TRIGONOMETRY

 $\tan x = \sin x / \cos x$ $\cot x = 1/\tan x$ $\sec x = 1/\cos x$ $\csc x = 1/\sin x$ $\sin^2 x + \cos^2 x = 1$ $\sin 2x = 2\sin x \cos x$

INTEGRALS

 $\int u \, dv = uv - \int v \, du$ $\int (1/x) = \ln|x|$ $\int (1/(ax+b)) = \ln|ax+b|/a$ $\int \tan ax = -\ln|\cos ax|/a = \ln|\sec ax|/a$ $\int \cot ax = \ln|\sin ax|/a$ $\int \sec^2 x = \tan x$ $\int (1/(1+x^2)) = \arctan x$ $\int (1/\sqrt{1-x^2}) = \arcsin x$ $\int (x/e^{ax}) = e^{-ax}(ax-1)/a^2$

THE QUADRATIC EQUATION

 $x = \left(-b \pm \sqrt{b^2 - 4ac}\right)/2a$

HOMOGENEOUS LINEAR EQUATIONS:

 $ay'' + by' + cy = 0, \quad a \neq 0$

TWO REAL ROOTS:

$$y_h = c_1 \cdot e^{r_1 t} + c_2 \cdot e^{r_2 t}$$

$$y'_h = c_1 r_1 e^{r_1 t} + c_2 r_2 e^{r_2 t}$$

REPEATED ROOTS

$$y_h = c_1 \cdot e^{rt} + c_2 \cdot t \cdot e^{rt}$$

 $y'_h = (c_1 r + c_2)e^{rt} + (c_2 r)te^{rt}$

COMPLEX ROOTS:

$$y_h = c_1 \cdot e^{\alpha t} \cdot \sin(\beta t) + c_2 \cdot e^{\alpha t} \cdot \cos(\beta t)$$

$$y_h' = (c_1 \alpha - c_2 \beta) ES + (c_1 \beta + c_2 \alpha) EC$$

COMPLEX ROOTS (init value):

$$c_1 = \frac{y_0' - \alpha y_0}{\beta}, \quad c_2 = y_0$$

UNDETERMINED COEFFICIENTS

CASE: $f == C \sin(\beta t) \mid\mid C \cos(\beta t)$ SOLU: $y_p = A_1 \sin(\beta t) + A_2 \cos(\beta t)$ CASE: $f == Ct^m e^{rt}$ SOLU: $y_p = t^s P^m e^{rt}$ s = 0 if r is not a root of the equation. s = 1 if r is a simple root. s = 2 if r is a double root. CASE: $f = Ct^m e^{\alpha t} \left\{ \begin{array}{l} \sin \beta t \\ \cos \beta t \end{array} \right\}$ SOLU: $y_p = t^s P_1^m e^{\alpha t} \cos(\beta t) + t^s P_2^m e^{\alpha t} \sin(\beta t)$ s = 0 if $\alpha + i\beta$ is not a root. s = 1 if $\alpha + i\beta$ is a root.

NON-HOM GENERAL SOLUTION

 $y = y_h + y_p$

SUPERPOSITION

LET: F = ay'' + by' + cyIF: y_1 is a solution to $F = f_1$ AND: y_2 is a solution to $F = f_2$

THEN: $k_1y_1 + k_2y_2$ is a solution to $F = k_1f_1 + k_2f_2$

VARIATION OF PARAMETERS

 $y_p = v_1 y_1 + v_2 y_2$ $W[y_1, y_2] = y_1 y_2' - y_1' y_2$

$$v_1 = \int \frac{-fy_2}{aW[y_1, y_2]}, \quad v_2 = \int \frac{+fy_1}{aW[y_1, y_2]}$$

 $y_1v_1' + y_2v_2' = 0,$ $y_1'v_1' + y_2'v_2' = f/a$

CAUCHY-EULER (Oily Couch)

 $at^2y'' + bty' + cy = f$ CHARACTERISTIC: $ar^2 + (b-a)r + c = 0$ REAL: $y_h = t^{r_1} + t^{r_2}$

DOUBLE: $y_h = t^r + t^r \ln(t)$

COMPLEX: $y_h = t^{\alpha} \sin(\beta \ln t) + t^{\alpha} \cos(\beta \ln t)$

REDUCTION OF ORDER

y'' + Py' + Qy = 0Given: y_1

 $y_2 = y_1 \int \frac{e^{-\int P}}{(y_1)^2}$

 $y_h = y_1 + y_2$

LINEAR INDEPENDENCE TEST

For whole interval: $W[y_1, y_2] = 0$