

CHEMICO-BIOLOGICAL INTERACTIONS

SUBJECT INDEX

VOLUME 85 (1992)

- Adrenoceptors, muscarinic receptors, lipid peroxidation, sulfhydryl groups, Ca^{2+} -homeostasis, 95
- Aromatic hydroxylation, reaction mechanism, cytochrome *P-450*, fluoroaniline, molecular orbital calculations, regioselectivity, 151
- Aromatic nitrogen mustards, DNA alkylation, DNA-targeting, association constants, biological activity, 1
- Arsenic, metallothionein, mRNA, protein half-life, liver, 127
- Ascorbate radical, crystal violet, horseradish peroxidase, thiyl radical, N-demethylation, superoxide anion, 35
- Ascorbic acid, hydroxyl radical, bovine serum albumin, xanthine oxidase, 243
- Association constants, aromatic nitrogen mustards, DNA alkylation, DNA-targeting, biological activity, 1
- Azide, 1,2-dioxetanes, DNA damage, excited states, triplet ketones, singlet oxygen, photosensitization, pyrimidine dimers, energy transfer, repair endonucleases, formamidopyrimidine-DNA glycosylase, 8-hydroxyguanine, 265
- Biological activity, aromatic nitrogen mustards, DNA alkylation, DNA-targeting, association constants, 1
- Bovine serum albumin, hydroxyl radical, xanthine oxidase, ascorbic acid, 243
- Ca^{2+} -homeostasis, muscarinic receptors, adrenoceptors, lipid peroxidation, sulfhydryl groups, 95
- Carboplatin, platinum-195m, plasma binding, cisplatin, iproplatin, 199
- Chloroform, regioslectivity, metabolism, reactive intermediates, covalent binding, 229
- Cisplatin, platinum-195m, plasma binding, carboplatin, iproplatin, 199
- Clofibrate, selenium deficiency, peroxisome proliferation, glutathione peroxidase, glu-
- tathione transferase, palmitoyl-CoA oxidation, lauroyl-CoA oxidase, omega-hydroxylation, hepatocytes, liver, rat, 49
- Covalent binding, regioslectivity, chloroform, metabolism, reactive intermediates, 229
- Crystal violet, horseradish peroxidase, thiyl radical, ascorbate radical, N-demethylation, superoxide anion, 35
- Cytochrome *P-450*, aromatic hydroxylation, reaction mechanism, fluoroaniline, molecular orbital calculations, regioselectivity, 151
- Cytochrome *P-450*, pH, demethylation, nitrosoalkane, erythromycin derivatives, 215
- Cytotoxicity of mercury, human oral cell cultures, low-molecular-weight-thiols, glutathione and protein thiols, 69
- Cytotoxicity, 2/pr./3'-dideoxycytidine, metabolism, mice, 255
- Demethylation, pH, nitrosoalkane, cytochrome *P-450*, erythromycin derivatives, 215
- N-Demethylation, crystal violet, horseradish peroxidase, thiyl radical, ascorbate radical, superoxide anion, 35
- Detergent, human platelet, sphingosine, platelet activation, membrane permeabilization, 27
- Diamine oxidase, intramolecular isotope effects, homologous substrates, 15
- Dibenz[*a,h*]anthracene, DNA adducts, ^{32}P -postlabelling, skin, 173
- 2',3'-Dideoxycytidine, cytotoxicity, metabolism, mice, 255
- Differences, human and mouse Ah receptor, proteolysis, 79
- 1,2-Dioxetanes, DNA damage, excited states, triplet ketones, singlet oxygen, photosensitization, pyrimidine dimers, energy transfer, repair endonucleases, formamidopyrimidine-DNA glycosylase, 8-hydroxyguanine, azide, 265

