The Runs Theorem and Lyndon Tree

杨骏昭、徐翊轩、陈孙立

NFLS, SCZ

January 25, 2019

Contents

- Runs and The Runs Theorem
 - Preliminaries
 - Runs and Lyndon Words
 - The Runs Theorem
- How to compute runs and Lyndon Tree
 - The algorithm
 - Lyndon Tree
- 3 Applications of The Runs Theorem
 - Two-Period Queries
 - Primitive Squares
- Conclusion
 - Summary
 - Thanks

字符串: 令 Σ 为一个有限的有序字符集,一个 Σ * 中的元素被称为字符串。我们将字符串 s 的长度表示为 |s|,定义空串 ϵ 的长度为 0。

字符串: $\Diamond \Sigma$ 为一个有限的有序字符集,一个 Σ * 中的元素被称为 字符串。我们将字符串 s 的长度表示为 |s|,定义空串 ϵ 的长度为 0。

前缀、子串、后缀:对于字符串 s = xyz, x, y, z 分别被称为 s 的一 个前缀、子串、后缀。对于 s 的一个前缀 x, 若 $x \neq s$, 则称 x 是 s 的一 个严格前缀,后缀同理。我们用 s[i] 表示字符串 s 的第 i 个字符 (1 < i < |s|),用 s[i...i] 表示第 i 个字符和第 i 个字符中间的字符形成的 子串 $(1 \le i \le j \le |s|)$, 定义 $s[i...j] = \epsilon \ (i > j)$ 。

字符串: $\Diamond \Sigma$ 为一个有限的有序字符集,一个 Σ * 中的元素被称为 字符串。我们将字符串 s 的长度表示为 |s|,定义空串 ϵ 的长度为 0。

前缀、子串、后缀:对于字符串 s = xyz, x, y, z 分别被称为 s 的一 个前缀、子串、后缀。对于 s 的一个前缀 x, 若 $x \neq s$, 则称 x 是 s 的一 个严格前缀,后缀同理。我们用 s[i] 表示字符串 s 的第 i 个字符 (1 < i < |s|),用 s[i...i] 表示第 i 个字符和第 i 个字符中间的字符形成的 子串 (1 < i < j < |s|), 定义 $s[i...j] = \epsilon (i > j)$ 。

Period: 我们称整数 p 是字符串 s 的 period, 当且仅当对于任意 1 < i < |s| - p, s[i] = s[i+p] 均成立。

字符串: $\Diamond \Sigma$ 为一个有限的有序字符集,一个 Σ * 中的元素被称为 字符串。我们将字符串 s 的长度表示为 |s|,定义空串 ϵ 的长度为 0。

前缀、子串、后缀:对于字符串 s = xyz, x, y, z 分别被称为 s 的一 个前缀、子串、后缀。对于 s 的一个前缀 x, 若 $x \neq s$, 则称 x 是 s 的一 个严格前缀,后缀同理。我们用 s[i] 表示字符串 s 的第 i 个字符 (1 < i < |s|),用 s[i...i] 表示第 i 个字符和第 i 个字符中间的字符形成的 子串 (1 < i < j < |s|), 定义 $s[i...j] = \epsilon (i > j)$ 。

Period: 我们称整数 p 是字符串 s 的 period, 当且仅当对于任意 1 < i < |s| - p, s[i] = s[i+p] 均成立。

Beg(I): 对于区间集合 I, 定义 Beg(I) 表示 I 中所有区间的起始端 点组成的集合。

Runs

定义 1 (Runs): 令字符串 w 的长度为 n,三元组 r=(i,j,p) 被称为字符串 w 的一个 run,当且仅当 w[i...j] 最小的 period p 满足 $2p \leq |w[i...j]|$,并且该周期性质不可以再向左右延伸,即 i=1 或 $w[i-1] \neq w[i+p-1]$,并且 j=n 或 $w[j+1] \neq w[j-p+1]$ 。实数 $\frac{j-i+1}{p}$ 被称为 r 的指数。

Runs

定义 1 (Runs): 令字符串 w 的长度为 n,三元组 r=(i,j,p) 被称为字符串 w 的一个 run,当且仅当 w[i...j] 最小的 period p 满足 $2p \leq |w[i...j]|$,并且该周期性质不可以再向左右延伸,即 i=1 或 $w[i-1] \neq w[i+p-1]$,并且 j=n 或 $w[j+1] \neq w[j-p+1]$ 。实数 $\frac{j-i+1}{p}$ 被称为 r 的指数。

一些关于 Runs 的符号: 我们用 Runs(w) 来表示 w 中所有的 run 构成的集合; $\rho(n)$ 表示长度为 n 的字符串中至多含有的 run 的个数; $\sigma(n)$ 表示长度为 n 的字符串中所有 run 的指数和的最大值。

Runs

定义 1 (Runs): 令字符串 w 的长度为 n, 三元组 r = (i, j, p) 被称 为字符串 w 的一个 run, 当且仅当 w[i...i] 最小的 period p 满足 $2p \le |w[i...j]|$,并且该周期性质不可以再向左右延伸,即 i=1 或 $w[i-1] \neq w[i+p-1]$,并且 j=n 或 $w[j+1] \neq w[j-p+1]$ 。 实数 $\frac{j-i+1}{n}$ 被称为r的指数。

一些关于 Runs 的符号: 我们用 Runs(w) 来表示 w 中所有的 run 构成的集合; $\rho(n)$ 表示长度为 n 的字符串中至多含有的 run 的个数; $\sigma(n)$ 表示长度为 n 的字符串中所有 run 的指数和的最大值。

字典序: 我们用 < 来表示一个 Σ 上的全序关系, 并以此定义 $\Sigma*$ 上的字典序关系 <。

定义 2 (Lyndon Word): 非空字符串 $w \in \Sigma$ * 被称为一个关于 < 的 Lyndon Word, 当且仅当 w < u 对于 w 任意的一个严格后缀 u 都成立。

¹https://loj.ac/problem/129

定义 2 (Lyndon Word): 非空字符串 $w \in \Sigma$ * 被称为一个关于 < 的 Lyndon Word, 当且仅当 w < u 对于 w 任意的一个严格后缀 u 都成立。

由 Lyndon Word 的定义,任意一个 Lyndon Word w 都不能具有任何小于 |w| 的 period,否则可以导出一个 < w 的严格后缀 u 的存在,与定义不符。

¹https://loj.ac/problem/129

定义 2 (Lyndon Word): 非空字符串 $w \in \Sigma$ * 被称为一个关于 < 的 Lyndon Word, 当且仅当 w < u 对于 w 任意的一个严格后缀 u 都成立。

由 Lyndon Word 的定义,任意一个 Lyndon Word w 都不能具有任何小于 |w| 的 period,否则可以导出一个 < w 的严格后缀 u 的存在,与定义不符。

