Analysis 2

xx.xx.2025

Contents

0.1	Metris	sche und Normale Räume	6
	0.1.1	Def: Metrik, Metrischer Raum	6
	0.1.2	Def: Norm	6
	0.1.3	Satz: Norm induziert Metrik	6
	0.1.4	Def: Skalarprodukt, Euklidischer Raum	6
	0.1.5	Satz: Skalarprodukt induziert Norm	7
	0.1.6	Def: Äquivalenz von Normen	7
	0.1.7	Def: Folgenräume	7
0.2	Konve	ergenz in Metrischen Räumen	8
	0.2.1	Def:	8
	0.2.2	Satz: Bolzano Weierstraß	8
	0.2.3	Def:	8
	0.2.4	Jede konvergente Folge ist Cauchy	8
	0.2.5	Def: Vollständiger Raum	8
0.3	Vorhe	rige Vorlesung	10
	0.3.1	Äquivalenz von Normen	10
	0.3.2	Vollständiger Raum	10
0.4	(1.3) (Offene und abgeschlossene Menge	10
	0.4.1	Def:	10
	0.4.2	Satz:	11
	0.4.3	Satz:	11
	0.4.4	Def:	11
	0.4.5	Teilraumtopologie	11
	0.4.6	Produkttopologie	12
0.5	Stetige	e Abbildung zwischen Metrischen Räumen	12
	0.5.1	Def: Stetigkeit	12
	0.5.2	Def: Lipschitz Stetig	12
	0.5.3	Satz:	12
0.6	Vorhe	rige Vorlesung	14
	0.6.1	Def: Homeomorphismus	14
	0.6.2	Def:	15
	0.6.3	Satz:	15
0.7	Linear	re Abbildungen, Operator Norm	15
	0.7.1	Satz:	15
	0.7.2	Satz:	16
	0.7.2	Dof	16

Contents

	0.8	Kompa	akte Räume	16
		0.8.1	Def:	16
		0.8.2	Def: Offene Überdeckung	16
1	Diff	erentia	Irechnung mehrerer Variablen	19
		1.0.1	Differentierbarkeit in \mathbb{R}	19
		1.0.2	Ableitung Vektorwertiger Funktion	19
	1.1	Kurve	n in \mathbb{R}^n	19
		1.1.1	Def: Kurven	19
		1.1.2	Def: Ableitung von Kurven	19
		1.1.3	Def: Regulär, Singulär	20
		1.1.4	Def: Schnittwinkel	20
		1.1.5	Def: Polygonzug	20
		1.1.6	Def: Rektifizierbare Kurvven	20
		1.1.7	Satz:	21
		1.1.1	Def:	23
		1.1.2	Def: Orientierungstreu	23
		1.1.3	Satz:	23
	1.2	Partiel	le Ableitung	23
		1.2.1	Ableitung	24
		1.2.2	Def:	24
		1.2.3	Def:	24
		1.2.4	Def: Richtungsableitung	24
		1.2.5	Def: Gradient von f	24
		1.2.6	Def: Jacobi Matrix	25
	1.3	Höher	e partielle Ableitung und Differentialoperatoren	27
		1.3.1	Def:	27
		1.3.2	Satz: Satz von Schwartz	27
		1.3.3	Differentialoperatoren	27
	1.4	Totale	Differenzierbarkeit	28
		1.4.1	Def: Totale Differenzierbarkeit	28

0.1 Metrische und Normale Räume

0.1.1 Def: Metrik, Metrischer Raum

Sei X eine Menge. Dann ist $d: X \times X \to [0, \infty)$ eine Metrik, falls

- $d(x, x) = 0, d(x, y) \ge 0$
- d(x, y) = d(y, x)
- $d(x, z) \le d(x, y) + d(y, z)$

und dann ist (X, d) ein Metrischer Raum.

Beispiel:

Sei $X = \mathbb{R}^n$ und $d(x, y) = ||x - y||_p$. Dann ist d eine Metrik.

Die Diskrete Metrik

$$d(x, y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$$

Die Induzierte Metrik

Sei (X, d) ein metrischer Raum und $A \subset X$, und sei $d_A = d$ dann ist d_A eine Induzierte Metrik auf A.

0.1.2 Def: Norm

Eine funktion $||\cdot||:V\to [0,\infty)$ Ist eine Norm, falls

- $||u|| \ge 0$
- $||\lambda u|| = |\lambda|||u||$
- $||u + v|| \le ||u|| + ||v||$

0.1.3 Satz: Norm induziert Metrik

Sei $(V, ||\cdot||)$ ein normierter Raum, dann ist d(u, v) = ||u - v|| eine Metrik.

0.1.4 Def: Skalarprodukt, Euklidischer Raum

sei V ein reeller Vektorraum, $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ ist ein Skalarprodukt, falls

- $\langle u, v \rangle = \langle v, u \rangle$
- $\langle \lambda u + \mu v, w \rangle = \lambda \langle u, v \rangle + \mu \langle v, w \rangle$
- $\langle u, u \rangle \ge 0$

Dann ist $(V, \langle \cdot, \cdot \rangle)$ ein euklidischer Raum.

