

Preprocessing Strings

- Preprocessing the pattern speeds up pattern matching *aueries*
 - After preprocessing the pattern, KMP's algorithm performs pattern matching in time proportional to the text size
- ◆ If the text is large, immutable and searched for often (e.g., works by Shakespeare), we may want to preprocess the text instead of the pattern
- A trie is a compact data structure for representing a set of strings, such as all the words in a text
 - A tries supports pattern matching gueries in time proportional to the pattern size

© 2004 Goodrich, Tamassia

Tries

Standard Tries

- The standard trie for a set of strings S is an ordered tree such that:
 - Each node but the root is labeled with a character
 - The children of a node are alphabetically ordered
 - The paths from the external nodes to the root yield the strings of S
- Example: standard trie for the set of strings

S = { bear, bell, bid, bull, buy, sell, stock, stop }

Analysis of Standard Tries

- \bullet A standard trie uses O(n) space and supports searches, insertions and deletions in time O(dm), where:
 - n total size of the strings in S
 - m size of the string parameter of the operation

d size of the alphabet

© 2004 Goodrich, Tamassia

Tries

Compact Representation

- Compact representation of a compressed trie for an array of strings:
 - Stores at the nodes ranges of indices instead of substrings
 - Uses O(s) space, where s is the number of strings in the array
 - Serves as an auxiliary index structure

Suffix Trie

◆ The suffix trie of a string X is the compressed trie of all the suffixes of X

© 2004 Goodrich, Tamassia

Tries

8

Analysis of Suffix Tries

- Compact representation of the suffix trie for a string X of size n from an alphabet of size d
 - Uses O(n) space
 - Supports arbitrary pattern matching queries in *X* in *O*(*dm*) time, where *m* is the size of the pattern
 - Can be constructed in O(n) time

Encoding Trie (2)

- Given a text string X, we want to find a prefix code for the characters
 of X that yields a small encoding for X
 - Frequent characters should have short code-words
 - Rare characters should have long code-words
- Example
 - X = abracadabra
 - T₁ encodes X into 29 bits
 - T₂ encodes X into 24 bits

Encoding Trie (1)

- A code is a mapping of each character of an alphabet to a binary code-word
- A prefix code is a binary code such that no code-word is the prefix of another code-word
- ◆ An encoding trie represents a prefix code
 - Each leaf stores a character
 - The code word of a character is given by the path from the root to the leaf storing the character (0 for a left child and 1 for a right child

Huffman's Algorithm

- Given a string X, Huffman's algorithm construct a prefix code the minimizes the size of the encoding of X
- It runs in time $O(n + d \log d)$, where n is the size of X and d is the number of distinct characters of X
- A heap-based priority queue is used as an auxiliary structure

Algorithm *HuffmanEncoding(X)* **Input** string *X* of size *n* **Output** optimal encoding trie for *X* $C \leftarrow distinctCharacters(X)$ computeFrequencies(C, X) $Q \leftarrow$ new empty heap for all $c \in C$ $T \leftarrow$ new single-node tree storing cQ.insert(getFrequency(c), T)while O.size() > 1 $f_1 \leftarrow O.min()$ $T_1 \leftarrow Q.removeMin()$ $f_2 \leftarrow O.min()$ $T_2 \leftarrow O.removeMin()$ $T \leftarrow join(T_1, T_2)$ Q.insert $(f_1 + f_2, T)$

© 2004 Goodrich, Tamassia

Tries

return O.removeMin()

12

