UNCLASSIFIED

AD 263 450

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

STIM-263450

U. S. A R M Y TRANSPORTATION RESEARCH COMMAND FORT EUSTIS, VIRGINIA

TCREC TECHNICAL REPORT 61-15

RESULTS OF WIND-TUNNEL TEST OF A FULL-SCALE FUSELAGE-MOUNTED, TIP-TURBINE-DRIVEN LIFT FAN

VOLUME 2

Additional 30 Hours of Wind Tunnel Tests
September-December 1960

Task 9R38-01-020-02 Contract DA 44-177-TC-584

April 1961

prepared by :

GENERAL ELECTRIC COMPANY
Flight Propulsion Laboratory Department
Cincinnati 15, Ohio

2494-60

DISCLAIMER NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

ASTIA AVAILABILITY NOTICE

Qualified requestors may obtain copies of this report from

Armed Services Technical Information Agency Arlington Hall Station Arlington 12, Virginia

The information contained herein will not be used for advertising purposes.

The findings and recommendations contained in this report are those of the contractor and do not necessarily reflect the views of the Chief of Transportation or the Department of the Army.

HEADQUARTERS U. S. ARMY TRANSPORTATION RESEARCH COMMAND Fort Eustis, Virginia

FOREWORD

This report is the second of a three-volume series on the fan-in-fuselage model wind tunnel tests at the NASA-Ames Research Center 40' x 80' wind tunnel. The estimated STOL performance shown in Section V is preliminary and may be revised in Volume 3. The reader is encouraged to review the procedure used to separate fan lift from aircraft lift as described in Section V.

This Command concurs in the recommendations set forth in Section VII. The references listed in Section VIII include additional reports that have been produced under Contract DA 44-177-TC-584.

FOR THE COMMANDER:

APPROVED BY:

IOHN W WHITE

USATRECOM, Project Engineer

EARL A. WIRTH

CWO-4 USA

Adjutant

Task 9R38-01-020-02 Contract DA 44-177-TC-584 April 1961

RESULTS OF WIND TUNNEL, TESTS OF A FULL SCALE FUSELAGE MOUNTED, TIP TURBINE DRIVEN LIFT FAN

Volume 2

Additional 30 Hours of Wind Tunnel Tests September-December 1960

Prepared By:
GENERAL ELECTRIC COMPANY
Flight Propulsion Laboratory Department
Cincinnati 15, Ohio

U. S. ARMY TRANSPORTATION RESEARCH COMMAND FORT EUSTIS, VIRGINIA

TABLE OF CONTENTS

		PAG
I	SUMMARY	1
	Aerodynamic Mechanical	3 5
ΙΙ	WIND TUNNEL MODEL	7
	Aircraft Modifications Fan Modifications	7 7
	Forward Frame Rotor Scroll	7 8 9
	Engine Change	9
III	TEST INSTRUMENTATION	11
IV	TEST PROCEDURES AND RESULTS	13
	Measurement Accuracies	13
V	ANALYSIS OF RESULTS	17
	A. General Considerations J85 Engine Bleed Thrust Turning Angle	17 17 17 18
	B. Basic Aircraft Performance (Fan Off)	18
	The Aircraft Drag Lift Tail Downwash And Tail Control Effectiveness Ailerons Static Longitudinal Stability (Fan Off)	18 19 19 21
	C. Fan Aerodynamic Performance	21
	Fan Inlet Performance Fan System Performance Determination of Fan Performance as a Function of Flight Speed	21 25 27
	D. Fan Powered Aircraft Performance	32
	Performance (pefficients	

		PAGE
	Interaction Lift and Drag	33
	Tail Downwash	41
	Pitching Moments	42
	Static Longitudinal Stability (Fan On)	48
	Aircraft Performance with Inlet Vane Removed	49
	Transition Analyses	51
	Unaccelerated Level Flight	53
	Acceleration and Deceleration in Level Flight	53
	Constant Speed Climb	55
	Accelerated Climb and Decelerated Descent	55
	Short Take Off Analysis	57
	Pitch Control Requirements During Transition	 61
	E. Mechanical Performance	63
	Rotor	63
	Torque Band Failure	72
VI	HARDWARE INSPECTION RESULTS	77
	Forward Frame	77
	Aft Frame	78
	Scroll Scroll	79
	Rotor	79
VII	RECOMMENDATIONS	81
VIII	REFERENCES	83
APPEN	NDIX A	85
	Method For Estimating Fan Performance Above v_p/v_{tip} Of 0.3	85
APPEN	NDIX B	112
	Basic Aircraft Performance (Fan Off)	121
	Fan Aero-Thermodynamic Performance	129
	Basic Aircraft Performance (Fan On)	149
	Analyzed Aircraft Performance (Fan On)	193
	Fan Mechanical Performance	231

LIST OF ILLUSTRATIONS

FIGURE		PAGE
1	Sketch of NASA Full-Scale Aircraft Model	112
2	Carrier Tab Installed	113
3	Assembled Rotor - B/U #3-001	114
4	Velocity Probe Location	115
5	Static Pressure Tap Locations On The Fuselage	116
6	Velocity Calibration Vs. Velocity Ratio	117
7	Total Available Horsepower Versus Engine Speed	118
8	Ducting Losses Versus Turbine Discharge Mach Number	119
9	Exhaust Gas Temperature (EGT) Versus J85-7 Speed	120
10	Unpowered Aircraft Performance	121
11	Unpowered Aircraft Performance	122
12	Unpowered Aircraft Performance	123
13	Unpowered Aircraft Performance	124
14	Unpowered Aircraft Performance	125
15	Horizontal Tail Effectiveness	126
16	Roll Coefficient Versus Aileron Position	127
17	Fan Inlet Loss Versus Velocity Ratio	129
18	Fan Inlet Loss Versus Velocity Ratio	130
19	Fan Inlet Loss Versus Velocity Ratio	131
20	Fan Inlet Loss Versus Velocity Ratio	132
21	Static Flow Coefficient For Fan Inlet Duct Versus Fan Speed	133
22	Fan Inlet Loss Versus Velocity Ratio	134
23	Fan Inlet Pressure Versus Flight Speed	135
24	Fan Inlet Ram Recovery Versus Velocity Ratio	136
25	Fan Inlet Ram Recovery Versus Velocity Ratio	137
26	Total Fan Thrust and Isentropic Horsepower Versus Fan Speed	138
27	Total Fan Thrust Coefficient Versus Fan Speed	139
28a	Total Thrust Ratio Versus Indicated Louver Angle ($oldsymbol{eta}$)	140
28b	Total Thrust Ratio Versus Actual Turning Angle ($oldsymbol{eta}_{ m V}$)	141
29	Total Fan Thrust Coefficient (H _T) Vs. Velocity Ratio	142
30	Fan Lift Coefficient (H,) Versus Velocity Ratio	143

F IGURE		PAGE
	The state of the s	144
31	Total Fan Horizontal Drag Coefficient (H _{DF}) Vs. Velocity Ratio	145
32	Fan and Engine Ram Drag Coefficient (H _{DR}) Versus Velocity Ratio	146
33	Net Fan Drag Coefficient (HDN) Versus Velocity Ratio	
34	Fan Speed Variation At Constant Horsepower Versus Velocity Ratio and Exit Louver Angle	147
35	Fan Speed Variation Versus Flight Speed and Exit Louver Angle for Constant J85 Throttle Setting and 100% J85 Inlet Recovery	148
36	Interaction Lift Vs. Velocity Ratio and Exit Louver Angle	149
37	Interaction Lift (From Wing Static Pressures) Versus Velocity Ratio and Exit Louver Angle	150
38	Total Measured Lift Minus Fan Lift Versus Angle of Attack and Velocity Ratio	131
39 .	Interaction Lift At Maximum Lift Condition Versus Velocity Ratio	152
40	Interaction Drag Vs. Velocity Ratio and Exit Louver Angle	153
41	Tail Downwash Versus Velocity Ratio	154
42a	Lift Coefficient Versus Velocity Ratio	155
42b	Drag Coefficient Versus Velocity Ratio	156
420 42c *	Pitching Moment Coefficient Versus Velocity Ratio	157
	Lift Coefficient Versus Velocity Ratio	158
43a	Drag Coefficient Versus Velocity Ratio	159
43b	Pitching Moment Coefficient Versus Velocity Ratio	160
43c	Lift Coefficient Versus Velocity Ratio	161
44a	Drag Coefficient Versus Velocity Ratio	162
44b	Pitching Moment Coefficient Versus Velocity Ratio	163
44c	Lift Coefficient Versus Velocity Ratio	164
45a	Drag Coefficient Versus Velocity Ratio	165
45b	Pitching Moment Coefficient Versus Velocity Ratio	166
45c		167
. 46	Fan Powered Aircraft Performance	168
47	Fan Powered Aircraft Performance	169
48	Fan Powered Aircraft Performance	170
49	Fan Powered Aircraft Performance	171
5 0	Fan Powered Aircraft Performance	

	FIGURE		PAG
	51	Fan Powered Aircraft Performance	17
	52	Fan Powered Aircraft Performance	173
	53	Fan Powered Aircraft Performance	174
	54	Fan Powered Aircraft Performance	175
٠	55a	Fan Powered Aircraft Performance	176
	55b	Fan Powered Aircraft Performance	177
	56	Fan Powered Aircraft Performance	178
	57a	Pressure Coefficient On Top Of Fuselage Versus Radius Ratio	179
	5 7 b	Pressure Coefficient On Top Of Fuselage Versus Radius Ratio	180
	57c	Pressure Coefficient On Top Of Fuselage Versus Radius Ratio	181
	57d	Pressure Coefficient On Top Of Fuselage Versus Radius Ratio	182
	58a	Pressure Coefficient On Bottom Of Fuselage Versus Radius Ratio	183
	58b	Pressure Coefficient On Bottom Of Euselage Versus Radius Ratio	184
	58c	Pressure Coefficient On Bottom Of Fuselage Versus Radius Ratio	185
	58d	Pressure Coefficient On Bottom Of Fuselage Versus Radius Ratio	186
	59a	Pitching Moment Source Breakdown Versus Velocity Ratio	187
	59 b	Pitching Moment Source Breakdown Versus Velocity Ratio	188
	60	Static Longitudinal Stability Versus Velocity Ratio	189
	61	Pitching Moment Coefficient Versus Angle Of Attack And Velocity Ratio	190
	62	Pitching Moment Coefficient Versus Angle Of Attack And Velocity Ratio	191
	63a	Lift Coefficient Versus Angle Of Attack And Exit Louver Angle	193
	63b	Lift Coefficient Versus Angle Of Attack And Exit Louver Angle	194
	63 c	Lift Coefficient Versus Angle Of Attack And Exit Louver Angle	195
	63 d	Lift Coefficient Versus Angle Of Attack And Exit Louver Angle	196
	63e	Lift Coefficient Versus Angle Of Attack And Exit Louver Angle	197
	63 f	Lift Coefficient Versus Angle Of Attack And Exit Louver Angle	198
	63g	Lift Coefficient Versus Angle Of Attack And Exit Louver Angle	199
	64a	Drag Coefficient Versus Angle Of Attack And Exit Louver Angle	200
	64b	Drag Coefficient Versus Angle Of Attack And Exit Louver Angle	201

1

FIGURE		PAGE
64c	Drag Coefficient Versus Angle Of Attack And Exit Louver Angle	202
64d	Drag Coefficient Versus Angle Of Attack And Exit Louver Angle	203
64e	Drag Coefficient Versus Angle Of Attack And Exit Louver Angle	204
64f	Drag Coefficient Versus Angle Of Attack And Exit Louver Angle	205
64g	Drag Coefficient Versus Angle Of Attack And Exit Louver Angle	206
65a ့.	Pitching Moment Coefficient Versus Angle Of Attack And Exit Louver Angle	207
65b	Pitching Moment Coefficient Versus Angle Of Attack And Exit Louver Angle	208
65c	Pitching Moment Coefficient Versus Angle Of Attack And Exit Louver Angle	209
65d	Pitching Moment Coefficient Versus Angle Of Attack And Exit Louver Angle	210
65e	Pitching Moment Coefficient Versus Angle Of Attack And Exit Louver Angle	211
65 f	Pitching Moment Coefficient Versus Angle Of Attack And Exit Louver Angle	212
66	Transition In Unaccelerated Level Flight - α and β Versus Flight Speed (N $_{_{\rm F}}$ = 100%)	213
67	Transition Characteristics In Level Flight With Maximum Available Acceleration, Versus Flight Speed	214
68	Transition Characteristics For Level Flight Deceleration Versus Flight Speed	215
69	Transition Characteristics For Maximum Rate Of Climb At Constant Flight Speed Versus Flight Speed	216
70a	Lift Coefficient Versus Velocity Ratio And Exit Louver Angle	217
70b	Lift Coefficient Versus Velocity Ratio And Exit Louver Angle	218
70c	Lift Coefficient Versus Velocity Ratio And Exit Louver Angle	219
71a	Drag Coefficient Versus Velocity Ratio And Exit Louver Angle	220
71b	Drag Coefficient Versus Velocity Ratio And Exit Louver Angle	221
71 c	Drag Coefficient Versus Velocity Ratio And Exit Louver Angle	222
72	Transition Characteristics For A Constant Attitude Decelerated Descent Versus Flight Speed	223
73	Ground Run Distance Versus Flight Speed For S.T.O.	225
74	Distance To Clear 50 Foot Obstacle In S.T.O. Versus Per Cent Overload	226

FIGURE		PAGE
75	Pitching Moments In Constant Speed Climb Versus Flight Speed (See Figure 74)	227
76	Pitching Moments In Conventional Type Landing Approach Versus Flight Speed (See Figure 80)	228
77	Pitching Moments In Maximum Acceleration Transition Versus Flight Speed (See Figure 69)	229
78	Blade Stresses Versus Tunnel Speed And Exit Louver Angle	231
7 9	Aft Frame Saw Cut Separation	232
80	Aft Frame Saw Cut Compression	233
81	Bucket Shroud Rub In Honeycomb Seal	234
82	Support Ring Crack Propagation In Aft Frame	235
83	Bucket Shroud Detail	236
84	Fan Inlet Efficiency Versus Velocity Ratio	237

1

LIST OF TABLES

TAB	BLE	TITLE	PAGE
1		Summary of Test Runs	14
2		Summary of Lift Fan Operating Time	15
3		Variation of C _{Do} With A/C Configurations	18
4		Comparison of Longitudinal Stability Derivatives	21
5		Fan Performance Comparison - Evendale Versus Ames	25
6		Fan Thrust Variation at Constant Fan Speed With Exit Louver Angle for Three Test Configurations	28
7		Conversion Relationships - Aircraft Coefficients	33
8		Interaction Lift - Calculation Routine	35
9	•	Interaction Drag - Calculation Routine	37
10	1	Pitching Moment Contributions in Per Cent of Total	47
11		Transition Equations of Motion	52 .
1 2		Short Take Off Distance as a Function of Take Off Weight	60
13		Rotor Blade Stresses as a Function of v_p , β , and v_p	64
14		Rotor Blade Stresses as a Function of Yaw and Tunnel Velocity	65.
15		Rotor Blade Stresses with the Inlet Vane Removed as a Function of Tunnel Velocity	66
16		Rotor Blade Stresses with the Inlet Vane Removed as a Function of β and Tunnel Velocity	67
17		Blade Resonant Speeds and System Modes	68
18		Change in Cosine n⊕ Made with Torque Band Design Change	71
.A-	1	Definitions and Symbols	86
A-	2	Ames Test Results	87

I SUMMARY

Contract DA-44-177-TC-584 with the Army requires that, in addition to bimonthly technical progress reports, comprehensive reports of major work phases be prepared and submitted to the contracting officer. Previous reports submitted under this requirement are:

X353-5 Fan Design Report, May 30, 1960

Fabrication, Test and Analysis of a Tip-Turbine VTOL Propulsion System (Report of Phase I, Static Tests, Fuselage Mounted X353-5) TREC 60-42, August 31, 1960.

Results of Wind Tunnel Tests of a Full Scale Fuselage Mounted Tip Turbine Driven Lift Fan (X353-5) Phase II Volume 1 of 3, TREC 61-15, January, 1961.

This is the required report for another major portion of Phase II contract work. It includes additional results for the full scale fuselage mounted X353-5 lift fan obtained during a second test of 30 hours duration in the Ames 40' X 80' wind tunnel. The report includes:

- Modifications to test equipment (Section II)
- New instrumentation (Section III)
- Test procedures and results (Section IV)
- Analysis of test results, conclusions and discussion of any problems encountered (Section V.)
- Hardware Inspection Results (Section VI)

- Program Recommendations (Part VII)

The basic test data obtained for every test point are tabulated in Appendix A. A few items of summary:

Fan operating time - 29 hours, 44 minutes
Data points recorded - 824
Range of Variables tested -

•	Tunnel speed	O to 100 Knots
-	Angle of attack	-8° to +16°
-	Fan speed	0 to 2640 RPM (100%)
	Exit louver angle	-1° to +49°
P-	Wing flap angle	0°, 30°, 40°
-	Tail position	0.2 and 0.4 b/2 above extended wing chord plane
-	Tail configuration	With and without full span, split flap
-	Tail incidence angle	0° to 25°
-	Pitch reaction control	0 to +5000 Ft. Lbs.
-	J85 engine speed	0 to 16,500 RPM (100%)
-	J85 turbine discharge bleed	6% of J85 inlet flow
•	Tunnel temperature	52° to 102°F

Analyses of the results are presented in considerable depth defining fan hover performance and variation with flight speed, comparing fan powered with basic aircraft performance and calculating various transition performance characteristics and configuration requirements for cases of maximum acceleration, maximum climb, controlled descent, unaccelerated level flight and short take off (with and without overloads). A few items of performance conclusions are listed below:

AERODYNAMIC

- The basic aircraft (fan not operating) exhibited a more favorable static longitudinal stability derivative for the case with the fan inlet duct open than with the duct closed off $(\partial c_M/\partial c_L = -0.22 \text{ versus } -0.14)$.
- Throughout a flight speed range sufficient for take off transition, the level of total pressure at the rotor face was equal to the zero flight speed level plus 100% of the flight dynamic head.
- Neither angle of attack nor angle of yaw had an appreciable effect on inlet performance over a wide range of the variables. Combined high angle of attack and large angle of yaw caused inlet performance to drop to a level equivalent to operating without an inlet vane.
- •- Measured fan performance at hover was 7050 pounds lift at 100% speed $(\mathbf{S} = 0^{\circ})$.
- The general characteristics of interaction lift and drag were similar. Both coefficients ($^{\rm C}_{\rm L}$ int and $^{\rm C}_{\rm D}$ int) decreased with increased $^{\rm V}_{\rm P}/^{\rm V}_{\rm tip}$ ratio and 3, and were not influenced by angle of attack variations in the range of α = -4 $^{\circ}$ to +8 $^{\circ}$. The maximum interaction lift measured was equivalent to a $^{\rm C}_{\rm L}$ = 0.37.
- *- During transition, there is little or no interaction lift at the maximum conversion speed, but the drag of the aircraft is increased by an additional $C_{\rm D}$ = 0.06.
- Tail downwash was not significant except when the exit louver angle was set at 0° . The tail position (i.e., high vs. low) made only a slight difference in the results. Increased downwash experienced with the tail in the low position varied with $V_p/V_{\rm tip}$ from 2° to $1/2^{\circ}$.

^{*}Denotes where conclusion given here may be somewhat more encompassing or different from that listed in Volume I and should therefore be considered as superseding.

- Pitching moment coefficient decreased at the very high velocity ratios indicating that the maximum trim control criterion will be determined at low velocity ratios (normally encountered in take off transition).
- * Aside from the nose up pitching moment due to vectoring the fan discharge, the largest contributions to nose up moment resulted from negative pressures on the top of the fuselage ahead of the fan and on the bottom of the fuselage behind the fan. The contribution from each of these low pressure zones appeared to be about equal.
- * In the transition analyses the following results were calculated: -
 - The maximum trim control requirement (in addition to the tail lift) was about 7% of gross weight, in terms of reaction control force located at the tail, and was required for either the case of maximum acceleration or maximum climb.
 - Maximum acceleration was shown to be 0.29 g during level flight.

 The time from hover to conversion speed was 32 seconds and required a distance of 3340 feet.
 - . Maximum deceleration was -0.28 g during level flight. The time from conversion to hover was about 42 seconds and required a distance of 2900 feet.
 - . Maximum rate of climb was 1380 fpm at Vp = 65 knots (9 = 12°).
 - A landing transition at constant attitude required approximately 60 seconds and a distance of 4000 feet.

- Analysis of short take off ground run followed by airplane rotation to maximum climb condition to clear a 50 foot obstacle showed the following distances:

<u>N</u>	Take Off Weight Max. Installed Lift		Distance to Clear 50 Foot Obstacle
	1.0		509
	1.1		862
	1.2		1195

MECHANICAL

- Angle of attack did not affect rotor stress characteristic except for a slight increase when the wing was stalled.
- Yaw had a negligible influence on rotor stress.
- Crossflow and β variations did not influence blade flexural and torsional modes of vibration.
- Increased crossflow and β setting did slightly increase the cosine 2θ mode in the rotor at normal fan operating speeds, but the values were low relative to running limits.
- Running stress limits were exceeded transiently during deceleration through the rotor critical speed at 60 knots flight speed with exit louvers at 35°; however, this value was within the absolute limit.
- Up to 40 knots, stress levels were unaffected by removal of the triet vane. At 60 knots and above, both flexural and torsional modes increased slightly.

^{*}The analysis of the STO performance is based on data obtained with an installation height to fan diameter ratio = 3.0. A more complete STOL analysis will be presented in Volume 3 which will include ground effect test results with h/d_F values of 0.9 and 1.5.

- Torque band stress (tangential) was reduced for the design used in this test; however, 6 tangential cracks were noted in the bands after about 22 hours of testing. Continued testing showed no new cracks or propagation in completing the 30 hours of testing.
- Redesign of the torque band will be required to eliminate the crack incidence.
- Hardware inspection after disassembly showed no other significant deficiency, and the hardware was generally in excellent condition.

II WIND TUNNEL MODEL

AIRCRAFT MODIFICATIONS

In order to improve the model and to extend the test variables, some changes were made for this test period:

- Flaps Flaps initially extended from 20% to 100% of the wing semispan distance. During this testing, they extended from 20% to 60% of the wing semi-span, and were adjustable to 40°.
- Ailerons The part of the flaps from 60% to 100% of the wing semi-span were converted to ailerons which could be preset at 0° , $\pm 15^{\circ}$ and $\pm 30^{\circ}$ to provide lateral control force.
- Drag Shape A streamlined body was placed behind the J85 engine and elbow to reduce flow separation in that area and to reduce the yaw force due to asymmetric drag present at high tunnel and fan speed conditions. The J85 engine mounts were also covered with streamlined fairings.

FAN MODIFICATIONS

Fan Serial Number 001 was overhauled for use in this test program. It is the same fan used in the immediately preceding wind tunnel test program for this same fan-in-fuselage model (see Reference 10 for a discussion of the teardown inspection results). Several parts were replaced as follows: -

Forward Frame:

- 1. Trunnion mount bolts (to assure maximum locking action).
- 2. Six pieces of scroll seal (cut to longer length to provide more overlap).

Figure 1, Appendix B shows the aircraft model dimensions and general specifications. This supersedes Figure 3, page 14 in Volume 1, and is based on measured rather than drawing dimensions.

Rotor:

- 1. Two covers (replacing one with a crack indication and another with a loose locknut).
- 2. Disc tie bolt nuts (to assure maximum locking action).
- 3. Retainer pin locking tabs (expendable).
- 4. Forward and aft torque bands (the aft torque band was replaced to retain a pair with identical operating history).

Failure of the forward torque band was discussed in detail in Reference 10. A design change incorporated in this assembly was based on the incidence of cracks only at the joint of adjacent carriers, the failure location being an indication that the discontinuity caused by individual carriers is not reflected in the basic design analysis which considers the boundary conditions to be identical at all torque band attachment ears.

The absence of cracks in the torque transmission attachment ears was an indication that the calculated steady-state stresses and the measured axial bending vibratory stresses at these ears were within the stress range properties of the band material. The design change was a method of reducing the steady state stresses and effectively redistributing the vibratory bending stresses away from the ear-band radius at the adjacent carrier joint. The change consisted of a small machined tab which was bolted across the carrier joint. The construction of the tab included a tapered "foot" to bear against the band as shown in Figure 2 during steady state loadings.

In addition to the tab, all indications of intergrannular attack at the ear-band radius were removed, and the torque band strain gages were relocated to measure axial bending vibratory stresses in line with the carrier joint.

^{*}All Figures and performance curves are located in Appendix B.

The completely assembled rotor is shown in Figure 3.

Scroll:

- 1. Serial Number 001 scroll was used in place of Serial Number 002. This was done to make Serial Number 002 available for a concurrent test program using Fan 002 at Evendale which will be reported separately.*
- 2. The scroll end mounts were also interchanged.

ENGINE CHANGE

The most significant change in the test equipment from the previous program was the substitution of a J85-7 for the J85-3 engine. The J85-7 is a more advanced version of the J85 missile engine with a significantly higher cycle pressure ratio due to an additional compressor stage. The engine change allowed fan operation up to 100% fan speed.

With the J85-3, the scroll/engine area mismatch was so large that about 13% turbine discharge bleed was required to operate the engine within temperature limits. With the J85-7 and the scroll selected for powering the fan used in this test program, an area mismatch still required about 6% bleed. The basic engine power however is sufficiently in excess of specification so that 100% fan speed was still achievable even with this amount of bleed.

^{*}The effect of this scroll change on fan turbine efficiency will be discussed in Section V of this report.

^{**} S/N 235 - 003

IV TEST PROCEDURES AND RESULTS

Table 1 gives a summary of the test runs and the range of variables encompassed. Table 2 shows the breakdown of fan operating time as a function of speed and fan turbine inlet temperature. The testing reported herein was accomplished with Fan Serial Number 001 - Build-Up #3. The testing was conducted with essentially the same procedures described in Volume 1, Section V.

MEASUREMENT ACCURACIES

The velocity probe located on the nose of the aircraft was used to obtain a calibration between velocity measured upstream of the model and velocity near the model.

As expected, the velocity measured by the probe at low velocity ratios was considerably higher (as much as 50%) than the velocity used for calculation of the airplane coefficients. This was especially true for exit louver angles of 0°. Figure 6 shows the ratio of the two velocities as a function of velocity ratio $({\rm V_{P}/V_{tip}})$ and exit louver angle. The velocity as measured by this probe is corrected by a ratio obtained during runs with the fan off. This ratio was measured as $q_{tunnel}/q_{probe} = 1.08$, and is caused by the combination of blockage and other inaccuracies such as wall effect (i.e., proximity of probe to the nose of the aircraft). The readings obtained from this velocity probe were used only as a qualitative means of understanding the relatively high interaction drag phenomenon encountered at low velocity ratios at $\beta = 0^{\circ}$ which was observed during the previous test period and also during this testing. In order to be consistent with any other similar data, the tunnel velocity, as measured by the conventional tunnel velocity measurement instrumentation, has been used in all quantitative calculations unless clearly stated otherwise.

TABLE 1 SUMMARY OF TEST RUNS

No. 11/1 0 0 270 - 270 0 0 0 0 0 0 0 0 0	No.	Date	Knota	Deg.	RPM	Deg.	Deg.	RC In. Hg.	p Deg.	beg.	FURPOSE OF RUN
10 10 10 10 10 10 10 10	-						orr		90	0	Checkout of model and eircraft polar.
11				1	-10		orr	0	0	0	
11/1								٥	0 - 4	0 0	Powered aircraft performance as a function of east louver setting and valentes matter
6 11/1 60		•			1	1	1000	0	0 - 4	0 0	
7 11/1					1	1		0	0 - 4	0 0	Continuation of Run #5 et higher velocity retio.
	7		•			1		0	90	. 0	
9 11/2 50 - 80 - 80 - 11 1690 - 1760 50 - 81 1902 0 20 - 55 11/2 11/2 20 - 80 - 80 - 11 11/2 20 - 80 - 80 - 11 11/2 20 - 80 - 80 - 11 11/2 20 - 80 - 80 - 11 11/2 20 - 80 - 80 - 11 11/2 20 - 80 - 80 - 11 11/2 20 - 80 - 80 - 11 11/2 20 - 80 - 80 - 11 11/2 20 - 80 - 80 - 11 11/2 20 - 80 - 80 - 11 11/2 20 - 80 - 80 - 11 11/2 20 - 80 - 10 11/2 1	sī.		1	-		-			0 - 3	0	Same as Runs #5 and #5, but with tail on.
10 11/2	-							0	0	0	
11 11/2	-					1		, T	20 - 3	0	Powered aircraft polar, stability et various exit louver settings.
12 11/3							• • • • • • • • • • • • • • • • • • • •	0	90	0	
13 11/3 60					1	1				0	Aircraft polar-power off.
1						1 ′ 1		9-3 - 11.8	-1 - +40	0	Trim mircraft et 6500 Lbs. G.W.
10 11/4 20 - 80 0 1690 - 2900 0 0 - 16 pos. 0 0 - 19 0 1690 - 10 pos. 16 11/4 20 - 80 - 8 to -14 16 10 - 1700 30 0 - 10 pos. 0 - 11.2 0 0 17 11/4 20 - 80 - 8 to -12 1690 - 2900 0 0 - 10 pos. 0 - 11.9 0 0 0 11/7 20 - 80 - 8 to -12 1690 - 2900 0 0 - 20 to pos. 0 - 11.9 0 0 0 11/7 20 - 80 - 8 to -12 1690 - 2900 0 0 - 29 to pos. 0 - 11.9 0 0 0 11/7 20 - 80 - 8 to -12 1690 - 2900 0 0 - 28 to pos. 0 - 11.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									90	0	Aircraft polar-power off, tail low position.
100 100				-		1 - 1	7.55	0	0 - 15	0	High speed fan performance-overhead doors opened.
17									0 - 49	۰	Same as Runs 33 and 65 escept for flap and tail position; also high outs laws
18 11/4	17				1	1 1		, v	0	0	Same as Hun 68 escept with tail in low position.
19 11/4 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						, ,	-		0	0	Calibration of pitch reaction control
20 11/7 20 - 80	-								٥	0	Aircraft polar, low tail position sweep and pitch reaction control effectiveness at different forward speeds.
21 11/7									۰	٥	Tail sweep at 20 knots.
22 11/8 60 - 100 -k to +10 2400 - 2520 50 0 - 81 pos. 23 11/8 ko - 80 0 50 0 - 1750 50 0 - 18 ki Lift Tail 24 11/8 60 8 0 50 0 - 1750 50 0 - 81 pos. 25 11/9 20 -8 to +16 1670 - 1720 50 0 - 81 pos. 26 11/10 ko 0 to +1k 1160 - 1720 50 0 - 81 pos. 27 11/10 60 -8 to +1k 0 1690 - 1730 50 0 - 81 pos. 28 11/14 80 -8 to +10 1690 - 1730 50 0 - 81 pos. 30 11/1k 60 -8 to +10 1690 - 1730 50 0 - 81 pos. 31 11/1k 80 -8 to +10 1690 - 1730 5	21		77					0 - 9.5	0 - 28	0	Powered aircraft polar and trim et 6500 Lbs. G.W.
23 11/8									90	0	Aircraft polar-power off.
11/8 60 8 0 30 0 11 11/8 0 90 0 11/8 11/8 0 90 0 11/8 11/			1				Tail			0	Trim aircraft et 9000 Lbs. (STOL).
11/9 20	21	11/8	60				Tmil				High lift tail sweep and calibration.
11/10	25	11/9		-A +0 +16		-					Yevlar-power off.
11/10 60 -8 to +10 0 1690 - 1730 30 0 - Ri pos. 0 90 -16 to +8 11/14 80 -8 to +10 1690 - 1730 30 0 - Ri pos. 0 0 -16 to +8 11/14 80 -8 to +10 1690 - 1730 30 0 - Ri pos. 0 0 -16 to 0 -16 to 0 -1730 30 0 - Ri pos. 0 -16 to 0 -16 to 0 -1730 30 0 - Ri pos. 0 -16 to 0 -16 to 0 -16 to 0 -1730 30 0 - Ri pos. 0 -16 to 0 -16 to 0 -1730 30 0 - Ri pos. 0 -16 to 0 -16 to 0 -16 to 0 -1730 30 0 - Ri pos. 0 -16 to 0 -16 to 0 -1730 30 0 - Ri pos. 0 -16 to 0 -16 to 0 -1730 30 0 - Ri pos. 0 -35 0 -16 to 0 -16 to 0 -1730 30 0 - Ri pos. 0 -35 0 -16 to 0 -1730 30 0 - Ri pos. 0 -35 0	6	11/10					-			T- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	Yawler-power on, 20 knots.
11/14 20	7	11/10	60							-16 to +8	Yewler-power on, 40 knote.
11/14 40 -8 to +10 1700 - 1720 50 0 - Hi pos. 0 0 - 35 0 0 11/14 60 -8 to +10 1680 - 1710 50 0 - Hi pos. 0 0 -16 to 0 11/14 60 -8 to +10 1690 - 1720 30 0 - Hi pos. 0 0 -16 to 0 11/15 0 - 100 0 1690 - 1720 30 0 - Hi pos. 0 0 -16 to 0 11/15 0 - 100 0 1690 - 1730 30 0 - Hi pos. 0 0 - 35 0 Stability et louver settings of 20 and 35 degrees. 16 to 0 11/15 0 - 100 0 1690 - 1730 30 0 - Hi pos. 0 0 - 35 0 Stability et louver settings of 20 and 35 degrees. 16 to 0 Stability et louver settings of 20 and 35 degrees. 16 to 0 11/15 20 - 80 0 1690 - 1730 30 0 - Hi pos. 0 0 - 35 0 Stability et louver settings of 20 and 35 degrees. High crossflow to through flow retio stress investigation at high velocity ratios; comparison of door closed and opened settic performance. 11/15 30 - 60 -8 to +14 0 50 0 - 20 Hi pos. 0 0 0 0 0 0 0 0 0	e					-				-16 to +8	Polar et various yev angles - power off.
11/14 60 -8 to +10 1690 - 1700 50 0 - Hi pos. 0 0 0 0 0 0 0 0 0				-		- 1				0	
11/14 80 -8 to +10 1690 -1720 50 0 - Hi pos. 0 0 -16 to 0 11/14 60 -8 to +10 1690 -1720 50 0 - Hi pos. 0 0 - Hi pos. 0 11/14 60 -8 to +10 1690 -1720 50 0 - Hi pos. 0 0 - 35 0 11/15 50 - 60 -8 to +14 1660 -1700 50 0 - Hi pos. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										·	Stability et louver settings of 20 and 35 degrees.
11/14 60 -5 to +10 1690 - 1700 50 0 - Hi pos. 0 0 0 1690 - 1700 50 0 - Hi pos. 0 0 0 1690 - 1700 50 0 - Hi pos. 0 0 - 35 0 0 1690 - 1700 50 0 - Hi pos. 0 0 - 35 0 11/15 20 - 80 0 1690 - 1750 50 0 - Hi pos. 0 0 - 35 0 11/16 20 - 80 -5 to +14 0 50 0 - 20 Hi pos. 0 0 0 0 0 0 0 0 0	1	12/14	1			1			0		Yewler et 60 knote,
11/15 0 - 100 0 160 - 2400 50 0 - Hi pos. 0 20 - 35 0 Stability et louver settings of 20 and 35 degrees. Righ crossflow to through flow retio stress investigation at high velocity ratios; 11/15 20 - 80 0 1690 - 1750 50 0 - Hi pos. 0 0 - 35 0 Inlet louver settings of 20 and 35 degrees. Righ crossflow to through flow retio stress investigation at high velocity ratios; 11/15 20 - 80 0 1690 - 1750 50 0 - Hi pos. 0 0 - 35 0 Inlet louver sensived; lolet lose and fan and aircraft performance with crossflow. 11/16 20 - 40 -8 to +14 0 50 0 - 20 Hi pos. 0 90 0 0 0 0 0 0 0	2	12/14								-16 to 0	
11/15 20 - 80 0 1690 - 1730 50 0 - Hi pos. 0 0 - 35 0						-				0	Stability et louver settings of 20 and 35 degrees.
11/15 50 - 60 -8 to +1h 1660 - 1700 50 0 - Ri pos. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, I	12/15	20 - 80	0							High crossflow to through flow retio stress investigation at high velocity ratios; comparison of door closed and opened static performance.
11/16 20 - 40 -8 to +14 0 50 0-20 Hi pos. 0 90 0	55	12/15	30 - 60	-8 to +14		- 1					Inlet louvers removed; inlet loss and fan and aircraft performance with exception
77 11/16 60 - 80 -8 to +16 0 50 0-16 Hi pos. 0 90 0 Power off polar-fan inlet opened, and high tail position calibration. 8 11/16 0 - 60 -k to +16 0 50 0-Hi pos. 0 90 0 Same as Run #36 at 60 - 80 knots. 90 0 Alteron effectiveness calibration; roll reaction control effectiveness, power off.	6	11/16	1								rolar-power on with inlet louver removed.
8 11/16 0 - 60 - 4 to +16 0 50 0 - Hi pos. 0 90 -16 to 0 Ailgron effectiveness calibration; roll reaction control effectiveness, power off.	7	1/16						- 1			Power off polar-fan inlet opened, and high tail position calibration
o 30 -16 to 0 Aileron effectiveness calibration; roll reaction control effectiveness, power off.	8 1	1/16				-		- 1		·	Same as Run #36 at 60 - 80 knots.
	i f	1/18				~	o - ni pos.	0	90	-16 to 0	Alleron effectiveness calibration; roll reaction control effectiveness, power off.

