

BURSA TEKNIK ÜNİVERSİTESİ MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ VERİ MADENCILIĞI (BLM0463)

Proje Adı: DECİSİON BASED TREE SINIFLANDIRMA METODU KULLANARAK KRONİK BÖBREK HASTALIĞI (CDK) VERİ SETİN VERİ ANALİZİ

FARHAN AHMAD

20360859096

İÇİNDEKİLER

GİRİŞ	3
VERİ SETİ GENEL BİLGİLER	3
METODOLOJİ:	3
SAYISAL ÖZELLİKLER ANALİZİ	5
KATEGORİK ÖZELLİKLER ANALİZİ	5
SG (Specific Gravity) Analizi	5
AL(albumin) Analizi	6
SU (Sugar) Analizi	6
RBC (Red Blood Cells) Analizi	7
PC (Pus Cell) Analizi	7
PCC (Pus Cell clumps) Analizi	8
BA (Bacteria) Analizi	8
HTN (Hypertension) Analizi	9
DM (Diabetes Mellitus) Analizi	9
CAD (Coronary Artery Disease) Analizi	10
APPET (Appetite) Analizi	10
PE (Pedal Edema) Analizi	11
ANE (Anemia) Analizi	11
DECİSİON TREE GÖRSELLEŞTİRME	12
KORELASYON ANALİZİ	13
MODEL PERFORMANSI	13
MODEL KARŞILAŞTIRMASI	14
ÖZELLİK ÖNEMLİLİK ANALİZİ	15
SONUÇ	15
ΚΑΥΝΑΚΟΑ	16

KRONİK BÖBREK HASTALIĞI VERİ ANALİZ RAPORU

GIRIŞ

Bu rapor, kronik böbrek hastalığı (CKD) veri seti üzerinde yapılan kapsamlı bir analizi içermektedir. Analizde, hasta ve sağlıklı bireylerin çeşitli tıbbi ölçümlerini kullanarak hastalık tespiti için bir makine öğrenmesi modeli geliştirilmiştir. Rapor, veri analizi, görselleştirmeler ve model performans değerlendirmelerini içermektedir.

Temel Bilgileri:

VERI SETI GENEL BILGILER

• Toplam Örnek Sayısı: 399

• CKD (Kronik Böbrek Hastası) Sayısı: 149

Normal (Hasta Olmayan) Sayısı: 250

• Toplam Özellik Sayısı: 24

METODOLOJİ:

Veri Seti Bilgileri:

Başlangıçta veri seti şu sütunlardan oluşmaktadır:

Sütun Adı	Açıklama	Tür
age	yaş	nümerik
bp	kan basıncı	nümerik
sg	özgül ağırlık (1.005–1.025 arası)	kategorik
al	albümin seviyesi (0-5)	kategorik
su	şeker seviyesi (0–5)	kategorik
rbc	kırmızı kan hücresi durumu (normal/abnormal)	kategorik
рс	irin hücresi durumu (normal/abnormal)	kategorik

рсс	irin hücresi topaklanması (present/notpresent)	kategorik
ba	bakteri varlığı	kategorik
bgr	rastgele kan şekeri	nümerik
bu	kan üre seviyesi	nümerik
SC	serum kreatinin	nümerik
sod, pot, hemo, pcv, wc, rc	çeşitli kan değerleri	nümerik
htn, dm, cad, appet, pe, ane	sağlık durumları (yes/no)	kategorik
class	hedef değişken: hasta mı değil mi? (ckd/notckd)	kategorik

VERİNİN İLK 5 SATIRI:

```
First 5 rows:

age bp sg al su rbc pc pc ... rbcc htn dm cad appet pe ane class
0 48.0 80.0 1.020 1.0 0.0 NaN normal notpresent ... 5.2 yes yes no good no no ckd
1 7.0 50.0 1.020 4.0 0.0 NaN normal notpresent ... NaN no no no good no no ckd
2 62.0 80.0 1.010 2.0 3.0 normal normal notpresent ... NaN no yes no poor no yes ckd
3 48.0 70.0 1.005 4.0 0.0 normal abnormal present ... 3.9 yes no no poor yes yes ckd
4 51.0 80.0 1.010 2.0 0.0 normal normal notpresent ... 4.6 no no no good no no ckd
```

