PHARMACIA

Pharmacia Groningen BV Van Swietenlaan 5 9728 NX GRONINGEN The Netherlands

Phone Nr.: + 31 50 5296600 Fax Nr.: + 31 50 5267860

TITLE:

Bifocal foldable lens design based on

corneal wavefront aberration

DATE:

Rp2691r REPORT#:

AUTHOR:

FUNCTION:

SIGNATURE: DATE:

Henk Weeber

Research Scientist Biophysics

APPROVED:

FUNCTION:

Marrie v.d. Mooren

Sr. Development Engineer

APPROVED:

FUNCTION:

Thom Terwee

DISTRIBUTION:

Manager Biophysics Department

DATE:

DATE:

DOCUMENTATION CONTROL (CENTRAL FILE) Project file 513

John Kappelhof Sverker Norrby

TABLE OF CONTENTS

		Page
1. EXEC	UTIVE SUMMARY	3
2. INTRO	DDUCTION	4
3. METH	ODS	4
3.1. D	esign methods	5
	Design cornea	6
	Light distribution	6
3.1.3.	Power add for near vision	6
3.1.4.	Power add for near vision Base power	6
3.1.5.	Optical quality	7
3.1.6.	Optimization of optical quality	7
	leasurement methods	8
3.2.1.	•	8
3.2.2.	Light distribution	8
3.2.3.	Power	8
3.2.4.	Optical quality	9
4. RESUI	CTS	9
4.1. Pr	ototype designs	9
4.2. Th	neoretical performance of the prototype designs	10
4.3. M	easurement of prototype lenses	13
4.3.1.	Eye model	13
4.3.2.	Modulation Transfer Function	15
4.3.3.	Light distribution	16
4.3.4.	Lens power	17
4.3.5.	Lens power fine-tuning	17
5. DISCU	SSION	18
6. REFER	ENCES:	19
Appendix 1	Design cornea	20
Appendix 2	OSLO Zernike operands	22
Appendix 3	PMMA Z9000 cornea in ISO fixture	24
Appendix 4	Measurement procedure of the lens power in the waterbath	30
Appendix 5	Test of the light distribution with different step heights	33
Appendix 6	Refractive indices	34
Appendix 7	Raw data	35
Appendix 8	CD rom: data files	56

1. EXECUTIVE SUMMARY

With Tecnis model Z9000, a lens is designed which corrects the corneal spherical aberration. The lens has an aspherical anterior surface, which induces a negative spherical aberration, equal but opposite to the average corneal spherical aberration of a cataract population. The resulting design has improved optical performance, especially for larger apertures^{1, 2}.

The design principle of Tecnis model Z9000 is applied on a bifocal silicone HRI lens. The principle bifocal specifications were copied from CeeOn model 811E: The design has a +4D reading add and a 50:50% light distribution between near and far vision. These specifications are met using a diffractive profile on the posterior lens surface.

For the posterior surface, the diameters of the rings are identical to CeeOn model 811E. The stepheight of the rings is 2.32 micrometer (model 811E: 1.85 micrometer). Similar to Tecnis model Z9000, the anterior surface is used for the correction of spherical aberration. Two alternatives were evaluated:

- 1. an optimized anterior surface, which minimized the spherical aberration for near and far vision
- 2. an anterior surface identical to Tecnis model Z9000

The theoretical performance as well as measurements on prototype lenses revealed that there is no significant difference in performance between these two alternatives.

Conclusions:

- 1. A bifocal foldable diffractive design with a regular Tecnis Z9000 anterior surface corrects for spherical aberration.
- 2. Compared to CeeOn model 811E, the resulting design shows approximately a factor 3 improvement of optical quality (MTF) for a 5mm pupil. For a 3mm pupil, the improvement is insignificant.

AR-318.HAW Page 3 of 56

2. INTRODUCTION

With model Z9000, a lens is designed which corrects the corneal spherical aberration. The lens has an aspherical anterior surface, which induces a negative spherical aberration, equal but opposite to the average corneal spherical aberration of a cataract population. The resulting design has improved optical performance, especially for larger apertures^{1,2}. The design principle of model Z9000 can also be applied for bifocal lenses. Pharmacia has a PMMA bifocal lens, model 811E, which is a diffractive lens with a +4D power add for reading. This design can be transferred to HRI material³. Bifocal lenses have 2 foci. This means that one object will generate two images. In the ideal situation, one of the two images will be focused on the retina. While the other image is out of focus, it will still cause some blurr on the retina, which decreases the optical quality. Therefore, by their nature, the optical quality of bifocal lenses is lower than monofocal lenses of the same design. This report shows how the design methods of model Z9000 are applied on a bifocal foldable lens. All files that were used to compile this report, including measurement data, calculation results and OSLO CCL programs, are stored on a CD-ROM as appendix 8 of this report.

3. METHODS

The design is based on the diffractive bifocal design of model 811E. This means that the same equations for the surface profile are used for the posterior surface, however with different parameters³(figure 1). Similar to model Z9000, the anterior surface is made aspherical⁴. Using these principles, the optical design of bifocal lenses comprises the determination of 3 items:

- 1. secure the light distribution between the 2 foci
- 2. secure the correct power add for near vision
- 3. secure the correct base power

With the new design, an additional item is added:

4. secure a specific spherical aberration

As for model 811E, the target light distribution between near and far focus is 50%:50% and the target power add for near vision is 4 diopters.

Figure 1. Equations describing the diffractive profile.

3.1. Design methods

The calculation methods which are used for determining the theoretical performance are described in detail in the report Rp2681r⁵.

3.1.1. Design cornea

The design cornea is desribed in report 2278. This design cornea is a 1-surface model. The refractive index of the cornea is the keratometry index of 1.3375. However, for diffractive lenses it is essential to use the real in vivo refractive index on the posterior (diffractive) lens surface. Therefore, a 2-surface model is used which has the same characteristics of the 1-surface model.

Figure 2. 1-surface (left) and 2-surface (right) design comea.

The 2-surface cornea was constructed from the 1-surface cornea by adding a flat transition (surface) between the cornea and an aqueous/vitreous at 3.6mm from the cornea apex. The spherical aberration of the eye is remained within 0.03% of the original 1-surface cornea (see appendix 1).

3.1.2. Light distribution

The light distribution of the diffractive bifocal lens is determined by the stepheight of the diffractive zones.

The theoretical stepheight for a 50:50% light distribution is $2.25 \, \mu m^3$. This theoretical value is challenged and fine-tuned by means of prototype testing. It has to be noted that the light distribution is now defined in the Z9000 eye model (design cornea), while for model 811E, the light distribution was defined in the Gullstrand eye model.

3.1.3. Power add for near vision

The power add is determined by the diameters of the diffractive zones. Theoretically, this is independent of the refractive indices of the lens and the surrounding medium. Therefore, the same zone diameters are used as for model 811E.

3.1.4. Base power

The lens power of a normal monofocal lens is defined by the paraxial focus in situ^{6,7}. Diffractive bifocal lenses do not have a theoretical paraxial focus. Therefore, an alternative approach was used for model 811E⁸. This approach basically means that, comparing a bifocal

and monofocal lens of the same lens power, the best focus should be located at the same position when the lens is measured in situ. This makes the practical behavior of monofocal and bifocal lens powers comparable.

In the design phase of the lens, an estimate can be generated by giving the diffractive lens a base radius comparable to the radius of a monofocal design. Fine-tuning is done in a later stage, when prototype lenses are measured.

3.1.5. Optical quality

The optical quality of diffractive bifocal lenses can be estimated using the optical design program OSLO⁹.

The methods are described in detail in report Rp2681r5.

3.1.6. Optimization of optical quality

The anterior surface of the bifocal lens can be optimized in order to reduce the overall spherical aberration, equivalent to what was done for model Z9000¹. Alternatively, the exact Z9000 anterior surface can be applied onto the bifocal lens.

Optimization of the anterior surface is performed on the symmetrical Zernike terms: OSLO Zernike term weight factor

Z8	1
Z15	0.1
724	0.01

The optimization is performed for far and near vision simultaneously. For the calculations in OSLO, it means that for each optimization step, the vector sum of the Zernike term for near vision and far vision is taken as the operand (appendix 2). A real near vision configuration was generated by putting the light source in a position close to the eye.

As a starting point, the model Z9000 conic constant is used and ad=ae=0. The polynomial terms ad and ae are used for optimization.

3.2. Measurement methods

3.2.1. Z9000 eye model

For the measurement of the optical modulation transfer function (MTF), a new cornea was used, which fits in front of a wet cell. The wet cell is identical to the ISO wet cell. The new PMMA cornea generates a wavefront that is identical to the wavefront of the design cornea. The focal point is in air, which facilitates automated focussing on the Eros Ealing optical bench. The design of the cornea is described in appendix 3. The refractive index of PMMA is measured from the actual PMMA rod. The refractive index of water is adjusted to match with the

Figure 3. Z9000 cornea in front of the ISO wet cell.

silicone HRI material: For diffractive lenses, the difference between the refractive index of the lens and the medium (aqueous or water) is important for the light distribution of the lens. Therefore, water with a refractive index of 1.3406 has to be used (Appendix 6). The refractive index of the water is changed by adding poly-ethyleenglycol (PEG200).

The advantages of the eye model over the previous one (report 2236) are:

- the PMMA cornea is not in direct contact to the medium (water), which makes it easier to maintain.
- The focus position is in air, so that the automated focusing of the Ealing optical bench can be used.

3.2.2. Light distribution

The light distribution is measured in the Z9000 eye model. At each focal point, the line-spread-function is measured. The central four pixel intensities are used as a measure of the amount of light in each focus.

3.2.3. Power

The power of the bifocal lens is determined by measuring the back focal length (BFL) in the waterbath. The conversion of BFL to lens power is based on the following definition of bifocal lens power⁸:

The bifocal power of the lens is calculated from the back focal length in best focus condition, in the same way as is done for the paraxial lens power of a monofocal lens with equal geometry (radii and central thickness).

Calculation to be performed under the conditions:

- 1. The spherical aberration is presumed not to be influenced by diffractive pattern.
- The location of the second principle plane is presumed not to be influenced by the diffractive pattern and is the same for both focal points.

Measurement of best focus to be determined under the conditions:

REPORT #: Rp2691r

Bifocal foldable lens design based on corneal wavefront aberration

- 1. Collimated light (wavelength 550 nm) reaches the lens.
- 2. There is a 3mm aperture in front of the lens.
- 3. Best focus is defined as the position with the highest MTF-value at a spatial frequency of 50c/mm.

There is one difference with the original definition which was used for model 811E: For the new model, the spherical aberration depends on the lens power, and therefore on the focal point that is measured. In practice it means that for the far- and near focus different values for the spherical aberration have to be used. The background is that the spherical aberration of the current lens is much higher (when measured in a waterbath) than a spherical lens, while the amount of spherical aberration is also highly power-dependent. For model 811E, this diopter dependency was negligible.

The add power is defined as the difference between the powers of the near focus and far focus.

The measurement procedure is described in appendix 4.

3.2.4. Optical quality

The MTF is measured in the Z9000 eye model. Focussing is performed at 25c/mm, which is according to the current draft standards for multifocal lenses. The lenses are measured with apertures of 3 and 5 mm diameter. At 5mm aperture, the lens is measured at 3 positions, 45 degree apart, in order to account for any astigmatism.

4. RESULTS

4.1. Prototype designs

The prototype designs consist of an anterior and posterior optical surface. The posterior surface is the diffractive surface, according the equation also used for model 811E. The parameters k and R_1 (equations 1 and 7 in figure 1), defining stepheight and the ring-diameters, have to be adapted for the silicone HRI design. Theoretically, the ring diameters for a given power add are independent of the material used, so the value used for model 811E is taken (R_1 =0.513mm).

The k-value determines the light distribution. In order to verify the k-value, a separate test series was made and tested (appendix 5). This test indicated that a k-value of 0.6536 results in a 50:50 light distribution. The corresponding stepheight of the rings is 2.32 micrometer.

The anterior surface was optimized for the symmetrical Zernike terms in far and near vision. The optimization has been performed for lens powers 15.0, 20.0 and 26.0D. On average, the resulting spherical aberration (OSLO Zernike Z8) is reduced with a factor 100. The resulting Zernike coefficients are listed in figure 4, the lens geometry in figure 5.

	Anterior	FAF	र		NEAR		
Power	surface	Z 8	Z15	Z24	Z8	Z15	Z24
15D	Optimized	-0.04	-0.11	-0.02	0.02	-0.10	-0.02
	Z9000	-0.07	0.01	-0.02	-0.01	0.01	-0.02
	Spherical	1.41	0.03	-0.02	1.46	0.03	-0.02
20D	Optimized	-0.03	-0.12	-0.02	0.02	-0.11	-0.02
	Z9000	-0.08	0.00	-0.02	-0.04	0.01	-0.02
	Spherical	1.66	0.04	-0.02	1.70	0.04	-0.02
26D	Optimized	-0.02	-0.12	-0.03	0.01	-0.12	-0.02
	Z9000	-0.09	0.00	-0.02	-0.06	0.01	-0.02
	Spherical	2.12	0.06	-0.02	2.16	0.06	-0.02

Figure 4. Theoretical performance of the prototype design, in terms of the symmetric Zernike coefficients. The Zernike coefficients are expressed in wavelengths. They are calculated in OSLO, in the design eye model, with a rectangular spot diagram in image space with using over 200.000 rays. For near vision, the reading distance is 40cm. For far vision, the aperture at the cornea is 6mm in diameter, which corresponds with an aperture diameter of 5.1mm at the lens position. For near vision, the entrance beam radius is adapted: The pupil size at the IOL location is the same for far and near vision.

	15D	20D	26D	
Anterior surface				l
Radius	16.225	12.154	9.333	mm
Conic constant	-0.98856	-1.01855	-1.05018	Н
AD	-4.3209E-04	-4.9285E-04	-8.0581E-04	ww ₂
AE	-4.2491E-05	-4.8990E-05	-5.9954E-05	nın⁴
Posterior surface				1
Geometric radius	(-16.225)	(-12.154)	(-9.333)	mm
Base radius R _b	-17.082	-12.586	-9.547	mm
Ring radius R ₁	0.513	0.513	0.513	mm
k-value	0.6536	0.6536	0.6536	mm
stepheight	2.32	2.32	2.32	μm
Central thickness	1.03	1.13	1.24	mm

Figure 5. Lens geometry of the prototype lenses*. The geometric radius is added to indicate the overall geometry of the lens as if the posterior radius is a normal spherical surface, in this case equi-biconvex.

4.2. Theoretical performance of the prototype designs

In the previous paragraph, the theoretical performance of the prototype designs was described in terms of the symmetrical Zernike coefficients. Figure 4 shows that the optimised design results in the smallest spherical aberration (Z8). Also the design with the original Z9000 shows very small values for the spherical aberration, though a little higher than the optimised design.

The modulation transfer function can be evaluated of the prototype designs, compared with a spherical diffractive design and with a spherical monofocal lens design. (figure 6, 7).

Figure 6. modulation transfer function of the prototype designs, compared with a spherical diffractive design and with a spherical monofocal lens design at 3mm.

The figures 6 and 7 show that the gain of the aspherical surface is there for the 5mm aperture, where the bifocal lens shows a contrast even higher than a spherical monofocal lens. Furthermore, the optimised anterior surface shows comparable MTF to the Z9000 anterior surface. For the very high frequencies at near vision the Z9000 surface is even slightly better.

Figure 7. modulation transfer function of the prototype designs, compared with a spherical diffractive design and with a spherical monofocal lens design at 5mm. The heavy fluctuations of the MTF for the spherical top bifocal and 811E do not represent phase reversals of the phase transfer function. There is one phase reversal: model 811E, 20.0D, near vision, at 95c/mm (modulation = 0). Apart from this, the phase is always close to zero (<1°).

Figure 8. Through focus MTF at 50c/mm for 20.0D lenses and a 3mm aperture.

Figure 9. Through focus MTF at 50c/mm for 20.0D lenses and a 5mm aperture.

4.3. Measurement of prototype lenses

The lenses are measured on their optical performance, in an eye model and in a waterbath. Shape measurements on diffractive and aspherical surfaces are extremely difficult, especially on a flexible and sticky silicone surface. Feasibility measurements were carried out with optical and mechanical measuring techniques with varying success. The results were not reliable enough for extensive reporting here. Nevertheless all results showed that the lenses were close to the design in the sub-micron range (average deviation of stepheight 0.04 micrometer). Also mechanical tests on the molds (Talysurf) indicated a good result. Furthermore, the shape of the lenses was secured by using production procedures standard for regular Z9000 lenses. The test lenses were not angle set and not sterilized.

4.3.1. Eye model

The lenses were measured in the new Z9000 eye model as described in appendix 3. The water/PEG200 solution with a refractive index of 1.3406 was made and measured in the AR chemical lab (appendix 6).

The Z9000 PMMA cornea in front of the ISO wet cell is qualified by through focus and through frequency MTF measurements at 3mm and 5mm pupil. The measurement results are displayed in figure 10, together with the theoretical curves. Focussing was performed at 50c/mm. The measured graphs compare well with the calculated graphs. As a check, a Z9000 lens was measured as well (figure 11).

Figure 10. Measured through frequency and through focus MTF curves for the new Z9000 cornea for the wet cell, both for a 3mm and 5mm aperture.

Figure 11. Measured through frequency MTF curves for a Z9000 lens, 20.0D, in the eye model. As a reference, the measured data from the lens verification report 2236 is added.