TABLE 2
SUMMARY OF LIFT FAN OPERATING TIME
(Fan Serial Number OOl)

Speed Range, N _F	B/U #1ª	в/и	#2 ^b	B/U #3	
(Per cent)	Even.	Even.	Ames.	Ames	Total
0 - 24	5:02	4:08	•	•	9:10
25 - 49	2:43	7:23	5:08	-:10	19:24
50 - 74	9:52	5:57	12:01	16:43	44:33
75 - 89)	1:29	2:11	3:08	1:06	15:49
90 - 100)		-		7:45	
TOTAL	19:06	19:39	20:17	29:44	88:56
Temp. Range, T _{t 5.1}					
(Deg. F)					
0 - 599	8:20	5:09	-	-	13:29
600 - 799	1:57	1:49	-9	5:05.	9:01
800 - 899	7:49	7:05	:28	15:17	30:39
900 - 999	1:00	4:39	14:22	1:21	21:22
1000 - 1200		<u>:57</u>	5:27	8:01	14:25
TOTAL	19:06	19:39	20:17	29:44	. 88:56
Data Points	71	66	348°	539 ^c	1024

a.Reference 5

b.Reference 10

Not including basic airplane data with fan off which represents an additional 476 data points.

The test results are presented in Table A-2, Appendix A. The following items in this table are direct readings (incorporating appropriate calibration): tunnel speed (V_p), fan speed (N_p), tunnel temperature, aircraft angle of attack (α), exit louver angle (β), tail incidence angle (i_t), reaction control output (RC), flap deflection angle (δ_f), engine speed (N_{J85}) and exhaust gas temperature (EGT). The other items in the table have been converted from direct measurements by means of the relationships outlined in the list of definitions and symbols in Table A-1, Appendix A. These calculations were accomplished as follows:

- All the force data (lift, drag and moments) were reduced on the IBM 704 computer operated by NASA-Ames. The standard 40° X 80° wind tunnel calculation program was used with proper constants applied for this particular configuration.
- The internal fan performance data reduction was accomplished at Evendale also using an IBM 704 computer and an existing lift fan program deck.
- All other fan/aircraft performance calculations were made manually as described in the section on analysis of results, where appropriate.

V ANALYSIS OF RESULTS

A. GENERAL CONSIDERATIONS

J85 Engine:

The J85-7 engine used during this test develops a considerably higher power level than the -3 engine used previously. In addition, the control utilizes a continuously variable compressor bleed schedule throughout the speed range which provides more stall margin and a wider fan speed operating range. Due to the change of scrolls, an area mismatch between the scroll and the engine discharge still existed and, throughout most of the runs, approximately 6% of the turbine discharge weight flow was bled off. This paragraph deals with the operating characteristics of the engine which are not as encountered with a normal engine installation that does not require turbine discharge bleed, and the operating characteristics are therefore different than described in engine manuals. The fan performance. can, of course, be expressed as a function of available horsepower and actually becomes independent of the gas generator. The total available horsepower at stations 5.1 and 5.4 is shown in Figure 7 as a function of engine speed. The losses in the elbow (including diffuser) and scroll were assumed to be the same as for all previous tests and are plotted as a function of station 5.1 Mach number in Figure 8. The turbine discharge temperature as a function of engine speed is shown in Figure 9 .

Bleed Thrust:

Because of the reduction in bleed requirements by approximately a factor of two, the bleed thrust was reduced by a factor of 4, or it was at most around 25 pounds, and is disregarded in all the analyses (moment caused by this thrust is also disregarded).

Turning Angle:

Based on an extensive analysis of hover data (by calculating the turning angle from horizontal and vertical thrust measurements), the actual turning angle, β_V , of the exit louvers was 3.2° more than the physical angle, β . (This was reported as approximately 3° in Volume 1 and, because it is a function of the assembly of the exit louvers and the tolerances in all the actuator linkages, this will be a slightly different value for each fan.)

B. BASIC AIRCRAFT PERFORMANCE (Fan Off)

The Aircraft Drag:

Aircraft drag was high for the reasons described in Volume 1. Some small changes were made on the installation to reduce yaw oscillations at high flight speeds; however, the effect on drag was small. For comparison, the values of $\mathbf{C}_{\mathbf{D}}$ as measured at zero lift conditions are shown in Table 3 below (fan inlet and exit closed).

TABLE 3

VARIATION OF C_{Do} WITH A/C CONFIGURATION

Flap Position	Tail Position	C _{Do}	Test Phase
0° 0° 15° 15° 15° 30° (Full Span) 30° (.26 b/2) 30° (.26 b/2) 40° (.26 b/2)	Off High High Off High Off High High High High Low High High	0.100 0.105 0.110 0.115 0.120 0.150 0.155 0.145 0.160 0.155* 0.170	lst lst 2nd lst lst lst 2rd 2nd 2nd 2nd 2nd

Data obtained with inlet hole uncovered.

Because of the change in flap configuration, only the $\delta = 0^{\circ}$ case for the first and second test periods is directly comparable (i.e., 0.105 versus 0.110).

Aircraft polars ($^{\rm C}_{\rm L}$ vs. $^{\rm C}_{\rm D}$, α and $^{\rm C}_{\rm M}$) are plotted in Figures 10 through 14 which take into account the configuration changes incorporated for this test period.

Lift:

Lift characteristics are similar to the ones obtained during the first phase of Ames testing. Maximum lift coefficient with 30° flaps (tail-on, high position) was about 1.5, and with 40° flaps about 1.4.

Tail Downwash and Tail Control Effectiveness:

Three different tail configurations were tested:

- 1. High tail position (same as during previous test period) located 0.4 $\,\mathrm{b/2}$ above the wing chord plane.
- 2. Low tail position located 0.2 b/2 above the wing chord plane.
- 3. High lift tail in same location as number 1 with a full span split flap set at 30° (see sketch below).

The change in moment coefficient due to the tail, ΔC_{M} , is plotted in Figure 15. Adding the split flap to the tail located in the high position resulted in a 47% increase in $\Delta C_{M \text{ max}}$. As far as actual ability to produce pitch control moment, the low and high tail positions were about equal. The low tail position however encountered approximately 2° more downwash (3° vs. 1°) so that a tail incidence angle schedule for equivalent tail control power would be 2° offset from a high tail schedule.

During the previous test, the downwash was determined from a comparison of test runs with the tail on and off, and these results were used again for this report in determining the ΔC_{M} - i relationship for the high tail positions in Figure 15.

The low tail configuration added to the program during this test period was tested only with the wing flap angle set at 30° (0.2 to 0.6 b/2), and there is no corresponding tail off data for direct comparison. The tail downwash for this configuration was obtained from an estimated value of $C_{\rm M}$ at $\alpha=0$ ° and $\delta_{\rm f}=30$ ° corresponding to a tail off condition as follows:

- From the previous test period

$$C_{M}$$
 @ $\alpha = 0^{\circ}$, $\delta_{f} = 0^{\circ} = +0.08$ C_{M} @ $\alpha = 0^{\circ}$, $\delta_{f} = 30^{\circ}$ (full span) = -0.21

The $\triangle C_M$ between the 0° and 30° (full span) flap cases is, therefore, -0.29. Since only approximately 57% of the wing area is influenced by the 0.2 to 0.6 span flaps, the tail off C_M for this new wing configuration is estimated as: 0.08 + [0.57 X (-0.29)] = -0.09.

Due to large scatter in pitching moment data, the attempt at trying to determine tail downwash variation with angle of attack had to be abandoned.

Ailerons:

Aileron effectiveness as a function of aileron angle is shown in Figure 16.

Static Longitudinal Stability (Fan Off):

Table 4 shows a comparison of the static longitudinal stability derivatives, $\partial C_{M}/\partial C_{L}$, for the various flap configurations tested. Apparently, uncovering the fan inlet hole (exit louvers still fully closed) reduces the inherent instability of the fuselage (refer to Appendix B-I, Volume 1).

TABLE 4
COMPARISON OF LONGITUDINAL STABILITY DERIVATIVES

Flap Position (Deg.)	Tail Position	9c ^M /9c ^r
0	High	-0.17
30	High	-0.14
30	Low .	-0.13
30	High	-0.22*
40	High	-0.16

Data obtained with inlet hole uncovered.

C. FAN AERODYNAMIC PERFORMANCE

Fan Inlet Performance:

The face of the fan rotor is over four feet below the edge of the inlet when installed in the test model, and is normal to the flight path. At zero flight speed there is a small inlet total pressure decrease between ambient and the face of the rotor due to duct friction and vane losses. During the previous testing program in this wind tunnel, it was found that, throughout transition, the pressure level at the rotor face was equal to the zero flight speed value plus 100% of the flight dynamic head.

These earlier tests were conducted primarily at zero angle of attack and yaw so that it was an objective of this test period to determine the effect on the inlet performance of varying these parameters. Comparative data are shown in Figures 17, 18, and 19, with the inlet loss expressed as a fraction of average inlet duct dynamic pressure. Also indicated in Figure 17 is the effect of removing the inlet vane. The inlet loss was so small at zero and low flight speeds that the effect of the vane in these regions was not distinguishable in the data. However, the importance of the vane becomes clear at higher flight speeds since it extends the low loss range to higher values of the flight velocity to fan tip velocity ratio $(v_p/v_{\rm tip})$. This, in effect, increases the flight speed at which net forward thrust becomes zero and therefore, increases the margin of conversion speed above airplane stall speed.

Angle of attack had a negligible influence on inlet performance at negative angles and up to 4° positive angle. At 8°, however, the low loss range was significantly decreased indicating the onset of inlet separation at a lower velocity ratio. Yaw, on the other hand, did not by itself result in greatly changed inlet performance, even at very high angles on the order of 16°; the characteristics noted were probably due to changes in vane end effects as the yaw angle varied. The direction of yaw (i.e., with or against fan rotation) made no difference in the results. The combined influence of yaw and high positive angles of attack was more severe than either alone, and most noticeably so at the higher velocity ratios. The particular combination of -8° yaw and +8° angle of attack showed rapidly deteriorating performance such that, at the higher velocity ratios, a loss level was measured equivalent to that obtained where no vane was employed. Figure 20 is a summary plot showing the relative influence of these various configurations.

For the relatively low angles of attack required in accomplishing transitions with this airplane model, the loss levels measured appear to be very satisfactory.

The data in Figures 17 through 20 have all been adjusted to correspond to 100% fan speed, although they were obtained at approximately 65% speed. In essence, the adjustment is to the $v_p/v_{\rm tip}$ parameter to account for the variation in the ratio of the fan axial (or throughflow velocity) to fan tip speed with fan speed. Figure 21 is data taken from the previous test period, and shows the characteristic of inlet duct flow coefficient* with fan speed. This parameter very nearly integrates the effects of Reynolds number change, fan efficiency change and fan energy absorption change due to blade untwist, all of which are a function of fan speed. An additional effect of Mach number on the fan performance is very small, and can be neglected since the fan is of a relatively low pressure ratio design:

The result of these combined influences is that at low fan speeds, the axial velocity to fan tip speed ratio is lower than at higher fan speeds; this causes the inlet loss versus $V_p/V_{\rm tip}$ based on low fan speed data to be somewhat pessimistic. The correction is therefore applied to $V_{\rm tip}$ to reduce it proportionately or, in effect, shift the loss curves of w versus $V_p/V_{\rm tip}$ to the right (i.e., higher $V_p/V_{\rm tip}$ ratios). This adjustment can be made by recalculating the $V_p/V_{\rm tip}$ ratio as follows:

$$(V_{\rm P}/V_{\rm tip}$$
 measured at part speed) $K = V_{\rm P}/V_{\rm tip}$ equivalent at 100% fan speed

where K is 1 +
$$\frac{\triangle \Phi}{\Phi}$$
 at part speed = $\frac{\Phi}{\Phi}$ at 100% speed Φ at part speed

^{*}Duct flow coefficient at station 10.2 is Φ = CZ 10.2 Vtip where CZ 10.2 is the inlet duct average velocity.

From Figure 17, it would appear that the effect of increasing exit louver angle setting was to increase the inlet loss. In fact, however, this is the effect of fan throttling which reduces through-flow velocity with increased β for a given speed or, in other words, reduces the flow coefficient. It is more precise but less convenient to replot the inlet loss data against an abscissa defined as the ratio of flight speed to fan inlet duct velocity. This was done in Figure 22, and as would be expected, the 0° and 35° β data collapse into a single line; data plotted in this manner make it possible to apply inlet results obtained with this fan to similar installations, but using different fan designs since the losses are shown as a function of duct velocity which is independent of the source of the flow. For the specific model tested, it is more convenient to use the more easily obtained relationships shown in Figures 17 through 20.

Inlet performance was efficient in terms of recovering flight dynamic pressure. This can be clearly seen by Figure 23; the pressure at the face of the rotor is lower than ambient by the static inlet losses (duct friction and vane), and the difference between the line representing ambient plus flight dynamic pressure and the line representing the pressure at the face of the rotor is constant throughout the transition range indicating full recovery of flight dynamic pressure. At the high flight speeds as the inlet losses increase, this difference increases indicating a reduction in ram recovery. Another manner of viewing this same performance is to define a ram efficiency which includes the static inlet loss or $\eta_R = 1 - \Delta P_+/q$, where \triangle P is the total pressure difference between ambient plus flight dynamic pressure and the pressure at the face of the rotor. Since there is a static loss, this is obviously indeterminate at zero q values, and increases with flight speed until the point is reached where the inlet separates and losses begin to increase. This is shown in Figures 24 and 25.

Fan System Performance:

During the previous test program, it was estimated that the change in inlets between earlier static tests at Evendale and the wind tunnel program appeared to have resulted in an increase in fan performance at hover of approximately 4% in thrust; this was based on inlet pressure measurements.

Data were taken during this most recent test period with the throat section of the tunnel open to atmosphere (entire roof of tunnel open, refer to Volume 1, Figure 5) to obtain a valid zero V_p force measurement minimizing tunnel effects. This apparently relieved some tunnel effect, and the measured thrust increase over Evendale results was about 3.5% and correlated with the better inlet performance. This is attributable to the change from a 6% radius ratio bellmouth employing a cascade of six spanwise vanes to the 23.5/6% bellmouth and single curved wane. Table 5 shows the actual performance values measured.

TABLE 5

FAN PERFORMANCE COMPARISON - EVENDALE VERSUS AMES

Test Configuration	Total Thrust Measured At 100% Speed (Lbs.)	Estimated Total Thrust At Design HP Based on Using Scroll, S/N 2 (Lbs.)
Evendale: 6% bellmouth with cascade 6% bellmouth without cascade	6810 7000	6950 7140
Ames: 23.5/6% bellmouth with curved vane	7050	7190

^{23.5/6%} stands for a bellmouth with a 6% radius ratio (i.e., bellmouth radius divided by inlet duct diameter) on the sides and back and a 23.5% radius ratio at the leading edge.

Note that in Table 5, the estimated thrust at design horsepower is qualified as based on using scroll, serial number 2.

The fan speed actually obtainable in this testing using scroll, serial number 1, with the design horsepower was only 99.5% of design speed compared to the Evendale result of 101% discussed in Reference 5. This results from scroll No. 1 having a poorer alignment with the turbine flow passage and also modified nozzle diaphragms (trailing edges relieved to increase the effective nozzle area) which affects the turbine vector diagram and, in turn, turbine efficiency. Turbine efficiency calculations based on fan internal performance data indicate the turbine efficiency penalty for scroll No. 1 is approximately 6% relative to scroll No. 2. This fully accounts for the change in fan speed - available horsepower relationship noted. (6% additional power from the turbine would increase the fan speed by approximately 2%.)

Figure 26 presents the fan performance characteristics at hover.

Establishing hover performance accurately is important for determining maximum VTOL capability of the system, but more specifically in this analysis, it is important in calculating that part of total measured lift at any flight speed which can be attributed to the fan; these calculations of fan performance are all extrapolations of hover performance. The wind tunnel balance system measures over-all performance at any flight speed and is therefore, not dependent upon knowing fan performance per se. But, in order to accurately determine interaction effects, the fan performance must be accurately identified. It is in this regard that this report differs from the analysis in Volume 1. Figure 22 shows the change in fan performance in terms of static lift coefficient (H_L) as a function of fan speed. The interaction analysis herein will be more accurate than in Volume 1 and should be considered to supersede that work.

In order to establish the accuracy level of these thrust measurements at hover, Table 6 was developed using data from both Evendale and Ames configurations. It can be seen from the "maximum variation" column that the accuracy of lift data (F_{v}) is less influenced by changing the test configuration or test location than is horizontal thrust data (F_v) . This is as would be expected when considering the influence of ram drag on the F_{χ} data. For example, a ten knot wind either at the Evendale open air facility or due to induced flow in the wind tunnel can cause a variation of as much as + 250 pounds in horizontal thrust at hover conditions. At Evendale, it is necessary to know both wind velocity and direction; in the wind tunnel the direction is known, but the velocity on the airplane upper surface relative to measured tunnel velocity at low flight speeds has been shown to be different. These conditions make it difficult to calculate the ram effect accurately. Measurement tolerances of $\pm 1 \frac{1}{2}$ lift and $\pm 4\%$ thrust appear to be proper. Here again, it must be pointed out that these accuracies refer only to segregating fan performance, and are not to be confused with accuracies of total lift and drag (or thrust) measurements of the airplane via the tunnel balance system which remain as outlined in Volume 1.

Fan performance in this report is the actual measured performance at Ames during this latest test period, Run #4, since the fan speed, thrust and tunnel speeds are felt to be more accurately known for this run than for any other test period.

Determination of Fan Performance as a Function of Flight Speed:

The difference between measured performance of the fan/aircraft system and the sum of the individual fan and aircraft contributions that can be calculated at any flight condition has been termed performance interaction; that is, an effect of the fan on the basic aircraft

See Section IV

TABLE 6

FAN THRUST VARIATION AT CONSTANT FAN SPEED WITH EXIT LOUVER ANGLE FOR THREE TEST CONFIGURATIONS

	Ame	Ames 30 Hr.	Test	Eve!	Evendale 185-3	-3	Evende	Evendale 401 Burner $\approx 90\% \text{ NL}/\sqrt{\theta}$	urner.	Maxin	Maximum Variation Among	ation
	(14. 200 ~			F. 1.			Ξ4			coningurations	Tons
8	F/F _{B=0}	F/FB=0 Fy/FB=0		$F/F_{\beta=0}$	$F_{y}/F_{\beta=0}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$F/F_{\beta=0}$	$F\sqrt{F}\beta = 0$	$F_X/F_{\beta=0}$	OF/F	OF/F OFy/F OF X/F	$\Delta F_{\rm X}/F$
0	1.000	0.999	0.049	1.000	1.000 0.998	0.061	1.000	1,000 . 0,000	000.0	0	0 0.2	6.1
10	1.000	0.972	0.232	ı	1	1	1	ī		1		1
R	0.980	0.897	0.394	0.983	0.905	0.384	0.945	0.882	0.339	3.8	2.3	5.5
22	0.928	0.775	0.509	0.942	0.782	0.526	906.0	0.776	194.0	3.6	1.0	5.9
35	0.880	0.694	0.540	0.909	901.0	0.572	0.866	0.695	0.519	4.3	1.2	5.3
와	0.802	0.583	0.550	0.833	0.589	0.590	0.779	0.576	0.524	5.4	1.3	9.9

performance or of the aircraft on the basic fan performance, or both. Fan/aircraft performance is as accurate as the wind tunnel force balance system; the accounting for the various contributors to this performance is difficult. There is no known method of separating fan performance from airplane performance in a physical manner in a wind tunnel; i.e., by separate thrust measurements.* This is due to the inability to determine where the fan inlet ends and the aircraft surfaces begin, or to isolate interactions physically. However, even the analytical approach used herein could be improved by greatly expanding the internal fan instrumentation.

The basic airplane performance as a function of flight speed (with the fan off and the holes covered) is well defined; therefore, the key to accurate calculation of interaction effects is the accuracy with which the fan performance is known as a function of flight speed.

Specifically, what is needed is a relationship of fan thrust with exit louver angle and ${
m V_p/V_{
m tip}}$ ratio. As described in Volume 1, Section VII-A, a relationship of measured total thrust to an ideal momentum thrust (based on station 10.6 total pressure and measured fan weight flow) was determined to be $F_{\text{measured}}/F_{10.6} = 0.96$ during static runs conducted at Evendale. This relationship was assumed to hold constant for all velocity ratios at $\beta = 0^{\circ}$. This is a reasonably valid assumption as long as the fan to fan turbine thrust ratio does not change appreciably (e.g., a 1% error in total thrust would require a 10% change in fan turbine thrust). Also, it was assumed that the loss coefficients of stators and exit louvers are not affected materially by crossflow; and that the total thrust change as a function of exit louver angle at constant HP5 h is the same at any value of velocity ratio as at static conditions represented by Figures 28a and 28b. This latter assumption is valid if the rate of change of rotor efficiency ratio with throttling is independent of velocity ratio. This has been well verified. (See Figure B-LV-5. Volume 1 where

In the sense that measuring rotor thrust is not considered to be sufficient to provide the basis for determining total fan thrust contribution as a function of V_p/V_{tip} .

it is apparent that changes in efficiency with throttling are linear throughout the velocity ratio range tested.) Using the above assumptions, fan performance characteristics as a function of velocity ratio and louver angle were obtained and are shown in Figures 29 through 33.

For calculation of fan ram drag, the fan weight flow variation with velocity ratio, β and fan speed as shown in Figures B-IV-6, B-IV-7 and B-IV-8, Volume 1, were used. J85 ram drag was obtained from J85 flow measured in the bellmouth. The tunnel velocity measurement upstream of the test section was used in all ram drag calculations.

There are considerable data at high fan speeds for determining fan performance up to velocity ratios, $V_p/V_{\rm tip}$, of 0.3. There was a limited amount of higher velocity ratio data obtained between 0.3 and 0.5 (equivalent to 213 knots at 100% fan speed) but, in order to remain within the 100 knot limit on the test airplane, these data were obtained at near idle conditions on the fan. The rotor pressure ratio is so low near idle that assessing station 10.6 thrust is inaccurate. In order to estimate fan performance at velocity ratios above 0.3 $V_p/V_{\rm tip}$, data obtained up to 0.3 velocity ratio was extrapolated. The extrapolation procedure and results are explained more fully in Appendix A.

Some results of fan speed variation at constant horsepower as a function of velocity ratio and β angle were reported in Volume 1. Considerable additional high fan speed data obtained during this phase of testing provides a more complete and more accurate picture, and supersedes the previous results. These fan speed characteristics as a function of velocity ratio and exit louver angle at constant horsepower are shown in Figure 34. It is apparent in the range of 0° - 20° β that fan speed at constant HP $_{5.4}$ is constant for all β and V_p/V_{tip} values. At hover and at low velocity ratios, increasing β beyond 20° unloads the fan resulting in a fan speed increase; as velocity ratio is

increased, however, the fan absorbs more power resulting in a fan speed decrease accompanying throttling beyond 20° β . This change in characteristic can be shown on the fan operating map (see sketch below) where the fan operating point shifts along a constant horse-power line to the right as a result of ram recovery and to the left as the result of throttling with the exit louvers. At hover and at low velocity ratios, the throttling occurs between points A and B and; at high velocity ratios, the throttling occurs between points C and A.

Figure 35 shows the fan speed characteristics as a function of flight speed and β . It is obtained at constant J85 throttle setting corresponding to 100% N_F at β = 0° and V_P = 0 and applies 100% J85 inlet ram recovery.

D. FAN POWERED AIRCRAFT PERFORMANCE

Performance Coefficients:

Since performance in the flight regime from hovering through transition is necessarily a function of the fan performance, a set of relationships to non-dimensionalize fan powered aircraft performance was developed. These coefficients are described in Volume 1, and lend themselves more readily to studies of the various approaches to transition. The conventional airplane coefficients $\mathbf{C_L}$, $\mathbf{C_D}$, $\mathbf{C_M}$ are used extensively as well, and are interchangeable with these derived coefficients.

In order to convert from one system to the other, the relationships in Table 7 hold. Since geometric parameters are involved, a general conversion as well as one specifically appropriate to this airplane model are given. Basically, the new coefficients differ from conventional coefficients due to being based on the fan dynamic pressure instead of flight dynamic pressure, for example:

$$C_{L} = \frac{2 L_{T}}{\rho S_{w} (V_{P})^{2}} \text{ whereas } H_{L} = \frac{L_{T}}{\rho A_{F} (V_{tip})^{2}}$$

TABLE 7
CONVERSION RELATIONSHIPS - AIRCRAFT COEFFICIENTS

		RELATIONSHIPS - AIRCRAFT	
T Con From	o vert <u>To</u>	MULTIF	(For Specific Model Tested)
CL	HL	$\frac{(v_{p}/v_{tip})^{2} s_{w}}{2 A_{F}}$	7.023 $(v_p/v_{tip})^2$
$^{\text{C}}_{\text{D}}$	H _D	Ditto	Ditto
$^{\rm C}_{ m M}$	H _M	$\frac{(v_p/v_{tip})^2 s_w \bar{c}}{2 A_F l_t}$	2.339 (V _p /V _{tip}) ²
H _L	c _L	2 A _F (V _P /V _{tip}) ² S _w	0.1424 $\left[\frac{1}{(v_{p}/v_{tip})^{2}}\right]$
$^{\rm H}{}_{ m D}$	c _D .	Ditto	Ditto
Н _М	c _M .	\frac{2 A_F l_t}{(V_p/V_{tip})^2 S_w \(\overline{c}\)}	0.4274

Interaction Lift and Drag:

Interaction lift is defined for this analysis as the difference between the measured value of total lift and the sum of basic airplane lift and basic fan lift, corrected for ram recovery and exit louver throttling and vectoring effects.

Interaction drag is defined as the difference between the measured value of total drag and the sum of -

- Basic aircraft drag.
- Basic fan thrust, corrected for ram recovery and exit louver throttling and vectoring effects.
- Fan and engine ram drag.

Tables 8 and 9 are presented to show precisely the calculation routine. While interaction lift is defined and calculated similarly to interaction drag, it is more accurately known since fan lift as a function of exit louver angle is known with greater accuracy than thrust; also, tunnel velocity accuracy does not affect fan lift materially. Tunnel velocity measurement inaccuracies do affect aircraft lift, but this inaccuracy is present only at low tunnel speeds where wing lift is a very small contribution to total lift. Interaction lift is not calculated at velocity ratios below 0.075 V_p/V_{tip} . At this velocity ratio, a $C_{\underline{I}}$ change of 0.1 is equivalent to 85 pounds of lift, or slightly more than 1% of total fan lift which would be obscured in the measurement accuracy. Interaction lift as a function of both velocity ratio and exit louver setting was calculated as shown in Figure 36. The interaction lift with louver settings of 30°, 35° and 40° calculates to be very nearly equal to zero throughout the velocity range of 0.2 to 0.3. Interaction lift with β of 0° shows an increase up to velocity ratios of 0.15 and then decreases gradually. The maximum value of $C_{I, int}$ was 0.38 at a velocity ratio of 0.17 and $\beta = 0^{\circ}$. Some of this interaction lift might be explained by an increased velocity above the airplane model when exit louvers are set at low angles. Some of it can be due to the normal mirror effect in the tunnel as described in Volume 1, Section VII-C.

In general, the fan does produce a similar effect to a jet flap where, if the jet exhaust is at right angles to the airfoil camber line, the maximum induced lift is produced. Near conversion speed with the

Conditions

Run #3, Reading #21 Fan Speed - 2480 RPM Angle of Attack - 0° Flap Angle - 0° Exit Louver Angle 20°
Tunnel Temperature - 553°R
Tunnel Static Pressure - 29.70 In. Hg.
Tunnel Dynamic Pressure - q = 11.66 Lbs/Ft²

1. Fan Tip Speed

$$V_{\text{tip}} = \frac{N_{\text{F}}(V_{\text{tip}} \text{ at 100\% } N_{\text{F}})}{N_{\text{F}} \text{ 100}} = \frac{2480 \text{ (720)}}{2640} = 676 \text{ Ft/Sec.}$$

2. Tunnel Velocity

$$V_{p} = \sqrt{\frac{2q}{\rho}} = \sqrt{\frac{2qTsRg}{Ps}} = \sqrt{\frac{2(11.66) 553 (53.3) 32.2}{29.70 (.491) 144}} = 102.6 \text{ Ft/Sec.}$$

3. Velocity Ratio

$$V_{P}/V_{tip} = \frac{102.6}{676} = 0.152$$

4. Basic Aircraft Lift

$$C_{L} = 0.05$$
 from Figure 10
 $L = C_{L}qSw = 0.05(11.66)250 = 146$ Lbs

5. Fan Corrected Speed

$$\% \text{ N/}\sqrt{\theta} = \frac{2480}{2640 \left(\sqrt{\frac{553}{519}}\right)} = 100 = 91.2\%$$

6. Fan Total Thrust at $\beta = 0^{\circ}$ and $V_p/V_{tip} = 0$

$$F/8 = 5960$$
 from Figure 26
 $F = 5960 \frac{(29.70)}{(29.92)} = 5920$ Lbs.

At
$$\beta = 20^{\circ}$$

$$F_{\beta} = 20^{\circ} = F_{\beta} = 0^{\circ}$$
 (0.98) from Figure 28a = 5800 Lbs.

At
$$\beta = 20^{\circ}$$
 and $V_P/V_{tip} = 0.152$

$$F = F_{\beta} = 20^{\circ} \qquad \frac{H_{T} \text{ at } V_{p}/V_{\text{tip}} = 0.152}{H_{T} \text{ at } V_{p}/V_{\text{tip}} = 0} \qquad \text{from Figure 29}$$

$$F = 5800 \left(\frac{0.337}{0.314} \right) = 6220 Lbs.$$

7. Basic Fan Lift

$$F_y = F[\cos(\beta_V - \alpha)] = F(\cos 23.2^{\circ}) = 5720 \text{ Lbs.}$$

8. Total Measured Lift 6312 Lbs.

$$L_{int} = L_{T} - (F_{y} + L)$$

$$= 6312 - (5720 + 146)$$

$$= 446 Lbs.$$

Expressed as $^{ m C}_{ m L}$

$$C_{L int} = \frac{446}{11.66(250)} = 0.15$$

$$H_{L int} = 7.023 (V_{p}/V_{tip}) C_{L} = 0.025$$

Conditions

Same point as used in Table 8

1. Basic Aircraft Drag

$$D = C_D q S_W = 320 \text{ Lbs.}$$

Fan Total Thrust

$$F_{\beta}$$
 = 20° and V_{p}/V_{tip} = 0.152 = 6220 Lbs. from Table 8

3. Fan Horizontal Thrust

$$F_x = F[\sin(\alpha - \beta_v)] = -F(\sin 23.2^\circ) = -2450 \text{ Lbs.}$$

$$\frac{\text{Fan Ram Drag}}{\text{D}_{R}} = \frac{\text{W}_{F}}{\text{g}} \quad \text{V}_{P}$$

 $H_{\overline{DR}} = .084$ from Figure 32

$$\rho = P_S/RT_sg = \frac{29.70(.491)144}{53.3(553)32.2} = 0.00222 \text{ Slugs/Cu. Ft.}$$

$$D_{R} = \rho A_{F} (V_{tip})$$
 $H_{DR} = 0.00222 (17.8) (676)^{2} .084 = 1516 Lbs.$

5. Engine Ram Drag

$$\frac{\text{W}_{\text{J}85}^{\text{V}}\text{P}}{\text{g}} = \frac{42.0(102.6)}{32.2} = 134 \text{ Lbs.}$$

Total Measured Drag

$$D_{T} = -189 \text{ Lbs.}$$

7. Interaction Drag

$$D_{int} = D_{T} - [D+F_{x}+D_{R}+D_{RJ85}] = -189 - [320-2450+1516+134] = 291 Lbs.$$

$$C_{D int} = \frac{291}{11.66(250)} = 0.10$$

Expressed as H_L

$$H_{L int} = 7.023(V_{p}/V_{tip})^2 C_{D} = 7.023(0.152)^2 0.10 = 0.016$$

high louver angle settings necessary at these conditions, there will be no appreciable interaction lift.

The interaction lift does not seem to be a function of angle of attack and appears as a constant additive throughout the normally linear C_L versus α range (see Figure 38). It does however decrease at high angles of attack of 8° or more. The value of interaction lift at maximum lift coefficient is of interest. For the 30° flap configuration, C_L max for the basic aircraft was 1.5 and occurred at about 14° angle of attack. The change in C_L max due to operating the fan is shown in Figure 39, plotted as a function of velocity ratio, and was obtained by plotting the locus of ∂ C_L/∂ α = 0 points from Figure 38 (less basic aircraft C_L max of 1.5). It is apparent, by comparing the β = 0° data from Figure 36 with Figure 39, that the interaction lift at angles of attack corresponding to C_L max followed the same basic pattern as at 0° angle of attack; the magnitude was, however, less than 40% of the α = 0° effect.

