Correction TD ON2 - Interférences entre ondes de même fréquence

- 1 Interférences de 2 ondes sonores frontales
- 2 Interférences sur la cuve à ondes
- 3 Trombone de Kænig
- 4 Interférences et écoute musicale

Correction:

a. L'onde réfléchie parcourt en plus deux fois la distance D entre l'auditeur et le mur donc : $\tau = \frac{2D}{a}$.

b. C'est la seule cause de décalage entre les deux ondes puisque la réflexion sur le mur ne s'accompagne d'aucun déphasage. L'onde réfléchie présente donc par rapport à l'onde directe le déphasage : $\Delta \phi = 2\pi f \tau = \frac{4\pi f D}{c}$.

c. Il peut y avoir atténuation de l'amplitude si les deux ondes sont en opposition de phase et ont une interférence destructrice. C'est le cas si :

$$\Delta \varphi = (2n+1)\pi$$
 soit $f = (2n+1)\frac{c}{4D}$,

où n est un entier.

Le domaine audible s'étend de 20 Hz à 20 kHz. Aucune des fréquences précédentes ne se trouve dans le domaine audible si : $\frac{c}{4D} > 20$ kHz. Il faut pour cela que $D < \frac{342}{4 \times 20} = 4,3$ mm. Il faut que la tête de l'auditeur frôle le mur !

 ${f d}.$ Pour D suffisamment grand, l'onde réfléchie par le mur a une amplitude très faible devant l'onde directe.

5 Mesure de l'épaisseur d'une lame de verre

Correction :

1. La différence de marche en M est :

$$\delta_M = (ST_2M) - (ST_1M) = (ST_2) + (T_2M) - (ST_1) - (T_1M).$$

La source étant située sur l'axe optique, $(ST_1)=(ST_2)$. En notant F_1 et F_2 les points d'entrée et de sortie du rayon lumineux de la lame, $(T_1M)=(T_1F_1)+(F_1F_2)+(F_2M)$. Le milieu étant homogène et l'air est supposé d'indice 1 donc :

$$(T_1M)=T_1F_1+n_{\nu}F_1F_2+F_2M=T_1M+(n_{\nu}-1)e,$$

où $F_1F_2=e$ et $T_1M=T_1F_1+F_1F_2+F_2M$. Il vient alors $\delta_M=T_2M-T_1M-(n_v-1)e$ avec $T_2M-T_1M=ax/D$ la différence de marche pour des trous de Young en l'absence de lame. Finalement :

$$\delta_M = \frac{ax}{D} - (n_v - 1)e.$$

2. On a $x_c = (n_v - 1)eD/a$. En l'absence de lame de verre, la frange centrale se situe sur l'axe optique en $x_{c,0} = 0$. Cette frange s'est donc décalée d'une distance x_c dans la direction de l'axe x par rapport au cas où la lame est absente.

3. D'après la question précédente, il vient $e = \frac{ax_c}{D(n_v - 1)}$

4. $e = 50.0 \, \mu m$.

5. La frange centrale ne peut pas être distinguée des autres franges brillantes correspondant elles aussi à des interférences constructives. La position de la frange centrale n'est donc connue que modulo l'interfrange $i=\lambda D/a$ sur l'écran. Ceci a pour conséquence que la mesure de e n'est possible que modulo $\lambda/(n_v-1)=0.1$ µm. La mesure de l'épaisseur de la lame de verre ne serait donc pas réalisable avec cette expérience.

6 Contrôle actif du bruit en conduite

Correction:

1. Entre l'instant où le signal est détecté par le micro 1 et l'instant où ce signal passe en A s'écoule un temps égal à $\frac{L}{c}$. Pendant ce temps il faut que le contrôleur calcule et produise le signal qu'il envoie dans le haut-parleur et que ce signal se propage jusqu'à A, ce qui prend le temps $\frac{\ell}{c}$. Le temps disponible pour le calcul est donc : $\frac{L-\ell}{c}$.

