

THEOREM 1:

For any graph G on six vertices, either G or \overline{G} contains a triangle.

Proof:

Let G be a graph on 6 vertices. Let v be any vertex in G. Note that v is adjacent with other 5 vertices either in G or in \overline{G} . We assume that, let v is adjacent with v_1, v_2, v_3 in G. If any two of these vertices say, v_1 and v_2 are adjacent, then v, v_1, v_2 forms a triangle. If no two of them are adjacent, then v_1, v_2, v_3 forms a triangle in \overline{G} .

QEYCh)

en a party of 6 ppl, there are 3 mutual acquitances acquitances of 3 mutual non acquitances

EX3 CL

Let G be a self-complementary graph. Then the number of vertices in G is of the form 4n or 4n + 1.

Proof:

Let G be a (p,q) graph. which is self comp

We know that the number of edges in $k_p = \frac{p(p-1)}{2}$

Thus, No of edges in G+ No of edges in $\bar{G} = \frac{p(p-1)}{2}$ ----(1)

Since G is self-complementary,

No of edges in G= No of edges in \overline{G}

From (1), No of edges in $\bar{G} = \frac{p(p-1)}{2}$ -No of edges in G

$$q = \frac{p(p-1)}{2} - q$$

That is, $q = \frac{p(p-1)}{4}$.

Thus either 4|p or 4|p-1, which implies, either $p \equiv 4n$ or p=4n + 1.

" There are no self comp geaph on 6 vertices"

Noofedgen, Noofedges P(P-1)

$$Qq = P(P-1)$$

q has to be an inlegel

No of vertices is a self-complementary georph is either An & Hntl for nEZ

THEOREM:

A graph is bipartite if and only if all the cycles are of even length.

Proof Bipartite, PoTallycles au of even length

Let G be a connected bipartite graph. Then its vertex set V can be partitioned into two sets V_1 and V_2 such that every edge of G joins a vertex of V_1 with a vertex of V_2 . Thus, every cycle $v_1, v_2, ... v_n, v_1$ in G necessarily has its oddly subscripted vertices in V_1 (say). i.e, $v_1, v_3, ... \in V_1$ and other vertices $v_2, v_4, ... \in V_2$. In a cycle $v_1, v_2, ... v_n, v_1$: v_n, v_1 is an edge in G. Since, $v_1 \in V_1$ we must have $v_n \in V_2$. This implies n is even. Hence, the length of the cycle is even. Cycles are of even (with >) Bip Conversly, suppose that G is a connected graph with no odd cycles. Let $u \in G$ be any vertex. Let $V_1 = \{v \in V/d(u,v) = even\}$, $V_2 = \{v \in V/d(u,v) = odd\}$. Then, $V = V_1 \cup V_2$, $V_1 \cap V_2 = \Phi$. We must prove that no two vertices in V_1 and V_2 are adjacent. Suppose that $x, w \in V_1$ be adjacent. $w \in V_1 \Rightarrow d(u, w) = 2k$ and $x \in V_1 \Rightarrow d(u,x) = 2I$. Thus, the path u - w - x - u forms a cycle of length 2k + 2l + 1, odd a contradiction. Therefore, x and w cannot be adjacent. That is no two vertices in V_1 are adjacent. Similarly we can prove no two vertices in V_2 are adjacent. Hence, the graph is bipartite.

$$G \rightarrow V(G) = V_1 U V_2$$

9, V₂ V₃ V₄ ... V_n V₁

9, V₃ V₅ ... EV₁

v_n v₄ v₆ ... EV₂

v_n EV₂

v_n EV₂

v_n EV₂

v_n EV₂

v_n EV₂

'h' $u \in V(h)$ $V = \{v \mid d(u,v) = even^{y}\}$ $V_{2} = \{w \mid d(u,w) = odd\}$

consider 2, w EVI. Pit 24 h are nonadjacent Suppose 24 w are adjacent

d(u, w) = 2k d(u, x) = 2l

at the state of th

Contradicto

or xfb are nonadjacent

THEOREM:

If $diam(G) \geq 3$, then $diam(\bar{G}) \leq 3$

Proof

Let x and y be any two vertices in G. Since $diam(G) \geq 3$, there exist vertices u and v at distance 3 in G. Hence, uv is an edge in \overline{G} . Since u and v have no common neighbour in G, both x and y are each adjacent to u or v in \overline{G} . It follows that $d(x,y) \leq 3$ in \overline{G} and hence $d(\overline{G}) \leq 3$

Let h sit diam(h) 7^3 3 u& v sit d(u) 3

No vortex in 6 is commonly adjacently adjacently adjacently adjacently

Goo un y

THEOREM:

Every nontrivial self-complementary graph has diameter 2 or 3

Proof

Let G be a self complementary graph. Clearly, G cannot have diameter 1.Since $G \cong K_n$ which is not self complementary graph. Hence, self complementary graphs have diameter at least 2. Suppose that $diam(G) \geqslant 3$. By the above theorem, $diam(\overline{G}) \leq 3$. Hence, diameter of every self complementary graph is either 2 or 3.

S

self comp, 626 Sam (h) 7, 3, then diam (h) 23 Je am (h) 23

50

Theorem

For any graph G, that either G or \overline{G} is connected.

If G itself is connected, there is nothing to prove. Suppose that the graph G is disconnected and has two components C_1 and C_2 . Let U and V be any two vertices, we have the following cases.

- ① If u and v are in different components and are not adjacent in G. Then u and v are adjacent in \overline{G} . We have, u path, hence \overline{G} is connected.
- ① If u and v belong to the same component but they are not adjacent in G. Hence, they are adjacent in \overline{G} . Hence, we have uv path.
- Suppose that u and v are adjacent in G(Obviously, they belong to the same component). Then we can find w in another component (which does not contain u and v). We have a uv path via w in \overline{G} . That is, $u \sim w$ and $v \sim w$.

cut vertex: vertex whose removal increases the noof components

Bridge: An edge whose removal in creases the no ob

TRES

> A tree is a connected agélic glaph

F8est -) acyclic graph

$$P = 5$$
 $9 = 4$

K1,4 (stou graph)

Atre on prestrés have (p-1) edque

Theorem

A graph G is a tree if and only if between every pair of vertices there exist a unique path.