During the previous testing period, static pressure measurements along several wing chord lines were taken at α = 0° conditions where the basic airplane wing \overline{C}_L was equal to 0.07 with the fan off. The wing \overline{C}_L calculated based on these pressure measurements indicates a significant increase when the fan is operating; this is, in essence, the interaction lift associated with the wing. Figure 37 replots this data for comparison with Figure 36 and shows that the pressure measurements on the wing account for a large amount of the calculated interaction lift, and show the same general characteristics of decreasing with β angle and V_p/V_{tip} ratio. The fact that Figures 36 and 37 are not identical can be viewed two ways:

1. Interaction lift is not only developed on the wings, but also on other sections of the airplane such that the combined characteristics calculated in Figure 36 result.

2. The interaction lift is only developed on the wings so that the total characteristic is as shown in Figure 37. This would require revising the method of calculating fan performance as a function of β and $V_p/V_{\mbox{tip}}$. While this may be the case, the best method available for calculating fan performance has been used.

The general characteristics of interaction drag variation with β and V_p/V_{tip} in the angle of attack range of -4° to +8° are similar to the interaction lift characteristics; that is, both V_p/V_{tip} and β increases are accompanied by decreases in interactions, but are not influenced by angle of attack changes. Figure 40 shows the calculated interaction drag characteristics which corresponds to interaction lift as shown in Figure 36.

The high values of interaction drag measured for low β settings could be explained by air velocities around the model that are higher due to blockage presented by the exhaust gases. In fact, velocities were calculated from the pitot static tube on the nose of the aircraft to be 40% higher than the upstream tunnel velocity measurement at a nominal setting of 20 knots and $\beta = 0$ °. This can account for as much as 230 pounds of ram drag. On the other hand, vectoring the louvers may possibly act as an ejector causing the higher velocity to occur on the underside of the model and a corresponding reduction in velocity above the model. Due to the difficulties in evaluating interaction drag and the relatively small values of this quantity at velocity ratios below 0.1 V_p/V_{tip} , the values above 0.1 only are shown in Figure 40 (at 0.1 V_p/V_{tip} and full fan speed, a value of C_D = 0.1 is equivalent to 150 pounds of drag, or only slightly more than 2% of fan total thrust). It is apparent that with velocity ratios of 0.2 to 0.3 and exit louver angles of 30°, 35° and 40°, the interaction drag is equivalent to 0.06 C_D . In the same range of V_P/V_{tip} and β , interaction C_L varies between -0.04 to +0.04. While the data has been very repeatable at all test conditions during the 50 hours of testing conducted, the lack

of consistent trends as a function of the different variables leads to the suspicion that the accounting for interactions is somewhat in error. Items which would greatly influence this accounting are:

- Determination of velocity in the test section.
- Fan throttling characteristic as a function of flight speed.
- Tunnel wall effects at low velocity ratios.

The characteristics of $C_{L\ int}$ and $C_{D\ int}$ for $\beta\approx20^{\circ}$ appear to be most consistent, and it could be speculated that, at this vector angle, the blockage and tunnel air flow split above and below the model are closest to that which would occur if the fan were not operating. Also, the higher velocity ratio data is felt to yield more accurate conclusions as to interaction effects.

Application of these interaction effects to other configurations or even to this configuration outside of the wind tunnel may not be valid. However, for the configuration tested when it is in the tunnel, it can be concluded that during transition, there is little or no interaction lift at the maximum conversion speed, and that the drag of the aircraft is increased by an additional $\rm C_D$ = 0.06 (600 pounds at $\rm V_P$ = 111 knots and 100% $\rm N_F$).

At velocity ratios and β settings corresponding to STO conditions, the interaction is a significantly favorable effect with C $_{\rm L}$ int varying from 0.1 to 0.25 depending on the specific STO flight path.

Tail Downwash:

With the fan operating, tests were made with the tail in both a high and low position and with the wing angle of attack at 0° ($\delta_{\rm f}=0^{\circ}$). The tail downwash angle, ϵ , calculated from the change in pitching moment (tail on compared with the tail off) is shown in Figure 41

as a function of V_p/V_{tip} for $\beta=0^{\circ}$. Because of the scatter in pitching moment data, determination of tail downwash as a function of angle of attack was not attempted. However, for the tests made at 0° angle of attack ($\delta_f=0^{\circ}$), some consistency was found to determine that:

- 1. There was no measurable downwash in the plane of the tail with exit louvers closed more than 20°. This result was obtained with the tail in either the high or low position and was not expected. This possibly indicates the downwash data was being adversely influenced by tunnel effects.
- 2. At $\beta=0^{\circ}$, an increase in downwash at low velocity ratios of as much as 10° due to operating the fan was indicated, but this diminished rapidly with increased V_p/V_{tip} approaching "fan-off" results. Only a slight difference could be ascertained by changing the tail to the low position, an increase in downwash being experienced which varied with increased V_p/V_{tip} from 2° to $1/2^{\circ}$.

The tail is located 3 wing chord lengths behind the wing 1/4 chord, and this distance could not be varied in the test, but is probably of considerable significance to the downwash results.

Pitching Moments:

The pitching moment characteristics are basically unchanged from those reported in Volume 1. Data were also obtained at higher velocity ratios (above 0.3) which are normal to a landing transition. These data indicate that the pitching moment coefficient decreases appreciably with increased $V_p/V_{\rm tip}$, and that the maximum trim control will be determined by take-off transition requirements. The test results in coefficient form for lift, drag and moments are shown in Figures 42 through 56. These are the over-all fan powered aircraft performance results as a function of all the test variables.

The moment coefficients for $\beta=0^{\circ}$ and 35° intersect at about V_{p}/V_{tip} of 0.35, and further increases in velocity ratio result in a relative decrease in moments for $\beta=35^{\circ}$ as compared with $\beta=0^{\circ}$ (see Figure 42c). This is as would be expected since the moment contribution due to exit louver turning increases about 25% throughout the flight speed range for a constant fan speed and is equal to F_{x} (3.56) Ft. Lbs. The induced moments are however a function of ram drag (see Tables 9 and 11, Volume 1, and therefore increase proportional to flight speed. Vectoring louvers at high velocity ratios reduces pitching moments since fan flow (and correspondingly ram drag) is reduced such that induced moments decrease at a faster rate than the direct contribution from fan vectoring.

Pitching moment contributions due to fan operation were assessed and described in Volume 1. Some speculation was made at that time as to the magnitude of the various effects. Static pressure measurements around the fuselage during this part of the test provide some additional insight to the pitching moment analysis. When operating with no crossflow and exit louvers at the 0° position, the fan draws air equally from all directions, and the resulting pitching moment is zero, because pitching moment is always calculated about the fan center which is also the quarter chord of the wing. As soon as some forward velocity is present, the fan tends to draw the air in from the front more than from the sides and rear. This, of course, accounts for the major portion of the pitching moment. The additional phenomenon which was suspected during the first phase of testing was that, at the fan exit the static pressures in front of the fan discharge were higher than tunnel static, while behind it, they were lower. This was clearly shown by the static pressure data obtained on the underside of the fuselage (refer to Figure 5). The measurements obtained with these pressures in conjunction with wing static pressure measurements obtained during the previous test period allows a reasonably accurate account of the pitching moments on the whole aircraft.

The following discussion is concerned with Run #15, during which the pressure measurements on the fuselage were taken. The aircraft configuration was as follows:

- Flaps at zero degrees.
- Tail at zero incidence angle and in the low position.

Figures 57a through 57d show the static pressure distribution on the upper surface of the fuselage as a function of exit louver angle and velocity ratio, and Figures 58a through 58d show the same for the bottom surface of the fuselage. Looking at the top of the fuselage, Figures 57a through 57d, it is apparent that the stagnation point $(C_{p} = 1)^{T}$ behind the fan inlet was located very close to the inlet at all velocity ratios. Even at velocity ratios as low as approximately 0.07, the stagnation point was about 2 fan radii behind the centerline of the fan. This stagnation point varied from a radius ratio of 2 at a velocity ratio of 0.07 to 1.25 at a velocity ratio of 0.30. The pressure behind the stagnation point gradually approached the tunnel static pressure (or $C_n = 0$) 2 1/2 to 3 fan radii behind the fan. Forward of this point, the pressure coefficient, of course, rapidly decreased and became highly negative as the lip of the bellmouth was approached. A negative pressure coefficient persisted over all of the surface ahead of the fan and followed an exponential decay curve with distance from the fan; this was one of the larger contributors to the total pitching moment. The variation of the pressure coefficient level with β is also shown in Figures 57a through 57d which reflects the reduced fan axial velocity.

On the underside of the fuselage, ahead of the fan discharge, there was a positive pressure not quite approaching a stagnation point ($C_p \approx 0.7$). Behind the fan, the lowest pressure coefficient was approximately -1. There was a variation of the static pressure both

 $^{{}^{*}}_{C_{p}} = \frac{P_{s1} - P_{s0}}{P_{t0} - P_{s0}}$ -44-

ahead and behind the fan with exit louver angle which decreased this contribution to the pitch-up moment as exit louver angle was increased.

Figures 59a and 59b showing the breakdown of total measured moment into the contributing sources were obtained in the following manner:

- 1. The values of fuselage static pressures were as shown in Figures 57a through 57d (the static pressure measurements were assumed to be representative of all points on the fuselage which were located at the same longitudinal station as the pressure tap used. The area used was the fuselage area projected onto a horizontal plane).
- 2. The value of wing moment contribution was as determined previously (see Figure B-II-21, Volume 1).
- 3. Moment due to exit louver vectoring was determined in the same manner as described in Volume 1, page 69.
- 4. Tail moment was obtained from the measured downwash as shown in Figure 41 and the $\Delta C_{\rm M}$ i relationship as shown in Figure 15 (low tail position).
- 5. Reviewing Figures 57a through 57d, it can be seen that on the upper surface, there are high negative pressure coefficients both in front and behind the fan. On the aft side, this high negative coefficient is confined to an area very close to the fan inlet. In the calculation, the moment contribution of this negative portion on the aft side was balanced out by an equivalent moment contribution from the forward side. In that way, the remaining forces aft of the inlet on the upper surface always represented a net positive moment (nose up).

- 6. The ram drag force was taken to act at a point 10% of the inlet duct diameter below the top of the inlet duct (and is referred to as inlet pitching moment).
- 7. J85 ram drag was taken to act 6.3 Ft. below the center of gravity.

It can be seen from Figure 59b that at low velocity ratios, the moment due to exit louver turning was the predominant contribution (this, of course, can be minimized by careful aircraft design in placing exit louvers relative to the center of gravity). The moments caused by static pressures on the top of the fuselage ahead of the fan and on the bottom of the fuselage behind the fan constituted the other large contributions and were approximately equal to each other.

The calculations did not always exactly account for the total measured moment; however, the value of the measured and the value of the total calculated moment were within 20% of each other. This is a very good correlation, considering that the large area of the fuselage, of necessity, could only be sparingly instrumented with static taps. Assuming the same limits of accuracy for each individual contributor to the pitching moment, the range of each in percentages of the total moment measured is shown in Table 10.

The static pressure surveys provide only a method of accounting for moment contributions. The total moment is caused by a sink (fan inlet) and a source of flow (fan discharge) operating in a crossflow. The air has to be turned 90° before entering the fan and the force required is proportional to the mass flow and initial velocity of the crossflow air and therefore, proportional to ram drag. The fan flow discharging into the crossflow stream is turned by the crossflow toward a horizontal direction. A method of calculating the amount

TABLE 10
PITCHING MOMENT CONTRIBUTIONS IN PER CENT OF TOTAL

rag	9-				9-	9-	9	9	
385 III D		4							
Ra			7	",	7-	7-	7-	₹-	
4	22	ω	8	11	18	13	18	14	
Fen					t	40		ţ	
H	14	9	7	7	12	0	12	10	
000	22	5	8	8	15	9	14	æ	
E0 11						\$		to	
• -1		~	14	9	7	7	10	9	
82			2 7	† c	6 0	9 0	6	7	
Win	4. Ç	S	<i>ک</i> بر					5 t	
	17	72	<u></u>						
it									
Ex	7	84	9	28	2	34	N	77	
	21	16	23	18	65	22	77	19	
.ft wer	to	20	to	3	40	40	to		
Lo	15	10	15	12	5	7	21	13	
یو در				5				4	
Af Jppe	Н	N	CV	to to	٦	Н	П		
					4				—
rard	0.1		0.1						
Lov		S	CO	2	80	3		9	
	Ī,	2	N	Ħ	1	2		00	
vard									
r id	+	4-1							
a D	23	0	8	ď	S)	4	a	\sim	
	23	9	28	8 15	8 23	30 15	ব	8	
	09	to 35 9	70	84	78	23	80	09	
Fuselage Fo Total U		5					to 80		
	09	23 to	to 70	32 to 48	to 78	34 to 50	80	40 to 60	
Fuselage Total	140 to 60	5	46 to 70	to 48	52 to 78	to 50	54 to 80	to 60	_
	Forward Aft Aft Exit Lower Upper Lower Louvers Wings it	Forward Aft Exit Tail Fen Lowers Upper Lowers Wings it = 0° Inlet 2 1 15 to 21 11 to 17 4 to 6 14 to 22	rward Forward Aft Exit Exit Tail Fen pper Lower Lower Louvers Wings i, = 0° Inlet to 35 2 1 15 to 2 11 to 17 4 to 6 14 to 22 14 to 22 to 13 2 to 4 2 10 to 16 48 to 72 2 5 to 5 6 to 8	rward Forward Aft Exit Exit Tail Fan pper Lower Lower Louvers Wings i, = 0° Inlet to 35 2 1 15 to 21 11 to 17 h to 6 1h to 22 1h to 22 to 13 2 to 4 2 10 to 16 48 to 72 2 5 to 5 6 to 8 to 42 2 2 15 to 25 6 to 8 5 to 7 1h to 20 14 to 20	rward Forward Aft Exit Wings Tail Fan J85 pper Lower Lowers Louvers Wings i, = 0° Inlet Ram Dr to 35 2 1 15 to 21 11 to 17 4 to 6 14 to 22 14 to 2 -4 to to 15 2 10 to 16 48 to 72 2 5 to 7 6 to 8 -2 -4 to to 42 2 15 to 25 6 to 8 5 to 7 14 to 20 14 to 20 -4 to to 21 2 to 4 3 to 5 12 to 18 36 to 54 2 to 4 6 to 8 7 to 11 -3 to	rward Forward Aft Exit Wings Tail Fan J85 pper Lower Lowers Wings i, = 0° Inlet Ram Dr to 35 2 1 15 to 21 11 to 17 4 to 6 14 to 22 14 to to 13 2 to 4 2 10 to 16 48 to 72 2 5 to 5 6 to 8 -2 to 42 2 15 to 25 6 to 8 5 to 7 14 to 20 14 to 20 -4 to to 21 2 2 15 to 25 6 to 8 5 to 7 14 to 20 14 to to 21 2 to 4 3 to 5 5 to 18 5 to 7 14 to 20 14 to to 21 2 to 4 3 to 5 12 to 18 36 to 54 2 to 4 6 to 8 7 to 11 -3 to to 35 8 to 14 1 19 to 29 7 to 5 12 to 18 -4 to	rward Forward Aft Exit Exit Tail Fenn JB5 pper Lower Lower Louvers Wings i, = 0° Inlet Ram Dr to 35 2 1 15 to 21 11 to 17 4 to 6 14 to 22 14 to 22 -4 to to 13 2 to 4 2 10 to 16 48 to 72 2 3 to 5 6 to 8 -2 to 6 4 to 6 to 42 2 2 15 to 25 6 to 8 5 to 7 14 to 20 14 to 20 -4 to to 21 2 to 16 15 to 25 6 to 8 5 to 7 14 to 20 14 to 20 -4 to to 22 2 to 16 15 to 25 6 to 8 5 to 7 14 to 20 14 to 20 -4 to to 23 8 to 14 1 19 to 22 3 to 5 7 to 9 11 to 15 12 to 18 -4 to to 23 3 to 5 1 1 to 6 1 to 6 9 to 15 -4 to	rward Forward Aft Exit Wings Tail Fan JB pper Lower Lower Louvers Wings it = 0° Inlet Ram Dr to 35 2 1 15 to 21 11 to 17 4 to 6 14 to 22 14 to 22 -4 to 6 to 13 2 to 4 2 10 to 16 48 to 72 2 5 to 8 -4 to 6 to 42 2 1 15 to 25 6 to 8 5 to 7 14 to 20 14 to 20 -4 to 6 to 21 2 2 5 to 8 5 to 7 14 to 20 14 to 20 -4 to 6 to 21 2 2 5 to 16 36 to 18 5 to 7 14 to 20 14 to 10 -3 to 5 to 23 3 to 5 3 to 5 7 to 9 1 to 15 2 to 18 -4 to 6 to 24 3 to 5 4 to 6 4 to 6 9 to 13 -4 to 6 to 24 1 to 16 1 to 16 1 to 16 1 to 16 -4 to 6	rward Forward Aft Exit Exit Tail Fan JB pper Lower Lower Louvers Wings i, = 0° Inlet Ram Dr to 35 2 1 15 to 21 11 to 17 4 to 6 14 to 22 14 to 22 -4 to 6 to 13 2 to 4 2 10 to 16 48 to 72 2 3 to 5 6 to 8 -2 to 6 4 to 20 -4 to 2 to 42 2 2 15 to 23 6 to 8 5 to 7 14 to 20 14 to 20 -4 to 6 to 21 2 15 to 23 6 to 8 5 to 7 14 to 20 14 to 20 -4 to 1 to 21 2 2 15 to 18 36 to 54 2 to 4 6 to 8 7 to 11 -3 to 1 to 23 3 to 5 1 14 to 20 14 to 6 14 to 6 14 to 18 14 to 19 to 24 3 to 5 3 to 5 4 to 6 4 to 6 9 to 13 4 to 6 to 28 3 to 5

of pitching moment contribution due to this is not available;*
however, it is apparent that by preturning this source flow (e.g.,
with the exit louvers), this pitching moment contribution will be
diminished. In the limit when the source flow is ejected parallel
to the crossflow stream, there would be no external pitching moment
contribution. This correlates with the measured reduction in
induced pitching moment with louver vector angle which is more than
would be calculated by the measured fan flow reduction and corresponding
ram drag reduction.

Static Longitudinal Stability (Fan On):

Static Longitudinal stability defined as the partial derivative of pitching moment coefficient with respect to lift coefficient was comparable to the value for the unpowered aircraft at conditions where exit louvers were set at 0° (see Figure 60). The value of this derivative with exit louver settings of 20° and 35° was less favorable as can be seen from the same Figure. The stability appeared to decrease with flap angle; in other words, the airplane showed highest stability with the lowest setting of flaps. For example, compare Figure B-III-12 from Volume 1, with Figure 60 from this report. The 30° flap data is more believable, as it showed a tendency of the stability derivative to be poorer at the low velocity ratios and increasing to approach the basic unpowered aircraft stability as the velocity ratio increased. This is as would be expected, since tail downwash and other fan induced effects become smaller with velocity ratio increase. Some limited data obtained with no flaps during this test generally agrees with the no flap data obtained during the previous test period; e.g., high values of stability at low velocity ratios, decreasing as velocity ratios increased. Data obtained around trim point settings was inconsistent due in large

Reference 8 qualitatively discusses the induced moment due to interaction of the existing jet and the free-stream flow.

part to the tail being operated very nearly stalled in order to obtain maximum control power. Small increases in angle of attack from a trim condition caused the tail to stall as observed by some static pressures measurements on the tail horizontal surface which were monitored during test to determine the stall condition. This resulted in unfavorable stability. Control power available versus that required for trim conditions is discussed in the section on transition analysis. The variation in aircraft pitching moment coefficient with angle of attack and velocity ratio is shown in Figure 61 for $\beta = 0^{\circ}$ and Figure 62 for $\beta = 20^{\circ}$ and 35°. The data shows considerable scatter which can be expected with the relatively low accuracy of moment measurement in the tunnel when the fan is operating (see Section VI, Volume 1).

Aircraft Performance with Inlet Vane Removed:

The inlet performance with the vane removed was described in a previous section. The gross performance of the airplane however was only slightly different from performance with the inlet vane installed. For an aircraft configuration using the high tail position and a 30° flap angle tested to 0.286 $\rm V_p/\rm V_{tip}$, the significant results are listed below (comparing Figures 49 and 56 with Figures 55a and 55b):

- 1. Pitching moment was slightly less ($\approx 5\%$).
- 2. Lift and drag were essentially unchanged for all α and β values.
- 3. Longitudinal stability was unchanged.

It is apparent that up to the velocity ratios tested, which are sufficient for transition, there was very little, if any, penalty in over-all aerodynamic performance caused by removal of the inlet vane. More data at higher velocity ratios and at high fan speeds

for extending take off conversion speeds with the inlet vane removed would be required to assess the actual penalties in aerodynamic and mechanical performance under these conditions. At first it may appear inconsistent that, in spite of the high inlet losses experienced without the inlet vane at high velocity ratios, the over-all performance remained essentially unchanged. As far as lift is concerned, as velocity ratio is increased, the fan contribution to total lift diminishes rapidly and changes in fan performance do not influence the over-all results to a large degree. Over-all drag, on the other hand, is a function of ram drag, aircraft drag, gross thrust and any interactions that may be present. Reduced inlet performance decreases both ram drag and gross thrust. Since the reduction in inlet performance occurs at high velocity ratios where ram drag is large, there is a trade off in ram drag and gross thrust which results in practically constant net thrust. Theoretical cycle analysis of the fan operating at constant speed and any given flight velocity indicates that around 20° β , inlet efficiency has no affect on the net thrust of the fan; below 20 $^{\circ}$ β , inlet recovery actually reduces net thrust; above 20° β , inlet recovery increases net thrust slightly. At louver settings above 35°, the improvement in net thrust with inlet recovery becomes more significant. This analysis however does not take into account any changes in fan efficiency as a function of distortion in the inlet and, therefore, it is very likely that at higher velocity ratios than tested, the gross performance without the vane would decrease significantly relative to the performance with the vane installed.

The pitching moment decrease at high velocity ratios results directly from the fan weight flow and consequent ram drag decrease caused by removal of the inlet vane.

Transition Analyses:

The aerodynamic characteristics of the airplane and lift fan test configuration shown in Figures 46 through 56 were cross-plotted to obtain Figures 63 through 65 for seven velocity ratios. These curves are used exclusively as the basis for the various transitions presented. Throughout the transition discussion, the lift characteristics measured in the tunnel were used for the configuration with 30° flap angle (0.2 to 0.6 b/2); the measured drag was reduced by a drag coefficient (C_D) of 0.065 based on wing area (see Section VII-B, Volume 1 for basis). For the moment evaluation, the exit louvers are assumed to be at the aircraft center of gravity so that there is no pitching moment contribution from thrust vectoring.

The aircraft gross weight is assumed to be 7000 Lb., but for the purpose of evaluating STOL performance, 10% and 20% overloads were also analyzed.

The performance equations listed in Table 11 summarize the various transition flight conditions investigated.

Transition Analyses:

The aerodynamic characteristics of the airplane and lift fan test configuration shown in Figures 46 through 56 were cross-plotted to obtain Figures 63 through 65 for seven velocity ratios. These curves are used exclusively as the basis for the various transitions presented. Throughout the transition discussion, the lift characteristics measured in the tunnel were used for the configuration with 30° flap angle (0.2 to 0.6 b/2); the measured drag was reduced by a drag coefficient ($C_{\rm D}$) of 0.065 based on wing area (see Section VII-B, Volume 1 for basis). For the moment evaluation, the exit louvers are assumed to be at the aircraft center of gravity so that there is no pitching moment contribution from thrust vectoring.

The aircraft gross weight is assumed to be 7000 Lb., but for the purpose of evaluating STOL performance, 10% and 20% overloads were also analyzed.

The performance equations listed in Table 11 summarize the various transition flight conditions investigated.

TABLE 11
TRANSITION EQUATIONS OF MOTION

	Flight Condition	Equations of Motion
1.	Level unaccelerated flight.	$-\rho A_{F}(V_{tip})^{2} H_{D} = \frac{G.W.}{g} \frac{dV_{P}}{dt} = 0$ $\rho A_{F}(V_{tip})^{2} H_{L} = G.W.$
2.	Level accelerated flight and level decelerated flight.	$-\rho A_{F}(V_{tip})^{2} H_{D} = \frac{G.W.}{g} \frac{dV_{P}}{dt}$ $\rho A_{F}(V_{tip})^{2} H_{L} = G.W.$
3.	Constant speed climb.	$-\rho A_{F}(V_{tip})^{2} H_{D}-G.W. \sin \theta = \frac{G.W.}{g} \frac{dV_{P}}{dt} = 0$ and $\rho A_{F}(V_{tip})^{2} H_{L} = G.W. \cos \theta$
4.	Accelerated climb and decelerated descent.	$-\rho A_{F}(V_{tip})^{2} H_{D}-G.W. \sin \theta = \frac{G.W.}{g} \frac{dV_{P}}{dt}$ $\rho A_{F}(V_{tip})^{2} H_{L} = G.W. \cos \theta$
5.	S.T.O.L.	
	a. Ground run	$-\rho A_{F}(V_{tip})^{2} H_{D}-\mu(G.W\rho A_{F}(V_{tip})^{2} H_{L}) = \frac{G.W.}{g} \frac{dV_{P}}{dt}$ or $-H_{D}-\mu H_{G.W.}+\mu H_{L} = \frac{H_{G.W.}}{g} V_{P} \frac{dV_{P}}{dx}$
	b. Distance for rotation.	$X_2 = V_P \left(\frac{\tan^{-1} H_D / H_L}{\omega} \right)$ where $\omega = \frac{\Delta G.W.}{G.W.} \frac{g}{V_P}$
	c. Distance to climb out	$X_3 = \frac{50-X_2 \sin 1/2 (\tan^{-1} H_D/H_L)}{\tan H_D/H_L}$

Unaccelerated Level Flight:

It is possible to hold the airplane at a steady forward speed in level flight with a combination of wing lift and fan power over the complete speed range from hover to conversion by a suitable choice of angle of attack (α) and louver setting (β). With a gross weight of 7000 Lb., then H_L = 7000/ ρ A_F (V_{tip})². For the fan speed which corresponds to a hover lift of 7000 Lb., H_L = 0.315 and, if the fan speed is held constant, it is only necessary to select an α and β schedule at several velocity ratios, V_p/V_{tip} , representing the transition which will satisfy both H_L = 0.315 and H_D = 0.

For the seven velocity ratios arbitrarily selected, α and β combinations have been determined for this type of take off transition and are plotted as a function of forward speed in Figure 66. This type of flight path can also be accomplished with fan speed as an additional variable. In this case, the value of H_L will be 0.315 at hover, but will vary throughout the transition to satisfy the total lift = 7000 Lb. requirement. A different α and β schedule will then be required to satisfy the H_L schedule and H_D = 0 criteria.

Acceleration and Deceleration in Level Flight:

For maximum acceleration, the minimum value of H_D (i.e., the largest negative number) is selected which satisfies the H_L requirement. For the case where H_L is maintained constant at 0.315 (fan speed constant), the α and β schedule corresponding to a maximum acceleration in level flight is shown in Figure 67.

From the equation of motion for accelerated level flight shown in Table 11.

$$dt = \frac{G.W.}{g} \left(\frac{1}{-\rho A_{F} (V_{tip})^{2} H_{D}}\right) \qquad dV_{P}$$

Since $\mathbf{H}_{\mathbf{D}}$ varies with $\mathbf{V}_{\mathbf{P}}$ for this type of flight path

$$\frac{\text{G. W.}}{\text{g}} \left(\frac{1}{-\rho A_{\text{F}} (V_{\text{tip}})^2 H_{\text{D min}}}\right)$$

is plotted as a function of V_p in Figure 67, and the area under the curve for any velocity interval can be measured, yielding the time to accelerate between two flight speeds.* Similarly, the distance required to accelerate to any speed can be obtained by measuring the area under the velocity time curve and this is also shown in Figure 67. Maximum acceleration as a function of forward speed can be calculated directly from the equation of motion and is plotted in Figure 67.

A similar procedure may be used to decelerate for landing in level flight. The primary difference from an accelerating transition is that the velocity ratio for a given flight speed is higher since the fan is operating at reduced power settings for most of the landing transition.

Assuming a maximum deceleration rate of 0.3 g or

$$-\left(\frac{H_{D}}{H_{L}}g\right)_{max} = -0.3$$

allows an α and β schedule to be selected for decelerated level flight. For this transition, α was maintained at zero and the fan speed, β schedule, deceleration rate, horizontal distance and time as a function of flight speed are plotted in Figure 68.

The time interval for the last 10 knots of a transition to maximum conversion speed (zero acceleration point) is taken based on the average acceleration for the last 10 knots.

Constant Speed Climb:

If $V_{\rm p}$, the speed along the flight path, is held constant and the flight path inclined at an angle θ to the horizontal, $V_{\rm C}={\rm dh/dt}$ is the rate of climb (vertical component of velocity). The equation of motion for a constant speed climb is given in Table 11 and $\theta={\rm tan}^{-1}~{\rm H}_{\rm p}/{\rm H}_{\rm L}$.

For a constant 100% fan speed condition, to select the maximum climb angle, it is necessary to determine by iteration the largest negative value of H_D at each velocity ratio which satisfies both $H_L = 0.315 \cos \theta$ and $-H_D = 0.315 \sin \theta$ from Figures 63 and 64. This is similar to the procedure used in defining maximum acceleration in level flight, except that the excess thrust used to accelerate the aircraft in level flight is now used to climb. The α and β schedules for this condition and the rate of climb and climb angle as a function of flight speed are shown in Figure 69.

Accelerated Climb and Decelerated Descent:

Two methods of approach could be used to solve the equation of motion. The rate of climb could be maintained constant, or the climb angle could be held constant and the rate of climb varied. Whichever method was used, the boundaries of the problem are defined by the acceleration in level flight (i.e., zero climb angle) and the constant speed climb (i.e., maximum rate of climb). It can be seen that an infinite number of accelerated climb paths are available in between these two limiting paths.

The descent is accomplished in a similar manner, but for this case, the gross weight component acting along the flight path $(G.W. \sin\theta)$ tends to accelerate the aircraft downwards. The equation of motion is exactly the same as for the accelerated climb, but in this case,

dh/dt is negative. Since this is a deceleration, it was assumed that it would occur following a conversion from conventinal flight to fan powered flight and the analysis was carried out as for the level acceleration, commencing with a low fan speed.

For a constant rate of descent, θ is known and $H_L = 0.315 \cos \theta$ $(v_{\rm tip}/v_{\rm tip}^{'})^2$.* An iteration process at each flight speed to determine $N_{\rm F}$, α and β can be followed to satisfy the \ge -0.3 g criterion as follows:

- 1. Select N_F and $(v_{tip}/v_{tip})^2$.
- 2. Calculate H_L
- 3. Determine α from rate of descent and given flight speed for a constant attitude.
- 4. Obtain β and $H^{}_D$ which corresponds to the calculated values of α and $H^{}_L$ from Figures 70a through 71c.
- 5. Solve the relationship

$$\frac{\rho A_{F} (v_{tip}^{'})^{2} H_{D} + G. W. \sin \theta}{H_{L} \cos \theta}$$

6. Repeat the process by changing fan speed until the solution to the above relationship approaches a minimum value, but not less than -0.3.

Figures 70a through 71c are similar to Figures 63 and 64, except that they were extended to include the higher velocity ratios; and

^{*}Correction factor for varying fan speed see page 51, Volume 1

the data at other than α = 0° above 0.3 V_p/V_{tip} is extrapolated. Data at low velocity ratios above $\alpha \approx 16^\circ$ was also estimated to enable the analysis to cover the entire landing sequence.

For the decelerated descent flight path, the α and β schedule, fan speed and deceleration rate are plotted in Figure 72. If the equation of motion is written in the form

$$dt = \frac{d V_{p}}{-g \left(\frac{H_{D} \cos \theta}{H_{L}} + \frac{dh}{dt}/V_{p}\right)}$$

the term
$$-g \left(\frac{\frac{1}{H_D \cos \theta}}{\frac{H_L}{H_L}} + \frac{dh}{dt} / v_p \right)$$

can be evaluated for several values of V_p and plotted against V_p . Then the area under the curve between any two values of V_p is the time required to slow down from the higher to the lower speed.

A plot of velocity as a function of time is shown in Figure 72. The area under this curve yields the distance needed for decelerating the aircraft, and a velocity - distance curve is also shown in Figure 72.

If it is assumed that the airplane will be at ground level when a speed of 10 knots is attained, a step-by-step procedure from this point can be followed to determine a speed - altitude curve. This is also shown in Figure 72.

Short Take Off Analysis:

Three load conditions, lift equal gross weight and 10% and 20% overload were investigated for short take off to clear a 50 foot obstacle. This can be represented by the relationship -

Total distance (X) = Ground run distance (X_1) + distance required for rotation to climb out angle (X_2) + distance required to climb out (X_3).

For the ground run during take off, the equation of motion is shown in Table 11. If G.W. is arbitrarily set equal to

$$\rho A_{F} (v_{tip})^{2} H_{G.W.}$$

then this equation can be divided by $\rho A_F (V_{\text{tip}})^2$ yielding

$$H_D - \mu(H_{G.W.} - H_L) = H_{G.W.}/g d^2 x/dt^2$$

where μ is the rolling coefficient of friction assumed to be 0.03.

Since $V_p = dx/dt$

then $d^2x/dt^2 = dV_p/dt = dV_p/dx dx/dt$

or
$$d^2x/dt^2 = V_p d V_p/dx$$

Therefore, $H_D - \mu H_{G.W.} + \mu H_L = \frac{H_{G.W.}}{g} V_P \frac{d V_P}{dx}$

 $^{\rm H}{_{\rm D}}$ and $^{\rm H}{_{\rm L}}$ will vary as a function of $^{\rm V}{_{\rm P}}$ and the variables in the above equation can be separated to yield

$$dx_{l} = \frac{{}^{H}_{G.W.} {}^{V} {}_{P} dV_{P}}{g({}^{H}_{D} - \mu {}^{H}_{G.W.} + \mu {}^{H}_{L})}$$
or ground roll distance $(X_{l}) = \int_{g({}^{H}_{D} - \mu {}^{H}_{G.W.} {}^{V} {}_{P} dV_{P}}^{U} \frac{{}^{H}_{G.W.} {}^{V} {}_{P} dV_{P}}{g({}^{H}_{D} - \mu {}^{H}_{G.W.} + \mu {}^{H}_{L})}$

The term $\frac{^{H}_{G.W.} \ ^{V}_{P}}{g(^{H}_{D}^{-\mu H}_{G.W.}^{+\mu H}_{L})}$ can be plotted against $^{V}_{P}$

using the values of ${\rm H_D}$ and ${\rm H_L}$ from Figures 63 through 64 for α = 0° and the following β schedule:

The β schedule selected is based on several trial solutions and appears to yield near optimum STO performance.

