Andrea Gadotti

Esercizio 1

Vogliamo esprimere $(\alpha^2 + \alpha + 1)(\alpha^2 + \alpha)$ e $(\alpha - 1)^{-1}$ nella forma

$$a\alpha^2 + b\alpha + c$$

Poiché $\alpha^3+\alpha^2+\alpha+2=0$, si ha $\alpha^3=-\alpha^2-\alpha-2$, e quindi $\alpha^4=\alpha\alpha^3=-\alpha^3-\alpha^2-2\alpha=-\alpha+2$. Allora:

$$(\alpha^{2} + \alpha + 1)(\alpha^{2} + \alpha) = \alpha^{4} + 2\alpha^{3} + 2\alpha^{2} + \alpha = -2\alpha - 2$$

Quindi a = 0, b = -2, c = -2.

Consideriamo ora $\beta := (\alpha - 1)^{-1}$. β è tale che $(\alpha - 1)\beta = 1$, ovvero $(a\alpha^2 + b\alpha + c)(\alpha - 1) = 1$. Sviluppando il prodotto si trova:

$$(b-2a)\alpha^{2} + (c-a-b)\alpha - (2a+c) = 1$$

Abbiamo quindi il seguente sistema:

$$\begin{cases} b - 2a = 0 \\ c - a - b = 0 \\ 2a + c = 0 \end{cases}$$

Si trova facilmente che il sistema ha soluzione $a=-\frac{1}{5},b=-\frac{2}{5},c=-\frac{3}{5}.$

Esercizio 2

Supponiamo $[F(\alpha):F]=2n+1$ per qualche $n\in\mathbb{N}$. Allora:

$$[F(\alpha):F(\alpha^2)][F(\alpha^2):F] = [F(\alpha):F] = 2n + 1$$

quindi entrambi i fattori del prodotto sono dispari. Affermiamo che $[F(\alpha):F(\alpha^2)]=1$ (e quindi $F(\alpha)=F(\alpha^2)$). Osserviamo che il polinomio $x^2-\alpha^2\in F(\alpha^2)[x]$ ha banalmente α come radice, quindi $[F(\alpha):F(\alpha^2)]$ è 1 o 2. Ma 2 non è dispari, quindi $[F(\alpha):F(\alpha^2)]=1$.

Esercizio 3

Abbiamo

$$[F(\alpha,\beta):F(\alpha)][F(\alpha):F] = [F(\alpha,\beta):F] = [F(\alpha,\beta):F(\beta)][F(\beta):F]$$

ovvero

$$[F(\alpha, \beta) : F(\alpha)] \cdot \deg(f) = [F(\alpha, \beta) : F(\beta)] \cdot \deg(g)$$

Quindi $\deg(g) \mid [F(\alpha, \beta) : F(\alpha)] \cdot \deg(f)$. Poiché $\deg(f)$ e $\deg(g)$ sono coprimi per ipotesi, si ha $\deg(g) \mid [F(\alpha, \beta) : F(\alpha)]$. Ma ovviamente $[F(\alpha)(\beta) : F(\alpha)] \leq [F(\beta) : F] = \deg(g)$, quindi $[F(\alpha, \beta) : F(\alpha)] = \deg(g)$, ovvero g è irriducibile su $F(\alpha)$.

Esercizio 4

Sia $\alpha := \sqrt[4]{2}$. Il suo polinomio minimo su \mathbb{Q} è banalmente $x^4 - 2$, quindi $| \mathbb{Q}(\alpha) : \mathbb{Q} | = 4$. Stiamo cercando i campi intermedi. Supponiamo allora di avere $\beta \in \mathbb{Q}(\alpha)$ con $\beta \notin \mathbb{Q}$. Poiché

$$|\mathbb{Q}(\alpha)(\beta):\mathbb{Q}(\beta)|\cdot|\mathbb{Q}(\beta):\mathbb{Q}|=4$$

è chiaro che dobbiamo avere $|\mathbb{Q}(\beta):\mathbb{Q}|=2$.

