Accepted Manuscript

Comparative metabolic profiling of vetiver (*Chrysopogon zizanioides*) and maize (*Zea mays*) under lead stress

Venkataramana R. Pidatala, Kefeng Li, Dibyendu Sarkar, Ramakrishna Wusirika, Rupali Datta

PII: S0045-6535(17)31864-7

DOI: 10.1016/j.chemosphere.2017.11.087

Reference: CHEM 20284

To appear in: ECSN

Received Date: 12 June 2017

Revised Date: 28 October 2017 Accepted Date: 17 November 2017

Please cite this article as: Pidatala, V.R., Li, K., Sarkar, D., Wusirika, R., Datta, R., Comparative metabolic profiling of vetiver (*Chrysopogon zizanioides*) and maize (*Zea mays*) under lead stress, *Chemosphere* (2017), doi: 10.1016/j.chemosphere.2017.11.087.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Comparative metabolic profiling of vetiver (Chrysopogon zizanioides) and maize
2	(Zea mays) under Lead stress
3	
4	Venkataramana R Pidatala ^{1¥} , Kefeng Li ² , Dibyendu Sarkar ³ Ramakrishna Wusirika ^{1§} and
5	Rupali Datta ¹ *
6	
7	¹ Department of Biological Sciences, Michigan Technological University, 1400 Townsend
8	Drive, Houghton, MI 49931, USA
9	² School of Medicine, University of California, San Diego, San Diego, California 92103
10	³ Department of Civil, Environmental and Ocean Engineering, Stevens Institute of
11	Technology, Hoboken, New Jersey 07030, USA
12	
13	
14	
15	
16	
17	*Corresponding author Tel.: +1 906 487 1783 fax: +1 906 487 3167. E-mail address:
18	rupdatta@mtu.edu
19	[¥] Current Address: Physical Biosciences Division, Lawrence Berkeley National
20	Laboratory, Joint BioEnergy Institute, Berkeley, CA, 94720, USA
21	§Current Address: Centre for Biochemistry and Microbial Sciences, Central University of
22	Punjab, Bathinda, Punjab 151001, India.

23	Abstract
24	Lead (Pb) contamination of residential soils in United States is attributed to use of Pb
25	based paints prior to 1978 and their deterioration and accumulation on surface soils.
26	Exposure to Pb due to ingestion and inhalation of Pb laden soil and dust causes
27	neurological disorders, renal disorders, developmental and behavioral problems,
28	particularly in children under the age of six. Vetiver grass is one of the leading choices
29	for Pb remediation due to its ability to hyperaccumulate Pb, in addition to high biomass.
30	In order to understand the effect of Pb on vetiver metabolic pathways, we compared the
31	global metabolic changes in vetiver with that of maize, a Pb susceptible plant under Pb
32	stress. Vetiver showed massive increase in levels of key metabolites in response to Pb,
33	including amino acids, organic acids and coenzymes. Maize showed very modest
34	increase in some of the same metabolites, and no change in others. The results provide
35	the first indication of the difference in metabolic response of the hyperaccumulator,
36	vetiver to lead stress as compared to maize.
37	
38	
39	
40	Keywords: Phytoremediation, Lead, Vetiver, Maize, Metabolomics
41	
42	
43	
44	
45	
46	

1. Introduction:

Major sources of lead (Pb) in the environment include lead-based paint, leaded gasoline and Pb pipes for water distribution. Lead-based paint and leaded gasoline were banned in the U.S. by 1978 and 1996 respectively, resulting in lowering of Pb levels in the environment 1 . Recommendations of the Centers for Disease Control and prevention (CDC) lowered the acceptable blood Pb levels (BLL) from $10\mu g/dL$ to $5\mu g/dL$ in 2012, which brings more people under risk category 2 . Children are more prone to Pb poisoning, mostly through ingestion via hand-to-mouth activities and inhalation of Pb laden dust 3 . In spite of phasing out Pb in gasoline and paint, CDC reported that there are four million contaminated households in the U.S. with high levels of Pb with children residing in them, and approximately half a million children below the age of five have BLLs above $5\,\mu g/dL^2$. Several studies have shown that soil Pb is a major contributor to elevated BLLs in children 5,6 . Phytoremediation is a promising and viable method to lower Pb levels in soils, as it is cost-effective and sustainable 7 . Lead is also toxic to plants, and affects a variety of functions such as seed

germination, root growth, photosynthesis, cell division, transpiration etc.⁸. However, some plant species can withstand the deleterious effects of Pb through various tolerance mechanisms. Selective uptake, binding to the root surface or the cell wall, induction of chelating ligands such as phytochelatins, amino acids and organic acids etc. that help sequester Pb ⁸⁻¹⁰ are a few strategies used by plants to tolerate Pb. Antioxidative enzymes such as superoxide dismutase, ascorbate peroxidase, catalase, glutathione reductase and non-protein molecules also play important roles in Pb induced stress response¹⁰⁻¹³. Many

71	plants like Sesbania drummondii ⁷ , Brassica juncea ^{8, 9} and Thlaspi caerulescens ¹⁴ have
72	been studied for phytoremediation of Pb. Chrysopogon zizanoides (vetiver grass) was
73	shown in our previous studies to accumulate high amounts of Pb in root and shoot 12. High
74	biomass, a large root system, high root to shoot metal translocation and tolerance to a
75	wide range of environmental contaminants, makes it a suitable choice for
76	phytoremediation ¹⁵⁻¹⁹ .
77	Plants adapt to various environmental conditions by reconstituting their metabolic
78	network and altering various physiological functions in order to survive and maintain
79	homeostasis ²⁰ . Metabolites play a major role in stress sensing, signaling and regulation of
80	physiological functions. They are also the end result of altered gene expression due to
81	stress conditions such as exposure to Pb, and reflect plant behavior in fighting the stress.
82	A number of studies undertaken recently have indicated that metabolic adjustments are
83	crucial for plant survival under stress. Metabolomics is an ideal approach to acquire a
84	snapshot of the global state of metabolic changes under particular physiological
85	conditions. Metabolomics has been adopted in recent studies to dissect various abiotic
86	stress responses in plants ²⁰ . For example, water stress was shown to result in the
87	accumulation of several metabolites such as amino acids and sugars such as glucose and
88	fructose and branch-chain amino acids, saccharopine, proline, and agmatine in
89	<i>Arabidopsis</i> , which is associated with increase in ABA levels ²¹ . Comparison of metabolic
90	response of grapevine to water and salt stress showed that water stressed plants
91	accumulate higher levels of glucose, malate and proline than those of salt stressed
92	plants ²² . Another study showed that when water stress was combined with heat stress,
93	high levels of proline was replaced by high levels of sucrose ²³ . Heat and cold stress

induced proline, glucose, fructose, galactinol and raffinose in Arabidopsis. Moreover, comparison of metabolic profiles of Arabidopsis plants exposed to heat and cold shock indicated that in both cases, proline, glucose, fructose, galactinol and raffinose are induced^{24, 25}.

We recently published a detailed metabolic profiling study of vetiver under Pb stress ¹⁰. The study indicated a large induction in key metabolic pathways including amino acid metabolism, increased production of osmoprotectants and metal-chelating organic acids. Li et al. ²⁶ reported changes in maize root metabolomic profile on exposure to 400 mg/L of Pb. The study revealed glycolysis, purine, pyrimidine, and phospholipids pathways were induced by Pb. However, the scope of the maize study was limited to the effect of Pb on root tissue alone, using a single Pb concentration. The main focus of the study was to develop a new quantitative metabolomic method, rather than elucidate the pathways involved in Pb tolerance. Although these two studies illustrated the molecular level responses of vetiver under Pb stress, the specific pathways responsible for Pb tolerance are still unclear. One approach to elucidate such potential pathways is to compare molecular-level responses of a Pb hyperaccumulating plant (such as vetiver) to those of a susceptible plant (such as maize). Such a study would provide clues to the specific adaptations in the metabolic pathways of tolerant plants to Pb stress.

Previous comparative metabolic profiling studies for plants under various abiotic stresses have provided important information on the strategies employed by tolerant plants in surviving under adverse environmental conditions. However, with the exception of a couple of studies on cadmium stress in varieties of Bermuda grass²⁷ and soybeans²⁸, such studies are lacking for plant tolerance to Pb. The results obtained in the

present study provide valuable insights into the molecular mechanism of Pb tolerance anddetoxification in hyperaccumulator plants.

