```
from IPython.core.display import display, HTML
display(HTML("<style>.container { width:95% !important; }</style>"))
```

```
# Conectamos con nuestro Google Drive
from google.colab import drive
drive.mount('/content/drive')
```

Mounted at /content/drive

```
pip install xgboost
```

```
Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/r</a> Requirement already satisfied: xgboost in /usr/local/lib/python3.7/dist-packages (0.9 Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages">https://pypi.org/simple</a>, <a href="https://pypi.org/simple">https://pypi.org/simple</a>, <a href="https://pypi.org/simple</a>, <a href="https://pypi.or
```

pip install lightgbm

```
Looking in indexes: <a href="https://pypi.org/simple">https://pypi.org/simple</a>, <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/pypi.org/simple</a>, <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/pypi.org/simple</a>, <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/pypi.org/simple</a>, <a href="https://pypi.org/simple">lightps://org/simple</a>, <a href="https://pypi.org/simple">https://org/simple</a>, <a href="https://org/simple</a>, <a href="htt
```

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import scipy as sp
from scipy import stats
import datetime
from datetime import date
from sklearn.cluster import KMeans
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.linear model import LinearRegression
from sklearn.metrics import mean squared error
from sklearn.metrics import r2_score
from sklearn.metrics import mean absolute percentage error
from sklearn.model selection import cross val score
from sklearn.model selection import cross validate
from sklearn.preprocessing import PolynomialFeatures
```

```
from sklearn.linear model import Ridge
from sklearn.model selection import RandomizedSearchCV
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import AdaBoostRegressor
from sklearn.decomposition import PCA
from sklearn.ensemble import BaggingRegressor
from xgboost import XGBRegressor
from lightgbm import LGBMRegressor
import xgboost as xgb_
from sklearn.metrics import mean_absolute_error
from sklearn.preprocessing import StandardScaler
import warnings
warnings.filterwarnings("ignore")
import sys
!unzip /content/drive/MyDrive/EXABY/DATA SET.zip -d EXABY
     Archive: /content/drive/MyDrive/EXABY/DATA_SET.zip
        creating: EXABY/DATA_SET/
       inflating: EXABY/DATA SET/Anuncios usados.csv
       inflating: EXABY/DATA_SET/Consumos_emisiones.csv
       inflating: EXABY/DATA_SET/Modelos.json
       inflating: EXABY/DATA_SET/Precio_historico.xml
       inflating: EXABY/DATA_SET/Tablas y Variables v2.pdf
       inflating: EXABY/DATA SET/Tipo de cambio.csv
       inflating: EXABY/DATA_SET/Ventas_nuevas.json
       inflating: EXABY/DATA_SET/Versiones.csv
data = pd.read table('/content/drive/MyDrive/EXABY/full df.csv', delimiter = ',')
versiones = pd.read_table('/content/EXABY/DATA_SET/Versiones.csv', delimiter = ',')
data.drop(columns=data.columns[0], axis=1, inplace=True)
data.Reg_year = data.Reg_year.astype(int)
data.Runned Miles = data.Runned Miles.replace('1 mile', 1)
data.Runned Miles = data.Runned Miles.astype(int)
data.Engine_power = data.Engine_power.round(3)
data.Average mpg = data.Average mpg.round(3)
```

Clusterización

data.Ad_price_GBP = data.Ad_price_GBP.round(3)

Despues de definir el modelo de clusterizacion a implementar, aplicamos k-means para posteriormente organizar los valores por la clasificacion del modelo k-means y realizar la predicción.

data.info()

df.head()

<class 'pandas.core.frame.DataFrame'>

```
RangeIndex: 209520 entries, 0 to 209519
    Data columns (total 26 columns):
         Column
     #
                                Non-Null Count Dtype
                                -----
                                                 ----
         Genmodel_ID
                                209520 non-null object
     0
     1
         Adv ID
                                209520 non-null object
     2
                                209520 non-null int64
         Reg_year
     3
         Bodytype
                                209520 non-null object
         Runned Miles
                              209520 non-null int64
     5
         Gearbox
                               209520 non-null object
     6
         Fuel_type
                                209520 non-null object
                              209520 non-null float64
     7
         Engine power
                               209520 non-null float64
     8
         Wheelbase
                                209520 non-null float64
         Height
     10 Width
                               209520 non-null float64
                               209520 non-null float64
     11 Length
     12 Average_mpg
                                209520 non-null float64
                               209520 non-null float64
     13 Top_speed
                              209520 non-null float64
     14 Seat_num
     15 Door_num
                                209520 non-null float64
                              209520 non-null object
209520 non-null float64
     16 Ad Date
     17 Ad_price_GBP
                               209520 non-null float64
     18 Engine size
                              209520 non-null float64
     19 Entry_price_GBP
                               209520 non-null float64
     20 Gas_emission
     21 Tot_devaluation
                                209520 non-null float64
     22 Percentage_devaluation 209520 non-null float64
                                209520 non-null float64
     23 Age
     24 Tot_Dev_PerYear
                                209520 non-null float64
     25 Per_Dev_PerYear
                                209520 non-null float64
    dtypes: float64(18), int64(2), object(6)
    memory usage: 41.6+ MB
df = data.iloc[:, [2,4,7,8,9,10,11,12,13,14,15,17,18,19,20,23,22]]
scaler = StandardScaler()
df = pd.DataFrame(scaler.fit_transform(df.values), columns=df.columns, index=df.index)
```

