

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- C.Maths
- Physics
- Chemistry

+ more

வட மாகாணக் கல்வித் திணைக்களத்தின் அனுசரணையுடன் தொண்டமனாறு வெளிக்கள நிலையம் நடாத்தும்

Conducted by Field Work Centre, Thondamanaru In Collaboration with **Provincial Department of Education Northern Province**

முதலாம் தவணைப் பரீட்சை, நவம்பர் 2017 First Term Examination, November 2017

தரம் : 13 Grade: 13

<i>துசாயனவியல்</i>	I
Chemistry	I

02

துண்டு மணித்தியாலம் Two hours

- முக் கியம் 🔻 இவ்வினாத்தாள் 9 பக்கங்களில் 50 வினாக்களைக் கொண்டுள்ளது.
 - எல்லா வினாக்களுக்கும் விடை எழுதுக.
 - கணிப்பான்கள் பயன்படுத்தக்கூடாது.
 - விடைத்தாளில் தரப்பட்டுள்ள இடத்தில் உமது சுட்டெண்ணை எழுதுக.
 - 1 தொடக்கதி 50 வரையுள்ள வினாக்கள் ஒவ்வொன்றுக்கும் (1), (2), (3), (4), (5) என இலக்கம் இடப்பட்டிருக்கும் விடைகளுள் சரியானது அல்லது மிகவும் பொருத்தமானது என நீர் கருதும் விடையைத் தெரிவு செய்து அதனை விடைத்தாளில் உள்ள அறிவுறுத்தல்களுக்கு அமையக் குறிக்க.

அகிலவாயுமாறிலி $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ அவகாதரோ மாறிலி $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ பிளாங்கின் மாறிலி $h = 6.626 \times 10^{-34} \, \mathrm{J \ s}$ ஒளியின் வேகம் $c = 3 \times 10^8 \, \text{m s}^{-1}$

- 1. நான்கு சொட்டெண்களை $(\mathbf{n},\,l,\,\mathbf{m}_{_{\!P}},\,\mathbf{m}_{_{\!Q}})$ பய<mark>ன்படுத்தி ஓர் அணு</mark>வின் இலத்திரனின் அடையாளத்தை பின்வரும் எண்தொகுதிகளில் எது அணுவெண் 29 ஐ உடைய மூலகம் Cu இன் எடுத்துரைக்கலாம். வலுவளவோட்டு இலத்திரனிற்கு ஏற்கத்தக்கது?
 - (1) $(4, 0, 0, +\frac{1}{2})$

- $(2) (3, 2, 0, -\frac{1}{2})$
- $(3) (4, 0, 0, -\frac{1}{2})$

 $(4) (3, 0, 0, +\frac{1}{2})$

- (5) $(3, 2, -2, +\frac{1}{2})$
- 2. பின்வரும் சேர்வைகளிலுள்ள அடிக்கோடிடப்பட்ட மூலகங்களில் எதில் அட்டமம் பூர்த்தி செய்யப்பட்டிருக்காது?
 - (1) HNO₂
- (2) $\underline{\text{MgCO}}_3$ (3) $\underline{\text{KO}}_2$ (4) $\underline{\text{Na}}_2\underline{\text{O}}_2$
- (5) <u>P</u>Cl₃
- 3. பின்வரும் இனங்களில் எதில் இலத்திரன்களும் நியூத்திரன்களும் சம எண்ணிக்கையைில் காணப்படும்?

- (1) ${}^{14}_{7}N^{3-}$ (2) ${}^{2}_{1}D^{+}$ (3) ${}^{27}_{13}Al$ (4) ${}^{24}_{12}Mg^{2+}$ (5) ${}^{19}_{9}F^{-}$

4. பின்வரும் சேர்வையின் IUPAC பெயர் யாது?

$$CH_2 = CH - \overset{O}{C} - CH_2 - CH_2 - NH_2$$

- (1) 5-aminopent-1-en-3-one
- (2) 1-aminopent-4-en-3-one
- (3) 5-aminopent-1-en-3-ketone
- (4) 1-amino-3-oxo-4-pentene
- (5) 3-oxopent-4-enylamine
- 5. உப்பு ஒன்றில் உலோகக் கற்றயனின் ஒட்சியேற்ற எண் +3 ஆகும். அமில ஊடகத்தில் $0.2\,\mathrm{mol\,dm^3}$ செறிவுடைய இவ்வுப்பின் 25.0 cm³ முற்றாகத் தாக்கம் புரிவதற்கு 0.1 mol dm-3 Na,SO, இன் 25.00 cm³ தேவைப்பட்டது. இதன்போது $\mathrm{SO_3^{2-}}$ அயன்கள் $\mathrm{SO_4^{2-}}$ அயன்களாக மாற்றப்பட்டது. இத்தாக்கத்தின் இறுதியில் உலோக கற்றயனின் ஒட்சியேற்ற எண்
 - (1) 0
- (2) +1
- (3) + 2
- (4) + 3
- (5) + 4

6.	0.15 mol dm ⁻³ K	$ m K_2SO_4$ இன் $20 m cm^3$ உ	_ம் 0.3 mol dm ⁻³	Al ₂ (SO ₄) ₃ இன் 30 c	:m³ உம் ஒருமி	ிக்கக் கலக்கப்பட்	ட்டதுடன்
	காய்ச்சிவடித்த	நீர்சேர்த்து 100 cn	n³ கரைசலொன் _!	று ஆக்கப்பட்டது.	இக்கரைசலி	ில் நேர் ஏற்ற ج	அடர்த்தி
	F dm-3 இல்						
	(1) 0.12	(2) 0.15	(3) 0.21	(4) 0.60	(5) 1	.20	
7.	A இன் வெப்ப சேர்வை B இற் A ஆக இருக்க	செறிந்த H ₂ SO ₄ சே பப்பிரிகையின் போத தெ செறிந்த H ₂ SO ₄ (கக்கூடியது (2) NaNO ₃	து திண்மச் சேர் சேர்த்தபோது மீ	வை B ஐயும், வ ண்டும் செங்கபில	ாயுவிளைவெ வாயு வெளிே	ான்றையும் தரு. பெற்றுகின்றது. (கின்றது.
0	2		2		3° Z	2	
8.	க்ஷ் தரப்பட்ட	_ வெப்ப இரசாயன					
		$C_{(graphite)} + 2H_2(g) -$	\longrightarrow CH ₄ (g);	$\Delta \mathrm{H}_{_1}$			
		$C_{\text{(Diamond)}} + 2H_2(g)$	\longrightarrow CH ₄ (g);	$\Delta ext{H}_2$			
	.9	$C(g) + 2H_2(g)$		ΔH_3			
		ாடர்புடமைகளில் ச 2 (2		ЛН (3)	ΛΗ – ΛΕ	і АН	
		$= \Delta H_2 - \Delta H_1 $ (5)			$\Delta \Pi_{Sub(C)} - \Delta \Pi_{C}$	\mathbf{I}_3 — $\Delta \mathbf{I} \mathbf{I}_2$	
9.	127° C இல் 2 இவ்விரு பாத் வாயுக்கள் ஏக	னவளவுடைய விழை 2V கனவளவுடைய திரங்களும் கனவள வினமானமாகத் கல தொகுதியின் மொத் 6) (2) 16	வேறு ஒர <mark>ு எ</mark> வு புறக்கணிக்க க்கவிடப்பட்டது.	விறைத்த பாத்திரத் த்தக்க ஒடுங்கிய பின்னர் தொகுதி	தினுள் 0.8 குழாய் ஒன்றி 127°C இற்கு இன் சார்மூலக	g A(g) காணப்ப ினால் இணைக் ந கொண்டு வரப்	டுகிறது. கப்பட்டு பபட்டது.
10.	(1) Al ₂ Cl ₆ இரு (2) CO கைத் (3) NCl ₃ இன் (4) SO ₂ புதினம	சேர்வைகளைப் பற் நபகுதியத்தில் மையிதாழிலில் ஒரு எரி நீர்ப்பகுப்பின் போ ப்பத்திரிகைத் தாலை அயடோமான நியமிட	ப் அணு அட்டம பொருளாகப் ப எது மூலவாயு எ எ வெளிற்றப் ம	் பூர்த்தியாக்கப்ப யன்படுத்தப்படும். பிடுவிக்கப்படும். பயன்படுத்தப்படும்	ட்டிருக்கும்.		
11.	பின்வரும் அய	பன்களின் ஆரைகன	ளக் கருதுக.				
	அயன்	\mathbf{A}^{+}	D^{2+} E	2+ G-	J ²⁻	L^{2-}	
	ஆ ரை / nr	m 0.10	0.10 0	.13 0.4	0.14	0.18	
		•		DL (3)			சாலக

- 12. பென்சீனின் நைத்திரேற்றத் தாக்கம் சம்பந்தமான பின்வரும் கூற்றுக்களில் **தவறானது**?
 - (1) NO₂ மின்னாடியாகச் செயற்படும்.
 - (2) HNO₃ மூலமாகச் செயற்படும்.
 - (3) இடைநிலை பரிவால் உறுதியாக்கப்படும்.
 - (4) இது மின்னாட்டப் பிரதியீட்டுத் தாக்கமாகும்.
 - (5) விளைவில் பென்சீன் வளையம் ஏவற்படுத்தப்படும்.
- 13. எண்ணெய் சுத்திகரிப்பு நிலையங்களில் பெற்றோலியத் (petroleum) தில் உள்ள சல்பர் மாசை அகற்றும் நடவடிக்கை மிகவும் முக்கியமானதாகும். இங்கு முதலாம் படியில் சல்பர் கொண்ட சேர்வைகள் H_2S ஆக மாற்றப்படுகின்றது. இரண்டாம் படியில் மேலே பெறப்பட்ட H_2S ஆனது கட்டுப்படுத்தப்பட்ட வளி முன்னிலையில் $H_2O(g)$ ஆகவும், S(s) ஆகவும் ஒட்சியேற்றப்படுகின்றது.

