Tutorial for Mid-term Exam

November 12, 2013

Outline

A Warm-up Function

Recurrences

Outline

A Warm-up Function

Recurrences

Growth of Function

Problem (Growth of Function [Test 1])

$$S(n) = 1^c + 2^c + 3^c + \ldots + n^c, c \in \mathbb{Z}^+.$$

- $S(n) \in O(n^{c+1});$
- $S(n) \in \Omega(n^{c+1})$.

To prove: \exists constants $a > 0, n_0 > 0$ such that $S(n) \ge an^{c+1}, \forall n \ge n_0$.

$$S(n) \ge \underbrace{\left(\frac{n}{2}\right)^c + \left(\frac{n}{2}\right)^c + \dots + \left(\frac{n}{2}\right)^c}_{\# = \frac{n}{2}} = \underbrace{\left(\frac{n}{2}\right)^c \cdot \frac{n}{2}}_{2} = \underbrace{\frac{1}{2^{c+1}}}_{a} n^{c+1}.$$

Remark:

• inductive on constant c

Outline

A Warm-up Function

Recurrences

List of Recurrences

- T(n) = 2T(n-1) + O(1) $T(n) = O(2^n)$ Hanio tower
- $T(n) = 7T(\frac{n}{2}) + O(n^2)$ $T(n) = O(n^{2.81})$ Strassen matrix multiplication
- $T(n) = 3T(\frac{n}{2}) + O(n)$ $T(n) = O(n^{1.59})$ Gauss integer multiplication
- $T(n) = 2T(\frac{n}{2}) + O(n)$ $T(n) = O(n \lg n)$ merge sort, median-quicksort
- $T(k) = 2T(\frac{k}{2}) + O(nk), T(n,k) = 2T(\frac{n}{2}, \frac{k}{2}) + O(n)$ in exam
- $T(n) = T(\frac{n}{5}) + T(\frac{7n}{10}) + O(n)$ linear-time selection
- $T(n) = T(\frac{n}{2}) + O(1)$ $T(n) = O(\lg n)$ binary search
- $T(n) = 2T(\frac{n}{4}) + O(1)$ $T(n) = O(\sqrt{n})$ VLSI layout

Solving Recurrences

Problem (Solving Recurrences [**Test 2**])

•
$$T(n) = 5T(\frac{n}{2}) + \Theta(n)$$
 $T(n) = \Theta(n^{\lg 5})$
• $T(n) = 9T(\frac{n}{3}) + \Theta(n^2)$ $T(n) = \Theta(n^2 \lg n)$
• $T(n) = 2T(n-1) + O(1)$ $T(n) = O(2^n)$

Remark:

- T(n) = 2T(n-1) + O(1): unfolding; recursion tree; $(1+2+\ldots+2^{n-1})O(1) = (2^n-1)O(1)$; The Tower of Hanio.
- which to choose?

Merge Sort

Problem (Merge Sort [Test 3])

k sorted arrays, each with n elements; merge-sort them.

- one by one: $2n + 3n + \ldots + kn = \frac{k^2 + k 2}{2}n$
- divide and conquer: $T(k) = 2T(\frac{k}{2}) + O(nk) = O(n \cdot k \lg k)$; unfolding the recursion; dfs (post-order); layer by layer; recursion tree.

k-Sort

Problem $(k\text{-Sort }[\mathbf{Test }\mathbf{6}])$

 $A[1 \dots n]$, k blocks, each of size $\frac{n}{k}$:

- sorted within each block
- fuzzy sorted among blocks

E.g., 1 2 4 3; 7 6 8 5; 10 11 9 12; 15 13 16 14

It is a *unfinished* median-quicksort.

- recursion of "median + partition"
- $T(n,k) = 2T(\frac{n}{2}, \frac{k}{2}) + O(n)$
- recursion tree; $\lg k$ layers

VLSI Layout (1)

Problem (VLSI Layout)

Embed a complete binary tree with n leaves into a grid with minimum area.

