Dynamic Programming II

Longest Common Subsequence & Edit Distance & Longest Increasing Subsequence

Application 1: Longest Common Subsequence

Subsequence

Given two sequences of characters $X = \langle x_1 x_2 ... x_n \rangle$ and $Z = \langle z_1 z_2 ... z_k \rangle$, Z is called a subsequence of X if there is a strictly increasing sequence of k indices $(1 \le i_1 < i_2 < ... < i_k \le n)$ such that $Z_j = X_{i_i}$ (e.g. $X = \langle ABRACADABRA \rangle$ and $Z = \langle AADAA \rangle$ Z is a subsequence of X)

Longest Common Subsequence (LCS)

Problem: Given two strings $X = \langle x_1 x_2 ... x_m \rangle$ and $Y = \langle y_1 y_2 ... y_n \rangle$, determine a longest common subsequence Z such that Z is longest subsequence of X and Y

Example

X=<ABRACADABRA>Y=<YABBADABADOO>

Brute-force algorithm

- For every subsequence of X, check whether it's a subsequence of Y
 - 2^m subsequences of X to check
 - Each subsequence takes Θ(n) time
 to check; scan Y for first letter, for second...
 - $=> \Theta(n 2^m) time$

Optimal Substructure

Notation:

$$-X_i = \langle x_1 x_2 ... x_i \rangle$$

 $-Y_i = \langle y_1 y_2 ... y_i \rangle$

- Observation:
 - What happens if $x_i = y_i$?
 - -What happens if $x_i \neq y_i$?

Theorem

Let $Z = \langle z_1 z_2 ... z_k \rangle$ be LCS of X_i and Y_j

- $X_i = Y_i$:
 - $-z_k = x_i = y_i$
 - $-Z_{k-1}$ is an LCS of X_{i-1} and Y_{j-1}
- $x_i \neq y_i$:
 - $-z_k \neq x_i$: Z is an LCS of X_{i-1} and Y_i
 - $-z_k \neq y_j$: Z is an LCS of X_i and Y_{j-1}

Recursive Formulation

Let c[i,j] be the length of LCS of X_i and Y_j

- i=0, j=0 : c[i,j] = 0
- i, j >0 and $x_i = y_j$ c[i,j] = c[i-1][j-1]+1
- i, j >0 and x_i≠ y_j
 c[i,j]= max(c[i-1][j],c[i][j-1])

```
LCS-length(X,Y,m,n)
for i=1.. m
    c[i][0]=0
for j=1... n
    c[0][j]=0
for i=1..m
for j=1...n
   if x_i = y_i
     c[i][j] = c[i-1][j-1]+1
     b[i][j]= NW
   else if (c[i-1][j]>=
            c[i][j-1])
      c[i][j] = c[i-1][j]
      b[i][j] = N
   else
      c[i][j]=c[i][j-1]
      b[i][j] = W
```

```
Print-LCS(b,X,i,j)
if i=0 or j=0
   return
if b[i][j]=NW
   Print-LCS(b, X, i-1, j-1)
   print x
else if b[i][j]=N
   Print-LCS(b,X,i-1,j)
else
   Print-LCS(b,X,i,j-1)
```

Initial call is

Print-LCS(b, X, m, n)

		a	m	р	U	t	a	t	j	0	n
	0	-0+	-Q	0	0	0	0	0	0	0	0
S	0	\circ	0	0	\circ	0	0	0	0	0	0
р	0	0	0	↓	+	-1,	1	1	1	1	1
a	0	-	1	1	-	1	2	-2	2	2	2
	0	—	1	1	—	1	2	2	2	2	3
k	0	•	1	1	•	1	2	2	2	2	3
j	0	-	1	1	-	1	2	2	ွဲ့သံ	-3,	3
n	0	-	1	1	-	1	2	2	3	3	4
g	0	1	1	1	1	1	2	2	3	3	4

p a i n

Application 2: Edit Distance

Edit Operations

- Change one letter
 - computer => commuter
- Delete one letter
 - sport => sort
- Insert one letter

Edit Distance

- Edit distance of two strings X and Y
 - = minimum number of edit operations required to change X to Y

Recursive Formulation

- $d(X_0, Y_0) = 0$
- $d(X_i, Y_0) = i$ and $d(X_0, Y_i) = j$
- $d(X_i, Y_i) = minimum of$
 - $-d(X_{i-1},Y_{i-1}) + c$
 - if $x_i = y_i$ then c=0
 - else c=1 (edit X_{i-1} to Y_{j-1} and change x_i to y_j)
 - $-d(X_i,Y_{j-1}) + 1$ (edit X_i to Y_{j-1} and insert y_j)
 - $-d(X_{i-1},Y_j) + 1$ (delete x_i and edit X_{i-1} to Y_j)