2. La phase initiale du signal de bruit arrivant en A est $\varphi_{\text{bruit}} = \varphi_1 - \omega \frac{L}{c}$.

La phase initiale du signal de correction arrivant en A est : $\varphi_{\rm corr} = \varphi_{\rm HP} - \omega \frac{\epsilon}{c}$. Pour avoir une interférence destructrice il faut que $\phi_{ ext{corr}} = \phi_{ ext{bruit}} + \pi$, soit que :

$$\Delta \varphi = \varphi_{\mathrm{HP}} - \varphi_1 = \omega \frac{\ell - L}{c} + \pi.$$

3. Le micro 1 capte un signal qui est la superposition du bruit et du signal émis par le hautparleur se propageant à partir de A vers l'amont. Le micro 2 donne un contrôle du résultat et permet la détermination du meilleur signal de correction.

7 Mesure de la vitesse du son avec des trous de Young

Correction:

1.
$$i = \frac{\lambda D}{a}$$

2. En mesurant avec une règle graduée au millimètre sur la figure 12.12 et en prenant en compte l'échelle on mesure $4i = (17,1 \pm 0.8)$ cm. La précision est ici limitée par l'écart entre deux positions de mesure du détecteur. Avec l'échelle de la figure et le facteur $1/\sqrt{3}$, on trouve l'incertitude-type de mesure. On en déduit $i = (4.3 \pm 0.2)$ cm.

3. En utilisant l'expression de l'interfrange, il vient $\lambda = ia/D = (8.6 \pm 0.4)$ mm où l'incertitude-type est calculée avec la formule de propagation :

$$\frac{u(\lambda)}{\lambda} = \sqrt{\left(\frac{u(i)}{i}\right)^2 + \left(\frac{u(a)}{a}\right)^2 + \left(\frac{u(D)}{D}\right)^2},$$

et $u(D) = u(a) = 1/\sqrt{3}$ mm. Finalement, $c_{\rm son} = \lambda f = (3.4 \pm 0.1) \times 10^2$ m·s⁻¹. 4. La diminution de l'amplitude des interférences lorsque x augmente est due au phénomène de diffraction par un trou de Young. Sur la figure 12.12, on peut voir que l'amplitude des interférences s'annule pour $x_a \approx 15$ cm. De plus, de la figure 12.11, il vient $\tan(\theta) = x_a/D$. Dans l'approximation des petits angles, $sin(\theta) \sim \theta$ et $tan(\theta) \sim \theta$ donc:

$$r \sim \frac{\lambda D}{2x_a} \approx 1.4 \,\mathrm{cm}.$$

8 Interférences ultrasonores sur un cercle

Correction:

b) E_1H est la différence $E_1M - E_2M = r_1 - r_2$ avec les notations du cours : c'est la différence des distances parcourues par les 2 ondes acoustiques.

c) En raisonnant dans le triangle quasiment rectangle E_1E_2H , on obtient $E_1H\simeq a\sin\theta$. On en déduit donc le déphasage :

 $\phi = 2\pi \alpha \frac{\sin\theta}{\lambda}.$

d) Les interférences constructives sont obtenues lorsque ϕ est multiple de $2\pi,$ donc pour :

$$\sin\theta = p\,\frac{\lambda}{a},$$

avec p entier.

Pour p=0, c'est-à-dire sur l'axe Ox, un maximum d'amplitude est observé, l'examen de la symétrie du dispositif vis-à-vis de cet axe le montre sans calcul.

Pour $p\pm 1$, l'angle est $\theta=\pm 12^\circ$, ce qui correspond à deux points symétriques par rapport à Ox: c'est l'intersection des deux hyperboles bordant l'axe Ox avec le cercle de rayon R sur lequel se déplace le microphone M.

Pour $p\pm 2$, l'angle est $\theta=\pm 25^\circ$, ce qui est proche du double des valeurs précédentes (on parle d'équidistance des franges).

Pour les valeurs plus élevées de l'ordre p, les angles sortent de l'intervalle proposé.

2.a) Les interférences destructives sont obtenues lors d'une opposition de phase des ondes : $\phi = \pi + p 2\pi$, avec p entier. Il s'agit ici de :

$$- \varphi = \pm \pi$$
, donc $\sin \theta = \pm \frac{\lambda}{2a}$, soit $\pm 6^{\circ}$ et;

$$-\phi = \pm 3\pi$$
, donc $\sin \theta = \pm \frac{3\lambda}{2a}$, soit $\pm 19^{\circ}$.

b) Pour des ondes reçues avec la même amplitude, l'opposition de phase doit conduire à une annulation de l'amplitude résultante.