

CCP130 Desenvolvimento de Algoritmos

Prof. Danilo H. Perico

Strings

O que é o tipo char?

- Representa 1 byte (8 bits)
 - Ou seja: é um valor entre 0 e 255 (28)

Normalmente utilizado para representar caracteres

O que é o tipo char?

 A representação de um caractere é dada através de um número inteiro

- Esse número segue um padrão conhecido entre diversos sistemas computacionais:
 - O ASCII American Standard Code for Information Interchange
 - UTF Unicode Transformation Format

Tabela ASCII

- Tabela ASCII:
 - 7 bits (números de 0 a 127)
- Tabela ASCII Estendida
 - 8 bits
 - Igual a tabela ASCII, porém contém mais caracteres:
 - Além do 0 ao 127,
 - Contém do 128 até o 255 (inclui os caracteres com acentos)

Tabela ASCII

• Afinal, como é a Tabela ASCII ?

Vamos ver!

0 0	000	NULL	32 20	040		Space	64 40	100 @	@	96 60	140 `	
1 1	001	Start of Header	33 21	041	!	!	65 41	101 A	Α	97 61	141 a	a
2 2	002	Start of Text	34 22	042	"	п	66 42	102 B	В	98 62	142 b	b
3 3	003	End of Text	35 23	043	#	#	67 43	103 C	C	99 63	143 c	C
4 4	004	End of Transmission	36 24	044	\$	\$	68 44	104 D	D	100 64	144 d	d
5 5	005	Enquiry	37 25	045	%	%	69 45	105 E	Е	101 65	145 e	e
6 6	006	Acknowledgment	38 26	046	&	&	70 46	106 F	F	102 66	146 f	
7 7	007	Bell	39 27	047	'	1	71 47	107 G		103 67	147 g	g
8 8	010	Backspace	40 28	050	((72 48	110 H		104 68	150 h	h
9 9	011	Horizontal Tab	41 29	051))	73 49	111 I		105 69	151 i	i
10 A	012	Line feed	42 2A	052	*	*	74 4A	112 J		106 6A	152 j	j
11 B	013	Vertical Tab	43 2B	053	+	+	75 4B	113 K	K	107 6B	153 k	k
12 C	014	Form feed	44 2C	054	,	,	76 4C	114 L	L	108 6C	154 l	
13 D	015	Carriage return	45 2D	055	-	-	77 4D	115 M		109 6D	155 m	m
1 4 E	016	Shift Out	46 2E	056	.	•	78 4E	116 N	Ν	110 6E		n
15 F	017	Shift In	47 2F	057	/	/	79 4F	117 O	0	111 6F	157 o	0
16 10	020	Data Link Escape	48 30	060	0	0	80 50	120 P	Р	112 70	160 p	p
17 11	021	Device Control 1	49 31	061	1		81 51	121 Q		113 71	161 q	
18 12	022	Device Control 2	50 32	062		2	82 52	122 R	R	114 72	162 r	
19 13	023	Device Control 3	51 33	063	3	3	83 53		S	115 73	163 s	
20 14	024	Device Control 4	52 34	064	4	4	84 54	124 T	Т	116 74	164 t	
21 15	025	Negative Ack.	53 35	065	5		85 55	125 U		117 75	165 u	
22 16	026	Synchronous idle	54 36	066	6	6	86 56	126 V		118 76	166 v	V
23 17	027	End of Trans. Block	55 37	067	7	7	87 57	127 W		119 77	167 w	W
24 18	030	Cancel	56 38	070	8	8	88 58	130 X	X	120 78	170 x	
25 19	031	End of Medium	57 39	071	9		89 59	131 Y	Υ	121 79	171 y	
26 1A	032	Substitute	58 3A	072	:	:	90 5A	132 Z	Z	122 7A	172 z	Z
27 1B	033	Escape	59 3B	073	;	;	91 5B	133 [[123 7B	173 {	{
28 1C	034	File Separator	60 3C	074	<	<	92 5C	134 \	/	124 7C	174	
29 1D	035	Group Separator	61 3D	075	=	=	93 5D	135]		125 7D	175 }	}
30 1E	036	Record Separator	62 3E	076	,	>	94 5E	136 ^	٨	126 7E	176 ~	~
31 1F	037	Unit Separator	63 3F	077	?	?	95 5F	137 _		127 7F	177	Del
											asciicharstabl	e.com

