ChemComm

COMMUNICATION

View Article Online
View Journal | View Issue

Cite this: *Chem. Commun.,* 2014, 50, 9313

Received 9th May 2014, Accepted 26th June 2014

DOI: 10.1039/c4cc03513e

www.rsc.org/chemcomm

Asymmetric Michael addition of α -fluoro- α -nitroalkanes to nitroolefins: facile preparation of fluorinated amines and tetrahydropyrimidines†

Jacek Kwiatkowski^a and Yixin Lu*ab

An asymmetric Michael addition of α -fluoro- α -nitroalkanes to nitroolefins was developed, and the products were obtained in good chemical yields and with high stereoselectivities. Highly functionalized adducts provided ready access to fluorinated amines and tetrahydropyrimidines in an optically enriched form.

The small size of the fluorine atom, together with its extreme electronegativity, makes it an excellent substituent for tuning the properties of bioactive compounds, and this is now well recognized in the pharmaceutical industry. Asymmetric synthesis of chiral fluorinated molecules has become a hot research area and attracted tremendous attention in recent years. Complementary to the direct asymmetric fluorination methods, an emerging approach is to utilize fluorine-containing prochiral substrates to derive optically enriched fluorine-containing molecules. In the past few years, asymmetric C–C and C–N bond forming processes employing fluorinated substrates were developed, including Michael additions, Mannich reactions and aminations, among others.

Amino compounds are of extreme importance in organic chemistry, and apparently fluorine-incorporating amines are valuable molecules. However, there are only limited examples describing the synthesis of amines fluorinated at the vicinal carbon, and there is no report on asymmetric synthesis of geminally fluorinated amines. Our group has keen interest in constructing quaternary stereogenic centers and we set out to develop a convenient asymmetric synthesis to access molecular structures containing unchallenged α -fluoro- α -amino quaternary centers. As illustrated in Scheme 1, such structural motifs could

Scheme 1 Synthesis of α -fluoro- α -amino quaternary centers

be readily accessed through a Michael addition of α -fluoro- α -nitroalkanes⁸ to nitroolefins. Herein, we describe an asymmetric process for the above reaction, which led to the highly enantioselective construction of a novel α -fluoro- α -amino stereogenic center.

We chose Michael addition of α-fluorinated nitroalkane 1a to nitroolefin 1b as a model reaction to examine the catalytic effects of various tertiary amino catalysts with a Brønsted acid moiety, and the results are summarized in Table 1. Quinidinederived 4 and quinine-derived 5 afforded desired products in high yields, but with poor enantioselectivity (entries 1 and 2). Sulfonamide 6 and tryptophan-based 7 were ineffective for the reaction (entries 3 and 4). We next turned to amino acidincorporating multifunctional catalysts which were developed by us earlier. With the employment of catalyst 8 containing a tert-leucine moiety, the desired products were obtained in excellent yields, high enantioselectivity, and modest diastereoselectivity (entries 5 and 6). Catalysts 9a-c with an incorporated threonine moiety were found to be equally effective (entries 7–9). Subsequently, solvent screening was performed, and effects of adding molecular sieves were examined (entries 10-19). Under the optimized reaction conditions, the desired product was obtained in 85% yield, with 90% ee and the 5:1 diastereomeric ratio (entry 9), and the reaction could be scaled up with the same efficiency (entry 20).

With the optimized reaction conditions in hand, we further investigated the reaction scope (Table 2). Different α -aryl- α -fluoro nitromethanes¹⁰ were found to be suitable for the reaction, and substrates containing aryls with substituents of different electronic nature at either the *para*- or *meta*-position could be employed (entries 1–3). The structures of nitroolefins could also be varied, and excellent yields, good diastereoselectivity,

^a Graduate School for Integrative Sciences & Engineering (NGS), Centre for Life Sciences (CeLS), National University of Singapore, #05-01, 28 Medical Drive, Singapore 117456. E-mail: chmlyx@nus.edu.sg; Fax: +65 6464 1148

b Department of Chemistry & Medicinal Chemistry Program, Life Sciences Institute, National University of Singapore 3 Science Drive 3, Singapore 117543

[†] Electronic supplementary information (ESI) available: Representative experimental procedures, X-ray crystallographic data, the HPLC chromatogram, and NMR spectral data for all the compounds. CCDC 975748. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4cc03513e