EKSİK DEĞER:

age	9
bp	12
sg	47
al	46
su	49
rbc	152
рс	65
рсс	4
ba	4
bgr	44
bu	19
SC	17
sod	87
pot	88
hemo	52
pcv	71
wbcc	106
rbcc	131
htn	2
dm	2
cad	2

appet	1
pe	1
ane	1
class	0

SAYISAL ÖZELLİKLER ANALİZİ

Sayısal özelliklerin istatistiksel analizi aşağıdaki gibidir:

	age	bp	bgr	bu	sc	sod	pot	hemo	pcv	wbcc	rbcc
count	399	399	399	399	399	399	399	399	399	399	399
mean	51.49	76.59	145.16	56.71	3	137.62	4.58	12.53	39.07	8293.48	4.74
std	16.96	13.5	75.33	49.46	5.63	9.21	2.82	2.72	8.17	2530.78	0.84
min	2	50	22	1.5	0.4	4.5	2.5	3.1	9	2200	2.1
25%	42	70	101	27	0.9	135	4	10.85	34	6950	4.5
50%	54.5	80	121	42	1.3	138	4.4	12.6	40	8000	4.8
75%	64	80	150	62.5	2.75	141	4.8	14.65	44	9350	5.1
max	90	180	490	391	76	163	47	17.8	54	26400	8

KATEGORİK ÖZELLİKLER ANALİZİ

SG (Specific Gravity) Analizi

- 1.005(0) = 7
- 1.010(1) = 84
- 1.015(2) = 75
- 1.020(3) = 152
- 1.025(4) = 81

Şekil: sg özelliğinin pasta grafiği dağılımı

AL(albumin) Analizi

al özelliğinin dağılımı:

- "0" = 244
- "1" = 44
- "2" = 43
- "3" = 43
- "4" = 24
- "5" = 1

Şekil: al özelliğinin pasta grafiği dağılımı

SU (Sugar) Analizi

su özelliğinin dağılımı:

- "0" = 338
- "1" = 13
- "2" = 18
- "3" = 14
- "4" = 13
- "5" = 3

Şekil: su özelliğinin pasta grafiği dağılımı

RBC (Red Blood Cells) Analizi

rbc özelliğinin dağılımı:

- abnormal (1) = 352
- normal (0) = 47

Şekil: rbc özelliğinin pasta grafiği dağılımı

PC (Pus Cell) Analizi

pc özelliğinin dağılımı:

- Abnormal (1) = 323
- normal(0) = 76

Şekil: pc özelliğinin pasta grafiği dağılımı

PCC (Pus Cell clumps) Analizi

pcc özelliğinin dağılımı:

- present (0) = 357
- notpresent (1) = 42

Şekil: pcc özelliğinin pasta grafiği dağılımı

BA (Bacteria) Analizi

ba özelliğinin dağılımı:

- present (0) = 377
- notpresent (1) = 22

Şekil: ba özelliğinin pasta grafiği dağılımı

HTN (Hypertension) Analizi

htn özelliğinin dağılımı:

- yes(0) = 252
- no (1) = 147

Şekil: htn özelliğinin pasta grafiği dağılımı

DM (Diabetes Mellitus) Analizi

dm özelliğinin dağılımı:

- yes(0) = 262
- no (1) = 137

Şekil: dm özelliğinin pasta grafiği dağılımı

CAD (Coronary Artery Disease) Analizi

cad özelliğinin dağılımı:

- yes(0) = 365
- no (1) = 34

Şekil: cad özelliğinin pasta grafiği dağılımı

APPET (Appetite) Analizi

appet özelliğinin dağılımı:

- good(0) = 317
- poor (1) = 82

Şekil: appet özelliğinin pasta grafiği dağılımı

PE (Pedal Edema) Analizi

pe özelliğinin dağılımı:

- yes(0) = 323
- no (1) = 76

Şekil: pe özelliğinin pasta grafiği dağılımı

ANE (Anemia) Analizi

ane özelliğinin dağılımı:

- yes (0) = 339
- no (1) = 60

Şekil: ane özelliğinin pasta grafiği dağılımı

DECISION TREE GÖRSELLEŞTIRME

Şekil: Desicion Tree görseleştirme

Decision Tree Doğrululuk: 0.9875

KORELASYON ANALIZI

Sayısal özellikler arasındaki korelasyonlar, özelliklerin birbirleriyle olan ilişkilerini göstermektedir. Korelasyon değerleri -1 ile 1 arasında değişmekte olup, 1'e yakın değerler güçlü pozitif ilişkiyi, -1'e yakın değerler güçlü negatif ilişkiyi göstermektedir.

