Notice No. 3

Rules and Regulations for the Classification of Ships, July 2015

The status of this Rule set is amended as shown and is now to be read in conjunction with this and prior Notices. Any corrigenda included in the Notice are effective immediately.

Issue date: November 2015

Amendments to	Effective date		
Part 4, Chapter 8, Sections 14 & 15	1 December 2015		

Container Ships

Effective date 1 December 2015

■ Section 14 Direct calculation

14.1 Procedures for calculation of combined longitudinal and torsional strength

- 14.1.1 For container ships with a beam greater than 33 m or where the type, size and structural configuration demand, including container ships with narrow side structures, abnormal hull form or unusual structural configuration or complexity as defined in 1.3.3, longitudinal strength calculations are to be made in accordance with Parts A and B of LR's ShipRight SDA for Container Ships, see also Table 8.14.1 Summary of direct calculation analysis requirements for container ships.
- 14.1.2 The global, primary and local structure scantlings are to be assessed using the vertical and horizontal wave bending moments and shear forces and torsional wave moments derived using non-linear ship motion analysis based on equivalent design sea state methods where one or more of the following conditions applies:
- (a) B > 60 m
- (b) L > 350 m L > 425 m

The methodology to calculate the non-linear ship motion wave loads is given in LR's ShipRight Procedure Guidance Notes on the Assessment of Global Design Loads of Large Container Ships and Other Ships Prone to Whipping and Springing.

14.3 Procedures for verification of structural response due to whipping, springing and fatigue

Table 8.14.1: Summary of direct calculation analysis requirements for container ships

			Application criteria. If any of the following criteria apply then the appropriate analysis is required					
Rule requirement See Note 1	Rule reference	ShipRight notation	Length criteria	Any of $ f_{fS} > 1,4$ or $RA_{BF} > 0,2$ or $RA_{BFU} > 0,2$	$f_{\rm c} > f_{ m sp}$	Deck or hatch side coaming steel grade >= HT47	Bottom steel grade >= HT36	Breadth criteria
Part C of LR's ShipRight SDA Procedure for container ships	Pt 4, Ch 8, 14.2 Procedures for verification of primary structure scantlings 1.3.3	SDA	_	Н	ı	_	_	B > 32
Parts A and B of LR's ShipRight SDA Procedure for container ships	Pt 4, Ch 8, 14.1 Procedures for calculation of combined longitudinal and torsional strength	SbA						B>33
Non-linear ship motion analysis to calculate hogging and sagging factors	Pt 4, Ch 8, 3.2 Longitudinal Strength	_	_	L > 300	_	_	_	_

Non-linear ship motion analysis to calculate combined vertical, horizontal and torsional loads	Pt 4, Ch 8, 14.1 Procedures for calculation of combined longitudinal and torsional strength		L > 350 L > 425	_	_	_	_	B > 60
Fatigue assessment	Pt 4, Ch 8, 14.3 Procedures for verification of structural response due to whipping, springing and fatigue	FDA (see Note 3)	L > 350	_	L > 250	Yes	Yes	
Whipping assessment	Pt 4, Ch 8, 14.3 Procedures for verification of structural response due to whipping, springing and fatigue	WDA	L > 350	L > 300	_	Yes	Yes	_
Springing assessment See Note 2	Pt 4, Ch 8, 14.3 Procedures for verification of structural response due to whipping, springing and fatigue	FDA SPR	L > 350	_	L > 250	Yes	Yes	_

Note 1 The stated rule requirements may be deemed applicable to ships that do not meet the application criteria but where the structural configuration is such as to necessitate them.

Note 2 The results of the springing assessment may also need a fatigue assessment procedure to be undertaken.

Note 3 If ShipRight notation FDA is to be assigned, the requirements of LR's ShipRight FDA procedure are to be complied with; this may require calculations additional to those implied by Pt 4, Ch 8, 14.3 Procedures for verification of structural response due to whipping, springing and fatigue.

