Astron. Astrophys. Suppl. Ser. 53, 91-96 (1983)

Infrared magnitudes (JHKLM) for 105 chemically peculiar A- and B-stars (*)

- D. Groote (1) and J. P. Kaufmann (2)
- (1) Hamburger Sternwarte, Gojenbergsweg 112, 2050 Hamburg 80, F.R.G.
- (2) Institut für Astronomie und Astrophysik, Technische Universität Berlin, Ernst Reuter Platz 7, 1000 Berlin 10, F.R.G.

Received February 2, accepted March 1, 1983

Summary. — For 105 Bp- and Ap-stars 410 photoelectrical measurements in 5 spectral bands (JHKLM) from 1.25 μ to 4.8 μ are presented. These measurements were collected in three observation periods. The observations, reductions and errors are discussed in detail. In addition we give IR-excess for the brightest M-measurements. An analysis of the data-like correlations of the IR-excess with stellar parameters and determination of effective temperatures will be published in subsequent papers (Groote and Kaufmann, 1983; Groote, 1983).

Key words: chemically peculiar stars — infrared magnitudes.

1. Introduction.

In two previous works (Groote et al., 1980; Groote and Kaufmann, 1981) an infrared excess of early-type peculiar stars at 4.8 μ m (M-band) was reported. These measurements plus new observational data are reduced to a homogeneous set of infrared magnitudes for a large sample of peculiar stars, ranging from B0 to F0 (30 000 K > $T_{\rm eff}$ > 7 500 K). For the first time IR-measurements were primarily performed to study the detected IR-excess but they are also useful to determine effective temperatures, angular diameters (see Blackwell and Shallis, 1979) and interstellar extinction (Groote, 1982). The first work established a correlation between this excess and the strength of a magnetic field for B-type helium-variable stars.

The second work extended the measurements to cooler chemically peculiar (CP) stars (cooler B-stars, A-stars, F0-stars) and it was found that about 60 % of the full sample showed excess of more than 20 % in the M-band, the excess starting sometimes at 3.6 μ m or even at 2.2 μ m. The correlation with the magnetic field was however not valid for the cooler stars.

In the present work we have collected more measurements (Dec. 1980) and present all the individual data. We also describe in detail the observations and reductions. Our measurements show very good agreement relative to other photoelectrical measurements and theoretical fluxes. Also, as most of the CP-stars are spectrumvariable, we measured most of the stars several times to find variations in the infrared magnitudes and a possible correlation of these variations with the period of rotation.

Send offprint requests to: D. Groote.

2. Observations and reductions.

The infrared magnitudes presented in this paper are the result of 3 observation periods at the ESO 1 m-telescope of La Silla (2.4-10.4, 1979 : D.G.; .29.3-5.4, 1980 : D.G./J.P.K.; 18.12-28.12, 1980 : D.G./J.P.K.). The IR-photometer is the same as used by Groote *et al.* (1980) and Groote and Kaufmann (1981). In the first period useful observing hours were from 7h to 24h, in the second and third period from 17h to 11h. In total 380 hours were available, about half of the time was lost due to bad weather or technical failure. Of the 200 observable hours, 100 hours had good « seeing ». We measured about 120 stars. In this paper we present the IR-magnitudes for 105 known CP-stars, in total 410 measurements mostly of *JHKLM*, that is about 4 measurements for each star.

Because of the varying observing conditions during 18 hours of the day (7 hours with the sun above the horizon), we carefully watched the zero-point by measuring standard-stars at least every two hours (under good and constant weather conditions). More than 30 standard stars of the list of Engels *et al.* (1981) were used and all observations were reduced to this system which is based on the measurement of stars at La Silla during 7 years time. Figure 1 shows the shift of the zero-point in all filterbands during 24 hours and also the small scatter of the standard stars around the mean curve.

Each observation consisted of a couple of 4 measurements, each with 5 s integration time, in total 20 s. The performance of the ESO-system (3) in the M-band is: magnitude 6 for a signal to noise ratio of 1, and 1 s integration time. Under good weather conditions we reproduced this performance (magnitude 7, S/N = 10, integration time 250 s, i.e. 12 observation cycles). To

^(*) Based on observations obtained at the European Southern Observatory , La Silla, Chile.

⁽³⁾ See the ESO User manual.

obtain a satisfactory S/N ratio, repetition of the observations in L and M was chosen rather than the increase of the integration time per cycle. We always watched the signal on a strip-chart recorder. Whenever there was an indication of the signal not being constant, we again centered the star and repeated the measurement.

The total error for one measurement (1 σ) given in table I contains :

- a) the mean signal to noise ratio.
- b) the standard deviation of the mean signal,
- c) the accuracy of the zero-point (deviation of the standard stars from a mean curve (see Fig. 1)).