EditDistance(X,Y,m,n)

```
d[0][0] = 0
for i=1... m
    d[i][0]=i
for j=1... n
    d[0][j]=j
for i=1..m
for j=1..n
    val = ((x_i == y_i) ? 0 : 1
    d[i][j] = min { d[i-1][j-1]+val,}
                   d[i-1][j]+1,
                   d[i][j-1]+1 }
```

Y			A	R	T	S
X		0	1	2	3	4
	0					
M	1					
A	2					
T	3					
Н	4					
S	5					

Y			A	R	T	S
X		0	1	2	3	4
	0	0				
M	1					
A	2					
T	3					
Н	4					
S	5					

Y	-		A	R	T	S
X		0	1	2	3	4
	0	0	← 1			
M	1					
A	2					
T	3					
Н	4					
S	5					

Y	,		A	R	T	S
X		0	1	2	3	4
	0	0	←1	← 2		
M	1					
A	2					
T	3					
Н	4					
S	5					

Y	-		A	R	T	S
X		0	1	2	3	4
	0	0	←1	← 2	← 3	← 4
M	1	† 1				
A	2	† 2				
T	3	† 3				
Н	4	† 4				
S	5	† 5				

Y			A	R	T	S
X		0	1	2	3	4
	0	0	←1	← 2	← 3	← 4
M	1	† 1	1			
A	2	† 2				
T	3	† 3				
Н	4	† 4				
S	5	† 5				

	Y		A	R	T	S
X		0	1	2	3	4
	0	0	← 1	← 2	← 3	← 4
M	1	<u>†</u> 1	1	≥ 2		
A	2	† 2				
T	3	†3				
Н	4	† 4				
S	5	† 5				

Y	-		A	R	T	S
X		0	1	2	3	4
	0	0	← 1	← 2	← 3	← 4
M	1	<u>†</u> 1	1	≥ 2	≥ 3	→ 4
A	2	† 2	1	≥ 2	≥ 3	≥ 4
T	3	†3				
Н	4	† 4				
S	5	† 5				

Y			A	R	T	S
X		0	1	2	3	4
	0	0	← 1	← 2	← 3	← 4
M	1	<u>†</u> 1	1	≥ 2	△ 3	4
A	2	† 2	1	≥ 2	△ 3	△ 4
T	3	†3	<u>†</u> 2	^ 2	^ 2	← 3
Н	4	† 4				
S	5	† 5				

Y			A	R	T	S
X		0	1	2	3	4
	0	0	← 1	← 2	← 3	← 4
M	1	† 1	^ 1	△ 2	△ 3	△ 4
A	2	† 2	1	≥ 2	≥3	≥ 4
T	3	†3	<u>†</u> 2	^ 2	^ 2	← 3
Н	4	† 4	† 3	√ 3	√3	3
S	5	† 5	† 4	√14	√14	\ 3

The traceback

Y			A	R	T	S
X		0	1	2	3	4
	0	0	← 1	← 2	← 3	← 4
M	1	1	^ 1	≥ 2	△ 3	→ 4
A	2	†2	1	≥ 2	△ 3	≥ 4
T	3	† 3	†2	2	^ 2	← 3
Н	4	† 4	†3	1 3	13	^ 3
S	5	† 5	† 4	√14	√14	3

The solutions - #1

The traceback

Y			A	R	T	S
X		0	1	2	3	4
	0	0	← 1	← 2	← 3	← 4
M	1	†1	\ 1	≥ 2	△ 3	△ 4
A	2	†2	1	2	△ 3	△ 4
T	3	† 3	<u>†</u> 2	^ 2	2	← 3
Н	4	† 4	†3	₹3	13	\ 3
S	5	† 5	† 4	1 4	√14	3

The solutions - #2

The traceback

Y			A	R	T	S
X		0	1	2	3	4
	0	0	←1	← 2	← 3	← 4
M	1	† 1	1	△ 2	△ 3	△ 4
A	2	<u>†</u> 2	1	-2	△ 3	△ 4
T	3	† 3	<u>†</u> 2	^ 2	2	← 3
Н	4	† 4	† 3	1 3	13	^ 3
S	5	† 5	† 4	√4	√4	3

The solutions - #3

"Life must be lived forwards and understood backwards."