பதார்த்தம்	H° _f /kJ mol ⁻
$H_2S(g)$	- 21.0
$H_2O(g)$	- 243.0

இரண்டாம் படியின் இடம்பெறும் தாக்கத்தின் வெப்பவுள்ளுறை

- (1) 201 kJ mol⁻¹
- (2) 264 kJ mol⁻¹
- (3) 444 kJ mol⁻¹

- (4) 465 kJ mol⁻¹
- (5) 222 kJ mol⁻¹
- 14. பின்வரும் இணைப்புச் சேர்வையின் IUPAC பெயர் [CuCl(H₂O)₅]Br

- $(1)\ \ penta a quamon och lori do copper (II)\ bromide$
- (2) chloridopentaaquacopper(II) bromide
- (3) chloridopentaaquacuprate(II) bromide
- (4) pentaaquachloridocopper(II) bromide
- (5) pentaaquachloridocopper(I) bromide
- 15. பின்வரும் மூலங்களில் இரண்டாம் அயனாக்கற்சக்தி உயர்வானது
 - (1) K
- (2) S
- (3) Mg
- (4) P
- (5) Na
- 16. $NH_4^+(aq) + NO_2^-(aq) \longrightarrow N_2(g) + 2H_2O(l)$ என்னும் தாக்கத்தின் தாக்கவரிசையைத் துணியும் பொருட்டு $25^{\circ}C$ இல் செய்யப்பட்ட பரிசோதனைப் பெறுபேறுகள் பின்வரும் அட்டவணையில்த் தரப்பட்டுள்ளது.

பர்சோதனை இலக்கம்	ஆரம்ப [NH ₄ +(aq)] / mol dm ⁻³	ஆரம்ப [NO₂¯(aq)] / mol dm⁻³	ூரம்பத்தாக்கவீதம் / mol dm ⁻³ s ⁻¹
1	0.2	0.05	3.0×10^{-6}
2	0.2	0.10	6.0×10^{-6}

 25° C இல் இத்தாக்கத்தின் வீதமாறிலி K = $3.0 \times 10^{-4} \, \mathrm{mol^{-1}} \, \mathrm{dm^3 \, s^{-1}}$ ஆயின் $\mathrm{NH_A^{+}}(\mathrm{aq})$ சார்பான தாக்கவரிசை

- (1) 0
- (2) $\frac{1}{2}$
- (3) 1
- (4) 2
- **(5)** 3

17. $1.0~{
m dm^3}$ கனவளவுடைய மூடிய பாத்திரமொன்றினுள் திண்ம ${
m NH_2HS}$ சிறிதளவு எடுக்கப்பட்டு குறித்த வெப்பநிலைக்கு வெப்பப்படுத்தப்பட்டது. இதன்போது பின்வரும் சமநிலை பெறப்பட்டது.

$$NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g)$$

இவ்வெப்பநிலையில் இச்சமநிலையின் $K_{_{
m p}}$ = $1.6 imes 10^9~{
m N}^2~{
m m}^{-4}$ ஆயின் பாத்திரத்தினுள் மொத்த அமுக்கம்

- (1) $1.6 \times 10^9 \text{ Nm}^{-2}$
- (2) $1.6 \times 10^5 \text{ Nm}^{-2}$

(3) $8.0 \times 10^4 \text{ Nm}^{-2}$

- $(4) 4.0 \times 10^4 \text{ Nm}^{-2}$
- $(5) 2.0 \times 10^4 \text{ Nm}^{-2}$

18. பின்வரும் தாக்கத்திட்டத்தை கருதுக.

$$CH_3CHO \xrightarrow{\mathfrak{B}\mathfrak{B}\mathfrak{I}\mathfrak{M}} P \xrightarrow{\Delta} Q$$

விளைவு Q ஆக இருக்கக்கூடியது

(2) CH, CHCH, CH, OH

OH (3) CH,CHCH,CHO

- (4) $CH_3CH = CHCH_2OH$ (5) $CH_3CH = CHCHO$

19. பின்வருவனவற்றில் எது CH₃ — CH = CH₄ இற்கும் HBr இற்கும் இடையேயான தாக்கத்தின் பொறிமுறையின் முதலாவது படியைச் சிறப்பாக எடுத்துக்காட்டுகின்றது?

(1)
$$CH_3 - CH = CH_2 + H - Br \longrightarrow CH_3 - CH_2 - CH_2 + Br$$

(2)
$$CH_3 - CH = CH_2 + H - Br \longrightarrow CH_3 - CH - CH_2 + H$$

(3)
$$CH_3 - CH = CH + H - Br \longrightarrow CH_3 - CH - CH_2^- + H^+$$

(4)
$$CH_3 - CH = CH_2 + H - Br \longrightarrow CH_3 - CH - CH_3 + Br$$

(5)
$$CH_3 - CH = CH_2 + H \longrightarrow CH_3 - CH - CH_2 - Br + H$$

- 20. பின்வரும் சேர்வைகளில் எதில் Fe தாழ்ந்த ஒட்சியேற்ற நிலையில்க் காணப்படும்
 - $(1) \text{ Fe}_2 O_4$
- (2) $K_{3}[Fe(CN)_{6}]$
- (3) [Fe(CO)₅] (4) FeO
- (5) [Fe(SCN)₂]

21. பின்வரும் தாக்கத்தைக் கருதுக.

மேற்குறித்த தாக்கத்தின் விளைபொருட்கள்

(1)
$${}^{+}$$
Na ${}^{-}$ O \longrightarrow COO ${}^{-}$ Na ${}^{+}$ + CH ${}_{3}$ CH ${}_{2}$ OH

(2)
$$HO \longrightarrow COO^*Na^+ + CH_3CH_2OH$$
 (4) $^+Na\overline{O} \longrightarrow COO^*Na^+ + CH_3CH_2O^*Na^+$

(3)
$$HO \longrightarrow COOH + CH_3CH_2OH$$

(5)
$$HO \longrightarrow COO^-Na^+ + CH_3CH_2O^-Na^+$$

- 22. பின்வரும் மூலக்கூறுகளில் இருமுனைவுத் திருப்புதிறனைக் கொண்ட மூலக்கூறு
 - (1) XeF,
- (2) PCl₂
- (3) XeF,
- (4) BCl,
- (5) SO,
- $C(s) + CO_2(g) \rightleftharpoons 2CO(g);$ $K_p = 1.2 \times 10^{14} \text{ N m}^{-2}$ 23.

 - $CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g);$ $K_p = 5.0 \times 10^{-3} \text{ N}^{-1} \text{ m}^2$

1100 K இல் மேலே தரப்பட்ட சமநிலைகள் தொடர்பான தரவுகளைக் கருதுக.

$$C(s) + CO_2(g) + 2Cl_2(g) \Longrightarrow 2COCl_2(g)$$

எனும் சமநிலைத் தாக்கத்திற்கான $K_{_{\mathrm{p}}},\,N^{\text{--}}\,m^2$ அலகில்

- $(1) 4.2 \times 10^{-17}$
- (2) 3.0×10^9 (3) 6.0×10^{11} (4) 2.4×10^{16} (5) 4.8×10^{18}
- 24. பின்வருவனவற்றில் எது அமில KMnO_4 இன் நிறத்தை **நீக்காது**?
 - (1) SO,
- $(2) H_2S$
- $(3) H_2O_2$
- $(4) H_{3}PO_{3}$ $(5) H_{3}PO_{4}$
- 25. பின்வரும் சமநிலைகளில் எது அமுக்கம் அதிகரிக்கும்போது சமநிலை இடப்புறம் நகரும்
 - (1) $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$
 - (2) $CH_3CH_2OH(l) + CH_3COOH(l) \rightleftharpoons CH_3COOCH_2CH_3(l) + H_3O(l)$
 - (3) $N_2(g) + 3H_2(g) \implies 2NH_3(g)$
 - (4) $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$
 - (5) $2NO_2(g) \rightleftharpoons N_2O_4(g)$

26.

