Probability and Random Processes

Keivan Mallahi-Karai

2.09.2022

Jacobs University

Mathematical models of probability

 Ω : sample space. Every subset of Ω is called an event.

Definition

To every event A we associate a probability denoted by $\mathbb{P}[A]$ such that

1.
$$\mathbb{P}[\Omega] = 1.1 \text{P(A)} > 0$$
 And $B = \emptyset$

2. If A and B are events with $AB = \emptyset$ then

$$\mathbb{P}[A \cup B] = \mathbb{P}[A] \cup \mathbb{P}[B].$$
A or \mathbb{S}

Comment

Example

A coin is flipped. The sample space is

Probably according to Pascal
$$\omega$$
 omega $\mathbb{P}(\{\omega_i\}) = \mathbb{P}(\{\omega_i\}) = \mathbb{P$

2

K = # elements in A

Example

A coin is flipped. The sample space is

$$\frac{\Omega = \{H, T\}.}{\mathbb{P}(\langle H \}) = \frac{1}{2}, \quad \mathbb{P}(\langle T \}) = \frac{1}{2}.$$

Example

A coin is flipped. The sample space is

$$\Omega = \{H, T\}.$$

$$\mathbb{P}\left[\left\{H\right\}\right] = \frac{1}{2}.$$

Example

For two coins:

Example

A coin is flipped. The sample space is

$$\Omega = \{H, T\}.$$

$$\mathbb{P}\left[\left\{H\right\}\right] = \frac{1}{2}.$$

Example

For two coins:

$$\Omega = \{HH, HT, TH, TT\}$$

$$\begin{cases} \chi_{\lambda} & \chi_{\lambda} \\ \chi_{\lambda} & \chi_{\lambda} \end{cases}$$

M Coins

Flip n coins

Outcome: sequence X, X2 -- - Xn

Xi is eiter H, T

Xi is eith 0, 1

00---0 11--1

Size of sample space 2h

Example

A coin is flipped. The sample space is

$$\Omega = \{H, T\}.$$

$$\mathbb{P}\left[\left\{H\right\}\right] = \frac{1}{2}.$$

Example

For two coins:

$$\Omega = \{HH, HT, TH, TT\}$$

$$\mathbb{P}\left[\left\{HH,HT,TH\right\}\right] = \frac{3}{4}.$$

One can generalize this to more than two coins:

If the experiment consists of throwing n coins, then we consider sequences of length n as the sample space.

Example

A die is rolled. What is the probability that the outcome is an even number.

Example

A die is rolled. What is the probability that the outcome is an even number.

$$\Omega = \{ \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \blacksquare \}.$$

Example

A die is rolled. What is the probability that the outcome is an even number.

$$\Omega = \{ \mathbf{C}, \mathbf{C}, \mathbf{C}, \mathbf{C}, \mathbf{C}, \mathbf{C}, \mathbf{C} \}.$$

The event *A* is defined by

$$A = \{ \Box, \Xi, \Xi \}.$$

Example

A die is rolled. What is the probability that the outcome is an even number.

$$\Omega = \{ \mathbf{C}, \mathbf{C}, \mathbf{C}, \mathbf{C}, \mathbf{C}, \mathbf{C}, \mathbf{C} \}.$$

The event *A* is defined by

$$A = \{ \Box, \boxdot, \blacksquare \}.$$

$$\mathbb{P}[A] = \frac{3}{6} = 0.5$$

Let B be the event that the outcome is at most 4. Then

Example

A die is rolled. What is the probability that the outcome is an even number.

$$\Omega = \{ \mathbf{C}, \mathbf{C}, \mathbf{C}, \mathbf{C}, \mathbf{C}, \mathbf{C}, \mathbf{C} \}.$$

The event *A* is defined by

$$A = \{ \Box, \Box, \blacksquare \}.$$

$$\mathbb{P}[A] = \frac{3}{6} = 0.5$$

Let B be the event that the outcome is at most 4. Then

$$B = \{ \mathbf{O}, \mathbf{O}, \mathbf{O}, \mathbf{O} \}.$$

Example

A die is rolled. What is the probability that the outcome is an even number.

