Using Data & Diagnostics for Obesity Prediction

By Group 4L:

Daniel Jenkins, Teshinee Kukamjad, John Sohn, Kwon Gyeong Min, Erika Yiu

Table of Contents

01

02

03

Background

Data Handling

Basic Models

04

05

06

Final Model

Takeaways

Conclusion

Background

<u>Goal</u>

Predict if a person has obesity based on certain traits

Method

Simple Logistic Regression

K-Nearest Neighbors

Random Forest

Relevance

- Obesity is a dangerous level of weight classification
- Over 100 million Americans classified as such
- Linked with cardiovascular diseases like diabetes
- Decrease of life expectancy by 3 years

Data Cleaning

Missing Value Imputation

- About **8%** of all observations had <u>missing values</u>
- For 11 <u>numeric</u> variables: use **MEAN**
- For 19 <u>categorical</u> variables: factor & use **MODE**

Significant Predictors

FAF: Physical Activity Frequency	CALC: Caloric intake	
CH20: Daily Water Intake	SCC: Consumption of sweet drinks	
FCVC: Frequency of Vegetable Consumption	CAEC: Consumption of food between meals	
NCP: Number of main meals	FAVC: Frequent consumption of high-caloric food	
Height	Gender	
Age	Family_history_with_overweight	

Simple Logistic Regression

Benefits

- Simple
- Quick
- Easily Interpretable

Method

- Generalized linear model function
- Binomial family
- Response variable Obesity Status regressed on significant predictors

Result

- Moderately High AUC
- Sensitivity Specificity Trade Off
- Decent job at classification

Logistic Regression Interpretation

Accuracy = 74.74%

		Predicted Class		
lass		Not Obese	Obese	
Actual Class	Not Obese	15,902	3,498	
	Obese	4,591	8,034	

Significant Variables

- 1. Family History with Overweight
- 2. CH2O
- **3.** FAF

Diagnostics

K-Nearest Neighbors

Benefits

- Intuitive
- Non-Parametric
- Versatile

Method

- Cross-validation from k = 5 to 23
- Accuracy primary metric

Result

- Highest accuracy at k = 5
- Accuracy declined with k increase
- Importance of optimizing k for bias and variance balance

KNN Interpretation

Significant Variables

- 1. FAF
- 2. CH2O
- 3. Family History with Overweight

Diagnostics

Training Accuracy = 92.84%

		Predicted Class		
Class		Not Obese	Obese	
Actual Cl	Not Obese	18,101	1,009	
	Obese	1,282	11,622	

Random Forest

Benefits

- Improved Accuracy
- Feature Importance

Method

- Bootstrap sampling
- Mtry: Range of number of variables considered at each split from 2 to 29
- Fixed at 5 trees

Result

- Validation Error decreased with mtry increase
- Slowed at mtry = 10, used to balance complexity and performance

Random Forest Interpretation

Significant Variables

- 1. CH20
- **2.** Age
- 3. Height

Diagnostics

Training Accuracy = 99.9%

	Predicted Class		
ass		Not Obese	Obese
Not Obese Obese	Not Obese	19,524	30
	7	12,453	

Improved Model

Best Predictors

CH2O, FAF, Family History with Overweight, Age, Height

Best Model

• Random Forest (mtry = 4, trees = 5)

Diagnostics

- Training Accuracy = 98.2%
- Testing Accuracy = 93.4%

	Predicted Class		
ass		Not Obese	Obese
Actual Class	Not Obese	19,331	388
Actu	Obese	200	12,095

Takeaways

Model Comparison

- Logistic Regression: Fast and easy, low accuracy
- KNN: Moderate speed and setup, improved accuracy
- Random Forest: Slowest and most complicated, high accuracy

<u>Predictor Interpretation</u>

- **CH20**: Appetite controller, calorie replacement, metabolism boost
- FAF: Reduces fat accumulation, calorie burn
- Family History: Genetic predisposition, shared lifestyle
- Age: Metabolic slowdown, decreased activity level, increase fat mass
- **Height**: Shortness increases BMI

Conclusion

Goal

 Able to predict obesity of person using age, height, family history with overweight, water intake, and physical activity

<u>Possible Improvements</u>

- Feature Transformation (Interaction)
- Advanced Models (XGBoost)

Future Questions

- How can generative AI models improve obesity prediction?
- Can this model be adapted for real-life healthcare settings?

Thank You!