

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ к лабораторной работе №1 по курсу «Моделирование»

Студент ИУ7-64Б Дикобаева А.Л.

Преподаватель Градов В.М.

Тема: Программная реализация приближенного аналитического метода и численных алгоритмов первого и второго порядков точности при решении задачи Коши для ОДУ.

Цель работы. Получение навыков решения задачи Коши для ОДУ методами Пикара и явными методами первого порядка точности (Эйлера) и второго порядка точности (Рунге-Кутта).

Исходные данные.

1. ОДУ, не имеющее аналитического решения

$$\begin{cases} u'(x) = x^2 + u^2, \\ u(0) = 0, \end{cases}$$

Результаты работы программы

Таблица, содержащая значения аргумента с заданным шагом в интервале $[0, x_{max}]$ и результаты расчета функции u(x) в приближениях Пикара (от 1-го до 4-го), а также численными методами. Границу интервала x_{max} выбирать максимально возможной из условия, чтобы численные методы обеспечивали точность вычисления решения уравнения u(x) до второго знака после запятой.

Вопросы при защите лабораторной работы

- 1. Укажите интервалы значений аргумента, в которых можно считать решением заданного уравнения каждое из первых 4-х приближений Пикара. Точность результата оценивать до второй цифры после запятой. Объяснить свой ответ.
- 2. Пояснить, каким образом можно доказать правильность полученного результата при фиксированном значении аргумента в численных методах.
- 3. Каково значение функции при x = 2, т.е. привести значение u(2).

1 Метод Пикара

Метод Пикара является представителем приближенных методов решения рассматриваемого класса задач. Идея метода сводится к процедуре последовательных приближений для решения интегрального уравнения, к которому приводится исходное дифференциальное уравнение.

Поставлена задача Коши:

$$\begin{cases} u'(x) = f(x, u(x)), \\ u(x_0) = u_0 \end{cases}$$

Проинтегрируем выписанное уравнение

$$u(x) = u_0 + \int_{x_0}^x f(t, u(t)) dt$$

Процедура последовательных приближений метода Пикара реализуется согласно следующей схеме

$$y_s(x) = u_0 + \int_{x_0}^x f(t, y_{s-1}(t)) dt$$
,

причем $y_0(t) = v_0$, (i – номер итерации).

Заданная в лабораторной работе ОДУ, не имеющее аналитического решения

$$\begin{cases} u'(x) = x^2 + u^2, \\ u(0) = 0, \end{cases}$$

Правая часть непрерывна и удовлетворяет условию Липшица. Значит, решение существует, а метод Пикара сойдется. По схеме Пикара рассчитаем первые четыре приближения для заданного ОДУ.

$$y_1(x) = 0 + \int_0^x t^2 dt = \frac{x^3}{3}$$

$$y_2(x) = 0 + \int_0^x (t^2 + (\frac{t^3}{3})^2) dt = \frac{x^3}{3} + \frac{x^7}{63}$$

$$y_3(x) = 0 + \int_0^x (t^2 + (\frac{t^3}{3} + \frac{t^7}{63})^2) dt = \frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{x^{15}}{59535}$$

$$y_4(x) = 0 + \int_0^x (t^2 + (\frac{t^3}{3} + \frac{t^7}{63} + \frac{2t^{11}}{2079} + \frac{t^{15}}{59535})^2) dt =$$

$$= \frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{13x^{15}}{218295} + \frac{82x^{19}}{37328445} + \frac{662x^{23}}{10438212015} + \frac{4x^{27}}{3341878155} + \frac{x^{31}}{109876902975}$$

2 Метод Эйлера

Также задача может быть решена с помощью численных методов.

$$y_{n+1} = y_n + hf(x_n, y_n)$$
$$f(x_n, y_n) = y_n^2 + x_n^2$$

3 Метод Рунге-Кутта 2-ого порядка точности

$$y_{n+1} = y_n + h[(1 - \alpha)k_1 + \alpha k_2], \tag{1}$$

где

$$k_1 = f(x_n, y_n),$$

$$k_2 = f(x_n + \frac{h}{2\alpha}, y_n + \frac{h}{2\alpha}k_1),$$

В практике расчетов используют формулу (1) при значениях $\alpha=1,\ \alpha=\frac{1}{2}.$ В лабораторной работе приняли $\alpha=\frac{1}{2}$

