Group Equivariant Convolutional Networks

Daniel Ralston

1/22/2024

Agenda

- Introduction and Motivation
- Related Works
- ▶ Background: Groups, Group Actions, and Equivariance
- ► Methods: *G* Equivariant Convolution
- Results
- Demonstration of the Code
- Conclusion

Introduction

- ► *G*-CNNs extend traditional CNNs by exploiting symmetries in the feature space, increasing model efficiency and robustness.
- Introduced to improve parameter efficiency and reduce computational complexity while maintaining performance.
- Group convolutions factorize convolutions based on group theory, enabling weight sharing across different transformations.
- ► Key for advancing deep learning in scenarios with limited data, improving generalization across transformed inputs.
- Pioneered new approaches to invariant and equivariant feature learning, laying foundations for subsequent architectural innovations.

Related Works

- Invariant representations improve image analysis, achieved by pose normalization and group averaging (Lowe, 2004; Reisert, 2008; Kondor, 2007) and extended by scattering convolution networks (Bruna and Mallat, 2013).
- Scattering networks, which use wavelet convolutions and nonlinearities, have been adapted for stable invariants in object and texture recognition (Sifre and Mallat, 2013; Oyallon and Mallat, 2015).
- ► Equivariant representations have been advanced through architectures like transforming autoencoders (Hinton et al., 2011) and convolutional architectures (Gens and Domingos, 2014) with unconventional learning applications (Agrawal et al., 2015).
- ▶ High-dimensional transformations and symmetry exploitation in convolutional networks have been utilized for tasks like galaxy morphology prediction, enhancing vision-related models (Dieleman et al., 2015; 2016; Cohen and Welling, 2014; 2015).

Groups

- ▶ A group is a set G with a binary operation · such that:
 - 1. *G* is closed under ·
 - 2. · is associative
 - 3. There exists an identity element $e \in G$ such that $e \cdot g = g \cdot e = g$ for all $g \in G$
 - 4. For each $g \in G$, there exists an inverse $g^{-1} \in G$ such that $g \cdot g^{-1} = g^{-1} \cdot g = e$
- ▶ In this paper, the authors focus on groups of rigid transformations of the plane (e.g. subgroups of SE(2), the 2-dimensional special Euclidean group)

p4 and p4m

- ▶ p4 all 2-dimensional integer translations and rotations by multiples of $\frac{\pi}{2}$
 - ► The underlying set can be described as a set of matrices where $r \in \{0, 1, 2, 3\}$ and $u, v \in \mathbb{Z}$

$$g(r, u, v) = \begin{bmatrix} \cos(\frac{\pi}{2}r) & -\sin(\frac{\pi}{2}r) & u\\ \sin(\frac{\pi}{2}r) & \cos(\frac{\pi}{2}r) & v\\ 0 & 0 & 1 \end{bmatrix}$$

- ▶ p4m all 2-dimensional integer translations, rotations by multiples of $\frac{\pi}{2}$, and mirror reflections
 - ► For $r \in \{0, 1, 2, 3\}$, $u, v \in \mathbb{Z}$, and $m \in \{0, 1\}$

$$g(m, r, u, v) = \begin{bmatrix} (-1)^m \cos(\frac{\pi}{2}r) & (-1)^{m+1} \sin(\frac{\pi}{2}r) & u \\ \sin(\frac{\pi}{2}r) & \cos(\frac{\pi}{2}r) & v \\ 0 & 0 & 1 \end{bmatrix}$$

▶ In both cases, the binary operation is matrix multiplication

Group Actions

- Critical to this paper, the authors use the fact that these groups act on the set of images.
- A group G is said to act on a set X if there exists a function $\gamma:G\times X\to X$ such that

$$\gamma(e,x) = x$$
 (e is the identity element of G)

$$\gamma(g_1,\gamma(g_2,x))=\gamma(g_1g_2,x)$$

- ▶ p4 and p4m act on \mathbb{Z}^2 (specifically $\mathbb{Z}^2 \times \{1\} \subset \mathbb{R}^3$) by matrix-vector multiplication:
 - ► Ex: For $A \in p4$ and $[u, v, 1]^T \in \mathbb{Z}^2 \times \{1\}$,

