LOGIKA MATEMATIKA

Aljabar Boolean

Aljabar Boolean

Merupakan aljabar yang terdiri atas:

- Suatu himpunan B
- Dua operator biner yang didefinisikan pada himpunan tersebut, yaitu :
 - a) Penambahan (+)
 - b) Perkalian (.)

Perbedaan aljabar boolean dengan aljabar biasa:

- Aksioma distributif a + (b . c) = (a + b) . (a + c) benar untuk aljabar boolean tetapi tidak benar untuk aljabar biasa,
- Aljabar boolean tidak memiliki kebalikan perkalian dan penjumlahan, oleh karena itu tidak ada opersi pembagian dan pengurangan,
- Aksioma ke-5 mendefinisikan operator komplemen yang tidak ada pada aljabar biasa,
- Aljabar biasa memperlakukan bilangan real dengan himpunan elemen yang tidak berhingga, aljabar boolean memperlakukan himpunan elemen B yang sampai sekarang belum didefinisikan.

Untuk setiap a,b,c ∈ B berlaku aksioma-aksioma atau postulat berikut :

Postulat Huntington

- 1. Closure:
 - 1) a + b ∈ B
 - 2) a.b∈B
- 2. Identitas:
 - 1) Ada elemen unik 0 ∈ B, sehingga berlaku :

$$a + 0 = 0 + a = a$$

2) Ada elemen unik 1 ∈ B, sehingga berlaku:

- 3. Komutatif:
 - 1) a + b = b + a
 - 2) a.b=b.a
- 4. Distributif:
 - 1) a.(b+c) = (a.b) + (a.c)
 - 2) $a + (b \cdot c) = (a + b) \cdot (a + c)$
 - 3) $(a.b) + c = (a + c) \cdot (b + c)$
- 5. Komplemen:

Untuk setiap a ∈ B, ada elemen unik a' ∈ B, sehingga berlaku:

$$a + a' = 1 dan a \cdot a' = 0$$

6. Terdapat paling sedikit dua buah elemen, a dan $b \in B$ sedemikian sehingga a $\neq b$.

Turunan Postulat Huntington

Aksioma 1 sampai 6 diformulasikan secara formal oleh E. V. Huntington pada tahun 1904, sehingga dinamakan Postulat Huntington, sedangkan aksioma berikut diturunkan dari aksioma yang lain.

7. Idempoten:

- 1) a.a=a
- 2) a + a = a

8. Asosiatif:

- 1) a + (b + c) = (a + b) + c
- 2) a.(b.c) = (a.b).c

Aljabar Boolean 2 nilai

Didefinisikan sebagai sebuah himpunan dengan duabuah elemen.

2. Aturan operator biner sebagai berikut:

a	b	a.b
0	0	0
0	1	0
1	0	0
1	1	1

а	b	A+b
0	0	0
0	1	1
1	0	1
1	1	1

а	a'
0	1
1	0

a) Closure, jelas terlihat pada 2 tabel aturan operasi biner disamping:
 Semua hasil operasinya bernilai 0 atau 1, dimana 0 dan 1 ∈ B

b) Identitas, jelas terlihat pada 2 tabel aturan operasi biner disamping:

c) Komutatif, jelas terlihat dari simetri 2 tabel aturan operasi biner samping:

а	b	A+b
0	0	0
0	1	1
1	0	1
1	1	1

a	b	a.b
0	0	0
0	1	0
1	0	0
1	1	1

d) Distributif, a. (b + c) = (a. b) + (a. c), dapat ditunjukkan benar berdasarkan tabel operator biner dengan membentuk tabel kebenaran berikut:

а	b	С	b + c	a.(b+c)	a.b	a.c	(a.b) + (a.c)
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

d) Distributif, a + (b . c) = (a + b) . (a + c), dapat ditunjukkan benar berdasarkan tabel operator biner dengan membentuk tabel kebenaran berikut :

а	b	С	b.c	a + (b . c)	a + b	a + c	(a+b) . (a+c)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

d) Distributif, (a . b) + c = (a + c) . (b + c), dapat ditunjukkan benar berdasarkan tabel operator biner dengan membentuk tabel kebenaran berikut :

а	b	С	a.b	(a . b) + c)	a + c	b + c	(a+c) . (b+c)
0	0	0	0	0	0	0	0
0	0	1	0	1	1	1	1
0	1	0	0	0	0	1	0
0	1	1	0	1	1	1	1
1	0	0	0	0	1	0	0
1	0	1	0	1	1	1	1
1	1	0	1	1	1	1	1
1	1	1	1	1	1	1	1

e) Komplemen, diperlihatkan oleh tabel berikut:

	a	a'	a + a'	
	0	1	1	
	1	0	1	
	/		+	
/			a + a' = 1	

а	a'	a.a'		
0	1	0		
1	0	0		
		↓		
	a . a' = 0			

f) Postulat ke-6 dipenuhi, karena aljabar boolean dua nilai memiliki dua buah elemen yang berbeda yaitu 0 dan 1, dimana 0 ≠ 1

