Numerical Methods for Partial Differential Equations (16.920J/2.097J/SMA5212)

Course Outline

- Overview of PDE's (1)
- Finite differences methods (6)
- Finite volume methods (3)
- Finite element methods (7)
- Boundary integral methods (6)
- Solution methods (3)

Total: 26 lectures

Assessment

Four Problem Sets/Mini-projects:

Finite Differences	25 %
--------------------	------

Hyperbolic Equations 20 %

Finite Elements 25 %

Boundary Integral Methods 20 %

Class Interaction 10 %

Partial Differential Equations: An Overview Lecture 1

Convection-Diffusion

Model Equation

$$\left|rac{\partial u}{\partial t} + oldsymbol{U} \cdot
abla u = \kappa
abla^2 u + oldsymbol{f}
ight|$$

N1

$$abla\equiv(rac{\partial}{\partial x},\,rac{\partial}{\partial y}), \quad
abla^2\equivrac{\partial^2}{\partial x^2}+rac{\partial^2}{\partial y^2}$$

 $\overline{U}, \ \kappa > 0, \ f$, given functions of (x,y)

Scalar, Linear, Parabolic equation

N2

Convection-Diffusion

Model Equation

Applications

$$rac{\partial u}{\partial t} + U \cdot
abla u = \kappa
abla^2 u + f$$

If u is ...

- Temperature → Heat Transfer
- Pollutant Concentration → Coastal Engineering
- Probability Distribution → Statistical Mechanics
- Price of an Option → Financial Engineering

• . . .

Elliptic Equations

Limiting Cases

Poisson Equation

$$-\kappa
abla^2 u = f$$
 in Ω

Convection-Diffusion

$$oldsymbol{U}\cdot
ablaoldsymbol{u}=oldsymbol{\kappa}
abla^2oldsymbol{u}$$
 in $oldsymbol{\Omega}$

- "Smooth" solutions
- The domain of dependence of u(x,y) is Ω

Parabolic Equations

Limiting Cases

Heat Equation

$$rac{\partial u}{\partial t} = \kappa
abla^2 u + f$$
 in Ω

- "Smooth" solutions
- ullet The domain of dependence of u(x,y,T) is (x,y,t < T)

Hyperbolic Equations

Limiting Cases

Wave Equation (First order)

$$rac{\partial oldsymbol{u}}{\partial oldsymbol{t}} + oldsymbol{U} \cdot
abla oldsymbol{u} = oldsymbol{f} \quad ext{in } oldsymbol{\Omega}$$

- Non-smooth solutions
- ullet Characteristics : $rac{dx_c}{dt} = U(x_c(t))$
- ullet The domain of dependence of u(x,T) is $(x_c(t),t < T)$

Hyperbolic Equations

Limiting Cases

Convection Equation

$$oldsymbol{U} \cdot
abla oldsymbol{u} = oldsymbol{f} \quad \text{in } oldsymbol{\Omega}$$

- Non-smooth solutions
- ullet Characteristics are streamlines of U, e.g. $\frac{dx_c}{ds} = U$
- ullet The domain of dependence of u(x) is $(x_c(s), s < 0)$

Eigenvalue Problem

Limiting Cases

Find non-trivial pairs (u, λ)

$$\kappa
abla^2 u + \lambda u = 0$$
 in Ω

y x Γ

with homogeneous conditions on Γ

- Non-linear
- "Closely" related to other problems

One Spatial Variable

Limiting Cases

Unknown

$$u(x)$$
:

$$u(x)$$
:

$$u(x,t)$$
:

$$u(x,t)$$
:

$$(u(x),\lambda)$$
:

Equation

$$-u_{xx}=f$$

$$oldsymbol{U}oldsymbol{u}_x=\kappaoldsymbol{u}_{xx}$$

$$u_t = \kappa u_{xx}$$

$$u_t + Uu_x = 0$$

$$u_{xx} + \lambda u = 0$$

Definition

Fourier Analysis

Let g(x) be an "arbitrary" periodic real function with period 2π

$$egin{aligned} oldsymbol{g}(oldsymbol{x}) &= \sum_{k=-\infty}^{\infty} oldsymbol{g}_k \ e^{ikx} & (oldsymbol{k} \ ext{integer}) \end{aligned} .$$