Consideriamo allora il polinomio minimo di β su \mathbb{Q} . Esso dovrà essere della forma $x^2 + \gamma + \delta$. Supponiamo β e β' radici. Allora $\beta + \beta' = \gamma \in \mathbb{Q}$ e $\beta\beta' = \delta \in \mathbb{Q}$. Poiché

$$\mathbb{Q}(\sqrt[4]{2}) = \{ a + b\alpha + c\alpha^2 + d\alpha^3 \mid \alpha^4 = 2, \ a, b, c, d \in \mathbb{Q} \}$$

si ha che

$$\beta = a + b\alpha + c\alpha^2 + d\alpha^3$$
, $\beta' = a' + b'\alpha + c'\alpha^2 + d'\alpha^3$

dove i coefficienti stanno in \mathbb{Q} . Poiché $\beta + \beta' \in \mathbb{Q}$, si ha banalmente b = -b', c = -c', d = -d'. Quindi

$$\beta = a + \xi \alpha, \ \beta' = a' - \xi \alpha, \ \operatorname{con} \xi := b + c\alpha + d\alpha^2$$

Osservando che $\beta\beta' = (a + \xi\alpha)(a' - \xi\alpha) \in \mathbb{Q}$ e facendo i conti si trova facilmente che b = 0 e d = 0. Ovvero $\beta = a + c\alpha^2$, ovvero $Q(\beta) = \mathbb{Q}(\sqrt{2})$.

Esercizio 5

Sia $f(x) = x^6 + x^3 + 1 \in \mathbb{Q}[x]$. Osserviamo che $(x^3 - 1)f(x) = x^9 - 1$, quindi le radici di f in \mathbb{C} sono le radici none dell'unità che non sono anche radici terze.

Quindi, poiché $\sigma(\alpha)$ deve essere ancora una radice di f (e l'omomorfismo è completamente determinato da essa), abbiamo che gli omomorfismi cercati sono 6 e sono dati da:

$$\sigma_k(\alpha) := e^{2\pi i k/9}$$

dove k = 1, 2, 4, 5, 7, 8.

Esercizio 6

 $\sqrt{2} + \sqrt{3}$ è algebrico su \mathbb{Q} , di grado 4. Infatti $\sqrt{2} + \sqrt{3}$ è radice del polinomio

$$x^4 - 10x^2 + 1$$

Rimane da mostrare che $[\mathbb{Q}(\sqrt{2} + \sqrt{3}) : \mathbb{Q}] = 4$. Osserviamo innanzitutto che $[\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}] = 4$. Questo si mostra facilmente con la formula dei gradi, in quanto è semplice far vedere che $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$.

Ma allora, per la formula dei gradi, abbiamo che

$$[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}(\sqrt{2}+\sqrt{3})][\mathbb{Q}(\sqrt{2}+\sqrt{3}):\mathbb{Q}]=4$$

Mostriamo che $[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}(\sqrt{2}+\sqrt{3})]=1$. Infatti $(\sqrt{2}+\sqrt{3})^3=11\sqrt{2}+9\sqrt{3}$, quindi

$$\frac{(\sqrt{2} + \sqrt{3})^3 - 9(\sqrt{2} + \sqrt{3})}{2} = \sqrt{2}$$

Quindi $[\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}(\sqrt{2} + \sqrt{3})] = 1$ e perciò $[\mathbb{Q}(\sqrt{2} + \sqrt{3}) : \mathbb{Q}] = 4$.

Esercizio 7

Sappiamo che qualsiasi estensione di grado finito è un'estensione algebrica. Poiché E e F hanno grado finito, abbiamo che $E = k(\alpha_1, ..., \alpha_n)$ e $F = k(\beta_1, ..., \beta_m)$. Quindi $EF = k(\alpha_1, ..., \alpha_n, \beta_1, ..., \beta_m)$. Per la formula dei gradi, sappiamo che

$$[EF:k] = [EF:F][F:k]$$

Poiché ogni polinomio in k[x] è anche un polinomio in F[x], è chiaro che $[EF:F] \le [E:k]$, ovvero

$$[EF:k] \le [E:k][F:k]$$

Mostriamo che se [E:k] e [F:k] sono coprimi, allora vale l'uguaglianza. Ricordiamo che $E=k(\alpha_1,...,\alpha_n)$. Procediamo per induzione su n:

• Se n=0, allora significa che EF=F, quindi la tesi è banalmente soddisfatta.

