| Introducão<br>Artigo 1: Parreiras et al., 2020<br>Artigo 2: Figueiredo et al., 2018<br>Pesquisa: COVID-19 | Anotações                             |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------|
|                                                                                                           |                                       |
|                                                                                                           |                                       |
| Estudos de Casos na Área da Saúde                                                                         |                                       |
| Eduardo Bearzoti                                                                                          |                                       |
| 19 de Fevereiro de 2025                                                                                   |                                       |
| 17 de l'évelend de 2020                                                                                   |                                       |
|                                                                                                           |                                       |
| Eduardo Bearzoti Estudos de Casos na Área da Saúde                                                        |                                       |
| Introducão<br>Artigo 1: Parreiras et al., 2020                                                            |                                       |
| Artigo 1: Parreiras et al., 2020<br>Artigo 2: Figueiredo et al., 2018<br>Pesquisa: COVID-19               | Anotações                             |
| 1 Introdução                                                                                              |                                       |
|                                                                                                           |                                       |
| <ul> <li>2 Artigo 1: Parreiras et al., 2020</li> <li>Primeira Análise</li> <li>Segunda Análise</li> </ul> |                                       |
| 3 Artigo 2: Figueiredo <i>et al.</i> , 2018                                                               |                                       |
| 4 Pesquisa: COVID-19                                                                                      |                                       |
|                                                                                                           |                                       |
| (ロ) (型) (量) (量) (量) (量) (を) (を) (を) (を) (を) (を) (を) (を) (を) (を                                            | · · · · · · · · · · · · · · · · · · · |
|                                                                                                           | _                                     |
| Introdução<br>Artigo 1: Parreiras et al., 2020<br>Artigo 2: Figueiredo et al., 2018<br>Pesquisa: COVID-19 | Anotações                             |
|                                                                                                           |                                       |
| 1 Introdução                                                                                              |                                       |
| <ul><li>2 Artigo 1: Parreiras et al., 2020</li><li>Primeira Análise</li></ul>                             |                                       |
| Segunda Análise                                                                                           |                                       |
| 3 Artigo 2: Figueiredo et al., 2018                                                                       |                                       |

4 Pesquisa: COVID-19

Eduardo Bearzoti Estudos de Casos na Área da Saúde

#### Introdução

Nesta apresentação, são apresentados alguns estudos de caso na área da Saúde

- PARREIRAS, P.M.; NOGUEIRA, J.A.V.; CUNHA, L.r.; PASSOS, M.C.; GOMES, N.R.; BREGUEZ, G.S.; FALCO, T.S.; BEARZOTI, E.; ME-NEZES, C.C. Effect of thermosonication on microorganisms, the antioxidant activity and the retinol level of human milk. Food Control, v.113, p.107172, 2020.
- FIGUEIREDO, V.P.; LOPES Jr, E.S.; LOPES, L.R.; SIMÕES, N.F.; PENI-TENTE, A.R.; BEARZOTI, E.; VIEIRA, P.M.A.V.; SHULZ, R.; TALVANI, A. High fat diet modulates inflammatory parameters in the heart and liver during acute *Trypanosoma cruzi* infection. **International Immunopharmacology**. n.64, p.192-200, 2018.
- Pesquisa: COVID-19

| A noto o ~ |  |  |  |
|------------|--|--|--|
| Anotações  |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
| Anotações  |  |  |  |
| Anotações  |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
| Anotações  |  |  |  |
| Allotações |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |

#### Primeira Análise

Foram 3 microrganismos estudados (Escherichia coli, Staphylococcus aureus e Salmonella ssp), e dois métodos de processamento do leite (pasteurização e termossonificação).

Diferentes alíquotas de leite foram processadas em diferentes temperaturas, para cada um destes métodos de processamento.

Após o processamento, cada alíquota foi avaliada quanto à quantidade destes microrganismos (log na base 10)

Eduardo Bearzoti Estudos de Casos na Área da Saúde

### Artigo 1

Diagrama de dispersão (E. coli, Pasteurização):



### Artigo 1

Primeira tentativa de ajuste:



### Artigo 1

Ficou evidente que um modelo linear não seria adequado.

