To predict and analyze which gender has a high chance of survival at the time of disaster

In [2]:

```
#import libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
```

In [3]:

```
df=pd.read_csv(r"C:\Users\thara\OneDrive\Desktop\py\heart_disease_data.csv")
df
```

Out[3]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1
									•••					•••
298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	0
299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0
300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0
301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0
302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	0

303 rows × 14 columns

In [4]:

df.head()

Out[4]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

In [5]:

```
df.tail()
```

Out[5]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	0
299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0
300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0
301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0
302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	0

In [6]:

```
df.shape
```

Out[6]:

(303, 14)

In [7]:

```
df.isnull().sum()
```

Out[7]:

0 age sex 0 0 ср 0 trestbps 0 chol 0 fbs restecg 0 0 thalach 0 exang oldpeak 0 0 slope 0 ca thal 0 target dtype: int64

In [8]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 303 entries, 0 to 302 Data columns (total 14 columns): # Column Non-Null Count Dtype --------0 303 non-null int64 age 1 sex 303 non-null int64 2 303 non-null int64 ср 3 trestbps 303 non-null int64 4 chol 303 non-null int64 5 fbs 303 non-null int64 6 303 non-null int64 restecg 7 thalach 303 non-null int64 8 303 non-null int64 exang 9 oldpeak 303 non-null float64 10 slope 303 non-null int64 11 303 non-null int64 ca 303 non-null int64 12 thal 303 non-null 13 target int64 dtypes: float64(1), int64(13)

In [9]:

df.describe()

memory usage: 33.3 KB

Out[9]:

age	sex	ср	trestbps	chol	fbs	restecg	thalach	exanç
303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000
54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.528053	149.646865	0.326733
9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.525860	22.905161	0.469794
29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.000000	0.000000
47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.500000	0.000000
55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.000000	153.000000	0.000000
61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.000000	166.000000	1.000000
77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000	202.000000	1.000000
4								>

In [10]:

```
df['target'].value_counts()
```

Out[10]:

target 1 165 0 138

Name: count, dtype: int64

```
In [11]:
```

```
x=df.drop(columns='target',axis=1)
y=df['target']
```

In []:

```
x=df.drop(columns='glucose',axis=1)
y=df['glucose']
```

In [13]:

```
print(x)
```

	age	sex	ср	trestbps	cho⊥	†bs	restecg	thalach	exang	oldpeak	
0	63	1	3	145	233	1	0	150	0	2.3	\
1	37	1	2	130	250	0	1	187	0	3.5	
2	41	0	1	130	204	0	0	172	0	1.4	
3	56	1	1	120	236	0	1	178	0	0.8	
4	57	0	0	120	354	0	1	163	1	0.6	
298	57	0	0	140	241	0	1	123	1	0.2	
299	45	1	3	110	264	0	1	132	0	1.2	
300	68	1	0	144	193	1	1	141	0	3.4	
301	. 57	1	0	130	131	0	1	115	1	1.2	
302	57	0	1	130	236	0	0	174	0	0.0	

```
slope
             ca
                  thal
0
          0
              0
                      1
                      2
1
          0
              0
                      2
          2
2
               0
          2
                      2
3
               0
4
          2
               0
                      2
298
              0
                     3
          1
                     3
299
          1
              0
                     3
300
          1
               2
301
          1
               1
                      3
302
          1
               1
                      2
```

[303 rows x 13 columns]

In [14]:

```
1
       1
       1
2
3
       1
4
       1
298
       0
299
       0
300
       0
301
       0
302
Name: target, Length: 303, dtype: int64
```

```
09/06/2023, 14:56
                                           LogisticRegression-Heartdisease - Jupyter Notebook
  In [15]:
 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, stratify=y,random_state=2
  In [16]:
  print(x.shape, x_train.shape, x_test.shape)
  (303, 13) (242, 13) (61, 13)
  In [17]:
 model = LogisticRegression()
  In [18]:
 model.fit(x train,y train)
  C:\Users\thara\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\lin
  ear model\ logistic.py:458: ConvergenceWarning: lbfgs failed to converge (status=1):
  STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
  Increase the number of iterations (max_iter) or scale the data as shown in:
      https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-lear
  n.org/stable/modules/preprocessing.html)
  Please also refer to the documentation for alternative solver options:
      https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression (h
  ttps://scikit-learn.org/stable/modules/linear_model.html#logistic-regression)
    n iter i = check optimize result(
  Out[18]:
  ▼ LogisticRegression
  LogisticRegression()
  In [19]:
  # accuracy on training data
 x_train_prediction = model.predict(x_train)
  training_data_accuracy = accuracy_score(x_train_prediction, y_train)
  In [20]:
 # accuracy on test data
 x_test_prediction = model.predict(x_test)
 test_data_accuracy = accuracy_score(x_test_prediction, y_test)
  In [21]:
  print('Accuracy on Test data : ', test_data_accuracy)
  Accuracy on Test data : 0.819672131147541
  In [ ]:
```

localhost:8888/notebooks/LogisticRegression-Heartdisease.ipynb