SESSION 5

By Gunawansyah

Sifat-sifat Aljabar Boolean:

1. Hukum identitas

2. Hukum dominansi

3. Hukum komplemen

$$-a+a'=1$$

 $-a.a'=0$

4. Hukum involusi

$$- (a')' = a$$

5. Hukum idempoten

6. Hukum penyerapan

7. Hukum komutatif

8. Hukum De Morgan

9. Hukum asosiatif

$$-a + (b + c) = (a + b) + c$$

 $-a.(b.c) = (a.b).c$

10. Hukum distributif

$$-a + (b \cdot c) = (a + b) \cdot (a + c)$$

 $-a \cdot (b + c) = (a \cdot b) + (a \cdot c)$

11. Hukum 0/1

$$-0' = 1$$

 $-1' = 0$

■ Teorema 2.1

Untuk setiap elemen a, berlaku: a + a = a dan a . a = a

<u>Bukti</u>

$$a + a = (a + a) (1)$$
 identitas
 $= (a + a) (a + a')$ komplemen
 $= a + (a . a')$ distributif
 $= a + 0$ komplemen
 $= a$ identitas

■ Teorema 2.2

Untuk setiap elemen a, berlaku : a + 1 = 1 dan a.0 = 0

<u>Bukti</u>

$$a+1 = a + (a + a')$$
 komplemen

$$= (a + a) + a'$$
 asosiatif

$$a.0 = a.(a.a')$$
 komplemen

■ Teorema 2.3 (Hukum Penyerapan)

Untuk setiap elemen a dan b, berlaku: a + a . b = a dan a . (a+b) = a

<u>Bukti</u>

■ Teorema 2.4 (Hukum de Morgan)

Untuk setiap elemen a dan b, berlaku : (a . b)' = a' + b' dan (a+b)' = a'b'

■ Teorema 2.5

$$0' = 1 \, dan \, 1' = 0$$

■ Teorema 2.6

Jika suatu Aljabar Boolean berisi paling sedikit dua elemen yang berbeda, maka 0 ≠ 1

Aturan Penulisan ab = a.b

Fungsi Boolean

- SESSION 5
- By Gunawansyah

Fungsi Boolean

- Merupakan ekspresi yang dibentuk oleh variabel boolean, operator boolean, komplemen, tanda kurung dan tanda samadengan.
- Variabel boolean adalah variabel yang nilainya merupakan elemen dari himpunan B.
- Setiap variabel boolean termasuk komplemennya dalam fungsi boolean disebut sebagai literal.

Contoh Fungsi Boolean

Fungsi Boolean

Misalkan x1, x2, x3, ..., xn merupakan variabel-variabel aljabar Boolean.

Fungsi Boolean dengan n variabel adalah fungsi yang dapat dibentuk dari aturan-aturan berikut:

fungsi konstan

$$f(x1, x2, x3, ..., xn) = a$$

fungsi proyeksi

$$f(x1, x2, x3, ..., xn) = xi$$
 $i = 1, 2, 3, ..., n$

fungsi komplemen

$$g(x1, x2, x3, ..., xn) = (f(x1, x2, x3, ..., xn))'$$

fungsi gabungan

$$h(x1, x2, x3, ..., xn) = f(x1, x2, x3, ..., xn) + g(x1, x2, x3, ..., xn)$$

 $h(x1, x2, x3, ..., xn) = f(x1, x2, x3, ..., xn) \cdot g(x1, x2, x3, ..., xn)$

Contoh Fungsi Boolean

$$1. f(x) = x$$

2.
$$f(x,y) = x'y + xy' + y'$$

3.
$$f(x,y) = x'y'$$

4.
$$f(x,y) = (x + y)'$$

5.
$$f(x,y,z) = xyz'$$

Cara Representasi

Aljabar

Representasi secara aljabar adalah : contoh : f(x,y,z) = xyz'

Dengan menggunakan tabel kebenaran

X	У	Z	z'	xyz'
0	0	0	1	0
0	0	1	0	0
0	1	0	1	0
0	1	1	0	0
1	0	0	1	0
1	0	1	0	0
1	1	0	1	1
1	1	1	0	0

Untuk fungsi dengan n variabel, maka kombinasi dari nilai variabelnya adalah sebanyak 2ⁿ.