$$\int_0^{2\pi} e^{ikx} e^{-ik'x} \ dx = 2\pi \ \delta_{kk'}$$
 (orthogonality)

$$g_k = rac{1}{2\pi} \int_0^{2\pi} g(x) \ e^{-ikx} \ dx$$

Example

Fourier Analysis

Example

Fourier Analysis

Rate at which $|g_k| \to 0$ for |k| large determines smoothness

Differentiation

Fourier Analysis

$$u(x) = \sum_{k=-\infty}^{\infty} \, u_k \, e^{ikx} \quad ext{or} \quad u(x,t) = \sum_{k=-\infty}^{\infty} \, u_k(t) \, e^{ikx}$$

$$rac{\partial^n u}{\partial x^n} = \sum_{k=-\infty}^\infty (ik)^n u_k e^{ikx} \qquad \qquad rac{\partial u}{\partial t} = \sum_{k=-\infty}^\infty rac{du_k}{dt} e^{ikx}$$

$$n=2m \qquad o (ik)^n=(-1)^m\,k^{2m} \qquad ext{(real)}$$

$$m{n} = m{2m-1} \; o \; (m{ik})^{m{n}} = -m{i}(-m{1})^{m{m}} \, m{k^{2m-1}} \; \; ext{(imaginary)}$$

Poisson Equation

Fourier Analysis

$$-u_{xx}=f \qquad x\in (0,2\pi)$$

with

$$u(0)=u(2\pi),$$

$$u_x(0)=u_x(2\pi),$$

and

$$\int_0^{2\pi} u \ dx = 0, \qquad \int_0^{2\pi} f \ dx = 0$$

N4

Poisson Equation

Fourier Analysis

$$u=\sum_{k=-\infty}^{\infty}\,u_k\,e^{ikx}\,,\quad f=\sum_{k=-\infty}^{\infty}\,f_k\,e^{ikx} \qquad (f_0=0)$$

$$-u_{xx} = \sum_{k=-\infty}^{\infty} \, k^2 \, u_k \, e^{ikx} \quad
ightarrow \quad egin{aligned} u_k = rac{f_k}{k^2} \end{aligned} \quad (u_0 = 0)$$

 \Rightarrow - the solution $oldsymbol{u}$ is **smoother** than $oldsymbol{f}$

Fourier Analysis

Poisson Equation

Example...

Fourier Analysis

Poisson Equation

...Example

Heat Equation

Fourier Analysis

$$oldsymbol{u_t} = \kappa oldsymbol{u_{xx}} \qquad oldsymbol{x} \in (0, 2\pi)$$

with

$$u(0,t)=u(2\pi,t),$$

$$u_x(0,t)=u_x(2\pi,t),$$

$$u(x,0) = u^0(x) = \sum_{k=-\infty}^{\infty} u_k^0 \, e^{ikx}$$

Heat Equation

Fourier Analysis

$$u = \sum_{k=-\infty}^{\infty} \, u_k(t) \, e^{ikx}$$

$$u_t = \sum_{k=-\infty}^{\infty} rac{du_k}{dt} \, e^{ikx} \,, \qquad u_{xx} = \sum_{k=-\infty}^{\infty} \, -k^2 \, u_k \, e^{ikx}$$

$$rac{du_k}{dt} = -\kappa k^2\,u_k$$

Heat Equation

Fourier Analysis

$$rac{du_k}{dt} = -\kappa k^2 u_k \,, \quad u_k(t=0) = u_k^0 \,, \; \Rightarrow \; u_k(t) = u_k^0 e^{-\kappa k}$$

$$u(x,t) = \sum_{k=-\infty}^{\infty} \, u_k^0 \, e^{-\kappa k^2 t} \, e^{ikx}$$

- exponential decay of initial condition (dissipation)
- higher decay for "higher modes" (larger k) = smoothness