Take Off Weight Max. Installed Lift	
Max. Installed Lift	β Setting
1.0	30°
1.1	30°
1.2	35°

By measuring the area under this curve from zero to the take off speed, the ground roll distance was obtained. This curve is plotted for the three gross weight values in Figure 73.

The rotation to an optimum climb path imposes an additional weight increment due to centrifugal force $\Delta G.W. = G.W./g~\omega V_p$ where ω is the rate of rotation in radians/sec. For straight and level flight the H_L values required for zero, 10% and 20% overload are 0.315, 0.346 and 0.378 respectively at 100% fan speed. For the rotational motion, an additional increment in H_L will then be required to overcome the centrifugal force component. In order to maintain exit louver angle constant throughout the take off, it is necessary to review Figures 63 through 64 to determine the flight speed at the end of ground run sufficient to provide the lift coefficient H_L necessary for both lift off and rotation and at the same time to provide sufficient thrust for climb.

A small part of the ${\rm H_L}$ required is obtained from the tail lift. With the tail lift, the lowest flight speed which satisfied each weight condition was 35, 60 and 60 knots respectively.

The rotation and climb can be accomplished in many ways, primarily dependent on the angle of attack selected at the end of the ground run. An approximate analysis indicated that for the lift equal gross weight condition, selection of α = +4° at the beginning of rotation was about optimum (in terms of shortest distance to complete the STO). For these conditions, H_D = -0.065 and H_L at lift off was 0.351 (0.315 from Figure 70b and 0.036 from interpolation of Figures 65a and 65b).*

^{*}Figure 65 is data plotted with the tail off. Providing tail power to trim this moment is equivalent to adding H_L to the system equal to H_M since the tail moment = Ll_t and $H_M = Ll_t/\rho A_F(V_{tip})^2 l_t = H_L(l_t/l_t)$.

The rate of rotation $\omega=\Delta G.W.g/G.W.$ V_p (where $\Delta G.W.$ is proportional to H_L at lift off minus H_L in level flight or 0.351 - 0.315) was 3.5°/sec. The climb out angle given by $\tan^{-1}H_D/H_L$ would be about 10.5°. The rotation is therefore completed in about three seconds in a distance of 180 feet (assuming V_p is essentially constant). The height gained during rotation would approximate 180 $\tan \theta/2 = 16.5$ feet.

For the remaining 33.5 feet to clear the obstacle, retaining the climb out angle at 10.5° at constant V_p , $X_3 = 33.5/\tan\theta = 189$ feet. The total STO distance then taking the ground roll distance (X_1) from Figure 81 would be

X = 140 + 180 + 189 = 509 Feet.

Table 12 shows the results of the analysis, including the 10% and 20% overload conditions. Figure 74 also shows this relationship.

TABLE 12
SHORT TAKE OFF DISTANCE AS A FUNCTION OF TAKE OFF WEIGHT

	α*	β	ω	θ	X,	X ₂	Xz	X
	(Deg.)	(Deg.)	(°/Sec)	(Deg)	(Ft.)	(Ft.)	(Ft.)	(Ft)
With Tail Trim:								
Lift = G.W.	+4	30	3.5	10.5	140	180	189	509
10% O.L	0	30	3.1	9.7	422	300	140	862
20% O.L.	+4	35	0.78	9.0	3 3 0	865	-	1195
Vithout Tail Tri	.m :							
Lift = G.W.	+ 4	20	2.4	5.5	219	128	460	807
10% O.L.	+3	25	1.7	5.0	531	270	447	1248
20% O.L.	+2	25	0.78	4.3	665	550	400	1615

 α refers to the angle of attack during rotation.

It should be noted that these STO analyses are conservative to the extent that no advantage has been taken for the possibility of applying a variable β schedule during the ground run.

Pitch Control Requirements During Transition:

The out-of-balance pitching moment is plotted in Figures 75, 76, and 77 for three flight conditions: maximum climb, maximum acceleration, and a constant attitude descent. These were all determined from test data with the tail off. For the purpose of this moment analysis, the louvers were assumed to be located at the center of gravity and consequently, there is no moment from turning the flow. A high lift (split flap) tail using a maximum pitching moment coefficient of 0.7 was used to determine the available control moment and additional control moment required.

It can be seen that when the tail is used to provide a nose down moment for control, an additional lift force will be developed not included in previous transition calculations. This lift force will have a peak value close to 2000 pounds which means, in effect, that the previous performance estimates are, to some extent, pessimistic at the high speed end since these points are based on zero tail lift.

The main effect on these calculations will be that the time to speed and time to altitude will be improved due to the additional thrust available from trading lift for thrust.

In reviewing Figures 75 through 77, it can be seen that the maximum additional control required occurs for either the maximum acceleration or maximum climb case, and, assuming the pitch reaction control is located as shown in Figure 3, Volume 1, this would represent a force equivalent to approximately 7% of the gross weight. If pitch control were located in both the tail and nose of the aircraft and the fan center of lift relocated relative the aircraft center of gravity, this additional control requirement could be reduced to

^{*}Equivalent $C_{Lt} = 1.17$

approximately 3 1/2% of gross weight. Because of the lower fan speeds required during landing, the additional moment required is only about 50% of that required for take off.

E. MECHANICAL PERFORMANCE

Rotor:

A detailed mode analysis of the rotor vibratory stresses has been made and the data are presented in Tables 13, 14, 15 and 16. These results show the rotor stress characteristics as a function of fan speed, tunnel speed, β and yaw angle. Angle of attack did not affect the rotor stress relationships except in the region where the wing stalled. In this region, blade stresses increased slightly and began to amplitude modulate. Since yawing the airplane resulted in stalling the wing at lower angles of attack, the blade stresses increased slightly and began to modulate at this same lower angle of attack. The effect of removing the inlet vane is also shown in the tables. In many cases it is not possible to determine the exact change in stress resulting from a variation of α , β , ψ , etc. since fan speed is not held constant. Nearby resonances whose amplitudes are a function of speed make it impossible to pin down the exact stress change without extremely detailed data reduction process. The rather small stress changes observed do not warrant such an analysis.

The rotor blade stress analysis was made using three gages - 90B2, 51B3 and 51B5 (refer to page 92, Volume 1 for the gage location specification. Blade 90 was also used for the analysis in Volume 1 These three gages were the most important to the analysis, and fortunately, they were functioning properly throughout the test. Gage 90B2 responds primarily to the cosine $n\theta$ and the first torsional modes. The first flexural stress response of this gage is less than 40% of the first flexural stress read on other gages. Gage 90B2 is located near the trailing edge just above the dovetail on the concave side of the blade. Gage 51B5 responds almost exclusively to the first flexural mode. The gage is located just below the tip tang

TABLE 15 DYNAMIC ROTOR BLADE STRESSES AS A FUNCTION OF $V_{\rm P}$, β AND $N_{\rm F}$

000	Stress (psi sa)	750	3750	0009		1000	2400	3800	
E 4 - C	Stress (psi sa)	1800	1800	1250	1000	1000	1000	1000	
	Stress (psi sa)	750	750	1000	750	500	200	1500	
	Total Stress (psi sa)	3200	9700	8000	2500	2200	3500	5500	
	β (Deg.)	0	9	01	0	0	04	04	
	Tunnel Vel. (Knots)	83	100	100	0†	8	100	100	
	Speed (RPM)	2550	2490	2306	2500	2550	2490	2306	
	Gage No.	90B2	90B2	90B2	5185	51B3	51B3	51B3	
	Point	Н	α.	8	. 	10	9	7	

TABLE 14

	Cosine 30 Stress (psi sa)	1700 2000 2000 1700 1200	00000	000 000 000 000 000 000 000 000 000 00
CITY	lst Torsional Stress (psi sa)	2700 2700 1800 1500 2700 2700	3 0 1 1 1 1	2500 2000 1500 1700 2000 2100
YAW AND TUNNEL VELOCITY	lst Flexural Stress (psi sa)	700 700 1000 1200	1200 2000 2500 2700 2700	1200 1200 800 1700 2000 1500
FUNCTION OF YAW AN	Total Stress (psi sa)	5000 7000 7000 7000 7000 7000	2200 2200 3500 3500	4500 4500 3500 4300 4300
A FUNCT	β (Deg.)	0000000	00000	000000
SES AS	α (Deg.)	0000000	00000	000000
DE STRESSES	(Deg.)	-16 -16 -16	-16 -16 -16	-16 -16 -16 -16
ROTOR BLADE	Tunnel Vel. (Knots)	8888888	88888	8888888
DYNAMEC	Speed (RFM)	1710 1704 1690 1690 1697 1700	1690 1690 1697 1700 1705	1710 1704 1690 1690 1697 1700
I	Gage	9082 9082 9082 9082 9082	5185 5185 5185 5185 5185	5185 5185 5185 5185 5185 5185 5185
	Point	1001 table	8 6 0 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	117 117 118 118

TABLE 15

Y	Cosine 30 Stress (psi sa)	1500 1700 1700 1700		500 700 700
REMOVED AS A FUNCTION OF TUNNEL VELOCITY	lst Torsional Stress (psi sa)	1900 1500 1200 2200 1700	0001	1500 2200 3700 peaks to 4700
A FUNCTION OF	lst Flexural Stress (psi sa)	700 900 800 700 1300	1300 1300 1300 2500 peaks to 3500 3200 peaks to 4500	1500 2200 3000 peaks to 4000
VANE REMOVED AS	Total Stress (psi sa)	4800 5000 4000 1700 5500	2000 2000 2000 2000 3000 peaks to 4200 4200 peaks to 5200	3200 4500 6300 peaks to 7500
	β (Deg.)	00000	0000 0	000
THE I	a (Deg.)	00000	0000 0	000
STRESSES WITH THE INLET	Tunnel Vel. (Knots)	88308	8899 8	000
BLADE	Speed (RPM)	1700 1697 1695 1710 1725	1700 1697 1695 1710 1725	1695 1710 1725
ROTOF	Gage No.	90B2 90B2 90B2 90B2 90B2	51B5 51B5 51B5 51B5 51B5	51B3 51B3 51B3
DYNAMIC ROTOR BLADE	Point	このろはら	9 6 0 10	112
			-66-	

1

TABLE 16

VELOCITY
TUNNEL
AND
Θ
OF
A FUNCTION
S
REMOVED /
VANE
INLET
THE
HIIM
STRESSES
BLADE
ROTOR BLADE
DYNAMIC ROTOR BI

Cosine 39 Stress (psi sa)	1500	1500 2000 1300		700 700 500
lst Torsional Stress (psi sa)	1900 1200 2200	1000 1700 2000	0004	2200 2500 4700 1000 peak
lst Flexural Stress (psi sa)	882	1000 1300 1300	1300 1400 3500 peak 5300 peak 4500 peak	2200 3000 4000 peak 4000 peak
Total Stress (psi sa)	14806 3700 14700	4700 5500 5700	2000 2200 4200 peak 4200 peak 5200 peak 5200 peak	4500 5000 7500 peak 7500 peak
β (Deg.)	35	8 8	35500	35 0
α (Deg.)	000	000	000000	0000
Tunnel Vel. (Knots)	223	8 8 8 80 8	8 8 8 8 8	9 9 8 8 9 9 9 8
Speed (RFM)	1700	1740	1700 1745 1710 1740 1725	1710 1740 1725 1720
Gage No.	90B2 90B2 90B2	90B2 90B2 90B2	51B5 51B5 51B5 51B5 51B5 51B5	5183 5183 5183 5183
Point	пам	0/U t	7 8 9 10 11	1111
	Gage Speed Tunnel Vel. α β Total Stress	Gage Speed Tunnel Vel. α β Total Stress Stress Stress Stress No. (RFM) (Knots) (Deg.) (Deg.) (psi sa) (psi sa) (psi sa) 90B2 1700 20 0 0 4480c 700 1900 90B2 1745 20 0 35 3700 700 1200 90B2 1710 60 0 0 4700 700 2200	Gage Speed Tunnel Vel. α β Total Stress Stress Stress Stress No. (RM) (Knots) (Deg.) (Deg.) (psi sa) (psi sa) (psi sa) 90B2 1700 20 0 0 480C 700 1900 90B2 1716 60 0 35 3700 700 2200 90B2 1740 60 0 35 4700 1000 2200 90B2 1740 60 0 35 4700 1000 1000 90B2 1725 80 0 2500 1700 2000 90B2 1720 80 0 20 5700 1200 2000	Gage Speed Tunnel Vel. α β Total Stress Stress Stress No. (RFM) (Knots) (Deg.) (Deg.) (Deg.) (Deg.) (psi sa) (psi sa) (psi sa) 90B2 1700 20 0 0 4600 700 1900 90B2 1745 20 0 35 3700 700 1200 90B2 1740 60 0 0 4700 700 1200 90B2 1740 60 0 35 4700 1700 2200 90B2 1740 60 0 0 4700 1700 2200 90B2 1720 80 0 0 5700 1300 1700 90B2 1720 80 0 20 2000 1300 2000 51B5 1740 60 0 2000 4200 peak 4500 peak 400 51B5 1720 <td< td=""></td<>

and it reads the highest flexural stress of any gage on the blade. Gage 51B3 responds to flexural, torsional and the cosine $n\theta$ modes. It does not read the highest stress in the blade for any mode, but it reads over 70% of the maximum stress for any mode. This gage is located 5.5 inches from the dovetail on the leading edge concave side.

The following table lists the various resonant speeds for the blades and system modes.

TABLE 17
BLADE RESONANT SPEEDS AND SYSTEM MODES

Speed RPM	Mode	Excitation
1690	3 0	3/rev
1705	First torsional	16/rev
1800	First flexural	8/rev
1980	40	4/rev
2100	5 0	5/rev
2100	20	2/rev
2350	6∂	6/rev
2380	First torsional	12/rev

Table 13 shows the change in blade stress* as a function of cross-flow, exit louver angle and fan speed.

9

The 1st flexural, 1st torsional and cosine 2θ stresses need not add up to the total stress for two reasons: the stresses in the various modes are vector quantities and the stress level is so low that the noise level of the gage, recording and playback system can introduce small errors.

Crossflow and β variations above 2300 RPM resulted only in a change in the magnitude of the cosine 2θ stress. Any change in the flexural or torsional mode stresses was a function of speed only (i.e., proximity to the resonant speed). Gage 90B2 had the largest increase in the 2θ stress as was expected. The increase between points 1 and 2 in Table 13 is 3000 psi in the 2θ mode. When speed is decreased 200 RPM holding the same configuration as point 2, the 2θ stress increases 2250 psi point 3. This is a result of speed moving closer to 2100 RPM, the cosine 2θ resonant speed.

The torsional mode was found to be independent of crossflow velocity and β angle by comparing decelerations through the torsional resonance speed (2380 RPM) for β = 0° and 20 knots, and β = 35° and 100 knots. The maximum torsional stress gage, 90B2, showed 5000 psi at both conditions. The only exception to the above general statement occurred at 40° β setting and tunnel velocities of 40 knots and below with fan speeds near 2500 rpm. The torsion stress increase was highest at 30 knots, even though speed was moving away from the torsional resonance. This increase was small, 1250 psi and the cause has not been thoroughly investigated. The flexural mode at 1800 RPM was also found to be independent of crossflow and β angles during the first Ames test.

^{*} All stress values in this report are single amplitude (sa)

The cosine 2θ mode stresses are shown in Figure 78 as a function of flight speed and louver angle for the normal fan operating speeds. These values are low relative to a running limit of 14,500 psi since the operating speed is not near the 2100 resonance speed. Also shown in Figure 78 are the peak cosine 2θ mode stresses observed during transients through the resonant speed at various tunnel velocities and β angles. The peaks always were higher during deceleration than during acceleration. Transients were not obtained above 60 knots; however, running limits were exceeded at 60 knots when the exit louvers were at 35° setting.

Yaw from +8° to -16° had very little effect on blade stresses as shown in Table 14. Factoring out the change in stress due to resonances changing as a function of speed, yaw produced 500 psi or less stress variation. It is somewhat deceiving to say yaw does not affect blade stress since at some larger yaw angle the inlet vane will cease to function properly and the blade stress as a result of inlet distortion will increase much like the stresses increase when the inlet louver is removed.

With the inlet vane removed and up to and including 40 knots tunnel velocity, there was no change in stress levels. At 60 knots and above, the stress changes are shown in Table 15. In general, the absence of the inlet louver increased both the flexural and torsional blade stresses at crossflow velocities of 60 knots and above. The type of vibration changes from a pure resonant type with a constant amplitude to a separated flow type of vibration with rapidly modulating amplitudes. The separated flow exciting force could come either from the separated inlet or from the inlet air angles, being such that the air is separating on the blade airfoil. Closing the exit louvers to 35° at 1700 RPM without the inlet louver did not change the blade stress at any crossflow velocity as long as speed was held constant as shown in Table 16.

Running Limits = $\frac{\text{Absolute Limits}}{1.56}$ (see Table 12, Volume 1)

The addition of the tab at the carrier ends did two things:

- 1. Change the frequency of the cosine no modes.
- 2. Lowered the torque transmission stresses.

The cosine $n\theta$ mode changes are shown below:

TABLE 18
CHANGE IN COSINE no MODES WITH TORQUE BAND DESIGN CHANGE

Mode	RPM - No Tab	RPM - With Tab
20	2080	2100
30	1520	1690
40	1680	1980
5θ	1800	2100
60	2000	2350

The tangential torque band stress at 2250 RPM was reduced from 10,000 psi to 6,800 psi. If the data from the previous testing were extrapolated to 2600 RPM, that torque band stress would be 12 to 15,000 psi; with the tab, the stress at 2600 RPM was 5,500 psi. The addition of the tab provided another friction surface between carrier and, therefore, more torque was transmitted through the carriers instead of the torque band.

No significant changes from the results reported in Volume 1 in stator or louver stresses or fan vibration and rotor bearing characteristics were noted throughout the test.

Torque Band Failure:

Component inspection following 23 hours of testing revealed cracks in the fan rotor torque bands. Specifically, cracks had occurred in both bands and, as in the previous test period, were located at the joint of adjacent turbine bucket carriers. This time, however, the cracks were situated near the axial center of the band and were oriented circumferentially incline with the band components. Consideration of location and orientation of the cracks resulted in a decision to continue testing to observe crack propagation and incidence as a function of test time and test conditions.

Subsequently, eight hours of tests were conducted at rotor speeds up to 87% with no new cracks occurring or propagation of existing failure areas. The test plan was completed without compromise.

Analysis of the failure has been concerned with the following items:

 Study of stresses recorded during test and a comparison of vibratory stresses in the band at the torque transmitting attachment point with those measured at the joint of adjacent carriers.

Strain gage sensors were applied to both torque bands in an attempt to record and measure vibratory stresses in the band at the center of the bucket carrier (torque transmitting attachment point) and at the joint of adjacent carriers. (Gage location however was chosen to monitor stresses adjacent to the attachment ear (B/U #2 failure) and did not cover the failure areas in this test.) Tapes of stresses recorded during these tests do not show a significant change in level between the two locations. The maximum stress level tended to be slightly lower than measured in the previous tests (8 - 9 ksi versus 10 ksi).

2. Support Tab Fit-Up - Component inspection has shown that the cracks in the band were coincident with the toe on the support tab added as a fix for this testing. It was felt that the stack-up variation in tab-band fit-up during rotor assembly which produced cold clearances smaller than design (0.010) may have resulted in high radial shear and bending loading in the band at the support tab toe. Data taken during assembly and confirmed in teardown showed that the tab-band clearance ranged from 0.002 to 0.018 inches across the total of 72 tabs assembled to the fan rotor. There is no correlation however between this clearance and the band failure locations.

Forward Band	Failure Location	Clearance
	Tab 22	0.012 - 0.014
	27	0.008 at weld
	32	0.007
	36	0.010 at weld
Aft Band	Tab 5	0.010 at weld

Further inspection during teardown indicates that all tabs on the forward side of the carrier had been in contact with the band during test.

3. Comparison of the Steady-State Stresses in the Forward Band Relative to the Aft Band - Torque band analyses using measured temperature gradients show a significant reduction in steady-state stresses and hence, an increase in permissible vibratory stress on the aft band component.

Measured vibratory stresses from identical gage locations show nearly equal stress levels on the two components. It is felt that the aft band failure must be regarded as a material deficiency in the heat affected weld area or the interaction

between the support tab and cold assembly clearance relative to the band. The aft band did not show marks of tab-band contact that were evident on the forward band.

- 4. Shutdown Transients Analysis of shutdown transients to determine feasibility of limiting stresses has been completed. There is no indication that this condition would result in high amplitude, low cycle fatigue.
- 5. Teardown Inspection Results Component teardown and inspection have been completed. Flourescent penetrant and optical inspection have confirmed the original data. A total of five cracks were noted: 4 cracks in the forward band; 2 in parent metal; and 2 in heat affected weld zones; one crack in the aft band in a heat affected weld area. At least two of the support tabs in failure locations show evidence of shear damage of the tab carrier support rabbet indicating severe radial loading.

The theory of failure resulting from this investigation is built on the interaction of the torque bands with the rotor system axial vibration. As the rotor is accelerated through these modes, the axial displacement of the bands about their maximum inertia axis results in a radial motion of the unsupported band lips. Construction of the rotor permits this displacement to occur only at the joint of adjacent bucket carriers and the radial movements of the lip is a vibratory stress not sensed at the other attachment location. The addition of the support tabs in the system was an attempt to provide support for the band at this location and effectively redistribute the vibratory loading away from the attachment ears and inherent stress concentration areas. The support tabs did result in a redistribution of loading, but the assembly stack-up and inability of the support to contain the radial motion

Subsequent metallurgical analysis in the laboratory identified a sixth crack in the aft band.

of the overhung lip resulted in high shear loading and bending about the support tab toe. This combined loading in the band caused fatigue failure in that area.

A design change to correct this problem has resulted in two new configurations, each of which will be demonstrated in future fan tests.

- 6. The louvers, lever arms and pushrod were zygloed. One slight crack in a corner weld on louver #37 was found; this has been benched out.
- 7. The instrumentation was completely removed at teardown.
- 8. Figure 82 shows a crack propogation in the sawcut of the support ring between the fan and turbine stators due to thermal growth; this has been stop drilled.

SCROLL

 No visible wear observed in any section of the scroll; the mounts, hangar brackets and several partition weld areas were spot zyglo checked.

ROTOR

- 1. The disc and shaft-were magnafluxed, no cracks.
- 2. Two tabs on the aft retainer ring had indications in several spot welds. These were observed at previous zyglo before build-up; no new cracks are indicated.
- 3. Platforms were zygloed and are in good condition.
- 4. Blades show no nicks or dents in the airfoils; magnaflux was satisfactory. Dovetails and tangs showed no signs of fretting. The blades were completely cleaned, including removal of all strain gage instrumentation.
- 5. Carriers were cleaned and zygloed, no cracks. Several pieces from the bucket shroud were missing on teardown (Figure 83). These probably broke off during the shroud rub. Carriers show no new foreign object damage other than what was observed before build-up.

- 6. All pins zyglo tested satisfactorily. The amount of pin bow varied between 0.004 inches to 0.006 inches. Carrier holes were scored by pin removal and will be polished. Larger pins will be required for improved fit in next build-up.
- 7. Torque band cracks that were found during tests (after 20 hours) were also apparent from zyglo inspection after disassembly. A total of six were found (4 in the forward band and 2 in the aft band).
- 8. The tabs that were added to provide additional support for the torque bands were zygloed and three had crack indications near the heel. Six others removed from assembly prior to zyglo had visible cracks in the same area.
- 9. The covers were zygloed and were all satisfactory.

VII RECOMMENDATIONS

The nature of the work under contract DA 44-TC-584 is such that specific individual recommendations are made in the regular and continuing working relationships between the contractor, TRECOM and NASA-Ames. Such recommendations are usually presented in correspondence and in the bimonthly technical progress reports and are not restated here. Also, in the body of this report, individual technical recommendations are incorporated in the technical discussions of which they are appropriately an inseparable part.

The intent of this part of the report is to summarize the major program recommendations relating to the continuation of the work. These are:

- A. Complete the wind tunnel testing of this lift fan in the fuselage configuration by conducting tests of airplane lift fan interaction in ground effect take off and ground effect hover, with the objective of increased understanding of tail downwash, lift variations, longitudinal stability and control, reingestion and fan mechanical performance.
- B. Complete the concurrent fan-in-wing static test program.
- C. Complete, as planned, the program for wind tunnel testing of the fan-in-wing configuration, plus the associated inlet development and engineering analysis work as described in the January 4, 1961 contract amendment. This program will cover approximately 75 hours of testing, including inlet performance; fan mechanical performance (steady state and transient); effectiveness of thrust spoiling, vectoring and ailerons for roll/yaw control; longitudinal and directional stability and static derivatives and trim control requirements; tail downwash; ground effect hover and transition; and reingestion and circulation patterns.

D. Begin the Flight Research Vehicle Program, as currently proposed, including the early selection of the airframe manufacturer, and the initiation of the propulsion system and aircraft programs. This will permit hardware design and procurement to proceed while the results of items A, B and C above are being obtained and used to define the ground and flight tests of the flight research program. In this way, orderly and continuous progress can be made to vard the demonstration of a lift-fan powered airplane in free flight.

VIII. REFERENCES

- 1. Corning, Gerald, Supersonic and Subsonic Airplane Design, Second Edition, Edwards Brothers, Inc., Ann Arbor, Michigan, 1953.
- 2. Hickey, D. H., and Ellis, D.R., Wind-Tunnel Tests of a Semispan Wing With a Fan Rotating in the Plane of the Wing, NASA Technical Note D-88, October 1959.
- 3. Hoerner, S.F., Dr., Fluid-Dynamic Drag, Published by the Author, 1958, Library of Congress Catalog Card Number 57-13009.
- 4. * Kelly, M.W., Large-Scale Wind-Tunnel Studies of Several VTOL Types,
 Ames Research Center.
- 5. Kuhn, R. E., and Naeseth, R.L., <u>Tunnel-Wall Effects Associated with VTOL-STOL Model Testing</u>, NASA, Langley Research Center, Langley Field, Va., March 1959.
- 6. * Maki, R.L., and Hickey, D.H., Aerodynamics of Fan-in-Fuselage Model,
 Ames Research Center.
- 7. Pope, Alan, Wind-Tunnel Testing, Second Edition, John Wiley and Sons, Inc., New York, 1954
- 8. *Spreemann, K. P., <u>Induced Interference Effects on Jet and Burried Fan</u>
 VTOL Configurations in <u>Transition</u>, <u>Langley Research Center</u>.

^{*}From NASA Conference on V/STOL Aircraft (a compilation of papers presented), Langley Research Center, Langley Field, Virginia, November 17-18, 1960.

- 9. Switzer, J.R., <u>VTOL Wing-Fan Model Tests</u>, Flight Propulsion Laboratory Department, General Electric Company, Cincinnati 15, Ohio, 1958.
- 10. Theodorsen, Th., Dr., Theoretical Investigation of Ducted Propeller

 Aerodynamics, Volume 1, USATRECOM Contract No. DA 44-177-TC-606,

 Project No. 9R38-01-017-24, Republic Aviation Corporation, Farmingdale,
 New York, August 10, 1960.
- Propulsion System for U.S. Army Transportation Research Command Fort Eustis, Virginia, TREC Technical Report 60-42, Contract No. DA44-177-TC-584, Project No. 9R38-01-017-04, Flight Propulsion Laboratory Department, General Electric Company, Cincinnati 15, Ohio 1960.
- 12. Results of Wind-Tunnel Tests of a Full-Scale Fuselage-Mounted Tip-Turbine-Driven Lift Fan, TREC-Technical Report 61-15, Volume 1, Contract No. DA 44-177-TC-584, Project No. 9R38-01-020-02, Flight Propulsion Laboratory Department, Cincinnati 15, Ohio January 1961.

APPENDIX A

METHOD FOR ESTIMATING FAN PERFORMANCE ABOVE v_p/v_{tip} OF 0.3

A considerable number of test points were obtained at high fan speeds up to velocity ratios of 0.3 and fan performance was calculated as described in Section V-C. At velocity ratios above 0.3 only a few data points were obtained and only at reduced fan speeds (in order not to exceed the 100 knot limit on the model). This makes the calculation of fan performance at these high velocity ratios by the method described in Section V-C impractical.

Fan performance can be estimated above $V_p/V_{tip} = 0.3$ by the use of the parameter $\eta_R(V_p/V_{tip})^2$, which is reasonably well known up to velocity ratios of 0.5. Fan performance changes with crossflow are due to the relative change of the pressure levels at the fan inlet and fan exit. As long as this difference between these two levels is known, the performance of the fan can be estimated. The quantity $\eta_R(V_p)^2$ is proportional to the difference in levels of fan inlet and fan exit pressures; dividing by $(v_{
m tip})^2$ nondimensionalizes this quantity so that it can be applied to any fan speed. The plot of $\eta_R(v_p/v_{
m tip})^2$ is shown in Figure 84, and shows that between velocity ratios of 0.3 and 0.5, this quantity does not change appreciably. From this, it can be concluded that fan performance between 0.3 and 0.5 v_p/v_{tip} is essentially constant (i.e., the ram recovery is just sufficient to maintain constant thrust with increases in $v_p/v_{\rm tip}$ above 0.3) and equal to the calculated performance at 0.3 $v_p/v_{\rm tip}$. This conclusion is most likely optimistic since distortion of the inlet increases as velocity ratio increases and therefore, fan efficiency will be affected adversely. The parameter $\eta_R (v_p/v_{\text{tip}})^2$ can also be used in estimating X353-5 fan performance with other inlets if the inlet performance is known in terms of $\eta_{\rm R}$ versus $v_{\rm P}/c_{\rm Z~10.2}$, and the distortion patterns are similar to the Ames fuselage inlet.

	TORKE A-1 DEFINITIONS AND STRUCTS
4	Fun exit area - 17.8 Sq. Ft.
•	Wing aspect ratio, $b^2/3_g = 5$.
b	Wing spen = 35.36 Pt.
	Local wing chord, Pt.
ē	News wing chard, S/b = 7.07 Pt.
	Name, R.
c,	Drag coefficient D/q S _g (based on tunnel q)
c _{D1}	Induced drag coefficient, C _L ² /s AB e
c _{Do}	Dreg coefficient at zero lift.
c.	Drag coefficient based on wetted area.
c. 4 .	Center of Gravity.
c.	Lift coefficient, L/q S _p (based on tunnel q)
₹.	Lift conflicient calculated from wing static processe distribution.
	$\frac{1}{2}\int_{1}^{1}\frac{c_{2}c}{c} \cdot \left(\frac{d}{dz}\right)$
°1 ===	Maximum lift coefficient at $\Delta C_{1}/\Delta \alpha = 0$.
c _{Lt}	Sorisontal tail lift coefficient.
¢.	Politing amount confficient, Roll Parce/q b S _g
°	Pitching amount coefficient, N/q S _p c _{max} (based on tunnel q)
° a	Wing section lift coefficient.
Š .	Pitching amost coefficient calculated from ving static pressure distribution.
œ,	Charge in moment coefficient due to charge in tail incidence.
•	Now weredynamic chará $\int_{-h/2}^{h/2} \frac{e^2}{8e} = 7.35 \text{ Pt.}$
$\sigma_{\mathbf{z}}$	Fon everage said (or through flow) velocity, Ft/Sec.
9	Senic aircraft drag (fam off-holes covered), Lie.

Pressure, Ibe/Sq. In.

Local static pressure, Lbs/Sq. In.

٠,	Norizontal component of fun thrust, $F[\sin{(\alpha-\beta_{\psi})}]$ Like.	P.,	Sand and promp, before to
٠,	Vertical component of fam thrust, F [cos (8, - 0)] Lie.	٠.	Sanat statte presume, the/dy. St.
	Acceleration due to gravity - 52.2 Pt/Sec ² .	•	Tennal Symmetre pressure, Lin/Sq. Ft.
G.W.	Aircraft gross weight, Lbs.	ac .	Beartion control output, Cycles/Sec.
	Dreg coefficient, D _q /p A _p (V _{tip}) ² (based on fan q)		Berisontal tail gross area - 30 Sq. Pt.
•			Ving gross area - 250 Sq. Pt.
No.	Dreg coefficient, F/o Ay (Vtip)2	•	
•	Dreg coefficient, H _{DF} - H _{DR}	•	Imperature 3 or 7.
	Dres coefficient, D/o A, (V _{Lip}) ²	٠,	Tuescal or earpless velocity, Enote.
S.v.	Confficient, G.M./shy(Veta)2	V _{t.Sp}	Pas blade tip speed - 700 Pt/see or b05.6
٨.	Lift coefficient, L/p Ap (Vijp)2 (based on fan q)	v_p/v _{tip}	Velocity ratio parameter (nondimensional)
	Lift coefficient, Ty/o Ay (Vtip)2	Vetall	Airplane stall speed (fem off), Enote.
	Numerit coefficient, N_{ij} $A_{p} (V_{tip})^{2} 1_{t}$ (based on fan q.		theight flow, like./Sec.
•		,	Spanwise location from center line of the
10	Korsepower	•	Angle of attack, Dagrees.
4	Thrust coefficient, 7/0 Ay (Vtip)		Indicated exit louver angle, Degrees.
	leight of the better of the fuelage above the ground, Ft.	Py	Effective exit louver turning engle, Degr
			Pressure correction parameter, Pantient
١,	Tail incidence angle.	•,	Wing flap angle, Degrees.
			Tail downwash angle, Dagrees.
L	Basic mircraft lift (fan off - holes covered), Lbs.	`	Praction of tunnel velocity head recovery (includes static loss).
4.7			Temperature correction parameter, Tambie
Lint	Interaction lift, Lbc.		Nase Density, Slugs/Co. Pt.
1 _{mc}	Pitch reaction control moment era - 25.5 Pt.	•	Loss coefficient in per cent of fee tale the face of the roter.
٠,	Total measured lift (fam on), lbs.	•	Attends per eagle.
	Tail sement arm - 22 Ft.		5782U2
1.	MI COM CL - 27.		Corrected.
	Namic aircraft pitching ament (tail off, power off), Pt. Lbs.	,	Denotes fem.
			Denotes fla or frontal area.
•	Pitching moment due to exit louver vectoring, Ft. Lbs.	,	Denotes airplese.
_			Denotes static.
3 .00	Pitching assent due to Jö? res drag.		Demotes total or tall.
			Uncorrected.
Mint	Interaction pitching accent, Pt. Lbs.		Denotes ving or writed cree.
*,65	Pitching moment due to J65 bleed thrust, Pt. Lbs.	10.1; 5.5 etc.	
•	Total secoured pitching moment (fon on), Ft. Lie.	etc.	Denotes measurement plans identification
	Pitching assent due to tail, Ft. Lbs.		
,	Fun speed, SIM or \$ of design - 2640 SIM at 1005.		
*.00	Bigine speed, AFM or \$ of design = 16,500 AFM at 100\$.		

