

MINISTERIO DE UNIVERSIDADES

Tight and Compact Sample Average Approximation for Joint Chance Constrained Optimal Power Flow

Álvaro Porras, Concepción Domínguez, Juan Miguel Morales, Salvador Pineda October 17th, 2022

OASYS Group, Universidad de Málaga

Outline

Introduction to Joint Chance Constrained Optimal Power Flow (JCC-OPF)

Sample Average Approximation MIP reformulation

Tightening and screening

Valid inequalities

Computational Results: OPF

Introduction to Joint Chance

(JCC-OPF)

Constrained Optimal Power Flow

Introduction to JCC-OPF

- OPF under uncertainty: minimize the expected operating cost whilst guaranteeing that the system withstands unforeseen peeks of electrical load due to stochastic demand.
- Chance constraints ensure feasibility of the system with a tolerable probability of constraint violation.
- Cost-effective decisions can be taken by discarding extreme events or unexpected random circumstances.
- General (linear) formulation:

$$\begin{aligned} & \underset{x}{\text{min}} & c^{\top}x \\ & \text{s.t.} & x \in X \\ & & \mathbb{P}\left\{a_{j}(\omega)^{\top}x \leqslant b_{j}(\omega), \ \forall j\right\} \geqslant 1 - \epsilon. \end{aligned}$$

Introduction to JCC-OPF

Assumptions considered:

- Net demand uncertainty: $\tilde{d}_n = d_n \omega_n$, where d_n where d_n is the predicted value and ω_n is the forecast error with a change of sign.
- **Generation**: To cope with the forecast errors $(\omega_n)_{n \in \mathcal{N}}$, generators' power outputs are adjusted according to the following affine control policy:

$$\tilde{p}_g = p_g - \beta_g \Omega, \quad \forall g \in \mathcal{G},$$

where $\Omega:=\sum_{n\in\mathcal{N}}\omega_n$ is the system-wise aggregated forecast error, and p_g and β_g are the power output dispatch and the participation factor of generating unit g.

Power Balance:

$$\begin{split} \sum_{g \in \mathcal{G}} \tilde{p}_g - \sum_{n \in \mathcal{N}} \tilde{d}_n &= \sum_{g \in \mathcal{G}} \left(p_g - \beta_g \Omega \right) - \sum_{n \in \mathcal{N}} \left(d_n - \omega_n \right) = 0. \\ \sum_{g \in \mathcal{G}} p_g - \sum_{n \in \mathcal{N}} d_n &= 0 \text{ and } \sum_{g \in \mathcal{G}} \beta_g = 1. \end{split}$$

DC Power Flow.

Introduction to JCC-OPF

The mathematical formulation is expressed as follows:

$$\begin{split} & \underset{\rho_{g},\beta_{g}}{\min} \quad \mathbb{E}\left[\sum_{g \in \mathcal{G}} C(\rho_{g},\beta_{g})\right] \\ & \text{s.t.} \sum_{g \in \mathcal{G}} \beta_{g} = 1 \\ & \sum_{g \in \mathcal{G}} p_{g} - \sum_{n \in \mathcal{N}} d_{n} = 0 \\ & \mathbb{P}\left(\begin{array}{c} \underline{p}_{g} \leqslant p_{g} - \Omega \beta_{g} \leqslant \overline{p}_{g}, & \forall g \in \mathcal{G} \\ -\overline{f}_{I} \leqslant \sum_{n \in \mathcal{N}} B_{In} \left(\sum_{g \in \mathcal{G}_{n}} (p_{g} - \Omega \beta_{g}) + \omega_{n} - d_{n}\right) \leqslant \overline{f}_{I}, & \forall I \in \mathcal{L} \end{array}\right) \geqslant 1 - \epsilon, \\ & p_{g}, \beta_{g} \geqslant 0, \forall g \in \mathcal{G}. \end{split}$$

Chance-constrained SAA MIP reformulation (with Big-Ms)

- Sample Average Approx.: assume a finite discrete distribution ⇒ MIP reformulation
- $s \in \mathcal{S}$ scenarios (with equal probabilities)
- $y_s \in \{0,1\}$ such that $y_s = 0 \Leftrightarrow$ the scenario s is satisfied

$$\begin{aligned} & \underset{x}{\min} \quad c^{\top}x \\ & \text{s.t.} \quad x \in X \\ & & \mathbb{P}\left\{a_{j}(\omega)^{\top}x \leqslant b_{j}(\omega), \ \forall j\right\} \geqslant 1 - \epsilon. \end{aligned} \qquad \begin{aligned} & \underset{x}{\min} \quad c^{\top}x \\ & \text{s.t.} \quad x \in X \\ & a_{js}^{\top}x \leqslant b_{j}(\omega) + M_{js}y_{s}, \quad \forall j, s \\ & \sum_{s \in S}y_{s} \leqslant p \\ & y_{s} \in \{0, 1\}, \quad \forall s. \end{aligned}$$