4 Листинг программы

```
import java.lang.Math.pow
  import kotlin.math.abs
  fun f(x: Double, y: Double): Double {
       return pow(x, 2.0) + pow(y, 2.0);
  val picardOne: (x: Double) -> Double = {
           x \to pow(x, 3.0) / 3
  val picardTwo: (x: Double) -> Double = {
           x -> picardOne(x) +
           pow(x, 7.0) / 63
13
14
  val picardThree: (x: Double) -> Double = {
           x \rightarrow picardTwo(x) +
           2 * pow(x, 11.0) / 2079 +
17
           pow(x, 15.0) / 59535
18
19
  val picardFour: (x: Double) -> Double = {
           x -> picardThree(x) +
           4 * pow(x, 15.0) / 93555 + 82 * pow(x, 19.0) / 37328445 +
23
           662 * pow(x, 23.0) / 10438212015 +
24
           4 * pow(x, 27.0) / 3341878155 +
25
           pow(x, 31.0) / 109876902975
```

```
29
30
       var columnY = arrayListOf<Double>()
       for (x in columnX) {
            val y = funcPickard(x)
33
           columnY.add(y)
34
35
       return columnY
36
37
  }
38
   fun euler(columnX: ArrayList<Double>, h:Double): ArrayList<Double> {
39
       var columnY = arrayListOf<Double>()
40
       var y = 0.0
41
       for (x in columnX) {
42
           y += h * f(x, y)
43
           columnY.add(y)
44
       }
45
46
       return columnY
  }
47
48
   fun runge(columnX: ArrayList<Double>, h:Double): ArrayList<Double> {
49
       var columnY = arrayListOf<Double>()
50
51
       var y = 0.0
       val alpha = 0.5
       for (x in columnX) {
54
            val k1 = f(x, y)
            val k2 = f(x + h / 2 / alpha, y + k1 * h / 2 / alpha)
56
           y += h * ((1 - alpha) * k1 + alpha * k2)
            columnY.add(y)
58
       }
       return columnY
60
61
   fun printColumns(table: ArrayList<ArrayList<Double>>, eps:Double) {
63
       var i = 0
64
       while (abs(table [6][i] - table [5][i]) \le eps) {
65
            print (" | %4.3 f
                               ".format(table[0][i]))
66
67
            for (j in 1..(table.size - 1)) {
68
                69
70
            println("| %4.3f
71
                                      | ".format(abs(table[6][i] - table[5][i])))
72
            i++
73
       println("-".repeat(109))
74
75
  }
76
  fun printHead() {
    var line = "-".repeat(109)
77
78
       println(line)
79
                                                        Метод Пикара
       println("|
80
                     Метол
                                      Метол
81
       println("|
                      \mathbf{x}
                                     1
                                                     2
82
                                 | РунгеКутта— | Точность
                     Эйлера
83
       println(line)
84
85
86
  }
87
   fun printTable(table: ArrayList<ArrayList<Double>>, eps: Double) {
88
       printHead()
89
90
       printColumns (table, eps)
91
92
93
94
   fun getX(firstX: Double, maxX: Double, h: Double): ArrayList<Double> {
       {\color{red}\mathbf{var}} \hspace{0.1cm} \operatorname{column} X \hspace{0.1cm} = \hspace{0.1cm} \operatorname{arrayListOf} < \hspace{-0.1cm} \operatorname{Double} > \hspace{-0.1cm} ()
95
       var x = first X
96
97
       while (x \le maxX) {
```

```
columnX.add(x)
99
100
          return columnX
101
102
    fun main() {
104
          val first X = 0.0
105
          val maxX = 2.0
106
          val h = 0.01
107
          val eps = 0.01
108
109
          println ("Начальный x = " + first X) println ("Максимальный x = " + max X)
110
111
          println ("Шаг для численных методов = " + h) println ("Точность Eps = " + eps)
112
113
114
          var table = arrayListOf<ArrayList<Double>>()
          val columnX = getX(firstX, maxX, h)
116
          table.add(columnX)
117
          table.add(picard(columnX, picardOne))
table.add(picard(columnX, picardTwo))
118
          {\tt table.add(picard(columnX, picardThree))}
120
          table.add(picard(columnX, picardFour))
table.add(euler(columnX, h))
121
123
          table.add(runge(columnX, h))
          printTable(table, eps)
124
125
```

5 Результаты работы программы

На рисунках представлены результаты работы программы. Вывод таблицы осуществляется, пока численные методы обеспечивают точность вычисления решения уравнения u(x) до второго знака после запятой.

