A Bit About Conditional Expectation

Kexing Ying

July 24, 2021

Measure-theoretically, conditional expectation is defined in terms of conditioning on a sub- σ algebra.

Definition 1 (Conditional Expectation). Let $f:\Omega\to\mathbb{R}^+$ be a random variable on some probability space $(\Omega,\mathcal{F},\mathbb{P})$ such that $\int f d\mathbb{P} <\infty$. Then, given a sub- σ -algebra \mathcal{G} of \mathcal{F} , the conditional expectation of f with respect to \mathcal{G} is the essentially unique \mathcal{G} -random variable f', such that

$$\int_{A} f d\mathbb{P} = \int_{A} f' d\mathbb{P},\tag{1}$$

for all $A \in \mathcal{G}$. We denote f' by $\mathbb{E}(f \mid \mathcal{G})$.

We note that the integrals within this definition are computed with respect to the larger \mathcal{F} rather than the smaller \mathcal{G} . Indeed, while f' is measurable with respect to \mathcal{F} , f is not measurable with respect to \mathcal{G} .

We also note that, if f is already measurable with respect to \mathcal{G} , then f'=f, \mathbb{P} -a.e. This follows since the Radon-Nikodym derivative is essentially unique and clearly, f satisfy the integral equation 1. Written, using the Radon-Nikodym derivative notation, we have

$$f' = \frac{\mathrm{d}(f\mathbb{P})|_{\mathcal{G}}}{\mathrm{d}\mathbb{P}|_{\mathcal{G}}}.$$

Thus, if f is \mathcal{G} -measurable, we simply exploiting the fact that,

$$(f\mathbb{P})|_{\mathcal{G}} = f(\mathbb{P}|_{\mathcal{G}}).$$

Geometrically, we may think about conditioning on a sub- σ -algebra as projection onto the sub- σ -algebra. This notion is made rigorous in the case of L^2 -random variables.

Definition 2 (Conditional Expectation in L^2). Let $f:\Omega\to\mathbb{R}^+$ be a L^2 -random variable on some probability space $(\Omega,\mathcal{F},\mathbb{P})$. Then, given a sub- σ -algebra \mathcal{G} of \mathcal{F} , the conditional expectation of f with respect to \mathcal{G} is the orthogonal projection of f into $L^2(\Omega,\mathcal{G},\mathbb{P}|_{\mathcal{G}})$.

In this definition, the conditional expectation f' is the G-random variable which minimizes

$$\mathbb{E}[(f - f')^2] = \int (f - f')^2 d\mathbb{P}.$$

By now, one might wonder how does this definition relate to the classical definition of conditional expectation where we condition on an event. In particular, how does this notion relate to $\mathbb{E}(X\mid B)=\mathbb{E}(X1\mid_B)=\frac{1}{\mathbb{P}(B)}\int_B X\mathrm{d}\mathbb{P}$ where $B\in\mathcal{F},\mathbb{P}(B)>0$.

Proposition 1. Given $B \in \mathcal{F}$,

$$\mathbb{E}(X \mid \sigma(\{B\})) \stackrel{\text{a.e.}}{=} \omega \mapsto \begin{cases} \mathbb{E}(X \mid B) & \text{if } \omega \in B \\ \mathbb{E}(X \mid B^c) & \text{if } \omega \notin B. \end{cases}$$

Proof. Denote Y as the random variable defined by the right hand side.

Since $\sigma(\{B\})=\{\varnothing,B,B^c,\Omega\}$, it is clear that the Y is $\sigma(\{B\})$ -measurable. Furthermore, it is also clear that, for all $A\in\sigma(\{B\})$, $\int_A Y\mathrm{d}\mathbb{P}=\int_A X\mathrm{d}\mathbb{P}$. Thus, the two random variables are equal almost everywhere. \square

To obtain the other elementary definitions learnt during an introduction to probability course regarding conditional probabilities, we may simply define,

Definition 3. Given $A \in \mathcal{F}$, we write $\mathbb{P}(A \mid \mathcal{G}) := \mathbb{E}(1|_A \mid \mathcal{G})$.

Definition 4. Given f, g \mathcal{F} -random variables, we write $\mathbb{E}(f \mid g) := \mathbb{E}(f \mid \sigma(g))$.

Using this measure-theoretic definition of conditional expectation, some standard results are extremely simple to derive.

Proposition 2. If $\{A_i \mid i \in \mathbb{N}\}$ form a partition of \mathcal{F} , then

$$\mathbb{E}(X \mid \mathcal{G}) = \sum_{i \in \mathbb{N}} \mathbb{E}(X \mid A_i) 1|_{A_i},$$

where $\mathcal{G} = \sigma(\{A_i \mid i \in \mathbb{N}\})$.

Proof. Clear by considering for all $G \in \mathcal{G}$, there exists some $I \subseteq \mathbb{N}$ such that $G = \bigcup_{i \in I} A_i$. \square

Proposition 3 (Law of Total Expectation). Let $\mathcal{H} \leq \mathcal{G} \leq \mathcal{F}$, and X a \mathcal{F} -random variable, then

$$\mathbb{E}(\mathbb{E}(X \mid \mathcal{G})) = \mathbb{E}(X)$$

and

$$\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}) \mid \mathcal{H}) = \mathbb{E}(X \mid \mathcal{H}), \mathbb{P}$$
-a.e.

Proof. The first result is immediate as,

$$\mathbb{E}(\mathbb{E}(X \mid \mathcal{G})) = \int_{\Omega} \mathbb{E}(X \mid \mathcal{G}) d\mathbb{P} = \int_{\Omega} X d\mathbb{P} = \mathbb{E}(X).$$

For the second result, we see, for all $A \in \mathcal{H}$,

$$\int_A \mathbb{E}(\mathbb{E}(X\mid\mathcal{G})\mid\mathcal{H})\mathrm{d}\mathbb{P} = \int_A \mathbb{E}(X\mid\mathcal{G})\mathrm{d}\mathbb{P} = \int_A X\mathrm{d}\mathbb{P}.$$

Thus, as the conditional expectation is essentially unique, we have

$$\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}) \mid \mathcal{H}) = \mathbb{E}(X \mid \mathcal{H}), \mathbb{P}$$
-a.e.