JCC-OPF via Sample Average Approximation

The MIP reformulation of JCC-OPF writes as follows:

$$\begin{split} & \underset{\rho_g,\beta_g}{\text{min}} \quad \mathbb{E}\left[\sum_{g \in \mathcal{G}} C(\rho_g,\beta_g)\right] \\ & \text{s.t.} \sum_{g \in \mathcal{G}} \beta_g = 1 \\ & \sum_{g \in \mathcal{G}} p_g - \sum_{n \in \mathcal{N}} d_n = 0 \\ & - y_s M_{gs}^1 + \underline{p}_g \leqslant p_g - \Omega_s \beta_g \leqslant \overline{p}_g + y_s M_{gs}^2, \quad \forall g, s \\ & - y_s M_{ls}^3 - \overline{f}_l \leqslant \sum_{n \in \mathcal{N}} B_{ln} \left(\sum_{g \in \mathcal{G}_n} \left(p_g - \Omega_s \beta_g\right) - d_n + \omega_{ns}\right) \leqslant \overline{f}_l + y_s M_{ls}^4, \quad \forall l, s \\ & p_g, \beta_g \geqslant 0, \forall g \in \mathcal{G}. \\ & \sum_{s \in \mathcal{S}} y_s \leqslant p \\ & y_s \in \{0, 1\}, \quad \forall s. \end{split}$$

Tightening and screening

Tightening and screening

Algorithm 1 Iterative Coefficient Strengthening (κ iterations)

```
Initialization: k \leftarrow 0, M_{js}^0 \leftarrow \infty.

while k < \kappa do
for j \in \mathcal{J} and s \in \mathcal{S} do
if M_{js}^k > 0 then
1) Tightening phase: Solve
M_{js}^{k+1} \leftarrow \arg\max_{x,y}
s.t.
```

$$\begin{aligned} M_{js}^{k+1} \leftarrow \arg\max_{x,y} \quad & a_{js}^{\top} x - b_{js} \\ \text{s.t.} \quad & x \in X \\ & a_{js}^{\top} x - b_{js} \leqslant M_{js}^{k} y_{s}, \quad \forall j, s \\ & \sum_{s \in S} y_{s} \leqslant p \\ & 0 \leqslant y_{s} \leqslant 1, \quad \forall s. \end{aligned}$$

```
end if  \text{if } M_j^{k+1} < 0 \text{ then}    2) \text{ Screening phase: Eliminate constraint } (j,s) \text{ from the model.}  end if  \text{end for}  Set k \leftarrow k+1.  end while
```

Valid inequalities

Valid inequalities I: generators

For a given g (the process is analogous for the upper bound constraint)

- $\bullet \ \ \rho_{\rm g} \Omega_{\rm s} \beta_{\rm g} \geqslant \underline{\rho}_{\rm g} \quad \Rightarrow \quad \rho_{\rm g} \underline{\rho}_{\rm g} \geqslant \Omega_{\rm s} \beta_{\rm g}$
- \bullet Let us consider a set of scenarios $\Omega:=\{2,-4,4,5,0\}$
- Acceptable violation probability is 40%. Then, if we have 5 scenarios, a constraint can be violated at most in 2 scenarios.

$$\begin{split} & \rho_g - \underline{\rho}_g \geqslant 2 \, \beta_g \\ & \rho_g - \underline{\rho}_g \geqslant -4 \, \beta_g \\ & \rho_g - \underline{\rho}_g \geqslant 4 \, \beta_g \\ & \rho_g - \underline{\rho}_g \geqslant 5 \, \beta_g \\ & \rho_g - \underline{\rho}_\sigma \geqslant 0 \, \beta_g \end{split}$$

^{*}It is like ordering 1-dimensional affine functions without intercept.

Valid inequalities I: generators

For a given g (the process is analogous for the upper bound constraint)

- $\bullet \ \ \rho_{\rm g} \Omega_{\rm s} \beta_{\rm g} \geqslant \underline{\rho}_{\rm g} \quad \Rightarrow \quad \rho_{\rm g} \underline{\rho}_{\rm g} \geqslant \Omega_{\rm s} \beta_{\rm g}$
- \bullet Let us consider a set of scenarios $\Omega:=\{2,-4,4,5,0\}$
- Acceptable violation probability is 40%. Then, if we have 5 scenarios, a constraint can be violated at most in 2 scenarios.

$$\begin{aligned} & \rho_{g} - \underline{\rho}_{g} \geqslant 2 \, \beta_{g} \\ & \rho_{g} - \underline{\rho}_{g} \geqslant -4 \, \beta_{g} \\ & \rho_{g} - \underline{\rho}_{g} \geqslant 4 \, \beta_{g} \\ & \rho_{g} - \underline{\rho}_{g} \geqslant 5 \, \beta_{g} \\ & \rho_{g} - \rho_{g} \geqslant 0 \, \beta_{g} \end{aligned}$$

- In a descending order, the constraint with the third largest Ω must be satisfied.
- Therefore, the following constraint is a valid inequality.

$$p_{\rm g} - \underline{p}_{\rm g} \geqslant 2\,\beta_{\rm g}$$

^{*}It is like ordering 1-dimensional affine functions without intercept.