Effective date 1 December 2015

■ Section 15

Combined stress calculations

15.2 Symbols and definitions

- 15.2.1 The following symbols and definitions are applicable to this Section unless otherwise stated:
 - Z_Y = actual hull section modulus about the transverse neutral axis at the position considered, in m³
 - $Z_{\rm Z}$ = actual hull section modulus about the vertical neutral axis at the position considered, in m³
 - ε = shear centre distance below baseline, may be taken as the maximum shear centre distance below baseline of the ship in the midship region, in metres. ε is taken as positive where the shear centre is below the baseline
 - $M_{\rm s} = {\rm design\ still\ water\ bending\ moment\ at\ the\ section\ under\ consideration,\ in\ kN\ m\ (tonne-f-m)}$
 - σ_c = combined stress at the position considered.

15.3 **Design loadings**

The design vertical wave bending moments, \mathcal{M}_{WCT} \mathcal{M}_{WC1} and \mathcal{M}_{WC2} , at any position along the ship is defined as: 15.3.1

 $0.0505C_1 - L^2 - B (C_b + 0.7) - C_3 - kN m$

tonne-f-m)

kN_m M_{WC1} =

tonne-f-m)

 $\begin{array}{c} 0,0505C_1 \ L^2 \ B \ (C_b + 0,7) \ C_3 \\ \hline (0,0052C_1 \ L^2 \ B \ (C_b + 0,7) \ C_3 \\ \hline 0,0505C_0 \ C_{31} \ L^2 \ B \ (C_b + 0,7) \\ \hline (0,0052C_0 \ C_{31} \ L^2 \ B \ (C_b + 0,7) \\ \hline 0,0505C_0 \ C_{32} \ L^2 \ B \ (C_b + 0,7) \\ \hline (0,0052C_0 \ C_{32} \ L^2 \ B \ (C_b + 0,7) \\ \hline \end{array}$ kN_m $M_{\rm WC2}$

tonne-f-m)

vertical wave bending moment distribution coefficient depending on the length Lee as defined in Table 8.15.1 C Distribution of wave bending moments

vertical wave bending moment distribution coefficients depending on the longitudinal position from A.P. as defined in C_{31}, C_{32} Table 8.15.1 Distribution of wave bending moments

G₁ is given in Table 4.5.1 Superstructures and deckhouses on forecastle in Pt 3, Ch 4 Longitudinal Strength.

$$C_0 = 11,65 \left(0,6 + 0,0942 \left(\frac{L}{100} - 1 \right) \right)$$

L, B, C_b are given in Pt 3, Ch 1,6 Definitions.

The sign convention is given in Fig. 8.15.1 Sign conventions for hull girder loads.

15.3.2 The design horizontal wave bending moments, M_{HC1} and M_{HC2} , at any position along the ship are defined as:

M_{HC1}

 $\frac{0,2063C_1-C_{41}-L^2-T-(C_b+0,7)}{(0,0210C_1-C_{41}-L^2-T-(C_b+0,7)-\text{tonne-f-m})}{0,2063C_1-C_{42}-L^2-T-(C_b+0,7)-\text{kN-m}}$

 M_{HG2}

 $\frac{(0,0210C_1-C_{42}-L^2-T(C_b+0,7)-\text{kit m}}{(0,0210C_1-C_{42}-L^2-T(C_b+0,7)-\text{tonne-f-m})}$

 $0.2063C_0 C_{41} L^2 T (C_b + 0.7)$ kN m M_{HC1}

 M_{HC2}

 $(0,0210C_0 C_{41} L^2 T (C_b + 0,7) \text{ kN m}$ $(0,0210C_0 C_{41} L^2 T (C_b + 0,7) \text{ tonne-f-m})$ $0,2063C_0 C_{42} L^2 T (C_b + 0,7) \text{ kN m}$ $(0,0210C_0 C_{42} L^2 T (C_b + 0,7) \text{ tonne-f-m})$

horizontal wave bending moment distribution coefficients depending on the length, L_{ppr} longitudinal position from A.P. C₄₁, C₄₂ as defined in Table 8.15.2 Distribution of horizontal wave bending moments and hydrodynamic torques

G₁ is given in Table 4.5.1 Superstructures in Pt 3, Ch 4 Longitudinal Strength

 C_0 is defined in 15.3.1

L, B, T, C_b are given in Pt 3, Ch 1,6 Definitions.

The sign convention is given in Fig. 8.15.1 Sign conventions for hull girder loads.