	Eps = 0.01						
			 тод Пикара		 Метод	 Метод	
		1 2	3		Эйлера	Рунге-Кутта	і а Точность
0,000	I 0,000000		 0,000000	 0,000000	I 0,000000	0,000001	0,000
0,010	1 0,000000	0,000000	0,000000	0,000000	0,000001	0,000003	0,000
0,020	I 0,000003	0,000003	0,000003	0,000003	0,000005	0,000010	0,000
0,030	0,000009	0,000009	0,000009	0,000009	0,000014	0,000022	0,000
0,040	0,000021	0,000021	0,000021	0,000021	0,000030	0,000043	0,000
0,050	I 0,000042	0,000042	0,000042	0,000042	0,000055	0,000073	0,000
0,060	0,000072	0,000072	0,000072	0,000072	0,000091	0,000116	0,000
0.070	I 0.000114	0,000114	0.000114	0,000114	I 0,000140	l 0,000172	0,000
0,080	0,000171	0,000171	0,000171	0,000171	0,000204	0,000245	0,000
0,090	1 0.000243	1 0,000243	1 0.000243	1 0,000243	I 0.000285	I 0.000335	0,000
0,100	0,000333	0,000333	0,000333	0,000333	0,000385	1 0,000446	0,000
0,110	0,000444	0,000444	0,000444	0,000444	0,000506	0,000578	0,000
0,120	0,000576	0,000576	0,000576	0,000576	0,000650	0,000735	0,000
0,130	0,000732	0,000732	0,000732	0,000732	0,000819	0,000917	0,000
0,140	0,000915	0,000915	0,000915	0,000915	0,001015	0,001128	0,000
0,150	0,001125	0,001125	0,001125	0,001125	0,001240	0,001368	0,000
0,160	0,001365	0,001365	0,001365	0,001365	0,001496	0,001641	0,000
0,170	0,001638	0,001638	0,001638	0,001638	0,001785	0,001947	0,000
0,180	0,001944	0,001944	0,001944	0,001944	0,002109	0,002290	0,000
0,190	0,002286	0,002286	0,002286	0,002286	0,002470	0,002670	0,000
0,200	0,002667	0,002667	0,002667	0,002667	0,002870	0,003091	0,000
0,210	0,003087	0,003087	0,003087	0,003087	0,003311	0,003553	0,000
0,220	0,003549	0,003550	0,003550	0,003550	0,003795	0,004060	0,000
0,230	0,004056	0,004056	0,004056	0,004056	0,004325	0,004613	0,000
0,240	0,004608	0,004609	0,004609	0,004609	0,004901	0,005213	0,000
0,250	0,005208	0,005209	0,005209	0,005209	0,005526	0,005864	0,000
0,260	0,005859	0,005860	0,005860	0,005860	0,006202	0,006567	0,000