4.3.2. Modulation Transfer Function

Lenses were measured in the eye model on the optical bench. The measuring conditions were:

- Refractive index of the water (+PEG200) 1.3406
- Automatic focussing on MTF at 25c/mm
- Maximum analysis window of the linear photodiode array, leaving ¹/₁₆ unused at the edges.
- For 3mm apertures, 1 measurement per focal point was made, for 5mm apertures, 3 measurements per focal point were made (lens at -45°, 0° and +45°)
- 8 lenses per prototype, per lens power

The results are given in figures 12. The results show that the optimized top and the Z9000 top have comparable performance in terms of MTF. At a 5mm aperture they are much better than model 811E.

Figure 12. Modulation transfer values for 25, 50 and 100c/mm and aperture 3mm. The data of the optimized top and the Z9000 top is the average of 8 lenses. The data of model 811E is based on the measurement of one lens per diopter.

AR-318.HAW

The results show that the optimized top and the Z9000 top have comparable performance in terms of MTF. At a 5mm aperture they are much better than model 811E. The standard deviation of every series of 8 lenses was small, with a standard deviation less than 0.02 MTF units (3mm and 5mm aperture). For the 5mm aperture, 3 measurements were performed per focal point, while the lens was rotated 45 degrees in between the measurements. The variation between these 3 measurements on the same lens depends on the spatial frequency and was 0.01, 0.02 and 0.03 MTF units (s.d.) for 25, 50 and 100c/mm respectively. Figure 13 shows the ratio between the measured MTF and the theoretical MTF for the prototype with the Z9000 top. The theoretical MTF was calculated for lens under MO-lab conditions. The average ratio of the 3 spatial frequencies for the 3mm pupil is 88%, with a minimum of 71%. This is just within the ISO standard for monofocal lenses, which states that

Figure 13. Ratio of measured/calculated MTF for prototype with Z9000 top.

4.3.3. Light distribution

The light distribution was calculated from the signal on the diode array, obtained during the MTF measurements for a 3mm aperture. The light distribution is defined as the ratio between the far and near focus. Figure 14 shows only the amount going to the far focus. The data shows no relationship between light distribution and lens power.

Figure 14. Light distribution: Amount of light that reaches the far focus. The error bars correspond with plus and minus one standard deviation.

4.3.4. Lens power

The lens power was determined by measuring 8 lenses per diopter. Only the prototype with the Z9000 top has been measured. The add power is very well on the target of 4 diopter. The base power (far) is a little off and needs fine-tuning.

Nominal	Measured	lens power		Deviation	
power	FAR	NEAR	ADD	FAR	ADD
15.0	14.55	18.53	3.98	-0.45	-0.02
20.0	19.66	23.71	4.05	-0.34	0.05
26.0	25.78	29.75	3.97	-0.22	-0.03
	.,				
Nominal	Standard of	leviations [D]	1	
power	FAR	NEAR	ADD		
15.0	0.08	0.14	0.15		
20.0	0.11	0.04	0.10		

Figure 15. Measured lens power and standard deviations.

4.3.5. Lens power fine-tuning

Based on the measurement results, the lens power needs fine-tuning. The method used here, is to compare the measured result with a calculated paraxial lens power, based on the design anterior radius, the design central thickness and the design base posterior radius R_b (equation 1, figure 1). This leads to the following deviation of lens powers:

	(lesign value	s				
		Posterior			1		
Nominal	Anterior	base	Central	TLE*	Measured		proposed
Power	radius	radius Rb	Thickness	Power	power	deviation	correction
15.0	16,225	-17.082	1.03	14.62	14.55	-0.07	0.07
20.0	12.154	-12.586	1.13	19.66	19.66	0.00	0.00
26.0	9.333	-9.547	1.24	25.71	25.78	0.07	-0.07

Figure 16. Lens power correction of the prototype with Z9000 top.

^{*} TLE = thick-lens-equation, using the design geometry as input data.

The lens power correction is applied on the base radius Rb. The resulting lens data are:

	Anterior surface					urface
ŀ	identical to	Z9000	k=0.6536			
}					R1=0.513	
Lens	ŀ	As	pherical ten	ns:	Base	Central
Power	Radius	CC	AD	AE	radius Rb	Thickness
15.0	16.225	-0.988562	-8.03E-04	-7.23E-06	-16.087	1.03
15.5	15.699	-0.985816	-8.12E-04	-7.57E-06	-15.583	1.04
16.0	15.207	-0.99036	-8.21E-04	-7.93E-06	-15.110	1.05
16.5	14.745	-0.99753	-8.29E-04	-8.30E-06	-14.665	1.06
17.0	14.309	-0.99846	-8.39E-04	-8.69E-06	-14.245	1.07
17.5	13.899	-1.00088	-8.48E-04	-9.09E-06	-13.848	1.08
18.0	13.511	-1.00077	-8.58E-04	-9.52E-06	-13.473	1.09
18.5	13.144	-1.00030	-8.68E-04	-9.96E-06	-13.117	1.10
19.0	12.797	-1.00744	-8.78E-04	-1.04E-05	-12.780	1.11
19.5	12.467	-1.00314	-8.89E-04	-1.09E-05	-12.459	1.12
20.0	12.154	-1.018548	-8.99E-04	-1.14E-05	-12.154	1.13
20.5	11.856	-1.023293	-9.10E-04	-1.19E-05	-11.864	1.13
21.0	11.572	-1.027614	-9.21E-04	-1.25E-05	-11.587	1.14
21.5	11.301	-1.030542	-9.33E-04	-1.31E-05	-11.322	1.15
22.0	11.043	-1.036125	-9.44E-04	-1.37E-05	-11.069	1.16
22.5	10.796	-1.034876	-9.57E-04	-1.43E-05	-10.828	1.17
23.0	10.560	-1.037706	-9.69E-04	-1.50E-05	-10.596	1.18
23.5	10.334	-1.039948	-9.81E-04	-1.56E-05	-10.374	1.19
24.0	10.117	-1.041622	-9.94E-04	-1.63E-05	-10.161	1.20
24.5	9.909	-1.043677	-1.01E-03	-1.71E-05	-9.957	1.21
25.0	9.709	-1.046434	-1.02E-03	-1.79E-05	-9.760	1.22
25.5	9.517	-1.048667	-1.04E-03	-1.87E-05	-9.572	1.23
26.0	9.333	-1.050179	-1.05E-03	-1.95E-05	-9.390	1.24

Figure 17. Lens optical design of the bifocal foldable lens with an anterior surface profile which is identical to Tecnis model Z9000.

5. DISCUSSION

This report has shown that the Tecnis Z9000 design principles can be successfully applied on bifocal lenses. Two approaches were used: one using the proven Z9000 anterior lens shape combined with a diffractive posterior surface. Alternatively a new anterior lens shape was generated by optimizing the wavefront aberrations for the far as well as the near focus. The performance of these two types of lenses, in terms of MTF, showed to be identical, in theory as well as according the measurement of prototype lenses.

The improvement of the ZM001, compared to model 811E, is significant. However this is only true for the larger pupils (larger than 3mm). For a 5mm aperture, the MTF of the new bifocal design is even better than a spherical monofocal lens. Caution has to be taken to

translate this to clinical behavior, since the clinical behavior is also influenced by:

- perception of the out-of-focus image
- scatter

The theoretical through focus behavior (figures 8 and 9) indicates that the depth of focus is somewhat reduced for the larger pupil sizes. However, compared to the monofocal Z9000 model there doesn't seem to much difference². Through focus measurements of prototype lenses can give more insight in the through focus behavior. It should also be noted that the theoretical calculations of MTF of diffractive multifocal lenses have to be interpreted with caution. The calculation routines of out-of-focus MTF have not been verified. For similar reasons, no calculations have been performed with tilts and decentrations.

Currently, there are no approved standards for the optical performance of multifocal standards. For model 811E, Pharmacia has generated its own specification, based on measurement in the Gullstrand eye model. A similar approach could be performed with the new model, based on the Z9000 eye model. For the 3mm aperture, the measured MTF is more than 70% of its predicted behavior. In this respect it fulfils the ISO standard for monofocal lenses. Whether this is an appropriate specification would need to be further verification, since there is currently not much room left (71% at 26D). Deviation from this standard can be justified by:

- 1. The standard is for monofocal lenses, not bifocal lenses
- 2. Prediction of diffractive bifocal lenses is difficult, with limited accuracy
- 3. The Z9000 eye model has an aspherical surface, creating an additional measurement error

6. REFERENCES:

- 1. P. Piers, 'Z11 design based on comeal wavefront aberration', PG report R2278.
- 2. M. van der Mooren, 'CeeOn 911Z verification report', PG report Rp2236r.
- 3. H. Weeber, 'Feasibility report bifocal silicone IOL', PG report 1727.
- 4. H. Weeber, 'Influence of the position of the aspheric surface on optical quality', PG report Rp2524r
- 5. H. Weeber, 'Design tools for diffractive bifocal lenses', PG report Rp2681r.
- 6. ISO standard: ISO11979-1
- 7. ANSI standard: ANSI Z80.7-1994
- 8. J. Hermans, 'Bifocal lens power: Definition and practical implementation', PG report 1031.
- 9. OSLO Premium Edition Revision 6.1. Lambda Research Corporation, Littleton, MA

Appendix 1: Design cornea

*LENS DATA	*I	ENS	DATA
------------	----	-----	------

*LENS D	ATA					
DESIG	N CORNE	A - 1 SURF	ACE			
SRF	RADIUS	THICKNESS	APERTURE R	ADIUS	GLASS SPE	NOTE
OBJ		1.0000e+20	1.0000e+1	4	AIR	
1	7.575000	3.600000	3.00000	3 S 🛚 🖪	ERATOM M *	
AST			2.64023	3 AS F	ERATOM P	
3		0.900000	2.64023	3 S B	ERATOM P	
4		25.519444	\$ 2.55029	2 S F	ERATOM P	
IMS			2.2444e-0	5 S		
*CONIC 2	AND POLYNOMIA	AL ASPHERIC D	ATA			
SRF	CC	AD	AE	AF	AG	
1	-0.141350					
*REFRACT	rive indices					
SRF	GLASS	RN1	RN2	RN3	VNBR	TCE
0	AIR	1.000000	1.000000	1.000000		
1	KERATOM	1.337500	1.676807	1.207932		236.000000
1 2 3	KERATOM	1.337500	1.676807	1.207932		236.000000
3	KERATOM	1.337500	1.676807	1.207932	0.719807	236.000000
4	KERATOM	1.337500	1.676807	1.207932	9.719807	236.000000
5	IMAGE SURF	ACE				
*WAVELE	NGTHS					
CURRENT	WV1/WW1	WV2/WW2	WV3/WW3			
1	0.587560	0.486130	0.656270			
	1.000000	1.000000	1.000000			

*LENS DATA

DESIGN CORNEA - 2 SURFACES

SRF	RADIUS	THICKNESS	APERTURE RADIUS	GLASS SPE NOTE
OBJ		1.0000e+20	1.0000e+14	AIR
1	7.575000	3.600000	3,000003 S	KERATOM M *
AST			2.640233 AS	KERATOM P
3		0.900000	2.640233 S	M QA
4		25.489815 S	2.550191 8	VIT M
IMS			2.2444e-05 S	

*CONIC AND POLYNOMIAL ASPHERIC DATA SRF CC AD AE

IMAGE SURFACE

COMIC	WID EARTHOUTH	1 MOENDALC DE	un			
SRF	CC	AD	AE	AF	AG	
1	-0.141350					
*REFRA	CTIVE INDICES					
SRF	GLASS	RN1	RN2	RN3	VNBR	TCE
0	AIR	1.000000	1.000000 -	1.000000		
1	KERATOM	1.337500	1,676807	1.207932	0.719807	236.000000
2	KERATOM	1.337500	1.676807	1.207932	0.719807	236.000000
3	AQ	1.336000	1.675279	1.206444	0.716671	236.000000
Δ	VIT	1.336000	1.675279	1.206444	0.716671	236.000000

*WAVELENGTHS

CURRENT	WV1/WW1	WV2/WW2	WV3/WW3
1	0.587560	0.486130	0.656270
	1.000000	1.000000	1.000000

The Z11 comea is a 1-surface eye model. For the lens design, a 2-surface model is used in order to have the lens in aquaous. It was verified that the 2 eye models have the same wavefront aberrations:

(OSLO notation)

AR-318.HAW

coefficient	1 surface	2 surfaçe	Difference
20	0.001173714	0.001174047	0.03%
Z1	0	0	
72	0	0	
23	0.001759161	0.001769673	0.03%
ZA	0	C	
Z 5	0	0	
235	0	0	
Z7	O	0	
28	0.000801207	0.000601395	0.03%
Z 9	0	0	
Z10	0	0	
211	0	0	
Z12	0	0	
Z13	0	0	
Z14	0	0	
Z15	5.78493E-08	5.79E-08	0.18%
Z16	0	0	
Z17	0	0	
Z18	0	0	
Z19	0	Q	
220	0	0	
Z21	0	0	
ZZ 2	0	0	
Z 23	0	0	
224	2.40715E-08	2.43E-08	0.75%
Z25	0	0	
226	0	O	
227	0	0	
228	0	0	
Z29	0	0	
230	0	0	
Z31	0	0	
Z32	0	0	
Z33	0	0	
Z34	0	O	
235	-5.50344E-10	-6.48E-10	-0.41%
Z36	0	0	

Page 21 of 56

Appendix 2: OSLO Zernike operands

The operands, used for optimizing the lens are calculated in a procedure 'oprds_Zernike2'. The procedure is stored in the file 'optimize_Z haw.ccl':

```
cmd oprds Zernike2()
// Define Zernike terms as operands for opimization in 2 configurations
         set_preference(output_text, off);
                                 // Configuration 1
        cfg 1;
                                   // om te voorkomen dat OSLO vastloopt bij diffractielenzen
         sop 0; tra all 1;
         spd mon none +SDAD 1; // SDAD=APDIV in lensfile (setup) bepalend voor de
rekensnelheid!!
        ssbuf_reset();zer bf 1 36;
        Ocm[0] = a1**2; // OSLO Zernike Piston term 20
Ocm[1] = a2**2; // 21 TILT
        Ocm[2] = a3**2; // Z2 TILT
         Ocm[3] = a4**2; // Z3 DEFOCUS
        Ocm[4] = a5**2; // Z4 ASTIGMATISM
        Ocm[5] = a6**2; // Z5 ASTIGMATISM
Ocm[6] = a7**2; // Z6 COMA
        Ocm[7] = a8**2; // 27 COMA
        Ocm[8] = a9**2; // Z8 3rd ORDER SPHERICAL ABERRATION
        Ocm[9] = a11**2;
                                  // Z9 TREFOIL
        Ocm[10] = a11**2;
                                  // Z10 TREFOIL
                                  // Z11
// Z12
// Z13
        Ocm[11] = a12**2;
        Ocm[12] = a13**2;
        Ocm[13] = a14**2;
        Ocm[14] = a15**2;
                                   // Z14
        Ocm[15] = a16**2;
                                   // Z15
        Ocm[16] = a17**2;
                                   // Z16
        Ocm[17] = a18**2;
                                   // Z17
        Ocm[18] = a19**2;
                                  // Z18
// Z19
        Ocm[19] = a20**2;
        Ocm[20] = a21**2;
Ocm[21] = a22**2;
                                  // 220
                                  // Z21
        Ocm[22] = a23**2;
Ocm[23] = a24**2;
                                  // Z22
// Z23
        Ocm[24] = a25**2;
                                  // 224
        Ocm[25] = a26**2;
                                 // 225
        Ocm[26] = a27**2;
                                  // Z26
        Ocm[27] = a28**2;
                                 // Z27
        Ocm[28] = a29**2;
                                  // Z28
                                 // Z29
// Z30
        Ocm[29] = a30**2;
        Ocm[30] = a31**2;
        Ocm[31] = a32**2;
                                  // 231
        Ocm[32] = a33**2;
                                  // 232
        Ocm[33] = a34**2;
                                 // 233
// 234
        Ocm[34] = a35**2;
        Ocm[35] = a36**2;
Ocm[36] = a37**2;
                                  // Z35
                                  // 236
        set_preference(output_text, on);
        set_preference(output_text, off);
                                 // Configuration 2
        cfq 2;
        sop 0; tra all 1;
                                  // om te voorkomen dat OSLO vastloopt bij diffractielenzen
        spd mon none +SDAD 1; // SDAD=APDIV in lensfile (setup) bepalend voor de
rekensnelheid!!
        ssbuf_reset();zer bf 1 36;
        Ocm[0] += a1**2;  // OSLO Zernike Piston term Z0
Ocm[1] += a2**2;  // Z1 TILT
        Ocm[2] += a3**2;
                                 // 22 TILT
        Ocm(3) += a4**2;
                                 // Z3 DEFOCUS
                                 // Z4 ASTIGMATISM
        Ocm[4] += a5**2;
        Ocm[5] += a6**2;
                                  // Z5 ASTIGMATISM
        Ocm[6] += a7**2;
                                  // Z6 COMA
        Ocm[7] += a8**2;
                                  // 27 COMA
        Ocm[8] += a9**2;
Ocm[9] += a11**2;
                                  // 28 3rd ORDER SPHERICAL ABERRATION
// 29 TREFOIL
        Ocm[10] += al1**2;
                                  // Z10 TREFOIL
        Ocm[11] += a12**2;
                                  // Z11
        Ocm[12] += a13**2;
                                  // Z12
        Ocm[13] += a14**2;
```

```
Ocm[14] += a15**2;  // Z14
Ocm[15] += a16**2;  // Z15
Ocm[16] += a17**2;  // Z16
Ocm[17] += a18**2;  // Z17
Ocm[18] += a19**2;  // Z18
Ocm[19] += a20**2;  // Z19
Ocm[20] += a21**2;  // Z20
Ocm[21] += a22**2;  // Z21
Ocm[22] += a23**2;  // Z22
Ocm[23] += a24**2;  // Z23
Ocm[24] += a25**2;  // Z24
Ocm[25] += a26**2;  // Z25
Ocm[26] += a27**2;  // Z27
Ocm[28] += a28**2;  // Z27
Ocm[28] += a28**2;  // Z28
Ocm[29] += a30**2;  // Z28
Ocm[30] += a31**2;  // Z30
Ocm[31] += a32**2;  // Z31
Ocm[32] += a33**2;  // Z31
Ocm[33] += a36**2;  // Z33
Ocm[34] += a35**2;  // Z34
Ocm[35] += a36**2;  // Z35
Ocm[36] += a37**2;  // Z36
set_preference(output_text, on);
```

Page 23 of 56

Appendix 3: PMMA Z9000 cornea in ISO fixture

ISO uses a cornea in front of a wet cell. The ISO cornea can be replaced by a PMMA cornea. The PMMA cornea has to generate a wavefront equivalent to the wavefront in the Z9000 model eye. This is caracterised by the working f-number and the wavefront aberrations (Zernike terms).

