# Final Project Code

Rebecca Hazen, Kunwu Lyu, and Jackson Rankin

2024-11-17

### **Data Wrangling**

```
happiness_raw <- read_csv("GSS_commute_happiness.csv")</pre>
happiness_cleaned <- happiness_raw %>%
  select(year, happy, commute, realrinc, educ, race, gender1) %>%
  filter(commute != ".i: Inapplicable",
         realrinc > 0,
         happy != ".n: No answer") %>%
  mutate(
    educ = case_when(
      str_detect(educ, "grade") ~ as.numeric(str_extract(educ, "\\d+")),
      str_detect(educ, "college") ~ as.numeric(str_extract(educ, "\\d+")) + 12,
     str_detect(educ, "No formal schooling") ~ 0,
     TRUE ~ NA
    commute = if_else(str_detect(commute, "\\d+"),
                      as.numeric(str extract(commute, "\\d+")), NA),
   race = if_else(race == "White", "White", "Non White"),
    gender = if_else(gender1 == "MALE", "Male", "Female")
  ) %>%
  select(-gender1)
happiness_recode <- happiness_cleaned %>%
  mutate(happy = if_else(happy == "Not too happy", 0, 1)) %>%
  drop_na()
write.csv(happiness_recode, file = "happiness_recode.csv")
```

### EDA

```
ggpairs(happiness_cleaned)
```



# Commute Time Distribution by Happiness Level



# Income Distribution by Happiness Level







## Proportion of Happiness by Race and Gender



```
# Boxplot for happiness by commute time
plot1 <- ggplot(happiness_cleaned, aes(x = happy, y = commute, fill = happy)) +</pre>
  geom boxplot() +
  labs(title = "Commute Time Distribution by Happiness Level",
       x = "Commute Time (minutes)",
       fill = "Happiness Level")
# Boxplot of income by happiness level
plot2 <- ggplot(happiness_cleaned, aes(x = happy, y = realrinc, fill = happy)) +</pre>
  geom_boxplot() +
  labs(title = "Income Distribution by Happiness Level",
       x = "Happiness Level",
       y = "Real Income",
       fill = "Happiness Level")
# Bar plot of happiness level by education level
plot3 <- ggplot(happiness_cleaned, aes(x = educ, fill = happy)) +</pre>
  geom_bar(position = "fill") +
  labs(title = "Proportion of Happiness Levels by Education Level",
       x = "Education Level",
       y = "Proportion",
       fill = "Happiness Level") +
 theme(axis.text.x = element_text(angle = 45, hjust = 1))
# Faceted bar plot for happiness levels by race and gender
plot4 <- ggplot(happiness_cleaned, aes(x = gender, fill = happy)) +</pre>
 geom_bar(position = "fill") +
```

### Commute Time Distribution by Ha

# Happiness Level Not too happy Pretty happy Very happy Not too Plantby happy Commute Time (minutes)

## Income Distribution by Happine



# Proportion of Happiness Levels by



### Proportion of Happiness by Race



#### Logistic Regression

0

6,0,6

**Education Level** 

```
##
## Call:
## glm(formula = happy ~ commute + realrinc + educ + race + gender,
##
       family = binomial, data = happiness_recode)
##
## Coefficients:
##
                 Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                1.2207687 0.6436418
                                       1.897 0.05787 .
               -0.0013295
## commute
                           0.0075192
                                     -0.177
                                              0.85965
## realrinc
                0.0000373 0.0000118
                                       3.161 0.00157 **
```

```
## educ
              -0.0002136 0.0463060 -0.005 0.99632
              0.0111056 0.3322843
                                       0.033 0.97334
## raceWhite
## genderMale 0.7433165 0.2509178
                                       2.962 0.00305 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 530.41 on 873 degrees of freedom
## Residual deviance: 503.81 on 868 degrees of freedom
## AIC: 515.81
## Number of Fisher Scoring iterations: 6
vif(happiness_glm)
## commute realring
                         educ
                                  race
                                         gender
## 1.025518 1.090232 1.075367 1.039942 1.021639
empirical_plot_fn <- function(quant_var, cat_var, scale = "lin") {</pre>
  # Convert strings to symbols
  quant_group <- rlang::sym(quant_var)</pre>
  cat_group <- rlang::sym(cat_var)</pre>
  happiness_ag <- happiness_recode %>%
   mutate(quant_grouped =
            ntile(!!quant_group, n = 10) # Group the quantitative variable into 10 groups
   ) %>%
   group_by(quant_grouped, !!cat_group) %>%
    summarize(
     quant_gp_median = median(!!quant_group), # Calculate median within each group
     p = sum(happy == 1) / n(), # Proportion happy
     log_odds = log(p / (1 - p)), # Avoid log issues
      .groups = "drop" # Avoid warning about grouping
   )
  # Add a column for x_var based on the scale
  happiness_ag <- happiness_ag %>%
   mutate(x_var = if (scale == "log") log(quant_gp_median) else quant_gp_median)
  # Set the x-axis label
  x_lab <- str_c(if (scale == "log") "Log Median of " else "Median of ", quant_var)</pre>
  # Plot using precomputed x_var
  ggplot(happiness_ag,
         aes(x = x_var, y = log_odds, color = !!cat_group)) +
   geom point() +
   labs(x = x_lab, y = "Empirical Log Odds")
}
# Iterate over all different combinations
# vars to iterate over
quant_vars <- c("commute", "realrinc", "educ")</pre>
cat_vars <- c("gender", "race")</pre>
```

```
# init empty list to store
empirical_log_odds_plot <- list()
for (quant_var in quant_vars) {
    for (cat_var in cat_vars) {
        # Generate the plot and store it in the list
        plot_name <- paste(quant_var, cat_var, sep = "_")
        empirical_log_odds_plot[[plot_name]] <- empirical_plot_fn(quant_var = quant_var, cat_var = cat_var)
    }
} empirical_log_odds_plot</pre>
```

### ## \$commute\_gender



##
## \$commute\_race



## \$realrinc\_gender



## \$realrinc\_race



## \$educ\_gender



## \$educ\_race



#3# test

Becca's section

Jackson's Section

#Test