

Single Supply, Rail-to-Rail Output Single Operational Amplifier

■GENERAL DESCRIPTION

NJM2741 is a low noise Rail-to-Rail Output single operational amplifier.

Rail-to-Rail Output function provides wide dynamic range, is from ground to power supply level. And Input range rails from ground level.

It is suitable for audio section of portable sets, PCs and any General-purpose applications.

■PACKAGE OUTLINE

NJM2741F

■ FEATURES

Operating Voltage2.5V to 14V

•Rail-to-Rail Output V_{OH} ≥4.9V Typ. (at V⁺=5V, R_L=5kΩ)

 $V_{OL} \le 0.1 \text{V Typ.}$ (at $V^+ = 5V$, $R_L = 5k\Omega$)

Offset VoltageSlew Rate1mV Typ.3.5V/µs Typ.

Low Distortion
 Low Input Voltage Noise
 0.001% Typ. (at V⁺=5V, f=1kHz)
 10nV/√Hz Typ. (at f=1kHz)

Bipolar Technology

◆Package Outline SOT-23-5, SC88A

■ PIN CONFIGURATION

NJM2741F NJM2741F3(Top View)

PIN FUNCTION

- 1. +INPUT
- 2. GND
- 3. -INPUT
- 4. OUTPUT
- 5. V⁺

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	15	V
Differential Input Voltage Range	V _{ID}	±15 (Note1)	V
Common Mode Input Voltage Range	V _{ICM}	0 to 15 (Note1)	V
Power Dissipation	P _D	390[SOT-23-5] (Note2) 280[SC88A] (Note2)	mW
Operating Temperature Range	T _{opr}	-40 to +85	°C
Storage Temperature Range	T _{stg}	-50 to +125	°C

(Note 1) For supply voltage less than 15 V, the absolute maximum input voltage is equal to the supply voltage.

(Note2) On the PCB "EIA/JEDEC (76.2×114.3×1.6mm, two layers, FR-4)"

■ **OPERATING VOLTAGE** (Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	2.5 to 14	V

■ ELECTRICAL CHARACTERISTICS

DC CHARACTERISTICS (V⁺=5V,Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	I _{CC}	R _L =∞, V _{IN} =2.5V, No Signal Apply	-	2.2	3.3	mA
Input Offset Voltage	V_{1O}	R _S ≤ 10kΩ	-	1	6	mV
Input Bias Current	Ι _Β		-	100	350	nA
Input Offset Current	I _{IO}		-	5	100	nA
Large Signal Voltage Gain	A _V	R _L ≥10kΩ to 2.5V, Vo=0.5V to 4.5V	65	85	-	dB
Common Mode Rejection Ratio	CMR	$0V \le V_{CM} \le 4V$	60	75	-	dB
Supply Voltage Rejection Ratio	SVR	$V^{+}=2.5V$ to 14V, $V_{CM}=V^{+}/2$	60	80	-	dB
Output Voltage	V_{OH}	$R_L=5k\Omega$ to 2.5V	4.75	4.9	-	V
	V_{OL}	$R_L = 5k\Omega$ to 2.5V	-	0.1	0.25	V
Input Common Mode Voltage Range	V _{ICM}	CMR ≥ 60dB	0	-	4	V

•AC CHARACTERISTICS (V⁺=5V,Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Unity Gain Bandwidth	GB	f=10kHz, R_L =10k Ω to 2.5V	-	10	-	MHz
Phase Margin	Φ_{M}	R_L =10k Ω to 2.5V, C_L =10pF	-	75	-	Deg
Equivalent Input Noise Voltage	V_{NI}	$f=1kHz$, $V_{CM}=2.5V$	-	10	-	nV/√Hz
Total Harmonic Distortion	THD	f=1kHz, A_V =+2 R_L =10k Ω to 2.5V, Vo=1.5Vrms	-	0.001	-	%

•AC CHARACTERISTICS (V⁺=5V,Ta=25°C)

	-	,				
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Slew Rate	SR	(Note 3), $A_V=1$, $V_{IN}=2Vpp$ $R_L=10k\Omega$ to 2.5V, $C_L=10pF$	-	3.5	-	V/µs

(Note 3) Number specified is the slower of the positive and negative slew rates.

Input Offset Voltage vs. Input Common Mode Voltage

Supply Current vs. Ambient Temperature (Supply Voltage)

Input Offset Voltage vs. Ambient Temperature (Supply Voltage)

Maximum Output Voltage vs. Supply Voltage (Temperature, R_L=10kΩ)

Maximum Output Voltage vs. Load Resistance

Input Offset Current vs. Ambient Temperature (Supply Voltage)

Maximum Output Voltage vs. Supply Voltage (Temperature, R_L=5kΩ)

Maximum Output Voltage vs. Output Current (Temperature, V⁺=5V)

Phase Margin vs. Load Capacitance (Supply Voltage) 100

Pulse Response (Ambient Temperature, V⁺/V⁻=±2.5V) $\text{V}^{\text{+}}/\text{V}^{\text{-}}\text{=}\pm2.5\text{V},\,\text{V}_{\text{IN}}\text{=}1\text{Vpp},\,\text{A}_{\text{V}}\text{=}+1,\,\text{R}_{\text{L}}\text{=}10\text{k}\Omega,\,\text{C}_{\text{L}}\text{=}10\text{pF}$

THD+N vs. Output Voltage (Frequency) V*=5V, A_v=+2, R_s=600kΩ, R_F=5kΩ, R_G=5kΩ BPF=100Hz:10-80kHz, Ta=25°C 1 0.1 0.1 0.1 0.1 0.001 0.001 0.001 0.001 0.001 0.01 1 1 1 10

100

Frequency [Hz]

1k

10k

Output Voltage [Vrms]

1

10

NJM2741

■ MEMO

[CAUTION]
The specifications on this data book are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this data book are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NJR:

NJM2741F-TE1