0.1.5 Satz: Skalarprodukt induziert Norm

Sei $(V, \langle \cdot, \cdot \rangle)$ ein euklidischer Raum. Dann definiert $||u|| = \sqrt{\langle u, u \rangle}$ eine Norm auf V.

Lemma:

Sei V ein euklidischer Raum. Dann ist $\langle u, v \rangle \le ||u|| ||v||$. Beweis: $0 \le ||\lambda u - v||^2$

0.1.6 Def: Äquivalenz von Normen

Zwei normen f, g sind Äquivalent auf einem Vektorraum V, falls konstanten $c_1, c_2 > 0$ existieren s.d. $c_2 f(u) \le g(u) \le c_1 f(u)$ für alle $u \in V$.

Beispiel

 $||\cdot||_{\infty}$ und $|\cdot|$ sind äquivalent auf \mathbb{R}^n

$$||x||_{\infty} \le |x| = \left(\sum_{i=1}^{n} x_i^2\right)^{1/2} \le \left(n \max_{i} |x_i|^2\right)^{1/2} = \sqrt{n}||x||_{\infty}$$

Alle Normen auf \mathbb{R}^n sind äquivalent. Dies gilt nicht für unendliche Räume.

0.1.7 Def: Folgenräume

$$\begin{split} V &= \left\{ (x_i)_{i \in \mathbb{N}} | x_i \in \mathbb{R} \right\} \\ ||x||_{l^p} &= \left(\sum_i^{\infty} x^p \right)^{1/p} \\ ||x||_{l^p} &= \sup_{i \in \mathbb{N}} |x_i| \\ l^p &:= \left\{ x \in V |||x||_{l^p} < \infty \right\} \end{split}$$

 l^p ist VR

für l = 1. $x \in \ell^1 \Rightarrow \lambda x \in \ell^1$ für $\lambda \in \mathbb{R}$, weil

$$||\lambda x||_{\ell^1} = \sum_{i=1}^{\infty} |\lambda x_i| = |\lambda| \sum_{i=1}^{\infty} x_i < \infty$$

Wenn $x, y \in \ell^1$ dann $x + y \in \ell^1$.

$$\sum_{i=1}^{N} |x_i + y_i| = \sum_{i=1}^{N} |x_i| + \sum_{i=1}^{N} |y_i| \le ||x||_{\ell^1} + ||y||_{\ell^1}$$

 $\sum_{i}^{N}|x_{i}+y_{i}| \text{ ist monoton wachsend und beschränkt, also konvergent. Somit } x+y\in \ell^{1}.$ Es gilt $||x||_{\ell^{\infty}}\leq ||x||_{\ell^{1}}$ und somit $\ell^{1}\subset \ell^{\infty}.$

zu
$$\epsilon > 0 \exists i \text{ s.d. } |x_i| \ge ||x||_{\ell^{\infty}} - \epsilon$$

Somit $||x||_{\ell^{\infty}} \le |x_i| + \epsilon \le \sum_{i=1}^{\infty} |x_i| + \epsilon$

0.2 Konvergenz in Metrischen Räumen

0.2.1 Def:

Sei X ein metrischer Raum mit d. Eine Folge $(x_n) \subset X$ heißt beschränkt, falls $x_0 \in X$ und K > 0 sodass $d(x_k, x_0) \leq K$ für alle k. $(x_n) \subset X$ heißt konvergent, falls ein $x \in X$ existiert sodass $d(x_k, x) \to 0$ für $k \to \infty$.

0.2.2 Satz: Bolzano Weierstraß

Jede beschränkte Folge in \mathbb{R}^n besitzt eine konvergente Teilfolge

0.2.3 Def:

Sei X ein metrischer Raum und $(x^k) \subset X$ eine Folge. Diese Folge ist eine Cauchy Folge, falls für alle $\epsilon > 0$ ein $k_0 \in \mathbb{N}$ existiert s.d. $d(x^k, x^m) < \epsilon$ für all $k, m \ge k_0$

0.2.4 Jede konvergente Folge ist Cauchy

Nicht jede Cauchy Folge ist konvergent. Beispiel: $X = \mathbb{Q}$ mit d(p, q) = |p - q|.

0.2.5 Def: Vollständiger Raum

Ein Metrischer Raum X heißt vollständig, falls jede Cauchy Folge darin konvergiert. Ein Vollständiger Normierter Raum heißt Banach Raum. Ein Vollständiger Euklidischer Raum heißt Hilbert Raum.

