Zusammenfassung

Mihir Mahajan, Alfred Nguyen, Noah Kiefer Diaz ${\rm May}\ 20,\ 2022$

Contents

1	Diskrete Wahrscheinlichkeitsräume			2
	1.1	Grundlagen		
		1.1.1	Definition 1	2
		1.1.2	Lemma 8	2
		1.1.3	Satz 9 Siebformel	2
		1.1.4	Wahl der Wahrscheinlichkeiten	3
	1.2 Bedingte Wahrscheinlichkeiten			3
		1.2.1		3
		1.2.2	Baba Beispiele	3
		1.2.3	Satz 18 (Satz von der totalen Wahrscheinlichkeit)	4
		1.2.4	Satz 19 (Satz von Bayes)	4
2	Una	abhängigkeit 4		
3	Zufallsvariablen			
	3.1	Grund	Grundlagen	
	3.2		artungswert und Varianz	
	- · -	3.2.1		$\overline{4}$
		3.2.2		5
		3.2.3	9	
		3.2.3	lichkeit	5

Diskrete Wahrscheinlichkeitsräume 1

Grundlagen 1.1

Definition 1 1.1.1

- Ein diskreter Wahrscheinlichkeitsraum ist durch eine Ergebnismenge $\Omega = \{\omega_1, ..., \omega_n\}$ von Elementarereignissen gegeben
- Jedem Ereignis ω_{i4} ist eine Wahrscheinlichkeit $0 \leq Pr[\omega_i] \leq 1$ zugeordnet

$$\textstyle\sum_{\omega\in\Omega} \Pr[\omega] = 1$$

- \bullet Die Menge $E\subseteq \Omega$ heißt Ereignis. $Pr[E]=\sum_{\omega\in E}Pr[\omega]$
- \bar{E} ist komplement zu E

Man kann standard Mengenoperationen auf Ereignisse machen, also bei Ereignissen A, B dann auch $A \cup B, A \cap B$

1.1.2Lemma 8

Für Ereignisse $A, B, A_1, A_2, ..., A_n$ gilt

- $Pr[\emptyset] = 0, Pr[\Omega] = 1$
- $0 \le Pr[A] \le 1$
- $Pr[\bar{A}] = 1 Pr[A]$
- Wenn $A \subseteq B$ so folgt $Pr[A] \leq Pr[B]$
- Additionssatz: Bei paarweise disjunkten Ereignissen gilt:

$$Pr[\bigcup_{i=1}^{n} A_i] = \sum_{i=1}^{n} Pr[A_i]$$

Insbesondere gilt also:

$$Pr[A \cup B] = Pr[A] + Pr[B]$$

Und für unendliche Menge von disjunkten Ereignissen:

$$Pr[\bigcup_{i=1}^{\infty} A_i] = \sum_{i=1}^{\infty} Pr[A_i]$$

1.1.3Satz 9 Siebformel

Lemma 8, gilt nur für disjunkte Mengen. Das geht auch für nicht disjunkte!

1. Zwei Mengen
$$Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$$

- 2. Drei Mengen $Pr[A_1 \cup A_2 \cup A_3] = Pr[A1] + Pr[A2] + Pr[A3] Pr[A1 \cap A2] Pr[A1 \cap A3] Pr[A_2 \cap A_3] + Pr[A_1 \cap A_2 \cap A_3]$
- 3. n Mengen Veranschaulichen an Venn-Diagramm
 - (a) Alle aufaddieren
 - (b) Paarweise schnitte subtrahieren
 - (c) Dreifache schnitte dazuaddieren
 - (d) 4- fache schritte subtrahieren
 - (e) ...

