PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2004-036560

(43) Date of publication of application: 05.02.2004

(51)Int.Cl.

F01L 13/00

(21)Application number: 2002-196872

(71)Applicant: HONDA MOTOR CO LTD

(22)Date of filing:

05.07.2002

(72)Inventor: FUJII NORIAKI

NAKAMURA HIROSHI IWAMOTO JUNICHI

(54) VALVE SYSTEM FOR INTERNAL COMBUSTION ENGINE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a valve system for an internal combustion engine capable of continuously changing the valve opening lift amount of a valve opening of an engine valve, to secure excellent follow-up performance of a valve system cam, and having a reduced size. SOLUTION: Ends of a pair of link arms 19A, 20A with the other ends supported by an engine main body 1, rotatable around the axis parallel to the rotational axis of the valve system cam 16 are directly connected to a rocker arm 18A having a valve abutting part 15 abutting on the engine valve 6 and a cam abutting part 17 contacting a valve system cam 16 to be relatively rotatable around the axis parallel to the rotational axis. At least one of the ends of both of the link arms 19A and 20A is movably supported by the engine main body 1 continuously movable within a plane orthogonal to the rotational axis of the valve system cam 16.

LEGAL STATUS

[Date of request for examination]

10.06.2005

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

THIS PAGE BLANK (USPTO)

rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

(COTTON NEWS AT 1961)

PAGE BLANK (USPTO)

(19) 日本国特許庁(JP)

(12) 公 開 特 許 公 報(A)

(11)特許出顧公開書号

10 NE2004-36560 (P2004-36560A)

(全 11 頁)

(43) 公開日 平成16年2月5日(2004.2.5)

(51) Int.Cl.⁷
FO1L 13/00

FI

テーマコード(参考)

FO1 L 13/00

3G018

(21) 出願番号 (22) 出顧日

特願2002-196872 (P2002-196872) 平成14年7月5日 (2002.7.5) (71) 出顧人 000005326

301J

本田技研工業株式会社

審査請求 未請求 請求項の数 3 〇 L

東京都港区南青山二丁目1番1号

(74) 代理人 100071870

弁理士 落合 健

(74) 代理人 100097618

弁理士 仁木 一明

(72) 発明者 藤井 徳明

埼玉県和光市中央1丁目4番1号 株式会

社本田技術研究所内

(72) 発明者 中村 弘

埼玉県和光市中央1丁目4番1号 株式会

社本田技術研究所内

最終頁に続く

(54) 【発明の名称】内燃機関の動弁装置

(57)【要約】

()

【課題】コンパクト化を図るとともに、動弁カムに対する優れた追従性を確保しつつ、機関弁の開弁リフト量を 無段階に変化させることを可能とする。

【解決手段】機関弁6に当接する弁当接部15ならびに助弁カム16に接触するカム当接部17を有するロッカアーム18Aに、助弁カム16の回転軸線と平行な軸線まわりの揺動を可能として一端部が機関本体1に支承される一対のリンクアーム19A,20Aの他端部が、前記回転軸線と平行な軸線まわりの相対回動を可能として直接連結され、両リンクアーム19A,20Aの少なくとも一方の一端部が、動弁カム16の回転軸線に直交する平面内での無段階の移動を可能として機関本体1に揺動可能に支承される。

()

1

【特許請求の範囲】

【請求項1】

機関弁(6)に当接する弁当接部(15)ならびに助弁カム(16)に接触するカム当接部(17)を有するロッカアーム(18A,18B)と、前記助弁カム(16)の回転軸線と平行な軸線まわりの揺動を可能として一端部が機関本体(1)に支承されるとともに他端部して前記ロッカアーム(18A,18B)に直接連結される一対のリンクアーム(19A,20A;19B,20B)とを備え、前記両リンクアーム(19A,20A;19B,20B)とを備え、前記両リンクアーム(19A,20A;19B,20B)の少なくとも一方の前記一端部が、前記助弁カム(16)の回転軸線に直交する平面内での無段階の移動を可能として前記機関本体(1)に揺動可能に支承されることを特徴とする内燃機関の動弁装置。

【請求項2】

前記弁当接部(15)が一端部に設けられる前記ロッカアーム(18A, 18B)の他端部に、前記両リンクアーム(19A, 20A;19B, 20B)の他端部が並列して相対回動可能に連結されることを特徴とする請求 20項1記載の内燃機関の動弁装置。