• Se n > 0, supponiamo $[k(\alpha_1, ..., \alpha_n)F : F] < [k(\alpha_1, ..., \alpha_n) : k]$. Per la formula dei gradi,

$$[k(\alpha_1, ..., \alpha_n)F : F] = [(k(\alpha_1, ..., \alpha_{n-1})F)(\alpha_n) : k(\alpha_1, ..., \alpha_{n-1})F][k(\alpha_1, ..., \alpha_{n-1})F : kF]$$

$$[k(\alpha_1, ..., \alpha_n) : k] = [k(\alpha_1, ..., \alpha_{n-1})(\alpha_n) : k(\alpha_1, ..., \alpha_{n-1})][k(\alpha_1, ..., \alpha_{n-1}) : k]$$

Poiché per ipotesi il primo termine è strettamente minore del secondo, significa che

(a)
$$[k(\alpha_1, ..., \alpha_{n-1})F : kF] < [k(\alpha_1, ..., \alpha_{n-1}) : k]$$
, oppure

(b)
$$[(k(\alpha_1,...,\alpha_{n-1})F)(\alpha_n):k(\alpha_1,...,\alpha_{n-1})F] < [k(\alpha_1,...,\alpha_{n-1})(\alpha_n):k(\alpha_1,...,\alpha_{n-1})]$$

Se vale (a), per ipotesi induttiva significa che $[k(\alpha_1,...,\alpha_{n-1}):k]$ e [F:k] non sono coprimi. Ma allora neanche $[E:k]=[k(\alpha_1,...,\alpha_{n-1})(\alpha_n):k(\alpha_1,...,\alpha_{n-1})][k(\alpha_1,...,\alpha_{n-1}):k]$ e [F:k] sono coprimi, e quindi la dimostrazione è conclusa.

Se non vale (a), allora deve valere (b). Ma allora possiamo proseguire "estraendo" ogni volta un α_j , e prima o poi dovremo necessariamente giungere a una situazione sostanzialmente uguale ad (a).

Esercizio 8

Procediamo per induzione su n. Se n=1 la tesi è banalmente vera. Supponiamo ora che sia vero per ogni numero $\leq n$ e mostriamo che vale anche per n+1. Sia allora F un campo e sia $f(x) \in F[x]$ un polinomio di grado n+1. Sia K il campo di spezzamento di f.

• Se f(x) è riducibile, sia $p(x) \in F[x]$ un suo fattore irriducibile (quindi $1 \le \deg p \le n$). Sia E il campo di spezzamento di p(x). Allora f(x) = p(x)g(x) per qualche $g(x) \in E[x]$. Abbiamo allora che K è il campo di spezzamento di g(x) su E. Per ipotesi induttiva, otteniamo $[E:F] \mid (\deg p)!$ e $[K:E] \mid (\deg g)!$. Per la formula dei gradi sappiamo che [K:F] = [K:E][E:F]. Quindi

$$[K:F] \, | \, (\deg p)! \, (\deg g)!$$

Ma poiché $\forall a, b \in \mathbb{N}$ vale $a! \, b! \, | \, (a+b)!$, abbiamo che $[K:F] \, | \, (\deg p + \deg g)! = (\deg f)!$ e la tesi è provata.

• Se f(x) è irriducibile, sia α una sua radice. Chiaramente $[F(\alpha):F]=n+1$ e $f(x)=(x-\alpha)g(x)$ con $g(x)\in F(\alpha)$ che ha grado n. Quindi K è il campo di spezzamento di g(x) su $F(\alpha)$ e allora per ipotesi induttiva $[K:F(\alpha)] \mid n!$. Per la formula dei gradi vale

$$[K:F] = [K:F(\alpha)][F(\alpha):F]$$

e perciò [K : F] | (n+1)n! = (n+1)!.

Esercizio 9

Sia $f(x) = x^{p^8} - 1 \in \mathbb{Z}/p\mathbb{Z}[x]$ con p primo. Allora $f(x) = (x-1)^{p^8}$, quindi l'unica radice di f(x) è 1. Perciò in campo di spezzamento di f è $\mathbb{Z}/p\mathbb{Z}[x]$ stesso.

Esercizio 10

Sia $\alpha \in \mathbb{R}$ tale che $\alpha^4 = 5$.

