7. $\vec{F} = \langle y, y^2 \rangle$; C is the line segment from (0,0) to (3,1).

$$(3t, t) t=[0,1]$$
 $(t, \frac{t}{3}) t=[0,3]$

$$\int_{C} \left(\overrightarrow{r}(t) \cdot r'(t) \right) dt$$

$$\int_{C} \left(\overrightarrow{r}(t) \cdot r'(t) \right) dt$$

$$\int_{C} \left(\overrightarrow{r}(t) \cdot r'(t) \right) dt$$

$$\int_{0}^{3} 9t + t^{2} dt$$

$$\int_{0}^{3} 9t + t^{2} dt$$

$$\frac{\alpha}{2} + \frac{1}{3} = \frac{2\alpha}{6}$$

9. $\vec{F} = \langle y, x \rangle$; C is the top half of the unit circle, beginning at (1,0) and ending at (-1,0).

$$\frac{\sin(2t)}{2}$$
 + $\begin{bmatrix} \gamma \\ 0 \end{bmatrix}$

= 0

In Exercises 17 – 20, a conservative vector field \vec{F} and a curve C are given.

- 1. Find a potential function f for \vec{F} .
- 2. Compute curl \vec{F} .
- 3. Evaluate $\int_C \vec{F} \cdot d\vec{r}$ directly, i.e., using Key Idea 14.3.1.
- 4. Evaluate $\int_{C} \vec{F} \cdot d\vec{r}$ using the Fundamental Theorem of Line Integrals.
- 17. $\vec{F} = \langle y+1, x \rangle$, C is the line segment from (0,1) to (1,0).

$$1 \times y + x$$

3 < t, 1-67

$$\int_{0}^{1} \left(2-t,t\right) \cdot \left(1,-1\right) dt$$

$$\int_{0}^{2} 2-t-t$$

$$\int_{0}^{2} 2-2t dt$$

$$2t-t^{2}+(||_{0}^{2})$$

$$\vec{r}_1(t) = \langle 2t - 1, 0 \rangle,$$

$$\vec{r}_2(t) = \langle 1 - t, 2t \rangle,$$

$$\vec{r}_3(t) = \langle -t, 2 - 2t \rangle$$

$$\vec{r}_1(t) = \langle 2t - 1, 0 \rangle,$$

 $\vec{r}_2(t) = \langle 1 - t, 2t \rangle,$
 $\vec{r}_3(t) = \langle -t, 2 - 2t \rangle,$

(incle:
$$\langle 2cs(t), 2sin(t) \rangle$$

Field: $\langle x \sim 7, x + Y \rangle$

Mg: $\langle 2cos(t) - 2sin(t) \rangle (2(os(t))$

(MN): Field: $\langle x \sim 7, x + Y \rangle$

(MN): Field: $\langle x \sim 7, x + Y \rangle$

(MN): Field: $\langle x \sim 7, x + Y \rangle$

(MN): Field: $\langle x \sim 7, x \sim 7,$