2. Materials and methods:

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

2.1 Experimental set up:

Hydroponic experiments were set up as previously described by Andra et al. 12. Vetiver plants were purchased from Florida Farms and Nurseries (FL, US) and were grown in plastic pots with a commercial potting mix for 3 months and subsequently transferred to hydroponic medium containing half strength Hoagland solution. After 4 weeks of acclimation, plants were moved to fresh half strength Hoagland solution without KH₂PO₄ to prevent the formation of Pb phosphate complexes. Maize seeds were germinated on wet filter paper and transferred to the hydroponic set up. The seedlings were supported on rock wool, and suspended into the media using porous plastic baskets. Maize seedlings were allowed to grow to 6-leaf stage before Pb treatment. Lead nitrate (Acros organics) was used as Pb source added at concentrations of 400 mg/L, 800 mg/L and 1200 mg/L. These concentrations represent USEPA standards for Pb in bare soil in play areas (400 ppm) and non-play areas (1200 ppm)²⁹. Six replicates were prepared for each treatment, along with a set of controls without Pb. Deionized-water was added periodically to maintain the water level in the hydroponic containers throughout the experiment. The hydroponic setup was maintained in a greenhouse at 25°C with a photoperiod of 16 h day/8h dark. The light intensity was kept at 250µmol m⁻² s⁻¹, and the relative humidity was $60 \pm 2\%$. Plants samples were harvested after 10 days. After washing of the roots with deionized water to remove the surface bound Pb, plants were flash frozen in liquid nitrogen and stored at -80°C until further analysis.

140	2.2 Pb estimation in vetiver and maize
141	For estimation of Pb in plant tissue, roots and leaves were separated and dried in an oven
142	at 60°C. One gram of dried tissue was acid digested on a hot plate using nitric acid:
143	perchloric acid mixture following EPA 3050b ³⁰ method. The samples were filtered and
144	diluted with deionized water. Pb concentration was analyzed using ICP-MS.
145	
146	2.3 Metabolites extraction
147	Metabolites were extracted as previously described ³¹ with slight modifications ¹⁰ . Briefly,
148	100 mg of tissue was ground in liquid nitrogen. Six replicates were prepared for each
149	treatment and the control. Ampicillin (0.5 mg/ml) was added as internal standard prior to
150	extraction. Three volumes of extraction buffer (methanol: acetonitrile (50:50) with
151	0.125% formic acid) were added to each sample. The samples were sonicated for 15 min
152	at 40 kHz in an ice-water bath sonicator, and centrifuged at 20,000 g for 15 min at 4°C.
153	The supernatant was passed through 0.2-µm PTFE syringe filters and transferred to 1.6
154	ml glass vials for LC-MS/MS analysis.
155	
156	2.4 LC-MS/MS conditions
157	LC-MS/MS analysis was performed on an ABSciex Qtrap 5500 mass spectrophotometer
158	(AB Sciex, USA) equipped with a Turbo V electrospray ionization (ESI) source,
159	Shimadzu LC-20A system, and a PAL CTC auto sampler. LC-MS/MS conditions are
160	followed as described ¹⁰ . All the samples were kept at 4°C during analysis. A total of 325
161	metabolites were targeted in MRM mode.
162	

163	2.5 Statistical analysis
164	A total of 325 metabolites encompassing all major metabolic pathways were targeted.
165	Only metabolites that were detected in all the replicates of treatments and controls were
166	used for statistical analysis. Relative concentrations of metabolites were normalized with
167	internal standard and auto scaled using MetaboAnalyst software ³² and data was processed
168	as described previously ¹⁰ . Mean values of six replicates were calculated and used for fold
169	change calculation. Fold changes were calculated with reference to control. Significantly
170	changed metabolites between control and treatments were identified using Student t-test.
171	Partial least squares discriminate analysis (PLS-DA) and Hierarchical cluster analysis
172	(HCA) models were used for root and shoot tissues separately for both plants using
173	MetaboAnalyst software as described ³¹ .
174	
174175	3. Results and discussion
	3. Results and discussion 3.1 Pb uptake in vetiver and maize
175	
175 176	3.1 Pb uptake in vetiver and maize
175176177	3.1 Pb uptake in vetiver and maize Vetiver showed much higher Pb accumulation in both root and shoot compared to maize
175176177178	3.1 Pb uptake in vetiver and maize Vetiver showed much higher Pb accumulation in both root and shoot compared to maize in all the treatments (Table 1). Vetiver roots accumulated an average of 3,861, 5,132, and
175 176 177 178 179	3.1 Pb uptake in vetiver and maize Vetiver showed much higher Pb accumulation in both root and shoot compared to maize in all the treatments (Table 1). Vetiver roots accumulated an average of 3,861, 5,132, and 18,562 mg of Pb per kg dry weight in 400, 800, 1200 mg/L treated plants, respectively.
175 176 177 178 179 180	3.1 Pb uptake in vetiver and maize Vetiver showed much higher Pb accumulation in both root and shoot compared to maize in all the treatments (Table 1). Vetiver roots accumulated an average of 3,861, 5,132, and 18,562 mg of Pb per kg dry weight in 400, 800, 1200 mg/L treated plants, respectively. As expected, maize roots accumulated much lower concentrations, i.e., 39.6, 69.8, and
175 176 177 178 179 180 181	3.1 Pb uptake in vetiver and maize Vetiver showed much higher Pb accumulation in both root and shoot compared to maize in all the treatments (Table 1). Vetiver roots accumulated an average of 3,861, 5,132, and 18,562 mg of Pb per kg dry weight in 400, 800, 1200 mg/L treated plants, respectively. As expected, maize roots accumulated much lower concentrations, i.e., 39.6, 69.8, and 192.4 mg of Pb per kg dry weight in 400, 800, 1200 mg/L treatments, respectively.

Vetiver is known to be a hyperaccumulator of Pb, as previously reported by our group¹⁰, and these results are very similar to the reported data.

3.2 Metabolic changes in vetiver root and shoot tissue in response to Pb stress

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

185

186

Plants often respond to heavy metal stress by synthesizing various metabolites, both to maintain homeostasis as well as alter key metabolic pathways like sugar metabolism, antioxidative pathways, signaling pathways etc. Vetiver and maize plants were subjected to various concentrations of Pb, with Pb-free plants as controls. Relative concentrations of 263 metabolites were compared among treatments and control. Six replicates were used for each treatment and control. According to the PLS-DA analysis of vetiver root metabolites, the response between control and treatments could be clearly differentiated, with 32.8% and 20.2% variance explained by component 1 and component 2, respectively (Fig. 1). Vetiver shoot exhibited a similar pattern with clear difference between control and treatments with 44.1% and 6.2% explained by component 1 and 2, respectively (Fig. 2). Heat maps of vetiver and maize root and shoot are presented in Supplemental Information (SI) Figs. S-1 and S-2. The heat maps show the overall picture of metabolite concentration changes among the treatments and the controls. A complete list of metabolite changes in vetiver root and shoot is presented in Tables 2 and 3 and maize root and shoot in Tables 4 and 5, respectively. Fold changes were calculated as a ratio of relative metabolite concentration of the treatment to that of the control, presented in SI (Tables S-1 and S-2). As shown in Tables 2-5, the patterns vary widely, with some metabolites showing an increasing trend as the Pb concentration increased and some showing a decreasing trend. Some other metabolites showed mixed patterns among

