

ONLINE LEARNING APPLICATION PROJECT



# PROJECT REQUIREMENTS

## Requirement 1

Single product and stochastic environment

## Requirement 2

Multiple products and stochastic environment

# Requirement 3

Best-of-both-worlds algorithms with a single product

# Requirement 4

Best-of-both-worlds with multiple products

## Requirement 5

Slightly non-stationary environments with multiple products

# SETTING

A company has to choose prices dynamically.

The goal of the company is to maximize profit in different selling scenarios with specific environment settings and according to different buyers behavior.



20XX

# PARAMETERS AND INTERACTION

#### Given:

- A time horizon of T rounds
- The number of products N
- The set of possible prices P
- The production capacity B (expressed as the total number of products that the company can produce)
- The valuation  $v_i$  of the buyer for each type of product

#### At each round:

- The company chooses the types of product to sell and set the price for each type of product
- 2. A buyer with a valuation for each type of product arrives
- 3. The buyer buys a unit of product with price smaller than his valuation
- 4. If the product is sold, the budget of the company is decreased



# **REQUIREMENT 1**

- 1.1 Single product and Stochastic environment without Budget constraint
- 1.2 Single product and Stochastic environment with Budget constraint

# **ENVIRONMENT**

Requirement 1.1

# COMPANY

- Single product selling
- No budget constraints

## BUYER

- Has a distribution over the valuation of a single product
- Modelled as a Gaussian distribution

# **SOLUTION**

Requirement 1.1

## UCB1 approach:

- Compute UCB for all the arms (prices)
- 2. Choose the arm with the highest UCB
- 3. Update the agent

#### **Baseline computation:**

Expected rewards calculated weighting the prices vector with the conversion probability



# **SIMULATION**

Requirement 1.1

We provide results for a simulation with the following parameters:

- Time horizon: T = 10000
- Price set P on the interval [0, 1]
- Gaussian distribution [0.5, 1.0] for the buyer distribution

For measuring the uncertainty on the result the simulation is executed over 10 trials

# Requirement 1.1



# **ENVIRONMENT**

Requirement 1.2

# COMPANY

- Single product selling
- Budget constraints

## BUYER

- Has a distribution over the valuation of a single product
- Modelled as a Gaussian distribution

# **SOLUTION**

#### Requirement 1.2

#### UCB1-like approach:

- 1. Compute UCB for rewards and LCB for costs
- 2. Solve the linear program to find the optimal probabilities
- 3. Draw an arm from the computed distribution
- 4. Get the reward and the cost (unit sold)
- 5. Update the agent

#### Different baseline computation

Linear program for finding the optimal strategy **gamma** 

$$OPT_t \ = \ \left\{ egin{array}{l} \sup_{\gamma \in \Delta_{\mathcal{B}}} ar{f}_t^{UCB}(\gamma) \ \mathrm{s.t.} \ ar{c}_t^{LCB}(\gamma) \leq 
ho \end{array} 
ight.$$



$$\max_{\gamma \in \mathbb{R}^K} \quad \sum_{i=1}^K \gamma_i \, ar{f}_i^{ ext{UCB}}$$

$$ext{s.t.} \quad \sum_{i=1}^K \gamma_i \, ar{c}_i^{ ext{LCB}} \, \leq \, 
ho,$$

$$\sum_{i=1}^K \gamma_i \ = \ 1,$$

$$0 \leq \gamma_i \leq 1 \quad \forall i=1,\ldots,K.$$

# **SIMULATION**

Requirement 1.2

We provide results for a simulation with the following parameters:

■ Time horizon: T = 10000

■ **Budget:** B = 4000

Price set P on the interval [0, 1]

■ Gaussian distribution [0.5, 1.0] for the buyer distribution

For measuring the uncertainty on the result the simulation is executed over 10 trials

# Requirement 1.2



# Cumulative Regret with benchmarks





# **REQUIREMENT 2**

Multiple products and Stochastic environment

# **ENVIRONMENT**

Requirement 2

# COMPANY

- Multiple product selling
- Budget constraints

## BUYER

- Has a joint distribution over the valuation of the products
- Modelled as a Multivariate
   Gaussian distribution

## PROPOSED SOLUTIONS

Requirement 2

#### APPROACH 1

Product-wise decomposition with independent UCB for each product.

Same approach as Req. 1.2 but for N > 1 products

#### APPROACH 2

A priori calculation of all superarms with cartesian product.

Full combinatorial optimization with linear program solving for joint pricing decisions.

#### **APPROACH 3**

Same approach as approach 2 but greedy: we don't optimize solving the linear program

#### **Baseline Computation**

Linear program for finding the optimal gamma matrix

# **SIMULATION**

#### Requirement 2

We provide results for a simulation with the following parameters:

- Time horizon: T = 10000
- **Budget:** B = 16000
- Price set P on the interval [0, 1]
- Number of Products: 3
- Multivariate Gaussian distribution with mean vector [0.5, 0.6, 0.7] and covariance matrix [[0.1, 0.05, 0.02], [0.05, 0.1, 0.03], [0.02, 0.03, 0.1]].