For the filters J, H, K the errors from a) and b) are less than 1 % while from c) we get 2 to 5 %, so the latter error was adopted. For filters L and M, errors from a) and b) are comparable to or larger than the error from c) and all three were added quadratically. To achieve a maximum homogeneity in the presented data, we reduced all raw observations again after the last observation run. There are no systematic differences in the infrared magnitudes of measurements obtained in different observation periods above 0 $^{\text{m}}$ 03, the 1 σ error of the single measurement. As we suspected many of the CP-stars being variable, we repeated the measurements on different nights. The mean of these measurements is also given in table I together with the standard deviation, which is a

measure for intrinsic variation if compared with the standard deviation of the single measurement. The excess in filter M (given in table I only for the brightest M-magnitude as E_M) was determined by Groote (1982) and represents the excess flux above the theoretical flux of an adopted model atmosphere (Kurucz, 1979). The slope in the infrared slightly varies with temperature and interstellar extinction. To determine both, $T_{\rm eff}$ and E_{B-V} . Groote (1982) has taken all available photometric data from the IR to the UV and has adapted the best fitting Kurucz-model. The excess values given in the present paper are related to these model fluxes. For stars with more than one measurement, the model was adapted to the mean magnitudes. Excess is noted only when larger than 20 %.

In a subsequent paper we draw deductions from our measurements especially correlate the excess with stellar parameters like galactic distribution, magnetic field, rotation velocity, peculiarity index $\Delta\alpha$.

Acknowledgements.

We are obliged to Drs. Engels, Sherwood and Schultz who provided unpublished measurements, to the European Southern Observatory for hospitality and generous observation time, to the assistants and Dr. J. Koornneef for quick help with technical failures.

References

Blackwell, D. E., Shallis, M. J.: 1979, Mon. Not. R. Astron. Soc. 188, 847.

ENGELS, D., SHERWOOD, W. A., WAMSTEKER, W., SCHULTZ, G. V.: 1981, Astron. Astrophys. Suppl. Ser. 45, 5.

GROOTE, D.: 1982, Thesis, Technische Universität Berlin.

GROOTE, D., HUNGER, K., SCHULTZ, G. V.: 1980, Astron. Astrophys. 83, L5.

GROOTE, D., KAUFMANN, J. P.: 1981, Astron. Astrophys. Suppl. Ser. 94, L23.

KURUCZ, R. L.: 1979, Astrophys. J. Suppl. Ser. 40, 1.

