Correction de l'interrogation de Mathématiques pour l'informatique 1 du 29 octobre 2019

Théorie

1. En logique propositionnelle, qu'appelle-t-on une proposition satisfaisable ? Donner un exemple d'une proposition satisfaisable et un exemple d'une proposition non satisfaisable.

Solution

Une proposition est dite satisfaisable s'il existe une distribution des valeurs de vérité de ses variables qui la rend vraie. Par exemple, la proposition $\varphi \equiv x$ est satisfaisable car elle est vraie pour la valeur de vérité x=1 et la proposition $\psi \equiv x \land \neg x$ ne l'est pas car sa table de vérité est

$$\begin{array}{c|ccc} x & \neg x & x \wedge \neg x \\ \hline 0 & 1 & 0 \\ 1 & 0 & 0 \\ \end{array}$$

ce qui montre que ψ est faux que la valeur de x soit 0 ou 1.

2. Sur quelle équivalence logique se base la technique de démonstration par contraposition? Expliquer le raisonnement d'une telle démonstration.

Solution

La technique de démonstration par contraposition se base sur l'équivalence logique

$$\varphi \Rightarrow \psi \equiv \neg \psi \Rightarrow \neg \varphi.$$

Pour démontrer l'implication $\varphi \Rightarrow \psi$ en utilisant la contraposition, on suppose que ψ est faux et on cherche à prouver que φ doit aussi être faux.

3. Démontrer que la composée de deux injections est une injection. En déduire que si A est un ensemble dénombrable et s'il existe une injection d'un ensemble B dans A, alors B est aussi dénombrable.

Solution

Soient des fonctions injectives $f \colon A \to B$ et $g \colon B \to C$. Nous souhaitons montrer que la fonction composée $g \circ f \colon A \to C$, $a \mapsto g(f(a))$ est injective également. Soient $a, a' \in A$ tels que $a \neq a'$. Comme f est une injection, on a $f(a) \neq f(a')$. Ensuite, comme g est aussi une injection, on a $g(f(a)) \neq g(f(a'))$. Ainsi, $g \circ f$ est bien une injection.

Soit A un ensemble dénombrable. Cela signifie qu'il existe une injection $f \colon A \to \mathbb{N}$. Si B est un ensemble pour lequel il existe une injection $g \colon B \to A$, alors la fonction composée $f \circ g \colon B \to N$ est injective, donc B est dénombrable aussi.

Exercices

- 1. Un patron de restaurant désire créer un menu fluctuant afin de ne pas toujours proposer les mêmes plats à ses clients. Il ordonne donc à son serveur de respecter les consignes suivantes (où A, B et C désignent les trois plats principaux proposés à la carte) :
 - (a) quand tu ne proposes pas A, tu dois proposer B;
 - (b) lorsque A et B sont proposés, C ne doit pas l'être;
 - (c) si tu proposes C ou si tu ne proposes pas A, alors B ne doit pas être proposé.

Le serveur désirant mémoriser facilement ces trois consignes, comment peut-il les résumer avec une forme normale conjonctive de longueur minimale? Exprimer ce résumé en français.

Solution

Si on considère les variables propositionnelles α , β , γ représentant respectivement "A est proposé", "B est proposé" et "C est proposé", les trois consignes données sont logiquement équivalentes à

- (a) $(\neg \alpha) \Rightarrow \beta \equiv \varphi_1$
- (b) $(\alpha \wedge \beta) \Rightarrow \neg \gamma \equiv \varphi_2$
- (c) $(\gamma \vee \neg \alpha) \Rightarrow \neg \beta \equiv \varphi_3$

et le discours tenu par le patron à $\varphi_1 \wedge \varphi_2 \wedge \varphi_3 \equiv \phi$.

Déterminons la table de vérité de ϕ :

α	β	$ \gamma $	$\neg \alpha$	$\neg \beta$	$\mid \neg \gamma \mid$	φ_1	$\alpha \wedge \beta$	φ_2	$\gamma \vee \neg \alpha$	φ_3	ϕ
0	0	0	1	1	1	0	0	1	1	1	0
0	0	1	1	1	0	0	0	1	1	1	0
0	1	0	1	0	1	1	0	1	1	0	0
1	0	0	0	1	1	1	0	1	0	1	1
1	1	0	0	0	1	1	1	1	0	1	1
1	0	1	0	1	0	1	0	1	1	1	1
0	1	1	1	0	0	1	0	1	1	0	0
1	1	1	0	0	0	1	1	0	1	0	0

Utilisons alors une table de Karnaugh de $\neg \phi$ pour déterminer une forme normale conjonctive de ϕ :

Cette table ne contient aucun rectangle de taille 8, elle en contient par contre un de taille 4, à savoir

qui correspond à la proposition $\neg \alpha$. Le dernier 1 appartient au rectangle de taille 2

qui correspond à la proposition $\beta \wedge \gamma$. Ainsi, on obtient que $\neg \phi \equiv \neg \alpha \vee (\beta \wedge \gamma)$ et donc que

$$\phi \equiv \neg (\neg \alpha \lor (\beta \land \gamma))
\equiv (\neg \neg \alpha) \land \neg (\beta \land \gamma)
\equiv \alpha \land (\neg \beta \lor \neg \gamma)$$

Une forme normale conjonctive de longueur minimale de ϕ est donc donnée par

$$\boxed{\alpha \wedge (\neg \beta \vee \neg \gamma)}$$

ce qui se traduit en français par : "A est proposé et B ou C ne l'est pas".

