This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

- 1. (canceled)
- (currently amended) The method of claim 1, further comprising: 2. Method for controlling a direct-injection gasoline engine during regeneration of a lean NOx trap disposed in an exhaust path of the engine, the regeneration characterized by a transition from lean stratified engine operation to rich homogeneous engine operation, comprising: upon initiation of a lean NOx trap regeneration event, determining a current air-fuel ratio and comparing the current air-fuel ratio to a lean limit air-fuel ratio; delaying the transition from lean stratified engine operation to rich homogeneous engine operation until the current air-fuel ratio reaches the lean limit air-fuel ratio; initiating transition from lean stratified engine operation to rich homogeneous engine operation when the current air-fuel ratio reaches the lean limit air-fuel ratio; <u>and</u> disabling an air-fuel feedback control for a period of time following the transition into and out of the lean NOx trap regeneration event.
- (original) The method of claim 2, wherein the period of time for 3. disabling the air-fuel feedback control comprises a pre-calibrated period of time.
- (original) The method of claim 2, wherein the period of time for 4. disabling the air-fuel feedback control comprises an on-line estimated period of time.

5. (currently amended) The method of claim 1, further comprising:
Method for controlling a direct-injection gasoline engine during regeneration of a
lean NOx trap disposed in an exhaust path of the engine, the regeneration
characterized by a transition from lean stratified engine operation to rich
homogeneous engine operation, comprising:
upon initiation of a lean NOx trap regeneration event, determining a current
air-fuel ratio and comparing the current air-fuel ratio to a lean limit air-fuel ratio;
delaying the transition from lean stratified engine operation to rich
homogeneous engine operation until the current air-fuel ratio reaches the lean limit
air-fuel ratio;
initiating transition from lean stratified engine operation to rich homogeneous
engine operation when the current air-fuel ratio reaches the lean limit air-fuel ratio;
<u>and</u>
disabling an air charge feedback control for a period of time following the
transition into and out of a lean NOx trap regeneration event.

- 6. (original) The method of claim 5, wherein the period of time for disabling the air charge feedback control comprises a pre-calibrated period of time.
- 7. (original) The method of claim 5, wherein the period of time for disabling the air charge feedback control comprises an on-line estimated period of time.
- 8. (currently amended) The method of claim 1, further comprising:

 Method for controlling a direct-injection gasoline engine during regeneration of a
 lean NOx trap disposed in an exhaust path of the engine, the regeneration
 characterized by a transition from lean stratified engine operation to rich
 homogeneous engine operation, comprising:

upon initiation of a lean NOx trap regeneration event, determining a current air-fuel ratio and comparing the current air-fuel ratio to a lean limit air-fuel ratio;

delaying the transition from lean stratified engine operation to rich
nomogeneous engine operation until the current air-fuel ratio reaches the lean limit
air-fuel ratio;
initiating transition from lean stratified engine operation to rich homogeneous
engine operation when the current air-fuel ratio reaches the lean limit air-fuel ratio;
<u>and</u>
adjusting a desired air charge mass following the transition into and out of the

adjusting a desired air charge mass following the transition into and out of the lean NOx trap regeneration event from an initial air charge mass value to a final air charge mass value over one of a pre-calibrated time interval and an on-line estimated time interval.

9. (currently amended) The method of claim 1, further comprising:

Method for controlling a direct-injection gasoline engine during regeneration of a

lean NOx trap disposed in an exhaust path of the engine, the regeneration

characterized by a transition from lean stratified engine operation to rich

homogeneous engine operation, comprising:

upon initiation of a lean NOx trap regeneration event, determining a current air-fuel ratio and comparing the current air-fuel ratio to a lean limit air-fuel ratio; delaying the transition from lean stratified engine operation to rich homogeneous engine operation until the current air-fuel ratio reaches the lean limit air-fuel ratio;

initiating transition from lean stratified engine operation to rich homogeneous engine operation when the current air-fuel ratio reaches the lean limit air-fuel ratio; and

setting the desired exhaust gas recirculation mass to zero.

