## Лемма о связности графа плохих симплексов

Амосов Федор

15 февраля 2014 г.

## Лемма

- Пусть дан набор d-мерных точек P, в котором любые d+2 точки не лежат на одной d-мерной сфере, и дана точка q вне ConvP.
- Рассмотрим D симплексикацию Делоне набора точек P. Построим на симплексах из D следующий граф G. Его вершинами будут симплексы и еще одна выделенная вершина t. Между двумя различными симплексами будет ребро, если у них общая сторона, между симплексом и t будет ребро, если симплекс является граничным (хотя бы одна его сторона является стороной ConvP).
- Назовем симплекс из D *плохим*, если его описанный шар содержит внутри точку q. Рассмотрим подграф G' граф G, индуцированный на плохие симплексы и на вершину t.
- Утверждение: граф G' связен.



Черные точки — точки P. Треугольники — симплексы из D. Плохие треугольники (вершины графа G') покрашены в красный цвет. Утверждается, что от любого красного треугольника можно дойти до границы по красным треугольникам.

## Доказательство

Пусть симплекс  $S_0$  является плохим. Если мы докажем, что от  $S_0$  можно дойти до границы по плохим симплексам, то мы докажем Лемму. Если  $S_0$  граничный, то все ясно. Пусть  $S_0$  не граничный симплекс.

Итак рассмотрим симплекс  $S_0$ . Обозначим за  $d_0$  расстояние от q до  $S_0$  ( $q \notin S_0$ ), а за  $B_0$  — описанный шар симплекса  $S_0$ . Симплекс  $S_0$  плохой, значит  $B_0$  содержит внутри точку q. Т.к. точка q лежит вне ConvP, то  $q \notin S_0$ . Симплекс  $S_0$  делит  $B_0$  своими гранями на d+1 сегмент. В одном из сегментов лежит точка q. Соответствующая грань F является стороной некоторого симплекса  $S_1 \neq S_0$ , т.к.  $S_0$  не граничный.  $S_0$  и  $S_1$  являются соседями в графе G.

Покажем, что  $S_1$  так же плохой симплекс, т.е. докажем что описанный шар  $B_1$  симплекса  $S_1$  содержит внутри q. Обозначим за p вершину  $S_1$ , не лежащую на грани F. Т.к.  $S_0$  — часть симплексикации Делоне, то точка p лежит вне  $B_0$ .

Итого, что у нас есть,

- q внутри  $B_0$
- p снаружи  $B_0$
- p на границе  $B_1$
- ullet вершины F лежат на  $B_0$  и  $B_1$
- ullet q и p в одной полуплоскости относительно F
- q внутри  $B_1 ?$



Будем «надувать» (сдувать) шарик  $B_0$  из «кольца» F, чтобы получился шарик  $B_1$ . Обозначим промежуточную стадию шара за B (в начале,  $B=B_0$ , в конце,  $B=B_1$ ). При надувании, в одной полуплоскости относительно F точки будут только выходить из B, а в другой — только входить в B. Тем самым, при надувании  $B_0$  до  $B_1$  точка q будет оставаться в B. Мы будем надувать B до тех пор, пока на его границе не окажется точка p. Тогда B будет равно  $B_1$ . Тем самым, q будет внутри и  $B_1$ .



Расстояние от точки q до симплекса  $S_i$  есть расстояние от q до грани  $S_i$ , соответствующей сегменту  $B_i$ , содержащему q. Очевидно, что расстоянию от q до  $S_1$  будет соответствовать грань, не равная F, но грань F присутствует в  $S_1$ , поэтому расстояние от q до  $S_1 := d_1 < dist(q, F) = d_0$ . Тем самым,  $d_0 > d_1$ .

Итак, мы из  $S_0$  перешли по ребру графа G' в плохой симплекс с меньшим расстоянием до q. Будем повторять такой переход, пока можем. Получим последовательность соседних плохих симплексов  $S_0, S_1, S_2 \ldots$  с расстояниями до q,  $d_0 > d_1 > d_2 > \ldots$  В такой цепочке симплексы не повторяются ввиду того, что их расстояния до q не повторяются. Но симплексов конечное число, значит такая цепочка не может быть бесконечной. Рассмотрим последний симплекс  $S_n$ . Мы не можем из него перейти, значит он граничный (поскольку это было единственное предположение для перехода), ч.т.д.