Minimum Spanning Tree

Dr Dayal Kumar Behera

• Acyclic Graph: A graph that contains no cycles is called acyclic graph.

• Tree: A simple(no loop), connected, acyclic graph is called a tree.

• Spanning tree of a graph G (V, E) is a tree that contains all the vertices of the graph G.

What is a Spanning Tree?

Given a connected graph G(V, E), if T is a subgraph of G and contains all the vertices but no cycles, then T is said to be a spanning tree.

Definition

Given a connected graph G = (V, E),

- Spanning tree T:
 - A tree that includes all nodes from V
 - T = (V, E'), where $E' \subseteq E$
 - Weight of T: sum of weights of all the edges in T.
- Minimum spanning tree (MST):
 - A tree with minimum weight among all spanning trees.
 - MST is not unique (There can also be many minimum spanning trees)

Minimum spanning trees: properties

Important properties:

- An MST is always a tree and it cannot contain a cycle
- If there are |V| vertices, the MST contains exactly |V| 1 edges.
- If we add or remove an edge from an MST, it's no longer a valid MST for that graph.
- Adding an edge introduces a cycle; removing an edge means vertices are no longer connected.
- If every edge has a unique weight, there exists a unique MST.

Algorithms to find Minimum Spanning Trees

- Kruskal's algorithm
- Prim's algorithm

Generic Algorithm

- Framework for G = (V, E):
 - Goal: build a set of edges $A \subseteq E$
 - Start with A empty
 - Add edge into A one by one
 - At any moment, A is a subset of some MST for G

```
GENERIC-MST(G, w)

A \leftarrow \emptyset

while A is not a spanning tree

do find an edge (u, v) that is safe for A

A \leftarrow A \cup \{(u, v)\}

return A
```

An edge is safe if adding it to A, does not form a cycle

Kruskal's Algorithm

- Start with A empty, and each vertex being its own connected component
- Repeatedly merge two components by connecting them with a light edge crossing them
 - Maintain sets of components

Disjoint set data structure

Choose light edges

Scan edges from low to high weight

Total Weight = 37

KRUSKAL: Pseudo-code

```
KRUSKAL(V, E, w)
A \leftarrow \emptyset
for each vertex v \in V
    do MAKE-SET(v)
sort E into nondecreasing order by weight w
for each (u, v) taken from the sorted list
    do if FIND-SET(u) \neq FIND-SET(v)
          then A \leftarrow A \cup \{(u, v)\}
                UNION(u, v)
return A
```

Analysis

 The sorting of edges will take O(|E|log|E|) time. Next for each edge, disjoint-set functions are called. This requires O(|E|log|V|) time.

Since |E| is at most |V|² and log|V|² =2log|V|,
 O(|E|log|E|)=O(|E|log|V|).

The running time for Kruskal's algorithm is thus O(|E|log|V|).

Prim's Algorithm

- Start with an arbitrary node from V
- Instead of maintaining a forest, grow a MST
 - At any time, maintain a MST for $S \subseteq V$
- At any moment, find a light edge connecting S with (V-S) i.e., the edge with smallest weight connecting some vertex in S with some vertex in V-S

Prim's Algorithm

For a given graph G(V, E) with 'n' no of vertices.

- 1. Select an arbitrary vertex 'u' and put it in S.
 - $S \leftarrow \{u\}$
 - $\bar{E} \leftarrow \{\}$
- Select an edge (u, v) with minimum weight such that $u \in S$ and $v \in V S$
- Modify $\overline{E} = \overline{E} \cup \{(u, v)\}$ and $S = S \cup \{v\}$
- 4. if |S| = n i.e. V = S then Stop else goto step 2

Output: T (V, \overline{E}) - minimum spanning tree

Prim's Algorithm cont.

- Maintain the tree already build at any moment
 - Easy: simply a tree rooted at r: the starting node
- Find the next light edge efficiently
 - For $v \in V$ S, define key(v) = the min distance between v and some node from S
 - At any moment, find the node with min key.

Use a Min priority queue (Q)

$$S = \{A\}$$

$$\overline{E} = \{\}$$

$$V - S = \{B, C, D, E, F\}$$

 $V - S = \{D, E, F\}$

$$S = \{A, B, C\}$$

 $\overline{E} = \{(A,B), (A,C)\}$

$$S = \{A, B\}$$
 $V - S = \{C, D, E, F\}$
 $\overline{E} = \{(A,B)\}$

$$S = \{A, B, C, D\}$$
 $V - S = \{E, F\}$
 $\overline{E} = \{(A,B), (A,C), (B,D)\}$

$$S = \{A, B, C, D, F\}$$
 $V - S = \{E\}$
 $\overline{E} = \{(A,B), (A,C), (B,D), (D,F)\}$

$$S = \{A, B, C, D, E, F\}$$
 $V - S = \{\}$
 $\overline{E} = \{(A,B), (A,C), (B,D), (D,F), (D,E)\}$

Total edge weights (Cost) = 7

Q	Α	В	С	D	E	F
	-	-	-	-	-	-

Q	A	В	С	D	E	F
	0	∞	∞	∞	∞	∞

Q	В	С	D	Е	F
	1	1	∞	∞	∞

Q	С	D	Е	F
	1	2	∞	∞

Q	Е	F
	2	1

Total Weight = 37

Pseudo-code

```
MST-PRIM(G, w, r)
     for each u \in G.V
        u.key = \infty
        u.\pi = NIL
 4 r.key = 0
 5 \quad Q = G.V
    while Q \neq \emptyset
         u = \text{EXTRACT-MIN}(Q)
         for each v \in G.Adj[u]
 9
              if v \in Q and w(u, v) < v.key
10
                   \nu.\pi = u
                   v.key = w(u, v)
```

```
PRIM(V, E, w, r)
Q \leftarrow \emptyset
for each u \in V
    do key[u] \leftarrow \infty
        \pi[u] \leftarrow \text{NIL}
         INSERT(Q, u)
DECREASE-KEY(Q, r, 0) > key[r] \leftarrow 0
while Q \neq \emptyset
     do u \leftarrow \text{EXTRACT-MIN}(Q)
         for each v \in Adj[u]
              do if v \in Q and w(u, v) < key[v]
                     then \pi[v] \leftarrow u
                           DECREASE-KEY(Q, v, w(u, v))
```

Complexity Analysis

- Using heap for priority queue:
 - Each operation is $O(\log |V|)$
- Time complexity
 - # insert:
 - $O(\log |V|)$
 - # Decrease-Key:
 - O(log /V/)
 - # Extract-Min
 - O(log |V|)
- Total time complexity: Dominated by Last DECREASE-KEY operation for |E| no of times

```
Total = O(/E/\log |V|)
```

Thank You