The Z9000 model eye is caracterized by:

Aperture diameter of the cornea = 6.0 mm

Corresponding aperture radius at the IOL position:

Corresponding aperture radius at the IOL position: 2.640233 mm

Working f-number = 3.740741

Wavefront aberration (OSLO notation):

Z8 = 0.000601 mm $Z15 = 5.7840*10^{-6} \text{ mm}$ $(Z24 = 2.4*10^{-8} \text{ mm})$

The ISO eyemodel is described in ISO/DIS 11979-2. Only the wet cell with the aperture is used, with pure water as medium. The PMMA cornea has a central thickness of 10.0mm and is placed 3.0mm in front of the cell. The refractive index of the rod PMMA was measured as 1.4872 (22°C, 546.1nm). For the calculation of the working f-number and the wavefront aberrations, the right window is taken away, so that the system focusses in water. The working f-number determines the radius of the convex-plano PMMA cornea: R=18.5683 mm. The aspherical components of the PMMA surface are optimized to produce the Z9000 wavefront aberrations,

which resulted in:

cc = -0.177999ad = +5.1185*10⁻⁶

 $ae = +3.3540*10^{-9}$

When the measurement is taken with the focus in air (the real situation), the resulting wavefront aberration is slighly higher (4% for Z8). When a 20.0 diopter Z9000 IOL is placed in the cell, 94% of the wavefront aberration (Z8) is corrected. In the Z9000 design eyemodel, a 20.0D IOL corrects 99% of the wavefront aberration (Z8).

MTF for a 5.1mm aperture (at the IOL position):


```
Verification: PMMA cornea for ISO-fixture, with focus in water.
Apdiv 97.10
Zernike in mm
Spot diagram in image space
Pupil 2.640233
 *LENS DATA
PMMA 29000 cornea in ISO fixture
                       THICKNESS APERTURE RADIUS
 SRF
          RADIUS
                                                            GLASS SPE NOTE
 OBJ
                       1.0000e+20
                                     1.0000e+14
                                                              ATR
  1
         18.568300
                        10.000000
                                        8.000000
                                                         PMMA_ROD
  2
                         3.000000
                                        8.000000
                                                              AIR
  3
                         6.000000
                                       16.000000
                                                              вк7 с
                        6.250000 16.000000
26.355802 S 2.640233 AS
            --
                                                            WATER C
 ast
                                                            WATER C
                                      3.8112e-05 S
 IMS
 *CONIC AND POLYNOMIAL ASPHERIC DATA
                                      AE
 SRF
            CC
                         AD
                                                   AF
                                                                AG
          -0.177999 5.1185e-06 3.3540e-09
  1
*ZERNIKE ANALYSIS
 WAVELENGTH 1
 Positive angle A is a rotation from the +y axis toward the +x axis.
    0.001173: [0] 1
                   RCOSA
            : [1]
            : [2]
                    RSINA
    0.001769: [3] 2R^2 - 1
            : [4] R^2COS2A
            : [5] R^2SIN2A
                    (3R^2 - 2)RCOSA
            : [6]
                    (3R^2 - 2)RSINA
            : [7]
    0.000601: [8] 6R^4 - 6R^2 + 1
            : [9] R^3COS3A
            : [10] R^3SIN3A
            : [11] (4R^2 - 3)R^2COS2A
: [12] (4R^2 - 3)R^2SIN2A
            : [13] (10R^4 - 12R^2 + 3)RCOSA
            : [14] (10R^4 - 12R^2 + 3)RSINA
  5.7840e-06: [15] 20R^6 - 30R^4 + 12R^2 - 1
            : [16] R^4COS4A
            : [17] R^4SIN4A
       --
            : [18] (5R^2 - 4)R^3COS3A
            : [19] (5R^2 - 4)R^3$IN3A
      --
            : [20] (15R^4 - 20R^2 + 6)R^2COS2A
            : [21] (15R^4 - 20R^2 + 6)R^2SIN2A
            : [22] (35R^6 - 60R^4 + 30R^2 - 4)RCOSA
: [23] (35R^6 - 60R^4 + 30R^2 - 4)RSINA
  2.3253e-08: [24] 70R^8 - 140R^6 + 90R^4 - 20R^2 + 1
            : (25) R^5COS5A
            : [26] R^5SIN5A
            : [27] (6R^2 - 5)R^4COS4A
            : [28] (6R^2 - 5)R^4SIN4A
            : [29] (21R^4 - 30R^2 + 10)R^3COS3A
: [30] (21R^4 - 30R^2 + 10)R^3SIN3A
            : [31] (56R^6 - 105R^4 + 60R^2 - 10)R^2COS2A
: [32] (56R^6 - 105R^4 + 60R^2 - 10)R^2SIN2A
            : [33] (126R^8 - 280R^6 + 210R^4 - 60R^2 + 5)RCOSA
               [34] (126R^8 - 280R^6 + 210R^4 - 60R^2 + 5)RSINA
 -6.0838e-10: [35] 252R^10 - 630R^8 + 560R^6 - 210R^4 + 30R^2 - 1
            : [36] 924R^12 - 2772R^10 + 3150R^8 - 1680R^6 + 420R^4 - 42R^2 + 1
RMS OPD 0.001056 ERROR 7.0480e-11
Verification: PMMA cornea for ISO-fixture, with focus in air.
*LENS DATA
PMMA 29000 cornea in ISO fixture
```

RADIUS

THICKNESS APERTURE RADIUS

SRF

GLASS SPE NOTE

```
೦೩೮
                      1.0000e+20
                                   1.0000e+14
                                                          AIR
        18.568300
                       10.000000
                                      8.000000
                                                     PMMA ROD
  2
                        3.000000
                                      8.000000
                                                          AIR
  3
                        6.000000
                                    16.000000
                                                          вк7 с
  4
           ---
                        6.250000
                                    16.000000
                                                         WATER C
  AST
                                     2.640233 AS
                                                         WATER C
   6
           --
                      10.000000
                                     2.640233 S
                                                        WATER C
                       6.000000
                                    16.000000
                                                          вк7 с
  8
                       8.306948 S
                                    16.000000
                                                          AIR
  IMS
                                   3.8112e-05 S
 *CONIC AND POLYNOMIAL ASPHERIC DATA
 SRF
           CC
                       AD
                                    AE
                                                AF
                                                            AG
         -0.177999 5.1185e-06 3.3540e-09
*ZERNIKE ANALYSIS
 WAVELENGTH 1
 Positive angle A is a rotation from the +y axis toward the +x axis.
    0.001212: [0] 1
     -- : [1]
                  RCOSA
                   RSINA
            : [2]
    0.001828: [3]
                   2R^2 - 1
          : [4]
                  R^2COS2A
            : [5]
                  R^2SIN2A
                   (3R^2 - 2)RCOSA
(3R^2 - 2)RSINA
      --
            : [6]
            : [7]
    0.000623: [8]
                   6R^4 - 6R^2 + 1
           : [9]
                  R^3COS3A
           : [10] R^3SIN3A
            : [11] (4R^2 - 3)R^2COS2A
           : [12] (4R^2 - 3)R^2SIN2A
           : [13] (10R^4 - 12R^2 + 3)RCOSA
            : [14] (10R^4 - 12R^2 + 3)RSINA
  6.7871e-06: [15] 20R^6 - 30R^4 + 12R^2 - 1
            : [16] R^4COS4A
            : [17] R^4SIN4A
      --
            : [18] (5R^2 - 4)R^3COS3A
           : [19] (5R^2 - 4)R^3SIN3A
            : [20] (15R^4 - 20R^2 + 6)R^2COS2A
           : [21] (15R^4 - 20R^2 + 6)R^2SIN2A
           : [22] (35R^6 - 60R^4 + 30R^2 - 4)RCOSA
            : [23] (35R^6 - 60R^4 + 30R^2 - 4)RSINA
  2.0654e-08: [24] 70R^8 - 140R^6 + 90R^4 - 20R^2 + 1
           : [25] R^5COS5A
            : [26] R^5SIN5A
           : [27] (6R^2 - 5)R^4COS4A
           : [28] (6R^2 - 5)R^4SIN4A
            : [29] (21R^4 - 30R^2 + 10)R^3COS3A
            : [30] (21R^4 - 30R^2 + 10)R^3SIN3A
            : [31] (56R^6 - 105R^4 + 60R^2 - 10)R^2COS2A
           : [32] (56R^6 - 105R^4 + 60R^2 - 10)R^2SIN2A
           : [33] (126R^8 - 280R^6 + 210R^4 - 60R^2 + 5)RCOSA
            : [34] (126R^8 - 280R^6 + 210R^4 - 60R^2 + 5)RSINA
 -1.2840e-09: [35] 252R^10 - 630R^8 + 560R^6 - 210R^4 + 30R^2 - 1
           : [36] 924R^12 - 2772R^10 + 3150R^8 - 1680R^6 + 420R^4 - 42R^2 + 1
RMS OPD
          0.001092
                     ERROR
```

Verification: PMMA cornea for ISO-fixture, with focus in air, with Z9000 IOL, 20.0D

*LENS PMMA : SRF OBJ	DATA Z9000 cornea i: RADIUS	n ISO fixture THICKNESS 1.0000e+20	APERTURE RADIUS 1.0000e+14	GLASS AIR	SPE	NOTE
1	18.568300	10.000000	8.000000	PMMA_ROD	*	
2		3.000000	8.000000	AIR		

```
6.000000
                                       16.000000
                                                               вк7 с
                         6.250000
                                       16.000000
                                                             WATER C
 AST
                                       2.640233 AS
                                                             WATER C
         12.154000
                         1.125000
  6
                                        2.640233 S
                                                              HRI
        -12.154000
                         8.875000
                                        2.516362 S
                                                             WATER C
                         6.000000
                                       16,000000
  8
                                                              BK7 C
                         2.914830 S 16.000000
  9
                                                              AIR
 IMS
                                      2.7366e-05 S
*CONIC AND POLYNOMIAL ASPHERIC DATA
 SRF
          -0.177999 5.1185e-06 3.3540e-09
  1
          -1.018550 -0.000899 -1.1400e-05
 *ZERNIKE ANALYSIS
 WAVELENGTH 1
 Positive angle A is a rotation from the +y axis toward the +x axis.
 -5.7675e-05: [0] 1
      -- : [1] RCOSA
             : [2] RSINA
 -9.0472e-05: [3] 2R^2 - 1
      -- : [4] R^2COS2A
             : [5] R^2SIN2A
           : [6] (3R^2 - 2)RCOSA
             : [7] (3R^2 - 2)RSINA
 -3.5900e-05: [8] 6R^4 - 6R^2 + 1
           : [9] R^3COS3A
      --
             : [10] R^3SIN3A
           : [11] (4R^2 - 3)R^2COS2A
: [12] (4R^2 - 3)R^2SIN2A
       __
           : [13] (10R^4 - 12R^2 + 3)RCOSA
             : [14] (10R^4 - 12R^2 + 3)RSINA
 -3.4880e-06: [15] 20R^6 - 30R^4 + 12R^2 - 1
            : [16] R^4COS4A
            : [17] R^4SIN4A
           : [18] (5R^2 - 4)R^3COS3A
: [19] (5R^2 - 4)R^3SIN3A
            : [20] (15R^4 - 20R^2 + 6)R^2COS2A
            : [21] (15R^4 - 20R^2 + 6)R^2SIN2A
            : [22] (35R^6 - 60R^4 + 30R^2 - 4)RCOSA
      ---
             : [23] (35R^6 - 60R^4 + 30R^2 - 4)RSINA
 -4.1784e-07: [24] 70R^8 - 140R^6 + 90R^4 - 20R^2 + 1
            : [25] R^5COS5A
            : [26] R^5SIN5A
            : [27] (6R^2 - 5)R^4COS4A
: [28] (6R^2 - 5)R^4SIN4A
            : [29] (21R^4 - 30R^2 + 10)R^3COS3A
            : [30] (21R^4 - 30R^2 + 10)R^3SIN3A
            : [31] (56R^6 - 105R^4 + 60R^2 - 10)R^2COS2A
: [32] (56R^6 - 105R^4 + 60R^2 - 10)R^2SINZA
            : [33] (126R^8 - 280R^6 + 210R^4 - 60R^2 + 5)RCOSA
             : [34] (126R^8 - 280R^6 + 210R^4 - 60R^2 + 5)RSINA
 -3.3549e-08: [35] 252R^10 - 630R^8 + 560R^6 - 210R^4 + 30R^2 - 1
-1.3002e-09: [36] 924R^12 - 2772R^10 + 3150R^8 - 1680R^6 + 420R^4 - 42R^2 + 1
RMS OPD 5.4662e-05 ERROR 1.8430e-11
PMMA/Z9000 cornea for PPG-fixture.
Apdiv 97.10
Zernike in mm
Spot diagram in image space
Pupil 2.640233
*LENS DATA
PMMA Z9000 CORNEA PPG_fixture n=100
 SRF
          RADIUS
                       THICKNESS APERTURE RADIUS
                                                            GLASS SPE NOTE
 OBJ
                      1.0000e+20
                                     1.0000e+14
                                                             AIR
        11.047000
  1
                        4.000000
                                       3.000000
                                                             PMMA
 2
       1.0000e+26
                        0.100000
                                        2.650289 S
                                                            WATER
 AST
                                       2.640233 AS
```

```
1.700000
                                     2.640233 S
                                                        WATER
                      24.556458 S
                                     2.469290 S
  5
           --
                                                        WATER
 IMS
                      -0.140000
                                     0.014100 S
*CONIC AND POLYNOMIAL ASPHERIC DATA
                                    AE
                                                            AG
          0.512084 -9.0182e-06 -4.1412e-08
*ZERNIKE ANALYSIS
 WAVELENGTH 1
 Positive angle A is a rotation from the +y axis toward the +x axis.
    0.000685: [0] 1
      -- : [1] RCOSA
            : [2]
                   RSTNA
    0.001280: [3] 2R^2 - 1
           : [4]
                  R^2COSZA
            : [5] R^2SIN2A
           : [6] (3R^2 - 2)RCOSA
            : [7] (3R^2 - 2)RSINA
    0.000603: [8] 6R^4 - 6R^2 + 1
           : [9] R^3COS3A
           : [10] R^3SIN3A
           : [11] (4R^2 - 3)R^2COS2A
      ---
           : [12] (4R^2 - 3)R^2SIN2A
      --
           : [13] (10R^4 - 12R^2 + 3)RCOSA
           : [14] (10R^4 - 12R^2 + 3)RSINA
  9.0025e-06: [15] 20R^6 - 30R^4 + 12R^2 - 1
          : [16] R^4COS4A
           : [17] R^4SIN4A
           : [18] (5R^2 - 4)R^3COS3A
           : [19] (5R^2 - 4)R^3SIN3A
           : [20] (15R^4 - 20R^2 + 6)R^2COS2A
           : [21] (15R^4 - 20R^2 + 6)R^2SIN2A
           : [22] (35R^6 - 60R^4 + 30R^2 - 4)RCOSA
: [23] (35R^6 - 60R^4 + 30R^2 - 4)RSINA
  1.4315e-07: [24] 70R^8 - 140R^6 + 90R^4 - 20R^2 + 1
          : [25] R^5COS5A
           : (26) R^5SIN5A
           : [27] (6R^2 - 5)R^4COS4A
           : [28] (6R^2 - 5)R^4SIN4A
           : [29] (21R^4 - 30R^2 + 10)R^3COS3A
           : (30) (21R^4 - 30R^2 + 10)R^3SIN3A
           : [31] (56R^6 - 105R^4 + 60R^2 - 10)R^2COS2A
           : [32] (56R^6 - 105R^4 + 60R^2 - 10)R^2SIN2A
           : [33] (126R^8 - 280R^6 + 210R^4 - 60R^2 + 5)RCOSA
           : [34] (126R^8 - 280R^6 + 210R^4 - 60R^2 + 5)RSINA
  1.9291e-09: [35] 252R^10 - 630R^8 + 560R^6 - 210R^4 + 30R^2 - 1
           : [36] 924R^12 - 2772R^10 + 3150R^8 - 1680R^6 + 420R^4 - 42R^2 + 1
          0.000787 ERROR 8.8271e-11
PMMA/Z9000 cornea for PPG-fixture with 20.0D Z9000 lens.
Apdiv 97.10
Zernike in mm
Spot diagram in image space
IOL pupil 2,640233
*LENS DATA
PMMA Z9000 CORNEA PPG_fixture n=100
SRF
         RADIUS
                     THICKNESS APERTURE RADIUS
                                                       GLASS SPE NOTE
                    1.0000e+20
                                 1.0000e+14
OBJ
                                                        AIR
       11.047000
                       4.000000
                                    3.000000
                                                        PMMA
                      0.100000
                                     2.650289 S
 2
      1.0000e+26
                                                       WATER
AST
                                     2.640233 AS
                                                       PUPIL
          --
                      1.700000
                                    2.640233 S
                                                       WATER
       12.154000
                      1.103000
                                    2.469290 S
                                                        HRI
      -12.154000
                     17.052946 S
                                    3.000000
                                                       WATER
                     -0.140000
                                    0.019298 S
```