$$A[u, v, 1]^T = [u', v', 1]^T \in \mathbb{Z}^2 \times \{1\}$$

Acting on the set of images

- ▶ The authors describe the set of images as the collection of functions $f: \mathbb{Z}^2 \to \mathbb{R}^K$ (where f has compact (rectangular) support)
- ▶ p4 and p4m act on the the set of images {f} with the function L:

$$L_{g}(f)(x) = f(g^{-1}x)$$

where $g^{-1}x$ denotes matrix-vector multiplication

Equivariance

▶ Let G be a group acting on X and Y. A function $f: X \to Y$ is called *equivariant* if

$$f(gx) = gf(x)$$
 for all g in G and x in X

Fix a kernel Ψ and denote * as the convolution operator. Suppose G is the group of integer translations acting by T on the set of images.

$$T(g,f)(x) = f(-g+x)$$

For any image $f \in \{f\}$, the convolution operator $(\cdot) * \Psi : \{f\} \rightarrow \{f\}$ is equivariant with respect to translation:

$$(T(g,f)*\Psi)(x) = T(g,(f*\Psi))(x)$$

(i.e. you can translate an image and then convolve it or you can first convolve the image and then translate the output)

Translation Equivariance

Key Idea

- ► The authors want a convolution operator that is equivariant with respect to the group action of *p*4 or *p*4*m*
- We want a convolution where inputting a rotated image is the same as inputting a non-rotated image, convolving, and then rotating the output

Group Equivariant Convolution

- ▶ Let $f: \mathbb{Z}^2 \to \mathbb{R}^K$ be an image.
- Let G be either p4 or p4m and let Ψ be a kernel. Then the group equivariant convolution $*_G$ is defined as

$$\begin{split} [f*_G\Psi](g) &= \sum_{y \in \mathbb{Z}^2} \sum_{k \in \{1, \dots, K\}} f_k(y) \Psi_k(g^{-1}y) \\ &\left(= \sum_{y \in \mathbb{Z}^2} \sum_{k \in \{1, \dots, K\}} f_k(gy) \Psi_k(y) \right) \end{split}$$

Group Equivariant Convolution

▶ Equivariance property – denoting L_g be the action of $g \in G$ on the set of images,

$$L_{h}(f *_{G} \Psi)(g) = L_{h} \left(\sum_{y \in \mathbb{Z}^{2}} \sum_{k \in \{1, \dots, K\}} f_{k}(y) \Psi_{k}(g^{-1}y) \right)$$

$$= \sum_{y \in \mathbb{Z}^{2}} \sum_{k \in \{1, \dots, K\}} f_{k}(hy) \Psi_{k}(g^{-1}y)$$

$$= [L_{h}(f) *_{G} \Psi](g) \qquad \text{(note equivariance)}$$

$$= \sum_{y \in \mathbb{Z}^{2}} \sum_{k \in \{1, \dots, K\}} f_{k}(y) \Psi_{k}(h^{-1}g^{-1}y)$$

$$= [f *_{G} L_{h^{-1}}(\Psi)](g)$$

A Subtlety

▶ After the first layer of a $*_G$ convolution on an image f:

$$[f*_G\Psi](g)$$

letting g vary, our output is a set of images $\{[f*_G\Psi](g)\}_{g\in G}$ that now also depends on G

► Thus, our filter needs to take elements of *G* (translations, rotations, reflections) as inputs

Inner G-CNN Convolutions

 \blacktriangleright For inner layers the convolutional operator $*_G$ is defined as

$$[f *_G \Psi](g) = \sum_{h \in G} \sum_{k \in \{1, \dots, K\}} f_k(h) \Psi_k(g^{-1}h)$$

Equivariance property follows similarly as before:

$$L_{u}([f *_{G} \Psi])(g) = L_{u} \left(\sum_{h \in G} \sum_{k \in \{1, \dots, K\}} f_{k}(h) \Psi_{k}(g^{-1}h) \right)$$

$$= \sum_{h \in G} \sum_{k \in \{1, \dots, K\}} f_{k}(uh) \Psi_{k}(g^{-1}h)$$

$$= [L_{u}(f) *_{G} \Psi](g)$$

$$= [f *_{G} L_{u-1}(\Psi)](g)$$

G-CNN Visualization

Feature Maps

Figure 1. A p4 feature map and its rotation by r.

