR58196	[D-Phe34, D-Ala36]
123	28	100.0	36	15	AAR58198	[D-Ser3]-hPTH(1-36
124	28	100.0	36	15	AAR58199	[D-Glu4]-hPTH(1-36
125	28	100.0	36	15	AAR58200	[D-His9] -hPTH(1-36
126	28	100.0	36	15	AAR58202	[D-Asn10] -hPTH(1-3
127	28	100.0	36	15	AAR58210	[D-His14] -hPTH(1-3
128	28	100.0	36	15	AAR58211	[D-Asn16] -hPTH(1-3
129	28	100.0	36	15	AAR58213	[D-Ser17]-hPTH(1-3
130	28	100.0	36	15	AAR58215	[D-Glu19] -hPTH(1-3
131	28	100.0	36	15	AAR58220	[D-Lys26] -hPTH(1-3
132	28	100.0	36	15	AAR58171	[N-Me-Ser1]-hPTH(1
133	28	100.0	37	12	AAR11882	Parathyroid hormon
134	28	100.0	37	13	AAR24778	hPTH(1-37)-amide/e
135	28	100.0	37	15	AAR58244	[Ala0] -hPTH(1-36) -
136	28	100.0	37	15	AAR58245	[Pro0] -hPTH(1-36) -
137	28	100.0	37	22	AAB86226	Human parathyroid
138	28	100.0	37	22	AAB86229	Human parathyroid
139	28	100.0	37	23	ABB82203	Human parathyroid
140	28	100.0	38	3	AAP20248	Parathyroid hormon
141	28	100.0	38	15	AAR58282	[Trp (SO2Pmc) 23] -hP
142	28	100.0	38	15	AAR58283	[Trp(Pmc)23]-hPTH(
143	28	100.0	38	15	AAR58018	Isopropyl-[Lys(Iso
144	28	100.0	38	15	AAR58162	[Arg33] -hPTH(1-38)
145	28	100.0	38	15	AAR58163	[Pro33] -hPTH(1-38)
146	28	100.0	38	15	AAR58164	[Asp33] -hPTH(1-38)
147	28	100.0	38	15	AAR58165	[Ile33] -hPTH(1-38)
148	28	100.0	38	15	AAR58166	[Lys33] -hPTH(1-38)
149	28	100.0	38	15	AAR58167	[Ile31,Arg33]-hPTH
150	28	100.0	38	15	AAR58075	[Ser33]-hPTH(1-38)
151	28	100.0	38	15	AAR58075	
152	28	100.0	38	15	AAR58070 AAR58077	[Thr33] -hPTH(1-38)
153	28	100.0	38	15	AAR58077	[Leu33] -hPTH(1-38)
154	28	100.0	38	15	AAR58078	[Gly33] -hPTH(1-38)
155	28	100.0	38	15	AAR54234	[Gln33] -hPTH(1-38)
156	28	100.0	38	20	AAY02580	PTH N-terminal. S N-terminal 38 resi
157	28	100.0	38	22		
158	28	100.0	38	23	AAB91101 AAE23729	Parathyroid hormon Human parathyroid
159	28	100.0	38	23	AAE18400	_ _
160	28	100.0	38	23	AAU73026	Human PTH peptide
1 (1	27	96.4	28	21	AAY98048	Parathyroid hormon
161	27	96.4	28	21	AA198048 AAY98050	Human parathyroid
163	27	96.4	30	23	AAU73055	Human parathyroid
164	27	96.4	33	21	AAY98012	Parathyroid hormon Human amino-termin
	۱ ت	٠٠٠٠	J	ĽΙ	WY170012	numan amino-termin

1.05	27	06.4	2.2	21	77700015	
165	27	96.4	33	21	AAY98015	Human amino-termin
166	27	96.4	34	18	AAW17947	Human parathyroid
167	27	96.4	34	18	AAW17951	Human parathyroid
168	27	96.4	34	19	AAW67282	Parathyroid hormon
169	27	96.4	34	19	AAW67286	Parathyroid hormon
170	27	96.4	34	21	AAY98010	Human amino-termin
171	27	96.4	34	21	AAY98011	Human amino-termin
172	27	96.4	34	21	AAY98014	Human amino-termin
173	27	96.4	34	22	AAB91113	
174						Parathyroid hormon
	27	96.4	34	23	AAE23728	Human parathyroid
175	27	96.4	34	23	AAE18399	Human PTH peptide
176	27	96.4	34	23	AAU73032	Parathyroid hormon
177	27	96.4	36	12	AAR15842	Human parathyroid
178	27	96.4	36	13	AAR23995	Human paprthyroid
179	27	96.4	36	15	AAR58254	[4-aminosalicylic
180	27	96.4	36	15	AAR58255	[TMSA1] -hPTH(1-36)
181	27	96.4	36	15	AAR58256	[Phe1]-hPTH(1-36)-
182	27	96.4	36	15	AAR58257	[Propargylglycin1]
183	27	96.4	36	15	AAR58262	[Ala1]-hPTH(1-36)-
184	27	96.4	36	15	AAR58243	Propargyl - [A1] -hPT
185	27	96.4	36	15		
					AAR58247	[Hyp1] -hPTH(1-36) -
186	27	96.4	36	15	AAR58248	N-Dimethyl-[Ala1]-
187	27	96.4	36	15	AAR58250	[Lys(For)1]-hPTH(1
188	27	96.4	36	15	AAR58251	[D-glyceric acid1]
189	27	96.4	36	15	AAR58252	[Asn1] -hPTH(1-36) -
190	27	96.4	36	15	AAR58253	[4-aminobenzoic ac
191	27	96.4	36	15	AAR58169	[D-Pro1] -hPTH(1-36
192	27	96.4	36	15	AAR58170	[Nva1]-hPTH(1-36)-
193	27	96.4	36	15	AAR58172	[Indole-2-carboxyl
194	27	96.4	36	15	AAR58173	[Indole-3-carboxyl
195	27	96.4	36	15	AAR58174	[Pyridine-3-carbox
196	27	96.4	36	15	AAR58175	[Pyridine-2-carbox
197	27	96.4	36	15	AAR58176	
198						[Hexahydropyridazi
	27	96.4	36	15	AAR58177	[Morpholine-2-carb
199	27	96.4	36	15	AAR58178	[Pro1]-hPTH(1-36)-
200	27	96.4	36	15	AAR58179	[Leu1] -hPTH(1-36) -
201	27	96.4	36	15	AAR58180	[Ile1] -hPTH(1-36) -
202	27	96.4	36	15	AAR58026	N-alpha-methyl[Ala
203	27	96.4	36	15	AAR58168	[1-amino-cyclopent
204	27	96.4	37	23	AAU73027	Parathyroid hormon
205	27	96.4	38	15	AAR58019	N-alpha-methyl[Ala
206	27	96.4	38	15	AAR58022	[Ile1] - hPTH(1-38) -
207	27	96.4	38	15	AAR58028	[Thr1] -hPTH(1-38) -
208	27	96.4	38	15	AAR58029	[Leu1] -hPTH(1-38) -
209	27	96.4	38	15	AAR58030	[Abul or Gabal] -hP
210	27	96.4	38	15		
211	27	96.4			AAR58159'	[Val28] -hPTH(1-38)
			38	15	AAR58160	[Ile28]-hPTH(1-38)
212	26	92.9	28	17	AAR88838	Human parathyroid
213	26	92.9	28	22	AAB81074	Human parathyroid
214	26	92.9	29	17	AAR88839	Human parathyroid
215	26	92.9	29	22	AAB81075	Human parathyroid
216	26	92.9	30	17	AAR88833	Human parathyroid
217	26	92.9	30	19	AAW42052	Human parathyroid
218	26	92.9	30	23	AAU73062	Parathyroid hormon
219	26	92.9	31	19	AAW42056	Human parathyroid
220	26	92.9	31	19	AAW42057	Human parathyroid
221	26	92.9	31	19	AAW42060	Human parathyroid
		· • · · ·				Tamair Paracity: OTG

222	26	92.9	31	19	AAW42062	Human parathyroid
223	26	92.9	31	19	AAW42067	Human parathyroid
224	26	92.9	31	19	AAW42049	Human parathyroid
225	26	92.9	31	19	AAW42050	Human parathyroid
226	26	92.9	31	19	AAW42053	Human parathyroid
227	26	92.9	31	23	AAU73040	Parathyroid hormon
228	26	92.9	31	23	AAU82640	Analogue of human
229	26	92.9	32	5	AAP40427	Parathyroid antago
230	26	92.9	34	13	AAR22298	
231	26	92.9	34	13	AAR22299	Human parathyroid Human parathyroid
232	26	92.9	34	14	AAR41554	
233	26	92.9	34	14		[Thr27] hPTH (1-34)
234	26	92.9 92.9			AAR41555	[Asn27] hPTH (1-34)
			34	14	AAR41558	[Ser27] hPTH (1-34)
235	26	92.9	34	14	AAR41559	[Gly27]hPTH (1-34)
236	26	92.9	34	14	AAR41560	[His27]hPTH (1-34)
237	26	92.9	34	17	AAR88829	Human parathyroid
238	26	92.9	34	17	AAR88834	Human parathyroid
239	26	92.9	34	18	AAW17969	Human parathyroid
240	26	92.9	34	19	AAW67292	Parathyroid hormon
241	26	92.9	34	19	AAW67297	Parathyroid hormon
242	26	92.9	34	19	AAW42054	Human parathyroid
243	26	92.9	34	19	AAW42055	Human parathyroid
244	26	92.9	34	22	AAB61638	Peptide #1 that ca
245	26	92.9	36	15	AAR58259	[aBU2]-hPTH(1-36)-
246	26	92.9	36	15	AAR58261	[Tert.Leu]-hPTH(1-
247	26	92.9	36	15	AAR58222	[His27] - hPTH(1-36)
248	26	92.9	36	15	AAR58223	[Phe27] -hPTH(1-36)
249	26	92.9	36	15	AAR58224	[Nle27] - hPTH(1-36)
250	26	92.9	36	15	AAR58225	[Asn27] - hPTH(1-36)
251	26	92.9	36	15	AAR58226	[Ala27]-hPTH(1-36)
252	26	92.9	38	15	AAR58023	[Ala1,Abu2 or Nva2
253	26	92.9	38	15	AAR58024	[Ala1,Ile2]-hPTH(1
254	26	92.9	38	15	AAR58154	[Val27] -hPTH(1-38)
255	26	92.9	38	15	AAR58155	[Ile27]-hPTH(1-38)
256	26	92.9	38	15	AAR58156	[Leu27]-hPTH(1-38)
257	26	92.9	38	15	AAR58157	[Arg27] -hPTH(1-38)
258	26	92.9	38	15	AAR58158	[Ala27]-hPTH(1-38)
259	25	89.3	31	5	AAP40760	Human parathyroid
260	25	89.3	34	14	AAR41550	[D-Ala3]hPTH (1-34
261	25	89.3	34	14	AAR41556	[Gln26,27]hPTH (1-
262	25	89.3	34	14	AAR41566	[Arg 26,27]hPTH (1
263	25	89.3	34	14	AAR41567	[Gln26]hPTH (1-34)
264	25	89.3	34	18	AAW17957	Human parathyroid
265	25	89.3	36	15	AAR58290	[Ala26] -hPTH(1-36)
266	25	89.3	36	15	AAR58197	[Ala3]-hPTH(1-36)-
267	25	89.3	36	15	AAR58218	[Gln26] -hPTH(1-36)
268	25	89.3	36	15	AAR58219	[Nle26]-hPTH(1-36)
269	25	89.3	38	15	AAR58153	[Arg26] -hPTH(1-38)
270	25	89.3	38	15	AAR58161	[Pro3,Thr33]-hPTH(
271	24	85.7	30	23	AAE23752	Human parathyroid
272	24	85.7	32	23	AAE23735	Human parathyroid
273	24	85.7	34	14	AAR34456	Human parathyroid
274	24	85.7	34	14	AAR34457	Human parathyroid
275	24	85.7	34	14	AAR41557	[Gln25,26,27]hPTH
276	24	85.7	36	15	AAR58287	[Phe25] -hPTH(1-36)
277	24	85.7	36	15	AAR58288	[Lys25] -hPTH(1-36)
278	24	85.7	36	15	AAR58289	[Ala25] -hPTH(1-36)

279	24	85.7	36	15	AAR58192	[Gln25]-hPTH(1-36)
280	23	82.1	34	18	AAW17949	Human parathyroid
281	23	82.1	34	18	AAW17945	Human parathyroid
282	23	82.1	34	18	AAW17950	Human PTH analogue
283	23	82.1	34	19	AAW67280	Parathyroid hormon
284	23	82.1	34	19	AAW67284	Parathyroid hormon
285	23	82.1	34	19	AAW67285	Parathyroid hormon
286	23	82.1	34	19	AAW67288	Parathyroid hormon
287	23	82.1	34	19	AAW67289	Parathyroid hormon
288	23	82.1	34	19	AAW67290	Parathyroid hormon
289	23	82.1	34	19	AAW67294	Parathyroid hormon
290	23	82.1	34	19	AAW67295	Parathyroid hormon
291	23	82.1	34	19	AAW67296	Parathyroid hormon
292	23	82.1	34	19	AAW67303	Parathyroid hormon
293	22	78.6	28	13	AAR22064	Modified hPTH(7-34
294	22	78.6	28	13	AAR22065	
295	22	78.6	28	23	AAE23734	Modified [Tyr_34]h
296	22	78.6	28	23		Human parathyroid
297	22	78.6			AAU73044	Parathyroid hormon
297 298	22		30	23	AAU73136	Parathyroid hormon
		78.6	30	23	AAU73137	Parathyroid hormon
299	22	78.6	32	21	AAB07468	Antigenic peptide
300	22	78.6	33	9	AAP82176	Sequence of parath
301	22	78.6	34	14	AAR34358	Human parathyroid
302	22	78.6	34	14	AAR34353	Human parathyroid
303	22	78.6	34	14	AAR34354	Human parathyroid
304	22	78.6	34	14	AAR34355	Human parathyroid
305	22	78.6	34	14	AAR34356	Human parathyroid
306	22	78.6	34	14	AAR34357	Human parathyroid
307	22	78.6	34	14	AAR34359	Human parathyroid
308	22	78.6	34	14	AAR34360	Human parathyroid
309	22	78.6	34	14	AAR34361	Human parathyroid
310	22	78.6	34	14	AAR34362	Human parathyroid
311	22	78.6	34	14	AAR34363	Human parathyroid
312	22	78.6	34	14	AAR34364	Human parathyroid
313	22	78.6	34	14	AAR34365	Human parathyroid
314	22	78.6	34	14	AAR34366	Human parathyroid
315	22	78.6	34	14	AAR34367	Human parathyroid
316	22	78.6	34	14	AAR34368	Human parathyroid
317	22	78.6	34	15	AAR58187	[Phe23, His25, His26
318	22	78.6	34	15	AAR58189	[F23,H25,H26,L27,I
319	22	78.6	34	18	AAW17944	Human parathyroid
320	22	78.6	34	18	AAW01609	Parathryoid hormon
321	22	78.6	34	19	AAW67279	Parathyroid hormon
322	22	78.6	34	22	AAB91085	Parathyroid hormon
323	22	78.6	34	23	AAU73100	Parathyroid hormon
324	22	78.6	34	23	AAU73101	Parathyroid hormon
325	22	78.6	36	15	AAR58285	[Ala23] -hPTH(1-36)
326	22	78.6	36	15	AAR58188	[Phe23] -hPTH(1-36)
327	22	78.6	38	17		
328	21	75.0	30	23	AAR98958 AAU73138	Target peptide (PT
329	21	75.0	30	23	AAU73138 AAU73139	Parathyroid hormon
330	21	75.0 75.0	31	23 17		Parathyroid hormon
331	21				AAR88830	Human parathyroid
332		75.0	31	19	AAW42063	Human parathyroid
	21	75.0	31	19	AAW42065	Human parathyroid
333	21	75.0	31	19	AAW42066	Human parathyroid
334	21	75.0	32	17	AAR88840	Human parathyroid
335	21	75.0	33	17	AAR88841	Human parathyroid

336	21	75.0	34	18	AAW17943	Human parathyroid
337	21	75.0	34	19	AAW67278	Parathyroid hormon
338	21	75.0	34	19	AAW67305	Parathyroid hormon
339	21	75.0	34	19	AAW67302	Parathyroid hormon
340	21	75.0	34	19	AAW67304	Parathyroid hormon
341	21	75.0	34	23	AAU73102	Parathyroid hormon
342	21	75.0	34	23	AAU73103	Parathyroid hormon
343	21	75.0	34	23	AAU73104	Parathyroid hormon
344	21	75.0	34	23	AAU73140	Parathyroid hormon
345	21	75.0	36	15	AAR58217	[Ala22] -hPTH(1-36)
346	21	75.0	38	15	AAR58145	
						[Gly22] -hPTH(1-38)
347	21	75.0	38	15	AAR58146	[Leu22] -hPTH(1-38)
348	21	75.0	38	15	AAR58147	[His22] - hPTH(1-38)
349	21	75.0	38	15	AAR58148	[Ala22] -hPTH(1-38)
350	21	75.0	38	15	AAR58149	[Ile22]-hPTH(1-38)
351	21	75.0	38	15	AAR58150	[Val22]-hPTH(1-38)
352	21	75.0	38	15	AAR58151	[Ser22] -hPTH(1-38)
353	21	75.0	38	15	AAR58152	[Arg22] -hPTH(1-38)
354	20	71.4	28	21		
					ABJ10776	Human parathyroid
355	20	71.4	34	13	AAR22293	Human parathyroid
356	20	71.4	34	15	AAR49697	Sequence of varian
357	20	71.4	34	15	AAR49698	Sequence of varian
358	20	71.4	34	18	AAW24276	Parathyroid hormon
359	20	71.4	34	19	AAW67299	Parathyroid hormon
360	20	71.4	34	21	ABJ10706	Human parathyroid
361	20	71.4	34	21	ABJ10714	Human parathyroid
362	20	71.4	34	21		
					ABJ10717	Human parathyroid
363	20	71.4	34	21	ABJ10719	Human parathyroid
364	20	71.4	34	21	ABJ10722	Human parathyroid
365	20	71.4	34	21	ABJ10724	Human parathyroid
366	20	71.4	34	21	ABJ10727	Human parathyroid
367	20	71.4	34	21	ABJ10729	Human parathyroid
368	20	71.4	34	21	ABJ10730	Human parathyroid
369	20	71.4	34	21	ABJ10733	Human parathyroid
370	20	71.4	34	21		
					ABJ10736	Human parathyroid
371	20	71.4	34	21	ABJ10772	Human parathyroid
372	20	71.4	34	21	ABJ10773	Human parathyroid
373	20	71.4	36	15	AAR58266	[Nle8] -hPTH(1-36) -
374	20	71.4	36	15	AAR58267	[Phe8]-hPTH(1-36)-
375	20	71.4	36	15	AAR58268	[Cha8]-hPTH(1-36)-
376	20	71.4	36	15	AAR58216	[Ala21] -hPTH(1-36)
377	20	71.4	36	15	AAR58182	[Nva8] -hPTH(1-36) -
378	20	71.4	38	15		
					AAR58269	[Leu8] -hPTH(1-38) -
379	20	71.4	38	15	AAR58138	[Ala21] -hPTH(1-38)
380	20	71.4	38	15	AAR58139	[Gly21]-hPTH(1-38)
381	20	71.4	38	15	AAR58140	[Phe21]-hPTH(1-38)
382	20	71.4	38	15	AAR58141	[Leu21]-hPTH(1-38)
383	20	71.4	38	15	AAR58142	[Asn21] -hPTH(1-38)
384	20	71.4	38	15	AAR58143	[Gln21] -hPTH(1-38)
385	20	71.4	38	15	AAR58144	[Ser21] -hPTH(1-38)
386	19	67.9	31	17	AAR88831	
						Human parathyroid
387	19	67.9	36	15	AAR58279	[Lys20] -hPTH(1-36)
388	19	67.9	38	15	AAR58137	[Phe20] -hPTH(1-38)
389	18	64.3	28	21	AAY98046	Human parathyroid
390	18	64.3	30	23	AAU73054	Parathyroid hormon
391	18	64.3	34	13	AAR22297	Human parathyroid
392	18	64.3	34	17	AAW15812	[Trp(10)]-hPTH(1-3
						<u>-</u>

393	18	64.3	34	18	AAW08120	Human PTH derivati
394	18	64.3	34	18	AAW08109	Human parathyroid
395	18	64.3	34	18	AAW08114	Human PTH derivati
396	18	64.3	34	18	AAW08118	Human PTH derivati
397	18	64.3	34	18	AAW08119	Human PTH derivati
398	18	64.3	34	18	AAW17954	Human parathyroid
399	18	64.3	34	23	AAU73031	Parathyroid hormon
400	18	64.3	35	23	AAU73175	Parathyroid hormon
401	18	64.3	36	15	AAR58201	[Ala10] -hPTH(1-36)
402	18	64.3	36	15	AAR58214	[Ala19] -hPTH(1-36)
403	18	64.3	38	15	AAR58136	[Arg19] -hPTH(1-38)
404	18	64.3	38	15	AAR58123	[Ser19] -hPTH(1-38)
405	18	64.3	38	15	AAR58124	[Lys19] -hPTH(1-38)
406	18	64.3	38	15	AAR58125	[Leu19] -hPTH(1-38)
407	18	64.3	38	15	AAR58126	[Ala19] -hPTH(1-38)
408	18	64.3	38	15	AAR58127	[Tyr19] -hPTH(1-38)
409	18	64.3	38	15	AAR58128	-
410	18	64.3	38	15	AAR58128 AAR58129	[Met19] -hPTH(1-38)
411	18	64.3	38	15		[His19] -hPTH(1-38)
412	18	64.3	38	15	AAR58130	[Val19] -hPTH(1-38)
413	18	64.3	38		AAR58131	[Gly19] -hPTH(1-38)
				15	AAR58132	[Pro19] -hPTH(1-38)
414	18	64.3	38	15	AAR58133	[Asp19] -hPTH(1-38)
415	18	64.3	38	15	AAR58134	[Ile19]-hPTH(1-38)
416	18	64.3	38	15	AAR58135	[Val19,Gln24]-hPTH
417	17	60.7	28	21	AAY98041	Human parathyroid
418	17	60.7	28	21	AAY98042	Human parathyroid
419	17	60.7	28	21	AAY98044	Human parathyroid
420	17	60.7	30	23	AAU73052	Parathyroid hormon
421	17	60.7	30	23	AAU73053	Parathyroid hormon
422	17	60.7	34	13	AAR22291	Human parathyroid
423	17	60.7	34	13	AAR22292	Human parathyroid
424	17	60.7	34	13	AAR22294	Human parathyroid
425	17	60.7	34	13	AAR22296	Human parathyroid
426	17	60.7	34	15	AAR58193	[L8,D10,K11,T33,A3
427	17	60.7	34	15	AAR58194	[A1,H5,L8,D10,K11,
428	17	60.7	34	18	AAW08108	Human parathyroid
429	17	60.7	34	18	AAW08113	Human PTH derivati
430	17	60.7	34	18	AAW08117	Human PTH derivati
431	17	60.7	34	18	AAW17941	Human parathyroid
432	17	60.7	34	18	AAW17939	Human parathyroid
433	17	60.7	34	19	AAW67274	Parathyroid hormon
434	17	60.7	34	19	AAW67276	Parathyroid hormon
435	17	60.7	34	19	AAW67298	Parathyroid hormon
436	17	60.7	34	19	AAW67300	Parathyroid hormon
437	17	60.7	34	19	AAW67301	Parathyroid hormon
438	17	60.7	34	21	ABJ10713	Human parathyroid
439	17	60.7	34	21	ABJ10737	Human parathyroid
440	17	60.7	34	21	ABJ10742	Human parathyroid
441	17	60.7	34	21	ABJ10769	Human parathyroid
442	17	60.7	34	22	AAB91087	Parathyroid hormon
443	17	60.7	34	23	AAU73029	Parathyroid hormon
444	17	60.7	34	23	AAU73030	Parathyroid hormon
445	17	60.7	35	23	AAU73173	Parathyroid hormon
446	17	60.7	35	23	AAU73174	Parathyroid hormon
447	17	60.7	36	15	AAR58271	[Ala11] -hPTH(1-36)
448	17	60.7	36	15	AAR58277	[Nle18] -hPTH(1-36)
449	17	60.7	36	15	AAR58183	[Gln18] -hPTH(1-36)
				_		[32323] MIN(1 30)

450	17	60.7	36	15	AAR58184	[Tyr18]-hPTH(1-36)
451	17	60.7	36	15	AAR58185	[Lys18]-hPTH(1-36)
452	17	60.7	36	15	AAR58186	[Ala18] -hPTH(1-36)
453	16	57.1	28	13	AAR22066	Modified [D-Trp 12
454	16	57.1	28	22	AAB81078	
						Human parathyroid
455	16	57.1	28	23	AAU73105	Parathyroid hormon
456	16	57.1	28	23	AAU73106	Parathyroid hormon
457	16	57.1	31	22	AAB81077	Human parathyroid
458	16	57.1	34	11	AAR08300	Human parathyroid
459	16	57.1	34	11	AAR08303	Human parathyroid
460	16	57.1	34	17	AAW14310	Cyclic parathyroid
461	16	57.1	34	17	AAW14311	
462						Cyclic parathyroid
	16	57.1	34	18	AAW08121	Human PTH derivati
463	16	57.1	34	18	AAW08115	Human PTH derivati
464	16	57.1	34	18	AAW08116	Human PTH derivati
465	16	57.1	34	18	AAW17958	Human parathyroid
466	16	57.1	34	18	AAW17959	Human parathyroid
467	16	57.1	34	22	AAB84771	Parathyroid hormon
468	16	57.1	34	22	AAB84826	Parathyroid hormon
469	16	57.1	34	22	AAB96893	Rat parathyroid ho
470	16	57.1	34	22	AAB96916	Parathyroid hormon
471	16					<u>=</u>
		57.1	34	22	AAB96919	Parathyroid hormon
472	16	57.1	34	22	AAB96930	Rat parathyroid ho
473	16	57.1	36	15	AAR58203	[Ala12] - hPTH(1-36)
474	16	57.1	36	15	AAR58212	[Ala17] -hPTH(1-36)
475	16	57.1	38	15	AAR58089	[Arg12] -hPTH(1-38)
476	16	57.1	38	15	AAR58090	[Ser12]-hPTH(1-38)
477	16	57.1	38	15	AAR58120	[Ala17] -hPTH(1-38)
478	16	57.1	38	15	AAR58121	[Met17] -hPTH(1-38)
479	16	57.1	38	1 5	AAR58122	
480						[Ile17] -hPTH(1-38)
	15	53.6	28	23	AAU73107	Parathyroid hormon
481	15	53.6	28	23	AAU73108	Parathyroid hormon
482	15	53.6	28	23	AAU73109	Parathyroid hormon
483	15	53.6	30	6	AAP50665	Human parathyroid
484	15	53.6	30	23	AAU73059	Parathyroid hormon
485	15	53.6	34	14	AAR41551	[Thr16]hPTH (1-34)
486	15	53.6	34	14	AAR41552	[Glu16]hPTH (1-34)
487	15	53.6	34	14	AAR41553	[Lys16]hPTH (1-34)
488	15	53.6	34	14	AAR41561	[Lys16, Gln27]hPTH
489	15	53.6	34	14	AAR41562	_ -
490	15	53.6				[Orn16, Gln27]hPTH
			34	14	AAR41563	[Hci16, Gln27]hPTH
491	15	53.6	34	14	AAR41564	[Asp16, Gln27]hPTH
492	15	53.6	34	14	AAR41565	[Arg16, Gln27]hPTH
493	15	53.6	34	14	AAR41571	[D-Lys16]hPTH (1-3
494	15	53.6	34	14	AAR41573	[Gln16]hPTH (1-34)
495	15	53.6	34	14	AAR41574	[Ser16]hPTH (1-34)
496	15	53.6	34	14	AAR41575	[Gly16]hPTH (1-34)
497	15	53.6	34	14	AAR41576	[Lys16]hPTH (1-34)
498	15	53.6	34	14	AAR41577	[Lys16, Asp17]hPTH
499	15	53.6	34	14	AAR41580	
500	15	53.6	34			[Lys16,17]hPTH (1-
				14	AAR41581	[Arg16,17]hPTH (1-
501	15	53.6	34	17	AAR99981	Porcine parathyroi
502	15	53.6	34	18	AAW08132	Human PTH derivati
503	15	53.6	34	18	AAW08112	Human PTH derivati
504	15	53.6	34	18	AAW17967	Human PTH analogue
505	15	53.6	34	18	AAW17953	Human parathyroid
506	15	53.6	34	18	AAW17956	Human parathyroid
						<u> </u>

507	15	53.6	34	19	AAW61660	Parathyroid hormon
508	15	53.6	34	19	AAW65977	Porcine parathyroi
509	15	53.6	34	19	AAW42616	Porcine parathyroi
510	15	53.6	34	20	AAW81873	Porcine PTH N-term
511	15	53.6	34	23	AAU73036	Parathyroid hormon
512	15	53.6	36	15	AAR58275	[Ala16] -hPTH(1-36)
513	15	53.6	36	15	AAR58204	[Gln13] -hPTH(1-36)
514	15	53.6	36	15	AAR58205	[His13] -hPTH(1-36)
515	15	53.6	36	15	AAR58206	
516	15	53.6	36	15	AAR58207	[Leu13] -hPTH(1-36)
517	15					[Ala13] -hPTH(1-36)
		53.6	37	22	AAB86232	Porcine parathyroi
518	15	53.6	38	15	AAR58036	[Gln16] -hPTH(1-38)
519	15	53.6	38	15	AAR58091	[Cys13] -hPTH(1-38)
520	15	53.6	38	15	AAR58092	[Ile13]-hPTH(1-38)
521	15	53.6	38	15	AAR58093	[Asn13] -hPTH(1-38)
522	15	53.6	38	15	AAR58094	[Trp13] -hPTH(1-38)
523	15	53.6	38	15	AAR58095	[Asp13] -hPTH(1-38)
524	15	53.6	38	15	AAR58096	[Val13]-hPTH(1-38)
525	15	53.6	38	15	AAR58097	[Thr13]-hPTH(1-38)
526	15	53.6	38	15	AAR58098	[Ser13]-hPTH(1-38)
527	15	53.6	38	15	AAR58099	[Tyr13] -hPTH(1-38)
528	15	53.6	38	15	AAR58100	[Met13] -hPTH(1-38)
529	15	53.6	38	15	AAR58101	[Gln13] -hPTH(1-38)
530	15	53.6	38	15	AAR58102	[Leu13] -hPTH(1-38)
531	15	53.6	38	15	AAR58102 AAR58103	
532	15	53.6	38	15	•	[Ala13] -hPTH(1-38)
533	15	53.6			AAR58104	[Gly13] -hPTH(1-38)
			38	15	AAR58115	[Lys16] -hPTH(1-38)
534	15	53.6	38	15	AAR58116	[Ser16] -hPTH(1-38)
535	15	53.6	38	15	AAR58117	[Leu16] -hPTH(1-38)
536	15	53.6	38	15	AAR58118	[Ala16] -hPTH(1-38)
537	15	53.6	38	15	AAR58119	[Gly16] -hPTH(1-38)
538	14	50.0	30	23	AAU73060	Parathyroid hormon
539	14	50.0	31	21	AAY96973	Parathyroid hormon
540	. 14	50.0	31	21	AAY96974	Parathyroid hormon
541	14	50.0	34	9	AAP82177	Sequence of parath
542	14	50.0	34	11	AAR07917	Rat parathyroid ho
543	14	50.0	34	11	AAR07920	Rat parathyroid ho
544	14	50.0	34	14	AAR41568	[Lys15,16 His27]hP
545	14	50.0	34	14	AAR41569	[Lys15, His27]hPTH
546	14	50.0	34	14	AAR41572	[Lys15,16,17, His2
547	14	50.0	34	14	AAR41579	[Lys15,15,17] hPTH
548	14	50.0	34	14	AAR41582	[Arg15,16,17] hPTH
549	14	50.0	34	16	AAR62432	Accelerator peptid
550	14	50.0	34	17	AAR99980	
551	14	50.0	34			Rat parathyroid ho
552				18	AAW08129	Human PTH derivati
	14	50.0	34	18	AAW19996	Cyclised rat parat
553	14	50.0	34	18	AAW20002	Cyclised rat parat
554	14	50.0	34	18	AAW20008	Cyclised rat parat
555	14	50.0	34	18	AAW17952	Human parathyroid
556	14	50.0	34	19	AAW67287	Parathyroid hormon
557	14	50.0	34	19	AAW48394	Human PTH/PTHrP hy
558	14	50.0	34	19	AAW48398	Human PTH/PTHrP hy
559	14	50.0	34	22	AAB84775	Parathyroid hormon
560	14	50.0	34	22	AAB84777	Native human parat
561	14	50.0	34	22	AAB96897	Rat parathyroid ho
562	14	50.0	34	22	AAB96922	Parathyroid hormon
563	14	50.0	34	22	AAB91100	Parathyroid hormon
				_		

564	14	50.0	34	23	AAU73037	Parathyroid hormon
565	14	50.0	34	24		Parathyroid hormon
566	14	50.0	34	24	ABP71499	Rat parathyroid ho
567	14	50.0	36	15	AAR58274	[Ala15] -hPTH(1-36)
568	14	50.0	36	15	AAR58209	[Ala14] -hPTH(1-36)
569	14	50.0	36	15	AAR58071	[Aib3, Gln18]-hPTH
570	14	50.0	36	15	AAR58088	[1-amino-cyclopent
571	14	50.0	37	22	AAB86231	Rat parathyroid ho
572	14	50.0	38	15	AAR58061	[Ile15] -hPTH(1-38)
573	14	50.0	38	15	AAR58037	[Ser14] -hPTH(1-38)
574	14	50.0	38	15	AAR58105	[Val14] -hPTH(1-38)
575	14	50.0	38	15	AAR58106	[Ala14] - HPTH (1-38)
576	14	50.0	38	15	AAR58107	[Lys14] -hPTH(1-38)
577	14	50.0	38	15	AAR58108	[Arg14] -hPTH(1-38)
578	14	50.0	38	15	AAR58109	
579	14	50.0	38	15		[Thr14] -hPTH(1-38)
580	14	50.0	38	15	AAR58110	[Ile14] -hPTH(1-38)
581	$\frac{14}{14}$	50.0	38		AAR58111	[Tyr14] -hPTH(1-38)
				15	AAR58112	[Tyr15] -hPTH(1-38)
582	14	50.0	38	15	AAR58113	[Arg15] -hPTH(1-38)
583	14	50.0	38	15	AAR58114	[Val15] -hPTH(1-38)
584	13	46.4	34	14	AAR41578	[Lys14,15,16,17]hP
585	13	46.4	34	15	AAR58195	[S14,I15,Q16,D17,L
586	13	46.4	34	18	AAW17942	Human parathyroid
587	13	46.4	34	19	AAW67277	Parathyroid hormon
588	12	42.9	28	13	AAR22058	Modified bovine PT
589	12	42.9	28	13	AAR22059	Modified [Tyr_34]b
590	12	42.9	28	13	AAR22060	Modified [D-Trp_12
591	12	42.9	28	22	AAB91115	Parathyroid hormon
592	12	42.9	28	23	AAE18405	Bovine PTH peptide
593	12	42.9	28	23	AAU73046	Parathyroid hormon
594	12	42.9	28	23	AAU73047	Parathyroid hormon
595	12	42.9	28	23	AAU73050	Parathyroid hormon
596	12	42.9	28	23	AAU73066	Parathyroid hormon
597	12	42.9	30	23	AAU73057	Parathyroid hormon
598	12	42.9	31	5 -	AAP40510	Bovine parathyroid
599	12	42.9	31	21	AAY96975	Parathyroid hormon
600	12	42.9	32	22	AAB91096	Parathyroid hormon
601	12	42.9	32	23	AAE23739	Bovine parathyroid
602	12	42.9	32	23	AAE18402	Bovine PTH peptide
603	12	42.9	32	23	AAU73042	Parathyroid hormon
604	12	42.9	34	11	AAR07918	Bovine parathyroid
605	12	42.9	34	11	AAR07921	Bovine parathyroid
606	12	42.9	34	11	AAR08299	Bovine parathyroid
607	12	42.9	34	11	AAR08302	Bovine parathyroid
608	12	42.9	34	14	AAY18002	Human PTH(1-34) de
609	12	42.9	34	17	AAW14308	Cyclic parathyroid
610	12	42.9	34	17	AAW14309	Cyclic parathyroid
611	12	42.9	34	17	AAW14312	Cyclic parathyroid
612	12	42.9	34	17	AAW14313	Cyclic parathyroid
613	12	42.9	34	17	AAW14314	Cyclic parathyroid
614	12	42.9	34	17	AAW14315	Cyclic parathyroid
615	12	42.9	34	17	AAR99979	Bovine parathyroid
616	12	42.9	34	18	AAW08124	Human PTH derivati
617	12	42.9	34	18	AAW08111	Human PTH derivati
618	12	42.9	34	18	AAW19995	Cyclised bovine pa
619	12	42.9	34	18	AAW20001	Cyclised bovine pa
620	12	42.9	34	18	AAW20007	Cyclised bovine pa
	_					cyclibod bovine pu

621	12	42.9	34	18	AAW17963	Human PTH analogue
622	12	42.9	34	19	AAW61659	Parathyroid hormon
623	12	42.9	34	19	AAW65976	Bovine parathyroid
624	12	42.9	34	19	AAW42615	Bovine parathyroid
625	12	42.9	34	20	AAY03923	Analogue of parath
626	12	42.9	34	20	AAY03919	Analogue of parath
627	12	42.9	34	20	AAW81872	Bovine PTH N-termi
628	12	42.9	34	23	AAE23738	Bovine parathyroid
629	12	42.9	34	23	AAE18394	Bovine PTH peptide
630	12	42.9	34	23	AAU73034	Parathyroid hormon
631	12	42.9	34	24	ABP71490	Parathyroid hormon
632	12	42.9	34	24	ABP71491	Parathyroid hormon
633	12	42.9	34	24	ABP71492	Parathyroid hormon
634	12	42.9	34	24	ABP71494	Parathyroid hormon
635	12	42.9	36	15	AAR58208	[A13,Q26,F27,D-F34
636	12	42.9	37	22	AAB86230	Bovine parathyroid
637	12	42.9	37	22		
					AAB86233	Canine parathyroid
638	12	42.9	37	23	ABB82204	Bovine parathyroid
639	11	39.3	32	12	AAR14726	Human parathyroid
640	11	39.3	34	18	AAW08122	Human PTH derivati
641	11	39.3	34	18	AAW08123	Human PTH derivati
642	11	39.3	36	12	AAR14729	Human parathyroid
643	10	35.7	28	13	AAR22061	Modified [Nle_8,18
644	10	35.7	28	13	AAR22062	Modified [Nle 8,18
645	10	35.7	28	13	AAR22067	Modified [Nle_8,_1
646	10	35.7	28	13	AAR22068	Modified [Nle 8, 1
647	10	35.7	28	21	ABJ10774	Human parathyroid
648	10	35.7	28	21	ABJ10775	Human parathyroid
649	10	35.7	28	23	AAE18404	Bovine PTH peptide
650	10	35.7	28	23	AAU73045	Parathyroid hormon
651	10	35.7	28	23	AAU73048	Parathyroid hormon
652	10	35.7	28	23	AAU73049	Parathyroid hormon
653	10	35.7	28	23	AAU73065	Parathyroid hormon
654	10	35.7	28	23	AAU73067	Parathyroid hormon
655	10	35.7	30	22	AAB91089	Parathyroid hormon
656	10	35.7	30	22	AAB91092	Parathyroid hormon
657	10	35.7	30	23	AAU73056	Parathyroid hormon
658	10	35.7	30	23	AAU73058	Parathyroid hormon
659	10	35.7	31	5	AAP40511	Bovine parathyroid
660	10	35.7	31	5	AAP40761	Human parathyroid
661	10	35.7	31	20	AAY02585	Parathyroid hormon
662	10	35.7	32	22	AAB91088	Parathyroid hormon
663						
	10	35.7	32	22	AAB91090	Parathyroid hormon
664	10	35.7	32	22	AAB91091	Parathyroid hormon
665	10	35.7	32	23	AAE18403	Bovine PTH peptide
666	10	35.7	32	23	AAU73041	Parathyroid hormon
667	10	35.7	32	23	AAU73043	Parathyroid hormon
668	10	35.7	33	17	AAW15814	[Leu(8), Trp(10), Al
669	10	35. 7	34	6	AAP50517	Sequence of methio
670	10	35.7	34	11	AAR07924	Bovine parathyroid
671	10	35.7	34	11	AAR07925	Human parathyroid
672	10	35.7	34	11	AAR08298	Rat parathyroid ho
673	10	35.7	34	11	AAR08301	Rat parathyroid ho
674	10	35.7	34	11	AAR08305	Bovine parathyroid
675	10	35.7 35.7	34	11	AAR08305 AAR08306	
676						Human parathyroid
	10	35.7	34	13	AAR22295	Human parathyroid
677	10	35.7	34	14	AAR41548	Modified hPTH (1-3

					•	
678	10	35.7	34	15	AAR45528	Parathyroid hormon
679	10	35.7	34	15	AAR58239	Isopropyl-[Nle8,18
680	10	35.7	34	15	AAR58241	[Nle8, 18, D-Asn33, D
681	10	35.7	34	15	AAR58040	[L8,Q18,A29,E30,I3
682	10	35.7	34	15	AAR55817	[L8,Q18,T33,A34]-h
683	10	35.7	34	15	AAR55819	[L8,A16,Q18,T33,A3
684	10	35.7	34	15	AAR55821	[L8,D10,K11,Q18,T3
685	10	35.7	34	15	AAR55823	[L8,D10,K11,A16,Q1
686	10	35.7	34	15	AAR58021	[L8,D10,A16,Q18,T3
687	10	35.7	34	15	AAR58034	Isopropyl-[L8,K(Is
688	10	35.7	34	16	AAR69055	PTH analogue with
689	10	35.7	34	17	AAW15813	[Leu(8), Trp(10), Al
690	10	35.7	34	17	AAW15815	[Leu(8), Trp(10), DL
691	10	35.7	34	17	AAW15828	N-alpha-acylated [
692	10	35.7	34	17	AAW14316	Cyclic parathyroid
693	10	35.7	34	18	AAW13352	Truncated parathyr
694	10	35.7	34	18	AAW12651	Parathyroid hormon
695	10	35.7	34	18	AAW08125	Human PTH derivati
696	10	35.7	34	18	AAW08126	Human PTH derivati
697	10	35.7	34	18	AAW08128	Human PTH derivati
698	10	35.7	34	18	AAW08131	Human PTH derivati
699	10	35.7	34	18	AAW08110	Human PTH derivati
700	10	35.7	34	18	AAW20004	Cyclised [Nle 8,18
701	10	35.7	34	18	AAW19997	Cyclised [Nle 8,18
702	10	35.7	34	18	AAW19998	Cyclised [Nle 8,18
703	10	35.7	34	18	AAW20003	Cyclised [Nle 8,18
704	10	35.7	34	18	AAW20009	Cyclised [Nle 8,18
705	10	35.7	34	18	AAW20010	Cyclised [Nle 8,18
706	10	35.7	34	18	AAW17940	Human PTH analogue
707	10	35.7	34	18	AAW17970	Human PTH analogue
708	10	35.7	34	18	AAW17964	Human PTH analogue
709	10	35.7	34	19	AAW67275	Parathyroid hormon
710	10	35.7	34	19	AAW61725	Parathyroid hormon
711	10	35.7	34	19	AAW66053	Parathyroid hormon
712	10	35.7	34	19	AAW42602	Parathyroid hormon
713	10	35.7	34	19	AAW48395	Human PTH/PTHrP hy
714	10	35.7	34	20	AAY02587	Parathyroid hormon
715	10	35.7	34	20	AAW92218	Analogue of parath
716	10	35.7	34	20	AAW92219	Analogue of parath
717	10	35.7	34	20	AAY03920	Analogue of parath
718	10	35.7	34	20	AAY03921	Analogue of parath
719	10	35.7	34	20	AAY03922	Analogue of parath
720	10	35.7	34	20	AAY03924	Analogue of parath
721	10	35.7	34	20	AAY03925	Analogue of parath
722	10	35.7	34	20	AAY03926	Analogue of parath
723	10	35.7	34	20	AAY03927	Analogue of parath
724	10	35.7	34	20	AAY03928	Analogue of parath
725	10	35.7	34	20	AAY03929	Analogue of parath
726	10	35.7	34	20	AAY03930	Analogue of parath
727	10	35.7	34	20	AAY03931	Analogue of parath
728	10	35.7	34	20	AAY03932	Analogue of parath
729	10	35.7	34	20	AAY03933	Analogue of parath
730	10	35.7	34	20	AAW92236	Analogue of parath
731	10	35.7	34	20	AAW92237	Analogue of parath
732	10	35.7	34	20	AAW92238	Analogue of parath
733	10	35.7	34	20	AAW92239	Analogue of parath
734	10	35.7	34	20	AAW92240	Analogue of parath

735	10	35.7	34	20	AAW92241		Analogue	οf	narath	
736	10	35.7	34	20	AAW92241		Analogue		_	
737	10	35.7								
			34	20	AAW92243		Analogue		-	
738	10	35.7	34	20	AAW92244		Analogue			
739	10	35.7	34	20	AAW92245		Analogue			
740	10	35.7	34	20	AAW92246		Analogue			
741	10	35.7	34	20	AAW92247		Analogue			
742	10	35.7	34	20	AAW92248		Analogue	of	parath	
743	10	35.7	34	20	AAW92249		Analogue	of	parath	
744	10	35.7	34	20	AAW92250		Analogue	o£	parath	
745	10	35.7	34	20	AAW92220		Analogue	of	parath	
746	10	35.7	34	20	AAW92221		Analogue			
747	10	35.7	34	20	AAW92222		Analogue			
748	10	35.7	34	20	AAW92223		Analogue		_	
749	10	35.7	34	20	AAW92224		Analogue			
750	10	35.7	34	20	AAW92225		Analogue			
751	10	35.7	34	20	AAW92226		Analogue			
752	10	35.7		20	AAW92227					
			34				Analogue			
753	10	35.7	34	20	AAW92228		Analogue			
754	10	35.7	34	20	AAW92229		Analogue			
755	10	35.7	34	20	AAW92230		Analogue			
756	10	35.7	34	20	AAW92231		Analogue			
757	10	35.7	34	20	AAW92232		Analogue			
758	10	35.7	34	20	AAW92233		Analogue			
759	10	35.7	34	20	AAW92234		Analogue	of	parath	
760	10	35.7	34	20	AAW92235		Analogue			
761	10	35.7	34	20	AAY03947		Analogue			
762	10	35.7	34	20	AAY03948		Analogue			
763	10	35.7	34	20	AAW92204		Analogue		_	
764	10	35.7	34	20	AAW92205		Analogue			
765	10	35.7	34	20	AAW92207		Analogue			
766	10	35.7	34	20	AAW92208		Analogue			
767	10	35.7	34	20	AAW92209		Analogue			
768	10	35.7	34	20	AAW92210					
769							Analogue			
	10	35.7	34	20	AAW92211		Analogue		_	
770	10	35.7	34	20	AAW92212		Analogue			
771	10	35.7	34	20	AAW92213		Analogue			
772	10	35.7	34	20	AAW92214		Analogue			
773	10	35.7	34	20	AAW92215		Analogue			
774	10	35.7					Analogue		_	
775	10	35.7	34	20	AAW92217	•	Analogue			
776	10	35.7	34	20	AAW92206		Analogue	of	parath	
777	10	35.7	34	20	AAW92203		Analogue	of	parath	
778	10	35.7	34	20	AAY03934		Analogue	of	parath	
779	10	35.7	34	20	AAY03935		Analogue			
780	10	35.7	34	20	AAY03936		Analogue		-	
781	10	35.7	34	20	AAY03937		Analogue		~	
782	10	35.7	34	20	AAY03938		Analogue			
783	10	35.7	34	20	AAY03939		Analogue			
784	10	35.7	34	20	AAY03940		Analogue			
785	10	35.7	34	20	AAY03941		Analogue			
786	10	35.7	34	20	AAY03941		Analogue			
787	10	35.7 35.7	34 34	20						
787 788					AAY03943		Analogue		_	
	10	35.7	34	20	AAY03944		Analogue		-	
789	10	35.7	34	20	AAY03945		Analogue			
790	10	35.7	34	20	AAY03946		Analogue			
791	10	35.7	34	20	AAY03949		Analogue	οĒ	parath	

792	10	35.7	34	20	AAY03950	Analogue of parath
793	10	35.7	34	20	AAY03951	Analogue of parath
794	10	35.7	34	20	AAY03952	Analogue of parath
795	10	35.7	34	20	AAY03953	Analogue of parath
796	10	35.7	34	20	AAY03954	Analogue of parath
797	10	35.7	34	20	AAY03955	Analogue of parath
798	10	35.7	34	20	AAY03956	Analogue of parath
799	10	35.7	34	20	AAW92198	Analogue of parath
800	10	35.7	34	20	AAW92199	Analogue of parath
801	10	35.7	34	20	AAW92200	Analogue of parath
802	10	35.7	34	20	AAW92201	Analogue of parath
803	10	35.7	34	20	AAW92202	
804	10	35.7	34	20		Analogue of parath
					AAW92183	Analogue of parath
805	10	35.7	34	20	AAW92184	Analogue of parath
806	10	35.7	34	20	AAW92185	Analogue of parath
807	10	35.7	34	20	AAW92186	Analogue of parath
808	10	35.7	34	20	AAW92187	Analogue of parath
809	10	35.7	34	20	AAW92167	Analogue of parath
810	10	35.7	34	20	AAW92188	Analogue of parath
811	10	35.7	34	20	AAW92189	Analogue of parath
812	10	35.7	34	20	AAW92190	Analogue of parath
813	10	35.7	34	20	AAW92191	Analogue of parath
814	10	35.7	34	20	AAW92192	Analogue of parath
815	10	35.7	34	20	AAW92193	Analogue of parath
816	10	35.7	34	20	AAW92194	Analogue of parath
817	10	35.7	34	20	AAW92195	Analogue of parath
818	10	35.7	34	20	AAW92196	Analogue of parath
819	10	35.7	34	20	AAW92197	Analogue of parath
820	10	35.7	34	20	AAW92166	Analogue of parath
821	10	35.7	34	20	AAW92168	Analogue of parath
822	10	35.7	34	20	AAW92169	Analogue of parath
823	10	35.7	34	20	AAW92170	Analogue of parath
824	10	35.7	34	20	AAW92171	Analogue of parath
825	10	35.7	34	20	AAW92172	Analogue of parath
826	10	35.7	34	20	AAW92173	
827	10	35.7	34	20	AAW92174	Analogue of parath
828	10	35.7	-	_		Analogue of parath
829			34	20	AAW92175	Analogue of parath
	10	35.7	34	20	AAW92176	Analogue of parath
830	10	35.7	34	20	AAW92177	Analogue of parath
831	10	35.7	34	20	AAW92178	Analogue of parath
832	10	35.7	34	20	AAW92179	Analogue of parath
833	10	35.7	34	20	AAW92180	Analogue of parath
834	10	35.7	34	20	AAW92181	Analogue of parath
835	10	35.7	34	20	AAW92182	Analogue of parath
836	10	35.7	34	20	AAW92152	Analogue of parath
837	10	35.7	34	20	AAW92150	Analogue of parath
838	10	35.7	34	20	AAW92151	Analogue of parath
839	10	35.7	34	20	AAW92153	Analogue of parath
840	10	35.7	34	20	AAW92154	Analogue of parath
841	10	35.7	34	20	AAW92155	Analogue of parath
842	10	35.7	34	20	AAW92156	Analogue of parath
843	10	35.7	34	20	AAW92157	Analogue of parath
844	10	35.7	34	20	AAW92158	Analogue of parath
845	10	35.7	34	20	AAW92159	Analogue of parath
846	10	35.7	34	20	AAW92160	Analogue of parath
847	10	35.7	34	20	AAW92161	Analogue of parath
848	10	35.7	34	20	AAW92162	Analogue of parath
J 10	± 0	55.7	J 4	20	1111/21/2	Androgue or paratir

849	10	35.7	34	20	AAW92163	Analogue of parath
850	10	35.7	34	20	AAW92164	Analogue of parath
851	10	35.7	34	20	AAW92165	Analogue of parath
852	10	35.7	34	20	AAW92148	Analogue of parath
853	10	35.7	34	20	AAW92149	Analogue of parath
854	10	35.7	34	20	AAW74396	Modified parathyro
855	10	35.7	34	20	AAW81945	Synthetic PTH and
856	10	35.7	34	21	ABJ10705	Human parathyroid
857	10	35.7	34	21	ABJ10707	Human parathyroid
858	10	35.7	34	21	ABJ10708	Human parathyroid
859	10	35.7	34	21	ABJ10709	Human parathyroid
860	10	35.7	34	21	ABJ10710	Human parathyroid
861	10	35.7	34	21	ABJ10711	Human parathyroid
862	10	35.7	34	21	ABJ10715	Human parathyroid
863	10	35.7	34	21	ABJ10716	Human parathyroid
864	10	35.7	34	21	ABJ10718	Human parathyroid
865	10	35.7	34	21	ABJ10720	Human parathyroid
866	10	35.7	34	21	ABJ10721	Human parathyroid
867	10	35.7	34	21	ABJ10723	Human parathyroid
868	10	35.7	34	21	ABJ10725	Human parathyroid
869	10	35.7	34	21	ABJ10726	Human parathyroid
870	10	35.7	34	21	ABJ10728	Human parathyroid
871	10	35.7	34	21	ABJ10731	Human parathyroid
872	10	35.7	34	21	ABJ10732	Human parathyroid
873	10	35.7	34	21	ABJ10734	Human parathyroid
874	10	35.7	34	21	ABJ10735	Human parathyroid
875	10	35.7	34	21	ABJ10738	Human parathyroid
876	10	35.7	34	21	ABJ10739	Human parathyroid
877	10	35.7	34	21	ABJ10740	Human parathyroid
878	10	35.7	34	21	ABJ10741	Human parathyroid
879	10	35.7	34	21	ABJ10743	Human parathyroid
880	10	35.7	34	21	ABJ10744	Human parathyroid
881	10	35.7	34	21	ABJ10745	Human parathyroid
882	10	35.7	34	21	ABJ10746	Human parathyroid
883	10	35.7	34	21	ABJ10747	Human parathyroid
884	10	35.7	34	21	ABJ10748	Human parathyroid
885	10	35.7	34	21	ABJ10749	Human parathyroid
886	10	35.7	34	21	ABJ10750	Human parathyroid
887	10	35.7	34	21	ABJ10751	Human parathyroid
888	10	35.7	34	21	ABJ10752	Human parathyroid
889	10	35.7	34	21	ABJ10753	Human parathyroid
890	10	35.7	34	21	ABJ10754	Human parathyroid
891	10	35.7	34	21	ABJ10755	Human parathyroid
892	10	35.7	34	21	ABJ10756	Human parathyroid
893	10	35.7	34	21	ABJ10761	Human parathyroid
894	10	35.7	34	21	ABJ10762	Human parathyroid
895	10	35.7	34	21	ABJ10763	Human parathyroid
896	10	35.7	34	21	ABJ10764	Human parathyroid
897	10	35.7	34	21	ABJ10765	Human parathyroid
898	10	35.7	34	21	ABJ10766	Human parathyroid
899	10	35.7	34	21	ABJ10767	Human parathyroid
900	10	35.7	34	21	ABJ10768	Human parathyroid
901	10	35.7	34	21	ABJ10771	Human parathyroid
902	10	35.7	34	21	ABJ10777	Human parathyroid
903	10	35.7	34	22	AAB91084	Parathyroid hormon
904	10	35.7	34	23	AAE18396	Bovine PTH peptide
905	10	35.7	34	23	AAE18397	Human PTH peptide

906	10	35.7	34	23	AAU73033	Parathyroid hormon
907	10	35.7	34	23	AAU73035	Parathyroid hormon
908	10	35.7	35	2	AAP10140	h-PTH antigen. Sy
909	10	35.7	35	16	AAR74512	Parathyroid hormon
910	10	35.7	35	16	AAR74513	Parathyroid hormon
911	10	35.7	35	16	AAR74514	Parathyroid hormon
912	10	35.7	35	16	AAR74515	Parathyroid hormon
913	10	35.7	35	16	AAR74516	Parathyroid hormon
914	10	35.7	35	16	AAR74517	Parathyroid hormon
915	10	35.7	35	16	AAR74518	Parathyroid hormon
916	10	35.7	35	16	AAR74519	Parathyroid hormon
917	10	35.7	35	16	AAR74520	Parathyroid hormon
918	10	35.7	35	16	AAR74527	Human parathyroid
919	10	35.7	35	16	AAR74505	Parathyroid hormon
920	10	35.7	35	16	AAR74506	
921	10	35.7	35			Parathyroid hormon
922	10	35.7 35.7	35 35	16 16	AAR74507	Parathyroid hormon
923	10				AAR74508	Parathyroid hormon
		35.7	35	16	AAR74509	Parathyroid hormon
924	10	35.7	35	16	AAR74510	Parathyroid hormon
925	10	35.7	35	16	AAR74511	Parathyroid hormon
926	10	35.7	35	16	AAR74464	Parathyroid hormon
927	10	35.7	35	16	AAR74465	Parathyroid hormon
928	10	35.7	35.	16	AAR74466	Parathyroid hormon
929	10	35.7	35	16	AAR74467	Parathyroid hormon
930	10	35.7	35	16	AAR74468	Parathyroid hormon
931	10	35.7	35	16	AAR74469	Parathyroid hormon
932	10	35.7	35	16	AAR74470	Parathyroid hormon
933	10	35.7	35	16	AAR74471	Parathyroid hormon
934	10	35.7	35	16	AAR74472	Parathyroid hormon
935	10	35.7	35	16	AAR74473	Parathyroid hormon
936	10	35.7	35	16	AAR74474	Parathyroid hormon
937	10	35.7	35	16	AAR74475	Parathyroid hormon
938	10	35.7	35	16	AAR74476	Parathyroid hormon
939	10	35.7	35	16	AAR74477	Parathyroid hormon
940	10	35.7	35	16	AAR74478	Parathyroid hormon
941	10	35.7	35	16	AAR74479	Parathyroid hormon
942	10	35.7	35	16	AAR74448	Parathyroid hormon
943	10	35.7	35	16	AAR74449	Parathyroid hormon
944	10	35.7	35	16	AAR74450	Parathyroid hormon
945	10	35.7	35	16	AAR74451	Parathyroid hormon
946	10	35.7	35	16	AAR74452	Parathyroid hormon
947	10	35.7	35	16	AAR74453	Parathyroid hormon
948	10	35.7	35	16	AAR74454	Parathyroid hormon
949	10	35.7	35	16	AAR74455	Parathyroid hormon
950	10	35.7	35	16	AAR74456	Parathyroid hormon
951	10	35.7	35	16	AAR74457	Parathyroid hormon
952	10	35.7	35	16	AAR74458	Parathyroid hormon
953	10	35.7	35	16	AAR74459	Parathyroid hormon
954	10	35.7	35	16	AAR74460	Parathyroid hormon
955	10	35.7	35	16	AAR74461	Parathyroid hormon
956	10	35.7	35	16	AAR74462	Parathyroid hormon
957	10	35.7	35	16	AAR74463	Parathyroid hormon
958	10	35.7	35	16	AAR74432	Parathyroid hormon
959	10	35.7	35	16	AAR74433	Parathyroid hormon
960	10	35.7	35	16	AAR74434	Parathyroid hormon
961	10	35.7	35	16	AAR74435	Parathyroid hormon
962	10	35.7	35	16	AAR74436	Parathyroid hormon

```
963
           10
                35.7
                          35
                               16
                                   AAR74437
                                                                 Parathyroid hormon
 964
           10
                35.7
                          35
                               16
                                   AAR74438
                                                                 Parathyroid hormon
 965
           10
                35.7
                          35
                               16
                                   AAR74439
                                                                 Parathyroid hormon
          10
                          35
                               16
 966
                35.7
                                   AAR74440
                                                                 Parathyroid hormon
 967
           10
                35.7
                          35
                               16
                                   AAR74441
                                                                 Parathyroid hormon
                35.7
 968
           10
                          35
                               16
                                   AAR74442
                                                                 Parathyroid hormon
                35.7
                          35
 969
           10
                               16
                                   AAR74443
                                                                 Parathyroid hormon
 970
           10
                35.7
                          35
                               16
                                   AAR74444
                                                                 Parathyroid hormon
 971
           10
                35.7
                          35
                               16
                                   AAR74445
                                                                 Parathyroid hormon
 972
           10
                35.7
                          35
                               16
                                   AAR74446
                                                                 Parathyroid hormon
           1.0
                          35
 973
                35.7
                               16
                                   AAR74447
                                                                 Parathyroid hormon
 974
           10
                35.7
                          35
                               16
                                   AAR74414
                                                                 Parathyroid hormon
 975
           10
                35.7
                          35
                               16
                                   AAR74423
                                                                 Parathyroid hormon
 976
           10
                35.7
                          35
                               16
                                   AAR74429
                                                                 Parathyroid hormon
 977
                35.7
                          35
           10
                               16
                                   AAR74430
                                                                 Parathyroid hormon
 978
           10
                35.7
                          35
                               16
                                   AAR74431
                                                                 Parathyroid hormon
 979
           10
                35.7
                          35
                               16
                                   AAR74398
                                                                 Parathyroid hormon
                35.7
 980
           10
                          35
                               16
                                   AAR74399
                                                                 Parathyroid hormon
 981
           10
                35.7
                          35
                               16
                                   AAR74400
                                                                 Parathyroid hormon
 982
           10
                35.7
                          35
                               16
                                   AAR74404
                                                                 Parathyroid hormon
 983
           10
                35.7
                          35
                               16
                                   AAR74405
                                                                 Parathyroid hormon
 984
           10
                35.7
                          35
                               16
                                   AAR74406
                                                                 Parathyroid hormon
 985
           10
                35.7
                          35
                               16
                                   AAR74407
                                                                 Parathyroid hormon
 986
           10
                35.7
                          35
                               16
                                   AAR74408
                                                                 Parathyroid hormon
 987
           10
                35.7
                          35
                               16
                                   AAR74409
                                                                 Parathyroid hormon
 988
           10
                35.7
                          35
                               16
                                   AAR74411
                                                                 Parathyroid hormon
 989
           10
                35.7
                          35
                               16
                                   AAR74394
                                                                 Parathyroid hormon
 990
           10
                35.7
                          35
                               16
                                   AAR74395
                                                                 Parathyroid hormon
 991
           10
                35.7
                          35
                               16
                                   AAR74396
                                                                 Parathyroid hormon
 992
           10
                35.7
                          35
                               16
                                   AAR74397
                                                                 Parathyroid hormon
 993
           10
                35.7
                          36
                               15
                                   AAR58042
                                                                 [L8,D10,K11,L18]-h
 994
           10
                35.7
                          36
                               15
                                   AAR58044
                                                                 [L8,D10,K11,A17,L1
 995
          10
                35.7
                          36
                               15
                                   AAR58055
                                                                 [L8,Q18]-hPTH(1-36
996
           10
                35.7
                          36
                               15
                                   AAR58057
                                                                 [L8, D10, A16, Q18]-h
 997
           10
                35.7
                          36
                               15
                                   AAR55820
                                                                 [L8,D10,K11,Q18]-h
998
          10
                35.7
                          36
                               15
                                   AAR55824
                                                                 [L8,D10,K11,A16,Q1
999
          10
                35.7
                          36
                               15
                                   AAR58027
                                                                 [A1, A3, L8, Q18] -hPT
1000
          10
                35.7
                          36
                               15
                                   AAR58031
                                                                 [L8,K11,Q18]-hPTH(
```

ALIGNMENTS

```
RESULT 1
AAR88837
     AAR88837 standard; peptide; 28 AA.
ID
XX
AC
     AAR88837;
XX
DT
     07-OCT-1996
                  (first entry)
XX
DE
     Human parathyroid hormone analogue, hPTH(1-28)-NH2.
XX
KW
     Parathyroid hormone; PTH; analogue; osteoporosis; bone cell;
KW
     calcium regulation; reduced PKC activity; protein kinase C;
KW
     increased adenylyl cyclase activity; cAMPase; bone loss.
XX
```

```
OS
     Synthetic.
XX
FΗ
                     Location/Qualifiers
     Key
    Modified-site
FT
                     28
                     /note= "amidated"
FT
XX
PN
     CA2126299-A.
XX
PD
     21-DEC-1995.
XX
PF
     20-JUN-1994;
                   94CA-2126299.
XX
PR
     20-JUN-1994;
                    94CA-2126299.
XX
PΑ
     (WILL/) WILLICK G E.
XX
ΡI
     Neugebauer W, Sung WL, Surewicz W, Whitfield JF;
PΙ
     Willick GE;
XX
     WPI; 1996-151754/16.
DR
XX
     New human parathyroid hormone analogues - which have increased
PT
     adenylyl cyclase activating activity, used for treating osteoporosis
PT
XX
PS
     Claim 1; Fig 10; 21pp; English.
XX
     AAR88829-R88841 are human parathyroid hormone (hPTH) analogues. The
CC
CC
     analogues increase G-protein coupled adenylyl cyclase (cAMPase)
     activity and reduce protein kinase C (PKC) activity. The analogues
CC
CC
     can reverse the loss of bone and increase bone mass and density
     without undesirable effects. They are useful for the treatment of
CC
CC
     osteoporosis and other bone related disorders and disorders
CC
     involving bone cell calcium regulation.
XX
SQ
     Sequence
                28 AA;
  Query Match
                          100.0%; Score 28; DB 17;
                                                      Length 28;
                          100.0%; Pred. No. 4.6e-21;
  Best Local Similarity
  Matches
           28; Conservative 0; Mismatches
                                                  0;
                                                      Indels
                                                                 0; Gaps
                                                                             0;
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
QУ
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 2
AAY98052
ID
     AAY98052 standard; peptide; 28 AA.
XX
AC
     AAY98052;
XX
DT
     04-SEP-2000 (first entry)
XX
DE
     Human parathyroid hormone peptide # 12.
XX
KW
     Human; parathyroid hormone; signal transduction; osteoporosis;
KW
     osteopaenia; hypoparathyroidism; fracture repair; hypercalcaemia;
```

```
KW
    breast cancer; lung cancer; prostate cancer; multiple myeloma;
    hypernephroma; head and neck epidermoid cancer; oesophagus cancer;
KW
    osteopathic; PTH.
KW
XX
OS
    Homo sapiens.
XX
PN
    WO200031266-A1.
XX
PD
    02-JUN-2000.
XX
PF
    24-NOV-1999;
                   99WO-US27863.
XX
PR
    25-NOV-1998;
                   98US-0109938.
XX
PA
     (GEHO ) GEN HOSPITAL CORP.
XX
ΡI
    Bringhurst FR,
                    Takasu H, Gardella TJ, Potts JT;
XX
DR
    WPI; 2000-400076/34.
XX
PT
    Novel biologically active peptide comprising a parathyroid hormone
PT
    peptide derivative, useful for treating osteoporosis -
XX
PS
    Disclosure; Page 69; 75pp; English.
XX
CC
     Parathyroid hormone (PTH) binds to PTH receptors in renal and osseous
     cells, initiating signal transduction. It has been identified that the
CC
CC
     carboxyl terminal of PTH is important for PTH receptor binding, while the
CC
    amino terminal is important for signal transduction. Various PTH peptides
CC
    were produces with amino- and carboxy terminal modifications which had
CC
    varying PTH receptor activation properties and therefore downstream
CC
     signalling. Aberrant PTH activity has been implicated in a number of
CC
    disorders: osteoporosis, osteopaenia, hypoparathyroidism and
    hypercalcaemia. In turn, hypercalcaemia is associated with hypernephroma
CC
CC
     and a variety of cancers: breast, lung and prostate carcinoma, multiple
CC
    myeloma and epidermoid cancers of the head, neck and oesophagus. The
CC
    present sequence is a PTH peptide, with a Ser residue at position 1 and
CC
     a Glu residue at position 19. The Ser residue improves downstream
CC
     signalling via phospholipase C (PLC), whereas the Glu residue reduces PLC
     signalling and ligand binding. PTH peptides with a Arg residue at
CC
CC
    position 19 have improved PLC signalling and ligand binding and so may be
CC
    used as a PTH receptor agonist for the treatment of the above mentioned
CC
    disorders and fracture repair.
XX
SO
     Sequence
                28 AA;
  Query Match
                          100.0%; Score 28; DB 21; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 4.6e-21;
                                0; Mismatches
           28; Conservative
                                                  0; Indels
                                                                 0; Gaps
                                                                             0;
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
```

```
ΙD
     AAU73064 standard; Peptide; 28 AA.
XX
AC
     AAU73064;
XX
DT
     12-MAR-2002 (first entry)
XX
DE
     Parathyroid hormone PTH/PTHrP modulating domain #46.
XX
KW
     Human; parathyroid hormone; PTH; parathyroid hormone-related protein;
KW
     PTHrP; bone resorption inhibitor; osteoprotegrin; OPG; OPG-L antibody;
KW
     calcitonin; bisphosphonate; oestrogen; oestrogen receptor; tibolone;
KW
     osteopenia; hyperthyroidism; hypercalcaemia; tumour metastasis; bone;
KW
     breast cancer; prostate cancer; cachexia; anorexia; osteoporosis;
KW
     Paget's disease; osteomyelitis; osteonecrosis; bone cell death;
     Gaucher's disease; sickle cell anaemia; systemic lupus erythematosus;
KW
     rheumatoid arthritis; periodontal disease; alopecia; fracture repair;
KW
KW
     immunoglobulin G; IgG.
XX
OS
     Homo sapiens.
XX
PN
     WO200181415-A2.
XX
PD
     01-NOV-2001.
XX
     27-APR-2001; 2001WO-US13528.
PF
XX
PR
     27-APR-2000; 2000US-200053P.
PR
     28-JUN-2000; 2000US-214860P.
PR
     06-FEB-2001; 2001US-266673P.
PR
     26-APR-2001; 2001US-0843221.
XX
PA
     (AMGE-) AMGEN INC.
XX
PI
     Kostenuik P, Liu C, Lacey DL;
XX
DR
     WPI; 2002-066435/09.
XX
PT
     Composition, useful for treating osteopenia, comprises parathyroid
PT
     hormone and parathyroid hormone-related protein receptor modulators -
XX
PS
     Disclosure; Page 27; 107pp; English.
XX
CC
     The invention relates to a composition (I) comprising modulators of
CC
     parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP)
CC
     which comprise a PTH/PTHrP modulating domain and a vehicle. (I)
CC
     comprising PTH agonist optionally with a bone resorption inhibitor, such
CC
     as osteoprotegrin (OPG), OPG-L antibody, calcitonin, bisphosphonates,
CC
     oestrogens, oestrogen receptor modulators and tibolone is useful for
CC
     treating osteopenia. (I) is useful for therapeutic and prophylactic
CC
    purposes. Antagonists of PTH receptor are useful in treating primary and
CC
     secondary hyperthyroidism, hypercalcaemia, tumour metastases,
CC
    particularly breast and prostate cancer, cachexia and anorexia,
CC
    osteopenia, including various forms of osteoporosis, Paget's disease of
CC
    bone, osteomyelitis, osteonecrosis or bone cell death, associated with
CC
     traumatic injury or nontraumatic necrosis associated with Gaucher's
CC
     disease, sickle cell anaemia, systemic lupus erythematosus, rheumatoid
CC
    arthritis, periodontal disease and alopecia. PTH receptor agonists are
```

```
CC
     useful as therapeutic agents in conditions including fracture repair
     (including healing of non-union fractures), osteopenia, including various
CC
CC
     forms of osteoporosis. AAU73018-AAU73181 represent parathyroid hormone
     and parathyroid hormone related protein (PTH/PTHrP) modulators and
CC
CC
     related amino acid sequences of the invention.
XX
SQ
     Sequence
                28 AA;
  Query Match
                          100.0%; Score 28; DB 23; Length 28;
  Best Local Similarity
                         100.0%; Pred. No. 4.6e-21;
  Matches
           28; Conservative 0; Mismatches
                                                                0; Gaps
                                                 0; Indels
                                                                            0;
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 4
AAR11731
ID
    AAR11731 standard; Protein; 29 AA.
XX
AC
    AAR11731;
XX
DT
     25-MAR-2003
                  (updated)
DT
     03-JUL-1991 (first entry)
XX
DΕ
    Adenine-rich PTH-(1-28) in pPTH-AA.
XX
KW
     Parathyroid hormone; calcium; osteoporosis; bone.
XX
OS
     Synthetic.
XX
PN
    WO9105050-A.
ХX
PD
     18-APR-1991.
XX
PF
     01-OCT-1990;
                   90WO-C000335.
XX
PR
     29-SEP-1989;
                   89CA-0615001.
XX
PΑ
     (CANA ) NAT RES COUNCIL CANADA.
ХХ
PI
    Sung WL;
XX
DR
    WPI; 1991-132857/18.
DR
    N-PSDB; AAQ11617.
XX
PΤ
    Mature human parathyroid synthesis - includes using eg E. coli
PT
     transformed by plasmid contq. synthetic nucleotide sequence contq.
PT
     adenine rich codons in N-terminal region.
XX
PS
    Disclosure; Fig 3; 62pp; English.
XX
CC
    The sequence is encoded by adenine rich codons. Codons 29-84
     (see AAQ11618) are degenerate in the usage frequency favoured by
CC
CC
    E.coli or yeast. A plasmid contg. the complete sequence expresses
CC
    PTH with an improved yield. PTH is a blood calcium regulator known
```

```
CC
     to increase bone mass.
     (Updated on 25-MAR-2003 to correct PR field.)
CC
CC
     (Updated on 25-MAR-2003 to correct PA field.)
XX
SQ
     Sequence
                29 AA;
  Ouery Match
                          100.0%; Score 28; DB 12; Length 29;
  Best Local Similarity
                          100.0%; Pred. No. 4.7e-21;
  Matches
           28; Conservative
                                0; Mismatches
                                                  0;
                                                      Indels
                                                                 0; Gaps
                                                                             0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
              Db
            2 SVSEIQLMHNLGKHLNSMERVEWLRKKL 29
RESULT 5
AAR88836
     AAR88836 standard; peptide; 29 AA.
ID
XX
AC
     AAR88836;
XX
DT
     07-OCT-1996 (first entry)
XX
     Human parathyroid hormone analogue, hPTH(1-29)-NH2.
DE
XX
KW
     Parathyroid hormone; PTH; analoque; osteoporosis; bone cell;
KW
     calcium regulation; reduced PKC activity; protein kinase C;
KW
     increased adenylyl cyclase activity; cAMPase; bone loss.
XX
OS
     Synthetic.
XX
FΗ
     Key
                     Location/Qualifiers
FT
     Modified-site
FT
                     /note= "amidated"
XX
PN
     CA2126299-A.
XX
PD
     21-DEC-1995.
XX
PF
     20-JUN-1994;
                    94CA-2126299.
XX
PR
     20-JUN-1994;
                    94CA-2126299.
XX
PA
     (WILL/) WILLICK G E.
XX
PI
     Neugebauer W,
                    Sung WL,
                             Surewicz W, Whitfield JF;
PΙ
     Willick GE:
XX
     WPI; 1996-151754/16.
DR
XX
     New human parathyroid hormone analogues - which have increased
PT
     adenylyl cyclase activating activity, used for treating osteoporosis
PT
XX
PS
     Claim 1; Fig 9; 21pp; English.
XX
CC
     AAR88829-R88841 are human parathyroid hormone (hPTH) analogues. The
CC
     analogues increase G-protein coupled adenylyl cyclase (cAMPase)
```

```
can reverse the loss of bone and increase bone mass and density
CC
     without undesirable effects. They are useful for the treatment of
CC
     osteoporosis and other bone related disorders and disorders
CC
CC
     involving bone cell calcium regulation.
XX
SQ
     Sequence
                29 AA;
  Query Match
                          100.0%; Score 28; DB 17; Length 29;
  Best Local Similarity
                          100.0%; Pred. No. 4.7e-21;
 Matches
            28; Conservative
                               0; Mismatches
                                                   0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 6
AAU73063
ID
     AAU73063 standard; Peptide; 29 AA.
XX
AC
    AAU73063;
XX
DT
     12-MAR-2002 (first entry)
XX
DE
     Parathyroid hormone PTH/PTHrP modulating domain #45.
XX
     Human; parathyroid hormone; PTH; parathyroid hormone-related protein;
KW
KW
     PTHrP; bone resorption inhibitor; osteoprotegrin; OPG; OPG-L antibody;
KW
     calcitonin; bisphosphonate; oestrogen; oestrogen receptor; tibolone;
KW
     osteopenia; hyperthyroidism; hypercalcaemia; tumour metastasis; bone;
KW
     breast cancer; prostate cancer; cachexia; anorexia; osteoporosis;
KW
     Paget's disease; osteomyelitis; osteonecrosis; bone cell death;
KW
     Gaucher's disease; sickle cell anaemia; systemic lupus erythematosus;
KW
     rheumatoid arthritis; periodontal disease; alopecia; fracture repair;
KW
     immunoglobulin G; IgG.
XX
OS
    Homo sapiens.
XX
PN
    WO200181415-A2.
XX
PD
     01-NOV-2001.
XX
PF
     27-APR-2001; 2001WO-US13528.
XX
PR
     27-APR-2000; 2000US-200053P.
PR
     28-JUN-2000; 2000US-214860P.
PR
     06-FEB-2001; 2001US-266673P.
PR
     26-APR-2001; 2001US-0843221.
XX
PΑ
     (AMGE-) AMGEN INC.
XX
_{\rm PI}
     Kostenuik P, Liu C, Lacey DL;
XX
DR
    WPI; 2002-066435/09.
XX
PT
     Composition, useful for treating osteopenia, comprises parathyroid
```

activity and reduce protein kinase C (PKC) activity. The analogues

CC

```
PT
     hormone and parathyroid hormone-related protein receptor modulators -
XX
PS
     Disclosure; Page 27; 107pp; English.
XX
CC
     The invention relates to a composition (I) comprising modulators of
     parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP)
CC
CC
     which comprise a PTH/PTHrP modulating domain and a vehicle. (I)
CC
     comprising PTH agonist optionally with a bone resorption inhibitor, such
CC
     as osteoprotegrin (OPG), OPG-L antibody, calcitonin, bisphosphonates,
CC
     oestrogens, oestrogen receptor modulators and tibolone is useful for
CC
     treating osteopenia. (I) is useful for therapeutic and prophylactic
CC
     purposes. Antagonists of PTH receptor are useful in treating primary and
CC
     secondary hyperthyroidism, hypercalcaemia, tumour metastases,
CC
     particularly breast and prostate cancer, cachexia and anorexia,
CC
     osteopenia, including various forms of osteoporosis, Paget's disease of
CC
     bone, osteomyelitis, osteonecrosis or bone cell death, associated with
CC
     traumatic injury or nontraumatic necrosis associated with Gaucher's
CC
     disease, sickle cell anaemia, systemic lupus erythematosus, rheumatoid
CC
     arthritis, periodontal disease and alopecia. PTH receptor agonists are
CC
     useful as therapeutic agents in conditions including fracture repair
CC
     (including healing of non-union fractures), osteopenia, including various
CC
     forms of osteoporosis. AAU73018-AAU73181 represent parathyroid hormone
CC
     and parathyroid hormone related protein (PTH/PTHrP) modulators and
CC
     related amino acid sequences of the invention.
XX
SO
     Sequence
                29 AA;
  Query Match
                          100.0%; Score 28; DB 23; Length 29;
  Best Local Similarity
                         100.0%; Pred. No. 4.7e-21;
  Matches
            28; Conservative
                               0; Mismatches
                                                   0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 7
AAU73179
ID
     AAU73179 standard; Peptide; 29 AA.
XX
AC
    AAU73179;
ХX
DT
     12-MAR-2002
                 (first entry)
XX
DE
     Parathyroid hormone PTH/PTHrP modulating domain #161.
XX
KW
     Human; parathyroid hormone; PTH; parathyroid hormone-related protein;
KW
     PTHrP; bone resorption inhibitor; osteoprotegrin; OPG; OPG-L antibody;
KW
     calcitonin; bisphosphonate; oestrogen; oestrogen receptor; tibolone;
KW
     osteopenia; hyperthyroidism; hypercalcaemia; tumour metastasis; bone;
KW
     breast cancer; prostate cancer; cachexia; anorexia; osteoporosis;
KW
     Paget's disease; osteomyelitis; osteonecrosis; bone cell death;
KW
     Gaucher's disease; sickle cell anaemia; systemic lupus erythematosus;
KW
     rheumatoid arthritis; periodontal disease; alopecia; fracture repair;
KW
     immunoqlobulin G; IqG.
XX
OS
     Synthetic.
```

```
XX
PN
     WO200181415-A2.
XX
PD
     01-NOV-2001.
XX
     27-APR-2001; 2001WO-US13528.
PF
XX
     27-APR-2000; 2000US-200053P.
PR
     28-JUN-2000; 2000US-214860P.
PR
     06-FEB-2001; 2001US-266673P.
PR
     26-APR-2001; 2001US-0843221.
PR
XX
PA
     (AMGE-) AMGEN INC.
XX
PΙ
     Kostenuik P, Liu C, Lacey DL;
XX
DR
     WPI; 2002-066435/09.
XX
PT
     Composition, useful for treating osteopenia, comprises parathyroid
PT
     hormone and parathyroid hormone-related protein receptor modulators -
XX
PS
     Disclosure; Page 63; 107pp; English.
XX
CC
     The invention relates to a composition (I) comprising modulators of
CC
     parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP)
     which comprise a PTH/PTHrP modulating domain and a vehicle. (I)
CC
CC
     comprising PTH agonist optionally with a bone resorption inhibitor, such
CC
     as osteoprotegrin (OPG), OPG-L antibody, calcitonin, bisphosphonates,
CC
     oestrogens, oestrogen receptor modulators and tibolone is useful for
CC
     treating osteopenia. (I) is useful for therapeutic and prophylactic
     purposes. Antagonists of PTH receptor are useful in treating primary and
CC
CC
     secondary hyperthyroidism, hypercalcaemia, tumour metastases,
CC
     particularly breast and prostate cancer, cachexia and anorexia,
CC
     osteopenia, including various forms of osteoporosis, Paget's disease of
CC
     bone, osteomyelitis, osteonecrosis or bone cell death, associated with
     traumatic injury or nontraumatic necrosis associated with Gaucher's
CC
CC
     disease, sickle cell anaemia, systemic lupus erythematosus, rheumatoid
CC
     arthritis, periodontal disease and alopecia. PTH receptor agonists are
CC
     useful as therapeutic agents in conditions including fracture repair
     (including healing of non-union fractures), osteopenia, including various
CC
CC
     forms of osteoporosis. AAU73018-AAU73181 represent parathyroid hormone
CC
     and parathyroid hormone related protein (PTH/PTHrP) modulators and
CC
     related amino acid sequences of the invention.
XX
SQ
     Sequence
               29 AA;
  Query Match
                         100.0%; Score 28; DB 23; Length 29;
  Best Local Similarity 100.0%; Pred. No. 4.7e-21;
           28; Conservative 0; Mismatches
  Matches
                                                 0; Indels
                                                                0; Gaps
                                                                            0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
              Db
            2 SVSEIQLMHNLGKHLNSMERVEWLRKKL 29
```

```
ID
     AAR88832 standard; peptide; 30 AA.
XX
     AAR88832;
AC
XX
DT
     07-OCT-1996 (first entry)
XX
     Human parathyroid hormone analogue, hPTH(1-30)-NH2.
DE
XX
     Parathyroid hormone; PTH; analogue; osteoporosis; bone cell;
KW
     calcium regulation; reduced PKC activity; protein kinase C;
KW
     increased adenylyl cyclase activity; cAMPase; bone loss.
KW
XX
     Synthetic.
OS
XX
FΗ
     Key
                     Location/Qualifiers
FT
     Modified-site
FT
                     /note= "amidated"
XX
PN
     CA2126299-A.
XX
     21-DEC-1995.
PD
XX
PF
     20-JUN-1994;
                   94CA-2126299.
XX
PR
     20-JUN-1994;
                   94CA-2126299.
XX
PA
     (WILL/) WILLICK G E.
XX
     Neugebauer W, Sung WL, Surewicz W, Whitfield JF;
PI
PΙ
     Willick GE;
XX
     WPI; 1996-151754/16.
DR
XX
     New human parathyroid hormone analogues - which have increased
PT
PT
     adenylyl cyclase activating activity, used for treating osteoporosis
XX
PS
     Claim 1; Fig 5; 21pp; English.
XX
CC
     AAR88829-R88841 are human parathyroid hormone (hPTH) analogues. The
CC
     analogues increase G-protein coupled adenylyl cyclase (cAMPase)
CC
     activity and reduce protein kinase C (PKC) activity. The analogues
CC
     can reverse the loss of bone and increase bone mass and density
CC
     without undesirable effects. They are useful for the treatment of
CC
     osteoporosis and other bone related disorders and disorders
CC
     involving bone cell calcium regulation.
XX
SQ
     Sequence
                30 AA;
 Query Match
                          100.0%; Score 28; DB 17; Length 30;
 Best Local Similarity
                         100.0%; Pred. No. 4.8e-21;
                                0; Mismatches
           28; Conservative
                                                  0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
```

```
RESULT 9
AAU73051
     AAU73051 standard; Peptide; 30 AA.
ID
XX
AC
     AAU73051;
XX
DT
     12-MAR-2002 (first entry)
XX
DΕ
     Parathyroid hormone PTH/PTHrP modulating domain #33.
XX
KW
     Human; parathyroid hormone; PTH; parathyroid hormone-related protein;
KW
     PTHrP; bone resorption inhibitor; osteoprotegrin; OPG; OPG-L antibody;
KW
     calcitonin; bisphosphonate; oestrogen; oestrogen receptor; tibolone;
KW
     osteopenia; hyperthyroidism; hypercalcaemia; tumour metastasis; bone;
KW
     breast cancer; prostate cancer; cachexia; anorexia; osteoporosis;
KW
     Paget's disease; osteomyelitis; osteonecrosis; bone cell death;
KW
     Gaucher's disease; sickle cell anaemia; systemic lupus erythematosus;
KW
     rheumatoid arthritis; periodontal disease; alopecia; fracture repair;
KW
     immunoglobulin G; IgG.
XX
OS
     Homo sapiens.
XX
PN
     WO200181415-A2.
XX
PD
     01-NOV-2001.
XX
PF
     27-APR-2001; 2001WO-US13528.
XX
PR
     27-APR-2000; 2000US-200053P.
PR
     28-JUN-2000; 2000US-214860P.
     06-FEB-2001; 2001US-266673P.
PR
PR
     26-APR-2001; 2001US-0843221.
XX
PΑ
     (AMGE-) AMGEN INC.
XX
PI
     Kostenuik P, Liu C, Lacey DL;
XX
DR
     WPI; 2002-066435/09.
XX
PT
     Composition, useful for treating osteopenia, comprises parathyroid
PT
     hormone and parathyroid hormone-related protein receptor modulators -
XX
PS
     Disclosure; Page 27; 107pp; English.
XX
CC
     The invention relates to a composition (I) comprising modulators of
CC
     parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP)
CC
     which comprise a PTH/PTHrP modulating domain and a vehicle. (I)
CC
     comprising PTH agonist optionally with a bone resorption inhibitor, such
CC
     as osteoprotegrin (OPG), OPG-L antibody, calcitonin, bisphosphonates,
CC
     oestrogens, oestrogen receptor modulators and tibolone is useful for
     treating osteopenia. (I) is useful for therapeutic and prophylactic
CC
CC
     purposes. Antagonists of PTH receptor are useful in treating primary and
CC
     secondary hyperthyroidism, hypercalcaemia, tumour metastases,
CC
     particularly breast and prostate cancer, cachexia and anorexia,
     osteopenia, including various forms of osteoporosis, Paget's disease of
CC
CC
     bone, osteomyelitis, osteonecrosis or bone cell death, associated with
CC
     traumatic injury or nontraumatic necrosis associated with Gaucher's
```

```
CC
     arthritis, periodontal disease and alopecia. PTH receptor agonists are
CC
     useful as therapeutic agents in conditions including fracture repair
CC
     (including healing of non-union fractures), osteopenia, including various
CC
     forms of osteoporosis. AAU73018-AAU73181 represent parathyroid hormone
CC
     and parathyroid hormone related protein (PTH/PTHrP) modulators and
CC
     related amino acid sequences of the invention.
XX
SO
     Sequence
                30 AA;
                          100.0%; Score 28; DB 23; Length 30;
  Ouery Match
  Best Local Similarity
                          100.0%; Pred. No. 4.8e-21;
  Matches
            28; Conservative
                                0; Mismatches
                                                   0; Indels
                                                                 0;
                                                                     Gaps
            1 SVSEIOLMHNLGKHLNSMERVEWLRKKL 28
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 10
AAU73178
     AAU73178 standard; Peptide; 30 AA.
ID
XX
AC
     AAU73178;
XX
DT
     12-MAR-2002
                  (first entry)
XX
DE
     Parathyroid hormone PTH/PTHrP modulating domain #160.
XX
KW
     Human; parathyroid hormone; PTH; parathyroid hormone-related protein;
KW
     PTHrP; bone resorption inhibitor; osteoprotegrin; OPG; OPG-L antibody;
KW
     calcitonin; bisphosphonate; oestrogen; oestrogen receptor; tibolone;
KW
     osteopenia; hyperthyroidism; hypercalcaemia; tumour metastasis; bone;
     breast cancer; prostate cancer; cachexia; anorexia; osteoporosis;
KW
KW
     Paget's disease; osteomyelitis; osteonecrosis; bone cell death;
KW
     Gaucher's disease; sickle cell anaemia; systemic lupus erythematosus;
     rheumatoid arthritis; periodontal disease; alopecia; fracture repair;
KW
     immunoglobulin G; IgG.
KW
XX
OS
     Synthetic.
XX
ΡN
     WO200181415-A2.
XX
PD
     01-NOV-2001.
XX
     27-APR-2001; 2001WO-US13528.
PF
XX
PR
     27-APR-2000; 2000US-200053P.
PR
     28-JUN-2000; 2000US-214860P.
PR
     06-FEB-2001; 2001US-266673P.
PR
     26-APR-2001; 2001US-0843221.
XX
PΑ
     (AMGE-) AMGEN INC.
XX
PΙ
     Kostenuik P, Liu C, Lacey DL;
XX
DR
    WPI; 2002-066435/09.
```

disease, sickle cell anaemia, systemic lupus erythematosus, rheumatoid

CC

```
XX
     Composition, useful for treating osteopenia, comprises parathyroid
PΤ
     hormone and parathyroid hormone-related protein receptor modulators -
PТ
XX
     Disclosure; Page 63; 107pp; English.
PS
XX
CC
     The invention relates to a composition (I) comprising modulators of
     parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP)
CC
     which comprise a PTH/PTHrP modulating domain and a vehicle. (I)
CC
     comprising PTH agonist optionally with a bone resorption inhibitor, such
CC
CC
     as osteoprotegrin (OPG), OPG-L antibody, calcitonin, bisphosphonates,
     oestrogens, oestrogen receptor modulators and tibolone is useful for
CC
CC
     treating osteopenia. (I) is useful for therapeutic and prophylactic
CC
     purposes. Antagonists of PTH receptor are useful in treating primary and
CC
     secondary hyperthyroidism, hypercalcaemia, tumour metastases,
CC
     particularly breast and prostate cancer, cachexia and anorexia,
CC
     osteopenia, including various forms of osteoporosis, Paget's disease of
CC
     bone, osteomyelitis, osteonecrosis or bone cell death, associated with
CC
     traumatic injury or nontraumatic necrosis associated with Gaucher's
CC
     disease, sickle cell anaemia, systemic lupus erythematosus, rheumatoid
     arthritis, periodontal disease and alopecia. PTH receptor agonists are
CC
CC
     useful as therapeutic agents in conditions including fracture repair
CC
     (including healing of non-union fractures), osteopenia, including various
CC
     forms of osteoporosis. AAU73018-AAU73181 represent parathyroid hormone
CC
     and parathyroid hormone related protein (PTH/PTHrP) modulators and
CC
     related amino acid sequences of the invention.
XX
SO
     Sequence
                30 AA;
  Query Match
                          100.0%; Score 28; DB 23; Length 30;
                          100.0%; Pred. No. 4.8e-21;
  Best Local Similarity
            28; Conservative
                                 0; Mismatches
                                                   0; Indels
                                                                 0; Gaps
                                                                             0:
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
              Db
            2 SVSEIQLMHNLGKHLNSMERVEWLRKKL 29
RESULT 11
AAW42059
ID
     AAW42059 standard; peptide; 31 AA.
XX
AC
     AAW42059;
XX
DT
     06-JUL-1998
                 (first entry)
XX
DE
     Human parathyroid hormone cyclic peptide analogue SEQ ID NO:14.
XX
KW
     Human; parathyroid hormone; hPTH; cyclic; osteoporosis; fracture;
     hypotensive action; bone.
KW
XX
OS
     Synthetic.
OS
     Homo sapiens.
XX
FH
                     Location/Qualifiers
     Key
FT
     Modified-site
                     2.2
FT
                     /note= "Glu is bound to Lys at position 26 to form
```

```
FT
                            a cyclic structure"
FT
    Modified-site
                     26
                     /note= "Lys is bound to Glu at position 22 to form
FT
                            a cyclic structure"
FT
    Modified-site
FT
                    31
FT
                     /note= "amidated"
XX
    WO9805683-A1.
PN
XX
    12-FEB-1998.
PD
XX
PF
    01-AUG-1997;
                   97WO-CA00547.
XX
PR
    14-MAR-1997;
                   97US-0040560.
PR
    02-AUG-1996;
                   96US-0691647.
XX
PA
     (CANA ) NAT RES COUNCIL CANADA.
XX
ΡI
    Barbier J, Morley P, Neugebauer W, Ross V, Whitfield J;
ΡI
    Willick GE;
XX
DR
    WPI; 1998-145550/13.
XX
    Cyclic human parathyroid hormone peptide(s) with 27Lys substitution
PT
     - for treating osteoporosis and fractures, also method for screening
PT
PT
     osteogenic peptide(s) based on their hypotensive action
XX
PS
     Claim 41; Fig 21; 77pp; English.
XX
CC
     The present sequence represents a human parathyroid hormone (hPTH)
     (1-31) peptide analogue. The present invention also describes a method
CC
CC
     for screening peptides for osteogenic activity by subcutaneous injection
CC
     of a test compound and seeing if a small drop in arterial pressure
CC
     occurs after a short time. The hPTH peptide analogue can be useful for
CC
     stimulating bone growth, restoring bone and promoting bone healing,
CC
     especially treatment of osteoporosis and normal fractures. The hPTH
CC
    peptide analogue can be administered by injection or inhalation,
CC
     rectally or orally, generally at at most 0.05 mg/kg/day. Substitution
CC
     of Lys26 stabilises an alpha-helix in the receptor-binding region of
CC
     the hormone and increases adenylyl cyclase (AC) activity, while
CC
     cyclisation increases stability against proteases. The screening method,
CC
     which can be performed in intact female animals, is a quick and simple
CC
     way of identifying inactive compounds, avoiding the need for long-term,
CC
     expensive tests on ovariectomised animals.
XX
SO
     Sequence
               31 AA;
                          100.0%; Score 28; DB 19; Length 31;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 5e-21;
           28; Conservative
                               0; Mismatches
                                                  0: Indels
                                                                0; Gaps
                                                                             0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
```

```
AAW42051
ID
     AAW42051 standard; peptide; 31 AA.
XX
AC
     AAW42051;
XX
DT
     06-JUL-1998 (first entry)
XX
DE
     Human parathyroid hormone cyclic peptide analogue SEQ ID NO:6.
XX
KW
     Human; parathyroid hormone; hPTH; cyclic; osteoporosis; fracture;
KW
     hypotensive action; bone.
XX
     Synthetic.
OS
     Homo sapiens.
OS
XX
FΗ
                     Location/Qualifiers
FT
     Modified-site
                     27
FT
                     /note= "Lys is bound to Asp at position 30 to form
FT
                             a cyclic structure"
FT
     Modified-site
                     30
FT
                     /note= "Asp is bound to Lys at position 27 to form
FT
                             a cyclic structure"
FT
     Modified-site
                     31
FT
                     /note= "amidated"
XX
PN
     WO9805683-A1.
XX
PD
     12-FEB-1998.
XX
PF
     01-AUG-1997;
                    97WO-CA00547.
XX
PR
     14-MAR-1997;
                    97US-0040560.
PR
     02-AUG-1996;
                    96US-0691647.
ХX
PΑ
     (CANA ) NAT RES COUNCIL CANADA.
XX
PΙ
     Barbier J, Morley P, Neugebauer W, Ross V, Whitfield J;
PΙ
     Willick GE;
XX
DR
     WPI; 1998-145550/13.
XX
PT
     Cyclic human parathyroid hormone peptide(s) with 27Lys substitution
     - for treating osteoporosis and fractures, also method for screening
PT
PT
     osteogenic peptide(s) based on their hypotensive action
XX
PS
     Claim 33; Fig 10; 77pp; English.
XX
CC
     The present sequence represents a human parathyroid hormone (hPTH)
CC
     (1-31) peptide analogue. The present invention also describes a method
CC
     for screening peptides for osteogenic activity by subcutaneous injection
CC
     of a test compound and seeing if a small drop in arterial pressure
CC
     occurs after a short time. The hPTH peptide analogue can be useful for
CC
     stimulating bone growth, restoring bone and promoting bone healing,
CC
     especially treatment of osteoporosis and normal fractures. The hPTH
CC
     peptide analogue can be administered by injection or inhalation,
CC
     rectally or orally, generally at at most 0.05 mg/kg/day. Substitution
CC
     of Lys26 stabilises an alpha-helix in the receptor-binding region of
```

```
cyclisation increases stability against proteases. The screening method,
CC
     which can be performed in intact female animals, is a quick and simple
CC
    way of identifying inactive compounds, avoiding the need for long-term,
CC
     expensive tests on ovariectomised animals.
CC
XX
SO
               31 AA;
     Sequence
                          100.0%; Score 28; DB 19; Length 31;
  Ouery Match
  Best Local Similarity
                          100.0%; Pred. No. 5e-21;
 Matches
           28; Conservative
                              0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
                                                                             0:
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 13
AAY02578
     AAY02578 standard; peptide; 31 AA.
XX
AC
     AAY02578;
XX
DT
     16-JUL-1999 (first entry)
XX
     N-terminal 31 residues of human parathyroid hormone (hPTH).
DE
XX
     Human parathyroid hormone; hPTH; bone mass;
KW
     3-(substituted phenoxy) benzo(b) thiophene compound;
KW
     bone loss treatment; osteoporosis.
XX
OS
     Homo sapiens.
XX
PN
     WO9918945-A1.
XX
     22-APR-1999.
PD
XX
PF
     05-OCT-1998;
                    98WO-US20848.
XX
PR
     14-OCT-1997;
                    97US-0061800.
XX
PA
     (ELIL ) LILLY & CO ELI.
XX
ΡI
     Sato M;
XX
DR
     WPI; 1999-287871/24.
XX
PT
     Method of building bone mass by co-administration of a parathyroid
PT
     hormone with a 3-(substituted phenoxy) benzo(b) thiophene compound
XX
PS
     Claim 6; Page 39; 48pp; English.
XX
CC
     The present sequence represents a fragment of human parathyroid hormone
CC
     (hPTH). hPTH and its fragments are used in the method of the invention.
CC
     The specification describes a method for building bone mass, comprising
CC
     coadministration of a parathyroid hormone with a 3-(substituted
CC
     phenoxy) benzo(b) thiophene compound. The method is used for treatment
```

the hormone and increases adenylyl cyclase (AC) activity, while

CC

```
CC
    of bone loss, e.g. in osteoporosis.
XX
SQ
     Sequence
                31 AA;
                          100.0%; Score 28; DB 20; Length 31;
  Query Match
  Best Local Similarity
                         100.0%; Pred. No. 5e-21;
                               0; Mismatches
                                                   0; Indels
           28; Conservative
                                                                 0; Gaps
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
QУ
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 14
AAB81080
     AAB81080 standard; peptide; 31 AA.
ID
XX
AC
     AAB81080;
XX
     26-JUN-2001 (first entry)
DT
XX
DE
     Human parathyroid hormone 1-31.
XX
KW
     Parathyroid hormone; PTH; blood calcium level regulator; osteopathic;
KW
     vulnerary; bone growth; bone healing; osteoporosis; fracture; human.
XX
OS
     Homo sapiens.
XX
FΗ
     Key
                     Location/Qualifiers
     Modified-site
FT
                     31
FT
                     /note= "C-terminal amide"
XX
PN
     WO200121643-A2.
XX
PD
     29-MAR-2001.
XX
PF
     21-SEP-2000; 2000WO-CA01083.
XX
PR
     22-SEP-1999;
                    99US-0406813.
XX
     (CANA ) NAT RES COUNCIL CANADA.
PA
XX
ΡI
     Barbier J, Morley P, Whitfield J, Willick GE;
XX
DR
     WPI; 2001-308081/32.
XX
PT
     New human parathyroid hormone (HPTH) analog useful for stimulating bone
PT
     growth, for restoring bone, for promotion of bone healing, and for
PT
     treating osteoporosis and normal fractures -
XX
PS
     Disclosure; Fig 2; 34pp; English.
XX
CC
     Parathyroid hormone (PTH) is a major regulator of blood calcium levels,
CC
     this invention relates to hPTH analogues, or their salts. Use of the
     analogues results in osteopathic and vulnerary activity. The hPTH
CC
     analogues are useful for treating a warm-blooded animal for stimulating
CC
CC
     bone growth, for restoring bone, and for the promotion of bone healing
```

```
CC
     during the treatment of osteoporosis and normal fractures. The present
     sequence represents human parathyroid hormone hPTH-NH2.
CC
XX
               31 AA;
SQ
    Sequence
 Ouery Match
                         100.0%; Score 28; DB 22; Length 31;
                         100.0%; Pred. No. 5e-21;
 Best Local Similarity
                               0; Mismatches
                                                                0; Gaps
           28; Conservative
                                                  0; Indels
                                                                            0;
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 15
AAB91097
ID
     AAB91097 standard; Peptide; 31 AA.
XX
AC
    AAB91097;
XX
DT
     22-JUN-2001 (first entry)
XX
     Parathyroid hormone (PTH) related peptide SEQ ID NO:271.
DE
XX
     Protection; endogenous therapeutic peptide; peptidase; conjugation;
KW
KW
     blood component; modification; succinimidyl; maleimido group; amino;
     hydroxyl; thiol; hormone; growth factor; neurotransmitter.
KW
XX
OS
     Homo sapiens.
OS
     Synthetic.
XX
PN
     WO200069900-A2.
XX
PD
     23-NOV-2000.
XX
     17-MAY-2000; 2000WO-US13576.
PF
XX
PR
     17-MAY-1999;
                    99US-0134406.
PR
     10-SEP-1999;
                    99US-0153406.
PR
     15-OCT-1999;
                   99US-0159783.
ХX
PΑ
     (CONJ-) CONJUCHEM INC.
XX
PΙ
     Bridon DP, Ezrin AM, Milner PG, Holmes DL, Thibaudeau K;
XX
DR
     WPI; 2001-112059/12.
XX
PT
     Modifying and attaching therapeutic peptides to albumin prevents
PT
     peptidase degradation, useful for increasing length of in vivo activity
PT
XX
PS
     Disclosure; Page 281; 733pp; English.
XX
CC
     The present invention describes a modified therapeutic peptide (I)
     comprising a therapeutically active amino acid region (III) and a
CC
     reactive group (II) (e.g. succinimidyl and maleimido groups) attached to
CC
     a less therapeutically active amino acid region (IV), which covalently
CC
```

```
CC
    peptidase stabilised therapeutic peptide composed of 3-50 amino acids.
CC
     (I) are useful for modifying therapeutic peptides e.g. hormones, growth
CC
     factors and neurotransmitters, to protect them from peptidase activity
     in vivo for the treatment of various disorders. Endogenous therapeutic
CC
CC
    peptides are not suitable as drug candidates as they require frequent
    administration due to rapid degradation by peptidases in the body.
CC
    Modifying and attaching therapeutic peptides to albumin prevents or
CC
     reduces the action of peptidases to increase length of activity (half
CC
CC
     life) and specificity as bonding to large molecules decreases
CC
     intracellular uptake and interference with physiological processes.
    AAB90829 to AAB92441 represent peptides which can be used in the
CC
     exemplification of the present invention.
CC
XX
SQ
    Sequence
               31 AA;
  Query Match
                          100.0%; Score 28; DB 22; Length 31;
                         100.0%; Pred. No. 5e-21;
  Best Local Similarity
                                0; Mismatches
  Matches
           28; Conservative
                                                     Indels
                                                                 0; Gaps
                                                                             0;
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 16
AAE23720
     AAE23720 standard; peptide; 31 AA.
XX
AC
    AAE23720;
XX
DT
     10-SEP-2002 (first entry)
XX
DE
     Human parathyroid hormone (hPTH) peptide (1-31).
XX
KW
     Human parathyroid hormone; hPTH; PTH-related peptide; PTHrP; eczema;
KW
     hyperproliferative skin disorder; psoriasis; ichthyosis; skin cancer;
     acne; actinic keratosis; alopecia; gene therapy.
KW
XX
OS
    Homo sapiens.
XX
PN
    WO200228420-A2.
XX
PD
     11-APR-2002.
XX
PF
     05-OCT-2001; 2001WO-US31082.
XX
PR
     06-OCT-2000; 2000US-238134P.
XX
PΑ
     (HOLI/) HOLICK M F.
XX
PΤ
    Holick MF;
XX
DR
     WPI; 2002-452304/48.
DR
    N-PSDB; AAD37995.
XX
PΤ
     Regulating mammalian skin or hair cell proliferation and
```

bonds with amino/hydroxyl/thiol groups on blood components to form a

CC

```
differentiation by administering nucleic acids encoding peptides
РΤ
     derived from N-terminal region of human parathyroid hormone (hPTH) or
PT
PT
     hPTH-related protein -
XX
     Disclosure; Fig 8; 56pp; English.
PS
XX
     The invention relates to a method for regulating proliferation or
CC
     enhancing differentiation of mammalian skin or hair cell. The method
CC
     involves administering nucleic acids encoding peptides derived from
CC
     N-terminal region of human parathyroid hormone (hPTH) or hPTH-related
CC
     peptide (PTHrP). The method is used for inhibiting hyperproliferative
CC
     skin disorders such as psoriasis, ichthyosis, eczema, acne, actinic
CC
     keratosis, skin cancer, for inhibiting hair growth or preventing hair
CC
CC
     regrowth. It is useful for stimulating cell growth, rejuvenating aged
     skin, preventing skin wrinkles, treating skin wrinkles, enhancing wound
CC
     healing, stimulating hair growth, maintaining hair growth, treating or
CC
     preventing female or male pattern baldness, for treating chemotherapy
CC
CC
     induced alopecia and also for stimulating epidermal cell growth or
CC
     hair follicle cell growth. The method is also used in gene therapy.
     The present sequence is hPTH peptide.
CC
XX
SO
     Sequence
                31 AA;
                          100.0%; Score 28; DB 23; Length 31;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 5e-21;
  Matches
           28; Conservative
                              0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
                                                                             0;
            1 SVSEIOLMHNLGKHLNSMERVEWLRKKL 28
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Dh
RESULT 17
AAU73039
ΙD
     AAU73039 standard; Peptide; 31 AA.
XX
AC
     AAU73039;
XX
DT
     12-MAR-2002 (first entry)
XX
DE
     Parathyroid hormone PTH/PTHrP modulating domain #21.
XX
KW
     Human; parathyroid hormone; PTH; parathyroid hormone-related protein;
     PTHrP; bone resorption inhibitor; osteoprotegrin; OPG; OPG-L antibody;
ΚW
     calcitonin; bisphosphonate; oestrogen; oestrogen receptor; tibolone;
KW
     osteopenia; hyperthyroidism; hypercalcaemia; tumour metastasis; bone;
KW
KW
     breast cancer; prostate cancer; cachexia; anorexia; osteoporosis;
KW
     Paget's disease; osteomyelitis; osteonecrosis; bone cell death;
     Gaucher's disease; sickle cell anaemia; systemic lupus erythematosus;
KW
KW
     rheumatoid arthritis; periodontal disease; alopecia; fracture repair;
KW
     immunoglobulin G; IqG.
XX
OS
     Homo sapiens.
XX
PΝ
     WO200181415-A2.
ХX
PD
     01-NOV-2001.
```

```
XX
     27-APR-2001; 2001WO-US13528.
PF
XX
     27-APR-2000; 2000US-200053P.
PR
     28-JUN-2000; 2000US-214860P.
PR
PR
     06-FEB-2001; 2001US-266673P.
     26-APR-2001; 2001US-0843221.
PR
XX
     (AMGE-) AMGEN INC.
PA
XX
PΙ
     Kostenuik P, Liu C, Lacey DL;
XX
    WPI; 2002-066435/09.
DR
XX
PT
     Composition, useful for treating osteopenia, comprises parathyroid
PT
     hormone and parathyroid hormone-related protein receptor modulators -
XX
PS
     Disclosure; Page 26; 107pp; English.
XX
CC
     The invention relates to a composition (I) comprising modulators of
CC
     parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP)
CC
     which comprise a PTH/PTHrP modulating domain and a vehicle. (I)
CC
     comprising PTH agonist optionally with a bone resorption inhibitor, such
CC
     as osteoprotegrin (OPG), OPG-L antibody, calcitonin, bisphosphonates,
CC
     oestrogens, oestrogen receptor modulators and tibolone is useful for
CC
     treating osteopenia. (I) is useful for therapeutic and prophylactic
CC
     purposes. Antagonists of PTH receptor are useful in treating primary and
CC
     secondary hyperthyroidism, hypercalcaemia, tumour metastases,
CC
     particularly breast and prostate cancer, cachexia and anorexia,
CC
     osteopenia, including various forms of osteoporosis, Paget's disease of
CC
     bone, osteomyelitis, osteonecrosis or bone cell death, associated with
CC
     traumatic injury or nontraumatic necrosis associated with Gaucher's
CC
     disease, sickle cell anaemia, systemic lupus erythematosus, rheumatoid
CC
     arthritis, periodontal disease and alopecia. PTH receptor agonists are
CC
     useful as therapeutic agents in conditions including fracture repair
CC
     (including healing of non-union fractures), osteopenia, including various
CC
     forms of osteoporosis. AAU73018-AAU73181 represent parathyroid hormone
CC
     and parathyroid hormone related protein (PTH/PTHrP) modulators and
CC
     related amino acid sequences of the invention.
XX
SQ
     Sequence
               31 AA;
  Query Match
                          100.0%; Score 28; DB 23; Length 31;
                         100.0%; Pred. No. 5e-21;
  Best Local Similarity
 Matches
           28; Conservative
                               0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
                                                                             0;
QУ
            1 SVSEIOLMHNLGKHLNSMERVEWLRKKL 28
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 18
AAU73177
ID
    AAU73177 standard; Peptide; 31 AA.
XX
AC
    AAU73177;
XX
```

DT12-MAR-2002 (first entry) XX DE Parathyroid hormone PTH/PTHrP modulating domain #159. XXHuman; parathyroid hormone; PTH; parathyroid hormone-related protein; KW PTHrP; bone resorption inhibitor; osteoprotegrin; OPG; OPG-L antibody; KW KW calcitonin; bisphosphonate; oestrogen; oestrogen receptor; tibolone; KW osteopenia; hyperthyroidism; hypercalcaemia; tumour metastasis; bone; KW breast cancer; prostate cancer; cachexia; anorexia; osteoporosis; KW Paget's disease; osteomyelitis; osteonecrosis; bone cell death; KW Gaucher's disease; sickle cell anaemia; systemic lupus erythematosus; KW rheumatoid arthritis; periodontal disease; alopecia; fracture repair; KW immunoglobulin G; IgG. XXOS Synthetic. XX PN WO200181415-A2. XX PD 01-NOV-2001. XXPF 27-APR-2001; 2001WO-US13528. XXPR 27-APR-2000; 2000US-200053P. 28-JUN-2000; 2000US-214860P. PR PR06-FEB-2001; 2001US-266673P. PR 26-APR-2001; 2001US-0843221. XXPΑ (AMGE-) AMGEN INC. XXPΙ Kostenuik P, Liu C, Lacey DL; XXDR WPI; 2002-066435/09. XXComposition, useful for treating osteopenia, comprises parathyroid PTPThormone and parathyroid hormone-related protein receptor modulators -XXPS Disclosure; Page 63; 107pp; English. XX CC The invention relates to a composition (I) comprising modulators of CCparathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP) which comprise a PTH/PTHrP modulating domain and a vehicle. (I) CCCCcomprising PTH agonist optionally with a bone resorption inhibitor, such CC as osteoprotegrin (OPG), OPG-L antibody, calcitonin, bisphosphonates, CCoestrogens, oestrogen receptor modulators and tibolone is useful for CC treating osteopenia. (I) is useful for therapeutic and prophylactic CC purposes. Antagonists of PTH receptor are useful in treating primary and CCsecondary hyperthyroidism, hypercalcaemia, tumour metastases, CCparticularly breast and prostate cancer, cachexia and anorexia, CCosteopenia, including various forms of osteoporosis, Paget's disease of CCbone, osteomyelitis, osteonecrosis or bone cell death, associated with CC traumatic injury or nontraumatic necrosis associated with Gaucher's disease, sickle cell anaemia, systemic lupus erythematosus, rheumatoid CCCC arthritis, periodontal disease and alopecia. PTH receptor agonists are CC useful as therapeutic agents in conditions including fracture repair CC

