Minerva Schools At KGI Assignment 1 - Project Design
Quang Tran
CS164 Spring 2020

All the angle measures are in radians, unless otherwise noted.

Part 1.

(a) Visualize the surface plot. Estimate the maximum.

Here we will not consider configurations where $\theta > \pi/2$, because for any such configuration, we can bend the segment a so that the new segment is symmetric with the old segment w.r.t. the vertical line (the new θ is $\pi - \theta$) and this new configuration has a larger area.

$$A(a, \theta) = Wasin\theta - a^2sin^2\theta - a^2sin\theta + \frac{1}{2}a^2sin\theta cos\theta$$

The primary physically-realistic domain of a and θ is $a \in [0, W]$ (a can't exceed the perimeter) and $\theta \in [0, \pi/2]$ (Strictly speaking, a and θ cannot be 0, but we will later show that the maximum over this loose domain does not lie on the boundary.) We have one more constraint: h, b, a must be positive. This means that $a \le W/(1 + \sin \theta)$ (Again, b should be strictly positive, but as will be shown the maximum does not lie in this boundary.)

The physically-realistic domain is, therefore,

$$\begin{cases} a \in [0, W] \\ \Theta \in [0, \pi/2] \\ a \leq W/(1 + \sin \theta) \end{cases}$$

The physically-realistic domain is the region bounded by the outer rectangular box ($a=0,\ a=3,\ \theta=0,\theta=\pi/2$) and below the red curve (for $f(\theta)=W/(1+sin\theta)$), including the boundaries. The red curve within the domain runs from left to right starting from (0,f(0))=(0,3) and ends at $(\pi/2,f(\pi/2))=(\pi/2,W/2)=(\pi/2,1.5)$.

Figure 1. Surface plot of $A(a, \theta; W = 3)$ (purple) from two views. For purposes of visualization, I didn't include the a = 0, a = W, $\theta = 0$, $\theta = \pi$ surfaces. The part of A in the physically-realistic domain is the part of the purple curve in front of the magenta and green curves. We see that there is a bump with the highest point around $(a, \theta) = (1, 1)$ and it seems unique because there is no other bump within the considered domain.

Figure. Contour plot for A. The domain of physically-realistic is bounded by the red curves. Negative lines are dashed.

The contour plot shows it more clearly that the maxima lies around (1,1).

(b) Is -A coercive?

$$-A(a,\theta) = -(Wasin\theta - a^2sin^2\theta - a^2sin\theta + \frac{1}{2}a^2sin\theta cos\theta)$$

$$= -\frac{1}{2}a sin\theta(2W - 2a sin\theta - 2a + a cos\theta)$$
For $-A$ to be coercive, we look at how $-A$ behaves as the norm of the input vector

 $||(a, \theta)|| = \sqrt{a^2 + \theta^2}$ tends to infinity. If we keep a constant, and let θ vary to infinity, i.e.,

looking at the θ direction (which then means $||(a, \theta)|| \to \infty$), then

$$B(\theta) = -A(a, \theta) = -Wasin\theta + a^2sin^2\theta + a^2sin\theta - \frac{1}{2}a^2sin\theta cos\theta$$

We have: $-1 \le \sin\theta$, $\cos\theta$, $\sin(2\theta) \le 1$, then:

$$-Wa \le -Wasin\theta \le Wa$$

$$0 < a^2 \sin^2 \theta < a^2$$

$$-a^2 \le a^2 \sin\theta \le a^2$$

$$\frac{-1}{4}a^2 \le -\frac{1}{2}a^2\sin\theta\cos\theta = \frac{-1}{4}a^2\sin(2\theta) \le \frac{1}{4}a^2$$

Summing up the LHS and the RHS of the above inequalities we get:

$$-Wa - \frac{5}{4}a^2 \le B(\theta) = -A(a, \theta) \le Wa + \frac{9}{4}a^2$$

which means -A is then bounded above and below by $-Wa - \frac{5}{4}a^2$ and $Wa + \frac{9}{4}a^2$ respectively as we go along the said direction to the infinity. Because -A does not get to infinity in this case, -A is not coercive.