【請求項3】

前記両リンクアーム (19A, 20A; 19B, 20B) のうち前記動弁力ム (16) に近い側のリンクアーム (19A, 19B) の一端部は固定位置で機関本体 (1) に揺動可能に支承され、前記両リンクアーム (19A, 20A; 19B, 20B) のうち前記動弁力ム (16) から遠い側のリンクアーム (20A, 20B) の一端部が、移動可能として前記機関本体 (1) に揺動可能に支承されることを特徴とする請求項1または2記 30載の内燃機関の動弁装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、内燃機関の動弁装置に関し、特に、機関弁の 開弁リフト量を無段階に変化させ得るようにした内燃機 関の動弁装置の改良に関する。

[0002]

【従来の技術】

機関弁の開弁リフト量を無段階に変化させ得るようにした内燃機関の動弁装置は、たとえば特開平8-74534号公報等で既に知られており、このものでは、機関弁に当接する弁当接部を一端側に有するロッカアームの他端部にプッシュロッドの一端が嵌合されており、このプッシュロッドの他端および動弁カム間にリンク機構が設けられている。

[0003]

【発明が解決しようとする課題】

ところが上記従来のような動弁装置では、リンク機構およびプッシュロッドを配置するための比較的大きなスペ 50

ースを動弁カムおよびロッカアーム間に確保する必要があり、動弁装置が大型化する。しかも動弁カムからの駆動力がリンク機構およびプッシュロッドを介してロッカアームに伝達されるので、動弁カムに対するロッカアームの追従性すなわち機関弁の開閉作動追従性が優れているとは言い難い。

2

[0004]

本発明は、かかる事情に鑑みてなされたものであり、コンパクト化を図るとともに、動弁カムに対する優れた追 10 従性を確保しつつ、機関弁の開弁リフト量を無段階に変化させ得るようにした内燃機関の動弁装置を提供することを目的とする。

[0005]

【課題を解決するための手段】

上記目的を達成するために、請求項1記載の発明は、機関弁に当接する弁当接部ならびに動弁カムに接触するカム当接部を有するロッカアームと、前記動弁カムの回転軸線と平行な軸線まわりの揺動を可能として一端部が機関本体に支承されるとともに他端部が前記回転軸線と平行な軸線まわりの相対回動を可能として前記ロッカアームに直接連結される一対のリンクアームとを備え、前記両リンクアームの少なくとも一方の前記一端部が、前記動弁カムの回転軸線に直交する平面内での無段階の移動を可能として前記機関本体に揺動可能に支承されることを特徴とする。

[0006]

このような請求項1記載の発明の構成によれば、両リンクアームの少なくとも一方の機関本体への揺動支持点を無段階に変化させることで、機関弁の開弁リフト量を無段階に変化させることができる。しかも一対のリンクアームはロッカアームに直接連結されるものであり、両リンクアームを配置するためのスペースを少なくして動弁装置のコンパクト化を図ることができ、動弁カムからの動力はロッカアームに直接伝達されるので、動弁カムに対する優れた追従性を確保することができる。

[0007]

また請求項2記載の発明は、上記請求項1記載の発明の 構成に加えて、前記弁当接部が一端部に設けられる前記 ロッカアームの他端部に、前記両リンクアームの他端部 が並列して相対回動可能に連結されることを特徴とし、 かかる構成によれば、両リンクアームをよりコンパクト に配置することで、動弁弁置のより一層のコンパクト化 が可能となる。

[0008]

さらに請求項3記載の発明は、上記請求項1または2記載の発明の構成に加えて、前記両リンクアームのうち前記動弁カムに近い側のリンクアームの一端部は固定位置で機関本体に揺動可能に支承され、前記両リンクアームの一端部が、移動可能として前記機関本体に揺動可能に支承され

ることを特徴とし、かかる構成によれば、一端部を移動 可能としたリンクアームの移動距離を、動弁カムとの干 渉を回避しつつ容易に確保することができる。

[0009]

【発明の実施の形態】

以下、本発明の実施の形態を、添付の図面に示した本発 明の実施例に基づいて説明する。

[0010]

図1~図4は本発明の第1実施例を示すものであり、図 1は開弁リフト量を大とした状態での閉弁作動時の動弁 10 装置を示す内燃機関の一部縦断面図、図2は開弁リフト 量を小とした状態での閉弁作動時の動弁装置を示す内燃 機関の一部縦断面図、図3は開弁リフト量を大とした状 態での開弁作動時の図2に対応した断面図、図4は開弁 リフト量を小とした状態での開弁作動時の図2に対応し た断面図である。

[0011]

