













## AI ALGORITHMS WITH MODEL ACCURACY MEASUREMENTS

- (Module 3)

Dr. Eric Hitimana Theoneste Murangira

#### Agenda

- 1. Why Machine Learning
- 2. Types of Machine Learning Systems
- 3. Types of Model Learning
- 4. Main challenges of Machine Learning
- 5. Dataset for Machine Learning
- 6. Most Common Supervised Algorithms
- 7. Most Common Unsupervised Algorithms
- 8. Most common Deep Learning Algorithms
- 9. Most Common Vision Transformers Algorithms
- 10. Performance Evaluations and Metrics
- 11. Steps when Modeling



#### Machine Learning Landscape

Exploration of the Machine Learning landscape. We'll delve into algorithm types and address common challenges.





### Why Use Machine Learning?

- 1 Rule-Based Approach
  - Maintaining a long list of rules for complex problems can be difficult.
- ML Advantage
  - ML systems can be shorter, easier to maintain, and more accurate.

- 3 Data Mining
  - Training algorithms on large datasets can help understand data relationships.





## Difference between deep learning and usual ML



#### Types of Machine Learning Systems

#### Supervised Learning

 Training data includes labels, used for classification and regression.

#### Unsupervised Learning

 Data is unlabeled, finding internal structure within the dataset.

#### **Semi-supervised Learning**

• Utilizing partially labeled data for learning.

#### Reinforcement Learning

 An agent interacts with the environment to learn through rewards.



#### Three Types of Machine Learning

- Supervised learning: classification, regression
- Unsupervised learning: clustering
- Reinforcement learning: chess engine



#### **Supervised Learning**



Classification



Regression

## Regression / classification models

- Predictive modeling / Supervised learning
- A **model** is a specification of mathematical/probabilistic relationships that exist between different variables.
- The goal is usually to use existing data to develop models that we can use to predict outcomes for new data, such as
  - Predicting whether an email message is spam or not
  - Predicting whether a credit card transaction is fraudulent
  - Predicting which advertisement, a shopper is most likely to click on
  - Predicting which football team is going to win the Super Bowl

Nominal (categorical with No particular order)

- Predicting stock price of a given company
- Predicting number of buyers of a certain product
- Predicting user ratings of a new movie
- Predicting the grade of a disease

Continuous / ordinal

## Supervised Learning: Regression

- **\$** Given  $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- $\diamondsuit$  Learn a function f(x) to predict y given x
  - y is real-valued == regression



## Supervised Learning: Classification

- **\$** Given  $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- $\diamondsuit$  Learn a function f(x) to predict y given x
  - y is categorical == classification



## **Unsupervised Learning**





Unlabeled training set

Clustering

## **Unsupervised Learning**





## **Reinforcement Learning**



- 1 Observe
- Select action using policy



- Action!
- Get reward or penalty



- 5 Update policy (learning step)
- 6 Iterate until an optimal policy is found



#### Instance-based vs. Model-based Learning

#### Instance-based Learning

Classifying based on similarity to the training set.

#### Model-based Learning

• Building models for each class and using them to classify new data.

## Instance-based vs Model-based Learning





Instance-based learning

model-based learning



#### Main Challenges of Machine Learning

#### **Data Quality**

 Outliers, errors, and noise in data can hinder model performance.

#### Overfitting

 The model performs well on training data but fails to generalize.

#### Underfitting

3

 The model is too simple to capture the underlying data structure.

## Overfitting vs underfitting

- High variance

  High bias

  Low bias, low variance

  y

  overfitting

  underfitting

  Good balance
- Overfitting fitting the training data too precisely usually leads to poor results on new data.
- Underfitting the model does not fit training data well.



#### **Underfitting**

- High bias, low variance
- Increase # of features or complexity of the model

#### **Overfitting**

- Low bias, high variance
- Get more training data, or reduce # of features or complexity of the model

#### **Bad Data**

- 1. Insufficient Qualitity of Training Data
- 2. Nonrepresentative Training Data
  - a. too small → sampling noise
  - b. very large → sampling bias
- 3. Poor-Quality Data
  - a. Missing value
  - b. Outliers
- 4. Irrelevant Features
  - a. Feature Extraction
  - b. Feature Selection



Model Bias

## **Bad Algorithms**

Regression



Classification



## Data in Machine Learning Modeling



#### Dataset



## Traing Set and Test Set



#### **Holdout Validation**

aka development set or dev set





n-fold cross-validation



- Training Set
- Validation Set

**Test Set** 

# Evaluation on "LARGE" data

- If many (thousands) of examples are available, then how can we evaluate our model?
- A simple evaluation is sufficient
  - Randomly split data into training and test sets (e.g. 2/3 for train, 1/3 for test)
  - For classification, make sure training and testing have a similar distribution of class labels
- Build a model using the *train* set and evaluate it using the *test* set.