Street from JS5 bleed gas

TABLE A-2

AMES TEST RESULTS

Pitch Homent Coefficient (H)	45.0			4	010	.019	.016	010.	.023	.027	.025	0.03	.029	S.	.031	0.03	.031	.035	.037	0,0	.043	.043	80.	670	940	0.35	.056	.068	.076	.082	.081	.085	'
Jneillieon gerd	010	810	0.28	0.42	750	.073	.081	,064	.055	.069	690*	.093	901.	.119	.131	.141	.155	.176	.085	.103	.128	138	.155	181	213	248	.177	.188	. 205	.234	.268	.294	.321
Lift Coefficient (II)	314	310	314	317	.320	.332	.327	.318	.318	. 746	. 346	.372	.384	.388	.397	.399	.410	1.	345	.389	.438	.463	/63	5.28	533	.571	365	787	.594	.713	744	.792	618
Valocity Ratio	990	790	063	.073	.073	.073	.073	.112	111	.112	.112	.112	.112	.112	.112		111.	-112	.148	.148	. 148	148	27.	671	151	.153	.217	.216	-216	-217	.224		.227
Berometer In. Mg.	30.02																																
otial gord of ilid	29.413		8.316	7.410	5.937	667.7	000.4	5.136	5.785	4.971	4.353	3.977	3,622	3.242	3.028	2.829	2,637	5.488	4.014	3.766	3.3%	3.337	907	2.873	2.500	2,303	2.059	2.593	2.897	3.049	2,781	2.690	,
Fitch Moment Seefificient (C,2)	1.4326	1.6989	1.346	1.3268	1.3549	1.5294	1.3407	1.0326	.8163	.9357	.8768	1.0216	1.0115	1.0329	1.0747	1.0508	1.0865	1.1850	.7352	7794	.8522	75.45	71.56	.9323	.8560	.6425	.5157	.6338	.7019	.7521	5969.	.7137	,
Drag Coafficient (_D)	.3505	.6280	0000.1	1.1504	1.4326	1.9504	2,1581	.533	.6330	.7906	.9279	1.0626	1.2013	1.3562	1.4896	1.6256	1.7872	1.9827	.5582	.6718	. 874.5	7000	1.0910	1.1724	1.3428	1.5140	.5390	.5762	.6289	.7116	.7635	.8178	
Lift Coefficient	10.309	10.792		8.524		8.775	8,633	3.604	3.662	3.930	4.039	4.226	4.352	4.397	4.510	665.7	4.712	4.954	2.240	2.530	2.832	731.1	3.173	3,368	3,357	3.486	1.110	1.494	1.822	2.169	2.123	2.200	•
Total Pitch Homent OLD - Pt. Lba.	2758	3116	2416	3142	3204	3617	3171	5617	577	2092	7117	5563	220	2624	5851	5721	5927	6539	7022	7444	8139	9160	9106	7068	8176	6137	0475	2874	4257	15276	4837	15281	•
Totel Dreg (p) - Lbe.	92	157	24.5	371	795	629	969	396	07.9	587	689	789	268	1007	1 106	130	1327	1492	727	875	/901	1290	1421	1527	1749	1972	1493	1596	_	_	-	2388	
ادره) دارد (لي - لهه.	2706	2698	2724	2749	2743	2830	2784	2676	2719	2918	5866	3138	3231	3263	3349	2	663	3728	2918	3295	3007	4112	4623	4387	4373	4541	3074	4138	9705	6009	6168	6423	, ,
4° - (703)	JEC.																_								-								
MLM - (_{28L} H)	14310	000 171	14320	14340	14 320	14340	14330	14330	1.370	14350	14360	14320	0+(+1	14.340	7 300	7 360	14370	14350	14 380	065 7	0/5-1	14390	14380	14400	14370	14380	14410	14430	14400	14.20	14420	0777	8 17
sestgab - ()	0							_	_												_					_	_						
Seatting Setting (RC) - CPS	930																													_			
Notizontal Tell Incidence Angle (1) - degrees	JJ0					_	_																										
sign houver Angle (b) - degrees	٥			_			_						_					_	_				_										
Angle of Attack Angle - (>4)	4.00	-2.00	00.	2,00	4.00	6.00	8.00	8	-2.00	8	2.00	8 8	3 8	3	3 5	20.21	8 9	16.00	3 8	3 8	00.9	8.00	10.00	12.00	14.00	16.00	4.00	8	3.	8.00	00.07	27.00	8
Tunnel Temp.	8		16	8	91		92	8									è	7		9	2						9						
beeqs net His - (_q N)	1704		1700	1702	1698	1692	1690	1686	1693	1687	1689	1007	+00T	1690	1600	207	1607	9997	0607	1602	1693	1682	1685	1685	1669	1650	1688	1697	1099	1891	1997	2007	1646
Tressure Pressure (q) - Lbs/sq.ft.	1.05	1.00	. 98	1.29	1.29	1,29	1.29	2.97	2.97	2.97	76.2	7 6 6	2 0 2	2 97	, 0,	2 0 2	10.	10.5	19.6	5.21	5.21	5.21	5.21	5.21	5.21	5.21	11.08	11.08	80.11	11.08	79.11	97 11	89
Tunnel Speed (V) - Enote	8											S	3					9	3								3						Π
oh nuð	2	_																															
Point No	-	2	~	4	~	9	^	•														2											
Point No Consecutive	-	2	~	4	2	9	7	60	•	9	= :	1 :	2 1		2 4	2 5	:	9 9	3 8	3 5	77	23	77	22	92	22	82	2 5	2	F :	2 :	2 4	2

TABLE A-2 (Continued)

		_					_						_																									
Pitch Homent Coefficient (m)		٠	.023		•		613	67.0	910	8	3		.016	150.	.043	.043	7 %0.	.024	100.	640.	050.	.047	.043	.057	190	.063	190-	100.	900	200.	920		} ;	6.0.	760.	.035	90.	920
Jest Coefficient			790.	.03%	.024	010	022	092		151	152		1		122	141	9	190	9.00	109	123	132	160.	010	067	085	.095	016	510	-,014	058	- 104	5	R	BCT .	161	610-	590
Lift Coefficient	1	,	. 340	.215	.312	.319	320	300	.258	.233	192	1	967	***	697	1 1	8 ;	6 8	2	111		_	-431	_	-		. 197	326	_	333	_		_			-187	_	352
Velonity Eatio	0.00	2/0.	.087	.071	.053	.047	650	690	.055	.053	750	0.36		200	200	170		9	3	860	8 60.	_		.151	- 149		977	<u>.</u>	•	÷	•	•	_	<u> </u>	<u>-</u>	<u> </u>	Ì	-
derometer in. Mg.	20 00	20.00	30.00																						_			28.93										-
Lift To Dres Battle	1	2.188	7.231	967.9	3.253	6.187	6.200	3.243	1.961	. ×	1.222	Š		, ,	700.7	26.0	907.1	90.0	670	2.340	1.872	¥.4.	3.791	33 397	. 520	2.923	965		_	_			_	_				_
First Noment SmitsilleoD ((2)	77.11	2.3/30	1,3081	-2.3905	1.8657	2.2023	2.2757	5.1252	5.6524	6.1561	_			_		_			_		-	-	_	-	-	•	1.1807 2.	₹					_					_
Drag Coefficient	1 1937	1.101.1	.8842	.9618	1.2031	1.2444	1,2950	-5.3481	-6.2212	-7.5950	-7.700%	501	-2 mca	-1.0369	1 8364	-6.1497	894.7	7946	7707	1.000	1.0000	4/70.7-	96.50	064	1664	. X.	6182	į.										-
Lift Coefficient (C _L)	16 824	****	2 . 38	6.058	15.944	20.144	18. 188	17.345	12.202	11.708	6.407	8.408	6.607	6.686	9130	5.262	4.947	4.637	900		100	90.7	760.7	591.7		200	//7:1	£										_
Total Pitch Homen Oth - Ft. 125.	ş		3189	-5741	4432	4724	5799	126.64	17616	18057	17926	6747	7695	8525	18778	18548	9920	7655	2002	31057		61.77		71977		1000	Ř	67.	£	1052	6740	6000	52651	7125	16977	1872		00
10.01 Dred (0,) - Lbe	324		1	315	388	36.4	450	-1805	-2644	30.38	-3234	28		_	_	_	_	_		_		_	_	-	-	1001	·	9/2-	60		-	-	3046 14	3296 17	3473 16	-	-	-
10101 Lift (1,) - Lbe.	4921		9717	1984	5142	5892	6390	5856	>186	4683	3951	64.11	5927	5156			6580	6033	51.30	_			,,,,	_		_	_	_		_	<u>-</u>	5778	5063	632 -1	-38		-	_
.quel 0a0 leneda3 4° - (TOS)	¥	Ų				_		_				-										_	_				9	_	-	_			_	-	_	_	, OK	_
beeds enignal HTA - (_{ESL} N)	16140	13280		R	15870	16250	16500	16500	16 500	16500	16500	16500	16500	16500	16500	16500	000.91	16500	00591	16500	00591	005.91	00591	96500	0059	00591	01.191		_	-	-		_	06.49	16490	1 06 99	16510	-
olguh qoft gali	0	c	,						_				_											_	_	_	0	_	-		1 .	_		-	_		-	-
Resction Control Setting (AC) - CPS	J 30	940																									966			_					_	Т	_	~
Northeonie Teil Incidence Angle Incidence Angle (1) - degrees	330	910																-									330								_	_	_	-
signA tevuod sind	•	c						R	2	35	3	0	8	8	35	3	0	8	8	35	3	0	8	8	35	9	0	0	0		2 5	3 2	<u> </u>	35	9	•	0	-
Angle of Attack	0.00	0.00	3																																<u> </u>			-
-quel lenari	96	99	7,9	3 5	8 ;	7	-		9	10	82	88		98		87	89	8		91	_	93	_	92	93		3	_				2	2	_	_	81	7	-
beeqs net His - (_q K)	2287	1425	7.0	333	0/77	24.53	Ž	3	2/3	0807	2617	25.20	2515	2533	25.58	2595	2500	2485	2500	2535	25.70	24.83	24.80	5489	2511	2547	2334	2465	2461	24.34	775	3	R	2002		2451	_	_
Tuncel Dymamic Steepure (q) - Lbe/eq.ft,	1.17	2.3	1 31	7		71.1	5 :	6.1	2 :	3	3	3.05	2.82	3.09	2.88	2.86	5.32	5.21	5.03	5.21	5.11	11.70	11.66	11.49	11.6	1.86	0									_	_	-
beed femul stonk - (V)	3	8		_						_		8			_		3		_	_	-	3	_		-	_	0	-	-	_			-			-	_	-
, off muli	7	3				_			_	_							_	_		-	-						4	_			_		-			_		_
Point No	28	-	,		1		^	۰ م	` '		•	9	=	77	ជ	1	บ	91	17	18	61	8	21	22	ຄ	2	_	2	-	4		, ,		_		*		-
Foint No Comescutive	25	37	5	3		3	;	7 .	2	1		9	47	7	64	Я	21	25	53	×	25		22	2	_	3	19	_	_		-		-	62	-	_	-	-

TABLE A-2 (Continued) AMES TEST RESULTS

Pacch Moment Seefficient (M.)	-058	920	070	180	.075	780	260.	960.	760.	.086	×											.017	.015	*10.	.029	.041	.022	.039	.045	000		.051	970.	.061	990
Jees Coefficient	.165	91.0	.018	070	055	.247	860*	.038	.017	0017	¥											.036	.027	.023	*60	-,151	.043	1.00-	137	790.		121	.138	003	078
Lift Coefficient	.472	354	767	238	707	.546	.386	.318	. 291	.228	ž											.323	.325	.319	.297	.227	.331	.309	.234	.356	.331	.234	.413	.347	. 245
Velocity Batto (v /v)	861.	198	ã	201	.199	.260	.251	.254	.255	.252	¥.											.067	.055	650-	.047	670°	9200	.075	.078	. 105	106	101.	.155	.156	155
Barometer In. Hg.	30.10										30.13											30.10							Ī						
bilit To Drag Estition (T.d.)	2.84	8.83	-16.27	07.9-	-3.68	2,21	3.90	8.16	16.97	129.81	-1.96	8	8.	1.97	3.36	4.61	5.44	5.96	6.23	5.84	4.22	8.89	11.73	13.72	-3.16	-1.50	7.64	-4.32	-1.70	5.52	1.84	-1.92	3.65	80.66	-3 1%
Fitch Moment Coefficient (C_)	.6336	.8112	8.61	.8661	.8209	.5397	.6303	0079	.6216	.5837	.0620	.0257	0141	0345	0503	0768	0943	1367	1570	2051	2372	1.6375	2.1257	2.6118	5.6741	7.1069	1,6284	2.9272	3,1761	1.1807	-9.9086	2,1505	.9235	1.0762	1.1817
Jmelollleod Berd (40)	6109.	.1453	0637	1419	1997	.5226	.2236	.0861	.0377	0039	.1340	.1195	.1105	. 1074	. 1098	.1157	.1274	. 1441	.1632	. 1982	.2697	1.1419	1,2681	1.3606	-5.9487	-8.7579	1,0653	-1.7694	-3.2166	.8271	2,2886	-1,6963	6699	0204	25.47 -
Lift Coeffictent	1.713	1,283	1.036	606	.736	1,156	.873	. 703	619	.512	264	-, 108	.056	.212	.3b9	.5%	769.	.859	1.018	1.158	1, 139	10.157	14.877		18.800	13,176	8.140	7.660	5.481	4.567	4.210	3.264	2,450	2.022	1.457
Total Fitch Homen: (P.) - Ft. Lhe.	23952	30500	31765	32710	31138	32059	36942	38261	36909	34721	1227	8	-282	-651	-930	-1.452	-1731	-2366	-2950	-3938	-4622	3512	5261	1809	12170	17328	98:66	15455	18:25	11618	99181	20303	17632	23202	25562
362 - (q)	3,03	745	-326	-731	-1033	4233	17.87	702	305	-32	392	351	326	313	319	337	329	6.30	95.7	246	755	376	4.28	432	-1740	-2912	791	-1274	-2517	1129	3124	-2184		99-	-1365
705.0 Lift (L) - Lbs.	88 30	6578	5305	0897	3807	9362	6981	5729	5177	4154	-775	-318	165	619	1086	1590	2027	2503	2962	3.60	3338	2971	2021	5929	66 70	4381	7,09	5515	4289	6234	5747	7025	7154	5945	4291
.qme1 ee0 leada3 q* - (TOS)	NC										ž										1	2													
Hustee Speed (N _{JS5}) - NH	11760	16530	16500	16540	16500	36530	165.10	16520	16520	16520												00++0	15870	16350	OC COT	16340	00001	10340	De 240	16340	16330	16330	16330	16330	16330
Hing Flep Angle	0										0						Τ					0			_			_			_				
Reaction Control Secting (RC) + CPS	oft										Off										į	5													
lisT is anosizofi elgan eschisati seszasb - (₃ 1)	off										O.											5													
algan tavuol link sasigab - (5)		8	8	35	3	0	8	R	35	3	_											>		۶	3 7	3 9	> 5	3 ;	3	0 8	8 :	35	0	R	35
Angle of Attack	00.00										-4.14	-2.06	.03	2.11	02.	6.28	8.37	10.46	12.5	14.62	16.00	0.00													
Thumel Temp.	88		9.1		9.5		97		86		7.1					_					,	60	7	7.5	2	76	: :	100	78	982	98	9	88	69	
MER - (4H)	2504	2502	2478	24.85		2484	2487	2467	2468	3.75					_							1	2248	2463	0057	2508	0 1	06.42	0/ -7	2418	24 10	2430	5709	2398	24.22
peeds usa	.62	20,51	20.48	20.60	20.69	32.40	31.97			32.45	11.76		11.80	1.70	11.76	11.92	11.68	11.66	11.72	11.76	11.72	1.1/	1.35	1.2/	1.1/	1.33	/6.7	2.86	57.57	5.46	9.40	0.0	11.68	11./6	11.76
Preseure (q) - Lbe/sq.ft.	8				_	00		-	_		3										5	3	_			۶	3	_		3		5	S		
(V) - Kmote Tunnel Dynamic Treseure (q) - Lbe/eq.ft. (q) - Lbe/eq.ft.	80 20	_				_																_											_		
Tunnel Dynamic Preseure (q) - Lbe/sq.ft.	-										9										P	-													
Tunnel Speed (V) - Emote Tunnel Dynamic Freesure (q) - Lbe/sq.ft.	8	2	-	4	2	-	7	00	•			7	m .	4	· ·	• •		œ ·	•	0 :			۷ ,	n 4		2 4) r			• 9	1 :	= :	77 :	3	71

TABLE A-2 (Continued) AMES TEST RESULTS

			_	_	_			-		-									DES.	151			2388		100			1000					
Smithing Smithing Cp	.073	.08	.087	.089	660	. 105	9	.01	.015	9 5		910	.00	.01	55	50.	ģ :		60.	65	20.	.02	•							1		1	į
mistited gr	.170	650	031	.349	ar.	.025	670	-,002	8	910.	190	4	.067	180.	960.	=				.055	.065	8	.00	4	1	1	!!		1	1		1	4
נונו ספונונושו (ק)	.482	.356	.252	.519	.382	. 281	. 244	sic.	3	2		3	*	.361	.358	.363	376		1	.355	.374	.391	9		•	1	•	•	1 3	1			?
Velocity Betto	.207	.307	.207	.260	. 260	.261	.273	620"	.073	.073	073	.073	.071	.075	\$10.	.073	.075		H	=	=	9	= =	1		1		1	1 3	!!	2 :	•	•
in. ig.	30.00							30.00																									
נונג לה שרום מונו קרקים	2.83	7.31	-8.10	2.08	3.38	11.21	12.99	185.13	76.50	19.69	7.91	6.25	5.08	4.14	3.71	3.27	2.2	2.70	7.45	6.43	5.74	•	4.3	8	3.5	3 :			! :			•	3.5
اري دوداز ادامهر دري	.7345	.8251	.8672	.5666	.6288	.6574	.5803	1.1616	1.2478	1.1986	1 4783	1.4716	1.3887	1.2688	1.2476	1.1737	1.2060	1.1371	1.0074	.8815	9086	7668.	5029.	.8749	•	887.		7767			7470		.6328
bres Coefficient (c)	. 3668	.1618	1035	.5254	.2386	.0524	.0361	-,0387	6601	.4397	9694	1,473	1.8816	2,2163	2.6016	2.9767	3.2593	3.6733	. 5212	.6381	.7502	.8964	1.0559	1.2082	1.3959	1.5200	2		7.0	*	.6053	7410	. 9349
(c ₁)	1.606	1.183	959	1.094	.807	. 586	695.	7.166	8.409	8.660	3.180	0.053	9.562	9.185	9.665	9.752	9.585	9.951	3.883	4.121	4.319	4.349	9	4.875	5.062	5.032	3.203			10.7	2.602	3.029	3.360
19461 Pitch Heer 0.0 - Ft. Lbs.	27872	31370	32940	13985	12651	39.360	26875	3301	2887	2879	9 3	1	3182	3140	2930	2776	2982	2731	1 2	4751	5339	+99+	1467	4679	*	502,	9	6			127	2	1709
70:01 Prog. (D.) - Lbo.	2933	839	-536	4298	1948	4.28	596	-13	×	1	2 2	7.5	588	748	839	98	1100	180	387	695	557	679	*	882	1012	6511	797	9	1	£ :		*	1213
70161 Lift (L) - Lbe.	8309	6133	4342	8951	6883	*199	3847	2777	2754	2836	2830	1	2988	3100	3117	3145	3235	3259	2883	3029	3200	3325	*22	3559	3670	3837	3836	*		1987	23	380	98,
4 (TOS)	¥							¥																									
hered enting His - (SEL!)	16340	16340	16350	16350	16360	16360	16360	14330	14.320	14330	14.380	900	10.10	14.330	14330	14.330	14330	14330	94.1	14.340	14.340	14340	14.340	14.340	14.340	94	9	9	9	14330	14350	14350	14350
senzilep - (dq) stille ties forte \$40 - (08)	0				_	_	_	8	_		_	_				_	_		_	_	_		_									_	
feating Control	130	_				_	_	910		_	_	_		_					_	_	_	_	_	_			_	_					
seergab - (%) signs exembined esergab - (,1)	0							o											•														
elged towned find	0	8	33	0	2	32	3	9					_				_	_		_		_				_		_				_	
seeth to etank	0.00							-8.00	-6.00		-5.00	8 8	8 8	6.0	8.00	10.00	12.00	14.00	8 8	8.1	-2.00	8	2,00	6.0	8.	9.0	90.00	12.00	3 3	-00	8	8	8.9
4.	-		8	-				75	36	11	78	2 8	3	=			2		2 4					•					:				
	1 8						_	_	-	2	269	2 3		1692	1695	7891	1 2	1688	2 3	1691	1691	1881	1887	1687	1688	1680	8	0841	100	10.80	1683	1691	1689
ma - (p)	1	-	5:03	24.15	2417	2404	2306	1705	1703	2	2	= :	2 7				_	-	0 0		-	_			-	-	-		_				
ntosorie (p) - Lie (oq. ft. (h) - Bill (h) - Bill (h) - Bill	30 2404	74 2409	72	_	-	-	-	1.55 1705	1.31 170	1.31 16/	-	-		1.38	1.29	1.23	1.35	1.31	3.5		2.97	3.03	2.37	2.85	2.8	3.03	*	2.97	:	3.5	2.2	3.13	5.19
orona - (v) simmel bymmic probation (g) - Lio/oq. fc. heed for heed for	20.30 2404	20.74 2409	72	_	32.66	32.66 2404	-	-		1.31 16/	-	-	_	1.35	1.29	1.25	1.35	-	8		2.9	3.0	2.87	2.82	2.80	3.05	*	2.97	-	9.	5.28	3.13	5.19
steered former excessed (q) - Lito/oq.fc. hoop got her - (r)	80 20 70 2404	20.74 2409	72	32.72	32.66	-	-	1.55		1.31 16/	-	-	_	1.35	1.29	1.29	1.35	-	_	*2	5.5	3.0	2.87	2.92	8.2	3.05	**	2.97	-	-	5.28	3.13	5.19
bood found (v) - Enote (v) - Enote (v) - Enote (v) - Line/oq.ft. (v) - Line/oq.ft. MR - (v) MR - (v)	2 80 30.70 2404	20.74 2409	20.72	100 32.72	32.66	-	32.84	8 20 1.55	1.31	_	1.25	4:		_	_				_										_	9			

n

I

1

Second Second

TABLE A-2 (Continued) AMES TEST RESULTS

																										0.00								
Piech Permet Confilteioni (L)	.032	.031	.026	.025	.062	650.	.055	950.	.052	.047	170.	680.	.082	.072	990.	.063	750.	.045	.107	.087	200.	,0 %	ă	590	070	.039	196	.052	150"	,052	050	.052	**0	101
Jen Continues (40)	.175	.190	.218	.249	.172	.185	.208	162.	.272	.311	74.	.286	.289	.312	384	.384	617	199.	417	.437	.463	764.	- 080	070	770"-	018	500.	870-	-,029	008	210	660.	690.	190
נונו ספונונוסו קי)	.579	.60	.632	3	.337	685	969.	377.	8	.932	.893	.359	.579	.789	1.030	1.222	1.250	1.248	.705	1.067	1.604	1.703	345	302	*	.377	.423	.260	.326	.380	.455	.514	.503	8
Velocity Batto	.150	.148	. 149	.148	.219	.222	.223	.221	.222	.225	.221	.291	.290	. 291	. 292	.295	.293	.290	.371	.373	.373	.374	110	108	110	.110	110	.147	.147	.146	.147	.146	.148	14.7
incometer Ja. dg.	30.00																						30.00											
נונו זה שופן שונו הקלא)	3.32	3.17	2.89	2.41	1.96	2.63	3.05	3.35	3.30	2.99	2.57	1.25	2.00	2.52	3.8	3.17	2.98	2.79	1.69	2.44	3.03	3.4	-2.97	2.4	-7.86	-21.40	85.65	-5.41	-11.03	-50.85	26.36	13.26	10.36	:
Pitch Henont Coolliciont (C2)	1909.	5409	.5127	07.79	. 5590	.5142	6174.	0965	4184	.3992	.3614	.4515	.4192	.3659	.3421	3116.	.2867	3062	. 3339	.2657	.2285	. 1665	1.6044	1.6363	1.4366	1.3830	1.4455	1.0215	1.0113	1.0457	0266	1.0396	1.9401	
10013131000 GO3	1.1135	1.2441	1.4097	1.6000	. 5129	. 5392	. 5993	.6779	.7893	6779.	1.0181	.4822	.4902	. 5261	. \$745	.6314	.6977	.7622	.4342	.4462	4734	808.	-1.0478	8556	5211	2095	9750.	3176	1955	0516	.1144	.2587	.3176	*****
(כ ⁵) דונו כייונויושו	3.697	3.953	6.083	3.868	1.008	1.423	1.632	2.275	2.610	2.632	2.618	99.	.983	1.329	1.727	2.006	2.083	2.128	4.	1.090	1.435	1.738	3.121	3.674	4.098	****	4.960	1.718	2.158	2.626	3.016	3.432	3.291	
70001 Pitch Names 0Q - Ft. 1be.	9165	5758	4821	1003	11948	9111	10277	10603	8633	1898	7547	17198	15908	13940	13083	11929	10973	8760	12830	10160	8738	6336	8736	8629	774.3	74.54	1871	10000	9789	9820	2096	88	18992	91140
70101 Prog. (P.) - Lbo.	1891	1608	1808	3060	1495	1596	1780	9261	2297	2603	5882	5002	2537	2733	28.86	3296	3642	3948	2275	2327	5992	2615	-778	919	-383	151-	3	4	-258	9	3	337	4	
100 - Line.	4917	5109	5236	7.980	5838	4211	2445	6632	7584	7803	7455	3142	3385	6903	2006	69901	10875	11034	3846	3684	7485	\$10	2317	2845	2100	3297	3683	2294	2	3407	1	64.70	*	****
. Total Con Temp. 7" - (TOB)	¥						_																¥											
HER - (SEL ^K)	14350	14330	14,350	14.360	14380	14370	14370	14.380	14380	14380	14380	14400	14400	14400	14400	14400	14400	14400	12730	12700	12700	12700	14440	14430	14430	14430	14430	14430	14.30	14430	14430	14430	144.80	14430
state of the state	8																						я											
Section Control Section 20 - (36)	0,61																						330											
incidence Angle (1,) - degrees	0																						0											
on the lease of the line of the lease of line leaves leaves line leaves leaves leaves line leaves leav	0	-			_								_	_						_	_		2											
santh to signal contact to the santact of the santa	8.00	10.00	12.00	14.00	.8	4.00	90.	4.00	8.00	30.00	12.00	9.00	9,4	8	4.00	8.00	10.00	12.00	4.00	8	6.0	8.8	-8.00	4.00	90.	4.00	8.00	-8.90	1.00	8	6.00	8.8	10.00	12.00
Tuest Temp.	8.7				98					87		2											*	*	2	87	82	87	87		83		83	83
nes - (-in)	1690	1686	1671	1868	1703	1689	1695	1695	7991	16.76	1677	1717	17.5	1712	1713	1691	1703	1720	1345	1335	1336	1329	11111	1111	1708	1111	1707	1718	1709	1309	17.10	1707	1710	16.99
onesoff onesoff (g) - Lho/eq.ft.	5.35	5.17	5.13	5.15	11.66	11.84	11.88	11.66	11.5	11.86	11.39	20.78	20,70	20.76	20.00	20.88	20.88	20.72	20.86	30.86	20.84	20.76	2.97	3.88	*	2.8	2.97	7.	5.28	5.19	5.28	5.21	*	5.24
ores - (v)	3	_		_	8		_	_				8			_						_	_	. 8					3						
.46 446	-		-	_	_	-		_	_	_	_	_	_	_				_	_	_		-:	;-		_		_							
at salet for les	2	я	31	22	2	4	2	*	32	2	2	3	;	7	3	;	•	:	7	;	;	9 :	-	*	•	•	*				•	9	=	12
Point No Consecutive	_	_	3	1	-	:	2	_	_	8	_	-	_	_	_	_	_	_	_	_	-	3 9		_	_	_	_	_	_	_		22	107	_

TABLE A-2 (Continued) AMES TEST RESULTS

Pitch Numbe Confiltant Cp)	.117	710.	920.	\$10.	870.	170.	0.00	.057	.00				.074	*	.074	9	.077		2							•						
100 Coolisciant	.088	-,038	029	014	.012	.021	960.	950	980.	1	. 9	075	.102	3	31.	.182	. 240		2							1						
מר) דונו סייונורושו	185	671.	.270	90%	. 522	280	919	.721	•17.		***	1 5	346	.933	4.6.	1.016	1.036		1							1						
Velocity Batto	.146	.217	.216	.217	.217	.217	.216	.219	. 216	982	288	288	286	.285	.283	.281	.286		2							1						
le. M.	30.00																		30.03							30.03					_	_
110 perd felt.	8.13	-3.89	-9.28	-29.5%	43.20	27.30	17.77	12.78	3.5	2.0	1	7.04	7.32	6.60	5.98	5.30	4.31		8:	3.01	: :	*	5.00	-		*	3.57	5.67	9.9	9.9	5.20	4.0
Pitch Mosont Cooliticion (Q)	2.4327	. 7015	.7019	6089	.7095	23.	6000	.5148	908	5000	1767	1	388	32.	.3954	.4350	9909		.082£	**00**	1136	1280	.1830	.1573	.2885	***0	- 1912	- 1954		2704	2880	
(c)	9505	1156	0890	0421	.0367	.0653	8011.	6291	. 2653	. 3609	2000	***	1782	.2493	.2957	.3481	.4195		. 1858	.1302	1002	.2133	. 2099	.2825	.3189	1387	1366	1469	.1683	.1926	1862.	.,
(c ₁)	1.291	155	.827	1.230	1.584	1.796	1.969	2.147	2 2	2.039		1	9	1.647	1.769	1.845	1.61		ar.	.516		1.038	1,051	1.097	1.008	130			1.011	1.157	1.237	1.267
7010 Fitch Homes (C.) - Ft. Lbo.	53369	15124	30.00	5095	15321	3885	13680	11286	13389	991	10061		14787	13357	15004	6119	15251		979	3	1077	-1777	2285	1981	3385	-126	-302	7	7	*	4	-
.ed Ç0)	-	- 340	-360	-123	108	161	-	_	90,	1033	; ;	2 :	: 3	1299	1530	1792	2155		187	227	117	1	300	11,	597	3	*	3	25		72	87
.ed - (4)	1116+	1325	2415	1597	9995	5254	5741	8	6363	2882	2 3	0747	6363	8583	9134	8.58	9303		7.	787	1991	1604	1610	1662	1515	2	9	27.3	331	379	9	415
4 (108)	¥																		¥							•	_					
Mag - (₂₈₂ 1)	34430	14450	14450	14450	14450	14450	14450	14450	14440	05++1	14470	14470	14470	14470	14470	14470	14230					_				•						
seergeb - (gd)	9	_																	2							9	1					
Energies Control	1 4				_	-		-							_				330							****						
essation - (*1)	0																		0							4						
at the reverse state (%) - degrees	8	35															_		8							8	-	_			_	
tograd to signif	8	-8.00	4.00	8	4,00	9.00	8.00	10.00	12.00	14.00	-8.00	7.00	8 8	8 8	10.00	12.00	14.00		-3.88	.23	3	! :	10.56	12.58	17.2		1 2	! !	1 3	13	10.66	12.68
	8		-				-				9 9								3							:	1					
Anne Speed (N _p) - Sim Gard Tenner	16.83	1726	1728	1722	17.18	1726	1728	1726	1771				(2/1				1731		0							-						
simmed learned eleaseri .11.pe/edd - (p)	1	11.76	11.68	11.70	11.78	11.70	11.66	11.8	11.55	11.45	20.74	20.76	2.8	2 2	26.70	30.59	20.55	BRATION	6.13	6.13	6.18	9 :	6.13	6.96	10.4	BRATION	1	1 :	: :	1 :	1 3	1
	9	3	1	-							2							-	3							-						
e1003 - (V)			-	-	-	-	-	_	-	-	_		-	-	-	_		3	2							3 :	:					
beedd feather erend - (7)																																
bonge learner eronia - (,V)		1 1	1 2	1 5		2	2	2	17	77	2	4	2	4 :	. 2	2	8	2	-	**					•				_	-	• •	_

1

I

100 mm

U

II

-

TABLE A-2 (Continued) AMES TEST RESULTS

### 1979 1979	Sentitions Sentitions (p)	1	1																											*							
Column C	(ho	-	•																											¥							
10 10 10 10 10 10 10 10	מל) דונו סיינורוטיו	1				-																								NC.							
Column C	Velocity Detio	1	5																											NC.							
### 12 12 12 12 12 13 13 13	in. Sp.		20.03																											2						_	
### CALL PATE PATE	100 port of 1111 Cp/p)	. 0.0	3.0	. 57	3.20	5.23	5.53	5.90	5.97	5.01	œ.,	.38	3.10	2.00	5.45	5.69	5.79	5.48	4.23	57.	3.01	2.00	\$.3	5.74	5.79	3.		:		-	·	1	-	10.9	18.90	172.5	21.7
### 1	Jee 13111003			1650	0905	1657	1928	-,2161	3308	3348	2903	0296	1437	1362	1641	1866	2208	2379	2693	0303	0932	1407	1629	1850	2014	2209		01/2	-	. 7083	. 1423	1877	0273	.0589	1936	.1100	5450.
1	Jeel 500(11clent (42)	1	3840	.1329	1364	1585	.1812	3018	.2315	.2935	.3529	. 1426	.1403	.1583	.180	.2072	.2335	.2745	.3381	9591	1051	.1604	.1819	.2037	.2337	.2756		. 3641		2646	-1.0780	0369	.9756	1.8772	1184	0488	8909
	(C)	1	1.216	920.	164.	0.8	1.004	1.192	1.383	1.472	1.520	.055	436	.792	**	1.179	1.353	1.505	1.430	.063	.423	.802	.982	1.170	1.355	1.491		1.510		20.957	18.323	18.403	21.106	20.598	8.098	8.426	8.866
1940 1940	.ed . 71 . Co	İ	1160	-452	-791	3	1671	1981	1662	2925	2453	119-	2921	1857	3080	-3547	4230	4521	-5164	-1115	-3251	-4784	28.95	-6202	6623	-7259	-8237	-9086		1649	88	9	7	137	-1068	119	295
1940 1940		+	-	161	_	-	÷	248	<u></u>	-	-	417	909	-	<u> </u>		-	_	-	<u></u>	_	508	8	888	1111	1315	2	1758		÷	-380	9	8	286	362	-37	301
	رب - نه.	T	386	9	575	1092	1320	1567	1819	1313	1950	191	1283	2316	2859	185	110*	8775	4168	327	2204	4185	3116	56.03	9869	7689	7952	1		1599	\$5.50	6487	08.50	6540	1	6383	1959
		_	4	_	_																									¥							
100 100	ma - (cat in)	T	0		_	_																					•			16520	16530	16510	16530	16500	16510	16380	14 180
1940	artius deta Buth		R															_					_	_			_		_	_		_		_	_		
Some	242 - (38)		110																_		_			_	_					3							
2	prique equeptout	8 5	0																											21							
1940	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		8	_	_	_	_	_																						•	_	7				-	
2	eseaffep - (>1	•		3.96	.23	1	3	1	10.74	12.78	16.61	-3.95	.23	4.42	6.32	8.63	10.72	12.80	14.76	.3.97	2.	4.4	6.32	8.62	10.72	12.79	•	15.80		-2.00	-5.00	-5.8	-2.00	8.	-5.00	-5.00	8
1940		:	_	_	_		_	_		_	3																			2	78		=	82	1	8	1
1 1040	wa - Cu	,	_			_											Ī		10.00												2535	25.34	2528	2528	2560	2453	1
- 'OR 1944	tartherne - (b)		1.27	5.83	5.26	1 1			5.21	5.13	1.70	1.78	1.70	1.62	1.82	1.86	1.82	1.66	98.0	98.0	99.0	.8.0	19.0	59.00	10.63	16.00	16.00	20.51	2	1.27	1.41	1.41	1.23	1.27	3.01	3.03	1
	stand front	,	-	_	_	_	_	_	_	-	_	_	_	-	_	-			-			-	-					-	3	8					8		
	1000	-	_	_	_	-	-	-	_	_		_	_	_	-	_	_	-	-	_	-	-	-	-	-	-		-	3	2	_			-	-		
- of mid					-	_	_	-	_	-	-	-	_	-	-	-			-	-		-				=	2	-			~	-	-			-	
	of Jale		-	_	_	_	_	_	_				-	-		-		-	- 4	-	-	0	-	7	-	-	-	-	-	-	-	nation in	-	-		-	-

