Funciones radiales

In[2]:= R10[r_, Z_] := 2 (Z)
$$\frac{3}{2}$$
 Exp[-Zr];
Lexponencial

R21[r_, Z_] := $\frac{1}{\text{Sqrt}[3]} \left(\frac{Z}{2}\right)^{\frac{3}{2}}$ (Zr) Exp $\left[\frac{-Zr}{\text{exponer2cial}}\right]$;

R20[r_, Z_] := 2 $\left(\frac{Z}{2}\right)^{\frac{3}{2}} \left(1 - \frac{Zr}{2}\right) \text{Exp}\left[\frac{-Zr}{\text{exponer2cial}}\right]$;

Integral de Coulomb

Integral de intercambio

Integrales para n = 2 y l = 1

In[7]:= J20 = CoulombIntegral[r,
$$\rho$$
, 2, 2, 0]

Out[7]= $-\frac{1296}{625}$

In[8]:= K20 = ExchangeIntegral[r, ρ , 2, 2, 0]

Out[8]= $\frac{32}{729}$

Integrales para n = 2 y l = 2

In[9]:= J21 = CoulombIntegral[r,
$$\rho$$
, 2, 2, 1]

Out[9]= $\frac{2456}{625 \sqrt{3}}$

In[10]:= K21 = ExchangeIntegral[r, ρ , 2, 2, 1]

Out[10]= $\frac{224}{6561}$

Energía a primer orden de aproximación

Estados 2¹ S y 2³ S

```
In[11]:= FirstOrderCorrectionNL[J_, K_] := J ± K;
 In[12]:= FirstOrderCorrection20 = FirstOrderCorrectionNL[J20, K20]
Out[12]=
        -\frac{1296}{625}\pm\frac{32}{729}
```

Estados 2¹ P y 2³ P

```
In[13]:= FirstOrderCorrection21 = FirstOrderCorrectionNL[J21, K21]
Out[13]=
           2456
         \frac{}{625 \sqrt{3}} \pm \frac{}{6561}
```

Energía imperturbada

In[14]:= UnperturbedEnergyN[Z_, n_] :=
$$\frac{-Z^2}{2} \left(1 + \frac{1}{n^2}\right)$$
;

In[15]:= UnperturbedEnergy2 = UnperturbedEnergyN[2, 2]

Out[15]=
$$-\frac{5}{2}$$

Energía

Energía para estados 2¹ S y 2³ S

In[16]:= UnperturbedEnergy2 + FirstOrderCorrection20 Out[16]= $-\frac{5}{2} + \left(-\frac{1296}{625} \pm \frac{32}{729}\right)$

Energía para estados 2¹ P y 2³ P

In[17]:= UnperturbedEnergy2 + FirstOrderCorrection21

Out[17]=

$$-\frac{5}{2} \, + \, \left(\frac{2456}{625 \, \sqrt{3}} \, \pm \frac{224}{6561}\right)$$