0.3 Vorherige Vorlesung

(X, d) Metrischer Raum

 $(V, ||\cdot||)$ Normierter Raum

 $(V, \langle \cdot, \cdot \rangle)$ Euklidischer Raum

0.3.1 Äquivalenz von Normen

zwei normen f, g sind äquivalent, falls c_1 , c_2 existieren, so dass

$$c_2f(x) \leq g(x) \leq c_1f(x)$$

Alle normen auf \mathbb{R}^n sind äquivalent.

0.3.2 Vollständiger Raum

Der metrische Raum (X, d) ist vollständig falls alle Cauchy Folgen konvergieren.

ℓ^1 Vollständigkeit

 $(\mathscr{C}^1,||\cdot||_{\mathscr{C}^1}$ ist vollständig. Sei $x\subset\mathscr{C}^1$ eine Cauchy Folge in \mathscr{C}^1 . D.h. dass

$$\forall \epsilon > 0 \exists k_0 \in \mathbb{N}(\underbrace{||x^k - x^m||_{\ell^1}}_{=\sum_i^{\infty} |x_i^k - x_i^m} < \epsilon) \forall k, m \ge k_0$$

$$= \sum_i^{\infty} |x_i^k - x_i^m|$$

$$\Rightarrow x^k \text{ ist CF für } \mathbb{R} \Rightarrow \exists x_i \in \mathbb{R}(x_i^k \to x_i, k \to \infty)$$

$$(0.1)$$

$$\Rightarrow x^k \text{ ist CF für } \mathbb{R} \ \Rightarrow \exists x_i \in \mathbb{R}(x_i^k \to x_i, k \to \infty)$$
 (0.2)

0.4 (1.3) Offene und abgeschlossene Menge

0.4.1 Def:

Sei (X, d) ein mtrischer Raum, $x_0 \in X$ und r > 0 Dann ist

- $B_r(x_0) = \{x \in X | d(x, x_0) < r\}$ die Offene Kugel
- $\overline{B}_r(x_0) = \{x \in X | d(x, x_0) \le r\}$ abgeschlossene Kugel
- $U \subset X$ heißt umgebung von x_0 , falls $\exists \epsilon > 0$ mit $B_{\epsilon}(x_0) \subset U$.
- $\bullet \ \ U \subset X \text{ heißt offen falls } \forall x \in U \ \exists \varepsilon > 0 \text{ mit } B_\varepsilon \subset U.$
- $A \subset X$ ist abgeschlossen falls A^c offen ist.

Elementare Eigenschaften

- \emptyset und X sind offen und abgeschlossen.
- $B_r(x_0)$ ist offen. Sei $x \in B_r(x_0)$ und sei $\varepsilon = r d(x, x_0) > 0$ dann ist $B_{\varepsilon}(x) \subset B_r(x_0)$
- $y \in (\overline{B}_r(x_0))^c \Rightarrow d(y, x_0) > r$ und sei $\epsilon = d(y, x_0) r > 0$ Dann $B_{\epsilon}(y) \subset \left(\overline{B}_r(x_0)\right)$
- Durchschnitt endlich vieler offenen mengen ist offen. Sei V, U offen. Sei $x \in U \cap V$, sei ϵ_1, ϵ_2 s.d. $B_{\epsilon_1}(x) \subset U$ und $B_{\epsilon_2}(x) \subset V$ dann sei $\epsilon = \min(\epsilon_1, \epsilon_2)$ und $B_{\epsilon}(x) \subset U \cap V$

0.4.2 Satz:

Sei (X, d) ein metrischer Raum, $x, y \in X$ mit $x \neq y$. Dann existiert eine Umgebung von X und V von y mit $U \cap V = \emptyset$.

Beweis: $2\epsilon = d(x, y) > 0$ sei $U = B_{\epsilon}(x), V = B_{\epsilon}(y)$ dann $\exists z \in B_{\epsilon}(x) \cap B_{\epsilon}(y)$ und dann $2\epsilon = d(x, y) \le d(x, z) + d(z, y) < 2\epsilon$

0.4.3 Satz:

Sei $A \subset X$ abgeschlossen, das ist äquivalent zu $\forall (x^k) \subset A$ mit $x^k \to x$ in X dann gilt $x \in A$. Beweis: " \Rightarrow ": Annahme: $x \notin A$ dann $\exists \epsilon > 0$ so dass $B_{\epsilon}(x) \subset A^{\epsilon}$. Widerspruch zu $x_k \in B_{\epsilon}(x)$ für $k \ge k_0$.

" \Leftarrow ": Nehme an dass A^c nicht offen ist. Dann existiert ein $x \in A^c$ sodass $B_{\epsilon}(x) \not\subset A^c$ für alle ϵ . Wähle $\epsilon = 1/n$, dann $\exists x_n \in B_{1/n}(x), x_n \in A$ Dann $x_n \to x$, nach vorherigem $x \in A$ Widerspruch

0.4.4 Def:

Sei (X, d) ein metrischer Raum, Sei $M \subset X$ und $x_0 \in X$ heißt innerer Punk von M falls $x_0 \in M$ und $\exists \epsilon > 0$ s.d. $B_{\epsilon}(x_0) \subset M$.

