Image Processing I

Introduction to Computational Photography: EECS 395/495

Northwestern University

Image Processing I

Transform image to new one that is easier to manipulate.

Topics:

- (1) Pixel Processing
- (2) Convolution
- (3) Linear Filtering
- (4) Non-Linear Filtering
- (5) Correlation

Lecture 1

Image Processing II

Transform image to new one that is easier to manipulate.

Topics:

- (6) Frequency Representation of Signals
- (7) Fourier Transform
- (8) Convolution ↔ Fourier Transform
- (9) Deconvolution in Frequency Domain
- (10) Sampling Theory

Lecture 2

Image as a Function

f(x,y) is the image intensity at position (x,y)

Image Processing

Transformation t of one image f to another image g

$$g(x,y) = t(f(x,y))$$

Point (Pixel) Processing

Darken (f-128)

Original (f)

Lighten (f + 128)

Invert (255 - f)

Point (Pixel) Processing

Low Contrast (f/2)

Original (f)

High Contrast (f * 2)

Gray $(0.3f_R + 0.6f_G + 0.1f_B)$

Linear Shift Invariant System

$$f(x) \longrightarrow LSIS \longrightarrow g(x)$$

Study of Linear Shift Invariant Systems (LSIS) leads to useful image processing algorithms.

LSIS: Linearity

$$f_1 \longrightarrow LSIS \longrightarrow g_1 \qquad f_2 \longrightarrow LSIS \longrightarrow g_2$$

$$\alpha f_1 + \beta f_2 \longrightarrow \text{LSIS} \longrightarrow \alpha g_1 + \beta g_2$$

LSIS: Shift Invariance

Ideal Lens is an LSIS

Defocused Image (g): Processed version of Focused Image (f)

Linearity: Brightness variation

Shift invariance: Scene movement

$$g(x) = f(x) * h(x) = \int_{-\infty}^{\infty} f(\tau)h(x - \tau) d\tau$$

$$g(x) = f(x) * h(x) = \int_{-\infty}^{\infty} f(\tau)h(x - \tau) d\tau$$

$$g(x) = f(x) * h(x) = \int_{-\infty}^{\infty} f(\tau)h(x - \tau) d\tau$$

$$g(x) = f(x) * h(x) = \int_{-\infty}^{\infty} f(\tau)h(x - \tau) d\tau$$

$$g(x) = f(x) * h(x) = \int_{-\infty}^{\infty} f(\tau)h(x - \tau) d\tau$$

$$g(x) = f(x) * h(x) = \int_{-\infty}^{\infty} f(\tau)h(x - \tau) d\tau$$

$$g(x) = f(x) * h(x) = \int_{-\infty}^{\infty} f(\tau)h(x - \tau) d\tau$$

Convolution of two functions f(x) and h(x)

$$g(x) = f(x) * h(x) = \int_{-\infty}^{\infty} f(\tau)h(x - \tau) d\tau$$

LSIS implies Convolution and Convolution implies LSIS

Convolution: Example

Convolution: Example

Convolution: Online Demo

http://www.jhu.edu/signals/convolve/

Can we find *h*?

$$f \longrightarrow h \longrightarrow g \qquad g(x) = \int_{-\infty}^{\infty} f(\tau)h(x-\tau) d\tau$$

What input f will produce output g = h?

$$h(x) = \int_{-\infty}^{\infty} ?(\tau)h(x - \tau) d\tau$$

Unit Impulse Function

$$\delta(x) = \begin{cases} 1/2\varepsilon, & |x| \le \varepsilon \\ 0, & |x| > \varepsilon \end{cases}$$

$$\varepsilon \to 0$$

$$\int_{-\infty}^{\infty} \delta(\tau) d\tau = \frac{1}{2\varepsilon} . 2\varepsilon = 1$$

