Metoda nejmenších čtverců – lineární model

• sada naměřených hodnot $x = (x_1, x_2, ..., x_n)$ – nezávislé proměnné

$$oldsymbol{y} = (y_1, y_2, ..., y_n)$$
 — závislé proměnné $y_i \in N(\mu_i, \sigma_i)$

- modelujeme závislost y(x)modelová funkce $\lambda = A\theta$

$$\lambda(x_i, \boldsymbol{\theta}) = \sum_{j=1}^m a_j(x_i)\theta_j = \sum_{j=1}^m A_{ij}\theta_j$$

$$\theta = \theta_1, \theta_2, ... \theta_m$$
 – parametry modelové závislosti

minimalizujeme tzv. "chí kvadrát"

$$\chi^{2}(\boldsymbol{\theta}|\boldsymbol{y}) = \sum_{i=1}^{n} \frac{\left(y_{i} - \sum_{j=1}^{m} A_{ij}\theta_{j}\right)^{2}}{\sigma_{i}^{2}}$$

pokud
$$\sigma_i = \sigma$$
 potom $\chi^2 = \frac{1}{\sigma^2} (\boldsymbol{y} - \boldsymbol{A}\boldsymbol{\theta})^T (\boldsymbol{y} - \boldsymbol{A}\boldsymbol{\theta})$ obecně $V_{ij} = \text{cov}(y_i, y_j)$ $\chi^2 = (\boldsymbol{y} - \boldsymbol{A}\boldsymbol{\theta})^T \boldsymbol{V}^{-1} (\boldsymbol{y} - \boldsymbol{A}\boldsymbol{\theta})$

$$\chi^2 = (\boldsymbol{y} - \boldsymbol{A}\boldsymbol{\theta})^T \boldsymbol{V}^{-1} (\boldsymbol{y} - \boldsymbol{A}\boldsymbol{\theta})$$

Metoda nejmenších čtverců – lineární model

minimalizujeme tzv. "chí kvadrát"

$$\chi^{2}(\boldsymbol{\theta}|\boldsymbol{y}) = \sum_{i=1}^{n} \frac{\left(y_{i} - \sum_{j=1}^{m} A_{ij}\theta_{j}\right)^{2}}{\sigma_{i}^{2}}$$

$$\frac{\partial \chi^2}{\partial \theta_k} = 0$$

$$\frac{\partial \chi^2}{\partial \theta_k} = -\frac{2}{\sigma^2} \sum_{i=1}^n \left(y_i - \sum_{j=1}^m A_{ij} \theta_j \right) A_{ik}$$

$$\frac{\partial \chi^2}{\partial \theta_k} = -\frac{2}{\sigma^2} \sum_{i=1}^n \left(y_i - \sum_{j=1}^m A_{ij} \theta_j \right) A_{ik} \qquad \Rightarrow \sum_{i=1}^n A_{ik} y_i = \sum_{i=1}^n \sum_{j=1}^m A_{ik} A_{ij} \theta_j$$
$$\mathbf{A}^T \mathbf{y} = \mathbf{A}^T \mathbf{A} \mathbf{\theta}$$

odhad parametrů $\hat{\theta}$

pro
$$\sigma_i = \sigma$$
 $\hat{\boldsymbol{\theta}} = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{y} \equiv \boldsymbol{B} \boldsymbol{y}$

obecně

$$\hat{\boldsymbol{\theta}} = (\boldsymbol{A}^T \boldsymbol{V}^{-1} \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{V}^{-1} \boldsymbol{y} \equiv \boldsymbol{B} \boldsymbol{y}$$

odhad kovariance parametrů $\hat{m{ heta}}$

$$U_{ij} = cov(\theta_i, \theta_j)$$

$$U = BVB^T$$

$$U_{ij}^{-1} = \frac{1}{2} \left[\frac{\partial^2 \chi^2}{\partial \theta_i \partial \theta_j} \right]_{\theta = \hat{\theta}}$$

