Introduzione all'Ingegneria Finanziaria

Vincenzo Eugenio Corallo

vincenzo.corallo@uniroma1.it

Doctoral School of Economics (DSE)

December 16, 2019

Table of contents

Richiami di Finanza Matematica

Set-up standard

Dato un'insieme Ω , anche detto spazio di degli eventi possibili, una famiglia $\mathcal F$ di suoi sottoinsiemi è un' σ -algebra per Ω se essa è chiusa¹ rispetto alle operazioni di:

- **unione**: se una famiglia numerabile di insiemi $\{A_i\}_{i\in\mathbb{N}}\in\mathcal{F}$ allora anche la loro unione $A=\bigcup_{i=1}^{\infty}A_i\in\mathcal{F}$
- complementazione: se $A \in \mathcal{F} \to A^C \in \mathcal{F}$

 (Ω, \mathcal{F}) si dice **spazio misurabile**. Se $\Omega = \mathbb{R}$ (insieme dei numeri reali) e B è la σ -algebra (detta di Borel), generata dagli intevalli aperti di \mathbb{R} , (\mathbb{R}, B) si dice spazio di Borel e gli elementi di B si dicono insiemi di Borel.

$$\forall x, y \in X, \quad x \# y \in X$$

ovvero se essa è interna su X. Alternativamente si dice che l'insieme X è chiuso rispetto all'operazione #.

 $^{^1}$ In matematica, si dice che un'operazione # definita su un insieme non vuoto X, verifica la proprietà chiusura di se:

Misure di probabilità

Una misura di probabilità \mathcal{P} è una funzione a valori reali non negativi tale che:

$$\mathcal{P}(A) \in [0,1] \quad \forall A \in \mathcal{F}$$
 $\mathcal{P}(\cup_j A_j) = \sum_j \mathcal{P}(A_j) \quad \forall A_i \cap A_j = \emptyset \quad i \neq j$
 $\mathcal{P}(\Omega) = 1$ (1)

Una tripla $(\Omega, \mathcal{F}, \mathcal{P})$ si dice spazio di probabilità con filtrazione, in cui Ω è lo spazio degli eventi elementari, $\omega \in \Omega$, \mathcal{F} è un'algebra di Ω e \mathcal{P} è una misura di probabilità detta naturale.

Un'affermazione è "quasi sicura", e si scrive $\mathcal{P}-a.s.$, se l'insieme G in cui è falsa ha probabilità nulla: $\mathcal{P}(G)=0$.

Due o più eventi A_i sono **stocasticamente indipendenti** se:

Variabili aleatorie

Una variabile aleatoria (v.a.) X è una funzione da Ω in \mathbb{R} tale che per ogni $a \in \mathbb{R}$, l'insieme $\{\omega \in \Omega : X(\omega) \leq a\} \in \mathcal{F}$, è un evento.

La funzione $F_X(a) = \mathcal{P}(\omega \in \Omega : X(\omega) \le a)$ da \mathbb{R} in [0,1] si dice **funzione** di ripartizione di X.

La v.a. X è \mathcal{F} -misurabile se l'immagine inversa degli intervalli aperti di \mathbb{R} appartiene a \mathcal{F} vale a dire se $\{\omega \in \Omega : X(\omega) \in I\} \in \mathcal{F}$, per ogni $I \in \mathcal{B}$, spazio di Borel.

La v.a. X è **integrabile** (rispettivamente quadrato integrabile) se $\mathbb{E}(|X|) \leq \infty$ (se $\mathbb{E}(|X|^2) \leq \infty$).

Una v.a. ha media finita se e solo se è integrabile.

Date due v.a. X e Y e un evento $H = \{\omega \in \Omega : Y(\omega) \in D\}$ a probabilità non nulla, si definisce **probabilità condizionata** di X dato H come:

$$\mathcal{P}(X(\omega) \in A \mid Y(\omega) \in D) = \frac{\mathcal{P}(\{\omega \in \Omega : X(\omega) \in A)\} \cap H)}{\mathcal{P}(H)}$$

Processi stocastici

Un **processo stocastico** $(X(\omega,t),t\in T)$, scritto anche $X_t(\omega)$ è una famiglia di variabili aleatorie indicizzate al tempo, con t insieme discreto $\{t_0,t_1,...,t_n\}$ o continuo [0,T]. X(.,t) per t dato è una variabile aleatoria, mentre $X(\omega,.)$ per ω dato è una funzione del tempo detta traiettoria o sentiero campionario.

Grazie per l'attenzione!