- DNA adducts, ^{32}P -postlabelling, skin, dibenz-[*a,h*]anthracene, 178
- DNA alkylation, aromatic nitrogen mustards, DNA-targeting, association constants, biological activity, 1
- DNA complex, morpholinylanthracyclines, intercalation, NMR, 117
- DNA damage, 1,2-dioxetanes, excited states, triplet ketones, singlet oxygen, photosensitization, pyrimidine dimers, energy transfer, repair endonucleases, 265
- DNA-adducts, oral mucosa, tobacco, ethanol, ^{32}P -postlabeling, 141
- DNA-targeting, aromatic nitrogen mustards, DNA alkylation, association constants, biological activity, 1
- DT-diaphorase, nitronaphthalene, nitroreductase, reduction potential, NADPH-cytochrome *c* reductase, xanthine oxidase, 187
- Energy transfer, DNA damage, 1,2-dioxetanes, excited states, triplet ketones, singlet oxygen, photosensitization, pyrimidine dimers, repair endonucleases, 265
- Erythromycin derivatives, pH, demethylation, nitrosoalkane, cytochrome *P*-450, 215
- Ethanol, oral mucosa, tobacco, DNA-adducts, ^{32}P -postlabeling, 141
- Excited states, DNA damage, 1,2-dioxetanes, triplet ketones, singlet oxygen, photosensitization, pyrimidine dimers, energy transfer, repair endonucleases, 265
- Fluoroaniline, aromatic hydroxylation, reaction mechanism, cytochrome *P*-450, molecular orbital calculations, regioselectivity, 151
- Formamidopyrimidine-DNA glycosylase, 1,2-dioxetanes, DNA damage, excited states, triplet ketones, singlet oxygen, photosensitization, pyrimidine dimers, energy transfer, repair endonucleases, 8-hydroxyguanine, azide, 265
- Glutathione and protein thiols, cytotoxicity of mercury, human oral cell cultures, low-molecular-weight-thiols, 69
- Glutathione peroxidase, selenium deficiency, peroxisome proliferation, clofibrate, glutathione transferase, palmitoyl-CoA oxidation, lauroyl-CoA oxidase, omega-hydroxylation, hepatocytes, liver, rat, 49
- Glutathione transferase, selenium deficiency, peroxisome proliferation, clofibrate, glutathione peroxidase, palmitoyl-CoA oxidation,
- lauroyl-CoA oxidase, omega-hydroxylation, hepatocytes, liver, rat, 49
- Hepatocytes, selenium deficiency, peroxisome proliferation, clofibrate, glutathione peroxidase, glutathione transferase, palmitoyl-CoA oxidation, lauroyl-CoA oxidase, omega-hydroxylation, liver, rat, 49
- Homologous substrates, intramolecular isotope effects, diamine oxidase, 15
- Horseradish peroxidase, crystal violet, thiyl radical, ascorbate radical, N-demethylation, superoxide anion, 35
- Human and mouse Ah receptor, proteolysis, differences, 79
- Human oral cell cultures, cytotoxicity of mercury, low-molecular-weight-thiols, glutathione and protein thiols, 69
- Human platelet, sphingosine, detergent, platelet activation, membrane permeabilization, 27
- 8-Hydroxyguanine, 1,2-dioxetanes, DNA damage, excited states, triplet ketones, singlet oxygen, photosensitization, pyrimidine dimers, energy transfer, repair endonucleases, formamidopyrimidine-DNA glycosylase, azide, 265
- Hydroxyl radical, bovine serum albumin, xanthine oxidase, ascorbic acid, 243
- Intercalation, morpholinylanthracyclines, DNA complex, NMR, 117
- Intramolecular isotope effects, homologous substrates, diamine oxidase, 15
- Iproplatin, platinum-195m, plasma binding, cisplatin, carboplatin, 199
- Lauroyl-CoA oxidase, selenium deficiency, peroxisome proliferation, clofibrate, glutathione peroxidase, glutathione transferase, palmitoyl-CoA oxidation, omega-hydroxylation, hepatocytes, liver, rat, 49
- Lipid peroxidation, muscarinic receptors, adrenoceptors, sulphydryl groups, Ca^{2+} -homeostasis, 95
- Liver, metallothionein, arsenic, mRNA, protein half-life, 127
- Liver, selenium deficiency, peroxisome proliferation, clofibrate, glutathione peroxidase, glutathione transferase, palmitoyl-CoA oxidation, lauroyl-CoA oxidase, omega-hydroxylation, hepatocytes, rat, 49
- Low-molecular-weight-thiols, cytotoxicity of mercury, human oral cell cultures, glutathione and protein thiols, 69

