Devoir surveillé n°9 Version n°1

Durée: 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Soit E un \mathbb{K} -espace vectoriel de dimension égale à n. Montrer que

$$n \text{ est pair} \Leftrightarrow \exists f \in \mathcal{L}(E) \quad \text{Im } f = \text{Ker } f.$$

II. Tirages de boules dans une urne.

Une urne contient initialement une boule blanche et une boule noire. On effectue une succession d'épreuves, chaque épreuve étant définie comme suit :

- on tire une boule dans l'urne,
- on remet ensuite la boule tirée dans l'urne,
- on rajoute ensuite dans l'urne une boule de couleur opposée à celle qui vient d'être tirée.

Soit (Ω, P) un espace probabilisé modélisant cette expérience.

Si $k \in \mathbb{N}^*$, on note B_k le nombre de boules blanches présentes dans l'urne après la k^e épreuve. Par convention, B_0 est la variable aléatoire constante égale à 1.

- 1) Déterminer la loi de B_1 et donner son espérance, ainsi que sa variance.
- 2) Justifier soigneusement que la loi de B_2 est déterminée par

$$P(B_2 = 1) = \frac{1}{6}$$
; $P(B_2 = 2) = \frac{2}{3}$; $P(B_2 = 3) = \frac{1}{6}$.

3) Soit $k \in \mathbb{N}$.

Combien y a-t-il de boules dans l'urne après la $k^{\rm e}$ épreuve? On justifiera ce résultat, au moins brièvement.

En déduire l'ensemble $B_k(\Omega)$ des valeurs que peut prendre B_k .

- 4) Détermination par récurrence de la loi de B_k .
 - a) Soit $i \in \mathbb{N}^*$ et $j \in B_k(\Omega)$. Déterminer $P(B_{k+1} = i \mid B_k = j)$ (on distinguera trois cas selon les valeurs relatives de i et j).

 ${\bf b)}$ En utilisant la formule des probabilités totales, déduire de ce qui précède que :

$$\forall k \in \mathbb{N}, \ \forall i \in \mathbb{N}^*, \ P(B_{k+1} = i) = \frac{i}{k+2} P(B_k = i) + \frac{3+k-i}{k+2} P(B_k = i-1).$$

- 5) À l'aide de la formule du 4)b), retrouver la loi de B_2 , puis déterminer celle de B_3 .
- 6) Calculs explicites de quelques valeurs.

Pour tout $k \in \mathbb{N}$, on pose $a_k = (k+1)!P(B_k = 2)$.

- a) Montrer que, pour tout $k \in \mathbb{N}$, $P(B_k = 1) = \frac{1}{(k+1)!}$.
- **b)** Déterminer, pour tout $k \in \mathbb{N}$, la valeur de $P(B_k = k + 1)$.
- c) À l'aide de la formule du 4)b), exprimer, pour tout $k \in \mathbb{N}$, a_{k+1} en fonction de a_k et de k.
- d) Déterminer deux réels A et B tels que la suite de terme général $b_k = a_k + Ak + B$ soit géométrique. En déduire alors que :

$$\forall k \in \mathbb{N}, P(B_k = 2) = \frac{2^{k+1} - k - 2}{(k+1)!}.$$

- 7) Espérance de B_k .
 - a) À l'aide de la formule du 4)b), montrer que, pour tout $k \in \mathbb{N}$,

$$E(B_{k+1}) = \frac{k+1}{k+2}E(B_k) + 1.$$

b) Déduire de ce qui précède que :

$$\forall k \in \mathbb{N}, E(B_k) = \frac{k+2}{2}.$$

- c) Retrouver ce résultat en utilisant la variable aléatoire N_k égale au nombre de boules noires présentes dans l'urne après k tirages.
- 8) Variance de B_k .
 - a) Exprimer, pour tout $k \in \mathbb{N}$, $E(B_{k+1}^2)$ en fonction de $E(B_k^2)$, de $E(B_k)$ et de k.
 - **b)** En déduire, pour tout $k \in \mathbb{N}$,