Chr

Dec Hex Oct HTML

Chr Dec Hex Oct HTML

Chr

Dec Hex Oct HTML

Dec Hex Oct Chr

Tabela ASCII

Como consultar a tabela em código (Linguagem C)?

Tabela ASCII

Como consultar a tabela em código (Linguagem C)?

UTF - Unicode

- Um dos padrões mais utilizados da atualidade é o UTF-8 (8-bit Unicode Transformation Format)
- UTF-8 pode representar qualquer caractere universal padrão do Unicode, sendo também compatível com o ASCII
- Tabela Unicode:
 - https://www.utf8-chartable.de/unicode-utf8-table.pl

E o que é *string* ?

• *string* é um vetor de *char*!

```
// declarando uma string de tamanho 10
char minha_string[10];
```

- Uma particularidade de string é que seu último caractere é NULO:
 - Último caractere: '\0' → indica o final de uma string
 - Pode ser chamado de terminador da string

 Deve-se ter muita atenção ao saber com qual tipo de dados está se trabalhando

- Em linguagem C:
 - as strings são representadas por aspas duplas " "
 - enquanto char usam aspas simples ' '

- - o 'a'
 - o 'A'

- Exemplos de *char*: Exemplos de *string*:
 - "Uma string"
 - o "A"
 - "Linguagem C"
 - o "Palavra"
 - o "olá mundo!"

Exemplos de string:

o 'a'

"Uma string"

o 'A'

o "A"

0 "

"Linguagem C"

o 'C'

o "Palavra"

o **'1**'

o "olá mundo!"

• São diferentes:

• São diferentes:

São diferentes:

Strings - impressão

- Para imprimir uma string em um dispositivo de saída, usa-se a função printf():
 - argumento de formatação da string: "%s"

Strings - impressão

Exemplos:

```
// imprime "minha string" na tela
printf("%s", "minha string"); // ou
printf("minha string");
// imprime o conteúdo da variável string nome
printf("%s", nome);
// imprime o conteúdo das variáveis strings dia, mes e ano
printf("%s de %s de %s", dia, mes, ano);
```

strings - impressão

- Para imprimir uma string podemos usar também a função puts()
- Exemplo:

```
// imprime "minha string" na tela
puts("minha string");
// imprime o conteúdo da variável string nome
puts(nome)
```

strings - impressão

- Diferenças entre printf() e puts():
 - Ao final da string impressa, puts() adiciona uma mudança automática de linha
 - Não é possível imprimir mais de uma string utilizando o puts

- A leitura de *strings* pode ser feita por meio dos seguintes comandos:
 - scanf()
 - gets()
 - o fgets()

- Para ler uma string em um dispositivo de entrada, usa-se a função scanf():
 - argumento de formatação da string: "%s"
- Exemplo:

```
// leitura de valor para a variável nome
scanf("%s", nome);
```

- Problema do uso do scanf():
 - O scanf entende que a string acaba no primeiro espaço em branco
 - Assim, frases não serão lidas por esta função

- Leitura de strings com gets():
- Exemplo:

```
// leitura de valor para a variável nome
gets(nome);
```

- Problema do uso do gets():
 - Com o uso da função gets, se uma cadeia maior que o tamanho de criação da string for digitada, os caracteres excedentes serão transportados para a sequência de memória que não pertence à string, o que pode gerar comportamentos inesperados do programa.