மேலே தரப்பட்ட சேர்வைகளில் அமிலவலிமை ஏறுவரிசையைச் சரியாகத் தருவது

- (1) a < b < c < d
- (2) c < a < b < d
- (3) c < a < d < b

- (4) d < c < b < a
- (5) b < d < a < c
- 27. விறைப்பான பாத்திரமொன்றில் சிறிதளவு PCl, எடுக்கப்பட்டு 250°C இற்கு வெப்பப்படுத்தப்பட்டது. இதன் போது அமுக்கம் Pஇல் பின்வரும் சமநிலை நிலைநிறுத்தப்பட்டது.

$$PCl_{5}(g) \rightleftharpoons PCl_{3}(g) + Cl_{2}(g)$$

சமநிலையில் $\mathrm{PCl}_{\varsigma}(\mathrm{g})$ இன் பகுதியமுக்கம் $\dfrac{\mathrm{P}}{\mathsf{g}}$ ஆகக் காணப்பட்டது.

இவ்வெப்பநிலையில் சமநிலைமாறிலி $K_{_{
m p}}$

- (1) $\frac{8P}{Q}$ (2) $\frac{16P}{Q}$ (3) $\frac{32P}{Q}$
- (4) 8P (5) 16P

28. பின்வரும் வெப்ப இரசாயனத் தரவுகளைக் கருதுக.

அயடீனின் நியமப்பதங்கமாதல் வெப்பவுள்ளுறை = 19 kJ mol-1

நியம I — I பிணைப்புப் பிரிகை வெப்பவுள்ளுறை = 151 kJ mol⁻¹

அயடீனின் நியம அணுவாதல் வெப்பவுள்ளுறை

(1) 66 kJ mol⁻¹

(2) 75.5 kJ mol⁻¹

(3) 85 kJ mol⁻¹

(4) 132 kJ mol⁻¹

(5) 170 kJ mol⁻¹

29. 25°C இல் மெதனோல் (CH₂OH) எதனோல் (CH₂CH₂OH) என்பவற்றின் நிரம்பலாவி அமுக்கங்கள் முறையே 96 mm Hg உம் 48 mm Hg உம் ஆகும். மெதனோல், எதனோல் என்பவற்றைக் கொண்ட கரைசலொன்று அதன் ஆவியுடன் சமநிலையில் உள்ளது. திரவ அவத்தையில் மெதனோல் : எதனோல் மூல்விகிதம் 1:3 ஆயின் ஆவி அவத்தையில் மெதனோல் : எதனோல் மூல் விகிதம்

(1) 1:3

(2) 2:3

(3) 3:2

(4) 2:1

(5) 6:1

30. பின்வரும் கரைசல்களில் எது மற்றைய கரைசல்களின் நிறத்தில் இருந்து வேறுபடும்?

(1) $[Ni(NH_3)_6]^{2+}(aq)$

(2) $[CoCl_{4}]^{2}$ -(aq)

(3) $[Cu(NH_3)_A]^{2+}(aq)$

(4) $[Cu(H_2O)_6]^{2+}(aq)$

(5) $[Co(NH_2)_{\epsilon}]^{2+}(aq)$

வினா 31 இல் இருந்து 40 இற்கான அறிவுறுத்தல்கள்.

(1)	(2)	(3)	(4)	(5)
(a) யும் (b) யும் மாத்திரம் திருத்தமானவை	(b) யும் (c) யும் மாத்திரம் திருத்தமானவை	(c) யும் (d) யும் மாத்திரம் திருத்தமானவை	(d) யும் (a) யும் மாத்திரம் திருத்தமானவை	வேறு தெரிவுகளில் எண்ணோ சேர்மானங்களோ திருத்தமானவை.

31. பின்வருவனவற்றில் எது / எவை ஈர்ஏசோமீதேன் (Diazomethane - CH₂N₂) இன் சரியான பரிவுக்

கட்டமைப்பு / கட்டமைப்புக்கள்? ($\mathrm{CH_2N_2}$ இன் வன்கூட்டுக் கட்டமைப்பு $\mathrm{H} = \mathrm{C} = \mathrm{N} = \mathrm{N}$)

(a)
$$H - \overline{C} - N = N$$

(c)
$$\mathbf{H} - \overset{+}{\overset{-}{\overset{-}{\mathbf{C}}}} - \overset{-}{\mathbf{N}} = \overset{-}{\mathbf{N}} : \overset{-}{\overset{-}{\mathbf{N}}}$$

(d)
$$H - C = N = N$$
:

32. இலட்சியவாயு மாதிரியொன்று பற்றிய பின்வரும் கூற்றுக்களில் எது / எவை சரியானது / சரியானவை?

- (a) மெய்வாயுக்கான வந்தர்வாலின் சமன்பாட்டைப் பயன்படுத்த முடியாது.
- (b) புள்ளித்திணிவு நடத்தையுடையது.
- (c) எந்தவொரு நிபந்தனையிலும் அமுக்கப்படு காரணி Z=1 ஆகும்.
- (d) போதியளவு அமுக்கத்தைக் கொடுப்பதன் மூலம் திரவமாக்கமுடியும்.

33. பின்வரும் தாக்கங்களில் எதில் / எவற்றில் வீழ்படிவு ஒன்று விளைவாகப் பெறப்படும்.

(b)
$$CH_3C \equiv CH \xrightarrow{Cu_2Cl_2/NH_4OH}$$

(d)
$$H^+/KMnO_4$$

- 34. $AsO_4^{3-} + H_2S + H^+ \longrightarrow As_2S_3 + S + H_2O$ எனும் தாக்கம் பற்றிய பின்வரும் கூற்றுக்களில் சரியானது எது / எவை?
 - (a) தாக்க பீசமானம் AsO_4^{3-} : $H_2S = 2:3$
 - (b) தாக்கத்தில் AsO₄3- ஓட்சியேற்று கருவியாகச் செயற்படும்.
 - (c) தாக்கத்தில் H₂S சல்பைட்டு வழங்கியாகச் செயற்படும்.
 - (d) தாக்க பீசமானம் AsO_4^{3-} : $H_2S=2:5$
- 35. $6.0 \,\mathrm{g} \,\mathrm{CH_3COOH}$ உம் $2.3 \,\mathrm{g} \,\mathrm{CH_3CH_2OH}$ உம் $1.7 \,\mathrm{g} \,\mathrm{CH_3OH}$ உம் கொண்ட கலவை தொடர்பான பின்வரும் கூற்றுக்களில் எது / எவை சரியானது / சரியானவை? (சார்மூலக்கூற்றுத் திணிவுகள் $\mathrm{CH_3COOH} = 60$, $\mathrm{CH_3CH_2OH} = 46$, $\mathrm{CH_3OH} = 34$)
 - (a) CH₃CH₂OH இன் மூல்ச்சதவீதம் 23%
 - (b) CH,COOH இன் மூலல்த்திறன் CH,CH,OH இன் மூலல்த்திறனுக்குச் சமனாகும்.
 - (c) CH,COOH இன் மூல்ப்பின்னம் $\frac{1}{2}$
 - (d) CH₃OH இன் திணிவுச் சதவீதம் 17%.
- 36. வெப்பநிலை அதிகரிப்புடன் வாயு அவத்தையில் இடம்பெறும் தாக்கமொன்றின் தாக்கவீதம் அதிகரிப்பதற்கான காரணம் / காரணங்கள்?
 - (a) ஏவற்சக்தியைக் கடக்கும் தாக்கமூலக்கூறுகளின் பின்னம் அதிகரித்தல்.
 - (b) தாக்க மூலக்கூறுகளின் மோதுகைகளின் எண்ணிக்கை அதிகரித்தல்.
 - (c) தொகுதியின் அமுக்கம் அதிகரித்தல்.
 - (d) ஒரலகு நேரத்தில் இடம்பெறும் மோதுகைகளின் எண்ணிக்கை அதிகரித்தல்.
- 37. $H_2(g) + I_2(g)$ \Longrightarrow 2HI(g) எனும் சமநிலை பற்றிய பின்வரும் கூற்றுக்களில் சரியானது / சரியானவை?
 - (a) K_p = K_c ஆகும்.
 - (b) வெப்பநிலை மாறாதுள்ளபோது தொகுதிக்கு மேலும் $H_{\nu}(g)$ சேர்ப்பதால் K_{ν} மாறாது.
 - (c) வெப்பநிலை அதிகரிப்பு சமநிலையைப் பாதிக்காது.
 - (d) தொகுதி அமுக்கப்படும்போது சமநிலை வலப்புறம் நகரும்.