Fourier Analysis

Heat Equation

Example

Wave Equation

Fourier Analysis

$$u_t + Uu_x = 0$$
 $x \in (0, 2\pi)$

with

$$u(0,t)=u(2\pi,t),$$

$$u(x,0) = u^0(x) = \sum_{k=-\infty}^{\infty} u_k^0 e^{ikx}$$

Wave Equation

Fourier Analysis

$$u = \sum_{k=-\infty}^{\infty} \, u_k(t) \, e^{ikx}$$

$$u_t = \sum_{k=-\infty}^{\infty} rac{du_k}{dt} \, e^{ikx} \,, \qquad u_x = \sum_{k=-\infty}^{\infty} iku_k \, e^{ikx}$$

$$rac{doldsymbol{u}_k}{dt} = -ioldsymbol{U}k \ oldsymbol{u}_k$$

Wave Equation

Fourier Analysis

$$rac{du_k}{dt} = -iUku_k \;,\;\; u_k(0) = u_k^0 \;\; \Rightarrow \;\; u_k(t) = u_k^0 \, e^{-iUkt}$$

$$u(x,t) = \sum_{k=-\infty}^\infty \, u_k^0 \, e^{-iUkt} \, e^{ikx} = \sum_{k=-\infty}^\infty \, u_k^0 \, e^{ik(x-Ut)} = u^0(x-Ut)$$

- no decay, propagation with wave speed c = U
- no **dispersion** (c constant) \equiv invariant shape

Fourier Analysis

Wave Equation

Example

General Operator

Fourier Analysis

$$u_t = rac{\partial^n u}{\partial x^n} \qquad x \in (0,2\pi)$$

with

$$egin{align} u(0,t)&=u(2\pi,t),\ u_x(0,t)&=u_x(2\pi,t),\ u_x^{(n-1)}(0,t)&=u_x^{(n-1)}(2\pi,t),\ u(x,0)&=u^0(x) \end{pmatrix}$$

General Operator

Fourier Analysis

$$u = \sum_{k=-\infty}^{\infty} \, u_k(t) \, e^{ikx}$$

$$u_t = \sum_{k=-\infty}^{\infty} \, rac{du_k}{dt} \, e^{ikx} \, ,$$

$$u_t = \sum_{k=-\infty}^{\infty} rac{du_k}{dt} \, e^{ikx} \,, \qquad u_x^{(n)} = \sum_{k=-\infty}^{\infty} (ik)^n u_k \, e^{ikx}$$

$$rac{du_k}{dt} = \sigma \, u_k$$

$$\sigma = (ik)^n$$

General Operator

Fourier Analysis

n	σ	Feature
		Propagation, $c = -\sigma/ik = -1$ (no Dispersion)
		Decay
3	$-ik^3$	Propagation, $c = +k^2$ (and Dispersion)
		Growth $(-u_{xxxx}$ much faster Decay than u_{xx}
١.		

N5

Eigenvalue Problem

Fourier Analysis

$$u_{xx} + \lambda u = 0$$
 $x \in (0, 2\pi)$

with

$$u(0)=u(2\pi),$$

$$u_x(0)=u_x(2\pi)$$

Need to determine non-trivial pairs $(u^n(x), \lambda^n)$

Eigenvalue Problem

Fourier Analysis

It can be easily verified that the eigenvalues are:

$$\lambda^n = n^2$$
, for $n = 1, 2, \dots$

The eigenvectors associated with λ^n are:

$$u_1^n(x)=e^{inx}, \;\; u_2^n(x)=e^{-inx}, \;\; ext{ for } \;\; n=1,2,\ldots$$

Eigenmodes = Fourier modes

Eigenvalue Expansions

Formal Extension

$$rac{\partial u}{\partial t} = \mathcal{L}u$$

with homogeneous boundary conditions

N6

$$u(x,y,t) = \sum_{n=0}^{\infty} a_n(t) u^n(x,y)$$

$$(u^n, \lambda^n)$$
 solution of $\mathcal{L}u - \lambda u = 0$

Eigenvalue Expansions

Formal Extension

$$\mathcal{L}u = \sum_{n=0}^{\infty} \lambda^n a_n u^n, \qquad rac{\partial u}{\partial t} = \sum_{n=0}^{\infty} rac{da_n}{dt} \ u^n$$

$$rac{da_n}{dt} = \lambda^n a_n \quad \Rightarrow \quad a_n(t) = a_n^0 \ e^{\lambda^n t}$$

$$u(x,y,t) = \sum_{n=0}^{\infty} a_n^0 \ e^{\lambda^n t} \ u^n(x,y)$$

Eigenvalue Expansions

Formal Extension

Eigenvalues determine temporal evolution of the associated time-dependent problem.

Higher >

 \updownarrow

Higher decay/frequency

More Oscillations