Expressions régulières

OPTION INFORMATIQUE - TP nº 3.8 - Olivier Reynet

À la fin de ce chapitre, je sais :

faire le lien entre un ensemble de mots et une expression régulière

utiliser la syntaxe des expressions régulières

utiliser la sémantique des expressions régulières pour simplifier une expression régulière

🕼 utiliser le filtrage (pattern matching) sur un type algébrique

définir et utiliser un type algébrique

A Exprimer par des mots des expressions régulières

Tenter de décrire en français les langages dénotés par les expressions régulières suivantes :

Α1. ΣΣ

Solution: Le langage des mots de longueur deux.

A2. $(\varepsilon + \Sigma)(\varepsilon + \Sigma)$

Solution : Le langage des mots dont la longueur est au plus deux.

A3. $(\Sigma\Sigma)^*$

Solution: Le langage des mots de longueur paire.

A4. $\Sigma^* a \Sigma^*$

Solution : Le langage des mots comportant au moins une occurrence de a.

A5. $\Sigma^* ab\Sigma^*$

Solution: Le langage des mots comportant au moins une occurrence du facteur ab

A6. $\Sigma^* a \Sigma^* b \Sigma^*$

Solution : Le langage des mots comportant au moins une occurrence de a puis au moins une occurrence de b.

A7. $(ab)^*$

Solution : Le langage des mots commençant par a, finissant par b et où les a et les b n'apparaissent jamais consécutivement.

B Des mots aux expressions régulières

Soit l'alphabet $\Sigma = \{a, b\}$. Trouver une expression régulière qui dénote l'ensemble des mots :

B1. de longueur paire

Solution: $(\Sigma\Sigma)^*$

B2. de longueur impaire

Solution: $(\Sigma\Sigma)^*\Sigma$

B3. de longueur au moins un et au plus trois

Solution: $\Sigma(\varepsilon|\Sigma|\Sigma\Sigma)$

B4. qui possèdent un nombre pair de b

Solution: $(a^*ba^*ba^*)^*$

B5. qui possèdent un nombre impair de a

Solution: $b^*a(\varepsilon|b^*ab^*a)^*b^*$

B6. qui possèdent un nombre de a multiple de 3

Solution: $b^*(ab^*ab^*a)^*b^*$

C Combien de mots dans le langage?

Soit l'alphabet $\Sigma = \{a, b\}$. Combien de mots de longueur 100 sont-ils dans $\mathcal{L}_{ER}(e)$?

C1. $e = a(a|b)^*b$

Solution : Les premières et dernières lettres étant fixées, il reste 98 lettres au milieu à choisir entre a et b. Cela fait donc 2^{98} mots.

C2. $e = a^*bab^*$

Solution : Les lettres du milieu étant fixées, on peut mettre :

- zéro a à gauche et 98 b à droite
- un a à gauche et 97 b à droite
- ...
- 97 a à gauche et un b à droite
- 98 a à gauche et 0 b à droite.

Cela fait donc 99 mots.

C3. $e = (a|ba)^*$ (On peut utiliser $(u_n)_{n \in \mathbb{N}}$ le nombre de mots de longueur n dans $\mathcal{L}_{ER}(e)$.)

Solution : Si on définit $(u_n)_{n\in\mathbb{N}}$ comme le nombre de mots de longueur n dans $\mathcal{L}_{ER}(e)$, alors on peut dire que lorsqu'on choisit une lettre dans un mot de 100 lettres, il nous reste à choisir soit une lettre dans un mot de 99 lettres, soit deux lettres dans un mot de 98 lettres. Ce qui s'écrit : $u_n = u_{n-1} + u_{n-2}$. On a $u_0 = 1$, le mot vide et $u_1 = 1$, a. On reconnaît la suite de Ficonnacci. On a donc $u_{100} = \alpha \phi^{100} + \beta \phi'^{100}$ avec $\alpha = \frac{1}{2} \left(1 + \frac{1}{2\sqrt{5}}\right)$, $\beta = \frac{1}{2} \left(1 - \frac{1}{2\sqrt{5}}\right)$, $\phi = \frac{1+\sqrt{5}}{2}$ et $\phi' = -\frac{1}{\phi}$.