- 38. சமநிலைக் தாக்கமொன்றின் ஆரம்பத்தில் ஊக்கி ஒன்று இடும்போது பின்வருவனவற்றில் எது / எவை இடம்பெறும்?
 - (a) முற்தாக்க வீதமும் பிற்தாக்க வீதமும் ஒரே அளவால் அதிகரிக்கும்.
 - (b) முற்தாக்க வீதமும் பிற்தாக்க வீதமும் ஒரே காரணியால் அதிகரிக்கும்.
 - (c) தாக்க பொறிமுறையை மாற்றும்.
 - (d) விளைவை அதிகரிக்கச் செய்யும்.
- 39. பின்வரும் இரசாயனங்களில் எது / எவை ஆய்வுகூடத்தில் கபில நிறம் போத்தல்களில் சேமிக்கப்படும்?
 - (a) NaOH(aq)
- (b) $H_2O_2(aq)$
- (c) AgNO₃(aq)
- (d) செறிந்த HNO,
- 40. $C_4H_{10}O$ எனும் மூலக்கூற்றுச் சூத்திரத்தை உடைய சேர்வை A பின்வரும் சோதனைக்கு விடையளித்தது.
 - ★ Na உலோகத்துடன் ஐதரசன் வாயுவை விடுவித்தது.
 - ★ அமில KMnO₄ இன் நிறத்தை நீக்கியது

ஆனால் தளமுனைவாக்கப்பட்ட ஒளியின் தளத்தை திருப்பவில்லை. சேர்வை A ஆக இருக்கக்கூடியது / கூடியவை

(a) CH₃CHCH₂CH₃

(b) CH₃CH₂CH₂CH₂OH

(c) CH₃CHCH₂OH

(d) CH₃C — OH

வீனா 41 இல் இருந்து 50 இற்கான அறிவுறுத்தல்கள்.

தெரிவுகள்	முதலாம் கூற்று	இரண்டாம் கூற்று
(1)	உ ண் மை	உண்மையாகவிருந்து முதலாம் கூற்றுக்கு திருத்தமான விளக்கத்தைத் தருவது
(2)	உ ண் மை	உண்மையாகவிருந்து முதலாம் கூற்றுக்கு திருத்தமான விளக்கத்தைத் கொடுக்காதது.
(3)	உண்மை	பொய்
(4)	பொய்	உண்மை
(5)	பொய்	பொய்

	முதலாம்கூற்று	இரண்டாம் கூற்று
41.	$\mathrm{SO}_2(\mathrm{g})$ ஐயும் $\mathrm{Cl}_2(\mathrm{g})$ ஐயும் ஈரநீலப்பாசிச்சாயத்தாளைப் பயன்படுத்தி வேறுபடுத்தி இனங்காணமுடியாது.	SO ₂ (aq) உம் Cl ₂ (aq) உம் அமில இயல்பைக் காட்டும்.
42.	பென்சீன், புரோமின் நீரின் நிறத்தை நீக்காது.	பென்சீன் 6π இலத்திரன்களும் ஓரிடப்பாடற்றுக் காணப்படும்.
43.	X கதிர்க் கூடத்தினுள் காந்தப் பொருட்கள் எதனையும் எடுத்துச் செல்லக்கூடாது.	X – கதிர்கள் காந்தப்புலத்தினால் திசை திருப்பப்படும்.
44.	2Na(s) +2H₂O(l) → 2NaOH(aq) + H₂(g) எனும் தாக்கம் தாழ்வெப்பநிலைகளில் மட்டும் சுயாதீனமானது.	இத்தாக்கத்தில் ΔΗ இன் குறியும் ΔS இன் குறியும் மறையாகும்.
45.	வாயுக்களின் பரவுகை வீதம் மூலர்த்திணிவிற்கு நேர் விகிதம் சமனாகும்.	வாயுக்களின் கதிர்வர்க்க இடை $\overline{\mathrm{C}^2} = \dfrac{3\mathrm{RT}}{\mathrm{M}}$ இனால்த் தரப்படும்.

		0-1
	முதலாம்கூற்று	இரண்டாம் கூற்று
46.	(CH ₃) ₃ C—Cl இன் கருநாட்டத்தாக்க வீதம் CH ₂ = CH—CH ₂ Cl இலும் உயர்வானதாகும்.	புடைக்காபோகற்றையனின் உறுதி முதல் காபோகற்றயனிலும் உயர்வானதாகும்.
47.	தாக்கமொன்றில் தாக்கி ஒன்று குறித்த தாக்கவரிசை பூச்சியமாயின் அத்தாக்கம் பலபடித் தாக்கமாகும்.	பலபடித் தாக்கங்களில் மெதுவான படியே தாக்கவீத நிர்நயப்படியாகும்.
48.	குறித்த வெப்பநிலையில் இயக்கச் சமநிலை தொகுதியொன்றில் தாக்கிகளின் செறிவு அதிகரிக்கும் போது சமநிலை மாறிலி, K _C இன் பெறுமானமும் அதிகரிக்கும்.	சமநிலைத் தொகுதியில் தாக்கயின் செறிவு அதிகரிக்கும் போது சமநிலை வலப்புறம் நகரும்.
49.	ஐதான HNO₃ உடன் பினோலைப் போன்று அனலீன் இலகுவில் நைத்திரேற்றத்திற்கு உள்ளாக முடியாது.	-OH பென்சின் வளையத்தை ஏவும் கூட்டமாகும். ஆனால்NH ₂ கூட்டம் ஏவலகற்றும் கூட்டமாகும்.
50.	ஆவிப்பறப்புள்ள இரு திரவங்களைக் கலந்து துவிதக் கரைசலொன்றை ஆக்கும் போது வெப்பம் வெளிவிடப்படின் அக்கரைசல் எதிர்விலகல்க் கரைசலாகும்.	ஏதிர்விலகல்க் கரைசலொன்றில் தூய கூறுகளின் மூலக்கூறுகளுக்கு இடையேயான கவர்ச்சி விசை கரைசலில் இரு கூறுகளின் மூலக்கூறுகளுக்கிடையிலான கவர்ச்சி விசையிலும் அதிகமாகும்.

ஆவர்த்தன அட்டவணை

	1				4													2
1	H		7											٠,				He
	3	4											5	6	7	8	9	10
2	Li	Be									ı		В	C	N	O	F	Ne
	11	12		C.									13	14	15	16	17	18
3	Na	Mg											Al	Si	P	S	CI	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti .	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
	55	56	La-	72	73	74	75	76	.77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	W.	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113				·	
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut					
						•												

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

வட மாகாணக் கல்வித் திணைக்களத்தின் அனுசரணையுடன் தொண்டமனாறு வெளிக்கள நிலையம் நடாத்தும் Conducted by Field Work Centre, Thondmanaru In Collaboration with

முதலாம் தவணைப் பரீட்சை, நவம்பர் 2017 First Term Examination, November 2017

Provincial Department of Education Northern Province

தரம் : 13 Grade : 13

இரசாயனவியல் II Chemistry II 02 T II

3 மணித்தியாலம் 3 hours

சுட்டெண்:

- 🖈 ஆவர்த்தன அட்டவணை பக்கம் 8 இல் வழங்கப்பட்டுள்ளது.
- 🖈 கணிப்பான்களைப் பயன்படுத்தக்கூடாது.
- ★ அகில வாயு மாறிலி $R = 8.314~\mathrm{J~K^{-1}~mol^{-1}}$.
- igstar அவகாதரோ மாறிலி $N_{\!\scriptscriptstyle A} = 6.022 imes 10^{23} \ \mathrm{mol^{\text{-}1}}$.
- 🛨 இவ்வினாத்தாளுக்கு விடை எழுதும்போது அற்கைற் கூட்டங்களைச் சுருக்கமான விதத்தில் காட்டலாம்.

- 🗖 பகுதி A அமைப்புக்கட்டுரை (பக்கங்கள் 2 8)
- 🛨 எல்லா வினாக்களுக்கும் இத்தாளிலேயே விடை எழுதுக.
- ★ ஒவ்வொரு வினாவுக்கும் கீழும் விடப்பட்டுள்ள இ<mark>டத்தில்</mark> உமது விடைகளை எழுதுக. கொடுக்கப்பட்டுள்ள இடம் விடைகளை எழுதுவதற்குப் போதுமானது என்பதை<mark>யு</mark>ம் விரிவான விடைகள் எதிர்பார்க்கப்படவில்லை என்பதையும் கவனிக்க.
 - 🔲 பகுதி B உம் C உம் கட்டுரை (பக்கங்கள் 9 14)
- ★ இப்பகுதியிலுள்ள மூன்று வினாக்களுக்கும் விடை எழுதுக. உமக்கு வழங்கப்படும் எழுதும் தாள்களை இதற்குப் பயன்படுத்துக.
- \star இவ்வினாத்தாளுக்கென வழங்கப்பட்ட நேர முடி விலே பகுதி Aமேலே இருக்கும்படி யாக A,B,C ஆகிய மூன்று பகுதிகளின்
- 🖈 விடைத்தாள்களையும் ஒன்றாகச் சேர்த்துக் கட்டியபின் பரீட்சை மேற்பார்வையாளரிடம் கையளிக்க.
- 🖈 வினாத்தாளின் B, C பகுதிகளை மாத்திரம் பரீட்சை மண்படத்திலிருந்து வெளியே எடு த்துச்செல்ல அனுமதிக்கப்படும்.

பரீட்சகர்களின் உபயோகத்திற்கு மட்டும்

பகுதி	வினா இல.	புள்ளிகள்
	1	
A	2	
A	3	
	4	
	5	
В	6	
	7	
	8	
C	9	
	10	
மொத்தப்	b	
சதவீதம்		

இறுதிப் புள்ளிகள்

இலக்கத்தில்	
எழுத்தில்	

குறியீட்டெண்கள்

வினாத்தாள் பரீட்சகர் 1	
வினாத்தாள் பரீட்சகர் 2	
புள்ளிகளை பரீட்சித்தவர் :	

பகுதி A - அமைப்புக்கட்டுரை எல்லா வீனாக்களுக்கும் விடை தருக.