Optou-se por um modelo não-linear do tipo logístico

O termo "Regressão Logística" é mais conhecido na teoria de Modelos Lineares Generalizados (variável resposta binomial)

Regressão Logística com variável resposta contínua e com distribuição normal:

$$Y_i = \frac{\beta_3}{1 + e^{-(\beta_1 + \beta_2 X_i)}} + \epsilon_i$$

| Anotações |
|-----------|
| ,         |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
| Anotações |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |

| Anotações |  |  |  |
|-----------|--|--|--|
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |

| , | Anotações |  |  |
|---|-----------|--|--|
|   |           |  |  |
|   |           |  |  |
|   |           |  |  |
|   |           |  |  |
|   |           |  |  |
|   |           |  |  |

| Anotações |  |  |
|-----------|--|--|
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |



Artigo 1: Parreiras et al., 202 Artigo 2: Figueiredo et al., 201

Primeira Análise

Artigo 1

Exemplo de um modelo de regressão logística com Y contínua:



Constant de

□ > <**∅** > < ₹> < ₹> = 900

Introdução Artigo 1: Parreiras et al., 2020 Artigo 2: Figueiredo et al., 2018

Primeira Análise

Artigo 1

O ponto de inflexão da curva ocorre para o seguinte valor de X:

$$x = \frac{-\beta_1}{\beta_2}$$

Assíntotas:

$$\lim_{x \to \infty} f(x, \beta) = \beta_3$$
$$\lim_{x \to -\infty} f(x, \beta) = 0$$

Eduardo Bearzoti

idos de Casos na Área da Saúde

Artigo 1: Parreiras et al., 2020 Artigo 2: Figueiredo et al., 2018

Primeira Anális Segunda Anális

Artigo 1

Os modelos de regressão linear (simples ou múltipla) podem ser expressos matricialmente:

$$\mathbf{y} = \mathbf{X} \boldsymbol{eta} + \boldsymbol{\epsilon}$$

em que:

- ullet y é o vetor contendo os n valores  $Y_i$
- $\bullet$  A matriz  ${\bf X}$  contem n linhas, cada qual referente uma observação i
- ullet Primeira coluna de old X contém valores iguais a 1 (referentes ao intercepto), e as demais colunas contêm os valores das variáveis preditoras para a observação i
- $oldsymbol{\circ}$   $oldsymbol{eta}$  é o vetor de parâmetros
- $oldsymbol{\circ}$   $\epsilon$  é o vetor de resíduos

Introdução Artigo 1: Parreiras et al., 2020 Artigo 2: Figueiredo et al., 2018

Primeira Anális Segunda Anális

### Artigo 1

Ajuste de modelos *lineares*: comum o uso do método dos quadrados mínimos

 $\Rightarrow$  consiste em obter a solução do chamado  $\emph{sistema}$  de equações  $\emph{normais}$ :

$$\mathbf{X}'\mathbf{X}\hat{\boldsymbol{eta}}=\mathbf{X}'\mathbf{y}$$

Modelos Não-Lineares

Admitindo-se resíduos aditivos, tais modelos, de forma geral, poderiam ser representados por:

$$Y_i = f(\boldsymbol{\xi}_i, \boldsymbol{\beta}) + \epsilon_i$$

←□ ► ←② ► ←② ► ←② ► ② □

| Anotações |  |  |  |
|-----------|--|--|--|
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
| ~         |  |  |  |
| Anotações |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
| Anotações |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
| \~        |  |  |  |
| Anotações |  |  |  |

Neste modelo:

- $\bullet$   $\xi_i$  é um vetor de valores para um certo número de variáveis preditoras, para a observação i;
- ullet eta é o vetor de parâmetros;
- ullet Admite-se que ao menos uma derivada parcial de  $Y_i$  em relação aos elementos de  $oldsymbol{\beta}$  dependa de algum elemento de  $oldsymbol{\beta}$  (o que torna o modelo não-linear)

Anotações

Anotações

Anotações

Anotações

## Artigo 1

Em modelos não-lineares, o método dos quadrados mínimos conduz a um sistema de equações não-lineares

 $\rightarrow$  necessidade de métodos  $\underline{\text{numéricos}}$  de ajustamento.

Um dos métodos mais populares é o Método de Gauss-Newton

ightarrow consiste em se fazer uma aproximação em série de Taylor da relação  $f(x_i, \beta)$ , utilizando um polinômio de primeira ordem, em uma vizinhança  $\beta=\beta^0$ .

