Cl0121 Computer Networks

Network categories and

Interconnecting devices

Profesores ECCI

Categories of networks

- Personal Area Networks (PANs)
- Local Area Networks (LANs)
 - Storage Area Networks (SANs)
- Metropolitan Area Networks (MANs)
- Wide Area Networks (WANs)

10121

Alternative classifications

- Telecommunication networks:
 - Access networks
 - Backbone networks
 - Data centers

- Corporate networks:
 - Department networks
 - Building or campus networks
 - Enterprise-wide networks

- Internet structure:
 - Local ISP
 - Regional ISP
 - Backbone ISP

- Internet structure (ISP classification):
 - Tier 1
 - Tier 2
 - Tier 3
 - Tier 4

Differences among categories

- Geographical area of coverage
- Data transmission rates
- Ownership
- Government regulation
- Data routing
- Type of information transmitted

7

Geographic Area

Interprocessor distance	Processors located i <mark>n sam</mark> e	Example
1 m	Squar <mark>e mete</mark> r	Personal area network
10 m	Room	
100 m	Building	Local area network
1 km	Camp <mark>us</mark>	
10 km	City	Metropolitan area network
100 km	Country	
1000 km	Continent	Wide area network
10,000 km	Planet	The Internet

Data transmission rate

2025

PANs: 100 Kbps – 2 Mbps

LANs: 1 – 1000 Mbps

MANs: 10 – 40 Gbps

WANs: Tbps

Ownership

2025

PANs: privately owned

LANs: privately owned

MANs: private or public company (local telephone company)

WANs: resource sharing among different companies or owned by one company (enterprise network)

Government regulations

2025

PANs: no government regulation

LANs: no government regulation – building policy

MANs: no government regulation – city regulations

WANs: government regulated – networks among states

PANs:

LANs:

MANs: _

Data is following the physical connection among the end nodes

WANS: Data is routed through different links

Transmitted information

2025

PANs: voice, data, music

LANs: mostly data, video

MANs: majority of data signal, voice

WANs: data, video, voice (6 % of traffic in 2003)

Categories of networks

- Personal Area Networks (PANs)
- Local Area Networks (LANs)
 - Ethernet
- Metropolitan Area Networks (MANs)
- Wide Area Networks (WANs)

Categories of networks

- Personal Area Networks (PANs)
- Local Area Networks (LANs)
 - Ethernet
- Metropolitan Area Networks (MANs)
- Wide Area Networks (WANs)

Local area networks

- Typically, based on a shared medium
 - broadcasting at layer 1 or layer 2
- Relatively small distance kilometres, at most)
- Simple topologies

(few

- High total bandwidth
- Limited number of nodes
- Low delay and error rate (mostly in wired environments)
- Broadcast facility supported
 - i.e., part of the layer 2 service

10121

Standardizing LANs: IEEE 802

- Working Groups and Study Groups
 - 802.1 Higher Layer LAN Protocols Working Group
 - Try to unify some issues for all LANs: management, addressing, bridges
 - 802.2 Logical Link Control working Group
 - Issues in connecting to the network layer
 - 802.3 Ethernet Working Group
 - 802.4 Token bus Working Group
 - 802.5 Token ring Working Group
 - 802.11 Wireless LAN Working Group
 - 11a, 11b, 11e, 11g
 - 802.15 Wireless Personal Area Network (WPAN) Working Group
 - e.g. BlueTooth, ...
 - 802.16 Broadband Wireless Access Working Group
 - wireless MAN
 - 802.17 Resilient Packet Ring Working Group
 - 802.18 Radio Regulatory TAG
 - 802.19 Coexistence TAG
 - 802.20 Mobile Broadband Wireless Access (MBWA) Working Group
 - Link Security Executive Committee Study Group

Categories of networks

- Personal Area Networks (PANs)
- Local Area Networks (LANs)
 - Ethernet
- Metropolitan Area Networks (MANs)
- Wide Area Networks (WANs)

The most widely used standard: Ethernet

Why Ethernet?

- It is simple
- Low cost
 - upgrading from one version to another is very easy and costs increase only 2 folds while speed increases 10 times
- According to Nortel 95 % off all LAN nodes are Ethernet!
- Standard for both LANs and WANs
- Wireless LAN standard
- Total area network standard?

