Decompositions of Graphs

(DFS/BFS, DAG, SCC, Bicomp)

Hengfeng Wei

hfwei@nju.edu.cn

June 12, 2019

John Hopcroft

Robert Tarjan

"For fundamental achievements in the design and analysis of algorithms and data structures."

— Turing Award, 1986

SIAM J. COMPUT. Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN†

Abstract. The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an undirect graph are presented. The space and time requirements of both algorithms are bounded by $k_1V + k_2E + k_3$ for some constants k_1, k_2 , and k_3 , where V is the number of vertices and E is the number of edges of the graph being examined.

Key words. Algorithm, backtracking, biconnectivity, connectivity, depth-first, graph, search, spanning tree, strong-connectivity.

 $"Depth-First\ Search\ And\ Linear\ Graph\ Algorithms"$

—Robert Tarjan

SIAM J. COMPUT. Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN†

Abstract. The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an undirect graph are presented. The space and time requirements of both algorithms are bounded by $k_1V + k_2E + k_3$ for some constants k_1, k_2 , and k_3 , where V is the number of vertices and E is the number of edges of the graph being examined.

Key words. Algorithm, backtracking, biconnectivity, connectivity, depth-first, graph, search, spanning tree, strong-connectivity.

"DFS is a powerful technique with many applications."

"Depth-First Search And Linear Graph Algorithms"

—Robert Tarjan

Power of DFS:

Graph Traversal \implies Graph Decomposition

Power of DFS:

Graph Traversal \implies Graph Decomposition

Structure! Structure! Structure!

Graph *structure* induced by DFS:

states of v

types of u v

Graph *structure* induced by DFS:

states of v

types of \underbrace{u} \underbrace{v}

life time of v

v : d[v], f[v]

d[v]: BICOMP

f[v]: Toposort, SCC

Definition (Classifying edges)

Given a DFS traversal \implies DFS tree:

Tree edge: \rightarrow child

Back edge: \rightarrow ancestor

Forward edge: $\rightarrow nonchild$ descendant

Cross edge: \rightarrow (\neg ancestor) \land (\neg descendant)

Definition (Classifying edges)

Given a DFS traversal \implies DFS tree:

Tree edge: \rightarrow child

Back edge: \rightarrow ancestor

Forward edge: $\rightarrow nonchild$ descendant

Cross edge: \rightarrow (\neg ancestor) \land (\neg descendant)

Also applicable to BFS

DFS on directed graph

DFS on directed graph

DFS on undirected graph

BFS on directed graph

BFS on directed graph

BFS on undirected graph

Coloring

 $\xrightarrow{\text{Tree Edge}} v$

Life time of vertices in DFS

Theorem (Disjoint or Contained (Problem 4.2:(1)&(2)))

$$\forall u,v: [_{u}\]_{u}\cap [_{v}\]_{v}=\emptyset\bigvee\left([_{u}\]_{u}\subset [_{v}\]_{v}\bigvee[_{v}\]_{v}\subset [_{u}\]_{u}\right)$$

Theorem (Disjoint or Contained (Problem 4.2:(1)&(2)))

$$\forall u, v : [u]_u \cap [v]_v = \emptyset \bigvee \left([u]_u \subset [v]_v \vee [v]_v \subset [u]_u \right)$$

Proof.

$$\forall u \to v$$
:

- tree/forward edge: $[u \ [v \]v \]u$
- ▶ back edge: $\begin{bmatrix} v & u \end{bmatrix}_u \end{bmatrix}_v$
- ightharpoonup cross edge: $\begin{bmatrix} v \end{bmatrix}_v \begin{bmatrix} u \end{bmatrix}_u$

$$\forall u \rightarrow v$$
:

- tree/forward edge: $[u \ [v \]v \]u$
- ▶ back edge: $\begin{bmatrix} v & u \end{bmatrix}_u \end{bmatrix}_v$
- ightharpoonup cross edge: $\begin{bmatrix} v \end{bmatrix}_v \begin{bmatrix} u \end{bmatrix}_u$

$$\mathbf{f}[v] < \mathbf{d}[u] \iff \mathbf{cross} \ \mathbf{edge}$$

$$\forall u \to v:$$

- tree/forward edge: $[u \ [v \]v \]u$
- ▶ back edge: $\begin{bmatrix} v & u \end{bmatrix}_u \end{bmatrix}_v$
- \triangleright cross edge: $\begin{bmatrix} v \end{bmatrix}_v \begin{bmatrix} u \end{bmatrix}_u$