N° 1

					ate, JHKLM-1 crors in 0.01 r		HD Number	JD 2440000+	J 1.25	H 1.65	K 2.2	L 3.6	Μ 4.8(μ)	E _M (%)	Rem.
magnitt $(E_M in$		error o	f the n	nean an	d maximum e	xcess in M	28843	3592.290 3594.294 3735.107 3736.111 3970.294 3970.368	6.12 4	6.14 3	6.10 4 6.22 3		5.60 15 6.01 7 5.63 5 5.55 9 5.80 20	70	W.S. W.S. G.S. G.S.
HD Number	JD 2440000+	Ј 1.25	Н 1.65	К 2.2	L M 3.6 4.8 (μ)	E _M Rem.		3973.442 3973.476 4597.633	6.09 3 6.09 3 6.03 3	6.14 3 6.10 3 6.05 3	6.18 3 6.16 3 6.11 3	6.15 4 6.13 4 6.07 3	5.65 18 5.76 8 5.91 15		
315	4597.545 4599.461 4601.380	6.73 4 6.72 3 6.71 3	6.77 3	6.84 4	6.66 3 5.85 19 6.88 5 6.11 14 6.76 4 6.66 15	1	29009	4596.742 4599.683		6.10 3 5.98 3 5.97 3	6.16 5 6.01 3 6.00 4	6.10 4 5.96 4 5.93 6	5.74 16 5.87 9 5.76 8	20	
3326	4597.557	6.72 1		6.81 3	6.77 11 6.21 41 5.37 3 5.39	I		4601.544	5.95 3		6.01 3		5.78 6	20	
3320	4601.476	5.53 3 5.58 6	5.49 3	5.43 3	5.35 3 5.06 5 5.36 1 5.23 23		29305	4329.397 4330.397 4593.689	3.56 4	3.50 2 3.55 3 3.52 3		3.51 4 3.52 4 3.45 4	3.45 7 3.55 6 3.60 6		
3980	4594.481	5.68 3		5.64 4	5.55 4 5.42 10 5.52 7 4.92 15 5.79 3 5.32 10	5 90		4594.686	3.50 3		3.53 3	3.47 3 3.49 3			
5737	4330.153	5.66 2	5.67 4	5.68 4	5.62 15 5.22 26 4.70 4 4.56 5	5	33254	4328.321 4329.413 4597.651	5.07 4	5.01 3 5.00 2 4.96 4	4.96 3 4.92 2 4.94 3	4.97 4 4.90 4 4.85 3	4.89 15 4.84 6 4.92 6		
	4593.509 4594.503 4599.491	4.64 3 4.64 3	4.70 3 4.70 3	4.73 3 4.72 4	4.68 5 4.62	5 50 5	33904	4328.330	3.53 3	4.99 3 3.56 2	4.94 2 3.57 2	4.91 6 3.56 3	4.88 4 3.56 6		
	4601.389 4601.483		4.68 3	4.68 3 4.69 3 4.70 2	4.67 3 4.49	7		4329.428 4330.407 4597.658	3.62 4	3.63 2 3.59 3 3.57 3	3.60 2 3.60 3 3.54 3	3.60 4 3.57 4 3.53 3	3.60 5 3.59 7 3.64 6		
6619	4593.517 4599.508	6.45 3	6.39 3	6.38 3 6.37 4	6.34 6 5.55 24 6.23 5 5.60 12	4 95	34719	4596.678	3.57 4 6.77 3	3.59 3 6.76 3	3.58 3 6.82 3	3.57 3 6.71 5	3.60 3 6.58 13		
	4600.579	6.51 3	6.40 1	6.39 3	6.30 6 5.58	4		4599.715 4601.607	6.72 3 6.83 3 6.77 6	6.78 3 6.84 3 6.79 4	6.79 3 6.87 3 6.83 4	6.76 6 6.86 3 6.78 8	5.67 10 6.13 64	170	
10783	4595.598 4599.525 4600.597		6.67 3 6.62 3 6.62 3	6.69 3 6.63 4 6.64 3	6.56 5	9 55	35548	4596.749 4600.708	6.61 3 6.67 3	6.64 3 6.64 3	6.63 3 6.68 3	6.63 3 6.59 3	6.48 10 5.20 5	270	
12447	4595.531 4599.556	6.66 4 3.84 3 3.76 3	6.64 3 3.83 3 3.77 3	6.65 3 3.78 3 3.73 4	6.63 10 6.11 3.70 5 3.80 3.70 5 3.82	9	27017	4601.701 3592.296	6.68 8	6.68 3 6.65 2 6.87 3	6.67 4	6.60 3 6.61 2 7.01 5	5.80 16 5.83 64 6.25 20		W.S.
	4600.604	3.83 3	3.78 3		3.73 3 3.68 5	5	37017	3592.296 3593.428 3594.307 3735.070	6.94 3	6.99 3	7.03 3 7.02 3	7.01 5 7.11 6 7.01 6 6.96 3	6.31 10 6.30 10		W.S. W.S. G.S.
12767	4595.545 4599.568 4600.613	5.00 3	5.06 3	5.08 3 5.09 4 5.08 2	5.05 5 4.85	9 7 25 6		3736.034 3970.378 3972.490	6.85 5 6.90 3	6.92 3 6.91 2 6.90 3		6.90 4 6.90 5 6.89 5		175	G.S.
15144	4595.557	5.01 2	5.05 1 5.79 3	5.08 1 5.72 3	5.07 2 4.91 5.81 9			4333.406 4597.665	7.07 4 7.06 3	7.37 5 6.92 3	7.36 6 6.99 3	7.49 7 7.01 3	6.36 12 6.31 14		excl.
	4599.582 4600.621			5.65 4 5.72 2 5.70 4		6 20 7 1	37058	3594.344 3970.472		6.92 3 7.76 2 7.74 3	6.97 4 7.83 4 7.79 4		6.39 27 6.76 15 7.44 21	160	W.S.