Рис. 1: Результаты работы программы

0,270 0,006561	0,006563	0,006563	0,006563	0,006932	0,007324	0,000	- 1
0,280 0,007317	0,007319	0,007319	0,007319	0,007716	0,008137	0,000	- 1
0,290 0,008130	0,008132	0,008132	0,008132	0,008558	0,009008	0,000	- 1
0,300 0,009000	0,009003	0,009003	0,009003	0,009458	0,009940	0,000	1
0,310 0,009930	0,009935	0,009935	0,009935	0,010420	0,010933	0,001	- 1
0,320 0,010923	0,010928	0,010928	0,010928	0,011445	0,011991	0,001	- 1
0,330 0,011979	0,011986	0,011986	0,011986	0,012536	0,013115	0,001	- 1
0,340 0,013101	0,013110	0,013110	0,013110	0,013693	0,014308	0,001	1
0,350 0,014292	0,014302	0,014302	0,014302	0,014920	0,015570	0,001	1
0,360 0,015552	0,015564	0,015564	0,015564	0,016218	0,016906	0,001	1
0,370 0,016884	0.016899	0,016899	0,016899	0,017590	0,018315	0,001	i
0,380 0,018291	0,018309	0,018309	0,018309	0,019037	0,019801	0,001	i
0,390 0,019773	0,019795	0,019795	0,019795	0,020562	0,021366	0,001	i
0,400 0,021333	0,021359	0,021359	0,021359	0,022166	0,023011	0,001	i
0,410 0,022974	I 0,023005	I 0,023005	1 0,023005	1 0,023852	1 0,024740	0,001	i
0,420 0,024696	0,024733	0,024733	0,024733	0,025622	0,026553	0,001	i
0,430 0,026502	0,026545	0,026546	0,026546	0,027477	0,028453	0,001	i
0,440 0,028395	0,028445	0,028445	0,028445	0,029421	0,030442	0,001	i
0,450 0,030375	0,030434	1 0,030434	0,030434	0.031454	1 0,032522	0,001	i
0,460 0,032445	0,032515	0,032515	0,032515	0,033580	0,034696	0,001	i
0,470 0,034608	0,034688	0,034688	0,034688	0,035801	0,036966	0,001	i
0,480 0,036864	0,036957	I 0,036957	0.036957	0,038117	0,039333	0,001	i
0,490 0,039216	0,039324	1 0,039324	0,039324	0,040533	0,041800	0,001	i i
0,500 0,041667	0,041791	0,041791	0,041791	0,043049	0,044369	0,001	i i
0.510 0.044217	1 0,044359	I 0.044360	0.044360	0,045669	I 0.047042	0,001	i
0,520 0,046869	0,047033	1 0,047033	0,047033	0,048394	0,049822	0,001	i
0,530 0,049626	0,049812	0,049813	0,049813	0,051226	0,052711	0,001	i
0,540 0,052488	0,052701	0,052702	0,052702	0,054168	0,055711	0,002	i i
0,550 0,055458	0,055700	0,055701	0,055701	0,057223	0,058824	0,002	i
0,560 0,058539	0,058813	0,058814	0,058814	0,060391	1 0,062053	1 0,002	i
0,570 0,061731	0,062041	0,062043	0,062043	0,063677	0,065400	0,002	į.
0,580 0,065037	0,065388	0,065390	0,065390	0,067081	0,068868	0,002	į.
0,590 0,068460	0,068855	1 0,068858	0,068858	0,070607	1 0,072458	0,002	i_
0,600 0,072000	0,072444	0,072448	0,072448	0,074257	0,076174	0,002	i
0,610 0,075660	0,076159	0,076163	0,076163	0,078033	0,080017	0,002	į
, 1 -, 0000	,	,	,	,	,	,	

Рис. 2: Результаты работы программы (продолжение)

