Βοήθημα Μελέτης Θεωρίας

Οι επόμενες ερωτήσεις καλύπτουν τα βασικότερα σημεία της εξεταστέας ύλης και αποτελούν ένα βοήθημα μελέτης (checklist) για την προετοιμασία της τελικής εξέτασης του μαθήματος.

Μέρος Α. Εισαγωγή στην Πληροφορική

- 1. Σε τι αναφέρεται ο όρος Αρχιτεκτονική ενός ηλεκτρονικού υπολογιστικού συστήματος
- 2. Ποιο είναι το βασικό στοιχείο και ποια τα βασικά τμήματα της Αρχιτεκτονικής von Neumann
- 3. Τι είναι και που χρησιμοποιούνται οι περιφερειακές συσκευές του Η/Υ
- 4. Δώστε τον ορισμό και αναφέρετε ονομαστικά 5 συσκευές (ή μονάδες) εισόδου
- 5. Δώστε τον ορισμό και αναφέρετε ονομαστικά 5 συσκευές (ή μονάδες) εξόδου
- 6. Αναφέρετε ονομαστικά τα κυριότερα χαρακτηριστικά επιλογής μίας οθόνης και περιγράψτε αναλυτικότερα δυο από αυτά
- 7. Τι ονομάζουμε κεντρική μονάδα του συστήματος και ποια είναι τα κυριότερα συστατικά από τα οποία αποτελείται
- 8. Τι ονομάζουμε κεντρική μονάδα επεξεργασίας (ΚΜΕ) και ποιες είναι οι κυριότερες αρμοδιότητές της
- 9. Τι γνωρίζετε για τα δυο είδη δεδομένων (εντολές, δεδομένα) που επεξεργάζεται η ΚΜΕ
- 10. Ποιες είναι οι 3 βασικές υπομονάδες κεντρικής μονάδας επεξεργασίας
- 11. Τι γνωρίζετε για την Αριθμητική και Λογική Μονάδα
- 12. Τι γνωρίζετε για τους Καταχωρητές (Registers)
- 13. Ποιες είναι οι δυο φάσεις του κύκλου εκτέλεσης εντολών και τι γίνεται στην καθεμιά
- 14. Τι ονομάζεται κύκλος και τι συχνότητα του ρολογιού ενός ΗΥ
- 15. Ποια βασική λειτουργία επιτελεί η μονάδα μνήμης ενός Η/Υ
- 16. Τι γνωρίζετε για την κύρια μνήμη (main memory)
- 17. Τι γνωρίζετε για την μνήμη Τυχαίας Προσπέλασης (RAM)
- 18. Τι γνωρίζετε για την μνήμη "Μόνο για Ανάγνωση" (ROM)
- 19. Τι γνωρίζετε για την διαδικασία εκκίνησης (boot process) ενος Η/Υ
- 20. Τι γνωρίζετε για την δευτερεύουσα (ή βοηθητική) μνήμη (secondary storage)
- 21. Τι γνωρίζετε για την δομή των μαγνητικών δίσκων
- 22. Πώς οργανώνονται τα δεδομένα πάνω στην επιφάνεια του δίσκου
- 23. Ποιοι είναι οι τρεις επιμέρους χρόνοι από τους οποίους εξαρτάται ο χρόνος προσπέλασης του δίσκου (disk access time) και τι συμβαίνει κατά τη διάρκεια καθενός από αυτούς
- 24. Τι γνωρίζετε για την κρυφή μνήμη (cache memory)
- 25. Ποια είναι η βασική μονάδα μέτρησης της μνήμης στα υπολογιστικά συστήματα και ποια τα πολλαπλάσιά της (μέχρι terabyte)
- 26. Τι ονομάζεται λέξη (word) και ποια είναι τα τυπικά μήκη της
- 27. Τι ονομάζεται διεύθυνση (address) και τι χώρος διευθύνσεων (address space) της μνήμης
- 28. Ποια είναι τα κυριότερα χαρακτηριστικά μίας μονάδας μνήμης
- 29. Τι γνωρίζετε για τον δίαυλο του συστήματος (bus) και τι για καθένα από τα 3 είδη του (data address και control bus)
- 30. Σε τι αναφερόμαστε με τον όρο λογισμικό (software) και ποιες είναι οι βασικές κατηγορίες του
- 31. Για ποια πράγματα ακριβώς είναι υπεύθυνο το λογισμικό του Η/Υ

