

تمرین کامپیوتری سوم

سیستمهای عامل - پاییز ۹۹

دانشکده مهندسی برق و کامپیوتر

مسئولان تمرين:

پیشزمینه

استاد:

محمّد مریدی، مبینا شاه بنده و غزل مینایی

دکتر مهدی کارگهی

در این تمرین شما به تحلیل داده هایی که از مشخصات و قیمت فروش گوشیهای موبایل جمع آوری شدهاست می پردازید. در این تمرین به شبیه سازی یکی از روشهای رایج در یادگیری ماشین ا پرداخته

می شود. به عنوان یکی از شاخههای وسیع و پرکاربرد هوش مصنوعی، یادگیری ماشین به تنظیم و اکتشاف شیوهها و الگوریتمهایی می پردازد که بر اساس آنها رایانهها و سامانهها توانایی یادگیری و پیش بینی پیدا می کنند.

¹ Machine Learning

طبقهبندی²

در حوزه یادگیری ماشین، طبقهبندی نوعی یادگیری محسوب می شود و طبقهبندی مسئله شناسایی تعلق مشاهده جدید، به یکی از دسته ها بر اساس مجموعه ای از مشاهدات می باشد که عضویت در دسته هایشان مشخص می باشد.

برای مثال تصور کنید که میخواهید نام یک گل را بر اساس طول و عرض گلبرگهای آن تشخیص دهید. بدین منظور لازم است که یک گل را یک طبقهبند برای این منظور آموزش ببیند (توانایی تشخیص نوع گل را پیدا کند) و پس از آن بر اساس ویژگیهایی که یک گل را توصیف می کند (طول و عرض در این مثال) به طبقهبند داده شود. این طبقهبند براساس مشاهداتی که در گذشته داشته است (در مرحله آموزش) تعلق این گل را به یکی از دستهها تشخیص می دهد.

² Classification

³ Classifier

طبقهبندی خطی

در حوزه یادگیری ماشین نمونه هایی که قصد پیش بینی نوع و یا یک ویژگی آن ها وجود دارد، با استفاده از تعدادی ویژگی عددی و قابل اندازه گیری در قالب بردار ویژگی⁵ توصیف می شوند.

تعداد زیادی از الگوریتمهایی که برای طبقه بندی وجود دارند، می توانند با استفاده از یک تابع خطی 6 ، به هر یک از دسته ها امتیاز 7 ی اختصاص دهند. این امتیازدهی با استفاده از ضرب داخلی بردار ویژگی با بردار وزن هر یک از دسته ها صورت می گیرد. دسته یپش بینی شده، دسته ای می باشد که بالاترین امتیاز را بین سایر دسته ها به خود اختصاص دهد. این تابع در زیر توصیف شده است:

$$score(X_i, k) = \beta_k X_i$$

بطوریکه X_i بردار ویژگی نمونه i ام، β_k بردار وزن دسته k ام و $Score(X_i,\,k)$ امتیازی میباشد که دسته k ام با اختصاص یافتن به نمونه i ام بدست می آورد.

برای مثال تصور کنید که طبقهبند توانایی تشخیص دو نوع گل از یکدیگر را دارد. بدین ترتیب این طبقهبند دارای دو بردار وزن میباشد که هر دسته آن به ویژگیهای مختلف نمونه وزنهای مختلفی اختصاص میدهد. نمونهای از بردارهای وزن یک طبقهبند را در زیر مشاهده می کنید:

	β_0	β_1	Bias
Class ₁	31.18	-4.74	-8.00
Class ₂	-31.18	4.74	8.00

⁴ Linear Classification

⁵ Feature Vector

⁶ Linear Function

⁷ Score

حال این طبقهبند با بردارهای وزن ذکر شده، قصد تشخیص نمونهای که دارای بردار ویژگی زیر میباشد را دارد:

Bias	Length	Width
1	0.9	0.1

ستونهای Length و Width همانطور که از نام آنها برمی آید معرف طول و عرض گلبرگ مربوط به گلها می باشد. پس از انجام ضرب داخلی دو بردار لازم است که امتیاز آنها با مقداری ثابت برای هر دسته جمع شود. در این مثال برای این که امتیاز مربوط به هر دسته با محاسبه ضرب داخلی بدست آید، یک ویژگی به این نام و با مقدار ۱ به ویژگی های این نمونه اضافه شده است که با محاسبه ضرب داخلی آن با بردار وزن هر دسته، مقداری ثابت با امتیاز دسته برای نمونه مذکور جمع می شود.

