Chapter 3

Delivery, Forwarding, and Routing

3-1 DELIVERY

The network layer supervises the handling of the packets by the underlying physical networks. We define this handling as the delivery of a packet.

Topics discussed in this section:Direct Versus Indirect Delivery

Figure 3.1 Direct and indirect delivery

a. Direct delivery

b. Indirect and direct delivery

Host (source)

3-2 FORWARDING

Forwarding means to place the packet in its route to its destination. Forwarding requires a host or a router to have a routing table. When a host has a packet to send or when a router has received a packet to be forwarded, it looks at this table to find the route to the final destination.

Topics discussed in this section:

Forwarding Techniques
Forwarding Process
Routing Table

Figure 3.2 Route method versus next-hop method

Figure 3.3 Host-specific versus network-specific method

Figure 3.4 Default method

Figure 3.5 Simplified forwarding module in classless address

Note

In classless addressing, we need at least four columns in a routing table.

Example 3.1

Make a routing table for router R1, using the configuration in Figure 3.6.

Solution

Table 3.1 shows the corresponding table.

Figure 3.6 Configuration for Example 22.1

 Table 3.1 Routing table for router R1 in Figure 22.6

Mask	Network Address	Next Hop	Interface
/26	180.70.65.192		m2
/25	180.70.65.128		m0
/24	201.4.22.0		m3
/22	201.4.16.0	••••	m1
Any	Any	180.70.65.200	m2

Show the forwarding process if a packet arrives at R1 in Figure 3.6 with the destination address 180.70.65.140.

Solution

The router performs the following steps:

- 1. The first mask (/26) is applied to the destination address. The result is 180.70.65.128, which does not match the corresponding network address.
- 2. The second mask (/25) is applied to the destination address. The result is 180.70.65.128, which matches the corresponding network address. The next-hop address and the interface number m0 are passed to ARP for further processing.

Example 3.3

Show the forwarding process if a packet arrives at R1 in Figure 3.6 with the destination address 201.4.22.35.

Solution

The router performs the following steps:

- 1. The first mask (/26) is applied to the destination address. The result is 201.4.22.0, which does not match the corresponding network address.
- 2. The second mask (/25) is applied to the destination address. The result is 201.4.22.0, which does not match the corresponding network address (row 2).

Example 3.3 (continued)

3. The third mask (/24) is applied to the destination address. The result is 201.4.22.0, which matches the corresponding network address. The destination address of the packet and the interface number m3 are passed to ARP.

Example 3.4

Show the forwarding process if a packet arrives at R1 in Figure 3.6 with the destination address 18.24.32.78.

Solution

This time all masks are applied, one by one, to the destination address, but no matching network address is found. When it reaches the end of the table, the module gives the next-hop address 180.70.65.200 and interface number m2 to ARP. This is probably an outgoing package that needs to be sent, via the default router, to someplace else in the Internet.

Figure 3.7 Address aggregation

Mask	Network address	Next-hop address	Interface
/26	140.24.7.0		m0
/26	140.24.7.64		m1
/26	140.24.7.128		m2
/26	140.24.7.192		m3
/0	0.0.0.0	Default	m4

Mask	Network address	Next-hop address	Interface	
/24	140.24.7.0		m0	
/0	0.0.0.0	Default	m1	

Routing table for R2

Routing table for R1

Figure 3.8 Longest mask matching

Routing	table	for	R1
---------	-------	-----	----

Mask	Network address	Next-hop address	Interface
/26	140.24.7.192		m0
/??	???????	????????	m1
/0	0.0.0.0	Default	m2

Routing table for R3

As an example of hierarchical routing, let us consider Figure 3.9. A regional ISP is granted 16,384 addresses starting from 120.14.64.0. The regional ISP has decided to divide this block into four subblocks, each with 4096 addresses. Three of these subblocks are assigned to three local ISPs; the second subblock is reserved for future use. Note that the mask for each block is /20 because the original block with mask /18 is divided into 4 blocks.

The first local ISP has divided its assigned subblock into 8 smaller blocks and assigned each to a small ISP. Each small ISP provides services to 128 households, each using four addresses.

Example 3.5 (continued)

The second local ISP has divided its block into 4 blocks and has assigned the addresses to four large organizations.

The third local ISP has divided its block into 16 blocks and assigned each block to a small organization. Each small organization has 256 addresses, and the mask is /24.

There is a sense of hierarchy in this configuration. All routers in the Internet send a packet with destination address 120.14.64.0 to 120.14.127.255 to the regional ISP.

Figure 3.9 Hierarchical routing with ISPs

Figure 3.10 Common fields in a routing table

Mask	Network address	Next-hop address	Interface	Flags	Reference count	Use
					••••••	

Example 3.6

One utility that can be used to find the contents of a routing table for a host or router is netstat in UNIX or LINUX. The next slide shows the list of the contents of a default server. We have used two options, r and n. The option r indicates that we are interested in the routing table, and the option n indicates that we are looking for numeric addresses. Note that this is a routing table for a host, not a router. Although we discussed the routing table for a router throughout the chapter, a host also needs a routing table.

Example 3.6 (continued)

\$ netstat -rn						
Kernel IP routing table						
Destination	Gateway	Mask	Flags	Iface		
153.18.16.0	0.0.0.0	255.255.240.0	U	eth0		
127.0.0.0	0.0.0.0	255.0.0.0	U	lo		
0.0.0.0	153.18.31.254	0.0.0.0	UG	eth0		

The destination column here defines the network address. The term gateway used by UNIX is synonymous with router. This column actually defines the address of the next hop. The value 0.0.0.0 shows that the delivery is direct. The last entry has a flag of G, which means that the destination can be reached through a router (default router). The Iface defines the interface.