- (a) È chiaro che $\alpha^2 = \sqrt{5}$. Vogliamo mostrare che $\mathbb{Q}(i\alpha^2) = \mathbb{Q}(i\sqrt{5})$ è estensione normale di \mathbb{Q} . Sia $f(x) = x^2 + 5$. Le radici di f sono $\pm i\sqrt{5} \in \mathbb{Q}(i\sqrt{5})$, che quindi è il campo di spezzamento per il polinomio f.
- (b) Osserviamo che $(\alpha + i\alpha)^2 = \alpha^2 + 2i\alpha^2 \alpha^2 = 2i\alpha^2 \in \mathbb{Q}(i\alpha^2)$. Quindi $\mathbb{Q}(\alpha + i\alpha)$ è il campo di spezzamento per il polinomio $f(x) = x^2 2i\alpha^2 \in \mathbb{Q}(i\alpha^2)$.
- (c) Osserviamo che $\alpha + i\alpha$ è radice del polinomio $f(x) = x^4 + 20 \in \mathbb{Q}[x]$. Inoltre f è irriducibile, in quanto in \mathbb{C} abbiamo che

$$f(x) = (x - \beta_1)(x - \beta_2)(x - \beta_3)(x - \beta_4)$$

dove $\beta_1 = \alpha + i\alpha$, $\beta_2 = -\alpha + i\alpha$, $\beta_3 = -\alpha - i\alpha$, $\beta_4 = \alpha - i\alpha$, e nessuno dei fattori sta in Q[x] e nemmeno nessun prodotto di due fattori.

Ci basta quindi mostrare che esiste una radice di f che non sta in $\mathbb{Q}(\alpha + i\alpha)$. Supponiamo per assurdo che $\beta_1, \beta_4 \in \mathbb{Q}(\alpha + i\alpha)$. Allora anche $\alpha = \beta_1 - \beta_4 \in \mathbb{Q}(\alpha + i\alpha)$, e quindi anche $i = \beta_1 \alpha^{-1} \in \mathbb{Q}(\alpha + i\alpha)$. Quindi $\mathbb{Q}(\alpha, i) \subseteq \mathbb{Q}(\alpha + i\alpha)$. Ma $\mathbb{Q}(\alpha + i\alpha)$ ha grado 4 su \mathbb{Q} , mentre è facile vedere che $\mathbb{Q}(\alpha, i)$ ha grado 8 su \mathbb{Q} (si usa la formula dei gradi e il fatto immediato che $\sqrt[4]{5} \notin \mathbb{Q}(i)$).

Esercizio 11

(c) Su \mathbb{C} , $f(x) = (x - \alpha)(x - \alpha_2)(x - \alpha_3)$ dove $\alpha = \sqrt[3]{2}$, $\alpha_2 = \alpha(-1/2 + i\sqrt{3}/2)$, $\alpha_3 = \alpha(-1/2 - i\sqrt{3}/2)$. Quindi il campo di spezzamento di f(x) su \mathbb{Q} è $\mathbb{Q}(\alpha, \alpha_2, \alpha_3)$. Osserviamo che $\alpha_3 = -\alpha - \alpha_2$, quindi $\mathbb{Q}(\alpha, \alpha_2, \alpha_3) = \mathbb{Q}(\alpha, \alpha_2)$. Quindi, preso $\varepsilon := i\sqrt{3}$, abbiamo banalmente $\mathbb{Q}(\alpha, \alpha_2) = \mathbb{Q}(\alpha, \varepsilon)$. Affermo che $[\mathbb{Q}(\alpha, \varepsilon) : \mathbb{Q}] = 6$, e questo chiaro usando l'Esercizio 7 e il fatto che $[\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}] = 3$ e $[\mathbb{Q}(i\sqrt{3}) : \mathbb{Q}] = 2$.