引理 3: 令 $w = u^k u'a$, 其中 u 为一个 Lyndon Word,u' 为 u 的一个可以为空的严格前缀,k 为正整数,并且 $a \in \Sigma$, $a \neq w[|u'|+1]$ 。若 w[|u'|+1] < a,那么 w 是一个 Lyndon Word;否则,即 a < w[|u'|+1],那么 u 是任何一个以 $w = u^k u'a$ 为前缀的字符串的最长 Lyndon Word 前缀。

¹https://loj.ac/problem/129

定义 2 (Lyndon Word): 非空字符串 $w \in \Sigma$ * 被称为一个关于 < 的 Lyndon Word, 当且仅当 w < u 对于 w 任意的一个严格后缀 u 都成 7.0

由 Lyndon Word 的定义,任意一个 Lyndon Word w 都不能具有任 何小于 |w| 的 period, 否则可以导出一个 < w 的严格后缀 u 的存在, 与 定义不符。

引理 3: 令 $w = u^k u' a$, 其中 u 为一个 Lyndon Word, u' 为 u 的一 个可以为空的严格前缀,k 为正整数,并且 $a \in \Sigma$, $a \neq w[|u'| + 1]$ 。若 w[|u'|+1] < a, 那么 w 是一个 Lyndon Word; 否则,即 a < w[|u'|+1], 那么 u 是任何一个以 $w = u^k u'a$ 为前缀的字符串的最长 Lyndon Word 前缀。

引理 3 常被用作字符串的 Lyndon 分解¹。证明比较显然,相关证 明可以参考 Lyndon 分解算法。

< ロ ト → 付 ト → 正 ト → 正 → りへ ○

¹https://loj.ac/problem/129

Lyndon Roots

定义 4 (Lyndon Root): 令 r = (i, j, p) 是字符串 $w \in \Sigma$ * 的一个run, 长度为 p 的区间 $\lambda = [i_{\lambda}...j_{\lambda}]$ 被称为 r 关于 < 的 Lyndon Root,当且仅当 $i \leq i_{\lambda} \leq j_{\lambda} \leq j$,并且 $w[i_{\lambda}...j_{\lambda}]$ 是一个关于 < 的 Lyndon Word。

Lyndon Roots

定义 4 (Lyndon Root): 令 r = (i, j, p) 是字符串 $w \in \Sigma *$ 的一个run, 长度为 p 的区间 $\lambda = [i_{\lambda}...j_{\lambda}]$ 被称为 r 关于 < 的 Lyndon Root, 当且仅当 $i \leq i_{\lambda} \leq j_{\lambda} \leq j$,并且 $w[i_{\lambda}...j_{\lambda}]$ 是一个关于 < 的 Lyndon Word。显然,对于任意的一组 r 和 <,r 均存在至少一个 Lyndon Root。

The Runs Theorem

容易发现,在一个一元字符集上的任意一个字符串都只能具有至多 一个 run, 在下面的的讨论中, 我们不考虑此类字符串。记 $<_0,<_1$ 为两 种相反的 Σ 上的全序关系,即对于任意 $a, b \in \Sigma$,有 $a <_0 b \Leftrightarrow b <_1 a$, 并以此定义 Σ * 上的字典序关系 $<_0$, $<_1$ 。对于 $\ell \in \{0,1\}$,令 $\bar{\ell} = 1 - \ell$ 。 对于任意字符串 $w \in \Sigma *$,令 $\hat{w} = w *$,其中 $\$ \notin \Sigma$,是一个特殊字符,满 足对于任意 $a \in \Sigma$,有 \$ < 0 a, a < 1 \$。

The Runs Theorem

容易发现,在一个一元字符集上的任意一个字符串都只能具有至多 一个 run, 在下面的的讨论中, 我们不考虑此类字符串。记 <0.<1 为两 种相反的 Σ 上的全序关系,即对于任意 $a, b \in \Sigma$,有 $a <_0 b \Leftrightarrow b <_1 a$, 并以此定义 Σ * 上的字典序关系 $<_0$, $<_1$ 。对于 $\ell \in \{0,1\}$,令 $\bar{\ell} = 1 - \ell$ 。 对于任意字符串 $w \in \Sigma *$,令 $\hat{w} = w *$,其中 $\$ \notin \Sigma$,是一个特殊字符,满 足对于任意 $a \in \Sigma$,有 \$ < 0 a, a < 1 \$。

The Runs Theorem: $\rho(n) < n, \sigma(n) \le 3n - 3$.

定义 5: 对于任意长度为 n 的字符串 w 及其中一个位置 $i (1 \le i \le |w|)$, 令 $l_i(i) = [i...i]$, 其中 $j = max\{i' | \hat{w}[i...i']$ 是一个关于 <ℓ 的 Lyndon Word}。

定义 5: 对于任意长度为 n 的字符串 w 及其中一个位置 i ($1 \le i \le |w|$),令 $l_{\ell}(i) = [i...j]$,其中 $j = max\{j' \mid \hat{w}[i...j']$ 是一个关于 $<_{\ell}$ 的 Lyndon Word $\}$ 。

引理 6: 对于任意长度为 n 的字符串 w 及其中一个位置 i ($1 \le i \le |w|$),有且仅有一个 $\ell \in \{0,1\}$,满足 $\ell_{\ell}(i) = [i...i]$,且 $\ell_{\ell}(i) = [i...i]$ (j > i)。

定义 5: 对于任意长度为 n 的字符串 w 及其中一个位置 i ($1 \le i \le |w|$),令 $l_{\ell}(i) = [i...j]$,其中 $j = max\{f \mid \hat{w}[i...f]$ 是一个关于 $<_{\ell}$ 的 Lyndon Word $\}$ 。

引理 6: 对于任意长度为 n 的字符串 w 及其中一个位置 i ($1 \le i \le |w|$),有且仅有一个 $\ell \in \{0,1\}$,满足 $\ell_{\ell}(i) = [i...i]$,且 $\ell_{\ell}(i) = [i...i]$ (j > i)。

证明: 令 $k = max\{k' \mid \hat{w}[i] \neq \hat{w}[i], k' > i\}$, 令 $\ell \in \{0, 1\}$ 满足 $\hat{w}[k] <_{\ell} \hat{w}[i]$, 由引理 3, $l_{\ell}(i) = [i...i]$, 且 $l_{\bar{\ell}}(i) = [i...j]$ $(j \ge k > i)$ 。

引理 7: 令 r = (i, j, p) 为长度为 n 的字符串 w 中任意的一个 run,那么,有且仅有一个 $\ell \in \{0, 1\}$ 满足 $\hat{w}[j+1] <_{\ell} \hat{w}[j+1-p]$ 。所有 r 的 关于 $<_{\ell}$ 的 Lyndon Root $\lambda = [i_{\lambda}...i_{\lambda}]$ 都与 $\ell_{\ell}(i_{\lambda})$ 相等。