18557	4596.491 4599.603	5.72 3 5.78 4	5.70 3 5.64 3	5.69 3 5.53 4	5.62 4 5.62 5.63 5 5.20	4 9 45		4601.713				7.97 6 7.84 15	6.78 16 6.99 39		
20320		5.75 3	5.68 3	5.64 3 5.62 8 4.25 3	5.61 3 5.34 10 5.62 1 5.30 9 4.35 1	9	37129	4596.759 4601.722	7.50 3	7.48 3 7.53 3 7.51 4	7.55 3	7.53 9 7.66 6 7.60 9	7.06 20 7.06	75	
20320	4599.590 4600.628	4.38 3 4.40 3	4.24 3 4.26 3	4.21 4 4.21 2	4.18 5 4.26 4.16 3 4.20	6 6	37321 37479	4601.748 3592.326		7.26 3 7.04 3	7.26 3 7.04 3	7.13 3 6.95 3		225	w.s.
22470	4329.322 4596.502	5.55 4	5.55 2	5.53 2	5.54 4 5.30	8 9 6 35		3593.446 3594.381	7.05 3	7.09 3	7.11 3 7.00 3 7.01 3	6.82 5 6.85 4			W.S. W.S. M?
	4599.634 4600.640	5.57 3	5.51 3 5.55 3	5.54 4 5.59 3	5.54 5 5.63 3 5.39	8		3970.390 3972.506 4328.369	7.02 3	7.05 3 7.04 3	7.06 3	6.98 6 6.89 5	5.72 8 6.13 15		
22920	4596.553 4600.649	5.84 3 5.86 3	5.89 3 5.90 3	5.91 3 5.93 3	5.83 3 5.93 2 5.90 3 5.42 1	0 5		4329.509 4330.380 4330.426	7.02 5	7.07 5 7.12 4	7.03 2 7.08 4 7.10 4	6.81 6 6.91 7 6.99 6	5.51 10 6.42 25 5.94 12	508	
	4601.437 4601.503	5.85 3 5.88 3	5.86 3 5.87 3	5.93 3 5.94 3 5.93 1	5.90 3 5.15 5.97 5 5.24 5.90 6 5.44 3	7 105 8 5		4330.508 4331.520 4332.411	7.02 3 7.11 5	6.98 4 7.09 5	6.98 3 7.11 5	6.90 4 6.97 7	5.81 20 5.67 10 6.09 19 5.66 12		
23281	4596.570 4601.496	5.25 3 5.27 3	5.14 3 5.16 3	5.13 3 5.14 3	5.02 3 5.15 5.04 3 5.13	6 8		4593.793 4595.710 4596.535 4596.631	7.00 3 7.09 3	7.04 3 7.08 3		6.80 5 6.95 6	5.93 12 7.00 20		м?
24155	4596.583 4601 512	5.26 1 6.41 3	5.15 1 6.41 3	5.14 1 6.43 3	5.03 1 5.14 6.41 3 5.69 6.44 3 5.74 1	1 9 95 3		4596.711 4597.568 4597.732	7.01 3 6.92 4	7.01 3 7.03 3	7.00 3 7.11 3	6.87 4 6.92 3	6.52 12 6.15 10		
24712	4596.597	6.44 4	6.43 2 5.30 3	6.46 4 5.30 3	6.43 2 5.72 5.24 4 5.21	4 7		4597.783 4599.545 4599.595	7.03 3 7.03 5		7.04 3 7.12 4 7.06 4	7.07 3 6.96 5 7.12 6	6.26 6 6.63 23		W.S. W.S.
	4600.656 4601.522	5.46 3 5.49 3	5.34 3 5.34 3	5.32 2 5.31 3	5.21 3 5.05 5.29 3 4.97	7 8 30 2		4599.626 4600.674 4600.697	7.09 4 7.11 4	7.03 4 7.05 4	7.02 4 7.08 4	6.93 4 7.00 4	6.07 10 6.29 27		W.S.
25267	4330.363 4596.611	4.91 4 4.84 3	4.93 3 4.85 3	4.93 3	5.54	- 9 6		4600.726 4600.748 4601.596	7.12 4 7.03 3	7.11 3 6.97 3	7.11 3 6.99 2	7.04 6 6.84 4	6.27 17 5.99 16		
	4600.662 4601.528	4.90 3 4.88 3 4.88 3	4.87 3 4.87 3 4.88 3	4.91 2 4.90 3 4.91 1	4.91 3 4.81 4.85 3 4.90 4.89 6 4.87	6	37776	4601.731 3592.334	7.05 5	7.04 4		6.92 9	6.05 26	270	W.S.
26591	4596.656 4601.536	5.60 4 5.53 3	5.54 4 5.51 3	5.53 4 5.50 3	5.37 6 5.54 5.42 3 5.10	9 8 40	3///6	3592.334 3594.400 3970.415 3973.487	7.35 4 7.33 3	7.39 3 7.37 3	7.44 3 7.41 3	7.39 6 7.21 4	6.91 10 6.51 17		W.S.
	4329.446	5.57 5 3.86 4 3.89 4	5.53 2 3.87 2 3.88 3	5.52 2 3.90 2 3.87 3	5.40 4 5.32 3 3.91 3 3.90 3.87 4 3.90	1 5 7		4330.523 4331.538 4596.642	7.39 5 7.32 3	7.39 5 7.33 3	7.43 4 7.41 3	7.30 8 7.38 5	7.09 40		
	4593.678 4594.671 4595.583	3.76 3 3.79 3 3.86 3	3.85 3 3.86 3 3.90 3	3.84 2 3.87 2 3.90 3	3.84 4 3.88 3.85 3 3.78 3.95 4 4.04	6 5 6		4596.733 4597.583 4601.756	7.34 3 7.39 4	7.39 3 7.41 3	7.42 3	7.34 7 7.48 3	6.74 13 6.15 15		
		3.83 5	3.87 2	3.88 3	3.88 5 3.90	9							6.63 34		