$$\mathbf{f}[v] < \mathbf{d}[u] \iff \mathbf{cross} \ \mathbf{edge}$$

$$f[u] < f[v] \iff back edge$$

$$\forall u \to v:$$

- tree/forward edge: $[u \ [v \]v \]u$
- ▶ back edge: $\begin{bmatrix} v & u \end{bmatrix}_u \end{bmatrix}_v$
- ightharpoonup cross edge: $\begin{bmatrix} v \end{bmatrix}_v \begin{bmatrix} u \end{bmatrix}_u$

$$\mathbf{f}[v] < \mathbf{d}[u] \iff \mathbf{cross} \ \mathbf{edge}$$

$$f[u] < f[v] \iff \text{back edge}$$

$$\nexists \text{ cycle } \Longrightarrow \left| u \to v \iff f[v] < f[u] \right|$$

	Digraph	Undirected graph
DFS		
BFS		

	Digraph	Undirected graph
DFS	$\text{back edge} \iff \text{cycle}$	
BFS		

	Digraph	Undirected graph
DFS	$\text{back edge} \iff \text{cycle}$	$back edge \iff cycle$
BFS		

	Digraph	Undirected graph
DFS	$\text{back edge} \iff \text{cycle}$	$back edge \iff cycle$
BFS		$\operatorname{cross\ edge} \iff \operatorname{cycle}$

	Digraph	Undirected graph
DFS	$\text{back edge} \iff \text{cycle}$	$back edge \iff cycle$
BFS	$\text{back edge } \Longrightarrow \text{ cycle}$	$cross\ edge \iff cycle$
DFS	$\begin{array}{c} \text{back edge} \implies \text{cycle} \\ \text{cycle} \implies \text{back edge} \end{array}$	cross edge \iff cycle

	Digraph	Undirected graph
DFS	$\text{back edge} \iff \text{cycle}$	$\text{back edge} \iff \text{cycle}$
BFS	$back edge \implies cycle$	$cross edge \iff cycle$
БГЗ	$\begin{array}{c} \text{back edge} \implies \text{cycle} \\ \text{cycle} \implies \text{back edge} \end{array}$	cross edge \iff cycle

Evasiveness of acyclicity of undirected graphs (Problem 5.8 - 2)

Evasiveness
$$\triangleq$$
 check $\binom{n}{2}$ edges (adjacency matrix)

Evasiveness of acyclicity of undirected graphs (Problem 5.8 - 2)

Evasiveness
$$\triangleq$$
 check $\binom{n}{2}$ edges (adjacency matrix)

Q: Is acyclicity evasive?

Evasiveness of acyclicity of undirected graphs (Problem 5.8 - 2)

Evasiveness
$$\triangleq$$
 check $\binom{n}{2}$ edges (adjacency matrix)

Q: Is acyclicity evasive?

By Adversary Argument.

Evasiveness of acyclicity of undirected graphs (Problem 5.8 - 2)

Evasiveness
$$\triangleq$$
 check $\binom{n}{2}$ edges (adjacency matrix)

Q: Is acyclicity evasive?

By Adversary Argument.

Adversary A:

Algorithm \mathbb{A} :

CheckEdge(u, v)

Evasiveness of acyclicity of undirected graphs (Problem 5.8 - 2)

Evasiveness
$$\triangleq$$
 check $\binom{n}{2}$ edges (adjacency matrix)

Q: Is acyclicity evasive?

By Adversary Argument.

Adversary A:

Algorithm \mathbb{A} :

CHECKEDGE(u, v)

Hint: Kruskal

$$\mathbb{A}: \mathsf{CheckEdge}(u,v) \leftarrow \underline{\mathcal{A}}: \underbrace{u} \underbrace{v}$$

$$\Longleftrightarrow$$

$$\underline{\mathcal{A}}: \nexists \; \mathsf{cycle} \; \in G + \underbrace{u} \underbrace{v}$$

Q: Why adjacency matrix?

After-class Exercise: Evasiveness of connectivity of undirected graphs

Evasiveness
$$\triangleq$$
 check $\binom{n}{2}$ edges (adjacency matrix)

Q: Is connectivity evasive?

After-class Exercise: Evasiveness of connectivity of undirected graphs

Evasiveness
$$\triangleq$$
 check $\binom{n}{2}$ edges (adjacency matrix)

Q: Is connectivity evasive?