引理 7: 令 r = (i, j, p) 为长度为 n 的字符串 w 中任意的一个 run,那么,有且仅有一个 $\ell \in \{0, 1\}$ 满足 $\hat{w}[j+1] <_{\ell} \hat{w}[j+1-p]$ 。所有 r 的关于 $<_{\ell}$ 的 Lyndon Root $\lambda = [i_{\lambda}...j_{\lambda}]$ 都与 $\ell_{\ell}(i_{\lambda})$ 相等。

证明:由 r 的定义, $\hat{w}[j+1] \neq \hat{w}[j+1-p]$,因此有且仅有一个 $\ell \in \{0,1\}$ 满足 $\hat{w}[j+1] <_{\ell} \hat{w}[j+1-p]$ 。令 $\lambda = [i_{\lambda}...j_{\lambda}]$ 为 r 的关于 $<_{\ell}$ 的一个 Lyndon Root,由引理 **3**, $[i_{\lambda}...j_{\lambda}] = l_{\ell}(i_{\lambda})$ 。

引理 7: 令 r = (i, j, p) 为长度为 n 的字符串 w 中任意的一个 run, 那么,有且仅有一个 $\ell \in \{0,1\}$ 满足 $\hat{w}[i+1] <_{\ell} \hat{w}[i+1-p]$ 。所有 r 的 关于 $<_{\ell}$ 的 Lyndon Root $\lambda = [i_{\lambda}...i_{\lambda}]$ 都与 $\iota_{\ell}(i_{\lambda})$ 相等。

证明:由 r 的定义, $\hat{w}[i+1] \neq \hat{w}[i+1-p]$,因此有且仅有一个 $\ell \in \{0,1\}$ 满足 $\hat{w}[j+1] <_{\ell} \hat{w}[j+1-p]$ 。令 $\lambda = [i_{\lambda}...i_{\lambda}]$ 为 r 的关于 $<_{\ell}$ 的一个 Lyndon Root,由引理 3, $[i_{\lambda}...j_{\lambda}] = l_{\ell}(i_{\lambda})$ 。

对于字符串 w 中任意的一个 run r = (i, j, p),令 其中 $\ell \in \{0,1\}$ 满足 $\hat{w}[j+1] <_{\ell} \hat{w}[j+1-p]$ 。即 B_r 表示所有 r 的关于 $<_{\ell}$ 的 Lyndon Root 构成的集合,但要除去开头位置 i 处开始的 Lyndon Root (如果它存在的话)。有 $|Beq(B_r)| = |B_r| > |e_r - 1| > 1$, 其中 e_r 为 r 的指数。

9/33

引理 8: 对于字符串 w 的两个不同的 run r, r', $Beg(B_r) \cap Beg(B_{r'})$ 为空。

引理 8: 对于字符串 w 的两个不同的 run r, r', $Beg(B_r) \cap Beg(B_{r'})$ 为空。

证明: 考虑反证法,假设存在 $i \in Beg(B_r) \cap Beg(B_{r'})$,并且 $\lambda = [i...j_{\lambda}] \in B_r$, $\lambda' = [i...j_{\lambda'}] \in B_{r'}$ 。令 $\ell \in \{0,1\}$ 满足 $\lambda = l_{\ell}(i)$,由于 $\lambda \neq \lambda'$,有 $\lambda' = l_{\bar{\ell}}(i)$ 。由引理 $\mathbf{6}$, λ 和 λ' 中有且只有一个为 [i...i]。我们 不失一般性地假设 $\lambda = [i...i]$,那么 $j_{\lambda'} > i$ 。由于 $w[i...j_{\lambda'}]$ 为一个 Lyndon Word,有 $w[i] \neq w[j_{\lambda'}]$ 。由 B_r 和 $B_{r'}$ 的定义,r 和 r' 的开始位置均小于 i,这意味着 w[i-1] = w[i](由 r 的周期性),并且 $w[i-1] = w[j_{\lambda'}]$ (由 r' 的周期性)。因此我们得到了一对矛盾的结论,假设不成立。

引理 8 表明,任意的一个 run r 可以被赋予一个两两不交的非空位置集合 $Beg(B_r)$ 。并且,由于 $1 \notin Beg(B_r)$ 对于任意的一个 r 均成立,有 $\sum_{r \in Runs(w)} |B_r| = \sum_{r \in Runs(w)} |Beg(B_r)| \le |w| - 1$ 。因此,我们可以证明如下定理:

引理 8 表明,任意的一个 run r 可以被赋予一个两两不交的非空位置集合 $Beg(B_r)$ 。并且,由于 $1 \notin Beg(B_r)$ 对于任意的一个 r 均成立,有 $\sum_{r \in Runs(w)} |B_r| = \sum_{r \in Runs(w)} |Beg(B_r)| \le |w| - 1$ 。因此,我们可以证明如下定理:

定理 9: $\rho(n) < n$ 。

引理 8 表明,任意的一个 run r 可以被赋予一个两两不交的非空位置集合 $Beg(B_r)$ 。并且,由于 $1 \notin Beg(B_r)$ 对于任意的一个 r 均成立,有 $\sum_{r \in Runs(w)} |B_r| = \sum_{r \in Runs(w)} |Beg(B_r)| \le |w| - 1$ 。因此,我们可以证明如下定理:

定理 9: $\rho(n) < n$ 。

证明: 考虑长度为 n 的字符串 w,由于对于任意 $r \in Runs(w)$,有 $|B_r| \ge 1$,由引理 $\mathbf{8}$,有 $|Runs(w)| \le \sum_{r \in Runs(w)} |B_r| \le n-1$ 。

定理 **10**: $\sigma(n) \leq 3n - 3$ 。

引理 8 表明,任意的一个 run r 可以被赋予一个两两不交的非空位置集合 $Beg(B_r)$ 。并且,由于 $1 \notin Beg(B_r)$ 对于任意的一个 r 均成立,有 $\sum_{r \in Runs(w)} |B_r| = \sum_{r \in Runs(w)} |Beg(B_r)| \le |w| - 1$ 。因此,我们可以证明如下定理:

定理 9: $\rho(n) < n$ 。

证明:考虑长度为 n 的字符串 w,由于对于任意 $r \in Runs(w)$,有 $|B_r| \ge 1$,由引理 8,有 $|Runs(w)| \le \sum_{r \in Runs(w)} |B_r| \le n-1$ 。

定理 **10**: $\sigma(n) \leq 3n - 3$ 。

证明:考虑长度为 n 的字符串 w, 令 e_r 表示 r 的指数。由于对于任意 $r \in Runs(w)$, 有 $|B_r| \ge \lfloor e_r - 1 \rfloor > e_r - 2$, 由引理 $\mathbf{8}$, 有 $\sum_{r \in Runs(w)} (e_r - 2) < \sum_{r \in Runs(w)} \lfloor e_r - 1 \rfloor \le \sum_{r \in Runs(w)} |B_r| \le n - 1$ 。结合引理 $\mathbf{9}$ 中的 $|Runs(w)| \le n - 1$,可得 $\sum_{r \in Runs(w)} e_r \le 3n - 3$ 。