- 10. (currently amended) The method of claim 4 2, further comprising: controlling engine torque based upon driver demand.
- 11. (canceled)

2486762799

- (currently amended) The system of claim 11, further comprising: 12. System for controlling a direct-injection gasoline engine during regeneration of a lean NOx trap disposed in an exhaust path of the engine, the regeneration characterized by a transition from lean stratified engine operation to rich homogeneous engine operation, comprising: means for determining a current air-fuel ratio and comparing the current airfuel ratio to a lean limit air-fuel ratio upon initiation of a lean NOx trap regeneration event; means for delaying the transition from lean stratified engine operation to rich homogeneous engine operation until the current air-fuel ratio reaches the lean limit air-fuel ratio; means for initiating transition from lean stratified engine operation to rich homogeneous engine operation when the current air-fuel ratio reaches the lean limit air-fuel ratio; and means for disabling an air-fuel feedback control for a period of time following the transition into and out of the lean NOx trap regeneration event.
- (original) The system of claim 12, wherein said period of time for 13. disabling the air-fuel feedback control comprises a pre-calibrated period of time.
- (original) The system of claim 12, wherein said period of time for 14. disabling the air-fuel feedback control comprises an on-line estimated period of time.
- (currently amended) The system of claim 11, further comprising: 15. System for controlling a direct-injection gasoline engine during regeneration of a lean NOx trap disposed in an exhaust path of the engine, the regeneration characterized by a transition from lean stratified engine operation to rich homogeneous engine operation, comprising:

means for determining a current air-fuel ratio and comparing the current air-
fuel ratio to a lean limit air-fuel ratio upon initiation of a lean NOx trap regeneration
event:
means for delaying the transition from lean stratified engine operation to rich
homogeneous engine operation until the current air-fuel ratio reaches the lean limit
air-fuel ratio;
means for initiating transition from lean stratified engine operation to rich
homogeneous engine operation when the current air-fuel ratio reaches the lean limit
air-fuel ratio; and
means for disabling an air charge feedback control for a period of time
following the transition into and out of the lean NOx trap regeneration event.
(original) The system of claim 15, wherein said period of time for
disabling the air charge feedback control comprises a pre-calibrated period of time.
17. (original) The system of claim 15, wherein said period of time for
disabling the air charge feedback control comprises an on-line estimated period of
time.
 (currently amended) The system of claim 11, further comprising:
System for controlling a direct-injection gasoline engine during regeneration of a
lean NOx trap disposed in an exhaust path of the engine, the regeneration
characterized by a transition from lean stratified engine operation to rich
homogeneous engine operation, comprising:
means for determining a current air-fuel ratio and comparing the current air-
fuel ratio to a lean limit air-fuel ratio upon initiation of a lean NOx trap regeneration
event;
means for delaying the transition from lean stratified engine operation to rich

air-fuel ratio:

homogeneous engine operation until the current air-fuel ratio reaches the lean limit

means for initiating transition from lean stratified engine operation to rich homogeneous engine operation when the current air-fuel ratio reaches the lean limit air-fuel ratio; and

means for adjusting a desired air charge mass following the transition into and out of the lean NOx trap regeneration event from an initial air charge mass value to a final air charge mass value over one of a pre-calibrated time interval and an on-line estimated time interval.

19. (currently amended) The system of claim 11, further comprising:

System for controlling a direct-injection gasoline engine during regeneration of a lean NOx trap disposed in an exhaust path of the engine, the regeneration characterized by a transition from lean stratified engine operation to rich homogeneous engine operation, comprising:

means for determining a current air-fuel ratio and comparing the current air-fuel ratio to a lean limit air-fuel ratio upon initiation of a lean NOx trap regeneration event:

means for delaying the transition from lean stratified engine operation to rich homogeneous engine operation until the current air-fuel ratio reaches the lean limit air-fuel ratio;

means for initiating transition from lean stratified engine operation to rich homogeneous engine operation when the current air-fuel ratio reaches the lean limit air-fuel ratio; and

means for setting a desired exhaust gas recirculation mass to zero.