# Evaluation on "SMALL" data

- What if we have a small data set?
- The chosen 2/3 for training may not be representative.
- The chosen 1/3 for testing may not be representative.

## Cross-validation

- Cross-validation more useful in small datasets
  - **First step:** data is split into *k* subsets of equal size.
  - **Second step**: each subset in turn is used for testing and the remainder for training.
- This is called k-fold cross-validation
- For classification, often the subsets are stratified before the cross-validation is performed
- The error estimates are averaged to yield an overall error estimate

#### Cross-validation example:



## More on cross-validation

- Standard method for evaluation: stratified ten-fold cross-validation
- Why ten? Extensive experiments have shown that this is the best choice to get an accurate estimate
- Stratification reduces the estimate's variance
- Even better: repeated stratified cross-validation
  - E.g. ten-fold cross-validation is repeated ten times and results are averaged (reduces the variance)

## Data Sets

| Category                 | Туре                    | Description                   | Examples                                     |
|--------------------------|-------------------------|-------------------------------|----------------------------------------------|
| 1. Based on<br>Structure | Structured Data         | Organized in rows/columns.    | Purchase history, census data, transactions. |
|                          | Unstructured<br>Data    | Not pre-defined.              | Text, images, audio, videos.                 |
|                          | Semi-Structured<br>Data | Some structure but not rigid. | JSON, XML, logs, emails.                     |

| 2. Based on<br>Modality | Text Data        | Text used in NLP tasks.                    | News, tweets, reviews.                      |
|-------------------------|------------------|--------------------------------------------|---------------------------------------------|
|                         | Image Data       | Visual data for recognition and detection. | X-rays, satellite images, faces.            |
|                         | Audio Data       | Sound for speech/emotion recognition.      | Podcasts, call recordings, sound effects.   |
|                         | Video Data       | Visual/audio frames for analysis.          | Surveillance, movies, sports videos.        |
|                         | Time-Series Data | Time-indexed for trends and forecasts.     | Stock prices, weather, sensor readings.     |
|                         | Tabular Data     | Data in tables (CSV/Excel).                | Sales reports, patient records, statistics. |

## Most common Supervised Algorithms

#### 1. Linear Algorithms:

- Linear Regression
- Logistic Regression

#### 2. Tree-Based Algorithms:

- Decision Trees
- Random Forest
- Gradient Boosting (e.g., XGBoost, LightGBM, CatBoost)

### Most common Supervised Algorithms

#### 3. Support Vector Machines (SVM):

Effective for classification and regression.

#### 4. Nearest Neighbors:

K-Nearest Neighbors (KNN)

#### Neural Networks:

- Feedforward Neural Networks
- Multi-layer Perceptron (MLP)

#### 6. Bayesian Algorithms:

Naive Bayes

#### 7. Ensemble Methods:

- AdaBoost
- Bagging
- Stacking

#### 8. Others:

• Ridge and Lasso Regression (for regularized regression tasks)

### Most common Unsupervised Algorithms

#### 1. Clustering:

- K-Means Clustering
- Hierarchical Clustering
- DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

#### 2. Dimensionality Reduction:

- Principal Component Analysis (PCA)
- t-Distributed Stochastic Neighbor Embedding (t-SNE)
- Uniform Manifold Approximation and Projection (UMAP)

### Most common Deep Learning Algorithms

#### Convolutional Neural Networks (CNNs):

Primarily used for image and video analysis tasks.

#### 2. Recurrent Neural Networks (RNNs):

 Variants include LSTMs (Long Short-Term Memory) and GRUs (Gated Recurrent Units), used for sequential data like time series and text.

#### 3. Generative Models:

- Generative Adversarial Networks (GANs)
- Variational Autoencoders (VAEs)

#### 4. Transformers:

- Basic Transformer architecture (used in language tasks like GPT, BERT).
- Adaptations for vision tasks (Vision Transformers).