Esercizio 12

Vogliamo mostrare che in K valgono $\forall y \exists x (y = x^p)$ e $\forall a, b (a^p = b^p \Rightarrow a = b)$. Il secondo punto è immediato, perché $a^p - b^p = 0 \Rightarrow (a - b)^p = 0 \Rightarrow a - b = 0 \Rightarrow a = b$. Mostriamo il primo punto: se y = 0 è banale. Se $y \neq 0$, poiché K è un campo con p^n elementi, si ha che $|K^*| = p^n - 1$. Quindi $y^{p^n-1} = 1$, ovvero $y^{p^n} = y$. Osserviamo adesso che, preso $y^{p^{n-1}} \in K$, si ha

$$\left(y^{p^{n-1}}\right)^p = y^{p^n} = y$$

ovvero $y^{p^{n-1}}$ è la radice p-sima cercata.

Esercizio 13

Sia L il campo di spezzamento di $f(x) \in K[x]$. Sia A l'insieme di tutte le radici di f, che per ipotesi sono distinte e formano un campo. A è quindi un campo finito, ovvero $|A| = p^n$ per qualche $n \ge 1$, dove $p = \operatorname{char} A$. Quindi $\deg f = p^n$. Osserviamo che

$$g(x) := x^{p^n} - x \in K[x]$$

ha come radici proprio l'insieme A. Infatti $x^{p^n} - x = x(x^{p^n-1} - 1)$. Quindi g ha come radici 0 e tutti gli x tali che $x^{p^n-1} = 1$. Ma quest'ultima equazione è soddisfatta da qualsiasi elemento di A^* . Ne segue banalmente che f = g.

Poiché A è un campo contenuto in L, si ha che char $L = \operatorname{char} A = p = \operatorname{char} K$.

Esercizio 14

Sappiamo che se char K = p e $L \supseteq K$ con $[L:K] < \infty$, allora

$$[L:K] = p^m [L:K]_S$$

con $m \in \mathbb{N}$. Quindi, poiché [L:K] e p sono coprimi per ipotesi, abbiamo che m=0, ovvero $[L:K]=[L:K]_S=[L\cap K^S:K]$. E poiché $L\cap K^S\subseteq L$, si ha $L\cap K^S=L$. Quindi ogni elemento di L è separabile su K.

Esercizio 15

Osserviamo che

$$f(x) := x^{p^n} - a = x^{p^n} - \alpha^{p^n} = (x - \alpha)^{p^n}$$

dove α è una radice p^n -esima di a in qualche estensione di K. Sia $(x-\alpha)^r$ un fattore irriducibile di f in K[x]. Possiamo scrivere $r=sp^m$ con $m \le n$ e s coprimo con p. Allora

$$(x-\alpha)^r = (x-\alpha)^{sp^m} = (x^{p^m} - \alpha^{p^m})^s = x^{sp^m} - s\alpha^{p^m}x^{(s-1)p^m} + \dots$$

Quindi $s\alpha^{p^m} \in K$, e poiché in K vale $s \neq 0$, s è invertibile e perciò $\alpha^{p^m} \in K$. Quindi $(\alpha^{p^m})^{p^{n-m-1}} \in K$ è una radice p-esima di a, il che contraddice l'ipotesi.

Esercizio 16

Proviamo " \Longrightarrow ". Sia $x^{p^n} - \alpha^{p^n} \in K(\alpha^{p^n})[x]$. Se per assurdo fosse irriducibile, allora esso sarebbe il polinomio minimo di α . Ma su $K(\alpha)[x]$ vale $x^{p^n} - \alpha^{p^n} = (x - \alpha)^{p^n}$, ovvero α è una radice multipla del suo polinomio minimo, il che è impossibile perché α è separabile per ipotesi. Quindi $x^{p^n} - \alpha^{p^n}$ è riducibile, perciò grazie all'Esercizio 15 abbiamo che $K(\alpha^{p^n})$ contiene una radice p-esima di α^{p^n} . La radice in questione è proprio $\alpha^{p^{n-1}}$, in quanto l'endomorfismo di Frobenius è iniettivo.

Quindi su $K(\alpha^{p^n}) = K(\alpha^{p^{n-1}})$, e poiché quanto provato vale per ogni n, si ha la tesi.

Proviamo " \Leftarrow ". Sia $f(x) \in K[x]$ il polinomio minimo di α . Poiché f è irriducibile, sappiamo che $f(x) = g(x^{p^r})$ per qualche $r \in \mathbb{N}$, dove g(y) è un polinomio in K[x] irriducibile e separabile. Osserviamo che $g(\alpha^{p^r}) = f(\alpha) = 0$, ovvero α^{p^r} è radice di g, ovvero α^{p^r} è separabile su K. Quindi $K(\alpha^{p^r})$ è un'estensione separabile di K. Ma $K(\alpha^{p^r}) = K(\alpha)$ per ipotesi, perciò la dimostrazione è conclusa.

