SORBONNE UNIVERSITÉ

Travaux d'étude et de recherche

Autour du théorème de Dvoretzky

"It soon became clear that an outstanding breakthrough in Geometric Functional Analysis had been achieved."

Vitali Milman à propos du théorème de Dvoretzky dans Dvoretzky theorem - thirty years later

Mathieu GALLO Enseignant: Omer Friedland

date

INTRODUCTION

Le mémoire suivant suit la série de lectures de Gideon Schetchman , "Euclidean sections of convex bodies" [1].

Alexandre Grothendieck en 1956 dans son article "Sur certaines classes de suites dans les espaces de Banach et le théorème de Dvoretzky-Rogers" [2], inspiré par le lemme de Dvoretzky-Rogers (1950) propose une conjecture à laquelle Aryeh Dvoretzky répondra positivement en 1961, aboutissant au résultat suivant :

Théorème 1 (A. Dvoretzky, 1961). Il existe une fonction $k:]0,1[\times \mathbb{N} \to \mathbb{N}$, tel que $\forall \varepsilon \in]0,1[$, $k(\varepsilon,n) \stackrel{n\to\infty}{\longrightarrow} \infty$ et pour tout $n \in \mathbb{N}$ et tout compact convexe symétrique $K \subset \mathbb{R}^n$, il existe un sous espace $V \subset \mathbb{R}^n$ tels que :

- (i) dim $V = k(\varepsilon, n)$
- (ii) $\exists r > 0$ tel que , $r.(V \cap B_2^n) \subset V \cap K \subset (1+\varepsilon)r.(V \cap B_2^n)$

Dans le papier original de Dvortezky l'estimation de k était :

$$k(\varepsilon, n) \ge c(\varepsilon) \sqrt{\frac{\log n}{\log \log n}}$$
 pour un $c(\varepsilon) > 0$

Vitali Milman en 1971 donna une nouvelle preuve du théorème de Dvoretzky en utilisant le phénomène de concentration de la mesure [3], il a de plus amélioré le théorème en donnant l'estimation de la dépendance en n pour la dimension de V, $k(\varepsilon, n) \ge c(\varepsilon) \cdot \log(n)$.

Théorème 2 (V. Milman, 1971). Pour tout $\varepsilon > 0$, il existe une constante c > 0 tel que pour tout $n \in \mathbb{N}$ et pour tout compact convexe symétrique $K \subset \mathbb{R}^n$, il existe un sous espace $V \subset \mathbb{R}^n$ tels que :

- (i) dim $V \ge c \cdot \log(n)$
- (ii) $\exists r > 0$ tel que , $r.(V \cap B_2^n) \subset V \cap K \subset (1+\varepsilon)r.(V \cap B_2^n)$

Défintion. Soit $(X, ||.||_X)$, $(Y, ||.||_Y)$ deux espaces normés et C > 0, on dit que X s'injecte Ccontinûment dans Y, si il existe $T \in \mathcal{L}(X, Y)$ tel que pour tout $x \in X$

$$||x||_X \le ||Tx||_Y \le C||x||_X$$

Il existe une reformulation du théorème de Dvoretzky en terme de norme, en utilisant la relation entre un compact convexe symétrique K et la norme $||y||_K = \inf\{\lambda : \frac{y}{\lambda} \in K\}$.

Théorème 3. Pour tout $\varepsilon > 0$ il existe c > 0 tel que pour tout $n \in \mathbb{N}$ et pour toute normes ||.|| sur \mathbb{R}^n , ℓ_2^k s'injecte $(1+\varepsilon)$ -continûment dans $(\mathbb{R}^n,||.||)$ pour un $k \ge c.\log(n)$.

Notation. Pour la suite on utiliseras les notations :

- $|.|_n$ la norme euclidienne sur \mathbb{R}^n , ou simplement |.| si il n'y a pas d'ambiguïté sur la dimension.
- $S^{n-1} = \{x \in \mathbb{R}^n ; |x| = 1\}$, la (n-1)-sphère euclidienne.

Montrons que ses deux derniers théorèmes sont équivalents.

(2) \Rightarrow (3) Posons $K = \text{Adh}(B_{||.||}(0,1)) = \{x \in \mathbb{R}^n \mid ||x|| \le 1\}$ et appliquons le théorème 2, celui-ci nous procure un sous-espace V de \mathbb{R}^n , avec $\dim V := k \ge c.\log(n)$ et $V \cap K$ est ε -ecuclidien. Donnons-nous une base orthonormée $\{v_j\}_{1 \le j \le k}$ de V et posons

$$\phi: \begin{array}{ccc} (V,||.||) & \mapsto & (\mathbb{R}^k,|.|_k) \\ \sum_{i=1}^k x_i v_i & \to & \sum_{i=1}^k x_i e_i \end{array}$$

Soit $v \in V \cap K$ tel que ||v|| = 1, comme $K \cap V$ est ε -euclidien on a que

$$r \le |v|_n \le (1+\varepsilon)r$$

La borne supérieure est immédiate car $K \cap V \subset r(1+\varepsilon).(V \cap B_2^n)$, pour la borne inférieure il suffit de remarquer que $(V \cap K)$ est un fermer de V qui contient l'ouvert $r.(V \cap B_2^n)$ de V, comme v est dans la frontière de $K \cap V$ il n'est pas dans l'intérieur de $K \cap V$ et donc dans aucun ouvert contenu dans $V \cap K$.