### Vision Transformers Algorithms

#### 1. Vision Transformer (ViT):

 The original Vision Transformer model adapts the transformer architecture for image classification tasks.

#### 2. DeiT (Data-efficient Image Transformers):

A more efficient and robust version of ViT that requires less data for training.

#### 3. Swin Transformer:

 A hierarchical transformer that processes images at different scales, improving efficiency and accuracy for vision tasks.

#### ConvNext:

Combines transformer and convolutional approaches for image processing.

# Model Performance Evaluation

### Evaluation

- **Evaluation** = Process of judging the merit or worth of something.
- Evaluation is key to building effective and efficient Data Science systems
  - Usually carried out in controlled experiments.
  - Online testing can also be done

## Why System Evaluation?

There are many models/ algorithms/ systems, which one is the best?

# Performance evaluation

- How predictive is the model we learned?
  - For regression, usually R<sup>2</sup> or MSE
  - For classification, many options (discuss later today)
    - Accuracy can be used, with caution
- Performance on the training data (data used to build models) is *not* a good indicator of performance on future data
  - Q: Why?
  - A: New data will probably not be **exactly** the same as the training data!

# Performance Metrics



- Performance evaluation or measurement for Machine Learning (ML) models involves assessing how well a model performs on a given task.
- This evaluation ensures the model's reliability, accuracy, and generalization to unseen data.

### **Confusion Matrix**

- A confusion matrix is a table that is often used to describe the performance of a classification model (or "classifier") on a set of test data.
- True positives (TP): These are cases in which we predicted positive (they have the disease), and they do have the disease.
- True negatives (TN): We predicted negative, and they don't have the disease.
- False positives (FP): We predicted positive, but they don't have the disease. (Also known as a "Type I error.")
- False negatives (FN): We predicted negative, but they do have the disease. (Also known as a "Type II error.")

|                        | Actual:<br>Positive | Actual:<br>Negative |
|------------------------|---------------------|---------------------|
| Predicted:<br>Positive | tp                  | fp                  |
| Predicted:<br>Negative | fn                  | tn                  |

### a. Classification Models



- Accuracy:
- Precision, Recall, and F1-Score
- ROC-AUC Score
- Logarithmic Loss (Log Loss)

# 1. Accuracy



- Accuracy: performance metric that measures the proportion of correctly predicted instances (both positive and negative) out of the total number of predictions made by the model.
- Useful when Data are balanced.

$$\label{eq:accuracy} Accuracy = \frac{Number of \, Correct \, Predictions}{Total \, Predictions}$$

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

# Example

Suppose you have a model that classifies 100 instances into "cat" or "not cat." The results are:

- True Positives (TP): 50
- True Negatives (TN): 30
- False Positives (FP): 10
- False Negatives (FN): 10

Accuracy:

Accuracy = 
$$\frac{50 + 30}{50 + 30 + 10 + 10} = \frac{80}{100} = 0.8 (80\%)$$

# 2. Precision, Recall, and F1 Score

Precision: How many predicted positives are true?



$$Precision = \frac{True\ Positives}{True\ Positives + False\ Positives}$$

• Recall (Sensitivity): How many actual positives are correctly identified?

$$Recall = \frac{True\ Positives}{True\ Positives + False\ Negatives}$$

F1 Score: Harmonic mean of precision and recall.

$$ext{F1 Score} = 2 \cdot rac{ ext{Precision} \cdot ext{Recall}}{ ext{Precision} + ext{Recall}}$$

### F Measure (F1/Harmonic Mean)

- One measure of performance that takes into account both recall and precision.
- Harmonic mean of recall and precision:

$$F = \frac{1}{\frac{1}{2}(\frac{1}{R} + \frac{1}{P})} = \frac{2RP}{(R+P)}$$

- What does harmonic mean?
  - harmonic mean emphasizes the importance of **small values**, whereas the arithmetic mean is affected more by unusually large outliers
  - Data are extremely skewed; over 99% of documents are non-relevant. This is why accuracy is not an appropriate measure
  - Compared to arithmetic mean, both need to be high for harmonic mean to be high.

|                             | Predicted: Positive ("cat") | Predicted: Negative ("not cat") |
|-----------------------------|-----------------------------|---------------------------------|
| Actual Positive ("cat")     | True Positives (TP): 50     | False Negatives (FN): 10        |
| Actual Negative ("not cat") | False Positives (FP): 10    | True Negatives (TN): 30         |

