Data Normalization

Data Normalization

- Primarily a tool to validate and improve a logical design so that it satisfies certain constraints that avoid unnecessary duplication of data
- The process of decomposing relations with anomalies to produce smaller, wellstructured relations

Well-Structured Relations

- A relation that contains minimal data redundancy and allows users to insert, delete, and update rows without causing data inconsistencies
- Goal is to avoid anomalies
 - Insertion Anomaly –adding new rows forces user to create duplicate data
 - Deletion Anomaly –deleting rows may cause a loss of data that would be needed for other future rows
 - Modification Anomaly –changing data in a row forces changes to other rows because of duplication

General rule of thumb: A table should not pertain to more than one entity type

Example

Figure 5-2 Eliminating multivalued attributes (a) Table with repeating groups

good example try to solve its with normalization

Emp_ID	Name	Dept_Name	Salary	Course_Title	Date_Comple	eted
100	Margaret Simpson	Marketing	48,000	SPSS Surveys	6/19/200X 10/7/200X	
140	Alan Beeton	Accounting	52,000	Tax Acc	12/8/200X	not relation
110	Chris Lucero	Info Systems	43,000	SPSS C++	1/12/200X 4/22/200X	at all
190	Lorenzo Davis	Finance	55,000			
150	Susan Martin	Marketing	42,000	SPSS Java	6/16/200X 8/12/200X	

(b) EMPLOYEE2 relation

EMPLOYEE2

Emp_ID	Name	Dept_Name	Salary	Course_Title	Date_Completed
100	Margaret Simpson	Marketing	48,000	SPSS	6/19/200X
100	Margaret Simpson	Marketing	48,000	Surveys	10/7/200X
140	Alan Beeton	Accounting	52,000	Tax Acc	12/8/200X
110	Chris Lucero	Info Systems	43,000	SPSS	1/12/200X
110	Chris Lucero	Info Systems	43,000	C++	4/22/200X
190	Lorenzo Davis	Finance	55,000		
150	Susan Martin	Marketing	42,000	SPSS	6/19/200X
150	Susan Martin	Marketing	42,000	Java	8/12/200X

relation but not well structured

Example – Figure 5-2b

EMPLOYEE2

Emp_ID	Name	Dept_Name	Salary	Course_Title	Date_Completed
100	Margaret Simpson	Marketing	48,000	SPSS	6/19/200X
100	Margaret Simpson	Marketing	48,000	Surveys	10/7/200X
140	Alan Beeton	Accounting	52,000	Tax Acc	12/8/200X
110	Chris Lucero	Info Systems	43,000	Visual Basic	1/12/200X
110	Chris Lucero	Info Systems	43,000	C++	4/22/200X
190	Lorenzo Davis	Finance	55,000		
150	Susan Martin	Marketing	42,000	SPSS	6/19/200X
150	Susan Martin	Marketing	42,000	Java	8/12/200X

Question—Is this a relation?

Answer–Yes: Unique rows and no multivalued attributes

Question—What's the primary key?

Answer–Composite: Emp_ID, Course_Title

Anomalies in this Table

- Insertion—can't enter a new employee without having the employee take a class
- **Deletion**—if we remove employee 140, we lose information about the existence of a Tax Acc class
- Modification—giving a salary increase to employee 100 forces us to update multiple records

Why do these anomalies exist?

Because there are two themes (entity types) in this one relation. This results in data duplication and an unnecessary dependency between the entities

Functional Dependencies and Keys

- Functional Dependency: The value of one attribute (the *determinant*) determines the value of another attribute
- Candidate Key:
 - A unique identifier. One of the candidate keys will become the primary key
 - E.g. perhaps there is both credit card number and SS# in a table...in this case both are candidate keys
 - Each non-key field is functionally dependent on every candidate key

Figure 5.22 Steps in normalization

we take the first three steps only

First Normal Form

- No multivalued attributes
- Every attribute value is atomic
- Fig. 5-25 is not in 1st Normal Form (multivalued attributes) → it is not a relation
- Fig. 5-26 is in 1st Normal form
- All relations are in 1st Normal Form

Table with multivalued attributes, not in 1st normal form

Figure 5-25 INVOICE data (Pine Valley Furniture Company)

Order_ID	Order_ Date	Customer_ ID	Customer_ Name	Customer_ Address	Product_ID	Product_ Description	Product_ Finish	Unit_ Price	Ordered_ Quantity
1006	10/24/2006	2	Value Furniture	Plano, TX	7	Dining Table	Natural Ash	800.00	2
					5	Writer's Desk	Cherry	325.00	2
					4	Entertainment Center	Natural Maple	650.00	1
1007	10/25/2006	6	Furniture Gallery	Boulder, CO	11	4-Dr Dresser	Oak	500.00	4
					4	Entertainment Center	Natural Maple	650.00	3

