Translation

JAPANESE KOKAI PATENT, SHO 62-9639

Disclosure Date : January 17, 1987

Int. Class. : H 01 L 21/56

Seq. No. for Official Use: R-6835-5F

TITLE OF INVENTION : MANUFACTURE OF SEMICONDUCTOR DEVICE

APPLICATION NO. AND DATE: SHO 60-148864, July 5, 1985

INTENTOR .

: Tsuneo KAMATA, NEC Yamagata, Ltd.

4-12-12 Kitamachi, Yamagata-Shi

APPLICANT

: NEC Yamagata, Ltd.

4-12-12 Kitamachi, Yamagata-Shi

AGENT.

: Hitoshi UCHIHARA, Patent Agent

NUMBER OF INVENTIONS: 1

REQUEST FOR EXAMINATION : None

1. Title of inventi n

MANUFACTURE OF SEMICONDUCTOR DEVICE

2. Claim

Manufacturing method of semiconductor device, as characterized by setting semiconductor chips on a printed circuit substrate having a patterned circuit, connecting the electrodes of said semiconductor chips to said circuit, and cutting and separating them after resin encapsulation.

3. Specification

[Field of commercial utility]

This invention relates to a method of manufacture of semiconductor device, and particularly this invention intends to provide chip parts such as miniaturized transistors, diodes, etc. at high level of reliability and inexpensively.

[Prior art]

Conventionally, this type of semiconductor chip parts was manufactured by setting semiconductor pellets on a punched-out lead frame, connecting the wires, forming into leads and forming chips, or setting the semiconductor chips on a ceramic part, connecting the wires, and encapsulating with resin-

[Problems to be solved by the invention]

The manufacturing method of the prior art, since leads were formed after encapsulatinog in the former example, showed inferior moisture resistance and greater variation of size and shape, and this has been the cause of problems in actual packaging process.

And, with the latter example, the raw materials were expensive, variation of the size of the material and substrate or variation of encapsulated size was great, and this again has been the cause of the problems in actual packaging process.

[Means to solve the problems]

In the present invention, semiconductor pellets are set on the printed circuit substrate which have the pattern to match the element configuration, necessary internal connections are made, and subsequently the surface of the

elements is encapsulated with a resin, and then the encapsulated printed circuit substrate is cut into individually separated semiconductor elements. In this case, processes such as measurement of the electrical property of the elements or marking process can be carried out before or after the cutting and separation process. Thus, such work can be carried out by the most accessible process, based on optimization of the process or element configuration.

[Example]

This invention is explained below by referring to the accompanying drawings.

Fig. 1 represents the side view and cross-sectioned view of the completed device. Fig. 2(A) is a cross-sectioned side view of the printed circuit substrate which is used for assembly of this device, and Fig. 2(B) is a partial plane view of this printed circuit substrate. Assembly process is explained by following these drawings.

Semiconductor pellet 3 is mounted and immobilized on the printed circuit substrate 1 by solder 2, and they are connected by bonding wire 4. This situation is illustrated in Fig. 3. Then, the surface of the element is encapsulated or sealed with resin 5. Encapsulation may be performed over the entire surface or a part of the surface. This situation is illustrated in Fig. 4. Finally, element is cut and separated to form a completed product. This situation is illustrated in Fig. 5. Cutting can be made accurately through the center part of the through-hole without damaging the linkage with the packaged contacts on the rear side.

[Effect of invention]

As explained above, according to this invention, ministure leadless chip carrier element that has high precision and high quality can be obtained. External dimension can be miniaturized by 30 - 50%, compared to the chip carrier formed by the conventional lead working process. Thus, this process can be used for the future miniaturization. It can be applied widely to miniature diode or transister, as well as a giant LTI element, and thus the effect is enormous.

4. Brief explanation of drawings

Fig. I is a side view to illustrate a partially sectioned semiconductor, made by an example f this invention.

Fig. 2(A) and Fig. 2(B) are, respectively, the cross-sectioned view and plane view of the printed circuit substrate.

Fig. 3 is a side view that represents the situation of setting the semiconductor pellet on the printed circuit substrate and connecting with the external terminal(s).

Fig. 4 is a cross-sectioned view to represent the surface of the semiconductor element that was encapsulated with a protective resin.

