A NO + VO MOD1

Del seguente circuito si calcolino i valori di R₁ ed R₂ in modo che la frequenza di taglio inferiore sia 20 Hz e il guadagno in centro banda risulti pari a 10. Si supponga l'OPAMP ideale e in alto guadagno. Esplicitare i passaggi

$$R_1=7.97 \text{ K}\Omega$$

 $R_2=1 \text{ K}\Omega$

D NO + VO MOD2

- 1) Del circuito in figura si determini l'espressione booleana al nodo F e O.
- 2) Dimensionare i transistori nMOS in modo che il tempo di discesa al nodo F sia inferiore o uguale a 75pS. Si ottimizzi il progetto per minimizzare l'area occupata da tutti i transistori. Si tenga conto che i transistori dell'inverter di uscita hanno le seguenti geometrie: $S_p=100$, $S_N=50$.

Parametri tecnologici:

Req p=10.68Kohm

Req n = 5.39Kohm

 $Cox = 5 fF/\mu m^2$

Lmin = $0.25 \mu m$

Vdd = 3.3V