Fiche d'Exercices $N^{\circ}:1$

Exercice 1

- 1) On choisit au hasard deux entiers entre 1 et 15.
 - a) i) Quelle est la probabilité qu'au moins un des deux entiers soit un nombre pair?
 - ii) Donner un code 🖫 qui permet de calculer (approximativement) cette probabilité.
 - b) Calculer la probabilité que la somme des nombres choisis soit paire?
- c) On note, respectivement, ces deux entiers m_1 et m_2 . Quelle est la probabilité que $7^{m_1} + 7^{m_2}$ soit divisible par 5?
- 2) On choisit au hasard trois entiers entre 1 et 15. Quelle est la probabilité que leur minimum est 4 ou leur maximum est 10?
- 3) Un nombre X est choisi au hasard de l'ensemble $\{1, 2, ..., n\}$ (n un entier non nul). On note p(n) la probabilité que $X^2 1$ est divisible par 10. Calculer :
 - a) p(10) et p(35).
 - **b)** $\lim_{n\to+\infty}p(n)$.

Exercice 2

On lance un dé jusqu'à l'obtention de 6. On note n le nombre de lancers requis pour cela et on choisit au hasard un entier entre 1 et n. Quelle est la probabilité que le nombre choisi est 1?

Exercice 3

Un avion comporte n sièges ($n \ge 2$). On considère n passagers, chacun ayant une place réservée.

- 1) On considère dans un premier temps que
 - Le premier passager qui arrive est distrait et s'installe à une place choisie au hasard.
 - Les passagers suivants, lorsqu'ils arrivent, s'installent à leur place si celle-ci est disponible, et dans le cas contraire ils choisissent une place au hasard parmi les places encore libres.

On note, pour $k \in [2, n]$ et lorsqu'il y a exactement k places, A_k l'événement : "le k-ième passager s'installe à sa place" et $p_k = P(A_k)$.

Montrer que $p_n = \frac{1}{n} \Big(1 + \sum_{k=2}^{n-1} p_k \Big)$ et en déduire la valeur de p_n .

- 2) On suppose maintenant que tous les passagers choisissent une place au hasard.
 - a) Quelle est la probabilité qu'il y ait au moins un passager installé à sa place?
 - b) Quelle est la probabilité d'avoir exactement un passager installé à sa place?
- c) On vous informe que pour les n-1 premiers sièges aucun passager n'est à sa place. Quelle est la probabilité que le n-ième passager soit à sa place?

Exercice 4

Deux personnes J_1 et J_2 participent à un jeu avec des probabilités respectives de victoire à chaque partie p et q = 1 - p. Le gagnant est celui qui le premier obtient deux victoires de plus que l'autre. Quelle est la probabilité de gain de chaque personne?

Exercice 5

Une personne désire accumuler un capital de N MAD. Elle dispose initialement d'un capital de k MAD (0 < k < N). Pour accroître son capital, elle décide de jouer à un jeu de hasard où la probabilité de réaliser un gain de 1 MAD est p, et la probabilité d'une perte de 1 MAD est 1 - p (0 . Elle jouera jusqu'à ce qu'elle atteigne ce capital ou qu'elle soit ruinée.

- 1) Trouver, éventuellement, la probabilité qu'elle se ruine.
- 2) Trouver la probabilité qu'elle accumule éventuellement N MAD.

Exercice 6

On dispose de deux pièces E et T. La pièce E est équilibrée et la pièce T donne pile avec la probabilité 1-p et face avec la probabilité p.

On effectue une succession de lancers selon le procédé suivant :

- On choisit une des deux pièces E, T au hasard, on la lance
- A chaque lancer, si on obtient face, on garde la pièce pour le lancer suivant, sinon on change de pièce.

On note, pour tout $n \in \mathbb{N}^*$, E_n l'événement : "le n-ième lancer se fait avec la pièce E" et $p_n = P(E_n)$. Trouver une relation de récurrence vérifier par la suite $(p_n)_{n \in \mathbb{N}^*}$ et donner sa valeur.

Exercice 7

On joue à pile ou face avec une pièce équilibrée et on s'intéresse à l'événement A_n : "lors des n premiers lancers il n'a pas été observé deux piles consécutifs".

On note p_n la probabilité de l'événement A_n .

- 1) Trouver une relation de récurrence vérifiée par la suite $(p_n)_{n\in\mathbb{N}^*}$.
- 2) Calculer $\lim_{n\to+\infty} p_n$.

Exercice 8

Deux personnes A et B jouent de la façon suivante :

A lance une pièce et B lance un dé. Ceci est répété indépendamment jusqu'à ce que face ou un des nombre 1,2,3,4 est réalisé. A gagne lorsque face est réalisé et B gagne lorsque un des nombres 1,2,3,4 est réalisé. Calculer la probabilité que A gagne le jeu.