برای محاسبه دسته مربوط به نمونه لازم است که ضرب داخلی بردار ویژگی نمونه در هر یک بردارهای وزن محاسبه شود.

$$score(X_i, k) = \beta_{k,0} \times Length_i + \beta_{k,1} \times Width_i + Bias_k \Rightarrow$$

 $score(X_i, 1) = 31.18 \times 0.9 + (-4.74) \times 0.1 + (-8.00) = 19.588$
 $score(X_i, 2) = -31.18 \times 0.9 + 4.74 \times 0.1 + 8.00 = -19.588$

با توجه به این که اولین دسته امتیاز بیشتری را کسب کرد، دسته مربوط به این نمونه دسته شماره یک می باشد.

مجموعه داده⁸

مجموعه داده ای که در این تمرین به شما داده شده است در قالب 9 CSV است. 9 نام یک قالب برای پرونده های متنی است که در آن مقادیر با استفاده از نماد کاما (٫) از یکدیگر جدا می شوند. این قالب

یکی از روشهای پرطرفدار برای تبادل اطلاعات است.

اطلاعات گوشیهای موبایل

اطلاعات گوشی های موبایل در پرونده train.csv در اختیار شما قرار داده شدهاست. در ادامه دربارهی هر ویژگی و نوع داده 01 مربوط به آن، توضیح مختصری آمدهاست.

نام ویژگی	توضيح	نوع داده	
battery_power	ظرفیت باتری در واحد میلی آمپر ساعت	عدد صحیح	
blue	بلوتوث دارد یا خیر	عدد صحیح (۱ یا ۱)	
clock_speed	سرعت پردازنده	عدد اعشاری	
dual_sim	دو سیم کارته است یا خیر	عدد صحیح (۱ یا ۱)	
fc	دقت دوربین جلو در واحد مگاپیکسل	عدد صحيح	
four_g	از 4G پشتیبانی میکند یا خیر	عدد صحیح (۱ یا ۱)	
int_memory	ظرفیت حافظه داخلی در واحد گیگابایت	عدد صحيح	
m_dep	ضخامت گوشی در واحد سانتیمتر	عدد اعشاری	

⁸ Dataset

⁹ Comma-Separated Values

¹⁰ Data Type

mobile_wt	وزن گوشی در واحد گرم	عدد صحیح
n_cores	تعداد هستههای پردازنده	عدد صحیح
рс	دقت دوربین پشت در واحد مگاپیکسل	عدد صحیح
px_height	رزولوشن صفحه نمایش (طول)	عدد صحیح
px_width	رزولوشن صفحه نمایش (عرض)	عدد صحیح
ram	ظرفيت حافظه موقت	عدد صحیح
sc_h	طول صفحه نمایش	عدد صحیح
SC_W	عرض صفحه نمايش	عدد صحیح
talk_time	بیشترین زمانی که با یک بار شارژ می توان از گوشی در تماس استفاده کرد	عدد صحیح
three_g	از 3G پشتیبانی می کند یا خیر	عدد صحیح (۱ یا ۱)
touch_screen	صفحه لمسى دارد يا خير	عدد صحیح (۱ یا ۱)
wifi	از WiFi پشتیبانی میکند یا خیر	عدد صحیح (۱ یا ۱)
price_range	رنج قيمت	عدد صحیح (۲،۱٬۰ یا ۳)

بردارهای وزن

همانطور که در بخش طبقهبندی خطی ذکر شد، امتیازدهی برای تعیین طبقه هر نمونه با استفاده از ضرب

داخلی بردار ویژگی هر نمونه با بردار وزن هر یک از دسته ها صورت می گیرد و دسته ی پیش بینی شده، دسته ای

است که بالاترین امتیاز را بین سایر دسته ها به خود اختصاص دهد. بردارهای وزن مدل آموزش دیده شده در قالب یک فایل CSV با نام weights.csv در اختیار شما قرار داده شده است که هر سطر از آن مربوط به یک طبقه قیمتی (0,1,2,3) و هر ستون از آن مربوط به یک ویژگی از میان ۲۰ ویژگی است و ستون آخر مقدار Bias است. هر سطر از این فایل در واقع نشان دهنده بردار وزن طبقه قیمتی متناظر با هر طبقه قیمیت در کنار مقدار Bias آن است.

نكات تكميلي

- در ستون های دوربین (fc, pc) عدد 0 نشان دهنده این است که آن گوشی دوربین متناظر را ندارد.
 - در ستون price_range، اعداد مربوطه به شرح زیر هستند:

بسیار گران	گران	متوسط	ارزان
3	2	1	0

● تضمین می شود که در داده هایی که در اختیار شما قرار گرفته است، تنها از کاراکتر ',' برای جداسازی اجزا استفاده شده است.

منابع

https://www.kaggle.com/iabhishekofficial/mobile-price-classification

https://www.iconfinder.com/