引理 8 表明,任意的一个 run r 可以被赋予一个两两不交的非空位置集合 $Beg(B_r)$ 。并且,由于 $1 \notin Beg(B_r)$ 对于任意的一个 r 均成立,有 $\sum_{r \in Runs(w)} |B_r| = \sum_{r \in Runs(w)} |Beg(B_r)| \le |w| - 1$ 。因此,我们可以证明如下定理:

定理 9: $\rho(n) < n$ 。

证明:考虑长度为 n 的字符串 w,由于对于任意 $r \in Runs(w)$,有 $|B_r| \ge 1$,由引理 8,有 $|Runs(w)| \le \sum_{r \in Runs(w)} |B_r| \le n - 1$ 。

定理 **10**: $\sigma(n) \leq 3n - 3$ 。

证明:考虑长度为 n 的字符串 w, 令 e_r 表示 r 的指数。由于对于任意 $r \in Runs(w)$, 有 $|B_r| \ge \lfloor e_r - 1 \rfloor > e_r - 2$, 由引理 $\mathbf{8}$, 有 $\sum_{r \in Runs(w)} (e_r - 2) < \sum_{r \in Runs(w)} \lfloor e_r - 1 \rfloor \le \sum_{r \in Runs(w)} |B_r| \le n - 1$ 。结合引理 $\mathbf{9}$ 中的 $|Runs(w)| \le n - 1$,可得 $\sum_{r \in Runs(w)} e_r \le 3n - 3$ 。

至此,The Runs Theorem 证明完毕。

引理 7 表明,每个 run 都至少包含一个与 $l_{\ell}(i)$ 相等的 Lyndon Root。接下来的算法算出了所有的 $l_{\ell}(i)$ 。

引理 7 表明,每个 run 都至少包含一个与 $l_{\ell}(i)$ 相等的 Lyndon Root。接下来的算法算出了所有的 $l_{\ell}(i)$ 。

引理 11: 对于任意的两个 Lyndon Word u, v,且 u < v,那么 uv 是一个 Lyndon Word。

引理 7 表明,每个 run 都至少包含一个与 $l_{\ell}(i)$ 相等的 Lyndon Root。接下来的算法算出了所有的 $l_{\ell}(i)$ 。

引理 11: 对于任意的两个 Lyndon Word u, v,且 u < v,那么 uv 是一个 Lyndon Word。

引理 12: 任意字符串 w 都可以被分解成唯一的字典序不上升的 Lyndon Word 序列 $f_1...f_m$,这个序列被称为这个字符串的 Lyndon 分解。每个 f_i 都是 $f_i...f_m$ 的最长 Lyndon 前缀。

引理 7 表明,每个 run 都至少包含一个与 $l_{\ell}(i)$ 相等的 Lyndon Root。接下来的算法算出了所有的 $l_{\ell}(i)$ 。

引理 11: 对于任意的两个 Lyndon Word u, v, 且 u < v, 那么 uv 是一个 Lyndon Word。

引理 12: 任意字符串 w 都可以被分解成唯一的字典序不上升的 Lyndon Word 序列 $f_1...f_m$,这个序列被称为这个字符串的 Lyndon 分解。每个 f_i 都是 $f_i...f_m$ 的最长 Lyndon 前缀。

算法思路: 从右往左对于字符串的每个后缀维护 Lyndon 分解 $f_1...f_m$ 。每次向左新加一个字符 c 时,将 c 作为一个 Lyndon word 插入 f 序列的开头,如果序列中存在相邻的两个 Lyndon Word u,v 满足 u < v,则将 u 和 v 合并为 uv,直至序列满足字典序不上升为止。由引 理 11 和引理 12 可知算法正确性。注意只需要比较新加的串与 Lyndon 分解开头的字符串的字典序大小即可。

4 D > 4 B > 4 B > 4 B > 3 P 9 P

由于 Lyndon 串的特殊性质,比较相邻两个 Lyndon 串字典序的大小关系时可以直接比较它们所代表的后缀的大小关系。虽然它对复杂度分析没有什么影响(可以使用 LCP 实现比较两个子串大小),但是一定程度上简化了我们的代码。这个性质也揭露下文提到的 Lyndon tree 的本质。引理 13 说明了它的正确性。

引理 13: 对于任意 Lyndon 串 u, Lyndon 分解 $f_1...f_m$, $u < f_1$ 当 且仅当 $\overline{uf_1...f_m} < \overline{f_1...f_m}$ 。

引理 13: 对于任意 Lyndon 串 u, Lyndon 分解 $f_1...f_m$, $u < f_1$ 当 且仅当 $\overline{uf_1...f_m} < \overline{f_1...f_m}$ 。

证明: 设 $v = f_1$, $u' = \overline{uf_1...f_m}$, $v' = \overline{f_1...f_m}$ 。若 u, v 第一个不相同的字母的下标小于等于 min(|u|,|v|),那么 u', v' 的大小关系与 u, v 的大小关系相同。我们下面只需要讨论三种情况:u 是 v 的严格前缀、v 是 u 的严格前缀、u 与 v 相等。

引理 13: 对于任意 Lyndon 串 u, Lyndon 分解 $f_1...f_m$, $u < f_1$ 当 且仅当 $\overline{uf_1...f_m} < \overline{f_1...f_m}$ 。

证明:设 $v = f_1$, $u' = \overline{uf_1...f_m}$, $v' = \overline{f_1...f_m}$ 。若 u, v 第一个不相同的字母的下标小于等于 min(|u|,|v|),那么 u', v' 的大小关系与 u, v 的大小关系相同。我们下面只需要讨论三种情况:u 是 v 的严格前缀、v 是 u 的严格前缀、u 与 v 相等。

若 u 是 v 的严格前缀,那么 u < v。由于 v 是 Lyndon 串,所以有 v[1...|v|-|u|] < v[|u|+1...|v|],那么 u' < v'。

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● ♥Q♡

引理 13: 对于任意 Lyndon 串 u, Lyndon 分解 $f_1...f_m$, $u < f_1$ 当 且仅当 $\overline{uf_1...f_m} < \overline{f_1...f_m}$ 。

证明:设 $v = f_1, u' = \overline{uf_1...f_m}, v' = \overline{f_1...f_m}$ 。若 u, v 第一个不相同的字母的下标小于等于 min(|u|, |v|),那么 u', v' 的大小关系与 u, v 的大小关系相同。我们下面只需要讨论三种情况:u 是 v 的严格前缀、v 是 u 的严格前缀、u 与 v 相等。

若 $u \in v$ 的严格前缀,那么 u < v。由于 $v \in Lyndon$ 串,所以有 v[1...|v|-|u|] < v[|u|+1...|v|],那么 u' < v'。

