## Metody obliczeniowe optymalizacji

2011/2012

Prowadzący: mgr inż. Łukasz Chomątek

czwartek, 16:00

| Data oddania: | Ocena: |
|---------------|--------|
|---------------|--------|

Paweł Musiał 178726 Łukasz Michalski 178724

# Zadanie 2: Optymalizacja kierunkowa\*

#### 1. Cel

Celem zadania było napisać program, który dla dowolnej funkcji dwóch zmiennych rozwiąże zadanie optymalizacji na odcinku. Optymalizacja kierunkowa musi być przeprowadzona z wykorzystaniem kryteriów:

- Armijo
- Wolfa
- Goldsteina

Przedstawiany jako rozwiązanie program powinien pozwolić wprowadzić funkcję oraz odcinek, w którym poszukiwane będzie rozwiązanie.

## 2. Rozwiązanie zadania

#### 2.1. Metoda najszybszego spadku

Metoda najszybszego spadku jest iteracyjnym algorytmem wyszukiwania minimum zadanej funkcji celu f. Poszukiwania te odbywają się na podstawie gradientu tej funkcji. Wiadomo, że gradient $\nabla f = [\frac{\partial f}{\partial x_1}, ..., \frac{\partial f}{\partial x_n}]^T$  ma ważną własność mówiącą że poruszając się z dowolnego punktu x, w kierunku gradientu" osiągamy (lokalnie) najszybszy przyrost funkcji. W myśl tej zasady, jeśli  $\nabla f$  wyznacza najszybszy wzrost, to  $-\nabla f$  wyznacza najszybszy spadek. Na tym spostrzeżeniu opiera się metoda najszybszego spadku, którą w skrócie można ja opisać następująco:

<sup>\*</sup> SVN: http://serce.ics.p.lodz.pl/svn/labs/moo/lc\_cz1600/lmpm

- 1. Znajdź najlepszy kierunek (kierunek najszybszego spadku),
- 2. Określ jak daleko chcesz "zrobić krok" w tym kierunku,
- 3. Zrób krok i sprawdź warunek stopu.

Problemem występującym przy zastosowaniu metody najszybszego spadku jest jej "spowolnienie", gdy zbliża się do minimum (zmiany zmiennych zależna od wielkości gradientu, a gradient dąży do zera w otoczeniu punktu minimum). Alogrytm działania tej metody został przedstawiony na diagramie:



Rysunek 1. Schemat działania metody najszybszego spadku

Jak można zauważyć ważnym elementem tego algorytmu jest wybór odpowiedniej długość jego kroku. Ma to bowiem wpływ na szybkość i stabilność jego działania oraz na osiągnięte wyniki. W tym zadaniu skupimy się na trzech kryteriach doboru kroku:

- Armijo
- Wolfa
- Goldsteina
- 2.2. Kryterium Armijo
- 2.3. Kryterium Wolfa
- 2.4. Kryterium Goldsteina

## 3. Opis programu

Program składa się z implementacji trzech kryteriów.

| 3.1. Metoda najszybszego spadku                                                  |
|----------------------------------------------------------------------------------|
|                                                                                  |
| 3.2. Kryterium Armijo                                                            |
|                                                                                  |
| 3.3. Kryterium Wolfa                                                             |
|                                                                                  |
| 3.4. Kryterium Goldsteina                                                        |
|                                                                                  |
| 4. Wyniki                                                                        |
| 5. Wnioski                                                                       |
| Literatura                                                                       |
| [1] Michał Lewandowski, Metody optymalizacji - teoria i wybrane algorytmy. 2012. |