Die wichtigsten org. funkt. Gr. mit pK_a -Werten im Bereich von H_2O (-1.7 bis 15.7)

Carbon-**Pyridinium** Anilinium-Ion Imidazoliumprotoniertes Thiosäure **Amid** säure -Ion Ion $\widetilde{NH_3}$ \oplus NH_2 **≈4.5** 4.6 **5.2** $pK_a = 0$ 3.3 10-30 Thiophenol **Enol-Form eines Nitroalkan** Thiol Phenol 1,3-Diketons Ammonium-Ion SH HO (+) $R-NH_3$ R-SH **≈7** 10 10 10-11 10.5-11.5 Guanidinium-**Amidinium Pyrrol** Alkohol Ion -Ion (+) NH₂ \oplus NH₂ R, NH_2 R-OH **12.5 13.5 15 ≈16** 2

Kohlenwasserstoffe und weitere Verbindungen

Kohlenwasserstoffe

Cyclopentadien: 16

H——H Acetylen: 25

PhCH₃ Toluol: 41

Benzol: 43

Ethen: 44

CH₄ Methan: 49

Sulfonsäuren

Anorganika

 H_2O / OH^- Wasser: 15.7

HCO₃⁻ / CO₃²⁻ Hydrogencarbonat: 10.3

Bei Eliminierungen häufig verwendete Basen

Ethyldiisopropylamin (*Hünig*-Base)

$$pK_a = 11.4$$

Diese Verbindung aus der PPP gehört nicht dazu

DBU (1,8-Diazabicyclo-[5.4.0]undec-7-en) $pK_a = 12$

Diese Verbindung aus der PPP gehört nicht dazu

angegebene pK_a -Werte gelten jeweils für die konjugierte Säureform der gezeigten Basen

LDALithiumdiisopropylamid $pK_a = 36$ (in DMSO)

 \rightarrow O \odot K

Kalium-*tert*-butanolat

KO*t*Bu p $K_a = 19$

Acidifizierender Effekt von Akzeptor-Gruppen auf α -CH-Atome

Der σ - und π -Akzeptor-Effekt von Carbonylgruppen acidifiziert H-Atome in α -Stellung!

(s. pK_a -Tabellen im Anhang des OC1-Skripts)

EWG	$pK_a(R-CH_2-EWG)$	pK _a (EWG-CH ₂ -EWG)
CO ₂ Me	25	13
CN	25	11
СОМе	19-20	9
NO ₂	10	

EWG = Electron-Withdrawing Group

Diese Werte sollten Sie kennen!