Another way to prove it is we keep a = 0 and then vary θ . In this case, despite θ tending to infinity, -A=0. Similarly, if we keep $\theta = 0$, then $\sin \theta = 0$ and -A = 0.

Part 2.

$$A(a, b, \theta) = \frac{1}{2}a \sin\theta(2b + a\cos\theta)$$

Equality constraint: $g(a, b, \theta) = a \sin\theta + b + a = 3$ (because h+b+a=W)

To apply Lagrange multipliers method, we need to solve the following two equations:

- 1. $\nabla A(a, b, \theta) = \lambda \nabla g(a, b, \theta)$
- 2. $a \sin\theta + b + a = 3$ (the constraint function) (a)

We have $\nabla A(a, b, \theta) = (\sin\theta(b + a\cos\theta), a\sin\theta, ab\cos\theta + \frac{1}{2}a^2\cos(2\theta))$

And $\nabla g(a, b, \theta) = (\sin\theta + 1, 1, a\cos\theta)$

Equation 1 is equivalent to solving the following three equations:

- a. $sin\theta(b + acos\theta) = \lambda(sin\theta + 1)$ (b)
- b. $asin\theta = \lambda$ (c)
- c. $abcos\theta + \frac{1}{2}a^2cos(2\theta) = \lambda acos\theta$ (d)

So we need to solve the system of equations (a), (b), (c), and (d). This will give two critical points: (a, b, θ) : (0, 3, 0, 0) (A=0) and $(4\sqrt{3} - 6, 3 - \sqrt{3}, \pi/3)$ ($A = 9 - \frac{9\sqrt{3}}{2}$) (See Appendix)

We first prove that these two points must be the maximum and the minimum points (and not an inflection point.) We have that our domain is closed ($a \in [0, W]$, $\theta \in [0, \pi/2]$, $a \le W/(1+\sin\theta)$), and bounded. The function A itself is continuous (it is a function composed of continuous functions by elementary operations). According to Weierstrasse extreme value theorem, there exists a minimum and a maximum points over this domain. Furthermore, we found only two critical points on this domain, so one of them must be a minimum and the other must be the maximum. Given the computed value of A at those points, the minimum is $(a, \theta) = (0, 0)$ and the maximum is $(a, \theta) = (4\sqrt{3} - 6, \pi/3)$ ($A_{max} = 9 - \frac{9\sqrt{3}}{2}$)

Part 3.

Convergence using line exact search with bisection

We see that the algorithm does converge towards the "center" of the lowest point. At the last step, the point is $(\theta, a) = (1.04719666, 0.9282037)$, which agrees with the solution found above. The table that shows the convergence is included in the appendix.

Appendix

HC Application

#algorithm: Followed and implemented successfully the exact line search using bisection. **#optimization:** Carefully constructed the constraints and the physically-realistic domain, applied correctly the Lagrange multipliers method and classified the critical points.

Code for surface plot in SageMath

https://gist.github.com/

Derivation for the expression for $A(a, \theta)$

$$d = b + c$$

$$\sin \theta = h/a \implies h = a \sin \theta$$

$$\cos \theta = c/a \implies c = a \cos \theta$$

$$A(a, \theta) = \frac{1}{2}h(b+d) = \frac{1}{2}h(b+b+c)$$

$$= \frac{1}{2}h(2b+c)$$

$$= \frac{1}{2}h(2(W-h-a)+c) \text{ (because } W=h+b+a \text{ is the perimeter)}$$

$$= \frac{1}{2}h(2W-2h-2a+c)$$

$$= \frac{1}{2}a\sin\theta(2W-2a\sin\theta-2a+a\cos\theta)$$

$$= Wa\sin\theta - a^2\sin^2\theta - a^2\sin\theta + \frac{1}{2}a^2\sin\theta\cos\theta$$

Derivation for h, b, and a being positive means that $a < W/(1 + \sin \theta)$.

