University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln

Hideaki Moriyama Publications

Published Research - Department of Chemistry

March 2007

Supporting Information for "The Molecular Basis of High-Altitude Adaptation in Deer Mice"

Jay F. Storz University of Nebraska - Lincoln, jstorz2@unl.edu

Stephen J. Sabatino University of Nebraska - Lincoln

Federico G. Hoffmann University of Nebraska - Lincoln, fhoffmann2@unl.edu

Eben J. Gering University of Nebraska - Lincoln

Hideaki Moriyama University of Nebraska - Lincoln, hmoriyama2@unl.edu

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unl.edu/chemistrymoriyama

Part of the Chemistry Commons

Storz, Jay F.; Sabatino, Stephen J.; Hoffmann, Federico G.; Gering, Eben J.; Moriyama, Hideaki; Ferrand, Nuno; Monteiro, Bruno; and Nachman, Michael W., "Supporting Information for "The Molecular Basis of High-Altitude Adaptation in Deer Mice" (2007). Hideaki Moriyama Publications. 2. https://digitalcommons.unl.edu/chemistrymoriyama/2

This Article is brought to you for free and open access by the Published Research - Department of Chemistry at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Hideaki Moriyama Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Authors Jay F. Storz, Stephen J. Sabatino, Federico G. Hoffmann, Eben J. Gering, Hideaki Moriyama, Nuno Ferrand, Bruno Monteiro, and Michael W. Nachman						

Supporting Information for:

PLoS Genet. 2007 March; 3(3): e45.

Published online 2007 March 30. Prepublished online 2007 February 13. doi: 10.1371/journal.pgen.0030045.

Copyright: © 2007 Storz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

The Molecular Basis of High-Altitude Adaptation in Deer Mice

Jay F Storz, ^{1*} Stephen J Sabatino, ¹ Federico G Hoffmann, ¹ Eben J Gering, ¹ Hideaki Moriyama, ² Nuno Ferrand, ^{3,4} Bruno Monteiro, ^{3,4} and Michael W Nachman⁵

University of Chicago, United States of America

Received October 12, 2006; Accepted February 13, 2007.

Figure S1: Variation in Site-Specific Levels of Altitudinal Differentiation across the 5' α -Globin Gene of *P. maniculatus*

- (A) Comparison between high- and low-altitude samples (Mt. Evans, Colorado [4,347 m] versus Pawnee County, Kansas [620 m]).
- (B) Comparison between high- and low-altitude samples (Mt. Evans versus Yuma County, Colorado [1,158 m]).
- (C) Comparison between the two low-altitude localities (Pawnee County versus Yuma County).

Open diamonds denote $F_{\rm ST}$ values for nonsynonymous nucleotide polymorphisms (n=21 sites). The red line represents a sliding-window plot of variation in site-specific $F_{\rm ST}$ values for synonymous and noncoding nucleotide polymorphisms across the gene. Red asterisks mark the mid-point of 100-bp windows containing one or more replacement polymorphisms that exhibited higher-than-expected $F_{\rm ST}$ values.

¹ School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America

² Department of Chemistry, University of Nebraska, Lincoln, Nebraska, United States of America

³ Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Portugal

⁴ Departamento de Zoologia e Anthropologia, Faculdade de Ciências do Porto, Porto, Portugal

⁵ Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America Molly Przeworski, Editor

^{*} To whom correspondence should be addressed. E-mail: jstorz2@unl.edu

Figure S2: Relationship between Pairwise Linkage Disequilibrium and Distance in bp

Filled symbols denote 201 pairwise associations that were significant by a Fisher's exact test after Bonferroni correction

Accession Numbers

The GenBank (<u>http://www.ncbi.nlm.nih.gov/Genbank</u>) accession numbers for all sequences discussed in this paper are <u>EF369525–EF370032</u>.

Table S1: Amino Acid Variation in the α-Globin Genes of High- and Low-Altitude Deer Mice

Amino acid replacement polymorphisms in deer mice where the derived variant is present at a frequency of >0.100 in the high-altitude sample.

