Analogien zwischen Translation und Rotation

Translation des Massenpunktes		Zusammenhang	Rotation des starren Körpers	
Strecke	\vec{S}	$s = r \cdot \varphi$	Winkel	$ec{\phi}$
Geschwindigkeit	$\vec{v} = \frac{d\vec{s}}{dt}$	$\mathbf{v} = r \cdot \boldsymbol{\omega}$	Winkelgeschwindigkeit	$\vec{\omega} = \frac{d\vec{\phi}}{dt}$
Beschleunigung	$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{s}}{dt^2}$	$a = r \cdot \alpha$	Winkelbeschleunigung	$\vec{\alpha} = \frac{d\vec{\omega}}{dt} = \frac{d^2\vec{\phi}}{dt^2}$
gleichförmige Translation	$ec{s} = ec{v}_0 \cdot t + ec{s}_0 \ ec{v} = konstant \ ec{a} = 0$		gleichförmige Rotation	$ec{\phi} = ec{\omega} \cdot t$ $ec{\omega} = konstant$ $ec{\alpha} = 0$
gleichmäßig beschleunigte Translation	$\vec{s} = \frac{1}{2} \cdot \vec{a} \cdot t^2 + \vec{v_0} \cdot t + \vec{s_0}$ $\vec{v} = \vec{a} \cdot t + \vec{v_0}$ $\vec{a} = konstant$		gleichmäßig beschleunigte Rotation	$ec{\varphi} = rac{1}{2} \cdot \vec{\alpha} \cdot t^2$ $ec{\omega} = \vec{\alpha} \cdot t$ $ec{\alpha} = konstant$
Masse	m		Trägheitsmoment	$J = \frac{M}{\alpha} = m \cdot r^2$
Impuls	$\vec{p} = m \cdot \vec{v}$	$\vec{r} \times \vec{p} = \vec{L}$	Drehimpuls	$ec{L} = J \cdot ec{\omega}$
Kraft	$\vec{F} = \frac{d\vec{p}}{dt}$	$\vec{r} \times \vec{F} = \vec{M}$	Drehmoment	$\vec{M} = \frac{d\vec{L}}{dt}$
speziell m=konst	$\vec{F} = m \cdot \vec{a}$		speziell J=konst	$\vec{M} = J \cdot \vec{\alpha}$
Arbeit	$W = F \cdot s \cdot \cos(\alpha)$		Arbeit	$W_{Rot} = M \cdot \varphi$

Gym Sek II: Mechanik, Erhard Werner, ab 2006, http://www.ew-at-home.de

Translation des Massenpunktes		Zusammenhang	Rotation des starren Körpers	
kinetische Energie der Translation	$E_{Trans} = \frac{1}{2} \cdot m \cdot v^2$		kinetische Energie der Rotation	$E_{Rot} = \frac{1}{2} \cdot J \cdot \omega^2$
Leistung	$P = \frac{dE}{dt}$		Leistung	$P = \frac{dE}{dt}$
speziell F=konstant	$P = F \cdot \frac{ds}{dt} = F \cdot v$		speziell M=konstant	$P = M \cdot \frac{d\varphi}{dt} = M \cdot \omega$