TABLE A-2 (Continued) AMES TEST RESULTS

Pitch Mason Confilcion (p)	NC																																•	
(4)	NC																																1	
ري مي	NC	_	_	-		-	_			_																							1	
1111 OPPLIES		_	_			_					_			_																			1	
Velocity Batio	NG.		_	_	_	_	_	_	_	_			_				_	_	_														8	
der in.	29.88					_		_	_	_	_	_	_		_				_					-	-	9	*	-	5	•	1	_	8	=
1108 tord of 1111 C-_0	8.49	-9.01	4.19	-54.80	-78,25	-15.40	18.0	-84.0	24.6	8.6	*	7.8		15.2	_	65.5	17.2	:		•	?				-	•	•	7	-	-	9			
Pitch Homent Coefficient (C)	.3229	6119.	2.5900	.2775	.3183	.1241	,0182	.0925	.1244	3206	1031	-5.5082	3459	0464	1339	.0302	1415	.2368	0.0	. 1636	.2173	9880.		1000	96 00	.1264	0366	4550.	1111	0478	0053		.0325	_
breg Coefficient	1,0936	*.8864	-1.9887	1433	-, 1016	8682	.2795	.,0588	72137	.5718	6608	. 5663	6608	.2204	.3284	1960	.1452	. 2897	. 2603	2375	4859	. 1801	9191	9070	0580	1929	.1585	0893	0788	.1221	.0588		.1635	
Lift Coefficient (c _L)	9.296	7.995	8.346	7.855	7.953	13.373	5.049	4.943	5.270	5.620	5.049	4.473	7.935	3.366	2.566	2.235	2.505	2.887	2.401	2.011	1.632	3.007	1.736	2	285	1.872	1.387	1.048	1.533	1.048	_	_	870.	
700.01 Pitch Heese 0Q - Ft. Lbo.	171	94490	15147	1502	1792	9	174	889	1195	3080	-990	-53923	1877	- 301	-2866	3	9000	2000	-727	808	_		01 -1-	-3298	1 3	100	-1412	2108	3285	-285	-	_	_	-9.
701.01 Pros.	793	-667	-1586	-110	- 78	-3.82	*	-11	280	749	999	756	-489	\$\$	828	90	4:1	9	760	_	·	_	_	1219	_	_		34	-315	818	485			670
1010 1 100 (L) - 100	6738	6016	6656	6029	6104	5884	6576	6475	9069	7362	9199	5972	5872	6933	7494	6229	7364	2 2	7011	5817	4673	1619	0869	7363	2	4707	7255	253	6127	7006	74.80		229	1243
** - (TOR)	38																	_												_			1	
nts - (1 ²² 1) - ste poods outling	16370	16370	16.380	16.380	16.380	16370	16360	16360	16380	16370	16370	16380	16370	16370	16370	16300	16310	16300	16300	16290	16290	16300	16310	16.300	1	16410	16400	16400	164 10	16410	16410		•	_
esastes - (44) at they deta their sub- Chi	я													_	_	_		_	_	_	_			_			_	_	_	_	_		8	
Reaction Control Setting (RC) - CPS	10.2							165								155		_					_							_		_	9	
(12) - degrees	17			9	1 1	23										R								1	9						1		•	
stank tevnod find		, 9	1 8	-	_	-	,	- 40			0	8	100			17			9	22	12			2		-	1	:	1	-	9	1	8	-
43033A To elgrad esergeb - (54)	1 9		8 8		2 00		-5.00	-5.00	-2.00	2.00	-5.00	-5.00	-5.00	-5.00	-5.00	-5.00	-2.00	2.00	-5.00	-5.00	-5.00	.5.8	.5.00	-5.00	.5.00	8.7			-5.00	.5.00	8		.5.8	
	1	_		-	_	-	. 26	_	-	_	_	8	*	83		2			:			901	101							102			2	
hend in a seed i	1	_			34.23	34.36	3422	3411	115	24.14	2410	3404	2403	2401	2403	2354	2357	2357	5359	2345	2376	2840	2380	2362	1867	1		1	23.62	90%	1 7	L	•	
simmed formal succession .33.pe/edd - (p)	1.	-	_	-	-	-	_	-	-	_	-	_	2.8	47.8	11.68	11.74	11.76	11.68	11.66	11.57	11.45	8.24	10.01	20.34	2.7	8.3		2.0		17.			6 111.70	11.66
9300g - (A)	11	2	_	-	_	_	9	-	-	_	_		_	8	-	_					-	2	-							2 8		88	2	1
bood foom	4	-		-	-	-		_	-	-	_	-	-	-	-	-	_		_	_													3 :	
		_	9	-	ne r	2	1 :	2 5	9 3			9	17	: 2	2	1	2	2	22	2	2	2	H	2	2	2	2	2	: :	. :		9 :	: -	
of 1010																									-	_	_					-	_	

Silver S

0

A

TABLE A-2 (Continued) AMES TEST RESULTS

Pites Numes Confileioni (p)	2					¥					610.	.018	910.	*10.	8	510.	910	.037	•	120	3	3	90	8	•	5	8	4	1	9	ŧ	ş	Ę	
Picch Person	2					¥					500	.047	**	670.	690.	160.	.028	063	•	4		110	110	*00"-	.80	.07	110	.312	597	170.	*	.029	.020	
d)	1			-		¥				-	.320	321	.327	.329	335	330	380	.273	•	a :	4 8		.332	E.	. s	.362	.362	.576	3	ă.	.335		74.	
Velocity Batio	2		_			¥					170.	.073	.073	.072	.073	*50.	670	.073	.078	920	60.	1	971	.147	.229	122	.226	.83	582	78.	*	*	ñ	
Jo. of	00°0					30.04					30.02								罪人															
נילים) מים מים		68.4	5.22	5.34	5.11	3					7.15	6.79	6.74	6.70	6.89	10.22	11.51	4.31	•	7.03	19.4	1.52	-31.74	-2.67	2.40	4.70	-23.23	1.85	2.5	4.2	8.0	6.14	3.	
Titch Messel Cooliticioni (C)	0555	+180"-	9660*-	1206	1439	1					1.6065	1.4966	1,3254	1.1120	0849	2.1324	2.8481	3.0218	•	1.4913	2.3162	1007.5	1.1646	1.2949	1199	.7522	1691.	1106.	.5480	.5184	4774.	1124.	.3786	
10013111000 Brd (2)	.1795	9961	.2182	.2481	.2855	1					1.2550	1.2741	1.3007	1.3353	1.3037	1.5118	1.6724	-1.7065	•	1.1136	-1.5084	-3.1208	- 0682	6176	.5679	.2126	+160	6784.	.2614	suu.	.0764	8670	1140.	
(C ₁)	377.	.962	1.141	1.326	1.459	1					8.974	8.661	8.776	8.959	8.993	13.465	19.250	7.370	162.6	7.844	7.259		1	1.528	1.366	1.000	330	.902	.651	174.	.388	. 306	.23	
704 - Pt. 240.	-865	1361-	-1637	-2005	-2443	0889	1679	7	1601	6733	3858	3704	3280	2711	1604	1808	16.93	7700	8.8	8038	12622	18908	1	12562	14180	16161	16091	19202	2	19674	18246	16245	111	_
edi Çili	_	_	_	999	366	611.	.1774	-545	-354	-1228	;	9,	439	;	9	9	188	-583	-1212	88	-1130	-2442		-757	1661	629	-92	2513	1367	577	388	256	3	
Total Life (L) - Libe.	2258	2803	3288	3823	4206	8789	6572	***	9169	3	5636	2923	2962	2979	3035	0165	7117	1361	1870	5765	3380	1100		20.26	***	1662	2138	4653	701	**	2024	15	=	
4" - (728)	1					3611	1200	1305	1210	1140	¥																							
Has - (cat.)	0					16460	16460	16460	16430	16310	14260	14.260	14.270	14270	14276	15790	16350	14230	811	16170	9191	9 1	1	1 2	917	14.300	9171	14.200	14210	14.200	14170	14170	14150	
stan ride for beile series	я					8					•																		_		_			
Secrifon Control Secrifon NO - CO	330					900					off						-5																_	
0001800 - (31)	٥					0			-		0	,		77	:	•	i ve																	
other towned sind	8					91	2	•	0	2	0							8	32	0	R	2	9 1	2 2		8	1 2	0	8	35	3	3	3	
sanita to signal contracts	T:	6.31	8.61	10.71	12.78	0.00																												
- quet lease!	1 3					27	:		3	25	67			2	5	2	22	2	11	18	2	=	7					-						
Ma - CH	°	,				3800	36.20	98.80	26.30	2580	1720	1736	1716	1712	1711	2240	2501	1686	1715	2397	2389	-	_		-		1	_	-	_	_	-	3	.,
states bycasic states (p) - Lho/oq. (c.	=	11.66				*	9 9	. 0	9	.08	1.31	1.35	1.35	1.33	1.35	1.37	1.27	1.39	3	3.	2.97	-	_		_	-	1	-	-	8.0	2	20.72	8	
		_		-			>				8	1								2			3		1	3		2	_					
erous - (v)	1	9																												-		-		
tones from (7) - fants		2	_	_	_	2	1	_		_	*	1	_								=								_	_			_	3

TABLE A-2 (Continued) AMES TEST RESULTS

Sections Sections (II)		020	610	610.	910.	910	.017	.017	710.	710.	.031	0.00	033	160.	.029	0.0	.028	.028	.026	.045	.045	.045	90	.040	*	.065	270.	.075	.072	.075	.075	.078	.074	4	3
Dec Coefficient		.035	750	.053	.065	870.	660	.113	.122	.139	.039	.052	080	. 105	911.	.128	.142	. 163	. 182	080	.092	911.	1.	2/17	.185	215	.179	161	.212	762.	.278	316.	¥.	sœ.	100
מל) הוני סיינוניויייי		.325	.333	.329	333	335	. 347	.361	.357	.359	.311	345	.378	907	.403	609	.422	*	.462	316.	380	**	115.	. 566	. *	1578	.328	.473	.617	.742	".	. 818	3	599.	3.00
Velocity Betto	.072	.071	.072	.072	.072	.072	.073	.073	.073	.073	::	=	=	.112	411.	11.	.1112	611	.112	671.	97	.150	951	.150	97	151.	.222	223	.224	22.	.225	.226	.228	362	ž
telemeter In. ig.	30.06																																		
1111 To bred the Co. (-4/4)	-1.69	9.36	7.53	6.17	5.12	4.29	3.49	3.14	2.91	2.58	8.06	6.65	4.70	3.87	3.47	3.19	2.97	2.78	2.34	3.97	4.21	3.89	3.5	3.28	3.07	2.69	1.83	2.47	2.91	3.12	3.15	2.92	2.73		97 .
Pitch beand Coefficient (Q)	27.8696	1.7218	1.6108	1.6050	1.5072	1,4894	1.3497	1.3400	1.3844	1.3776	1.0389	1.0359	1.1470	1.0605	1.0050	1.0316	. 9800	. 9603	.8953	.8724	1098	.8663	.9074	.8139	1.2651	1.2220	.6250	1819.	.6165	6505	6969.	.6527	.6147	sus.	****
(c)	-2.6299	.9886	1.2096	1,4894	1.7792	2.1376	2.6646	3.0299	3.2252	3,7248	.4321	. 5959	.9205	1.1850	1.3290	1.4671	1.6287	1.8548	2.0699	1915.	. 5912	.7466	5005	1.0956	1.1685	1.3616	.5154	1645	.6024	1089	.7849	.8759	.9465	6565	5365
(c_t)	* **	9.155	9.117	. 67 '6	9.120	9.17	9.31	9.525	9.411	9,638	3.485	3.964	4.334	4.586	4.623	4.691	4.843	3.166	5.264	2.051	2.489	2.910	3.217	3.598	3.590	3.612	**	1.357	1.753	2.126	2.476	1.558	2.587	616.	1 364
70001 Pitch No.	64887	3882	3691	9190	2,2	2	31.42	3120	3223	3157	3698	5545	9170	5716	\$696	5806	5515	\$140	4793	8000	8215	8211	3666	1774	12083	11582	13383	9836	13200	13882	18881	53651	6111	11.4	6578
.edi - (_g0)	-835	908	378	458	556	899	978	962	10.24	1164	323	4.35	672	871	10.20	1126	1250	1354	11811	667	770	\$65	1182	14.27	1522	1736	505	1598	1759	1979	2284	575	8522	5963	9714
70201 L1ft (L) - Lbo.	1414	2846	2849	2828	2850	2868	2958	30.24	2988	3012	2605	2894	3164	3371	3548	3600	37.17	3771	3843	2651	324.2	3761	8:	1894	9/94	9995	2756	39.8	81118	6138	7204	3	1542	4738	****
4 (T28)	3													_	_	_		_					_									_		_	
Mar - (1887).	14230	14240	14250	14280	14240	14240	14240	14.280	14240	14240	14260	14250	14,260	14250	14240	14250	14260	14250	14230	14230	14.270	00741	09741	14270	0/74	14270	067.5	14.290	14.280	14280	14290	14290	06290	900	2 min
stary dela gain	9	_				_	_	_	_		_		-		-	_	_		_	_	-	_	_	_	_					_		-	_		-
Section Control Section (95) - CM	330						-	_	_			_	-		_			_			_		_	_		_	_								-
emergen - (1)	0							_										_									_	_							-
son several stad contact + (%) lief lessestros	0		-		-	_	_	_	_	-		_	-	-	_	_	_	_	_	-	-	_	-	_	_	_	-	_	-		_		_		-
43073A To signA esergeb - (>4)	4.00	-2,00	99.	2,00	6.00	6.00	8,30	10.00	12.00	77.00	-8.00	8.1	8	4.00	6.00	8.00	10.00	12.00	14.30	9.00	8 1	8 .		8.0		00.7	9.6	8.4	8	8.9	8.8	0.00	12.00	90.4	00
- dead Taxasi	7.6	2	8	17	82	83	-	-	ı	20	8	îë.	-	3	-	-	-		2	_	-	-	_	_		-	:	-	7		_	-	-	2	-
ws - (h)	16.80	16.85	1586	1681	1681	1678	1678	1673	1671	1674	1672	0291	1674	8991	1672	6991	1672	6991	2997	0001	000	100		700		2 :		876	2 4	676	999	*	651	**	1 989
.31.po/edd - (p)	1.27	1.2	1.25	1.23	1.23	-	-	-	-	-	-	-	-	-	-	-	3.07	-	-			-	_	-				5	97	3.		3	99.11	20.72	1.65
stead - (V)	2	-	_	-	-	-	-	-	-	-	2	-	_	-	-	-	-	-		7	-	_	_	_	_	-	2	-	-	-	-	-	_	2	2
bond found	91	-	-	-	-	-	-	-	-		-			_	-	_		_		_	_	_	-	_	_	_	_	_	_	_	_			•	_
कर गय	_	74	-		0		-	10		9	=	2	7	4	2	9		-	2 5	-			_	-	_	_	_	_	-	_	_	_	_	_	_
Point No	_	-			_	_			_	-	-	-	-	-	-	_	-	-	_	-	-		-	-	-	-	-	2	-	-	-	2 :	-	4	-
Former No	1	=	7	31	2	35	35	22	32	2	326	35	35	2	8	2	332	33	4 :	3 3		1		9	13		1	2	:	î	1	3 !	1	:	3

TABLE A-2 (Continued)

Secret Assets Continued Co	101.	960	.095	.082		2										1																		
Prog Coefficient	.351	.389	.427	454.		1										1																		
Life Geofficions	1,002	1.206	1.257	1.243		2																												
Velocity Batio (v, /v _{tio})	.295	_		_		2										,				,														
Spreador Jo. Sp.	30.06					30.06										*							9	-	10	1	1	*	•	•	=	2	5.55	"
11(1 % bred bot) (4/4)	2.84	3.01	2.94	2.76		1												_							_	3.04		_						
Pitch Hemot Conflictont (C)	1667	.4724	.4653	6207		1										-		7				010	10.9	6530	.4556	0524	. 1027	.2102	.3626	. 5085	135	236.	***	5367
30013131000 gord (c)	.5724	.6300	.6928	7414		1											181	154	. 1600	.1695				1975	_		.1596	.1624	1991	.1628	.1580	191.	. 1626	1616
(¹ 2)	1.637	1.930	2.041	. 0.11		1				V							194.	ŝ	3.	585				3	619	474.	.422	¥.	100	.292	.492	ics.	.57	99.
704 - Pt. 100.	18960	17997	176.00			***			4274		657	1274	1980	700	3915	4577	1117	-1186	-2265	-37.7	7	*		1	4234	2	1069	100	3525	1167	-1214	1	-367	-306
Total breg (D.) - Lbe.	2962	3221	1080		76.00	0		7	•	1	7		7		7	7	8	8:	å	121		_		1 2			902		33	=	_	_	â	_
7016) Lift (L) - Lbe.	8481	9475	10.649	1000	10044	:	: :	: 2	1	1 891	.33	*	.11	-121	-155	-181	419	3	215	791	831	3	1	8	100	626	355	Ŕ	5	380	1	**	757	802
4 (738)																	1																	
HER - (SEE IS)	14.800	2000	-	006.51	14.300	•	0										•												_					
other dell brid	1					,	R										2		_								_		_					
Section Control Section (NC) - CPS	13	:				-	7	68		3 9	0+65	28	110	136	153	165	•										0-75	91	3	163	P-75	110	3	1
002250p - (² 1)	Ι.	,					0								• •					2	4	2	9	2 :										
stand towned 1122 (%) - (%)	1	9					8										8		_	_	_					_	_		_				_	_
seeth to elgal		4.00	8.00	10.00	12.00		0.00										57.	.23	2.	.32	3.	4	*	7	1			1 7	3.	*	.26	. 28	-	-
	1	2	_	_	_	_	0										78				11					*							2	
on Speed (N) - GM (N)		200	1670	1682	1681		0										0																	
-31.po/edd - (p)		20.72	20.78	20.67	20.00	BRATION	_										5.28	_	3.2	5.32	5.8	5.32	8.8	3.26					5.21	5.21	5.34	5.2	3.24	*
Simond Inner	-	~				8	0										3			0.00														
oreal - (V	!	8				-																												
of an income of the control of the c	-	2	_	-	_	3	77		_	_							2								_	_			_	_			_	
bood loam eleal - (V	1	2	32	2		3	_	*	•						. 3	=	_	_	•	•	•	•	1	•	•	9 :	-	1 :	1 2	. :	1 1	1 2	2	

Table A-2 (Continued) AMES TEST RESULTS

Seeltitelent (p)	5																										2					
Pitch Manne	5	-	-					_	-				-														1					
Seed Confficient				_																							_					
נונו ספונונוסו (ק)	¥																										2					
Velocity Betto	*																										2					
Spreaster In. Np.	90.06																										90.00					
116 To bree 601	3.86	3.63	3.9	4.03	4.1	6.13	6.3	6.3	2.5	2.74	2.71	2.23	-1.41	. 59	2.81	2.90	3.14	3.39	3.38	3.39	3.11	4.51	5.25	5.14	2 :		2.81	3.53	3.36	3.71		1.61
Pitch Person Cooliticioni (Q)	6644	1616	7369	8803	9750	06.74.	3640	. 2600	. 1052	1931	-,2363	1725	0050	0900	0228		-, 2385	4745	5624	6244	8909*-	0850	;	1267		40.	0215	1482	2281		4927	4629
breg Coefficient	.1653	.1633	. 1695	.1794	.1851	.1640	.1650	1700	.1752	.2037	.2099	2408	.1768	.1579	.1572	1596	. 1633	.1774	.1871	. 1945	.21112	.1773	.2184	.2528	2887	į	.1357	.1413	.1466	0151.	.1512	1306
(c,)	6 9.	. 593	76	.732	92.	œ.	à.	3	.451	. 560	. 569	.539	249	160	34.	.472	4 5	9.	.634	999.	.657		1.149		7.0	2	.382	664.	684.	*	š.	-
70001 Pitch Name 0.0 - 71. Lhs.		-4874	-7032	-8+47	-9171	9657-	3562	2568	100	-1750	-2164	-1542	111	123	ŝ.	-2643	-4939	****	11860	13163	12613	669-	-1770	-2188		2130	.35	-358	-533	2	-1028	-106.
.ed Ç0)	214	212	219	232	234	214	214	221	227	36. 28	27.1	808	526	3,	436	463	472	210	539	888	602	205	602	697	98/	3	3	;	;	5	•	3
100 - 100 (L) - 100	847	786	989	973	888	4	1	7.87	65	733	745	669	-744	276	1299	1389	1508	1765	1853	1936	1909	2343	3354	3822	7	****	11	176	3	178	*	
- gent con templat T - (Toll)	1																										1					
MER - (SRE'S) poods onling	0																										0					
beent enters			_	-	-												_	_	_		_	-	_	_		1000					130	8
essation - (FQ)	2																			_		_	_		_		8	_				_
generation Control Setting Place Angle (84) - CPS Setting Setting Setting	191	156	158	156	158	0+160		_	_	_	_	_	off	_	_	_	_	_	_	_			_		_		off 38	_	_			_
state of the state	4 D-164				_	5	,	10	2 :	9 8	22	4		_	_		• :	: 2	91	2	22	0	_				0 044	•		n	2	18
A degrees Control for Control	4 D-164	0			_	5	-		2 :	9 8	22	4		_			• ;	: 2	_	_	22	0	_		_		90 off					_
101 1200 1700 1700 1700 1700 1700 1700 1	491-0 + 08 X	٥	٠		97	5		_	_	2 2	_	_	0	-3.95	_	_		9 27	_			0 977	19.61	69.01	12.70	9.	90 off			22		
A. Joseph C. (4/4) Jo	491-0 + 08 X	٥	٠	71	97	0		_	_	_	8	_	0	-3.95	_	_		_	_				9.61	69.01	12.76	•	90 off					
year joint learning of the control o	75 th 80 th 164	٥	٠	71	97	-0 0 65.		_	_	ą s	8	_	0	-3.95	_	_		_	_		33		9.61	69.01	12.76	2	. 8 0 off					
Mee Good Mee Go	8 0 75 4 90 4 D-164	.32 0	.36	71	27	-D 0 52 0 0-	. 59	19-	A.	ą s	8	4.	-8.13 0	_	72.	zi.		_	_		33		11.68	11.76	11.70		0 72 .30 90 0 off	.23	4:		ة	15.
The bases of the property of t	5. 30 0 4 00 44 0 10-164	5,30	.36	51 66.	27	-D 0 52 0 0-	. 59	19-	A.	ç, g	8	4.	-8.13 0	_	_	zi.		_	_		33		11.68	11.76	12.70		0 8 8. 57 0	.23	4:	ą:	ة	15.
beed found 2 Easter 2 Particle 3 Particle 4 Particle 3 Particle 4 Particle 4 Particle 5 Partic	191-0 1 08 44, 87 0 06.5 GB	5,30	.36	51 66.	27	-D 0 52 0 0-	. 59	19-	A.	ç, g	8	4.	11.94	_	72.	zi.		_	_		33		11.68	11.76	12.70	IBRATION	30 1.37 0 72 .38 30 0 cer	.23	4:	ą:	ة	15.
The bases of the property of t	+91-00 + 000 ex. 57 0 00.48 0a 81 0	5.30	5.36 6	5,32 .39 12	27. 24.	5,24 74 ,57 0 0**	5.24	5.24	# · · · · · · · · · · · · · · · · · · ·	2. t. t.	8.	5.19	60 11.94	11.76	11.74	11.76	11.74	11.72	11.76	11.74	11.62 72 .35	11.72	11.68	11.76	411	IBRATION	13 20 1.37 0 72 .30 30 0 041	1.41	4:	u	r. a	1.3

N

0

0

N

STREET, STREET

13

TABLE A-2 (Continued) AMES TEST RESULTS

Pitch House Geofficioni (II)	1				NC		.028	.029	.025	.023	.023	.023	.023	.022	NC	.037	.03	.037	.035	.032	.032	.032	.032	ž		640		90	.059	.057	.073	.0.	.07	×
Imisilion (40)	2				NC		000	1050	920.	. 103	611.	.135	.146	.161	3K	.072	560.	sur.	91.	*1.	171.	.186	.217	NC		175		508	.240	.255	275	310	385.	×
נוני ספונונוסיי קי)	N.				NC		.312	.355	.385	11.	664.	1	**	.459	30	.342	90%	454.	.511	.530	38.	.583	.622	NC		3	530	.623	.758	.814	1	.875	.895	3K
Velocity betto	1				310		.107	901.	.107	. 107	801.	901.	.108	. 107		.143	.145	.144	.143	.163	141	.143	1	NC		*16	323	217	.117	.217	.218	.218	220	NC
io. ig.	30.06				30.02																													
1165 To Brog Batt	3.19	3.09	3.04	2.86	126.06	14.30	10.51	6.39	8.08	3.99	3.63	3.29	3.04	2.85	170.92	4.78	4.27	3.95	3.64	3.43	3.31	3.13	2.86	2.81	7.24	83.36		2.97	3.16	3.19	1.22	2.82	2.52	10.00
711ch Memori Coefficient (Q)	0655	3979	3907	6658.	.5507	3366	1,0633	1.0567	7726.	.8807	.8416	.8481	.8690	9008	.0579	.7852	13167	.7693	.7301	.6790	6999.	6639	0099	-3.8462		6870	9	65.85	.5350	.5201	.4826	.7138	7569.	0424
10013131000 Boad	.1892	.1892	.1894	1,5361	.1512	.6249	. 3801	.6613	.9452	1.2932	1.4653	1.6562	1.8249	2,0096	7620.	. 5002	.6447	.7899	.9793	1.0776	1.1725	1.2975	1.4923	1.2296	.36%	.0270	66.39	8179	7245	.7709	.8247	.9283	1.0422	.1729
Litt Coefficient	.605	386.	115	4.397	14.058	6.83	3.995	4.361	4.814	5.164	5.320	5.449	5.347	5.738	5.069	2.394	2,755	3,123	3.570	3,701	3.881	4.067	4.277	3.461	2.633	2.248		1.884	2.291	2,460	2.651	2.622	2.634	1.729
701 - 71. Lbo.	9101-	-914	-911	5114	1282	1833	5868	5754	2020	4715	4582	6195	4732	***	558	7413	7518	7291	5965	6.385	6387	6244	6110	28100	-2876	1	13630	11304	11437	11155	10334	15251	34974	-1364
7010 Pros.	29	3	19	1001	9	4	286	167	8	į	1088	1238	1355	1467	39	į	851	1021	1256	1362	1536	1664	1884	2533	1901		1	18.8	2112	2255	2408	2706	3059	169
700-0 Life (L) - Libe.	192	189	189	3265	6051	6637	9006	3238	3514	3770	3950	4073	4119	6915	9999	3082	3637	960%	4578	4747	5084	5216	2400	7129	7687	929	13	8821	6679	7195	7740	7644	1131	6912
4 (TOS)	5				90																													
Mes - (_{est} it)	9				16180	16170	2+3+0	14380	14340	14350	14,350	14.340	14,300	1+3+0	16.220	14.360	1+380	14320	14380	14320	14380	14330	14380	16250	16.240	9	1	14.340	34.340	14330	14.340	14350	14360	16120
(PC) - quite gruff tiep Angle (AC) - CPS	R				3	_	_		_		_	_				_	_		_					0		_	_		_	_		_		150
Section Control	0.00			_	D-100	100	9			_	_		_		-	0		_	_	_	_		_	130	2 :	2 ,					_			15
(%) - degrees first farmatives first denies degle first desired (1,) - degrees	g	7.7	5.7	0	52	52	0								52	0				_				2	Q :	4 .	,							4
signa sevent 1123	8				0										~	0								-	~ !	2 0	,							13
faction to signal contact to the contact of the con	.32	.31	3.	30.34	-	-4.00	-8.00	****	90,	4.00	6.00	8.00	10,00	12.00	-6.00	-8.00	4.00	00.	4.00	6.00	8.00	10.00	12.00	-6.00	-6.90	8.6	8 8	8	90.4	8.9	8.00	10.00	12.00	9.00
	7.2			35	2		23			22				34		20		85						83	\$									
for Speed (N _p) - BM (N _p) - BM (N _p) - BM	a	_		16.90	24.14	35.20	17.77	1719	1710	1700	1301	1714	1712	1710	3400	1700	96 91	168	1695	96 91	1698	1695	1678	500	3700	1757		1	-	1692	1686	1680	1675	2310
.31.po/edd - (p)	1.27	1.29	1.31	-	-	3.8	3.00	2.97	2.92	2.85	2.97	5.99	3.97	2,32	5.26	9.5	5.28	5.17	5.13	3.5	5.24	5.13	9.08	4.4		11.72		1 70	*	11.70	11.68	99.11	11.74	90.91
stoad - (V)	R	_	_	-	8	2	_	-	-	_	_	_	_	-	3		_	_	_	-		_		8	-									2
bood facent	1	_	-	-	8	-	_	-	_	_	_	-	-	-	-	-	_	-	_	-	-		-	_			_			-				
व्या म्य	1	-		9	-	es.	-	•	-	•				9	=	2	5	3	9		-	9	•	8	=	22 2	2 1		1 2	-	*	2	9	=
ef Jalof	1	-	153	_	_	-	427	-	679	9	-	*32	_	-	-	-	-	97	5	_	-	-	-	-	3	-	_		-	-	_	-	-	-

TABLE A-2 (Continued) AMES TEST RESULTS

	_	_	_	_	-	_	_	_	_	_	-	-	_	_	_	_	_	_	_	_	-	-	_			-	_	-	-		-	-	-	_	
Picch Musest Geofficient (E)	380		960	.082	970.	.074	070.	.058	650		N																								
2001 Confiltedont	SIG		101	.321	.338	.371	.384	.427	.456		ž				6																				
Lift Cooliticions	No.		280	781	1.014	1.097	1.184	1.277	1.300		2																								
Velocity Betto	3NC		289	. 288	.289	. 291	. 291	.292	. 291		2																								
Mrometer Jo. of	30.02				30.02						30.33																								
נונו לה פרסן מהנוני (בְיִלְה)	5.88	25.28	1.94	2.46	2.87	2.95	3.07	2.98	2.85			1.37	3.6	5.38	90.9	5.72	4.70	4.54	2.99	-1.05	.97	3.09	3.81	3.92	3.51	3.8	3.59	3.89	-1.11	.87	2.91	4.4	4.75		5.12
Pitch Person Conflictont (C)	1167	.0528	0.84	.4252	0505	.3770	.3554	.2894	.2484		1121	0900	1101	2278	1930	2574	3094	1141	4563	.0221	0588	6960*-	1044	*5 90	1175	0802	.0232	1980"-	.0296	0324	0796	1353	1554	1921	0166
Imitallima perd (4)	.2453	9650	. 5175	. 5512	. 5936	.6237	.6463	.7133	.7670		.1650	.1263	0141	. 1605	.1651	. 2052	.2821	6262.	.4143	.1775	.1578	.1650	.2151	.2436	.3124	.3568	3630	.3614	.1826	.1641	. 1649	. 1868	1702.	.2323	.2424
(c ₁)	1.442	1.253	3.006	1.356		844	990	2.132	2.186			.173	.513	198	1,302	1.176	1,328	1.353	1.240	188	.153	.511	.820	.955	1.098	1.256	1. 306	1.407	203	11.	984.	.822	.988	1.161	1.241
1016) Fitch Boson (Q - Ft. Lbs.	-4439	2009	18366	95.191	15375	14361	13515	11013	2.3		-275	17	-233	187	417	-563	-681	7.	-1022	178	-340	-835	-842	-259	-928	-533	458	-559	88		-1484	-2560	-2927	-3650	141
test bres.	1272	257	2683	2858	3061	3240	3351	3702	3973		A	9	3	9,	21	63	87	9.5	179	233	208	717	272	308	386	3	ĵ	\$	532	*7*	472	528	582	549	3
7066) 1466 (L) - 150.	7479	86.49	5215	7042	8860	9579	10319	11065	11325		7	35	163	270	328	385	435	3	009	-347	202	699	1068	123	1	1639	1681	1826	35.	*	1393	3405	2894	3407	1631
4" - (TOS)	×				380						2																								
heads cating beads cating	16129	16120	14.330	15330	14.340	14330	14,380	14,320	14330		0																								
signa pie grite contgob - (24)	9				3						9																								
Setting Control Setting (NC) - CPS	0-130	3	0	-	0						710				-	_				-									-						
(1) - degrees	12	22	0		0						0													_											
seerage - (%)	17	52	0		-				_		8			_		_		_						_											
dagin to signification of the contract (%)	-6.00	-5.00	-4.00	8,	4.00	60,0	8,00	10.00	12,00		-8,07	-3.91	90,	4.46	6.53	8.63	10.71	12.72	14.66	9.8	-3.92	.23	1	6.31	8.38	10.67	17.70	14.75	7	-3.85	4	1	5.5	8.62	99.01
	99		8		8	-	2	_			7.0						-			7				5	3										
head feet (4) - am just least	2323	230.3	10.97	1300	1698	1681	82.91	1679	1679		0	-		-	-	-	-	_			_	_		_							-				
Junes District Control of the contro	20.78	30.70	20.74	20.74	20.76	20.76	20.74	20.76	20.72	BRATION	1.31	1.27	1.27	1.25	1.31	1.31	1.31	1.31	1.29	2.3	3.28	4 :	17.		9 :	2.5	9	5.19	9.	11.57	11.66	11.70	11.72	11.74	2.1
erond - (V)	8	-	-	-	-	-		-			8	-	_	_	_	-	-	-	-	9	-	-	-	_		-		-	3			-	-	-	-
fun So. Tumel Speed	Я	_	-	-	-	-	-	-	-	ŧ.	_	_	_	-	_	_	_	_	_	_	-		-	_	_	_	_	_	-	_	_	-		_	_
व्य म्य	32	-	-	-	-	_	-	-	_	-	12	-	m		•	_	2	_		_	_	_	_	_	_		_	_	_	_	_	_	_		_
of Jaiof	-	2	4	-	-	33	-	2	-	3	-	-	_	-	-		_	-	_	-	-	2 :	-	-	-	-	-	-	-		_	-	-	4	-
Foint No	454	437	458	55	3	3	79	563	\$	4	ş	9	9	699	24	77	*73	473	474	475	4.76	**		:	3		9	9	4	-	1	*	1		8