 $x_0 \in X$ heißt innerer Punkt, falls alle ϵ Kugel um x_0 ein $y \in M$ und ein $z \in M^c$ enthält.

 $x_0 \in X$ heißt Häufungspunkt von M falls in jeder ϵ kugel von x_0 ein $y \in M$ mit $y \neq x_0$ liegt.

 $x_0 \in X$ heißt Isolierter punkt falls $x_0 \in M$ aber ist kein Häufungspunkt.

- \dot{M} Menge der Inneren Punkte von M
- ∂M Menge der Randpunkte von M
- $\overline{M} = M \cup \partial M$ ist der Abschluss von M

0.4.5 Teilraumtopologie

Sei (X, d) ein metrischer raum, sei $X_0 \subset X$ dann ist (X_0, d) auch ein metrischer Raum. Dann ist $U_0 \subset X_0$ offen, falls $U \subset X$ existiert, offen und $U \cap X_0 = U_0$ ist.

0.4.6 Produkttopologie

Seien (X, d_x) und (Y, d_y) metrische Räume, dann ist $(X \times Y, d)$ ein metrischer Raum mit der metrik

$$d((x_1, y_1), (x_2, y_2)) = \max(d_x(x_1, x_2), d_y(y_1, y_2))$$

 $W\subset X\times Y$ ist offen, falls $\forall (x,y)\in W$ eine umgebung U von $x\in X$ existiert und eine Umgebung V von $y\in Y$ s.d. $U\times V\subset W$

0.5 Stetige Abbildung zwischen Metrischen Räumen

0.5.1 Def: Stetigkeit

Seien $(X,d_x),(Y,d_y)$ metrische Räume. Sei $f:X\to Y$ eine Abbildung. diese Abbildung ist stetig in x_0 falls

$$\forall \epsilon > 0 \exists \delta > 0 \forall x (d_v(f(x), f(x_0)) < \epsilon \text{ und } d_x(x, x_0) < \delta)$$

Falls für alle $x \in X$ f stetig ist, dann heißt f stetig.

0.5.2 Def: Lipschitz Stetig

falls $L \ge 0$ exisiert und

$$d_v(f(x), f(x')) \le Ld_x(x, x') \quad \forall x, x' \in X$$

0.5.3 Satz:

Seien $(X,d_x),(Y,d_y)$ metrische Räume, $f:X\to Y$ ist stetig gdw $f^{-1}(V)\subset X$ offen für alle $V\subset Y,V$ offen, ist

0.6 Vorherige Vorlesung

- Stetige Abb $f: X \to Y$. $\epsilon \delta$ Kriterium ist äquivalent zum Folgenkriterium.
- Lipschitstetigkeit
- Rechenregeln
- f stetig Äquivalent zu Urbild offener Menge offen

0.6.1 Def: Homeomorphismus

Eine bijektive stetige Abbildung $f: X \to Y$ deren inverse auch stetig ist heißt Homeomorphismus. X ist heomeomorph zu Y, falls es einen Homeomorphismus von X zu Y gibt.

Bsp

 $f: [0,2\pi) \to S^1 \subset \mathbb{R}^2$ mit $f(t) = (\cos t, \sin t)$ ist eine bijektive stetige Abbildung dessen Inverse nicht stetig ist. Falls der Definitionsraum Kompakt ist (Beschränkt und Abgeschlossen) So ist die Inverse stetig.

Bsp

- $B_1(0) \subset \mathbb{R}^n$ ist homeomorph zu \mathbb{R}^n mit $f(x) = \frac{x}{1-|x|}$
- Invers und stereographischen Projection $p \in \mathbb{R}^n$, $\alpha > 0$ funktion $i : \mathbb{R}^n \setminus \{p\} \to \mathbb{R}^n \setminus \{p\}$ mit Eigenschaften
 - -i(x) und x liegen auf Halbgeraden durch punkt x: $i(x) p = \lambda(x p)$ für ein λ

$$-|i(x) - p||x - p| = \alpha \Rightarrow i(x) = p + \frac{\alpha}{|x - p|^2}(x - p)$$

i ist stetig und es gilt $i^{-1} = i$

$$i(x) - p = \frac{\alpha}{|x - p^2|}(x - p) = \frac{1}{\alpha}|i(x) - p|^2(x - p)$$
(0.3)

$$\Rightarrow x - p = \frac{\alpha}{|i(x) - p|^2} (i(x) - p) \tag{0.4}$$

Bsp

 \mathbb{R}^{n} , $p = N = (0, \dots, 0, 1)$ und $\alpha = 2$

$$i_N(x) = N + \frac{2}{|X - N|^2}(X - N)$$

Behauptung: i_N bildet die Hyperebene $\{x \in \mathbb{R}^{n+1}\}$ auf den Ball $S^1 \setminus \{N\}$ bijektiv ab.