1. (a) (i) பின்வரும் ஒவ்வொரு இயல்புகளுக்கும் ஏற்ப கீழே தரப்பட்ட நான்கு சேர்வைகளையும் இறங்கு வரிசையில் ஒழுங்குபடுத்துக.

H,O, H,S, H,Se, H,Te

- (I) தாழ்த்தும் இயல்பு :>

- (ii) பின்வரும் ஒவ்வொரு தொடையிலும் உள்ள பதார்த்தங்களை அவற்றின் மைய அணுவின் மின்னெதிர்த்தன்மைக்கு ஏற்ப ஏறுவரியைில்த் தருக.

(b) கீழே தரப்பட்டுள்ள (i) தொடக்கம் (iv) வரையான வினாக்கள் மெதைல்நைத்திரேற்றை (CH_3NO_3) அடிப்படையாகக் கொண்டன. அதன் வன்கூட்டுக் கட்டமைப்பு கீழே தரப்பட்டுள்ளது.

$$H - C - O - N - O$$

(i) இம்மூலக்கூறிற்கு மிகவும் ஏற்றுக்கொள்ளத்தக்க லூவிஸ் கட்டமைப்பை வரைக.

(ii)	இம்மூலக்கூறிற்கு	பரிவுக்	கட்டமைப்புக்களை	வரைவதுடன்	அவற்றின்	சார்	உறுதிநிலை	பற்றி
	கருத்துத் தெரிவி	க்க.						

- (iii) கீழே அட்டவணையில் தரப்பட்டுள்ள C, N, O அணுக்களின்
 - (I) அணுவைச் சூழ உள்ள இலத்திரன்சோடிக் கேத்திரகணிதம்.
 - (II) அணுவைச் சூழ உள்ள வடிவம்
 - (III) அணுவின் கலப்பாக்கம்
 - (IV)அணுவின் ஒட்சியேற்ற எண்
 - (V) அணுவின் வலுவளவு

என்பவற்றைக் குறிப்பிடுக.

மெதைல் நைத்திரேற்றில் C, N, O அணுக்கள் கீழே தரப்பட்டுள்ளவாறு பெயரிடப்பட்டுள்ளது.

$$C^1 - O^2 - N^3 - N^4$$

	൙	C^1	O^2	N^3
(I)	இலத்திரன் சோடிக் கேத்திர கணிதம்			5
(II)	வடிவம்			
III)	கலப்பாக்கம்			
IV)	ஒட்சியேற்ற எண்		185	
(V)	ഖളുഖണഖു			

(iv) மேலே	(i) இல்	ஏற்றுக்கொள்ள	ரத்தக்க	லூவிஸ்	கட்டமைப்பில்	பின்வரும்	σ – பிணைப்பு
உருவாக	க்கத்துடன்	சம்பந்தப்பட்ட	ച ഞ്ഞ /	் கலப்பின	ஓபிற்றல்களைக்	காட்டுக.	

(6.0 புள்ளிகள்)

2.	(a) (i)	உலோகம் M வளியில் திறந்து வைக்கப்படும் போது வளியுடன் தாக்கம் புரிந்து A என்னும் சேர்வைத் தருகின்றது. A ஆனது வளியில் உள்ள வேறு கூறுகளுடன் தாக்கம் புரிந்து சேர்வைகள் B ஐயும் C ஐயும் தருகின்றது. சேர்வை B வெப்பப்பிரிகையின் போது சேர்வை A உடன் வாயு D ஐயும் தருகின்றது.
		சேர்வை C இன் தெளிந்த நீர்க்கரைசலினுள் வாயு D ஐச் செலுத்தியபோது வெள்ளை வீழ்படிவு B ஐத் தருகின்றது. தொடர்ந்து வாயு D ஐச் செலுத்திய போது நிறமற்ற கரைசல் E ஐத் தருகின்றது.
		(I) மூலகம் M ஐ இனங்காண்க.
		(II) சேர்வைகள் B ஐயும் C ஐயும் இனங்காண்க.
		B:
		(III)வாயு D ஐ இனங்காண்க
		(IV)கரைசல் E ஐ இனங்காண்க.
		(V) மேலே தாக்கத்தில் கரைசல் E தோன்றும் தாக்கத்திற்கான சமன்படுத்திய சமன்பாட்டை எழுதுக.
	(ii)	
		(I) சேர்வை F ஐ இனங்காண்க
		(II) வாயு G ஐ இனங்காண்க.
		(III)சேர்வை F நீருடனான தாக்கத்திற்கு சமன்படுத்திய இரசாயனச் சமன்பாட்டை எழுதுக.
		(6.0 புள்ளிகள்)
		$25~{ m g}$ தூய ${ m NaNO_3}$ முற்றுப்பெறாத வெப்பப்பிரிகைக்கு உட்பட்டபோது பெறப்பட்ட வாயு $27^{\circ}{ m C}$ லும் $6 imes 10^4~{ m Nm^{-2}}$ அமுக்கத்திலும் $8.314~{ m dm^3}$ கனவளவை அடைகின்றது. $({ m Na=23, Na=14, O=16})$
	(i)	NaNO ₃ இன் வெப்பப்பிரிகைக்கு சமன்படுத்திய இரசாயனச் சமன்பாட்டை எழுதுக.
	(ii)) வெளியேறிய வாயுவின் மூல் எண்ணிக்கையைக் காண்க.

	i) பெறப்பட்ட திண்ம காண்க.	விளைபொருளில் பிரிகை	படையாது எஞ்சியிருக்கும் Naì	$\mathrm{NO}_{_3}$ இன் திணிை
				(4.0 புள்ளிக
(a) 25	° C இல் பின்வரும் 🤇	வெப்ப இரசாயனத் தரவுக	ந ள் தரப்பட்டுள்ளன.	
	பதார்த்தம்	H° _f / kJ mol ⁻¹	S° / J K ⁻¹ mol ⁻¹	
	$NH_4Cl(s)$	- 314	95	
	$NH_3(g)$	- 46	192	
	HCl(g)	- 167	57	
பி	ன்வரும் வெப்பப்பிரி	கைத் தாக்கத்தைக் கருது	க.	
		$\rightarrow NH_3(g) + HCl(g)$		
(i)	27°C இல் இத்தாக்க (I) வெப்பவுள்ளுை	கம் தொடர்பான பின்வரு ற மாற்றம் (ΔΗ)	வனவற்றைக் காண்க.	
		///////////////////////////////////////	////\	
	(II) எந்திரபி மாற்றம	$\dot{\mathfrak{D}}$ (ΔS_{r})		
			6. 80 2/	
			65	
	•••••			
···	2700 6 : 40 :	· · · · · · · · · · · · · · · · · · ·		, , , ,
(11)) 27°C இல AG ஐக தெரிவிக்க.	காணபதுடன் NH ₄ CI(S) இ	ன் வெப்பப்பிரிகையின் சுயாதீ	னம் பற்று கருத்த

	(111)	427°C இல் NH ₄ Cl(s) முற்றாக வெப்பப்பிரிகை அடையும் எனக் காட்டுக.
		(6.0 புள்ளிக
(b)	வா வை	${ m C}$ இல் $8.314~{ m dm^3}$ கனவளவுடைய விறைப்பான பாத்திரத்தினுள் $6 imes 10^4~{ m Nm^{-2}}$ அமுக்கத்தில் ${ m I}$ பு எடுக்கப்பட்டது. இதனுள் குறித்த திணிவளவான ${ m NH_4Cl(s)}$, (கனவளவு புறக்கணிக்கத்தக்கதுக்கப்பட்டு தொகுதி $427^{ m eC}$ இற்கு வெப்பப் படுத்தப்பட்டது. இதன்போது தொகுதியின் அமுக்க $ imes 10^5~{ m Nm^{-2}}$ ஆகக் காணப்பட்டது.
	(i)	427°C இல் He(g) இன் பகுதியமுக்கத்தை காண்க.
	(ii)	427°C இல் பாத்திரத்தினுள் NH ₃ (g) இ <mark>ன்</mark> பகுதியமுக்கத்தைக் காண்க.
	(iii)	பாத்திரத்தினுள் வைக்கப்பட்ட NH ₄ Cl(s) இன் திணிவைக் காண்க. (N = 14, H = 1, Cl = 35.5)
		(4.0 புள்ளிக
(a)	கேழ் முன் சம்ப சேர் என் சேர்	I ₁₀ என்னும் மூலக்கூற்றுச் சூத்திரத்தைக் கொண்ட A, B, C ஆகிய மூன்று சேர்வைகளு த்திரகணிதச் சேர்வை வெளிக்காட்டாது. இம்மூன்று சேர்வைகளும் HBr உடன் தாக்கம் புரிந் நையே D, E, F ஆகிய சேர்வைகளைக் கொடுக்கும். D, E ஆகிய சேர்வைகள் ஒளியியவ பகுதியச் சேர்வைக் காட்டும். ஆனால் சேர்வை F அதனைக் காட்டுவதில்லை. அற்ககோ ர KOH உடன் பரிகரிக்கப்பட்டபோது சேர்வை D ஆனது சேர்வை G ஐயும் சேர்வைகள் E, பன ஒரே சேர்வை C ஐயும் உண்டாக்குகின்றன. சேர்வை G கேத்திரகணிதச் சமபகுதிய ரவைக் காட்டும். A, B, C, D, E, F, G ஆகியவற்றின் கட்டமைப்புக்களை கீழே தரப்பட்ட பெட்டிகளி நரக. (திண்மத் தோற்றச் சமபகுதியத்திற்குரிய நிலைகளை வரையவேண்டியதில்லை)

