PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

(51) International Patent Classific C12P 19/00, 17/04, C12I		A1	(11) International Publication Number: WO 99/64	
5/00, 5/04		L	(43) International Publication Date: 16 December 1999 (16.	12.99
60/125,073 17 M	26 May 1999 (2 e 1998 (08.06.98) arch 1999 (17.03.99) arch 1999 (18.03.99) business as BIO-TECH 35 South Seventh Stree Beverly Road, Bloomin effrey, A.; 612 St. Clai SEVERSON, David, 1 154241 (US). BURLIN Street, Manitowoc, W	UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FIS, FIGD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KR, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SS, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, ZW), Eurasian patent (AT, BE, CH, CY, DE, DK, EFR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI I (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, SN, TD, TG). Published With international search report. Before the expiration of the time limit for amending claims and to be republished in the event of the recent the same amendments.	I, GBE, KGE, KG, SI, ZWC, UG, TJ. SS, FI, patents, NE,

(54) Title: VITAMIN C PRODUCTION IN MICROORGANISMS AND PLANTS

(57) Abstract

A biosynthetic method for producing vitamin C (ascorbic acid, L-ascorbic acid, or AA) is disclosed. Such a method includes fermentation of a genetically modified microorganism or plant to produce L-ascorbic acid. In particular, the present invention relates to the use of microorganisms and plants having at least one genetic modification to increase the action of an enzyme involved in the ascorbic acid biosynthetic pathway. Included is the use of nucleotide sequences encoding epimerases, including the endogenous GDP-D-mannose:GDP-L-galactose epimerase from the L-ascorbic acid pathway and homologues thereof for the purposes of improving the biosynthetic production of ascorbic acid. The present invention also relates to genetically modified microorganisms, such as strains of microalgae, bacteria and yeast useful for producing L-ascorbic acid, and to genetically modified plants, useful for producing consumable plant food products.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑÜ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	2	Zimbabwe
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 99/64618 PCT/US99/11576

VITAMIN C PRODUCTION IN MICROORGANISMS AND PLANTS

FIELD OF THE INVENTION

The present invention relates to vitamin C (L-ascorbic acid) production using genetically modified microorganisms and plants. In particular, the present invention relates to the use of nucleotide sugar epimerase enzymes for the biological production of ascorbic acid in plants and microorganisms.

5

10

15

20

25

BACKGROUND OF THE INVENTION

Nearly all forms of life, both plant and animal, either synthesize ascorbic acid (vitamin C) or require it as a nutrient. Ascorbic acid was first identified to be useful as a dietary supplement for humans and animals for the prevention of scurvy. Ascorbic acid, however, also affects human physiological functions such as the adsorption of iron, cold tolerance, the maintenance of the adrenal cortex, wound healing, the synthesis of polysaccharides and collagen, the formation of cartilage, dentine, bone and teeth, the maintenance of capillaries, and is useful as an antioxidant.

For use as a dietary supplement, ascorbic acid can be isolated from natural sources, such as rosehips, synthesized chemically through the oxidation of L-sorbose, or produced by the oxidative fermentation of calcium D-gluconate by *Acetobacter suboxidans*. Considine, "Ascorbic Acid," *Van Nostrand's Scientific Encyclopedia*, Vol. 1, pp. 237-238, (1989). Ascorbic acid (predominantly intracellular) has also been obtained through the fermentation of strains of the microalga, *Chlorella pyrenoidosa*. See U.S. Patent No. 5,001,059 by Skatrud, which is assigned to the assignee of the present application. It is believed that ascorbic acid is produced inside the chloroplasts of photosynthetic microorganisms and functions to neutralize energetic electrons produced during photosynthesis. Accordingly, ascorbic acid production is known in photosynthetic organisms as a protective mechanism.

Therefore, products and processes which improve the ability to biosynthetically produce ascorbic acid are desirable and beneficial for the improvement of human health.

SUMMARY OF THE INVENTION

One embodiment of the present invention relates to a method for producing

10

15

20

25

30

culturing a microorganism having a genetic modification to increase the action of an enzyme selected from the group of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-D-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase; and (b) recovering the ascorbic acid or esters produced by the microorganism. Preferably, the genetic modification is a genetic modification to increase the action of an enzyme selected from the group of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase. In one embodiment of the method of the present invention, the microorganism further includes a genetic modification to decrease the action of an enzyme having GDP-D-mannose as a substrate, other than GDP-D-mannose:GDP-L-galactose epimerase. Such a genetic modification can include, for example, a genetic modification to decrease the action of GDP-D-mannose-dehydrogenase.

In one embodiment, the genetic modification is a genetic modification to increase the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, which can include GDP-D-mannose:GDP-L-galactose epimerase. In one embodiment, the epimerase binds NADPH. In one embodiment of this method, the genetic modification includes transformation of the microorganism with a recombinant nucleic acid molecule that expresses the epimerase. Such an epimerase can have a tertiary structure that substantially conforms to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. Preferably, the epimerase has a structure having an average root mean square deviation of less than about 2.5 Å, and more preferably less than about 1 Å, over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.

In one embodiment, the epimerase comprises a substrate binding site having a tertiary structure that substantially conforms to the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by

10

15

20

25

30

atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. Such a substrate binding site preferably has a tertiary structure with an average root mean square deviation of less than about 2.5 Å over at least about 25% of Ca positions of the tertiary structure of a substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.

In another embodiment, the epimerase comprises a catalytic site having a tertiary structure that substantially conforms to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. Such a catalytic site preferably has a tertiary structure with an average root mean square deviation of less than about 1 Å over at least about 25% of Cα positions of the tertiary structure of a catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. The catalytic site preferably includes the amino acid residues serine, tyrosine and lysine and in one embodiment, the tertiary structure positions of the amino acid residues serine, tyrosine and lysine substantially conform to tertiary structure positions of residues Ser107, Tyr136 and Lys140, respectively, as represented by atomic coordinates in Brookhaven Protein Data Bank Accession Code 1bws.

In yet another embodiment of this method, the epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in the amino acid sequence align with 100% identity with at least about 50%, and in another embodiment with at least about 75%, and in yet another embodiment with at least about 90% of non-Xaa residues in SEQ ID NO:11. In another embodiment, the epimerase comprises an amino acid sequence having at least 4 contiguous amino acid residues that are 100% identical to at least 4 contiguous amino acid residues of an amino acid sequence selected from the group of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8 and SEQ ID NO:10. In yet another embodiment, the recombinant nucleic acid molecule comprises a nucleic acid sequence comprising at least about 12 contiguous nucleotides having 100% identity with at least about 12

10

15

20

25

30

contiguous nucleotides of a nucleic acid sequence selected from the group of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 and SEQ ID NO:9.

In yet another embodiment of this method of the present invention, the epimerase comprises an amino acid sequence having a motif: Gly-Xaa-Xaa-Gly-Xaa-Xaa-Gly. In yet another embodiment, the recombinant nucleic acid molecule comprises a nucleic acid sequence that is at least about 15% identical, and in another embodiment, at least about 20% identical, and in another embodiment, at least about 25% identical, to a nucleic acid sequence selected from the group of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 and SEQ ID NO:9, as determined using a Lipman-Pearson method with Lipman-Pearson standard default parameters.

In yet another embodiment of this method of the present invention, the recombinant nucleic acid molecule comprises a nucleic acid sequence that hybridizes under stringent hybridization conditions to a nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase. The nucleic acid sequence encoding the GDP-4-keto-6-deoxy-D-mannose epimerase/reductase includes nucleic acid sequences selected from the group of SEQ ID NO:1, SEQ ID NO:3 and SEQ ID NO:5, and the GDP-4-keto-6-deoxy-D-mannose epimerase/reductase can include an amino acid sequence selected from the group of SEQ ID NO:2, SEQ ID NO:4 and SEQ ID NO:6.

In one embodiment of the method of the present invention, the microorganism is selected from the group of bacteria, fungi and microalgae. In one embodiment, the microorganism is acid-tolerant. Preferred bacteria include, but are not limited to Azotobacter and Pseudomonas. Preferred fungi include, but are not limited to, yeast, including, but not limited to Saccharomyces yeast. Preferred microalgae include, but are not limited to, microalgae of the genera Prototheca and Chlorella, with microalgae of the genus Prototheca being particularly preferred.

In yet another embodiment of the method of the present invention, the microorganism is acid-tolerant and the step of culturing is conducted at a pH of less than about 6.0, and more preferably, at a pH of less than about 5.5, and even more preferably, at a pH of less than about 5.0. The step of culturing can be conducted in a fermentation medium that comprises a carbon source other than D-mannose in one embodiment, and

10

15

20

25

30

in another embodiment, the step of culturing is conducted in a fermentation medium that comprises glucose as a carbon source.

In yet another embodiment of the present method, the step of culturing is conducted in a fermentation medium that is magnesium (Mg) limited. Preferably, the step of culturing is conducted in a fermentation medium that is Mg limited during a cell growth phase. In one embodiment, the fermentation medium includes less than about 0.5 g/L of Mg during a cell growth phase, and more preferably, less than about 0.2 g/L of Mg during a cell growth phase, and even more preferably, less than about 0.1 g/L of Mg during a cell growth phase.

Another embodiment of the present invention relates to a microorganism for producing ascorbic acid or esters thereof. The microorganism has a genetic modification to increase the action of an enzyme selected from the group of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-D-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase. Preferably, the genetic modification is a genetic modification to increase the action of an enzyme selected from the group of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase, and even more preferably, to increase the action of GDP-D-mannose:GDP-L-galactose epimerase.

In one embodiment, the microorganism has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, wherein the epimerase has a tertiary structure having an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. In another embodiment, the microorganism has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, wherein the

10

15

20

25

30

CLUSTAL alignment program, wherein amino acid residues in the amino acid sequence align with 100% identity with at least about 50% of non-Xaa residues in SEQ ID NO:11. Preferred microorganisms are disclosed as for the method discussed above.

Yet another embodiment of the present invention relates to a plant for producing ascorbic acid or esters thereof. Such a plant has a genetic modification to increase the action of an enzyme selected from the group of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-D-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase. In a preferred embodiment, the genetic modification is a genetic modification to increase the action of an enzyme selected from the group of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase, and in a more preferred embodiment, the genetic modification is a genetic modification to increase the action of GDP-D-mannose:GDP-L-galactose epimerase.

In one embodiment, the plant further comprises a genetic modification to decrease the action of an enzyme having GDP-D-mannose as a substrate other than GDP-Dmannose:GDP-L-galactose epimerase. Such a genetic modification includes a genetic modification to decrease the action of GDP-D-mannose-dehydrogenase. Such a plant also includes a plant that has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-Lgalactose, wherein the epimerase has a tertiary structure having an average root mean square deviation of less than about 2.5 Å over at least about 25% of Ca positions of the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. In another embodiment, such a plant has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-Dmannose to GDP-L-galactose, wherein the epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in the amino acid sequence align with 100% identity with at least about 50% of non-Xaa residues in SEQ ID NO:11.

10

15

20

25

In one embodiment, a plant for producing ascorbic acid or esters thereof according to the present invention is a microalga. Preferred microalgae include, but are not limited to microalgae of the genera *Prototheca* and *Chlorella*, with microalga of the genus *Prototheca* being particularly preferred. In another embodiment, the plant is a higher plant, with consumable higher plants being more preferred.

BRIEF DESCRIPTION OF THE FIGURES

Fig. 1A is a schematic drawing of the pathway from glucose to GDP-D-mannose in plants.

Fig. 1B is a schematic drawing of the pathway from GDP-D-mannose to L-galactose-1-phosphate in plants.

Fig. 1C is a schematic drawing of the pathway from L-galactose to L-ascorbic acid in plants.

Fig. 2A is a schematic drawing of selected carbon flow from glucose in *Prototheca*.

Fig. 2B is a schematic drawing of selected carbon flow from glucose in *Prototheca*.

Fig. 3 is a schematic drawing that shows the lineage of mutants derived from *Prototheca moriformis* ATCC 75669, and their ability to produce L-ascorbic acid.

Fig. 4 is a bar graph illustrating the conversion of substrates by resting cells of strain NA45-3 following growth in media containing various magnesium concentrations and resuspension in media containing various magnesium concentrations.

Fig. 5 is a line graph showing the relationship between specific ascorbic acid formation in cultures of *Prototheca* strains and the specific activity of GDP-D-mannose:GDP-L-galactose epimerase in extracts prepared from cells harvested from the same cultures.

Fig. 6 is a line graph showing the relationship between specific epimerase activity and the degree of magnesium limitation in two strains, ATCC 75669 and EMS13-4.

Fig. 7 depicts the overall catalytic mechanism of GDP-D-mannose:GDP-L-galactose epimerase proposed by Barber (1979, *J. Biol. Chem.* 254:7600-7603).

10

15

20

25

30

Advances Addition

Fig. 8A depicts the catalytic mechanism of GDP-D-mannose-4,6-dehydratase (converts GDP-D-mannose to GDP-4-keto-6-deoxy-D-mannose).

Fig. 8B depicts the catalytic mechanism of GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (converts GDP-4-keto-6-deoxy-D-mannose to GDP-L-fucose) (Chang, et al., 1988, *J. Biol. Chem.* 263:1693-1697; Barber, 1980, *Plant Physiol.* 66:326-329).

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to a biosynthetic method and production microorganisms and plants for producing vitamin C (ascorbic acid, L-ascorbic acid, or AA). Such a method includes fermentation of a genetically modified microorganism to produce L-ascorbic acid. In particular, the present invention relates to the use of nucleotide sequences encoding epimerases, including the endogenous GDP-D-mannose:GDP-L-galactose epimerase from the L-ascorbic acid pathway, as well as epimerases having structural homology (e.g., by nucleotide/amino acid sequence and/or tertiary structure of the encoded protein) to GDP-4-keto-6-deoxy-D-mannose epimerase/reductases, or UDP-galactose 4-epimerases, for the purposes of improving the biosynthetic production of ascorbic acid. The present invention also relates to genetically modified microorganisms, such as strains of microalgae, bacteria and yeast useful for producing L-ascorbic acid, and to genetically modified plants, useful for producing consumable plant food products.

One embodiment of the present invention relates to a method to produce L-ascorbic acid by fermentation of a genetically modified microorganism. This method includes the steps of (a) culturing in a fermentation medium a microorganism having a genetic modification to increase the action of an enzyme selected from the group of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono- γ -lactone dehydrogenase; and (b) recovering L-ascorbic acid or esters thereof. The various enzymes in this list represent the enzymes involved in the vitamin C biosynthetic pathway in plants. It is uncertain at this time

10

15

20

25

30

whether the enzyme represented by GDP-L-galactose phosphorylase is actually a phosphorylase or a pyrophosphorylase (i.e., GDP-L-galactose pyrophosphorylase). Therefore, use of the term "GDP-L-galactose phosphorylase" herein refers to either GDP-L-galactose phosphorylase or GDP-L-galactose pyrophosphorylase. In one aspect of the invention, this method includes the step of culturing in a fermentation medium a microorganism having a genetic modification to increase the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose. This aspect of the present invention is discussed in detail below.

Another embodiment of the present invention relates to a genetically modified microorganism for producing L-ascorbic acid or esters thereof. Another embodiment of the present invention relates to a genetically modified plant for producing L-ascorbic acid or esters thereof. Both genetically modified microorganisms (e.g., bacteria, yeast, microalgae) and plants (e.g., higher plants, microalgae) have a genetic modification to increase the action of an enzyme selected from the group of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase. In a preferred embodiment, both genetically modified microorganisms (e.g., bacteria, yeast, microalgae) and plants (e.g., higher plants, microalgae) have a genetic modification to increase the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose. In one embodiment, the genetic modification includes the transformation of the microorganism or plant with the epimerase as described above.

To produce significantly high yields of L-ascorbic acid by the method of the present invention, a plant and/or microorganism is genetically modified to enhance production of L-ascorbic acid. As used herein, a genetically modified plant (such as a higher plant or microalgae) or microorganism, such as a microalga (*Prototheca*, *Chlorella*), *Escherichia coli*, or a yeast, is modified (i.e., mutated or changed) within its genome and/or by recombinant technology (i.e., genetic engineering) from its normal (i.e., wild-type or naturally occurring) form. In a preferred embodiment, a genetically modified plant or microorganism according to the present invention has been modified by

10

15

20

25

30

recombinant technology. Genetic modification of a plant or microorganism can be accomplished using classical strain development and/or molecular genetic techniques, include genetic engineering techniques. Such techniques are generally disclosed herein and are additionally disclosed, for example, in Sambrook et al., 1989, *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Labs Press; Roessler, 1995, *Plant Lipid Metabolism*, pp. 46-48; and Roessler et al., 1994, in Bioconversion for Fuels, Himmel et al. eds., American Chemical Society, Washington D.C., pp 255-70). These references are incorporated by reference herein in their entirety.

In some embodiments, a genetically modified plant or microorganism can include a natural genetic variant as well as a plant or microorganism in which nucleic acid molecules have been inserted, deleted or modified, including by mutation of endogenous genes (e.g., by insertion, deletion, substitution, and/or inversion of nucleotides), in such a manner that the modifications provide the desired effect within the plant or microorganism. As discussed above, a genetically modified plant or microorganism includes a plant or microorganism that has been modified using recombinant technology.

As used herein, genetic modifications which result in a decrease in gene expression, an increase in inhibition of gene expression or inhibition of a gene product (i.e., the protein encoded by the gene), a decrease in the function of the gene, or a decrease in the function of the gene product can be referred to as inactivation (complete or partial), deletion, interruption, blockage, down-regulation, or decreased action of a gene. For example, a genetic modification in a gene which results in a decrease in the function of the protein encoded by such gene can be the result of a complete deletion of the gene encoding the protein (i.e., the gene does not exist, and therefore the protein does not exist), a mutation in the gene encoding the protein which results in incomplete or no translation of the protein (e.g., the protein is not expressed), or a mutation in the gene which decreases or abolishes the natural function of the protein (e.g., a protein is expressed which has decreased or no enzymatic activity).

Genetic modifications which result in an increase in gene expression or function can be referred to as amplification, overproduction, overexpression, activation, enhancement, addition, up-regulation or increased action of a gene. Additionally, a genetic modification to a gene which modifies the expression, function, or activity of the gene can

10

15

20

25

30

have an impact on the action of other genes and their expression products within a given metabolic pathway (e.g., by inhibition or competition). In this embodiment, the action (e.g., activity) of a particular gene and/or its product can be affected (i.e., upregulated or downregulated) by a genetic modification to another gene within the same metabolic pathway, or to a gene within a different metabolic pathway which impacts the pathway of interest by competition, inhibition, substrate formation, etc.

In general, a plant or microorganism having a genetic modification that affects L-ascorbic acid production has at least one genetic modification, as discussed above, which results in a change in the L-ascorbic acid production pathway as compared to a wild-type plant or microorganism grown or cultured under the same conditions. Such a modification in an L-ascorbic acid production pathway changes the ability of the plant or microorganism to produce L-ascorbic acid. According to the present invention, a genetically modified plant or microorganism preferably has an enhanced ability to produce L-ascorbic acid compared to a wild-type plant or microorganism cultured under the same conditions.

The present invention is based on the present inventors' discovery of the biosynthetic pathway for L-ascorbic acid (vitamin C) in plants and microorganisms. Prior to the present invention, the metabolic pathway by which plants produce L-ascorbic acid, was not completely elucidated. The present inventors have demonstrated that L-ascorbic acid production in plants, including L-ascorbic acid-producing microorganisms (e.g., microalgae), is a pathway which uses GDP-D-mannose and involves sugar phosphates and NDP-sugars. In addition, the present inventors have made the surprising discovery that both L-galactose and L-galactono-γ-lactone can be rapidly converted into L-ascorbic acid in L-ascorbic acid-producing microalgae, including *Prototheca* and *Chlorella pyrenoidosa*. The entire pathway for L-ascorbic acid production in plants is set forth in Figs. 1A-1C. More particularly, Fig. 1A shows that the production of L-ascorbic acid in plants proceeds through the production of mannose intermediates to GDP-D-mannose, followed by the conversion of GDP-D-mannose to GDP-L-galactose by GDP-D-mannose:GDP-L-galactose epimerase (also known as GDP-D-mannose-3,5-epimerase) (Fig. 1B), and then by the subsequent progression to L-galactose-1-P, L-galactose, L-

10

15

20

25

30

also illustrates alternate pathways for the use of various intermediates, such as GDP-D-mannose. Certain aspects of this pathway have been independently described in a publication (Wheeler, et al., 1998, *Nature* 393:365-369), incorporated herein by reference in its entirety.

Points within the L-ascorbic acid production pathway which can be targeted by genetic modification to affect the production of L-ascorbic acid can generally be catagorized into at least one of the following pathways: (a) pathways affecting the production of GDP-D-mannose (e.g., pathways for converting a carbon source into GDP-D-mannose); (b) pathways for converting GDP-D-mannose into other compounds, (c) pathways associated with or downstream of the action of GDP-D-mannose:GDP-L-galactose epimerase, (d) pathways which compete for substrates involved in the production of any of the intermediates within the L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-galactose, L-galactose-1-phosphate, L-galactose, L-galactono-γ-lactone, and/or L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-galactose, L-galactose-1-phosphate, L-galactose, L-galactono-γ-lactone, and/or L-ascorbic acid.

A genetically modified plant or microorganism useful in a method of the present invention typically has at least one genetic modification in the L-ascorbic acid production pathway which results in an enhanced production of L-ascorbic acid. In one embodiment, a genetically modified plant or microorganism has at least one genetic modification that results in: (a) an enhanced production of GDP-D-mannose; (b) an inhibition of pathways which convert GDP-D-mannose into compounds other than GDP-L-galactose; (c) an enhancement of action of the GDP-D-mannose:GDP-L-galactose epimerase; (d) an enhancement of the action of enzymes downstream of the GDP-D-mannose:GDP-L-galactose epimerase; (e) an inhibition of pathways which compete for substrates involved in the production of any of the intermediates within the L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-galactose, L-galactose-1-phosphate, L-galactose, L-galactono-γ-lactone, and/or L-ascorbic acid; and (e) an inhibition of pathways which inhibit production of any of the intermediates within the L-

10

15

20

25

30

galactose, L-galactose-1-phosphate, L-galactose, L-galactono-γ-lactone, and/or L-ascorbic acid.

An enhanced production of GDP-D-mannose by genetic modification of the plant or microorganism can be achieved by, for example, overexpression of enzymes such as hexokinase, glucose phosphate isomerase, phosphomannose isomerase (PMI), phosphomannomutase (PMM) and/or GDP-D-mannose pyrophosphorylase (GMP). Inhibition of pathways which convert GDP-D-mannose to compounds other than GDP-Lgalactose can be achieved, for example, by modifications which inhibit polysaccharide synthesis, GDP-D-rhamnose synthesis, GDP-L-fucose synthesis and/or GDP-Dmannuronic acid synthesis. An increase in the action of the GDP-D-mannose: GDP-Lgalactose epimerase and of enzymes downstream of the epimerase in the L-ascorbic acid production pathway can be achieved by genetic modifications which include, but are not limited to: overexpression of the epimerase gene (i.e, by overexpression of a recombinant nucleic acid molecule encoding the epimerase gene or a homologue thereof (discussed in detail below), and/or by mutation of the endogenous or recombinant gene to enhance expression of the gene) and/or overexpression of genes downstream of the epimerase which encode subsequent enzymes in the L-ascorbic acid pathway. Finally, metabolic pathways which compete with or inhibit the L-ascorbic acid production pathway can be inhibited by deleting or mutating enzymes, substrates or products which either inhibit or compete for an enzyme, substrate or product in the L-ascorbic acid pathway.

As discussed above, a genetically modified plant or microorganism useful in the method of the present invention can have at least one genetic modification (e.g., mutation in the endogenous gene or addition of a recombinant gene) in a gene encoding an enzyme involved in the L-ascorbic acid production pathway. Such genetic modifications preferably increase (i.e., enhance) the action of such enzymes such that L-ascorbic acid is preferentially produced as compared to other possible end products in related metabolic pathways. Such genetic modifications include, but are not limited to, overexpression of the gene encoding such enzyme, and deletion, mutation, or downregulation of genes encoding competitors or inhibitors of such enzyme. Preferred enzymes for which the action of the gene encoding such enzyme can be genetically modified include: hexokinase, glucose phosphate isomerase, phosphomannose isomerase (PMI), phosphomannomutase

10

15

20

25

30

(PMM), GDP-D-mannose pyrophosphorylase (GMP), GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase. More preferably, a genetically modified plant or microorganism useful in the present invention has a genetic modification which increases the action of an enzyme selected from the group of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase. Even more preferably, a genetically modified plant or microorganism useful in the present invention has a genetic modification which increases the action of GDP-D-mannose:GDP-L-galactose epimerase. These enzymes and the reactions catalyzed by such enzymes are illustrated in Figs. 1A-1C.

Prior to the present invention, without knowing the L-ascorbic acid biosynthetic (i.e., production) pathway, previous mutagenesis and screening efforts were limited in that only non-lethal mutations could be detected. One embodiment of the present invention relates to elimination of a key competing enzyme that diverts carbon flow from L-ascorbic acid synthesis. If such enzyme is absolutely required for growth on glucose, then mutants lacking the enzyme (and, therefore, having increased carbon flow to L-ascorbic acid) would have been nonviable and not have been detected during prior screening efforts. One such enzyme is phosphofructokinase (PFK) (See Fig. 2A). PFK is required for growth on glucose, and is the major step drawing carbon away from L-ascorbic acid biosynthesis (Fig. 2A). Elimination of PFK would render the cells nonviable on glucosebased media. Selection of a conditional mutant where PFK was inactivated by temperature shift, for example, may allow development of a L-ascorbic acid process where cell growth is achieved under permissive fermentation conditions, and L-ascorbic acid production (from glucose) is initiated by a shift to non-permissive condition. In this example, the temperature shift would eliminate carbon flow from glucose to glycolysis via PFK, thereby shunting carbon into the L-ascorbic acid branch of metabolism. This approach has application not only in natural L-ascorbic acid producing organisms, but also in L-ascorbic acid recombinant systems (genetically engineered plant or microorganisms) as discussed herein.

10

15

20

25

30

Knowing the identity and mechanism of the rate-limiting pathway enzymes in the L-ascorbic acid production pathway allows for design of specific inhibitors of the enzymes that are also growth inhibitory. Selection of mutants resistant to the inhibitors allows for the isolation of strains that contain L-ascorbic acid-pathway enzymes with more favorable kinetic properties. Therefore, one embodiment of the present invention is to identify inhibitors of the enzymes that are also growth inhibitory. These inhibitors are then used to select genetic mutants that overcome this inhibition and produce L-ascorbic acid at high levels. In this embodiment, the resultant plant or microorganism is a non-recombinant strain which can then be further modified by recombinant technology, if desired. In recombinant L-ascorbic acid producing strains, random mutagenesis and screening can be used as a final step to increase L-ascorbic acid production.

In yet another embodiment genetic modifications are made to an L-ascorbic acid producing organism directly. This allows one to build upon a base of data acquired during prior classical strain improvement efforts, and perhaps more importantly, allows one to take advantage of undefined beneficial mutations that occurred during classical strain improvement. Furthermore, fewer problems are encountered when expressing native, rather than heterologous, genes. The most advanced system for development of genetic systems for microalgae has been developed for Chlamydomonas reinhardtii. Preferably, development of such a genetically modified production organism would include: isolation of mutant(s) with a specific nutritional requirement for use with a cloned selectable marker gene (similar to the ura3 mutants used in yeast and fungal systems); a cloned selectable marker such as URA3 or alternatively, identification and cloning of a gene that specifies resistance to a toxic compound (this would be analogous to the use of antibiotic resistance genes in bacterial systems, and, as is the case in yeast and other fungi, a means of inserting/removing the marker gene repeatedly would be required, unless several different selectable markers were developed); a transformation system for introducing DNA into the production organism and achieving stable transformation and expression; and, a promoter system (preferably several) for high-level expression of cloned genes in the organism.

Another embodiment of the present invention, discussed in detail below, is to place

10

15

20

25

30

organisms (i.e., higher plants and microalgae) into a plant or microorganism that is more amenable to molecular genetic manipulation, including endogenous L-ascorbic acid producing microorganisms and suitable plants. For example, it is possible to identify a suitable non-pathogenic organism based on the requirement of growth (on glucose) at low pH (i.e., acid-tolerant organisms, discussed in detail below).

One suitable candidate for recombinant production in any suitable host organism is the gene (nucleic acid molecule) encoding GDP-D-mannose:GDP-L-galactose epimerase and homologues of the GDP-D-mannose:GDP-L-galactose epimerase, as well as any other epimerase that has structural homology at the primary (i.e., sequence) or tertiary (i.e., three dimensional) level, to a GDP-4-keto-6-deoxy-D-mannose epimerase/ reductase, or to a UDP-galactose 4-epimerase. Many microorganisms produce GDP-D-mannose as a precursor to exopolysaccharide and glycoprotein production, even though such organisms may not make L-ascorbic acid. This aspect of the present invention is discussed in detail below.

Referring to Figs. 1A-1C, at least some of the enzymes from glucose-6-phosphate to GDP-D-mannose are present in many organisms. In fact, the entire sequence is present in bacteria such as Azotobacter vinelandii and Pseudomonas aeruginosa, and make up the early steps in the biosynthesis of the exopolysaccharide alginate. In this regard, it is possible that the only thing preventing these organisms from producing L-ascorbic acid could be the lack of GDP-D-mannose:GDP-L-galactose epimerase. The presence of PMI, PMM and GMP (see Fig. 1A) in so many organisms is important for two reasons. First, these organisms themselves could serve as alternate hosts for L-ascorbic acid production, by building on the existing early pathway enzymes and adding the required cloned genes (the epimerase and possibly others). Second, the genes encoding PMI, PMM and GMP can be cloned into a new organism where, together with the cloned epimerase, they would encode the overall pathway from glucose-6-phosphate to GDP-L- galactose.

In order to screen genomic DNA or cDNA libraries from different organisms and to isolate nucleic acid molecules encoding these enzymes such as the GDP-D-mannose:GDP-L-galactose epimerase, one can use any of a variety of standard molecular and biochemical techniques. For example, the GDP-D-mannose:GDP-L-galactose

ĺ

5

10

15

20

25

30

acid sequence can be determined (including, if necessary, the sequence of internal peptide fragments), and this information can be used to design degenerate primers for amplifying a gene fragment from the organism's DNA. This fragment would then be used to probe the library, and subsequently fragments that hybridize to the probe would be cloned in that organism or another suitable production organism. There is ample precedent for plant enzymes being expressed in an active form in bacteria, such as *E. coli*. Alternatively, yeast are also a suitable candidate for developing a heterologous system for L-ascorbic acid production.

It is to be understood that the present invention discloses a method comprising the use of a microorganism with an ability to produce commercially useful amounts of Lascorbic acid in a fermentation process (i.e., preferably an enhanced ability to produce Lascorbic acid compared to a wild-type microorganism cultured under the same conditions). This method is achieved by the genetic modification of one or more genes encoding a protein involved in an L-ascorbic acid pathway which results in the production (expression) of a protein having an altered (e.g., increased or decreased) function as compared to the corresponding wild-type protein. Preferably, such genetic modification is achieved by recombinant technology. It will be appreciated by those of skill in the art that production of genetically modified plants or microorganisms having a particular altered function as described elsewhere herein (e.g., an enhanced ability to produce GDP-D-mannose:GDP-L-galactose epimerase), such as by transformation of the plant or microorganism with a nucleic acid molecule which encodes a particular enzyme, can produce many organisms meeting the given functional requirement, albeit by virtue of a variety of different genetic modifications. For example, different random nucleotide deletions and/or substitutions in a given nucleic acid sequence may all give rise to the same phenotypic result (e.g., decreased enzymatic activity of the protein encoded by the sequence). The present invention contemplates any such genetic modification which results in the production of a plant or microorganism having the characteristics set forth herein.

A microorganism to be used in the fermentation method of the present invention is preferably a bacterium, a fungus, or a microalga which has been genetically modified according to the disclosure above. More preferably, a microorganism useful in the present

WO 99/64618

5

10

15

20

25

30

invention is a microalga which is capable of producing L-ascorbic acid, although the present invention includes microorganisms which are genetically engineered to produce L-ascorbic acid using the knowledge of the key components of the pathway and the guidance provided herein. Even more preferably, a microorganism useful in the present invention is an acid-tolerant microorganism, such as microalgae of the genera Prototheca and Chlorella. Acid-tolerant yeast and bacteria are also known in the art. Acid-tolerant microorganisms are discussed in detail below. Particularly preferred microalgae include microalgae of the genera, Prototheca and Chlorella, with Prototheca being most preferred. All known species of Prototheca produce L-ascorbic acid. Production of ascorbic acid by microalgae of the genera Prototheca and Chlorella is described in detail in U.S. Patent No. 5,792,631, issued August 11, 1998, and in U.S. Patent No. 5,900,370, issued May 4, 1999, both of which are incorporated herein by reference in their entirety. Preferred bacteria for use in the present invention include, but are not limited to, Azotobacter, Pseudomonas, and Escherichia, although acid-tolerant bacteria are more preferred. Preferred fungi for use in the present invention include yeast, and more preferably, yeast of the genus, Saccharomyces. A microorganism for use in the fermentation method of the present invention can also be referred to as a production organism. According to the present invention, microalgae can be referred to herein either as microorganisms or as plants.

A preferred plant to genetically modify according to the present invention is preferably a plant suitable for consumption by animals, including humans. More preferably, such a plant is a plant that naturally produces L-ascorbic acid, although other plants can be genetically modified to produce L-ascorbic acid using the guidance provided herein.

The L-ascorbic acid production pathways of the microalgae *Prototheca* and *Chlorella pyrenoidosa* will be addressed as specific embodiments of the present invention are described below. It will be appreciated that other plants and, in particular, other microorganisms, have similar L-ascorbic acid pathways and genes and proteins having similar structure and function within such pathways. It will also be appreciated that plants and microorganisms which do not naturally produce L-ascorbic acid can be modified according to the present invention to produce L-ascorbic acid. As such, the principles

10

15

20

25

30

discussed below with regard to *Prototheca* and *Chlorella pyrenoidosa* are applicable to other plants and microorganisms, including genetically modified plants and microorganisms.

In one embodiment of the present invention, the action of an enzyme in the Lascorbic acid production pathway is increased by amplification of the expression (i.e., overexpression) of an enzyme in the pathway, and particularly, the GDP-Dmannose:GDP-L-galactose epimerase, homologues of the epimerase, and/or enzymes downstream of the epimerase. Overexpression of an enzyme can be accomplished, for example, by introduction of a recombinant nucleic acid molecule encoding the enzyme. It is preferred that the gene encoding an enzyme in the L-ascorbic acid production pathway be cloned under control of an artificial promoter. The promoter can be any suitable promoter that will provide a level of enzyme expression required to maintain a sufficient level of L-ascorbic acid in the production organism. Preferred promoters are constitutive (rather than inducible) promoters, since the need for addition of expensive inducers is therefore obviated. The gene dosage (copy number) of a recombinant nucleic acid molecule according to the present invention can be varied according to the requirements for maximum product formation. In one embodiment, the recombinant nucleic acid molecule encoding a gene in the L-ascorbic acid production pathway is integrated into the chromosomes of the microorganism.

It is another embodiment of the present invention to provide a microorganism having one or more enzymes in the L-ascorbic acid production pathway with improved affinity for its substrates. An enzyme with improved affinity for its substrates can be produced by any suitable method of genetic modification or protein engineering. For example, computer-based protein engineering can be used to design an epimerase protein with greater stability and better affinity for its substrate. See for example, Maulik et al., 1997, Molecular Biotechnology: Therapeutic Applications and Strategies, Wiley-Liss, Inc., which is incorporated herein by reference in its entirety.

Recombinant nucleic acid molecules encoding proteins in the L-ascorbic acid production pathway can be modified to enhance or reduce the function (i.e., activity) of the protein, as desired to increase L-ascorbic acid production, by any suitable method of genetic modification. For example, a recombinant nucleic acid molecule encoding an

enzyme can be modified by any method for inserting, deleting, and/or substituting nucleotides, such as by error-prone PCR. In this method, the gene is amplified under conditions that lead to a high frequency of misincorporation errors by the DNA polymerase used for the amplification. As a result, a high frequency of mutations are obtained in the PCR products. The resulting gene mutants can then be screened for enhanced substrate affinity, enhanced enzymatic activity, or reduced/increased inhibitory ability by testing the mutant genes for the ability to confer increased L-ascorbic acid production onto a test microorganism, as compared to a microorganism carrying the non-mutated recombinant nucleic acid molecule.

10

5

Another embodiment of the present invention includes a microorganism in which competitive side reactions are blocked, including all reactions for which GDP-D-mannose is a substrate other than the production of L-ascorbic acid. In a preferred embodiment, a microorganism having complete or partial inactivation (decrease in the action of) of genes encoding enzymes which compete with the GDP-D-mannose:GDP-L-galactose epimerase for the GDP-D-mannose substrate is provided. Such enzymes include GDP-D-mannase and/or GDP-D-mannose-dehydrogenase. As used herein, inactivation of a gene can refer to any modification of a gene which results in a decrease in the activity (i.e., expression or function) of such a gene, including attenuation of activity or complete deletion of activity.

20

25

30

15

As discussed above, a particularly preferred aspect of the method to produce L-ascorbic acid by fermentation of a genetically modified microorganism of the present invention includes the step of culturing in a fermentation medium a microorganism having a genetic modification to increase the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose. According to the present invention, such an epimerase can include the endogenous GDP-D-mannose:GDP-L-galactose epimerase from the L-ascorbic acid pathway, described above, as well as any other epimerase that has structural homology at the primary (i.e., sequence) or tertiary (i.e., three dimensional) level, to a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase, or to a UDP-galactose 4-epimerase. Such structural homology is discussed in detail below. Preferably, such an epimerase is capable of catalyzing the conversion of GDP-D-mannose to GDP-L-galactose. In one embodiment, the genetic modification includes transformation of the

WO 99/64618 PCT/US99/11576

5

10

15

20

25

30

microorganism with a recombinant nucleic acid molecule that expresses such an epimerase.

21

Therefore, the epimerase encompassed in the method and organisms of the present invention includes the endogenous epimerase which operates in the naturally occurring ascorbic acid biosynthetic pathway (referred to herein as GDP-Dmannose: GDP-L-galactose epimerase), GDP-4-keto-6-deoxy-D-mannose epimerase/ reductases, and any other epimerase which is capable of catalyzing the conversion of GDP-D mannose to GDP-L-galactose and which is structurally homologous to a GDP-4keto-6-deoxy-D-mannose epimerase/reductase or a UDP-galactose 4-epimerase. epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose according the present invention can be identified by biochemical and functional characteristics as well as structural characteristics. For example, an epimerase according to the present invention is capable of acting on GDP-D-mannose as a substrate, and more particularly, such an epimerase is capable of catalyzing the conversion of GDP-D-mannose to GDP-Lgalactose. It is to be understood that such capabilities need not necessarily be the normal or natural function of the epimerase as it acts in its endogenous (i.e., natural) environment. For example, GDP-4-keto-6-deoxy-D-mannose epimerase/reductase in its natural environment under normal conditions, catalyzes the conversion of GDP-D-mannose to GDP-L-fucose and does not act directly on GDP-D-mannose (See Fig. 8A, B), however, such an epimerase is encompassed by the present invention for use in catalyzing the conversion of GDP-D-mannose to GDP-L-galactose for production of ascorbic acid, to the extent that it is capable of, or can be modified to be capable of, catalyzing the conversion of GDP-D-mannose to GDP-L-galactose. Therefore, the present invention includes epimerases which have the desired enzyme activity for use in production of ascorbic acid, are capable of having such desired enzyme activity, and/or are capable of being modified or induced to have such desired enzyme activity.

In one embodiment, an epimerase according to the present invention includes an epimerase that catalyzes the reaction depicted in Fig. 7. In another embodiment, an epimerase according to the present invention includes an epimerase that catalyzes the first of the reactions depicted in Fig. 8B. In one embodiment, an epimerase according to the

10

15

20

25

30

present invention binds to NADPH. In another embodiment, an epimerase according to the present invention is NADPH-dependent for enzyme activity.

As discussed above, the present inventors have discovered that a key enzyme in L-ascorbic acid biosynthesis in plants and microorganisms is GDP-D-mannose: GDP-Lgalactose epimerase (refer to Figs. 1A-1C). One embodiment of the invention described herein is directed to the manipulation of this enzyme and structural homologues of this enzyme to increase L-ascorbic acid production in genetically engineered plants and/or microorganisms. More particularly, the GDP-D-mannose: GDP-L-galactose epimerase of the L-ascorbic acid pathway and GDP-4-keto-6-deoxy-D-mannose epimerase/reductases are believed to be structurally homologous at both the sequence and tertiary structure level; a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase is believed to be capable of functioning in the L-ascorbic acid biosynthetic pathway; and a GDP-4-keto-6-deoxy-Dmannose epimerase/reductase or homologue thereof may be superior to a GDP-Dmannose-GDP-L-galactose epimerase for increasing L-ascorbic acid production in genetically engineered plants and/or microorganisms. Furthermore, the present inventors disclose the use of a nucleotide sequence encoding all or part of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase as a probe to identify the gene encoding GDP-Dmannose:GDP-L-galactose epimerase. Similarly, the present inventors disclose the use of a nucleotide sequence of the gene encoding GDP-4-keto-6-deoxy-D-mannose epimerase/reductase to design oligonucleotide primers for use in a PCR-based strategy for identifying and cloning a gene encoding GDP-D-mannose: GDP-L-galactose epimerase.

Without being bound by theory, the present inventors believe that the following evidence supports the novel concept that the GDP-D-mannose:GDP-L-galactose epimerase and GDP-4-keto-6-deoxy-D-mannose epimerase/reductases have significant structural homology at the level of sequence and/or tertiary structure, and that the GDP-4-keto-6-deoxy-D-mannose epimerase/reductases and/or homologues thereof would be useful for production of ascorbic acid and/or for isolating the endogenous GDP-D-mannose:GDP-L-galactose epimerase.

Although prior to the present invention, it was not known that the GDP-D-mannose:GDP-L-galactose epimerase enzyme (also known as GDP-D-mannose-3,5-epimerase) plays a critical role in L-ascorbic acid biosynthesis, this enzyme was previously

10

15

20

25

30

described to catalyze the overall reversible reaction between GDP-D-mannose and GDP-L-galactose (Barber, 1971, Arch. Biochem. Biophys. 147:619-623; Barber, 1975, Arch. Biochem. Biophys. 167:718-722; Barber, 1979, J. Biol. Chem. 254:7600-7603; Hebda, et al., 1979, Arch. Biochem. Biophys. 194:496-502; Barber and Hebda, 1982, Meth. Enzymol., 83:522-525). Despite these studies, GDP-D-mannose:GDP-L-galactose epimerase has never been well characterized nor has the gene encoding this enzyme been cloned and sequenced. Since the original work by Barber, GDP-D-mannose:GDP-L-galactose epimerase activity has been detected in the colorless microalga Prototheca moriformis by the assignee of the present application, and in Arabidopsis thaliana and pea embryonic axes (Wheeler, et al., 1998, ibid.).

Barber (1979, J. Biol. Chem. 254:7600-7603) proposed a mechanism for GDP-D-mannose:GDP-L-galactose epimerase partially purified from the green microalga Chlorella pyrenoidosa. The overall conversion of GDP-D-mannose to GDP-L-galactose was proposed to proceed by oxidation of the hexosyl moiety at C-4 to a keto intermediate, ene-diol formation, and inversion of the configurations at C-3 and C-5 upon rehydration of the double bonds and stereospecific reduction of the keto group. The proposed mechanism is depicted in Fig. 7.

Based on Barber's work, Feingold and Avigad (1980, In *The Biochemistry of Plants*, Vol. 3: Carbohydrates; Structure and Function, P.K. Stompf and E.E. Conn, eds., Academic Press, NY) elaborated further on the proposed mechanism for GDP-D-mannose:GDP-L-galactose epimerase. This mechanism is based on the assumption that the epimerase contains tightly bound NAD⁺, and transfer of a hydride ion from C-4 of the substrate (GDP-D-mannose) to enzyme-associated NAD⁺ converts the enzyme to the reduced (NADH)form, generating enzyme-bound GDP-4-keto-D-mannose. The latter would then undergo epimerization by an ene-diol mechanism. The final product (GDP-L-galactose) would be released from the enzyme after stereospecific transfer of the hydride ion originally removed from C-4, simultaneously regenerating the oxidized form of the enzyme.

L-fucose (6-deoxy-L-galactose) is a component of bacterial lipopolysaccharides, mammalian and plant glycoproteins and polysaccharides of plant cell walls. L-fucose is synthesized *de novo* from GDP-D-mannose by the sequential action of GDP-D-mannose-

10

15

20

25

30

4,6-dehydratase (an NAD(P)-dependent enzyme), and a bifunctional GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (NADPH-dependent), also referred to in scientific literature as GDP-fucose synthetase (Rizzi, et al., 1998, *Structure* 6:1453-1465; Somers, et al., 1998, *Structure* 6:1601-1612). This pathway for L-fucose biosynthesis appears to be ubiquitous (Rizzi, et al., 1998, *Structure* 6:1453-1465). The mechanisms for GDP-D-mannose-4,6-dehydratase and GDP-4-keto-6-deoxy-D-mannose epimerase/reductase are shown in Fig. 8A, B (Chang, et al., 1988, *J. Biol. Chem.* 263:1693-1697; Barber, 1980, *Plant Physiol.* 66:326-329).

Comparison of Figs. 7 and 8A, B reveals that Barber's proposed mechanism for GDP-D-mannose:GDP-L-galactose epimerase is analogous to the reaction mechanism for GDP-4-keto-6-deoxy-D-mannose epimerase/reductase. The same mechanism has also been demonstrated for the epimerization reaction that occurs in the biosynthesis of two TDP-6-deoxy hexoses, TDP-L-rhamnose and TDP-6-deoxy-L-talose, from TDP-D-glucose (Liu and Thorson, 1994, *Ann. Rev. Microbiol.* 48:223-256). In the latter cases, however, the final reduction at C-4 is catalyzed by NADPH-dependent reductases that are separate from the epimerase enzyme. These reductases have opposite stereospecificity, providing either TDP-L-rhamnose or TDP-6-deoxy-L-talose (Liu and Thorson, 1994, *Ann. Rev. Microbiol.* 48:223-256).

In all of the mechanisms described above, NAD(P)H is required for the final reduction at C-4 (refer to Fig. 8B). In the work of Hebda, et al. (1979, Arch. Biochem. Biophys. 194:496-502), it was reported that GDP-D-mannose:GDP-L-galactose epimerase from C. pyrenoidosa did not require NAD, NADP or NADH for activity. Strangely, NADPH was not tested. Based on the analogous mechanisms shown in Figs. 7 and 8A, B, the present inventors believe that it is likely that GDP-D-mannose:GDP-L-galactose epimerase from C. pyrenoidosa requires NADPH for the final reduction step. Why activity was detected in vitro without NADPH addition is not known, but tight *binding of NADPH to the enzyme could explain this observation. On the other hand, if the proposed mechanism of Feingold and Avigad (1980, in The Biochemistry of Plants, Vol. 3, p. 101-170: Carbohydrates; Structure and Function, P.K. Stompf and E.E. Conn, ed., Academic Press, NY) is correct, the reduced enzyme-bound cofactor generated in the first oxidation step of the epimerase reaction would serve as the source of electrons for

10

15

20

25

30

the final reduction of the keto group at C-4 back to the alcohol. Thus no addition of exogenous reduced cofactor would be required for activity in vitro.

Recently, a human gene encoding the bifunctional GDP-4-keto-6-deoxy-Dmannose epimerase/reductase was cloned and sequenced (Tonetti, et al., 1996, J. Biol. Chem. 271-27274-27279). This amino acid sequence of the human GDP-4-keto-6-deoxy-D-mannose epimerase/reductase shows significant homology (29% identity) to the E. coli GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (Tonetti, et al., 1998, Acta Cryst. D54:684-686; Somers, et al., 1998, Structure 6:1601-1612, both of which are incorporated herein by reference in their entireties). Tonetti et al. and Somers et al. additionally disclosed the tertiary (three dimensional) structure of the E. coli GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (also known as GDP-fucose synthetase), and noted significant structural homology with another epimerase, UDP-galactose 4-epimerase (GalE). These epimerases also share significant homology at the sequence level. Since no gene encoding a GDP-D-mannose: GDP-L-galactose epimerase has been cloned and sequenced, homology with genes encoding GDP-4-keto-6-deoxy-D-mannose epimerase/ reductases or with genes encoding a UDP-galactose 4-epimerase has not been demonstrated. However, based on the similarity of the reaction products for GDP-Dmannose: GDP-L-galactose epimerase and GDP-4-keto-6-deoxy-D-mannose epimerase/ reductase (i.e., GDP-L-galactose and GDP-6-deoxy-L-galactose [i.e., GDP-L-fucose], respectively) and the common catalytic mechanisms (Figs. 7 and 8A, B) the present inventors believe that the genes encoding the enzymes will have a high degree of sequence homology, as well as tertiary structural homology.