15.3.3 The design hydrodynamic torques, M_{WTC1} and M_{WTC2} at any position along the ship are defined as:

 $M_{\rm WTC1}$ $M_{\rm WTCB1} + M_{\rm WTCQ1}$

0,0764C₁ C₅₁ LB² (C_h + 0.7) kN m M_{WTCB1}

 $\frac{(0.0078C_1-C_{51}-L-B^2-(C_{b}+0.7)-\text{tonne-f-m})}{(0.0078C_{1}-C_{51}-L-B^2-(C_{b}+0.7)-\text{tonne-f-m})}$

 $-(0,65T + f_3 \epsilon) Q_{HC1} - kN m (tonne-f-m)$ M_{WTCQ1}

M_{WTCB1}

 $0.0728C_0 C_{51} L B^2 (C_b + 0.7)$ kN m $(0.0074C_0 C_{51} L B^2 (C_b + 0.7)$ tonne-f-m)

 $-(0.65T + \varepsilon) Q_{HC1}$ kN m (tonne-f-m) M_{WTCQ1}

Mwtcb2 + MwtcQ2 M_{WTC2}

0,0764C₁ C₅₂ L B² (C_b + 0,7) kN m M_{WTCB2}

 $\frac{(0,0078C_1 - C_{52} - L B^2 - (C_b + 0,7)}{(0,0078C_1 - C_{52} - L B^2 - (C_b + 0,7)}$

 $\frac{(0,65T+f_3-\varepsilon)}{(0,65T+f_3-\varepsilon)}$ Q_{HC2} kN m (tonne-f-m) M_{WTCQ2}

 $0.0728C_0 C_{52} L B^2 (C_b + 0.7)$ kN m $M_{\rm WTCB2}$

 $(0,0074C_0 C_{52} L B^2 (C_b + 0,7) \text{ tonne-f-m})$

 $-(0.65T + \varepsilon)$ Q_{HC2} kN m (tonne-f-m) M_{WTCQ2}

hydrodynamic torque distribution coefficients depending on the length, Lpp, longitudinal position from A.P. as defined in C_{51} , C_{52} Table 8.15.2 Distribution of horizontal wave bending moments and hydrodynamic torques

C1 is given in Table 4.5.1 Superstructures in Pt 3, Ch 4 Longitudinal Strength

 C_0 is defined in 15.3.1

Q_{HC2}

shear centre distribution factor, to be taken as:

-1.0 at the aft end of Lpp

1,0 between 0,15Lpp and 0,80Lpp from aft

-1.0 at the forward end of Lpp

Intermediate values are to be determined by linear interpolation:

 $0.8683C_1 K_{31} L T (C_0 + 0.7) kN$ Q_{HC1}

 $(0.0886C_1 - K_{31} - L - T)(C_b + 0.7)$ tonne-f)

0,8683C1 K32 L T (Cb + 0,7) kN

(0,0886C₁ K₃₂ L T (C_b + 0,7) tonne-f)

 $0,8683C_0 K_{31} L T (C_b + 0,7) kN$ Q_{HC1}

 $(0.0886C_0 K_{31} L T (C_b + 0.7)$ tonne-f)

 Q_{HC2} $0.8683C_0 K_{32} L T (C_b + 0.7) kN$

 $(0.0886C_0 K_{32} L T (C_b + 0.7)$ tonne-f)

 K_{31} , K_{32} = horizontal wave shear force distribution coefficients depending on the length, $L_{pp\tau}$ longitudinal position from A.P. as defined in Table 8.15.2 Distribution of horizontal wave bending moments and hydrodynamic torques

L, B, T, C_b, are given in Pt 3, Ch 1,6 Definitions.

 ϵ is given in Pt 4, Ch 8, 15.2 Symbols and definitions

The sign convention is given in Fig. 8.15.1 Sign conventions for hull girder loads.

Table 8.15.1 Distribution of wave bending moments

Position	
	C ₃
Station 0 (A.P.)	0,000
1	0,065
2	0,159
2 3 4 5	0,305
4	0,464
	0,626
6	0,769
7	0,889
8	0,966
9	1,000
10 (mid – L _{pp})	0,988
11	0,919
12	0,796
13	0,648
14	0,489
15	0,344
16	0,225
17	0,142
18	0,093
19	0,060
20 (F.P.)	0,000
Note Intermediate values are to be determined	by linear interpolation.

