DREAM:Lab

From "Think Like a Vertex" to "Think Like an Interval"

Swapnil Gandhi and Yogesh Simmhan

INTRODUCTION

- Graphs are widely considered to be the natural means of representation for many static networks
- But real-world networks are often evolving with links being added and removed over time
- Temporal Graphs are dynamic networks which contain existence information for all vertices & edges at every point in time

Examples: Social, Citation/Collaboration, Sensor & Transit Network, Human Connectomes, Internet-of-Things ...

 Current de-facto representation for temporal graphs is a snapshot sequence, where state of graph is associated to a time-point

(c) Multi-Snapshot Graph

- Challenges:
- 1. Lack of *unifying abstraction* to operate on temporal graphs Existing abstractions either work only for time-dependent algorithms or time-agnostic algorithms but not for both classes
- 2. Existing abstractions either *do not scale* on distributed systems or are not even designed for distributed execution

Specialized native time-dependent algorithms are designed for single-threaded shared-memory execution

This Work: First scalable, distributed and fault-tolerant general-purpose programming abstraction for processing arbitrarily large temporal graphs

SINGLE-SOURCE SHORTEST TRAVEL TIME

Interval-Centric Computation

- ICM extends vertex-centric computation model with Interval as a first-class citizen
- Vertex (and edge) attributes, computation state and messages have time-validity and may have associated computation

(d) Supersteps in ICM

- User writes program from the perspective of a single interval
- In each superstep, user program invoked once for each active interval
 - Communication via pure message passing using BSP
 - Synchronicity avoids dead-locks and data-races
- In superstep S_i , user program can read messages send in superstep S_{i-1} , modify current computation state, and send new messages to other vertex intervals

TIME-WARP

- Allows user program to consistently operate over temporal messages and partitioned computation state
 - Reminiscent of Temporal Aggregate
- Uses one-pass algorithm with support for online aggregation

Advantages:

- Guarantees minimal number of user program invocation
- Transparently coalesces interval-state and outgoing messages

			Messages			
State	5		$ au_{m}$	M		
$ au_{s}$	S		[0,4)	m_1		
[0,5)	S ₁		[2,7)	m ₂		
[5,9)	S ₂		[5,7)	m ₃		
9,10)	S ₃		[5,9)	m ₄		
			[9,10)	m_5		

Time Warp $X_{S\times M}$								
TW	τ	S	M					
W_1	[0,2)	S ₁	m ₁					
W_2	[2,4)	S ₁	m_1, m_2					
W_3	[4,5)	S ₁	m_2					
W_4	[5,7)	S ₂	m ₂ , m ₃ , m ₄					
W_5	[7,9)	S ₂	m ₄					
We	[9,10)	S₂	m ₅					

EXPERIMENTAL EVALUATION

Dataset	Snapshots	Median Lifespan		ICM Graph		Multi-Snapshot Graph		Transformed Graph	
		V	Ē	V _{ICM}	E _{ICM}	ΣIVI	ΣIEI	$ V_{TD} $	E _{TD}
LDBC G1	10	4	6	8.9M	251M	45M	1.3B	58M	1.4B
LDBC G2	10	5	9	9M	260M	81M	2.4B	82M	2.4B

Longer Vertex and edge lifespan Detter performance benefits

SUMMARY & ON-GOING WORK

- First scalable API for processing temporal graph
 - Leverages existing solutions & makes it practical
- On-going work towards adding support for real-time streaming updates and temporal graph partitioning