208	treatments. Student t-test was performed to evaluate the statistical significance of
209	treatment Pb concentration with respect to that of control. At least 109 root metabolites
210	and 133 shoot metabolites in all the treatments showed more than 2 fold increase
211	compared to control.
212	
213	3.3 Metabolic changes in Maize root and shoot tissue under Pb stress
214	Maize is more susceptible to Pb, and also accumulates lower levels of Pb compared to
215	vetiver (Table 1). Under similar treatment conditions, 201 compounds in root and 247
216	compounds in shoot were compared between treatments and control with six replicates.
217	PLS-DA analysis of maize root and shoot metabolites are displayed in Figures 1 and 2,
218	respectively. In maize, 31.1%, and 8.6% of the variation between control and treatment
219	groups within root and 33.6% and 8.7% in shoot could be explained by component 1 and
220	component 2, respectively. As shown in Figures S-1 and S-2, heat maps for maize root
221	and shoot, respectively, depict concentration changes among treatments and in
222	comparison to the control. In root, at least 20 metabolites increased in concentration by
223	two fold among all treatments compared to control. In shoot, at least 37 compounds
224	showed two-fold increase in all the treatments compared to control.
225	
226	3.4 Comparison of metabolite changes in vetiver and maize
227	Metabolite changes of vetiver and maize in both root and shoot tissues were
228	compared to decipher the differences in stress response in vetiver in comparison to maize
229	on Pb exposure. Only those metabolites that were detected in both plant species were
230	compared, ignoring the metabolites detected only in either vetiver or maize. PLS-DA

analysis of combined maize and vetiver root metabolites show that metabolites from the
two plants are grouped separately, with 42.8% and 6% explained by component 1 and
component 2, respectively, for the root tissues (Fig. 1). Similarly, shoot metabolites
showed variation between the two plants with 41.2% and 10.6% explained by
components 1 and 2, respectively (Fig. 2), with controls forming separate groups from
treatments in both plants. Hierarchical clustering analysis models are shown in figures S-
1 and S-2 for root and shoot tissues, respectively, which present the overall picture of
metabolite changes in the two plants. Color contrast indicating the changes in metabolite
concentrations shows a much higher increase in metabolite levels in vetiver treated with
Pb when compared to maize in both root and shoot tissue, indicating differences in
response to stress in these plants.
Under heavy metal stress, plants produce a variety of metabolites such as amino
acids proline and histidine; polypeptides such as glutathione and phytochelatins;
polyamines such as spermidine, putrescine etc. Phytochelatins and glutathione form
complexes with metals and help in their compartmentalization ^{33, 34} . Vetiver and maize
showed major differences in metabolite levels in root and shoot tissue as shown by
PLSDA analysis (Figs. 1 and 2), and heat maps (Figs. S-1 and S-2) indicating the
significance of metabolite concentrations in tolerance mechanisms. Among stress
induced amino acids, proline is well known to function as an osmolyte, radical scavenger,
macromolecule stabilizer and metal chelator under heavy metal stress ^{35, 36} . Vetiver
showed enormous increase of proline levels in both root and shoot tissue in treatments
compared to the control (Tables 2, 3, S-1 and S-2). In root, proline levels increased by 40,
59 and 16 fold in 400, 800 and 1200 mg/L treatments, respectively. However, maize

254	showed only a slight increase in proline content in root (< 2 fold), and a decline in proline
255	concentration in shoot tissue (Tables 4, 5, S-1 and S-2). Proline production is reported to
256	vary between root and shoot in different plants, and is also known to be metal specific ³⁵ .
257	Pb is reported to increase proline levels in wheat, sunflower, black gram and pigeon pea ³⁶
258	which supports current findings. Many earlier studies have also reported that proline
259	accumulation under stress is positively correlated with oxidative stress tolerance ^{37, 38, 39} .
260	In addition to metals, several environmental stresses such as water deficit and high
261	salinity also induce proline levels ⁴⁰ .
262	Histidine is known to be associated with nickel-hyperaccumulating properties in
263	Alyssum species ⁴¹ , in which nickel exposure resulted in high accumulation of free
264	histidine. Hyperaccumulating Brassica species also showed increased histidine levels
265	compared to non-accumulators 42. Besides Ni, Zn and Cu also induced increased histidine
266	levels in another metal hyperaccumulator, <i>Thlaspi caerulescens</i> ⁴³ and yeast ⁴⁴ . Our data
267	show that vetiver and maize vary drastically in their histidine levels in both root and
268	shoot on Pb exposure (Tables 2, 3, 4 and 5). In vetiver, treated plants showed up to 17-
269	fold increase in histidine levels in root and up to 34-fold increase in shoot tissue
270	compared to control plants (Tables S-1 and S-2). Maize also showed increased histidine
271	levels in root by 3-fold, however shoot tissue showed decrease in histidine levels in Pb
272	treated plants compared to control plants (Tables 4, S-1).
273	In vetiver root and shoot, asparagine, which was reported to act as a ligand to
274	bind Pb in <i>in vitro</i> studies ⁴⁴ , increased about 3 fold (Tables S-1 and S-2) while in maize,
275	no significant increase was observed. Pb was reported to bind to phytochelatins, an
276	oligomer of glutathione, in vetiver in our earlier studies ¹² . Current results show increase

277	in glutamine, a precursor of glutathione ⁴⁵ and a known antioxidant. Reduced glutathione
278	increased up to 11-fold in root and up to 15-fold in shoot (Tables 2 and 3) in vetiver,
279	while maize root showed no significant increase (Tables 4 and 5), and maize shoot also
280	displayed decrease in glutamine concentration (Table 5).
281	Apart from the above, other amino acids such as tryptophan, isoleucine and valine
282	were also reported to increase in wheat under drought stress ⁴⁶ and in tobacco under salt
283	stress ⁴⁷ . Our data show that tryptophan in vetiver root increased by 22-fold, valine by 5.5
284	fold and isoleucine by 9-fold (Tables 2 and S-1). Shoot tissue also showed up to 35-fold
285	increase in tryptophan, up to 8-fold increase in valine and up to 6.5-fold increase in
286	isoleucine (Tables 3 and S-2), whereas in maize isoleucine showed only 2-fold increase
287	in root and 6-fold increase in shoot, tryptophan showed up to 4.9-fold increase in root and
288	no significant increase in shoot, valine showed a maximum of 2.8-fold increase in root
289	and decrease in shoot tissue (Tables 4, 5, S-1 and S-2). Vetiver also showed significant
290	increase in other amino acids such as threonine, methionine and isoleucine compared to
291	maize in both root and shoot. Threonine and methionine produce intermediates of
292	isoleucine biosynthesis, and their interdependency has significant role in stress
293	conditions ⁴⁸ , as reported in <i>Arabidopsis</i> and tomato under drought stress ^{49, 50} .
294	In Arabidopsis, nicotinamide adenine dinucleotide (NAD) and nicotinamide
295	adenine dinucleotide phosphate (NADP) are reported to play rate-limiting roles in
296	generation and scavenging of reactive oxygen species (ROS) and protect guard cells from
297	ROS ⁵¹ . Nicotinamide is a precursor of NAD biosynthesis; our results show a very high
298	increase in nicotinamide content in both vetiver root and shoot under Pb stress. Root
299	tissue showed maximum of 287-fold increase in 400 mg/L treatment and shoot showed

133-fold increase in 800 mg/L treatment, however maize showed decreased content of
nicotinamide in both root and shoot tissue. While root showed a slight increase in
nicotinamide levels (0.96 fold in 400 mg/L, 2.05 fold in 800 mg/L and 0.73 fold in 1200
mg/L of lead), no increase in nicotinamide level (0.36-fold in 400 mg/L treatment, 0.29
fold 800 mg/L treatment and 0.16 in 1,200 mg/L treatment), in shoot was observed as a
result of Pb exposure (Tables S-1 and S-2). In Arabidopsis, thiamine also plays an
important role in abiotic stress tolerance and confers enhanced tolerance especially to
oxidative stress ⁵² . Thiamine and thiamine pyrophosphate levels increased in <i>Arabidopsis</i>
under various abiotic stress conditions, such as high light, cold, osmotic, salinity, and
oxidative treatments ⁵³ . Vetiver showed very high increase in both thiamine and thiamine
pyrophosphate levels under Pb stress. Root tissue showed maximum of 51-fold increase
for thiamine and 41-fold increase for thiamine pyrophosphate (Table S-1) and shoot
tissue showed an astounding 390-fold increase of thiamine pyrophosphate (Table S-2)
and up to 61-fold increase of thiamine. However, in the case of maize, the levels of
thiamine and thiamine pyrophosphate were much lower, with 0.2 - 2 fold increase in
levels in lead treated plants compared to the control (Tables S-1 and S-2).
Tricarboxylic acid (TCA) cycle intermediates are known to decrease under
various abiotic stress conditions in plants ^{52, 54, 55} . Moreover, TCA cycle intermediates,
especially α -ketoglutaric acid was reported to play a major role in maintaining redox
homeostasis by reducing ROS ⁵⁶ . Vetiver however, showed increase in many TCA
intermediates like α -ketoglutaric acid, succinyl-CoA, fumaric acid, oxaloacetic acid,
isocitric acid in both root and shoot, except decrease of fumaric acid in root (Tables 2, 3,
S-1 and S-2). Other organic acids (malic acid, ascorbic acid, cis-aconitic acid, aspartic