- VLSI: Very Large Scale Integration
- complete binary tree circuit: $\#layer = 3, 5, 7, \dots$
- n leaves (why only leaves?)
- grid; vertex + edge (no crossing)
- area
- take 5-layer complete binary tree as an example

VLSI Layout (2)

Naïve embedding

$$H(n) = H(\frac{n}{2}) + \Theta(1) = \Theta(\lg n)$$

$$W(n) = 2W(\frac{n}{2}) + \Theta(1) = \Theta(n)$$

$$A(n) = \Theta(n \lg n)$$

• Smart (H-Layout) embedding

$$\square \times \square = n? \ 1 \times n; \ \frac{n}{\lg n} \times \lg n; \ \sqrt{n} \times \sqrt{n}$$
 Goal: $H(n) = \Theta(\sqrt{n}); W(n) = \Theta(\sqrt{n}); A(n) = \Theta(n).$
$$H(n) = \square H(\frac{n}{\square}) + O(\square); H(n) = 2H(\frac{n}{4}) + O(n^{\frac{1}{2} - \epsilon})$$

$$H(n) = 2H(\frac{n}{4}) + \Theta(1)$$
 Here it is: H-Layout

Median of Two Sorted Arrays (1)

Problem (Median of Two Sorted Arrays [$\mathbf{P_{245}}$, 5.18]) A[1...n], B[1...n]; sorted, ascending order; distinct. find the median of the combined set of A and B ($O(\lg n)$).

$$T(n) = T(\frac{n}{2}) + \Theta(1)$$

$$A = 2, 4, 6, 8, 10 = A_1 : (n-1)/2 M_A : 1 A_2 : (n-1)/2$$

$$B = 1, 3, 5, 7, 9 = B_1 : (n-1)/2 M_B : 1 B_2 : (n-1)/2$$

$$\boxed{n \text{ is odd } C = C_1 : (n-1) M_C : 1 C_2 : (n-1)}$$

$$M_A > M_B \Rightarrow M_A + A_2; B_1 \Rightarrow (A_1 + M_1, M_2 + B_2)$$
why not $(A_1, M_2 + B_2)$? and not finished yet ... (why?)

Median of Two Sorted Arrays (2)

To prove: The median M'_C of the subproblem $(A_1 + M_1, M_2 + B_2)$ is also the median M_C of the original problem (A, B).

Proof: why?

$$M_C \in [M_B, M_A)$$

$$M_C' \in [M_B, M_A) \left\lceil \frac{n+1}{2} - 1 \right\rceil \left\lceil M_C' : 1 \right\rceil \left\lceil \frac{n+1}{2} - 1 \right\rceil$$

Extensions:

- $A[1 \dots n], B[1 \dots n]$; not sorted;
- $A[1 \dots n], B[1 \dots n], C[1 \dots n]$; sorted; median
- $A[1 \dots n], B[1 \dots n], \dots$; sorted; median
- $A[1 \dots n], B[1 \dots n], \dots$; sorted; k-th smallest

Two Stacks, One Queue (1)

Problem (Two Stacks, One Queue [Test 4])

 $two\ stacks \Rightarrow one\ queue;\ correctness\ proof;\ amortized\ analysis$

ENQUEUE(x): PUSH(S_1, x);

DEQUEUE(): while $S_2 = \emptyset$, Push $(S_2, Pop(S_1))$; Pop (S_2) ;

Ex: Engueue(1, 2, 3), Dequeue()

Simple observation: S_1 to push; S_2 to pop.

