Title: LED Projects with OLED Display

Student Name: Minahal Fatima

Reg No: 23-NTU-CS-1050

Course: Embedded IoT Systems (CSE-3080)

Board: ESP32

Abstract

This assignment demonstrates two embedded IoT projects involving LED control and button interaction using an ESP32 microcontroller.

 Task A: Multi-mode LED controller with two buttons (MODE & RESET) and OLED display.

 Task B: Single button press detection to identify short and long presses, controlling an LED and buzzer with OLED feedback.

The projects integrate real-time feedback, interrupts, software debouncing, PWM fading, and I2C OLED display interfacing, providing practical experience in embedded system design.

Introduction:

Embedded systems are widely used to control devices and provide interactive feedback in real time. Learning to manage **inputs (buttons)**, **outputs (LEDs, buzzer)**, and **displays** (**OLED)** is essential for IoT applications.

This assignment explores two common scenarios: multiple LED modes controlled by buttons (Task A) and detecting press types with a single button (Task B).

Objectives:

Task A:

- Implement 4 LED modes (OFF, alternate blink, both ON, PWM fade).
- Use two buttons (MODE and RESET) to cycle and reset modes.
- Display current mode on OLED.
- Provide buzzer feedback for button interaction.
- Learn interrupts and software debouncing.

Task B:

- Detect short (<1.5s) and long (≥1.5s) button presses.
- Toggle LED on short press; play buzzer on long press.
- Display event on OLED.
- Learn simple event-driven input detection and timing-based debouncing.

Hardware Components:

Component	Quantity	Description
ESP32	1	Microcontroller for processing
LEDs	3 (Task A) + 1 (Task B) Visual output
Buzzer	1	Audio feedback
Push Buttons	2 (Task A) + 1 (Task B) Input control
OLED Display	1	Shows mode or event
Jumper wires / Breadboard	d As needed	Connections

Pin Configuration:

Task A - LED Mode Controller

Component Pin

LED1 (Red) 2

LED2 (Green) 4

LED3 (Blue) 5

Buzzer 27

MODE Button 12

Component Pin

RESET Button 14

OLED SDA 21

OLED SCL 22

Task B - Single Button Press Detection

Component Pin

LED 2

Buzzer 27

Button 12

OLED SDA 21

OLED SCL 22

Circuit Diagrams:

- Task A: Connect three LEDs, buzzer, MODE and RESET buttons, and OLED to ESP32
 as per pin configuration.
- Task B: Connect one LED, one buzzer, single button, and OLED to ESP32.

Insert screenshots from /screenshots folder here.

• Task A: mode0.png, mode1.png, mode2.png, mode3.png

Task B: short_press.png, long_press.png

Note: Screenshots demonstrate the system behavior for different modes and button presses.

Software Design & Algorithm:

6.1 Task A - LED Mode Controller

- 1. Initialize all pins for LEDs, buzzer, buttons, and OLED display.
- 2. Attach interrupts to MODE and RESET buttons.
- 3. Detect MODE button press to cycle through 4 modes:
 - o Mode 0: All LEDs OFF
 - Mode 1: Alternate blinking LEDs
 - Mode 2: Both LEDs ON
 - Mode 3: PWM fade effect on LED3
- 4. Detect RESET button press to set mode back to 0.
- 5. Update OLED to show the current mode.
- 6. Play buzzer tone briefly to confirm button press.
- 7. Software debouncing ensures correct button recognition.
- 8. Non-blocking timing is used for blinking and fade effects to maintain system responsiveness.

6.2 Task B - Single Button Press Detection

- 1. Initialize pins for LED, buzzer, button, and OLED.
- 2. Monitor button state continuously.
- 3. Measure button press duration:
 - Short press (<1.5s): toggle LED ON/OFF
 - o **Long press (≥1.5s):** play buzzer tone
- 4. Display the detected event on OLED.
- 5. Small delay ensures software debouncing and avoids misreading.

Observations / Results:

Task A - LED Mode Controller

Mode LED Behavior		OLED Display
0	All LEDs OFF	Mode 0: Both OFF
1	Alternate blinking	Mode 1: Alternate Blink
2	Both LEDs ON	Mode 2: Both ON
3	PWM Fade on LED3	3 Mode 3: PWM Fade

Task B – Single Button Detection

Press Type LED/Buzzer OLED Display

Short LED toggles ON/OFF Short Press → LED ON/OFF

Long Buzzer tone 0.6s Long Press → Buzzer

Screenshots illustrate correct LED patterns, buzzer feedback, and OLED updates for each scenario.

Wokwi Projects

- Task A: https://wokwi.com/projects/445853794784446465
- Task B: https://wokwi.com/projects/445858202457393153

Conclusion

- Task A demonstrates multi-mode LED control using interrupts and software debouncing, combined with PWM fading and OLED feedback.
- Task B demonstrates press-type detection with a single button, event-driven LED and buzzer response, and OLED display of events.
- Both tasks illustrate core concepts of embedded IoT systems, including input/output handling, timing, interrupts, PWM, and display integration.
- The assignment reinforces practical skills for designing interactive embedded systems.