323	acid) also increased in all tissues. However, changes in TCA intermediates in maize were
324	mixed and non-significant (P <0.05, Tables 4 and 5). Glycolysis, a commonly affected
325	pathway under abiotic stress showed mixed changes in metabolites such as fructose-6-
326	phosphate, fructose-1, 6-bisphosphate, glyceraldehyde-3-phosphate, glycerate-3-
327	phosphate and phosphoenol pyruvate in both vetiver and maize root and shoot tissues,
328	with no particular trend (Tables 2 - 5).
329	Soluble sugars perform various functions during abiotic stress, including
330	osmoprotection, maintaining turgor pressure, stabilizing cell membrane and scavenging
331	ROS ^{57, 58} . Vetiver showed increase in concentration of hexose in both root and shoot
332	tissues, between 4-11 fold in roots and 11-14 fold in shoot tissue. In maize, only a small
333	increase of 1.5-fold was observed in plants treated with 800 and 1200 mg/L of Pb (Tables
334	S-1 and S-2).
335	Several recent studies have attempted to decipher the similarities between plant
336	responses to various abiotic and biotic stresses. Increasing focus on understanding plant
337	response to a combination of stresses has revealed some interesting information ⁵⁹ .
338	Although these studies reveal some common plant responses, each type of stress, or
339	combination of stresses seems to elicit a unique set of responses, controlled by different
340	signaling pathways ^{60, 61, 62} .
341	Very few studies have compared the metabolic profiles of hyperaccumulators to
342	non-accumulator plants, to decipher their differential response to metal stress. A previous
343	study with two genotypes of Bermuda grass treated with cadmium showed that amino
344	acids, organic acids and sugars accumulated more in the tolerant genotype compared to
345	the less tolerant one ²⁷ . Our study compared two monocot species, a known

hyperaccumulator, and the other a high biomass grass, which has previously been used in
studies for lead phytoremediation 14,63, but is known to be a non-accumulator. Results
indicate that while the same metabolic pathways are involved in stress response in both
plants, the magnitude of the response exhibited by the two plants is very different.
Vetiver showed enormous increase in levels of key metabolites in response to Pb,
including amino acids, organic acids and coenzymes. In particular, amino acids appear to
play a major role in metal stress tolerance in vetiver, including proline, histidine,
asparagine, tryptophan, threonine, methionine, isoleucine and valine. The role of amino
acids in stress tolerance is well known, as osmoprotectants, metal chelating agents and
antioxidants. In addition, reduced glutathione increased, which not only binds metals, but
also is a precursor to phytochelatins, which are small peptides involved in binding and
sequestration of metals in vacuoles. Organic acids (malic acid, ascorbic acid, cis-aconitic
acid) coenzymes or precursors of coenzymes such as nicotinamide, thiamine and
thiamine pyrophosphate also increased in vetiver. In contrast, maize showed either minor
increases (proline, histidine, branched chain amino acids, folate) or no increase in
metabolites (Tables 4 and 5). These results provide a glimpse into the mechanism of lead
stress response in vetiver, which induces the production of several magnitudes higher
stress-mitigating metabolites than that of maize.
Acknowledgements: Authors would like to thank the U.S. Department of Housing and
Urban Development – Lead technical studies program and Sirom Scientific Solutions
LLC for financial support for the study. VRP acknowledges the Biological Sciences

Department of Michigan Tech. for financial support.

369	Suppl	emental Information: Comparison of fold changes in concentrations of selected						
370	metabolites in vetiver and maize root (Table S-1) and vetiver and maize shoot (Table S-2)							
371	with respect to control. Heat maps of metabolite concentrations in vetiver and maize root							
372	(Figur	e S-1) and vetiver and maize shoot (Figure S-2). Vetiver and maize plants were						
373	treated	I with 400, 800 and 1200 mg/L of Pb for 10 days.						
374								
375	4. Ref	erences:						
376	1.	Lanphear, B. P., Prevention of Childhood Lead Toxicity. Amer. Asso.						
377		Petriatricians, Council on Environmental Health. Pediatr. 2016, 138, (1),						
378		e20161493						
379	2.	Schnur, J.; John, R. M., Childhood lead poisoning and the new Centers for						
380		Disease Control and Prevention guidelines for lead exposure. J. Amer. Asso.						
381		Nurse Pract. 2014 , 26, (5), 238-247.						
382	3.	Lanphear, B. P.; Hornung, R.; Ho, M.; Howard, C.R.; Eberly, S.; Knauf, K.,						
383		Environmental lead exposure during early childhood. J. Pediatr. 2002, 140, 40-						
384		47.						
385	4.	Duggan, M. J.; Inskip, M. J., Childhood exposure to Pb in surface dust and soil: A						
386		community health problem. Public Health Rev. 1985, 13, 1-54.						
387	5.	Aschengrau, A.; Beiser, A.; Bellinger, D.; Copenhafer, D.; Weitzman, M., The						
388		impact of soil Pb abatement on urban children's blood Pb levels: Phase II results						
389		from the Boston Pb-in-soil demonstration project. Environ. Res. 1994. 67, 125-						
390		148.						

- 6. Mielke, H. W.; Dugas, D.; Mielke, P. W. Jr.; Smith, K. S.; Gonzales, C. R.,
- 392 Associations between soil Pb and childhood blood Pb in urban New Orleans and
- rural Lafourche Parish, Louisiana. Environ. Health Persp. 1997, 105(9), 950-954.
- 7. Sahi, S. V.; Bryant, N. L.; Sharma, N. C.; Singh, S. R., Characterization of a lead
- 395 hyperaccumulator shrub, Sesbania drummondii. Environ. Sci. Technol. 2002, 36,
- 396 (21), 4676-80.
- 8. Meyers, D. E. R.; Kopittke, P. M.; Auchterlonie, G. J.; Webb, R. I.,
- 398 Characterization of Lead Precipitate Following Uptake by Roots of Brassica
- 399 juncea. Environ. Toxicol. Chem. **2009**, 28, (11), 2250-2254.
- 9. Lim, J.-M.; Salido, A. L.; J. Butcher, D., Phytoremediation of lead using Indian
- mustard (Brassica juncea) with EDTA and electrodics. Microchem. J. 2004, 76,
- 402 (1–2), 3-9.
- 403 10. Pidatala, V. R.; Li, K.; Sarkar, D.; Wusirika, R.; Datta, R., Identification of
- 404 biochemical pathways associated with lead tolerance and detoxification in
- 405 Chrysopogon zizanioides L. Nash (vetiver) by metabolic profiling. Environ. Sci.
- 406 Technol., **2016**, 50 (5), 2530–2537.
- 407 11. Pourrut, B.; Shahid, M.; Dumat, C.; Winterton, P.; Pinelli, E., Lead uptake,
- 408 toxicity, and detoxification in plants. Rev. Environ. Contam. Toxicol. 2011, 213,
- 409 113-36.
- 410 12. Andra, S. S.; Datta, R.; Sarkar, D.; Makris, K. C.; Mullens, C. P.; Sahi, S. V.;
- Bach, S. B., Induction of lead-binding phytochelatins in vetiver grass [Vetiveria
- 412 zizanioides (L.)]. J. Eviron. Qual. **2009**, 38, (3), 868-77.