()

先ず図1において、この内燃機関の機関本体1の一部を 構成するシリンダヘッド2には、燃焼室3に通じ得る吸 気ポート4および排気ポート5が設けられるとともに、 吸気ポート4から燃焼室3への混合気流入量を制御する 機関弁としての吸気弁6と、燃焼室3から排気ポート5 への燃焼排ガスの排出量を制御する排気弁7が開閉自在 に配設される。

[0012]

シリンダヘッド2には、吸気弁6の開閉作動をガイドす るガイド筒8と、排気弁7の開閉作動をガイドするガイ ド筒9とが散けられる。ガイド筒8から突出した吸気弁 6の上部にはリテーナ10が固定され、該リテーナ10 およびシリンダヘッド2間に設けられる弁ばね12によ 30 り吸気弁6は閉弁方向に付勢される。またガイド筒9か ら突出した排気弁7の上部にはリテーナ11が固定さ れ、該リテーナ11およびシリンダヘッド2間に設けら れる弁ばね13により排気弁7は閉弁方向に付勢され る。

[0013]

吸気弁6を開閉駆動する動弁装置は、シリンダヘッド2 ならびにシリンダヘッド2に結合されるホルダ (図示せ ず)で回転可能に支承されて吸気弁6の上方に配置され るカムシャフト14と、吸気弁6の上端に当接する弁当 接部としてのタペットねじ15を有するとともに前記力 ムシャフト14に設けられた動弁カム16に接触するカ ム当接部としてのローラ17を有してカムシャフト14 の上方に配置されるロッカアーム18Aと、該ロッカア ーム18Aに連結される第1および第2リンクアーム1 9A, 20Aとを備える。

[0014]

タペットねじ15は、その進退位置を調節可能としてロ ッカアーム18Aの一端部に螺合されており、動弁カム 転輪線すなわちカムシャフト14の軸線と平行な軸線を 有してロッカアーム18Aの他端部に設けられた円筒状 の支持筒21で、回転可能に支承される。

[0015]

第1および第2リンクアーム19A,20Aの一端部に は、前記カムシャフト14と平行な軸線を有する支軸2 2A、23Aがそれぞれ設けられており、両支軸22 A. 23Aは、機関本体1におけるシリンダヘッド2に 回動可能に連結される。 すなわち第1および第2 リンク アーム19A、20Aの一端部は動弁カム16の回転軸 線と平行な軸線まわりに揺動することを可能としてシリ ンダヘッド2に支承される。

[0016]

また第1リンクアーム19Aの他端部は動弁カム16の 回転軸線と平行な軸線まわりの相対回動を可能としてロ ッカアーム18Aの他端部に直接連結され、第1リンク アーム19Aの上方に配置された第2リンクアーム20 Aの他端部は、第1リンクアーム19Aの他端部に上方 で並列するようにしてロッカアーム18Aの他端部に動 弁カム16の回転軸線と平行な軸線まわりの相対回動を 可能として直接連結される。すなわち第1リンクアーム 19Aの他端部は前記支持筒21に連結され、第2リン クアーム20Aの他端部は、ローラ17と平行な連結軸 24を介して前記ローラ17よりも上方でロッカアーム 18Aの他端部に連結される。

[0017]

ところで、第1および第2リンクアーム19A, 20A のうち動弁カム16に近い側である第1リンクアーム1 9 Aの一端部に設けられる支軸22 Aが固定位置でシリ ンダヘッド2に揺動可能に支承されるのに対し、第1お よび第2リンクアーム19A,20Aのうち動弁カム1 6から遠い側である第2リンクアーム20Aの一端部に 設けられる支軸23Aは、動弁カム16の回転軸線すな わちカムシャフト14の軸線に直交する平面内での無段 階の移動を可能としてシリンダヘッド2に揺動可能に支 承されるものであり、電動モータ、電磁アクチュエータ および油圧機構等により駆動される。

[0018]

しかも第1および第2リンクアーム19A,20Aの一 端部は、それらのリンクアーム19A、20Aの他端部 に関して吸気弁6とは反対側に配置されるものであり、 そのような配置とすることで、第1および第2リンクア ーム19A,20Aの一端部の回動支持構造および第2 リンクアーム20Aの一端部の駆動構造が、吸気弁6に 関連するリテーナ10や弁ばね12等の部材と干渉する ことを回避するこ0とができる。

[0019]

またローラ17を動弁カム16に常時摺接させるため に、たとえば第1リンクアーム19Aの一端部に設けら 1.6に転がり接触するローラ1.7は、動弁カム1.6の回 50 れる支軸2.2Aを囲繞する捩じりばね2.5が、第1.リン

クアーム19Aおよびシリンダヘッド2間に設けられ る.