# Artigo 1

Assim, partindo de um chute inicial  $oldsymbol{eta}^0$  para os parâmetros, uma nova aproximação é obtida mediante:

$$oldsymbol{eta}^1 = oldsymbol{eta}^0 + (\mathbf{F}'\mathbf{F})^{-1}\mathbf{F}'\mathbf{y}$$

em que **F** é a matriz de derivadas primeiras de  $f(oldsymbol{\xi}_i,oldsymbol{eta})$  em relação aos elementos de  $\beta$ , avaliadas em  $\beta = \beta^0$ 

Assim procede-se de forma iterativa, até que se atinja a convergência:

$$oldsymbol{eta}^{j+1} = oldsymbol{eta}^j + (\mathbf{F}'\mathbf{F})^{-1}\mathbf{F}'\mathbf{y}$$

Maiores detalhes: Monografia de Gabriella Mourão.

Eduardo Bearzoti Estudos de Casos na Área da Sa

### Artigo 1

Aqui foi feita uma parametrização alternativa, incluindo um parâmetro adicional  $\beta_0$ :

$$Y_i = \beta_0 + \frac{\beta_3}{1 + e^{-(\beta_1 + \beta_2 X_i)}} + \epsilon_i$$

Vantagem: flexibilização das assíntotas da curva, que passam a ser  $\beta_0 \in \beta_0 + \beta_3$ .

Outra flexibilização: possibilidade de o parâmetro  $\beta_2$  ser negativo, viabilizando o ajuste de curvas no formato de "S invertido".

| 4 | □ → | 4 | ø | Þ | 4 | Ē | Þ | 4 | Ē | Þ | - 1 | 200 |
|---|-----|---|---|---|---|---|---|---|---|---|-----|-----|

|                  | 4            | <b>□</b> + | 100 | 4 3 | → 4 ± | <br>•20 |
|------------------|--------------|------------|-----|-----|-------|---------|
| Eduardo Bearzoti | <br>de Casos | _          | _   |     |       | <br>-54 |



Primeira Análise

### Artigo 1

Ajuste (E. coli, Pasteurização):

$$\hat{Y}_i = 4,05 + \frac{2,95}{1 + e^{-(29,50 - 0,53X_i)}}$$



Eduardo Bearzoti

10/10/12/12/ 2

Anotações

Introdução
Artigo 1: Parreiras et al., 2020
Artigo 2: Figueiredo et al., 2018
Pesquisa: COVID-19

Primeira Análise

# Artigo 1

Temperatura no ponto de inflexão:

$$\frac{-\hat{\beta}_1}{\hat{\beta}_2} = 55, 2^{\circ}C$$

| Causas de Variação             | GL | SQ      | QM     | F          |
|--------------------------------|----|---------|--------|------------|
| Regressão                      | 3  | 16,6436 | 5,5479 | 2249,14*** |
| Desvios (Falta de Ajustamento) | 1  | 0,0024  | 0,0024 | 0,97       |
| Erro Puro                      | 6  | 0,0148  | 0,0025 | _          |
| Total                          | 10 | 16,6608 | _      |            |

<sup>\*\*\*</sup> significativo a 0,1% de probabilidade.

4 D > 4 D > 4 E > 4 E > E 990

Artigo 1: Parreiras et al., 2020 Artigo 2: Figueiredo et al., 2018

Primeira Anális

- Introdução
- 2 Artigo 1: Parreiras et al., 2020
  - Primeira Análise
  - Segunda Análise
- 3 Artigo 2: Figueiredo et al., 2018
- 4 Pesquisa: COVID-19

4 D > 4 B > 4 E > 4 E > 9 Q G

Eduardo Bearzoti

Estudos de Casos na Área da Saú

Introdução
Artigo 1: Parreiras et al., 2020
Artigo 2: Figueiredo et al., 2018
Pesquisa: COVID-19

Primeira Anális Segunda Anális

# Artigo 1

#### Segunda Análise

st teor de hexanal em função do tempo de armazenamento

Aqui, foi utilizado um modelo segmentado não-linear.