- 413 13. Andra, S. S.; Datta, R.; Reddy, R.; Saminathan, S. K. M.; Sarkar, D., Antioxidant
- Enzymes Response in Vetiver Grass: A Greenhouse Study for Chelant-Assisted
- 415 Phytoremediation of Lead-Contaminated Residential Soils. Clean-Soil Air Water
- **2011**, *39*, (5), 428-436.
- 417 14. Huang, J. W.; Cunningham, S. D., Lead phytoextraction: species variation in lead
- 418 uptake and translocation. *New Phytol.* **1996**, *134*, 75–84.
- 419 15. Danh, L. T.; Truong, P.; Mammucari, R.; Tran, T.; Foster, N., Vetiver grass,
- 420 Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and
- 421 organic wastes. *Internatl. J. Phytorem.* **2009**, *11*, (8), 664-91.
- 422 16. Gupta, D. K.; Srivastava, A.; Singh, V. P., EDTA enhances lead uptake and
- facilitates phytoremediation by vetiver grass. J. Environ. Biol. 2008, 29, (6), 903-
- 424 906.
- 425 17. Datta, R.; Quispe, M. A.; Sarkar, D., Greenhouse study on the phytoremediation
- potential of vetiver grass, *Chrysopogon zizanioides* L., in arsenic-contaminated
- 427 soils. Bull. Environ. Contam. Toxicol. 2011, 86, (1), 124-8.
- 428 18. Makris, K. C.; Shakya, K. M.; Datta, R.; Sarkar, D.; Pachanoor, D., High uptake
- of 2,4,6-trinitrotoluene by vetiver grass--potential for phytoremediation? *Environ*.
- 430 *Pollut.* **2007**, *146*, (1), 1-4.
- 19. Das, P.; Datta, R.; Makris, K. C.; Sarkar, D., Vetiver grass is capable of removing
- 432 TNT from soil in the presence of urea. Environ. Pollut. 2010, 158, (5), 1980-
- 433 1983.
- 20. Obata, T.; Fernie, A. R., The use of metabolomics to dissect plant responses to
- 435 abiotic stresses. Cell. Mol. Life Sci. 2012, 69, (19), 3225-43.

- 21. Urano, K.; Maruyama, K.; Ogata, Y.; Morishita, Y.; Takeda, M.; Sakurai, N.;
- Suzuki, H.; Saito, K.; Shibata, D.; Kobayashi, M., Yamaguchi-Shinozaki, K.;
- Shinozaki, K., Characterization of the ABA-regulated global responses to
- dehydration in *Arabidopsis* by metabolomics. *Plant J.* **2009**, *57*, 1065-1078.
- 22. Cramer, G.R.; Ergul, A.; Grimplet, J.; Tillett, R.L. Tattersall, E.A.; Bohlman,
- 441 M.C.; Vincent, D.; Sonderegger, J.; Evans, J.; Osborne, C.; Quilici, D.; Schlauch,
- 442 K.A.; Schooley, D.A.; Cushman, J.C., Water and salinity stress in grapevines:
- early and late changes in transcript and metabolite profiles. Funct. Integr.
- 444 *Genomics* **2007**, 7, 111-134.
- 23. Rizhsky, L.; Liang, H.; Shuman, J.; Shulaev, V.; Davletova, S.; Mittler, R., When
- defense pathways collide. The response of Arabidopsis to a combination of
- drought and heat stress. *Plant Physiol.* **2004**, *134*, 1683-1696.
- 24. Kaplan, F.; Kopka, J.; Haskell, D.W.; Zhao, W.; Schiller, K.C.; Gatzke, N.; Sung,
- D.Y.; Guy, C.L., Exploring the temperature-stress metabolome of *Arabidopsis*.
- 450 Plant Physiol. **2004**, 136, 4159-4168.
- 451 25. Wienkoop, S.; Morgenthal, K.; Wolschin, F.; Scholz, M.; Selbig, J.; Weckwerth,
- W., Integration of metabolomic and proteomic phenotypes: analysis of data
- 453 covariance dissects starch and RFO metabolism from low and high temperature
- compensation response in Arabidopsis thaliana. Mol. Cell Proteomics 2008, 7,
- 455 1725-1736.
- 456 26. Li, K.; Wang, X.; Pidatala, V. R.; Chang, C.-P.; Cao, X., Novel quantitative
- metabolomic approach for the study of stress responses of plant root metabolism.
- 458 *J. Proteome Res.* **2014**, *13*(12), 5879–5887.

- 459 27. Xie, Y.; Hu, L.; Du, Z.; Sun, X.; Amombo, E.; Fan, J.; Fu, J., Effects of
- Cadmium Exposure on Growth and Metabolic Profile of Bermudagrass [Cynodon
- 461 dactylon (L.) Pers.] PloS one **2014**, 9, (12): e115279.
- 462 https://doi.org/10.1371/journal.pone.0115279
- 28. Ahsan, N.; Nakamura, T.; Komatsu, S., Differential responses of microsomal
- proteins and metabolites in two contrasting cadmium (Cd)-accumulating soybean
- cultivars under Cd stress *Amino Acids* **2012** *42*, 317–327.
- 29. US Federal Register, Lead; Identification of Dangerous Levels of Lead; Final
- Rule Part III, 40 CFR Part 745 Federal Register / Vol. 66, No. 4, 2001.
- 468 www.epa.gov/lead/hazard-standards-lead-paint-dust-and-soil-tsca-section-40.
- 30. EPA Method 3050B. Acid Digestion of Sediments, Sludges, and Soils, Revision
- 2. In Test Methods for Evaluating Solid Wastes: Physical/Chemical Methods,
- 471 EPA SW-846; 3rd Ed., Vol. I, Section A, Chapter 3 (Inorganic Analytes), USEPA,
- Office of Solid Waste and Emergency Response, Washington, D.C.; 1996,
- 473 Available at: http://www.epa.gov/epaoswer/hazwaste/test/pdfs/3050b.pdf.
- 31. De Vos, R. C. H.; Moco, S.; Lommen, A.; Keurentjes, J. J. B.; Bino, R. J.; Hall,
- 475 R. D., Untargeted large-scale plant metabolomics using liquid chromatography
- 476 coupled to mass spectrometry. *Nat. Protoc.* **2007**, 2, (4), 778-791.
- 32. Xia, J.; Mandal, R.; Sinelnikov, I. V.; Broadhurst, D.; Wishart, D. S.,
- 478 MetaboAnalyst 2.0 A comprehensive server for metabolomic data analysis.
- 479 *Nucleic Acids Res.* **2012**, *40*, (Web Server issue), W127-33.
- 480 33. Yang, Z.; Chu, C., Towards understanding plant response to heavy metal stress.
- 481 In: Abiotic Stress in Plants Mechanisms and Adaptations, Shanker A.,

- 482 Venkateswarlu B. *Eds*, **2011**. InTech, www.intechopen.com/books/abiotic-stress-
- in-plants-mechanisms-and-adaptations.
- 484 34. Hossain, M. A.; Piyatida, P.; da Silva, J. A. T.; Fujita, M., Molecular mechanism
- of heavy metal toxicity and tolerance in plants: central role of glutathione in
- detoxification of reactive oxygen species and methylglyoxal and in heavy metal
- 487 chelation. *J. Bot.* **2012**, Article ID 872875, doi:10.1155/2012/872875.
- 488 35. Sharma, S. S.; Dietz, K.-J., The significance of amino acids and amino acid-
- derived molecules in plant responses and adaptation to heavy metal stress. J.
- 490 Exper. Bot. **2006**, 57, (4), 711-726.
- 36. Saradhi, P. P., Proline accumulation under heavy metal stress. *J. Plant Physiol*.
- **1991**, *138*, (5), 554-558.
- 493 37. Anjum, S. A.; Farooq, M.; Xie, X. Y.; Lie, X. J.; Ijaz, M. F., 2012. Antioxidant
- defense system and proline accumulation enables hot pepper to perform better
- 495 under drought. Sci. Hort. 2012, 140, 66-73.
- 496 38. Xu, F. Y.; Wang, X. L.; Wu, Q. X.; Zhang, X. R.; Wang, L. H., Physiological
- responses differences of different genotype sesames to flooding stress. Adv. J.
- 498 Food Sci. Technol. **2012**, 4, 352-356.
- 39. Saeedipour, S., Relationship of grain yield, ABA and proline accumulation in
- tolerant and sensitive wheat cultivars as affected by water stress. PNAS India
- **2013** 10.1007/s40011-012-0147-5.
- 40. Krasensky, J.; Jonak, C., Drought, salt, and temperature stress-induced metabolic
- rearrangements and regulatory networks. J. Exp. Bot., 63 (4), 1593–1608,