- $h > 0 \Leftrightarrow a \sin \theta > 0$. This is always true for a > 0 and $\theta \in (0, \pi)$.
- a > 0. This is always true because in the primary constraint stated above, $a \in (0, W)$
- $b > 0 \Leftrightarrow W a h > 0 \Leftrightarrow W a a \sin\theta > 0 \Leftrightarrow a(1 + \sin\theta) < W$ $\Leftrightarrow a < W/(1 + \sin\theta)$ (we can divide both sides by $1 + \sin\theta$ without changing the inequality sign because $1 + \sin\theta > 0$ for $\theta \in [0, \pi/2]$)

In sum, the condition translates to $a < W/(1 + \sin \theta)$.

Finding the critical points

$$A(a, b, \theta) = \frac{1}{2}a \sin\theta(2b + a\cos\theta)$$

 $a \sin\theta + b + a = 3$ (the constraint function) (a)
 $\sin\theta(b + a\cos\theta) = \lambda(\sin\theta + 1)$ (b)
 $a\sin\theta = \lambda$ (c)

$$abcos\theta + \frac{1}{2}a^2cos(2\theta) = \lambda acos\theta$$
 (d)

So we need to solve the system of equations (a), (b), (c), and (d).

We first consider these following cases:

- If $sin\theta = 0$. Then this means $\theta = 0$ (because $\theta \in [0, \pi/2]$), $cos\theta = cos2\theta = 0$, $\lambda = 0$ (from (c)). From (a), b+a=3. We further have $ab + a^2/2 = 0$ (from (d). These last two equations means (a, b) = (0, 3) or (6, -3). But we don't consider (6, -3) because it's outside our physically-realistic domain. In sum, when $sin\theta = 0$:
 - $(a, b, \theta, \lambda) = (0, 3, 0, 0)$ and A = 0
- If $cos\theta = 0$. This means $\theta = \pi/2$ (because $\theta \in [0, \pi/2]$), $sin\theta = 1$. From (d) we have $-a^2/2 = 0$ which means a = 0. From (c), $\lambda = 0$. Because $\lambda + b + a = 3$ (from (a) and (c)), b = 3. But these results contradict with (b). Therefore, $\cos \theta \neq 0$.
- If a = 0, then b = 3 (from (a)), $\lambda = 0$ (from (c)), and $\theta = 0$ (from (b).) In sum, when a = 0:
 - \circ $(a, b, \theta, \lambda) = (0, 3, 0, 0)$ and A = 0
- If $\lambda = 0$: From (c): either a = 0, which brings us back to the case a = 0, or $sin\theta = 0$, which brings us back to the case $sin\theta = 0$.

$$\circ$$
 $(a, b, \theta, \lambda) = (0, 3, 0, 0)$ and $A = 0$

In the derivation below, we therefore assume that $sin\theta$, $cos\theta$, a, $\lambda \neq 0$.

Multiplying both sides of (d) by $sin^2\theta$ we get:

$$absin^2\theta cos\theta + \frac{1}{2}a^2sin^2\theta cos(2\theta) = \lambda asin^2\theta cos\theta$$

Substituting $asin\theta$ with λ (from (c)), we get:

 $b\lambda sin\theta cos\theta + \frac{1}{2}a\lambda sin\theta cos(2\theta) = \lambda^2 cos\theta sin\theta$

- $\Leftrightarrow bsin\theta cos\theta + \frac{1}{2}asin\theta cos(2\theta) = \lambda sin\theta cos\theta$ (dividing both sides by λ)
- $\Leftrightarrow bsin\theta cos\theta + \frac{1}{2}asin\theta (2cos^2\theta 1) = \lambda sin\theta cos\theta$
- $\Leftrightarrow bsin\theta cos\theta + asin\theta cos^2\theta (asin\theta)/2) = \lambda sin\theta cos\theta$
- $\Leftrightarrow sin\theta cos\theta(b + acos\theta) (asin\theta)/2) = \lambda sin\theta cos\theta$

Substitute $sin\theta(b + acos\theta)$ with $\lambda(sin\theta + 1)$:

$$\lambda cos\theta(sin\theta + 1) - (asin\theta)/2) = \lambda sin\theta cos\theta$$

$$\Leftrightarrow \lambda \cos\theta - (a\sin\theta)/2) = 0$$

Substitute $asin\theta$ with λ :

$$\lambda \cos\theta - \lambda/2 = 0$$

- $\Leftrightarrow cos\theta = 1/2$ (dividing both sides by λ)
- $\Leftrightarrow \theta = \pi/3$

