1 paye 474 Table 8.7 Repuction & Oxi Pation Reactions Figure 8.4 That may Be combined to RESULT IN Biologically V P8 477 mediated exerconic processes (pH=7) A 4 G°(W) 6. OXIDATION REACTION (Kcal/equiv.) Example KJ . eq. 1) ACROBIC: a. 14.02(2) + H+(W) + e = 1/2 H20 -29.9 -125 b. 14 CH20 + 14H20 = 14 COZ (g)+H+(w)+E RESPIRATION. DeniTRiFicaTion (a. 1/5 NO3- + 6/5 H+(w)+e==1/10 N2(g)+3/5 H20 -28.4 -11.9. b. 14 CH20 + 14 H20 = 14 COZ(g) + H+(w) + e ! La. 1/8 NO3 + 5/4 H+ (W) + e = 1/8 NH4+ 3/8 H20 ! b. 1/4 CH20 + 1/4 H20 = 1/4 CO2(g) + M+ (W) + e. -19.6 -82 Nitrate Reduction 16. 1/4 CH20 + 1/4 H20 = 1/4 CO2(g) + H+(w) +e; -20 -4.8 N Fixation a. 1/4 02(g) + H+(W) + e = 1/2 H20 -43 NITRIFICATION b. 1/8 NH4+ +3/8 Hzo = 1 NO3+ 5/4 H+(W) -10.3

Denitrification = NO3+ = H+(w)+e= = 10 Nz(g)+ = H20 inBalanced Reaction: Z NO3 + 50 Ht(w) + 10e = N2(g) + 6H20 Balances Reaction: denit Rate [mg-N]. \QGO [-119 KJ]. 10e 1 g.N 1 molN 1 RXN | FULL RXN 1000 mg.N 14g N 2 molN KJ PRODUCED Convert units of m2. hR. Rate alternativelz, can use: Rate of energy PRODUCTION FROM PH=7 [-28.4 Kcal]
equiv.e-] DENITAITI CATION

A GROBIC RESPIRATION ER RATE 9-02 Balanced Reaction: Oz (g) + 44+ (w) + 4e = 2 Hzo _ mz · day] Ly. △G° [-125 KJ] 4e Zmol Oz KJ PROD. I FULL RXN PH=7 Lequiv. e- J.FULL RXN 32 g 02 1 mol 02 mz.day Rateof alter natively, energy prod PH=7 [-29.9 Kcal PH=7 [equiv. e-FROM A.GROBIC RESPIR. KJ PROD day KJPROD m2. day 24 hRS m2.hR

not sure 17 this scaling is reasonable.

NITRIFICATION = UNBALANCED RXN: \$NH4+ + 3 H20 = = NOS + 5 H+(W) + 0 Balanced RXN: NHY+ + 3H20 = NO3- +10H+(w) +8eT nitaif Rate [mg N] DG° [-43KJ] 8e 1gN I molN I RXN [m2. hR] pH=7 [equive] Full RXN 1000 mgN 14gN [mol N OR 06° [-10.3 Kcal] PHA [equive]

MTROGEN FIXATION

UNBALANCED REACTION: 6NZ+3H+(W)+e=3NH4+

Balanced Reaction: NZ+8H+(W)+6e=2NH4+

Nz Fix Rate [mg-N];
$$\triangle G^{\circ}$$
 [-20 KJ]; $6 e^{-}$ | gN | $ImdN$ | $ImdN$

Table 8.7. Reduction and Oxidation Reactions that May Be Combined to Result in Biologically Mediated Exergonic Processes (pH = 7)