(including healing of non-union fractures), osteopenia, including various

forms of osteoporosis. AAU73018-AAU73181 represent parathyroid hormone

and parathyroid hormone related protein (PTH/PTHrP) modulators and

CC

CC

```
CC
     related amino acid sequences of the invention.
XX
SO
     Sequence
                31 AA;
                          100.0%; Score 28; DB 23; Length 31;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 5e-21;
  Matches
            28; Conservative
                                0; Mismatches
                                                   0;
                                                      Indels
                                                                 0; Gaps
                                                                             0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 19
AAU73176
     AAU73176 standard; Peptide; 32 AA.
ID
XX
AC
     AAU73176;
XX
DT
     12-MAR-2002 (first entry)
XX
DΕ
     Parathyroid hormone PTH/PTHrP modulating domain #158.
XX
KW
     Human; parathyroid hormone; PTH; parathyroid hormone-related protein;
     PTHrP; bone resorption inhibitor; osteoprotegrin; OPG; OPG-L antibody;
KW
KW
     calcitonin; bisphosphonate; oestrogen; oestrogen receptor; tibolone;
KW
     osteopenia; hyperthyroidism; hypercalcaemia; tumour metastasis; bone;
KW
     breast cancer; prostate cancer; cachexia; anorexia; osteoporosis;
KW
     Paget's disease; osteomyelitis; osteonecrosis; bone cell death;
     Gaucher's disease; sickle cell anaemia; systemic lupus erythematosus;
KW
     rheumatoid arthritis; periodontal disease; alopecia; fracture repair;
KW
KW
     immunoglobulin G; IgG.
XX
OS
     Synthetic.
XX
PN
     WO200181415-A2.
XX
PD
     01-NOV-2001.
XX
PF
     27-APR-2001; 2001WO-US13528.
XX
PR
     27-APR-2000; 2000US-200053P.
₽R
     28-JUN-2000; 2000US-214860P.
PR
     06-FEB-2001; 2001US-266673P.
PR
     26-APR-2001; 2001US-0843221.
XX
PΑ
     (AMGE-) AMGEN INC.
XX
PI
     Kostenuik P, Liu C, Lacey DL;
XX
DR
     WPI; 2002-066435/09.
XX
PT
     Composition, useful for treating osteopenia, comprises parathyroid
PT
     hormone and parathyroid hormone-related protein receptor modulators -
XX
PS
     Disclosure; Page 63; 107pp; English.
XX
```

```
CC
     The invention relates to a composition (I) comprising modulators of
CC
     parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP)
CC
     which comprise a PTH/PTHrP modulating domain and a vehicle. (I)
CC
     comprising PTH agonist optionally with a bone resorption inhibitor, such
CC
     as osteoprotegrin (OPG), OPG-L antibody, calcitonin, bisphosphonates,
CC
     oestrogens, oestrogen receptor modulators and tibolone is useful for
     treating osteopenia. (I) is useful for therapeutic and prophylactic
CC
CC
     purposes. Antagonists of PTH receptor are useful in treating primary and
CC
     secondary hyperthyroidism, hypercalcaemia, tumour metastases,
CC
     particularly breast and prostate cancer, cachexia and anorexia,
CC
     osteopenia, including various forms of osteoporosis, Paget's disease of
CC
     bone, osteomyelitis, osteonecrosis or bone cell death, associated with
     traumatic injury or nontraumatic necrosis associated with Gaucher's
CC
CC
     disease, sickle cell anaemia, systemic lupus erythematosus, rheumatoid
     arthritis, periodontal disease and alopecia. PTH receptor agonists are
CC
CC
     useful as therapeutic agents in conditions including fracture repair
     (including healing of non-union fractures), osteopenia, including various
CC
CC
     forms of osteoporosis. AAU73018-AAU73181 represent parathyroid hormone
CC
     and parathyroid hormone related protein (PTH/PTHrP) modulators and
CC
     related amino acid sequences of the invention.
XX
SQ
     Sequence
                32 AA;
  Query Match
                          100.0%; Score 28; DB 23; Length 32;
                          100.0%; Pred. No. 5.1e-21;
  Best Local Similarity
  Matches
            28; Conservative 0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
                                                                             0;
            1 SVSEIOLMHNLGKHLNSMERVEWLRKKL 28
QУ
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 20
AAY98018
     AAY98018 standard; peptide; 33 AA.
ID
XX
AC
     AAY98018;
XX
DT
     04-SEP-2000 (first entry)
XX
DΕ
     Human amino-terminal modified parathyroid hormone analogue # 9.
XX
KW
     Parathyroid hormone peptide; PTH; renal cell; osseous cell; human;
KW
     signal transduction; osteoporosis; amino-terminal modification;
KW
     bone disease; parathyroid hormone receptor; osteopaenia;
KW
     hypoparathyroidism; fracture repair; hypercalcaemia; cancer; osteopathic.
XX
OS
     Homo sapiens.
XX
FH
     Key
                     Location/Oualifiers
FT
     Modified-site
FT
                     /note= "Ser is desamino residue"
XX
PN
     WO200031137-A1.
XX
PD
     02-JUN-2000.
XX
```

```
PF
     23-NOV-1999;
                   99WO-US27656.
XX
PR
     25-NOV-1998; 98US-0110152.
XX
     (BRIN/) BRINGHURST F R.
PA
     (TAKA/) TAKASU H.
PΑ
     (GARD/) GARDELLA T J.
PA
XX
PΙ
     Bringhurst FR, Takasu H, Gardella TJ;
XX
    WPI; 2000-400045/34.
DR
XX
     New parathyroid hormone (PTH) analogs having one or more amino acid
PT
PT
     substitutions that confer PTH-1/PTH-2 receptor agonist properties,
PT
     useful for treating old age osteoporosis and post-menopausal
PT
     osteoporosis -
XX
PS
     Disclosure; Page 65; 69pp; English.
XX
CC
     Parathyroid hormone (PTH) binds to PTH receptors in renal and osseous
CC
     cells, initiating signal transduction. It has been identified that the
CC
     carboxyl terminal of PTH is important for PTH receptor binding, while the
CC
     amino terminal is important for signal transduction. The present
CC
     sequence is a human PTH peptide, with an amino-terminal modification
CC
     which results in effective activation of the PTH-2 receptor and therefore
CC
     downstream signalling. Aberrant PTH activity has been implicated in a
     number of disorders: osteoporosis, osteopaenia, hypoparathyroidism and
CC
CC
     hypercalcaemia. In turn, hypercalcaemia is associated with hypernephroma
CC
     and a variety of cancers: breast, lung and prostate carcinoma, multiple
     myeloma and epidermoid cancers of the head, neck and oesophagus. This
CC
CC
     peptide would be suitable for prophylaxis and treatment of the above
CC
     disorders. In addition, the present sequence would be suitable for
     fracture repair. The present sequence is modified to have a
CC
CC
     desamino residue at position 1.
XX
SO
     Sequence
               33 AA;
  Query Match
                         100.0%; Score 28; DB 21; Length 33;
  Best Local Similarity
                         100.0%; Pred. No. 5.2e-21;
           28; Conservative 0; Mismatches 0; Indels
                                                                0;
                                                                    Gaps
                                                                            0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
              Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 21
AAP30022
    AAP30022 standard; peptide; 34 AA.
XX
AC
    AAP30022;
XX
DT
    25-MAR-2003
                  (updated)
DT
     01-SEP-1992 (first entry)
XX
DE
    Human parathyroid-(1-34) amide.
XX
```

```
KW
     PTH; parathyroid gland; antibodies.
XX
OS
     Synthetic.
XX
FΗ
     Kev
                     Location/Oualifiers
FT
     Modified-site
                     /note= "amidated"
FT
XX
PN
     JP58096052-A.
XX
PD
     07-JUN-1983.
XX
PF
     30-NOV-1983;
                    83JP-0193212.
XX
PR
     31-MAR-1981;
                    81JP-0048887.
XX
PΑ
     (TOXN ) TOYO JOZO KK.
XX
DR
     WPI; 1983-709291/28.
XX
PT
     High activity human parathyroid hormone amide prodn. - by
     condensing protected aminoacid(s) and/or peptide(s) useful for
PT
PT
     lowering parathyroid gland function
XX
PS
     Claim 1; Page 1; 20pp; Japanese.
XX
     The human parathyroid hormone, hPTH(1-34)-amide was prepd. by
CC
CC
     the following steps: Firstly the carboxy gp. at the C-terminal
     phenylalanine was converted into its amide form. The protected
CC
CC
     individual amino acids were condensed, in order, by liquid phase
CC
     synthesis. The protecting groups were removed from the N-terminal
CC
     amino gp. and other functional gps. by acidolysis, and the
CC
     resulting hPTH(1-34)-amide purified by gel filtration
CC
     chromatography using a Sephadex G-25, G-50 or LH-20 column or by
CC
     column chromatography with carboxymethyl cellulose or ion exchange
CC
     resin. The peptide amide is useful in lowering the activity of the
CC
     parathyroid gland and in the prepn. of antibodies for diagnosis of
CC
     parathyroid gland function.
CC
     (Updated on 25-MAR-2003 to correct PR field.)
XX
SO
     Sequence
                34 AA;
                          100.0%; Score 28; DB 4; Length 34;
  Query Match
                          100.0%; Pred. No. 5.4e-21;
  Best Local Similarity
            28; Conservative
                                 0; Mismatches
                                                   0; Indels
                                                                 0: Gaps
                                                                             0:
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 22
AAP50377
ID
     AAP50377 standard; peptide; 34 AA.
XX
AC
     AAP50377;
XX
```

```
DT
     25-MAR-2003
                  (updated)
DT
     08-MAR-1992
                 (first entry)
XX
DE
     [Met(0)8,18]hPTH-(1-34).
XX
     Human parathyroid hormone; calcium regulation.
ΚW
XX
OS
     Homo sapiens.
XX
FH
     Key
                    Location/Qualifiers
FT
    Modified-site
FΤ
                     /label= oxidised methionine
FT
    Modified-site
                     18
FT
                     /label= oxidised methionine
XX
PN
     JP59204159-A.
XX
PD
     19-NOV-1984.
XX
PF
     28-APR-1983;
                    83JP-0075607.
XX
PR
     28-APR-1983;
                    83JP-0075607.
XX
     (TOXN ) TOYO JOZO KK.
PA
XX
DR
    WPI; 1985-003560/01.
XX
PT
     New (Met(0)8,18)hPTH-(1-34) peptide - increases calcium level in
PT
     blood and decreases level in urine.
XX
PS
     Claim 1; Page 1; 3pp; Japanese.
XX
CC
     Unmodified hPTH(1-34) increases Ca in blood, decreases P in blood,
CC
     decreases Ca in urine and increases P in urine by increasing cAMP in
CC
     urine and enhancing vitamin D hydroxylase activity in kidneys. The
CC
     modified derivative only has the effect of lowering Ca levels in
CC
    urine and can be used when only this particular effect is required.
CC
     (Updated on 25-MAR-2003 to correct PA field.)
CC
     (Updated on 25-MAR-2003 to correct DR field.)
XX
SO
     Sequence
                34 AA;
  Query Match
                          100.0%; Score 28; DB 6; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 5.4e-21;
 Matches
           28; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
QУ
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 23
AAP60031
ID
    AAP60031 standard; peptide; 34 AA.
XX
AC
    AAP60031;
XX
```

```
DT
     25-MAR-2003
                  (updated)
DT
     06-JUL-1991
                 (first entry)
XX
DΕ
     Sequence of the first 34 AA residues of a parathyroid hormone
DE
     obtainable from a human or animal.
XX
KW
     Osteoporosis therapy.
XX
OS
     Homo sapiens/animal.
XX
     EP197514-A.
PN
XX
PD
     15-OCT-1986.
XX
PF
     03-APR-1986;
                    86EP-0104562.
XX
PR
     04-APR-1985;
                    85US-0720018.
PR
     05-DEC-1986;
                    86US-0939308.
PR
     21-MAY-1987;
                    87US-0052383.
XX
PΑ
     (GEHO ) GEN HOSPITAL CORP.
XX
ΡI
     Potts JT, Neer RM, Slovik DM;
XX
DR
     WPI; 1986-273437/42.
XX
PT
     Compsn. and kits for increasing bone mass in osteoporosis -
PT
     contg. parathyroid hormone or fragment with hydroxylated
PT
     vitamin/D cpd. or calcium salt
XX
PS
     Claim 4; Page 24; 26pp; English.
XX
CC
     The peptide is used in a pharmaceutical compsn. together with a
CC
     hydroxylated vitamin D compound, or a non-toxic calcium salt, pref.
     CaCO3. The compsn. pref. contains 100-700 (pref. 200-600, esp. 400-
CC
CC
     500) units of the peptide. The vitamin D compound is pref. 1-alpha-
CC
     hydroxy vitamin D2 or 1-alpha, 25-dihydroxy vitamin D2.
     (Updated on 25-MAR-2003 to correct PA field.)
CC
XX
SQ
     Sequence
                34 AA;
  Query Match
                          100.0%; Score 28; DB 7; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 5.4e-21;
            28; Conservative
                               0; Mismatches
                                                                 0; Gaps
                                                   0; Indels
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 24
ID
     AAR07919 standard; protein; 34 AA.
XX
AC
     AAR07919;
XX
DT
     18-FEB-1991 (first entry)
```

```
DΕ
     Human parathyroid hormone analogue, hPTH(7-34).
XX
KW
     Osteoporosis; hypercalcemia; hyperparathyroidism; hypertension.
XX
OS
     Homo sapiens.
XX
     US4968669-A.
PN
XX
PD
     06-NOV-1990.
XX
PF
     21-APR-1989;
                    89US-0341597.
XX
PR
     21-APR-1989;
                    89US-0341597.
PR
     09-MAY-1988;
                    88US-0191512.
XX
     (MERI ) MERCK & CO INC.
PΑ
XX
ΡI
     Rosenblatt M, Chorev M;
XX.
DR
     WPI; 1990-354642/47.
XX
PT
     New para: thyroid hormone analogues - which inhibit hormone
     activity by binding receptors while not producing second
PT
PT
     messenger molecules
XX
PS
     Claim 1; Column 8; 6pp; English.
XX
CC
     Peptide analogues have high affinity for PTH cell surface receptors,
     but do not stimulate production of secondary messenger molecules.
CC
CC
     They may be used in inhibition of PTH action, and in diagnosis and
CC
     treatment of osteoporosis, hypercalcemia and hyperparathyroidism.
CC
     Analogues may also be used in treatment of tumours and other cells
CC
     overproducing peptide hormone-like substances, and immune diseases
     eg. allergic inflammation and hyperactive lymphocytes.
CC
CC
     Naturally occuring PTH levels may also be measured in vitro.
XX
SQ
     Sequence
                34 AA;
  Query Match
                          100.0%; Score 28; DB 11; Length 34;
  Best Local Similarity
                          100.0%;
                                   Pred. No. 5.4e-21;
  Matches
            28; Conservative
                              0; Mismatches
                                                   0; Indels
                                                                     Gaps
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 25
AAR07922
ID
     AAR07922 standard; protein; 34 AA.
XX
AC
    AAR07922;
XX
DT
     18-FEB-1991 (first entry)
XX
DE
     Human parathyroid hormone analogue, Tyr34 hPTH(7-34).
```

XX

```
Osteoporosis; hypercalcemia; hyperparathyroidism; hypertension.
KW
XX
OS
    Homo sapiens.
XX
PN
    US4968669-A.
XX
     06-NOV-1990.
PD
XX
ΡF
     21-APR-1989:
                   89US-0341597.
ХX
PR
     21-APR-1989;
                   89US-0341597.
                   88US-0191512.
PR
     09-MAY-1988;
XX
PA
     (MERI ) MERCK & CO INC.
XX
PΙ
     Rosenblatt M, Chorev M;
XX
DR
    WPI; 1990-354642/47.
XX
PT
     New para: thyroid hormone analogues - which inhibit hormone
PT
     activity by binding receptors while not producing second
PT
     messenger molecules
XX
PS
     Claim 1; Column 8; 6pp; English.
XX
CC
     Peptide analogues have high affinity for PTH cell surface receptors,
CC
     but do not stimulate production of secondary messenger molecules.
CC
     They may be used in inhibition of PTH action, and in diagnosis and
CC
     treatment of osteoporosis, hypercalcemia and hyperparathyroidism.
CC
     Analogues may also be used in treatment of tumours and other cells
CC
     overproducing peptide hormone-like substances, and immune diseases
CC
     eg. allergic inflammation and hyperactive lymphocytes.
CC
     Naturally occuring PTH levels may also be measured in vitro.
XX
SO
     Sequence
                34 AA;
  Query Match
                          100.0%;
                                  Score 28; DB 11;
                                                     Length 34;
  Best Local Similarity
                         100.0%;
                                   Pred. No. 5.4e-21;
            28; Conservative
                                0; Mismatches
                                                  0;
                                                      Indels
                                                                 0; Gaps
                                                                             0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 26
AAR22283
ID
    AAR22283 standard; peptide; 34 AA.
XX
AC
    AAR22283;
XX
DT
     29-JUL-1992 (first entry)
XX
DE
     Parathyroid hormone analogue N-terminus [1-34].
XX
KW
     Human; hPTH; wound healing; hair growth; hyperproliferation skin;
```

XX

```
KW
     disorders; psoriasis; cancer; burns.
XX
OS
     Homo sapiens.
XX
ΡN
     WO9204039-A.
XX
PD
     19-MAR-1992.
XX
PF
     30-AUG-1991;
                    91WO-US06218.
XX
PR
     30-AUG-1990;
                    90US-0575219.
XX
     (HOLI/) HOLICK M F.
PA
XX
PΙ
     Holick MF:
XX
DR
     WPI; 1992-114063/14.
XX
PT
     Use of peptide having homology with parathyroid hormone - for
PT
     enhancement of cell proliferation for wound healing
XX
PS
     Disclosure; Fig 1; 34pp; English.
XX
CC
     The peptide can be easily synthesised by recombinant DNA or solid
CC
     phase peptide synthesis techniques. The peptide has > 50 percent
CC
     homology with the N-terminal 1-34 amino acids of human parathyriod
CC
     hormone or hypercalcaemic region. It is esp. PTH (7-34). The
CC
     peptide may be used in a method for the treatment of hyperprolifer-
CC
     ation skin disorders e.g. psoriasis, cancers, burns or skin
CC
     ulcerations by inhibition of cell proliferation and enhancement of
CC
     cell differentiation (agonist activity). They are also used to
CC
     enhance cell proliferation (antagonist activity) for wound healing.
CC
     They are also applicable in the promotion of new hair growth or
CC
     stimulation of the rate of hair growth e.g. following chemotherapy
CC
     or for treating alopecia e.g. male pattern baldness.
XX
SQ
     Sequence
                34 AA;
  Query Match
                          100.0%; Score 28; DB 13; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 5.4e-21;
  Matches
            28; Conservative
                              0; Mismatches
                                                   0;
                                                      Indels
                                                                 0; Gaps
                                                                             0;
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 27
AAR41549
ID
     AAR41549 standard; protein; 34 AA.
XX
AC
    AAR41549;
XX
DT
     25-MAR-2003
                  (updated)
                  (first entry)
DT
     11-APR-1994
XX
DE
     [D-Ser3]hPTH (1-34)NH2.
```

```
XX
     PTH; parathyroid hormone; protease resistance; osteoporosis;
KW
     hypoparathyroidism; hypertension.
ΚW
XX
     Homo sapiens.
OS
XX
                    Location/Qualifiers
FΗ
FT
     Misc-difference 3
                     /note = "D-form residue"
FT
     Modified-site
FT
FT
                    /note = "C terminal is amidated"
XX
     EP561412-A1.
PN
XX
     22-SEP-1993.
PD
XX
PF
                   93EP-0104500.
     18-MAR-1993;
XX
                   92JP-0063517.
PR
     19-MAR-1992;
     18-FEB-1993;
                   93JP-0029283.
PŘ
XX
PA
     (TAKE ) TAKEDA CHEM IND LTD.
ХX
     Fukuda T, Nakagawa S, Taketomi S;
PΙ
XX
     WPI; 1993-296712/38.
DR
XX
     New parathyroid hormone derivs. - used for the treatment of
PT
     osteoporosis hypoparathyroidism and hypertension
PT
XX
PS
     Example 1; Page 17; 37pp; English.
XX
     Human parathyroid hormone (PTH) analogues (AAR41548 - generic sequence;
CC
     AAR41549-R41582 - specific examples) show increased resistance to
CC
     proteases and a greater persistency of activity within the blood is
CC
     obtained. The proteins can be used to treat a number of bone and blood
CC
CC
     disorders. This analogue was used as a test compound.
     (Updated on 25-MAR-2003 to correct PN field.)
CC
XX
SO
     Sequence-
               34 AA;
                          100.0%; Score 28; DB 14; Length 34;
  Query Match
                          100.0%; Pred. No. 5.4e-21;
  Best Local Similarity
                              0; Mismatches 0; Indels
                                                                0; Gaps
                                                                            0;
            28; Conservative
  Matches
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 28
AAR41570
     AAR41570 standard; protein; 34 AA.
ID
XX
AC
     AAR41570;
XX
DΤ
     25-MAR-2003 (updated)
```

```
DT
     11-APR-1994 (first entry)
XX
DE
     [Gln25]hPTH (1-34).
XX
KW
     PTH; parathyroid hormone; protease resistance; osteoporosis;
     hypoparathyroidism; hypertension.
KW
XX
OS
     Homo sapiens.
XX
PN
     EP561412-A1.
XX
PD
     22-SEP-1993.
XX
PF
     18-MAR-1993;
                   93EP-0104500.
XX
PR
     19-MAR-1992;
                    92JP-0063517.
PR
     18-FEB-1993;
                    93JP-0029283.
XX
     (TAKE ) TAKEDA CHEM IND LTD.
PA
XX
     Fukuda T, Nakagawa S, Taketomi S;
PΙ
XX
DR
     WPI; 1993-296712/38.
XX
     New parathyroid hormone derivs. - used for the treatment of
PT
PT
     osteoporosis hypoparathyroidism and hypertension
XX
PS
     Example 1; Page 27; 37pp; English.
XX
CC
     Human parathyroid hormone (PTH) analogues (AAR41548 - generic sequence;
CC
     AAR41549-R41582 - specific examples) show increased resistance to
CC
     proteases and a greater persistency of activity within the blood is
CC
     obtained. The proteins can be used to treat a number of bone and blood
CC
     disorders. This analogue was used as a test compound.
CC
     (Updated on 25-MAR-2003 to correct PN field.)
XX
SO
     Sequence
                34 AA;
  Query Match
                          100.0%; Score 28; DB 14; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 5.4e-21;
 Matches
          28; Conservative
                               0; Mismatches
                                                 0; Indels
                                                                 0;
                                                                    Gaps
                                                                             0;
QУ
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 29
AAR58291
ID
    AAR58291 standard; peptide; 34 AA.
XX
AC
    AAR58291;
XX
DT
    20-SEP-1994
                 (first entry)
XX
DE
     [Lys (For) 26, Lys (For) 27] -hPTH(1-34)-NH2.
XX
```

```
Human parathyroid hormone; hPTH; variant; analogue;
KW
KW
     calcium; depletion; fixation; resorption; osteopathy; osteoporosis;
KW
     hypoparathyroidism.
XX
OS
     Synthetic.
XX
FΗ
                     Location/Qualifiers
     Key
FT
     Modified-site
FT
                     /label= Other
                     /note= "Formyl-Lys."
FT
FT
     Modified-site
FT
                     /label= Other
FT
                     /note= "Formyl-Lys."
FT
     Modified-site
                     /note= "in amide form"
FT
XX
PN
     GB2269176-A.
XX
PD
     02-FEB-1994.
XX
ΡF
     12-JUL-1993;
                    93GB-0014384.
XX
PR
     15-JUL-1992;
                    92GB-0015009.
PR
     18-DEC-1992;
                    92GB-0026415.
PR
     23-DEC-1992;
                    92GB-0026859.
PR
     23-DEC-1992;
                    92GB-0026861.
PR
     28-JAN-1993;
                    93GB-0001691.
     28-JAN-1993;
                    93GB-0001692.
PR
PR
     14-APR-1993;
                    93GB-0007673.
PR
     19-APR-1993;
                    93GB-0008033.
XX
PA
     (SANO ) SANDOZ LTD.
PΑ
     (BAUE/) BAUER W.
PΑ
     (SANO ) SANDOZ PATENT GMBH.
PΑ
     (SANO ) SANDOZ-ERFINDUNGEN VERW GES MBH.
XX
PI
     Albert R, Bauer W, Breckenridge R, Cardinaux F;
PΙ
     Gombert F, Gram H, Lewis I, Ramage P, Schneider H;
PΙ
     Waelchli R, Rainer A;
XX
DR
     WPI; 1994-018352/03.
XX
PT
     New active para-thyroid hormone variants - used for treating or
PT
     preventing osteoporosis etc.
XX
PS
     Example 289; Page 47; 92pp; English.
XX
CC
     This peptide is an example of a highly generic formula covering
     parathyroid hormone variants useful for treating or preventing bone
CC
     conditions associated with calcium depletion/resorption, in cases
CC
CC
     where calcium fixation is required (esp. osteoporosis) or to treat
CC
     hypoparathyroidism.
XX
SO
     Sequence
                34 AA;
                           100.0%; Score 28; DB 15; Length 34;
  Query Match
                          100.0%; Pred. No. 5.4e-21;
  Best Local Similarity
```

```
0;
 Matches
           28; Conservative
                                0; Mismatches
                                                   0; Indels
                                                                 0; Gaps
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
QУ
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 30
AAR58228
ID
    AAR58228 standard; peptide; 34 AA.
XX
AC
     AAR58228;
XX
DT
     20-SEP-1994 (first entry)
XX
DE
     [D-Asp30] - hPTH(1-34) - NH2.
XX
     Human parathyroid hormone; hPTH; variant; analogue;
KW
KW
     calcium; depletion; fixation; resorption; osteopathy; osteoporosis;
KW
     hypoparathyroidism.
XX
OS
     Synthetic.
XX
FΗ
                     Location/Qualifiers
     Key
FT
     Misc-difference 30
                     /note= "D-form residue."
FT
     Modified-site
FT
                     /note= "in amide form"
FT
XX
PN
     GB2269176-A.
XX
     02-FEB-1994.
PD
XX
                    93GB-0014384.
PF
     12-JUL-1993;
XX
     15-JUL-1992;
PR
                    92GB-0015009.
PR
     18-DEC-1992;
                    92GB-0026415.
                    92GB-0026859.
PR
     23-DEC-1992;
                    92GB-0026861.
PR
     23-DEC-1992;
                    93GB-0001691.
PR
     28-JAN-1993;
     28-JAN-1993:
                    93GB-0001692.
PR
     14-APR-1993;
                    93GB-0007673.
PR
                    93GB-0008033.
     19-APR-1993;
PR
XX
     (SANO ) SANDOZ LTD.
PA
PΑ
     (BAUE/) BAUER W.
     (SANO ) SANDOZ PATENT GMBH.
PΑ
     (SANO ) SANDOZ-ERFINDUNGEN VERW GES MBH.
PA
XX
ΡI
     Albert R, Bauer W, Breckenridge R, Cardinaux F;
     Gombert F, Gram H, Lewis I, Ramage P, Schneider H;
ΡI
PI
     Waelchli R, Rainer A;
XX
DR
     WPI; 1994-018352/03.
XX
PT
     New active para-thyroid hormone variants - used for treating or
PT
     preventing osteoporosis etc.
```

```
XX
PS
     Example 226; Page 45; 92pp; English.
XX
CC
     This peptide is an example of a highly generic formula covering
     parathyroid hormone variants useful for treating or preventing bone
CC
     conditions associated with calcium depletion/resorption, in cases
CC
     where calcium fixation is required (esp. osteoporosis) or to treat
CC
CC
     hypoparathyroidism.
XX
SO
     Sequence
                34 AA;
                          100.0%; Score 28; DB 15;
                                                       Length 34;
  Query Match
                          100.0%; Pred. No. 5.4e-21;
  Best Local Similarity
                                 0; Mismatches
  Matches
            28; Conservative
                                                    0; Indels
                                                                      Gaps
                                                                               0;
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
QУ
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 31
AAR58232
     AAR58232 standard; peptide; 34 AA.
XX
AC
     AAR58232;
XX
\mathsf{DT}
     20-SEP-1994
                  (first entry)
XX
DE
     [Lys32] - hPTH(1-34) - NH2.
XX
KW
     Human parathyroid hormone; hPTH; variant; analogue;
KW
     calcium; depletion; fixation; resorption; osteopathy; osteoporosis;
KW
     hypoparathyroidism.
XX
OS
     Synthetic.
XX
FΗ
     Key
                     Location/Qualifiers
FT
     Modified-site
FT
                     /note= "in amide form"
XX
PN
     GB2269176-A.
XX
PD
     02-FEB-1994.
XX
PF
     12-JUL-1993;
                    93GB-0014384.
XX
PR
     15-JUL-1992;
                    92GB-0015009.
PR
     18-DEC-1992;
                    92GB-0026415.
PR
                    92GB-0026859.
     23-DEC-1992;
PR
     23-DEC-1992;
                    92GB-0026861.
PR
     28-JAN-1993;
                    93GB-0001691.
PR
     28-JAN-1993;
                    93GB-0001692.
PR
     14-APR-1993;
                    93GB-0007673.
PR
     19-APR-1993;
                    93GB-0008033.
XX
PΑ
     (SANO ) SANDOZ LTD.
PΑ
     (BAUE/) BAUER W.
```

```
(SANO ) SANDOZ PATENT GMBH.
PA
PΑ
     (SANO ) SANDOZ-ERFINDUNGEN VERW GES MBH.
XX
     Albert R, Bauer W, Breckenridge R, Cardinaux F;
PΙ
     Gombert F, Gram H, Lewis I, Ramage P, Schneider H;
PI
     Waelchli R. Rainer A:
PΙ
XX
     WPI; 1994-018352/03.
DR
XX
     New active para-thyroid hormone variants - used for treating or
PT
     preventing osteoporosis etc.
PT
XX
PS
     Example 230; Page 45; 92pp; English.
XX
     This peptide is an example of a highly generic formula covering
CC
     parathyroid hormone variants useful for treating or preventing bone
CC
CC
     conditions associated with calcium depletion/resorption, in cases
     where calcium fixation is required (esp. osteoporosis) or to treat
CC
     hypoparathyroidism.
CC
XX
SQ
     Sequence
               34 AA;
                         100.0%; Score 28; DB 15; Length 34; 100.0%; Pred. No. 5.4e-21;
  Query Match
  Best Local Similarity
  Matches
           28; Conservative 0; Mismatches 0; Indels
                                                                 0: Gaps
                                                                             0;
Οv
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 32
AAR58181
     AAR58181 standard; peptide; 34 AA.
XX
AC
     AAR58181;
XX
DT
     20-SEP-1994 (first entry)
XX
DE
     [Thr33, Ala34]-hPTH(1-34)-NH2.
XX
KW
     Human parathyroid hormone; hPTH; variant; analogue;
KW
     calcium; depletion; fixation; resorption; osteopathy; osteoporosis;
KW
     hypoparathyroidism.
XX
OS
     Synthetic.
XX
FΗ
                     Location/Qualifiers
     Кеу
FT
     Modified-site
FT
                     /note= "in amide form"
XX
PN
     GB2269176-A.
XX
PD
     02-FEB-1994.
ХX
PF
     12-JUL-1993;
                    93GB-0014384.
XX
```

```
PR
    15-JUL-1992;
                   92GB-0015009.
                   92GB-0026415.
PR
    18-DEC-1992;
                   92GB-0026859.
PR
    23-DEC-1992;
    23-DEC-1992;
                   92GB-0026861.
PR
PR
    28-JAN-1993:
                   93GB-0001691.
    28-JAN-1993;
                   93GB-0001692.
PR
    14-APR-1993;
                   93GB-0007673.
PR
PR
    19-APR-1993;
                   93GB-0008033.
XX
PA
     (SANO ) SANDOZ LTD.
PΑ
     (BAUE/) BAUER W.
PΑ
     (SANO ) SANDOZ PATENT GMBH.
PA
     (SANO ) SANDOZ-ERFINDUNGEN VERW GES MBH.
XX
PI
    Albert R, Bauer W, Breckenridge R, Cardinaux F;
     Gombert F, Gram H, Lewis I, Ramage P, Schneider H;
ΡI
PΙ
    Waelchli R, Rainer A;
XX
DR
    WPI; 1994-018352/03.
XX
    New active para-thyroid hormone variants - used for treating or
PT
     preventing osteoporosis etc.
PT
ХX
PS
     Example 179; Page 43; 92pp; English.
XX
     This peptide is an example of a highly generic formula covering
CC
CC
     parathyroid hormone variants useful for treating or preventing bone
CC
     conditions associated with calcium depletion/resorption, in cases
     where calcium fixation is required (esp. osteoporosis) or to treat
CC
CC
     hypoparathyroidism.
XX
SQ
     Sequence
                34 AA;
  Query Match
                          100.0%; Score 28; DB 15; Length 34;
                          100.0%; Pred. No. 5.4e-21;
  Best Local Similarity
            28; Conservative 0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
                                                                             0;
  Matches
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
QУ
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 33
AAR58016
     AAR58016 standard; peptide; 34 AA.
ID
XX
AC
     AAR58016;
XX
DT
     20-SEP-1994 (first entry)
XX
     N-alpha-Isopropyl-hPTH(1-34)-NH2 parathyroid hormone variant.
DΕ
XX
     Human parathyroid hormone; hPTH; variant; analogue;
KW
     calcium; depletion; fixation; resorption; osteopathy; osteoporosis;
KW
     hypoparathyroidism.
KW
XX
OS
     Synthetic.
```

```
XX
FΗ
     Key
                     Location/Qualifiers
FT
     Modified-site
FT
                     /note= "N-alpha-isopropyl-Ser"
FT
     Modified-site
FT
                     /note= "in amide form"
XX
     GB2269176-A.
PN
XX
     02-FEB-1994.
PD
XX
PF
     12-JUL-1993;
                    93GB-0014384.
XX
PR
     15-JUL-1992;
                    92GB-0015009.
PR
     18-DEC-1992;
                    92GB-0026415.
PR
     23-DEC-1992;
                    92GB-0026859.
     23-DEC-1992;
PR
                    92GB-0026861.
PR
     28-JAN-1993;
                    93GB-0001691.
PR
     28-JAN-1993;
                    93GB-0001692.
PR
     14-APR-1993;
                    93GB-0007673.
PR
     19-APR-1993;
                    93GB-0008033.
XX
PΑ
     (SANO ) SANDOZ LTD.
PA
     (BAUE/) BAUER W.
     (SANO ) SANDOZ PATENT GMBH.
PA
     (SANO ) SANDOZ-ERFINDUNGEN VERW GES MBH.
PA
XX
PΙ
     Albert R, Bauer W, Breckenridge R, Cardinaux F;
PΙ
     Gombert F, Gram H, Lewis I, Ramage P, Schneider H;
PΙ
     Waelchli R, Rainer A;
XX
DR
     WPI; 1994-018352/03.
XX
PT
     New active para-thyroid hormone variants - used for treating or
PT
     preventing osteoporosis etc.
XX
PS
     Example 1; Page 30; 92pp; English.
XX
CC
     This peptide is an example of a highly generic formula covering
CC
     parathyroid hormone variants useful for treating or preventing bone
CC
     conditions associated with calcium depletion/resorption, in cases
CC
     where calcium fixation is required (esp. osteoporosis) or to treat
CC
     hypoparathyroidism.
XX
SQ
     Sequence
                34 AA;
  Query Match
                          100.0%; Score 28; DB 15; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 5.4e-21;
  Matches
            28; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
                                                                             0;
Qy
            1 SVSEIOLMHNLGKHLNSMERVEWLRKKL 28
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
```

```
ID
     AAR58017 standard; peptide; 34 AA.
XX
AC
     AAR58017;
XX
DT
     20-SEP-1994 (first entry)
XX
DE
     [Lys(N-epsilon-Isopropyl)26,27]-human parathyroid hormone(1-34)-NH2.
XX
KW
     Human parathyroid hormone; hPTH; variant; analogue;
     calcium; depletion; fixation; resorption; osteopathy; osteoporosis;
KW
KW
     hypoparathyroidism.
XX
     Synthetic.
OS
XX
FΗ
     Key
                     Location/Qualifiers
     Modified-site
FT
FT
                     /note= "N-epsilon-Isopropyl-Lys"
FT
     Modified-site
FT
                     /note= "N-epsilon-Isopropyl-Lys"
FT
     Modified-site
FT
                     /note= "in amide form"
XX
PN
     GB2269176-A.
XX
PD
     02-FEB-1994.
XX
PF
                    93GB-0014384.
     12-JUL-1993;
XX
                    92GB-0015009.
PR
     15-JUL-1992;
                    92GB-0026415.
     18-DEC-1992;
PR
PR
     23-DEC-1992;
                    92GB-0026859.
PR
     23-DEC-1992;
                    92GB-0026861.
PR
     28-JAN-1993;
                    93GB-0001691.
     28-JAN-1993;
PR
                    93GB-0001692.
PR
     14-APR-1993;
                    93GB-0007673.
PR
     19-APR-1993;
                    93GB-0008033.
XX
PΑ
     (SANO ) SANDOZ LTD.
     (BAUE/) BAUER W.
PA
PΑ
     (SANO ) SANDOZ PATENT GMBH.
PA
     (SANO ) SANDOZ-ERFINDUNGEN VERW GES MBH.
XX
PI
     Albert R, Bauer W, Breckenridge R, Cardinaux F;
     Gombert F, Gram H, Lewis I, Ramage P, Schneider H;
PI
PΙ
     Waelchli R, Rainer A;
XX
     WPI; 1994-018352/03.
DR
XX
PT
     New active para-thyroid hormone variants - used for treating or
PT
     preventing osteoporosis etc.
XX
PS
     Example 2; Page 32; 92pp; English.
XX
     This peptide is an example of a highly generic formula covering
CC
CC
     parathyroid hormone variants useful for treating or preventing bone
CC
     conditions associated with calcium depletion/resorption, in cases
CC
     where calcium fixation is required (esp. osteoporosis) or to treat
```

```
CC
    hypoparathyroidism.
XX
SQ
     Sequence
                34 AA;
                          100.0%; Score 28; DB 15; Length 34;
  Query Match
                          100.0%; Pred. No. 5.4e-21;
  Best Local Similarity
           28; Conservative
                               0; Mismatches
                                                 0; Indels
                                                                 0; Gaps
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 35
AAR55724
ID
    AAR55724 standard; peptide; 34 AA.
XX
AC
    AAR55724;
XX
DT
     25-MAR-2003
                  (updated)
DT
     16-NOV-1994
                  (first entry)
XX
DE
     Parathormone N-terminal sequence.
XX
KW
     Parathormone; parathyroid hormone; fatty acyl-peptide; conjugate;
KW
     antiproliferative; tumor; psoriasis; docosahexaenoic acid; DHA;
KW
     eicosapentaenoic acid; EPA; antitumor.
XX
OS
    Synthetic.
XX
PN
    WO9412530-A1.
XX
PD
     09-JUN-1994.
XX
PF
     29-NOV-1993;
                   93WO-HU00065.
XX
PR
    30-NOV-1992;
                   92US-0984293.
XX
PΑ
     (BIOS-) BIOSIGNAL KUTATO FEJLESZTO KFT.
PΑ
     (SYNT-) SYNTHETIC PEPTIDES INC.
XX
ΡI
     Balogh A, Cachia PJ, Hodges RS, Horvath A,
PΙ
    Szederkenyi F, Vadasz Z;
XX
DR
    WPI; 1994-200194/24.
XX
PT
    New fatty acyl-peptide conjugates for inhibiting cell
PT
    proliferation - more active than free peptide, partic. for
PT
    treating tumours, virus-infected cells, psoriasis, etc.
XX
PS
    Disclosure; Fig. 1; 45pp; English.
XX
CC
    The peptides given in AAR55718-48 can each be conjugated through an
CC
    amide linkage with a polyunsaturated fatty acid moiety, such as
CC
    docosahexaenoic acid (DHA) or eicosapentanoic acid, to improve
    antiproliferative activity. The parathormone N-terminal fragment
CC
CC
     inhibits osteoblast proliferation.
```

```
CC
     (Updated on 25-MAR-2003 to correct PN field.)
XX
SQ
     Sequence
               34 AA;
  Query Match
                         100.0%; Score 28; DB 15; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 5.4e-21;
           28; Conservative 0; Mismatches
                                                 0; Indels
                                                                0;
                                                                    Gaps
                                                                            0;
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 36
AAR74521
ΙD
     AAR74521 standard; Peptide; 34 AA.
XX
AC
    AAR74521;
XX
DT
     25-MAR-2003
                  (updated)
DT
     04-DEC-1995 (first entry)
XX
DΕ
     Human parathyroid hormone (1-34).
XX
KW
     Analoque; truncated human parathyroid hormone; PTH; hPTH; substitution;
KW
     osteoporosis; hypercalcaemia; hyperparathroidism;
KW
     metabolic bone disease; human; veterinary medicine;
     iontophoretic transdermal transport; recombinant E.coli.
KW
XX
OS
     Homo sapiens.
XX
PN
     WO9511988-A1.
XX
PD
     04-MAY-1995.
XX
PF
     25-OCT-1994;
                   94WO-US12205.
XX
PR
     25-OCT-1993;
                   93US-0142551.
XX
PΑ
     (AFFY-) AFFYMAX TECHNOLOGIES NV.
XX
PΙ
     Oldenburg KR, Selick HE;
XX
DR
     WPI; 1995-178880/23.
XX
PΤ
     New active analogues of parathyroid hormone - with increased
PT
     activity, stability in serum etc., esp. for treating
PT
     osteoporosis, also related DNA and vectors
XX
PS
     Disclosure; Page 1; 109pp; English.
XX
CC
     This sequence represents residues 1-34 of human parathyroid hormone
CC
     (RPTH). This sequence was used in the production of analogues of the
     truncated form of PTH. These analogues have increased activity and
CC
CC
     longer serum half life than native PTH due to eg. substitution of Met
CC
     residues with Leu residues and replacing the carboxy Phe with Tyr. The
     carboxy terminal may also be modified by the addition of a homoserine
CC
```

```
CC
     residue or analogue, or by the addition of residues 35-84 of wild type
CC
     PTH (see AAR74410). These PTH analogues may be used in the treatment of
     osteoporosis or hypercalcaemia, hyperparathroidism or other metabolic
CC
     bone diseases in human or veterinary medicine. These peptides may also
CC
    have increased iontophoretic transdermal transport compared to wild type
CC
CC
     PTH and can be produced in high yield in recombinant E.coli.
CC
     (Updated on 25-MAR-2003 to correct PN field.)
XX
SO
     Sequence
               34 AA;
  Query Match
                         100.0%; Score 28; DB 16;
                                                     Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 5.4e-21;
                                                  0; Indels
  Matches
          28; Conservative
                                0; Mismatches
                                                                0; Gaps
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              1 SVSEIOLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 37
AAW99449
TD
    AAW99449 standard; peptide; 34 AA.
XX
AC
    AAW99449;
XX
DT
     08-JUN-1999
                 (first entry)
XX
DE
     Human parathyroid hormone aal-34.
XX
KW
     Parathyroid hormone; PTH; parathormone; premature birth; pregnancy;
KW
     spontaneous abortion; uterine contraction; human.
XX
OS
     Homo sapiens.
XX
PN
     US5880093-A.
XX
PD
     09-MAR-1999.
XX
PF
     05-APR-1995;
                   95US-0411726.
XX
PR
     28-SEP-1992;
                    92IT-MI02331.
XX
PΑ
     (BAGN/) BAGNOLI F.
XX
     Bagnoli F;
PΙ
XX
DR
     WPI; 1996-162392/17.
XX
PT
     Use of composition containing parathormone or fragments - for
     preventing premature birth or spontaneous abortion or for treating
PT
PT
     unwanted uterine contractions
XX
PS
     Disclosure; Column 7-8; 11pp; English.
XX
CC
     Peptides AAW99448-W99452 represent all or part of the parathyroid
CC
     hormone (PTH; parathormone) sequence or related peptide. The peptides
CC
     are used for preventing premature birth, spontaneous abortion or unwanted
```

```
uterine contractions in a pregnant human patient.
CC
CC
     (Note: this patent is the first Major Country Equivalent to Italian
CC
     Patent IT1255388).
XX
SQ
    Sequence
               34 AA;
                          100.0%; Score 28; DB 17; Length 34;
 Ouery Match
  Best Local Similarity
                         100.0%; Pred. No. 5.4e-21;
 Matches
           28; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                0; Gaps
                                                                            0;
            1 SVSEIOLMHNLGKHLNSMERVEWLRKKL 28
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 38
AAR99978
    AAR99978 standard; peptide; 34 AA.
ID
XX
AC
    AAR99978;
XX
DT
    30-APR-1997 (first entry)
XX
DE
    Human parathyroid hormone peptide fragment (1-34).
XX
KW
     cyclic parathyroid hormone fragment; calcium-regulating activity;
KW
     osteoporosis; inhibit proliferation; epidermal cell; psoriasis;
KW
     improved half life; calcium retention; bone.
XX
OS
     Synthetic.
XX
PN
    DE19508672-A1.
XX
PD
    12-SEP-1996.
XX
PF
    10-MAR-1995;
                    95DE-1008672.
XX
PR
    10-MAR-1995;
                    95DE-1008672.
XX
PΑ
     (BOEF ) BOEHRINGER MANNHEIM GMBH.
XX
PΙ
    Dony C, Esswein A, Hoffmann E, Honold K, Schaefer W;
XX
DR
    WPI; 1996-413519/42.
XX
PT
     Cyclic parathyroid hormone fragments with lactam bridge - have good
PT
     in vivo half life and are useful for treating osteoporosis and
PT
    preventing epidermal cell proliferation
XX
PS
    Disclosure; Page 9; 14pp; German.
XX
CC
    New cyclic parathyroid hormone fragments (CPTH) have the amino acid
CC
    sequence of h, b, p, r or cPTH(1-34), opt. extended by up to 4 amino
CC
     acids (aa) at the C-terminus and opt. shortened by up to 3 amino acids at
CC
     the N-terminus, and are cyclised between positions 13 and 17. One of
CC
     these positions is occupied by L- or D- Orn or Lys, and the other by L-
    or D- Glu or Asp. CPTH have calcium-regulating activity (esp. for
CC
```

```
CC
     treating osteoporosis and inhibit proliferation of epidermal cells (for
CC
     treating psoriasis). The CPTH have an improved half life in vivo than
CC
     known PTH fragments, increased mitogenicity and DNA-synthesising
     capacity, reduced catabolic, calcium-mobilising activity and increased
CC
     activity for calcium retention and incorporation into bone. The
CC
CC
     present sequence is that of human PTH peptide fragment (1-34).
XX
SO
     Sequence 34 AA;
  Query Match
                         100.0%; Score 28; DB 17; Length 34;
                         100.0%; Pred. No. 5.4e-21;
  Best Local Similarity
                                                                0; Gaps
  Matches
          28; Conservative 0; Mismatches
                                                 0; Indels
                                                                            0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 39
AAR98951
    AAR98951 standard; peptide; 34 AA.
XX
AC
    AAR98951;
XX
DT
     15-JAN-1997 (first entry)
XX
DE
     Target peptide (PTH(1-34)) used in fusion protein construct.
XX
KW
     Fusion protein construct; isolation; purification;
     growth hormone releasing factor; glucagon-like peptide 1;
KW
KW
     parathyroid hormone; inclusion body; carbonic anhydrase.
XX
OS
     Synthetic.
XX
PN
     WO9617942-A1.
XX
PD
     13-JUN-1996.
XX
PF
     07-DEC-1995;
                   95WO-US15800.
XX
PR
     07-DEC-1994;
                   94US-0350530.
XX
PΑ
     (BION-) BIONEBRASKA INC.
XX
PΙ
     De LA MOTTE RS, Henriksen DB, Holmquist B, Manning SD;
ΡI
     Partridge BE, Stout JS, Wagner FW;
XX
DR
     WPI; 1996-287186/29.
XX
PT
     Isolation and purificn of peptide(s) from fusion protein constructs
PT
     - which include a carbonic anhydrase and a variable fused
PT
     polypeptide
XX
PS
     Claim 18; Page 48; 67pp; English.
XX
CC
     A new method for the isolation and/or purification of a recombinant
CC
     peptide employs a fusion protein construct (FPC) comprising a
```

```
CC
     carbonic anhydrase and a variable fused polypeptide containing a
CC
     target peptide. The method comprises precipitating either the FPC or
CC
     a fragment of the FPC including the carbonic anhydrase. An
CC
     alternative method of producing the peptide comprises expressing the
     FPC as part of an inclusion body. The target peptides of the FPC are
CC
     derived from growth hormone releasing factor (GRF), glucagon-like
CC
CC
     peptide 1 (GLP1) or parathyroid hormone (PTH). This sequence
CC
     corresponds to amino acids 1-34 of PTH.
XX
SO
     Sequence
                34 AA;
  Query Match
                          100.0%; Score 28; DB 17; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 5.4e-21;
            28; Conservative
                               0; Mismatches
                                                  0; Indels
                                                                0;
                                                                    Gaps
                                                                            0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 40
AAR98966
     AAR98966 standard; Peptide; 34 AA.
XX
AC
     AAR98966;
XX
DТ
     02-DEC-1996 (first entry)
XX
DE
     PTH(1-34).
XX
KW
     PTH; parathyroid hormone; parathormone; C-amide;
KW
     C-amidated peptide; alpha-carboxamide; recombinant protein;
KW
     fusion protein; transpeptidation.
XX
OS
     Not specified.
XX
PN
     WO9617941-A2.
XX
PD
     13-JUN-1996.
XX
PF
     07-DEC-1995;
                   95WO-US15799.
XX
PR
     07-DEC-1994;
                    94US-0350528.
XX
PΑ
     (BION-) BIONEBRASKA INC.
XX
PΙ
     Heriksen DB, Holmquist B, Patridge BE, Stout JS;
PΙ
     Wagner FW;
XX
DR
     WPI; 1996-287185/29.
XX
PT
     Production of C-terminal alpha-carboxamidated peptide(s) - by
PT
     cleavage and transpeptidation of recombinant multicopy peptide(s) or
PΤ
     fusion constructs
XX
PS
     Claim 12; Page 70; 93pp; English.
XX
```

```
CC
    GLP1(7-35), GRF(1-44) and PTH(1-34) peptides (AAR98964-66) can be
CC
    produced as C-terminal amidated peptides utilising novel recombinant
CC
    protein constructs (see also AAR98967-72) in which single or multiple
CC
    copies of the peptide are linked by intraconnecting peptides that
CC
    permit the construct to be selectively reacted to produce product
    peptides having a C-terminal alpha-carboxamide. Expression cassettes
CC
CC
    (see also AAT34865-70) can be incorporated into vectors allowing prodn.
CC
    of the recombinant proteins in transformed E. coli host cells.
XX
SQ
    Sequence
               34 AA;
 Query Match
                         100.0%; Score 28; DB 17; Length 34;
 Best Local Similarity
                         100.0%; Pred. No. 5.4e-21;
           28; Conservative
                              0; Mismatches
                                                0; Indels
                                                              0; Gaps
                                                                          0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
```

Search completed: January 14, 2004, 10:34:29

Job time : 28.7788 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: January 14, 2004, 10:28:59; Search time 9.50779 Seconds

(without alignments)

124.604 Million cell updates/sec

Title:

US-09-843-221A-168

Perfect score: 28

Sequence:

1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched:

328717 seqs, 42310858 residues

Word size :

0

Total number of hits satisfying chosen parameters:

25778

Minimum DB seq length: 28 Maximum DB seq length: 40

Post-processing: Listing first 1000 summaries

Database :

Issued Patents AA:*

1: /cgn2 6/ptodata/1/iaa/5A COMB.pep:* 2: /cgn2 6/ptodata/1/iaa/5B COMB.pep:*

3: /cgn2_6/ptodata/1/iaa/6A_COMB.pep:*

4: /cgn2 6/ptodata/1/iaa/6B COMB.pep:*

5: /cgn2 6/ptodata/1/iaa/PCTUS COMB.pep:*

6: /cgn2 6/ptodata/1/iaa/backfiles1.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Caoro	Query	Longth	DD	TD.	Description
score	Match	Length		10	Description
28	100.0	28	4	US-09-448-867-12	Sequence 12, Appl
28	100.0	30	1	US-08-262-495C-5	Sequence 5, Appli
28	100.0	31	1	US-08-262-495C-3	Sequence 3, Appli
28	100.0	31	2	US-08-691-647C-1	Sequence 1, Appli
28	100.0	31	2	US-08-691-647C-6	Sequence 6, Appli
28	100.0	31	3	US-08-904-760B-1	Sequence 1, Appli
28	100.0	31	3	US-08-904-760B-6	Sequence 6, Appli
28	100.0	31	3	US-08-904-760B-14	Sequence 14, Appl
28	100.0	31	3	US-08-904-760B-32	Sequence 32, Appl
28	100.0	31	4	US-09-406-813-2	Sequence 2, Appli
28	100.0	31	4	US-09-536-785A-1	Sequence 1, Appli
	28 28 28 28 28 28 28 28 28	Score Match 28 100.0 28 100.0 28 100.0 28 100.0 28 100.0 28 100.0 28 100.0 28 100.0 28 100.0 28 100.0	Score Match Length 28 100.0 28 28 100.0 30 28 100.0 31 28 100.0 31 28 100.0 31 28 100.0 31 28 100.0 31 28 100.0 31 28 100.0 31 28 100.0 31 28 100.0 31 28 100.0 31	Score Match Length DB 28 100.0 28 4 28 100.0 30 1 28 100.0 31 1 28 100.0 31 2 28 100.0 31 2 28 100.0 31 3 28 100.0 31 3 28 100.0 31 3 28 100.0 31 3 28 100.0 31 3	Score Match Length DB ID 28 100.0 28 4 US-09-448-867-12 28 100.0 30 1 US-08-262-495C-5 28 100.0 31 1 US-08-262-495C-3 28 100.0 31 2 US-08-691-647C-1 28 100.0 31 2 US-08-691-647C-6 28 100.0 31 3 US-08-904-760B-1 28 100.0 31 3 US-08-904-760B-6 28 100.0 31 3 US-08-904-760B-14 28 100.0 31 3 US-08-904-760B-14 28 100.0 31 3 US-08-904-760B-32 28 100.0 31 4 US-09-406-813-2

```
12
        28
           100.0
                       31
                                                          Sequence 6, Appli
                              US-09-536-785A-6
13
        28
            100.0
                       31
                           4
                              US-09-536-785A-14
                                                          Sequence 14, Appl
14
        28
            100.0
                       31
                           4
                              US-09-536-785A-32
                                                          Sequence 32, Appl
15
        28
            100.0
                       33
                          4
                              US-09-447-800-9
                                                          Sequence 9, Appli
16
        28
            100.0
                       34
                          1
                              US-07-765-373-1
                                                          Sequence 1, Appli
17
        28
            100.0
                       34
                              US-08-033-099-1
                                                          Sequence 1, Appli
           100.0
18
        28
                       34
                           1
                              US-08-262-495C-1
                                                          Sequence 1, Appli
19
        28
           100.0
                       34
                              US-07-915-247A-1
                                                          Sequence 1, Appli
                           1
20
        28
           100.0
                       34
                           1
                              US-08-443-863-1
                                                          Sequence 1, Appli
21
        28
           100.0
                       34
                           1
                              US-08-448-070-1
                                                          Sequence 1, Appli
22
        28 100.0
                       34
                           1
                              US-08-488-105-7
                                                          Sequence 7, Appli
23
        28 100.0
                       34
                          1
                                                          Sequence 6, Appli
                              US-08-468-275-6
        28 100.0
                       34
                           1
                                                          Sequence 1, Appli
24
                              US-08-449-500-1
25
        28
           100.0
                       34
                          1
                              US-08-449-317A-1
                                                          Sequence 1, Appli
26
        28
           100.0
                      34
                           2
                              US-08-142-551B-2
                                                          Sequence 2, Appli
           100.0
27
        28
                       34
                           2
                                                          Sequence 1, Appli
                              US-08-477-022-1
                           2
                                                          Sequence 1, Appli
28
        28
            100.0
                       34
                              US-08-449-447-1
29
        28
            100.0
                       34
                              US-08-835-231-13
                                                          Sequence 13, Appl
30
        28
           100.0
                       34
                           2
                              US-08-184-328-1
                                                          Sequence 1, Appli
31
        28
           100.0
                       34
                           2
                              US-08-411-726-2
                                                          Sequence 2, Appli
32
        28
           100.0
                       34
                              US-08-691-647C-5
                                                          Sequence 5, Appli
33
        28
           100.0
                       34
                           2
                              US-08-521-097-1
                                                          Sequence 1, Appli
34
           100.0
                          3
        28
                       34
                              US-09-044-536A-1
                                                          Sequence 1, Appli
35
                           3
        28
           100.0
                       34
                              US-08-904-760B-22
                                                          Sequence 22, Appl
36
                           3
        28
           100.0
                       34
                              US-08-903-497A-1
                                                          Sequence 1, Appli
37
        28
           100.0
                       34
                           3
                              US-09-108-661-13
                                                          Sequence 13, Appl
38
        28 100.0
                       34
                           4
                              US-09-007-466-6
                                                          Sequence 6, Appli
39
        28
           100.0
                       34
                           4
                              US-09-406-813-1
                                                          Sequence 1, Appli
40
        28
           100.0
                       34
                           4
                              US-08-952-980B-6
                                                          Sequence 6, Appli
41
                                                          Sequence 1, Appli
        28
            100.0
                       34
                           4
                              US-09-635-076-1
42
        28
            100.0
                       34
                           4
                              US-09-228-990-1
                                                          Sequence 1, Appli
43
        28
            100.0
                       34
                           4
                              US-09-447-800-8
                                                          Sequence 8, Appli
44
        28
            100.0
                       34
                           4
                              US-09-536-785A-22
                                                          Sequence 22, Appl
45
        28
            100.0
                       34
                           4
                              US-09-442-989-26
                                                          Sequence 26, Appl
46
        28
            100.0
                       34
                           5
                              PCT-US95-15800-22
                                                          Sequence 22, Appl
47
            100.0
        28
                       35
                           1
                              US-08-256-363-3
                                                          Sequence 3, Appli
48
        28
            100.0
                       36
                           1
                              US-08-256-363-4
                                                          Sequence 4, Appli
49
        28
           100.0
                       37
                           1
                              US-08-440-117-1
                                                          Sequence 1, Appli
50
        28
            100.0
                       37
                           3
                              US-09-068-738A-16
                                                          Sequence 16, Appl
51
        28
            100.0
                       38
                           1
                              US-08-112-024-1
                                                          Sequence 1, Appli
        28
                       38
52
            100.0
                           1
                              US-08-232-849-1
                                                          Sequence 1, Appli
53
        28
           100.0
                       38
                           2
                              US-08-625-586-1
                                                          Sequence 1, Appli
54
        28
            100.0
                       38
                           3
                              US-09-128-401-1
                                                          Sequence 1, Appli
55
        27
             96.4
                       28
                           4
                              US-09-448-867-8
                                                          Sequence 8, Appli
56
        27
             96.4
                       28
                           4
                              US-09-448-867-10
                                                          Sequence 10, Appl
                                                          Sequence 3, Appli
57
        27
             96.4
                       33
                           4
                              US-09-447-800-3
58
        27
             96.4
                       33
                           4
                              US-09-447-800-6
                                                          Sequence 6, Appli
59
        27
             96.4
                       34
                           4
                              US-09-447-800-1
                                                          Sequence 1, Appli
60
        27
             96.4
                       34
                           4
                              US-09-447-800-2
                                                          Sequence 2, Appli
61
        27
             96.4
                       34
                              US-09-447-800-5
                                                          Sequence 5, Appli
62
        27
             96.4
                       36
                           1
                              US-08-112-024-2
                                                          Sequence 2, Appli
63
        26
             92.9
                       28
                           4
                              US-09-406-813-3
                                                          Sequence 3, Appli
64
        26
             92.9
                       29
                           4
                              US-09-406-813-4
                                                          Sequence 4, Appli
65
        26
             92.9
                       30
                           1
                              US-08-262-495C-6
                                                          Sequence 6, Appli
66
        26
             92.9
                       30
                           3
                              US-08-904-760B-7
                                                          Sequence 7, Appli
67
        26
             92.9
                       30
                           4
                              US-09-536-785A-7
                                                          Sequence 7, Appli
68
        26
             92.9
                       31
                          1
                              US-08-262-495C-4
                                                          Sequence 4, Appli
```

```
26
                                                            Sequence 2, Appli
69
              92.9
                        31
                               US-08-691-647C-2
                                                            Sequence 3, Appli
70
         26
              92.9
                        31
                            2
                               US-08-691-647C-3
                                                            Sequence 4, Appli
71
         26
              92.9
                        31
                            2
                               US-08-691-647C-4
72
         26
              92.9
                        31
                            3
                                                            Sequence 2, Appli
                                US-08-904-760B-2
                        31
                                                            Sequence 3, Appli
73
         26
              92.9
                            3
                                US-08-904-760B-3
         26
              92.9
                        31
                                                            Sequence 4, Appli
74
                                US-08-904-760B-4
75
         26
              92.9
                        31
                                US-08-904-760B-5
                                                            Sequence 5, Appli
                            3
76
              92.9
                        31 3
                                                            Sequence 8, Appli
         26
                                US-08-904-760B-8
                                                            Sequence 11, Appl
 77
         26
              92.9
                        31
                            3
                                US-08-904-760B-11
              92.9
                        31
                                                            Sequence 12, Appl
78
         26
                            3
                                US-08-904-760B-12
79
         26
              92.9
                        31
                            3
                                US-08-904-760B-15
                                                            Sequence 15, Appl
                        31
                            3
80
         26
              92.9
                                US-08-904-760B-16
                                                             Sequence 16, Appl
                                US-08-904-760B-17
                                                             Sequence 17, Appl
81
         26
              92.9
                        31
                            3
82
         26
              92.9
                        31
                            4
                                US-09-536-785A-2
                                                            Sequence 2, Appli
         26
              92.9
                        31
                            4
                                US-09-536-785A-3
                                                            Sequence 3, Appli
 83
         26
                        31
                                                            Sequence 4, Appli
 84
              92.9
                            4
                                US-09-536-785A-4
 85
         26
              92.9
                        31
                            4
                                                             Sequence 5, Appli
                                US-09-536-785A-5
 86
         26
              92.9
                        31
                            4
                                US-09-536-785A-8
                                                             Sequence 8, Appli
         26
              92.9
                        31
                            4
                                                             Sequence 11, Appl
 87
                                US-09-536-785A-11
                                                             Sequence 12, Appl
 88
         26
              92.9
                        31
                                US-09-536-785A-12
                        31
                                                             Sequence 15, Appl
 89
         26
              92.9
                                US-09-536-785A-15
 90
                        31
                                US-09-536-785A-16
                                                             Sequence 16, Appl
         26
              92.9
                            4
 91
         26
              92.9
                        31
                            4
                                US-09-536-785A-17
                                                             Sequence 17, Appl
 92
         26
              92.9
                        33
                            1
                                US-08-256-363-1
                                                             Sequence 1, Appli
 93
         26
              92.9
                        34
                            1
                                US-08-262-495C-2
                                                             Sequence 2, Appli
                                                             Sequence 2, Appli
 94
         26
              92.9
                        34
                            1
                                US-08-256-363-2
 95
         26
              92.9
                        34
                            3
                                US-08-904-760B-9
                                                             Sequence 9, Appli
 96
         26
              92.9
                        34
                            3
                                US-08-904-760B-10
                                                             Sequence 10, Appl
 97
         26
              92.9
                        34
                            4
                                US-09-536-785A-9
                                                             Sequence 9, Appli
 98
         26
              92.9
                        34
                            4
                                US-09-536-785A-10
                                                             Sequence 10, Appl
 99
         25
              89.3
                        31
                            3
                                US-08-904-760B-21
                                                             Sequence 21, Appl
                                                             Sequence 21, Appl
100
         25
              89.3
                        31
                            4
                                US-09-536-785A-21
101
         25
              89.3
                        34
                            4
                                US-09-449-632-24
                                                             Sequence 24, Appl
102
         24
              85.7
                        34
                            1
                                US-07-773-098-5
                                                             Sequence 5, Appli
103
         24
              85.7
                        34
                            1
                                US-07-773-098-6
                                                             Sequence 6, Appli
              78.6
104
         22
                        38
                            5
                                PCT-US95-15800-29
                                                             Sequence 29, Appl
105
         21
               75.0
                        31
                            3
                                US-08-904-760B-18
                                                             Sequence 18, Appl
106
         21
               75.0
                        31
                            3
                                US-08-904-760B-19
                                                             Sequence 19, Appl
                                                             Sequence 20, Appl
107
         21
               75.0
                        31
                            3
                                US-08-904-760B-20
                                                             Sequence 18, Appl
108
         21
               75.0
                        31
                            4
                                US-09-536-785A-18
109
         21
               75.0
                        31
                            4
                                                             Sequence 19, Appl
                                US-09-536-785A-19
110
         21
               75.0
                        31
                            4
                                US-09-536-785A-20
                                                             Sequence 20, Appl
111
         20
               71.4
                        34
                            4
                                US-08-952-980B-9
                                                             Sequence 9, Appli
112
         18
              64.3
                        28
                            4
                                US-09-448-867-6
                                                             Sequence 6, Appli
         18
              64.3
                        34
                            3
                                                             Sequence 9, Appli
113
                                US-09-044-536A-9
114
         18
              64.3
                        34
                             3
                                US-09-044-536A-10
                                                             Sequence 10, Appl
115
         18
              64.3
                        34
                            3
                                US-09-044-536A-13
                                                             Sequence 13, Appl
         18
              64.3
                        34
                                                             Sequence 14, Appl
116
                            3
                                US-09-044-536A-14
117
         18
               64.3
                        34
                            3
                                US-09-044-536A-15
                                                             Sequence 15, Appl
118
         17
               60.7
                        28
                            4
                                US-09-448-867-1
                                                             Sequence 1, Appli
         17
                        28
119
              60.7
                            4
                                US-09-448-867-2
                                                             Sequence 2, Appli
120
         17
              60.7
                        28
                            4
                                US-09-448-867-4
                                                             Sequence 4, Appli
121
         17
              60.7
                        34
                            3
                                US-09-044-536A-8
                                                             Sequence 8, Appli
122
         17
              60.7
                        34
                            3
                                US-09-044-536A-11
                                                             Sequence 11, Appl
123
         17
              60.7
                        34
                            3
                                US-09-044-536A-12
                                                             Sequence 12, Appl
124
         16
                        28
                            4
                                US-09-406-813-6
                                                             Sequence 6, Appli
               57.1
125
         16
               57.1
                        31
                            4
                                US-09-406-813-5
                                                             Sequence 5, Appli
```

```
126
         16
               57.1
                        34
                             1
                                US-08-488-105-1
                                                             Sequence 1, Appli
127
               57.1
         16
                        34
                            1
                                US-08-488-105-13
                                                             Sequence 13, Appl
128
         15
               53.6
                        34
                             1
                                US-07-915-247A-3
                                                             Sequence 3, Appli
129
         15
               53.6
                        34
                             1
                                US-08-443-863-3
                                                             Sequence 3, Appli
130
         15
               53.6
                        34
                             1
                                US-08-448-070-3
                                                             Sequence 3, Appli
         15
               53.6
131
                        34
                             1
                                US-08-449-500-3
                                                             Sequence 3, Appli
         15
132
               53.6
                        34
                             1
                                US-08-449-317A-3
                                                             Sequence 3, Appli
133
         15
               53.6
                        34
                             2
                                US-08-477-022-3
                                                             Sequence 3, Appli
               53.6
134
         15
                        34
                             2
                                US-08-449-447-3
                                                             Sequence 3, Appli
135
         15
               53.6
                        34
                             2
                                US-08-184-328-3
                                                             Sequence 3, Appli
136
         15
               53.6
                         34
                             2
                                US-08-521-097-3
                                                             Sequence 3, Appli
137
         15
               53.6
                        34
                             3
                                US-09-044-536A-26
                                                             Sequence 26, Appl
         15
138
               53.6
                        34
                             3
                                US-09-044-536A-29
                                                             Sequence 29, Appl
139
               50.0
         14
                        34
                             1
                                US-08-488-105-3
                                                             Sequence 3, Appli
140
               50.0
         14
                        34
                             1
                                US-08-488-105-9
                                                             Sequence 9, Appli
                        34
141
         14
               50.0
                             1
                                US-08-488-105-15
                                                             Sequence 15, Appl
142
         14
               50.0
                        34
                             3
                                US-09-044-536A-25
                                                             Sequence 25, Appl
143
         14
               50.0
                        34
                             3
                                US-08-903-497A-3
                                                             Sequence 3, Appli
144
         14
               50.0
                        34
                             3
                                US-08-903-497A-7
                                                             Sequence 7, Appli
145
         14
               50.0
                        34
                             4
                                US-09-635-076-3
                                                             Sequence 3, Appli
146
         14
               50.0
                        34
                             4
                                US-09-635-076-7
                                                             Sequence 7, Appli
147
         13
               46.4
                        30
                             3
                                US-08-904-760B-33
                                                             Sequence 33, Appl
148
         13
               46.4
                        30
                             3
                                US-08-904-760B-34
                                                             Sequence 34, Appl
149
         13
               46.4
                        30
                            3
                                US-08-904-760B-35
                                                             Sequence 35, Appl
150
                                                             Sequence 33, Appl
         13
               46.4
                        30
                             4
                                US-09-536-785A-33
151
         13
                        30
               46.4
                             4
                                US-09-536-785A-34
                                                             Sequence 34, Appl
                        30
152
         13
               46.4
                            4
                                US-09-536-785A-35
                                                             Sequence 35, Appl
153
         12
               42.9
                        34
                            1
                                US-08-049-402-2
                                                             Sequence 2, Appli
154
         12
               42.9
                        34
                            1
                                US-07-915-247A-2
                                                             Sequence 2, Appli
155
         12
               42.9
                        34
                            1
                                US-08-443-863-2
                                                             Sequence 2, Appli
156
               42.9
         12
                        34
                             1
                                US-08-448-070-2
                                                             Sequence 2, Appli
157
         12
               42.9
                        34
                             1
                                US-08-488-105-2
                                                             Sequence 2, Appli
                                                             Sequence 8, Appli
158
         12
               42.9
                        34
                             1
                                US-08-488-105-8
159
         12
               42.9
                        34
                             1
                                US-08-526-987-2
                                                             Sequence 2, Appli
160
         12
               42.9
                        34
                             1
                                US-08-449-500-2
                                                             Sequence 2, Appli
161
         12
               42.9
                        34
                             1
                                US-08-449-317A-2
                                                             Sequence 2, Appli
162
         12
               42.9
                        34
                             2
                                US-08-477-022-2
                                                             Sequence 2, Appli
163
         12
               42.9
                        34
                            2
                                US-08-449-447-2
                                                             Sequence 2, Appli
164
         12
               42.9
                            2
                        34
                                US-08-184-328-2
                                                             Sequence 2, Appli
165
         12
               42.9
                        34
                             2
                                US-08-521-097-2
                                                             Sequence 2, Appli
166
         12
               42.9
                        34
                             3
                                US-09-044-536A-18
                                                             Sequence 18, Appl
167
         12
               42.9
                        34
                            3
                                US-09-044-536A-19
                                                             Sequence 19, Appl
168
         11
               39.3
                        34
                            1
                                US-08-488-105-14
                                                             Sequence 14, Appl
169
         11
               39.3
                        34
                            3
                                US-09-044-536A-16
                                                             Sequence 16, Appl
170
         11
              39.3
                        34
                            3
                                US-09-044-536A-17
                                                             Sequence 17, Appl
171
         10
              35.7
                        34
                             1
                                US-08-033-099-2
                                                             Sequence 2, Appli
172
              35.7
         10
                        34
                             1
                                US-08-488-105-4
                                                             Sequence 4, Appli
173
         10
               35.7
                        34
                             1
                                US-08-488-105-6
                                                             Sequence 6, Appli
174
         10
              35.7
                        34
                            1
                                US-08-488-105-10
                                                             Sequence 10, Appl
175
         10
              35.7
                        34
                            1
                                US-08-488-105-11
                                                             Sequence 11, Appl
176
         10
              35.7
                        34
                             1
                                US-08-488-105-16
                                                             Sequence 16, Appl
177
         10
              35.7
                        34
                             1
                                US-08-488-105-18
                                                             Sequence 18, Appl
178
              35.7
         10
                        34
                            1
                                US-08-449-500-79
                                                             Sequence 79, Appl
179
         10
              35.7
                        34
                            1
                                US-08-449-317A-79
                                                             Sequence 79, Appl
180
                                                             Sequence 3, Appli
         10
               35.7
                        34
                             2
                                US-08-142-551B-3
181
         10
              35.7
                        34
                             2
                                US-08-477-022-79
                                                             Sequence 79, Appl
182
                            2
         10
               35.7
                        34
                                US-08-449-447-79
                                                             Sequence 79, Appl
```

183	10	35.7	34	2	US-08-184-328-79	Sequence 79, Appl
184	10	35.7	34	2	US-08-521-097-79	Sequence 79, Appl
185	10	35.7	34	3	US-09-044-536A-20	Sequence 20, Appl
186	10	35.7	34	3	US-09-044-536A-21	Sequence 21, Appl
187	10	35.7	34	3	US-09-044-536A-22	Sequence 22, Appl
		35.7				
188	10		34	3	US-09-044-536A-24	Sequence 24, Appl
189	10	35.7	34	3	US-09-044-536A-28	Sequence 28, Appl
190	10	35.7	34	3	US-08-903-497A-4	Sequence 4, Appli
191	10	35.7	34	4	US-09-635-076 - 4	Sequence 4, Appli
192	10	35.7	35	2	US-08-142-551B-4	Sequence 4, Appli
193	10	35.7	35	2	US-08-142-551B-5	Sequence 5, Appli
194	10	35.7	35	2	US-08-142-551B-7	Sequence 7, Appli
195	10	35.7	35	2	US-08-142-551B-11	Sequence 11, Appl
196	10	35.7	35	2	US-08-142-551B-12	
						Sequence 12, Appl
197	10	35.7	35	2	US-08-142-551B-13	Sequence 13, Appl
198	10	35.7	35	2	US-08-142-551B-14	Sequence 14, Appl
199	10	35.7	35	2	US-08-142-551B-15	Sequence 15, Appl
200	10	35.7	35	2	US-08-142-551B-16	Sequence 16, Appl
201	10	35.7	35	2	US-08-142-551B-17	Sequence 17, Appl
202	10	35.7	35	2	US-08-142-551B-18	Sequence 18, Appl
203	10	35.7	35	2	US-08-142-551B-19	Sequence 19, Appl
204	10	35.7	35	2	US-08-142-551B-20	Sequence 20, Appl
205	10	35.7	35	2	US-08-142-551B-21	Sequence 21, Appl
206	10	35.7	35	2	US-08-142-551B-22	
						Sequence 22, Appl
207	10	35.7	35	2	US-08-142-551B-23	Sequence 23, Appl
208	10	35.7	35	2	US-08-142-551B-24	Sequence 24, Appl
209	10	35.7	35	2	US-08-142-551B-25	Sequence 25, Appl
210	10	35.7	35	2	US-08-142-551B-26	Sequence 26, Appl
211	10	35.7	35	2	US-08-142-551B-27	Sequence 27, Appl
212	10	35.7	35	2	US-08-142-551B-28	Sequence 28, Appl
213	10	35.7	35	2	US-08-142-551B-29	Sequence 29, Appl
214	10	35.7	35	2	US-08-142-551B-30	Sequence 30, Appl
215	10	35.7	35	2	US-08-142-551B-31	Sequence 31, Appl
216	10	35.7	35	2	US-08-142-551B-32	Sequence 32, Appl
217	10	35.7	35	2	US-08-142-551B-33	Sequence 33, Appl
218	10	35.7	35	2	US-08-142-551B-34	Sequence 34, Appl
219	10	35.7	35	2	US-08-142-551B-35	-
						Sequence 35, Appl
220	10	35.7	35	2	US-08-142-551B-36	Sequence 36, Appl
221	10	35.7	35	2	US-08-142-551B-37	Sequence 37, Appl
222	10	35.7	35	2	US-08-142-551B-38	Sequence 38, Appl
223	10	35.7	35	2	US-08-142-551B-39	Sequence 39, Appl
224	10	35.7	35	2	US-08-142-551B-40	Sequence 40, Appl
225	10	35.7	35	2	US-08-142-551B-41	Sequence 41, Appl
226	10	35.7	35	2	US-08-142-551B-42	Sequence 42, Appl
227	10	35.7	35	2	US-08-142-551B-43	Sequence 43, Appl
228	10	35.7	35	2	US-08-142-551B-44	Sequence 44, Appl
229	10	35.7	35	2	•	Sequence 45, Appl
					US-08-142-551B-45	
230	10	35.7	35	2	US-08-142-551B-46	Sequence 46, Appl
231	10	35.7	35	2	US-08-142-551B-47	Sequence 47, Appl
232	10	35.7	35	2	US-08-142-551B-48	Sequence 48, Appl
233	10	35.7	35	2	US-08-142-551B-49	Sequence 49, Appl
234	10	35.7	35	2	US-08-142-551B-50	Sequence 50, Appl
235	10	35.7	35	2	US-08-142-551B-51	Sequence 51, Appl
236	10	35.7	35	2	US-08-142-551B-52	Sequence 52, Appl
237	10	35.7	35	2	US-08-142-551B-53	Sequence 53, Appl
238	10	35.7	35	2	US-08-142-551B-54	Sequence 54, Appl
239	10	35.7	35	2	US-08-142-551B-55	Sequence 55, Appl

```
240
         10
               35.7
                         35
                             2
                                                              Sequence 56, Appl
                                US-08-142-551B-56
241
               35.7
                         35
                             2
         10
                                US-08-142-551B-57
                                                              Sequence 57, Appl
242
         10
               35.7
                         35
                             2
                                 US-08-142-551B-58
                                                              Sequence 58, Appl
243
         10
               35.7
                         35
                             2
                                US-08-142-551B-59
                                                              Sequence 59, Appl
                         35
                             2
244
         10
               35.7
                                US-08-142-551B-60
                                                              Sequence 60, Appl
245
         10
               35.7
                         35
                             2
                                 US-08-142-551B-61
                                                              Sequence 61, Appl
246
         10
               35.7
                         35
                             2
                                US-08-142-551B-62
                                                              Sequence 62, Appl
247
                         35
         10
               35.7
                             2
                                US-08-142-551B-63
                                                              Sequence 63, Appl
248
               35.7
         10
                         35
                             2
                                 US-08-142-551B-64
                                                              Sequence 64, Appl
249
         10
               35.7
                         35
                             2
                                US-08-142-551B-65
                                                              Sequence 65, Appl
250
         10
               35.7
                         35
                             2
                                US-08-142-551B-66
                                                              Sequence 66, Appl
251
         10
                             2
               35.7
                         35
                                 US-08-142-551B-67
                                                              Sequence 67, Appl
               35.7
                                US-08-142-551B-68
252
         10
                         35
                             2
                                                              Sequence 68, Appl
253
         10
               35.7
                         35
                             2
                                US-08-142-551B-70
                                                              Sequence 70, Appl
254
         10
               35.7
                         35
                             2
                                US-08-142-551B-73
                                                              Sequence 73, Appl
255
         10
               35.7
                         35
                             2
                                                              Sequence 80, Appl
                                US-08-142-551B-80
256
         10
               35.7
                         35
                             2
                                                              Sequence 90, Appl
                                 US-08-142-551B-90
257
         10
               35.7
                         35
                             2
                                 US-08-142-551B-94
                                                              Sequence 94, Appl
               35.7
258
         10
                         35
                             2
                                 US-08-142-551B-101
                                                              Sequence 101, App
259
         10
               35.7
                         35
                             2
                                 US-08-142-551B-102
                                                              Sequence 102, App
260
         10
               35.7
                         35
                             2
                                US-08-142-551B-103
                                                              Sequence 103, App
261
         10
               35.7
                         35
                             2
                                US-08-142-551B-104
                                                              Sequence 104, App
262
         10
               35.7
                         35
                             2
                                 US-08-142-551B-105
                                                              Sequence 105, App
263
         10
               35.7
                         35
                             2
                                 US-08-142-551B-106
                                                              Sequence 106, App
264
         10
               35.7
                         35
                             2
                                US-08-142-551B-107
                                                              Sequence 107, App
265
         10
               35.7
                         35
                             2
                                US-08-142-551B-108
                                                              Sequence 108, App
266
         10
               35.7
                         35
                             2
                                 US-08-142-551B-109
                                                              Sequence 109, App
267
         10
               35.7
                         35
                             2
                                 US-08-142-551B-110
                                                              Sequence 110, App
                                US-08-142-551B-111
268
         10
               35.7
                         35
                             2
                                                              Sequence 111, App
269
         10
               35.7
                         35
                             2
                                US-08-142-551B-112
                                                              Sequence 112, App
270
         10
               35.7
                         35
                             2
                                US-08-142-551B-113
                                                              Sequence 113, App
271
         10
               35.7
                         35
                             2
                                US-08-142-551B-114
                                                              Sequence 114, App
272
         10
               35.7
                         35
                             2
                                US-08-142-551B-115
                                                              Sequence 115, App
273
         10
               35.7
                         35
                             2
                                US-08-142-551B-116
                                                              Sequence 116, App
274
         10
               35.7
                         35
                                 US-08-142-551B-117
                                                              Sequence 117, App
275
         10
               35.7
                         35
                             2
                                US-08-142-551B-118
                                                              Sequence 118, App
276
         10
               35.7
                         35
                             2
                                US-08-142-551B-120
                                                              Sequence 120, App
277
         10
               35.7
                         35
                             2
                                US-08-142-551B-122
                                                              Sequence 122, App
278
           9
               32.1
                         28
                             4
                                US-09-228-990-54
                                                              Sequence 54, Appl
279
           9
               32.1
                         28
                             4
                                US-09-228-990-62
                                                              Sequence 62, Appl
           9
280
               32.1
                         28
                             4
                                US-09-228-990-65
                                                              Sequence 65, Appl
           9
281
               32.1
                         28
                                US-09-228-990-79
                                                              Sequence 79, Appl
282
           9
               32.1
                         28
                             4
                                US-09-442-989-22
                                                              Sequence 22, Appl
283
           9
               32.1
                         28
                                US-09-442-989-25
                             4
                                                              Sequence 25, Appl
284
           9
               32.1
                         29
                             4
                                US-09-406-813-8
                                                              Sequence 8, Appli
285
           9
               32.1
                         29
                             4
                                US-09-228-990-53
                                                              Sequence 53, Appl
286
           9
               32.1
                         29
                             4
                                US-09-228-990-63
                                                              Sequence 63, Appl
287
           9
               32.1
                         30
                             4
                                US-09-228-990-52
                                                              Sequence 52, Appl
288
           9
                         30
               32.1
                             4
                                US-09-228-990-64
                                                              Sequence 64, Appl
289
           9
               32.1
                         31
                                US-08-904-760B-13
                                                              Sequence 13, Appl
290
           9
               32.1
                         31
                                US-09-228-990-3
                             4
                                                              Sequence 3, Appli
291
           9
               32.1
                         31
                             4
                                US-09-228-990-4
                                                              Sequence 4, Appli
292
          9
               32.1
                         31
                             4
                                US-09-228-990-5
                                                              Sequence 5, Appli
293
          9
               32.1
                         31
                             4
                                US-09-228-990-6
                                                              Sequence 6, Appli
294
           9
               32.1
                         31
                             4
                                US-09-228-990-7
                                                              Sequence 7, Appli
295
           9
               32.1
                         31
                             4
                                US-09-228-990-8
                                                              Sequence 8, Appli
296
               32.1
                         31
                             4
                                US-09-228-990-9
                                                              Sequence 9, Appli
```

297	9	32.1	31	4	US-09-228-990-10	Sequence 10, Appl
298	9	32.1	31	4	US-09-228-990-20	Sequence 20, Appl
299	9	32.1	31	4	US-09-228-990-21	Sequence 21, Appl
300	9	32.1	31	4	US-09-228-990-22	Sequence 22, Appl
301	9	32.1	31	4	US-09-228-990-23	Sequence 23, Appl
302	9	32.1	31	4	US-09-228-990-24	Sequence 24, Appl
303	9	32.1	31	4	US-09-228-990-25	Sequence 25, Appl
304	9	32.1	31	4	US-09-228-990-26	Sequence 26, Appl
305	9	32.1	31	4	US-09-228-990-27	Sequence 27, Appl
306	9	32.1	31	4	US-09-228-990-36	Sequence 36, Appl
307	9	32.1	31	4	US-09-228-990-37	Sequence 37, Appl
308	9	32.1	31	4	US-09-228-990-38	Sequence 38, Appl
309	9	32.1	31	4	US-09-228-990-39	
310	9	32.1	31	4		Sequence 39, Appl
					US-09-228-990-47	Sequence 47, Appl
311	9	32.1	31	4	US-09-228-990-48	Sequence 48, Appl
312	9	32.1	31	4	US-09-228-990-49	Sequence 49, Appl
313	9	32.1	31	4	US-09-228-990-50	Sequence 50, Appl
314	9	32.1	31	4	US-09-228-990-51	Sequence 51, Appl
315	9	32.1	31	4	US-09-228-990-69	Sequence 69, Appl
316	9	32.1	31	4	US-09-228-990-70	Sequence 70, Appl
317	9	32.1	31	4	US-09-228-990-74	Sequence 74, Appl
318	9	32.1	31	4	US-09-228-990-81	Sequence 81, Appl
319	9	32.1	31	4	US-09-228-990-82	Sequence 82, Appl
320	9	32.1	31	4	US-09-228-990-83	Sequence 83, Appl
321	9	32.1	31	4	US-09-228-990-84	Sequence 84, Appl
322	9	32.1	31	4	US-09-228-990-85	Sequence 85, Appl
323	9	32.1	31	4	US-09-536-785A-13	Sequence 13, Appl
324	9	32.1	31	4	US-09-442-989-1	Sequence 1, Appli
325	9	32.1	31	4	US-09-442-989-2	Sequence 2, Appli
326	9	32.1	31	4	US-09-442-989-3	Sequence 3, Appli
327	9	32.1	31	4	US-09-442-989-4	Sequence 4, Appli
328	9	32.1	31	4	US-09-442-989-5	
329	9	32.1	31			Sequence 5, Appli
				4	US-09-442-989-6	Sequence 6, Appli
330	9	32.1	31	4	US-09-442-989-7	Sequence 7, Appli
331	9	32.1	31	4	US-09-442-989-8	Sequence 8, Appli
332	9	32.1	31	4	US-09-442-989-17	Sequence 17, Appl
333	9	32.1	31	4	US-09-442-989-32	Sequence 32, Appl
334	9	32.1	34	3	US-09-044-536A-2	Sequence 2, Appli
335	9	32.1	34	3	US-09-044-536A-23	Sequence 23, Appl
336	9	32.1	34	3	US-09-044-536A-27	Sequence 27, Appl
337	9	32.1	34	4	US-09-228-990-46	Sequence 46, Appl
338	9	32.1	34	4	US-09-442-989-18	Sequence 18, Appl
339	9	32.1	34	4	US-09-442-989-46	Sequence 46, Appl
340	9	32.1	35	2	US-08-142-551B-69	Sequence 69, Appl
341	9	32.1	35	2	US-08-142-551B-71	Sequence 71, Appl
342	9	32.1	35	2	US-08-142-551B-72	Sequence 72, Appl
343	9	32.1	35	2	US-08-142-551B-74	Sequence 74, Appl
344	9	32.1	35	2	US-08-142-551B-75	Sequence 75, Appl
345	9	32.1	35	2	US-08-142-551B-76	Sequence 76, Appl
346	9	32.1	35	2	US-08-142-551B-77	Sequence 77, Appl
347	9	32.1	35	2	US-08-142-551B-78	Sequence 78, Appl
348	9	32.1	35	2	US-08-142-551B-79	Sequence 79, Appl
349	9	32.1	35	2	US-08-142-551B-81	Sequence 81, Appl
350	9	32.1	35	2	US-08-142-551B-82	Sequence 82, Appl
351	9	32.1	35	2	US-08-142-551B-83	Sequence 83, Appl
352	9	32.1	35	2	US-08-142-551B-84	Sequence 84, Appl
353	9	32.1	35	2	US-08-142-551B-85	
223	כ	١. ٧٠	23	4	09-00-147-00TD-00	Sequence 85, Appl

						,
354	9	32.1	35	2	US-08-142-551B-86	Sequence 86, Appl
355	9	32.1	35	2	US-08-142-551B-87	Sequence 87, Appl
356	9	32.1	35	2	US-08-142-551B-88	Sequence 88, Appl
357	9	32.1	35	2	US-08-142-551B-89	Sequence 89, Appl
358	9	32.1	35	2	US-08-142-551B-91	Sequence 91, Appl
359	9	32.1	35	2	US-08-142-551B-92	Sequence 92, Appl
360	9	32.1	35	2	US-08-142-551B-93	Sequence 93, Appl
361	9	32.1	35	2	US-08-142-551B-95	Sequence 95, Appl
362	9	32.1	35	2	US-08-142-551B-96	Sequence 96, Appl
363	9	32.1	35	2	US-08-142-551B-97	Sequence 97, Appl
364	9	32.1	35	2	US-08-142-551B-98	Sequence 98, Appl
365	9	32.1	35	2	US-08-142-551B-99	Sequence 99, Appl
366	9	32.1	35	2	US-08-142-551B-100	Sequence 100, App
367	9	32.1	35	2	US-08-142-551B-123	Sequence 123, App
368	9	32.1	35	3	US-09-044-536A-30	Sequence 30, Appl
369	9	32.1	36	3	US-09-044-536A-31	Sequence 31, Appl
370	9	32.1	37	3	US-09-044-536A-32	Sequence 32, Appl
371	9	32.1	38	3	US-09-044-536A-33	Sequence 33, Appl
372	9	32.1	39	3	US-09-044-536A-34	Sequence 34, Appl
373	9	32.1	40	3	US-09-044-536A-35	Sequence 35, Appl
374	8	28.6	28	4	US-09-228-990-78	Sequence 78, Appl
375	8	28.6	28	4	US-09-442-989-24	Sequence 24, Appl
376	8	28.6	29	1	US-07-778-926-6	Sequence 6, Appli
377	8	28.6	30	1	US-07-778-926-10	Sequence 10, Appl
378	8	28.6	31	1	US-07-778-926-14	Sequence 14, Appl
379	8	28.6	31	4	US-09-228-990-11	Sequence 11, Appl
380	8	28.6	31	4	US-09-228-990-19	Sequence 19, Appl
381	8	28.6	31	4	US-09-228-990-28	Sequence 28, Appl
382	8	28.6	31	4	US-09-228-990-35	Sequence 35, Appl
383	8	28.6	31	4	US-09-228-990-40	
384	8	28.6	31	4	US-09-228-990-45	Sequence 40, Appl Sequence 45, Appl
385	8	28.6	31	4	US-09-228-990-66	Sequence 45, Appl Sequence 66, Appl
386	8	28.6	31	4	US-09-228-990-67	
387	8	28.6	31	4	US-09-228-990-68	Sequence 67, Appl
388	8	28.6	31	4	US-09-228-990-73	Sequence 68, Appl
389	8	28.6	31	4		Sequence 73, Appl
390	8	28.6	31	4	US-09-228-990-76	Sequence 76, Appl
391	8	28.6	31	4	US-09-228-990-80	Sequence 80, Appl
					US-09-442-989-16	Sequence 16, Appl
392	8	28.6	32	1	US-07-778-926-18	Sequence 18, Appl
393	8	28.6	33	1	US-07-778-926-7	Sequence 7, Appli
394	8	28.6	34	1	US-07-778-926-11	Sequence 11, Appl
395	8	28.6	34	1	US-07-773-098-3	Sequence 3, Appli
396	8	28.6	34	1	US-07-773-098-4	Sequence 4, Appli
397	8	28.6	34	4	US-09-228-990-75	Sequence 75, Appl
398	8	28.6	34	4	US-09-442-989-19	Sequence 19, Appl
399	8	28.6	35	1	US-07-778-926-15	Sequence 15, Appl
400	_	28.6	36	1	US-07-778-926-19	Sequence 19, Appl
401	8	28.6	37	1	US-07-778-926-8	Sequence 8, Appli
402	8	28.6	38	1	US-07-778-926-12	Sequence 12, Appl
403	8	28.6	39	1	US-07-778-926-16	Sequence 16, Appl
404	8	28.6	40	1	US-07-778-926-20	Sequence 20, Appl
405	7	25.0	28	1	US-07-778-926-2	Sequence 2, Appli
406	7	25.0	31	4	US-09-406-813-9	Sequence 9, Appli
407	7	25.0	31	4	US-09-228-990-12	Sequence 12, Appl
408	7	25.0	31	4	US-09-228-990-18	Sequence 18, Appl
409	7	25.0	31	4	US-09-228-990-29	Sequence 29, Appl
410	7	25.0	31	4	US-09-228-990-34	Sequence 34, Appl

411	7	25.0	31	4	US-09-228-990-41	Sequence 41, Appl
412	7	25.0	31	4	US-09-228-990-44	Sequence 44, Appl
413	7	25.0	31	4	US-09-442-989-9	Sequence 9, Appli
414	7	25.0	31	4	US-09-442-989-15	Sequence 15, Appl
415	7	25.0	32	1	US-07-778-926-3	Sequence 3, Appli
416	7	25.0	32	1	US-08-305-799A-1	Sequence 1, Appli
417	7	25.0	32	1	US-08-305-799A-2	Sequence 2, Appli
418	7	25.0	34	1	US-07-915-247A-23	Sequence 23, Appl
419	7	25.0	34	1	US-07-915-247A-24	Sequence 24, Appl
	7	25.0	34	1	US-08-443-863-23	Sequence 23, Appl
420	7		34			
421		25.0		1	US-08-443-863-24	Sequence 24, Appl
422	7	25.0	34	1	US-08-448-070-23	Sequence 23, Appl
423	7	25.0	34	1	US-08-448-070-24	Sequence 24, Appl
424	7	25.0	34	1	US-08-488-105-5	Sequence 5, Appli
425	7	25.0	34	1	US-08-488-105-12	Sequence 12, Appl
426	7	25.0	34	1	US-08-488-105-17	Sequence 17, Appl
427	7	25.0	34	1	US-08-468-275-7	Sequence 7, Appli
428	7	25.0	34	1	US-08-468-275-8	Sequence 8, Appli
429	7	25.0	34	1	US-08-449-500-23	Sequence 23, Appl
430	7	25.0	34	1	US-08-449-500-24	Sequence 24, Appl
431	7	25.0	34	1	US-08-449-500-35	Sequence 35, Appl
432	7	25.0	34	1	US-08-449-500-36	Sequence 36, Appl
433	7	25.0	34	1	US-08-449-500-61	Sequence 61, Appl
434	7	25.0	34	1	US-08-449-317A-23	Sequence 23, Appl
435	7	25.0	34	1	US-08-449-317A-24	Sequence 24, Appl
436	7	25.0	34	1	US-08-449-317A-35	Sequence 35, Appl
437	7	25.0	34	1	US-08-449-317A-36	Sequence 36, Appl
438	7	25.0	34	1	US-08-449-317A-61	Sequence 61, Appl
439	7	25.0	34	2	US-08-477-022-23	Sequence 23, Appl
440	7	25.0	34	2	US-08-477-022-24	Sequence 24, Appl
441	7	25.0	34	2	US-08-477-022-35	Sequence 35, Appl
442	7	25.0	34	2	US-08-477-022-36	Sequence 36, Appl
442	7	25.0	34	2	US-08-477-022-50	
	7			2		Sequence 61, Appl
444		25.0	34		US-08-449-447-23	Sequence 23, Appl
445	7	25.0	34	2	US-08-449-447-24	Sequence 24, Appl
446	7	25.0	34	2	US-08-449-447-35	Sequence 35, Appl
447	7	25.0	34	2	US-08-449-447-36	Sequence 36, Appl
448	7	25.0	34	2	US-08-449-447-61	Sequence 61, Appl
449	7	25.0	34	2	US-08-184-328-23	Sequence 23, Appl
450	7	25.0	34	2	US-08-184-328-24	Sequence 24, Appl
451	7	25.0	34	2	US-08-184-328-35	Sequence 35, Appl
452	7	25.0	34	2	US-08-184-328-36	Sequence 36, Appl
453	7	25.0	34	2	US-08-184-328-61	Sequence 61, Appl
454	7	25.0	34	2	US-08-521-097-23	Sequence 23, Appl
455	7	25.0	34	2	US-08-521-097-24	Sequence 24, Appl
456	7	25.0	34	2	US-08-521-097 - 35	Sequence 35, Appl
457	7	25.0	34	2	US-08-521-097-36	Sequence 36, Appl
458	7	25.0	34	2	US-08-521-097-61	Sequence 61, Appl
459	7	25.0	34	3	US-08-903-497A-5	Sequence 5, Appli
460	7	25.0	34	4	US-09-007- 4 66-7	Sequence 7, Appli
461	7	25.0	34	4	US-09-007-466-8	Sequence 8, Appli
462	7	25.0	34	4	US-09-635-076-5	Sequence 5, Appli
463	7	25.0	34	4	US-09-449-632-22	Sequence 22, Appl
464	7	25.0	35	2	US-08-142-551B-10	Sequence 10, Appl
465	7	25.0	35	2	US-08-142-551B-121	Sequence 121, App
466	7	25.0	35	2	US-08-142-551B-124	Sequence 124, App
467	7	25.0	35	4	US-08-952-980B-7	Sequence 7, Appli
40 /	,	23.0	رر	7	35 00 JJZ J00D /	Dequence ,, Appli

```
468
               25.0
                         35
                                US-08-952-980B-8
                                                              Sequence 8, Appli
469
           7
               25.0
                         36
                             1
                                US-07-778-926-4
                                                              Sequence 4, Appli
470
           6
                                                              Sequence 23, Appl
               21.4
                         30
                             4
                                US-09-536-785A-23
471
           6
               21.4
                         31
                             3
                                US-08-904-760B-23
                                                              Sequence 23, Appl
472
           6
               21.4
                         31
                                                              Sequence 7, Appli
                             4
                                US-09-406-813-7
           6
473
               21.4
                         31
                             4
                                US-09-228-990-13
                                                              Sequence 13, Appl
474
           6
               21.4
                         31
                                US-09-228-990-14
                                                              Sequence 14, Appl
475
           6
               21.4
                         31
                                US-09-228-990-15
                             4
                                                              Sequence 15, Appl
476
           6
               21.4
                         31
                                US-09-228-990-16
                             4
                                                              Sequence 16, Appl
477
           6
               21.4
                         31
                             4
                                US-09-228-990-17
                                                              Sequence 17, Appl
478
           6
               21.4
                         31
                             4
                                US-09-228-990-30
                                                              Sequence 30, Appl
479
           6
               21.4
                         31
                             4
                                US-09-228-990-31
                                                              Sequence 31, Appl
480
           6
               21.4
                         31
                             4
                                US-09-228-990-32
                                                              Sequence 32, Appl
481
           6
               21.4
                         31
                            4
                                US-09-228-990-33
                                                              Sequence 33, Appl
482
           6
               21.4
                         31
                                US-09-228-990-42
                                                              Sequence 42, Appl
483
           6
               21.4
                         31
                             4
                                US-09-228-990-43
                                                              Sequence 43, Appl
           6
               21.4
                                                              Sequence 86, Appl
484
                         31
                             4
                                US-09-228-990-86
485
           6
               21.4
                         31
                             4
                                US-09-228-990-87
                                                              Sequence 87, Appl
486
           6
               21.4
                         31
                             4
                                US-09-228-990-88
                                                              Sequence 88, Appl
487
           6
               21.4
                         31
                                US-09-536-785A-36
                                                              Sequence 36, Appl
           6
488
               21.4
                         31
                             4
                                US-09-442-989-10
                                                              Sequence 10, Appl
489
           6
               21.4
                         31
                                US-09-442-989-11
                                                              Sequence 11, Appl
490
           6
               21.4
                         31
                                US-09-442-989-12
                             4
                                                              Sequence 12, Appl
491
               21.4
           6
                         31
                             4
                                US-09-442-989-13
                                                              Sequence 13, Appl
492
           6
               21.4
                         31
                             4
                                US-09-442-989-14
                                                              Sequence 14, Appl
493
           6
               21.4
                         32
                             4
                                US-09-536-785A-37
                                                              Sequence 37, Appl
494
           6
               21.4
                         33
                             4
                                US-09-536-785A-38
                                                              Sequence 38, Appl
495
           6
               21.4
                         34
                            1
                                                              Sequence 2, Appli
                                US-07-765-373-2
496
           6
               21.4
                         34
                             1
                                US-08-049-402-1
                                                              Sequence 1, Appli
497
           6
               21.4
                         34
                             1
                                US-08-526-987-1
                                                              Sequence 1, Appli
498
               21.4
           6
                         34
                             4
                                US-09-536-785A-24
                                                              Sequence 24, Appl
499
           6
               21.4
                         35
                             4
                                US-09-536-785A-25
                                                              Sequence 25, Appl
500
           6
               21.4
                         36
                             4
                                US-09-536-785A-26
                                                              Sequence 26, Appl
501
           6
               21.4
                         37
                             4
                                US-09-536-785A-27
                                                              Sequence 27, Appl
           5
502
               17.9
                         30
                             1
                                US-08-305-799A-7
                                                              Sequence 7, Appli
503
           5
               17.9
                         30
                             1
                                US-08-305-799A-9
                                                              Sequence 9, Appli
504
           5
               17.9
                         30
                             1
                                US-08-305-799A-10
                                                              Sequence 10, Appl
               17.9
505
           5
                         30
                             1
                                US-08-305-799A-11
                                                              Sequence 11, Appl
           5
506
               17.9
                         30
                             1
                                US-08-305-799A-12
                                                              Sequence 12, Appl
          5
507
               17.9
                         34
                             1
                                US-08-449-500-37
                                                              Sequence 37, Appl
           5
508
               17.9
                         34
                             1
                                US-08-449-317A-37
                                                              Sequence 37, Appl
          5
509
               17.9
                             2
                         34
                                US-08-477-022-37
                                                              Sequence 37, Appl
           5
                             2
510
               17.9
                         34
                                US-08-449-447-37
                                                              Sequence 37, Appl
           5
511
               17.9
                         34
                             2
                                US-08-184-328-37
                                                              Sequence 37, Appl
          5
512
               17.9
                             2
                        34
                                US-08-521-097-37
                                                              Sequence 37, Appl
          5
513
               17.9
                        34
                             3
                                US-08-903-497A-6
                                                              Sequence 6, Appli
           5
               17.9
514
                         34
                             4
                                US-09-635-076-6
                                                              Sequence 6, Appli
515
          5
               17.9
                             1
                         38
                                US-08-444-005-19
                                                              Sequence 19, Appl
516
          4
               14.3
                             1
                        28
                                US-07-899-535A-4
                                                              Sequence 4, Appli
517
           4
               14.3
                        28
                             1
                                US-08-191-866D-76
                                                              Sequence 76, Appl
518
               14.3
                        28
                             2
                                US-08-185-949B-76
                                                              Sequence 76, Appl
519
           4
               14.3
                        28
                             2
                                US-08-818-253-22
                                                              Sequence 22, Appl
520
          4
               14.3
                        28
                             3
                                US-08-641-873-8
                                                              Sequence 8, Appli
521
          4
               14.3
                        28
                             3
                                US-08-818-252-22
                                                              Sequence 22, Appl
                                                              Sequence 16, Appl
522
          4
               14.3
                        28
                             4
                                US-08-842-322-16
523
          4
               14.3
                        28
                             4
                                US-09-316-919-38
                                                             Sequence 38, Appl
524
               14.3
                        28
                             4
                                US-09-323-867A-153
                                                             Sequence 153, App
```

```
Sequence 3, Appli
525
               14.3
                         28
                                PCT-US92-07813-3
526
               14.3
                         29
                                                              Sequence 1006, Ap
          4
                             4
                                US-09-205-258-1006
527
          4
               14.3
                         30
                             1
                                US-08-305-799A-3
                                                              Sequence 3, Appli
528
          4
               14.3
                         30
                             1
                                US-08-305-799A-4
                                                              Sequence 4, Appli
529
               14.3
                         30
           4
                             4
                                US-09-205-258-821
                                                              Sequence 821, App
530
           4
               14.3
                         31
                             1
                                US-07-829-462-3
                                                              Sequence 3, Appli
531
           4
               14.3
                         31
                             1
                                US-08-340-812-3
                                                              Sequence 3, Appli
               14.3
532
           4
                         31
                             1
                                US-08-248-021A-5
                                                              Sequence 5, Appli
               14.3
533
           4
                         31
                             1
                                US-08-323-531-44
                                                              Sequence 44, Appl
                                                              Sequence 50, Appl
534
           4
               14.3
                         31
                             1
                                US-08-323-531-50
                                                              Sequence 62, Appl
535
           4
               14.3
                         31
                             1
                                US-08-323-531-62
           4
               14.3
                         31
                             1
536
                                US-08-198-094-44
                                                              Sequence 44, Appl
           4
                         31
                             1
537
               14.3
                                US-08-198-094-50
                                                              Sequence 50, Appl
538
           4
               14.3
                         31
                             1
                                US-08-198-094-62
                                                              Sequence 62, Appl
539
           4
               14.3
                         31
                             1
                                US-08-459-064B-3
                                                              Sequence 3, Appli
540
               14.3
                         31
                             2
                                                              Sequence 3, Appli
           4
                                US-08-460-421A-3
                             2
541
           4
               14.3
                         31
                                US-08-663-566A-32
                                                              Sequence 32, Appl
                                                              Sequence 32, Appl
542
           4
               14.3
                         31
                                US-08-023-610-32
543
           4
               14.3
                         31
                             2
                                US-08-288-065A-32
                                                              Sequence 32, Appl
                         31
544
           4
               14.3
                             2
                                US-08-362-240A-32
                                                              Sequence 32, Appl
545
               14.3
                         31
                             3
                                US-08-107-794A-44
                                                              Sequence 44, Appl
                                US-08-107-794A-50
546
           4
               14.3
                         31
                             3
                                                              Sequence 50, Appl
547
               14.3
           4
                         31
                             3
                                US-08-107-794A-62
                                                              Sequence 62, Appl
548
           4
               14.3
                         31
                             4
                                US-09-205-258-1001
                                                              Sequence 1001, Ap
549
               14.3
                         31
                             5
           4
                                PCT-US93-00909-3
                                                              Sequence 3, Appli
550
           4
               14.3
                         31
                             5
                                PCT-US93-07424-44
                                                              Sequence 44, Appl
                             5
551
           4
               14.3
                         31
                                PCT-US93-07424-50
                                                              Sequence 50, Appl
552
           4
               14.3
                         31
                             5
                                PCT-US93-07424-62
                                                              Sequence 62, Appl
553
           4
               14.3
                         31
                             5
                                PCT-US95-02087-44
                                                              Sequence 44, Appl
               14.3
554
           4
                         31
                             5
                                PCT-US95-02087-50
                                                              Sequence 50, Appl
555
           4
               14.3
                         31
                             5
                                PCT-US95-02087-62
                                                              Sequence 62, Appl
556
           4
               14.3
                         31
                             5
                                PCT-US95-10245-32
                                                              Sequence 32, Appl
557
           4
               14.3
                         32
                             1
                                US-08-190-802A-110
                                                              Sequence 110, App
558
           4
               14.3
                         32
                             1
                                US-08-190-802A-114
                                                              Sequence 114, App
559
           4
               14.3
                         32
                             1
                                US-08-190-802A-183
                                                              Sequence 183, App
560
           4
               14.3
                         32
                             1
                                US-08-190-802A-216
                                                              Sequence 216, App
561
               14.3
                         32
                                US-08-477-346-110
           4
                             3
                                                              Sequence 110, App
562
           4
               14.3
                         32
                             3
                                US-08-477-346-114
                                                              Sequence 114, App
563
           4
               14.3
                         32
                             3
                                US-08-477-346-183
                                                              Sequence 183, App
564
           4
               14.3
                         32
                             3
                                US-08-477-346-216
                                                              Sequence 216, App
565
           4
               14.3
                         32
                             4
                                US-08-473-089-110
                                                              Sequence 110, App
566
           4
               14.3
                         32
                                US-08-473-089-114
                                                              Sequence 114, App
567
               14.3
                         32
                                US-08-473-089-183
                                                              Sequence 183, App
568
           4
               14.3
                         32
                             4
                                US-08-473-089-216
                                                              Sequence 216, App
569
           4
               14.3
                         32
                             4
                                US-09-149-476-442
                                                              Sequence 442, App
570
           4
               14.3
                         32
                             4
                                US-08-487-072A-110
                                                              Sequence 110, App
571
           4
               14.3
                         32
                                US-08-487-072A-114
                                                              Sequence 114, App
572
           4
               14.3
                         32
                             4
                                                              Sequence 183, App
                                US-08-487-072A-183
573
           4
               14.3
                         32
                             4
                                US-08-487-072A-216
                                                              Sequence 216, App
574
           4
               14.3
                         33
                             1
                                US-08-781-020-10
                                                              Sequence 10, Appl
575
           4
               14.3
                         33
                             3
                                US-09-038-935-10
                                                              Sequence 10, Appl
576
           4
               14.3
                         33
                             4
                                US-09-122-144-4
                                                              Sequence 4, Appli
577
           4
               14.3
                         33
                             4
                                US-09-205-258-368
                                                              Sequence 368, App
578
           4
               14.3
                         34
                             1
                                US-08-007-775-1
                                                              Sequence 1, Appli
579
           4
               14.3
                         34
                             1
                                US-07-956-700B-7
                                                              Sequence 7, Appli
580
           4
               14.3
                         34
                            1
                                US-08-476-537-7
                                                              Sequence 7, Appli
581
               14.3
                         34
                             1
                                US-08-485-607-7
                                                              Sequence 7, Appli
```

```
582
               14.3
                        34
                                US-08-475-879-7
                                                             Sequence 7, Appli
583
          4
               14.3
                        34
                             4
                                US-09-433-043B-7
                                                             Sequence 7, Appli
584
               14.3
          4
                        35
                            1
                                US-08-463-660-6
                                                             Sequence 6, Appli
               14.3
585
          4
                        35
                            1
                                                             Sequence 6, Appli
                                US-08-678-280-6
586
          4
               14.3
                        35
                            4
                                US-09-690-454-138
                                                             Sequence 138, App
587
               14.3
                        36
                            1
                                US-08-477-727A-104
                                                             Sequence 104, App
588
               14.3
                        36
                                                             Sequence 26, Appl
          4
                            1
                                US-08-471-675A-26
589
                        36
          4
               14.3
                            2
                                US-08-892-549-30
                                                             Sequence 30, Appl
590
          4
               14.3
                        36
                            3
                                US-08-302-069A-25
                                                             Sequence 25, Appl
                        37
591
          4
               14.3
                            1
                                US-08-231-730A-45
                                                             Sequence 45, Appl
592
          4
               14.3
                        37
                            1
                                US-08-477-727A-102
                                                             Sequence 102, App
               14.3
                        37
593
          4
                            1
                                US-08-477-727A-103
                                                             Sequence 103, App
                        37
                                US-08-477-727A-105
                                                             Sequence 105, App
594
          4
               14.3
                            1
595
          4
               14.3
                        37
                            1
                                US-08-477-727A-106
                                                             Sequence 106, App
596
          4
               14.3
                        37
                            1
                                US-08-477-727A-107
                                                             Sequence 107, App
597
               14.3
                        37
                            1
          4
                                US-08-471-675A-24
                                                             Sequence 24, Appl
598
          4
               14.3
                        37
                            1
                                US-08-471-675A-25
                                                             Sequence 25, Appl
599
          4
               14.3
                        37
                            1
                                US-08-471-675A-27
                                                             Sequence 27, Appl
600
               14.3
                        37
                            1
          4
                                US-08-471-675A-28
                                                             Sequence 28, Appl
601
               14.3
                        37
                            1
                                US-08-471-675A-29
                                                             Sequence 29, Appl
602
                        37
          4
               14.3
                            2
                                US-08-259-762-12
                                                             Sequence 12, Appl
603
                        37
          4
               14.3
                            2
                                US-08-259-762-13
                                                             Sequence 13, Appl
604
          4
               14.3
                        37
                            2
                                US-08-283-917-12
                                                             Sequence 12, Appl
605
          4
               14.3
                        37
                            2
                                US-08-961-716-12
                                                             Sequence 12, Appl
                        37
                                                             Sequence 50, Appl
606
          4
               14.3
                            2
                                US-08-505-486-50
                        37
                            2
607
          4
               14.3
                                US-08-892-549-6
                                                             Sequence 6, Appli
                            2
608
          4
               14.3
                        37
                                US-08-892-549-28
                                                             Sequence 28, Appl
609
          4
               14.3
                        37
                            2
                                US-08-892-549-29
                                                             Sequence 29, Appl
610
          4
               14.3
                        37
                            2
                                US-08-892-549-31
                                                             Sequence 31, Appl
611
          4
               14.3
                        37
                            2
                                US-08-892-549-32
                                                             Sequence 32, Appl
                                                             Sequence 33, Appl
612
          4
               14.3
                        37
                            2
                                US-08-892-549-33
                                                             Sequence 45, Appl
613
          4
               14.3
                        37
                             3
                                US-08-689-489C-45
               14.3
614
          4
                        37
                            3
                                US-08-801-028-50
                                                             Sequence 50, Appl
615
          4
               14.3
                        37
                             3
                                US-09-340-154-50
                                                             Sequence 50, Appl
616
               14.3
                        37
                                US-08-302-069A-23
                                                             Sequence 23, Appl
617
          4
               14.3
                        37
                            3
                                US-08-302-069A-24
                                                             Sequence 24, Appl
618
                        37
          4
               14.3
                            3
                                US-08-302-069A-26
                                                             Sequence 26, Appl
619
          4
               14.3
                        37
                            3
                                US-08-302-069A-27
                                                             Sequence 27, Appl
620
          4
               14.3
                        37
                            3
                                US-08-302-069A-28
                                                             Sequence 28, Appl
621
          4
               14.3
                        37
                            3
                                US-09-232-802A-45
                                                             Sequence 45, Appl
622
          4
               14.3
                        37
                            4
                                US-09-482-611B-50
                                                             Sequence 50, Appl
623
          4
               14.3
                        37
                            5
                                PCT-US95-04718-45
                                                             Sequence 45, Appl
624
          4
               14.3
                        37
                            5
                                PCT-US95-09338-50
                                                             Sequence 50, Appl
625
               14.3
                        37
                            5
                                PCT-US95-09339-50
          4
                                                             Sequence 50, Appl
626
               14.3
                        38
                            1
          4
                                US-07-781-254A-18
                                                             Sequence 18, Appl
627
          4
               14.3
                        38
                             2
                                US-08-378-548-12
                                                             Sequence 12, Appl
628
          4
               14.3
                        39
                            4
                                US-09-227-357-384
                                                             Sequence 384, App
629
          4
               14.3
                        39
                            4
                                US-09-323-867A-25
                                                             Sequence 25, Appl
630
          3
                        28
               10.7
                            1
                                US-07-620-410-2
                                                             Sequence 2, Appli
631
          3
               10.7
                        28
                                                             Sequence 1, Appli
                                US-07-690-300B-1
632
          3
               10.7
                        28
                            1
                                US-07-690-300B-12
                                                             Sequence 12, Appl
633
          3
               10.7
                        28
                            1
                                US-07-690-300B-23
                                                             Sequence 23, Appl
634
          3
               10.7
                        28
                            1
                                US-07-690-300B-24
                                                             Sequence 24, Appl
635
          3
               10.7
                        28
                            1
                                US-07-690-300B-25
                                                             Sequence 25, Appl
636
          3
               10.7
                        28
                            1
                                US-07-690-300B-26
                                                             Sequence 26, Appl
637
          3
               10.7
                        28
                            1
                                US-07-690-300B-27
                                                             Sequence 27, Appl
638
          3
               10.7
                        28
                            1
                                US-07-690-300B-28
                                                             Sequence 28, Appl
```

```
639
              10.7
                        28
                               US-07-690-300B-29
                                                           Sequence 29, Appl
640
          3
              10.7
                        28
                           1
                               US-07-690-300B-30
                                                           Sequence 30, Appl
641
          3
              10.7
                        28
                           1
                                                           Sequence 31, Appl
                               US-07-690-300B-31
          3
              10.7
                        28
                                                           Sequence 32, Appl
642
                           1
                               US-07-690-300B-32
643
          3
              10.7
                        28
                            1
                               US-07-690-300B-33
                                                           Sequence 33, Appl
644
          3
              10.7
                        28
                           1
                               US-07-690-300B-34
                                                           Sequence 34, Appl
645
          3
              10.7
                        28
                           1
                               US-07-690-300B-35
                                                           Sequence 35, Appl
          3
              10.7
                        28
646
                           1
                               US-07-690-300B-36
                                                           Sequence 36, Appl
          3
              10.7
647
                        28
                            1
                               US-07-690-300B-37
                                                           Sequence 37, Appl
          3
              10.7
648
                        28
                            1
                               US-07-690-300B-38
                                                           Sequence 38, Appl
          3
              10.7
649
                        28
                            1
                               US-07-690-300B-39
                                                           Sequence 39, Appl
650
          3
              10.7
                        28
                            1
                               US-07-690-300B-40
                                                           Sequence 40, Appl
          3
              10.7
651
                        28
                           1
                               US-07-690-300B-41
                                                           Sequence 41, Appl
          3
652
              10.7
                        28
                           1
                               US-07-690-300B-42
                                                           Sequence 42, Appl
          3
              10.7
653
                        28
                           1
                               US-07-690-300B-43
                                                           Sequence 43, Appl
654
          3
              10.7
                        28
                           1
                               US-07-690-300B-44
                                                           Sequence 44, Appl
655
          3
              10.7
                        28
                           1
                               US-07-690-300B-45
                                                           Sequence 45, Appl
          3
              10.7
656
                        28
                           1
                               US-07-690-300B-46
                                                           Sequence 46, Appl
          3
              10.7
657
                        28
                            1
                               US-07-690-300B-47
                                                           Sequence 47, Appl
658
          3
              10.7
                        28
                            1
                               US-07-690-300B-48
                                                           Sequence 48, Appl
659
          3
              10.7
                        28
                           1
                               US-07-690-300B-49
                                                           Sequence 49, Appl
660
          3
              10.7
                        28
                           1
                               US-07-690-300B-50
                                                           Sequence 50, Appl
661
          3
              10.7
                        28
                           1
                               US-07-690-300B-51
                                                           Sequence 51, Appl
662
          3
              10.7
                        28
                           1
                               US-07-690-300B-52
                                                           Sequence 52, Appl
          3
              10.7
663
                        28
                           1
                               US-07-690-300B-53
                                                           Sequence 53, Appl
          3
              10.7
664
                        28
                            1
                               US-07-690-300B-54
                                                           Sequence 54, Appl
665
          3
              10.7
                        28
                            1
                               US-07-690-300B-55
                                                           Sequence 55, Appl
666
          3
              10.7
                        28
                           1
                               US-07-690-300B-56
                                                           Sequence 56, Appl
          3
              10.7
667
                        28
                           1
                               US-07-690-300B-63
                                                           Sequence 63, Appl
          3
668
              10.7
                        28
                            1
                               US-07-690-300B-64
                                                           Sequence 64, Appl
          3
              10.7
669
                        28
                            1
                               US-07-690-300B-68
                                                           Sequence 68, Appl
670
          3
              10.7
                        28
                           1
                               US-07-690-300B-71
                                                           Sequence 71, Appl
          3
              10.7
                                                           Sequence 78, Appl
671
                        28
                            1
                               US-07-690-300B-78
672
          3
              10.7
                        28
                            1
                               US-07-690-300B-79
                                                           Sequence 79, Appl
          3
673
              10.7
                        28
                           1
                               US-07-690-300B-82
                                                           Sequence 82, Appl
          3
674
              10.7
                        28
                           1
                               US-07-690-300B-88
                                                           Sequence 88, Appl
          3
675
              10.7
                        28
                           1
                               US-07-690-300B-91
                                                           Sequence 91, Appl
676
          3
              10.7
                        28
                           1
                               US-07-690-300B-93
                                                           Sequence 93, Appl
677
          3
              10.7
                        28
                           1
                               US-07-663-413-29
                                                           Sequence 29, Appl
678
          3
              10.7
                        28
                           1
                               US-07-676-987A-1
                                                           Sequence 1, Appli
679
          3
              10.7
                        28
                            1
                               US-07-676-987A-2
                                                           Sequence 2, Appli
680
          3
              10.7
                        28
                           1
                               US-07-833-468-1
                                                           Sequence 1, Appli
          3
681
              10.7
                        28
                           1
                               US-08-052-681-10
                                                           Sequence 10, Appl
          3
682
              10.7
                        28
                           1
                               US-07-789-344A-11
                                                           Sequence 11, Appl
683
          3
              10.7
                        28
                           1
                               US-07-868-906-1
                                                           Sequence 1, Appli
          3
684
              10.7
                        28
                           1
                               US-08-201-092-1
                                                           Sequence 1, Appli
          3
              10.7
685
                        28
                           1
                               US-08-201-092-2
                                                           Sequence 2, Appli
          3
              10.7
686
                        28
                            1
                               US-08-055-530-29
                                                           Sequence 29, Appl
687
          3
              10.7
                        28
                            1
                               US-08-122-578-1
                                                           Sequence 1, Appli
688
          3
              10.7
                        28
                           1
                               US-08-032-848C-1
                                                           Sequence 1, Appli
689
          3
                        28
              10.7
                           1
                               US-07-966-187-2
                                                           Sequence 2, Appli
          3
690
              10.7
                        28
                           1
                               US-08-255-558B-6
                                                           Sequence 6, Appli
691
          3
              10.7
                        28
                           1
                               US-07-924-054-11
                                                           Sequence 11, Appl
692
          3
              10.7
                        28
                           1
                               US-08-243-082-1
                                                           Sequence 1, Appli
          3
693
              10.7
                        28
                                                           Sequence 4, Appli
                           1
                               US-08-246-572-4
694
          3
              10.7
                        28
                            1
                               US-08-246-572-5
                                                           Sequence 5, Appli
695
              10.7
                        28
                            1
                               US-08-190-802A-84
                                                           Sequence 84, Appl
```

```
Sequence 1, Appli
696
          3
               10.7
                        28
                                US-08-361-443-1
697
          3
               10.7
                        28
                             1
                                                             Sequence 12, Appl
                                US-08-311-611A-12
          3
                        28
                            1
                                US-08-311-611A-56
                                                             Sequence 56, Appl
698
               10.7
                        28
                                                             Sequence 193, App
699
          3
               10.7
                            1
                                US-08-311-611A-193
700
          3
               10.7
                        28
                             1
                                US-08-311-611A-194
                                                             Sequence 194, App
                                                             Sequence 195, App
                        28
701
          3
               10.7
                                US-08-311-611A-195
                                                             Sequence 196, App
702
          3
               10.7
                        28
                             1
                                US-08-311-611A-196
703
          3
               10.7
                        28
                             1
                                US-07-938-782A-8
                                                             Sequence 8, Appli
704
          3
               10.7
                        28
                             1
                                US-07-949-797B-1
                                                             Sequence 1, Appli
705
          3
               10.7
                        28
                            1
                                US-08-194-591-1
                                                             Sequence 1, Appli
706
          3
               10.7
                        28
                            1
                                US-08-194-591-2
                                                             Sequence 2, Appli
707
          3
               10.7
                        28
                            1
                                US-08-372-783-12
                                                             Sequence 12, Appl
708
          3
               10.7
                        28
                                US-08-372-783-56
                                                             Sequence 56, Appl
          3
               10.7
                                US-08-372-783-193
                                                             Sequence 193, App
709
                        28
                             1
          3
                                                             Sequence 194, App
710
               10.7
                         28
                             1
                                US-08-372-783-194
          3
711
               10.7
                         28
                             1
                                US-08-372-783-195
                                                             Sequence 195, App
          3
               10.7
                         28
                             1
                                                             Sequence 196, App
712
                                US-08-372-783-196
          3
                         28
                             1
                                US-07-794-288D-7
                                                             Sequence 7, Appli
713
               10.7
714
          3
               10.7
                         28
                             1
                                US-07-794-288D-65
                                                             Sequence 65, Appl
715
          3
               10.7
                         28
                                US-07-794-288D-103
                                                             Sequence 103, App
716
          3
               10.7
                         28
                             1
                                US-07-977-630-42
                                                             Sequence 42, Appl
717
          3
               10.7
                         28
                                US-07-977-630-45
                                                             Sequence 45, Appl
                             1
718
          3
               10.7
                         28
                             1
                                US-07-977-630-47
                                                             Sequence 47, Appl
719
          3
               10.7
                         28
                             1
                                US-08-288-681A-1
                                                             Sequence 1, Appli
720
          3
               10.7
                         28
                             1
                                US-08-366-591-12
                                                             Sequence 12, Appl
           3
               10.7
                         28
                            1
                                                             Sequence 26, Appl
721
                                US-07-776-272-26
722
           3
               10.7
                         28
                             1
                                US-08-372-105-12
                                                             Sequence 12, Appl
723
          3
               10.7
                         28
                             1
                                US-08-372-105-56
                                                             Sequence 56, Appl
724
           3
               10.7
                         28
                             1
                                US-08-372-105-193
                                                             Sequence 193, App
725
           3
               10.7
                         28
                             1
                                US-08-372-105-194
                                                             Sequence 194, App
726
           3
               10.7
                         28
                             1
                                US-08-372-105-195
                                                             Sequence 195, App
727
           3
               10.7
                         28
                             1
                                US-08-372-105-196
                                                             Sequence 196, App
728
           3
               10.7
                         28
                             1
                                US-08-306-473A-12
                                                             Sequence 12, Appl
729
           3
               10.7
                         28
                             1
                                US-08-306-473A-56
                                                              Sequence 56, Appl
730
           3
               10.7
                         28
                             1
                                US-08-306-473A-193
                                                              Sequence 193, App
731
           3
               10.7
                         28
                                US-08-306-473A-194
                                                             Sequence 194, App
                             1
           3
                                                              Sequence 195, App
732
               10.7
                         28
                             1
                                US-08-306-473A-195
733
           3
               10.7
                         28
                             1
                                US-08-306-473A-196
                                                             Sequence 196, App
734
           3
               10.7
                         28
                             1
                                US-08-331-394-19
                                                             Sequence 19, Appl
735
           3
               10.7
                         28
                             1
                                                             Sequence 1, Appli
                                US-08-308-729-1
           3
                         28
                             1
736
               10.7
                                US-08-308-729-2
                                                              Sequence 2, Appli
737
           3
               10.7
                         28
                             1
                                US-08-308-729-3
                                                             Sequence 3, Appli
738
           3
               10.7
                         28
                             1
                                US-08-308-729-4
                                                              Sequence 4, Appli
           3
               10.7
739
                         28
                             1
                                US-08-308-729-5
                                                             Sequence 5, Appli
           3
740
               10.7
                         28
                             1
                                US-08-308-729-6
                                                             Sequence 6, Appli
           3
                             1
                                                             Sequence 7, Appli
741
               10.7
                         28
                                US-08-308-729-7
           3
               10.7
                         28
                             1
742
                                US-08-308-729-8
                                                             Sequence 8, Appli
           3
743
                         28
                             1
               10.7
                                US-08-308-729-9
                                                             Sequence 9, Appli
744
           3
               10.7
                         28
                             1
                                US-08-308-729-10
                                                             Sequence 10, Appl
745
           3
               10.7
                         28
                             1
                                US-08-308-729-11
                                                             Sequence 11, Appl
           3
746
               10.7
                         28
                             1
                                US-08-308-729-12
                                                             Sequence 12, Appl
           3
                                                             Sequence 13, Appl
747
               10.7
                         28
                             1
                                US-08-308-729-13
748
           3
               10.7
                         28
                             1
                                US-08-308-729-14
                                                             Sequence 14, Appl
749
           3
               10.7
                         28
                             1
                                US-08-308-729-15
                                                             Sequence 15, Appl
750
           3
                         28
                             1
                                US-08-308-729-16
               10.7
                                                             Sequence 16, Appl
           3
                         28
                            1
751
               10.7
                                US-08-308-729-17
                                                             Sequence 17, Appl
                         28
                             1
                                US-08-308-729-18
                                                             Sequence 18, Appl
752
               10.7
```

