A Longitudinally-Aware Segmentation Network for Automatic Interim PET Analysis in Pediatric Hodgkin Lymphoma Patients

SNMMI 2024 June 10, 2024

Xin Tie, Muheon Shin, Changhee Lee, Scott B. Perlman, Zachary Huemann, Sharon M. Castellino, Kara M. Kelly, Junjie Hu, Steve Y. Cho, Tyler J. Bradshaw

Department of Radiology University of Wisconsin

Disclosures

No disclosures

Quantitative PET biomarkers in guiding lymphoma treatment strategies

^{1.} Cottereau AS, et al. J Nucl Med. 2020; 61(1):40-45.

^{2.} Rossi C, et al. J Nucl Med. 2014; 55(4):569-573.

- Deep learning (DL) for automatic PET analysis
 - Segment lymphoma
 - Quantify baseline tumor burden

TMTV 878.6 ml TLG 3664 g **SUVmax** 17.8 g/ml

Baseline PET

TMTV 499.0 ml TLG 3061 g **SUVmax** 10.8 g/ml

- Interim PET analysis
 - Response assessments
 - Guide treatment
 - Few attempts!

Deauville scores

Deauville scores

Quantitative biomarkers

Baseline PET

∆SUVmax: **63.6**%

qPET: 2.19

Challenges of Interim PET analysis

- Subtle tumor uptake
- Difficult to differentiate from inflammatory activity

Physicians rely on cross comparison with baseline PET

Methods for incorporating prior images are underexplored

Purpose

To develop a novel longitudinally-aware segmentation network that can detect residual disease on interim PET scans utilizing baseline PET data

Dataset

- Two Children's Oncology Group (COG) clinical trials
 - Phase 3 trials
 - Pediatric patients diagnosed with high-risk Hodgkin lymphoma
- COG AHOD1331 (2015-2019)
 - 200 labeled cases
 - Internal cohort
- COG AHOD0831 (2009-2012)
 - 97 labeled cases
 - External cohort

Labeled Interim PET

Dataset

- Two Children's Oncology Group (COG) clinical trials
 - Phase 3 trials
 - Pediatric patients diagnosed with high-risk Hodgkin lymphoma
- COG AHOD1331 (2015-2019)
 - 200 labeled cases
 - Internal cohort
- COG AHOD0831 (2009-2012)
 - 97 labeled cases
 - External cohort

Labeled Interim PET

- Longitudinal-aware segmentation network (LAS-Net)
 - 3D SwinUNETR

- Longitudinal-aware segmentation network (LAS-Net)
 - 3D SwinUNETR

- Longitudinal-aware segmentation network (LAS-Net)
 - 3D SwinUNETR
 - Dual-branch with longitudinal cross-attention

- Longitudinal-aware segmentation network (LAS-Net)
 - 3D SwinUNETR
 - Dual-branch with longitudinal cross-attention
 - One-way information flow

- Longitudinal-aware segmentation network (LAS-Net)
 - 3D SwinUNETR
 - Dual-branch with longitudinal cross-attention
 - One-way information flow

Training and Evaluation

- Joint optimization for baseline and interim PET segmentation
 - Cross-entropy and Dice loss
 - Patch inputs (112×112×112) from co-registered PET scans
- Evaluation metrics
 - Detection F1 scores for interim PET

SUVmax: **8.28** g/ml SUVpeak: **7.12** g/ml

SUVmax: **5.86** g/ml SUVpeak: **4.75** g/ml

Training and Evaluation

- Joint optimization for baseline and interim PET segmentation
 - Cross-entropy and Dice loss
 - Patch inputs (112×112×112) from co-registered PET scans
- Evaluation metrics
 - Detection F1 scores for interim PET
 - Interim PET biomarkers: SUVmax, ∆SUVmax, qPET
 - Spearman's **p** correlations

Training and Evaluation

- Joint optimization for baseline and interim PET segmentation
 - Cross-entropy and Dice loss
 - Patch inputs (112×112×112) from co-registered PET scans
- Evaluation metrics
 - Detection F1 scores for interim PET
 - Interim PET biomarkers: SUVmax, ∆SUVmax, qPET
 - Spearman's p correlations
- Model Comparison
 - DynUNet, SegResNet, SwinUNETR
 - No longitudinal cross-attention

How about Deformable Registration?

Mask Propagation through Deformable Registration (MPDR)

Predicted baseline lesion mask

Baseline PET

Predicted Interim

Interim PET

How about Deformable Registration?

Mask Propagation through Deformable Registration (MPDR)

^{1.} Weisman AJ, et al. J Nucl Med (supplement 1). 2020; 1434

How about Deformable Registration?

Mask Propagation through Deformable Registration (MPDR)

Results – Detection Performance

Without MPDR, the detection F1 score was 0.61

- **▼ Without** MPDR
- **▼ With MPDR**

Results – Detection Performance

- Without MPDR, the detection F1 score was 0.61
- With MPDR, no increase in the F1 score

- **▼ Without** MPDR
- With MPDR

- Agreement with physician measurements
 - **SUVmax**: ρ=0.79

- Agreement with physician measurements
 - **SUVmax**: ρ=0.79
 - Δ**SUVmax**: ρ=0.80

- Agreement with physician measurements
 - **SUVmax**: ρ=0.79
 - Δ**SUVmax**: ρ=0.80
 - **qPET**: ρ=0.78

Without MPDR

Agreement with physician measurements

• **SUVmax**: ρ=0.79

• Δ**SUVmax**: ρ=0.80

• **qPET**: ρ=0.78

With MPDR

Results – Sample Case

Results – Sample Case

Results – External Validation on AHOD0831

- The detection F1 score on interim PET was 0.52
- Spearman's p correlations of interim PET biomarkers
 - **0.70** for **△SUVmax**
 - 0.69 for qPET

Results – External Validation on AHOD0831

- The detection F1 score on interim PET was 0.52
- Spearman's p correlations of interim PET biomarkers
 - **0.70** for **△SUVmax**
 - **0.69** for **qPET**
- Potential reasons for the performance drop
 - Generations of PET/CT scanners
 - Annotation approaches

Conclusions

- Our study introduced a novel method for detecting and segmenting residual lesions on interim PET scans
 - multi-institutional clinical trial
 - pediatric Hodgkin lymphoma
 - Improved detection performance and higher agreements of interim PET biomarkers
- Longitudinal awareness in analyzing multi-time-point imaging datasets

Thank you

xtie@wisc.edu