Modelos segmentados (classificação):

- Descontínuos (linear)
- Contínuos com Interseção Conhecida (linear)
- Contínuos com Interseção Desconhecida (não-linear)

| Anotações |  |
|-----------|--|
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
| Anotações |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |

#### a) Modelo Segmentado Descontínuo

Tabela: Dados: preço de um produto em função do tempo, em meses.

| Mês | Preço |
|-----|-------|
| 1   | 1,5   |
| 2   | 3,1   |
| 3   | 7,5   |
| 4   | 10,4  |
| 5   | 2,4   |
| 6   | 3,5   |
| 7   | 5,0   |
| 8   | 5.2   |

Supondo que houve uma intervenção governamental entre os meses 4 e 5, isto caracteriza uma descontinuidade.

Eduarda Pasmati

4 B > 4 B > 4 B > 4 B > 9 Q @

Anotações

Introdução Artigo 1: Parreiras et al., 2020 Artigo 2: Figueiredo et al., 2018

Primeira Análise

## Artigo 1



Figura: Exemplo de um modelo segmentado descontínuo.

st ajuste das 2 retas em separado não seria o mais apropriado (redução do tamanho da amostra)

Eduardo Bearzoti

studos de Casos na Área da Saúd

Introdução Artigo 1: Parreiras et al., 2020 Artigo 2: Figueiredo et al., 2018

Primeira Anális

# Artigo 1

O ajuste simultâneo das 2 retas pode ser feito com o auxílio de uma variável dummy, representada pela letra Z, que assume valor 0 para segmento A, e o valor 1 para o segmento B.

Assim, considerando:

$$Y = \begin{cases} \beta_0 + \beta_1 X, \text{ se } X \in A \\ \gamma_0 + \gamma_1 X, \text{ se } X \in B \end{cases}$$

com a variável dummy definida por:

$$Z = \begin{cases} 0, \text{ se } X \in A \\ 1, \text{ se } X \in B \end{cases}$$

Introdução Artigo 1: Parreiras et al., 2020 Artigo 2: Figueiredo et al., 2018

Primeira Anális

### Artigo 1

Com a variável *dummy*, é possível escrever as 2 retas em um único modelo:

$$Y = \beta_0 + \beta_1 X + (\gamma_0 + \gamma_1 X - \beta_0 - \beta_1 X) Z$$
 (1)

Note: no segmento A (Z = 0):

$$Y = \beta_0 + \beta_1 X$$

enquanto que no segmento B (Z=1):

$$Y = \gamma_0 + \gamma_1 X$$

| Anotações |  |  |
|-----------|--|--|
| •         |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
| Anotações |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
| . ~       |  |  |
| Anotaçoes |  |  |
|           |  |  |
| Anotações |  |  |

b) Modelo Segmentado Contínuo, Interseção Conhecida

Exemplo: colesterol de uma pessoa acompanhado ao longo de diferentes meses, com tendência de aumento. Entre os meses 4 e 5 o indivíduo começou a praticar esportes, o que leva o nível de colesterol a diminuir, nos meses subsequentes.

Como o colesterol de uma pessoa varia continuamente, não faz sentido uma descontinuidade, como na situação anterior.

Com interseção conhecida, sabe-se qual é o valor de X (representado por  $\theta$ ) que separa os dois segmentos. Por exemplo, se o indivíduo começou a praticar esportes exatamente aos 15 dias entre os meses 4 e 5, então se teria  $\theta = 4, 5$ .

Anotações

Eduardo Bearzoti Estudos de Casos na Área da Saúde

### Artigo 1



Primeira Análise Segunda Análise

# Artigo 1

Aqui:

$$Y = \begin{cases} \beta_0 + \beta_1 X, \text{ se } X < \theta \\ \gamma_0 + \gamma_1 X, \text{ se } X > \theta \\ \beta_0 + \beta_1 X = \gamma_0 + \gamma_1 X, \text{ se } X = \theta \end{cases}$$

A terceira das relações é que garante a continuidad

Ou seja, quando  $X = \theta$ , tem-se que:

$$\beta_0 + \beta_1 \theta = \gamma_0 + \gamma_1 \theta$$

E assim pode-se escrever um parâmetro como fun por exemplo:

$$\gamma_0 = \beta_0 + \beta_1 \theta - \gamma_1 \theta$$

Eduardo Bearzoti Estudos de Casos na Áre

### Artigo 1

Aqui temos o mesmo modelo anterior:

$$Y = \beta_0 + \beta_1 X + (\gamma_0 + \gamma_1 X - \beta_0 - \beta_1 X) Z$$

com a diferença de que agora há uma dependência e

Com esta dependência, o modelo fica:

$$Y = \beta_0 + \beta_1(X + Z\theta - XZ) + \gamma_1(XZ - \theta Z)$$

Sendo  $\theta$  conhecido, os termos dentro dos parêntese assim verifica-se que o modelo é linear.