$$1 = |i_N(x)|^2 = |N + \frac{2}{|X - N|^2} (X - N)|^2$$
(0.5)

$$= 1 + 2\langle N, \frac{2}{|X - N|^2} (X - N) \rangle + \frac{4}{|X - N|^2}$$
 (0.6)

$$0 = \frac{4}{|X - N|^2} \langle X, N \rangle - \frac{4}{|X - N|^2} \langle N, N \rangle + \frac{4}{|X - N|^2}$$
(0.7)

$$\Rightarrow \langle N, X \rangle = 0 \Leftrightarrow x_{n+1} = 0 \tag{0.8}$$

Stereographische Projektion $\sigma_N: \mathbb{R}^n \to S^n \setminus \{N\}$ definiert als $i_N((x,0))$

Polarkoordinaten in \mathbb{R}^2

$$\begin{split} P_2 \ : \ \mathbb{R}_+ \times (-\pi, \pi), & (r, \phi) \to \mathbb{R}^2 \backslash \{t, 0\} \\ P_2(r, \phi) = (r\cos\phi, r\sin\phi) \\ \text{Und die Umkehrabbildung } g_2(x, y) = (\sqrt{x^2 + y^2}, \text{sgn}(y) \arccos(\frac{x}{\sqrt{x^2 + y^2}}) \end{split}$$

0.6.2 Def:

Seien X,Y metrische Räume. Sei $f_n:X\to Y$ eine Funktionenfolge. Diese ist gleichmäßig konvergent, falls

$$\forall \epsilon > 0 \exists n \left(d_Y(f_m(x), f_k(x)) < \epsilon \right) \quad \forall x \in X \forall m, k \ge n$$
 (0.9)

Falls Y vollständig ist, und f_n gleichmäßig konvergiert, so exstiert eine funktion von X nach Y mit $f_n \to f$, d.h.

$$\forall \epsilon > 0 \exists n_0 \left(d_Y(f_n, f) < \epsilon \quad \forall x \in X \forall n \geq n_0 \right.$$

0.6.3 Satz:

Sei Y vollständig, $f_n \to f$ gleichmäßig konvergent und f_n stetig für alle n, dann ist f stetig

0.7 Lineare Abbildungen, Operator Norm

Hier: $(V, ||\cdot||_V)$, W, U normierte Vektorräume.

0.7.1 Satz:

lineare Abbildungen A von V nach W sind stetig, falls $\dim V < \infty$.

$$e_1, \dots, e_n$$
 basis von V . $x = x_i e_i$ und $y = y_i e_i$. Definiere $M = max(||Ae_1||_W, \dots, ||Ae_n||_W)$. $||Ax - Ay||_W = ||(x_i - y_i)Ae_i||_W \le |x_i - y_i||Ae_i||_W \le M \sum_i |x_i - y_i| \le MC||x - y||_V$

0.7.2 Satz:

Eine Lineare Abbildung $A:V\to W$ ist stetig, genau dann wenn c>0 existiert sodass $||Ax||_W=C||x||_V$ für alle $x\in C$. A ist dann auch Lipschitz stetig.

Beweis: "
$$\Leftarrow$$
": $||A_x - A_y||_W = ||A(x - y)|_W = C||x - y||_V$
" \Rightarrow ": A ist stetig: A stetig in $y = 0$: für $\epsilon = 1$ existiert ein $\delta > 0$

$$||Ay||_W < 1 \quad \forall ||y||_V \le \delta \tag{0.10}$$

$$\Rightarrow ||Ax||_{W} = ||A\frac{\delta x}{||x||_{V}} \frac{||x||_{V}}{\delta}||_{W} = \frac{||x||_{V}}{\delta} ||A\frac{\delta x}{||x||_{V}}||_{W}$$
(0.11)

0.7.3 Def:

Sei L(V, W) der Raum der stetigen linearen Abbildungen von V nach W.

$$||A||_{L(V,W)} = \sup\{||Ax||_W|||x|| \le 1\}$$
(0.12)

$$= \sup\{\frac{||Ax||_W}{||x||_V} | x \in V, x \neq 0\}$$
 (0.13)

ist die Operattornorm auf L(V, W)

0.8 Kompakte Räume

0.8.1 Def:

Sei X ein metrischer Raum. Sei $K \subset X$. K heißt (Überdeckungs)kompakt, falls es zu jeder offenen Überdeckung $\cup_i U_i$ von K eine endliche Teilmenge gibt, die K überdeckt.

0.8.2 Def: Offene Überdeckung

Eine Offene Überdeckung ist eine Familie offener Mengen U_i , s.d. jedes $x \in K$ in mindestens einem U_i liegt.

1 Differentialrechnung mehrerer Variablen

1.0.1 Differentierbarkeit in \mathbb{R}

Sei $I \subset \mathbb{R}$, $f: I \to \mathbb{R}$ und $x_0 \in I$. Dann ist f in x_0 differentierbar, falls

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \tag{1.1}$$

existiert.