- 20. (currently amended) The system of claim 41 12, further comprising: means for controlling engine torque based upon driver demand.
- 21. (canceled)

- 22. (currently amended) The article of claim 21, further comprising: Article of manufacture comprising a storage medium having a computer program encoded therein for effecting a method for controlling a direct-injection gasoline engine during regeneration of a lean NOx trap disposed in an exhaust path of the engine, the regeneration characterized by a transition from lean stratified engine operation to rich homogeneous engine operation, the program comprising: code for comparing a current air-fuel ratio to a lean limit air-fuel ratio upon initiation of a lean NOx trap regeneration event; code for delaying transition from lean stratified engine operation to rich homogeneous engine operation until the current air-fuel ratio reaches the lean limit air-fuel ratio; code for initiating transition from lean stratified engine operation to rich homogeneous engine operation when the current air-fuel ratio reaches the lean limit air-fuel ratio; and
- code for disabling an air-fuel feedback control for a period of time following the transition into and out of the lean NOx trap regeneration event.
- 23. (original) The article of claim 22, wherein said period of time for disabling the air-fuel feedback control comprises a pre-calibrated period of time.
- 24. (original) The article of claim 22, wherein said period of time for disabling the air-fuel feedback control comprises an on-line estimated period of time.
- (currently amended) The article of claim 21, further comprising: Article 25. of manufacture comprising a storage medium having a computer program encoded therein for effecting a method for controlling a direct-injection gasoline engine during regeneration of a lean NOx trap disposed in an exhaust path of the engine, the regeneration characterized by a transition from lean stratified engine operation to rich homogeneous engine operation, the program comprising:

code for comparing a current air-fuel ratio to a lean limit air-fuel ratio upon
initiation of a lean NOx trap regeneration event;
code for delaying transition from lean stratified engine operation to rich
homogeneous engine operation until the current air-fuel ratio reaches the lean limit
air-fuel ratio;
code for initiating transition from lean stratified engine operation to rich
homogeneous engine operation when the current air-fuel ratio reaches the lean limit
air-fuel ratio; and
code for disabling an air charge feedback control for a period of time
following the transition into and out of the lean NOx trap regeneration event.

- (original) The article of claim 25, wherein said period of time for disabling the air charge feedback control comprises a pre-calibrated period of time.
- 27. (original) The article of claim 25, wherein said period of time for disabling the air charge feedback control comprises an on-line estimated period of time.
- 28. (currently amended) The article of claim 21, further comprising: Article of manufacture comprising a storage medium having a computer program encoded therein for effecting a method for controlling a direct-injection gasoline engine during regeneration of a lean NOx trap disposed in an exhaust path of the engine, the regeneration characterized by a transition from lean stratified engine operation to rich homogeneous engine operation, the program comprising: code for comparing a current air-fuel ratio to a lean limit air-fuel ratio upon initiation of a lean NOx trap regeneration event; code for delaying transition from lean stratified engine operation to rich homogeneous engine operation until the current air-fuel ratio reaches the lean limit air-fuel ratio;

code for initiating transition from lean stratified engine operation to rich
nomogeneous engine operation when the current air-fuel ratio reaches the lean limit
air-fuel ratio: and

code for adjusting a desired air charge mass following transition into and out of the lean NOx trap regeneration event from an initial air charge mass to a final air charge mass value over one of a pre-calibrated time interval and an on-line estimated time interval.

29. (currently amended) The article of claim 21, further comprising: Article of manufacture comprising a storage medium having a computer program encoded therein for effecting a method for controlling a direct-injection gasoline engine during regeneration of a lean NOx trap disposed in an exhaust path of the engine, the regeneration characterized by a transition from lean stratified engine operation to rich homogeneous engine operation, the program comprising:

code for comparing a current air-fuel ratio to a lean limit air-fuel ratio upon initiation of a lean NOx trap regeneration event;

code for delaying transition from lean stratified engine operation to rich homogeneous engine operation until the current air-fuel ratio reaches the lean limit air-fuel ratio;

code for initiating transition from lean stratified engine operation to rich homogeneous engine operation when the current air-fuel ratio reaches the lean limit

code for setting a desired exhaust gas recirculation mass to zero.

30. (currently amended) The article of claim 21, 22, further comprising: code for controlling engine torque based upon driver demand.

GMC3107

air-fuel ratio; and