Solar radiation normal to the sun, $Q_0 = (5E-06\theta^3 - 0.0002\theta^2 + 0.0029\theta + 1)^*Q$,

Where Q is the measured solar radiation value and θ is the solar zenith angle in degrees (as determined above)

Otherwise, if the c is greater than 60%, $Q_n = Q$.

Next, direct incoming solar, Q_d , is determined from Q_n .

 $Q_d = 0.9 * (1 - c^2) * Q_q$, where c is the cloud cover fraction calculated as before.

Finally, Q1 = 0.56 * F * Q4

Where F is the projected area body factor.

If $70^{\circ} >= \theta >= 2^{\circ}$, $F = 0.386 - 0.0032*(90 - \theta)$, (θ is in degrees in the formula),

If $\theta < 2^{\circ}$, F = 0.110

If $\theta > 70^{\circ}$, F = 0.325

Indirect Incoming Solar Radiation Term (Q2)

 $Q_i = 0.1 * (1 - c^2) * Q_n$, where Q_n is the normal solar radiation & c is the cloud cover fraction (as determined in Q1 above)

Q2 = 0.224 * Q

Terrestrial Radiation (Q3)

Q3 = 0.028 * Q, where Q is the directly measured solar radiation and is used in this case.

Sky Radiation (Q4)

$$Q4 = 150 \left[1 - c^2 (0.50 - 0.0043 \phi)\right] * \left[1 - 0.62 * exp (-0.108Z) - 0.16 * (vp^0.5)\right],$$

Where c is the cloud cover fraction calculated as before, ϕ is the station's latitude in degrees, Z is the station's elevation in **kilometers**, and vp is the vapor pressure (in kPa),

 $vp = RH^*0.01^*0.6112 * \exp [(17.62^*T)/(T + 243.12)]$, where RH is the outdoor relative humidity expressed as a percent & T the air temperature in °C.

From the resulting Q_a, if the wind speed is < 7 mph, then the sun term in THSW (in °F) is 0.101 * Q_a.

Otherwise, the sun term is $(1.10Q_0)/(8 + 0.45v)$, where v is the wind speed in mph.

REFERENCES

- Steadman, R.G., 1979: The Assessment of Sultriness, Part II: Effects of Wind, Extra Radiation and Barometric Pressure on Apparent Temperature. Journal of Applied Meteorology, July 1979.
- "Media Guide to NWS Products and Services", National Weather Service Forecast Office, Monterey, CA, 1995.
- Quayle, R.G. and Steadman, R.G., 1998: The Steadman Wind Chill: An Improvement over Present Scales. Weather and Forecasting, December 1998