$$\int_{-\infty}^{\infty} \delta(\tau)b(x-\tau)\,d\tau = b(x)$$

Sifting Property

Impulse Response

$$g(x) = f(x) * h(x)$$

$$g(x) = \int_{-\infty}^{\infty} f(\tau)h(x - \tau) d\tau$$

$$\delta \longrightarrow h \longrightarrow h$$
Unit Impulse Response

$$h(x) = \delta(x) * h(x)$$

$$h(x) = \int_{-\infty}^{\infty} \delta(\tau)h(x-\tau) d\tau$$

Impulse Response of Human Eye

Human Eye PSF

Properties of Convolution

Commutative

$$a * b = b * a$$

Associative

$$(a*b)*c = a*(b*c)$$

Cascaded System

$$f \longrightarrow h_1 \longrightarrow h_2 \longrightarrow g$$

$$\equiv f \longrightarrow h_1 * h_2 \longrightarrow g$$

$$\equiv f \longrightarrow h_2 * h_1 \longrightarrow g$$

2D Convolution

LSIS:

$$f(x,y) \longrightarrow h(x,y) \longrightarrow g(x,y)$$

Convolution:

$$g(x,y) = \int_{-\infty}^{\infty} f(\tau,\mu)h(x-\tau,y-\mu) d\tau d\mu$$

Convolution with Discrete Images

$$f[m,n] \longrightarrow h[m,n] \longrightarrow g[i,j]$$

$$g[i,j] = \sum_{m=1}^{M} \sum_{n=1}^{N} f[m,n]h[i-m,j-n]$$

Border Problem

Solution:

- Ignore Border
- Pad with Constant Value
- Pad with Reflection

Example: Impulse Filter

Input

Output

f(x,y)

 $\delta(x,y)$

f(x,y)

Example: Image Shift

Input

$$\delta(x-u,y-v)$$
 $f(x-u,y-v)$

$$f(x-u,y-v)$$

Example: Averaging

Result Image is Saturated. Why?

Example: Averaging

Sum of all the Filter (Kernel) Weights should be 1.

Smoothing With Box Filter

Image smoothed with a box filter does not look "natural."

Has blocky artifacts.

Smoothing With "Fuzzy" Filter

Gaussian Kernel: A Fuzzy Filter

$$n_{\sigma}[i,j] = \frac{1}{2\pi\sigma^2} e^{-\frac{1}{2}\left(\frac{i^2+j^2}{\sigma^2}\right)}$$

 σ^2 : Variance

Rule of Thumb: Set Kernel Size $K \approx 2\pi\sigma$

Gaussian Smoothing

Larger the Kernel (or σ), More the Blurring

Gaussian Smoothing

Larger the Kernel (or σ), More the Blurring

Gaussian Smoothing

Larger the Kernel (or σ), More the Blurring

Gaussian Smoothing is Separable

$$g[i,j] = \frac{1}{2\pi\sigma^2} \sum_{m=1}^{K} \sum_{n=1}^{K} e^{-\frac{1}{2}(\frac{m^2+n^2}{\sigma^2})} f[i-m,j-n]$$

$$g[i,j] = \frac{1}{2\pi\sigma^2} \sum_{m=1}^{K} e^{-\frac{1}{2}(\frac{m^2}{\sigma^2})} \cdot \sum_{n=1}^{K} e^{-\frac{1}{2}(\frac{n^2}{\sigma^2})} f[i-m,j-n]$$

Using One 2D Gaussian Filter ≡ Using Two 1D Gaussian Filters

Gaussian Smoothing is Separable

Using One 2D Gaussian Filter ≡ Using Two 1D Gaussian Filters

Which one is faster? Why?

$$K^2$$
 Multiplications

 $K^2 - 1$ Additions

2*K* Multiplications

2(K-1) Additions

Smoothing to Remove Image Noise

Image with Salt and Pepper Noise

Gaussian Blurred Image

Problem with Smoothing:

- Sensitive to Outliers (Noise)
- Smoothens Edges (Blur)

Median Filtering

- 1. Sort the K^2 values in window centered at the pixel
- 2. Assign the Middle value (Median) to pixel

Image with Salt and Pepper Noise

Median Filtered Image (K = 3)

Non-linear Operation (Cannot be implemented using Convolution)

Median Filtering

Not Effective when Image Noise is not a Simple Salt and Pepper Noise.