Figure 2. A p4m feature map and its rotation by r.

Activations and Pooling

▶ Activations commute with the group action *L* on {*f*}:

$$L_{g}(\sigma(f(x))) = \sigma(f(g^{-1}x)) = \sigma(L_{g}(f)(x))$$

Suppose P is a pooling operator over a region, ex max pooling over a sub region of G say H,

$$P(f)(g) = \max_{h \in H} f(hg)$$

- The authors show pooling commutes with the group action on an image, i.e. $L_g(P(f)) = P(L_g(f))$
- ► The authors propose H be a subgroup of G so that pooling partitions the set of images $\{[f *_G \Psi](g)\}_{g \in G}$ into cosets (equivalence classes)
- ► Ex if G = p4 and H is the subgroup of rotations, then pooling on $\{[f *_G \Psi](g)\}_{g \in G}$ reduces the output to be a function on $p4/H \cong \mathbb{Z}^2$

Results – Rotated MNIST

- Rotated MNIST dataset 62,000 randomly rotated handwritten digits
- Model selection on the validation set led to a CNN architecture (Z2CNN) with 7 layers, relu activation, batch normalization, and dropout, optimized with Adam, outperforming early models but not state of the art.
- ▶ However the introduction of p4-convolutions and pooling over rotations in the final layer, paired with a parameter-adjusted architecture (P4CNN), nearly halved the state-of-the-art error rate (2.28% vs 3.98% error).
- ▶ A modified Z2CNN with p4-convolutions and coset max-pooling (P4CNNRotationPooling) showed improved performance over the baseline, though it was less effective than P4CNN without intermediate rotation pooling.

Results – CIFAR-10 and CIFAR-10+

- ➤ CIFAR-10 dataset 60k 32x32 images across 10 classes, with 40k for training, 10k for validation, and 10k for testing.
- ► CIFAR-10+ dataset CIFAR-10 augmented with flips and translations
- Authors tested architectures All-CNN-C (Springenberg et al, 2015) and ResNet44 (He et al, 2016), with adaptations using p4 and p4m convolutions to maintain parameter counts while expanding internal representations.
- ► The p4m-CNN outperformed all published results on unmodified CIFAR10, although direct comparisons are challenging due to architectural differences

Results – Comparison

Network	Test Error (%)
Larochelle et al. (2007)	10.38 ± 0.27
Sohn & Lee (2012)	4.2
Schmidt & Roth (2012)	3.98
Z2CNN	5.03 ± 0.0020
P4CNNRotationPooling	3.21 ± 0.0012
P4CNN	$\textbf{2.28} \pm \ \textbf{0.0004}$

Table 1. Error rates on rotated MNIST (with standard deviation under variation of the random seed).

Network	G	CIFAR10	CIFAR10+	Param.
All-CNN	\mathbb{Z}^2	9.44	8.86	1.37M
	p4	8.84	7.67	1.37M
	p4m	7.59	7.04	1.22M
ResNet44	\mathbb{Z}^2	9.45	5.61	2.64M
	p4m	6.46	4.94	2.62M

Table 2. Comparison of conventional (i.e. \mathbb{Z}^2), p4 and p4m CNNs on CIFAR10 and augmented CIFAR10+. Test set error rates and number of parameters are reported.

Implementation

Open main.ipynb

Conclusion

- p4 and p4m convolution layers act as effective replacements for traditional convolutions, consistently improving network performance.
- ► Future work includes extending *G*-CNNs to hexagonal lattices and 3D space groups, expanding symmetries and potentially improving pattern recognition capabilities.
- Challenges remain in extending the method to continuous groups and managing the computational load for large transformation groups.
- ► This work exemplifies the "structured representations" philosophy, suggesting that adding mathematical structure to neural network representations could reveal deeper similarities between concepts.

References

- ► Taco S. Cohen and Max Welling. *Group Equivariant Convolutional Networks*, 2016, arXiv:1602.07576 [cs.LG].
- ► Erik Bekkers. Group Equivariant Deep Learning (UvA 2022). YouTube, Mar 26, 2022, https://www.youtube.com/watch?v=z20EyUgSH2c.