- 41. Krämer, U.; Cotter-Howells, J. D.; Charnock, J. M.; Baker, A. J.; Smith, J. A. C.,
- Free histidine as a metal chelator in plants that accumulate nickel. *Nature* **1996**,
- *379*, 635-638.
- 42. Kerkeb, L.; Krämer, U., The Role of Free Histidine in Xylem Loading of Nickel
- in Alyssum lesbiacum and Brassica juncea. Plant Physiol. 2003, 131, (2), 716-
- 509 724.
- 43. Kuroda, K.; Shibasaki, S.; Ueda, M.; Tanaka, A., Cell surface-engineered yeast
- displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and
- tolerance to heavy metal ions. Appl. Microbiol. Biotechnol. 2001, 57, (5-6), 697-
- 513 701.
- 44. Bottari, E.; Festa, M., Asparagine as a ligand for cadmium (II), lead (II) and zinc
- 515 (II). Chem. Speciat. Bioavail. **1996**, 8, (3-4), 75-83.
- 45. Amores-Sanchez, M. I.; Medina, M. A., Glutamine, as a precursor of glutathione,
- and oxidative stress. *Mol. Genet. Metabolism* **1999**, 67, (2), 100-5.
- 46. Bowne, J. B.; Erwin, T. A.; Juttner, J.; Schnurbusch, T.; Langridge, P.; Bacic, A.;
- Roessner, U., Drought responses of leaf tissues from wheat cultivars of differing
- drought tolerance at the metabolite level. *Mol. Plant* **2012**, *5*, (2), 418-429.
- 47. Zhang, J.; Zhang, Y.; Du, Y.; Chen, S.; Tang, H., Dynamic metabonomic
- responses of tobacco (Nicotiana tabacum) plants to salt stress. J. Proteome Res.
- **2011,** *10*, (4), 1904-1914.
- 48. Joshi, V.; Joung, J.-G.; Fei, Z.; Jander, G., Interdependence of threonine,
- methionine and isoleucine metabolism in plants: accumulation and transcriptional
- regulation under abiotic stress. *Amino Acids* **2010**, *39*, (4), 933-947.

- 49. Nambara, E.; Kawaide, H.; Kamiya, Y.; Naito, S., Characterization of an
- Arabidopsis thaliana mutant that has a defect in ABA accumulation: ABA-
- dependent and ABA-independent accumulation of free amino acids during
- dehydration. *Plant Cell Physiol.* **1998,** *39*, (8), 853-858.
- 50. Jander, G.; Joshi, V., Aspartate-derived amino acid biosynthesis in Arabidopsis
- thaliana. The Arabidopsis book/American Society of Plant Biologists 2009, 7.
- 533 51. Hashida, S.-n.; Itami, T.; Takahashi, H.; Takahara, K.; Nagano, M.; Kawai-
- Yamada, M.; Shoji, K.; Goto, F.; Yoshihara, T.; Uchimiya, H.
- Nicotinate/nicotinamide mononucleotide adenyltransferase-mediated regulation of
- NAD biosynthesis protects guard cells from reactive oxygen species in ABA-
- mediated stomatal movement in Arabidopsis. J. Exper. Bot. 2010, 61, (13), 3813-
- 538 25.
- 539 52. Gaur, R. K.; Sharma, P., Molecular Approaches in Plant Abiotic Stress. CRC
- 540 Press: 2013.
- 53. Tunc-Ozdemir, M.; Miller, G.; Song, L.; Kim, J.; Sodek, A.; Koussevitzky, S.;
- Misra, A. M.; Mittler, R.; Shintani D., Thiamin Confers Enhanced Tolerance to
- Oxidative Stress in *Arabidopsis*. *Plant Physiol.* **2009**, *151*, 421–432,
- 54. Fraire-Velázquez, S.; Balderas-Hernández, V. E., Abiotic stress in plants and
- metabolic responses. In Intechopen: 2013.
- 55. Hasanuzzaman, M.; Nahar, K.; Gill, S. S.; Fujita, M., Drought Stress Responses
- 547 in Plants, Oxidative Stress, and Antioxidant Defense. Climate Change and Plant
- 548 *Abiotic Stress Tolerance* **2014**, 209-250.

549	56. Mailloux, R. J.; Bériault, R.; Lemire, J.; Singh, R.; Chénier, D. R.; Hamel, R. D.;
550	Appanna, V. D., The tricarboxylic acid cycle, an ancient metabolic network with
551	a novel twist. <i>PloS one</i> 2007 , 2, (8), e690.
552	57. Keunen, E.; Peshev, D.; Vangronsveld, J.; van den Ende, W; Cuypers, A. Plant
553	sugars are crucial players in the oxidative challenge during abiotic stress:
554	Extending the traditional concept, <i>Plant Cell Environ</i> . 2013 , <i>36</i> , 1242-1255.
555	58. Van den Ende, W.; Valluru, R. Sucrose, sucrosyl oligosaccharides, and oxidative
556	stress: scavenging and salvaging? J. Exp. Bot. 2009, 60, 9-18.
557	59. Suzuki, N.; Rivero, R. M.; Shulaev, V.; Blumwald, E.; Mittler, R, Abiotic and
558	biotic stress combinations. New Phytol. 2014, 203, 32-43.
559	60. Atkinson, N. J.; Urwin, P. E., The interaction of plant biotic and abiotic stresses:
560	from genes to the field. J. Exp. Bot. 2012, 63, 3523–3543.
561	61. Prasch, C. M.; Sonnewald, U., Simultaneous application of heat, drought, and
562	virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant
563	Physiol. 2013 162(4), 1849-66.
564	62. Rasmussen, S.; Barah, P.; Suarez-Rodriguez, M. C.; Bressendorff, S.; Friis, P.;
565	Costantino, P.; Bones, A. M.; Nielsen, H. B.; Mundy, J., Transcriptome responses
566	to combinations of stresses in Arabidopsis. Plant Physiol. 2013, 161(4), 1783-94.
567	63. Brennan, M. A.; Shelley, M. L. A model of the uptake, translocation, and
568	accumulation of lead (Pb) by maize for the purpose of phytoextraction. Ecol. Eng.
569	1999 , 12 , 271–297
570	
571	

Lead Conc. (mg/L)	Plant Tissue	Pb uptake (mg/kg dry wt.) Concentration ± Std. dev					
		Vetiver	Maize				
0	Root	0	0				
400	Root	$3.86 \times 10^3 \pm 124$	39.6 ± 9				
800	Root	$9.83 \times 10^3 \pm 351$	69.8 ± 11				
1200	Root	$1.85 \times 10^4 \pm 297$	192.4 ± 17				
0	Shoot	0	0				
400	Shoot	168.55 ± 32	3.60 ± 0.75				
800	Shoot	426.56 ± 49	8.70 ± 3.2				
1200	Shoot	93.08 ± 27	1.89 ± 0.66				

Table 1. Pb uptake in vetiver and maize root and shoot tissues, measured using ICP-MS

Table 2: Relative concentrations of metabolites in vetiver root. Metabolite concentrations measured using LC-MS/MS in vetiver root samples exposed to 400, 800 and 1200 mg/L of Pb for 10 days (n=6)