$$\Omega = \{ \mathbf{C}, \mathbf{C}, \mathbf{C}, \mathbf{C}, \mathbf{C}, \mathbf{C}, \mathbf{C} \}.$$

The event *A* is defined by

$$A = \{ \Box, \boxdot, \blacksquare \}.$$

$$\mathbb{P}[A] = \frac{3}{6} = 0.5$$

Let B be the event that the outcome is at most 4. Then

$$B = \{ \mathbf{O}, \mathbf{O}, \mathbf{O}, \mathbf{O} \}.$$

$$\mathbb{P}[B] = \frac{4}{6} = 0.67.$$

2♠	3♠	4	5 ♠	6♠	7♠	8	9♠	10♠	J♠	Q♠	K♠	A
2♥	3♥	4♥	5♥	6♥	7♥	8♥	9♥	10♥	J♥	Q♥	K♥	A♥
2♣	3♣	4 ♣	5 ♣	6♣	7 .	8	9 ♣	10♣	J♣	Q ♣	K .	A.
2♦	3♦	4♦	5\	6	7\	8	9	10♦	J♦	Q	K♦	A♦

$$\mathbb{P}\left[A\right] = \frac{4}{52} = \frac{1}{13}.$$

2♠	3♠	4	5 ♠	6♠	7♠	8	9♠	10	J♠	Q♠	K♠	A
2 ♣	3♣	4	5 .	6♣	7 .	8	9 ♣	10	J♣	Q .	K .	A.
2♥	3♥	4♥	5♥	6♥	7♥	8♥	9♥	10♥	J♥	Q♥	K♥	A♥
2	3♦	4♦	5♦	6♦	7 ♦	8	9♦	10♦	J♦	Q	K∳	A♦

$$\mathbb{P}\left[R\right] = \frac{26}{52} = \frac{1}{2}.$$

$$\mathbb{P}[A \cup R] = \frac{4 + 26 - 2}{52} = \frac{28}{52}.$$

The union law

Theorem (The Union law)Suppose A and B are two events. Then

$$\mathbb{P}[A \cup B] = \mathbb{P}[A] + \mathbb{P}[B] - \mathbb{P}[A \cap B].$$

Proof.

Proof using Venn diagram:

$$P(A) = \frac{\#A}{\#S}$$
, $P(B) = \frac{\#B}{\#S}$, $P(A \cup B) = \frac{\#(A \cup B)}{\#S}$

$$\#(A \cup B) = \#A + \#B - \#(A \cap B)$$

Idea of a proof

$$A = A_1 \cup C$$

$$A_1 \cap C = \emptyset$$

$$P(A) = P(A_i) + P(C)$$

$$P(B) = P(B_i) + P(C)$$

$$P(A) + P(B) = P(A) + P(B) + P(C) + P(C)$$

$$P(A \cup B) + P(A \cap B)$$

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$
.

Counting

Many problems in probability boil down to finding out how many elements are in a set. This turns out to be an art, but there are also methods.

Example

A 3-digit number x is chosen randomly. What is the probability that x is at least 200.

$$\Omega = \{100, 101, ---, 999\} \quad 300$$

$$A = \{200, 201, ---, 999\} \quad 300$$

$$R(A) = \frac{800}{3} = \frac{4}{3}$$

$$\Omega, att. ---; b$$

Counting

Many problems in probability boil down to finding out how many elements are in a set. This turns out to be an art, but there are also methods.

Example

A 3-digit number x is chosen randomly. What is the probability that x is at least 200.

If a < b are integers, then the number of integers in the list

$$a, a+1, ..., b$$

 $(10), --, 255$
 $a+00, a+1, ---, a+(b-a)$
 $a+00, a+1, ---, a+(b-a)$
 $a+1, ..., b$
 $a+1, ..., a+1, ..., a+1$

8

Counting using choice tree

Choice tree and unconstrained sequences

In how many ways can one form a sequence of length k using letters 1, 2, does, k?