- 32. Τι περιλαμβάνει και τι παρέχει στους χρήστες το λογισμικό συστήματος
- 33. Τι περιλαμβάνουν τα τμήματα του λογισμικού συστήματος που παραδίδονται προεγκατεστημένα σε ένα νέο υπολογιστή
- 34. Από τι αποτελείται το λογισμικό εφαρμογών και σε ποιες κατηγορίες διακρίνεται
- 35. Τι ονομάζεται Λειτουργικό Σύστημα (ΛΣ), για ποια πράγματα είναι υπεύθυνο και τι διαχειρίζεται/διευθύνει
- 36. Ποια είναι η βασική λειτουργία του λειτουργικού συστήματος
- 37. Τι γνωρίζετε για τον "δίκαιο καταμερισμό" των πόρων ενος ΛΣ
- 38. Ποια είναι τα δυο βασικότερα κριτήρια κατηγοριοποίησης ενος ΛΣ
- 39. Τι γνωρίζετε για τα ΛΣ ενός χρήστη (single user)
- 40. Τι γνωρίζετε για τα ΛΣ πολλών χρηστών (multi-user)
- 41. Τι γνωρίζετε για τα ΛΣ μίας εργασίας (single tasking)
- 42. Τι γνωρίζετε για τα ΛΣ πολλών εργασιών (multi-tasking)
- 43. Τι γνωρίζετε για τον πολυπρογραμματισμό (multiprogramming)
- 44. Τι ονομάζεται διεργασία (process)
- 45. Τι ακριβώς κάνει ενα ΛΣ που είναι υπεύθυνο για το χειρισμό πολλαπλών διεργασιών
- 46. Τι ονομάζεται χρονοδρομολόγηση (scheduling)
- 47. Τι ονομάζεται εργασία (job) και τι δεσμίδα (batch) εργασιών
- 48. Τι γνωρίζετε για τον χρονικό κατακερματισμό (time sharing)
- 49. Τι σημαίνει ο όρος "νοητή μηχανή"
- 50. Τι ονομάζεται λογική τι φυσική διεύθυνση μνήμης
- 51. Τι ονομάζεται συσχέτιση διευθύνσεων (address binding)
- 52. Τι ονομάζεται για την προσέγγιση διαχείρισης συνεχούς μνήμης (single contiguous memory management)
- 53. Ποιες είναι οι δυο παράμετροι που χρειάζεται να γνωρίζουμε για να προσδιορίσουμε τη φυσική διεύθυνση μιας εντολής προγράμματος όταν το ΛΣ υποστηρίζει την προσέγγιση διαχείρισης συνεχούς μνήμης και πώς γίνεται ο υπολογισμός αυτός
- 54. Αναφέρετε δυο πολιτικές διαχείρισης μνήμης, οι οποίες παρέχουν περισσότερη ευελιξία από τη διαχείριση συνεχούς μνήμης και ταυτόχρονα μπορούν να υποστηρίξουν πολυπρογραμματισμό
- 55. Περιγράψτε πως λειτουργεί η πολιτική διαχείρισης διαμερισμένης μνήμης (partitioning)
- 56. Περιγράψτε πως λειτουργεί η πολιτική διαχείρισης σελιδοποιημένης μνήμης (paging)
- 57. Περιγράψτε τις 3 πιθανές καταστάσεις που μπορεί να βρίσκεται μια διεργασία
- 58. Τι ονομάζεται ομάδα ελέγχου διεργασίας (process control block, PCB) και τι πληροφορίες περιέχει
- 59. Τι ονομάζεται χρονοδρομολόγηση της κεντρικής μονάδας επεξεργασίας (CPU scheduling) και σε ποιες κατηγορίες χωρίζεται ανάλογα με τον τρόπο με τον οποίο γίνεται η επιλογή της επόμενης προς εκτέλεση διεργασίας
- 60. Τι ονομάζεται προεκτοπιστική και τι μη-προεκτοπιστική χρονοδρομολόγηση
- 61. Αναφέρετε τα ονόματα των πιο γνωστών αλγορίθμων χρονοδρομολόγησης (scheduling algorithms). καθώς και το από αυτούς ανήκουν στην κατηγορία της προεκτοπιστικής και ποιοι στην κατηγορία της μη-προεκτοπιστικής χρονοδρομολόγησης
- 62. Περιγράψτε τον τρόπο λειτουργίας του αλγόριθμου χρονοδρομολόγησης "Με σειρά άφιξης" (first-come first-served) και αναφέρετε τα κυριότερα πλεονεκτήματα και μειονεκτήματα του
- 63. Περιγράψτε τον τρόπο λειτουργίας του αλγόριθμου χρονοδρομολόγησης "Επιλογή μικρότερης διεργασίας" (shortest job next) και αναφέρετε τα κυριότερα πλεονεκτήματα και μειονεκτήματα του

