1. (a) Sei $f: \mathbb{E} \to \mathbb{C}$ holomorph in $\mathbb{E}:=\{z: |z|<1\}$ mit f(0)=0 und $|f(z)|\leq 1$ in \mathbb{E} . Untersuchen sie die Reihe

$$\sum_{n=1}^{\infty} f(z^n)$$

auf punktweise und kompakte Konvergenz in E. Ist die Grenzfunktion holomorph?

(b) Untersuchen Sie

$$\sum_{n=0}^{\infty} \sin(z^n)$$

auf punktweise und kompakte Konvergenz in E. Ist die Grenzfunktion holomorph?

a) e. B. ol. A.
$$f \neq 0$$

Da f nach dem Maximum epininsip auf f bein Behrappmaximum aunehman baum gill begin $V \in F$: $|f(z)| < 1$ Nach dem behranschen Limma gill $V \in F$: $|f(z)| < 1$ Nach dem behranschen Limma gill $V \in F$: $|f(z)| < 1$ and $|f(z)| = \frac{1}{2} |f(z)| < 1$ die beihre havergied also punktweise auf F

We N\1003: $f_{in} : F \to C$: $f_{in} : F(z)$ sit holomorph und punktweise havergehr $f_{in} : F(z) : f_{in} : F(z) : f_{in} : f_{in}$

2. Bestimmen Sie die Anzahl der Nullstellen von f(z) in den Gebieten

$$f(z) = z^5 + \frac{1}{3}z^3 + \frac{1}{4}z^2 + \frac{1}{3}, \quad G = \{z \in \mathbb{C} : |z| < 1/2\}$$
$$f(z) = z^7 - 5z^4 + iz^2 - 2, \quad G = \{z \in \mathbb{C} : |z| < 1\}.$$

nach den Lah von Monché hal fgleich viele Wulltellen in Gruie 3, also heine

Nach dem Sahr von Nouché hal z^2-5z^4 gleich wiele Wullelellen in G wie f $z^2-5z^4=0$ $\Rightarrow z^4(z^3-5)=0 \Rightarrow z=0$ $v=\sqrt[9]{5}$

	17	=(/	<i>j</i> .	1	me		81	w	') =	: O)	m	vd		u	, حر	ϵ	(\																	
																												, ,		00			_		_	
Vach	d	em	20	cent	Noi	M	ah	્	red	1 o	he	Ni	ıll	Æ	Νę	ı	- 1	isol	res	L -	n o	Ces	M	len	je:	der	N	ull	He	Ue.	n·				+	
Vi l	ión	nen	al	co	ein		€ €	R	+	fri	no Cen	n	mi	L	K	=	€ 2	€	C ;	- 1	٤-	w	4	٤	<i>}</i>	k	<i>\</i> \	10	_	Ø	in	wl				
																																	-		_	
126																													igl	- l	me	(a	n			
nde	^	\int	E II	2+:		٩	۷	n	n'n	£	18	(2)	;	2	e5	}	m	ol	wa	en	g	r	7	8 1	ra	nju	ılvı						_		_	
) k	<i>e</i> /\	/ <u>. </u>	V2	e S		18	36	(z)	_	q (ا(ج		ď	<	10	(Z) [+	
																																			_	
Val	, di	ma	Sal	hv	an	120	rucl	re	V	ul	em		g	m	ıd	9	+ 6	8u	- g	=	g n	g	leid	ch	v	ele	14	ull	Ue	lle	- 1	n	K,	,	+	
aber	IR	\1	K=	Ø	m	nd p	ho	Л	e'n.	e i	Nul	le	ell	1	n	K	106	lso	a	w	í g	u	6	ra	qu	h	af	mır	ار	eel	rle	М	ull	'stel	L en	
																					u '				1							_	\dashv	+	+	
																																	_			
																																-		+	+	
																																			+	
																																_	4	_	+	
																																	_			_
																																	+		+	
																																			_	
																																_	\dashv	_	+	
																																	4		_	
																																+	+	+	+	
																																			#	
																																_	\dashv	+	+	
		_																													\vdash	_	_	\perp	+	
																																		+	+	
																																_	#	1	#	
																															H	+	\dashv	+	+	_
																										1								- 1		