若 $v \in u$ 的前缀,那么 $u \geq v$ 。此时 $u, f_1, ..., f_m$ 为 Lyndon 分解。 所以 $u \in u'$ 的最长 Lyndon 前缀。由**引理 3** 可得, $u' \geq v'$ 。

引理 13: 对于任意 Lyndon 串 u, Lyndon 分解 $f_1...f_m$, $u < f_1$ 当 且仅当 $\overline{uf_1...f_m} < \overline{f_1...f_m}$ 。

证明:设 $v = f_1, u' = \overline{uf_1...f_m}, v' = \overline{f_1...f_m}$ 。若 u, v 第一个不相同的字母的下标小于等于 min(|u|, |v|),那么 u', v' 的大小关系与 u, v 的大小关系相同。我们下面只需要讨论三种情况:u 是 v 的严格前缀、v 是 u 的严格前缀、u 与 v 相等。

若 $u \in v$ 的严格前缀,那么 u < v。由于 $v \in Lyndon$ 串,所以有 v[1...|v| - |u|] < v[|u| + 1...|v|],那么 u' < v'。

若 $v \in u$ 的前缀,那么 $u \geq v$ 。此时 $u, f_1, ..., f_m$ 为 Lyndon 分解。 所以 $u \in u'$ 的最长 Lyndon 前缀。由**引理 3** 可得, $u' \geq v'$ 。

综上所述,u < v 当且仅当 u' < v'。

Algorithm 1: Computing $l_{\ell}(i)$ in linear time for all i.

Algorithm 1: Computing $l_{\ell}(i)$ in linear time for all i.

这个算法用 O(n) 的时间复杂度求出了每个后缀的 Lyndon 分解,相当于求出了 $l_{\ell}(i)$ 。

4014914515 5 000

Algorithm 1: Computing $l_{\ell}(i)$ in linear time for all i.

这个算法用 O(n) 的时间复杂度求出了每个后缀的 Lyndon 分解,相当于求出了 $\iota_{\ell}(i)$ 。

可以发现我们实际维护的就是 ISA 数组的单调栈。

4 D > 4 A > 4 B > 4 B > B = 990

枚举 i,设 $l_{\ell}(i) = [l...r]$ 。我们分别求出最长的 l_1, l_2 使得 $w[l...l+l_1-1] = w[r+1...r+l_1]$, $w[l-l_2...l-1] = w[r-l_2...r-1]$ 。若 $l_1+l_2 \geq 2(r-l+1)$,那么我们就找到了一个 run,即 $(l-l_2,r+l_1-1,r-l+1)$ 。

枚举 i, 设 $l_{\ell}(i) = [l...r]$ 。我们分别求出最长的 l_1, l_2 使得 $w[l...l+l_1-1] = w[r+1...r+l_1]$, $w[l-l_2...l-1] = w[r-l_2...r-1]$ 。若 $l_1+l_2 \geq 2(r-l+1)$,那么我们就找到了一个 run,即 $(l-l_2,r+l_1-1,r-l+1)$ 。 这一步其实相当于向前向后求 LCP。

枚举 i,设 $l_{\ell}(i) = [l...r]$ 。我们分别求出最长的 l_1, l_2 使得 $w[l...l+l_1-1] = w[r+1...r+l_1]$, $w[l-l_2...l-1] = w[r-l_2...r-1]$ 。若 $l_1+l_2 \geq 2(r-l+1)$,那么我们就找到了一个 run,即 $(l-l_2,r+l_1-1,r-l+1)$ 。 这一步其实相当于向前向后求 LCP。 注意我们需要先枚举 ℓ ,即字典序是顺序还是逆序。

定理 14: 设 n 为字符串长度。以上算法可以用 O(n) 的时空复杂 度找出所有的 runs。

定理 14: 设 n 为字符串长度。以上算法可以用 O(n) 的时空复杂度找出所有的 runs。

使用线性算法(SA-IS)构造后缀数组,并且使用线性预处理 O(1) 询问的 RMQ 算法来支持 LCP 询问,整个算法即可做到线性。

定理 14: 设 n 为字符串长度。以上算法可以用 O(n) 的时空复杂 度找出所有的 runs。

使用线性算法(SA-IS)构造后缀数组,并且使用线性预处理 O(1)询问的 RMQ 算法来支持 LCP 询问,整个算法即可做到线性。

使用 $O(n \log n)$ 的算法构造后缀数组,并且使用 $O(n \log n)$ 预处理 O(1) 询问的 RMQ 算法,整个算法即可做到 $O(n \log n)$ 。

定理 14: 设 n 为字符串长度。以上算法可以用 O(n) 的时空复杂度找出所有的 runs。

使用线性算法(SA-IS)构造后缀数组,并且使用线性预处理 O(1) 询问的 RMQ 算法来支持 LCP 询问,整个算法即可做到线性。

使用 $O(n \log n)$ 的算法构造后缀数组,并且使用 $O(n \log n)$ 预处理 O(1) 询问的 RMQ 算法,整个算法即可做到 $O(n \log n)$ 。

简单而实用的方法: 使用 O(n) 预处理 $O(\log n)$ 询问的二分 + 哈希 算法实现 LCP,整个算法即可做到 $O(n\log n)$ 。

定理 14: 设 n 为字符串长度。以上算法可以用 O(n) 的时空复杂度找出所有的 runs。

使用线性算法(SA-IS)构造后缀数组,并且使用线性预处理 O(1) 询问的 RMQ 算法来支持 LCP 询问,整个算法即可做到线性。

使用 $O(n \log n)$ 的算法构造后缀数组,并且使用 $O(n \log n)$ 预处理 O(1) 询问的 RMQ 算法,整个算法即可做到 $O(n \log n)$ 。

简单而实用的方法: 使用 O(n) 预处理 $O(\log n)$ 询问的二分 + 哈希 算法实现 LCP,整个算法即可做到 $O(n\log n)$ 。

定义 15: 一个 Lyndon 串 $w(|w| \ge 2)$ 的标准划分是一个有序对 (u,v),满足 v 是 w 的字典序最小的严格后缀,并且 $w = \overline{uv}$ 。注意 u 和 v 一定是 Lyndon 串。这在之后的构造方法中可以看出。

定义 15: 一个 Lyndon 串 $w(|w| \ge 2)$ 的标准划分是一个有序对 (u,v),满足 v 是 w 的字典序最小的严格后缀,并且 $w=\overline{uv}$ 。注意 u 和 v一定是 Lyndon 串。这在之后的构造方法中可以看出。

定义 16: Lyndon Tree 是一棵树,每个节点对应一个 Lyndon 串。 根节点对应原串 w,且要求 w 是一个 Lyndon 串。每个节点的左儿子和 右儿子对应的字符串 u 和 v 是这个节点对应的字符串的标准划分 (u,v)。 叶子对应的字符串长度为 1。这棵树用 $Ltree_{\ell}(w)$ 来表示。

