BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE-Pilani, Hyderabad Campus INSTRUCTION DIVISION

FIRST SEMESTER 2019-2020

Course Handout (Part II) Date: 1-8-2019

Course No.: PHY F 313

Course Title: Computational Physics Instructor-in-charge: P.K.Thiruvikraman

Course Description: The use of computers for computation and simulation has become an integral part of physics. This course gives an introduction to the basic computational methods which are used to solve problems in Physics. Some of the topics, which will be covered are numerical methods for finding roots (with special emphasis on transcendental equations), solution of differential equations, integration (including Monte Carlo techniques for evaluating integrals). Applications of these techniques will also be discussed in class.

Scope and objective of the course: The objective of the course is to give an introduction to basic techniques for solving Physical problems by using computational methods. Most of the real-world problems are not solvable analytically. An advantage of computational physics is that one can start with an idealized (simplified) version of a real problem for which analytical solution exists. Once a program has been written which can handle the idealized case, we can add more and more complex real-world factors. Illustrative examples will be taken from various areas of Physics like Classical Mechanics, Condensed Matter Physics, Electricity and Magnetism, Quantum Mechanics, Statistical Physics etc. Some of the modern topics like Chaos, Percolation and random walk, will also be covered in the course.

Text Book:

First course in Computational Physics by Paul DeVries, Javier E. Hasbun, Jones and Bartlett Publishers, Indian edition, 2011

Reference Book:

- 1. Numerical Recipes in C, 2nd Edition, W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Cambridge University Press, 1992.
- 2. An Introduction to computer simulation methods, 2nd Edition, Harvey Gould and Tobochnik, Addison Wesley,1996.
- 3. Applied Numerical Analysis, 7th Edition, Gerald and Wheatley, 2003
- 4. Numerical Methods for Engineers, 6th Edition, Chapra & Canale, McGraw-Hill, 2012

Course Plan

	-		
Lecture	Learning outcomes	Topics to be covered	Reference Chap./
No.			Sec. No. (Book)
1.		Introduction	-
2-6	Finding the Roots of	Iteration method, bisection, Newton	2.1- 2.10
	a function by	Raphson method, method of false	
	numerical methods	position, secant method.	
7-8	Application of root	Finite square well potential	2.11-2.12
	finding techniques		
9-11	Techniques for	Lagrange interpolation, cubic spline	3.1, 3.4-3.7
	Interpolation and	error in interpolation	
	approximation		
12-14	Matrix methods for	Gaussian Elimination, LU	3.10, 3.11-3.14
	solving simultaneous	decomposition, Least Squares curve	
	equations and use	fitting	

	them for curve fitting		
15-17	Numerical	Trapezoidal rule, Simpson's rules,	3.8-3.9, 4.1-4.6, 4.8,
	differentiation and	Gaussian Quadrature and	4.10-4.13
	Integration	application, Romberg integration	
18-22	Numerical	Random Number generators,	12.6 (R2)
	Integration	Metropolis Algorithm,	& class notes,
		Monte Carlo Integration and its	11.8 (R2),
		application	Chap 4 (TB) & Chap
			11 (R2)
23-28	Solve Ordinary	Euler Methods, higher order	5.1-5.6, 5.16-5.25
	Differential Runge-Kutta Methods and		(TB)
	Equations	application, Finite difference	
		method, finite element method	
29-32	Solve Partial	Solution of boundary value	Chap 7 (TB)
	Differential	problems by finite difference	Chap 10.2-10.4 (R2)
	Equations	methods and application	
33-37	Monte Carlo	Random walk;	Chap 4 (TB);
	Simulations	Ising model	Chap 5 (TB), Chap
			17 (R2)
38-42	Solution of Non-	Chaos	Chap 6 (TB)
	linear differential		
	equations		

Evaluation scheme:

Component	Duration	Weightage(%)	Date & Time	Remarks
Mid-semester	90 min	25 %		Open Book
test				
MATLAB	60 min	15 %		Closed Book
programming				
test				
Tutorial Tests	50 min	15%		Closed Book
Compre. Exam	3 hrs	45%		Closed Book

- A total of 2 tutorial tests will be conducted, out of which the best performance will be considered. There will be no make-up for tutorial tests.
- Chamber Consultation hour will be announced in class...
- **Notices** for this course will be displayed on the Physics Notice board and on the Course Management System (CMS) website only.
- **Make-up** will be granted only if the make-up letter is forwarded by the Chief Warden.
- Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge, PHY F313