6.002x

### CIRCUITS AND

### **ELECTRONICS**



Remember, our EECS playground

Observe the lumped matter discipline LMD





Lumped circuit element

power consumed by element vi

## LMD allows us to create the lumped circuit abstraction



Maxwell's equations simplify to algebraic KVL and KCL under LMD!

KVL:



For all loops

KCL:



For all nodes







Let's Begin by Building a Toolchest of Analysis Techniques

Analysis



Analyzing a circuit means:

Find all the element v's and i's

# Method 1: Basic KVL, KCL method of Circuit analysis

Goal: Find all element v's and i's

- 1. write element v-i relationships (from lumped circuit abstraction)
- 2. write KCL for all nodes
- 3. write KVL for all loops

lots of unknowns lots of equations lots of fun solve

### Method 1: Basic KVL, KCL method of Circuit analysis

Goal: Find all element v's and i's

Labeling element v's and i's



Element e

convention is called:
Associated variables discipline

This

Current is taken to be positive going into the positive voltage terminal

Then power consumed by element e

= vi is positive

# Method 1: Basic KVL, KCL method of Circuit analysis

You will need this for step 1: Element Relationships



### Let's Apply KVL, KCL Method to this Example

Goal: Find all element v's and i's



The Demo Circuit

# KVL, KCL Example Label all vis and i's



Goal: Find all element v's and i's

12 unknowns  $v_0 \dots v_5, i_0 \dots i_5$ 

Note the use of associated variables...

### Step 1 of KVL, KCL Method

 $v_0 \dots v_5, i_0 \dots i_5$  12 unknowns

### 1. Element relationships (v,i)

$$N_0 = V_0 \leftarrow gruen \quad V_3 = i_3 R_3$$
 $V_1 = i_1 R_1$ 
 $V_2 = i_2 R_2$ 
 $V_3 = i_3 R_3$ 
 $V_4 = i_4 R_4$ 
 $V_5 = i_5 R_5$ 

6 equations



### Step 2 of KVL, KCL Method

 $v_0 \dots v_5, i_0 \dots i_5$  12 unknowns



### 2. KCL at the nodes

c:-10-13-15-0 redundant (use convention, e.g., sum currents leaving the node)

### Step 3 of KVL, KCL Method

 $v_0 \dots v_5, i_0 \dots i_5$  12 unknowns



13: 
$$\sqrt{3} + \sqrt{5} - \sqrt{2} = 0$$
  
 $14: -\sqrt{0} + \sqrt{4} + \sqrt{5} = 0$  redundad

3 independent equalions

(use convention, e.g., as you go around loop, assign first encountered sign to each voltage)

### KVL, KCL Method

### 1. Element v, i relationships

$$egin{aligned} m{v}_0 &= m{V}_0 & m{v}_3 &= m{i}_3 R_3 \ m{v}_1 &= m{i}_1 R_1 & m{v}_4 &= m{i}_4 R_4 \ m{v}_2 &= m{i}_2 R_2 & m{v}_5 &= m{i}_5 R_5 \end{aligned}$$

3. KVL for loops
$$L1: -v_0 + v_1 + v_2 = 0$$

$$L2: v_1 + v_3 - v_4 = 0$$

$$L3: v_3 + v_5 - v_2 = 0$$

$$L4: -v_0 + v_4 + v_5 = 0 \text{ redundant}$$

### 2. KCL at the nodes

a: 
$$i_0 + i_1 + i_4 = 0$$
  
b:  $i_2 + i_3 - i_1 = 0$   
d:  $i_5 - i_3 - i_4 = 0$ 

c: 
$$-i_0 - i_2 - i_5 = 0$$
 redundant



Method 3 - the node method will be much better!

### Other Analysis Methods Method 2— Apply element combination rules

### Method 2 — Apply element combination rules



### Method 2— Apply element combination rules

### Example



### Method 3 — Node analysis

- 1. Select reference node ( \sum ground) from which voltages are measured.
- 2. Label voltages of remaining nodes with respect to ground. These are the primary unknowns.
- 3. Write KCL for all but the ground node, substituting device laws and KVL.
- Solve for node voltages.
- 5. Back solve for branch voltages and currents (i.e., the secondary unknowns).

Particular application of KVL, KCL method



### Method 3 — Node analysis

Example: Old Faithful, plus current source



- Select reference ground node
- 2. Label node voltages with respect to ground.

Step 3 of Node Method

For convenience, write 
$$G_i = \frac{1}{R_i}$$

KCL at 
$$\ell_1$$
  
 $(\ell_1 - V_0)q_1 + (\ell_1 - \ell_3)q_3 + (\ell_1)q_2 = 0$   $0$   
KCL at  $\ell_2$   
 $(\ell_2 - \ell_1)q_3 + (\ell_1 - V_0)q_4 + \ell_2q_5 - I_1 = 0$   $(2)$ 

Write KCL for nodes, substituting device laws and KVL.

To avoid mistakes, use convention -E.g., always sum the currents leaving a node

### Step 4 of Node Method

KCL at 
$$e_1$$
  
 $(e_1 - V_0)G_1 + (e_1 - e_2)G_3 + (e_1)G_2 = 0$   
KCL at  $e_2$   
 $(e_2 - e_1)G_3 + (e_2 - V_0)G_4 + (e_2)G_5 - I_1 = 0$ 

Move constant terms to RHS & collect unknowns

Solve for node voltages

 $R_1$ 

2 equations, 2 unknowns  $\longrightarrow$  Solve for e's (compare units)

### Step 5 of Node Method

Once you have solved for  $e_1$  and  $e_2$ , easy to find branch v's and is

### For example:

$$S_{l} = V_{0} - e_{l}$$

$$\dot{c}_{l} = \frac{S_{l}}{P_{l}} = \frac{\left(V_{0} - l_{l}\right)}{R_{l}}$$



5. Back solve for branch voltages and currents



### Revisit Step 4 of Node Method for Cultural Interest

$$e_1(G_1 + G_2 + G_3) + e_2(-G_3) = V_0(G_1)$$
 — (1) 4. Solve for node voltages

$$e_1(-G_3) + e_2(G_3 + G_4 + G_5) = V_0(G_4) + I_1$$

### In matrix form:



### Step 4 of Node Method

$$\begin{bmatrix} G_1 + G_2 + G_3 & -G_3 \\ -G_3 & G_3 + G_4 + G_5 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = \begin{bmatrix} G_1 V_0 \\ G_4 V_0 + I_1 \end{bmatrix}$$

4. Solve for node voltages



### Solve

$$\begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = \frac{\begin{bmatrix} G_3 + G_4 + G_5 & G_3 & G_1 + G_2 + G_3 \\ G_3 & G_1 + G_2 + G_3 \end{bmatrix} \begin{bmatrix} G_1 V_0 \\ G_4 V_0 + I_1 \\ G_3 & G_3 + G_4 + G_5 - G_3^2 \end{bmatrix}}{(G_1 + G_2 + G_3)(G_3 + G_4 + G_5) - G_3^2}$$



(same denominator)

Notice: linear in  $V_0$ ,  $I_1$ , no negatives in denominator – we will use this later

### Step 4 of Node Method

E.g., solve for  $e_2$ , given

E.g., solve for 
$$e_2$$
, given  $G_1$ 

$$\begin{bmatrix} G_2 \\ G_4 \end{bmatrix} = \frac{1}{3.9K}$$



 $G_3 = \frac{1}{1.5K}$ 



$$e_2 = 0.6V_0$$

If 
$$V_0 = 3V$$
, then  $e_2 = 1.8V_0$