Fixons des coordonnées à v dans la base $\{v_j\}_{1\leq j\leq k},\ v=\sum_{i=1}^k x_iv_i,$ on n'a que $|v|_n=\sqrt{\sum_{i=1}^k x_i^2}$ et donc :

$$r \le \sqrt{\sum_{i=1}^{k} x_i^2} \le (1+\varepsilon)r$$

Mais comme $|\phi(v)|_k = \left|\sum_{i=1}^k x_i e_i\right| = \sqrt{\sum_{i=1}^k x_i^2},$ on a que :

$$r \le |\phi(v)|_k \le (1+\varepsilon)r$$

Pour tous $x \in V \setminus \{0\}$ on peut appliquer ce qui précède à $\frac{x}{||x||}$, en utilisant la linéarité de ϕ on obtient :

$$r||x|| \le |\phi(x)|_k \le (1+\varepsilon)r||x||$$

 $(3)\Rightarrow (2) \text{ Soit } \varepsilon>0 \text{ , par le th\'eor\`eme 3 il existe } c>0 \text{ tel que pour tous } n\in \mathbb{N} \text{ il existe un } k>c.\log(n)$ tel que ℓ_2^k s'injecte $(1+\varepsilon)$ -continûment dans $(R^n,||.||)$ pour n'importe quelle norme ||.|| sur \mathbb{R}^n . Considérons un compact convexe symétrique $K\subset \mathbb{R}^n$ et $||y||=\inf\left\{\lambda>0\,;\,\frac{y}{\lambda}\in K\right\}$, alors $\exists T:\ell_2^k\to (\mathbb{R}^n,||.||)$ linéaire tel que :

$$\forall x \in \mathbb{R}^k$$
, $|x| \le ||Tx|| \le (1 + \varepsilon)|x|$

ceci implique immédiatement que T est injective, notons $V = \operatorname{Im} T$, alors la co-restriction a V de T est bijective. Soit $y \in \partial(K \cap V)$, c'est-à-dire ||y|| = 1, on sait qu'il existe un unique $x \in \mathbb{R}^k$ tel que Tx = y, on en déduit donc

$$|x| \le 1 \le (1+\varepsilon)|x| \iff \frac{1}{1+\varepsilon} \le |x| \le 1$$

la convexité et la symétrie centrale de $K \cap V$ nous permet de conclure que :

$$\frac{1}{1+\varepsilon}T(B_2^k) \subset K \cap V \subset T(B_2^k)$$

Pour conclure nous nous référençons au **lemme 2.2** qui seras démontrer par la suite qui dit que toutes ellipsoïdes admet une section de dimension [k/2] qui soit un multiple d'une boule euclidienne.

• • •

1 EXISTENCE DU SOUS-ESPACE

1.1. MESURES DE HAAR

Définition & Théorème (Mesures de Haar). Soit (X,d) un espace métrique, G un groupe topologique localement compact qui agit sur X et tel que :

$$\forall x, y \in X \ \forall g \in G, \ d(gx, gy) = d(x, y) \tag{*}$$

alors il existe une unique mesure à un coefficient multiplicatif près, régulière définie sur les boréliens de X qui est invariante sous l'action de G, cette mesure est appelée mesure de Haar de X (où G est sous-entendu).

Considérons $X = S^{n-1}$ avec la distance euclidienne et X = O(n) avec la norme $||M|| = \sup_{|x|=1} |Mx|$ alors G = O(n) le groupe des isométries vérifie (\star) pour la multiplication matricielle sur S^{n-1} et O(n).

Notation. Par le théorème précédent on peut définir sans ambiguïté μ, ν les mesures de Haar normalisés respectivement sur S^{n-1} et O(n).

Montrons quelques propriétés qui seront utiles par la suite.

Lemme 1.1. Soit $f \in C(S^{n-1})$ et $Y = (g_1, ..., g_n)$ où les $\{g_i\}_{1 \le i \le n}$ sont i.i.d suivant une loi normale $\mathcal{N}(0,1)$, alors

$$\int_{S^{n-1}} f \, d\mu = \mathbb{E}\left[f\left(\frac{Y}{|Y|}\right)\right]$$

Démonstration. Par unicité de la mesure de Haar , il nous suffit de montrer que pour tous $M \in O(n)$ et $f \in C(S^{n-1})$:

$$\mathbb{E}\left[f\left(\frac{MY}{|MY|}\right)\right] = \mathbb{E}\left[f\left(\frac{Y}{|Y|}\right)\right]$$

$$\mathbb{E}\left[f\left(\frac{MY}{|MY|}\right)\right] = \int_{\mathbb{R}^n\setminus\{0\}} f\left(\frac{My}{|y|}\right) \exp\left\{-\frac{1}{2}|y|^2\right\} dy_1...dy_n = \int_{\mathbb{R}^n\setminus\{0\}} \frac{1}{|\det M|} f\left(\frac{y}{|y|}\right) \exp\left\{-\frac{1}{2}|M^{-1}y|^2\right\} dy_1...dy_n$$
comme $|\det M| = 1$ et $|M^{-1}y| = |y|$, on a :

$$\mathbb{E}\bigg[f\Big(\frac{MY}{|MY|}\Big)\bigg] = \mathbb{E}\bigg[f\Big(\frac{Y}{|Y|}\Big)\bigg]$$