0,620	0,079443	0,080002	0,080007	0,080007	0,081938	0,083991	0,002	- 1
0,630	0,083349	0,083974	0,083980	0,083980	0,085975	0,088097	0,002	- 1
0,640	0,087381	0,088079	0,088087	0,088087	0,090144	0,092339	0,002	- 1
0,650	0,091542	0,092320	0,092328	0,092328	0,094451	0,096719	0,002	- 1
0,660	0,095832	0,096698	0,096708	0,096708	0,098896	0,101240	0,002	- 1
0,670	0,100254	0,101216	0,101228	0,101228	0,103483	0,105903	0,002	- 1
0,680	0,104811	0,105878	0,105892	0,105892	0,108214	0,110713	0,002	- 1
0,690	0,109503	0,110685	0,110701	0,110701	0,113092	0,115672	0,003	- 1
0,700	0,114333	0,115641	0,115660	0,115660	0,118120	0,120782	0,003	- 1
0,710	0,119304	0,120747	0,120770	0,120770	0,123300	0,126047	0,003	- 1
0,720	0,124416	0,126008	0,126034	0,126035	0,128636	0,131469	0,003	- 1
0,730	0,129672	0,131426	0,131456	0,131457	0,134131	0,137052	0,003	- 1
0,740	0,135075	0,137003	0,137039	0,137039	0,139787	0,142798	0,003	- 1
0,750	0,140625	0,142744	0,142785	0,142785	0,145607	0,148711	0,003	- 1
0,760	0,146325	0,148650	0,148697	0,148698	0,151595	0,154794	0,003	- 1
0,770	0,152178	0,154725	0,154780	0,154781	0,157754	0,161049	0,003	- 1
0,780	0,158184	0,160972	0,161035	0,161036	0,164087	0,167482	0,003	- 1
0,790	0,164346	0,167395	0,167467	0,167468	0,170597	0,174094	0,003	- 1
0,800	0,170667	0,173995	0,174079	0,174080	0,177288	0,180889	0,004	- 1
0,810	0,177147	0,180778	0,180874	0,180876	0,184163	0,187872	0,004	- 1
0,820	0,183789	0,187746	0,187856	0,187858	0,191227	0,195045	0,004	- 1
0,830	0,190596	0,194903	0,195028	0,195031	0,198481	0,202412	0,004	- 1
0,840	0,197568	0,202252	0,202395	0,202398	0,205931	0,209978	0,004	- 1
0,850	0,204708	0,209797	0,209959	0,209963	0,213580	0,217746	0,004	- 1
0,860	0,212019	0,217541	0,217726	0,217731	0,221432	0,225720	0,004	- 1
0,870	0,219501	0,225489	0,225699	0,225705	0,229492	0,233904	0,004	- 1
0,880	0,227157	0,233644	0,233882	0,233889	0,237762	0,242303	0,005	- 1
0,890	0,234990	0,242011	0,242280	0,242288	0,246249	0,250922	0,005	- 1
0,900	0,243000	0,250592	0,250897	0,250906	0,254955	0,259764	0,005	- 1
0,910	0,251190	0,259393	0,259738	0,259749	0,263886	0,268835	0,005	- 1
0,920	0,259563	0,268417	0,268807	0,268819	0,273046	0,278140	0,005	Ī
0,930	0,268119	0,277670	0,278108	0,278123	0,282441	0,287683	0,005	L
0,940	0,276861	0,287155	0,287648	0,287666	0,292075	0,297469	0,005	- 1
0,950	0,285792	0,296876	0,297431	0,297452	0,301953	0,307504	0,006	1
0,960	0,294912	0,306840	0,307463	0,307487	0,312081	0,317794	0,006	Ĺ

Рис. 3: Результаты работы программы (продолжение)

0,970	0,304224	0,317049	0,317748	0,317777	0,322464	0,328344	0,006	- 1
0,980	0,313731	0,327510	0,328293	0,328326	0,333107	0,339160	0,006	- 1
0,990	0,323433	0,338228	0,339103	0,339142	0,344018	0,350249	0,006	- 1
1,000	0,333333	0,349206	0,350185	0,350230	0,355201	0,361616	0,006	- 1
1,010	0,343434	0,360452	0,361544	0,361597	0,366664	0,373269	0,007	- 1
1,020	0,353736	0,371969	0,373188	0,373249	0,378413	0,385213	0,007	- 1
1,030	0,364242	0,383764	0,385122	0,385193	0,390454	0,397457	0,007	- 1
1,040	0,374955	0,395842	0,397354	0,397435	0,402794	0,410007	0,007	- 1
1,050	0,385875	0,408210	0,409890	0,409985	0,415441	0,422872	0,007	- 1
1,060	0,397005	0,420872	0,422739	0,422848	0,428403	0,436058	0,008	- 1
1,070	0,408348	0,433836	0,435907	0,436034	0,441688	0,449575	0,008	- 1
1,080	0,419904	0,447108	0,449404	0,449549	0,455303	0,463431	0,008	- 1
1,090	0,431676	0,460693	0,463236	0,463404	0,469257	0,477636	0,008	- 1
1,100	0,443667	0,474599	0,477414	0,477606	0,483559	0,492197	0,009	- 1
1,110	0,455877	0,488832	0,491944	0,492166	0,498218	0,507126	0,009	- 1
1,120	0,468309	0,503400	0,506838	0,507092	0,513244	0,522432	0,009	- 1
1,130	0,480966	0,518309	0,522104	0,522395	0,528647	0,538126	0,009	- 1
1,140	0,493848	0,533567	0,537752	0,538085	0,544438	0,554219	0,010	- 1
Process	finished with	exit code 0						

Рис. 4: Результаты работы программы (продолжение)

6 Ответы на вопросы

1. Укажите интервалы значений аргумента, в которых можно считать решением заданного уравнения каждое из первых 4-х приближений Пикара. Точность результата оценивать до второй цифры после запятой. Объяснить свой ответ.

