Modules

KYB

Thrn, it's a Fact mathrnfact@gmail.com

January 13, 2021

Overview

Modules

Definition and Examples Quotient Modules and Module Homomorphisms

Let R be a ring (not necessarily commutative nor with 1). A left R-module is a set M together with

- (1) (M, +) is an abelian group
- (2) $\cdot : R \times M \to M$ is a function denoted by rm for all $r \in R$ and $m \in M$ satisfying
 - (a) (r+s)m = rm + sm for all $r, s \in R$, $m \in M$
 - (b) (rs)m = r(sm) for all $r, s \in R$, $m \in M$
 - (c) r(m+n) = rm + rn for all $r \in R$, $m, n \in M$

If R has a 1,

- (d) 1m = m for all $m \in M$.
- ▶ Similarly if $M \times R \to M$ by $(m,r) \mapsto mr$, M is a right module.
- ▶ If M is both a left R module and a right S module, we say M is a R, S-bimoudle.
- ▶ If R is commutative and M is a left R-module, we can define a right R-module structure by mr = rm. In this case, we say M is a R-module.
- ▶ Unless explicitly mentioned otherwise, "module" means "left module".

Let R be a ring and let M be an $R\mbox{-}\mathrm{module}.$ A $R\mbox{-}\mathrm{submodule}$ of M is a subgroup N of M such that

$$rn \in N$$
 for all $r \in R, n \in N$.

Definition

If R is a field, a R-module is called a vector space.

- Let R be any ring. Then R is itself R-module. In this case, a submodule is an ideal of R. If R is not commutative, R as a left module and R as a right module may be different.
- ▶ For n > 1, let $R = M_n(F)$ where F is a field. Let $M \subset R$ be such that

$$A \in M \iff A_i = 0 \text{ for all } i > 1.$$

Then M is a submodule of R when R is considered as a left module over itself, but M is not a submodule of R when R is considered as a right R-module.

$$\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \notin M.$$

Let R be a ring with 1 and let $n \in \mathbb{Z}^+$.

$$R^n = \{(a_1, \dots, a_n) : a_i \in R, \text{ for all } i\}$$

is an R-module. R^n is called the free module of rank n over R.

Example (\mathbb{Z} -modules)

Let $R=\mathbb{Z}$ and let A be any abelian group and write the operation of A as +. Make A into a \mathbb{Z} -module as follows: for any $n\in\mathbb{Z}$ and $a\in A$ define

$$na = \begin{cases} a + a + \dots + a \text{ (}n \text{ times)} & \text{if } n > 0 \\ 0 & \text{if } n = 0 \\ -a - a - \dots - a \text{ (}-n \text{ times)} & \text{if } n < 0 \end{cases}$$

Thus every abelian groups ia a \mathbb{Z} -module in this sense. Conversely every \mathbb{Z} -module is an abelian group.

Let F be a field, let x be an indeterminate and let R = F[x]. Let V be a vector space over F and let T be a linear transformation from V to V. Using T, we can make V into an F[x]-module as follows: For $n \geq 0$, define

$$T^0 = I, T^1 = T, \dots, T^n = T \circ T \circ \dots \circ T$$
 (*n* times).

Let $p(x) \in F[x]$ where $p(x) = a_n x^n + \cdots + a_1 x + a_0$ and $v \in V$. Define

$$p(x) \cdot v = (a_n T^n + a_{n-1} T^{n-1} + \dots + a_1 T + a_0)(v)$$

= $a_n T^n(v) + a_{n-1} T^{n-1}(v) + \dots + a_1 T(v) + a_0 v$.

Then V is an F[x]-module. Note that $F \subset F[x]$ as constant polynomial.

Let R be a commutative ring with identity. An R-algebra is a ring A with identity together with a ring homomorphism $f:R\to A$ mapping $1_R\to 1_A$ such that the subring f(R) of A is contained in the center of A.

Recall that the center of A is the set C(A) such that $a \in C(A)$ iff ar = ra for all $r \in R$.

Remark

If A is an R-algebra, then A has a natural left and right R-module structure defined by $r \cdot a = a \cdot r = f(r)a$. Since R is commutative and $f(R) \subset C(A)$, this is well-defined R-module.

Definition

If A and B are two R-algebras, an R-algebra homomorphism is a ring homomorphism $\varphi:A\to b$ mapping $1_A\to 1_B$ such that $\varphi(r\cdot a)=r\cdot \varphi(a)$ for all $r\in R$ and $a\in A$. If φ is a bijective R-algebra, we call it an R-algebra isomorphism.

Suppose that A is a ring with identity 1_A that is a left R-module satisfying $r \cdot (ab) = (r \cdot a)b = a(r \cdot b)$ for all $r \in R$ and $a, b \in A$.

- ▶ Then the map $f: R \to A$ defined by $f(r) = r \cdot 1_A$ is a ring homomorphism mapping $1_R \to 1_A$ and f(R) is contained in the center of A.
- ightharpoonup So A is an R-algebra and that the R-module structure on A induced by its algebra structure is precisely the original R-module structure.

Let R be a ring and let M and N be R-modules.

