Nonlinear Equations: Newton's Method

Math 131: Numerical Analysis

J.C. Meza

2/8/24

Newton's Method

- In the last lecture we saw that the bisection method was robust and would always converge to a solution given the right set of initial values.
- However, it could exhibit slow convergence.
- As a result, most solvers use other types of root-finding algorithms.
- In this section we will study two such methods that can provide much faster convergence to a root.

Newton's Method (Quick Summary)

- Newton's method is likely the most popular and certainly the most powerful method for solving nonlinear equations [@meza2011newton].
- The idea behind Newton's method is to use the slope of the function at the current iterate to compute a new iterate.
- Naturally, this requires that we first assume that the given function f(x) is differentiable.

Visually

 Note that if we take the derivative at the current iterate and use that to set up a linear equation, which we can solve for the new iterate.

Idea

Important

One approach for deriving Newton's method is to think about building a *linear model of the function* at the current iterate. Let's consider the linear model m(x):

$$m(x) = f(x_0) + f'(x_0)(x - x_0). (1)$$

Notice that at $x=x_0$ the model agrees with the function f(x), in other words $m(x_0)=f(x_0)$. The idea is to then solve for the root of Equation 1 and use the root as the next guess of our iterative method:

Solving for new iterate

Using this idea let's solve for the root x^* of the linear model, m(x), i.e.

$$\begin{split} m(x) &= f'(x_0)(x-x_0) + f(x_0) = 0, \\ &\Longrightarrow x^\star = x_0 - \frac{f(x_0)}{f'(x_0)}. \end{split}$$

We can then set $x_1=x^\star$ as the next iterate in our sequence and repeat the process. This gives us the general procedure for Newton's method:

Newton's Method

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, \dots$$
 (2)

Another derivation

- We will note in passing that another derivation is to use Taylor's theorem to approximate our function f(x) out to the first degree with a remainder term that includes the second derivative.
- We will ignore the second derivative term based on the argument that when we are near the solution the term would be small.
- Solving for our new iterate, we can derive the same equation as before.

Remark

A natural question to ask is under what conditions does Newton's method converge?

- In fact, it isn't hard to show that if the initial point x_0 is not chosen properly (i.e. close enough to a root), Newton's method will diverge.
- A typical example would be $y = \arctan(x)$, where if x_0 isn't close enough to the root the iterates quickly diverge to infinity.

Arctan(x)

Example

Let $f(x)=x^6-x-1=0$ and let $x_0=1.5$. It is easy to verify that one root is given by $x^*=1.134724$.

To use Newton's method we first need to calculate the derivative - $f^{\prime}(x)=6x^5-1.$

Using Equation 2 allows us to compute the k+1 iteration:

$$\begin{split} x_{k+1} &= x_k - \frac{f(x_k)}{f'(x_k)}, \\ x_{k+1} &= x_k - \frac{x_k^6 - x_k - 1}{6x_k^5 - 1}. \end{split}$$

Example (cont.)

Proceeding in the natural way from x_{0} , we can generate the following sequence of iterates:

\overline{k}		x_k
0	1.5	1.5
1	$x_1 = x_0 - \frac{x_0^6 - x_0 - 1}{6x_0^5 - 1} = 1.5 - \frac{8.8906}{44.5625}$	1.3005
2	$x_2 = x_1 - \frac{x_1^6 - x_1 - 1}{6x_2^5 - 1} = 1.3005 - \frac{2.5373}{21.3197}$	1.1815
3	$x_3 = x_2 - \frac{x_2^{6-1}x_2 - 1}{6x_2^5 - 1} = 1.1815 - \frac{0.5387}{12.8140}$	1.1395

Notice that after only 3 iterations, the iterates is already correct to 3 significant digits.

Analysis

Several questions one might consider at this point include:

- Under what conditions might we expect (local) convergence?
- Here by local we mean that the algorithm will converge if we start sufficiently close to a root. We will define this more carefully later.
- If Newton's method converges, how fast can we expect the convergence to be?

Error Analysis for Newton's Method

Let's consider the Taylor expansion about $x=x^*$.

$$0 = f(x_k) + (x^* - x_k)f'(x_k) + \frac{(x^* - x_k)^2}{2}f''(\xi).$$

Dividing by $f'(x_k)$ (we will assume for the time being that it's not equal to zero for any x_k) we get:

$$0 = \frac{f(x_k)}{f'(x_k)} + (x^* - x_k) + \frac{f''(\xi)}{f'(x_k)} \frac{(x^* - x_k)^2}{2}.$$

Using the equation for Newton's method we see that the first term is nothing but x_k-x_{k+1} and substituting into the above equation we get:

$$0 = x_k - x_{k+1} + (x^* - x_k) + \frac{f^{\prime\prime}(\xi)}{f^\prime(x_k)} \frac{(x^* - x_k)^2}{2}.$$

Erro Analysis (cont.)

ullet We see that the x_k terms cancel out. Rearranging to put the error on the left-hand side of the equation yields:

$$x^* - x_{k+1} = -\frac{f''(\xi)}{2f'(x_k)} (x^* - x_k)^2.$$
 (3)

• The quantity on the left-hand side of the equation is just the error at the k+1 iteration, while the last term on the right-hand side is the error at the k iteration (squared).

Interpretation

$$\begin{split} |e_{k+1}| &= |x^* - x_{k+1}| = \left| \frac{f''(\xi)}{2f'(x_k)} \right| \cdot (x^* - x_k)^2, \\ &= \left| \frac{f''(\xi)}{2f'(x_k)} \right| \cdot |e_{k+1}|^2, \end{split} \tag{4}$$

• We can interpret the equation to mean that the error at the k+1 iteration is proportional to the square of the error at the k iteration.

Important

This type of error bound is called *quadratic convergence*

Remark

- If $f \in C^2[a,b]$ and $f'(x^*)=0$, then Newton's method still converges but just not as rapidly.
- Consider for example $f(x)=x^4$, which has a root at x=0, but where the first derivative is also equal to 0.

Summary for Newton's Method

Table 2: Newton's Method Summary

Advantages	Disadvantages	
Doesn't require interval with function sign change	Need to have derivatives	
Fast convergence rate – quadratic	May not converge from all starting points	
Can generalize to higher dimension	Can be expensive (especially in higher dimensions)	