*CONIC AND POLYNOMIAL ASPHERIC DATA

```
SRF
                               AD
                                                                             AG
             0.512084 -9.0182e-06 -4.1412e-08
   1
            -1.018548 -0.000899 -1.1412e-05
   5
*ZERNIKE ANALYSIS
 WAVELENGTH 1
 Positive angle A is a rotation from the +y axis toward the +x axis.
    -0.000720: [0] 1
                        RCOSA
              : [1]
               : [2] RSINA
    -0.000632: [3] 2R^2 - 1
       -- : [4] R^2COS2A
              : [5] R^2SIN2A
              : [6] (3R^2 - 2)RCOSA
: [7] (3R^2 - 2)RSINA
   9.2891e-05: [8] 6R<sup>4</sup> - 6R<sup>2</sup> + 1
             : [9] R^3COS3A
               : [10] R^3SIN3A
             : [11] (4R^2 - 3)R^2COS2A
: [12] (4R^2 - 3)R^2SIN2A
        --
             : [13] (10R^4 - 12R^2 + 3)RCOSA
               : [14] (10R^4 - 12R^2 + 3)RSINA
   4.8164e-06: [15] 20R^6 - 30R^4 + 12R^2 - 1
             : [16] R^4COS4A
              : [17] R^4SIN4A
             : (18) (5R^2 - 4)R^3COS3A
: (19) (5R^2 - 4)R^3SIN3A
             : [20] (15R<sup>4</sup> - 20R<sup>2</sup> + 6)R<sup>2</sup>COS2A
: [21] (15R<sup>4</sup> - 20R<sup>2</sup> + 6)R<sup>2</sup>SIN2A
              : [22] (35R^6 - 60R^4 + 30R^2 - 4)RCOSA
               : [23] (35R^6 - 60R^4 + 30R^2 - 4)RSINA
  -9.1973e-09: [24] 70R^8 - 140R^6 + 90R^4 - 20R^2 + 1
              : [25] R^5COS5A
              : [26] R^5SIN5A
              : [27] (6R^2 - 5)R^4COS4A
: [28] (6R^2 - 5)R^4SIN4A
             : [29] (21R^4 - 30R^2 + 10)R^3COS3A
: [30] (21R^4 - 30R^2 + 10)R^3SIN3A
              : [31] (56R^6 - 105R^4 + 60R^2 - 10)R^2COS2A
: [32] (56R^6 - 105R^4 + 60R^2 - 10)R^2SIN2A
             : (33) (126R^8 - 280R^6 + 210R^4 - 60R^2 + 5)RCOSA
: [34) (126R^8 - 280R^6 + 210R^4 - 60R^2 + 5)RSINA
 -1.1709e-08: [35] 252R^10 - 630R^8 + 560R^6 - 210R^4 + 30R^2 - 1
  -4.6305e-10: [36] 924R^12 - 2772R^10 + 3150R^8 - 1680R^6 + 420R^4 - 42R^2 + 1
RMS OPD 0.000367 ERROR
```

Appendix 4: Measurement procedure of the lens power in the waterbath

The lenses were measured for optical power in a water bath. The actual back focal length (BFL) was used as the measure of lens power in water. The lens is focused at maximum MTF at 50c/mm. The measurement is time consuming, due to the fluctuations of the MTF values. A manual through focus measurement was performed, so that the interpolated best focus could be determined off-line. For each value, an extensive settling time of 5 minutes or more was exercised.

Determination of the lens power in vivo consists of the following steps:

- 1. Through focus measurement in a waterbath
- 2. Determination of the actual BFL by interpolation
- 3. From the actual BFL, determine the effective focal length (EFL) by adding the longitudinal spherical aberration and the position of the 2nd principle plane.
- 4. Determine the lens power in water, from the equation 1.3406/EFL
- 5. Determine the lens power in vivo, from the theoretical relationship between lens power in water and lens power in vivo.

1. Through focus measurement in a waterbath

A manual through focus MTF at 50c/mm was measured in a waterbath. Characteristics of the measurement set-up:

- Aperture 3mm
- Water with PEG200, refractive index 1.3406
- Slit width 10 micrometer
- 10X objective lens
- 1 through focus measurement per lens
- 5 to 8 focus positions for each focal point

2. Determination of the actual BFL by interpolation

In order to be able to make an interpolation, a curve was fit through the through-focus response. For this purpose, a square double log function was used:

 $\log(MTF) = b_0 + b_1 * (\log(BFL)) + b_2 * (\log(BFL))^2$

This function is bell-shaped by nature, similar to a normal through-focus response. The maximum of the curve is detrmined by $log(BFL) = -\frac{1}{3}(b_1/b_2)$

3. From the actual BFL, determine the effective focal length.

In order to find the EFL, the spherical aberration has to be added to the BFL, as well as the distance between the 2nd principle plane and the posterior lens surface.

The longitudinal spherical aberration (LSA) of a bifocal lens in a waterbath is assumed identical to its monofocal equivalent. This means that the LSA can be calculated with OSLO, using the same lens geometry without the diffraction pattern, and using the appropriate refractive indices as applicable under the measuring conditions. It means that the monofocal Z9000 lens design can be used in the calculations (only this prototype lens was measured in the waterbath). Figure 4.1. shows the OSLO results for a 20.0D lens and the results for the 3 measured lens powers are sumarised in figure 4-2.

AR-318.HAW Page 30 of 56

SRF OBJ	RADIUS	THICKNESS	1.0000e+14		GLASS WATERMO	SPE	NOTE
	12.154000		1.500000		HRISILMO	*	
			s 3.000000		WATERMO		
IMS			V 6.6265e-0		WALEIGIO		
CONIC .	AND POLYNOMI	AL ASPHERIC	DATA				
SRF	CC	AD	AE	AF	AG		
1	-1.018550	-0.000899	-1.1418e-05				
WAVELE	NGTHS						
URRENT	WV1/WW1	WV2/WW2	WV3/WW3				
1	0.550000	0.550000	0.550000				
	1.000000	1.000000	1.000000				
REFRAC	TIVE INDICES						
SRF	GLASS	RN1	RN2	RN:	3 VI	IBR	TCE
0	WATERMO	1.340563	1.340563	1.340	63	-	
1	HRISILMO		1.463984			-	236.000000
2	WATERMO	1.340563	1.340563	1.3405	63	-	236.000000
3	IMAGE SURF	ACE					
inimum	focus posit	ion:					
aximum	focus posit	ion: 5.00	0000				
1	number of st	eps: 500					
	MTF(f=50):						

Figure 4-1. OSLO output for a 20.0D lens of model Z9000, in the waterbath.

Nominal Power	Anterior radius	Posterior radius	Central Thickness	Total Power	Anterior Power	Spherical aberration
15	16.225	-16.225	1.027	15.17	7.61	2.75
19	12.797	-12.797	1.106	19.22	9.64	1.54
20	12.154	-12.154	1.125	20.23	10.16	1.40
24	10.117	-10.117	1.203	24.28	12.20	0.99
26	9.333	-9.333	1.242	26.30	13.22	0.86
30	8.075	-8.075	1.319	30.36	15.28	0.67
Units	mm	mm	mm	D	D	mm

Figure 4.2. Spherical aberration for different lens powers. Note that the spherical aberration is positive for all lens powers. This is opposite to the normal spherical lenses.

The position of the 2nd principle plane is calculated using the paraxial equations:

$$H'' = \frac{\eta_{med}}{\eta_{IOL}} * \frac{P_1}{P} * CT$$

H" = distance between 2nd principle plane and the posterior lens surface

 η_{med} = refractive index of the surrounding medium

 η_{IOL} = refractive index of the lens

 P_1 = power of the front surface of the lens

P = total power of the lens

CT = central thickness of the lens

Application for the monofocal Z9000 lens model results in values of 0.471, 0.517 and 0.572mm for 15.0D, 20.0D and 26D lenses respectively. According the definition of bifocal lens power, H" is equal for far and near vision⁸.

4. Determine the lens power in water

The lens power in water is defined by η_{med} /EFL, with η_{med} =1.3406 and EFL expressed in meter units. The result is not exactly identical as the lens power in vivo.

5. Determine the lens power in vivo

The lens power in vivo is defined by the lens geometry and the nominal refractive indices $\eta_{med}=1.336$ and $\eta_{IOL}=1.458$. The lens power under MO-lab conditions is defined by the lens geometry and the nominal refractive indices $\eta_{med}=1.3406$ and $\eta_{IOL}=1.46398$. Using the thick-lens-equation for both situations, the relationship between the two can be determined (figure 4-3).

Figure 4-3. Relationship between the lens power under MO-lab conditions (waterbath) and in vivo lens power. T.L.E = thick-lens-equation.

AR-318.HAW Page 32 of 56

Appendix 5: Test of the light distribution with different step heights.

In order to determine the optimal stepheight of the diffractive profile, 3 different stepheights were tested of a 20.0D bifocal diffractive design. The target is a 50:50 light distribution.

Lens power	20.0 D	20.0 D	20.0 D
Anterior radius	12.154	12.154	12,154
Posterior radius	-12.586	-12.586	-12.586
Central thickness	1.125	1.125	1.125
R_1	0.513	0.513	0.513
k	0.7065	0.6754	0.6443
cc	-1.01855	-1.01855	-1.01855
ad	0.0010482	0.0010482	0.0010482
ae	-5.7596E-06	-5.7596E-06	-5.7596E-06
stepheight (µm)	2.50	2.39	2.28

Figure 5-1. Prototype lens designs with different stepheights. These lenses have an aspherical posterior surface to correct for spherical aberration.

The lenses were tested in the Z9000 eye model, using an aperture of 3mm and water with a refractive index of 1.3405. 5 Lenses per type were tested (MO-lab service request F030). The image was focused at a maximum MTF at 50c/mm. The 4 central pixels with maximum intensity were used as a measure of the amount of light in each focus. The ratio of near and far focus determines the light distribution.

k	0.7065	0.6754	0.6443
stepheight	2.50	2.39	2.28
Lens 1	44.7%	49.9%	50.9%
Lens 2	44.8%	48.6%	50.2%
Lens 3	45.1%	48.9%	51.1%
Lens 4	46.1%	47.9%	50.2%
Lens 5	47.8%	48.2%	50.2%
Average	45.7%	48.7%	50.5%
Stdev	1.3%	0.8%	0.5%

Figure 5-2. Measured percent of light in the FAR-focus versus stepheight.

The measurements show a good linearity between stepheight and light distribution. According this data, the optimal stepheight for a 50:50% light distribution is 2.32 micrometer, which corresponds to a k-value of 0.6536.

The MTF distribution showed to be closely related to the light distribution, though the two are not identical. See figure 5-3.

Figure 5-3. MTF(50c/mm) distribution versus light distribution.

Appendix 6: Refractive indices

The performance of diffractive lenses is highly dependent on the refractive indices of the lens material and the surrounding medium and especially the difference between these two. Therefore, special care is taken to use the most accurate values for the HRI material. Furthermore, the refractive index of the water, used for measurements in the MO-lab is adjusted to the most appropriate value.

For the calculation of the image quality in vivo, the generally accepted refractive index of aqueous of 1.336 is applied. For the silicone HRI material, the measured values of the AR lab were taken as the reference ('Dispersion of HRI material', H. Weeber, PG report 2390). This is based on measurements of several batches of HRI material and it includes the dispersion of the material. The result is a refractive index of 1.45942 at 550nm and 35°C.

For the MO-lab conditions, the refractive index at 22°C and 550nm was determined using measurement data of HRI at different temperatures. This data is available in the QA-lab for a wavelength of 589nm (see figure 6-1). It is assumed that this difference of refractive index is also valid for a wavelength of 550nm.

Batch 11103 11	102 11101 11003	11002 11001 11006	11005 11004 10903 16	0902 10901 10706 107	05 10704 10703	10702 10701 Average
			141-02 14-1-02 12-12-0112-			
n25 1.4615 1.4	1616 1.4615 1.461	8 1.4615 1,4614 1,4615	1,4815 1,4814 1,4812 1,	4614 1.4615 1.4618 1.46	19 1.4615 1.4621	1.482 1.4619 1.461600
n37 1,4579 1.4	1581 1,458 1,457	9 1.458 1.4572 1.4579	1.4579 1.4679 1.4578 1.	4575 1.4573 1.4585 1.45	86 1.4581 1.4583	1.4582 1.4581 1.457950

Figure 6-1. Measured refractive indices for 589nm and at temperatures of 25°C and 37°C. Raw data available at the QA lab.

Applying this to the in vivo index, the refractive index of HRI material under MO-lab conditions is 1.46398.

The refractive index of pure water, 22°C and 550nm, is 1.3342 (Handbook of Chemistry and Physics, Ed. D.R.Lide, CRC Press, Boca Raton (FL)). Under MO-lab conditions, the difference between the lens refractive index and the medium refractive index should be the same as in vivo (0.12342). Therefore, a medium refractive index of 1.34056 has to be used. For practical purposes, a tolerance of ± 0.0002 has to be added as a specification.

	Wavelength	Temperature	nlens	nmedium
in vivo	550	35	1.45942	1.336
MO lab	550	22	1.46398	1.34056

Figure 6-2. Refractive indices of the lens (HRI silicone) and the medium (aqueous and water) under invivo and MO-lab conditions, for 550nm.

In order to obtain the correct refractive index of the medium, water is mixed with 5.11% PEG200 (w/w). The mixtures used for the measurements were always measured at the AR lab on the calibrated Abbe refractometer, using a Hg light bulb with 550±10nm filter.

Appendix 7. Raw data

MO-lab measurement data of MTF and BFL measurements of two lens series from pilot plant service request SA020560:

K1 = bifocal foldable with optimized anterior surface Z9000 K1 = bifocal foldable with Z9000 anterior surface

AR-318.HAW Page 35 of 56

MECHANICAL OPTICAL LABORATORY

SERVICE AANVRAAG MECHANISCH/OPTISCH LABORATORIUM

				AANVRAAGNR.	: F050
AANVRAGER:		H.Weeber		AANVRAAGDATUM:	
AFDELING:		AR		AFD.CODE:	570
PROJECT/OMSCH	RLIVING:	Bifocal Foldable			
, KOBEO II O III O					
TYPE LENS:	Prototyp	e Bifocal Foldable			
			DIOPTRIE	AANTAL	
		BATCHNUMMER	15.0D	8	
	SA 0205		20.0D	8	
	SA 0205		26.0D	8	
	SA 0205	60 K1	15.0D	8	
	SA 0205	60 Z9000 k1	20.0D	8	
	SA 0205	60 Z9000 k1		8	
	SA 0205	60 Z9000 k1	26.00	<u> </u>	
			GEWENSTE	METINGEN	
				MTF/EFL	IX.
MASSA	ren .			BACK FOCAL LENGTH	
OVERALL DIAME			+	DIOPTRIE	
OPTIEK DIAMETE	K	SET UCCCVI	 	RESOLUTIE	
BREEDTE-DIAME	TER VAN	JE LUSSEN		BURSTTEST	
DIKTE VAN DE LU	ISSEN	TE CIFICULE	- 	TREKSTERKTE	
STAND VAN DE L	USSEN/SI	EP HEIGHT		TREASTERATE	
EDGE THICKNESS	<u> </u>				
COMPRESSION F	ORCE				
AXIAL DISPLACE	MENT IN C	OMPRESSION			
TILT					
AXIAL RIGIDITY					
AMOUNT OF TOU	СН				
DECENTRATION					
AFWIJKENDE ME	TINGEN				
AFWIJKERDE ME	THOLK				
OPMERKINGEN	29000 C				
	brekings	index v/h water = 1.3	406		
		3 en 5 mm			
	focusere	n bii 25 c/mm			
1	waarder	bij 25, 50 en 100 c/m	m noteren		PH-517-06