Note: this is NOT a relation

Table with no multivalued attributes and unique rows, in 1st normal form

Order_ID	Order_ Date	Customer_ ID	Customer_ Name	Customer_ Address	Product_ID	Product_ Description	Product_ Finish	Unit_ Price	Ordered_ Quantity
1006	10/24/2006	2	Value Furniture	Plano, TX	7	Dining Table	Natural Ash	800.00	2
1006	10/24/2006	2	Value Furniture	Plano, TX	5	Writer's Desk	Cherry	325.00	2
1006	10/24/2006	2	Value Furniture	Plano, TX	4	Entertainment Center	Natural Maple	650.00	1
1007	10/25/2006	6	Furniture Gallery	Boulder, CO	11	4-Dr Dresser	Oak	500.00	4
1007	10/25/2006	6	Furniture Gallery	Boulder, CO	4	Entertainment Center	Natural Maple	650.00	3

Figure 5-26 INVOICE relation (1NF) (Pine Valley Furniture Company)

Product_ID → Product_Description, Product_Finish, Unit_Price Order_ID, Product_ID → Ordered_Quantity

Note: this is relation, but not a well-structured one

Anomalies in this Table

- Insertion—if new product is ordered for order 1007 of existing customer, customer data must be re-entered, causing duplication
- Deletion—if we delete the Dining Table from Order 1006, we lose information concerning this item's finish and price
- Update—changing the price of product ID 4 requires update in several records

Why do these anomalies exist?

Because there are multiple themes (entity types) in one relation. This results in duplication and an unnecessary dependency between the entities

Second Normal Form

- 1st normal formMust be in and no partial dependency
- every non-key attribute is fully functionally dependent on the ENTIRE primary key
 - Every non-key attribute must be defined by the entire key, not by only part of the key
 - No partial functional dependencies

we do this in the exam

Figure 5-27 Functional dependency diagram for INVOICE

Order_ID → Order_Date, Customer_ID, Customer_Name, Customer_Address
Customer_ID → Customer_Name, Customer_Address
Product_ID → Product_Description, Product_Finish, Unit_Price
Order_ID, Product_ID → Order_Quantity

Therefore, NOT in 2nd Normal Form

Figure 5-28 Removing partial dependencies

Partial dependencies are removed, but there are still transitive dependencies

Third Normal Form

- 2NF PLUS no transitive dependencies (functional dependencies on non-primary-key attributes)
- Note: This is called transitive, because the primary key is a determinant for another attribute, which in turn is a determinant for a third
- Solution: Non-key determinant with transitive dependencies go into a new table; non-key determinant becomes primary key in the new table and stays as foreign key in the old table

Figure 5-28 Removing partial dependencies

Transitive dependencies are removed

not very important

Merging Relations

- View Integration Combining entities from multiple ER models into common relations
- Issues to watch out for when merging entities from different ER models:
 - Synonyms –two or more attributes with different names but same meaning
 - Homonyms –attributes with same name but different meanings
 - Transitive dependencies even if relations are in 3NF prior to merging, they may not be after merging
 - Supertype/subtype relationships –may be hidden prior to merging

not very important

Enterprise Keys

- Primary keys that are unique in the whole database, not just within a single relation
- Corresponds with the concept of an object ID in object-oriented systems

Figure 5-31 Enterprise keys

OBJECT (<u>OID</u>, Object_Type)
EMPLOYEE (<u>OID</u>, Emp_ID, Emp_Name, Dept_Name, Salary)
CUSTOMER (<u>OID</u>, Cust_ID, Cust_Name, Address)

a) Relations with enterprise key

b) Sample data with enterprise key

OBJECT

Object_Type
EMPLOYEE
CUSTOMER
CUSTOMER
EMPLOYEE
EMPLOYEE
CUSTOMER
CUSTOMER

EMPLOYEE

OID	Emp_ID	Emp_Name	Dept_Name	Salary
1	100	Jennings, Fred	Marketing	50000
4	101	Hopkins, Dan	Purchasing	45000
5	102	Huber, Ike	Accounting	45000

CUSTOMER

OID	Cust_ID	Cust_Name	Address
2 3 6	100 101 102	Fred's Warehouse Bargain Bonanza Jasper's	Greensboro, NC Moscow, ID Tallahassee, FL
7	103	Desks 'R Us	Kettering, OH

التطبيع (Normalization)

التطبيع هو تحويل هياكل البيانات المركبة إلى هياكل بيانات بسيطة ومُستقرة.

خطوات التطبيع Steps in Normalization

التبعيات الوظيفية والمفاتيح Functional Dependence & Keys

التبعية الوظيفية هي علاقة معينة بين خاصتين. في العلاقة "R"، تعتبر الخاصية "B" تابعة $A \rightarrow B$ إذا كانت كل قيمة "A" تحدد قيمة واحدة "B". وتُمَثل هكذا $A \rightarrow B$.