[0020]

このような動弁装置において、吸気弁6のリフト量を最 大とするときには、第2リンクアーム20Aの支軸23 Aを図1で示す位置に配置するのに対し、たとえば最大 リフト量の20%程度に吸気弁6のリフト量を小さくす るとときには、第2リンクアーム20Aの支軸23Aを 図2で示すように図1の位置(鎖線で示す位置)から下 方に移動せしめる。

[0021]

而してロッカアーム18Aの瞬間中心Cは、支軸22A および支持筒21に軸線を結ぶ直線ならびに支軸23A および連結軸の軸線を結ぶ直線の交点であり、支軸23 Aが図1で示す位置にあるときのロッカアーム18Aの 瞬間中心Cに対して、支軸23Aが図2で示す位置に移 動したときのロッカアーム18Aの瞬間中心Cは吸気弁 6に近接した位置に変位することになる。これにより、 タペットねじ15の吸気弁6への接触点および瞬間中心 C間の距離Aと、ローラ17の動弁カム16への接触点 20 および瞬間中心C間の距離Bとの比であるレバー比(= A/B)が変化することになり、図2の状態でのレバー 比は図1の状態でのレパー比よりも小さくなる。

[0022]

このようなレバー比の変化により、支軸23Aが図1で 示す位置にあるときに、ローラ17すなわちロッカアー ム18Aの他端部が動弁カム16で押し上げられると、 図3で示すように、吸気弁6の開弁リフト量し1が最大 となるのに対し、支軸23Aが図2で示す位置にあると きに、ローラ17すなわちロッカアーム18Aの他端部 が動弁カム16で押し上げられると、図4で示すよう に、吸気弁6の開弁リフト量L2が最大リフト量L1の たとえば20%程度となる。

[0023]

しかも支軸23Aの位置は無段階に変更可能であり、そ の支軸23Aの無段階の変化によってレバー比を無段階 に変化させることができ、それにより吸気弁6の開弁リ フト量を無段階に変化させることができる。

[0024]

また排気弁7を開閉駆動する動弁装置は、排気弁7の上 40 端に当接する弁当接部としてのタペットねじ15を一端 部に有するロッカアーム18を備えて、吸気弁6を開閉 駆動する上記動弁装置と同様に構成される。

[0025]

次にこの第1実施例の作用について説明すると、動弁力 ム16の回転軸線と平行な軸線まわりの揺動を可能とし て一端部がシリンダヘッド2に支承される第1および第 2.リンクアーム19A, 20Aの他端部が、前記回転軸 線と平行な軸線まわりの相対回動を可能としてロッカア ーム18Aに直接連結され、第2リンクアーム20Aの *50* 6に接触するカム当接部としてのローラ17を有してカ

前記一端部が、動弁カム16の回転軸線に直交する平面 内での無段階の移動を可能としてシリンダヘッド2に揺 動可能に支承されている。

6

[0026]

したがって第2リンクアーム20Aのシリンダヘッド2 への揺動支持点を無段階に変化させることでロッカアー ム18Aの瞬間中心Cが変化することになり、レパー比 を無段階に変化させることができ、それにより吸気弁6 の開弁リフト量を無段階に変化させることができる。

[0027] 10

しかも第1および第2リンクアーム19A,20Aはロ ッカアーム18Aに直接連結されるものであり、両リン クアーム19A、20Aを配置するためのスペースを少 なくして動弁装置のコンパクト化を図ることができ、動 弁カム16からの動力はロッカアーム18Aに直接伝達 されるので、動弁カム16に対する優れた追従性を確保 することができる。

[0028]

また第1および第2リンクアーム19A,20Aの他端 部は、タペットねじ15が一端部に設けられるロッカア ーム18Aの他端部に、並列して相対回動可能に連結さ れるものであり、両リンクアーム19A,20Aをより コンパクトに配置することで、動弁弁置のより一層のコ ンパクト化が可能となる。

[0029]

さらに両リンクアーム19A,20Aのうち動弁カム1 6に近い側である第1リンクアーム19Aの一端部は固 定位置でシリンダヘッド2に揺動可能に支承され、両リ ンクアーム19A、20Aのうち動弁カム16から遠い 側である第2リンクアーム20Aの一端部が、移動可能 30 としてシリンダヘッド2に揺動可能に支承されるので、 一端部を移動可能とした第2リンクアーム20Aの移動 距離を、動弁カム16との干渉を回避しつつ容易に確保 することができる。