15 15 Obsect EMOCAL Foldable SAN LANIMAR FOLDABLY NITLE SAN LA	Servicered.		F050	Applicant:		H.Weeber		_	Dept: A	AR			0	Code: 5	570						
N_L No. of samplese: 24 Alpha Incl. SA. Norminer pilot plant SA. Occoso (rand Diz A lim H) No. of samplese: 24 Alpha Incl. SA. Norminer pilot plant SA. Occoso (rand Diz A lim H) No. of samplese: 24 Alpha Incl. SA. Norminer pilot plant SA. Occoso (rand Diz A lim H) No. of samplese: 24 Alpha Incl. SA. Norminer pilot plant SA. Occoso (rand Diz A lim H) No. of samplese: 24 Alpha Incl. SA. Occoso (rand Diz A lim H) No. of samplese: 24 Alpha Incl. SA. Occoso (rand Diz A lim H) No. oc	oject:			Descr:		Bifocal Fol	1able										Jaic.				
N_ 1 No. of samples: 24 Nypet diopnet/7 FFIFE FFIFE No. of samples: 24 Nypet diopnet/7 FFIFE NYPET	Ë			Descr:	J.	SA Numme	r pilot plar	1 SA0205¢	O (van biz.	A Vm H)											
Charitype K1	eries:		r, Ž		No.of sam	ples:	7.	type/ dlop	ter/7	F1/15 0/20	00800		Jamarke.								
FAR	BSCr:	ļ	Lenstype	K1 // gem	elen met 3	mm apertu		•				•	Vernal Ab.	€	oe/nspar	y: MO-La	poratory				
So-Pye Model-WATH 26006 CORNEA Solution	otal								ľ												
FAR 10 2 3 4 5 6 7 8 100 1									1	PTICAL E	ENCH										
Table Tabl	-							₩.	O-EYE M	DEL WIT	H 29000 C	ORNEA									
FAR NEAR NEAR FAR NEAR FAR NEAR FAR NEAR FAR				15.	00					20.0	0					92					
1			FAR			NEAR			FAR			NEAR			EAD	70.0	2				
Column 1		22	S	5	25	88	8	×	Ş	Ę	36		Ę	,	<u>בן ז</u>		-	MEAR			
1 2 3 4 5 6 7 8 7 8 7 9 70 70 70 70 70 70	nit.								3		3 ,	8	3	2	8	8	22	8	2		
0.33 0.25 0.17 0.35 0.27 0.28 0.29 0.29 0.23 0.23 0.28 0.29 <th< th=""><th>3</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>2</th><th></th><th></th><th></th><th></th><th></th><th>i</th><th></th><th></th><th></th><th></th><th></th></th<>	3									2						i					
0.33 0.25 0.17 0.23 0.24 0.27 0.19 0.25 0.27 0.22 0.24 0.27 0.19 0.25 0.27 0.24 0.27 0.24 0.27 0.24 0.27 0.24 0.27 0.24 0.27 0.24 0.27 0.24 0.27 0.24 0.27 0.24 0.27 0.24 0.27 0.24 0.27 0.24 0.27 0.24 0.27 0.24 0.27 0.24 0.26 0.27 0.24 0.26 0.27 0.24 0.26 0.27 0.24 0.26 0.27 0.24 0.26 0.27 0.24 0.26 0.27 0.24 0.26 0.27 0.24 0.29 0.27 0.24 0.29 0.27 0.24 0.27 0.24 0.27 0.24 0.27 0.24 0.27 0.24 0.27 0.24 0.27 0.24 0.27 0.24 0.27 0.24 0.29 0.24 0.29 0.24 0.29 <th< th=""><th></th><th>[.</th><th></th><th></th><th>-</th><th></th><th></th><th></th><th>9</th><th>122</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th></th></th<>		[.			-				9	122									-		
0.33 0.25 0.17 0.23 0.24 0.27 0.19 0.35 0.27 0.21 0.37 0.27 0.21 0.37 0.29 0.23 0.24 0.27 0.24 0.27 0.28 0.27 0.27 0.29 0.27 0.28 0.27 0.29 0.27 0.29 0.27 0.29 0.27 0.29 0.27 0.29 0.27 0.29 0.27 0.29 <th< th=""><th>TIME TO SERVICE TO SER</th><th>-</th><th>7</th><th>,</th><th>•</th><th>2</th><th>9</th><th>,</th><th>80</th><th>6</th><th>10</th><th>11</th><th>12</th><th>13</th><th>*</th><th>15</th><th>18</th><th>11</th><th>1</th><th>40</th><th>5</th></th<>	TIME TO SERVICE TO SER	-	7	,	•	2	9	,	80	6	10	11	12	13	*	15	18	11	1	40	5
0.37 0.39 0.22 0.36 0.29 0.23 0.26 0.23 0.26 0.23 0.26 0.27 0.39 0.29 0.29 0.23 0.26 0.27 0.36 0.29 0.21 0.39 0.29 0.23 0.26 0.17 0.34 0.26 0.27 0.29 0.21 0.39 0.21 0.39 0.23 0.29 0.21 0.36 0.29 0.21 0.29 0.21 0.29 0.21 0.29 0.21 0.29 0.21 0.29 0.21 0.29 0.21 0.29 0.21 0.29 0.21 0.29 0.21 0.29 0.21 0.29 0.21 0.29 0.21 0.29 0.21 0.29 0.21 0.29 0.21 0.29 0.21 0.29 0.22 0.29 0.21 0.29 0.22 0.29 0.23 0.29 0.21 0.29 0.22 0.29 0.22 0.29 0.21 0.29 0.21 0.29 0.21 <th< th=""><th>-</th><td>0.33</td><td>0.25</td><td>0.17</td><td>0.35</td><td>0.27</td><td>0.22</td><td>0.34</td><td>0.27</td><td>0.19</td><td>0.35</td><td>0.27</td><td>0.21</td><td>25</td><td>8</td><td>5</td><td>98.0</td><td></td><td></td><td></td><td></td></th<>	-	0.33	0.25	0.17	0.35	0.27	0.22	0.34	0.27	0.19	0.35	0.27	0.21	25	8	5	98.0				
0.36 0.29 0.19 0.29 0.23 0.23 0.25 0.17 0.34 0.25 0.27 0.14 0.35 0.20 0.21 0.35 0.29 0.23 0.28 0.17 0.19 0.25 0.27 0.19 0.27 0.19 0.25 0.27 0.19 0.27 0.29 0.27 0.19 0.27 0.29 0.21 0.28 0.29 0.21 0.28 0.29 0.21 0.29 0.21 0.29 0.21 0.29 0.21 0.29 0.21 0.29 0.21 0.29 0.21 0.29 0.21 0.29 0.21 0.29 0.21 0.29 0.21 0.29 0.21 0.29 0.21 0.29 0.21 0.29 0.21 0.29 0.22 0.29 <th< th=""><th>7</th><td>0.37</td><td>0.30</td><td>0.22</td><td>0.36</td><td>0.29</td><td>0.23</td><td>0.34</td><td>0.26</td><td>0.00</td><td>0.33</td><td>90 0</td><td>5</td><td>36</td><td>3 6</td><td>7 7</td><td>9 9</td><td>87 3</td><td>0.20</td><td></td><td></td></th<>	7	0.37	0.30	0.22	0.36	0.29	0.23	0.34	0.26	0.00	0.33	90 0	5	36	3 6	7 7	9 9	87 3	0.20		
0.37 0.30 0.21 0.35 0.29 0.23 0.34 0.28 0.14 0.34 0.29 0.21 0.28 0.14 0.23 0.20 0.21 0.24 0.25 0.24 0.28 0.19 0.23 0.25 0.24 0.28 0.19 0.34 0.27 0.14 0.34 0.27 0.14 0.34 0.27 0.14 0.34 0.29 0.14 0.34 0.29 0.21 0.34 0.34 0.30 0.22 0.35 0.28 0.21 0.34 0.30 0.22 0.35 0.28 0.27 0.34 0.30 0.22 0.35 0.28 0.27 0.34 0.30 0.22 0.35 0.28 0.27 0.34 0.30 0.22 0.35 0.28 0.21 0.34 0.30 0.32 0.28 0.21 0.34 0.32 0.34 0.28 0.21 0.34 0.32 0.34 0.22 0.28 0.21 0.23 0.23 0.21 <th< th=""><th>n</th><td>0.36</td><td>0.29</td><td>0.19</td><td>0.36</td><td>0.29</td><td>0.23</td><td>0.33</td><td>20.05</td><td>1,0</td><td>3 6</td><td>3 6</td><td>0.20</td><td>9 1</td><td>0.40</td><td>77</td><td>0.40</td><td>0.30</td><td>0.23</td><td></td><td></td></th<>	n	0.36	0.29	0.19	0.36	0.29	0.23	0.33	20.05	1,0	3 6	3 6	0.20	9 1	0.40	77	0.40	0.30	0.23		
0.37 0.29 0.21 0.35 0.30 0.23 0.24 0.14 0.14 0.14 0.13 0.21 0.23 0.39 0.32 0.35 0.29 0.17 0.35 0.20 0.22 0.35 0.28 0.21 0.34 0.30 0.22 0.35 0.28 0.21 0.35 0.29 0.37 0.30 0.32 0.36 0.35 0.29 0.37 0.30 0.32 0.36 0.36 0.39 0.32 0.36 0.29 0.37 0.30 0.32 0.36 0.29 0.37 0.30 0.22 0.36 0.28 0.21 0.34 0.30 0.20 0.35 0.28 0.21 0.37 0.31 0.	*	0.37	0.30	0.21	0.35	0.29	0 22	75	96.0	5	5 6	0.40	97.9	0.37	0.3	0.21	0.38	0.31	0.22		
0.35 0.29 0.17 0.35 0.29 0.17 0.35 0.29 0.12 0.34 0.30 0.22 0.35 0.39 0.30 0.23 0.39 0.32 0.39 0.32 0.39 0.32 0.39 0.32 0.39 0.35 0.39 0.32 0.39 0.35 0.39 0.35 0.39 0.31 0.22 0.34 0.29 0.34 0.20 0.34 0.20 0.35 0.34 0.20 0.34 0.20 0.34 0.20 0.34 0.20 0.34 0.20 0.34 0.37 0.30 0.39 0.31 0.35 0.39 0.31 0.35 0.39 0.31 0.35 0.39 0.31 0.35 0.39 0.31 0.39 0.31 0.35 0.39 0.31 0.39 0.31 0.35 0.31 0.20 0.31 0.30 0.31 0.30 0.31 0.30 0.31 0.30 0.31 0.30 0.31 0.30 0.31 0.30 0.31 0.30 0.31 0.30 0.31 0.30 0.31 0.30 0.31 0.32 0.31 0.33 0.31 0.33 0.31 0.33 0.31 0.33 0.33	·S	0.37	0.29	0.21	0.35 75.	5	200	5 6		2 6	F. 6	77.0	2	0.38	0.31	0.23	0.39	0.32	0.25		
0.35 0.29 0.19 0.22 0.27 0.10 0.22 0.27 0.11 0.24 0.23 0.25 0.28 0.23 0.26 0.23 0.26 0.20 0.27 0.37 0.30 0.37 0.31 0.37 0.31 0.37 0.31 0.37 0.31 0.37 0.31 0.32 0.38 0.31 0.32 0.31 0.31 0.32 0.31 0.31 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.31 0.32 0.31 0.32 0.31 0.32 <th< th=""><th>9</th><td>0.35</td><td>0.29</td><td>0 17</td><td>0.36</td><td>8 6</td><td></td><td>3 6</td><td>0 70</td><td>2 6</td><td>200</td><td>0.28</td><td>0.21</td><td>0.38</td><td>0.30</td><td>0.23</td><td>0.39</td><td>0.32</td><td>0.24</td><td></td><td></td></th<>	9	0.35	0.29	0 17	0.36	8 6		3 6	0 70	2 6	200	0.28	0.21	0.38	0.30	0.23	0.39	0.32	0.24		
0.37 0.31 0.23 0.23 0.24 0.25 0.24 0.25 0.25 0.27 0.26 0.25 0.27 0.26 0.27 0.20 0.24 0.25 0.24 0.27 0.20 0.24 0.25 0.27 0.29 0.21 0.25 0.29 0.21 0.36 0.31 0.31 0.35 0.29 0.21 0.39 0.31 0.31 0.35 0.29 0.21 0.30 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.32 0.32 0.32 <th< th=""><th>~</th><td>0.35</td><td>0.29</td><td>0.19</td><td>0.35</td><td>0.22</td><td>9</td><td>5 5</td><td>3 6</td><td>77.0</td><td>S 5</td><td>6.28</td><td>0.23</td><td>0.36</td><td>0.30</td><td>0.22</td><td>0.37</td><td>0.30</td><td>0.22</td><td></td><td></td></th<>	~	0.35	0.29	0.19	0.35	0.22	9	5 5	3 6	77.0	S 5	6.28	0.23	0.36	0.30	0.22	0.37	0.30	0.22		
0.36 0.29 0.20 0.34 0.20 0.34 0.28 0.21 0.35 0.29 0.21 0.34 0.27 0.20 0.34 0.22 0.34 0.20 0.34 0.27 0.34 0.27 0.37 0.27 0.37 <th< th=""><th>œ</th><td>0.37</td><td>3</td><td>2</td><td>25.0</td><td>1 6</td><td>- 6</td><td>5</td><td>2</td><td>07.0</td><td>33</td><td>0.28</td><td>0.21</td><td>0.37</td><td>0.31</td><td>0.23</td><td>0.38</td><td>0.31</td><td>0.24</td><td></td><td></td></th<>	œ	0.37	3	2	25.0	1 6	- 6	5	2	07.0	33	0.28	0.21	0.37	0.31	0.23	0.38	0.31	0.24		
0.36 0.29 0.20 0.34 0.22 0.34 0.28 0.20 0.34 0.27 0.34 0.27 0.34 0.27 0.34 0.27 0.34 0.27 0.34 0.27 0.34 0.27 0.34 0.37 0.39 0.31 0.31 0.01 0.010 0.01	,	Š	?	77.0	\$C.5	0.28	0.22	7	0.27	0.20	0.3 4	0.28	0.21	0.35	0.29	0.21	0.39	0.31	0.24		
0.015 0.018 0.021 0.006 0.011 0.014 0.005 0.016 0.017 0.008 0.011 0.010 <th< th=""><th>Ş</th><td>0.36</td><td>0.29</td><td>0.20</td><td>0.35</td><td>0.28</td><td>0.33</td><td>10.00</td><td>100.0</td><td>8</td><td>,,,,</td><td>1,00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Ş	0.36	0.29	0.20	0.35	0.28	0.33	10.00	100.0	8	,,,,	1,00									
0.33 0.25 0.17 0.34 0.35 0.35 0.31 0.25 0.17 0.34 0.32 0.35 0.35 0.31 0.25 0.17 0.33 0.25 0.19 0.35 0.35 0.25 0.19 0.35 0.25 0.31 0.25 0.31 0.25 0.31 0.25 0.31 0.25 0.31 0.25 0.31 0.25 0.31 0.23 0.23 0.40 0.31 0.23 0.40 0.31 0.31 0.32 0.40	-	0.045	L				7	5	9	यु	3	0.27	0.21	0.37	0.30	0.22	0.39	0.31	0.23		
0.37 0.31 0.22 0.39 0.30 0.30 0.35 0.30 0.22 0.35 0.23 0.35 0.38 0.31 0.23 0.30 0.30 0.30 0.30 0.30 0.30 0.30		200	L.	1	3	10.0	0.07	0.005	0.018	0.017	0.008	0.011	0.012	0.010	0.010	0.00	0.009	0.010	0.016		
0.37 0.31 0.22 0.36 0.30 0.33 0.35 0.35 0.35 0.28 0.23 0.38 0.31 0.23 0.40 0.32		3 6	200	3	3	770	0.19	6.33	0.25	0.17	0.33	0.25	0.19	0.35	0.28	0.21	0.37	0.29	0.00		
	Š	500	0.31	0.22	0.36	0.30	0.23	0.35	0.30	0.22	0.35	0.28	0.23	0.38	0.31	0.23	0.40	0.32	0.25		

Servicereq.		F050	Applicant:		H.Weeber		Ω	Dept: A	AR			บั	Code: 5	570	J	Date:		-		
Project:		5.13	Descr:		Bifocai Foldable	dable														
Item:			Descr:		SA Numm	er pilot plar	SA Nummer pilot plant SA020560 (van blz.A Vm H)	"Ziq vev) C	A Vm H)											
Series:		Nr_2		No.of samp	yles:	24	ltype/ diopter/?		BFII15.0/20.0/26.00	0.026.00	a a	Remarks:	2	seasured t	Measured by: MO-Laboratory	voratory				
Descr:		Lenstype	K1 29000	Lenstype K1 Z9000 // gemeten	n met 3mm aperture	aperture										•				
total								ľ	OPTICAL BENCH	BENCH										
9							S	O-EYE M	DDEL WIT	ISO-EYE MODEL WITH 29000 CORNEA	ORNEA									
			15.0 D	0.0					20.0 D	a					26.0 D	a				
		FAR			NEAR			FAR			NEAR			FAR			NEAR	Γ		
	52	os	100	52	S	<u>š</u>	25	ક્ક	8	25	20	ş	25	8	8	25	ន	8		
unit									[c/mm]	E		1								
date																				
column	1	2	3	•	5	9	- -	8	6	5	=	12	13	7	2	16	17	18	10	20
-	0.38	0.34	0.23	0.35	0.30	0.24	0.35	0.26	0.14	0.34	0.24	0.15	0.40	0.31	0.22	0.35	0.28	0.20		
n	0.37	0.30	0.20	0.34	0.26	0.20	0.38	0.29	0.20	0.36	0.30	0.22	0.37	0.28	0.18	0.37	0.30	0.22		
е.	0.37	0.30	0.18		0.26	0.18	0.38	0.32	0.23	0.37	0.30	0.25	0.39	0.32	0.23	0.37	0.30	0.22		
*	0.36	0.31	0.21		0.30	0.24	0.40	0.31	0.22	0.36	0.30	0.21	0.39	0.33	0.25	0.36	0.31	0.25		
'n	0.37	0.29	0.19	6.34	0.28	0.22	0.40	0.32	0.20	0.36	0.28	0.21	0.36	0.28	0.17	96.0	0.27	0.17		
9	0.37	0.30	0.17		0.28	0.22	0.40	0.32	0.24	0.37	0.32	0.25	0.38	0.29	0.19	0.37	0.30	0.21		
	0.38	0.31	0.22	0.35	0.29	0.22	0.39	0.32	0.21	0.36	0.28	0.21	0.38	0.31	0.21	0.35	0.28	0.19		
«	0.37	0.30	0.21	0.34	0.28	0.22	0.38	0.29	0.18	0.36	0:30	0.24	0.38	0.31	0.21	0.38	0.30	0.22		
														-						
BAE	0.37		ı	0.35	0.28	0.22	0.39	0:30	0.20	0.36	0.29	0.22	0.38	0.30	0.21	0.36	0.29	0.21		
std	9000			0.007	0.016	0.020	0.017	0.022	0.032	0.009	0.024	0.032	0.012	0.018	0.027	0.011	0.014	0.024		
min	9.36	0.28	0.17	6.3	0.26	0.18	0.35	0.26	0.14	0.34	0.24	0.15	96.0	0.28	0.17	0.35	0.27	0.17		
max	0.38	0.34	0.23	0.36	0.30	0.24	0.40	0.32	0.24	0.37	0.32	0.25	0.40	0.33	0.25	0.38	0.31	0.25		
	_		ı																	

