List of Symbols

LOGIC

 $p \lor q$ p or q; page 34 $P \equiv Q$ P and Q are logically equivalent; page 45 $p \land q$ p and q; page 34 \forall for all; page 58 $\neg p$ not p; page 37 \exists there exists; page 60 $p \rightarrow q$ if p, then q; pages 40–41 \therefore therefore; page 51 $p \leftrightarrow q$ p if and only if q; pages 44–45

SET NOTATION

$\{x_1,\ldots,x_n\}$	set consisting of the elements x_1, \ldots, x_n ; page 22
${x \mid p(x)}$	set consisting of those elements x satisfying property $p(x)$; page 22
Z, Z^-, Z^+, Z^{nonneg}	sets of integers, negative integers, positive integers, nonnegative integers; pages 22–23
Q, Q^-, Q^+, Q^{nonneg}	sets of rational numbers, negative rational numbers, positive rational numbers,
	nonnegative rational numbers; pages 22–23
R, R^-, R^+, R^{nonneg}	sets of real numbers, negative real numbers, positive real numbers, nonnegative real numbers; pages 22–23
$x \in X$	x is an element of X ; page 23
$x \notin X$	x is not an element of X; page 23
X = Y	set equality (X and Y have the same elements); page 23
X	cardinality of X (number of elements in X); page 23
Ø	empty set; page 23
$X \subseteq Y$	X is a subset of Y; page 24
$X \subset Y$	X is a proper subset of Y; page 25
$\mathcal{P}(X)$	power set of X (all subsets of X); page 25
$X \cup Y$	X union Y (all elements in X or Y); page 25
$\bigcup_{\substack{i=1\\ \infty}}^n X_i$	union of X_1, \ldots, X_n (all elements that belong to at least one of X_1, X_2, \ldots, X_n); page 29
$\bigcup_{i=1}^{n} X_i$	union of X_1, X_2, \ldots (all elements that belong to at least one of X_1, X_2, \ldots); page 29
$\stackrel{i=1}{\cup}\mathcal{S}$	union of S (all elements that belong to at least one set in S); page 28
$X \cap Y$	X intersect Y (all elements in X and Y); pages $25-26$
$\bigcap_{\substack{i=1\\ \infty}}^n X_i$	intersection of X_1, \ldots, X_n (all elements that belong to every one of X_1, X_2, \ldots, X_n); page 29
$\bigcap_{i=1}^{\infty} X_i$	intersection of X_1, X_2, \ldots (all elements that belong to every one of X_1, X_2, \ldots); page 29
$\cap \mathcal{S}$	intersection of S (all elements that belong to every set in S); page 29
X - Y	set difference (all elements in X but not in Y); page 26
\overline{X}	complement of X (all elements not in X); page 26
(x, y)	ordered pair; page 29
(x_1,\ldots,x_n)	<i>n</i> -tuple; page 30

```
X \times Y Cartesian product of X and Y [pairs (x, y) with x in X and y in Y]; page 29 X_1 \times X_2 \times \cdots \times X_n Cartesian product of X_1, X_2, \ldots, X_n (n-tuples with x_i \in X_i); page 30 X \triangle Y symmetric difference of X and Y; page 33
```

RELATIONS

```
xRy (x, y) is in R (x is related to y by the relation R); page 161 [x] equivalence class containing x; page 173 R^{-1} inverse relation [all (y, x) with (x, y) in R]; page 167 R_2 \circ R_1 composition of relations; page 167
```

 $x \prec y$ xRy; page 166

FUNCTIONS

```
f(x) value assigned to x; page 134

f: X \to Y function from X to Y; page 133

f \circ g composition of f and g; page 142

f^{-1} inverse function [all (y, x) with (x, y) in f]; pages 141

f(n) = O(g(n)) |f(n)| \le C|g(n)| for n sufficiently large; page 206

f(n) = \Omega(g(n)) |c|g(n)| \le |f(n)| \le C|g(n)| for n sufficiently large; page 206

f(n) = \Theta(g(n)) |c|g(n)| \le |f(n)| \le C|g(n)| for n sufficiently large; page 206
```

COUNTING

```
C(n, r) number of r-combinations of an n-element set (n!/[(n-r)!r!]); page 293 P(n, r) number of r-permutations of an n-element set [n(n-1)\cdots(n-r+1)]; page 291
```

GRAPHS

```
G = (V, E)
                       graph G with vertex set V and edge set E; page 395
(v, w)
                       edge; page 395
\delta(v)
                       degree of vertex v; page 408
(v_1,\ldots,v_n)
                       path from v_1 to v_n; page 404–405
(v_1, \ldots, v_n), v_1 = v_n cycle; page 407
K_n
                        complete graph on n vertices; page 400
K_{m,n}
                       complete bipartite graph on m and n vertices; page 401
w(i, j)
                        weight of edge (i, j); page 425
F_{ii}
                        flow in edge (i, j); page 527
                       capacity of edge (i, j); page 527
C_{ij}
(P, \overline{P})
                        cut in a network; page 540
```

PROBABILITY

```
P(x) probability of outcome x; page 321

P(E) probability of event E; page 322

P(E \mid F) conditional probability of E given F[P(E \cap F)/P(F)]; page 326
```

This page intentionally left blank