- Membrane permeabilization, human platelet, sphingosine, detergent, platelet activation, 27
- Metabolism, 2/pr./3'-dideoxycytidine, cytotoxicity, mice, 255
- Metabolism, regioslectivity, chloroform, reactive intermediates, covalent binding, 229
- Metallothionein, arsenic, mRNA, protein half-life, liver, 127
- Mice, 2/pr./3'-dideoxycytidine, cytotoxicity, metabolism, 255
- Molecular orbital calculations, aromatic hydroxylation, reaction mechanism, cytochrome P-450, fluoroaniline, regioselectivity, 151
- Morpholinylanthracyclines, intercalation, DNA complex, NMR, 117
- mRNA, metallothionein, arsenic, protein half-life, liver, 127
- Muscarinic receptors, adrenoceptors, lipid peroxidation, sulphydryl groups, Ca^{2+} -homeostasis, 95
- NADPH-cytochrome *c* reductase, nitronaphthalene, nitroreductase, reduction potential, DT-diaphorase, xanthine oxidase, 187
- Nitronaphthalene, nitroreductase, reduction potential, NADPH-cytochrome *c* reductase, DT-diaphorase, xanthine oxidase, 187
- Nitroreductase, nitronaphthalene, reduction potential, NADPH-cytochrome *c* reductase, DT-diaphorase, xanthine oxidase, 187
- Nitrosoalkane, pH, demethylation, cytochrome P-450, erythromycin derivatives, 215
- NMR, morpholinylanthracyclines, intercalation, DNA complex, 117
- Omega-hydroxylation, selenium deficiency, peroxisome proliferation, clofibrate, glutathione peroxidase, glutathione transferase, palmitoyl-CoA oxidation, lauroyl-CoA oxidase, hepatocytes, liver, rat, 49
- Oral mucosa, tobacco, ethanol, DNA-adducts, ^{32}P -postlabeling, 141
- Palmitoyl-CoA oxidation, selenium deficiency, peroxisome proliferation, clofibrate, glutathione peroxidase, glutathione transferase, palmitoyl-CoA oxidation, lauroyl-CoA oxidase, omega-hydroxylation, hepatocytes, liver, rat, 49
- Peroxisome proliferation, selenium deficiency, clofibrate, glutathione peroxidase, glutathione transferase, palmitoyl-CoA oxidation, lauroyl-CoA oxidase, omega-hydroxylation, hepatocytes, liver, rat, 49
- pH, demethylation, nitrosoalkane, cytochrome P-450, erythromycin derivatives, 215
- Photosensitization, DNA damage, 1,2-dioxetanes, excited states, triplet ketones, singlet oxygen, pyrimidine dimers, energy transfer, repair endonucleases, 265
- Plasma binding, platinum-195m, cisplatin, carboplatin, iproplatin, 199
- Platelet activation, human platelet, sphingosine, detergent, membrane permeabilization, 27
- Platinum-195m, plasma binding, cisplatin, carboplatin, iproplatin, 199
- ^{32}P -Postlabeling, oral mucosa, tobacco, ethanol, DNA-adducts, 141
- ^{32}P -Postlabelling, DNA adducts, skin, dibenz[a,h]anthracene, 173
- Protein half-life, metallothionein, arsenic, mRNA, liver, 127
- Proteolysis, human and mouse Ah receptor, differences, 79
- Pyrimidine dimers, DNA damage, 1,2-dioxetanes, excited states, triplet ketones, singlet oxygen, photosensitization, energy transfer, repair endonucleases, 265
- Rat, selenium deficiency, peroxisome proliferation, clofibrate, glutathione peroxidase, glutathione transferase, palmitoyl-CoA oxidation, lauroyl-CoA oxidase, omega-hydroxylation, hepatocytes, liver, 49
- Reaction mechanism, aromatic hydroxylation, cytochrome P-450, fluoroaniline, molecular orbital calculations, regioselectivity, 151
- Reactive intermediates, regioslectivity, chloroform, metabolism, covalent binding, 229
- Reduction potential, nitronaphthalene, nitroreductase, NADPH-cytochrome *c* reductase, DT-diaphorase, xanthine oxidase, 187
- Regioselectivity, aromatic hydroxylation, reaction mechanism, cytochrome P-450, fluoroaniline, molecular orbital calculations, 151
- Regioslectivity, chloroform, metabolism, reactive intermediates, covalent binding, 229
- Repair endonucleases, DNA damage, 1,2-dioxetanes, excited states, triplet ketones, singlet oxygen, photosensitization, pyrimidine dimers, energy transfer, 265
- Selenium deficiency, peroxisome proliferation, clofibrate, glutathione peroxidase, glutathione transferase, palmitoyl-CoA oxidation, lauroyl-CoA oxidase, omega-hydroxylation, hepatocytes, liver, rat, 49