Каждое следующее приближение Пикара точнее предыдущего. n-ое приближение Пикара можно считать решением уравнения, если выполняется условие

$$|y_n(x) - y_{n+1}(x)| < \epsilon,$$

Для вычисления интервала 4-ого приближения нужно рассчитать 5-ое приближение. Листинг программы:

```
fun main() {
        val first X = 0.0
        val maxX = 2.0
        val h = 0.001
        val eps = 0.01
        var table = arrayListOf<ArrayList<Double>>()
        val columnX = getX(firstX, maxX, h)
        table.add(columnX)
        table.add(picard(columnX, picardOne))
       table.add(picard(columnX, picardTwo))
table.add(picard(columnX, picardThree))
12
        table.add(picard(columnX, picardFour))
13
        var i = 0
        while (abs (table [2][i] - table [1][i]) \leq eps) i++
        println ("Для 1— ого приближения х принадлежит [0, %4.3f".format(table [0][i]) + "]")
17
        while (abs (table [3][i] - table [2][i]) <= eps) i++
18
        println ("Для 2— ого приближения х принадлежит [0, \%4.3\,\mathrm{f".format(table}\,[0][\,\mathrm{i}\,]) + "]\,")
       while (abs (table [4][i] — table [3][i]) <= eps) i++ println ("Для 3— его приближения х принадлежит [0, %4.3f".format(table [0][i]) + "]")
20
21
22
```

Результаты работы программы: При заданной точности $\epsilon = 0.01$ n-е приближение Пикара является решением, когда х принадлежит интервалам:

```
Для 1-ого приближения х принадлежит [0, 0,937]
Для 2-ого приближения х принадлежит [0, 1,233]
Для 3-его приближения х принадлежит [0, 1,419]
```

Рис. 5: Результаты работы программы (задание 1)

2. Пояснить, каким образом можно доказать правильность полученного результата при фиксированном значении аргумента в численных методах.

Точность численных методов зависит от шага, поэтому чтобы доказать правильность полученного результата при фиксированном значении аргумента в численных методах, нужно сравнить полученное значение со значением, полученном при меньшем шаге.

3. Каково значение функции при x = 2, т.е. привести значение u(2).

По схеме ответа на вопрос №2 рассчитаем значение u(2) u(2) = 317.72

```
fun getEuler(firstX:Double, maxX:Double, firstY: Double, h:Double):Double {
     var x = first X
      var y = firstY
      while (x \le maxX) {
         y += h * f(x, y)
         x += h
     }
      return y
  }
10
  fun main(){
11
     val first X = 0.0
12
      val maxX = 2.0
     var h = 0.1
14
      val eps = 0.01
15
      val firstY = 0.0
17
     var curY = 0.0
18
     var nextY = getEuler(firstX, maxX, firstY, h)
19
                  h
                                u(2)
                                        точность")
20
                         21
         curY = nextY
22
         h *= 0.1
23
         24
25
      } while(abs(curY - nextY) > eps)
26
27
      println("u(2) = " + curY)
28
  }
29
```

```
h | U(2) | ТОЧНОСТЬ

0,100000000 | 5,852099612 | 22,540

0,010000000 | 28,392533753 | 114,235

0,001000000 | 142,627249698 | 134,735

0,000100000 | 277,362500130 | 34,699

0,000010000 | 312,061276403 | 5,185

0,000001000 | 317,245934954 | 0,419

0,00000100 | 317,664629635 | 0,053

0,00000010 | 317,717741760 | 0,002

U(2) = 317.7177417599254
```

Рис. 6: Результаты работы программы (задание 3)