Nilai Fungsi

Fungsi Boolean dinyatakan nilainya pada setiap variabel yaitu pada setiap kombinasi (0,1).

Contoh: Fungsi Boolean

$$f(x,y) = x'y + xy' + y'$$

X	у	x²y	хy°	γď	f(x,y)
0	0	0	0	1	1
0	1	1	0	0	1
1	0	0	1	1	1
1	1	0	0	0	0

Contoh:

$$f(x,y,z) = x'y + xyz' + xy'$$

$$F(1,1,0) = 1'.1 + 1.1.0' + 1.1'$$

$$= 0.1 + 1.1.1 + 1.0$$

$$= 0 + 1 + 0$$

$$= 1$$

Pertanyaan:

Silahkan cari untuk f(x,y,z) = xy' + x'y dimana f(1,0,0)

Contoh Fungsi Boolean

Fungsi boolean tidaklah unik, sehingga dua buah fungsi yang ekspresi aljabarnya berbeda, mungkin saja merupakan dua buah fungsi yang sama. Cara pembuktiannya bisa menggunakan tabel kebenaran.

Buktikan bahwa:

$$x'y'z+x'yz+xy'=x'z+xy'$$

х	у	z	x'	y'	z′	x' y' z	x' yz	x y'	x'y'z + x'yz + xy'	x'z	x y'	x' z + x y'
0	0	0	1	1	1	0	0	0	0	0	0	0
0	0	1	1	1	0	1	0	0	1	1	0	1
0	1	0	1	0	1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	1	0	1	1	0	1
1	0	0	0	1	1	0	0	1	1	0	1	1
1	0	1	0	1	0	0	0	1	1	0	1	1
1	1	0	0	0	1	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0	0	0
Λ Λ												
sama												

Contoh Fungsi Boolean

Suatu fungsi Boolean dapat dinyatakan dalam bentuk yang berbeda tetapi memiliki arti yang sama

Contoh:

$$f1(x,y) = x' \cdot y'$$

$$f2(x,y) = (x + y)'$$

f1dan f2 merupakan bentuk fungsi boolean yang sama, yaitu dengan menggunakan Hukum De Morgan.

Fungsi Komplemen

- SESSION 5
- By Gunawansyah

Fungsi Komplemen

Fungsi komplemen dari f, yaitu f' dapat dicari dengan cara mengganti :

 $0 \rightarrow 1 \operatorname{dan} 1 \rightarrow 0$

Ada 2 cara untuk membentuk fungsi komplemen, yaitu:

- 1. Menggunakan hukum de Morgan
- 2. Menggunakan prinsip dualitas.

1. Fungsi Komplemen menggunakan hukum de Morgan

a. Untuk dua buah variabel x1 dan x2:

$$(x1 + x2)' = x1'x2'$$
 dualnya $(x1.x2)' = x1' + x2'$

b. Untuk tiga buah variabel x1, x2 dan x3:

$$(x1 + x2 + x3)' = (x1 + y)' \rightarrow y = x2 + x3$$

= $x1' y'$
= $x1' (x2 + x3)'$
= $x1' x2' x3'$

c. Untuk n buah variabel x1, x2, ..., xn:

$$(x1 + x2 + ... + xn)' = x1' x2' ... xn'$$

Dualnya:

$$(x1.x2....xn) = x1 + x2 + ... + xn$$

1. Fungsi Komplemen menggunakan hukum de Morgan

Contoh:
$$f(x, y, z) = x (y' z' + yz)$$

maka fungsi komplemennya $(f'(x, y, z))$?

Solusi:
$$f'(x, y, z) = (x (y' z' + yz))'$$

$$= x' + (y' z' + yz)'$$

$$= x' + (y' z')' \cdot (yz)'$$

$$= x' + (y + z) \cdot (y' + z')$$

2. Fungsi Komplemen menggunakan fungsi dualitas

Langkah-langkahnya:

- 1. Cari dual dari fungsi tersebut
- 2. Komplemenkan setiap literal yang ada dalam fungsi dualnya.

Soal:

f(x, y, z) = x(y'z' + yz) maka fungsi komplemennya (f'(x, y, z))?

Solusi:

1. Cari dual dari f:

$$f'(x, y, z) = x + (y' + z') \cdot (y + z)$$

2. Komplemenkan setiap literal dari dual tersebut :

$$f'(x, y, z) = x' + (y + z) \cdot (y' + z')$$

Latihan:

Cari fungsi komplemen dari fungsi berikut:

- f (x, y) = x (x' + y)
- f (x, y, z) = y' (xz' + z + x' z')
- f (w, x, y, z) = w' z + w (xy + x'y z)