Metabolite name		Metabolite concentration*					
	Control avg ± std.dev	400 avg± std.dev	800 avg± std.dev	1200 avg± std.dev	400 vs Control	800 vs Control	1200 vs Control
Acetyl-CoA	63.19 ± 6.86	566.25 ± 41.8	1894.68 ± 156.27	1149.98 ± 54.13	NS	P < 0.05	P < 0.05
alpha-Ketoglutaric acid	12.31 ± 1.71	211.09 ± 18.38	148.65 ± 12.95	263.66 ± 19.47	P < 0.05	P < 0.05	P < 0.05
Asparagine	12816.67 ± 2055.41	42305.67 ± 1991.33	41435.7 ± 1950.38	29177.87 ± 2048.29	P < 0.05	P < 0.05	NS
cis-aconitate	815.37 ± 181.8	5834.59 ± 409.59	9281.58 ± 651.57	1477.62 ± 69.56	P < 0.05	P < 0.05	NS
L-ascorbic acid	126.05 ± 15.52	1734.57 ± 143.07	1735.66 ± 143.16	3107.93 ± 146.29	P < 0.05	P < 0.05	P < 0.05
D-Fructose 1,6-bisphosphate	4.24 ± 0.54	5.12 ± 1.01	2675.5 ± 220.67	40.65 ± 7.73	NS	P < 0.05	NS
D-Fructose 1-phosphate	53.84 ± 5.28	154.59 ± 13.47	268.55 ± 23.39	150.22 ± 11.09	P < 0.05	P < 0.05	NS
Fumaric acid	1464.67 ± 234.89	488.15 ± 36.04	648.2 ± 47.85	216.55 ± 15.99	P < 0.05	P < 0.05	P < 0.05
Glucosamine-6-Phosphate	4.14 ± 0.53	1.92 ± 0.46	2.72 ± 0.64	2.88 ± 0.47	P < 0.05	NS	P < 0.05
Glutamate	1416.84 ± 227.22	3544.16 ± 248.8	5515.86 ± 387.22	1333.61 ± 62.78	P < 0.05	P < 0.05	NS
Glutamine	533 ± 118.84	5738.49 ± 402.85	9180.65 ± 644.49	2863.79 ± 134.8	P < 0.05	P < 0.05	P < 0.05
Glycerate 3-phosphate	104.99 ± 12.93	4.8 ± 0.95	3.07 ± 0.5	5.69 ± 0.64	P < 0.05	P < 0.05	P < 0.05
hexose	1750 ± 280.65	15195.61 ± 715.26	8501.35 ± 596.8	11189.66 ± 785.52	P < 0.05	P < 0.05	P < 0.05

Histidine	202.95 ± 23.7	2287.1 ±	3452.2 ±	$1785.34 \pm$	P < 0.05	P < 0.05	P < 0.05
		188.64	242.35	84.04			
Isoleucine	581.34 ±	3429.05 ±	5325.83 ±	$1845.37 \pm$	P < 0.05	P < 0.05	P < 0.05
	129.62	240.72	373.88	86.87			
Malic acid	21365 ± 3426.3	5743.49 ±	8318.86 ±	1381.8 ±	P < 0.05	NS	P < 0.05
		403.2	583.99	65.05			
Methionine	22.1 ± 1.98	138.29 ± 12.05	482.45 ± 35.62	100.83 ±	P < 0.05	P < 0.05	NS
				16.17			
Nicotinamide	36.14 ± 3.54	10380.69 ±	10120.71 ±	4095.44 ±	P < 0.05	P < 0.05	P < 0.05
		488.62	476.39	287.51			
Oxaloacetate	73 ± 7.93	142.4 ± 12.4	213.15 ± 18.56	669.12 ±	NS	NS	P < 0.05
				55.19			
Proline	357.75 ± 41.77	1439.35 ±	2125.6 ±	1944.24 ±	P < 0.05	P < 0.05	NS
		677.78	1000.27	361.13			
Succinyl-coA	197.9 ± 23.11	944.55 ± 77.91	805.52 ± 59.46	1149.89 ±	NS	NS	P < 0.05
·				54.13			
Thiamine	10.86 ± 1.51	484.5 ± 35.77	562.33 ± 41.51	917.04 ±	P < 0.05	P < 0.05	P < 0.05
				75.64			
Thiamine-Pyrophosphate	40.5 ± 3.97	704.22 ± 51.98	1668.91 ±	1005.26 ±	NS	P < 0.05	P < 0.05
			137.65	82.92			
Threonine	207.7 ± 24.26	1456.02 ±	1536.61 ±	600.93 ±	P < 0.05	P < 0.05	P < 0.05
		120.09	126.74	44.36			
Trehalose	6.92 ± 0.78	59.12 ± 6.97	84.77 ± 10	14.07 ± 2.76	P < 0.05	P < 0.05	NS
Tryptophan	89.6 ± 9.73	2029.69 ±	1583.97 ±	807.91 ±	P < 0.05	P < 0.05	P < 0.05
		167.41	130.65	66.64			
Valine	1183 ± 189.72	3896.09 ±	6546.94 ±	2330.16 ±	P < 0.05	P < 0.05	NS
		273.51	459.6	109.68			
IS – non-significant							1
•	l maals araa						
Values represent normalized	i peak area						

Table 3: Relative concentrations of metabolites in vetiver shoot. Metabolite concentrations measured using LC-MS/MS in vetiver shoot samples exposed to 400, 800 and 1200 mg/L of Pb for 10 days (n=6)

Metabolite name		Metabolite concentration*					
	Control avg ± std.dev	400 avg ± std.dev	800 avg ± std.dev	1200 avg ± std.dev	400 vs control	800 vs control	1200 vs control
Acetyl-CoA	159.86 ± 9.85	3421.66 ± 210.75	2651.66 ± 163.33	4156.06 ± 185.2	p< 0.05	p< 0.05	p< 0.05
Asparagine	9823.03 ± 604.7	925.02 ± 56.98	988.78 ± 60.91	715.61 ± 44.08	p< 0.05	p< 0.05	p< 0.05
Fumaric acid	1614.97 ± 99.42	5.24 ± 0.24	6.46 ± 0.29	5.81 ± 0.36	p< 0.05	p< 0.05	p< 0.05
Glutamate	847.7 ± 37.78	17493.92 ± 1709.12	15578.04 ± 1521.95	12537.68 ± 772.24	p< 0.05	p< 0.05	p< 0.05
Glutamine	1140.21 ± 50.81	5.46 ± 0.54	50.04 ± 4.89	4.71 ± 0.29	p< 0.05	p< 0.05	p< 0.05
Glycerol-3-phosphate	32.31 ± 1.99	27387.99 ± 2675.75	28522.76 ± 2786.62	28365.1 ± 1747.1	p< 0.05	p< 0.05	p< 0.05
Hexose Pool (fructose, glucose)	4884.74 ± 300.7	5410.85 ± 528.63	6268.05 ± 612.38	9777.61 ± 602.24	p< 0.05	p< 0.05	p< 0.05
Histidine	281.67 ± 17.35	4.74 ± 0.47	5.01 ± 0.49	4.58 ± 0.29	p< 0.05	p< 0.05	p< 0.05
Isocitrate	633.73 ± 28.24	7183.34 ± 442.45	5308.52 ± 326.97	7473.49 ± 460.32	p< 0.05	p< 0.05	p< 0.05
Isoleucine	1134.36 ± 50.55	347.11 ± 21.38	394.91 ± 24.33	64.17 ± 3.96	p< 0.05	p< 0.05	p< 0.05
Lysine	1191.87 ± 53.12	5172.8 ± 460.4	5891.08 ± 524.33	7519.15 ± 463.13	p< 0.05	p< 0.05	p< 0.05
Malic acid	20443.24 ± 1258.47	2386.16 ± 212.38	3078.68 ± 274.02	4156.06 ± 255.99	p< 0.05	p< 0.05	p< 0.05
Methionine	57.59 ± 3.55	533.37 ± 47.48	497.69 ± 44.3	568.45 ± 35.02	p< 0.05	p< 0.05	p< 0.05
Nicotinamide	17.91 ± 1.11	39.37 ± 2.43	133.86 ± 8.25	45.44 ± 2.8	NS	NS	NS
Oxaloacetic acid	94.03 ± 5.8	70.27 ± 4.33	67.58 ± 4.17	67.87 ± 6.05	p< 0.05	p< 0.05	p< 0.05
Succinyl-coA	239.67 ± 14.77	3.76 ± 0.46	3.21 ± 0.39	4.43 ± 0.44	p< 0.05	p< 0.05	p< 0.05

Thiamine-Pyrophosphate 5.91 ± 0.58 4684.24 ± 568.78 $4348.24 \pm 6035.02 \pm 589.61$ p< 0.05 p< 0.05	p< 0.05
527.98	P . 0.00
327.50	
Valine 2977.59 ± 183.3 4.73 ± 0.58 7.7 ± 0.94 5.45 ± 0.67 p< 0.05 p< 0.05	p< 0.05

602	NS -	- non-signif	icant
002	110 -	- 11011-3121111	ıcam

^{*}Values represent normalized peak area

Table 4: Relative concentrations of metabolites in maize root. Metabolite concentrations measured using LC-MS/MS in maize root

622 samples exposed to 400, 800 and 1200 mg/L of Pb for 10 days (n=6)