753	3	10.7	28	1	US-08-308-729-19	Sequence 19, Appl
754	3	10.7	28	1	US-08-308-729-20	Sequence 20, Appl
755	3	10.7	28	1	US-08-308-729-21	Sequence 21, Appl
756	3	10.7	28	1	US-08-308-729-22	Sequence 22, Appl
757	3	10.7	28	1	US-08-308-729-23	Sequence 23, Appl
758	3	10.7	28	1	US-08-308-729-24	Sequence 24, Appl
759	3	10.7	28	1	US-08-308-729-25	Sequence 25, Appl
760	3	10.7	28	1	US-08-308-729-26	Sequence 26, Appl
761	3	10.7	28	1	US-08-308-729-27	Sequence 27, Appl
762	3	10.7	28	1	US-08-308-729-28	Sequence 28, Appl
763	3	10.7	28	1	US-08-308-729-29	Sequence 29, Appl
764	3	10.7	28	1	US-08-308-729-31	Sequence 31, Appl
765	3	10.7		1	US-08-308-729-33	Sequence 33, Appl
766	3	10.7		1	US-08-308-729-34	Sequence 34, Appl
767	3	10.7		1	US-08-308-729-35	Sequence 35, Appl
768	3	10.7		1	US-08-308-729-36	Sequence 36, Appl
769	3	10.7		1	US-08-308-729-37	Sequence 37, Appl
770	3	10.7		1	US-08-308-729-38	Sequence 38, Appl
771	3	10.7		1	US-08-308-729-39	Sequence 39, Appl
772	3	10.7		1	US-08-308-729-40	Sequence 40, Appl
773	3	10.7		1	US-08-308-729-41	Sequence 41, Appl
774	3	10.7		1	US-08-308-729-44	Sequence 44, Appl
775	3	10.7		1	US-08-308-729-45	Sequence 45, Appl
776	3	10.7		1	US-08-308-729-46	Sequence 46, Appl
777	3	10.7		1	US-08-308-729-47	Sequence 47, Appl
778	3	10.7		1	US-08-308-729-48	Sequence 48, Appl
779	3	10.7		1	US-08-308-729-49	Sequence 49, Appl
780	3	10.7		1	US-08-308-729-50	Sequence 50, Appl
781	3	10.7		1	US-08-308-729-53	Sequence 53, Appl
782	3	10.7		1	US-08-308-729-54	Sequence 54, Appl
783	3	10.7		1	US-08-308-729-55	Sequence 54, Appl Sequence 55, Appl
78 4	3	10.7		1	US-08-308-729-56	Sequence 55, Appl
785	3	10.7		1	US-08-308-729-57	Sequence 57, Appl
786	3	10.7		1	US-08-308-729-58	Sequence 58, Appl
78 7	3	10.7		1	US-08-308-729-59	Sequence 50, Appl
788	3	10.7		1	US-08-308-729-60	Sequence 60, Appl
789	3	10.7		1	US-08-308-729-61	Sequence 61, Appl
790	3	10.7		1	US-08-308-729-62	Sequence 62, Appl
791	3	10.7		1	US-08-308-729-63	Sequence 62, Appl Sequence 63, Appl
792	3	10.7		1	US-08-308-729-64	Sequence 64, Appl
793	3	10.7		1	US-08-308-729-70	Sequence 84, Appl Sequence 70, Appl
794	3	10.7		1	US-08-308-729-71	Sequence 71, Appl
795	3	10.7		1	US-08-308-729-72	Sequence 71, Appl Sequence 72, Appl
796	3	10.7		1	US-08-308-729-73	Sequence 72, Appl Sequence 73, Appl
797	3	10.7		1	US-08-630-524-8	Sequence 8, Appli
798	3	10.7		1	US-08-062-472B-40	Sequence 40, Appl
799	3	10.7		1	US-08-250-858-19	Sequence 19, Appl
800	3	10.7		1	US-08-171-701A-1	Sequence 1, Appli
801	3	10.7		1	US-08-171-701A-1	Sequence 1, Appli Sequence 2, Appli
802	3	10.7		1	US-08-261-660A-19	Sequence 19, Appl
803	3	10.7		1 1	US-08-741-678-1	Sequence 19, Appl Sequence 1, Appli
804	3	10.7		1	US-08-209-762-12	Sequence 12, Appl
805	3	10.7		1	US-08-209-762-12	Sequence 12, Appl Sequence 56, Appl
806	3	10.7		1	US-08-446-915-19	Sequence 19, Appl
807	3	10.7		1	US-08-438-870-1	Sequence 19, Appl Sequence 1, Appli
808	3	10.7		1	US-08-446-692-3	Sequence 1, Appli Sequence 3, Appli
809	3	10.7		1	US-08-473-344-12	Sequence 12, Appl
009	د	10.7	۱ ۵۵	_	OD-00-4/3-344-TZ	sequence 12, Appl

010	-				TTG 00 100 011 04	
810	3	10.7	28	1	US-08-473-344-56	Sequence 56, Appl
811	3	10.7	28	1	US-08-519-180-2	Sequence 2, Appli
812	3	10.7	28	1	US-08-944-133-4	Sequence 4, Appli
813	3	10.7	28	1	US-08-944-133-8	Sequence 8, Appli
814	3	10.7	28	1	US-08-944-133-22	Sequence 22, Appl
815	3	10.7	28	1	US-08-944-133-27	Sequence 27, Appl
816	3	10.7	28	1	US-08-944-133-39	Sequence 39, Appl
817	3	10.7	28	1	US-08-944-133-43	Sequence 43, Appl
818	3	10.7	28	2	US-08-520-535-25	Sequence 25, Appl
819	3	10.7	28	2	US-08-488-351A-3	
820	3			2		Sequence 3, Appli
		10.7	28		US-08-414-424-1	Sequence 1, Appli
821	3	10.7	28	2	US-08-621-803-30	Sequence 30, Appl
822	3	10.7	28	2	US-08-621-803-139	Sequence 139, App
823	3	10.7	28	2	US-08-621-803-140	Sequence 140, App
824	3	10.7	28	2	US-08-621-803-142	Sequence 142, App
825	3	10.7	28	2	US-08-621-803-143	Sequence 143, App
826	3	10.7	28	2	US-08-485-445A-12	Sequence 12, Appl
827	3	10.7	28	2	US-08-485-445A-56	Sequence 56, Appl
828	3	10.7	28	2	US-08-485-445A-193	Sequence 193, App
829	3	10.7	28	2	US-08-485-445A-194	Sequence 194, App
830	3	10.7	28	2	US-08-485-445A-195	Sequence 195, App
831	3	10.7	28	2	US-08-485-445A-196	Sequence 196, App
832	3	10.7	28	2	US-08-621-259A-5	
833	3	10.7	28	2		Sequence 5, Appli
					US-08-621-259A-110	Sequence 110, App
834	3	10.7	28	2	US-08-621-259A-111	Sequence 111, App
835	3	10.7	28	2	US-08-621-259A-113	Sequence 113, App
836	3	10.7	28	2	US-08-621-259A-114	Sequence 114, App
837	3	10.7	28	2	US-08-449-933-9	Sequence 9, Appli
838	3	10.7	28	2	US-08-744-139-19	Sequence 19, Appl
839	3	10.7	28	2	US-08-598-873-43	Sequence 43, Appl
840	3	10.7	28	2	US-08-620-151-129	Sequence 129, App
841	3	10.7	28	2	US-08-398-590A-43	Sequence 43, Appl
842	3	10.7	28	2	US-08-821-619 - 10	Sequence 10, Appl
843	3	10.7	28	2	US-08-635-007-8	Sequence 8, Appli
844	3	10.7	28	2	US-09-079-432-25	Sequence 25, Appl
845	3	10.7	28	2	US-08-859-106A-8	Sequence 8, Appli
846	3	10.7	28	2	US-08-833-377-11	
847	3	10.7				Sequence 11, Appl
			28	2	US-08-031-538-48	Sequence 48, Appl
848	3	10.7	28	2	US-08-413-708B-1	Sequence 1, Appli
849	3	10.7	28	2	US-08-413-708B-2	Sequence 2, Appli
850	3	10.7	28	2	US-08-413-708B-8	Sequence 8, Appli
851	3	10.7	28	2	US-08-563-892A-4	Sequence 4, Appli
852	3	10.7	28	2	US-08-691-814B-73	Sequence 73, Appl
853	3	10.7	28	2	US-08-818-253-37	Sequence 37, Appl
854	3	10.7	28	2	US-08-897-624-1	Sequence 1, Appli
855	3	10.7	28	2	US-08-897-624-2	Sequence 2, Appli
856	3	10.7	28	3	US-09-110-953-8	Sequence 8, Appli
857	3	10.7	28	3	US-08-930-845-1	Sequence 1, Appli
858	3	10.7	28	3	US-08-486-099-84	Sequence 84, Appl
859	3	10.7	28	3	US-08-486-099-136	Sequence 136, App
860	3	10.7	28	3	US-08-433-522A-34	Sequence 34, Appl
861	3	10.7	28	3	US-08-360-107A-94	
862	3					Sequence 94, Appl
863		10.7	28	3	US-08-788-231A-18	Sequence 18, Appl
	3	10.7	28	3	US-08-484-223B-84	Sequence 84, Appl
864	3	10.7	28	3	US-08-484-223B-136	Sequence 136, App
865	3	10.7	28	3	US-09-100-414B-38	Sequence 38, Appl
866	3	10.7	28	3	US-08-665-259-18	Sequence 18, Appl

```
867
          3
               10.7
                                US-08-762-500-18
                         28
                                                              Sequence 18, Appl
               10.7
                                                              Sequence 1, Appli
868
          3
                         28
                             3
                                US-08-952-568-1
                                                              Sequence 3, Appli
869
          3
               10.7
                         28
                             3
                                US-08-952-568-3
870
          3
               10.7
                         28
                             3
                                US-08-952-568-4
                                                              Sequence 4, Appli
               10.7
871
          3
                         28
                             3
                                US-08-952-568-5
                                                              Sequence 5, Appli
          3
                         28
872
               10.7
                             3
                                US-08-952-568-6
                                                              Sequence 6, Appli
873
           3
               10.7
                         28
                                US-08-952-568-10
                                                              Sequence 10, Appl
874
          3
               10.7
                         28
                             3
                                US-08-952-568-11
                                                              Sequence 11, Appl
               10.7
875
          3
                         28
                                                              Sequence 12, Appl
                             3
                                US-08-952-568-12
876
           3
               10.7
                         28
                             3
                                US-08-952-568-13
                                                              Sequence 13, Appl
877
           3
               10.7
                         28
                             3
                                US-08-952-568-14
                                                              Sequence 14, Appl
878
           3
               10.7
                         28
                             3
                                US-08-256-747C-50
                                                              Sequence 50, Appl
               10.7
           3
                             3
879
                         28
                                US-08-919-597-84
                                                              Sequence 84, Appl
           3
                                                              Sequence 136, App
880
               10.7
                         28
                             3
                                US-08-919-597-136
                                US-09-119-263-12
881
           3
               10.7
                         28
                             3
                                                              Sequence 12, Appl
882
           3
               10.7
                         28
                             3
                                US-09-119-263-56
                                                              Sequence 56, Appl
           3
               10.7
883
                         28
                             3
                                US-09-119-263-193
                                                              Sequence 193, App
884
           3
               10.7
                         28
                             3
                                US-09-119-263-194
                                                              Sequence 194, App
885
           3
               10.7
                         28
                             3
                                US-09-119-263-195
                                                              Sequence 195, App
           3
886
               10.7
                         28
                             3
                                US-09-119-263-196
                                                              Sequence 196, App
           3
887
               10.7
                         28
                             3
                                US-08-475-668A-84
                                                              Sequence 84, Appl
888
           3
               10.7
                         28
                             3
                                US-08-475-668A-136
                                                              Sequence 136, App
889
           3
               10.7
                         28
                                US-09-192-048-21
                             3
                                                              Sequence 21, Appl
890
           3
               10.7
                         28
                             3
                                US-08-485-551A-84
                                                              Sequence 84, Appl
                                                              Sequence 136, App
891
           3
               10.7
                         28
                             3
                                US-08-485-551A-136
                                                              Sequence 6, Appli
892
           3
               10.7
                         28
                             3
                                US-08-838-413A-6
           3
               10.7
893
                         28
                             3
                                US-09-135-166-34
                                                              Sequence 34, Appl
           3
                             3
894
               10.7
                         28
                                US-08-471-913A-84
                                                              Sequence 84, Appl
           3
                             3
895
               10.7
                         28
                                US-08-471-913A-136
                                                              Sequence 136, App
896
           3
               10.7
                         28
                             3
                                US-08-908-643C-43
                                                              Sequence 43, Appl
           3
               10.7
897
                         28
                             3
                                US-08-405-647B-39
                                                              Sequence 39, Appl
                                                              Sequence 2, Appli
898
           3
               10.7
                         28
                             3
                                US-08-893-749-2
899
           3
               10.7
                             3
                         28
                                US-08-893-749-3
                                                              Sequence 3, Appli
900
           3
                         28
                             3
               10.7
                                US-08-893-749-32
                                                              Sequence 32, Appl
           3
901
               10.7
                         28
                             3
                                US-08-657-162-12
                                                              Sequence 12, Appl
902
           3
               10.7
                         28
                             3
                                US-08-657-162-56
                                                              Sequence 56, Appl
903
           3
               10.7
                         28
                             3
                                US-08-657-162-193
                                                              Sequence 193, App
904
           3
               10.7
                         28
                             3
                                US-08-657-162-194
                                                              Sequence 194, App
905
           3
               10.7
                         28
                             3
                                US-08-657-162-195
                                                              Sequence 195, App
906
           3
               10.7
                         28
                             3
                                US-08-657-162-196
                                                              Sequence 196, App
907
           3
               10.7
                         28
                             3
                                US-09-433-428D-62
                                                              Sequence 62, Appl
           3
                             3
                                                              Sequence 15, Appl
908
               10.7
                         28
                                US-08-679-006-15
           3
909
               10.7
                         28
                             3
                                US-09-224-480-12
                                                              Sequence 12, Appl
           3
910
               10.7
                         28
                             3
                                US-09-224-480-56
                                                              Sequence 56, Appl
           3
               10.7
911
                         28
                             3
                                US-09-224-480-193
                                                              Sequence 193, App
912
           3
               10.7
                         28
                             3
                                US-09-224-480-194
                                                              Sequence 194, App
                                                              Sequence 195, App
913
           3
               10.7
                         28
                             3
                                US-09-224-480-195
           3
                                                              Sequence 196, App
914
               10.7
                         28
                             3
                                US-09-224-480-196
               10.7
915
           3
                         28
                             3
                                US-08-974-549A-166
                                                              Sequence 166, App
916
           3
               10.7
                         28
                             3
                                US-08-392-542-22
                                                              Sequence 22, Appl
917
           3
               10.7
                         28
                             3
                                US-08-819-286-29
                                                              Sequence 29, Appl
918
           3
               10.7
                         28
                             3
                                US-08-834-130A-50
                                                              Sequence 50, Appl
919
           3
               10.7
                         28
                             3
                                US-08-448-398-12
                                                              Sequence 12, Appl
920
           3
               10.7
                         28
                             3
                                US-08-985-499-39
                                                              Sequence 39, Appl
                                                              Sequence 37, Appl
921
           3
               10.7
                         28
                             3
                                US-08-818-252-37
                                US-08-363-558-1
                                                              Sequence 1, Appli
922
           3
               10.7
                         28
                             3
                                US-09-066-046-19
923
           3
               10.7
                         28
                             3
                                                              Sequence 19, Appl
```

```
924
               10.7
                         28
                             3
                                US-09-253-396A-223
                                                              Sequence 223, App
925
           3
               10.7
                         28
                                US-09-107-991-12
                                                              Sequence 12, Appl
                             3
           3
926
                         28
               10.7
                             3
                                US-09-093-539-12
                                                              Sequence 12, Appl
927
           3
               10.7
                         28
                             3
                                                              Sequence 56, Appl
                                US-09-093-539-56
928
           3
               10.7
                         28
                             3
                                US-08-485-264A-84
                                                              Sequence 84, Appl
           3
                         28
929
               10.7
                             3
                                US-08-485-264A-136
                                                              Sequence 136, App
           3
930
               10.7
                         28
                                US-09-303-323-38
                                                              Sequence 38, Appl
931
           3
               10.7
                         28
                             3
                                US-09-041-886-36
                                                              Sequence 36, Appl
932
           3
               10.7
                         28
                             3
                                US-09-041-886-37
                                                              Sequence 37, Appl
933
           3
               10.7
                         28
                             3
                                US-09-041-886-38
                                                              Sequence 38, Appl
                                                              Sequence 39, Appl
934
           3
               10.7
                         28
                             3
                                US-09-041-886-39
935
           3
               10.7
                         28
                             3
                                US-09-041-886-40
                                                              Sequence 40, Appl
           3
                         28
936
               10.7
                             3
                                US-09-041-886-42
                                                              Sequence 42, Appl
937
           3
                         28
               10.7
                             3
                                US-09-041-886-47
                                                              Sequence 47, Appl
938
           3
                         28
               10.7
                             3
                                US-09-041-886-50
                                                              Sequence 50, Appl
939
           3
               10.7
                         28
                             3
                                US-09-041-886-53
                                                              Sequence 53, Appl
940
           3
               10.7
                         28
                             3
                                                              Sequence 54, Appl
                                US-09-041-886-54
941
           3
               10.7
                         28
                             3
                                US-09-041-886-56
                                                              Sequence 56, Appl
942
           3
               10.7
                         28
                             3
                                US-09-127-680-2
                                                              Sequence 2, Appli
           3
943
                         28
               10.7
                             3
                                US-07-966-049A-9
                                                              Sequence 9, Appli
944
           3
                         28
               10.7
                                US-08-995-369-1
                                                              Sequence 1, Appli
945
           3
               10.7
                         28
                                                              Sequence 1, Appli
                             3
                                US-09-171-654-1
946
           3
               10.7
                         28
                             3
                                US-08-605-430-43
                                                              Sequence 43, Appl
947
           3
                         28
               10.7
                             3
                                US-08-894-327-22
                                                              Sequence 22, Appl
           3
948
               10.7
                         28
                             3
                                US-09-082-279B-54
                                                              Sequence 54, Appl
949
           3
                         28
               10.7
                             3
                                US-09-082-279B-62
                                                              Sequence 62, Appl
950
           3
                         28
                             3
               10.7
                                US-09-082-279B-1279
                                                              Sequence 1279, Ap
951
           3
                         28
               10.7
                             3
                                US-09-082-279B-1280
                                                              Sequence 1280, Ap
952
           3
               10.7
                         28
                             3
                                US-09-082-279B-1314
                                                              Sequence 1314, Ap
953
           3
               10.7
                         28
                             3
                                US-09-082-279B-1315
                                                              Sequence 1315, Ap
954
           3
                         28
               10.7
                             3
                                US-08-477-346-84
                                                              Sequence 84, Appl
955
           3
               10.7
                         28
                             3
                                US-08-942-046-34
                                                              Sequence 34, Appl
956
           3
                         28
               10.7
                             3
                                US-08-894-997-43
                                                              Sequence 43, Appl
957
           3
                         28
               10.7
                             3
                                US-09-217-352-30
                                                              Sequence 30, Appl
958
           3
               10.7
                         28
                             3
                                US-09-217-352-139
                                                              Sequence 139, App
959
           3
               10.7
                         28
                                US-09-217-352-140
                                                              Sequence 140, App
960
           3
               10.7
                         28
                             3
                                US-09-217-352-142
                                                              Sequence 142, App
               10.7
961
           3
                         28
                             3
                                US-09-217-352-143
                                                              Sequence 143, App
           3
962
               10.7
                         28
                             3
                                US-09-019-095A-34
                                                              Sequence 34, Appl
           3
963
               10.7
                         28
                                                              Sequence 16, Appl
                             4
                                US-09-260-846-16
964
           3
               10.7
                         28
                             4
                                US-08-474-349A-84
                                                              Sequence 84, Appl
965
           3
               10.7
                         28
                             4
                                US-08-474-349A-136
                                                              Sequence 136, App
           3
966
                         28
               10.7
                             4
                                US-09-099-041A-19
                                                              Sequence 19, Appl
967
           3
               10.7
                         28
                             4
                                US-09-099-041A-23
                                                              Sequence 23, Appl
968
           3
               10.7
                         28
                             4
                                US-09-187-789-23
                                                              Sequence 23, Appl
               10.7
969
          3
                         28
                             4
                                US-08-473-089-84
                                                              Sequence 84, Appl
970
          3
               10.7
                         28
                             4
                                US-09-227-357-481
                                                              Sequence 481, App
971
           3
               10.7
                         28
                             4
                                US-09-315-304B-54
                                                              Sequence 54, Appl
972
           3
                         28
               10.7
                             4
                                US-09-315-304B-62
                                                              Sequence 62, Appl
973
          3
               10.7
                         28
                                US-09-315-304B-1279
                                                              Sequence 1279, Ap
974
          3
               10.7
                         28
                                US-09-315-304B-1280
                                                              Sequence 1280, Ap
975
          3
               10.7
                         28
                             4
                                US-09-315-304B-1314
                                                              Sequence 1314, Ap
976
          3 -
               10.7
                         28
                             4
                                US-09-315-304B-1315
                                                              Sequence 1315, Ap
977
          3
               10.7
                         28
                             4
                                US-09-432-879-8
                                                              Sequence 8, Appli
978
          3
               10.7
                         28
                             4
                                US-08-979-608A-26
                                                              Sequence 26, Appl
979
          3
               10.7
                         28
                             4
                                US-09-245-281-19
                                                              Sequence 19, Appl
980
          3
                             4
               10.7
                         28
                                US-09-245-281-23
                                                              Sequence 23, Appl
```

```
981
              10.7
                       28 4 US-08-842-322-31
                                                         Sequence 31, Appl
 982
          3
              10.7
                       28 4
                              US-09-280-909A-19
                                                         Sequence 19, Appl
 983
          3
              10.7
                       28 4
                              US-09-333-842-1
                                                         Sequence 1, Appli
 984
          3
              10.7
                       28
                          4 US-09-685-027-22
                                                         Sequence 22, Appl
 985
                       28 4 US-08-487-072A-84
          3
              10.7
                                                         Sequence 84, Appl
 986
          3
             10.7
                       28 4 US-09-446-352B-1
                                                         Sequence 1, Appli
 987
          3
              10.7
                       28 4 US-09-139-600-18
                                                         Sequence 18, Appl
                       28 4 US-09-288-143-131
 988
          3
              10.7
                                                         Sequence 131, App
                       28 4 US-08-255-208A-20
 989
          3
              10.7
                                                         Sequence 20, Appl
 990
          3
              10.7
                       28
                          4 US-09-101-751A-28
                                                         Sequence 28, Appl
 991
          3
              10.7
                       28
                          4 US-09-207-359B-19
                                                         Sequence 19, Appl
 992
             10.7
                       28 4 US-09-207-359B-23
          3
                                                         Sequence 23, Appl
             10.7
 993
          3
                       28 4 US-09-316-919-53
                                                         Sequence 53, Appl
 994
          3
             10.7
                       28 4 US-09-489-847-264
                                                         Sequence 264, App
                       28 4 US-08-470-896-84
 995
          3
             10.7
                                                         Sequence 84, Appl
                       28 4 US-08-470-896-136
 996
          3
             10.7
                                                         Sequence 136, App
                       28 4 US-09-340-620A-19
 997
              10.7
                                                         Sequence 19, Appl
          3
 998
          3
              10.7
                       28 4 US-09-340-620A-23
                                                         Sequence 23, Appl
 999
          3
              10.7
                       28 4 US-09-630-335-1
                                                         Sequence 1, Appli
1000
              10.7
                       28 4 US-09-630-335-2
                                                         Sequence 2, Appli
```

ALIGNMENTS

RESULT 1

```
US-09-448-867-12
; Sequence 12, Application US/09448867
; Patent No. 6417333
; GENERAL INFORMATION:
  APPLICANT: BRINGHURST, F. RICHARD
  APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J
  APPLICANT: POTTS JR., JOHN T.
  TITLE OF INVENTION: HUMAN PARATHYROID HORMONE MODIFICATIONS, PREPARATION
  TITLE OF INVENTION: AND USE
  FILE REFERENCE: 0609.4640001
  CURRENT APPLICATION NUMBER: US/09/448,867
  CURRENT FILING DATE: 1999-11-24
  EARLIER APPLICATION NUMBER: 60/109,938
  EARLIER FILING DATE: 1998-11-25
  NUMBER OF SEQ ID NOS: 13
  SOFTWARE: PatentIn Ver. 2.1
; SEO ID NO 12
   LENGTH: 28
   TYPE: PRT
    ORGANISM: Homo sapiens
US-09-448-867-12
  Query Match
                         100.0%; Score 28; DB 4; Length 28;
  Best Local Similarity
                         100.0%; Pred. No. 1.4e-20;
 Matches
           28; Conservative
                                0; Mismatches
                                                 0;
                                                     Indels
                                                               0; Gaps
                                                                           0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
              Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
```

```
RESULT 2
US-08-262-495C-5
; Sequence 5, Application US/08262495C
; Patent No. 5556940
  GENERAL INFORMATION:
    APPLICANT: WILLICK, Gordon E.
    APPLICANT: WHITFIELD, James F.
    APPLICANT: SUREWICZ, Witold
    APPLICANT:
               SUNG, Wing L.
    APPLICANT: NEUGENBAUER, Witold
    TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 6
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Kirby, Eades, Gale, Baker
      STREET: 112 Kent Street, Suite 770,
      CITY: Ottawa
      COUNTRY: Canada
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC Compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: Wordperfect 5.1
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/262,495C
      FILING DATE:
      CLASSIFICATION: 530
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER:
      FILING DATE:
      CLASSIFICATION: 530
    ATTORNEY/AGENT INFORMATION:
      NAME: EADES, No. 5556940ris M.
      REGISTRATION NUMBER: 5,263
      REFERENCE/DOCKET NUMBER: 36210
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (613)-237-6900
      TELEFAX: (613)-237-0045
  INFORMATION FOR SEQ ID NO:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 30 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
US-08-262-495C-5
 Query Match
                         100.0%; Score 28; DB 1; Length 30;
 Best Local Similarity 100.0%; Pred. No. 1.4e-20;
 Matches
          28; Conservative
                              0; Mismatches 0; Indels
                                                              0; Gaps
                                                                          0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
```

```
US-08-262-495C-3
; Sequence 3, Application US/08262495C
; Patent No. 5556940
  GENERAL INFORMATION:
    APPLICANT: WILLICK, Gordon E.
    APPLICANT: WHITFIELD, James F.
    APPLICANT: SUREWICZ, Witold
    APPLICANT: SUNG, Wing L.
    APPLICANT: NEUGENBAUER, Witold
    TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 6
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Kirby, Eades, Gale, Baker
      STREET: 112 Kent Street, Suite 770,
      CITY: Ottawa
      COUNTRY: Canada
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC Compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: Wordperfect 5.1
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/262,495C
      FILING DATE:
      CLASSIFICATION: 530
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER:
      FILING DATE:
      CLASSIFICATION: 530
    ATTORNEY/AGENT INFORMATION:
      NAME: EADES, No. 5556940ris M.
      REGISTRATION NUMBER: 5,263
      REFERENCE/DOCKET NUMBER: 36210
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (613) -237-6900
      TELEFAX: (613) -237-0045
  INFORMATION FOR SEQ ID NO:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 31 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
US-08-262-495C-3
 Query Match
                         100.0%; Score 28; DB 1; Length 31;
 Best Local Similarity 100.0%; Pred. No. 1.5e-20;
 Matches
          28; Conservative
                             0; Mismatches 0; Indels
                                                              0; Gaps
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
QУ
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 4
```

US-08-691-647C-1

; Sequence 1, Application US/08691647C

```
; Patent No. 5955425
  GENERAL INFORMATION:
    APPLICANT: Barbier, Jean-Rene
    APPLICANT: Morley, Paul
    APPLICANT: Neugebauer, Witold
    APPLICANT: Ross, Virginia
    APPLICANT: Whitfield, James
    APPLICANT: Willick, Gordon E.
    TITLE OF INVENTION: CYCLIC PARATHYROID HORMONE ANALOGUES TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
   NUMBER OF SEQUENCES: 6
   CORRESPONDENCE ADDRESS:
      ADDRESSEE: NIXON & VANDERHYE, P.C.
      STREET: 1100 New York Avenue, 8th Floor
      CITY: Arlington
      STATE: Virginia
      COUNTRY: U.S.A.
       ZIP: 22201-4714
     COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
ï
       SOFTWARE: ASCII Text
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/691,647C
       FILING DATE: August 2, 1996
       CLASSIFICATION: 514
    ATTORNEY/AGENT INFORMATION:
      NAME: Crawford, Arthur R.
       REGISTRATION NUMBER: 25,327
       REFERENCE/DOCKET NUMBER: 1339-5
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: (703) 816-4005
       TELEFAX: (703) 816-4100
       TELEX: N/A
   INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
;
       LENGTH: 31 amino acids
       TYPE: amino acid
       TOPOLOGY: linear
     MOLECULE TYPE: protein
US-08-691-647C-1
 Query Match 100.0%; Score 28; DB 2; Length 31; Best Local Similarity 100.0%; Pred. No. 1.5e-20;
          28; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
QУ
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 5
US-08-691-647C-6
; Sequence 6, Application US/08691647C
; Patent No. 5955425
; GENERAL INFORMATION:
```

```
APPLICANT:
                Barbier, Jean-Rene
    APPLICANT:
                Morley, Paul
    APPLICANT:
                Neugebauer, Witold
    APPLICANT: Ross, Virginia
    APPLICANT:
                Whitfield, James
    APPLICANT: Willick, Gordon E.
    TITLE OF INVENTION: CYCLIC PARATHYROID HORMONE ANALOGUES TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 6
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: NIXON & VANDERHYE, P.C.
      STREET: 1100 New York Avenue, 8th Floor
      CITY: Arlington
      STATE: Virginia
      COUNTRY: U.S.A.
      ZIP: 22201-4714
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: ASCII Text
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/691,647C
       FILING DATE: August 2, 1996
       CLASSIFICATION: 514
    ATTORNEY/AGENT INFORMATION:
       NAME: Crawford, Arthur R.
       REGISTRATION NUMBER: 25,327
       REFERENCE/DOCKET NUMBER: 1339-5
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: (703) 816-4005
       TELEFAX: (703) 816-4100
       TELEX: N/A
  INFORMATION FOR SEQ ID NO: 6:
    SEQUENCE CHARACTERISTICS:
       LENGTH: 31 amino acids
       TYPE: amino acid
       TOPOLOGY: cyclic
    MOLECULE TYPE: protein
US-08-691-647C-6
                          100.0%; Score 28; DB 2; Length 31;
  Query Match
                          100.0%; Pred. No. 1.5e-20;
  Best Local Similarity
                               0; Mismatches 0; Indels
                                                                  0; Gaps
 Matches 28; Conservative
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              11111111111111111111111111111111
Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 6
US-08-904-760B-1
; Sequence 1, Application US/08904760B
; Patent No. 6110892
  GENERAL INFORMATION:
    APPLICANT: Jean-Rene, Barbier
     APPLICANT: Neugebauer, Witold
```

```
APPLICANT: Ross, Virginia
     APPLICANT: Whitfield, James
     APPLICANT: Willick, Gordon E.
     TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE
     TITLE OF INVENTION: TREATMENT OF OSTEOPOROSIS
     NUMBER OF SEQUENCES: 35
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: NIXON & VANDERHYE P.C.
       STREET: 1100 No. 6110892th Glebe Rd. 8th floor
       CITY: Arlington
       STATE: VA
       COUNTRY: USA
       ZIP: 22201-4741
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.30
     CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/904,760B
       FILING DATE: 01-AUG-1997
       CLASSIFICATION: 514
     PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/691,647
       FILING DATE: 02-AUG-1996
    ATTORNEY/AGENT INFORMATION:
      NAME: Crawford, Arthur R.
       REGISTRATION NUMBER: 25,327
       REFERENCE/DOCKET NUMBER: 1339-6
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: 703-816-4000
       TELEFAX: 703-816-4100
   INFORMATION FOR SEO ID NO: 1:
     SEQUENCE CHARACTERISTICS:
      LENGTH: 31 amino acids
       TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: linear
    MOLECULE TYPE: protein
US-08-904-760B-1
  Query Match
                         100.0%; Score 28; DB 3; Length 31;
  Best Local Similarity 100.0%; Pred. No. 1.5e-20;
 Matches
          28; Conservative
                               0; Mismatches
                                                0; Indels
                                                                    Gaps
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              11111111111111111111111111111
Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 7
US-08-904-760B-6
; Sequence 6, Application US/08904760B
; Patent No. 6110892
  GENERAL INFORMATION:
    APPLICANT: Jean-Rene, Barbier
    APPLICANT: Neugebauer, Witold
```

```
APPLICANT: Ross, Virginia
    APPLICANT: Whitfield, James
    APPLICANT: Willick, Gordon E.
     TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE
     TITLE OF INVENTION: TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 35
     CORRESPONDENCE ADDRESS:
      ADDRESSEE: NIXON & VANDERHYE P.C.
      STREET: 1100 No. 6110892th Glebe Rd. 8th floor
      CITY: Arlington
      STATE: VA
      COUNTRY: USA
      ZIP: 22201-4741
     COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
     CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/904,760B
      FILING DATE: 01-AUG-1997
      CLASSIFICATION: 514
     PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/691,647
      FILING DATE: 02-AUG-1996
    ATTORNEY/AGENT INFORMATION:
      NAME: Crawford, Arthur R.
      REGISTRATION NUMBER: 25,327
      REFERENCE/DOCKET NUMBER: 1339-6
     TELECOMMUNICATION INFORMATION:
      TELEPHONE: 703-816-4000
      TELEFAX: 703-816-4100
   INFORMATION FOR SEQ ID NO: 6:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 31 amino acids
      TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: circular
    MOLECULE TYPE: protein
    FEATURE:
      OTHER INFORMATION: cyclo Lys27-Asp30, and this sequence
      OTHER INFORMATION: has an amino group c-terminus (NH2).
US-08-904-760B-6
  Query Match
                         100.0%; Score 28; DB 3; Length 31;
  Best Local Similarity
                         100.0%; Pred. No. 1.5e-20;
           28; Conservative 0; Mismatches 0; Indels
 Matches
                                                               0; Gaps
                                                                           0;
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
QУ
              111111111111111
           1 SVSEIOLMHNLGKHLNSMERVEWLRKKL 28
RESULT 8
US-08-904-760B-14
```

; Sequence 14, Application US/08904760B

; Patent No. 6110892

```
GENERAL INFORMATION:
    APPLICANT: Jean-Rene, Barbier
    APPLICANT: Neugebauer, Witold
    APPLICANT: Ross, Virginia
    APPLICANT: Whitfield, James
    APPLICANT: Willick, Gordon E.
    TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE TITLE OF INVENTION: TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 35
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: NIXON & VANDERHYE P.C.
      STREET: 1100 No. 6110892th Glebe Rd. 8th floor
      CITY: Arlington
      STATE: VA
      COUNTRY: USA
      ZIP: 22201-4741
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/904,760B
      FILING DATE: 01-AUG-1997
      CLASSIFICATION: 514
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/691,647
      FILING DATE: 02-AUG-1996
    ATTORNEY/AGENT INFORMATION:
      NAME: Crawford, Arthur R.
      REGISTRATION NUMBER: 25,327
      REFERENCE/DOCKET NUMBER: 1339-6
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 703-816-4000
      TELEFAX: 703-816-4100
  INFORMATION FOR SEQ ID NO:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 31 amino acids
      TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: circular
    MOLECULE TYPE: protein
    FEATURE:
      OTHER INFORMATION: cyclo Glu22-Lys26, and this sequence
      OTHER INFORMATION: has an amino group c-terminus (NH2).
US-08-904-760B-14
                         100.0%; Score 28; DB 3; Length 31;
  Query Match
                         100.0%; Pred. No. 1.5e-20;
  Best Local Similarity
          28; Conservative 0; Mismatches 0; Indels
                                                                0: Gaps
  Matches
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
```

```
US-08-904-760B-32
; Sequence 32, Application US/08904760B
 Patent No. 6110892
  GENERAL INFORMATION:
    APPLICANT: Jean-Rene, Barbier
    APPLICANT: Neugebauer, Witold
    APPLICANT: Ross, Virginia
    APPLICANT: Whitfield, James
    APPLICANT: Willick, Gordon E.
    TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE
    TITLE OF INVENTION: TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 35
     CORRESPONDENCE ADDRESS:
      ADDRESSEE: NIXON & VANDERHYE P.C.
      STREET: 1100 No. 6110892th Glebe Rd. 8th floor
      CITY: Arlington
      STATE: VA
      COUNTRY: USA
       ZIP: 22201-4741
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.30
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/08/904,760B
       FILING DATE: 01-AUG-1997
       CLASSIFICATION: 514
     PRIOR APPLICATION DATA:
       APPLICATION NUMBER: 08/691,647
       FILING DATE: 02-AUG-1996
     ATTORNEY/AGENT INFORMATION:
       NAME: Crawford, Arthur R.
       REGISTRATION NUMBER: 25,327
       REFERENCE/DOCKET NUMBER: 1339-6
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: 703-816-4000
       TELEFAX: 703-816-4100
   INFORMATION FOR SEQ ID NO:
                              32:
     SEOUENCE CHARACTERISTICS:
       LENGTH: 31 amino acids
       TYPE: amino acid
       STRANDEDNESS:
       TOPOLOGY: linear
     MOLECULE TYPE: protein
     FEATURE:
       OTHER INFORMATION: This sequence has an amino group
       OTHER INFORMATION: c-terminus (NH2).
US-08-904-760B-32
                          100.0%; Score 28; DB 3; Length 31;
  Query Match
                         100.0%; Pred. No. 1.5e-20;
  Best Local Similarity
                                                                           0;
            28; Conservative 0; Mismatches
                                                 0; Indels
                                                               0; Gaps
  Matches
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
```

```
US-09-406-813-2
; Sequence 2, Application US/09406813
; Patent No. 6316410
; GENERAL INFORMATION:
  APPLICANT: Barbier, Jean-Rene
  APPLICANT: Morley, Paul
              Whitfield, James
  APPLICANT:
              Willick, Gordon E.
  APPLICANT:
   TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE TREATMENT OF
   TITLE OF INVENTION: OSTEOPOROSIS
   FILE REFERENCE: 10688-1B
   CURRENT APPLICATION NUMBER: US/09/406,813
   CURRENT FILING DATE: 1999-09-22
   PRIOR APPLICATION NUMBER: 08/904,760
   PRIOR FILING DATE: 1997-08-01
  NUMBER OF SEQ ID NOS: 9
   SOFTWARE: PatentIn Ver. 2.0
; SEQ ID NO 2
    LENGTH: 31
    TYPE: PRT
    ORGANISM: Homo sapiens
    FEATURE:
    OTHER INFORMATION: This sequence has an amino group c-terminus (NH2).
US-09-406-813-2
                          100.0%; Score 28; DB 4; Length 31;
  Query Match
                          100.0%; Pred. No. 1.5e-20;
  Best Local Similarity
                                0; Mismatches
                                                                0; Gaps
                                                                            0:
            28; Conservative
                                                 0;
                                                      Indels
  Matches
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 11
US-09-536-785A-1
 ; Sequence 1, Application US/09536785A
 ; Patent No. 6541450
 ; GENERAL INFORMATION:
   APPLICANT: BARBIER, JEAN-RENE
   APPLICANT: MORLEY, PAUL
   APPLICANT: NEUGEBAUER, WITOLD
   APPLICANT: ROSS, VIRGINIA J.S.
   APPLICANT:
              WHITFIELD, JAMES F.
   APPLICANT:
               WILLICK, GORDON E.
   TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE TREATMENT OF
   TITLE OF INVENTION: OSTEOPOROSIS
   FILE REFERENCE: 1339-9
   CURRENT APPLICATION NUMBER: US/09/536,785A
   CURRENT FILING DATE: 2000-03-28
   PRIOR APPLICATION NUMBER: 08/904,760
   PRIOR FILING DATE: 1997-08-01
   PRIOR APPLICATION NUMBER: 08/691,647
   PRIOR FILING DATE: 1996-08-02
```

RESULT 10

```
PRIOR APPLICATION NUMBER: 08/262,495
  PRIOR FILING DATE: 1994-06-20
  PRIOR APPLICATION NUMBER: 60/040,560
  PRIOR FILING DATE: 1997-03-14
  NUMBER OF SEQ ID NOS: 39
   SOFTWARE: PatentIn Ver. 2.1
 SEQ ID NO 1
   LENGTH: 31
    TYPE: PRT
    ORGANISM: Homo sapiens
US-09-536-785A-1
  Query Match
                         100.0%; Score 28; DB 4; Length 31;
                         100.0%; Pred. No. 1.5e-20;
  Best Local Similarity
  Matches
           28; Conservative
                                0; Mismatches
                                                     Indels
                                                                0; Gaps
                                                 0;
                                                                            0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 12
US-09-536-785A-6
; Sequence 6, Application US/09536785A
; Patent No. 6541450
; GENERAL INFORMATION:
  APPLICANT: BARBIER, JEAN-RENE
  APPLICANT: MORLEY, PAUL
  APPLICANT: NEUGEBAUER, WITOLD
  APPLICANT: ROSS, VIRGINIA J.S.
  APPLICANT: WHITFIELD, JAMES F.
  APPLICANT: WILLICK, GORDON E.
   TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE TREATMENT OF
  TITLE OF INVENTION: OSTEOPOROSIS
  FILE REFERENCE: 1339-9
  CURRENT APPLICATION NUMBER: US/09/536,785A
  CURRENT FILING DATE: 2000-03-28
  PRIOR APPLICATION NUMBER: 08/904,760
  PRIOR FILING DATE: 1997-08-01
   PRIOR APPLICATION NUMBER: 08/691,647
  PRIOR FILING DATE: 1996-08-02
  PRIOR APPLICATION NUMBER: 08/262,495
   PRIOR FILING DATE: 1994-06-20
   PRIOR APPLICATION NUMBER: 60/040,560
   PRIOR FILING DATE: 1997-03-14
  NUMBER OF SEQ ID NOS: 39
   SOFTWARE: PatentIn Ver. 2.1
  SEQ ID NO 6
   LENGTH: 31
    TYPE: PRT
    ORGANISM: Homo sapiens
    FEATURE:
   NAME/KEY: SITE
    LOCATION: (27)..(30)
    OTHER INFORMATION: Cyclo Lys27-Asp30
   OTHER INFORMATION: Amino c-terminus
US-09-536-785A-6
```

```
Query Match
                        100.0%; Score 28; DB 4; Length 31;
 Best Local Similarity 100.0%; Pred. No. 1.5e-20;
 Matches
           28; Conservative
                              0; Mismatches
                                               0; Indels
                                                              0; Gaps
                                                                         0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 13
US-09-536-785A-14
; Sequence 14, Application US/09536785A
 Patent No. 6541450
 GENERAL INFORMATION:
  APPLICANT: BARBIER, JEAN-RENE
  APPLICANT: MORLEY, PAUL
  APPLICANT: NEUGEBAUER, WITOLD
  APPLICANT: ROSS, VIRGINIA J.S.
  APPLICANT: WHITFIELD, JAMES F.
  APPLICANT:
             WILLICK, GORDON E.
  TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE TREATMENT OF
  TITLE OF INVENTION: OSTEOPOROSIS
  FILE REFERENCE: 1339-9
  CURRENT APPLICATION NUMBER: US/09/536,785A
  CURRENT FILING DATE: 2000-03-28
  PRIOR APPLICATION NUMBER: 08/904,760
  PRIOR FILING DATE: 1997-08-01
  PRIOR APPLICATION NUMBER: 08/691,647
  PRIOR FILING DATE: 1996-08-02
  PRIOR APPLICATION NUMBER: 08/262,495
  PRIOR FILING DATE: 1994-06-20
  PRIOR APPLICATION NUMBER: 60/040,560
  PRIOR FILING DATE: 1997-03-14
  NUMBER OF SEQ ID NOS: 39
  SOFTWARE: PatentIn Ver. 2.1
 SEO ID NO 14
   LENGTH: 31
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: SITE
   LOCATION: (22)..(26)
   OTHER INFORMATION: Cyclo Glu22-Lys26
   OTHER INFORMATION: Amino c-terminus
US-09-536-785A-14
 Query Match
                        100.0%; Score 28; DB 4; Length 31;
 Best Local Similarity 100.0%; Pred. No. 1.5e-20;
 Matches
           28; Conservative
                             0; Mismatches 0; Indels
                                                              0; Gaps
                                                                         0;
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
             1 SVSEIOLMHNLGKHLNSMERVEWLRKKL 28
```

```
; Sequence 32, Application US/09536785A
 Patent No. 6541450
 GENERAL INFORMATION:
  APPLICANT: BARBIER, JEAN-RENE
  APPLICANT: MORLEY, PAUL
  APPLICANT: NEUGEBAUER, WITOLD
  APPLICANT: ROSS, VIRGINIA J.S.
  APPLICANT: WHITFIELD, JAMES F.
  APPLICANT: WILLICK, GORDON E.
  TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE TREATMENT OF
  TITLE OF INVENTION: OSTEOPOROSIS
  FILE REFERENCE: 1339-9
  CURRENT APPLICATION NUMBER: US/09/536,785A
  CURRENT FILING DATE: 2000-03-28
  PRIOR APPLICATION NUMBER: 08/904,760
  PRIOR FILING DATE: 1997-08-01
   PRIOR APPLICATION NUMBER: 08/691,647
   PRIOR FILING DATE: 1996-08-02
   PRIOR APPLICATION NUMBER: 08/262,495
   PRIOR FILING DATE: 1994-06-20
   PRIOR APPLICATION NUMBER: 60/040,560
  PRIOR FILING DATE: 1997-03-14
  NUMBER OF SEQ ID NOS: 39
  SOFTWARE: PatentIn Ver. 2.1
 SEQ ID NO 32
   LENGTH: 31
   TYPE: PRT
   ORGANISM: Homo sapiens
    FEATURE:
    OTHER INFORMATION: Amino c-terminus
US-09-536-785A-32
  Query Match
                         100.0%; Score 28; DB 4; Length 31;
  Best Local Similarity
                         100.0%; Pred. No. 1.5e-20;
  Matches
           28; Conservative
                               0; Mismatches
                                                  0; Indels
                                                                0; Gaps
                                                                            0;
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 15
US-09-447-800-9
 Sequence 9, Application US/09447800
; Patent No. 6537965
; GENERAL INFORMATION:
  APPLICANT: BRINGHURST, F. RICHARD
  APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
  FILE REFERENCE: 0609.4630001
  CURRENT APPLICATION NUMBER: US/09/447,800
  CURRENT FILING DATE: 1999-11-23
   EARLIER APPLICATION NUMBER: 60/110,152
   EARLIER FILING DATE: 1998-11-25
```

US-09-536-785A-32

```
NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 9
   LENGTH: 33
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Ser
US-09-447-800-9
                         100.0%; Score 28; DB 4; Length 33;
  Query Match
                       100.0%; Pred. No. 1.5e-20;
  Best Local Similarity
                                                             0; Gaps
                                                0; Indels
          28; Conservative 0; Mismatches
 Matches
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 16
US-07-765-373-1
; Sequence 1, Application US/07765373
; Patent No. 5393869
  GENERAL INFORMATION:
     APPLICANT: NAKAGAWA, Shizue
     APPLICANT: FUKUDA, Tsunehiko
     APPLICANT: KAWASE, Masahiro
     APPLICANT: YAMAZAKI, Iwao
     TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES
     NUMBER OF SEQUENCES: 2
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: DAVID G. CONLIN; DIKE, BRONSTEIN, ROBERTS &
       ADDRESSEE: CUSHMAN
       STREET: 130 Water Street
       CITY: Boston
       STATE: Massachusetts
       COUNTRY: US
       ZIP: 02109
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.25
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/07/765,373
       FILING DATE: 19910925
       CLASSIFICATION: 530
     ATTORNEY/AGENT INFORMATION:
       NAME: WILLIAMS, Gregory D.
       REGISTRATION NUMBER: 30901
       REFERENCE/DOCKET NUMBER: 41289
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: (617)523-3400
       TELEFAX: (617)523-6440
       TELEX: 20091 STRE UR
```

```
INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: AMINO ACID
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    FRAGMENT TYPE: N-terminal
US-07-765-373-1
                         100.0%; Score 28; DB 1; Length 34;
 Query Match
                         100.0%; Pred. No. 1.6e-20;
 Best Local Similarity
                                                                           0;
           28; Conservative
                              0; Mismatches
                                                0;
                                                    Indels
                                                               0; Gaps
 Matches
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              1 SVSEIOLMHNLGKHLNSMERVEWLRKKL 28
Dh
RESULT 17
US-08-033-099-1
; Sequence 1, Application US/08033099
; Patent No. 5434246
   GENERAL INFORMATION:
     APPLICANT: FUKUDA, Tsunehiko
     APPLICANT: NAKAGAWA, Shizue
     APPLICANT:
                TAKETOMI, Shigehisa
     TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES
     NUMBER OF SEQUENCES: 2
     CORRESPONDENCE ADDRESS:
      ADDRESSEE: DAVID G.CONLIN; DIKE, BRONSTEIN, ROBERTS &
       ADDRESSEE: CUSHMAN
      STREET: 130 Water Street
       CITY: Boston
       STATE: Massachusetts
       COUNTRY: US
       ZIP: 02109
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.25
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/08/033,099
       FILING DATE: 19930316
       CLASSIFICATION: 530
     ATTORNEY/AGENT INFORMATION:
       NAME: WILLIAMS, Gregory D
       REGISTRATION NUMBER: 30901
       REFERENCE/DOCKET NUMBER: 42528
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: (617)523-3400
       TELEFAX: (613)523-6440
       TELEX: 200291 STRE UR
   INFORMATION FOR SEQ ID NO:
     SEQUENCE CHARACTERISTICS:
       LENGTH: 34 amino acids
       TYPE: AMINO ACID
```

```
TOPOLOGY: linear
    MOLECULE TYPE: protein
    FRAGMENT TYPE: N-terminal
US-08-033-099-1
                         100.0%; Score 28; DB 1; Length 34;
 Query Match
                         100.0%; Pred. No. 1.6e-20;
 Best Local Similarity
                                                0; Indels
                                                               0; Gaps
                                                                           0;
           28; Conservative 0; Mismatches
 Matches
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 18
US-08-262-495C-1
; Sequence 1, Application US/08262495C
; Patent No. 5556940
   GENERAL INFORMATION:
     APPLICANT: WILLICK, Gordon E.
     APPLICANT: WHITFIELD, James F.
     APPLICANT: SUREWICZ, Witold
     APPLICANT: SUNG, Wing L.
     APPLICANT: NEUGENBAUER, Witold
     TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES
     TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
     NUMBER OF SEQUENCES: 6
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: Kirby, Eades, Gale, Baker
       STREET: 112 Kent Street, Suite 770,
       CITY: Ottawa
       COUNTRY: Canada
     COMPUTER READABLE FORM:
ï
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC Compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: Wordperfect 5.1
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/08/262,495C
       FILING DATE:
       CLASSIFICATION: 530
     PRIOR APPLICATION DATA:
       APPLICATION NUMBER:
       FILING DATE:
       CLASSIFICATION: 530
     ATTORNEY/AGENT INFORMATION:
       NAME: EADES, No. 5556940ris M.
       REGISTRATION NUMBER: 5,263
       REFERENCE/DOCKET NUMBER: 36210
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: (613)-237-6900
       TELEFAX: (613)-237-0045
    INFORMATION FOR SEQ ID NO: 1:
     SEQUENCE CHARACTERISTICS:
       LENGTH: 34 amino acids
       TYPE: amino acid
```

TOPOLOGY: linear

```
MOLECULE TYPE: protein
US-08-262-495C-1
                         100.0%; Score 28; DB 1; Length 34;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.6e-20;
           28; Conservative 0; Mismatches 0; Indels
                                                                            0;
                                                                0; Gaps
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              11111111111111111111111111111
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 19
US-07-915-247A-1
; Sequence 1, Application US/07915247A
; Patent No. 5589452
  GENERAL INFORMATION:
     APPLICANT: Krstenansky, John L.
     APPLICANT: Nestor Jr., John J.
     APPLICANT: Ho, Teresa H.
                Vickery, Brian H.
     APPLICANT:
     APPLICANT: Bach, Chinh T.
     TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
     TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
     TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
     NUMBER OF SEQUENCES: 34
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
       STREET: 3401 Hillview Ave.
       CITY: Palo Alto
       STATE: CA
       COUNTRY: USA
       ZIP: 94303
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.25
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/07/915,247A
       FILING DATE: 19920714
       CLASSIFICATION: 435
     ATTORNEY/AGENT INFORMATION:
       NAME: Schmonsees, William
       REGISTRATION NUMBER: 31,796
       REFERENCE/DOCKET NUMBER: 27610
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: 415-855-6593
       TELEFAX: 415-496-3529
    INFORMATION FOR SEQ ID NO:
     SEQUENCE CHARACTERISTICS:
       LENGTH: 34 amino acids
       TYPE: amino acid
       TOPOLOGY: linear
     MOLECULE TYPE: peptide
     HYPOTHETICAL: NO
      FRAGMENT TYPE: N-terminal
```

```
Query Match
                         100.0%; Score 28; DB 1; Length 34;
                         100.0%; Pred. No. 1.6e-20;
 Best Local Similarity
                              0; Mismatches
                                                 0; Indels
                                                                0; Gaps
                                                                            0;
 Matches
           28; Conservative
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              111111111111111111111111111111
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 20
US-08-443-863-1
; Sequence 1, Application US/08443863
 Patent No. 5693616
  GENERAL INFORMATION:
     APPLICANT: Krstenansky, John L.
    APPLICANT: Nestor Jr., John J.
    APPLICANT: Ho, Teresa H.
                Vickery, Brian H.
    APPLICANT:
                Bach, Chinh T.
    APPLICANT:
     TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
     TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
     TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
     NUMBER OF SEQUENCES: 34
     CORRESPONDENCE ADDRESS:
      ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
      STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
       COUNTRY: USA
      ZIP: 94303
     COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
     CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/443,863
       FILING DATE: 14-JUL-1992
       CLASSIFICATION: 514
     ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
       REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: 415-855-6593
       TELEFAX: 415-496-3529
   INFORMATION FOR SEQ ID NO: 1:
     SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
       TYPE: amino acid
      TOPOLOGY: linear
     MOLECULE TYPE: peptide
     HYPOTHETICAL: NO
     FRAGMENT TYPE: N-terminal
US-08-443-863-1
```

```
Query Match
                         100.0%; Score 28; DB 1; Length 34;
 Best Local Similarity
                         100.0%; Pred. No. 1.6e-20;
 Matches
           28; Conservative
                                0; Mismatches
                                                 0;
                                                      Indels
                                                                0; Gaps
                                                                            0;
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              1111111111111111111111111111111
Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 21
US-08-448-070-1
; Sequence 1, Application US/08448070
 Patent No. 5695955
  GENERAL INFORMATION:
     APPLICANT: Krstenansky, John L.
     APPLICANT: Nestor Jr., John J.
    APPLICANT: Ho, Teresa H.
     APPLICANT: Vickery, Brian H.
     APPLICANT: Bach, Chinh T.
     TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
     TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
     TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 34
     CORRESPONDENCE ADDRESS:
      ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
      STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
      COUNTRY: USA
       ZIP: 94303
     COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/08/448,070
       FILING DATE: 14-JUL-1992
       CLASSIFICATION: 435
     ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
       REFERENCE/DOCKET NUMBER:
                                27610
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: 415-855-6593
       TELEFAX: 415-496-3529
   INFORMATION FOR SEQ ID NO: 1:
     SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
     HYPOTHETICAL: NO
     FRAGMENT TYPE: N-terminal
US-08-448-070-1
```

```
Query Match
                         100.0%; Score 28; DB 1; Length 34;
  Best Local Similarity 100.0%; Pred. No. 1.6e-20;
           28; Conservative
                               0; Mismatches
                                                 0; Indels
                                                                0; Gaps
                                                                            0:
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              4114111111111
Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 22
US-08-488-105-7
; Sequence 7, Application US/08488105
; Patent No. 5717062
  GENERAL INFORMATION:
    APPLICANT: Chorev, Michael
    APPLICANT: Rosenblatt, Michael
    TITLE OF INVENTION: CYCLIC ANALOGS OF PTH AND PTHrP
    NUMBER OF SEQUENCES: 22
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Fish & Richardson P.C.
       STREET: 225 Franklin Street
       CITY: Boston
       STATE: MA
       COUNTRY: USA
       ZIP: 02110-2804
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/488,105
       FILING DATE: 07-JUN-1995
      CLASSIFICATION: 530
    ATTORNEY/AGENT INFORMATION:
      NAME: Tsao, Y. Rocky
       REGISTRATION NUMBER:
                            34,053
      REFERENCE/DOCKET NUMBER: 00537/112001
    TELECOMMUNICATION INFORMATION:
       TELEPHONE: 617/542-5070
       TELEFAX: 617/542-8906
       TELEX: 200154
   INFORMATION FOR SEQ ID NO:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
       STRANDEDNESS: not relevant
      TOPOLOGY: linear
    MOLECULE TYPE: protein
    FEATURE:
      OTHER INFORMATION:
                          The side chains of Lys at
      OTHER INFORMATION:
                          position 26 and Asp at position 30 are linked by an
amide bond,
      OTHER INFORMATION:
                          and this sequence has an amide C-terminus (i.e.,
CONH2), rather
      OTHER INFORMATION: than a carboxy C-terminus (i.e., COOH).
```

US-08-488-105-7

```
100.0%; Score 28; DB 1; Length 34;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 1.6e-20;
                                                              0; Gaps
                                                                         0;
                              0; Mismatches 0;
                                                   Indels
           28: Conservative
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 23
US-08-468-275-6
; Sequence 6, Application US/08468275
 Patent No. 5747453
  GENERAL INFORMATION:
    APPLICANT: HOLLADAY, LESLIE A.
    APPLICANT: OLDENBURG, KEVIN R.
    TITLE OF INVENTION: METHOD FOR INCREASING THE
    TITLE OF INVENTION: ELECTROTRANSPORT FLUX OF POLYPEPTIDES
    NUMBER OF SEQUENCES: 10
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: ALZA CORPORATION
      STREET: 950 PAGE MILL ROAD
      CITY: PALO ALTO
      STATE: CALIFORNIA
      COUNTRY: USA
      ZIP: 94303-0802
     COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.30
     CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/468,275
      FILING DATE: 06-JUN-1995
       CLASSIFICATION: 514
    ATTORNEY/AGENT INFORMATION:
      NAME: MILLER, D. BYRON
       REGISTRATION NUMBER: 30,661
       REFERENCE/DOCKET NUMBER: 0360-0002; ARC-2349
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: (415) 496-8150
       TELEFAX: (415) 496-8048
   INFORMATION FOR SEQ ID NO: 6:
     SEQUENCE CHARACTERISTICS:
       LENGTH: 34 amino acids
       TYPE: amino acid
       STRANDEDNESS: single
       TOPOLOGY: linear
     MOLECULE TYPE: protein
US-08-468-275-6
                         100.0%; Score 28; DB 1; Length 34;
  Query Match
                         100.0%; Pred. No. 1.6e-20;
  Best Local Similarity
          28; Conservative 0; Mismatches 0;
                                                     Indels
                                                              0;
                                                                  Gaps
                                                                          0;
```

QУ

```
RESULT 24
US-08-449-500-1
; Sequence 1, Application US/08449500
; Patent No. 5798225
  GENERAL INFORMATION:
    APPLICANT: Krstenansky, John L.
    APPLICANT: Nestor Jr., John J.
    APPLICANT: Ho, Teresa H.
                Vickery, Brian H.
    APPLICANT:
    APPLICANT: Bach, Chinh T.
    TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
    TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 86
     CORRESPONDENCE ADDRESS:
      ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
       STREET: 3401 Hillview Ave.
      CITY: Palo Alto
       STATE: CA
       COUNTRY: USA
       ZIP: 94303
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.25
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/08/449,500
       FILING DATE: 18-JAN-1994
       CLASSIFICATION: 435
     ATTORNEY/AGENT INFORMATION:
       NAME: Schmonsees, William
       REGISTRATION NUMBER: 31,796
       REFERENCE/DOCKET NUMBER: 27610-P1
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: 415-855-6593
       TELEFAX: 415-496-3529
   INFORMATION FOR SEQ ID NO:
     SEQUENCE CHARACTERISTICS:
       LENGTH: 34 amino acids
       TYPE: amino acid
       TOPOLOGY: linear
     MOLECULE TYPE: peptide
     HYPOTHETICAL: NO
     FRAGMENT TYPE: N-terminal
US-08-449-500-1
                          100.0%; Score 28; DB 1; Length 34;
  Query Match
                          100.0%; Pred. No. 1.6e-20;
  Best Local Similarity
                                 0; Mismatches 0; Indels 0; Gaps
            28; Conservative
  Matches
```

1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28

; Sequence 2, Application US/08142551B

```
RESULT 25
US-08-449-317A-1
; Sequence 1, Application US/08449317A
 Patent No. 5807823
  GENERAL INFORMATION:
    APPLICANT: Vickery, Brian H.
    TITLE OF INVENTION: METHOD FOR TREATMENT OF CORTICOSTEROID
    TITLE OF INVENTION: INDUCED OSTEOPENIA
    NUMBER OF SEQUENCES: 86
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
      STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
     COUNTRY: USA
      ZIP: 94303
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/449,317A
      FILING DATE: 07-JUN-1995
      CLASSIFICATION: 435
    ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
       REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610-P2
    TELECOMMUNICATION INFORMATION:
       TELEPHONE: 415-855-6593
       TELEFAX: 415-496-3529
   INFORMATION FOR SEQ ID NO:
    SEQUENCE CHARACTERISTICS:
       LENGTH: 34 amino acids
       TYPE: amino acid
       TOPOLOGY: linear
     MOLECULE TYPE: peptide
     HYPOTHETICAL: NO
     FRAGMENT TYPE: N-terminal
US-08-449-317A-1
                         100.0%; Score 28; DB 1; Length 34;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.6e-20;
                             0; Mismatches 0; Indels
                                                              0; Gaps
          28; Conservative
  Matches
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 26
US-08-142-551B-2
```

```
Patent No. 5814603
  GENERAL INFORMATION:
    APPLICANT: Oldenburg, Kevin R.
    APPLICANT: Selick, Harold E.
    TITLE OF INVENTION: COMPOUNDS WITH PTH ACTIVITY AND
    TITLE OF INVENTION: RECOMBINANT DNA VECTORS ENCODING SAME
    NUMBER OF SEQUENCES: 132
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Burns, Doane, Swecker & Mathis
      STREET: 699 Prince Street
      CITY: Alexandria
      STATE: Virginia
      COUNTRY: US
      ZIP: 22313
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/142,551B
      FILING DATE: 25-OCT-1993
      CLASSIFICATION: 435
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: US 08/077,296
      FILING DATE: 14-JUN-1993
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: US 07/898,219
      FILING DATE: 12-JUN-1992
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: US 07/965,677
      FILING DATE: 22-OCT-1992
    ATTORNEY/AGENT INFORMATION:
      NAME: Swiss, Gerald F.
      REGISTRATION NUMBER: 30,113
ï
      REFERENCE/DOCKET NUMBER: 000324-010
ï
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (415) 854-7400
      TELEFAX: (415) 854-8275
   INFORMATION FOR SEQ ID NO: 2:
    SEOUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: unknown
    MOLECULE TYPE: protein
    FEATURE:
      NAME/KEY:
                 Peptide
      LOCATION:
                 1..34
      OTHER INFORMATION:
                          /note= "The sequence of the 34
      OTHER INFORMATION: amino acid truncated human PTH peptide,
      OTHER INFORMATION: designated: Human PTH."
US-08-142-551B-2
                         100.0%; Score 28; DB 2; Length 34;
  Query Match
                         100.0%; Pred. No. 1.6e-20;
  Best Local Similarity
           28; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
```

```
1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 27
US-08-477-022-1
; Sequence 1, Application US/08477022
; Patent No. 5821225
  GENERAL INFORMATION:
    APPLICANT: Vickery, Brian H.
    TITLE OF INVENTION: METHOD FOR TREATMENT OF CORTICOSTEROID
    TITLE OF INVENTION: INDUCED OSTEOPENIA
    NUMBER OF SEQUENCES: 86
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
      STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
      COUNTRY: USA
;
      ZIP: 94303
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.25
     CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/477,022
      FILING DATE: 07-JUN-1995
       CLASSIFICATION: 435
    ATTORNEY/AGENT INFORMATION:
       NAME: Schmonsees, William
       REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610-P2
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: 415-855-6593
       TELEFAX: 415-496-3529
   INFORMATION FOR SEQ ID NO:
     SEQUENCE CHARACTERISTICS:
       LENGTH: 34 amino acids
       TYPE: amino acid
       TOPOLOGY: linear
     MOLECULE TYPE: peptide
     HYPOTHETICAL: NO
     FRAGMENT TYPE: N-terminal
US-08-477-022-1
                         100.0%; Score 28; DB 2; Length 34;
  Ouery Match
                         100.0%; Pred. No. 1.6e-20;
  Best Local Similarity
           28; Conservative 0; Mismatches 0; Indels
                                                                         0;
                                                              0; Gaps
  Matches
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
```

```
US-08-449-447-1
; Sequence 1, Application US/08449447
 Patent No. 5840837
  GENERAL INFORMATION:
    APPLICANT: Krstenansky, John L.
    APPLICANT: Nestor Jr., John J.
    APPLICANT: Ho, Teresa H.
    APPLICANT: Vickery, Brian H.
    APPLICANT: Bach, Chinh T.
    TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
    TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 86
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
      STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
      COUNTRY: USA
      ZIP: 94303
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.25
     CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/449,447
       FILING DATE: 18-JAN-1994
       CLASSIFICATION: 530
    ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
       REGISTRATION NUMBER: 31,796
       REFERENCE/DOCKET NUMBER: 27610-P1
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: 415-855-6593
       TELEFAX: 415-496-3529
   INFORMATION FOR SEQ ID NO:
     SEQUENCE CHARACTERISTICS:
       LENGTH: 34 amino acids
       TYPE: amino acid
       TOPOLOGY: linear
     MOLECULE TYPE: peptide
     HYPOTHETICAL: NO
     FRAGMENT TYPE: N-terminal
US-08-449-447-1
  Ouery Match
                         100.0%; Score 28; DB 2; Length 34;
                         100.0%; Pred. No. 1.6e-20;
  Best Local Similarity
                               0; Mismatches
                                                 0; Indels
                                                               0; Gaps
                                                                           0;
  Matches
            28; Conservative
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
```

```
; Sequence 13, Application US/08835231
 Patent No. 5861284
  GENERAL INFORMATION:
    APPLICANT: NISHIMURA, Osamu
    APPLICANT: KURIYAMA, Masato
    APPLICANT: KOYAMA, No. 5861284uyuki
    APPLICANT: FUKUDA, Tsunehiko
    TITLE OF INVENTION: METHOD FOR PRODUCING A BIOLOGICALLY
    TITLE OF INVENTION: ACTIVE RECOMBINANT CYSTEINE-FREE
    NUMBER OF SEQUENCES: 37
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN, LLP
      STREET: 130 WATER STREET
      CITY: BOSTON
      STATE: MA
      COUNTRY: USA
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Diskette
      COMPUTER: IBM Compatible
      OPERATING SYSTEM: DOS
      SOFTWARE: FastSEQ Version 1.5
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/835,231
      FILING DATE:
      CLASSIFICATION: 435
    PRIOR APPLICATION DATA:
     APPLICATION NUMBER: 08/350,709
      FILING DATE: 07-DEC-1994
      APPLICATION NUMBER: 07/838,857
     FILING DATE: 18-FEB-1992
     APPLICATION NUMBER: JP 024841
     FILING DATE: 19-FEB-1991
      APPLICATION NUMBER: JP 0271438
       FILING DATE: 18-OCT-1991
     ATTORNEY/AGENT INFORMATION:
       NAME: DAVID, RESNICK S
       REGISTRATION NUMBER: 34,235
       REFERENCE/DOCKET NUMBER: 41614-FWC
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: 617-523-3400
       TELEFAX: 617-523-6440
       TELEX: 200291 STRE
   INFORMATION FOR SEQ ID NO: 13:
     SEOUENCE CHARACTERISTICS:
       LENGTH: 34 amino acids
       TYPE: amino acid
       STRANDEDNESS: single
       TOPOLOGY: linear
     MOLECULE TYPE: peptide
     HYPOTHETICAL: NO
     ANTI-SENSE: NO
     FRAGMENT TYPE: N-terminal
     ORIGINAL SOURCE:
US-08-835-231-13
```

```
Best Local Similarity 100.0%; Pred. No. 1.6e-20;
                                                                          0;
                                                            0; Gaps
           28; Conservative 0; Mismatches 0; Indels
 Matches
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Dh
RESULT 30
US-08-184-328-1
; Sequence 1, Application US/08184328
: Patent No. 5874086
  GENERAL INFORMATION:
    APPLICANT: Krstenansky, John L.
    APPLICANT: Nestor Jr., John J.
    APPLICANT: Ho, Teresa H.
    APPLICANT: Vickery, Brian H.
    APPLICANT: Bach, Chinh T.
    TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
     TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
     TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 86
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
      STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
       COUNTRY: USA
       ZIP: 94303
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.25
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/08/184,328
       FILING DATE: 18-JAN-1994
       CLASSIFICATION: 435
     ATTORNEY/AGENT INFORMATION:
       NAME: Schmonsees, William
       REGISTRATION NUMBER: 31,796
       REFERENCE/DOCKET NUMBER: 27610-P1
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: 415-855-6593
       TELEFAX: 415-496-3529
   INFORMATION FOR SEQ ID NO: 1:
     SEQUENCE CHARACTERISTICS:
       LENGTH: 34 amino acids
       TYPE: amino acid
       TOPOLOGY: linear
     MOLECULE TYPE: peptide
     HYPOTHETICAL: NO
     FRAGMENT TYPE: N-terminal
US-08-184-328-1
                         100.0%; Score 28; DB 2; Length 34;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.6e-20;
```

```
28; Conservative 0; Mismatches
                                                 0; Indels 0; Gaps
                                                                          0;
 Matches
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 31
US-08-411-726-2
; Sequence 2, Application US/08411726
; Patent No. 5880093
  GENERAL INFORMATION:
    APPLICANT: BAGNOLI, Franco
    TITLE OF INVENTION: Use of Parathormone, Its Biologically
     TITLE OF INVENTION: Active Fragments and Correlated Peptides, for The
Preparation of
     TITLE OF INVENTION: Pharmaceutical Compositions Useful for The Treatment
of Pregnanc
     NUMBER OF SEQUENCES: 5
     CORRESPONDENCE ADDRESS:
      ADDRESSEE: Kenyon & Kenyon
       STREET: 1 Broadway
      CITY: New York
       STATE: NY
       COUNTRY: US
       ZIP: 10004
     COMPUTER READABLE FORM:
       MEDIUM TYPE: 3.5 Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS 6.2
       SOFTWARE: WordPerfect 6.1 for Windows
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/08/411,726
       FILING DATE: 05-APR-1995
       CLASSIFICATION: 514
     PRIOR APPLICATION DATA:
       APPLICATION NUMBER: PCT/EP93/02755
       FILING DATE: 08-OCT-1993
       APPLICATION NUMBER: MI-92A002331
       FILING DATE: 09-OCT-1992
     ATTORNEY/AGENT INFORMATION:
       NAME: PALMESE, Maria Luisa
       REGISTRATION NUMBER: 34,402
       REFERENCE/DOCKET NUMBER: 2111/1300
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: 212-425-7200
       TELEFAX: 212-425-5288
   INFORMATION FOR SEQ ID NO: 2:
     SEQUENCE CHARACTERISTICS:
       LENGTH: 34 amino acids
       TYPE: amino acid
       STRANDEDNESS: single
       TOPOLOGY: linear
     MOLECULE TYPE: protein
US-08-411-726-2
```

100.0%; Score 28; DB 2; Length 34;

```
Best Local Similarity 100.0%; Pred. No. 1.6e-20;
                                                              0; Gaps
                                                                           0;
                                                0; Indels
          28; Conservative 0; Mismatches
 Matches
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
             11111111111111111111111111111
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 32
US-08-691-647C-5
; Sequence 5, Application US/08691647C
; Patent No. 5955425
  GENERAL INFORMATION:
     APPLICANT: Barbier, Jean-Rene
     APPLICANT: Morley, Paul
    APPLICANT: Neugebauer, Witold
    APPLICANT: Ross, Virginia
    APPLICANT: Whitfield, James
    APPLICANT: Willick, Gordon E.
     TITLE OF INVENTION: CYCLIC PARATHYROID HORMONE ANALOGUES
     TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
     NUMBER OF SEQUENCES: 6
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: NIXON & VANDERHYE, P.C.
       STREET: 1100 New York Avenue, 8th Floor
       CITY: Arlington
       STATE: Virginia
       COUNTRY: U.S.A.
       ZIP: 22201-4714
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: ASCII Text
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/08/691,647C
       FILING DATE: August 2, 1996
       CLASSIFICATION: 514
     ATTORNEY/AGENT INFORMATION:
       NAME: Crawford, Arthur R.
       REGISTRATION NUMBER: 25,327
       REFERENCE/DOCKET NUMBER: 1339-5
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: (703) 816-4005
       TELEFAX: (703) 816-4100
       TELEX: N/A
   INFORMATION FOR SEQ ID NO: 5:
     SEQUENCE CHARACTERISTICS:
       LENGTH: 34 amino acids
       TYPE: amino acid
       TOPOLOGY: linear
     MOLECULE TYPE: protein
US-08-691-647C-5
                          100.0%; Score 28; DB 2; Length 34;
  Query Match
                          100.0%; Pred. No. 1.6e-20;
  Best Local Similarity
            28; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
                                                                            0;
  Matches
```

100.0%; Score 28; DB 2; Length 34;

```
Best Local Similarity 100.0%; Pred. No. 1.6e-20;
          28; Conservative 0; Mismatches 0; Indels
                                                                          0;
                                                             0; Gaps
 Matches
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
QУ
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 34
US-09-044-536A-1
; Sequence 1, Application US/09044536A
; Patent No. 6025467
  GENERAL INFORMATION:
    APPLICANT: FUKUDA, Tsunehiko
    APPLICANT: NAKAGAWA, Shizue
    APPLICANT: HABASHITA, Junko
    APPLICANT: TAKETOMI, Shigehisa
    TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES AND THEIR USE
     NUMBER OF SEQUENCES: 36
     CORRESPONDENCE ADDRESS:
      ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN
      STREET: 130 Water Street
      CITY: Boston
       STATE: Massachusetts
       COUNTRY: US
       ZIP: 02109
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.30
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/09/044,536A
       FILING DATE: 19-MAR-1998
     PRIOR APPLICATION DATA:
       APPLICATION NUMBER: 08/662,871
       FILING DATE: 12-JUN-1996
     ATTORNEY/AGENT INFORMATION:
       NAME: CONLIN, David G
       REGISTRATION NUMBER: 27,026
       REFERENCE/DOCKET NUMBER: 46509-DIV
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: (617)523-3400
       TELEFAX: (617)523-6440
   INFORMATION FOR SEQ ID NO: 1:
     SEQUENCE CHARACTERISTICS:
       LENGTH: 34 amino acids
       TYPE: amino acid
       STRANDEDNESS:
       TOPOLOGY: linear
     MOLECULE TYPE: peptide
     FEATURE:
       NAME/KEY: partial peptide
       LOCATION: 1..34
US-09-044-536A-1
```

100.0%; Score 28; DB 3; Length 34;

```
Best Local Similarity 100.0%; Pred. No. 1.6e-20;
          28; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                           0;
 Matches
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
             111111111111
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 35
US-08-904-760B-22
; Sequence 22, Application US/08904760B
; Patent No. 6110892
  GENERAL INFORMATION:
    APPLICANT: Jean-Rene, Barbier
    APPLICANT: Neugebauer, Witold
    APPLICANT: Ross, Virginia
    APPLICANT: Whitfield, James
    APPLICANT: Willick, Gordon E.
     TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE
     TITLE OF INVENTION: TREATMENT OF OSTEOPOROSIS
     NUMBER OF SEQUENCES: 35
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: NIXON & VANDERHYE P.C.
       STREET: 1100 No. 6110892th Glebe Rd. 8th floor
       CITY: Arlington
       STATE: VA
       COUNTRY: USA
       ZIP: 22201-4741
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.30
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/08/904,760B
       FILING DATE: 01-AUG-1997
       CLASSIFICATION: 514
     PRIOR APPLICATION DATA:
       APPLICATION NUMBER: 08/691,647
       FILING DATE: 02-AUG-1996
     ATTORNEY/AGENT INFORMATION:
       NAME: Crawford, Arthur R.
       REGISTRATION NUMBER: 25,327
       REFERENCE/DOCKET NUMBER: 1339-6
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: 703-816-4000
       TELEFAX: 703-816-4100
   INFORMATION FOR SEQ ID NO: 22:
     SEQUENCE CHARACTERISTICS:
       LENGTH: 34 amino acids
       TYPE: amino acid
       {\tt STRANDEDNESS:}
       TOPOLOGY: linear
     MOLECULE TYPE: protein
US-08-904-760B-22
```

100.0%; Score 28; DB 3; Length 34;

```
Best Local Similarity 100.0%; Pred. No. 1.6e-20;
                                                              0; Gaps
                                                                          0;
                             0; Mismatches 0; Indels
 Matches
          28; Conservative
           1 SVSEIOLMHNLGKHLNSMERVEWLRKKL 28
Qу
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 36
US-08-903-497A-1
; Sequence 1, Application US/08903497A
; Patent No. 6147186
  GENERAL INFORMATION:
    APPLICANT: Gardella, Thomas J.
    APPLICANT: J ppner, Harald
    TITLE OF INVENTION: No. 6147186el Parathyroid Hormone-Related
    TITLE OF INVENTION: Peptide Analogs
    NUMBER OF SEQUENCES: 7
    CORRESPONDENCE ADDRESS:
       ADDRESSEE: Sterne, Kessler, Goldstein and Fox P.L.L.C.
       STREET: 1100 New York Avenue, N.W., Suite 600
       CITY: Washington
       STATE: DC
       COUNTRY: USA
       ZIP: 20005
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.30
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/08/903,497A
       FILING DATE: 30-JUL-1997
       CLASSIFICATION: 514
     PRIOR APPLICATION DATA:
       APPLICATION NUMBER: US 60/025,471
       FILING DATE: 31-JUL-1996
     ATTORNEY/AGENT INFORMATION:
       NAME: Markowicz, Karen R.
       REGISTRATION NUMBER: 36,351
       REFERENCE/DOCKET NUMBER: 0609.4310001/JAG/KRM
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: (202) 371-2600
       TELEFAX: (202) 371-2540
   INFORMATION FOR SEQ ID NO: 1:
     SEQUENCE CHARACTERISTICS:
       LENGTH: 34 amino acids
       TYPE: amino acid
       STRANDEDNESS: single
       TOPOLOGY: not relevant
     MOLECULE TYPE: peptide
     FEATURE:
       NAME/KEY: MODIFIED-SITE
       LOCATION:
                   34
       OTHER INFORMATION: CARBOXY-TERMINAL MODIFICATION OF TYROSINE-
       OTHER INFORMATION: AMIDE
US-08-903-497A-1
```

```
100.0%; Score 28; DB 3; Length 34;
 Query Match
                        100.0%; Pred. No. 1.6e-20;
 Best Local Similarity
                                                                            0;
          28; Conservative 0; Mismatches
                                                     Indels
                                                                0; Gaps
                                                 0;
 Matches
           1 SVSEIOLMHNLGKHLNSMERVEWLRKKL 28
Qу
              111111111111111111111111111111111
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 37
US-09-108-661-13
; Sequence 13, Application US/09108661
 Patent No. 6287806
   GENERAL INFORMATION:
     APPLICANT: NISHIMURA, Osamu
    APPLICANT: KURIYAMA, Masato
    APPLICANT: KOYAMA, No. 6287806uyuki
     APPLICANT: FUKUDA, Tsunehiko
     TITLE OF INVENTION: METHOD FOR PRODUCING A BIOLOGICALLY
     TITLE OF INVENTION: ACTIVE RECOMBINANT CYSTEINE-FREE
     NUMBER OF SEQUENCES: 37
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN, LLP
       STREET: 130 WATER STREET
       CITY: BOSTON
       STATE: MA
       COUNTRY: USA
       ZIP: 02109
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Diskette
       COMPUTER: IBM Compatible
       OPERATING SYSTEM: DOS
       SOFTWARE: FastSEQ Version 1.5
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/09/108,661
       FILING DATE:
       CLASSIFICATION: 435
     PRIOR APPLICATION DATA:
       APPLICATION NUMBER: 08/350,709
       FILING DATE: 07-DEC-1994
       APPLICATION NUMBER: 07/838,857
       FILING DATE: 18-FEB-1992
       APPLICATION NUMBER: JP 024841
       FILING DATE: 19-FEB-1991
       APPLICATION NUMBER: JP 0271438
       FILING DATE: 18-OCT-1991
     ATTORNEY/AGENT INFORMATION:
;
       NAME: DAVID, RESNICK S
       REGISTRATION NUMBER: 34,235
       REFERENCE/DOCKET NUMBER: 41614-FWC
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: 617-523-3400
       TELEFAX: 617-523-6440
       TELEX: 200291 STRE
   INFORMATION FOR SEQ ID NO:
```

SEQUENCE CHARACTERISTICS:

```
LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    ANTI-SENSE: NO
    FRAGMENT TYPE: N-terminal
    ORIGINAL SOURCE:
US-09-108-661-13
                         100.0%; Score 28; DB 3; Length 34;
  Query Match
                         100.0%; Pred. No. 1.6e-20;
  Best Local Similarity
                                                 0; Indels
                                                                0; Gaps
                               0; Mismatches
 Matches
           28; Conservative
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              1111111111111111111111111111111111
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 38
US-09-007-466-6
; Sequence 6, Application US/09007466
; Patent No. 6313092
   GENERAL INFORMATION:
     APPLICANT: HOLLADAY, LESLIE A.
     APPLICANT: OLDENBURG, KEVIN R.
     TITLE OF INVENTION: METHOD FOR INCREASING THE
     TITLE OF INVENTION: ELECTROTRANSPORT FLUX OF POLYPEPTIDES
     NUMBER OF SEQUENCES: 10
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: ALZA CORPORATION
       STREET: 950 PAGE MILL ROAD
       CITY: PALO ALTO
       STATE: CALIFORNIA
       COUNTRY: USA
       ZIP: 94303-0802
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.30
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/09/007,466
       FILING DATE:
       CLASSIFICATION:
     PRIOR APPLICATION DATA:
       APPLICATION NUMBER: US 08/468,275
       FILING DATE: 06-JUN-1995
     ATTORNEY/AGENT INFORMATION:
       NAME: MILLER, D. BYRON
       REGISTRATION NUMBER: 30,661
       REFERENCE/DOCKET NUMBER: 0360-0002; ARC-2349
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: (415) 496-8150
       TELEFAX: (415) 496-8048
   INFORMATION FOR SEQ ID NO: 6:
```

```
SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE: protein
US-09-007-466-6
                         100.0%; Score 28; DB 4; Length 34;
 Query Match
                        100.0%; Pred. No. 1.6e-20;
 Best Local Similarity
                                                              0; Gaps
                                               0; Indels
          28; Conservative
                             0; Mismatches
 Matches
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
             1111111111111111
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 39
US-09-406-813-1
; Sequence 1, Application US/09406813
; Patent No. 6316410
; GENERAL INFORMATION:
  APPLICANT: Barbier, Jean-Rene
  APPLICANT: Morley, Paul
  APPLICANT: Whitfield, James
  APPLICANT: Willick, Gordon E.
   TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE TREATMENT OF
   TITLE OF INVENTION: OSTEOPOROSIS
   FILE REFERENCE: 10688-1B
   CURRENT APPLICATION NUMBER: US/09/406,813
   CURRENT FILING DATE: 1999-09-22
   PRIOR APPLICATION NUMBER: 08/904,760
   PRIOR FILING DATE: 1997-08-01
   NUMBER OF SEQ ID NOS: 9
   SOFTWARE: PatentIn Ver. 2.0
  SEQ ID NO 1
    LENGTH: 34
    TYPE: PRT
    ORGANISM: Homo sapiens
US-09-406-813-1
                         100.0%; Score 28; DB 4; Length 34;
  Ouery Match
  Best Local Similarity
                         100.0%; Pred. No. 1.6e-20;
                                                0; Indels
                                                                   Gaps
                               0; Mismatches
            28; Conservative
  Matches
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 40
US-08-952-980B-6
; Sequence 6, Application US/08952980B
; Patent No. 6333189
   GENERAL INFORMATION:
     APPLICANT: HOLLADAY, LESLIE A.
     APPLICANT: OLDENBURG, KEVIN R.
```

```
TITLE OF INVENTION: METHOD FOR INCREASING THE
    TITLE OF INVENTION: ELECTROTRANSPORT FLUX OF POLYPEPTIDES
    NUMBER OF SEQUENCES: 12
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: ALZA CORPORATION
      STREET: 950 PAGE MILL ROAD
      CITY: PALO ALTO
      STATE: CALIFORNIA
      COUNTRY: USA
      ZIP: 94303-0802
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/952,980B
      FILING DATE: 20-NOV-1997
      CLASSIFICATION: 530
    ATTORNEY/AGENT INFORMATION:
      NAME: MILLER, D. BYRON
      REGISTRATION NUMBER: 30,661
      REFERENCE/DOCKET NUMBER: 2349 CIP 1
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (650) 496-8150
      TELEFAX: (650) 496-8048
   INFORMATION FOR SEQ ID NO: 6:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE: protein
US-08-952-980B-6
  Query Match 100.0%; Score 28; DB 4; Length 34; Best Local Similarity 100.0%; Pred. No. 1.6e-20;
                                                                0; Gaps
                                                                            0;
  Matches 28; Conservative 0; Mismatches 0; Indels
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
```

Search completed: January 14, 2004, 10:43:37 Job time: 10.5078 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: January 14, 2004, 10:28:19; Search time 8.2866 Seconds

(without alignments)

324.949 Million cell updates/sec

Title: US-09-843-221A-168

Perfect score: 28

Sequence: 1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched: 283308 seqs, 96168682 residues

Word size : (

Total number of hits satisfying chosen parameters: 3709

Minimum DB seq length: 28 Maximum DB seq length: 40

Post-processing: Listing first 1000 summaries

Database : PIR_76:*

1: pir1:* 2: pir2:*

3: pir3:*

4: pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

		ક				
Result No.	Score	Query Match	Length	DB	ID	Description
1	5	17.9	34	2	A84241	hypothetical prote
2	5	17.9	34	2	B97032	transcription regu
3	4	14.3	28	2	T09594	gene LFY protein -
4	4	14.3	29	1	A55527	pyrroloquinoline q
5	4	14.3	29	2	I78537	copper transportin
6	4	14.3	29	2	S78412	ribosomal protein
7	4	14.3	30	2	S63531	hypothetical prote
8	4	14.3	31	2	S44471	glucagon G1 - Nort
9	4	14.3	31	2	S44472	glucagon G2 - Nort
10	4	14.3	32	2	F23454	ovalbumin phosphos
11	4	14.3	32		D31461	T-cell receptor de
12	4	14.3	33	2	E81714	hypothetical prote
13	4	14.3	35	2	D23454	ovalbumin phosphos

14	4	14.3	35	2	G23454	ovalbumin phosphos
15	4	14.3	36	2	S70806	hypothetical prote
16	4	14.3	36	2	S46227	hypothetical prote
17	4	14.3	37	2	S71912	hemoglobin, extrac
18	4	14.3	37	2	T12635	homeotic protein H
19	4	14.3	39	1	CKFHCS	sarcotoxin IC - fl
20	4	14.3	39	2	S71913	hemoglobin, extrac
21	3	10.7	28	2	A42272	brain-type creatin
22	3	10.7	28	2	C32416	phospholipase A2 (
23	3	10.7	28	2	B60071	vasoactive intesti
24	3	10.7	28	2	A60304	vasoactive intesti
25	3	10.7	28	2	S58386	T-cell receptor be
26	3	10.7	28	2	PN0047	signal transductio
27	3	10.7	28	2	S70894	hypothetical prote
28	3	10.7	28	2	S22469	hypothetical prote
29	3	10.7	28	2	S26254	rel protein - chic
30	3	10.7	28	2	I59477	antigen, T-cell re
31	3	10.7	28	2	F46522	T-cell receptor et
32	3	10.7	29	1	GCCB	glucagon - Chinchi
33	3	10.7	29	2	S39968	probable hydro-lya
34	3	10.7	29	2	A61509	islet amyloid poly
35	3	10.7	29	2	S17147	galanin - chicken
36	3	10.7	29	2	T44245	ribosomal protein
37	3	10.7	29	2	A05272	gelsolin, cytosoli
38	3	10.7	29	2	B81136	hypothetical prote
39	3	10.7	29	2	I84189	cyclic AMP recepto
40	3	10.7	29	2	S65747	CDP-paratose synth
41	3	10.7	29	2	S65748	CDP-paratose synth
42	3	10.7	29	2	B41476	probable antigen 2
43	3	10.7	29	2	S68094	2,3-dihydroxybenzo
44	3	10.7	29	2	A27688	mammary-derived gr
45	3	10.7	29	2	T31443	cytochrome bc chai
46	3	10.7	29	2	F85570	hypothetical prote
47	3	10.7	29	2	149732	NADH2 dehydrogenas
48	3	10.7	29	2	A59479	NADP phosphatase I
49	3	10.7	30	2	S40309	tyrosine 3-monooxy
50	3	10.7	30	2	C21897	ornithine carbamoy
51	3	10.7	30	2	A28562	glutathione transf
52	3	10.7	30	2	A05315	pancreatic ribonuc
53	3	10.7	30	2	A44598	endo-1,4-beta-xyla
54	3	10.7	30	2	A61333	trypsin (EC 3.4.21
55	3	10.7	30	2	S21815	H+-exporting ATPas
56	3	10.7	30	2	A44912	cysteine proteinas
57	3	10.7	30	2	F32502	T-cell receptor de
58	3	10.7	30	2	PD0013	cAMP response elem
59	3	10.7	30	2	S21195	spectrin beta chai
60	3	10.7	30	2	A34461	heat shock protein
61	3	10.7	30	2	A22977	delta-endotoxin -
62	3	10.7	30	2	A44913	34K core flagella
63	3	10.7	30	2	S30333	N-carbamoyl-D-amin
64	3	10.7	30	2	PQ0444	hypothetical prote
65	3	10.7	30	2	н95021	hypothetical prote
66	3	10.7	30	2	D72276	hypothetical prote
67	3	10.7	30	2	D70253	conserved hypothet
68	3	10.7	30	2	B70 1 65	hypothetical prote
69	3	10.7	30	2	B81956	hypothetical prote
70	3	10.7	30	2	E82294	hypothetical prote

71	3	10.7	30	2	S72626	small-cell-variant
72	3	10.7	30	2	A35687	probable 39K inorg
73	3	10.7	30	2	S73316	photosystem I chai
74	3	10.7	30	2	A32946	trypsin-like serin
75	3	10.7	30	2	PL0189	Ig light chain - s
76	3	10.7	30	2	S65519	carcinoembryonic a
77	3	10.7	30	2	S34765	4-hydroxybutyryl-C
78	3	10.7	30	2	D81532	hypothetical prote
79	3	10.7	30	2	A48923	retrovirus-related
80	3	10.7	30	2	B56586	storage hexamer 2
81	3	10.7	30	2	F81360	very hypothetical
82	3	10.7	30	2	S15650	NADH2 dehydrogenas
83	3	10.7	30	2	Н97596	hypothetical prote
84	3	10.7	30	4	152605	hypothetical MLL/E
85	3	10.7	31	1	A28805	leiurotoxin I [val
86	3	10.7	31	1	A49078	leiurotoxin I-like
87	3	10.7	31	1	S34504	photosystem I prot
88	3	10.7	31	2	T44925	hypothetical prote
89	3	10.7	31	2	A58793	relaxin chain B -
90	3	10.7	31	2	A58586	conotoxin MrVIA -
91	3	10.7	31	2	F30608	Ig kappa chain V-I
92	3	10.7	31	2	D30608	Ig kappa chain V-I
93	3	10.7	31	2	F31461	T-cell receptor de
94	3	10.7	31	2	152232	tau protein - huma
95	3	10.7	31	2	S32610	antiviral protein
96	3	10.7	31	2	S38881	inner membrane pro
97	3	10.7	31	2	G95018	hypothetical prote
98	3	10.7	31	2	G95022	hypothetical prote
99	3	10.7	31	2	A95085	hypothetical prote
100	3	10.7	31	2	H95093	hypothetical prote
101	3	10.7	31	2	E95140	hypothetical prote
102	3	10.7	31	2	E95151	hypothetical prote
103	3	10.7	31	2	E70202	hypothetical prote
104	3	10.7	31	2	E70223	hypothetical prote
105	3	10.7	31	2	H70225	hypothetical prote
106	3	10.7	31	2	D70236	hypothetical prote
107	3	10.7	31	2	C70240	hypothetical prote
108	3	10.7	31	2	E64562	hypothetical prote hypothetical prote
109	3	10.7	31	2	S49191	hypothetical prote
110	3	10.7	31	2	A05051	histone H1.3 - whe
111	3	10.7	31 31	2 2	B23605 S78738	protein YOL038c-a
112 113	3 3	10.7 10.7	31	2	A36221	cecropin P1 - pig
114	3	10.7	31	2	S27112	sarcolipin - rabbi
114	3	10.7	31	2	D81591	hypothetical prote
116	3	10.7	31	2	G81558	hypothetical prote
117	3	10.7	31	2	G82816	hypothetical prote
118	3	10.7	31	2	F82565	hypothetical prote
119	3	10.7	32	1	TCEE	calcitonin - Japan
120	3	10.7	32	1	TCON2	calcitonin 2 - soc
121	3	10.7	32	1	TCON2C	
122	3	10.7	32	1	TCON2P	calcitonin 2 - pin
123	3	10.7	32	1	TCON3	calcitonin 3 - coh
124	3	10.7	32	2	S20719	alcohol dehydrogen
125	3	10.7	32	2	A61143	trypsin (EC 3.4.21
126	3	10.7	32	2	D32502	T-cell receptor de
127	3	10.7	32	2	A32502	T-cell receptor de
	-					

128	3	10.7	32	2	B40186	ubiquitin / riboso
129	3	10.7	32	2	S57780	histone H3 - rice
130	3	10.7	32	2	A24047	gap junction prote
131	3	10.7	32	2	S51524	anchorin CII - bov
132	3	10.7	32	2	S36809	GTP-binding regula
133	3	10.7	32	2	A29743	translation initia
134	3	10.7	32	2	A44900	fimbrin, SEF 21 -
135	3	10.7	32	2	S03273	photosystem II oxy
136	3	10.7	32	2	C46107	polyomavirus enhan
137	3	10.7	32	2	S08482	regulatory protein
138	3	10.7	32	2	E87694	hypothetical prote
139	3	10.7	32	2	D70222	hypothetical prote
140	3	10.7	32	2	E70225	hypothetical prote
141	3	10.7	32	2	B70257	hypothetical prote
142	3	10.7	32	2	E82089	hypothetical prote
143	3	10.7	32	2	H82416	hypothetical prote
144	3	10.7	32	2	T17394	vrlN protein - Dic
145	3	10.7	32	2	S23476	hypothetical prote
146	3	10.7	32	2	S22304	hypothetical prote
147	3	10.7	32	2	S78323	photosystem II pro
148	3	10.7	32	2	A05015	hypothetical prote
149	3	10.7	32	2	138619	
	3		32			zinc finger protei
150		10.7		2	S28398	t-complex protein
151	3	10.7	32	2	T14569	hypothetical prote
152	3	10.7	32	2	H84081	hypothetical prote
153	3	10.7	32	2	F82833	hypothetical prote
154	3	10.7	32	2	JC5802	ovulation stimulat
155	3	10.7	32	2	E85588	hypothetical prote
156	3	10.7	33	2	S43312	2',3'-cyclic-nucle
157	3	10.7	33	2	S26859	chitinase (EC 3.2.
158	3	10.7	33	2	152219	c-ras-Ki-2 protein
159	3	10.7	33	2	153221	K-ras protein - hu
160	3	10.7	33	2	PC2300	gaegurin 1 - Korea
161	3	10.7	33	2	I56451	relaxin - hamadrya
162	3	10.7	33	2	E32502	T-cell receptor de
163	3	10.7	33	2	A31461	T-cell receptor de
164	3	10.7	33	2	B31461	T-cell receptor de
165	3	10.7	33	2	A03150	retinoic acid-bind
166	3	10.7	33	2	PQ0150	dnaK-type molecula
167	3	10.7	33	2	B44906	Ll protein - human
168	3	10.7	33	2	PQ0418	matrix protein M1
169	3	10.7	33	2	S34505	hypothetical prote
170	3	10.7	33	2	G95006	hypothetical prote
171	3	10.7	33	2	C95200	hypothetical prote
172	3	10.7	33	2	A87213	hypothetical prote
173	3	10.7	33	2	F84163	hypothetical prote
174	3	10.7	33	2	E82135	hypothetical prote
175	3	10.7	33	2	H82475	hypothetical prote
176	3	10.7	33	2	S68096	lactate dehydrogen
177	3	10.7	33	2	E82526	hypothetical prote
178	3	10.7	33	2	C97406	hypothetical prote
179	3	10.7	34	2	S57282	phospholipase A2 (
180	3	10.7	34	2	A40298	dermaseptin - Sauv
181	3	10.7	34	2	I48887	cryptdin-4 - mouse
182	3	10.7	34	2	132502	T-cell receptor de
183	3	10.7	34	2	H31461	T-cell receptor de
184	3	10.7	34	2	A19197	class II histocomp
	-		J.	_		

185	3	10.7	34	2	D48147	troponin I (altern
186	3	10.7	34	2	A43564	neurogenic protein
187	3	10.7	34	2	H95047	hypothetical prote
188	3	10.7	34	2	D95189	hypothetical prote
189	3	10.7	34	2	C90973	hypothetical prote
190	3	10.7	34	2	F70242	hypothetical prote
191	3	10.7	34	2	B70252	hypothetical prote
192	3	10.7	34	2	F81919	hypothetical prote
	3		34	2	H81883	hypothetical prote
193		10.7		2		hypothetical prote
194	3	10.7	34		F81044	
195	3	10.7	34	2	F82163	hypothetical prote
196	3	10.7	34	2	E82100	hypothetical prote
197	3	10.7	34	2	B82449	hypothetical prote
198	3	10.7	34	2	A60110	repetitive protein
199	3	10.7	34	2	S44828	F54F2.3 protein -
200	3	10.7	34	2	F84079	hypothetical prote
201	3	10.7	34	2	Н81600	hypothetical prote
202	3	10.7	34	2	H82820	hypothetical prote
203	3	10.7	34	2	C82819	hypothetical prote
204	3	10.7	34	2	B82679	hypothetical prote
205	3	10.7	34	2	G85820	unknown protein en
206	3	10.7	35	2	E38601	Ig kappa chain V r
207	3	10.7	35	2	A05302	hemoglobin beta ch
207	3	10.7	35	2	A29663	histone H4 - starf
			35	2	S27154	ribosomal protein
209	3	10.7				ribosomal protein
210	3	10.7	35	2	E48401	
211	3	10.7	35	2	S13435	lectin III - furze
212	3	10.7	35	2	S74556	photosystem II psb
213	3	10.7	35	2	S18224	filamentous hemagg
214	3	10.7	35	2	S18226	opacity protein op
215	3	10.7	35	2	T07870	major latex protei
216	3	10.7	35	2	B33770	hypothetical prote
217	3	10.7	35	2	PS0439	potassium channel
218	3	10.7	35	2	E95098	hypothetical prote
219	3	10.7	35	2	F87622	hypothetical prote
220	3	10.7	35	2	B84674	hypothetical prote
221	3	10.7	35	2	F84395	hypothetical prote
222	3	10.7	35	2	B82012	hypothetical prote
223	3	10.7	35	2	H81948	hypothetical prote
224	3	10.7	35	2	A82151	hypothetical prote
225	3	10.7	35	2	D82125	hypothetical prote
226	3	10.7	35	2	F82051	hypothetical prote
227	3	10.7	35	2	S58708	neutral phosphatas
	3	10.7	35	2	F69827	hypothetical prote
228				2		hypothetical prote
229	3	10.7	35		C69977	early nodulin 40 -
230	3	10.7	35	2	S65772	
231	3	10.7	35	2	A38107	mammalian toxin -
232	3	10.7	35	2	S49309	oncofetal protein
233	3	10.7	35	2	C81560	hypothetical prote
234	3	10.7	36	2	H32502	T-cell receptor de
235	3	10.7	36	2	C32502	T-cell receptor de
236	3	10.7	36	2	S08552	ribosomal protein
237	3	10.7	36	2	S72299	ribosomal protein
238	3	10.7	36	2	B44400	myosin heavy chain
239	3	10.7	36	2	146593	myosin - pig (frag
240	3	10.7	36	2	B31872	retinoic acid-bind
241	3	10.7	36	2	S35572	zona pellucida pro

242	3	10.7	36	2	B41481	virulence-associat
243	3	10.7	36	2	F95057	hypothetical prote
244	3	10.7	36	2	C95218	conserved domain p
245	3	10.7	. 36	2	A84774	hypothetical prote
246	3	10.7	36	2	E84416	hypothetical prote
247	3	10.7	36	2	S17834	acetyl-CoA carboxy
248	3	10.7	36	2	E70220	hypothetical prote
249	3	10.7	36	2	E70238	hypothetical prote
250	3	10.7	36	2	F64604	hypothetical prote
251	3	10.7	36	2	G81853	hypothetical prote
252	3	10.7	36	2	S16552	hypothetical prote
	3			2		
253		10.7	36		G82281	hypothetical prote
254	3	10.7	36	2	A82163	hypothetical prote
255	3	10.7	36	2	C82111	hypothetical prote
256	3	10.7	36	2	A82092	hypothetical prote
257	3	10.7	36	2	B82093	hypothetical prote
258	3	10.7	36	2	A82437	hypothetical prote
259	3	10.7	36	2	A38729	pyruvate decarboxy
260	3	10.7	36	2	A69326	hypothetical prote
261	3	10.7	36	2	S67795	probable membrane
262	3	10.7	36	2	T22263	hypothetical prote
263	3	10.7	36	2	A57443	guanylate cyclase
264	3	10.7	36	2	D83682	hypothetical prote
265	3	10.7	36	2	A83870	hypothetical prote
266	3	10.7	36	2	F84074	hypothetical prote
267	3	10.7	36	2	A56634	neuropeptide F - A
	3					
268		10.7	36	2	AI1841	hypothetical prote
269	3	10.7	37	1	S32792	iberiotoxin - east
270	3	10.7	37	1	HSWT93	histone H2A.3 - wh
271	3	10.7	37	2	S48656	fusicoccin recepto
272	3	10.7	37	2	S03570	trypsin (EC 3.4.21
273	3	10.7	37	2	S39367	proteinase omega -
274	3	10.7	37	2	S06217	transforming prote
275	3	10.7	37	2	S05037	insulinoma amyloid
276	3	10.7	37	2	A30607	Ig kappa chain V-I
277	3	10.7	37	2	PC1121	antifungal 25K pro
278	3	10.7	37	2	G01887	MEK kinase - human
279	3	10.7	37	2	S07517	gene 6.3 protein -
280	3	10.7	37	2	G70223	hypothetical prote
281	3	10.7	37	2	E70241	hypothetical prote
282	3	10.7	37	2	D83199	hypothetical prote
283	3	10.7	37	2	H82304	hypothetical prote
284	3	10.7	37	2	S21132	photosystem II cyt
	3			2		
285		10.7	37		F59103	hypothetical prote
286	3	10.7	37	2	T36662	small hypothetical
287	3	10.7	37	2	T11815	hypothetical prote
288	3	10.7	37	2	A57127	diuretic hormone 1
289	3	10.7	37	2	C32112	R15 gamma peptide
290	3	10.7	37	2	B48845	sterol regulatory
291	3	10.7	37	2	S68261	hypothetical prote
292	3	10.7	37	2	549982	Tcell receptor alp
293	3	10.7	37	2	PN0550	metabotropic gluta
294	3	10.7	37	2	S70931	histone-like prote
295	3	10.7	37	2	F81403	hypothetical prote
296	3	10.7	38	1	R5EC36	ribosomal protein
297	3	10.7	38	2	C34047	stylar glycoprotei
298	3	10.7	38	2	T11763	acetyl-CoA carboxy
	3	,	50	_	· • •	

299	3	10.7	38	2	S39034	lipid transfer pro
300	3	10.7	38	2	A42974	natriuretic peptid
301	3	10.7	38	2	A49165	pituitary adenylat
302	3	10.7	38	2	A61070	pituitary adenylat
303	3	10.7	38	2	PS0129	H-2 class I histoc
304	3	10.7	38	2	S50764	ribosomal protein
305	3	10.7	38	2	E72247	ribosomal protein
	3	10.7	38	2	H83113	50S ribosomal prot
306						50S ribosomal prot
307	3	10.7	38	2	AG0028	-
308	3	10.7	38	2	D91149	50S ribosomal subu
309	3	10.7	38	2	AF1008	50S ribosomal chai
310	3	10.7	38	2	PH1920	annexin-like 40K p
311	3	10.7	38	2	S72344	pilE protein - Nei
312	3	10.7	38	2	A60216	hyperglycemic horm
313	3	10.7	38	2	S65416	pyruvate synthase
314	3	10.7	38	2	B95069	hypothetical prote
315	3	10.7	38	2	A95139	hypothetical prote
316	3	10.7	. 38	2	H91111	hypothetical prote
317	3	10.7	38	2	D90631	hypothetical prote
318	3	10.7	38	2	E72306	hypothetical prote
319	3	10.7	38	2	E81873	hypothetical prote
320	3	10.7	38	2	T14885	hypothetical prote
321	3	10.7	38	2	A82478	hypothetical prote
322	3	10.7	38	2	E82463	hypothetical prote
323	3	10.7	38	2	A82450	hypothetical prote
324	3	10.7	38	2	D37842	hypothetical prote
325	3	10.7	38	2	B69492	hypothetical prote
326	3	10.7	38	2	S23173	photosystem I chai
327	3	10.7	38	2	T01992	hypothetical prote
328	3	10.7	38	2	S58601	hypothetical prote
329	3	10.7	38	2	T01741	hypothetical prote
330	3	10.7	38	2	B39888	synapsin I - bovin
331	3	10.7	38	2	A83863	hypothetical prote
332	3	10.7	38	2	Н81603	hypothetical prote
333	3	10.7	38	2	E82858	hypothetical prote
334	3	10.7	38	2	G71305	probable ribosomal
335	3	10.7	38	2	B97327	hypothetical prote
				2		
336	3	10.7	38		E86077	hypothetical prote
337	3	10.7	38	2	H85994	50S ribosomal subu
338	3	10.7	38	2	AB0747	hypothetical prote
339	3	10.7	38	2	AH0774	hypothetical prote
340	3	10.7	38	2	C97551	hypothetical prote
341	3	10.7	39	1	CTDFAS	corticotropin - sp
342	3	10.7	39	1	HWGH3Z	exendin-3 - Mexica
343	3	10.7	39	1	HWGH4G	exendin-4 - Gila m
344	3	10.7	39	2	B45946	gamma-glutamyltran
345	3	10.7	39	2	155325	aspartate transami
346	3	10.7	39	2	S09645	hygromycin-B kinas
347	3	10.7	39	2	A01458	corticotropin - fi
348	3	10.7	39	2	PN0127	corticotropin - se
349	3	10.7	39	2	A61127	adrenocorticotropi
	3			2	A01459	corticotropin - os
350	3	10.7	39	2		
351		10.7	39		A01457	corticotropin - ra
352	3	10.7	39	2	C55995	prostaglandin E2 r
353	3	10.7	39	2	S07458	Ig kappa chain V r
354	3	10.7	39	2	PH0878	Ig kappa chain V r
355	3	10.7	39	2	S72459	ribosomal protein

			•	_		
356	3	10.7	39	2	PQ0011	tubulin beta chain
357	3	10.7	39	2	S63482	tubulin beta chain
358	3	10.7	39	2	A45793	actin - nematode (
359	3	10.7	39	2	AH2286	photosystem II pro
360	3	10.7	39	2	G64944	yebJ protein - Esc
361	3	10.7	39	2	A85795	hypothetical prote
362	3	10.7	39	2	S78008	fucosyltransferase
363	3	10.7	39	2	A48110	RNA recognition mo
364	3	10.7	39	2	H95146	hypothetical prote
365	3	10.7	39	2	D70239	hypothetical prote
366	3	10.7	39	2	C70254	hypothetical prote
367	3	10.7	39	2	G81899	hypothetical prote
368	3	10.7	39	2	B81954	very hypothetical
369	3	10.7	39	2	F82329	hypothetical prote
370	3	10.7	39	2	A43591	43K outer membrane
371	3	10.7	39	2	A44918	lactococcin G pept
372	3	10.7	39	2	S67938	hypothetical prote
373	3	10.7	39	2	S73118	photosystem II pro
374	3	10.7	39	2	PC4294	high mobility grou
375	3	10.7	39	2	T15158	hypothetical prote
376	3	10.7	39	2	146466	luteinizing hormon
377	3	10.7	39	2	B40984	finger protein zfe
378	3	10.7	39	2	T03365	gene e2 protein -
379	3	10.7	39	2	F81587	hypothetical prote
380	3	10.7	39	2	E81540	hypothetical prote
381	3	10.7	39	2	T12905	hypothetical prote
382	3	10.7	39	2	AD0162	hypothetical prote
383	3	10.7	39	2	AE3109	hypothetical prote
384	3	10.7	40	1	SWFGS	sauvagine - Sauvag
385	3	10.7	40	2	B61320	plastocyanin - Aqu
386	3	10.7	40	2	S52343	hypothetical prote
387	3	10.7	40	2	S00264	creatine kinase (E
388	3	10.7	40	2	S34407	adenylate kinase (
389	3	10.7	40	2	PQ0202	endo-1,4-beta-xyla
390	3	10.7	40	2	S50021	trypsin-like prote
391	3	10.7	40	2	B60908	beta-lactamase (EC
392	3	10.7	40	2	B41440	protein disulfide-
393	3	10.7	40	2	A19940	antithrombin III -
394	3	10.7	40	2	B59005	thymosin beta - sc
395	3	10.7	40	2	A59005	thymosin beta - se
396	3	10.7	40	2	B31791	sarcotoxin ID - fl
397	3	10.7	40	2	S07969	T-cell receptor al
398	3	10.7	40	2	I50012	MHC class I protei
399	3	10.7	40	2	150013	MHC class I protei
400	3	10.7	40	2	S61539	ribosomal protein
401	3	10.7	40	2	A60171	proteoglycan core
402	3	10.7	40	2	A60645	tubulin beta chain
403	3	10.7	40	2	A29184	vitellogenin - tur
404	3	10.7	40	2	S65907	conglutin gamma -
405	3	10.7	40	2	S08656	protein VI - human
406	3	10.7	40	2	A53708	indolepyruvate syn
407	3	10.7	40	2	T08107	nonenzymatic prote
408	3	10.7	40	2	S71917	hemoglobin, extrac
409	3	10.7	40	2	S58853	homeotic protein u
410	3	10.7	40	2	H95063	hypothetical prote
411	3	10.7	40	2	H91281	hypothetical prote
412	3	10.7	40	2	A87642	hypothetical prote

412	2	10 7	4.0	2	F874 1 9	hypothetical prote
413 414	3 3	10.7 10.7	40 40	2	C32338	hypothetical 4K pr
415	3	10.7	40	2	C72398	hypothetical prote
416	3	10.7	40	2	S44935	hypothetical prote
417	3	10.7	40	2	A82203	hypothetical prote
418	3	10.7	4.0	2	A82382	hypothetical prote
419	3	10.7	40	2	I39944	regulatory extrace
420	3	10.7	40	2	F69677	phosphatase (RapK)
421	3	10.7	40	2	I41476	probable antigen 9
422	3	10.7	40	2	S27709	hypothetical prote
423	3	10.7	40	2	F45095	photosystem I ligh
424	3	10.7	40	2	T11811	hypothetical prote
425	3	10.7	40	2	T07472	hypothetical prote
426	3	10.7	40	2	T07516	hypothetical prote
427	3	10.7	40	2	T07523	hypothetical prote
428	3	10.7	40	2	T48629	hypothetical prote
429	3	10.7	40	2	S53001	mitotic-specific c
430	3	10.7	40	2	T03831	hypothetical prote
431 432	3 3	10.7 10.7	40 40	2 2	S71295 S56768	deoxyguanosine kin capsid protein - L
433	3	10.7	40	2	T07206	hypothetical prote
434	3	10.7	40	2	H81592	hypothetical prote
435	3	10.7	40	2	H81520	hypothetical prote
436	3	10.7	40	2	F81511	hypothetical prote
437	3	10.7	40	2	G82620	hypothetical prote
438	3	10.7	40	2	A82590	hypothetical prote
439	3	10.7	40	2	A86123	hypothetical prote
440	3	10.7	40	2	B97413	hypothetical prote
441	2	7.1	28	1	LFSEW	trp operon leader
442	2	7.1	28	1	LFEBLT	leu operon leader
443	2	7.1	28	1	LFECL	leu operon leader
444	2	7.1	28	1	G9BPSV	gene 9 protein - s
445	2	7.1	28	2	S41774	ubiquinol-cytochro
446	2	7.1	28	2	S71598	cytochrome P450 HP
447	2	7.1	28	2	S04341	cytochrome P450 PB
448	2	7.1	28	2	PX0033	cytochrome P450 te
449	2	7.1	28	2	S66436	allophycocyanin al
450	2	7.1	28	2	S47624	D-aspartate oxidas
451	2	7.1	28	2	T14210	NADH2 dehydrogenas
452	2	7.1	28	2	T14213	NADH2 dehydrogenas
453 454	2	7.1 7.1	28 28	2	T12301	NADH2 dehydrogenas
454 455	2 2	7.1 7.1	28 28	2	PC1162 S21278	cytochrome-c oxida
455 456	2	7.1	28	2	C33948	glutathione transf glutathione transf
457	2	7.1	28	2	A34244	hexokinase (EC 2.7
458	2	7.1	28	2	D38578	protein kinase 4 (
459	2	7.1	28	2	B39116	epidermal growth f
460	2	7.1	28	2	A31859	deoxycytidine kina
461	2	7.1	28	2	B54257	deoxynucleoside ki
462	2	7.1	28	2	I55596	lysosomal acid lip
463	2	7.1	28	2	B35948	phospholipase A2 (
464	2	7.1	28	2	C35948	phospholipase A2 (
465	2	7.1	28	2	A35115	hypothetical prote
466	2	7.1	28	2	A61281	lysozyme homolog A
467	2	7.1	28	2	A61529	chymotrypsin (EC 3
468	2	7.1	28	2	A60291	24K proteinase (EC
469	2	7.1	28	2	S08186	proteasome beta ch