ஆவர்த்தன அட்டவணை

	4 .	1																
	,																	2
1	H		7															He
	3	4											5	6	7	8	9	10
2	Li	Be									-1		В	C	N	0	F	Ne
	11	12		* =									13	14	15	16	17	18
3	Na	Mg						$A \Box$		VIII	<u> </u>		Al	Si	P	S	CI	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti .	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	55	56	La-	72	73	74	75	76	-77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113					ا ـــــــــــا
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut			, "		

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

வட மாகாணக் கல்வித் திணைக்களத்தின் அனுசரணையுடன் தொண்டமனாறு வெளிக்கள நிலையம் நடாத்தும் Conducted by Field Work Centre, Thondamanaru In Collaboration with Provincial Department of Education Northern Province

மூன்றாம் தவணைப் பரீட்சை, நவம்பர் 2017 Third Term Examination, November 2017

தரம் : 13

Grade: 13

பகுதி B - கட்டுரை ஏதாவது இரண்டு வீனாக்களுக்கு மட்டும் வீடையளிக்க.

5. (a) 24.942 dm³ கனவளவுடைய விறைப்பான மூடிய பாத்திரமொன்றினுள் குறித்த அளவு ammonium Carbamate (NH₂COONH₄(s)) எடுக்கப்பட்டு தொகுதி 27°C இற்கு கொண்டுவரப்பட்டது. இதன்போது பின்வரும் சமநிலை நிலைநிறுத்தப்பட்டது.

$$NH_2COONH_4(s) \rightleftharpoons 2NH_3(g) + CO_2(g)$$

தொகுதியில் உள்ள வாயுக்கள் சடுதியாக $0.12 \, \mathrm{mol} \, \mathrm{dm^3 \, HCl}$ இன் $125 \, \mathrm{cm^3}$ கரைசலினூடு செலுத்தப்பட்டு $\mathrm{NH_3}$ வாயு முழுவதும் உறிஞ்சப்பட்டது. மீதி HCl இன் அளவைத் துணிதற்காக விளைவுக் கரைசல் $250 \, \mathrm{cm^3}$ இற்கு ஐதாக்கப்பட்டு, இவ் ஐதான கரைசலில் $25.00 \, \mathrm{cm^3}$ வேறாக்கப்பட்டு மெதைல் செம்மஞ்சள் காட்டி முன்னிலையில் $0.14 \, \mathrm{mol} \, \mathrm{dm^3 \, NaOH}$ இனால் நியமிக்கப்பட்டது. முடிவுப்புள்ளியில் தேவைப்பட்ட NaOH இன் கனவளவு $10.00 \, \mathrm{cm^3}$ பின்வருவனவற்றைக் காண்க.

- (i) NH, உடன் தாக்கம்புரிந்த பின்னர் மீதியாக விடப்பட்ட HCl இன் மூல் எண்ணிக்கை
- (ii) சமநிலையில் உருவான NH₃ இன் மூல் எண்ணிக்கை
- (iii) NH, இன் சமநிலை பகுதியமுக்கம்
- (iv) 27°C இல் மேலே சமநிலையில் $K_{_{
 m p}}$
- (v) 27°C இல் சமநிலை மாறிலி K_{C} (27°C இல் $RT=2500~J~mol^{-1}$)

(6.0 புள்ளிகள்)

(b) (i) $0.8 \, \mathrm{mol} \, \mathrm{CH_3COOH(l)} \,$ உம் $0.5 \, \mathrm{mol} \, \mathrm{CH_3CH_2OH(l)} \,$ உம் ஒருமிக்கக் கலக்கப்பட்டு செறிந்த $\mathrm{H_2SO_4}$ முன்னிலையில் $50^{\circ}\mathrm{C}$ இற்கு வெப்பப்படுத்தப்பட்டது. இதன்போது பின்வரும் சமநிலை பெறப்பட்டது.

$$CH_3COOH(1) + CH_3CH_2OH(1) \rightleftharpoons CH_3COOCH_2CH_3(1) + H_2O(1)$$

சமநிலையில் CH,COOH(I) இன் 0.4 mol இருப்பது கண்டுபிடிக்கப்பட்டது.

- (I) சமநிலை மாறிலி $K_{\scriptscriptstyle p}$ இற்கு கோவையொன்றைக் எழுதுக.
- (II) K_p இன் பெறுமானத்தைக் காண்க.
- (ii) 6 $mol\ CH_3COOH(l)$ உம் $2.25\ mol\ CH_3CH_2OH(l)$ உம் ஒருமிக்கக் கலக்கப்பட்டு செறிந்த H_2SO_4 முன்னிலையில் $50^{\circ}C$ இற்கு வெப்பப்படுத்தப்பட்டது. இதன்போது மேலே குறிப்பிட்ட சமநிலை பெறப்பட்டது. உருவான $CH_3COOCH_2CH_3(l)$ இன் மூல் எண்ணிக்கையைக் காண்க.

(5.0 புள்ளிகள்)

(c)
$$2SO_2(g) + O_2(g) \Longrightarrow 2SO_3(g)$$

 $10.0~{
m dm^3}$ பாத்திரமொன்றில் $300^{\circ}{
m C}$ இல் ${
m SO_3(g),\,SO_2(g),\,O_2(g)}$ ஆகியவற்றைக் கொண்ட வாயுக் கலவையால் நிலைநிறுத்தப்பட்ட சமநிலையில் ${
m K_C}=100~{
m mol^{-1}~dm^3}$ ஆகும்.

- (i) பாத்திரத்தினுள் $SO_2(g)$ இனதும் $SO_3(g)$ இனதும் மூல் எண்ணிக்கைகள் சமனாயின் எத்தனை மூல்கள் O_7 காணப்படும்.
- (ii) பாத்திரத்தினுள் உள்ள $SO_3(g)$ இன் மூல் எண்ணிக்கை $SO_2(g)$ இன் மூல் எண்ணிக்கையைப் போன்று இரண்டு மடங்காயின் எத்தனை மூல்கள் O_2 காணப்படும்?

(4.0 புள்ளிகள்)

6. (a) (i) $2NO(g) + Cl_2(g) \longrightarrow 2NOCl(g)$ எனும் தாக்கத்தின் இயக்கப்பண்பியலை ஆராய்வதற்கு $-10^{\circ}C$ இல் செய்யப்பட்ட நான்கு பரிசோதனைகளின் பெறுபேறுகள் பின்வரும் அட்டவணையில் தரப்பட்டுள்ளன.

பர்சோதனை இலக்கம்	NO(g) இன் ஆரம்பச் செறிவு / mol dm ⁻³	Cl ₂ (g) இன் ஆரம்பச் செறிவு / mol dm ⁻³	$\mathrm{Cl}_2(\mathrm{g})$ மறையும் ஆரம்பத் தாக்கவீதம் / mol dm ⁻³ min ⁻¹
1	0.15	0.15	0.60
2	0.15	0.30	1.20
3	0.30	0.15	2.40
4	0.10	?	0.36

- (I) மேற்குறித்த தாக்கத்தின் வீதத்திற்கான ஒரு கணிதக்கோவையை NO(g), $Cl_2(g)$ ஆகியவற்றின் செறிவு சார்பாக எழுதுக.
- (II) NO(g), Cl₂(g) ஆகிய ஒவ்வொரு தாக்கி சார்பாகவும் தாக்கவரிசையைக் காண்க.
- (III) மொத்தத் தாக்கவரிசை யாது?
- $(IV) NO(g), Cl_2(g)$ ஆகிய தொடர்பாகப் பெறப்பட்ட வரிசை, வீதமாறிலி k என்பவற்றைப் பயன்படுத்தி வீதவிதிக்கான கோவையொன்றை எழுதுக.
- (V) வீதமாறிலியின் பெறுமானத்தைக் காண்க.
- (VI) பரிசோதனை 4 இல் பயன்படுத்தப்பட்ட Cl₂(g) இன் செறிவைக் காண்க.
- (VII) NO(g) இன் ஆரம்பச் செறிவு 0.1 mol dm^3 ஆகவும் $\text{Cl}_2(g)$ இன் ஆரம்பச் செறிவு 0.1 mol dm^3 ஆகவும் இருக்கும்போது -10°C இல் NO(g) மறையும் தொடக்கத் தாக்கவீதத்தைக் காண்க.
- (ii) மேற்குறித்த தாக்கம் பின்வரும் முதன்மைப் படிகளைக் கொண்ட பொறிமுறையூடாக நடைபெறுகின்றதெனக் கருதுக.

