What is Claimed:

1 2	1. A device for monitoring wear of dicing saw blade, the device comprising:
3	a light source to emit light onto an end surface of the saw blade;
4 5	a sensor for receiving a reflection of a portion of the light from the end surface of the saw blade; and
6 7	a processor coupled to the sensor for determining wear of the saw blade based on an output from the sensor.
1 2	2. The device according to claim 1, wherein the sensor determines a distance to the edge of the saw blade based on triangulation.
1 2	3. The device according to claim 1, further comprising first focusing means for focusing the reflected light onto the plurality of sensors.
1 2	4. The device according to claim 1, wherein-the-sensor is a plurality of sensors.
1 2 3	5. The device according to claim 4, wherein each of the plurality of sensors determines a respective distance to the edge of the saw blade based on triangulation.
1 2 3	6. The device according to claim 4, further comprising a respective plurality of first focusing means for focusing the reflected light onto the plurality of sensors.
1 2	7. The device according to claim 1, wherein the monitoring device is mounted on a cooling block of the saw blade.
1 2	8. The device according to claim 1, wherein the light impacts the end of the saw blade substantially orthogonal to an axis of the saw blade.
1 2 3	9. The device according to claim 1, wherein the light impacts the surface of the saw blade substantially normal to a cutting edge of the saw blade.

- 1 The device according to claim 1, wherein the sensor is a 10. position sensitive detector. 2 The device according to claim 1, wherein the sensor is a 3 11. 4 CCD detector. 1 The device according to claim 1, wherein the sensor 12. 2 produces an output based on a position of the reflected light on a surface of the 3 sensor. 1 The device according to claim 1, wherein the emitter is a 13. 2 laser diode. The device according to claim 1, wherein the emitter 1 14. provides a light output having a wavelength of between about 600 to 800 nm. 2 1 15. The device according to claim 1, wherein the processor 2 determines blade wear based on a measured distance between the light source and a cutting edge of the saw blade. 3 The device according to claim 15, wherein the processor 1 16. 2 stores successive wear data from the saw blade in a database. 1 The device according to claim 1, wherein the processor 17. provides a warning output based on a predicted wear of the saw blade, the 2 predicted wear determined from the successive wear data. 3 The device according to claim 1, wherein the predicted wear 1 18. 2 of the blade is based on a comparison of the successive wear information stored 3 in the database. The device according to claim 1, further comprising a 1 19. monitor for displaying at least one of i) a wear rate of the saw blade, and ii) an 2 estimated time for replacement of the saw blade. 3
- 1 20. The device according to claim 1, wherein saw blade wear is determined in real time.

K&S-114US - 12 -

	1 2	method com	21. A method for monitoring wear of a dicing saw blade, the apprising the steps of:
	3		emitting light onto an cutting edge of the saw blade;
	4 5	saw blade; a	receiving a reflection of a portion of the light from the edge of the and
	6		determining wear of the saw blade based on the reflected light.
	1 2 3	of displaying	22. The method according to claim 21, further comprising the step at least one of i) a wear rate of the saw blade, and ii) an estimated lacement of the saw blade.
	1 2	method com	23. A method for monitoring wear of a dicing saw blade, the prising the steps of:
	3		emitting light onto a cutting edge of the saw blade;
	4 5	saw blade;	receiving a reflection of a portion of the light from the edge of the
	6 7	and	triangulating a distance to the saw blade base on the reflected light
	8 9	distance.	determining wear of the saw blade based on the triangulated
	1 2	comprising:	24. A device for monitoring wear of dicing saw blade, the device
	3		means to emit light onto a surface of the saw blade;
	4 5	from the surf	receiving means for receiving a reflection of a portion of the light face of the saw blade; and
	6 7	wear of the s	processing means coupled to the receiving means for determining aw blade based on an output from the receiving means.

	•	23. The device according to claim 24, further comprising:			
	2	display means for displaying at least one of at least one of i) a wear			
	3	rate of the saw blade, ii) a diameter of the saw blade, and ii) an estimated time			
	4	for replacement of the saw blade.			
	1	26. The device according to claim 25, further comprising memory			
	2	means for storing the information displayed by the display means.			
	1	27. The device according to claim 25, further comprising means for			
	2	predicting wear of the saw blade.			
	1	28. A device for use with a dicing saw to monitor wear of a			
1000	2	dicing saw blade, the device comprising:			
	3	a light source to emit light onto the saw blade; and			
1					
	4	a sensor for receiving at least a portion of the light from the light			
1	5	source via the saw blade, the received portion of the light based on a wear of the			
	6	saw blade,			
	7	wherein the device is mounted on a cooling block of the dicing saw.			