470	2	7.1	28	2	S55729	orotidine-5'-monop
471	2	7.1	28	2	I40034	trpE protein - Bac
472	2	7.1	28	2	A32643	deoxyribodipyrimid
473	2	7.1	28	2	S77854	qlutamate-tRNA liq
		7.1		2		<u> </u>
474	2		28		JX0059	serine proteinase
475	2	7.1	28	2	S07156	trypsin inhibitor
476	2	7.1	28	2	JX0058	trypsin inhibitor
477	2	7.1	28	2	B45041	trypsin inhibitor
478	2	7.1	28	2	S20393	trypsin inhibitor
479	2	7.1	28	2	A25802	2S seed storage pr
480	2	7.1	28	2	T47196	RAS protein [impor
481	2	7.1	28	2	A61322	somatostatin-28 -
482	2	7.1	28	2	B60583	glycoprotein hormo
483	2	7.1	28	2	A38232	vasoactive intesti
484	2	7.1	28	2	A60303	vasoactive intesti
485	2	7.1	28	2	JT0412	bombyxin-IV chain
486	2	7.1	28	2	A56366	intestinal trefoil
487	2	7.1	28	2	C44180	alpha-neurotoxin-l
488	2	7.1	28	2	C39327	long neurotoxin -
489	2	7.1	28	2	132529	Ig lambda chain V
490	2	7.1	28	2	PC1001	Ig light chain V r
491	2	7.1	28	2	B47719	T-cell receptor al
492	2	7.1 7.1	28	2	D47719	
493	2	7.1 7.1		2	S58389	T-cell receptor al
494			28			T-cell receptor be
	2	7.1	28	2	PH0250	T-cell receptor Vb
495	2	7.1	28	2	PH0247	T-cell receptor Vb
496	2	7.1	28	2	A49829	T-cell receptor va
497	2	7.1	28	2	D49829	T-cell receptor va
498	2	7.1	28	2	PH1908	T-cell receptor al
499	2	7.1	28	2	D41912	T-cell receptor be
500	2	7.1	28	2	G47719	house-dust-mite-re
501	2	7.1	28	2	E49533	T-cell receptor be
502	2	7.1	28	2	146921	gene Bota protein
503	2	7.1	28	2	S11618	ribosomal protein
504	2	7.1	28	2	S51060	ribosomal protein
505	2	7.1	28	2	S51067	ribosomal protein
506	2	7.1	28	2	S72460	ribosomal protein
507	2	7.1	28	2	S08569	ribosomal protein
508	2	7.1	28	2	S10052	ribosomal protein
509	2	7.1	28	2	S55442	beta A2 crystallin
510	2	7.1	28	2	A45626	beta 2-tubulin - n
511	2	7.1	28	2	S21231	calcium-binding pr
512	2	7.1	28	2	A23691	apolipoprotein C-I
513	2	7.1	28	2	A05296	fibrinogen alpha c
514	2	7.1	28	2	A61113	cellular retinol-b
515	2	7.1	28	2	B35577	cell adhesion rece
516	2	7.1	28	2		
517	2				I48349	fibronectin - mous
		7.1	28	2	A61233	retinol-binding pr
518	2	7.1	28	2	I45911	dnaK-type molecula
519	2	7.1	28	2	PQ0263	dnaK-type molecula
520	2	7.1	28	2	A03356	omega-gliadin - ei
521	2	7.1	28	2	A60359	pollen allergen DG
522	2	7.1	28	2	A60752	outer membrane pro
523	2	7.1	28	2	PQ0691	photosystem I 5.6K
524	2	7.1	28	2	G32351	34K class B flagel
525	2	7.1	28	2	S47614	zinc finger protei
526	2	7.1	28	2	S49924	stp protein (Baker

527	2	7.1	28	2	B39227	calcium channel pr
528	2	7.1	28	2	F54346	pyruvate synthase
529	2	7.1	28	2	A36153	major allergen Ole
530	2	7.1	28	2	B54127	dolichyl-diphospho
531	2	7.1	28	2	S56746	alpha-synuclein, N
532	2	7.1	28	2	I48178	orphan receptor -
533	2	7.1	28	2	PC4429	peroxisome prolife
			28	2		peroxisome prolife
534	2	7.1			PC4430	
535	2	7.1	28	2	S29135	aminopyrine N-deme
536	2	7.1	28	2	S29136	aminopyrine N-deme
537	2	7.1	28	2	PN0625	homeobox JRX prote
538	2	7.1	28	2	B56779	tetM 5'-region lea
539	2	7.1	28	2	JU0297	fruR-shl operon le
540	2	7.1	28	2	G90638	leu operon leader
541	2	7.1	28	2	C90639	fruR leader peptid
542	2	7.1	28	2	B47310	MHVS28AA - murine
543	2	7.1	28	2	E64656	hypothetical prote
544	2	7.1	28	2	B64669	hypothetical prote
545	2	7.1	28	2	S15235	hypothetical prote
546	2	7.1	28	2	C56262	uvrB 3'-region hyp
	2	7.1	28	2	E81239	hypothetical prote
547						phosphorybosylpyro
548	2	7.1	28	2	160364	
549	2	7.1	28	2	S56121	type I DNA methylt
550	2	7.1	28	2	B39191	hypothetical prote
551	2	7.1	28	2	T17391	hypothetical prote
552	2	7.1	28	2	A56499	brevicin-27 - Lact
553	2	7.1	28	2	A41476	probable antigen 1
554	2	7.1	28	2	S16228	aryl acylamidase -
555	2	7.1	28	2	G69384	conserved hypothet
556	2	7.1	28	2	A69259	hypothetical prote
557	2	7.1	28	2	T06925	hypothetical prote
558	2	7.1	28	2	S38524	rRNA N-glycosidase
559	2	7.1	28	2	PQ0800	calmodulin antagon
560	2	7.1	28	2	T06340	ribosomal protein
561	2	7.1	28	2	T07599	hypothetical prote
562	2	7.1	28	2	PH0220	peroxidase (EC 1.1
				2		hypothetical 3K pr
563	2	7.1	28		JQ0272	
564	2	7.1	28	2	S46250	fatty-acid-binding
565	2	7.1	28	2	A44923	carboxypeptidase 3
566	2	7.1	28	2	S64701	hypothetical prote
567	2	7.1	28	2	T38041	similarity to yeas
568	2	7.1	28	2	A27261	proteinase inhibit
569	2	7.1	28	2	A61417	bdellin B-3 - medi
570	2	7.1	28	2	S06668	toxin-like protein
571	2	7.1	28	2	S07826	venom protein - Am
572	2	7.1	28	2	C34923	omega-agatoxin IIA
573	2	7.1	28	2	A44877	cell surface prote
574	2	7.1	28	2	JW0019	mast cell degranul
575	2	7.1	28	2	A61273	interleukin-1 - st
575 576	2	7.1	28	2	S68643	nicotinic acetylch
				2		angiotensin II rec
577	2	7.1	28		PC2162	
578 570	2	7.1	28	2	I54183	cell adhesion regu
579	2	7.1	28	2	S54338	cytochrome P450 CY
580	2	7.1	28	2	152627	erythrocyte chemok
581	2	7.1	28	2	JQ1035	hypothetical 3.2K
582	2	7.1	28	2	PH1335	Ig heavy chain DJ
583	2	7.1	28	2	S37683	protein IEF SSP 91

584 2 7.1 28 2 918911 T-cell receptor al 1586 2 7.1 28 2 PH3911 T-cell receptor al 273 domain - human 586 2 7.1 28 2 L0005 pepsin A (EC 3.44) 285 2 P101me-rich prote heat shock protein heat shoc								
Secondary	584	2	7.1	28	2	S37686		protein IEF SSP 92
September Sept	585	2	7.1	28	2	PH1911		T-cell receptor al
588 2 7.1 28 2 PA00055 pepsin A (EC 3.4.2) 589 2 7.1 28 2 PA00592 proline-rich prote 590 2 7.1 28 2 PC2339 heat shock protein 590 2 7.1 28 2 PT0366 T-cell receptor be 591 2 7.1 28 2 A66690 sialic acid-specif 592 2 7.1 28 2 C83797 hypothetical prote 594 2 7.1 28 2 C83969 hypothetical prote 595 2 7.1 28 2 C85490 fruR leader peptid 597 2 7.1 28 2 C97078 hypothetical prote 598 2 7.1 28 2 R597000 hypothetical prote 600 2 7.1 28 2 R597000 hypothetical prote 601 2 7.1	586	2	7.1	28	2	139288		ZF3 domain - human
588 2 7.1 28 2 A60692 proline-rich prote 590 2 7.1 28 2 PT0366 T-cell receptor be 591 2 7.1 28 2 PT0366 T-cell receptor be 591 2 7.1 28 2 A46690 sialic acid-specif 593 2 7.1 28 2 C83969 hypothetical prote 594 2 7.1 28 2 C83969 hypothetical prote 595 2 7.1 28 2 C85490 fruR leader peptid 596 2 7.1 28 2 C97078 hypothetical prote 597 2 7.1 28 2 C97078 hypothetical prote 600 2 7.1 28 2 R97000 hypothetical prote 601 2 7.1 28 2 A8698 hypothetical prote 601 2 7.1	587	2	7.1	28	2	PL0005		pepsin A (EC 3.4.2
S89		2	7.1	28	2	A60692		proline-rich prote
T-cell receptor be S91				28	2			heat shock protein
1991								-
Section								-
193								
1994 2								
Section								-
The color of the								
1								
598 2 7.1 28 2 F97000 hypothetical prote 599 2 7.1 28 2 685489 leu operon leader 600 2 7.1 28 2 H85908 hypothetical prote 601 2 7.1 28 2 AB1093 hypothetical prote 602 2 7.1 28 2 AB1093 hypothetical prote 604 2 7.1 28 2 A50516 leu operon leader 605 2 7.1 28 2 AG0516 leu operon leader 606 2 7.1 28 4 JN0014 GABA(A) receptor a 607 2 7.1 29 1 TIPU trypsin inhibitor 608 2 7.1 29 1 TIPU2B trypsin inhibitor 609 2 7.1 29 1 GCDV glucagon - North A 611 2 7.1 29								
1								
Second								
601 2 7.1 28 2 AB1093 hypothetical prote 602 2 7.1 28 2 T06490 probable ribulose 603 2 7.1 28 2 S73563 H+-transporting tw 604 2 7.1 28 2 AG0516 leu operon leader 605 2 7.1 28 4 JN0014 GABA (A) receptor a 607 2 7.1 29 1 TIPU trypsin inhibitor 608 2 7.1 29 1 TIPU3 trypsin inhibitor 609 2 7.1 29 1 GCDP glucagon - North A 610 2 7.1 29 1 GCDP Glucagon - North A 611 2 7.1 29 1 GCDF Glucagon - North A 612 2 7.1 29 1 GCDF Glucagon - Smaller 613 2 7.1 29	599							-
602 2 7.1 28 2 T06490 probable ribulose- 603 2 7.1 28 2 S73563 H+-transporting tw 604 2 7.1 28 2 A60516 leu operon leader 605 2 7.1 28 4 J00014 GABA(A) receptor a 606 2 7.1 28 4 JN0014 GABA(A) receptor a 607 2 7.1 29 1 TIPU trypsin inhibitor 608 2 7.1 29 1 TIPU3 trypsin inhibitor 609 2 7.1 29 1 TIPU3 trypsin inhibitor 610 2 7.1 29 1 GCDK glucagon - North A 611 2 7.1 29 1 GCDK glucagon - Ostrich 612 2 7.1 29 1 GCDF glucagon - Strich 613 2 7.1 29 1 GCDF glucagon - Strich 614 2 7.1 29 1 GCDF glucagon - Strich 615 2 7.1 29 1 GCDF glucagon - Smaller 616 2 7.1 29 1 GCTS glucagon - Smaller 617 2 7.1 29 1 GCTS glucagon - slider 618 2 7.1 29 1 GCTS glucagon - slider 619 2 7.1 29 2 A60558 620 2 7.1 29 2 T17076 NADH2 dehydrogenas 621 2 7.1 29 2 A60558 622 2 7.1 29 2 A54234 624 2 7.1 29 2 A54234 625 2 7.1 29 2 A54234 626 2 7.1 29 2 A54234 627 2 7.1 29 2 A5208 628 2 7.1 29 2 A5208 629 2 7.1 29 2 A5208 620 2 7.1 29 2 A5208 621 2 7.1 29 2 A5208 622 2 7.1 29 2 A5208 623 2 7.1 29 2 S38201 peroxidase (EC 1.1 625 2 7.1 29 2 A5208 626 2 7.1 29 2 A54234 627 2 7.1 29 2 A5208 628 2 7.1 29 2 A5208 629 2 7.1 29 2 A52018 630 2 7.1 29 2 S38174 631 2 7.1 29 2 S38174 632 2 7.1 29 2 S38174 633 2 7.1 29 2 S38201 634 2 7.1 29 2 S02578 635 2 7.1 29 2 S02578 636 2 7.1 29 2 S02578 637 2 7.1 29 2 D55598 638 2 7.1 29 2 D55598 639 2 7.1 29 2 D55598 640 2 7.1 29 2 D55598 650 2 7.1 29 2 D555998 650 2 7.1 29 2 D555998 650 2 7.1 29 2 D555998 650 2	600		7.1	28		H85908		
603 2 7.1 28 2 S73563 H+-transporting tw 604 2 7.1 28 4 AG0516 leu operon leader 605 2 7.1 28 4 JN0014 GABA(A) receptor a 606 2 7.1 29 1 TIPU trypsin inhibitor 608 2 7.1 29 1 TIPU3 trypsin inhibitor 609 2 7.1 29 1 TIPU3 trypsin inhibitor 609 2 7.1 29 1 TIPU3 trypsin inhibitor 610 2 7.1 29 1 GCDV glucagon - North A 611 2 7.1 29 1 GCDK glucagon - Ostrich 612 2 7.1 29 1 GCDK glucagon - Swalter 613 2 7.1 29 1 GCFLE glucagon - Swalter 614 2 7.1 29 1 GCFLE glucagon - Swalter 615 2 7.1 29 1 GCFN glucagon - smalter 616 2 7.1 29 1 GCFN glucagon - smalter 617 2 7.1 29 1 GCFN glucagon - slider 618 2 7.1 29 1 GCFN glucagon - slider 619 2 7.1 29 1 GCFN glucagon - slider 610 2 7.1 29 1 GCFN glucagon - Swalter 611 2 7.1 29 1 GCFN glucagon - Swalter 612 2 7.1 29 1 GCFN glucagon - Swalter 613 2 7.1 29 1 GCFN glucagon - Swalter 614 2 7.1 29 1 GCFN glucagon - Swalter 615 2 7.1 29 1 GCFN glucagon - Swalter 616 2 7.1 29 1 GCFN glucagon - Swalter 617 2 7.1 29 1 TNLJBR trans-activating t 618 2 7.1 29 2 A60558 Cytochrome P450 HL 620 2 7.1 29 2 T17079 NADH2 dehydrogenas 621 2 7.1 29 2 T17079 NADH2 dehydrogenas 622 2 7.1 29 2 A54234 Cytochrome-c oxida 624 2 7.1 29 2 A54234 Cytochrome-c oxida 625 2 7.1 29 2 A6201 peroxidase (EC 1.1 626 2 7.1 29 2 A22018 phosphotransferase 627 2 7.1 29 2 A22018 phosphotransferase 627 2 7.1 29 2 S28174 heat-shock protein 628 2 7.1 29 2 S28174 heat-shock protein 630 2 7.1 29 2 S23122 peptidylprolyl iso 631 2 7.1 29 2 S23122 peptidylprolyl iso 632 2 7.1 29 2 S23122 peptidylprolyl iso 633 2 7.1 29 2 D55598 brevinin-2Ee - edi 636 2 7.1 29 2 D55598 brevinin-2Ee - edi 637 2 7.1 29 2 D55578 brevinin-2Ee - edi 638 2 7.1 29 2 D55578 brevinin-2Ee - edi 639 2 7.1 29 2 D53578 brevinin-2Ee - edi	601	2	7.1	28	2	AB1093		
1	602	2	7.1	28	2	T06490		probable ribulose-
604 2 7.1 28 2 AGO516 leu operon leader 605 2 7.1 28 4 I68614 frame shifted FMRI 606 2 7.1 28 4 JN0014 GABA(A) receptor a 607 2 7.1 29 1 TIPU trypsin inhibitor trypsin inhibitor 608 2 7.1 29 1 TIPU3 trypsin inhibitor 609 2 7.1 29 1 TIPU3 trypsin inhibitor 610 2 7.1 29 1 GCDV glucagon - North A 611 2 7.1 29 1 GCDK glucagon - Ostrich 611 2 7.1 29 1 GCDK glucagon - Ostrich 613 2 7.1 29 1 GCDF glucagon - Europea 614 2 7.1 29 1 GCDF glucagon - Europea 614 2 7.1 29 1 GCDF glucagon - Europea 615 2 7.1 29 1 GCTLE glucagon - smaller 616 2 7.1 29 1 GCTN glucagon - slider 617 2 7.1 29 1 TNLJBR trans-activating t 618 2 7.1 29 1 TNLJBR trans-activating t 618 2 7.1 29 2 A60558 cytochrome P450 HL 620 2 7.1 29 2 T17079 NADH2 dehydrogenas 621 2 7.1 29 2 T17076 NADH2 dehydrogenas 621 2 7.1 29 2 A54234 cytochrome P450 HL 623 2 7.1 29 2 A54234 cytochrome-c oxida 624 2 7.1 29 2 A54234 cytochrome-c oxida 625 2 7.1 29 2 A26208 accetyl-CoA C-acety 626 2 7.1 29 2 S08201 peroxidase (EC 1.1 625 2 7.1 29 2 S46211 kallikrein rK8 (pK 628 2 7.1 29 2 S28174 heat-shock protein 629 2 7.1 29 2 S28174 heat-shock protein 630 2 7.1 29 2 S23122 peptidylprolyl iso 631 2 7.1 29 2 S2518 H+-transporting tw 632 2 7.1 29 2 S2518 H+-transporting tw 633 2 7.1 29 2 D55598 brevinin-2Ed - edi 637 2 7.1 29 2 D55598 brevinin-2Ed - edi 638 2 7.1 29 2 D55598 brevinin-2Ed - edi 638 2 7.1 29 2 D55598 brevinin-2Ed - edi 637 2 7.1 29 2 D55578 brevinin-2Ed - edi 638 2 7.1 29 2 D55598 brevinin-2Ed - edi 638 2 7.1 29 2 D55598 brevinin-2Ed - edi 638 2 7.1 29 2 D55598 brevinin-2Ed - edi 638 2 7.1 29 2 D55598 brevinin-2Ed - edi 638 2 7.1 29 2 D55598 brevinin-2Ed - edi 638 2 7.1 29 2 D55598 brevinin-2Ed - edi 639 2 7.1 29 2 D55598 brevinin-2Ed - edi 639 2 7.1 29 2 D55598 brevinin-2Ed - edi 639 2 7.1 29 2 D55598 brevinin-2Ed - edi 639 2 7.1 29 2 D55598 brevinin-2Ed - edi		2	7.1	28	2	S73563		H+-transporting tw
605 2 7.1 28 4 I68614 GABA(A) receptor a				28	2	AG0516		leu operon leader
606 2 7.1 28 4 JN0014 GABA(A) receptor a 607 2 7.1 29 1 TIPU trypsin inhibitor 608 2 7.1 29 1 TIPU trypsin inhibitor 609 2 7.1 29 1 TIPUB trypsin inhibitor 609 2 7.1 29 1 GCOPV glucagon - North A 611 2 7.1 29 1 GCDK glucagon - Ostrich 612 2 7.1 29 1 GCDK glucagon - Ostrich 613 2 7.1 29 1 GCDF glucagon - Ostrich 613 2 7.1 29 1 GCDF glucagon - Europea 614 2 7.1 29 1 GCDF glucagon - Europea 614 2 7.1 29 1 GCDF glucagon - Smaller 615 2 7.1 29 1 GCDF glucagon - elephan 616 2 7.1 29 1 GCTS glucagon - slider 617 2 7.1 29 1 GCTS glucagon - slider 618 2 7.1 29 1 TNLJBR trans-activating t 618 2 7.1 29 2 A60558 cytochrome P450 HL 620 2 7.1 29 2 T17079 NADH2 dehydrogenas 622 2 7.1 29 2 T17079 NADH2 dehydrogenas 622 2 7.1 29 2 A48427 flavohemoglobin hm 623 2 7.1 29 2 A48427 flavohemoglobin hm 623 2 7.1 29 2 A26208 acetyl-CoA C-acety 626 2 7.1 29 2 A26208 acetyl-CoA C-acety 626 2 7.1 29 2 S08201 peroxidase (EC 1.1 625 2 7.1 29 2 S46211 kallikrein rK8 (pK 629 2 7.1 29 2 S32114 bothrolysin (EC 3.630 2 7.1 29 2 S17432 H+-transporting tw 632 2 7.1 29 2 S28174 bothrolysin (EC 3.630 2 7.1 29 2 S28174 bothrolysin (EC 3.630 2 7.1 29 2 S25182 peptidylprolyl iso 633 2 7.1 29 2 D55598 brevinin-2Ed - edi 637 2 7.1 29 2 D55598 brevinin-2Ed - edi 638 2 7.1 29 2 D55598 brevinin-2Ed - edi 638 2 7.1 29 2 D55598 brevinin-2Ed - edi 638 2 7.1 29 2 D55578 brevinin-2Ed - edi 638 2 7.1 29 2 D55578 brevinin-2Ed - edi 638 2 7.1 29 2 D55578 brevinin-2Ed - edi 638 2 7.1 29 2 D55578 brevinin-2Ed - edi 638 2 7.1 29 2 D55598 brevinin-2Ed - edi 639 2 7.1 29 2 D55578 brevinin-2Ed - edi 639 2 7.1 29 2 D55578 brevinin-2Ed - edi					4			frame shifted FMR1
607 2 7.1 29 1 TIPU trypsin inhibitor 608 2 7.1 29 1 TIPU3 trypsin inhibitor 609 2 7.1 29 1 TIPU2B trypsin inhibitor 610 2 7.1 29 1 GCOPV glucagon - North A 611 2 7.1 29 1 GCDK glucagon - Ostrich 612 2 7.1 29 1 GCFLE glucagon - Europea 614 2 7.1 29 1 GCFLE glucagon - Europea 614 2 7.1 29 1 GCFLE glucagon - smaller 615 2 7.1 29 1 GCFN glucagon - smaller 616 2 7.1 29 1 GCTS glucagon - slider 617 2 7.1 29 1 GCTS glucagon - slider 618 2 7.1 29 1 TINLJBR trans-activating t 618 2 7.1 29 1 QLBP57 gene 1.5 protein - 619 2 7.1 29 2 A60558 cytochrome P450 HL 620 2 7.1 29 2 T17079 NADH2 dehydrogenas 621 2 7.1 29 2 T17076 NADH2 dehydrogenas 622 2 7.1 29 2 A46427 flavohemoglobin hm 623 2 7.1 29 2 A54234 cytochrome-c oxida 624 2 7.1 29 2 S08201 peroxidase (EC 1.1 625 2 7.1 29 2 A26208 acetyl-CoA C-acety 626 2 7.1 29 2 S28174 heat-shock protein 627 2 7.1 29 2 S28174 heat-shock protein 630 2 7.1 29 2 S22578 H+-transporting tw 631 2 7.1 29 2 S02578 H+-transporting trypsi 632 2 7.1 29 2 D55598 brevinin-ZEG - edi 633 2 7.1 29 2 D55598 brevinin-ZEG - edi 636 2 7.1 29 2 D55578 brevinin-ZEG - edi 637 2 7.1 29 2 D55578 brevinin-ZEG - edi 638 2 7.1 29 2 D55578 brevinin-ZEG - edi 638 2 7.1 29 2 D55578 brevinin-ZEG - edi 638 2 7.1 29 2 A91741 glucagon - rabbit					4			GABA(A) receptor a
608 2 7.1 29 1 TIPU3 trypsin inhibitor 609 2 7.1 29 1 TIPU2B trypsin inhibitor 610 2 7.1 29 1 GCOPV glucagon - North A 611 2 7.1 29 1 GCDK glucagon - duck 612 2 7.1 29 1 A61583 glucagon - Europea 613 2 7.1 29 1 GCDF glucagon - smaller 614 2 7.1 29 1 GCEN glucagon - elephan 616 2 7.1 29 1 GCEN glucagon - elephan 616 2 7.1 29 1 TRINJBR trans-activating t 618 2 7.1 29 1 TRINJBR trans-activating t 618 2 7.1 29 1 A05858 cytochrome 619 2 7.1 29								
609 2 7.1 29 1 TIPU2B trypsin inhibitor 610 2 7.1 29 1 GCOPV glucagon - North A 611 2 7.1 29 1 GCDK glucagon - Onth A 611 2 7.1 29 1 GCDK glucagon - Onth A 612 2 7.1 29 1 GCDK glucagon - Onth A 613 2 7.1 29 1 GCDF glucagon - Europea 614 2 7.1 29 1 GCDF glucagon - Europea 614 2 7.1 29 1 GCDF glucagon - Smaller 615 2 7.1 29 1 GCTTS glucagon - Slider 616 2 7.1 29 1 GCTTS glucagon - Slider 617 2 7.1 29 1 TNLJBR trans-activating t 618 2 7.1 29 1 QIBP57 gene 1.5 protein - 619 2 7.1 29 2 A60558 cytochrome P450 HL 620 2 7.1 29 2 T17079 NADH2 dehydrogenas 621 2 7.1 29 2 T17079 NADH2 dehydrogenas 622 2 7.1 29 2 A8427 flavohemoglobin hm 623 2 7.1 29 2 S08201 peroxidase (EC 1.1 625 2 7.1 29 2 A6208 acetyl-CoA C-acety 626 2 7.1 29 2 S46211 kallikrein rK8 (pK 628 2 7.1 29 2 S3212 phosphotransferase 629 2 7.1 29 2 S28174 heat-shock protein 630 2 7.1 29 2 S23122 peptidylprolyl iso 631 2 7.1 29 2 S02578 H+-transporting tw 632 2 7.1 29 2 D55958 brevinin-2Ee - edi 633 2 7.1 29 2 D55958 brevinin-2Ee - edi 636 2 7.1 29 2 D59578 brevinin-2Ee - edi 637 2 7.1 29 2 D59578 brevinin-2Ee - edi 638 2 7.1 29 2 D59578 brevinin-2Ee - edi 638 2 7.1 29 2 D59578 brevinin-2Ee - edi 638 2 7.1 29 2 D59578 brevinin-2Ee - edi 638 2 7.1 29 2 D59578 brevinin-2Ee - edi 639 2 7.1 29 2 A91741 glucagon - rabbit								
610 2 7.1 29 1 GCOPV glucagon - North A 611 2 7.1 29 1 GCDK glucagon - duck 612 2 7.1 29 1 GCDK glucagon - duck 612 2 7.1 29 1 GCPLE glucagon - Strich 613 2 7.1 29 1 GCDF glucagon - Europea 614 2 7.1 29 1 GCDF glucagon - smaller 615 2 7.1 29 1 GCDF glucagon - elephan 616 2 7.1 29 1 GCTTS glucagon - slider 617 2 7.1 29 1 GCTTS glucagon - slider 618 2 7.1 29 1 QLBP57 gene 1.5 protein - 619 2 7.1 29 1 QLBP57 gene 1.5 protein - 619 2 7.1 29 2 A60558 cytochrome P450 HL 620 2 7.1 29 2 T17079 NADH2 dehydrogenas 621 2 7.1 29 2 T17076 NADH2 dehydrogenas 622 2 7.1 29 2 T17076 NADH2 dehydrogenas 623 2 7.1 29 2 A848427 flavohemoglobin hm 623 2 7.1 29 2 S08201 peroxidase (EC 1.1 625 2 7.1 29 2 A26208 acctyl-CoA C-acety 626 2 7.1 29 2 S28174 heat-shock protein 629 2 7.1 29 2 S28174 heat-shock protein 629 2 7.1 29 2 S38174 heat-shock protein 620 2 7.1 29 2 S38174 heat-shock protein 631 2 7.1 29 2 S317432 H+-transporting tw 631 2 7.1 29 2 S317432 peptidylprolyl iso 633 2 7.1 29 2 S317432 peptidylprolyl iso 633 2 7.1 29 2 S317432 peptidylprolyl iso 633 2 7.1 29 2 S31743 phospholipid trans 635 2 7.1 29 2 D5598 brevinin-2Ed - edi 637 2 7.1 29 2 D55998 brevinin-2Ed - edi 637 2 7.1 29 2 D55998 brevinin-2Ed - edi 637 2 7.1 29 2 D55974 brevinin-2Ed - edi 638 2 7.1 29 2 D55974 brevinin-2Ed - edi 639 2 7.1 29 2 D55974 brevinin-2Ed - edi 639 2 7.1 29 2 D55974 brevinin-2Ed - edi 639 2 7.1 29 2 D55974 brevinin-2Ed - edi 639 2 7.1 29 2 D55974 brevinin-2Ed - edi 639 2 7.1 29 2 D55974 brevinin-2Ed - edi 639 2 7.1 29 2 D55974 brevinin-2Ed - edi 639 2 7.1 29 2 D55974 brevinin-2Ed - edi 639 2 7.1 29 2 D55974 brevinin-2Ed - edi 639 2 7.1 29 2 D55974 brevinin-2Ed - edi 639 2 7.1 29 2 D55974 brevinin-2Ed - edi 639 2 7.1 29 2 D55974 brevinin-2Ed - edi								
611 2 7.1 29 1 GCDK glucagon - duck 612 2 7.1 29 1 A61583 glucagon - ostrich 613 2 7.1 29 1 GCFLE glucagon - Europea 614 2 7.1 29 1 GCEN glucagon - smaller 615 2 7.1 29 1 GCEN glucagon - elephan 616 2 7.1 29 1 GCTTS glucagon - slider 617 2 7.1 29 1 TNLJBR trans-activating t 618 2 7.1 29 1 QlBP57 gene 1.5 protein - 619 2 7.1 29 2 A60558 cytochrome P450 HL 620 2 7.1 29 2 T17079 NADH2 dehydrogenas 621 2 7.1 29 2 T17076 NADH2 dehydrogenas 622 2 7.1 29 2 A48427 flavohemoglobin hm 623 2 7.1 29 2 A54234 cytochrome-c oxida 624 2 7.1 29 2 S08201 peroxidase (EC 1.1 625 2 7.1 29 2 A26208 acetyl-CoA C-acety 626 2 7.1 29 2 S46211 kallikrein rK8 (pK 628 2 7.1 29 2 S28174 heat-shock protein 629 2 7.1 29 2 S28174 heat-shock protein 630 2 7.1 29 2 S02578 H+-transporting tw 631 2 7.1 29 2 S02578 H+-transporting tw 632 2 7.1 29 2 T03653 phospholipid trans 635 2 7.1 29 2 D55598 brevinin-ZEC - edi 637 2 7.1 29 2 D55578 brevinin-ZEC - edi 638 2 7.1 29 2 D55578 brevinin-ZEC - edi 638 2 7.1 29 2 D55578 brevinin-ZEC - edi 638 2 7.1 29 2 D55578 brevinin-ZEC - edi 638 2 7.1 29 2 D55578 brevinin-ZEC - edi 638 2 7.1 29 2 D55578 brevinin-ZEC - edi								
612 2 7.1 29 1 A61583 glucagon - ostrich 613 2 7.1 29 1 GCFLE glucagon - Europea 614 2 7.1 29 1 GCDF glucagon - smaller 615 2 7.1 29 1 GCDF glucagon - smaller 616 2 7.1 29 1 GCTTS glucagon - elephan 616 2 7.1 29 1 TNLJBR trans-activating t 618 2 7.1 29 1 Q1BP57 gene 1.5 protein - 619 2 7.1 29 2 A60558 cytochrome P450 HL 620 2 7.1 29 2 T17079 NADH2 dehydrogenas 621 2 7.1 29 2 T17076 NADH2 dehydrogenas 621 2 7.1 29 2 A48427 flavohemoglobin hm 623 2 7.1 29 2 A54234 cytochrome-c oxida 624 2 7.1 29 2 S08201 peroxidase (EC 1.1 625 2 7.1 29 2 A26208 acetyl-CoA C-acety 626 2 7.1 29 2 A22018 phosphotransferase 627 2 7.1 29 2 S46211 kallikrein rK8 (pK 628 2 7.1 29 2 S28174 heat-shock protein 629 2 7.1 29 2 S17432 H+-transporting tw 631 2 7.1 29 2 S02578 H+-transporting tw 632 2 7.1 29 2 S02578 H+-transporting tw 633 2 7.1 29 2 T03653 phospholipid trans 635 2 7.1 29 2 C25310 alpha-amylase/tryp 636 2 7.1 29 2 D55998 brevinin-2Ee - edi 637 2 7.1 29 2 D53578 brevinin-2Ee - edi 638 2 7.1 29 2 D53578 brevinin-2Ee - edi 638 2 7.1 29 2 D53578 brevinin-2Ee - edi 638 2 7.1 29 2 D53578 brevinin-2Ee - edi 638 2 7.1 29 2 D53578 brevinin-2Ee - edi								
613 2 7.1 29 1 GCFLE glucagon - Europea 614 2 7.1 29 1 GCDF glucagon - smaller 615 2 7.1 29 1 GCEN glucagon - elephan 616 2 7.1 29 1 GCTTS glucagon - slider 617 2 7.1 29 1 TNLJBR trans-activating t 618 2 7.1 29 1 Q1BP57 gene 1.5 protein - 619 2 7.1 29 2 A60558 cytochrome P450 HL 620 2 7.1 29 2 T17079 NADH2 dehydrogenas 621 2 7.1 29 2 T17076 NADH2 dehydrogenas 622 2 7.1 29 2 A48427 flavohemoglobin hm 623 2 7.1 29 2 A54234 cytochrome-c oxida 624 2 7.1 29 2 S08201 peroxidase (EC 1.1 625 2 7.1 29 2 A26208 acetyl-CoA C-acety 626 2 7.1 29 2 A26208 acetyl-CoA C-acety 626 2 7.1 29 2 S46211 kallikrein rK8 (pK 628 2 7.1 29 2 S46211 kallikrein rK8 (pK 628 2 7.1 29 2 S3144 bothrolysin (EC 3. 630 2 7.1 29 2 S3144 bothrolysin (EC 3. 630 2 7.1 29 2 S3142 H+-transporting tw 631 2 7.1 29 2 S23122 peptidylprolyl iso 633 2 7.1 29 2 S23122 peptidylprolyl iso 634 2 7.1 29 2 S05578 H+-transporting tw 635 2 7.1 29 2 D55998 brevinin-2Ed - edi 637 2 7.1 29 2 D55998 brevinin-2Ed - edi 638 2 7.1 29 2 D55978 brevinin-2Ed - edi 638 2 7.1 29 2 D55978 brevinin-2Ed - edi 638 2 7.1 29 2 D55978 brevinin-2Ed - edi 638 2 7.1 29 2 D55978 brevinin-2Ed - edi 638 2 7.1 29 2 D55978 brevinin-2Ed - edi 638 2 7.1 29 2 D55978 brevinin-2Ed - edi 638 2 7.1 29 2 D55978 brevinin-2Ed - edi 638 2 7.1 29 2 D55978 brevinin-2Ed - edi 638 2 7.1 29 2 D55978 brevinin-2Ed - edi								
614 2 7.1 29 1 GCDF glucagon - smaller 615 2 7.1 29 1 GCEN glucagon - elephan 616 2 7.1 29 1 GCTTS glucagon - slider 617 2 7.1 29 1 TNLJBR trans-activating t 618 2 7.1 29 1 QIBP57 gene 1.5 protein - 619 2 7.1 29 2 A60558 cytochrome P450 HL 620 2 7.1 29 2 T17079 NADH2 dehydrogenas 621 2 7.1 29 2 T17076 NADH2 dehydrogenas 622 2 7.1 29 2 A48427 flavohemoglobin hm 623 2 7.1 29 2 A54234 cytochrome-c oxida 624 2 7.1 29 2 S08201 peroxidase (EC 1.1 625 2 7.1 29 2 A26208 acetyl-CoA C-acety 626 2 7.1 29 2 S46211 kallikrein rK8 (pK 628 2 7.1 29 2 S46211 kallikrein rK8 (pK 628 2 7.1 29 2 S28174 heat-shock protein 629 2 7.1 29 2 S3122 heat-shock protein 631 2 7.1 29 2 S3122 peptidylprolyl iso 633 2 7.1 29 2 S23122 peptidylprolyl iso 633 2 7.1 29 2 S23122 peptidylprolyl iso 634 2 7.1 29 2 D55998 brevinin-2Ed - edi 637 2 7.1 29 2 D55998 brevinin-2Ed - edi 638 2 7.1 29 2 A91741 glucagon - rabbit								
615 2 7.1 29 1 GCEN glucagon - elephan 616 2 7.1 29 1 GCTTS glucagon - slider 617 2 7.1 29 1 TNLJBR trans-activating t 618 2 7.1 29 1 Q1BP57 gene 1.5 protein - 619 2 7.1 29 2 A60558 Cytochrome P450 HL 620 2 7.1 29 2 T17079 NADH2 dehydrogenas 621 2 7.1 29 2 T17076 NADH2 dehydrogenas 622 2 7.1 29 2 A48427 flavohemoglobin hm 623 2 7.1 29 2 A54234 cytochrome-c oxida 624 2 7.1 29 2 S08201 peroxidase (EC 1.1 625 2 7.1 29 2 A26208 acetyl-CoA C-acety 626 2 7.1 29 2 S46211 kallikrein rK8 (pK 628 2 7.1 29 2 S46211 kallikrein rK8 (pK 628 2 7.1 29 2 S28174 heat-shock protein 629 2 7.1 29 2 S28174 heat-shock protein 629 2 7.1 29 2 S28174 bothrolysin (EC 3. 630 2 7.1 29 2 S23122 peptidylprolyl iso 631 2 7.1 29 2 S23122 peptidylprolyl iso 633 2 7.1 29 2 S23122 peptidylprolyl iso 634 2 7.1 29 2 D55598 brevinin-2Ed - edi 637 2 7.1 29 2 D55598 brevinin-2Ed - edi 638 2 7.1 29 2 D55598 brevinin-2Ee - edi 638 2 7.1 29 2 D55598 brevinin-2Ee - edi 638 2 7.1 29 2 D55598 brevinin-2Ee - edi 639 2 7.1 29 2 D55598 brevinin-2Ee - edi								-
616 2 7.1 29 1 GCTTS glucagon - slider 617 2 7.1 29 1 TNLJBR trans-activating t 618 2 7.1 29 1 Q1BP57 gene 1.5 protein - 619 2 7.1 29 2 A60558 cytochrome P450 HL 620 2 7.1 29 2 T17079 NADH2 dehydrogenas 621 2 7.1 29 2 T17076 NADH2 dehydrogenas 622 2 7.1 29 2 A48427 flavohemoglobin hm 623 2 7.1 29 2 A54234 cytochrome-c oxida 624 2 7.1 29 2 S08201 peroxidase (EC 1.1 625 2 7.1 29 2 A26208 acetyl-CoA C-acety 626 2 7.1 29 2 A26211 kallikrein rK8 (pK 628 2 7.1 29 2 S28174 heat-shock protein 629 2 7.1 29 2 S32414 bothrolysin (EC 3. 630 2 7.1 29 2 S17432 H+-transporting tw 631 2 7.1 29 2 S23122 peptidylprolyl iso 632 2 7.1 29 2 S23122 peptidylprolyl iso 633 2 7.1 29 2 T03653 phospholipid trans 635 2 7.1 29 2 D55998 brevinin-2Ed - edi 637 2 7.1 29 2 D55998 brevinin-2Ed - edi 638 2 7.1 29 2 D55578 brevinin-2Ee - edi 638 2 7.1 29 2 A91741 glucagon - rabbit								
617 2 7.1 29 1 TNLJBR trans-activating t 618 2 7.1 29 1 Q1BP57 gene 1.5 protein - 619 2 7.1 29 2 A60558 cytochrome P450 HL 620 2 7.1 29 2 T17079 NADH2 dehydrogenas 621 2 7.1 29 2 T17076 NADH2 dehydrogenas 622 2 7.1 29 2 A48427 flavohemoglobin hm 623 2 7.1 29 2 A54234 cytochrome-c oxida 624 2 7.1 29 2 S08201 peroxidase (EC 1.1 625 2 7.1 29 2 A26208 acetyl-CoA C-acety 626 2 7.1 29 2 A26208 acetyl-CoA C-acety 626 2 7.1 29 2 S46211 kallikrein rK8 (pK 628 2 7.1 29 2 S28174 heat-shock protein 629 2 7.1 29 2 S28174 heat-shock protein 629 2 7.1 29 2 S17432 H+-transporting tw 631 2 7.1 29 2 S02578 H+-transporting tw 631 2 7.1 29 2 S02578 H+-transporting tw 632 2 7.1 29 2 S02578 H-transporting tw 633 2 7.1 29 2 D50598 brevinin-2Ed - edi 637 2 7.1 29 2 D55998 brevinin-2Ed - edi 638 2 7.1 29 2 D55578 brevinin-2Ed - edi 638 2 7.1 29 2 D55578 brevinin-2Ed - edi 638 2 7.1 29 2 D55578 brevinin-2Ed - edi 638 2 7.1 29 2 D55578 brevinin-2Ed - edi 638 2 7.1 29 2 D55578 brevinin-2Ed - edi 638 2 7.1 29 2 D55578 brevinin-2Ed - edi								- -
618 2 7.1 29 1 Q1BP57 gene 1.5 protein - 619 2 7.1 29 2 A60558 cytochrome P450 HL 620 2 7.1 29 2 T17079 NADH2 dehydrogenas 621 2 7.1 29 2 T17076 NADH2 dehydrogenas 622 2 7.1 29 2 A48427 flavohemoglobin hm 623 2 7.1 29 2 S08201 peroxidase (EC 1.1 625 2 7.1 29 2 A26208 acetyl-CoA C-acety 626 2 7.1 29 2 A26208 phosphotransferase 627 2 7.1 29 2 S46211 kallikrein rK8 (pK 628 2 7.1 29 2 S28174 heat-shock protein 629 2 7.1 29 2 S32414 bothrolysin (EC 3. 630 2 7.1 29 2 S17432 H+-transporting tw 631 2 7.1 29 2 S2578 H+-transporting tw 632 2 7.1 29 2 S23122 peptidylprolyl iso 633 2 7.1 29 2 JU0211 squash-type trypsi 634 2 7.1 29 2 C25310 alpha-amylase/tryp 635 2 7.1 29 2 D55598 brevinin-2Ee - edi 637 2 7.1 29 2 D55578 brevinin-2Ee - edi 638 2 7.1 29 2 D53578 brevinin-2Ee - edi 638 2 7.1 29 2 D53578 brevinin-2Ee - edi	616							
619 2 7.1 29 2 A60558 Cytochrome P450 HL 620 2 7.1 29 2 T17079 NADH2 dehydrogenas 621 2 7.1 29 2 T17076 NADH2 dehydrogenas 622 2 7.1 29 2 A48427 flavohemoglobin hm 623 2 7.1 29 2 A54234 cytochrome-c oxida 624 2 7.1 29 2 S08201 peroxidase (EC 1.1 625 2 7.1 29 2 A26208 acetyl-CoA C-acety 626 2 7.1 29 2 S46211 kallikrein rK8 (pK 628 2 7.1 29 2 S28174 heat-shock protein 629 2 7.1 29 2 S28174 heat-shock protein 629 2 7.1 29 2 S17432 H+-transporting tw 631 2 7.1 29 2 S02578 H+-transporting tw 632 2 7.1 29 2 S23122 peptidylprolyl iso 633 2 7.1 29 2 JU0211 squash-type trypsi 634 2 7.1 29 2 T03653 phospholipid trans 635 2 7.1 29 2 D55998 brevinin-2Ed - edi 637 2 7.1 29 2 D53578 brevinin-2Ee - edi 638 2 7.1 29 2 D53578 brevinin-2Ee - edi 638 2 7.1 29 2 D53578 brevinin-2Ee - edi 638 2 7.1 29 2 A91740 glucagon - rabbit	617		7.1	29	1	TNLJBR		
620 2 7.1 29 2 T17079 NADH2 dehydrogenas 621 2 7.1 29 2 T17076 NADH2 dehydrogenas 622 2 7.1 29 2 A48427 flavohemoglobin hm 623 2 7.1 29 2 A54234 cytochrome-c oxida 624 2 7.1 29 2 S08201 peroxidase (EC 1.1 625 2 7.1 29 2 A26208 acetyl-CoA C-acety 626 2 7.1 29 2 A42018 phosphotransferase 627 2 7.1 29 2 S46211 kallikrein rK8 (pK 628 2 7.1 29 2 S28174 heat-shock protein 629 2 7.1 29 2 S17432 H+-transporting tw 631 2 7.1 29 2 S23122 peptidylprolyl iso 632 2 7.1 29 2 JUO211 squash-type trypsi 633 2 <td< td=""><td>618</td><td></td><td>7.1</td><td>29</td><td>1</td><td></td><td></td><td>_</td></td<>	618		7.1	29	1			_
621 2 7.1 29 2 T17076 NADH2 dehydrogenas 622 2 7.1 29 2 A48427 flavohemoglobin hm 623 2 7.1 29 2 A54234 cytochrome-c oxida 624 2 7.1 29 2 A26208 acetyl-CoA C-acety 625 2 7.1 29 2 A22018 phosphotransferase 626 2 7.1 29 2 S46211 kallikrein rK8 (pK 628 2 7.1 29 2 S28174 heat-shock protein 629 2 7.1 29 2 S28174 heat-shock protein 630 2 7.1 29 2 S17432 H+-transporting tw 631 2 7.1 29 2 S02578 H+-transporting tw 632 2 7.1 29 2 S23122 peptidylprolyl iso 633 2 7.1 29 2 T03653 phospholipid trans 635 2 <td< td=""><td>619</td><td>2</td><td>7.1</td><td>29</td><td>2</td><td>A60558</td><td></td><td></td></td<>	619	2	7.1	29	2	A60558		
622 2 7.1 29 2 A48427 flavohemoglobin hm 623 2 7.1 29 2 A54234 cytochrome-c oxida 624 2 7.1 29 2 S08201 peroxidase (EC 1.1 625 2 7.1 29 2 A26208 acetyl-CoA C-acety 626 2 7.1 29 2 S46211 kallikrein rK8 (pK 628 2 7.1 29 2 S28174 heat-shock protein 629 2 7.1 29 2 A32414 bothrolysin (EC 3. 630 2 7.1 29 2 S17432 H+-transporting tw 631 2 7.1 29 2 S02578 H+-transporting tw 632 2 7.1 29 2 S23122 peptidylprolyl iso 633 2 7.1 29 2 JU0211 squash-type trypsi 634 2 7.1 29 2 T03653 phospholipid trans 635 2 7.1 29 2 D55998 brevinin-2Ed - edi 637 2 7.1 29 2 D53578 brevinin-2Ee - edi 638 2 7.1 29 2 A91740 glucagon - rabbit	620	2	7.1	29	2	T17079		
623 2 7.1 29 2 A54234 cytochrome-c oxida 624 2 7.1 29 2 S08201 peroxidase (EC 1.1 625 2 7.1 29 2 A26208 acetyl-CoA C-acety 626 2 7.1 29 2 A42018 phosphotransferase 627 2 7.1 29 2 S46211 kallikrein rK8 (pK 628 2 7.1 29 2 S28174 heat-shock protein 629 2 7.1 29 2 S17432 H+-transporting tW 630 2 7.1 29 2 S02578 H+-transporting tw 631 2 7.1 29 2 S23122 peptidylprolyl iso 632 2 7.1 29 2 JU0211 squash-type trypsi 633 2 7.1 29 2 T03653 phospholipid trans 635 2 7.1 29 2 D55998 brevinin-2Ed - edi 637 2 <td< td=""><td>621</td><td>2</td><td>7.1</td><td>29</td><td>2</td><td>T17076</td><td></td><td>NADH2 dehydrogenas</td></td<>	621	2	7.1	29	2	T17076		NADH2 dehydrogenas
623 2 7.1 29 2 A54234 cytochrome-c oxida 624 2 7.1 29 2 S08201 peroxidase (EC 1.1 625 2 7.1 29 2 A26208 acetyl-CoA C-acety 626 2 7.1 29 2 A22018 phosphotransferase 627 2 7.1 29 2 S46211 kallikrein rK8 (pK 628 2 7.1 29 2 S28174 heat-shock protein 629 2 7.1 29 2 S17432 H+-transporting tw 630 2 7.1 29 2 S02578 H+-transporting tw 631 2 7.1 29 2 S23122 peptidylprolyl iso 633 2 7.1 29 2 JU0211 squash-type trypsi 634 2 7.1 29 2 T03653 phospholipid trans 635 2 7.1 29 2 D55998 brevinin-2Ed - edi 637 2 <td< td=""><td>622</td><td>2</td><td>7.1</td><td>29</td><td>2</td><td>A48427</td><td></td><td>flavohemoglobin hm</td></td<>	622	2	7.1	29	2	A48427		flavohemoglobin hm
624 2 7.1 29 2 S08201 peroxidase (EC 1.1 acetyl-CoA C-acety phosphotransferase phosphotransferase 626 2 7.1 29 2 A22018 phosphotransferase kallikrein rK8 (pK pK p		2	7.1	29	2	A54234		cytochrome-c oxida
625 2 7.1 29 2 A26208 acetyl-CoA C-acety phosphotransferase phosphotransferase 626 2 7.1 29 2 A22018 phosphotransferase kallikrein rK8 (pK 627 2 7.1 29 2 S46211 kallikrein rK8 (pK 628 2 7.1 29 2 S28174 heat-shock protein bothrolysin (EC 3. 629 2 7.1 29 2 S17432 H+-transporting tw 630 2 7.1 29 2 S02578 H+-transporting tw 631 2 7.1 29 2 S23122 peptidylprolyl iso 632 2 7.1 29 2 JU0211 squash-type trypsi 633 2 7.1 29 2 C25310 alpha-amylase/tryp 634 2 7.1 29 2 D55998 brevinin-2Ed - edi 637 2 7.1 29 2 D53578 brevinin-2Ee - edi 638 2 7.1 29 2 A91740 glucagon - r								peroxidase (EC 1.1
626 2 7.1 29 2 A22018 phosphotransferase 627 2 7.1 29 2 S46211 kallikrein rK8 (pK 628 2 7.1 29 2 S28174 heat-shock protein 629 2 7.1 29 2 A32414 bothrolysin (EC 3. 630 2 7.1 29 2 S17432 H+-transporting tw 631 2 7.1 29 2 S02578 H+-transporting tw 632 2 7.1 29 2 S23122 peptidylprolyl iso 633 2 7.1 29 2 Juocolin squash-type trypsi 634 2 7.1 29 2 C25310 alpha-amylase/tryp 635 2 7.1 29 2 D55998 brevinin-2Ed - edi 637 2 7.1 29 2 D53578 brevinin-2Ee - edi 638 2 7.1 29 2 A91740 glucagon - turkey 639 2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
627 2 7.1 29 2 S46211 kallikrein rK8 (pK 628 2 7.1 29 2 S28174 heat-shock protein 629 2 7.1 29 2 A32414 bothrolysin (EC 3. 630 2 7.1 29 2 S17432 H+-transporting tw 631 2 7.1 29 2 S02578 H+-transporting tw 632 2 7.1 29 2 S23122 peptidylprolyl iso 633 2 7.1 29 2 JU0211 squash-type trypsi 634 2 7.1 29 2 T03653 phospholipid trans 635 2 7.1 29 2 C25310 alpha-amylase/tryp 636 2 7.1 29 2 D55998 brevinin-2Ed - edi 637 2 7.1 29 2 D53578 brevinin-2Ee - edi 638 2 7.1 29 2 A91740 glucagon - turkey 639 2 7.1 29 2 A91741 glucagon - rabbit								
628 2 7.1 29 2 S28174 heat-shock protein 629 2 7.1 29 2 A32414 bothrolysin (EC 3. 630 2 7.1 29 2 S17432 H+-transporting tw 631 2 7.1 29 2 S02578 H+-transporting tw 632 2 7.1 29 2 S23122 peptidylprolyl iso 633 2 7.1 29 2 JU0211 squash-type trypsi 634 2 7.1 29 2 T03653 phospholipid trans 635 2 7.1 29 2 C25310 alpha-amylase/tryp 636 2 7.1 29 2 D55998 brevinin-2Ed - edi 637 2 7.1 29 2 D53578 brevinin-2Ee - edi 638 2 7.1 29 2 A91740 glucagon - turkey 639 2 7.1 29 2 A91741 glucagon - rabbit								
629 2 7.1 29 2 A32414 bothrolysin (EC 3. 630 2 7.1 29 2 S17432 H+-transporting tw 631 2 7.1 29 2 S02578 H+-transporting tw 632 2 7.1 29 2 S23122 peptidylprolyl iso 633 2 7.1 29 2 JU0211 squash-type trypsi 634 2 7.1 29 2 T03653 phospholipid trans 635 2 7.1 29 2 C25310 alpha-amylase/tryp 636 2 7.1 29 2 D55998 brevinin-2Ed - edi 637 2 7.1 29 2 D53578 brevinin-2Ee - edi 638 2 7.1 29 2 A91740 glucagon - turkey 639 2 7.1 29 2 A91741 glucagon - rabbit								-
630 2 7.1 29 2 S17432 H+-transporting tw 631 2 7.1 29 2 S02578 H+-transporting tw 632 2 7.1 29 2 S23122 peptidylprolyl iso 633 2 7.1 29 2 JU0211 squash-type trypsi 634 2 7.1 29 2 T03653 phospholipid trans 635 2 7.1 29 2 C25310 alpha-amylase/tryp 636 2 7.1 29 2 D55998 brevinin-2Ed - edi 637 2 7.1 29 2 D53578 brevinin-2Ee - edi 638 2 7.1 29 2 A91740 glucagon - turkey 639 2 7.1 29 2 A91741 glucagon - rabbit							*	-
631 2 7.1 29 2 S02578								-
632 2 7.1 29 2 S23122 peptidylprolyl iso 633 2 7.1 29 2 JU0211 squash-type trypsi 634 2 7.1 29 2 T03653 phospholipid trans 635 2 7.1 29 2 C25310 alpha-amylase/tryp 636 2 7.1 29 2 D55998 brevinin-2Ed - edi 637 2 7.1 29 2 D53578 brevinin-2Ee - edi 638 2 7.1 29 2 A91740 glucagon - turkey 639 2 7.1 29 2 A91741 glucagon - rabbit								
633 2 7.1 29 2 JU0211 squash-type trypsi 634 2 7.1 29 2 T03653 phospholipid trans 635 2 7.1 29 2 C25310 alpha-amylase/tryp 636 2 7.1 29 2 D55998 brevinin-2Ed - edi 637 2 7.1 29 2 D53578 brevinin-2Ee - edi 638 2 7.1 29 2 A91740 glucagon - turkey 639 2 7.1 29 2 A91741 glucagon - rabbit								
634 2 7.1 29 2 T03653 phospholipid trans 635 2 7.1 29 2 C25310 alpha-amylase/tryp 636 2 7.1 29 2 D55998 brevinin-2Ed - edi 637 2 7.1 29 2 D53578 brevinin-2Ee - edi 638 2 7.1 29 2 A91740 glucagon - turkey 639 2 7.1 29 2 A91741 glucagon - rabbit								
635 2 7.1 29 2 C25310 alpha-amylase/tryp 636 2 7.1 29 2 D55998 brevinin-2Ed - edi 637 2 7.1 29 2 D53578 brevinin-2Ee - edi 638 2 7.1 29 2 A91740 glucagon - turkey 639 2 7.1 29 2 A91741 glucagon - rabbit								
636 2 7.1 29 2 D55998 brevinin-2Ed - edi 637 2 7.1 29 2 D53578 brevinin-2Ee - edi 638 2 7.1 29 2 A91740 glucagon - turkey 639 2 7.1 29 2 A91741 glucagon - rabbit								
637 2 7.1 29 2 D53578 brevinin-2Ee - edi 638 2 7.1 29 2 A91740 glucagon - turkey 639 2 7.1 29 2 A91741 glucagon - rabbit								
638 2 7.1 29 2 A91740 glucagon - turkey 639 2 7.1 29 2 A91741 glucagon - rabbit								
639 2 7.1 29 2 A91741 glucagon - rabbit								
	638		7.1					
	639	2	7.1	29	2	A91741		
	640	2	7.1	29	2	A91742		glucagon - Arabian

641	2	7.1	29	2	S07211	glucagon - marbled
642	2	7.1	29	2	A61135	glucagon - bigeye
643	2	7.1	29	2	C39258	glucagon - common
644	2	7.1	29	2	C60840	glucagon I - Europ
645	2	7.1	29	2	S39018	glucagon - bowfin
646	2	7.1	29	2	A39462	cholestokinin - do
647	2	7.1	29	2	A60791	toxin II.9 - scorp
648	2	7.1	29	2	JH0699	omega-conotoxin MV
649	2	7.1	29	2	A58537	omega-conotoxin MV
650	2	7.1	29	2	I52628	_
	2					low affinity nerve
651		7.1	29	2	C61233	conceptus protein
652	2	7.1	29	2	S10061	Ig heavy chain (cl
653	2	7.1	29	2	PH0239	T-cell receptor Vb
654	2	7.1	29	2	PH0251	T-cell receptor Vb
655	2	7.1	29	2	PH0254	T-cell receptor Vb
656	2	7.1	29	2	PH0233	T-cell receptor Vb
657	2	7.1	29	2	E31485	Ig heavy chain V r
658	2	7.1	29	2	H31485	Ig kappa chain V r
659	2	7.1	29	2	G31461	T-cell receptor de
660	2	7.1	29	2	C47719	T-cell receptor al
661	2	7.1	29	2	E47719	house-dust-mite-re
662	2	7.1	29	2	PS0134	H-2 class I histoc
663	2	7.1	29	2	PS0132	H-2 class I histoc
664	2	7.1	29	2	I37534	gene HLA-DRB prote
665	2	7.1	29	2	I37535	gene HLA-DRB prote
666	2	7.1	29	2	I37536	MHC class II histo
667	2	7.1	29	2	I37301	MHC class II histo
668	2	7.1	29	2	137303	HLA-DR beta - huma
669	2	7.1	29	2	137306	HLA-DR beta - huma
670	2	7.1	29	2	150214	protein-tyrosine-p
671	2	7.1	29	2	S07771	histone H2B.2, spe
672	2	7.1	29	2	T04412	histone H3 - barle
673	2	7.1	29	2	S51070	ribosomal protein
674	2	7.1	29	2	S08555	
675	2	7.1	29	2		ribosomal protein
676	2	7.1	29	2	PC4231 S10050	ribosomal protein
677	2	7.1	29	2		ribosomal protein
678	2	7.1			S10049	ribosomal protein
	2		29	2	S26229	ribosomal protein
679		7.1	29	2	A27561	Meth A tumor-speci
680	2	7.1	29	2	\$10725	calmodulin-binding
681	2	7.1	29	2	S01614	dystrophin - rat (
682	2	7.1	29	2	B44101	calmodulin, vasoac
683	2	7.1	29	2	E33208	calreticulin, uter
684	2	7.1	29	2	C33208	calreticulin, slow
685	2	7.1	29	2	D33208	calreticulin, brai
686	2	7.1	29	2	A45474	thrombospondin 2 -
687	2	7.1	29	2	G39690	neural cell adhesi
688	2	7.1	29	2	A61166	endometrial proges
689	2	7.1	29	2	I52402	alpha-fetoprotein
690	2	7.1	29	2	S57232	homeotic protein s
691	2	7.1	29	2	S06854	chorion class B pr
692	2	7.1	29	2	A43038	auxin-binding prot
693	2	7.1	29	2	T12082	proline-rich prote
694	2	7.1	29	2	S70328	gamma35 secalin -
695	2	7.1	29	2	S29208	avenin gamma-3 - o
696	2	7.1	29	2	S07055	photosystem I prot
697	2	7.1	29	2	S05032	photosystem II pro
	-			_		

698	2	7.1	29	2	S08088	gene VII protein -
699	2	7.1	29	2	F42075	finger protein (cl
700	2	7.1	29	2	S42642	probable rhicadhes
701	2	7.1	29	2	A53145	high conductance c
702	2	7.1	29	2	A35121	hypothetical prote
703	2	7.1	29	2	S03277	photosystem II 5K
704	2	7.1	29	2	A55891	delta-conotoxin Gm
705	2	7.1	29	2	S32730	homeotic protein -
706	2	7.1	29	2	S57225	labial protein (cl
707	2	7.1	29	2	S32732	homeotic protein -
708	2	7.1	29	2	S32734	homeotic protein -
709	2	7.1	29	2	S32734 S32733	-
710	2	7.1	29	2		homeotic protein -
					G90719	hypothetical prote
711	2	7.1	29	2	S07513	gene 5.1 protein -
712	2	7.1	29	2	S14040	hypothetical prote
713	2	7.1	29	2	E64586	hypothetical prote
714	2	7.1	29	2	B64607	hypothetical prote
715	2	7.1	29	2	G64674	hypothetical prote
716	2	7.1	29	2	G83440	KdpF protein PA163
717	2	7.1	29	2	A49288	alcohol dehydrogen
718	2	7.1	29	2	A81078	hypothetical prote
719	2	7.1	29	2	B81006	hypothetical prote
720	2	7.1	29	2	T48910	KdpF protein [vali
721	2	7.1	29	2	A35445	repY protein - Esc
722	2	7.1	29	2	S19943	aadB protein - Kle
723	2	7.1	29	2	A49914	S-layer protein va
724	2	7.1	29	2	E64036	hypothetical prote
725	2	7.1	29	2	B48363	2-hydroxyglutaryl-
726	2	7.1	29	2	C40638	orf 3' of cycI - R
727	2	7.1	29	2	B56817	photosystem I chai
728	2	7.1	29	2	S74572	hypothetical prote
729	2	7.1	29	2	C60743	putrescine carbamo
730	2	7.1	29	2	S67989	HA-19/HA-52 protei
731	2	7.1	29	2	S14099	12-alpha-hydroxyst
732	2	7.1	29	2	S77569	plantaricin SA6 -
733	2	7.1	29	2	S21222	48K protein - Euba
734	2	7.1	29	2	S03947	hydrogen dehydroge
735	2	7.1	29	2	T37120	hypothetical prote
736	2	7.1	29	2	T36654	probable small mem
737	2	7.1	29	2	B43937	endo-1,4-beta-xyla
738	2	7.1	29	2	S09556	hypothetical prote
739	2	7.1	29	2	T06904	hypothetical prote
740	2	7.1	29	2	S73197	hypothetical prote
741	2	7.1	29	2	S78326	conserved hypothet
742	2	7.1	29	2	S78310	hypothetical prote
743	2	7.1	29	2	S78360	hypothetical prote
744	2	7.1	29	2	S01572	hypothetical prote
745	2	7.1	29	2	T07450	hypothetical prote
746	2	7.1	29	2	S01448	hypothetical prote
747	2	7.1	29	2	S38525	rRNA N-glycosidase
748	2	7.1	29	2	T52557	translation elonga
749	2	7.1	29	2	PQ0862	allantoinase (EC 3
750	2	7.1	29	2	PQ0486	globulin 2a - taro
751	2	7.1	29	2	S02200	prolamin alpha-1 -
752	2	7.1	29	2	A60683	malate dehydrogena
753	2	7.1	29	2	JQ0212	hypothetical 3K pr
754	2	7.1	29	2	S58541	hypothetical prote
						-

755	2	7.1	29	2	PC2035	alanine transamina
756	2	7.1	29	2	S78714	protein YDR524w-a
757	2	7.1	29	2	B21112	variant surface gl
758	2	7.1	29	2	C60110	repetitive protein
759	2	7.1	29	2	D24802	cuticle protein 36
760	2	7.1	29	2	A56591	E75 steroid recept
761	2	7.1	29	2	A61613	ceratotoxin A - Me
762	2	7.1	29	2	B61613	ceratotoxin B - Me
				2		lectin - namazu (f
763	2	7.1	29		PH1230	
764	2	7.1	29	2	A32860	biotin-binding pro
765	2	7.1	29	2	150382	c-mil protein - ch
766	2	7.1	29	2	I50695	non-collagenous al
767	2	7.1	29	2	A35891	carcinoembryonic a
768	2	7.1	29	2	I77372	CD44SP - human
769	2	7.1	29	2	S54340	diazepam binding i
770	2	7.1	29	2	A41683	hyaluronate recept
771	2	7.1	29	2	C54037	splicing regulator
772	2	7.1	29	2	S35924	T-cell receptor ga
773	2	7.1	29	2	C61384	trachael mucin gly
	2	7.1	29	2	A60604	glutathione peroxi
774						oviduct-specific s
775	2	7.1	29	2	S57204	
776	2	7.1	29	2	147025	antigen WC1 [impor
777	2	7.1	29	2	A49410	t-complex polypept
778	2	7.1	29	- 2	PS0125	H-2 class I histoc
779	2	7.1	29	2	S46929	teg169 protein - m
780	2	7.1	29	2	S38749	vimentin homolog -
781	2	7.1	29	2	S42764	Ca2+/calmodulin-de
782	2	7.1	29	2	A49708	synaptosomal-assoc
783	2	7.1	29	2	Н83777	hypothetical prote
784	2	7.1	29	2	C83833	hypothetical prote
785	2	7.1	29	2	F83870	hypothetical prote
786	2	7.1 7.1	29	2	B84144	hypothetical prote
				2		multactivase (EC 3
787	2	7.1	29		PC4421	
788	2	7.1	29	2	B85840	hypothetical prote
789	2	7.1	29	2	C85840	hypothetical prote
790	. 2	7.1	29	2	G86058	hypothetical prote
791	2	7. 1	29	2	E89904	hypothetical prote
792	2	7.1	29	2	H89949	hypothetical prote
793	2	7.1	29	2	A59278	neurotoxin BmK A3-
794	2	7.1	29	2	S17496	inorganic diphosph
795	2	7.1	29	2	PQ0782	NADH2 dehydrogenas
796	2	7.1	29	2	S34762	L-serine ammonia-1
797	2	7.1	29	2	AB0717	hypothetical prote
798	2	7.1	29	2	AC0717	hypothetical prote
799	2	7.1	29	2	AH2338	PetN protein [impo
	2	7.1	29	4		hypothetical prote
800					158970	
801	2	7.1	30	1	AIBSAF	thermophilic amino
802	2	7.1	30	1	TIPU1W	trypsin inhibitor
803	2	7.1	30	1	OEON2K	beta-endorphin II
804	2	7.1	30	1	IRTRC3	protamine CIII, ma
805	2	7.1	30	1	IRTRC2	protamine la - rai
806	2	7.1	30	1	IRTR78	protamine CIII, mi
807	2	7.1	30	1	IRTR4	protamine pTP4 - r
808	2	7.1	30	1	CLHRY2	protamine YII - Pa
809	2	7.1	30	1	CLHR2A	protamine YII - At
810	2	7.1	30	1	SNUMP	sillucin - Rhizomu
811	2	7.1	30	2	157689	ubiquinol-cytochro
OII	4	/ · ·	30	2	±3,003	anagamor cycomic

812	2	7.1	30	2	152254	gene CYP11B2 prote
813	2	7.1	30	2	B56859	fatty acid omega-h
814	2	7.1	30	2	A27375	photosystem I iron
815	2	7.1	30	2	S11131	NADH2 dehydrogenas
816	2	7.1	30	2	S14214	NADH2 dehydrogenas
817	2	7.1	30	2	S08202	peroxidase (EC 1.1
818	2	7.1	30	2	S08204	peroxidase (EC 1.1
819	2	7.1	30	2	S08203	peroxidase (EC 1.1
820	2	7.1	30	2	A39089	hydrogenase (EC 1.
821	2	7.1	30	2	I38066	nitric-oxide synth
822	2	7.1	30	2	I39799	CAT-66 - Bacillus
823	2	7.1	30	2	A18780	dimethylallyltrans
824	2	7.1	30	2	S03283	methionine adenosy
825	2	7.1	30	2	S71865	glutathione transf
826	2	7.1	30	2	B27103	aspartate transami
827	2	7.1	30	2	A27103	aspartate transami
828	2	7.1	30	2	155427	aspartate transami
829	2	7.1	30	2	A49955	protein-tyrosine k
830	2	7.1	30	2	S68639	nigroxin A - black
831	2	7.1	30	2	S68640	nigroxin B - black
832	2	7.1	30	2	A05004	pancreatic ribonuc
833	2	7.1	30	2	D57001	endo-1,4-beta-xyla
834	2	7.1	30	2	A43937	endo-1,4-beta-xyla
835	2	7.1	30	2	PC2361	alpha-glucosidase
836	2	7.1	30	2	PX0073	epoxide hydrolase
837	2	7.1	30	2	B60291	30K serine protein
838	2	7.1	30	2	A27634	major fecal allerg
839	2	7.1	30	2	B27634	major fecal allerg
840	2	7.1	30	2	I77411	renin-2 - mouse (f
841	2 2	7.1 7.1	30	2	PC2328	proteasome endopep inorganic diphosph
842 843	2	7.1	30 30	2	A34486 S21816	H+-exporting ATPas
844	2	7.1	30	2	S21814	H+-exporting ATPas
845	2	7.1	30	2	S74121	fructose-bisphosph
846	2	7.1	30	2	S25666	phosphopyruvate hy
847	2	7.1	30	2	S69600	peptidylprolyl iso
848	2	7.1	30	2	A60517	alpha-1-antitrypsi
849	2	7.1	30	2	S24979	proteinase inhibit
850	2	7.1	30	2	JX0057	trypsin inhibitor
851	2	7.1	30	2	JS0579	squash-type trypsi
852	2	7.1	30	2	JQ1958	trypsin inhibitor
853	2	7.1	30	2	PC1113	proteinase inhibit
854	2	7.1	30	2	C42842	antifungal 2S stor
855	2	7.1	30	2	S70341	napin large chain
856	2	7.1	30	2	S70341	napin large chain
857	2	7.1	30	2	A33308	thrombomodulin - r
858	2	7.1	30	2	S01657	atrial natriuretic
859	2	7.1	30	2	A61130	somatotropin - Ame
860	2	7.1	30	2	S44473	glucagon-like pept
861	2	7.1	30	2	B61125	glucagon-like pept
862	2	7.1	30	2	C61125	glucagon-like pept
863	2	7.1	30	2	A59076	defensin alpha-1 -
864	2	7.1	30	2	B59076	defensin alpha-2 -
865	2	7.1	30	2	C59076	defensin alpha-3 -
866	2	7.1	30	2	B60791	toxin II.6 - scorp
867	2	7.1	30	2	A31187	neurotoxin II.22.5
868	2	7.1	30	2	I68109	interferon alpha-W
		_			-	

869	2	7.1	30	2	C49533	T-cell receptor al
870	2	7.1	30	2	S20778	Ig heavy chain V r
871	2	7.1	30	2	PL0092	Ig heavy chain V r
872	2	7.1	30	2	PH0245	T-cell receptor Vb
873	2	7.1	30	2	PH0228	T-cell receptor Vb
874	2	7.1	30	2	PH0252	T-cell receptor Vb
875	2	7.1	30	2	PH0882	Ig kappa chain V r
876	2	7.1	30	2	E31461	T-cell receptor de
877	2	7.1	30	2	PH0235	T-cell receptor Vb
878	2	7.1	30	2	A49533	T-cell receptor al
879	2	7.1	30	2	C27579	T-cell receptor be
880	2	7.1	30	2	137626	Fc gamma (IgG) rec
881	2	7.1	30	2	PS0121	H-2 class I histoc
882	2	7.1	30	2	S74192	crotoxin inhibitor
883	2	7.1	30	2	A05253	hemoglobin epsilon
884	2	7.1	30	2	A21680	hemoglobin epsilon
885	2	7.1	30	2	A05254	hemoglobin epsilon
886	2	7.1	30	2	S68618	histone H2B - sea
887	2	7.1	30	2	PD0014	cAMP response elem
888	2	7.1	30	2	S11613	ribosomal protein
889	2	7.1	30	2	S11617	ribosomal protein
890	2	7.1	30	2	A60511	gamma-crystallin -
891	2	7.1	30	2	149412	gamma-crystallin-3
892	2	7.1	30	2	S12965	gamma-crystallin -
893	2	7.1	30	2	S69269	ezrin homolog - bo
894	2	7.1	30	2	A61189	tubulin beta chain
895	2	7.1	30	2	152806	Duchenne muscular
896	2	7.1	30	2	PC4172	profilin - rat (fr
897	2	7.1	30	2	S21153	calcium-binding pr
898	2	7.1	30	2	A26188	lipocortin I - pig
899	2	7.1	30	2	A56790	annexin, isoform P
900	2	7.1	30	2	A34622	fibrinogen beta ch
	2	7.1	30	2		
901					A03148	retinol-binding pr
902	2	7.1	30	2	A48299	taurine transporte
903	2	7.1	30	2	B61511	serum albumin, mil
904	2	7.1	30	2	B39819	neutrophil chemota
905	2	7.1	30	2	A38933	vitronectin - bovi
906	2	7.1	30	2	S57234	fushi tarazu segme
907	2	7.1	30	2	S69124	rRNA N-glycosidase
908	2	7.1	30	2	S69125	rRNA N-glycosidase
909	2	7.1	30	2	S07065	rRNA N-glycosidase
910	2	7.1	30	2	A31836	17K antigen - Rick
911	2	7.1	30	2	PQ0669	photosystem I 17.5
912	2	7.1	30	2	E45095	photosystem I ligh
913	2	7.1	30	2	B45095	photosystem I ligh
						ribulose-bisphosph
914	2	7.1	30	2	S08565	
915	2	7.1	30	2	S30757	genome polyprotein
916	2	7.1	30	2	S30760	genome polyprotein
917	2	7.1	30	2	S30759	genome polyprotein
918	2	7.1	30	2	B44314	intracisternal A p
919	2	7.1	30	2	S26175	tail tubular prote
920	2	7.1	30	2	S69352	N-methylhydantoin
921	2	7.1	30	2	S68312	glucuronosyltransf
922	2	7.1	30	2	S42364	aromatic-amino-aci
923	2	7.1	30	2	S05223	photosystem I 6.5K
924	2	7.1	30	2	S28991	antifungal protein
925	2	7.1	30	2	PC2307	X-Pro aminopeptida
	_			_		- Poposada

926	2	7.1	30	2	PQ0484	globulin 1b - taro
927	2	7.1	30	2	C43591	51K outer membrane
928	2	7.1	30	2	B43591	45K outer membrane
929	2	7.1	30	2	S06411	killer plasmid 28K
930	2	7.1	30	2	B49292	GDP dissociation i
931	2	7.1	30	2	A60914	pheromone-binding
932	2	7.1	30	2	PS0437	potassium channel
933	2	7.1	30	2	PS0438	potassium channel
934	2	7.1	30	2	A47607	immunogenic protei
935	2	7.1	30	2		blood group Rh-rel
					S02088	
936	2	7.1	30	2	S29138	aniline monooxygen
937	2	7.1	30	2	S57227	proboscipedia prot
938	2	7.1	30	2	B95020	hypothetical prote
939	2	7.1	30	2	C95030	hypothetical prote
940	2	7.1	30	2	G95031	hypothetical prote
941	2	7.1	30	2	E95079	hypothetical prote
942	2	7.1	30	2	F95118	hypothetical prote
943	2	7.1	30	2	E95145	hypothetical prote
944	2	7.1	30	2	F89406	protein R10E8.7 [i
945	2	7.1	30	2	F87254	hypothetical prote
946	2	7.1	30	2	E84786	hypothetical prote
947	2	7.1	30	2	C84481	hypothetical prote
948	2	7.1	30	2	B47483	cysteine-rich para
949	2	7.1	30	2	S15141	hypothetical prote
950	2	7.1	30	2	S13985	hypothetical prote
951	2	7.1	30	2	S14038	hypothetical prote
952	2	7.1	30	2	S13994	hypothetical prote
953	2	7.1	30	2	A72205	hypothetical prote
954	2	7.1	30	2	E72356	hypothetical prote
955	2	7.1	30	2	H72312	hypothetical prote
956	2	7.1	30	2	S66448	trimethylamine deh
957	2	7.1	30	2	A70105	conserved hypothet
958	2	7.1	30	2	F70118	hypothetical prote
959	2			2		hypothetical prote
	2	7.1	30		D70144	hypothetical prote
960		7.1	30	2	H70152	
961	2	7.1	30	2	A70209	hypothetical prote
962	2	7.1	30	2	E70246	hypothetical prote
963	2	7.1	30	2	F70253	hypothetical prote
964	2	7.1	30	2	F70254	hypothetical prote
965	2	7.1	30	2	H64522	hypothetical prote
966	2	7.1	30	2	E64565	hypothetical prote
967	2	7.1	30	2	E64577	hypothetical prote
968	2	7.1	30	2	C64709	hypothetical prote
969	2	7.1	30	2	A83556	hypothetical prote
970	2	7.1	30	2	S30347	4-hydroxybenzoyl-C
971	2	7.1	30	2	PC2251	D-tagatose 3-epime
972	2	7.1	30	2	A44807	ethylene-forming e
973	2	7.1	30	2	S06966	hypothetical prote
974	2	7.1	30	2	S74107	cytochrome c' - Me
975	2	7.1	30	2	B81889	hypothetical prote
976	2	7.1	30	2	B81891	hypothetical prote
977	2	7.1	30	2	H81862	hypothetical prote
978	2	7.1	30	2	C81791	hypothetical prote
979	2	7.1	30	2	H81202	hypothetical prote
980	2	7.1	30	2	G81031	hypothetical prote
981	2	7.1	30	2	169492	gene aeg-46.5 prot
982	2	7.1	30	2	A36733	hypothetical prote
						- -

```
30 2 A60283
                                                        shiga-like toxin I
               7.1
983
                       30 2
          2
               7.1
                              S27306
                                                        surface layer prot
984
               7.1
          2
                       30 2 C82341
                                                        hypothetical prote
985
          2
                                                        hypothetical prote
986
               7.1
                       30 2 B82290
987
          2
               7.1
                       30 2 D82251
                                                        hypothetical prote
                                                        hypothetical prote
988
          2
               7.1
                       30 2
                              B82233
          2
                       30 2 F82209
                                                        hypothetical prote
989
               7.1
                       30 2
                                                        hypothetical prote
990
          2
               7.1
                              A82155
                       30 2
991
          2
               7.1
                              A82137
                                                        hypothetical prote
                       30 2
                                                        hypothetical prote
992
          2
               7.1
                              C82092
          2
                       30 2 H82510
                                                        hypothetical prote
 993
               7.1
 994
          2
               7.1
                       30 2
                              B82428
                                                        hypothetical prote
                       30 2
                                                        allophycocyanin li
 995
          2
               7.1
                              S66439
          2
               7.1
                       30 2 F70035
                                                        hypothetical prote
 996
          2
               7.1
                       30 2 A44644
                                                        neurotoxin-associa
 997
                       30 2
                                                        2-enoate reductase
 998
          2
               7.1
                              A22498
                       30 2 S43311
                                                        pyrrole-2-carboxyl
 999
          2
               7.1
          2
               7.1
                       30 2 B47607
                                                        immunogenic protei
1000
```

ALIGNMENTS

```
RESULT 1
A84241
hypothetical protein Vng0840h [imported] - Halobacterium sp. NRC-1
C; Species: Halobacterium sp. NRC-1
C;Date: 02-Feb-2001 #sequence revision 02-Feb-2001 #text change 02-Feb-2001
C; Accession: A84241
R;Ng, W.V.; Kennedy, S.P.; Mahairas, G.G.; Berquist, B.; Pan, M.; Shukla, H.D.;
Lasky, S.R.; Baliga, N.; Thorsson, V.; Sbrogna, J.; Swartzell, S.; Weir, D.;
Hall, J.; Dahl, T.A.; Welti, R.; Goo, Y.A.; Leithauser, B.; Keller, K.; Cruz,
R.; Danson, M.J.; Hough, D.W.; Maddocks, D.G.; Jablonski, P.E.; Krebs, M.P.;
Angevine, C.M.; Dale, H.; Isenbarger, T.A.; Peck, R.F.; Pohlschrod, M.; Spudich,
J.L.; Jung, K.H.; Alam, M.; Freitas, T.
Proc. Natl. Acad. Sci. U.S.A. 97, 12176-12181, 2000
A; Authors: Hou, S.; Daniels, C.J.; Dennis, P.P.; Omer, A.D.; Ebhardt, H.; Lowe,
T.M.; Liang, P.; Riley, M.; Hood, L.; DasSarma, S.
A; Title: Genome sequence of Halobacterium species NRC-1.
A; Reference number: A84160; MUID: 20504483; PMID: 11016950
A; Accession: A84241
A; Status: preliminary
A; Molecule type: DNA
A:Residues: 1-34 <STO>
A:Cross-references: GB:AE004437; NID:q10580410; PIDN:AAG19293.1; GSPDB:GN00138
C:Genetics:
A; Gene: VNG0840H
  Query Match
                          17.9%; Score 5; DB 2;
                                                   Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 73;
            5; Conservative 0; Mismatches
                                                   0; Indels
                                                                 0; Gaps
                                                                             0;
  Matches
           24 LRKKL 28
Qу
```

26 LRKKL 30

Db

```
B97032
transcription regulator, AcrR family [imported] - Clostridium acetobutylicum
C; Species: Clostridium acetobutylicum
C; Date: 14-Sep-2001 #sequence revision 14-Sep-2001 #text change 14-Sep-2001
C; Accession: B97032
R; Nolling, J.; Breton, G.; Omelchenko, M.V.; Markarova, K.S.; Zeng, Q.; Gibson,
R.; Lee, H.M.; Dubois, J.; Qiu, D.; Hitti, J.; Wolf, Y.I.; Tatusov, R.L.;
Sabathe, F.; Doucette-Stamm, L.; Soucaille, P.; Daly, M.J.; Bennett, G.N.;
Koonin, E.V.; Smith, D.R.
J. Bacteriol. 183, 4823-4838, 2001
A; Title: Genome Sequence and Comparative Analysis of the Solvent-Producing
Bacterium Clostridium acetobutylicum.
A; Reference number: A96900; MUID: 21359325; PMID: 21359325
A; Accession: B97032
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-34 < KUR>
A; Cross-references: GB: AE001437; PIDN: AAK79045.1; PID: g15023984; GSPDB: GN00168
A; Experimental source: Clostridium acetobutylicum ATCC824
C; Genetics:
A; Gene: CAC1071
  Query Match
                          17.9%; Score 5; DB 2; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 73;
  Matches
           5; Conservative 0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
Оy
            1 SVSEI 5
              1111
Db
           30 SVSEI 34
RESULT 3
T09594
gene LFY protein - Monterey pine (fragment)
C; Species: Pinus radiata (Monterey pine)
C;Date: 16-Jul-1999 #sequence revision 16-Jul-1999 #text_change 16-Jul-1999
C; Accession: T09594
R; Izquierdo, L.Y.; Vergara, R.F.; Alvarez-Buylla, E.R.
submitted to the EMBL Data Library, August 1996
A; Description: Partial characterization of Pinus radiata meristem identity
homolog gene (LFY).
A; Reference number: Z16756
A; Accession: T09594
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: DNA
A; Residues: 1-28 <IZO>
A; Cross-references: EMBL: U66725; NID: g1513305; PID: g1513306
C; Genetics:
A; Gene: LFY
C; Function:
A; Description: controls meristem identity
  Query Match
                          14.3%; Score 4; DB 2; Length 28;
 Best Local Similarity
                          100.0%; Pred. No. 7.8e+02;
 Matches
          4; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
```

RESULT 2

```
24 LRKK 27
QУ
              15 LRKK 18
Dh
RESULT 4
A55527
pyrroloquinoline quinone precursor pgqD - Methylobacterium extorquens
C; Species: Methylobacterium extorquens
C;Date: 18-Feb-2000 #sequence revision 18-Feb-2000 #text change 18-Feb-2000
C; Accession: A55527
R; Morris, C.J.; Biville, F.; Turlin, E.; Lee, E.; Ellermann, K.; Fan, W.H.;
Ramamoorthi, R.; Springer, A.L.; Lidstrom, M.E.
J. Bacteriol. 176, 1746-1755, 1994
A; Title: Isolation, phenotypic characterization, and complementation analysis of
mutants of Methylobacterium extorquens AM1 unable to synthesize pyrroloquinoline
quinone and sequences of pqqD, pqqG, and pqqC.
A; Reference number: A55527; MUID: 94179111; PMID: 8132470
A; Accession: A55527
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-29 < MOR >
A; Cross-references: GB:L25889; NID:q414589; PIDN:AAA17878.1; PID:q414590
C; Genetics:
A; Gene: pgqD
C; Superfamily: pyrrologuinoline quinone precursor pqqA
C: Keywords: quinoprotein
F;16,20/Product: pyrroloquinoline quinone #status predicted <MAT>
F;16-20/Cross-link: pyrroloquinoline quinone (Glu, Tyr) #status predicted
  Query Match
                           14.3%; Score 4; DB 1; Length 29;
  Best Local Similarity
                          100.0%; Pred. No. 8e+02;
  Matches
            4; Conservative 0; Mismatches
                                                       Indels
                                                                       Gaps
                                                                               0;
                                                    0;
Qу
            2 VSEI 5
              | | | |
Db
            8 VSEI 11
RESULT 5
I78537
copper transporting P-type ATPase - human (fragment)
C; Species: Homo sapiens (man)
C;Date: 29-May-1998 #sequence revision 29-May-1998 #text change 21-Jul-2000
C; Accession: I78537
R; Thomas, G.R.; Forbes, J.R.; Roberts, E.A.; Walshe, J.M.; Cox, D.W.
Nature Genet. 9, 210-217, 1995
A; Title: The Wilson disease gene: spectrum of mutations and their consequences.
A; Reference number: I58128; MUID: 95235569; PMID: 7626145
A; Accession: I78537
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: DNA
A; Residues: 1-29 < RES>
A; Cross-references: GB: S77450; NID: g957354; PIDN: AAB34087.1; PID: g957355
C; Genetics:
A; Gene: GDB: ATP7B
```

A; Cross-references: GDB:120494; OMIM:277900

```
Query Match
                          14.3%; Score 4; DB 2; Length 29;
  Best Local Similarity 100.0%; Pred. No. 8e+02;
  Matches
           4; Conservative 0; Mismatches
                                                    0; Indels
                                                                  0; Gaps
            3 SEIQ 6
Qу
              1111
           14 SEIQ 17
Dħ
RESULT 6
S78412
ribosomal protein RL22/RL24, mitochondrial [validated] - rat (tentative
sequence) (fragment)
C; Species: Rattus norvegicus (Norway rat)
C;Date: 25-Feb-1998 #sequence revision 13-Mar-1998 #text change 21-Jul-2000
C; Accession: S78412; S78413
R;Goldschmidt-Reisin, S.; Graack, H.R.
submitted to the Protein Sequence Database, February 1998
A; Reference number: S78411
A; Accession: S78412
A; Molecule type: protein
A; Residues: 1-29 <GOL>
A; Note: the protein is designated as mitochondrial ribosomal protein L22
A; Accession: S78413
A; Molecule type: protein
A; Residues: 1-10, 'XXP', 14-15, 'X', 17-24 <GO2>
A; Note: the protein is designated as mitochondrial ribosomal protein L24
C; Keywords: mitochondrion; protein biosynthesis; ribosome
  Query Match
                          14.3%; Score 4; DB 2; Length 29;
  Best Local Similarity 100.0%; Pred. No. 8e+02;
             4; Conservative
                                 0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
           24 LRKK 27
              \prod
Db
            4 LRKK 7
RESULT 7
S63531
hypothetical protein 1 - Sulfolobus solfataricus (fragment)
C; Species: Sulfolobus solfataricus
C;Date: 28-Oct-1996 #sequence revision 13-Mar-1997 #text change 17-Mar-1999
C; Accession: S63531
R; Jones, C.E.; Fleming, T.M.; Cowan, D.A.; Littlechild, J.A.; Piper, P.W.
Eur. J. Biochem. 233, 800-808, 1995
A; Title: The phosphoglycerate kinase and glyceraldehyde-3-phosphate
dehydrogenase genes from the thermophilic archaeon Sulfolobus solfataricus
overlap by 8-bp: isolation, sequencing of the genes and expression in
Escherichia coli.
A; Reference number: S63528; MUID: 96085144; PMID: 8521845
A; Accession: S63531
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-30 < JON>
```

A; Map position: 13q14.3-13q21.1

```
A; Cross-references: EMBL: X80178
                          14.3%; Score 4; DB 2; Length 30;
  Ouery Match
 Best Local Similarity
                          100.0%; Pred. No. 8.3e+02;
  Matches
            4; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                              0;
           23 WLRK 26
QУ
              1111
           11 WLRK 14
Db
RESULT 8
S44471
glucagon G1 - North American paddlefish (Polyodon spathula)
C; Species: Polyodon spathula
C; Date: 18-Sep-1997 #sequence revision 18-Sep-1997 #text change 07-May-1999
C; Accession: S44471
R; Nguyen, T.M.; Mommsen, T.P.; Mims, S.M.; Conlon, J.M.
Biochem. J. 300, 339-345, 1994
A; Title: Characterization of insulins and proglucagon-derived peptides from a
phylogenetically ancient fish, the paddlefish (Polyodon spathula).
A; Reference number: S44467; MUID: 94271144; PMID: 8002937
A; Accession: S44471
A; Molecule type: protein
A; Residues: 1-31 < NGU>
A; Experimental source: pancreas
C; Superfamily: glucagon
C; Keywords: carbohydrate metabolism; duplication; hormone; pancreas
F;1-31/Product: glucagon G1 #status predicted <MAT>
                          14.3%; Score 4; DB 2; Length 31;
                          100.0%; Pred. No. 8.5e+02;
  Best Local Similarity
  Matches
             4; Conservative
                              0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
           21 VEWL 24
              1111
Db
           23 VEWL 26
RESULT 9
S44472
glucagon G2 - North American paddlefish (Polyodon spathula)
C; Species: Polyodon spathula
C; Date: 19-Mar-1997 #sequence revision 12-Dec-1997 #text change 07-May-1999
C; Accession: S44472
R; Nguyen, T.M.; Mommsen, T.P.; Mims, S.M.; Conlon, J.M.
Biochem. J. 300, 339-345, 1994
A; Title: Characterization of insulins and proglucagon-derived peptides from a
phylogenetically ancient fish, the paddlefish (Polyodon spathula).
A; Reference number: S44467; MUID: 94271144; PMID: 8002937
A; Accession: S44472
A; Molecule type: protein
A; Residues: 1-31 <NGU>
A; Note: the sequence from Fig. 3 is inconsistent with that from Fig. 5 in having
29-Glu
C; Superfamily: glucagon
C; Keywords: carbohydrate metabolism; duplication; hormone; pancreas
```

```
F;1-31/Product: glucagon G2 #status predicted <GCN>
  Query Match
                          14.3%; Score 4; DB 2; Length 31;
                          100.0%; Pred. No. 8.5e+02;
  Best Local Similarity
             4; Conservative 0; Mismatches 0; Indels
  Matches
                                                                 0; Gaps
                                                                             0;
           21 VEWL 24
Qу
              Db
           23 VEWL 26
RESULT 10
F23454
ovalbumin phosphoserine peptide - fulvous whistling-duck (fragments)
C; Species: Dendrocygna bicolor (fulvous whistling-duck)
C;Date: 05-Jun-1987 #sequence_revision 05-Jun-1987 #text_change 13-Mar-1998
C; Accession: F23454
R; Henderson, J.Y.; Moir, A.J.G.; Fothergill, L.A.; Fothergill, J.E.
Eur. J. Biochem. 114, 439-450, 1981
A; Title: Sequences of sixteen phosphoserine peptides from ovalbumins of eight
species.
A; Reference number: A91106; MUID: 81164535; PMID: 6783411
A; Accession: F23454
A; Molecule type: protein
A; Residues: 1-32 <HEN>
C; Superfamily: antithrombin III
  Query Match
                          14.3%; Score 4; DB 2; Length 32;
  Best Local Similarity 100.0%; Pred. No. 8.8e+02;
  Matches
            4; Conservative
                                0; Mismatches
                                                   0; Indels
                                                                 0; Gaps
                                                                             0;
QУ
            1 SVSE 4
              1111
Db
           26 SVSE 29
RESULT 11
D31461
T-cell receptor delta chain BDN7, thymus - mouse (fragment)
C; Species: Mus musculus (house mouse)
C;Date: 05-Oct-1989 #sequence revision 05-Oct-1989 #text change 30-May-1997
C; Accession: D31461
R; Lacy, M.J.; McNeil, L.K.; Roth, M.E.; Kranz, D.M.
Proc. Natl. Acad. Sci. U.S.A. 86, 1023-1026, 1989
A; Title: T-cell receptor delta-chain diversity in peripheral lymphocytes.
A; Reference number: A31461; MUID: 89128840; PMID: 2783779
A; Accession: D31461
A; Status: preliminary; not compared with conceptual translation
A; Molecule type: mRNA
A; Residues: 1-32 <LAC>
C; Superfamily: immunoglobulin V region; immunoglobulin homology
C; Keywords: T-cell receptor
  Query Match
                          14.3%; Score 4; DB 2; Length 32;
                         100.0%; Pred. No. 8.8e+02;
  Best Local Similarity
  Matches 4; Conservative 0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
                                                                             0;
```

```
18 MERV 21
Qу
              8 MERV 11
Db
RESULT 12
E81714
hypothetical protein TC0337 [imported] - Chlamydia muridarum (strain Nigg)
C; Species: Chlamydia muridarum, Chlamydia trachomatis MoPn
C;Date: 31-Mar-2000 #sequence revision 31-Mar-2000 #text change 11-May-2000
C; Accession: E81714
R; Read, T.D.; Brunham, R.C.; Shen, C.; Gill, S.R.; Heidelberg, J.F.; White, O.;
Hickey, E.K.; Peterson, J.; Utterback, T.; Berry, K.; Bass, S.; Linher, K.;
Weidman, J.; Khouri, H.; Craven, B.; Bowman, C.; Dodson, R.; Gwinn, M.; Nelson,
W.; DeBoy, R.; Kolonay, J.; McClarty, G.; Salzberg, S.L.; Eisen, J.; Fraser,
C.M.
Nucleic Acids Res. 28, 1397-1406, 2000
A; Title: Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae
AR39.
A; Reference number: A81500; MUID: 20150255; PMID: 10684935
A; Accession: E81714
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-33 <TET>
A; Cross-references: GB: AE002301; GB: AE002160; NID: q7190372; PIDN: AAF39200.1;
PID:q7190379; GSPDB:GN00121; TIGR:TC0337
A; Experimental source: strain Nigq (MoPn)
C:Genetics:
A; Gene: TC0337
                          14.3%; Score 4; DB 2; Length 33;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 9e+02;
  Matches
             4; Conservative
                              0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
           24 LRKK 27
              Db
           26 LRKK 29
RESULT 13
D23454
ovalbumin phosphoserine peptide - golden pheasant (fragments)
C; Species: Chrysolophus pictus (golden pheasant)
C; Date: 05-Jun-1987 #sequence revision 05-Jun-1987 #text change 13-Mar-1998
C:Accession: D23454
R; Henderson, J.Y.; Moir, A.J.G.; Fothergill, L.A.; Fothergill, J.E.
Eur. J. Biochem. 114, 439-450, 1981
A; Title: Sequences of sixteen phosphoserine peptides from ovalbumins of eight
species.
A; Reference number: A91106; MUID: 81164535; PMID: 6783411
A; Accession: D23454
A; Molecule type: protein
A; Residues: 1-35 < HEN>
C; Superfamily: antithrombin III
  Query Match
                          14.3%; Score 4; DB 2; Length 35;
```

100.0%; Pred. No. 9.5e+02;

Best Local Similarity

```
Matches
           4; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                              0;
            1 SVSE 4
Qу
              Db
           29 SVSE 32
RESULT 14
G23454
ovalbumin phosphoserine peptide - magpie goose (fragments)
C; Species: Anseranas semipalmata (magpie goose)
C;Date: 05-Jun-1987 #sequence revision 05-Jun-1987 #text change 13-Mar-1998
C; Accession: G23454
R; Henderson, J.Y.; Moir, A.J.G.; Fothergill, L.A.; Fothergill, J.E.
Eur. J. Biochem. 114, 439-450, 1981
A; Title: Sequences of sixteen phosphoserine peptides from ovalbumins of eight
species.
A; Reference number: A91106; MUID: 81164535; PMID: 6783411
A; Accession: G23454
A; Molecule type: protein
A; Residues: 1-35 < HEN>
C; Superfamily: antithrombin III
                          14.3%; Score 4; DB 2; Length 35;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 9.5e+02;
  Matches
            4; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                              0;
            1 SVSE 4
Qу
              I \mid I \mid I
Db
           29 SVSE 32
RESULT 15
S70806
hypothetical protein 5 - Vibrio cholerae (fragment)
N; Alternate names: flagellar protein flaA homolog
C; Species: Vibrio cholerae
C;Date: 12-Feb-1998 #sequence revision 20-Feb-1998 #text change 26-Aug-1999
C; Accession: S70806
R; Camilli, A.; Mekalanos, J.J.
Mol. Microbiol. 18, 671-683, 1995
A; Title: Use of recombinase gene fusions to identify Vibrio cholerae genes
induced during infection.
A; Reference number: S70798; MUID: 96414469; PMID: 8817490
A; Accession: S70806
A; Status: preliminary; nucleic acid sequence not shown
A; Molecule type: DNA
A; Residues: 1-36 < CAM>
A;Cross-references: EMBL:U25820; NID:g1165195; PIDN:AAC43560.1; PID:g1165196
C; Superfamily: flagellin
  Query Match
                          14.3%; Score 4; DB 2; Length 36;
  Best Local Similarity
                          100.0%; Pred. No. 9.7e+02;
 Matches
             4; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
           17 SMER 20
              1111
```

Dh

25 ERVE 28

```
RESULT 16
S46227
hypothetical protein - Streptomyces chrysomallus (fragment)
C; Species: Streptomyces chrysomallus
C;Date: 19-Mar-1997 #sequence revision 29-Aug-1997 #text change 28-May-1999
C; Accession: S46227
R; Pahl, A.; Keller, U.
EMBO J. 13, 3472-3480, 1994
A; Title: Streptomyces chrysomallus FKBP-33 is a novel immunophilin consisting of
two FK506 binding domains; its gene is transcriptionally coupled to the FKBP-12
A; Reference number: S46227; MUID: 94341259; PMID: 8062824
A; Accession: S46227
A; Molecule type: DNA
A; Residues: 1-36 < PAH>
A; Cross-references: GB: Z34523; NID: g535270; PIDN: CAA84281.1; PID: g633645
A; Experimental source: strain ATCC 11523
                          14.3%; Score 4; DB 2; Length 36;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 9.7e+02;
  Matches
            4; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
           19 ERVE 22
Qу
              1111
           27 ERVE 30
Db
RESULT 17
S71912
hemoglobin, extracellular, chain A1 - polychaete (Perinereis aibuhitensis)
(fragment)
C; Species: Perinereis aibuhitensis
C;Date: 14-Apr-1998 #sequence revision 08-May-1998 #text change 02-Jul-1998
C; Accession: S71912
R; Matsubara, K.; Yamaki, M.; Nagayama, K.; Imai, K.; Ishii, H.; Gotoh, T.;
Ebina, S.
Biochim. Biophys. Acta 1290, 215-223, 1996
A; Title: Wheat germ agglutinin-reactive chains of giant hemoglobin from the
polychaete Perinereis aibuhitensis.
A; Reference number: S71912; MUID: 96350431; PMID: 8765123
A; Accession: S71912
A; Molecule type: protein
A; Residues: 1-37 < MAT>
C; Superfamily: globin; globin homology
C; Keywords: chromoprotein; heme; iron; oxygen carrier
  Query Match
                          14.3%; Score 4; DB 2; Length 37;
                          100.0%; Pred. No. 1e+03;
 Best Local Similarity
 Matches
            4; Conservative 0; Mismatches
                                                   0; Indels
                                                                 0; Gaps
Qу
           19 ERVE 22
```

```
T12635
homeotic protein HAHB-2 - common sunflower (fragment)
C; Species: Helianthus annuus (common sunflower)
C:Date: 13-Aug-1999 #sequence revision 13-Aug-1999 #text change 21-Jul-2000
C; Accession: T12635
R; Chan, R.L.; Gonzalez, D.H.
Plant Physiol. 106, 1687-1688, 1994
A; Title: A cDNA encoding an HD-zip protein from sunflower.
A; Reference number: Z17563; MUID: 95148747; PMID: 7846169
A; Accession: T12635
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: mRNA
A; Residues: 1-37 < CHA>
A;Cross-references: EMBL:L22849; NID:g349258; PIDN:AAA63766.1; PID:g349259
C; Keywords: DNA binding; homeobox; transcription regulation
                          14.3%; Score 4; DB 2; Length 37;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 1e+03;
             4; Conservative
                                 0; Mismatches
                                                   0; Indels
                                                                      Gaps
                                                                              0;
           25 RKKL 28
Qу
              6 RKKL 9
Db
RESULT 19
CKFHCS
sarcotoxin IC - flesh fly (Sarcophaga peregrina)
C; Species: Sarcophaga peregrina
C;Date: 31-Mar-1988 #sequence revision 31-Mar-1988 #text change 08-Dec-1995
C; Accession: C22625
R;Okada, M.; Natori, S.
J. Biol. Chem. 260, 7174-7177, 1985
A; Title: Primary structure of sarcotoxin I, an antibacterial protein induced in
the hemolymph of Sarcophaga peregrina (flesh fly) larvae.
A; Reference number: A92536; MUID: 85207747; PMID: 3888997
A; Accession: C22625
A; Molecule type: protein
A; Residues: 1-39 < OKA>
C; Comment: Sarcotoxins, which are potent bactericidal proteins, are produced in
response to injury. They are cytotoxic to both Gram positive and Gram negative
bacteria.
C; Superfamily: cecropin
C; Keywords: amidated carboxyl end; antibacterial; hemolymph
F;39/Modified site: amidated carboxyl end (Arg) #status predicted
                          14.3%; Score 4; DB 1; Length 39;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1e+03;
                                0; Mismatches
             4; Conservative
                                                   0; Indels
QУ
           23 WLRK 26
              1111
Db
            2 WLRK 5
```

RESULT 18

```
RESULT 20
S71913
hemoglobin, extracellular, chain A2 - polychaete (Perinereis aibuhitensis)
(fragment)
C; Species: Perinereis aibuhitensis
C;Date: 14-Apr-1998 #sequence revision 08-May-1998 #text change 02-Jul-1998
C; Accession: S71913
R; Matsubara, K.; Yamaki, M.; Nagayama, K.; Imai, K.; Ishii, H.; Gotoh, T.;
Ebina, S.
Biochim. Biophys. Acta 1290, 215-223, 1996
A; Title: Wheat germ agglutinin-reactive chains of giant hemoglobin from the
polychaete Perinereis aibuhitensis.
A; Reference number: S71912; MUID: 96350431; PMID: 8765123
A; Accession: S71913
A; Molecule type: protein
A; Residues: 1-39 < MAT>
C; Superfamily: globin; globin homology
C; Keywords: chromoprotein; heme; iron; oxygen carrier
                          14.3%; Score 4; DB 2; Length 39;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 1e+03;
  Matches
             4; Conservative 0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
           19 ERVE 22
Qу
              1111
Db
           27 ERVE 30
RESULT 21
A42272
brain-type creatine kinase, peptide B - spiny dogfish (fragment)
C; Species: Squalus acanthias (spiny dogfish)
C;Date: 04-Mar-1993 #sequence revision 18-Nov-1994 #text change 11-Apr-1997
C; Accession: A42272
R; Friedman, D.L.; Roberts, R.
J. Biol. Chem. 267, 4270-4276, 1992
A; Title: Purification and localization of brain-type creatine kinase in sodium
chloride transporting epithelia of the spiny dogfish, Squalus acanthias.
A; Reference number: A42272; MUID: 92156175; PMID: 1310991
A; Accession: A42272
A; Status: preliminary
A; Molecule type: protein
A; Residues: 1-28 <FRI>
A; Note: sequence extracted from NCBI backbone (NCBIP:82919)
C; Superfamily: creatine kinase; creatine kinase repeat homology
                          10.7%; Score 3; DB 2; Length 28;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 9.7e+03;
             3; Conservative
                                 0; Mismatches
                                                    0; Indels
                                                                              0;
                                                                  0; Gaps
Qу
           26 KKL 28
              \prod
Db
           10 KKL 12
```

```
phospholipase A2 (EC 3.1.1.4) pseudexin chain C - red-bellied black snake
(fragment)
C; Species: Pseudechis porphyriacus (red-bellied black snake)
C;Date: 05-Oct-1989 #sequence revision 05-Oct-1989 #text change 23-Jun-1993
C; Accession: C32416
R; Schmidt, J.J.; Middlebrook, J.L.
Toxicon 27, 805-818, 1989
A; Title: Purification, sequencing and characterization of pseudexin
phospholipases A-2 from Pseudechis porphyriacus (Australian red-bellied black
snake).
A; Reference number: A32416; MUID: 89388835; PMID: 2675391
A; Accession: C32416
A; Status: preliminary
A; Molecule type: protein
A; Residues: 1-28 < SCH>
C; Superfamily: phospholipase A2
C; Keywords: carboxylic ester hydrolase
  Query Match
                          10.7%; Score 3; DB 2; Length 28;
  Best Local Similarity 100.0%; Pred. No. 9.7e+03;
            3; Conservative
                              0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
                                                                             0;
            5 IQL 7
QУ
              | | |
Db
            3 IQL 5
RESULT 23
B60071
vasoactive intestinal peptide - rhesus macaque
C; Species: Macaca mulatta (rhesus macaque)
C;Date: 28-Apr-1993 #sequence revision 28-Apr-1993 #text change 20-Mar-1998
C; Accession: B60071
R; Yu, J.; Xin, Y.; Eng, J.; Yalow, R.S.
Regul. Pept. 32, 39-45, 1991
A; Title: Rhesus monkey gastroenteropancreatic hormones: relationship to human
sequences.
A; Reference number: A60071; MUID: 91164506; PMID: 2003150
A; Accession: B60071
A; Status: protein sequence not shown
A; Molecule type: protein
A; Residues: 1-28 < YUA>
A; Note: the sequence is identical with the human sequence
C; Superfamily: glucagon
C; Keywords: duplication; hormone; intestine; neuropeptide; vasodilator
  Query Match
                          10.7%; Score 3; DB 2; Length 28;
 Best Local Similarity
                          100.0%; Pred. No. 9.7e+03;
            3; Conservative
                              0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                              0;
Qу
           15 LNS 17
              Db
           23 LNS 25
```

```
N:Alternate names: VIP
C; Species: Canis lupus familiaris (dog)
C;Date: 15-Jan-1993 #sequence revision 15-Jan-1993 #text change 20-Mar-1998
C; Accession: A60304
R; Enq, J.; Pan, Y.C.E.; Raufman, J.P.; Yalow, R.S.
Regul. Pept. Suppl. 3, S14, 1985
A; Title: Purification and sequencing of dog and guinea pig VIP's.
A; Reference number: A60304
A; Accession: A60304
A; Molecule type: protein
A; Residues: 1-28 < ENG>
C; Superfamily: glucagon
C; Keywords: duplication; hormone; intestine; neuropeptide; vasodilator
                          10.7%; Score 3; DB 2; Length 28;
  Query Match
                          100.0%; Pred. No. 9.7e+03;
  Best Local Similarity
            3; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
  Matches
           15 LNS 17
Qу
              23 LNS 25
Db
RESULT 25
S58386
T-cell receptor beta-chain Vb11-Jb2.4 - mouse (fragment)
C; Species: Mus musculus (house mouse)
C; Date: 29-Nov-1995 #sequence revision 01-Mar-1996 #text change 23-Jul-1999
C; Accession: S58386
R; Johnston, S.L.; Strausbauch, M.; Sarkar, G.; Wettstein, P.J.
Nucleic Acids Res. 23, 3074-3075, 1995
A; Title: A novel method for sequencing members of multi-gene families.
A; Reference number: S58384; MUID: 95388532; PMID: 7659534
A; Accession: S58386
A; Status: preliminary; nucleic acid sequence not shown
A; Molecule type: mRNA
A; Residues: 1-28 < JOH>
A; Cross-references: EMBL: U20300; NID: g663123; PIDN: AAA62247.1; PID: g663124
A; Note: the nucleotide sequence was submitted to the EMBL Data Library, January
1995
A; Note: only a part of the coding sequence is given
C; Superfamily: immunoglobulin V region; immunoglobulin homology
C; Keywords: T-cell receptor
                          10.7%; Score 3; DB 2; Length 28;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 9.7e+03;
             3; Conservative
                               0; Mismatches 0; Indels
                                                                 0; Gaps
           19 ERV 21
Qу
              Db
           12 ERV 14
RESULT 26
PN0047
signal transduction protein QM0017 - mouse (fragments)
```

vasoactive intestinal peptide - dog

```
C; Species: Mus musculus (house mouse)
C; Date: 29-Oct-1997 #sequence revision 29-Oct-1997 #text change 15-Oct-1999
C:Accession: PN0047
R; Kato, H.
Kawasaki Igakkaishi 22, 245-259, 1996
A; Title: Analysis of proteins isolated by two dimensional electrophoresis of
mouse neuroblastoma cells.
A; Reference number: PN0041
A; Accession: PN0047
A; Molecule type: protein
A; Residues: 1-28 <KAT>
A; Experimental source: neuroblastoma cell
C; Comment: The molecular mass is 25,600 and the pI is 6.07. The amino-terminus
C; Superfamily: signal transduction protein DJ-1
C; Keywords: brain
  Query Match
                          10.7%; Score 3; DB 2; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 9.7e+03;
             3; Conservative 0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
           10 NLG 12
Qу
              Db
           14 NLG 16
RESULT 27
S70894
hypothetical protein 1 - Vibrio anguillarum (fragment)
C; Species: Vibrio anguillarum
C;Date: 19-Mar-1997 #sequence revision 25-Apr-1997 #text change 08-Oct-1999
C; Accession: S70894
R;O'Toole, R.; Milton, D.L.; Wolf-Watz, H.
Mol. Microbiol. 19, 625-637, 1996
A; Title: Chemotactic motility is required for invasion of the host by the fish
pathogen Vibrio anguillarum.
A; Reference number: S70894; MUID: 96228710; PMID: 8830252
A; Accession: S70894
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-28 <OTO>
A; Cross-references: GB: U36378; EMBL: L47344; NID: q1020321; PIDN: AAB38488.1;
PID:g1723992
  Query Match
                          10.7%; Score 3; DB 2; Length 28;
                          100.0%; Pred. No. 9.7e+03;
  Best Local Similarity
             3; Conservative
                               0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0:
Qу
           15 LNS 17
              | | |
           18 LNS 20
Db
RESULT 28
S22469
hypothetical protein 1 - Prochlorothrix hollandica
```

C; Species: Prochlorothrix hollandica

```
C; Accession: S22469; S16850
R; Greer, K.L.; Golden, S.S.
Plant Mol. Biol. 19, 355-365, 1992
A; Title: Conserved relationship between psbH and petBD genes: presence of a
shared upstream element in Prochlorothrix hollandica.
A; Reference number: S22469; MUID: 92322967; PMID: 1623188
A; Accession: S22469
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-28 <GRE>
A; Cross-references: EMBL: X60313; NID: g45528; PIDN: CAA42858.1; PID: g45529
                          10.7%; Score 3; DB 2; Length 28;
  Best Local Similarity 100.0%; Pred. No. 9.7e+03;
            3; Conservative
                               0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
  Matches
            1 SVS 3
Qу
              Db
            4 SVS 6
RESULT 29
S26254
rel protein - chicken
C; Species: Gallus gallus (chicken)
C;Date: 25-Feb-1994 #sequence_revision 10-Nov-1995 #text_change 06-Dec-1996
C; Accession: S26254
R; Capobianco, A.J.; Gilmore, T.D.
Oncogene 6, 2203-2210, 1991
A; Title: Repression of the chicken c-rel promoter by vRel in chicken embryo
fibroblasts is not mediated through a consensus NF-kappaB binding site.
A; Reference number: S26254; MUID: 92115319; PMID: 1766669
A; Accession: S26254
A; Status: preliminary; translation not shown
A; Molecule type: DNA
A; Residues: 1-28 < CAP>
A; Cross-references: EMBL: X59588
                          10.7%; Score 3; DB 2; Length 28;
  Ouery Match
  Best Local Similarity 100.0%; Pred. No. 9.7e+03;
             3; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
  Matches
           20 RVE 22
Qу
              Db
            1 RVE 3
RESULT 30
I59477
antigen, T-cell receptor - human (fragment)
C; Species: Homo sapiens (man)
C;Date: 02-Jul-1996 #sequence revision 02-Jul-1996 #text_change 21-Jul-2000
C; Accession: I59477
R; Mathioudakis, G.; Chen, P.
Scand. J. Immunol. 38, 31-36, 1993
```

C;Date: 13-Jan-1995 #sequence revision 13-Jan-1995 #text change 15-Oct-1999

```
A; Title: Preferential rearrangements of the V gamma I subgroup of the gamma-
chain of the T-cell antigen receptor to J gamma 2C gamma 2 gene segments in
peripheral blood lymphocyte transcripts from normal donors.
A; Reference number: I59477; MUID: 93318104; PMID: 8392223
A; Accession: I59477
A:Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: mRNA
A; Residues: 1-28 < RES>
A; Cross-references: GB: M89844; NID: g181657; PIDN: AAA02695.1; PID: g181658
C; Keywords: T-cell receptor
                          10.7%; Score 3; DB 2; Length 28;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 9.7e+03;
             3; Conservative
                               0; Mismatches 0; Indels
                                                                  0; Gaps
           26 KKL 28
Qу
              |\cdot|
Db
           10 KKL 12
RESULT 31
F46522
T-cell receptor eta chain - rat (fragment)
C; Species: Rattus norvegicus (Norway rat)
C;Date: 18-Jun-1993 #sequence revision 18-Nov-1994 #text change 05-Nov-1999
C; Accession: F46522; I56191
R; Jensen, J.P.; Cenciarelli, C.; Hou, D.; Rellahan, B.L.; Dean, M.; Weissman,
A.M.
J. Immunol. 150, 122-130, 1993
A; Title: T cell antigen receptor-eta subunit. Low levels of expression and
limited cross-species conservation.
A; Reference number: A46522; MUID: 93107707; PMID: 8417118
A; Accession: F46522
A; Status: preliminary; not compared with conceptual translation
A; Molecule type: nucleic acid
A; Residues: 1-28 <JEN>
A; Cross-references: GB:S51404; NID:g262180; PIDN:AAB24606.1; PID:g262181
A; Note: sequence extracted from NCBI backbone (NCBIP:120909)
R; Itoh, Y.; Matsuura, A.; Kinebuchi, M.; Honda, R.; Takayama, S.; Ichimiya, S.;
Kon, S.; Kikuchi, K.
J. Immunol. 151, 4705-4717, 1993
A; Title: Structural analysis of the CD3 zeta/eta locus of the rat. Expression of
zeta but eta transcripts by rat T cells.
A; Reference number: I56191; MUID: 94014415; PMID: 8409430
A; Accession: I56191
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: DNA
A; Residues: 1-28 < RES>
A; Cross-references: GB:D13556; NID:g436580; PIDN:BAA02754.1; PID:g436581
C; Keywords: T-cell receptor
  Query Match
                          10.7%; Score 3; DB 2; Length 28;
                          100.0%; Pred. No. 9.7e+03;
  Best Local Similarity
             3; Conservative
                                0; Mismatches 0; Indels
                                                                  0; Gaps
Qу
           25 RKK 27
```

| | |

111

```
RESULT 32
GCCB
glucagon - Chinchilla brevicaudata
C; Species: Chinchilla brevicaudata, Chinchilla lanigera brevicaudata
C;Date: 31-Mar-1993 #sequence revision 31-Mar-1993 #text change 20-Mar-1998
C; Accession: A60413
R; Eng, J.; Kleinman, W.A.; Chu, L.S.
Peptides 11, 683-685, 1990
A; Title: Purification of peptide hormones from chinchilla pancreas by chemical
assay.
A; Reference number: A60413; MUID: 91045327; PMID: 2235678
A; Accession: A60413
A; Molecule type: protein
A; Residues: 1-29 < ENG>
C; Superfamily: glucagon
C; Keywords: carbohydrate metabolism; duplication; hormone; pancreas
                          10.7%; Score 3; DB 1; Length 29;
  Query Match
                          100.0%; Pred. No. 1e+04;
  Best Local Similarity
             3; Conservative 0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
                                                                              0;
           13 KHL 15
Qу
              IIII
Db
           12 KHL 14
RESULT 33
S39968
probable hydro-lyase (EC 4.2.1.-) [similarity] - Streptomyces griseus (fragment)
N; Alternate names: hypothetical protein 6
C; Species: Streptomyces griseus
C;Date: 20-Feb-1995 #sequence revision 30-Jan-1998 #text change 18-Aug-2000
C; Accession: S39968
R; Kruegel, H.; Schumann, G.; Haenel, F.; Fiedler, G.
Mol. Gen. Genet. 241, 193-202, 1993
A; Title: Nucleotide sequence analysis of five putative Streptomyces griseus
genes, one of which complements an early function in daunorubicin biosynthesis
that is linked to a putative gene cluster involved in TDP-daunosamine formation.
A; Reference number: S39963; MUID: 94049680; PMID: 8232204
A; Accession: S39968
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-29 < KRU>
A; Cross-references: EMBL: X73148; NID: g407882; PIDN: CAA51673.1; PID: e80351;
PID:g1235599
C; Superfamily: erythromycin resistance protein
C; Keywords: antibiotic resistance; carbon-oxygen lyase; hydro-lyase
  Query Match
                          10.7%; Score 3; DB 2; Length 29;
                          100.0%; Pred. No. 1e+04;
  Best Local Similarity
            3; Conservative 0; Mismatches
  Matches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
           19 ERV 21
```

```
RESULT 34
A61509
islet amyloid polypeptide - cougar (fragment)
C; Species: Felis concolor (cougar)
C;Date: 19-Mar-1997 #sequence revision 26-Feb-1998 #text change 11-May-2000
C; Accession: A61509
R; Johnson, K.H.; Wernstedt, C.; O'Brien, T.D.; Westermark, P.
Comp. Biochem. Physiol. B 98, 115-119, 1991
A; Title: Amyloid in the pancreatic islets of the cougar (Felis concolor) is
derived from islet amyloid polypeptide (IAPP).
A; Reference number: A61509; MUID: 91284578; PMID: 2060275
A; Accession: A61509
A; Molecule type: protein
A; Residues: 1-29 < JOH>
C; Superfamily: calcitonin
  Query Match
                          10.7%; Score 3; DB 2; Length 29;
                          100.0%; Pred. No. 1e+04;
  Best Local Similarity
                                0; Mismatches
  Matches
                                                   0; Indels
             3; Conservative
                                                                  0; Gaps
           10 NLG 12
Qу
              | | |
Db
           22 NLG 24
RESULT 35
S17147
galanin - chicken (fragment)
C; Species: Gallus gallus (chicken)
C;Date: 21-Nov-1993 #sequence revision 10-Nov-1995 #text change 03-May-1996
C; Accession: S17147
R; Norberg, A.; Sillard, R.; Carlquist, M.; Joernvall, H.; Mutt, V.
FEBS Lett. 288, 151-153, 1991
A; Title: Chemical detection of natural peptides by specific structures.
Isolation of chicken galanin by monitoring for its N-terminal dipeptide, and
determination of the amino acid sequence.
A; Reference number: S17147; MUID: 91348254; PMID: 1715289
A; Accession: S17147
A; Status: preliminary
A; Molecule type: protein
A; Residues: 1-29 < NOR>
C; Superfamily: galanin
                          10.7%; Score 3; DB 2; Length 29;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 1e+04;
  Matches
                                0; Mismatches
             3; Conservative
                                                    0; Indels
                                                                   0; Gaps
                                                                               0;
Qу
           15 LNS 17
              111
Db
            4 LNS 6
```

```
C; Species: Methanosarcina thermophila
C;Date: 21-Jan-2000 #sequence revision 21-Jan-2000 #text change 02-Sep-2000
C; Accession: T44245
R; Thomas, T.; Cavicchioli, R.
FEBS Lett. 439, 281-287, 1998
A; Title: Archaeal cold-adapted proteins: structural and evolutionary analysis of
the elongation factor 2 proteins from psychrophilic, mesophilic and thermophilic
methanogens.
A; Reference number: Z22730; MUID: 99059471; PMID: 9845338
A; Accession: T44245
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: DNA
A; Residues: 1-29 < THO>
A; Cross-references: EMBL: AF026165; NID: g3924927; PIDN: AAC79199.1; PID: g3924928
A; Experimental source: DSM 1825
C:Genetics:
A;Gene: s7
C; Superfamily: Escherichia coli ribosomal protein S7
                          10.7%; Score 3; DB 2; Length 29;
  Query Match
                          100.0%; Pred. No. 1e+04;
  Best Local Similarity
  Matches
             3; Conservative 0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
                                                                              0;
           19 ERV 21
Qу
              Db
           22 ERV 24
RESULT 37
A05272
gelsolin, cytosolic - rabbit (fragment)
C; Species: Oryctolagus cuniculus (domestic rabbit)
C;Date: 05-Jun-1987 #sequence revision 05-Jun-1987 #text change 07-Feb-1997
C; Accession: A05272
R; Yin, H.L.; Kwiatkowski, D.J.; Mole, J.E.; Cole, F.S.
J. Biol. Chem. 259, 5271-5276, 1984
A; Reference number: A05272; MUID: 84185643; PMID: 6325429
A; Accession: A05272
A; Molecule type: protein
A; Residues: 1-29 < YIN>
C; Superfamily: gelsolin; gelsolin repeat homology
C; Keywords: calcium; cytosol
  Query Match
                          10.7%; Score 3; DB 2; Length 29;
  Best Local Similarity
                          100.0%; Pred. No. 1e+04;
             3; Conservative
                                 0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
                                                                              0;
           20 RVE 22
Qу
              20 RVE 22
RESULT 38
B81136
hypothetical protein NMB0968 [imported] - Neisseria meningitidis (strain MC58
serogroup B)
```

ribosomal protein S7 [imported] - Methanosarcina thermophila (fragment)

```
C; Species: Neisseria meningitidis
C;Date: 31-Mar-2000 #sequence revision 31-Mar-2000 #text change 19-Jan-2001
C; Accession: B81136
R;Tettelin, H.; Saunders, N.J.; Heidelberg, J.; Jeffries, A.C.; Nelson, K.E.;
Eisen, J.A.; Ketchum, K.A.; Hood, D.W.; Peden, J.F.; Dodson, R.J.; Nelson, W.C.;
Gwinn, M.L.; DeBoy, R.; Peterson, J.D.; Hickey, E.K.; Haft, D.H.; Salzberg,
S.L.; White, O.; Fleischmann, R.D.; Dougherty, B.A.; Mason, T.; Ciecko, A.;
Parksey, D.S.; Blair, E.; Cittone, H.; Clark, E.B.; Cotton, M.D.; Utterback,
T.R.; Khouri, H.; Qin, H.; Vamathevan, J.; Gill, J.; Scarlato, V.; Masignani,
V.; Pizza, M.
Science 287, 1809-1815, 2000
A:Authors: Grandi, G.; Sun, L.; Smith, H.O.; Fraser, C.M.; Moxon, E.R.;
Rappuoli, R.; Venter, J.C.
A; Title: Complete genome sequence of Neisseria meningitidis serogroup B strain
MC58.
A; Reference number: A81000; MUID: 20175755; PMID: 10710307
A; Accession: B81136
A;Status: preliminary
A; Molecule type: DNA
A; Residues: 1-29 <TET>
A;Cross-references: GB:AE002448; GB:AE002098; NID:g7226204; PIDN:AAF41373.1;
PID:q7226208; GSPDB:GN00119; TIGR:NMB0968
A; Experimental source: serogroup B, strain MC58
C:Genetics:
A;Gene: NMB0968
                          10.7%; Score 3; DB 2; Length 29;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 1e+04;
                               0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                              0;
  Matches
             3; Conservative
           10 NLG 12
Qу
              111
           25 NLG 27
Db
RESULT 39
I84189
cyclic AMP receptor protein (CRP) - Escherichia coli
C; Species: Escherichia coli
C;Date: 07-Jun-1996 #sequence revision 07-Jun-1996 #text change 08-Oct-1999
C:Accession: I84189
R; Kashiwagi, K.; Miyamoto, S.; Suzuki, F.; Kobayashi, H.; Igarashi, K.
Proc. Natl. Acad. Sci. U.S.A. 89, 4529-4533, 1992
A; Title: Excretion of putrescine by the putrescine-ornithine antiporter encoded
by the potE gene of Escherichia coli.
A; Reference number: 160729; MUID: 92262473; PMID: 1584788
A; Accession: I84189
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: DNA
A; Residues: 1-29 < RES>
A; Cross-references: GB: M33766; NID: g806389; PIDN: AAA66175.1; PID: g455185
                          10.7%; Score 3; DB 2; Length 29;
  Query Match
                          100.0%; Pred. No. 1e+04;
  Best Local Similarity
             3; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                              0;
  Matches
```

RESULT 40

S65747

CDP-paratose synthetase - Yersinia pseudotuberculosis (fragments)

C; Species: Yersinia pseudotuberculosis

C;Date: 05-Dec-1998 #sequence revision 05-Dec-1998 #text change 04-Mar-2000

C; Accession: S65747

R; Hobbs, M.; Reeves, P.R.

