

Direction du Transfert et de l'Innovation Secteur Développement Durable Energie-Transport-Environnement

INSTITUT NATIONAL

DE RECHERCHE
EN INFORMATIQUE
ET EN AUTOMATIQUE

Plan de la présentation

- 1) Le rôle du responsable sectoriel dans la dynamique du transfert orienté PME à l'INRIA
- 2) Analyse du secteur

Pour terminer:

un point d'information sur la Rencontre INRIA Industrie 23 juin

Le rôle du responsable sectoriel dans la dynamiqu du transfert avec des PME à l'INRIA

Une logique orientée PME : analyse de la demande – Accord OSEO

- ➤ 5 Responsables sectoriels embauchés depuis 2009
- ➤ Consolidation de la vision nationale / du potentiel transfert des EPI
- Veille/ Analyse du secteur : les tendances, les pôles

2.1 Analyse du secteur

Green IT (comme expliqué par L Lefevre) et au-delà = IT for Green :

- Rapport Smart 2020 : les STIC pourraient réduire les émissions de gaz à effet de serre de 15% d'ici 2020.
- Etude du WWF de 2008 « Outline for the first global IT strategy for CO2 reductions » estime la réduction apportée par les technologies TIC à plus 20% en 2020

Les tendances

- Aujourd'hui = **convergence des métiers** (l'énergie, l'eau, les déchets, à différents niveaux : l'aménagement des bâtiments/quartiers/villes/régions ..).
- Demain = regroupement des acteurs globaux et des nouvelles PME

Le socle de cette convergence repose sur les STIC & sur le couplage de technologies autrefois cloisonnées

des exemples:

Des acteurs de l'énergie > outils web2.0 avec les usagers (consommateurs > producteurs), Des équipementiers auto > opérateurs de services de mobilité (Renault-Nissan & EDF) Saur avec Microsoft etc..

2.2 Analyse du secteur

Le socle de cette convergence

- > Standardiser les remontés en temps réel d'informations (capture transport gestion)
- Organiser optimiser la gestion des consommations en temps réel
- ➤ Informer et rendre le citoyen actif

Mais il reste des paradoxes : la réglementation tend à s'accroitre, donc

- ⇒ Le fournisseur doit réduire la vente des biens consommés (énergie, eau), donc son CA
- ⇒ L'opérateur (qui transporte les données, les biens ..) subit une réduction des volumes transportés donc de son CA, et donc doit réduire ses coûts internes

des alternatives qui commencent à émerger

- ⇒ Se rapprocher du client final qui n'est plus un simple consommateur (les ENR, le Cloud computing etc..)
- = Offrir de nouveau services aux clients, en les intégrant dans les modèles économiques (services offerts sur la part du gain estimé)
- Substitution / opérateurs traditionnels (Stockholm / éolien), les réseaux d'usagers

Conclusion: dans tout projet IT4Green, on trouve ... 6

Smartphones, web2.0, réseaux de communications, couplage et gestion de bases de données hétérogènes, optimisation, analyse des risques, aide à la décision, planification par anticipation (simulations de scénarios), humains virtuels, systèmes de visualisation 3D, interactions, sécurisation des systèmes (robustesse) etc..

Point d'information sur la RII du 23 juin

Les sciences numériques au service de la ville durable

Inter-Pôles : Advancity, System@TIC et Cap Digital 4 sujets

- Des systèmes de transports intelligents au service de citoyens mobiles
- Une gestion efficace de l'énergie : de l'habitation aux réseaux
- La Ville participative : des citoyens acteurs : de nouveaux outils pour de nouveaux usages
- Modélisation de la Ville

La suite ? un programme d'actions coordonnées OSEO-INRIA, avec des pôles associés Les 4 sujets précédents (élargis)

http://www.inria.fr/valorisation/rencontres/industrie-ville-durable/index.fr.html inscription: http://www.inria.fr/saclay/inscription-rii-sciences-numeriques-ville-durable