#### 1. Precision

Formula:

$$Precision = \frac{True\ Positives\ (TP)}{True\ Positives\ (TP) + False\ Positives\ (FP)}$$

Substituting the values:

$$Precision = \frac{50}{50 + 10} = \frac{50}{60} = 0.8333 \,(83.33\%)$$

|                             | Predicted: Positive ("cat") | Predicted: Negative ("not cat") |
|-----------------------------|-----------------------------|---------------------------------|
| Actual Positive ("cat")     | True Positives (TP): 50     | False Negatives (FN): 10        |
| Actual Negative ("not cat") | False Positives (FP): 10    | True Negatives (TN): 30         |

#### 2. Recall (Sensitivity)

Formula:

$$Recall = \frac{True Positives (TP)}{True Positives (TP) + False Negatives (FN)}$$

Substituting the values:

$$\text{Recall} = \frac{50}{50 + 10} = \frac{50}{60} = 0.8333 \,(83.33\%)$$

|                             | Predicted: Positive ("cat") | Predicted: Negative ("not cat") |
|-----------------------------|-----------------------------|---------------------------------|
| Actual Positive ("cat")     | True Positives (TP): 50     | False Negatives (FN): 10        |
| Actual Negative ("not cat") | False Positives (FP): 10    | True Negatives (TN): 30         |

#### 3. F1 Score

Formula:

$$F1 \: Score = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}$$

Substituting the values:

F1 Score = 
$$2 \cdot \frac{0.8333 \cdot 0.8333}{0.8333 + 0.8333} = 2 \cdot \frac{0.6944}{1.6666} = 0.8333 (83.33\%)$$

|                             | Predicted: Positive ("cat") | Predicted: Negative ("not cat") |
|-----------------------------|-----------------------------|---------------------------------|
| Actual Positive ("cat")     | True Positives (TP): 50     | False Negatives (FN): 10        |
| Actual Negative ("not cat") | False Positives (FP): 10    | True Negatives (TN): 30         |

#### Interpretation

- Precision: Of all instances predicted as "cat," 83.33% are actually cats.
- Recall: Of all actual "cat" instances, 83.33% were correctly identified by the model.
- F1 Score: Combines Precision and Recall into a single score, useful when there's a trade-off between the two metrics.

|                             | Predicted: Positive ("cat") | Predicted: Negative ("not cat") |
|-----------------------------|-----------------------------|---------------------------------|
| Actual Positive ("cat")     | True Positives (TP): 50     | False Negatives (FN): 10        |
| Actual Negative ("not cat") | False Positives (FP): 10    | True Negatives (TN): 30         |

#### Interpretation

- Precision: Of all instances predicted as "cat," 83.33% are actually cats.
- Recall: Of all actual "cat" instances, 83.33% were correctly identified by the model.
- F1 Score: Combines Precision and Recall into a single score, useful when there's a trade-off between the two metrics.

# Example – Confusion Matrix



#### More example on searching scenario



Space of all documents

$$recall = \frac{Number\ of\ relevant\ documents\ retrieved}{Total\ number\ of\ relevant\ documents}$$
 
$$precision = \frac{Number\ of\ relevant\ documents\ retrieved}{Total\ number\ of\ documents\ retrieved}$$

### Precision and Recall in Text Retrieval

#### Precision

- The ability to retrieve top-ranked documents that are mostly relevant.
- Precision P = tp/(tp + fp)

#### Recall

- The ability of the search to find **all** of the relevant items in the corpus.
- Recall R = tp/(tp + fn)

|               | Relevant | Nonrelevant |
|---------------|----------|-------------|
| Retrieved     | tp       | fp          |
| Not Retrieved | fn       | tn          |

### Precision/Recall: Example



Recall = 
$$2/6 = 0.33$$
  
Precision =  $2/3 = 0.67$ 

$$\begin{aligned} & \textbf{Precision} = \frac{\textbf{Relevant Retrieved}}{\textbf{Retrieved}} \\ & \textbf{Recall} = \frac{\textbf{Relevant Retrieved}}{\textbf{Relevant}} \end{aligned}$$

### Precision/Recall: Example



$$\begin{aligned} \textbf{Precision} &= \frac{\textbf{Relevant Retrieved}}{\textbf{Retrieved}} \\ \textbf{Recall} &= \frac{\textbf{Relevant Retrieved}}{\textbf{Relevant}} \end{aligned}$$

