### Sistemas Operacionais

Bruno Feitosa

Universidade de São Paulo feitosa.bruno@usp.com

24/06/2019

#### Resumo

- $lue{1}$  Cálculo do  $\pi$ 
  - Método Gauss-Legendre
  - Método Bailey-Borwein-Plouffe
  - Método Monte Carlo
  - Comparação dos Métodos

- Precificação de Opções
  - Método de Black Scholes

#### Cálculo do $\pi$

- Gauss-Legendre
- BBP
- Monte Carlo

## Cálculo do $\pi$ : Gauss-Legendre

- Aplicação da regra de quadratura Gauss-Legendre
- Rápida Convergência, porém, Alto Custo

$$a_{n+1} = \frac{a_n + b_n}{2} \qquad a_0 = 1$$

$$b_{n+1} = \sqrt{a_n b_n} \qquad b_0 = \frac{1}{\sqrt{2}} \qquad (1)$$

$$t_{n+1} = t_n - p_n (a_n - a_{n+1})^2 \quad t_0 = \frac{1}{4}$$

$$p_{n+1} = 2p_n \qquad p_0 = 1$$

$$\pi \approx \frac{(a_{n+1} + b_{n+1})^2}{4 \cdot t_{n+1}} \qquad (2)$$

# Cálculo do $\pi$ : Gauss-Legendre

| n  | an           | b <sub>n</sub> | t <sub>n</sub> | p <sub>n</sub> | $(a_n-b_n)$    |
|----|--------------|----------------|----------------|----------------|----------------|
| 0  | 1.000000e+00 | 7.071068e-01   | 2.500000e-01   | 1.000000e+00   | 2.928932e-01   |
| 1  | 8.535534e-01 | 8.408964e-01   | 2.285534e-01   | 2.000000e+00   | 1.265698e-02   |
| 2  | 8.472249e-01 | 8.472013e-01   | 2.284733e-01   | 4.000000e+00   | 2.363618e-05   |
| 3  | 8.472131e-01 | 8.472131e-01   | 2.284733e-01   | 8.000000e+00   | 8.242744e-11   |
| 4  | 8.472131e-01 | 8.472131e-01   | 2.284733e-01   | 1.600000e+01   | 1.002446e-21   |
| 5  | 8.472131e-01 | 8.472131e-01   | 2.284733e-01   | 3.200000e+01   | 1.482652e-43   |
| 6  | 8.472131e-01 | 8.472131e-01   | 2.284733e-01   | 6.400000e+01   | 3.243366e-87   |
| 7  | 8.472131e-01 | 8.472131e-01   | 2.284733e-01   | 1.280000e+02   | 1.552063e-174  |
| 8  | 8.472131e-01 | 8.472131e-01   | 2.284733e-01   | 2.560000e+02   | 3.554152e-349  |
| 9  | 8.472131e-01 | 8.472131e-01   | 2.284733e-01   | 5.120000e+02   | 1.863758e-698  |
| 10 | 8.472131e-01 | 8.472131e-01   | 2.284733e-01   | 1.024000e+03   | 5.125029e-1397 |

# Cálculo do $\pi$ : Gauss-Legendre

| n   | $\pi$                                                |
|-----|------------------------------------------------------|
| 0   | 2.91421356237309504880168872420969807856967187537695 |
| 1   | 3.14057925052216824831133126897582331177344023751295 |
| 2   | 3.14159264621354228214934443198269577431443722334560 |
| 3   | 3.14159265358979323827951277480186397438122550483545 |
| 4   | 3.14159265358979323846264338327950288419711467828365 |
| 5   | 3.14159265358979323846264338327950288419716939937511 |
| 6   | 3.14159265358979323846264338327950288419716939937511 |
| 7   | 3.14159265358979323846264338327950288419716939937511 |
| 8   | 3.14159265358979323846264338327950288419716939937511 |
| 9   | 3.14159265358979323846264338327950288419716939937511 |
| 10  | 3.14159265358979323846264338327950288419716939937511 |
| ref | 3.14159265358979323846264338327950288419716939937511 |

#### Cálculo do $\pi$ : Bailey-Borwein-Plouffe

Otimizado para Cálculo Computacional (múltiplos de 8 / byte)

$$\pi = \sum_{k=0}^{\infty} \left( \frac{1}{16^k} \right) \cdot \left( \frac{4}{8.k+1} - \frac{2}{8.k+4} - \frac{1}{8.k+5} - \frac{1}{8.k+6} \right) \quad (3)$$

$$\pi = \sum_{k=0}^{\infty} a_k \cdot \left( p_k^1 + p_k^2 + p_k^3 + p_k^4 \right) \tag{4}$$