படி
$$I$$
 : $NO(g)+Cl_2(g)$ \Longrightarrow $NOCl_2(g);$ ஒரு விரைவான சமநிலைப்படி சமநிலை மாறிலி $K_{_{\mathbb C}}$ ஆகும்.

படி
$$II$$
 : $NOCl_2(g) + NO(g) \xrightarrow{k'} 2NOCl(g)$; ஒரு மெதுவான படி

- (I) படி I இற்கு சமநிலை மாறிலி K_C இற்கான கோவையொன்றை எழுதுக.
- (II) தாக்கவீத நிர்நயப்படிக்கு வீதவிதிக்கான கோவையொன்றை எழுதுக.
- (III) மேலே பகுதி (I), (II) ஆகிய கோவைகளைப் பயன்படுத்தி மேற்படி தாக்கத்திற்கு வீதக் கோவையை NO(g), $Cl_{\gamma}(g)$ சார்பாகப் பெறுக.

(9.0 புள்ளிகள்)

(b) பின்வரும் முதன்மை தாக்கத்தை கருதுக.

$$NO(g) + O_3(g) \longrightarrow NO_2(g) + O_2(g);$$
 $\Delta H_r < 0$

- (i) தாக்கத்தின் வீதத்திற்கான கோவை ஒன்றை ${
 m NO}({
 m g}), {
 m O}_3({
 m g})$ ஆகியவற்றின் செறிவுகள் சார்பாக எழுதுக.
- (ii) இத்தாக்கத்தின் தாக்க ஆள்கூற்று வரைபை பருமட்டாக வரைவதுடன் அதில் பின்வருவனவற்றைத் தெளிவாகக் குறிப்பிடுக.
 - (I) தாக்கிகள், விளைவுகளின் மூலக்கூற்றுச் சூத்திரம்
 - (II) ஏவற்படுத்தப்பட்ட சிக்கலின் கட்டமைப்பு
 - $({
 m III})$ ஏவற்ச்சக்தி $({
 m Ea})$ தாக்கவெப்பவுள்ளுறை $(\Delta {
 m H}_{_{
 m P}})$ என்பவற்றை நிலைக்குத்து அம்புக்குறியால்க் குறித்துக் காட்டுக.

(3.0 புள்ளிகள்)

- (c) (i) அரைவாழ்வுக்காலத்தை வரைவிலக்கணப்படுத்துக.
 - (ii) பின்வரும் பூச்சியவரிசைத் தாக்கத்தை கருதுக.

இத்தாக்கம் தொடர்பான பின்வரும் வினாக்களுக்கு விடை தருக.

- (I) வீத விதிக்கான சமன்பாட்டை வழமையான முறையில் எழுதுக.
- (II) A இன் ஆரம்பச் செறிவு $[A]_{_0}$ ஆகும். நேரம் t இல் A இன் செறிவு $[A]_{_t}$ ஆகும். நேரம் t, A இன் செறிவுகள் $[A]_{_0}$, $[A]_{_t}$ வீதமாறிலி k என்பவற்றிற்கு இடையில் தொடர்புடமை ஒன்றைப் பெறுக.
- (III) மேலே பெற்ற தொடர்புடைமையைப் பயன்படுத்தி தாக்கத்தின் அரைவாழ்வுக் காலம்

$$t_{\frac{1}{2}} = \frac{[A]_0}{2k}$$
 எனக்காட்டுக.

(3.0 புள்ளிகள்)

7. (a) பட்டியலில் தரப்பட்டுள்ள இரசாயன் பொருட்களை மாத்திரம் பயன்படுத்திப் பின்வரும் சேர்வையின் தொகுப்பை முன்மொழிக. **இரசாயனப் பொருட்களின் பட்டியல்** :

CH,COCH,CH,

 $CH_3CH=CH_2$, ஐதான H_2SO_4 , HBr, $HgSO_4$, $NaNH_2$, CaC_2 , H_2O , அற்ககோல் சேர் KOH, H_2 , Br_2 , Pd / $BaSO_4$ / குயினொலின்

(5.0 புள்ளிகள்)

(b) பின்வரும் மாற்றலை எங்ஙனம் செய்வீரெனக் காட்டுக.

(6.0 புள்ளிகள்)

- (c) (i) FeCl_3 முன்னிலையில் பென்சல்டிகைட்டு ($\operatorname{C}_6\operatorname{H}_5\operatorname{CHO}$) ஆனது Cl_2 உடன் தாக்கத்தின் பிரதான விளைவைத் தருக.
 - (ii) மேலே (i) இன் தாக்கத்தின் பொறிநுட்பத்தை எழுதுக.
 - (iii) இத்தாக்கத்தில் உண்டாகும் இடைநிலைகளின் உறுதிநிலையை விளக்குக.
 - (iv) மேலே தாக்கத்தின் வகையைப் பெயரிடுக.

(4.0 புள்ளிகள்)

பகுதி C – கட்டுரை ஏதாவது இரண்டு வீனாக்களுக்கு மட்டும் வீடையளிக்க.

8. (a) நீர்க்கரைசல் A ஐயும் நீர்க்கரைசல் B ஐயும் ஒருமிக்க கலந்தபோது ஐதான HNO_3 இல் கரையத்தக்க வெள்ளை வீழ்படிவு C ஐயும் பச்சைநிறக் கரைசல் D ஐயும் தருகின்றது.

வீழ்படிவு C இற்கு H_2O_2 இட்டு நன்கு குலுக்கப்பட்டபோது ஐதான HNO_3 இல் கரையாத வெள்ளை வீழ்படிவு E பெறப்பட்டது. வீழ்படிவு E சுவாலைச் சோதனைக்கு பச்சை நிறமொன்றைத் தருகின்றது. நீர்க்கரைசல் D இன் ஒருபகுதிக்கு ஐதான H_2SO_4 சேர்த்த போது கபிலநிற வாயு F வெளியேறியது. நீர்க்கரைசல் D இன் இன்னுமோர் பகுதிக்கு செறிந்த H_2SO_4 சேர்த்துக் குலுக்கியபோது கரைசல் மஞ்சள் நிறமாக மாறியதுடன் அதே கபில நிற வாயு F வெளியேறியது.

- (i) A, B, C, D ஆகிய சேர்வைகளை இனங்காண்க.
- (ii) வீழ்படிவு E ஐயும் வாயு F ஐயும் இனங் காண்க.
- (iii) மேலே நடைபெறும் எல்லாத் தாக்கங்களுக்கு் ஈடுசெய்த சமன்பாடுகளை எழுதுக.

(6.0 புள்ளிகள்)

- (b) 10.0 g வெண்ணிறத் திண்மச் சேர்வை A வெப்பப்படுத்தப்பட்ட போது சுண்ணாம்பு நீரை பால்நிறமாக்கும் 2.2 g வாயு B ஐயும் நீரற்ற செப்பு சல்பேற்றை நீலநிறமாக்குப் வாயு C ஐயும் தருகின்றது. மீதித் திண்மத்திற்கு ஐதான HCl சேர்த்தபோது வாயு B விடுவிக்கப்படுகிறது.
 - (i) வாயு B ஐயும் வாயு C ஐயும் அடையாளங் காண்க.
 - (ii) கணிப்புகள் மூலம் சேர்வை A ஐ உய்த்தறிக. (H=1, N=14, O=16, S=32, C=12)

(4.0 புள்ளிகள்)

- (c) மருந்தகம் ஒன்றில் விற்பனைக்காக வைக்கப்பட்ட தொற்றுநீக்கிக் கரைசலொன்றில் காணப்படும் H,O, இன் செறிவைத் துணிவதற்கு பின்வரும் செயற்பாடுகள் மேற்கொள்ளப்பட்டது.
 - $1.34~{\rm g~Na_2C_2O_4}$ காய்ச்சி வடித்த நீர் சேர்த்து $500~{\rm cm^3}$ கரைசலாக்கப்பட்டது. இக்கரைசலின் $10.00~{\rm cm^3}$ எடுக்கப்பட்டு ஆய்வுகூடத்தில் தயாரிக்கப்பட்ட ${\rm KMnO_4}$ கரைசலொன்றால் நியமிக்கப்பட்டது. முடிவுப் புள்ளியில் தேவைப்பட்ட ${\rm KMnO_4}$ இன் கனவளவு $8.00~{\rm cm^3}$ தொற்று நீக்கிக் கரைசலின் $25.00~{\rm cm^3}$ எடுக்கப்பட்டு $20~{\rm cm^3}$ ஐதான ${\rm H_2SO_4}$ (மிகை) சேர்க்கப்பட்டு மேலே ${\rm KMnO_4}$ கரைசலினால் நியமிக்கப்பட்டது. முடிவுப்புள்ளியில் தேவைப்பட்ட ${\rm KMnO_4}$ இன் கனவளவு $10.00~{\rm cm^3}$.
 - (i) மேலே நடைபெறும் தாங்களுக்கான சமன்படுத்திய இரசாயனச் சமன்பாடுகளை எழுதுக.
 - (ii) $\mathrm{KMnO}_{\scriptscriptstyle 4}$ கரைசலின் செறிவைக் காண்க.
 - (iii) தொற்றுநீக்கிக் கரைசலில் H₂O₂ இன் செறிவைக் காண்க.