- Singlet oxygen, DNA damage, 1,2-dioxetanes, excited states, triplet ketones, photosensitization, pyrimidine dimers, energy transfer, repair endonucleases, 265
Skin, DNA adducts, ^{32}P -postlabeling, dibenz[a,h]anthracene, 173
Sphingosine, human platelet, detergent, platelet activation, membrane permeabilization, 27
Sulphydryl groups, muscarinic receptors, adrenoceptors, lipid peroxidation, Ca^{2+} -homeostasis, 95
Superoxide anion, crystal violet, horseradish peroxidase, thiyl radical, ascorbate radical, N-demethylation, 35
Thiyl radical, crystal violet, horseradish peroxidase, ascorbate radical, N-demethylation, superoxide anion, 35
Tobacco, oral mucosa, ethanol, DNA-adducts, ^{32}P -postlabeling, 141
Triplet ketones, DNA damage, 1,2-dioxetanes, excited states, singlet oxygen, photosensitization, pyrimidine dimers, energy transfer, repair endonucleases, 265
Xanthine oxidase, hydroxyl radical, bovine serum albumin, ascorbic acid, 243
Xanthine oxidase, nitronaphthalene, nitro-reductase, reduction potential, NADPH-cytochrome *c* reductase, DT-diaphorase, 187

CHEMICO-BIOLOGICAL INTERACTIONS

AUTHOR INDEX

VOLUME 85 (1992)

Adam, W.	265	Högberg, J.	49
Albano, A.	255	Hultenby, K.	49
Albores, A.	127		
Andersson, K.	49	Isomaa, B.	27
Atzori, L.	69	Iwata, N.	187
Autrup, H.	141		
Autrup, J.L.	141	Jackson, H.	199
		Jaouen, M.	215
Bast, A.	95		
Benarous, J.G.	215	Keizer, J.	229
Bergstrand, A.	49	Koropatnick, J.	127
Bouillé, G.	215		
Brandi, G.	255	Ladam, P.	215
		Lecoq, S.	173
Callery, P.S.	15	Liu, Y.	69
Cherian, M.G.	127	Lu, Y.	79
Chiariantini, L.	255	Lundgren, B.	49
Cnubben, N.H.P.	151		
Cotgreave, I.	69	Magnani, M.	255
		Mason, R.P.	35
de Biasi, A.	229	Mäkelä, J-H.	27
Delaforge, M.	215	McAuliffe, C.A.	199
Denny, W.A.	1	Miura, T.	243
DePierre, J.W.	49	Miyata, N.	187
Dieckman, T.	117	Muraoka, S.	243
Docampo, R.	35	Müller, E.	265
Epe, B.	265	Odefey, C.	117
Eriksson, A.M.	49	Ogiso, T.	243
		Olsson, U.	49
Fan, J.-Y.	1	Oschkinat, H.	117
Fox, B.W.	199	O'Connor, C.J.	1
Fukuhara, K.	187		
		Perera, A.	199
Gadelha, F.R.	35	Pfau, W.	173
Gamage, R.S.K.	1	Philips, D.H.	173
Garberg, P.	49	Pou, S.	15
Geelhaar, L.A.	15		
Girault, J.P.	215	Reynolds, K.A.	15
Grafström, R.C.	69	Rietjens, I.M.C.M.	151
Grover, P.L.	173	Rossi, L.	255
Hanna, P.M.	35	Safe, S.	79
Hansen, C.	141	Saha-Möller, C.R.	265

Santostefano, M.	79	Vervoort, J.	151
Sbraccia, M.	229	Vittozzi, L.	229
Schiavano, G.F.	255		
Sharma, H.L.	199	Wang, X.	79
Subramanyam, B.	15	Westendorf, J.	117
Suzuki, K.	187		
Takahashi, A.	187	Yuan, Z.-M.	15
Testai, E.	229		
van der Vliet, A.	95	Zelazowski, A.J.	127
Veeger, C.	151		