КПІ ім. Ігоря Сікорського Інститут прикладного системного аналізу Кафедра Системного проектування

Лабораторна робота №9

«Чисельні методи розв'яку нелінійних рівнянь та систем нелінійних рівнянь»

Виконав:
Студент(ка) групи ДА-хх
ННК «IПСА»
Варіант № хх

Мета: визначення інтервалу ізоляції коренів нелінійних рівнянь. Придбання практичних навичок в розв'язанні нелінійних алгебричних і трансцендентних рівнянь, побудові ітераційних процесів для наближених формул розв'язання.

Завдання:

Номер варіанта	Рівняння $f(x)$	Методи розв'язку	
		Ручний розрахунок	Програмний розрахунок
26	x*lg(x)+0.125=0	2	4,6

$$\begin{cases} x + 3 * \ln(x) - y^2 = 0, \\ 2 * x^2 - x * y - 5 * x = -1; \end{cases}$$
 Система:

Порядок виконання роботи:

- 1. За допомогою побудови графіку функції f (x) = 0 (табл. 9.1), визначити інтервали ізоляції всіх коренів рівняння. Зробити припущення про наявність комплексних коренів.
- 2.Обчислити наближені значення коренів вручну, виконавши 3-4 ітерації (до встановлення факту збіжності) методами, номери яких позначені у табл. 9.1.

2) релаксаційний метод;

- 3. Скласти програму для розв'язку рівняння з табл. 9.1. з точністю ε=0.001 методами, номери яких позначені у табл. 9.1. Змінюючи точність обчислень (збільшуючи і зменшуючи ε) порівняти кількість ітерацій, яка знадобиться для досягнення вказаної точності.
- 4) метод січних;
- 6) комбінований метод;
- 4. Проаналізувати, як впливає на кількість ітерацій вибір початкового наближення кореня.
- 5. Скласти програми, у яких ітераційний процесс закінчується по фіксованій кількості ітерацій (наприклад, n=3). Порівняти, як співвідносяться між собою результати, отримані різними методами при одній і тій же кількості ітерацій.
- 6. Графічно визначити початкове наближення розв'язку системи рівнянь згідно з варіантом завдання (табл. 9.2)

- 7. Побудувати ітераційний процес (непарні номери методом простої ітерації; парні методом Ньютона) з точністю розв'язку ε =0.01
- 8. Скласти звіт з отриманих результатів і математичних формул використаних методів по кожному пункту завдання, давши оцінку порівняльної точності отриманих рішень різними методами.
- 1. За допомогою побудови графіку функції х*lg(х)+0.125=0 визначити інтервали ізоляції всіх коренів рівняння. Зробити припущення про наявність комплексних коренів.

Бачимо, що існує 2 дійсних коріня x_0 , які лежать в інтервалі ізоляції [0; 1].

Знайдемо значення кореня:

```
In[170]:= f = x * (Log10[x]) + 0.125;
[десятичный логарифм]
FindRoot[f == 0, \{x, 0.5\}]
[Hайти корень]
In[172]:= f = x * (Log10[x]) + 0.125;
[десятичный логарифм]
FindRoot[f == 0, \{x, 0.2\}]
[Hайти корень]
[Uni[173]:= \{x \to 0.153678\}
```


- 2.Обчислити наближені значення коренів вручну, виконавши 3-4 ітерації (до встановлення факту збіжності) методами, номери яких позначені у табл. 9.1.
- 2) релаксаційний метод;

I так далі...

Висновки обов'язкові

ВИСНОВОК

В ході виконання лабораторної роботи було розглянуто На основі обраних інтервалів було розв'язано ...

Для досліження вручну було обрано метод Систему рівнянь розв'язано

Важливим кроком для отримання бажаного розв'язку в кожному методі був Методом релаксації було досягнуто бажаного результату розрахунків (в найгіршому випадку)

Оцінивши залежність