FakeNEAT: Neuroevolución

mediante AG y Enfriamiento Simulado

HUGO ALBERT BONET

1 DESCRIPCIÓN DEL PROBLEMA

Entrenamiento de Redes Neuronales

Neuroevolución

¿Qué es?

Algoritmos evolutivos para entrenar redes neuronales buscando al mismo tiempo la mejor arquitectura

Estado del arte:

- Neuro Evolution of Augmented Topologies (NEAT)
- HyperNEAT

NEAT vs FakeNEAT

NEAT

Principal problema: Poco óptimo para inferencia

FakeNEAT

Centrado en optimizar:

- Neuronas de cada capa
- Pesos de la red

Limitaciones:

- Número de capas
- Funciones de activación
- Capas especiales (Convolucionales, Batch Normalization...)

SALGORITMO 2 GENÉTICO

Representación de la solución

Solución = Arquitectura + Pesos

Aquitectura:

[N₁, N₂, ... , N_H] → N_h: Número de neuronas en la capa h. H: Número de capas de la red (hiperparámetro).

Pesos:

Implementados sobre la librería PyTorch

Población inicial

Búsqueda de simplicidad

Una neurona por capa:

- Parte de la solución más simple y eficiente computacionalmente
- Genera redes "grandes" si produce un beneficio

Búsqueda de variabilidad

Número aleatorio de neuronas por capa:

- Se establece un máximo de neuronas iniciales por capa
- Incrementa la variabilidad inicial (Exploración)

Función fitness

Función fitness

Función fitness

Clasificación

Fitness:

$$Fitness = 1 - \frac{True\ Positives}{N} = 1 - Accuracy$$

Función de pérdidas:

$$L_1(\hat{y}) = 1 - Accuracy$$

$$L_2(\hat{y}) = CrossEntropy(\hat{y})$$

Regresión

Fitness:

$$Fitness = L(\hat{y}) = MSE(y, \hat{y}) = (y - \hat{y})^2$$

Mutaciones

Eliminar neuronas:

Elimina un número aleatorio de neuronas a una capa aleatoria (dejando siempre al menos una neurona restante en la capa).

Añadir neuronas:

Añade un número aleatorio de neuronas (en un rango establecido) a una capa aleatoria.

Mini-train:

Ejecuta una iteración del algoritmo de backpropagation en un minibatch.

Mutaciones

Eliminar neuronas:

Elimina un número aleatorio de neuronas a una capa aleatoria (dejando siempre al menos una neurona restante en la capa).

Añadir neuronas:

Añade un número aleatorio de neuronas (en un rango establecido) a una capa aleatoria.

Mini-train:

Ejecuta una iteración del algoritmo de backpropagation en un minibatch.

Mutaciones

Eliminar neuronas:

Elimina un número aleatorio de neuronas a una capa aleatoria (dejando siempre al menos una neurona restante en la capa).

Añadir neuronas:

Añade un número aleatorio de neuronas (en un rango establecido) a una capa aleatoria.

Mini-train:

Ejecuta una iteración del algoritmo de backpropagation en un minibatch.

PARENT 1

PARENT 2

Selección y reemplazo

Selección

Proporcional al Accuracy:

$$P(i) = \frac{Accuracy_i}{\sum_{j=1}^{N} Accuracy_j}$$

Reemplazo

Proporcional al fitness:

$$P(i) = \frac{f_i - \min_fitness}{\sum_{j=1}^{N} (fj \min_fitness)}$$

Experimentos

Resultados generales (Dataset Iris)

Población inicial	Capas ocultas	Max. Nº Neuronas	Tamaño Población	Ratio de Mutación	Crossovers por generación	Max. Iteraciones	Tiempo de ejecución (s)	Fitness (1- Accuracy)	Fitness test
Simple	5	500	100	0.1	1	2000	45	0.36	0.37
Variable	5	500	100	0.1	1	2000	45	0.03	0.0
Variable	5	500	200	0.1	1	2000	404	0.16	0.13
Variable	5	500	100	0.2	1	2000	479	0.33	0.40
Variable	5	1000	100	0.1	1	2000	330	0.18	0.13
Variable	10	500	100	0.1	1	2000	75	0.02	0.0

Experimentos Otros datasets

Generación

5 ENFRIAMIENTO SIMULADO

Diseño

Solución inicial:

Solución temprana del AG.

Generación del vecindario:

Una mutación del AG aleatoria.

- Añadir neuronas.
- Eliminar neuronas.
- Mini-train.

Temperatura:

Reducción lineal.

Experimentos

Resultados generales (Dataset Iris)

Min. Delta	Tamaño vecindario	Temperatura inicial	Temperatura final	Max. Iteraciones	Tiempo de ejecución (s)	Fitness (1-Accuracy)	Fitness test
0.01	50	0.01	0	3000	309	0.20	0.30
0.01	50	0.1	0	3000	235	0.64	0.63
0.01	50	0.05	0	3000	317	0.36	0.36
0.01	100	0.01	0	3000	688	0.20	0.30
0.01	20	0.01	0	3000	133	0.18	0.13
0.1	20	0.01	0	3000	133	0.33	0.40

Experimentos Otros datasets

Iteración

14 DETALLES DE IMPLEMENTACIÓN

Detalles de implementación

Implementación propia en Python.

Librerías utilizadas:

- PyTorch: Tratamiento de redes neuronales
- Scikit-Learn: Obtención de datasets
- NumPy, random, math: Operaciones matemáticas
- Copy, pandas, dataclasses: Tratamiento de EDAs
- Time: Control del tiempo de ejecución
- Matplotlib: Generación de gráficos

Repositorio disponible en GitHub.

Estructura orientada a objetos y modular.