Das ist äquivalent zu

Es existiert eine lineare Abbildung L s.d.

$$\lim_{h \to 0} \frac{f(x_0 + h) + f(x_0) - Lh}{h} = 0 \tag{1.2}$$

1.0.2 Ableitung Vektorwertiger Funktion

Sei $f: I \subset \mathbb{R} \to \mathbb{R}^m$ mit $f(x) = (f(x), \dots, f_m(x))^T$. f ist differentierbar, falls

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \in \mathbb{R}^m$$
 (1.3)

existiert, oder gleiche äquivalenzen für oben für die einzelnen funktionsteile.

1.1 Kurven in \mathbb{R}^n

1.1.1 Def: Kurven

Eine Kurve in \mathbb{R}^n ist eine stetige Abbildung $\gamma:I\subset\mathbb{R}\to\mathbb{R}^n$. Eine Kurve heißt (stetig) differentierbar, falls γ (stetig) differentierbar ist. $\gamma(I)\subset\mathbb{R}^n$ heißt Spur von γ .

1.1.2 Def: Ableitung von Kurven

Sei γ eine differentierbare Kurve. Dann ist

$$\gamma'(t) = \left(\gamma_1'(t), \dots, \gamma_n'(t)\right)^T \tag{1.4}$$

der Tangentialvektor von γ in t. Wobei $|\gamma'(t)|$ die Geschwindigkeit ist, und $T_{\gamma} = \frac{\gamma'(t)}{|\gamma'(t)|}$ der Tangentialeinheitsvektor

1.1.3 Def: Regulär, Singulär

Eine stetig differentierbare Kurve γ heißt regulär, falls $\gamma'(t)$ ungleich null für alle $t \in I$ ist. Falls $t \in I$ mit $\gamma'(t) = 0$, dann heißt t singulär.

1.1.4 Def: Schnittwinkel

Wir nehmen zwei sich schneidende Graphen γ_1 und γ_2 . Seien beide regulär und $\gamma_1(t_1) = \gamma_2(t_2) = x$. Dann ist der Schnittwinkel α in x

$$\cos \alpha = \langle T_{\gamma_1}(t_1), T_{\gamma_2}(t_2) \rangle \tag{1.5}$$

1.1.5 Def: Polygonzug

sei γ eine Kurve. Sei \mathcal{Z} eine Zerlegung von [a, b] mit

$$a = t_0 < t_1 < \dots < t_k = b \tag{1.6}$$

Verbinde $\gamma(t_{i-1})$ und $\gamma(t_i)$ durch Geraden. Diese Kurve ist ein Polygonzug.

$$P_{\gamma}(t_0, \dots, t_k) = \sum_{i=1}^{k} |\gamma(t_i) - \gamma(t_{i+1})|$$
 (1.7)

ist die Länge des Polygonzugs.

1.1.6 Def: Rektifizierbare Kurvven

Die Kurve γ heißt rektifizierbar mit Länge L falls

$$\forall \epsilon > 0 \exists \delta > 0 \forall Z(\Delta(Z) < \delta \to |P_{\gamma} - L| < \epsilon) \tag{1.8}$$

Lemma:

Sei $\gamma \in C^1$.

$$\forall \epsilon > 0 \exists \delta > 0 \left(|t - s| < \delta \to \left| \frac{\gamma(t) - \gamma(s)}{t - s} - \gamma'(t) \right| < \epsilon \right)$$
 (1.9)

Beweis: $f \ddot{u} r n = 1$

 γ' ist gleichmäßig stetig auf [a,b], dann $\forall \epsilon > 0 \exists \delta > 0 \ \big(|t-\tau| < \delta \to |\gamma'(t) - \gamma'(\tau)| < \epsilon \big)$ Per Mittelwertsatz

$$\frac{\gamma(t) - \gamma(s)}{t - s} = \gamma'(\tau) \quad \text{für ein } \tau \in (s, t)$$
 (1.10)

$$\Rightarrow |t - s| < \delta \rightarrow \left| \frac{\gamma(t) - \gamma(s)}{t - s} - \gamma'(t) \right| = |\gamma'(\tau) - \gamma'(t)| < \epsilon \tag{1.11}$$

und für $n \in \mathbb{N}$. Nach n = 1:

$$\forall \epsilon > 0\delta_i > 0 \left(|t - s| < \delta_i \to \left| \frac{\gamma_i(t) - \gamma_i(s)}{t - s} - \gamma_i'(t) \right| < \epsilon \right)$$
 (1.12)

$$\delta = \min(\delta_i) \tag{1.13}$$

$$\left|\frac{\gamma(t) - \gamma(s)}{t - s} - \gamma'(t)\right| \le \sqrt{n} \max_{i} \left|\frac{\gamma_{i}(t)\gamma_{i}(s)}{t - s} - \gamma'_{i}(t)\right| < \sqrt{n}\epsilon \tag{1.14}$$