מואורפופולי		1000	Applicant:	ט	H.Weeber	_	_	Dept:	¥			ပ	Code: 57	570	۵	Date:		1		
Project:	•	5.13	Descr:		Bifocal Fo	aldable														
Kem:			Descr:		SA Numr	ner pilot pla	SA Nummer pilot plant SA020560 (van blz.A Vm H)	30 (van blz	A Vm H)											
Series:	-	Nr. 1_150	_	No.of samp	nples:	24	hypel diopter?	tern	BF#15.00		8	Remarks:	×	easured b	Measured by: MO-Laboratory	oratory				
Descr:		Lenstype K1	\boldsymbol{z}	gemeten met 5mn	ım aperture	ø										•				
total									OPTICAL BENCH	BENCH										
8							S	O-EYE M	DDEL WIT	ISO-EYE MODEL WITH Z9000 CORNEA	ORNEA							T		
					FAR									NEAR				T		
1		0 degrees		4	45 degrees	y,	\$	+45 degrees		0	0 degrees		4	45 degrees		+45	+45 degrees			
	52	3	9	22	09	100	25	ន	ş	22	જ	8	25	50	92	25	8	100		
enit									[c/mm]	E										
date																				
column	-	2	-	•	2	9	7	9	6	92	11	12	5	*	15	16	11	18	19	20
-	0.40	0.35		0.40	0.33	0.23	0.42	0.34	0.23	0.31	0.27	0.18	0.33	0.25	0.14	0.31	0.28	20		
7	0.40	0.32	0.21	0.42	0.30			0.32	0.23	0.31	0.23	0.12	0.29	0.21	0.10	0.33	0.28	0 20		
е.	0.41	0.33			0.31		0.43	0.34	0.23	0.32	0.27	0.18	0.29	0.22	0.10	0.32	0.28	0.21		
*	0.42	<u>8</u> .			0.33		0.42	0.33	0.24	0.32	0.26	0.16	0.33	0.25	0.13	0.34	0.28	0.20		
s ·	0.41	0.32		0.38	0.27		0.39	0.30	0.21	0.30	0.24	0.13	0.28	0.20	0.09	0.30	0.25	0.18		
9	0.40	0.32			0.30		0.43	0.3¥	0.25	0.30	0.25	0.15	0.31	0.23	0.12	0.32	0.27	0.20		
~	0.40	0.31			0.34		0.42	0.33	0.23	0.29	0.23	0.12	0.32	0.24	0.14	0.31	0.27	0.19		
80	0.40	0.32	0.23	0.43	0.34	0.26	0.40	0.32	0.23	0.32	0.26	0.18	0.30	0.26	0.18	0.33	0.28	0.22		
			ł																	
G.	0.41	0.33						0.33	0.23	0.31	0.25	0.15	0.31	0.23	0.13	0.32	0.27	0.20		
g .	0.08	0.013	٦		٦			0.014	0.011	0.011	0.016	0.027	0.019	0.021	0.029	0.013	0.011	0.012		
듵	0.40	0.31						0.30	0.21	0.29	0.23	0.12	0.28	0.20	0.03	0.30	0.25	0.18		
max	0.42	0.35	ò	0.43	Ö	0.26	ò	0.34	0.25	0.32	0.27	0.18	0.33	0.26	0.18	0.34	0.28	0.22		
gr.avg			٩	0.41	o	0.32	0.22	2				0.31		0.25		0.16	4			
gr.std			٥	0.014	ő	0.018	0.029	83				0.016	9	0.023	5	0.040	٥			
gr.min			٥	0.38	٥	0.27	0.15	5				0.28	8	0.20		0.0	6			
gr.max				0.43	Ċ.	0.35	0.27	۲.				0.34		0.28	_	0.22	2			
gr.cols.			=	(147)	(2	(258)	(369)	9)				(10 13 16	16)	(11 14 17	17)	(12 15 18)	18)			

Servicereq.		F050	Applicant:		H.Weeber		د	Dept: A	AR			Ü	Code: 5	570	٥	Dafe:				
Project:		5.13	Descr:		Bifocal Foldable	dable														
llem:			Descr:		SA Numm	er pilot pla	SA Nummer pilot plant SA020560 (van biz.A Vm H)	0 (van blz.	A Vm H)											
Series:		Nr. 1_200	_	No.of samples:	sples:	8	Aypel diopter??	ter/? B	BF//20.0 D		n×	Remarks:	2	easured t	Measured by: MO-Laboratory	oratory				
Descr:		Lenstype K1	"	gemeten met	5mm aperture	fure														
tota Esos									OPTICAL BENCH	BENCH								-		
8							SI	O-EYE M	DDEL WIT	ISO-EYE MODEL WITH 29000 CORNEA	ORNEA							Γ		
					FAR									NEAR						
		0 degrees		1	45 degrees	2	7	+45 degraes		0	0 degrees	-	Ť	45 degrees		*	+45 degrees			
	52	જ	5	×	05	100	25	ន	<u>5</u>	52	8	8	25	S	ŝ	25	8	8		
cnit									(c/mm	F										
date																				
column	1	2	3	*	5	9	7	9	6	10	=======================================	12	5	=	15	16	17	18	97	20
-	0.37	0.28	0.15	0.38	0.24	0.12	0.39	0.28	0.17	0.30	0.22	0.13	0.30	0.21	0.11	0.31	0.26	0.19		
~	0.37	0.28	0.15	0.40	0.29	0.18	0.38	0.27	0.16	0.32	0.27	0.19	0.30	0.26	0.16	0.30	0.26	0.18		
es	0.39	0.32			0.33	0.20	0.39	0.30	0.19	0.31	0.28	0.21	0.32	0.27	0.18	0.30	0.25	0.19		
•	0.42	0.36			0.35	0.24	0.43	0.35	0.25	0.33	0.29	0.21	0.33	0.29	0.20	0.32	0.30	0.23		•
'n	0.41	0.33	0.24	0.42	0.33	0.20	0.41	0.32	0.21	0.32	0.28	0.20	0.31	0.28	0.18	0.33	0.30	0.23		
9	0.41	0.33			0.33	0.23	0.43	0.35	0.25	0.33	0.28	0.22	0.31	0.29	0.21	0.32	0.28	0.23		
~	0.42	0.35			0.35	0.24	0.42	0.33	0.21	0.33	0.29	0.20	0.32	0.27	0.18	0.30	0.27	0.17		
•	0.41	0.33	0.23	0.45	0.35	0.24	0.42	0.31	0.17	0.32	0.29	0.22	0.33	0.29	0.21	0.31	0.28	0.19		
					-															
gvs	0.40			0.41	0.32	0.21	0.41	0.31	0.20	0.32	0.28	0.20	0.32	0.27	0.18	0.31	0.28	0.20		
g	0.021	0.029		٦	0.038	0.042	0.020	0.030	0.035	0.011	0.023	0.029	0.012	0.027	0.033	0.011	0.019	0.025		
min	0.37			0.38	0.24	0.12	0.38	0.27	0.16	0:30	0.22	0.13	0.30	0.21	0.11	0.30	0.25	0.17		
max	0.45	0.36	0.25	0.42	0.35	0.84	0.43	0.35	0.25	0.33	0.29	0.22	0.33	0.29	0.21	0.33	0.30	0.23		
gva.vg			٥	0.41	ø	0.32	0.21	1				0.32	-	0.27	A	0.19	4			
gr.std			٥	0.018	Ö	0.031	0.038	98				0.011	-	0.022	Z	0.030	o			
gr.min			٥	0.37	Ö	0.24	0.12	2				0.30		0.21	-	0.11				
gr.max			٥	0.43	0	0.36	0.25	2				0.33	_	0.30	0	0.23				
gr.cols.			٥	(147)	(2)	(258)	(369)	9)				(10 13 16	16)	(11 14 17	17)	(12 15 18)	18)			

Servicereq.		F050	Applicant:	¥	H.Weeber		۵	Dept: A	AR			٥	Code: 5	570		Date.				
Project:		5.13	Descr:		Bifocal Foldable	dable														
Item:			Descr:		SA Numm	er pilot pla	SA Nummer pilot plant SA020560 (van biz.A Um H)	0 (van btz.	A Vm H)											
Series:	-	Nr_1_26D		No.of sam	nples:	24	/type/ diopter/?	lern B	BF// 26.00		, a	Remarks:		Measured by: MO-Laboratory	v: MO-Lat	ocatory				
Descr:		Lenstype K1	"	gemeten met 5mm aperture	5mm apen	ture														
total									OPTICAL BENCH	SENCH										
8							2	O-EYE M	JOEL WIT	ISO-EYE MODEL WITH 29000 CORNEA	ORNEA									
					FAR									NEAR						
	- 1	0 degrees		4	45 degrees	S	7	+45 degrees		0	0 degrees	-	4	45 degrees		#	+45 degrees			
	SS SS	ន	100	22	જ	50	25	જ	ş	25	8	8	25	8	ē	25	5	٤		
ruğ T									[c/mm]	1							3			
date																				
column		2	3	*	5	•	_	•	6	9	11	12	5	14	15	46	12	85	9	2
+	0.45	0.34	0.23	0.41	0.38	0.21	0.41	0.33	0.22	0.30	0.27	0.18	0.33	0.25	0.48	0.31	900	2		3
7	0.39	0.29	0.18	0.37	0.27	0.16	0.38	0.29	0.20	0.30	0.23	0.13	0.30	0.20	9	500	0.20	9, 0		
-	0.40	0.29	0.17	0.41	0.33	0.22	0.38	0.29	0.19	0.29	0.25	0.15	0.31	0.25	0.17	0.29	0.24	0.16		
4	0.41	0.32	0.21		0.29	0.16	0.40	0.34	0.24	0.31	0.24	0.15	0.28	0.22	0.10	0.31	0.29	0.21		
vs	0.42	0.33	0.22	5.0	0.30	0.18	0.42	0.34	0.23	0.30	0.24	0.15	0.28	0.19	0.10	0.30	0.28	0.20		
9	0.43	0.35	0.24		0.34	0.24	0.40	0.31	0.19	0.30	0.26	0.16	0.31	0.25	0.16	0.30	0.26	0.18		
~	0.41	0.31	0.20		0.32	0.22	0.40	0.30	0.18	0.31	0.26	0.16	0.31	0.26	0.17	0.30	0.24	0.15		
«c	0.41	0.31	0.19	0.42	0.35	0.24	0.40	0.31	0.19	0.31	0.28	0.20	0.30	0.26	0.18	0.31	0.26	0.19		
B _N	0.43	0.32	0.21	╛			0.40	0.31	0.21	0.30	0.25	0.16	0.30	0.24	0.14	0.30	0.26	0.19		
P3	0.012	0.022		1			٦	0.021	0.022	0.007	0.017	0.021	0.011	0.028	0.037	0.008	0.018	0.021		
E	. S.	0.29					0.38	0.29	0.18	0.29	0.23	0.13	0.28	0.19	60.0	0.29	0.24	0.15		
ž	0.43	0.35	0.24	0.42	Ö	0.24	0.45	0.34	0.24	0.31	0.28	0.20	0.31	0.26	0.18	0.31	0.29	0.21		
97.20			Ö	0.40	o	0.32	02.0					0.30	6	0.25	2	0.16	1			
gr.std			6	0.014	ŏ	0.026	0.026	ۅ				600.0	ق	0.024	4:	0.032	12			
gr.min			٥	0.37	o,	0.27	0.16	3				0.28	8	0.19	6	0.09	6			
gr.max			Ö	0.43	ö	0.38	0.24	4				0.31	-	0.28	8	0.21				
gr.cols.			٥	(147)	(2)	(258)	(369)	6				(10 13 16	16)	(11 14 17)	17)	(12 15 18	18)			

2	l	0000	Annipage.		L Wooho			Pené	45			٦	Code:	025	٥	Date:				
Project:		5.13	Descr.		Bifocal Foldable	dable		i					1							
Rem:			Descr:		SA Numm	ner pliot pla	ant SA020	560 (van b	Nummer pilot plant SA020560 (van biz.A Vm H)											
Saries:		Nr. 2, 15D		No.of samp	::	24	/type/ diopter/?	pter/?	BF// 15.0D	_		Remarks:	2	Measured by: MO-Laboratory	Y: MO-Lab	oralory				
Descr:		Lenstype 28000	*	gemeten met		5mm aperture														
total						1			OPTICAL BENCH	BENCH.										
80								ISO-EYE	NODEL WI	ISO-EYE MODEL WITH 28000 CORNEA	ORNEA									
					FAR									NEAR						
		0 degrees		Ľ	45 degrees			+45 degrees	2	0	0 degrees		4	45 degrees		+45	+45 degrees			
L	52	ß	100	25	20	ž	52	95	100	52	99	100	25	SS	<u>1</u>	52	જ	8		
Fait									5	[c/mm]										
date																				
column	-	2	6	*	5	9	7	8	6	10	11	12	13	*	15	18	17	18	19	20
-	0.39	0.30		0.39	0.31	0.20	0.41	0.32	0.20	0.32	0.27	0.18	0.31	0.27	0.19	0.31	0.28	0.22		
7	0.39		0.18				0.42	0.31		0.32	0.27	0.17	0.33	0.29	0.23	0.32	0.27	0.16		
F)	0.40						0.41	1 0.31			0.27	0.21	0.32	0.29	0.22	0.32	0.27	0.20		
- -	0.40				0.36	0.25	0.43	3 0.35	0.25		0.29	0.24	0.33	0.28	0.19	0.33	0.28	0.21		
3	0.40	0.32					0.41	0.31		0.31	0.27	0.18	0.33	0.28	0.20	0.32	0.27	0.20		
9	0.41				0.35	0.25	0.40	0.29			0.27	0.18	0.33	0.27	0.20	0.32	0.25	0.15		
~	0.41				0.33	0.23	0.42	2 0.32	0.19	0.31	0.27	0.19	0.31	0.25	0.16	0.32	0.27	0.19		
•	0.41	0.33			0.34	0.22	0.42	2 0.34	0.22	0.32	0.26	0.16	0.33	0.27	0.17	0.34	0.29	0.21		
57.5	0.40	05.0	01 0 10	100	PL 0	1 0.23	3 0.42	0.30	0 19	0.32	1760	0 191	0.321	0.28	0.20	0.321	0.27	0.19		
std.	9000	Ľ	L	Ľ	Ľ	Ľ	L		١		Ľ	0.025	0.009	0.013	0.023	0.009	0.012	0.025		
min	0.39	L	L		0.31	0.20	0.40	0.29	9 0.13	0.31	0.26	0.16	0.31	0.25	0.16	0.31	0.25	0.15		
max	0.41	0.33	3 0.22		36.0	3 0.25	5 0.43	3 0.35	5 0.25	0.32	0.29	0.24	0.33	0.29	0.23	0.34	0.29	0.22		
gr.avg			0	0.41		0.32		0.20	L			0.32	12	0.27	7	0.19	6			
gr.std			Ö	0.012	0	0.017	3	0.031				800'0	80	0.011	11	0.024	*			
gr.min				0.39	,	0.29	_	0.13				0.31	E	0.25	5	0.15	5			
gr.max			_	0.43	_	0.36		0.25				0.34	2	0.29	6	0.24	4			
gr.cols.			1	(147)	(2	(258)	2	(369)				(10 13 16)	3 16)	(11 14 17)	17)	(12 15 18	18)			