Three generations of Ethernet

AUI: Attachment Unit Interface MAC: Media Access Control MAU: Medium Attachment Unit MDI: Medium-Dependent Interface MII: Medium-Independent Interface GMII: Gigabit Medium-Independent PHY: Physical Layer Entity PLS: Physical Layer Signaling RS: Reconciliation Signaling

Ethernet protocol only in the lowest 2 layers

10121

Ethernet NIC with MII connector

Network Interface Card with the MII connector

Physical Layer Device attached to the NIC with the MII connector

Optical MII transceiver - Physical Layer Device -

Ethernet topologies

shared medium

- broadcast -

span limited by collision domain!

star

Token ring

- Each node waits for the token to send data
- Token is mostly exchanged in the Round-Robin fashion
- Nodes get equal chance to transmit
- Introducing priorities is possible

Categories of networks

- Personal Area Networks (PANs)
- Local Area Networks (LANs)
 - Ethernet
- Metropolitan Area Networks (MANs)
- Wide Area Networks (WANs)

Interconnecting devices

How to get more users attached to a LAN?

How to extend a single LAN?

How to connect different LANs?

Interconnecting devices (cnt'd)

- repeater
- hub
- bridge
- switch
- router

Repeater

- works at the Physical layer
 - Regenerates received bits before it sends them out
- connects different half-duplex network segments
- either extends the number of users or the total span (by improving the quality of the transmitted signal)
- no separation of collision domains

Hub

- multi-port repeater (physical hardware device)
- provides physical star topology
- no intelligence
- no separations of collision domains
 - all the hosts compete for the shared bandwidth

Bridge

- works at layer 2 (requires software)
- connects two networks of the same type
 - LAN to LAN (example: WLAN to Fast Ethernet)
- forwards data (1 packet @ the time) depending on the destination address in the data packet (not the IP address, but the physical (MAC) address that is unique for every Network Interface Card (NIC))
- all computers are in the same <u>sub-network</u>
- packet filtering
- separates collision domains larger network spans
- a stand alone device or a PC with the special NIC and the accompanied software

Bridge (cnt'd)

Switch

- basically a multi-port bridge
- provides a better network performance
 - forwards more than a single packet at a time
- separates collision domains larger total network span
- bandwidth not shared

2025

Switch (cnt'd)

Router

- connects different sub-networks
- Layer 3 (Network layer) device
- forwarding based on IP addresses not on MAC addresses
- more expensive than a switch (requires CPU)
- Layer 3 switches (only work with IP packets)

An example

Categories of networks

- Personal Area Networks (PANs)
- Local Area Networks (LANs)
 - Ethernet
- Metropolitan Area Networks (MANs)
- Wide Area Networks (WANs)

Metropolitan Area Networks

- Three components
 - the access network for end-users
 - at the end-user you may find a LAN again...
 - connect to long-haul access points
 - specifically serve enterprises
 - e.g. file storage, disparate locations
- Requirements
 - diverse access technology
 - xDSL, cable, telephony, fiber
 - diverse managerial domains
 - home/enterprise equipment, PTT, cable company, leased lines
 - locally: fast, reliable and fair
 - similar technologies as LAN, if possible

MANs: examples

- Regular, special purpose networks
 - cable TV: just broadcasting and multiplexing of signals across the same physical medium
 - telephony: full duplex, point to point, connection oriented
 - electricity
- General data communication
 - re-use existing infrastructure

Antenna for picking

up distant signals Headend

03/20/25

-Drop cable

Coaxial cable

Cable and telephony

Cable TV

- need to add two-way communication
- sharing of cable segments

- Telephone
 - low bandwidth UTP

Categories of networks

- Personal Area Networks (PANs)
- Local Area Networks (LANs)
 - Ethernet
- Metropolitan Area Networks (MANs)
- Wide Area Networks (WANs)

Wide Area Networks

- Long-range geographical distribution
- Separation of local net and subnet
 - different management
 - subnet: just transport wires, switches, routers (no hosts!)
- Path-oriented transport through the subnet
- Note: subnet properties will affect WAN services

Home networks

- Special requirements
 - diverse hardware and interconnect
 - Information, Communication, Entertainment, Control
 - must work, reliable, foolproof
 - low cost
 - much streaming, rather than bursty traffic
 - high capacity
 - does not work well with Ethernet
 - evolutionary path
 - equipment is there for years to stay
 - safe, secure, privacy protection

1012

Connecting everything: the Internet

Network Access Point

serves to tie all the Internet Service Providers together

AT&T Bell South WorldCom