1.1.7 Satz:

Sei γ stetig und differenzierbar. Dann ist γ rektifizierbar mit

$$L = \int_{a}^{b} |\gamma'(t)| \mathrm{d}t \tag{1.15}$$

Beweis: $|\gamma'(t)|$ stetig impliziert Riemann Integrierbarkeit

$$\operatorname{zu} \forall \epsilon > 0 \exists \delta > 0 : \left| \int_{a}^{b} |\gamma'(t)| dt - \sum_{i}^{n} |\gamma'(t_{i})| |t_{i} - t_{i-1}| \right| < \frac{\epsilon}{2} \ \forall Z \operatorname{mit} \Delta(Z) < \delta_{1}$$
 (1.16)

Vorheriges Lemma:
$$\exists \delta \in (0, \delta_1] \left(\left| \frac{\gamma(t_i) - \gamma(t_{i-1})}{t_i - t_{i-1}} - \gamma'(t_i) \right| < \frac{\epsilon}{2(b-a)} \right)$$
 (1.17)

1.1.1 Def:

Sei γ eine kurve. Sei ϕ : $[\alpha, \beta] \to [a, b]$ bijektiv stetig. Dann ist $g = \gamma \cdot \phi$ eine Kurve. Falls $\phi, \phi^{-1} \in C^1$ dann ist dies eine C^1 Parameter transformation

1.1.2 Def: Orientierungstreu

 ϕ heißt orientierungstreu (umkehrend) falls ϕ streng monoton wachsend (fallend) ist.

1.1.3 Satz:

Sei $\gamma:[a,b]\to\mathbb{R}^n, \gamma\in C^1$. Sei ϕ eine C^1 Parametertransformation.

$$g(s) = \gamma(\phi(s)) \Rightarrow L = \int_{a}^{b} |\gamma'(t)| dt = \int_{a}^{\beta} |g'(s)| ds$$
 (1.18)

Beweis: oBdA, $\phi' > 0$

$$\int_{\alpha}^{\beta} |g'(s)| \mathrm{d}s = \int_{\alpha}^{\beta} |\gamma'(\phi(s))| |\phi'(s)| \mathrm{d}s \tag{1.19}$$

$$= \int_{\alpha}^{\beta} |\gamma'(\phi(s))| \phi'(s) ds = \int_{a}^{b} |\gamma'(t)| dt$$
 (1.20)

Bemerkung

Zu jeder regulären Kurve lässt sich eine Umparametrisierung finden, so dass |g'(s)| = 1. Das heißt, dass die Kurve nach der Bogenlänge parametrisiert ist.

1.2 Partielle Ableitung

 $\Omega \subset \mathbb{R}^n$ ist offen, und $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$

Beispiele:

Sei m = n = 1. $\Gamma_f = \{(x, f(x)) | x \in \Omega\}$.

- $\Gamma \subset \mathbb{R}^{n+1}$ und $N_f(x) = \{x \in \Omega | f(x) = c\}$
- Elektrisches feld einer Raumladung. q in $x_0 \in \mathbb{R}^2$.

$$f(x) = q \frac{(x - x_0)}{|x - x_0|^3}$$

• reelle darstellung von e^z

$$f(x,y) = \begin{pmatrix} e^x \cos(y) \\ e^x \sin(y) \end{pmatrix}$$
 (1.21)

• Parametrisierung der Sphäre. $f: (-\pi, \pi) \times (\frac{-\pi}{2}, \frac{\pi}{2}) \to S^2$

$$f(\phi, \theta) = \begin{pmatrix} \cos \phi \cos \theta \\ \sin \phi \cos \theta \\ \sin \theta \end{pmatrix}$$

1.2.1 Ableitung

Erste Idee: Halten n-1 variablen fest und differenzieren nach der freien Variable. z.B. $f: \mathbb{R}^2 \to \mathbb{R}, g(x) = f(x, y)$ mit y fest, $g: \mathbb{R} \to \mathbb{R}$. Das ist eine Partielle Ableitung

1.2.2 Def:

ist $x \in \Omega$ partiell differenzierbar nach x_i , falls

$$\partial_i f(x) = \lim_{t \to 0} \frac{f(x + te_i) - f(x)}{t} \tag{1.22}$$

existiert.

1.2.3 Def:

f heißt stetig partiell differenzierbar, falls $\partial_i f(x)$ für alle $x \in \Omega$ und für alle i existiert und stetig ist

1.2.4 Def: Richtungsableitung

Sei $v \in \mathbb{R}^n$ ein vektor mit |v| = 1 Dann ist

$$\partial_v f(x) = \lim_{t \to 0} \frac{f(x + tv) - f(x)}{t} \tag{1.23}$$

die Richtungsableitung von f(x) in Richtung v.

