

29-30th January 2015 The Australian National University, Canberra

A **free** two-day workshop providing an introduction to phylogenetic analysis, including sequence alignment, evolutionary models, phylogenetic methods, Bayesian analysis, and demographic reconstruction.

Featuring: Presentations by Assoc. Prof Simon Ho (USyd), and including practical exercises with the software **MEGA** and **BEAST**.

General registrations close Wednesday 28th January 2015.

Venue: Sciences Teaching Building 136 Linnaeus Way, The Australian National University, Canberra.

For further information and registration visit

> www.bit.ly/ANU Phylo

Proudly Supported by

Introduction to Phylogenetic Analysis

Thursday 29 - Friday 30 January, 2015

Overview

This workshop will provide an introduction to phylogenetic analysis, including practical exercises based on the software *MEGA* and *BEAST*. It is suitable for graduate students, postdoctoral researchers, and academics at all levels of experience. Prior knowledge of basic phylogenetics is helpful but not strictly necessary.

The workshop will be run by Associate Professor Simon Ho, Sebastián Duchêne, and David Duchêne. Simon and Sebastián are from the *Molecular Ecology, Evolution, & Phylogenetics* (MEEP) lab in the School of Biological Sciences, University of Sydney. David is a PhD student from the Research School of Biology at the Australian National University.

All lectures and practical classes will be held in the Sciences Teaching Building 136, Linnaeus Way at the Australian National University.

Programme

The workshop will comprise a series of lectures and practical exercises. The first day will cover interpreting phylogenetic trees, sequence alignment, evolutionary models, and phylogenetic methods. The second day will focus on Bayesian phylogenetic analysis and will include molecular clocks, estimating timescales, coalescent theory, and demographic reconstruction.

The practical exercises will involve basic analyses of a prepared data sets. We will be using free software that can be installed on PC, Mac, and UNIX platforms.

Workshop Programme

Thursday 29 January: Introduction to phylogenetic analysis

09.30 - 09.45	Welcome	
09.45 - 10.30	Lecture 1: Introduction to phylogenetic analysis	Simon Ho
10.30 – 11.00	Practical 1a: Sequence alignment in MEGA	
	Morning tea	
11.30 – 12.00	Lecture 2: Evolutionary Models	Sebastián Duchêne
12.00 - 13.00	Practical 1b: Model selection in MEGA	
	Lunch break	
14.00 - 15.00	Lecture 3: Phylogenetic Methods	Simon Ho
15.00 - 17.00	Practical 1c: Phylogenetic analysis in MEGA	

Friday 30 January: Bayesian phylogenetic analysis

09.30 – 10.15	Lecture 4: Bayesian phylogenetic analysis	Simon Ho
10.15 – 11.00	Lecture 5: Rates and timescales	Sebastián Duchêne
	Morning tea	
11.30 – 13.00	Practical 2: Molecular-clock analysis in BEAST	
	Lunch break	
14.00 – 15.00	Lecture 6: Analysing populations	Simon Ho
15.00 – 17.00	Practical 3: Inferring population history in <i>BEAST</i>	

Useful References

Reference books

- Bayesian Phylogenetics: Methods, Algorithms, and Applications Chen, Kuo, & Lewis (2014) Chapman & Hall / CRC.
- Molecular Evolution: A Statistical Approach Yang (2014) Oxford University Press.
- The Phylogenetic Handbook Lemey, Salemi, & Vandamme (2009) Cambridge University Press.
- Reading the Story in DNA Bromham (2008) Oxford University Press.
- Inferring Phylogenies
 Felsenstein (2003) Sinauer Associates.

Molecular clocks and calibrations

- Estimating evolutionary timescales using the molecular clock
 Ho & Duchêne (2014) Mol Ecol 23: 5947–5965.
- The changing face of the molecular evolutionary clock Ho (2014) Trends Ecol Evol 29: 496–503.
- Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times
 Ho & Phillips (2009) Syst Biol 58: 367–380.

Demographic reconstruction

- Skyline-plot methods for estimating demographic history from nucleotide sequences Ho & Shapiro (2011) Mol Ecol Res 11: 423–434.
- Bayesian inference of population size from multiple loci Heled & Drummond (2008) BMC Evol Biol 8: 289.
- Bayesian coalescent inference of past population dynamics from molecular sequences
 Drummond, Rambaut, Shapiro, & Pybus (2005) Mol Biol Evol 22: 1185–1192.

Gene trees and species trees

- Statistical binning enables an accurate coalescent-based estimation of the avian tree
 - Mirarab, Bayzid, Boussau, & Warnow (2014) Science, 346: 1337.
- Bayesian inference of species trees from multilocus data Heled & Drummond (2010) Mol Biol Evol 27: 570–580.
- Gene tree discordance, phylogenetic inference and the multispecies coalescent Degnan & Rosenberg (2009) Trends Ecol Evol 24: 332–340.