Figure: A Lyndon Tree for the Lyndon Word aababaababb

每个节点对应的字符串都是原串 w 的一个子串 w[i...j]。[i...j] 被称 为这个节点所对应的区间。我们用 lca([i...j]) 来表示位置 i 到位置 j 之 间的所有的叶子节点的 LCA, 即最近公共祖先。

每个节点对应的字符串都是原串 w 的一个子串 w[i...j]。[i...j] 被称 为这个节点所对应的区间。我们用 lca([i...i]) 来表示位置 i 到位置 i 之 间的所有的叶子节点的 LCA, 即最近公共祖先。

本质上是 ISA 数组的笛卡尔树。构造方法与之前计算 Lyndon root 的算法完全相同。可以在线性时间内构造。

性质: 若一个 w 的一个子串 w[i...j] 是 Lyndon 串,那么节点 $\alpha = lca([i...j]) = [i_{\alpha}, j_{\alpha}]$,满足 $i = i_{\alpha} \leq j \leq j_{\alpha}$ 。若 w 是位置 i(i > 1) 开始的最长 Lyndon 串,那么节点 α 一定是一个右儿子节点。

性质: 若一个 w 的一个子串 w[i...j] 是 Lyndon 串,那么节点 $\alpha = lca([i...j]) = [i_{\alpha}, j_{\alpha}], 满足 i = i_{\alpha} \leq j \leq j_{\alpha}$ 。若 w 是位置 i(i > 1) 开 始的最长 Lyndon 串,那么节点 α 一定是一个右儿子节点。 w 的任意一个 run 的所有 Lyndon root 都会在 LTree₀(w) 或

 $LTree_1(w)$ 中的右儿子节点中出现。这里的 0 或 1 由**引理 7** 决定。

引理: 若一个串 |S| 有 p,q 两个周期,且 $p+q \leq |S|$,则 $\gcd(p,q)$ 也是S的周期。

引理: 若一个串 |S| 有 p,q 两个周期, 且 $p+q \leq |S|$, 则 gcd(p,q)也是S的周期。

证明: 假设 p < q。 当 $i \ge p$ 时 S[i] = S[i-p] = S[i-p+q]; 当 i < p 时 S[i] = S[i+q] = S[i+q-p]。因此可以得到 q-p 也是 S 的周 期。根据辗转相除法, gcd(p,q) 是 S 的周期。

引理: 若一个串 |S| 有 p,q 两个周期,且 $p+q \le |S|$,则 $\gcd(p,q)$ 也是 S 的周期。

证明: 假设 p < q。 当 $i \ge p$ 时 S[i] = S[i-p] = S[i-p+q]; 当 i < p 时 S[i] = S[i+q] = S[i+q-p]。因此可以得到 q-p 也是 S 的周期。根据辗转相除法, $\gcd(p,q)$ 是 S 的周期。

Periodicity Lemma: 若一个串 |S| 有 p,q 两个周期,且 $p+q-\gcd(p,q)\leq |S|$,则 $\gcd(p,q)$ 也是 S 的周期。

引理: 若一个串 |S| 有 p,q 两个周期,且 $p+q \le |S|$,则 $\gcd(p,q)$ 也是 S 的周期。

证明: 假设 p < q。 当 $i \ge p$ 时 S[i] = S[i-p] = S[i-p+q]; 当 i < p 时 S[i] = S[i+q] = S[i+q-p]。 因此可以得到 q-p 也是 S 的周期。根据辗转相除法, $\gcd(p,q)$ 是 S 的周期。

Periodicity Lemma: 若一个串 |S| 有 p,q 两个周期,且 $p+q-\gcd(p,q)\leq |S|$,则 $\gcd(p,q)$ 也是 S 的周期。 以下把 Weak Periodicity Lemma 简写为 WPL。

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 900

问题:设计数据结构,支持快速查询母串S的某个子串是否有不超 过长度一半的周期,如果有则求出最小周期。

问题:设计数据结构,支持快速查询母串 S 的某个子串是否有不超过长度一半的周期,如果有则求出最小周期。

定义: exrun(i,j) 为满足 $i' \le i, j' \ge j, p \le (j-i+1)/2$ 的一个run(i',j',p)。根据 WPL,如果 exrun 存在则一定唯一。

问题:设计数据结构,支持快速查询母串 S 的某个子串是否有不超过长度一半的周期,如果有则求出最小周期。

定义: exrun(i,j) 为满足 $i' \le i, j' \ge j, p \le (j-i+1)/2$ 的一个run(i',j',p)。根据 WPL,如果 exrun 存在则一定唯一。

做法: 根据上面的定义,对 S[i...j] 的查询就等价于找到 exrun(i,j)。我们先构造出 $LTree_0(S)$ 和 $LTree_1(S)$ 。算法为: 令 $a_0 = lca_0\left(\left[i...\left[(i+j)/2\right]\right]\right), a_1 = lca_1\left(\left[i...\left[(i+j)/2\right]\right]\right)$,并判断它们的右 几子对应的 run 是否满足条件。

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 900

假设 exrun(i,j) = r = (i',j',p),那么由于 $p \leq (j-i+1)/2$,一定有一个 Lyndon root $\lambda = [i_{\lambda}...j_{\lambda}]$ 包含 [(j-i+1)/2] 这个位置。根据 Lyndon Tree 的性质,这个 Lyndon root 在 $LTree_{\ell}(S)$ 中作为某个节点的右儿子出现。

假设 exrun(i,j) = r = (i',j',p),那么由于 $p \leq (j-i+1)/2$,一定有一个 Lyndon root $\lambda = [i_{\lambda}...j_{\lambda}]$ 包含 [(j-i+1)/2] 这个位置。根据 Lyndon Tree 的性质,这个 Lyndon root 在 $LTree_{\ell}(S)$ 中作为某个节点的右儿子出现。

这时我们有 a_ℓ 的长度 > p,且它同样包含 [(j-i+1)/2] 这个位置,因此 a_ℓ 是 λ 的祖先。若它的右儿子 $\beta = [i_\beta...j_\beta] \neq \lambda$,则 β 也是 λ 的祖先。因为 λ 和 β 都是右儿子,可以得到 $i \leq i_\beta < i_\lambda$ 。

假设 exrun(i,j)=r=(i',j',p),那么由于 $p\leq (j-i+1)/2$,一定有一个 Lyndon root $\lambda=[i_{\lambda}...j_{\lambda}]$ 包含 $\lceil (j-i+1)/2 \rceil$ 这个位置。根据 Lyndon Tree 的性质,这个 Lyndon root 在 $LTree_{\ell}(S)$ 中作为某个节点的右儿子出现。