Reduction	$p\varepsilon^{\circ}(W) = \log K(W)$		$p\varepsilon^{\circ}(W) = -\log K(W)$
(A) $\frac{1}{4}O_2(g) + H^+(W) + e^- = \frac{1}{2}H_2O$	+13.75	(L) ${}_{4}^{1}CH_{2}O + {}_{4}^{1}H_{2}O = {}_{4}^{1}CO_{2}(g) + H^{+}(W) + e^{-}$	-8.20^{a}
(B) $\frac{1}{5}NO_3^- + \frac{6}{5}H^+(W) + e^- = \frac{1}{10}N_2(g) + \frac{3}{5}H_2O$	+12.65	(L-1) $\frac{1}{2}HCOO^{-} = \frac{1}{2}CO_{2}(g) + \frac{1}{2}H^{+}(W) + e^{-}$	-8.73
(C) $\frac{1}{2}$ MnO ₂ (s) + $\frac{1}{2}$ HCO ₃ ⁻ (10 ⁻³) + $\frac{3}{2}$ H ⁺ (W) + e ⁻ = $\frac{1}{2}$ MnCO ₃ (s) + H ₂ O	+8.9	(L-2) $\frac{1}{2}$ CH ₂ O + $\frac{1}{2}$ H ₂ O = $\frac{1}{2}$ HCOO ⁻ + $\frac{3}{2}$ H ⁺ (W) + e ⁻	-7.68
(D) $\frac{1}{8}NO_3^- + \frac{5}{4}H^+(W) + e^- = \frac{1}{8}NH_4^+ + \frac{3}{8}H_2O$	+6.15	(L-3) $\frac{1}{2}$ CH ₃ OH = $\frac{1}{2}$ CH ₂ O + H ⁺ (W) + e ⁻	-3.01
(E) $FeOOH(s) + HCO_3^- (10^{-3}) + 2H^+(W) + e^- = FeCO_3(s) + 2H_2O$	-0.8	$(L-4) \frac{1}{2}CH_4(g) + \frac{1}{2}H_2O = \frac{1}{2}CH_3OH + H^+(W) + e^-$	+2.88
(F) $\frac{1}{2}$ CH ₂ O + H ⁺ (W) + e ⁻ = $\frac{1}{2}$ CH ₃ OH	-3.01	(M) $\frac{1}{8}HS^{-} + \frac{1}{2}H_{2}O = \frac{1}{8}SO_{4}^{2-} + \frac{9}{8}H^{+}(W) + e^{-}$	-3.75
(G) $\frac{1}{8}SO_4^{2-} + \frac{9}{8}H^+(W) + e^- = \frac{1}{8}HS^- + \frac{1}{2}H_2O$	-3.75	(N) $FeCO_3(s) + 2H_2O = FeOOH(s) + HCO_3^- (10^{-3}) + 2H^+(W) + e^-$	-0.8
(H) $\frac{1}{8}CO_2(g) + H^+(W) + e^- = \frac{1}{8}CH_4(g) + \frac{1}{4}H_2O$	-4.13	(O) $\frac{1}{8}NH_4^+ + \frac{3}{8}H_2O = \frac{1}{8}NO_3^- + \frac{5}{4}H^+(W) + e^-$	+6.15
(J) ${}_{6}^{1}N_{2} + {}_{3}^{4}H^{+}(W) + e^{-} = {}_{3}^{1}NH_{4}^{+}$	-4.68	(P) $\frac{1}{2}$ MnCO ₃ (s) + H ₂ O = $\frac{1}{2}$ MnO ₂ (s) + $\frac{1}{2}$ HCO ₃ ⁻ (10 ⁻³) + $\frac{3}{2}$ H ⁺ (W) + e ⁻	8.9

Combinations			
		$\Delta G^{\circ}(W)$	
		pH = 7	
Examples		(kJ eq ⁻¹)	
Aerobic respiration	A + L	-125	
Denitrification	B + L	-119	
Nitrate reduction	D + L	-82	
Fermentation	F + L	-27	
Sulfate reduction	G + L	-25	
Methane fermentation	H + L	-23	
N fixation	J + L	-20	
Sulfide oxidation	A + M	-100	
Nitrification	A + O	-43	
Ferrous oxidation	A + N	-88	
Mn(II) oxidation	A + P	-30	

^aCH₂O is used as a formula for an "average" organic substance. The free energy change involved with different specific organic substances may differ from that given for CH₂O. The difference may be large, especially in anoxic processes with substrates whose carbon has a different oxidation state than that in CH₂O.

Figure 8.14. Sequence of microbially mediated redox processes. The letters refer to the reactions given in Table 8.7.