Transformée en Z

Exercice 1

Résoudre, en utilisant la transformée en Z, l'équation récurrente

$$x_{n+1} = x_n + 2$$

pour tout $n \in \mathbb{N}$, avec la condition initiale $x_0 = 3$.

Solution 1

En appliquant la transformée en Z sur les deux membres de l'équation on obtient $z(\mathcal{Z}(\mathbf{x}) - 3) = \mathcal{Z}(\mathbf{x}) + \frac{2z}{z-1}$ ce qui est équivalent à $\mathcal{Z}(\mathbf{x}) = \frac{3z}{z-1} + \frac{2z}{(z-1)^2}$. Bien sûr $\frac{3z}{z-1}$ est la transformée en Z de 3 \mathbf{u} . Et $\frac{2z}{(z-1)^2}$ est celle de 2 \mathbf{i} où $i_n = n$ (vu en cours). Ainsi $x_n = 2n + 3$.

Exercice 2

Résoudre, en utilisant la transformée en Z, l'équation récurrente

$$x_{n+1} - 2x_n = 2n$$

avec $x_0 = 1$.

Solution 2

En appliquant la transformée en Z sur les deux membres de l'équation on obtient $z(\mathcal{Z}(\mathbf{x}) - 1) - 2\mathcal{Z}(\mathbf{x}) = \frac{2z}{(z-1)^2}$. Donc $\mathcal{Z}(\mathbf{x}) = \frac{2z}{(z-2)(z-1)^2} + \frac{z}{z-2}$. Décomposons $\frac{2}{(z-2)(z-1)^2}$ en éléments simples. On obtient $\frac{2}{(z-2)(z-1)^2} = -\frac{2}{z-1} - \frac{2}{(z-1)^2} + \frac{2}{z-2}$. Ainsi

$$\mathcal{Z}(\mathbf{x}) = -\frac{2z}{z-1} - \frac{2z}{(z-1)^2} + \frac{3z}{z-2}.$$

Donc, par identification, on obtient $x_n = -2 - 2n + 3 \times 2^n$ (on sait, par le cours, que la transformée en Z de $y_n = \alpha^n$ est $\mathcal{Z}(\mathbf{y}) = \frac{z}{z-\alpha}$ pour tout $\alpha \in \mathbb{C}^*$, et c'est ce que nous appliquons à $\frac{3z}{z-2}$).

Exercice 3

Résoudre, en utilisant la transformée en Z, l'équation récurrente d'ordre 2

$$x_n - 3x_{n-1} + 2x_{n-2} = \delta_0(n)$$

pour tout entier naturel n, avec, bien sûr, $x_{-1} = x_{-2} = 0$.

Solution 3

On applique la transformée en Z pour obtenir

$$\mathcal{Z}(\mathbf{x}) - 3z^{-1}\mathcal{Z}(\mathbf{x}) + 2z^{-2}\mathcal{Z}(\mathbf{x}) = 1.$$

On trouve donc $\mathcal{Z}(\mathbf{x}) = \frac{z^2}{z^2 - 3z + 2} = \frac{z^2}{(z - 1)(z - 2)}$. La décomposition en éléments simples nous donne $\mathcal{Z}(\mathbf{x}) = -\frac{z}{z - 1} + \frac{2z}{z - 2}$. (Il suffit en fait de décomposer $\frac{\mathcal{Z}(\mathbf{x})}{z} = \frac{z}{(z - 1)(z - 2)}$ en éléments simples, soit $-\frac{1}{z - 1} + \frac{2}{z - 2}$.) Finalement on obtient $x_n = -1 + 2^{n+1}$.

Exercice 4

Résoudre, en utilisant la transformée en Z, l'équation récurrente

$$x_{n+2} - 3x_{n+1} + 2x_n - \delta_0(n) = 0$$

avec $x_0 = x_1 = 0$.

Solution 4

Appliquons la transformée en Z. On obtient $z^2 \mathcal{Z}(\mathbf{x}) - 3z \mathcal{Z}(\mathbf{x}) + 2\mathcal{Z}(\mathbf{x}) - 1 = 0$. Cela donne $\mathcal{Z}(\mathbf{x}) = \frac{1}{(z-1)(z-2)} = \frac{-1}{z-1} + \frac{1}{z-2} = z^{-1} \frac{-z}{z-1} + z^{-1} \frac{z}{z-2} = z^{-1} \left(\frac{-z}{z-1} + \frac{z}{z-2}\right)$ et donc $x_0 = 0$, $x_n = -1 + 2^{n-1}$ pour tout $n \ge 1$ (en particulier $x_1 = 0$), par la propriété du retard.

Exercice 5

On considère une suite $\mathbf{x} = (x_n)_{n \in \mathbb{N}}$. On définit la suite $\mathbf{y} = (y_n)_{n \in \mathbb{N}}$ par $y_n = \sum_{k=0}^n x_k$.