Image with Noise

Median Filtered Image (K = 7)

Larger K causes Blurring of Image Detail

Median Filtering

Not Effective when Image Noise is not a Simple Salt and Pepper Noise.

Image with Noise

Median Filtered Image (K = 11)

Larger K causes Blurring of Image Detail

Revisiting Gaussian Smoothing

Same Gaussian Kernel is used Everywhere Blurs Across Edges

Blur Similar Pixels Only

"Bias" Gaussian Kernel such that pixels not similar in intensity to the center pixel receive a lower weight.

Bilateral Filter: Start With Gaussian

Spatial Gaussian

$$g[i,j] = \frac{1}{W_S} \sum_{m} \sum_{n} f[m,n] n_{\sigma_S}[i-m,j-n]$$

Gaussian Smoothed Output (g)

Input (f)

Gaussian Blurs Across Edges

Bilateral Filter: Add Bias to Gaussian

Spatial Gaussian Brightness Gaussian

Combined Kernel

$$g[i,j] = \frac{1}{W_{sb}} \sum_{m} \sum_{n} f[m,n] \, n_{\sigma_s}[i-m,j-n] \, n_{\sigma_b}(|f[m,n]-f[i,j]|)$$

$$\text{Multiply}$$

$$\text{Bilateral Filtered Output } (g)$$

$$\text{Input } (f)$$

Bilateral Filter: Summary

$$g[i,j] = \frac{1}{W_{Sb}} \sum_{m} \sum_{n} f[m,n] \, n_{\sigma_{S}}[i-m,j-n] n_{\sigma_{b}}(|f[m,n]-f[i,j]|)$$

Where:

$$n_{\sigma_{S}}[m,n] = \frac{1}{2\pi\sigma_{S}^{2}}e^{-\frac{1}{2}\left(\frac{m^{2}+n^{2}}{\sigma_{S}^{2}}\right)} \qquad n_{\sigma_{b}}[k] = \frac{1}{2\pi\sigma_{b}^{2}}e^{-\frac{1}{2}\left(\frac{k^{2}}{\sigma_{b}^{2}}\right)}$$

$$W_{Sb} = \sum_{m} \sum_{n} n_{\sigma_S} [i - m, j - n] n_{\sigma_b} (|f[m, n] - f[i, j]|)$$

Non-linear Operation

(Cannot be implemented using Convolution)

Gaussian vs. Bilateral Filtering: Example

Original

Gaussian $\sigma_s = 2$

Bilateral $\sigma_{\scriptscriptstyle S}=2$, $\sigma_{b}=10$

Gaussian vs. Bilateral Filtering: Example

Original

Gaussian $\sigma_s = 4$

Bilateral $\sigma_s = 4$, $\sigma_b = 10$

Gaussian vs. Bilateral Filtering: Example

Original

Gaussian $\sigma_s = 8$

Bilateral $\sigma_{\scriptscriptstyle S}=8$, $\sigma_{b}=10$

Bilateral Filtering: Changing σ_b

Bilateral $\sigma_s = 6$, $\sigma_r = 10$

Bilateral $\sigma_s = 6$, $\sigma_r = 20$

Bilateral $\sigma_s = 6, \sigma_b = \infty$ (Gaussian Smoothing)

Template Matching

Template

How do we locate the template in the image? Minimize:

$$E[i,j] = \sum_{m} \sum_{n} (f[m,n] - t[m-i,n-j])^{2}$$

$$E[i,j] = \sum_{m} \sum_{n} (f^{2}[m,n] + t^{2}[m-i,n-j] - 2f[m,n]t[m-i,n-j])$$
Maximize

Template Matching

How do we locate the template in the image? Maximize:

$$R_{tf}[i,j] = \sum_{m} \sum_{n} f[m,n]t[m-i,n-j] = t \otimes f$$

(Cross-Correlation)