Biochim. Biophys. Acta 1245, 273-277, 1995

A; Title: Genetic organisation and evolution of Yersinia pseudotuberculosis 3,6-

dideoxyhexose biosynthetic genes.

A; Reference number: S65746; MUID: 96125720; PMID: 8541300

A; Accession: S65747

A; Status: preliminary; not compared with conceptual translation

A; Molecule type: DNA

A; Residues: 1-9;10-29 < HOB>

Query Match 10.7%; Score 3; DB 2; Length 29;

Best Local Similarity 100.0%; Pred. No. 1e+04;

Matches 3; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 15 LNS 17

Db 16 LNS 18

Search completed: January 14, 2004, 10:37:29

Job time: 9.2866 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on:

January 14, 2004, 10:28:19; Search time 20.9346 Seconds

(without alignments)

345.145 Million cell updates/sec

Title:

US-09-843-221A-168

Perfect score: 28

Sequence:

1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched:

830525 seqs, 258052604 residues

Word size :

Total number of hits satisfying chosen parameters:

13497

Minimum DB seq length: 28 Maximum DB seq length: 40

Post-processing: Listing first 1000 summaries

Database :

SPTREMBL 23:*

- 1: sp archea:*
- 2: sp bacteria:*
- 3: sp_fungi:*
- 4: sp human:*
- 5: sp_invertebrate:*
- 6: sp mammal:*
- 7: sp mhc:*
- 8: sp_organelle:*
- 9: sp phage:*
- 10: sp plant:*
- 11: sp rodent:*
- 12: sp virus:*
- 13: sp_vertebrate:*
- 14: sp_unclassified:*
- 15: sp_rvirus:*
- 16: sp_bacteriap:*
- 17: sp_archeap:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

용

Result Query

> Description No. Score Match Length DB ID

1	14	50.0	31	11	Q91Y90	Q91y90 peromyscus
2	14	50.0	31	11	Q91Y91	Q91y91 peromyscus
. 3	5	17.9	34	5	017148	O17148 echinococcu
4	5	17.9	34	16	Q97K50	Q97k50 clostridium
5	5	17.9	34	17	Q9HR65	Q9hr65 halobacteri
6	5	17.9	35	11	Q8BTB9	Q8btb9 mus musculu
7	4	14.3	28	10	024285	O24285 pinus radia
8	4	14.3	28	10	Q8GZQ8	Q8gzq8 hordeum vul
9	4	14.3	29	2	Q49148	Q49148 methylobact
10	4	14.3	29	4	Q96PP3	Q96pp3 homo sapien
11	4	14.3	29	5	Q25603	Q25603 onchocerca
12	4	14.3	29	13	013043	O13043 scyliorhinu
13	4	14.3	30	2	Q9JMV3	Q9jmv3 escherichia
14	4	14.3	31	1	Q55314	Q55314 sulfolobus
15	4	14.3	31	4	Q8NEI8	Q8nei8 homo sapien
16	4	14.3	31	8	Q9MS77	Q9ms77 phacus acum
17	4	14.3	32	11	Q9QZQ2	Q9qzq2 mus musculu
18	4	14.3	33	16	Q9PKX3	Q9pkx3 chlamydia m
1 9	4	14.3	34	2	Q9ZG81	Q9zg81 chlamydia t
20	4	14.3	34	13	Q90ZJ4	Q90zj4 gallus gall
21	4	14.3	34	16	Q8G2Q2	Q8g2q2 brucella su
22	4	14.3	35	12	Q8V6J8	Q8v6j8 halovirus h
23	4	14.3	35	16	Q8F102	Q8f102 leptospira
24	4	14.3	36	2	Q53920	Q53920 streptomyce
25	4	14.3	36	2	068941	068941 rhodospiril
26	4	14.3	36	4	Q8WXW8	Q8wxw8 homo sapien
27	4	14.3	36	12	Q9PXD1	Q9pxd1 hepatitis c
28	4	14.3	36	13	Q9YHT9	Q9yht9 brachydanio
29	4	14.3	37	2	Q8KYJ0	Q8kyj0 bacillus an
30	4	14.3	37	5	Q9N2L2	Q9n2l2 caenorhabdi
31	4	14.3	37	10	Q39942	Q39942 helianthus
32	4	14.3	37	13	8WWA8Q	Q8aww8 oncorhynchu
33	4	14.3	37	16	Q8F6U2	Q8f6u2 leptospira
34	4	14.3	37	16	Q8F5H3	Q8f5h3 leptospira
35	4	14.3	37	16	Q8F419	Q8f419 leptospira
36	4	14.3	37	16	Q8EXV9	Q8exv9 leptospira
37	4	14.3	38	5	Q9NBE3	Q9nbe3 chironomus
38	4	14.3	38	5	Q9NBE5	Q9nbe5 chironomus
39	4	14.3	38	5	Q9NBE8	Q9nbe8 chironomus
40	4	14.3	38	5	Q9NBE4	Q9nbe4 chironomus
41	4	14.3	38	5	Q9NBE7	Q9nbe7 chironomus
42	4	14.3	38	11	Q91VC8	Q91vc8 mus musculu
43	4	14.3	38	13	Q8AWW9	Q8aww9 oncorhynchu
44	4	14.3	38	16	Q8E0D2	Q8e0d2 streptococc
45	4	14.3	39	2	Q8GPQ8	Q8gpq8 pseudomonas
46	4	14.3	39	10	Q9FEY1	Q9feyl heterocapsa
47	4	14.3	39	12	Q68847	Q68847 hepatitis c
48	4	14.3	39	12	Q68845	Q68845 hepatitis c
49	4	14.3	39	12	Q68846	Q68846 hepatitis c
50	4	14.3	39	13	Q90776	Q90776 gallus gall
51	4	14.3	39	16	Q9KYH4	Q9kyh4 streptomyce
52		14.3	39	16	Q8F0C7	Q8f0c7 leptospira
	4					— — — — — — — — — — — — — — — — — — —
53	4	14.3	39	16	Q8EZ33	Q8ez33 leptospira
54	4	14.3	40	2	Q8GCS7	Q8gcs7 eubacterium
55	4	14.3	40	4	P78340	P78340 homo sapien
56	4	14.3	40	6	Q29283	Q29283 sus scrofa
57	4	14.3	40	10	Q8H192	Q8h192 arabidopsis

58	4	14.3	40	12 Q8V647	Q8v647 rabies viru
59	3	10.7	28	2 Q01303	Q01303 treponema p
60	3	10.7	28	2 Q05574	Q05574 prochloroth
61	3	10.7	28	2 Q9ZB83	Q9zb83 vibrio angu
62	3	10.7	28	3 Q8TGT8	Q8tgt8 saccharomyc
	3			~	· · · · · · · · · · · · · · · · · · ·
63		10.7	28	4 Q96SD9	Q96sd9 homo sapien
64	3	10.7	28	4 Q16326	Q16326 homo sapien
65	3	10.7	28	4 Q96EU0	Q96eu0 homo sapien
66	3	10.7	28	4 075980	075980 homo sapien
67	3	10.7	28	4 095737	O95737 homo sapien
68	3	10.7	28	5 Q8MUW0	Q8muw0 schistosoma
69	3	10.7	28	5 Q8MPY2	Q8mpy2 caenorhabdi
70	3	10.7	28	5 Q9BM68	Q9bm68 glottidia p
71	3	10.7	28	5 Q9BJE4	Q9bje4 pauropus sp
72	3	10.7	28	6 062821	062821 bubalus bub
73	3	10.7	28	8 Q8WBC8	Q8wbc8 cucurbita e
	3				
74		10.7	28	8 Q9TIE9	Q9tie9 centella er
75	3	10.7	28	8 Q9TIE8	Q9tie8 centella as
76	3	10.7	28	8 Q9MR96	Q9mr96 crocodylus
77	3	10.7	28	8 Q9TIE6	Q9tie6 centella hi
78	3	10.7	28	8 Q9ZYS4	Q9zys4 leishmania
79	3	10.7	28	8 Q9MR94	Q9mr94 chelonia my
80	3	10.7	28	8 Q9TIE7	Q9tie7 centella tr
81	3	10.7	28	8 Q8HS23	Q8hs23 pisum sativ
82	3	10.7	28	8 Q8HS11	Q8hs11 spathiphyll
83	3	10.7	28	8 Q8HS07	Q8hs07 welwitschia
84	3	10.7	28	8 Q8HKF0	Q8hkf0 rhipicephal
85	3	10.7	28	9 Q9AZJ9	Q9azj9 bacteriopha
86	3	10.7	28	10 Q8W232	Q8w232 zea mays (m
87	3	10.7	28	10 Q944P1	Q944p1 manihot esc
88	3	10.7	28	11 Q9ESI4	Q9esi4 petromus ty
89	3	10.7	28	11 Q9ESI5	Q9esi5 thryonomys
90	3	10.7	28	11 Q9ESI6	Q9esi6 hystrix afr
91	3	10.7	28	11 Q99PL9	Q99pl9 mus musculu
92	3	10.7	28	11 Q9ESI2	Q9esi2 cryptomys h
93	3	10.7	28	11 Q9EP60	Q9ep60 heliophobiu
94	3	10.7	28	11 Q9ESI0	Q9esi0 cryptomys s
95	3	10.7	28	11 Q91XP0	Q91xp0 rattus norv
96	3				
		10.7	28		P70651 mus sp. bet
97	3	10.7	28	11 Q9EP59	Q9ep59 georychus c
98	3	10.7	28	11 Q9ESI1	Q9esil cryptomys d
99	3	10.7	28	11 P97914	P97914 rattus norv
100	3	10.7	28	11 Q9EP61	Q9ep61 heterocepha
101	3	10.7	28	11 Q9ESH8	Q9esh8 bathyergus
102	3	10.7	28	11 Q9ESH9	Q9esh9 bathyergus
103	3	10.7	28	11 Q9QXB4	Q9qxb4 mus musculu
104	3	10.7	28	11 Q9ESI3	Q9esi3 cryptomys h
105	3	10.7	28	12 Q67786	Q67786 human adeno
106	3	10.7			· ·
	3		28		Q83181 cauliflower
107		10.7	28	12 Q68552	Q68552 hepatitis c
108	3	10.7	28	12 Q9WNI4	Q9wni4 tt virus. o
109	3	10.7	28	13 Q9PRE8	Q9pre8 oryzias lat
110	3	10.7	28	13 Q9PRI9	Q9pri9 amia calva
111	3	10.7	28	13 Q9PRN8	Q9prn8 carassius a
112	3	10.7	28	15 071346	071346 human endog
113	3	10.7	28	15 Q9QEY3	Q9qey3 human immun
114	3	10.7	28	16 Q8NVB8	Q8nvb8 staphylococ
	-			~	2

115	3	10.7	28	16	Q8ENT7	Q8ent7 oceanobacil
116	3	10.7	28	16		Q8ck95 yersinia pe
117	3	10.7	29	2	Q9ZGG4	Q9zgg4 heliobacill
118	3	10.7	29	2	Q54200	Q54200 streptomyce
119	3	10.7	29	2	Q9X3E3	Q9x3e3 prochloroco
120	3	10.7	29	2	Q9X3J9	Q9x3j9 prochloroco
121	3	10.7	29	2	Q47650	Q47650 escherichia
122	3	10.7	29	2	Q9AKV1	Q9akv1 neisseria g
123	3	10.7	29	2	Q9R526	Q9r526 vibrio chol
124	3	10.7	29	3	P78747	P78747 saccharomyc
125	3	10.7	29	4	Q9Y3G1	Q9y3gl homo sapien
126	3	10.7	29	4	Q9UN87	Q9un87 homo sapien
127	3	10.7	29	4	Q9H465	Q9h465 homo sapien
128	3	10.7	29	4	Q8NEF6	Q8nef6 homo sapien
129	3 3	10.7	29 29	4 4	Q8TDW8	Q8tdw8 homo sapien Q96ir5 homo sapien
130 131	3	10.7 10.7	29 29	4	Q961R5 Q9UCL2	Q90113 nomo sapien Q9ucl2 homo sapien
132	3	10.7	29	4	Q9BSQ3	Q9bsq3 homo sapien
133	3	10.7	29	5	Q95VB2	Q95vb2 spirometra
134	3	10.7	29	5	Q95NF4	Q95nf4 drosophila
135	3	10.7	29	5	Q8T936	Q8t936 folsomia ca
136	3	10.7	29	6	Q9TRG5	Q9trg5 sus scrofa
137	3	10.7	29	8	Q8WBB9	Q8wbb9 cucurbita f
138	3	10.7	29	8	Q8W7W7	Q8w7w7 cucurbita p
139	3	10.7	29	8	Q9GF70	Q9gf70 trochodendr
140	3	10.7	29	8	Q8W7W4	Q8w7w4 cucurbita a
141	3	10.7	29	8	Q8W7W6	Q8w7w6 cucurbita p
142	3	10.7	29	8	Q8WBC1	Q8wbc1 cucurbita o
143	3	10.7	29	8	Q9B5Z6	Q9b5z6 pseudostylo
144	3	10.7	29	8	Q8W7W5	Q8w7w5 cucurbita p
145	3	10.7	29	8	Q9G370	Q9g370 draco blanf
146	3	10.7	29	8	Q8WBD0	Q8wbd0 cucurbita a Q8wbb6 citrullus l
147 148	3 3	10.7 10.7	29 29	8 8	Q8WBB6	O8w7w9 cucurbita f
149	3	10.7	29	8	Q8W7W9 Q8W7W8	Q8w7w8 cucurbita m
150	3	10.7	29	8	Q8HS21	O8hs21 rheum x cul
151	3	10.7	29		P82196	P82196 spinacia ol
152	3	10.7	29	11	Q9Z2C0	Q9z2c0 mus musculu
153	3	10.7	29	11		Q921z6 mus musculu
154	3	10.7	29	11	Q9Z2C1	Q9z2c1 mus musculu
155	3	10.7	29	11	070564	070564 mus musculu
156	3	10.7	29	11	Q9QY65	Q9qy65 mus musculu
157	3	10.7	29	11	Q62300	Q62300 mus musculu
158	3	10.7	29	11	008980	008980 mus musculu
159	3	10.7	29	11	Q8CGM8	Q8cgm8 mus musculu
160	3	10.7	29	12	Q91HB1	Q91hb1 porcine cir
161	3	10.7	29	12	092646	092646 hepatitis e
162	3	10.7	29	12	Q919A5	Q919a5 porcine rep
163 164	3	10.7	29	12	Q919A7	Q919a7 porcine rep Q86872 cauliflower
164 165	3 3	10.7 10.7	29 29	12 12	Q86872 O92648	092648 hepatitis e
166	3	10.7	29	12	056835	056835 vibrio chol
167	3	10.7	29	13	P82235	P82235 rana tempor
168	3	10.7	29	13	Q8AYR0	Q8ayr0 oryzias lat
169	3	10.7	29	13	Q8AWC2	Q8awc2 gallus gall
170	3	10.7	29	15	072001	072001 human endog
171	3	10.7	29	15	071342	071342 human endog

172	3	10.7	29	15	071339		9 human endog
173	3	10.7	29	15	071347	07134	7 human endog
174	3	10.7	29	15	071340	07134	0 human endog
175	3	10.7	29	15	071343	07134	3 human endog
176	3	10.7	29	15	Q9IQJ8		8 human immun
177	3	10.7	29	15	071991		l human endog
							l human immun
178	3	10.7	29	15	Q9IQJ1		
179	3	10.7	29	15	071994		4 human endog
180	3	10.7	29	15	071341		1 human endog
181	3	10.7	29	15	071345	07134	5 human endog
182	3	10.7	29	15	071336	07133	6 human endog
183	3	10.7	29	15	071344		4 human endog
184	3	10.7	29	15	071338		8 human endog
	3	10.7	29	15	071992		2 human endog
185							_
186	3	10.7	29	15	071337		7 human endog
187	3	10.7	29	15	Q9IQJ9		9 human immun
188	3	10.7	29	15	071997		7 human endog
189	3	10.7	29	15	071335	07133	5 human endog
190	3	10.7	29	16	Q9JZN6	Q9jzn	6 neisseria m
191	3	10.7	29	16	Q8X419	08x41	9 escherichia
192	3	10.7	30	2	Q9L8W9		streptomyce
193	3	10.7	30	2	Q9L8X1		streptomyce
							clostridium
194	3	10.7	30	2	Q9R4Z6		
195	3	10.7	30	2	Q9REI5		acidiphiliu
196	3	10.7	30	2	Q9R4J2		helicobacte
197	3	10.7	30	2	Q8VUW9	Q8vuw9	staphylococ
198	3	10.7	30	2	Q9R4I5	Q9r4i5	mycoplasma
199	3	10.7	30	2	Q9R5Q3	09r5q3	leuconostoc
200	3	10.7	30	2	Q93GF6	_	staphylococ
201	3	10.7	30	2	Q45966	_	coxiella bu
202	3	10.7	30	2	Q9R5C4		comamonas.
203	3	10.7	30	2	Q9R5K3		leptospira
204	3	10.7	30	2	Q9R4I6		mycoplasma
205	3	10.7	30	2	Q9RER6		enterobacte
206	3	10.7	30	3	Q8TGM3	Q8tgm3	saccharomyc
207	3	10.7	30	3	Q9URB0	Q9urb0	candida alb
208	3	10.7	30	4	Q16330	Q16330	homo sapien
209	3	10.7	30	4	095595		homo sapien
210	3	10.7	30	4	P78460		homo sapien
211	3	10.7	30	4	Q8N563		homo sapien
							homo sapien
212	3	10.7	30	4	Q9UBV5		_
213	3	10.7	30	4	P78542		homo sapien
214	3	10.7	30	4	Q81U66		homo sapien
215	3	10.7	30	5	Q8SZJ6	-	drosophila
216	3	10.7	30	5	Q9TWH7	Q9twh7	ancylostoma
217	3	10.7	30	5	P82214	P82214	bombyx mori
218	3	10.7	30	6	Q9TTF9	O9ttf9	ateles belz
219	3	10.7	30	8	Q8W7L1		cucurbita m
220	3	10.7	30	8	Q8W7K9		cucurbita p
	3	10.7	30		Q8W7H8		cucurbita a
221				8			
222	3	10.7	30	8	Q8WBC2		cucurbita o
223	3	10.7	30	8	Q8W7K8		cucurbita p
224	3	10.7	30	8	Q8W7H6		cucurbita m
225	3	10.7	30	8	Q8WBC4		cucurbita p
226	3	10.7	30 .	8	Q8W7L2	Q8w712	cucurbita a
227	3	10.7	30	8	Q8WBC6	Q8wbc6	cucurbita a
228	3	10.7	30	8	Q8WBB7	O8wbb7	sechium edu
-		*	-			~	

229	3	10.7	30 8	3 Q99328	Q99328 meloidogyne
230	3	10.7			
				8 Q8W7H7	Q8w7h7 cucurbita e
231	3	10.7		3 Q8WBC0	Q8wbc0 cucurbita f
232	3	10.7		3 Q9T2T8	Q9t2t8 bos taurus
233	3	10.7		3 Q8W7L0	Q8w710 cucurbita p
234	3	10.7		3 Q8HKG1	Q8hkg1 rhipicephal
235	3	10.7	30	9 Q8W674	Q8w674 enterobacte
236	3	10.7	30	10 023933	O23933 flaveria tr
237	3	10.7	30	10 Q8RUD1	Q8rud1 zea mays (m
238	3	10.7		10 Q93WY2	Q93wy2 oryza sativ
239	3	10.7		11 Q63885	Q63885 mus sp. cys
240	3	10.7		11 088549	O88549 mesocricetu
241	3	10.7		11 Q8VDL1	Q8vdl1 mus musculu
	3	10.7			
242				11 Q9QV18	Q9qv18 rattus sp.
243	3	10.7		11 Q9QV14	Q9qv14 mus sp. col
244	3	10.7		11 Q9QV19	Q9qv19 rattus sp.
245	3	10.7		11 Q10753	Q10753 rattus norv
246	3	10.7	30	11 Q8BR32	Q8br32 mus musculu
247	3	10.7	30	12 Q91HB7	Q91hb7 tt virus. o
248	3	10.7	30	12 Q91HC4	Q91hc4 tt virus. o
249	3	10.7	30	12 Q9IJV5	Q9ijv5 norwalk vir
250	3	10.7	30	12 Q86870	Q86870 cauliflower
251	3	10.7		12 Q91HC3	Q91hc3 tt virus. o
252	3	10.7		12 Q9WLK3	Q9wlk3 hepatitis e
253	3	10.7		12 Q91HC0	Q91hc0 tt virus. o
254	3	10.7			042551 brachydanio
255	3	10.7		13 Q9PRW0	Q9prw0 struthio ca
256	3	10.7		13 Q9PT00	Q9pt00 oncorhynchu
257	3	10.7		15 Q86599	Q86599 human endog
258	3	10.7		15 Q991P5	Q991p5 human immun
259	3	10.7		16 050822	O50822 borrelia bu
260	3	10.7	30	16 Q9X0W9	Q9x0w9 thermotoga
261	3	10.7	30	16 Q9PP53	Q9pp53 campylobact
262	3	10.7	30	16 Q9KU55	Q9ku55 vibrio chol
263	. 3	10.7	30	16 Q9JWF4	Q9jwf4 neisseria m
264	3	10.7	30	16 Q97SX5	Q97sx5 streptococc
265	3	10.7		16 Q9K1W7	Q9k1w7 chlamydia p
266	3	10.7		16 Q8U566	Q8u566 agrobacteri
267	3	10.7		16 Q8KE55	Q8ke55 chlorobium
268	3	10.7		16 Q93RS7	Q93rs7 streptomyce
269	3	10.7		16 Q8G1R1	
					Q8g1r1 brucella su
270	3	10.7		16 Q8DZP7	Q8dzp7 streptococc
271	3	10.7		16 Q8CU88	Q8cu88 staphylococ
272	3	10.7		17 Q8ZZF0	Q8zzf0 pyrobaculum
273	3	10.7		17 Q8ZVL0	Q8zvl0 pyrobaculum
274	3	10.7		2 Q9S619	Q9s619 prochloroco
275	3	10.7		2 Q8KYK0	Q8kyk0 bacillus an
276	3	10.7	31	2 Q9X3C3	Q9x3c3 prochloroco
277	3	10.7	31	2 068825	068825 pseudomonas
278	3	10.7		2 Q93GF7	Q93gf7 staphylococ
279	3	10.7		2 Q ̃4 7323	Q47323 escherichia
280	3	10.7		2 Q9RHF9	Q9rhf9 acinetobact
281	3	10.7		2 Q9R4X1	Q9r4x1 treponema d
282	3	10.7		2 Q8KYI9	Q8kyi9 bacillus an
283	3	10.7		2 Q8RTS5	Q8rts5 uncultured
	3				Q813d3 colwellia m
284		10.7			
285	3	10.7	31	3 094120	094120 saccharomyc

286	3	10.7	31 4	Q96A45	Q96a45 homo sapien
287	3	10.7	31 4	Q9UHM9	Q9uhm9 homo sapien
288	3	10.7	31 4	Q9UEA9	Q9uea9 homo sapien
289	3	10.7	31 4	Q8N5X3	Q8n5x3 homo sapien
290	3	10.7	31 4	Q9BXM4	Q9bxm4 homo sapien
291	3	10.7	31 4	Q9UDE5	Q9ude5 homo sapien
292	3	10.7	31 5	Q81QV3	Q8iqv3 drosophila
293	3	10.7	31 5	Q8IEY3	Q8iey3 trypanosoma
	3	10.7	31 6	Q8MI94	Q8mi94 tupaia tana
294					
295	3	10.7	31 6	Q9GLD6	Q9gld6 sus scrofa
296	3	10.7	31 6	Q8MIH5	Q8mih5 canis famil
297	3	10.7	31 6	077625	077625 bos taurus
298	3	10.7	31 6	Q8MIC3	Q8mic3 ochotona pr
299	3	10.7	31 6	Q95LC0	Q951c0 sus scrofa
300	3	10.7	31 6	Q9N1C8	Q9n1c8 ovis aries
301	3	10.7	31 6	Q8MIC9	Q8mic9 nycticebus
302	3	10.7	31 6	Q9GKL4	Q9gkl4 canis famil
303	3	10.7	31 6	Q8MIG4	Q8mig4 cynocephalu
304	3	10.7	31 7	Q29868	Q29868 homo sapien
305	3	10.7	31 8	Q9MNM2	Q9mnm2 bufo americ
306	3	10.7	31 8	Q9MS59	Q9ms59 euglena san
307	3	10.7	31 8	080011	080011 enallagma a
308	3	10.7	31 8	Q9MS62	Q9ms62 euglena myx
309	3	10.7	31 8	Q34922	Q34922 limulus pol
310	3	10.7	31 8	Q8WEJ4	Q8wej4 gnetum gnem
311	3	10.7	31 8	Q9MS74	Q9ms74 euglena ana
312	3	10.7	31 8	Q9MS68	Q9ms68 euglena des
313	3	10.7	31 8	Q8M9Y3	Q8m9y3 chaetosphae
			31 8		Q9ms53 euglena vir
314	3	10.7		Q9MS53	
315	3	10.7	31 8	Q9MNL2	Q9mn12 torrentophr
316	3	10.7	31 8	Q9MS56	Q9ms56 euglena ste
317	3	10.7	31 8	Q9MS78	Q9ms78 phacus acum
318	3	10.7	31 8	Q9MNL3	Q9mn13 torrentophr
319	3	10.7	31 9	Q38499	Q38499 bacteriopha
320	3	10.7	31 10		Q9xit0 glycine max
321	3	10.7	31 10	~	Q81kb4 musa acumin
322	3	10.7	31 11		Q8k1w2 cavia porce
323	3	10.7	31 11		Q9qxb6 mus musculu
324	3	10.7	31 11	1 Q99KK6	Q99kk6 mus musculu
325	3	10.7	31 11	1 Q8K1P4	Q8k1p4 sciurus vul
326	3	10.7	31 11	1 Q8CGM7	Q8cgm7 mus musculu
327	3	10.7	31 12	2 Q919E5	Q919e5 human papil
328	3	10.7	31 12	2 Q919E4	Q919e4 human papil
329	3	10.7	31 12	2 056713	056713 hepatitis c
330	3	10.7	31 12	2 Q919F7	Q919f7 human papil
331	3	10.7	31 12		Q919e6 human papil
332	3	10.7	31 12		056692 hepatitis c
333	3	10.7	31 12		Q919f3 human papil
334	3	10.7	31 12		O56707 hepatitis c
335	3	10.7	31 12		O56687 hepatitis c
336	3	10.7	31 12		Q919f8 human papil
337	3	10.7	31 12		O56691 hepatitis c
338	3	10.7	31 12		Q919el human papil
339	3	10.7	31 12		O56701 hepatitis c
	3	10.7			O56694 hepatitis c
340					
341	3 3	10.7	31 12		Q919d9 human papil
342	3	10.7	31 12	2 Q919F6	Q919f6 human papil

343	3	10.7	31	12	Q919 E 3	Q919e3	human papil
344	3	10.7	31	12	056712	056712	hepatit i s c
345	3	10.7	31	12	Q919E8	Q919e8	human papil
346	3	10.7	31	12	056710	056710	hepatitis c
347	3	10.7	31	12	056688	056688	hepatitis c
348	3	10.7	31	12	056696		hepatitis c
349	3	10.7	31	12	056695		hepatitis c
350	3	10.7	31	12	056698		hepatitis c
351	3	10.7	31	12	056702		hepatitis c
352	3	10.7	31	12	056703		hepatitis c
353	3	10.7	31	12	056697		hepatitis c
354	3	10.7	31	12	Q919F0		human papil
355	3	10.7	31	12	056709		hepatitis c
356	3	10.7	31	12	Q919F4		human papil
		10.7	31	12	056689		hepatitis c
357	3						human papil
358	3	10.7	31	12	Q919F2		
359	3	10.7	31	12	Q919F1		human papil
360	3	10.7	31	12	056711		hepatitis c
361	3	10.7	31	12	Q919E2		human papil
362	3	10.7	31	12	Q919D8		human papil
363	3	10.7	31	12	056686		hepatitis c
364	3	10.7	31	12	Q9WMX5		human echov
365	3	10.7	31	12	056690		hepatitis c
366	3	10.7	31	12	Q919E9	Q919e9	human papil
367	3	10.7	31	12	056706	056706	hepatitis c
368	3	10.7	31	12	056700	056700	hepatitis c
369	3	10.7	31	12	056704	056704	hepatitis c
370	3	10.7	31	12	Q919D7	Q919d7	human papil
371	3	10.7	31	12	Q919F5	Q919f5	human papil
372	3	10.7	31	12	O56693		hepatitis c
373	3	10.7	31	12	056685		hepatitis c
374	3	10.7	31	12	056708		hepatitis c
375	3	10.7	31	12	Q919E0		human papil
376	3	10.7	31	12	056705		hepatitis c
377	3	10.7	31	12	Q919E7		human papil
378	3	10.7	31	12	Q914M9		sulfolobus
379	3	10.7	31	12	056699		hepatitis c
	3		31	13			brachydanio
380		10.7			042540		-
381	3	10.7	31	13	Q91763		xenopus lae
382	3	10.7	31	13	Q9PSU1		xenopus lae
383	3	10.7	31	13	Q91816		xenopus lae
384	3	10.7	31	15	Q83937		ovine lenti
385	3	10.7	31	16	025108		helicobacte
386	3	10.7	31	16	050669		borrelia bu
387	3	10.7	31	16	050709		borrelia bu
388	3	10.7	31	16	050858		borrelia bu
389	3	10.7	31	16	051007		borrelia bu
390	3	10.7	31	16	Q9PGF2		2 xylella fas
391	3	10.7	31	16	Q9PAW4	-	xylella fas
392	3	10.7	31	16	Q97SZ9	Q97sz9	streptococc
393	3	10.7	31	16	Q97SW8	Q97sw8	streptococc
394	3	10.7	31	16	Q97QJ4	Q97qj4	streptococc
395	3	10.7	31	16	Q97QB7		streptococc
396	3	10.7	31	16	Q97CV6		streptococc
397	3	10.7	31	16	Q9K2A0		chlamydia p
398	3	10.7	31	16	Q9K236		chlamydia p
399	3	10.7	31	16	Q8P9W1		xanthomonas
222	_	,	J-		~ · · ·	₹-trs	- · · · · · · · · · · · · · · · · · · ·

400	3	10.7	31	16	Q8KEV8	Q8kev8 chlorobium
401	3	10.7	31	16	Q8KCQ0	Q8kcq0 chlorobium
402	3	10.7	31	16	Q8KBJ8	Q8kbj8 chlorobium
403	3	10.7	31	16	Q8EIW8	Q8eiw8 shewanella
						=
404	3	10.7	31	16	Q8EI77	Q8ei77 shewanella
405	3	10.7	31	16	Q8E9Y5	Q8e9y5 shewanella
406	3	10.7	31	16	Q8E8G1	Q8e8g1 shewanella
407	3	10.7	31	16	Q8CTA2	Q8cta2 staphylococ
408	3	10.7	32	2	Q9AJ41	Q9aj41 buchnera ap
409	3	10.7	32	2	Q00491	Q00491 streptomyce
410	3	10.7	32	2	Q49249	Q49249 mycoplasma
411	3	10.7	32	2	Q44499	Q44499 anabaena va
412	3	10.7	32	2	Q9S629	Q9s629 prochloroco
413	3	10.7	32	2	Q8KYN3	Q8kyn3 bacillus an
414	3	10.7	32	2	Q44509	Q44509 azotobacter
41 5	3	10.7	32	2	Q45534	Q45534 bacillus su
416	3	10.7	32	2	Q8VN21	Q8vn21 kluyvera ci
417	3	10.7	32	2	Q9R5Q7	Q9r5q7 aeromonas h
418		10.7	32	2		Q8kym4 bacillus an
	3				Q8KYM4	=
419	3	10.7	32	2	032493	032493 bacteroides
420	3	10.7	32	2	Q8VNT6	Q8vnt6 enterobacte
421	3	10.7	32	2	Q8GF58	Q8gf58 zymomonas m
422	3	10.7	32	3	Q01058	Q01058 kluyveromyc
423	3	10.7	32	3	Q8TGT3	Q8tgt3 saccharomyc
424	3	10.7	32	4	Q12900	Q12900 homo sapien
425	3	10.7	32	4	Q8TC25	Q8tc25 homo sapien
426	3	10.7	32	4	Q96GM7	Q96gm7 homo sapien
427	3	10.7	32	4	Q9HAX8	Q9hax8 homo sapien
428	3	10.7	32	4	Q8TBQ3	Q8tbq3 homo sapien
429	3	10.7	32	4	Q96I20	Q96i20 homo sapien
430	3	10.7	32	4	Q9UN69	Q9un69 homo sapien
431	3	10.7	32	4	Q9UQV1	Q9uqv1 homo sapien
432	3	10.7	32	5	Q9GPD9	Q9gpd9 drosophila
433	3	10.7	32	5	Q8T382	Q8t382 leishmania
434	3	10.7	32	5	096634	096634 trypanosoma
435	3	10.7	32	5	Q9TWR8	Q9twr8 procambarus
436	3	10.7	32	5	018606	018606 branchiosto
437	3	10.7	32	5	Q8T757	Q8t757 branchiosto
438	3	10.7	32	6	Q9TR67	Q9tr67 sus scrofa
439	3	10.7	32	6	Q8MJ91	Q8mj91 macaca mula
440	3	10.7	32	7	Q8SNF1	Q8snf1 gallinago m
441	3	10.7	32	7	019722	O19722 homo sapien
442	3	10.7	32	8	Q36494	Q36494 farfantepen
443	3	10.7	32			Q8s189 euglena ste
				8	Q8SL89	
444	3	10.7	32	8	Q9GF95	Q9gf95 cercidiphyl
445	3	10.7	32	8	Q31736	Q31736 beta vulgar
446	3	10.7	32	8	Q8 <i>S</i> L87	Q8s187 euglena vir
447	3	10.7	32	8	Q31735	Q31735 beta vulgar
448	3	10.7	32	8	Q9MNM0	Q9mnm0 bufo andrew
449	3	10.7	32	8	Q9MNL0	Q9mnl0 bufo danate
450	3	10.7	32	8	Q951Q4	Q951q4 renilla ren
451	3	10.7	32		Q9GF72	Q9gf72 saururus ce
				8		-
452	3	10.7	32	9	Q9MBU5	Q9mbu5 chlamydia p
453	3	10.7	32	10	Q8RXQ5	Q8rxq5 arabidopsis
454	3	10.7	32	10	Q40727	Q40727 oryza sativ
455	3	10.7	32	11	Q9JIU1	Q9jiul rattus norv
456	3	10.7	32	11	Q9R0E3	Q9r0e3 mus musculu

457	3	10.7	32 11	Q9QWM2	Q9qwm2 mus musculu
458	3	10.7	32 11	Q9QWB2	Q9qwb2 rattus sp.
459	3	10.7	32 11	Q8C2N8	Q8c2n8 mus musculu
460	3	10.7	32 11	Q8BS12	Q8bs12 mus musculu
461	3	10.7	32 12	Q9WNI5	Q9wni5 tt virus. o
462	3	10.7	32 12	Q914F9	Q914f9 sulfolobus
463	3	10.7	32 12	Q8QYT4	Q8qyt4 grapevine v
464	3	10.7	32 12	Q8QYT7	Q8qyt7 grapevine v
465	3	10.7	32 12	Q8QYU0	Q8qyu0 grapevine v
466	3	10.7	32 12	Q9Q934	Q9q934 shope fibro
467	3	10.7	32 13	Q8QG73	Q8qg73 oncorhynchu
468	3	10.7	32 13	Q8QG72	Q8qg72 salmo salar
469	3	10.7	32 13	Q8QG71	Q8qg71 oncorhynchu
470	3	10.7	32 13	Q9PS21	Q9ps21 carassius a
471	3	10.7	32 13	Q8QG84	Q8qg84 oncorhynchu
472	3	10.7	32 13	Q8QG83	Q8qg83 oncorhynchu
473	3	10.7	32 13	Q8QG82	Q8qg82 oncorhynchu
474	3	10.7	32 13	Q8QG70	Q8qg70 salvelinus
475	3	10.7	32 13	P82780	P82780 rana catesb
476	3	10.7	32 13	Q9W7P3	Q9w7p3 morone saxa
477	3	10.7	32 13	Q9W7P2	Q9w7p2 morone saxa
478	3	10.7	32 16	050706	050706 borrelia bu
479	3	10.7	32 16	050851	O50851 borrelia bu
480	3	10.7	32 16	051003	O51003 borrelia bu
481	3	10.7	32 16	Q9PGT0	Q9pgt0 xylella fas
482	3	10.7	32 16	Q9KPN9	Q9kpn9 vibrio chol
483	3	10.7	32 16	Q9KLF0	Q9klf0 vibrio chol
484	3	10.7	32 16	Q9K7B0	Q9k7b0 bacillus ha
485	3	10.7	32 16	Q9A2H0	Q9a2h0 caulobacter
486	3	10.7	32 16	Q98AB6	Q98ab6 rhizobium 1
487	3	10.7	32 16	Q8X3V6	Q8x3v6 escherichia
488	3	10.7	32 16	Q8KG49	Q8kg49 chlorobium
489	3	10.7	32 16	Q8KEZ9	Q8kez9 chlorobium
490	3	10.7	32 16	Q8KCV3	Q8kcv3 chlorobium
491	3	10.7	32 16	Q9K4G0	Q9k4g0 streptomyce
492	3	10.7	32 16	Q8EAD5	Q8ead5 shewanella
493	3	10.7	32 16	Q8CU60	Q8cu60 staphylococ
494	3	10.7	32 16	Q8CTR7	Q8ctr7 staphylococ
495	3	10.7	32 16	Q8CRE7	Q8cre7 staphylococ
496	3	10.7	32 17	Q8ZZF7	Q8zzf7 pyrobaculum Q9uwl4 methanopyru
497 498	3 3	10.7 10.7		Q9UWL4 Q8KH96	Q8kh96 pseudomonas
499	3	10.7		29S624	Q9s624 prochloroco
500	3	10.7		2982M3	Q9r2m3 prochloroco
501	3	10.7		29X2M5 29X3M5	Q9x3m5 prochloroco
502	3	10.7		2985M3 298651	Q9s651 streptococc
503	3	10.7		2953N5	Q98305 bacillus ce
504	3	10.7		28KQ80	Q8kg80 vibrio chol
505	3	10.7		20KQ00 29S622	Q9s622 prochloroco
506	3	10.7		295022 29F1F4	Q9f1f4 enterococcu
507	3	10.7		29KI23	Q9ki23 helicobacte
508	3	10.7		Q8GQU2	Q8gqu2 leptospira
509	3	10.7		Q8TGR1	Q8tgrl saccharomyc
510	3	10.7		299950	Q99950 homo sapien
511	3	10.7		29UP36	Q9up36 homo sapien
512	3	10.7		215285	Q15285 homo sapien
513	3	10.7		29UDI1	Q9udil homo sapien
					-

E 1 4	2	10 7	2.2		0071770	OOmito hama conion
514	3	10.7	33	4	Q9P1T8	Q9plt8 homo sapien
515	3	10.7	33	4	Q9BV16	Q9bv16 homo sapien
516	3	10.7	33	4	Q92668	Q92668 homo sapien
517	3	10.7	33	5	Q9GTB2	Q9gtb2 eimeria ten
518	3	10.7	33	5	Q9GT93	Q9gt93 cryptospori
519	3	10.7	33	5	Q26673	Q26673 tethya aura
520	3	10.7	33	5	Q26672	Q26672 tethya aura
521	3	10.7	33	5	Q9GTC2	Q9gtc2 plasmodium
522	3	10.7	33	5	Q27637	Q27637 drosophila
523	3	10.7	33	5		
					Q9GTB3	Q9gtb3 eimeria ten
524	3	10.7	33	5	Q9GTA6	Q9gta6 sarcocystis
525	3	10.7	33	5	Q9GTA1	Q9gtal babesia bov
526	3	10.7	33	5	Q17293	Q17293 cancer ante
527	3	10.7	33	5	Q95SD4	Q95sd4 drosophila
528	3	10.7	33	5	Q27310	Q27310 paramecium
529	3	10.7	33	5	Q9GTA9	Q9gta9 sarcocystis
530	3	10.7	33	5	017147	017147 echinococcu
531	3	10.7	33	5	Q9GT95	Q9gt95 cryptospori
532	3	10.7	33	5	Q9GTA2	Q9qta2 babesia bov
533	3	10.7	33	6	Q28788	Q28788 papio hamad
534	3	10.7	33	6	018916	018916 sus scrofa
				6		
535	3	10.7	33		Q9TSX7	Q9tsx7 sus scrofa
536	3	10.7	33	7	Q8MGU2	Q8mgu2 bos taurus
537	3	10.7	33	7	Q8SNF0	Q8snf0 gallinago m
538	3	10.7	33	8	Q9BAC6	Q9bac6 euglena gra
539	3	10.7	33	8	Q8W9G0	Q8w9g0 meloidogyne
540	3	10.7	33	8	Q9BAC1	Q9bac1 euglena ste
5 41	3	10.7	33	8	Q9XNP3	Q9xnp3 boophilus m
542	3	10.7	33	8	078857	078857 phytophthor
543	3	10.7	33	8	Q9T2N1	Q9t2n1 nicotiana t
544	3	10.7	33	8	Q9BAC4	Q9bac4 euglena mut
545	3	10.7	33	8	Q8WEJ5	Q8wej5 ginkgo bilo
546	3	10.7	33	8	Q8HUH3	Q8huh3 chlamydomon
	3					
547		10.7	33	8	Q8HS33	Q8hs33 hydrastis c
548	3	10.7	33	9	Q38588	Q38588 bacteriopha
549	3	10.7	33	9	Q38551	Q38551 bacteriopha
550	3	10.7	33	10	O49775	049775 arabidopsis
551	3	10.7	33	10	Q9S8V5	Q9s8v5 zea mays (m
552	3	10.7	33	10	Q9AYQ5	Q9ayq5 cucumis sat
553	3	10.7	33	11	Q9QVM2	Q9qvm2 mus sp. glu
554	3	10.7	33	12	072982	072982 hepatitis c
555	3	10.7	33	12	073068	073068 hepatitis c
556	3	10.7	33	12	Q90085	Q90085 human papil
557	3	10.7	33	12		072979 hepatitis c
558	3	10.7	33	12	Q91J04	Q91j04 tt virus. o
559	3	10.7	33	12	072996	072996 hepatitis c
560	3	10.7	33	12	Q91J14	<u>-</u>
						Q91j14 tt virus. o
561	3	10.7	33	12	072988	072988 hepatitis c
562	3	10.7	33	12	072992	072992 hepatitis c
563	3	10.7	33	12	Q91J12	Q91j12 tt virus. o
564	3	10.7	33	12	Q91J15	Q91j15 tt virus. o
565	3	10.7	33	12	Q91J07	Q91j07 tt virus. o
566	3	10.7	33	12	072995	072995 hepatitis c
567	3	10.7	33	12	Q91J09	Q91j09 tt virus. o
568	3	10.7	33	12	072990	072990 hepatitis c
569	3	10.7	33	12	073010	073010 hepatitis c
570	3	10.7	33	12	Q86912	Q86912 hepatitis c
- · -	-				~	C

571	3	10.7	33	12	Q8V5G7	Q8v5g7	hepatitis c
572	3	10.7	33	12	072981	072981	hepatitis c
573	3	10.7	33	12	Q91J08	091i08	tt virus. o
574	3	10.7	33	12	072997	_	hepatitis c
							hepatitis c
575	3	10.7	33	12	073008		-
576	3	10.7	33	12	Q83963		avian influ
577	3	10.7	33	12	072986	072986	hepatitis c
578	3	10.7	33	12	072993	072993	hepatitis c
579	3	10.7	33	12	Q91J06	091i06	tt virus. o
580	3	10.7	33	12	072984	_	hepatitis c
				12	073005		hepatitis c
581	3	10.7	33				_
582	3	10.7	33	12	073067		hepatitis c
583	3	10.7	33	12	072985		hepatitis c
584	3	10.7	33	12	072999	072999	hepatitis c
585	3	10.7	33	12	Q91J16	Q91j16	tt virus. o
586	3	10.7	33	12	072998	072998	hepatitis c
587	3	10.7	33	12	Q91J11		tt virus. o
						_	
588	3	10.7	33	12	072994		hepatitis c
589	3	10.7	33	12	Q8V5H0		hepatitis c
590	3	10.7	33	12	Q91J13	Q91j13	tt virus. o
591	3	10.7	33	12	Q8V5G8	Q8v5g8	hepatitis c
592	3	10.7	33	12	072983	072983	hepatitis c
593	3	10.7	33	12	073007		hepatitis c
	3	10.7	33	12	Q91J10		tt virus. o
594						-	
595	3	10.7	33	12	072987		hepatitis c
596	3	10.7	33	12	Q91J 1 7	-	tt virus. o
597	3	10.7	33	12	Q69461		human herpe
598	3	10.7	33	12	Q8V5G9	Q8v5g9	hepatitis c
599	3	10.7	33	12	072978	072978	hepatitis c
600	3	10.7	33	12	073009		hepatitis c
601	3	10.7	33	.12	073004		hepatitis c
							_
602	3	10.7	33	12	Q99138		avian influ
603	3	10.7	33	13	P82740		rana tempor
604	3	10.7	33	13	P82236		rana tempor
605	3	10.7	33	15	Q9DZ98	Q9dz98	human immun
606	3	10.7	33	15	Q86107	Q86107	simian sarc
607	3	10.7	33	16	Q9PA23		xylella fas
608	3	10.7	33	16	Q9KQP4		vibrio chol
							vibrio chol
609	3	10.7	33	16	Q9KML1		
610	3	10.7	33	16			streptococc
611	3	10.7	33	16	Q97PC1		streptococc
612	3	10.7	33	16	Q932N2	Q932n2	staphylococ
613	3	10.7	33	16	Q8U5M4	Q8u5m4	agrobacteri
614	3	10.7	33	16	Q8VK01	08vk01	mycobacteri
615	3	10.7	33	16	Q8NUL1		staphylococ
616	3		33	16			corynebacte
		10.7			Q8NT95		
617	3	10.7	33	16	Q8NLP2		corynebacte
618	3	10.7	33	16	Q8KG99		chlorobium
619	3	10.7	33	16	Q8KBZ0		chlorobium
620	3	10.7	33	16	Q8G0U8	Q8g0u8	brucella su
621	3	10.7	33	16	Q8FYR6	Q8fyr6	brucella su
622	3	10.7	33	16	Q8FY86	-	brucella su
623	3	10.7	33	16	Q8FSG0	_	corynebacte
624	3	10.7	33	16	Q8EJH6		shewanella
625	3	10.7	33	16	Q8EGA9		shewanella
626	3	10.7	33	16	Q8EE59		shewanella
627	3	10.7	33	16	Q8EE42	Q8ee42	shewanella

628	3	10.7	33	16	Q8E8W4	Q8e8w4 shewanella
629	3	10.7	33	16	Q8E1Y5	Q8ely5 streptococc
630	3	10.7	33	16	Q8CTR8	Q8ctr8 staphylococ
						· · · · · · · · · · · · · · · · · · ·
631	3	10.7	33	16	Q8CQY7	Q8cqy7 staphylococ
632	3	10.7	33	17	Q9HSX6	Q9hsx6 halobacteri
633	3	10.7	33	17	Q8U2X8	Q8u2x8 pyrococcus
634	3	10.7	34	2	Q54427	Q54427 spiroplasma
63 5	3	10.7	34	2	Q9X3L6	Q9x316 prochloroco
636	3	10.7	34	2	Q9R5U1	Q9r5ul campylobact
						· · · · · · · · · · · · · · · · · · ·
637	3	10.7	34	2	Q44208	Q44208 pseudomonas
638	3	10.7	34	2	Q9X7J6	Q9x7j6 pseudomonas
639	3	10.7	34	2	Q8KYH2	Q8kyh2 bacillus an
640	3	10.7	34	2	031061	031061 butyrivibri
641	3	10.7	34	2	Q9R8A2	Q9r8a2 chlamydia t
642	3	10.7	34	2	Q9RZW6	Q9rzw6 borrelia bu
643	3	10.7	34	2	Q8GJC8	Q8gjc8 campylobact
				2		
644	3	10.7	34		Q8GFK2	Q8gfk2 staphylococ
645	3	10.7	34	2	Q8G8C9	Q8g8c9 pseudomonas
646	3	10.7	34	3	Q00377	Q00377 coccidioide
647	3	10.7	34	4	Q99910	Q99910 homo sapien
648	3	10.7	34	4	Q9H3R8	Q9h3r8 homo sapien
649	3	10.7	34	4	Q9UI64	Q9ui64 homo sapien
650	3	10.7	34	4	Q8WY57	Q8wy57 homo sapien
651	3	10.7	34	4	Q8WW51	Q8ww51 homo sapien
652	3	10.7	34	4	Q9BSP7	Q9bsp7 homo sapien
653	3	10.7	34	4	Q9H4L8	Q9h4l8 homo sapien
654	3	10.7	34	4	Q8NEQ3	Q8neq3 homo sapien
655	3	10.7	34	4	Q15251	Q15251 homo sapien
656	3	10.7	34	4	Q9NQY9	Q9nqy9 homo sapien
657	3	10.7	34	5	Q9BIP7	Q9bip7 cooperia pu
658	3	10.7	34	5	Q27821	Q27821 trichomonas
659	3	10.7	34	5	Q9GQE5	Q9gqe5 branchiosto
660	3	10.7	34	6	Q9TS91	Q9ts91 oryctolagus
661	3	10.7	34	6	P79429	P79429 capra hircu
662	3	10.7	34	6	Q9TRI2	Q9tri2 sus scrofa
663	3	10.7	34	6	P82908	P82908 bos taurus
664	3	10.7	34	8	079025	079025 enallagma v
665	3	10.7	34	8	Q9T2T7	Q9t2t7 bos taurus
						17
666	3	10.7	34	8	Q8MCA2	Q8mca2 phaseolus a
667	3	10.7	34	8	Q8HKE1	Q8hkel rhipicephal
668	3	10.7	34	10	Q8W2H0	Q8w2h0 paspalum no
669	3	10.7	34	10	Q8VWL0	Q8vwl0 paspalum no
670	3	10.7	34	10	Q9SCA3	Q9sca3 lycopersico
671	3	10.7	34	11		Q923z1 mus musculu
672	3	10.7	34	11		Q8r557 mus musculu
						The state of the s
673	3	10.7	34	11		Q9et72 mus musculu
674	3	10.7	34	11	Q99KX7	Q99kx7 mus musculu
675	3	10.7	34	11	Q8VHL4	Q8vhl4 rattus norv
676	3	10.7	34	13	042521	042521 scyliorhinu
677	3	10.7	34	13	013101	013101 ambystoma m
678	3	10.7	34	13		Q8qgg2 oncorhynchu
679	3	10.7	34	13		Q8qfm9 oncorhynchu
				13		
680	3	10.7	34			042526 scyliorhinu
681	3	10.7	34	13		Q9pre7 oryzias lat
682	3	10.7	34	13		Q8qgg1 oncorhynchu
683	3	10.7	34	13		Q8qgf7 oncorhynchu
684	3	10.7	34	13	Q98TM8	Q98tm8 platichthys

685	3	10.7	34 1	.5 040445	040445 human immun
686	3	10.7	34 1	.5 Q9WR32	Q9wr32 human immun
687	3	10.7	34 1	.5 Q9W8Y1	Q9w8y1 chimpanzee
688	3	10.7	34 1	.6 050812	O50812 borrelia bu
689	3	10.7	34 1	.6 050877	O50877 borrelia bu
690	3	10.7	34 1	.6 Q9PGH3	Q9pgh3 xylella fas
691	3	10.7	34 1	.6 Q9PGF8	Q9pgf8 xylella fas
692	3	10.7		.6 Q9PDD0	Q9pdd0 xylella fas
693	3	10.7		.6 Q9KRA8	Q9kra8 vibrio chol
694	3	10.7		.6 Q9KPW9	Q9kpw9 vibrio chol
695	3	10.7		.6 Q9KM63	Q9km63 vibrio chol
696	3	10.7		.6 Q9K7C6	Q9k7c6 bacillus ha
697	3	10.7		.6 Q9JY24	Q9jy24 neisseria m
698	3	10.7		.6 Q9JVP3	Q9jvp3 neisseria m
699	3	10.7		.6 Q9JUR9	Q9jur9 neisseria m
700	3	10.7		.6 Q97SF7	Q97sf7 streptococc
701	3	10.7		6 Q97PI6	Q97pi6 streptococc
702	3	10.7		.6 Q9K2B9	Q9k2b9 chlamydia p
703	3	10.7		L6 Q8X4V1	Q8x4v1 escherichia
704	3	10.7		L6 Q8U5V2	Q8u5v2 agrobacteri
705	3	10.7		L6 Q8VIY1	Q8viy1 mycobacteri Q8ric7 fusobacteri
706 707	3 3	10.7		L6 Q8RIC7 L6 Q8NWX3	Q81167 Idsobacteri Q8nwx3 staphylococ
707	3 3	10.7		~	Q8nv10 staphylococ
708 709	3	10.7 10.7		L6 Q8NV10 L6 Q8KEQ8	Q8hv10 scaphy10c0c Q8keq8 chlorobium
709	3	10.7		L6 Q8KEQ8 L6 Q8KEL5	Q8kel5 chlorobium
710	3	10.7		L6 Q8KDE4	Q8kde4 chlorobium
711	3	10.7		L6 Q8F830	Q8f830 leptospira
712	3	10.7		L6 Q8F827	Q8f827 leptospira
713	3	10.7		L6 Q8F5Y7	Q8f5y7 leptospira
715	3	10.7		L6 Q8F0V9	Q8f0v9 leptospira
716	3	10.7		L6 Q8EZR6	Q8ezr6 leptospira
717	3	10.7		L6 Q8EZ37	Q8ez37 leptospira
718	3	10.7		L6 Q8EYG6	Q8eyg6 leptospira
719	3	10.7		L6 Q8EXH6	Q8exh6 leptospira
720	3	10.7		L6 Q8EXA8	Q8exa8 leptospira
721	3	10.7		L6 Q8EJ65	Q8ej65 shewanella
722	3	10.7		L6 Q8EI45	Q8ei45 shewanella
723	3	10.7	34	L6 Q8EHU5	Q8ehu5 shewanella
724	3	10.7	34	16 Q8E8Y3	Q8e8y3 shewanella
725	3	10.7	34	16 Q8E8W3	Q8e8w3 shewanella
726	3	10.7	34	l6 Q8E173	Q8e173 streptococc
727	3	10.7	34	l6 Q8CRY3	Q8cry3 staphylococ
728	3	10.7		l7 Q8U1I1	Q8ulil pyrococcus
729	3	10.7		2 Q9R624	Q9r624 bacillus su
730	3	10.7		2 Q9JPG9	Q9jpg9 neisseria m
731	3	10.7		2 Q9R625	Q9r625 bacillus su
732	3	10.7		2 Q9X3D6	Q9x3d6 prochloroco
733	3	10.7		2 Q9R5I3	Q9r5i3 thermoanaer
734	3	10.7		2 Q9FCX4	Q9fcx4 clostridium
735	3	10.7		2 Q9XBK0	Q9xbk0 bacillus ce
736	3	10.7		2 Q53564	Q53564 neisseria g
737	3	10.7		Q46537	Q46537 bacteroides
738	3	10.7		2 Q9ZG35	Q9zg35 chlamydia t
739 740	3	10.7		2 Q9RHG5	Q9rhg5 bacillus ce Q9r4al klebsiella
740 741	3 3	10.7 10.7		2 Q9R4A1 2 O30661	030661 vibrio chol
/#I	٦	10./	30 A	. 030001	050001 VIDI 10 CHOI

742	3	10.7	35	2	Q9ZG68	Q9zg68 chlamydia t
743	3	10.7	35	2	Q8RKG3	Q8rkg3 clostridium
744	3	10.7	35	2	Q8RIW2	Q8riw2 clostridium
	3					
745		10.7	35	2	Q9R626	Q9r626 bacillus su
746	3	10.7	35	2	P81927	P81927 lactobacill
747	3	10.7	35	3	Q96UT3	Q96ut3 saccharomyc
748	3	10.7	35	4	Q9BVR9	Q9bvr9 homo sapien
749	3	10.7	35	4	Q13380	Q13380 homo sapien
750	3	10.7	35	4	Q9BS62	Q9bs62 homo sapien
751	3	10.7	35	4	Q13165	Q13165 homo sapien
752	3	10.7	35	4	Q13828	Q13828 homo sapien
753	3	10.7	35	4	Q13264	Q13264 homo sapien
754	3	10.7	35	4	Q9Y634	Q9y634 homo sapien
755	3	10.7	35	4	Q8IU77	Q8iu77 homo sapien
756	3	10.7	35	5	Q27754	Q27754 pisaster oc
757	3	10.7	35	5	Q9U780	Q9u780 boophilus a
758	3	10.7	35	5	Q26372	Q26372 tribolium c
759	3	10.7	35	5	Q9U782	Q9u782 boophilus m
760	3	10.7	35	5	Q9TVJ7	Q9tvj7 boophilus m
						-
761	3	10.7	35	5	Q9U783	Q9u783 boophilus m
762	3	10.7	35	5	Q9U784	Q9u784 boophilus m
763	3	10.7	35	5	Q9U781	Q9u781 boophilus m
764	3	10.7	35	5	Q8IF21	Q8if21 trypanosoma
765	3	10.7	35	6	Q95N74	Q95n74 equus cabal
766	3	10.7	35	6	Q9MZA7	Q9mza7 sus scrofa
767	3	10.7	35	8	Q951Q6	Q951q6 protoptilum
768	3	10.7	35	8		
					Q9GF85	Q9gf85 ginkgo bilo
769	3	10.7	35	8	Q8WE70	Q8we70 miliaria ca
770	3	10.7	35	8	Q9GF98	Q9gf98 ceratophyll
771	3	10.7	35	8	Q95766	Q95766 cerataphis
772	3	10.7	35	8	Q94P82	Q94p82 corallium r
773 `	3	10.7	35	8	Q8WEJ7	Q8wej7 cycas circi
774	3	10.7	35	8	Q951S7	Q951s7 anthothela
775	3	10.7	35	8	Q951R1	Q951r1 narella nut
776	3	10.7	35	8	Q951S1	Q951s1 corallium k
777	3					
		10.7	35	8	Q951R3	Q951r3 anthomurice
778	3	10.7	35	8	Q951S9	Q951s9 protodendro
779	3	10.7	35	8	Q951Q9	Q951q9 narella sp.
780	3	10.7	35	8	Q951S4	Q951s4 paragorgia
781	3	10.7	35	8	Q951R5	Q951r5 corallium s
782	3	10.7	35	10	Q9SPU2	Q9spu2 arabidopsis
783	3	10.7	35	10	Q9ZUW2	Q9zuw2 arabidopsis
784	3	10.7	35	10	P92971	P92971 arabidopsis
785	3	10.7	35	10	Q9LV08	Q9lv08 arabidopsis
786						
	3	10.7	35	10	Q94IS4	Q94is4 pinus radia
787	3	10.7	35	10	Q39297	Q39297 brassica na
788	3	10.7	35	10	Q8RVJ7	Q8rvj7 populus eur
789	3	10.7	35	10	Q9FJ84	Q9fj84 arabidopsis
790	3	10.7	35	10	Q8GUX4	Q8gux4 picea maria
791	3	10.7	35	11	Q63397	Q63397 rattus norv
792	3	10.7	35	11	Q9JLA4	Q9jla4 mus musculu
793	3	10.7	35	11	Q9QV50	Q9qv50 rattus sp.
794	3	10.7	35	11		
					Q922H5	Q922h5 mus musculu
795	3	10.7	35	11	Q8BK89	Q8bk89 mus musculu
796	3	10.7	35	12	Q90151	Q90151 bombyx mori
797	3	10.7	35	12	Q65380	Q65380 banana bunc
798	3	10.7	35	12	Q83333	Q83333 murine hepa

	_					
799	3	10.7	35	12	055549	O55549 measles vir
800	3	10.7	35	12	Q8BB50	Q8bb50 human papil
801	3	10.7	35	13	Q90XB5	Q90xb5 xenopus lae
802	3	10.7	35	13	P83224	P83224 oxyuranus m
803	3	10.7	35	13	P83225	P83225 oxyuranus s
804	3	10.7	35	13	P83227	P83227 oxyuranus m
805	3	10.7	35	13	P83228	P83228 oxyuranus s
806	3	10.7	35	13	P83229	P83229 oxyuranus s
807	3	10.7	35	13	P83226	P83226 oxyuranus s
808	3	10.7	35	15	Q75981	Q75981 human immun
809	3	10.7	35	15	Q70328	Q70328 human immun
810	3	10.7	35	15	Q70380	Q70380 human immun
811	3	10.7	35	15	Q70319	Q70319 human immun
812	3	10.7	35	15	Q79465	Q79465 human immun
813	3	10.7	35	15	Q70426	Q70426 human immun
814	3	10.7	35	15	Q9J3S2	Q9j3s2 human immun
					**	
815	3	10.7	35	15	071950	071950 human immun
816	3	10.7	35	15	Q9IPY2	Q9ipy2 human immun
817	3	10.7	35	15	Q80574	Q80574 human immun
818	3	10.7	35	15	Q70425	Q70425 human immun
819	3	10.7	35	15	Q70362	Q70362 human immun
820	3	10.7	35	15	Q80601	Q80601 human immun
821	3	10.7	35	15	Q8QDX6	Q8qdx6 human immun
822	3	10.7	35	15	Q77702	Q77702 human immun
823	3	10.7	35	15	Q9QFA0	Q9qfa0 human immun
824	3	10.7	35	15	Q70330	Q70330 human immun
825	3		35			
		10.7		15	Q77584	Q77584 human immun
826	3	10.7	35	15	Q70317	Q70317 human immun
827	3	10.7	35	15	Q70316	Q70316 human immun
828	3	10.7	35	15	Q70402	Q70402 human immun
829	3	10.7	35	15	Q9YM80	Q9ym80 human immun
830	3	10.7	35	15	Q8QDY0	Q8qdy0 human immun
831	3	10.7	35	15	Q75970	Q75970 human immun
832	3	10.7	35	15	Q70409	Q70409 human immun
833	3	10.7	35	15	Q70325	Q70325 human immun
834	3	10.7	35	15	Q9YM17	Q9ym17 human immun
835	3	10.7	35	15	Q79468	Q79468 human immun
836	3	10.7	35	15	Q9YM96	Q9ym96 human immun
837	3	10.7	35	15	Q70363	Q70363 human immun
838	3	10.7	35	15	Q70321	Q70321 human immun
839	3	10.7	35	15	Q9YM22	Q9ym22 human immun
840	3	10.7	35	15	Q75990	Q75990 human immun
841	3	10.7	35	15	Q70323	Q70323 human immun
842	3	10.7	35	15	Q75989	Q75989 human immun
843	3	10.7	35	15	Q70428	Q70428 human immun
844	3	10.7	35	15	Q9YM67	Q9ym67 human immun
845	3	10.7	35	15	Q77585	Q77585 human immun
846	3	10.7	35	15	Q70403	Q70403 human immun
847	3	10.7	35	15	Q70327	Q70327 human immun
848	3	10.7	35	15	Q77250	Q77250 human immun
849	3	10.7	35	15	Q75955	Q75955 human immun
850	3	10.7	35	15	Q91PY4	Q9ipy4 human immun
851	3	10.7	35	15	Q70424	Q70424 human immun
852	3	10.7	35	15	Q77582	Q77582 human immun
853	3	10.7	35	16	007593	007593 bacillus su
854	3	10.7	35	16	Q9KR18	Q9kr18 vibrio chol
855	3	10.7	35	16	Q9KQG4	Q9kqg4 vibrio chol

856	3	10.7	35	16	Q9KNU1	Q9knu1 vibrio chol
857	3	10.7	35	16	Q9JWX5	Q9jwx5 neisseria m
858	3	10.7	35	16	Q9JV38	Q9jv38 neisseria m
859	3	10.7	35	16	Q9A427	Q9a427 caulobacter
860	3	10.7	35	16	Q97RG6	Q97rg6 streptococc
861	3	10.7	35	16	Q9K241	Q9k241 chlamydia p
862	3	10.7	35	16	Q8XZB7	Q8xzb7 ralstonia s
863	3	10.7	35	16	Q8KCA6	Q8kca6 chlorobium
864	3	10.7	35	16	Q8G2D4	Q8g2d4 brucella su
865	3	10.7	35	16	Q8F8D4	Q8f8d4 leptospira
866	3	10.7	35	16	Q8F1W8	Q8flw8 leptospira
867	3	10.7	35	16	Q8EYH6	Q8eyh6 leptospira
868	3	10.7	35	16	Q8EGT2	Q8egt2 shewanella
869	3	10.7	35	16	Q8EGC0	Q8egc0 shewanella
870	3	10.7	35	16	Q8EG97	Q8eg97 shewanella
871	3	10.7	35	16	Q8EEP3	Q8eep3 shewanella
872	3	10.7	35	16	Q8E9Z1	Q8e9z1 shewanella
873	3	10.7	35	16	Q8DUY1	Q8duyl streptococc
874	3	10.7	35	17	Q9HMP1	Q9hmpl halobacteri
875	3	10.7	35 35	17	Q8ZXX9	
						Q8zxx9 pyrobaculum
876	3	10.7	36 36	2	006954	006954 salmonella
877	3	10.7	36	2	Q8VTS7	Q8vts7 listeria in
878	3	10.7	36	2	Q9ZG79	Q9zg79 chlamydia t
879	3	10.7	36	2	Q9RHE3	Q9rhe3 pediococcus
880	3	10.7	36	2	Q8VTS5	Q8vts5 listeria we
881	3	10.7	36	2	Q44437	Q44437 agrobacteri
882	3	10.7	36	2	Q9LB55	Q91b55 helicobacte
883	3	10.7	36	2	Q48507	Q48507 lactococcus
884	3	10.7	36	2	Q99094	Q99094 salmonella
885	3	10.7	36	2	Q9S635	Q9s635 prochloroco
886	3	10.7	36	2	Q8VTR8	Q8vtr8 listeria iv
887	3	10.7	36	2	Q8VTS0	Q8vts0 listeria mo
888	3	10.7	36	2	Q8KYW1	Q8kyw1 uncultured
889	3	10.7	36	2	Q9R4X9	Q9r4x9 azotobacter
890	3	10.7	36	2	Q9R5L0	Q9r5l0 sarcina ven
891	3	10.7	36	2	Q9X3G2	Q9x3g2 prochloroco
892	3	10.7	36	2	Q9R536	Q9r536 sphingomona
893	3	10.7	36	2	Q8GRH1	Q8grh1 pectobacter
894	3	10.7	36	3	Q96W36	Q96w36 ophiostoma
895	3	10.7	36	4	Q9UNV7	Q9unv7 homo sapien
896	3	10.7	36	4	Q9P1E9	Q9ple9 homo sapien
897	3	10.7	36	4	Q9UPB7	Q9upb7 homo sapien
898	3	10.7	36	4	Q8NE47	Q8ne47 homo sapien
899	3	10.7	36	5	Q9GSY9	Q9gsy9 carcinus ma
900	3	10.7	36	5	Q9NGN1	Q9ngn1 strongyloce
901	3	10.7	36	5	Q27730	Q27730 plasmodium
902	3	10.7	36	5	Q9GNP3	Q9gnp3 caenorhabdi
903	3	10.7	36	5	001333	001333 caenorhabdi
904	3	10.7	36	5	Q25781	Q25781 plasmodium
905	3	10.7	36	5	Q8ISR7	Q8isr7 spodoptera
906	3	10.7	36	5	Q8IGF5	Q8igf5 drosophila
907	3	10.7	36	6	097889	O97889 pongo pygma
908	3	10.7	36	6	Q29059	Q29059 sus scrofa
909	3	10.7	36	6	Q9XT44	Q9xt44 pongo pygma
910	3	10.7	36	6	Q9N1C5	Q9n1c5 bos taurus
911	3	10.7	36	6	097890	O97890 pan troglod
912	3	10.7	36	6	P79428	P79428 capra hircu
	3	_ , ,	50	•	_ , , , , , , , , ,	1751BO Capia Hitcu

913	3	10.7	36	8	063675	O63675 emberiza pu
914		10.7			Q9GF81	Q9gf81 gnetum gnem
915		10.7			Q9TIE4	Q9tie4 hydrocotyle
916	3	10.7	36		Q9TIF1	Q9tifl bolax gummi
917	3	10.7	36	8	Q9GFA3	Q9gfa3 cabomba car
918		10.7		8	Q9GF97	Q9gf97 ceratophyll
919		10.7			Q94VL4	Q94vl4 salmo trutt
920		10.7			Q36303	Q36303 musa schizo
921		10.7			Q9TIF0	Q9tif0 klotzschia
922		10.7		8	Q94NY5	Q94ny5 salmo salar
923		10.7		8	Q9GF76	Q9gf76 lactoris fe
924		10.7		8	Q9MSP9	Q9msp9 nymphaea od Q9tif3 eremocharis
925 926	3	10.7 10.7		8	Q9TIF3	Q9c113 eremocharis Q9gf74 liriodendro
927		10.7		8	Q9GF74 Q9TIE2	Q9tie2 aralia chin
928	3	10.7		8	Q9TIF2	Q9tif2 azorella tr
929		10.7		8	Q9GF89	Q9gf89 drimys wint
930	3	10.7	36	8	Q9MSR0	Q9msr0 zamia furfu
931	3	10.7		8	063650	O63650 emberiza sc
932	3	10.7		8	Q9TIE3	Q9tie3 hydrocotyle
933	3	10.7	36	8	Q9TIE5	Q9tie5 xanthosia a
934	3	10.7	36	8	Q9GFA9	Q9gfa9 acorus cala
935	3	10.7	36	8	Q8HS50	Q8hs50 ascarina lu
936	3	10.7	36	8	Q8HS46	Q8hs46 austrobaile
937	3	10.7	36	8	Q8HS42	Q8hs42 chloranthus
938	3	10.7		8	Q8HS31	Q8hs31 lilium supe
939	3	10.7	36	8	Q8HS27	Q8hs27 magnolia st
940	3	10.7		8	Q8HS18	Q8hs18 sagittaria
941	3	10.7		8	Q8HKF5	Q8hkf5 rhipicephal
942	3	10.7	36	8	Q8HKC6	Q8hkc6 haemaphysal
943	3	10.7	36	10	Q38977	Q38977 arabidopsis
944	3	10.7	36 36	10	Q8VY71	Q8vy71 arabidopsis
945	3	10.7		10	Q9SJ63	Q9sj63 arabidopsis
946 947	3 3	10.7 10.7	36 36	10 11	Q41995 Q60937	Q41995 arabidopsis Q60937 mus musculu
948	3	10.7	36 36	11	P97598	P97598 rattus norv
949	3	10.7	36	12	Q9QQS6	Q9qqs6 tanapox vir
950	3	10.7			090722	090722 calicivirus
951	3	10.7		12	Q83609	Q83609 myxoma viru
952	3	10.7		12	Q91D77	Q91d77 ttv-like mi
953	3	10.7		12	Q91CY3	Q91cy3 tt virus. o
954	3	10.7	36	12	Q8QQZ2	Q8qqz2 simian viru
955	3	10.7	36	13	042264	042264 xenopus lae
956	3	10.7	36	13	Q8QGS0	Q8qgs0 gallus gall
957	3	10.7	36	15	Q90RH5	Q90rh5 human immun
958	3	10.7		15	Q76587	Q76587 human immun
959	3	10.7		15	Q80551	Q80551 human immun
960	3	10.7		15	Q9YNX9	Q9ynx9 human immun
961	3	10.7	36	15	Q80550	Q80550 human immun
962	3	10.7		15	Q80553	Q80553 human immun
963	3	10.7		15	Q79436	Q79436 human immun
964 965	3 3	10.7		15	040258	O40258 human immun Q90rf1 human immun
966	3	10.7 10.7		15 15	Q90RF1 Q77664	Q77664 human immun
967	3	10.7		16	025389	O25389 helicobacte
968	3	10.7		16	050686	O50686 borrelia bu
969	3	10.7		16	050969	O50969 borrelia bu
	-					

970	3	10.7	36	16	Q9KTV5	Q9ktv5	vibrio chol
971	3	10.7	36	16	Q9KRB3	Q9krb3	vibrio chol
972	3	10.7	36	16	Q9KQ34	Q9kq34	vibrio chol
973	3	10.7	36	16	Q9KPR2	Q9kpr2	vibrio chol
974	3	10.7	36	16	Q9KPQ3	Q9kpq3	vibrio chol
975	3	10.7	36	16	Q9KLW9	Q9klw9	vibrio chol
976	3	10.7	36	16	Q9KC13	Q9kc13	bacillus ha
977	3	10.7	36	16	Q9K7G3	Q9k7g3	bacillus ha
978	3	10.7	36	16	Q9JTW3	Q9jtw3	neisseria m
979	3	10.7	36	16	Q97S91	Q97s91	streptococc
980	3	10.7	36	16	Q97NY3	Q97ny3	streptococc
981	3	10.7	. 36	16	Q8Z022	Q8z022	anabaena sp
982	3	10.7	36	16	Q8VJ12	Q8vj12	mycobacteri
983	3	10.7	36	16	Q9AGN3	Q9agn3	clostridium
984	3	10.7	36	16	Q8P0H5	Q8p0h5	streptococc
985	3	10.7	36	16	OWYN8Q	Q8nyw0	staphylococ
986	3	10.7	36	16	Q8KE95	Q8ke95	chlorobium
987	3	10.7	. 36	16	Q8KAZ5	Q8kaz5	chlorobium
988	3	10.7	36	16	Q8 F 9M7	Q8£9m7	leptospira
989	3	10.7	36	16	Q8F8L0	Q8f8l0	leptospira
990	3	10.7	36	16	Q8F6L6	Q8f616	leptospira
991	3	10.7	36	16	Q8F5W9	Q8f5w9	leptospira
992	3	10.7	36	16	Q8 F 5U7	Q8f5u7	leptospira
993	3	10.7	36	16	Q8F3B2	Q8f3b2	leptospira
994	3	10.7	36	16	Q8F239	Q8f239	leptospira
995	3	10.7	36	16	Q8F0Z7		leptospira
996	3	10.7	36	16	Q8F047	Q8f047	leptospira
997	3	10.7	36	16	Q8EZP4	Q8ezp4	leptospira
998	3	10.7	36	16	Q8EKM8	Q8ekm8	shewanella
999	3	10.7	36	16	Q8EK86	Q8ek86	shewanella
1000	3	10.7	36	16	Q8EBF1	Q8ebf1	shewanella

ALIGNMENTS

```
RESULT 1
Q91Y90
ID
     Q91Y90
                 PRELIMINARY;
                                   PRT;
                                           31 AA.
AC
     Q91Y90;
DT
     01-DEC-2001 (TrEMBLrel. 19, Created)
     01-DEC-2001 (TrEMBLrel. 19, Last sequence update)
DT
DT
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DE
     Parathyroid hormone (Fragment).
GN
     PTH.
OS
     Peromyscus maniculatus (Deer mouse).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Sigmodontinae;
OC
     Peromyscus.
OX
     NCBI TaxID=10042;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RA
     Prince K.L., Dewey M.J.;
     Submitted (MAY-2001) to the EMBL/GenBank/DDBJ databases.
RL
DR
     EMBL; AF382953; AAK63072.1; -.
DR
     InterPro; IPR001415; Parathyrd hrm.
DR
     InterPro; IPR003625; Pthyrhorm sub.
```

```
Pfam; PF01279; Parathyroid; 1.
     ProDom; PD010687; Pthyrhorm_sub; 1.
DR
     PROSITE; PS00335; PARATHYROID; 1.
DR
     NON TER
FT
                          1
                  1
     NON TER
FT
                  31
                         31
     SEOUENCE
                31 AA; 3461 MW; A208B0E772B9B55B CRC64;
SO
                          50.0%; Score 14; DB 11; Length 31;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 4e-08;
            14; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
                                                                            0;
            2 VSEIQLMHNLGKHL 15
QУ
              Db
           14 VSEIQLMHNLGKHL 27
RESULT 2
Q91Y91
                 PRELIMINARY;
                                  PRT;
                                          31 AA.
ID
     Q91Y91
AC
     Q91Y91;
     01-DEC-2001 (TrEMBLrel. 19, Created)
     01-DEC-2001 (TrEMBLrel. 19, Last sequence update)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DT
DΕ
     Parathyroid hormone (Fragment).
GN
     PTH.
     Peromyscus polionotus (Oldfield mouse).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Sigmodontinae;
OC
OC.
     Peromyscus.
     NCBI TaxID=42413;
OX
RN
     [1]
(RP
     SEQUENCE FROM N.A.
RA
     Prince K.L., Dewey M.J.;
RL
     Submitted (MAY-2001) to the EMBL/GenBank/DDBJ databases.
DR
     EMBL; AF382952; AAK63071.1; -.
     InterPro; IPR001415; Parathyrd hrm.
DR
     InterPro; IPR003625; Pthyrhorm sub.
DR
DR
     Pfam; PF01279; Parathyroid; 1.
DR
     ProDom; PD010687; Pthyrhorm sub; 1.
     PROSITE; PS00335; PARATHYROID; 1.
DR
     NON TER
FT
                  1
                          1
FT
     NON TER
                  31
                         31
SQ
     SEQUENCE
                31 AA; 3461 MW; A208B0E772B9B55B CRC64;
  Query Match
                          50.0%; Score 14; DB 11; Length 31;
  Best Local Similarity 100.0%; Pred. No. 4e-08;
           14; Conservative
                               0; Mismatches
                                                 0: Indels
                                                                0: Gaps
                                                                            0;
            2 VSEIQLMHNLGKHL 15
Qу
              Db
           14 VSEIQLMHNLGKHL 27
RESULT 3
017148
ID
     017148
                 PRELIMINARY;
                                PRT;
                                          34 AA.
AC
     017148;
```

DR

```
01-JAN-1998 (TrEMBLrel. 05, Created)
     01-JAN-1998 (TrEMBLrel. 05, Last sequence update)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DT
DE
    Antiqen B/1 (Fragment).
GN
    AGB/1.
OS
     Echinococcus vogeli.
     Eukaryota; Metazoa; Platyhelminthes; Cestoda; Eucestoda;
OC
     Cyclophyllidea; Taeniidae; Echinococcus.
OC
OX
     NCBI TaxID=6213;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RX
     MEDLINE=94359533; PubMed=8078520;
     Frosch P., Hartmann M., Muhlschlegel F., Frosch M.;
RA
     "Sequence heterogeneity of the echinococcal antigen B.";
RT
     Mol. Biochem. Parasitol. 64:171-175(1994).
RL
RN
RP
     SEQUENCE FROM N.A.
RA
     Haag K.L., Zaha A., Gottstein B.;
RT
     "E. vogeli AgB/1 coding sequence.";
RL
     Submitted (SEP-1997) to the EMBL/GenBank/DDBJ databases.
DR
     EMBL; AF024665; AAB81611.1; -.
     NON TER
FT
                   1
                          1
     NON TER
FT
                  34
                         34
SO
     SEOUENCE
                34 AA; 3964 MW; 3BE894E129CF84F3 CRC64;
  Query Match
                          17.9%; Score 5; DB 5; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 2.7e+02;
  Matches
             5; Conservative
                                0; Mismatches
                                                    0; Indels
                                                                  0; Gaps
                                                                               0:
Qу
           24 LRKKL 28
              11111
Db
           15 LRKKL 19
RESULT 4
Q97K50
ID
     Q97K50
                 PRELIMINARY;
                                   PRT;
                                            34 AA.
AC
     Q97K50;
DT
     01-OCT-2001 (TrEMBLrel. 18, Created)
DT
     01-OCT-2001 (TrEMBLrel. 18, Last sequence update)
DT
     01-OCT-2001 (TrEMBLrel. 18, Last annotation update)
     Transcriptional regulator, AcrR family.
DE
GN
     CAC1071.
OŞ
     Clostridium acetobutylicum.
OC
     Bacteria; Firmicutes; Clostridia; Clostridiales; Clostridiaceae;
OC
     Clostridium.
OX
     NCBI TaxID=1488;
RN
     [1]
RΡ
     SEOUENCE FROM N.A.
RC
     STRAIN=ATCC 824 / DSM 792 / VKM B-1787;
     MEDLINE=21359325; PubMed=11466286;
RX
     Noelling J., Breton G., Omelchenko M.V., Makarova K.S., Zeng Q.,
RA
     Gibson R., Lee H.M., Dubois J., Qiu D., Hitti J., Wolf Y.I.,
RΑ
RA
     Tatusov R.L., Sabathe F., Doucette-Stamm L., Soucaille P., Daly M.J.,
RA
     Bennett G.N., Koonin E.V., Smith D.R.;
     "Genome sequence and comparative analysis of the solvent-producing
RT
RT
     bacterium Clostridium acetobutylicum.";
```

DT

```
EMBL; AE007622; AAK79045.1; -.
DR
     Complete proteome.
KW
              34 AA; 4031 MW; 38D1A2A7C2F86E90 CRC64;
SO
     SEOUENCE
                         17.9%; Score 5; DB 16; Length 34;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 2.7e+02;
          5; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
            1 SVSEI 5
Qу
              Db
           30 SVSEI 34
RESULT 5
Q9HR65
                                   PRT;
                                           34 AA.
     Q9HR65
                 PRELIMINARY;
ID
AC
     Q9HR65;
     01-MAR-2001 (TrEMBLrel. 16, Created)
     01-MAR-2001 (TrEMBLrel. 16, Last sequence update)
DT
     01-MAR-2001 (TrEMBLrel. 16, Last annotation update)
DT
     Vnq0840h.
DE
     VNG0840H.
GN
     Halobacterium sp. (strain NRC-1).
OS
     Archaea; Euryarchaeota; Halobacteria; Halobacteriales;
OC
     Halobacteriaceae; Halobacterium.
OC
     NCBI TaxID=64091;
OX
RN
     [1]
RP
     SEQUENCE FROM N.A.
RX
     MEDLINE=20504483; PubMed=11016950;
     Ng W.V., Kennedy S.P., Mahairas G.G., Berquist B., Pan M.,
RA
RA
     Shukla H.D., Lasky S.R., Baliga N.S., Thorsson V., Sbrogna J.,
     Swartzell S., Weir D., Hall J., Dahl T.A., Welti R., Goo Y.A.,
RA
     Leithauser B., Keller K., Cruz R., Danson M.J., Hough D.W.,
RA
     Maddocks D.G., Jablonski P.E., Krebs M.P., Angevine C.M., Dale H.,
RA
     Isenbarger T.A., Peck R.F., Pohlschroder M., Spudich J.L., Jung K.-H.,
RA
     Alam M., Freitas T., Hou S., Daniels C.J., Dennis P.P., Omer A.D.,
RA
     Ebhardt H., Lowe T.M., Liang P., Riley M., Hood L., DasSarma S.;
RA
RT
     "Genome sequence of Halobacterium species NRC-1.";
     Proc. Natl. Acad. Sci. U.S.A. 97:12176-12181(2000).
RĻ
     EMBL; AE005025; AAG19293.1; -.
DR
KW
     Complete proteome.
     SEQUENCE
                34 AA; 3731 MW; BA957904338DCD45 CRC64;
SO
                          17.9%; Score 5; DB 17; Length 34;
  Ouery Match
  Best Local Similarity 100.0%; Pred. No. 2.7e+02;
                               0; Mismatches
                                                                             0;
           5; Conservative
                                                 0; Indels
                                                                 0; Gaps
           24 LRKKL 28
Qу
               11111
           26 LRKKL 30
Db
RESULT 6
Q8BTB9
                 PRELIMINARY; PRT;
                                           35 AA.
ID
     Q8BTB9
AC
     Q8BTB9;
```

J. Bacteriol. 183:4823-4838(2001).

RL

```
DT
     01-MAR-2003 (TrEMBLrel. 23, Created)
     01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DT
DΕ
     Translin.
OS
     Mus musculus (Mouse).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
OC
OX
     NCBI TaxID=10090;
RN
     [1]
RP
     SEQUENCE FROM N.A.
     STRAIN=C57BL/6J; TISSUE=Body;
RC
RX
     MEDLINE=22354683; PubMed=12466851;
RA
     The FANTOM Consortium,
RA
     the RIKEN Genome Exploration Research Group Phase I & II Team;
     "Analysis of the mouse transcriptome based on functional annotation of
RT
RT
     60,770 full-length cDNAs.";
RL
     Nature 420:563-573(2002).
DR
     EMBL; AK011220; BAC25325.1; -.
SQ
               35 AA; 3967 MW; F81156686390ECD8 CRC64;
     SEOUENCE
  Query Match
                          17.9%; Score 5; DB 11; Length 35;
  Best Local Similarity
                          100.0%; Pred. No. 2.7e+02;
  Matches
             5; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                              0;
Qу
            1 SVSEI 5
              1111
Db
            2 SVSEI 6
RESULT 7
024285
ID
     024285
                 PRELIMINARY;
                                   PRT;
                                           28 AA.
     024285;
AC
DT
     01-JAN-1998 (TrEMBLrel. 05, Created)
DT
     01-JAN-1998 (TrEMBLrel. 05, Last sequence update)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DΕ
    LFY protein (Fragment).
GN
    LFY.
OS
     Pinus radiata (Monterey pine).
OC
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
     Spermatophyta; Coniferopsida; Coniferales; Pinaceae; Pinus.
OX
     NCBI_TaxID=3347;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
RC
     TISSUE=Vegetative;
RA
     Izquierdo L.Y., Vergara R.F., Alvarez-Buylla E.R.;
RT
     "Partial characterization of Pinus radiata meristem identity homolog
RT
     gene (LFY).";
RL
     Submitted (AUG-1996) to the EMBL/GenBank/DDBJ databases.
DR
     EMBL; U66725; AAB06792.1; -.
FT
     NON TER
                   1
                          1
FT
     NON TER
                  28
                         28
SQ
     SEQUENCE
                28 AA;
                        3376 MW; 1736738622B4EE74 CRC64;
 Query Match
                          14.3%; Score 4; DB 10; Length 28;
 Best Local Similarity
                          100.0%; Pred. No. 2.8e+03;
 Matches
             4; Conservative
                                 0; Mismatches
                                                   0; Indels
```

```
24 LRKK 27
Qу
              | | | | |
           15 LRKK 18
Db
RESULT 8
Q8GZQ8
ID
     Q8GZQ8
                 PRELIMINARY;
                                    PRT;
                                            28 AA.
AC
     Q8GZQ8;
DT
     01-MAR-2003 (TrEMBLrel. 23, Created)
     01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DT
     SNF-1 related kinase (Fragment).
DE
GN
     BKIN12.
     Hordeum vulgare var. distichum (Two-rowed barley).
OS
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
     Spermatophyta; Magnoliophyta; Liliopsida; Poales; Poaceae; Pooideae;
OC
OC
     Triticeae; Hordeum.
OX
     NCBI TaxID=112509;
RN
     [1]
     SEQUENCE FROM N.A.
RΡ
RC
     STRAIN=cv. Igri;
     Clark J.S.C., Dani M., Barker J.H.A., Halford N.G., Karp A.;
RA
     "Bkin12 Promoter Variants - Examples of Functional Biodiversity?";
RT
     Submitted (NOV-2001) to the EMBL/GenBank/DDBJ databases.
RL
DR
     EMBL; AF448389; AAN76447.1; -.
KW
     Kinase.
FT
     NON TER
                  28
                          28
SO
     SEOUENCE
                28 AA; 2950 MW; 853EDC11F6BB2C6C CRC64;
                           14.3%; Score 4; DB 10; Length 28;
  Query Match
                          100.0%; Pred. No. 2.8e+03;
  Best Local Similarity
             4; Conservative
                                0; Mismatches
                                                    0; Indels
                                                                   0; Gaps
                                                                               0;
           10 NLGK 13
Qу
               | | | |
Db
           18 NLGK 21
RESULT 9
Q49148
ID
                 PRELIMINARY;
                                    PRT;
                                            29 AA.
     Q49148
AC
     Q49148;
     01-NOV-1996 (TrEMBLrel. 01, Created)
DT
     01-NOV-1996 (TrEMBLrel. 01, Last sequence update)
DT
DT
     01-NOV-1998 (TrEMBLrel. 08, Last annotation update)
DE
     PQQ biosynthesis polypeptide.
GN
     POOD.
OS
     Methylobacterium extorquens.
     Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales;
OC
OC
     Methylobacteriaceae; Methylobacterium.
OX
     NCBI_TaxID=408;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=AM1;
```

RX

MEDLINE=94179111; PubMed=8132470;

```
Morris C.J., Biville F., Turlin E., Lee E., Ellermann K., Fan W.H.,
     Ramamoorthi R., Springer A.L., Lidstrom M.E.;
RA
     "Isolation, phenotypic characterization, and complementation analysis
RT
     of mutants of Methylobacterium extorquens AM1 unable to synthesize
RT
     pyrrologuinoline quinone and sequences of pgqD, pgqG, and pgqC.";
     J. Bacteriol. 176:1746-1755(1994).
RL
     EMBL; L25889; AAA17878.1; -.
DR
     SEQUENCE 29 AA; 3222 MW; B4831562CF76973C CRC64;
SO
  Query Match
                          14.3%; Score 4; DB 2; Length 29;
  Best Local Similarity
                          100.0%; Pred. No. 2.9e+03;
            4; Conservative
                                 0; Mismatches
                                                   0; Indels
                                                                 0; Gaps
                                                                              0;
            2 VSEI 5
Qу
              |\cdot|
Db
            8 VSEI 11
RESULT 10
Q96PP3
ID
                 PRELIMINARY;
                                   PRT;
                                           29 AA.
     Q96PP3
AC
     Q96PP3;
DT
     01-DEC-2001 (TrEMBLrel. 19, Created)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last sequence update)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DΕ
     Lympho-epithelial Kazal type-related inhibitor LEKTI (Fragment).
GN
     SPINK5.
OS
     Homo sapiens (Human).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OX
     NCBI TaxID=9606;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RA
     Sprecher E., Chavanas S., DiGiovanna J.J., Amin S., Nielsen K.,
RA
     Prendiville J.S., Silverman R., Esterly N.B., Spraker M.K., Guelig E.,
RA
     de Luna M.L., Williams M.L., Buehler B., Pfendner E., Bale S.J.,
RA
     Uitto J., Hovnanian A., Richard G.;
RT
     "The spectrum of pathogenic mutations in SPINK 5 in 19 families with
RT
     Netherton syndrome - Implications for mutation detection and first
RТ
     case of prenatal diagnosis.";
RL
     J. Invest. Dermatol. 0:0-0(2001).
DR
     EMBL; AF295783; AAK97140.1; -.
FT
     NON TER
                   1
                          1
FT
     NON TER
                  29
                         29
SO
     SEQUENCE
                29 AA; 3449 MW;
                                  9F31E2AD857EC1BB CRC64;
  Query Match
                          14.3%; Score 4; DB 4; Length 29;
  Best Local Similarity
                          100.0%; Pred. No. 2.9e+03;
             4; Conservative 0; Mismatches
                                                   0; Indels
                                                                      Gaps
           10 NLGK 13
Qу
              Db
           14 NLGK 17
```

```
ID
     Q25603
                 PRELIMINARY;
                                   PRT;
                                           29 AA.
AC
     Q25603;
     01-NOV-1996 (TrEMBLrel. 01, Created)
DT
     01-NOV-1996 (TrEMBLrel. 01, Last sequence update)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DT
     Tubulin.
DE
OS
     Onchocerca volvulus.
     Eukaryota; Metazoa; Nematoda; Chromadorea; Spirurida; Filarioidea;
OC
     Onchocercidae; Onchocerca.
OC
     NCBI TaxID=6282;
OX
RN
     [1]
RP
     SEQUENCE FROM N.A.
RA
     Chandrashekar R., Curtis K.C., Weil G.J.;
RT
     "Onchocerca volvulus cDNA clone.";
     Submitted (SEP-1994) to the EMBL/GenBank/DDBJ databases.
RT.
     EMBL; U15095; AAA50364.1; -.
DR
              29 AA; 3539 MW; B917126A923EF884 CRC64;
SO
     SEQUENCE
                          14.3%; Score 4; DB 5; Length 29;
  Query Match
                          100.0%; Pred. No. 2.9e+03;
  Best Local Similarity
            4; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                              0;
            2 VSEI 5
QУ
              1111
Db
            4 VSEI 7
RESULT 12
013043
TD
     013043
                 PRELIMINARY;
                                   PRT;
                                           29 AA.
AC
     013043:
DT
     01-JUL-1997 (TrEMBLrel. 04, Created)
DT
     01-JUL-1997 (TrEMBLrel. 04, Last sequence update)
DT
     01-JUN-2002 (TrEMBLrel. 21, Last annotation update)
DE
     Whn transcription factor (Fragment).
GN
     Scyliorhinus canicula (Spotted dogfish) (Spotted catshark).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Chondrichthyes;
OC
     Elasmobranchii; Galeomorphii; Galeoidea; Carcharhiniformes;
OC
OC
     Scyliorhinidae; Scyliorhinus.
OX
     NCBI TaxID=7830;
RN
RΡ
     SEQUENCE FROM N.A.
RX
     MEDLINE=97268658; PubMed=9108066;
     Schlake T., Schorpp M., Nehls M., Boehm T.;
RA
RT
     "The nude gene encodes a sequence-specific DNA binding protein with
RT
     homologs in organisms that lack an anticipatory immune system.";
RL
     Proc. Natl. Acad. Sci. U.S.A. 94:3842-3847(1997).
     EMBL; Y11539; CAA72302.1; -.
DR
DR
     InterPro; IPR001766; TF Fork head.
DR
     Pfam; PF00250; Fork head; 1.
DR
     ProDom; PD000425; TF Fork head; 1.
FT
     NON TER
                   1
                          1
FT
     NON TER
                  29
                         29
SQ
     SEQUENCE
                29 AA; 3243 MW; 62AE51F2BE7311E2 CRC64;
  Query Match
                          14.3%; Score 4; DB 13; Length 29;
```

```
Best Local Similarity 100.0%; Pred. No. 2.9e+03;
                                                                 0; Gaps
                                                                              0;
            4; Conservative
                                0; Mismatches
                                                 0; Indels
            2 VSEI 5
QУ
              1111
           17 VSEI 20
Db
RESULT 13
Q9JMV3
ID
    Q9JMV3
                 PRELIMINARY;
                                   PRT;
                                           30 AA.
     Q9JMV3;
     01-OCT-2000 (TrEMBLrel. 15, Created)
     01-OCT-2000 (TrEMBLrel. 15, Last sequence update)
DT
     01-JUN-2002 (TrEMBLrel. 21, Last annotation update)
DT
DE
     Luciferase alpha-subunit (Fragment).
GN
    LUXA.
OS
     Escherichia coli.
OC
     Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;
OC
     Enterobacteriaceae; Escherichia.
OX
     NCBI TaxID=562;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=HB101;
     Lotz W., Bauer T.;
RA
     "luxAB/kan-cassette for site-directed insertion mutagenesis and
RT
RT
     bacterial transcription studies.";
     Submitted (SEP-1999) to the EMBL/GenBank/DDBJ databases.
RL
RN
     [2]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=HB101;
RA
     Olsson O., Koncz C., Szalay A.;
RT
     "The use of luxA gene of the bacterial luciferase operon as a reporter
RT
     gene.";
RL
     Mol. Gen. Genet. 215:1-9(1998).
RN
     [3]
     SEQUENCE FROM N.A.
RP
RC
     STRAIN=HB101;
RX
     MEDLINE=92114868; PubMed=1685011;
RA
     Escher A., O'Kane D.J., Szalay A.;
     "The beta subunit polypeptide of Vibrio harveyi luciferase determines
RT
RT
     light emission at 42 degrees C.";
RL
     Mol. Gen. Genet. 230:385-393(1991).
DR
     EMBL; AJ249443; CAB96206.1; -.
DR
     HSSP; P07740; 1LUC.
DR
     InterPro; IPR002103; Bac luciferase.
     Pfam; PF00296; bac_luciferase; 1.
DR
FT
     NON TER
                  30
                         30
SO
     SEQUENCE
                30 AA; 3454 MW; 2FC87235BDBE72FD CRC64;
  Query Match
                          14.3%; Score 4; DB 2; Length 30;
                          100.0%; Pred. No. 2.9e+03;
  Best Local Similarity
             4; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
           10 NLGK 13
Qу
              1111
Db
           26 NLGK 29
```

```
055314
                                    PRT;
                                            31 AA.
ID
     Q55314
                 PRELIMINARY;
AC
     055314;
     01-NOV-1996 (TrEMBLrel. 01, Created)
DT
     01-NOV-1996 (TrEMBLrel. 01, Last sequence update)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DT
DE
     Urf2 protein (Fragment).
GN
     URF2.
OS
     Sulfolobus solfataricus.
     Archaea; Crenarchaeota; Thermoprotei; Sulfolobales; Sulfolobaceae;
OC
OC
     Sulfolobus.
OX
     NCBI TaxID=2287;
RN
     [1]
RP
     SEQUENCE FROM N.A.
     MEDLINE=96085144; PubMed=8521845;
RX
     Jones C.E., Fleming T.M., Cowan D.A., Littlechild J.A., Piper P.W.;
RA
     "The phosphoglycerate kinase and glyceraldehyde-3-phosphate
RT
     dehydrogenase genes from the thermophilic archaeon Sulfolobus
RT
     solfataricus overlap by 8bp. Isolation, sequencing of the genes and
RT
     expression on Escherichia coli.";
RT
     Eur. J. Biochem. 233:800-808(1995).
RL
RN
RP
     SEQUENCE FROM N.A.
     MEDLINE=94082761; PubMed=8259927;
RX
     Arcari P., Russo A.D., Ianniciello G., Gallo M., Bocchini V.;
RA
     "Nucleotide sequence and molecular evolution of the gene coding for
RT
     glyceraldehyde-3-phosphate dehydrogenase in the thermoacidophilic
RT
RT
     archaebacterium Sulfolobus solfataricus.";
RL
     Biochem. Genet. 31:241-251(1993).
     EMBL; X80178; CAA56461.1; -.
DR
     NON TER
                  31
FT
                          31
SO
     SEQUENCE
                31 AA; 3554 MW; 9A2538F911C7309A CRC64;
                           14.3%; Score 4; DB 1; Length 31;
  Query Match
  Best Local Similarity
                           100.0%; Pred. No. 3e+03;
             4; Conservative 0; Mismatches
                                                    0; Indels
                                                                   0; Gaps
  Matches
Qу
           23 WLRK 26
               1111
           11 WLRK 14
Db
RESULT 15
Q8NEI8
                                    PRT;
                                            31 AA.
TD
     Q8NEI8
                 PRELIMINARY;
AC
     O8NEI8;
DT
     01-OCT-2002 (TrEMBLrel. 22, Created)
     01-OCT-2002 (TrEMBLrel. 22, Last sequence update)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DT
     Hypothetical protein (Fragment).
DE
     Homo sapiens (Human).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OC
OX
     NCBI TaxID=9606;
```

RESULT 14

```
RN
     [1]
     SEQUENCE FROM N.A.
RP
RC
     TISSUE=Kidney;
RA
     Strausberg R.;
RL
     Submitted (JUN-2002) to the EMBL/GenBank/DDBJ databases.
DR
     EMBL; BC030993; AAH30993.1; -.
KW
     Hypothetical protein.
     NON TER
FT
                   1
SO
     SEOUENCE
                31 AA; 3437 MW; 72DCD0761839F7F7 CRC64;
  Query Match
                          14.3%; Score 4; DB 4; Length 31;
  Best Local Similarity
                          100.0%; Pred. No. 3e+03;
                               0; Mismatches
             4; Conservative
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
            2 VSEI 5
Qу
              | | | |
           18 VSEI 21
Db
RESULT 16
09MS77
ID
     O9MS77
                 PRELIMINARY;
                                   PRT;
                                           31 AA.
AC
     O9MS77;
DT
     01-OCT-2000 (TrEMBLrel. 15, Created)
DT
     01-OCT-2000 (TrEMBLrel. 15, Last sequence update)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
     Photosystem I protein M.
GN
     PSAM.
OS
     Phacus acuminata.
OG
     Chloroplast.
OC
     Eukaryota; Euglenozoa; Euglenida; Euglenales; Phacus.
OX
     NCBI TaxID=130316;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RX
     MEDLINE=21080550; PubMed=11212923;
RA
     Doetsch N.A., Thompson M.D., Favreau M.R., Hallick R.B.;
RT
     "Comparison of psbK operon organization and group III intron content
RT
     in chloroplast genomes of 12 Euglenoid species.";
RL
     Mol. Gen. Genet. 264:682-690(2001).
DR
     EMBL; AF241276; AAF82438.1; -.
KW
     Chloroplast.
SQ
     SEQUENCE
               31 AA; 3449 MW; 2FFB2AF4B4ACDEC8 CRC64;
  Ouery Match
                          14.3%; Score 4; DB 8; Length 31;
  Best Local Similarity 100.0%; Pred. No. 3e+03;
             4; Conservative 0; Mismatches
  Matches
                                                 0; Indels
                                                                  0; Gaps
                                                                              0:
           10 NLGK 13
Qу
              1111
           24 NLGK 27
Db
RESULT 17
Q9QZQ2
ID
     Q9QZQ2
                 PRELIMINARY;
                                   PRT;
                                           32 AA.
AC
     Q9QZQ2;
     01-MAY-2000 (TrEMBLrel. 13, Created)
DT
```

```
DT
     01-MAY-2000 (TrEMBLrel. 13, Last sequence update)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
     Neurotensin receptor (Fragment).
DΕ
GN
     NTSR OR NTR1.
     Mus musculus (Mouse).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
OC
OX
     NCBI TaxID=10090;
RN
     [1]
     SEQUENCE FROM N.A.
RΡ
     STRAIN=129;
RC
RX
     MEDLINE=99445567; PubMed=10514493;
     Tavares D., Tully K., Dobner P.R.;
RΑ
     "Sequences required for induction of neurotensin receptor gene
RT
RT
     expression during neuronal differentiation of N1E-115 neuroblastoma
RT
     cells.";
RL
     J. Biol. Chem. 274:30066-30079(1999).
     EMBL; AF172326; AAD51806.1; -.
DR
     MGD; MGI:97386; Ntsr.
DR
KW
     Receptor.
     NON TER
                         32
FT
                  32
                32 AA; 3447 MW; 7F7EA4FA2CCF2EFB CRC64;
SO
     SEQUENCE
                           14.3%; Score 4; DB 11; Length 32;
  Query Match
                           100.0%; Pred. No. 3.1e+03;
  Best Local Similarity
                                                                  0; Gaps
                                                                               0;
             4: Conservative
                               0; Mismatches
                                                    0; Indels
           14 HLNS 17
Qу
               1 | | |
            2 HLNS 5
Db
RESULT 18
Q9PKX3
                                            33 AA.
                 PRELIMINARY;
                                    PRT;
ID
     Q9PKX3
     Q9PKX3;
AC
     01-OCT-2000 (TrEMBLrel. 15, Created)
DT
     01-OCT-2000 (TrEMBLrel. 15, Last sequence update)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DT
     Hypothetical protein TC0337.
DE
     TC0337.
GN
     Chlamydia muridarum.
OS
     Bacteria; Chlamydiae; Chlamydiales; Chlamydiaceae; Chlamydia.
OC
OX
     NCBI_TaxID=83560;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=MoPn / Nigg;
RX
     MEDLINE=20150255; PubMed=10684935;
RA
     Read T.D., Brunham R.C., Shen C., Gill S.R., Heidelberg J.F.,
     White O., Hickey E.K., Peterson J., Utterback T., Berry K., Bass S.,
RA
     Linher K., Weidman J., Khouri H., Craven B., Bowman C., Dodson R.,
RA
     Gwinn M., Nelson W., DeBoy R., Kolonay J., McClarty G., Salzberg S.L.,
RA
RA
     Eisen J., Fraser C.M.;
     "Genome sequences of Chlamydia trachomatis MoPn and Chlamydia
RT
RT
     pneumoniae AR39.";
RL
     Nucleic Acids Res. 28:1397-1406(2000).
DR
     EMBL; AE002301; AAF39200.1; -.
```

```
TIGR; TC0337; -.
DR
KW
     Hypothetical protein; Complete proteome.
SO
     SEQUENCE
              33 AA; 4075 MW; 1E7C5AD9BA5371EC CRC64;
                          14.3%; Score 4; DB 16; Length 33;
  Ouery Match
                          100.0%; Pred. No. 3.2e+03;
  Best Local Similarity
            4; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
  Matches
           24 LRKK 27
Qу
              1111
Dh
           26 LRKK 29
RESULT 19
Q9ZG81
ID
     Q9ZG81
                 PRELIMINARY;
                                   PRT;
                                           34 AA.
AC
     Q9ZG81;
     01-MAY-1999 (TrEMBLrel. 10, Created)
DT
     01-MAY-1999 (TrEMBLrel. 10, Last sequence update)
DT
DT
     01-MAY-1999 (TrEMBLrel. 10, Last annotation update)
     ATP-dependent permease (Fragment).
DE
     Chlamydia trachomatis.
OS
     Bacteria; Chlamydiae; Chlamydiales; Chlamydiaceae; Chlamydia.
OC
OX
     NCBI TaxID=813;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
RC
     STRAIN=L2 434B;
RA
     Wang L., Steenburg S.D., Zheng Y., Larsen S.H.;
RT
     "Gene identification of Chlamydia trachomatis by random DNA
RT
     sequencing.";
RL
     Submitted (AUG-1998) to the EMBL/GenBank/DDBJ databases.
DR
     EMBL; AF087260; AAD04038.1; -.
FT
     NON TER
                  1
                         1
FT
     NON TER
                  34
                         34
SO
     SEQUENCE
              34 AA; 4186 MW; 3B38196393258A53 CRC64;
  Query Match
                          14.3%; Score 4; DB 2; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.3e+03;
             4; Conservative 0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
                                                                             0;
           24 LRKK 27
Qу
              \mathbf{H}
           25 LRKK 28
RESULT 20
Q90ZJ4
                                   PRT;
                                           34 AA.
                 PRELIMINARY;
ΙĎ
     Q90ZJ4
AC
     Q90ZJ4;
     01-DEC-2001 (TrEMBLrel. 19, Created)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last sequence update)
DT
DΤ
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DE
     Platelet-derived growth factor A chain long form (Fragment).
GN
     PDGF-A.
OS
     Gallus gallus (Chicken).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Archosauria; Aves; Neognathae; Galliformes; Phasianidae; Phasianinae;
```

```
Gallus.
OC
     NCBI TaxID=9031;
OX
RN
     SEOUENCE FROM N.A.
RP
     MEDLINE=21363439; PubMed=11470524;
RX
     Horiuchi H., Inoue T., Furusawa S., Matsuda H.;
RΑ
     "Characterization and expression of three forms of cDNA encoding
RT
     chicken platelet-derived growth factor-A chain.";
RT
     Gene 272:181-190(2001).
RL
     EMBL; AB031024; BAB62544.1; -.
DR
     NON TER
FT
                   1
                34 AA; 3983 MW; FEF02F8A45B27DA5 CRC64;
     SEQUENCE
SQ
                          14.3%; Score 4; DB 13; Length 34;
  Query Match
                          100.0%; Pred. No. 3.3e+03;
  Best Local Similarity
                               0; Mismatches
             4; Conservative
                                                 0; Indels
                                                                  0; Gaps
  Matches
           25 RKKL 28
Qу
              1111
           28 RKKL 31
Db
RESULT 21
Q8G2Q2
                                           34 AA.
ID
     Q8G2Q2
                 PRELIMINARY;
                                   PRT;
AC
     08G2Q2;
     01-MAR-2003 (TrEMBLrel. 23, Created)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DT
DE
     Hypothetical protein.
GN
     BR0266.
     Brucella suis.
OS
     Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales;
OC
OC
     Brucellaceae; Brucella.
     NCBI_TaxID=29461;
OX
RN
     [1]
     SEQUENCE FROM N.A.
RΡ
RC
     STRAIN=1330 / Biovar 1;
     MEDLINE=22247741; PubMed=12271122;
ŔХ
     Paulsen I.T., Seshadri R., Nelson K.E., Eisen J.A., Heidelberg J.F.,
RA
     Read T.D., Dodson R.J., Umayam L., Brinkac L.M., Beanan M.J.,
RA
     Daugherty S.C., Deboy R.T., Durkin A.S., Kolonay J.F., Madupu R.,
RA
     Nelson W.C., Ayodeji B., Kraul M., Shetty J., Malek J., Van Aken S.E.,
RA
     Riedmuller S., Tettelin H., Gill S.R., White O., Salzberg S.L.,
RA
     Hoover D.L., Lindler L.E., Halling S.M., Boyle S.M., Fraser C.M.;
RA
     "The Brucella suis genome reveals fundamental similarities between
RT
RT
     animal and plant pathogens and symbionts.";
RL
     Proc. Natl. Acad. Sci. U.S.A. 99:13148-13153(2002).
     EMBL; AE014339; AAN29215.1; -.
DR
DR
     TIGR; BR0266; -.
     Hypothetical protein; Complete proteome.
KW
               34 AA; 3781 MW; 76E820326E6CA66E CRC64;
SQ
                          14.3%; Score 4; DB 16; Length 34;
  Query Match
                          100.0%; Pred. No. 3.3e+03;
  Best Local Similarity
                                                    0; Indels
                                                                              0;
                                 0; Mismatches
                                                                  0; Gaps
  Matches
             4; Conservative
```

```
Qу
           11 LGKH 14
              1111
           10 LGKH 13
Db
RESULT 22
Q8V6J8
                                            35 AA.
ID
     Q8V6J8
                 PRELIMINARY;
                                   PRT;
AC
     Q8V6J8;
     01-MAR-2002 (TrEMBLrel. 20, Created)
DT
     01-MAR-2002 (TrEMBLrel. 20, Last sequence update)
DT
     01-MAR-2002 (TrEMBLrel. 20, Last annotation update)
DT
     Hypothetical 4.1 kDa protein.
DE
OS
     Halovirus HF2.
     Viruses; dsDNA viruses, no RNA stage; Caudovirales; Myoviridae.
OC
OX
     NCBI_TaxID=33771;
RN
     [1]
RP
     SEQUENCE FROM N.A.
     Tang S.-L., Fisher C., Ngui K., Nuttall S.D., Dyall-Smith M.L.;
RA
RT
     "Sequence and transcription of halovirus HF2.";
     Submitted (JAN-2000) to the EMBL/GenBank/DDBJ databases.
RL
     EMBL; AF222060; AAL55025.1; -.
DR
KW
     Hypothetical protein.
     SEOUENCE
                35 AA; 4115 MW; 2652C319622E9CE4 CRC64;
SO
                          14.3%; Score 4; DB 12; Length 35;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 3.3e+03;
  Matches
             4; Conservative
                                0; Mismatches
                                                    0; Indels
                                                                  0; Gaps
                                                                               0;
            1 SVSE 4
Qу
              \|\cdot\|
Db
           10 SVSE 13
RESULT 23
Q8F102
                 PRELIMINARY;
                                    PRT;
                                            35 AA.
ID
     Q8F102
     Q8F102;
AC
     01-MAR-2003 (TrEMBLrel. 23, Created)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
     Hypothetical protein.
DE
     LA3339.
GN
     Leptospira interrogans.
OS
     Bacteria; Spirochaetes; Spirochaetales; Leptospiraceae; Leptospira.
OC
OX
     NCBI TaxID=173;
RN
     [1]
     SEQUENCE FROM N.A.
RP
     STRAIN=56601 / Serogroup Icterohaemorrhagiae / Serovar lai;
RC
RA
     Ren S.;
     Submitted (MAR-2002) to the EMBL/GenBank/DDBJ databases.
RL
     EMBL; AE011494; AAN50536.1; -.
DR
KW
     Hypothetical protein; Complete proteome.
SO
     SEQUENCE
                35 AA; 4253 MW; ODDFEDFFB32E980B CRC64;
                           14.3%; Score 4; DB 16; Length 35;
  Query Match
```

100.0%; Pred. No. 3.3e+03;