Choice tree and Factorials

Choice tree and Factorials

In how many ways can one list $1, 2, \ldots, k$ such that every number appears exactly once?

Properties of n!

 $lel = 1 \times 2 \times - - - \times k$ 11 = 1, 5! = 1x2x3x4x5 = 120Conventir 01 = 1 how large is no a function of a? logarithmic logis no a fixed 10h & fixel ~>1 exponential growth double expoentir

 $\frac{1}{2}$ $\frac{1}$

N

Properties of *n*!

The sequence n! grows very quickly. In fact it grows faster than any exponential function.

Properties of *n*!

The sequence n! grows very quickly. In fact it grows faster than any exponential function.

Theorem (Stirling's formula)

For large values of n, one can use the following asymptotic formula to approximate n!:

$$N = N \cdot N - N$$

$$N = N \cdot N - N$$

$$N = N \cdot (N-1) \cdot A$$

$$N = N \cdot (N-1) \cdot A$$

$$\frac{n!}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n} \to 1$$

A fair die is thrown 4 times. What is the probability that the score 5 appears at least once.

$$\Omega = \begin{array}{c}
4 \text{ (hrows of} \\
A = \text{ of Leart one} \\
appearance of 5
\end{array}$$

$$\#\Omega = 64,$$

$$\#A = ?$$

$$A^{C} = \Omega \text{ with A penared}$$

$$A^{C} = \Omega \text{ with A penared}$$

$$P(A) + P(A^c) = 1$$

$$\frac{\text{Fausiss}}{\text{P(A)}} = \frac{5}{69}$$

$$R(A) = 1 - \frac{5}{69}$$

A fair die is thrown 4 times. What is the probability that the score 5 appears at least once.

The sample space is

$$\Omega = \{(x_1, x_2, x_3, x_4) : 1 \le x_i \le 6\}.$$

A fair die is thrown 4 times. What is the probability that the score 5 appears at least once.

The sample space is

$$\Omega = \{(x_1, x_2, x_3, x_4) : 1 \le x_i \le 6\}.$$

$$A = \Omega = \{(x_1, x_2, x_3, x_4) : x_i = 6 \text{ for some } i.\}.$$

A fair die is thrown 4 times. What is the probability that the score 5 appears at least once.

The sample space is

$$\Omega = \{(x_1, x_2, x_3, x_4) : 1 \le x_i \le 6\}.$$

$$A = \Omega = \{(x_1, x_2, x_3, x_4) : x_i = 6 \text{ for some } i.\}.$$

The event A^c , indicating that A did not happen consists of those outcomes that consist only of 1, 2, 3, 4, 6. So,

A fair die is thrown 4 times. What is the probability that the score 5 appears at least once.

The sample space is

$$\Omega = \{(x_1, x_2, x_3, x_4) : 1 \le x_i \le 6\}.$$

$$A = \Omega = \{(x_1, x_2, x_3, x_4) : x_i = 6 \text{ for some } i.\}.$$

The event A^c , indicating that A did not happen consists of those outcomes that consist only of 1, 2, 3, 4, 6. So,

$$\mathbb{P}[A^c] = \frac{5^4}{6^4} = 0.48.$$

A fair die is thrown 4 times. What is the probability that the score 5 appears at least once.

The sample space is

$$\Omega = \{(x_1, x_2, x_3, x_4) : 1 \le x_i \le 6\}.$$

$$A = \Omega = \{(x_1, x_2, x_3, x_4) : x_i = 6 \text{ for some } i.\}.$$

The event A^c , indicating that A did not happen consists of those outcomes that consist only of 1, 2, 3, 4, 6. So,

$$\mathbb{P}[A^c] = \frac{5^4}{6^4} = 0.48.$$

Hence

$$\mathbb{P}[A] = 1 - 0.48 = 0.52.$$