Déterminer une équation récurrente entre les suites \mathbf{x} et \mathbf{y} . En déduire la transformée en Z de \mathbf{y} (en fonction de celle de \mathbf{x}).

Solution 5

Pour tout entier n on a $y_n - y_{n-1} = x_n$, avec $y_{-1} = 0$. Donc $\mathcal{Z}(\mathbf{y}) - z^{-1}\mathcal{Z}(\mathbf{y}) = \mathcal{Z}(\mathbf{x})$ de sorte que $\mathcal{Z}(\mathbf{y}) = \frac{1}{1 - z^{-1}}\mathcal{Z}(\mathbf{x}) = \frac{z\mathcal{Z}(\mathbf{x})}{z - 1} = \mathcal{Z}(\mathbf{u})\mathcal{Z}(\mathbf{x}) = \mathcal{Z}(\mathbf{u} * \mathbf{x})$.

Evercice 6

Déterminer la suite \mathbf{x} dont la transformée en Z est $f(z) = \frac{4z}{3z^2 - 2z - 1}$.

Solution 6 On a $\frac{f(z)}{z} = \frac{4}{3z^2 - 2z - 1} = \frac{4}{(3z+1)(z-1)} = \frac{a}{z-1} + \frac{b}{3z+1}$. Ainsi 4 = a(3z+1) + b(z-1). Pour z = 1 cela conduit à $a = -\frac{1}{3}$ et avec $z = -\frac{1}{3}$ on a b = -3. Ainsi $f(z) = \frac{z}{z-1} - \frac{3z}{3z+1} = \frac{z}{z-1} - \frac{z}{z+\frac{1}{3}}$. Il en résulte donc que $x_n = 1 - (-\frac{1}{3})^n$.

Exercice 7

Déterminer la suite \mathbf{x} dont la transformée en Z est $f(z) = \frac{z^2}{(z+3)^2}$.

Solution 7 On pose $g(z) = z^{n-1} f(z) = \frac{z^{n+1}}{(z+3)^2}$. Il y a un pôle double en z = -3. Donc $Res(g(z), -3) = \frac{d}{dz}((z+3)^2g(z))|_{z=-3} = (n+1)(-3)^n$. Il en résulte donc que $x_n = (n+1)(-3)^n$.

Exercice 8

Déterminer, par la méthode des résidus, la suite ${\bf x}$ dont la transformée en Z est $f(z)=\frac{1}{(z+1)(z+2)}.$

Solution 8

Considérons $g(z) = z^{n-1} f(z) = \frac{z^{n-1}}{(z+1)(z+2)}$ qui possède un pôle simple en 0 quand n = 0 mais pas pour $n \ge 1$. Ainsi les cas n = 0 et $n \ge 1$ doivent être considérés séparément. Pour n = 0, $g(z) = \frac{1}{z(z+1)(z+2)}$. Puis $Res(g(z), 0) = \frac{1}{2}$, Res(g(z), -1) = -1 et $Res(g(z), -2) = \frac{1}{2}$ de sorte que $x_0 = \frac{1}{2} - 1 + \frac{1}{2} = 0$. Pour $n \ge 1$, $g(z) = \frac{z^{n-1}}{(z+1)(z+2)}$, on a $Res(g(z), -1) = (-1)^{n-1}$ et $Res(g(z), -2) = -(-2)^{n-1}$, donc $x_n = (-1)^{n-1} - (-2)^{n-1}$ pour tout $n \ge 1$.

Exercice 9

Calculer la transformée en Z de $x_n = \cos \omega n T$, ω et T fixés (exprimer-la comme fonction de $\cos \omega T$).

Solution 9

Solution 9 On a
$$\cos \omega nT = \frac{1}{2} \left(e^{i\omega nT} + e^{-i\omega nT} \right) \text{ donc } \mathcal{Z}(\mathbf{x}) = \frac{1}{2} (\mathcal{Z}((e^{i\omega nT})_n) + \mathcal{Z}((e^{-i\omega nT})_n)). \text{ Or } \mathcal{Z}((e^{an})_n) = \frac{z}{z - e^a}. \text{ Donc } \mathcal{Z}(\mathbf{x}) = \frac{1}{2} \left(\frac{z}{z - e^{i\omega T}} + \frac{z}{z - e^{-i\omega T}} \right) = \frac{1}{2} \left(\frac{z(z - e^{-i\omega T}) + z(z - e^{i\omega T})}{z^2 - z(e^{i\omega T} + e^{-i\omega T}) + 1} \right) = \frac{1}{2} \left(\frac{2z^2 - z(e^{i\omega T} + e^{-i\omega T})}{z^2 - 2z\cos \omega T + 1} \right) = \frac{z^2 - z\cos \omega T}{z^2 - 2z\cos \omega T + 1}.$$