For a given I (the process is analogous for the upper bound constraint)

$$\begin{split} & \sum_{n \in \mathcal{N}} B_{ln} \left(\sum_{g \in \mathcal{G}_n} \left(p_g - \Omega_s \beta_g \right) + \omega_{ns} - d_n \right) \geqslant -\overline{f}_I \\ & \sum_{n \in \mathcal{N}} B_{ln} \left(\sum_{g \in \mathcal{G}_n} p_g - d_n \right) + \overline{f}_I \geqslant \Omega_s \sum_{n \in \mathcal{N}} B_{ln} \sum_{g \in \mathcal{G}_n} \beta_g - \sum_{n \in \mathcal{N}} B_{ln} \omega_{ns} \end{split}$$

Per each line constraint, the right-hand side is an 1-dimensional affine function per scenario as follows:

$$t_{ls} = \Omega_s z_l + b_{ls}$$
 where:
$$z_l = \sum_{n \in \mathcal{N}} B_{ln} \sum_{g \in \mathcal{G}_n} \beta_g \quad \text{and} \quad \underline{z}_l \leqslant \overline{z}_l$$

$$b_{ls} = \sum_{n \in \mathcal{N}} B_{ln} \omega_{ns}$$

9

$$\sum_{n \in \mathcal{N}} B_{ln} \left(\sum_{g \in \mathcal{G}_n} p_g - d_n \right) + \overline{f}_l \geqslant t_{ls} = \Omega_s z_l + b_{ls}$$

Let us consider an example of 8 scenarios where the constraints can be violated in at most 4 scenarios.

$$\sum_{n \in \mathcal{N}} B_{ln} \left(\sum_{g \in \mathcal{G}_n} p_g - d_n \right) + \overline{f}_l \geqslant t_{ls} = \Omega_s z_l + b_{ls}$$

$$\sum_{n \in \mathcal{N}} B_{ln} \left(\sum_{g \in \mathcal{G}_n} p_g - d_n \right) + \overline{f}_l \geqslant t_{ls} = \Omega_s z_l + b_{ls}$$

$$\sum_{n \in \mathcal{N}} B_{ln} \left(\sum_{g \in \mathcal{G}_n} p_g - d_n \right) + \overline{f}_l \geqslant t_{ls} = \Omega_s z_l + b_{ls}$$

Rider Algorithm

$$\sum_{n \in \mathcal{N}} B_{ln} \left(\sum_{g \in \mathcal{G}_n} p_g - d_n \right) + \overline{f}_l \geqslant t_{ls} = \Omega_s z_l + b_{ls}$$

$$\sum_{n \in \mathcal{N}} B_{ln} \left(\sum_{g \in \mathcal{G}_n} p_g - d_n \right) + \overline{f}_l \geqslant t_{ls} = \Omega_s z_l + b_{ls}$$

$$\sum_{n \in \mathcal{N}} B_{ln} \left(\sum_{g \in \mathcal{G}_n} p_g - d_n \right) + \overline{f}_l \geqslant t_{ls} = \Omega_s z_l + b_{ls}$$

Lower hull: Jarvis March, Graham scan

Computational Results: OPF

Computational Results: OPF

- Approaches **T**, **TS**, **V** and **TS+V** using five standard power systems.
- Instance: IEEE-118 test system: 118 nodes, 19 generators, 186 lines.
- GUROBI 9.1.2 on a Linux-based server with CPUs clocking at 2.6 GHz, 6 threads and 32 GB of RAM.
- 1000 scenarios, 5% violation of the JCC ($\epsilon = 0.05, p = 50$).
- Time limit: 10 hours.
- Results averaged over ten instances.

Computational Results

IEEE-118	BN	T (3)	TS (3)	BN+V	TS (1)+ V
#CON	410413	100%	5.6%	101.6%	2.68%
LRgap	0.956%	0.434%	0.434%	0.4784%	0.2821%
MIPgap	0.29% (0)	0.12% (0)	0.01% (6)	0.03% (1)	0.00% (10)
Time	36000	1.0×	1.4×	1.1×	23.1x

Comparison

	Methods	IEEE-118
	TS+V	0.00%
Average cost increase	CVaR	0.57%
Average cost increase	ALSO-X	0.08%
	ALSO-X+	0.05%
	TS+V	23.1x
Cuandum factor	TS+V CVaR ALSO-X ALSO-X+	4045.5x
Speedup factor	ALSO-X 148.6x	
	$ALSO ext{-}X ext{+}$	49.3x

The End

Á. Porras, C. Domínguez, J.M. Morales, and S. Pineda. (2022) Tight and compact sample average approximation for joint chance-constrained optimal power flow. *arXiv* preprint *arXiv*:2205.03370.

THANK YOU FOR YOUR ATTENTION