Table 1 Ontimization

Table 1 Optimization of organocatalyzed Michael addition of 1-fluoro1-phenylnitromethane ($\bf 1a$) to ($\it E$)- $\it \beta$ -nitrostyrene ($\bf 2a$)^a

Entry	Catalyst	Solvent	$Yield^{b}$ (%)	ee ^c (%)	dr^d
$\overline{1^e}$	4	Toluene	90	9	1:1
2^e	5	Toluene	91	19	1:1
3^e	6	Toluene	<15	_	_
4^e	7	Toluene	88	18	1:1
5^e	8	Toluene	92	86	3:1
6	8	Toluene	85	90	7:2
7	9a	Toluene	66	86	3:1
8	9 b	Toluene	87	86	5:1
9	9c	Toluene	85	90	5:1
10	8	CH_2Cl_2	51	88	2:1
11	8	Et_2O	20	87	2:1
12	8	THF	90	78	3:2
13	8	$CHCl_3$	62	86	5:2
14	9c	$CHCl_3$	69	81	3:1
15	8	Xylene	72	89	3:1
16^f	8	Toluene	78	86	5:1
17 ^g	8	Toluene	80	91	3:1
18 ^h	8	Toluene	86	78	5:2
19 ^h	9c	Toluene	82	90	5:1
20^i	9c	Toluene	82	90	5:1

 a Reaction conditions: **1a** (0.1 mmol), the catalyst (0.01 mmol) and nitrostyrene **2a** (0.11 mmol) in the solvent specified (1 mL) at 0 °C. b Isolated yield of two diastereomers. c Determined by HPLC analysis on a chiral stationary phase. d Determined by 1 H NMR analysis of the crude reaction mixture. e Reaction at room temperature, 3 days. f In the presence of 3 Å molecular sieves (10 mg). g In the presence of 4 Å molecular sieves (10 mg). h In the presence of 5 Å molecular sieves (10 mg). i 1.5 mmol of **1a** was used.

and high enantioselectivity were attainable (entries 4–7). Moreover, nitroolefin with an *ortho*-fluorine atom could also be tolerated (entry 8). Nitroolefin with a bis-substituted aromatic substituent was especially favourable (entry 9), and nitroolefin containing a 2-furan was found to be a suitable substrate (entry 10). When alkyl substituted nitroolefins were used, either the reactive donor containing an electron-poor aryl ring was required or higher catalyst loading (20 mol%) was needed, and excellent results were obtained (entries 11 and 12). Unfortunately, fluorinated nitroalkanes with a simple alkyl substituent were unsuitable for the reaction.

Although the diastereoselectivity of the reaction was not very high, different diastereomers of most products could be obtained upon flash chromatographic purification on silica gel. The absolute configurations of the Michael addition products were assigned based on X-ray analysis of **3ab** (Fig. 1). In our proposed stereochemical

Table 2 Scope of organocatalysed Michael addition of 1-fluoro-1-arylnitromethane to nitroalkenes^a

R ¹	F NO ₂ + R ² N a–1e 2a–2k	toluene 48 h 0 °C	R⁴	NO ₂
		*** 1 1h (o.)	3ab-3b	
Entry	3	Yield ^b (%)	dr ^c	ee ^d (%)
1^e	0 ₂ N, F NC 3ba O ₂ N, F	⁰ 2 85	6:1	88
2	Me 3ca	D ₂ 79	7:1	91
3	CI Ph 3da	D ₂ 84	7:1	87
4	O ₂ N F Br Ph NO ₂	74	7:1	90
5	O ₂ N F Me NO ₂ 3ac	71	8:1	88
6	O ₂ N F CF ₃	75	5:1	91
7	O ₂ N F Br	71	8:1	90
8 ^{f,g}	O ₂ N F Ph Sag	76	5:1	85
9	O ₂ N F NO ₂	`F 87	8:1	96
10	O ₂ N F O	80	7:1	88
11^h	NC 3bj NO ₂	75	5:1	82
$12^{e,g}$	O ₂ N F	95	6:1	82

^a Reaction conditions: **1** (0.1 mmol), **9c** (0.01 mmol) and nitroalkenes **2** (0.11 mmol) in toluene (1 mL) at 0 °C. ^b Isolated yield of the major diastereomer. ^c Determined by ¹H NMR analysis of the crude reaction mixture. ^d Determined by HPLC analysis on a chiral stationary phase. ^e The reaction time was 12 h. ^f Catalyst **9b** (10 mol%) was used. ^g Isolated yield of two diastereomers. ^h 20 mol% of the catalyst was used and the reaction time was 14 h.

model, we believe bifunctional activation of the substrates was crucial for observed stereoselectivity (Scheme 2).