Significant structural homology between GDP-D-mannose:GDP-L-galactose epimerase and GDP-4-keto-6-deoxy-D-mannose epimerase/reductases may allow a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase, or a homologue thereof, to function in the L-ascorbic acid biosynthetic pathway, and a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase could potentially be even better than a GDP-D-mannose-GDP-L-galactose epimerase for increasing L-ascorbic acid production in genetically engineered plants and/or microorganisms. Furthermore, a nucleotide sequence encoding all or part of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase can be used as a probe to identify the gene encoding GDP-D-mannose:GDP-L-galactose epimerase. Likewise, the

10

15

20

25

30

nucleotide sequence of the gene encoding GDP-4-keto-6-deoxy-D-mannose epimerase/ reductase can be used to design oligonucleotide primers for use in a PCR-based strategy for identifying and cloning a gene encoding GDP-D-mannose:GDP-L-galactose epimerase.

The ability to substitute GDP-4-keto-6-D-mannose epimerase/reductase for GDP-D-mannose: GDP-L-galactose epimerase to enhance L-ascorbic acid biosynthesis in plants or microorganisms depends on the ability of GDP-4-keto-6-deoxy-D-mannose epimerase/ reductase to act directly on GDP-D-mannose to form GDP-L-galactose. Evidence supporting this possibility already exists. Arabidopsis thaliana murl mutants are defective in GDP-D-mannose-4.6-dehydratase activity (Bonin, et al., 1997, Proc. Natl. Acad. Sci. 94:2085-2090). These mutants are thus blocked in GDP-L-fucose biosynthesis, and consequently have less than 2% of the normal amounts of L-fucose in the primary cell walls of aerial portions of the plant (Zablackis, et al., 1996, Science 272:1808-1810). The murl mutants are more brittle than wild-type plants, are slightly dwarfed and have an apparently normal life cycle (Zablackis, et al., 272:1808-1810). When murl mutants are grown in the presence of exogenous L-fucose, the L-fucose content in the plant is restored to the wild-type state (Bonin, et al., 1997, Proc. Natl. Acad. Sci. 94:2085-2090). It was discovered (Zablackis, et al., 1996, Science 272:1808-1810) that murl mutants contain, in the hemicellulose xyloglucan component of the primary cell wall, L-galactose in place of the normal L-fucose. L-galactose is not normally found in the xyloglucan component, but in murl mutants L-galactose partly replaces the terminal L-fucosyl residue. Bonin, et al. (1997, Proc. Natl. Acad. Sci. 94:2085-2090) hypothesized that in the absence of a functional GDP-D-mannose-4,6-dehydratase in the murl mutants, the GDP-4-keto-6deoxy-D-mannose epimerase/reductase normally involved in L-fucose synthesis may be able to use GDP-D-mannose directly, forming GDP-L-galactose. Another possibility, however, is that the enzymes involved in L-ascorbic acid biosynthesis in A. thaliana are responsible for forming GDP-L-galactose in the murl mutant. If this were true, it would suggest that in the wild-type plant, some mechanism exists that prevents GDP-L-galactose formed in the L-ascorbic acid pathway from entering cell wall biosynthesis and substituting for (competing with) GDP-L-fucose for incorporation into the xyloglucan

10

15

20

25

30

component (since L-galactose is not present in the primary cell wall of the wild-type plant).

Because of the similar reaction mechanisms of GDP-D-mannose:GDP-L-galactose epimerase and GDP-4-keto-6-deoxy-D-mannose epimerase/reductase, and because of the evidence that GDP-4-keto-6-deoxy-D-mannose epimerase/reductase can act directly on GDP-D-mannose to form GDP-L-galactose, the present inventors believe that genes encoding all epimerases and epimerase/reductases that act on GDP-D-mannose have high homology. As such, one aspect of the present invention relates to the use of any epimerase (and nucleic acid sequences encoding such epimerase) having significant homology (at the primary, secondary and/or tertiary structure level) to a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or to a UDP-galactose 4-epimerase for the purpose of improving the biosynthetic production of L-ascorbic acid.

Therefore, as described above, one embodiment of the present invention relates to a method for producing ascorbic acid or esters thereof in a microorganism, which includes culturing a microorganism having a genetic modification to increase the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose. Also included in the present invention are genetically modified microorganisms and plants in which the genetic modification increases the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose.

According to the present invention, an increase in the action of the GDP-D-mannose:GDP-L-galactose epimerase in the L-ascorbic acid production pathway can be achieved by genetic modifications which include, but are not limited to overexpression of the GDP-D-mannose:GDP-L-galactose epimerase gene, a homologue of such gene, or of any recombinant nucleic acid sequence encoding an epimerase that is homologous in primary (nucleic acid or amino acid sequence) or tertiary (three dimensional protein) structure to a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or a UDP-galactose 4-epimerase, such as by overexpression of a recombinant nucleic acid molecule encoding the epimerase gene or a homologue thereof, and/or by mutation of the endogenous or recombinant gene to enhance expression of the gene.

According to the present invention, an epimerase that has a tertiary structure that is homologous to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/

10

15

20

25

30

reductase is an epimerase that has a tertiary structure that substantially conforms to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws (Table 12). In another embodiment, an epimerase that has a tertiary structure that is homologous to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/ reductase is an epimerase that has a tertiary structure that substantially conforms to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1GFS. As used herein, a "tertiary structure" or "three dimensional structure" of a protein, such terms being interchangeable, refers to the components and the manner of arrangement of the components in three dimensional space to constitute the protein. The use of the term "substantially conforms" refers to at least a portion of a tertiary structure of an epimerase which is sufficiently spatially similar to at least a portion of a specified three dimensional configuration of a particular set of atomic coordinates (e.g., those represented by Brookhaven Protein Data Bank Accession Code 1bws) to allow the tertiary structure of at least said portion of the epimerase to be modeled or calculated (i.e., by molecular replacement) using the particular set of atomic coordinates as a basis for estimating the atomic coordinates defining the three dimensional configuration of the epimerase.

More particularly, a tertiary structure that substantially conforms to a given set of atomic coordinates is a structure having an average root-mean-square deviation (RMSD) of less than about 2.5 Å, and more preferably, less than about 2 Å, and, in increasing preference, less than about 1.5 Å, less than about 1 Å, less than about 0.5 Å, and most preferably, less than about 0.3 Å, over at least about 25% of the Cα positions as compared to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. In other embodiments, a structure that substantially conforms to a given set of atomic coordinates is a structure wherein such structure has the recited average root-mean-square deviation (RMSD) value over at least about 50% of the Cα positions as compared to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws, and in another embodiment, such structure has the

10

15

20

25

30

recited average root-mean-square deviation (RMSD) value over at least about 75% of the Cα positions as compared to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws, and in another embodiment, such structure has the recited average root-mean-square deviation (RMSD) value over about 100% of the Cα positions as compared to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. Methods to calculate RMSD values are well known in the art. Various software programs for determining the tertiary structural homology between one or more proteins are known in the art and are publicly available, such as QUANTA (Molecular Simulations Inc.).

A preferred epimerase that catalyzes conversion of GDP-D-mannose to GDP-Lgalactose according to the method and genetically modified organisms of the present invention includes an epimerase that comprises a substrate binding site having a tertiary structure that substantially conforms to the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. Preferably, the tertiary structure of the substrate binding site of the epimerase has an average root-meansquare deviation (RMSD) of less than about 2.5 Å, and more preferably, less than about 2 Å, and, in increasing preference, less than about 1.5 Å, less than about 1 Å, less than about 0.5 Å, and most preferably, less than about 0.3 Å, over at least about 25% of the Cα positions as compared to the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. In other embodiments, the tertiary structure of the substrate binding site of the epimerase has the recited average root-mean-square deviation (RMSD) value over at least about 50% of the Cα positions as compared to the tertiary structure of the substrate binding site of a GDP-4-keto-6deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws, and in another embodiment, the tertiary structure of the substrate binding site of the epimerase has the recited average root-mean-square deviation (RMSD) value over at least about 75% of the Cα positions

10

15

20

25

30

as compared to the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws, and in another embodiment, the tertiary structure of the substrate binding site of the epimerase has the recited average root-mean-square deviation (RMSD) value over about 100% of the Cα positions as compared to the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. The tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws is discussed in detail in Rizzi et al., 1998, *ibid*. Additionally, the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1GFS is discussed in detail in Somers et al., 1998, *ibid*.

Another preferred epimerase according to the present invention includes an epimerase that comprises a catalytic site having a tertiary structure that substantially conforms to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-Dmannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. Preferably, the tertiary structure of the catalytic site of the epimerase has an average root-mean-square deviation (RMSD) of less than about 2.5 Å, and more preferably, less than about 2 Å, and, in increasing preference, less than about 1.5 Å, less than about 1 Å, less than about 0.5 Å, and most preferably, less than about 0.3 Å, over at least about 25% of the Ca positions as compared to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. In other embodiments, the tertiary structure of the catalytic site of the epimerase has the recited average root-mean-square deviation (RMSD) value over at least about 50% of the Cα positions as compared to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws, and in another embodiment, the tertiary structure of the catalytic site of the epimerase has the recited

WO 99/64618 PCT/US99/11576

average root-mean-square deviation (RMSD) value over at least about 75% of the Cα positions as compared to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws, and in another embodiment, the tertiary structure of the catalytic site of the epimerase has the recited average root-mean-square deviation (RMSD) value over 100% of the Cα positions as compared to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.

In one embodiment, an epimerase encompassed by the present invention includes an epimerase that has a catalytic site which includes amino acid residues: serine, tyrosine and lysine. In a preferred embodiment, the tertiary structure positions of the amino acid residues serine, tyrosine and lysine substantially conform to the tertiary structure position of residues Ser107, Tyr136 and Lys140, respectively, as represented by atomic coordinates in Brookhaven Protein Data Bank Accession Code 1bws. The tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws is discussed in detail in Rizzi et al., 1998, *ibid*. Additionally, the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1GFS is discussed in detail in Somers et al., 1998, *ibid*.

In an even more preferred embodiment, the above definition of "substantially conforms" can be further defined to include atoms of amino acid side chains. As used herein, the phrase "common amino acid side chains" refers to amino acid side chains that are common to both the structures which substantially conforms to a given set of atomic coordinates and the structure that is actually represented by such atomic coordinates. Preferably, a tertiary structure that substantially conforms to a given set of atomic coordinates is a structure having an average root-mean-square deviation (RMSD) of less than about 2.5 Å, and more preferably, less than about 2 Å, and, in increasing preference, less than about 1.5 Å, less than about 1 Å, less than about 0.5 Å, and most preferably, less than about 0.3 Å over at least about 25% of the common amino acid side chains as

10

15

20

25

30

compared to the tertiary structure represented by the given set of atomic coordinates. In another embodiment, a structure that substantially conforms to a given set of atomic coordinates is a structure having the recited average root-mean-square deviation (RMSD) value over at least about 50% of the common amino acid side chains as compared to the tertiary structure represented by the given set of atomic coordinates, and in another embodiment, such structure has the recited average root-mean-square deviation (RMSD) value over at least about 75% of the common amino acid side chains as compared to the tertiary structure represented by the given set of atomic coordinates, and in another embodiment, such a structure has the recited average root-mean-square deviation (RMSD) value over 100% of the common amino acid side chains as compared to the tertiary structure represented by the given set of atomic coordinates.

A tertiary structure of an epimerase which substantially conforms to a specified set of atomic coordinates can be modeled by a suitable modeling computer program such as MODELER (A. Sali and T.L. Blundell, J. Mol. Biol., vol. 234:779-815, 1993 as implemented in the Insight II Homology software package (Insight II (97.0), MSI, San Diego)), using information, for example, derived from the following data: (1) the amino acid sequence of the epimerase; (2) the amino acid sequence of the related portion(s) of the protein represented by the specified set of atomic coordinates having a three dimensional configuration; and, (3) the atomic coordinates of the specified three dimensional configuration. Alternatively, a tertiary structure of an epimerase which substantially conforms to a specified set of atomic coordinates can be modeled using data generated from analysis of a crystallized structure of the epimerase. A tertiary structure of an epimerase which substantially conforms to a specified set of atomic coordinates can also be calculated by a method such as molecular replacement. Methods of molecular replacement are generally known by those of skill in the art (generally described in Brunger, Meth. Enzym., vol. 276, pp. 558-580, 1997; Navaza and Saludjian, Meth. Enzym., vol. 276, pp. 581-594, 1997; Tong and Rossmann, Meth. Enzym., vol. 276, pp. 594-611, 1997; and Bentley, Meth. Enzym., vol. 276, pp. 611-619, 1997, each of which are incorporated by this reference herein in their entirety) and are performed in a software program including, for example, XPLOR (Brunger, et al., Science, vol. 235, p. 458, 1987). In addition, a structure can be modeled using techniques generally described by,

10

15

20

25

30

for example, Sali, Current Opinions in Biotechnology, vol. 6, pp. 437-451, 1995, and algorithms can be implemented in program packages such as Homology 95.0 (in the program Insight II, available from Biosym/MSI, San Diego, CA). Use of Homology 95.0 requires an alignment of an amino acid sequence of a known structure having a known three dimensional structure with an amino acid sequence of a target structure to be modeled. The alignment can be a pairwise alignment or a multiple sequence alignment including other related sequences (for example, using the method generally described by Rost, Meth. Enzymol., vol. 266, pp. 525-539, 1996) to improve accuracy. Structurally conserved regions can be identified by comparing related structural features, or by examining the degree of sequence homology between the known structure and the target structure. Certain coordinates for the target structure are assigned using known structures from the known structure. Coordinates for other regions of the target structure can be generated from fragments obtained from known structures such as those found in the Protein Data Bank maintained by Brookhaven National Laboratory, Upton, NY. Conformation of side chains of the target structure can be assigned with reference to what is sterically allowable and using a library of rotamers and their frequency of occurrence (as generally described in Ponder and Richards, J. Mol. Biol., vol. 193, pp. 775-791, 1987). The resulting model of the target structure, can be refined by molecular mechanics (such as embodied in the program Discover, available from Biosym/MSI) to ensure that the model is chemically and conformationally reasonable.

According to the present invention, an epimerase that has a nucleic acid sequence that is homologous at the primary structure level (i.e., is a homologue of) to a nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or a UDP-galactose 4-epimerase includes any epimerase encoded by a nucleic acid sequence that is at least about 15%, and preferably at least about 20%, and more preferably at least about 25%, and even more preferably, at least about 30% identical to a nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or a UDP-galactose 4-epimerase, and preferably to a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 or SEQ ID NO:9. Similarly, an epimerase that has an amino acid sequence that is homologous to an amino acid sequence of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or a UDP-

10

15

20

25

30

galactose 4-epimerase includes any epimerase having an amino acid sequence that is at least about 15%, and preferably at least about 20%, and more preferably at least about 25%, and even more preferably, at least about 30% identical to an amino acid sequence of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or a UDP-galactose 4-epimerase, and preferably to an amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8 or SEQ ID NO:10.

According to one embodiment of the present invention, homology or percent identity between two or more nucleic acid or amino acid sequences is performed using methods known in the art for aligning and/or calculating percentage identity. To compare the homology/percent identity between two or more sequences as set forth above, for example, a module contained within DNASTAR (DNASTAR, Inc., Madison, Wisconsin) can be used. In particular, to calculate the percent identity between two nucleic acid or amino acid sequences, the Lipman-Pearson method, provided by the MegAlign module within the DNASTAR program, is preferably used, with the following parameters, also referred to herein as the Lipman-Pearson standard default parameters:

- (1) Ktuple = 2;
- (2) Gap penalty = 4;
- (3) Gap length penalty = 12.

Using the Lipman-Pearson method with these parameters, for example, the percent identity between the amino acid sequence for *E. coli* GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (SEQ ID NO:4) and human GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (FX) (SEQ ID NO:6) is 27.7%, which is comparable to the 27% identity described for these enzymes in Tonetti et al., 1998, *Acta Cryst.* D54:684-686.

According to another embodiment of the present invention, to align two or more nucleic acid or amino acid sequences, for example to generate a consensus sequence or evaluate the similarity at various positions between such sequences, a CLUSTAL alignment program (e.g., CLUSTAL, CLUSTAL V, CLUSTAL W), also available as a module within the DNASTAR program, can be used using the following parameters, also referred to herein as the CLUSTAL standard default parameters:

Multiple Alignment Parameters (i.e., for more than 2 sequences):

(1) Gap penalty = 10;

15

20

25

30

- (2) Gap length penalty = 10;
- Pairwise Alignment Parameters (i.e., for two sequences):
- (1) Ktuple = 1;
- (2) Gap penalty = 3;
- 5 (3) Window = 5;
 - (4) Diagonals saved = 5.

According to the present invention, a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase from any organism, including Arabidopsis thaliana, Escherichia coli, and human. A nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase from Arabidopsis thaliana is represented herein by SEQ ID NO:1. SEQ ID NO:1 encodes a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase having an amino acid sequence represented herein as SEQ ID NO:2. A nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase from Escherichia coli is represented herein by SEQ ID NO:3. SEQ ID NO:3 encodes a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase having an amino acid sequence represented herein as SEQ ID NO:4. A nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase from homo sapiens is represented herein by SEQ ID NO:5. SEQ ID NO:5 encodes a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase having an amino acid sequence represented herein by SEQ ID NO:5. SEQ ID NO:5 encodes a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase having an amino acid sequence represented herein as SEQ ID NO:6.

According to the present invention, a UDP-galactose 4-epimerase can be a UDP-galactose 4-epimerase from any organism, including *Escherichia coli* and human. A nucleic acid sequence encoding a UDP-galactose 4-epimerase from *Escherichia coli* is represented herein by SEQ ID NO:7. SEQ ID NO:7 encodes a UDP-galactose 4-epimerase having an amino acid sequence represented herein as SEQ ID NO:8. A nucleic acid sequence encoding a UDP-galactose 4-epimerase from *homo sapiens* is represented herein by SEQ ID NO:9. SEQ ID NO:9 encodes a UDP-galactose 4-epimerase having an amino acid sequence represented herein as SEQ ID NO:10.

In a preferred embodiment, an epimerase encompassed by the present invention has an amino acid sequence that aligns with the amino acid sequence of SEQ ID NO:11, for example using a CLUSTAL alignment program, wherein amino acid residues in the

10

15

20

25

30

amino acid sequence of the epimerase align with 100% identity with at least about 50% of non-Xaa residues in SEQ ID NO:11, and preferably at least about 75% of non-Xaa residues in SEQ ID NO:11, and more preferably, at least about 90% of non-Xaa residues in SEQ ID NO:11, and even more preferably 100% of non-Xaa residues in SEQ ID NO:11. The percent identity of residues aligning with 100% identity with non-Xaa residues can be simply calculated by dividing the number of 100% identical matches at non-Xaa residues in SEQ ID NO:11 by the total number of non-Xaa residues in SEQ ID NO:11. A preferred nucleic acid sequence encoding an epimerase encompassed by the present invention include a nucleic acid sequence encoding an epimerase having an amino acid sequence with the above described identity to SEQ ID NO:11. Such an alignment using a CLUSTAL alignment program is based on the same parameters as previously disclosed herein. SEQ ID NO:11 represents a consensus amino acid sequence of an epimerase which was derived by aligning at least portions of amino acid sequences SEQ ID NO:4, SEQ ID NO:6 and SEQ ID NO:8, as described in Somers et al., 1998, Structure 6:1601-1612, and can be approximately duplicated using CLUSTAL.

In another embodiment, an epimerase encompassed by the present invention includes an epimerase that has a catalytic site which includes amino acid residues: serine, tyrosine and lysine. Preferably, such serine, tyrosine and lysine residues are located at positions in the epimerase amino acid sequence which align using a CLUSTAL alignment program with positions Ser105, Tyr134 and Lys138 of consensus sequence SEQ ID NO:11, with positions Ser109, Tyr138 and Lys142 of sequence SEQ ID NO:2, with positions Ser107, Tyr136 and Lys140 of SEQ ID NO:4, with positions Ser114, Tyr143 and Lys147 of sequence SEQ ID NO:6, with positions Ser124, Tyr149 and Lys153 of sequence SEQ ID NO:8 or with positions Ser132, Tyr157 and Lys161 of sequence SEQ ID NO:10.

In another embodiment, an epimerase that has an amino acid sequence that is homologous to an amino acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase includes any epimerase that has an amino acid motif: Gly-Xaa-Xaa-Gly-Xaa-Xaa-Gly, which is found, for example in positions 8 through 14 of the consensus sequence SEQ ID NO:11, in positions 12 through 18 of SEQ ID NO:2, in positions 10 through 16 of SEQ ID NO:4, in positions 14 through 20 of SEQ ID NO:6, in positions

10

15

20

25

30

7 through 13 of SEQ ID NO:8, and in positions 9 through 15 of SEQ ID NO:10. Such a motif can be identified by its alignment with the same motif in the above-identified amino acid sequences using a CLUSTAL alignment program. Preferably, such motif is located within the first 25 N-terminal amino acids of the amino acid sequence of the epimerase.

In yet another embodiment, an epimerase encompassed by the present invention includes an epimerase that has a substrate binding site which includes amino acid residues that align using a CLUSTAL alignment program with at least 50% of amino acid positions Asn177, Ser178, Arg187, Arg209, Lys283, Asn165, Ser107, Ser108, Cys109, Asn133, Tyr136 and His179 of SEQ ID NO:4. Alignment with positions Ser107, Tyr136, Asn165, Arg209, is preferably with 100% identity (i.e., exact match of residue, under parameters for alignment).

In another embodiment of the present invention, an epimerase encompassed by the present invention comprises at least 4 contiguous amino acid residues having 100% identity with at least 4 contiguous amino acid residues of an amino acid sequence selected from the group of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8 or SEQ ID NO:10, as determined using a Lipman-Pearson method with Lipman-Pearson standard default parameters or by comparing an alignment using a CLUSTAL program with CLUSTAL standard default parameters. According to the present invention, the term "contiguous" means to be connected in an unbroken sequence. For a first sequence to have "100% identity" with a second sequence means that the first sequence exactly matches the second sequence with no gaps between nucleotides or amino acids.

In another embodiment of the present invention, an epimerase encompassed by the present invention is encoded by a nucleic acid sequence that comprises at least 12 contiguous nucleic acid residues having 100% identity with at least 12 contiguous nucleic acid residues of a nucleic acid sequence selected from the group of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 or SEQ ID NO:10, as determined using a Lipman-Pearson method with Lipman-Pearson standard default parameters or by comparing an alignment using a CLUSTAL program with CLUSTAL standard default parameters.

In another embodiment of the present invention, an epimerase encompassed by the present invention is encoded by a nucleic acid sequence that hybridizes under stringent

10

15

20

25

30

hybridization conditions to a nucleic acid sequence selected from the group of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 or SEQ ID NO:9. As used herein, stringent hybridization conditions refer to standard hybridization conditions under which nucleic acid molecules are used to identify similar nucleic acid molecules. Such standard conditions are disclosed, for example, in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Labs Press, 1989. Sambrook et al., *ibid.*, is incorporated by reference herein in its entirety (see specifically, pages 9.31-9.62). In addition, formulae to calculate the appropriate hybridization and wash conditions to achieve hybridization permitting varying degrees of mismatch of nucleotides are disclosed, for example, in Meinkoth et al., 1984, *Anal. Biochem.* 138, 267-284; Meinkoth et al., *ibid.*, is incorporated by reference herein in its entirety.

More particularly, stringent hybridization and washing conditions, as referred to herein, refer to conditions which permit isolation of nucleic acid molecules having at least about 70% nucleic acid sequence identity with the nucleic acid molecule being used to probe in the hybridization reaction, more particularly at least about 75%, and most particularly at least about 80%. Such conditions will vary, depending on whether DNA:RNA or DNA:DNA hybrids are being formed. Calculated melting temperatures for DNA:DNA hybrids are 10°C less than for DNA:RNA hybrids. In particular embodiments, stringent hybridization conditions for DNA:DNA hybrids include hybridization at an ionic strength of 6X SSC (0.9 M Na⁺) at a temperature of between about 20°C and about 35°C, more preferably, between about 28°C and about 40°C, and even more preferably, between about 35°C and about 45°C. In particular embodiments, stringent hybridization conditions for DNA:RNA hybrids include hybridization at an ionic strength of 6X SSC (0.9 M Na⁺) at a temperature of between about 30°C and about 45°C, more preferably, between about 38°C and about 50°C, and even more preferably, between about 45°C and about 55°C. These values are based on calculations of a melting temperature for molecules larger than about 100 nucleotides, 0% formamide and a G+ C content of about 40%. Alternatively, T_m can be calculated empirically as set forth in Sambrook et al., supra, pages 9.31 to 9.62.

In another embodiment of the present invention, an epimerase encompassed by the present invention is encoded by a nucleic acid sequence that comprises a nucleic acid

10

15

20

25

30

sequence selected from the group of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 or SEQ ID NO:9 or a fragment thereof, wherein the fragment encodes a protein that is capable of catalyzing the conversion of GDP-D-mannose to GDP-L-galactose, such as under physiological conditions. In another embodiment, an epimerase encompassed by the present invention comprises an amino acid sequence selected from the group of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10 or a fragment thereof, wherein the fragment is capable of catalyzing the conversion of GDP-D-mannose to GDP-L-galactose. It is to be understood that the nucleic acid sequence encoding the amino acid sequences identified herein can vary due to degeneracies. As used herein, nucleotide degeneracies refers to the phenomenon that one amino acid can be encoded by different nucleotide codons.

One embodiment of the present invention relates to a method to identify an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose. Preferably, such a method is useful for identifying the GDP-D-mannose:GDP-L-galactose epimerase which catalyzes the conversion of GDP-D-mannose to GDP-L-galactose in the endogenous (i.e., naturally occurring L-ascorbic acid biosynthetic pathway of microorganisms and/or plants). Such a method can include the steps of: (a) contacting a source of nucleic acid molecules with an oligonucleotide at least about 12 nucleotides in length under stringent hybridization conditions, wherein the oligonucleotide is identified by its ability to hybridize under stringent hybridization conditions to a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3 and SEQ ID NO:5; and, (b) identifying nucleic acid molecules from the source of nucleic acid molecules which hybridize under stringent hybridization conditions to the oligonucleotide. Nucleic acid molecules identified by this method can then be isolated from the source using standard molecular biology techniques. Preferably, the source of nucleic acid molecules is obtained from a microorganism or plant that has an ascorbic acid production pathway. Such a source of nucleic acid molecules can be any source of nucleic acid molecules which can be isolated from an organism and/or which can be screened by hybridization with an oligonucleotide such as a probe or a PCR primer. Such sources include genomic and cDNA libraries and isolated RNA.

10

15

20

25

30

In order to screen cDNA libraries from different organisms and to isolate nucleic acid molecules encoding enzymes such as the GDP-D-mannose:GDP-L-galactose epimerase and related epimerases, one can use any of a variety of standard molecular and biochemical techniques. For example, oligonucleotide primers, preferably degenerate primers, can be designed using the most conserved regions of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase nucleic acid sequence, and such primers can be used in a polymerase chain reaction (PCR) protocol to amplify the same or related epimerases, including the GDP-D-mannose:GDP-L-galactose epimerase from the ascorbic acid pathway, from nucleic acids (e.g., genomic or cDNA libraries) isolated from a desired organism (e.g., a microorganism or plant having an L-ascorbic acid pathway). Similarly, oligonucleotide probes can be designed using the most conserved regions of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase nucleic acid sequence and such probe can be used to identify and isolate nucleic acid molecules, such as from a genomic or cDNA library, that hybridize under conditions of low, moderate, or high stringency with the probe.

Alternatively, the GDP-D-mannose:GDP-L-galactose epimerase can be purified from an organism such as *Prototheca*, the N-terminal amino acid sequence can be determined (including the sequence of internal peptide fragments), and this information can be used to design degenerate primers for amplifying a gene fragment from the organism cDNA. This fragment would then be used to probe the cDNA library, and subsequently fragments that hybridize to the probe would be cloned in that organism or another suitable production organism. There is ample precedent for plant enzymes being expressed in an active form in bacteria, such as *E. coli*. Alternatively, yeast are also a suitable candidate for developing a heterologous system for L-ascorbic acid production.

As discussed above in general for increasing the action of an enzyme in the L-ascorbic acid pathway according to the present invention, in one embodiment of the present invention, the action of an epimerase that catalyzes the conversion of GDP-D-mannose to GDP-L-galactose is increased by amplification of the expression (i.e., overexpression) of such an epimerase. Overexpression of an epimerase can be accomplished, for example, by introduction of a recombinant nucleic acid molecule encoding the epimerase. It is preferred that the gene encoding an epimerase according to

WO 99/64618 PCT/US99/11576

the present invention be cloned under control of an artificial promoter. The promoter can be any suitable promoter that will provide a level of epimerase expression required to maintain a sufficient level of L-ascorbic acid in the production organism. Preferred promoters are constitutive (rather than inducible) promoters, since the need for addition of expensive inducers is therefore obviated. The gene dosage (copy number) of a recombinant nucleic acid molecule according to the present invention can be varied according to the requirements for maximum product formation. In one embodiment, the recombinant nucleic acid molecule encoding an epimerase according to the present invention is integrated into the chromosome of the microorganism.

It is another embodiment of the present invention to provide a microorganism having one or more epimerases according to the present invention with improved affinity for its substrate. An epimerase with improved affinity for its substrate can be produced by any suitable method of genetic modification or protein engineering. For example, computer-based protein engineering can be used to design an epimerase protein with greater stability and better affinity for its substrate. See for example, Maulik et al., 1997, Molecular Biotechnology: Therapeutic Applications and Strategies, Wiley-Liss, Inc., which is incorporated herein by reference in its entirety.

As noted above, in the method for production of L-ascorbic acid of the present invention, a microorganism having a genetically modified L-ascorbic acid production pathway is cultured in a fermentation medium for production of L-ascorbic acid. An appropriate, or effective, fermentation medium refers to any medium in which a genetically modified microorganism of the present invention, when cultured, is capable of producing L-ascorbic acid. Such a medium is typically an aqueous medium comprising assimilable carbon, nitrogen and phosphate sources. Such a medium can also include appropriate salts, minerals, metals and other nutrients. One advantage of genetically modifying a microorganism as described herein is that although such genetic modifications can significantly alter the production of L-ascorbic acid, they can be designed such that they do not create any mutritional requirements for the production organism. Thus, a minimal-salts medium containing glucose as the sole carbon source can be used as the fermentation medium. The use of a minimal-salts-glucose medium for the L-ascorbic acid fermentation will also facilitate recovery and purification of the L-ascorbic acid product.

10

15

20

25

30

In one mode of operation of the present invention, the carbon source concentration, such as the glucose concentration, of the fermentation medium is monitored during fermentation. Glucose concentration of the fermentation medium can be monitored using known techniques, such as, for example, use of the glucose oxidase enzyme test or high pressure liquid chromatography, which can be used to monitor glucose concentration in the supernatant, e.g., a cell-free component of the fermentation medium. As stated previously, the carbon source concentration should be kept below the level at which cell growth inhibition occurs. Although such concentration may vary from organism to organism, for glucose as a carbon source, cell growth inhibition occurs at glucose concentrations greater than at about 60 g/L, and can be determined readily by trial. Accordingly, when glucose is used as a carbon source the glucose concentration in the fermentation medium is maintained in the range of from about 1 g/L to about 100 g/L, more preferably in the range of from about 2 g/L to about 50 g/L, and yet more preferably in the range of from about 5 g/L to about 20 g/L. Although the carbon source concentration can be maintained within desired levels by addition of, for example, a substantially pure glucose solution, it is preferred to maintain the carbon source concentration of the fermentation medium by addition of aliquots of the original fermentation medium. The use of aliquots of the original fermentation medium are desirable because the concentrations of other nutrients in the medium (e.g. the nitrogen and phosphate sources) can be maintained simultaneously. Likewise, the trace metals concentrations can be maintained in the fermentation medium by addition of aliquots of the trace metals solution.

In an embodiment of the fermentation process of the present invention, a fermentation medium is prepared as described above. This fermentation medium is inoculated with

an actively growing culture of genetically modified microorganisms of the present invention in an amount sufficient to produce, after a reasonable growth period, a high cell density. Typical inoculation cell densities are within the range of from about 0.1 g/L to about 15 g/L, preferably from about 0.5 g/L to about 10 g/L and more preferably from about 1 g/L to about 5 g/L, based on the dry weight of the cells. The cells are then grown to a cell density in the range of from about 10 g/L to about 100 g/L preferably from about

10

15

20

25

30

20 g/L to about 80 g/L, and more preferably from about 50 g/L to about 70 g/L. The residence times for the microorganisms to reach the desired cell densities during fermentation are typically less than about 200 hours, preferably less than about 120 hours, and more preferably less than about 96 hours.

The microorganisms useful in the method of the present invention can be cultured in conventional fermentation modes, which include, but are not limited to, batch, fedbatch, and continuous. It is preferred, however, that the fermentation be carried out in fed-batch mode. In such a case, during fermentation some of the components of the medium are depleted. It is possible to initiate fermentation with relatively high concentrations of such components so that growth is supported for a period of time before additions are required. The preferred ranges of these components are maintained throughout the fermentation by making additions as levels are depleted by fermentation. Levels of components in the fermentation medium can be monitored by, for example, sampling the fermentation medium periodically and assaying for concentrations. Alternatively, once a standard fermentation procedure is developed, additions can be made at timed intervals corresponding to known levels at particular times throughout the fermentation. As will be recognized by those in the art, the rate of consumption of nutrient increases during fermentation as the cell density of the medium increases. Moreover, to avoid introduction of foreign microorganisms into the fermentation medium, addition is performed using aseptic addition methods, as are known in the art. In addition, a small amount of anti-foaming agent may be added during the fermentation.

The present inventors have determined that high levels of magnesium in the fermentation medium inhibits the production of L-ascorbic acid due to repression of enzymes early in the production pathway, although enzymes late in the pathway (i.e., from L-galactose to L-ascorbic acid) are not negatively affected (See Examples). Therefore, in a preferred embodiment of the method of the present invention, the step of culturing is carried out in a fermentation medium that is magnesium (Mg²⁺) limited. Even more preferably, the fermentation is magnesium limited during the cell growth phase. Preferably, the fermentation medium comprises less than about 0.5 g/L of Mg²⁺ during the cell growth phase of fermentation, and even more preferably, less than about 0.2 g/L of Mg²⁺, and even more preferably, less than about 0.1 g/L of Mg²⁺.

10

15

20

25

30

The temperature of the fermentation medium can be any temperature suitable for growth and ascorbic acid production, and may be modified according to the growth requirements of the production microorganism used. For example, prior to inoculation of the fermentation medium with an inoculum, the fermentation medium can be brought to and maintained at a temperature in the range of from about 20°C to about 45°C, preferably to a temperature in the range of from about 25°C to about 40°C, and more preferably in the range of from about 30°C to about 38°C.

It is a further embodiment of the present invention to supplement and/or control other components and parameters of the fermentation medium, as necessary to maintain and/or enhance the production of L-ascorbic acid by a production organism. For example, in one embodiment, the pH of the fermentation medium is monitored for fluctuations in pH. In the fermentation method of the present invention, the pH is preferably maintained at a pH of from about pH 6.0 to about pH 8.0, and more preferably, at about pH 7.0. In the method of the present invention, if the starting pH of the fermentation medium is pH 7.0, the pH of the fermentation medium is monitored for significant variations from pH 7.0, and is adjusted accordingly, for example, by the addition of sodium hydroxide. In a preferred embodiment of the present invention, genetically modified microorganisms useful for production of L-ascorbic acid include acid-tolerant microorganisms. Such microorganisms include, for example, microalgae of the genera *Prototheca* and *Chlorella* (See U.S. Patent No. 5,792,631, *ibid.* and U.S. Patent No. 5,900,370, *ibid.*).

The production of ascorbic acid by culturing acid-tolerant microorganisms provides significant advantages over known ascorbic acid production methods. One such advantage is that such organisms are acidophilic, allowing fermentation to be carried out under low pH conditions, with the fermentation medium pH typically less than about 6. Below this pH, extracellular ascorbic acid produced by the microorganism during fermentation is relatively stable because the rate of oxidation of ascorbic acid in the fermentation medium by oxygen is reduced. Accordingly, high productivity levels can be obtained for producing L-ascorbic acid with acid-tolerant microorganisms according to the methods of the present invention. In addition, control of the dissolved oxygen content to very low levels to avoid oxidation of ascorbic acid is unnecessary. Moreover, this

10

15

20

25

30

advantage allows for the use of continuous recovery methods because extracellular medium can be treated to recover the ascorbic acid product.

Thus, the present method can be conducted at low pH when acid-tolerant microorganisms are used as production organisms. The benefit of this process is that at low pH, extracellular ascorbic acid produced by the organism is degraded at a reduced rate than if the fermentation medium was at higher pH. For example, prior to inoculation of the fermentation medium with an inoculum, the pH of the fermentation medium can be adjusted, and further monitored during fermentation. Typically, the pH of the fermentation medium is brought to and maintained below about 6, preferably below 5.5, and more preferably below about 5. The pH of the fermentation medium can be controlled by the addition of ammonia to the fermentation medium. In such cases when ammonia is used to control pH, it also conveniently serves as a nitrogen source in the fermentation medium.

The fermentation medium can also be maintained to have a dissolved oxygen content during the course of fermentation to maintain cell growth and to maintain cell metabolism for L-ascorbic acid formation. The oxygen concentration of the fermentation medium can be monitored using known methods, such as through the use of an oxygen probe electrode. Oxygen can be added to the fermentation medium using methods known in the art, for example, through agitation and aeration of the medium by stirring or shaking. Preferably, the oxygen concentration in the fermentation medium is in the range of from about 20% to about 100% of the saturation value of oxygen in the medium based upon the solubility of oxygen in the fermentation medium at atmospheric pressure and at a temperature in the range of from about 30°C to about 40°C. Periodic drops in the oxygen concentration below this range may occur during fermentation, however, without adversely affecting the fermentation.

The genetically modified microorganisms of the present invention are engineered to produce significant quantities of extracellular L-ascorbic acid. Extracellular L-ascorbic acid can be recovered from the fermentation medium using conventional separation and purification techniques. For example, the fermentation medium can be filtered or centrifuged to remove microorganisms, cell debris and other particulate matter, and L-

10

15

20

25

30

as, for example, ion exchange, chromatography, extraction, solvent extraction, membrane separation, electrodialysis, reverse osmosis, distillation, chemical derivatization and crystallization.

One such example of L-ascorbic acid recovery is provided in U.S. Patent No. 4,595,659 by Cayle, incorporated herein in its entirety be reference, which discloses the isolation of L-ascorbic acid from an aqueous fermentation medium by ion exchange resin adsorption and elution, which is followed by decoloration, evaporation and crystallization. Further, isolation of the structurally similar isoascorbic acid from fermentation medium by a continuous multi-bed extraction system of anion-exchange resins is described by K. Shimizu, *Agr. Biol. Chem.* 31:346-353 (1967), which is incorporated herein in its entirety by reference.

Intracellular L-ascorbic acid produced in accordance with the present invention can also be recovered and used in a variety of applications. For example, cells from the microorganisms can be lysed and the ascorbic acid which is released can be recovered by a variety of known techniques. Alternatively, intracellular ascorbic acid can be recovered by washing the cells to extract the ascorbic acid, such as through diafiltration.

Development of a microorganism with enhanced ability to produce L-ascorbic acid by genetic modification can be accomplished using both classical strain development and molecular genetic techniques, and particularly, recombinant technology (genetic engineering). In general, the strategy for creating a microorganism with enhanced L-ascorbic acid production is to (1) inactivate or delete at least one, and preferably more than one of the competing or inhibitory pathways in which production of L-ascorbic acid is negatively affected (e.g., inhibited), and more significantly to (2) amplify the L-ascorbic acid production pathway by increasing the action of a gene(s) encoding an enzyme(s) involved in the pathway.

In one embodiment, the strategy for creating a microorganism with enhanced L-ascorbic acid production is to amplify the L-ascorbic acid production pathway by increasing the action of GDP-D-mannose:GDP-L-galactose epimerase, as discussed above. Such strategy includes genetically modifying the endogenous GDP-D-mannose:GDP-L-galactose epimerase such that L-ascorbic acid production is increased, and/or expressing/overexpressing a recombinant epimerase that catalyzes the conversion

of GDP-D-mannose to GDP-L-galactose, which includes expression of recombinant GDP-D-mannose: GDP-L-galactose epimerase and/or homologues thereof, and of other recombinant epimerases such as GDP-4-keto-6-deoxy-D-mannose epimerase reductase and epimerases that share structural homology with such epimerase as discussed in detail above.

5

10

15

20

25

30

It is to be understood that a production organism can be genetically modified by recombinant technology in which a nucleic acid molecule encoding a protein involved in the L-ascorbic acid production pathway disclosed herein is transformed into a suitable host which is a different member of the plant kingdom from which the nucleic acid molecule was derived. For example, it is an embodiment of the present invention that a recombinant nucleic acid molecule encoding a GDP-D-mannose:GDP-L-galactose epimerase from a higher plant can be transformed into a microalgal host in order to overexpress the epimerase and enhance production of L-ascorbic acid in the microalgal production organism.

As previously discussed herein, in one embodiment, a genetically modified microorganism can be a microorganism in which nucleic acid molecules have been deleted, inserted or modified, such as by insertion, deletion, substitution, and/or inversion of nucleotides, in such a manner that such modifications provide the desired effect within the microorganism. A genetically modified microorganism is preferably modified by recombinant technology, such as by introduction of an isolated nucleic acid molecule into a microorganism. For example, a genetically modified microorganism can be transfected with a recombinant nucleic acid molecule encoding a protein of interest, such as a protein for which increased expression is desired. The transfected nucleic acid molecule can remain extrachromosomal or can integrate into one or more sites within a chromosome of the transfected (i.e., recombinant) host cell in such a manner that its ability to be expressed is retained. Preferably, once a host cell of the present invention is transfected with a nucleic acid molecule, th nucleic acid molecule is integrated into the host cell genome. A significant advantage of integration is that the nucleic acid molecule is stably maintained in the cell. In a preferred embodiment, the integrated nucleic acid molecule is operatively linked to a transcription control sequence (described below) which can be

A nucleic acid molecule can be integrated into the genome of the host cell either by random or targeted integration. Such methods of integration are known in the art. For example, an E coli strain ATCC 47002 contains mutations that confer upon it an inability to maintain plasmids which contain a ColE1 origin of replication. When such plasmids are transferred to this strain, selection for genetic markers contained on the plasmid results in integration of the plasmid into the chromosome. This strain can be transformed, for example, with plasmids containing the gene of interest and a selectable marker flanked by the 5'- and 3'-termini of the E coli lacZ gene. The lacZ sequences target the incoming DNA to the lacZ gene contained in the chromosome. Integration at the lacZ locus replaces the intact lacZ gene, which encodes the enzyme β -galactosidase, with a partial lacZ gene interrupted by the gene of interest. Successful integrants can be selected for β -galactosidase negativity.

A genetically modified microorganism can also be produced by introducing nucleic acid molecules into a recipient cell genome by a method such as by using a transducing bacteriophage. The use of recombinant technology and transducing bacteriophage technology to produce several different genetically modified microorganism of the present invention is known in the art.

According to the present invention, a gene, for example the GDP-D-mannose:GDP-L-galactose epimerase gene, includes all nucleic acid sequences related to a natural epimerase gene such as regulatory regions that control production of the epimerase protein encoded by that gene (such as, but not limited to, transcription, translation or post-translation control regions) as well as the coding region itself. In another embodiment, a gene, for example the GDP-D-mannose:GDP-L-galactose epimerase gene, can be an allelic variant that includes a similar but not identical sequence to the nucleic acid sequence encoding a given GDP-D-mannose:GDP-L-galactose epimerase gene. An allelic variant of a GDP-D-mannose:GDP-L-galactose epimerase gene which has a given nucleic acid sequence is a gene that occurs at essentially the same locus (or loci) in the genome as the gene having the given nucleic acid sequence, but which, due to natural variations caused by, for example, mutation or recombination, has a similar but not identical sequence. Allelic variants typically encode proteins having similar activity to that of the protein encoded by the gene to which they are being

10

15

20

25

30

compared. Allelic variants can also comprise alterations in the 5' or 3' untranslated regions of the gene (e.g., in regulatory control regions). Allelic variants are well known to those skilled in the art and would be expected to be found within a given microorganism or plant and/or among a group of two or more microorganisms or plants.

In accordance with the present invention, an isolated nucleic acid molecule is a nucleic acid molecule that has been removed from its natural milieu (i.e., that has been subject to human manipulation). As such, "isolated" does not reflect the extent to which the nucleic acid molecule has been purified. An isolated nucleic acid molecule can include DNA, RNA, or derivatives of either DNA or RNA. There is no limit, other than a practical limit, on the maximal size of a nucleic acid molecule in that the nucleic acid molecule can include a portion of a gene, an entire gene, or multiple genes, or portions thereof.

An isolated nucleic acid molecule of the present invention can be obtained from its natural source either as an entire (i.e., complete) gene or a portion thereof capable of forming a stable hybrid with that gene. An isolated nucleic acid molecule can also be produced using recombinant DNA technology (e.g., polymerase chain reaction (PCR) amplification, cloning) or chemical synthesis. Isolated nucleic acid molecules include natural nucleic acid molecules and homologues thereof, including, but not limited to, natural allelic variants and modified nucleic acid molecules in which nucleotides have been inserted, deleted, substituted, and/or inverted in such a manner that such modifications provide the desired effect within the microorganism. A structural homologue of a nucleic acid sequence has been described in detail above. Preferably, a homologue of a nucleic acid sequence encodes a protein which has an amino acid sequence that is sufficiently similar to the natural protein amino acid sequence that a nucleic acid sequence encoding the homologue is capable of hybridizing under stringent conditions to (i.e., with) a nucleic acid molecule encoding the natural protein (i.e., to the complement of the nucleic acid strand encoding the natural protein amino acid sequence). A nucleic acid molecule homologue encodes a protein homologue. As used herein, a homologue protein includes proteins in which amino acids have been deleted (e.g., a truncated version of the protein, such as a peptide), inserted, inverted, substituted and/or derivatized (e.g., by glycosylation, phosphorylation, acetylation, myristoylation, prenylation, palmitation,

10

15

20

25

30

amidation and/or addition of glycosylphosphatidyl inositol) in such a manner that such modifications provide the desired effect on the protein and/or within the microorganism (e.g., increased or decreased action of the protein).

A nucleic acid molecule homologue can be produced using a number of methods known to those skilled in the art (see, for example, Sambrook et al., *ibid.*). For example, nucleic acid molecules can be modified using a variety of techniques including, but not limited to, classic mutagenesis techniques and recombinant DNA techniques, such as site-directed mutagenesis, chemical treatment of a nucleic acid molecule to induce mutations, restriction enzyme cleavage of a nucleic acid fragment, ligation of nucleic acid fragments, PCR amplification and/or mutagenesis of selected regions of a nucleic acid sequence, synthesis of oligonucleotide mixtures and ligation of mixture groups to "build" a mixture of nucleic acid molecules and combinations thereof. Nucleic acid molecule homologues can be selected from a mixture of modified nucleic acids by screening for the function of the protein encoded by the nucleic acid and/or by hybridization with a wild-type gene.

Although the phrase "nucleic acid molecule" primarily refers to the physical nucleic acid molecule and the phrase "nucleic acid sequence" primarily refers to the sequence of nucleotides on the nucleic acid molecule, the two phrases can be used interchangeably, especially with respect to a nucleic acid molecule, or a nucleic acid sequence, being capable of encoding a gene involved in an L-ascorbic acid production pathway.

Knowing the nucleic acid sequences of certain nucleic acid molecules of the present invention allows one skilled in the art to, for example, (a) make copies of those nucleic acid molecules and/or (b) obtain nucleic acid molecules including at least a portion of such nucleic acid molecules (e.g., nucleic acid molecules including full-length genes, full-length coding regions, regulatory control sequences, truncated coding regions). Such nucleic acid molecules can be obtained in a variety of ways including traditional cloning techniques using oligonucleotide probes to screen appropriate libraries or DNA and PCR amplification of appropriate libraries or DNA using oligonucleotide primers. Preferred libraries to screen or from which to amplify nucleic acid molecule include bacterial and yeast genomic DNA libraries, and in particular, microalgal genomic DNA libraries. Techniques to clone and amplify genes are disclosed, for example, in Sambrook et al., ibid.

10

15

20

25

30

The present invention includes a recombinant vector, which includes at least one isolated nucleic acid molecule of the present invention, inserted into any vector capable of delivering the nucleic acid molecule into a host microorganism of the present invention. Such a vector can contain nucleic acid sequences that are not naturally found adjacent to the isolated nucleic acid molecules to be inserted into the vector. The vector can be either RNA or DNA and typically is a plasmid. Recombinant vectors can be used in the cloning, sequencing, and/or otherwise manipulating of nucleic acid molecules. One type of recombinant vector, referred to herein as a recombinant molecule and described in more detail below, can be used in the expression of nucleic acid molecules. Preferred recombinant vectors are capable of replicating in a transformed bacterial cells, yeast cells, and in particular, in microalgal cells.

Transformation of a nucleic acid molecule into a cell can be accomplished by any method by which a nucleic acid molecule can be inserted into the cell. Transformation techniques include, but are not limited to, transfection, electroporation, microinjection and biolistics.