Best Local Similarity

```
0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                              0;
          4; Conservative
 Matches
           14 HLNS 17
Qу
              Db
            3 HLNS 6
RESULT 24
Q53920
                                           36 AA.
ID
    Q53920
                 PRELIMINARY;
                                   PRT:
AC
     Q53920;
DT
     01-NOV-1996 (TrEMBLrel. 01, Created)
DT
     01-NOV-1996 (TrEMBLrel. 01, Last sequence update)
     01-JUN-2002 (TrEMBLrel. 21, Last annotation update)
DT
DΕ
     OrfA protein (Fragment).
GN
     ORFA.
OS
     Streptomyces chrysomallus.
     Bacteria; Actinobacteria; Actinobacteridae; Actinomycetales;
OC
OC
     Streptomycineae; Streptomycetaceae; Streptomyces.
OX
     NCBI TaxID=1899;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RX
     MEDLINE=94341259; PubMed=8062824;
RA
     Pahl A., Keller U.;
     "Streptomyces chrysomallus FKBP-33 is a novel immunophilin consisting
RT
     of two FK506-binding domains with its gene transcriptionally coupled
RT
     to the FKBP-12 gene.";
RT
RL
     EMBO J. 13:3472-3480(1994).
     EMBL; Z34523; CAA84281.1; -.
DR
DR
     InterPro; IPR004347; DUF245.
DR
     Pfam; PF03136; DUF245; 1.
FT
     NON TER
                   1
                          1
                36 AA; 4121 MW; EBD470AAF99A728E CRC64;
SQ
     SEQUENCE
  Query Match
                          14.3%; Score 4; DB 2; Length 36;
                          100.0%; Pred. No. 3.4e+03;
  Best Local Similarity
                                0; Mismatches 0; Indels
                                                                  0; Gaps
  Matches
            4; Conservative
           19 ERVE 22
Qу
              1111
           27 ERVE 30
Db
RESULT 25
068941
                                   PRT;
                                           36 AA.
ID
     068941
                 PRELIMINARY;
AC
     068941;
     01-AUG-1998 (TrEMBLrel. 07, Created)
DT
     01-AUG-1998 (TrEMBLrel. 07, Last sequence update)
DT
     01-MAR-2002 (TrEMBLrel. 20, Last annotation update)
DT
     Dinitrogenase 3 beta subunit (Fragment).
DE
GN
     ANFK.
OS
     Rhodospirillum rubrum.
OC
     Bacteria; Proteobacteria; Alphaproteobacteria; Rhodospirillales;
OC
     Rhodospirillaceae; Rhodospirillum.
     NCBI TaxID=1085;
OX
RN
     [1]
```

```
RΡ
    SEQUENCE FROM N.A.
RA
    Loveless T.M., Bishop P.E.;
    "Identification of Genes Unique to Mo-Independent Nitrogenase Systems
RΤ
    in Diverse Diazotrophs.";
RT
    Submitted (APR-1998) to the EMBL/GenBank/DDBJ databases.
RL
    EMBL; AF058778; AAC14327.1; -.
DR
    InterPro; IPR000510; Oxred nitrognse1.
DR
     Pfam; PF00148; oxidored nitro; 1.
DR
FT
    NON TER
                 36
                        36
    SEQUENCE
               36 AA; 3957 MW; D94F46BCFD437D97 CRC64;
SO
                         14.3%; Score 4; DB 2; Length 36;
  Query Match
                         100.0%; Pred. No. 3.4e+03;
  Best Local Similarity
  Matches
            4; Conservative 0; Mismatches 0; Indels
          24 LRKK 27
Qу
              1111
Db
            5 LRKK 8
RESULT 26
Q8WXW8
                                           36 AA.
ID
     Q8WXW8
                PRELIMINARY;
                                  PRT;
AC
     Q8WXW8;
     01-MAR-2002 (TrEMBLrel. 20, Created)
DT
     01-MAR-2002 (TrEMBLrel. 20, Last sequence update)
DT
DT
     01-JUN-2002 (TrEMBLrel. 21, Last annotation update)
     Urea transporter JK glycoprotein (Fragment).
GN
OS
     Homo sapiens (Human).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
     Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OC
OX
     NCBI TaxID=9606;
RN
     [1]
RP
     SEQUENCE FROM N.A.
     Olsson M.L., Irshaid N.M., Eicher N.I., Poole J., Hustinx H.;
RA
     "Molecular Basis of the Jk(a-b-) Phenotype in Non-Finnish European
RT
RT
     Pedigrees.";
RL
     Br. J. Haematol. 0:0-0(2001).
     EMBL; AF328890; AAL37474.1; -.
DR
     InterPro; IPR004937; Urea transporter.
DR
DR
     Pfam; PF03253; UT; 1.
FT
     NON TER
                  1
SO
     SEOUENCE
               36 AA; 3989 MW; C3A6A964C2F41007 CRC64;
                          14.3%; Score 4; DB 4; Length 36;
  Best Local Similarity 100.0%; Pred. No. 3.4e+03;
           4; Conservative 0; Mismatches 0; Indels
  Matches
                                                                 0; Gaps
                                                                             0;
           15 LNSM 18
Qу
              Db
            7 LNSM 10
RESULT 27
Q9PXD1
ID Q9PXD1
                 PRELIMINARY;
                                  PRT;
                                           36 AA.
```

```
AC
     O9PXD1;
     01-MAY-2000 (TrEMBLrel. 13, Created)
DT
     01-MAY-2000 (TrEMBLrel. 13, Last sequence update)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DT
     Genome polyprotein [Contains: envelope glycoprotein E2/NS1 (GP68)]
DE
DE
     (Fragment).
OS
     Hepatitis C virus.
     Viruses; ssRNA positive-strand viruses, no DNA stage; Flaviviridae;
OC
     Hepacivirus.
OC
     NCBI TaxID=11103;
OX
RN
     [1]
     SEQUENCE FROM N.A.
RP
     MEDLINE=96343121; PubMed=8750162;
RX
     Chayama K., Tsubota A., Arase Y., Saitoh S., Ikeda K., Matsumoto T.,
RA
     Hashimoto M., Kobayashi M., Kanda M., Morinaga T.;
RA
     "Genotype, slow decrease in virus titer during interferon treatment
RT
     and high degree of sequence variability of hypervariable region are
RT
     indicative of poor response to interferon treatment in patients with
     chronic hepatitis type C.";
RT
     J. Hepatol. 23:648-653(1995).
RL
     InterPro; IPR002531; HCV NS1.
DR
     Pfam; PF01560; HCV NS1; 1.
DR
     Coat protein; Envelope protein; Glycoprotein; Nonstructural protein;
KW
     Polyprotein; Transmembrane.
KW
                                  5BB7935A55048D34 CRC64;
               36 AA; 3546 MW;
SQ
     SEQUENCE
                          14.3%; Score 4; DB 12; Length 36;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 3.4e+03;
                                                                  0; Gaps
             4; Conservative 0; Mismatches 0; Indels
                                                                              0:
  Matches
            5 IQLM 8
Qу
              | | | | |
Db
           33 IQLM 36
RESULT 28
Q9YHT9
                                   PRT;
                                            36 AA.
ID
                 PRELIMINARY;
     Q9YHT9
AC
     O9YHT9;
     01-MAY-1999 (TrEMBLrel. 10, Created)
DT
     01-MAY-1999 (TrEMBLrel. 10, Last sequence update)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DT
     Synaptosome-associated protein 25.2 (Fragment).
DΕ
GN
     SNAP25B OR SNAP.
     Brachydanio rerio (Zebrafish) (Danio rerio).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Actinopterygii; Neopterygii; Teleostei; Ostariophysi; Cypriniformes;
OC
     Cyprinidae; Danio.
OC
OX
     NCBI TaxID=7955;
RN
     [1]
     SEQUENCE FROM N.A.
RP
     MEDLINE=99057281; PubMed=9843147;
RX
     Risinger C., Salaneck E., Soderberg C., Gates M., Postlethwait J.H.,
RA
RA
     Larhammar D.;
     "Cloning of two loci for synapse protein Snap25 in zebrafish:
RT
     comparison of paralogous linkage groups suggests loss of one locus in
RT
     the mammalian lineage.";
RT
```

```
DR
     EMBL; AF091596; AAC73006.1; -.
DR
     ZFIN; ZDB-GENE-980526-392; snap25b.
     NON TER
FT
                  1
                          1
FT
     NON TER
                  36
                         36
     SEOUENCE
                36 AA; 4046 MW; E3434855F7EEC02F CRC64;
SO
                          14.3%; Score 4; DB 13; Length 36;
  Query Match
                         100.0%; Pred. No. 3.4e+03;
 Best Local Similarity
             4; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
           19 ERVE 22
              1111
Db
            2 ERVE 5
RESULT 29
Q8KYJ0
ID
     Q8KYJ0
                 PRELIMINARY;
                                   PRT;
                                           37 AA.
AC
     Q8KYJ0;
     01-OCT-2002 (TrEMBLrel. 22, Created)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last sequence update)
\mathrm{D}\mathrm{T}
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DT
DE
     Conserved hypothetical protein.
GN
     BXA0180.
OS
     Bacillus anthracis.
OG
     Plasmid pXO1.
     Bacteria; Firmicutes; Bacillales; Bacillaceae; Bacillus.
OC
OX
     NCBI TaxID=1392;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
RC
     STRAIN=A2012;
RX
     MEDLINE=22061436; PubMed=12004073;
RA
     Read T.D., Salzberg S.L., Pop M., Shumway M., Umayam L., Jiang L.,
RA
     Holtzapple E., Busch J.D., Smith K.L., Schupp J.M., Solomon D.,
     Keim P., Fraser C.M.;
RA
     "Comparative Genome Sequencing for Discovery of Novel Polymorphisms in
RT
RT
     Bacillus anthracis.";
RL
     Science 296:2028-2033(2002).
DR
     EMBL; AE011190; AAM26125.1; -.
KW
     Hypothetical protein; Plasmid.
SQ
     SEQUENCE 37 AA; 4416 MW; B5B11661AC3522BD CRC64;
                          14.3%; Score 4; DB 2; Length 37;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 3.5e+03;
           4; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
           24 LRKK 27
Qу
              1111
           11 LRKK 14
Db
RESULT 30
Q9N2L2
ID
                 PRELIMINARY;
                                   PRT;
                                           37 AA.
     Q9N2L2
AC
     Q9N2L2;
     01-OCT-2000 (TrEMBLrel. 15, Created)
```

RL

J. Neurosci. Res. 54:563-573(1998).

```
01-OCT-2000 (TrEMBLrel. 15, Last sequence update)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DE
     Hypothetical protein Y74C10AL.b.
GN
     Y74C10AL.1 OR Y53G8AM.3 OR Y74C10AL.B OR Y53G8AM.H.
OS
     Caenorhabditis elegans.
     Eukaryota; Metazoa; Nematoda; Chromadorea; Rhabditida; Rhabditoidea;
OC
     Rhabditidae; Peloderinae; Caenorhabditis.
OC
OX
     NCBI TaxID=6239;
RN
     [1]
     SEQUENCE FROM N.A.
RΡ
RC
     STRAIN=BRISTOL N2;
RX
     MEDLINE=99069613; PubMed=9851916;
RA
     None;
     "Genome sequence of the nematode C. elegans: a platform for
RT
     investigating biology. The C. elegans Sequencing Consortium.";
RT
     Science 282:2012-2018(1998).
RL
     [2]
RN
RΡ
     SEQUENCE FROM N.A.
RC
     STRAIN=BRISTOL N2;
RA
     Waterston R.;
     Submitted (APR-2001) to the EMBL/GenBank/DDBJ databases.
RL
DR
     EMBL; AC024865; AAF60879.1; -.
DR
     EMBL; AC024808; AAK29928.1; -.
DR
     WormPep; Y53G8AM.3; CE21754.
     WormPep; Y74C10AL.1; CE21754.
DR
SQ
     SEQUENCE 37 AA; 4295 MW; 4FD29761F5E22139 CRC64;
  Query Match
                          14.3%; Score 4; DB 5; Length 37;
  Best Local Similarity
                          100.0%; Pred. No. 3.5e+03;
  Matches
             4; Conservative
                               0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
           18 MERV 21
QУ
              | | | |
Db
           14 MERV 17
RESULT 31
039942
ID
                 PRELIMINARY;
     Q39942
                                   PRT;
                                           37 AA.
AC
     Q39942;
DT
     01-NOV-1996 (TrEMBLrel. 01, Created)
DT
     01-NOV-1996 (TrEMBLrel. 01, Last sequence update)
DT
     01-MAR-2002 (TrEMBLrel. 20, Last annotation update)
DE
     HAHB-2 (Fragment).
GN
    HAHB-2.
OS
     Helianthus annuus (Common sunflower).
OC
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
     Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots;
OC
     Asteridae; campanulids; Asterales; Asteraceae; Asteroideae;
OC
     Heliantheae; Helianthus.
OX
     NCBI TaxID=4232;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
    TISSUE=Stem;
RX
    MEDLINE=95148747; PubMed=7846169;
RA
     Chan R.L., Gonzalez D.H.;
RT
     "A cDNA encoding an HD-zip protein from sunflower.";
```

DT

```
Plant Physiol. 106:1687-1688(1994).
RL
DR
     EMBL; L22849; AAA63766.1; -.
     TRANSFAC; T04071; -.
DR
DR
     InterPro; IPR001356; Homeobox.
     ProDom; PD000010; Homeobox; 1.
DR
FT
     NON TER
                  1
                         1
     NON TER
FT
                 37
                         37
               37 AA; 4352 MW; 8EAF6D9290795B65 CRC64;
SQ
     SEQUENCE
  Query Match
                          14.3%; Score 4; DB 10; Length 37;
  Best Local Similarity 100.0%; Pred. No. 3.5e+03;
 Matches
           4; Conservative
                              0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
           25 RKKL 28
              6 RKKL 9
Dh
RESULT 32
8WWA8Q
ΙD
     8WWA8Q
                PRELIMINARY;
                                   PRT;
                                           37 AA.
AC
     ; 8WWA8Q
DT
     01-MAR-2003 (TrEMBLrel. 23, Created)
     01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DT
DE
     Immune-type receptor 2 (Fragment).
GN
     NITR2.
OS
     Oncorhynchus mykiss (Rainbow trout) (Salmo gairdneri).
0C
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
     Actinopterygii; Neopterygii; Teleostei; Euteleostei;
OC
OC
     Protacanthopterygii; Salmoniformes; Salmonidae; Oncorhynchus.
OX
     NCBI_TaxID=8022;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
RX
     MEDLINE=22354196; PubMed=12466899;
RA
     Yoder J.A., Mueller M.G., Nichols K.M., Ristow S.S., Thorgaard G.H.,
RA
     Ota T., Litman G.W.;
RT
     "Cloning novel immune-type inhibitory receptors from the rainbow
RT
     trout, Oncorhynchus mykiss.";
RL
     Immunogenetics 54:662-670(2002).
DR
     EMBL; AY082616; AAM03444.1; -.
KW
     Receptor.
FT
     NON TER
                   1
                          1
FT
     NON TER
                 37
                         37
SO
               37 AA; 4026 MW; B8D98507D8BE9293 CRC64;
     SEOUENCE
 Query Match
                          14.3%; Score 4; DB 13; Length 37;
 Best Local Similarity
                         100.0%; Pred. No. 3.5e+03;
 Matches
           4; Conservative 0; Mismatches
                                                0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
           1 SVSE 4
              1111
Db
           20 SVSE 23
```

```
ID
     Q8F6U2
                 PRELIMINARY;
                                   PRT:
                                           37 AA.
AC
     Q8F6U2;
DT
     01-MAR-2003 (TrEMBLrel. 23, Created)
     01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
DT
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DE
     Hypothetical protein.
GN
     LA1208.
OS
     Leptospira interrogans.
OC
     Bacteria; Spirochaetes; Spirochaetales; Leptospiraceae; Leptospira.
OX
     NCBI TaxID=173;
RN
RP
     SEOUENCE FROM N.A.
RC
     STRAIN=56601 / Serogroup Icterohaemorrhagiae / Serovar lai;
RA
RL
     Submitted (MAR-2002) to the EMBL/GenBank/DDBJ databases.
DR
     EMBL; AE011302; AAN48407.1; -.
KW
     Hypothetical protein; Complete proteome.
SO
     SEQUENCE 37 AA; 4304 MW; 03F79D322F540894 CRC64;
  Query Match
                          14.3%; Score 4; DB 16; Length 37;
  Best Local Similarity
                          100.0%; Pred. No. 3.5e+03;
  Matches
            4; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                0; Gaps
                                                                             0;
            1 SVSE 4
Qу
              Db
           20 SVSE 23
RESULT 34
Q8F5H3
ID
     O8F5H3
                 PRELIMINARY;
                                   PRT;
                                           37 AA.
AC
     O8F5H3;
     01-MAR-2003 (TrEMBLrel. 23, Created)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
DT
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DE
     Hypothetical protein.
GN
     LA1708.
OS
     Leptospira interrogans.
     Bacteria; Spirochaetes; Spirochaetales; Leptospiraceae; Leptospira.
OC
OX
     NCBI TaxID=173;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
RC
     STRAIN=56601 / Serogroup Icterohaemorrhagiae / Serovar lai;
RA
RL
     Submitted (MAR-2002) to the EMBL/GenBank/DDBJ databases.
DR
     EMBL; AE011348; AAN48907.1; -.
KW
     Hypothetical protein; Complete proteome.
              37 AA; 4366 MW; 47584EB482B9BA2F CRC64;
SQ
     SEQUENCE
  Query Match
                          14.3%; Score 4; DB 16; Length 37;
  Best Local Similarity
                          100.0%; Pred. No. 3.5e+03;
            4; Conservative 0; Mismatches 0; Indels 0; Gaps
  Matches
           25 RKKL 28
Qу
              | \cdot | \cdot |
Db
           19 RKKL 22
```

```
RESULT 35
08F419
ID
     08F419
                 PRELIMINARY;
                                   PRT:
                                           37 AA.
AC
     O8F419;
DT
     01-MAR-2003 (TrEMBLrel. 23, Created)
     01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DT
DE
     Hypothetical protein.
GN
     LA2228.
OS
     Leptospira interrogans.
OC
     Bacteria; Spirochaetes; Spirochaetales; Leptospiraceae; Leptospira.
OX
     NCBI TaxID=173;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
RC
     STRAIN=56601 / Serogroup Icterohaemorrhagiae / Serovar lai;
RA
     Ren S.;
     Submitted (MAR-2002) to the EMBL/GenBank/DDBJ databases.
RL
DR
     EMBL; AE011394; AAN49427.1; -.
KW
     Hypothetical protein; Complete proteome.
SQ
     SEQUENCE 37 AA; 4152 MW; CC11BD48D35A495C CRC64;
  Query Match
                          14.3%; Score 4; DB 16; Length 37;
                          100.0%; Pred. No. 3.5e+03;
  Best Local Similarity
  Matches
             4; Conservative 0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
            3 SEIO 6
Oy
              | | | | |
Db
           27 SEIQ 30
RESULT 36
Q8EXV9
ID
     Q8EXV9
                 PRELIMINARY;
                                   PRT;
                                           37 AA.
AC
     Q8EXV9;
DT
     01-MAR-2003 (TrEMBLrel. 23, Created)
     01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
DT
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DE
     Hypothetical protein.
GN
     LB097.
OS
     Leptospira interrogans.
OC
     Bacteria; Spirochaetes; Spirochaetales; Leptospiraceae; Leptospira.
OX
     NCBI TaxID=173;
RN
     [1]
RP
     SEQUENCE FROM N.A.
     STRAIN=56601 / Serogroup Icterohaemorrhagiae / Serovar lai;
RC
     Ren S.;
RA
     Submitted (MAR-2002) to the EMBL/GenBank/DDBJ databases.
RT.
DR
     EMBL; AE011598; AAN51657.1; -.
KW
     Hypothetical protein; Complete proteome.
              37 AA; 4362 MW; 8E34F9E546966EF8 CRC64;
SQ
     SEQUENCE
                          14.3%; Score 4; DB 16; Length 37;
  Query Match
 Best Local Similarity
                          100.0%; Pred. No. 3.5e+03;
 Matches
            4; Conservative 0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
```

3 SEIQ 6

Qу

```
Db 3 SEIQ 6
```

```
RESULT 37
O9NBE3
                 PRELIMINARY;
                                   PRT;
                                            38 AA.
ID
     Q9NBE3
AC
     Q9NBE3;
     01-OCT-2000 (TrEMBLrel. 15, Created)
DT
     01-OCT-2000 (TrEMBLrel. 15, Last sequence update)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DT
DE
     Hemoglobin IIB (Fragment).
GN
     GB2B.
OS
     Chironomus plumosus.
OC
     Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
     Neoptera; Endopterygota; Diptera; Nematocera; Chironomoidea;
OC
     Chironomidae; Chironominae; Chironomus.
OX
     NCBI_TaxID=33397;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RX
     MEDLINE=20336639; PubMed=10876092;
     Gruhl M.C., Scherbik S.V., Aimanova K.G., Blinov A., Diez J.-L.,
RA
RA
     Bergtrom G.;
     "Insect globin gene polymorphisms: intronic minisatellites and a
RT
     retroposon interrupting exon 1 of homologous globin genes in
RT
RT
     Chironomus (Diptera).";
RL
     Gene 251:153-163(2000).
DR
     EMBL; AF250301; AAF87710.1; -.
     HSSP; P02229; 1ECA.
DR
     InterPro; IPR000971; Globin.
DR
DR
     Pfam; PF00042; globin; 1.
KW
     Heme; Oxygen transport; Transport.
FT
     NON_TER
                   1
                          1
FT
                  38
     NON TER
                         38
SO
     SEQUENCE
                38 AA; 3894 MW; C7322B7D2F5C1CFB CRC64;
                          14.3%; Score 4; DB 5; Length 38;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 3.6e+03;
  Matches
             4; Conservative 0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
                                                                              0;
            2 VSEI 5
Qу
              Db
           26 VSEI 29
RESULT 38
O9NBE5
ID
     Q9NBE5
                 PRELIMINARY;
                                   PRT:
                                            38 AA.
AC
     Q9NBE5;
DT
     01-OCT-2000 (TrEMBLrel. 15, Created)
DT
     01-OCT-2000 (TrEMBLrel. 15, Last sequence update)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DE
     Hemoglobin IIB (Fragment).
GN
     GB2B.
OS
     Chironomus entis.
OC
     Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
     Neoptera; Endopterygota; Diptera; Nematocera; Chironomoidea;
```

```
OX
     NCBI TaxID=113496;
RN
     [1]
     SEQUENCE FROM N.A.
RP
     MEDLINE=20336639; PubMed=10876092;
RX
     Gruhl M.C., Scherbik S.V., Aimanova K.G., Blinov A., Diez J.-L.,
RA
     Bergtrom G.;
RA
     "Insect globin gene polymorphisms: intronic minisatellites and a
RT
     retroposon interrupting exon 1 of homologous globin genes in
RT
     Chironomus (Diptera).";
ŔТ
RL
     Gene 251:153-163(2000).
DR
     EMBL; AF250299; AAF87708.1; -.
     HSSP; P02229; 1ECA.
     InterPro; IPR000971; Globin.
DR
     Pfam; PF00042; globin; 1.
DR
     Heme; Oxygen transport; Transport.
KW
FT
     NON_TER
                   1
                           1
FT
     NON TER
                  38
                          38
SQ
     SEQUENCE
                38 AA; 3866 MW; A363697D2F5C1CFE CRC64;
  Query Match
                           14.3%; Score 4; DB 5; Length 38;
                           100.0%; Pred. No. 3.6e+03;
  Best Local Similarity
             4; Conservative 0; Mismatches
                                                                    0; Gaps
                                                                                0;
  Matches
                                                    0; Indels
            2 VSEI 5
Qу
               \parallel \parallel \parallel \parallel
Db
           26 VSEI 29
RESULT 39
Q9NBE8
ID
     Q9NBE8
                  PRELIMINARY;
                                    PRT;
                                             38 AA.
AC
     Q9NBE8;
DT
     01-OCT-2000 (TrEMBLrel. 15, Created)
     01-OCT-2000 (TrEMBLrel. 15, Last sequence update)
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DΕ
     Hemoglobin IIB (Fragment).
GN
     GB2B.
OS
     Chironomus bernensis.
OC
     Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
     Neoptera; Endopterygota; Diptera; Nematocera; Chironomoidea;
OC
     Chironomidae; Chironominae; Chironomus.
OX
     NCBI TaxID=113491;
RN
     [1]
     SEQUENCE FROM N.A.
RΡ
RX
     MEDLINE=20336639; PubMed=10876092;
RA
     Gruhl M.C., Scherbik S.V., Aimanova K.G., Blinov A., Diez J.-L.,
RA
     Bergtrom G.;
     "Insect globin gene polymorphisms: intronic minisatellites and a
RT
     retroposon interrupting exon 1 of homologous globin genes in
RT
RT
     Chironomus (Diptera).";
RL
     Gene 251:153-163(2000).
DR
     EMBL; AF250296; AAF87705.1; -.
DR
     HSSP; P02229; 1ECA.
DR
     InterPro; IPR000971; Globin.
DR
     Pfam; PF00042; globin; 1.
KW
     Heme; Oxygen transport; Transport.
```

OC

Chironomidae; Chironominae; Chironomus.

```
NON TER
FT
                  1
                         1
FT
    NON TER
                  38
                         38
    SEQUENCE
               38 AA; 3910 MW; D413197D2F5C1CFB CRC64;
SO
                          14.3%; Score 4; DB 5; Length 38;
 Best Local Similarity 100.0%; Pred. No. 3.6e+03;
 Matches
            4; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
           2 VSEI 5
QУ
              Db
           26 VSEI 29
RESULT 40
Q9NBE4
                PRELIMINARY;
                                  PRT;
                                           38 AA.
ID
     O9NBE4
AC
     Q9NBE4;
     01-OCT-2000 (TrEMBLrel. 15, Created)
DT
     01-OCT-2000 (TrEMBLrel. 15, Last sequence update)
DT
DT
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DE
    Hemoglobin IIB (Fragment).
GN
     GB2B.
     Chironomus muratensis.
OS
OC
     Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
     Neoptera; Endopterygota; Diptera; Nematocera; Chironomoidea;
OC
     Chironomidae; Chironominae; Chironomus.
OC
OX
     NCBI TaxID=113500;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RX
     MEDLINE=20336639; PubMed=10876092;
RA
     Gruhl M.C., Scherbik S.V., Aimanova K.G., Blinov A., Diez J.-L.,
RA
     Bergtrom G.;
RT
     "Insect globin gene polymorphisms: intronic minisatellites and a
RT
     retroposon interrupting exon 1 of homologous globin genes in
RT
     Chironomus (Diptera).";
     Gene 251:153-163(2000).
RL
     EMBL; AF250300; AAF87709.1; -.
DR
DR
     HSSP; P02229; 1ECA.
DR
     InterPro; IPR000971; Globin.
DR
     Pfam; PF00042; globin; 1.
KW
     Heme; Oxygen transport; Transport.
FT
     NON TER
                  1
                          1
FT
     NON TER
                  38
                         38
SO
     SEQUENCE
               38 AA; 3866 MW; A363697D2F5C1CFE CRC64;
  Ouery Match
                          14.3%; Score 4; DB 5; Length 38;
  Best Local Similarity 100.0%; Pred. No. 3.6e+03;
  Matches
           4; Conservative 0; Mismatches 0; Indels
                                                                             0;
                                                                 0; Gaps
            2 VSEI 5
Qу
              1111
Db
           26 VSEI 29
```

Search completed: January 14, 2004, 10:42:00

Job time : 21.9346 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

January 14, 2004, 10:37:44; Search time 18.8411 Seconds Run on:

(without alignments)

303.882 Million cell updates/sec

US-09-843-221A-168 Title:

Perfect score: 28

1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28 Sequence:

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

762491 seqs, 204481190 residues Searched:

Word size :

Total number of hits satisfying chosen parameters: 28045

Minimum DB seq length: 28 Maximum DB seq length: 40

Post-processing: Listing first 1000 summaries

Published Applications_AA:* Database :

/cgn2_6/ptodata/1/pubpaa/US07_PUBCOMB.pep:*

/cqn2 6/ptodata/1/pubpaa/PCT NEW PUB.pep:*

/cgn2 6/ptodata/1/pubpaa/US06_NEW_PUB.pep:* 3:

/cgn2 6/ptodata/1/pubpaa/US06_PUBCOMB.pep:* 4:

/cgn2 6/ptodata/1/pubpaa/US07 NEW PUB.pep:*

/cgn2 6/ptodata/1/pubpaa/PCTUS PUBCOMB.pep:* 6:

/cgn2 6/ptodata/1/pubpaa/US08_NEW_PUB.pep:* 7:

/cgn2_6/ptodata/1/pubpaa/US08_PUBCOMB.pep:*

/cgn2 6/ptodata/1/pubpaa/US09A PUBCOMB.pep:* 10: /cgn2 6/ptodata/1/pubpaa/US09B PUBCOMB.pep:*

/cgn2 6/ptodata/1/pubpaa/US09C_PUBCOMB.pep:* 11:

/cgn2_6/ptodata/1/pubpaa/US09_NEW_PUB.pep:* 12:

/cgn2_6/ptodata/1/pubpaa/US10A PUBCOMB.pep:* 13:

/cgn2 6/ptodata/1/pubpaa/US10B PUBCOMB.pep:* 14:

15: /cqn2 6/ptodata/1/pubpaa/US10C PUBCOMB.pep:* /cgn2_6/ptodata/1/pubpaa/US10_NEW_PUB.pep:* 16:

/cgn2 6/ptodata/1/pubpaa/US60_NEW_PUB.pep:* 17:

/cgn2 6/ptodata/1/pubpaa/US60_PUBCOMB.pep:* 18:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

왕

Result Query

> No. Score Match Length DB ID

Description

```
1
        28
             100.0
                       28
                           11
                                US-09-843-221A-52
                                                             Sequence 52, Appl
                                US-09-843-221A-168
 2
        28
             100.0
                       28
                           11
                                                             Sequence 168, App
 3
        28
             100.0
                       29
                           11
                                US-09-843-221A-51
                                                             Sequence 51, Appl
 4
             100.0
                       29
                           11
                                US-09-843-221A-167
                                                             Sequence 167, App
 5
                       30
        28
             100.0
                           11
                                US-09-843-221A-39
                                                             Sequence 39, Appl
 6
        28
             100.0
                       30
                           11
                                US-09-843-221A-166
                                                             Sequence 166, App
 7
        28
             100.0
                       31
                           9
                               US-09-169-786-2
                                                           Sequence 2, Appli
 8
        28
             100.0
                       31
                           11
                               US-09-843-221A-27
                                                             Sequence 27, Appl
 9
                       31
        28
            100.0
                           11
                                US-09-843-221A-165
                                                             Sequence 165, App
10
                           12 US-10-361-928-9
        28
            100.0
                       33
                                                             Sequence 9, Appli
11
        28
            100.0
                       34
                           9
                               US-09-169-786-3
                                                            Sequence 3, Appli
12
        28
            100.0
                       34
                           10
                                US-09-928-047B-6
                                                             Sequence 6, Appli
13
        28
            100.0
                       34
                           11
                                US-09-843-221A-16
                                                             Sequence 16, Appl
14
        28
            100.0
                       34
                           11
                                US-09-843-221A-161
                                                             Sequence 161, App
15
        28
             100.0
                       34
                           12
                                US-09-928-048A-6
                                                             Sequence 6, Appli
16
        28
            100.0
                       34
                           12
                                US-10-361-928-8
                                                             Sequence 8, Appli
17
        28
            100.0
                       34
                           12
                                US-10-340-484-15
                                                             Sequence 15, Appl
18
        28
            100.0
                       34
                           12
                                US-10-340-484-16
                                                             Sequence 16, Appl
19
        28
            100.0
                       34
                           14
                                US-10-016-403-5
                                                             Sequence 5, Appli
20
        28
            100.0
                       34
                           14
                                US-10-016-403-7
                                                             Sequence 7, Appli
21
        28
            100.0
                       34
                           14
                                US-10-097-079-1
                                                             Sequence 1, Appli
22
        28
            100.0
                       37
                           12
                                US-10-168-185-9
                                                             Sequence 9, Appli
23
        28
            100.0
                       38
                           9
                               US-09-169-786-4
                                                           Sequence 4, Appli
24
        28
            100.0
                       38
                           11
                               US-09-843-221A-14
                                                             Sequence 14, Appl
25
        28
            100.0
                       38
                           12
                                US-10-245-707-1
                                                             Sequence 1, Appli
26
        27
              96.4
                       30
                           11
                                US-09-843-221A-43
                                                            Sequence 43, Appl
27
        27
              96.4
                       33
                           12
                                US-10-361-928-3
                                                            Sequence 3, Appli
28
        27
              96.4
                                US-10-361-928-6
                                                            Sequence 6, Appli
                       33
                           12
29
        27
              96.4
                       34
                           11
                                US-09-843-221A-20
                                                            Sequence 20, Appl
30
        27
              96.4
                       34
                           12
                                US-10-361-928-1
                                                            Sequence 1, Appli
31
        27
              96.4
                       34
                           12
                                US-10-361-928-2
                                                            Sequence 2, Appli
32
        27
              96.4
                       34
                           12
                               US-10-361-928-5
                                                            Sequence 5, Appli
33
        27
              96.4
                       37
                           11
                                US-09-843-221A-15
                                                            Sequence 15, Appl
34
        26
              92.9
                       30
                           11
                                US-09-843-221A-50
                                                            Sequence 50, Appl
35
        26
              92.9
                       31
                           11
                                US-09-843-221A-28
                                                            Sequence 28, Appl
36
        26
              92.9
                       31
                           12
                                US-10-031-874A-206
                                                            Sequence 206, App
37
        25
              89.3
                       34
                           12
                               US-10-372-095-24
                                                            Sequence 24, Appl
38
        22
             78.6
                       28
                           11
                               US-09-843-221A-32
                                                            Sequence 32, Appl
39
        22
             78.6
                       30
                           11
                               US-09-843-221A-124
                                                            Sequence 124, App
40
        22
             78.6
                       30
                           11
                               US-09-843-221A-125
                                                            Sequence 125, App
41
        22
             78.6
                       34
                           11
                               US-09-843-221A-88
                                                            Sequence 88, Appl
42
        22
             78.6
                       34
                                                            Sequence 89, Appl
                           11
                               US-09-843-221A-89
        22
43
              78.6
                       34
                           14
                               US-10-016-403-6
                                                            Sequence 6, Appli
        21
44
             75.0
                       30
                           11
                               US-09-843-221A-126
                                                            Sequence 126, App
45
        21
             75.0
                       30
                           11
                               US-09-843-221A-127
                                                            Sequence 127, App
46
        21
             75.0
                       34
                           11
                               US-09-843-221A-90
                                                            Sequence 90, Appl
47
        21
                       34
             75.0
                           11
                               US-09-843-221A-91
                                                            Sequence 91, Appl
48
        21
             75.0
                       34
                           11
                               US-09-843-221A-92
                                                            Sequence 92, Appl
49
                       34
        21
             75.0
                           11
                               US-09-843-221A-128
                                                            Sequence 128, App
50
        18
             64.3
                       30
                           11
                                                            Sequence 42, Appl
                               US-09-843-221A-42
51
        18
             64.3
                       34
                           11
                               US-09-843-221A-19
                                                            Sequence 19, Appl
52
        18
             64.3
                       34
                           11
                               US-09-843-221A-164
                                                            Sequence 164, App
53
        17
             60.7
                       30
                           11
                               US-09-843-221A-40
                                                            Sequence 40, Appl
54
        17
             60.7
                       30
                           11
                               US-09-843-221A-41
                                                            Sequence 41, Appl
55
        17
                       34
             60.7
                           11
                               US-09-843-221A-17
                                                            Sequence 17, Appl
56
        17
             60.7
                       34
                           11
                               US-09-843-221A-18
                                                            Sequence 18, Appl
```

```
57
               60.7
                                 US-09-843-221A-162
                                                               Sequence 162, App
         17
                        34
                             11
                                                               Sequence 163, App
58
         17
               60.7
                         34
                             11
                                 US-09-843-221A-163
                                                               Sequence 17, Appl
59
         17
               60.7
                         34
                             12
                                 US-10-340-484-17
                                                               Sequence 93, Appl
60
         16
               57.1
                         28
                             11
                                 US-09-843-221A-93
                                                               Sequence 94, Appl
61
         16
               57.1
                         28
                             11
                                 US-09-843-221A-94
                                                               Sequence 95, Appl
62
         15
               53.6
                         28
                             11
                                 US-09-843-221A-95
63
         15
               53.6
                         28
                             11
                                 US-09-843-221A-96
                                                               Sequence 96, Appl
64
         15
               53.6
                         28
                             11
                                 US-09-843-221A-97
                                                               Sequence 97, Appl
                         30
                                                               Sequence 47, Appl
65
         15
               53.6
                             11
                                 US-09-843-221A-47
                                                               Sequence 24, Appl
66
         15
               53.6
                         34
                             11
                                 US-09-843-221A-24
                                 US-10-340-484-19
                                                               Sequence 19, Appl
67
         15
               53.6
                         34
                             12
               50.0
                         30
                                 US-09-843-221A-48
                                                               Sequence 48, Appl
68
         14
                             11
                                 US-09-843-221A-25
                                                               Sequence 25, Appl
69
         14
               50.0
                         34
                             11
70
         14
               50.0
                         34
                             12
                                 US-10-340-484-22
                                                               Sequence 22, Appl
                                                               Sequence 23, Appl
71
         14
               50.0
                         34
                             12
                                 US-10-340-484-23
                         28
                                                               Sequence 34, Appl
72
               42.9
                             11
                                 US-09-843-221A-34
         12
               42.9
                         28
                             11
                                 US-09-843-221A-35
                                                               Sequence 35, Appl
73
         12
               42.9
                         28
                             11
                                 US-09-843-221A-54
                                                               Sequence 54, Appl
74
         12
75
               42.9
                         30
                                 US-09-843-221A-45
                                                               Sequence 45, Appl
                             11
         12
                                                               Sequence 30, Appl
76
               42.9
                         32
                             11
                                 US-09-843-221A-30
         12
                                                               Sequence 22, Appl
77
         12
               42.9
                         34
                             11
                                 US-09-843-221A-22
                                                               Sequence 18, Appl
78
         12
               42.9
                         34
                             12
                                 US-10-340-484-18
               42.9
                                 US-10-340-484-20
                                                               Sequence 20, Appl
79
         12
                         34
                             12
80
         12
               42.9
                         40
                             15
                                 US-10-014-162-111
                                                               Sequence 111, App
81
         10
               35.7
                         28
                             11
                                 US-09-843-221A-33
                                                               Sequence 33, Appl
                                  US-09-843-221A-36
                                                               Sequence 36, Appl
82
         10
               35.7
                         28
                             11
         10
               35.7
                         28
                             11
                                 US-09-843-221A-53
                                                               Sequence 53, Appl
83
               35.7
                                                               Sequence 55, Appl
84
         10
                         28
                             11
                                 US-09-843-221A-55
               35.7
                         30
                             11
                                  US-09-843-221A-44
                                                               Sequence 44, Appl
85
         10
               35.7
                         30
                             11
                                 US-09-843-221A-46
                                                               Sequence 46, Appl
86
         10
                                                              Sequence 9, Appli
                         31
               35.7
                             9
                                US-09-169-786-9
87
         10
                                                                Sequence 29, Appl
88
         10
               35.7
                         32
                             11
                                 US-09-843-221A-29
                         32
                                                                Sequence 31, Appl
89
         10
               35.7
                             11
                                 US-09-843-221A-31
                                                              Sequence 11, Appl
90
               35.7
                         34
                             9
                                US-09-169-786-11
         10
                                                                Sequence 21, Appl
               35.7
                                  US-09-843-221A-21
 91
         10
                         34
                             11
 92
         10
               35.7
                         34
                             11
                                  US-09-843-221A-23
                                                                Sequence 23, Appl
                                                               Sequence 54, Appl
 93
          9
               32.1
                         28
                             14
                                  US-10-097-079-54
          9
                         28
                                                                Sequence 62, Appl
               32.1
                             14
                                  US-10-097-079-62
 94
           9
                                                                Sequence 65, Appl
 95
               32.1
                         28
                             14
                                  US-10-097-079-65
           9
                                  US-10-097-079-79
                                                                Sequence 79, Appl
 96
               32.1
                         28
                             14
           9
               32.1
                         29
                                  US-10-097-079-53
                                                                Sequence 53, Appl
 97
                             14
                                                                Sequence 63, Appl
           9
               32.1
                         29
                                  US-10-097-079-63
 98
                             14
                                                                Sequence 52, Appl
 99
           9
               32.1
                         30
                             14
                                  US-10-097-079-52
           9
                                                                Sequence 64, Appl
100
               32.1
                         30
                             14
                                  US-10-097-079-64
                                                                Sequence 3, Appli
           9
                         31
101
               32.1
                             14
                                  US-10-097-079-3
           9
               32.1
                         31
                                  US-10-097-079-4
                                                                Sequence 4, Appli
102
                             14
           9
               32.1
                         31
                             14
                                  US-10-097-079-5
                                                                Sequence 5, Appli
103
104
           9
               32.1
                         31
                             14
                                  US-10-097-079-6
                                                                Sequence 6, Appli
           9
               32.1
                                  US-10-097-079-7
                                                                Sequence 7, Appli
105
                         31
                             14
           9
                                  US-10-097-079-8
                                                                Sequence 8, Appli
106
               32.1
                         31
                             14
           9
               32.1
                         31
                             14
                                  US-10-097-079-9
                                                                Sequence 9, Appli
107
108
           9
               32.1
                         31
                             14
                                  US-10-097-079-10
                                                                Sequence 10, Appl
                                                                Sequence 20, Appl
           9
                         31
                             14
                                  US-10-097-079-20
109
               32.1
           9
                                                                Sequence 21, Appl
110
               32.1
                         31
                             14
                                  US-10-097-079-21
           9
               32.1
                             14
                                  US-10-097-079-22
                                                                Sequence 22, Appl
111
                         31
           9
               32.1
                             14
                                  US-10-097-079-23
                                                                Sequence 23, Appl
112
                         31
                                                                Sequence 24, Appl
           9
                         31
                             14
                                  US-10-097-079-24
               32.1
113
```

```
Sequence 25, Appl
                                 US-10-097-079-25
               32.1
                         31
                             14
114
                                                               Sequence 26, Appl
                                 US-10-097-079-26
115
               32.1
                         31
                             14
                                                               Sequence 27, Appl
                         31
                                 US-10-097-079-27
116
               32.1
                             14
                                                               Sequence 36, Appl
                                 US-10-097-079-36
           9
               32.1
                         31
                             14
117
                                 US-10-097-079-37
                                                               Sequence 37, Appl
                         31
                             14
           9
               32.1
118
                                                               Sequence 38, Appl
           9
               32.1
                         31
                             14
                                 US-10-097-079-38
119
                                                               Sequence 39, Appl
           9
               32.1
                         31
                             14
                                  US-10-097-079-39
120
                                                               Sequence 47, Appl
                             14
                                  US-10-097-079-47
           9
                         31
               32.1
121
                                  US-10-097-079-48
                                                               Sequence 48, Appl
                             14
           9
               32.1
                         31
122
                                                               Sequence 49, Appl
                         31
                             14
                                  US-10-097-079-49
           9
               32.1
123
                                  US-10-097-079-50
                                                               Sequence 50, Appl
                         31
                             14
               32.1
           9
124
                                  US-10-097-079-51
                                                               Sequence 51, Appl
                             14
               32.1
                         31
125
           9
                                  US-10-097-079-69
                                                               Sequence 69, Appl
                             14
           9
               32.1
                         31
126
                                                               Sequence 70, Appl
                         31
                             14
                                  US-10-097-079-70
           9
               32.1
127
                                                               Sequence 74, Appl
                         31
                             14
                                  US-10-097-079-74
           9
               32.1
128
                                                               Sequence 81, Appl
                                  US-10-097-079-81
                         31
                             14
129
           9
               32.1
                                                               Sequence 82, Appl
                                  US-10-097-079-82
               32.1
                         31
                             14
130
           9
                                                               Sequence 83, Appl
                                  US-10-097-079-83
           9
               32.1
                         31
                             14
131
                                  US-10-097-079-84
                                                               Sequence 84, Appl
           9
               32.1
                         31
                             14
132
                                  US-10-097-079-85
                                                               Sequence 85, Appl
           9
               32.1
                         31
                             14
133
                                                               Sequence 46, Appl
                             14
                                  US-10-097-079-46
134
           9
               32.1
                         34
                                                               Sequence 78, Appl
                                  US-10-097-079-78
                         28
                             14
           8
               28.6
135
                                                               Sequence 158, App
                                  US-09-843-221A-158
                         30
                             11
136
           8
               28.6
                                                               Sequence 159, App
               28.6
                         30
                             11
                                  US-09-843-221A-159
137
           8
                                                               Sequence 10, Appl
               28.6
                         31
                              9
                                 US-09-169-786-10
           8
138
                                                                Sequence 11, Appl
               28.6
                         31
                             14
                                  US-10-097-079-11
           8
139
                                  US-10-097-079-19
                                                                Sequence 19, Appl
                         31
                              14
140
           8
               28.6
                                                               Sequence 28, Appl
                                  US-10-097-079-28
           8
               28.6
                         31
                              14
141
                                                                Sequence 35, Appl
                                  US-10-097-079-35
           8
               28.6
                         31
                              14
142
                                  US-10-097-079-40
                                                                Sequence 40, Appl
                         31
                              14
           8
               28.6
143
                                                                Sequence 45, Appl
                                  US-10-097-079-45
           8
               28.6
                         31
                              14
144
                                                                Sequence 66, Appl
                         31
                              14
                                  US-10-097-079-66
           8
               28.6
145
                                                                Sequence 67, Appl
                                  US-10-097-079-67
           8
               28.6
                         31
                              14
146
                                                                Sequence 68, Appl
                                  US-10-097-079-68
147
           8
               28.6
                         31
                              14
                                                                Sequence 73, Appl
           8
                         31
                              14
                                  US-10-097-079-73
148
               28.6
                                                                Sequence 76, Appl
                                  US-10-097-079-76
           8
               28.6
                         31
                              14
149
                                                                Sequence 80, Appl
                         31
                                  US-10-097-079-80
           8
               28.6
                              14
150
                                                                Sequence 122, App
                                  US-09-843-221A-122
           8
               28.6
                         34
                              11
151
                                                                Sequence 123, App
               28.6
                         34
                              11
                                  US-09-843-221A-123
152
           8
                                                                Sequence 75, Appl
                                  US-10-097-079-75
               28.6
                         34
                              14
153
           8
                                                                Sequence 49, Appl
                                  US-09-843-221A-49
           7
               25.0
                         30
                              11
154
                                                                Sequence 12, Appl
                                  US-10-097-079-12
           7
155
               25.0
                          31
                              14
                                                                Sequence 18, Appl
           7
               25.0
                          31
                              14
                                  US-10-097-079-18
156
                                                                Sequence 29, Appl
           7
               25.0
                          31
                              14
                                  US-10-097-079-29
157
                                                                Sequence 34, Appl
           7
                          31
                              14
                                  US-10-097-079-34
158
               25.0
                                                                Sequence 41, Appl
                                  US-10-097-079-41
           7
                25.0
                          31
                              14
159
                                  US-10-097-079-44
                                                                Sequence 44, Appl
           7
                25.0
                          31
                              14
160
           7
                              11
                                  US-09-843-221A-26
                                                                Sequence 26, Appl
                25.0
                          34
161
                                                                Sequence 22, Appl
                                  US-10-372-095-22
           7
                              12
162
                25.0
                          34
                                                                Sequence 24, Appl
                                  US-10-340-484-24
           7
                25.0
                          34
                              12
163
                                                                Sequence 77, Appl
                              11
                                  US-09-843-221A-77
                21.4
                          30
164
           6
                                                                Sequence 13, Appl
                              14
                                  US-10-097-079-13
                21.4
                          31
165
            6
                                                                Sequence 14, Appl
                              14
                                  US-10-097-079-14
                          31
166
            6
                21.4
                                                                Sequence 15, Appl
                          31
                              14
                                  US-10-097-079-15
167
            6
                21.4
                                                                Sequence 16, Appl
                21.4
                                  US-10-097-079-16
                          31
                              14
            6
168
                                                                Sequence 17, Appl
                                  US-10-097-079-17
                              14
169
            6
                21.4
                          31
                                                                Sequence 30, Appl
                                  US-10-097-079-30
                          31
                              14
170
            6
                21.4
```

```
Sequence 31, Appl
                        31
                            14
                                 US-10-097-079-31
171
               21.4
          6
                                                              Sequence 32, Appl
                        31
                            14
                                 US-10-097-079-32
172
          6
               21.4
                                                              Sequence 33, Appl
                                 US-10-097-079-33
173
          6
               21.4
                        31
                             14
                                                              Sequence 42, Appl
                                 US-10-097-079-42
174
          6
               21.4
                        31
                            14
                                 US-10-097-079-43
                                                              Sequence 43, Appl
175
          6
               21.4
                        31
                             14
                                 US-10-097-079-86
                                                              Sequence 86, Appl
176
          6
               21.4
                        31
                             14
                                                              Sequence 87, Appl
177
          6
               21.4
                        31
                             14
                                 US-10-097-079-87
                                                              Sequence 88, Appl
          6
               21.4
                        31
                             14
                                 US-10-097-079-88
178
                                                              Sequence 65, Appl
          6
               21.4
                        36
                             11
                                 US-09-843-221A-65
179
          5
               17.9
                        28
                             11
                                 US-09-843-221A-69
                                                              Sequence 69, Appl
180
          5
               17.9
                        28
                             11
                                 US-09-843-221A-169
                                                               Sequence 169, App
181
          5
               17.9
                        34
                             9
                                US-09-864-761-38558
                                                              Sequence 38558, A
182
                                US-10-317-832-178
          5
               17.9
                         34
                             12
                                                               Sequence 178, App
183
          5
                             9
                                                              Sequence 49110, A
               17.9
                         38
                                US-09-864-761-49110
184
                         28
                             9
                                US-09-864-761-37690
                                                              Sequence 37690, A
185
          4
               14.3
                         28
                             9
                                US-09-929-818-122
                                                              Sequence 122, App
          4
               14.3
186
                         28
                             9
                                US-09-929-818-200
                                                              Sequence 200, App
          4
               14.3
187
                                                               Sequence 153, App
               14.3
                         28
                             10
                                US-09-003-869-153
188
                                 US-09-999-745-38
                                                               Sequence 38, Appl
          4
               14.3
                         28
                             10
189
                         28
                                 US-09-554-000-22
                                                               Sequence 22, Appl
               14.3
                             1.0
190
          4
                                 US-09-756-690A-153
                                                               Sequence 153, App
                         28
                             11
191
          4
               14.3
                                                               Sequence 198, App
                         28
                             11
                                 US-09-776-724A-198
192
          4
               14.3
                                                               Sequence 104, App
          4
               14.3
                         28
                             11
                                 US-09-899-495-104
193
                                                               Sequence 28289, A
                         28
                             12
                                 US-10-029-386-28289
194
           4
               14.3
                                                               Sequence 153, App
                             15
195
           4
               14.3
                         28
                                 US-10-157-224A-153
                         28
                             15
                                 US-10-187-051-153
                                                               Sequence 153, App
196
           4
               14.3
                                                              Sequence 5, Appli
               14.3
                         29
                             9
                                US-09-730-379B-5
197
           4
                                                               Sequence 133, App
                         29
                             11
                                 US-09-969-730-133
198
           4
               14.3
                                                               Sequence 24, Appl
           4
               14.3
                         29
                             11
                                 US-09-095-478-24
199
                         29
                                 US-09-933-767-1006
                                                               Sequence 1006, Ap
200
           4
               14.3
                             12
                         29
                             15
                                                               Sequence 1006, Ap
           4
                                 US-10-023-282-1006
201
               14.3
                                                               Sequence 5404, Ap
                         29
                             15
                                 US-10-106-698-5404
202
           4
               14.3
                                                               Sequence 111, App
                         29
                             15
                                 US-10-197-954-111
203
           4
               14.3
                                                              Sequence 41441, A
                         30
                                US-09-864-761-41441
204
           4
               14.3
                             9
                                                               Sequence 191, App
                                 US-09-774-639-191
                         30
205
           4
               14.3
                             11
                                                               Sequence 19, Appl
206
           4
               14.3
                         30
                             12
                                 US-10-310-113-19
                         30
                                 US-09-933-767-821
                                                               Sequence 821, App
207
           4
               14.3
                             12
                                                               Sequence 821, App
                         30
                             15
                                 US-10-023-282-821
208
           4
               14.3
                                                              Sequence 38725, A
                         31
                             9
                                US-09-864-761-38725
209
           4
               14.3
                                                               Sequence 6281, Ap
               14.3
                         31
                             10
                                 US-09-738-626-6281
210
           4
                                                               Sequence 1001, Ap
211
           4
               14.3
                         31
                             12
                                 US-09-933-767-1001
                                 US-10-029-386-32285
                                                               Sequence 32285, A
               14.3
                         31
                             12
212
           4
                                                               Sequence 1001, Ap
                         31
                             15
                                 US-10-023-282-1001
213
           4
               14.3
                                                               Sequence 7956, Ap
                         31
                             15
                                 US-10-106-698-7956
214
           4
               14.3
               14.3
                                                              Sequence 48632, A
           4
                         32
                             9
                                US-09-864-761-48632
215
                                                               Sequence 442, App
           4
               14.3
                         32
                             11
                                 US-09-809-391-442
216
                                                               Sequence 442, App
217
               14.3
                         32
                             12
                                 US-09-882-171-442
218
           4
               14.3
                         32
                             12
                                 US-10-310-113-23
                                                               Sequence 23, Appl
                                 US-10-310-113-134
                         32
                                                               Sequence 134, App
               14.3
                             12
219
           4
                                                               Sequence 135, App
                         32
                                 US-10-310-113-135
220
           4
               14.3
                             12
                                                               Sequence 136, App
221
           4
               14.3
                         32
                             12
                                 US-10-310-113-136
                         32
                                 US-10-164-279-39
                                                               Sequence 39, Appl
222
           4
               14.3
                             12
                                                               Sequence 43, Appl
                         32
                             12
                                 US-10-164-279-43
223
           4
               14.3
                                                               Sequence 212, App
                         32
                             15
                                 US-10-174-410-212
224
           4
               14.3
                                                              Sequence 35714, A
                         33
                             9
                                US-09-864-761-35714
225
           4
               14.3
                                                              Sequence 48253, A
226
               14.3
                         33
                             9
                                US-09-864-761-48253
           4
                                US-09-864-761-49019
                                                              Sequence 49019, A
               14.3
                         33
                             9
227
```

```
228
               14.3
                                US-09-925-299-1526
                                                             Sequence 1526, Ap
229
               14.3
                        33
                                 US-09-925-299-1526
                            11
                                                              Sequence 1526, Ap
230
               14.3
                        33
                            12
                                 US-09-933-767-368
                                                              Sequence 368, App
          4
                        33
                                                              Sequence 63, Appl
231
               14.3
                            12
                                 US-10-164-279-63
232
           4
               14.3
                        33
                            14
                                                              Sequence 4, Appli
                                 US-10-215-297-4
                        33
233
           4
               14.3
                            15
                                 US-10-215-298-4
                                                              Sequence 4, Appli
234
           4
               14.3
                        33
                            15
                                 US-10-081-816-110
                                                              Sequence 110, App
235
           4
               14.3
                        33
                            15
                                 US-10-023-282-368
                                                              Sequence 368, App
               14.3
236
           4
                        34
                             9 US-09-864-761-44185
                                                             Sequence 44185, A
237
               14.3
                        34
                                US-09-864-761-44916
                                                             Sequence 44916, A
238
               14.3
                        34
                             9
                                US-09-864-761-45430
                                                             Sequence 45430, A
239
               14.3
                        34
                            9
                                US-09-864-761-48511
                                                             Sequence 48511, A
240
           4
               14.3
                        34
                            12
                                 US-10-231-417-538
                                                              Sequence 538, App
241
               14.3
                        34
                             12
           4
                                 US-10-029-386-27795
                                                              Sequence 27795, A
242
          4
               14.3
                        34
                            15
                                 US-10-106-698-8037
                                                              Sequence 8037, Ap
243
          4
                        35
                             9 US-09-925-299-1258
               14.3
                                                             Sequence 1258, Ap
244
                        35
           4
               14.3
                             11
                                 US-09-925-299-1258
                                                              Sequence 1258, Ap
245
               14.3
                        35
                                                              Sequence 75, Appl
                                 US-10-289-660-75
246
               14.3
                        35
                            12
                                 US-10-340-484-13
                                                              Sequence 13, Appl
247
               14.3
                        35
          4
                             12
                                 US-10-012-952A-147
                                                              Sequence 147, App
248
               14.3
                        35
                                                              Sequence 138, App
          4
                            12
                                 US-10-062-599-138
249
          4
               14.3
                        35
                             15
                                 US-10-133-128-75
                                                              Sequence 75, Appl
250
                        35
          4
               14.3
                            15
                                 US-10-062-831-138
                                                              Sequence 138, App
251
                        36
          4
               14.3
                            8
                               US-08-851-965-24
                                                             Sequence 24, Appl
252
          4
              14.3
                        36
                            9
                                US-09-864-761-34257
                                                             Sequence 34257, A
253
               14.3
                        36
                            9
                                US-09-864-761-39771
                                                             Sequence 39771, A
254
           4
              14.3
                        36
                            9
                                US-09-864-761-48628
                                                             Sequence 48628, A
255
                                US-09-454-533-30
           4
               14.3
                        36
                            10
                                                              Sequence 30, Appl
               14.3
256
          4
                        36
                            12
                                 US-10-340-484-12
                                                              Sequence 12, Appl
257
          4
               14.3
                        36
                            15
                                 US-10-050-704-192
                                                              Sequence 192, App
258
               14.3
                        37
                             Я
                                US-08-851-965-22
                                                             Sequence 22, Appl
259
          4
               14.3
                        37
                             8
                                US-08-851-965-23
                                                             Sequence 23, Appl
260
          4
               14.3
                        37
                             8
                                US-08-851-965-25
                                                             Sequence 25, Appl
261
          4
               14.3
                        37
                                US-08-851-965-26
                                                             Sequence 26, Appl
262
               14.3
                        37
                                US-08-851-965-27
                                                             Sequence 27, Appl
263
          4
              14.3
                        37
                             9
                                US-09-864-761-38287
                                                             Sequence 38287, A
264
          4
               14.3
                        37
                            9
                                US-09-864-761-41884
                                                             Sequence 41884, A
265
          4
               14.3
                        37
                            10
                                 US-09-908-805B-79
                                                              Sequence 79, Appl
266
          4
               14.3
                        37
                            10
                                 US-09-454-533-6
                                                              Sequence 6, Appli
267
          4
               14.3
                        37
                            10
                                 US-09-454-533-28
                                                              Sequence 28, Appl
268
          4
              14.3
                        37
                            10
                                 US-09-454-533-29
                                                              Sequence 29, Appl
269
          4
               14.3
                        37
                            10
                                 US-09-454-533-31
                                                              Sequence 31, Appl
270
          4
               14.3
                        37
                             10
                                 US-09-454-533-32
                                                              Sequence 32, Appl
271
          4
               14.3
                        37
                            10
                                 US-09-454-533-33
                                                              Sequence 33, Appl
272
                        37
          4
              14.3
                            11
                                 US-09-764-872-347
                                                              Sequence 347, App
273
          4
              14.3
                        37
                            12
                                 US-10-012-952A-209
                                                              Sequence 209, App
274
          4
               14.3
                        37
                            12
                                 US-10-339-740-265
                                                              Sequence 265, App
275
                        37
          4
              14.3
                            12
                                 US-10-283-403-9
                                                              Sequence 9, Appli
276
          4
              14.3
                        37
                            15
                                 US-10-082-830-161
                                                              Sequence 161, App
277
          4
              14.3
                        37
                            15
                                 US-10-106-698-6085
                                                              Sequence 6085, Ap
278
          4
              14.3
                        38
                                US-09-250-883-21
                                                             Sequence 21, Appl
279
               14.3
                        38
                                US-09-864-761-34617
                                                             Sequence 34617, A
280
          4
              14.3
                        38
                                US-09-864-761-42372
                                                             Sequence 42372, A
                        38
281
              14.3
          4
                            9
                                US-09-864-761-44123
                                                             Sequence 44123, A
282
                        38
          4
              14.3
                            9
                                US-09-864-761-44436
                                                             Sequence 44436, A
283
          4
               14.3
                        39
                            9
                                US-09-864-761-41089
                                                             Sequence 41089, A
                        39
284
               14.3
                                US-09-864-761-41410
                                                             Sequence 41410, A
```

```
Sequence 25, Appl
                         39
                             10
                                 US-09-003-869-25
               14.3
285
                                                               Sequence 384, App
                         39
                             11
                                 US-09-983-802-384
286
               14.3
                                                               Sequence 25, Appl
                         39
                             11
                                 US-09-756-690A-25
287
           4
               14.3
                                                               Sequence 25, Appl
                         39
                             15
                                 US-10-157-224A-25
           4
               14.3
288
                                                               Sequence 25, Appl
                         39
                             15
                                 US-10-187-051-25
           4
               14.3
289
                                                               Sequence 7822, Ap
               14.3
                         39
                             15
                                 US-10-106-698-7822
290
           4
                                                               Sequence 2762, Ap
               14.3
                         40
                             11
                                 US-09-764-891-2762
           4
291
                         40
                             12
                                 US-10-058-053A-81
                                                               Sequence 81, Appl
           4
               14.3
292
                                 US-10-058-053A-264
                                                               Sequence 264, App
                         40
                             12
               14.3
293
                                                               Sequence 223, App
                         40
                             15
                                 US-10-091-572-223
           4
               14.3
294
                                US-08-908-884-7
                                                              Sequence 7, Appli
               10.7
                         28
                             8
           3
295
                             9
                                US-09-799-983-16
                                                              Sequence 16, Appl
               10.7
                         28
           3
296
                                                              Sequence 10, Appl
                             9
                         28
                                US-09-730-379B-10
           3
               10.7
297
                                                              Sequence 30, Appl
                         28
                             9
                                 US-09-765-527-30
           3
               10.7
298
                                                              Sequence 139, App
                         28
                             9
                                 US-09-765-527-139
               10.7
           3
299
                                 US-09-765-527-140
                                                              Sequence 140, App
                             9
                         28
           3
               10.7
300
                                                              Sequence 142, App
               10.7
                         28
                                 US-09-765-527-142
           3
301
                                                              Sequence 143, App
                                 US-09-765-527-143
               10.7
                         28
           3
302
                                                              Sequence 27, Appl
                                 US-09-895-072-27
                         28
                             9
           3
303
               10.7
                                 US-09-864-761-34933
                                                              Sequence 34933, A
                         28
                             9
           3
               10.7
304
                                                              Sequence 34971, A
                         28
                             9
                                 US-09-864-761-34971
305
           3
               10.7
                                                              Sequence 35640, A
                                 US-09-864-761-35640
           3
                         28
                             9
               10.7
306
                                                              Sequence 35827, A
                         28
                             9
                                 US-09-864-761-35827
307
           3
               10.7
                                                              Sequence 36728, A
           3
               10.7
                         28
                             9
                                 US-09-864-761-36728
308
                                                              Sequence 37919, A
           3
               10.7
                         28
                             9
                                 US-09-864-761-37919
309
                                                               Sequence 37927, A
           3
                         28
                              9
                                 US-09-864-761-37927
               10.7
310
                                 US-09-864-761-39084
                                                               Sequence 39084, A
                              9
           3
                         28
               10.7
311
                                                               Sequence 39493, A
                                 US-09-864-761-39493
           3
                         28
                              9
312
               10.7
                                                               Sequence 39762, A
                              9
                                 US-09-864-761-39762
           3
                         28
               10.7
313
                                                               Sequence 39984, A
                         28
                              9
                                 US-09-864-761-39984
           3
314
               10.7
                                                               Sequence 40300, A
           3
                         28
                                 US-09-864-761-40300
               10.7
315
                                                               Sequence 41015, A
                         28
                                 US-09-864-761-41015
           3
               10.7
316
                                                               Sequence 41850, A
                                 US-09-864-761-41850
                         28
           3
               10.7
317
                                 US-09-864-761-42022
                                                               Sequence 42022, A
                         28
           3
                              9
318
               10.7
                                                               Sequence 42177, A
                                 US-09-864-761-42177
           3
                10.7
                         28
                              9
319
                                                               Sequence 42253, A
                         28
                              9
                                 US-09-864-761-42253
           3
               10.7
320
                                                               Sequence 43275, A
                         28
                              9
                                 US-09-864-761-43275
           3
                10.7
321
                                                               Sequence 43979, A
                         28
                              9
                                 US-09-864-761-43979
322
           3
                10.7
                                                               Sequence 44041, A
                         28
                              9
                                 US-09-864-761-44041
323
           3
               10.7
                                                               Sequence 44733, A
                                 US-09-864-761-44733
                          28
                              9
324
           3
                10.7
                                 US-09-864-761-45427
                                                               Sequence 45427, A
                              9
                         28
325
           3
                10.7
                                                               Sequence 46128, A
                              9
                                 US-09-864-761-46128
326
           3
                10.7
                          28
                                                               Sequence 47128, A
327
           3
                10.7
                          28
                              9
                                 US-09-864-761-47128
                                                               Sequence 47465, A
           3
                          28
                              9
                                 US-09-864-761-47465
328
                10.7
                                                               Sequence 47968, A
                              9
           3
                          28
                                 US-09-864-761-47968
329
                10.7
                                                               Sequence 48171, A
                              9
                                 US-09-864-761-48171
           3
                10.7
                          28
330
                                                               Sequence 48316, A
                          28
                                 US-09-864-761-48316
           3
                10.7
331
                                                               Sequence 26, Appl
                          28
                                 US-09-962-055-26
                10.7
332
           3
                                                               Sequence 1524, Ap
                              9
                                 US-09-925-301-1524
                          28
333
           3
                10.7
                                                               Sequence 1173, Ap
                          28
                              9
                                 US-09-925-299-1173
 334
           3
                10.7
                                                               Sequence 19, Appl
                          28
                              9
                                 US-09-728-721-19
           3
                10.7
 335
                                                               Sequence 23, Appl
                          28
                              9
                                 US-09-728-721-23
 336
            3
                10.7
                                                               Sequence 7, Appli
                              9
                                 US-09-908-323-7
                          28
 337
            3
                10.7
                                                               Sequence 5, Appli
                              9
                10.7
                          28
                                 US-09-881-490-5
 338
            3
                                                               Sequence 110, App
                              9
                                 US-09-881-490-110
                10.7
                          28
 339
            3
                                                               Sequence 111, App
                          28
                              9
                                 US-09-881-490-111
 340
            3
                10.7
                                                               Sequence 113, App
                                 US-09-881-490-113
                          28
 341
            3
                10.7
```

2.42	_	10 0	0.0	_	TTG 00 001 400 114	Coguence 114 Ann
342	3	10.7		9	US-09-881-490-114	Sequence 114, App Sequence 4, Appli
343	3	10.7		9	US-09-879-666-4	
344	3	10.7	_	9	US-09-929-818-1	Sequence 1, Appli
345	3	10.7		9	US-09-929-818-2	Sequence 2, Appli
346	3	10.7	28	9	US-09-929-818-3	Sequence 3, Appli
347	3	10.7	28	9	US-09-929-818-4	Sequence 4, Appli
348	3	10.7	28	9	US-09-929-818-5	Sequence 5, Appli
349	3	10.7	28	9	US-09-929-818-6	Sequence 6, Appli
350	3	10.7	28	9	US-09-929-818 - 7	Sequence 7, Appli
351	3	10.7	28	9	US-09-929-818-8	Sequence 8, Appli
352	3	10.7	28	9	US-09-929-818-9	Sequence 9, Appli
353	3	10.7	28	9	US-09-929-818-10	Sequence 10, Appl
354	3	10.7	28	9	US-09-929-818-11	Sequence 11, Appl
355	3	10.7	28	9	US-09-929-818-12	Sequence 12, Appl
356	3	10.7	28	9	US-09-929-818-13	Sequence 13, Appl
357	3	10.7	28	9	US-09-929-818-14	Sequence 14, Appl
358	3	10.7	28	9	US-09-929-818-15	Sequence 15, Appl
359	3	10.7	28	9	US-09-929-818-16	Sequence 16, Appl
360	3	10.7	28	9	US-09-929-818-17	Sequence 17, Appl
361	3	10.7	28	9	US-09-929-818-18	Sequence 18, Appl
362	3	10.7	28	9	US-09-929-818-19	Sequence 19, Appl
	3	10.7	28	9	US-09-929-818-20	Sequence 20, Appl
363		10.7	28	9	US-09-929-818-21	Sequence 21, Appl
364	3		28	9	US-09-929-818-22	Sequence 22, Appl
365	3	10.7		-		Sequence 23, Appl
366	3	10.7	28	9	US-09-929-818-23	-
367	3	10.7	28	9	US-09-929-818-24	Sequence 24, Appl
368	3	10.7	28	9	US-09-929-818-25	Sequence 25, Appl
369	3	10.7	28	9	US-09-929-818-26	Sequence 26, Appl
370	3	10.7	28	9	US-09-929-818-27	Sequence 27, Appl
371	3	10.7	28	9	US-09-929-818-28	Sequence 28, Appl
372	3	10.7	28	9	US-09-929-818-29	Sequence 29, Appl
373	3	10.7	28	9	US-09-929-818-30	Sequence 30, Appl
374	3	10.7	28	9	US-09-929-818-31	Sequence 31, Appl
375	3	10.7	28	9	US-09-929 - 818-32	Sequence 32, Appl
376	3	10.7	28	9	US-09-929-818-33	Sequence 33, Appl
377	3	10.7	28	9	US-09-929-818-34	Sequence 34, Appl
378	3	10.7	28	9	US-09-929-818 - 35	Sequence 35, Appl
379	3	10.7	28	9	US-09-929-818-36	Sequence 36, Appl
380	3	10.7	28	9	US-09-929-818-37	Sequence 37, Appl
381	3	10.7	28	9	US-09-929-818-38	Sequence 38, Appl
382	3	10.7	28	9	US-09-929-818-39	Sequence 39, Appl
383	3	10.7	28	9	US-09-929-818-40	Sequence 40, Appl
384	3	10.7	28	9	US-09-929-818-41	Sequence 41, Appl
385	3	10.7	28	9	US-09-929-818-42	Sequence 42, Appl
386	3	10.7	28	9	US-09-929-818-43	Sequence 43, Appl
387	3	10.7	28	9	US-09-929-818-44	Sequence 44, Appl
	3	10.7	28	9	US-09-929-818-45	Sequence 45, Appl
388	3	10.7	28	9	US-09-929-818-46	Sequence 46, Appl
389					US-09-929-818-47	Sequence 47, Appl
390	3	10.7	28	9	US-09-929-818-48	Sequence 48, Appl
391	3	10.7	28	9	US-09-929-818-48	Sequence 49, Appl
392	3	10.7	28	9		Sequence 50, Appl
393	3	10.7	28	9	US-09-929-818-50	_
394	3	10.7	28	9	US-09-929-818-51	Sequence 51, Appl
395	3	10.7	28	9	US-09-929-818-52	Sequence 52, Appl
396	3	10.7	28	9	US-09-929-818-53	Sequence 53, Appl
397	3	10.7	28	9	US-09-929-818-54	Sequence 54, Appl
398	3	10.7	28	9	US-09-929-818-61	Sequence 61, Appl

						[
399	3	10.7	28	9	US-09-929-818-62	Sequence 62, Appl
400	3	10.7	28	9	US-09-929-818-66	Sequence 66, Appl
401	3	10.7	28	9	US-09 - 929-818-69	Sequence 69, Appl
402	3	10.7	28	9	US-09-929-818-76	Sequence 76, Appl
403	3	10.7	28	9	US-09-929-818-77	Sequence 77, Appl
404	3	10.7	28	9	US-09-929-818-80	Sequence 80, Appl
405	3	10.7	28	9	US-09-929-818-87	Sequence 87, Appl
406	3	10.7	28	9	US-09-929-818-94	Sequence 94, Appl
	3	10.7	28	9	US-09-929-818-95	Sequence 95, Appl
407	3	10.7	28	9	US-09-929-818-97	Sequence 97, Appl
408			28	9	US-09-929-818-99	Sequence 99, Appl
409	3	10.7				Sequence 100, App
410	3	10.7	28	9	US-09-929-818-100	Sequence 101, App
411	3	10.7	28	9	US-09-929-818-101	-
412	3	10.7	28	9	US-09-929-818-102	Sequence 102, App
413	3	10.7	28	9	US-09-929-818-103	Sequence 103, App
414	3	10.7	28	9	US-09-929-818 - 104	Sequence 104, App
415	3	10.7	28	9	US-09-929 - 818-105	Sequence 105, App
416	3	10.7	28	9	US-09-929-818-106	Sequence 106, App
417	3	10.7	28	9	US-09-929-818-107	Sequence 107, App
418	3	10.7	28	9	US-09-929-818-108	Sequence 108, App
419	3	10.7	28	9	US-09-929-818-109	Sequence 109, App
420	3	10.7	28	9	US-09-929-818-110	Sequence 110, App
421	3	10.7	28	9	US-09-929-818-111	Sequence 111, App
422	3	10.7	28	9	US-09-929-818-112	Sequence 112, App
		10.7	28	9	US-09-929-818-113	Sequence 113, App
423	3		28	9	US-09-929-818-114	Sequence 114, App
424	3	10.7				Sequence 115, App
425	3	10.7	28	9	US-09-929-818-115	Sequence 116, App
426	3	10.7	28	9	US-09-929-818-116	_
427	3	10.7	28	9	US-09-929-818-117	Sequence 117, App
428	3	10.7	28	9	US-09-929-818-118	Sequence 118, App
429	3	10.7	28	9	US-09-929-818-119	Sequence 119, App
430	3	10.7	28	9	US-09-929-818-120	Sequence 120, App
431	3	10.7	28	9	US-09-929-818-121	Sequence 121, App
432	3	10.7	28	9	US-09-929-818 - 123	Sequence 123, App
433	3	10.7	28	9	US-09-929-818-124	Sequence 124, App
434	3	10.7	28	9	US-09-929-818-125	Sequence 125, App
435	3	10.7	28	9	US-09-929-818-126	Sequence 126, App
436	3	10.7	28	9	US-09-929-818-127	Sequence 127, App
437	3	10.7	28	9	US-09-929-818-128	Sequence 128, App
	3	10.7	28	9	US-09-929-818-129	Sequence 129, App
438			28	9	US-09-929-818-130	Sequence 130, App
439	3	10.7			US-09-929-818-131	Sequence 131, App
440	3	10.7	28	9		Sequence 132, App
441	3	10.7	28	9	US-09-929-818-132	
442	3	10.7	28	9	US-09-929-818-133	Sequence 133, App
443	3	10.7	28	9	US-09-929-818-134	Sequence 134, App
444	3	10.7	28	9	US-09-929-818-135	Sequence 135, App
445	3	10.7	28	9	US-09-929-818-136	Sequence 136, App
446	3	10.7	28	9	US-09-929 - 818-137	Sequence 137, App
447	3	10.7	28	9	US-09-929-818-138	Sequence 138, App
448	3	10.7	28	9	US-09-929-818-139	Sequence 139, App
449	3	10.7	28	9	US-09-929-818-140	Sequence 140, App
450	3	10.7	28	9	US-09-929-818-141	Sequence 141, App
451	3	10.7	28	9	US-09-929-818-142	Sequence 142, App
452	3	10.7	28	9	US-09-929-818-143	Sequence 143, App
452	3	10.7	28	9	US-09-929-818-144	Sequence 144, App
			28	9	US-09-929-818-145	Sequence 145, App
454	3	10.7		9	US-09-929-818-146	Sequence 145, App
455	3	10.7	28	פ	03-07-727-010-140	bequence 140, App

456	3	10.7	28	9	US-09 - 929-818-147	Sequence 147, App
457	3	10.7	28	9	US-09-929-818-148	Sequence 148, App
458	3	10.7	28	9	US-09-929-818-149	Sequence 149, App
459	3	10.7	28	9	US-09-929-818-150	Sequence 150, App
460	3	10.7	28	9	US-09-929-818-151	Sequence 151, App
461	3	10.7	28	9		-
					US-09-929-818-152	Sequence 152, App
462	3	10.7	28	9	US-09-929-818 - 153	Sequence 153, App
463	3	10.7	28	9	US-09-929 - 818-154	Sequence 154, App
464	3	10.7	28	9	US-09-929-818-155	Sequence 155, App
465	3	10.7	28	9	US-09-929 - 818-156	Sequence 156, App
466	3	10.7	28	9	US-09-929-818-157	Sequence 157, App
467	3	10.7	28	9	US-09-929-818-158	Sequence 158, App
468	3	10.7	28	9	US-09-929-818-159	Sequence 159, App
469	3	10.7	28	9	US-09-929-818-160	
						Sequence 160, App
470	3	10.7	28	9	US-09-929-818-161	Sequence 161, App
471	3	10.7	28	9	US-09-929-818-162	Sequence 162, App
472	3	10.7	28	9	US-09-929 - 818-163	Sequence 163, App
473	3	10.7	28	9	US-09-929-818-164	Sequence 164, App
474	3	10.7	28	9	US-09-929-818-165	Sequence 165, App
475	3	10.7	28	9	US-09-929-818-166	Sequence 166, App
476	3	10.7	28	9	US-09-929-818-167	Sequence 167, App
477	3	10.7	28	9		
					US-09-929-818-168	Sequence 168, App
478	3	10.7	28	9	US-09-929-818-169	Sequence 169, App
479	3	10.7	28	9	US-09-929-818-170	Sequence 170, App
480	3	10.7	28	9	US-09-929-818-171	Sequence 171, App
481	3	10.7	28	9	US-09-929-818-172	Sequence 172, App
482	3	10.7	28	9	US-09-929-818-173	Sequence 173, App
483	3	10.7	28	9	US-09-929-818-174	Sequence 174, App
484	3	10.7	28	9	US-09-929-818-175	Sequence 175, App
485		10.7		9		_
	3		28		US-09-929-818-176	Sequence 176, App
486	3	10.7	28	9	US-09-929-818-177	Sequence 177, App
487	3	10.7	28	9	US-09-929-818-178	Sequence 178, App
488	3	10.7	28	9	US-09-929-818-179	Sequence 179, App
489	3	10.7	28	9	US-09-929-818-180	Sequence 180, App
490	3	10.7	28	9	US-09-929-818-181	Sequence 181, App
491	3	10.7	28	9	US-09-929-818-182	Sequence 182, App
492	3	10.7	28	9	US-09-929-818-183	Sequence 183, App
493	3	10.7	28	9	US-09-929-818-184	Sequence 184, App
494	3	10.7	28	9	US-09-929-818-185	Sequence 185, App
495	3	10.7	28	9	US-09-929-818-186	Sequence 186, App
496	3	10.7	28	9	US-09-929-818-187	Sequence 187, App
497	3	10.7	28	9	US-09-929-818-188	Sequence 188, App
498	3	10.7	28	9	US-09-929-818-189	Sequence 189, App
499	3	10.7	28	9	US-09-929-818-190	Sequence 190, App
500	3	10.7	28	9	US-09-929-818-191	Sequence 191, App
501	3	10.7	28	9	US-09-929-818-192	Sequence 192, App
502	3	10.7	28	9	US-09-929-818-193	Sequence 193, App
503	3	10.7	28	9	US-09-929-818-194	Sequence 194, App
504	3	10.7	28	9	US-09-929-818-195	Sequence 195, App
505	3	10.7	28	9	US-09-929-818-196	Sequence 196, App
506	3	10.7	28	9	US-09-929-818-197	Sequence 197, App
507	3	10.7	28	9	US-09-929-818-198	Sequence 198, App
508	3	10.7	28	9	US-09-929-818-199	Sequence 199, App
509	3	10.7	28	9	US-09-929-818-201	Sequence 201, App
	3			9		- -
510		10.7	28	_	US-09-929-818-202	Sequence 202, App
511	3	10.7	28	9	US-09-929-818-207	Sequence 207, App
512	3	10.7	28	10	US-09-117-380B-4	Sequence 4, Appli

```
Sequence 40, Appl
513
          3
               10.7
                         28
                             10
                                 US-09-003-869-40
                                                               Sequence 90, Appl
514
          3
               10.7
                         28
                             10
                                 US-09-003-869-90
                                                               Sequence 91, Appl
          3
                         28
                             10
                                 US-09-003-869-91
515
               10.7
                                                               Sequence 92, Appl
          3
               10.7
                         28
                             10
                                 US-09-003-869-92
516
                                                               Sequence 95, Appl
          3
               10.7
                         28
                             10
                                 US-09-003-869-95
517
                                 US-09-003-869-104
                                                               Sequence 104, App
          3
                         28
                             10
518
               10.7
                                                               Sequence 105, App
           3
                         28
                                 US-09-003-869-105
519
               10.7
                             10
                                                               Sequence 106, App
520
           3
               10.7
                         28
                             10
                                 US-09-003-869-106
                                                               Sequence 107, App
           3
               10.7
                         28
                             10
                                 US-09-003-869-107
521
                                                               Sequence 108, App
           3
               10.7
                         28
                             10
                                 US-09-003-869-108
522
                                                               Sequence 109, App
523
           3
               10.7
                         28
                             10
                                 US-09-003-869-109
524
           3
               10.7
                         28
                             10
                                 US-09-003-869-111
                                                               Sequence 111, App
           3
               10.7
                         28
                             10
                                  US-09-003-869-113
                                                               Sequence 113, App
525
                                                               Sequence 115, App
           3
                         28
                             10
                                  US-09-003-869-115
526
               10.7
                                                               Sequence 117, App
           3
               10.7
                         28
                             10
                                  US-09-003-869-117
527
                                                               Sequence 119, App
           3
               10.7
                         28
                             10
                                  US-09-003-869-119
528
                                                               Sequence 121, App
           3
                         28
                             10
                                  US-09-003-869-121
               10.7
529
                                                               Sequence 123, App
           3
                         28
                             10
                                  US-09-003-869-123
530
               10.7
                                                               Sequence 125, App
           3
                         28
                             10
                                  US-09-003-869-125
531
               10.7
           3
                         28
                             10
                                  US-09-003-869-127
                                                               Sequence 127, App
               10.7
532
                                                               Sequence 129, App
                         28
                             10
                                  US-09-003-869-129
           3
               10.7
533
                                                               Sequence 131, App
                         28
                                  US-09-003-869-131
534
           3
               10.7
                             10
           3
                         28
                             10
                                  US-09-003-869-133
                                                               Sequence 133, App
535
               10.7
                         28
                             10
                                  US-09-003-869-135
                                                               Sequence 135, App
           3
               10.7
536
                         28
                             10
                                                               Sequence 137, App
           3
               10.7
                                  US-09-003-869-137
537
                                                               Sequence 139, App
           3
               10.7
                         28
                             10
                                  US-09-003-869-139
538
                                                               Sequence 141, App
539
           3
               10.7
                         28
                             10
                                  US-09-003-869-141
                                                               Sequence 143, App
           3
               10.7
                         28
                             10
                                  US-09-003-869-143
540
                                                               Sequence 145, App
541
           3
               10.7
                         28
                             10
                                  US-09-003-869-145
           3
                         28
                             10
                                  US-09-003-869-147
                                                               Sequence 147, App
542
               10.7
           3
                         28
                             10
                                  US-09-003-869-149
                                                               Sequence 149, App
543
               10.7
           3
                         28
                             10
                                  US-09-003-869-151
                                                               Sequence 151, App
               10.7
544
                         28
                                                               Sequence 155, App
545
           3
               10.7
                             10
                                  US-09-003-869-155
                         28
                             10
                                  US-09-003-869-163
                                                                Sequence 163, App
546
           3
               10.7
                         28
                                  US-09-003-869-165
                                                                Sequence 165, App
           3
               10.7
                             10
547
                                                                Sequence 116, App
                         28
                                  US-09-903-456-116
548
           3
               10.7
                             10
                                                                Sequence 23, Appl
           3
               10.7
                         28
                              10
                                  US-09-989-903-23
549
                                                                Sequence 27, Appl
           3
               10.7
                         28
                             10
                                  US-09-986-552-27
550
                                                                Sequence 20, Appl
               10.7
                         28
                             10
                                  US-09-934-060A-20
           3
551
                                                                Sequence 53, Appl
                             10
552
           3
               10.7
                         28
                                  US-09-999-745-53
                                                                Sequence 241, App
               10.7
                         28
                              10
                                  US-09-981-876-241
553
           3
                                                                Sequence 37, Appl
               10.7
                         28
                              10
                                  US-09-554-000-37
           3
554
                                                                Sequence 3, Appli
                         28
                              10
                                  US-09-848-967-3
               10.7
555
           3
                                                                Sequence 4, Appli
                              10
           3
               10.7
                         28
                                  US-09-848-967-4
556
                                                                Sequence 26, Appl
                         28
                              10
                                  US-09-976-740-26
557
           3
               10.7
                                  US-09-983-802-481
                                                                Sequence 481, App
                         28
                              11
558
           3
               10.7
                                                                Sequence 28, Appl
                                  US-09-999-724-28
559
           3
               10.7
                         28
                              11
                                                                Sequence 241, App
560
           3
               10.7
                         28
                              11
                                  US-09-148-545-241
           3
               10.7
                         28
                              11
                                  US-09-974-879-269
                                                                Sequence 269, App
561.
                         28
                              11
                                  US-09-974-879-520
                                                                Sequence 520, App
           3
               10.7
562
                                                                Sequence 543, App
                                  US-09-974-879-543
563
           3
               10.7
                         28
                              11
                                                                Sequence 579, App
           3
               10.7
                         28
                              11
                                  US-09-974-879-579
564
                                  US-09-756-690A-40
                                                                Sequence 40, Appl
           3
               10.7
                         28
                              11
565
                                  US-09-756-690A-90
                                                                Sequence 90, Appl
           3
                         28
                              11
               10.7
566
                                                                Sequence 91, Appl
           3
                         28
                              11
                                  US-09-756-690A-91
567
               10.7
                                                                Sequence 92, Appl
           3
               10.7
                         28
                              11
                                  US-09-756-690A-92
568
                                  US-09-756-690A-95
                                                                Sequence 95, Appl
           3
               10.7
                         28
569
```

```
Sequence 104, App
                                 US-09-756-690A-104
               10.7
                         28
                             11
570
          3
                                                               Sequence 105, App
                                 US-09-756-690A-105
                             11
571
          3
               10.7
                         28
                                                               Sequence 106, App
                         28
                             11
                                 US-09-756-690A-106
572
          3
               10.7
                                                               Sequence 107, App
                         28
                             11
                                 US-09-756-690A-107
573
          3
               10.7
                                                               Sequence 108, App
          3
                         28
                             11
                                 US-09-756-690A-108
574
               10.7
                                                               Sequence 109, App
          3
               10.7
                         28
                             11
                                 US-09-756-690A-109
575
                                                               Sequence 111, App
           3
               10.7
                         28
                             11
                                 US-09-756-690A-111
576
                         28
                             11
                                 US-09-756-690A-113
                                                               Sequence 113, App
           3
               10.7
577
                                 US-09-756-690A-115
                                                               Sequence 115, App
           3
                         28
                             11
               10.7
578
                                                               Sequence 117, App
           3
               10.7
                         28
                             11
                                 US-09-756-690A-117
579
                                                               Sequence 119, App
           3
               10.7
                         28
                             11
                                 US-09-756-690A-119
580
                                 US-09-756-690A-121
                                                               Sequence 121, App
           3
               10.7
                         28
                             11
581
                                                               Sequence 123, App
           3
                         28
                             11
                                 US-09-756-690A-123
               10.7
582
                                                               Sequence 125, App
                         28
                             11
                                 US-09-756-690A-125
           3
               10.7
583
                                                               Sequence 127, App
                         28
                             11
                                 US-09-756-690A-127
           3
               10.7
584
                                                               Sequence 129, App
                             11
                                 US-09-756-690A-129
           3
                         28
               10.7
585
                                                               Sequence 131, App
           3
               10.7
                         28
                             11
                                 US-09-756-690A-131
586
                                                               Sequence 133, App
                                 US-09-756-690A-133
           3
               10.7
                         28
                             11
587
                                 US-09-756-690A-135
                                                               Sequence 135, App
                         28
                             11
           3
588
               10.7
                                                               Sequence 137, App
                         28
                                 US-09-756-690A-137
           3
               10.7
                             11
589
                                                               Sequence 139, App
                         28
                             11
                                 US-09-756-690A-139
590
           3
               10.7
                                                               Sequence 141, App
           3
                         28
                             11
                                 US-09-756-690A-141
591
               10.7
                                                               Sequence 143, App
                                 US-09-756-690A-143
                         28
                             11
592
           3
               10.7
                                                               Sequence 145, App
           3
               10.7
                         28
                             11
                                 US-09-756-690A-145
593
                                                               Sequence 147, App
           3
               10.7
                         28
                             11
                                  US-09-756-690A-147
594
                                                               Sequence 149, App
                         28
                             11
                                  US-09-756-690A-149
           3
               10.7
595
                                                               Sequence 151, App
                             11
                                  US-09-756-690A-151
           3
                         28
596
               10.7
                                                               Sequence 155, App
           3
               10.7
                         28
                             11
                                  US-09-756-690A-155
597
                                                               Sequence 163, App
                             11
                                  US-09-756-690A-163
           3
                         28
               10.7
598
                                                               Sequence 165, App
                             11
                                  US-09-756-690A-165
           3
                         28
599
               10.7
                                                               Sequence 72, Appl
                         28
                             11
                                  US-09-843-221A-72
           3
               10.7
600
                                                               Sequence 75, Appl
                         28
                             11
                                  US-09-843-221A-75
           3
               10.7
601
                                                               Sequence 104, App
                         28
                             11
                                  US-09-843-221A-104
           3
               10.7
602
                                  US-09-925-299-1173
                                                               Sequence 1173, Ap
                         28
               10.7
                             11
603
           3
                                                               Sequence 23, Appl
                                  US-09-945-917-23
           3
               10.7
                         28
                             11
604
                                                               Sequence 220, App
                         28
                             11
                                  US-09-813-153-220
           3
               10.7
605
                                                               Sequence 230, App
                         28
                             11
                                  US-09-876-904A-230
           3
               10.7
606
                                                               Sequence 335, App
                                  US-09-892-877-335
                             11
                         28
607
           3
               10.7
                                                               Sequence 19, Appl
                         28
                             11
                                  US-09-910-180-19
608
           3
               10.7
                                                               Sequence 285, App
               10.7
                         28
                             11
                                  US-09-305-736-285
609
           3
                                                               Sequence 522, App
                                  US-09-305-736-522
                         28
                             11
610
           3
               10.7
                                                               Sequence 545, App
                              11
                                  US-09-305-736-545
611
           3
               10.7
                         28
                                                               Sequence 580, App
           3
               10.7
                         28
                              11
                                  US-09-305-736-580
612
                                                               Sequence 348, App
           3
               10.7
                         28
                              11
                                  US-09-948-783-348
613
                                                               Sequence 31, Appl
                                  US-09-866-066-31
           3
                         28
                              11
614
               10.7
                                                               Sequence 307, App
           3
               10.7
                         28
                              12
                                  US-10-195-730-307
615
                         28
                              12
                                  US-10-195-730-354
                                                               Sequence 354, App
           3
               10.7
616
                         28
                              12
                                  US-10-309-422-4
                                                               Sequence 4, Appli
           3
               10.7
617
                                                               Sequence 4, Appli
                         28
                              12
                                  US-10-334-405-4
618
           3
               10.7
                                                               Sequence 21, Appl
           3
               10.7
                          28
                              12
                                  US-10-251-703-21
619
                                                               Sequence 27, Appl
                                  US-10-306-686-27
           3
               10.7
                          28
                              12
620
                                                               Sequence 1, Appli
               10.7
                                  US-10-100-256B-1
           3
                          28
                              12
621
                                                               Sequence 1, Appli
                                  US-10-254-569A-1
                              12
622
           3
                10.7
                          28
                                                               Sequence 2, Appli
                10.7
                          28
                              12
                                  US-10-254-569A-2
623
           3
                                  US-10-254-569A-3
                                                               Sequence 3, Appli
           3
                10.7
                          28
                              12
624
                                                               Sequence 4, Appli
                              12
                                  US-10-254-569A-4
 625
           3
                10.7
                          28
                                                               Sequence 5, Appli
                                  US-10-254-569A-5
           3
                          28
626
                10.7
                              12
```

```
Sequence 6, Appli
                        28
                            12
                                US-10-254-569A-6
627
          3
              10.7
                                                             Sequence 7, Appli
                        28
                            12
                                US-10-254-569A-7
628
          3
              10.7
                                                             Sequence 8, Appli
                        28
                            12
                                US-10-254-569A-8
629
          3
              10.7
                                                             Sequence 9, Appli
                        28
                            12
630
          3
              10.7
                                US-10-254-569A-9
                                                             Sequence 10, Appl
          3
              10.7
                        28
                            12
                                US-10-254-569A-10
631
                                                             Sequence 11, Appl
          3
              10.7
                        28
                            12
                                US-10-254-569A-11
632
                                                             Sequence 12, Appl
          3
              10.7
                        28
                            12
                                US-10-254-569A-12
633
                                                             Sequence 116, App
634
          3
              10.7
                        28
                            12
                                US-10-156-911-116
                                                             Sequence 23, Appl
635
          3
              10.7
                        28
                            12
                                US-09-845-917A-23
                                                             Sequence 7, Appli
          3
              10.7
                        28
                            12
                                US-10-322-746-7
636
                                                             Sequence 108, App
637
          3
              10.7
                        28
                            12
                                US-10-411-224-108
                                                             Sequence 22, Appl
638
          3
              10.7
                        28
                            12
                                US-09-829-922-22
                                                             Sequence 591, App
639
          3
              10.7
                        28
                            12
                                US-10-231-417-591
                        28
                            12
                                US-10-312-691-2
                                                             Sequence 2, Appli
          3
              10.7
640
                                                             Sequence 17, Appl
                            12
          3
              10.7
                        28
                                US-10-314-506-17
641
                                                             Sequence 81, Appl
          3
              10.7
                        28
                            12
                                 US-10-408-736-81
642
                                                             Sequence 626, App
          3
              10.7
                        28
                            12
                                 US-09-933-767-626
643
                                                             Sequence 638, App
                                US-09-933-767-638
          3
              10.7
                        28
                            12
644
                                                             Sequence 1089, Ap
          3
              10.7
                        28
                            12
                                US-09-933-767-1089
645
                                                              Sequence 329, App
          3
              10.7
                        28
                            12
                                 US-10-105-232-329
646
                                                              Sequence 19, Appl
          3
                        28
                            12
                                 US-10-131-686A-19
              10.7
647
                                                              Sequence 36, Appl
                        28
                            12
                                 US-10-289-135A-36
648
          3
              10.7
                                                              Sequence 9, Appli
          3
              10.7
                        28
                            12
                                 US-10-330-872-9
649
                                                              Sequence 54, Appl
          3
              10.7
                        28
                             12
                                 US-10-351-641-54
650
                                                              Sequence 62, Appl
          3
                        28
                             12
                                 US-10-351-641-62
              10.7
651
                                                              Sequence 1279, Ap
                        28
                             12
                                 US-10-351-641-1279
          3
              10.7
652
                                                              Sequence 1280, Ap
                        28
                             12
                                 US-10-351-641-1280
653
          3
              10.7
          3
                        28
                             12
                                 US-10-351-641-1314
                                                              Sequence 1314, Ap
654
              10.7
                                                              Sequence 1315, Ap
           3
                             12
                                 US-10-351-641-1315
655
               10.7
                        28
                                                              Sequence 27986, A
           3
               10.7
                        28
                             12
                                 US-10-029-386-27986
656
                                                              Sequence 28154, A
           3
               10.7
                        28
                             12
                                 US-10-029-386-28154
657
           3
                         28
                             12
                                 US-10-029-386-28548
                                                              Sequence 28548, A
658
               10.7
                                                              Sequence 31090, A
           3
                         28
                             12
                                 US-10-029-386-31090
659
               10.7
                                                              Sequence 31138, A
           3
               10.7
                         28
                             12
                                 US-10-029-386-31138
660
                                                              Sequence 31267, A
           3
               10.7
                         28
                             12
                                 US-10-029-386-31267
661
                                                              Sequence 31429, A
           3
                        28
                             12
                                 US-10-029-386-31429
               10.7
662
                                                              Sequence 33289, A
                         28
                             12
                                 US-10-029-386-33289
663
           3
               10.7
                                                              Sequence 33582, A
                         28
                             12
                                 US-10-029-386-33582
664
           3
               10.7
                         28
                             12
                                 US-10-189-437-316
                                                              Sequence 316, App
           3
               10.7
665
                                                              Sequence 669, App
                         28
                             12
                                 US-10-189-437-669
           3
666
               10.7
                                                              Sequence 100, App
                                 US-10-080-254-100
           3
               10.7
                         28
                             12
667
                         28
                             12
                                 US-10-080-608A-1
                                                              Sequence 1, Appli
           3
               10.7
668
                         28
                             12
                                 US-09-818-683-285
                                                              Sequence 285, App
           3
               10.7
669
                                                              Sequence 522, App
                         28
                             12
                                 US-09-818-683-522
670
           3
               10.7
                                                              Sequence 545, App
           3
                         28
                             12
                                 US-09-818-683-545
671
               10.7
                                                              Sequence 580, App
           3
                         28
                             12
                                 US-09-818-683-580
672
               10.7
                         28
                             12
                                 US-10-370-685-90
                                                              Sequence 90, Appl
           3
673
               10.7
                                                              Sequence 43, Appl
           3
                         28
                            12
                                 US-09-873-155-43
674
               10.7
                                                              Sequence 24, Appl
675
           3
               10.7
                         28
                             12
                                 US-10-366-493-24
                                                              Sequence 86, Appl
           3
               10.7
                         28
                             12
                                 US-10-391-399-86
676
                                 US-10-211-689-8
                                                              Sequence 8, Appli
           3
                         28
                             12
677
               10.7
                                 US-10-324-143-148
                                                              Sequence 148, App
           3
               10.7
                         28
                             12
678 -
                         28
                             12
                                 US-10-242-355-646
                                                              Sequence 646, App
           3
               10.7
679
                         28
                             12
                                 US-10-245-871-32
                                                              Sequence 32, Appl
           3
               10.7
680
                         28
                             12
                                 US-10-154-884B-11082
                                                              Sequence 11082, A
           3
               10.7
681
                             12
                                 US-10-264-049-2573
                                                              Sequence 2573, Ap
           3
               10.7
                         28
682
                         28
                             12
                                 US-10-264-049-3158
                                                              Sequence 3158, Ap
683
               10.7
```

```
Sequence 17, Appl
                                 US-10-014-269-17
               10.7
                         28
                             14
684
          3
                                                               Sequence 26, Appl
                                 US-10-023-529-26
          3
               10.7
                         28
                             14
685
                                                               Sequence 19, Appl
                                 US-10-105-931-19
          3
                         28
                             14
686
               10.7
                                                               Sequence 23, Appl
               10.7
                         28
                             14
                                 US-10-105-931-23
687
          3
                                                               Sequence 1, Appli
               10.7
                         28
                             14
                                 US-10-090-109A-1
688
          3
                                                               Sequence 26, Appl
                         28
                             14
                                 US-10-023-523-26
689
          3
               10.7
                                 US-10-044-722-8
                                                               Sequence 8, Appli
                         28
                             14
690
          3
               10.7
                                                               Sequence 17, Appl
          3
               10.7
                         28
                             14
                                 US-10-002-974-17
691
                                                               Sequence 19, Appl
          3
               10.7
                         28
                             14
                                 US-10-118-984-19
692
                                                               Sequence 23, Appl
           3
               10.7
                         28
                             14
                                 US-10-118-984-23
693
                                                               Sequence 48, Appl
           3
               10.7
                         28
                             15
                                 US-10-014-162-48
694
                                                               Sequence 219, App
           3
               10.7
                         28
                             15
                                  US-10-000-256A-219
695
                                                               Sequence 23, Appl
           3
               10.7
                         28
                             15
                                  US-10-068-564-23
696
                                 US-10-078-090-126
                                                               Sequence 126, App
                         28
                             15
697
           3
               10.7
                                                               Sequence 17, Appl
           3
               10.7
                         28
                             15
                                  US-10-004-530A-17
698
                                                               Sequence 486, App
           3
               10.7
                         28
                             15
                                  US-10-097-065-486
699
                                                               Sequence 598, App
                                  US-10-097-065-598
               10.7
                         28
                             15
           3
700
                                                               Sequence 324, App
                         28
                             15
                                  US-10-059-261-324
           3
               10.7
701
                                                               Sequence 131, App
                         28
                             15
                                  US-10-150-111-131
           3
               10.7
702
                                                               Sequence 1, Appli
               10.7
                         28
                             15
                                  US-10-211-994-1
           3
703
                                                               Sequence 40, Appl
                         28
                             15
                                  US-10-157-224A-40
               10.7
704
           3
                                                               Sequence 90, Appl
                             15
                                  US-10-157-224A-90
           3
               10.7
                         28
705
                                                               Sequence 91, Appl
                         28
                             15
                                  US-10-157-224A-91
           3
               10.7
706
                                                               Sequence 92, Appl
                         28
                             15
                                  US-10-157-224A-92
           3
               10.7
707
                                                               Sequence 95, Appl
                             15
                                  US-10-157-224A-95
           3
                         28
708
               10.7
                                                               Sequence 104, App
                                  US-10-157-224A-104
                             15
           3
               10.7
                         28
709
                                                               Sequence 105, App
                             15
                                  US-10-157-224A-105
           3
               10.7
                         28
710
                                                               Sequence 106, App
                             15
                                  US-10-157-224A-106
           3
               10.7
                         28
711
                                                               Sequence 107, App
                                  US-10-157-224A-107
           3
               10.7
                         28
                             15
712
                                                               Sequence 108, App
               10.7
                         28
                             15
                                  US-10-157-224A-108
           3
713
                                                               Sequence 109, App
                         28
                             15
                                  US-10-157-224A-109
           3
               10.7
714
                                                               Sequence 111, App
                         28
                             15
                                  US-10-157-224A-111
           3
               10.7
715
                                                               Sequence 113, App
                             15
                                  US-10-157-224A-113
           3
               10.7
                         28
716
                                                               Sequence 115, App
                         28
                              15
                                  US-10-157-224A-115
           3
               10.7
717
                         28
                              15
                                  US-10-157-224A-117
                                                               Sequence 117, App
           3
               10.7
718
                                                               Sequence 119, App
                              15
                                  US-10-157-224A-119
                          28
719
           3
                10.7
                                                               Sequence 121, App
                                  US-10-157-224A-121
           3
                10.7
                          28
                              15
720
                                                               Sequence 123, App
                              15
                                  US-10-157-224A-123
           3
               10.7
                          28
721
                                                               Sequence 125, App
           3
                          28
                              15
                                  US-10-157-224A-125
                10.7
722
                                                               Sequence 127, App
                              15
                                  US-10-157-224A-127
           3
                          28
723
                10.7
                                                               Sequence 129, App
                                  US-10-157-224A-129
           3
                10.7
                          28
                              15
 724
                                                               Sequence 131, App
                                  US-10-157-224A-131
           3
                10.7
                          28
                              15
 725
                                  US-10-157-224A-133
                                                               Sequence 133, App
                          28
                              15
           3
                10.7
 726
                                                                Sequence 135, App
                              15
                                  US-10-157-224A-135
           3
                10.7
                          28
 727
                                                               Sequence 137, App
                          28
                              15
                                  US-10-157-224A-137
           3
                10.7
 728
                                                                Sequence 139, App
                          28
                              15
                                  US-10-157-224A-139
           3
                10.7
 729
                              15
                                  US-10-157-224A-141
                                                                Sequence 141, App
                          28
 730
           3
                10.7
                                                                Sequence 143, App
                              15
                                  US-10-157-224A-143
 731
           3
                10.7
                          28
                                                                Sequence 145, App
           3
                10.7
                          28
                              15
                                  US-10-157-224A-145
 732
                                                                Sequence 147, App
                          28
                              15
                                  US-10-157-224A-147
            3
                10.7
 733
                                  US-10-157-224A-149
                                                                Sequence 149, App
                          28
                              15
 734
            3
                10.7
                                  US-10-157-224A-151
                                                                Sequence 151, App
                          28
                              15
 735
            3
                10.7
                              15
                                  US-10-157-224A-155
                                                                Sequence 155, App
            3
                          28
                10.7
 736
                          28
                              15
                                  US-10-157-224A-163
                                                                Sequence 163, App
            3
                10.7
 737
                              15
                                  US-10-157-224A-165
                                                                Seguence 165, App
                          28
            3
                10.7
 738
                                  US-10-187-051-40
                                                                Sequence 40, Appl
                          28
                              15
            3
                10.7
 739
                                                                Sequence 90, Appl
                              15
                                  US-10-187-051-90
                10.7
                          28
            3
 740
```

```
Sequence 91, Appl
                                 US-10-187-051-91
741
          3
              10.7
                        28
                            15
                                                              Sequence 92, Appl
                            15
                                 US-10-187-051-92
742
          3
              10.7
                        28
                                                              Sequence 95, Appl
                        28
                            15
                                 US-10-187-051-95
          3
              10.7
743
                                                              Sequence 104, App
                            15
                                 US-10-187-051-104
              10.7
                        28
744
                                                              Sequence 105, App
                                 US-10-187-051-105
          3
               10.7
                        28
                            15
745
                                                              Sequence 106, App
                                 US-10-187-051-106
          3
               10.7
                        28
                            15
746
                                                              Sequence 107, App
                            15
                                 US-10-187-051-107
               10.7
                        28
747
          3
                                                              Sequence 108, App
                                 US-10-187-051-108
748
          3
               10.7
                        28
                            15
                                                              Sequence 109, App
749
          3
               10.7
                        28
                            15
                                 US-10-187-051-109
                                                              Sequence 111, App
          3
               10.7
                        28
                            15
                                 US-10-187-051-111
750
                                 US-10-187-051-113
                                                              Sequence 113, App
751
          3
               10.7
                        28
                            15
                                                              Sequence 115, App
752
          3
               10.7
                        28
                            15
                                 US-10-187-051-115
                                                              Sequence 117, App
753
          3
               10.7
                        28
                            15
                                 US-10-187-051-117
                                                              Sequence 119, App
                        28
                            15
                                 US-10-187-051-119
          3
               10.7
754
                                 US-10-187-051-121
                                                              Sequence 121, App
                             15
          3
               10.7
                        28
755
                                                              Sequence 123, App
                             15
                                 US-10-187-051-123
756
          3
               10.7
                        28
                                                              Sequence 125, App
                        28
                             15
                                 US-10-187-051-125
          3
               10.7
757
                                                              Sequence 127, App
                        28
                             15
                                 US-10-187-051-127
          3
               10.7
758
                                                              Sequence 129, App
                                 US-10-187-051-129
          3
               10.7
                        28
                            15
759
                                                              Sequence 131, App
760
          3
               10.7
                         28
                             15
                                 US-10-187-051-131
                                                              Sequence 133, App
                                 US-10-187-051-133
          3
               10.7
                        28
                             15
761
                                                              Sequence 135, App
                                 US-10-187-051-135
           3
               10.7
                         28
                             15
762
                                                              Sequence 137, App
                                 US-10-187-051-137
           3
               10.7
                         28
                             15
763
                                                              Sequence 139, App
           3
               10.7
                         28
                             15
                                 US-10-187-051-139
764
                                                              Sequence 141, App
           3
               10.7
                         28
                             15
                                 US-10-187-051-141
765
                                                              Sequence 143, App
                         28
                            15
                                 US-10-187-051-143
           3
               10.7
766
                                                              Sequence 145, App
           3
               10.7
                         28
                             15
                                 US-10-187-051-145
767
                                                              Sequence 147, App
           3
               10.7
                         28
                             15
                                 US-10-187-051-147
768
                                                              Sequence 149, App
           3
               10.7
                         28
                             15
                                 US-10-187-051-149
769
                                                              Sequence 151, App
           3
               10.7
                         28
                            15
                                 US-10-187-051-151
770
                                                              Sequence 155, App
           3
               10.7
                         28
                             15
                                 US-10-187-051-155
771
                                                              Sequence 163, App
           3
               10.7
                         28
                             15
                                 US-10-187-051-163
772
                                                              Sequence 165, App
           3
               10.7
                         28
                             15
                                 US-10-187-051-165
773
                                                              Sequence 626, App
           3
               10.7
                         28
                             15
                                 US-10-023-282-626
774
                                                              Sequence 638, App
           3
               10.7
                         28
                                 US-10-023-282-638
775
                                                              Sequence 1089, Ap
           3
                         28
                             15
                                 US-10-023-282-1089
776
               10.7
                                                              Sequence 6, Appli
                         28
                             15
                                 US-10-255-532-6
777
           3
               10.7
                                                              Sequence 24, Appl
           3
               10.7
                         28
                             15
                                 US-10-075-869-24
778
                                                              Sequence 3, Appli
           3
               10.7
                         28
                             15
                                 US-10-202-724-3
779
                                                              Sequence 3, Appli
           3
                         28
                             15
                                 US-10-262-017-3
               10.7
780
                                                              Sequence 5608, Ap
                                 US-10-106-698-5608
           3
                         28
                             15
               10.7
781
                                                              Sequence 6764, Ap
           3
               10.7
                         28
                             15
                                 US-10-106-698-6764
782
                                                              Sequence 7736, Ap
           3
               10.7
                         28
                             15
                                 US-10-106-698-7736
783
                                                              Sequence 7875, Ap
                             15
                                 US-10-106-698-7875
           3
               10.7
                         28
784
                                                              Sequence 8447, Ap
                                 US-10-106-698-8447
           3
               10.7
                         28
                             15
785
                                                               Sequence 145, App
                         28
                             15
                                 US-10-197-954-145
           3
               10.7
786
                         28
                             15
                                 US-10-283-500-19
                                                               Sequence 19, Appl
               10.7
787
           3
                                                               Sequence 19, Appl
                             15
                                 US-10-295-981-19
                         28
788
           3
               10.7
                                                               Sequence 23, Appl
                                 US-10-295-981-23
789
           3
               10.7
                         28
                             15
                                 US-10-160-290-22
                                                               Sequence 22, Appl
           3
               10.7
                         28
                             15
790
                         29
                                US-08-913-430-4
                                                              Sequence 4, Appli
           3
               10.7
                             R
791
                                                              Sequence 71, Appl
                         29
                             9
                                US-09-205-658-71
792
           3
               10.7
                                                              Sequence 4, Appli
           3
                         29
                             9
                                US-09-730-379B-4
793
               10.7
                                                              Sequence 13, Appl
           3
                         29
                             9
                                US-09-765-527-13
               10.7
794
                         29
                             9
                                US-09-765-527-64
                                                              Sequence 64, Appl
           3
795
               10.7
                                US-09-005-243-73
                                                              Sequence 73, Appl
                         29
                             9
           3
                10.7
 796
                         29
                             9
                                US-09-904-380-23
                                                              Sequence 23, Appl
797
           3
                10.7
```

```
798
          3
               10.7
                         29
                             9
                                US-09-224-683-73
                                                              Sequence 73, Appl
799
           3
               10.7
                         29
                             9
                                US-09-932-161-1
                                                              Sequence 1, Appli
           3
800
               10.7
                         29
                                US-09-844-353A-71
                                                              Sequence 71, Appl
801
               10.7
                         29
                                US-09-864-761-33834
                                                              Sequence 33834, A
           3
               10.7
                         29
802
                             9
                                US-09-864-761-34011
                                                              Sequence 34011, A
                         29
803
          3
               10.7
                             9
                                US-09-864-761-34337
                                                              Sequence 34337, A
                         29
804
           3
               10.7
                             9
                                US-09-864-761-35314
                                                              Sequence 35314, A
805
           3
               10.7
                         29
                             9
                                US-09-864-761-36235
                                                              Sequence 36235, A
806
           3
               10.7
                         29
                             9
                                US-09-864-761-37068
                                                              Sequence 37068, A
807
           3
               10.7
                         29
                             9
                                US-09-864-761-37579
                                                              Sequence 37579, A
808
           3
               10.7
                         29
                             9
                                US-09-864-761-37814
                                                              Sequence 37814, A
809
           3
               10.7
                         29
                             9
                                US-09-864-761-38222
                                                              Sequence 38222, A
810
           3
               10.7
                         29
                             9
                                US-09-864-761-38638
                                                              Sequence 38638, A
                         29
811
           3
               10.7
                             9
                                US-09-864-761-39320
                                                              Sequence 39320, A
812
           3
               10.7
                         29
                             9
                                US-09-864-761-40067
                                                              Sequence 40067, A
813
           3
               10.7
                         29
                             9
                                US-09-864-761-40393
                                                              Sequence 40393, A
814
           3
               10.7
                         29
                             9
                                US-09-864-761-40727
                                                              Sequence 40727, A
815
           3
                         29
                             9
               10.7
                                US-09-864-761-40944
                                                              Sequence 40944, A
               10.7
                         29
816
           3
                             9
                                US-09-864-761-41199
                                                              Sequence 41199, A
817
           3
               10.7
                         29
                             9
                                US-09-864-761-41596
                                                              Sequence 41596, A
818
                         29
           3
               10.7
                                US-09-864-761-42035
                                                              Sequence 42035, A
819
               10.7
                         29
          3
                             9
                                US-09-864-761-42321
                                                              Sequence 42321, A
                         29
820
           3
               10.7
                             9
                                US-09-864-761-42342
                                                              Sequence 42342, A
821
           3
               10.7
                         29
                             9
                                US-09-864-761-42467
                                                              Sequence 42467, A
822
          3
                         29
                             9
               10.7
                                US-09-864-761-42588
                                                              Sequence 42588, A
823
          3
               10.7
                         29
                             9
                                US-09-864-761-42832
                                                              Sequence 42832, A
                         29
824
           3
               10.7
                             9
                                US-09-864-761-42924
                                                              Sequence 42924, A
825
           3
                         29
                             9
               10.7
                                US-09-864-761-43064
                                                              Sequence 43064, A
826
           3
               10.7
                         29
                             9
                                US-09-864~761-43635
                                                              Sequence 43635, A
827
           3
               10.7
                         29
                             9
                                US-09-864-761-44716
                                                              Sequence 44716, A
                         29
828
           3
               10.7
                             9
                                US-09-864-761-45207
                                                              Sequence 45207, A
829
                         29
                             9
           3
               10.7
                                US-09-864-761-45581
                                                              Sequence 45581, A
830
           3
               10.7
                         29
                             9
                                US-09-864-761-45777
                                                              Sequence 45777, A
831
           3
               10.7
                         29
                             9
                                US-09-864-761-45815
                                                              Sequence 45815, A
                        29
               10.7
832
           3
                             9
                                US-09-864-761-45948
                                                              Sequence 45948, A
833
           3
               10.7
                         29
                             9
                                US-09-864-761-47028
                                                              Sequence 47028, A
834
           3
               10.7
                         29
                                US-09-864-761-47383
                                                              Sequence 47383, A
835
                         29
                                US-09-864-761-48505
           3
               10.7
                             9
                                                              Sequence 48505, A
836
          3
               10.7
                         29
                             9
                                US-09-864-761-48518
                                                              Sequence 48518, A
837
           3
                         29
               10.7
                             9
                                US-09-876-388-22
                                                              Sequence 22, Appl
838
          3
               10.7
                         29
                             9
                                US-09-925-299-1270
                                                              Sequence 1270, Ap
839
          3
                         29
                             9
               10.7
                                US-09-764-869-638
                                                              Sequence 638, App
840
          3
               10.7
                         29
                             9
                                US-09-764-869-674
                                                              Sequence 674, App
841
          3
               10.7
                         29
                             9
                                US-09-881-490-3
                                                              Sequence 3, Appli
          3
842
               10.7
                         29
                             9
                                US-09-789-836-13
                                                              Sequence 13, Appl
843
          3
               10.7
                         29
                             10
                                 US-09-927-112-5
                                                               Sequence 5, Appli
844
          3
               10.7
                         29
                             10
                                 US-09-927-112-6
                                                               Sequence 6, Appli
845
          3
               10.7
                         29
                             10
                                 US-09-872-864-17
                                                               Sequence 17, Appl
          3
                         29
846
               10.7
                             10
                                 US-09-872-864-18
                                                               Sequence 18, Appl
847
          3
               10.7
                         29
                             10
                                 US-09-872-864-19
                                                               Sequence 19, Appl
848
          3
               10.7
                         29
                             10
                                 US-09-872-864-20
                                                               Sequence 20, Appl
849
          3
                         29
               10.7
                             10
                                 US-09-922-261-258
                                                               Sequence 258, App
850
          3
                         29
               10.7
                             10
                                 US-09-908-664-8
                                                               Sequence 8, Appli
851
          3
               10.7
                         29
                             10
                                 US-09-908-664-9
                                                               Sequence 9, Appli
          3
                         29
852
               10.7
                             10
                                 US-09-908-664-18
                                                               Sequence 18, Appl
853
          3
                         29
                             10
               10.7
                                 US-09-905-831-12
                                                               Sequence 12, Appl
854
          3
                         29
               10.7
                             10
                                 US-09-905-831-15
                                                               Sequence 15, Appl
```

```
Sequence 79, Appl
                                 US-09-003-869-79
855
          3
              10.7
                        29
                             10
                                                              Sequence 98, Appl
                        29
                             10
                                 US-09-003-869-98
          3
              10.7
856
                                                              Sequence 7, Appli
                        29
                             10
                                 US-09-911-969-7
          3
              10.7
857
                                                              Sequence 1395, Ap
                                 US-09-764-877-1395
          3
               10.7
                        29
                             10
858
                                                              Sequence 152, App
                                 US-09-867-852-152
          3
               10.7
                        29
                             10
859
                                                              Sequence 189, App
                                 US-09-071-838-189
          3
               10.7
                        29
                             10
860
                                                              Sequence 242, App
                                 US-09-071-838-242
                        29
          3
               10.7
                             10
861
                                                              Sequence 1, Appli
862
          3
               10.7
                         29
                             10
                                 US-09-956-206A-1
                                                              Sequence 227, App
          3
               10.7
                         29
                             10
                                 US-09-984-245-227
863
                                                              Sequence 386, App
          3
               10.7
                         29
                             11
                                 US-09-983-802-386
864
                                                              Sequence 38, Appl
                                 US-09-956-940-38
           3
               10.7
                         29
                             11
865
                                                              Sequence 406, App
          3
               10.7
                         29
                             11
                                 US-09-974-879-406
866
                                                              Sequence 527, App
                                 US-09-974-879-527
           3
               10.7
                         29
                             11
867
                                 US-09-974-879-580
                                                              Sequence 580, App
           3
               10.7
                         29
                             11
868
                                                               Sequence 15, Appl
                                 US-09-259-658-15
           3
               10.7
                         29
                             11
869
                                                               Sequence 79, Appl
           3
               10.7
                         29
                             11
                                 US-09-756-690A-79
870
                                                               Sequence 98, Appl
           3
               10.7
                         29
                             11
                                 US-09-756-690A-98
871
                                                               Sequence 152, App
                                 US-09-843-221A-152
           3
                         29
                             11
               10.7
872
                                                               Sequence 1270, Ap
                         29
           3
               10.7
                             11
                                 US-09-925-299-1270
873
                                                               Sequence 80, Appl
           3
               10.7
                         29
                             11
                                 US-09-847-102A-80
874
                                                               Sequence 227, App
                         29
                             11
                                 US-09-966-262-227
           3
               10.7
875
                                                               Sequence 196, App
                                 US-09-969-730-196
                         29
                             11
           3
               10.7
876
                                                               Sequence 227, App
                         29
                             11
                                 US-09-983-966-227
877
           3
               10.7
                                                               Sequence 28, Appl
                         29
                             11
                                 US-09-876-904A-28
           3
               10.7
878
                                                               Sequence 4191, Ap
                         29
                             11
                                 US-09-764-891-4191
           3
               10.7
879
                                                               Sequence 4851, Ap
                         29
                             11
                                 US-09-764-891-4851
           3
               10.7
880
                                                               Sequence 436, App
                         29
                             11
                                 US-09-892-877-436
           3
               10.7
881
                                                               Sequence 125, App
                         29
                             11
                                 US-09-847-208-125
           3
               10.7
882
                                 US-09-305-736-406
                                                               Sequence 406, App
                         29
                             11
883
           3
               10.7
                                                               Sequence 529, App
               10.7
                         29
                             11
                                 US-09-305-736-529
884
           3
                                                               Sequence 581, App
           3
               10.7
                         29
                             11
                                 US-09-305-736-581
885
                                                               Sequence 25, Appl
           3
                         29
                             11
                                 US-09-095-478-25
               10.7
886
                                                               Sequence 19, Appl
                         29
                             11
                                 US-09-908-139-19
887
           3
               10.7
                                                               Sequence 21, Appl
                         29
                             11
                                  US-09-908-139-21
888
           3
               10.7
                                                               Sequence 14, Appl
               10.7
                         29
                             11
                                  US-09-491-614-14
           3
889
                                                               Sequence 15, Appl
                         29
                                  US-09-491-614-15
           3
                             11
890
               10.7
                                                               Sequence 438, App
                         29
                                  US-09-948-783-438
           3
               10.7
                             11
891
                                                               Sequence 158, App
                         29
                             11
                                  US-09-910-082A-158
892
           3
               10.7
                         29
                             11
                                  US-09-910-082A-368
                                                               Sequence 368, App
           3
               10.7
893
                                                               Sequence 72, Appl
                             12
                                  US-10-153-604A-72
               10.7
                         29
894
           3
                                                               Sequence 44, Appl
           3
               10.7
                         29
                             12
                                  US-10-231-894-44
895
                                                               Sequence 95, Appl
                         29
                             12
                                  US-10-234-816-95
           3
               10.7
896
                         29
                             12
                                  US-09-789-831-13
                                                               Sequence 13, Appl
               10.7
           3
897
                                                               Sequence 757, App
                         29
                                  US-09-935-384-757
                             12
           3
               10.7
898
                                                               Sequence 758, App
                                  US-09-935-384-758
           3
               10.7
                         29
                             12
899
                                                               Sequence 4, Appli
                         29
                                  US-10-131-909A-4
           3
                             12
900
               10.7
                                                               Sequence 7, Appli
                         29
                                  US-10-131-909A-7
           3
                             12
 901
               10.7
                                                               Sequence 1, Appli
                         29
                                  US-10-096-777-1
 902
           3
               10.7
                             12
                                                               Sequence 123, App
           3
               10.7
                         29
                             12
                                  US-10-008-524A-123
 903
                                                               Sequence 4, Appli
           3
               10.7
                         29
                             12
                                  US-10-340-458-4
 904
                                  US-10-340-458-21
                                                               Sequence 21, Appl
           3
                         29
                             12
 905
                10.7
                                                               Sequence 1182, Ap
                                  US-09-933-767-1182
           3
                10.7
                         29
                             12
 906
                                                               Sequence 71, Appl
                         29
                             12
                                  US-09-963-693-71
           3
                10.7
 907
                                                               Sequence 319, App
           3
                         29
                             12
                                  US-10-105-232-319
                10.7
 908
           3
                         29
                             12
                                  US-10-105-232-512
                                                               Sequence 512, App
 909
                10.7
                                                               Sequence 334, App
                             12
                                  US-10-280-066-334
           3
                10.7
                         29
 910
                                                               Sequence 25, Appl
                         29
                              12
                                  US-10-289-135A-25
           3
                10.7
 911
```

```
Sequence 27545, A
912
          3
               10.7
                         29
                             12
                                 US-10-029-386-27545
                                                               Sequence 27995, A
                         29
                                 US-10-029-386-27995
913
          3
               10.7
                             12
                                                               Sequence 29238, A
                         29
                                 US-10-029-386-29238
           3
               10.7
                             12
914
                                                               Sequence 30256, A
           3
               10.7
                         29
                             12
                                 US-10-029-386-30256
915
                                                               Sequence 31071, A
           3
               10.7
                         29
                             12
                                 US-10-029-386-31071
916
                                                               Sequence 31577, A
           3
               10.7
                         29
                             12
                                 US-10-029-386-31577
917
                                                               Sequence 32473, A
           3
               10.7
                         29
                             12
                                 US-10-029-386-32473
918
                                                               Sequence 33620, A
919
           3
               10.7
                         29
                             12
                                 US-10-029-386-33620
                                                               Sequence 306, App
920
           3
               10.7
                         29
                             12
                                 US-10-189-437-306
                                                               Sequence 499, App
921
           3
               10.7
                         29
                             12
                                 US-10-189-437-499
                                                               Sequence 641, App
922
           3
               10.7
                         29
                             12
                                 US-10-189-437-641
                                                               Sequence 693, App
923
           3
               10.7
                         29
                             12
                                 US-10-189-437-693
                                                               Sequence 716, App
924
           3
               10.7
                         29
                             12
                                 US-10-189-437-716
               10.7
                         29
                                                               Sequence 44, Appl
           3
                             12
                                 US-10-231-889-44
925
                                                               Sequence 406, App
926
           3
               10.7
                         29
                             12
                                 US-09-818-683-406
                                                               Sequence 529, App
927
           3
               10.7
                         29
                             12
                                 US-09-818-683-529
                                                               Sequence 581, App
           3
               10.7
                         29
                             12
                                  US-09-818-683-581
928
                                                               Sequence 123, App
           3
               10.7
                         29
                             12
                                 US-10-350-719-123
929
                                                               Sequence 4, Appli
           3
               10.7
                         29
                             12
                                 US-09-933-780C-4
930
                                                               Sequence 284, App
           3
               10.7
                         29
                             12
                                  US-10-074-024-284
931
                                                               Sequence 264, App
           3
               10.7
                         29
                             12
                                  US-10-080-334-264
932
                                                               Sequence 11109, A
           3
                         29
                             12
                                  US-10-154-884B-11109
933
               10.7
                                                               Sequence 638, App
           3
               10.7
                         29
                             12
                                  US-10-227-577-638
934
                                                               Sequence 674, App
           3
               10.7
                         29
                             12
                                  US-10-227-577-674
935
                         29
                                                               Sequence 3305, Ap
           3
                             12
                                  US-10-264-049-3305
               10.7
936
                                                               Sequence 16, Appl
           3
                         29
                             12
                                  US-10-387-977-16
               10.7
937
           3
               10.7
                         29
                             14
                                  US-10-090-624-3
                                                               Sequence 3, Appli
938
           3
               10.7
                         29
                             14
                                  US-10-153-064-72
                                                               Sequence 72, Appl
939
                                                               Sequence 26, Appl
                                  US-10-044-592-26
940
           3
               10.7
                         29
                             14
                                                               Sequence 168, App
           3
               10.7
                         29
                             14
                                  US-10-001-876-168
941
           3
               10.7
                         29
                             15
                                  US-10-214-188-12
                                                               Sequence 12, Appl
942
           3
               10.7
                         29
                             15
                                  US-10-214-188-13
                                                               Sequence 13, Appl
943
           3
                         29
                             15
                                  US-10-014-162-11
                                                               Sequence 11, Appl
944
               10.7
           3
               10.7
                         29
                              15
                                  US-10-014-162-47
                                                               Sequence 47, Appl
945
           3
               10.7
                         29
                             15
                                  US-10-014-162-80
                                                               Sequence 80, Appl
946
                                                               Sequence 4, Appli
               10.7
                         29
                             15
                                  US-10-018-103A-4
           3
947
                                                               Sequence 7, Appli
                         29
                                  US-10-018-103A-7
948
           3
               10.7
                              15
                                                               Sequence 12, Appl
           3
                         29
                              15
                                  US-10-045-465-12
949
               10.7
                         29
                              15
                                  US-10-091-572-397
                                                               Sequence 397, App
           3
               10.7
950
                                                               Sequence 380, App
                              15
                                  US-10-097-065-380
           3
                         29
951
               10.7
                                                               Sequence 517, App
           3
               10.7
                         29
                              15
                                  US-10-097-065-517
952
                                  US-10-091-504-638
                                                               Sequence 638, App
           3
               10.7
                         29
                              15
953
               10.7
                         29
                              15
                                  US-10-091-504-674
                                                               Sequence 674, App
           3
954
                                                               Sequence 304, App
           3
               10.7
                         29
                              15
                                  US-10-226-956-304
955
                                                               Sequence 305, App
           3
               10.7
                         29
                              15
                                  US-10-226-956-305
956
                                                                Sequence 100, App
           3
               10.7
                         29
                              15
                                  US-10-144-929-100
957
                         29
                              15
                                                               Sequence 227, App
           3
                                  US-10-143-090-227
958
               10.7
                                                               Sequence 11, Appl
           3
                         29
                              15
                                  US-10-131-543-11
959
               10.7
                                                                Sequence 273, App
           3
               10.7
                         29
                              15
                                  US-10-174-410-273
960
                                                                Sequence 276, App
           3
               10.7
                         29
                              15
                                  US-10-174-410-276
961
                                                                Sequence 280, App
           3
                         29
                              15
                                  US-10-174-410-280
962
                10.7
                                                                Sequence 12, Appl
           3
                10.7
                         29
                              15
                                  US-10-282-121-12
963
                         29
                              15
                                  US-10-157-224A-79
                                                                Sequence 79, Appl
           3
                10.7
964
                         29
                              15
                                  US-10-157-224A-98
                                                                Sequence 98, Appl
           3
                10.7
965
                         29
                              15
                                  US-10-187-051-79
                                                                Sequence 79, Appl
           3
                10.7
966
                                  US-10-187-051-98
                                                                Sequence 98, Appl
           3
                10.7
                         29
                              15
967
                         29
                              15
                                  US-10-023-282-1182
                                                                Sequence 1182, Ap
           3
                10.7
968
```

