Instituto Tecnológico de Aeronáutica - ITA Inteligência Artificial para Robótica Móvel - CT213 Aluno:

Relatório do Laboratório 3 - Otimização com Métodos de Busca Local

1 Breve Explicação em Alto Nível da Implementação

1.1 Descida do Gradiente

Seguindo a implementação em aula, implementou-se o loop de modo que o algoritmo parasse quando o custo alcançasse o ϵ fornecido.

1.2 Hill Climbing

Como particularidade, este método teve duas funções a serem implementadas. Para a seleção dos possíveis vizinhos a serem testados, utilizou-se:

Para a função do algoritmo em si, seguiu-se a implementação em aula, com a diferença que neste problema buscamos a minização da função objetivo. Dentro do laço foram alteradas as comparações, ficando implementado como a seguir:

```
for neighbor in neighbors(theta):
    if cost_function(neighbor) < cost_best:
        best = neighbor
        cost_best = cost_function(best)
    if cost_best > cost:
        break
```

1.3 Simulated Annealing

Foram implementadas duas funções auxiliares além da função do algoritmo:

```
def random_neighbor(theta):
    t = random.uniform(-pi, pi)
    neighbor = theta + [delta * cos(t), delta * sin(t)]
    return neighbor

def schedule(i):
    return temperature0/(1+beta*i**2)
```

Análogo ao método anterior, precisou-se alterar o método apresentado em sala por se tratar de um problema de minimização da função objetivo:

```
deltaE = - cost_function(neighbor) + cost_function(theta)
Alterou-se o deltaE desta forma.
```

2 Figuras Comprovando Funcionamento do Código

2.1 Descida do Gradiente

Figura 1: Histórico dos algoritmo gradiente.

2.2 Hill Climbing

Figura 2: Histórico dos algoritmo hill climbing.

2.3 Simulated Annealing

Figura 3: Histórico dos algoritmo simulated annealing.

3 Comparação entre os métodos

Tabela 1 com a comparação dos parâmetros da regressão linear obtidos pelos métodos de otimização.

Tabela 1: parâmetros da regressão linear obtidos pelos métodos de otimização.

Método	v_0	f
MMQ	0.433373	-0.101021
Descida do gradiente	0.433371	-0.101018
Hill climbing	0.433411	-0.101196
Simulated annealing	0.433279	-0.101545

Figura 4: Histórico dos algoritmos até encontrar o ótimo.

Figura 5: Comparação dos algoritmos em regressão.