With this, (a), (c), and (d) become:

- $\bullet \quad \left(\frac{\sqrt{3}}{2} + 1\right)a + b = 3$
- $\begin{array}{ll}
 \bullet & \frac{\sqrt{3}}{2}a = \lambda \\
 \bullet & b \frac{1}{2}a = \lambda
 \end{array}$

Solving the above system we get: $a = 4\sqrt{3} - 6$, $b = 3 - \sqrt{3}$, $\lambda = 6 - 3\sqrt{3}$. Therefore, we have two critical points (a, b, θ) : (0, 3, 0, 0) (A=0) and $(4\sqrt{3} - 6, 3 - \sqrt{3}, \pi/3)$ ($A = 9 - \frac{9\sqrt{3}}{2}$)

Code for Gradient Descent

https://gist.github.com/quangntran/ef2172d857926e6c01077316aacc80ec

Convergence Table

	k	norm_d	theta	а	Α
0	1	3.375000e+00	0.000000	1.500000	0.000000
1	2	3.371201e-01	0.634118	1.500000	1.080211
2	3	4.858194e-01	0.634118	1.260854	1.120522
3	4	2.654409e-01	0.773031	1.260854	1.153355
4	5	2.702426e-01	0.773031	1.119061	1.172174
5	6	1.874790e-01	0.877242	1.119061	1.185901
6	7	1.491810e-01	0.877242	1.034953	1.193785
7	8	1.199713e-01	0.948098	1.034953	1.198968
8	9	8.097943e-02	0.948098	0.986392	1.201881
9	10	7.093561e-02	0.992033	0.986392	1.203637
10	11	4.324153e-02	0.992033	0.959297	1.204598
11	12	3.970159e-02	1.017415	0.959297	1.205143
12	13	2.281280e-02	1.017415	0.944603	1.205435
13	14	2.147751e-02	1.031409	0.944603	1.205594
14	15	1.194402e-02	1.031409	0.936787	1.205678
15	16	1.139426e-02	1.038913	0.936787	1.205722
16	17	6.226110e-03	1.038913	0.932676	1.205746

17 click t	18 to scroll	5.980592e-03 output; double click to	1.042874	0.932676	1.205758
18	19	3.237707e-03	1.042874	0.930529	1.205764
19	20	3.121199e-03	1.044948	0.930529	1.205768
20	21	1.681510e-03	1.044948	0.929411	1.205769
21	22	1.624023e-03	1.046029	0.929411	1.205770
22	23	8.727047e-04	1.046029	0.928830	1.205771
23	24	8.436836e-04	1.046591	0.928830	1.205771
24	25	4.527738e-04	1.046591	0.928528	1.205771
25	26	4.379366e-04	1.046883	0.928528	1.205771
26	27	2.348633e-04	1.046883	0.928372	1.205771
27	28	2.272260e-04	1.047034	0.928372	1.205771
28	29	1.218168e-04	1.047034	0.928291	1.205771
29	30	1.178714e-04	1.047113	0.928291	1.205771
30	31	6.317977e-05	1.047113	0.928249	1.205771
31	32	6.113638e-05	1.047154	0.928249	1.205771
32	33	3.276815e-05	1.047154	0.928227	1.205771
33	34	3.171158e-05	1.047175	0.928227	1.205771
34	35	1.699320e-05	1.047175	0.928215	1.205771
35	36	1.644648e-05	1.047186	0.928215	1.205771
36	37	8.812736e-06	1.047186	0.928210	1.205771

37	38	8.539493e-06	1.047191	0.928210	1.205771
38	39	4.567852e-06	1.047191	0.928207	1.205771
39	40	4.439755e-06	1.047194	0.928207	1.205771
40	41	2.361956e-06	1.047194	0.928205	1.205771
41	42	2.263503e-06	1.047196	0.928205	1.205771
42	43	1.260840e-06	1.047196	0.928204	1.205771
43	44	1.125319e-06	1.047197	0.928204	1.205771
44	45	6.825287e-07	1.047197	0.928204	1.205771