TABLE A-2 (Continued) AMES TEST RESULTS

Picch Messel Geofficione (L)	×												35																				2			
Jeed Coofficient	NA												NC.																			c	2			
נוני סיינוניוסיי	N												NC																				1			
Velocity Botto	×.												NC																				2			
in. ng.	30.33												30.33																				30.29			
ريار که محمد است رياري	6.9	4.08		-	.86	2.83	4.31	4.86	4.9	5.02	5.08	4.39	\$7.36	18.93	12.66	9.80	-51.60	12.57	7.59	26.29	11.74	9.98	8.34	105.00	9.17	24.0	15.51	14.14	11.08	9.19	-62.05		3.27	3.46	3.45	
Pitch Nament Coolficient (C2)	9359.	0900		.0243	0279	0920	-, 1387	1497	1809	1158	0251	0532	6160.	5760	.1052	IIII.	.0793	0825	1656	1600.	66 90	.1208	.1241	0327	1382		.2198	.2135	1614	6560	.3300		4762	6576	+1814	- 8334
Jeel 201] post (c)	.2785	3152		1864	.1654	. 1646	.1880	.2029	.2299	.2525	.2773	3318	.0543	. 1808	.2860	.3829	0531	1989	.2843	.0657	.1769	.2271	2920	0129	. 1643	1117	.0347	7870.	.1293	.1781	0148		10/1.	.1839	.1983	****
ונה כיבונונוריו מלו	1.383	. 140		217	. 143	994.	.612	.987	1.148	1.269	1.409	1.459	3.113	3.424	3.622	3.777	2.738	2.302	2.159	1.728	2.078	2.268	2.437	1.358	1.507		.848	1.04.	1.433	1.637	98		.556	763.	.685	3116
701 - Ft. 130.	1333	4.36		778	-959	-3145	-4678	-4972	-6052	-3480	å	98.	1962	30.20	2222	2379	1709	-3423	-6298	35	1671	7607	4736	-1243	-6777	13136	13200	12817	9677	5687	16315		17.71	-6198	-7532	4353
701 - 100. (0.) - 100.	756	41.6		906	198	3	1	1001	1133	1240	1346	1619	159	527	835	1118	-136	796	3474	ī	918	7180	1520	-67	6601	1785	?	68	1057	1456	-100		219	236	152	330
7010) Life (L) - Libe.	6012	2,000		6601-	245	2410	4214	5127	5977	6623	7328	7574	1716	9886	10575	11028	000	10013	11183	9366	10785	11781	12685	2035	19001		į	6327	11716	13381	6203		729	2	897	0.12
(uc) - 'P	1			_									3K																				2			
Ma - (_{eff} ⁽)	0					-							16.300	16210	16200	16290	16200	16210	16.200	16360	16380	16370	97.91	16 360	16370	-	200	10.300	16370	16380	16390		0			
essaffep - (\$Q)	9		_										2																				2			
Patition	1:												-130							0													110			
incidence Angle (1,) - degrees (1) - degrees		_	_		_			_		_			77		_					22							•								•	1.3
espine - (%)	8	1	_										4							31								3					2			
santa to stand seergeb - (54)	12.74			-9.11	-3.92	.25	4.43	6.53	8.6	10.68	12.75	14.78	3,00	6.9	8.00	10.00	00.	3,00	3,00	00.	6.8	6.30	8.00	1.80	.00	8	-5.00	8	4.00	00.9	-2.00		g.	4	*	:
- quest long-	9							7					2	22	23	2	36	11	78	16	82	2	ı		:		2		8		:		25			
Mag - (₄ x)	°												24.31	24.22	24.26	24.20	2408	5406	2398	2469	2469	-	_	7	-	•		_	-	2516	-		0			
Special Systemic Special (a) - Line (a) - (b)	11.60		11.33	20.78	20.84	20.67	20.76	20.78	20.82	20.88	20.80	20.76	11.72	11.66	11.68	11.68	11.76	16.01	20.74	20.76	20.76	20.78	20.82	20.72	28.75	37.0	32.76	32.74	32.70	32.70	28.97	21.0	5.2			
ered (v)	9	3		3									3					8	3						8	8					8.	1	3			
.ed end	1	:											2																			3	2			
- , oil total	2	: :	23	22	2	8	31	32	33	4	2	*	-	**	*		*	•	-	•	*	2	=	2	2	2	13	2	13	2	2	2	**	*	•	4
0413n300000		: :	*	2	4	8	2	83	2	:	8	5	*		8	2	*	23			9	=	7	2	4	2	2	12	:		2	=	2	2		,

TABLE A-2 (Continued) AMES TEST RESULTS

Yew Angle (Y)											•		100	2	2	•	•	1	7	7	Ť	•		4	3	_	1	7	7	7		•	_	
30010114 Cooliticions (p)	1										2																					2		
Dreg Coefficient (4)	118										1																					2		
נונו פספונונוסטו	5										2																					×		
Velocity Batto	TIA										118																					Ä		
baroneter in. Hg.	30.29										30,32			_	_	_	_	_	_	_	_	_			_	_			_	-		10.33		
146 Serie of 1313 (41/47)	2.76	3.31	3.13	3.30	3.33	3.33	3.31	3.11	2.37	2.61	2.71	2.54	2.63				2.8	3.80	2.58	_	2.0	-	_	5.0			_	5.4.	5.01	4.51	4.62		7.4	
Pitch Homent Coefficient (C)	7997	9286	-,4774	-,6766	6174	-,3691	9006	9075	8682	-,8000	-,0411	0269	-,0478	0682	0620	0%3	0731	0776	*.0838	0880	1229	1606	1586	1797	1769	1667	1751	1836	2081	2461	1753	118911	1.5110	1.4652
10012131900 post (40)	.2423	.2258	. 1765	.1304	. 2038	.2101	.2174	.2309	.2439	.2619	.1613	.1726	.1500	.1745	0061.	99%1.	. 1430	. 1462	.1567	.1701	.1953	.2053	.2128	1007	2000	.2056	.2028	.3082	.2199	.2406	.2453	1.2409	1.2913	1.1837
(c ₁)	(4)	.750	. 556	629	.683	669.	.721	.722	.717	689	.437	.438	.415	474.	614.	.415	50%	014.	:403	396	398	1.160	1.159	1.162		1.158	1.152	1.135	1.103	1.085	1.133	9.838	9.66	9.815
19561 Picch Rose 0.7 - Pc. Lbs.	-6693	-8761	-17742	-25287	-30574	-32530	-33712	-33972	-32277	-29882	969-	00*-	**	-738	-8-	-823	-1397	-1413	-1317	-1096	-1214	_	_	-2842	_	_	-	-3255	-3625	-3958	-2305	_	ž	3180
3014 (a20) (a4) - (a0)	312	289	8	696	103	9901	1102	1172	1263	1334	465	_	659	ŝ	_	422	413	77	453	9,	ž	_	285	3 3	_	_		_	3	673	8		97	
1010 1 11(t (L) - Line.	876	982	2885	3266	3540	3622	37.39	3745	3695	3369	1274	1531	1219	1233	1218	1309	1184	1300	1163	1157	1158	3399	3384	3386	1	3382	3382	3336	3221	3180	3	218	å	S O
4 (158)	5										ă																					×		
heeqë saignë MLF - (_{EBL} E)	0										0																					14240	14250	14250
sautgeb - (ad)	8										2																					2		
Section Centrol Section (NC) - CPS	10										330								_													110		
section - (1)	91	1	0			01	112	-5	2	18	0																					•		6
signed revocal Tind seesage - (%)	8										8																					•		
Angle of Attack	1 8	9	2	4	*	.37	38	98.	38.	.37	.23	.23	. 22	.23	. 22	.22	. 22	. 22	27.	12.	17	8.62	8.62	8.62		3 3	1	:			3	8	96.	8
-	12										3		2												2							:	3	3
heed wat (n) - emi	0			_							0																					_	17.15	-
tomes bymests presents (4) - Lhe/eq.ft.	-				20.74				20.61	20.72	11.66	11.78	11.74	11.64	11.0	11.6	11.66	11.70	11.68	11.62	11.64	11.72	11.68	11.66	11.80	11.72	1	11.76	:	11.72	12.00	1.20	1.27	1.23
boods formal erood - (V)	3	1	3	1							3																					8		
of ad		1	-	-	_	_	_	_	_	_	4	_		_	_		_		_				_									2		
oli 101.0.	1					9	1 =	12	2	4	46	re	*	•	*		-			3	=	2	2	1	2	9 5	: :	:	2	2	2	-	*	
9413030000		-			. 0	-	- 2	33	1	35	8	33	2		3	-	7	3	1	2	:	3	1	1	8	: :		1	25	2	23		2	•

0

0

0

N

TABLE A-2 (Continued) AMES TEST RESULTS

her Angle (Y) - Degrees	. [7	89	4	0	ę	80		-	49	φ ·	9 :	7 7	. 4	9	0	4	60	4	0	2	9				9	9			9	91	•	4
Pitch Moment Coefficient (_M)		NC.													_					Ť	•	-	•		-			_			_	NC	
Seef Coefficient		NC																		_						_						NC NC	_
Lift Coefficient		SE SE																						_		_	_				-	N N	
Velocity Matio (v / V) (gly q	1	Z																													9	S S	
Serometer In. Hg.	1 8							Ī	Ī																						20	95.0	
olina gand of rit! (_qu't)	1	1.03	10.1	-252.54	18.57	,	3 0	3.63	9	2.68	2.53	7.46	6.94	-4.85	-1.78	3.65	3.63	3.69	3.64	3.62	1.73	-17.67	-2.90	331.50	14.37	4.65	4.01	3.30	2,95	2.67	2.50	3.85	0 6
Pirch Homent Coefficient (CD)	1 5800	1 2381	1069.1	1.0527	1.2524	1.3316	1, 2958	2.6915	1.2056	1,25%	1.4021	1.3672	1.1942	2,8658	3,5921	1.4583	1.5252	1,3908	1.5591	13701	1.1877			1.4563	6666	1.1790	1,1268	.8922	.9146	1.010:	1.2825	.8823	8713
brag Coefficient (_D)	1 203.	1 296.1	0330	0328	1 9:007	2.4640	2.8661	2.8748	3.5967	3.9132	6607.7	1.3008	1,2916	-1.7951	-3.6000	2.6698	2.6866	2.6457	2.6915	2 7087	2.5984	5164	2.6488	0264	0119.	2.0157	2,3115	3,0537	3.4472	3.7165	7614.4	.8015	80.15
Lift Coefficient (2)	9. BOR	9.932	8 303			9.958	10.016	10.390	677.01		11.0%	9.704	8.971	8.722	6.428	19:167	9.770	9.786	7.817	9.786	169.6	9.125	7.691	8.767	8.784	9.386	9.273	10.101	10.182	056.6	3.050	3.112	3.065
Total Fitch Homen (ht.) - Ft. Lbe.	37.36	30.00	3308	1367	3382	3365	3203	_	2949	3400	3381	3360	3617	7263	8831	5 7	60%	_	74/5			1699	8513	_			_	_		2368		-	8072
Total brag. (h) · Lbs.	107	398	=	75.	642	770	01.6	884	1106	1262	1334	387	423	-552	-1161	1 98	853	9	598	999	825	_	-841	80	ž	049	757	939	1060	1791			_
Total Lift (L) - Lba.	3065	30%	2778	2860	3111	3112	3180	3195	3213	3388	3356	2887	29.38	_	_	9.12	3102	7016	315	3107	3077	3057	2442	2652	2789	29.90	3037	3106	3131	3231	3996	4077	4015
Exhauet Cas Temp.	2%																					_	_						_		NC	-	_
Engine Speed	14.250	14250	14250	14250	14250	14250	14250	14250	14250	14250	14250	14250	14250	14250	14250	06771	067%1	95.27	14250	14250	14250	14240	14220	7 250	14250	05757	0675	0624	65741	7,260	7,540	14250	250
signA qei'i gai'i	90					_							_				_			_						-		-	-	-	98	-	7
Resection Control Secting (RC) - CPS Wing Plep Angle	330		_				_							_			_														off		-
Nortzontel Tell incidence Angle (1 ₁) - degress	0																								_						0		
skit Louver Angle	0	_			_								5	3 5	3 0	>				_		8	2	>							0	_	_
Angle of Atteck	00.00		-8.00	00**	00*+	9.00	8.00	10.00	12.00	14.00	16.00	0.00			8	8 00	8.00	8.00	8.00	8.00	8.00	8.00	00.00	3	8 6	00.9	10.00	12.00	14.00	16.00	0.00		
Tunnel Temp.	3	9	99		89		69		20			7 5	7/		7.5	177					75		9/		- 77						80	3	_
beeds net	1709	1710	1704	1701	1699	1699	1691	1694	1695	1693	1692	1693	1606	17.30	1685	1683	1684	1685	1685	1681	_	_	61/1	1691			1675	1677	9/91	1672			9021
Dimmer Dynamic Freesure (f) + Lhe/aq.ft,	1.25	1,23	1.34	1,23	1,29	1,25	1.27	1,23	1.23	1,29	1.21	61:	1:31	1 20	1.29	1.27	1.27	1.29	1.27	1.27	1.27	* :	77.1	_	_	-	-			1.17		5.24	_
Tunnel Speed (V) - Knote	90																					_									3		_
Per Aun Bun No.	25	_	_	_								_													_						26		
Point No		9	_				_	=	_	_	_	2 %	_		_				23	77	52	37	28	2	8	31	32	33	*	35	-	7	~
Foint No	9	62	63	3	565	99	267	268	269	220	7/5	27.5	576	575	576	577	578	579	280	581	582	_	585	586	587	888	0	8	591	265	593	28	

TABLE A-2 (Continued) AMES TEST RESULTS

eigna ver (Y) - Pagress	4	Ф		-	*	7	+	-		-12	-16	91	-16	0	•	•	1	7	-12	2	-16	9	9 -	3	9	4 :	1	. 9	7	7	7	7	7	7
Justich Moment Georgischer (H)	ЭK	_																											ž					
Jac Colficient (4H)	WC																												1					
Lift Coelficient (n)	NC.																												ž					
Velosity Batto (v /v)),																												ş					
Marometer In. Mg.	70.34																												30.22					
1348 gard of 2313 (-46/1-1)	3.99	3.9	4.5	4.29	3.56	3.42	3.27	3.10	2.30	3.80	3.69	47.11	9.4	3.31	3.8	3,24	3.31	3.33	3.24	3.15	9.78	-16.86	4.21	8 .		1.01	2.79	2.50	-1.33	.37	2.43	4.16	7.4	4.84
Picch Homent Soeiticient (C)	6162"	754	7898	.7688	.7224		.6878	16R.	.5.003	.7057	.6567	1.0226	1.1163	7298	.7758	7541	.7241	. N 39	0KZ 9"	00.09	6156.	1.0975	.7122	746.	1000	3	.5688	.5558	7160.	5620	0342	10%	1346	1777
Ine122333e02 gead (q.2)	7187.	.8915	5115	.6351	94/16	1.0375	1.1786	1.3100	1.4449	.6 10 /	.84 38	0.450	4168	1.15	1.1477	1.1416	1.1432	1.1534	1.1711	1.1878	.3%2	1588	.5532	1679.		1, 2913	1.4643	1.5608	.2100	. 1833	.1722	.1887	6902	3330
Litt Coefficient	3,160	3.143	2. 342	2.725	3.474	3.72%	3.862	.00.	4.053	3.086	3.113	2.570	1.879	3.823	3,789	3.700	3.814	3.831	3.820	9.7.8	3.490	2.678	2. 360	3		3.912	4.096	3.954	288	690	R.	.736	96.	1.1%
Sotal Fitch Nomes	1969	7926	3236	7912	7639	75 %	7259	7115	57.39	7476	7603	10%3	11700	203	7279	30%	7.104	1267	6607	9069	1616	11562	190	2,5	200	3	6326	913	24.21	3.86	-357	-1853	-2275	-3174
forel breg (lu_1) - the.	1045	1062	670	824	1306	1411	*	1667	1882	95.01	1099	72	*	1518	1515	1526	900	1523	1342	1556	193	-203	715	9/9	14.43	1596	16 14	961	612	28.	669	537	3	3
7000) Lafe (L) - Lbo.	4171	.161	990	35.36	:655	.832	\$0.59	5170	5279	020	÷055	3393	2992	2027	2005	6665	3	1000	90	6912	4511	356	1024	90 9	*	198	51.0	4953	-842	100	1229	2308	7827	3339
Grimunt Ges Temp.	ЖC																												Ņ					
head antend hear - (col. ii)	0571	0471	14240	1.246	14230	11.250	14240	142.00	14.240	14.250	17.240	142.00	1 42 30	3+2 x0	0.77	1+260	14.260	1.230	14250	1:50	14230	14210	14230	0751	14.240	14250	14240	14230	0					
eignA qaff gnill	S	_			-	_			_							_		_							_				2					
Reaction Control Secting (AC) - CM	237														_	_													Off					
hemiumh - (h.) Liaf feirmeirmi elgan ennebiumi esergeb - (1)	0																												•					
elgnà sevuut sina negamb - (%)	2				_							8	3	9							R	35	2						8					
Analle of Access seesueb - (>)	0.30		8.5	8.	6.3	8.3	8.8	10.30	12.30	0.00				8.3									8 8	1 4	8	10.30	12.00	74.00	51.5	-3.96	.22	4.42	6.51	3
.quel lennul	62	63	3		65	99	ł		67		3	•		R			17	72					5	3.6				75	×					
Mrs - (₄ H)	1798	3.704	1730	1707	1302	1702	1697	1697	3	1300	1300	16%	1714	1645	16.07	1	16.45	16.30	1693	3	7	2	1679		3	3	9.91	17.20	0					
simmed lament Streeter (q) - bbe/eq.ft.	5.28	5.10	5.24	5.19	× 5	5.19	2.8	5.3	5.21	5.21	5.21	2.2	2. K	5.26	2.2	4.5	S. 28	3.2	5.K	2.3	5.17	×.	5.17		2.7	2:	5.01	10.2	8.11	RTI	R.II	11.74	11.7	11.78
110WH - (A)	3	_										_	_	_					_										3		_		_	_
hand femina	1			_									_	Ţ		-	_			_		_							H				_	_
Foint No	,4	S	ui)	1	es)	6	9	3	77	Э	4	23	9	17	#	2	R	21	n	Ω	A	Q :	4 5	3 16	R	R	=	32	-	7	~		~	•
	-	-	_	-		_				-		-	_	_	-	_	_	_	_	_		-	-	-		_	_			-	_	-	_	-

TABLE A-2 (Continued) AMES TEST RESULTS

Ton Angle (Y)	7	7	7	7	-	-	7	7	-	-	Τ.	-							_	_				_	-	-	_	_	_		-	-
Pitch Nament Goofficient (A)	NA.																			:	NC NC					.037	N.				.043	NC
Prog. Coefficient (45)	NA																			270	NC					610	NC				136	N
Lift Coefficient	NA																				NC.					.312	×				.233	5
Velocity Betto	NA					_														01.0	NC					.072	NC				.072	No.
in. ig.	30.22							Ī												:												
100 2010 of 1311 Ca/_10	4.95	4.97	4.08	4.1	ř.	2.0	3.55	3.89	4.21	4.35	00.4	3.67		2.45	4.08	4.37	3.	4.67	4.27	4.03	6.71	7.5	7.7	7.35	7.14	4.52	19.4	1		4.7	-1.71	
Pitch Moment Coeffictent (CD)	0328	.0310	0043	.690.	.0232	0813	1403	1927	1339	-,0695	-,0663	0203	06.24	0080	+760	1377	1821	6660.	9990	.0708	1.3690	1.9587	1.0389	9940	.7602	3.0824	2.9267	2.9644	3.0368	2.5015	3.5741	
free Coefficient	.2506	.2766	3138	.2359	.2052	202.	.2146	.2402	.2576	.2704	. 3222	1561.	1813	.1822	3016	.2242	.2509	.2687	. 3085	.3325	1.3839	1.2876	1.3417	1.3354	1.3921	-1.8870	-1.9181	-2.0416	-2.0130	-1.9577	-3.7156	
CC_L)	1.243	1,377	1,307	209	.065	07.4.70	.763	936	1,084	1.178	1.291	4	081	144	.823	186.	1.164	1.257	1.319	1.1	1/2	9.708	9.838	9.834	9.940	8.547	8.847	8.954	9.171	9.30	6.367	
Total Pitch Hones	-74	1336	642	5629	1725	-548	-1620	-2686	-2956	-82	-130		1254	-76	-1449	-2257	-3187	1463	1819	1796	34.80	6165	2419	2316	1770	7403	1815	678	5829	3641	3846	
70161 Prog.	169	755	386	683	9	593	616	681	724	753	2 0		28.5	531	\$75	633	697	743	855	9.	474	;	426	127	3	-618	-103	200	1 9	-602	-1254	
وري - الأو. (لي - المه.	36.35	4015	3810	-787	8	1232	2239	2343	3183	3647	3762	3815	238	1316	24.25	2883	3405	3678	3859	3950	3182	3325	31.80	3118	3156	2799	2809	2798	2820	2872	2149	
4" - (TOS)	¥												_							5	1											
here Speed (1 ₂₅₁ 1)	0														_					25.210	14210	14210	14210	14210	14210	14210	217	917	14210	14210	14210	*****
esergeb - (gd)	30	_						_				_								5												
242 - (3K)	oft	_				_			_		_		-		_						П											
incidence Angle (1,) - degrees	0	_				-	_		_	_	_	_	-			_				,		10	22	:	8			• :		8	0	
tog termostroi	2	-	-	-	-		-	_	-		-	-	-	_	-	-		-	-	-	,	_	-			R		_			22	
Section to signs of sections of the section of the section sec	99.0	2.73	4.70	-8.14	3.97	27.	7.	.2.	8.38	10.63	12.69	2 :		4	1	6.32	8.62	0.67	12.70	14.71	-											
. 4.	2	_	_	<u> </u>	÷	_	_	_	-	_	-	_	_	22	_	_	_	_	_	- :	-	3	_		7	3			3		2	***
for Speed (IL) - BRN Tunnel Temp.	0	_	_	-	_			_				-				_			_	900	16.83	1700	1704	1676	999		98.01		1 69	1487	17.14	1734
Treesore (p) - (b) - (b) - (b)	11.70	11.66	11.66	11.79	11.70	11.74	11.74	11.74	11.74	11.70	9.11	2 1	11.70	11.78	11.78	11.76	11.70	11.70	11.70	11.78	1.3	1.37	1.23	1.23	1.23	1.3	7 :	9 8	13	1.0	1.35	1 33
beed family erosis - (V)	3	-			_			-	_									_		-	1											
Los No.	22	-	-		_	_			-	-	_		-						-	1	1											
os saiof Pot Ban	-		*	9	=	2	2	2	2	2	2	9 9	: 8	72	22	2	4	2	2	22	. "	-		*		~ 1		- 5	1 :	2	2	**
Commenced	159	25	8	4	5	*	2	2	:	3	:	2 :	: 1	2	1	2	=	2	8	100	3	4	8	*	25			2 3	1 7	3	1	

TABLE A-2 (Continued) AMES TEST RESULTS

or degle	T	0		-	-	,						-							•	7	•	2	2	•	•	•	,	,		_	-			
Jacob Hasser Seelficions (Jr)	T	NC.			:	700.	250	100	.052	.052	080	90.	.055	950.	750.	.059	950.	950	*			•	_							*			•	•
1001111000 CO	Τ	Die.			200	020	600	510.	160	.043	150.	107	095	180*-	062	150*-	070	0.0.	*											×				
Lift Coefficient		¥			***	134	389	1	685	.511	. 540	.169	.228	NC	. 347	-	-	624.	S.											2				
Velocity Betto (V /V)	1	ž			141	3	142	163	.145	.145	145	.142	.142	3	3	747	143	747	2											*				
Torrescent In. fig.	1	7.77			9										182	_	Ì	Ť	9.35											3.0				
נונו זה מיפו מבנו קרקה	00 1-		-1.34		. 3	-11.33	1.7	19.47	15.85	8	9.6	-1.57	-2.40	-3.55	-5.61	-1.3		14.31			3.0					1	77	1.33	3.15	2.57	1.57	2.47	2.42	7
Pitch Persons Coolificient (C)	1.5881	3.4790	3.4755	3. 1601	171171	1.0710	1. 1028	1,0837	1.0341	1.0555	1.0212	1.2880	1.1903	1.2426	1.2300	1.28	1	1	208.	.5182		1	3		1	-	1	.3307	*114.	. M32	380	**	1941	ì
10013111005 gest (c ₂)	4.0448	4.2387	4.2654	4.1546	3242		0663	1001	3080	2936	76.87	7655	69/9	. 302				4	\$3	.6147	1	1	.5250	. 5524		2	.7514				1885	.5523	1	SIN.
Lift Coefficient	6.893	7.371	7.4.18	7.397	1.868	2.310	2.770	3.156	3.316	3.466	3.663	7.80	1.622	2.060	2.470	2.624	2.63	1.013	**				1.03	1.516	1.912		1.407	2.675	2.768		1	*	*	*
70561 P15ch Home CQ - Pt. Lbs.	8222	7590	7582	7330	10813	10327	1000	1100	10280	66607	9922	12.02	11369	11732	3	-	11574	*	10765	1	-	1	***	1	1		3	î	2	***	*	rus.	*	*
641 - (4)	-1264	-1361	-1263	-1236	27	-268	Ŷ	5	278	385	200		-	1	*	î	-712		1768			8	1	3	:	2		1	100	7	1961	2 2 2	1	-
10101 LIft (L) - Lie.	215	2193	2307	5199	3466	100	3552	ŝ	9	457	3		1	7697	•	*		•			888		1	24	1			2	*	ī	1	2		
V - (T08)	Я				×		_		_	_		_	_	-		_	_	1	i	_	_	_	_	_	_	-	_	_	-	2	_	-	•	•
hate - (^{car} s)	14710	14210	14210	14210	24.280	0871	14.200	1,270	7.280	0774	979	9074			07757		9			977	97	14230	2	2	9	9	9		1				1	1
(AC) - CPS Wing Finp Angle	8				8					_		_	-		-	-	-	_	2	-	-	-	=	-	-	-	-	-	_	2	-	-		_
Section Control	130				120									-				240	;			_	_	_	_		_			:	_		_	
iorizontal Tail iorizontal Tail incidence Angle (1) - degrees	10	22	9	R	0													0	,	_		_						_	_	,	_			
fand Tevned Sind	32	-			2			-	-	-	-	-	-	-	-	-	-	0	,	-	-	-	-	-	-	-	-	-	-	,	-	-	-	_
iselia in signal eserges - (54)	0.00				-8.00	4.00	00	8.5	9.00	90 01	9 00	8		90	8	8	1 8	8 8		_			8.4	8.	8	8	8 :	8	8 8	-				
Turnel Temp.	\$		63		3	3		g	-	-		-	-	- 12	:	2.5	-	3	-	_	2	-	<u>-</u>	-	67	_	-	-	-	-	. :	-	•	_
nes - (41)	1725	1726	1723	1722	1307	502	102	207		1	1315	318	214	714	1722	109	17.10	111	1302	96.91	1695	500		2		8 :	9 1			303	-	308	_	_
.11.po/edd - (p)	1.25	1.19	•	:	5.28	97.58	2 :		-	-	-	-	-	-	_	_	_	-	-	-	-	_	11.72	80.11	99.11	9 :			100	-	20.51	_	=	
stemat CV)	8	-	-	_	3	-		_	_	_	_	-	-	_	_	-		_	-	=	=	= :	3	1	: :	: :	: :	::	-	-	R	R	8	
Pannel Speed	_	-	_	-	_	-	-	_	_	_	_	_		_	_		_	3			_													
Per Ben Bun No.	22	_	_	_	2	_	_	_	_	-	_	_	_	_			_	8	4										;					
Point No	2	-	-	-		_	7 4	_	-	-	-	•	3	=	3	2	2	**	~	^	*			- 1	• •	• 5	1	: :	: -	-			•	
Point No Consecutive	3	3	3	3	2	170	270	129	675	676	677	2	2	8	=	2	2	2	82	*		2										:		

TABLE A-2 (Continued) AMES TEST RESULTS

to Angle	7	•	7	7	*	•	•	•													•	•									•			
Pitch Numet Cooliticioni (P)	NC							.077	690"	190.	.065	690"	.062	.067	.083	.076	170	0.00	070.	690"	.067	*			*60	900	180	1	.103	.082	.021	10.	.035	.042
free Coefficient	NC							.043	150.	.083	011.	.112	.128	971.	0,0,-	027	600*-	.013	920.	.036	*50.	×			\$74.	181	.240	į	.512	.413	990"	660.		16
נונו ספורונוסה (ק)	NC							.243	380	184.	019.	989.	654.	787.	97.	.270	904.	.515	.585	959.	69	×			1.18	166	.870	1.551	1.375	**	.362	ž.	85.	577
Velocity Cotto	NC							.216	.214	.213	.213	-214	.214	.215	.214	*12.	.215	.215	.216	.213	213	ž			99	-402	4	.497	4	ġ.	. 103	070	170-	000
Spreador Ja. Ag.	30.40							30.42														10.0									97.00			
1100 perd of 1111 (-40-4)	1.26	1.92	2.46	2.91	3,06	3.17	3.14	5.67	7.42	6.83	6.46	6.10	5.83	5.38	-3.68	-10.02	-42.76	39.66	23.26	17.5	12.73	118.71	-12.77	-11.09	2.38	2.82	3.62	2.41	2.68	3.03	8.8	8.82	1	-1.70
Pitch Percet Coelficient (C,2)	.4868	6714.	.3657	3305	. 2899	.2509	.2637	.7051	9149.	.6140	.6227	1999	.5753	.6289	.7705	.7061	8099	*659	9869.	7669.	.6213	3136	0230	0650	£752.	2722.	12131	.2057	.1803	1001	.8205	1.1605	******	3.5422
10012723 13 2014	1565.	.5203	. 55335	. 5964	.6174	6679	0884.	11398	.1586	.2253	. 2983	34.79	.3976	.4526	1229	0833	0290	.0.02	+110.	an.	. 167	0009	-,4080	-1.0040	6239	. 3086	9602.	.3710	.2987	ua.	.8756	1,0896	-	-3.8977
Lift Coefficient	.626	1,001	1.364	1.740	1.890	2.064	2.163	787.	1.178	3	1.928	2.123	2.319	2.436	.453	.835	1.239	1.595	1.801	1.97	7.132	11.828	5.212	11.140	1.010	.871	.759	188	.802	.703	4.819	9.622		0.020
7066) Pitch Homes CQ - Pt. Lbs.	19518	16543	15213	13658	11938	66101	10782	15252	13643	12889	13072	13632	12277	13317	16413	15085	14222	13977	13791	13698	35.80	878	3	8	9793	8038	8112	12359	10800	8433	1910	2702		8637
706al Brog. (p.) - Lbo.	2564	26.38	2806	3131	3229	3339	3483	363	95	649	854	1001	1157	1307	-357	-242	9	118	228	328	99	051-	-102	-251	2200	1612	8901	9	2440	1800	278	2 3	1	27
7010) Life (1.) - 120.	3239	5073	6916	9135	9887	10605	13948	2175	3112	911	5518	0119	6748	2035	3316	24.26	3635	1994	2304	5753	6270	2957	1303	2785	2397	184	3939	7330	6552	3764	13.00	2673		1003
** (T28)	280							NC													1	-									3C			
Cultae Speed	14.240	14240	14240	14240	14240	14230	14230	14240	14240	09791	14240	14240	06771	14230	14230	14230	14230	14230	14.720	14.720	0775	14310	11730	14290	0001	09811	9	11860	11870	11840	11730	9 9		(77.5)
Wing Flop Angle	2	_		_	-	_		2	_	_	_		_		_	_	_				,	_									2			
Secretion Control Secretor (8C) - CPS	330							370			_				_						***	_									330			
seougep - (1)	0							0												120		,									0			
of the second stade of the second sec	0	-	_	_	_	-	-	a	_	_	-	_	-	-	32	_	_	_			•	_				R	2		8	2	•	8	1	-
seetah to etgah seetgeb - (>4)	-8.00	00.4	00.0	00.4	8.8	9.00	10.00	-8.00	90.4	00.0	4.00	00.9	8.00	10.00	-8.00	4.00	8.0	00.4	8.8	8.8	8 8													
Tomes Tomes	6.7			2				3	2		2			8				62		_	-	8	*	57	3	3	1 :	2	:		2 :	2 3	1	
mas - (u)	1785	1702	1303	16.87	1704	17.18	1730	98.91	1691	1687	1666	1691	201	1685	1691	9891	1687	**	9891	1695	16.01	1715	1147	1716	121	1210	180		1237	1234	1163			
Tunnel Symmic Symmetry (q) - Lie/eq.ft.		20.20	20.28			20.35	80.25	11.80	11.60	11.45	11.45	11.51	11.64	11.35	11.62	11.62	11.74	1.7	11.78	11.68	8 8	8	8.1	8.	20.76	8.0	20.76	32.78	32.66	32.80	3	1 2	1	
etend - (V)	8							3	_			_		_	_										2		-	8		-	a			-
forest forest	11	_	-	_			-	32	-	-	_	-	-	_	_	-	-	-	_		-			_	_	-		-	_	_	4			-
o to taled		2	•		3	=	2	-	**	*	•	*	•		•	•	9	=	2	2		~	-				~ .		-	-	-			;
eviluseemb	-	20	50	-				-		-	=	**	-	-	•	-	~	=	-	-		-	-	-	-	-	-	-	9	-	-			-