TABLE I (continued).

								,		,						
HD Number	JD 2440000+	J 1.25	Н 1.65	K 2.2	L 3.6	Μ 4.8(μ)		Rem.		JD 2440000+	J 1.25	Н 1.65	К 2.2	L 3.6	M Ε _M 4.8 (μ) (%)	Rem.
37808	4599.732 4600.766 4601.770	6.75 3	6.77 3	6.82 3	6.67	4 6.51 12 5 7 6.73 20			78316	4330.573 4595.835 4596.860	5.49 5 5.45 3 5.44 3	5.43 3 5.46 3	5.49 3 5.47 3	5.43 4 5.48 3	5.53 5	
42657	4599.743 4600.781	6.33 3			6.73 6.25 6.30	8 6.62 16 4 5.41 11 3 5.48 10 4 5.92 9	135			4337.013	5.49 3 5.47 3 6.33 3	5.46 2	5.54 3 5.49 4 6.22 2	5.43 4	5.38 14	
42040	4601.799	6.33 3 6.36 5	6.32 3 6.32 1	6.34 3 6.35 2	0	2 5 05 0				4599.885	6.38 4	6.24 3	6.21 3 6.21 3 6,39 3	6.24 3		
43019	4599.757 4600.796 4601.810	6.45 4 6.41 3	6.40 3	6.43 4 6.43 3	6.39 6.32	3 5.95 8 4 5.56 7 4 6.07 15 4 5.86 27	115		90264	4328.648 4330.586	6.32 6 5.27 3 5.33 5	5.28 2	6.25 5 5.37 2 5.39 3	5.33 3		
49333	3593.447 3594.431 3733.160	6.47 3 6.43 4	6.52 3 6.46 3	6.53.3 6.51 3	6.46 6.51	4 6.21 15 3 6.49 15 7 6.56 40		W.S. W.S. G.S. G.S.		4331.586 4333.572 4593.860 4596.876	5.25 4	5.37 5 5.35 3	5.37 3 5.32 4 5.41 3 5.34 3	5.41 5 5.37 3	5.01 8 40 5.38 12	
	3736.135 3969.559 3969.592	6.40 8 6.47 4 6.41 4	6.49 7 6.44 2 6.46 3	6.59 7 6.52 3 6.50 3	6.54	8 6.05 10		G.S.	00550	4597.856	5.27 3	5.29 3	5.36 3	5.39 3	5.04 5 5.17 13	
	3969.611 3972.517 4600.827	6.44 3 6.52 4	6.48 3 6.44 4	6.52 4	6.47 6.51 6.62	3 6.65 10 3 6.05 8 4 5.90 12 5 5.89 14 4 5.54 20	150		90569	4328.668 4331.618 4595.888 4596.883	6.13 3 6.07 3 6.10 3 6.10 3	6.09 2 6.11 3 6.07 3 6.12 3	6.10 2 6.10 3 6.04 3 6.08 3	6.00 3 6.05 3 6.03 3 6.01 3		
49976	4329.532 4332.497 4599.768	6.33 4 6.39 5	6.33 2 6.34 5	6.37 2 6.32 5	6.39 6.40	5 6.18 37 3 5.64 11 7 6.08 15 3 6.09 11	80		92664	4333.543 4593.873 4594.780 4597.863	6.10 2 5.81 4	6.10 2 5.88 5		6.02 2 5.85 6		
	4601.824	6.29 3 6.35 4	6.40 3 6.35 3	6.31 3 6.32 3	6.37 6.35	4 5.69 9 7 5.88 24				4594.780 4597.863			5.89 3 5.95 3 5.94 4	5.74 4 5.90 3	5.60 20	
5/219	3970.485 3972.533 4329.555 4593.763	5.49 3 5.54 4	5.52 3 5.56 2	5.59 3 5.62 2	5.53 5.60	5 5.57 9 5 5.36 8 3 5.25 10 4 5.43 14			92938	4594.802 4595.855	5.09 3 5.18 4	5.17 3 5.19 3	5.21 3	5.16 4 5.25 4	5.17 7	
	4594.697 4596.801 4599.781 4600.850	5.48 3 5.55 3	5.58 3 5.54 3	5.59 3 5.58 3	5.61 5.56	4 4.92 15 3 5.70 6 3 5.40 10 4 5.18 10			93030	3970.556 3972.603 3973.557					3.62 6 3.53 4	
58260	3970.505	5.53 3 7.08 3	5.57 4 7.09 3	5.60 2 7.07 3	5.58 7.05	3 5.35 24 5 6.98 11				4330.603 4333.560 4594.046	3.35 5 3.29 4 3.37 5	3.39 5 3.40 4	3.48 3 3.40 4 3.51 5	3.41 4 3.48 5 3.52 4 3.49 5	3.62 6 3.50 6 3.63 7	
	3973.508 4329.573 4333.462 4593.750	7.08 4 6.95 4 7.04 3	7.09 2 7.07 5 7.14 3	7.14 2 7.18 4 7.13 2	7.00 7.09 6.93	6 6.06 11 9 6.98 12 8 6.93 20 5 5.72 10	275			4330.603 4333.560 4594.046 4596.026 4601.965	3.42 3 3.33 5	3.44 3 3.39 2	3.50 3 3.47 3	3.50 3 3.48 3	3.55 3 3.55 8	