Funktionen, die auf G selbst holomorph sind. Zeigen Sie: Wenn f_n auf dem Rand von Ggleichmäßig konvergiert, so auch auf dem Abschluss von G. ∀n∈N: mox d lfn(2)1: Z∈ GυdG € ∂G nowh den Moreinungning, und weil GυdG hompolet in und for delig. Si go := for da und lin go = g Men gill Y E ∈ R + 3 N ∈ N . Yn ≥ N Y 2 ∈ dG: | qn (2) - p(2) (E, also | gn(2) / < 1g(2) | + E Als glm. Grennvert deliger Flyt. ist of wieder stelig und es gell Vn > N: Yw ∈ GudG: (fn(w) < max & gn(z) 1: z ∈ GudG3 < max flg(z) 1: 2 ∈ GudG3 + E Do wir bis N my enall. wiele stellige The , and transpollen Menger varliegen haben gill 3 MERT: YNEN YZE GUZG: (fn(2) CM mister ist die Folge der holomorphen hn:= folg lokal beschränket Nach dem Sak von Montel gibt es eine Teilfolge hu, die gleichmältig (weil 5 Mongahl igt) zegen eine bolomarzelre Funktion h: G-) C browergiert. Da die fun die steligen Forkelunger der han and ist lin ba = f mit fla = h und fla = g Sei an: = fn-l, an ist also hobomorphe Turkhon Soi E < R+ bel. Wegen for land of los glow. gill 3 NEN: VNZN VZ & DG: |xn (Z) < E und do north den Moximumsprinsip das Betragenovimum von « auf 26 angerommen wird gill tz & G /dn (7) (E, also glm. Konvergens.

4. Es sei G ein beschränktes Gebiet, f_n sei eine Folge von auf dem Abschluss von G stetigen

- 5. Zeigen Sie, dass $p_n(z) := \left(1 + \frac{z}{n}\right)^n$ auf \mathbb{C} lokal gleichmäßig gegen $\exp(z)$ konvergiert, indem Sie zeigen, dass $\{p_n:n\in\mathbb{N}\}$ lokal beschränkt ist und indem Sie $\lim_{n\to\infty}p^{(k)}(0)$ für alle k bestimmen.
- ·] " lokal bezerränk!" Sei W ∈ C bel. und E ∈ R + sowie U:= { t∈ C: |t-w| < E} Set 2 e U bel., ne V lel. [pn (2)] = 11+ = 1 = (111+ 121) 1 2 (1+ 121) e (1+ 121) = (111+ |w|+ E)2
 - wobei wir (*) bereik in Analysis 1 (vgl. Kallenläch Bsp. 3.4.3 (iv)) nachgerechnek haben
- ·) pn(z)= (1+3) => pn(0)= 1
 - $p_n'(z) = n(1+\frac{z}{n})^{n-1}\frac{1}{n} = (1+\frac{z}{n})^{n-1} = p_n'(0) = 1$
 - $p_n''(2) = (n-1)(1+\frac{2}{h})^{n-2}\frac{1}{h} = \frac{n-1}{h}(1+\frac{2}{h})^{n-2}$
 - Behauplung: $p_n(h)(t) = \frac{n!}{n!n!} (n-k)! (7+\frac{2}{n!n})^{n-k} (fin n hinn, grows)$
 - Sei also die Behauplung für h bering erhüll
 - $\rho_{n}(h,n)(2) = \frac{\binom{n!}{n^{\frac{1}{n}(n-\frac{1}{n})!}} \binom{1+\frac{2}{n}}{n^{\frac{1}{n}(n-\frac{1}{n})!}} \binom{n}{1+\frac{2}{n}} \binom{n}{n^{\frac{1}{n}(n-\frac{1}{n})!}} \binom{1+\frac{2}{n}}{n^{\frac{1}{n}(n-\frac{1}{n})!}} \binom{n}{1+\frac{2}{n}} \binom{n}{n^{\frac{1}{n}(n-\frac{1}{n})!}} \binom{n}{n$
- 1) Nach dem Ableitungsbriterium leanwergiert nun (pn)nen hongratet was, wie un aus der Vorlesung wissen ingewalent un lokal glas. Konvergen in

6. Zeigen Sie: Jede ganze Funktion, deren Nullstellen einfach sind und genau in $\mathbb Z$ liegen, ist von der Form

$$f(z) = ze^{g(z)} \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2}\right),$$

wobei g eine ganze Funktion ist.

8. Seien $\omega_1, \omega_2 \in \mathbb{C}$ reell linear unabhängig. Man zeige, dass es bis auf Addition einer Konstanten genau eine doppelt periodische meromorphe Funktion mit den Perioden ω_1 und ω_2 gibt, die außer einem Pol bei 0 mit dem Hauptteil $1/z^2$ keinen weiteren Pol im Fundamentalbereich hat.

.) Sei (an)ne y eine Tolpe, die alle Punkle k, w, + h, w, EC mir (le, h,) E ? \ \dog \ genau ernmal hiff. Sei austrolem the NPn(2):= 22, sei an= len w, + m, wz Enkprechenol dem Sah van Millag - Seller sei h, (t): = P, (2-an) = (2-an)2 Taylor um t=0 für $a_n \neq 0$: $\frac{1}{(1-a_n)^2} = \frac{1}{4^n} \sum_{\ell=0}^{\infty} \frac{\ell+1}{a_n^{\ell}} \stackrel{\ell}{\geq} e$ das urisen uri bereik aux Ülrung 2 also $\left| \frac{1}{(2-a)_{n}} \right|^{2} - \frac{1}{a_{n}^{2}} \right| = \left| \frac{a_{n}^{2} - (z-a_{n})^{2}}{a_{n}^{2} (z-a_{n})^{2}} \right| = \left| \frac{2za_{n} - z^{2}}{a_{n}^{2} (z-a_{n})^{2}} \right| = \frac{|z|}{|a_{n}|^{2} |z-a_{n}|^{2}}$ Fin bel. K = C . I no E W. Vn > no: on & K Um Konvergenz auf K flestructellen reicht es nun die Konvergenz von 2 10,13 in undersuchen Fin bel. l ∈ N; es gibt genon 4 l Talgenghiden n mil [kn + [mn] = l f: 12 \ 607 → (12: (x, y) H) [xw, + y w] Do It EIR hof: f (+x, ty) = f(x, y) können x y am Einheithnair gewählt werden also wan f = ran flat Do $\partial \not\in \text{Nonyvale}$ is und feletig nehmen win $b := \min \{|\partial \not\in \text{Nonyvale}\}$ and exhallen $\forall \times_{1} y \in \mathbb{R} \setminus \{0\}$. $b \in \frac{|\times w_{1} + y w_{2}|}{|\times| + |y|} \not\in b = b \cdot (|\times| + |y|) \leq |\times w_{1} + y \cdot w_{2}|$ In unserem Tall also the N: knwn+mnwz = 6 (14m1+1mn1) unol damil $\sum_{n=0}^{\infty} \frac{1}{|h_n w_1 - m_n w_2|^3} \le \sum_{\ell=1}^{\infty} \frac{4\ell}{b^3 \ell^3} = 4b^{-3} \sum_{\ell=1}^{\infty} \ell^{-2} \ell \infty$ Die Reihe Z (2-00)2 - an2) Monvergier Also Monsportet auf 6\ { an ne N} Nach dem Sah von MiMay-Leffler in also ((t):= \frac{1}{22} + \frac{1}{(2-01n)^2} - \frac{1}{01n^2}) eine meromorphe TM. mil den violnigen Polstellen. Auch die 2π -leriodisiläl sieht man leicht, der $\mathbb{Z} \times \mathbb{Z} + \{(0,1)\} = \mathbb{Z} \times \mathbb{Z} + \{(1,0)\} = \mathbb{Z} \times \mathbb{Z}$

First, q entimechande The. Win wisen bereits, day win $f = \frac{ln}{ln}$ and $q = \frac{q_1}{q_2}$ unit granten the. q_1, q_2, t_1, t_1 schreiben können. h := f - g ist weekn oler leviadizität won f and g beschändt uno $h = \frac{f_1q_2 - g_1f_2}{f_2q_2}$, da fund g die gleichen boldellen haben gitt $f_1(t) g_1(t) = 0 \Rightarrow f_1(t) g_1(t) - g_1(t) f_2(t) = 0$ also in h game that (noth Helm des Unitelightics) f = g + c

Donnil ist die Existens gesligt.