Hint: Anti-Kruskal

 $\nexists \text{ back edge} \iff \text{DAG} \iff \exists \text{ topo. ordering}$

$$\nexists \text{ back edge} \iff \text{DAG} \iff \exists \text{ topo. ordering}$$

Toposort by Tarjan (probably), 1976

$$\sharp \text{ cycle } \Longrightarrow \boxed{u \to v \iff f[v] < f[u]}$$

$$\nexists \text{ back edge} \iff \text{DAG} \iff \exists \text{ topo. ordering}$$

Toposort by Tarjan (probably), 1976

$$\sharp \text{ cycle } \Longrightarrow \boxed{u \to v \iff f[v] < f[u]}$$

Sort vertices in *decreasing* order of their *finish* times.

- ▶ Queue Q for source vertices (in[v] = 0)
- ▶ Repeat: Dequeue($\exists u \in Q$), output u delete u and $u \to v$ from Q,

 Enqueue(v) if $\inf[v] = 0$

- ▶ Queue Q for source vertices (in[v] = 0)
- ▶ Repeat: Dequeue($\exists u \in Q$), output u delete u and $u \to v$ from Q,

 Enqueue(v) if $\inf[v] = 0$

$$O(m+n)$$

- ▶ Queue Q for source vertices (in[v] = 0)
- ▶ Repeat: Dequeue($\exists u \in Q$), output u delete u and $u \to v$ from Q,

 Enqueue(v) if in[v] = 0

$$O(m+n)$$

Lemma (Correctness of Kahn's Toposort)

Every DAG has at least one source (and at least one sink vertex).

- ▶ Queue Q for source vertices (in[v] = 0)
- ▶ Repeat: Dequeue($\exists u \in Q$), output u delete u and $u \to v$ from Q,

 Enqueue(v) if $\inf[v] = 0$

$$O(m+n)$$

Lemma (Correctness of Kahn's Toposort)

Every DAG has at least one source (and at least one sink vertex).

Q: What if G is not a DAG?

HP: path visiting each vertex once

 $Q: \exists \text{ HP in a DAG in } O(n+m)$

HP: path visiting each vertex once

 $Q: \exists \text{ HP in a DAG in } O(n+m)$

For general (di)graph, HP is NP-hard.

HP: path visiting each vertex once

 $Q: \exists \text{ HP in a DAG in } O(n+m)$

For general (di)graph, HP is NP-hard.

HP: path visiting each vertex once

 $Q: \exists \text{ HP in a DAG in } O(n+m)$

For general (di)graph, HP is NP-hard.

DAG: \exists HP \iff \exists ! topo. ordering

Tarjan's Toposort + Check edges (v_i, v_{i+1})

Tarjan's Toposort + Check edges (v_i, v_{i+1})

Tarjan's Toposort + Check edges (v_i, v_{i+1})

Kahn's Toposort (Problem 4.16)

Tarjan's Toposort + Check edges (v_i, v_{i+1})

Kahn's Toposort (Problem 4.16)

$$|Q| \leq 1$$

Theorem (Digraph as DAG (Problem 4.6))

Every digraph is a dag of its SCCs.

Theorem (Digraph as DAG (Problem 4.6))

Every digraph is a dag of its SCCs.

Two tiered structure of digraphs:

 $digraph \equiv a dag of SCCs$

SCC: equivalence class over reachability

Kosaraju's SCC algorithm, 1978

"SCCs can be topo-sorted in decreasing order of their highest finish time."

Kosaraju's SCC algorithm, 1978

"SCCs can be topo-sorted in decreasing order of their highest finish time."

The vertice with the highest finish time is in a source SCC.

Kosaraju's SCC algorithm, 1978

"SCCs can be topo-sorted in decreasing order of their highest finish time."

The vertice with the highest finish time is in a source SCC.

(I) DFS on G; DFS/BFS on G^T

Kosaraju's SCC algorithm, 1978

"SCCs can be topo-sorted in decreasing order of their highest finish time."

The vertice with the highest finish time is in a source SCC.

