

Raw Data: How Do Speed and Environment Impact Fuel Consumption?

Data Products & Project Objectives

Environmental Conditions

& Temperature

Height & Period

Data Science Process

Data Wrangling Record Cleaning

Outlier Detection Feature Selection

Vessel Performance Curves

Iterative Cycle

Feature Engineering Exploratory Data Analysis

Predictive Modeling Multi-Linear Regression

Data Wrangling: Missing Records

Data Cleaning: Time, Main Engine & Wave Conditions

10000

12000

16000

2000

4000

6000

Reversion to Boolean Values

Dropped Columns with Excessive **Missing Records**

200 - Rudder Angle (degrees)

Data Cleaning: Rudder Angle & Water Temperature

Feature Engineering: Mean Draft, Trim, List, Apparent Sea Direction, At Sea & Speed Squared

Exploratory Data Analysis: Fuel Source, Wind Conditions, Shaft Performance

Outlier Detection: Shaft Speed & Speed through Water (Possibly Towed & Anchored)

Dropped 7.4% of Records:
Zero Shaft Speed
& Non-Zero Consumption

High Shaft Speed > 85 RPM Using Low Fuel < 6 MT/Day

Low Shaft Speed < 40 RPM Using High Fuel > 85 MT/Day

Dropped 0.2% of Records: Zero Speed through Water & Non-Zero Consumption

Data Set After Cleaning and Outlier Removal

Multi-Linear Regression Modeling: Coefficients, Training Set & Predictions

25

7.5

Speed Through Water (knots)

10.0

Model

Predictions

12.5

17.5

2,410 Records
R-Squared: 96.9%
Root Mean Squared Error: 2.95 MT/Day

Multi-Linear Regression Modeling: Residual Linearity, Distribution & Normality

Nearest Neighbor Regression Modeling: k-Neighbor Selection, Training Set & Predictions

6

Nearest Neighbor Regression Modeling: Residual Linearity, Distribution & Normality

Random Forest Regression Modeling: Feature Importance, Training Set & Predictions

Random Forest Regression Modeling: Residual Linearity, Distribution & Normality

Multi-Linear Regression Vessel Performance Curves: Prediction Sampling

Multi-Linear Regression Vessel Performance Curves: Sensitivity to Draft

Multi-Linear Regression Vessel Performance Curves: Sensitivity to Trim

Multi-Linear Regression Vessel Performance Curves: Sensitivity to Wind Speed

Multi-Linear Regression Vessel Performance Curves: Sensitivity to Sea Current Speed

Random Forest Regression Vessel Performance Curves: Prediction Sampling

Random Forest Regression Vessel Performance Curves: Sensitivity to Draft

Random Forest Regression Vessel Performance Curves: Sensitivity to Trim

Random Forest Regression Vessel Performance Curves: Sensitivity to Wind Speed

Random Forest Regression Vessel Performance Curves: Sensitivity to Sea Current Speed

Sensor Drift: Difference in Water and Ground Speed

Sensor Drift: 200-Day Rolling Average

Ship Performance

Adam C Dick www.linkedin.com/in/adamcdick

Project Data Stack Vessel Performance Engineering Understanding IoT Sensors Data **Python** Wrangling Missingno **Feature Engineering Python Data Exploration Pandas Outlier Detection Python Feature Selection Pandas Predictive** Sci-Kit Learn Numpy / Scipy Modeling Data **Matplotlib** Visualization Seaborn