A recombinant cell is preferably produced by transforming a host cell with one or more recombinant molecules, each comprising one or more nucleic acid molecules operatively linked to an expression vector containing one or more transcription control sequences. The phrase, operatively linked, refers to insertion of a nucleic acid molecule into an expression vector in a manner such that the molecule is able to be expressed when transformed into a host cell. As used herein, an expression vector is a DNA or RNA vector that is capable of transforming a host cell and of effecting expression of a specified nucleic acid molecule. Preferably, the expression vector is also capable of replicating within the host cell. In the present invention, expression vectors are typically plasmids. Expression vectors of the present invention include any vectors that function (i.e., direct gene expression) in a yeast host cell, a bacterial host cell, and preferably a microalgal host cell.

Nucleic acid molecules of the present invention can be operatively linked to expression vectors containing regulatory sequences such as transcription control sequences, translation control sequences, origins of replication, and other regulatory sequences that are compatible with the recombinant cell and that control the expression

10

15

20

25

1

of nucleic acid molecules of the present invention. In particular, recombinant molecules of the present invention include transcription control sequences. Transcription control sequences are sequences which control the initiation, elongation, and termination of transcription. Particularly important transcription control sequences are those which control transcription initiation, such as promoter, enhancer, operator and repressor sequences. Suitable transcription control sequences include any transcription control sequence that can function in yeast or bacterial cells or preferably, in microalgal cells. A variety of such transcription control sequences are known to those skilled in the art.

It may be appreciated by one skilled in the art that use of recombinant DNA technologies can improve expression of transformed nucleic acid molecules by manipulating, for example, the number of copies of the nucleic acid molecules within a host cell, the efficiency with which those nucleic acid molecules are transcribed, the efficiency with which the resultant transcripts are translated, and the efficiency of posttranslational modifications. Recombinant techniques useful for increasing the expression of nucleic acid molecules of the present invention include, but are not limited to. operatively linking nucleic acid molecules to high-copy number plasmids, integration of the nucleic acid molecules into the host cell chromosome, addition of vector stability sequences to plasmids, substitutions or modifications of transcription control signals (e.g., promoters, operators, enhancers), substitutions or modifications of translational control signals, modification of nucleic acid molecules of the present invention to correspond to the codon usage of the host cell, deletion of sequences that destabilize transcripts, and use of control signals that temporally separate recombinant cell growth from recombinant enzyme production during fermentation. The activity of an expressed recombinant protein of the present invention may be improved by fragmenting, modifying, or derivatizing nucleic acid molecules encoding such a protein.

The following experimental results are provided for the purposes of illustration and are not intended to limit the scope of the invention.

10

15

20

25

30

EXAMPLES

Example 1

The present example describes the elucidation of the pathway from glucose to L-ascorbic acid through GDP-D-mannose in plants.

Since the present inventors have previously shown that *Prototheca* makes L-ascorbic acid (AA) from glucose, it was worthwhile to examine cultures for some of the early conversion products of glucose. In the past, the present inventors had concentrated on pathways from glucose to organic acids, based on the published pathway of L-ascorbic acid synthesis in animals and proposed pathways in plants. The present inventors demonstrate herein that the pathway from glucose to L-ascorbic acid involves not organic acids, but rather sugar phosphates and nucleotide diphosphate sugars (NDP-sugars).

Prior to the present invention, it was known that all cells synthesize polysaccharides by first forming NDP-sugars. The sugar moiety is then incorporated into polymer, while the cleaved NDP is recycled. A variety of polysaccharides are known, and are usually named based on the relative proportions of the sugar residues in the polymers. For example, a "galactomannan" contains mostly galactose, and to a lesser degree, mannose residues. The "biopolymer" from *Prototheca* strains isolated by the present inventors was analyzed and found to be 80% D-galactose, 18% rhamnose (D- or L-configuration not determined), and 2% L-arabinose. The present inventors provide evidence herein of how the respective NDP-sugars that make up the *Prototheca* biopolymer are formed, and what correlations exist between L-ascorbic acid synthesis and the formation of the NDP-sugar forms of the sugar residues found in the biopolymer.

The common NDP-sugar UDP-glucose is shown in Fig. 2B. This is formed in plants from glucose-I-P by the action of UDP-D-glucose pyrophosphorylase. UDP-glucose can be epimerized in plants to form UDP-D-galactose, using UDP-D-glucose-4-epimerase. UDP-D-galactose can also be formed by phosphorylation of D-galactose by galactokinase to form D-galactose-I-P, which can be converted to UDP-D-galactose by UDP-D-galactose pyrophosphorylase. These known routes were believed to account for the D-galactose in the *Prototheca* biopolymer. The UDP-L-arabinose can be formed by known reactions beginning with the oxidation of UDP-D-glucose to UDP-D-glucuronic acid (by UDP-D-glucose dehydrogenase), decarboxylation to UDP-D-xylose, and epimerization to UDP-L-arabinose. This accounts for the arabinose residues in the

10

15

20

25

30

biopolymer. UDP-L-rhamnose is known to be formed from UDP-D-glucose, thus all three of the sugar moieties in the *Prototheca* biopolymer can be accounted for by a pathway through glucose-1-P and UDP-glucose. Alternatively, if the rhamnose in the biopolymer is D-rhamnose, it is not formed via UDP-D-glucose, but by oxidation of GDP-D-mannose (See Fig. 1).

GDP-D-rhamnose is formed by converting glucose, in turn, to D-glucose-6-P, Dfructose-6-P, D-mannose-6-P, D-mannose-1-P, GDP-D-mannose, and GDP-D-rhamnose. It was of interest to the present inventors that this route passes through GDP-D-mannose. Exogenous mannose is known to be converted to D-mannose-6-P in plants, and can enter the path above. D-mannose is converted to L-ascorbic acid by Prototheca cells cultured by the present inventors as well or better than glucose (see Example 4). The mechanism of conversion, in Chlorella pyrenoidosa, of GDP-D-mannose to GDP-L-galactose by GDP-D-mannose:GDP-L-galactose epimerase, has been known for years (See, Barber, 1971, Arch. Biochem. Biophys. 147:619-623, incorporated herein by reference in its entirety). The present inventors have discovered herein that L-galactose and L-galactonoγ-lactone are rapidly converted to L-ascorbic acid by strains of Prototheca and Chlorella pyrenoidosa. Prior to the present invention, it was known that L-galactono-\gamma-lactone is converted to L-ascorbic acid in several plant systems, but the synthesis steps prior to this step were unknown. Based on the published literature and the present experimental evidence, the present inventors have determined that the L-ascorbic acid biosynthetic pathway in plants passes through GDP-D-mannose and involves sugar phosphates and NDP-sugars. The proposed pathway is shown in Fig. 1. Salient points relevant to the design and production of genetically modified microorganisms useful in the present method include:

- 1. The enzymes leading from D-glucose to D-fructose-6-P are well known enzymes in the first, uncommitted steps of glycolysis.
 - 2. The enzymes involved in the conversion of D-fructose-6-P to GDP-D-mannose have been well characterized in plants, yeast, and bacteria, particularly Azotobacter vinelandii and Pseudomonas aeruginosa, which convert GDP-D-mannose to GDP-D-mannuronic acid, which is the precursor for alginate (See for example, Sa-Correia et al., 1987, J. Bacteriol. 169:3224-3231; Koplin et al., 1992, J. Bacteriol. 174:191-199; Oesterhelt et al., 1996, Plant Science 121:19-27; Feingold et al., 1980, The

10

15

20

25

30

Biochemistry of Plants: Vol 3: Carbohydrates, structure and function, P.K. Stampf & E.E. Conn, eds., Academic Press, New York, pp. 101-170; Smith et al., 1992, *Mol. Cell Biol.* 12:2924-2930; Boles et al., 1994, *Eur. J. Med.* 220:83-96; Hashimoto et al., 1997, *J. Biol. Chem.* 272:16308-16314, all of which are incorporated herein by reference in their entirety).

- 3. Barber (1971, *supra*, and 1975) identified in *Chlorella pyrenoidosa* the enzyme activities for the conversion of GDP-D-mannose to GDP-L-galactose and L-galactose-l-P.
- 4. The present inventors have shown herein the rapid conversion of L-galactose and L-galactono-γ-lactone to L-ascorbic acid by *Prototheca* cells.
- 5. L-galactono-γ-lactone and L-galactonic acid can be interconverted in solution by changing the pH of the solution; addition of base shifts the equilibrium to L-galactonic acid, while addition of acid shifts the equilibrium to the lactone. Cells may have an enzymatic means for this conversion in addition to this non-enzymatic route.
- 6. In plants, GDP-L-fucose is also formed from GDP-D-mannose, presumably for incorporation into polysaccharide. Roberts (1971) fed labeled D-mannose to corn root tips and found the label in polysaccharide, specifically in the residues of D-mannose, L-galactose, and L-fucose. No label was detected in D-glucose, D-galactose, L-arabinose, or D-xylose. *Prototheca and C. pyrenoidosa* cells have the ability to convert L-fucose (6-deoxy-L-galactose) to a dipyridyl-positive product that was shown by HPLC not to be L-ascorbic acid. The present inventors believe that it is was the 6-deoxy analog of L-ascorbic acid.

Example 2

This example shows that in *Prototheca*, like other plants (Loewus, F.A. 1988. In: J. Priess (ed.), The Biochemistry of Plants, 14:85-107. New York, Academic Press) and the green microalga *Chlorella pyrenoidosa* (Renstrom, *et al.*, 1983. Plant Sci. Lett. 28:299-305), ascorbic acid (AA) production from glucose proceeds by a biosynthetic pathway that allows retention of the configuration of the carbon skeleton of glucose.

Cultures of the strain UV77-247 were grown to moderate cell density in shake flasks with 1-13C-labeled glucose as 10% of the total glucose (40 g/L). Incubation was

10

15

20

25

as per the standard Mg-limited screen (see Example 3). The culture supernates were clarified, deionized to remove salts, lyophilized, and subjected to nuclear magnetic resonance (nmr) analysis to determine where in the AA molecule the ¹³C was located. In each case, approximately 85% of the label was found at the C-1 position of AA, with most of the remaining label at the C-6 position. This strongly indicated that AA is synthesized from glucose by a pathway that retains the carbon chain configuration, i. e., C-1 of glucose becomes C-1 of AA. This has typically been observed in plants (Loewus, F.A. 1988. Ascorbic acid and its metabolic products. In: The Biochemistry of Plants, ed. J. Priess, 14:85-107. New York, Academic Press). Animals (Mapson, L.W. and F.A. Isherwood 1956. Biochem. J. 64:151-157; Loewus, F.A. 1960. J. Biol. Chem. 235(4):937-939) and protists such as Euglena (Shigeoka, S., et al., 1979. J. Nutr. Sci. Vitaminol. 25:299-307), on the other hand, synthesize AA by a pathway that involves the inversion of configuration, i. e., C-1 of glucose becomes C-6 of AA. Demonstration of the inversion/non-inversion nature of the pathway was an important step in determining the pathway of AA biosynthesis since the two types of pathways require different types of enzymatic reactions. The label found at C-6 of AA is thought to be due to metabolism of glucose and subsequent gluconeogenesis. The metabolism of glucose in glycolysis proceeds through triose-phosphate intermediates. After this, the C-1 and C-6 carbons of glucose become biochemically equivalent. Hexose phosphates can be regenerated from the triose phosphates by gluconeogenesis, which is essentially a reversal of the degradative pathway. Consequently, metabolism of C-1-labeled glucose to triose phosphates with subsequent gluconeogenesis would result in the formation of hexose phosphate molecules labeled at either or both C-1 and C-6. If those hexose phosphates were precursors to AA, one would expect the AA to be similarly labeled. Consistent with this type of "isotopic mixing" is the observation that sucrose obtained from 1-13C-labeled glucose was labeled at positions 1, 6, 1' and 6'.

Glucose can also be metabolized by the pentose phosphate pathway, the overall balanced equation for which is:

3 Glucose-6-phosphate → 2 Fructose-6-phosphate + Glyceraldehyde-3-phosphate + 3 CO₂

10

20

25

30

Based on the known biochemistry, it would then be expected that the label at each of the carbons in glucose (Table 1 left column) would appear at the positions for the other molecules shown, and that these patterns would be reflected in the AA formed from C-2-and C-3-labeled glucose.

TABLE 1
Predicted Carbon Labeling of Metabolites of Glucose in the Pentose Phosphate Pathway

Labeled Glucose	Position of Labeled Carbon in:				
Carbon	CO2	F6P(1)	F6P(2)	G3P	
1	+	-	-	-	
2	-	1,3	1	•	
3	-	2	2,3	-	
4	-	4	4	1	
5	-	5	5	2	
6	-	6	6	3	

AA recovered from cultures fed glucose labeled at C-2 or C-3 was also analyzed for its labeling patterns (Table 2).

TABLE 2
Labeling Pattern in AA after Cells were Fed 2-13C and 3-13C-glucose

Carbon	Isotopic enhancement after growth on:				
Carbon Position in AA	C-2 labeled glucose	C-3 labeled glucose			
1	1.0	0.4			
2	10.0	0.9			
3	0.5	9.9			
4	0	2.8			
5	2.2	0.2			
6	0	0			

The data above again suggest a pathway from glucose to AA that proceeds by retention of configuration. As in the experiments with C-1 labeled glucose, approximately one-fifth of the label is present in "mirror image" position to the glucose label (C-5 for C-2 labeled glucose and C-4 for C-3 labeled glucose), indicating levels of gluconeogenesis consistent with those previously observed.

The small, but significant amount of enhancement observed in other positions is consistent with flux through the pentose phosphate pathway. As predicted above, carbon

flux through this pathway would result in isotopic enhancement at positions 1 and 3 when cells were grown on 2-13C glucose and enhancement at position 2 when cells were grown on 3-13C glucose. This is indeed observed. That there is twice as much enhancement at C-1 as there is at C-3 after growth on 2-13C glucose is also predicted. These data indicate a small but measurable amount of carbon flux through the pentose phosphate pathway.

Example 3

5

10

15

This example shows the methods for generating, screening and isolating mutants of *Prototheca* with altered AA productivities compared to the starting strain ATCC 75669.

ATCC No. 75669, identified as *Prototheca moriformis* RSP1385 (unicellular green microalga), was deposited on February 8, 1994, with the American Type Culture Collection (ATCC), Rockville, Maryland, 20852, USA, under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure. Initial screening of *Prototheca* species and strains was reported in U.S. Patent No. 5,900,370, *ibid*. Table 3 lists the formulations of the media for growth and maintenance of the strains. Glucose for fermentors was supplied as glucose monohydrate and calculated on an anhydrous basis. The recipe for the trace metals solution is given in Table 4. The standard growth temperature was 35°C. All organisms were cultured axenically.

20

TABLE 3

Media for Growth and Maintenance of *Prototheca* Strains
All quantities are in g/L unless otherwise specified

	Li	quid		Agar	
Ingredient	Standard	Mg-limiting	Slants	Ferrozine Plates	Standard Plates
Potassium phosphate monobasic	1.3	1.3	2.0	0.27	2.0
Potassium phosphate dibasic	3.8	3.8	2.0	1.4	2.0
Trisodium citrate dihydrate	7.7	7.7	2.6	1.3	2.6
Magnesium sulfate heptahydrate	0.40	0.02	0.4	0.01	0.4
Ammonium sulfate	3.7	3.7	1.0	1.0	1.0
Trace Metals Solution	2 mL	2 mL	2 mL	2 mL	2 mL
Ferrous sulfate heptahydrate	1.5 mg	4.5 mg	1.5 mg	-	1.5 mg
Calcium chl ride dihydrate	-	0.25	-	-	-

25

30

	Li	Liquid		Agar		
Ingredient	Standard	Mg-limiting	Slants	Ferrozine Plates	Standard Plates	
Manganous sulfate monohydrate	-	0.08	•	-	-	
Yeast extract	-	-	2.5	-	-	
Agar	-	-	15	15 (Noble)	15	
pH before autoclaving	7.2	7.2	7.2	7.2	7.2	

Autoclave, then add

Copper sulfate, pentahydrate, 100 g/L	•	-	-	2 mL	-
40 g/L Ferrozine in 5 mM phosphate (pH 7.5 final)	-	-	-	8.8 mL	-
Ferric ammonium sulfate dodecahydrate, 40 g/L	-	-	-	3.8 mL	-
50% glucose with 25 mg/L thiamine HCl	40 mL	60 mL	10 mL	10 mL	10 mL

TABLE 4
Trace Metals Solution

		Conc. of Individ.	mL Indiv. Stock per
Compound	Molecular Weight	Solutions, g/L	liter of Working Stock
Distilled Water	_		823
Hydrochloric Acid	_	Conc.	20
Cobalt Chloride hexahydrate	237.9	24.0	6.5
Boric acid	61.8	38.1	24
Zinc sulfate heptahydrate	287.5	35.3	50
Manganous sulfate monohydrate	169.0	24.6	50
Sodium molybdate dihydrate	242.0	23.8	2.0
Calcium chloride dihydrate	147.0	-	11.4 g
Vanadyl sulfate dihydrate	199.0	10.0	8.0
Nickel nitrate hexahydrate	290.8	5.0	8.0
Sodium selenite	173.0	5.0	8.0

Mutant isolates were generated by treatment with one or more of the following agents: nitrous acid (NA); ethyl methane sulfonate (EMS); or ultraviolet light (UV). Typically, glucose-depleted cells grown in standard liquid medium were washed and resuspended in 25 mM phosphate buffer, pH 7.2, diluted to approximately 10⁷ colony-forming units per mL (cfu/mL), exposed to the mutagen to achieve about 99% kill, incubated 4-8 hours in the dark, and spread onto standard agar medium, or agar media containing differential agents.

10

15

20

25

30

Some mutant colonies on standard agar medium were picked randomly and subcultured to master plates. Other isolation plates were inverted over chloroform to lyse cells on the surface of the colonies and allow them to release AA. Released AA was detected by spraying the treated plates with a solution of 2,6-dichrorophenol-indophenol (1.25 g/L in 70% EtOH). The ability of AA to reduce this blue redox dye to its colorless form is the basis for a standard assay of AA (Omaye, et al., 1979. Meth. Enzymol. 62:3-11.). Colonies derived from mutagenized cells were saved to master plates for further evaluation if their clear halos were significantly larger than the halos typical of the other mutants in that group. Other mutagenized cells were spread onto plates containing an AA detection system incorporated directly into the agar. This system is based on the ability of AA to reduce ferric iron to ferrous iron. The compound ferrozine (3-(2-pyridyl)-5,6- bis(4-phenylsulfonic acid)-1,2,4-triazine) was present in the agar to complex with the ferrous iron and give a violet color reaction. The ferrozine agar formulation is shown in Table 3. Colonies giving the darkest color reactions were master-plated. When screening for non-AA-producing strains (blocked mutants), white colonies were chosen against a background of relatively dark colonies.

For primary screening of tube cultures, cells were inoculated from master plates into 4 mL of Mg-limiting medium in 16×125 mm test tubes, and tubes were shaken in a slanted position on a rotary shaker at 300 rpm for four days. After both three and four days of incubation aliquots were removed for AA assay and cell density determination. Those for AA assay were centrifuged at $1500 \times g$ for 5 min and the resulting supernates were removed for either colorimetric assay or high pressure liquid chromatography (HPLC). Promising isolates were retested in tube culture. Those passing the tube screen were tested in shake flasks.

For secondary screening of flask cultures, cells were inoculated into 50 mL of standard flask medium in 250 mL baffled shake flasks, and incubated on a rotary shaker at 180 rpm until glucose depletion (24-48 hours). A second series of flasks of Mg-sufficient standard medium was inoculated from the first set to a cell density of 0.15 A_{620} , and incubated for 24 hours. A third series of Mg-limiting flask medium was inoculated from the second set by a 1/50 dilution and incubated for 96 hours. Flasks were sampled for AA analysis and cell density measurements during this time as required.

Aliquots for supernatant AA analysis were centrifuged at 5000 x g for 5 min. Aliquots for total whole broth AA analysis were first extracted for 15 min with an equal volume of 5% trichloroacetic acid (TCA) before centrifugation. Aliquots of the resulting supernates were removed for either colorimetric assay or HPLC analysis.

For colorimetric assay of AA, a modification of the method of Omaye, et al. (1979. Meth. Enzymol. 62:3-11) was used. Twenty-five µL aliquots of culture supernates were added to wells of 96-well microplates, and 125 µL of color reagent was added. The color reagent consisted of four parts 0.5% aqueous 2,2'-dipyridyl and one part 8.3 mM ferric ammonium sulfate in 27 % (v/v) o-phosphoric acid, the two components being mixed immediately before use. After one hour, the absorbance at 520 nm was read. AA concentration was calculated by comparison of the absorbances of AA standards.

HPLC analysis was based on that of Running, et al., (1994). Supernates were chromatographed on a Bio-Rad HPX-87H organic acid column (Bio-Rad Laboratories, Richmond, CA) with 13 mM nitric acid as solvent, at a flow rate of 0.7 mL/min at room temperature. Detection was at either 254 nm using a Waters 441 detector (Millipore Corp., Milford, MA), or at 245 nm using a Waters 481 detector. This system can distinguish between the L- and D- isomers of AA.

For dry weight determinations of cell density, 5 mL whole broth samples were centrifuged at 5000 x g for 5 min, washed once with distilled water, and the pellet was washed into a tared aluminum weighing pan. Cells were dried for 8-24 h at 105°C. Cell weight was calculated by difference.

Table 5 shows the abilities of various mutants of *Prototheca* to synthesize AA.

TABLE 5

AA Synthesizing Ability of Various *Prototheca* Mutants in Flask Screen

Strain	Specific AA Formation, r			
Odani	during Mg-limited Incubation 2 Days Incubation 4 Days Incubation			
ATCC 75669	22	35		
EMS13-4	79	166		
UV213-1	0	0		
UV218-1	0	0		
UV244-1	0	0		

25

5

10

15

20

30

Strain	Specific AA Formation, mg AA per L/Culture A ₆₂₀ , during Mg-limited Incubation		
	2 Days Incubation	4 Days Incubation	
UV244-15	58	68	
UV77-247	56	83	
UV140-1	67	100	
UV164-6	91	131	
NA21-14	27	78	
UV82-21	0	0	
UV127-10	50	95	
SP2-3	3	4	

The genealogy of these isolates is presented graphically in the "family tree" of Fig. 10 3. ATCC No. , identified as Prototheca moriformis EMS13-4 (unicellular green microalga), was deposited on May 25, 1999, with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA 20110, USA, under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure. ATCC No. _____, identified as Prototheca 15 moriformis UV127-10 (unicellular green microalga), was deposited on May 25, 1999, with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA 20110, USA, under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure. 20 ATCC No. _____, identified as Prototheca moriformis SP2-3 (unicellular green microalga), was deposited on May 25, 1999, with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA 20110, USA, under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure.

25 Example 4

30

The following example shows that both growing and resting cells of *Prototheca* can rapidly convert L-galactose and L-galactono- γ -lactone to AA, and that conversion of D-mannose to AA by *Prototheca* is more rapid than conversion of D-glucose.

Shake flask cultures of the mutant strain UV77-247 were grown to glucose depletion in standard liquid medium (Table 3). Cells were washed twice and resuspended

10

15

20

25

30

35

Cell suspensions were incubated for 24 hours at 35° C with shaking, and the entire suspension was extracted with TCA as above and assayed for AA.

Tables 6-8 show that both growing and resting cells of strain UV77-247 can rapidly convert L-galactose and L-galactono-γ-lactone to AA. In these experiments, D-fructose and D-galactose were converted to AA at the same rate as D-glucose, suggesting that they are metabolized to AA through the same route as D-glucose. None of the organic acids suggested in the literature to be intermediates in the biosynthesis of AA were converted to AA, including sorbosone, which has been proposed as an intermediate by Saito et al. (1990 Plant Physiol. 94:1496-1500).

TABLE 6
Conversion of Compounds by Resting Cells of Strain UV77-247

		AA Relative to No
Substrate (50 mM)	Total AA, mg/L	Substrate Control
L-galactose	965	623
L-galactono-γ-lactone	818	476
D-fructose	590	248
D-glucosone	589	247
D-glucose	584	242
D-galactose	542	200
D-glucose (10 mM)	388	46
D-gluconolactone	382	40
D-gulono-γ-lactone	366	24
D-glucuronate	364	22
L-sorbosone	342	0
None	342	0
2-keto-D-gluconic acid	341	-1
D-isoascorbic acid (10 mM)	330	-12
D-glucuronolactone	329	-13
D-gluconic acid	309	-33
D-galacturonic acid	297	-45
L-idonate	296	-46

Since strain UV77-247 converted L-galactose and L-galactono-γ-lactone to AA much more rapidly than it did glucose, it suggests that these compounds are intermediates in the AA biosynthetic pathway and that they are "downstream" from glucose.

The data in Tables 7 and 8 also show that growing and resting cells of UV77-247 consistently convert D-mannose to AA at a rate greater than that of glucose.

TABLE 7

Conversion of Compounds to AA by Resting Cells of Strain UV77-247

	Α	scorbic Acid, m	g/L
Compound	25.5 h	30 h	47 h
L-galactose	667	718	620
L-galactono-y-lactone	644	681	749
D-glucosone	465	462	354
D-mannose	448	462	399
D-fructose	402	408	367
d-glucose	395	404	351
D-galactose	352	361	337
none	287	288	258

TABLE 8

Conversion of Compounds to AA by Growing Cells of Strain UV77-247

	Ascorbic /	Acid, mg/L	A ₆₂₀	AA/A ₆₂
Compound	25.5 h		44 h	-
L-galactose	249	506	4.5	112
D-mannose	228	488	5.6	87
L-galactono-γ-lactone	214	342	5.0	68
D-glucose	178	398	5.9	67
D-fructose	181	383	5.9	65
D-glucosone	176	362	5.7	64
D-galactose	185	380	5.9	64
none	182	249	4.4	57
D-gluconic acid (K)	178	262	5.0	52
L-idonate (Na)	182	232	4.7	49
2-keto-D-gluconic acid	182	255	5.3	48
2-deoxy-D-glucose	181	227	4.8	47
D-glucuronic acid lactone	165	218	5.0	44
D-glucuronic acid (Na)	173	241	5.6	43
L-gulono-γ-lactone	152	195	5.0	39
L-sorbosone	178	160	4.7	34
D-glucono-ō-lactone	130	190	5.7	33
D-galacturonic acid	130	180	6.0	30

These cells converted L-galactose, L-galactono-γ-lactone and D-mannose to AA more rapidly than they did glucose, suggesting that mannose exerts its effect in the biosynthetic pathway "downstream" from glucose.

10

5

20

15

25

30

35

the second second

Example 5

Using the methods described above, a collection of mutants was assembled. The specific AA formation for representative mutants are shown in Table 5. The genealogy of these isolates is presented graphically in the "family tree" of Fig. 3.

These isolates were tested for their ability to convert compounds which could be converted to AA by strain UV77-247. Testing was done as in Example 4. Results are shown in Table 9.

TABLE 9

Conversion of Compounds to AA by Resting Cells
of Mutant Strains of *Prototheca* of Varying Abilities to Synthesize AA

Strain	Absolute AA, mg/L							
	Buffer	Glucose	L-galactose	L-gal-γ-lact.	Mannose	Fructose		
EMS13-4	53	97	191	173	139	ND		
UV127-10	45	140	213	140	128	143		
SP2-3	19	19	204	146	24	27		
NA21-14	61	80	147	158	118	115		
UV82-21	15	16	183	175	18	17		
UV213-1	16	15	170	135	17	16		
UV218-1	16	18	136	176	19	21		
UV244-1	16	16	164	162	16	16		
UV244-15	26	77	30	21	94	89		
UV244-16	28	64	53	53	53	66		

ND = Not Determined

These data suggest that the mutational blocks in those strains which convert fructose and mannose to AA poorly are before ("upstream" from) L-galactose and L-galactono-γ-lactone in the pathway.

Example 6

The following example shows that magnesium inhibits early steps in the production of AA.

To address the question of whether magnesium actually inhibits AA synthesis, strain NA45-3 (ATCC 209681) was grown in magnesium (Mg)-limited and Mg-sufficient medium. ATCC No. 209681, identified as *Prototheca moriformis* NA45-3 (Source:

15

10

5

20

25

30

repeated mutagenesis of ATCC No. 75669; Eucaryotic alga. Division Chlorophyta, Class Chlorophyceae, Order Chlorococcales), was deposited on March 13, 1998, with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA 20110, USA, under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure. Cells from both cultures were harvested and resuspended in the cell-free supernate from the Mg-limited culture, and to half of each cell suspension additional magnesium was added in order to bring the level in the suspension to the Mg-sufficient level. The four conditions under which assays were run were as follows.

10

5

TABLE 10

Conditions Used to Test the Effect of Magnesium on AA Production

Condition	Magnesium concentration, g/L, during:	
	Growth	Assay
1Mg>1Mg	0.02	0.02
1Mg>10Mg	0.02	0.2
10Mg>1Mg	0.2	0.02
10Mg>10Mg	0.2	0.2

15

20

25

30

Substrates previously shown to lead to the formation of AA, namely D-glucose, D-glucosone, D-fructose. D-galactose, D-mannose, and L-galactono- γ -lactone, were added at 20 g/L to the four cell suspensions. Accumulation of AA after 24 hours was measured and compared to a control in which no substrate was added. The results of this study are shown graphically in Fig. 4.

When cells growing under magnesium-limited conditions were incubated with substrates in low-magnesium broth (1Mg>1Mg condition), all showed significant and similar accumulation of AA over the control condition. When the same cells were incubated in high magnesium broth (1Mg>10Mg condition), the accumulation of AA was reduced about 40% for all substrates except D-mannose and L-galactono-γ-lactone, suggesting that 1) the rate-limiting step in the conversion of D-glucose, D-glucosone, D-fructose, and D-galactose to AA is inhibited by magnesium or 2) magnesium stimulates an enzyme which results in the conversion of these compounds to some other compound(s), reducing the amount of substrate available for AA synthesis. On the other

10

15

20

25

hand, conversion of D-mannose and L-galactono-γ-lactone appeared to be unaffected by the presence of magnesium in the resuspension buffer, indicating that either 1) magnesium-inhibited enzymes are not involved in the conversion of these substrates to AA or 2) D-mannose and L-galactono-γ-lactone enter the pathway far enough downstream from the point where they can be siphoned off by side reactions involving Mg-requiring enzymes.

When cells were grown under magnesium-sufficient conditions, very little AA accumulation from any of the D-sugars was observed, regardless of the level of magnesium in the resuspension broth. Accumulation of AA from L-galactono-γ-lactone, however, was enhanced over that observed when cells are grown in Mg-limited conditions. This suggests that enzymes early in the pathway are repressed under Mg-sufficient conditions. Thus, the D-substrates all behaved similarly, with the exception of the apparent lack of magnesium inhibition of D-mannose conversion to AA. This would suggest that D-mannose enters the AA biosynthetic pathway at a point other than the other D-sugars.

Figs. 2A and 2B represent some of the fates of glucose in plants. The first enzymatic step in this scheme which commits carbon to glycolysis is the conversion of fructose-6-P to fructose-1,6-diP by phosphofructokinase (PFK). This reaction is essentially irreversible, and leads to the well known TCA cycle and oxidative phosphorylation, with concomitant ATP and NADH/NADPH generation. PFK has an absolute requirement for magnesium. If magnesium is limiting, this reaction could slow and eventually stop, blocking the flow of carbon through glycolysis and beyond, and would result in cessation of cell division even in the presence of excess glucose. One would expect fructose-6-P to accumulate under these conditions, fueling AA synthesis by the pathway shown in Figs. 1 and 2.

Example 7

The following example shows the correlation in *Prototheca* between AA production and the activity levels of the enzymes in the AA pathway.

10

15

25

Phosphomannose isomerase (PMI) Assay

PMI activity was first assayed (See Fig. 1). Ten strains representing a range of AA productivities were grown according to the standard protocol to measure AA-synthesizing ability. Cells were harvested 96 hours into magnesium-limited incubation, washed and resuspended in buffer containing 50 mM Tris/10 mM MgCl₂, pH 7.5. The suspended cells were broken in a French press, spun at 30,000 x g for 30 minutes, and desalted through Sephadex G-25 (Pharmacia PD-10 columns). Reactions were carried out in the reverse direction by adding various volumes of extracts to solutions of Tris/Mg buffer containing 0.15 U phosphoglucose isomerase (EC 5.3.1.9), 0.5 U glucose-6-phosphate dehydrogenase (EC 1.1.1.49), and 1.0 mM NADP. Reactions were initiated by addition of 3 mM (final) mannose-6-phosphate. Final reaction volume was 1.0 mL. All components were dissolved in Tris/Mg buffer. Activities were taken as the change in A340/min. From these activities was subtracted the activities measured in identical reaction mixtures lacking the M-6-P substrate. Specific activities were calculated by normalizing the activities for protein concentration in the reactions. Protein in the original extracts was determined by the method of Bradford, using a kit from Bio-Rad Laboratories (Hercules, CA). All enzymes and nucleotides were purchased from Sigma Chemical Co. (St. Louis, MO).

Phosphomannomutase (PMM) Assay

Phosphomannomutase was measured in a similar manner in the same strains, but these assay reaction mixtures also contained 0.25 mM glucose-1,6-diphosphate, 0.5 U commercially available PMI, and the reactions were started with the addition of 3.0 mM (final) mannose-1-phosphate rather than mannose-6-phosphate.

Phosphofructokinase (PFK) Assav

To shed light on the possibility that the enhancement of AA concentration in cultures which were limited for magnesium was due to a diversion of carbon from normal metabolism by a reduced activity of the first committed step in glycolysis (PFK) the strains were also assayed to confirm the presence of this enzyme activity. Cells were cultured, washed and broken as above. Extracts were centrifuged at 100,000 x g for 90 min before

10

15

20

25

30

desalting. Reactions were carried out in the forward direction by adding various volumes of extracts to solutions of Tris/Mg buffer containing 1.5 mM dithiothreitol, 0.86 U aldolase (EC 4.1.2.13), 1.4 U α -glycerophosphate dehydrogenase (EC 1.1.1.8), 14 U triosephosphate isomerase (EC 5.3.1.1), 0.11 mM NADH, and 1.0 mM ATP. Reactions were initiated by addition of 5 mM (final) fructose-6-phosphate. Final reaction volume was 1.0 mL. All components were dissolved in Tris/Mg buffer. Activities were taken as the change in A_{340} /min. From these activities were subtracted the activities measured in identical reaction mixtures lacking the F-6-P substrate. Specific activities were calculated by normalizing the activities for protein concentration in the reaction. Protein in the original extracts was determined as above.

GDP-D-mannose pyrophosphorylase (GMP) Assay

These same mutant strains were assayed for the next enzyme in the proposed pathway, GMP. Strains were grown both according to the standard Mg-limiting protocol (harvested 43-48 hours into magnesium-limited incubation) and in standard Mg-sufficient medium (harvesting all cells before glucose depletion). Washed cell peliets were resuspended in 50 mM phosphate buffer, pH 7.0, containing 20% (v/v) glycerol and 0.1 M sodium chloride (3 mL buffer/g wet cells), and broken in a French press. Crude extracts were spun at 15,000 x g for 15 minutes. Reactions were carried out in the forward direction by adding various volumes of extracts to solutions of 50 mM phosphate/4 mM MgCl, buffer, pH 7.0, containing 1 mM GTP. Reactions were initiated by addition of 1 mM (final) mannose-1-phosphate. Final reaction volume was 0.1 mL. Reaction mixtures were incubated at 30 C for 10 min, filtered through a 0.45 µm PVDF syringe filter, and analyzed for GDP-mannose by HPLC. A Supelcosil SAX1 column (4.6 x 250 mm) was used with a solvent gradient (1 mL/min) of: A - 6 mM potassium phosphate, pH 3.6; B - 500 mM potassium phosphate, pH 4.5. The gradient was: 0-3 min, 100% A; 3-10 min, 79% A; 10-15 min, 29% A. Column temperature was 30 C. Two assays that showed enzyme activity proportional to the amount of protein were averaged. Control no-substrate and no-extract reactions were also run. Specific activity was calculated by normalizing the activity for protein concentration in the reaction. Protein in the original extracts was determined as above.

10

15

20

25

GDP-D-mannose: GDP-L-galactose Epimerase Assay

Further tests measured the activities of the next enzyme in the proposed pathway, GDP-D-mannose:GDP-L-galactose epimerase. Strains were grown according to the standard protocol, harvested 43-48 hours into magnesium-limited incubation, washed, and resuspended in buffer containing 50 mM MOPS/5 mM EDTA, pH 7.2. Washed pellets were broken in a French press, and spun at 20,000 x g for 20 min. Protein determinations were made as above and a dilution series of each was made, ranging from 0.4 to 2.2 mg protein/mL. 50 µL aliquots of these dilutions were added to 10 µL aliquots of 6.3 mM GDP-D-mannose in which a portion of this substrate was universally labeled with 14C in the mannose moiety. This substrate had an activity of 16 µCi/mL before dilution into the reaction mixture. Reactions were stopped after 10 min by transferring 20 µL of the mixture into microfuge tubes containing 20 µL of 250 mM trifluoroacetic acid (TFA) containing 1.0 g/L each D-mannose and L-galactose. These tubes were sealed and boiled for 10 min, cooled, spun for 60 sec in a Beckman Microfuge E, and 5 µL of each hydrolysate was spotted on 20 x 20 cm plastic-backed EM Science Silica gel 60 thin-layer chromatography plates (#5748/7), with 1 cm lanes created by scoring with a blunt stylus. After drying, plates were twice chromatographed for 2.5 hours in ethyl acetate:isopropanol:water, 65:22.3:12.7 (plates were dried between runs). Spots of free sugars were visualized by spraying dried plates with 0.5% p-anisaldehyde in a 62% ethanolic solution of 0.89 M sulfuric acid and 0.17 mM glacial acetic acid, and heating at 105 C for about 15 min. Spots of L-galactose and D-mannose were cut from the plates and counted in a scintillation counter (Beckman model 2800). For time-zero control counts, 16.7 µL of each extract dilution was added to 23.3 µL of the labeled substrate above, which had been diluted 1:7 with the TFA/mannose/galactose solution.

Table 11 summarizes the results of the five enzyme assays for the strains tested, along with their specific AA formations.

TABLE 11
Specific Enzyme Activities (mU)* of Selected Mutant *Prototheca* Strains

	, , <u>, , , , , , , , , , , , , , , , , </u>	44.5				G			
	Strain	AA Specific Form, mg/g	PMI	РММ	PFK	Mg- Mg- limited sufficient		Epimerase	
	UV164-6	78.4						0.79	
5	EMS13-4	73.7	10.8	69.6	13.5	2.6	6.8	0.78	
	UV140-1	69.9						0.78	
	NA45-3	61.4						0.58	
	UV77-247	44.4						0.52	
	UV127-10	40.1	11.1	45.8	24.4	4.3	5.9	0.39	
10	UV244-15	24.5	14.3	41.5		3.1	5.3	0.42	
	NA21-14	23.6	12.1	60.3	47.4	2.4	7.6	0.27	
	ATCC 75669	21.9						0.28	
	UV244-16	5.0	16.5	85.6		4.3	5.2		
	SP2-3	2.0	17.7	47.0	64.5	2.0	7.5	0.03	
15	UV218-1	0.4	15.9	72.1		2.7	7.0	0.83	
	UV213-1	0.1	19.7	47.7	32.6	3.2	6.7	0.60	
	UV82-21	0.0	14.6	70.6	30.4	4.1	7.5	0.15	
	UV244-1	0.0	18.2	51.1		5.5	12	0.15	

Units: PMI and PMM, nmoles NADP reduced per min/mg protein; PFK, nmoles NADH oxidized per min/mg protein; GMP, nmoles GDP-D-mannose formed per min/mg protein; epimerase, nmoles GDP-L-galactose formed per min/mg protein.

The only enzyme which showed a strong correlation between activity and the ability to synthesize AA was the GDP-D-mannose:GDP-L-galactose epimerase. This correlation is depicted in Fig. 5. All of the strains which produced measurable amounts of AA had measurable amounts of epimerase activity. The converse was not true: four of the strains which synthesize little or no AA had significant epimerase activities. These strains are candidates for having mutations which affect enzymatic steps downstream from the epimerase. Since all of the strains tested can synthesize AA from L-galactose and L-galactono-γ-lactone (see Examples 4 and 5), the genetic lesion(s) in these four mutants must lie between GDP-L-galactose and free L-galactose.

Example 8

20

25

30

35

The next example shows the relationship between GDP-D-mannose:GDP-L-galactose epimerase activity and the degree of magnesium limitation in two strains, the original unmutagenized parent strain ATCC 75669, and one of the best AA producers, EMS13-4 (ATCC _____).

10

15

20

25

30

Four flasks of each strain were grown according to the standard protocol. One culture of each was harvested 24 hours into magnesium-limited incubation, and every 24 hours thereafter for a total of four days. One flask of each strain was also harvested 24 hours into magnesium sufficient incubation. All cultures had glucose remaining when harvested. Fig. 6 shows graphically the AA productivity and epimerase activity in EMS13-4 and ATCC 75669 as the cultures became Mg-limited. Epimerase activity in EMS13-4 was significantly greater than that in ATCC 75669 at all time points. There was also a concurrent rapid rise in both AA productivity and epimerase activity in EMS13-4 as the cultures became increasingly Mg-limited. While there was a moderate increase in AA productivity in ATCC 75669 as Mg became more limiting, there was no effect on epimerase activity.

Example 9

The following example shows the results of epimerase assays performed with extracts of two *E. coli* strains into which were cloned the *E. coli* gene for GDP-4-keto-6-deoxy-D-mannose epimerase/reductase.

The E. coli K12 wca gene cluster is responsible for cholanic acid production; wcaG encodes a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase.

The *E. coli wcaG* sequence (nucleotides 4 through 966 of SEQ ID NO:3) was amplified by PCR from *E. coli* W3110 genomic DNA using primers WG EcoRI 5 (5' TAGAATTCAGTAAACAACGAGTTTTTATTGCTGG 3'; SEQ ID NO:12) and WG Xhol 3 (5' AACTCGAGTTACCCCCAAAGCGGTCTTGATTC 3'; SEQ ID NO:13). The 973-bp PCR product was ligated into the vector pPCR-Script SK(+) (Stratagene, LaJolla, CA). The 973-bp ExoRII/XhoI fragment was moved from this plasmid into the ExoRII/XhoI sites of pGEX-5X-1 (Amersham Pharmacia Biotech, Piscataway, NJ), creating plasmid pSW67-1. Plasmid pGEX-5X-1 is a GST gene fusion vector which adds a 26-kDa GST moiety onto the N-terminal end of the protein of interest. *E. coli* BL21(DE3) was transformed with pSW67-1 and pGEX-5X-1, resulting in strains BL21(DE3)/pSW67-1 and BL21(DE3)/pGEX-5X-1.

The E. coli wcoG sequence (nucleotides 1 through 966 of SEQ ID NO:3) was also amplified by PCR from E. coli W3110 genomic DNA using primers WG EcoRI 5-2 (5' CTGGAGTCGAATTCATGAGTAAACAACGAG 3'; SEQ ID NO:14) and WG PstI 3

10

15

20

25

30

(5' AACTGCAGTTACCCCGAAAGCGGTCTTGATTC 3'; SEQ ID NO:15). The 976-bp PCR product was ligated into a pPCR-Script (Stratagene). The 976-bp ExoRII/PstI fragment was moved from this plasmid into the ExoRII/PstI sites of expression vector pKK223-3 (Amersham Pharmacia Biotech), creating plasmid pSW75-2. *E. coli* JM105 was transformed with pKK223-3 and pSW75-2, resulting in strains JM105/pKK223-3 and JM105/pSW75-2.

All six strains were grown in duplicate at 37°C with shaking in 2X YTA medium until an optical density of 0.8-1.0 at 600 nm was reached (about three hours). 2X YTA contains 16 g/L tryptone, 10 g/L yeast extract, 5 g/L sodium chloride and 100 mg/L ampicillin. One of each culture was induced by adding isopropyl β-D-thiogalactopyranoside (IPTG) to 1 mM final concentration. All 12 cultures were incubated for an additional four hours, washed in 0.9% NaCl, and the cells were frozen at -80°C. Prior to pelleting the cells for preparation of extracts, a portion of each culture was used for a plasmid DNA miniprep to confirm the presence of the appropriate plasmids in these strains. A protein preparation of each culture was also run on SDS gels to confirm expression of a protein of the appropriate size where expected. Frozen pellets were thawed, resuspended in 2.5 mL MOPS/EDTA buffer, pH 7.2, broken in a French Press (10,000 psi), spun for 20 min at 20,000 x g, assayed for protein as above and diluted to 0.01, 0.1, 1.0 and 3 mg/mL protein.

Induction of the strain BL21(DE3)/pGEX-5X-1 resulted in high-level expression of a 26-kDa protein indicating the synthesis of the native GST protein. Induction of strain BL21(DE3)/pSW67-1 resulted in high-level expression of a 62-kDa protein, indicating the synthesis of the native GST protein (26K) fused to the wcaG gene product (36K). An aliquot of the fusion protein was treated with the protease Factor Xa (New England Biolabs, Beverly, MA), which cleaves near the GST/wcaG junction. Induction of the strain JM105/pSW75-2 resulted in high level expression of a 36-kDa protein, indicating the synthesis of the wcaG gene product. No such protein was detected in JM105/pKK223-3 (vector only).

Next, it was of interest to test extracts in the standard epimerase assay described in Example 7 to determine if any of the extracts containing the wcaG product could bring

about the conversion of GDP-D-mannose to GDP-L-galactose. The extracts to be assayed are:

BL21(DE3) Group

- 1. BL21(DE3) uninduced
- 5 2. BL21(DE3) induced with 1mM IPTG
 - 3. BL21(DE3)/pGEX-5X-1 uninduced
 - 4. BL21(DE3)/pGEX-5X-1 induced with 1mM IPTG
 - 5. BL21(DE3)/pSW67-1 uninduced
 - 6. BL21(DE3)/pSW67-1 induced with 1 mM IPTG; fusion protein intact
- BL21(DE3)/pSW67-1 induced with 1 mM IPTG; GST moiety cleaved

JM105 Group

20

25

30

35

- 1. JM105 uninduced
- 2. JM105 induced with 1mM IPTG
- 3. JM105/pKK223-3 uninduced
- 15 4. JM105/pKK223-3 induced with 1 mM IPTG
 - 5. JM105/pSW75-2 uninduced
 - 6. JM105/pSW75-2 induced with 1 mM IPTG

Extracts 1 and 7 from the BL21(DE3) group and extracts 1 and 6 from the JM105 group were tested for GDP-D-mannose:GDP-L-galactose epimerase-like activity in a pilot experiment. In this initial experiment, no epimerase activity was detected in any of the extracts. At this time, such a result can be attributed to a number of possibilities. First, it is possible that the wcaG gene product is incapable of catalyzing the conversion of GDP-D-mannose to GDP-L-galactose, although this conclusion can not be reached until several other parameters are tested. Second, it is possible that under the assay conditions which are satisfactory to measure activity for the endogenous GDP-D-mannose: GDP-Lgalactose epimerase, the wcaG gene product does not have GDP-D-mannose:GDP-Lgalactose epimerase-like activity. Therefore, alternate conditions should be tested. Additionally, confirmation experiments should be performed to confirm the accuracy of the pilot conditions. Third, although the BL21(DE3) and the JM105 clones produce proteins of the expected size, the constructs have not been sequenced to confirm the proper coding sequence for the wcaG gene product and thereby rule out PCR or cloning errors which may render the wcaG gene product inactive. Fourth, the protein formed from the cloned sequence is full-length, but inactive, for example, due to incorrect tertiary structure (folding). Fifth, the gene is overexpressed, resulting in accumulation of insoluble and inactive protein products (inclusion bodies). Future experiments will attempt to

determine whether the constructs have or can be induced to have the ability to catalyze the conversion of GDP-D-mannose to GDP-L-galactose, and to use the sequences to isolate the endogenous GDP-D-mannose:GDP-L-galactose epimerase.