EMPCRS (EMP#, CRS#, DATE_COMPLETED)

EMP#, CRS# → DATE_COMPLETED

المحدد (Determinant) هو خصائص الجانب الأيسر للتبعية الوظيفية.

قواعد التبعيات الوظيفية Rules of Functional Dependency

If X, Y, Z, and W are attributes in a relation, then:

- 1. X → X (reflexivity) الارتداد
- 2. If X → Y then XZ → Y (augmentation) الازدياد
- 3. If $X \rightarrow Y$ and $X \rightarrow Z$ then $X \rightarrow YZ$ (union)
- 4. If X → Y then X → Z where Z is a subset of Y (decomposition) التفكيك
- 5. If X \rightarrow Y and Y \rightarrow Z then X \rightarrow Z (transitivity) الانتقائية
- 6. If X → Y and YZ → W then XZ → W (pseudotransitivity) الانتقالية الزائفة

أمثلة لقواعد التبعيات الوظيفية

1.الازدياد

 $STD# \rightarrow STD_NAME$ then $STD#, CRS# \rightarrow STD_NAME$

2.الانتقالية

STD# → MAJOR and MAJOR → ADVISOR
then STD# → ADVISOR

3. الانتقالية الزائفة

STD# → MAJOR and MAJOR, CLASS → ADVISOR then STD#, CLASS → ADVISOR

الأشكال الطبيعية الأساسية The Basic Normal Forms

GRADE REPORT FALL SEMESTER

NAME: Saad Aldousary

ADDRESS: P.O. Box 777 Riyadh 11147

MAJOR: Information Systems

COURSE#	TITLE	INST. NAME	INST. LOC. GRADE	
IS 350	Database Mgt	Saleh	1024 A	
IS 465	System Analysis	Ahmad	1030 B	

STUDENT#: 2773777

عينة بيانات تقرير الدرجات

GRADE_REPORT

STUDENT#	STUDENT NAME	MAJOR	COURSE#	COURSE TITLE	INSTRUCTOR NAME	INSTRUCTOR LOCATION	GRADE
2773777	Saad	IS	IS 350 IS 465	Database Mgt System Analysis	Saleh Ahmad	1024 1030	A B
6917773	Ali	PM	IS 465 PM 300 QM 440	System Analysis Production Mgt Operations Res	Ahmad Soud Ahmad	1030 1025 1030	C A B

الشكل الطبيعي الأول (1NF)

GRADE_REPORT

STUDENT#	STUDENT NAME	MAJOR	COURSE#	COURSE TITLE	INSTRUCTOR NAME	INSTRUCTOR LOCATION	GRADE
2773777	Saad	IS	IS 350	Database Mgt	Saleh	1024	Α
2773777	Saad	IS	IS 465	System Analysis	Ahmad	1030	В
6917773	Ali	PM	IS 465	System Analysis	Ahmad	1030	С
6917773	Ali	PM	PM 300	Production Mgt	Soud	1025	A
6917773	Ali	PM	QM 440	Operations Res	Ahmad	1030	В

الشكل الطبيعي الثاني (2NF)

الشكل الطبيعي الثاني (2NF)

تحليل التبعيات الوظيفية

- 1. STUDENT(STUDENT#, STUDENT_NAME, MAJOR)
- COURSE_INSTRUCTOR(<u>COURSE#</u>, COURSE_TITLE, INSTRUCTOR_NAME, INSTRUCTOR_LOCATION)
- 3. REGISTRATION(STUDENT#, COURSE#, GRADE)

العلاقة في الشكل الطبيعي الثاني إذا كانت في الشكل الطبيعي الأول ولا تحتوي على تبعيات جزئية.

STUDENT

STUDENT#	STUDENT NAME	MAJOR
2773777	Saad	IS
6917773	Ali	PM

RGISTRATION

STUDENT#	COURSE#	GRADE
2773777	IS 350	Α
2773777	IS 465	В
6917773	IS 465	С
6917773	PM 300	Α
6917773	QM 440	В
<u></u>		

COURSE_INSTRUCTOR

COURSE#	COURSE TITLE	INSTRUCT OR NAME	INSTRUCT OR LOCATION
IS 350	Database Mgt	Saleh	1024
IS 465	System Analysis	Ahmad	1030
PM 300	Production Mgt	Soud	1025
QM 440	Operations Res	Ahmad	1030

الشكل الطبيعي الثالث (3NF)

• التبعيات الوظيفية في "COURSE_INSTRUCTOR"

COURSE# → COURSE_TITLE, INSTRUCTOR_NAME, 1.