Example 3.6 (continued)

More information about the IP address and physical address of the server can be found by using the ifconfig command on the given interface (eth0).

\$ ifconfig eth0

eth0 Link encap:Ethernet HWaddr 00:B0:D0:DF:09:5D

inet addr:153.18.17.11 Bcast:153.18.31.255 Mask:255.255.240.0

. . .

Figure 3.11 Configuration of the server for Example 3.6

3-3 UNICAST ROUTING PROTOCOLS

A routing table can be either static or dynamic. A static table is one with manual entries. A dynamic table is one that is updated automatically when there is a change somewhere in the Internet. A routing protocol is a combination of rules and procedures that lets routers in the Internet inform each other of changes.

Topics discussed in this section:

Optimization
Intra- and Interdomain Routing
Distance Vector Routing and RIP
Link State Routing and OSPF
Path Vector Routing and BGP

Figure 3.12 Autonomous systems

Figure 3.13 Popular routing protocols

Figure 3.14 Distance vector routing tables

Figure 3.15 Initialization of tables in distance vector routing

Note

In distance vector routing, each node shares its routing table with its immediate neighbors periodically and when there is a change.

Figure 3.16 Updating in distance vector routing

Figure 3.17 Two-node instability

Figure 3.18 Three-node instability

Figure 3.19 Example of a domain using RIP

Figure 3.20 Concept of link state routing

Figure 3.21 Link state knowledge

Figure 3.22 Dijkstra algorithm

Figure 3.23 Example of formation of shortest path tree

 Table 3.2
 Routing table for node A

Node	Cost	Next Router
A	0	
В	5	_
С	2	_
D	3	_
Е	6	С

Figure 3.24 Areas in an autonomous system

Figure 3.25 Types of links

Figure 3.26 Point-to-point link

Figure 3.27 Transient link

a. Transient network

b. Unrealistic representation

c. Realistic representation

Figure 3.28 Stub link

a. Stub network

b. Representation

Figure 3.29 Example of an AS and its graphical representation in OSPF

a. Autonomous system

b. Graphical representation

Figure 3.30 Initial routing tables in path vector routing

Figure 3.31 Stabilized tables for three autonomous systems

Dest.	Path	_	Dest.	Path	_	Dest.	
A1	AS1		A1	AS2-AS1		A1	Α
A5	AS1		A5	AS2-AS1		A5	Α
B1 B4	AS1-AS2 AS1-AS2		B1 B4	AS2 AS2		B1 B4	A
C1 C3	AS1-AS3 AS1-AS3		C1 C3	AS2-AS3 AS2-AS3		C1 C3	A
D1 D4	AS1-AS2-AS4 AS1-AS2-AS4		D1 D4	AS2-AS3-AS4 AS2-AS3-AS4		D1 D4	A
	A1 Table			B1 Table			(

Dest.	Path
A1	AS3-AS1
A5	AS3-AS1
B1	AS3-AS2
B4	AS3-AS2
C1	AS3
C3	AS3
D1	AS3-AS4
D4	AS3-AS4
	C1 Table

Dest.	Path
A1	AS4-AS3-AS1
A5	AS4-AS3-AS1
B1	AS4-AS3-AS2
B4	AS4-AS3-AS2
C1	AS4-AS3
С3	AS4-AS3
D1	AS4
D4	 AS4
D4	A34
	D1 Table

Figure 3.32 Internal and external BGP sessions

3-4 MULTICAST ROUTING PROTOCOLS

In this section, we discuss multicasting and multicast routing protocols.

Topics discussed in this section:

Unicast, Multicast, and Broadcast Applications Multicast Routing Routing Protocols

Figure 3.33 Unicasting

In unicasting, the router forwards the received packet through only one of its interfaces.

Figure 3.34 Multicasting

In multicasting, the router may forward the received packet through several of its interfaces.

Figure 3.35 Multicasting versus multiple unicasting

a. Multicasting

b. Multiple unicasting

Emulation of multicasting through multiple unicasting is not efficient and may create long delays, particularly with a large group.

In unicast routing, each router in the domain has a table that defines a shortest path tree to possible destinations.

Figure 3.36 Shortest path tree in unicast routing

In multicast routing, each involved router needs to construct a shortest path tree for each group.

Figure 3.37 Source-based tree approach

In the source-based tree approach, each router needs to have one shortest path tree for each group.

Figure 3.38 Group-shared tree approach

In the group-shared tree approach, only the core router, which has a shortest path tree for each group, is involved in multicasting.

Figure 3.39 Taxonomy of common multicast protocols

Multicast link state routing uses the source-based tree approach.

Flooding broadcasts packets, but creates loops in the systems.

RPF eliminates the loop in the flooding process.

Figure 3.40 Reverse path forwarding (RPF)

Figure 3.41 Problem with RPF

Figure 3.42 RPF Versus RPB

a. RPF

b. RPB

RPB creates a shortest path broadcast tree from the source to each destination. It guarantees that each destination receives one and only one copy of the packet.

Figure 3.43 RPF, RPB, and RPM

d. RPM (after grafting)

RPM adds pruning and grafting to RPB to create a multicast shortest path tree that supports dynamic membership changes.

Figure 3.44 Group-shared tree with rendezvous router

Figure 3.45 Sending a multicast packet to the rendezvous router

In CBT, the source sends the multicast packet (encapsulated in a unicast packet) to the core router. The core router decapsulates the packet and forwards it to all interested interfaces.

PIM-DM is used in a dense multicast environment, such as a LAN.

PIM-DM uses RPF and pruning and grafting strategies to handle multicasting.

However, it is independent of the underlying unicast protocol.

PIM-SM is used in a sparse multicast environment such as a WAN.

PIM-SM is similar to CBT but uses a simpler procedure.

Figure 3.46 Logical tunneling

Figure 3.47 MBONE