61641	4594.707 4329.600	7.04 5	7.10 4	7.14 4	7.09 1	4 5.80 12 2 6.41 61 7 5.61 8			34000	4330.614	6.19 5 6.27 3	6.19 4 6.16 4	6.18 3 6.20 4	6.19 4	5.71 14 5.65 9 6.13 13	
	4593.816 4594.726	6.17 3	6.21 2	6.24 3	6.17	2 6.02 1/					6.21.5	6.17.2	6.20.4	6.14 5	5.44 9 100 5.73 29 6.50 14	
62712	4329.608 4593.824 4594.734 4596.824	6.71 4 6.73 3 6.70 3	6.72 2 6.79 3 6.80 3	6.77 2 6.79 2 6.88 3	6.71 6.80 6.75	6 5.84 22 6 6.06 20 3 5.86 8 5 4 6.08 10 8 6.00 12				3970.567 3973.591 4329.656	7.07 3 7.08 3 7.12 4	7.12 3 7.10 3 7.12 2	7.29 4 7.19 3 7.14 2	7.16 6 7.11 5 6.86 8	6.42 20 6.34 12 6.05 12 200 6.26 15	
64740	3592.428	3.24 4	3.24 3	3.32 3	5.35	3 3.22 3	110	W.S. W.S.		4333.621 4595.026 4596.045	7.06 4 7.12 5 7.06 5	7.13 5 7.17 5 7.02 5	7.28 4 7.29 5 7.16 5	6.82 7 7.18 13 7.14 14	6.19 15	
	3593.492 3594.448 3733.172 3733.200	5.14 3 5.25 3 5.22 3	5.23 3 5.29 2 5.30 2	5.33 3 5.37 2 5.39 3	5.36 5.38 5.39	4 5.20 7 3 5.15 5 3 5.59 8 3 5.38 4		W.S.		4328.729 4329.671			5.83 3	5.74 5 5.78 7	6.30 17 5.60 10 5.19 12 60	
	3735.183 3736.197 3970.528 3972.561	5.24 5 5.22 3	5.31 3 5.26 2	5.37 3 5.35 3	5.35 5.33	3 5.37 3 5 5.15 5 4 5.34 6 5 5.26 6		G.S. G.S.			5.95 5 5.87 5	5.78 5 5.71 5	5.79 5 5.79 5	5.67 7 5.73 6	5.43 9 5.44 10 5.74 33	м?
	4390.541 4333.482	5.25 5 5.17 4 5.25 3	5.26 5 5.29 5 5.30 3	5.35 4 5.33 4 • 5.38 3	5.37° 5.40 5.48	5 4.92 9 5 5.02 9 3 5.10 7			109026	4330.624 4331.668 4332.699	4.29 5 4.28 3	4.27 4 4.27 3	4.29 3 4.32 3	4.29 4 4.28 3		
72968		5.79 4 5.79 3	5.76 2 5.80 3	5.76 2 5.78 3	5.67 5.72	3 5.58 9				4592.921 4594.077 4594.833	4.26 4 4.13 5 4.29 3	4.25 4 4.15 5 4.30 3	4.30 5 4.32 5 4.35 3	4.29 3 4.31 6 4.34 3	4.24 6 4.39 11 4.37 5	
	4599.816	5.78 3 5.85 3	5.76 3 5.79 4	5.76 3 5.83 4	5.70 5.74	3 5.70 7 3 5.35 3 4 5.16 10 4 5.41 23	70			4597.094	4.26 4 4.25 7	4.23 4 4.25 5	4.27 4 4.31 3	4.34 5 4.31 3	4.13 8 4.54 8 4.35 13	
74196		5.83 4 5.90 3	5.88 2 5.91 3	5.90 2 5.98 2	5.96 5.90		30		111133	4595.908	6.46 3 6.34 3	6.40 3 6.31 3	6.36 3 6.30 3	6.30 3 6.28 6	5.85 9 5.91 15 .5.48 14 110 5.97 9	
74521	4330.563 4333.489	5.86 5	5.82 4	5.75 3	5.77	3 5.63 5 6 5.50 6 7 5.76 11			116485	4329.760 4331.753	5.78 4	5.76 2	5.81 3	5.82 6	5.80 22 5.38 9	
	4596.841 4599.833	5.83 3 5.84 3 5.83 4	5.83 3 5.84 3 5.87 4	5.87 3 5.84 3 5.91 4	5.89 5.86 5.82	3 5.65 10 3 5.44 9 4 5.38 8	50			4333.640 4594.069 4594.892	5.56 4 5.71 5 5.75 3	5.72 5 5.64 5 5.76 3	5.70 4 5.75 5 5.82 3	5.69 6 5.79 6 5.70 4	4.95 8 100 5.21 22 5.74 10 5.71 32	м?
75333		5.52 3 5.51 3	5.48 3 5.49 3	5.52 3 5.49 3	5.48 5.42	5 5.55 16 4 5.52 6 4 5.31 10 3 5.48 7	20			4597.088	5.82 4 5.76 3	5.79 4 5.76 3	5.73 4 5.75 3	5.81 4 5.73 3	5.77 20 5.34 12 5.39 31	
	4597.798	5.53 3 5.49 3	5.56 3 5.51 3	5.48 3 5.53 3	5.67 5.47	3 5.47 5 3 5.47 9 2 5.45 8										