Lemme 1.2. Soit $A \subset S^{n-1}$ un borélien alors pour tous $x \in S^{n-1}$

$$v(T \in O(n); Tx \in A) = \mu(A)$$

 $D\acute{e}monstration.$ Soit $M\in O(n)$ et $x\in S^{n-1}$ alors la mesure définie par

$$\omega_x(A) = v \Big(T \in O(n) \; ; \; Tx \in A \Big)$$

 ω_x vérifie les propriétés suivantes :

$$\omega_x(MA) = \nu \Big(T \in O(n) \; ; \; M^T T x \in A \Big) = \nu \Big(T \in O(n) \; ; \; T x \in A \Big) = \omega_x(A)$$

$$\omega_x(\emptyset) = 0$$

$$\omega_{x}\left(\bigsqcup_{i\in\mathbb{N}}A_{i}\right) = v\left(T\in O(n)\;;\; Tx\in\bigsqcup_{i\in\mathbb{N}}A_{i}\right) = v\left(\bigsqcup_{i\in\mathbb{N}}\left\{T\in O(n)\;;\; Tx\in A_{i}\right\}\right)$$
$$= \sum_{i\in\mathbb{N}}v\left(T\in O(n)\;;\; Tx\in A_{i}\right) = \sum_{i\in\mathbb{N}}\omega_{x}(A_{i})$$

L'unicité de la mesure de Haar nous permet de conclure que $\omega_x = \mu$, en particulier ω_x ne dépend pas de x.

Théorème 1.3 (Concentration de la mesure sur la sphère). Soit $f: S^{n-1} \to \mathbb{R}$ une fonction Lipschitzienne de constante L > 0, alors

$$\mu\left\{x\in S^{n-1}\;;\;|f(x)-\mathbb{E}[f]|>\varepsilon\right\}\leq 2e^{-\frac{\varepsilon^2n}{2L^2}}$$

1.2. LEMMES D'APPROXIMATIONS

Notation. S'il n'y a pas d'ambiguïté sur la norme $\|.\|$ de \mathbb{R}^n utilisé on notera :

- $E = \int_{S^{n-1}} ||x|| d\mu(x)$
- b le plus petit réel tel que $||.|| \le b|.|$

Défintion. Soit (X,d) un espace métrique et $\theta > 0$, on dit que $A \subset X$ est un θ -net si

- (i) A est de cardinal fini.
- (ii) $\forall x \in X$, $\exists y \in A$ tel que $d(x, y) \leq \theta$

Lemme 1.4. Soient $x \in S^{n-1}$, A un θ -net pour un $1 > \theta > 0$, alors il existe $(y_i)_{i \in \mathbb{N}} \subset A$ et $(\beta_i)_{i \in \mathbb{N}} \subset \mathbb{R}^+$ tel que

$$x = \sum_{i=0}^{+\infty} y_i \beta_i \quad \text{ et } \quad \forall i \in \mathbb{N}, \ \beta_i \leq \theta^i$$

Démonstration. Comme A est un θ -net alors il existe $y_0 \in A$ tel que $|x-y_0| < \theta$, et donc

$$x = y_0 + \lambda_1 x'$$

avec $\lambda_1 = |x - y_0| \le \theta$ et $x' = \frac{x - y_0}{\lambda_1} \in S^{n-1}$, on peut donc itéré le même procédé sur x' et réitéré indéfiniment :

$$x = y_0 + \lambda_1(y_1 + \lambda_2 x'') = y_0 + \lambda_1 y_1 + \lambda_1 \lambda_2 x'' \qquad \text{avec} \qquad \lambda_2 \leq \theta, \ y_1 \in A \ \text{et} \ x'' \in S^{n-1}$$

$$\vdots \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$x = y_0 + \sum_{i=1}^N y_i \Big(\prod_{1 \leq k \leq i} \lambda_k \Big) + \tilde{x} \prod_{1 \leq k \leq N+1} \lambda_k \qquad \text{avec} \qquad \forall i \leq N+1 \ \lambda_i \leq \theta, y_i \in A \ \text{et} \ \tilde{x} \in S^{n-1}$$

$$\vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

Si l'on pose $S_N = y_0 + \sum_{i=1}^N y_i \Big(\prod_{1 \le k \le i} \lambda_k \Big),$ alors :

$$|x - S_N| \le |\lambda_1 ... \lambda_N| |\tilde{x}| \le \theta^N \to 0 \text{ avec } N \to \infty$$

il ne reste plus qu'as poser $\beta_0=1$ et pour $i>0,\;\beta_i=\prod_{1\leq k\leq i}\lambda_k\leq \theta^i$ et l'on a :

$$x = \sum_{i=0}^{+\infty} \beta_i y_i$$

Lemme 1.5. $\forall \varepsilon > 0$, il existe $1 > \theta > 0$ tel que pour tous $n \in \mathbb{N}$, si l'on a A un θ -net sur $V \cap S^{n-1}$ pour $V \subset \mathbb{R}^n$ de dimension k, ||.|| une norme sur \mathbb{R}^n et $T \in GL(n)$, tel que :

$$\forall x \in A$$
, $(1-\theta)E \le ||Tx|| \le (1+\theta)E$

alors,

$$\forall x \in V$$
, $\frac{1}{\sqrt{1+\varepsilon}}E|x| \le ||Tx|| \le \sqrt{1+\varepsilon}E|x|$

de plus si $\varepsilon \leq \frac{1}{9}$, on peu prendre $\theta = \frac{\varepsilon}{9}$

$$x = \sum_{i=0}^{+\infty} y_i \beta_i$$
 et $\forall i \in \mathbb{N}, \ \beta_i \leq \theta^i$