Nucleotide Codon site change		Amino acid replacement ¹	Frequency of derived variant at high-altitude	$F_{ m ST}$		
				High vs. Low (Mt. Evans vs. Pawnee Co.)	High vs. Low (Mt. Evans vs. Yuma Co.)	Low vs. Low (Yuma Co. vs. Pawnee Co.)
5' α-globin						
18	GA A →GA C	5(A3)Glu→Asp	0.933	0.001	-0.005	-0.022
280	CAC→CCC	50(CD15)His→Pro	0.833	0.784**	0.494**	0.167
322	G A C→G G C	64(E13)Asp→Gly	0.933	0.540**	0.318**	0.002
342	GGC→AGC	71(EF1)Gly→Ser	0.933	0.540**	0.278**	0.027
364	$GGT \rightarrow GCT$	78(EF8)Gly→Ala	1.000	0.354	0.117	0.011
665	GA G →GA T	116(GH4)Glu→Asp	0.553	0.373*	0.244*	0.039
3' α-globin						
7	CTC→TTC GTC→TTC	$2(NA2)Leu \rightarrow Phe$ $2(NA2)Val \rightarrow Phe$	0.115	0.127	-0.005	0.089
18	GA G →GA C	5(A3)Glu→Asp	0.231	-0.035	0.057	-0.019
37	$\mathbf{A}\mathbf{C}\mathbf{T} \rightarrow \mathbf{G}\mathbf{C}\mathbf{T}$	12(A10)Thr→Ala	0.115	0.013	0.081	-0.042
59	GGC→GAC	19(AB1)Gly→Asp	0.160	0.013	-0.042	-0.011
282	GGC→AGC	51(CD16)Gly→Ser	0.115	-0.031	0.246*	0.124
364	G G T→G C T	78(EF8)Gly→Ala	0.307	0.109	0.260*	0.027
393	G CT→ A CT	88(F9)Ala→Thr	0.154	0.077	0.024	-0.020
634	CTG→CAG	105(G12)Leu→Gln	0.696	0.270	0.540**	0.063

¹For each polymorphism, the derived variant is shown on the right (e.g., for 'Leu→Phe', Leu is ancestral and Phe is derived).

^{*}P<0.05, **P<0.001 under a neutral model of population structure (see *Materials and Methods*).

Table S2: Additional Information on Sequenced Loci: Primer sequences for nuclear loci in P. maniculatus.

Locus	Sequenced gene region	Length (bp)	Primers	
5' α-globin	Exons 1-3, introns 1-2	743	D-1518	5' CTTGCTCTGCAGCGCACC 3'
			D-2387R	5' CAAAGACCAAGAGGTACAG 3'
3' α-globin	Exons 1-3, introns 1-2	743	KEP107	5' GGCCATGGTATGTCTCTAACTCC 3'
			KEP97	5' CGTTAACACACTTCCTTGGGTC 3'
β-globin	Exons 1-3, introns 1-2	1140	BETA_PM_F1	5' GTAGAGCAGGATCAGTTGC 3'
			BETA_PM_R1	5' ACTGACCTTTGAGCACAGAC 3'
β-fibrinogen	Intron 7	614	BFIB-R1	5' ATTCACAACGGCATGTTCTTCAG 3'
			BFIB-R2	5' AANGKCCACCCCAGTAGTATCTG 3'
Vimentin	Intron 8	785	VIM-E8 F1	5' AGAACACTCCTGATTAAGACG 3'
			VIM-E9 R1	5' GCATCACGATGACCTTGAATAA 3'
LCAT	Exons 3-6, introns 3-5	456	LCAT-F2	5' CTGGTACAGAATCTGGTTAAC 3'
			LCAT-R5	5' TAAGACATCCTAATGGTGCTG 3'
RAG1	Exon 1	1183	S77	5' TCCATGCTTCCCTACTGACCTG 3'
			S71	5' TGGCTTCTGGTTATGGAGTGGA 3'
AP5	Exons 2-3, intron 2	385	AP5120-F1	5' AATGCCCCATTCCACACAGC 3'
			AP5 564-R1	5' GCAGAGACGTTGCCAAGGTG 3'