Übungsblatt: Algorithmen

Übungsaufgaben zur Digitalisierung und Programmierung

Prof. Dr. Nicolas Meseth

- 1. Woher stammt der Begriff "Algorithmus"?
- 2. Definiere, was ein Algorithmus ist, und gib drei Beispiele für Algorithmen aus dem Alltag, die keinen direkten Bezug zu Computern haben.
- 3. Welche grundlegenden Ansätze zur Klassifizierung von Algorithmen gibt es?
- 4. Erläutere, was mit der Komplexität eines Algorithmus gemeint ist. Warum ist die Komplexität eines Algorithmus wichtig? Wie wird sie angegeben?
- 5. Welche Komplexitätsklassen kennst du? Bringe sie in eine Reihenfolge von der geringsten zur höchsten Komplexität.
- 6. Berechne den größten gemeinsamen Teiler der Zaheln 56 und 98 mithilfe des euklidischen Algorithmus! Dokumentiere jeden Schritt!
- 7. Wir haben exemplarisch für einen Algorithmus die babylonische Methode zur Approximation einer Quadratwurzel kennengelernt. Beantworte die nachfolgenden Fragen in diesem Kontext:
 - a. Berechne die Quadratwurzel von 25 mit der babylonischen Methode und dokumentiere jeden Schritt! Wähle einen sinnvollen Startwert!
 - b. Vergleiche die Ergebnisse der babylonischen Methode nach 3, 5 und 7 Iterationen mit dem exakten Wert der Quadratwurzel.
 - c. Erkläre die Funktionsweise des babylonischen Algorithmus zur Berechnung der Quadratwurzel. Verwende dazu visuelle Hilfsmittel. Warum konvergiert der Algorithmus gegen den exakten Wert der Quadratwurzel?
- 8. Erläutere die Monte-Carlo-Methode zur Schätzung von π und erkläre, wie man mithilfe von Zufallszahlen eine Annäherung an π erreichen kann.
- 9. Finde weitere Probleme, die sich durch Monte-Carlo-Simulationen lösen lassen. Weshalb sind manche dieser Probleme mit anderen Methoden nicht lösbar?
- 10. Betrachte den Pseudocode in der Abbildung unten und beantworte die folgenden Fragen!