要求:

- 1、独立完成;
- 2、需要提交程序代码和计算结果
- 3、12月31日之前交

命题	题目	答题
金晔	编程计算均匀大地垂直磁偶极子源频率测深曲线	赵荣春
	(1) 公式: $Hz = \frac{m}{2\pi k^2 \rho^5} \left[9 - (9 + 9ik\rho - 4k^2\rho^2 - ik^3\rho^3)e^{-ik\rho} \right]$,其中 ρ 为源到测点的距离, $k = (-i\mu\omega\sigma)$ 为波数, σ 为电	
	导率, m 为发射的磁矩, 为已知量, 编程时取 1.	
	(2) 程序编制完成后进行调试	
	(3) 试计算 $\rho = 100$ m, $\sigma = 0.01$ s时的电磁场,并绘制实分量、虚分量和相位曲线。	
尹志超	设计一个求两个矩阵乘积的子例行程序,并调用该程序求矩阵 A,B 的积。设:	徐金荣
	$\begin{bmatrix} 2.5 & 1.5 & 12 & 2.4 \\ 3.8 & 4.5 & 5.9 & 24.5 \\ -45 & 23 & 34 & 0 \end{bmatrix}$ $\begin{bmatrix} 3.2 & -7.8 & 5 \\ 0 & -9.8 & 4.5 \\ 3.4 & 5.8 & 7.8 \\ 2.5 & -56 & 210 \end{bmatrix}$ 要求: 数据从文件输入,结果输出到文件中	
徐金荣	读取文件中的十个自然数,筛选其中的所有素数,并将所有素数进行求和,素数及求和结果放入一个新的文件中。	曾葫
曾葫	编写判断一个整数是否是偶数或者奇数的子例行子程序,在主程序中调用他,随机生成 100 个整数,统计出奇数和偶数的个数,将数据和统计结果保存在文件中。	金晔

李尔頔	2 -1 0 0 -1 -1 2 -1 0 0 0 -1 2 0 -1 -1 -1 0 0 0 2 要求: 編制程序, 输入 n, 自动将上面形式的矩阵输出到文件当中。	乃振龙
乃振龙	请参照《数值分析及 MATLAB 实验》第 50 页的程序,利用 fortran 编写二分法程序解方程 $f(x) = x^3 - 3x - 1$ 所有的根,精度要求: 0.00001	张迪
张迪	用二分法求方程 $f(x) = x^3 - x - 1 = 0$ 在区间 [1.0 1.5] 内的一个实根	尹志超
赵荣春	1、写一个程序,读取一个数据文件中的两列数据. 2、通过调用排序子程序,分别将两列数据按其中实数从小到大排序。 3、计算排序之后的两列数据的商(对应一一相除)。 4、将排序好的数据以及计算结果按一定格式输出到另一个文件中。	李灵瑞
李灵瑞	打开一个 TXT,从键盘输入 10 个整数存入一个一维数组,然后将数组的最大值与第一个元素互换,最小值与最后一个元素互换,其余元素不变,输出到 TXT。	舒丁
舒丁	使用二分法求解方程 $f(x) = (x+4)*(x-5)=0$ 的所有根	唐秋惠
唐秋惠	设有 3 个连续函数: $f(x) = \sin 3x + \cos x$ $g(x) = 5x^3 + 2x - 10$ $h(x) = \frac{1}{1+x^2}$ 设计一个函数子程序,用辛普森(Simpson)法求三个函数的定积分:	王亮

	$I_1 = \int_0^{\frac{\pi}{6}} f(x) dx$ $I_2 = \int_0^{10} g(x) dx$ $I_3 = \int_0^1 h(x) dx$	
王亮	编写徐世浙的《地球物理中的有限单元法》中 108 页的程序。计算子程序可直接使用书上给出的代码,主程序则自行	李尔頔
	编写。要求:	
	1. 程序需能计算出 108 页的数据结果	
	• 学生要能完成这项,必须会使用数组和子程序	
	2. 程序需实现数据与程序分离的编程原则:程序运行后再从文件录入输入值	
	•要能完成这项,必须会使用文件	
	3. 程序录入数据后需向用户回显输入值	