 $FIFO \Leftrightarrow$

$$\forall \mathrm{DE}_1 \prec \mathrm{DE}_2 : a = \mathrm{DE}_1, b = \mathrm{DE}_2 \Rightarrow \exists \mathrm{EN}_1(a) \prec \mathrm{EN}_2(b).$$

- Summation method: the sequence is (NOT) known
- Accounting method: $\hat{c_i} = c_i + a_i$; $\sum_{i=1}^{n} \hat{c_i} \ge \sum_{i=1}^{n} c_i$; $\sum_{i=1}^{n} a_i \ge 0, \forall n$

Two Stacks, One Queue (2)

item: Push into
$$S_1$$
 Pop from S_1 Push into S_2 Pop from S_2 1 1 1 1

$$\begin{array}{cccc} & \hat{c_i} & c_i & a_i \\ \text{Enqueue} & 3 & 2 & 1 \\ \text{Dequeue} & 2 & 2 & 0 \end{array}$$

Ex: Engueue(1, 2, 3), Dequeue()

$$\sum a_i = \#S_1 \times 2 \ge 0.$$

Two Queues, One Stack (1)

Problem (Two Queues, One Stack)

implement/simulate a stack using two queues

Let's try [left: example; right: code]:

- push (1,2,3,4)
- pop (4) $\Rightarrow Q_1 \xrightarrow{(1,2,3)} Q_2$ [transfer]
- pop $(3) \Rightarrow Q_2 \xrightarrow{(1,2)} Q_1$
- push (5,6,7)
- pop $7 \Rightarrow Q_1 \xrightarrow{(1,2,5,6)} Q_2$

 Q_1 for push; Q_2 for pop:

Push(x): Enqueue (Q_1, x)

Pop():
$$Q_1 \xrightarrow{transfer} Q_2$$
; swap $Q_1 \leftrightarrow Q_2$

Two Queues, One Stack (2)

Analysis:

$$Push^{n}(Push^{1}Pop^{1})^{n/2}$$

$$\sum c_{i} = n + (1 + (n+1)) \times \frac{n}{2} = n + (n+2) \times \frac{n}{2} = (n^{2} + 4n)/2$$

$$(\sum c_{i})/n = (n+4)/2 = \Theta(n)$$

Remark: Why so bad?

- only use one queue: push (1,2,3,4); pop (4); [circulate]
- one queue + circulate

```
PUSH(x): ENQUEUE(Q_1, x); circulate(Q_1)
POP(): DEQUEUE(Q_1)
```

- review of "array doubling": expensive, cheap, cheap, ..., expensive
- Push: expensive, cheap, cheap, ..., expensive?

Two Queues, One Stack (3)

Hey, Q_2 :

- split the elements into Q_2 (cache vs. memory); do not change POP \Rightarrow "stack order"
- I_1 [stack order]: Q_1 for top of stack; Q_2 for bottom of stack Push(x): $Enqueue(Q_1, x)$; $circulate(Q_1)$ Pop(): if $Q_1 \neq \emptyset$ $Dequeue(Q_1)$; else $Dequeue(Q_2)$
- $I_2 \ [\#Q_1 < \sqrt{\#Q_2}]$: keep $\#Q_1$ small

Ex:

- Push $(1, 2, 3, 4, 5, 6) : Q_1 : 6; Q_2 : 5, 4, 3, 2, 1$ (why?)
- Push(7,8) how to [transfer] now?
- $Q_2 \xrightarrow{transfer} Q_1$; swap $Q_1 \leftrightarrow Q_2$
- PUSH(9, 10, 11)

Two Queues, One Stack (4)

• ultimate code:

```
Push(x): Enqueue(Q_1, x); circulate(Q_1);

if \#Q_1 \ge \sqrt{\#Q_2}

Q_2 \xrightarrow{transfer} Q_1; swap Q_1 \leftrightarrow Q_2;

Pop(): if Q_1 \ne \emptyset Dequeue(Q_1); else Dequeue(Q_2)
```

• analysis: Pop (O(1)), Push:

cheap:
$$\#Q_1 < \sqrt{\#Q_2} \Rightarrow O(\sqrt{n})$$

expensive: $\#Q_1 \neq \sqrt{\#Q_2} \Rightarrow O(n)$
amortized: $E, \underbrace{C, C, \dots, C}_{\#=O(\sqrt{n})}, E \Rightarrow O(\sqrt{n})$