Stat C131A: Statistical Methods for Data Science

Lecture 8: Hypothesis Testing I

CLT: In practice

- → The CLT states: the distribution of sample means approaches a normal distribution as sample size increases
 - Applies to independent, identically distributed (i.i.d.) samples with finite variance.
 - The limiting distribution is Normal(μ , σ^2/n), where μ and σ^2 are population mean and variance
- The rate of convergence depends on the population distribution:
 - Populations that are already symmetric (e.g., uniform, normal) → sample means look normal even for small n.
 - Populations with skew or heavy tails (exponential etc.) need much larger n
 - → Finite variance is critical
- ◆ CLT does not guarantee exact normality for small samples
 - ♦ With n < 30, departures from normality may still be visible</p>
 - ♦ Outliers have more influence in small samples, distorting the mean's distribution
- ◆ CLT concerns the distribution of sample statistics, not populations
 - The population itself may remain skewed, bimodal, or heavy-tailed
 - ♦ What becomes approximately normal is the sampling distribution of the mean

What is: a statistical hypothesis? What is: hypothesis testing?

- ◆ A statistical hypothesis is a claim (statement) about a population parameter
 - → Say, the mean, difference in means, etc.,
- Hypothesis testing is a clinical process of quantitatively ascertaining the validity of such a claim

Hypothesis types

- We deal with fundamentally two types of hypotheses in hypothesis testing
 - ◆ The NULL Hypothesis
 - ◆ The ALTERNATE Hypothesis

The **NULL** Hypothesis

- ♦ Is the postulate that your data is saying NOTHING, towards your claim
- ◆ Examples
 - ◆ There is no evidence that
 - The fitness app increases number of steps
 - Extra tutoring improves test scores
 - Dark chocolate reduces blood pressure
 - → This experimental drug (chemical) trigger gene expression
 - **+**
- → Represents status quo
 - Aka it's rejection leads to us to proving the ALTERNATE hypothesis!

The Alternate Hypothesis

- ◆ Centered on what we DO want to prove!
 - ◆ The fitness app does indeed increases number of steps
 - ◆ Extra tutoring does indeed improve test scores
 - ****

The Hypothesis Testing Framework

Null Hypothesis	TRUE	FALSE
Reject	Type I Error (a)	No Error
Accept	No Error	Type II Error (β)

Type I Error (α)

- → Happens when the null hypothesis is actually true, but we reject it
- **→ False positive** → we detect an effect/difference when there isn't one.
- Example: Concluding that the fitness app does increase walking steps, when it does not
- igoplus Probability of Type I error is α , which we set as the significance level
 - → You can set it to what you like but the "default" is 0.05

Type II Error (β)

- → Happens when the null hypothesis is false, but we fail to reject it
- → False negative
 → we miss detecting a real effect/difference.
- Example: Failing to conclude that the fitness app does increases walking steps (when it actually does)
- → Probability of Type II error is β

Significance (α)

- ◆ The threshold for rejecting H₀
- ◆ Common values: 0.05, 0.01.
- igspace Setting a smaller lpha (e.g., 0.01) reduces Type I errors
 - → But makes Type II errors more likely
 - ♦ MHX \$

Power $(1 - \beta)$

- ◆ Power is the probability of correctly rejecting H₀ when it is false
- → Higher power = better chance of detecting a real effect
- ◆ Factors that increase power:
 - ◆ Larger sample size
 - → Bigger effect size: say the difference in average steps between app users and non-app users is large
- \rightarrow Higher α (looser significance threshold)

Relationship Between lpha and eta

- \bullet and β are not directly complementary
- But there is a trade-off:
 - lacktriangle Smaller lpha o more conservative test (fewer false positives), but higher chance of false negatives
 - Larger α → easier to detect effects (higher power), but more risk of false positives
- ♦ In practice: researchers balance α and β by choosing a up front (e.g., 0.05) and designing sample size to achieve desired power (e.g., 0.8 → β = 0.2)

Population vs Sample

- → Population parameter: true value (unknown).
- ◆ Sample statistic: computed from data; used to estimate the parameter
- Different random samples give different statistics.
- We assess how unusual our sample is if the hypothesis were true

Two ways to test

◆ Permutation tests

- ♦ Based on:
 - ◆ Data-driven null distribution
 - ◆ Randomization

Parametric tests

- → Based on:
 - ◆ Sample statistics
 - An assumed distributional form (Normal, etc.)
 - → Population parameters
- We formulate hypotheses based on population parameters

Permutation Test

- ♦ We do not assume Normality or any specific population distribution
- ◆ Steps
 - Pool all observations from both groups together.
 - ◆ Shuffle labels: Randomly reassign data points to "Group A" or "Group B," as if the null hypothesis were true.
 - Recalculate the test statistic (e.g., difference in means) for each shuffle.
 - ◆ Build a reference distribution: Repeat shuffling many times (e.g., 10,000) to see what differences we'd expect by chance.
 - Compare the observed statistic to this reference distribution

Parametric Test

- ◆ Assume a population distribution (often Normal, or approximated by CLT).
- ◆ Frame hypotheses about population parameters (e.g., mean proportion)
- ◆Compute a sample statistic (e.g., sample mean, difference in means).
- → Standardize it into a test statistic
- ◆ Compare the test statistic against the theoretical distribution (Normal, etc.)
- → Determine the probability of observing a statistic as extreme (or more) if the null hypothesis were true.