Esercizio 17

Proviamo $(a) \Longrightarrow (b)$. Supponiamo per assurdo che esista $a \in K$ che non ha una radice p-esima in K. Consideriamo il polinomio $x^p - a$ e sia α una sua radice.

Nel suo campo di spezzamento, abbiamo che

$$x^p - a = x^p - \alpha^p = (x - \alpha)^p$$

Questo significa che il polinomio minimo di α su K divide $(x - \alpha)^p$, ovvero il polinomio in questione ha radici multiple, ovvero $K(\alpha)$ non è separabile, e questo contraddice l'ipotesi.

Proviamo $(b) \Longrightarrow (a)$. Supponiamo per assurdo che esista un α algebrico su K il cui polinomio minimo f possiede radici multiple (possiamo anche supporre senza perdità di generalità che α sia proprio una radice multipla del suo polinomio minimo). Sappiamo che questo significa che char K = p > 0 e che f è della forma

$$f = x^{pn} + a_{n-1}x^{p(n-1)} + \dots + a_1x^p + a_0$$

Per ipotesi, possiamo trovare $b_0, ..., b_{n-1}$ tali che

$$f = x^{pn} + b_{n-1}^p x^{p(n-1)} + \dots + b_1^p x^p + b_0^p$$

ovvero

$$f = (x^n + b_{n-1}x^{n-1} + \dots + b_1x + b_0)^p$$

Poiché $f(\alpha) = 0$, allora anche $(\alpha^n + b_{n-1}\alpha^{n-1} + \cdots + b_1\alpha + b_0)^p = 0$, e poiché l'endomorfismo di Frobenius è iniettivo, questo significa che $\alpha^n + b_{n-1}\alpha^{n-1} + \cdots + b_1\alpha + b_0 = 0$, ovvero

$$x^{n} + b_{n-1}x^{n-1} + \dots + b_{1}x + b_{0} \in K[x]$$

ha α come radice ed ha grado strettamente minore di f, quindi abbiamo una contraddizione.

Esercizio 18

Vogliamo dimostrare che se K è un campo finito, allora $\forall x \in K, \ x = a^2 + b^2$ per qualche $a, b \in K$.

- Se char K=2, allora $x^{2n-1}=1$, ovvero $x=x^{2n}=(x^n)^2$. Quindi $x=(x^n)^2+0^2$.
- Se char K = p > 2, consideriamo il sottogruppo moltiplicativo K^* . K^* è un gruppo di ordine $p^n 1$ per qualche n ed è ciclico. Quindi gli elementi che si possono scrivere come quadrati sono almeno tutte le potenze pari del generatore di K^* , ovvero sono almeno $(p^n-1)/2$. Poiché $0 = 0^2$, i quadrati in K sono almeno $(p^n + 1)/2$. Quindi, se $A := \{y \in K \mid y = a^2 \text{ per qualche } a \in K\}$

e $X := \{x \in K \mid x = a^2 + b^2 \text{ per qualche } a, b \in K\}$, abbiamo che X = A + A. Si vede facilmente che se S è un sottoinsieme di un gruppo finito G, e vale |S| + |S| > |G|, allora G = S + S. Poiché $|A| + |A| = p^n + 1 > p^n = |K|$, si ha che K = A + A = X.

Esercizio 19

Sia $E \subseteq R \subseteq F$ un sottoanello di E. Sia $\alpha \in R$. È sufficiente mostrare che $\alpha^{-1} \in R$. Osserviamo che, poiché α è algebrico su F, esiste $f(x) = \sum_{i=0}^{n} a_i x^i$ irriducibile tale che $f(\alpha) = \sum_{i=0}^{n} a_i \alpha^i = 0$ ($a_0 \neq 0$ perché f(x) è irriducibile). Quindi $\alpha(-\sum_{i=1}^{n} a_i/a_0 \ \alpha^{i-1}) = 1$ dove $-\sum_{i=1}^{n} a_i/a_0 \ \alpha^{i-1} \in R$, e si ha la tesi. Mostriamo che l'ipotesi di algebricità per E è necessaria, esibendo un controesempio: sia $F = \mathbb{Q}$ e sia $E = \mathbb{Q}(\pi)$. Sia E il più piccolo anello contenente E0 e E1 chiaro che

$$R = \left\{ \sum_{i=1}^{n} c_i \pi^i \mid c_i \in \mathbb{Q}, \ n \in \mathbb{N} \right\}$$

e quindi $\frac{1}{\pi} \notin R$.