The fluorinated quaternary stereogenic center with a latent amino group created is structurally very unique and interesting. ChemComm Communication

Fig. 1 X-ray structure of single crystal of 3ab.

Scheme 2 Proposed stereochemical model.

Scheme 3 Synthesis of fluorinated amines and tetrahydropyrimidine.

However, we were mindful that potential de-fluorination reaction may occur during the subsequent reduction. After much experimentation, 11 hydrogenation of α-fluoro-α-nitro product 3aa with a hydrogen pressure of 15 atm using Lindlar's catalyst (Pd/BaSO₄) led to smooth reduction of the nitro group, and the de-fluorination was effectively suppressed. The α -fluorinated diamino compound 4 could be converted readily to tetrahydropyrimidine 5, a fluorinated analogue of potential inhibitors of neurotransmitter reuptake¹² (Scheme 3).

In summary, we have developed an asymmetric Michael addition of α -fluoro- α -nitroalkanes to nitroolefins, catalysed by amino acid-incorporating multifunctional catalysts. It is noteworthy that this is the first synthesis of quaternary stereogenic centers with an α -fluorine atom and an α -amino function. The reported method opens a new route to access optically enriched quaternary carboncontaining fluorinated amines and tetrahydropyrimidines.

We thank the National University of Singapore (R-143-000-469-112), the Ministry of Education (MOE) of Singapore (R-143-000-494-112), and GSK-EDB (R-143-000-491-592) for generous financial support.

Notes and references

1 (a) D. O'Hagan, Chem. Soc. Rev., 2008, 37, 308; (b) J. Wang, M. Sanchez-Roselló, J. L. Aceña, C. del Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok and H. Liu, Chem. Rev., 2013, 114, 2432; (c) K. Muller, C. Faeh and F. Diederich, Science, 2007, 317, 1881; (d) S. Purser, P. R. Moore, S. Swallow and V. Gouverneur, *Chem. Soc.*

Rev., 2008, 37, 320; (e) R. Filler and R. Saha, Future Med. Chem., 2009, 1, 777; (f) W. K. Hagmann, J. Med. Chem., 2008, 51, 4351.