[0030]

図5~図8は本発明の第2実施例を示すものであり、図 5は開弁リフト量を大とした状態での閉弁作動時の動弁 装置を示す内燃機関の一部縦断面図、図6は開弁リフト 量を小とした状態での閉弁作動時の図5に対応した断面 図、図7は開弁リフト量を大とした状態での開弁作動時 の図5に対応した断面図、図8は開弁リフト量を小とし た状態での開弁作動時の図5に対応した断面図である。

[0031]

図5において、吸気弁6を開閉駆動する動弁装置は、シ リンダヘッド2ならびにシリンダヘッド2に結合される ホルダ (図示せず) で回転可能に支承されて吸気弁6の 上方に配置されるカムシャフト14と、吸気弁6の上端 に当接する弁当接部としてのタペットねじ15を有する とともに前記カムシャフト14に設けられた動弁カム1

7

ムシャフト14の下方に配置されるロッカアーム18B と、該ロッカアーム18Bに連結される第1および第2 リンクアーム19B, 20Bとを備える。

[0032]

助弁カム16に転がり接触するローラ17は、カムシャフト14の軸線と平行な軸線を有してロッカアーム18 Bの他端側上部に設けられた円筒状の支持筒21で、回転可能に支承される。

[0033]

第1および第2リンクアーム19B,20Bの一端部には、前記カムシャフト14と平行な軸線を有する支軸22B,23Bがそれぞれ設けられており、両支軸22B,23Bはシリンダヘッド2に回動可能に連結される。すなわち第1および第2リンクアーム19B,20Bの一端部は動弁カム16の回転軸線と平行な軸線まわりに揺動することを可能としてシリンダヘッド2に支承される。

[0034]

()

第1リンクアーム19Bの他端部は前記支持筒21に連結される。すなわち第1リンクアーム19Bの他端部は 20 動弁カム16の回転軸線と平行な軸線まわりの相対回動を可能としてロッカアーム18Bの他端部に直接連結される。また第2リンクアーム20Bは第1リンクアーム20Bの他端部は、ローラ17と平行な連結軸24を介して前記ローラ17よりも下方でロッカアーム18Bの他端部に連結される。すなわち第2リンクアーム20Bの他端部は、第1リンクアーム19Bの他端部に下方で並列するようにして、ロッカアーム18Bの他端部に動弁カム16の回転軸線と平行な軸線まわりの相対回動を可能 30として直接連結される。

[0035]

しかも第1および第2リンクアーム19B,20Bのうち動弁カム16に近い側である第1リンクアーム19Bの一端部に設けられる支軸22Bが固定位置でシリンダヘッド2に揺動可能に支承されるのに対し、第1および第2リンクアーム19B,20Bのうち動弁カム16から遠い側である第2リンクアーム20Bの一端部に設けられる支軸23Bは、動弁カム16の回転軸線すなわちカムシャフト14の軸線に直交する平面内での無段階の40移動を可能としてシリンダヘッド2に揺動可能に支承される。

[0036]

またローラ17を助弁カム16に常時摺接させるために、たとえば第1リンクアーム19Bの他端部に設けられる支持筒21を囲繞する捩じりばね25が、第1リンクアーム19Bおよびロッカアーム18B間に設けられる。

[0037]

このような動弁装置において、吸気弁6のリフト量を最 50

大とするときには、第2リンクアーム20Bの支輪23 Bを図5で示す位置に配置するのに対し、たとえばリフト量を「0」とするように吸気弁6のリフト量を小さくするとときには、第2リンクアーム20Bの支軸23Bを図6で示すように図5の位置(鎖線で示す位置)から下方に移動せしめる。

[0038]

而して支軸23Bが図5で示す位置にあるときに、ローラ17すなわちロッカアーム18Bの他端部が動弁カム16で押し下げられると、図7で示すように、吸気弁6の開弁リフト量が最大となるのに対し、支軸23Bが図6で示す位置にあるときに、ローラ17すなわちロッカアーム18Bの他端部が動弁カム16で押し下げられると、図8で示すように、吸気弁6は閉弁休止したままとなる。

[0039]

しかも支軸23Bの位置は無段階に変更可能であり、その支軸23Bの無段階の変化によって吸気弁6の開弁リフト量を無段階に変化させることができる。

0 [0040]

