2

3

4

1

2

1

2

3

What is claimed is:

1	1. A silica-filled encapsulant composition for
2	electrical connections, comprising a / core-shell substance
3	including a fine powder, whose particles each have an outer
4	shell with a glass transition temperature above room
5	temperature, and a core with a glass transition temperature
5	below room temperature.

- 2. The silica-filled encapsulant composition in accordance with claim 1, wherein silica fill is in a range of between approximately 40 and 60 percent by weight of the total encapsulant composition.
- 3. The silica-filled encapsulant composition in accordance with claim 1, wherein said encapsulant composition has a toughness of between approximately 800 and 2,500 psi-in^{1/2}.
 - 4. The silica-filled encapsulant composition in accordance with claim 1, including a silane component.
 - 5. The silica-filled encapsulant composition in accordance with claim 1, including at least one from the group of epoxy resins, polyimides, cyanide esters, and combinations thereof.

2

3

4

5

1

2

3

4

1

2

3

4

5

6

1

2

- 6. The silica-filled encapsulant composition in accordance with claim 5, wherein said epoxy resin comprises a cycloaliphatic epoxy resin and/or a glycidyl epoxide resin.
 - 7. The silica-filled encapsulant composition in accordance with claim 5, wherein said epoxy resin comprises a cycloaliphatic epoxy resin in an approximate weight range of between 14 and 25 percent by weight of the total encapsulant composition.
 - 8. The silica-filled encapsulant composition in accordance with claim 2, comprising a cycloaliphatic epoxy resin in an approximate weight range of between 14 and 25 percent by weight of the total encapsulant composition.
 - 9. The silica-filled encapsulant composition in accordance with claim 2, comprising a cycloaliphatic epoxy resin and a methyl-hexa-hydrophthalic anhydride both respectively in an approximate weight range of between 14 and 25 percent by weight of the total encapsulant composition.
 - 10. The silica-filled encapsulant composition in accordance with claim , including a silane component.

1	11. A silica-filled encapsulant composition for
2	electrical connections, comprising:
1	a) silica fill in a range of approximately
2	between 40 and 60 percent by weight of the total encapsulant
3	composition; and
1	b) an epoxy resin and an anhydride both
2	respectively in an approximate weight range of between 14
3	and 25 percent by weight of the total encapsulant
4	composition.
1	12. The silica filled encapsulant composition in
2	accordance with claim 11, wherein said composition has a
3	toughness of between approximately 800 and 2,500 psi-in1/2.
1	13. The silica filled encapsulant composition in
2	accordance with claim 11, including a silane component.
1	14. The sixica-filled encapsulant composition in
2	accordance with claim 11, wherein said epoxy resin comprises
3	a cycloaliphat c epoxy resin and/or a glycidyl epoxide
4	resin.

1	15. The silica-filled encapsular composition in
2	accordance with claim 11, wherein said anhydride comprises a
3	methyl-hexa-hydrophthalic anhydride
1	16. A silica-filled encapsuant composition for
2	electrical connections, comprising:
3	a) silica fill in a range of approximately
4	between 40 and 60 percent by weight of the total encapsulant
5	composition; and
6	b) a cycloaliphatic epoxy resin and a methyl-
7	hexa-hydrophthalic anhydride both respectively in an
8	approximate weight range of between 14 and 25 percent by
9	weight of the total encapsulant composition.
1	17. The silica-filled encapsulant composition in
2	accordance with claim 16, wherein said encapsulant
3	composition has a toyghness of approximately between 800 and
4	2,500 psi-in ^{1/2} .
1	18. The silica-filled encapsulant composition in
2	accordance with claim 16, including a silane component.

1	19. The silica-filled encapsulant composition in
2	accordance with claim 16, including 2-ethyl-4-
3	methylimidazole as a catalyst.
1	20. The silica-filled encapsulant composition in
1	
2	accordance with claim 16, further comprising a wetting
3	agent.
1	21. A method of encapsulating an integrated circuit
2	chip and a substrate associated therewith, said substrate
3	comprising organic materials, to form a chip carrier, the
4	steps comprising:
5	applying a splica-filled encapsulant composition
6	to an IC chip and associated substrate, said composition
7	comprising particles having a core material with a glass
8	transition temperature, T_{g} , below room temperature and a
9	core-shell material substantially surrounding said core
10	material, said core-shell material having a T _g above room
11	temperature;
12	curing said encapsulated IC chip and substrate;
13	and
14	reflowing solder joints between said IC chip and
15	said substrate.

2

3

1	22. The method of encapsulating an integrated circuit
2	chip and a substrate associated therewith in accordance with
3	claim 21, wherein silica fill is in/a range of between
4	approximately 40 and 60 percent by weight of the total
5	encapsulant composition.

- 23. The method of encapsulating an integrated circuit chip and a substrate associated therewith in accordance with claim 21, wherein said encapsulant composition has a toughness of between approximately 800 and 2,500 psi-in^{1/2}.
 - 24. The method of encapsulating an integrated circuit chip and a substrate associated therewith in accordance with claim 21, including a silable component.
- 25. The method of encapsulating an integrated circuit chip and a substrate associated therewith in accordance with claim 21, including at least one from the group of epoxy resins, polyimides, dyanide esters, and combinations thereof.
- 26. The method of encapsulating an integrated circuit chip and a substrate associated therewith in accordance with claim 25, wherein said epoxy resin comprises a cycloaliphatic epoxy resin and/or a glycidyl epoxide resin.

- 27. The method of encapsulating an integrated circuit
 chip and a substrate associated therewith in accordance with
 claim 25, wherein said epoxy resin comprises a
 cycloaliphatic epoxy resin an approximate weight range of
 between 14 and 25 percent by weight of the total encapsulant
 composition.
 - 28. The method of encapsulating an integrated circuit chip and a substrate associated therewith in accordance with claim 22, wherein said composition comprises a cycloaliphatic epoxy resin in an approximate weight range of between 14 and 25 percent by weight of the total encapsulant composition.
 - 29. The method of encapsulating an integrated circuit chip and a substrate associated therewith in accordance with claim 22, comprising a cycloaliphatic epoxy resin and a methyl-hexa-hydrophthalic anhydride both respectively in an approximate weight range of between 14 and 25 percent by weight of the total encapsulant composition.
 - 30. The method of encapsulating an integrated circuit chip and a substrate associated therewith in accordance with claim 29, including a silane component.