1.2.5 Def: Gradient von f

sei $f: \Omega \to \mathbb{R}$ partiell differenzierbar. Dann ist

$$\nabla f(x) = \begin{pmatrix} \partial_1 f(x) \\ \vdots \\ \partial_n f(x) \end{pmatrix}$$
 (1.24)

der Gradient von f. Wir können schreiben

$$\partial_{v} r(x) = \langle \nabla r(x), v \rangle$$

1.2.6 Def: Jacobi Matrix

 $f:\Omega \to \mathbb{R}^m$ heißt partiell differenzierbar falls jedes f_i partiell differenzierbar ist.

$$\partial_i f(x) = \begin{pmatrix} \partial_i f_1(x) \\ \vdots \\ \partial_i f_m(x) \end{pmatrix}$$
 (1.25)

Dies definiert eine Matrix, die Jacobi Matrix

$$Df(x) = \begin{pmatrix} \partial_1 f_1(x) & \cdots & \partial_n f_1(x) \\ \vdots & & \vdots \\ \partial_1 f_m(x) & \cdots & \partial_n f_m(x) \end{pmatrix}$$
(1.26)

falls m = n dann ist $J_f(x) = \det Df(x)$ die Jacobi oder Funktionaldeterminante.

1.3 Höhere partielle Ableitung und Differentialoperatoren

1.3.1 Def:

Sei $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$. Dann ist die höhere partielle Ableitung der Ordnung $k \in \mathbb{N}$

$$\partial_{i_1} \cdots \partial_{i_k} = \partial_{i_1} \left(\cdots \partial_{i_k} \right) f(x)$$

Und wir definieren den VR $C^k(\Omega, \mathbb{R}^m \text{ der } k\text{-mal stetig differenzierbaren Funktionen. Für } m = 1$ ist $C^k(\Omega)$.

 $C^k(\bar{\Omega}, \mathbb{R}^m) = \left\{ f \in C^k(\Omega, \mathbb{R}^m | \text{alle Ableitungen von } f \text{ lassen sich stetig auf } \bar{\Omega} \text{ fortsetzen.} \right\}.$

1.3.2 Satz: Satz von Schwartz

sei $f \in C^2(\Omega)$. Dann gilt, dass $\partial_{ij} f = \partial_{ji} f$ Beweis:

$$\partial_j^t f = \frac{f(x + te_j) - f(x)}{t}$$

dann ist

$$\partial_{ij} f(x) = \lim_{s \to 0} \lim_{t \to 0} \partial_i^s \partial_j^t f(x).$$

Sei $g: \omega \to \mathbb{R}$, falls $\partial_i g(x)$ existiert, dann existiert ein $\alpha \in (0,1)$ s.d. $\partial_i^s g(x) = \partial_i g(x + \alpha e_i)$.

$$\partial_i^s \partial_i^t f(x) = \partial_i (\partial_i^t f)(x + \alpha s e_i). \quad \alpha = \alpha(s, t) \in (0, 1)$$
 (1.27)

$$= \partial_i^t (\partial_i f)(x + \alpha s e_i) \tag{1.28}$$

$$= \partial_i(\partial_i f)(x + \alpha s e_i + \beta t e_i, \quad \beta \in (0, 1)$$
 (1.29)

$$\rightarrow \partial_i \partial_i f(x)$$
, weil $\partial_i \partial_i f \in C(\Omega)$ (1.30)

1.3.3 Differentialoperatoren

• Divergenz $f \in C^1(\Omega, \mathbb{R}^n)$

$$\operatorname{div} f(x) = \sum_{i}^{n} \partial_{i} f_{i}(x) = \operatorname{tr}(Df(x))$$

• Rotation $f \in C^1(\Omega \subset \mathbb{R}^3, \mathbb{R}^3)$.

$$\operatorname{rot} f(x) = \begin{pmatrix} \partial_2 f_2 - \partial_3 f_2 \\ \partial_3 f_1 - \partial_1 f_3 \\ \partial_1 f_2 - \partial_2 f_1 \end{pmatrix} = \nabla \times f$$

• Rotation in \mathbb{R}^2 ,

$$rot f(x) = \partial_1 f_2 - \partial_2 f_1$$

1 Differentialrechnung mehrerer Variablen

• Gradient ist Rotationslos

$$rot(\nabla f) = 0$$

• Laplace Operator $f \in C^2(\Omega)$

$$\Delta f(x) = \operatorname{div}(\nabla f)(x) = \sum_{i=1}^{n} \partial_{i} \partial_{i} f(x)$$

Funktionen für die $\Delta f = 0$ heißen harmonisch.

1.4 Totale Differenzierbarkeit

1.4.1 Def: Totale Differenzierbarkeit

sei $f: \Omega \to \mathbb{R}^m$, dann ist f in x total differenzierbar, falls es eine Lineare Abbildung $L: \mathbb{R}^n \to \mathbb{R}^m$ gibt, s.d.

$$\lim_{h\to 0}\frac{f(x+h)-f(x)-Lh}{|h|}=0$$