Metabolite name	Metabolite concentration*					T test		
	Control Avg ±	400 Avg ±	800 Avg ±	1200 Avg ±	400	800	1200 vs	
	std.dev	std.dev	std.dev	std.dev	vs Control	vs Control	Control	
cis-aconitate	337.82 ± 20.81	378.9 ± 23.34	405.08 ± 24.95	579.27 ± 35.68	NS	NS	p<0.05	
D-Glucose 1-phosphate	416.65 ± 25.67	491.51 ± 30.28	487.9 ± 30.06	865.46 ± 53.31	NS	NS	p<0.05	
Fumaric acid	1062.79 ± 65.47	1134.98 ± 69.91	920.69 ± 56.71	1395.35 ± 85.95	NS	NS	p<0.05	
Glutamine	119.68 ± 7.38	192.09 ± 11.84	411.12 ± 25.33	317.11 ± 19.54	NS	p<0.05	NS	
Glyceraldehyde 3-phosphate	94.5 ± 5.83	94.82 ± 5.85	104.68 ± 6.45	193.91 ± 11.95	NS	NS	p<0.05	
Glycerate 3-phosphate	108.29 ± 6.67	132.22 ± 8.15	202.54 ± 12.48	322.67 ± 19.88	NS	NS	p<0.05	
Glycerol-3-phosphate	25.33 ± 1.56	30.31 ± 1.87	33.41 ± 2.06	41.27 ± 2.55	NS	NS	p<0.05	
Hexose	2438.19 ± 108.65	856.01 ± 38.15	1811.61 ± 80.73	775.69 ± 47.78	p<0.05	NS	p<0.05	
Histidine	28.77 ± 1.29	70.2 ± 3.13	93.83 ± 4.19	99.97 ± 6.16	p<0.05	p<0.05	NS	
Lysine	135.06 ± 13.2	198.66 ± 19.41	412.23 ± 40.28	361.78 ± 22.29	NS	p<0.05	NS	
Malic acid	8259.82 ± 806.97	8698.76 ± 849.85	4263.48 ± 416.54	2517.75 ± 155.08	NS	NS	p<0.05	
Phosphoenolpyruvate (PEP)	1098.42 ± 67.66	1167.03 ± 71.89	1195.87 ± 73.66	1750.09 ± 107.8	NS	NS	p<0.05	
Proline	112.03 ± 9.98	178.56 ± 15.9	176.3 ± 15.7	219.63 ± 13.53	p<0.05	NS	p<0.05	
Succinic acid	108.44 ± 6.68	99.94 ± 6.16	112.2 ± 6.92	163.62 ± 10.08	NS	NS	p<0.05	

Tryptophan	30.66 ± 1.89	151.26 ± 9.32	105.09 ± 6.48	139.23 ± 12.4	p<0.05	p<0.05	p<0.05
Tyrosine	240.06 ± 14.79	186.92 ± 11.52	229.89 ± 14.16	72.33 ± 6.44	NS	NS	p<0.05
Valine	1396.71 ± 86.03	2579.53 ± 158.89	3191.15 ± 196.56	4030.41 ± 358.72	p<0.05	p<0.05	p<0.05

623 NS – non-significant

*Values represent normalized peak area

Table 5: Relative concentrations of metabolites in maize shoot. Metabolite concentrations measured using LC-MS/MS in maize shoot samples exposed to 400, 800 and 1200 mg/L of Pb for 10 days (n=6)

-	$^{\circ}$	1
h	4	u

637

Metabolite names		Metabolite concentration*			T test		
	Control Avg ± std.dev	400 Avg ± std.dev	800 Avg ± std.dev	1200 Avg ± std.dev	400 vs Control	800 vs Control	1200 vs Control
Asparagine	379.12 ± 23.36	522.04 ± 32.16	1345.97 ± 82.91	781.79 ± 48.16	NS	NS	p<0.05
Aspartic acid	138.37 ± 8.53	462.06 ± 28.46	853.66 ± 52.58	719.55 ± 44.32	p<0.05	p<0.05	p<0.05
cis-aconitate	140593.84 ± 8659.6	25249.26 ± 1555.18	28311.86 ± 1743.82	19855.11 ± 1222.94	p<0.05	p<0.05	p<0.05
D-Glucose 1-phosphate	319.09 ± 19.66	136.62 ± 8.42	266.87 ± 16.44	187.26 ± 11.54	p<0.05	NS	NS
Glutamine	1418.11 ± 138.55	118.26 ± 11.56	209.44 ± 12.91	459.97 ± 44.94	p<0.05	p<0.05	p<0.05
Hexose	4765.63 ± 293.53	2877.09 ± 177.21	7178.92 ± 442.18	6926.21 ± 426.61	NS	NS	NS
Histidine	1326.03 ± 81.68	219.39 ± 13.52	296.15 ± 18.25	243.09 ± 14.98	p<0.05	p<0.05	p<0.05
Isocitrate	67.99 ± 6.06	59.27 ± 5.28	557.47 ± 34.34	334.7 ± 29.79	NS	NS	p<0.05
Isoleucine	15615.9 ± 1389.86	2910.01 ± 259	4192.5 ± 258.23	4150.55 ± 369.41	p<0.05	p<0.05	p<0.05
Lysine	1307.73 ± 116.4	119.54 ± 10.64	204.96 ± 12.63	520.43 ± 46.32	p<0.05	p<0.05	p<0.05
Methionine	239.09 ± 21.28	31.14 ± 2.78	46.86 ± 2.89	43.64 ± 3.89	p<0.05	p<0.05	p<0.05
NAD+	1.38 ± 0.09	0.45 ± 0.03	0.38 ± 0.03	0.51 ± 0.04	p<0.05	p<0.05	p<0.05
NADH	1.87 ± 0.12	0.45 ± 0.03	0.38 ± 0.03	0.51 ± 0.04	p<0.05	p<0.05	p<0.05
NADP+	1.38 ± 0.09	0.45 ± 0.03	0.38 ± 0.03	0.51 ± 0.04	p<0.05	p<0.05	p<0.05

Oxalic acid	19.5 ± 1.21	3.07 ± 0.19	9.99 ± 0.89	4.24 ± 0.27	p<0.05	NS	p<0.05
Proline	1405.69 ± 125.11	227.88 ± 27.67	199.63 ± 19.51	546.64 ± 66.38	p<0.05	p<0.05	p<0.05
Pyrophosphate	339.7 ± 30.24	698.42 ± 84.81	619.35 ± 60.51	757.33 ± 91.96	p<0.05	p<0.05	p<0.05
Succinyl-CoA	1.38 ± 0.07	0.45 ± 0.06	0.38 ± 0.05	0.51 ± 0.07	p<0.05	p<0.05	p<0.05
Thiamine	201.41 ± 8.98	4.86 ± 0.59	19.65 ± 2.39	13.15 ± 1.6	NS	NS	NS
Thiamine phosphate	1.38 ± 0.07	0.45 ± 0.06	0.38 ± 0.05	0.51 ± 0.07	p<0.05	p<0.05	p<0.05
Threonine	690.09 ± 30.76	1662.86 ± 201.92	1408.59 ± 171.04	1423.54 ± 172.86	p<0.05	p<0.05	p<0.05
Tryptophan	696.58 ± 68.06	1733.04 ± 210.44	635.65 ± 77.19	309.26 ± 37.56	p<0.05	NS	p<0.05
Valine	32183.51 ± 1434.14	9547.53 ± 588.07	10166.32 ± 993.23	8818.44 ± 0	p<0.05	p<0.05	p<0.05

NS – non-significant

*Values represent normalized peak area

651		
652	Figure Legends:	
653	Figure 1. PLSDA analysis of metabolic profiles in roots of vetiver	and maize exposed to lead for 10 days (n=6). M: maize V: vetiver.
654	G1: control; G2: 400mg/L; G3:800 mg/L; G4: 1200mg/L.	
655	Figure 2 PLSDA analysis of metabolic profiles in shoots of ve	tiver and maize exposed to lead for 10 days (n=6). M: maize V:
656	vetiver. G1: control; G2:400mg/L; G3:800mg/L; G4: 1200mg/L.	

Fig. 1.

658

Fig. 2 37

Highlights

- 1. The study shows differences in metabolomics of vetiver and maize under lead stress
- 2. Massive increase in key metabolites was observed in response to lead.
- 3. Metabolites showing large increase include amino acids, organic acids and coenzymes
- 4. Maize showed modest increase in only a few of the same metabolites.