

CST Análise e Desenvolvimento de Sistemas AOC786201 - Fundamentos de Arquitetura e Organização de Computadores

Álgebra de Boole

George Boole

George Boole nasceu em 1815 em Lincoln, Inglaterra, e foi um matemático e lógico autodidata. Sem formação universitária formal, dominou diversas áreas científicas. Foi professor de matemática no Queen's College, em Cork, na Irlanda. Morreu em 1864.

Fundou a lógica matemática moderna e criou a álgebra booleana, um sistema que associa valores binários (verdadeiro ou falso) a operações lógicas. Suas ideias revolucionaram a lógica tradicional ao tratar proposições como entidades matemáticas. Esse sistema é a base da lógica digital, que possibilitou o desenvolvimento de circuitos eletrônicos e da computação moderna.

- Complementação / negação / inversão / NOT
- Adição lógica / Soma lógica / Operação OU / Disjunção / OR
- Multiplicação lógica / Produto lógico / Operação E / Conjunção / AND

Complementação / negação / inversão / NOT

Operador: "-"

ex.: A (A barrado)

A	$\overline{\mathbf{A}}$
0	1
1	0

Operador unário: Aplicável a uma variável por vez

Multiplicação lógica / Produto lógico / Operação E / Conjunção / AND

Operador: "."

ex.: A.B ou AB (omitindo o operador)

A	В	A·B
0	0	0
0	1	0
1	0	0
1	1	1

ABC	A·B·C
0 0 0	0
0 0 1	0
0 1 0	0
0 1 1	0
1 0 0	0
1 0 1	0
1 1 0	0
1 1 1	1

Saída será 0 se ao menos uma das entradas for 0 Saída será 1 se todas as entradas forem 1

Adição lógica / Soma lógica / Operação OU / Disjunção / OR

Operador: "+"

ex.: A+B

A	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

ABC	A+B+C
0 0 0	0
0 0 1	1
0 1 0	1
0 1 1	1
1 0 0	1
1 0 1	1
1 1 0	1
1 1 1	1

Saída será 1 se ao menos uma das entradas for 1 Saída será 0 se todas as entradas forem 0

Combinando variáveis e operadores lógicos

Constantes, Variáveis e operadores lógicos podem ser combinados para formar expressões lógicas

Exemplos:

- A.B + A.C
- A + B.C
- $A.\overline{B} + B.C$
- A.C.D + B.A

Precedência nas operações lógicas

- 1. Parênteses
 - ex.: em (A+B).C a operação A+B ocorre primeiro, depois o resultado .C
- 2. Negação (operação unária)
 - ex.: em (A+B).C a operação A ocorre primeiro, depois A+B, e .C
- 3. Multiplicação Lógica
 - ex.: em A+B.C a operação B.C ocorre primeiro, depois o resultado +A
- 4. Soma Lógica
 - é a última operação a ser realizada

Atribuição de identificador de função

As expressões booleanas são normalmente associadas a uma identificação (ex.: Y, S, F,...)

Exemplos:

•
$$Y = A.B + \overline{A.C}$$

Propriedades das variáveis booleanas: valores mutuamente exclusivos

- Se A ≠ 0, então A = 1
- Se A ≠ 1, então A = 0

Propriedades das variáveis booleanas: adição lógica

•
$$A + 0 = A$$

$$\bullet \quad A + A = A$$

•
$$A + \overline{A} = 1$$

Propriedades das variáveis booleanas: multiplicação lógica

- A.0 = 0
- A.1 = 1
- A . A = A
- $A \cdot \overline{A} = 0$

Propriedades das variáveis booleanas: propriedade da complementação ou dupla negação

$$\bullet$$
 $\overline{\overline{A}} = A$

Propriedades das variáveis booleanas: produto lógico

- A.0 = 0
- A.1 = 1
- A . A = A
- $A \cdot \overline{A} = 0$

Propriedades das variáveis booleanas: propriedade comutativa

Sejam A e B variaveis booleanas

$$\bullet \quad A + B = B + A$$

Propriedades das variáveis booleanas: propriedade associativa

Sejam A, B e C variaveis booleanas

•
$$A + (B + C) = (A + B) + C = (A + C) + B$$

Propriedades das variáveis booleanas: propriedade distributiva

Sejam A, B e C variaveis booleanas

•
$$A + BC = (A + B).(A + C)$$

Propriedades das variáveis booleanas: lei da absorção

Sejam A e B variaveis booleanas

Leis de De Morgan

Para 2 variáveis:

$$\overline{A.B} \Leftrightarrow \overline{A} + \overline{B}$$
 $\overline{A+B} \Leftrightarrow \overline{A}.\overline{B}$

Para n variáveis:

$$\overline{A.B.C.}$$
 ... $\Leftrightarrow \overline{A}+\overline{B}+\overline{C}+$... $\overline{A+B+C}+$... $\Leftrightarrow \overline{A}.\overline{B}.\overline{C}$

Augustus De Morgan foi educado no Trinity College, em Cambridge, e em 1828 tornou-se professor de matemática em Londres.