Position		C ₃₁	C ₃₂		
Station	0 (A.P.)	0,000	0,000		
	1	0,062	0,018		
	2	0,158	0,017		
	3	0,305	-0,008		
	4	0,460	-0,058		
	5	0,611	-0,137		
	6	0,732	-0,235		
	7	0,817	-0,350		
	8	0,850	-0,458		
	9	0,836	-0,548		
	10 (mid – L_{pp})	0,780	-0,607		
	11	0,683	-0,615		
	12	0,555	-0,571		
	13	0,415	-0,498		
	14	0,275	-0,404		
	15	0,165	-0,302		
	16	0,085	-0,208		
	17	0,041	-0,132		
	18	0,022	-0,074		
	19	0,010	-0,028		
	20 (F.P.)	0,000	0,000		
Note Intermed	Note Intermediate values are to be determined by linear interpolation.				

15.4 Combined stresses

The combined stress, σ_c , is to be taken as σ_{eheg} , calculated as less than the permissible stress given in Table 8.15.4 Permissible stress. σ_c , is to be taken as the greatest magnitude of the following stresses:

$$\begin{split} & \frac{\sigma_{\text{chog}} - \left[-\sqrt{\left(\sigma_{\text{HC1}} + \sigma_{\text{WTC1}}\right)^2 + \left(\sigma_{\text{HC2}} + \sigma_{\text{WTC2}}\right)^2} + \left|f_{\text{fH}} \sigma_{\text{WC}}\right| + \left|\sigma_{\text{STC}}\right| + \left|\sigma_{\text{SC}}\right| \\ \sigma_{\text{C1}} &= \sqrt{\left(\sigma_1 - (1 - f) \sigma_{\text{WC1}}\right)^2 + \left(\sigma_2 - (1 - f) \sigma_{\text{WC2}}\right)^2} + \sigma_{\text{SC}} + \left|\sigma_{\text{STC}}\right| \end{split}$$

$$\sigma_{C2} = -\sqrt{(\sigma_1 - (1 - f) \sigma_{WC1})^2 + (\sigma_2 - (1 - f) \sigma_{WC2})^2} + \sigma_{SC} - |\sigma_{STC}|$$

$$\sigma'_{C1} = \sqrt{(\sigma'_1 - (1 - f) \sigma_{WC1})^2 + (\sigma'_2 - (1 - f) \sigma_{WC2})^2} + \sigma_{SC} + |\sigma_{STC}|$$

$$\sigma'_{C2} = -\sqrt{(\sigma'_1 - (1 - f) \sigma_{WC1})^2 - (\sigma'_2 + (1 - f) \sigma_{WC2})^2} + \sigma_{SC} - |\sigma_{STC}|$$

where

 $\sigma_1 = \sigma_{WC1} + \sigma_{HC1} + \sigma_{WTC1}$

 $\sigma_2 = \sigma_{WC2} + \sigma_{HC2} + \sigma_{WTC2}$

 $\sigma_1' = \sigma_{WC1} - \sigma_{HC1} - \sigma_{WTC1}$

 $\sigma_2' = \sigma_{WC2} - \sigma_{HC2} - \sigma_{WTC2}$

For σ_{C1}

$$f = |f_{fH}| \ if \ M_{WC} \ge 0, \ f = |f_{fS}| \ if \ M_{WC} < 0$$

For σ_{C2}

$$f = |f_{fH}| \ if \ M_{WC} \le 0, \ f = |f_{fS}| \ if \ M_{WC} > 0$$

where

$$M_{WC} = M_{WC1} \frac{\sigma_1}{\sqrt{\sigma_1^2 + \sigma_2^2}} + M_{WC2} \frac{\sigma_2}{\sqrt{\sigma_1^2 + \sigma_2^2}}$$

For σ'_{C1}

$$f = |f_{fH}| \text{ if } M_{WC'} \ge 0, \ f = |f_{fS}| \text{ if } M_{WC'} < 0$$

For σ_{co}

$$f = |f_{fH}| \ if \ M_{WC'} \le 0, \ f = |f_{fS}| \ if \ M_{WC'} > 0$$

where

$$M_{WC'} = M_{WC1} \frac{\sigma_1'}{\sqrt{\sigma_1'^2 + \sigma_2'^2}} + M_{WC2} \frac{\sigma_2'}{\sqrt{\sigma_1'^2 + \sigma_2'^2}}$$

 σ_{SC} = longitudinal stress due to hogging or sagging design still water bending moment M_s

