Университет ИТМО Мегафакультет наук о жизни НОЦ Инфохимии

ОТЧЁТ

по проекту: «Поиск аналогового препарата для Sulfamethoxazole к белку 3TZF»

Предмет: Синтетическая биология и хемоинформатика

Выполнил: Соколов Андрей Сергеевич

Проверил: Самсон Олусегун Афолаби

Санкт-Петербург 2025

1. Цель проекта.

Целью данной работы является разработка более безопасного аналога препарата Sulfamethoxazole, обладающего сниженным уровнем побочных эффектов при сохранении терапевтической эффективности. Исходные файлы выглядят следующим образом:

2D структура Sulfamethoxazole:

2. Поиск структурно похожих соединений.

Пункт 2 выполнялся с использованием .ipynb файла, предоставленного в сопровождающих файлах.

Полученные структуры:

3. Докинг референсного лиганда.

mode		dist from	rmsd u.b.
1 2 3	-7.1 -6.2 -6.1	2.692 4.485	3.407 7.103
4 5 6 7	-6.1 -5.9 -5.9 -5.8		19.375 9.759 6.074 7.897
8 9 10	-5.6 -5.5	4.613 4.909 5.364	8.136 8.049 8.590

4. Виртуальный скрининг.

Пакетный докинг 20 отобранных соединений был проведён с использованием AutoDock_Vina.

Результаты докинга представлены в виде таблице, где для каждого лиганда была выбрано лучшее по аффинитету конформация. Самым выгодным по энергии связывания оказался лиганд CID 1949759 (выделен зелёным). ("Reference" – это референсный лиганд, отмечен жёлтым цветом):

Ligand CID	Affinity (kcal/mol)
5344	-7.3
6662	-5.9
65280	-7.8
114821	-7.5
99331	-8.5
125483	-7.7
705643	-7.7
4596756	-5.9
31771	-7.3

577223	-7.0
694829	-6.2
1181036	-9.1
678193	-8.4
2813558	-6.8
6470079	-7.1
536471	-8.8
562945	-7.4
1949759	-9.6
2730383	-8.1
2813928	-7.4
Reference	
(Sulfamethoxazole)	-7.1

5. Идентификация лидирующего соединения.

Зелёным выделен лиганд – лучший результат докинга:

https://pubchem.ncbi.nlm.nih.gov/compound/1949759

Структура комплекса:

6. Подготовка к молекулярной динамике.

Для проведения молекулярной динамики была выполнена генерация топологических файлов с использованием силового поля AMBER.

Температура в соответствии с мануалом была выбрана равной 310.15 K, рН при котором рассматривается протонирование системы в соотвествии с физиологическим показателем, то есть 7.4. Также для уравновешивания системы использовался NVT-ансамбль, а для самой динамики – NPT.

Все сгенерированные файлы топологии прикреплены к сопутствующему данному файлу отчета.

7. Проведение молекулярной динамики.

#!/bin/csh

#

Generated by CHARMM-GUI (http://www.charmm-gui.org) v3.7

#

- # All input files were optimized for AMBER16 or above, so lower version of AMBER can cause some errors.
- # In this script, the parallel (MPI) version is commented out. Use this line for parallel execution instead
- # (adjust for your MPI and the number of CPUs you want to use). Alternatively, if you have access to
- # pmemd.cuda or are willing to use sander, you can replace "pmemd" with pmemd.cuda or sander and "pmemd.MPI"
- # with pmemd.cuda.MPI or sander.MPI

#

There is a known issue in current CHARMM-GUI AMBER inputs with "sander". # If you are willing to use "sander" for your simulation, please remove "&end" line in all minimization / equilibration # inputs. set amber = pmemd# set amber = "mpirun -np 4 pmemd.MPI" set init = step3 input set mini prefix = step 4.0 minimization set equi prefix = step4.1 equilibration set prod prefix = step5 production set prod step = step5# Minimization # In the case that there is a problem during minimization using a pmemd.cuda, please try to use pmemd only for # the minimization step.

if "dihe.restraint") sed -e "s/FC/1.0/g" dihe.restraint (-e step4.0 minimization.rest

pmemd -O -i step4.0 minimization.mdin -p step3 input.parm7 step3 input.rst7 -o step4.0 minimization.mdout -r step4.0 minimization.rst7 -inf step4.0 minimization.mdinfo -ref step3 input.rst7

Equilibration

```
if
          "dihe.restraint")
                             sed -e "s/FC/1.0/g" dihe.restraint
    (-e
                                                                       >
step4.1 equilibration.rest
pmemd -O -i step4.1 equilibration.mdin -p step3 input.parm7
                                      step4.1 equilibration.mdout
step4.0 minimization.rst7
                              -0
                                                                       -r
step4.1 equilibration.rst7
                             -inf
                                     step4.1 equilibration.mdinfo
                                                                     -ref
step3 input.rst7 -x step4.1 equilibration.nc
# Production
set cnt = 1
set cntmax = 10
while ( ${cnt} <= ${cntmax} )
  (a) pcnt = \{cnt\} - 1
  set istep = step5 ${cnt}
  set pstep = step5_${pcnt}
  if (\${cnt} == 1) set pstep = step4.1 equilibration
       pmemd -O -i step5 production.mdin -p step3 input.parm7 -c
${pstep}.rst7 -o ${istep}.mdout -r ${istep}.rst7 -inf ${istep}.mdinfo -x
${istep}.nc
  (a) cnt += 1
end
```