```
Reg_year Runned_Miles Engine_power Wheelbase Height Width Length

0 -2.841218 -0.561657 3.481406 1.340505 -0.105126 1.608635 2.541191

1 -2 841218 -0.196791 3.481406 1.340505 -0.105126 1.608635 2.541191

#inversed = pd.DataFrame(scaler.inverse_transform(df.values), columns = df.columns, index
```

```
pca = PCA(n_components=10)
pca.fit(df)
```

PCA(n_components=10)

```
X_pca = pca.transform(df)
```

result=pd.DataFrame(X_pca, columns=['PCA%i' % i for i in range(10)], index=df.index)
result

	PCA0	PCA1	PCA2	PCA3	PCA4	PCA5	PCA6	F		
0	11.725942	4.055185	1.424336	-1.186796	-0.624917	-0.014333	-0.251504	1.117		
1	11.570355	4.272420	1.555266	-0.976882	-0.485545	-0.035949	-0.223659	0.773		
2	9.655950	3.711655	1.287174	-0.595318	-0.437819	-0.217259	-0.286216	1.419		
3	11.572519	4.455430	1.584277	-0.939624	-0.460195	0.014390	-0.146929	0.807		
4	11.564454	4.522239	1.610395	-0.895718	-0.428030	0.052291	-0.089853	0.770		
209515	-1.314249	-0.076282	0.216879	1.505677	0.239294	1.493453	0.318136	-0.164		
209516	-1.188275	0.220188	0.277281	1.309100	0.177713	1.305300	0.142597	-0.204		
209517	-1.352012	0.068634	0.261612	1.583458	0.286722	1.494537	0.343650	-0.218		
209518	-1.364790	0.124295	0.279272	1.614206	0.306119	1.500036	0.359583	-0.239		
209519	-1.363258	0.146919	0.288313	1.630103	0.318599	1.522063	0.389944	-0.249		
209520 rows × 10 columns										

4

KMeans(n clusters=5)

```
plt.figure(figsize=(15,5))
y_kmeans = algoritmo.predict(result)
ax = plt.figure(figsize=(20,10)).gca(projection='3d')
```