Autre méthode

Tenant compte des équivalences logiques suivantes pour les trois consignes données

(a)
$$\varphi_1 \equiv (\neg \alpha) \Rightarrow \beta \equiv \alpha \vee \beta$$

(b)
$$\varphi_2 \equiv (\alpha \land \beta) \Rightarrow \neg \gamma \equiv \neg(\alpha \land \beta) \lor \neg \gamma \equiv (\neg \alpha \lor \neg \beta) \lor \neg \gamma$$

(c)
$$\varphi_3 \equiv (\gamma \vee \neg \alpha) \Rightarrow \neg \beta \equiv \neg (\gamma \vee \neg \alpha) \vee \neg \beta \equiv (\neg \gamma \wedge \alpha) \vee \neg \beta$$

le discours tenu par le patron est lui logiquement équivalent à

$$\phi \equiv \varphi_1 \wedge \varphi_2 \wedge \varphi_3$$

$$\equiv (\alpha \vee \beta) \wedge (\neg \alpha \vee \neg \beta \vee \neg \gamma) \wedge ((\neg \gamma \wedge \alpha) \vee \neg \beta)$$

$$\equiv (\alpha \vee \beta) \wedge (\neg \alpha \vee \neg \beta \vee \neg \gamma) \wedge ((\neg \gamma \vee \neg \beta) \wedge (\alpha \vee \neg \beta)).$$

En remarquant alors que, d'une part

$$(\alpha \vee \beta) \wedge (\alpha \vee \neg \beta) \equiv \alpha$$

et, d'autre part,

$$(\neg \alpha \vee \neg \beta \vee \neg \gamma) \wedge (\neg \gamma \vee \neg \beta) \equiv \neg \beta \vee \neg \gamma$$

on conclut directement que

$$\boxed{\phi \equiv \alpha \wedge (\neg \beta \vee \neg \gamma)}.$$

Cette proposition est bien de longueur minimale car au vu de la table de vérité de ϕ , la valeur de vérité de ϕ dépend effectivement des trois variables propositionnelles α, β, γ . En effet, si $\phi(\alpha, \beta, \gamma)$ désigne la valeur de vérité de ϕ en fonction des valeurs de vérité de α, β, γ , on observe que

- α a de l'influence car $\phi(0,0,0) \neq \phi(1,0,0)$
- β a de l'influence car $\phi(1,0,1) \neq \phi(1,1,1)$
- γ a de l'influence car $\phi(1,1,0) \neq \phi(1,1,1)$.

Une proposition équivalente à ϕ doit donc contenir des occurences de α , β , γ et donc avoir une longueur au moins 3.

- 2. On considère les ensembles $E = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$ et $N = \{0, 1, 2\}$.
 - (a) Donner le produit cartésien de E et N.
 - (b) Préciser si les assertions suivantes sont vraies ou fausses et justifier :

i.
$$\emptyset \in E$$

iii.
$$\{b,a\} \in E$$

v.
$$\{a,b\} \subset E$$

ii.
$$\emptyset \subseteq E$$

iv.
$$a \in E$$

vi.
$$\{\emptyset\} \in \mathcal{P}(E)$$

- (c) Soit R la relation de E dans N telle que e R n si e contient exactement n éléments.
 - i. En supposant $a \neq b$, cette relation est-elle une fonction? une fonction injective? une fonction surjective?
 - ii. Qu'en est-il si on suppose a = b?

Solution

(a) On a

$$E \times N = \left\{ (\emptyset, 0), (\emptyset, 1), (\emptyset, 2), (\{a\}, 0), (\{a\}, 1), (\{a\}, 2), (\{b\}, 0), (\{b\}, 1), (\{a, b\}, 2), (\{a, b\}, 0), (\{a, b\}, 1), (\{a, b\}, 2) \right\}.$$

