Asignatura	Datos del alumno	Fecha
Métodos Numéricos II	Apellidos: Avilés Cahill	27/02/2024
	Nombre: Adán	

Laboratorio: Resolución de una ecuación diferencial estocástica utilizando el lema de Itô

1. Introducción

El objetivo de esta actividad es emplear todas las técnicas descritas en estos últimos temas para resolver una ecuación diferencial estocástica.

1.1. Descripción:

Consideramos el siguiente problema de valores iniciales estocástico:

$$dX(t) = X^{3}(t)dt + X^{2}(t)dW(t), X(0) = 1 (1)$$

Calcular la solución del PE utilizando el lema de Itô, considerando la función $f(t,x)=rac{1}{x}$.

2. Resolución

Como sabemos, el lema de Itô, enuncia lo siguiente:

Lemma 2.1 (Itô). Sea f(t,x) una función de clase ${\bf C}^{1,2}$ y X(t) un PE de Itô teniendo la siguiente representación integral

$$X(t) = X_0 + \int_{t_0}^t A^{(1)}(s, X(s))ds + \int_{t_0}^t A^{(2)}(s, X(s))dW(s)$$

Entonces

$$f(t, X(t)) - f(s, X(s)) = \int_{s}^{t} \{f_{1}(y, X(y)) + A^{(1)}(y, X(y)) f_{2}(y, X(y)) + \frac{1}{2} A^{(2)}(y, X(y)) f_{22}(y, X(y)) \} dy + \int_{s}^{t} A^{(2)}(y, X(y)) f_{2}(y, X(y)) dW(y)$$

Página 1 Métodos Numéricos II

Asignatura	Datos del alumno	Fecha
Métodos Numéricos II	Apellidos: Avilés Cahill	27/02/2024
	Nombre: Adán	

Como podemos reescribir nuestra PE de la forma

$$X(t) = X_0 + \int_{t_0}^t X^3(s)ds + \int_{t_0}^t X^2(s)dW(s)$$

donde

$$A^{(1)}(s, X(s)) = X^{3}(s), \qquad A^{(2)}(s, X(s)) = X^{2}(s),$$
 (2)

Podemos aplicar el lema de Itô para resolver el PE. Tomamos $f(t,x)=\frac{1}{x}\in {\bf C}^{1,2}$, podemos entonces enunciar sus parciales:

$$f_1(t,x) = 0,$$
 $f_2(t,x) = \frac{-1}{r^2},$ $f_{22}(t,x) = \frac{2}{r^3}$ (3)

Sustituyendo 2 y 3 en el lema de Itô y tomando s=0, tenemos que:

$$\begin{split} \frac{1}{X(t)} - \frac{1}{X(0)} &= \int_0^t 0 + X^2(y) \cdot \frac{-1}{X^2(y)} + \frac{1}{2} [X^2(y)]^2 \cdot \frac{2}{x^3(y)} dy \\ &+ \int_0^t X^2(y) \cdot \frac{-1}{X^2(y)} dW(y) \\ &= \int_0^t -X(y) + X(y) dy + \int_0^t -dW(y) \\ &= -\int_0^t dW(y) \\ &= -W(t) \end{split}$$

Donde en el último paso, tenemos que $\int_0^t dW(y) = W(t) - W(0)$, pero W(0) = 0 por ser un proceso de Weiner. Además, sabemos que X(0) = 1, por tanto:

$$\frac{1}{X(t)} - 1 = -W(t)$$

Despejando, llegamos a la solución del PE:

$$X(t) = \frac{1}{1 - W(t)}$$

Página 2 Métodos Numéricos II