TABLE I (continued).

HD	JD	J	н	K	L		м	E.,	Rem.	HD	JD	J	н	ĸ	L	м		E _M	Rem.
	2440000+		1.65	2.2	3.6		4.8 (μ)				2440000+	-	1.65	2.2	3.6		(µ)	-M (%)	1.0.1.1
118022	4329.769 4595.043			4.90 2 4.91 4			4.80 8 4.90 12		м?	142990	3733.428 3736.418			5.82 3 5.72 3		5.7 3 5.6			G.S. G.S.
	4596.070 4597.032	4.87 5	4.87 5	4.91 5	4.86	6	4.90 16				3970.663 3972.759	5.62 3	5.69 3	5.70 3 5.71 3	5.70	5.7	6 12		0.5.
	4600.011	4.86 3	4.913	4.87 3	4.86	3	5.11 8		м?		4331.848	5.83 3	5.75 3	5.82 3	5.76	5.5	3 10	20	
124224	4328.922			4.90 2 5.37 5		4 5	4.93 13 5.23 10			143699	4331.861			5.75 6 5.31 4		5.6			
	4595.047 4596.075	5.27 5	5.27 5	5.32 4	5.30	6	5.40 8			144334	4331.873			5.99 4				55	
	4597.038 4600.022	5.21 4	5.25 4	5.29 4	5.33	4	5.18 6 5.42 8			144661 146001	4331.885			6.42 4		5.9		60	
				5.32 3		5	5.31 12			146001	4329.906 4331.902		5.91 2 5.91 4			5 6.1			
125248	4329.781 4595.074			5.88 2 5.91 5		5 5	5.49 8			140112	4329.933			5.88 6 4.57 3		5.9			
	4596.081 4596.909						5.63 10 5.74 13			140112	4598.066	4.59 3	4.55 3	4.52 3	4.45	4.5	7 5		
				5.90 1			5.62 13			148898	4329.940		4.57 3 4.29 3	4.55 4	4.51				
125823	3733.401 3736.389	4.94 5	4.93 3	5.01 3	5.02	3	5.11 4 4.92 4		G.S.	151525		5.23 3			5.01				
	3970.604 3972.610	4.92 3	4.93 3	5.01 3	5.01	3	4.98 5			153882	4598.094	6.20 3	6.14 3	6.13 3	6.26		3 10	70	
	3973.632 4329.796	4.87 4	4.93 2	4.98 2	5.06	4	5.01 9 4.96 8			162374	4329.947 4331.949		6.27 3 6.21 4	6.31 3 6.19 4				75	
	4330.697 4594.060	4.85 5	4.86 5	5.00 5	5.02	5	4.83 6 5.16 14			164050	4224 070		6.24 4	6.29 14					
	4595.088 4596.094					5 5	5.14 14			164258 168733	4331.978 4331.985			5.96 4 5.61 4		5.4		55	
126515	4330.721			5.02 3		4	5.02 11 6.82 30			175362	4152.456 4153.619	5.74 3	5.75 2 5.69 5	5.78 2	5.78	5.7	3 5		D.E.
120313	4595.057		7.08 5	7.11 5	7.01	7					4154.626 4332.030	5.71 3		5.76 3	5.82	5.70 5.50 5.41	8 (25	D.E. D.E.
128898	4329.821	7.11		7.12 1							4332.030			5.77 3				23	
120030	4332.790 4593.010	2.94 5	2.90 5	2.77 5						175744		6.73 3		6.81 3					
	4595.094 4596.101	2.89 5	2.73 5	2.89 5	2.74	5	2.95 10 2.77 6			176232 177517	4332.045 4332.050		5.38 3 5.98 3	5.35 3 5.97 3	5.36 S				
	4600.042	2.70 3	2.70 3	2.65 3	2.60	3	2.67 5			179761	4329.956		5.43 3	5.42 3	5.42			40	
129174	4595.063	4.60 5	4.50 5	2.74 8 4.56 5	4.58	5 5	2.74 13 4.56 15			187474	4329.081 4329.103		5.49 5	5.47 5	5.48			55	
	4597.054			4.57 4 4.57 1			4.30 12 4.43 18			201001		4.29 3	4.17 4	4.14 3	4.11	4.00			
130559	4330.732	5.21 5	5.19 4	5.19 3	5.14	4	5.08 10			202006	4220 042			4.15 1					