Table 12 provides the atomic coordinates for Brookhaven Protein Data Bank

5 Accession Code 1bws:

TABLE 12

	HEADER	EPIMERASE/REDUCTASE 27-SEP-98	1BWS
	TITLE	CRYSTAL STRUCTURE OF GDP-4-KETO-6-DEOXY-D-MANNOSE	
	TITLE	2 EPIMERASE/REDUCTASE FROM ESCHERICHIA COLI A KEY ENZY	OME IN
10	TITLE	3 THE BIOSYNTHESIS OF GDP-L-FUCOSE	
	COMPND	MOL_ID: 1;	
	COMPND	2 MOLECULE: GDP-4-KETO-6-DEOXY-D-MANNOSE EPIMERASE/REL	UCTASE;
	COMPND	3 CHAIN: A:	
	COMPND	4 ENGINEERED: YES:	
15	COMPND	5 BIOLOGICAL UNIT: HOMODIMER	·
	SOURCE	MOL_ID: 1;	
	SOURCE	2 ORGANISM_SCIENTIFIC: ESCHERICHIA COLI;	
	SOURCE	3 EXPRESSION_SYSTEM: ESCHERICHIA COLI	
	KEYWDS	EPIMERASE/REDUCTASE, GDP-L-FUCOSE_BIOSYNTHESIS	
20	EXPDTA	X-RAY DIFFRACTION	
	AUTHOR	DE M.RIZZITONETTIFLORA	
	REVDAT	1 13-JAN-99 1BWS 0	
	JRNL	AUTH DE D.RIZZITONETTIVIGEVANISTURLABISSOFLORA	
	JRNL	TITL GDP-4-KETO-6-DEOXYD-MANNOSE EPIMERASE/REDUCT	ASE
25	JRNL	TITL 2 FROM ESCHERICHIA COLI, A KEY ENZYME IN THE	
	JRNL	TITL 3 BIOSYNTHESIS OF GDP-L-FUCOSE, DISPLAYS THE	
	JRNL	TITL 4 STRUCTURAL CHARACTERISTICS OF THE RED PROTE	ĹN
	JRNL	TITL 5 HOMOLOGY SUPERFAMILY	
	JRNL	REF STRUCTURE (LONDON)	1998
30	JRNL	refn	9999
	REMARK	1	
	REMARK	2	
	REMARK	2 RESOLUTION. 2.2 ANGSTROMS.	
	REMARK	3	
35	REMARK	3 REFINEMENT.	
	REMARK	3 PROGRAM : TNT	
	REMARK	3 AUTHORS : TRONRUD. TEN EXCK. MATTHEWS	
	REMARK	3	
	REMARK	3 DATA USED IN REFINEMENT.	
40	REMARK	3 RESOLUTION RANGE HIGH (ANGSTROMS) : 2.2	
	REMARK	3 RESOLUTION RANGE LOW (ANGSTROMS) : 15.0	

	REMARK 3	
	REMARK 3	COMPLETENESS FOR RANGE (%): 99.7
	REMARK 3	NUMBER OF REFLECTIONS : 24481
5	REMARK 3	
3	REMARK 3	USING DATA ABOVE SIGMA CUTOFF.
	REMARK 3	CROSS-VALIDATION METHOD : NONE
	REMARK 3	FREE R VALUE TEST SET SELECTION : NULL
	REMARK 3 REMARK 3	R VALUE (WORKING + TEST SET) : NULL
10	REMARK 3	R VALUE (WORKING SET) : NONE
10	REMARK 3	FREE R VALUE : NULL FREE R VALUE TEST SET SIZE (%) : NONE
	REMARK 3	FREE R VALUE TEST SET COUNT : NULL
	REMARK 3	TANK A VANUE IEST SET COOKT : NOTE
	REMARK 3	USING ALL DATA, NO SIGMA CUTOFF.
15	REMARK 3	R VALUE (WORKING + TEST SET, NO CUTOFF) : NULL
	REMARK 3	R VALUE (WORKING SET, NO CUTOFF) : 0.202
	REMARK 3	FREE R VALUE (NO CUTOFF) : 0.287
	REMARK 3	FREE R VALUE TEST SET SIZE (%, NO CUTOFF) : NULL
	REMARK 3	FREE R VALUE TEST SET COUNT (NO CUTOFF) : NULL
20	REMARK 3	TOTAL NUMBER OF REFLECTIONS (NO CUTOFF) : NULL
	REMARK 3	
	REMARK 3	NUMBER OF NON-HYDROGEN ATOMS USED IN REFINEMENT.
	REMARK 3	PROTEIN ATOMS : 2527
	REMARK 3	NUCLEIC ACID ATOMS : NULL
25	REMARK 3	OTHER ATOMS : 109
	REMARK 3	
	REMARK 3	WILSON B VALUE (FROM FCALC, A**2) : NULL
	REMARK 3	
	REMARK 3	RMS DEVIATIONS FROM IDEAL VALUES. RMS WEIGHT COUNT
30	REMARK 3	BOND LENGTHS (A): 0.016; NULL; NULL
	REMARK 3	BOND ANGLES (DEGREES): 1.65; NULL; NULL
	REMARK 3	TORSION ANGLES (DEGREES) : NULL ; NULL ; NULL
	REMARK 3	PSEUDOROTATION ANGLES (DEGREES) : NULL ; NULL ; NULL
25	REMARK 3	TRIGONAL CARBON PLANES (A) : NULL ; NULL ; NULL
35	REMARK 3	GENERAL PLANES (A) : NULL ; NULL ; NULL
	REMARK 3	ISOTROPIC THERMAL FACTORS (A**2) : NULL ; NULL ; NULL
	REMARK 3	NON-BONDED CONTACTS (A) : NULL ; NULL ; NULL
	REMARK 3	
40	REMARK 3	INCORRECT CHIRAL-CENTERS (COUNT) ; NULL
40	REMARK 3	
	REMARK 3	BULK SOLVENT MODELING.
	REMARK 3	METHOD USED : NULL
	REMARK 3 REMARK 3	KSOL : NULL
45	REMARK 3	BSOL : NULL
73	ACCOUNTY 3	

	REMARK 3 RESTRAINT LIBRARIES.
	REMARK 3 STEREOCHEMISTRY: NULL
	REMARK 3 ISOTROPIC THERMAL FACTOR RESTRAINTS : MULL
	REMARK 3
5	REMARK 3 OTHER REFINEMENT REMARKS: NULL
	REMARK 4
	REMARK 4 1BWS COMPLIES WITH FORMAT V. 2.2, 16-DEC-1996
	REMARK 5
	REMARK 5 WARNING
10	REMARK 5 18WS: THIS IS LAYER 1 RELEASE.
	REMARK 5
	REMARK 5 PLEASE NOTE THAT THIS ENTRY WAS RELEASED AFTER DEPOSITOR
	REMARK 5 CHECKING AND APPROVAL BUT WITHOUT PDB STAFF INTERVENTION.
	REMARK 5 AN AUXILIARY FILE, AUXIBWS.RPT, IS AVAILABLE FROM THE
15	REMARK 5 PDB FTP SERVER AND IS ACCESSIBLE THROUGH THE 3DB BROWSER.
	REMARK 5 THE FILE CONTAINS THE OUTPUT OF THE PROGRAM WHAT CHECK AND
	REMARK 5 OTHER DIAGNOSTICS.
	REMARK 5
	REMARK 5 NOMENCLATURE IN THIS ENTRY, INCLUDING HET RESIDUE NAMES
20	REMARK 5 AND HET ATOM NAMES, HAS NOT BEEN STANDARDIZED BY THE PDB
	REMARK 5 PROCESSING STAFF. A LAYER 2 ENTRY WILL BE RELEASED SHORTLY
	REMARK 5 AFTER THIS STANDARDIZATION IS COMPLETED AND APPROVED BY THE
	REMARK 5 DEPOSITOR. THE LAYER 2 ENTRY WILL BE TREATED AS A
	REMARK 5 CORRECTION TO THIS ONE, WITH THE APPROPRIATE REVDAT RECORD.
25	REMARK 5
	REMARK 5 FURTHER INFORMATION INCLUDING VALIDATION CRITERIA USED IN
	REMARK 5 CHECKING THIS ENTRY AND A LIST OF MANDATORY DATA FIELDS
	REMARK 5 ARE AVAILABLE FROM THE PDB WEB SITE AT
	REMARK 5 HTTP://WWW.PDB.BNL.GOV/.
30	REMARK 200
	REMARK 200 EXPERIMENTAL DETAILS
	REMARK 200 EXPERIMENT TYPE : X-RAY DIFFRACTION
	REMARK 200 DATE OF DATA COLLECTION : AUG-1997
35	REMARK 200 TEMPERATURE (KELVIN): 120
33	REMARK 200 PH : 6.5
	REMARK 200 NUMBER OF CRYSTALS USED : 1
	REMARK 200 REMARK 200 SYNCHROTRON (Y/N): N
40	REMARK 200 RADIATION SOURCE : NONE
+0	REMARK 200 BEAMLINE : NULL
	REMARK 200 X-RAY GENERATOR MODEL : RIGAKU RU200
	REMARK 200 MONOCHROMATIC OR LAUE (M/L): M
	REMARK 200 WAVELENGTH OR RANGE (A): 1.5418
45	REMARK 200 MONOCHROMATOR : NULL
7.7	REMARK 200 OPTICS : NULL

	REMARK 200
	REMARK 200 DETECTOR TYPE : IMAGE PLATE
	REMARK 200 DETECTOR MANUFACTURER : RAXIS
	REMARK 200 INTENSITY-INTEGRATION SOFTWARE : MOSFIM
5	REMARK 200 DATA SCALING SOFTWARE : SCALA
	REMARK 200
	REMARK 200 NUMBER OF UNIQUE REFLECTIONS : 24481
	REMARK 200 RESOLUTION RANGE HIGH (A): 2.2
	REMARK 200 RESOLUTION RANGE LOW (A): 15.0
10	REMARK 200 REJECTION CRITERIA (SIGMA(I)) : NONE
	REMARK 200
	REMARK 200 OVERALL.
	REMARK 200 COMPLETENESS FOR RANGE (%): 99.7
	REMARK 200 DATA REDUNDANCY : 4.3
15	REMARK 200 R MERGE (I): 0.057
	REMARK 200 R SYM (I) : NONE
	REMARK 200 <i sigma(i)=""> FOR THE DATA SET : 13.6</i>
	REMARK 200
	REMARK 200 IN THE HIGHEST RESOLUTION SHELL.
20	REMARK 200 HIGHEST RESOLUTION SHELL, RANGE HIGH (A) : NULL
	REMARK 200 HIGHEST RESOLUTION SHELL, RANGE LOW (A) : NULL
	REMARK 200 COMPLETENESS FOR SHELL (%): NULL
	REMARK 200 DATA REDUNDANCY IN SHELL : NULL
٥.5	REMARK 200 R MERGE FOR SHELL (I): NULL
25	REMARK 200 R SYM FOR SHELL (I) : NULL
	REMARK 200 <i sigma(i)=""> FOR SHELL : NULL</i>
	REMARK 200
	REMARK 200 DIFFRACTION PROTOCOL: NULL
30	REMARK 200 METHOD USED TO DETERMINE THE STRUCTURE: MIR
30	REMARK 200 SOFTWARE USED: NULL
	REMARK 200 STARTING MODEL: NULL REMARK 200
	REMARK 200 REMARK: NULL
	REMARK 280
35	REMARK 280 CRYSTAL
-	REMARK 280 SOLVENT CONTENT, VS (%): NULL
	REMARK 280 MATTHEWS COEFFICIENT, VM (ANGSTROMS**3/DA): NULL
	REMARK 280
	REMARK 280 CRYSTALLIZATION CONDITIONS: NULL
40	REMARK 290
	REMARK 290 CRYSTALLOGRAPHIC SYMMETRY
	REMARK 290 SYMMETRY OPERATORS FOR SPACE GROUP: P 32 2 1
	REMARK 290
	REMARK 290 SYMOP SYMMETRY
45	REMARK 290 NANAMA OPERATOR

	REMARK 290	1555	X, Y, Z	
	REMARK 290	2555	-X,X-Y,Z+2/3	
	REMARK 290	3555	Y~X,-X,Z+1/3	
	REMARK 290	4555	Y, X, -Z	
5	REMARK 290	5555	X-Y,-Y,1/3-Z	
	REMARK 290	6555	-x, x-x,2/3-z	
	REMARK 290			
	REMARK 290	WHERE NN	IN -> OPERATOR NUMBER	
	REMARK 290	<u>M</u>	M -> TRANSLATION VECTOR	
10	REMARK 290			
	REMARK 290	CRYSTALLOGRA	PHIC SYMMETRY TRANSFORMATIONS	
	REMARK 290	THE FOLLOWIN	G TRANSFORMATIONS OPERATE ON THE ATOM/HETATM	
	REMARK 290	RECORDS IN T	HIS ENTRY TO PRODUCE CRYSTALLOGRAPHICALLY	
	REMARK 290	RELATED MOLE	CULES.	
15	REMARK 290	SMTRY1 1	1.000000 0.000000 0.000000 0.00000	
	REMARK 290	SMTRY2 1	0.000000 1.000000 0.000000 0.00000	
	REMARK 290	SMTRY3 1	0.000000 0.000000 1.000000 0.00000	
	REMARK 290	SMTRY1 2	-0.500045 -0.865974 0.000000 0.00000	
	REMARK 290	SMTRY2 2	0.866077 -0.499955 0.000000 0.00000	
20	REMARK 290	SMTRY3 2	0.000000 0.000000 1.000000 50.58553	
	REMARK 290	SMTRY1 3	-0.499955 0.865974 0.000000 0.00000	
	REMARK 290	SMTRY2 3	-0.866077 -0.500045 0.000000 0.00000	
	REMARK 290	SMTRY3 3	0.000000 0.000000 1.000000 25,29276	
	REMARK 290	SMTRY1 4	-0.500045 0.865922 0.000000 0.00000	
25	REMARK 290	SMTRY2 4	0.866077 0.500045 0.000000 0.00000	
	REMARK 290	SMTRY3 4	0.000000 0.000000 -1.000000 0.00000	
	REMARK 290	SMTRY1 5	1,000000 0.000104 0.000000 0.00000	
	REMARK 290	SMTRY2 5	0.000000 -1.000000 0.000000 0.00000	
	REMARK 290	SMTRY3 5	0.000000 0.000000 -1.000000 25.29276	
30	REMARK 290	SMTRY1 6	-0.499955 -0.866026 0.000000 0.00000	
	REMARK 290	SMTRY2 6	-0.866077 0.499955 0.000000 0.00000	
	REMARK 290	SMTRY3 6	0.000000 0.000000 -1.000000 50.58553	
	REMARK 290			
25		REMARK: NULL		—
35	REMARK 465	<u>.</u>		
		MISSING RESI		_
			G RESIDUES WERE NOT LOCATED IN THE	_
			(M=MODEL NUMBER: RES=RESIDUE NAME: C=CHAIN	
40		IDENTIFIER; ;	SSSEO=SEQUENCE NUMBER: I=INSERTION CODE):	
40	REMARK 465			—
		M RES C SS		
	REMARK 465	MET A		_
	REMARK 465	SER A	2	
45	REMARK 465	ASP A		—
45	REMARK 465	ARG A	318	

	REMARK 465 PHE A 319
	REMARK 465 ARG A 320
	REMARK 465 GLY A 321
	REMARK 800
5	REMARK 800 SITE
	REMARK 800 SITE_IDENTIFIER: CAT
	REMARK 800 SITE_DESCRIPTION:
	REMARK 800 CATALYTIC RESIDUE
	REMARK 800
10	REMARK 800 SITE IDENTIFIER: CAT
	REMARK 800 SITE_DESCRIPTION:
	REMARK 800 CATALYTIC RESIDUE
	REMARK 800
	REMARK 800 SITE_IDENTIFIER: CAT
15	REMARK 800 SITE_DESCRIPTION:
	REMARK 800 CATALYTIC RESIDUE
	REMARK 800
	DBREF 1BWS A 3 316 SWS P32055 FCL_ECOLI
••	SEORES 1 A 321 MET SER LYS GLN ARG VAL PHE ILE ALA GLY HIS ARG GLY
20	SEORES 2 A 321 MET VAL GLY SER ALA ILE ARG ARG GLN LEU GLU GLN ARG
	SEORES 3 A 321 GLY ASP VAL GLU LEU VAL LEU ARG THR ARG ASP GLU LEU
	SEORES 4 A 321 ASN LEU LEU ASP SER ARG ALA VAL HIS ASP PHE PHE ALA
	SEORES 5 A 321 SER GLU ARG ILE ASP GLN VAL TYR LEU ALA ALA ALA LYS
0.5	SECRES 6 A 321 VAL GLY GLY ILE VAL ALA ASN ASN THR TYR PRO ALA ASP
25	SEORES 7 A 321 PHE ILE TYR GLN ASN MET MET ILE GLU SER ASN ILE ILE
	SEORES 8 A 321 HIS ALA ALA HIS GLN ASN ASP VAL ASN LYS LEU LEU PHE
	SEORES 9 A 321 LEU GLY SER SER CYS ILE TYR PRO LYS LEU ALA LYS GLN
	SEORES 10 A 321 PRO MET ALA GLU SER GLU LEU LEU GLN GLY THR LEU GLU
20	SECRES 11 A 321 PRO THR ASN GLU PRO TYR ALA ILE ALA LYS ILE ALA GLY
30	SEORES 12 A 321 ILE LYS LEU CYS GLU SER TYR ASN ARG GLN TYR GLY ARG
	SECRES 13 A 321 ASP TYR ARG SER VAL MET PRO THR ASN LEU TYR GLY PRO
	SEORES 14 A 321 HIS ASP ASN PHE HIS PRO SER ASN SER HIS VAL ILE PRO
	SEORES 15 A 321 ALA LEU LEU ARG ARG PHE HIS GLU ALA THR ALA GLN ASN
25	SEORES 16 A 321 ALA PRO ASP VAL VAL TRP GLY SER GLY THR PRO MET
35	SEORES 17 A 321 ARG GLU PHE LEU HIS VAL ASP ASP MET ALA ALA ALA SER
	SEORES 18 A 321 ILE HIS VAL MET GLU LEU ALA HIS GLU VAL TRP LEU GLU
	SEORES 19 A 321 ASN THE GLN PRO MET LEU SER HIS ILE ASN VAL GLY THE
	SEORES 20 A 321 GLY VAL ASP CYS THR ILE ARG ASP VAL ALA GLN THR ILE
40	SEORES 21 A 321 ALA LYS VAL VAL GLY TYR LYS GLY ARG VAL VAL PHE ASP
40	SECRES 22 A 321 ALA SER LYS PRO ASP GLY THR PRO ARG LYS LEU LEU ASP
	SEORES 23 A 321 VAL THE ARG LEU HIS GLN LEU GLY TRP TYR HIS GLU ILE
	SEORES 24 A 321 SER LEU GLU ALA GLY LEU ALA SER THR TYR GLN TRP PHE
	SEORES 25 A 321 LEU GLU ASN GLN ASP ARG PHE ARG GLY
45	HET NDP 1 0
45	HETNAM NDP NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE

	HETSYN	N	DP 1	VADP														
	FORMUL		NDP		L H23	N7 0	17 E	23 3-										
	FORMUL	3	нон		9 (H2 (
	HELIX	1	1.1	MET A	14	GLN	Α	25	1_				_					12
5	HELIX	2	2	SER A	44	GLU	λ	54	1									 11
	HELIX	3	3	ILE A	69	THR	Α	74	1									 6
	HELIX	4	4	PRO A	76	ASN	<u> </u>	97	1									 22
	HELIX	5	5	SER A	108	ILE	A_ :	110	5									 3
	HELIX	6	6	GLU A	121	GLU	A	123	5									 3
10	HELIX	7	7	GLU A	134	TYR	A :	154	1									21
	HELIX	8	8 '	VAL A	180	ALA	A_ :	193	1									 14
	HELIX	9_	9 '	VAL A	214	GLU	نــــــــــــــــــــــــــــــــــــــ	226	1									 13
	HELIX 1	LO	10 1	HIS A	229	GLU	A2	234	1_									6.
	HELIX 1	11	11	ILE A	253	VAL	A	264	1									12
15	HELIX 1	12	12 '	THR A	288	GLN	<u> </u>	292	1							_		 _5
	HELIX 1	13	13	LEU A	301	GLU	Α :	314	1									14
	SHEET	1	Α.	6 VAL	A 29	VAL	A	32	0									
	SHEET	2	A	6 GLN	A. 4	ALA	Α.	9	1	N_	GLN	Α	_4	0	GLU	A	30	 —
	SHEET	3	A	6 GLN	A 58	LEU	Α	61	1_	N	GLN	Α	58	0	PHE	Α.		
20	SHEET	4	A	6 LYS	A 101	LEU	<u> </u>	105	1	N	LYS	Α	101	0	VAL	Α	59	
	SHEET	5	Α	6 ASP	A 157	PRO	Α	163	1	N	ASP	Α	157	0	LEU	A	102	
	SHEET	6	Α_	6 ILE	A 243	VAL	A	245	1	N	ILE	A	243	Q	MET	Α	162	
	SHEET	1	В	2 ASN	A 165	TYR	<u> </u>	167	0									
	SHEET	2	В	2 PHE	A 211	HIS	A	213	1	N.	LEU	Α	212	_0_	ASN	A	165	
25	SHEET	_1	<u>C</u>	2 ASP	A 198	TRP	Α.	202	0									
	SHEET	2	С	2 ARG	A_269	ASP	A	273	1	N	ARG	A	269	0	VAL	A	199	
	SITE	1 C	AT	1 TYR	_13	6												
	SITE	2 C	AΤ	1 LYS	14	0												
	SITE	3 C	AT	1 SER	10	7												
30	CRYST1 1	104.	200	104.	200	75.8	ВО	90.0	0	90.	00	120	.00 1	32	2 1		6	
	ORIGX1		1.0	00000	0.00	0000	0.0	00000	0			0.0	0000					
	ORIGX2	—	0.0	00000	1.00	0000	0.0	00000	00			0.0	0000					
	ORIGX3	-	0.0	00000	0.00	0000		20000					0000	<u> </u>				 —
	SCALE1		0.0	09597	0.00	5541		00000				0.0	0000					
35	SCALE2		0.0	00000	0.01	1081	0.0	00000	0			0.0	0000					
	SCALE3		0.0	00000	0.00	0000		1317				0.0	0000					
	HETATM	_1_	0	нон	1			652				22.		1.0		.73		 0
	HETATM	2	_0_	нон	3		58	.494	-10	0.63								 0
	HETATM	3	0	нон	4		58	.230	_1	1.71	15	27.	770	1.0	0 19	.07	-	 0
40	<u>HETATM</u>	4_	0	нон	5		57	.252	:	3.75	59	30.	107	1.0	0 11	.21	·	 0
	HETATM	5	0	нон	6		58	.298	-10	0.01			527					 0
	HETATM	6	0.	нон	7		49	.321		6.58	3		815					0
	HETATM	7	0	нон	8		53	.785		4.26	52	22.	464	1.0	0 10	.94		 0
	HETATM	8	0	нон	10		74	.652		2.88	8 8	9.	141	1.0	0 17	.80		 0
45	HETATM	9	0	нон	11		49	.761		0.82	26	32.	896	1.0	0 22	.02		 0

	HETATM	10	0	HOH	12	55.530 -11.162 28.526 1.00 11.39	0
	HETATM	11	0	HOH	13	75.027 7.034 27.353 1.00 16.30	0
	HETATM	12	0	нон	14	49.994 -2.314 11.032 1.00 21.33	0
	HETATM	13	0	нон	15	61.323 -8.959 29.657 1.00 22.84	0
5	HETATM	14	0	HOH	16	61.029 -11.560 29.131 1.00 21.24	0
	HETATM	15	0	нон	17	50,684 5.881 10.130 1.00 15.88	0
	HETATM	16	0	нон	18	64.506 -6.302 32.989 1.00 21.05	0
	HETATM	17	0	нон	19	57.856 -16.398 25.085 1.00 22.86	0
	HETATM	18	0	нон	20	38.979 26.536 19.070 1.00 21.08	0
10	HETATM	19	Q	нон	21	38.042 33.487 21.909 1.00 19.01	0
	HETATM	20	0	нон	24	38.172 35,775 20,827 1.00 33.46	0
	HETATM	21	0	нон	25	70.916 -11.128 15.244 1.00 31.37	0
	HETATM	22	٥	нон	26	54.205 19.360 28.396 1.00 35.76	0
	HETATM	23	0	нон	27	50.436 2.654 16.783 1.00 12.25	0
15	HETATM	24	0	нон	28	69.692 19.108 38.979 1.00 49.77	0
	HETATM	25	0	нон	29	56.432 -8.877 19.303 1.00 22.52	0
	HETATM	26	0	нон	30	60.832 3.415 42.349 1.00 17.39	0
	HETATM	27	0	нон	31	53.889 -12.706 29.764 1.00 22.40	0
	HETATM	28	0	нон	32	37.887 26.373 28.058 1.00 18.09	0
20	HETATM	29	٥	нон	33	49.201 11.173 26.867 1.00 33.95	o
	HETATM	30	0	нон	34	46.762 -0.278 31.394 1.00 20.63	0
	HETATM	31	٥	нон	35	41.731 27.568 43.302 1.00 27.39	o
	HETATM	32	0	нон	36	66.827 11.202 28.929 1.00 13.23	0
	HETATM	33	0	нон	37	46.834 14.396 40.819 1.00 46.02	0
25	HETATM	34	٥	нон	38	61.342 1.064 43.868 1.00 26.68	0
	HETATM	35	0	нон	42	70.597 16.422 37.837 1.00 19.26	o
	HETATM	36	٥	нон	44	72.275 -9.089 33.407 1.00 22.11	0
	HETATM	37	0	нон	45	42.685 34.461 33.955 1.00 17.32	
	HETATM	38	0	нон	46	53.480 13.394 38.364 1.00 20.19	0
30	HETATM	39	0	нон	47	56.085 21.757 44.744 1.00 33.50	o
	HETATM	40	0	нон	48	35.741 32.691 23.517 1.00 19.49	o
	HETATM	41	0	нон	49	40.458 36.700 34.312 1.00 34.53	0
	HETATM	42	0	нон	50	75.440 7.267 29.948 1.00 18.07	0
	HETATM	43	0	нон	51	47.476 18.347 20.851 1.00 34.16	0
35	HETATM	44	0	нон	53	52.837 -16.344 19.587 1.00 25.92	0
	HETATM	45	0	нон	55	46.415 9.073 20.108 1.00 31.91	0
	HETATM	46	0	нон	57	45.912 35.170 36.133 1.00 35.55	0
	HETATM	47	0	нон	58	60.247 -2.880 41.919 1.00 16.85	0
	HETATM	48	0	нон	60	64.974 6.086 24.501 1.00 32.16	0
40	HETATM	49	0	нон	61	52.103 4.683 4.978 1.00 35.72	0
	HETATM	50	0	нон	62	50.888 40.154 36.463 1.00 38.35	0
	HETATM	51	0	нон	63	44.373 31.233 37.336 1.00 20.07	0
	HETATM	52	0	нон	64	57.280 27.757 42.451 1.00 21.74	
	HETATM	53	0	нон	65	58.409 23.769 45.517 1.00 58.42	0
45	HETATM	54	0	нон	_66	68.690 -11.764 35.335 1.00 57.07	0

	HETATM	55 O	нон	67	42.746 25.153 23.465 1.00 27.05	0
	HETATM	56 O	нон	68	53.638 -16.457 32.292 1.00 31.71	0
	HETATM	57 O	нон	69	33.390 41.716 31.408 1.00 29.92	0
	HETATM	58 O	нон	70	57.768 17.897 42.434 1.00 25.75	0
5	HETATM	59 O	нон	71	75.647 9.164 11.766 1.00 35.13	0
	HETATM	60 O	нон	72	62.032 33.292 44.749 1.00 46.18	0
	HETATM	61 0	нон	73	47.310 14.312 34.285 1.00 31.18	0
	HETATM	62 0	нон	74	79.660 -3.947 15.913 1.00 34.63	0
	HETATM	63 O	нон	75	46.929 5.343 4.550 1.00 23.14	
10	HETATM	64 0	нон	76	73,475 12.039 28.412 1.00 27.26	
	HETATM	65 O	нон	77	46.297 -6.982 30.032 1.00 43.41	0
	HETATM	66 O	нон	78	68.528 -3.422 40.869 1.00 38.47	0
	HETATM	67 0	нон	79	62.080 -1.448 42.803 1.00 24.60	0
	HETATM	68 O	нон	80	65.330 18.150 40.726 1.00 41.00	
15	HETATM	69 O	нон	81	51.775 16.128 37.607 1.00 25.11	0
	HETATM	70 O	нон	83	54.266 28.682 43.313 1.00 27.61	0
	HETATM	71 0	нон	85	73.291 -15.479 20.603 1.00 37.54	0
	HETATM	72 0	нон	86	34.760 21.479 28.544 1.00 43.87	0
	HETATM	73 0	нон	87	37.326 24.131 29.677 1.00 24.47	0
20	HETATM	74 0	нон	88	65,168 20,148 6,735 1,00 26,10	0
	HETATM	75 O	нон	89	59.196 12.089 13.630 1.00 25.24	0
	HETATM	76 0	нон	91	66.576 -6.235 40.279 1.00 43.11	0
	HETATM	77 0	нон	93	37.339 29.394 25.515 1.00 27.56	
	HETATM	78 0	нон	94	52.339 -17.014 42.271 1.00 48.96	
25	HETATM	79 0	нон	_95	40.511 32.927 31.717 1.00 22.46	
	HETATM	80 O	нон	96	78.580 13.121 34.138 1.00 27.98	o
	HETATM	81 0	нон	97	65,090 15.704 34.876 1.00 18.96	0
	HETATM	82 0	нон	99	84.562 2.951 27.181 1.00 35.92	0
	HETATM	83 0	нон	_100	50.386 9.761 9.646 1.00 23.18	
30	HETATM	84 0	НОН	101	67.649 -0.851 38.764 1.00 24.99	
	HETATM	85 O	нон	102	44.001 4.293 34.315 1.00 31.13	
	HETATM	86 0	HOH	103	59.386 -5.071 26.211 1.00 29.10	
	HETATM	<u>87 O</u>	нон	104	77.364 4.745 41.506 1.00 35.32	<u>_</u>
	HETATM	88 Q	нон	105	59.034 21.201 32.414 1.00 23.43	<u>o</u>
35	HETATM	89 0	нон	106	42.463 34.698 14.327 1.00 38.86	
	HETATM	<u>90 O</u>	нон	107	70.217 14.292 20.864 1.00 42.39	
	HETATM	91 0	нон	108	76.999 8.130 25.862 1.00 32.91	
	HETATM	92 0	нон	109	49.766 29.937 22.173 1.00 42.52	0
	HETATM	93 O	нон	110	72.473 13.536 38.823 1.00 33.32	0
40	<u>HETATM</u>	94 0	HOH	111	64.328 -12.084 38.608 1.00 37.99	0
	HETATM	95 O	HOH	112	60.161 16.382 42.682 1.00 35.68	0
	HETATM	96 O	нон	113	47.602 13.639 27.016 1.00 26.01	0
	HETATM	97 0	нон	115	64.606 11.644 40.107 1.00 30.33	<u>0</u>
	HETATM	98 O	нон	116	61.231 -15.137 27.255 1.00 38.76	0
45	HETATM	99 0	нон	117	65,324 -11.223 35,098 1.00 30.45	0

WO 99/64618 PCT/US99/11576

	HETATM 100	о нон	119	56.602	17.219	44.932	1.00 36.53	0
	HETATM 101	о нон	120	37.564	19.860	23.135	1.00 31.27	0
	HETATM 102	о нон	121	64.845	5.057	21.132	1.00 45.57	<u>o</u>
	HETATM 103	о нон	123	63.391	16.801	26.898	1.00 38.46	0
5	HETATM 104	о нон	124	42.567	6.134	32.635	1.00 31.56	0
	HETATM 105	о нон	125	72.485	13.236	35.059	1.00 29.61	0
	HETATM 106	о нон	126	65.229	3.650	44.032	1.00 36.86	<u>Q</u>
	HETATM 107	о нон	127	37.089	7.148	31.083	1.00 39.58	o
	HETATM 108	о нон	128	73.327	10.546	12.123	1.00 34.97	0
10	HETATM 109	о нон	129	74.450	10.299	26.598	1.00 30.80	0
	HETATM 110 A	05* NDP 7	1_1_	67.524	13.055	26.692	1.00 36.42	<u> </u>
	HETATM 111 A	C5* NDP /	1	68.089	12.297	25,614	1.00 9.30	C
	HETATM 112 A	C4* NDP A	1_1_	69.601	12,124	25,858	1.00 27.73	<u>c</u>
	HETATM 113 A	04* NDP 7	1	70.193	11.258	24.848	1.00 22.87	0
15	HETATM 114 A	C3* NDP /	1	70.484	13.390	25.873	1.00 17.83	c
	HETATM 115 A	03* NDP 2	1	71.192	13.436	27.066	1.00 16.11	<u> </u>
	HETATM 116 A	C2* NDP A	1_1	71.373	13.220	24.626	1.00 11.46	C
	HETATM 117 A	02* NDP 2	1	72.623	13.886	24.655	1.00 31.96	<u>o</u>
	HETATM 118 A	C1* NDP /	1	71.510	11.702	24.656	1.00 19.02	Ç
20	HETATM 119	03 NDP 2	<u>1</u>	65.336	13.590	26.129	1.00 20.59	0
	HETATM 120 No	05* NDP 2	1	63.536	11.943	26.448	1.00 28.99	0
	HETATM 121 NO	C5 * NDP 7	1	64.328	10.843	25.957	1.00 24.89	C
	HETATM 122 N	C4* NDP /	1_1_	63.467	9.646	25.686	1.00 31.79	<u>C</u>
	HETATM 123 N	04* NDP 2	1_1	62.837	9.337	_26.908	1.00 28.82	0
25	HETATM 124 N	C3* NDP /	1_1	62.340	9.837	24.665	1.00 11.50	C
	HETATM 125 N	03* NDP 7	1_1_	62.891	9.402	23.461	1.00 28.60	0
	HETATM 126 N	C2* NDP /	1_1_	61.152	8.996	25.138	1.00 28.11	<u>C</u>
	HETATM 127 N	02* NDP /	1_1	60.881	7.662	24.715	1.00 24.30	0
	HETATM 128 N	C1* NDP 2	1_1	61.547	8.875	26,580	1.00 35.35	<u>c</u>
30	HETATM 129 A	P2* NDP /	1	73.104	15.069	23.823	1.00 32.96	Р
	HETATM 130 A	OP1 NDP /	1	74.500	15.308	24.308	1.00 37.84	<u> </u>
	HETATM 131 A	OP2 NDP 2	1_1_	72,797	14.925	22.348	1.00 36.66	<u> </u>
		OP3 NDP A	1_	72.163	16.217	23.958	1.00 31.97	<u> </u>
		AP NDP					1.00 26.17	
35		AO1 NDP 7		66.886			1.00 15.31	
	HETATM 135	AO2 NDP 7	<u> 1</u>	66.439			1.00 34.39	
	•	AN9 NDP 1					1.00 13.63	
	_	ACS NDP 1		71.104	_		1.00 12.41	XX
40	HETATM 138	AN7 NDP 2	A 1	71.758	10.835		1.00 15.71	XX
40	HETATM 139	AC5 NDP 1	A 1	72.933	10.313		1.00 16.17	XX
		AC6 NDP		74.053			1.00 31.35	XX
		ANG NDP		74.165			1.00 12.59	
	· ·	AN1 NDP	-	75.078			1.00 17.56	
4.5	HETATM 143						1.00 15.44	
45	HETATM 144	AN3 NDP 1	<u> 1</u>	74.027	10.302	23.889	1.00 24.82	XX

	HETATM	145	AC4	NDP A	1_	73.036 10.653 23.047 1.00 17.48	XX
	HETATM	146	NP	NDP A	1_	64.183 13.106 27.191 1.00 25.47	N
	HETATM	147	NO:	L NDP A	1_	63.142 14.169 27.253 1.00 28.69	N
	HETATM	148	NO	NDP A	_1	64.837 12.643 28.492 1.00 24.32	N
5	HETATM	149	_NN:	NDP A	1	60.598 9.775 27.109 1.00 23.63	N
	HETATM	<u> 150</u>	NC2	NDP A	1_	60.143 10.905 26.442-99.00 78.36	N
	HETATM	151	NC	NDP A	_1_	59.070 11.648 27.007-99.00100.00	N
	HETATM	152	NC	NDP A	1	58.497 13.017 26.528-99.00100.00	N
	HETATM	153	NO.	NDP A	_1_	59.358 13.703 25.972-99.00100.00	N
10	HETATM	154	NN 7	NDP A	_1_	57.207 13.400 26.912-99.00 84.38	N
	HETATM	155	NC4	NDP A	_1_	58.442 11.146 28.137-99.00100.00	N
	<u>HETATM</u>	156	NC5	NDP A	1	58.912 9.963 28.754-99.00100.00	N
	HETATM	157	NC	NDP A	_1_	59.951 9.266 28.147-99.00100.00	N
	ATOM	158	N_	LYS A	3	76.227 -5.632 44.315 1.00 61.49	N
15	ATOM	159	CA	LYS A	3	76.152 -4.302 43.684 1.00 58.00	С
	MOTA	160	С	LYS A	3	75.985 -4.421 42.171 1.00 52.79	<u>c</u>
	ATOM	161	0	LYS A	3	76.921 -4.737 41.419 1.00 44.76	0
	MOTA	162	СВ	LYS A	3	77.359 -3.417 44.030 1.00 59.74	c
	ATOM	163	CG	LYS A	3	77.011 -1.944 44.314 1.00 50.87	С
20	ATOM	164	CD	LYS A	3	78.208 -1.161 44.894 1.00 61.21	c
	ATOM	165	CE	LYS A	3	77.855 -0.377 46.186 1.00100.00	С
	ATOM	166	NZ	LYS A	3	78.857 -0.401 47.343 1.00 70.61	N
	ATOM	167	_N	GLN A	4	74.746 -4.242 41.747 1.00 45.15	N
	ATOM	168	CA	GLN A	4	74.408 -4.326 40.347 1.00 37.18	c
25	ATOM	169	С	GLN A	4	74.983 -3.166 39.561 1.00 34.93	С
	ATOM	170	0	GLN A	4_	75.127 -2.050 40.087 1.00 28.48	Q
	ATOM	171	СВ	GLN A	4	72.915 -4.445 40.221 1.00 34.65	c
	MOTA	172	CG	GLN A	4	72.456 -5.854 40.584 1.00 31.82	c
	ATOM	173	CD	GLN A	4	72.570 -6.788 39.405 1.00 79.25	c
30	MOTA	174	OE1	GLN A	4	72.165 -6.452 38.286 1.00100.00	0
	ATOM	175	NE2	GLN A	4	73.206 -7.925 39.623 1.00 80.24	N
	ATOM	176	N	ARG A	5	75.475 -3.495 38.375 1.00 27.16	N
	ATOM	177	CA	ARG A	_5	76.146 -2.546 37.483 1.00 39.16	
	ATOM	178	С	ARG A	5	75.191 -2.018 36.433 1.00 38.22	c
35	ATOM	179	0	ARG A	5	74.938 -2.698 35.438 1.00 32.44	0
	ATOM	180	СВ	ARG A	5	77.398 -3.163 36.826 1.00 41.76	С
	ATOM	181	CG	ARG A	5	78.692 -2.954 37.663 1.00 37.34	c
	ATOM	182	CD	ARG A	5	80.015 -3.236 36.876 1.00 32.99	c
	ATOM	183	NE	ARG A	5	81.036 -2.203 37.125 1.00 25.71	N
40	ATOM	184	CZ	ARG A	5	81.617 -1.488 36.169 1.00 32.53	
	MOTA	185	NH1	ARG A	5	81,293 -1.704 34,904 1.00 40,07	N
	ATOM	186	NH2	ARG A	5	82.516 -0.551 36.474 1.00100.00	N
	ATOM	187	N	VAL A	6	74.743 -0.773 36.659 1.00 32.08	<u>N</u>
	MOTA	188	CA	VAL A	6	73.715 -0.082 35.881 1.00 28.89	<u>c</u>
45	MOTA	189	С	VAL A	6	74.161 1.021 34.897 1.00 29.37	c

	ATOM	190	0	VAL A	6	74.745	2.041	35.274	1.00 22.50	0
	MOTA	191	СВ	VAL A	6	72.577	0.378	36.813	1.00 23.52	<u>c</u>
	MOTA	192	CG1	VAL A	6	71.366	0.960	36.006	1.00 20.29	<u>C</u>
	MOTA	193	CG2	VAL A	6	72.108	-0.852	37.644	1.00 18.45	с
5	ATOM	194	N	PHE A	7	73.948	0.749	33.615	1.00 22.92	N
	ATOM	195	CA	PHE A	7	74.267	1.710	32.573	1.00 27.15	C
	ATOM	196	Ç	PHE A	7	72.975	2.423	32.192	1.00 20.24	с
	ATOM	197	0	PHE A	7	71.994	1.788	31.815	1.00 20.71	0
	ATOM	198	СВ	PHE A	7	74.864	1.004	31.374	1.00 18.98	с
10	ATOM	199	CG	PHE A	7	74.916	1.836	30.115	1.00 21.83	<u>C</u>
	ATOM	200	CD1	PHE A		75.521	3.087	30.108	1.00 19.36	c
	ATOM	201	CD2	PHE A		74.483	1.284	28.886	1.00 23.50	c
	ATOM	202	CE1	PHE A	7	75.614	3.828	28.902	1.00 27.52	c
	ATOM	203	CE2	PHE A	_ 7	74.548	1.996	27.685	1.00 19.33	c
15	ATOM	204	CZ	PHE A	7	75.128	3,255	27.673	1.00 18.59	c
	ATOM	205	N	ILE A	8	72.959	3.727	32.454	1.00 18.75	N
	ATOM	206	CA	ILE A	8	71.844	4.588	32.112	1.00 14.25	C
	ATOM	207	С	ILE A	8	72.337	5.351	30.909	1.00 11.22	C
	ATOM	208	Q	ILE A	. 8	73.259	6.165	30.998	1.00 17.76	Q
20	ATOM	209	СВ	ILE A	8	71.507	5.605	33.212	1.00 14.15	C
	ATOM	210	CG1	ILE A	. 8	71.356	4.949	34.582	1.00 8.24	c
	ATOM	211	CG2	ILE A	8	70.183	6.342	32.874	1.00 16.85	С
	MOTA	212	CD1	ILE A	8	71.091	5.961	35.707	1.00 10.32	C
	ATOM	213	N	ALA A		71.896	4.906	29.752	1.00 16.42	N
25	ATOM	214	CA	ALA A	9	72.256	5.559	28.513	1.00 18.74	c
	MOTA	215	С	ALA A	9	71.530	6.913	28.511	1.00 28.45	c
	ATOM	216	0	ALA A	9	70.411	7.032	29.045	1.00 22.39	0
	ATOM	217	СВ	ALA A	9	71,808	4.731	27.311	1.00 14.43	c
	ATOM	218	N	GLY A	10	72.199	7.922	27.940	1.00 20.06	N
30	ATOM	219	CA	GLY A	1.0	71.706	9.284	27.911	1.00 18.62	Ç
	ATOM	220	С	GLY A	10	71.407	9.819	29.305	1.00 16.40	C
	ATOM	221	0	GLY A	10	70.379	10.448	29.481	1.00 17.36	0
	ATOM	222	N	HIS A	_11	72,295	9.581	30.272	1.00 10.32	<u>N</u>
	ATOM	223	CA	HIS A	11	72.068	9.966	31,688	1.00 13.90	c
35	ATOM	224	С	HIS A	11	72.008	11.504	31.916	1.00 21.52	<u>c</u>
	ATOM	225	0	HIS A	11	71.700	11.994	32.983	1.00 13.22	0
	MOTA	226	СВ	HIS A	11	73.153	9.350	32.581	1.00 14.88	с
	MOTA	227	CG	HIS A	11	74.502	9.948	32.326	1.00 23.73	C
	ATOM	228	ND1	HIS A	_11	75.239	9.648	31.197	1.00 24.90	N
40	ATOM	229	CD2	HIS A	_11	75.167	10.952	32.956	1.00 16.35	C
	ATOM	230	CE1	HIS A	11	76.317	10.407	31.170	1.00 22.54	<u>c</u>
	ATOM	231	NE2	HIS A	11	76.271	11.240	32.197	1.00 17.56	N
	ATOM	232	N	ARG A	12	72.310	12.288	30.908	1.00 22.31	N
	ATOM	233	CA	ARG A	12	72.147	13.693	31.122	1.00 18.90	c
45	MOTA	234	c	ARG A	12	70.851	14.244	30.495	1.00 26.34	C

	ATOM	235	0	ARG A	12	70.572	15.426	30.604	1.00 25.37	0
	ATOM	236	СВ	ARG A	12	73.352	14.418	30.587	1.00 25.93	c
	MOTA	237	CG	ARG A	12	74.582	13.943	31.279	1.00 53.87	<u>C</u>
	MOTA	238	CD	ARG A	12	75.757	14.619	30.699	1.00 32.53	C
5	ATOM	239	NE	ARG A	12	76.359	15.576	31.605	1.00 69.90	N
	ATOM	240	CZ	ARG A	12	76.971	16.675	31.178	1.00100.00	
	ATOM	241	NH	1 ARG A	12	77.001	16.948	29.867	1.00100.00	N
	ATOM	242	NH	2 ARG A	12	77.526	17.508	32.056	1.00100.00	. N
	ATOM	243	_N_	GLY A	13	70.078	13.420	29.800	1.00 18.25	N
10	ATOM	244	CA	GLY A	13	68.802	13.904	29.258	1.00 16.50	c
	ATOM	245	С	GLY A	13	67.849	14.144	30.428	1.00 18.88	C
	MOTA	246	0	GLY A	13	68.202	13,902	31.624	1.00 14.04	•
	MOTA	247	N	MET A	14	66.653	14.632	30.103	1.00 16.00	N
	ATOM	248	CA	MET A	14	65.688	14.981	31.128	1.00 13.49	c
15	ATOM	249	C	MET A	14	65.293	13.760	31.901	1.00 14.02	
	ATOM	250	0	MET A	14	65.408	13.713	33.145	1.00 17.06	0
	ATOM	251	СВ	MET A	14	64.442	15.605	30.524	1.00 11.57	C
	ATOM	252	CG	MET A	14	63.320	15.628	31.559	1.00 20.77	c
	ATOM	253	SD	MET A	14	61,926	16.766	31.110	1.00 29.16	s
20	ATOM	254	CE	MET A	14	62.527	17.108	29.574	1.00 30.68	c
	ATOM	255	N	VAL A	15	64.798	12.769	31.158	1.00 25.23	N
	ATOM	256	CA	VAL A	15	64.439	11.468	31.738	1.00 20.90	C
	ATOM	257	C	VAL A	15	65.654	10.713	32.378	1.00 17.26	C
	ATOM	258	0	VAL A	15	65.590	10.239	33.524	1.00 18.41	
25	ATOM	259	СВ	VAL A	15	63.752	10.550	30.680	1.00 23.25	<u>c</u>
	ATOM	260		VAL A	15	63.330	9.253	31.310	1.00 15.71	<u>c</u>
	ATOM	261		VAL A	15	62.528	11.193	30.183	1.00 13.40	C
	ATOM	262	N	GLY A	16	66.784	10.642	31.665	1.00 20.39	N
	ATOM	263	CA	GLY A	16	67.941	9.904	32.186	1.00 19.54	
30	ATOM	264	С	GLY A	16	68.522	10.432	33.492	1.00 29.29	C
	ATOM	265	0	GLY A	_16	68.896	9.659	34.434	1.00 16.91	0
	ATOM	266	N	SER A	_17	68.642	11.755	33.499	1.00 12.53	N
	MOTA	267	CA	SER A	17	69.154	12.460	34.650	1.00 21.93	C
	MOTA	268	С	SER A	17	68.209	12.214	35.818	1.00 13.35	c
35	MOTA	269	0	SER A	17	68.677	11.957	36.915	1.00 24.19	0
	ATOM	270	СВ	SER A	17	69.378	13.942	34.333	1.00 15.52	c
	ATOM	271	OG	SER A	17	68.153			1.00 22.95	0
	ATOM	272	N	ALA A	18	66.896			1.00 17.52	N
	MOTA	273	CA	ALA A		65.991	11.828		1.00 13.14	. c
40	ATOM	274	С	ALA A		66.220		37.307		c
	MOTA	275	0		18	66.149	10.150	38.522	1.00 16.94	
	ATOM	276			18	64.460	12.046		1.00 14.33	
	ATOM	277		ILE A	19	66.484	9.432	36.430	1.00 20.80	<u>C</u>
	ATOM		CA	ILE A	19	66.705	8.078	36.900	1.00 20.80	N
45	ATOM	279		ILE A	19	67.975			1.00 16.09	<u>c</u>
	-	-13				91.3/3	8.090	<u> </u>	4.00 IO.03	C

	ATOM	280	0	ILE A	19	68.018	7,530	38.820	1.00 20.73	0
	ATOM	281	СВ	ILE A	19	66.804	7.079	35.710	1.00 17.58	C
	MOTA	282	CG1	ILE A	19	65.444	6.812	35,162	1.00 10.09	C
	MOTA	283	CG2	ILE A	19	67.309	5.666	36.133	1.00 21.60	СС
5	MOTA	284	CD1	ILE A	19	65.528	6.361	33.741	1.00 19.05	СС
	ATOM	285	N	ARG A	20	68.984	8.771	37.198	1.00 18.13	N
	ATOM	286	CA	ARG A	20	70.286	8.897	37.836	1.00 20.25	C
	ATOM	287	С	ARG A	20	70.231	9.491	39.242	1.00 30.62	c
	ATOM	288	0	ARG A	20	70.957	9.091	40.129	1.00 33.00	0
10	MOTA	289	СВ	ARG A	20	71.201	9.743	36.957	1.00 11.71	с
	ATOM	290	CG	ARG A	20	72.610	9.781	37.449	1.00 23.79	с
	ATOM	291	CD	ARG A	20	72.881	11.107	38.060	1.00 36.76	с
	ATOM	292	NE	ARG A	20	74.297	11,443	38.062	1.00 48.34	N
	ATOM	293	CZ	ARG A	20	74.990	11.841	36.988	1.00100.00	c
15	ATOM	294	NH1	ARG A	20	74.393	11.931	35.808	1.00100.00	N
	ATOM	295	NH2	ARG A	20	76.289	12.139	37.076	1.00100.00	N
	ATOM	296	N	ARG A	21	69.368	10.461	39,439	1.00 22.10	N
	ATOM	297	CA	ARG A	21	69.216	11,052	40.750	1.00 17.45	с
	MOTA	298	С	ARG A	21	68.721	10.007	41.730	1.00 26.71	c
20	MOTA	299	0	ARG A	21	69.147	10.001	42.885	1.00 30.27	0
	MOTA	300	СВ	ARG A	21	68.142	12.144	40.708	1.00 17.93	С
	ATOM	301	CG	ARG A	21	68.682	13.522	40.321	1.00 27.57	с
	MOTA	302	CD	ARG A	21	67.586	14.599	40.130	1.00 23.02	c
	MOTA	303	NE	ARG A	21	67.619	15.000	38.743	1.00 55.12	N
25	MOTA	304	CZ	ARG A	21	66.538	15.103	37.995	1.00 10.55	c
	ATOM	305	NH1	ARG A	21	65.343	14.974	38.552	1.00 29.80	N N
	ATOM	306	NH2	ARG A	21	66.665	15,435	36.715	1.00 61.45	N
	ATOM	307	N	GLN A	22	67.713	9.223	41.345	1.00 27.48	N N
	MOTA	308	CA	GLN A	22	67.167	8.257	42.313	1.00 24.79	c
30	MOTA	309	С	GLN A	22	68.137	7.127	42.547	1.00 31.37	c
	ATOM	310	0	GLN A	22	68.394	6.724	43.685	1.00 27.47	o
	MOTA	311	СВ	GLN A	22	65.818	7.706	41.894	1.00 17.11	c
	ATOM	312	CG	GLN A	22	64.921	8.745	41.243	1.00 66.14	С
	MOTA	313	CD	GLN A	22	63.425	8.456	41.397	1.00 41.27	C
35	MOTA	314	OE1	GLN A	22	63.002	7.329	41.762	1.00 29.34	0
	MOTA	315	NE2	GLN A	22	62.610	9.464	41,046	1.00 20.12	N
	ATOM	316	N_	LEU A	23	68.697	6.652	41.448	1.00 27.99	N N
	ATOM	317	CA	LEU A	23	69.649	5.575	41.500	1.00 24.48	Ç
	MOTA	318	C_	LEU A	23	70.828	5,971	42.334	1.00 28.87	С
40	ATOM	319	0	LEU A	23	71.288	5.218	43.165	1.00 30.79	0
	ATOM	320	СВ	LEU A	23	70.036	5.107	40.089	1.00 22.72	С
	ATOM	321	CG	LEU A	23	68.966	4.072	39.658	1.00 26.16	С
	ATOM	322	CD1	LEU A	23	69.271	3.083	38.481	1.00 24.80	С
	ATOM	323	CD2	LEU A	23	68.427	3.284	40.835	1.00 22.91	С
45	MOTA	324	N	GLU A	24	71.279	7.192	42.153	1.00 28.77	<u> </u>

	MOTA	325	CA	GLU A	24	72.419	7.675	42.909	1.00 33.79	c
	MOTA	326	С	GLU A	24	72.363	7.388	44.412	1.00 35.94	C
	ATOM	327	0	GLU A	24	73.381	7.140	45.031	1.00 39.07	o
	ATOM	328	СВ	GLU A	24	72.647	9.165	42.653	1.00 36.21	<u>c</u>
5	ATOM	329	CG	GLU A	24	74.068	9.482	42.243	1.00 42.54	С
	ATOM	330	CD	GLU A	24	74.158	10.689	41.333	1.00 89.51	с
	ATOM	331	OE1	GLU A	24	73.386	11.663	41.549	1.00 43.21	0
	ATOM	332	OE2	GLU A	24	74.994	10.646	40.398	1.00 66.28	0
	MOTA	333	N	GLN A	25	71.182	7.422	45.000	1.00 45.70	N
10	MOTA	334	CA	GLN A	25	71.039	7.152	46.432	1.00 47.57	с
	ATOM	335	_c	GLN A	25	70.887	5.669	46.740	1.00 67.34	<u>c</u>
	ATOM	336	0	GLN A	25	70.285	5.286	47.726	1.00 74.06	0
	ATOM	337	СВ	GLN A	25	69.783	7.842	46.905	1.00 51.85	с
	ATOM	338	CG	GLN A	25	69.500	9.084	46.109	1.00 44.91	С
15	ATOM	339	CD	GLN A	25	68.419	9.913	46.742	1.00100.00	С
	ATOM	340	OE1	GLN A	25	68.271	9.947	47.972	1.00100.00	o
	ATOM	341	NE2	GLN A	25	67.624	10.602	45.911	1.00100.00	N
	ATOM	342	N	ARG A	26	71.322	4.831	45.825	1.00 75.37	N
	ATOM	343	CA	ARG A	26	71.182	3.407	46.026	1.00 74.87	C
20	ATOM	344	С	ARG A	26	72.568	2.791	46.147	1.00 74.08	с
	ATOM	345	0	ARG A	26	73.440	2.997	45.289	1.00 77.00	o
	ATOM	346	СВ	ARG A	26	70.390	2.790	44.885	1.00 52.44	С
	ATOM	347	CG	ARG A	26	68.916	2.927	45.070	1.00 43.51	с
	MOTA	348	CD	ARG A	26	68.428	1.752	45.864	1.00 40.70	с
25	MOTA	349	NE	ARG A	26	67.200	1.176	45.338	1.00 42.33	N
	ATOM	350	CZ	ARG A	26	67.126	0.508	44.196	1.00 32.07	c
	MOTA	351	NH1	ARG A	26	68.215	0.324	43.486	1.00 44.02	N
	ATOM	352	NH2	ARG A	26	65.968	0.017	43.771	1.00 77.32	N
	MOTA	353	N	GLY A	27	72.778	2.114	47.266	1.00 46.30	N
30	ATOM	354	CA	GLY A	27	74.060	1,531	47.549	1.00 46.82	c
	ATOM	355	С	GLY A	27	74.140	0.165	46.923	1.00 55.45	C
	MOTA	356	0	GLY A	27	75.204	-0.453	46.877	1.00 64.43	0
	MOTA	357	N	ASP A	28	73.017	-0.315	46.428	1.00 40.98	N
	MOTA	358	CA	ASP A	28	73.016	-1.647	45.861	1.00 40.35	Ç
35	ATOM	359	С	ASP A	28	73.266	-1.536	44,400	1.00 39.55	c
	MOTA	360	0	ASP A	28	73.109	-2.518	43.654	1.00 48.80	0
	ATOM	361	СВ	ASP A	28	71.680	-2.335	46.127	1.00 47.80	c
	MOTA	362	CG	ASP A	28	70.503	-1.373	46.064	1.00 35.34	c
	MOTA	363	OD1	ASP A	28	70.705	-0.140	46.095	1.00 39.23	o
40	MOTA	364	OD2	ASP A	28	69.383	-1.870	45.872	1.00 69.86	o
	MOTA	365	N	VAL A	29	73.651	-0.329	43.996	1.00 31.03	N
	MOTA	366	CA_	VAL A	29	73.881	-0.050	42.591	1.00 28.44	с
	MOTA	367	С	VAL A	29	75.166	0.676	42.281	1.00 28.00	c
	MOTA	368	0	VAL A	29	75.505	1.699	42.892	1.00 34.83	0
45	MOTA	369	СВ	VAL A	29	72.696	0.760	42.000	1.00 30.68	С
							-			

	MOTA	370	CG1	VAL A	29	72.935	1.088	40.549	1.00 23.65	C
	ATOM	371	CG2	VAL A	29	71.416	-0.028	42.156	1.00 27.95	c
	ATOM	372	N	GLU A	30	75.824	0.219	41.230	1.00 30.76	<u>n</u>
	ATOM	373	CA	GLU A	30	76.995	0.924	40.736	1.00 28.38	c
5	MOTA	374	С	GLU A	30	76.678	1.471	39.332	1.00 31.03	C
	MOTA	375	0	GLU A	30	76.368	0.720	38.397	1.00 26.64	0
	ATOM	376	СВ	GLU A	30	78.199	0.006	40.722	1.00 31.84	с
	ATOM	377	CG	GLU A	30	79.355	0.539	41.533	1.00 89.26	с
	MOTA	378	CD	GLU A	30	80.667	0.264	40.858	1.00100.00	C
10	MOTA	379	OE1	GLU A	30	81.082	-0.922	40.872	1.00 88.94	0
	ATOM	380	OE2	GLU A	30	81.202	1.206	40.219	1.00100.00	0
	ATOM	381	N	LEU A	31	76.665	2.789	39.207	1.00 22.24	N
	ATOM	382	CA	LEU A	31	76.269	3.391	37.945	1.00 29.37	C
	ATOM	383	С	LEU A	31	77.404	3.507	36.941	1.00 25.79	с
15	ATOM	384	0	LEU A	31	78.485	3.969	37.256	1.00 29.41	0
	ATOM	385	СВ	LEU A	31	75.632	4.760	38.191	1.00 30.20	С
	ATOM	386	CG	LEU A	31	74.329	4.763	38.994	1.00 29.37	С
	ATOM	387	CD1	LEU A	31	73.841	6.143	39.240	1.00 23.43	С
	ATOM	388	CD2	LEU A	31	73.275	3.962	38.281	1.00 23.04	c
20	ATOM	389	N	VAL A	32	77.146	3,100	35.711	1.00 21.94	N
	ATOM	390	CA	VAL A	32	78.143	3.265	34.685	1.00 25.48	С
	ATOM	391	С	VAL A	32	77.535	4.242	33.669	1.00 38.76	C
	ATOM	392	0	VAL A	32	76,429	3.999	33,180	1.00 29.70	o
	ATOM	393	СВ	VAL A	32	78.517	1.902	34.055	1.00 34.25	c
25	ATOM	394	CG1	VAL A	32	79.587	2.079	32.970	1.00 30.56	Ç
	ATOM	395	CG2	VAL A	32	79.003	0.950	35.139	1.00 25.27	c
	ATOM	396	N	LEU A	33	78.219	5.375	33.457	1.00 30.19	N
	ATOM	397	CA	LEU A	33	77.732	6.463	32.621	1.00 22.71	c
	ATOM	398	С	LEU A	33	78.727	6.979	31.645	1.00 29.55	c
30	ATOM	399	0	LEU A	33	79.896	7.152	31.988	1.00 30.09	0
	ATOM	400	СВ	LEU A	33	77.423	7.635	33.514	1.00 19.75	c
	MOTA	401	CG	LEU A	33	76.729	7.200	34.779	1.00 19.38	<u>c</u>
	MOTA	402	CD1	LEU A	33	76.814	8.344	35.762	1.00 27.24	C
	ATOM	403	CD2	LEU A	33	75.271	6.913	34.444	1.00 22.07	C
35	ATOM	404	N	ARG A	34	78.239	7.421	30.496	1.00 15.09	N
	MOTA	405	CA	ARG A	34	79.154	8.008	29.541	1.00 26.04	с
	MOTA	406	С	ARG A	34	78.469	9.173	28.916	1.00 36.57	c
	ATOM	407	0	ARG A	34	77.288	9.130	28.651	1.00 38.59	o
	ATOM	408	СВ	ARG A	34	79.486	7.048	28.398	1.00 22.89	c
40	ATOM	409	CG	ARG A	34	80.579	6.081	28.706	1.00 23.29	С
	ATOM	410	CD	ARG A	34	81.370	6.575	29.860	1.00 52.06	<u>C</u>
	ATOM	411	NE	ARG A	34	81.783	5.458	30.711	1.00 80.25	N N
	ATOM	412	CZ	ARG A	34	82.646	4.530	30.323	1.00 41.94	c
	MOTA	413	NH1	ARG A	34	83.173	4.596	29.104	1.00 53.02	N.
45	ATOM	414	NH2	ARG A	34	82.983	3.547	31.148	1.00 25.56	N

	ATOM	415	N_	THR A	35	79.248	10.156	28.539	1.00 31.58	N
	MOTA	416	CA	THR A	35	78.703	11.282	27.833	1.00 29.33	С
	ATOM	417	С	THR A	35	78.719	10.951	26.340	1.00 32.53	c
	MOTA	418	0	THR A	35	79.350	9.944	25.962	1.00 28.08	0
5	ATOM	419	СВ	THR A	35	79.527	12.527	28.145	1.00 37.49	c
	MOTA	420	OG1	THR A	35	80.844	12.429	27.560	1.00 31.91	0
	ATOM	421	CG2	THR A	35	79.627	12,642	29.651	1.00 19.38	C
	ATOM	422	N	ARG A	36	78.032	11.780	25.529	1.00 30.02	N
	ATOM	423	CA	ARG A	36	78.002	11.639	24.056	1.00 29.37	<u>c</u>
10	MOTA	424	С	ARG A	36	79.406	11.765	23.503	1.00 31.46	с
	ATOM	425	0	ARG A	36	79.772	11.012	22.591	1.00 36.56	o
	ATOM	426	СВ	ARG A	36	77.054	12.650	23.354	1.00 37.34	C
	ATOM	427	CG	ARG A	36	76.937	12.465	21.846-	99.00 49.47	C
	ATOM	428	CD	ARG A	36	76.020	13.515	21.232-	99.00 63.09	C
15	ATOM	429	NE	ARG A	36	75.528	13.124	19.915-	99.00 75.23	N
	ATOM	430	CZ	ARG A	36	74.381	13.549	19.391-	99.00 91.44	C
	ATOM	431	NH1	ARG A	36	73.605	14.375	20.079-	99.00 79.32	N
	ATOM	432	NH2	ARG A	36	74.009	13.144	18.185-	99.00 78.73	N
	ATOM	433	N	ASP A	37	80.217	12.677	24.063	1.00 41.30	N
20	ATOM	434	CA	ASP A	37	81.606	12.710	23.601	1.00 44.91	c
	ATOM	435	С	ASP A	37	82.410	11.481	24.043	1.00 24.99	C
	ATOM	436	0	ASP A	37	83.211	10.978	23.261	1.00 42.22	0
	ATOM	437	СВ	ASP A	37	82.347	14.048	23.718-	99.00 47.07	C
	ATOM	438	CG	ASP A	37	81.881	14.887	24.876-	99.00 62.99	С
25	ATOM	439	OD1	ASP A	37	80.679	14.839	25.204-	99.00 64.45	0
	ATOM	440	OD2	ASP A	37	82.711	15.638	25.429-	99.00 69.84	o
	ATOM	441	N	GLU A	38	82.129	10.950	25.235	1.00 19.39	N
	ATOM	442	CA	GLU A	38	82.790	9.717	25.682	1.00 27.84	C
	ATOM	443	С	GLU A	38	82.203	8.527	24.901	1.00 37.14	c
30	ATOM	444	0	GLU A	38	82.873	7.511	24.699	1.00 35.04	0
	ATOM	445	СВ	GLU A	38	82.691	9.435	27.207	1.00 25.18	С
	ATOM	446	CG	GLU A	38	83.116	10.549	28.183	1.00 37.45	C
	ATOM	447	CD	GLU A	38	82.807	10.212	29.655	1.00 21.13	C
	ATOM	448	OE1	GLU A	38	81.623	9.997	30.014	1.00 55.97	0
35	ATOM	449	OE2	GLU A	38	83,757	9.978	30.419	1.00 98.78	0
	ATOM	450	N	LEU A	39	80.948	8.610	24.478	1.00 25.52	N.
	ATOM	451	CA	LEU A	39	80.440	7.483	23.739	1.00 18.17	c
	ATOM	452	С	LEU A	39	79,291	7.764	22.825	1.00 20.34	c
	ATOM	453	0	LEU A	39	78.152	7.810	23.259	1.00 26.35	0
40	ATOM	454	СВ	LEU A	39	80.123	6.313	24.657	1.00 14.56	с
	ATOM	455	CG	LEU A	39	79.410	5.075	24.058	1.00 19.52	С
	MOTA	456	CD1	LEU A	39	80.205	4.392	22.994	1.00 18.84	С
	ATOM	457	CD2	LEU A	39	78,890	4.051	25.084	1.00 17.41	С
	ATOM	458	N	ASN A	40	79.598	7.880	21.543	1.00 16.73	N
45	ATOM	459	CA.	ASN A	40	78.548	7.971	20.540	1.00 21.55	c

	ATOM	460	С	ASN A	40	77.798	6.649	20.308	1.00 24.53	с
	ATOM	461	0	ASN A	40	78.328	5.720	19.688	1.00 19.96	0
	ATOM	462	СВ	ASN A	40	79.130	8.367	19.216	1.00 18.45	с
	ATOM	463	CG	ASN A	40	78.054	8.727	18.225	1.00 42.19	<u>C</u>
5	ATOM	464	OD1	ASN A	40	78.327	9.093	17.080	1.00 38.89	0
	ATOM	465	ND2	ASN A	40	76.827	8.730	18.697	1.00 23.71	N
	MOTA	466	N_	LEU A	41	76.543	6.622	20.754	1.00 21.08	N
	ATOM	467	CA	LEU A	41	75.649	5.465	20.650	1.00 15.03	с
	ATOM	468	_c_	LEU A	41	75.225	5.068	19.213	1.00 18.22	с
10	ATOM	469	0	LEU A	41	74.681	3.971	18.980	1.00 15.72	0
	ATOM	470	СВ	LEU A	41	74.426	5.705	21.532	1.00 15.85	C
	ATOM	471	CG	LEU A	41	74.822	6.029	22.974	1.00 21.90	СС
	ATOM	472	CD1	LEU A	_41	73.604	6.413	23.749	1.00 20.59	С
	ATOM	473	CD2	LEU A	41	75.481	4.796	23.609	1.00 17.97	<u>c</u>
15	ATOM	474	N	LEU A	42	75.542	5.916	18.238	1.00 12.45	N
	ATOM	475	CA	LEU A	42	75.256	5.607	16.831	1.00 15.99	с
	ATOM	476	С	LEU A	42	76.290	4.680	16.280	1.00 26.18	C
	ATOM	477	0	LEU A	42	76.066	4.039	15.257	1.00 22.41	0
	MOTA	478	СВ	LEU A	42	75.282	6.873	15.984	1.00 17.85	C
20	MOTA	479	CG	LEU A	42	74.180	7.854	16.399	1.00 30.70	с
	MOTA	480	CD1	LEU A	42	74.318	9.184	15.704	1.00 24.31	с
	ATOM	481	CD2	LEU A	42	72.764	7.241	16.208	1.00 31.13	С
	MOTA	482	N	ASP A	43	77.462	4.705	16.911	1.00 26.87	N N
	ATOM	483	CA	ASP A	43	78.579	3.875	16.486	1.00 19.29	с
25	ATOM	484	С	ASP A	43	78.583	2.519	17.163	1.00 13.33	с
	MOTA	485	0	ASP A	43	79.051	2.348	18.297	1.00 18.75	o
	ATOM	486	СВ	ASP A	43	79.870	4.580	16,776	1.00 31.06	С
	ATOM	487	CG	ASP A	43	81.083	3.758	16.380	1.00 30.68	С
	ATOM	488	OD1	ASP A	_43	80.971	2.551	16.082	1.00 32.36	0
30	ATOM	489	OD2	ASP A	43	82.187	4.308	16,499	1.00 37.83	0
	MOTA	490	N	SER A	44	78.139	1.544	16.377	1.00 16.89	N
	ATOM	491	CA	SER A	44	77.978	0.173	16.789	1.00 17.67	с
	ATOM	492	С	SER A	44	79.237	-0.463	17.392	1.00 20.40	с
	ATOM	493		SER A	44	79.206	-1.126	18.444	1.00 26.27	0
35	ATOM	494	СВ	SER A	44	77.504	-0.617	15.581	1.00 13.85	c
	ATOM	495	OG.	SER A	44	76.800	-1.740	16.063	1.00 43.83	0
	ATOM	496	N	ARG A	45	80.335	-0.301	16.682	1.00 15.63	N
	ATOM	497	_CA_	ARG A	45	81.616	-0.788	17.154	1.00 19.94	с
	ATOM	498	С	ARG A	45	81.910	-0.225	18.521	1.00 29.48	c
40	ATOM	499	<u> </u>	ARG A	45	82.244	-0.937	19.457	1.00 27.65	o
	ATOM	500	СВ	ARG A	45	82.684	-0.261	16.203	1.00 27.46	с
	ATOM	501	CG	ARG A	45	83.463	-1.338	15.495	1.00 92.03	с
	ATOM	502	CD	ARG A	45	84.854	-1.418	16.077	1.00100.00	с
	ATOM	503	NE	ARG A	45	85.636	-2.533	15.527	1.00100.00	N
45	ATOM	504	CZ	ARG A	45	86.092	-3.570	16.236	1.00100.00	c

	ATOM	505	NH1 ARG A	45	85.791	-3.695	17.547	1.00100.00	N N
	ATOM	506	NH2 ARG A	45	86.773	-4.544	15.642	1.00100.00	N N
	ATOM	507	N ALA A	46	81.772	1.090	18.629	1.00 31.04	N
	ATOM	508	CA ALA A	46	82.045	1.743	19.881	1.00 24.72	c
5	ATOM	509_	C ALA A	46	81.111	1.176	20.899	1.00 17.73	. с
	ATOM	510	O ALA A	46	81.512	0.825	22.027	1.00 22.73	0
	ATOM	511	CB ALA A	46	81.839	3.221	19.751	1.00 27.16	<u> </u>
	ATOM	512	N VALA	47	79.835	1.119	20.531	1.00 17.54	N N
	ATOM	513	CA VAL A	47	78.878	0.608	21.508	1.00 21.41	c
10	ATOM	514	C VAL A	47	79.262	-0.812	21.914	1.00 30.25	C
	ATOM	515	O VAL A	47_	79.192	-1.202	23.097	1.00 15.85	0
	ATOM	516	CB VAL A	47	77.470	0.668	20.989	1.00 18.59	С
	ATOM	517	CG1 VAL A	47	76.503	0.042	22.012	1.00 16.88	С
	ATOM	518	CG2 VAL A	47	77,115	2.096	20.756	1.00 16.28	c
15	ATOM	519	N HIS A	48	79.692	-1.585	20.920	1.00 21.00	N
	MOTA	520	CA HIS A	48	80.028	-2.969	21.192	1.00 20.17	C
	ATOM	521	C HIS A	48	81.268	-3.079	22.117	1.00 32.98	С
	MOTA	522	O HIS A	48	81.289	-3.850	23.102	1.00 28.20	0
	ATOM	523	CB HIS A	48	80.063	-3.801	19.855	1.00 14.93	С
20	ATOM	524	CG HIS A	48	78.686	-4.172	19.338	1.00 26.67	c
	ATOM	525	ND1 HIS A	48	78.085	-5.394	19.600	1.00 28.83	N
	ATOM	526	CD2 HIS A	48	77.758	-3.448	18.659	1.00 25.56	c
	ATOM	527	CE1 HIS A	48	76.887	-5.430	19.043	1.00 20.08	с
	ATOM	528	NE2 HIS A	48	76.660	-4.260	18.475	1.00 25.22	<u> </u>
25	ATOM	529	N ASP A	49	82.217	-2.170	21.902	1.00 22.62	N
	ATOM	530	CA ASP A	49	83.455	-2.169	22.674	1.00 24.23	c
	ATOM	531	C ASP A	49	83.171	-1.899	24.122	1.00 38.72	<u> </u>
	ATOM	532	O ASP A	49	83.708	-2.551	25.027	1.00 35.44	0
	MOTA	533	CB ASP A	49	84.396	-1.112	22.127	1.00 30.29	<u>c</u>
30	ATOM	534	CG ASP A	49	84.991	-1.503	20.775	1.00 52.45	<u>c</u>
	ATOM	535	OD1 ASP A	49	85.007	-2.726	20,449	1.00 42.67	0
	ATOM	536	OD2 ASP A	49	85.416	-0.587	20.029	1.00 73.76	<u> </u>
	ATOM	537	N PHE A	50	82.294	-0.929	24.324	1.00 32.19	<u>N</u>
	ATOM	538	CA PHE A	50	81.902	-0.550	25.649	1.00 29.76	<u>c</u>
35	ATOM	539	C PHE A	50	81.299	-1.765	26.359	1.00 30.31	<u>c</u>
	ATOM	540	O PHE A	50	81.715	-2.124	27.449	1.00 29.22	0
	ATOM	541	CB PHE A	50	80.892	0.610	25.576	1.00 23.82	c
	ATOM	542	CG PHE A	50	80.137	0.843	26.859	1.00 19.13	<u>C</u>
	ATOM	543	CD1 PHE A	50	80.740	1.515	27.931	1.00 20.14	<u>c</u>
40	ATOM	544	CD2 PHE A	50	78.835	0.360	27.018	1.00 13.99	<u>c</u>
	ATOM	545	CE1 PHE A	50	80.034	1.742	29,129	1.00 25.81	с
	ATOM	546	CE2 PHE A	50	78.114	0.553	28.212	1.00 22.84	<u>c</u>
	ATOM	547	CZ PHE A	50	78.698	1.276	29.259	1.00 23.40	
	ATOM	548	N PHE A	51	80.280	-2.367	25.768	1.00 21.75	N
45	ATOM	549	CA PHE A	51	79.655	-3.451	26.457	1.00 22.61	с

	MOTA	550	С_	PHE A	51	80.646	-4.603	26.612	1.00 34.01	C
	ATOM	551	0	PHE A	51	80.550	-5.401	27.590	1.00 25.28	0
	MOTA	552	СВ	PHE A	51	78.389	-3.898	25.751	1.00 22.63	С
	MOTA	553	CG	PHE A	51	77.158	-3.140	26.170	1.00 27.58	c
5	MOTA	554	CD1	PHE A	51	76.426	-3.525	27,280	1.00 21.78	c
	MOTA	555	CD2	PHE A	51	76.663	-2.100	25.380	1.00 19.55	c
	MOTA	556	CE1	PHE A	51	75.267	-2.796	27.662	1.00 28.34	C
	MOTA	557	CE2	PHE A	51	75.492	-1.403	25.734	1.00 14.47	c
	MOTA	558	CZ	PHE A	51	74.797	-1.744	26.878	1.00 14.55	c
10	MOTA	559	N	ALA A	52	81.576	-4.706	25.659	1.00 26.43	N
	MOTA	560	CA	ALA A	52	82.587	-5.793	25.714	1.00 29.44	<u>C</u>
	MOTA	561	c	ALA A	52	83.687	-5.560	26.768	1.00 43.76	<u>C</u>
	MOTA	5 6 2	Q	ALA A	52	84.502	-6.446	27.022	1.00 40.33	0
	ATOM	563	СВ	ALA A	52	83.228	-6.049	24.344	1.00 24.25	C
15	MOTA	564	N_	SER A	53	83.702	-4.382	27.385	1.00 31.96	N
	MOTA	565	CA	SER A	53	84.705	-4.090	28,377	1.00 21.06	C
	MOTA	566	С	SER A	53	84.196	-3.625	29.709	1.00 26.41	c
	MOTA	567	0	SER A	53	84.985	-3.492	30.611	1.00 36.12	
	MOTA	568	СВ	SER A	53	85.709	-3.088	27.843	1.00 14.22	C
20	ATOM	569	OG	SER A	53	85.140	-1.807	27.790	1.00 56.90	
	ATOM	570	N	GLU A	54	82.892	-3.431	29.874	1.00 22.38	N
	ATOM	571	CA	GLU A	54	82.380	-2.893	31.139	1.00 17.27	<u>C</u>
	ATOM	572	С	GLU A	54	81.584	-3.735	32.118	1.00 26.32	с
	ATOM	573	0	GLU A	54	81.229	-3.281	33.191	1.00 37.43	
25	ATOM	574	СВ	GLU A	54	81.677	-1.563	30.906	1.00 27.30	C
	MOTA	575	CG	GLU A	54	82.573	-0.543	30.262	1.00 44.77	C
	MOTA	576	CD	GLU A	54	83.669	-0.142	31.194	1.00 86.31	<u>C</u>
	ATOM	577	OE1	GLU A	54	83.392	-0.232	32,428	1.00 50.11	0
20	MOTA	578	OE2	GLU A	54	84.785	0.198	30.692	1.00 50.99	<u> </u>
30	ATOM	579	_N	ARG A	55	81.268	-4.971	31.804	1.00 29.63	<u>N</u>
	MOTA	580	CA	ARG A	55	80.636	-5,748	32.854	1.00 33.32	C
	ATOM	581	<u> </u>	ARG A	55	79.347	-5.149	33.378	1.00 38.45	<u>c</u>
	ATOM	582	<u> </u>	ARG A	55	79.214	-4.897	34.576	1.00 40.18	0
25	ATOM	583	CB	ARG A	.55	81.621	-5.875	34.045	1.00 57.61	<u>c</u>
35	ATOM	584	CG	ARG A	55	82.666	-7.028	33.960	1.00100.00	c
	ATOM	585	CD	ARG A	55	82.805	-7.805	35.305	1.00100.00	<u>c</u>
	ATOM	586	NE_	ARG A	55	82.838	-9.270	35.146	1.00100.00	N
	ATOM	587	CZ	ARG A	55				1.00100.00	<u>c</u>
40	ATOM	588		ARG A	55	83.583	-9.681	37.301	1.00100.00	и
40	ATOM	589		ARG A			-11.440		1.00100.00	<u>N</u>
	ATOM	<u>590</u>	N C	ILE A					1.00 42.25	
	ATOM	<u>591</u>	CA	ILE A			-4.434		1.00 25.49	<u>c</u>
	ATOM	592		ILE A					1.00 20.18	c
45	ATOM	<u>593</u>	O CD	ILE A		75.897			1.00 24.74	
40	ATOM	594	ÇВ	ILE A	26	/6.6/2	-3.512	31.331	1.00 26.89	<u>c</u>

									•	
	MOTA	595	CG1	ILE A	56	77.643	-2.301	31.442	1.00 18.30	C
	MOTA	596	CG2	ILE A	56	75.214	-3.016	31.549	1.00 19.84	<u>c</u>
	MOTA	597	CD1	ILE A	56	77.998	-1.936	30.026	1.00 60.42	C
	MOTA	598	N	ASP A	57	75.166	-5.133	34.237	1.00 16.84	N
5	MOTA	599	CA	ASP A	5.7	74.040	-5.999	34.630	1.00 16.33	c
	MOTA	600	С	ASP A	57	72.676	-5.451	34.123	1.00 28.40	c
	ATCM_	601	0	ASP A	57	71.836	-6.198	33.657	1.00 25.50	0
	ATOM	602	СВ	ASP A	57	74.009	-6.194	36.164	1.00 16.94	с
	ATOM	603	CG	ASP A	57	75.369	-6.720	36.703	1.00 34.27	<u>c</u>
10	ATOM	604	OD1	ASP A	57	75.875	-7.729	36.141	1.00 31.76	0
	MOTA	605	OD2	ASP A	57	76.040	-6,007	37.499	1.00 28.36	o
	ATOM	606	N	GLN A	58	72.443	-4.152	34.220	1.00 28.91	N
	MOTA	607	CA	GLN A	58	71.183	-3.590	33.755	1.00 25.68	С
	ATOM	608	С	GLN A	58	71.425	-2.364	32.881	1.00 23.21	c
15	ATOM	609	0	GLN A	58	72.403	-1.620	33.067	1.00 18.16	
	ATOM	610	СВ	GLN A	58	70,342	-3.151	34.946	1.00 33.14	c
	ATOM	611	CG	GLN A	58	69.798	-4.241	35.807	1.00 30.00	C
	ATOM	612	CD	GLN A	58	69.226	-3.712	37.105	1.00 27.18	
	ATOM	613	OE1	GLN A	58	68.722	-2.601	37.161	1.00 31.20	0
20	ATOM	614	NE2	GLN A	58	69.455	-4.436	38.186	1.00 16.89	N
	ATOM	615	N	VAL A	59	70.496	-2.138	31.961	1.00 18.35	N N
	ATOM	616	CA	VAL A	59	70.562	-0.998	31.045	1.00 15.59	C
	ATOM	617	С	VAL A	59	69.238	-0.240	31.039	1.00 26.28	Ç
	ATOM	618	Q	VAL A	59	68.178	-0.820	30.762	1.00 19.51	0
25	ATOM	619	СВ	VAL A	59	70.707	-1.456	29.601	1.00 15.32	C
	ATOM	620	CG1	VAL A	59	70.477	-0.274	28.649	1.00 11.93	Ç
	ATOM	621	CG2	VAL A	59	72.080	-2.111	29.364	1.00 15.83	С
	ATOM	622	N_	TYR A	60	69.306	1.064	31.293	1.00 21.71	N
	ATOM	623	CA	TYR A	60	68.113	1.927	31.197	1.00 21.40	c
30	ATOM	624	С	TYR A	60	68.289	2.756	29.928	1.00 18.69	С
	ATOM	625	0	TYR A	_60	69.250	3.532	29.796	1.00 15.51	
	ATOM	626	СВ	TYR A	60	68.021	2.817	32.413	1.00 17.24	
	ATOM	627	CG	TYR A	60	67.493	2.131	33.658	1.00 19.71	c
	ATOM	628	CD1	TYR A	60	68.345	1,583	34.586	1.00 21.14	С
35	MOTA	629	CD2	TYR A	60	66.154	2.223	33.991	1.00 20.16	с
	ATOM	630	CE1	TYR A	60	67.835	1.080	35.794	1.00 19.11	c
	ATOM	631	CE2	TYR A	60	65.648	1.698	35.163	1.00 10.77	<u> </u>
	MOTA	632	СZ	TYR A	60	66.476	1.094	36.054	1.00 20.07	c
	MOTA	633	OH	TYR A	60	65.921	0.585	37.248	1.00 16.04	0
40	ATOM	634	N	LEU A	61	67.491	2.452	28.916	1.00 17.46	N
	ATOM	635	CA	LEU A	61	67,685	3.053	27.585	1.00 20.17	C
	ATOM	636	С	LEU A	61	67.003	4.412	27.409	1.00 23.36	<u>c</u>
	ATOM	637	0	LEU A		65.925	4.526	26.799	1.00 14.86	0
	ATOM	638	СВ	LEU A	61	67.267	2.060		1.00 14.78	c
45	ATOM	639		LEU A	61	68.117	2.142		1.00 15.52	<u>c</u>

	ATOM	640 C	D1 LEU A	61	67.815	1.010	24.109	1.00	7.75	c
	ATOM	641 C	D2 LEU A	61	68.087	3.541	24.580		15.20	c
	ATOM	642 N		62	67.656	5.434	27.956		20.35	N
	ATOM		A_ALA A	62	67.120	6.784	27.963		18.55	c
5	ATOM	_644 C		62	67.779	7.739	26.949		18.57	c
	ATOM	645 O		62	67.455	8.924	26.920		24.31	Q
	ATOM		B ALA A	62	67.071	7.377	29.439		11.69	c
	ATOM	647 N		63	68.681	7,231	26.101		14.09	N.
	ATOM	648 C		63	69.249	8.095	25.052		12.84	
10	ATOM	649 C		63	68.310	8,005	23.877		27.00	Ç
	ATOM	650 O		63	67.845	6.916	23.511		24.51	0
	ATOM	651 C		63	70.665	7.660	24.634	1.00	4.89	c
	ATOM	652 N	-	64	68.076	9.148	23.262		21.05	N N
	ATOM	653 C	-	64	67.202	9.286	22.086		13.50	c
15	ATOM_	654 C		64	67.435	10.664	21.416		28.08	C
	ATOM	655 O		64	67.987	11.600	22.021		26.63	0
	ATOM		B ALA A	64	65.642	9.171	22.518	1.00	7.63	C
	ATOM	657 N		65	66.953	10.781	20.182		23.98	N N
	ATOM	658 C		65	66.966	12.012	19.409		20.47	C C
20	ATOM	659 C		65	65.488	12.443	19.551		24.37	Ç
	ATOM	660 O		65	64.594	11.807	18.976		20.29	0
	ATOM	661 C		65	67.317	11.658	17.951		25.59	C
	ATOM		G LYS A	65	66.808	12.630	16.923		27.54	C
	ATOM		D LYS A	65	67.518	13.926	17.169		21.08	c
25	ATOM	664 C		65	67.316	14.905	16.029		55.15	<u> </u>
	ATOM	665 N		65	67.876	16.263	16.392		81.63	N
	ATOM	666 พ		66	65.228	13.362	20.485		22.47	n N
	ATOM	667 C		66	63.873	13.850	20.755		18.99	
	ATOM	668 C		66	63.711	15.343	20.394		31.44	c
30	ATOM	_669 O		66	64.665	16.107	20.460		34.61	0
	ATOM	670 C		66	63,440	13.623	22.204		16,66	c
	ATOM		G1 VAL A	66	64.269	12.623	22.869		15.01	c
	ATOM		G2 VAL A	66	63.379	14.904	22.950		19.21	c
	ATOM	673 ม		67	62.514	15.755	19.994		18.03	<u>v</u>
35	ATOM	674 C		67	62.298	17.149	19.614		14.90	<u>.</u>
	ATOM	675 C		67	60.792	17.518	19.585		32.35	c
	ATOM	676 O		_ 67	59,922	16.666	19.888		18.88	0
	ATOM	677 N		6B	60.503	18.787	19.256			N
	ATOM	678 C		68	59.132	19.288	19.183			C
40	ATOM	679 C		68	58.540		17.771			<u>c</u>
	ATOM	680 O				18.550				0
	ATOM	681 N			57.343		17.588			
	ATOM	682 C			56.595		16.317			N
	ATOM	683 C			57.387	20.153		1.00		
45	ATOM		•							<u>c</u>
73	ALVA.	004 0	ILE A	09	57.425	13.313	14.061	1.00	14.00	0

	ATOM	685	СВ	ILE A	69	55.257	20.432	16.480	1.00 3	0.11	<u>C</u>
	ATOM	686	CG1	ILE A	69	54.271	19.683	17.385	1.00 2	4.27	_ <u>c</u>
	ATOM	687	CG2	ILE A	69	54.610	20.749	15.181	1.00 4	7.53	c
	MOTA	688	CD1	ILE A	69	53.259	20.608	18.056	1.00 8	5.71	с
5	ATOM	689	N	VAL A	70	58.010	21.327	15.269	1.00 2	3.03	N.
	ATOM	690	CA	VAL A	70	58.797	21.913	14.183	1.00 19	9.34	c
	ATOM	691	С	VAL A	70	59.983	21.011	13.840	1.00 24	1.42	с
	ATOM	692	0_	VAL A	70	60.335	20,829	12.662	1.00 24	1.14	0
	ATOM	693	СВ	VAL A	70	59.304	23.404	14.467	1.00 21	1.37	c
10	ATOM	694	CG1	VAL A	70	60.137	23.907	13.281	1,00 1	7.79	c
	ATOM	695	CG2	VAL A	70	58.136	24.410	14.678	1.00 1	5.74	с
	ATOM	696	N_	ALA A	71	60.621	20.450	14.861	1.00 19	9.68	N
	ATOM	697	CA	ALA A	71	61.782	19.617	14.572	1.00 16	5.57	с
	ATOM	698	С	ALA A	71	61.427	18.289	13.910	1.00 23	3.36	C
15	ATOM	699	0	ALA A	71	61.980	17.923	12.849	1.00 21	.84	o
	ATOM	700	СВ	ALA A	71	62.685	19.439	15.805	1.00	3.36	c
	MOTA	701	N	ASN A	72	60.463	17.598	14.511	1.00 16	5.80	N
	MOTA	702	CA.	ASN A	72	59.998	16.357	13.923	1.00 18	3.84	C
	MOTA	703	С	ASN A	72	59.608	16.539	12.440	1.00 23	3.87	C
20	MOTA	704	0	ASN A	72	59.919	15.696	11.593	1.00 21	.52	Q
	MOTA	705	СВ	ASN A	72	58.835	15.806	14.738	1.00 8	.60	С
	ATOM	706	CG	ASN A	72	59.309	15.013	15.911	1.00 23	3.75	C
	MOTA	707	OD1	ASN A	72	59.558	13.809	15.810	1.00 23	3.98	0
	ATOM	708	ND2	ASN A	72	59.572	15.701	16.996	1.00 9	9,96	N
25	MOTA	709	N_	ASN A	73	58.931	17.647	12.138	1.00 23	.07	N
	ATOM	710	CA	ASN A	73	58.521	17.971	10,761	1.00 26	.05	C
	MOTA	711	С	ASN A	73	59.665	18.454	9.817	1.00 26	. 95	<u>C</u>
	MOTA	712	0	ASN A	73	59.613	18.276	8.569	1.00 22	.13	0
	MOTA	713	СВ	ASN A	73	57.383	19.001	10.800	1.00 14	.86	С
30	MOTA	714	CG	ASN A	73	56.015	18.349	10.987	1.00 19	.88	c
	ATOM	715	OD1	ASN A	73	55.620	17.468	10.217	1.00 27	.02	0
	ATOM	716	ND2	ASN A	73	55.322	18.732	12.051	1.00 20	.78	N
	MOTA	717	N	THR A	74	60,710	19.029	10.419	1.00 18	. 69	N
	MOTA	718	CA	THR A	74	61.845	19.540	9.657	1.00 10	.07	с
35	ATOM	719	Ç	THR A	74	62.968	18.548	9.375	1.00 21	.00	<u> </u>
	ATOM	720	0	THR A	74	63.537	18.561	8.289	1.00 11	. 75	0
	ATOM	721	СВ	THR A	74	62.411	20.746	10.306	1.00 29	.10	
	ATOM	722	0G1	THR A	74	61.370	21.714	10.457	1.00 23	.24	
	ATOM	723	CG2	THR A	74	63.541	21.299		1.00 21		C
40	MOTA	724	N	TYR A	75	63.230		10.310			N
	ATOM	725		TYR A	75		16.620				c
	ATOM	726	С	TYR A	75		15.203				c
	MOTA	727	0	TYR A			14.542				
	ATOM	728	СВ	TYR A	75		16.825				C
45	ATOM		CG				18.234				С

	MOTA	730	CD1	TYR A	75	66.712	18.696	10 321	1.00 28.46	с
	ATOM	731		TYR A	75	65.234	19.151	12.173	1.00 24.83	C
	,	732								
	ATOM			TYR A	75	67.117	20.045	10.305	1.00 28.34	<u>c</u>
5	ATOM	733		TYR A	<u>75</u>	65.652	20.523	12.180	1.00 21.00	<u>c</u>
3	ATOM	734	<u>CZ</u>	TYR A	75	66.593	20.940	11.234	1.00 45.42	<u>C</u>
	ATOM	735	OH	TYR A	75	67,066	22.230	11.215	1.00 35.37	0
	ATOM	736	N_	PRO A	76	62.759	14,775	9.532	1.00 13.30	N
	ATOM	737	CA	PRO A	76	62.185	13.438	9.742	1.00 14.64	<u>C</u>
	ATOM	738	С	PRO A	76	63,209	12.264	9.618	1.00 14.40	C
10	MOTA	739	0	PRO A	76	63.157	11.335	10.409	1.00 20.54	o
	ATOM	740	СВ	PRO A	76	61.055	13.366	8.709	1.00 7.83	<u>C</u>
	ATOM	741	ÇG	PRO A	76	61.447	14.388	7.617	1.00 12.61	c
	ATOM	742	CD	PRO A	76	62.068	15.504	8.455	1.00 11.18	c
	ATOM	743	N.	ALA A	77	64.163	12.339	8.681	1.00 15.25	N
15	MOTA	744	СА	ALA A	77	65.206	11.312	8,538	1.00 6.79	с
	ATOM	745	С	ALA A	77	66.053	11.166	9.820	1.00 17.22	c
	ATOM	746	0	ALA A	77	66,306	10.069	10.292	1.00 18.74	0
	ATOM	747	СВ	ALA A	77	66.097	11.601	7.330	1.00 9.04	Ç
	ATOM	748	N	ASP A	78	66.466	12.267	10.424	1.00 10.92	N
20	ATOM	749	CA	ASP A	78	67.256	12.191	11.659	1.00 11.87	C
	ATOM	750		ASP A	78	66.572	11.486	12.827	1.00 16.09	C
	ATOM	751	0	ASP A	78	67.212	10.741	13.601	1.00 18.07	0
	ATOM	752	СВ	ASP A	78	67.578	13.609	12.088	1.00 19.16	c
	ATOM	753	CG	ASP A	78	68.424	14.325			Ç
25		754				•		10.068	1.00 26.82	
25	ATOM			ASP A	78	68.836	13.694	10.044	1.00 33.93	0
	ATOM	755		ASP A	78	68.673	15.514	11.316	1.00 32.06	0
	ATOM	756	<u>N</u>	PHE A	79	65,279	11.771	12.975	1.00 14.70	N
	ATOM	757	<u>CA</u>	PHE A	79_	64.471	11.192	14.044	1.00 20.69	<u>C</u>
20	ATOM	758	_ <u>C</u>	PHE A	79	64.224	9.707	13.876	1.00 20.22	<u>c</u>
30	MOTA	759	0	PHE A	79	64.269	8.987	14.862	1.00 22.37	
	MOTA	760	CB	PHE A	79	63,144		14.219	1.00 27.38	c
	MOTA	761	CG	PHE A	79	63.264	13.218	14.990	1.00 28.59	<u>C</u>
	MOTA	762	CD1	PHE A	79	63.137	13.230	16.386	1.00 27.49	c
	MOTA	763	CD2	PHE A	79	63.509	14.415	14.325	1.00 28.20	с
35	ATOM	764	CE1	PHE A	79	63.281	14.413	17.109	1.00 21.76	с
	MOTA	765	CE2	PHE A	79	63.625	15.593	15.037	1.00 31.48	С
	ATOM	766	CZ	PHE A	79	63.509	15.582	16.439	1.00 26.31	с
	MOTA	767	N	ILE A	80	63.942	9.249	12.650	1.00 10.79	N N
	MOTA	768	CA	ILE A	80	63.828	7,795	12.410	1.00 18.12	c
40	MOTA	769	С	ILE A	80	65.197	7.052	12.432	1.00 10.97	с
	MOTA	770	0	ILE A	80	65.406	6.090		1.00 8.92	0
	ATOM	. 771	СВ	ILE A	80	62.944	7.408	11.148	1.00 17.41	C
	ATOM	772		ILE A	80	62,651	5.886	11.105	1.00 10.16	<u>c</u>
	ATOM	_ 773		ILE A	80	63.583	7.888		1.00 17.46	<u>c</u>
45	ATOM	774		TIP A	80	61 722	5 410	9.901	1 00 7 30	

	MOTA	775	N.	TYR A	81	66.151	7.539	11.658	1.00 11.18	N
	MOTA	776	CA	TYR A	81	67.488	6.902	11.630	1.00 15.06	c
	MOTA	777	С	TYR A	81	68.237	6.782	12.959	1.00 16.83	c
	MOTA	778	•	TYR A	81	68.714	5.702	13.383	1.00 16.74	0
5	ATOM	779	CB	TYR A	81	68.384	7.599	10.616	1.00 9.43	c
	ATOM	780	CG	TYR A	81	69.749	6.966	10.541	1.00 22.54	C
	ATOM	781	CD1	TYR A	81	69.963	5.824	9.747	1.00 22.37	<u>c</u>
	ATOM	782	CD2	TYR A	81	70.818	7.466	11.299	1.00 18.07	С
	ATOM	783	CE1	TYR A	81	71.202	5.163	9.746	1.00 15.02	ç
10	ATOM	784	CE2	TYR A	81	72.080	6.893	11.201	1.00 17.37	C
	ATOM	785	CZ	TYR A	81	72.255	5.698	10.472	1.00 24.27	C
	ATOM	786	OH	TYR A	81	73.491	5.063	10.409	1.00 19.57	0
	ATOM	787	N	GLN A	82	68.385	7.918	13.612	1.00 11.39	и
	ATOM	788	CA	GLN A	82	69,193	7.930	14.810	1.00 12.23	C
15	ATOM	789	С	GLN A	82	68.544	7.089	15.834	1.00 14.18	c
	ATOM	790	0	GLN A	82	69.180	6.415	16.631	1.00 11.35	0
	ATOM	791	СВ	GLN A	82	69.280	9.354	15.291	1.00 18.73	c
	ATOM	792	CG	GLN A	82	69.986	10.209	14.250	1.00 13.54	Ç
	ATOM	793	CD	GLN A	82	70.285	11.617	14.736	1.00 26.00	c
20	ATOM	794	OE1	GLN A	82	70,410	11.850	15.927	1.00 22.99	
	ATOM	795	NE2		82	70.404	12.561	13.808	1.00 16.59	N
	ATOM	796	N	ASN A	83	67.235	7.181	15.869	1.00 11.35	n
	ATOM	797	CA	asn a	63	66.549	6.408	16.860	1.00 13.71	c
	ATOM	798	С	ASN A	83	66.623	4.902	16.557	1.00 21.43	c
25	ATOM	799	_0	ASN A	83	66.831	4.101	17.463	1.00 12.10	
	ATOM	800	СВ	ASN A	83	65.132	6.945	17.074	1.00 13.51	C
	ATOM	801	CG	ASN A	83	65.131	8.245	17.871	1.00 28.91	C
	ATOM	802	OD1	_	83	65.628	8.263	18.990	1.00 22.28	
	MOTA	803	ND2	ASN A	83	64.756	9.354	17.237	1.00 20.17	N
30	MOTA	804	N_	MET A	84	66.592	4.517	15.290	1.00 15.63	N
	ATOM	805	CA	MET A	84	66.704	3.101	15.007	1.00 15.66	C
	MOTA	806	С	MET A	84	68.054	2.588	15.348	1.00 14.66	
	ATOM	807	0	MET A	84	68.148	1.514	15.902	1.00 11.45	Q
	ATOM	808	СВ	MET A	84	66.418	2.815	13.563	1.00 17.59	C
35	ATOM	809	CG	MET A	84	64.911	2.894	13.220	1.00 14.40	
	ATOM	810	SD	MET A	84	64.638	2.811	11.387	1.00 15.99	ş
	ATOM		-	MET A	84	65-164	1.105	10.952	1 00 8 90	
	ATOM	812		MET A		69.098	3 338	101702	1.00 11.20	<u>U</u>
	ATOM	813	CA	MET A	85	70.468	2.879		1.00 11.67	<u>r</u>
40	ATOM	814	C	MET A	85	70.779			1.00 13.04	
.5	ATOM	815	0	MET A	85	71.359	1.893	17.265		<u>c</u>
		816				*		-	1.00 15.26	
	ATOM			MET A	85	71.525	3.798	14.693	1.00 15.07	<u>C</u>
	ATOM	817		MET A	85	71.530	3.726	13.173	1.00 32.01	<u>C</u>
45	ATOM	818	SD	MET A	85	71.918	2.027	12.487	1.00 37.79	<u>s</u>
47	ATOM	819	CE	MET A	85	73.379	1.801	13.320	1.00 15.94	<u>C</u>

	ATOM "	820	N	ILE A	86	70.471	3.892	17.481	1.00 13.92	N
	MOTA	821	CA	ILE A	86	70.760	3.893	18.912	1.00 12.58	с
	MOTA	822	С	ILE A	86	70.159	2.662	19.591	1.00 21.61	С
	ATOM	823	0	ILE A	86	70.813	1.981	20.362	1.00 18.68	
5	ATOM	824	СВ	ILE A	86	70.225	5.189	19.606	1.00 11.84	C
	MOTA	825	CG	L ILE A	86	70.978	6.429	19.119	1.00 19.78	C
	ATOM	826	CG2	ILE A	86	70.435	5.132	21.112	1.00 6.59	С
	ATOM	827	CDI	ILE A	86	70.505	7.694	19.772	1.00 20.37	c
	ATOM	828	N.	GLU A	87	68.893	2.383	19.316	1.00 18.78	N
10	ATOM	829	CA	GLU A	87	68.263	1.237	19.930	1.00 14.00	С
	ATOM	830	С	GLU A	87	68.797	-0.116	19.454	1.00 15.93	c
	ATOM	831	0	GLU A	87	69.017	-0.991	20.268	1.00 11.04	. 0
	ATOM	B32	СВ	GLU A	87	66.734	1.324	19.900	1.00 14.89	
	ATOM	833	CG	GLU A	87_	66.085	1.327	18.538	1.00 28.96	c
15	MOTA	834	CD	GLU A	87	64.635	1.922	18.544	1.00 11.12	c
	ATOM	835	OE1	GLU A	87	64.307	2.801	19.376	1.00 25.46	
	MOTA	836	OE2	GLU A	87	63.845	1.547	17.663	1.00 29.87	
	ATOM	837	N	SER A	88	69.054	-0.259	18.155	1.00 16.18	N
	ATOM	838	CA	SER A	88	69.650	-1.482	17.569	1.00 19.52	C
20	ATOM	839	С	SER A	88	71.029	-1.792	18.160	1.00 22.54	с
	ATOM	840	0	SER A	88	71.313	-2.929	18.592	1.00 13.80	0
	MOTA	841	СВ	SER A	88	69.815	-1.326	16.023	1.00 14.61	C
	MOTA	842	OG	SER A	88	68.551	-1.201	15.355	1.00 15.41	o
	MOTA	843	N	ASN A	89	71.884	-0.773	18.143	1.00 22.63	N
25	ATOM	844	CA	ASN A	89	73.227	-0.869	18.693	1.00 27.23	c
	ATOM	845	C_	ASN A	89	73.195	-1.363	20.134	1.00 21.34	<u>C</u>
	ATOM	846	0	ASN A	89	73.795	-2.384	20.476	1.00 23.68	<u> </u>
	ATOM	847	СВ	ASN A	89	73.980	0.487	18.597	1.00 13.71	
	ATOM	848	CG	ASN A	89	74.440	0.825	17.168	1.00 20.40	<u> </u>
30	ATOM	849	OD1	ASN A	89	74.305	-0.006	16.255	1.00 14.93	0
	ATOM	850	ND2	ASN A	89	74.937	2.067	16,960	1.00 13.32	N
	ATOM	851	N	ILE A	90	72.488	-0.646	20.979	1.00 16.55	N
	ATOM	852	CA	ILE A	90	72.437	-1.014	22.398	1.00 21.51	c
	MOTA	853	С	ILE A	90	71.876	-2.421	22.729	1.00 26.50	c
35	ATOM	854	0	ILE A	90	72.384	-3.159	23.590	1.00 19.71	0
	MOTA	855	СВ	ILE A	90	71,670	0.070	23.233	1.00 13.32	с
	ATOM	856	CG1	ILE A	90	72.539	1.299	23.401	1.00 11.05	с
	MOTA	857	CG2	ILE A	90	71.371	-0.445	24.637	1.00 7.54	С
	ATOM	858	CD1	ILE A	90	71,749	2.597	23.668	1.00 20.71	<u>C</u>
40	MOTA	859	N_	ILE A	91	70.755	-2.733	22,114	1.00 14.98	и
	ATOM	860	CA	ILE A	91	70.047	-3.953	22.442	1.00 21.33	с
	ATOM	861	С	ILE A	91	70.927	-5.098	21.994	1.00 26.27	c
	<u>atom</u>	862	0	ILE A	91	71.211	-6.011	22.751	1.00 26.56	0
	ATOM	863	СВ	ILE A	91	68.556	-3.930	21.814	1.00 20.39	c
45	ATOM	864	CG1	ILE A	91	67.692	-2.886	22.552	1.00 13.51	c

	MOTA	865 (CG2 ILE	A 91	67.841 -5.316 21.845 1.00 11.31	
	MOTA	866 0	D1 ILE	A 91	66.320 -2.648 21.907 1.00 16.23	
	MOTA	867	HIS :	A 92	71,446 -4.983 20.785 1.00 24.12	N
	ATOM	868 C	A HIS	A 92	72.293 -6.015 20.243 1.00 26.71	
5	ATOM	869 0	HIS	<u>92</u>	73.609 -6.251 21.071 1.00 29.30	c
a.	ATOM	870 c	HIS 7	A 92	73.983 -7.366 21.443 1.00 18.58	0
	ATOM	<u>871 c</u>	B HIS A	92	72.561 -5.682 18.775 1.00 22.23	c
	MOTA	872 C	G HIS	92	73.366 -6.720 18.077 1.00 26.32	C
	MOTA	873 N	D1 HIS A	92	72.798 -7.711 17.307 1.00 27.19	N
10	MOTA	874 C	D2 HIS A	92	74.699 -6.978 18.106 1.00 21.95	c
	MOTA	875 C	B1 HIS A	92	73.755 -8.487 16.826 1.00 23.66	Ç
	MOTA	876 N	E2 HIS A	92	74.918 -8.062 17.296 1.00 17.36	_N
	ATOM	877 N	ALA A	93	74.328 -5.187 21.333 1.00 15.66	<u>_</u> N
	ATOM	878 C	A ALA A	93	75,530 -5,301 22,110 1.00 11.88	_ <u>c</u>
15	ATOM	<u>879 c</u>	ALA A	93	75.222 -5.900 23.512 1.00 28.78	_ <u>c</u>
	MOTA	880 0	ALA A	93	75.912 -6.790 24.037 1.00 25.23	
	ATOM	881 C	B ALA A	93	76.139 -3.959 22.221 1.00 6.30	_
	ATOM	882 N	ALA A	94	74.142 -5.442 24.113 1.00 18.82	_ <u>=</u>
	MOTA	883 C	A ALA A	94	73.777 -5.971 25.399 1.00 15.61	_
20	MOTA	884 C	ALA A	94	73.593 -7.503 25.301 1.00 28.39	
	ATOM	885 O	ALA A	94	74.133 -8.263 26.099 1.00 21.67	
	MOTA	886 C	B ALA A	94	72.449 -5.279 25.911 1.00 18.46	
	ATOM	887 N	HIS A	95	72.814 -7.966 24.329 1.00 26.35	N
	ATOM	888 C	A HIS A	95	72.551 -9.396 24.271 1.00 24.89	
25	ATOM	889 C	HIS A	95	73.845 -10.176 24.140 1.00 22.81	
	ATOM	890 o	HIS A	95	74.077 -11.136 24.865 1.00 21.44	
	MOTA	891 CE	HIS A	95	71.571 -9.778 23.129 1.00 22.39	
	MOTA	892 CG	HIS A	95	71.554 -11.250 22.831 1.00 28.73	
-	MOTA	893 NT	O1 HIS A	95	70.979 -12.182 23.682 1.00 22.83	
30	ATOM	894 CI	2 HIS A	95	72.159 -11.964 21.845 1.00 25.22	c
	ATOM	895 CF	1 HIS A	95	71.171 -13.397 23.196 1.00 22.72	<u>c</u>
	ATOM	896 NE	2 HIS A	95	71.911 -13.296 22.101 1.00 24.80	N
	ATOM	897 N	GLN A	96	74.709 -9.658 23.281 1.00 19.97	 _N
	ATOM	898 CA	GLN A	96	75,960 -10.299 22.917 1.00 22.27	<u>c</u>
35	ATOM	899 C	GLN A	96	76.877 -10.353 24.086 1.00 26.58	
	ATOM	900 o	GLN A	96	77.836 -11.093 24.088 1.00 24.17	_
	ATOM	901 CB	GLN A	96	76.642 -9.492 21.818 1.00 23.38	c
	MOTA	902 CG	GLN A	96	77 042 -10 200 20 500 1 00 01 01	<u>c</u>
	MOTA	903 CD	GLN A	96	79 077 0 557 10 575 1 20 575	_ _
40	MOTA	904 OB	1 GLN A	96	78 000 0 041 00 121 4 44 74	<u> </u>
	ATOM	905 NE	2 GLN A	96	77 915 0 669 10 266 1 20100 20	N A
	MOTA	906 N	ASN A	97	76 652 0 500 25 000 1 00 00 15	N
	ATOM	907 CA	ASN A	97	77 527 0 526 06 000 5 55 55	<u>c</u>
	MOTA	908 C	ASN A	97	76 772 10 000 07 000 0 00 00	<u>c</u>
45	ATOM	909 o	ASN A	97	77 040 0 762 20 564 1 00 07 12	<u> </u>

	ATOM	910	СВ	ASN A 97	78.241 -8.201 26.462 1.00 12.93 C
	ATOM	911	CG	<u>asn a 97</u>	79.260 -7.897 25.407 1.00 24.91 C
	MOTA	912	OD:	ASN A 97	80.331 -8.518 25.375 1.00 57.17 o
	MOTA	913	ND	2 ASN A 97	78.839 ~7.135 24.392 1.00 34.88 N
5	MOTA	914	N	ASP A 98	75.666 -10.732 27.055 1.00 27.98 N
	MOTA	915	_CA	ASP A 98	74.907 -11.361 28.089 1.00 29.25 C
	ATOM	916	С	ASP A 98	74.400 -10.379 29.164 1.00 37.53 C
	MOTA	917	0	ASP A 98	74.505 -10.634 30.367 1.00 36.42 0
	ATOM	918	СВ	ASP A 98	75.791 -12.450 28.700 1.00 36.37 C
10	MOTA	919	CG	ASP A 98	75.016 -13.712 29.053 1.00 88.62 C
	MOTA	920	OD1	ASP A 98	73.775 -13.749 28.877 1.00 82.53 0
	MOTA	921	OD2	ASP A 98	75.656 -14.670 29.542 1.00100.00 o
	ATOM	922	N	VAL A 99	73.879 -9.235 28.730 1.00 27.13 N
	MOTA	923	CA	VAL A 99	73.157 -8.351 29.635 1.00 21.57 C
15	ATOM	924	<u>c</u> _	VAL A 99	71.706 -8.868 29.530 1.00 16.15 C
	MOTA	925	0	VAL A 99	71.159 -9.088 28.422 1.00 19.47 O
	ATOM	926	СВ	VAL A 99	73.264 -6.900 29.206 1.00 24.18 C
	ATOM	927	CG1	VAL A 99	72.517 -6.015 30.198 1.00 14.58 C
	ATOM	928	CG2	VAL A 99	74.720 -6.515 29.225 1.00 30.10 C
20	ATOM	929	N	ASN A 100	71.149 -9.262 30.662 1.00 17.39 N
	MOTA	930	CA	ASN A 100	69.852 -9.925 30.613 1.00 25.77 C
	ATOM	931	С	ASN A 100	68.648 -9.034 30.910 1.00 24.95 C
	ATOM	932	0	ASN A 100	67.498 -9.377 30.582 1.00 20.88 O
	MOTA	933	СВ	ASN A 100	69.846 -11.157 31.527 1.00 14.98 C
25	ATOM	934	CG	ASN A 100	68.724 -12.112 31.180 1.00 20.38 C
	MOTA	935	OD1	ASN A 100	68.737 -12.709 30.100 1.00 29.59 o
	ATOM	936	ND2	ASN A 100	67.716 -12.240 32.076 1.00 16.35 N
	MOTA	937	N	LYS A 101	68.941 -7.923 31.584 1.00 17.91 N
	ATOM	938	CA	LYS A 101	67.970 -6.916 31.994 1.00 25.43 C
30	MOTA	939	С	LYS A 101	68.107 -5.510 31.323 1.00 25.29 C
	ATOM	940	0	LYS A 101	69.151 -4.850 31,377 1.00 19.88 O
	ATOM	941	СВ	LYS A 101	67.996 -6.807 33.521 1.00 29.28 C
	ATOM	942	CG	LYS A 101	67.464 -8.054 34.205 1.00 9.31 C
	ATOM	943	CD	LYS A 101	67.218 -7.719 35.668 1.00 38.93 C
35	ATOM	944	CE	LYS A 101	66.206 -6.569 35.885 1.00 13.38 C
	MOTA	945	NZ	LYS A 101	64.750 -7.006 35.825 1.00 15.26 N
	ATOM	946	N	LEU A 102	67.013 -5.043 30.732 1.00 22.22 N
	ATOM	947	CA	LEU A 102	67.003 -3.744 30.092 1.00 15.40 C
	ATOM	948	С	LEU A 102	65,612 -3.115 30.156 1.00 18.55 C
40	ATOM	949	0	LEU A 102	64.590 -3.811 30.102 1.00 18.92 0
	ATOM	950	СВ	LEU A 102	67.465 -3.898 28.636 1.00 11.23 C
	ATOM	951	CG	LEU A 102	67.553 -2.711 27.651 1.00 15.51 C
	ATOM	952		LEU A 102	68.628 -2.985 26.559 1.00 9.65 C
	ATOM	953		LEU A 102	66.162 -2.407 26.995 1.00 13.10 C
45	ATOM	954	N	LEU A 103	65.595 -1.798 30.318 1.00 17.05 N

	ATOM 955 CA LEU A 103	64.356 -1.036 30.265 1.00 16.23	c
	ATOM 956 C LEU A 103	64.346 -0.072 29.046 1.00 19.65	c
	ATOM 957 O LEU A 103	65,215 0,789 28,875 1.00 19.68	
	ATOM 958 CB LEU A 103	64.099 -0.289 31.562 1.00 12.28	c
5	ATOM 959 CG LEU A 103	62.686 0.259 31.594 1.00 14.13	<u>c</u>
	ATOM 960 CD1 LEU A 103	61.645 -0.822 31.902 1.00 10.31	c
	ATOM 961 CD2 LEU A 103	62.646 1.360 32.601 1.00 12.30	<u>c</u>
	ATOM 962 N PHE A 104	63.417 -0.333 28.140 1.00 16.41	N
	ATOM 963 CA PHE A 104	63.215 0.486 26.956 1.00 18.32	<u>.</u>
10	ATOM 964 C PHE A 104	62.126 1.546 27.249 1.00 21.85	<u>c</u>
	ATOM 965 O PHE A 104	61.168 1.271 27.992 1.00 18.36	
	ATOM 966 CB PHE A 104	62.796 -0.386 25.793 1.00 9.86	<u>c</u>
	ATOM 967 CG PHE A 104	62.732 0.348 24.508 1.00 16.81	c
	ATOM 968 CD1 PHE A 104	63.894 0.714 23.840 1.00 25.04	C
15	ATCM 969 CD2 PHE A 104	61.511 0.795 24.005 1.00 22.59	c
	ATOM 970 CE1 PHE A 104	63.836 1.448 22.619 1.00 31.26	<u>c</u>
	ATOM 971 CE2 PHE A 104	61.449 1.535 22.814 1.00 15.59	C
	ATOM 972 CZ PHE A 104	62.625 1.895 22.139 1.00 11.67	<u>C</u>
	ATOM 973 N LEU A 105	62.341 2.762 26.734 1.00 20.33	N
20	ATOM 974 CA LEU A 105	61.416 3.897 26.904 1.00 18.10	<u></u>
	ATOM 975 C LEU A 105	60.711 4.237 25.634 1.00 17.04	c
	ATOM 976 O LEU A 105	61.315 4.680 24.665 1.00 18.83	0
	ATOM 977 CB LEU A 105	62.178 5.146 27.214 1.00 17.49	c
	ATOM 978 CG LEU A 105	62.434 5.544 28.644 1.00 27.17	C
25	ATOM 979 CD1 LEU A 105	62.630 4.349 29.574 1.00 19.16	c
	ATOM 980 CD2 LEU A 105	63.688 6.347 28.529 1.00 23.59	C
	ATOM 981 N GLY A 106	59.407 4.153 25.652 1.00 20.66	N
	ATOM 982 CA GLY A 106	58.679 4.536 24.455 1.00 21.03	С
	ATOM 983 C GLY A 106	58.080 5.935 24.597 1.00 17.32	С
30	ATOM 984 O GLY A 106	58,690 6.858 25.113 1.00 26.89	0
	ATOM 985 N SER A 107	56.831 6.047 24.219 1.00 22.05	N
	ATOM 986 CA SER A 107	56.177 7.317 24.288 1.00 22.12	
	ATOM 987 C SER A 107	54.686 7.212 23.923 1.00 19.06	С
	ATCM 988 O SER A 107	54.314 6.545 22.963 1.00 27.42	
35	ATOM 989 CB SER A 107	56.882 8.232 23.300 1.00 20.99	c
	ATOM 990 OG SER A 107	55.947 9.133 22.776 1.00 42.85	0
	ATOM 991 N SER A 108	53.826 7.890 24.671 1.00 27.42	N
	ATOM 992 CA SER A 108	52.382 7.947 24.339 1.00 26.43	c
40	ATOM 993 C SER A 108	52.144 8.259 22.842 1.00 30.97	<u>c</u>
40	ATOM 994 O SER A 108	51.242 7.709 22.217 1.00 33.46	0
	ATOM 995 CB SER A 108	51.710 9.072 25.144 1.00 19.87	
	ATOM 996 OG SER A 108	52.495 10.266 25.071 1.00 70.88	<u> </u>
	ATOM 997 N CYS A 109	52.927 9.180 22.278 1.00 24.73	N
4.5	ATOM 998 CA CYS A 109	52.728 9.549 20.880 1.00 25.61	C
45	ATOM 999 C CYS A 109	52.970 8.482 19.815 1.00 21.29	С

	MOTA	1000	0	CYS A 109	52.967	8.737	18.623	1.00 31.31	0
	MOTA	1001	CB	CYS A 109	53.369	10.899	20.544	1.00 39.55	С
	MOTA	1002	SG	CYS A 109	55.153	11.077	20.847	1.00 49.24	<u>s</u>
	MOTA	1003	N	ILE A 110	53.101	7.264	20.258	1.00 18.31	N
5	MOTA	1004	CA	ILE A 110	53.329	6.150	19.379	1.00 28.10	c
	MOTA	1005	С	ILE A 110	51.977	5.489	19.082	1.00 15.38	c
	MOTA	1006	0	ILE A 110	51.895	4.592	18.268	1.00 16.52	0
	MOTA	1007	СВ	ILE A 110	54.154	5.153	20.206	1.00 40.45	с
	MOTA	1008	CG1	ILE A 110	55.604	5.510	20,136	1.00 39.02	C
10	MOTA	1009	CG2	ILE A 110	53.879	3.715	19.875	1.00 61.33	C
	MOTA	1010	CD1	ILE A 110	56.429	4.338	20.549	1.00 82.74	c
	ATOM	1011	N	TYR A 111	50.951	5.842	19.854	1.00 14.91	N
	MOTA	1012	CA	TYR A 111	49.630	5.227	19.678	1.00 13.96	с
	MOTA	1013	С	TYR A 111	48.956	5.831	18.459	1.00 20.40	c
15	ATOM	1014	0	TYR A 111	49.302	6.933	18.056	1.00 11.71	0
•	MOTA	1015	СВ	TYR A 111	48.763	5.468	20.921	1.00 9.63	С
	ATOM	1016	CG	TYR A 111	49.117	4.550	22.065	1.00 14.94	C
	MOTA	1017	CD1	TYR A 111	48.985	3.159	21.938	1.00 9.73	C
	ATOM	1018	CD2	TYR A 111	49.755	5.038	23.216	1.00 14.96	c
20	ATOM	1019	CE1	TYR A 111	49.344	2.273	23.014	1.00 6.53	C
	MOTA	1020	CE2	TYR A 111	50.146	4.155	24.272	1.00 13.66	ç
	ATOM	1021	CZ	TYR A 111	49.873	2.787	24.171	1.00 17.86	c
	MOTA	1022	ОН	TYR A 111	50.266	1.927	25.157	1.00 11.37	. 0
	ATOM	1023	N	PRO A 112	47.974	5.145	17.872	1.00 22.56	N
25	ATOM	1024	CA	PRO A 112	47.279	5.743	16.721	1.00 23.44	С
	ATOM	1025	С	PRO A 112	46,589	7.111	16.988	1.00 17.82	c
	ATOM	1026	0	PRO A 112	46.197	7.453	18.115	1.00 19.72	
	ATOM	1027	СВ	PRO A 112	46.290	4.644	16.252	1.00 15.69	c
	ATOM	1028	CG	PRO A 112	46.895	3.343	16.769	1.00 22.83	c
30	ATOM	1029	CD	PRO A 112	47.593	3.733	18.086	1.00 16.10	c
	ATOM	1030	N	LYS A 113	46.418	7.866	15.915	1.00 19.48	N
	ATOM	1031	CA	LYS A 113	45.793	9.167	15.994	1.00 23.50	
	ATOM	1032	С	LYS A 113	44.396	9.077	16.655	1.00 34.28	c
	ATOM	1033	0	LYS A 113	44.046	9.887	17.524	1.00 46.14	0
35	ATOM	1034	СВ	LYS A 113	45,675	9.735	14.593	1.00 30.04	C
	ATOM	1035	CG	LYS A 113	46.219	11.124	14.477	1.00 43.78	c
	ATOM	1036		LYS A 113		11.941		1.00100.00	<u>_</u>
	ATOM	1037	CE	LYS A 113	44.361	12.836	14.250	1.00100.00	c
	ATOM	1038		LYS A 113	43.480			1.00100.00	N
40	ATOM	1039		LEU A 114	43.591			1.00 26.33	N
	ATOM	1040		LEU A 114		7.957		1.00 20.65	<u>s</u>
	ATOM		C	LEU A 114	42.267 42.083	6.792		1.00 20.65	
		1042	0		41.002				
	ATOM			LEU A 114		6.278	17.918	1.00 34.04	0
45	ATOM	1043		LEU A 114	41.194	8.002		1.00 24.37	<u>c</u>
77	MOTA	1044	U(÷	LEU A 114	41.587	9.122	14.630	1.00 40.86	<u>C</u>

	ATOM	1045	CD1	LEU A 114	40.991	8.797	13.504	1.00 49.29	C
	ATOM	1046	CD2	LEU A 114	41,139	10.512	15.300	1.00 26.85	
	ATOM	1047	N	ALA A 115	43.103	6.473	18.527	1.00 29.00	N
	ATOM	1048	CA	ALA A 115	42.920	5.446	19.528	1.00 25.66	c
5	ATOM	1049	С	ALA A 115	41.722	5.727	20.454	1.00 28.76	c
	ATOM	1050	0	ALA A 115	41.364	6.855	20.682	1.00 24.12	0
	ATOM	1051	СВ	ALA A 115	44.177	5.272	20.326	1.00 16.86	c
	ATOM	1052	N	LYS A 116	41.137	4.675	20.998	1.00 30.21	N
	ATOM	1053	CA	LYS A 116	40.036	4.792	21.928	1.00 25.85	c
10	ATOM	1054	С	LYS A 116	40.668	5.248	23.195	1.00 14.18	с
	ATOM	1055	0	LYS A 116	41.750	4.781	23.535	1.00 23.51	0
	ATOM	1056	СВ	LYS A 116	39.369	3.415	22.116	1.00 22.05	ç
	ATOM	1057	CG	LYS A 116	39.053	3.032	23.524	1.00 55.38	с
	ATOM	1058	CD	LYS A 116	37.963	1.955	23.549	1.00100.00	с
15	MOTA	1059	CE	LYS A 116	37.120	1.953	24.835	1.00100.00	с
	ATOM	1060	NZ	LYS A 116	35.767	1.310	24.630	1,00100.00	N
	MOTA	1061	N_	GLN A 117	40.021	6.208	23.856	1.00 18.23	N
	MOTA	1062	CA_	GLN A 117	40.456	6.757	25.180	1.00 21.01	с
	MOTA	1063	С	GLN A 117	39.695	6.178	26.383	1.00 30.96	с
20	ATOM	1064	0	GLN A 117	38.483	6.009	26.345	1.00 27.66	0
	ATOM	1065	СВ	GLN A 117	40.215	8.263	25.179	1.00 11.32	С
	MOTA	1066	CG	GLN A 117	40.849	8,912	23.948	1.00 12.12	c
	ATOM	1067	CD	GLN A 117	42.404	8.823	23.954	1.00 24.10	. с
	ATOM	1068	OE1	GLN A 117	43.041	8.628	22.896	1.00 47.88	0
25	MOTA	1069	NE2	GLN A 117	43.001	8.953	25.131	1.00 14.24	<u> </u>
	ATOM	1070	N	PRO A 118	40.374	5.992	27.499	1.00 30.02	N
	MOTA	1071	CA	PRO A 118	41.826	6.194	27.655	1.00 26.44	c
	MOTA	1072	С	PRO A 118	42.450	5.050	26.899	1.00 24.37	C
	MOTA	1073	0	PRO A 118	41.792	4.027	26.726	1.00 25.34	0
30	ATOM	1074	СВ	PRO A 118	42.055	5.994	29.167	1.00 23.89	C
	MOTA	1075	CG	PRO A 118	40.847	5.240	29.654	1.00 23.20	C
	ATOM	1076	CD	PRO A 118	39.695	5.519	28.709	1.00 15.79	C
	ATOM	1077	N	MET A 119	43.684	5.228	26.432	1.00 16.00	Ŋ
	ATOM	1078	CA	MET A 119	44.372	4.215	25.644	1.00 10.80	c
35	ATOM	1079	С	MET A 119	45.062	3.083	26.444	1.00 23.61	C
	ATOM	1080	0	MET A 119	46.013	3.281	27.209	1.00 18.02	. <u> </u>
	ATOM	1081	СВ	MET A 119	45.384	4.894	24.791	1.00 13.52	c
	MOTA	1082	CG	MET A 119	44.801	6.014	23.989	1.00 18,52	c
	ATOM	1083	SD	MET A 119	46.157	7.054	23.271	1.00 26.27	s
40	ATOM	1084	CE	MET A 119	46.264	6.524	21.845	1.00 33.79	С
	ATOM	1085	N	ALA A 120	44.559	1.875	26.271	1.00 26.64	N
	ATOM	1086	CA	ALA A 120	45.177	0.712	26.884	1.00 29.17	C
	ATOM :	1087	С	ALA A 120	46.356	0.308	25.984	1.00 23.21	<u> </u>
	ATOM	1088	0	ALA A 120	46.439	0.759	24.833	1.00 20.19	0
45	ATOM	1089	СВ	ALA A 120	44.169	-0.419	26.944	1.00 26.02	С

	ATOM 1090 N GLU A 121	47.238 -0.553 26.507 1.00 12.30	N
	ATOM 1091 CA GLU A 121	48.427 -1.009 25.788 1.00 9.45	<u>C</u>
	ATOM 1092 C GLU A 121	48.070 -1.697 24.450 1.00 11.68	<u>c</u>
	ATOM 1093 O GLU A 121	48.828 -1.670 23.450 1.00 14.84	
5	ATOM 1094 CB GLU A 121	49.321 -1.883 26.715 1.00 16.74	c
	ATOM 1095 CG GLU A 121	50.132 -1.122 27.763 1.00 18.14	c
	ATOM 1096 CD GLU A 121	49.458 -1.000 29.137 1.00 13.00	С
	ATOM 1097 OE1 GLU A 121	48.252 -1.294 29.276 1.00 20.79	0
	ATOM 1098 OB2 GLU A 121	50.123 -0.521 30.080 1.00 17.86	0
10	ATOM 1099 N SER A 122	46.887 -2.273 24.409 1.00 11.79	N
	ATOM 1100 CA SER A 122	46.427 -2.977 23.218 1.00 12.16	c
	ATOM 1101 C SER A 122	46.030 -2.058 22.100 1.00 11.70	<u>C</u>
	ATOM 1102 O SER A 122	45.717 -2.529 21.010 1.00 13.91	0
	ATOM 1103 CB SER A 122	45.186 -3.781 23.568 1.00 21.50	С
15	ATOM 1104 OG SER A 122	44.143 -2.908 23.976 1.00 28.52	0
	ATOM 1105 N GLU A 123	46.041 -0.754 22.341 1.00 14.65	N
	ATOM 1106 CA GLU A 123	45.783 0.202 21.243 1.00 17.15	
	ATOM 1107 C GLU A 123	46.959 0.313 20.240 1.00 11.48	c
	ATOM 1108 O GLU A 123	46.821 0.844 19.141 1.00 11.19	0
20	ATOM 1109 CB GLU A 123	45.481 1.600 21.805 1.00 21.66	c
	ATOM 1110 CG GLU A 123	44.127 1.694 22.523 1.00 24.68	Ç
	ATOM 1111 CD GLU A 123	42.984 1.374 21.585 1.00 35.56	C
	ATOM 1112 OE1 GLU A 123	43.019 1.865 20.426 1.00 41.73	0
	ATOM 1113 OE2 GLU A 123	42.158 0.497 21.940 1.00100.00	
25	ATOM 1114 N LEU A 124	48.134 -0.185 20.618 1.00 14.02	N
	ATOM 1115 CA LEU A 124	49.296 -0.082 19.740 1.00 15.32	С
	ATOM 1116 C LEU A 124	49.082 -0.754 18.458 1.00 17.76	C
	ATOM 1117 O LEU A 124	48.752 -1.917 18.445 1.00 18.91	0
	ATOM 1118 CB LEU A 124	50.564 -0.680 20.362 1.00 18.07	С
30	ATOM 1119 CG LEU A 124	51.922 -0.222 19.803 1.00 21.52	c
	ATOM 1120 CD1 LEU A 124	52.080 1.258 20.117 1.00 20.35	c
	ATOM 1121 CD2 LEU A 124	53.042 -0.919 20.550 1.00 14.07	С
	ATOM 1122 N LEU A 125	49.514 -0.071 17.409 1.00 18.44	N
	ATOM 1123 CA LEU A 125	49.445 -0.564 16.052 1.00 19.92	С
35	ATOM 1124 C LEU A 125	48.034 -0.754 15.509 1.00 25.56	С
	ATOM 1125 O LEU A 125	47.854 -1.188 14.364 1.00 18.26	0
	ATOM 1126 CB LEU A 125	50.355 -1.800 15.840 1.00 20.79	Ç
	ATOM 1127 CG LEU A 125	51.890 -1.511 15.778 1.00 17.21	С
	ATOM 1128 CD1 LEU A 125	52.744 -2.649 16.316 1.00 19.95	С
40	ATOM 1129 CD2 LEU A 125	52.334 -1.219 14.338 1.00 5.81	С
	ATOM 1130 N GLN A 126	47.027 -0.327 16.276 1.00 21.97	N
	ATOM 1131 CA GLN A 126	45.652 -0.504 15.790 1.00 19.97	с
	ATOM 1132 C GLN A 126	45.213 0.447 14.724 1.00 28.31	С
	ATOM 1133 O GLN A 126	44.076 0.391 14.293 1.00 47.49	
45	ATOM 1134 CB GLN A 126	44.652 -0.404 16.911 1.00 19.87	C

	ATOM	1135	CG	GLN	A 126	44.949	-1.312	18.048	1.00 18.39	с
	MOTA	1136	CD	GLN	A 126	44.319	-2,626	17.835	1.00 66.80) с
	MOTA	1137	OE1	GLN	A 126	44.064	-3.376	18.792	1.00 40.75	
	ATOM	1138	NE2	GLN	A 126	44.015	-2.952	16.565	1.00 71.74	N
5	MOTA	1139	N	GLY	A 127	46.080	1,330	14.270	1.00 28.29	N
	MOTA	1140	CA	GLY	A 127	45.627	2.260	13.252	1.00 23.31	с
	MOTA	1141	С	GLY	A 127	46.662	3.315	12.953	1.00 22.90	с
	MOTA	1142	•	GLY	A 127	47.755	3.254	13.474	1.00 25.30	
	ATOM	1143	N	THR	A 128	46.311	4.219	12.046	1.00 19.51	N
10	MOTA	1144	CA	THR	A 128	47.149	5.314	11.588	1.00 22.12	c
	MOTA	1145	С	THR	A 128	47.705	6.219	12.695	1.00 22.60	C
	MOTA	1146	0	THR	A 128	47.061	6.461	13.731	1.00 18.58	0
	MOTA	1147	СВ	THR	A 128	46.392	6.182	10.544	1.00 35.98	с
	MOTA	1148	OG1	THR	128	46.533	5.594	9.239	1.00 58.05	0
15	ATOM	1149	CG2	THR	128	46.942	7.639	10.542	1.00 43.41	C
	ATOM	1150	N	LEU	A 129	48.907	6.715	12.425	1.00 18.32	N
	MOTA	1151	CA	LEU	A 129	49.674	7.534	13.356	1.00 16.76	С
	ATOM	1152	С	LEU	A 129	49.504	8.959	12.967	1.00 4.89	C
	MOTA	1153	0	LEU	A 129	49,232	9.260	11.814	1.00 16.14	· o
20	MOTA	1154	СВ	LEU Z	A 129	51.205	7.191	13.261	1.00 17.91	C
	ATOM	1155	CG	LEU 2	129	51.769	5.804	13.752	1.00 18.21	с
	ATOM	1156	CD1	LEU Z	129	53.132	5.379	13.193	1.00 12.12	c
	MOTA	1157	CD2	LEU /	129	51.683	5.532	15.251	1.00 3.89	c
	ATOM	1158	N	GLU Z	A 130	49.816	9.827	13.917	1.00 10.23	N
25	ATOM	1159	CA	GLU /	130	49.912	11.268	13.691	1.00 13.22	C
	MOTA	1160	С	GLU 2	A 130	51.128	11.544	12.775	1.00 23.44	c
	ATOM	1161	0	GLU /	130	52.249	11.162	13.090	1.00 21.23	0
	ATOM	1162	CB	GLU A	130	50.150	11.979	15.035	1.00 18.48	
	MOTA	1163	CG	GLU /	130	50.754	13.376	14.886	1.00 77.44	c
30	ATOM	1164	CD	GLU 2	130	49.833	14.328	14.121	1.00100.00	с
	MOTA	1165	OE1	GLU A	130	48.588	14.205	14.340	1.00 36.19	0
	MOTA	1166	OE2	GLU /	130	50.347	15.161	13.295	1.00 21.03	0
	ATOM	1167	N_	PRO I	131	50.920	12.219	11.648	1.00 21.35	<u>N</u>
	ATOM	1168	CA	PRO 2	131	52.023	12.409	10.731	1.00 14.78	с
35	ATOM	1169	С	PRO 2	131	53.201	13.132	11.265	1.00 14.98	с
	MOTA	1170	0	PRO Z	131	54.325	12.847	10.853	1.00 20.99	o
	MOTA	1171	СВ	PRO A	131	51.413	13.154	9.552	1.00 14.76	<u>.</u> C
	ATOM	1172	CG	PRO A	131	50.071	13.485	9.949	1.00 20.99	<u>c</u>
	MOTA	1173	CD	PRO A	131	49.641	12.626	11.047	1.00 17.25	с
40	ATOM	1174	N	THR A	132	52.986	14.095	12.159	1.00 18.77	N
	MOTA	1175	CA	THR A	132	54.131	14.838	12.689	1.00 16.44	<u>c</u>
	MOTA	117.6	с	THR A	132	55.102	13.951	13.408	1.00 21.91	c
	MOTA	1177	0	THR A	132	56,317	14.088	13.234	1.00 24.17	0
	ATOM	1178	СВ	THR A	132	53.716	15.907	13.606	1.00 23.45	c
45	MOTA	1179	0G1	THR A	132	52.976	16.883	12.850	1.00 31.15	· <u> </u>

	MOTA	1180	CG2	THR A	132	54.969	16.519	14.341	1.00	9.28	<u>c</u>
	MOTA	1181	N	ASN A	133	54.551	12.970	14.122	1.00	28.59	N N
	MOTA	1182	CA	ASN A	133	55.359	12.007	14.875	1.00	26.38	<u>C</u>
	ATOM	1183	С	ASN A	133	55.666	10.682	14.207	1.00	14.85	с
5	ATOM	1184	0	ASN A	133	56.446	9.884	14.755	1.00	18.67	0
	ATOM	1185	СВ	ASN A	133	54.661	11.699	16.168	1.00	23.70	с
	MOTA	1186	CG	ASN A	133	54.480	12.894	16.968	1.00	50.55	c
	ATOM	1187	OD1	ASN A	133	53.354	13.272	17.252	1.00	40.07	0
	MOTA	1188	ND2	ASN A	133	55.568	13.638	17.163	1.00	40.36	N
10	ATOM	1189	N	GLU A	134	55.100	10.469	13.022	1.00	9.98	N
	ATOM	1190	CA	GLU A	134	55.237	9.210	12.365	1.00	9.66	<u>C</u>
	ATOM	1191	С	GLU A	134	56.648	8.530	12.274	1.00	13.86	C
	ATOM	1192	0	GLU A	134	56.814	7.388	12.706	1.00	22.89	o
	MOTA	1193	СВ	GLU A	134	54.448	9.200	11.070	1.00	17.55	С
15	MOTA	1194	CG	GLU A	134	54.750	7.930	10.227	1.00	20.89	С
	ATOM	1195	CD	GLU A	134	53.926	7 <u>.</u> 868	8.970	1.00	13.59	<u>c</u>
	ATOM	1196	OE1	GLU A	134	52.678	7.738	9.085	1.00	35.28	0
	ATOM	1197	OE2	GLU A	134	54.497	8.048	7.869	1.00	13.44	0
	MOTA	1198	N_	PRO A	135	57.680	9.222	11.789	1.00	15.72	N
20	ATOM	1199	_CA_	PRO A	135	59.014	8.600	11.699	1.00	18.91	c
	ATOM	1200	С	PRO A	135	59.544	8.174	13.073	1.00	18.68	<u>c</u>
	ATOM	1201	0	PRO A	135	60.072	7.069	13.271	1.00	15.69	o
	ATOM	1202	СВ	PRO A	135	59.896	9.755	11.169	1.00	13.84	c
	ATOM	1203	CG	PRO A	135	59.036	10.514	10.350	1.00	9.78	с
25	MOTA	1204	CD	PRO A	135	57.594	10.395	10.908	1.00	14.43	<u>c</u>
	ATOM	1205	N	TYR A	136	59.449	9.117	13.994	1.00	8.64	N
	ATOM	1206	CA	TYR A	136	59.873	8.915	15.324	1.00	13.27	<u>c</u>
	ATOM	1207	С	TYR A	136	59.056	7.728	15.907	1.00	16.84	c
	ATOM	1208	0	TYR A	136	59.578	6.903	16,658	1.00	12.90	0
30	MOTA	1209	СВ	TYR A	136	59.604	10.234	16.100	1.00	15,51	<u>C</u>
	MOTA	1210	CG	TYR A	136	59.912	10.168	17.614	1.00	18.26	с
	ATOM	1211	CD1	TYR A	136	61.200	10.062	18.072	1.00	20.53	<u>C</u>
	ATOM	1212	CD2	TYR A	136	58.904	10.150	18.568	1.00	17.38	с
	MOTA	1213	CE1	TYR A	136	61.484	9,959	19.440	1.00	30.44	<u>c</u>
35	MOTA	1214	CE2	TYR A	136	59,184	10.084	19,953	1.00	9.85	<u>c</u>
•	ATOM	1215	CZ	TYR A	136	60.476	9,949	20.377	1.00	20.65	<u>c</u>
	MOTA	1216	OH	TYR A	136	_60.792	9.873	21.734	1.00	24.41	0
	MOTA	1217	<u>N</u>	ALA A	137	57.760	7.687	15.638	1.00	7.19	N
	MOTA	1218	CA	ALA A	137	56.923	6.633	16.227	1.00	12.68	<u>c</u>
40	ATOM	1219	С	ALA A		57.345		15.737			<u>c</u>
	MOTA	1220	0	ALA A	137	57.425	4.272	16,488	1.00	14.58	0
	MOTA	1221	CB	ALA A	_	55.517	6.849	15.871	1.00	11.40	c
	ATOM	1222	N	ILE A		57.567	5.213	14.447		8.93	N
	ATOM	1223	CA	ILE A		57.954	3.971	13.831		11.77	c
45	ATOM	1224	С	ILE A	138	59.246	3,494	14.492	1.00	16.20	C

	ATOM 122	5 0	ILE A 138	59.307	2.377	14.970	1.00 13.79	0
	ATOM 122	6 CB	ILE A 138	58.064	4.172	12.316	1.00 17.85	С
	ATOM 122	7 CG1	ILE A 138	56.680	4.473	11.757	1.00 28.21	C
	ATOM 122	8 CG2	ILE A 138	58.674	2.986	11.602	1.00 9.81	c
5	ATOM 122	9 CD1	ILE A 138	55.695	3.376	11.970	1.00 18.17	c
	ATOM 123	0 N	ALA A 139	60.243	4.361	14.625	1.00 11.54	N
	ATOM 123	1CA_	ALA A 139	61.494	3,937	15.288	1.00 13.22	C
	ATOM 123	2 <u> </u>	ALA A 139	61.256	3.364	16.675	1.00 18.73	C
	ATOM 123	3 0	ALA A 139	61.791	2.318	17.031	1.00 20.44	0
10	ATOM 123	4 CB	ALA A 139	62.434	5.073	15.390	1.00 13.62	C
	ATOM 123	5 N	LYS A 140	60.397	4.033	17.448	1.00 16.36	N
	ATOM 123	6 CA	LYS A 140	60.083	3.600	18.815	1.00 15.14	c
	ATOM 123	7 C	LYS A 140	59.392	2.262	18.824	1.00 15.18	c
	ATOM 123	8 0	LYS A 140	59.824	1.346	19.475	1.00 21.42	0
15	ATOM 123	9 CB	LYS A 140	59.193	4.606	19.525	1.00 17.86	c
	ATOM 124	O CG	LYS A 140	59.925	5.806	20.152	1.00 21.11	C
	ATOM 124	1 CD	LYS A 140	61.208	5.478	20.958	1.00 16.75	C
	ATOM 124	2 CE	LYS A 140	61,664	6.735	21.835	1.00 10.06	C
	ATOM 124:	3 NZ	LYS A 140	62.688	6.496	22.921	1.00 14.40	N
20	ATOM 124	4 N	ILE A 141	58.356	2.116	18.027	1.00 11.49	N
	ATOM 1245	5 CA	ILE A 141	57.703	0.828	17.977	1.00 17.92	<u> </u>
	ATOM 124	6 C	ILE A 141	58.729	-0.282	17.577	1.00 13.46	С
	ATOM 124	7 0	ILE A 141	58.730	-1.374	18.148	1.00 13.92	0
	ATOM 1241	В СВ	ILE A 141	56.497	0.925	17.019	1.00 22.59	c
25	ATOM 1245	9 CG1	ILE A 141	55.466	1.906	17.557	1.00 17.61	c
	ATOM 1250	CG2	ILE A 141	55.863	-0.411	16.700	1.00 10.49	c
	ATOM 1251	L CD1	ILE A 141	54.530	2.327	16.449	1.00 13.43	с
	ATOM 1252	2 <u> </u>	ALA A 142	59,637	0.028	16.650	1.00 10.29	N
	ATOM 1253	3 CA	ALA A 142	60.657	-0.931	16.228	1.00 7.15	<u>c</u>
30	ATOM 1254	1 C	ALA A 142	61.456	-1.301	17.456	1.00 16.58	<u>c</u>
	ATOM 125!	5 0	ALA A 142	61.839	-2.454	17,621	1.00 13.04	0
	ATOM 1256	6 CB	ALA A 142	61.604	-0.288	15.130	1.00 4.44	с
	ATOM 125	7 N	GLY A 143	61.703	-0.307	18.316	1.00 9.56	N
	ATOM 1258	CA.	GLY A 143	62.448	-0.525	19.527	1.00 5.15	с
35	ATOM 1255	Э <u>С</u>	GLY A 143	61.770	-1.555	20.430	1.00 16.36	c
	ATOM 1260	0	GLY A 143	62.392	-2.482	20.967	1.00 14.11	0
	ATOM 1261	N_	ILE A 144	60.476	-1.418	20.564	1.00 20.33	N
	ATOM 1262	CA	ILE A 144	59.725	-2.314	21.407	1.00 15.35	<u>C</u>
	ATOM 1263	3 C	ILE A 144	59.706	-3.732	20.859	1.00 19.84	<u>c</u>
40	ATOM 1264	1 0	ILE A 144	59.836	-4.700	21.608	1.00 17.93	0
	ATOM 1265	CB	ILE A 144	58.317	-1.819	21.559	1.00 10.60	с
	ATOM 1266	5 CG1	ILE A 144	58.311	-0.610	22.516	1.00 9.80	с
	ATOM 126	7 CG2	ILE A 144	57.410	-2.928	22.122	1.00 9.60	С
	ATOM 1266	CD1	ILE A 144	57.022	0.076	22.517	1.00 18.32	c
45	ATOM 1269	N	LYS A 145	59.520	-3.841	19.556	1.00 7.20	N

		50 450	_
	ATOM 1270 CA LYS A 145	59.459 -5.139 18.926 1.00 7.64	<u>c</u>
	ATOM 1271 C LYS A 145	60.840 -5.788 18.931 1.00 15.32	<u>c</u>
	ATOM 1272 O LYS A 145	60.923 -6.989 18.981 1.00 14.76	0
_	ATOM 1273 CB LYS A 145	58.891 -5.001 17.516 1.00 11.25	c
5	ATOM 1274 CG LYS A 145	57.414 -4.581 17.489 1.00 12.13	c
	ATOM 1275 CD LYS A 145	56.642 -5.434 18.495 1.00 25.23	C
	ATOM 1276 CE LYS A 145	55.189 -4.995 18.692 1.00 13.64	<u>c</u>
	ATOM 1277 NZ LYS A 145	54.441 -6.111 19.392 1.00 11.94	N
10	ATOM 1278 N LEU A 146	61.934 -5.011 18.986 1.00 26.98	N
10	ATOM 1279 CA LEU A 146	63.261 -5.642 19.167 1.00 19.72	<u>C</u>
	ATOM 1280 C LEU A 146	63.262 -6.316 20.542 1.00 18.20	<u>c</u>
	ATOM 1281 O LEU A 146	63.590 -7.511 20.703 1.00 19.86	0
	ATOM 1282 CB LEU A 146	64.398 -4.618 19.150 1.00 13.56	<u>C</u>
	ATOM 1283 CG LEU A 146	64.895 -4.258 17.759 1.00 21.84	C
15	ATOM 1284 CD1 LEU A 146	65.672 -2.945 17.817 1.00 17.94	C
	ATOM 1285 CD2 LEU A 146	65,745 -5,397 17.102 1.00 16,10	<u>C</u>
	ATOM 1286 N CYS A 147	62.931 -5.523 21.548 1.00 7.91	N
	ATOM 1287 CA CYS A 147	62.875 -6.064 22.893 1.00 9.14	c
	ATOM 1288 C CYS A 147	62.072 -7.378 22.945 1.00 22.72	С
20	ATOM 1289 O CYS A 147	62.568 -8.401 23.383 1.00 16.90	0
	ATOM 1290 CB CYS A 147	62.232 -5.058 23.809 1.00 12.63	<u>C</u>
	ATOM 1291 SG CYS A 147	63.411 -3.823 24.316 1.00 15.02	s
	ATOM 1292 N GLU A 148	60.823 ~7.352 22.508 1.00 20.03	N
	ATOM 1293 CA GLU A 148	60.016 -8.555 22.567 1.00 16.09	c
25	ATOM 1294 C GLU A 148	60.685 -9.715 21.802 1.00 22.61	C
	ATOM 1295 O GLU A 148	60.651 -10.888 22.226 1.00 12.05	0
	ATOM 1296 CB GLU A 148	58.597 -8.268 22.046 1.00 14.66	C
	ATOM 1297 CG GLU A 148	57.864 -7.189 22.840 1.00 11.45	Ç
	ATOM 1298 CD GLU A 148	56.471 -6.821 22.277 1.00 11.75	<u>c</u>
30	ATOM 1299 OE1 GLU A 148	56.117 -7.055 21.080 1.00 11.65	0
	ATOM 1300 OE2 GLU A 148	55.728 -6.231 23.081 1.00 22.56	0
	ATOM 1301 N SER A 149	61.368 -9.377 20.715 1.00 15.57	N
	ATOM 1302 CA SER A 149	61.938 -10.428 19.887 1.00 10.21	С
	ATOM 1303 C SER A 149	63.040 -11.245 20.502 1.00 15.83	Ç
35	ATOM 1304 O SER A 149	63.102 -12.458 20.291 1.00 12.72	Q
	ATOM 1305 CB SER A 149	62.270 -9.936 18.488 1.00 9.44	c
	ATOM 1306 OG SER A 149	61.053 -9.650 17.782 1.00 15.91	Q
	ATOM 1307 N TYR A 150	63.910 -10.546 21.224 1.00 18.44	N
	ATOM 1308 CA TYR A 150	65.065 -11.100 21.948 1.00 20.50	c
40	ATOM 1309 C TYR A 150	64.514 -11.848 23.158 1.00 21.87	C
	ATOM 1310 O TYR A 150	64.939 -12.949 23.486 1.00 31.39	
	ATCM 1311 CB TYR A 150	66.005 -9.950 22.425 1.00 13.71	c
	ATOM 1312 CG TYR A 150	66.994 -9.509 21.365 1.00 14.13	C
	ATOM 1313 CD1 TYR A 150	66.611 -8.673 20.317 1.00 14.64	c
45	ATOM 1314 CD2 TYR A 150	68.288 -10.000 21.360 1.00 18.32	C

	ATOM 1315 CE1 TYR A 150	67.487 -8.390 19.278 1.00 11.91	с
	ATOM 1316 CE2 TYR A 150	69.198 -9.682 20.345 1.00 11.10	<u>C</u>
	ATOM 1317 CZ TYR A 150	68.804 -8.900 19.326 1.00 20.95	<u>c</u>
	ATOM 1318 OH TYR A 150	69.739 -8.685 18.333 1.00 27.73	0
5	ATOM 1319 N ASN A 151	63.536 -11.249 23.801 1.00 14.83	N
	ATOM 1320 CA ASN A 151	62.903 -11.889 24.937 1.00 23.62	c
	ATOM 1321 C ASN A 151	62.417 -13.244 24.410 1.00 28.53	<u>c</u>
	ATOM 1322 O ASN A 151	62.630 -14.248 25.072 1.00 25.89	0
	ATOM 1323 CB ASN A 151	61.655 -11.113 25.439 1.00 20.95	c
10	ATOM 1324 CG ASN A 151	61.988 -9.867 26.284 1.00 15.07	
	ATOM 1325 OD1 ASN A 151	61,126 -9.020 26,466 1.00 26,72	0
	ATOM 1326 ND2 ASN A 151	63.231 -9.709 26.700 1.00 6.31	N
	ATOM 1327 N ARG A 152	61.731 -13.249 23.259 1.00 19.91	N
	ATOM 1328 CA ARG A 152	61.129 -14.465 22.687 1.00 17.62	<u>c</u>
15	ATOM 1329 C ARG A 152	62.090 -15.523 22.188 1.00 21.34	с
	ATOM 1330 O ARG A 152	61.959 -16.687 22.542 1.00 15.44	0
	ATOM 1331 CB ARG A 152	60.086 -14.148 21.610 1.00 15.30	c
	ATOM 1332 CG ARG A 152	58.672 -13.754 22.157 1.00 17.22	c
	ATOM 1333 CD ARG A 152	57.652 -13.297 21.049 1.00 9.11	с
20	ATOM 1334 NE ARG A 152	57.161 -14.419 20.241 1.00 21.05	N
	ATOM 1335 CZ ARG A 152	57.159 -14.447 18.912 1.00 28.61	с
	ATOM 1336 NH1 ARG A 152	57.590 -13.387 18.221 1.00 21.98	N
	ATOM 1337 NH2 ARG A 152	56.717 -15.528 18.262 1.00 26.11	<u>N</u>
	ATOM 1338 N GLN A 153	63.098 -15.104 21.434 1.00 16.54	<u> </u>
25	ATOM 1339 CA GLN A 153	64.044 -16.036 20.842 1.00 9.74	c
	ATOM 1340 C GLN A 153	65.082 -16.443 21.807 1.00 16.70	c
	ATOM 1341 0 GLN A 153	65.529 -17.545 21.763 1.00 24.35	0
	ATOM 1342 CB GLN A 153	64.789 -15.372 19.714 1.00 8.99	<u>C</u>
	ATOM 1343 CG GLN A 153	65.935 -16.225 19.116 1.00 4.63	c
30	ATOM 1344 CD GLN A 153	66.315 -15.637 17.762 1.00 14.17	c
	ATOM 1345 OE1 GLN A 153	65.611 -14.763 17.254 1.00 12.53	0
	ATOM 1346 NE2 GLN A 153	67.466 -16.024 17.228 1.00 13.38	<u>N</u>
	ATOM 1347 N TYR A 154	65.566 -15.518 22.608 1.00 14.35	N
	ATOM 1348 CA TYR A 154	66.677 -15.839 23.483 1.00 12.16	c
35	ATOM 1349 C TYR A 154	66.323 -15.930 24.954 1.00 19.06	c
	ATOM 1350 O TYR A 154	67.185 -16.207 25.777 1.00 25.59	0
	ATOM 1351 CB TYR A 154	67.829 -14.816 23.326 1.00 16.89	
	ATOM 1352 CG TYR A 154	68.418 -14.733 21.943 1.00 17.53	c
	ATOM 1353 CD1 TYR A 154	69.259 -15.726 21.467 1.00 18.91	С
40	ATOM 1354 CD2 TYR A 154	68,080 -13.712 21.091 1.00 13.97	<u>c</u>
	ATOM 1355 CE1 TYR A 154	69.782 -15.686 20.190 1.00 10.98	c
	ATOM 1356 CE2 TYR A 154	68.621 -13.639 19.806 1.00 23.81	c
	ATOM 1357 CZ TYR A 154	69.408 -14.634 19.380 1.00 23.08	С
	ATOM 1358 OH TYR A 154	70.002 -14.619 18.118 1.00 23.87	0
45	ATOM 1359 N GLY A 155	65.080 -15.686 25.313 1.00 12.08	<u> </u>

	ATOM 1360 CA GLY A 155	64.747 -15.702 26.731 1.00 15.80	C
	ATOM 1361 C GLY A 155	65.323 -14.498 27.580 1.00 33.97	с
	ATOM 1362 O GLY A 155	65.491 -14.640 28.789 1.00 25.76	
	ATOM 1363 N ARG A 156	65.564 -13.318 26.981 1.00 25,91	N.
5	ATOM 1364 CA ARG A 156	66.066 -12.146 27.734 1.00 14.13	C
	ATOM 1365 C ARG A 156	64.971 -11.486 28.581 1.00 16.23	c
	ATOM 1366 O ARG A 156	63.802 -11.919 28.583 1.00 22.61	0
	ATOM 1367 CB ARG A 156	66.601 -11.124 26.750 1.00 13.16	<u>c</u>
	ATOM 1368 CG ARG A 156	67.875 -11.570 26.099 1.00 15.18	C
10	ATOM 1369 CD ARG A 156	68.930 -11.418 27.121 1.00 26.42	c
	ATOM 1370 NE ARG A 156	70,200 -11,912 26,633 1.00 21,25	N
	ATOM 1371 CZ ARG A 156	71.092 -12.555 27.386 1.00 42.25	C
	ATOM 1372 NH1 ARG A 156	70.870 -12.795 28.679 1.00 20.02	N
	ATOM 1373 NH2 ARG A 156	72.221 -12.966 26.843 1.00 20.88	N
15	ATOM 1374 N ASP A 157	65.343 -10.446 29.321 1.00 16.00	N
	ATOM 1375 CA ASP A 157	64.370 -9.749 30.166 1.00 16.20	С
	ATOM 1376 C ASP A 157	64.444 -8.245 29.841 1.00 19.20	С
	ATOM 1377 O ASP A 157	64.865 -7.429 30.650 1.00 10.71	0
	ATOM 1378 CB ASP A 157	64.609 -10.061 31.652 1.00 16.50	С
20	ATOM 1379 CG ASP A 157	63.489 -9.560 32.566 1.00 26.45	С
	ATOM 1380 OD1 ASP A 157	62.433 -9.060 32.108 1.00 26.82	0
	ATOM 1381 OD2 ASP A 157	63.673 -9.653 33.784 1.00 21.88	0
	ATOM 1382 N TYR A 158	64.038 -7.921 28.620 1.00 19.41	N
	ATOM 1383 CA TYR A 158	64.099 -6.564 28.083 1.00 18.96	c
25	ATOM 1384 C TYR A 158	62.688 -5.977 28.127 1.00 22.62	С
	ATOM 1385 O TYR A 158	61.854 -6.296 27.282 1.00 10.12	o
	ATOM 1386 CB TYR A 158	64.562 -6.661 26.631 1.00 16.34	<u>c</u>
	ATOM 1387 CG TYR A 158	65.982 -7.166 26.484 1.00 12.04	c
	ATOM 1388 CD1 TYR A 158	66.789 -7.415 27.621 1.00 13.76	C
30	ATOM 1389 CD2 TYR A 158	66.544 -7.349 25.218 1.00 16.35	C
	ATOM 1390 CE1 TYR A 158	68.135 -7.786 27.482 1.00 8.18	<u>c</u>
	ATOM 1391 CE2 TYR A 158	67.886 -7.732 25.060 1.00 13.73	С
	ATOM 1392 CZ TYR A 158	68.676 -7.942 26.186 1.00 24.45	<u>C</u>
	ATOM 1393 OH TYR A 158	69.993 -8.338 25.997 1.00 14.36	0
35	ATOM 1394 N ARG A 159	62,423 -5,200 29,175 1.00 23,53	N
	ATOM 1395 CA ARG A 159	61.105 -4.603 29.483 1.00 21.15	c
	ATOM 1396 C ARG A 159	60.930 -3.172 28.878 1.00 23.55	С
	ATOM 1397 O ARG A 159	61.911 -2.566 28.424 1.00 18.12	0
	ATOM 1398 CB ARG A 159	60.891 -4.608 31.034 1.00 21.68	. <u>C</u>
40	ATOM 1399 CG ARG A 159	60.986 -6.029 31.722 1.00 16.41	c
	ATOM 1400 CD ARG A 159	61.135 -6.052 33.233 1.00 18.10	С
	ATOM 1401 NE ARG A 159	61.305 -7.402 33.772 1.00 19.25	<u> </u>
	ATOM 1402 CZ ARG A 159	61.164 -7.720 35.058 1.00 36.67	c
	ATOM 1403 NH1 ARG A 159	60.886 -6.776 35.962 1.00 15.32	N
45	ATOM 1404 NH2 ARG A 159	61.309 -8.986 35.448 1.00 11.79	N

	ATOM 1405 N SER A 160	59.689 -2.661 28.859 1.00 24.44	N
	ATOM 1406 CA SER A 160	59.312 -1.393 28.200 1.00 21.59	с
	ATOM 1407 C SER A 160	58.242 -0.577 28.950 1.00 25.07	c
	ATOM 1408 O SER A 160	57.257 -1.127 29.454 1.00 17.02	0
5	ATOM 1409 CB SER A 160	58,719 -1.747 26,797 1.00 13.05	<u>C</u>
	ATOM 1410 OG SER A 160	59.782 -1.897 25.885 1.00 37.57	0
	ATOM 1411 N VAL A 161	58.378 0.742 28.927 1.00 21.01	N
	ATOM 1412 CA VAL A 161	57,369 1.644 29.509 1.00 9.70	<u>c</u>
	ATOM 1413 C VAL A 161	57.068 2.747 28.504 1.00 16.77	c
10	ATOM 1414 0 VAL A 161	57,955 3.149 27,729 1.00 16.33	0
	ATOM 1415 CB VAL A 161	57.806 2.248 30.862 1.00 17.94	c
	ATOM 1416 CG1 VAL A 161	57.873 1.185 31,984 1.00 16.16	C
	ATOM 1417 CG2 VAL A 161	59.137 2.992 30.750 1.00 21.10	C
	ATOM 1418 N MET A 162	55,794 3.147 28.443 1.00 22.46	N
15	ATOM 1419 CA MET A 162	55.296 4.185 27.513 1.00 19.23	С
	ATOM 1420 C MET A 162	54.880 5.312 28.397 1.00 25.19	С
	ATOM 1421 0 MET A 162	53.788 5.269 28.961 1.00 18.35	. 0
	ATOM 1422 CB MET A 162	53.979 3.796 26.850 1.00 15.55	С
	ATOM 1423 CG MET A 162	54.013 2.630 25.949 1.00 37.79	c
20	ATOM 1424 SD MET A 162	54.354 3.100 24.235 1.00 52.07	S
	ATOM 1425 CE MET A 162	56.193 3.134 24.410 1.00 36.30	c
	ATOM 1426 N PRO A 163	55.730 6.313 28.521 1.00 18.43	N
	ATOM 1427 CA PRO A 163	55.390 7.472 29.337 1.00 17.76	С
	ATOM 1428 C PRO A 163	54.300 8.384 28.667 1.00 21.23	
25	ATOM 1429 0 PRO A 163	54.208 8.448 27.433 1.00 15.20	0
23	ATOM 1430 CB PRO A 163	56.727 8.196 29.423 1.00 11.43	C
	ATOM 1431 CG PRO A 163	57.352 7.874 28.031 1.00 13.99	С
	ATOM 1432 CD PRO A 163	57.086 6.401 27.949 1.00 12.24	C
	ATOM 1433 N THR A 164	53.478 9.060 29.478 1.00 13.95	N
30	ATOM 1434 CA THE A 164	52,581 10,121 28,963 1,00 25,82	c
50		53.406 11.441 28.781 1.00 19.67	С
		54.633 11.393 28.868 1.00 13.97	
		51.373 10.391 29.903 1.00 25.51	C
		50.470 11.321 29.267 1.00 14.77	
35		51.818 10.886 31.298 1.00 9.06	C
33	ATOM 1439 CG2 THR A 164	52.751 12.589 28.556 1.00 14.99	N
	ATOM 1440 N ASN A 165 ATOM 1441 CA ASN A 165	53,448 13,901 28,481 1,00 7.83	c
		54.167 14.064 29.824 1.00 11.21	C
	ATOM 1442 C ASN A 165	53.554 13.929 30.894 1.00 17.66	0
40	ATOM 1443 O ASN A 165		c
40	ATOM 1444 CB ASN A 165	52.434 15.061 28.416 1.00 14.48	c
	ATOM 1445 CG ASN A 165	51.492 14.941 27.262 1.00 23.70	
	ATOM 1446 OD1 ASN A 165	51.939 14.800 26.129 1.00 22.37	<u>_</u>
	ATOM 1447 ND2 ASN A 165	50.173 14.925 27.539 1.00 27.22	N
	ATOM 1448 N LEU A 166	55.418 14.490 29.777 1.00 8.23	N
45	ATOM 1449 CA LEU A 166	56.187 14.604 30.994 1.00 14.40	<u>c</u>

	ATOM 145	0 C	LEU A 166	56.629	16.017	31.120	1.00 25.05	c
	ATOM 145	1 0	LEU A 166	56.624	16.718	30.125	1.00 25.09	0
	ATOM 145	2 CB	LEU A 166	57.460	13.743	30.870	1.00 17.48	c
	ATOM 145	3 CG	LEU A 166	57.423	12.218	30.652	1.00 16.63	c
5	ATOM 145	4 CD1	LEU A 166	58.837	11.639	31.000	1.00 22.52	c
	ATOM 145	5 CD2	LEU A 166	56.336	11.539	31.514	1.00 7.46	c
	ATOM 145	6 N	TYR A 167	57.146	16.391	32.300	1.00 19.78	N
	ATOM 145	7_CA	TYR A 167	57.678	17.760	32.511	1.00 18.58	c
	ATOM 1458	<u> </u>	TYR A 167	58.534	17.763	33.767	1.00 15.53	c
10	ATOM 1459	9 0	TYR A 167	58.474	16.852	34.575	1.00 16.71	Q
	ATOM 1460	СВ	TYR A 167	56.509	18.778	32.665	1.00 18.33	c
	ATOM 146	L CG	TYR A 167	55.671	18.561	33,931	1.00 14.23	с
	ATOM 1462	CD1	TYR A 167	54.624	17.618	33.977	1.00 13.35	с
	ATOM 1463	CD2	TYR A 167	55.984	19.258	35.106	1.00 16.52	с
15	ATOM 1464	CE1	TYR A 167	53.889	17.446	35.146	1.00 21.17	C
	ATOM 1465	CE2	TYR A 167	55.302	19.084	36.264	1.00 8.26	c
	ATOM 1466	5 CZ	TYR A 167	54.228	18.203	36.296	1.00 23.56	C
	ATOM 1467	7 OH	TYR A 167	53.526	18.078	37.504	1.00 22.81	0
	ATOM 1468	3 N	GLY A 168	59.334	18.797	33.952	1.00 16.59	N
20	ATOM 1469	CA CA	GLY A 168	60.158	18.817	35.152	1.00 18.21	с
	ATOM 1470) C	GLY A 168	61.534	19.428	34.880	1.00 13.69	<u>C</u>
	ATOM 1471	٥	GLY A 168	61.746	20.028	33.837	1.00 16.52	0
	ATOM 1472	N.	PRO A 169	62.473	19.263	35.817	1.00 20.33	N
	ATOM 1473	CA.	PRO A 169	63.801	19.822	35.656	1.00 16.07	c
25	ATOM 1474	C	PRO A 169	64.430	19.353	34.387	1.00 27.18	c
	ATOM 1475	0	PRO A 169	64.305	18.186	33.981	1.00 21.23	<u> </u>
	ATOM 1476	СВ	PRO A 169	64.595	19.206	36.805	1.00 17.28	c
	ATOM 1477	CG	PRO A 169	63.649	18.919	37.830	1.00 19.89	C
	ATOM 1478	CD	PRO A 169	62.263	18.772	37.189	1.00 22.47	c
30	ATOM 1479	N N	HIS A 170	65.226	20.235	33.829	1.00 19.48	N
	ATOM 1480	CA	HIS A 170	65.952	19.877	32,638	1.00 25.56	c
	ATOM 1481	. с	HIS A 170	65.096	19.707	31.428	1.00 29.15	C
	ATOM 1482	0	HIS A 170	65.553	19.091	30.479	1.00 29.71	0
	ATOM 1483	СВ	HIS A 170	66.783	18.600	32.845	1.00 28.94	С
35	ATOM 1484	CG	HIS A 170	67,703	18.671	34.034	1.00 33.88	С
	ATOM 1485	ND1	HIS A 170	68.975	19.203	33.969	1.00 25.46	<u> </u>
	ATOM 1486	CD2	HIS A 170	67.518	18.298	35.326	1.00 34.77	С
	ATOM 1487	CE1	HIS A 170	69,531	19.151	35.166	1.00 25.63	c
	ATOM 1488	NE2	HIS_A_170	68.673	18.603	36.008	1.00 31.72	<u>N</u>
40	ATOM 1489	N_	ASP A 171	63,881	20.245	31.440	1.00 21.52	N
	ATOM 1490	CA	ASP A 171	63.041	20.267	30.218	1.00 28.63	C
	ATOM 1491	. с	ASP A 171	63.630	21.459	29.359	1.00 41.94	c
	ATOM 1492	0	ASP A 171	64.534	22.171	29.835	1.00 29.69	o
	ATOM 1493	СВ	ASP A 171	61.552	20.558	30.602	1.00 26.40	с
45	ATOM 1494	CG	ASP A 171	60.552	20.097	29.540	1.00 22.32	С

	ATOM 1495 O	D1 ASP A 171	60.890	20.067	28.325	1.00 32.03	0
	ATOM 1496 O	D2 ASP A 171	59.427	19.719	29,916	1.00 42.13	0
	ATOM 1497 N	ASN A 172	63.141	21,712	28.137	1.00 42.08	N
	ATOM 1498 C	A ASN A 172	63.616	22.893	27.388	1.00 35.95	C
5	ATOM 1499 C	ASN A 172	62.665	24.056	27.674	1.00 33.71	с
	ATOM 1500 O	ASN A 172	61.586	24.102	27.104	1.00 32.69	
	ATOM 1501 C	B ASN A 172	63.632	22.667	25.869	1.00 41.60	C
	ATOM 1502 C	G ASN A 172	63.807	23.987	25.086	1.00 39.09	с
	ATOM 1503 O	D1 ASN A 172	62.973	24.347	24.259	1.00 83.94	0
10	ATOM 1504 N	D2 ASN A 172	64.855	24.740	25.418	1.00 65.07	N
	ATOM 1505 N	PHE A 173	63.021	24.953	28.583	1.00 31.93	N
	ATOM 1506 C	A PHE A 173	62.082	26.030	28.944	1.00 48.24	<u>c</u>
	ATOM 1507 C	PHE A 173	61.989	27.260	28.045	1.00 69.01	с
	ATOM 1508 O	PHE A 173	62.278	28.395	28.465	1.00 58.79	0
15	ATOM 1509 C	B PHE A 173	62,225	26.459	30.390	1.00 43.43	<u>c</u>
	ATOM 1510 C	G PHE A 173	61.867	25.399	31.356	1.00 34.19	с
	ATOM 1511 C	D1 PHE A 173	62.810	24.488	31.751	1.00 24.68	c
	ATOM 1512 C	D2 PHE A 173	60.621	25.354	31.925	1.00 24.84	с
	ATOM 1513 C	E1 PHE A 173	62.524	23.548	32.682	1.00 23.64	с
20	ATOM 1514 C	E2 PHE A 173	60.305	24.366	32.804	1.00 31.32	с
	ATOM 1515 C	Z PHE A 173	61.263	23.457	33.192	1.00 24.30	Ç
	ATOM 1516 N	HIS A 174	61.510	27.036	26.831	1.00_68.16	N
	ATOM 1517 C	A HIS A 174	61.401	28.109	25,871	1.00 64.53	<u>c</u>
	ATOM 1518 C	HIS A 174	59.973	28.221	25.400	1.00 71.58	<u>c</u>
25	ATOM 1519 0	HIS A 174	59.309	27.186	25.249	1.00 73.20	o
	ATOM 1520 C	B HIS A 174	62.418	27.870	24.736	1.00 71.71	<u>C</u>
	ATOM 1521 C	G HIS A 174	63.835	27.868	25.229	1.00 92.29	c
	ATOM 1522 N	D1 HIS A 174	64.921	27.539	24.440	1.00100.00	N
	ATOM 1523 C	D2 HIS A 174	64.338	28.133	26.463	1.00100.00	с
30	ATOM 1524 C	E1 HIS A 174	66.032	27.628	25.160	1.00100.00	<u>c</u>
	ATOM 1525 N	E2 HIS A 174	65.705	27.981	26.393	1.00100.00	N
	ATOM 1526 N	PRO A 175	59.469	29.461	25.262	1.00 65.71	N
	ATOM 1527 C	A PRO A 175	58.109	29,658	24.770	1.00 55.72	<u>c</u>
	ATOM 1528 C	PRO A 175	58,233	29.297	23.267	1.00 75.83	c
35	ATOM 1529 O	PRO A 175	57.224	29.226	22.554	1.00 69.59	0
	ATOM 1530 C	B PRO A 175	57.866	31.142	25.026	1.00 49.14	c
	ATOM 1531 C	G PRO A 175	59,258	31.790	24.901	1.00 42.23	c
	ATOM 1532 C	D PRO A 175	60.286	30.695	25.109	1.00 49.59	c
	ATOM 1533 N	SER A 176	59,480	28.954	22.879	1.00 85.09	N
40	ATOM 1534 C	A SER A 176	59.954	28.474	21.548	1.00 81.18	<u>c</u>
	ATOM 1535 C	SER A 176	59.660	26.965	21.343	1.00 73.90	<u> </u>
	ATOM 1536 O	SER A 176	59.617	26.458	20.213	1.00 57.03	
	ATOM 1537 C	B SER A 176	61.493	28.666	21.447	1.00 71.32	<u>C</u>
	ATOM 1538 O	G SER A 176	62.048		22.578	1.00 51.93	0
45	ATOM 1539 N	ASN A 177	59.520	26.276	22,480	1.00 66.23	N