- 64. Περιγράψτε τον τρόπο λειτουργίας του αλγόριθμου χρονοδρομολόγησης "Κυκλικής επιλογής" (round robin) και αναφέρετε τα κυριότερα πλεονεκτήματα και μειονεκτήματα του
- 65. Τι ονομάζουμε αρχείο (file)
- 66. Πώς ονομάζεται και τι κάνει το τμήμα του ΛΣ που ασχολείται με τα αρχεία
- 67. Αναφέρετε ονομαστικά δυο τουλάχιστον κατηγορίες στις οποίες διακρίνονται τα αρχεία ανάλογα με τα δεδομένα που διατηρούν και περιγράψτε αναλυτικά μια από αυτές
- 68. Τι δηλώνει ο τύπος αρχείου (file type)
- 69. Τι είναι η κατάληξη ή προέκταση του αρχείου (file extension)
- 70. Αναφέρετε τουλάχιστον 5 απο τις πιο συνηθισμένες καταλήξεις αρχείων και τον τύπο του αρχείου που αντιστοιχεί σε καθεμια από αυτές
- 71. Αναφέρετε τις βασικότερες λειτουργίες που μπορούν να επιτελεστούν σε ένα αρχείο
- 72. Εξηγείστε τι σημαίνουν οι όροι: κατάλογος (directory), δένδρο καταλόγων (directory tree), κατάλογος ρίζα (root directory), πατρικός κατάλογος (parent directory), υποκατάλογος (subdirectory) και κατάλογος εργασίας (working directory)
- 73. Τι ονομάζεται διαδρομή (path) και ποιες είναι οι δυο μορφές της
- 74. Εξηγείστε τι είναι απόλυτη (absolute) και τι σχετική (relative) διαδρομή
- 75. Τι ονομάζεται χρονοδρομολόγηση δίσκου (disk scheduling) και ποιοι είναι οι σημαντικότεροι αλγόριθμοι χρονοδρομολόγησης δίσκου
- 76. Τι δείχνει ο υφιστάμενος δείκτης αρχείου (current file pointer) και κάθε πότε ανανεώνεται
- 77. Ποιες είναι οι δυο κυριότερες τεχνικές προσπέλασης ενός αρχείου
- 78. Τι γνωρίζετε για την σειριακή και τι για την άμεση προσπέλαση ενός αρχείου