Servicereq.		F050	Applicant:		H.Weeber		J	Dept: A	AR			ŭ	Code: 57	570		Date:				
Project:	4,	5.13	Descr:		Bifocal Foldable	dable														
Item:			Descr:		SA Numm	er pilot pis	SA Nummer pilot plant SA020560 (van biz.A vm H)	O (van blz.	A Vm H)											
Series:	_	nr_2_20D		No.of sam	:serc	24	Aypel diopter/?		BF// 20.0D		~	Remarks:	2	Measured by: MO-Laboratory	v: MO-Lat	oratory				
Descr:	_	Lenstype Z9000	11	gemeten met 5mm aperture	net 5mm a	perture														
total									OPTICAL BENCH	BENCH										
							SI	O-EYE M	JDEL WIT	ISO-EYE MODEL WITH 29000 CORNEA	ORNEA									
					FAR									NEAR						
	ı	0 degrees		7	15 degrees	3	7+	+45 degrees		0	0 degrees		\$	45 degrees		Ť	+45 degrees			
	35	ક્ષ	9	25	S	100	52	20	Š	22	S	5	33	8	8	35	ଝ	9		
unit									(c/mm/	E										
date									8											
column	1	2	3	•	5	9	7	8	6	9	11	12	13	*	15	16	11	18	19	8
-	0.40	0.30	0.19	0.42	0.33	0.23	0.41	0.30	0.18	0.30	0.27	0.20	0.29	0.26	0.21	0.30	0.25	0.18		
7	0.40	0.31	0.18	0.42	0.32	0.20	0.40	0.28	0.15	0.30	0.27	0.18	0.31	0.27	0.17	0.31	0.25	0.15		
•	0.39	0.24	0.11	9. 8.	0.17	0.07	0.42	0.31	0.17	0.28	0.21	0.12	0.24	0.13	0.02	0.29	0.25	0.16		
*	0.40	0.30	0.16	0.41	0.31	0.17	0.40	0.28	0.14	0.31	0.26	0.17	0.30	0.25	0.15	0.30	0.25	0.16		
٠,	0.4	0.30	0.18	0.40	0.33	0.21	0.41	0.31	0.18	0.30	0.25	0.15	0.32	0.29	0.22	0.29	0.26	0.17		
9	0.38	0.28	0.17	0.41	0.28	0.14	0.42	0.32	0.21	0.30	0.27	0.18	0.29	0.24	0.14	0.32	0.28	0.23		
~	0.40	0.30	0.17	0.40	0.28	0.15	0.40	0.30	0.18	0.31	0.25	0.16	0.30	0.25	0.14	0.32	0.28	0.21		
*	0.40	0.31	0.19	0.41	0.32	0.21	0.40	0.30	0.18	0.31	0.28	0.19	0.30	0.26	0.18	0.30	0.26	0.18		
	1	7.5																		
9	0.40	R.			0.23	1	÷.	8	0.57	0.30	0.26	0.17	0.29	0.24	0.16	0:30	0.26	0.18		
	500	0.023			0.053			0.014	0.02	0.010	0.022	0.025	0.024	0.048	0.047	0.012	0.013	0.027		
e E	3	024						0.28	9.	0.28	0.21	0.12	0.24	0.13	0.07	0.29	0.25	0.15		
max m	0.41	0.31	0.19	0.45	0.	0.23	ò	0.32	0.21	0.31	0.28	0.20	0.32	0.29	0.22	0.32	0.28	0.23		
gr.avg			ò	0.40	٥	0.30	0.17					00:30		0.25	2	0.17				
gr.std			90	0.016	0.0	0.033	0.034	*				0.016	9	0.031	_	0.034	4			
gr.mln			٥	0.34	Ö	0.17	0.07	7				0.24		0.13		0.0	_			
gr.max			ŏ	0.42	0	0.33	0.23	3				0.32		0.29	-	0.23	_			
gr.cols.			(147)	5	(258)	58)	(369)	6)				(10 13 16	18)	(11 14 17	17.)	(12 15 18	18)			

Servicered.		F050	Applicant:		н. Weeber		,	Dept: /	AR			ပ	Code: 57	570	۵	Date:		R		
Project:	-	5.13	Descr:	40	Bifocal Foldable	table														
Item:		-	Descr:	ν,	SA Numme	r piłot plae	Nummer pilot plant SA020560 (van blz.A Vm H)	30 (van biz	A Vm H)											
Series:		Nr_2_26D		No.of samples:		24 1	Aypel diopter??		BF// 26.00		ac	Remarks:	×	Measured by: MO-Laboratory	/: MO-Lab	oratory				
Descr:	_	Lenstype 29000	×	gemeten mel	et 5mm aperture	Serture							;							
total									OPTICAL BENCH	BENCH										
80							42	IO-EYE M	ODEL WIT	SO-EYE MODEL WITH 29000 CORNEA	ORNEA									
					FAR									NEAR						
	3	0 degrees		\$	5 degrees		7	+45 degrees		0	0 degrees		\$	45 degrees	-	+45	+45 degrees			
	22	જ	100	25	99	100	52	20	100	52	99	100	52	S	100	52	જ	100		
nujt									[c/mm]	E										
date																				
column	1	2	~	•	5	9	7	89	œ.	10	11	12	13	14	15	16	17	18	19	20
1	0,40	0.31	0.18	0.40	0.33	0.21	0.38	0.26	0.12	0.31	0.27	0.19	0.32	72.0	0.20	0.29	0.23	0.14		
7	0.40	0.30	0.18	0.41	0.32	0.22	0.39	0.28	0.16	0.30	0.25	0.17	0.31	0.25	0.19	0.29	0.25	0.17		
6	0.40	0.31	0.18	0.41	0.35	0.24	0.38	0.29	0.13	0.31	0.27	0.19	0.31	0.27	0.21	0.30	0.24	0.14		
4	0.39	0.26	0.12	0.39	0.30	0.18	0.40	0.31	0.19	0.30	0.24	0.12	0.30	0.23	0.12	0.31	0.28	0.21		
S	0.40	0.28	0.13	0.40	0.32	0.18	0.38	0.24	0.09	0.30	0.24	0.15	0.32	0.26	0.17	0.30	0.20	0.08		
9	0.40	0.30	0.16	0.40	0.3 2.3	0.23	0.40	0.30	0.16	0.30	0.27	0.20	0.31	0.26	0.20	0.30	0.26	0.18		
^	0.39	0.28	0.11	0.42	0.33	0.22	0.39	0.29	0.14	0.31	0.26	0.17	0.30	0.26	0.18	0.30	0.27	0.19		
∞	0.40	0.30	0.17	0.39	0.27	0.14	0.41	0.32	0.20	0.30	0.24	0.13	0.29	0.21	0.10	0.29	0.28	0.21		
avg	9.40	0.29	0.15	0.40	0.32	0.20		0.29		0.30	0.26	0.17	0.31	0.25	0.17	0.30	0.25	0.17		
std	0.005	0.018	0.029	0.010	0.025	0.033		0.026	0.036	0.005	0.014	0.029	0.010	0.021	0.040	0.007	0.027	0.044		
eie E	0.39	0.26	0.11	0.39	0.27	0.14	0.38	0.24	0.09	0.30	0.24	0.12	0.29	0.21	0.10	0.29	0.20	0.08		
max	0.40	0.31	0.18	0.42	0.35	0.24	0.41	0.32	0.20	0.31	0.27	0.20	0.32	0.27	0.21	0.31	0.28	0.21		
gr.avg			0.40	٥	0:30	Q.	0.17					0:30	0	0.25	-	0.17				
gr.std			0.010	10	0.027	27	0.040	40				0.009	92	0.021	-	0.037	2			
gr.mln			0.38	38	0.24	74	0.09	92				0.29	9	0.20)	0.08	9			
gr.max			0.42	12	0.35	જ	0.24	24				0.32	2	0.28		0.21	_			
gr.cols.			(147)	7)	(258)	8)	(369)	6				(10 13 16	16)	(11 14 17)	17)	(12 15 18	18)			
												-								I

page H_:1 of 1

Servicereq.		F050	Applicant:		H.Weeber		đ	Dept: AR	œ				Code:	270		Date:					
Project:		5.13	Descr:		Bifocal Foldable	dable															
Ken:			Descr:		SA Numm	er pilot plan	SA Nummer pilot plant SA020560 (van biz.A t/m H)	(van biz.	A Um H)												
Series:		연		No.of san	No.of samples: 3		Aype/ diopter/? 811E//15.0/20.0/25.0	art? B	11E//15.0/	20.0/25.0		Remarks:	11	Measur	Measured by: MO-Laboratory	Laborator	_				
Descr:		Lenstype	Lenstype 811E // gemeten met 3mm aperture	emeten m	et 3mm ap	edure			-												
total			OPT	OPTICAL BENCE	E.																
6		ISO-E	ISO-EYE MODEL WITH 290(L WITH ZS	9000 CORNEA	ΨĘΑ															
	POWER		FAR			NEAR															
		25	95	<u>\$</u>	25	25	õ											•			
unit				chmm	Ę																
date					3																
column	-	2	3	•	3	9	7	8	6	10	11	12	13	7.7	15	16	11	81 /	\dashv	19	20
-	15.0 D	0.37	0:30	0.24	0.35	0.28	0.22														
7	20.0 D	0.33	0.25	0.16	0.38	0.30	0.24														
n	25.0D	0.36	0.31	0.22	0.39	0.27	0.17														

page [_:1 of 1

Servicareq.		F050	Applicant:		H.Weeber		a	Dept: AR	2			ŭ	Code: 5	570	۵	Date:				٦
Project:		5.13	Descr:		Bifocal Foldable	1able														-
Item:			Descr:	-	SA Numme	r pilot plan	SA Nummer pilot plant SA020560 (van biz A t/m H)	Cyan biz	A tim H)											
Series:		۳ ک		No.of sam	No.of samples: 3		flype/ diopter/? 811E//15.0/20.0/25.0	BEIT B	11E//15.0/	20.0/25.0	œ	Remarks:	2	heasured t	Measured by: MO-Laboratory	oratory				_
Descr:		Lenstype	Lenstype 811E // gemeten met 5mm aperlure	meten me	t 5mm ape	rlure														
total	L								OPTIC	OPTICAL BENCH	I									
ERR								ISO-EY	E MODEL	WITH Z90	ISO-EYE MODEL WITH Z9000 CORNEA	ΞA								
	POWER					FAR									NEAR					
_			0 degrees		7	45 degrees	_	₹	+45 degrees	-	0	0 degrees		7	45 degrees		+4;	+45 degrees		
		25	જ	100 001	52	20	100	25	905	100	25	20	100	25	SS	100	25	જ	9	
ruft										[c/mm]	귤									
date									ŧ.											
column	1	2	3	•	S	9	7	8	6	10	11	12	13	14	15	16	11	5	43	20
-	15.0 D	0.20	0.09	0.01	0.20	0.10	0.02	0.19	0.10	0.02	0.23	0.07	0.01	0.22	90.0	0.01	0.23	90.0	0.00	
7	20.0 D	0.20	0.10	0.02	0.19	0.09	0.02	0.19	0.09	0.02	0.22	0.07	0.04	0.23	0.09	0.02	0.22	0.08	0.02	
n	25.0 D	0.18	90:0	0.04	0.18	0.07	0.03	0.18	0.07	0.02	0.16	0.03	0.03	0.14	0.02	0.03	0.15	0.03	0.02	

page J_:1 of 1

Servicereq	F050	Applicant:	H.Weeber	Dept:	AR	Code:	570	Date:	
Project:	5.13	Descr:	Bifocal Fold						
Item:		Descr:	SA Numme	r pilot plar	nt SA020560 (van	blz.A t/m H)		·	

	METINGEN	Spec.Doc.	WVS	
LENZEN	MTF:	geen	geen	

VERBRUIKTE LENZEN

	CAL FOL		
SERVICE NR	MODEL	DIOPTER	Gemeten
			Nummers
SA 020560 K1	513BF	15.0D	2/5 en 7/10
SA 020560 K1	513BF	20.0D	1/8
SA 020560 K1	513BF	26.0D	1/8
SA 020560 K1Z900	513BF	15.0D	1/8
SA 020560 K1Z900	513BF	20.0D	1/8
SA 020560 K1Z900	513BF	26.0D	1/8

	811E	
Batch nr.	Lens nr.	Power
4224 06	019	15.0 D
4225 21	017	20.0D
4207 22	11 2	25.0 D

ALGEMEEN:

De MTF metingen zijn gedaan met:

ISO houder en Z9000 cornea Objectief 20.8X lenshouder 3-en 5mm

Gullstrand houder met Z9000 cornea Objectief 39.3X

lensinserts 3- en 5mm millipure met PEG (Brekingsindex: 1.3406 ± 0,0002)

Vloeistof is speciaal aangemaakt:

MEETPROGRAMM Hetzelfde als bij MTF metingen De window was handmatig ingesteld

Hij is bij het array signal op het midden van de laatste 2 blokjes afgesteld

DE METINGEN

Er is alleen bij 25 c/mm gefocuseerd De getallen bij 50 en 100c/mm komen van het focuspunt 25c/mm

page Comments Sign

				AANVRAAGNE	R.: F054	
AANVRAGER:		H.Weeber		AANVRAAGDATUM:	1	
AFDELING:		AR		AFD.CODE:		
PROJECT/OMSCHRI	I WING:	5.13 Bifocal Folda	ble			
FROJECTIONISCITA						
TYPE LENS:	Prototyp	e bifocal foldable				
-	-		DIOPTRIE	AANTAL		
,		ATCHNUMMER	15.0D	8		
		0 Z9000 K1	20.0D	8		
		50 Z9000 K1	26.0D	8		
l	SA 02056	60 Z9000 K1	20.00			
			GEWENSTE	METINGEN		
MASSA				MTF/EFL		
OVERALL DIAMETE	R			BACK FOCAL LENGTH		X
OPTIEK DIAMETER				DIOPTRIE		
BREEDTE-/DIAMETE	R VAN D	E LUSSEN		RESOLUTIE		
DIKTE VAN DE LUSS	SEN			BURSTTEST	· · · · · · · · · · · · · · · · · · ·	
STAND VAN DE LUS	SEN/STE	P HEIGHT		TREKSTERKTE		
EDGE THICKNESS						
COMPRESSION FOR	RCE	-				
AXIAL DISPLACEME	NT IN CC	MPRESSION				
TILT						
AXIAL RIGIDITY						
AMOUNT OF TOUCH	1					
DECENTRATION						
						_
AFWIJKENDE METIN	ICEN					
ALMINENDE ME III	10511					
OPMERKINGEN	Meting in	de watebak				
	apertuur 3	mm				
		ndex van het water =	1.3406 ±0,000)2		
-					-	