|                                                | Anotações |
|------------------------------------------------|-----------|
|                                                | •         |
|                                                |           |
|                                                |           |
|                                                |           |
|                                                |           |
|                                                |           |
|                                                |           |
| 6 7                                            |           |
|                                                |           |
|                                                |           |
| ( <b>♂</b> > ← 돌 > ← 돌 > ○ 돌 · • <b>り</b> へ(?~ |           |
| a da Saúde                                     |           |
|                                                |           |
|                                                | ~         |
|                                                | Anotações |
|                                                |           |
|                                                |           |
|                                                |           |
| $\theta$                                       |           |
| de da função.                                  |           |
|                                                |           |
|                                                |           |
| ıção dos demais,                               |           |
| ição dos demais,                               |           |
|                                                |           |
| a da Saúde                                     |           |
|                                                |           |
|                                                |           |
|                                                | Anotações |
|                                                |           |
|                                                |           |
|                                                |           |
| X)Z                                            |           |
| ntre os parâmetros.                            |           |
|                                                |           |
| 0.7)                                           |           |
| - θZ)                                          |           |
| es também são, e                               |           |
|                                                |           |
| a da Saúde                                     |           |
|                                                |           |

c) Modelo Segmentado Contínuo, Interseção Desconhecida

Aqui temos o mesmo modelo do caso anterior:

$$Y = \beta_0 + \beta_1(X + Z\theta - XZ) + \gamma_1(XZ - \theta Z)$$

com a diferença de que agora  $\theta$  é desconhecido.

Com isso, o modelo passa a ser não-linear.

Isto é facilmente percebido, bastando observar que há termos que envolvem produtos de parâmetros, como  $\beta_1\theta$  e  $\gamma_1\theta$ , quando Z=1.

4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m >

Eduardo Bearzoti

Introdução
Artigo 1: Parreiras et al., 2020
Artigo 2: Figueiredo et al., 2018
Parauira: COVID 10

Primeira Análise

### Artigo 1

Dados originais:

| Tempo (dias) | Repetição | Hexanal | Média  |
|--------------|-----------|---------|--------|
| 0            | 1         | 0,1014  |        |
| 0            | 2         | 0,1361  | 0,1355 |
| 0            | 3         | 0,169   |        |
| 15           | 1         | 0,7294  |        |
| 15           | 2         | 0,8029  | 0,7047 |
| 15           | 3         | 0,5820  |        |
| 30           | 1         | 1,1849  |        |
| 30           | 2         | 1,0501  | 1,1234 |
| 30           | 3         | 1,1353  |        |
| 60           | 1         | 0,6328  |        |
| 60           | 2         | 0,7481  | 0,6718 |
| 60           | 3         | 0,6345  |        |
| 120          | 1         | 0,4395  |        |
| 120          | 2         | 0,4930  | 0,4797 |
| 120          | 3         | 0,5066  |        |

duardo Bearzoti

idos de Casos na Área da Saúde

Introdução
Artigo 1: Parreiras et al., 2020
Artigo 2: Figueiredo et al., 2018

Primeira Análise

# Artigo 1

Gráfico de Dispersão:



Eduardo Bearzoti

Estudos de Casos na Área da Saúd

Introdução Artigo 1: Parreiras et al., 2020 Artigo 2: Figueiredo et al., 2018 Pesquisa: COVID-19

Primeira Anális Segunda Anális

# Artigo 1

Inicialmente, tentou-se ajustar um modelo bisegmentado com duas retas, com  $\theta$  desconhecido.

Este ajuste não foi adequado (desvios de regressão foram significativos)  $% \left( \frac{1}{2}\right) =\frac{1}{2}\left( \frac{1}{2}\right) \left( \frac{1}{2}\right$ 

Buscou-se assim, para o segundo segmento, uma curva (e não uma reta), que explicasse a relação entre X e Y:

$$Y = \beta_2 + \beta_3 \frac{1}{X}$$

| notações |  |
|----------|--|
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
| notações |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
| notações |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |



Anotações

A curva desta função apresenta uma assíntota, dada por:

$$\lim_{x\to\infty} Y = \beta_2$$

 $\rightarrow$  teor de hexanal residual que tende a permanecer no leite, após um longo período de armazenamento.

