WHAT IS CLAIMED IS:

1	1. A method, comprising:
2	determining at a storage device that a current media status has changed; and
3	transmitting an asynchronous message to a host system as a result of the
4	determination, wherein the asynchronous message can also be transmitted for a reason
5	other than a current media status change.
1	2. The method of claim 1, wherein the asynchronous message is associated with a
2	serial advanced technology attachment interface.
1	3. The method of claim 2, wherein the asynchronous message is associated with a
2	set device bits packet.
1	4. The method of claim 1, wherein the determining is performed while the
2	storage device is in a lower-power state.
1	5. The method of claim 4, wherein the reduced power state is a sleep state.
1	6. The method of claim 1, further comprising:
2	receiving from the host system a command to adjust a power state associated with
3	the storage device.
	~

1	7. The method of claim 1, further comprising:
2	receiving from the host system a query for a current media status; and
3	transmitting to the host system an indication of the current media status.
1	8. The method of claim 7, wherein the current media status indicates at least one
2	of: (i) an absence of a removable storage media, and (ii) a presence of a removable
3	storage media.
1	9. The method of claim 1, wherein the storage device comprises at least one of:
2	(i) a compact disc drive, (ii) a digital versatile disk drive, (iii) a tape drive, and (iv) a
3	removable hard disk drive.
1	10. An apparatus, comprising:
2	a detection unit to determine a change in a current media status at a storage
3	device; and
4	an interface unit to transmit an asynchronous message to a host system as a result
5	of the determination, wherein the asynchronous message can also be transmitted for a
6	reason other than a current media status change.
1	11. The apparatus of claim 10, wherein the interface unit is a serial advanced
2	technology attachment interface.
1	12. An apparatus, comprising:
2	a storage medium having stored thereon instructions that when executed by a
3	machine result in the following:

4	determining at a storage device that a current media status has changed,
5	and
6	transmitting an asynchronous message to a host system as a result of the
7	determination, wherein the asynchronous message can also be transmitted for a
8	reason other than a current media status change.
1	13. The apparatus of claim 12, wherein execution of the instructions further
2	results in:
3	receiving from the host system a query for a current media status, and
4	transmitting to the host system an indication of the current media status.
1	14. The apparatus of claim 13, wherein the current media status indicates at least
2	one of: (i) an absence of a removable storage media, and (ii) a presence of a removable
3	storage media.
1	15. A method, comprising:
2	receiving at a host system an asynchronous message from a storage device as a
3	result of a current media status change, wherein the asynchronous message can also be
4	received for a reason other than a current media status change; and
5	arranging for a power state associated with the storage device to be adjusted as a
6	result of the asynchronous message.
1	16. The method of claim 15, further comprising:
2	transmitting to the storage device a query for a current media status; and
3	receiving from the storage device an indication of the current media status.

I	17. The method of claim 15, wherein the arranging comprises:
2	transmitting to the storage device a command to adjust the power state.
1	18. The method of claim 15, wherein the asynchronous message is associated
2	with a serial advanced technology attachment interface.
1	19. The method of claim 18, wherein the asynchronous message is associated
2	with a set device bits packet.
1	20. The method of claim 19, further comprising:
2	generating an interrupt to a storage device driver in response to the asynchronous
3	message.
1	21. An apparatus, comprising:
2	a storage medium having stored thereon instructions that when executed by a
3	machine result in the following:
4	receiving at a host system an asynchronous message from a storage device
5	as a result of a current media status change, wherein the asynchronous message
6	can also be received for a reason other than a current media status change, and
7	arranging for a power state associated with the storage device to be
8	adjusted as a result of the asynchronous message.

1	22. The apparatus of claim 21, wherein execution of the instructions further
2	results in:
3	transmitting to the storage device a query for a current media status, and
4	receiving from the storage device an indication of the current media status
1	23. The apparatus of claim 22, wherein the current media status indicates at least
2	one of: (i) an absence of a removable storage media, and (ii) a presence of a removable
3	storage media.
1	24. A system, comprising:
2	a host processor; and
3	a disk drive, wherein the disk drive is to transmit asynchronous message to the
4	host processor indicating that a current disk status has changed, wherein the
5	asynchronous message can also be transmitted for a reason other than a change in the
6	current disk status.
1	25. The system of claim 24, wherein a power state associated with the disk drive
2	is adjusted as a result of the asynchronous message.
1	26. A storage device driver method, comprising:
2	receiving at a storage device driver an asynchronous notification indicating that a
3	current media status associated with a storage device has changed;
4	determining a current media status in response to the received indication; and
5	arranging for the current media status to be provided to an operating system.

1	27. The method of claim 26, wherein said arranging comprises:
2	caching the current media status;
3	receiving a synchronous poll request from an operating system; and
4	responding to the synchronous poll request in accordance with the cached current
5	media status.
1	28. The method of claim 26, wherein said arranging comprises:
2	passing an asynchronous indication of the current media status to the operating
3	system.
1	29. A storage device driver apparatus, comprising:
2	a storage medium having stored thereon instructions that when executed by a
3	machine result in the following:
4	receiving at a storage device driver an asynchronous notification
5	indicating that a current media status associated with a storage device has
6	changed,
7	determining a current media status in response to the received indication,
8	and
9	arranging for the current media status to be provided to an operating
10	system.
	·
1	30. The apparatus of claim 29, wherein said arranging comprises:
2	caching the current media status,
3	receiving a synchronous poll request from an operating system, and

4	responding to the synchronous poll request in accordance with the cached
5	current media status.
1	31. The apparatus of claim 29, wherein said arranging comprises:
2	passing an asynchronous indication of the current media status to the operating
3	system.
1	32. An operating system method, comprising:
2	receiving from a storage device driver an asynchronous indication of a current
3	media status associated with a storage device and removable media; and
4	
4	performing an action in response to the asynchronous indication.
1	33. The method of claim 32, wherein the action comprises determining whether
2	information stored on the removable media should be provided to a user.
1	24. An anarotina avatom annomatus, commissinas
1	34. An operating system apparatus, comprising:
2	a storage medium having stored thereon instructions that when executed by a
3	machine result in the following:
4	receiving from a storage device driver an asynchronous indication of a
5	current media status associated with a storage device and removable media, and
6	performing an action in response to the asynchronous indication.
1	35. The apparatus of claim 34, wherein the action comprises determining whether
2	information stored on the removable media should be provided to a user.

determining at a storage device that an event has occurred; and transmitting an asynchronous message to a host system as a result of the determination, wherein the asynchronous message can also be transmitted for a reason other than an occurrence of the event.

2 (i) activation of a button, and (ii) an overheating condition.