969	3	10.7	29 15	US-10-103-597A-8	Sequence 8, Appli
970	3	10.7	29 15	US-10-161-205-13	Sequence 13, Appl
971	3	10.7	29 15	US-10-131-546-11	Sequence 11, Appl
972	3	10.7	29 15	US-10-131-346-11	Sequence 11, Appl
973	3	10.7	29 15	US-10-101-001-13	Sequence 13, Appl
974	3	10.7	29 15	US-10-188-444-8	Sequence 8, Appli
975	3	10.7	29 15	US-10-178-055-12	Sequence 12, Appl
976	3	10.7	29 15	US-10-178-055-14	Sequence 14, Appl
977	3	10.7	29 15	US-10-287-892-22	Sequence 22, Appl
978	3	10.7	29 15	US-10-288-340-22	Sequence 22, Appl
979	3	10.7	29 15	US-10-106-698-6027	Sequence 6027, Ap
980	3	10.7	29 15	US-10-106-698-7935	Sequence 7935, Ap
981	3	10.7	29 15	US-10-106-698-8359	Sequence 8359, Ap
982	3	10.7	29 15	US-10-213-512-189	Sequence 189, App
983	3	10.7	29 15	US-10-213-512-242	Sequence 242, App
984	3	10.7	29 16	US-10-176-306-34	Sequence 34, Appl
985	3	10.7	30 8	US-08-450-842-40	Sequence 40, Appl
986	3	10.7	30 8	US-08-450-842-43	Sequence 43, Appl
987	3	10.7	30 9	US-09-729-835-119	Sequence 119, App
988	3	10.7	30 9	US-09-205-658-303	Sequence 303, App
989	3	10.7	30 9	US-09-103-067-12	Sequence 12, Appl
990	3	10.7	30 9	US-09-765-527 - 15	Sequence 15, Appl
991	3	10.7	30 9	US-09-844-813-3	Sequence 3, Appli
992	3	10.7	30 9	US-09-864-761-33672	Sequence 33672, A
993	3	10.7	30 9	US-09-864-761-34669	Sequence 34669, A
994	3	10.7	30 9	US-09-864-761-34980	Sequence 34980, A
995	3	10.7	30 9	US-09-864-761-36666	Sequence 36666, A
996	3	10.7	30 9	US-09-864-761-37429	Sequence 37429, A
997	3	10.7	30 9	US-09-864-761-37624	Sequence 37624, A
998	3	10.7	30 9	US-09-864-761-37644	Sequence 37644, A
999	3	10.7	30 9	US-09-864-761-37680	Sequence 37680, A
1000	3	10.7	30 15	US-10-216-209-53	Sequence 53, Appl

ALIGNMENTS

RESULT 1

US-09-843-221A-52

- ; Sequence 52, Application US/09843221A
- ; Publication No. US20030039654A1
- ; GENERAL INFORMATION:
- ; APPLICANT: KOSTENUIK, PAUL
- ; APPLICANT: LIU, CHUAN-FA
- ; APPLICANT: LACEY, DAVID LEE
- ; TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND PARATHYROID HORMONE-
- ; TITLE OF INVENTION: RELATED PROTEIN
- ; FILE REFERENCE: A-665B
- ; CURRENT APPLICATION NUMBER: US/09/843,221A
- ; CURRENT FILING DATE: 2001-04-26
- ; PRIOR APPLICATION NUMBER: 60/266,673
- ; PRIOR FILING DATE: 2001-02-06
- ; PRIOR APPLICATION NUMBER: 60/214,860
- ; PRIOR FILING DATE: 2000-06-28
- ; PRIOR APPLICATION NUMBER: 60/200,053
- ; PRIOR FILING DATE: 2000-04-27

```
NUMBER OF SEQ ID NOS: 170
   SOFTWARE: PatentIn version 3.1
  SEO ID NO 52
    LENGTH: 28
    TYPE: PRT
    ORGANISM: Homo sapiens
US-09-843-221A-52
                         100.0%; Score 28; DB 11; Length 28;
  Query Match
  Best Local Similarity
                         100.0%; Pred. No. 9.5e-22;
  Matches
           28; Conservative
                               0; Mismatches
                                                 0;
                                                    Indels
                                                               0; Gaps
                                                                          0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 2
US-09-843-221A-168
; Sequence 168, Application US/09843221A
  Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
   APPLICANT: LIU, CHUAN-FA
   APPLICANT: LACEY, DAVID LEE
   TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
   TITLE OF INVENTION: RELATED PROTEIN
   FILE REFERENCE: A-665B
   CURRENT APPLICATION NUMBER: US/09/843,221A
   CURRENT FILING DATE: 2001-04-26
   PRIOR APPLICATION NUMBER: 60/266,673
   PRIOR FILING DATE: 2001-02-06
   PRIOR APPLICATION NUMBER: 60/214,860
   PRIOR FILING DATE: 2000-06-28
   PRIOR APPLICATION NUMBER: 60/200,053
   PRIOR FILING DATE: 2000-04-27
   NUMBER OF SEQ ID NOS: 170
   SOFTWARE: PatentIn version 3.1
 SEQ ID NO 168
   LENGTH: 28
    TYPE: PRT
    ORGANISM: Artificial Sequence
    FEATURE:
    OTHER INFORMATION: Preferred embodiments - PTH
   NAME/KEY: misc feature
    LOCATION: (1)..(1)
   OTHER INFORMATION: Fc domain attached at the N-terminus through optional
linker
US-09-843-221A-168
  Query Match
                         100.0%; Score 28; DB 11; Length 28;
  Best Local Similarity
                         100.0%; Pred. No. 9.5e-22;
           28; Conservative
 Matches
                              0; Mismatches
                                                0; Indels
                                                              0; Gaps
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
```

```
RESULT 3
US-09-843-221A-51
; Sequence 51, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
   TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
   TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
 PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
 SEQ ID NO 51
    LENGTH: 29
    TYPE: PRT
    ORGANISM: Homo sapiens
US-09-843-221A-51
                         100.0%; Score 28; DB 11; Length 29;
  Query Match
                         100.0%; Pred. No. 9.8e-22;
  Best Local Similarity
                                0; Mismatches
                                                 0; Indels
                                                                0; Gaps
                                                                            0;
            28; Conservative
  Matches
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 4
US-09-843-221A-167
; Sequence 167, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
   TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
   FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
   PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
   PRIOR APPLICATION NUMBER: 60/214,860
```

```
PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 167
   LENGTH: 29
   TYPE: PRT
   ORGANISM: Artificial Sequence
   OTHER INFORMATION: Preferred embodiments - PTH
   NAME/KEY: misc_feature
   LOCATION: (1)..(1)
   OTHER INFORMATION: Fc domain attached at the N-terminus through optional
linker
US-09-843-221A-167
                         100.0%; Score 28; DB 11; Length 29;
  Query Match
                         100.0%; Pred. No. 9.8e-22;
  Best Local Similarity
                                                                           0;
                               0; Mismatches
                                                0;
                                                     Indels
                                                               0; Gaps
          28; Conservative
  Matches
           1 SVSEIOLMHNLGKHLNSMERVEWLRKKL 28
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 5
US-09-843-221A-39
            9, Application US/09843221A
; Sequ
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
   APPLICANT: LIU, CHUAN-FA
   APPLICANT: LACEY, DAVID LEE
   TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
   SOFTWARE: PatentIn version 3.1
; SEQ ID NO 39
    LENGTH: 30
    TYPE: PRT
    ORGANISM: Homo sapiens
US-09-843-221A-39
                          100.0%; Score 28; DB 11; Length 30;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1e-21;
            28; Conservative 0; Mismatches
                                                0; Indels
                                                                0;
                                                                    Gaps
  Matches
```

```
1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
QУ
             1 SVSEIOLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 6
US-09-843-221A-166
; Sequence 166, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
   FILE REFERENCE: A-665B
   CURRENT APPLICATION NUMBER: US/09/843,221A
   CURRENT FILING DATE: 2001-04-26
   PRIOR APPLICATION NUMBER: 60/266,673
   PRIOR FILING DATE: 2001-02-06
   PRIOR APPLICATION NUMBER: 60/214,860
   PRIOR FILING DATE: 2000-06-28
   PRIOR APPLICATION NUMBER: 60/200,053
   PRIOR FILING DATE: 2000-04-27
   NUMBER OF SEQ ID NOS: 170
   SOFTWARE: PatentIn version 3.1
  SEQ ID NO 166
    LENGTH: 30
    TYPE: PRT
    ORGANISM: Artificial Sequence
    FEATURE:
    OTHER INFORMATION: Preferred embodiments - PTH
    NAME/KEY: misc feature
    LOCATION: (30)..(30)
    OTHER INFORMATION: Optional linker and Fc domain attached at the C-terminus
US-09-843-221A-166
                         100.0%; Score 28; DB 11; Length 30;
  Query Match
  Best Local Similarity
                         100.0%; Pred. No. 1e-21;
                                                 0; Indels
                                                                   Gaps
           28; Conservative
                               0; Mismatches
  Matches
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Ov
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 7
US-09-169-786-2
; Sequence 2, Application US/09169786B
; Patent No. US20020025929A1
; GENERAL INFORMATION:
   APPLICANT: Sato, Masahiko
   TITLE OF INVENTION: METHOD OF BUILDING AND MAINTAINING BONE
   FILE REFERENCE: X-11480
```

CURRENT APPLICATION NUMBER: US/09/169,786B

```
EARLIER APPLICATION NUMBER: US 60/061,800
  EARLIER FILING DATE: 1997-10-14
  NUMBER OF SEQ ID NOS: 12
  SOFTWARE: PatentIn Ver. 2.0
 SEQ ID NO 2
   LENGTH: 31
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-169-786-2
 Query Match
                        100.0%; Score 28; DB 9; Length 31;
 Best Local Similarity 100.0%; Pred. No. 1e-21;
 Matches
           28; Conservative
                             0; Mismatches
                                              0; Indels
                                                              0; Gaps
                                                                         0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
             Dh
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 8
US-09-843-221A-27
; Sequence 27, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
 APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS O RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 27
   LENGTH: 31
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-843-221A-27
 Query Match
                        100.0%; Score 28; DB 11; Length 31;
 Best Local Similarity 100.0%; Pred. No. 1e-21;
 Matches
                             0; Mismatches
          28; Conservative
                                               0; Indels
                                                              0; Gaps
                                                                         0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
```

CURRENT FILING DATE: 1998-10-09

```
RESULT 9
US-09-843-221A-165
; Sequence 165, Application US/09843221A
  Publication No. US20030039654A1
 GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
   TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
   TITLE OF INVENTION: RELATED PROTEIN
   FILE REFERENCE: A-665B
   CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
   PRIOR APPLICATION NUMBER: 60/200,053
   PRIOR FILING DATE: 2000-04-27
   NUMBER OF SEQ ID NOS: 170
   SOFTWARE: PatentIn version 3.1
; SEQ ID NO 165
    LENGTH: 31
    TYPE: PRT
    ORGANISM: Artificial Sequence
    FEATURE:
    OTHER INFORMATION: Preferred embodiments - PTH
    NAME/KEY: misc_feature
    LOCATION: (31)..(31)
    OTHER INFORMATION: Optional linker and Fc domain attached at the C-terminus
US-09-843-221A-165
                          100.0%; Score 28; DB 11; Length 31;
  Query Match
                                   Pred. No. 1e-21;
  Best Local Similarity
                          100.0%;
                                                                            0;
                                0; Mismatches
                                                                0; Gaps
                                                  0;
                                                      Indels
            28; Conservative
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 10
US-10-361-928-9
; Sequence 9, Application US/10361928
; Publication No. US20030144209A1
; GENERAL INFORMATION:
   APPLICANT: BRINGHURST, F. RICHARD
   APPLICANT: TAKASU, HISASHI
   APPLICANT: GARDELLA, THOMAS J.
   TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
   TITLE OF INVENTION: ANALOGS
   FILE REFERENCE: 0609.4630002
  CURRENT APPLICATION NUMBER: US/10/361,928
   CURRENT FILING DATE: 2003-02-11
   PRIOR APPLICATION NUMBER: 09/447,800
   PRIOR FILING DATE: 1999-11-23
```

```
PRIOR APPLICATION NUMBER: 60/110,152
  PRIOR FILING DATE: 1998-11-25
  NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
 SEO ID NO 9
   LENGTH: 33
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Ser
US-10-361-928-9
 Query Match
                         100.0%; Score 28; DB 12; Length 33;
                         100.0%; Pred. No. 1.1e-21;
 Best Local Similarity
                               0; Mismatches
 Matches
           28; Conservative
                                                0;
                                                    Indels
                                                               0; Gaps
                                                                          0;
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 11
US-09-169-786-3
; Sequence 3, Application US/09169786B
; Patent No. US20020025929A1
; GENERAL INFORMATION:
  APPLICANT: Sato, Masahiko
  TITLE OF INVENTION: METHOD OF BUILDING AND MAINTAINI
                                                        BONE
  FILE REFERENCE: X-11480
  CURRENT APPLICATION NUMBER: US/09/169,786B
  CURRENT FILING DATE: 1998-10-09
  EARLIER APPLICATION NUMBER: US 60/061,800
  EARLIER FILING DATE: 1997-10-14
  NUMBER OF SEQ ID NOS: 12
  SOFTWARE: PatentIn Ver. 2.0
; SEQ ID NO 3
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-169-786-3
  Query Match
                         100.0%; Score 28; DB 9; Length 34;
 Best Local Similarity 100.0%; Pred. No. 1.1e-21;
 Matches
           28; Conservative
                              0; Mismatches
                                               0; Indels
                                                              0; Gaps
                                                                          0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
             Db
           1 SVSEIOLMHNLGKHLNSMERVEWLRKKL 28
RESULT 12
US-09-928-047B-6
; Sequence 6, Application US/09928047B
; Patent No. US20020160945A1
; GENERAL INFORMATION:
```

```
TITLE OF INVENTION: CYCLASE INHIBITING PARATHYROID HORMONE
  TITLE OF INVENTION: ANTAGONIST OR MODULATORS AND OSTEOPOROSIS
  FILE REFERENCE: 53221-20002.00
  CURRENT APPLICATION NUMBER: US/09/928,047B
  CURRENT FILING DATE: 2001-08-10
  PRIOR APPLICATION NUMBER: US 60/224,446
  PRIOR FILING DATE: 2000-08-10
  NUMBER OF SEQ ID NOS: 8
  SOFTWARE: FastSEQ for Windows Version 4.0
 SEQ ID NO 6
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-928-047B-6
                         100.0%; Score 28; DB 10; Length 34;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 1.1e-21;
          28; Conservative 0; Mismatches
                                              0; Indels
                                                              0; Gaps
                                                                          0;
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
QУ
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 13
US-09-843-221A-16
; Sequence 16, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
 APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 16
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-843-221A-16
                         100.0%; Score 28; DB 11; Length 34;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.1e-21;
           28; Conservative 0; Mismatches 0; Indels 0; Gaps
```

APPLICANT: Cantor, Thomas

```
1 SVSEIOLMHNLGKHLNSMERVEWLRKKL 28
QУ
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 14
US-09-843-221A-161
; Sequence 161, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
   FILE REFERENCE: A-665B
   CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
   PRIOR APPLICATION NUMBER: 60/266,673
   PRIOR FILING DATE: 2001-02-06
   PRIOR APPLICATION NUMBER: 60/214,860
   PRIOR FILING DATE: 2000-06-28
   PRIOR APPLICATION NUMBER: 60/200,053
   PRIOR FILING DATE: 2000-04-27
   NUMBER OF SEQ ID NOS: 170
   SOFTWARE: PatentIn version 3.1
 SEQ ID NO 161
    LENGTH: 34
    TYPE: PRT
    ORGANISM: Artificial Sequence
    FEATURE:
    OTHER INFORMATION: Preferred embodiments - PTH
    NAME/KEY: misc feature
    LOCATION: (34)..(34)
    OTHER INFORMATION: Optional linker and Fc domain attached at the C-terminus
US-09-843-221A-161
                         100.0%; Score 28; DB 11;
                                                    Length 34;
  Query Match
  Best Local Similarity
                         100.0%; Pred. No. 1.1e-21;
                               0; Mismatches
  Matches
           28: Conservative
                                                 0; Indels
                                                               0: Gaps
                                                                           0:
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 15
US-09-928-048A-6
; Sequence 6, Application US/09928048A
; Publication No. US20030138858A1
; GENERAL INFORMATION:
; APPLICANT: Scantibodies Laboratory, Inc.
 APPLICANT: Cantor, Thomas L.
                               ND DEVICES FOR DIRECT
   TTTLE OF INVENTION: 25X
   TITLE OF INVENTION: DETERMINATION OF CYCLASE INHIBITING PARATHYROID HORMONE
   FILE REFERENCE: 53221-20015.00
```

```
CURRENT APPLICATION NUMBER: US/09/928,048A
  CURRENT FILING DATE: 2000-08-10
  NUMBER OF SEQ ID NOS: 8
  SOFTWARE: FastSEO for Windows Version 4.0
 SEQ ID NO 6
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-928-048A-6
 Query Match
                        100.0%; Score 28; DB 12; Length 34;
 Best Local Similarity
                        100.0%; Pred. No. 1.1e-21;
 Matches
           28; Conservative
                             0; Mismatches
                                                0; Indels
                                                              0; Gaps
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 16
US-10-361-928-8
; Sequence 8, Application US/10361928
; Publication No. US20030144209A1
; GENERAL INFORMATION:
  APPLICANT: BRINGHURST, F. RICHARD
  APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED
                                               THYROID HORMONE CETH)
  TITLE OF INVENTION: ANALOGS
  FILE REFERENCE: 0609.4630002
   CURRENT APPLICATION NUMBER: US/10/361,928
   CURRENT FILING DATE: 2003-02-11
   PRIOR APPLICATION NUMBER: 09/447,800
   PRIOR FILING DATE: 1999-11-23
  PRIOR APPLICATION NUMBER: 60/110,152
   PRIOR FILING DATE: 1998-11-25
  NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 8
   LENGTH: 34
    TYPE: PRT
    ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD RES
   LOCATION: (1)
    OTHER INFORMATION: Desamino Ser
US-10-361-928-8
                         100.0%; Score 28; DB 12; Length 34;
  Query Match
                         100.0%; Pred. No. 1.1e-21;
  Best Local Similarity
           28; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
                                                                          0;
  Matches
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Dh
```

```
US-10-340-484-15
; Sequence 15, Application US/10340484
; Publication No. US20030171288A1
; GENERAL INFORMATION:
  APPLICANT: Stewart, Andrew F.
   TITLE OF INVENTION: Treatment of Bone Disorders with Skelatal Anabolic
   TITLE OF INVENTION: Drugs
  FILE REFERENCE: 25200-501
  CURRENT APPLICATION NUMBER: US/10/340,484
   CURRENT FILING DATE: 2003-01-10
  PRIOR APPLICATION NUMBER: 60/347,215
   PRIOR FILING DATE: 2002-01-10
  PRIOR APPLICATION NUMBER: 60/353,296
  PRIOR FILING DATE: 2002-02-01
  PRIOR APPLICATION NUMBER: 60/368,955
  PRIOR FILING DATE: 2002-03-28
  PRIOR APPLICATION NUMBER: 60/379,125
   PRIOR FILING DATE: 2002-05-08
   NUMBER OF SEQ ID NOS: 27
   SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 15
    LENGTH: 34
    TYPE: PRT
    ORGANISM: Homo sapiens
US-10-340-484-15
  Query Match
                          10
  Best Local Similarity 100.0%; Pred. No. 1.1e-21;
                                                                0; Gaps
            28; Conservative 0; Mismatches 0; Indels
  Matches
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 18
US-10-340-484-16
; Sequence 16, Application US/10340484
; Publication No. US20030171288A1
; GENERAL INFORMATION:
   APPLICANT: Stewart, Andrew F.
   TITLE OF INVENTION: Treatment of Bone Disorders with Skelatal Anabolic
   TITLE OF INVENTION: Drugs
   FILE REFERENCE: 25200-501
   CURRENT APPLICATION NUMBER: US/10/340,484
   CURRENT FILING DATE: 2003-01-10
   PRIOR APPLICATION NUMBER: 60/347,215
   PRIOR FILING DATE: 2002-01-10
   PRIOR APPLICATION NUMBER: 60/353,296
   PRIOR FILING DATE: 2002-02-01
   PRIOR APPLICATION NUMBER: 60/368,955
   PRIOR FILING DATE: 2002-03-28
   PRIOR APPLICATION NUMBER: 60/379,125
   PRIOR FILING DATE: 2002-05-08
   NUMBER OF SEQ ID NOS: 27
   SOFTWARE: PatentIn Ver. 2.1
```

RESULT 17

```
; SEQ ID NO 16
   LENGTH: 34
    TYPE: PRT
    ORGANISM: Macaca fascicularis
US-10-340-484-16
                          100.0%; Score 28; DB 12; Length 34;
  Query Match
                          100.0%; Pred. No. 1.1e-21;
  Best Local Similarity
 Matches
           28; Conservative
                                0; Mismatches
                                                  0;
                                                      Indels
                                                                 0;
                                                                     Gaps
                                                                             0;
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              111111111111
Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 19
US-10-016-403-5
; Sequence 5, Application US/10016403
  Publication No. US20020107505A1
    GENERAL INFORMATION:
         APPLICANT: Holladay, Leslie A.
         TITLE OF INVENTION: MODIFICATION OF POLYPEPTIDE DRUGS TO
                             INCREASE ELECTROTRANSPORT FLUX
         NUMBER OF SEQUENCES: 10
         CORRESPONDENCE ADDRESS:
              ADDRESSEE: Stroud, Stroud, Willink, Thompson & Howard
              STREET: 25 West Main Street
              CITY: Madison
              STATE: WI
              COUNTRY: USA
              ZIP: 53701-2236
         COMPUTER READABLE FORM:
              MEDIUM TYPE: Floppy disk
              COMPUTER: IBM PC compatible
              OPERATING SYSTEM: PC-DOS/MS-DOS
              SOFTWARE: PatentIn Release #1.0, Version #1.25
         CURRENT APPLICATION DATA:
              APPLICATION NUMBER: US/10/016,403
              FILING DATE: 10-Dec-2001
              CLASSIFICATION: <Unknown>
         PRIOR APPLICATION DATA:
              APPLICATION NUMBER: 08/466,610
              FILING DATE: 1995-JUN-06
         ATTORNEY/AGENT INFORMATION:
              NAME: Frenchick, Grady J.
              REGISTRATION NUMBER: 29,018
              REFERENCE/DOCKET NUMBER: 8734.28
         TELECOMMUNICATION INFORMATION:
              TELEPHONE: 608-257-2281
              TELEFAX: 608-257-7643
    INFORMATION FOR SEQ ID NO: 5:
         SEQUENCE CHARACTERISTICS:
              LENGTH: 34 amino acids
              TYPE: amino acid
              TOPOLOGY: linear
         FEATURE:
              NAME/KEY: Peptide
```

```
LOCATION: 1..34
ï
             OTHER INFORMATION: /note= "parathyroid hormone"
        SEQUENCE DESCRIPTION: SEQ ID NO: 5:
US-10-016-403-5
 Query Match
                          100.0%; Score 28; DB 14; Length 34;
                         100.0%; Pred. No. 1.1e-21;
 Best Local Similarity
 Matches
            28; Conservative
                               0; Mismatches
                                                 0;
                                                      Indels
                                                                0; Gaps
                                                                            0;
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 20
US-10-016-403-7
; Sequence 7, Application US/10016403
 Publication No. US20020107505A1
    GENERAL INFORMATION:
         APPLICANT: Holladay, Leslie A.
         TITLE OF INVENTION: MODIFICATION OF POLYPEPTIDE DRUGS TO
                             INCREASE ELECTROTRANSPORT FLUX
         NUMBER OF SEQUENCES: 10
         CORRESPONDENCE ADDRESS:
             ADDRESSEE: Stroud, Stroud, Willink, Thompson & Howard 565
              STREET: 25 West Main Street
              CITY: Madison
              STATE: WI
              COUNTRY: USA
              ZIP: 53701-2236
         COMPUTER READABLE FORM:
             MEDIUM TYPE: Floppy disk
              COMPUTER: IBM PC compatible
              OPERATING SYSTEM: PC-DOS/MS-DOS
              SOFTWARE: PatentIn Release #1.0, Version #1.25
         CURRENT APPLICATION DATA:
              APPLICATION NUMBER: US/10/016,403
              FILING DATE: 10-Dec-2001
              CLASSIFICATION: <Unknown>
         PRIOR APPLICATION DATA:
             APPLICATION NUMBER: 08/466,610
              FILING DATE: 1995-JUN-06
         ATTORNEY/AGENT INFORMATION:
              NAME: Frenchick, Grady J.
              REGISTRATION NUMBER: 29,018
              REFERENCE/DOCKET NUMBER: 8734.28
         TELECOMMUNICATION INFORMATI
              TELEPHONE: 608-257-2281
              TELEFAX: 608-257-7643
    INFORMATION FOR SEQ ID NO: 7:
        SEQUENCE CHARACTERISTICS:
              LENGTH: 34 amino acids
              TYPE: amino acid
             TOPOLOGY: linear
         FEATURE:
             NAME/KEY:
                         Peptide
                                      75X,
             LOCATION: 1..34
```

```
OTHER INFORMATION: /note= "modified parathyroid
             hormone"
         SEQUENCE DESCRIPTION: SEQ ID NO: 7:
US-10-016-403-7
                         100.0%; Score 28; DB 14; Length 34;
  Query Match
                         100.0%; Pred. No. 1.1e-21;
  Best Local Similarity
                                                                0; Gaps
                                                                            0;
  Matches
          28; Conservative 0; Mismatches
                                                 0; Indels
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 21
US-10-097-079-1
; Sequence 1, Application US/10097079
; Publication No. US20020132973A1
    GENERAL INFORMATION:
         APPLICANT: Condon, Stephen M.
                    Morize, Isabelle
         TITLE OF INVENTION: PEPTIDE PARATHYROID HORMONE ANALOGS
         NUMBER OF SEQUENCES: 88
         CORRESPONDENCE ADDRESS:
              ADDRESSEE: Rhone-Poulenc Rorer Inc.
              STREET: 500 Arcola Road, Mailstop 3C43
              CITY: Collegeville
              STATE: PA
              COUNTRY: USA
              ZIP: 19426
         COMPUTER READABLE FORM:
              MEDIUM TYPE: Floppy disk
              COMPUTER: IBM PC compatible
              OPERATING SYSTEM: PC-DOS/MS-DOS
              SOFTWARE: PatentIn Release #1.0, Version #1.30
         CURRENT APPLICATION DATA:
              APPLICATION NUMBER: US/10/097,079
              FILING DATE: 13-Mar-2002
              CLASSIFICATION: <Unknown>
         PRIOR APPLICATION DATA:
              APPLICATION NUMBER: 09/228,990
              FILING DATE: <Unknown>
              APPLICATION NUMBER: US 60/046,472
              FILING DATE: 14-MAY-1997
         ATTORNEY/AGENT INFORMATION:
              NAME: Martin Esq., Michael B.
              REGISTRATION NUMBER: 37,521
              REFERENCE/DOCKET NUMBER: A2678B-WO
         TELECOMMUNICATION INFORMATION:
              TELEPHONE: (610) 454-2793
              TELEFAX: (610) 454-3808
    INFORMATION FOR SEQ ID NO: 1:
         SEQUENCE CHARACTERISTICS:
              LENGTH: 34 amino acids
              TYPE: amino acid
              STRANDEDNESS: <Unknown>
              TOPOLOGY: No. US20020132973A1 Relevant
```

```
MOLECULE TYPE: peptide
        FRAGMENT TYPE: N-terminal
        SEQUENCE DESCRIPTION: SEQ ID NO: 1:
US-10-097-079-1
                         100.0%; Score 28; DB 14; Length 34;
 Query Match
                         100.0%; Pred. No. 1.1e-21;
 Best Local Similarity
                                                                          0;
                                                     Indels
                                                               0; Gaps
           28; Conservative
                             0; Mismatches
                                                0;
 Matches
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 22
US-10-168-185-9
; Sequence 9, Application US/10168185
; Publication No. US20030175802A1
; GENERAL INFORMATION:
  APPLICANT: Armbruster, Franz Paul
  APPLICANT: Missbichler, Albert
  APPLICANT: Schmidt-Gayk, Heinrich
   APPLICANT: Roth, Heinz-Jurgen
   TITLE OF INVENTION: Method for Determining Parathormone
   TITLE OF INVENTION: Activity in a Human Sample
  FILE REFERENCE: HLZ-004US
   CURRENT APPLICATION NUMBER: US/10/168,185
   CURRENT FILING DATE: 2002-06-17
  PRIOR APPLICATION NUMBER: PCT/EP00/12911
  PRIOR FILING DATE: 2000-12-18
  PRIOR APPLICATION NUMBER: DE 19961350
   PRIOR FILING DATE: 1999-12-17
   NUMBER OF SEQ ID NOS: 11
   SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 9
    LENGTH: 37
    TYPE: PRT
    ORGANISM: Homo sapiens
US-10-168-185-9
                         100.0%; Score 28; DB 12;
                                                    Length 37;
  Query Match
                         100.0%; Pred. No. 1.2e-21;
  Best Local Similarity
                                                               0; Gaps
                                                                           0;
                                                 0; Indels
                               0; Mismatches
  Matches
            28; Conservative
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 23
US-09-169-786-4
; Sequence 4, Application US/09169786B
; Patent No. US20020025929A1
; GENERAL INFORMATION:
  APPLICANT: Sato, Masahiko
   TITLE OF INVENTION: METHOD OF BUILDING AND MAINTAINING BONE
   FILE REFERENCE: X-11480
```

```
CURRENT FILING DATE: 1998-10-09
  EARLIER APPLICATION NUMBER: US 60/061,800
  EARLIER FILING DATE: 1997-10-14
  NUMBER OF SEO ID NOS: 12
  SOFTWARE: PatentIn Ver. 2.0
 SEO ID NO 4
   LENGTH: 38
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-169-786-4
 Query Match
                         100.0%; Score 28; DB 9; Length 38;
 Best Local Similarity 100.0%; Pred. No. 1.2e-21;
 Matches
           28; Conservative
                               0; Mismatches
                                               0; Indels
                                                              0; Gaps
                                                                          0;
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 24
US-09-843-221A-14
; Sequence 14, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
 SEO ID NO 14
   LENGTH: 38
    TYPE: PRT
   ORGANISM: Homo sapiens
US-09-843-221A-14
  Query Match
                         100.0%; Score 28; DB 11; Length 38;
                         100.0%; Pred. No. 1.2e-21;
  Best Local Similarity
                               0; Mismatches
                                                0; Indels
  Matches
           28; Conservative
                                                               0; Gaps
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
```

CURRENT APPLICATION NUMBER: US/09/169,786B

```
RESULT 25
US-10-245-707-1
; Sequence 1, Application US/10245707
 Publication No. US20030171282A1
 GENERAL INFORMATION:
  APPLICANT: Patton, John S.
  TITLE OF INVENTION: Pulmonary Delivery of Active Fragments of Parathyroid
Hormone
   FILE REFERENCE: 032055-047
   CURRENT APPLICATION NUMBER: US/10/245,707
   CURRENT FILING DATE:
                        2003-03-11
   PRIOR APPLICATION NUMBER: US 09/577,264
   PRIOR FILING DATE: 2000-05-22
   PRIOR APPLICATION NUMBER: US 09/128,401
   PRIOR FILING DATE: 1998-08-03
   PRIOR APPLICATION NUMBER: US 08/625,586
   PRIOR FILING DATE: 1996-03-28
   PRIOR APPLICATION NUMBER: US 08/232,849
   PRIOR FILING DATE: 1994-04-25
   PRIOR APPLICATION NUMBER: US 07/953,397
   PRIOR FILING DATE: 1992-09-29
  NUMBER OF SEQ ID NOS: 1
   SOFTWARE: FastSEQ for Windows Version 4.0
 SEQ ID NO 1
    LENGTH: 38
    TYPE: PRT
    ORGANISM: Artificial Sequence
    FEATURE:
    OTHER INFORMATION: parathyroid hormone (PTH) fragment molecues
US-10-245-707-1
                          100.0%; Score 28; DB 12;
                                                      Length 38;
  Query Match
                          100.0%; Pred. No. 1.2e-21;
  Best Local Similarity
                                0; Mismatches
                                                 0; Indels
                                                                 0; Gaps
                                                                             0;
  Matches
            28; Conservative
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              1 SVSEIOLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 26
US-09-843-221A-43
; Sequence 43, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
   APPLICANT: KOSTENUIK, PAUL
   APPLICANT: LIU, CHUAN-FA
   APPLICANT: LACEY, DAVID LEE
   TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
                       RELATED PROTEIN
   TITLE OF INVENTION:
   FILE REFERENCE: A-665B
   CURRENT APPLICATION NUMBER: US/09/843,221A
   CURRENT FILING DATE: 2001-04-26
   PRIOR APPLICATION NUMBER: 60/266,673
   PRIOR FILING DATE: 2001-02-06
```

```
PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 43
   LENGTH: 30
   TYPE: PRT
   ORGANISM: Artificial Sequence
   OTHER INFORMATION: modified human PTH
US-09-843-221A-43
 Query Match
                         96.4%; Score 27; DB 11; Length 30;
 Best Local Similarity 100.0%; Pred. No. 1.1e-20;
                             0; Mismatches 0; Indels
 Matches
          27; Conservative
                                                               0; Gaps
                                                                          0;
           2 VSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
             Db
           2 VSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 27
US-10-361-928-3
; Sequence 3, Application US/10361928
; Publication No. US20030144209A1
; GENERAL INFORMATION:
  APPLICANT: BRINGHURST, F. RICHARD
  APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
  FILE REFERENCE: 0609.4630002
  CURRENT APPLICATION NUMBER: US/10/361,928
  CURRENT FILING DATE: 2003-02-11
  PRIOR APPLICATION NUMBER: 09/447,800
  PRIOR FILING DATE: 1999-11-23
  PRIOR APPLICATION NUMBER: 60/110,152
  PRIOR FILING DATE: 1998-11-25
  NUMBER OF SEO ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
 SEQ ID NO 3
   LENGTH: 33
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Gly
US-10-361-928-3
 Query Match
                         96.4%; Score 27; DB 12; Length 33;
 Best Local Similarity 100.0%; Pred. No. 1.1e-20;
 Matches 27; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
```

FILE REFERENCE: A-665B

CURRENT APPLICATION NUMBER: US/09/843,221A

CURRENT FILING DATE: 2001-04-26 PRIOR APPLICATION NUMBER: 60/266,673

2 VSEIQLMHNLGKHLNSMERVEWLRKKL 28 Db RESULT 28 US-10-361-928-6 ; Sequence 6, Application US/10361928 ; Publication No. US20030144209A1 ; GENERAL INFORMATION: APPLICANT: BRINGHURST, F. RICHARD APPLICANT: TAKASU, HISASHI APPLICANT: GARDELLA, THOMAS J. TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH) TITLE OF INVENTION: ANALOGS FILE REFERENCE: 0609.4630002 CURRENT APPLICATION NUMBER: US/10/361,928 CURRENT FILING DATE: 2003-02-11 PRIOR APPLICATION NUMBER: 09/447,800 PRIOR FILING DATE: 1999-11-23 PRIOR APPLICATION NUMBER: 60/110,152 PRIOR FILING DATE: 1998-11-25 NUMBER OF SEQ ID NOS: 10 SOFTWARE: PatentIn Ver. 2.1 ; SEQ ID NO 6 LENGTH: 33 TYPE: PRT ORGANISM: Homo sapiens FEATURE: NAME/KEY: MOD RES LOCATION: (1) OTHER INFORMATION: Desamino Ala US-10-361-928-6 Query Match 96.4%; Score 27; DB 12; Length 33; 100.0%; Pred. No. 1.1e-20; Best Local Similarity Matches 27; Conservative 0; Mismatches 0; Indels 0; Gaps 0; 2 VSEIQLMHNLGKHLNSMERVEWLRKKL 28 Qу Db 2 VSEIQLMHNLGKHLNSMERVEWLRKKL 28 RESULT 29 US-09-843-221A-20 ; Sequence 20, Application US/09843221A ; Publication No. US20030039654A1 ; GENERAL INFORMATION: APPLICANT: KOSTENUIK, PAUL APPLICANT: LIU, CHUAN-FA APPLICANT: LACEY, DAVID LEE TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND PARATHYROID HORMONE-TITLE OF INVENTION: RELATED PROTEIN

```
PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 20
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: modified human PTH
US-09-843-221A-20
                         96.4%; Score 27; DB 11; Length 34;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 1.2e-20;
          27; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
           2 VSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
             Db
           2 VSEIOLMHNLGKHLNSMERVEWLRKKL 28
RESULT 30
US-10-361-928-1
; Sequence 1, Application US/10361928
; Publication No. US20030144209A1
; GENERAL INFORMATION:
; APPLICANT: BRINGHURST, F. RICHARD
 APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
  FILE REFERENCE: 0609.4630002
  CURRENT APPLICATION NUMBER: US/10/361,928
  CURRENT FILING DATE: 2003-02-11
; PRIOR APPLICATION NUMBER: 09/447,800
  PRIOR FILING DATE: 1999-11-23
  PRIOR APPLICATION NUMBER: 60/110,152
  PRIOR FILING DATE: 1998-11-25
  NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
: SEO ID NO 1
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: UNSURE
   LOCATION: (1)
   OTHER INFORMATION: Can be desamino Ser, desamino Ala, or desamino Gly
US-10-361-928-1
                         96.4%; Score 27; DB 12; Length 34;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.2e-20;
 Matches 27; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
```

```
2 VSEIOLMHNLGKHLNSMERVEWLRKKL 28
Qу
             Db
           2 VSEIOLMHNLGKHLNSMERVEWLRKKL 28
RESULT 31
US-10-361-928-2
; Sequence 2, Application US/10361928
; Publication No. US20030144209A1
 GENERAL INFORMATION:
  APPLICANT: BRINGHURST, F. RICHARD
  APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
  FILE REFERENCE: 0609.4630002
  CURRENT APPLICATION NUMBER: US/10/361,928
  CURRENT FILING DATE: 2003-02-11
  PRIOR APPLICATION NUMBER: 09/447,800
  PRIOR FILING DATE: 1999-11-23
  PRIOR APPLICATION NUMBER: 60/110,152
  PRIOR FILING DATE: 1998-11-25
  NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
 SEQ ID NO 2
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD_RES
   LOCATION: (1)
    OTHER INFORMATION: Desamino Gly
US-10-361-928-2
                         96.4%; Score 27; DB 12; Length 34;
  Query Match
                         100.0%; Pred. No. 1.2e-20;
  Best Local Similarity
                              0; Mismatches
                                                0;
                                                    Indels
                                                               0; Gaps
  Matches
          27; Conservative
           2 VSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              2 VSEIQLMHNLGKHLNSMERVEWLRKKL 28
Db
RESULT 32
US-10-361-928-5
; Sequence 5, Application US/10361928
; Publication No. US20030144209A1
; GENERAL INFORMATION:
  APPLICANT: BRINGHURST, F. RICHARD
              TAKASU, HISASHI
  APPLICANT:
  APPLICANT:
              GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
  FILE REFERENCE: 0609.4630002
   CURRENT APPLICATION NUMBER: US/10/361,928
   CURRENT FILING DATE: 2003-02-11
   PRIOR APPLICATION NUMBER: 09/447,800
```

```
PRIOR FILING DATE: 1999-11-23
  PRIOR APPLICATION NUMBER: 60/110,152
  PRIOR FILING DATE: 1998-11-25
  NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 5
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Ala
US-10-361-928-5
                         96.4%; Score 27; DB 12; Length 34;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 1.2e-20;
          27; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
           2 VSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
             Db
           2 VSEIOLMHNLGKHLNSMERVEWLRKKL 28
RESULT 33
US-09-843-221A-15
; Sequence 15, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
 APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
; CURRENT FILING DATE: 2001-04-26
; PRIOR APPLICATION NUMBER: 60/266,673
 PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
 SEQ ID NO 15
   LENGTH: 37
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-843-221A-15
                         96.4%; Score 27; DB 11; Length 37;
 Query Match
  Best Local Similarity 100.0%; Pred. No. 1.2e-20;
          27; Conservative 0; Mismatches 0; Indels
```

Qу

Db

```
RESULT 34
US-09-843-221A-50
; Sequence 50, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
   APPLICANT: KOSTENUIK, PAUL
   APPLICANT: LIU, CHUAN-FA
   APPLICANT: LACEY, DAVID LEE
   TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
   TITLE OF INVENTION: RELATED PROTEIN
   FILE REFERENCE: A-665B
   CURRENT APPLICATION NUMBER: US/09/843,221A
   CURRENT FILING DATE: 2001-04-26
   PRIOR APPLICATION NUMBER: 60/266,673
   PRIOR FILING DATE: 2001-02-06
   PRIOR APPLICATION NUMBER: 60/214,860
   PRIOR FILING DATE: 2000-06-28
   PRIOR APPLICATION NUMBER: 60/200,053
   PRIOR FILING DATE: 2000-04-27
   NUMBER OF SEQ ID NOS: 170
   SOFTWARE: PatentIn version 3.1
  SEQ ID NO 50
            30
                                                                 ce 165 ppl
    TYPE: PRT
    ORGANISM: Artificial Sequence
    FEATURE:
    OTHER INFORMATION: modified human PTH
US-09-843-221A-50
  Query Match
                          92.9%; Score 26; DB 11; Length 30;
                         100.0%; Pred. No. 1.1e-19;
  Best Local Similarity
  Matches
                               0; Mismatches
                                                                            0;
            26; Conservative
                                                  0;
                                                      Indels
                                                                0; Gaps
            1 SVSEIQLMHNLGKHLNSMERVEWLRK 26
QУ
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRK 26
RESULT 35
US-09-843-221A-28
; Sequence 28, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
              LIU, CHUAN-FA
  APPLICANT:
              LACEY, DAVID LEE
   APPLICANT:
   TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION:
                       RELATED PROTEIN
   FILE REFERENCE: A-665B
   CURRENT APPLICATION NUMBER: US/09/843,2210
   CURRENT FILING DATE: 2001-04-26
```

```
PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 28
   LENGTH: 31
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: modified human PTH
US-09-843-221A-28
                        92.9%; Score 26; DB 11; Length 31;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 1.1e-19;
           26; Conservative 0; Mismatches
                                               0; Indels
                                                              0; Gaps
                                                                         0;
           1 SVSEIQLMHNLGKHLNSMERVEWLRK 26
Qу
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRK 26
RESULT 36
US-10-031-874A-206
; Sequence 206, Application US/10031874A
; Publication No. US20030190598A1
; GENERAL INFORMATION:
  APPLICANT: TANHA, JAMSHID
  APPLICANT: DUBUC, GINETTE
  APPLICANT: NARANG, SARAN
  TITLE OF INVENTION: SINGLE-DOMAIN ANTIGEN-BINDING ANTIBODY FRAGMENTS
  TITLE OF INVENTION: DERIVED FROM LLAMA ANTIBODIES
  FILE REFERENCE: 11054-1
  CURRENT APPLICATION NUMBER: US/10/031,874A
 CURRENT FILING DATE: 2002-11-14
 PRIOR APPLICATION NUMBER: 60/207,234
  PRIOR FILING DATE: 2000-05-26
 NUMBER OF SEQ ID NOS: 212
  SOFTWARE: PatentIn Ver. 2.1
 SEQ ID NO 206
   LENGTH: 31
   TYPE: PRT
   ORGANISM: Lama glama
US-10-031-874A-206
                        92.9%; Score 26; DB 12; Length 31;
  Query Match
                        100.0%; Pred. No. 1.1e-19;
  Best Local Similarity
          26; Conservative 0; Mismatches
                                               0; Indels
                                                              0; Gaps
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRK 26
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRK 26
```

PRIOR APPLICATION NUMBER: 60/266,673

```
RESULT 37
US-10-372-095-24
; Sequence 24, Application US/10372095
; Publication No. US20030162256A1
; GENERAL INFORMATION:
  APPLICANT: Juppner, Harald
  APPLICANT: Rubin, David A.
   TITLE OF INVENTION: PTH1R and PTH3R Receptors, Methods and Uses Thereof
  FILE REFERENCE: 0609.4740002
   CURRENT APPLICATION NUMBER: US/10/372,095
   CURRENT FILING DATE: 2003-02-25
   PRIOR APPLICATION NUMBER: 09/449,632
  PRIOR FILING DATE: 1999-11-30
   PRIOR APPLICATION NUMBER: US 60/110,467
   PRIOR FILING DATE: 1998-11-30
  NUMBER OF SEQ ID NOS: 25
  SOFTWARE: PatentIn Ver. 2.1
  SEQ ID NO 24
   LENGTH: 34
    TYPE: PRT
    ORGANISM: Homo sapiens
US-10-372-095-24
                          89.3%; Score 25; DB 12; Length 34;
  Query Match
  Best Local Similarity
                         100.0%; Pred. No. 1.3e-18;
  Matches
           25; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                    Gaps
Qу
            4 EIQLMHNLGKHLNSMERVEWLRKKL 28
              Db
            4 EIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 38
US-09-843-221A-32
; Sequence 32, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
   APPLICANT: LACEY, DAVID LEE
   TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
   TITLE OF INVENTION: RELATED PROTEIN
   FILE REFERENCE: A-665B
   CURRENT APPLICATION NUMBER: US/09/843,221A
   CURRENT FILING DATE: 2001-04-26
   PRIOR APPLICATION NUMBER: 60/266,673
   PRIOR FILING DATE: 2001-02-06
   PRIOR APPLICATION NUMBER: 60/214,860
   PRIOR FILING DATE: 2000-06-28
   PRIOR APPLICATION NUMBER: 60/200,053
   PRIOR FILING DATE: 2000-04-27
   NUMBER OF SEQ ID NOS: 170
   SOFTWARE: PatentIn version 3.1
; SEQ ID NO 32
    LENGTH: 28
    TYPE: PRT
```

```
; ORGANISM: Homo sapiens
US-09-843-221A-32
                         78.6%; Score 22; DB 11; Length 28;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.2e-15;
  Matches 22; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
                                                                            0;
Qу
            7 LMHNLGKHLNSMERVEWLRKKL 28
              Db
            1 LMHNLGKHLNSMERVEWLRKKL 22
RESULT 39
US-09-843-221A-124
; Sequence 124, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
 APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
   TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
   CURRENT APPLICATION NUMBER: US/09/843,221A
   CURRENT FILING DATE: 2001-04-26
   PRIOR APPLICATION NUMBER: 60/266,673
   PRIOR FILING DATE: 2001-02-06
   PRIOR APPLICATION NUMBER: 60/214,860
   PRIOR FILING DATE: 2000-06-28
   PRIOR APPLICATION NUMBER: 60/200,053
   PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
   SOFTWARE: PatentIn version 3.1
; SEQ ID NO 124
   LENGTH: 30
    TYPE: PRT
    ORGANISM: Artificial Sequence
    FEATURE:
    OTHER INFORMATION: modified human PTH
US-09-843-221A-124
  Query Match 78.6%; Score 22; DB 11; Length 30; Best Local Similarity 100.0%; Pred. No. 1.3e-15;
          22; Conservative 0; Mismatches
  Matches
                                                0; Indels
                                                                0; Gaps
                                                                            0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVE 22
              Db
            1 SVSEIQLMHNLGKHLNSMERVE 22
RESULT 40
US-09-843-221A-125
; Sequence 125, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
```

```
; APPLICANT: LIU, CHUAN-FA
 APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
 SOFTWARE: PatentIn version 3.1
; SEQ ID NO 125
   LENGTH: 30
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: modified human PTH
US-09-843-221A-125
                        78.6%; Score 22; DB 11; Length 30;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.3e-15;
          22; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
                                                                         0;
  Matches
Qу
           1 SVSEIQLMHNLGKHLNSMERVE 22
             Db
           1 SVSEIQLMHNLGKHLNSMERVE 22
```

Search completed: January 14, 2004, 11:15:10 Job time: 19.8411 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

January 14, 2004, 10:28:19; Search time 4.62305 Seconds Run on:

(without alignments)

284.822 Million cell updates/sec

Title:

US-09-843-221A-168

Perfect score: 28

Sequence: 1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched:

127863 seqs, 47026705 residues

Word size :

Total number of hits satisfying chosen parameters:

1319

Minimum DB seq length: 28 Maximum DB seg length: 40

Post-processing: Listing first 1000 summaries

Database :

SwissProt 41:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result		Query				
No.	Score	Match	Length	DB 	ID	Description
1	5	17.9	33	1	FABI_RHASA	P81175 rhamdia sap
2	4	14.3	39	1	SR1C_SARPE	P08377 sarcophaga
3	3	10.7	28	1	CH60_MYCSM	P80673 mycobacteri
4	3	10.7	28	1	COXB_SOLTU	P80499 solanum tub
5	3	10.7	28	1	GUN_SCHCO	P81190 schizophyll
6	3	10.7	28	1	PA23_TRIST	P82894 trimeresuru
7	3	10.7	28	1	PA2C_PSEPO	P20260 pseudechis
8	3	10.7	28	1	VI03_VACCP	Q00334 vaccinia vi
9	3	10.7	28	1	VIP_ALLMI	P48142 alligator m
10	3	10.7	28	1	VIP_RANRI	P81016 rana ridibu
11	3	10.7	28	1	VIP_SHEEP	P04565 ovis aries
12	3	10.7	29	1	GALA_ALLMI	P47215 alligator m
13	3	10.7	29	1	GALA_AMICA	P47214 amia calva
14	3	10.7	29	1	GALA_CHICK	P30802 gallus gall
15	3	10.7	29	1	GALA ONCMY	P47213 oncorhynchu
16	3	10.7	29	1	GALA_RANRI	P47216 rana ridibu
17	3	10.7	29	1	GALA_SHEEP	P31234 ovis aries

18	3	10.7	29	1	GLUC CHIBR	P31297	chinchilla
19	3	10.7	29	1	IPYR DESVH		desulfovibr
20	3	10.7	29	1	NUO1 SOLTU		solanum tub
21	3	10.7	29	1	P2SM LOXIN		loxosceles
22	3	10.7	29	1	PCG4 PACGO		pachycondyl
23	3	10.7	29	1	RS7 METTE		methanosarc
24	3	10.7	29	1	SODC OLEEU		olea europa
25	3	10.7	29	1	TL16 SPIOL		spinacia ol
26	3	10.7	30	1	DMS3 PHYSA		phyllomedus
27	3	10.7	30	1	OTCC AERPU		aeromonas p
28	3	10.7	30	1	PCG2 PACGO		pachycondyl
29	3	10.7	30	1	PCG3 PACGO		pachycondyl
	3			1			porphyra pu
30		10.7	30		PSAM_PORPU		
31	3	10.7	30	1	TX2_THRPR		thrixopelma
32	3	10.7	30	1	UP61_UPEIN		uperoleia i
33	3	10.7	30	1	UP62_UPEIN		uperoleia i
34	3	10.7	30	1	VAA2_EQUAR		equisetum a
35	3	10.7	30	1	Y523_BORBU		borrelia bu
36	3	10.7	31	1	CEC1_PIG		sus scrofa
37	3	10.7	31	1	CXMA_CONMR		conus marmo
38	3	10.7	31	1	DEJP_DROME		drosophila
39	3	10.7	31	1	DIUX_DIPPU		diploptera
40	3	10.7	31	1	H13_WHEAT		triticum ae
41	3	10.7	31	1	LPL_BUCRP		buchnera ap
42	3	10.7	31	1	MALK_PHOLU	P41124	photorhabdu
43	3	10.7	31	1	$PETL_LOTJA$	Q9bbr4	lotus japon
44	3	10.7	31	1	PETL_MARPO	P12179	marchantia
45	3	10.7	31	1	PETL_MESVI	Q9mun4	mesostigma
46	3	10.7	31	1	PETL_NEPOL	Q9tky9	nephroselmi
47	3	10.7	31	1	PSAM_EUGGR		euglena gra
48	3	10.7	31	1	SARL_MOUSE	Q9cqd6	mus musculu
49	3	10.7	31	1	SARL_RABIT		oryctolagus
50	3	10.7	31	1	SCK5_ANDMA	P31719	androctonus
51	3	10.7	31	1	SCKL_LEIQH	P16341	. leiurus qui
52	3	10.7	31	1	Y822 BORBU	051762	borrelia bu
53	3	10.7	32	1	ADHR DROYA	P28487	drosophila
54	3	10.7	32	1	CAL2 ONCKE	P01264	oncorhynchu
55	3	10.7	32	1	CAL3 ONCKI	P01265	oncorhynchu
56	3	10.7	32	1	CAL ANGJA	P01262	anguilla ja
57	3	10.7	32	1	COA2 BPIF1		bacteriopha
58	3	10.7	32	1	CY31 DESAC		desulfuromo
59	3	10.7	32	1	FF21 SALEN		salmonella
60	3	10.7	32	1	IAPP PIG		sus scrofa
61	3	10.7	32	1	ITR3 CUCPE		cucurbita p
62	3	10.7	32	1	ITR4 CUCMA		cucurbita m
63	3	10.7	32	1	MIFH TRITR		trichuris t
64	3	10.7	32	1	P1SM LOXIN		loxosceles
65	3	10.7	32	1	PHSS DESBN		desulfovibr
66	3	10.7	32	1	PSAM MARPO		marchantia
67	3	10.7	32	1	PSBQ PEA		pisum sativ
68	3	10.7	32	1	PSBT_ODOSI		odontella s
69	3	10.7	32	1	PSBZ_EUGST		euglena ste
70	3	10.7	32	1	PSBZ_EUGVI		euglena vir
71	3	10.7	32	1	Y160 BPT4		bacteriopha
71 72	3	10.7	32	1	YCPG MASLA		mastigoclad
72 73	3	10.7	33	1	GGN1 RANRU		rana rugosa
74	3	10.7	33	1	RUGB RANRU		rana rugosa
, =	3	10.7	33	1	TOOP TOWNED	F0075	, rana ragosa

75	3	10.7	33	1	T1F_PARTE	Q27172	paramecium
76	3	10.7	33	1	Y50A_MYCTU	Q9cb56	mycobacteri
77	3	10.7	33	1	YC12 EUGGR	P31559	euglena gra
78	3	10.7	34	1	DMS1 PHYSA		phyllomedus
79	3	10.7	34	1	DMS2 PHYSA		phyllomedus
80	3	10.7	34	1	TX1 SCOGR		scodra gris
81	3	10.7	35	1	CECA AEDAL		aedes albop
82	3	10.7	35	1	COPA CANFA		canis famil
83	3	10.7	35	1			
	3				CPI2_PIG		sus scrofa
84		10.7	35	1	GP58_BPSP1		bacteriopha
85	3	10.7	35	1	LEC1_CYTSE		cytisus ses
86	3	10.7	35	1	LEC3_ULEEU		ulex europe
87	3	10.7	35	1	NP30_STAAU		staphylococ
88	3	10.7	35	1	PETG_CYACA		cyanidium c
89	3	10.7	35	1	PSBM_SYNY3	P72701	synechocyst
90	3	10.7	35	1	RL15_SYNP7	P31160	synechococc
91	3	10.7	35	1	SCKK_TITSE	P56219	tityus serr
92	3	10.7	35	1	TX1 GRASP	P56852	grammostola
93	3	10.7	35	1	TX1 THRPR		thrixopelma
94	3	10.7	35	1	TX2 GRASP		grammostola
95	3	10.7	35	1	VORB_METTM		methanobact
96	3	10.7	35	1	YRKM BACSU		bacillus su
97	3	10.7	36	1	ELH THETS		theromyzon
98	3	10.7	36	1	NPF ARTTR		artioposthi
99	3	10.7	36	1	OSTS YEAST		saccharomyc
100	3	10.7	36	1			_
	3				R18A_BOVIN		bos taurus
101		10.7	36	1	RET4_CHICK		gallus gall
102	3	10.7	36	1	RL6_HALCU		halobacteri
103	3	10.7	36	1	Y260_BACHD		bacillus ha
104	3	10.7	36	1	Y609_ARCFU		archaeoglob
105	3	10.7	37	1	DIU1_TENMO		tenebrio mo
106	3	10.7	37	1	IAPP_CRIGR	P19890	cricetulus
107	3	10.7	37	1	LCNM_LACLA	P83002	lactococcus
108	3	10.7	37	1	OGT1_RABIT	P81436	oryctolagus
109	3	10.7	37	1	PIP7_BOVIN	P21671	bos taurus
110	3	10.7	37	1	RL36_PASMU	P57942	pasteurella
111	3	10.7	37	1	SCKI MESTA	P24663	mesobuthus
112	3	10.7	37	1	Y63 BPT3	P20328	bacteriopha
113	3	10.7	38	1	CPRP CANPG		cancer pagu
114	3	10.7	38	1	DNP DENAN		dendroaspis
115	3	10.7	38	1	NLT1 VITSX		vitis sp. (
116	3	10.7	38	1	NLT2 VITSX		vitis sp. (
117	3	10.7	38	1	OBP2_HYSCR		hystrix cri
118	3	10.7	38	1	PYSA METBA		methanosarc
119	3	10.7	38	1	RL36 ECOLI		escherichia
120	3	10.7	38	1	RL36_ECOLI RL36 PSEAE		
121	3						pseudomonas
		10.7	38	1	RL36_THEMA		thermotoga
122	3	10.7	38	1	RL36_YERPE		yersinia pe
123	3	10.7	38	1	RR12_PINCO		pinus conto
124	3	10.7	38	1	YJ39_ARCFU		archaeoglob
125	3	10.7	39	1	CEC_GLOMR		glossina mo
126	3	10.7	39	1	COLI_BALPH		balaenopter
127	3	10.7	39	1	COLI_RABIT		oryctolagus
128	3	10.7	39	1	COLI_SQUAC		squalus aca
129	3	10.7	39	1	COLI_STRCA	P01196	struthio ca
130	3	10.7	39	1	EXE3_HELHO	P20394	heloderma h
131	3	10.7	39	1	FUC3_RAT	P80349	rattus norv

132	3	10.7	39	1	H2A BUFBG	P	55897	bufo bufo g
133	3	10.7	39	1	LCGA LACLA	P	36961	lactococcus
134	3	10.7	39	1	PA2 ĀGKBI	C	9psf9	agkistrodon
135	3	10.7	39	1	PSBX PORPU		_	porphyra pu
136	3	10.7	40	1	ALB1 TRASC			trachemys s
137	3	10.7	40	1	HPT RABIT			oryctolagus
138	3	10.7	40	1	HS9A RABIT			oryctolagus
139	3	10.7	40	1	KAD STACA			
	3			1	_			staphylococ
140	3	10.7	40		PHRK_BACSU			bacillus su
141		10.7	40	1	PRE_BACLI			bacillus li
142	3	10.7	40	1	RK33_PEA			pisum sativ
143	3	10.7	40	1	RRPO_LSV			lily sympto
144	3	10.7	40	1	SAUV_PHYSA			phyllomedus
145	3	10.7	40	1	SR1D_SARPE			sarcophaga
146	3	10.7	40	1	UC11_MAIZE	P	80617	zea mays (m
147	3	10.7	40	1	VIT_MELGA			meleagris g
148	3	10.7	40	1	YDRB_STRPE	P	32012	streptomyce
149	2	7.1	28	1	ACON CANAL	P	82611	candida alb
150	2	7.1	28	1	APC1 RABIT	P	33047	oryctolagus
151	2	7.1	28	1	ARYC NOCGL			nocardia gl
152	2	7.1	28	1	C1QC RAT			rattus norv
153	2	7.1	28	1	ETX2 BACCE			bacillus ce
154	2	7.1	28	1	FIBA CANFA			canis famil
155	2	7.1	28	1	FLA1 TREPH			treponema p
156	2	7.1	28	1	GDO TRIMO			triticum mo
157	2	7.1	28	1	GRP ALLMI			alligator m
158	2		28	1	_			
		7.1			GTS5_CHICK			gallus gall
159	2	7.1	28	1	GVPC_OSCAG			oscillatori
160	2	7.1	28	1	HORC_HORSP			hordeum spo
161	2	7.1	28	1	ICPP_VIPLE			vipera lebe
162	2	7.1	28	1	IEL1_MOMCH			momordica c
163	2	7.1	28	1	IORB_METTM			methanobact
164	2	7.1	28	1	ITR2_MOMCH			momordica c
165	2	7.1	28	1	ITR3_LUFCY			luffa cylin
166	2	7.1	28	1	ITRA_MOMCH	P	30709	momordica c
167	2	7.1	28	1	LECA_IRIHO	P	36230	iris hollan
168	2	7.1	28	1	LPFS_ECOLI	P	22183	escherichia
169	2	7.1	28	1	LPL ECOLI	P	09149	escherichia
170	2	7.1	28	1	LPL SALTI	C)8z9h9	salmonella
171	2	7.1	28	1	LPL SALTY		-	salmonella
172	2	7.1	28	1	LPW_SERMA			serratia ma
173	2	7.1	28	1	MAAI RAT			rattus norv
174	2	7.1	28	1	MCDP MEGPE			megabombus
175	2	7.1	28	1	NLT2 WHEAT			triticum ae
176	2	7.1	28	1	NXL1 BOUAN			boulengerin
177	2	7.1	28	1	OBP1 HYSCR			hystrix cri
178	2	7.1	28	1	OMPA_YERPS			yersinia ps
179	2	7.1	28	1	ORND PLAOR			
180	2				OST1 CHICK			placobdella
		7.1	28	1	-			gallus gall
181	2	7.1	28	1	PA22_MICNI			micrurus ni
182	2	7.1	28	1	PA23_MICNI			micrurus ni
183	2	7.1	28	1	PETL_CYAPA			cyanophora
184	2	7.1	28	1	PHR_METTM			methanobact
185	2	7.1	28	1	PHYB_ASPFI			aspergillus
186	2	7.1	28	1	PP71_HCMVT			human cytom
187	2	7.1	28	1	PPOX_BOVIN			bos taurus
188	2	7.1	28	1	RL5_HALCU	P	05972	halobacteri

189	2	7.1	28	1	RS19_PHYS1	066093	phytoplasma
190	2	7.1	28	1	SCX2 BUTSI	P15230	buthus sind
191	2	7.1	28	1	SLP1 LEIQH	P80669	leiurus qui
192	2	7.1	28	1	SMS2 ORENI		oreochromis
193	2	7.1	28	1	TXO2 AGEAP		agelenopsis
194	2	7.1	28	1	VG9 SPV4		spiroplasma
195	2	7.1	28	1	VIP DIDMA		didelphis m
196	2	7.1	28	1	VIP SCYCA		scyliorhinu
197	2	7.1	28	1	Y073 ARCFU		archaeoglob
198	2	7.1	28	1	Y16P BPT4		bacteriopha
199	2	7.1	28	1	YA79 ARCFU		archaeoglob
200	2	7.1	29	1	12AH CLOS4		clostridium
200	2	7.1	29	1			
					AL21_HORSE		equus cabal
202	2	7.1	29	1	ATP9_PICPJ		pichia pijp
203	2	7.1	29	1	ATPA_BRYMA		bryopsis ma
204	2	7.1	29	1	BR2D_RANES		rana escule
205	2	7.1	29	1	BREE_RANES		rana escule
206	2	7.1	29	1	CERB_CERCA		ceratitis c
207	2	7.1	29	1	COA1_BPI22		bacteriopha
208	2	7.1	29	1	COXJ_CANFA		canis famil
209	2	7.1	29	1	COXK_SHEEP		ovis aries
210	2	7.1	29	1	CU36_LOCMI		locusta mig
211	2	7.1	29	1	CXD6_CONGL		conus glori
212	2	7.1	29	1	CXOC_CONMA		conus magus
213	2	7.1	29	1	CXOD_CONMA		conus magus
214	2	7.1	29	1	CXST_CONGE	P58844	conus geogr
215	2	7.1	29	1	DMD_RAT		rattus norv
216	2	7.1	29	1	DMS5_PHYSA		phyllomedus
217	2	7.1	29	1	GLUC_ANAPL		anas platyr
218	2 .	7.1	29	1	GLUC_CALMI	P13189	callorhynch
219	2	7.1	29	1	GLUC_DIDMA	P18108	didelphis m
220	2	7.1	29	1	GLUC_LAMFL	Q9prq9	lampetra fl
221	2	7.1	29	1	GLUC_PLAFE	P23062	platichthys
222	2	7.1	29	1	GLUC_RABIT	P25449	oryctolagus
223	2	7.1	29	1	GLUC_TORMA	P09567	torpedo mar
224	2	7.1	29	1	H2B2_ECHES		echinus esc
225	2	7.1	29	1	HOXY_RHOOP		rhodococcus
226	2	7.1	29	1	HRJ_BOTJA	P20416	bothrops ja
227	2	7.1	29	1	HS98_NEUCR	P31540	neurospora
228	2	7.1	29	1	ITH3_BOVIN	P56652	bos taurus
229	2	7.1	29	1	ITR1_CUCMA	P01074	cucurbita m
230	2	7.1	29	1	ITR1_LUFCY	P25849	luffa cylin
231	2	7.1	29	1	ITR1_MOMRE	P17680	momordica r
232	2	7.1	29	1	ITR2_BRYDI	P11968	bryonia dio
233	2	7.1	29	1	ITR3_CYCPE	P83394	cyclanthera
234	2	7.1	29	1	ITR4_CYCPE	P83395	cyclanthera
235	2	7.1	29	1	ITR5_CYCPE	P83396	cyclanthera
236	2	7.1	29	1	KDPF_ECOLI	P36937	escherichia
237	2	7.1	29	1	MDH_BURPS	P80536	burkholderi
238	2	7.1	29	1	MULR_ECHML	P81798	echis multi
239	2	7.1	29	1	PETN_ANASP	Q913p6	anabaena sp
240	2	7.1	29	1	PETN_ARATH	_	arabidopsis
241	2	7.1	29	1	PETN_CHAGL		chaetosphae
242	2	7.1	29	1	PETN CYAPA		cyanophora
243	2	7.1	29	1	PETN GUITH		guillardia
244	2	7.1	29	1	PETN MAIZE		zea mays (m
245	2	7.1	29	1	PETN MARPO		marchantia
					_		

246	2	7.1	29	1	PETN MESVI	Q9mus4 mesostigma
247	2	7.1	29	1	PETN ODOSI	P49527 odontella s
248	2	7.1	29	1	PETN PINTH	P41611 pinus thunb
249	2	7.1	29	1	PETN PORPU	P51276 porphyra pu
250	2	7.1	29	1	PETN PSINU	Q8wi23 psilotum nu
	2	7.1	29	1	PETN SKECO	096807 skeletonema
251					_	Q8dkn2 synechococc
252	2	7.1	29	1	PETN_SYNEL	P72717 synechocyst
253	2	7.1	29	1	PETN_SYNY3	
254	2	7.1	29	1	PK4_DICDI	P34103 dictyosteli
255	2	7.1	29	1	PRO1_DACGL	P18689 dactylis gl
256	2	7.1	29	1	PSAF_SYNP6	P31083 synechococc
257	2	7.1	29	1	PSAK_SPIOL	P14627 spinacia ol
258	2	7.1	29	1	PSAM_GUITH	078448 guillardia
259	2	7.1	29	1	PSBI_SYNVU	P12240 synechococc
260	2	7.1	29	1	RL15_HALCU	P05971 halobacteri
261	2	7.1	29	1	RL15_STRLI	P49975 streptomyce
262	2	7.1	29	1	RP54_CLOKL	P38944 clostridium
263	2	7.1	29	1	SCX1_ANDMA	P56215 androctonus
264	2	7.1	29	1	SDHB_CLOPR	P80213 clostridium
265	2	7.1	29	1	SLP2 LEIQH	P80670 leiurus qui
266	2	7.1	29	1	SLP3 LEIQH	P80671 leiurus qui
267	2	7.1	29	1	TAT HV1Z3	P12510 human immun
268	2	7.1	29	1	TLP ACTDE	P81370 actinidia d
269	2	7.1	29	1	VARF VIOAR	P58451 viola arven
270	2	7.1	29	1	Y15 BPT7	P03792 bacteriopha
271	2	7.1	29	1	Y51 BPT3	P20326 bacteriopha
272	2	7.1	29	1	YCX4 ODOSI	P49830 odontella s
273	2	7.1	29	1	YCXC ODOSI	P49838 odontella s
274	2	7.1	30	1	2ENR CLOTY	P11887 clostridium
275	2	7.1	30	1	Alat Chivi	P38026 chinchilla
276	2	7.1	30	ī	AATC RABIT	P12343 oryctolagus
277	2	7.1	30	1	AATM RABIT	P12345 oryctolagus
278	2	7.1	30	1	ACB1 DIGLA	P81624 digitalis l
279	2	7.1	30	1	AMPT BACST	P00728 bacillus st
280	2	7.1		1		P09196 rana ridibu
	2	7.1	30 30	1	ANF_RANRI	P05935 lytechinus
281				1	CALM_LYTPI	P13722 bacillus st
282	2	7.1	30		CBAL_BACST	P81339 clostridium
283	2	7.1	30	1	CH60_CLOPA	
284	2	7.1	30	1	CIRA_CHAPA	P56871 chassalia p
285	2	7.1	30	1	CLPA_PINPS	P81671 pinus pinas
286	2	7.1	30	1	COAE_CORAM	P58101 corynebacte
287	2	7.1	30	1	COXC_SOLTU	P80500 solanum tub
288	2	7.1	30	1	CRG2_SCOWA	P19865 scoliodon w
289	2	7.1	30	1	CX2A_CONBE	P58625 conus betul
290	2	7.1	30	1	CX7A_CONTU	P58923 conus tulip
291	2	7.1	30	1	CXEX_CONCN	P58928 conus conso
292	2	7.1	30	1	CXK4_CONST	P58921 conus stria
293	2	7.1	30	1	CXVB_CONER	P58783 conus ermin
294	2	7.1	30	1	CY35_DESAC	P81079 desulfuromo
295	2	7.1	30	1	CYO1_VIOOD	P82230 viola odora
296	2	7.1	30	1	CYO8_VIOOD	P58440 viola odora
297	2	7.1	30	1	DEF2_MACMU	P82317 macaca mula
298	2	7.1	30	1	DIDH_COMTE	P80702 comamonas t
299	2	7.1	30	1	DIU2 HYLLI	P82015 hyles linea
300	2	7.1	30	1	DIU2_MANSE	P24858 manduca sex
301	2	7.1	30	1	END2_ONCKE	P01205 oncorhynchu
302	2	7.1	30	1	FIBR PANIN	P22775 panulirus i
					_	

303	2	7.1	30	1	FTN_BACFR	P28733	bacteroides
304	2	7.1	30	1	GLUM_ANGAN	P41521	anguilla an
305	2	7.1	30	1	HCY2_HOMAM	P82297	homarus ame
306	2	7.1	30	1	HETA RADMA	P58691	radianthus
307	2	7.1	30	1	HYPA HYBPA	P58445	hybanthus p
308	2	7.1	30	1	IHFB RHILE	P80606	rhizobium l
309	2	7.1	30	1	ITI1 LAGLE	P26771	lagenaria l
310	2	7.1	30	1	ITR1 CITLA	P11969	citrullus l
311	2	7.1	30	1	ITR1 MOMCH	P10294	momordica c
312	2	7.1	30	1	ITR2 ECBEL	P12071	ecballium e
313	2	7.1	30	1	ITR2 LUFCY	P25850	luffa cylin
314	2	7.1	30	1	ITR3 CUCMC		cucumis mel
315	2	7.1	30	1	ITR3 MOMCO		momordica c
316	2	7.1	30	1	ITR4_CUCSA		cucumis sat
317	2	7.1	30	1	ITR6_CYCPE		cyclanthera
318	2	7.1	30	1	ITR7 CYCPE		cyclanthera
319	2	7.1	30	1	KAB5 OLDAF		oldenlandia
320	2	7.1	30	1	LAS1 PIG		sus scrofa
321	2	7.1	30	1	LEAH PHAVU		phaseolus v
322	2	7.1	30	1	MDH HELGE		heliobacter
322	2	7.1	30	1	MMAL DERMI		dermatophag
323	2	7.1	30	1	NU5M PISOC		pisaster oc
	2			1	_		solanum tub
325		7.1	30		NUO2_SOLTU		arthrobacte
326	2	7.1	30	1	P2CO_ARTSP		
327	2	7.1	30	1	PCCA_MYXXA		myxococcus
328	2	7.1	30	1	PCG1_PACGO		pachycondyl
329	2	7.1	30	1	PCG5_PACGO		pachycondyl
330	2	7.1	30	1	PETN_NEPOL		nephroselmi
331	2	7.1	30	1	PLF4_RABIT		oryctolagus
332	2	7.1	30	1	PLMS_SQUAC		squalus aca
333	2	7.1	30	1	PMGY_CANAL		candida alb
334	2	7.1	30	1	PRT1_CLUPA		clupea pall
335	2	7.1	30	1	PRT2_ONCMY		oncorhynchu
336	2	7.1	30	1	PRT3_ONCMY		oncorhynchu
337	2	7.1	30	1	PRT4_ONCMY		oncorhynchu
338	2	7.1	30	1	PRTB_ONCMY	P12819	oncorhynchu
339	2	7.1	30	1	PSAM_CYACA	Q9tlx5	cyanidium c
340	2	7.1	30	1	PSAM_MESVI	Q9mus2	mesostigma
341	2	7.1	30	1	PSAM ODOSI	P49487	odontella s
342	2	7.1	30	1	PSAM PINTH	P41601	pinus thunb
343	2	7.1	30	1	PYSD METBA	P80524	methanosarc
344	2	7.1	30	1	RIPS MOMCO	P20655	momordica c
345	2	7.1	30	1	RKGG LEPKE	P21587	lepidochely
346	2	7.1	30	1	RNP ODOVI		odocoileus
347	2	7.1	30	1	SCK2 TITSE		tityus serr
348	2	7.1	30	1	SCX2 CENLI		centruroide
349	2	7.1	30	1	SILU RHIPU		rhizomucor
350	2	7.1	30	1	TAT HV1ZH		human immun
351	2	7.1	30	1	TL1X SPIOL		spinacia ol
352	2	7.1	30	1	TL29 SPIOL		spinacia ol
353	2	7.1	30	1	TX2 HETVE		heteropoda
354	2	7.1	30	1	UC35 MAIZE		zea mays (m
355	2	7.1	30	1	UDDP SULAC		sulfolobus
356	2	7.1	30	1	URE1 ECOLI		escherichia
357	2	7.1	30	1	VAA1 EQUAR		equisetum a
35 <i>1</i> 358	2	7.1 7.1	30	1	VAA1_EQUAR VAA1 PSINU		psilotum nu
356 359	2	7.1	30	1	VAA1_PSINU VAA2 PSINU		psilotum nu
309	4	/ . <u>1</u>	30	1.	AWYZ_LOIMO	Q04239	Patrocall III

360	2	7.1	30	1	VATN BOVIN	P81134	bos taurus
361	2	7.1	30	1	VG03 BPPF1	P25137	bacteriopha
362	2	7.1	30	1	VTTA BPT3		bacteriopha
							_
363	2	7.1	30	1	Y161_TREPA		treponema p
364	2	7.1	30	1	Y357_BORBU		borrelia bu
365	2	7.1	30	1	Y425 BORBU	051386	borrelia bu
366	2	7.1	30	1	Y573 TREPA	083583	treponema p
367	2	7.1	30	1	Y932_TREPA		treponema p
	2	7.1	30	1	YCCB ECOLI		escherichia
368							
369	2	7.1	31	1	A98A_DROME		drosophila
370	2	7.1	31	1	BCAM_PIG	019098	sus scrofa
371	2	7.1	31	1	CIRB_CHAPA	P56879	chassalia p
372	2	7.1	31	1	COG5 BOVIN	P83437	bos taurus
373	2	7.1	31	1	COX4 NEUCR	P06809	neurospora
374	2	7.1	31	1	CTRP_PENMO		penaeus mon
375	2	7.1	31	1	CU54_LOCMI		locusta mig
376	2	7.1	31	1	CXD6_CONNI		conus nigro
377	2	7.1	31	1	CXG6_CONTE	P58922	conus texti
378	2	7.1	31	1	CYLA PSYLO	P56872	psychotria
379	2	7.1	31	1	DEF2 MESAU		mesocricetu
380	2	7.1	31	1	EFTU STRLU		streptomyce
					_		camelus dro
381	2	7.1	31	1	ENDB_CAMDR		
382	2	7.1	31	1	ER29_BOVIN		bos taurus
383	2	7.1	31	1	ETFD_PARDE	P55932	paracoccus
384	2	7.1	31	1	FIBB CANFA	P02677	canis famil
385	2	7.1	31	1	GT SERMA	P22416	serratia ma
386	2	7.1	31	1	HBA MACEU		macropus eu
			31	1	_		homarus ame
387	2	7.1			HCY1_HOMAM		
388	2	7.1	31	1	HCY2_MAISQ		maia squina
389	2	7.1	31	1	HEM2_PHAGO		phascolopsi
390	2	7.1	31	1	LC70_LACPA	P80959	lactobacill
391	2	7.1	31	1	LCCB LEUME	P81052	leuconostoc
392	2	7.1	31	1	LPRM ECOLI	P10739	escherichia
393	2	7.1	31	1	MDH STRAR		streptomyce
394	2	7.1	31	1	NAP4 HUMAN		homo sapien
395	2	7.1	31	1	PETL ANASP		anabaena sp
							
396	2	7.1	31	1	PETL_ARATH		arabidopsis
397	2	7.1	31	1	PETL_BETVU		beta vulgar
398	2	7.1	31	1	PETL_CHLVU		chlorella v
399	2	7.1	31	1	PETL_GUITH	078468	guillardia
400	2	7.1	31	1	PETL MAIZE	P19445	zea mays (m
401	2	7.1	31	1	PETL ODOSI	P49524	odontella s
402	2	7.1	31	1	PETL OENHO		oenothera h
403	2	7.1	31	1	PETL ORYSA		oryza sativ
404	2	7.1	31	1	PETL PORPU		porphyra pu
405	2	7.1	31	1	PETL_PSINU		psilotum nu
406	2	7.1	31	1	PETL_SPIOL		spinacia ol
407	2	7.1	31	1	PETL_WHEAT		triticum ae
408	2	7.1	31	1	PETM_CYACA	Q9tlr5	cyanidium c
409	2	7.1	31	1	PETN CYACA	Q9tlr6	cyanidium c
410	2	7.1	31	1	PRT2 CLUPA	P02336	clupea pall
411	2	7.1	31	1	PSAK ANAVA		anabaena va
412	2	7.1	31	1	PSAM CHLVU		chlorella v
					_		
413	2	7.1	31	1	PSAM_CYAPA		cyanophora
414	2	7.1	31	1	PSBK_SYNVU		synechococc
415	2	7.1	31	1	PSBM_MESVI	_	mesostigma
416	2	7.1	31	1	PSBT_CHLRE	P37256	chlamydomon
							•

417	2	7.1	31	1	PSBT_CHLVU	P56327	chlorella v	
418	2	7.1	31	1	PSBT_CYAPA	P48109	cyanophora	
419	2	7.1	31	1	PSBT_EUGGR	P20176	euglena gra	
420	2	7.1	31	1	PSBT_MESVI	Q9muv6	mesostigma	
421	2	7.1	31	1	PSBT_PORPU	P51323	porphyra pu	
422	2	7.1	31	1	PYSG_METBA	P80523	methanosarc	
423	2	7.1	31	1	RECX METCL	P37865	methylomona	
424	2	7.1	31	1	RL21 STRTR	P48956	streptococc	
425	2	7.1	31	1	SARL HUMAN	000631	homo sapien	
426	2	7.1	31	1	SC37_MESMA	P83407	mesobuthus	
427	2	7.1	31	1	SODC STRHE	P81163	striga herm	
428	2	7.1	31	1	TX3_HETVE	P58427	heteropoda	
429	2	7.1	31	1	TXA3_PARAC	P09949	parasicyoni	
430	2	7.1	31	1	Y191 BORBU	051209	borrelia bu	
431	2	7.1	31	1	Y3KD_BPCHP	P19187	bacteriopha	
432	2	7.1	31	1	Y603_ARCFU	029652	archaeoglob	
433	2	7.1	32	1	A2M_PACLE	P20738	pacifastacu	
434	2	7.1	32	1	APL3 DIAGR	P81471	diatraea gr	
435	2	7.1	32	1	ATPO PIG	P80021	sus scrofa	
436	2	7.1	32	1	ATP7 SPIOL	P80088	spinacia ol	
437	2	7.1	32	1	ATPO SPIOL	P80087	spinacia ol	
438	2	7.1	32	1	B4G1_RAT	P80225	r beta-1,4-	
439	2	7.1	32	1	CAAP MICEC	P21162	micromonosp	
440	2	7.1	32	1	CALO BOVIN	P01260	bos taurus	
441	2	7.1	32	1	CALO PIG	P01259	sus scrofa	
442	2	7.1	32	1	CAR1 ECHCA	Q9prp9	echis carin	
443	2	7.1	32	1	CEC ÖIKKI	P83420	oiketicus k	
444	2	7.1	32	1	COAT BPIF1	080295	bacteriopha	
445	2	7.1	32	1	COA1 BPIKE	P03676	bacteriopha	
446	2	7.1	32	1	COA2 BPFD	P03677	bacteriopha	
447	2	7.1	32	1	CRP PLEPL	P12245	pleuronecte	
448	2	7.1	32	1	CXG7 CONPE	P56711	conus penna	
449	2	7.1	32	1	CYBL RHOGR	P32953	rhodotorula	
450	2	7.1	32	1	CYSB FASHE	P80529	fasciola he	
451	2	7.1	32	1	DBH SYNY1	P02343	synechocyst	
452	2	7.1	32	1	ER29 CHICK	P81628	gallus gall	
453	2	7.1	32	1	ER29 TRIVU	P81629	trichosurus	
454	2	7.1	32	1	ERH PIG	P80230	sus scrofa	
455	2	7.1	32	1	FER_PORCR	P18821	porphyridiu	
456	2	7.1	32	1	FLA1 METHU	P17603	methanospir	
457	2	7.1	32	1	FRIH_ANAPL	P80145	anas platyr	
458	2	7.1	32	1	GHR4_RAT	P33581	rattus norv	
459	2	7.1	32	1	GLB4_LAMSP	P20413	lamellibrac	
460	2	7.1	32	1	GT82 DICLA	P82608	dicentrarch	
461	2	7.1	32	1	H2AZ ONCMY	P22647	oncorhynchu	
462	2	7.1	32	1	HCYC CHEDE	P83172	cherax dest	
463	2	7.1	32	1	IAPP BOVIN	Q28207	bos taurus	
464	2	7.1	32	1	IAPP_SAGOE	Q28934	saguinus oe	
465	2	7.1	32	1	IAPP SHEEP	Q28605	ovis aries	
466	2	7.1	32	1	ILVB_ENTAE	Q09129	enterobacte	
467	2	7.1	32	1	ITR2_CUCSA	P10291	cucumis sat	
468	2	7.1	32	1	LEC_DOLAX	P02875	dolichos ax	
469	2	7.1	32	1	LPID_ECOLI	P03060	escherichia	
470	2	7.1	32	1	LPID_EDWTA		edwardsiell	
471	2	7.1	32	1	LPIV_ECOLI		escherichia	
472	2	7.1	32	1	MDH_NITAL	P10887	nitzschia a	
473	2	7.1	32	1	NEUB_PIG	P01297	sus scrofa	

474	2	7.1	32	1	OVOS_ANAPL		anas platyr
475	2	7.1	32	1	PA22_AGKHP	P18997	agkistrodon
476	2	7.1	32	1	PA2 RHONO	P43318	rhopilema n
477	2	7.1	32	1	PETL CHLRE	P50369	chlamydomon
478	2	7.1	32	1	PETM GUITH		guillardia
479	2	7.1	32	1	PETM PORPU		porphyra pu
	2		32	1	—		desulfovibr
480		7.1			PHNS_DESMU		
481	2	7.1	32	1	PRI3_ONCMY		oncorhynchu
482	2	7.1	32	1	PRT1_ONCKE		oncorhynchu
483	2	7.1	32	1	PRT4_SCYCA		scyliorhinu
484	2	7.1	32	1	PRT5_ONCMY	P02334	oncorhynchu
485	2	7.1	32	1	PRT6 ONCMY	P08145	oncorhynchu
486	2	7.1	32	1	PRT7 ONCMY	P08146	oncorhynchu
487	2	7.1	32	1	PRT8 ONCMY		oncorhynchu
488	2	7.1	32	1	PRT9 ONCMY		oncorhynchu
	2						oncorhynchu
489		7.1	32	1	PRTA_ONCMY		-
490	2	7.1	32	1	PRT_ORYLA		oryzias lat
491	2	7.1	32	1	PSBT_CYACA		cyanidium c
492	2	7.1	32	1	PSBT_GUITH		guillardia
493	2	7.1	32	1	PSBZ_EUGAN	Q8s195	euglena ana
494	2	7.1	32	1	PSBZ EUGMY	Q8s191	euglena myx
495	2	7.1	32	1	RIP2 PHYDI	P34967	phytolacca
496	2	7.1	32	1	RK1 RABIT		oryctolagus
497	2	7.1	32	1	RS19_YEREN		yersinia en
498	2	7.1	32	1	SCK2 CENNO		centruroide
	2	7.1 7.1	32	1	TAT SIVM2		simian immu
499							
500	2	7.1	32	1	TRYP_PENMO		penaeus mon
501	2	7.1	32	1	TX29_PHONI		phoneutria
502	2	7.1	32	1	TXP7_APTSC		aptostichus
503	2	7.1	32	1	UC09_MAIZE		zea mays (m
504	2	7.1	32	1	Y169_TREPA	083199	treponema p
505	2	7.1	32	1	Y433_BORBU	051394	borrelia bu
506	2	7.1	32	1	YH17 HAEIN	P44295	haemophilus
507	2	7.1	32	1	YSCA YEREN	Q01242	yersinia en
508	2	7.1	32	1	YTK3 ILTVT		infectious
509	2	7.1	33	1	ACT DICVI		dictyocaulu
510	2	7.1	33	1	ALOX PICPA		pichia past
511	2	7.1	33	1	ANP3 MYOSC		myoxocephal
512	2	7.1	33	1	ANP5_MYOAE		myoxocephal
513	2	7.1	33	1	ATP7_SOLTU		solanum tub
514	2	7.1	33	1	BR2A_RANES		rana escule
515	2	7.1	33	1	BR2B_RANES		rana escule
516	2	7.1	33	1	BR2E_RANES	P32413	rana escule
517	2	7.1	33	1	BR2 RANBP	P32424	rana brevip
518	2	7.1	33	1	CECB HELVI	P83414	heliothis v
519	2	7.1	33	1	CECC HELVI	P83415	heliothis v
520	2	7.1	33	1	COA1 BPFD		bacteriopha
521	2	7.1	33	1	COA2 BPI22		bacteriopha
522	2	7.1	33	1	COA2 BPIKE		bacteriopha
523	2	7.1	33	1	COXL ONCMY		oncorhynchu
524	2	7.1	33	1	CU89_HUMAN		homo sapien
525	2	7.1	33	1	CXBW_CONRA		conus radia
526	2	7.1	33	1	CXO_CONVE		conus ventr
527	2	7.1	33	1	DBB2_DOLAU		dolabella a
528	2	7.1	33	1	DEF1_MESAU		mesocricetu
529	2	7.1	33	1	DEF3_MESAU		mesocricetu
530	2	7.1	33	1	DEF4_MESAU	P81468	mesocricetu

							_
531	2	7.1	33	1	DHE3_PIG	P42174	sus scrofa
532	2	7.1	33	1	FER PORAE	P18820	porphyridiu
533	2	7.1	33	1	GAST CAVPO	P06885	cavia porce
534	2	7.1	33	1	GAST CHIBR		chinchilla
535	2	7.1	33	1	GAST DIDMA		didelphis m
					-		-
536	2	7.1	33	1	GGN2_RANRU		rana rugosa
537	2	7.1	33	1	GGN3_RANRU		rana rugosa
538	2	7.1	33	1	GLU2_ORENI	P81027	oreochromis
539	2	7.1	33	1	HF40 MAIZE	P82865	zea mays (m
540	2	7.1	33	1	HOXU RHOOP		rhodococcus
541	2	7.1	33	1	LPPY SALTY		salmonella
542	2	7.1	33	1	LPRH ECOLI		escherichia
					—		
543	2	7.1	33	1	LYC2_HORSE		equus cabal
544	2	7.1	33	1	MBP1_MAIZE		zea mays (m
545	2	7.1	33	1	MHAA_STRCH	P80435	streptomyce
546	2	7.1	33	1	MYMY MYTED	P81614	mytilus edu
547	2	7.1	33	1	OTCC PSEPU	P11727	pseudomonas
548	2	7.1	33	1	PEN3 ADECU		canine aden
549	2	7.1	33	1	PETM CYAPA		cyanophora
					-		
550	2	7.1	33	1	PETM_SYNEL		synechococc
551	2	7.1	33	1	PK1_DICDI		dictyosteli
552	2	7.1	33	1	PK5_DICDI	P34104	dictyosteli
553	2	7.1	33	1	PRI1 ONCMY	P02326	oncorhynchu
554	2	7.1	33	1	PRI2 ONCMY	P02328	oncorhynchu
555	2	7.1	33	1	PRTB MUGCE		mugil cepha
556	2	7.1	33	1	PRTL ECOLI	· ·	escherichia
					-		
557	2	7.1	33	1	PSAK_CUCSA		cucumis sat
558	2	7.1	33	1	PSBT_ARATH		arabidopsis
559	2	7.1	33	1	PSBT_MAIZE	P37257	zea mays (m
560	2	7.1	33	1	RL21 XENLA	P49628	xenopus lae
561	2	7.1	33	1	RL26 XENLA	P49629	xenopus lae
562	2	7.1	33	1	RL28 XENLA		xenopus lae
563	2	7.1	33	1	RL4 HALCU		halobacteri
564	2	7.1	33	1	RPOC HETCA		heterosigma
							_
565	2	7.1	33	1	RRPO_BPBZ1		bacteriopha
566	2	7.1	33	1	RS4_XENLA		xenopus lae
567	2	7.1	33	1	RT25_BOVIN	P82669	bos taurus
568	2	7.1	33	1	RUGA RANRU	P80954	rana rugosa
569	2	7. 1	33	1	SCX9 BUTOC	P04099	buthus occi
570	2	7.1	33	1	THIO CLOST		clostridium
571	2	7.1	33	1	TX1 HETVE		heteropoda
572	2	7.1	33	1	TXH1 SELHU		selenocosmi
573	2	7.1	33	1	TXN3_SELHA		selenocosmi
574	2	7.1	33	1	VT1B_RAT		rattus norv
575	2	7.1	33	1	Y474_BORBU	051430	borrelia bu
576	2	7.1	33	1	Y656 TREPA	083662	treponema p
577	2	7.1	33	1	Y849 BORBU	051789	borrelia bu
578	2	7.1	33	1	YC12 CHLRE		chlamydomon
579	2	7.1	33	1	YC12 MARPO		marchantia
580	2	7.1	33	1	YC12_MESVI		mesostigma
581	2	7.1	33	1	YC12_NEPOL		nephroselmi
582	2	7.1	33	1	YC12_PINTH		pinus thunb
583	2	7.1	33	1	YL74_ARCFU	028108	archaeoglob
584	2	7.1	33	1	YLCH BP82	Q37869	bacteriopha
585	2	7.1	33	1	YLCH ECOLI		escherichia
586	2	7.1	34	1	AMP2 CHICK		gallus gall
587	2	7.1	34	1	ASPG PIG		sus scrofa
J0 /	4	1.1) ''	1	YOTO_110	130310	Dub BCIOLA

588	2	7.1	34	1	BR2C_RANES		rana escule
589	2	7.1	34	1	COL_CHICK		gallus gall
590	2	7.1	34	1	COXA_THETH		thermus the
591	2	7.1	34	1	COXG_THUOB		thunnus obe
592	2	7.1	34	1	CXGS_CONGE		conus geogr
593	2	7.1	34	1	DEF2_RABIT		oryctolagus
594	2	7.1	34	1	DEF7_RABIT		oryctolagus
595	2	7.1	34	1	ECAB_ECTTU		ectatomma t
596	2	7.1	34	1	EF2_RABIT	['] P55823	oryctolagus
597	2	7.1	34	1	EGGR APLCA	P01363	aplysia cal
598	2	7.1	34	1	GAST CAPHI	P04564	capra hircu
599	2	7.1	34	1	GUN1 SCLSC	P21833	sclerotinia
600	2	7.1	34	1	H1S STRPU	P19376	strongyloce
601	2	7.1	34	1	HS7S CUCMA		cucurbita m
602	2	7.1	34	1	ITR2 MOMCO	P82409	momordica c
603	2	7.1	34	1	LPTN PROVU		proteus vul
604	2	7.1	34	1	M44E HUMAN		. homo sapien
605	2	7.1	34	1	MYTB MYTED		mytilus edu
606	2	7.1	34	1	PETM ANASP		anabaena sp
	2	7.1	34	1	PRT1 SAROR		sarda orien
607					_		sarda Offen
608	2	7.1	34	1	PRT1_SCOSC		
609	2.	7.1	34	1	PRT1_THUTH		thunnus thy
610	2	7.1	34	1	PRT2_SCOSC		scomber sco
611	2	7.1	34	1	PRT2_THUTH		thunnus thy
612	2	7.1	34	1	PRT_DICLA	~ -	dicentrarch
613	2	7.1	34	1	PRT_PERFV		perca flave
614	2	7.1	34	1	PSAI_LOTJA) lotus japon
615	2	7.1	34	1	PSAI OENHO	Q9mtl2	oenothera h
616	2	7.1	34	1	PSBM ARATH	P12169	arabidopsis
617	2	7.1	34	1	PSBM CHAGL	Q8ma1	chaetosphae
618	2	7.1	34	1	PSBM CHLRE	P9227	chlamydomon
619	2	7.1	34	1	PSBM MAIZE		zea mays (m
620	2	7.1	34	1	PSBM MARPO		marchantia
621	2	7.1	34	1	PSBM NEPOL		nephroselmi
622	2	7.1	34	1	PSBM_OENHO		oenothera h
623	2	7.1	34	1	PSBM PEA	~	pisum sativ
624	2	7.1	34	1	PSBM_FEA		2 psilotum nu
					_		triticum ae
625	2	7.1	34	1	PSBM_WHEAT		nicotiana t
626	2	7.1	34	1	PSBT_TOBAC		
627	2	7.1	34	1	PSPC_BOVIN		B bos taurus
628	2	7.1	34	1	PSPC_CANFA		7 canis famil
629	2	7.1	34	1	PYSB_METBA		methanosarc
630	2	7.1	34	1	RNL1_PIG		sus scrofa
631	2	7.1	34	1	RR2_OCHNE		ochrosphaer
632	2	7.1	34	1	SCXM_SCOMA		g scorpio mau
633	2	7.1	34	1	SMS_MYXGL		myxine glut
634	2	7.1	34	1	THEM MALSU	P1385	malbranchea
635	2	7.1	34	1	TX33 PHONI	P8178) phoneutria
636	2	7.1	34	1	TXP5 BRASM	P4926	brachypelma
637	.2	7.1	34	1	VLYS BPM1) bacteriopha
638	2	7.1	34	1	VPU HV1W2		human immun
639	2	7.1	34	1	Y05J BPT4) bacteriopha
640	2	7.1	34	1	Y224 TREPA		3 treponema p
641	2	7.1	34	1	Y848 BORBU		B borrelia bu
642	2	7.1	34	1	Y870 HAEIN		haemophilus
643	2	7.1	34	1	Y967 HAEIN		haemophilus haemophilus
	2		34	1	YC12_GUITH		guillardia
644	4	7.1	34	Т	1C12_G011H	07840	Juittatuta

645	2	7.1	34	1	YC12_ODOSI		odontella s
646	2	7.1	34	1	YC12_PORPU		porphyra pu
647	2	7.1	34	1	YC12_SKECO	096797	skeletonema
648	2	7.1	34	1	YMIA AGRTU	P38437	agrobacteri
649	2	7.1	34	1	Z33B HUMAN	Q06731	homo sapien
650	2	7.1	35	1	ADO1 AGRDO	P58608	agriosphodr
651	2	7.1	35	1	C550_BACHA	P80091	bacillus ha
652	2	7.1	35	1	CEC4 BOMMO	P14666	bombyx mori
653	2	7.1	35	1	CECA HELVI	P83413	heliothis v
654	2	7.1	35	1	CECB ANTPE	P01509	antheraea p
655	2	7.1	35	1	D3HI RABIT	P32185	oryctolagus
656	2	7.1	35	1	DEFB MYTED		mytilus edu
657	2	7.1	35	1	END4 YEREN		yersinia en
658	2	7.1	35	1	ERFK KLEAE		klebsiella
659	2	7.1	35	1	EXE2 HELSU		heloderma s
660	2	7.1	35	1	FAS CAPHI		capra hircu
661	2	7.1	35	1	FLAV NOSSM		nostoc sp.
662	2	7.1	35	1	GBGU MOUSE		mus musculu
663	2	7.1	35	1	GRDB CLOPU		clostridium
	2	7.1	35	1	GUR GYMSY		gymnema syl
664	2			1			desulfovibr
665		7.1	35		HMWC_DESGI		pinus pinas
666	2	7.1	35	1	KPPR_PINPS		lactococcus
667	2	7.1	35	1	LCGB_LACLA		
668	2	7.1	35	1	NEF_HV1H3		human immun
669	2	7.1	35	1	PBP1_LYMDI		lymantria d
670	2	7.1	35	1	PBP2_LYMDI		lymantria d
671	2	7.1	35	1	PBP_HYACE		hyalophora
672	2	7.1	35	1	PHI1_MYTCA		mytilus cal
673	2	7.1	35	1	PSAI_CYAPA		cyanophora
674	2	7.1	35	1	PSBT_MARPO		marchantia
675	2	7.1	35	1	PSBT_OENHO		oenothera h
676	2	7.1	35	1	PSBT_ORYSA		oryza sativ
677	2	7.1	35	1	PSBT_PINTH		pinus thunb
678	2	7.1	35	1	PSPC_PIG	P15785	sus scrofa
679	2	7.1	35	1	RL32_HALCU	P05965	halobacteri
680	2	7.1	35	1	SCKB_PANIM	P55928	pandinus im
681	2	7.1	35	1	SCKG_PANIM	Q10726	pandinus im
682	2	7.1	35	1	SCX1_BUTSI	P15229	buthus sind
683	2	7.1	35	1	SCX5_BUTEU	P15222	buthus eupe
684	2	7.1	35	1	SCXP ANDMA	P01498	androctonus
685	2	7.1	35	1	SMS LAMFL	Q9prr0	lampetra fl
686	2	7.1	35	1	SPRC PIG	P20112	sus scrofa
687	2	7.1	35	1	THPA THADA	P21381	thaumatococ
688	2	7.1	35	1	TMTX MESTA	Q9bn12	mesobuthus
689	2	7.1	35	1	TXAG AGEOP	P31328	agelena opu
690	2	7.1	35	1	TXH4_SELHU		selenocosmi
691	2	7.1	35	1	TXKS STOHE		stoichactis
692	2	7.1	35	1	TXN4 SELHA		selenocosmi
693	2	7.1	35	1	VL3 PAPVD		deer papill
694	2	7.1	35	1	VSPA CERVI		cerastes vi
695	2	7.1	35	1	WSP7 PINPS		pinus pinas
696	2	7.1	35	1	Y210 HAEIN		haemophilus
697	2	7.1	35	1	Y320_BORBU		borrelia bu
698	2	7.1	35	1	Y37 BPT3		bacteriopha
699	2	7.1	35	1	Y644 ARCFU		archaeoglob
700	2	7.1	35	1	Y845 BORBU		borrelia bu
701	2	7.1	35	1	Y847 BORBU		borrelia bu
/ U I	4	/ · I	در	_	TOT /_BOXED	001/0/	POTTETTA DA

702	2	7.1	35	1	YC12 CYACA	Q9tlx0	cyanidium c
703	2	7.1	35	1	YC69 ARCFU	028999	archaeoglob
704	2	7.1	35	1	YQB5 CAEEL	Q09258	caenorhabdi
705	2	7.1	36	1	AMPL PIG	P28839	sus scrofa
706	2	7.1	36	1	ANFV ANGJA	P22642	anguilla ja
707	2	7.1	36	1	C3L1 BOVIN		bos taurus
708	2	7.1	36	1	CBBA NITVU	P37102	nitrobacter
709	2	7.1	36	1	CECD ANTPE		antheraea p
710	2	7.1	36	1	CYC7 GEOME		geobacter m
711	2	7.1	36	1	F4RE METOG		methanogeni
712	2	7.1	36	1	GLU1 ORENI		oreochromis
713	2	7.1	36	1	GLUC HYDCO		hydrolagus
713	2	7.1	36	1	H1L5 ENSMI		ensis minor
714	2	7.1	36	1	HBB PONPY		pongo pygma
	2		36	1	IAA STRAU		streptomyce
716		7.1		1	_		isyndus obs
717	2	7.1	36 36		IOB1_ISYOB		streptomyce
718	2	7.1	36	1	KAD_STRGR		
719	2	7.1	36	1	LHG_RHOVI		rhodopseudo
720	2	7.1	36	1	LYOX_PIG		sus scrofa
721	2	7.1	36	1	MFA1_YEAST		saccharomyc
722	2	7.1	36	1	MPG2_DACGL		dactylis gl
723	2	7.1	36	1	MYPC_RAT		rattus norv
724	2	7.1	36	1	NEUH_CARCA		cardisoma c
725	2	7.1	36	1	NEUY_GADMO		gadus morhu
726	2	7.1	36	1	NEUY_ONCMY		oncorhynchu
727	2	7.1	36	1	NEUY_RABIT		oryctolagus
728	2	7.1	36	1	NEUY_RANRI		rana ridibu
729	2	7.1	36	1	NIFH_ENTAG	P26249	enterobacte
730	2	7.1	36	1	NLTP_PINPI		pinus pinea
731	2	7.1	36	1	NUCM_SOLTU	P80264	solanum tub
732	2	7.1	36	1	OST2_CHICK	P80897	gallus gall
733	2	7.1	36	1	PAHO_ALLMI	P06305	alligator m
734	2	7.1	36	1	PAHO ANSAN	P06304	anser anser
735	2	7.1	36	1	PAHO CERSI	P37999	ceratotheri
736	2	7.1	36	1	PAHO DIDMA	P18107	didelphis m
737	2	7.1	36	1	PAHO EQUZE	P38000	equus zebra
738	2	7.1	36	1	PAHO ERIEU		erinaceus e
739	2	7.1	36	1	PAHO LARAR	P41337	larus argen
740	2	7.1	36	1	PAHO MACMU		macaca mula
741	2	7.1	36	1	PAHO RABIT		oryctolagus
742	2	7.1	36	1	PAHO RANCA		rana catesb
743	2	7.1	36	1	PAHO RANTE		rana tempor
744	2	7.1	36	1	PAHO STRCA		struthio ca
745	2	7.1	36	1	PAHO TAPPI		tapirus pin
745 746	2	7.1	36	1	PETM SYNY3		synechocyst
	2	7.1	36	1	PGKH CHLFU		chlorella f
747	2				—		petromyzon
748	2	7.1	36	1	PMY_PETMA		pisum sativ
749		7.1	36	1	PSAH_PEA		_
750	2	7.1	36 36	1	PSAI_ANGLY		angiopteris brassica ol
751 750	2	7.1	36 36	1	PSAI_BRAOL		
752	2	7.1	36	1	PSAI_CHAGL		chaetosphae
753	2	7.1	36	1	PSAI_CHLVU		chlorella v
754	2	7.1	36	1	PSAI_CYACA		cyanidium c
755	2	7.1	36	1	PSAI_HORVU		hordeum vul
756	2	7.1	36	1	PSAI_MAIZE		zea mays (m
757	2	7.1	36	1	PSAI_MARPO		marchantia
758	2	7.1	36	1	PSAI_MESVI	Q9muq4	mesostigma

