## Language-Driven Semantic Change Detection in Urban Maps via Multi-Modal Deep Learning

HARVEY MUDD COLLEGE



Huaze Liu, Zihao Gao, and Adyasha Mohanty, MADD Lab





## High-integrity maps are essential for autonomous navigation



## **Existing Approaches**



Heuristic or statistical methods<sup>[1]</sup>



SLAM-based approaches<sup>[2]</sup>



Deep networks for occupancy maps<sup>[3]</sup>



Online HD Map
Estimatic

## **Gaps and Opportunities**



Single modality approaches lack robustness

Can we use learned methods and perform sensor fusion?



Strict noise assumptions are more suited for static environments

Can we characterize uncertainty without strict assumptions on the noise distribution?



Lack of semantic reasoning

Can we use mu vision and lang models?

## Multi-modal Vision and Language Models



Vision models see objects but lack contextual meaning

Can enable "Zero-Shot Learning" for unseen scenarios!



Language models can't ground objects visually



Large multi-modal models bridge this gap





## **Our Contributions**



We propose a LiDAR-Camera sensor fusion framework for quantifying dynamic map uncertainty as well as comprehensive scene change understanding



We use novel large vision-language models to perform zeroshot semantic segmentation for more robust change detection



We propose online KL divergence-based consist tracking algorithm and evaluate its efficacy under weather conditions

## **Outline**

- Proposed Framework
  - Vision Module
  - LiDAR Module
  - Consistency Monitoring and Sensor Fusion
- Experiments
  - Virtual KITTI dataset setup
  - Key experimental parameters, metrics and baselines
- Key Results
  - Selected change detection accuracy results for individual se modalities
  - Selected sensor fusion results on adverse weather conditions

## **Proposed Framework**







## **Vision Module**



Semantic change detecti

KL Divergence<sup>[8]</sup>

## **LiDAR Module**

- PointNet<sup>[9]</sup>: main architectural backbone
- Chosen because lightweight and efficient



### LiDAR Module: Preprocessing and Key Modifications

- Convert depth images to point clouds using camera intrinsics and range filtering to avoid simulator boundary artifacts
- Compute local surface normal via KD-tree search<sup>[15]</sup> to capture geometric structure for improved classification
- Assign point-wise semantic categories from ground-truth annotations with unified class labels for consistent analysis





## **Consistency Monitoring**



Vision KL Divergence

Semantic Richness

Weighted Sum





LiDAR KL
Divergence
Geometric Reliability



## **Outline**

- Proposed Framework
  - Vision Module
  - LiDAR Module
  - Consistency Monitoring and Sensor Fusion
- Experiments
  - Virtual KITTI dataset setup
  - Key experimental parameters, metrics and baselines
- Key Results
  - Selected change detection accuracy results for individual se modalities
  - Selected sensor fusion results on adverse weather conditions

## Virtual KITTI Dataset<sup>[10]</sup>

- Pixel-level ground truth
- Stress-test in controlled conditions
- Multiple object categories
- Several sequences for fair evaluation



#### **Modification**

Objects removed programmatically to simulate map-change







## **Baselines and Metrics**

#### **Baselines**

Contrastive Language-Image Pretraining

**CLIP**<sup>[11]</sup>: Patch-difference change maps using ViT-B/32 embeddings.

**Local Feature Transformer** 

**LoFTR**<sup>[12]</sup>: Dense local feature matching with transformer

Jaccard Distance<sup>[14]</sup>: Voxel overlap metric for LiDAR maps

Fusion: Weighted Sum of Vision and

**LiDAR Scores** 



#### **Metrics**

KL divergence<sup>[8]</sup> (↓)

v.s. ground-truth change map

Pearson correlation<sup>[13]</sup>

spatial agre

## **Evaluation Questions**

How well do the predicted anomaly distributions align with ground-truth changes induced by simulated infrastructure removal?

How accurately can each individual modality detect semantic changes in the map under normal and degraded conditions?

Can fusing information from Vision and LiDAR improve map-ched

## **Outline**

- Proposed Framework
  - Vision Module
  - LiDAR Module
  - Consistency Monitoring and Sensor Fusion
- Experiments
  - Virtual KITTI dataset setup
  - Key experimental parameters, metrics and baselines
- Key Results
  - Selected change detection accuracy results for individual modalities
  - Selected sensor fusion results on adverse weather condit

## **Vision-Only Alignment with Ground-Truth Changes**

DINOv2 + segmentation captures semantic differences from missing or changed infrastructure.

























### Per-Modality Accuracy in Detecting Semantic Changes

Our Vision Module method achieves 95% overall True Positive Rate vs. ~60 – 75% for baselines.

| Category      | Ours | CLIP <sup>[11]</sup> | LoFTR <sup>[12]</sup> |
|---------------|------|----------------------|-----------------------|
| Building      | 84.8 | 60.3                 | 55.4                  |
| Traffic Light | 83.9 | 60.4                 | 50.8                  |
| Traffic Sign  | 81.6 | 60.4                 | 48.1                  |
| Overall       | 95.0 | 75.0                 | 63.8                  |



## Per-Modality Accuracy in Detecting Semantic Changes

Our LiDAR Module method shows KL divergence peaks fairly aligning with true map changes.



#### **Fusion Preserves Robustness in Adverse Conditions**

Our fusion method maintains strong alignment with ground truth under rain and fog, while baselines degrade sharply.

| Normal<br>Condition                | Ours | CLIP <sup>[11]</sup> +<br>Jaccard<br><sup>[14]</sup> | LoFTR <sup>[12]</sup><br>+<br>Jaccard<br><sup>[14]</sup> |
|------------------------------------|------|------------------------------------------------------|----------------------------------------------------------|
| KL Divergenc $e^{[8]}(\downarrow)$ | 0.11 | 0.63                                                 | 0.52                                                     |
| Pearson<br>Corr.[13] (†)           | 0.72 | 0.38                                                 | 0.15                                                     |

| Rainy<br>Condition                      | Ours | CLIP <sup>[11]</sup> +<br>Jaccard<br><sup>[14]</sup> | LoFTR <sup>[12]</sup> + Jaccard <sup>[14]</sup> |
|-----------------------------------------|------|------------------------------------------------------|-------------------------------------------------|
| KL<br>Divergenc<br>e <sup>[8]</sup> (↓) | 0.13 | 0.89                                                 | 0.73                                            |
| Pearson<br>Corr. <sup>[13]</sup> (†)    | 0.68 | 0.37                                                 | 6                                               |

## Conclusion

- Our sensor fusion framework with KL divergence-based scoring achieves high performance under normal conditions and maintains it in adverse weather.
- Real-time anomaly detection with spatial heatmaps can provide autonomous systems with change alerts and accurate localization, addressing the critical gap between static maps and dynamic urban environments for safer navigation.
- The integration of large vision-language models can enable detection of novel infrastructure changes without requiring ret

# Thank you! Acknowledgements: MADD Lab

https://sites.google.com/g.hmc.edu/madd-lab/home