1.1.4 Wahl der Wahrscheinlichkeiten

Prinzip von Laplace (Pierre Simon Laplace (1749–1827)): Wenn nichts dagegen spricht, gehen wir davon aus, dass alle Elementarereignisse gleich wahrscheinlich sind. $Pr[E] = \frac{|E|}{|\Omega|}$

1.2 Bedingte Wahrscheinlichkeiten

1.2.1 **Definition 12**

A und B seien Ereignisse mit Pr[B] > 0. Die bedingte Wahrscheinlichkeit Pr[A|B] von A gegeben B ist definiert als: $Pr[A|B] := \frac{Pr[A \cap B]}{Pr[B]}$

Umgangssprachlich: Pr[A|B] beschreibt die Wahrscheinlichkeit, dass A eintritt wenn B eintritt.

Die bedingten Wahrscheinlichkeiten Pr[|B] bilden für ein beliebiges Ereignis $B \subseteq \Omega$ mit Pr[B] > 0 einen neuen Wahrscheinlichkeitsraum über Ω .

1.2.2 Baba Beispiele

- 1. **TODO** Töchterproblem
- 2. **TODO** Ziegenproblem
- 3. **TODO** Geburtstagsproblem

Satz 18 (Satz von der totalen Wahrscheinlichkeit)

Die Ereignisse $A_1, ..., A_n$ seien paarweise disjunkt und es gelte $B \subseteq A_1 \cup ... \cup A_n$

$$Pr[B] = \sum_{i=1}^{n} Pr[B|A_i] * Pr[A_i]$$
 analog für $n \to \infty$

1.2.4 Satz 19 (Satz von Bayes)

Es seien $A_1, ..., A_n$ paarweise disjunkt, mit $Pr[A_i] > 0$ für alle j. Außerdem sei $B \subseteq A_1 \cup ... \cup A_n$ ein Ereignis mit Pr[B] > 0. Dann gilt für beliebiges $i \in [n]$

$$Pr[A_i|B] = \frac{Pr[A_i \cap B]}{Pr[B]} = \frac{Pr[B|A_i] * Pr[A_i]}{\sum_{j=1}^{n} Pr[B|A_j] * Pr[A_j]}$$

2 Unabhängigkeit

Wenn das auftreten von Ereignissen unabhängig ist. $Pr[A \cup B] = Pr[A] *$ Pr[B]

$\mathbf{3}$ Zufallsvariablen

Grundlagen 3.1

Anstatt der Ereignisse selbst sind wir oft an "Auswirkungen" oder "Merkmalen" der (Elementarereignisse) interessiert

Sei ein Wahrscheinlichkeitsraum auf der Ergebnismenge Ω gegeben. Eine Abbildung $X: \Omega \to R$ heißt (numerische) Zufallsvariable. Eine Zufallsvariable X über einer endlichen oder abzählbar unendlichen Ergebnismenge heißt diskret

3.2 Erwartungswert und Varianz

Definition 29

Zu einer Zufalls variablen X definieren wir den **Erwartungswert** E[X]durch $E[X] := \sum_{x \in W_X} x * Pr[X = x]] \sum x * f_X(x)$, wo $f_X(x)$ die Dichte ist sofern $\sum_{x \in W_X} |x| * Pr[X = x]$ konvergiert $E[X] = /siehe \ oben/ = \sum_{x \in W_X} x \sum_{\omega \in \Omega: X(\omega) = \omega} Pr[w] = \sum_{\omega \in \Omega} X(\omega) * Pr[$

$$E[X] = /siehe \ oben/ = \sum_{x \in W_X} x \sum_{\omega \in \Omega: X(\omega) = \omega} Pr[w] = \sum_{\omega \in \Omega} X(\omega) * Pr[\omega]$$

3.2.2 Satz 33 Linearität des Erwartungswert

$$E[a*X*b] = a*E[x]*b, \quad a,b \in \mathbb{R}$$

3.2.3 Definition 35 Erwartungswert bei bedingter Wahrscheinlichkeit

Sei Xeine Zufallsvariable & A
 ein Ereignis. $f_{X|A}(x):=Pr[X=x|A]=\frac{Pr["X=x"\cap A]}{Pr[A]}$