

Programación I (11074)

Departamento de Ciencias Básicas Universidad Nacional de Luján

BERT BETTE

REPASO

Breve repaso conceptual sobre vectores.

Vectores

- Un vector (del inglés "array") es una estructura de datos compuesta, que representa una colección de elementos del mismo tipo.
- Los elementos de un vector se acceden mediante un índice.
- Conceptualmente, un vector puede ser estático (tamaño fijo) o dinámico (tamaño flexible); en la práctica, depende del lenguaje.

NOTA DE COLOR: el uso del término "arreglo" es en realidad un <u>error</u> de traducción del inglés americano "array". Ver *Informática: glosario de términos y siglas* de Antonio Vaquero (McGraw – Hill).

Características principales

- Estructura de datos compuesta,
- homogénea,
- indizada,
- puede ser de una o varias dimensiones,
- puede ser estática o dinámica,
- y dependiendo de la implementación, la primera posición (índice) puede ser 0 o 1.

EJEMPLOS

Algunos ejemplos prácticos.

Notas de alumnos

Podría utilizarse un vector para almacenar todas las notas de los alumnos de un curso.

notas =

4	7	10	2	5	3	6	8	5
0	1	2	3	4	5	6	7	8

- El vector notas tiene tamaño 9.
- La primera posición del vector notas es 0.
- La última posición del vector notas es 8.
- El dato en la posición 0 del vector notas es 4.
- El dato en la posición 8 del vector notas es 5.
- El dato en la posición 5 del vector notas es 3.

Llovió en la semana?

Podría utilizarse un vector para saber en qué días de la semana llovió.

11uvias_semana =

False	False	True	False	True	True	True
0	1	2	3	4	5	6

Asumiendo Python:

- len(lluvias_semana) == 7
- lluvias_semana[0] == False
- lluvias_semana[5] == True
- lluvias_semana[6] == True
- lluvias_semana[7] -> error!

PYTHON

Particularidades del lenguaje Python con el uso de vectores.

Particularidades de Python

- Python <u>no</u> entiende el concepto de vector (array) como tal.
- Para implementar vectores, Python utiliza listas.
- Las listas son <u>conceptualmente diferentes</u> a los vectores, pero <u>las utilizaremos pensando</u> en términos de vectores.

¡IMPORTANTE!

Particularidades de Python (cont.)

- Las listas son dinámicas por definición.
- Para utilizar un vector estático, tenemos que usar un 'hack': podemos aprovechar el operador de <u>multiplicador de secuencias</u> *. Por ejemplo:

lluvias_semana = [None] * 7

 None es un valor especial de Python que indica <u>la ausencia de valor</u> (el null de otros lenguajes).

 Otros ejemplos de definición de vectores estáticos en Python:

```
# vector de tamaño 140, inicializado con 0 en todas las posiciones
notas = [0] * 140
```

vector de tamaño 50, inicializado con 'Sin nombre' en todas las posiciones nombres = ['Sin nombre'] * 50

vector de tamaño 7, inicializado con False en todas las posiciones

nevadas = [False] * 7

EJERCITACIÓN COLECTIVA

Ejercicio práctico de uso de vectores, utilizando el lenguaje Python.

Encuestador!

Nuestro cliente necesita un programa para realizar una encuesta sobre la edad de un conjunto de 100 personas.

PRIMERA ITERACIÓN

Inicialmente, el programa le debe solicitar al usuario ingresar la edad (de 18 a 99 años) de los cien encuestados.

¡Codifiquemos juntos!

Encuestador!

SEGUNDA ITERACIÓN

Una vez cargadas las edades de todos los encuestados, nuestro cliente quiere que el programa:

- Informe el promedio de edad entre todos los encuestados.
- Informe la edad del encuestado más jóven.
- Informe la edad del encuestado más viejo.

jCodifiquemos juntos!

BÚSQUEDA LINEAL

Conceptos básicos sobre el algoritmo de búsqueda lineal/secuencial sobre vectores.

Búsqueda lineal

- Existen varios algoritmos para buscar un elemento concreto dentro de un vector.
- El más básico es la búsqueda lineal o secuencial, que consiste en recorrer el vector, pasando por cada elemento individual hasta encontrar el buscado, o llegar al final sin haberlo hecho.
- La búsqueda lineal <u>no</u> tiene ninguna precondición de orden en los elementos del vector.

Búsqueda lineal

- En el mejor caso, la búsqueda lineal tiene un orden de complejidad O(1), es decir, una sola iteración (cuando el elemento buscado se encuentra en la primera posición del vector).
- En el peor caso, la búsqueda lineal tiene un orden de complejidad O(n), es decir, n iteraciones (cuando el elemento buscado se encuentra en la última posición -n- del vector).
- El orden de complejidad promedio de la búsqueda lineal es O(n).

Encuestador!

TERCERA ITERACIÓN

Finalmente, el cliente quiere poder:

- Saber si hay algún encuestado de exactamente x años, ingresando x por teclado.
- Informar <u>la posición</u> del primer encuestado mayor de 60 años (si es que existe alguno).

jCodifiquemos juntos!

Interrogantes para pensar/investigar

- ¿Cómo podría afectar el orden de los datos de un vector a las operaciones de búsqueda?
- Suponiendo que los datos dentro de un vector están ordenados por algún criterio, ¿cómo se verían afectadas las operaciones de insertar y borrar elementos del vector?.

"Quien teme preguntar, teme aprender." -Proverbio danés.