Assim:

$$Y = \begin{cases} \beta_0 + \beta_1 X, \text{ se } X < \theta \\ \beta_2 + \beta_3 \frac{1}{X}, \text{ se } X > \theta \\ \beta_0 + \beta_1 X = \beta_2 + \beta_3 \frac{1}{X}, \text{ se } X = \theta \end{cases}$$

Eduardo Bearzoti Estudos de Casos na Área da Saúde

### Artigo 1

Utilizando uma variavél dummy:

$$Y = \beta_0 + \beta_1 X + \left[\beta_1(\theta - X) - \beta_3 \frac{1}{\theta} + \beta_3 \frac{1}{X + 0, 1}\right] Z$$

Estimativas (lembrando que  $\hat{\beta}_2$  foi obtido por diferença):

- $\hat{\beta}_0 = 0,1617$
- $\hat{\beta}_1 = 0,0327$
- $\hat{\beta}_2 = 0,2409$
- $\hat{\beta}_3 = 27,0635$
- $\hat{\theta} = 30,00$

# Artigo 1



### Artigo 1

Tabela: ANOVA do teor de hexanal, decompondo a variação entre tempos de processamento em: regressão e desvios de regressão.

| Causas de Variação             | GL  | SQ      | QM      | F         |
|--------------------------------|-----|---------|---------|-----------|
| Tempos                         | (4) | 1,55308 | 0,33883 | 80,65***  |
| Regressão (modelo $ \beta_0$ ) | 3   | 1,53979 | 0,51330 | 106,72*** |
| Desvios (Falta de Ajustamento) | 1   | 0,01329 | 0,01329 | 0,13      |
| Erro Puro                      | 10  | 0,04814 | 0,00481 | _         |
| Total                          | 1// | 1.6012  |         |           |

\*\*\* significativo a 0,1% de probabilidade

$$R^2 = \frac{1,53979}{1,55308} = 0,991$$

| Anotações |  |  |  |
|-----------|--|--|--|
| Anotações |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
| Anotações |  |  |  |
| •         |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
| Anotações |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
| Anotações |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |

Anotações Introdução 2 Artigo 1: Parreiras et al., 2020 • Primeira Análise Segunda Análise 3 Artigo 2: Figueiredo et al., 2018 4 Pesquisa: COVID-19 Anotações Artigo 2 Artigo 2: Este trabalho se insere numa linha de pesquisa sobre a doença de Chagas, conduzida pelo Laboratório de Imunobiologia da Inflamação (LABIIN). Dietas ricas em gordura podem potencializar doenças metabólicas e cardiovasculares. Este trabalho objetivou avaliar o impacto de dieta rica em gordura sobre a doença de Chagas, utilizando cobaias. Eduardo Bearzoti Estudos de Casos na Área da Sa Anotações Artigo 2 • Dois grupos de cobaias (camundongos machos da linhagem C57BL/6) foram formados: O primeiro recebeu uma dieta regular. O segundo grupo recebeu uma dieta rica em gordura. • Cada grupo foi tratado com a respectiva dieta por um período de 8 semanas, quando então foram infectados com a linhagem VL-10 de Trypanosoma cruzi. Eduardo Bearzoti Estudos de Casos na Área da Saú Anotações Artigo 2 • O conjunto de dados em questão é ligeiramente desbalanceado: 7 camundongos no grupo da dieta regular 10 camundongos no grupo da dieta rica em gordura ullet Nem todas as cobaias sobreviveram até o  $29^o$  dia após a infecção. • Variável resposta: parasitemia (número de parasitas por volume de sangue)

Introdução
Artigo 1: Parreiras et al., 2020
Artigo 2: Figueiredo et al., 2018

#### Artigo 2

Perfis de parasitemia para a dieta normal (vermelho) e rica em gordura (azul):



4 (a) > 4 (b) > 4 (b) > 4 (b) > 4

Eduardo Bearzoti

studos de Casos na Área da Saúde

Introdução Artigo 1: Parreiras et al., 2020 **Artigo 2: Figueiredo et al., 2018** Pesquisa: COVID-19

### Artigo 2

Perceba que se trata de dados longitudinais.

Estudos longitudinais são métodos de análise de medidas repetidas onde, em geral, tratamentos são atribuídos a unidades experimentais, e os dados são coletados em uma sequência de tempos de cada unidade experimental.