D Simplification d'expressions régulières

Simplifier les expressions régulières suivantes :

D1. $\varepsilon |ab|abab(ab)^*$

Solution: On passe par la sémantique des expressions régulières.

$$\mathcal{L}_{ER}(e) = \mathcal{L}_{ER}(\varepsilon) \cup \mathcal{L}_{ER}(ab) \cup \mathcal{L}_{ER}(abab(ab)^*)$$
 (1)

$$= \mathcal{L}_{ER}(\varepsilon) \cup \mathcal{L}_{ER}(ab) \cup \mathcal{L}_{ER}(abab(ab)^*)$$
 (2)

$$= \{\varepsilon\} \cup \{ab\} \cup \{abab \bigcup_{n \ge 0} (ab)^n\}$$
 (3)

$$= \{\varepsilon\} \cup \{ab\}\} \cup \{\bigcup_{n\geqslant 2} (ab)^n\}$$
(4)

$$= \{\varepsilon\} \cup \{\bigcup_{n\geqslant 1} (ab)^n\} \tag{5}$$

$$=\{\bigcup_{n\geqslant 0}(ab)^n\}\tag{6}$$

$$=\mathcal{L}_{ER}((ab)^*) \tag{7}$$

(8)

On a donc $e = (ab)^*$.

D2. $aa(b^*|a)|a(ab^*|aa)$

Solution : De la même manière, on trouve : $e = aa(b^*|a)$

D3. $a(a|b)^*|aa(ab^*)|aaa(a|b)^*$

Solution : On trouve : $e = a(a|b)^*$. On remarquera que certains langages sont inclus dans les autres. Par exemple $\mathcal{L}_{ER}(aa) \subset \mathcal{L}_{ER}(aab^*)$

E Miroirs et induction

- **Définition 1 Mot miroir**. Le mot miroir d'un mot $w = a_1 a_2 ... a_n$ est $w^R = a_n a_{n-1} ... a_1$.
- **Définition 2 Langage miroir.** Soit \mathcal{L} un langage sur Σ . Le langage miroir de \mathcal{L} est :

$$\mathcal{L}^R = \{ w^R, w \in \mathcal{L} \} \tag{9}$$

E1. Montrer que pour deux mots v et w d'un langage \mathcal{L} on a $(vw)^R = w^R v^R$.

Solution : Il suffit de revenir à la définition : soit $v = a_1 a_2 \dots a_n$ et $w = b_1 b_2 \dots b_n$. On a $(vw)^R = (a_1 a_2 \dots a_n b_1 b_2 \dots b_n)^R = b_n \dots b_1 a_n \dots a_1 = w^R v^R$.

E2. Montrer que si \mathcal{L}_1 et \mathcal{L}_2 sont deux langages, on a $\mathcal{L}_1^R \cup \mathcal{L}_2^R = (\mathcal{L}_1 \cup \mathcal{L}_2)^R$.

Solution : $\mathcal{L}_1^R \cup \mathcal{L}_2^R = \{w^R, w \in \mathcal{L}_1\} \cup \{w^R, w \in \mathcal{L}_2\} = \{w^R, w \in \mathcal{L}_1 \cup \mathcal{L}_2\} = (\mathcal{L}_1 \cup \mathcal{L}_2)^R$

E3. Montrer que si \mathcal{L}_1 et \mathcal{L}_2 sont deux langages, on a $\mathcal{L}_1^R \mathcal{L}_2^R = (\mathcal{L}_2 \mathcal{L}_1)^R$.

Solution : $\mathcal{L}_1^R \mathcal{L}_2^R = \{v^R w^R, v \in \mathcal{L}_1 \land w \in \mathcal{L}_2\} = \{(wv)^R, v \in \mathcal{L}_1 \land w \in \mathcal{L}_2\} = \{u^R, u \in \mathcal{L}_2 \mathcal{L}_1\} = (\mathcal{L}_2 \mathcal{L}_1)^R$

E4. Montrer que si \mathcal{L} est un langage, on a $(\mathcal{L}^*)^R = (\mathcal{L}^R)^*$.

Solution : $(\mathcal{L}^*)^R = \{w^R, w \in \mathcal{L}^*\} = \bigcup_{n \ge 0} \{w^R, w \in \mathcal{L}^n\} = \bigcup_{n \ge 0} \{w, w \in (\mathcal{L}^n)^R\}.$

Or, on peut montrer par induction, d'après la définition inductive des puissances d'un langage, que $(\mathcal{L}^n)^R = (\mathcal{L}^R)^n$.

(Cas de base) comme $\varepsilon = \varepsilon^R$, on a $(\mathcal{L}^0)^R = (\mathcal{L}^R)^0$.

