

CRC Block

Sponsored by: Si-Vision

Contents

1-	- Bloc	k diagram	. 3		
2-	- I/O	ports description	. 3		
	Inpu	t ports:	. 3		
		out ports:			
3-	- Timi	ing diagram	. 4		
		k implementation			
5- simulation results					
		Device size = 4 (x4) , burst length = 8 (BL8)			
		Device size = 4 (x4) , burst length = 16 (BL16)			
	3.	Device size = 8 (x8) , burst length = 16 (BL16)	. 7		
	4.	Device size = 16 (x16) , burst length = 16 (BL16)	. 8		

1- Block diagram.

2- I/O ports description.

Port	Туре	Size	From	То
i_clock	Input	1 bit	System	CRC
i_reset	Input	1 bit	System	CRC
CRC_in_data	Input	8* (N/4) bits	Write_data	CRC
CRC_en	Input	1 bit	Write_data	CRC
CRC_code	Output	8* (N/4) bits	CRC	Write_data

N: parameter indicate the device size (X4, X8, X16)

Input ports:

- o **i_clock**: clock signal.
- i_reset: active low asynchronous reset.
- CRC_en: input enable signal to enable the block comes from write data block
- CRC_in_data: input data bus from write data block that required to generate crc bits for it.

Output ports:

o **CRC_code**: output bus that carry crc bits to write block.

3- Timing diagram.

4- Block implementation

- this block responsible for generating CRC bits to protect the required data
- The block consists of
 - o shift register (64 bit) to store input data
 - 8 xor gates to take input data and generate the correct CRC bits (CRC_code(7:0))
- For each clock cycle the data will be stored in data_register.
- After 8 clock cycles the data will be ready to calculate the CRC from it.
- At the 9th clock cycle the CRC code will be ready to be fetched (8bits CRC for 64bits of data).
- This block will be duplicated according to the device size.

5- simulation results

1. <u>Device size = 4 (x4)</u>, <u>burst length = 8 (BL8)</u>

CRC_in_data = 64'b b1111_1111_b1111_1111_b1111_1111_

0111_0110_0101_0100_0011_0010_0001_0000

The correct CRC_code should be = 8'b 0110_0011
The simulation result:

2. Device size = 4 (x4), burst length = 16 (BL16)

The correct CRC_code should be = 8'b 0001_0100
The simulation result:

3. Device size = 8 (x8), burst length = 16 (BL16)

The correct CRC_code should be = 16'b 0001_0001_1000_0010
The simulation result:

4. Device size = 16 (x16), burst length = 16 (BL16)

The correct CRC_code should be = 32'b 0110_0101_0110_0101 0110_0101_ 0110_0101

The simulation result:

