Offline 3 Marks 20

1. You can only use BINARY SEARCH TREE for this question.

Write a function to find the kth smallest element in a BST. (For clarification see the sample input output below) The first line of the input will contain n (number of elements in the BST) and k. The next line contains n integers.

SAMPLE INPUT	SAMPLE OUTPUT
5 3 20 31 22 28 54	28
6 1 8 11 5 1 2 15	1

2.Write a program to show the vertex with the highest number of adjacent nodes in an undirected graph. The first two lines of the input will contain v (vertices) and e (edges). The next e number of lines contains the list of edges. You have to create the Adjacency Matrix first then do the rest of the code.

Sample Input	Sample Output
10	4
12	
05	
0 2	
01	
14	
13	
2 5	
37	
4 9	
48	
5 6	
89	
4 3	
5	4
6	
03	
0 2	
01	
0 4	
12	
2 4	

3. A root vertex of a directed graph is a vertex u with a directed path from u to v for any pai	r of		
graph vertices (u, v). In other words, the root vertex can reach every other vertex in the graph. Find the root vertex of a directed graph. Take user input for this problem.			