Correction exercices 52 page 147 et 59 page 123

Corrigé exercice 52 :

1.
$$f$$
 est de la forme $f = \frac{u}{v} \frac{f' = \frac{u'v - v'u}{v^2}}{(x^2 - 4x + 5) - (2x - 4)(-x^2 + 8x - 13)}$ c'est à dire $f'(x) = \frac{(-2x + 8)(x^2 - 4x + 5) - (2x - 4)(-x^2 + 8x - 13)}{(x^2 - 4x + 5)^2}$ c'est à dire $f'(x) = \frac{-4x^2 + 16x - 12}{(x^2 - 4x + 5)^2}$. En développant $-4(x - 1)(x - 3)$ on obtient $f'(x) = \frac{-4(x - 1)(x - 3)}{(x^2 - 4x + 5)^2}$.

2. $f'(x)$ a le même signe que le produit $-4(x - 1)(x - 3)$.

Corrigé exercice 59 :

1. On sait que la tangente à C_f au point d'abscisse a admet pour équation réduite

$$y=f'(a)(x-a)+f(a). \text{ On a } a=-4, f(-4)=11 \text{ et } f'(-4)=-\frac{1}{5} \frac{1}{6} \text{ donc } T_A \text{ admet pour \'equation}$$

$$y=-\frac{1}{5}(x+4)+11 \text{ , ce qui peut aussi s'\'ecrire } y=-\frac{1}{5}x+\frac{51}{5}.$$

Pour l'équation de T_B , on a a=2, f(2)=4 et $f'(2)=\frac{1}{5}$, donc T_B admet pour équation $y=\frac{1}{5}(x-2)+4$, ce qu'on peut aussi écrire $y=\frac{1}{5}x+\frac{18}{5}$. Enfin pour déterminer l'équation de T_C : on a a=6, f(6)=2 et $f'(6)=\frac{1}{2}$, donc T_C admet pour équation $y=\frac{1}{2}(x-6)+2$, ce qu'on peut aussi écrire $y=\frac{1}{2}x-1$. Comme les trois tangentes n'ont pas le même coefficient directeur, alors elles pe cent aux de la constant x=1.

2. Comme les trois tangentes n'ont pas le même coefficient directeur, alors elles ne sont pas parallèles. On détermine les coordonnées du point d'intersection de T_A et T_B et on vérifie

ensuite si le point obtenu appartient à
$$T_C$$
.
$$M(x;y) \in T_A \cap T_B \Leftrightarrow \begin{cases} y = -\frac{1}{5}x + \frac{51}{5} \\ y = \frac{1}{5}x + \frac{18}{5} \end{cases} \Leftrightarrow \begin{cases} \frac{1}{5}x + \frac{18}{5} = -\frac{1}{5}x + \frac{51}{5} \\ y = \frac{1}{5}x + \frac{18}{5} \end{cases} \Leftrightarrow \begin{cases} \frac{2}{5}x = \frac{33}{5} \\ y = \frac{1}{5}x + \frac{18}{5} \end{cases} \Leftrightarrow \begin{cases} x = \frac{33}{2} \\ y = \frac{1}{5}x + \frac{18}{5} \end{cases} \Leftrightarrow \begin{cases} x = \frac{33}{2} \\ y = \frac{69}{10} \end{cases}$$

$$\dim \left(\frac{33}{2}; \frac{69}{10}\right)$$

On vérifie si $M \in T_C$: $\frac{1}{2}x_M - 1 = \frac{1}{2} \times \frac{33}{2} - 1 = \frac{29}{4}$ et $\frac{29}{4} \neq \frac{69}{10}$ donc $M \notin T_C$. En conclusion, les trois tangentes ne sont donc pas concourantes (elles sont sécantes deux à deux).