Μέρος Β. Προβλήματα, Αλγόριθμοι - Γλώσσες Προγραμματισμού

- 79. Τι είναι πρόβλημα, και πόσες κατηγορίες προβλημάτων υπάρχουν
- 80. Ποια είναι τα στάδια αντιμετώπισης ενός προβλήματος
- 81. Δώστε τον ορισμό της διαδικασίας
- 82. Τι ονομάζουμε αλγόριθμο, και τι σημαίνει καθεμιά από τις ιδιότητες του ορισμού του
- 83. Ποια είναι ονομαστικά σημαντικότερα βήματα στην διαδικασία του προγραμματισμού
- 84. Ποιες είναι οι 4 εναλλακτικές μορφές διατύπωσης ενός αλγορίθμου
- 85. Από ποιους παράγοντες εξαρτάται κυρίως το γράψιμο του κώδικα
- 86. Τι γνωρίζετε για τα συντακτικά λάθη
- 87. Τι γνωρίζετε για τα λογικά λάθη
- 88. Τι γνωρίζετε για τα διαγράμματα ροής
- 89. Τι είναι η γλώσσα μηχανής
- 90. Τι είναι η γλώσσα assembly
- 91. Τι είναι οι γλώσσες προγραμματισμού υψηλού επιπέδου
- 92. Ποια 4 στοιχεία προσδιορίζουν μια γλώσσα προγραμματισμού υψηλού επιπέδου
- 93. Τι γνωρίζετε για καθένα από τα παραπάνω 4 στοιχεία
- 94. Τι είναι ο compiler και τι ο interpreter
- 95. Ποια είναι η βασική διαφορά ανάμεσα στον compiler και τον interpreter
- 96. Τι γνωρίζετε για την εσωτερική δομή ενός προγράμματος
- 97. Τι γνωρίζετε για τις σταθερές / μεταβλητές / τύπους δεδομένων
- 98. Τι γνωρίζετε για τις εντολές ελέγχου ροής του προγράμματος

- 99. Τι γνωρίζετε για τις δομές επανάληψης / ανακύκλωσης
- 100. Ποια η βασική διαφορά ανάμεσα στο repeat-until και το while do

Μέρος Γ. Τύποι και δομές δεδομένων

- 101. Ορισμός του Τύπου Δεδομένων
- 102. Ποιες δυο βασικές κατηγορίες Τύπων Δεδομένων υπάρχουν
- 103. Αναφέρετε ονομαστικά τους πιο γνωστούς ΤΔ για κάθε μια από τα παραπάνω κατηγορίες
- 104. Τι γνωρίζετε για τον τρόπο αποθήκευσης ακεραίων στη μνήμη του Η/Υ
- 105. Τι γνωρίζετε για την κανονικοποιημένη μορφή επιστημονικής αναπαράστασης πραγματικών
- 106. Τι γνωρίζετε για τον τρόπο αποθήκευσης πραγματικών αριθμών στη μνήμη του Η/Υ
- 107. Τι γνωρίζετε για την περιοχή και την ακρίβεια αναπαράστασης πραγματικών αριθμών
- 108. Τι γνωρίζετε για τον τύπο δεδομένων των χαρακτήρων
- 109. Ποιες είναι οι πιο γνωστές μορφές κωδικοποίησης χαρακτήρων και τι γνωρίζετε για την καθεμιά
- 110. Τι γνωρίζετε για τον τύπο δεδομένων των λογικών
- 111. Αναφέρετε τουλάχιστον τρεις μορφές αποθήκευσης συμβολοσειρών στη μνήμη του Η/Υ
- 112. Τι γνωρίζετε για τα διανύσματα
- 113. Συνάρτηση απεικόνισης μονοδιάστατου διανύσματος
- 114. Περιγράψτε τους δυο τρόπους αποθήκευσης δισδιάστατων διανυσμάτων στη μνήμη του Η/Υ
- 115. Τι γνωρίζετε για τους διαγώνιους πίνακες
- 116. Τι γνωρίζετε για τους τριγωνικούς πίνακες
- 117. Τι γνωρίζετε για τους αραιούς πίνακες
- 118. Τι είναι οι λίστες, και ποιοι οι δυο βασικοί τους τύποι
- 119. Ποιες οι χαρακτηριστικές ιδιότητες μιας λίστας
- 120. Τι γνωρίζετε για τα λεξικά