MATH 644

Chapter 4

Section 4.2: Equivalence of Analytic and Holomorphic

Contents

Holomorphic Functions	2
Cauchy's Integral Formula In A Disk	3
Equivalence of Holomorphic and Analytic	7
Morera's Theorem	12

Created by: Pierre-Olivier Parisé Spring 2023

HOLOMORPHIC FUNCTIONS

DEFINITION 1. Let U be an open set and $f: U \to \mathbb{C}$. The function f is holomorphic on U if

- $f'(z) := \lim_{w \to z} \frac{f(w) f(z)}{w z}$ exists for all $z \in U$ and;
- $z \mapsto f'(z)$ is continuous on U.

Notes:

- f is holomorphic on U, then f is continuous on U;
- A complex-valued function f is holomorphic on a (generic) set S if it is holomorphic on an open set $U \supset S$.
- There are weaker definitions of a holomorphic functions: For example, one definition does not require that $z \mapsto f'(z)$ is continuous.

Example 2.

- a) Any polynomial is a holomorphic function on \mathbb{C} .
- b) Any rational function is a holomorphic function on their domain.
- c) Any power series is a holomorphic function on its disk of convergence.
- d) Any analytic function $f: \Omega \to \mathbb{C}$ is a holomorphic function on Ω .

Particular Derivatives:

- $f(z) = (z a)^n$, for $n \in \mathbb{Z}$ $(n \ge 0)$.
- $f(z) = a_n z^n + \ldots + a_1 z + a_0, n \in \mathbb{N}.$

CAUCHY'S INTEGRAL FORMULA IN A DISK

THEOREM 3. If f is holomorphic in $\{z : |z - z_0| \le r\}$, then, for $|z - z_0| < r$,

$$f(z) = \frac{1}{2\pi i} \int_{C_r} \frac{f(\zeta)}{\zeta - z} d\zeta,$$

where C_r is the circle of radius r centered at z_0 , parameterized in the counter-clockwise direction.

Lemma 4. Let f be a holomorphic function in a neighborhood of γ and $\gamma:[a,b]\to\mathbb{C}$ be a piecewise continuously differentiable curve, then

$$\int_{\gamma} f'(z) dz = f(\gamma(b)) - f(\gamma(a)).$$

Proof:

COROLLARY 5. If $\gamma:[a,b]\to\mathbb{C}$ is a closed, piecewise continuously differentiable curve, and if f is holomorphic in a neighborhood of γ , then

$$\int_{\gamma} f'(z) \, dz = 0.$$

Proof:

COROLLARY 6. If $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ converges in $B = \{z : |z-z_0| < r\}$, and if $\gamma \subset B$ is a closed, piecewise continuously differentiable curve, then

$$\int_{\gamma} f(z) \, dz = 0.$$

Proof.

THEOREM 7. Let $n \in \mathbb{Z}$, let γ be a closed piecewise continuously differentiable curve and let $a \notin \gamma$.

a) If $n \neq 1$, then

$$\int_{\gamma} \frac{1}{(z-a)^n} \, dz = 0.$$

b) If $\gamma = C_r = \{z : |z - z_0| = r\}$, then

$$\frac{1}{2\pi i} \int_{C_r} \frac{1}{z - a} dz = \begin{cases} 1 & \text{if } |a - z_0| < r \\ 0 & \text{if } |a - z_0| > r. \end{cases}$$

Proof of Cauchy's Integral Formula.	

EQUIVALENCE OF HOLOMORPHIC AND ANALYTIC

COROLLARY 8. Let $f: \Omega \to \mathbb{C}$ be a function defined on a region Ω .

- a) f is holomorphic in Ω if and only if f is analytic in Ω .
- b) Moreover, the series expansion of f based at $z_0 \in \Omega$ converges on the largest open disk centered at z_0 and contained in Ω .

Proof.

Note:

- In particular, if f is analytic in \mathbb{C} , then f has a power series expansion which converges in all of \mathbb{C} . Such functions are called **entire**.
- From now on, the words "holomorphic" and "analytic" are used interchangably.

Example 9.

- a) Show that $f(z) = \frac{z}{e^z 1}$ is holomorphic in $\mathbb{C} \setminus \{2k\pi i : k \in \mathbb{Z}, k \neq 0\}$.
- b) Use this to show that the radius of convergence of the power series based at 0

$$\frac{z}{e^z - 1} = \sum_{n=0}^{\infty} a_n z^n$$

is 2π .

SCHOLIUM 10. If f is analytic in $\{z: |z-z_0| \le r\}$ and $C_r = \{z_0 + re^{it}: 0 \le t \le 2\pi\}$, then

a)
$$\frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi} \int_{C_r} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta$$
. [Cauchy's Integral Formula for $f^{(n)}$]

b)
$$\left| \frac{f^{(n)}(z_0)}{n!} \right| \le \frac{\sup_{C_r} |f(z)|}{r^n}$$
. [Cauchy's Estimate]

Proof.

COROLLARY 11. If f is analytic in an open disk B, and if $\gamma \subset B$ is a closed, piecewise continuously differentiable curve, then

$$\int_{\gamma} f(z) \, dz = 0.$$

THEOREM 12. If f is analytic and one-to-one in a region Ω , then the inverse of f, defined on $f(\Omega)$, is analytic.

Lemma 13. If f is an analytic function at z_0 with

$$f(z) - f(z_0) = \sum_{n \ge m} a_n (z - z_0)^n \quad (a_m \ne 0, \ m \ge 2)$$

in some disk B_1 centered at z_0 , then there is a $\varepsilon > 0$ and a δ so that f(z) - w has exactly m solutions in $\{z : |z - z_0| < \varepsilon\}$, for any $w \in \{v : |v - f(z_0)| < \delta\}$.

Proof of Theorem 12.

Morera's Theorem

THEOREM 14. If f is continuous in an open disk B, and if

$$\int_{\partial R} f(\zeta) d\zeta = 0$$

for all closed rectangles $R \subset B$ with sides parallel to the axes, then f is analytic in B.