 σ_{WC} σ_{WC1} , σ_{WC2} = longitudinal stress due to vertical wave bending moments

 σ_{HC1} , σ_{HC2} = longitudinal stress due to horizontal wave bending moments

 σ_{STC} = longitudinal warping stress due to static cargo torque

σwτc1, σwτc2 = longitudinal warping stress due to hydrodynamic torques

 f_{fH} , f_{fS} = hogging and sagging vertical bending moment correction factors calculated in accordance with Ch 2,2.4 Design

vertical wave bending moments and 3.2.3

 M_{WC1} , M_{WC2} = vertical bending moments defined in 15.3.1 at the longitudinal position considered other symbols are as defined in Pt 4, Ch 8, 15.3 Design loadings and 15.4.

- 15.4.3 For ships with a beam greater than or equal to 33 32 m, longitudinal stresses are to be calculated using a finite element model of the entire hull in accordance with Part A of the LR's ShipRight SDA procedure for container ships.
- 15.4.4 For ships with a beam less than 33 or equal to 32 m, the longitudinal stresses may be obtained as follows:

$$\sigma_{SC} = \frac{M_S}{Z_V} \times 10^{-3} \text{ N/mm}^2 (\text{kgf/mm}^2)$$

$$\sigma_{\text{wc}} = \frac{M_{\text{WC}}}{Z_{\text{y}}} \times 10^{-3} \text{ N/mm}^2 (\text{kgf/mm}^2)$$

$$\sigma_{HC1} = C_7 \frac{M_{HC1}}{Z_z} \times 10^{-3} \text{ N/mm}^2 \text{ (kgf/mm}^2\text{)}$$

$$\sigma_{HC2} = C_7 \frac{M_{HC2}}{Z_z} \times 10^{-3} \text{ N/mm}^2 \text{ (kgf/mm}^2\text{)}$$

 $\sigma_{WTC1},\,\sigma_{WTC2}$ and σ_{STC} are to be evaluated by approved calculation procedures.

C₇ = coefficient for shear lag depending on vertical location of the point under consideration

- = 0,6 at inboard edge of strength deck
- = 1,0 at base line
- = intermediate positions by interpolation

 Z_v and Z_z are given in Pt 4, Ch 8, 15.2 Symbols and definitions.

15.4.6 Where the ship's length is greater than 350 425 m or the ship's beam is greater than 60 m, the vertical wave bending moments, horizontal wave bending moments and hydrodynamic torques are to be obtained from a direct calculation method. Alternatively, the hull stresses may be obtained using a probabilistic approach response-based analysis method considering the ship's responses in wave environment. The analysis method is to be agreed with LR.

15.5 Permissible stress

Table 8.15.4 Permissible stress

Position	Permissible combined stress, N/mm² (kgf/mm²)
Shear strake, upper deck, top strake of longitudinal bulkheads, longitudinal hatch coaming side and top	$\sigma_{c} = \frac{190}{k_{L}} \left(\frac{19,37}{k_{L}} \right)$
Elsewhere	$\sigma_{c} = \frac{175}{k_{L}} \left(\frac{17,84}{k_{L}} \right)$

Table 8.15.4: Permissible stress	
Position	Permissible combined stress, N/mm² (kgf/mm²)
Top of continuous hatch coaming	$\sigma_{c} = \frac{175}{k_{L}} \left(\frac{17,84}{k_{L}} \right)$
Elsewhere	$\sigma_{c} = \frac{157}{k_{L}} \left(\frac{16,0}{k_{L}} \right)$

© Lloyd's Register Group Limited 2015 Published by Lloyd's Register Group Limited Registered office (Reg. no. 08126909) 71 Fenchurch Street, London, EC3M 4BS United Kingdom

Lloyd's Register is a trading name of Lloyd's Register Group Limited and its subsidiaries. For further details please see http://www.lr.org/entities

Lloyd's Register Group Limited, its subsidiaries and affiliates and their respective officers, employees or agents are, individually and collectively, referred to in this clause as 'Lloyd's Register'. Lloyd's Register assumes no responsibility and shall not be liable to any person for any loss, damage or expense caused by reliance on the information or advice in this document or howsoever provided, unless that person has signed a contract with the relevant Lloyd's Register entity for the provision of this information or advice and in that case any responsibility or liability is exclusively on the terms and conditions set out in that contract.