Foundations of Data Science & Analytics: Preprocessing

Ezgi Siir Kibris

Introduction to Data Mining, 2nd Edition by Tan, Steinbach, Karpatne, Kumar

Data Mining / Machine Learning Pipeline

Goal:

Transform raw data to a format that machine learning / data mining models can (easily) learn from.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

1	0	1	0	1
0	1	0	1	0
1	0	1	0	1

I need to talk to you

i	need	to	talk	you
1	1	2	1	1

- Manipulating Data (rows)
 - Sampling

Only on training

- Manipulating Values
 - Discretization
 - Normalization

Same on training, and test data

- Manipulating Features (columns)
 - **Dimensionality Reduction**
 - Feature Selection
 - Feature Creation

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

- **Supervised**
 - Requires labels
- Unsupervised
 - Does not rely on labels

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

- Manipulating Data (rows)
 - Sampling
- Manipulating Values
 - Discretization
 - Normalization
- Manipulating Feature (columns)
 - **Dimensionality Reduction**
 - Feature Selection
 - Feature Creation

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Sampling

- Reducing size of data
 - Random sampling
 - Stratified sampling

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Reducing Size of Data

Random Sampling

Unsupervised

- Sampling without replacement
 - As each item is selected, it is removed from the population
- Sampling with replacement
 - Objects are not removed from the population as they are selected for the sample.
 - The same object can be picked up more than once

Stratified sampling

Random sample from each class.

Supervised

- Keep the same distribution of classes.
- Avoid the sampled data to miss some classes.

Stratified sampling

1:2:1

Example

- Manipulating Data (rows)
 - Sampling
- Manipulating Values
 - Discretization
 - Normalization
- Manipulating Feature (columns)
 - **Dimensionality Reduction**
 - Feature Selection
 - Feature Creation

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Discretization

Discretization is the process of converting a continuous (Interval, Ratio) feature into an **ordinal** feature

- A potentially infinite number of values are mapped into a small number of categories
- Discretization is commonly used in classification
- Many classification algorithms work best if both the independent and dependent variables have only a few values

Types of features

Nominal

Examples: ID numbers, eye color, zip codes

Ordinal

 Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height {tall, medium, short}

Interval

Examples: calendar dates, temperatures in Celsius or Fahrenheit.

Ratio

 Examples: temperature in Kelvin, length, counts, elapsed time (e.g., time to run a race)

Types of features

• Distinctness: =

• Order: < >

• **Differences** are meaningful: + ·

Ratios are meaningful

Nominal feature: distinctness

Ordinal feature: distinctness & order

• Interval feature: distinctness, order & meaningful differences

• Ratio feature: all 4 properties/operations

Discretization

- How can we tell what the best discretization is?
 - Unsupervised discretization: find breaks in the data values
 - Example: Petal Length

 Supervised discretization: Use class labels to find breaks

Data consists of four groups of points and two outliers. Data is onedimensional, but a randomy component is added to reduce overlap.

Equal interval width approach used to obtain 4 values.

Equal frequency approach used to obtain 4 values.

K-means approach to obtain 4 values.

Use entropy to find the best splits, like in decision trees.

- Manipulating Data (rows)
 - Sampling
- Manipulating Values
 - Discretization
 - Normalization
- Manipulating Feature (columns)
 - **Dimensionality Reduction**
 - Feature Selection
 - Feature Creation

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normalization

 Make all features of the same scale (normalize columns)

 Make each feature vector of unit length (normalize rows)

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Why Normalize?

Features may have to be scaled to prevent distance measures from being dominated by one of the features

Example:

- height of a person may vary from 1.5 m to 1.8 m
- weight of a person may vary from 90 lb to 300 lb
- income of a person may vary from \$10K to \$1M

Normalization

Standard score (based on normal distribution)

$$X' = \frac{X - \mu}{\sigma}$$

Min-Max Feature scaling

$$X' = rac{X - X_{
m min}}{X_{
m max} - X_{
m min}}$$

Normalization

ullet L2 Normalization $||ec{x}'||_2=1$

$$ec{x}' = rac{ec{x}}{||ec{x}||_2} = rac{ec{x}}{\sqrt{\sum x_i^2}}$$

• L1 Normalization $||\vec{x}'||_1 = 1$

$$ec{x}' = rac{ec{x}}{||ec{x}||_1} = rac{ec{x}}{\sum |x_i|}$$

$$X = [1,2,3,4]$$

 $sum_square = 1+4+9+16$

L2_norm = sqrt(sum_square) = 5.48

 $X_{norm} = X / L2_{norm} = [1/5.48,$ 2/5.48, 3/5.48, 4/5.48]

sqrt(sum_square(X_norm)) = 1

L2 Normalization on Columns

Training

X1	X2
3	30
2	120

X1	X2
0.83	0.24
0.55	0.97

Testing

X1	X2
2	100

X1 norm = 3.6X2 norm = 123.7

X 1	X2
0.55	0.81

L2 Normalization on Rows

Training

X1	X2
3	30
2	120

X1	X2
0.100	0.995
0.017	0.999

Testing

X1	X2
2	100

X1	X2
0.020	0.999

- Manipulating Data (rows)
 - Sampling
- Manipulating Values
 - Discretization
 - Normalization
- Manipulating Feature (columns)
 - **Dimensionality Reduction**
 - Feature Selection
 - Feature Creation

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Curse of Dimensionality

- When dimensionality increases, data becomes increasingly sparse in the space that it occupies
- Definitions of density and distance between points, which are critical for clustering and outlier detection, become less meaningful

- Randomly generate 500 points
- Compute difference between max and min distance between any pair of points

Dimensionality Reduction

Purposes:

- Avoid curse of dimensionality
- Reduce amount of time and memory required by data mining algorithms
- Allow data to be more easily visualized
- May help to eliminate irrelevant features or reduce noise

Techniques

- Principal Components Analysis (PCA)
- Singular Value Decomposition
- Others: supervised and non-linear techniques

- Manipulating Data (rows)
 - Sampling
- Manipulating Values
 - Discretization
 - Normalization
- Manipulating Feature (columns)
 - **Dimensionality Reduction**
 - Feature Selection
 - Feature Creation

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Feature Selection

- Another way to reduce dimensionality of data
- Redundant features (usually unsupervised)
 - Duplicate much or all of the information contained in one or more other features
 - E.g. purchase price of a product and the amount of sales tax paid
- Irrelevant features (usually supervised)
 - Contain no information that is useful for the data mining task at hand
 - E.g. students' ID is often irrelevant to the task of predicting students' GPA
- Correlation matrix

- Manipulating Data (rows)
 - Sampling
- Manipulating Values
 - Discretization
 - Normalization
- Manipulating Feature (columns)
 - **Dimensionality Reduction**
 - Feature Selection
 - Feature Creation

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Feature Creation (unsupervised)

- Create new features that can capture the important information in a data set much more efficiently than the original features
- Three general methodologies:
 - Feature extraction
 - Example: extracting edges from images
 - Feature construction
 - Example: dividing mass by volume to get density
 - Mapping data to new space
 - Example: Fourier transform, kernel trick in SVM

Fourier Transform

Two Sine Waves + Noise

Frequency

Assignment 3

Github!!!