Notons $T = (a_1, ..., a_n)$

$$||Tx|| = \left| \left| T \sum_{i=0}^{+\infty} y_i \beta_i \right| \right|$$

$$= \left| \left| \sum_{i=0}^{+\infty} \beta_i \sum_{p=1}^n y_{i,p} a_p \right| \right|$$

$$\leq \sum_{i=0}^{+\infty} \theta^i || \sum_{p=1}^n y_{i,p} a_p ||$$

$$\leq \sum_{i=0}^{+\infty} \theta^i || Ty_i ||$$

$$\leq \sum_{i=0}^{+\infty} \theta^i (1+\theta) E = \frac{1+\theta}{1-\theta} E$$

de même :

$$||Tx|| \ge ||Ty_0|| - ||Tx - Ty_0||$$

$$= E(1 - \theta) - ||\sum_{p=1}^n a_p \sum_{i=1}^{+\infty} \beta_i y_{i,p}||$$

$$\ge E(1 - \theta) - \sum_{i=1}^{+\infty} \theta^i ||Ty_i||$$

$$\ge E((1 - \theta) - \theta \frac{1 + \theta}{1 - \theta}) = E \frac{1 - 3\theta}{1 - \theta}$$

Il suffit donc de prendre θ tel que

$$\sqrt{1+\varepsilon} \ge \frac{1+\theta}{1-\theta}$$

$$\frac{1}{\sqrt{1+\varepsilon}} \le \frac{1-3\theta}{1-\theta}$$

et pour tous $x \in V \setminus \{0\}$ on a

$$\begin{split} E\frac{1}{\sqrt{1+\varepsilon}} &\leq \left|\left|T\frac{x}{|x|}\right|\right| \leq E\sqrt{1+\varepsilon} \\ E\frac{1}{\sqrt{1+\varepsilon}}|x| &\leq ||Tx|| \leq E|x|\sqrt{1+\varepsilon} \end{split}$$

Ce qui fini la première partie de la preuve, dans la suite on suppose $\varepsilon \leq \frac{1}{9}$. On cherche $\theta =: \theta(\varepsilon) \in]0,1[$, tel que $\sqrt{1+\varepsilon} \geq \max\left(\frac{1-\theta}{1-3\theta},\frac{1+\theta}{1-\theta}\right)$, supposons $\theta \leq \frac{1}{3}$ alors

$$\frac{1-\theta}{1-3\theta} - \frac{1+\theta}{1-\theta} = \frac{4\theta^2}{(1-3\theta)(1-\theta)} > 0$$

Donc
$$\sqrt{1+\varepsilon} \ge \frac{1-\theta}{1-3\theta}$$

$$1 + \varepsilon \ge \left(\frac{1 - \theta}{1 - 3\theta}\right)^2$$
$$(9\varepsilon + 8)\theta^2 - 2(3\varepsilon + 2)\theta + \varepsilon \ge 0$$

les deux racines de ce polynôme sont $0 < \frac{3\varepsilon + 2 - 2\sqrt{1+\varepsilon}}{8 + 9\varepsilon} < \frac{3\varepsilon + 2 + 2\sqrt{1+\varepsilon}}{8 + 9\varepsilon}$, on cherche donc un θ dans $]0, \frac{3\varepsilon + 2 - 2\sqrt{1+\varepsilon}}{8 + 9\varepsilon}]$. Pour finir

$$\frac{3\varepsilon + 2 - 2\sqrt{1 + \varepsilon}}{8 + 9\varepsilon} \ge \frac{3\varepsilon + 2 - 2 - 2\varepsilon}{8 + 9\varepsilon} = \frac{\varepsilon}{8 + 9\varepsilon}$$
$$\ge \frac{\varepsilon}{9}$$

donc pour $\varepsilon \in]0,9^{-1}[$ on peu prendre $\theta(\varepsilon) = \frac{\varepsilon}{9}.$

1.3. DÉBUT DE LA DÉMONSTRATION DU THÉORÈME DE DVORETZKY

Lemme 1.6. Pour tous $0 < \theta < 1$, $V \subset \mathbb{R}^n$ un sous espace de dimension k > 0, alors il existe un θ -net sur $V \cap S^{n-1}$ de cardinal inférieur à $\left(\frac{3}{\theta}\right)^k$.

Démonstration. Notons $B_V(x,r) = \{y \in V : |x-y| < r\}$ la boule de centre $x \in V$ et de rayon $r \ge 0$, soit $N = \{x_i\}_{i=1,...,m}$ un sous-ensemble de $V \cap S^{n-1}$ maximal pour la propriété : $x,y \in N$, $|x-y| \ge \theta$, c'est-à-dire pour tous $x \in V \cap S^{n-1} \setminus N$ il existe $i \le m$ tel que $|x-x_i| < \theta$, donc N est un θ-net et les $\{B_V(x_i,\theta/2)\}_{i=1,...,m}$ sont donc disjoints deux à deux et toutes contenues dans $B_V(0,1+\frac{\theta}{2})$ d'ou :

$$\begin{split} m\mathrm{Vol}(B_V(x_1,\frac{\theta}{2})) &= \sum_{i=1}^m \mathrm{Vol}(B_V(x_i,\frac{\theta}{2})) = \mathrm{Vol}(\cup_{1 \leq i \leq m} B_V(x_i,\frac{\theta}{2})) \leq \mathrm{Vol}(B_V(0,1+\frac{\theta}{2})) \\ m &\leq \frac{\mathrm{Vol}(B_V(0,1+\frac{\theta}{2}))}{\mathrm{Vol}(B_V(x_1,\frac{\theta}{2}))} \end{split}$$

Par homogénéité de la mesure de Lebesgue :

$$m \le \left(\frac{1 + \frac{\theta}{2}}{\frac{\theta}{2}}\right)^k = \left(1 + \frac{2}{\theta}\right)^k < \left(\frac{3}{\theta}\right)^k$$

Théorème 1.7. Pour tous $\varepsilon > 0$ il existe $c(\varepsilon) > 0$ tel que pour tout $n \in \mathbb{N}$ et pour toute norme $\|\cdot\|$ sur \mathbb{R}^n , ℓ_2^k s'injecte $(1+\varepsilon)$ -continûment dans $(\mathbb{R}^n, \|\cdot\|)$, pour $k =: \left[c(\varepsilon), \left(\frac{E}{b}\right)^2 n\right]$.