760 2 7.1 36 1 PSAI_ORYSA P12186 02 761 2 7.1 36 1 PSAI_PICAB 047040 02 762 2 7.1 36 1 PSAI_PORPU P51387 02 763 2 7.1 36 1 PSAI_PSINU Q8wi10 02 764 2 7.1 36 1 PSAI_SKECO 096813 81 765 2 7.1 36 1 PSAI_WHEAT P25410 02 766 2 7.1 36 1 PSAI_WHEAT P25410 02 767 2 7.1 36 1 PSBI_ARATH P09970 02 768 2 7.1 36 1 PSBI_HORVU P25876 02 769 2 7.1 36 1 PSBI_ORYSA P12161 02 771 2 7.1 36 1 PSBI_PSEMZ <th>dephroselmicryza sativalicea abies corphyra pure silotum nure deletonema dicotiana traticum ae drabidopsis dordeum vuluarchantia cryza sativalicus thunbuseudotsuga chlorella verenema pure sorphyra pure sorphyra pure depisosteus depisosteus depisosteus deleta verenema calva depisosteus depisosteus deleta verenema calva depisosteus depisosteus deleta verenema calva deleta verenem</th>	dephroselmicryza sativalicea abies corphyra pure silotum nure deletonema dicotiana traticum ae drabidopsis dordeum vuluarchantia cryza sativalicus thunbuseudotsuga chlorella verenema pure sorphyra pure sorphyra pure depisosteus depisosteus depisosteus deleta verenema calva depisosteus depisosteus deleta verenema calva depisosteus depisosteus deleta verenema calva deleta verenem
761 2 7.1 36 1 PSAI_PICAB 047040 p. 762 2 7.1 36 1 PSAI_PORPU P51387 p. 763 2 7.1 36 1 PSAI_PSINU Q8wi10 p. 764 2 7.1 36 1 PSAI_TOBAC P12187 p. 765 2 7.1 36 1 PSAI_TOBAC P12187 p. 766 2 7.1 36 1 PSAI_TOBAC P12187 p. 767 2 7.1 36 1 PSAI_TOBAC P12187 p. 768 2 7.1 36 1 PSBI_ARATH P09970 a. 769 2 7.1 36 1 PSBI_ARATH P09970 a. 769 2 7.1 36 1 PSBI_ARATH P099796 a. 770 2 7.1 36 1 PSBI_ARATH P09969 m. 771 2 7.1 36 1 PSBI_ARA	cicea abies orphyra pure silotum nu exeletonema dicotiana teriticum ae exabidopsis dordeum vuluarchantia oryza sativoinus thunboseudotsuga exhlorella verynechococcodontella secorphyra pure mia calva episosteus dyoxocephal
761 2 7.1 36 1 PSAI_PICAB O47040 p. 762 2 7.1 36 1 PSAI_PORPU P51387 p. 763 2 7.1 36 1 PSAI_PSINU Q8wi10 p. 764 2 7.1 36 1 PSAI_SKECO O96813 sl. 765 2 7.1 36 1 PSAI_TOBAC P12187 n. 766 2 7.1 36 1 PSAI_WEAT P25410 t. 767 2 7.1 36 1 PSBI_ARATH P09970 a. 768 2 7.1 36 1 PSBI_ARATH P09970 a. 769 2 7.1 36 1 PSBI_ARATH P09970 a. 769 2 7.1 36 1 PSBI_ARATH P09970 a. 769 2 7.1 36 1 PSBI_ARATH P09969 m. 770 2 7.1 36 1 PSBI_ARAR	orphyra pu silotum nu skeletonema dicotiana t driticum ae drabidopsis dordeum vul marchantia oryza sativ dinus thunb deseudotsuga chlorella v synechococc dontella s dorphyra pu dinia calva depisosteus dryoxocephal
763 2 7.1 36 1 PSAI_PSINU Q8wil0 property 764 2 7.1 36 1 PSAI_SKECO O96813 st 765 2 7.1 36 1 PSAI_TOBAC P12187 n 766 2 7.1 36 1 PSAI_WHEAT P25410 tr 767 2 7.1 36 1 PSBI_ARATH P09970 ar 768 2 7.1 36 1 PSBI_HORVU P25876 hr 769 2 7.1 36 1 PSBI_MARPO P09969 mr 770 2 7.1 36 1 PSBI_ORYSA P12161 or 771 2 7.1 36 1 PSBI_PINTH P41599 pr 772 2 7.1 36 1 PSBM_CHLVU P56325 cr 774 2 7.1 36 1 PSBM_SYNEL Q8dha7 sr 775 2 7.1 36 1 PSBY_ODOSI	silotum nu keletonema nicotiana tariticum ae rabidopsis nordeum vul marchantia pryza sativo inus thunboseudotsuga chlorella vonechococcodontella soporphyra pu mia calva episosteus nyoxocephal
764 2 7.1 36 1 PSAI_SKECO 096813 SE 765 2 7.1 36 1 PSAI_TOBAC P12187 n 766 2 7.1 36 1 PSAI_WHEAT P25410 t 767 2 7.1 36 1 PSBI_ARATH P09970 a 768 2 7.1 36 1 PSBI_HORVU P25876 h 769 2 7.1 36 1 PSBI_HORVU P25876 h 769 2 7.1 36 1 PSBI_DRYSA P12161 o 770 2 7.1 36 1 PSBI_DRYSA P12161 o 771 2 7.1 36 1 PSBI_DRYSA P12161 o 771 2 7.1 36 1 PSBI_DRYSA P12161 o 771 2 7.1 36 1 PSBI_DRYSA	keletonema dicotiana t driticum ae drabidopsis dordeum vul marchantia dryza sativ dinus thunb deseudotsuga chlorella v drynechococc dontella s dorphyra pu dinia calva depisosteus dryoxocephal
765 2 7.1 36 1 PSAI_TOBAC P12187 n 766 2 7.1 36 1 PSAI_WHEAT P25410 t 767 2 7.1 36 1 PSBI_ARATH P09970 a 768 2 7.1 36 1 PSBI_HORVU P25876 h 769 2 7.1 36 1 PSBI_MARPO P09969 m 770 2 7.1 36 1 PSBI_ORYSA P12161 o 771 2 7.1 36 1 PSBI_PINTH P41599 p 772 2 7.1 36 1 PSBI_PSEMZ P29796 p 773 2 7.1 36 1 PSBM_CHLVU P56325 c 774 2 7.1 36 1 PSBM_SYNEL Q8dha7 s 775 2 7.1 36 1 PSBY_DODOSI P49543 o 778 2 7.1 36 1 PYY_AMICA	ricotiana t criticum ae crabidopsis cordeum vul marchantia oryza sativ cinus thunb oseudotsuga chlorella v synechococc codontella s corphyra pu mia calva cepisosteus myoxocephal
765 2 7.1 36 1 PSAI_TOBAC P12187 n. 766 2 7.1 36 1 PSAI_WHEAT P25410 t. 767 2 7.1 36 1 PSBI_ARATH P09970 a. 768 2 7.1 36 1 PSBI_HORVU P25876 b. 769 2 7.1 36 1 PSBI_HORVU P25876 b. 769 2 7.1 36 1 PSBI_GRYSA P12161 o. 770 2 7.1 36 1 PSBI_DINTH P41599 p. 771 2 7.1 36 1 PSBI_PSEMZ P29796 p. 773 2 7.1 36 1 PSBM_CHLVU P56325 c. 774 2 7.1 36 1 PSBM_SYNEL Q8dha7 s. 775 2 7.1 36 1 PSBY_DODOSI P49543 o. 777 2 7.1 36 1 PYY_AMIC	criticum ae rabidopsis ordeum vul archantia oryza sativ oinus thunb oseudotsuga chlorella v synechococc odontella sorphyra pu mia calva episosteus nyoxocephal
766 2 7.1 36 1 PSAI_WHEAT P25410 to 100 to	arabidopsis cordeum vul carchantia cryza sativ cinus thunb cseudotsuga chlorella v cynechococc codontella s corphyra pu cmia calva cepisosteus cryoxocephal
767 2 7.1 36 1 PSBI_ARATH P09970 at 25876 bt 2587	archantia bryza sativ binus thunb seudotsuga chlorella v synechococc odontella s borphyra pu amia calva episosteus nyoxocephal
768 2 7.1 36 1 PSBI_HORVU P25876 here 769 2 7.1 36 1 PSBI_MARPO P09969 mere 770 2 7.1 36 1 PSBI_ORYSA P12161 or 771 2 7.1 36 1 PSBI_PINTH P41599 pr 772 2 7.1 36 1 PSBI_PSEMZ P29796 pr 773 2 7.1 36 1 PSBM_CHLVU P56325 cr 774 2 7.1 36 1 PSBM_SYNEL Q8dha7 sr 775 2 7.1 36 1 PSBY_ODOSI P49543 or 776 2 7.1 36 1 PSBY_PORPU P51206 pr 777 2 7.1 36 1 PYY_AMICA P29205 ar 779 2 7.1 36 1 PYY_MYOSC P09473 lr 780 2 7.1 36 1 PYY_ONCKI P09474 or 781 2 7.1 36 1 PYY_	archantia bryza sativ binus thunb seudotsuga chlorella v synechococc odontella s borphyra pu amia calva episosteus nyoxocephal
769 2 7.1 36 1 PSBI_MARPO P09969 m 770 2 7.1 36 1 PSBI_ORYSA P12161 o 771 2 7.1 36 1 PSBI_PINTH P41599 p 772 2 7.1 36 1 PSBI_PSEMZ P29796 p 773 2 7.1 36 1 PSBM_CHLVU P56325 c 774 2 7.1 36 1 PSBM_SYNEL Q8dha7 s 775 2 7.1 36 1 PSBY_ODOSI P49543 o 776 2 7.1 36 1 PSBY_PORPU P51206 p 777 2 7.1 36 1 PYY_AMICA P29205 a 778 2 7.1 36 1 PYY_AMICA P29205 a 780 2 7.1 36 1 PYY_AMYOSC P09473 l 781 2 7.1 36 1 PYY_ONCKI P09474 o 782 2 7.1 36 1 PYY_PIG <	oryza sativolinus thumboseudotsuga chlorella volynechococcodontella soorphyra pudmia calva episosteus
770 2 7.1 36 1 PSBI_ORYSA P12161 or 771 2 7.1 36 1 PSBI_PINTH P41599 pr 772 2 7.1 36 1 PSBI_PSEMZ P29796 pr 773 2 7.1 36 1 PSBM_CHLVU P56325 cr 774 2 7.1 36 1 PSBM_SYNEL Q8dha7 sr 775 2 7.1 36 1 PSBY_ODOSI P49543 or 776 2 7.1 36 1 PSBY_PORPU P51206 pr 777 2 7.1 36 1 PYY_AMICA P29205 ar 778 2 7.1 36 1 PYY_LEPSP P09473 l 779 2 7.1 36 1 PYY_MYOSC P09641 mr 780 2 7.1 36 1 PYY_ORENI P81028 or 781 2 7.1 36 1 PYY_RAJRH P29206 r 783 2 7.1 36 1 PYY_RAJRH <td>cinus thunb oseudotsuga chlorella v synechococc odontella s corphyra pu mia calva .episosteus nyoxocephal</td>	cinus thunb oseudotsuga chlorella v synechococc odontella s corphyra pu mia calva .episosteus nyoxocephal
771 2 7.1 36 1 PSBI_PINTH P41599 p 772 2 7.1 36 1 PSBI_PSEMZ P29796 p 773 2 7.1 36 1 PSBM_CHLVU P56325 c 774 2 7.1 36 1 PSBM_SYNEL Q8dha7 s 775 2 7.1 36 1 PSBY_ODOSI P49543 o 776 2 7.1 36 1 PSBY_PORPU P51206 p 777 2 7.1 36 1 PYY_AMICA P29205 a 778 2 7.1 36 1 PYY_LEPSP P09473 l 779 2 7.1 36 1 PYY_MYOSC P09641 m 780 2 7.1 36 1 PYY_ONCKI P09474 o 781 2 7.1 36 1 PYY_PIG P01305 s 783 2 7.1 36 1 PYY_RAJRH P29206 r 784 2 7.1 36 1 PYY_RANRI	cinus thunb oseudotsuga chlorella v synechococc odontella s corphyra pu mia calva .episosteus nyoxocephal
772 2 7.1 36 1 PSBI_PSEMZ P29796 P 773 2 7.1 36 1 PSBM_CHLVU P56325 C 774 2 7.1 36 1 PSBM_SYNEL Q8dha7 s 775 2 7.1 36 1 PSBY_ODOSI P49543 o 776 2 7.1 36 1 PSBY_PORPU P51206 p 777 2 7.1 36 1 PYY_AMICA P29205 a 778 2 7.1 36 1 PYY_LEPSP P09473 l 779 2 7.1 36 1 PYY_MYOSC P09641 m 780 2 7.1 36 1 PYY_ONCKI P09474 o 781 2 7.1 36 1 PYY_ORENI P81028 o 782 2 7.1 36 1 PYY_RAJRH P29206 r 784 2 7.1 36 1 PYY_RANRI P29204 r 785 2 7.1 36 1 SCK2_CENLL <t< td=""><td>seudotsuga chlorella v synechococc dontella s corphyra pu mia calva .episosteus nyoxocephal</td></t<>	seudotsuga chlorella v synechococc dontella s corphyra pu mia calva .episosteus nyoxocephal
773 2 7.1 36 1 PSBM_CHLVU P56325 C 774 2 7.1 36 1 PSBM_SYNEL Q8dha7 s 775 2 7.1 36 1 PSBY_ODOSI P49543 o 776 2 7.1 36 1 PSBY_PORPU P51206 p 777 2 7.1 36 1 PYY_AMICA P29205 a 778 2 7.1 36 1 PYY_LEPSP P09473 l 779 2 7.1 36 1 PYY_MYOSC P09641 m 780 2 7.1 36 1 PYY_ONCKI P09474 o 781 2 7.1 36 1 PYY_ORENI P81028 o 782 2 7.1 36 1 PYY_PIG P01305 s 783 2 7.1 36 1 PYY_RAJRH P29206 r 784 2 7.1 36 1 PYY_RANRI P29204 r 785 2 7.1 36 1 SCK2_CENLL P	chlorella v synechococc dontella s corphyra pu mia calva .episosteus nyoxocephal
774 2 7.1 36 1 PSBM_SYNEL Q8dha7 s 775 2 7.1 36 1 PSBY_ODOSI P49543 o 776 2 7.1 36 1 PSBY_PORPU P51206 p 777 2 7.1 36 1 PYY_AMICA P29205 a 778 2 7.1 36 1 PYY_LEPSP P09473 l 779 2 7.1 36 1 PYY_MYOSC P09641 m 780 2 7.1 36 1 PYY_ONCKI P09474 o 781 2 7.1 36 1 PYY_ORENI P81028 o 782 2 7.1 36 1 PYY_PIG P01305 s 783 2 7.1 36 1 PYY_RAJRH P29206 r 784 2 7.1 36 1 PYY_RANRI P29204 r 785 2 7.1 36 1 SCK2_CENLL P45630 c 786 2 7.1 36 1 SCK3_LEIQH P	synechococc odontella s orphyra pu mia calva .episosteus nyoxocephal
775 2 7.1 36 1 PSBY_ODOSI P49543 o 776 2 7.1 36 1 PSBY_PORPU P51206 p 777 2 7.1 36 1 PYY_AMICA P29205 a 778 2 7.1 36 1 PYY_LEPSP P09473 l 779 2 7.1 36 1 PYY_MYOSC P09641 m 780 2 7.1 36 1 PYY_ONCKI P09474 o 781 2 7.1 36 1 PYY_ORENI P81028 o 782 2 7.1 36 1 PYY_PIG P01305 s 783 2 7.1 36 1 PYY_RAJRH P29206 r 784 2 7.1 36 1 PYY_RANRI P29204 r 785 2 7.1 36 1 SCK2_CENLL P45630 c 786 2 7.1 36 1 SCK3_LEIQH P45660 l	odontella s corphyra pu mia calva episosteus nyoxocephal
776 2 7.1 36 1 PSBY_PORPU P51206 p 777 2 7.1 36 1 PYY_AMICA P29205 a 778 2 7.1 36 1 PYY_LEPSP P09473 l 779 2 7.1 36 1 PYY_MYOSC P09641 m 780 2 7.1 36 1 PYY_ONCKI P09474 o 781 2 7.1 36 1 PYY_ORENI P81028 o 782 2 7.1 36 1 PYY_PIG P01305 s 783 2 7.1 36 1 PYY_RAJRH P29206 r 784 2 7.1 36 1 PYY_RANRI P29204 r 785 2 7.1 36 1 SCK2_CENLL P45630 c 786 2 7.1 36 1 SCK3_LEIQH P45660 l	oorphyra pu mia calva episosteus nyoxocephal
777 2 7.1 36 1 PYY_AMICA P29205 a 778 2 7.1 36 1 PYY_LEPSP P09473 l 779 2 7.1 36 l PYY_MYOSC P09641 m 780 2 7.1 36 l PYY_ONCKI P09474 o 781 2 7.1 36 l PYY_ORENI P81028 o 782 2 7.1 36 l PYY_PIG P01305 s 783 2 7.1 36 l PYY_RAJRH P29206 r 784 2 7.1 36 l PYY_RANRI P29204 r 785 2 7.1 36 l SCK2_CENLL P45630 c 786 2 7.1 36 l SCK3_LEIQH P45660 l	mia calva episosteus nyoxocephal
778 2 7.1 36 1 PYY_LEPSP P09473 1 779 2 7.1 36 1 PYY_MYOSC P09641 m 780 2 7.1 36 1 PYY_ONCKI P09474 o 781 2 7.1 36 1 PYY_ORENI P81028 o 782 2 7.1 36 1 PYY_PIG P01305 s 783 2 7.1 36 1 PYY_RAJRH P29206 r 784 2 7.1 36 1 PYY_RANRI P29204 r 785 2 7.1 36 1 SCK2_CENLL P45630 c 786 2 7.1 36 1 SCK3_LEIQH P45660 l	episosteus nyoxocephal
779 2 7.1 36 1 PYY_MYOSC P09641 m 780 2 7.1 36 1 PYY_ONCKI P09474 o 781 2 7.1 36 1 PYY_ORENI P81028 o 782 2 7.1 36 1 PYY_PIG P01305 s 783 2 7.1 36 1 PYY_RAJRH P29206 r 784 2 7.1 36 1 PYY_RANRI P29204 r 785 2 7.1 36 1 SCK2_CENLL P45630 c 786 2 7.1 36 1 SCK3_LEIQH P45660 l	nyoxocephal
780 2 7.1 36 1 PYY_ONCKI P09474 o 781 2 7.1 36 1 PYY_ORENI P81028 o 782 2 7.1 36 1 PYY_PIG P01305 s 783 2 7.1 36 1 PYY_RAJRH P29206 r 784 2 7.1 36 1 PYY_RANRI P29204 r 785 2 7.1 36 1 SCK2_CENLL P45630 c 786 2 7.1 36 1 SCK3_LEIQH P45660 l	
781 2 7.1 36 1 PYY_ORENI P81028 o 782 2 7.1 36 1 PYY_PIG P01305 s 783 2 7.1 36 1 PYY_RAJRH P29206 r 784 2 7.1 36 1 PYY_RANRI P29204 r 785 2 7.1 36 1 SCK2_CENLL P45630 c 786 2 7.1 36 1 SCK3_LEIQH P45660 l	mcorhynchu
782 2 7.1 36 1 PYY_PIG P01305 s 783 2 7.1 36 1 PYY_RAJRH P29206 r 784 2 7.1 36 1 PYY_RANRI P29204 r 785 2 7.1 36 1 SCK2_CENLL P45630 c 786 2 7.1 36 1 SCK3_LEIQH P45660 l	reochromis
783 2 7.1 36 1 PYY_RAJRH P29206 r 784 2 7.1 36 1 PYY_RANRI P29204 r 785 2 7.1 36 1 SCK2_CENLL P45630 c 786 2 7.1 36 1 SCK3_LEIQH P45660 1	
784 2 7.1 36 1 PYY_RANRI P29204 r 785 2 7.1 36 1 SCK2_CENLL P45630 c 786 2 7.1 36 1 SCK3_LEIQH P45660 l	
785 2 7.1 36 1 SCK2_CENLL P45630 C 786 2 7.1 36 1 SCK3_LEIQH P45660 1	-
786 2 7.1 36 1 SCK3_LEIQH P45660 1	
—	
787 2 7.1 36 1 SCA1 BUTEU P15220 L	
	leiurus qui
—	_
	hyllomedus actinia equ
	_
	gallus gall
	ngelenopsis netridium s
<u>-</u>	paracoelote
─	nadronyche
-	pacteriopha
— — — — — — — — — — — — — — — — — — —	archaeoglob
	pacteriopha
—	orrelia bu
-	archaeoglob
-	reponema p
	cyanophora
	naemophilus
	pacillus su
-	plasmodium
	malva parvi
• • • • • • • • • • • • • • • • • • •	pseudopleur
-	solanum tub
-	oreochromis
040 0 F 4 0F 1 0F 1 DTC - D00000 -	
	sus scrofa
811 2 7.1 37 1 CEC2_MANSE P14662 m	manduca sex
811 2 7.1 37 1 CEC2_MANSE P14662 m 812 2 7.1 37 1 CEC3_MANSE P14663 m	manduca sex manduca sex
811 2 7.1 37 1 CEC2_MANSE P14662 m 812 2 7.1 37 1 CEC3_MANSE P14663 m 813 2 7.1 37 1 CEC4_MANSE P14664 m	manduca sex manduca sex manduca sex
811 2 7.1 37 1 CEC2_MANSE P14662 m 812 2 7.1 37 1 CEC3_MANSE P14663 m 813 2 7.1 37 1 CEC4_MANSE P14664 m 814 2 7.1 37 1 CG2S_LUPAN P09930 l	manduca sex manduca sex

816	2	7.1	37	1	CUP4 SARBU	P14486 sarcophaga
817	2	7.1	37	1	DEFA MYTED	P81610 mytilus edu
818	2	7.1	37	1	ECAA ECTTU	P49343 ectatomma t
819	2	7.1	37	1	ES2A RANES	P40845 rana escule
820	2	7.1	37	1	ES2B RANES	P40846 rana escule
821	2	7.1	37	1	F13A BOVIN	P12260 bos taurus
822	2	7.1	37	1	GHR3 RAT	P33580 rattus norv
823	2	7.1	37	1	HCYB CANPG	P83175 cancer pagu
824	2	7.1	37	1	HOXF RHOOP	P22658 rhodococcus
825	2	7.1	37	1	LPPY SERMA	P19937 serratia ma
826	2	7.1	37	1	MAUR PARVE	Q56462 paracoccus
827	2	7.1	37	1	ME20 EUPRA	P26888 euplotes ra
828	2	7.1	37	1	MIBP PSESP	P04576 pseudomonas
829	2	7.1	37	1	NLT3 VITSX	P80273 vitis sp. (
830	2	7.1	37	1	NUFM SOLTU	P80266 solanum tub
831	2	7.1	37	1	OP2A OXYKI	P83248 oxyopes kit
832	2	7.1	37	1	OP2B OXYKI	P83249 oxyopes kit
833	2	7.1	37	1	OP2C OXYKI	P83250 oxyopes kit
834	2	7.1	37	1	OP2D OXYKI	P83251 oxyopes kit
835	2	7.1	37	1	PETG ANASP	P58246 anabaena sp
836	2	7.1	37	1	PETG ANAVA	Q913p7 anabaena va
837	2	7.1	37	1	PETG ARATH	P56775 arabidopsis
838	2	7.1	37	1	PETG CHAGL	Q8m9y4 chaetosphae
839	2	7.1	37	1	PETG CHLEU	P46304 chlamydomon
840	2	7.1	37	1	PETG CHLRE	Q08362 chlamydomon
841	2	7.1	37	1	PETG CHLVU	P56305 chlorella v
842	2	7.1	37	1	PETG CUSRE	P30398 cuscuta ref
843	2	7.1	37	1	PETG CYAPA	P14236 cyanophora
844	2	7.1	37	1	PETG EUGGR	P30396 euglena gra
845	2	7.1	37	1	PETG GUITH	078505 guillardia
846	2	7.1	37	1	PETG MARPO	P12120 marchantia
847	2	7.1	37	1	PETG MESVI	Q9mun3 mesostigma
848	2	7.1	37	1	PETG NEPOL	Q9tky8 nephroselmi
849	2	7.1	37	1	PETG ODOSI	P49470 odontella s
850	2	7.1	37	1	PETG ORYSA	P12121 oryza sativ
851	2	7.1	37	1	PETG_PINTH	P41614 pinus thunb
852	2	7.1	37	1	PETG PORPU	P51318 porphyra pu
853	2	7.1	37	1	PETG PSINU	Q8wi02 psilotum nu
854	2	7.1	37	1	PETG SKECO	096811 skeletonema
855	2	7.1	37	1	PETG SYNEL	Q8dki2 synechococc
856	2	7.1	37	1	PETG SYNP7	Q9z3g1 synechococc
857	2	7.1	37	1	PIIL ACHLY	P81720 achromobact
858	2	7.1	37	1	POLN WEEV	P13896 western equ
859	2	7.1	37	1	PSAI ARATH	P56768 arabidopsis
860	2	7.1	37	1	PSAJ EUGGR	P30394 euglena gra
861	2	7.1	37	1	PSBL ARATH	P29301 arabidopsis
862	2	7.1	37	1	PSBL ORYSA	P12166 oryza sativ
863	2	7.1	37	1	PSBM PINTH	P41608 pinus thunb
864	2	7.1	37	1	PSBY_CYACA	019893 cyanidium c
865	2	7.1	37	1	PSBY GUITH	078433 guillardia
866	2	7.1	37	1	PYY CHICK	P29203 gallus gall
867	2	7.1	37	1	REV SIVM2	P08809 simian immu
868	2	7.1	37	1	RK36 ARATH	P12144 arabidopsis
869	2	7.1	37	1	RK36 ASTLO	P24355 astasia lon
870	2	7.1	37	1	RK36 CHAGL	Q8m9v5 chaetosphae
871	2	7.1	37	1	RK36 CHLVU	P56360 chlorella v
872	2	7.1	37	1	RK36_CYACA	Q9tlu9 cyanidium c
					_	-

873	2	7.1	37	1	RK36_CYAPA	P48131 cyanophora
874	2	7.1	37	1	RK36_EPIVI	P30069 epifagus vi
875	2	7.1	37	1	RK36 EUGGR	P21532 euglena gra
876	2	7.1	37	1	RK36 LOTJA	Q9bbq2 lotus japon
877	2	7.1	37	1	RK36 MARPO	P12142 marchantia
878	2	7.1	37	1	RK36 NEPOL	Q9tl26 nephroselmi
879	2	7.1	37	1	RK36 ODOSI	P49568 odontella s
	2			1	_	Q9mtjl oenothera h
880		7.1	37		RK36_OENHO	P12143 oryza sativ
881	2	7.1	37	1	RK36_ORYSA	
882	2	7.1	37	1	RK36_PEA	P07815 pisum sativ
883	2	7.1	37	1	RK36_PINTH	P41631 pinus thunb
884	2	7.1	37	1	RK36_PORPU	P51296 porphyra pu
885	2	7.1	37	1	RK36_PSINU	Q8why9 psilotum nu
886	2	7.1	37	1	RK36 SPIOL	P12230 spinacia ol
887	2	7.1	37	1	RL36 ANASP	Q8ypk0 anabaena sp
888	2	7.1	37	1	RL36 AQUAE	066487 aquifex aeo
889	2	7.1	37	1	RL36 BACHD	050631 bacillus ha
890	2	7.1	37	1	RL36 BACST	P07841 bacillus st
					RL36 BACSU	P20278 bacillus su
891	2	7.1	37	1		
892	2,	7.1	37	1	RL36_BORBU	051452 borrelia bu
893	2	7.1	37	1	RL36_CAMJE	Q9pm84 campylobact
894	2	7.1	37	1	RL36_CLOAB	Q97ek2 clostridium
895	2	7.1	37	1	RL36_CLOPE	Q8xhu7 clostridium
896	2	7.1	37	1	RL36 DEIRA	Q9rsk0 deinococcus
897	2	7.1	37	1	RL36 HAEIN	P46361 haemophilus
898	2	7.1	37	1	RL36 HELPJ	Q9zjt1 helicobacte
899	2	7.1	37	1	RL36 HELPY	P56058 helicobacte
900	2	7.1	37	1	RL36 LEPIN	Q9xd13 leptospira
	2	7.1	37	1	RL36 LISMO	Q927n0 listeria mo
901					-	Q9rdv9 mycoplasma
902	2	7.1	37	1	RL36_MYCGA	
903	2	7.1	37	1	RL36_MYCGE	P47420 mycoplasma
904	2	7.1	37	1	RL36_MYCLE	Q9x7a2 mycobacteri
905	2	7.1	37	1	RL36_MYCPN	P52864 mycoplasma
906	2	7.1	37	1	RL36_MYCPU	Q98q05 mycoplasma
907	2	7.1	37	1	RL36_MYCSP	P38015 mycoplasma
908	2	7.1	37	1	RL36 MYCTU	P45810 mycobacteri
909	2	7.1	37	1	RL36 NEIMA	Q9jrb2 neisseria m
910	2	7.1	37	1	RL36 STAAM	Q99s42 staphylococ
911	2	7.1	37	1	RL36 STRCO	O86772 streptomyce
912	2	7.1	37	1	RL36 SYNP6	O24707 synechococc
	2		37	_	RL36 THETH	P80256 thermus the
913		7.1		1		Q8r7x8 thermoanaer
914	2	7.1	37	1	RL36_THETN	
915	2	7.1	37	1	RL36_TREPA	083239 treponema p
916	2	7.1	37	1	RL36_UREPA	Q9pqn7 ureaplasma
917	2	7.1	37	1	RL36_VIBCH	P78001 vibrio chol
918	2	7.1	37	1	RL7_CLOPA	P05393 clostridium
919	2	7.1	37	1	RS15_HELLU	P52820 helix lucor
920	2	7.1	37	1	RUGC RANRU	P80956 rana rugosa
921	2	7.1	37	1	SCIT MESTA	P81761 mesobuthus
922	2	7.1	37	1	SCK2 LEIQH	P45628 leiurus qui
923	2	7.1	37	1	SCK3_BUTOC	P59290 buthus occi
924	2	7.1 7.1	37	1	SCK3_BOTOC SCK3_PARTR	P83112 parabuthus
						P46114 tityus serr
925	2	7.1	37	1	SCKA_TITSE	
926	2	7.1	37	1	SCKC_LEIQH	P13487 leiurus qui
927	2	7.1	37	1	SMS_PETMA	P21779 petromyzon
928	2	7.1	37	1	TCTP_TRYBB	P35758 trypanosoma
929	2	7.1	37	1	THHS_HORVU	P33045 hordeum vul

						200050	
930	2	7.1	37	1	TX21_SELHU		selenocosmi
931	2	7.1	37	1	TX22_SELHU		selenocosmi
932	2	7.1	37	1	TXD1_PARLU	P83256	paracoelote
933	2	7.1	37	1	TXD2 PARLU	P83257	paracoelote
934	2	7.1	37	1	TXD4 PARLU	P83259	paracoelote
935	2	7.1	37	1	TXJC HADVE		hadronyche
	2	7.1	37	1	TXKB_BUNGR		bunodosoma
936							
937	2	7.1	37	1	TXOF_HADVE		hadronyche
938	2	7.1	37	1	TXP3_APTSC		aptostichus
939	2	7.1	37	1	VA1_BPBF2		bacteriopha
940	2	7.1	37	1	VG40_BPML5	Q05250	mycobacteri
941	2	7.1	37	1	VG65 BPPH2	P16515	bacteriopha
942	2	7.1	37	1	VG65 BPPZA	P08384	bacteriopha
943	2	7.1	37	1	VGJ BPPHX		bacteriopha
944	2	7.1	37	1	VP64 NPVBM		bombyx mori
					_		human immun
945	2	7.1	37	1	VPU_HV1Z8		
946	2	7.1	37	1	Y268_ARCFU		archaeoglob
947	2	7.1	37	1	Y63_BPT7		bacteriopha
948	2	7.1	37	1	Y692_BORBU	051635	borrelia bu
949	2	7.1	37	1	Y700 BORBU	051643	borrelia bu
950	2	7.1	37	1	Y762 BORBU	051703	borrelia bu
951	2	7.1	37	1	Y846 BORBU	051786	borrelia bu
952	2	7.1	37	1	YBGT ECOLI		escherichia
	2			1	YC12 CHLVU		chlorella v
953		7.1	37				
954	2	7.1	37	1	YDA3_SCHPO		schizosacch
955	2	7.1	37	1	YIM4_BPPH1		bacteriopha
956	2	7.1	37	1	YQGE_BACCA		bacillus ca
957	2	7.1	37	1	YRYL_CAEEL	Q19177	caenorhabdi
958	2	7.1	38	1	AFP5 MALPA	P83139	malva parvi
959	2	7.1	38	1	BD01 BOVIN	P46159	bos taurus
960	2	7.1	38	1	BD08 BOVIN	P46166	bos taurus
961	2	7.1	38	1	COA3 XANCP		xanthomonas
962	2	7.1	38	1	CRS3 NOTGO		nototodarus
							
963	2	7.1	38	1	DCHS_MICSP		micrococcus
964	2	7.1	38	1	DEF4_LEIQH		leiurus qui
965	2	7.1	38	1	DEF7_SPIOL		spinacia ol
966	2	7.1	38	1	DEFI_AESCY		aeschna cya
967	2	7.1	38	1	DEFI_MYTGA	P80571	mytilus gal
968	2	7.1	38	1	DLP3 ORNAN	P82141	ornithorhyn
969	2	7.1	38	1	DPOB_BOVIN	Q27958	bos taurus
970	2	7.1	38	1	E2F1 RAT		rattus norv
971	2	7.1	38	1	EST5 DROMO		drosophila
	2			1			heloderma s
972		7.1	38		EXE1_HELSU		
973	2	7.1	38	1	FER_METPR		metallospha
974	2	7.1	38	1	GLUM_HYDCO		hydrolagus
975	2	7.1	38	1	GME1_RAT		rattus norv
976	2	7.1	38	1	H5_COLLI	P02260	columba liv
977	2	7.1	38	1	HIS1 MACFA	P34084	macaca fasc
978	2	7.1	38	1	HMG2 BOVIN	P40673	bos taurus
979	2	7.1	38	1	HOXH RHOOP		rhodococcus
980	2	7.1	38	1	ID5B ADEPA		adenanthera
	2	7.1		1			prosopsis j
981			38		ID5B_PROJU		saccharomyc
982	2	7.1	38	1	MFA2_YEAST		-
983	2	7.1	38	1	MUTS_YEREN		yersinia en
984	2	7.1	38	1	PA21_MATBI		maticora bi
985	2	7.1	38	1	PA22_MATBI		maticora bi
986	2	7.1	38	1	PACA_URAJA	P81039	uranoscopus

```
P80550 sus scrofa
987
         2
              7.1
                      38 1 PERE PIG
                                                     P74149 synechocyst
                            PETG SYNY3
988
         2
              7.1
                      38 1
                                                     P81765 musca domes
                      38 1
                            POI MUSDO
989
         2
              7.1
                                                     P49484 odontella s
990
         2
              7.1
                      38 1
                            PSAI ODOSI
                                                     087786 prochloroco
         2
              7.1
                      38 1
                            PSAI PROMA
991
                            PSAI SYNEL
                                                    P25900 synechococc
         2
              7.1
                      38 1
992
                      38 1
                                                    P05171 nicotiana t
                            PSBF TOBAC
         2
              7.1
993
                            PSBI CHLVU
                                                    P56324 chlorella v
                      38 1
994
          2
              7.1
                                                     019882 cyanidium c
995
          2
              7.1
                      38 1
                            PSBI_CYACA
                      38 1
                                                     P48106 cyanophora
996
          2
              7.1
                            PSBI CYAPA
                                                    078471 guillardia
997
          2
             7.1
                      38 1
                            PSBI GUITH
                                                     Q9mus1 mesostigma
998
          2
             7.1
                      38 1
                             PSBI MESVI
         2 7.1
                                                     P49511 odontella s
999
                      38 1
                             PSBI ODOSI
         2 7.1
                      38 1 PSBI PORPU
                                                     P51236 porphyra pu
1000
```

ALIGNMENTS

```
RESULT 1
FABI RHASA
     FABI RHASA
                    STANDARD;
                                   PRT;
                                           33 AA.
ID
AC
     P81175;
     15-JUL-1998 (Rel. 36, Created)
DT
     15-JUL-1998 (Rel. 36, Last sequence update)
DT
     15-JUL-1998 (Rel. 36, Last annotation update)
DT
     Fatty acid-binding protein, intestinal (I-FABP) (FABPI) (Fragments).
DE
OS
     Rhamdia sapo.
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Actinopterygii; Neopterygii; Teleostei; Ostariophysi; Siluriformes;
OC
     Pimelodidae; Rhamdia.
OC
     NCBI TaxID=55673;
OX
RN
     [1]
     SEOUENCE.
RP
RC
     TISSUE=Intestine;
     MEDLINE=98036128; PubMed=9370361;
RX
     Di Pietro S.M., Dell'Angelica E.C., Veerkamp J.H., Sterin-Speziale N.,
RA
RA
     Santome J.A.;
     "Amino acid sequence, binding properties and evolutionary
RT
     relationships of the basic liver fatty-acid-binding protein from the
RT
     catfish Rhamdia sapo.";
RT
     Eur. J. Biochem. 249:510-517(1997).
RL
     -!- FUNCTION: FABP ARE THOUGHT TO PLAY A ROLE IN THE INTRACELLULAR
CC
         TRANSPORT OF LONG-CHAIN FATTY ACIDS AND THEIR ACYL-COA ESTERS.
CC
     -!- SUBCELLULAR LOCATION: Cytoplasmic.
CC
     -!- TISSUE SPECIFICITY: INTESTINE.
CC
     -!- SIMILARITY: BELONGS TO THE FABP/P2/CRBP/CRABP FAMILY OF
CC
CC
         TRANSPORTERS.
DR
     InterPro; IPR000463; Fatty acid BP.
     PROSITE; PS00214; FABP; PARTIAL.
DR
     Transport; Lipid-binding.
KW
     NON_TER
                  1
FΤ
FT
     NON_CONS
                  12
                         13
                  20
                         21
FT
     NON CONS
                         29
FT
     NON CONS
                  28
     NON TER
                  33
                         33
FT
                33 AA; 3660 MW; 5BA16CC2880B7819 CRC64;
SQ
     SEQUENCE
```

```
17.9%; Score 5; DB 1; Length 33;
  Query Match
                         100.0%; Pred. No. 37;
  Best Local Similarity
                                                                             0;
                                                                 0; Gaps
            5; Conservative
                              0; Mismatches
                                                   0; Indels
            1 SVSEI 5
Qy
              1111
Db
           13 SVSEI 17
RESULT 2
SR1C SARPE
     SR1C SARPE
                    STANDARD;
                                   PRT:
                                           39 AA.
ID
AC
     P08377;
     01-AUG-1988 (Rel. 08, Created)
DT
     01-AUG-1988 (Rel. 08, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     Sarcotoxin IC.
DΕ
     Sarcophaga peregrina (Flesh fly) (Boettcherisca peregrina).
OS
     Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
     Neoptera; Endopterygota; Diptera; Brachycera; Muscomorpha; Oestroidea;
OC
     Sarcophagidae; Sarcophaga.
OC
OX
     NCBI TaxID=7386;
RN
     [1]
RΡ
     SEQUENCE.
     MEDLINE=85207747; PubMed=3888997;
RX
     Okada M., Natori S.;
RA
     "Primary structure of sarcotoxin I, an antibacterial protein induced
RT
     in the hemolymph of Sarcophaga peregrina (flesh fly) larvae.";
RT
     J. Biol. Chem. 260:7174-7177(1985).
RL
     -!- FUNCTION: SARCOTOXINS, WHICH ARE POTENT BACTERICIDAL PROTEINS,
CC
         ARE PRODUCED IN RESPONSE TO INJURY. THEY ARE CYTOTOXIC TO BOTH
CC
         GRAM-POSITIVE AND GRAM-NEGATIVE BACTERIA.
CC
CC
     -!- SUBCELLULAR LOCATION: Secreted.
     -!- SIMILARITY: BELONGS TO THE CECROPIN FAMILY.
CC
DR
     PIR; C22625; CKFHCS.
     InterPro; IPR000875; Cecropin.
DR
DR
     InterPro; IPR003253; Sarctxn_cecrpn.
     Pfam; PF00272; cecropin; 1.
DR
     ProDom: PD001670; Sarctxn cecrpn; 1.
DR
     PROSITE; PS00268; CECROPIN; 1.
DR
     Insect immunity; Antibiotic; Hemolymph; Amidation; Multigene family.
KW
                                  AMIDATION.
FT
     MOD RES
                  39
                         39
     SEQUENCE
                39 AA; 4227 MW; 11E79F4F405E855A CRC64;
SQ
                          14.3%; Score 4; DB 1; Length 39;
  Query Match
                          100.0%; Pred. No. 5.1e+02;
  Best Local Similarity
             4; Conservative 0; Mismatches 0; Indels
                                                                              0:
                                                                  0; Gaps
  Matches
           23 WLRK 26
Qу
               Db
            2 WLRK 5
RESULT 3
CH60 MYCSM
                                   PRT;
                                            28 AA.
     CH60 MYCSM
                    STANDARD;
```

```
P80673;
AC
     01-OCT-1996 (Rel. 34, Created)
DT
     01-OCT-1996 (Rel. 34, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     60 kDa chaperonin (Protein Cpn60) (groEL protein) (Fragment).
DΕ
     GROL OR GROEL OR MOPA.
GN
     Mycobacterium smegmatis.
OS
     Bacteria; Actinobacteria; Actinobacteridae; Actinomycetales;
OC
     Corynebacterineae; Mycobacteriaceae; Mycobacterium.
OC
     NCBI TaxID=1772;
OX
     [1]
RN
     SEQUENCE.
RΡ
     STRAIN=ATCC 607 / mc(2)6 / NRRL B-692;
RC
     MEDLINE=97387814; PubMed=9243799;
RX
     Lundrigan M.D., Arceneaux J.E.L., Zhu W., Byers B.R.;
RA
     "Enhanced hydrogen peroxide sensitivity and altered stress protein
RT
     expression in iron-starved Mycobacterium smegmatis.";
RT
     BioMetals 10:215-225(1997).
RL
     -!- FUNCTION: Prevents misfolding and promotes the refolding and
CC
         proper assembly of unfolded polypeptides generated under stress
CC
         conditions.
CC
     -!- SUBUNIT: Oligomer of 14 subunits composed of two stacked rings of
CC
         7 subunits (By similarity).
CC
     -!- SUBCELLULAR LOCATION: Cytoplasmic.
CC
     -!- SIMILARITY: Belongs to the chaperonin (HSP60) family.
CC
     HAMAP; MF 00600; -; 1.
DR
     InterPro; IPR001844; Chaprnin Cpn60.
DR
     PROSITE; PS00296; CHAPERONINS CPN60; PARTIAL.
DR
     Chaperone; ATP-binding.
KW
     NON TER
                  28
                          28
FT
                28 AA; 3047 MW; 2F40F27B94EF8720 CRC64;
     SEQUENCE
SQ
                           10.7%; Score 3; DB 1; Length 28;
  Query Match
                           100.0%; Pred. No. 4.5e+03;
  Best Local Similarity
                                0; Mismatches 0; Indels
                                                                  0; Gaps
  Matches
             3; Conservative
           15 LNS 17
Qу
               111
           18 LNS 20
RESULT 4
COXB SOLTU
                                    PRT;
                                            28 AA.
     COXB SOLTU
                     STANDARD;
ID
     P80499;
AC
     01-FEB-1996 (Rel. 33, Created)
DT
     01-FEB-1996 (Rel. 33, Last sequence update)
DT
     15-JUL-1999 (Rel. 38, Last annotation update)
DT
     Cytochrome c oxidase polypeptide Vb (EC 1.9.3.1) (Fragment).
DE
     Solanum tuberosum (Potato).
OS
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
      Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots;
OC
     Asteridae; lamiids; Solanales; Solanaceae; Solanum.
OC
     NCBI TaxID=4113;
OX
 RN
      [1]
 RΡ
      SEQUENCE.
 RC
      TISSUE=Tuber;
```

```
RX
     MEDLINE=97077345; PubMed=8919912;
     Jansch L., Kruft V., Schmitz U.K., Braun H.P.;
RA
     "New insights into the composition, molecular mass and stoichiometry
RT
     of the protein complexes of plant mitochondria.";
RT
     Plant J. 9:357-368(1996).
RL
     -!- CATALYTIC ACTIVITY: 4 ferrocytochrome c + O(2) = 4 ferricytochrome
CC
CC
         c + 2 H(2) O.
     -!- SUBCELLULAR LOCATION: Mitochondrial inner membrane.
CC
     -!- SIMILARITY: BELONGS TO THE CYTOCHROME C OXIDASE VB FAMILY.
CC
     InterPro; IPR002124; COX5B.
     PROSITE; PS00848; COX5B; PARTIAL.
     Oxidoreductase; Inner membrane; Mitochondrion.
KW
     NON TER
                  28
                         28
FT
     SEQUENCE
                28 AA; 3101 MW; 1EAFA79E2682849C CRC64;
SO
                          10.7%; Score 3; DB 1; Length 28;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 4.5e+03;
                                                 0; Indels
                                                                              0;
             3; Conservative 0; Mismatches
                                                                  0;
                                                                      Gaps
            2 VSE 4
Qу
              111
            2 VSE 4
RESULT 5
GUN SCHCO
                                   PRT;
ID
     GUN SCHCO
                    STANDARD;
                                            28 AA.
     P81190;
AC
DT
     15-JUL-1998 (Rel. 36, Created)
     15-JUL-1998 (Rel. 36, Last sequence update)
DT
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
     Endoglucanase (EC 3.2.1.4) (Endo-1,4-beta-glucanase) (Cellulase)
DE
DE
     (Fragment).
     Schizophyllum commune (Bracket fungus).
OS
     Eukaryota; Fungi; Basidiomycota; Hymenomycetes; Homobasidiomycetes;
OC
     Agaricales; Schizophyllaceae; Schizophyllum.
OC
OX
     NCBI TaxID=5334;
RN
     [1]
RΡ
     SEQUENCE.
     MEDLINE=97459758; PubMed=9315718;
RX
     Clarke A.J., Drummelsmith J., Yaguchi M.;
RA
     "Identification of the catalytic nucleophile in the cellulase from
RT
     Schizophyllum commune and assignment of the enzyme to Family 5,
RT
RT
     subtype 5 of the glycosidases.";
     FEBS Lett. 414:359-361(1997).
RL
     -!- CATALYTIC ACTIVITY: Endohydrolysis of 1,4-beta-D-glucosidic
CC
         linkages in cellulose, lichenin and cereal beta-D-glucans.
CC
     -!- SUBCELLULAR LOCATION: Attached to the membrane by a lipid anchor
CC
CC
          (Probable).
     -!- SIMILARITY: BELONGS TO CELLULASE FAMILY A (FAMILY 5 OF GLYCOSYL
CC
CC
         HYDROLASES) .
DR
     InterPro; IPR001547; Glyco hydro 5.
     PROSITE; PS00659; GLYCOSYL_HYDROL_F5; PARTIAL.
DR
     Cellulose degradation; Hydrolase; Glycosidase; Zymogen; Membrane;
KW
KW
     Lipoprotein.
     ACT SITE
                          20
                                   NUCLEOPHILE.
FT
                  20
FT
     NON TER
                          28
                  28
```

```
28 AA; 2937 MW; B3F1C0C99C9950BE CRC64;
SO
    SEOUENCE
                          10.7%; Score 3; DB 1; Length 28;
 Ouery Match
                          100.0%; Pred. No. 4.5e+03;
 Best Local Similarity
                                                                              0;
            3; Conservative
                                0; Mismatches
                                                 0;
                                                      Indels
                                                                 0; Gaps
 Matches
           22 EWL 24
Qу
              111
            7 EWL 9
Dh
RESULT 6
PA23 TRIST
                                   PRT;
                                           28 AA.
     PA23 TRIST
                    STANDARD;
ID
AC
     P82894;
     16-OCT-2001 (Rel. 40, Created)
DT
     16-OCT-2001 (Rel. 40, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     Phospholipase A2, basic 3 (EC 3.1.1.4) (PA2-III) (PLA2-III)
DE
     (Phosphatidylcholine 2-acylhydrolase) (Fragment).
DE
     Trimeresurus stejnegeri (Chinese green tree viper).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Lepidosauria; Squamata; Scleroglossa; Serpentes; Colubroidea;
OC
     Viperidae; Crotalinae; Trimeresurus.
OC
OX
     NCBI TaxID=39682;
RN
     [1]
     SEQUENCE.
RP
RC
     TISSUE=Venom;
     Li S.Y., Wang W.Y., Xiong Y.L.;
RA
     "Isolation, sequence and characterization of five variants of
RT
     phospholipase A2 from venom of snake Trimeresurus stejnegeri.";
RT
     Submitted (DEC-2000) to the SWISS-PROT data bank.
RL
     -!- FUNCTION: PA2 catalyzes the calcium-dependent hydrolysis of the 2-
CC
         acyl groups in 3-sn-phosphoglycerides. Hemolytic and neurotoxic
CC
CC
         activities are not detected.
     -!- CATALYTIC ACTIVITY: Phosphatidylcholine + H(2)0 = 1-
CC
         acylglycerophosphocholine + a fatty acid anion.
CC
     -!- COFACTOR: Binds 1 calcium ion per subunit (By similarity).
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: BELONGS TO THE PHOSPHOLIPASE A2 FAMILY. GROUP II
CC
CC
         SUBFAMILY.
     HSSP; P82287; 1QLL.
DR
     InterPro; IPR001211; PhospholipaseA2.
DR
DR
     Pfam; PF00068; phoslip; 1.
     ProDom; PD000303; PhospholipaseA2; 1.
DR
     PROSITE; PS00119; PA2 ASP; PARTIAL.
DR
     PROSITE; PS00118; PA2 HIS; PARTIAL.
DR
     Hydrolase; Lipid degradation; Calcium; Multigene family.
KW
FT
     NON TER
                  28
                         28
                28 AA; 3023 MW; 042104521CA1F103 CRC64;
     SEQUENCE
SQ
  Query Match
                           10.7%; Score 3; DB 1; Length 28;
                          100.0%; Pred. No. 4.5e+03;
  Best Local Similarity
             3; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
                                                                              0;
  Matches
```

```
RESULT 7
PA2C PSEPO
                                           28 AA.
     PA2C PSEPO
                    STANDARD;
                                   PRT:
AC
     P20260;
DT
     01-FEB-1991 (Rel. 17, Created)
DT
     01-FEB-1991 (Rel. 17, Last sequence update)
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     Phospholipase A2 (EC 3.1.1.4) (Pseudexin C chain) (Phosphatidylcholine
DΕ
DE
     2-acylhydrolase) (Fragment).
     Pseudechis porphyriacus (Red-bellied black snake).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Lepidosauria; Squamata; Scleroglossa; Serpentes; Colubroidea;
OC
     Elapidae; Acanthophiinae; Pseudechis.
OC
OX
     NCBI TaxID=8671;
RN
     [1]
     SEQUENCE.
RΡ
RC
     TISSUE=Venom;
     MEDLINE=89388835; PubMed=2675391;
RX
     Schmidt J.J., Middlebrook J.L.;
RA
     "Purification, sequencing and characterization of pseudexin
RT
     phospholipases A2 from Pseudechis porphyriacus (Australian
RT
     red-bellied black snake).";
RT
     Toxicon 27:805-818(1989).
RL
     -!- FUNCTION: PA2 catalyzes the calcium-dependent hydrolysis of the 2-
CC
CC
         acyl groups in 3-sn-phosphoglycerides.
     -!- CATALYTIC ACTIVITY: Phosphatidylcholine + H(2)0 = 1-
CC
CC
         acylqlycerophosphocholine + a fatty acid anion.
     -!- COFACTOR: Binds 1 calcium ion per subunit (By similarity).
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: BELONGS TO THE PHOSPHOLIPASE A2 FAMILY. GROUP I
CC
CC
         SUBFAMILY.
     PIR; C32416; C32416.
DR
     HSSP; P00592; 2PHI.
DR
     InterPro; IPR001211; PhospholipaseA2.
DR
DR
     Pfam; PF00068; phoslip; 1.
     ProDom; PD000303; PhospholipaseA2; 1.
DR
     PROSITE; PS00119; PA2 ASP; PARTIAL.
DR
     PROSITE; PS00118; PA2 HIS; PARTIAL.
DR
     Hydrolase; Lipid degradation; Calcium; Multigene family.
KW
FT
                         28
     NON TER
                  28
                28 AA; 3210 MW; 5089A7E85CAAE0D5 CRC64;
SO
     SEQUENCE
                           10.7%; Score 3; DB 1; Length 28;
  Query Match
                          100.0%; Pred. No. 4.5e+03;
  Best Local Similarity
                                                  0; Indels
                                                                  0; Gaps
                                                                               0;
                               0; Mismatches
  Matches
             3; Conservative
            5 IQL 7
Qу
               Db
            3 IQL 5
RESULT 8
VI03 VACCP
                                    PRT;
                                            28 AA.
ID VI03 VACCP
                     STANDARD;
```

```
01-APR-1993 (Rel. 25, Created)
DT
    01-APR-1993 (Rel. 25, Last sequence update)
DT
    01-FEB-1994 (Rel. 28, Last annotation update)
    Protein I3 (Fragment).
DE
GN
    I3L.
    Vaccinia virus (strain L-IVP).
OS
    Viruses; dsDNA viruses, no RNA stage; Poxviridae; Chordopoxvirinae;
OC
OC
    Orthopoxvirus.
OX
    NCBI TaxID=31531;
RN
    [1]
RP
    SEOUENCE FROM N.A.
    MEDLINE=91066899; PubMed=2250685;
RX
    Ryazankina O.I., Shchelkunov S.N., Muravlev A.I., Netesova N.A.,
RA
    Mikryukov N.N., Gutorov V.V., Nikulin A.E., Kulichkov V.A.,
RA
RA
    Malvgin E.G.;
    "Molecular-biological study of vaccinia virus genome. II.
RT
    Localization and nucleotide sequence of vaccinia virus genes coding
RT
    for proteins 36K and 12K.";
RT
    Mol. Biol. (Mosk) 24:968-976(1990).
RL
    -!- MISCELLANEOUS: THIS PROTEIN IS SYNTHESIZED IN THE EARLY AS WELL AS
CC
        THE LATE PHASE OF INFECTION.
CC
     ______
CC
    This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
    the European Bioinformatics Institute. There are no restrictions on its
CC
    use by non-profit institutions as long as its content is in no way
CC
    modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
CC
    or send an email to license@isb-sib.ch).
     ______
CC
DR
     EMBL; X61165; CAA43473.1; -.
     InterPro; IPR006754; Pox I3.
DR
     Pfam; PF04661; Pox I3; 1.
DR
     Early protein; Late protein.
KW
     NON TER
FT
              1
                       1
             28 AA; 3238 MW; CE10813AC544F010 CRC64;
SO
     SEQUENCE
                        10.7%; Score 3; DB 1; Length 28;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 4.5e+03;
           3; Conservative 0; Mismatches 0; Indels 0; Gaps
          10 NLG 12
QУ
           5 NLG 7
Db
RESULT 9
VIP ALLMI
                                        28 AA.
     VIP ALLMI
                  STANDARD;
                                PRT:
ID
     P48142; P01285;
AC
     21-JUL-1986 (Rel. 01, Created)
DT
     21-JUL-1986 (Rel. 01, Last sequence update)
DT
     01-OCT-1996 (Rel. 34, Last annotation update)
DT
     Vasoactive intestinal peptide (VIP).
DE
GN
     VIP.
     Alligator mississippiensis (American alligator).
OS
```

AC

Q00334;

```
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Archosauria; Crocodylidae; Alligatorinae; Alligator.
OC
     NCBI TaxID=8496;
OX
     [1]
RN
     SEOUENCE.
RP
     TISSUE=Stomach;
RC
     MEDLINE=93324451; PubMed=8101369;
RX
RA
     Wang Y., Conlon J.M.;
     "Neuroendocrine peptides (NPY, GRP, VIP, somatostatin) from the brain
RT
     and stomach of the alligator.";
RT
\mathtt{RL}
     Peptides 14:573-579(1993).
CC
     -!- FUNCTION: VIP CAUSES VASODILATION, LOWERS ARTERIAL BLOOD
         PRESSURE, STIMULATES MYOCARDIAL CONTRACTILITY, INCREASES
CC
         GLYCOGENOLYSIS AND RELAXES THE SMOOTH MUSCLE OF TRACHEA, STOMACH
CC
CC
         AND GALL BLADDER.
     -!- SIMILARITY: BELONGS TO THE GLUCAGON FAMILY.
CC
DR
     InterPro; IPR000532; Glucagon.
     Pfam; PF00123; hormone2; 1.
DR
     PRINTS; PR00275; GLUCAGON.
DR
     SMART; SM00070; GLUCA; 1.
DR
     PROSITE; PS00260; GLUCAGON; 1.
DR
     Glucagon family; Amidation; Hormone.
KW
     MOD RES
                 28
                        28
                                  AMIDATION.
FT
                28 AA; 3320 MW; 17B42D7573FF6F37 CRC64;
     SEOUENCE
SQ
                          10.7%; Score 3; DB 1; Length 28;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 4.5e+03;
             3; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
                                                                               0;
  Matches
           15 LNS 17
Qу
               23 LNS 25
Db
RESULT 10
VIP RANRI
                                            28 AA.
     VIP RANRI
                    STANDARD;
                                    PRT;
ID
AC
     P81016;
     01-NOV-1997 (Rel. 35, Created)
DT
     01-NOV-1997 (Rel. 35, Last sequence update)
DT
     01-NOV-1997 (Rel. 35, Last annotation update)
DT
     Vasoactive intestinal peptide (VIP).
DE
     Rana ridibunda (Laughing frog) (Marsh frog).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Amphibia; Batrachia; Anura; Neobatrachia; Ranoidea; Ranidae; Rana.
OC
     NCBI TaxID=8406;
OX
RN
     [1]
RΡ
     SEQUENCE.
     MEDLINE=95309202; PubMed=7540547;
RX
     Chartrel N., Wang Y., Fournier A., Vaudry H., Conlon J.M.;
RA
     "Frog vasoactive intestinal polypeptide and galanin: primary
RT
     structures and effects on pituitary adenylate cyclase.";
RT
     Endocrinology 136:3079-3086(1995).
RL
     -!- FUNCTION: VIP CAUSES VASODILATION, LOWERS ARTERIAL BLOOD
CC
          PRESSURE, STIMULATES MYOCARDIAL CONTRACTILITY, INCREASES
CC
         GLYCOGENOLYSIS AND RELAXES THE SMOOTH MUSCLE OF TRACHEA, STOMACH
CC
CC
         AND GALL BLADDER.
```

```
-!- SIMILARITY: BELONGS TO THE GLUCAGON FAMILY.
CC
     InterPro; IPR000532; Glucagon.
DR
     Pfam; PF00123; hormone2; 1.
DR
     PRINTS; PR00275; GLUCAGON.
DR
     PROSITE; PS00260; GLUCAGON; 1.
DR
     Glucagon family; Amidation; Hormone.
KW
                                  AMIDATION.
FT
     MOD RES
                 28
                         28
                28 AA; 3320 MW; 17B42D7573FF6F37 CRC64;
     SEQUENCE
SO
                          10.7%; Score 3; DB 1; Length 28;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 4.5e+03;
             3; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
  Matches
           15 LNS 17
QУ
              111
           23 LNS 25
Db
RESULT 11
VIP SHEEP
                                   PRT;
                                           28 AA.
                    STANDARD;
     VIP SHEEP
ID
     P04565;
AC
     13-AUG-1987 (Rel. 05, Created)
DT
     13-AUG-1987 (Rel. 05, Last sequence update)
DT
     01-OCT-1996 (Rel. 34, Last annotation update)
DT
     Vasoactive intestinal peptide (VIP).
DΕ
GN
     VIP.
     Ovis aries (Sheep),
OS
     Capra hircus (Goat), and
OS
     Canis familiaris (Dog).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Cetartiodactyla; Ruminantia; Pecora; Bovoidea;
OC
     Bovidae; Caprinae; Ovis.
OC
     NCBI TaxID=9940, 9925, 9615;
OX
RN
     [1]
     SEQUENCE.
RΡ
     SPECIES=Sheep; TISSUE=Brain;
RC
     MEDLINE=91045331; PubMed=2235680;
RX
     Gafvelin G.;
RA
     "Isolation and primary structure of VIP from sheep brain.";
RΤ
     Peptides 11:703-706(1990).
RL
RN
     [2]
RP
     SEQUENCE.
     SPECIES=Sheep; TISSUE=Small intestine;
RC
     MEDLINE=91239834; PubMed=2034821;
RX
     Bounjoua Y., Vandermeers A., Robberecht P., Vandermeers-Piret M.C.,
RA
RA
     Christophe J.;
     "Purification and amino acid sequence of vasoactive intestinal
RT
     peptide, peptide histidine isoleucinamide and secretin from the ovine
RT
RT
     small intestine.";
     Regul. Pept. 32:169-179(1991).
RL
RN
     [3]
     SEQUENCE.
RΡ
     SPECIES=C.hircus, and C.familiaris;
RC
     MEDLINE=86313167; PubMed=3748846;
RX
     Eng J., Du B.-H., Raufman J.-P., Yalow R.S.;
RA
      "Purification and amino acid sequences of dog, goat and guinea pig
RT
```

```
RT
     VIPs.";
     Peptides 7 Suppl. 1:17-20(1986).
RL
     -!- FUNCTION: VIP CAUSES VASODILATION, LOWERS ARTERIAL BLOOD
CC
         PRESSURE, STIMULATES MYOCARDIAL CONTRACTILITY, INCREASES
CC
         GLYCOGENOLYSIS AND RELAXES THE SMOOTH MUSCLE OF TRACHEA, STOMACH
CC
CC
         AND GALL BLADDER.
     -!- SIMILARITY: BELONGS TO THE GLUCAGON FAMILY.
CC
     PIR; A60304; A60304.
DR
     PIR; B60072; VRSH.
DR
     InterPro; IPR000532; Glucagon.
DR
     Pfam; PF00123; hormone2; 1.
DR
     PRINTS; PR00275; GLUCAGON.
DR
     SMART; SM00070; GLUCA; 1.
DR
DR
     PROSITE; PS00260; GLUCAGON; 1.
KW
     Glucagon family; Amidation; Hormone.
     MOD RES
                  28
                         28
                                  AMIDATION.
FT
SO
     SEQUENCE
                28 AA; 3327 MW; EF313FB573FF6F3F CRC64;
                          10.7%; Score 3; DB 1; Length 28;
  Query Match
                          100.0%; Pred. No. 4.5e+03;
  Best Local Similarity
                                                                               0;
             3; Conservative
                               0; Mismatches
                                                 0; Indels
                                                                  0; Gaps
           15 LNS 17
Qy.
              | | | |
Db
           23 LNS 25
RESULT 12
GALA ALLMI
ID
     GALA ALLMI
                    STANDARD;
                                    PRT;
                                            29 AA.
AC
     P47215;
DT
     01-FEB-1996 (Rel. 33, Created)
     01-FEB-1996 (Rel. 33, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
DE
     Alligator mississippiensis (American alligator).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Archosauria; Crocodylidae; Alligatorinae; Alligator.
OC
OX
     NCBI_TaxID=8496;
RN
     [1]
RΡ
     SEQUENCE.
RC
     TISSUE=Stomach;
RX
     MEDLINE=95023390; PubMed=7524049;
     Wang Y., Conlon J.M.;
RA
     "Purification and primary structure of galanin from the alligator
RT
     stomach.";
RT
RL
     Peptides 15:603-606(1994).
CC
     -!- FUNCTION: CONTRACTS SMOOTH MUSCLE OF THE GASTROINTESTINAL AND
         GENITOURINARY TRACT, REGULATES GROWTH HORMONE RELEASE, MODULATES
CC
CC
         INSULIN RELEASE, AND MAY BE INVOLVED IN THE CONTROL OF ADRENAL
CC
         SECRETION.
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: BELONGS TO THE GALANIN FAMILY.
CC
DR
     InterPro; IPR001600; Galanin.
DR
     Pfam; PF01296; Galanin; 1.
DR
     ProDom; PD005962; Galanin; 1.
DR
     PROSITE; PS00861; GALANIN; 1.
```

```
Hormone; Neuropeptide; Amidation.
KW
                        29
                                  AMIDATION.
     MOD RES
                  29
FT
                29 AA; 3216 MW; E02F019B2D3E0529 CRC64;
     SEQUENCE
SO
                          10.7%; Score 3; DB 1; Length 29;
  Query Match
                          100.0%; Pred. No. 4.6e+03;
  Best Local Similarity
             3; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
  Matches
           15 LNS 17
QУ
              4 LNS 6
Db
RESULT 13
GALA AMICA
                    STANDARD;
                                   PRT;
                                           29 AA.
     GALA AMICA
ID
     P47214;
AC
     01-FEB-1996 (Rel. 33, Created)
DT
     01-FEB-1996 (Rel. 33, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
DE
     Galanin.
     Amia calva (Bowfin).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Actinopteryqii; Neopteryqii; Amiiformes; Amiidae; Amia.
OC
OX
     NCBI TaxID=7924;
RN
     [1]
     SEQUENCE.
RP
RC
     TISSUE=Stomach;
     MEDLINE=95083480; PubMed=7527531;
RX
     Wang Y., Conlon J.M.;
RA
     "Purification and characterization of galanin from the
RT
     phylogenetically ancient fish, the bowfin (Amia calva) and dogfish
RT
     (Scyliorhinus canicula).";
RT
     Peptides 15:981-986(1994).
RL
     -!- FUNCTION: CONTRACTS SMOOTH MUSCLE OF THE GASTROINTESTINAL AND
CC
         GENITOURINARY TRACT, REGULATES GROWTH HORMONE RELEASE, MODULATES
CC
         INSULIN RELEASE, AND MAY BE INVOLVED IN THE CONTROL OF ADRENAL
CC
CC .
         SECRETION.
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: BELONGS TO THE GALANIN FAMILY.
CC
     InterPro; IPR001600; Galanin.
DR
     Pfam; PF01296; Galanin; 1.
DR
     ProDom; PD005962; Galanin; 1.
DR
     PROSITE; PS00861; GALANIN; 1.
DR
     Hormone; Neuropeptide; Amidation.
KW
                                   AMIDATION.
     MOD RES
                  29
                         29
FT
                29 AA; 3114 MW; 7518719B2D271627 CRC64;
     SEQUENCE
SO
                          10.7%; Score 3; DB 1; Length 29;
  Query Match
                          100.0%; Pred. No. 4.6e+03;
  Best Local Similarity
             3; Conservative 0; Mismatches 0; Indels
                                                                              0;
                                                                  0; Gaps
  Matches
           15 LNS 17
Qу
               | | | |
            4 LNS 6
Db
```

```
GALA CHICK
                                   PRT;
                                           29 AA.
                    STANDARD;
     GALA CHICK
     P30802;
AC
DT
     01-JUL-1993 (Rel. 26, Created)
     01-JUL-1993 (Rel. 26, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
DΕ
     Galanin.
GN
     GAL OR GALN.
     Gallus gallus (Chicken).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Archosauria; Aves; Neognathae; Galliformes; Phasianidae; Phasianinae;
OC
OC
     Gallus.
     NCBI TaxID=9031;
OX
     [1]
RN
RΡ
     SEQUENCE.
     TISSUE=Intestine;
RC
     MEDLINE=91348254; PubMed=1715289;
RX
     Norberg A., Sillard R., Carlquist M., Joernvall H., Mutt V.;
RA
     "Chemical detection of natural peptides by specific structures.
RT
     Isolation of chicken galanin by monitoring for its N-terminal
RT
     dipeptide, and determination of the amino acid sequence.";
RT
     FEBS Lett. 288:151-153(1991).
RL
     -!- FUNCTION: CONTRACTS SMOOTH MUSCLE OF THE GASTROINTESTINAL AND
CC
         GENITOURINARY TRACT, REGULATES GROWTH HORMONE RELEASE, MODULATES
CC
         INSULIN RELEASE, AND MAY BE INVOLVED IN THE CONTROL OF ADRENAL
CC
CC
         SECRETION.
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: BELONGS TO THE GALANIN FAMILY.
CC
     PIR; S17147; S17147.
DR
DR
     InterPro; IPR001600; Galanin.
     Pfam; PF01296; Galanin; 1.
DR
     PRINTS; PR00273; GALANIN.
DR
     ProDom; PD005962; Galanin; 1.
DR
     PROSITE; PS00861; GALANIN; 1.
DR
     Hormone; Neuropeptide; Amidation.
KW
                                  AMIDATION.
FT
     MOD RES
                  29
                         29
     SEQUENCE
                29 AA; 3212 MW; EB66919B2D271629 CRC64;
SQ
                          10.7%; Score 3; DB 1; Length 29;
  Ouery Match
  Best Local Similarity 100.0%; Pred. No. 4.6e+03;
             3; Conservative 0; Mismatches 0; Indels
                                                                      Gaps
  Matches
           15 LNS 17
QУ
              Db
            4 LNS 6
RESULT 15
GALA ONCMY
     GALA ONCMY
                    STANDARD;
                                    PRT;
                                            29 AA.
ID
AC
     P47213;
     01-FEB-1996 (Rel. 33, Created)
DT
     01-FEB-1996 (Rel. 33, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
DE
     Galanin.
     Oncorhynchus mykiss (Rainbow trout) (Salmo gairdneri).
OS
```

RESULT 14

```
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
     Actinopterygii; Neopterygii; Teleostei; Euteleostei;
OC
     Protacanthopterygii; Salmoniformes; Salmonidae; Oncorhynchus.
OC
OX
     NCBI TaxID=8022;
RN
     [1]
     SEQUENCE.
RP
RC
     TISSUE=Stomach;
     MEDLINE=95164756; PubMed=7532194;
RX
     Anglade I., Wang Y., Jensen J., Tramu G., Kah O., Conlon J.M.;
RA
     "Characterization of trout galanin and its distribution in trout
RT
     brain and pituitary.";
RT
     J. Comp. Neurol. 350:63-74(1994).
RL
     -!- FUNCTION: CONTRACTS SMOOTH MUSCLE OF THE GASTROINTESTINAL AND
CC
         GENITOURINARY TRACT, REGULATES GROWTH HORMONE RELEASE, MODULATES
CC
         INSULIN RELEASE, AND MAY BE INVOLVED IN THE CONTROL OF ADRENAL
CC
CC
         SECRETION.
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: BELONGS TO THE GALANIN FAMILY.
CC
     InterPro; IPR001600; Galanin.
DR
     Pfam; PF01296; Galanin; 1.
DR
     ProDom; PD005962; Galanin; 1.
DR
     PROSITE; PS00861; GALANIN; 1.
DR
KW
     Hormone; Neuropeptide; Amidation.
                                  AMIDATION.
FT
     MOD RES
                  29
                         29
     SEQUENCE 29 AA; 3044 MW; 73C37190403FA349 CRC64;
SO
                          10.7%; Score 3; DB 1; Length 29;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 4.6e+03;
             3; Conservative 0; Mismatches 0; Indels
                                                                              0;
                                                                 0; Gaps
  Matches
           15 LNS 17
              4 LNS 6
RESULT 16
GALA RANRI
                    STANDARD;
                                   PRT;
                                           29 AA.
     GALA RANRI
ID
AC
     P47216:
     01-FEB-1996 (Rel. 33, Created)
     01-FEB-1996 (Rel. 33, Last sequence update)
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
DE
     Galanin.
     Rana ridibunda (Laughing frog) (Marsh frog).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Amphibia; Batrachia; Anura; Neobatrachia; Ranoidea; Ranidae; Rana.
OC
OX
     NCBI TaxID=8406;
RN
     [1]
     SEQUENCE.
RP
     MEDLINE=95309202; PubMed=7540547;
RX
     Chartrel N., Wang Y., Fournier A., Vaudry H., Conlon J.M.;
RA
     "Frog vasoactive intestinal polypeptide and galanin: primary
RT
     structures and effects on pituitary adenylate cyclase.";
RT
     Endocrinology 136:3079-3086(1995).
ŔL
     -!- FUNCTION: CONTRACTS SMOOTH MUSCLE OF THE GASTROINTESTINAL AND
CC
         GENITOURINARY TRACT, REGULATES GROWTH HORMONE RELEASE, MODULATES
CC
         INSULIN RELEASE, AND MAY BE INVOLVED IN THE CONTROL OF ADRENAL
CC
```

```
SECRETION.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: BELONGS TO THE GALANIN FAMILY.
CC
     InterPro; IPR001600; Galanin.
DR
     Pfam; PF01296; Galanin; 1.
DR
     ProDom; PD005962; Galanin; 1.
DR
DR
     PROSITE; PS00861; GALANIN; 1.
     Hormone; Neuropeptide; Amidation.
KW
                         29
                                  AMIDATION.
FT
     MOD RES
                  29
                29 AA; 3162 MW; F718719B2D3FB529 CRC64;
     SEQUENCE
SO
                          10.7%; Score 3; DB 1; Length 29;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 4.6e+03;
             3; Conservative 0; Mismatches
                                                 0; Indels
                                                                  0; Gaps
                                                                              0;
  Matches
           15 LNS 17
Qу
              111
Db
            4 LNS 6
RESULT 17
GALA SHEEP
                    STANDARD;
                                   PRT:
                                           29 AA.
     GALA SHEEP
ID
AC
     P31234:
DΤ
     01-JUL-1993 (Rel. 26, Created)
     01-JUL-1993 (Rel. 26, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
DE
     Galanin.
     GAL OR GALN OR GLNN.
GN
     Ovis aries (Sheep).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Cetartiodactyla; Ruminantia; Pecora; Bovoidea;
OC
OC
     Bovidae; Caprinae; Ovis.
     NCBI TaxID=9940;
OX
RN
     [1]
     SEQUENCE.
RP
RC
     TISSUE=Brain;
     MEDLINE=92158824; PubMed=1724081;
RX
     Sillard R., Langel U., Joernvall H.;
     "Isolation and characterization of galanin from sheep brain.";
RT
RL
     Peptides 12:855-859(1991).
     -!- FUNCTION: CONTRACTS SMOOTH MUSCLE OF THE GASTROINTESTINAL AND
CC
         GENITOURINARY TRACT, REGULATES GROWTH HORMONE RELEASE, MODULATES
CC
         INSULIN RELEASE, AND MAY BE INVOLVED IN THE CONTROL OF ADRENAL
CC
CC
         SECRETION.
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: BELONGS TO THE GALANIN FAMILY.
CC
     InterPro; IPR001600; Galanin.
DR
     Pfam; PF01296; Galanin; 1.
DR
DR
     PRINTS; PR00273; GALANIN.
     ProDom; PD005962; Galanin; 1.
DR
     PROSITE; PS00861; GALANIN; 1.
DR
     Hormone; Neuropeptide; Amidation.
KW
FT
     MOD RES
                  29
                         29
                                  AMIDATION.
                29 AA; 3185 MW; F718719B2D3FB089 CRC64;
SQ
     SEQUENCE
                          10.7%; Score 3; DB 1; Length 29;
  Query Match
```

```
0; Gaps
                                                                             0;
                                                 0; Indels
          3; Conservative 0; Mismatches
 Matches
          15 LNS 17
Qу
              111
            4 LNS 6
Db
RESULT 18
GLUC CHIBR
     GLUC CHIBR
                    STANDARD;
                                   PRT;
                                           29 AA.
ID
     P31297;
AC
     01-JUL-1993 (Rel. 26, Created)
DT
     01-JUL-1993 (Rel. 26, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     Glucagon.
DΕ
     GCG.
GN
     Chinchilla brevicaudata (Chinchilla).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Rodentia; Hystricognathi; Chinchillidae;
OC
     Chinchilla.
OC
OX
     NCBI_TaxID=10152;
RN
     [1]
RΡ
     SEQUENCE.
     MEDLINE=91045327; PubMed=2235678;
RX
RA
     Eng J., Kleinman W.A., Chu L.S.;
     "Purification of peptide hormones from chinchilla pancreas by
RT
RT
     chemical assay.";
RL
     Peptides 11:683-685(1990).
     -!- FUNCTION: PROMOTES HYDROLYSIS OF GLYCOGEN AND LIPIDS, AND RAISES
CC
CC
         THE BLOOD SUGAR LEVEL.
     -!- INDUCTION: PRODUCED IN THE A CELLS OF THE ISLETS OF LANGERHANS
CC
         IN RESPONSE TO A DROP IN BLOOD SUGAR CONCENTRATION.
CC
     -!- SIMILARITY: BELONGS TO THE GLUCAGON FAMILY.
CC
     PIR; A60413; GCCB.
DR
     HSSP; P01275; 1BH0.
DR
     InterPro; IPR000532; Glucagon.
DR
     Pfam; PF00123; hormone2; 1.
DR
     PRINTS; PR00275; GLUCAGON.
DR
     SMART; SM00070; GLUCA; 1.
DR
     PROSITE; PS00260; GLUCAGON; 1.
DR
     Glucagon family; Hormone.
KW
                29 AA; 3478 MW; 19ECF4DABB752B27 CRC64;
     SEQUENCE
SO
                          10.7%; Score 3; DB 1; Length 29;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 4.6e+03;
             3; Conservative 0; Mismatches
                                                 0; Indels
                                                                 0: Gaps
                                                                              0;
           13 KHL 15
Qу
               Db
           12 KHL 14
RESULT 19
IPYR DESVH
                    STANDARD;
                                  PRT;
                                            29 AA.
     IPYR DESVH
TD
     P19371;
AC
```

Best Local Similarity 100.0%; Pred. No. 4.6e+03;

```
01-NOV-1990 (Rel. 16, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     Inorganic pyrophosphatase (EC 3.6.1.1) (Pyrophosphate phospho-
DE
     hydrolase) (PPase) (Fragment).
DE
     Desulfovibrio vulgaris (strain Hildenborough).
OS
     Bacteria; Proteobacteria; Deltaproteobacteria; Desulfovibrionales;
OC
     Desulfovibrionaceae; Desulfovibrio.
OC
     NCBI TaxID=882;
OX
RN
     [1]
RP
     SEQUENCE.
     MEDLINE=90365722; PubMed=2168174;
RX
     Liu M.-Y., le Gall J.;
RA
     "Purification and characterization of two proteins with inorganic
RT
     pyrophosphatase activity from Desulfovibrio vulgaris: rubrerythrin
RT
     and a new, highly active, enzyme.";
RT
     Biochem. Biophys. Res. Commun. 171:313-318(1990).
RL
     -!- FUNCTION: INORGANIC PYROPHOSPHATASE IS AN ESSENTIAL ENZYME FOR THE
CC
         ACTIVATION OF SULFATE BY SULFATE REDUCING BACTERIA. THIS IS A HIGH
CC
         ACTIVITY PYROPHOSPHATASE.
CC
     -!- CATALYTIC ACTIVITY: Diphosphate + H(2)0 = 2 phosphate.
CC
     -!- SUBCELLULAR LOCATION: Periplasmic (Potential).
CC
     PIR; A35687; A35687.
DR
DR
     HAMAP; MF 00209; -; 1.
DR
     InterPro; IPR001596; Pyrophosphatase.
     PROSITE; PS00387; PPASE; PARTIAL.
DR
     Hydrolase; Periplasmic.
KW
FT
     NON TER
                  29
                         29
     SEQUENCE
                29 AA; 3201 MW; 3FC5792360F2227B CRC64;
SO
                          10.7%; Score 3; DB 1; Length 29;
  Query Match
                          100.0%; Pred. No. 4.6e+03;
  Best Local Similarity
             3; Conservative 0; Mismatches
                                                 0; Indels
                                                                              0;
                                                                      Gaps
  Matches
            3 SEI 5
Qу
              | | |
Db
           15 SEI 17
RESULT 20
NUO1 SOLTU
     NUO1 SOLTU
                                   PRT;
                                            29 AA.
                    STANDARD;
ID
AC
     P80267;
     01-FEB-1994 (Rel. 28, Created)
DT
     01-FEB-1994 (Rel. 28, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     NADH-ubiquinone oxidoreductase 14 kDa subunit (EC 1.6.5.3)
DE
     (EC 1.6.99.3) (Complex I-14KD) (CI-14KD) (Fragment).
DE
     Solanum tuberosum (Potato).
OS
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
     Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots;
OC
     Asteridae; lamiids; Solanales; Solanaceae; Solanum.
OC
OX
     NCBI TaxID=4113;
RN
     [1]
RP
     SEQUENCE.
     STRAIN=cv. Bintje; TISSUE=Tuber;
RC
     MEDLINE=94124587; PubMed=8294484;
RX
```

DT

01-NOV-1990 (Rel. 16, Created)

```
Herz U., Schroeder W., Liddell A., Leaver C.J., Brennicke A.,
RA
     Grohmann L.;
RA
     "Purification of the NADH:ubiquinone oxidoreductase (complex I) of
RT
     the respiratory chain from the inner mitochondrial membrane of
RT
     Solanum tuberosum.";
RT
     J. Biol. Chem. 269:2263-2269(1994).
RL
     -!- FUNCTION: TRANSFER OF ELECTRONS FROM NADH TO THE RESPIRATORY
CC
         CHAIN. THE IMMEDIATE ELECTRON ACCEPTOR FOR THE ENZYME IS BELIEVED
CC
CC
         TO BE UBIQUINONE.
     -!- CATALYTIC ACTIVITY: NADH + ubiquinone = NAD(+) + ubiquinol.
CC
     -!- CATALYTIC ACTIVITY: NADH + acceptor = NAD(+) + reduced acceptor.
CC
     -!- SUBUNIT: COMPLEX I IS COMPOSED OF ABOUT 30 DIFFERENT SUBUNITS.
CC
     -!- SUBCELLULAR LOCATION: MATRIX SIDE OF THE MITOCHONDRIAL INNER
CC
CC
         MEMBRANE.
     PIR; I49732; I49732.
DR
     Oxidoreductase; NAD; Ubiquinone; Mitochondrion.
KW
                         29
     NON TER
                29
FT
                29 AA; 3269 MW; E2B4DFB558D423D4 CRC64;
     SEQUENCE
SQ
                          10.7%; Score 3; DB 1; Length 29;
  Query Match
                          100.0%; Pred. No. 4.6e+03;
  Best Local Similarity
             3; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
  Matches
           25 RKK 27
Qу
              2 RKK 4
Db
RESULT 21
P2SM LOXIN
     P2SM LOXIN
                    STANDARD;
                                    PRT:
                                            29 AA.
ΙD
AC
     P83046;
     28-FEB-2003 (Rel. 41, Created)
DT
     28-FEB-2003 (Rel. 41, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     Sphingomyelinase P2 (EC 3.1.4.12) (Fragment).
DE
     Loxosceles intermedia (Spider).
OS
     Eukaryota; Metazoa; Arthropoda; Chelicerata; Arachnida; Araneae;
OC
     Araneomorphae; Haplogynae; Sicariidae; Loxosceles.
OC
     NCBI TaxID=58218;
OX
RN
     [1]
     SEQUENCE, FUNCTION, CATALYTIC ACTIVITY, COFACTOR, SUBCELLULAR
RΡ
     LOCATION, AND TISSUE SPECIFICITY.
RP
RC
     TISSUE=Venom;
     MEDLINE=99009277; PubMed=9790962;
RX
     Tambourgi D.V., Magnoli F.C., van den Berg C.W., Morgan B.P.,
RA
     de Araujo P.S., Alves E.W., Da Silva W.D.;
RA
     "Sphingomyelinases in the venom of the spider Loxosceles intermedia
RT
     are responsible for both dermonecrosis and complement-dependent
RT
RT
     hemolysis.";
     Biochem. Biophys. Res. Commun. 251:366-373(1998).
RL
     -!- FUNCTION: Has sphingomyelinase activity. Induces complement-
CC
         dependent hemolysis and dermonecrosis.
CC
     -!- CATALYTIC ACTIVITY: Sphingomyelin + H(2)0 = N-acylsphingosine +
CC
CC
         choline phosphate.
     -!- COFACTOR: Calcium ion.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
```

```
-!- TISSUE SPECIFICITY: Expressed by the venom gland.
     Hydrolase; Toxin; Calcium; Hemolysis.
KW
FT
    NON TER
                  29
                         29
                        3281 MW; 4488EDD619BD2398 CRC64;
     SEQUENCE
                29 AA;
SQ
                          10.7%; Score 3; DB 1; Length 29;
  Query Match
                          100.0%; Pred. No. 4.6e+03;
  Best Local Similarity
             3; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                              0;
  Matches
           10 NLG 12
Qy
              | | |
           25 NLG 27
Db
RESULT 22
PCG4 PACGO
                                   PRT;
                                           29 AA.
                    STANDARD;
     PCG4 PACGO
ID
AC
     P82417;
     16-OCT-2001 (Rel. 40, Created)
DT
     16-OCT-2001 (Rel. 40, Last sequence update)
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DT
DΕ
     Ponericin G4.
     Pachycondyla goeldii (Ponerine ant).
OS
     Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
     Neoptera; Endopterygota; Hymenoptera; Apocrita; Aculeata; Formicidae;
OC
     Ponerinae; Pachycondyla.
OC
OX
     NCBI TaxID=118888;
     [1]
RN
     SEQUENCE, AND FUNCTION.
RΡ
RC
     TISSUE=Venom;
     MEDLINE=21264562; PubMed=11279030;
RX
     Orivel J., Redeker V., Le Caer J.-P., Krier F., Revol-Junelles A.-M.,
RA
     Longeon A., Chafotte A., Dejean A., Rossier J.;
RA
     "Ponericins, new antibacterial and insecticidal peptides from the
RT
     venom of the ant Pachycondyla goeldii.";
RT
     J. Biol. Chem. 276:17823-17829(2001).
RL
     -!- FUNCTION: HAS ACTIVITY AGAINST SOME GRAM-POSITIVE BACTERIA
CC
         AND S.CEREVISIAE. HAS A NON-HEMOLYTIC ACTIVITY.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- MASS SPECTROMETRY: MW=3163.87; METHOD=MALDI.
CC
     Antibiotic; Insect immunity; Fungicide.
KW
     SEQUENCE 29 AA; 3165 MW; 7037D0B855072AF8 CRC64;
SO
                           10.7%; Score 3; DB 1; Length 29;
  Ouery Match
                          100.0%; Pred. No. 4.6e+03;
  Best Local Similarity
             3; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
  Matches
           22 EWL 24
Qу
               | | | |
           11 EWL 13
Db
RESULT 23
RS7 METTE
                                    PRT;
                                            29 AA.
     RS7 METTE
                     STANDARD;
ID
AC
     093639;
     30-MAY-2000 (Rel. 39, Created)
DT
```

```
28-FEB-2003 (Rel. 41, Last annotation update)
DT
    30S ribosomal protein S7P (Fragment).
DE
    RPS7P OR S7.
GN
    Methanosarcina thermophila.
OS
    Archaea; Euryarchaeota; Euryarchaeota orders incertae sedis;
OC
    Methanosarcinales; Methanosarcinaceae; Methanosarcina.
OC
    NCBI TaxID=2210;
OX
RN
    [1]
    SEQUENCE FROM N.A.
RP
    STRAIN=DSM 1825 / TM-1;
RC
    MEDLINE=99059471; PubMed=9845338;
RX
    Thomas T., Cavicchioli R.;
RA
    "Archaeal cold-adapted proteins: structural and evolutionary analysis
RT
    of the elongation factor 2 proteins from psychrophilic, mesophilic and
RT
    thermophilic methanogens.";
RT
    FEBS Lett. 439:281-287(1998).
RL
    -!- FUNCTION: One of the primary rRNA binding proteins, it binds
CC
        directly to 16S rRNA where it nucleates assembly of the head
CC
        domain of the 30S subunit. Is located at the subunit interface
CC
        close to the decoding center (By similarity).
CC
    -!- SUBUNIT: Part of the 30S ribosomal subunit.
CC
     -!- SIMILARITY: BELONGS TO THE S7P FAMILY OF RIBOSOMAL PROTEINS.
CC
     _____
CC
    This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
     the European Bioinformatics Institute. There are no restrictions on its
CC
    use by non-profit institutions as long as its content is in no way
CC
     modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
     or send an email to license@isb-sib.ch).
CC
     ______
CC
     EMBL; AF026165; AAC79199.1; -.
DR
     PIR; T44245; T44245.
DR
     HAMAP; MF 00480; -; 1.
DR
     InterPro; IPR000235; Ribosomal S7.
DR
     PROSITE; PS00052; RIBOSOMAL S7; PARTIAL.
DR
     Ribosomal protein; RNA-binding; rRNA-binding.
KW
FT
     NON TER 1
                       1
     SEQUENCE 29 AA; 3217 MW; 1602B8A2E6C50C2B CRC64;
SO
                        10.7%; Score 3; DB 1; Length 29;
  Best Local Similarity 100.0%; Pred. No. 4.6e+03;
  Matches 3; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                       0;
          19 ERV 21
Qу
             22 ERV 24
Dh
RESULT 24
SODC OLEEU
                               PRT; 29 AA.
                  STANDARD;
     SODC OLEEU
ID
     P80740;
AC
     01-NOV-1997 (Rel. 35, Created)
DT
     01-NOV-1997 (Rel. 35, Last sequence update)
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DT
```

30-MAY-2000 (Rel. 39, Last sequence update)

DT

```
Superoxide dismutase [Cu-Zn] (EC 1.15.1.1) (Allergen Ole e 5) (Ole e
DE
\mathsf{DE}
     V) (Fragment).
OS
     Olea europaea (Common olive).
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
     Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots;
OC
     Asteridae; lamiids; Lamiales; Oleaceae; Olea.
OC
     NCBI TaxID=4146;
OX
RN
     [1]
RΡ
     SEOUENCE.
     TISSUE=Pollen;
RC
RX
     MEDLINE=98160390; PubMed=9500754;
RA
     Boluda L., Alonso C., Fernandez-Caldas E.;
     "Purification, characterization, and partial sequencing of two new
RT
RT
     allergens of Olea europaea.";
     J. Allergy Clin. Immunol. 101:210-216(1998).
RL
     -!- FUNCTION: Destroys radicals which are normally produced within the
CC
         cells and which are toxic to biological systems (By similarity).
CC
     -!- CATALYTIC ACTIVITY: 2 superoxide + 2 H(+) = O(2) + H(2)O(2).
CC
CC
     -!- COFACTOR: Binds 1 copper ion and 1 zinc ion per subunit (By
CC
         similarity).
     -!- SIMILARITY: BELONGS TO THE CU-ZN SUPEROXIDE DISMUTASE FAMILY.
CC
     InterPro; IPR001424; SOD CU ZN.
DR
     Pfam; PF00080; sodcu; 1.
DR
     PROSITE; PS00087; SOD CU ZN 1; PARTIAL.
DR
     PROSITE; PS00332; SOD_CU_ZN_2; PARTIAL.
DR
     Antioxidant; Oxidoreductase; Metal-binding; Copper; Zinc; Allergen.
KW
FT
     NON TER
                  29
                         29
                29 AA; 2973 MW; 836C7A193EDAD71E CRC64;
SQ
     SEQUENCE
                          10.7%; Score 3; DB 1; Length 29;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 4.6e+03;
             3; Conservative
                                0; Mismatches
                                                    0; Indels
                                                                  0; Gaps
                                                                               0;
           15 LNS 17
Qу
              111
            7 LNS 9
Db
RESULT 25
TL16 SPIOL
     TL16 SPIOL
                    STANDARD;
                                    PRT;
                                            29 AA.
ID
AC
     P81834;
     30-MAY-2000 (Rel. 39, Created)
DT
     30-MAY-2000 (Rel. 39, Last sequence update)
DT
     16-OCT-2001 (Rel. 40, Last annotation update)
DT
     Thylakoid lumenal 16.5 kDa protein (P16.5) (Fragment).
DE
OS
     Spinacia oleracea (Spinach).
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
     Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots;
OC
OC
     Caryophyllidae; Caryophyllales; Chenopodiaceae; Spinacia.
ΟX
     NCBI TaxID=3562;
RN
     [1]
RP
     SEQUENCE.
RC
     TISSUE=Leaf;
     MEDLINE=98175931; PubMed=9506969;
RX
     Kieselbach T., Hagman A., Andersson B., Schroeder W.P.;
RA
     "The thylakoid lumen of chloroplasts. Isolation and
RT
```

```
RT
     characterization.";
     J. Biol. Chem. 273:6710-6716(1998).
RL
     -!- SUBCELLULAR LOCATION: Chloroplast; within the thylakoid lumen.
CC
     Chloroplast; Thylakoid.
KW
FT
     NON TER
                  29
                         29
                29 AA; 3464 MW; 58B785764E2623E3 CRC64;
     SEOUENCE
SQ
                          10.7%; Score 3; DB 1; Length 29;
  Query Match
                          100.0%; Pred. No. 4.6e+03;
  Best Local Similarity
             3; Conservative 0; Mismatches 0; Indels
                                                                              0;
                                                                  0; Gaps
  Matches
Qу
           25 RKK 27
              | | |
           19 RKK 21
Db
RESULT 26
DMS3 PHYSA
                                   PRT;
                                           30 AA.
ID
     DMS3 PHYSA
                    STANDARD;
AC
     P80279;
DT
     01-FEB-1994 (Rel. 28, Created)
     01-FEB-1994 (Rel. 28, Last sequence update)
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DT
DE
     Dermaseptin 3 (DS III).
     'Phyllomedusa sauvagei (Sauvage's leaf frog).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Amphibia; Batrachia; Anura; Neobatrachia; Bufonoidea; Hylidae;
OC
OC
     Phyllomedusinae; Phyllomedusa.
     NCBI TaxID=8395;
OX
RN
     [1]
RP
     SEOUENCE.
RC
     TISSUE=Skin secretion;
RX
     MEDLINE=94139686; PubMed=8306981;
RA
     Mor A., Nicolas P.;
     "Isolation and structure of novel defensive peptides from frog skin.";
RT
RL
     Eur. J. Biochem. 219:145-154(1994).
     -!- FUNCTION: POSSESSES A POTENT ANTIMICROBIAL ACTIVITY AGAINST
CC
         BACTERIA FUNGI AND PROTOZOA. PROBABLY ACTS BY DISTURBING MEMBRANE
CC
         FUNCTIONS WITH ITS AMPHIPATIC STRUCTURE.
CC
CC
     -!- SUBCELLULAR LOCATION: Secreted.
     -!- TISSUE SPECIFICITY: Skin.
CC
CC
     -!- SIMILARITY: Belongs to the frog skin active peptide (FSAP) family.
CC
         Dermaseptin subfamily.
     Amphibian defense peptide; Antibiotic; Fungicide; Multigene family.
KW
     SEQUENCE 30 AA; 3024 MW; FD5F190C3DCBB0D7 CRC64;
SO
                           10.7%; Score 3; DB 1; Length 30;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 4.8e+03;
             3; Conservative 0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
           26 KKL 28
Qу
               | | |
           23 KKL 25
Db
```

```
STANDARD;
                                   PRT;
                                           30 AA.
ID
     OTCC AERPU
AC
     P11726;
     01-OCT-1989 (Rel. 12, Created)
DT
     01-OCT-1989 (Rel. 12, Last sequence update)
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     Ornithine carbamoyltransferase, catabolic (EC 2.1.3.3) (OTCase)
DE
DE
     (Fragment).
OS
     Aeromonas punctata (Aeromonas caviae).
     Bacteria; Proteobacteria; Gammaproteobacteria; Aeromonadales;
OC
     Aeromonadaceae; Aeromonas.
OC
OX
     NCBI TaxID=648;
RN
     [1]
RP
     SEQUENCE.
RC
     STRAIN=NCIB 9232;
     MEDLINE=85104799; PubMed=3968036;
RX
RA
     Falmagne P., Portetelle D., Stalon V.;
     "Immunological and structural relatedness of catabolic ornithine
RT
     carbamoyltransferases and the anabolic enzymes of enterobacteria.";
RT
     J. Bacteriol. 161:714-719(1985).
RL
     -!- CATALYTIC ACTIVITY: Carbamoyl phosphate + L-ornithine = phosphate
CC
         + L-citrulline.
CC
     -!- PATHWAY: Arginine degradation via arginine deiminase; second step.
CC
     -!- SUBCELLULAR LOCATION: Cytoplasmic.
CC
     -!- SIMILARITY: BELONGS TO THE ATCASES/OTCASES FAMILY.
CC
     InterPro; IPR006130; Asp/Orn COtranf.
DR
     InterPro; IPR006132; OTCace P.
DR
     Pfam; PF02729; OTCace N; 1.
DR
     PROSITE; PS00097; CARBAMOYLTRANSFERASE; PARTIAL.
DR
     Transferase; Arginine metabolism.
KW
     NON TER
                  30
                         30
FT
     SEQUENCE 30 AA; 3654 MW; 673CB989FE72F9C1 CRC64;
SQ
                          10.7%; Score 3; DB 1; Length 30;
  Best Local Similarity
                          100.0%; Pred. No. 4.8e+03;
            3; Conservative 0; Mismatches 0; Indels
                                                                      Gaps
                                                                              0;
  Matches
            4 EIQ 6
Qу
              111
           19 EIQ 21
Db
RESULT 28
PCG2 PACGO
                                    PRT;
                                            30 AA.
     PCG2 PACGO
                    STANDARD;
ID
     P82415;
AC
     16-OCT-2001 (Rel. 40, Created)
DT
     16-OCT-2001 (Rel. 40, Last sequence update)
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DT
     Ponericin G2.
DE
     Pachycondyla goeldii (Ponerine ant).
OS
     Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
     Neoptera; Endopterygota; Hymenoptera; Apocrita; Aculeata; Formicidae;
OC
OC
     Ponerinae; Pachycondyla.
OX
     NCBI TaxID=118888;
RN
     SEQUENCE, AND FUNCTION.
RP
RC
     TISSUE=Venom;
```

```
RX
    MEDLINE=21264562; PubMed=11279030;
     Orivel J., Redeker V., Le Caer J.-P., Krier F., Revol-Junelles A.-M.,
RA
     Longeon A., Chafotte A., Dejean A., Rossier J.;
RA
     "Ponericins, new antibacterial and insecticidal peptides from the
RT
     venom of the ant Pachycondyla goeldii.";
RT
     J. Biol. Chem. 276:17823-17829(2001).
RL
     -!- FUNCTION: BROAD SPECTRUM OF ACTIVITY AGAINST BOTH GRAM-POSITIVE
CC
         AND GRAM-NEGATIVE BACTERIA AND S.CEREVISIAE. HAS INSECTICIDAL
CC
         AND NON-HEMOLYTIC ACTIVITIES.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
CC
     -!- MASS SPECTROMETRY: MW=3306.56; METHOD=MALDI.
     Antibiotic; Insect immunity; Fungicide.
KW
              30 AA; 3308 MW; A12CD4D0BAF40B5D CRC64;
     SEQUENCE
SQ
                          10.7%; Score 3; DB 1; Length 30;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 4.8e+03;
                                0; Mismatches
                                                                 0; Gaps
                                                                             0;
             3; Conservative
                                                   0;
                                                      Indels
  Matches
           22 EWL 24
Qу
              11 EWL 13
Db
RESULT 29
PCG3 PACGO
     PCG3 PACGO
                    STANDARD;
                                   PRT:
                                           30 AA.
ID
AC
     P82416;
DT
     16-OCT-2001 (Rel. 40, Created)
     16-OCT-2001 (Rel. 40, Last sequence update)
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DT
DE
     Ponericin G3.
     Pachycondyla goeldii (Ponerine ant).
OS
     Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
     Neoptera; Endopterygota; Hymenoptera; Apocrita; Aculeata; Formicidae;
OC
OC
     Ponerinae; Pachycondyla.
OX
     NCBI TaxID=118888;
RN
     [1]
RP
     SEQUENCE, AND FUNCTION.
RC
     TISSUE=Venom;
     MEDLINE=21264562; PubMed=11279030;
RX
     Orivel J., Redeker V., Le Caer J.-P., Krier F., Revol-Junelles A.-M.,
RA
     Longeon A., Chafotte A., Dejean A., Rossier J.;
RA
     "Ponericins, new antibacterial and insecticidal peptides from the
RT
RT
     venom of the ant Pachycondyla goeldii.";
     J. Biol. Chem. 276:17823-17829(2001).
RL
     -!- FUNCTION: BROAD SPECTRUM OF ACTIVITY AGAINST BOTH GRAM-POSITIVE
CC
         AND GRAM-NEGATIVE BACTERIA AND S.CEREVISIAE. HAS INSECTICIDAL
CC
CC
         AND NON-HEMOLYTIC ACTIVITIES.
CC.
     -!- SUBCELLULAR LOCATION: Secreted.
     -!- MASS SPECTROMETRY: MW=3381.36; METHOD=MALDI.
CC
     Antibiotic; Insect immunity; Fungicide.
KW
     SEQUENCE 30 AA; 3383 MW; BC0463D0AF140B53 CRC64;
SQ
                          10.7%; Score 3; DB 1; Length 30;
  Query Match
                          100.0%; Pred. No. 4.8e+03;
  Best Local Similarity
             3; Conservative 0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
  Matches
```

```
22 EWL 24
Qу
            111
          11 EWL 13
Db
RESULT 30
PSAM PORPU
    PSAM PORPU
                 STANDARD; PRT;
                                      30 AA.
    P51395;
AC
    01-OCT-1996 (Rel. 34, Created)
    01-OCT-1996 (Rel. 34, Last sequence update)
DT
    01-OCT-1996 (Rel. 34, Last annotation update)
DT
    Photosystem I reaction centre subunit XII (PSI-M).
DE
GN
    PSAM.
    Porphyra purpurea.
OS
OG
    Chloroplast.
    Eukaryota; Rhodophyta; Bangiophyceae; Bangiales; Bangiaceae; Porphyra.
OC
    NCBI TaxID=2787;
OX
RN
     [1]
    SEQUENCE FROM N.A.
RΡ
RC
    STRAIN=Avonport;
    Reith M.E., Munholland J.;
RA
    "Complete nucleotide sequence of the Porphyra purpurea chloroplast
RT
RT
    genome.";
    Plant Mol. Biol. Rep. 13:333-335(1995).
RL
     -!- SIMILARITY: BELONGS TO THE PSAM FAMILY.
CC
CC
     This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
     between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
     the European Bioinformatics Institute. There are no restrictions on its
CC
    use by non-profit institutions as long as its content is in no way
CC
     modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
     or send an email to license@isb-sib.ch).
CC
     ______
CC
     EMBL; U38804; AAC08281.1; -.
DR
     PIR; S73316; S73316.
DR
     Photosystem I; Photosynthesis; Chloroplast.
KW
     SEOUENCE 30 AA; 3338 MW; 8D1930479D8A5527 CRC64;
SO
                        10.7%; Score 3; DB 1; Length 30;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 4.8e+03;
  Matches 3; Conservative 0; Mismatches 0; Indels 0; Gaps
          11 LGK 13
Qу
             Db
          24 LGK 26
RESULT 31
TX2_THRPR
                   STANDARD; PRT;
                                       30 AA.
   TX2 THRPR
ID
AC P83476;
     28-FEB-2003 (Rel. 41, Created)
     28-FEB-2003 (Rel. 41, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
```

Toxin ProTx-II.

DE

```
Thrixopelma pruriens (Green velvet).
OS.
     Eukaryota; Metazoa; Arthropoda; Chelicerata; Arachnida; Araneae;
OC
     Mygalomorphae; Theraphosidae; Thrixopelma.
OC
OX
     NCBI TaxID=213387;
RN
     SEQUENCE, FUNCTION, SUBCELLULAR LOCATION, TISSUE SPECIFICITY, MASS
RP
     SPECTROMETRY, AND DISULFIDE BONDS.
RΡ
RC
     TISSUE=Venom;
RX
     MEDLINE=22363233; PubMed=12475222;
     Middleton R.E., Warren V.A., Kraus R.L., Hwang J.C., Liu C.J., Dai G.,
RA
     Brochu R.M., Kohler M.G., Gao Y.-D., Garsky V.M., Bogusky M.J.,
RA
RA
     Mehl J.T., Cohen C.J., Smith M.M.;
     "Two tarantula peptides inhibit activation of multiple sodium
RT
RT
     channels.";
     Biochemistry 41:14734-14747(2002).
RL
     -!- FUNCTION: Inhibits voltage-gated calcium and sodium channels.
CC
         Shifts the voltage-dependence of channel activation to more
CC
CC
         positive potentials.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
     -!- TISSUE SPECIFICITY: Expressed by the venom gland.
CC
     -!- MASS SPECTROMETRY: MW=3827; METHOD=Electrospray.
CC
     -!- MASS SPECTROMETRY: MW=3827; METHOD=MALDI.
CC
     -!- SIMILARITY: BELONGS TO THE SPIDER POTASSIUM CHANNEL INHIBITORY
CC
         TOXIN FAMILY.
CC
     Toxin; Neurotoxin; Ionic channel inhibitor; Calcium channel inhibitor;
KW
     Sodium channel inhibitor.
KW
                   2
                         16
FT
     DISULFID
     DISULFID
                   9
                          21
FT
     DISULFID
                  15
                         25
FT
SO
     SEQUENCE
                30 AA; 3833 MW; 5B8CF4C6338C1B9B CRC64;
                           10.7%; Score 3; DB 1; Length 30;
  Query Match
                          100.0%; Pred. No. 4.8e+03;
  Best Local Similarity
                                                                              0;
             3; Conservative
                               0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
           26 KKL 28
Qу
               | | |
           27 KKL 29
Db
RESULT 32
UP61 UPEIN
                    STANDARD;
                                    PRT;
                                            30 AA.
     UP61 UPEIN
ID
AC
     P82037:
     30-MAY-2000 (Rel. 39, Created)
DT
     30-MAY-2000 (Rel. 39, Last sequence update)
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DT
DE
     Uperin 6.1.
     Uperoleia inundata (Floodplain toadlet).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Amphibia; Batrachia; Anura; Neobatrachia; Bufonoidea; Myobatrachidae;
OC
     Myobatrachinae; Uperoleia.
OC
     NCBI TaxID=104953;
OX
RN
     [1]
     SEQUENCE, AND MASS SPECTROMETRY.
RΡ
RC
     TISSUE=Skin secretion;
     Bradford A.M., Raftery M.J., Bowie J.H., Tyler M.J., Wallace J.C.,
RA
```

```
Adams G.W., Severini C.;
RA
     "Novel uperin peptides from the dorsal glands of the australian
RT
     floodplain toadlet Uperoleia inundata.";
RT
     Aust. J. Chem. 49:475-484(1996).
RL
     -!- FUNCTION: UNKNOWN.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- TISSUE SPECIFICITY: Expressed by the skin dorsal glands.
CC
     -!- MASS SPECTROMETRY: MW=3233.85; METHOD=MALDI.
CC
KW
     Amphibian defense peptide.
     SEQUENCE 30 AA; 3233 MW; 4EE15B9EB110F68E CRC64;
SQ
                          10.7%; Score 3; DB 1; Length 30;
  Query Match
                          100.0%; Pred. No. 4.8e+03;
  Best Local Similarity
                                                                 0; Gaps
                                                                             0;
             3; Conservative
                               0; Mismatches
                                                0; Indels
  Matches
           26 KKL 28
Qу
              || ||
           24 KKL 26
Db
RESULT 33
UP62 UPEIN
                                   PRT;
                                           30 AA.
ID
     UP62 UPEIN
                    STANDARD;
AC
     P82038;
     30-MAY-2000 (Rel. 39, Created)
DT
     30-MAY-2000 (Rel. 39, Last sequence update)
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DT
DE
     Uperin 6.2.
     Uperoleia inundata (Floodplain toadlet).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Amphibia; Batrachia; Anura; Neobatrachia; Bufonoidea; Myobatrachidae;
OC
OC
     Myobatrachinae; Uperoleia.
OX
     NCBI TaxID=104953;
RN
RP
     SEQUENCE, AND MASS SPECTROMETRY.
     TISSUE=Skin secretion;
RC
     Bradford A.M., Raftery M.J., Bowie J.H., Tyler M.J., Wallace J.C.,
RA
RA
     Adams G.W., Severini C.;
     "Novel uperin peptides from the dorsal glands of the australian
RT
     floodplain toadlet Uperoleia inundata.";
RT
RL
     Aust. J. Chem. 49:475-484(1996).
CC
     -!- FUNCTION: UNKNOWN.
     -!- SUBCELLULAR LOCATION: Secreted.
CC
CC
     -!- TISSUE SPECIFICITY: Expressed by the skin dorsal glands.
     -!- MASS SPECTROMETRY: MW=3261.85; METHOD=MALDI.
CC
KW
     Amphibian defense peptide.
               30 AA; 3261 MW; 4EE15B9EB10841DE CRC64;
SO
     SEOUENCE
                          10.7%; Score 3; DB 1; Length 30;
  Ouery Match
  Best Local Similarity
                          100.0%; Pred. No. 4.8e+03;
             3; Conservative 0; Mismatches
                                                                              0;
                                                   0; Indels
                                                                  0; Gaps
  Matches
           26 KKL 28
Qу
              Db
           24 KKL 26
```

```
RESULT 34
VAA2 EQUAR
                   STANDARD;
                                  PRT;
    VAA2 EQUAR
                                       30 AA.
ΙD
AC
    Q04238;
    01-OCT-1996 (Rel. 34, Created)
DT
    01-OCT-1996 (Rel. 34, Last sequence update)
DT
    28-FEB-2003 (Rel. 41, Last annotation update)
DT
    Vacuolar ATP synthase catalytic subunit A, isoform 2 (EC 3.6.3.14)
DE
DE
     (Fragment).
    Equisetum arvense (Field horsetail) (Common horsetail).
OS
    Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
    Equisetophyta; Sphenopsida; Equisetales; Equisetaceae; Equisetum.
OC.
    NCBI TaxID=3258;
OX
RN
     [1]
RP
     SEQUENCE FROM N.A.
RX
    MEDLINE=93138084; PubMed=8422915;
RA
    Starke T., Gogarten J.P.;
     "A conserved intron in the V-ATPase A subunit genes of plants and
RT
    algae.";
RT
RL
    FEBS Lett. 315:252-258(1993).
     -!- FUNCTION: CATALYTIC SUBUNIT OF THE PERIPHERAL V1 COMPLEX OF
CC
        VACUOLAR ATPASE. V-ATPASE VACUOLAR ATPASE IS RESPONSIBLE FOR
CC
CC
        ACIDIFYING A VARIETY OF INTRACELLULAR COMPARTMENTS IN EUKARYOTIC
CC
        CELLS.
     -!- CATALYTIC ACTIVITY: ATP + H(2)O + H(+)(In) = ADP + phosphate +
CC
CC
        H(+)(Out).
     -!- SUBUNIT: V-ATPASE IS AN HETEROMULTIMERIC ENZYME COMPOSED OF A
CC
        PERIPHERAL CATALYTIC V1 COMPLEX (MAIN COMPONENTS: SUBUNITS A, B,
CC
        C, D, E, AND F) ATTACHED TO AN INTEGRAL MEMBRANE VO PROTON PORE
CC
CC
         COMPLEX (MAIN COMPONENT: THE PROTEOLIPID PROTEIN).
     -!- MISCELLANEOUS: TWO SEPARATE GENES ENCODE THE CATALYTIC 70 kDa
CC
CC
        V-ATPASE SUBUNIT IN PSILOTUM AND EQUISETUM.
     -!- SIMILARITY: Belongs to the ATPase alpha/beta chains family.
CC
CC
     This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
     between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
CC
     the European Bioinformatics Institute. There are no restrictions on its
CC
    use by non-profit institutions as long as its content is in no way
CC
     modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
     or send an email to license@isb-sib.ch).
CC
DR
     EMBL; X56984; CAA40302.1; -.
DR
     PIR; S21815; S21815.
DR
     InterPro; IPR000194; ATPase a/bcentre.
     PROSITE; PS00152; ATPASE ALPHA BETA; PARTIAL.
DR
     ATP synthesis; Hydrogen ion transport; Hydrolase; ATP-binding;
KW
    Multigene family.
KW
    NON TER
FT
                  1
                         1
FT
     NON TER
                 30
                        30
     SEQUENCE 30 AA; 3372 MW; 51CCA4A3DA9E5D84 CRC64;
SO
                         10.7%; Score 3; DB 1; Length 30;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 4.8e+03;
           3; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
```

```
|||
23 MER 25
```

Db

```
RESULT 35
Y523 BORBU
    Y523 BORBU
                  STANDARD;
                                PRT;
                                        30 AA.
ID
    051473;
AC
    15-DEC-1998 (Rel. 37, Created)
DT
    15-DEC-1998 (Rel. 37, Last sequence update)
DT
    16-OCT-2001 (Rel. 40, Last annotation update)
DT
    Hypothetical protein BB0523.
DE
GN
    BB0523.
OS
    Borrelia burgdorferi (Lyme disease spirochete).
    Bacteria; Spirochaetes; Spirochaetales; Spirochaetaceae; Borrelia.
OC
OX
    NCBI TaxID=139;
RN
    [1]
RP
    SEQUENCE FROM N.A.
    STRAIN=ATCC 35210 / B31;
RC
    MEDLINE=98065943; PubMed=9403685;
RX
    Fraser C.M., Casjens S., Huang W.M., Sutton G.G., Clayton R.A.,
RA
    Lathigra R., White O., Ketchum K.A., Dodson R., Hickey E.K., Gwinn M.,
RA
    Dougherty B., Tomb J.-F., Fleischmann R.D., Richardson D.,
RA
    Peterson J., Kerlavage A.R., Quackenbush J., Salzberg S., Hanson M.,
RA
    van Vugt R., Palmer N., Adams M.D., Gocayne J.D., Weidman J.,
RA
    Utterback T., Watthey L., McDonald L., Artiach P., Bowman C.,
RA
    Garland S., Fujii C., Cotton M.D., Horst K., Roberts K., Hatch B.,
RA
RA
    Smith H.O., Venter J.C.;
RT
     "Genomic sequence of a Lyme disease spirochaete, Borrelia
RT
    burgdorferi.";
RL
    Nature 390:580-586(1997).
    _____
CC
    This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
    the European Bioinformatics Institute. There are no restrictions on its
CC
    use by non-profit institutions as long as its content is in no way
CC
CC
    modified and this statement is not removed. Usage by and for commercial
CC
    entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
    or send an email to license@isb-sib.ch).
     ______
CC
    EMBL; AE001154; AAC66894.1; -.
DR
DR
     PIR; B70165; B70165.
DR
    TIGR; BB0523; -.
KW
    Hypothetical protein; Complete proteome.
             30 AA; 3431 MW; DE437B15D2A48AA8 CRC64;
SQ
    SEQUENCE
  Query Match
                        10.7%; Score 3; DB 1; Length 30;
                        100.0%; Pred. No. 4.8e+03;
  Best Local Similarity
  Matches
            3; Conservative
                            0; Mismatches
                                               0; Indels
                                                             0; Gaps
                                                                        0;
          19 ERV 21
Qу
             Db
          26 ERV 28
```

RESULT 36 CEC1_PIG

```
AC
     P14661;
     01-APR-1990 (Rel. 14, Created)
DT
     01-APR-1990 (Rel. 14, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     Cecropin P1.
DE
     Sus scrofa (Pig).
OS
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
     Mammalia; Eutheria; Cetartiodactyla; Suina; Suidae; Sus.
OC
OX
     NCBI TaxID=9823;
RN
     [1]
RΡ
     SEOUENCE.
RX
     MEDLINE=90083227; PubMed=2512577;
     Lee J.-Y., Boman A., Chuanxin S., Andersson M., Joernvall H., Mutt V.,
RA
RA
     Boman H.G.;
RT
     "Antibacterial peptides from pig intestine: isolation of a mammalian
RT
     cecropin.";
     Proc. Natl. Acad. Sci. U.S.A. 86:9159-9162(1989).
RL
RN
RP
     STRUCTURE BY NMR.
     MEDLINE=93011123; PubMed=1396696;
RX
     Sipos D., Andersson M., Ehrenberg A.;
RA
     "The structure of the mammalian antibacterial peptide cecropin P1 in
RT
     solution, determined by proton-NMR.";
RT
     Eur. J. Biochem. 209:163-169(1992).
RL
     -!- FUNCTION: CECROPINS HAVE LYTIC AND ANTIBACTERIAL ACTIVITY AGAINST
CC
         SEVERAL GRAM-POSITIVE AND GRAM-NEGATIVE BACTERIA. ACTS BY A
CC
         NONPORE MECHANISM.
CC
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: BELONGS TO THE CECROPIN FAMILY.
DR
     PIR; A36221; A36221.
DR
     InterPro; IPR000875; Cecropin.
DR
     Pfam; PF00272; cecropin; 1.
     PROSITE; PS00268; CECROPIN; 1.
DR
KW
     Antibiotic.
     SEQUENCE 31 AA; 3339 MW; CB2B374A8B153850 CRC64;
SQ
                          10.7%; Score 3; DB 1; Length 31;
  Query Match
                          100.0%; Pred. No. 4.9e+03;
  Best Local Similarity
  Matches
                                0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                               0;
             3; Conservative
           26 KKL 28
Qу
               | | | |
Db
            8 KKL 10
RESULT 37
CXMA CONMR
     CXMA CONMR
                    STANDARD;
                                    PRT:
                                            31 AA.
ID
AC
     P56708;
     30-MAY-2000 (Rel. 39, Created)
DT
     30-MAY-2000 (Rel. 39, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
DΕ
     Mu-O-conotoxin MrVIA.
OS
     Conus marmoreus (Marble cone).
     Eukaryota; Metazoa; Mollusca; Gastropoda; Orthogastropoda;
OC
     Apogastropoda; Caenogastropoda; Sorbeoconcha; Hypsogastropoda;
OC
```

ID

CEC1 PIG

STANDARD;

PRT;

31 AA.

```
Neogastropoda; Conoidea; Conidae; Conus.
OC
    NCBI TaxID=42752;
OX
RN
     [1]
     SEQUENCE, AND SYNTHESIS.
RP
RC
     TISSUE=Venom;
    MEDLINE=95348106; PubMed=7622492;
RX
    McIntosh J.M., Hasson A., Spira M.E., Gray W.R., Li W., Marsh M.,
RA
     Hillyard D.R., Olivera B.M.;
RA
     "A new family of conotoxins that blocks voltage-gated sodium
RT
RT
     channels.";
     J. Biol. Chem. 270:16796-16802(1995).
RL
     -!- FUNCTION: Mu-O-conotoxins bind and block voltage-sensitive sodium
CC
CC
         channel (VSSC).
CC
     -!- SUBCELLULAR LOCATION: Secreted.
     -!- TISSUE SPECIFICITY: Expressed by the venom duct.
CC
     -!- MASS SPECTROMETRY: MW=3487.8; METHOD=LSIMS.
CC
     -!- SIMILARITY: BELONGS TO THE O-SUPERFAMILY OF CONOTOXINS. MU-O-TYPE
CC
CC
         FAMILY.
DR
     PIR; A58586; A58586.
KW
     Toxin; Sodium channel inhibitor.
                                  BY SIMILARITY.
FT
     DISULFID
                   2
                         20
                   9
                         25
                                  BY SIMILARITY.
FT
     DISULFID
                                  BY SIMILARITY.
FT
     DISULFID
                  19
                         30
SO
     SEOUENCE 31 AA: 3495 MW; 741FA610E6F9D289 CRC64;
                          10.7%; Score 3; DB 1; Length 31;
  Query Match
                          100.0%; Pred. No. 4.9e+03;
  Best Local Similarity
             3: Conservative
                                0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
Qу
           25 RKK 27
Db
            3 RKK 5
RESULT 38
DEJP DROME
     DEJP DROME
                    STANDARD;
                                    PRT;
                                            31 AA.
ID
AC
     P81160;
DT
     15-JUL-1998 (Rel. 36, Created)
DT
     15-JUL-1998 (Rel. 36, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
     Ductus ejaculatorius peptide 99B.
GN
     DUP99B.
     Drosophila melanogaster (Fruit fly).
OS
     Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
     Neoptera; Endopterygota; Diptera; Brachycera; Muscomorpha;
OC
     Ephydroidea; Drosophilidae; Drosophila.
OC
     NCBI TaxID=7227;
OX
RN
     [1]
     SEQUENCE OF 1-24 FROM N.A., AND SEQUENCE OF 9-31.
RP
     STRAIN=Oregon-R; TISSUE=Ductus ejaculatorius;
RC
     MEDLINE=21835775; PubMed=11846801;
RX
RΑ
     Saudan P., Hauck K., Soller M., Choffat Y., Ottiger M., Sporri M.,
     Ding Z., Hess D., Gehrig P.M., Klauser S., Hunziker P., Kubli E.;
RA
     "Ductus ejaculatorius peptide 99B (DUP99B), a novel Drosophila
RT
     melanogaster sex-peptide pheromone.";
RT
     Eur. J. Biochem. 269:989-997(2002).
```

```
CC
     -!- FUNCTION: INDUCES POST-MATING RESPONSES.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
     -!- TISSUE SPECIFICITY: DUCTUS EJACULATORIUS.
CC
     -!- SIMILARITY: TO PARAGONIAL PEPTIDE B.
CC
     FlyBase; FBgn0024381; Dup99B.
DR
     GO; GO:0045434; P:negative regulation of female receptivity, . . .; IMP.
DR
DR
     GO; GO:0046662; P:regulation of oviposition; NAS.
KW
     Behavior; Glycoprotein; Pyrrolidone carboxylic acid.
FT
     MOD RES
                   1
                         1
                                  PYRROLIDONE CARBOXYLIC ACID.
     DISULFID
                  19
FT
                         31
FT
     CARBOHYD
                                  N-LINKED (GLCNAC. . .).
                          4
     SEQUENCE
                31 AA; 3766 MW; B90A9B99C120EF49 CRC64;
SQ
  Query Match
                          10.7%; Score 3; DB 1; Length 31;
  Best Local Similarity 100.0%; Pred. No. 4.9e+03;
                              0; Mismatches 0; Indels
  Matches
             3; Conservative
                                                                 0; Gaps
                                                                             0;
           10 NLG 12
Qу
              Db
           22 NLG 24
RESULT 39
DIUX DIPPU
     DIUX DIPPU
                    STANDARD;
                                   PRT;
                                           31 AA.
AC
     P82372;
DT
     16-OCT-2001 (Rel. 40, Created)
     16-OCT-2001 (Rel. 40, Last sequence update)
DT
DT
     16-OCT-2001 (Rel. 40, Last annotation update)
DE
     Diuretic hormone class II (Diuretic peptide) (DP) (DH(31)).
OS
     Diploptera punctata (Pacific beetle cockroach).
OC
     Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
     Neoptera; Orthopteroidea; Dictyoptera; Blattaria; Blaberoidea;
OC
     Blaberidae; Diploptera.
OX
     NCBI TaxID=6984;
RN
     [1]
RΡ
     SEQUENCE, FUNCTION, AND MASS SPECTROMETRY.
RC
     TISSUE=Brain, and Corpora cardiaca;
RX
     MEDLINE=20300924; PubMed=10841553;
RA
     Furuya K., Milchak R.J., Schegg K.M., Zhang J., Tobe S.S., Coast G.M.,
RA
     Schooley D.A.;
RT
     "Cockroach diuretic hormones: characterization of a calcitonin-like
RT
     peptide in insects.";
RL
     Proc. Natl. Acad. Sci. U.S.A. 97:6469-6474(2000).
CC
     -!- FUNCTION: Regulation of fluid secretion. Stimulates primary urine
CC
         secretion by Malpighian tubules and causes a dose-dependent
CC
         stimulation of cAMP levels in the tubules. Has a nonselective
CC
         effect on Na(+)/K(+) ion transport. In vitro, primarily elevates
CC
         intracellular Ca(2+). Has synergistic effects with the larger
CC
         diuretic hormone DH(46) which co-occurs with it.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
     -!- MASS SPECTROMETRY: MW=2987; MW_ERR=0.2; METHOD=Electrospray.
CC
CC
     -!- SIMILARITY: BELONGS TO THE DIURETIC HORMONE CLASS II FAMILY.
KW
     Hormone; Amidation.
FT
     MOD RES
                  31
                         31
                                  AMIDATION.
SO
     SEQUENCE
                31 AA; 2988 MW; 0F311E0C3AD71A46 CRC64;
```

```
10.7%; Score 3; DB 1; Length 31;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 4.9e+03;
            3; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
           13 KHL 15
Qу
              111
Db
           17 KHL 19
RESULT 40
H13 WHEAT
     H13 WHEAT
                    STANDARD;
                                    PRT;
                                            31 AA.
ID
AC
     P15872;
     01-APR-1990 (Rel. 14, Created)
01-APR-1990 (Rel. 14, Last sequence update)
DT
DT
DT
     15-JUL-1999 (Rel. 38, Last annotation update)
DE
     Histone H1.3 (Fragments).
OS
     Triticum aestivum (Wheat).
OC
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
     Spermatophyta; Magnoliophyta; Liliopsida; Poales; Poaceae; Pooideae;
OC
     Triticeae; Triticum.
OX
     NCBI TaxID=4565;
RN
     [1]
RP
     SEQUENCE.
RC
     TISSUE=Germ;
     Brandt W.F., von Holt C.;
RA
RT
     "Variants of wheat histone H1 with N- and C-terminal extensions.";
RL
     FEBS Lett. 194:282-286(1986).
CC
     -!- FUNCTION: HISTONES H1 ARE NECESSARY FOR THE CONDENSATION OF
CC
         NUCLEOSOME CHAINS INTO HIGHER ORDER STRUCTURES.
CC
     -!- SUBCELLULAR LOCATION: Nuclear.
CC
     -!- SIMILARITY: BELONGS TO THE HISTONE H1/H5 FAMILY.
DR
     PIR; B23605; B23605.
KW
     Chromosomal protein; Nuclear protein; DNA-binding; Multigene family.
FT
     NON TER
                   1
     NON CONS
FT
                  15
                         16
FT
     NON TER
                  31
                         31
SQ
     SEQUENCE
                31 AA; 3318 MW; 6BE9BD6C6FEB6D0E CRC64;
  Query Match
                          10.7%; Score 3; DB 1; Length 31;
  Best Local Similarity 100.0%; Pred. No. 4.9e+03;
  Matches
            3; Conservative 0; Mismatches 0; Indels
                                                                   0; Gaps
            2 VSE 4
Qу
              | | |
Db
            2 VSE 4
```

Search completed: January 14, 2004, 10:35:39 Job time: 5.62305 secs