page A_:1 of 1

Appel diopter/7 K1-25000/15.0D Remarks: Measured by:MO late	Servicered.		F054	Applicant:		H.Weeber	٠,		Dept:	AR AR				:000							
SENIE_18 No. of samples: A Type! Idopter7 Ki-23000/15.0D Remarks: Measured by-MO laboratory Measured by-MO laboratory Idopter7 Ki-23000/15.0D Remarks: Measured by-MO laboratory Idopter7 Ki-23000/15.0D Idopter7 Idopter7	Project:		5.13	Descr:		Multifoca	I foldable le	ins // Protot	ype K1-29	8							Cale.				
SERIE_1B No of samples: 4 Typed dioptert7 Ki-2500u/Is Do Ramarks: Measured by;MO laboratory MATERBATH//WITH FIXTURE APERTURE =3nm Sociema	ltem:			Descr:																	
NEAR FAR NEAR FAR NEAR FAR NEAR NEAR	Series:		SERIE_18	65	No.of sam	tples:	4	Aype/ diog		K1-29000/	/15.0D	~	emarks:		toasurad h	del OM-v	orațio				
NEAR LATE	Descr:											•		•		3	5				
NEAR FAR FAR	total									EROS C	PTICAL B	ENCH		1							
NEAR FAR NEAR NEAR	ERR							3	ATERBA	TH // WITH	FIXTURE	APERTUR	E =3mm								
NEAR FAR NITE BFL MITE BFL MIT	1		Len	18-5				Len	يو				lens	1.				-	9		
Section Sect		NEA	굨	£	'R		뿐	AR	¥	~	_	NEA			T.		NEA	ŀ			
To See 90.584 Society Societ	<u></u>	BFL	MTF	BF.	MTF		BFL	MTF	FF.	MTF		E I	MTE	G	1		Ž į	יון אַנ	¥	1	
mn 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 19 70.589 90.584 68.413 89.000 70.239 88.657 0.08 70.736 0.00 90.587 0.00 90.079	unit		SS	ew,				1	84					1 2	E		7	T N		Ξ	
70.589 90.584 68.413 89.000 70.239 68.875 14 15 16 17 18 19 70.589 90.584 68.413 89.000 70.239 88.875 69.860 90.078 90.078 71.512 0.06 91.606 70.408 0.02 90.111 0.04 71.034 0.10 90.582 0.08 70.756 0.04 90.078 0.07 72.318 0.27 93.015 0.06 71.034 0.13 71.436 0.13 71.436 0.13 71.436 0.14 71.311 0.13 91.809 0.11 74.201 0.10 93.418 0.13 72.411 0.24 92.306 0.13 72.235 0.30 93.466 0.14 72.304 0.28 93.153 0.11 75.5970 0.04 75.296 0.19 94.600 0.04 73.436 0.07 73.436 0.16 94.502 0.06 75.296 0.14 75.296	date							3					2000	إع				200	u.		
70.589 90.584 69.413 89.000 70.239 89.675 69.867 77 78 79 79.589 71.512 0.06 91.406 0.04 70.408 0.02 90.111 0.04 71.034 0.10 90.592 0.08 70.756 0.04 90.079 71.311 0.13 71.410 0.13 71.439 0.15 91.576 0.12 77.311 0.13 90.079 0.01 74.201 0.10 92.217 0.08 71.410 0.13 71.439 0.15 91.576 0.12 77.311 0.13 91.809 0.11 74.201 0.10 93.418 0.13 77.439 0.15 77.235 0.30 93.016 0.14 77.301 0.13 91.809 0.11 75.970 0.14 72.200 0.29 90.15 72.235 0.30 93.016 77.203 0.14 77.803 0.18 91.809 0.11 75.970 0.04 77.439 0.12													_								
70.589 90.584 69.413 89.000 70.239 89.675 69.860 90.779<	column	-	2		•	9	٥	7	40	6	10	11	12	52	7	15	16	11	18	ő	2
71.512 0.06 91.406 0.04 70.408 0.02 90.111 0.04 71.034 0.10 90.592 0.08 70.756 0.04 90.908 72.415 0.19 92.217 0.08 71.410 0.19 91.205 0.09 71.438 0.15 91.576 0.12 71.311 0.13 91.809 73.318 0.27 92.015 71.908 0.26 92.308 0.13 71.834 0.20 92.494 0.14 71.805 0.26 92.705 74.201 0.10 93.418 0.13 72.411 0.24 92.308 0.14 71.804 0.28 93.163 74.505 0.04 93.813 0.14 72.236 0.30 93.016 0.14 72.304 0.28 93.607 75.970 0.14 72.200 0.04 73.035 0.15 94.304 0.07 73.448 0.18 96.448 0.14 75.236 0.15 94.306 0.04 75.34	-	70.589		90.584			69.413		89.000			70 239		A9 675			09808		8		
72.415 0.19 92.217 0.08 71.410 0.19 91.205 0.00 71.434 0.15 0.10 70.750 0.04 90.808 73.318 0.27 92.015 0.06 71.434 0.15 71.434 0.12 71.311 0.13 71.311 0.13 71.311 0.13 71.311 0.13 71.311 0.13 71.311 0.13 71.311 0.13 71.311 0.13 71.311 0.13 71.311 0.13 71.311 0.13 71.311 0.14 71.311 0.13 91.005 0.2494 0.14 71.305 0.22 92.494 0.14 71.305 0.22 92.494 0.14 71.305 0.22 92.494 0.14 71.305 0.23 93.016 72.304 0.28 93.133 75.370 0.14 72.200 0.28 93.506 0.13 72.235 0.30 93.016 0.14 72.304 0.23 93.607 75.370 0.34 0.14 72.200 </td <td>7</td> <td>71.512</td> <td>90.0</td> <td></td> <td>0.0</td> <td></td> <td>70.408</td> <td></td> <td>90.11</td> <td>5</td> <td></td> <td>74 034</td> <td>•</td> <td></td> <td>6</td> <td></td> <td>20.00</td> <td></td> <td>90.078</td> <td></td> <td></td>	7	71.512	90.0		0.0		70.408		90.11	5		74 034	•		6		20.00		90.078		
73.318 0.27 93.015 0.06 71.908 0.26 92.308 0.13 71.434 0.12 71.131 0.13 91.809 74.201 0.10 93.418 0.13 72.411 0.26 92.308 0.13 77.234 0.20 92.494 0.14 71.805 0.26 92.705 74.505 0.04 93.813 0.14 72.200 0.28 93.506 0.12 72.635 0.22 93.016 0.19 72.304 0.23 93.67 75.970 94.231 0.14 72.200 0.04 73.635 0.15 94.304 0.07 73.148 0.18 93.67 75.970 0.24 94.600 0.04 73.035 0.15 94.304 0.07 73.148 0.18 94.502 96.448 0.04 75.296 0.11 95.925 75.027 0.08 95.390 75.234 0.06 95.322		72.415	0.19		0.08		71 410		91 205	8		20.07	5 6	76.09	9 0		6.79	20.	80.908	0.07	
74.201 0.10 93.418 0.13 72.41 0.24 92.903 0.15 72.235 0.30 93.016 0.19 72.304 0.24 92.705 75.970 93.813 0.14 72.200 0.28 92.505 0.04 93.813 0.14 72.200 0.28 92.505 0.04 93.813 0.14 72.200 0.29 94.600 0.04 73.035 0.15 94.304 0.07 73.148 94.502 95.300 0.04 75.023 0.08 95.390 775.033 0.08 95.322	•	73.318	0.27		0.0		71 908		3 6	3 6		2	2 6	97.576	0.72		71.311	0.13	91.809	0.1	
74.505 0.04 93.813 0.14 72.200 0.28 93.506 0.12 72.835 0.22 93.496 0.14 72.803 0.20 93.496 0.14 72.803 0.20 93.496 0.14 72.803 0.10 94.502 72.803 0.00 73.404 0.11 95.925 75.027 75.027 75.030 0.00 95.390 75.234 0.10 94.502	v	74.201	0.10		0.13		72.411		92.300	5 4		20.07	2 6	92.494	4.0		71.805	0.26	92.708	0.17	
75.970 94.231 0.14 72.908 0.19 94.600 0.04 73.035 0.15 94.304 0.07 73.148 0.18 94.502 73.035 0.08 95.390 77.148 0.18 94.502 75.296 75.296 75.22	9	74.505	0.0		0.14		72.200		93 50R	5		72 626	9 6	93.036	5 0		72.30	0.28	93.153	0.18	
96.446 75.296 0.04 75.296 0.11 95.925 75.027 75.027 75.234 0.06 95.322 75.234	7	75.970			0.14		7.008		94 600	5		72.025	77.0	00.00	20.0		72.803	0.23	93.607	0.16	
96.448 75.296 75.027 1.08 95.390 75.234 75.234	80			95.008	0		73 404		96.026	\$		2000	2 6	200.40	ò		73.148	0.18	34 .502	90.0	
75.027	a			90					3.5			0.430	9	95.390			73.603	0.08	95.322		
	•			F			067.67					75.027					75.234				
							-														

Servicereq.	eq. F054	ŀ	Applicant:	<u>.</u>	H.Weeber	G.		Dept:	AR			_	Code:			Date:		4		
Project:	5.13		Descr:		Multifoca	I foldable	Multifocal foldable lens // Prototype K1-29000	otype K1-Z	0006											
Item:	i	_	Descr:																	
Series:	SS	SERIE_2A		No.of samples:	mples:	4	ftype/ diopter/7	opter/?	K1-Z9000//20.0D	J//20.0D	_	Remarks:	*	Measured by:MO laboratory	y:MO lab	oratory				
Descr:																				
total									EROS	EROS OPTICAL BENCH	BENCH									
ERR								WATERBA	TH // WIT	H FIXTUR	WATERBATH // WITH FIXTURE APERTURE =3mm	RE = 3mm								
Г	į	Lens-1	1.1				Lei	Lens-2				lens-3	7				Lens-4	4		
_	NEAR		u.	FAR		-	NEAR	ы,	FAR		NEAR	IR.	FAR	o.		NEAR	ل ا	FAR	~	
	138	MTF	BFL	MTF	_	P.	MTF	BFL	MTF		BF.	MTF	덈	MTF		BFL	MTF	BFL	MTF	
unit		50c/mm	FIL		_		ଞ୍ଚ	50c/mm				50c/mm	EH.				50c/mm	HI.		
date																				
column	-	2	٦	•	s	9	7	8	٥	10	11	12	13	7.	15	16	17	18	19	20
_	53.598		64.708	_		53.362	Ŋ	70.839	-		60.876		66.183			53.510		70.910		
~	54.592	0.01	65.803		1-	54.456	6 0.01	1 69.803		<u></u>	59.622	0.03	67.112	0.03		54.510	0.02	65,304	0.05	
	55.597	0.13	66.904	90.09		55.561	31 0.11	68.803			58.360	90.0	68.112	0.07		55.509	0.11	66.405	90.0	
_	56.097	0.22	67.504			55.824	94 0.16	3 68.301		•	57.154	0.16	68,612	0.12		56.008	0.24	67.504	0.13	
S	56.595	0.24	68.052			56.106	16 0.21	67.805	91.0		56.553	0.29	69.110	0.18	_	56.323	0.32	68.107	0.20	
	57.092	0.12	68.602			56.401	0.26	5 67.207		···	55.952	0.20	69.613	0.15		56.609	0.30	68.657	0.20	
~	57.592	0.05	69.153		_	56.701	n 0.28	3 64.705	,-	-	55.349	0.08	70.109	0.12		57.110	0.15	69.204	0.14	
	58.596	0.03	69.703		_	57.004		~			53.326		70.607	0.05		58.108	0.03	69.753	8	
-	59.864		71.248	~		57.310	10 0.11			10.17 2			72.137			59.629		64.207		
2		•				59.873	g													
ı																				

page C_:1 of 1

Servicereq.		F054	Applicant:	••	H.Weeber	*		Dept:	AR			_	Code:			Date:		Ş.		
Project:	1	5.13	Descr:		Multifoca	foldable	Multifocal foldable lens // Prototype K1-29000	type K1-Z	9000											
tem:		-	Descr:																	
Series:		SERIE 28		No.of samples:	nples:	4	hype/ diopter/?	pterr?	K1-Z9000		"	Remarks:	[Measured by: MO laboratory	y:MO lab	sratory				
Descr:																				
total									EROS O	EROS OPTICAL BENCH	ENCH								-	
ERR								NATERBA	WATERBATH // WITH FIXTURE APERTURE =3mm	FIXTURE	APERTUR	Œ ≖3mm							Γ	
		Lens-5	3-5				Len	Lens-6				lens-7	7.				Lens-8	φ		
	NEAR	ξ.	FAR	X		Ž	NEAR	F,	FAR		NEAR	2	FAR	_		NEAR	_	FAR		
	BFL	MTF	138	MTF		BFL	MTF	BFL	MTF		FF.	MTF	BFL	MTF		FE	MTF	덈	MĬF	
unit		S0c/mm	ww,				Soci	50c/mm				50c/mm	E		•	\mid	50c/mm	E		
date																				
column	1	2	3	,	5	9	7	8	8	10	11	12	13	14	15	16	17	18	19	8
-	53.639		65.021			54.129		65.151			54.049		65.451			53.916	-	65.312		
7	54.625	9.0	66.053	0.03		55.078	8 0.05	66.655	0.0		55.502	0.11	66.358	0.05		55.415	0.09	66.313	9.0	
m	55.633	0.12		0.09		55.576	5 0.10	67.654	0.11		56.006	0.25	67.255	0.10		55.916	0.19	67.314	90.0	
₹	56.335	0.28		0.16		56.027	7 0.18	68.153			56.506	0.32	68.154	0.20		56.416	0.31	67.813	0.14	
y,	57.130	0.17		0.17		56.476	6 0.24	68.651			57.005	0.22	68.603	0.21		56.914	0.20	68.314	0.17	
9	57.626	0.0	69.004	0.14		57.026	6 0.23	69.154	0.14		57.507	0.11	69.053	0.20		57.415	0.07	68.813	0.16	
~	59.886		69.504	0.08		57.475	5 0.12	_	0.05		59.321		69.503	0.050		29.867		69.315	90.0	
8			7.84		-	58.027	7 0.05	71.147	_				70.801	***				71.228	- 14457	
a .						59.820	0					•								
										100									7	

Servicereq.		F054	Applicant:		H.Weeber	ਜ		Dept:	AR			J	Code:		_	Date:	1	Î		
Project:		5.13	Descr:		Mullifoca	u foldable l	Mullifocal foldable lens // Prototype K1-29000	type K1-Z	9000											
Item:			Descr:																	
Series:		SERIE_3A	4	No.of samples:	nples:	4	Aypel diopter?	pter/?	K1-29000//26.0D	26.00	ľ	Remarks:	2	Measured by: MO laboratory	y:MO lab	oratory				
Descr:																				
totaí									EROS O	EROS OPTICAL BENCH	ENCH									
ERR								WATERBA	WATERBATH // WITH FIXTURE APERTURE =3mm	FIXTURE	APERTUR	₹ =3mm								
		A	Lens-1				Lei	Lens-2				lens-3	6				Lens-5	9-9		
	NEAR	AR	Ţ,	FAR		Z	NEAR	F.	FAR		NEAR	R	FAR	٠,		NEAR	2	FAR	<u>م</u>	
	BFL	MTF	BF.	MTF		셤	MTF	BFL.	MT	L	BFL	MTF	BFL	MTF		띪	MTF	BFL	MTF	
unit		500	50c/mm				ဇိ	50c/mm				50c/mm	۽		•		50c/mm	mm.		
date																				
column	-	2	•	•	\$	9	7	8	6	10	11	12	13	7.	15	16	11	18	19	22
-	47.214		48.617			45.665		49.015			47.179		49.469			48.036		48.286		
~	45.804	0.0	50.615		-	45.415	5 0.13	50.764	0.07		45.674	0.03	50.309	0.0		47.057	90.0	50.789	0.0	
n	45.403	0.08	51.117			45.165	5 0.18	51.265	0.13		45.424	0.05	50.752	0.07		46.041	9.0	51.287	0.17	
4	45.003	0.25	51.616	0.19		44.918	3 0.29	51.766			45.173	0.14	51,218	0.14		45.276	0.18	51.787	0.27	
v	44.605		52.112		شيمرد	44.862	2 0.32	52.265			44.924	0.25	51.653	0.23		45.022	0.26	52.286	0.20	
9	44.205					44.415	5 0.28	52.765	0.08		44.673	0.33	52,106	0.21		44.772	0.37	52.788	0.12	
۲.	43.805	0.09				44.163		54.547			44.425	0.31	52.335	0.15		44.522	0.33	53.286	0.08	
∞	43.405	0.08	54.485	, -	سيني	43.912	2 0.11			_	44.175	0.22	52,556	0.09		44.270	0.27	54.330		
GR.	41.813					41.644					43.922	0.11	54.934			44.023	0.140			
2											41.164					43.772	0.050			
=																42.229				
						*														

Page 53 of 56

Servicered.		F054	Applicant:		H.Weeber	5		Dent	AR				.000			7				
Project:	3	5.13	Descr.		Muttifoca	Muttifocal foldable lens // Prototype K1-29000	ens // Prote	Stybe K1-2	0006									3		
tem:			Descr:						<u> </u>											
Series:	S	SERIE38		No.of samples:	nples:	4	ftype/ diopter/?	Spterf?	1K-Z9000//26.0D	//26.0D		Remarks:		Measured hy MO Jahoratony	by MO la	oration				
Descr:							:	•					-		2	5				
total									EROS (EROS OPTICAL BENCH	BENCH									
ERR								WATERB/	TH // WIT	H FIXTUR	WATERBATH // WITH FIXTURE APERTURE =3mm	RE =3mm								
		Lens-6	s-6				Le	Lens-7				lens-8	9				Lens-9	9		
	NEAR	æ	FAR	R		Ž	NEAR		FAR		NEAR	l	FAR	_		NEAR	1	FAR	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	BFL	MTF	8FL	MTF		덈	MTF	덂	MTF		FF.	MITE	F.	MTF		l lu	MTF	HE!	Y L	
ED.		50c/mm	uu				ន័	50c/mm				50c/mm	au.				- Cocimin	3 6		
date																				
column	-	2	3	*	ç	9	7	80	G	2	11	12	2	*	15	16	14	18	ę	5
-	48.081		48.696			47.988	_	49.287			46.981		49.361			46.922		48.252		
7	45.454	0.09	50.697	0.05		45.600	0.08	50.288	0.04		45.483	0.10	50.862	0.0		45.673	0.05	50.754	0.07	
6	45.055	0.27	51.192	0.12		45.454	1 0.11	50.782	90.0		45.235	0.18	51.362	0.14		45.424	0.15	51.254	0.16	
4	44.543	0.31	51.695	0.23		45.203			0.16		44.982	0.34	51.613	0.19		45.172	0.27	51.753	0.27	
S	44.025	0.14	52.195	0.23		44.952		_			44.732	0.39	51.862	0.27		44.984	0.37	52.003	0.28	
9	43.532	0.03	52.694	0.11		44.702					44.482	0.32	52.112	0.25		44.734	0.33	52.254	0.26	
_	43.031	0.08	%.606 8.606			44.454	4 0.23	52.284			44.232	0.22	52.362	0.22		44.481	0.27	52.754	0.13	
•	42.452					44.202	2 0.20		0.16		43.982	0.13	52.612	0.18		44.233	0.18	53.254	0.080	
g,						43.953	3 0.12	52.784	0.09	···	43.730	0.02	52.863	90.0		44.983	0.12	54.755		
2		•			****	41.930	6	54.787			42.853		54.234			42.421				

page F_:1 of 1

Servicereq.	F054	Applicant:	H.Weeber	Dept:	AR	Code:	Date:	30-05-2002	
Project:	5.13	Descr:	Multifocal foldable	iens // Prototype	e K1-Z9000)			
Item:		Descr:							

Verbruikte Lenzen:

		5	1 000 00
Position	SA numb	Power	Lens nr.
1	SA02056	15.0D	1
2	SA02056	15.0D	2
3	SA02056	15.0D	3
4	SA02056	15.0D	4
5	SA02056	15.0D	5
6	SA02056	15.0D	6
7	SA02056	15.0D	7
8	SA02056	15.0D	8

SA numb	Power	Lens nr.
SA02056	20.0D	1
SA02056	20.0D	2
SA02056	20.0D	3
SA02056	20.0D	4
SA02056	20.0D	5
SA02056	20.0D	6
SA02056	20.0D	7
SA02056	20.0D	8

Power	Lens nr.
26.0D	1
26.0D	2
26.0D	3
26.0D	5
26.0D	6
26.0D	7
26.0D	8
26.00	9
	26.0D 26.0D 26.0D 26.0D 26.0D 26.0D 26.0D

Algemeen:

De Back Focal Length is als volgt gemeten.

BENODIGDHEDEN: Waterbak voor BFL

10X objectief

Lenshouder (dezelfde als voor de ISO metingen 3mm)

MEETPROGRAMM Hetzelfde als bij MTF metingen

De window was handmatig ingesteld

Hij is bij het array signal op het midden van de laatste 2 blokjes afgesteld

WATERBAK

Brekingsindex: 1.3406 ± 0,0002

De vloeistof is apart voor deze lenzen aangemaakt.

Millipure + PEG

Verdere afstellingen van de opstelling als normaal

BFL meting:

De meting is niet op één plaats uitgevoerd maar op meerdere plaatsen

dit is als volgt gedaan:

Op het opp. van de lens is de lengteunit genuld.

Daarna de waterbak zover verplaatst dat er net een MTF waarde zichtbaar werd

Deze verplaatsing is genoteerd

Daarna in verschillende stappen door het best focus heen totdat er geen MTF meer te zien was.

Genoteerd wordt: de stapgrootte en de MTF waarde

Door H. Weeber is hier een best BFL uit berekend.

page Comments Sign.

Appendix 8. CD rom: data files (on file in at Documentation Control)

AR-318.HAW Page 56 of 56