#### Cálculo do $\pi$ : Bailey-Borwein-Plouffe

| k | a <sub>k</sub> | $ ho_k^1$    | $p_k^2$       | $p_k^3$       | $\rho_k^4$    |
|---|----------------|--------------|---------------|---------------|---------------|
| 0 | 1.000000e+00   | 4.000000e+00 | -5.000000e-01 | -2.000000e-01 | -1.666667e-01 |
| 1 | 6.250000e-02   | 4.44444e-01  | -1.666667e-01 | -7.692308e-02 | -7.142857e-02 |
| 2 | 3.906250e-03   | 2.352941e-01 | -1.000000e-01 | -4.761905e-02 | -4.545455e-02 |
| 3 | 2.441406e-04   | 1.600000e-01 | -7.142857e-02 | -3.448276e-02 | -3.333333e-02 |
| 4 | 1.525879e-05   | 1.212121e-01 | -5.555556e-02 | -2.702703e-02 | -2.631579e-02 |
| 5 | 9.536743e-07   | 9.756098e-02 | -4.545455e-02 | -2.22222e-02  | -2.173913e-02 |
| 6 | 5.960464e-08   | 8.163265e-02 | -3.846154e-02 | -1.886792e-02 | -1.851852e-02 |
| 7 | 3.725290e-09   | 7.017544e-02 | -3.333333e-02 | -1.639344e-02 | -1.612903e-02 |
| 8 | 2.328306e-10   | 6.153846e-02 | -2.941176e-02 | -1.449275e-02 | -1.428571e-02 |
| 9 | 1.455192e-11   | 5.479452e-02 | -2.631579e-02 | -1.298701e-02 | -1.282051e-02 |

#### Cálculo do $\pi$ : Bailey-Borwein-Plouffe

| k   | $\pi$                                                |
|-----|------------------------------------------------------|
| 0   | 3.1333333333333333333333333333333333333              |
| 1   | 3.14142246642246642246642246642246642246642247       |
| 2   | 3.14158739034658152305211128740540505246387599328776 |
| 3   | 3.14159245756743538183700455505729339400738995059482 |
| 4   | 3.14159264546033631955702122244238183172740661797991 |
| 5   | 3.14159265322808753473437803553620446955852801219780 |
| 6   | 3.14159265357288082778524076189589848423906560378661 |
| 7   | 3.14159265358897270494077776717018944697112048981182 |
| 8   | 3.14159265358975227523617786839810222579502463340906 |
| 9   | 3.14159265358979114638877696591034741477901588848900 |
| ref | 3.14159265358979323846264338327950288419716939937511 |

#### Cálculo do $\pi$ : Monte Carlo

- Método Estocástico com Convergência Lenta
- Cada ponto tem  $\pi/4$  chance de cair dentro do circulo



### Comparação dos Métodos

- Gauss-Legendre (GL), Bailey-Borwein-Plouffe (BBP), Monte Carlo (MC)
- ullet 15. $10^3$  iterações para GL e BBP, 1. $10^9$  para MC
- 1KB de Precisão para todas variáveis de todos algoritmos

| Método |        | Não Paralelizado | Paralelizado    |  |
|--------|--------|------------------|-----------------|--|
|        | real   | 0,229s - 0,235s  | 0,682s - 0,720s |  |
| GL     | user   | 0,229s - 0,235s  | 0,407s - 0,486s |  |
|        | system | 0,000s           | 0,300s - 0,371s |  |
|        | real   | 0,473s - 0,483s  | 1,771s - 1,871s |  |
| BBP    | user   | 0,473s - 0,479s  | 1,467s - 1,648s |  |
|        | system | 0,004s - 0,005s  | 2,142s - 2,388s |  |
|        | real   | 7m7,959s         | -               |  |
| MC     | user   | 7m7,940s         | -               |  |
|        | system | 0m0,012s         | -               |  |

### Precificação de Opções

- Opções: Contratos de Compra/Venda com preço fixo
- Quem compra o contrato tem o direito de executá-lo
- Contrato de Compra: Call Contrato de Venda: Put
- Preços Envolvidos na Transação:
  - Preço da Ação:  $P_{
    m ação}$
  - Preço de Execução:  $P_{
    m execução}$
  - ullet Preço do Contrato:  $P_{
    m opç\~ao}$
- Custo para quem Compra uma Call (simplificado sem juros)
  - ullet Em caso de Execução:  $\mathit{Custo} = P_{\mathrm{opção}} + P_{\mathrm{execução}}$
  - ullet Caso Contrário:  $\mathit{Custo} = P_{\mathrm{opç\~ao}}$
- Para Calls, em geral
  - Se  $P_{
    m execução} < P_{
    m ação}$ ,  $P_{
    m opção}$  é "alto"
  - Se  $P_{
    m execução} > P_{
    m ação}$ ,  $P_{
    m opção}$  é "baixo"

#### Precificação de Opções: Método de Black Scholes

- Assume que o Preço da Ação assume uma distribuição normal
  - Volatilidade dita o quanto o preço da ação varia
- Juros ajustam os preços/custos
- O Preço da Opção tenta manter a transação justa (hedging)
- Variáveis:
  - E: Preço de Execução
  - S: Preço da Ação
  - r: Juros Livre de Risco
  - v: Volatilidade
  - T: Tempo até a Execução

$$t = S.e^{(r - \frac{v^2}{2}).T}.e^{(v.\sqrt{T}).randomNumber()}$$

$$trial[i] = e^{-r.T}.max(t - E; 0)$$
(5)

### Precificação de Opções: Método de Black Scholes

$$t = S.e^{\left(r - \frac{v^2}{2}\right).T}.e^{\left(v.\sqrt{T}\right).randomNumber()}$$

$$aux1 = S.e^{\left(r - \frac{v^2}{2}\right).T}$$

$$aux2 = \left(v.\sqrt{T}\right)$$

$$trial[i] = e^{-r.T}.max(t - E; 0)$$

$$aux3 = e^{-r.T}$$

$$t > E \quad ... \quad randomNumber() < \frac{ln(E/aux1)}{aux2}$$

$$... \quad randomNumber() < \frac{ln(E/S) - \left(r - \frac{v^2}{2}\right).T}{\left(v.\sqrt{T}\right)}$$
(7)

# Fim