Lineær algebra noter - Lineære differentialligninger

Lukas Peter Jørgensen, 201206057, DA4

24. juni 2014

Indhold

L	Dis	position
2	Not	er
	2.1	Lineært differentialligningssystem
	2.2	Løsningsform
	2.3	Bevis for løsningsform
	2.4	Lineærkombination er også en løsning
	2.5	Bevis for lineærkombination

2 Noter

2.1 Lineært differentialligningssystem

Der er forskel på et differentialligningssystem og et lineært ligningssystem. Et lineært differentialligningssystem er et system af m ligninger med n ubekendte, hvor disse kan skrives som:

$$y'_{1} = a_{11}y_{1} + a_{12}y_{2} + \dots + a_{1n}y_{n}$$

$$y'_{2} = a_{21}y_{1} + a_{22}y_{2} + \dots + a_{2n}y_{n}$$

$$\dots$$

$$y'_{m} = a_{m1}y_{1} + a_{m2}y_{2} + \dots + a_{mn}y_{n}$$

$$y_{i} : I \to \mathbb{K}^{n}$$

Kan også skrives på matrix form som:

$$Y' = AY \tag{1}$$

2.2 Løsningsform

For n = 1 kender vi løsningen som:

$$y' = ay \implies y(t) = ce^{at}$$

En generel løsning for n > 1 er:

$$Y = \begin{bmatrix} x_1 e^{\lambda t} \\ \vdots \\ x_n e^{\lambda t} \end{bmatrix} = e^{\lambda t} x$$

2.3 Bevis for løsningsform

Hvis man differentiere $e^{\lambda t}x$ får vi:

$$Y' = \lambda e^{\lambda t} x = \lambda Y$$

Vi vil nu vise $AY=\lambda Y=Y'$, hvilket vi kan gøre hvis vi vælger λ til at være en egenværdi for A og x den tilhørende egenvektor. Så får vi:

$$AY = Ae^{\lambda t}x = \lambda e^{\lambda t}x = \lambda Y = Y'$$

 $Ae^{\lambda t}x$ svarer til at gange a på en skaleret egenvektor derfor kan A erstattes med λ .

2.4 Lineærkombination er også en løsning

Hvis Y_1 og Y_2 begge er løsninger til Y' = AY, så er lineærkombinationen af disse også en løsning.

2.5 Bevis for lineærkombination

Vi skal vise at $Y' = A(\alpha Y_1 + \beta Y_2)$

$$(\alpha Y_1 + \beta Y_2)' = \alpha Y_1' + \beta Y_2'$$
$$= \alpha A Y_1 + \beta A Y_2$$
$$= A(\alpha Y_1 + \beta Y_2)$$

Nu er du fucked.