Démonstration. Soit $\varepsilon > 0$, on se donne un $1 > \theta > 0$ donné par le **lemme 1.5** et on note

$$- c(\theta) = \frac{\theta^2}{4\log(\frac{3}{\theta})}$$

- $V \subset \mathbb{R}^n$ un sous-espace avec $\dim V := k = \left[c(\theta) \left(\frac{E}{b}\right)^2 n\right]$

$$- \eta = \frac{\theta E}{b}$$

$$- f(\theta) = 2\left(\frac{3}{\theta}\right)^{c(\theta)\left(\frac{E}{b}\right)^2 n} e^{-\frac{\eta^2 n}{2}} = 2\exp\left(-\frac{\eta^2 n}{4}\right)$$

Distinguons deux cas

 $\circ f(\theta) \ge 1$

on a alors:

$$\frac{\eta^2 n}{4} \le \log(2)$$

$$k \le \frac{\eta^2}{4\log(3/\theta)} n \le \frac{\log(2)}{\log(3/\theta)} < 1$$

Donc k = 0, dans ce cas il n'y a rien a montrer.

 \circ $f(\theta) < 1$

Soit A un θ -net sur $V \cap S^{n-1}$, avec $|A| \leq (\frac{3}{\theta})^k$ nous allons montrer qu'il existe $T \in O(n)$ tel que pour tous $x \in A$

$$(1 - \theta)E \le ||Tx|| \le (1 + \theta)E$$

Tous d'abord remarquons ceci:

$$1 > f(\theta) \ge 2(\frac{3}{\theta})^k e^{-\frac{\eta^2}{2}n}$$
$$> 2|A|e^{-\frac{\eta^2}{2}n}$$

On a l'inégalité suivante :

$$v\Big(\cap_{x\in A} \{T\in O(n) \; ; \; \big| ||Tx|| - E\big| \le b\eta \}\Big) = 1 - v\Big(\cup_{x\in A} \{T\in O(n) \; ; \; \big| ||Tx|| - E\big| > b\eta \}\Big)$$

$$\ge 1 - |A|v\Big(T\in O(n) \; ; \; \big| ||Ty|| - E\big| > b\eta \Big) \qquad \text{pour un } y\in A$$

$$\ge 1 - |A|\mu\Big(y\in S^{n-1} \; ; \; \big| ||y|| - E\big| > b\eta \Big) \qquad \text{par le lemme } \mathbf{1.2}$$

En appliquant la concentration de la mesure

$$v\left(\bigcap_{x\in A}\left\{T\in O(n)\; ;\; \left|||Tx||-E\right|\leq b\eta\right\}\right)\geq 1-|A|2e^{-\frac{\eta^2n}{2}}>0$$

Il existe donc $T \in O(n)$ tel que pour tous $x \in A$ on ait $\left| ||Tx|| - E \right| \leq b\eta$, c'est à dire

$$E(1-\theta) = E - b\eta \le ||Tx|| \le E + b\eta = E(1+\theta)$$

Par le **lemme 1.5** pour tous $x \in V$

$$\frac{1}{\sqrt{1+\varepsilon}}|x|E \le ||Tx|| \le \sqrt{1+\varepsilon}|x|E$$

et pour $\varepsilon < 9^{-1}$ on peut prendre $\theta(\varepsilon) = \frac{\varepsilon}{9}$ et donc $c(\varepsilon) = \frac{\varepsilon^2}{4 \times 81 \log(\frac{3 \times 9}{\varepsilon})}$ de l'ordre $c(\varepsilon) = c_0 \frac{\varepsilon^2}{\log(\frac{1}{\varepsilon})}$ pour un $c_0 > 0$.

2 MINORATION DE LA DIMENSION DU SOUS-ESPACE

2.1. ELLIPSOÏDES

Pour simplifier un peu les calculs nous allons montrer que l'on peut se restreindre aux normes qui vérifies $||.|| \le |.|$ et qui ont de plus la propriété d'être l'ellipsoïde de John, c'est à dire l'ellipsoïde de volume maximal incluse dans K, nous donnons la définition d'une ellipsoïde et un théorème de Fritz John sur l'unicité de l'ellipsoïde de volume maxime qui seras admis.

Défintion. Un ellipsoïde de \mathbb{R}^n est l'image de la boule unité euclidienne par un élément de GL(n).

Théorème 2.1 (Ellipsoïde de John). Tous compact convexe symétrique d'intérieur non vide contient un unique ellipsoïde de volume maximale.