这时我们有 a_ℓ 的长度 > p,且它同样包含 $\lceil (j-i+1)/2 \rceil$ 这个位置,因此 a_ℓ 是 λ 的祖先。若它的右儿子 $\beta = [i_\beta...j_\beta] \neq \lambda$,则 β 也是 λ 的祖先。因为 λ 和 β 都是右儿子,可以得到 $i \leq i_\beta < i_\lambda$ 。

若 $j_{\beta} \leq j$ 则 $S[i_{\beta}...j_{\beta}]$ 有周期 p,与它是 Lyndon Word 矛盾。若 $j_{\beta} > j$ 可以发现 $S[i_{\lambda}...j_{\beta}] <_{\ell} S[i_{\beta}...j_{\beta}]$,同样与它是 Lyndon Word 矛盾。上述矛盾表明我们的算法是正确的。

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ のQ♡

扩展: 更一般的 Period Queries 需要用到一种叫做基本子串字典的 数据结构 (Dictionary of Basic Factors), 它可以做到 $O(|S| \log |S|)$ 预处 理,每次查询 $O(\log |S|)$ 。这一数据结构基于后缀数组的倍增算法,在 2017 年金策的冬令营讲课中提到。

扩展: 更一般的 Period Queries 需要用到一种叫做基本子串字典的 数据结构 (Dictionary of Basic Factors), 它可以做到 $O(|S| \log |S|)$ 预处 理,每次查询 $O(\log |S|)$ 。这一数据结构基于后缀数组的倍增算法,在 2017 年金策的冬令营讲课中提到。

另外,由于 Lyndon Tree 和后缀数组的笛卡尔树结构相同,维护 Lyndon Tree 可以转化为维护后缀数组。如果结合后缀平衡树等经典数 据结构,可以把 Two-Period Queries 进行一定程度上的推广(如:树 F).

串串划分(简化)²

问题:给定一个串 S,求把它划分为若干个循环串的方案数。若一 个串 S 的最小周期 p 是 |S| 的真因数,则称 S 为循环串。 $|S| \le 10^6$

杨骏昭的集训队互测题

串串划分(简化)²

问题:给定一个串 S,求把它划分为若干个循环串的方案数。若一 个串 S 的最小周期 p 是 |S| 的真因数,则称 S 为循环串。 $|S| \le 10^6$ 做法: 首先可以设计简单的递推: f(i) 表示 S[1...i] 的划分方案数。 那么有 $f(i) = \sum_{j=0}^{i-1} f(j) \cdot [S[i...j]$ 是循环串]。不过即使我们能快速判断每 个串是否是循环串,这个递推的复杂度也是 $O(|S|^2)$ 的。如何优化转移?

杨骏昭的集训队互测题

问题:给定一个串 S,求把它划分为若干个循环串的方案数。若一个串 S 的最小周期 p 是 |S| 的真因数,则称 S 为循环串。 $|S| \le 10^6$

做法: 首先可以设计简单的递推: f(i) 表示 S[1...i] 的划分方案数。那么有 $f(i) = \sum_{j=0}^{i-1} f(j) \cdot [S[i...j]$ 是循环串]。不过即使我们能快速判断每个串是否是循环串,这个递推的复杂度也是 $O(|S|^2)$ 的。如何优化转移?

首先,对于每个循环串,显然可以只在最小周期处考虑。我们把状态修改为: f(i,p) 表示 S[1...i] 的划分,且最后一个划分的最小周期为 p 的方案数。这样,我们的转移就有两种方向: 加入一个新的循环串;扩展当前循环串一个周期。为了不重复计数,我们强制新的循环串的最小周期为长度的一半。这个转移可以 O(1) 进行,因此我们只需要计算状态数。

²来源:杨骏昭的集训队互测题

问题:给定一个串 S,求把它划分为若干个循环串的方案数。若一个串 S 的最小周期 p 是 |S| 的真因数,则称 S 为循环串。 $|S| \le 10^6$

做法: 首先可以设计简单的递推: f(i) 表示 S[1...i] 的划分方案数。那么有 $f(i) = \sum_{j=0}^{i-1} f(j) \cdot [S[i...j]$ 是循环串]。不过即使我们能快速判断每个串是否是循环串,这个递推的复杂度也是 $O(|S|^2)$ 的。如何优化转移?首先,对于每个循环串,显然可以只在最小周期处考虑。我们把状

查修改为: f(i,p) 表示 S[1...i] 的划分,且最后一个划分的最小周期为 p 的方案数。这样,我们的转移就有两种方向: 加入一个新的循环串;扩展当前循环串一个周期。为了不重复计数,我们强制新的循环串的最小周期为长度的一半。这个转移可以 O(1) 进行,因此我们只需要计算状态数。

定义: 若串 S 的最小周期为 |S|/2 则称 S 为一个 primitive square。 注意由于 WPL,这样的定义没有问题。

²来源:杨骏昭的集训队互测题

引理: 若非空串 S, T 满足 SS 是 TT 的前缀,且 2|S| > |T|,则 |T| - |S| 是 S 的周期。

此引理画图自证不难。

引理: 若非空串 u, v, w 满足 uu 是 vv 的前缀, vv 是 ww 的前缀, 且 uu 是 primitive square,则 $|u|+|v|\leq |w|$ 。

引理: 若非空串 S, T 满足 SS 是 TT 的前缀,且 2|S| > |T|,则 |T| - |S| 是 S 的周期。

此引理画图自证不难。

引理: 若非空串 u, v, w 满足 uu 是 vv 的前缀, vv 是 ww 的前缀, 且 uu 是 primitive square,则 $|u| + |v| \le |w|$ 。

证明: 若 $|w| \ge 2|v| \ge |u| + |v|$ 则已证完。因此假设 |w| < 2|v|,并假设 |u| + |v| > |w|,则 |w| - |v| 是 u 和 v 的周期。

引理: 若非空串 S, T 满足 SS 是 TT 的前缀,且 2|S| > |T|,则 |T| - |S| 是 S 的周期。

此引理画图自证不难。

引理: 若非空串 u, v, w 满足 uu 是 vv 的前缀, vv 是 ww 的前缀, 且 uu 是 primitive square,则 $|u| + |v| \le |w|$ 。

证明: 若 $|w| \ge 2|v| \ge |u| + |v|$ 则已证完。因此假设 |w| < 2|v|,并假设 |u| + |v| > |w|,则 |w| - |v| 是 u 和 v 的周期。

若 $2|u| \le |v|$,则 |w| - |v| < |u| 是 uu 的周期,和 primitive square 的定义矛盾。

证明:考虑 2|u| > |v| 的情况。此时 |u| 和 |w| - |v| 都是 v 的周期, 由于 u 不是周期串, 意味着 WPL 不能使用在 v 串上, 也就是 |u| + |w| > 2|v|.

证明:考虑 2|u| > |v| 的情况。此时 |u| 和 |w| - |v| 都是 v 的周期, 由于 u 不是周期串,意味着 WPL 不能使用在 v 串上,也就是 |u| + |w| > 2|v|.

