

Portante L+x = d.e 1+nx + $\frac{n(n-1)x^2=1-n+nd+\frac{n(n-1)}{2}(d-1)^2}{2}$

doge, o problema fei traduzido para provor que do 7/1-n+ nd + n/n-1)(d-1)2 their e do

Vornos usar o argumento per indeção en n:

Caso base: n=1 =) d'7/1-1+1d+ 1.(1-1)(d-1)2 = d (ON)

n=2 -) d^{2} 7/1 - 2 2.d + 2.(2-1) $|d-1|^{2} = d^{2}$ (OK)

Suponha verda de para n= K gre:

d">, 1-K+K.d+K(K-1)(d-1)2 (d70)

Agoca, vones prover ge $d^{k+1} > 1 - (k+1) + (k+1)d + \underbrace{\kappa(k+1)(d-1)^2}_{2}$ =) $d^{k+1} > \kappa(d-1) + d + \underbrace{\kappa(k+1)(d-1)^2}_{2}$

 d^{K+1} 7/ $K(d-1)\left(\frac{1+(K+1)(d-1)}{2}\right)$ + d

Salves gre d^k>, 1-K+K.d+<u>K(K-1)(d-1)²</u> (d70)

e d^{k+1}>, d-dK+Kd²+K(K-1)[d-1]².d

Ageca, se provorsos que

d-ak+kd2+k(k-1)ld-1)2d = k (d-1)(1+(k+1)(d-1)) + d par transi tividade d^{k+1} , $d-dk+kd^2+k(k-1)ld-1)^2.d$ e d^2 , $1-n+nd+n(n-1)(d-1)^2$ (d70) \forall notine pas fim (1+x)? 1+nx 1 n(n-1)x (x>-1) +n&1N. =) -d/k+/kd²+/k(k-1)(d-1)²d >, x(d-1)(1+/k+1)(d-1) (KEIN*) =) $-d+d^2+\frac{(\chi-1)d(\alpha-1)^2}{2}$ $-d+(\chi+1)(d-1)^2$ 2(d2-d) + d(d-1)2 (K-1) 7 2(d-1) + (K+1)(d-1)2 (d-1)(2d+d(d-1)(K-1)-2-(K+1)(d-1))>0 (1) Aplicando indução en V en (1), chegarenes que a desigual de de é verdadeira para d>0.

b)
$$1+2^2+3^2+...+n^2 = \frac{n(n+1)(2n+1)}{6}$$

Case base
$$n=1=12.3$$
 (OK)

=
$$(X_{+1})(X+2)(2X+3)$$

2 m, n EIN e n>m.

Padernes user a propriedade orguinediana: (terb>= InEIN 1 an>6). e a principio de Boar Ordern (toda subconjute vão varzio de IN passui un menor elemente).

Considére a conjunto A=L num l néille numin s.

Vines que A+Q, peis pora ne=n+L => (nuln>n
=) mn>Q que é redade ja que in,n EHV (não
venes considéror que 0¢IW). Loge, pelo principio
de Boa Orden, A possi un elevente minime
q tal que quev.

1) Se n=que, não há o gree provor.

2) Se n>gue, então JrEIV l n=que tr.

Se r>, un terémos n>rq(m+1), o que seria
un absurdo, já gre gr é minimal, Lago
r Lm.

Partante dado non, novelle e q, reINI 0 ercm, entato n=qm+r.

_							
3) Naturai	s came	Onjao	intinita	do	cajun	leς	
infinites	disjuntes	, 2 a 2)		
IN= UAi	AICIN, 4	$i \cap Aj = \emptyset$					
i e1N		,					
Ideia +:	124	ት · - ›	$\rightarrow \nu$				
	3 5 8		7 N2				
	6 9	• ,	-) N3				
	(0	•	;				
	;		> N'~				
	·	,					
0 N; = IN e N; N N; = \$							
; e(N		9 /					
Ideia 2: Teorera fundomentel de Aritréfica.							
Pego os números primos:							
3	<u> </u>	•					
A=1 números divisíveis por 29 A=-1 números divisíveis por 3 e não por 29							
Ac=4 winer	os divisíve	is pos 3 e	voo des 2	}			
	•						
	:					_	

$$\frac{1}{\sqrt{2}} \sum_{K=1}^{2} \frac{1}{\sqrt{2}} = \sum_{K=1}^$$

$$\sum_{K=1}^{m+1} \frac{1}{K} = \sum_{K=2}^{m+1} \frac{1}{K} = \sum_{K$$

$$(5) \stackrel{>}{>} K^3 = \frac{y^4}{4} + \frac{y^3}{2} + \frac{y^2}{4} . \quad (5 = fater indução).$$

$$\begin{vmatrix} 1^{4} = 1 \\ (1+1)^{7} = 1 + 4.1^{3} + 6.1^{2} + 4.1 + 4.$$

só fazur as confas.

Só fater indução en v.

7) (an) seguência não convergente.
Dado LEIR qualquer, existen EL70 e subsegência
(anx) tois gre anx € (L-EL, L+EL).

$$| a_{n} = 1 + (-1)^{m}$$

 $| a_{n} = 1 + (-1)^{m}$
 $| a_{n} = (0, 2, 0, 2, ...) |$
 $| a_{2\kappa+1} = 0$
 $| a_{2\kappa} = 2.$
 $| a_{n} = 1 + (-1)^{m}$
 $| a_{n} = 1 + (-1)^{m}$

VERDADEIRA.