CS557: Cryptography

Public-key Cryptography-III

S. Tripathy IIT Patna

RSA Security

- Three major approaches to attacking RSA:
 - brute force key search:
 - infeasible given size of numbers
 - mathematical attacks (based on difficulty of computing $\emptyset(N)$, by factoring modulus N)
- mathematical approach to find d takes 3 forms:
 - factor N=p.q, hence find $\emptyset(N)$ and then d
 - determine $\emptyset(N)$ directly and find d
 - find d directly
- timing attacks (on running of decryption)

Complexity of Factoring Problem

- Trial division
 - Complexity \in
- Pollard p-1 method

```
input: an integer n, and a prespecified "bound" B
output: factors of n
            a \leftarrow 2
            for j \leftarrow 2 to B
                do a \leftarrow a^j \mod n
            d \leftarrow \gcd(a-1,n)
            if 1 < d < n
                 then return(d)
                else return(" failure')
```

The Pollard's rho algorithm

2. The Pollard's rho algorithm

input: an integer n output: factors of n

- (1) Selecting a "random" function f with integer coefficients , and any Begin with $x=x_0$ and $y=y_0$. $x_0 \in Z_n$.
- (2) Repeat the two calculations $x \leftarrow f(x) \mod n \text{ and } y \leftarrow f(f(y)) \mod n$ until d=gcd(x-y,n)>1.
- (3) Do the following compare
 - 3.1 If d<n, we have succeeded.
 - 3.2 If d=n, the method is failed. Goto (1).
- (*) A typical choice of $f(x)=x^2+1$, with a seed $x_0=2$.


```
pollarel Rho method for Fectoredal.
     Introduction:
           let us prepare a servences, as follows
            S= { no imitalize « velne i=0

ni = t (ni-1) mod pr i >0
        Ut we bind xi, xy 8. +. P/(21 = xy)
           as p/n (24 - 25) 1 n
         il. for any pair
             d = gcd ((n: -2), n) >10
                  =) of is a factor = P.
        If (2) = 22+1 I can se cheren
EX: N=119, 20=2
   i 0 1 2 3 4 5
   Ni 2 5 26 82 61 33
   The value seems like ap
    To refue the No. of Ges
  Computation you can use flegal 1 etg by cle defector.
          choose 20, yo < In
                n:= b(xi)
                7i = b (b (2i))
             10 = gcd((n-4i), 81) > 4 Setum of
  gcd(61-26, 119)=7 2 2 5 26 82 4
```

Cipher text only, CPA and CCA

In all cases, a bounded adversary should be unable to determine (with probability much better than $\frac{1}{2}$) whether m_a or m_b was encrypted

I know the message mes

Chosen ciphertext security (CCS)

 No efficient attacker can win the following game: (with non-negligible advantage)

Attacker wins if b=b'

Chosen ciphertext:

Attacker intercepts the ciphertext $c(A \rightarrow B)$ and compute $y = c^*r^e \mod n$ chosing a random r. Send Y to B. B decrypts y as $z = y^d \mod n = M.r \mod n$ sends to the attacker.

Attacker can find M from z easily as he knows r and hence r^{-1} .

Attacks on smaller exponent:

- If system uses smaller value of e (=3 say) for simpler it is easier to solve for d and obtaining the plain text
- If attacker can obtain 3 different ciphers (c1, c2, c3) of same plain text (P) with different modulus.
 - C1= P3 mod n1, C2= P3 mod n2 and C3= P3 mod n3
 - $C' = c1.c2.c3 = P^3 \mod n1.n2.n3 \pmod {P^3 < n1.n2.n3}$
 - $P = (C')^{1/3}$
- Related Message attack: if two linearly related plain texts (P1 and P2) are enciphered attacker can retrieve P2 if P1 is known

OAEP

• New preprocessing function: OAEP (BR94).

M 01 00..0 rand.

Thm: RSA is trap-door permutation \Rightarrow OAEP is CCS when H,G are "random oracles".

Timing Attack

- developed in mid-1990's
- exploit timing variations in operations
 - eg. multiplying by small vs large number
 - or Integer Factors varying which instructions executed
- infer operand size based on time taken
- RSA exploits time taken in exponentiation
- countermeasures
 - use constant exponentiation time
 - add random delays
 - blind values used in calculations

Notes on RSA

- · Too smaller e is undesirable
- If d< (n¹/4)/3 then d can be efficiently computed from e and n
- If n=p.q is of t digits, knowing t/4 digits of p one can factor n efficiently
- Sharing the modulus is bed

Key lengths

 Security of public key system should be comparable to security of block cipher.

NIST:

<u>Cipher key-size</u>	<u>Modulus size</u>
≤ 64 bits	512 bits.
80 bits	1024 bits
128 bits	3072 bits.
256 bits (AES)	15360 bits

High security

very large moduli.

ELGAMAL PUBLIC KEY CRYPTOGRAPHY BASED ON DIFFIE HELLMAN KEY EXCHANGE

Diffie-Hellman key exchange (D-H) is a cryptographic protocol that allows two parties that have no prior knowledge of each other to jointly establish a shared secret key over an insecure communications channel. This key can then be used to encrypt subsequent communications using a symmetric key cipher.

Diffie-Hellman Key Exchange

• Public: prime (1024 bit), generator g of group Z_p^*

Diffie-Hellman problem: Obtain g^{ab} with given (g^a, g^b) Easy if we can compute x from g^x No better way known implicit key authentication (only if attacker is passive)

CDH and DDH

- Discrete Log problem
 - Given y and g in Zp where p is prime, find the unique x in Zp, such that $y = g^x \mod p$.
 - No efficient algorithm
- Computational Diffie-Hellman (CDH)
 - Given a multiplicative group (G, *), an element $g \in G$ having order q, given g^x and g^y , find g^x
- Decision Diffie-Hellman (DDH)
 - Given a multiplicative group (G, *), an element $g \in G$ having order q, given g^x , g^y , and g^z , determine if $g^xy \equiv g^z \mod n$
- Discrete Log is at least as hard as CDH, which at least as hard as DDH

Thanks