Esercizio 20

- a) Sia $y \in K$. Poiché $y \in F(x)$, si ha che $y = \frac{f(x)}{g(x)}$ per qualche $f, g \in F[t]$. È chiaro che $f(t) g(t)y = f(t) g(t)\frac{f(x)}{g(x)} \in K[t]$ ha x come radice.
- b) Sia $p(t) = f(t) g(t)y = f(t) g(t)\frac{f(x)}{g(x)} \in F(y)[t]$. È chiaro che p(t) ha x come radice e deg $p = \max(\deg f, \deg g)$. Vogliamo mostrare che p(t) è irriducibile. Iniziamo enunciando il seguente:

Lemma 0.0.1. Siano $f, g \in F[t]$ coprimi. Siano $P_n \in F[t]$ polinomi di grado strettamente minore di $m := \max(\deg(f), \deg(g))$. Se

$$\sum_{n=0}^{N} P_n f^n g^{N-n} = 0$$

per qualche $N \in \mathbb{N}$, allora $P_n = 0$ per ogni n.

Dimostrazione. Assumiamo senza perdità di generalità che $\deg(g)=m$. Allora g divide $\sum_{n=0}^{N-1} P_n f^n g^{N-n}$, perciò divide anche $P_N f^N$. Per coprimalità, abbiamo che g divide P_N , Ma dall'ipotesi sul grado dei P_n segue che $P_N=0$. Otteniamo quindi che $\sum_{n=0}^{N-1} P_n f^n g^{(N-1)-n}=0$ e si prosegue per induzione. \square

Sia ora $y = \frac{f(x)}{g(x)}$, con f e g coprimi in F[t]. Vogliamo mostrare che il polinomio minimo di x in F(y) ha grado $m = \max(\deg(f), \deg(g))$. Sia p un polinomio in F(y)[t], tale che p(x) = 0. Scriviamo $p(t) = \sum_{k=0}^{r} a_k t^k$, con $a_k \in F(y)$ e supponiamo r < m. Possiamo scrivere $a_k = \frac{P_k(y)}{Q_k(y)}$, con $P_k, Q_k \in F[t]$. Vale allora

$$\sum_{k=0}^{r} \frac{P_k(y)}{Q_k(y)} x^k = 0$$

Quindi otteniamo

$$\sum_{k=0}^{r} P_k(y) \prod_{k' \neq k} Q_{k'}(y) x^k = 0,$$

che riscriviamo come

$$\sum_{k=0}^{r} \widetilde{P_k(y)} x^k = 0,$$

dove $\widetilde{P_k} := P_k(y) \prod_{k' \neq k} Q_{k'}(y)$.

Se definiamo adesso $\widetilde{P_k} =: \sum_l a_{kl} t^l \in F[t]$, otteniamo

$$\sum_{k=0}^{r} \sum_{l} a_{kl} \frac{f(x)^{l}}{g(x)^{l}} x^{k} = 0.$$

Moltiplichiamo ora tutto per $g(x)^L$ con L abbastanza grande. Troviamo

$$\sum_{k=0}^{r} \sum_{l} a_{kl} f(x)^{l} g(x)^{L-l} x^{k} = 0,$$

Che possiamo riscrivere come

$$\sum_{l} (\sum_{k=0}^{r} a_{kl} x^{k}) f(x)^{l} g(x)^{L-l} = 0.$$

Grazie al lemma (e alla trascendenza di x), tutti gli a_{kl} sono 0. Quindi anche gli $\widetilde{P_k}$ sono 0 e si vede subito che anche tutti gli a_k sono 0. In conclusione, p è il polinomio nullo, e questo conclude la dimostrazione.