TABLE A-2 (Continued)

other and other				-		-							•		_					-															
Jeech Hosses Geofficient (U)	.022	.038	890	.038	850	.054	N	990.	.061	.057	.062	*90*	720.	.025	.021	.021	.021	120.	020	610.	.018	.037	.036	¥0.	0.00	.032	.029	ă	.027	.021	90.	.074	.052	.96.	18.
Jeel 2233000 2030	.073	970"-	-,112	.112	010	083	NC	.074	900*-	. 284	.166	180.	620.	050	.072	560.	.115	0.1.	.147	.162	.173	070.	160		,137	.156	.172	189	.223	.240	.172	181	30.	.224	.246
נונו מסונונונים: (קן)	.381	.356	.261	.457	60%	.301	.622	.493	.380	.768	.624	605.	.328	.356	*	.411	.430	.438	1997	695.	799.	.343	.402	454.	. 307	š	.581	×	909.	.594	.337	627	+19.	747	.810
Velocity Setto (v./v _{tip})	.107	901.	. 105	.146	146	.143	.215	.215	.211	.286	,286	982.	. 105	100	107	860	103	.102	103	.102	101.	.142	.143	.142	136	7	.142	.143	.143	3	.214	12	.214	.212	.210
harmonion in. Hg.	30.46												30.47																						
1161 To bres tarts (46/40)	5.19	.7.83	-2,32	40.4	-42.23	.3.61	-20,01	6.63	-62.10	2,70	3.76	6.25	11.29	7.13	5.49	4.31	3.72	3.36	3.13	2.83	2.66	4.92	4.41	4.08	3.70	3.8	3.37	2.62	2.71	2.47	1.96	2.60	3.01	3.32	3.45
Pitch Mesent Coefficient (C,)	.7878	1.3996	1.7066	.5972	1656.	1.1097	3,1287	. 5423	.5757	. 2969	, 3213	.3311	1.0135	. 9540	.8358	.8737	.6390	.8319	.7700	.7350	.7198	.7987	.7456	.7337	.6635	6999	.6042	3759	.5636	0177	.5552	.6893	.4828	160%	.3933
70012121500 2014 (c.)	90.10	5559	-4.3338	.7473	0646	1.5757	0560*-	.2247	1610	.4922	.2854	1141.	. 36 10	.6282	.9472	1.3418	1.3067	1.7318	1.8861	2.1419	2,3580	6965	.6348	.7951	1.0093	1.0912	1.2032	1.3120	1.5579	1.6950	.5316	.5711	9679 *	6707.	3157.
1001317100 5712 (_G 2)	4.680	4.357	3,107	3,060	2.729	2,083	1,8/12	.1492	1.189	1.329	1.074	.382	4.078	4.479	5.207	5.7%	5.613	4.821	4.907	6.205	6.282	2,448	2.802	3.244	3.736	3.863	4.065	3.438	4.236	4.195	1.042	1.487	1.897	2.356	2.595
70161 Pitch Homes (0) - Pt. Lbs.	4289	7441	9543	4736	1616	10558	67107	11592	12347	11334	12236	12563	5332	7965	4122	4020	4153	4026	3868	3571	3391	7131	6917	6551	5741	6113	5483	- 3446	1100	3881	11511	14152	9921	8273	7895
Total Pres.	699	-403	-1917	979	-85	-747	+275	655	-36	2362	14.30	730	528	3	637	842	1017	1143	1292	619	1515	509	803	*	11811	1364	1489	0.91	1889	1034	1503	1599	1764	1952	2056
100 - 100. (L) - 100.	34.75	3159	2369	800%	3588	2703	5505	1343	34.78	6918	8965	+36+	2926	3180	3502	36.36	3789	3842	9505	ij	96.04	1967	ž	3979	6000	4829	1000	4798	3136	2034	2346	1917	3313	96.59	7105
4 (100)	260												Si Si																						
Mar - (^{cqf} s) peeds outly	14.250	14.240	14240	14.260	14.260	14250	14270	14.250	14270	14230	14130	14150	14.225	14225	14225	14230	14230	14230	14230	14230	14230	74.740	77570	14240	14240	14240	14240	14240	14240	14240	14260	14260	14260	14260	14260
state of the serves	2	_			_	_	_		_				2	_	_	_					_														
101100 Control 8622700 803 - (36)	oft												330						_																
sesting - (%) lief ferenting fine employing sesting - (1)	0												0			ı																			
signa mound sind	-	R	32	0	8	22	٥	8	32	0	9,	32	o							_															
south to signal seergeb - Cap	0.00												9.8	4.00	00.00	8.9	6.00	8,00	10.00	12.00	14.30	9.99	1.00	0.00	4.00	6.00	8.8	10.00	12,00	14.90	9.9	6.00	8	4.90	8.8
Tunnel Temp.	3	63	2	63			2			7.1			3	70	6.2	3	63			\$		43	3	\$		2					11			77	
ma - Ch)	1691	1690	1718	1692	1669	1709	1703	1633	1730	1718	1710	1713	16.96	1691	1693	1693	1669	1687	1685	1687	1684	1683	1691	1881	1664	1679	1680	1881	299	100	7697	1689	1666	1691	7001
Treesoure (4) - Lie/eq. (1)	2,97	8.5	3.93	5.24	3.26	5.19	11.70	11.66	11.70	20,62	20.74	30,70	2.87	2.0	2.69	2.51	2.70	2.6	2.74	2,65	2.33	4.87	3.06	4.87	4.72	2.00	4.85	2,00	4,85	4.85	11.31	11.20	11.21	11.03	20.00
stead - (V)	2			3			3			8			8									3									3				
.of mil													32																						
· .of sold of let			-	102	•	2	:	2	2	4	2	91	-	**	•		•		2	10	*	2	:	2	2	2	2	*	13	2	2	8	77	2	2
Point No Consecutive	1 8	133	738	238	94	7	747	25	1	745	2	74.7	2	5.0	8	751	752	753	*	255	126	157	32	33	3	100	25	163	1	2	:	3	*	;	2

TABLE A-2 (Continued)
AMES TEST RESULTS

Yes Angle (T) - Degrees	1	0		0	_		_	_			-		_			-	-					-		_			_							_
Fitch Noment Coefficient (k _j)		7 0	.033	ž																								-	ź					
Drag Costitcient		607	.291	ž					_							_	-			-					Ī			1	Ş		_	_		
Lift Coefficient	670	799.	.897	2									_								_					-	_	***						
Velocity Ratio (v _p /v _{ip})	913	617.	217	2																								NA						_
Serometer In. Hg.	20 87	3	20 00	67																								24.01						_
olian gerd of ilil	3.33	0	2,00	7 2	2	1 1	6.38	20.0	4.35	2.88	2.77	3.11	3.26	3.35	3,37	3,45	3.08	2.65	2.49	-1.50	.52	2.95	4.68	0.10	5.5	7 70	4.17		63	2.98	4.78	5.22	5.51	
Fitch Moment Institutent (_{cl} 2)	4148	31.18	175	H750 -	0.230	0463	-, 1835	0800	0509	3053	0706	2554	-,3984	4766	5450	5879	-,5580	*9***	418.	06 34	0120	0915	1705	2578	2782	3135	3078	.0164	0625	117	-, 1884	-, 2064	2398	0036
Drag Coefficient (_Q 2)	.8068	912.	1800	.1576	. 1495	.1697	.1791	1947	.2697	6607	.1506	1540	.1629	.1684	.1743	.1783	.1953	.2110	.2226	.1786	.1557	1307	00/1.	2121	. 2400	.2968	.3497	.1755	.1528	.1485	. 1673	.1851	. 2089	3366
(cr)	2,685	2.816	7	.117	394	.757	1.143	1.137	1.174	1.182	.418	62.	.532	.565	. 588	919.	.602	.561	.555	692	,031	57 5	070	1.140	1.299	1.398	1.461	260	960-	.443	.803	196.	1.151	1 212
Total Pitch Moneni (http://doi.org/10.1016/10.	8-95	6432	282	-122	73	-75	-337	2.38	-63	-678	-597	-2364	-3728	-4473	-5146	-5533	-5198	-4144	-3946	561	66-	-796	-1741	-2148	-2-40	-2751	-2659	244	-1298	-2328	-3694	-+080	-4665	8207
Totel brag.	2253	2550	57	R	7	53	53	17	42	130	194	199		217	225	_	5.3	270	_	234	202	215	_	_	_	365	+28	515	91.7	_		_	-	614
Totel Lift (L_) - Lbe,	6671	7872	6-	37	125	244	363	361	361	387	245	628	269	740	773	807	781	728	733	-354	501	283	1275	6651	1708	1831	1895	-767	281	1296	2340	2868	3367	3845
.qmul Ces Tump. 1 (TDS)	NC		N.A.																						-	1	-	- YX			2	2	e .	m
HIN - (1882)	14.260	14260	0																					-				0					_	_
aignA qoff gniW (o o) - degress	26		36					_							-			_		-	-		_	_			_	2			_			_
Resction Control Setting (RC) - CPS Wing Flep Angle	3311		130													-												110		-	_			_
liel lanoztaki Incidence Angle Incidence Angle (1) - degrese	-		0								0	1	00	2	12	7	16	70	07	>				_	-			0		_	_		_	_
atstand 11xX sastes = (%)	0		8	_							-						_		-		_							8	_			_	_	_
Angla of Attack	8.00	10.00	-8.12	-3.94	.21	0+ * +	8.61	10.61	12.63	14,63	.22	. 26	. 28	8 :	.31	.33	75.	9	3 3	10.14	24	4.42	6.52	8,61	10.69	12.74		-8.14	3.95	77.	7 .	6.52	10.0	0.70
Tunnel Temp.	7.7	7.3	5.2						_	53				Ž.							55	_	_		99	_	_	19	÷	_				
Man Speed	1691	1698	0			_		_		•							_		-	_		-		_	_		-	0						
Tunnel Dynamic Fremeure (q) ~ Lbs/sq.ft.		_	1,27	1.27	1.27	1,29	1.27	1,27	1.23	1.31	5.21	5.24	5.24	67.0	5.26	5.Z+	5.13	61.0	07.0	01.0	5.24	5.24	5.26	5.26	5.26	5.24	5.19	11.78	11.68	0/-1	986	11.70	0711	29.
*Jona - (V)	3	_	22		_						0,7	_		_	_	_	_	_				-1		91	-1	-	_		= :	= =	1 -	1 7		7
Rum No.	35	_	36	_				_	_	-					-		_				_							2	_	_				_
	r=1		mi																	_			_					37						
Potnt No	24	52	-	7	3	-7	'n	9	- "	10	0	· .	= :	4 6	η.	7 1	٠ ١					_	64	-								0 4		_

TABLE A-2 (Continued)
AMES TEST RESULTS

PROTECT (T)	Ô		_	_	_																										
Pitch Homent Coefficient (K)	2																														
Jacisliteon gard (40)	2																														
Lift Geofficient	2																														
Velocity Ratto	2																														
Berrmeter Io. Mg.	16.62																														
Lift To Brag Bati (ابراهـ)	5.33	65.7		3.26	2.99	3,31	3.47	3.51	3.49	3.23	2,97	-1.49	. 57	3.00	₽.	5.29	5.51	5.55	5.12	×.4											
Pitch Homent Coefficient (C _p)	2318			3171	-, 1252	-,3143	46B7	-,5388	0.09	5834	-, 5408	1610	0583	1200	1870	2217	2436	2713	2962	3161											
Prat Coefficient (CD)	.2623	3163	7016	* 20¢	1503	.1550	.1626	. 1689	19/1.	.1900	. XD 28	. 1769	.1552	.14%	.1702	.1873	2012.	.2384	.2811	.3347											
Lift Coefficient	1.399	77.		1.372	0.4.	.514	¥.	**	615.	419.	.603	264	060	064.	.802	199.	1.159	1.324	1.441	1.462											
Total Pitch Homon OQ - Pt. Lba.	-6359	7870		-6262	413	11572	17371	20048	22550	21688	87002	168	-2160	4220	-6539	-7735	PK 39	-9329	10103	16931											
Bend lesof ,edl - (_gd)	60%	673		1185	167	161	929	2	5	8	1032	913	SDP.	765	8 7	126	102	1151	1355	1631											
الماء المادة. (با - لماء.	1001	956.7		3	2324	2666	2921	90.00	3188	3180	3121	-1366	339	2331	4 166	> 164	6032	99	74.56	1573											
.gent 040 leadail (201) - P	ž																														
Here - (₂₈₅ H)	0																						Down								
MO - CM Ning Flep Angle (b) - degrees	2				_																			dn u							
Leastion Control	Jы					_				_							•						ectio	Direction							
find farmed to the first f	•	2				4	•	9	12	4	91	•											Reaction Mozzle Birection			61					
ALLE LOUVET ANGLE	8																_				_		220	220	i e	4		_			
Angle of Accook	12.75	14 78		16.73	Ą	.27	R.	ĸ.	æ.	.33	.32	4.14	-2.95	A.	4.43	6.53	8.62	10.71	12.71	Z.			ž so:	Reaction Mozzle	Not Calculated	Not Applicable	2008				
.quel least	19		.,	7.0				6.7								\$							act	¥	4	4	Errossou				
boogs ned Hts - (₄ K)	•			_																					7. 8	× ×					
olemand learns esuseers .13.pe/edd - (p)	11.62	8		*	19.0	W.74	2.8	M.74	20.74	8.8	8.8	20.72	20.04	20.72	20.80	¥.8	20.62	B.72	8.8	8.72		EGENO:	٩	>	2	=	1				
boogl Jeans's steam - (,V)	9				8																	2									
. ell aux	11				_	_							_																_		
- , olf 101et and 105	-	•	. !	9	=	7	2	1	2	2	=	2	2	8	71	Z	n	*	ĸ	A											
PATTROOGUOD	8				2		=	7	2	1	2	4		9	•	8	=	2	2	*											

All Dimensions In Feet Unless Otherwise Specified.

FIGURE 1. SKETCH OF NASA FULL-SCALE AIRCRAFT MODEL

GEOMETRIC DATA

WING

Area 250 Sq. Ft.
Aspect Ratio 5
Taper Ratio 0.5
Mean Aero. Chord 7.33 Ft.
Airfoil Section NASA 63-210
Wing Loading 28 PSF.

HORIZONTAL TAIL

Area 50 Sq. Ft.
Aspect Ratio 5
Taper Ratio 1.0
Airfoil Section NASA 63 A 012

VERTICAL TAIL

ternate rizont**a**l

Position

Area 25 Sq. Ft.
Aspect Ratio 2.5
Taper Ratio 1.0
Airfoil Section NASA 63 A 015

FIGURE 2 - CARRIER TAB INSTALLED

FIGURE 3 - ASSEMBLED ROTOR - BUILD-UP #3-001

Fan Centerline

Velocity
Probe

FIGURE 4 - VELOCITY PROBE LOCATION.

Bottom of Fuselage

NOTE: Not to scale.

FIGURE 5 - STATIC PRESSURE TAP LOCATIONS ON THE FUSELAGE

FIGURE 6 - VELOCITY CALIBRATION VS. VELOCITY RATIO.

FIGURE 7 - TOTAL AVAILABLE HORSEPOWER VERSUS ENGINE SPEED

FIGURE 8 - DUCTING LOSSES VERSUS TURBINE DISCHARGE MACH NUMBER

Engine Speed - % N $_{\rm J85}/\sqrt{\theta}$ Figure 9 - EXHAUST GAS TEMPERATURE (EGT) VERSUS J85-7 SPEED

FIGURE 10 - UNPOWERED AIRCRAFT PERFORMANCE

FIGURE 11 - UNPOWERED AIRCRAFT PERFORMANCE

+

FIGURE 12 - UNPOWERED AIRCRAFT PERFORMANCE

FIGURE 13 - UNPOWERED AIRCRAFT PERFORMANCE

FIGURE 14 - UNPOWERED AIRCRAFT PERFORMANCE

FIGURE 15 - HORIZONTAL TAIL EFFECTIVENESS

FIGURE 16 - ROLL COEFFICIENT VERSUS ALLERON POSITION

FIGURE 19 - FAN INLET LOSS VERSUS VELOCITY RATIO

FIGURE 20 - FAN INLET LOSS VERSUS VELOCITY RATIO

FIGURE 21 - STATIC FLOW COEFFICIENT FOR FAN INLET DUCT VERSUS FAN SPEED

FIGURE 22 - FAN INLET LOSS VERSUS VELOCITY RATIO

-136-

FIGURE 25 - FAN INLET RAM RECOVERY VERSUS VELOCITY RATIO

.5

.1

.3

Velocity Ratio - V_P/C_Z 10.2

.6

.8

1.0

FIGURE 26 - TOTAL FAN THRUST AND ISENTROPIC HORSEPOWER VERSUS FAN SPEED

FIGURE 27 - TOTAL FAN THRUST COEFFICIENT VERSUS FAN SPEED

FIGURE 28a - TOTAL THRUST RATIO VERSUS INDICATED LOUVER ANGLE (β)

FIGURE 28b - TOTAL THRUST RATIO VERSUS ACTUAL TURNING ANGLE (β_{V})

FIGURE 29 - TOTAL FAN THRUST COEFFICIENT ($\mathbf{H}_{\mathbf{T}}$) VS. VELOCITY RATIO.

FIGURE 30 - FAN LIFT COEFFICIENT (${\rm H_{LF}}$) VERSUS VELOCITY RATIO

FIGURE 31 - TOTAL FAN HORIZONTAL DRAG COEFFICIENT (${
m H}_{
m DF}$) Vs. VELOCITY RATIO.

FIGURE 33 - NET FAN DRAG COEFFICIENT (HDN) VERSUS VELOCITY RATIO

FIGURE 34 - FAN SPEED VARIATION AT CONSTANT HORSEPOWER VERSUS VELOCITY RATIO AND EXIT LOUVER ANGLE

FIGURE 35 - FAN SPEED VARIATION VERSUS FLIGHT SPEED AND EXIT LOUVER ANGLE FOR CONSTANT J85 THROTTLE SETTING AND LOOK J85 INLET RECOVERY

ber ceut corrected Fan Speed - $N_{\overline{b}}/\sqrt{\theta}$

FIGURE 36 - INTERACTION LIFT VS. VELOCITY RATIO AND EXIT LOUVER ANGLE.

FIGURE 37 - INTERACTION LIFT (FROM WING STATIC PRESSURES) VERSUS VELOCITY RATIO AND EXIT LOUVER ANGLE

FIGURE 38 - TOTAL MEASURED LIFT MINUS FAN LIFT VERSUS ANGLE OF ATTACK AND VELOCITY RATIO

FIGURE 39 - INTERACTION LIFT AT MAXIMUM LIFT CONDITION VERSUS VELOCITY RATIO

FIGURE 40 - INTERACTION DRAG VS. VELOCITY RATIO AND EXIT LOUVER ANGLE.

FIGURE 41 - TAIL DOWNWASH VERSUS VELOCITY RATIO

-155-

FIGURE 42b - DRAG COEFFICIENT VERSUS VELOCITY RATIO

FIGURE 42c - PITCHING MOMENT COEFFICIENT VERSUS VELOCITY RATIO

FIGURE 43a - LIFT COEFFICIENT VERSUS VELOCITY RATIO

FIGURE 436 - DRAG COEFFICIENT VERSUS VELOCITY RATIO

FIGURE 43c - PITCHING MOMENT COEFFICIENT VERSUS VELOCITY RATIO

FIGURE 44a - LIFT COEFFICIENT VERSUS VELOCITY RATIO

FIGURE 446 - DRAG COEFFICIENT VERSUS VELOCITY RATIO

FIGURE 44c - PITCHING MOMENT COEFFICIENT VERSUS VELOCITY RATIO

FIGURE 45a - LIFT COEFFICIENT VERSUS VELOCITY RATIO

FIGURE 456 - DRAG COEFFICIENT VERSUS VELOCITY RATIO

FIGURE 45c - PITCHING MOMENT COEFFICIENT VERSUS VELOCITY RATIO

1

FIGURE 46 - FAN POWERED AIRCRAFT PERFORMANCE

FIGURE 47 - FAN POWERED AIRCRAFT PERFORMANCE

FIGURE 48 - FAN POWERED AIRCRAFT PERFORMANCE

FIGURE 49 - FAN POWERED AIRCRAFT PERFORMANCE

FIGURE 50 - FAN POWERED AIRCRAFT PERFORMANCE

FIGURE 51 - FAN POWERED AIRCRAFT PERFORMANCE

į

FIGURE 52 - FAN POWERED AIRCRAFT PERFORMANCE

FIGURE 53 - FAN POWERED AIRCRAFT PERFORMANCE

FIGURE 54 - FAN POWERED AIRCRAFT PERFORMANCE

FIGURE 55a - FAN POWERED AIRCRAFT PERFORMANCE

FIGURE 55b - FAN POWERED AIRCRAFT PERFORMANCE

FIGURE 56 - FAN POWERED AIRCRAFT PERFORMANCE

į

FIGURE 57a - PRESSURE COEFFICIENT ON TOP OF FUSELAGE VERSUS RADIUS RATIO

Pressure Coefficient (Q) - $\frac{q}{q}$ - $\frac{q}{q}$ - $\frac{q}{q}$

FIGURE 57b - PRESSURE COEFFICIENT ON TOP OF FUSELAGE VERSUS RADIUS RATIO

FIGURE 57d - PRESSURE COEFFICIENT ON TOP OF FUSELAGE VERSUS RADIUS RATIO

Pressure Coefficient (C_p) - C_p - C_p - C_p

FIGURE 58a - PRESSURE COEFFICIENT ON BOTTOM OF FUSELAGE VERSUS RADIUS RATIO

Radius Ratio - $r/R_{\rm Fan}$

-183-

FIGURE 586 - PRESSURE COEFFICIENT ON BOTTOM OF FUSEIAGE VERSUS RADIUS RATIO

FIGURE 58c - PRESSURE COEFFICIENT ON BOTTOM OF FUSELAGE VERSUS RADIUS RATIO

FIGURE 98d - PRESSURE COEFFICIENT ON BOTTOM OF FUSELAGE VERSUS RADIUS RATIO

FIGURE 59a - PITCHING MOMENT SOURCE BREAKDOWN VERSUS VELOCITY RATIO

FIGURE 59b - PITCHING MOMENT SOURCE BREAKDOWN VERSUS VELOCITY RATIO

FIGURE 60 - STATIC LONGITUDINAL STABILITY VERSUS VELOCITY RATIO

FIGURE 61 - PITCHING MOMENT COEFFICIENT VERSUS ANGLE OF ATTACK AND VELOCITY RATIO

FIGURE 62 - PITCHING MOMENT COEFFICIENT VERSUS ANGLE OF ATTACK AND VELOCITY RATIO

FIGURE 63a - LIFT COEFFICIENT VERSUS ANGLE OF ATTACK AND EXIT LOUVER ANGLE

H

.

-194-

FIGURE 654 - LIFT COEFFICIENT VERSUS ANGLE OF ATTACK AND EXIT LOUVER ANGLE

0

R

-197-

FIGURE 63f - LIFT COEFFICIENT VERSUS ANGLE OF ATTACK AND EXIT LOUVER ANGLE

LIFT CORFFICIENT VERSUS ANGLE OF ATTACK AND EXIT LOUVER ANGLE 1 FIFE O'S

G H

-200-

Drag Coefficient - HD

-203-

FIGURE 64e - DRAG COEFFICIENT VERSUS ANGLE OF AFFACK AND EXIT LOUVER ANGLE

I Supplier

II

(constant)

Name of Street

FIGURE 64f - DRAG COEFFICIENT VERSUS ANGLE OF ATTACK AND EXIT LOUVER ANGLE

- DRAG COEFFICIENT VERSUS ANGLE OF AFFACK AND EXIT LOUVER ANGLE FIGURE 64g

FIGURE 65a - PITCHING MOMENT COEFFICIENT VERSUS ANGLE OF ATTACK AND EXIT LOUVER ANGLE

Pitching Moment Coefficient - $\mathbf{H}_{\mathbf{M}}$

-208-

FIGURE 65c - PITCHING MOMENT COEFFICIENT VERSUS ANGLE OF ATTACK AND EXIT LOUVER ANGLE

FIGURE 65d - PITCHING MOMENT COEFFICIENT VERSUS ANGLE OF ATTACK AND EXIT LOUVER ANGLE

-

Parameter A

L

FIGURE 65e - PITCHING MOMENT COEFFICIENT VERSUS ANGLE OF ATTACK AND EXIT LOUVER ANGLE

FIGURE 65f - PITCHING MOMENT COEFFICIENT VERSUS ANGLE OF ATTACK AND EXIT LOUVER ANGLE

o HG. W./HD g

Distance Required For Acceleration - Feet

T000

Seconds

Flight Speed - Knots

Figure 66 - Transition in unaccelerated level flight - α and β versus flight speed (N_F = 100%)

TRANSITION CHARAGTERISTICS FOR LEVEL FLIGHT DECELERATION VERSUS FLIGHT SPEED FIGURE 68.

TRANSITION CHARACTERISTICS FOR MAXIMUM RATE OF CLIMB AT CONSTANT FLIGHT SPEED VERSUS FIGURE 69.

Lift Coefficient - H_L

FIGURE 70b - LIFT COEFFICIENT VERSUS VELOCITY RATIO AND EXIT LOUVER ANGLE

FIGURE 700 - LIFT COEFFICIENT VERSUS VELOCITY RATIO AND EXIT LOUVER ANGLE

FIGURE 71b - DRAG COEFFICIENT VERSUS VELOCITY RATIO AND EXIT LOUVER ANGLE

FIGURE 73 - GROUND RUN DISTANCE VERSUS FLIGHT SPEED FOR S.T.O.

FIGURE 74 - DISTANCE TO CLEAR 50 FOOT OBSTACLE IN STO VERSUS PER CENT

FIGURE 75 - PITCHING MOMENTS IN CONSTANT SPEED CLIMB VERSUS FLIGHT SPEED (SEE FIGURE 69)

FIGURE 76 - PITCHING MOMENTS IN CONSTANT ATTITUDE DESCENT VERSUS FLIGHT SPEED (VARIABLE FAN SPEED) (SEE FIGURE 72)

FIGURE 77 - PITCHING MOMENTS IN MAXIMUM ACCELERATION TRANSITION (LEVEL FLIGHT) VERSUS FLIGHT SPEED (SEE FIGURE 67)

FIGURE 78 - BLADE STRESSES VERSUS TUNNEL SPEED AND EXIT LOUVER ANGLE

FIGURE 79 - AFT FRAME SAW CUT SEPARATION.

j

FIGURE 80 - AFT FRAME SAW CUT COMPRESSION

FIGURE 31 - BUCKET SHROUD RUB IN HONEYCOMB SEAL

FIGURE 82 - SUPPORT RING CRACK PROPAGATION IN AFT FRAME

FIGURE 83 - BUCKET SHROUD DETAIL

FIGURE 84 - FAN INLET EFFICIENCY VERSUS VELOCITY RATIO

LIST OF DISTRIBUTION

Volume 2

	Chief of Naval Research	
Commanding General	Code 461, Maj. L. C. Robertson	
United States Continental Army Command	Washington 25, D. C.	(1)
ATTN: Materiel Developments	washington 20, 21 of	, ,
Fort Monroe, Virginia (1)	U. S. Army Standardization Group	. U.K.
	Box 65, U. S. Navy 100	,
President	FPO New York, New York	(1)
United States Army Aviation Board	FPO New Tork, New Tork	(-)
ATTN: ATBG-DG		
Fort Rucker, Alabama (1)	Director	
	Operations Research Office	
Chief of Transportation	ATTN: Library	
ATTN: TCDRD (1)	The Johns Hopkins University	
ATTN: TCAFO-D (1)	6935 Arlington Road	(1)
Department of the Army	Bethesda, Maryland	(1)
Washington 25, D. C.		
	NASA	
Commander	ATTN: Bertram A. Mulcahy	
Aeronautical Systems Division	Asst. Director for Technic	al Info.
Air Force Systems Command	1520 H Street, N.W.	
ATTN: EWAPEL-(Z) (1)	Washington 25, D. C.	(1)
ATTN: WWRMPT (1)		
Wright-Patterson Air Force Base, Ohio	Librarian	***
wright-Patterson All Porce Base, only	Langley Research Center	
	NASA	
Commanding Officer	Langley Field, Virginia	(1)
U. S. Army Transportation Research Command	Langley 11011, 1119	
ATTN. Research Reference	Ames Research Center	
ATTN: Aviation Directorate (1)	NASA	
ATTN: Military Liaison Office (1)	ATTN: Library	
Fort Eustis, Virginia	Moffett Field, California	(1)
	Mollett Fleid, California	(-)
Commander	V4.04	
Air Research & Development Command	NASA	
ATTN: RDR-LA (1)	Lewis Research Center	
Andrews Air Force Base	ATTN: Library	
Washington 25, D. C.	21000 Brookpark Road	(1)
	Cleveland 35, Ohio	(1)
Commanding Officer and Director		
David Taylor Model Basin	Commander	
Aerodynamics Laboratory	Armed Services Technical Info. A	Agency
Washington 7, D. C. (1)	ATTN: TIPCR	
, , , , , , , , , , , , , , , , , , , ,	Arlington Hall Station	
Chief, Bureau of Naval Weapons (R-38)	Arlington 12, Virginia	(10)
Department of the Navy		
ATTN: RAPP-14 (1)	Office of Chief of R&D	
ATTN: RAAD-32 (1)	ATTN: Air Mobility Division	
Washington 25, D. C.	Department of the Army	
manufig con 20, D. C.	Washington 25, D. C.	(1)

U. S. Army Standardization Group, Canada c/o Director of Equipment Policy Canadian Army Headquarters Ottawa, Canada (1) Canadian Army Liaison Officer Army Research Office Liaison Group, Room 208 Office of the Chief of Research and U. S. Army Transportation School Development Fort Eustis, Virginia (3) ATTN: Research Support Division Department of the Army British Joint Services Mission (Army Staff) Washington 25, D. C. ATTN: Lt. Col. R. J. Wade, RE DAQMG (Mov & Tn) Commanding General 3100 Massachusetts Avenue, N. W. U. S. Army Transportation Materiel Command Washington 8, D. C. (3) ATTN: TCMAC-APU P.O. Box 209, Main Office Convair St. Louis 66, Missouri Division of General Dynamics Corporation San Diego 12, California ATTN: Library (1) Grumman Aircraft Engineering Corporation Bethpage, Long Island, New York ATTN: Library (1) Hiller Aircraft Corporation Palo Alto, California ATTN: Library (1) North American Aviation, Inc. Columbus Division 4300 East Fifth Avenue Columbus 16, Ohio ATTN: Library (1)Republic Aviation Corporation Farmingdale, Long Island, New York ATTN: Library (1)Ryan Aeronautical Company San Diego, California ATTN: Library (1) Vertol Division Boeing Airplane Company Morton, Pennsylvania ATTN: Library

(1)

(1)

Office of the Senior Standardization Representative

(1)

GENERAL ELECTRIC COMPANY TECHNICAL INFORMATION SERIES CONTENTS PAGE

CONTENTS OF REPORT

NO. PAGES TEXT

NO. CHARTS

DRAWING NOS.

PHOTO NOS.

DISTRIBUTION

- A. P. Adamson (1)
- W. B. Campbell (3)
- D. E. Clark (1)
- W. R. Collier (2)
- R. H. Goldsmith (4)
- 0. J. Krasner (1)
- W. R. Morgan (2)

GENERAL SELECTRIC

TECHNICAL INFORMATION SERIES

	NO.			
Z.J. TEST RESULTS FUSELAGE	R61 FPD 427			
Przedpelski MOUNTED LIFT FAN - VTOL	April, 1961			
TITLE DECLETE OF WIND THINKS THE				
RESULTS OF WIND TUNNEL TESTS OF A FUI FUSELAGE MOUNTED, TIP TURBINE DRIVEN L				
	IFI FAN			
ABSTRACT Results of wind tunnel tests of a	full scale, fuse-			
lage mounted, tip turbine driven lift fan. V	Volume 2 of 3,			
April '61, 237 pages-illustrations-tables ((
DA 44-177-TC584) USA TRECOM Project 9R 38-01				
61-15, Unclassified Report (Vol. 1 - TIS R61				
report covers 30 hours of testing in the NAS				
wind tunnel. Propulsion & aircraft performa	ance and			
G.E. CLASS REPRODUCIBLE COPY FILED AT	NO. PAGES			
Flight Prop. Division	237			
GOV. CLASS. Unclassified Technical Information	Center			
Abstract Cont'd:				
interactions are discussed.				
indicate that the Lift Fan can proceed to the next phase of				
the test program.				
CONCLUSIONS: (1) Hover Fan lift was 7050 lb	s at 100% speed			
(2) Short take off analysis of the system sh				
of 860 feet to clear a 50' obstacle at a gro	es woight oaugh			
to 1.1 of the max. installed lift. (3) Take	off 2 landing			
ransition schedules studied indicated no ma	ior control or			
tability problems. (4) The fan inlet recove	red 100% of			
light dynamic pressure throughout a flight	speed range			
ufficient for take off transition, and neit	her anale of			
ttack nor angle of yaw had an appreciable e	ffect on inlet			
performance over a wide range of the variable	es and the			
The vallage				

By cutting out this rectangle and folding on the center line, the above information can be fitted into a standard card file.

For list of contents - drawings, photos, atc. and for distribution see next page (GT 2063-BI).

INFORMATION PREPARED FOR	Contract DA 44-177-TC-584	
	opulsion Laboratory Department	
COUNTERSIGNED 11900	dont OPERATION VTOL	
DIVISION Flight Propulsi	on Div. LOCATION Evendale, Ohio	
GT 2063.A1 (10.52)	-242-	

UNCLASSIFIED 1. VTOL Propulsion	System 2. Contract DA 44-177-TC-584		UNCLASSIFIED 1. VTOL Propulsion System 2. Contract DA 44-177-TC-584
Ap Accession No. General Electric Co., Cincinnati, Ohio		This report covers 30 hours of testing in the NASA-AMES 40' x 80' wind tunnel. Propulsion and aircraft performance and interactions are discussed. Test results indicate that the Lift Fan can proceed to the next phase of the test program.	General Electric Co., Cincinnati, Ohio FABRICATION, TEST & ANALYSIS OF A TIP TURBINE LIFT FAN VTOL PROPULSION SYSTEM. Results of wind tunnel tests of a full scale, fuse- lage mounted, tip turbine driven lift fan. Volume 2 of 3, April 1961, 237 pages-illustrations- tables (Contract DA 44-177-TC584) USA TRECOM Project 9R 38-01-020-02, TREC 61-15. Unclassified Report. This report covers 30 hours of testing in the NASA- AMES 40' x 80' wind tunnel. Propulsion and aircraft performance and interactions are disucased. Test results indicate that the Lift Fan can proceed to the next phase of the test program.
UNCLASSIFIED 1. VTOL Propulsion	System 2. Contract DA 44-177-TC-584		UNCLASSIFIED 1. VTOL Propulation System 2. Contract DA 44-177-TC-584
AP Accession No. General Electric Co., Cincinnati, Ohio	FABRICATION, TEST & ANALYSIS OF A TIP TURBINE LIFT FAN VECL PROPULSION SYSTEM. Results of wind tunnel tests of a full scale, fuse- lage mounted, tip turbine driven lift fan. Volume 2 of 3, April 1961, 237 pages-illustrations- tables (Contract DA 44-177-TC584) USA TRECOM Project 98 38-01-020-02, TREC 61-15. Unclassified Report.	This report covers 30 hours of testing in the NASA-AMES 40' x 80' wind tunnel. Propulsion and aircraft performance and interactions are discussed. Test results indicate that the Lift Fan can proceed to the next phase of the test program.	General Electric Co., Cincinnati, Ohio FABRICATION, TEST & ANALYSIS OF A TIP TURBINE LIFT FAN VTOL PROPULSION SYSTEM. Results of wind tunnel tests of a full scale, fuse- lage mounted, tip turbine driven lift fan. Volume 2 of 3, April 1961, 237 pages-illustrations- tables (Contract DA 44-77-TC584) USA TRECOM Project 9R 38-01-020-02, TREC 61-15. Unclassified Report. This report covers 30 hours of testing in the NASA- AMES 40' x 80' wind tunnel. Propulsion and aircraft performance and interactions are discussed. Test results indicate that the Lift Fan can proceed to the next phase of the test program.

and the same

•