- Leitura de strings com fgets():
- Exemplo:

```
// leitura de valor para a variável nome
fgets(nome, 10, stdin);
```

- Problema do uso do fgets():
 - Com o uso da função fgets, se uma string de tamanho maior que o segundo argumento for digitada, apenas aquela quantidade de caracteres será transferida para a string, sendo os demais desprezados.

Exemplo de utiização:

```
#include <stdio.h>
  int main(void) {
4
       char msg[] = {'0', '1', 'a', '',
5
            'M', 'u', 'n', 'd', 'o', '!', '\n','\0'};
6
7
       printf("%s", msg);
8
9
       return 0;
                         PS C:\Users\danil\Documents> .\string1
                         Ola Mundo!
                         PS C:\Users\danil\Documents>
```

Exemplo de utilização:

```
#include <stdio.h>
3∨int main(void){
       char *str = "declaracao como ponteiro para char";
4
       printf("%s", str);
5
      return 0;
                        PS C:\Users\danil\Documents> .\string2
                        declaracao como ponteiro para char
                        PS C:\Users\danil\Documents>
```

- string.h: é uma biblioteca padrão da linguagem C com objetivo de manipular strings.
- Principais funções:
 - o int strlen (char*);
 - Retorna o comprimento de uma string sem contar seu terminador ('\0')
 - char * strcpy (char *, char *);
 - Copia a segunda string na primeira
 - char * strcat (char *, char*);
 - Concatena a segunda string na primeira

- Principais funções:
 - int strcmp (char *, char *);
 - Compara strings. Retorna 0, negativo, ou positivo se forem iguais, se a primeira for menor (alfabeticamente) que a segunda ou a primeira for maior (alfabeticamente) que a segunda, respectivamente.
 - char *strupr (char*);
 - Converte e retorna a string recebida em maiúsculos
 - o char * strlwr (char *);
 - Converte e retorna a string recebida em minúsculos.

- Principais funções:
 - o int strcmp (char *, char *);
 - Compara strings. Retorna 0, negativo, ou positivo se forem iguais, se a primeira for menor (alfabeticamente) que a segunda ou a primeira for maior (alfabeticamente) que a segunda, respectivamente.

Não funcionam em todos os lugares.

No Windows, com o gcc funciona

- char *strupr (char*);
 - Converte e retorna a string recebida em maiúsculos
- o char * strlwr (char *);
 - Converte e retorna a string recebida em minúsculos.

- Principais funções de manipulação:
 - int sprintf (char * str, const char * format, ...);
 - Imprime o mesmo texto que seria impresso com printf porém na string str. Retorna o número total de caracteres escritos em str.
 - int sscanf (const char * str, const char * format, ...);
 - Lê a string str assim como o scanf faria com a entrada padrão. Retorna o número de items que foram lidos.

- E se eu quiser fazer um vetor de *strings*?
- Posso fazer uma matriz de char?
- Como?

- E se eu quiser fazer um vetor de *strings*?
- Posso fazer uma matriz de char?
- Como?

```
char meses[12][10];
strcpy(meses[0], "Janeiro");
strcpy(meses[1], "Fevereiro");
...
strcpy(meses[11], "Dezembro");
```

- E se eu quiser fazer um vetor de *strings*?
- Há outra maneira:
 - Vetores de ponteiros para char

- E se eu quiser fazer um vetor de *strings*?
- Há outra maneira:
 - Vetores de ponteiros para char

```
char *strings[12];
strings[0] = "Janeiro";
strings[1] = "Fevereiro";
...
strings[11] = "Dezembro";
```

Exercícios

Exercícios

- 1. Escreva um programa que recebe quatro strings (sem utilizar o scanf()) que representam números inteiros, converte as strings em inteiros, soma os valores e imprime o total dos quatro valores.
- 2. Escreva um programa que recebe quatro strings (sem utilizar o scanf()) que representam números reais (float), converte as strings em reais (float), soma os valores e imprime o total dos quatro valores.
- 3. Escreva um programa que recebe uma linha de texto no vetor de char *s*[100]. Produza a linha em letras maiúsculas e em letras minúsculas.