Convolution vs. Correlation

Convolution:

$$g[i,j] = \sum_{m} \sum_{n} f[m,n] \underline{t[i-m,j-n]} = t * f$$

Correlation:

$$R_{tf}[i,j] = \sum_{m} \sum_{n} f[m,n] t[m-i,n-j] = t \otimes f$$

No Flipping in Correlation

Problem with Cross-Correlation

$$R_{tf}[i,j] = \sum_{m} \sum_{n} f[m,n]t[m-i,n-j] = t \otimes f$$

$$R_{tf}(C) > R_{tf}(B) > R_{tf}(A)$$

We need $R_{tf}(A)$ to be the maximum!

Normalized Cross-Correlation

Account for energy differences

$$N_{tf}[i,j] = \frac{\sum_{m} \sum_{n} f[m,n] t[m-i,n-j]}{\sqrt{\sum_{m} \sum_{n} f^{2}[m,n]} \sqrt{\sum_{m} \sum_{n} t^{2}[m-i,n-j]}}$$

$$R_{tf}(A) > R_{tf}(B) > R_{tf}(C)$$

Normalized Cross-Correlation

Account for energy differences

$$N_{tf}[i,j] = \frac{\sum_{m} \sum_{n} f[m,n] t[m-i,n-j]}{\sqrt{\sum_{m} \sum_{n} f^{2}[m,n]} \sqrt{\sum_{m} \sum_{n} t^{2}[m-i,n-j]}}$$

Correlation: Issues

- Problem at borders
- Sensitive to object pose, scale and rotation
- Not good for general object recognition
- Good for feature detection
- Can be computationally expensive

Convolution is LSIS: Linearity

Let:
$$g_1(x) = \int_{-\infty}^{\infty} f_1(\tau)h(x-\tau) d\tau$$
 and $g_2(x) = \int_{-\infty}^{\infty} f_2(\tau)h(x-\tau) d\tau$

Then:

$$\int_{-\infty}^{\infty} (\alpha f_1(\tau) + \beta f_2(\tau)) h(x - \tau) d\tau$$

$$= \alpha \int_{-\infty}^{\infty} f_1(\tau) h(x - \tau) d\tau + \beta \int_{-\infty}^{\infty} f_2(\tau) h(x - \tau) d\tau$$

$$= \alpha g_1(x) + \beta g_2(x)$$

Convolution is LSIS: Shift Invariance

Let:
$$g(x) = \int_{-\infty}^{\infty} f(\tau)h(x-\tau) d\tau$$

Then:

$$\int_{-\infty}^{\infty} f(\tau - a)h(x - \tau) d\tau$$

$$= \int_{-\infty}^{\infty} f(\mu)h(x - a - \mu) d\mu \qquad \text{(Substituting } \mu = \tau - a\text{)}$$

$$= g(x - a)$$

References

Textbooks:

Digital Image Processing (Chapter 3) González, R and Woods, R., Prentice Hall

Robot Vision (Chapter 6 and 7) Horn, B. K. P., MIT Press

Computer Vision: A Modern Approach (Chapter 7) Forsyth, D and Ponce, J., Prentice Hall

Papers:

[Tomasi 1998] C. Tomasi and R. Manduchi, "Bilateral filtering for gray and color images," in Proceedings of the IEEE International Conference on Computer Vision, 1998.

Image Credits

Sasse, Arthur. Einstein © Ullstein Bilderdienst, Berlin. I.1 I.2 http://www.flickr.com/photos/byspice/4577634277 I.3 http://www.toptenz.net/wp-content/uploads/2008/06/kristinkreuk.jpg I.4 http://images.nationalgeographic.com/wpf/medialive/photos/000/093/cache/giant-lobelia-plant 9372 600x450.jpg I.5 Matlab Demo Image I.6 Adapted from http://1x.com/photo/24072 I.7 http://cdn04.cdn.socialitelife.com/wp-content/uploads/2009 /11/stars-without-makeup-photos-11062009-07.jpg