The **p-value**: the probability of observing that extreme

- ♦ What are the chances that this is what you would see "typically" / "usually"
- lacktriangle We start with the observed test statistic: x_{obs}
- lacktriangle The p-value asks, if the null hypothesis is true then how likely is it to see a test statistic as large (or larger) than x_{obs}
- ightharpoonup p-value $(x_{obs}) = P_{H_0}(X \ge x_{obs})$
- → Here
 - \star X = random variable for the test statistic under Ho
 - $+ P_{H_0}(X)$ = probability calculated assuming the null hypothesis is true
 - $\star X \ge x_{obs}$ = the "tail area", how extreme the observed result is (or more)

Permutation test: one- vs two-sided

- ◆ One-sided/tail p: proportion with stat >= observed (or <=)</p>
- → Two-sided/tails p: proportion with | stat | >= | observed |

Permutation test: Example

◆ Question: Do app users walk more steps per day than non-users?

Hypotheses:

- \bullet H_0 : the two groups have the same population distribution of steps;
- + H_1 : they differ (two-sided)
- lacktriangle Under H_0 , labels are exchangeable: who is called "App" vs "Non-App" is arbitrary.
- ◆ Shuffle labels many times, recompute the difference in means each time, and see how extreme our observed difference is relative to this null distribution.

App usage: Permutation test

Daily Steps Bin	App Users (n=30)	Non-Users (n=30)
< 4,000	1	5
4,000-5,999	4	9
6,000–7,999	8	9
8,000-9,999	9	5
≥ 10,000	8	2

- Approx. means using bin midpoints: App ≈ 8,266 steps; Non-App ≈ 6,333 steps
- ◆ Observed difference (App Non-App): Δ_obs ≈ 1,933 steps

Permutation test

- ◆ Test statistic: difference in group means (App Non-App).
- **→** Procedure:
 - → Pool all 60 step counts.
 - ◆ Randomly shuffle the "App/Non-App" labels, split back into two groups of 30.
 - \bullet Compute \triangle _perm for this shuffle.
 - ightharpoonup Repeat many times (e.g., 10,000) to form the null distribution of Δ under H0.
- **Two-sided p-value** = fraction of shuffles with $|\Delta_{perm}| \ge |\Delta_{obs}|$.
- ◆ Example outcome:
 - ♦ Out of 10,000 shuffles
 - ◆ 40 had $|\Delta$ _perm $| \ge 1,933 \rightarrow p \approx 0.004$
- lacktriangle Interpretation: such a large mean difference would be very unlikely if H_0 were true \rightarrow evidence that app users walk more on average.

Permutation tests: strengths & limitations

- → Few assumptions; robust to skew/outliers.
- Exact for finite samples if all relabelings are used
- lacktriangle Requires exchangeability under H_0
- ◆ Can be slow if very large n

Question: Is the average wait time at Cheeseboard Collective Pizza > 15 minutes?

 \rightarrow μ = Population mean

♦ Null Hypothesis: $H_0: \mu = 15$

lack Alternate Hypothesis: $H_1:$?

◆ Is the average wait time at Cheeseboard Collective Pizza > 15 minutes ?

- ϕ μ = Population mean
- ♦ Null Hypothesis: $H_0: \mu = 15$
- ♦ Alternate Hypothesis: $H_1: \mu > 15$

2025 startup rankings

Unive	ersity	Founder count	Company count
1	UC Berkeley	1,804	1,650
2	Stanford	1,519	1,380
3	Harvard	1,355	1,237
4	University of Pennsylvania	1,206	1,113
5	MIT	1,131	1,019

Source: PitchBook (https://pitchbook.com/news/articles/pitchbook-university-rankings)

Question: Is the per quarter count of new startups emerging from Berkeley significantly higher than that of Stanford's?

 \star μ_B = The average number of new startups per quarter from Berkeley

 \star μ_S = The average number of new startups per quarter from Stanford

♦ Null Hypothesis: H_0 : ?

lacktriangle Alternate Hypothesis: H_1 :?

Question: Is the per quarter count of new startups emerging from Berkeley significantly higher than that of Stanford's?

- \star μ_B = The average number of new startups per quarter from Berkeley
- \star μ_S = The average number of new startups per quarter from Stanford
- ♦ Null Hypothesis: $H_0: \mu_B = \mu_S$
- lacktriangle Alternate Hypothesis: H_1 : ?

Question: Is the per quarter count of new startups emerging from Berkeley significantly higher than that of Stanford's?

- \star μ_B = The average number of new startups per quarter from Berkeley
- \star μ_S = The average number of new startups per quarter from Stanford
- ♦ Null Hypothesis: $H_0: \mu_B = \mu_S$
- ♦ Alternate Hypothesis: $H_1: \mu_B > \mu_S$