	4596.901		5.21 3	5.19 3	5.11	3	4.93 25 5.16 5			203006	4330.042 4594.362	4.77 3	4.72 4 4.69 7	4.70 3 4.73 4	4.66	4.6			
	4597.060 4600.051	5.27 4 5.17 3			5.17 5.08		5.15 12 5.12 4			206088	4329.139			4.72 2 3.08 6		4.72			
122510	3970.611			5.18 2			5.09 9			200000	4594.375	3.18 4	3.12 7	3.04 4	3.04				
133316		6.67 3	6.65 3		6.82	4	6.48 25 6.17 10 6.40 13			206742	4330.052			3.06 3					
		6.69 4		6.70 3	6.75	5	5.91 15				4593.367	5.56 5	5.42 5	5.44 5	5.43	5.43	3 20		
	4594.097	6.56 5	6.55 7	6.68 5	6.77	12	5.58 23				4594.403 4596.406			5.51 3 5.54 5			36		
133880	4330.740		6.68 8		6.80 5.97	9 4	6.11 37 5.74 12			220825	4597.502			5.50 5	5.47 4	5.35	11		
	4593.077 4594.103	6.15 5	5.96 5	6.00 6	6.05	3 7	5.72 50 6.03 22			220025	4601.459	4.96 3	4.96 3	4.95 3	4.94	4.55	9	40	
			5.91 12		6.03	5	5.83 17			221006	4330.067	4.96 6.01 3	4.96 6.03 3	5.00 6 6.16 3		4.55	5		
	4329.853			4.73 2 2.69 2	4.73 2.71	4	4.70 7 2.71 5				4594.485 4596.413	6.00 4	6.09 4	6.09 5	6.06	5.52			
, 55502	4595.113 4596.107	2.89 4	2.76 4	2.81 4	2.69	6	2.87 6				4597.398	6.06 3	6.10 3	6.19 3	6.20	5.20	18	130	
	4597.082	2.83 4	2.75 4	2.74 4	2.74	4	2.75 5			221507	4330.076	4.61 3	4.63 3	6.14 4 4.65 3	4.61 4	4.58			
137509	3970.638			2.74 5 7.47 3		3 6	2.78 8 6.34 25				4595.503 4597.387	4.63 3	4.71 3 4.62 3	4.68 3 4.66 3	4.64 4	4.40		25	
	4331.776 4595.131						6.68 10				4601.405			4.63 3 4.66 2		4.58			
				7.35 12	7.26	26	6.51 24			221760	4330.084	4.60 3	4.54 3	4.51 3	4.47 4	4.53	5		
137909	4330.750 4598.033			3.24 3 3.29 3		4 4	3.27 6 3.29 4				4594.465 4597.376					4.24		25	
407040				3.27 2			3.28 1			222640	4507 460			4.52 2		4.38			
137949 140160	4331.790		6.39 3 5.28 2		6.28 5.20	4 3	6.17 8 5.26 7			223640	4597.469 4601.467			5.59 3 5.52 3					
	4598.044	5.29 3	5.23 3	5.25 3	5.34	6	5.06 9			224026	4597 470			5.56 5					
142301	3733.412		6.05 3			10 4	5.16 14 5.65 8		G.S.	227720	4597.479 4601.447	5.43 3	5.46 3	5.47 3	5.50 3	5.27	7	20	
	3736.404 3970.656	6.03 5	6.04 3		6.06	3	5.81 10 6.01 12		G.S.			5.43 1	5.46	5.49 2	5.48 2	5.44	23		
	3972.649 4329.883	6.11 4 6.03 4	6.07 3 6.06 2	6.06 3 6.06 2	6.03 6.00	5	5.53 10 5.70 11	60		¥ T 3		(D		البيالي	1		***	rz - 0	1
	4329.922	6.05 4	6.06 2	6.09 2 6.06 2	5.95	4	5.76 30				remarks W.S.), G	, ,							ner-
		J. J. J.	3	J.00 Z	0.01	•	J. 74 10			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, U		(C	, am		-2010	(1).1	/-	

96

FIGURE 1. — Schift of zero-point (O-C) observed minus standard magnitude during 24 hours in *JHKLM*, measurements (+) of 30 different standard-stars are shown, curves are handdrawn.