Lemme 2.2. Soit $\mathscr E$ un ellipsoïde de $\mathbb R^n$, alors $\exists \lambda > 0$ et $V \subset \mathbb R^n$ un sous espace de dimension $\left\lceil \frac{n}{2} \right\rceil$ tel que :

$$\mathcal{E}\cap V=\lambda B_2^n\cap V$$

Démonstration. Quitte a effectuer une rotation on peut supposer que $\mathcal{E} = \{x \in \mathbb{R}^n : \sum_{i=1}^n a_i x_i^2 < 1\}$ pour $0 \le a_1 \le ... \le a_n$. Posons $\lambda = \text{Mediane}(a_1, ..., a_n)$ et

$$F = \left\{ x \in \mathbb{R}^n ; \ \forall i \le \left\lfloor \frac{n}{2} \right\rfloor, \ \sqrt{\lambda - a_i} x_i = \sqrt{a_{n+1-i} - \lambda} x_{n+1-i} \right\}$$

Alors pour tous $x \in F$ nous avons $\forall i \leq \lfloor \frac{n}{2} \rfloor$:

$$a_i x_i^2 + a_{n+1-i} x_{n+1-i}^2 = \lambda (x_i^2 + x_{n+1-i}^2)$$

d'où

$$\sum_{i=1}^{n} a_i x_i^2 = \lambda \sum_{i=1}^{n} x_i^2$$

2.2. ESTIMATION DE E

Par la suite on fixe ||.|| une norme sur \mathbb{R}^n , $K = \text{Adh}(B_{||.||})$ tel que B_2^n soit l'ellipsoïde de volume maximale incluse dans K, on a donc b = 1. Dans cette partie nous allons donner une estimation de E.

Pour estimer E nous aurons besoin d'une minoration de $\mathbb{E}\Big[\max_{1\leq i\leq N}g_i\Big]$ pour des $\{g_i\}$ i.i.d suivant $\mathcal{N}(0,1)$, nous démontrons une telle borne dans le lemme suivant.

Lemme 2.3. il existe c>0 tel que $\forall N>1$ et $\{g_i\}_{1\leq i\leq N}$ des variables aléatoire i.i.d suivant une loi $\mathcal{N}(0,1)$ on ait :

$$c\sqrt{\log N} \le \mathbb{E}\big[\max_{1 \le i \le \tilde{N}} |g_i|\big]$$

où $\tilde{N} = \left\lceil \frac{N}{2} \right\rceil$ est la partie entière supérieure de $\frac{N}{2}$.

 $D\acute{e}monstration.$ Commençons par montrer que pour n>1, $\mathbb{P}\big(|g_1|>\sqrt{\log n}\big)\geq \frac{1}{n},$ on a :

$$\mathbb{P}(|g_1| > \sqrt{\log n}) = 2 \int_{\sqrt{\log n}}^{+\infty} e^{-\frac{x^2}{2}} dx \ge \int_{\sqrt{\log n}}^{+\infty} e^{-\frac{x^2}{2}} (1 + \frac{1}{x^2}) dx \qquad \text{pour } x > \sqrt{\log(2)} > 1$$

$$\int_{\sqrt{\log n}}^{+\infty} e^{-\frac{x^2}{2}} (1 + \frac{1}{x^2}) dx = \left[-\frac{e^{-\frac{t^2}{2}}}{t} \right]_{\sqrt{\log n}}^{+\infty} = \frac{1}{\sqrt{n \log n}} > \frac{1}{n}$$

Donc

$$\begin{split} \mathbb{P}\Big(\max_{1\leq i\leq \tilde{N}}|g_i|\leq \sqrt{\log N}\Big) &= \mathbb{P}\Big(|g_1|\leq \sqrt{\log N}\Big)^{\tilde{N}} = \left(1-\mathbb{P}\Big(|g_1|>\sqrt{\log N}\right)\right)^{\tilde{N}} \\ &\mathbb{P}\Big(\max_{1\leq i\leq \tilde{N}}|g_i|\leq \sqrt{\log N}\Big) \leq \left(1-\frac{1}{N}\right)^{\tilde{N}} \leq e^{-\frac{\tilde{N}}{N}} \leq e^{-\frac{1}{2}} \end{split}$$

Ce qui équivaut a

$$\mathbb{P}\left(\max_{1 < i < \tilde{N}} |g_i| \le \sqrt{\log N}\right) \ge 1 - e^{-\frac{1}{2}}$$

Par l'inégalité de Markov on a finalement :

$$\mathbb{E}\big[\max_{1\leq i\leq \tilde{N}}|g_i|\big]\geq \mathbb{P}\Big(\max_{1\leq i\leq \tilde{N}}|g_i|\leq \sqrt{\log N}\Big)\sqrt{\log N}\geq (1-e^{-\frac{1}{2}})\sqrt{\log N}$$

avec
$$c =: 1 - e^{-\frac{1}{2}}$$

Lemme 2.4 (Dvoretzky-Rogers). Il existe une base orthonormée $\{x_i\}_{i=1,\dots,n}$ tel que $\forall 1 \leq i \leq n$

$$e^{-1}\left(1 - \frac{i-1}{n}\right) \le ||x_i|| \le 1$$

Démonstration. S^{n-1} est compact et ||.|| continue, on peux donc prendre un $x_1 \in S^{n-1}$ qui maximise ||.|| c'est à dire || x_1 || = 1, supposons que l'on ai $x_1,...,x_{k-1}$ avec $k \le n$ tel que pour tous $1 \le i \le k-1$, x_i maximise ||.|| sur $S^{n-1} \setminus \text{Vect}(x_1,...,x_{k-1}) \ne \emptyset$ car les $\{x_i\}_{i=1,...,k-1}$ sont orthogonaux deux à deux. On peut donc répéter le procéder pour trouver x_k qui maximise $S^{n-1} \setminus \text{Vect}(x_1,...,x_{k-1})$, par récurrence on peut donc avoir n vecteurs avec ses propriétés. Fixons $1 \le k \le n$, $a,b \in \mathbb{R}^*$ et définissons :

$$\mathscr{E} = \left\{ \sum_{i=1}^{n} a_i x_i \; ; \; \sum_{i=1}^{k-1} \left(\frac{a_i}{a} \right)^2 + \sum_{i=k}^{n} \left(\frac{b_i}{b} \right)^2 \le 1 \right\}$$