Metoda nejmenších čtverců – fit polynomu

• obecný polynom
$$\lambda(x_i,\theta) = \sum_{j=0}^m A_{ij}\theta_j = \sum_{j=0}^m \theta_j x_i^j \qquad \theta = \theta_1,\theta_2,...\theta$$

$$\sigma_i = \sigma$$

$$A = \begin{pmatrix} 1 & x_1 & x_1^2 & ... & x_1^m \\ 1 & x_2 & x_2^2 & ... & x_2^m \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x & x_1^2 & ... & x_n^m \end{pmatrix}$$

$$n \times m$$

$$A^{T}A = \begin{pmatrix} n & \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} & \dots & \sum_{i=1}^{n} x_{i}^{m} \\ \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} & \sum_{i=1}^{n} x_{i}^{3} & \dots & \sum_{i=1}^{n} x_{i}^{m+1} \\ \vdots & \vdots & \vdots & & \vdots \\ \sum_{i=1}^{n} x_{i}^{m} & \sum_{i=1}^{n} x_{i}^{m+1} & \sum_{i=1}^{n} x_{i}^{m+2} & \dots & \sum_{i=1}^{n} x_{i}^{m+m} \end{pmatrix} \qquad m \times m$$

$$\hat{\boldsymbol{\theta}} = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{y}$$

$$\boldsymbol{U} = \sigma^2 (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T \left[(\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T \right]^T$$

- operace s maticemi (Matlab)

Metoda nejmenších čtverců – fit paraboly

• polynom 2. stupně $\lambda(x_i, \theta) = \sum_{j=0}^m A_{ij}\theta_j = \theta_0 + \theta_1 x_i + \theta_2 x_i^2$

$$A = \begin{pmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 \end{pmatrix}$$

$$A^T V^{-1} A = \begin{pmatrix} \sum_{i=1}^n \frac{1}{\sigma_i^2} & \sum_{i=1}^n \frac{x_i}{\sigma_i^2} & \sum_{i=1}^n \frac{x_i^2}{\sigma_i^2} \\ \sum_{i=1}^n \frac{x_i}{\sigma_i^2} & \sum_{i=1}^n \frac{x_i^2}{\sigma_i^2} & \sum_{i=1}^n \frac{x_i^3}{\sigma_i^2} \\ \sum_{i=1}^n \frac{x_i^2}{\sigma_i^2} & \sum_{i=1}^n \frac{x_i^3}{\sigma_i^2} & \sum_{i=1}^n \frac{x_i^4}{\sigma_i^2} \end{pmatrix}$$

$$\hat{\theta} = (A^T V^{-1} A)^{-1} A^T V^{-1} y \equiv B y$$

$$U = B V B^T$$

$$U_{ij} = \cos(\theta_i, \theta_j)$$

χ² test kvality fitu

χ^2 test kvality fitu

sada naměřených hodnot $x = (x_1, x_2, ..., x_n)$

$$y = (y_1, y_2, ..., y_n)$$

 $y = (y_1, y_2, ..., y_n)$ – závislé proměnné $y_i \in N(\mu_i, \sigma_i)$

modelová funkce

$$\lambda(x, \boldsymbol{\theta})$$

- modelujeme závislost y(x)

$$\theta = \theta_1, \theta_2, ... \theta_m$$

parametry modelové závislosti

testovací statistika

$$\chi^{2}(\boldsymbol{\theta}|\boldsymbol{y}) = \sum_{i=1}^{n} \frac{(y_{i} - \lambda(x_{i}|\boldsymbol{\theta}))^{2}}{\sigma_{i}^{2}}$$

náhodná proměnná χ^2 s rozdělením o *n* - *m* stupních volnosti

$$\chi^2 \in \chi^2(n-m)$$

χ² rozdělení

hustota pravděpodobnosti

$$f(y|n) = \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}y^{\frac{n}{2}-1}e^{-\frac{y}{2}} \quad y \in [0, \infty), \quad n = 1, 2, \dots$$

počet stupňů volnosti n

gama funkce
$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

$$z_i \in N(0,1)$$

$$y = \sum_{i=1}^{n} z_i \implies y \in f(n) \text{ resp. } \chi^2(n)$$

$$x_i \in N(\mu_i, \sigma_i)$$

$$y = \sum_{i=1}^{n} \frac{(x_i - \mu_i)^2}{\sigma_i^2} \quad \Rightarrow \quad y \in f(n) \text{ resp. } \chi^2(n)$$