$$V(B_{k+1}) = \frac{k}{k+2}V(B_k) + \frac{1}{4}.$$

c) Montrer que:

$$\forall k \in \mathbb{N}^*, \ V(B_k) = \frac{k+2}{12}.$$

- 9) Comportement asymptotique de (B_k) .
 - a) Soit $\alpha > 0$. Montrer, en utilisant l'inégalité de Bienaymé-Tchebychev, que

$$P\left(\left|\frac{B_k}{k+2} - \frac{1}{2}\right| < \alpha\right) \xrightarrow[k \to +\infty]{} 1.$$

- b) Interpréter ce résultat et le justifier intuitivement.
- 10) Covariance de B_k et de B_{k+1} .
 - a) Quelle est la covariance de B_0 et de B_1 ?
 - b) B_0 et B_1 sont-elles indépendantes?

On suppose à partir de maintenant que $k \in \mathbb{N}^*$.

- c) Exprimer la loi conjointe de B_k et B_{k+1} en fonction de la loi de B_k .
- d) En déduire la covariance de B_k et B_{k+1} .
- e) Les variables aléatoires B_k et B_{k+1} sont-elles indépendantes?
- 11) Étude d'un automorphisme de $\mathbb{R}_{[}X]$.

Pour tout $i, j \in \mathbb{N}$ vérifiant $1 \leq j < i$, on définit

$$\varphi_{i,j}: \left\{ \begin{array}{l} \mathbb{R}[X] & \longrightarrow & \mathbb{R}[X] \\ P(X) & \longmapsto & jP(X+1)-iP(X) \end{array} \right.$$

- a) Montrer que $\varphi_{i,j}$ est linéaire.
- **b)** Montrer que pour tout $P \in \mathbb{R}[X]$, $\deg(\varphi_{i,j}(P)) = \deg(P)$.
- c) En déduire que $\varphi_{i,j}$ est injective.
- d) Montrer que $\varphi_{i,j}$ est un automorphisme de $\mathbb{R}[X]$.
- 12) Explicitation de la loi de B_k .

On définit

$$P_{1,1}(X) = 1$$

et, pour tout $1 \leq j < i$,

$$P_{i,j}(X) = \varphi_{i,j}^{-1}((3+X-i)P_{i-1,j}(X)).$$

On définit enfin pour tout i > 1:

$$P_{i,i}(X) = -\sum_{i=1}^{i-1} P_{i,j}(0).$$

- a) Vérifier que $P_{2,1}(X) = -X 2$ puis déterminer $P_{2,2}(X)$.
- **b)** Vérifier que $P_{3,2}(X) = -2X 4$.

On admettra dans la suite que

$$P_{3,1}(X) = \frac{1}{2}X^2 + \frac{3}{2}X + 1$$
 et $P_{3,3}(X) = 3$.

On considère pour tout $i \in \mathbb{N}^*$ la propriété

$$\mathcal{H}_i: \forall k \in \mathbb{N}, \ P(B_k = i) = \frac{1}{(k+1)!} \sum_{i=1}^i P_{i,j}(k) j^k$$
.

On souhaite montrer par récurrence que pour tout $i \in \mathbb{N}^*$, \mathscr{H}_i est vraie.

- c) Montrer que \mathcal{H}_1 est vraie.
- d) Soit i > 1, on suppose que \mathcal{H}_{i-1} est vraie. On pose pour tout $k \in \mathbb{N}$;

$$\alpha_k = (k+1)!P(B_k = i) - \sum_{j=1}^{i-1} P_{i,j}(k)j^k.$$

En utilisant le résultat de la question 4)b), montrer que la suite (α_k) est géométrique et déterminer α_0 .

- e) Conclure quant à cette récurrence.
- f) Retrouver le résultat de la question 6)d).
- g) Déterminer pour tout $k \in \mathbb{N}$ la valeur de $P(B_k = 3)$.

— FIN —