10 特許出願公開

母 公 開 特 許 公 報 (A) 昭62-9639

@Int_Cl_4

識別記号

庁内整理番号 R-6835-5F ❷公開 昭和62年(1987)1月17日

H 01 L 21/56

審査請求 未請求 発明の数 1 (全2頁)

②特 顋 昭60-148864

∅出 願 昭60(1985)7月5日

加発明者 鹿 俣

常郎

山形市北町 4 丁目12番12号 山形日本電気株式会社内 山形市北町 4 丁目12番12号

⑪出 願 人 山形日本電気株式会社 ⑫代 理 人 弁理士 内 原 晋

発明の名称
半導体装置の製造方法

2 特許請求の範囲

パターンニングされた配線を有するプリント配線差板に半導体チップを搭載し、該半導体チップ の電極と前配配線との結果を行い、樹脂對止後これを切断分離することを特徴とする半導体装置の 製造方法。

3. 発明の詳細な説明

〔産業上の利用分野〕

本発明は、半導体装置の要造方法に関し、特に 小型トランジスタ。ダイオード,小型ICのチップ部品を信頼度高くかつ安価に提供するものである。

(従来の技術)

従来、との種の半導体チップ部品は、パンチン

グされたリードフレームに半導体ペレットを搭較・ 結線を行ったのち、リード形状の加工を行いチッ ブ形状化するものや、セラミック部品に半導体ペ レットを搭載・結敝し樹脂封止するものがある。 【発明が解決しよりとする問題点】

従来の製法に基づくものは、削者の例では封止 後にリード加工を行うために耐湿性等の面で劣化 が見られる外、形状寸法のパランキが大きいとい う欠点があり、実装工程でのトラブルの要因とな っている。

又、後者の例では、材料が高価である事の外に 材料基板の寸法パラッキ。封止寸法パラッキが大 きいといり欠点があり、やはり実装工程でのトラ ブルの要因となっている。

(問題点を解決するための手段)

本発明は、あらかじめ業子構造に合致したパタ ーンニングを施したプリント配根基板に半導体ペ レットを搭載し、必要な肉部結果を行い、その後 業子面を樹脂で封止し、しかる後封止荷ブリント 配般素板を切断分離し、似々の半導体業子に分離 するものである。との時、素子の質気毎件の測定 やマーキング等の工程は切断・分離の前後いずれ でもよく、素子構造やプロセスの最適化により最 もやりやすい工程で行えばよい。

(実施例)

次に、本発明について図面を参照して説明する。 第1図は完成した装置の側面及び断面を扱わし ている。第2図仏は本装置の組立に用いるブリン ト配般基板の側断面図、同図(B)はこのブリント配 級基板の平面部分図である。以降図面に従い組立 工程を説明する。

ブリント配線基板1に半導体ペレット3をソルダー2で取りつけ固定し、ポンディングワイヤー4で結線する。との様子を第3図に示す。次に、素子面を樹脂5で封止する。封止は全面でも部分的に行ってもよい。第4図にとれを示す。最後に素子を切断分離し完成品となる。この様子を第5図に示す。切断はスルーホールの中央部を正確に行う事により、裏面の実毎用コンダクトとの連結を損りことなく分離出来る。

第5図は樹脂對止後の基板を切断分離し、個々の装置として完成した様子を示している断面図である。

1 ……ブリント配線基板、2 ……マウントソル ダー、3 ……半導体ペレット、4 ……ポンティン グワイヤー、5 ……對止樹脂。

代理人 弁理士 内 原 晋,

〔発明の効果〕

以上説明した様に、本発明によれば加工難度が高く品質のよい、小型リードレスチップキャリア 素子が得られる。外形は従来のリード加工による チップキャリアに比較し30~50多小型化する事 ができ、今後の小型化志向にも十分対応できる。 素子は小型のダイオードやトランジスタから、大 形のしてI 柔子まで広く適用出来、その効果は削り知れない。

4. 図面の簡単な説明

第1図は本発明の一実施例による半導体装置の 部分断面を示した関面図である。

第2図AJ および第2図BJ はそれぞれブリント配 級基板の断面および平面図である。

第3図はプリント配線基板に半導体ペレットを 搭載し外部端子と結線した様子を表わしている側 面図である。

第4図は半導体案子面を保護用樹脂で封止した 様子を表わす断面図である。