• momenty χ^2 rozdělení

$$E[y] = n$$

$$V[y] = 2n$$

χ^2 test kvality fitu

$$\qquad \qquad \bullet \quad \chi^2 \operatorname{rozdělení} \quad f(y|n-m) = \frac{1}{2^{\frac{n-m}{2}}\Gamma(\frac{n-m}{2})} y^{\frac{n-m}{2}-1} e^{-\frac{y}{2}}$$

$$P\left[y \ge \chi_0^2\right] = \int_{\chi_0^2}^{\infty} f(y|n-m) dy$$

počet stupňů volnosti n-m

$$E[\chi^2] = n - m$$

$$V[\chi^2] = 2(n-m)$$

• χ^2 na počet stupňů volnosti $\chi^2/(n-m)$

$$E\left[\chi^2/(n-m)\right] = 1$$

$$E\left[\chi^2/(n-m)\right] = 1$$

$$V\left[\chi^2/(n-m)\right] = 2/(n-m)$$

nulová hypotéza

- naměřené hodnoty $y_i \in N(\mu_i, \sigma_i)$ navzájem nezávislé modelová funkce $\lambda(x,\theta)$ správně vystihuje závislost y(x)
- pokud je P-hodnota $P\left[y \geq \chi_0^2\right] < \alpha$, zamítneme nulovou hypotézu
- α hladina signifikance (typicky 0.05 nebo 0.01)

χ² test kvality fitu

• tabulka hodnot $P\left[y \geq \chi^2\right]$ pro počet stupňů volnosti k=1-10

Počet stupňů volnosti						χ^2					
1	0.004	0.02	0.06	0.15	0.46	1.07	1.64	2.71	3.84	6.64	10.83
2	0.10	0.21	0.45	0.71	1.39	2.41	3.22	4.60	5.99	9.21	13.82
3	0.35	0.58	1.01	1.42	2.37	3.66	4.64	6.25	7.82	11.34	16.27
4	0.71	1.06	1.65	2.20	3.36	4.88	5.99	7.78	9.49	13.28	18.47
5	1.14	1.61	2.34	3.00	4.35	6.06	7.29	9.24	11.07	15.09	20.52
6	1.63	2.20	3.07	3.83	5.35	7.23	8.56	10.64	12.59	16.81	22.46
7	2.17	2.83	3.82	4.67	6.35	8.38	9.80	12.02	14.07	18.48	24.32
8	2.73	3.49	4.59	5.53	7.34	9.52	11.03	13.36	15.51	20.09	26.12
9	3.32	4.17	5.38	6.39	8.34	10.66	12.24	14.68	16.92	21.67	27.88
10	3.94	4.87	6.18	7.27	9.34	11.78	13.44	15.99	18.31	23.21	29.59
$P[y \ge \chi^2]$	0.95	0.90	0.80	0.70	0.50	0.30	0.20	0.10	0.05	0.01	0.001

• pro počet stupňů volnosti k>50 rozdělení $\chi^2(k)$ konverguje k normálnímu rozdělení $N(k,\sqrt{2k})$

χ² test kvality fitu – polynom

$$m = 2$$
, $\chi^2 = 47.04$

$$\chi^2 / (n - m) = 5.88$$

$$P = 5.0 \times 10^{-6}$$

$$m = 3$$
, $\chi^2 = 36.47$

$$\chi^2 / (n - m) = 5.21$$

$$P = 1.4 \times 10^{-6}$$

$$m = 4$$
, $\chi^2 = 9.06$

$$\chi^2 / (n - m) = 1.51$$

$$P = 0.68$$

$$m = 5$$
, $\chi^2 = 8.60$

$$\chi^2 / (n - m) = 1.72$$

$$P = 0.64$$

$$m = 9$$
, $\chi^2 = 7.56$

$$\chi^2 / (n - m) = 0.84$$

$$P = 0.53$$

χ² test kvality fitu – binovaná data

$$\chi^2 = \frac{\sum_{i=1}^n (y_i - f(\theta_i))^2}{f(\theta_i)}$$

$$n = 201$$

 $\nu = 201 - 5 = 196$

$$\chi^2(\nu)$$
 $\mu = \nu = 196$
$$\sigma = \sqrt{2\nu} = 20$$

$$\chi^2(\nu)/\nu$$
 $E\left[\chi^2(\nu)/\nu\right] = 1$
$$\sigma_{\chi^2(\nu)/\nu} = 0.1$$