この第2実施例によっても、第2リンクアーム20Bのシリンダヘッド2への揺動支持点を無段階に変化させることで、吸気弁6の開弁リフト量を無段階に変化させることができる。

[0041]

しかも第1および第2リンクアーム19B, 20Bはロッカアーム18Bに直接連結されるものであり、両リンクアーム19B, 20Bを配置するためのスペースを少なくして動弁装置のコンパクト化を図ることができ、動弁カム16からの動力はロッカアーム18Bに直接伝達されるので、動弁カム16に対する優れた追従性を確保することができる。

[0042]

また第1および第2リンクアーム19B,20Bの他端部は、タベットねじ15が一端部に設けられるロッカアーム18Bの他端部に、並列して相対回動可能に連結されるものであり、両リンクアーム19B,20Bをよりコンパクトに配置することで、助弁弁置のより一層のコンパクト化が可能となる。

10 [0043]

さらに両リンクアーム19B,20Bのうち動弁カム16に近い側である第1リンクアーム19Bの一端部は固定位置でシリンダヘッド2に揺動可能に支承され、両リンクアーム19B,20Bのうち動弁カム16から遠い側である第2リンクアーム20Bの一端部が、移動可能としてシリンダヘッド2に揺動可能に支承されるので、一端部を移動可能とした第2リンクアーム20Bの移動距離を、動弁カム16との干渉を回避しつつ容易に確保することができる。

[0044]

以上、本発明の実施例を説明したが、本発明は上記実施 例に限定されるものではなく、特許請求の範囲に記載さ れた本発明を逸脱することなく種々の設計変更を行うこ とが可能である。

[0045]

たとえば上記実施例では、一対のリンクアーム19A, 20A:19B、20Bの一方の一端部を移動可能とし たが、両リンクアーム19A, 20A;19B, 20B の一端部をともに移動可能とすることもできる。

[0046]

また本発明は、車両用内燃機関の動弁装置だけでなく、 クランク軸線を鉛直方向とした船外機などのような船舶 推進機用内燃機関の動弁装置にも適用可能である。

[0047]

【発明の効果】

以上のように請求項1記載の発明によれば、両リンクア ームの少なくとも一方の機関本体への揺動支持点を無段 階に変化させることで、機関弁の開弁リフト量を無段階 に変化させることができる。しかも一対のリンクアーム はロッカアームに直接連結されるものであり、両リンク 20 図5に対応した断面図である。 アームを配置するためのスペースを少なくして動弁装置 のコンパクト化を図ることができ、動弁カムからの動力 はロッカアームに直接伝達されるので、動弁カムに対す る優れた追従性を確保することができる。

[0048]

また請求項2記載の発明によれば、両リンクアームをよ りコンパクトに配置することで、動弁弁置のより一層の コンパクト化が可能となる。

[0049]

【図1】

さらに請求項3記載の発明によれば、一端部を移動可能 としたリンクアームの移動距離を、動弁カムとの干渉を 回避しつつ容易に確保することができる。

10

【図面の簡単な説明】

【図1】第1実施例を示すものであって、開弁リフト量 を大とした状態での閉弁作動時の動弁装置を示す内燃機 関の一部縦断面図である。

【図2】開弁リフト量を小とした状態での閉弁作動時の 動弁装置を示す内燃機関の一部縦断面図である。

10 【図3】開弁リフト量を大とした状態での開弁作動時の 図2に対応した断面図である。

【図4】開弁リフト量を小とした状態での開弁作動時の 図2に対応した断面図である。

【図5】第2実施例を示すものであって開弁リフト量を 大とした状態での閉弁作動時の動弁装置を示す内燃機関 の一部縦断面図である。

【図6】開弁リフト量を小とした状態での閉弁作動時の 図5に対応した断面図である。

【図7】開弁リフト量を大とした状態での開弁作動時の

【図8】開弁リフト量を小とした状態での開弁作動時の 図5に対応した断面図である。

【符号の説明】

1・・・機関本体

6・・・機関弁としての吸気弁

15・・・弁当接部としてのタペットねじ

16・・・動弁カム

17・・・カム当接部としてのローラ

18A, 18B・・・ロッカアーム

[図2]

(図3)

[図4]

【図5】

()

【図6】

フロントページの続き

(72)発明者 岩本 純一

埼玉県和光市中央1丁目4番1号 株式会社本田技術研究所内 Fターム(参考) 3G018 AB04 AB05 AB18 BA14 BA19 CA11 CA18 DA11 DA14 DA15 FA01 FA06 FA07 GA04