Bhabha Tracking Efficiencies

Martin Sobotzik

12.04.2019

Johannes Gutenberg Universität Mainz

Motivation

- I would like to estimate the tracking efficiency on phase 2 data
- I use Bhabha events because if one track is reconstructed then the other particle should also produce a track

$$\epsilon = \frac{\text{Number of Bhabha events with exactly 2 tracks}}{\text{Number of Bhabha events with 1 or more tracks}}$$

 This idea comes from some plots presented by Sam Cunliffe in previous tracking and ECL meetings.

Getting Started

- Cuts Sam used:
 - gamma:probe '(E > 0.1)'
 - gamma:tag '(clusterE > 3.0)'
 - vpho:cand 'reconstructed from gamma:probe and gamma:tag'
 - $0.296706 < \theta < 2.61799 \rightarrow$ It has to hit the ECL
 - nCleanedTracks[abs(dz) < 2.0 and abs(dr) < 0.5 and nCDCHits > 0 and pt > 0.15] < 1 \rightarrow bad quality hits
- Cuts I use:
 - $\rm M(vpho) > 8.0\,GeV \to For$ the vpho to have a mass of at least 8 $\rm GeV$, gamma:tag and gamma:probe must have at least an energy of more than $\rm 3\,GeV$

Reproducing Plots

- For data I using prod6 (this is because as a starting point I tried to reproduce Sam's plots)
- I am using the following data: /hsm/belle2/bdata/Data/release-02-01-00/DB00000438 /prod00000006/e0003/4S/r02*/all/mdst.sub00/*.root

Original idea

- Treat every hit in the ECL as a photon
- After reconstruction, check if there is a track associated with the cluster

```
fillParticleList('gamma:probe','clusterE > 0.0001 ',path=mypath)
fillParticleList('gamma:tag','clusterE > 0.0001',path=mypath)
reconstructDecay('vpho:cand -> gamma:probe gamma:tag',mass_cut,path=mypath)
```

- \bullet As a first check I ran over MC11 $\mathrm{ee} \to \mathrm{ee}$ samples with the same steering file
- Far too few vpho were reconstructed and the daughters had no tracks associated
- ullet Explanation: The γ list is only filled by particles without a track
- ullet So the reconstruction from two γ lists is exactly what we don't need

How to proceed

- If there is a cluster in the ECL, we check if that cluster has a track associated. If it has than it is an e^+/e^- . If it has not then it is a γ
- So the list we want is a list filled with every event in the ECL

```
fillParticleList('gamma:probe','clusterE > 0.01 ',path=mypath)
fillParticleList('e+:all','clusterE > 0.01', path=mypath)
reconstructDecay('vpho:elec0 -> e+:all','',path=mypath)
reconstructDecay('vpho:gamma0 -> gamma:probe','', path=mypath)
copyLists(outputListName='vpho:mypho_un',inputListNames=['vpho:elec0','vpho:gamma0'],path=mypath)
rankByHighest('vpho:mypho_un','daughter(0,clusterE)',path=mypath)
cutAndCopyList('vpho:mypho','vpho:mypho_un','',path=mypath)
reconstructDecay('vpho:bhabha -> vpho:mypho vpho:mypho',mass_cut,path=mypath)
```

- To add these two lists a pseudo vpho has to be introduced
- The vpho we want can then be reconstructed

Running on MC

 \bullet Running on MC11 $\mathrm{ee} \to \mathrm{ee}$ with new steering file

- $\bullet\,$ Pure Bhabha sample \to No middle peak caused by $\gamma\gamma$ events
- Difference between reconstructed and MCTruthMatched is caused by inefficiency

Running on MC

- $\bullet \ \mathsf{MC11}\ \mathrm{ee} \to \mathrm{ee}\ \mathsf{sample}$
- Reconstructed blue
- MCTruthMatched red

Number of candidates

• Number of reconstructed vpho per event is oftentimes bigger than 1

Next steps

- Select best vpho
- \bullet Cut on $\Delta\Phi_{\rm b2bpred\ -reco}$ peak and calculate a first efficiency