- 2 (a) J.-A. Ma and D. Cahard, Chem. Rev., 2008, 108, PR1; (b) S. Lectard, Y. Hamashima and M. Sodeoka, Adv. Synth. Catal., 2010, 352, 2708; (c) D. Cahard, X. Xu, S. Couve-Bonnaire and X. Pannecoucke, Chem. Soc. Rev., 2010, 39, 558; (d) T. Furuya, A. S. Kamlet and T. Ritter, Nature, 2011, 473, 470; (e) G. Valero, X. Companyo and R. Rios, Chem. - Eur. J., 2011, 17, 2018; (f) L. Bernardi and K. A. Jørgensen, Chem. Commun., 2005, 1324; (g) S. M. Kim, H. R. Kim and D. Y. Kim, Org. Lett., 2005, 7, 2309; (h) Y. Hamashima, T. Suzuki, H. Takano, Y. Shimura, Y. Tsuchiya, K. Moriya, T. Goto and M. Sodeoka, Tetrahedron, 2006, 62, 7168; (i) N. R. Lee, S. M. Kim and D. Y. Kim, Bull. Korean Chem. Soc., 2009, 30, 829; (j) K. Shibatomi, A. Narayama, Y. Soga, T. Muto and S. Iwasa, Org. Lett., 2011, 13, 2944; (k) M. Ruiz, V. Ojea, J. M. Quintela and J. J. Guillin, Chem. Commun., 2002, 1600; (l) M. C. Fernández, A. Díaz, J. J. Guillín, O. Blanco, M. Ruiz and V. Ojea, J. Org. Chem., 2006, 71, 6958; (m) K. Moriya, Y. Hamashima and M. Sodeoka, Synlett, 2007, 1139; (n) S. M. Kim, Y. K. Kang, M. J. Cho, J. Y. Mang and D. Y. Kim, Bull. Korean Chem. Soc., 2007, 28, 2435.
- 3 (a) X. Han, J. Luo, C. Liu and Y. Lu, Chem. Commun., 2009, 2044; (b) H. Li, S. Zhang, C. Yu, X. Song and W. Wang, Chem. Commun., 2009, 2136; (c) B. K. Kwon, S. M. Kim and D. Y. Kim, J. Fluorine Chem., 2009, 130, 759; (d) H. Li, L. Zu, H. Xie and W. Wang, Synthesis, 2009, 1525; (e) Y. Oh, S. Kim and D. Y. Kim, Tetrahedron Lett., 2009, 50, 4674; (f) X. Companyó, M. Hejnov, M. Kamlar, J. Veselý, A. Moyano and R. Rios, Tetrahedron Lett., 2009, 50, 5021; (g) T. Furukawa, N. Shibata, S. Mizutana, S. Nakamura, T. Toru and M. Shiro, Angew. Chem., Int. Ed., 2008, 47, 8051; (h) G. K. S. Prakash, F. Wang, T. Stewart, T. Mathew and G. A. Olah, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 4090; (i) H. W. Moon, M. J. Cho and D. Y. Kim, Tetrahedron Lett., 2009, 50, 4896; (j) A. N. Alba, X. Companyó, A. Moyano and R. Rios, Chem. - Eur. J., 2009, 15, 7035; (k) S. Zhang, Y. Zhang, Y. Ji and W. Wang, Chem. Commun., 2009, 4886; (l) F. Ullah, G.-L. Zhao, L. Deiana, M. Zhu, P. Dziedzic, I. Ibrahem, P. Hammar, J. Sun and A. Cordova, Chem. - Eur. J., 2009, 15, 10013; (m) M. Kamlar, N. Bravo, A.-N. Alba, S. Hybelbauerová, I. Císařová, J. Veselý, A. Moyano and R. Rios, Eur. J. Org. Chem., 2010, 5464; (n) I. Saidalimu, X. Fang, W. Lv, X. Yang, X. He, J. Zhang and F. Wu, Adv. Synth. Catal., 2013, 355, 857; (o) A. G. Myers, J. K. Barbay and B. Zhong, J. Am. Chem. Soc., 2001, 123, 7207.
- 4 (a) S. Mizuta, N. Shibata, Y. Goto, T. Furukawa, S. Nakamura and Toru, J. Am. Chem. Soc., 2007, 129, 6394; (b) X. Han, J. Kwiatkowski, F. Xue, K.-W. Huang and Y. Lu, Angew. Chem., Int. Ed., 2009, 48, 7604; (c) Y. Pan, Y. Zhao, T. Ma, Y. Yang, H. Liu, Z. Jiang and C.-H. Tan, Chem. - Eur. J., 2010, 16, 779.
- 5 (a) R. He, X. Wang, T. Hashimoto and K. Maruoka, Angew. Chem., Int. Ed., 2008, 47, 9466; (b) J. Y. Mang and D. Y. Kim, Bull. Korean Chem. Soc., 2008, 29, 2091; (c) R. He and K. Maruoka, Synthesis, 2009, 2289; (d) X. Han, F. Zhong and Y. Lu, Adv. Synth. Catal., 2010, 352, 2778; (e) Y. Zhao, Y. Pan, H. Liu, Y. Yang, Z. Jiang and C.-H. Tan, Chem. - Eur. J., 2011, 17, 3571.
- 6 For reviews, see: (a) S. Fustero, J. F. Sanz-Cervera, J. L. Aceña and M. Sánchez-Roselló, Synlett, 2009, 525; (b) J. Liu and J. Hu, Future Med. Chem., 2009, 1, 875. For related examples see: (c) M. L. Schulte and C. W. Lindsley, Org. Lett., 2011, 13, 5684; (d) O. O. Fadeyi and C. W. Lindsley, Org. Lett., 2009, 11, 943; (e) R. J. Phipps, K. Hiramatsu and F. D. Toste, J. Am. Chem. Soc., 2012, 134, 8376; (f) O. Lozano, G. Blessley, T. M. del Campo, A. L. Thompson, G. T. Giuffredi, M. Bettati, M. Walker, R. Borman and V. Gouverneur, Angew. Chem., 2013, 125, 9978 (Angew. Chem., Int. Ed., 2011, 50, 8105); (g) C. Appayee and S. E. Brenner-Moyer, Org. Lett., 2010, 12, 3356.
- 7 For our recent examples of creation of quaternary stereocenters, see: (a) C. Liu, Q. Zhu, K.-W. Huang and Y. Lu, Org. Lett., 2011, 13, 2638; (b) C. Liu, X. Dou and Y. Lu, Org. Lett., 2011, 13, 5248; (c) G.-Y. Chen, F. Zhong and Y. Lu, Org. Lett., 2012, 14, 3955; (d) F. Zhong, W. Yao, X. Dou and Y. Lu, Org. Lett., 2012, 14, 4018; (e) X. Dou and Y. Lu, Chem. - Eur. J., 2012, 18, 8315; (f) F. Zhong, X. Han, Y. Wang and Y. Lu, Chem. Sci., 2012, 3, 1231; (g) F. Zhong, X. Dou, X. Han, W. Yao, Q. Zhu, Y. Meng and Y. Lu, Angew. Chem., Int. Ed., 2013, 52, 943; (h) T. Wang, W. Yao, F. Zhong, F. H. Pang and Y. Lu, Angew. Chem., Int. Ed., 2014, 53, 2964.
- 8 (a) H. Hu, Y. Huang and Y. Guo, J. Fluorine Chem., 2012, 133, 108; (b) Q. Wang, Q.-Y. Chen, X. Yang and Y. Guo, Synthesis, 2012, 3815;

