Regularizing and Optimizing LSTM Language models

Stephen Merity, Nitish Shirish Keskar, Richard Socher. ICLR 2018

Soyoung Yoon, Jaeyoung Hwang, Dongmin Seo

Motivation

Regularization Techniques

- Dropout
- Batch Normalization
- -> Only effective for feed-forward and conv net

Previous studies increase training parameter

We want regularization strategies can be used with no modification to existing LSTM implementations

Weight-dropped LSTM

Optimization: NT-ASGD

SGD Loss

$$\min_{w} \quad \frac{1}{N} \sum_{i=1}^{N} f_i(w)$$

SGD update

$$w_{k+1} = w_k - \gamma_k \hat{\nabla} f(w_k)$$

Last update in ASGD

$$\frac{\sum_{i=T}^{k} w_i}{(k-T+1)}$$

Regularization techniques

- 1. Variable length backpropagation sequences
 - randomly select sequence length

- 2. Variational dropout
 - First, binary dropout mask. Locked dropout for others.

- 3. Embedding dropout
 - drop out on embedding matrix

Regularization techniques

- 4. Weight tying
 - Share weights between embedding & softmax

- 5. Independent embedding size and hidden size
 - LSTM input & output dimension = reduced embedding size

6. Activation Regularization (AR) and Temporal Activation Regularization (TAR)

Result

	PTB		WT2	
Model	Validation	Test	Validation	Test
AWD-LSTM (tied)	60.0	57.3	68.6	65.8
fine-tuning	60.7	58.8	69.1	66.0
– NT-ASGD	66.3	63.7	73.3	69.7
 variable sequence lengths 	61.3	58.9	69.3	66.2
 embedding dropout 	65.1	62.7	71.1	68.1
weight decay	63.7	61.0	71.9	68.7
- AR/TAR	62.7	60.3	73.2	70.1
 full sized embedding 	68.0	65.6	73.7	70.7
weight-dropping	71.1	68.9	78.4	74.9

What to Change: LSTM -> GRU

What to Change: LSTM -> GRU

Difference of GRU

- 1. **3->2 gates** input, forget -> update
- 2. **don't use memory unit** use hidden state
- -> simpler!

pointwise multiplication

pointwise addition

vector concatenation

What to Change: LSTM -> GRU

GRU have less parameters:

expect to achieve

faster training time and

compact model size

pointwise addition

vector concatenation