(5.0 புள்ளிகள்)

9. (a) கீழே வரிப்படத்தில் சேர்வை A ஐ இனங்காணும் பொருட்டு செய்யப்பட்ட பரிசோதனை விபரங்கள் தரப்பட்டுள்ளது.

- (i) சேர்வை A ஐ அடையாளங் காண்க.
- (ii) B, C, D, E, F என்பவற்றை அடையாளங் காண்க.
- (iii) நடைபெறும் செயற்பாடுகளுக்கு சமன்படுத்திய இரசாயனச் சமன்பாடுகளை எழுதுக.

(5.0 புள்ளிகள்)

- (b) புறதிருப்ப வடிவங்களைக் கொண்ட மூலகம் A வளியில் எரிக்கப்படும் போது தொண்டையைக் தாக்கக்கூடிய அடர்ந்த வாயு ஒட்சைட்டு B ஐக் கொடுக்கும். B நீரின் இலகுவில் கரைந்து அமிலக் கரைசல் C ஐக் கொடுக்கும். வாயு Bஐ KMnO₄ கரைசலினூடு செலுத்தும்போது இதன் நிறத்தை நீக்கும். அத்துடன் B பல்லின ஊக்கி முன்னிலையில் வளியால் வாயு D ஆக ஒட்சியேற்றப்படும். மூலகம் A பண்பறிபகுப்பில் பரவலாக பயன்படுத்தப்படும் நச்சுவாயு ஐதரைட்டு E ஐ உருவாக்கும். வாயு E ஐ கரைசல் C இன் ஊடு செலுத்தும்போது A இன் புறதிருப்ப வடிவம் ஒன்று பெறப்படும். மூலகம் A, NaOH நீர்க்கரைசலுடன் பரிகரிக்கப்படும் போது நீரும், உணவு பாதுகாப்பிற்குப் பயன்படும் சேர்வை F உடன் இன்னுமோர் சேர்வை G உம் பெறப்படும்.
 - (i) A, B, C, D, E, F, G ஆகியவற்றை அடையாளங் காண்க.
 - (ii) பின்வரும் தாக்கங்களுக்கு சமன்படுத்திய இரசாயனச் சமன்பாடுகளை எழுதுக.
 - (I) $B + KMnO_4 \longrightarrow$
 - (II) $A + NaOH \longrightarrow$
 - (iii) வாயு B இன் பயன்பாடு ஒன்றைத் தருக.

(6.0 புள்ளிகள்)

- (c) திண்மம் Q வெப்பப்படுத்தப்படும் போது பச்சைநிற திண்ம மீதி R ஐயும் நிறமற்ற வாயு S ஐயும் நீராவியையும் கொடுத்தது. உலர் வாயு S வெப்பமேற்றப்பட்ட Mg மீதி செலுத்தப்பட்டபோது ஒரு வெள்ளை நிறத் திண்மம் T ஐக் கொடுத்தது. T நீருடன் தாக்கம் புரிந்து ஒரு வாயு U ஐக் கொடுத்தது. வாயு U ஈரசெம்பாசிச்சாயத்தாளை நீலநிறமாக மாற்றியது.
 - (i) Q, R, S, T, U என்பவற்றை அடையாளங் காண்க.
 - (ii) பின்வரும் தாக்கங்களுக்கு சமன்படுத்திய இரசாயனச் சமன்பாடுகளை எழுதக.
 - (I) Q <u>வெப்பம்</u>
 - (II) $T + H_2O$

(4.0 புள்ளிகள்)

10. (a) (i) பின்வரும் வெப்ப இரசாயனத் தரவுகள் தரப்பட்டுள்ளது.

$$Fe_2O_3(s) + 3CO(g) \longrightarrow 2Fe(s) + 3CO_2(g); \Delta H^{\circ} = -28 \text{ kJ mol}^{-1}$$

$$3Fe_2O_3(s) + CO(g) \longrightarrow 2Fe_3O_4(s) + CO_2(g); \Delta H^{\circ} = -59 \text{ kJ mol}^{-1}$$

$$Fe_3O_4(s) + CO(g) \longrightarrow 3FeO(s) + CO_2(g); \Delta H^{\circ} = +38 \text{ kJ mol}^{-1}$$

இவ் வெப்ப இரசாயனத் தரவுகளைப் பயன்படுத்தி பின்வரும் தாக்கத்தின் நியமத் தாக்க வெப்பவுள்ளுறையைக் காண்க.

$$FeO(s) + CO(g) \longrightarrow Fe(s) + CO_2(g)$$

(ii) பின்வரும் வெப்ப இரசானத் தரவுகள் தரப்பட்டுள்ளது.

 $\mathrm{CO}_2(\mathrm{g})$ இன் நியமத் தோன்றல் வெப்பவுள்ளுறை; $\Delta\mathrm{H}^\circ_{\mathrm{f}} = -394\,\mathrm{kJ}\,\mathrm{mol}^{-1}$

 $H_2O(1)$ இன் நியமத் தோன்றல் வெப்பவுள்ளுறை; $\Delta H^{\circ}_{f} = -286 \text{ kJ mol}^{-1}$

 $C_2H_2(g)$ இன் நியமத் தகனவெப்பவுள்ளுறை; $\Delta H^\circ_{Com} = -1298 \ kJ \ mol^{-1}$

C(s) இன் நியமத் பதங்கமாதல் வெப்பவுள்ளுறை; $\Delta H^{\circ}_{sub} = +717 \text{ kJ mol}^{-1}$

m H - H(g) பிணைப்புப் பிரிகை <mark>வெப்பவுள்ளுறை;</mark> $m \Delta H^{\circ}_{\ D} = + 432 \ kJ \ mol^{-1}$

 $m C \longrightarrow H(g)$ பிணைப்புப் பிரிகை வெப்பவுள்ளுறை; $m \Delta H^{\circ}_{\ D} = +416 \ kJ \ mol^{-1}$

மேலே வெப்ப இரசாயனத் தரவுகளைப் பயன்படுத்தி $C \equiv C(g)$ இன் நியமப் பிணைப்புப் பிரிகை வெப்பவுள்ளுறை $\Delta H^\circ_{\ D}$ ஐக் காண்க.

(9.0 புள்ளிகள்)

- (b) A, B என்பன $CrH_{12}BrCl_2O_6$ எனும் மூலக்கூறுச் சூத்திரத்தை உடைய சமபகுதிய இணைப்புச் சேர்வைகளாகும். இவை இரண்டும் எண்முகிக் கேத்திரகணிதத்தைக் கொண்டன. Aயும் B கும் 1:2 எனும் மூலர் விகிதத்தில் உள்ள நீர்க் கரைசல்களுக்கு தனித்தனியே மிகையான Ag NO_3 கரைசல் சேர்க்கப்பட்டபோது ஐதான NH_3 இல் கரையக்கூடிய ஒரு வெள்ளை வீழ்படிவு சமமூலர் அளவு உண்டாகியது.
 - (i) வெள்ளை வீழ்படிவுக்குக் காரணமான அன்னயனை இனங்காண்க.
 - (ii) A, B ஆகியவற்றின் கட்டமைப்புச் சூத்திரங்களை எழுதுக.
 - (iii) இச்சேர்வைகள் ஒவ்வொன்றிலும் மைய அனுவின் ஒட்சியேற்றநிலைகளைத் தருக.
 - (iv) இச்சேர்வைகள் ஒவ்வொன்றிற்கும் எதிர்பார்க்கும் கேத்திரகணிதச் சமபகுதியங்களின் எண்ணிக்கையை எதிர்வு கூறுக.
 - (v) மேலே மூலக்கூற்றுச் சூத்திரத்தைக் கொண்ட A, B ஆகிய சமபகுதியங்களைத் தவிர்த்து வேறு இரு சமபகுதியங்கள் C, D என்பவற்றின் நீர்க்கரைசல்களுக்கு தனித்தனியே ஐதான HNO₃ உம் AgNO₃(aq) உம் இடப்பட்டபோது C, செறிந்த NH₃ இல் மட்டும் கரையக்கூடிய வெளிர்மஞ்சள் வீழ்படிவைக் கொடுத்த அதேநேரம் D வீழ்படிவு எதனையும் கொடுக்கவில்லை. C, D ஆகிய சேர்வைகளின் கட்டமைப்புச் சூத்திரத்தை உய்த்தறிக.

(6.0 புள்ளிகள்)

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

✓ t.me/Science Eagle ▶ YouTube / Science Eagle f 💆 🔘 /S cience Eagle S L

- C.Maths
- Physics
- Chemistry
 - + more