(c) H.-F. Cui, P. Li, X.-W. Wang, Z. Chai, Y.-Q. Yang, Y.-P. Cai, S.-Z. Zhu and G. Zhao, Tetrahedron, 2011, 67, 312; (d) X.-W. Wang, H.-F. Cui, H.-F. Wang, Y.-Q. Yang, G. Zhao and S.-Z. Zhu, Tetrahedron, 2011, 67, 2468; (e) F. Huan, H. Hu, Y. Huang, Q. Chen and Y. Guo, Chin. J. Chem., 2012, 30, 798; (f) C. Rabalakos and W. D. Wulff, J. Am. Chem. Soc., 2008, 130, 13524; (g) X.-Q. Dong, H.-L. Teng and C.-J. Wang, Org. Lett., 2009, 11, 1265; (h) W. Yang and D.-M. Du, Chem. Commun., 2011, 47, 12706; (i) Y.-Q. Deng, Z.-W. Zhang, Y.-H. Feng, A. S. C. Chan and G. Lu, Tetrahedron: Asymmetry, 2012, 23, 1647; (j) X. Yang, X. Zhou, L. Lin, L. Chang, X. Liu and X. Feng, Angew. Chem., Int. Ed., 2008, 47, 7079; (k) S. Varga, G. Jakab, L. Drahos, T. Holczbauer, M. Czugler and T. Soos, Org. Lett., 2011, 13, 5416; (l) S. Rajkumar, K. Shankland, G. D. Brown and A. J. A. Cobb, Chem. Sci., 2012, 3, 584; (m) M. Jorres, I. Schiffers, I. Atodiresei and C. Bolm, Org. Lett., 2012, 14, 4518; (n) Z. Mao, Y. Jia, Z. Xu and R. Wang, Adv. Synth.

Communication

- Catal., 2012, 354, 1401; (o) D. Enders, R. Hahn and I. Atodiresei, Adv. Synth. Catal., 2013, 355, 1126.
- 9 (a) J. Luo, H. Wang, F. Zhong, J. Kwiatkowski, L.-W. Xu and Y. Lu, Chem. Commun., 2013, 49, 5775; (b) F. Zhong, J. Luo, G.-Y. Chen, X. Dou and Y. Lu, J. Am. Chem. Soc., 2012, 134, 10222; (c) X. Dou, W. Yao, B. Zhou and Y. Lu, Chem. Commun., 2013, 49, 9224; (d) X. Dou, B. Zhou, W. Yao, F. Zhong, C. Jiang and Y. Lu, Org. Lett., 2013, 15, 4920; (e) J. Kwiatkowski and Y. Lu, Asian J. Org. Chem., 2014, 3, 458.
- 10 1-Fluoro-1-aryl-nitromethanes were easily prepared from commercially available benzyl bromides in a high-yielding two-step procedure, with the use of Selectfluor® as a fluorinating agent, see the ESI† for full details.
- 11 Under a number of other reduction conditions, e.g. Ni/NaBH₄, Fe/AcOH, and hydrogenation with Pd/C or Pd/CaCO₃, de-fluorination reactions were observed.
- 12 E. Richelson and A. H. Fauq, WO 2009089479, 2009.