Supposons $\sum_{i=1}^n a_i x_i \in \mathcal{E}$, alors $\sum_{i=1}^{k-1} a_i x_i \in aB_2^n$ et donc $||\sum_{i=1}^{k-1} a_i x_i|| \le a$. Si $x \in \text{Vect}(x_k, ..., x_n) \cap B_2^n$ on a $||x|| \le ||x_k||$ par construction, et donc $\sum_{i=k}^n a_i x_i \in bB_2^n \Rightarrow ||\sum_{i=k}^n a_i x_i|| \le b||x_k||$, ce qui

nous donne la majoration suivante

$$||\sum_{i=1}^{n} a_i x_i|| \le ||\sum_{i=1}^{k-1} a_i x_i|| + ||\sum_{i=k}^{n} a_i x_i|| \le a + b||x_k||$$

Posons $\phi \in GL(n)$ définit par $\phi(\sum_{i=1}^n a_i x_i) = \sum_{i=1}^{k-1} a a_i x_i + \sum_{i=k}^n b a_i x_i$ on a $\phi = \operatorname{diag}(\overbrace{a,...,a}^{(k-1)\times}, \overbrace{b,...,b}^{(n-k+1)\times})$ et donc $\det \phi = a^{k-1}b^{n-k+1}$ d'où :

$$\int_{\mathcal{E}} dx_1 ... dx_n = \int_{B_2^n} \det \phi dx_1 ... dx_n = a^{k-1} b^{n-k-1} \int_{B_2^n} dx_1 ... dx_n$$

On prend $a+b||x_k||=1$ de sorte que $\mathcal{E}\subset K$, comme B_2^n est l'ellipsoïde de volume maximale inclue dans K, on a que

$$1 \ge \frac{\int_{\mathcal{E}} dx_1 ... dx_n}{\int_{B_2^n} dx_1 ... dx_n} = a^{k-1} b^{n-k+1}$$

Fixons donc pour $k \ge 2$, $b = \frac{1-a}{||x_k||}$ et $a = \frac{k-1}{n}$, en remplaçant dans l'inégalité on obtient :

$$1 \ge a^{k-1} \left(\frac{1-a}{||x_k||} \right)^{n-k+1} \iff ||x_k|| \ge a^{\frac{k-1}{n-k+1}} (1-a) = \left(\frac{k-1}{n} \right)^{\frac{k-1}{n-k+1}} \left(1 - \frac{k-1}{n} \right)^{\frac{k-1}{n}} \left(1 - \frac{k-1}{n} \right)^$$

et $\log a^{\frac{k-1}{n-k+1}} = \frac{k-1}{n-k+1} \log \left(\frac{k-1}{n} \right) > -1.$

Proposition 2.5 (Estimation de E). Il existe c > 0 tel que $E \ge c\sqrt{\frac{\log n}{n}}$

Démonstration. Par le lemme de Dvoretzky-Rogers il existe une base orthonormé $x_1,...,x_n$ tel que pour $1 \le i \le \tilde{n} =: \lceil \frac{n}{2} \rceil$ la partie entière supérieure de $\frac{n}{2}$, $||x_i|| \ge e^{-1} \left(1 - \frac{\tilde{n}-1}{n}\right) \ge e^{-1} \left(1 - \frac{\frac{n}{2}+1-1}{n}\right) = (2e)^{-1}$. Comme μ est invariante par composition par une transformation orthogonale on a que

$$E =: \int_{S^{n-1}} || \sum_{i=1}^{n} a_i x_i || d\mu(a) = \int_{S^{n-1}} || \sum_{i=1}^{n-1} a_i x_i - a_n x_n || d\mu(a)$$

et donc

$$\begin{split} E &= \frac{1}{2} \int_{S^{n-1}} || \sum_{i=1}^{n} a_{i} x_{i} || d\mu(a) + \frac{1}{2} \int_{S^{n-1}} || \sum_{i=1}^{n-1} a_{i} x_{i} - a_{n} x_{n} || d\mu(a) \\ &\geq \frac{1}{2} \int_{S^{n-1}} 2 \max \left\{ || \sum_{i=1}^{n-1} a_{i} x_{i} ||, || a_{n} x_{n} || \right\} d\mu(a) \geq ... \geq \int_{S^{n-1}} \max_{1 \leq i \leq \tilde{n}} \left\{ |a_{i}| \, || x_{i} || \right\} d\mu(a) \\ &\geq \int_{S^{n-1}} \max_{1 \leq i \leq \tilde{n}} \left\{ |a_{i}| \, || x_{i} || \right\} d\mu(a) \geq (2e)^{-1} \int_{S^{n-1}} \max_{1 \leq i \leq \tilde{n}} |a_{i}| d\mu(a) \end{split}$$

Soit $(g_1,...,g_n)$, des variables aléatoire i.i.d de loi $\mathcal{N}(0,1)$ alors

$$\int_{S^{n-1}} \max_{1 \le i \le \tilde{n}} |a_i| d\mu(a) = \mathbb{E}\left[\left(\sum_{i=1}^n g_i^2\right)^{-\frac{1}{2}} \max_{1 \le i \le \tilde{n}} |g_i|\right]$$

Lemme 2.6. $(\sum_{i=1}^{n} g_i^2)^{-\frac{1}{2}}(g_1,...,g_n)$ et $(\sum_{i=1}^{n} g_i^2)^{\frac{1}{2}}$ sont indépendants.