- (I) DFS on G; DFS/BFS on G^T
- (II) DFS on G^T ; DFS/BFS on G

$$v:v \leadsto^? \forall u$$

$$\exists ? \ v : v \leadsto \forall u$$

$$v:v \leadsto^? \forall u$$

$$\exists ? \ v : v \leadsto \forall u$$

SCC

 $\exists!$ source vertex $v \iff v \leadsto \forall u$

$$v:v \leadsto^? \forall u$$

$$\exists ? \ v : v \leadsto \forall u$$

SCC

 $\exists!$ source vertex $v \iff v \leadsto \forall u$

 $\Leftarrow=:\exists!$ source

$$v:v \leadsto^? \forall u$$

$$\exists ? \ v : v \leadsto \forall u$$

SCC

 $\exists!$ source vertex $v \iff v \leadsto \forall u$

 $\Leftarrow=:\exists!$ source

 \implies : By contradiction.

 $\exists u : v \not \rightsquigarrow u \land \text{in}[u] > 0 \implies \exists \text{ cycle}$

$$\mathrm{impact}(v) = |\{w \neq v : v \leadsto w\}|$$

- ightharpoonup arg min_v impact(v)
- ightharpoonup arg $\max_v \operatorname{impact}(v)$

$$\mathrm{impact}(v) = |\{w \neq v : v \leadsto w\}|$$

- ightharpoonup arg min_v impact(v)
- ightharpoonup arg $\max_{v} \operatorname{impact}(v)$

 $\underset{v}{\operatorname{arg\,min\,impact}}(v) \in \operatorname{sink}\,\operatorname{SCC}$ of smallest cardinality

$$\mathrm{impact}(v) = |\{w \neq v : v \leadsto w\}|$$

- ightharpoonup arg min_v impact(v)
- ightharpoonup arg $\max_{v} \operatorname{impact}(v)$

 $\underset{v}{\operatorname{arg\,min\,impact}}(v) \in \operatorname{sink\,SCC}$ of smallest cardinality

 $\underset{v}{\operatorname{arg\,max\,impact}}(v) \in \operatorname{source\,SCC}$

$$\mathrm{impact}(v) = |\{w \neq v : v \leadsto w\}|$$

- ightharpoonup arg min_v impact(v)
- ightharpoonup arg $\max_{v} \operatorname{impact}(v)$

 $\underset{v}{\operatorname{arg\,min\,impact}}(v) \in \operatorname{sink} \operatorname{SCC} \text{ of smallest cardinality}$

$$\underset{v}{\operatorname{arg\,max\,impact}}(v) \in \operatorname{source\,SCC}$$

 $Q: \forall v, \text{ computing impact}(v)$

$$I: (x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_1 \vee x_2) \wedge (\overline{x_3} \vee x_4) \wedge (\overline{x_1} \vee x_4)$$

$$I: (x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_1 \vee x_2) \wedge (\overline{x_3} \vee x_4) \wedge (\overline{x_1} \vee x_4)$$

$$\alpha \vee \beta \equiv \overline{\alpha} \to \beta \equiv \overline{\beta} \to \alpha$$

$$I: (x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_1 \vee x_2) \wedge (\overline{x_3} \vee x_4) \wedge (\overline{x_1} \vee x_4)$$

$$\alpha \vee \beta \equiv \overline{\alpha} \to \beta \equiv \overline{\beta} \to \alpha$$

Implication graph G_I .

$$I: (x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_1 \vee x_2) \wedge (\overline{x_3} \vee x_4) \wedge (\overline{x_1} \vee x_4)$$

$$\alpha \vee \beta \equiv \overline{\alpha} \to \beta \equiv \overline{\beta} \to \alpha$$

Implication graph G_I .

Theorem (2SAT)

 $\exists \ SCC \ \exists x : v_x \in SCC \land v_{\overline{x}} \in SCC \iff I \ is \ not \ satisfiable.$

$$I: (x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_1 \vee x_2) \wedge (\overline{x_3} \vee x_4) \wedge (\overline{x_1} \vee x_4)$$

$$\alpha \vee \beta \equiv \overline{\alpha} \to \beta \equiv \overline{\beta} \to \alpha$$

Implication graph G_I .

Theorem (2SAT)

 $\exists SCC \exists x : v_x \in SCC \land v_{\overline{x}} \in SCC \iff I \text{ is not satisfiable.}$

Reference:

▶ "A Linear-time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas" by Bengt Aspvall, Michael Plass, and Robert Tarjan, 1979.

4□ > 4♠ > 4 ≥ > 4 ≥ >

Office 302

Mailbox: H016

hfwei@nju.edu.cn