### **Accuracy**

- Overall, how often is the classifier correct?
  - Number of correct predictions / Total number of predictions
  - Accuracy = tp+tn/(tp + fp + fn + tn)

|                    | Positive | Negative |
|--------------------|----------|----------|
| Predicted Positive | 1        | 1        |
| Predicted Negative | 8        | 90       |

- Accuracy = 1+90/(1+1+8+90) = 0.91
- 91 correct predictions out of 100 total examples
- Precision = 1/2 and Recall = 1/9
- Accuracy alone doesn't tell the full story when you're working with a class-imbalanced data set

## **Activity 15**

|               | Relevant | Nonrelevant |
|---------------|----------|-------------|
| Retrieved     | tp = ?   | fp = ?      |
| Not Retrieved | fn = ?   | tn = ?      |

Accuracy of a retrieval model is defined by,

Accuracy = 
$$\frac{tp + tn}{tp + tn + fp + fn}$$

Calculate the tp, fp, fn, tn and accuracy for Ranking algorithm #1 and #2 for the highlighted location in the ranking.



### F Measure (F1/Harmonic Mean): example



Recall = 
$$2/6 = 0.33$$

Precision = 
$$2/3 = 0.67$$

$$= 2*0.33*0.67/(0.33 + 0.67) = 0.44$$

### F Measure (F1/Harmonic Mean): example



Recall = 
$$5/6 = 0.83$$

Precision = 
$$5/6 = 0.83$$

F = 2\*Recall\*Precision/(Recall + Precision)

$$= 2*0.83*0.83/(0.83 + 0.83) = 0.83$$

# b. Regression Models



- Mean Absolute Error (MAE)
- Mean Square Error (MSE)
- Root Mean Squared Error (RMSE)
- R-Squared (R2)
- Mean Absolute Percentage Error (MAPE)

#### 1. Mean Absolute Error (MAE)

$$ext{MAE} = rac{1}{n} \sum_{i=1}^n |y_i - \hat{y}_i|$$



- **Definition**: Measures the average absolute difference between the actual values  $(y_i)$  and predicted values  $(\hat{y}_i)$ .
- Key Insight: It gives equal weight to all errors, regardless of their magnitude.

#### 1. Mean Absolute Error (MAE)

#### Example:

Predicted values ( $\hat{y}_i$ ): [3, 5, 2.5, 7]

Actual values  $(y_i)$ : [3, 4.5, 2, 8]



MAE = 
$$\frac{|3-3| + |5-4.5| + |2.5-2| + |7-8|}{4} = \frac{0 + 0.5 + 0.5 + 1}{4} = 0.5$$

#### Interpretation of MAE = 0.5

The **Mean Absolute Error (MAE)** of 0.5 indicates that, on average, the predicted values differ from the actual values by **0.5 units**. This is the average magnitude of errors between the predicted and actual values without considering the direction (whether over- or under-predicted).

• The lower the **Mean Absolute Error (MAE)**, the **better the model's performance** in terms of accuracy. Specifically, a lower MAE indicates that the model's predictions are **closer to the actual values** on average.

#### 2. Mean Squared Error (MSE)

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

• **Definition**: Measures the average of squared differences between actual and predicted values.



• Key Insight: Penalizes larger errors more than smaller ones due to squaring.

#### 2. Mean Squared Error (MSE)

#### Example:

Predicted values ( $\hat{y}_i$ ): [3, 5, 2.5, 7]

Actual values  $(y_i)$ : [3, 4.5, 2, 8]



$$MSE = \frac{(3-3)^2 + (5-4.5)^2 + (2.5-2)^2 + (7-8)^2}{4} = \frac{0 + 0.25 + 0.25 + 1}{4} = 0.375$$

#### Interpretation of MSE = 0.375

The **Mean Squared Error (MSE)** of **0.375** represents the average of the squared differences between the predicted and actual values.

• When comparing models, a **lower MSE** typically indicates a better-performing model.

# b. Clustering Models



- Silhouette Score
- Davies-Bouldin Index
- Adjusted Rand Index (ARI)

### c. Time Series Models



- Mean Absolute Scaled Error (MASE)
- Symmetric Mean Absolute Percentage Error (SMAPE)
- Dynamic Time Warping (DTW)



# Steps When Modeling

#### Model Evaluation Step 1: Split data into train and test sets



#### Model Evaluation Step 2: Build a model on a training set



### Model Evaluation Step 3: Evaluate the test set

