ZAD 1. H < G, G - cyclic \Longrightarrow H - cyclic

We know that

$$G = \{ \dots, g^{-k}, \dots, g^{0} = 3, \dots, g^{k}, \dots \}$$

Now, because H < G, we know that for every $h \in H$, we have $h \in G$ so there exists $k \in \mathbb{N}^+$

$$h = q^k$$

and because H is a group, also

$$h^{-1} = a^{-k} \in H$$
.

Let m be the least positive integer such that

$$g^m \in H$$
.

We want to show that then $H = \langle g^m \rangle$. Suppose that H is not generated by g^m , meaning that there exists an $h \in H$ such that $h = g^1$ for l = m + n, 0 < n < m. Then

$$g^{1}g^{-m} = g^{m+n}g^{-m} = g^{m}g^{n}g^{-m} = eg^{n} = g^{n} \in H$$

But then n is smaller than m and we have a contradiction of our supposition.

ZAD 2. H_1 , $H_2 < G$; $H_1 \cup H_2 < G \iff H_1 \subseteq H_2 \vee H_2 \subseteq H_1$

=

Without loss of generality, let us say that $H_1 \subseteq H_2$. Then

$$H_1 \cup H_2 = H_2$$

and it is trivial.

 \Longrightarrow

We know that $H_1 \cup H_2 < G$. Let us suppose that neither H_1 is a subset of H_2 nor H_2 is a subset of H_1 . Then let us take any

$$h \in H_1 \land h \notin H_2$$

$$\eta \in \mathsf{H}_2 \ \land \ \eta \not\in \mathsf{H}_1$$
 .

They are both in $H_1 \cup H_2$ so they are elements of a group. Therefore, their product, $h\eta$ should also be contained within this group. But because $h \notin H_1$, we cannot have $h\eta \in H_2$. Similarly, $\eta \notin H_1$ so $h\eta \notin H_1$. So we cannot have $h\eta \in H_1 \cup H_2$. So we have a contradiction. Therefore, either $H_1 \subseteq H_2$ or $H_2 \subseteq H_1$.