(Pas d'induction) supposons que $(\mathcal{L}^n)^R = (\mathcal{L}^R)^n$. Alors on a : $(\mathcal{L}^{n+1})^R = (\mathcal{L}\mathcal{L}^n)^R = (\mathcal{L})^R(\mathcal{L}^n)^R = (\mathcal{L}^n)^R = (\mathcal{L$

(Conclusion) $(\mathcal{L}^n)^R = (\mathcal{L}^R)^n$ est vrai pour tout n.

C'est pourquoi, $(\mathcal{L}^*)^R = \bigcup_{n \ge 0} \{w, w \in (\mathcal{L}^R)^n\} = (\mathcal{L}^R)^*$.

E5. Définir de manière inductive une fonction miroir dont le paramètre d'entrée est une expression régulière e et qui renvoie l'expression régulière miroir e^R qui dénote le langage $\mathcal{L}_{ER}^R(e)$.

Solution: On définit la fonction miroir $m: ER \longrightarrow ER$ comme suit (Base (i) $\emptyset^R = \emptyset$, (Base (ii) $\varepsilon^R = \varepsilon$, (Base (iii)) $\forall a \in \Sigma, a^R = a$, (Règle de construction (i)) $\forall e_1, e_2 \in ER, (e_1|e_2)^R = e_1^R|e_2^R$ (Règle de construction (ii)) $\forall e_1, e_2 \in ER, (e_1e_2)^R = e_2^Re_1^R$ (Règle de construction (iii)) $\forall e_1, e_2 \in ER, (e_1e_2)^R = e_2^Re_1^R$ (Règle de construction (iii)) $\forall e \in ER, (e^*)^R = (e^R)^*$.

E6. Démontrer que $\forall e \in ER$, $\mathcal{L}_{ER}(e^R) = \mathcal{L}_{ER}^R(e)$, c'est-à-dire démontrer que l'algorithme de construction inductive de l'expression régulière miroir est correct.

Solution : On démontre par induction la correction de *m* :

(Cas de base (i) $\mathcal{L}_{ER}(\emptyset^R) = \mathcal{L}_{ER}(\emptyset) = \{\emptyset\} = \mathcal{L}_{ER}^R(\emptyset)$. Le miroir du langage vide est le langage vide.

(Cas de base (ii) $\mathcal{L}_{ER}(\varepsilon^R) = \mathcal{L}_{ER}(\varepsilon) = \{\varepsilon\} = \mathcal{L}_{ER}^R(\varepsilon)$.

(Cas de base (iii)) $\forall a \in \Sigma, \mathcal{L}_{ER}(a^R) = \mathcal{L}_{ER}(a) = \{a\} = \mathcal{L}_{ER}^R(a).$

(**Pas d'induction (i)**) On suppose maintenant qu'on dispose de deux expressions régulières $e_1, e_2 \in ER$ telles que $\mathcal{L}_{ER}(e_1^R) = \mathcal{L}_{ER}^R(e_1)$ et $\mathcal{L}_{ER}(e_2^R) = \mathcal{L}_{ER}^R(e_2)$. On cherche à construire le langage miroir de l'union de ces deux expressions en utilisant la sémantique des expressions régulières, la définition inductive des expressions miroirs et l'hypothèse d'induction :

$$\mathcal{L}_{ER}((e_1|e_2)^R) = \mathcal{L}_{ER}(e_1^R|e_2^R) \qquad \qquad \text{définition du miroir } (10)$$

$$= \mathcal{L}_{ER}(e_1^R) \cup \mathcal{L}_{ER}(e_2^R) \qquad \qquad \text{sémantique ER } (11)$$

$$= \mathcal{L}_{ER}^R(e_1) \cup \mathcal{L}_{ER}^R(e_2) \qquad \qquad \text{hypothèse d'induction } (12)$$

$$= (\mathcal{L}_{ER}(e_1) \cup \mathcal{L}_{ER}(e_2))^R \qquad \qquad \text{résultat précédent } (13)$$

$$= \mathcal{L}_{ER}^R(e_1|e_2) \qquad \qquad \text{sémantique ER } (14)$$

(**Pas d'induction (ii)**) Avec la même hypothèse sur e_1 et e_2 , on cherche maintenant à construire le langage miroir de la concaténation de ces deux expressions :

$$\mathcal{L}_{ER}((e_1e_2)^R) = \mathcal{L}_{ER}(e_2^Re_1^R)$$
 définition du miroir (15)
$$= \mathcal{L}_{ER}(e_2^R)\mathcal{L}_{ER}(e_1^R)$$
 sémantique ER (16)
$$= \mathcal{L}_{ER}^R(e_2)\mathcal{L}_{ER}^R(e_1)$$
 hypothèse d'induction (17)
$$= (\mathcal{L}_{ER}(e_1)\mathcal{L}_{ER}(e_2))^R$$
 résultat précédent (18)
$$= \mathcal{L}_{ER}^R(e_1e_2)$$
 sémantique ER (19)