Equivalências pela propriedade associativa

Equivalências pela propriedade associativa

Porta XOU / XOR

$$Y = A \oplus B \oplus C$$

Porta XOU / XOR

$$Y = A \oplus B \oplus C$$

Alguns cuidados com equivalências

Derivação de expressões booleanas

Tabela verdade

equação

2 Possibilidades:

Soma de Produtos (SdP)

Lista todas as combinações das variáveis de entrada para os quais a função vale **1**

ou

Produto de Somas (PdS)

Lista todas as combinações das variáveis de entrada para os quais a função vale **0**

Soma de produtos

Dada uma função Booleana de n variáveis (=n entradas) há 2ⁿ combinações possíveis dessas variáveis

Para cada combinação pode-se associar um produto entre as

variáveis de entrada

АВС	mintermo
0 0 0	$\overline{A} \cdot \overline{B} \cdot \overline{C}$
0 0 1	$\overline{A} \cdot \overline{B} \cdot C$
0 1 0	$\overline{A} \cdot B \cdot \overline{C}$
0 1 1	$\overline{A} \cdot B \cdot C$
1 0 0	$A \cdot \overline{B} \cdot \overline{C}$
1 0 1	$A \cdot \overline{B} \cdot C$
1 1 0	$A \cdot B \cdot \overline{C}$
1 1 1	$A \cdot B \cdot C$

<u>Exemplo</u>: encontrar a equação em soma de produtos (SdP) para a função F, descrita pela seguinte tabela verdade:

ABC	F	
0 0 0	0	
0 0 1	0	- AD-
0 1 0	1	→ ABC
0 1 1	1	→ ĀBO
1 0 0	0	_
1 0 1	1	→ ABC
1 1 0	1	→ AB
1 1 1	0	

$$F = \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}C + AB\overline{C}$$

cada produto é chamado mintermo

Produto de somas

Para cada combinação pode-se associar uma soma lógica ("OU")

entre as variáveis de entrada

	20
A B C	maxtermos
0 0 0	A+B+C
0 0 1	$A+B+\overline{C}$
0 1 0	$A + \overline{B} + C$
0 1 1	$A + \overline{B} + \overline{C}$
1 0 0	$\overline{A} + B + C$
1 0 1	$\overline{A} + B + \overline{C}$
1 1 0	$\overline{A} + \overline{B} + C$
1 1 1	$\overline{A} + \overline{B} + \overline{C}$

<u>Exemplo</u>: encontrar a equação em soma de produtos (SdP) para a função F, descrita pela seguinte tabela verdade:

ABC	F	→ A+B+C
0 0 0	0	
0 0 1	0	\rightarrow A+B+C
0 1 0	1	
0 1 1	1	
1 0 0	0	\rightarrow A+B+C
1 0 1	1	
1 1 0	1	
1 1 1	0	→ A+B+C

$$F = (A + B + C) \cdot (A + B + \overline{C}) \cdot (\overline{A} + B + C) \cdot (\overline{A} + \overline{B} + \overline{C})$$

Cada soma é chamada maxtermo

Simplificação

Redução do número de literais ou de operações na equação Booleana, através da aplicação das propriedades da Álgebra Booleana

$$F = \overline{ABC} + \overline{ABC} + A\overline{BC} + A\overline{BC}$$

$$Pela prop. (14), A \cdot (B+C) = A \cdot B + A \cdot C$$

$$F = \overline{AB}(\overline{C} + C) + A\overline{BC} + AB\overline{C}$$

$$Pela prop. (4), \overline{C} + C = 1$$

$$F = \overline{AB} \cdot 1 + A\overline{BC} + AB\overline{C}$$

$$Pela prop. (6), \overline{AB} \cdot 1 = \overline{AB}$$

$$F = \overline{AB} + A\overline{BC} + AB\overline{C}$$

$$Soma de Produtos simplificada$$

Exercícios: Obtenha a expressão e circuito lógico das seguintes tabelas verdade

a)	Α	В	C	Y
	0	0	0	0
	0	0	1	0
	0	1	0	0
	0	1	1	0

b)	Α	В	C	Y
	0	0	0	1
	0	0	1	1
	0	1	0	1
	0	1	1	1
	1	0	0	0
	1	0	1	1
	1	1	0	0
	1	1	1	1

Α	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

d)

Α	В	С	D	Y
 0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Exercícios: Obtenha a tabela verdade e circuito lógico das seguintes expressões, depois simplifique-os utilizando álgebra booleana, comparando os resultados.

a)
$$\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

b)
$$\overline{A}BC + \overline{A}B\overline{C} + AB\overline{C} + AB\overline{C}$$

c)
$$\bar{A}\bar{B}\bar{C}\bar{D} + \bar{A}\bar{B}\bar{C}\bar{D} + \bar{A}\bar{B}\bar{C}\bar{D} + \bar{A}\bar{B}\bar{C}\bar{D} + \bar{A}\bar{B}\bar{C}\bar{D}$$

c)
$$\overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$