Démonstration du lemme.

Par le lemme on à donc

$$\mathbb{E}\left[\left(\sum_{i=1}^{n}g_{i}^{2}\right)^{-\frac{1}{2}}\max_{1\leq i\leq \tilde{n}}|g_{i}|\right].\mathbb{E}\left[\left(\sum_{i=1}^{n}g_{i}^{2}\right)^{\frac{1}{2}}\right]=\mathbb{E}\left[\max_{1\leq i\leq \tilde{n}}|g_{i}|\right]$$

la fonction racine carré est concave, par l'inégalité de Jensen on a donc :

$$\mathbb{E}\left[\left(\sum_{i=1}^{n} g_{i}^{2}\right)^{\frac{1}{2}}\right] \leq \mathbb{E}\left[\sum_{i=1}^{n} g_{i}^{2}\right]^{\frac{1}{2}} = \sqrt{n}\mathbb{E}[g_{1}^{2}]^{\frac{1}{2}} = \sqrt{n}$$

Et finalement par le **lemme 2.3**, il existe K > 0 tel que :

$$E \ge \frac{1}{2e\sqrt{n}} \mathbb{E} \left[\max_{1 \le i \le \tilde{n}} |g_i| \right] \ge \frac{K}{2e} \sqrt{\frac{\log n}{n}}$$

Pour finir il suffit de poser $c =: \frac{K}{2e}$

On peut donc réunir les résultats **proposition 2.5** et **théorème 1.7** pour obtenir :

$$k \geq \left[c(\varepsilon)\log(n)\right]$$

avec $c(\varepsilon)=c_0\frac{\varepsilon^2}{\log(\frac{21}{\varepsilon})}$ pour $\varepsilon\leq\frac{1}{9}$, en réalité Y. Gordon en 1988 [4] à prouvé que l'on pouvait prendre $c(\varepsilon)=c_0\varepsilon^2$.

3 APPLICATIONS

3.1. ESPACE ℓ_P

Montrons la proposition suivante qui n'est en réalité qu'un coralliaire du théorème 1.7.

Proposition 3.1. Soit $1 \le p < \infty$ alors, pour tous $\varepsilon > 0$ il existe $c(\varepsilon) > 0$ tel que pour tout $n \in \mathbb{N}$, ℓ_2^k s'injecte $(1+\varepsilon)$ -continûment dans ℓ_p^n , pour

$$k \ge \begin{cases} c(\varepsilon)n & \text{si } 1 \le p \le 2\\ c(\varepsilon)n^{\frac{2}{p}} & \text{si } p > 2 \end{cases}$$

Démonstration. L'existence de l'injection seras prouvé par le **théorème 1.7**, il suffit donc de minoré $\frac{E}{h}$ avec les notations de la partie précédente.

$$E =: \int_{S^{n-1}} ||x||^p d\mu(x) = \mathbb{E}\left[\frac{\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}}{\left(\sum_{i=1}^n |x_i|^2\right)^{\frac{1}{2}}}\right] = \frac{\mathbb{E}\left[\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}\right]}{\mathbb{E}\left[\left(\sum_{i=1}^n |x_i|^2\right)^{\frac{1}{2}}\right]}$$

Comme les normes sont des applications convexes, par l'inégalité de Jensen :

$$\mathbb{E}\left[\left(\sum_{i=1}^{n}|x_{i}|^{p}\right)^{\frac{1}{p}}\right] \geq \left(\sum_{i=1}^{n}\mathbb{E}[|x_{i}|]^{p}\right)^{\frac{1}{p}} = n^{\frac{1}{p}}\sqrt{\frac{\pi}{2}}$$

Donc $E \ge \sqrt{\frac{\pi}{2}} n^{\frac{1}{p} - \frac{1}{2}}$, séparons deux cas :

 $1 : Par l'inégalité de Hölder on a <math display="inline">||x||_p \leq |x|,$ donc $b \leq 1$ et donc par le **théorème 1.7** , on a

$$k(\varepsilon, n) \ge c(\varepsilon) (\frac{E}{b})^2 n \ge c(\varepsilon) \frac{\pi}{2} n^{\frac{2}{p} - 1} n = \tilde{c}(\varepsilon) n^{\frac{2}{p}}$$

 $2 : Par l'inégalité de Hölder on a <math>||x||_p \le |x| n^{\frac{1}{p} - \frac{1}{2}}$, donc $b \le n^{\frac{1}{p} - \frac{1}{2}}$ et donc par le **théorème** 1.7 , on a

$$k(\varepsilon, n) \ge c(\varepsilon) \frac{\pi}{2} n = \tilde{c}(\varepsilon) n$$

RÉFÉRENCES

- [1] G. Schechtman, "Euclidean sections of convex bodies," 2008.
- [2] A. GROTHENDIECK, "Sur certains classes de suites dans les espaces de Banach, et le théorème de Dvoretzky-Rogers," 1956.
- [3] V. MILMAN, "New proof of the theorem of A. Dvoretzky on intersections of convex bodies," 1971.
- [4] Y. GORDON, "On Milman's inequality and random subspaces which escape through a mesh in \mathbb{R}^n ," 1988.
- [5] G. PISIER, The volume of convex bodies and Banach space geometry. Cambridge University Press, 1989.
- [6] V. Milman, "Dvoretzky theorem thirty years later," 1992.
- [7] V. D. G. Schechtman, Asymptotic theory of finite dimensional normed space. Springer, 1986.