Difere dos estudos transversais devido a uma possível dependência (estatística) entre as observações amostrais, presente apenas nos dados provenientes de estudos longitudinais. pause

Viola a suposição de independência entre observações, que é frequentemente feita em muitos métodos estatísticos.

←□ ← ← = ← = ← = ← → Q ←

Eduardo Bearzoti

Estudos de Casos na Área da Saú

Introdução Artigo 1: Parreiras et al., 2020 Artigo 2: Figueiredo et al., 2018

### Artigo 2

Usar uma ANOVA padrão não é apropriado porque falha em modelar a correlação entre as medidas repetidas.

A análise de dados longitudinais pode ser realizada, por exemplo, com o programa SAS, usando os procedimentos PROC GLM ou o PROC MIXED.

Apesar de ser uma linguagem comercial, atualmente é disponibilizada uma versão *online* do SAS, gratuita, destinada a fins acadêmicos.

Trata-se da plataforma "SAS $^{\circledR}$  OnDemand for Academics".

4 m > 4 m > 4 2 > 4 2 > 2 9 4 0

Eduardo Bearzot

Estudos de Casos na Área da Saúd

Introdução
Artigo 1: Parreiras et al., 2020
Artigo 2: Figueiredo et al., 2018
Pesquisa: COVID-19

### Artigo 2

Modelo usual (modelo fixo), em formato matricial:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\theta} + \mathbf{e} \tag{2}$$

Estimação (dados independentes, quadrados mínimos ordinário):

$$\mathbf{X}'\mathbf{X}\hat{\boldsymbol{\theta}} = \mathbf{X}'\mathbf{y}$$
 (3)

(Sistema de Equações Normais)

| Anotações |
|-----------|
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
| Anotações |
| ,         |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
| Anotações |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
| Anotações |

Estimação (dados com dependência, quadrados mínimos generalizado):

$$\mathbf{X}'\mathbf{R}^{-1}\mathbf{X}\hat{\boldsymbol{\theta}} = \mathbf{X}'\mathbf{R}^{-1}\mathbf{y}$$

Perceba: a matriz  ${f R}$  geralmente contém parâmetros desconhecidos, tornando o sistema não-linear.

Estimação: algoritmos numéricos, como EM e Newton-Raphson

### Artigo 2

Estruturas de Covariância residual mais comuns:

- Simetria composta (abreviatura inglesa: CS);
- Autorregressiva de ordem 1 (abreviatura inglesa: AR(1)).

### Artigo 2

Estrutura Simetria Composta, considerando 4 tempos de um mesmo indivíduo:

$$\left[ \begin{array}{ccccc} \sigma^2 + \sigma_g^2 & \sigma_g^2 & \sigma_g^2 & \sigma_g^2 \\ \sigma_g^2 & \sigma^2 + \sigma_g^2 & \sigma_g^2 & \sigma_g^2 \\ \sigma_g^2 & \sigma_g^2 & \sigma^2 + \sigma_g^2 & \sigma_g^2 \\ \sigma_g^2 & \sigma_g^2 & \sigma_g^2 & \sigma^2 + \sigma_g^2 \end{array} \right]$$

### Artigo 2

Estrutura Autorregressiva de ordem 1, considerando 4 tempos de um mesmo indivíduo:

$$\sigma^{2} \begin{bmatrix} 1 & \rho & \rho^{2} & \rho^{3} \\ \rho & 1 & \rho & \rho^{2} \\ \rho^{2} & \rho & 1 & \rho \\ \rho^{3} & \rho^{2} & \rho & 1 \end{bmatrix}$$

Anotações

Anotações

Anotações

| - |  |  |  |
|---|--|--|--|
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |

| Anotações |   |
|-----------|---|
|           |   |
|           |   |
|           | _ |
|           |   |

```
Anotações
Artigo 2
   Leitura dos Dados:
        data trypanosoma;
input Animal $ Dieta $ Dia $ Parasitemia;
cards;
1 C 9 2
1 C 10 14.2
1 C 11 26.4
         :
7 C 28 72
7 C 29 74
101 H 9 26.4
101 H 10 79.2
         110 H 29 348
                                                                                                      Anotações
Artigo 2
   Análise com estrutura de covariâncias autorregressiva:
        proc mixed;
         class Animal Dieta Dia;
        model Parasitemia = Dieta Dia Dieta*Dia ;
repeated / type=ar(1) sub=Animal(Dieta);
                           Eduardo Bearzoti Estudos de Casos na Área da Sai
                                                                                                      Anotações
Artigo 2
   Resultado da análise:
      Figura: Análise: dependência residual com estrutura autorregressiva.
                        Eduardo Bearzoti Estudos de Casos na Área da Saúde
                                                                                                      Anotações
Artigo 2
   Comparação com a simetria composta:
         Modelo (conforme a estrutura de covariância)
                                                                    AIC
                          Simetria Composta
                                                                   4024,0
                                                                   3779,2
                    Autorregressiva de Ordem 1
   \Longrightarrowa estrutura autorregressiva promoveu melhor ajuste
```

```
class Animal Dieta Dia;

model Parasitemia = Dieta Dia Dieta*Dia ;

repeated / type=ar(1) sub=Animal(Dieta);

lsmeans Dieta*Dia / adjust=tukey slice=Dia; ;
```

Desdobramento:

| Tests of Effect Stices |     |        |        |         |        |  |  |
|------------------------|-----|--------|--------|---------|--------|--|--|
| Effect                 | Dia | Num DF | Den DF | F Value | Pr > F |  |  |
| Dieta*Dia              | 9   | - 1    | 285    | 0.03    | 0.9991 |  |  |
| Dieta*Dia              | 10  | - 1    | 285    | 0.08    | 0.7710 |  |  |
| Dieta*Dia              | 11  | - 1    | 285    | 0.17    | 0.6781 |  |  |
| Dieta*Dia              | 12  | - 1    | 285    | 0.00    | 0.9734 |  |  |
| Dieta*Dia              | 13  | - 1    | 285    | 0.01    | 0.9150 |  |  |
| Dieta*Dia              | 14  | - 1    | 285    | 0.61    | 0.4352 |  |  |
| Dieta*Dia              | 15  | - 1    | 285    | 0.07    | 0.7894 |  |  |
| Dieta*Dia              | 16  | - 1    | 285    | 2.68    | 0.1026 |  |  |
| Dieta*Dia              | 17  | - 1    | 285    | 5.48    | 0.0196 |  |  |
| Dieta*Dia              | 18  | - 1    | 285    | 9.27    | 0.0026 |  |  |
| Dieta*Dia              | 19  | - 1    | 285    | 12.97   | 0.0004 |  |  |
| Dieta*Dia              | 20  | - 1    | 285    | 16.49   | <.0001 |  |  |
| Dieta*Dia              | 21  | - 1    | 285    | 18.88   | <.0001 |  |  |
| Dieta*Dia              | 22  | - 1    | 285    | 13.94   | 0.0002 |  |  |
| Dieta*Dia              | 23  | - 1    | 285    | 18.57   | <.0001 |  |  |
| Dieta*Dia              | 24  | - 1    | 285    | 18.70   | <.0001 |  |  |
| Dieta*Dia              | 25  | - 1    | 285    | 19.07   | <.0001 |  |  |
| Dieta*Dia              | 26  | - 1    | 285    | 8.86    | 0.0032 |  |  |
| Dieta*Dia              | 27  | - 1    | 285    | 3.62    | 0.0581 |  |  |
| Dieta*Dia              | 28  | - 1    | 285    | 2.31    | 0.1294 |  |  |
| Dieta*Dia              | 29  | - 1    | 285    | 7.01    | 0.0085 |  |  |

Figura: Desdobramento da interação Dieta  $\times$  Dia.

Eduardo Bearzoti Estudos de Casos na Área da Saúde

### Artigo 2

Dias em que as Dietas foram significativamente diferentes:



Figura: Parasitemia para ambas as dietas.

Eduardo Bearzoti Estudos de Casos na Área da Saúde

# Artigo 2

Maiores detalhes:

Monografia de: Ludimilla Alves Viana

| Anotações |      |      |
|-----------|------|------|
|           |      |      |
|           | <br> | <br> |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
| Anotações |      |      |
|           |      |      |
|           | <br> | <br> |
|           | <br> | <br> |
|           | <br> | <br> |
| _         |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
| A + ~     |      |      |
| Anotações |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
| Anotações |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           | <br> | <br> |
|           | <br> | <br> |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |
|           |      |      |