INSTRUCTOR_LOCATION

2. INSTRUCTOR_NAME → INSTRUCTOR_LOCATION

COURSE

COURSE #	COURSE TITLE	INSTRUCTOR NAME
IS 350	Database Mgt	Saleh
IS 465	System Analysis	Ahmad
PM 300	Production Mgt	Soud
QM 440	Operations Res	Ahmad

INSTRUCTOR

INSTRUCTOR NAME	INSTRUCTO R LOCATION
Saleh	1024
Ahmad	1030
Soud	1025
•••	

الشكل الطبيعي الثالث (3NF)

العلاقة في الشكل الطبيعي الثالث إذا كانت في الشكل الطبيعي الثاني ولا تحتوي على تبعيات انتقالية.

- STUDENT(STUDENT#, STUDENT_NAME, MAJOR) .1
- COURSE_INSTRUCTOR(COURSE#, COURSE_TITLE, INSTRUCTOR_NAME) .2
 - INSTRUCTOR (INSTRUCTOR NAME, INSTRUCTOR_LOCATION) .3
 - REGISTRATION(STUDENT#, COURSE#, GRADE) .4

أشكال طبيعية إضافية (Additional Normal Forms)

• الشكل الطبيعي بويس- كود (Boyce-Codd Normal Form "BCNF")

STUDENT_MAJOR_ADVISOR

STUDENT#	MAJOR	ADVISOR
123	PHYSICS	EINSTEIN
123	MUSIC	MOZART
456	BIOL	DARWIN
789	PHYSICS	BOHR
999	PHYSICS	EINSTEIN

STUDENT#, MAJOR → ADVISOR

ADVISOR → MAJOR

تابع الشكل الطبيعي بويس-كود

العلاقة في الشكل الطبيعي بويس- كود "BCNF" إذا كان كل محدد فها مفتاح مرشح.

ST_ADV

STUDENT	<u>ADVISOR</u>
123	EINSTEIN
123	MOZART
456	DARWIN
789	BOHR
999	EINSTEIN

ADV_MAJ

ADVISOR	MAJOR
EINSTEIN	PHYSICS
MOZART	MUSIC
DARWIN	BIOL
BOHR	PHYSICS

الشكل الطبيعي الرابع (4th Normal Form "4NF")

OFFERING

COURSE	INSTRUCTOR	TEXTBOOK
Management	Ali	Drucker
Management	Ahmad	Drucker
Management	Saad	Drucker
Management	Ali	Peters
Management	Ahmad	Peters
Management	Saad	Peters
Finance	Gamil	Weston
Finance	Gamil	Gulford

COURSE → → INSTRUCTOR

COURSE → → TEXTBOOK

الشكل الطبيعي الرابع (4th Normal Form"4NF")

العلاقة في الشكل الطبيعي الرابع اذا كانت في الشكل الطبيعي بويس-كود "BCNF" ولا تحتوي على تبعيات متعددة القيم.

TEACHER

COURSE	INSTRUCTOR
Management	Ali
Management	Ahmad
Management	Saad
Finance	Gamil

TEXT

COURSE	<u>TEXTBOOK</u>
Management	Drucker
Management	Peters
Finance	Weston
Finance	Gulford

دمج العلاقات (Merging Relations)

EMPLOYEE1(EMP#, NAME, ADDRESS, PHONE)
EMPLOYEE2(EMP#, NAME, ADDRESS, JOBCODE,
#YEARS)

تمثلان نفس الكينونة ويمكن دمجهما لتُكوِّنا العلاقة:

EMPLOYEE(EMP#, NAME, ADDRESS, PHONE, JOBCODE, #YEARS

مشكلات دمج العلاقات

- المترادفات : (Synonyms)
- يجب إعطاء أسماء قياسية للخصائص المترادفة عند الدمج وحذف المترادفات الأخرى.
 - تماثل الأسماء واختلاف المعنى (Homonyms)

STUDENT1(STD#, NAME, ADDRESS)

STUDENT2(STD#, NAME, PHON#, ADDRESS)

عنوان الطالب في العلاقة الأولي هو عنوانه في الجامعة في حين أن عنوانه في العلاقة الثانية هو عنوانه المنزلي.

HOME_ADD)STUDENT(STD#, NAME, PHON#, CAMPUS_ADD,

مشكلات دمج العلاقات

(Transitive Dependencies) التبعيات الانتقالية STUDENT1(STUDENT ID, MAJOR) STUDENT2(STUDENT ID, ADVISOR) بدمج هاتين العلاقتين تنتج العلاقة: STUDENT(STUDENT ID, MAJOR, ADVISOR) بفرض الحالة MAJOR → ADVISOR، تصبح العلاقة STUDEN في الشكل الطبيعي الثاني ويتم تحويلها للشكل الطبيعي الثالث كالتالي: STUDENT(STUDENT ID, MAJOR) MAJ ADV (MAJOR, ADVISOR)