For measuring the uncertainty on the result the simulation is executed over 5 trials

# APPROACH 1

#### Requirement 2

### Product-wise UCB1 approach:

- Compute UCB for rewards and LCB for costs for each product
- 2. Compute the optimal strategy gamma for each product
- 3. Generate and pull the superarm using the gamma matrix
- 4. Get prices and check for units sold
- 5. Update the agent

#### **SUPERARM**

| PRODUCT 1 | p1 |
|-----------|----|
| PRODUCT 2 | p2 |
| PRODUCT 3 | р3 |

# Requirement 2 – Approach 1



# APPROACH 2

#### Requirement 2

## Full combinatorial UCB1 approach:

- Generate all the combination of prices (superarms) with cartesian product
- Compute UCB for rewards and LCB for costs for each superarm
- 3. Solve the linear program to find the gamma
- 4. Pull the superarm using the gamma and get the reward and the cost (if sold)
- 5. Update the agent

# Requirement 2 – Approach 2





## **APPROACH 3**

#### Requirement 2

# Full combinatorial UCB1 approach, with greedy:

- Generate all the combination of prices (superarms) with cartesian product
- Compute UCB for rewards and LCB for costs for each superarm
- 3. Choose feasible superarm which maximize utility, without linear program optimization
- 4. Pull the superarm and get the reward and the cost (if sold)
- 5. Update the agent

# Requirement 2 – Approach 3





# **RESULT SUMMARY**

## Requirement 2

#### Approach 1:

 Less arms and good learning process, but worse regret

#### Approach 2:

 Many arms (full combinatorial) but learns well and achieves better regret

#### Approach 3:

Similar to approach 2, but depletes the budget later





# **REQUIREMENT 3**

Single product and Adversarial environment

# **ENVIRONMENT**

## Requirement 3

# COMPANY

- Single product selling
- Budget constraints

## BUYER

- Adversarial valuations changing over time:
  - oscillating,
  - ☐ delayed reward,
  - ☐ random,
  - custom pattern

#### PROPOSED SOLUTIONS

Requirement 3

Using the pacing strategy with a Lagrangian multiplier  $\lambda$ .

- $\square$  If sales exceed  $\rho$ ,  $\lambda$  increases, **discouraging** low prices;
- $\square$  If sales fall short,  $\lambda$  decreases, **encouraging** lower prices.

#### APPROACH 1

#### **Bandit Feedback:**

**EXP3 agent** used as regret minimizer for price selection.

#### APPROACH 2

#### **Full Feedback:**

**Hedge agent** used as regret minimizer for price selection.

#### **Baseline Computation**

For each price, compute its expected utility and expected cost. Among the prices that satisfy the budget constraint  $c \le \rho$ , choose the one with the highest expected utility.

# **SIMULATION**

Requirement 3

We provide results for a simulation with the following parameters:

■ Time horizon: T = 10000

■ **Budget:** B = 5000

■ Price set P on the interval [0, 1]

For measuring the uncertainty on the result the simulation is executed over 5 trials

# Requirement 3

#### APPROACH 1



# Requirement 3

#### APPROACH 2





# **REQUIREMENT 4**

Multiple products and Adversarial environment

# **ENVIRONMENT**

Requirement 4

# COMPANY

- Multiple product selling
- Budget constraints

## BUYER

- Adversarial valuations changing over time:
  - oscillating,
  - ☐ delayed reward,
  - ☐ random,
  - custom pattern

#### PROPOSED SOLUTIONS

Requirement 4

Using the pacing strategy with a Lagrangian multiplier  $\lambda_i$  for each product.

- o If sales exceed  $\rho$ ,  $\lambda_i$  increases, **discouraging** low prices;
- o If sales fall short,  $\lambda_i$  decreases, **encouraging** lower prices.

#### **Bandit Feedback:**

**EXP3 agent** used as regret minimizer for price selection, for each product.

#### **Baseline Computation**

For each product and price, compute expected utility and cost. Evaluate all product-price combinations and select the one with the highest expected utility subject to  $\sum c \leq \rho$ .

# **SIMULATION**

#### Requirement 4

We provide results for a simulation with the following parameters:

■ **Time horizon:** T = 50000

■ **Budget:** B = 80000

• Price set P on the interval [0, 1]

■ Number of Products: 3

For measuring the uncertainty on the result the simulation is executed over 5 trials

# Requirement 4





# **REQUIREMENT 5**

Slightly non-stationary environment

# **ENVIRONMENT**

Requirement 5

# COMPANY

- Multiple product selling
- Budget constraints

## BUYER

- Non-stationary behavior
- Adversarial valuations changing over time in a fixed, predetermined way.

#### PROPOSED SOLUTIONS

Requirement 5

Using UCB with **Sliding Window**: we empirically choose a window size W, such that only the most recent W samples are considered when computing the UCB.

#### Baseline a Priori

Compute the expected utility for the initial and the target buyer distributions. Take the average of the two optimal utilities as reference benchmark.

#### Baseline a Posteriori

At each round t, compute the optimal expected utility given the current buyer distribution ( $\mu t, \sigma$ ).

# **SIMULATION**

#### Requirement 5

We provide results for a simulation with the following parameters:

- Time horizon: T = 10000
- **Budget:** B = 16000
- Price set P on the interval [0, 1]
- Number of Products: 3
- Window size: 2500
- Covariance Matrix: [[0.1, 0.05, 0.02], [0.05, 0.1, 0.03], [0.02, 0.03, 0.1]], fixed
- Initial Mean vector: [0.6, 0.5, 0.7]
- Target Mean vector: [0.4, 0.6, 0.5]

For measuring the uncertainty on the result the simulation is executed over 5 trials

# Requirement 5

#### **BASELINE A PRIORI**



# Requirement 5

#### **BASELINE A POSTERIORI**



# Requirement 5

#### COMPARISON

Comparison: A Priori vs A Posteriori Regret Sliding Window UCB in Non-Stationary Environment

