Operacje SSE:

Sufiks PS

Operacje SSE — c.d.:

Sufiks SS

Step 1:

Compute Pi (Leibniz formula) using SSE instructions

.data

.align 16

denom:

.double 1.0, 3.0

first & second denominators

numer:

.double 4.0, -4.0

first & second numerators

add4:

.double 4.0, 4.0

difference between denominators

zero:

.double 0.0, 0.0

sums starting values

.text

.type fun_a, @function

.global fun_a

Step 2:

fun_a:

```
shr $1, %rdi
inc %rdi
movdqa denom, %xmm5
movdqa numer, %xmm2
movdqa add4, %xmm3
movdqa %xmm2, %xmm4
movdqa zero, %xmm1
```

two terms are computed in parallel
half of iterations is enough
denominators to xmm5
numerators to xmm2
differences to xmm3
numerators to xmm4
zeros to xmm1

xmm0		
xmm1	0.0	0.0
xmm2	4.0	-4.0
xmm3	4.0	4.0
xmm4	4.0	-4.0
xmm5	1.0	3.0

Step 3:

next:

```
divpd %xmm5, %xmm2
addpd %xmm2, %xmm1
movdqa %xmm4, %xmm2
addpd %xmm3, %xmm5
dec %rdi
jnz next
```

```
# xmm2 /= xmm5
# xmm1 += xmm2
# xmm2 = xmm4
# xmm5 += xmm3
```

xmm0		
xmm1	0.0+4/1+4/5	0.0-4/3-4/7
xmm2	4.0/1.0, 4/5,	-4.0/3.0, -4/7,
xmm3	4.0	4.0
xmm4	4.0	-4.0
xmm5	1.0, 5.0, 9.0,	3.0, 7.0, 11.0,

Step 4:

haddpd %xmm1, %xmm1 movsd %xmm1, %xmm0 ret # horizontal sums of low & high parts
low part to xmm0
that's all

xmm0	?	4/1-4/3+4/5-4/7+
xmm1	4/1-4/3+4/5-4/7	4/1-4/3+4/5-4/7
xmm2		
xmm3		
xmm4		
xmm5		