- (b) i. Vrai car \emptyset est un élément de $E = {\emptyset, \{a\}, \{b\}, \{a,b\}}.$
 - ii. Vrai car \emptyset est inclus dans tout ensemble.
 - iii. Vrai car $\{b,a\} = \{a,b\}$ est un élément de $E = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$.
 - iv. Faux. L'ensemble $\{a\}$ est un élément de E mais pas a.
 - v. Faux. L'ensemble $\{a,b\}$ est un élément de E mais il n'est pas inclus dans E.
 - vi. Vrai car \emptyset est un élément de E, ainsi $\{\emptyset\} \in \mathcal{P}(E)$.
- (c) i. Si $a \neq b$, on a

$$R = \left\{ (\emptyset, 0), (\{a\}, 1), (\{b\}, 1), (\{a, b\}, 2) \right\}.$$

Ainsi, R est une fonction surjective dans N. En revanche, elle n'est pas injective car $R(\{a\}) = R(\{b\}) = 1$.

ii. Si a = b, on a $E = \{\emptyset, \{a\}\}$ et donc

$$R = \left\{ \left(\emptyset, 0 \right), \left(\{a\}, 1 \right) \right\}.$$

Ainsi, R est une fonction injective. En revanche, elle n'est plus surjective car 2 n'est l'image d'aucun élément de E par cette relation.

3. Permuter les sommes suivantes :

$$\sum_{i=1}^{13} \sum_{j=i+2}^{30-i} |i+j|$$

Solution

Les indices $(i, j) \in \mathbb{N}^2$ intervenant dans la somme sont représentés ci-dessous.

On remarque donc que $j \in \{3, ..., 29\}$. En outre, on a

$$\left\{\begin{array}{ll} 1 \leq i \leq 13 \\ i+2 \leq j \leq 30-i \end{array}\right. \Longleftrightarrow \left\{\begin{array}{ll} 3 \leq j \leq 29 \\ 1 \leq i \\ i \leq 13 \\ i+2 \leq j \\ j \leq 30-i \end{array}\right. \Longleftrightarrow \left\{\begin{array}{ll} 3 \leq j \leq 29 \\ 1 \leq i \\ i \leq 13 \\ i \leq j-2 \\ i \leq 30-j \end{array}\right.$$

$$\Longleftrightarrow \left\{\begin{array}{ll} 3 \leq j \leq 29 \\ 1 \leq i \\ i \leq \min(13, j-2, 30-j) \end{array}\right.$$

Ainsi, on a

$$\begin{split} \sum_{i=1}^{13} \sum_{j=i+2}^{30-i} |i+j| &= \sum_{j=3}^{29} \sum_{i=1}^{\min(13,j-2,30-j)} |i+j| \\ &= \sum_{j=3}^{15} \sum_{i=1}^{j-2} |i+j| + \sum_{i=1}^{13} |i+16| + \sum_{j=17}^{29} \sum_{i=1}^{30-j} |i+j|. \end{split}$$

4. On considère la suite récurrente définie par

$$a_0 = 1,$$
 $a_1 = 0$ et $a_n = 5a_{n-1} - 6a_{n-2}$ $\forall n \ge 2.$

Montrer que pour tout $n \in \mathbb{N}$, on a

$$a_n = 3 \cdot 2^n - 2 \cdot 3^n.$$

Solution

Procédons par récurrence (d'ordre 2) sur $n \in \mathbb{N}$.

Cas de base (n = 0 et n = 1)

La formule considérée est vérifiée pour n=0 et n=1 puisque

$$3 \cdot 2^0 - 2 \cdot 3^0 = 3 - 2 = 1 = a_0$$

et

$$3 \cdot 2^1 - 2 \cdot 3^1 = 6 - 6 = 0 = a_1$$
.

Pas de récurrence

Supposons que $n \ge 1$ et que la formule considérée est vraie pour n-1 et n, c'est-à-dire que

$$a_{n-1} = 3 \cdot 2^{n-1} - 2 \cdot 3^{n-1}$$
 et $a_n = 3 \cdot 2^n - 2 \cdot 3^n$

et montrons qu'elle est encore vraie pour n+1, c'est-à-dire que

$$a_{n+1} = 3 \cdot 2^{n+1} - 2 \cdot 3^{n+1}$$
.

Alors

$$a_{n+1} = 5a_n - 6a_{n-1}$$
 (définition avec $n+1 \ge 2$)
$$= 5(3 \cdot 2^n - 2 \cdot 3^n) - 6(3 \cdot 2^{n-1} - 2 \cdot 3^{n-1})$$
 (hyp. de récurrence)
$$= 15 \cdot 2^n - 10 \cdot 3^n - 18 \cdot 2^{n-1} + 12 \cdot 3^{n-1}$$

$$= (30 - 18) \cdot 2^{n-1} - (30 - 12) \cdot 3^{n-1}$$

$$= 12 \cdot 2^{n-1} - 18 \cdot 3^{n-1}$$

$$= 3 \cdot 4 \cdot 2^{n-1} - 2 \cdot 9 \cdot 3^{n-1}$$

$$= 3 \cdot 2^{n+1} - 2 \cdot 3^{n+1}.$$

Conclusion

Tenant compte des cas de base et de récurrence, la formule considérée est donc vraie pour tout $n \in \mathbb{N}$.