令 $w = vs_1$, $u = s_1 s_3$, $v = ws_2 = s_1 s_3 s_2$ 。根据上面的推论, $|s_2| < |s_1|$ 。考虑串 $s_3 s_2$,它有周期 $|s_2|$ 。由于 $|s_1|$ 是 u 的周期,可得 s_3s_2 是 u 的前缀,这意味着 $|s_3|$ 也是它的周期。根据 WPL, $r = \gcd(|s_2|, |s_3|)$ 是它的周期。而 $|s_2|$ 本身同时是 u 的周期,因此可得 r 是 u 的周期。

证明:考虑 2|u| > |v| 的情况。此时 |u| 和 |w| - |v| 都是 v 的周期, 由于 u 不是周期串,意味着 WPL 不能使用在 v 串上,也就是 |u| + |w| > 2|v|.

令 $w = vs_1$, $u = s_1 s_3$, $v = ws_2 = s_1 s_3 s_2$ 。根据上面的推论, $|s_2| < |s_1|$ 。考虑串 $s_3 s_2$,它有周期 $|s_2|$ 。由于 $|s_1|$ 是 u 的周期,可得 s_3s_2 是 u 的前缀,这意味着 $|s_3|$ 也是它的周期。根据 WPL, $r = \gcd(|s_2|, |s_3|)$ 是它的周期。而 $|s_2|$ 本身同时是 u 的周期,因此可得 r 是 u 的周期。

接着考虑串 $u = s_1 s_3$ 。它的周期有 $|s_1|$ 和 r,而 $r \le |s_3|$,根据 WPL, $r' = \gcd(r, |s_1|)$ 也是 u 的周期。然而 $|s_1|$ 和 $|s_3|$ 都是 r' 的倍数, 这表示 uu 也有周期 r', 矛盾。

证明: 考虑 2|u| > |v| 的情况。此时 |u| 和 |w| - |v| 都是 v 的周期,由于 u 不是周期串,意味着 WPL 不能使用在 v 串上,也就是 |u| + |w| > 2|v|。

令 $w = vs_1$, $u = s_1s_3$, $v = ws_2 = s_1s_3s_2$ 。根据上面的推论, $|s_2| < |s_1|$ 。考虑串 s_3s_2 ,它有周期 $|s_2|$ 。由于 $|s_1|$ 是 u 的周期,可得 s_3s_2 是 u 的前缀,这意味着 $|s_3|$ 也是它的周期。根据 WPL, $r = \gcd(|s_2|,|s_3|)$ 是它的周期。而 $|s_2|$ 本身同时是 u 的周期,因此可得 r 是 u 的周期。

接着考虑串 $u=s_1s_3$ 。它的周期有 $|s_1|$ 和 r,而 $r\leq |s_3|$,根据 WPL, $r'=\gcd(r,|s_1|)$ 也是 u 的周期。然而 $|s_1|$ 和 $|s_3|$ 都是 r' 的倍数,这表示 uu 也有周期 r',矛盾。

引理的一个显然的推论是,一个串 S 中 primitive square 的个数不 超过 $O(|S| \log |S|)$ 。

40 40 40 40 40 5 900

有了之前的引理,最终剩下的问题就是如何找出所有的 primitive squares。由于每个 primitive square 一定属于恰好一个和它的周期对应 的 run 的一部分,我们只要求出所有的 run,并对每个 run 暴力即可。

有了之前的引理,最终剩下的问题就是如何找出所有的 primitive squares。由于每个 primitive square 一定属于恰好一个和它的周期对应 的 run 的一部分,我们只要求出所有的 run,并对每个 run 暴力即可。

综上,我们得到了一个 $O(n \log n)$ 的做法。不难发现,对于大部分 和周期串相关的问题,都可以对每个周期串在最后一个 primitive square 处考虑并简化状态数。

有了之前的引理,最终剩下的问题就是如何找出所有的 primitive squares。由于每个 primitive square 一定属于恰好一个和它的周期对应 的 run 的一部分,我们只要求出所有的 run,并对每个 run 暴力即可。

综上,我们得到了一个 $O(n \log n)$ 的做法。不难发现,对于大部分 和周期串相关的问题,都可以对每个周期串在最后一个 primitive square 处考虑并简化状态数。

【集训队作业2018】 串串划分 统计

满分提交								
ID	類目	提交者	结果	用时	内存	语言	文件大小	最快 最短 提交时间
#303285	#429. 【集训队作业2018】 串串划分	FizzyDavid	100	4928ms	50428kb	C++11	2.5kb	2018-12-01 19:30:32
#312132	#429. 【集训队作业2018】 串串划分	yfzese	100	5708ms	77988kb	C++11	4.6kb	2019-01-02 20:24:36
#301875	#429. 【集训队作业2018】 串串划分	diamond_duke	100	9520ms	87060kb	C++11	3.7kb	2018-11-26 13:45:35
#301626	#429. 【集训队作业2018】 串串划分	wangxiuhan	100	9615ms	84672kb	C++11	5.4kb	2018-11-24 14:20:24
#301664	#429. 【集训队作业2018】 串串划分	yww	100	9636ms	100920kb	C++11	5.7kb	2018-11-24 17:23:09
#301994	#429. 【集训队作业2018】 串串划分	wearry	100	10118ms	87192kb	C++11	3.8kb	2018-11-26 22:17:28
#301727	#429. 【集训队作业2018】 串串划分	kcznol	100	10411ms	90524kb	C++11	2.2kb	2018-11-25 09:56:38
#302583	#429. 【集训队作业2018】 串串划分	sshockwave	100	10482ms	96288kb	C++	3.6kb	2018-11-29 10:46:19
#301701	#429. 【集训队作业2018】 串串划分	DZYO	100	10961ms	101652kb	C++11	2.3kb	2018-11-24 21:39:10
#302714	#429. 【集训队作业2018】 串串划分	mayaohua	100	11744ms	118972kb	C++11	3.3kb	2018-11-29 18:11:42

可以发现, primitive square 和 run 是密切相关的,知道一个就能 求出另一个。在杨骏昭的题解中给出的是一个不基于 Lyndon Word 任 何性质的做法。而这里的做法的优势在于代码复杂度和用时都较小。

Summary

- Runs and The Runs Theorem - 徐翊轩

Summary

- Runs and The Runs Theorem 徐翊轩
- How to Compute Runs and Lyndon Tree 杨骏昭

Summary

- Runs and The Runs Theorem 徐翊轩
- How to Compute Runs and Lyndon Tree 杨骏昭
- Applications of The Runs Theorem 陈孙立

[1] Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, Kazuya Tsuruta, The "Runs" Theorem [2] Maxime Crochemore, Lu'is M. S. Russo, Cartesian trees and Lyndon trees

Thanks

谢谢大家。