(Pas d'induction (iii)) On suppose maintenant qu'on dispose d'une expression régulière $e \in ER$ telle que $\mathcal{L}_{ER}(e^R) = \mathcal{L}_{ER}^R(e)$. On cherche maintenant à construire le langage miroir de la

```
fermeture de Kleene de l'expression e: \mathcal{L}_{ER}((e^*)^R) = \mathcal{L}_{ER}((e^R)^*) \qquad \qquad \text{définition du miroir (20)} = \left(\mathcal{L}_{ER}(e^R)\right)^* \qquad \qquad \text{sémantique ER (21)} = \left(\mathcal{L}_{ER}^R(e)\right)^* \qquad \qquad \text{hypothèse d'induction (22)}
```

F Implémentation d'un type expression régulière

■ Définition 3 — Syntaxe des expressions régulières. L'ensemble des expressions régulières \mathcal{E}_R sur un alphabet Σ est défini inductivement par :

```
(Base) \{\emptyset, \varepsilon, \} \cup \Sigma \in \mathcal{E}_R,

(Règle de construction (union)) \forall e_1, e_2 \in \mathcal{E}_R, e_1 \mid e_2 \in \mathcal{E}_R

(Règle de construction (concaténation)) \forall e_1, e_2 \in \mathcal{E}_R, e_1 e_2 \in \mathcal{E}_R,

(Règle de construction (fermeture de Kleene)) \forall e \in \mathcal{E}_R, e^* \in \mathcal{E}_R.
```

F1. Créer un type algébrique regexp OCaml qui représente une expression régulière selon la définition 3.

F2. Créer en OCaml une variable e représentant l'expression régulière $(a^*|b)c$ sur l'alphabet $\Sigma = \{a, b, c\}$.

```
Solution:

let e = Concat (Sum (Kleene (Letter 'a'), Letter 'b'), Letter 'c');;
```

F3. Créer une variable es i gma de type regexp dont le langage dénote l'alphabet $\Sigma = \{A, B, C\}$.

```
Solution:
    let a = Letter 'A';;
    let b = Letter 'B';;
    let c = Letter 'C';;
    let esigma = Sum (Sum (a, b), c);;
```

F4. Créer une variable es i gmastar de type regexp dont le langage dénote l'alphabet Σ^* .

F5. Créer une fonction récursive et utilisant le pattern matching de signature regexp_to_string : regexp -> string qui permet d'afficher lisiblement un type regexp sur la console. Par exemple, pour l'expression esigma, celle-si renvoie la chaîne de caractère ((A|B)|C), pour e elle renvoie (((a)*|b)c). On rappelle que la concaténation de chaîne de caractères se fait via l'opérateur ^ en OCaml.

G Langages vides, réduits au mot vide ou finis

G1. Créer une fonction de signature is_emtpy_language : regexp -> bool qui teste si une expression régulière dénote le langage vide.

G2. Créer une fonction de signature is_reduced_to_epsilon : regexp -> bool qui teste si une expression régulière dénote le langage réduit au mot vide.

G3. Créer une fonction de signature is_finite_language : regexp -> bool qui teste si une expression régulière dénote un langage fini, c'est-à-dire qui comporte un nombre fini de mots.

H Tester l'appartenance d'un mot à un langage rationnel

H1. Écrire une fonction de signature matches_regex : regexp -> string -> bool qui statue sur le fait qu'un mot appartient à un langage dénoté par une expression rationnelle. On pourra s'appuyer sur les fonctions String.sub et String.length.

H2. Quelle est la complexité de cette fonction dans le pire des cas?

Solution : La complexité est exponentielle à cause des appels multiples récursifs. Les automates procurent une solution de complexité linéaire en fonction de la longueur du mot.

I Jouer avec les expressions régulières --- HORS PROGRAMME

Lors d'une campagne de tests, on a collecté l'évolution de la position GPS d'un véhicule. Le fichier contient toutes les positions du test.

I1. À l'aide d'une ligne de commande et en utilisant grep, isoler la latitude et la longitude dans un fichier. Chaque ligne contiendra une information comme suit :

```
5920.7009, N, 01803.2938, E
```

Solution : grep -oE "[[:digit:]]+[[:digit:]]+,(S|N),[[:digit:]]+[[:digit:]]+,(E|W)" gps.dat