Total No. of Pages :2

Seat No.

T.E. (Computer Science & Engineering) (Semester - V) Examination, November - 2019 COMPUTER GRAPHICS

Sub. Code :66293

Day and Date :Friday, 22-11-2019 Total Marks :50 Time : 02.30 p.m.to 4.30 p.m.

Instructions:

- Q. No. 3 and Q.No. 6 are compulsory Attempt any one from Q. NO. 1 and QNo. 2 Q. any one from Q. NO. 4 and Q. NO. 5.
- Figures to the right indicate full marks.
- Assume suitable data if necessary.
- Q1) a) Derive the transformation matrix for reflecting a two dimensional object through an arbitrary line. [6]
 - Explain Sutherland cohen subdivision algorithm for line clipping. [6]
- Q2) a) Explain different criteria's used by bresenham's circle generation algorithm to select the appropriate pixel which best represents the actual circle.[6]
 - Define generalized 3D transformation matrix. Explain 3D rotation and reflection.
- Q3) a) Consider the clipping window X_L=-1, X_R=+1, Y_B=-1 and Y_T=+1 and the line From P₁(-3/2,1/6) to P₂(1/2,3/2). Clip the line using end point code algorithm.
 [7]
 - b) What is scan conversion. Explain run length encoding technique. [6]

P.T.O.

	S	C-180
Q4) a)	Explain parametric representation of cubic spline curve?	[6]
b)	What is warping? Explain Mesh warping method.	[6]
Q5) a)	What is procedural animation? Differentiate between key-frame based animation and procedural animation [6	
b)	Explain phone Shading method for rendering a polygon surface	12.57 97
Q6) a)	Explain the convex hull property of B-spline Curve	[7]
b)	Expalin diffuse reflection model for calculating surface intensity a point	at a given [6]

B B B