- Søren Kierkegaard

Application 3: Longest Increasing Subsequence

Longest Increasing Subsequence (LIS)

Problem:

Given a string $X = \langle x_1 | x_2 ... | x_n \rangle$, find a longest increasing subsequence

$$Z = \langle z_1 z_2 ... z_k \rangle$$
 such that
 $z_1 \langle z_2 z_2 \rangle = ... \langle z_k \rangle$

Example

• $X = \langle 3, 1, 2, 6, 1, 4, 7, 8 \rangle$

Brute-force algorithm

- For every subsequence of X, check whether it's an increasing subsequence of X
 - 2ⁿ subsequences of X to check
 - Each subsequence takes Θ(n) time
 - $=> \Theta(n 2^n) time$

Recursive Formulation

- L[i]: Length of LIS of $X_i = \langle x_1 | x_2 ... | x_i \rangle$ that ends with x_i
- P[i]: Index of the element before x_i in the lis ending at x_i
- L[i] >= 1 for all i
- L[i] = 1 + $max\{ L[j]: 1 <= j < i and <math>x_j <= x_i \}$

```
LIS(X,L,P,n)
for(i=1.. n){
    L[i]=1;
    P[i]=0;
   for(j=1.. i-1){
      if((x[j]<=x[i])
     \&\&(L[j]+1 > L[i])){
         L[i] = L[j] + 1;
         P[i]=j;
```

Print-LIS(X,L,P,n)

```
L[i] := max {L[j]:
    1<=j<=n}
RecoverHelper(X,L,P,i);</pre>
```

RecoverHelper(X,L,P,k)

```
if (k>0){
RecoverHelper(X,L,P,P[k]);
print X[k];
}
```

O(n log n) algorithm

Step i:

- LIS[j]= Smallest X[k] (k<=i) having an increasing subsequence of length j ending at this value
- P[i] = LIS에서의 위치

```
L = 0; LIS[0]=-infty; LIS[1..n+1]=infty;
for i=1, 2, ..., n
    binary search for the largest j
    such that LIS[j] <= X[i];
    P[i] = j+1;
    if (j==L or X[i] < LIS[j+1]){
        LIS[j+1] = X[i]; L = max(L, j+1);
}</pre>
```

STL – lower_bound

- 정렬되어 있는 배열에서
 - lower_bound

: 크거나 같은 수 중에 정열 상태 유지하면서

들어가도 되는 첫 번째 위치

upper_bound

23

: 큰 수 중에 정열 상태 유지하면서

들어가도 되는 첫 번째 위치

idx	1	2	3	4	5	6	7	8
input	-7	10	9	2	3	8	8	1
	•							
Р								

(LIS 에서의 위치)

	1	2	3	4	5	6	7	8
LIS -i	-7	i	i	i	i	i	i	i

(LIS 에서의 위치)

1

(LIS 에서의 위치)

1

idx	1	2	3	4	5	6	7	8
input	-7	10	9	2	3	8	8	1
					1			
Р	1	2	2	2				

		1	2	3	4	5	6	7	8
LIS	-i	-7	2	i	i	i	i	i	i

(LIS 에서의 위치)

idx	1	2	3	4	5	6	7	8
input	-7	10	9	2	3	8	8	1
						•		
Р	1	2	2	2	3			

1 2 3 4 5 6 7 8

LIS -i -7 2 3 i i i i i

(LIS 에서의 위치)

1

idx	1	2	3	4	5	6	7	8
input	-7	10	9	2	3	8	8	1
							•	
Р	1	2	2	2	3	4		

(LIS 에서의 위치)

lack

idx	1	2	3	4	5	6	7	8
input	-7	10	9	2	3	8	8	1
								<u> </u>
								•
Р	1	2	2	2	3	4	5	1

1

idx	1	2	3	4	5	6	7	8
input	-7	10	9	2	3	8	8	1

P 1 :	2 2	2 3	4 5	2
-------	-----	-----	-----	---

(LIS 에서의 위치)

		1	2	3	4	5	6	7	8
LIS	-i	-7	1	3	8	8	i	i	i

	idx	1	2	3	4	5	6	7	8
	input	-7	10	9	2	3	8	8	1
	Р	1	2	2	2	3	4	5	2
	(LIS 에서	의 위치)							-
		1	2	3	4	5	6	7	8
LIS	-i	-7	1	3	8	8	i	i	i