$\tau_{1}^{#2} + \alpha$	$\tau_{1}^{#1} + \alpha$	$\sigma_{1}^{#2} + \alpha$	$\sigma_{1^{-}}^{#1} \dagger^{lpha}$	$\tau_{1+}^{\#1} + \alpha \beta$	$\sigma_{1+}^{#2} \dagger^{\alpha\beta}$	$\sigma_{1^+}^{*1} \dagger^{lphaeta}$	
0	0	0	0	0	0	~ 1	$\sigma_{1^{+}lphaeta}^{\#1}$
0	0	0	0	0	0	0	$\sigma_{1^+lphaeta}^{\#2}~ au_{1^+lphaeta}^{\#1}$
0	0	0	0	0	0	0	$ au_{1}^{\#1}{}_{lphaeta}$
$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{2}{k^2(r_3+2r_5)}$	0	0	0	$\sigma_{1^-\alpha}^{\#1}$
$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)+4}$	0	$\frac{3k^2(r_3+2r_5)+4t_3}{(k+2k^3)^2(r_3+2r_5)t_3}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	0	0	$\sigma^{\#2}_{1^-lpha}$
0	0	0	0	0	0	0	$ au_{1^{-}}^{\#1}{}_{lpha}$
$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	$\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	0	0	0	$ au_1^{\#2}$

$f_{1}^{#2} +^{\alpha}$	$f_{1-}^{#1} \dagger^{\alpha}$	$\omega_{1^{-}}^{\#2} \dagger^{\alpha}$	$\omega_{1^{-}}^{*1}\dagger^{lpha}$	$f_{1+}^{#1} \dagger^{\alpha\beta}$	$\omega_{1+}^{\#2} \dagger^{\alpha\beta}$	$\omega_{1}^{\#1} + ^{\alpha\beta}$	
0	0	0	0	0	0	$k^2 (2 r_3 + r_5)$	$\omega_{1^{+}lphaeta}^{\#1}$
0	0	0	0	0	0	0	$\omega_{1}^{\#2}{}_{lphaeta}$
0	0	0	0	0	0	0	$\omega_{1+\alpha\beta}^{\#2} f_{1+\alpha\beta}^{\#1}$
2 <i>ikt</i> 3 3	0	$-\frac{\sqrt{2} t_3}{3}$	$k^2 \left(\frac{r_3}{2} + r_5\right) + \frac{2t_3}{3}$	0	0	0	$\omega_{1^- \alpha}^{\#1}$
$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	<u>t3</u> 3	$-\frac{\sqrt{2} t_3}{3}$	0	0	0	$\omega_{1^{-}~lpha}^{\#2}$
0	0	0	0	0	0	0	$f_{1\bar{}\alpha}^{\#1}$
$\frac{2k^2t_3}{3}$	0	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	$-\frac{2}{3}\bar{l}kt_3$	0	0	0	$f_{1^-\alpha}^{\#2}$

	$\sigma_{0}^{\#1}$	$ au_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i \sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i \sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$ au_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\sharp 1}$ †	0	0	0	0

$\omega_{0^{-}}^{\#1}$ †	$f_{0+}^{#2}$ †	$f_{0+}^{#1}$ †	$\omega_{0^{+}}^{*1}$ †	
0	0	$i\sqrt{2}kt_3$	t_3	$\omega_0^{\#1}$
0	0	$2 k^2 t_3$	$-i\sqrt{2}kt_3$	$f_{0}^{#1}$
0	0	0	0	$f_{0+}^{#2}$
0	0	0	0	$\omega_{0^{ ext{-}}}^{*1}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_2^{\#1}{}_{\alpha\beta\chi}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	$-\frac{3k^2r_3}{2}$	0	0
$f_{2}^{#1}\dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	0
	•		

Source constraints
$$SO(3) \text{ irreps} \qquad \#$$

$$\sigma_{0^{-}}^{\#1} == 0 \qquad 1$$

$$\tau_{0^{+}}^{\#2} == 0 \qquad 1$$

$$\tau_{0^{+}}^{\#1} - 2 i k \sigma_{0^{+}}^{\#1} == 0 \qquad 1$$

$$\tau_{1^{-}}^{\#2} + 2 i k \sigma_{1^{-}}^{\#2} == 0 \qquad 3$$

$$\tau_{1^{-}}^{\#1} == 0 \qquad 3$$

$$\tau_{1^{+}}^{\#1} == 0 \qquad 3$$

$$\sigma_{1^{+}}^{\#2} == 0 \qquad 3$$

$$\sigma_{1^{+}}^{\#1} == 0 \qquad 3$$

$$\sigma_{1^{+}}^{\#1} == 0 \qquad 5$$

$$\tau_{2^{+}}^{\#1} == 0 \qquad 5$$
Total #:

Lagrangian density

Added source term: $f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$

Unitarity conditions

$$r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$$

(No massive particles)