

lec(5)  
25/10/2016

## combinational logic Circuit "Data processing Circuits"

### \*Multiplexer



Time Division Multiplexing (TDM) is multiplexed from \*  
AND gate in OR as multiplexer \*  
يتحقق في\*

number of  $\rightarrow n$  output  $\rightarrow 1$   
Source  $\frac{n}{2}$



(input) Sources  
→ AND gate & OR +  
(2 selection lines)

Logic Circuit of Mux



→ 8x1 multiplexer, 3 selection lines

8 → AND Gates

\* Function table of 4x1 Mux

| $S_1$ | $S_0$ | $y$   |
|-------|-------|-------|
| 0     | 0     | $D_0$ |
| 0     | 1     | $D_1$ |
| 1     | 0     | $D_2$ |
| 1     | 1     | $D_3$ |

\* logic symbol



\* Function table of 8x1 mux

| $EN$ | $S_2$ | $S_1$ | $S_0$ | $y$   |
|------|-------|-------|-------|-------|
| 0    | 0     | 0     | 0     | $D_0$ |
| 1    | 0     | 0     | 1     | $D_1$ |
| 1    | 0     | 1     | 0     | $D_2$ |
| 1    | 0     | 1     | 1     | $D_3$ |
| 1    | 1     | 0     | 0     | $D_4$ |
| 1    | 1     | 0     | 1     | $D_5$ |
| 1    | 1     | 1     | 0     | $D_6$ |
| 1    | 1     | 1     | 1     | $D_7$ |
| 0    | x     | x     | x     | 0     |

$EN = 0 \rightarrow \text{output} = 0$

$EN = 1 \rightarrow \text{output} = 1$

\* EN Active high

$EN = 0 \rightarrow \text{output} = 1$

$EN = 1 \rightarrow \text{output} = 0$

\* EN Active low

| $EN$ | $S_2$ | $S_1$ | $S_0$ | value |
|------|-------|-------|-------|-------|
| 1    | x     | x     | x     | 0     |
| 0    | 0     | 0     | 0     | 0     |
| 0    | 0     | 0     | 1     | 1     |
| 0    | 0     | 1     | 0     | 1     |
| 0    | 0     | 1     | 1     | 0     |
| 0    | 1     | 0     | 0     | 1     |
| 0    | 1     | 0     | 1     | 0     |
| 0    | 1     | 1     | 0     | 0     |
| 0    | 1     | 1     | 1     | 1     |

Sum of Product

$$F(A, B, C) = \sum m(1, 3, 5, 6)$$

القيم المنشورة  
↓  
مinterm

DATE  
PAGE

Implement  $F$  using 8:1 multiplexer.

$$F(A, B, C) = \bar{A}\bar{B}C + \bar{A}BC + A\bar{B}C + ABC \rightarrow$$

truth  
table



\* Implement the previous function using 4x1 MUX.  
أو بدل n مUX دل n مUX دل input دل selection دل  
يبارى 2 فقط.



inputs طريه دل ④  
مinterms ① فتح دائرة دل المقابل دل  
② دل inputs الى دل هذه دل شرط دل اثر دل صيغه دل واحد.

|           | $D_0$ | $D_1$ | $D_2$ | $D_3$     |
|-----------|-------|-------|-------|-----------|
| $\bar{A}$ | 0     | ①     | 2     | ③         |
| A         | 4     | ⑤     | ⑥     | 7         |
|           | 0     | 1     | A     | $\bar{A}$ |

$A \leftarrow A$  المدخل المختار  
 $\bar{A} \leftarrow \bar{A}$  المدخل غير المختار

\* طبقه أخذوا بستفهام Selection = A,B

|       | $\bar{C}$ | C |
|-------|-----------|---|
| $D_0$ | 0         | ① |
| $D_1$ | 2         | ③ |
| $D_2$ | 4         | ⑤ |
| $D_3$ | ⑥         | 7 |

مخرجاته  $F(A, B, C, D) = \dots$

using 8x1 multiplexer

$B, C, D \rightarrow$  selection lines

$A \Rightarrow$  المدخل المختار

function table multiplexer :- طبقه أخذوا بستفهام

74xx151  $\rightarrow$  (8x1 mux)

\* Demultiplexer:-



\* logic Circuit of  $1 \times 4$  Demux



\* symbol



EN → Active high



\* Mux → multiple input, single output logic circuit.

\* **Decoders** multiple input, multiple output logic circuit

تُسمى الآلات بـ

جهاز

Security



$$ABC \rightarrow 0000 \ 0000$$

:- الفاعل \*

-- 2 Octal 2 Seven Segment 2 Binary decoder

Selection lines comes also \*

④ Function table of Decoders (2:4 line decoder)  
(Active high Decoder).

| A | B | D <sub>0</sub> | D <sub>1</sub> | D <sub>2</sub> | D <sub>3</sub> |
|---|---|----------------|----------------|----------------|----------------|
| 0 | 0 | 1              | 0              | 0              | 0              |
| 0 | 1 | 0              | 1              | 0              | 0              |
| 1 | 0 | 0              | 0              | 1              | 0              |
| 1 | 1 | 0              | 0              | 0              | 1              |

Circuit & AND gate pin ←  
Diagram

Code word  
01 → 0100  
10 → 0010  
11 → 0001

Active low  $\xrightarrow{\text{uses}}$  NAND gate in Circuit diagram.

\* octal Decoder  
3:8 line Decoder

(8 AND gate else)



D<sub>0</sub>

D<sub>1</sub>

D<sub>2</sub>

D<sub>3</sub>

D<sub>4</sub>

D<sub>5</sub>

D<sub>6</sub>

D<sub>7</sub>

)F

)F