Şekil: Sayısal özellikler arasındaki korelasyon matrisi

MODEL PERFORMANSI

Cross-validatör Sonuçları:

- Ortalama CV Skoru: 0.9875 (+/- 0.0332)
- Bu sonuç, modelin farklı veri parçaları üzerindeki tutarlılığını göstermektedir.

Sınıflandırma Performans Metrikleri:

Class	Precision	Recall	F1-Score	Support
NotCDK	1	0.98	0.99	53
CKD	0.96	1	0.98	27
Accuracy			0.99	80
Macro Avg	0.98	0.99	0.99	80
Weighted Avg	0.99	0.99	0.99	80

Şekil: Karmaşıklık Matrisi (Confusion Matrix)

- Sol üst: Doğru Negatif (TN)- Sağlıklı bireylerin doğru tahmin edilmesi
- Sağ alt: Doğru Pozitif (TP)- Hasta bireylerin doğru tahmin edilmesi
- Sol alt: Yanlış Negatif (FN)- Hasta bireylerin sağlıklı olarak yanlış tahmin edilmesi
- Sağ üst: Yanlış Pozitif (FP)- Sağlıklı bireylerin hasta olarak yanlış tahmin edilmesi

MODEL KARŞILAŞTIRMASI

- Random Forest Accuracy: 1.000
- Naive Bayes Accuracy: 0.988
- Support Vector Machine Accuracy: 0.950

ÖZELLİK ÖNEMLİLİK ANALİZİ

Özellik önemliliği analizi, hangi özelliklerin hastalık tespitinde daha etkili olduğunu göstermektedir. Yüksek önem derecesine sahip özellikler, modelin tahminlerinde daha büyük rol oynamaktadır.

Özellik Önem Derecesi

Niteklik Numarası	Nitelik Adı	Özellik Önem Derecesi
14	hemo	0.686983
2	sg	0.209909
3	al	0.026096
10	bu	0.021989
15	pcv	0.018355
17	rbcc	0.016258
13	pot	0.010618
18	htn	0.008849
11	SC	0.000942
6	рс	0
7	рсс	0
4	su	0
0	age	0
1	bp	0
5	rbc	0
9	bgr	0
12	sod	0
8	ba	0
16	wbcc	0
19	dm	0
20	cad	0
21	appet	0
22	ре	0
23	ane	0

SONUÇ

Yapılan analiz sonucunda:

- 1. Model 0.9875 doğruluk oranı ile başarılı bir performans göstermiştir.
- 2. En önemli özellikler: hemo, sg, al
- 3. Kategorik ve sayısal özelliklerin dağılımları dengeli bir veri seti olduğunu göstermektedir.

KAYNAKÇA

- 1- Yaptığım analizin Kodları https://github.com/ahmadfarhan203/CDKDataAnalysis/tree/main
- 2- Sunum Videosu https://youtu.be/cK_xjS9jwgo
- 3- Veri seti:

Rubini, L., Soundarapandian, P., & Eswaran, P. (2015). Chronic Kidney Disease Data Set. UCI Machine Learning Repository. https://doi.org/10.24432/C5G020

4- Akademik destekleyici kaynaklar:

Polat, K., & Günes, S. (2007). An expert system approach based on PCA and ANFIS to diagnosis of chronic kidney disease. Digital Signal Processing, 17(4), 702–710. https://doi.org/10.1016/j.dsp.2006.09.005

Kora, A. D., & Kalva, K. (2015). Hybrid Bacterial Foraging and PSO for detecting kidney disease. Procedia Computer Science, 57, 722–729. https://doi.org/10.1016/j.procs.2015.07.507