Graphs

CMPT 225

Objectives

- Understand graph terminology
- Implement graphs using
 - Adjacency lists and
 - Adjacency matrices
- Perform graph searches
 - Depth first search
 - Breadth first search
- Perform shortest-path algorithms
 - Disjkstra's algorithm
 - A* algorithm

Graph Theory and Euler

- Graph theory is often considered to have been born with Leonhard Euler
 - In 1736 he solved the Konigsberg bridge problem
- Konigsberg was a city in Eastern Prussia
 - Renamed Kalinigrad when East Prussia was divided between Poland and Russia in 1945
 - Konigsberg had seven bridges in its centre
 - The inhabitants of Konigsberg liked to see if it was possible to walk across each bridge just once
 - And then return to where they started
 - Euler proved that it was impossible to do this, as part of this proof he represented the problem as a graph

Konigsberg Graph

Konigsberg

Multigraphs

- The Konigsberg graph is an example of a multigraph
- A multigraph has multiple edges between the same pair of vertices
- In this case the edges represent bridges

Graph Uses

- Graphs are used as representations of many different types of problems
 - Network configuration
 - Airline flight booking
 - Pathfinding algorithms
 - Database dependencies
 - Task scheduling
 - Critical path analysis
 - . . .

Graph Terminology

- A graph consists of two sets
 - A set V of vertices (or nodes) and
 - A set E of edges that connect vertices
 - |V| is the size of V, |E| the size of E
- Two vertices may be connected by a pαth
 - A sequence of edges that begins at one vertex and ends at the other
 - A simple path does not pass through the same vertex more than once
 - A cycle is a path that starts and ends at the same vertex

Numbers of Vertices and Edges

- If a graph has v vertices, how many edges does it have?
 - If every vertex is connected to every other vertex, and we count each direction as two edges
 - $V^2 V$
 - If the graph is a tree
 - V-1
 - Minimum number of edges
 - 0

Connected and Unconnected Graphs

- A connected graph is one where every pair of distinct vertices has a path between them
- A complete graph is one where every pair of vertices has an edge between them
- A graph cannot have multiple edges between the same pair of vertices
- A graph cannot have self edges, an edge from and to the same vertex

Directed Graphs

- In a directed graph (or digraph) each edge has a direction and is called a directed edge
- A directed edge can only be traveled in one direction
- A pair of vertices in a digraph may have two edges between them, one in each direction

directed graph

Weighted Graphs

- In a weighted graph each edge is assigned a weight
 - Edges are labeled with their weights
- Each edge's weight represents the cost to travel along that edge
 - The cost could be distance, time, money or some other measure
 - The cost depends on the underlying problem

weighted graph

Basic Graph Operations

- Create an empty graph
- Test to see if a graph is empty
- Determine the number of vertices in a graph
- Determine the number of edges in a graph
- Determine if an edge exists between two vertices
 - and in a weighted graph determine its weight
- Insert a vertex
 - each vertex is assumed to have a distinct search key
- Delete a vertex, and its associated edges
- Delete an edge
- Return a vertex with a given key

Graph Implementation

- There are two common implementations of graphs
 - Both implementations require a list of all vertices in the set of vertices, V
 - The implementations differ in how edges are recorded
- Adjacency matrices
 - Provide fast lookup of individual edges
 - But waste space for sparse graphs
- Adjacency lists
 - Are more space efficient for sparse graphs
 - Can efficiently find all the neighbours of a vertex

Adjacency Matrix

- The edges are recorded in an |V| * |V| matrix
- In an unweighted graph entries in the matrix are
 - 1 when there is an edge between vertices or
 - o when there is no edge between vertices
- In a weighted graph entries are either
 - The edge weight if there is an edge between vertices
 - Infinity when there is no edge between vertices
- Adjacency matrix performance
 - Looking up an edge requires O(1) time
 - Finding all neighbours of a vertex requires $O(|\mathbf{V}|)$ time
 - The matrix requires |V|² space

Adjacency Matrix Examples

	A	В	С	D	E	F	G
A	0	1	1	1	0	1	0
В	1	0	1	0	1	0	1
C	1	1	0	0	1	0	1
D	1	0	0	0	0	0	0
E	0	1	1	0	0	0	1
F	1	0	0	0	0	0	1
G	0	1	1	0	1	1	0

	A	В	C	D	E	F	G
A	8	1	8	3	8	5	8
В	8	8	8	8	2	8	8
С	5	1	8	8	8	8	8
D	1	8	8	8	8	8	8
E	8	8	2	8	8	8	3
F	8	8	8	8	8	8	8
G	8	2	4	8	8	8	8

Adjacency Lists

- The edges are recorded in an array |V| of linked lists
- In an unweighted graph a list at index i records the keys of the vertices adjacent to vertex i
- In a weighted graph a list at index i contains pairs
 - Which record vertex keys (of vertices adjacent to i)
 - And their associated edge weights
- Adjacency List Performance
 - Looking up an edge requires time proportional to the average number of edges
 - Finding all vertices adjacent to a given vertex also takes time proportional to the average number of edges
 - The list requires O(|E|) space

Adjacency List Examples

A	B 1 → D 3 → F 5
В	E 2
С	A 5 B 1
D	A 1
E	C 2 - G 3
F	G 8
G	B 2 - C 4

Graph Traversals

- A graph traversal algorithm visits all of the vertices that can be reached
 - If the graph is not connected some of the vertices will not be visited
 - Therefore a graph traversal algorithm can be used to see if a graph is connected
- Vertices should be marked as visited
 - Otherwise, a traversal will go into an infinite loop if the graph contains a cycle

Breadth First Search

- After visiting a vertex, v, visit every vertex adjacent to v before moving on
- Use a queue to store nodes
 - Queues are FIFO
- BFS:
 - visit and insert start
 - $\overline{\hspace{0.1in}} \circ \hspace{0.1in} \bigcirc$ while (q not empty)
 - oremove node from q and make it current
 - visit and insert the unvisited nodes adjacent to current

Breadth First Search Example

Depth First Search

- Visit a vertex, v, move from v as deeply as possible
- Use a stack to store nodes
 - Stacks are LIFO
- DFS:
 - O visit and push start
 - \sim while (s not empty)
 - O peek at node, *nd*, at top of *s*
 - o if *nd* has an unvisited neighbour visit it and push it onto *s*
 - o else pop *nd* from *s*

Depth First Search Example

Shortest Path Problem

- What is the least cost path from one vertex to another?
 - Referred to as the shortest path between vertices
 - For weighted graphs this is the path that has the smallest sum of its edge weights
- Dijkstra's algorithm finds the shortest path between one vertex and all other vertices
 - The algorithm is named after its discoverer, Edgser Dijkstra


```
The shortest path
between B and G is:
B-D-E-F-G and not
B-G (or B-A-E-F-G)
```