```
centers = algoritmo.cluster_centers_
ax.scatter(
    xs=centers[:, 0],
    ys=centers[:, 1],
    c = 'black',
    alpha = 1,
    s = 60,
)
ax.scatter(
    xs=result["PCA0"],
    ys=result["PCA1"],
   zs=result["PCA2"],
    c = y_kmeans,
   cmap='winter',
    s = 10,
    alpha = 0.2
)
ax.set_xlabel('pca-one')
ax.set_ylabel('pca-two')
ax.set_zlabel('pca-three')
#rotacion de ejes
ax.azim = 300
ax.elev = 10
#limit
#ax.axes.set_xlim3d(min(result["PCA0"]),4e6)
#ax.axes.set_ylim3d(min(result["PCA1"]),max(result["PCA1"]))
#ax.axes.set_zlim3d(0,400000)
ax.zaxis.labelpad=10
ax.azim = 130
ax.elev = 50
plt.show()
```

<Figure size 1080x360 with 0 Axes>

#pca.inverse_transform(result)

np.unique(y_kmeans)

array([0, 1, 2, 3, 4], dtype=int32)

result["Cluster"] = y_kmeans

pd.set_option('display.max_rows', 100)
data['Cluster'] = y_kmeans
data.groupby('Cluster').describe().transpose().head(100)

	Cluster	0	1	2	3	
Reg_year	count	3853.000000	85218.000000	6.481000e+04	47084.000000	
	mean	2011.969115	2013.946784	2.007027e+03	2014.451002	
	std	3.221380	2.359396	2.718333e+00	2.173319	
	min	2000.000000	2002.000000	2.000000e+03	2006.000000	
	25%	2010.000000	2012.000000	2.005000e+03	2013.000000	
	50%	2012.000000	2014.000000	2.007000e+03	2015.000000	
	75%	2014.000000	2016.000000	2.009000e+03	2016.000000	
	max	2019.000000	2019.000000	2.014000e+03	2019.000000	
Runned_Miles	count	3853.000000	85218.000000	6.481000e+04	47084.000000	
	mean	58164.605243	35000.069129	9.351242e+04	39846.187580	
	std	35490.176024	24497.499744	4.866288e+04	29742.146575	
	min	1.000000	0.000000	1.080000e+02	0.000000	
	25%	31500.000000	15502.250000	7.100000e+04	15000.000000	
	50%	55128.000000	30000.000000	9.000000e+04	33426.500000	
	75%	81350.000000	49998.000000	1.120000e+05	58689.500000	
	max	260000.000000	271112.000000	6.363342e+06	232000.000000	
Engine nower	count	3853 UUUUUU	<u> </u>	6 121000 <u>0</u> ±01	<i>47</i> 08 <i>4</i> 000000	

data.groupby('Cluster').describe().transpose().tail(100)

	Cluster	0	1	2	
Average_mpg	25%	44.000000	51.000000	36.000000	42.0
	50%	47.000000	57.000000	42.000000	50.0
	75%	56.000000	65.000000	48.000000	58.0
	max	156.000000	200.000000	76.000000	156.0
Top_speed	count	3853.000000	85218.000000	64810.000000	47084.0
	mean	120.764652	111.511527	122.105610	132.7
	std	11.729554	9.937637	14.676918	12.
	min	84.000000	11.000000	84.000000	90.0
	25%	112.000000	106.000000	112.000000	124.0
	50%	118.000000	111.357143	121.000000	131.(
	75%	130.000000	117.000000	130.165217	140.(
	max	180.000000	183.000000	183.000000	204.0
Seat_num	count	3853.000000	85218.000000	64810.000000	47084.0
	mean	5.208149	4.805170	4.923823	5.2
	std	1.161321	0.603725	0.847185	0.7
	min	2.000000	1.000000	2.000000	2.0
	25%	5.000000	5.000000	5.000000	5.(

Cluster 0: Mean Age 6 (3853 samples) 2nd Most seat nums (>5 in mean) AVERAGE CARS

Cluster 1: Mean Age 4 (85218 samples) Least Gas emissions Smallest engine size Least runned miles SMALL CARS

Cluster 2: Mean Age 11 (64810 samples) Greatest runned miles AVERAGE OLD cars

Cluster 3: Mean Age 3.5 (47084 samples) Most seat nums (>5 in mean) 2nd fastest top speed biggest FAMILIAR/MINI-VAN

Cluster 4: Mean Age 6.5 (855 samples) Most Gas Emissions (++) Biggest engine size (++) Most engine power (++) Fastest top speed Only one with door num < 3 SPORTS CARS

(++) by great difference

	750/	F 000000	F 000000	E 000000	- /
data.dtypes					
Genmodel_ID Adv_ID Reg_year Bodytype Runned_Miles Gearbox Fuel_type Engine_power	object object int64 object int64 object object float64				

Wheelbase	float64
Height	float64
Width	float64
Length	float64
Average_mpg	float64
Top_speed	float64
Seat_num	float64
Door_num	float64
Ad_Date	object
Ad_price_GBP	float64
Engine_size	float64
Entry_price_GBP	float64
Gas_emission	float64
Tot_devaluation	float64
Percentage_devaluation	float64
Age	float64
Tot_Dev_PerYear	float64
Per_Dev_PerYear	float64
Cluster	int32
dtype: object	

dtype: object

209520 rows × 12 columns

result["Percentage_devaluation"] = data['Percentage_devaluation']

result

	PCA0	PCA1	PCA2	PCA3	PCA4	PCA5	PCA6	F
0	11.725942	4.055185	1.424336	-1.186796	-0.624917	-0.014333	-0.251504	1.117
1	11.570355	4.272420	1.555266	-0.976882	-0.485545	-0.035949	-0.223659	0.773
2	9.655950	3.711655	1.287174	-0.595318	-0.437819	-0.217259	-0.286216	1.419
3	11.572519	4.455430	1.584277	-0.939624	-0.460195	0.014390	-0.146929	0.807
4	11.564454	4.522239	1.610395	-0.895718	-0.428030	0.052291	-0.089853	0.770
209515	-1.314249	-0.076282	0.216879	1.505677	0.239294	1.493453	0.318136	-0.164
209516	-1.188275	0.220188	0.277281	1.309100	0.177713	1.305300	0.142597	-0.204
209517	-1.352012	0.068634	0.261612	1.583458	0.286722	1.494537	0.343650	-0.218
209518	-1.364790	0.124295	0.279272	1.614206	0.306119	1.500036	0.359583	-0.239
209519	-1.363258	0.146919	0.288313	1.630103	0.318599	1.522063	0.389944	-0.249

Se separa el dataset por clusters para posteriormente realizar en train test split y entrenar los modelos de regresion

```
df1 = result[result["Cluster"] == 0]
df2 = result[result["Cluster"] == 1]
```

```
df3 = result[result["Cluster"] == 2]
df4 = result[result["Cluster"] == 3]
df5 = result[result["Cluster"] == 4]
```

```
X = df1.drop(["Percentage_devaluation"], axis = 1)
y = df1.Percentage_devaluation

X1 = df2.drop(["Percentage_devaluation"], axis = 1)
y1 = df2.Percentage_devaluation

X2 = df3.drop(["Percentage_devaluation"], axis = 1)
y2 = df3.Percentage_devaluation

X3 = df4.drop(["Percentage_devaluation"], axis = 1)
y3 = df4.Percentage_devaluation

X4 = df5.drop(["Percentage_devaluation"], axis = 1)
y4 = df5.Percentage_devaluation
```

Modelos de regresion

```
[ ] L, 43 celdas ocultas
```

Stratification of datasets for visualization

```
[ ] L, 9 celdas ocultas
```

Productos de pago de Colab - Cancelar contratos

