FINANCIAL ENGINEERING IME611A

Suman Saurabh, IIT Kanpur

SESSION OBJECTIVES

- The forward rates
- Term structure explanation
- Spot rate
- Relationship between spot rate and forward rate

FORWARD RATES

- Forward rates: Interest rates for money to be borrowed between two dates in future, but under terms agreed upon today.
- For example, knowing the <u>spot rates for two years s₁ and s₂</u>, one can <u>obtain</u> the forward rate f for the borrowing between year 1 and 2.

$$(1 + s_2)^2 = (1 + s_1)(1 + f)$$

$$f = \frac{(1+s_2)^2}{(1+s_1)} - 1$$

Practice Example 4.4

IMPORTANT RESULT

- Forward rate definition: The forward rate between times t_1 and t_2 with t_1 < t_2 is denoted by t_{t1} , t_{t2} . It is the rate of interest charged for borrowing money at time t_1 which is to be repaid with interest at time t_2 .
- Two types of forward rates
 - Implied forward rates
 - Market forward rates

$$(1+s_i)^j = (1+s_i)^i (1+f_{i,i})^{j-i}$$

COMPOUNDING FREQUENCIES

Forward rate formulas: The <u>implied forward rate</u> between times t_i and t_i > t_i
is the rate of interest between those times that is consistent with a given
spot rate curve.

Frequency	Spot-forward relationship	Forward rate formula
Yearly	$(1+s_j)^j = (1+s_i)^i (1+f_{i,j})^{j-i}$	$f_{i,j} = \left[\frac{(1+s_j)^j}{(1+s_i)^i}\right]^{1/(j-i)} - 1$
m-period	$(1 + s_j/m)^j = (1 + s_i/m)^i (1 + f_{i,j}/m)^{j-i}$	$f_{i,j} = \left[\frac{(1+s_j/m)^j}{(1+s_i/m)^i} \right]^{1/(j-i)} - m$
Continuous	$e^{(t_2*S_{t_2})} = e^{(t_1*S_{t_1})} e^{(t_2-t_1)*f_{t_1,t_2}}$	$f_{t_1,t_2} = \frac{t_2 * s_{t_2} - t_1 * s_{t_1}}{t_2 - t_1}$

TERM STRUCTURE EXPLANATIONS

1. Expectations theory

2. Liquidity preference

3. Market segmentation

EXPECTATIONS DYNAMICS

Spot rate forecasts

$$s'_{j-1} = f_{1,j} = \left[\frac{(1+s_j)^j}{(1+s_1)}\right]^{1/(j-1)} - 1$$

SPOT RATE FORECASTS: AN EXAMPLE

• Given current spot rate curve, construct forecast curve for next year.

	s ₁	S ₂	S_3	S ₄	S ₅	S ₆	s ₇
Current	6.00	6.45	6.80	7.10	7.36	7.56	7.77
Forecast (+1)							

SPOT RATE FORECASTS: AN EXAMPLE

• Given current spot rate curve, construct forecast curve for next year.

	s ₁	s_2	s_3	S ₄	S ₅	S ₆	s ₇
Current	6.00	6.45	6.80	7.10	7.36	7.56	7.77
Forecast (+1)	6.90	7.20	7.47	7.70	7.88	8.06	

SPOT RATE FORECASTS: TRIANGULAR ARRAY STRUCTURE

	s ₁	s_2	s_3	 S _{n-2}	S _{n-1}	s _n
Current	$f_{0,1}$	$f_{0,2}$	$f_{0,3}$	 $f_{0,n-2}$	$f_{0,n-1}$	$f_{0,n}$
Forecast (+1)	$f_{1,2}$	$f_{1,3}$	$f_{1,4}$	 $f_{1,n-1}$	$f_{1,n}$	
Forecast (+2)	$f_{2,3}$	$f_{2,4}$	$f_{2,5}$	 $f_{2,n}$		
Forecast (+n-2)	$f_{n-2,n-1}$	$f_{n-2,n}$				
Forecast (+n-1)	$f_{n-1,n}$					

DISCOUNT FACTORS

- **Discount factor** $d_{j,k}$ denotes the discount factor used to discount cash received at time k back to an equivalent amount of cash at time j.

$$d_{j,k} = \left[\frac{1}{1+f_{j,k}}\right]^{k-j}$$

Discount factor relation

$$d_{i,k} = d_{i,j} d_{j,k}$$

DISCLAIMER

 The information in this presentation has been compiled from the following textbook which has been mentioned as a reference text for this course on **Financial Engineering**.

- Reference Text:
 - Investment Science, 2nd Edition, Oxford University Press, David G. Luenberger