- (1) A map $\varphi: M \to N$ is an R-module homomorphism if
 - (a) $\varphi(x+y) = \varphi(x) + \varphi(y)$ for all $x, y \in M$;
 - (b) $\varphi(rx) = r\varphi(x)$ for all $r \in R$ and $x \in M$.
- (2) An R-homomorphism is an isomorphism if it is bijective.
- (3) If $\varphi: M \to N$ is an R-module homomorphism, ler
 - $\ker \varphi = \{ m \in M : \varphi(m) = 0 \}$
 - $\operatorname{Im} \varphi = \{ \varphi(m) : m \in M \}$
- (4) Let M and N be R-modules and define $\operatorname{Hom}_R(M,N)$ to be the set of all R-module homomorphisms from M into N.

Let R be a ring and M=R. Then R-module homomorphism need not be ring homomorphism and vise versa. For instance,

- ightharpoonup when $R=\mathbb{Z}$, $\varphi(x)=2x$ is a \mathbb{Z} -homomorphism but not a ring homomorphism.
- when R = F[x], $\varphi(f(x)) = f(x^2)$ is not an F[x]-module homomorphism but it is a ring homomorphism.

Example

Let R be a ring and let $n \in \mathbb{Z}^+$ and let $M = \mathbb{R}^n$. For $i = 1, \dots, n$, the projection map

$$\pi_i(x_1,\cdots,x_n)=x_i$$

is a surjective R-module homomorphism with kernel equal to the submodule of n-tuples which have a zero in position i.

Every abelian group is a \mathbb{Z} -module. Moreover a map φ between two groups is an abelian group homomorphism iff \mathbb{Z} -module homomorphism.

Proposition

Let M and N and L be R-modules.

(1) A map $\varphi: M \to N$ is an R-module homomorphism iff

$$\varphi(rx+y) = r\varphi(x) + \varphi(y).$$

- (2) Let $\varphi, \psi \in \operatorname{Hom}_R(M, N)$.
 - ▶ Define $\varphi + \psi$ by $(\varphi + \psi)(m) = \varphi(m) + \psi(m)$. Then $\varphi + \psi \in \operatorname{Hom}_R(M, N)$ and with this operation $\operatorname{Hom}_R(M, N)$ is an abelian group.
 - ▶ If R is a commutative ring, then for $r \in R$, define $r\phi$ by $(r\varphi)(m) = r\varphi(m)$. Then $r\varphi \in \operatorname{Hom}_R(M,N)$ and with this operation $\operatorname{Hom}_R(M,N)$ is an R-module.
- (3) If $\varphi \in \operatorname{Hom}_R(L, M)$ and $\psi \in \operatorname{Hom}_R(M, N)$, then $\psi \circ \varphi \in \operatorname{Hom}_R(M, N)$.
- (4) With addition as above and multiplication defied as function composition, $\operatorname{Hom}_R(M,M)$ is a ring with 1.
 - ▶ When R is commutative, $Hom_R(M, M)$ is an R-algebra.

The ring $\operatorname{Hom}_R(M,M)$ is called the endomorphism ring of M and will often be denoted by $\operatorname{End}_R(M)$. Elements of $\operatorname{End}_R(M)$ are called endomorphisms.

Remark

Suppose R is commutative. Then there is a natural map $R \to \operatorname{End}_R(M)$ given by $r \mapsto rI$. Since the image of this map is contained in the center of $\operatorname{End}_R(m)$, $\operatorname{End}_R(M)$ is an R-algebra. So this map is a ring homomorphism. Note that if $R = \mathbb{Z}$ and $M = \mathbb{Z}/2\mathbb{Z}$ and r = 2, $2 \mapsto 2I = 0$. Thus this map is not injective.

Observe

Since every R-module M is an abelian group, for any submodule N of M, M/N forms an additive group structure in the natural way. So if we can define a scalar product on M/N, M/N is a R-module, say the quotient module of M by N.

Proposition

Let R be a ring, let M be an R-module and let N be a submodule of M. Define $r\cdot (x+N)=rx+N$. This map is well-defined, and thus M/N is again R-module. The natural projection map $\pi:M\to M/N$ by $\pi(x)=x+N$ is an R-module homomorphism with kernel N.

Quotient Modules and Module Homomorphisms

Let A, B be submodules of the R-module M. The sum of A and B is the set

$$A + B = \{a + b : a \in A, b \in B\}.$$

Theorem (Isomorphism Theorems)

- (1) Let M, N be R-modules and let $\varphi: M \to N$ be an R-module homomorphism. Then $\operatorname{Ker} \varphi$ is a submodule of M and $M \cong \operatorname{Im} \varphi$.
- (2) Let A, B be submodules of the R-module M. Then $(A+B)/B \cong A/(A \cap B)$.
- (3) Let M be an R-module, and let A and B be submodules of M with $A \subset B$. Then $(M/A)/(B/A) \cong M/B$.
- (4) Let N be a submodule of the R-module M. There is a bijective between the submodules of M which contain N and the submodules of M/N. The correspondence is given by $A \leftrightarrow A/N$ for all $A \supset N$.

Exercise

 $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z}/m\mathbb{Z}) \cong \mathbb{Z}/\gcd(m,n)\mathbb{Z}.$

Exercise

Let R be a commutative ring.

- ▶ $\operatorname{Hom}_R(R, M) \cong M$ as left R-modules M.
- ▶ $\operatorname{Hom}_R(R,R) \cong R$ as rings.

The End