(修正)
$$\Delta x$$
 は任意: であるから 特に、ある 関数 Δx_0 で $\Delta x_0(0) = \Delta x_0(1) = 0$, $\Delta x_0(t) \ge 0$ (0≦ t ≥ 1) と $\left(-\frac{d^2}{dt^2}x - grad V(x)\right)$ の スカラー積 ご

$$\Delta x = \Delta x_0 \cdot \left(-\frac{d^2}{dt^2} - grad V(x_0) \right)$$
 \(\frac{2}{3}\)

$$(*) = \left(\int_{0}^{1} \Delta x_{0} \right) \left| -\frac{d^{2}x}{dt^{2}} - grad V(x) \right|^{2} dt = 0$$

$$= \left(\int_{0}^{1} \Delta x_{0} \right) \left| -\frac{d^{2}x}{dt^{2}} - grad V(x) \right|^{2} = 0$$

補題 岩波講座 微分と積分 1 P 128 —
$$\forall x \in [a,b] \quad f(x) \ge 0 \quad f: 連続$$
 $\forall x \in [a,b] \quad f(x) > 0 \implies \int_a^b f(x) dx > 0$

補題 $f(x) \ge 0$ \Rightarrow $\int_a^b f(x) dx \ge 0$