ATOM 1541 C ASN A 177 57.810 24.497 22.353 1.00 60.91 C ATOM 1542 O ASN A 177 56.914 25.215 22.811 1.00 55.58 O ATOM 1543 CB ASN A 177 59.619 24.469 24.065 1.00 50.45 C ATOM 1544 CG ASN A 177 59.562 22.970 24.319 1.00 66.57 C ATOM 1545 OD1 ASN A 177 59.095 22.216 23.476 1.00100.00 O ATOM 1546 ND2 ASN A 177 60.099 22.546 25.464 1.00 35.61 N ATOM 1547 N SER A 178 57.583 23.387 21.627 1.00 57.10 N ATOM 1548 CA SER A 178 56.234 22.853 21.279 1.00 50.50 C				
ATCH 1542 O ASN A 177 56.914 25.215 22.811 1.00 55.59 O ATCM 1543 CB ASN A 177 59.619 24.469 24.065 1.00 50.45 C ATCM 1544 CG ASN A 177 59.619 24.469 24.065 1.00 50.45 C ATCM 1545 CD1 ASN A 177 59.095 22.216 23.476 1.00100.00 O ATCM 1546 ND2 ASN A 177 69.099 22.546 25.464 1.00 35.61 N ATCM 1547 N SER A 178 57.583 23.387 21.627 1.00 57.10 N ATCM 1548 CA SER A 178 56.234 22.853 21.279 1.00 50.50 C ATCM 1549 C SER A 178 55.557 22.159 22.491 1.00 76.24 C ATCM 1559 C SER A 178 55.557 22.159 22.491 1.00 76.24 C ATCM 1550 O SER A 178 55.357 22.159 22.491 1.00 76.24 C ATCM 1550 C SER A 178 55.357 22.119 22.491 1.00 76.24 C ATCM 1551 CB SER A 178 55.357 22.119 22.491 1.00 76.24 C ATCM 1552 CG SER A 178 55.316 21.800 20.118 1.00 10.17 C ATCM 1553 N HIS A 179 56.316 21.800 20.118 1.00 10.17 C ATCM 1555 CG SER A 178 55.559 21.587 24.855 1.00 30.96 C ATCM 1555 C HIS A 179 55.569 21.587 24.855 1.00 30.96 C ATCM 1555 C HIS A 179 55.641 23.598 26.138 1.00 25.17 C ATCM 1555 C HIS A 179 55.641 23.598 26.138 1.00 25.17 C ATCM 1555 C HIS A 179 56.931 91.49 24.835 1.00 42.90 C 20 ATCM 1556 C HIS A 179 56.973 19.335 23.457 1.00 24.90 C 20 ATCM 1556 D HIS A 179 56.973 19.335 23.457 1.00 24.90 C 20 ATCM 1556 D HIS A 179 55.697 19.339 24.168 1.00 50.49 N ATCM 1566 CD2 HIS A 179 57.283 18.109 25.278 1.00 50.49 N ATCM 1566 CD2 HIS A 179 57.283 18.109 25.278 1.00 50.49 N ATCM 1566 CD2 HIS A 179 57.283 18.109 25.278 1.00 51.29 C ATCM 1566 CD HIS A 180 53.366 22.454 26.038 1.00 19.14 N ATCM 1566 CD2 HIS A 180 53.368 23.449 26.789 1.00 29.03 C ATCM 1567 CE VAL A 180 53.368 23.449 26.789 1.00 29.03 C ATCM 1567 CE VAL A 180 53.368 23.449 26.789 1.00 29.03 C ATCM 1568 C VAL A 180 53.368 23.449 26.789 1.00 29.03 C ATCM 1568 C PRO A 182 55.642 2.595 29.005 1.00 24.49 C ATCM 1567 CG VAL A 180 53.661 22.454 26.038 1.00 19.14 N ATCM 1568 C PRO A 182 55.664 29.559 29.560 1.00 24.49 C ATCM 1567 CG VAL A 180 55.665 29.680 1.00 24.49 C ATCM 1570 N FRO A 182 55.664 24.695 29.580 1.00 24.49 C ATCM 1570 N FRO A 182 55.665 29.580 1.00 24.49 C ATCM 1570 C PR		ATOM 1540 CA ASN A 1	77 59.274 24.847 22.619 1.00 56.41	C
ATCM		ATOM 1541 C ASN A 1	77 57.810 24.497 22.353 1.00 60.91	<u>c</u>
ATCH 1544 CG ASN A 177 59.562 22.970 24.319 1.00 66.57 CC ATCH 1545 ODL ASN A 177 59.095 22.216 23.476 1.00100.00 O ATCH 1546 ND2 ASN A 177 60.099 22.216 23.476 1.00100.00 O ATCH 1547 N SER A 178 57.583 23.387 21.627 1.00 57.10 N ATCH 1549 C SER A 178 56.234 22.853 21.279 1.00 57.10 N ATCH 1549 C SER A 178 56.234 22.853 21.279 1.00 50.50 C ATCH 1550 O SER A 178 56.316 21.800 22.118 1.00 10.17 C ATCH 1551 CB SER A 178 56.316 21.800 22.118 1.00 10.17 C ATCH 1552 OG SER A 178 56.316 21.800 20.118 1.00 10.17 C ATCH 1553 N NIS A 179 56.334 22.284 23.694 1.00 37.39 N ATCH 1555 C HIS A 179 55.569 21.587 24.855 1.00 30.96 C ATCH 1555 C HIS A 179 55.641 23.598 26.138 1.00 25.17 O ATCH 1555 C HIS A 179 55.641 23.598 25.575 1.00 26.50 C ATCH 1559 NDI HIS A 179 56.973 19.419 24.835 1.00 42.90 C ATCH 1559 NDI HIS A 179 56.973 19.419 24.835 1.00 42.90 C ATCH 1559 NDI HIS A 179 55.641 23.598 25.575 1.00 36.20 C ATCH 1559 NDI HIS A 179 57.283 18.190 25.278 1.00 42.90 C ATCH 1559 NDI HIS A 179 57.283 18.190 25.278 1.00 42.90 C ATCH 1559 NDI HIS A 179 57.833 18.190 25.278 1.00 42.90 C ATCH 1560 CD2 HIS A 179 57.833 18.190 25.278 1.00 42.90 C ATCH 1561 CRI HIS A 179 57.833 18.190 25.278 1.00 42.90 C ATCH 1563 N VAL A 180 53.661 22.454 26.038 1.00 19.14 N ATCH 1565 C VAL A 180 53.661 22.454 26.038 1.00 19.14 N ATCH 1566 CD2 VAL A 180 53.661 22.454 26.038 1.00 19.14 N ATCH 1567 CB VAL A 180 53.682 24.459 27.217 1.00 31.29 C ATCH 1569 CG2 VAL A 180 53.682 24.459 26.789 1.00 29.03 C ATCH 1569 CG2 VAL A 180 53.681 24.399 27.217 1.00 35.47 C ATCH 1569 CG2 VAL A 180 53.681 24.2935 22.084 1.00 24.478 C ATCH 1570 N ILE A 181 55.262 25.315 30.909 1.00 24.42 O ATCH 1570 N ILE A 181 55.262 25.315 30.909 1.00 24.42 O ATCH 1570 C ILE A 181 55.262 25.315 30.909 1.00 24.42 O ATCH 1570 C ILE A 181 55.262 25.315 30.909 1.00 24.42 O ATCH 1570 C ILE A 181 55.262 25.315 30.909 1.00 24.42 O ATCH 1570 C ILE A 181 55.266 22.3779 29.184 1.00 18.22 C ATCH 1570 C C ILE A 181 55.266 23.379 29.100 1.00 24.47 O ATCH 1570 C ILE A 181 55.267 20.086 32.288 1.00		ATOM 1542 O ASN A 1	77 56.914 25.215 22.811 1.00 55.58	0
ATCN 1545 ODI ASN A 177 59.095 22.216 23.476 1,00100.00 O ATCN 1546 ND2 ASN A 177 60.099 22.546 25.464 1.00 35.61 N ATCN 1547 N SER A 178 57.583 23.387 21.627 1.00 57.10 N ATCN 1549 CA SER A 178 56.234 22.853 21.279 1.00 50.50 C ATCN 1549 C SER A 178 56.234 22.853 21.279 1.00 50.50 C ATCN 1550 O SER A 178 56.234 22.853 21.279 1.00 50.50 C ATCN 1551 CB SER A 178 56.316 21.800 20.118 1.00 10.17 C ATCN 1552 CG SER A 178 57.397 22.112 19.217 1.00 71.69 O ATCN 1553 N NIS A 179 56.134 22.284 23.694 1.00 37.39 N ATCN 1555 C NIS A 179 55.569 21.587 24.855 1.00 30.96 C ATCN 1555 C NIS A 179 55.561 22.516 25.767 1.00 21.93 C ATCN 1555 C NIS A 179 55.641 23.598 26.138 1.00 25.17 O ATCN 1558 CG RIS A 179 56.634 20.683 25.575 1.00 36.20 C ATCN 1559 ND HIS A 179 56.634 20.683 25.575 1.00 36.20 C ATCN 1559 CG RIS A 179 56.634 20.683 25.575 1.00 36.20 C ATCN 1559 CG RIS A 179 56.634 20.683 25.575 1.00 36.20 C ATCN 1559 CG RIS A 179 56.634 20.683 25.575 1.00 36.20 C ATCN 1559 CG RIS A 179 56.634 20.683 25.575 1.00 36.20 C ATCN 1550 CD2 RIS A 179 57.323 18.190 23.278 1.00 49.52 N ATCN 1560 CD2 RIS A 179 57.323 18.190 23.278 1.00 52.42 C ATCN 1560 CD2 RIS A 179 57.283 18.109 23.284 1.00 44.78 C ATCN 1563 N VAL A 180 53.661 22.454 26.038 1.00 19.14 N ATCN 1565 C VAL A 180 53.661 22.454 26.038 1.00 19.14 N ATCN 1565 C VAL A 180 53.661 22.454 26.038 1.00 19.14 N ATCN 1565 C C VAL A 180 53.373 23.3890 28.142 1.00 35.47 C ATCN 1569 CG2 VAL A 180 53.363 23.357 28.407 1.00 35.84 C ATCN 1569 CG2 VAL A 180 53.333 23.357 28.00 1.00 24.42 C ATCN 1569 CG2 VAL A 180 53.361 22.454 26.038 1.00 19.14 N ATCN 1569 CG2 VAL A 180 53.361 22.454 26.038 1.00 19.14 N ATCN 1569 CG2 VAL A 180 53.361 22.255 23.663 1.00 36.11 C ATCN 1569 CG2 VAL A 180 53.373 23.3890 28.142 1.00 19.55 C ATCN 1569 CG2 VAL A 180 53.373 23.3890 28.142 1.00 19.55 C ATCN 1569 CG2 VAL A 180 53.373 23.3890 28.142 1.00 19.55 C ATCN 1570 N ILE A 181 55.642 23.779 29.205 1.00 26.57 N ATCN 1570 C ILE A 181 55.364 22.375 29.405 1.00 24.42 C ATCN 1570 C ILE A 181 55.642 23.779 29.718 1.0		ATOM 1543 CB ASN A 1	77 59.619 24.469 24.065 1.00 50.45	C
ATCM 1546 ND2 ASN A 177 60.099 22.546 25.464 1.00 35.61 N ATCM 1547 N SER A 178 57.583 23.387 21.627 1.00 57.10 N ATCM 1548 CA SER A 178 56.234 22.853 21.279 1.00 50.50 C ATCM 1549 C SER A 178 55.557 22.159 22.491 1.00 76.24 C ATCM 1550 O SER A 178 55.557 22.159 22.491 1.00 76.24 C ATCM 1551 CB SER A 178 55.557 22.159 22.491 1.00 10.17 C ATCM 1552 OG SER A 178 55.316 21.800 20.118 1.00 10.17 C ATCM 1553 N HIS A 179 56.316 21.800 20.118 1.00 10.17 C ATCM 1555 C HIS A 179 55.569 21.587 24.855 1.00 30.96 C ATCM 1555 C HIS A 179 55.569 21.587 24.855 1.00 30.96 C ATCM 1557 CB HIS A 179 55.641 23.598 26.138 1.00 25.17 O ATCM 1558 CG HIS A 179 56.691 20.683 25.575 1.00 36.20 C ATCM 1558 CG HIS A 179 55.691 20.883 25.575 1.00 36.20 C ATCM 1558 CG HIS A 179 55.691 20.883 25.575 1.00 36.20 C ATCM 1558 CG HIS A 179 55.691 20.883 25.575 1.00 36.20 C ATCM 1558 CG HIS A 179 55.693 19.335 23.457 1.00 42.90 C ATCM 1556 CD2 HIS A 179 57.223 18.190 25.278 1.00 29.20 C ATCM 1556 CD2 HIS A 179 57.283 18.190 25.278 1.00 29.20 C ATCM 1566 CD2 HIS A 179 57.283 18.190 25.278 1.00 29.03 C ATCM 1567 ND1 HIS A 179 57.283 18.190 25.278 1.00 29.03 C ATCM 1568 CD2 HIS A 179 57.30 17.393 24.168 1.00 19.55 C ATCM 1568 CD HIS A 179 57.30 18.190 25.278 1.00 50.49 N ATCM 1565 C VAL A 180 53.361 22.459 26.038 1.00 19.14 N ATCM 1565 C VAL A 180 53.373 23.890 28.142 1.00 55.42 C ATCM 1566 C VAL A 180 53.373 23.890 28.142 1.00 31.29 C ATCM 1567 CB VAL A 180 53.373 23.890 28.142 1.00 31.29 C ATCM 1567 CB VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATCM 1567 CB VAL A 180 53.373 23.890 28.142 1.00 31.29 C ATCM 1570 N ILE A 181 54.285 22.00 31.00 26.57 N ATCM 1570 N ILE A 181 55.376 22.018 31.264 1.00 24.19 C ATCM 1570 N ILE A 181 55.326 25.315 30.909 1.00 24.42 O ATCM 1570 N ILE A 181 55.326 25.315 30.909 1.00 24.42 O ATCM 1570 N ILE A 181 55.326 25.315 30.909 1.00 24.42 O ATCM 1570 N ILE A 181 55.326 25.315 30.909 1.00 24.42 O ATCM 1570 N ILE A 181 55.326 25.315 30.909 1.00 24.42 O ATCM 1570 N PRO A 182 57.864 22.935 29.005 1.00 26.57 N ATCM 1570 N PR	5	ATOM 1544 CG ASN A 1	77 59.562 22.970 24.319 1.00 66.57	<u> </u>
ATOM 1547 N SER A 178 57.583 23.387 21.627 1.00 57.10 N ATOM 1548 CA SER A 178 55.234 22.853 21.279 1.00 50.50 C ATOM 1549 C SER A 178 55.577 22.159 22.491 1.00 50.50 C ATOM 1550 O SER A 178 55.577 22.159 22.491 1.00 76.24 C ATOM 1551 CB SER A 178 54.575 21.400 22.304 1.00 99.63 O ATOM 1552 OG SER A 178 57.397 22.112 19.217 1.00 71.69 O ATOM 1553 N HIS A 179 56.316 21.800 20.118 1.00 10.17 C ATOM 1553 N HIS A 179 55.569 21.587 24.855 1.00 30.96 C ATOM 1555 C HIS A 179 55.569 21.587 24.855 1.00 30.96 C ATOM 1555 C HIS A 179 55.641 22.516 25.767 1.00 21.93 C ATOM 1556 O HIS A 179 55.641 23.598 26.138 1.00 25.17 O ATOM 1559 ND1 HIS A 179 56.973 19.335 23.457 1.00 36.20 C ATOM 1550 CD2 HIS A 179 57.223 18.190 25.278 1.00 36.20 C ATOM 1560 CD2 HIS A 179 57.223 18.190 25.278 1.00 44.78 C ATOM 1560 CD2 HIS A 179 57.223 18.190 25.278 1.00 52.42 C ATOM 1563 N VAL A 180 53.661 22.454 26.038 1.00 19.14 N ATOM 1566 CD VAL A 180 53.661 22.454 26.038 1.00 19.14 N ATOM 1566 CD VAL A 180 53.348 25.075 28.447 1.00 29.03 C ATOM 1567 CB VAL A 180 53.348 25.075 28.447 1.00 19.55 O ATOM 1567 CB VAL A 180 53.348 25.075 28.447 1.00 19.55 O ATOM 1568 CGI VAL A 180 53.348 25.075 28.447 1.00 19.55 O ATOM 1567 CB VAL A 180 53.348 25.075 28.447 1.00 19.55 O ATOM 1568 CGI VAL A 180 53.348 25.075 28.447 1.00 19.55 O ATOM 1567 CB VAL A 180 53.488 23.255 29.005 1.00 26.577 N ATOM 1568 CGI VAL A 180 53.488 23.255 29.005 1.00 26.577 N ATOM 1570 N ILE A 181 55.641 22.235 29.005 1.00 26.577 N ATOM 1570 CGI LE A 181 55.642 22.935 29.005 1.00 26.577 N ATOM 1570 CGI LE A 181 55.676 22.218 31.528 1.00 19.12 C ATOM 1570 N ILE A 181 55.676 22.218 31.528 1.00 19.12 C ATOM 1570 N ILE A 181 55.676 22.218 31.528 1.00 19.12 C ATOM 1570 N ILE A 181 55.676 22.218 31.528 1.00 18.22 C ATOM 1570 CGI LE A 181 55.371 24.213 30.361 1.00 16.51 C ATOM 1570 N ILE A 181 55.672 23.779 29.718 1.00 22.07 C ATOM 1570 N PRO A 182 57.664 24.605 29.640 1.00 22.07 C ATOM 1570 C PRO A 182 55.766 24.605 29.640 1.00 24.49 C		ATOM 1545 OD1 ASN A 1	77 59.095 22.216 23.476 1.00100.00	0
ATOM 1549 CA SER A 178 56.234 22.853 21.279 1.00 50.50 C ATOM 1549 C SER A 178 55.557 22.159 22.491 1.00 76.24 C ATOM 1550 O SER A 178 55.557 22.159 22.491 1.00 76.24 C ATOM 1551 CA SER A 178 56.316 21.800 20.118 1.00 10.17 C ATOM 1552 OG SER A 178 56.316 21.800 20.118 1.00 10.17 C ATOM 1553 N HIS A 179 56.134 22.284 23.694 1.00 37.39 N ATOM 1555 C HIS A 179 55.569 21.587 24.855 1.00 30.96 C ATOM 1555 C HIS A 179 55.641 23.598 26.138 1.00 25.17 O ATOM 1556 O HIS A 179 55.6641 23.598 26.138 1.00 25.17 O ATOM 1557 CB HIS A 179 56.634 20.683 25.575 1.00 36.20 C ATOM 1558 CG HIS A 179 56.634 20.683 25.575 1.00 36.20 C ATOM 1558 CG HIS A 179 56.973 19.419 24.835 1.00 42.90 C ATOM 1550 CD2 HIS A 179 57.323 18.190 25.278 1.00 52.42 CG ATOM 1560 CD2 HIS A 179 57.283 18.190 25.278 1.00 52.42 CG ATOM 1561 CEI HIS A 179 57.283 18.190 25.278 1.00 42.90 CG ATOM 1563 N VAL A 180 53.661 22.454 26.038 1.00 44.78 CG ATOM 1565 C VAL A 180 53.661 22.454 26.038 1.00 19.14 N ATOM 1565 C VAL A 180 53.661 22.454 26.038 1.00 19.14 N ATOM 1566 CD VAL A 180 53.348 23.499 26.789 1.00 33.29 CG ATOM 1566 CG VAL A 180 53.348 23.499 26.789 1.00 33.29 CG ATOM 1567 CB VAL A 180 53.348 23.975 28.147 1.00 33.89 CG ATOM 1568 CGI VAL A 180 53.348 23.975 28.147 1.00 33.89 CG ATOM 1568 CGI VAL A 180 53.348 23.975 28.147 1.00 35.87 CG ATOM 1568 CGI VAL A 180 53.348 23.975 28.147 1.00 35.87 CG ATOM 1568 CGI VAL A 180 53.348 23.075 28.647 1.00 19.55 CG ATOM 1568 CGI VAL A 180 53.348 23.255 29.005 1.00 26.57 N ATOM 1570 CG VAL A 180 53.348 23.255 29.005 1.00 26.57 N ATOM 1570 CG VAL A 181 55.371 24.213 30.361 1.00 36.11 CG ATOM 1570 CG VAL A 181 53.664 22.935 29.005 1.00 24.49 CG ATOM 1570 CG VAL A 181 53.664 22.935 29.005 1.00 24.49 CG ATOM 1570 CG VAL A 181 53.664 22.935 29.005 1.00 24.49 CG ATOM 1570 CG VAL A 181 55.371 24.213 30.361 1.00 13.37 CG ATOM 1570 CG VAL A 181 55.364 22.935 29.005 1.00 24.49 CG ATOM 1570 CG VAL A 181 55.664 24.605 29.640 1.00 22.07 CG ATOM 1570 CG VAL A 181 55.267 23.379 29.718 1.00 24.49 CG ATOM 1570 CG VAL A 181 55.376 24		ATOM 1546 ND2 ASN A 1	77 60.099 22.546 25.464 1.00 35.61	и
10 ATCM 1549 C SER A 178 55.557 22.159 22.491 1.00 76.24 C ATCM 1550 O SER A 178 54.575 21.400 22.304 1.00 99.63 O ATCM 1551 CB SER A 178 56.316 21.800 20.118 1.00 10.17 C ATCM 1552 OG SER A 178 56.316 21.800 20.118 1.00 10.17 C ATCM 1552 OG SER A 178 57.397 22.112 19.217 1.00 71.69 O ATCM 1553 N HIS A 179 56.134 22.284 23.694 1.00 37.39 N ATCM 1555 C HIS A 179 55.569 21.587 24.855 1.00 30.96 C ATCM 1555 O HIS A 179 55.569 21.587 24.855 1.00 30.96 C ATCM 1555 O HIS A 179 55.694 22.616 25.767 1.00 21.93 C ATCM 1555 O HIS A 179 56.634 20.683 25.575 1.00 36.20 C ATCM 1555 O HIS A 179 56.634 20.683 25.575 1.00 36.20 C ATCM 1555 O HIS A 179 56.634 20.683 25.575 1.00 42.90 C ATCM 1555 ND HIS A 179 56.634 20.683 25.575 1.00 42.90 C ATCM 1555 O HIS A 179 56.973 19.419 24.835 1.00 42.90 C ATCM 1550 CD2 HIS A 179 56.973 19.419 24.835 1.00 42.90 C ATCM 1550 CD2 HIS A 179 57.323 18.109 23.084 1.00 44.78 C ATCM 1560 CD2 HIS A 179 57.323 18.109 23.084 1.00 44.78 C ATCM 1561 CD2 HIS A 179 57.500 17.393 24.168 1.00 50.49 N ATCM 1562 NE2 HIS A 179 57.500 17.393 24.168 1.00 50.49 N ATCM 1563 C NAL A 180 53.661 22.454 26.038 1.00 19.14 N ATCM 1566 C VAL A 180 53.661 22.454 26.038 1.00 19.14 N ATCM 1566 C VAL A 180 53.348 25.075 28.447 1.00 19.55 O ATCM 1566 C VAL A 180 53.348 25.075 28.447 1.00 35.47 C ATCM 1567 CB VAL A 180 53.348 25.075 28.447 1.00 35.47 C ATCM 1567 CB VAL A 180 50.23 22.550 25.663 1.00 36.11 C ATCM 1570 N ILE A 181 53.384 22.935 29.005 1.00 26.57 N ATCM 1570 N ILE A 181 53.384 22.935 29.005 1.00 26.57 N ATCM 1570 N ILE A 181 55.326 25.315 30.999 1.00 24.42 O ATCM 1571 CB ILE A 181 55.326 25.315 30.999 1.00 24.42 O ATCM 1573 O ILE A 181 55.326 25.315 30.999 1.00 24.42 O ATCM 1570 C ILE A 181 55.326 25.315 30.999 1.00 24.42 O ATCM 1570 C ILE A 181 55.326 25.315 30.999 1.00 24.42 O ATCM 1570 C ILE A 181 55.326 25.315 30.999 1.00 24.42 O ATCM 1570 C ILE A 181 55.326 25.315 30.999 1.00 24.42 O ATCM 1570 C ILE A 181 55.326 25.315 30.999 1.00 24.42 O ATCM 1570 C ILE A 181 55.326 25.315 30.999 1.00 24.42 O ATCM 1570 C		ATOM 1547 N SER A 1	78 57.583 23.387 21.627 1.00 57.10	N.
ATOM 1550 O SER A 178 54.575 21.400 22.304 1.00 99.63 O ATOM 1551 CB SER A 178 56.316 21.800 20.118 1.00 10.17 C ATOM 1552 OG SER A 178 56.316 21.800 20.118 1.00 10.17 C ATOM 1553 N HIS A 179 56.134 22.284 23.694 1.00 37.39 N ATOM 1553 N HIS A 179 55.569 21.587 24.855 1.00 30.96 C ATOM 1555 C HIS A 179 55.569 21.587 24.855 1.00 30.96 C ATOM 1555 C HIS A 179 55.634 22.616 25.767 1.00 21.93 C ATOM 1556 O HIS A 179 56.634 20.683 25.575 1.00 36.20 C ATOM 1557 CB HIS A 179 56.634 20.683 25.575 1.00 36.20 C ATOM 1558 CG HIS A 179 56.634 20.683 25.575 1.00 36.20 C ATOM 1559 ND1 HIS A 179 56.973 19.315 23.457 1.00 49.52 N ATOM 1550 CD2 HIS A 179 57.323 18.190 25.278 1.00 49.52 N ATOM 1560 CD2 HIS A 179 57.323 18.190 25.278 1.00 49.52 N ATOM 1561 CEI HIS A 179 57.283 18.190 25.278 1.00 52.42 C ATOM 1562 NEZ HIS A 179 57.500 17.393 24.168 1.00 50.49 N ATOM 1563 N VAL A 180 53.661 22.454 26.038 1.00 19.14 N ATOM 1565 C VAL A 180 53.373 23.890 28.142 1.00 31.29 C ATOM 1566 O VAL A 180 53.373 23.890 28.142 1.00 31.29 C ATOM 1569 CG2 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1570 N ILE A 181 53.684 22.935 29.005 1.00 26.57 N ATOM 1571 CA ILE A 181 54.285 22.018 31.264 1.00 20.20 C ATOM 1570 CG ILE A 181 55.312 24.213 30.361 1.00 16.51 C ATOM 1570 N ILE A 181 55.326 25.315 30.909 1.00 24.42 O ATOM 1570 CG ILE A 181 55.326 25.315 30.909 1.00 24.42 O ATOM 1570 CG ILE A 181 55.326 25.315 30.909 1.00 24.49 C ATOM 1570 CG ILE A 181 55.326 25.315 30.366 1.00 36.11 C ATOM 1570 CG ILE A 181 55.326 25.315 30.909 1.00 24.90 C ATOM 1570 CG ILE A 181 55.326 25.315 30.909 1.00 24.90 C ATOM 1570 CG ILE A 181 55.866 23.779 25.852 28.808 1.00 18.22 C ATOM 1570 CG ILE A 181 55.866 23.779 25.852 28.808 1.00 24.186 C ATOM 1570 CG ILE A 181 52.867 20.086 32.286 1.00 8.03 C ATOM 1570 CG ILE A 181 52.867 20.086 3		ATOM 1548 CA SER A 1	78 56.234 22.853 21.279 1.00 50.50	c
ATOM 1551 CB SER A 178 56.316 21.800 20.118 1.00 10.17 C ATOM 1552 OG SER A 178 57.397 22.112 19.217 1.00 71.69 O ATOM 1553 N HIS A 179 55.134 22.284 23.694 1.00 37.39 N ATOM 1555 C HIS A 179 55.569 21.597 24.855 1.00 30.96 C ATOM 1555 C HIS A 179 55.641 23.598 26.138 1.00 21.93 C ATOM 1555 C HIS A 179 55.641 23.598 26.138 1.00 25.17 O ATOM 1555 C HIS A 179 55.641 23.598 26.138 1.00 25.17 O ATOM 1555 C HIS A 179 56.634 20.683 25.575 1.00 36.20 C ATOM 1555 C HIS A 179 56.634 20.683 25.575 1.00 36.20 C ATOM 1558 CG HIS A 179 56.6973 19.419 24.835 1.00 49.52 N ATOM 1559 ND1 HIS A 179 57.323 18.190 25.278 1.00 49.52 N ATOM 1560 CD2 HIS A 179 57.323 18.190 25.278 1.00 52.42 C ATOM 1561 CB1 HIS A 179 57.323 18.190 25.278 1.00 52.49 C ATOM 1562 NEZ HIS A 179 57.500 17.393 24.168 1.00 50.49 N ATOM 1562 NEZ HIS A 179 57.500 17.393 24.168 1.00 19.14 N ATOM 1564 CA VAL A 180 53.661 22.454 26.038 1.00 19.14 N ATOM 1565 C VAL A 180 53.361 22.454 26.038 1.00 19.55 O ATOM 1566 CO VAL A 180 53.348 25.075 28.447 1.00 19.55 O ATOM 1566 CO VAL A 180 53.348 25.075 28.447 1.00 19.55 O ATOM 1566 CO VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1570 N ILE A 181 53.684 22.935 29.005 1.00 26.57 N ATOM 1571 CA ILE A 181 53.684 22.935 29.005 1.00 26.57 N ATOM 1576 CG2 ILE A 181 54.383 23.225 30.360 1.00 24.49 C ATOM 1576 CG2 ILE A 181 55.312 24.213 30.361 1.00 18.22 C ATOM 1576 CG2 ILE A 181 55.326 25.315 30.909 1.00 24.49 C ATOM 1579 CA ILE A 181 55.2878 21.428 31.528 1.00 18.22 C ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.21 N ATOM 1579 CA PRO A 182 57.654 24.605 29.640 1.00 22.21 N ATOM 1579 CA PRO A 182 57.654 24.605 29.640 1.00 24.197 C ATOM 1580 C PRO A 182 57.654 23.779 29.718 1.00 24.197 C	10	ATOM 1549 C SER A 1	78 55.557 22.159 22.491 1.00 76.24	C
ATOM 1552 OG SER A 178 57.397 22.112 19.217 1.00 71.69 O ATOM 1553 N HIS A 179 56.134 22.284 23.694 1.00 37.39 N ATOM 1554 CA HIS A 179 55.569 21.587 24.855 1.00 30.96 C ATOM 1555 C HIS A 179 55.569 21.587 24.855 1.00 30.96 C ATOM 1555 C HIS A 179 55.461 22.616 25.767 1.00 25.17 O ATOM 1556 O HIS A 179 56.634 20.683 25.575 1.00 36.20 C ATOM 1557 CB HIS A 179 56.634 20.683 25.575 1.00 36.20 C ATOM 1558 CG HIS A 179 56.6973 19.419 24.835 1.00 42.90 C ATOM 1559 ND1 HIS A 179 56.973 19.419 24.835 1.00 42.90 C ATOM 1560 CD2 HIS A 179 57.323 18.190 25.278 1.00 36.22 N ATOM 1561 CEI HIS A 179 57.323 18.190 25.278 1.00 44.78 C ATOM 1562 NE2 HIS A 179 57.833 18.109 23.084 1.00 44.78 C ATOM 1563 N VAL A 180 53.661 22.454 26.038 1.00 19.14 N ATOM 1564 CA VAL A 180 53.373 23.890 28.142 1.00 31.29 C ATOM 1566 CO VAL A 180 53.373 23.890 28.142 1.00 31.29 C ATOM 1566 O VAL A 180 53.373 23.890 28.142 1.00 31.29 C ATOM 1566 O VAL A 180 53.373 23.890 28.142 1.00 31.29 C ATOM 1567 CB VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1568 CG1 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1567 CB VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1568 CG1 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1570 N ILE A 181 55.371 24.213 30.361 1.00 16.51 C ATOM 1573 O ILE A 181 55.372 24.213 30.361 1.00 16.51 C ATOM 1574 CB ILE A 181 55.366 25.315 30.909 1.00 24.42 C ATOM 1575 CG1 ILE A 181 55.366 25.315 30.909 1.00 24.42 C ATOM 1578 N PRO A 182 57.664 24.605 29.640 1.00 22.21 N ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.21 N ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.21 N ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 24.49 C ATOM 1580 C PRO A 182 57.817 26.949 29.210 1.00 24.49 C		ATOM 1550 O SER A 1	78 54.575 21.400 22.304 1.00 99.63	o
ATOM 1553 N HIS A 179 56.134 22.284 23.694 1.00 37.39 N ATOM 1554 CA HIS A 179 55.569 21.587 24.855 1.00 30.96 C ATOM 1555 C HIS A 179 55.569 21.587 24.855 1.00 30.96 C ATOM 1555 C HIS A 179 55.661 22.516 25.767 1.00 21.93 C ATOM 1555 C HIS A 179 55.661 22.598 26.138 1.00 25.17 O ATOM 1557 CB HIS A 179 56.634 20.683 25.575 1.00 36.20 C ATOM 1558 CG HIS A 179 56.6973 19.419 24.835 1.00 42.90 C ATOM 1559 ND1 HIS A 179 56.973 19.419 24.835 1.00 42.90 C ATOM 1560 CD2 HIS A 179 57.283 18.190 25.278 1.00 52.42 C ATOM 1561 CE1 HIS A 179 57.283 18.190 25.278 1.00 52.42 C ATOM 1562 NE2 HIS A 179 57.283 18.190 23.084 1.00 50.49 N ATOM 1563 N VAL A 180 53.661 22.454 26.038 1.00 19.14 N ATOM 1564 CA VAL A 180 53.368 23.449 26.789 1.00 29.03 C ATOM 1565 C VAL A 180 53.348 25.075 28.447 1.00 35.47 C ATOM 1566 O VAL A 180 53.348 25.075 28.447 1.00 35.47 C ATOM 1569 CG2 VAL A 180 53.348 25.075 28.447 1.00 35.47 C ATOM 1567 CB VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1570 N ILE A 181 53.684 22.935 29.005 1.00 26.57 N ATOM 1571 CA ILE A 181 55.371 24.213 30.361 1.00 16.51 C ATOM 1573 O ILE A 181 55.372 22.935 29.005 1.00 26.57 N ATOM 1576 CG2 ILE A 181 55.042 22.935 29.005 1.00 24.42 O ATOM 1579 CA PRO A 182 57.664 24.605 29.610 1.00 22.21 N ATOM 1579 CA PRO A 182 57.664 24.605 29.610 1.00 22.21 N ATOM 1579 CA PRO A 182 57.664 24.605 29.610 1.00 24.49 C ATOM 1579 CA PRO A 182 57.664 24.605 29.610 1.00 24.97 C ATOM 1580 C PRO A 182 57.811 26.949 29.210 1.00 24.97 C		ATOM 1551 CB SER A 17	78 56.316 21.800 20.118 1.00 10.17	c
15 ATOM 1554 CA HIS A 179 55.569 21.587 24.855 1.00 30.96 C ATOM 1555 C HIS A 179 54.961 22.616 25.767 1.00 21.93 C ATOM 1556 O HIS A 179 55.641 23.598 26.138 1.00 25.17 O ATOM 1557 CB HIS A 179 56.634 20.683 25.575 1.00 36.20 C ATOM 1558 CG HIS A 179 56.634 20.683 25.575 1.00 36.20 C ATOM 1559 NDI HIS A 179 56.973 19.419 24.835 1.00 42.90 C 20 ATOM 1559 NDI HIS A 179 56.973 19.435 23.457 1.00 49.52 N ATOM 1560 CD2 HIS A 179 57.323 18.190 25.278 1.00 52.42 C ATOM 1561 CB1 HIS A 179 57.283 18.100 23.084 1.00 44.78 C ATOM 1562 NB2 HIS A 179 57.500 17.393 24.168 1.00 50.49 N ATOM 1563 N VAL A 180 53.661 22.454 26.038 1.00 19.14 N ATOM 1564 CA VAL A 180 52.886 23.449 26.789 1.00 29.03 C ATOM 1565 C VAL A 180 53.373 23.890 28.142 1.00 31.29 C ATOM 1565 C VAL A 180 53.348 25.075 28.447 1.00 19.55 Q ATOM 1569 CG2 VAL A 180 50.630 24.399 27.217 1.00 35.87 C ATOM 1569 CG2 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.933 22.550 25.663 1.00 36.11 C ATOM 1570 N ILE A 181 53.864 22.935 29.005 1.00 26.57 N ATOM 1571 CA ILE A 181 53.864 22.935 29.005 1.00 24.49 C ATOM 1573 O ILE A 181 55.371 24.213 30.361 1.00 16.51 C ATOM 1575 CG1 ILE A 181 55.371 24.213 30.361 1.00 18.22 C ATOM 1575 CG2 ILE A 181 52.878 21.428 31.528 1.00 18.22 C ATOM 1579 CA PILE A 181 52.887 21.428 31.528 1.00 18.22 C ATOM 1579 CA PILE A 181 52.867 20.086 32.286 1.00 8.03 C ATOM 1579 CA PILE A 181 52.878 21.428 31.528 1.00 18.22 C ATOM 1579 CA PILE A 181 52.867 20.086 32.286 1.00 8.03 C ATOM 1579 CA PILE A 181 52.867 20.086 32.286 1.00 24.49 C ATOM 1579 CA PILE A 181 52.867 20.086 32.286 1.00 24.49 C ATOM 1579 CA PILE A 181 52.867 20.086 32.286 1.00 24.97 C ATOM 1580 C PIRO A 182 57.664 23.779 29.718 1.00 22.21 N ATOM 1579 CA PIRO A 182 57.664 23.779 29.718 1.00 22.21 N ATOM 1580 C PIRO A 182 57.662 23.779 29.718 1.00 24.97 C ATOM 1581 O PIRO A 182 57.662 23.779 29.210 1.00 24.97 C		ATOM 1552 OG SER A 1	78 57.397 22.112 19.217 1.00 71.69	<u> </u>
ATOM 1555 C HIS A 179 54.961 22.616 25.767 1.00 21.93 C ATOM 1556 O HIS A 179 55.641 23.598 26.138 1.00 25.17 O ATOM 1557 CB HIS A 179 56.634 20.683 25.575 1.00 36.20 C ATOM 1558 CG HIS A 179 56.973 19.419 24.835 1.00 42.90 C 20 ATOM 1559 ND1 HIS A 179 56.973 19.335 23.457 1.00 42.90 C ATOM 1560 CD2 HIS A 179 57.233 18.190 25.278 1.00 52.42 C ATOM 1561 CEL HIS A 179 57.233 18.190 23.084 1.00 44.78 C ATOM 1562 NE2 HIS A 179 57.500 17.393 24.168 1.00 50.49 N ATOM 1563 N VAL A 180 53.661 22.454 26.038 1.00 19.14 N ATOM 1563 N VAL A 180 53.661 22.454 26.038 1.00 19.14 N 25 ATOM 1565 C VAL A 180 53.373 23.890 28.142 1.00 31.29 C ATOM 1566 C VAL A 180 53.348 25.075 28.447 1.00 19.55 O ATOM 1567 CB VAL A 180 51.403 23.115 26.914 1.00 35.47 C ATOM 1569 CG2 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.923 22.550 25.663 1.00 36.11 C ATOM 1570 N ILE A 181 53.684 22.935 29.005 1.00 24.49 C ATOM 1573 O ILE A 181 55.371 24.213 30.361 1.00 16.51 C ATOM 1573 C ILE A 181 55.371 24.213 30.361 1.00 16.51 C ATOM 1575 CG1 ILE A 181 55.267 20.086 32.286 1.00 8.03 C ATOM 1570 CG2 ILE A 181 55.279 22.118 31.264 1.00 31.37 C ATOM 1570 CG2 ILE A 181 55.279 22.118 31.266 1.00 22.21 N ATOM 1570 CG2 ILE A 181 55.371 24.213 30.361 1.00 16.51 C ATOM 1570 CG2 ILE A 181 55.371 24.213 30.361 1.00 16.51 C ATOM 1570 CG2 ILE A 181 55.371 24.213 30.360 1.00 24.49 C ATOM 1570 CG2 ILE A 181 55.371 24.213 30.360 1.00 24.49 C ATOM 1570 CG2 ILE A 181 55.371 24.213 30.360 1.00 24.49 C ATOM 1570 CG2 ILE A 181 55.371 24.213 30.360 1.00 24.49 C ATOM 1570 CG2 ILE A 181 55.366 22.315 32.581 1.00 13.37 C ATOM 1570 CG2 ILE A 181 56.452 23.779 29.718 1.00 22.21 N ATOM 1570 CG2 ILE A 181 56.452 23.779 29.718 1.00 22.21 N ATOM 1570 CG2 ILE A 181 56.452 23.779 29.718 1.00 22.07 C ATOM 1580 C PRO A 182 57.664 24.605 29.640 1.00 24.97 C ATOM 1580 C PRO A 182 57.664 24.605 29.640 1.00 24.97 C ATOM 1581 O PRO A 182 57.664 24.605 29.640 1.00 24.97 C ATOM 1580 C PRO A 182 57.664 24.605 29.640 1.00 24.97 C		ATOM 1553 N HIS A 1	79 56.134 22.284 23.694 1.00 37.39	N
ATOM 1556 O HIS A 179 55.641 23.598 26.138 1.00 25.17 O ATOM 1557 CB HIS A 179 56.634 20.683 25.575 1.00 36.20 C ATOM 1558 CG HIS A 179 56.634 20.683 25.575 1.00 36.20 C ATOM 1559 ND1 HIS A 179 56.973 19.419 24.835 1.00 42.90 C 20 ATOM 1559 ND1 HIS A 179 56.973 19.335 23.457 1.00 49.52 N ATOM 1560 CD2 HIS A 179 57.323 18.190 25.278 1.00 52.42 C ATOM 1561 CE1 HIS A 179 57.323 18.190 23.084 1.00 44.78 C ATOM 1562 NE2 HIS A 179 57.500 17.393 24.168 1.00 50.49 N ATOM 1563 N VAL A 180 53.661 22.454 26.038 1.00 19.14 N ATOM 1565 C VAL A 180 53.373 23.890 28.142 1.00 31.29 C ATOM 1565 C VAL A 180 53.373 23.890 28.142 1.00 31.29 C ATOM 1566 O VAL A 180 53.348 25.075 28.447 1.00 19.55 O ATOM 1567 CB VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.923 22.550 25.663 1.00 36.11 C ATOM 1570 N ILE A 181 53.684 22.935 29.005 1.00 26.57 N ATOM 1571 CA ILE A 181 54.138 23.285 30.360 1.00 24.49 C ATOM 1573 O ILE A 181 55.371 24.213 30.361 1.00 16.51 C ATOM 1574 CB ILE A 181 55.372 24.213 30.361 1.00 10.51 C ATOM 1575 CG1 ILE A 181 55.326 25.315 30.909 1.00 24.42 O ATOM 1579 N PRO A 182 57.664 24.213 31.528 1.00 18.22 C ATOM 1579 CB ILE A 181 55.326 25.315 30.909 1.00 24.42 O ATOM 1579 CB ILE A 181 55.014 22.315 32.581 1.00 18.22 C ATOM 1579 CB ILE A 181 55.014 22.315 32.581 1.00 18.22 C ATOM 1579 CB ILE A 181 55.014 22.315 32.581 1.00 18.22 C ATOM 1579 CB ILE A 181 55.014 22.315 32.581 1.00 18.22 C ATOM 1579 CB ILE A 181 55.014 22.315 32.581 1.00 22.21 N ATOM 1579 CB ILE A 181 55.014 22.315 32.581 1.00 22.21 N ATOM 1579 CB ILE A 181 55.014 22.315 32.581 1.00 22.21 N ATOM 1579 CB ILE A 181 55.014 22.315 32.581 1.00 22.21 N ATOM 1579 CB PRO A 182 57.664 24.605 29.640 1.00 24.47 C ATOM 1579 CB PRO A 182 57.664 24.605 29.640 1.00 24.47 C ATOM 1580 CB PRO A 182 57.664 24.605 29.640 1.00 24.47 C ATOM 1580 CB PRO A 182 57.664 24.605 29.640 1.00 24.47 C ATOM 1580 CB PRO A 182 57.664 24.605 29.640 1.00 24.47 C ATOM 1580 CB PRO A 182 57.664 24.605 29.640 1.00 24.47 C ATOM 1580 CB PRO A 182 57.379 25.852 28.828 1.00	15	ATOM 1554 CA HIS A 1	79 55.569 21.587 24.855 1.00 30.96	С
ATOM 1557 CB HIS A 179 56.634 20.683 25.575 1.00 36.20 C ATOM 1558 CG HIS A 179 56.973 19.419 24.835 1.00 42.90 C ATOM 1559 ND1 HIS A 179 56.973 19.335 23.457 1.00 49.52 N ATOM 1560 CD2 HIS A 179 57.223 18.190 25.278 1.00 52.42 C ATOM 1561 CEL HIS A 179 57.283 18.100 23.084 1.00 44.78 C ATOM 1562 NE2 HIS A 179 57.500 17.393 24.168 1.00 50.49 N ATOM 1563 N VAL A 180 53.661 22.454 26.038 1.00 19.14 N 25 ATOM 1564 CA VAL A 180 53.361 22.454 26.038 1.00 19.14 N ATOM 1565 C VAL A 180 53.373 23.890 28.142 1.00 31.29 C ATOM 1566 O VAL A 180 53.348 25.075 28.447 1.00 19.55 O ATOM 1568 CG1 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1570 N ILE A 181 53.684 22.935 29.005 1.00 26.57 N ATOM 1571 CA ILE A 181 55.326 25.315 30.360 1.00 24.49 C ATOM 1573 O ILE A 181 55.326 25.315 30.909 1.00 24.42 O ATOM 1575 CG1 ILE A 181 55.326 25.315 30.909 1.00 24.42 O ATOM 1579 CA PRO A 182 57.664 24.605 29.64 1.00 13.37 C ATOM 1579 CA PRO A 182 57.664 24.605 29.64 1.00 13.37 C ATOM 1579 CA PRO A 182 57.664 24.605 29.660 1.00 24.49 C ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.21 N ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 24.97 C ATOM 1582 CB PRO A 182 57.871 26.949 29.210 1.00 18.35 O ATOM 1580 CG PRO A 182 57.871 26.949 29.210 1.00 18.35 O ATOM 1581 O PRO A 182 57.871 26.949 29.210 1.00 24.97 C		ATOM 1555 C HIS A 1	79 54.961 22.616 25.767 1.00 21.93	с
ATOM 1558 CG HIS A 179 56.973 19.419 24.835 1.00 42.90 C ATOM 1559 ND1 HIS A 179 56.973 19.335 23.457 1.00 49.52 N ATOM 1560 CD2 HIS A 179 57.323 18.190 25.278 1.00 52.42 C ATOM 1561 CEI HIS A 179 57.283 18.109 23.084 1.00 44.78 C ATOM 1562 NE2 HIS A 179 57.500 17.393 24.168 1.00 50.49 N ATOM 1563 N VAL A 180 53.661 22.454 26.038 1.00 19.14 N ATOM 1564 CA VAL A 180 53.861 22.454 26.038 1.00 19.14 N ATOM 1565 C VAL A 180 53.373 23.890 28.142 1.00 33.29 C ATOM 1566 O VAL A 180 53.373 23.890 28.142 1.00 31.29 C ATOM 1566 CG VAL A 180 53.348 25.075 28.447 1.00 19.55 Q ATOM 1568 CGI VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.630 24.399 27.227 1.00 35.84 C ATOM 1570 N ILE A 181 53.684 22.935 29.005 1.00 26.57 N ATOM 1571 CA ILE A 181 53.684 22.935 29.005 1.00 24.49 C ATOM 1572 C ILE A 181 55.371 24.213 30.361 1.00 16.51 C ATOM 1576 CG2 ILE A 181 55.326 25.315 30.909 1.00 24.42 Q ATOM 1578 CG ILE A 181 55.326 25.315 30.909 1.00 24.42 Q ATOM 1579 CA ILE A 181 55.326 25.315 30.909 1.00 24.42 Q ATOM 1579 CA ILE A 181 55.326 25.315 30.909 1.00 24.42 Q ATOM 1579 CA ILE A 181 55.326 25.315 30.909 1.00 24.42 Q ATOM 1579 CA ILE A 181 55.014 22.315 32.581 1.00 13.37 C ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.07 C ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.07 C ATOM 1580 C PRO A 182 57.664 24.605 29.640 1.00 22.07 C ATOM 1580 C PRO A 182 57.862 23.725 28.890 1.00 24.18 C ATOM 1580 C PRO A 182 57.862 23.725 28.890 1.00 24.19 C		ATOM 1556 O HIS A 1	79 55.641 23.598 26.138 1.00 25.17	0
20 ATOM 1559 ND1 HIS A 179 56.973 19.335 23.457 1.00 49.52 N ATOM 1560 CD2 HIS A 179 57.323 18.190 25.278 1.00 52.42 C ATOM 1561 CE1 HIS A 179 57.283 18.109 23.084 1.00 44.78 C ATOM 1562 NE2 HIS A 179 57.500 17.393 24.168 1.00 50.49 N ATOM 1563 N VAL A 180 53.661 22.454 26.038 1.00 19.14 N 25 ATOM 1565 C VAL A 180 53.373 23.890 28.142 1.00 31.29 C ATOM 1566 O VAL A 180 53.373 23.890 28.142 1.00 31.29 C ATOM 1566 C VAL A 180 53.373 23.890 28.142 1.00 31.29 C ATOM 1566 C VAL A 180 53.373 23.890 28.142 1.00 35.47 C ATOM 1568 CG1 VAL A 180 50.630 24.399 27.217 1.00 35.47 C ATOM 1569 CG2 VAL A 180 50.630 24.399 27.217 1.00 35.84 C 30 ATOM 1569 CG2 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1570 N ILE A 181 53.684 22.935 29.005 1.00 26.57 N ATOM 1571 CA ILE A 181 53.684 22.935 29.005 1.00 26.57 N ATOM 1573 O ILE A 181 55.371 24.213 30.361 1.00 16.51 C ATOM 1576 CG2 ILE A 181 55.326 25.315 30.909 1.00 24.42 O ATOM 1576 CG2 ILE A 181 55.286 25.315 30.909 1.00 24.42 O ATOM 1576 CG2 ILE A 181 52.887 21.428 31.528 1.00 18.22 C ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.07 C ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.07 C ATOM 1580 C PRO A 182 57.379 25.852 28.828 1.00 24.18 C ATOM 1580 C PRO A 182 57.379 25.852 28.890 1.00 24.97 C ATOM 1580 C PRO A 182 57.379 25.852 28.890 1.00 24.97 C		ATOM 1557 CB HIS A 17	79 56.634 20.683 25.575 1.00 36.20	<u> </u>
ATOM 1560 CD2 HIS A 179 57.323 18.190 25.278 1.00 52.42 C ATOM 1561 CE1 HIS A 179 57.283 18.109 23.084 1.00 44.78 C ATOM 1562 NE2 HIS A 179 57.500 17.393 24.168 1.00 50.49 N ATOM 1563 N VAL A 180 53.661 22.454 26.038 1.00 19.14 N ATOM 1564 CA VAL A 180 52.886 23.449 26.789 1.00 29.03 C ATOM 1565 C VAL A 180 53.373 23.890 28.142 1.00 31.29 C ATOM 1566 O VAL A 180 53.348 25.075 28.447 1.00 19.55 Q ATOM 1567 CB VAL A 180 51.403 23.115 26.914 1.00 35.47 C ATOM 1568 CG1 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.923 22.550 25.663 1.00 36.11 C ATOM 1570 N ILE A 181 53.684 22.935 29.005 1.00 26.57 N ATOM 1571 CA ILE A 181 55.371 24.213 30.361 1.00 16.51 C ATOM 1573 O ILE A 181 55.326 25.315 30.909 1.00 24.42 Q ATOM 1574 CB ILE A 181 54.285 22.018 31.264 1.00 18.22 C ATOM 1575 CG2 ILE A 181 52.878 21.428 31.528 1.00 18.22 C ATOM 1577 CD1 ILE A 181 52.867 20.086 32.286 1.00 8.03 C ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.21 N ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.07 C ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.07 C ATOM 1580 C PRO A 182 57.811 26.949 29.210 1.00 18.35 Q ATOM 1580 C PRO A 182 57.811 26.949 29.210 1.00 18.35 Q ATOM 1580 C PRO A 182 57.811 26.949 29.210 1.00 18.35 Q ATOM 1580 C PRO A 182 57.811 26.949 29.210 1.00 18.35 Q ATOM 1580 C PRO A 182 57.811 26.949 29.210 1.00 24.97 C		ATOM 1558 CG HIS A 17	79 56.973 19.419 24.835 1.00 42.90	<u> </u>
ATOM 1561 CEI HIS A 179 57.283 18.109 23.084 1.00 44.78 C ATOM 1562 NE2 HIS A 179 57.500 17.393 24.168 1.00 50.49 N ATOM 1563 N VAL A 180 53.661 22.454 26.038 1.00 19.14 N 25 ATOM 1564 CA VAL A 180 52.886 23.449 26.789 1.00 29.03 C ATOM 1565 C VAL A 180 53.373 23.890 28.142 1.00 31.29 C ATOM 1566 O VAL A 180 53.348 25.075 28.447 1.00 19.55 Q ATOM 1567 CB VAL A 180 51.403 23.115 26.914 1.00 35.47 C ATOM 1568 CGI VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.923 22.550 25.663 1.00 36.11 C ATOM 1570 N ILE A 181 53.684 22.935 29.005 1.00 26.57 N ATOM 1571 CA ILE A 181 55.371 24.213 30.361 1.00 16.51 CC ATOM 1573 O ILE A 181 55.326 25.315 30.909 1.00 24.42 Q 35 ATOM 1574 CB ILE A 181 54.285 22.018 31.264 1.00 20.20 CC ATOM 1575 CG1 ILE A 181 55.014 22.315 32.581 1.00 18.22 CC ATOM 1577 CD1 ILE A 181 52.878 21.428 31.528 1.00 18.22 CC ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.21 N 40 ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.27 C ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.07 CC ATOM 1580 C PRO A 182 57.379 25.852 28.828 1.00 24.18 CC ATOM 1580 C PRO A 182 57.811 26.949 29.210 1.00 18.35 Q ATOM 1580 C PRO A 182 57.811 26.949 29.210 1.00 18.35 Q ATOM 1580 C PRO A 182 57.811 26.949 29.210 1.00 18.35 Q ATOM 1580 C PRO A 182 57.811 26.949 29.210 1.00 18.35 Q ATOM 1580 C PRO A 182 57.811 26.949 29.210 1.00 24.97 CC ATOM 1583 CG PRO A 182 57.825 22.473 28.471 1.00 25.77 CC	20	ATOM 1559 ND1 HIS A 17	79 56.973 19.335 23.457 1.00 49.52	N
ATOM 1562 NE2 HIS A 179 57.500 17.393 24.168 1.00 50.49 N ATOM 1563 N VAL A 180 53.661 22.454 26.038 1.00 19.14 N 25 ATOM 1564 CA VAL A 180 52.886 23.449 26.789 1.00 29.03 C ATOM 1565 C VAL A 180 53.373 23.890 28.142 1.00 31.29 C ATOM 1566 O VAL A 180 53.348 25.075 28.447 1.00 19.55 O ATOM 1567 CB VAL A 180 51.403 23.115 26.914 1.00 35.47 C ATOM 1568 CG1 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1570 N ILE A 181 53.684 22.935 29.005 1.00 26.57 N ATOM 1571 CA ILE A 181 53.684 22.935 29.005 1.00 26.57 N ATOM 1572 C ILE A 181 55.371 24.213 30.361 1.00 16.51 C ATOM 1573 O ILE A 181 55.326 25.315 30.909 1.00 24.42 O ATOM 1574 CB ILE A 181 55.326 25.315 30.909 1.00 24.42 O ATOM 1575 CG1 ILE A 181 55.2878 21.428 31.528 1.00 18.22 C ATOM 1576 CG2 ILE A 181 55.014 22.315 32.581 1.00 13.37 C ATOM 1578 N PRO A 182 56.452 23.779 29.718 1.00 22.21 N 40 ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.07 C ATOM 1580 C PRO A 182 57.664 24.605 29.640 1.00 22.07 C ATOM 1581 O PRO A 182 57.811 26.949 29.210 1.00 18.35 O ATOM 1582 CB PRO A 182 57.811 26.949 29.210 1.00 18.35 O ATOM 1583 CG PRO A 182 57.925 22.473 28.471 1.00 25.77 C		ATOM 1560 CD2 HIS A 17	79 57.323 18.190 25.278 1.00 52.42	С
ATOM 1563 N VAL A 180 53.661 22.454 26.038 1.00 19.14 N ATOM 1564 CA VAL A 180 52.886 23.449 26.789 1.00 29.03 C ATOM 1565 C VAL A 180 53.373 23.890 28.142 1.00 31.29 C ATOM 1566 O VAL A 180 53.348 25.075 28.447 1.00 19.55 O ATOM 1567 CB VAL A 180 51.403 23.115 26.914 1.00 35.47 C ATOM 1568 CG1 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.923 22.550 25.663 1.00 36.11 C ATOM 1570 N ILE A 181 53.684 22.935 29.005 1.00 26.57 N ATOM 1571 CA ILE A 181 54.138 23.285 30.360 1.00 24.49 C ATOM 1573 O ILE A 181 55.371 24.213 30.361 1.00 16.51 C ATOM 1573 O ILE A 181 55.326 25.315 30.909 1.00 24.42 O ATOM 1574 CB ILE A 181 54.285 22.018 31.264 1.00 20.20 C ATOM 1575 CG1 ILE A 181 55.014 22.315 32.581 1.00 18.22 C ATOM 1576 CG2 ILE A 181 55.014 22.315 32.581 1.00 13.37 C ATOM 1578 N PRO A 182 56.452 23.779 29.718 1.00 22.21 N ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.207 C ATOM 1580 C PRO A 182 57.664 24.605 29.640 1.00 22.07 C ATOM 1581 O PRO A 182 57.811 26.949 29.210 1.00 18.35 O ATOM 1582 CB PRO A 182 57.811 26.949 29.210 1.00 18.35 O ATOM 1583 CG PRO A 182 58.682 23.725 28.899 1.00 24.97 C		ATOM 1561 CE1 HIS A 17	79 57.283 18.109 23.084 1.00 44.78	<u>c</u>
25 ATOM 1564 CA VAL A 180 52.886 23.449 26.789 1.00 29.03 C ATOM 1565 C VAL A 180 53.373 23.890 28.142 1.00 31.29 C ATOM 1566 O VAL A 180 53.348 25.075 28.447 1.00 19.55 O ATOM 1567 CB VAL A 180 51.403 23.115 26.914 1.00 35.47 C ATOM 1568 CG1 VAL A 180 50.630 24.399 27.217 1.00 35.84 C 30 ATOM 1569 CG2 VAL A 180 50.923 22.550 25.663 1.00 36.11 C ATOM 1570 N ILE A 181 53.684 22.935 29.005 1.00 26.57 N ATOM 1571 CA ILE A 181 54.138 23.285 30.360 1.00 24.49 C ATOM 1572 C ILE A 181 55.371 24.213 30.361 1.00 16.51 C ATOM 1573 O ILE A 181 55.326 25.315 30.909 1.00 24.42 O 35 ATOM 1574 CB ILE A 181 54.285 22.018 31.264 1.00 20.20 C ATOM 1575 CG1 ILE A 181 52.878 21.428 31.528 1.00 18.22 C ATOM 1576 CG2 ILE A 181 55.014 22.315 32.581 1.00 13.37 C ATOM 1577 CD1 ILE A 181 55.867 20.086 32.286 1.00 8.03 C ATOM 1578 N PRO A 182 56.452 23.779 29.718 1.00 22.21 N 40 ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.07 C ATOM 1580 C PRO A 182 57.891 26.949 29.210 1.00 18.35 O ATOM 1582 CB PRO A 182 57.891 26.949 29.210 1.00 18.35 O ATOM 1582 CB PRO A 182 57.891 26.949 29.210 1.00 18.35 O ATOM 1582 CB PRO A 182 57.891 26.949 29.210 1.00 18.35 O ATOM 1582 CB PRO A 182 57.925 22.473 28.471 1.00 25.77 C		ATOM 1562 NE2 HIS A 17	79 57.500 17.393 24.168 1.00 50.49	N
ATOM 1565 C VAL A 180 53.373 23.890 28.142 1.00 31.29 C ATOM 1566 O VAL A 180 53.348 25.075 28.447 1.00 19.55 O ATOM 1567 CB VAL A 180 51.403 23.115 26.914 1.00 35.47 C ATOM 1568 CG1 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.923 22.550 25.663 1.00 36.11 C ATOM 1570 N ILE A 181 53.684 22.935 29.005 1.00 26.57 N ATOM 1571 CA ILE A 181 54.138 23.285 30.360 1.00 24.49 C ATOM 1572 C ILE A 181 55.371 24.213 30.361 1.00 16.51 C ATOM 1573 O ILE A 181 55.326 25.315 30.909 1.00 24.42 O 35 ATOM 1574 CB ILE A 181 54.285 22.018 31.264 1.00 20.20 C ATOM 1575 CG1 ILE A 181 52.878 21.428 31.528 1.00 18.22 C ATOM 1576 CG2 ILE A 181 55.014 22.315 32.581 1.00 13.37 C ATOM 1577 CD1 ILE A 181 52.867 20.086 32.286 1.00 8.03 C ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.21 N 40 ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.07 C ATOM 1580 C PRO A 182 57.891 26.949 29.210 1.00 18.35 O ATOM 1582 CB PRO A 182 57.891 26.949 29.210 1.00 18.35 O ATOM 1582 CB PRO A 182 57.891 26.949 29.210 1.00 18.35 O ATOM 1582 CB PRO A 182 57.891 26.949 29.210 1.00 18.35 O ATOM 1582 CB PRO A 182 57.891 26.949 29.210 1.00 24.97 C		ATOM 1563 N VAL A 18	53,661 22.454 26.038 1.00 19.14	N
ATOM 1566 O VAL A 180 53.348 25.075 28.447 1.00 19.55 O ATOM 1567 CB VAL A 180 51.403 23.115 26.914 1.00 35.47 C ATOM 1568 CG1 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.923 22.550 25.663 1.00 36.11 C ATOM 1570 N ILE A 181 53.684 22.935 29.005 1.00 26.57 N ATOM 1571 CA ILE A 181 54.138 23.285 30.360 1.00 24.49 C ATOM 1572 C ILE A 181 55.371 24.213 30.361 1.00 16.51 C ATOM 1573 O ILE A 181 55.326 25.315 30.909 1.00 24.42 O ATOM 1574 CB ILE A 181 54.285 22.018 31.264 1.00 20.20 C ATOM 1575 CG1 ILE A 181 52.878 21.428 31.528 1.00 18.22 C ATOM 1576 CG2 ILE A 181 55.014 22.315 32.581 1.00 18.22 C ATOM 1577 CD1 ILE A 181 52.867 20.086 32.286 1.00 8.03 C ATOM 1579 CA PRO A 182 56.452 23.779 29.718 1.00 22.21 N ATOM 1580 C PRO A 182 57.664 24.605 29.640 1.00 22.07 C ATOM 1581 O PRO A 182 57.811 26.949 29.210 1.00 18.35 O ATOM 1582 CB PRO A 182 57.811 26.949 29.210 1.00 18.35 O ATOM 1582 CB PRO A 182 57.925 22.473 28.471 1.00 25.77 C	25	ATOM 1564 CA VAL A 18	52.886 23.449 26.789 1.00 29.03	<u> </u>
ATOM 1567 CB VAL A 180 51.403 23.115 26.914 1.00 35.47 C ATOM 1568 CG1 VAL A 180 50.630 24.399 27.217 1.00 35.84 C 30 ATOM 1569 CG2 VAL A 180 50.923 22.550 25.663 1.00 36.11 C ATOM 1570 N ILE A 181 53.684 22.935 29.005 1.00 26.57 N ATOM 1571 CA ILE A 181 54.138 23.285 30.360 1.00 24.49 C ATOM 1572 C ILE A 181 55.371 24.213 30.361 1.00 16.51 C ATOM 1573 O ILE A 181 55.326 25.315 30.909 1.00 24.42 O 35 ATOM 1574 CB ILE A 181 54.285 22.018 31.264 1.00 20.20 C ATOM 1575 CG1 ILE A 181 52.878 21.428 31.528 1.00 18.22 C ATOM 1576 CG2 ILE A 181 55.014 22.315 32.581 1.00 18.37 C ATOM 1577 CD1 ILE A 181 52.867 20.086 32.286 1.00 8.03 C ATOM 1578 N PRO A 182 56.452 23.779 29.718 1.00 22.21 N 40 ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.07 C ATOM 1580 C PRO A 182 57.379 25.852 28.828 1.00 24.18 C ATOM 1581 O PRO A 182 57.811 26.949 29.210 1.00 18.35 O ATOM 1582 CB PRO A 182 58.682 23.725 28.890 1.00 24.97 C		ATOM 1565 C VAL A 18	53.373 23.890 28.142 1.00 31.29	<u> </u>
ATOM 1568 CG1 VAL A 180 50.630 24.399 27.217 1.00 35.84 C ATOM 1569 CG2 VAL A 180 50.923 22.550 25.663 1.00 36.11 C ATOM 1570 N ILE A 181 53.684 22.935 29.005 1.00 26.57 N ATOM 1571 CA ILE A 181 54.138 23.285 30.360 1.00 24.49 C ATOM 1572 C ILE A 181 55.371 24.213 30.361 1.00 16.51 C ATOM 1573 O ILE A 181 55.326 25.315 30.909 1.00 24.42 O ATOM 1574 CB ILE A 181 54.285 22.018 31.264 1.00 20.20 C ATOM 1575 CG1 ILE A 181 52.878 21.428 31.528 1.00 18.22 C ATOM 1576 CG2 ILE A 181 55.014 22.315 32.581 1.00 13.37 C ATOM 1577 CD1 ILE A 181 52.867 20.086 32.286 1.00 8.03 C ATOM 1578 N PRO A 182 56.452 23.779 29.718 1.00 22.21 N 40 ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.07 C ATOM 1580 C PRO A 182 57.379 25.852 28.828 1.00 24.18 C ATOM 1581 O PRO A 182 57.379 25.852 28.828 1.00 24.18 C ATOM 1582 CB PRO A 182 57.811 26.949 29.210 1.00 18.35 O ATOM 1583 CG PRO A 182 57.925 22.473 28.471 1.00 25.77 C		ATOM 1566 O VAL A 18	0 53.348 25.075 28.447 1.00 19.55	0
30 ATOM 1569 CG2 VAL A 180 50.923 22.550 25.663 1.00 36.11 C ATOM 1570 N ILE A 181 53.684 22.935 29.005 1.00 26.57 N ATOM 1571 CA ILE A 181 54.138 23.285 30.360 1.00 24.49 C ATOM 1572 C ILE A 181 55.371 24.213 30.361 1.00 16.51 C ATOM 1573 O ILE A 181 55.326 25.315 30.909 1.00 24.42 O 35 ATOM 1574 CB ILE A 181 54.285 22.018 31.264 1.00 20.20 C ATOM 1575 CG1 ILE A 181 52.878 21.428 31.528 1.00 18.22 C ATOM 1576 CG2 ILE A 181 55.014 22.315 32.581 1.00 13.37 C ATOM 1577 CD1 ILE A 181 52.867 20.086 32.286 1.00 8.03 C ATOM 1578 N PRO A 182 56.452 23.779 29.718 1.00 22.21 N 40 ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.07 C ATOM 1580 C PRO A 182 57.379 25.852 28.828 1.00 24.18 C ATOM 1581 O PRO A 182 57.379 25.852 28.828 1.00 24.18 C ATOM 1582 CB PRO A 182 57.811 26.949 29.210 1.00 18.35 O ATOM 1583 CG PRO A 182 57.925 22.473 28.471 1.00 25.77 C		ATOM 1567 CB VAL A 18	51.403 23.115 26.914 1.00 35.47	c
ATOM 1570 N ILE A 181 53.684 22.935 29.005 1.00 26.57 N ATOM 1571 CA ILE A 181 54.138 23.285 30.360 1.00 24.49 C ATOM 1572 C ILE A 181 55.371 24.213 30.361 1.00 16.51 C ATOM 1573 O ILE A 181 55.326 25.315 30.909 1.00 24.42 O 35 ATOM 1574 CB ILE A 181 54.285 22.018 31.264 1.00 20.20 C ATOM 1575 CG1 ILE A 181 52.878 21.428 31.528 1.00 18.22 C ATOM 1576 CG2 ILE A 181 55.014 22.315 32.581 1.00 13.37 C ATOM 1577 CD1 ILE A 181 52.867 20.086 32.286 1.00 8.03 C ATOM 1578 N PRO A 182 56.452 23.779 29.718 1.00 22.21 N 40 ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.07 C ATOM 1580 C PRO A 182 57.379 25.852 28.828 1.00 24.18 C ATOM 1581 O PRO A 182 57.811 26.949 29.210 1.00 18.35 O ATOM 1582 CB PRO A 182 58.682 23.725 28.890 1.00 24.97 C ATOM 1583 CG PRO A 182 57.925 22.473 28.471 1.00 25.77 C		ATOM 1568 CG1 VAL A 18	0 50.630 24.399 27.217 1.00 35.84	c
ATOM 1571 CA ILE A 181 54.138 23.285 30.360 1.00 24.49 C ATOM 1572 C ILE A 181 55.371 24.213 30.361 1.00 16.51 C ATOM 1573 O ILE A 181 55.326 25.315 30.909 1.00 24.42 O ATOM 1574 CB ILE A 181 54.285 22.018 31.264 1.00 20.20 C ATOM 1575 CG1 ILE A 181 52.878 21.428 31.528 1.00 18.22 C ATOM 1576 CG2 ILE A 181 55.014 22.315 32.581 1.00 18.22 C ATOM 1577 CD1 ILE A 181 52.867 20.086 32.286 1.00 8.03 C ATOM 1578 N PRO A 182 56.452 23.779 29.718 1.00 22.21 N 40 ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.07 C ATOM 1580 C PRO A 182 57.379 25.852 28.828 1.00 24.18 C ATOM 1581 O PRO A 182 57.811 26.949 29.210 1.00 18.35 O ATOM 1582 CB PRO A 182 58.682 23.725 28.890 1.00 24.97 C ATOM 1583 CG PRO A 182 57.925 22.473 28.471 1.00 25.77 C	30	ATOM 1569 CG2 VAL A 18	50.923 22.550 25.663 1.00 36.11	<u>c</u>
ATOM 1572 C ILE A 181 55.371 24.213 30.361 1.00 16.51 C ATOM 1573 O ILE A 181 55.326 25.315 30.909 1.00 24.42 O 35 ATOM 1574 CB ILE A 181 54.285 22.018 31.264 1.00 20.20 C ATOM 1575 CG1 ILE A 181 52.878 21.428 31.528 1.00 18.22 C ATOM 1576 CG2 ILE A 181 55.014 22.315 32.581 1.00 13.37 C ATOM 1577 CD1 ILE A 181 52.867 20.086 32.286 1.00 8.03 C ATOM 1578 N PRO A 182 56.452 23.779 29.718 1.00 22.21 N 40 ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.07 C ATOM 1580 C PRO A 182 57.379 25.852 28.828 1.00 24.18 C ATOM 1581 O PRO A 182 57.811 26.949 29.210 1.00 18.35 O ATOM 1582 CB PRO A 182 57.925 22.473 28.471 1.00 25.77 C		ATOM 1570 N ILE A 16	53.684 22.935 29.005 1.00 26.57	N
ATOM 1573 O ILE A 181 55.326 25.315 30.909 1.00 24.42 O ATOM 1574 CB ILE A 181 54.285 22.018 31.264 1.00 20.20 C ATOM 1575 CG1 ILE A 181 52.878 21.428 31.528 1.00 18.22 C ATOM 1576 CG2 ILE A 181 55.014 22.315 32.581 1.00 13.37 C ATOM 1577 CD1 ILE A 181 52.867 20.086 32.286 1.00 8.03 C ATOM 1578 N PRO A 182 56.452 23.779 29.718 1.00 22.21 N 40 ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.07 C ATOM 1580 C PRO A 182 57.379 25.852 28.828 1.00 24.18 C ATOM 1581 O PRO A 182 57.811 26.949 29.210 1.00 18.35 O ATOM 1582 CB PRO A 182 57.925 22.473 28.471 1.00 25.77 C		ATOM 1571 CA ILE A 18	1 54.138 23.285 30.360 1.00 24.49	<u>c</u>
35 ATOM 1574 CB ILE A 181 54.285 22.018 31.264 1.00 20.20 C ATOM 1575 CG1 ILE A 181 52.878 21.428 31.528 1.00 18.22 C ATOM 1576 CG2 ILE A 181 55.014 22.315 32.581 1.00 13.37 C ATOM 1577 CD1 ILE A 181 52.867 20.086 32.286 1.00 8.03 C ATOM 1578 N PRO A 182 56.452 23.779 29.718 1.00 22.21 N 40 ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.07 C ATOM 1580 C PRO A 182 57.379 25.852 28.828 1.00 24.18 C ATOM 1581 O PRO A 182 57.811 26.949 29.210 1.00 18.35 O ATOM 1582 CB PRO A 182 58.682 23.725 28.890 1.00 24.97 C ATOM 1583 CG PRO A 182 57.925 22.473 28.471 1.00 25.77 C		ATOM 1572 C ILE A 18	55.371 24.213 30.361 1.00 16.51	Ç
ATOM 1575 CG1 ILE A 181 52.878 21.428 31.528 1.00 18.22 C ATOM 1576 CG2 ILE A 181 55.014 22.315 32.581 1.00 13.37 C ATOM 1577 CD1 ILE A 181 52.867 20.086 32.286 1.00 8.03 C ATOM 1578 N PRO A 182 56.452 23.779 29.718 1.00 22.21 N 40 ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.07 C ATOM 1580 C PRO A 182 57.379 25.852 28.828 1.00 24.18 C ATOM 1581 O PRO A 182 57.811 26.949 29.210 1.00 18.35 O ATOM 1582 CB PRO A 182 58.682 23.725 28.890 1.00 24.97 C ATOM 1583 CG PRO A 182 57.925 22.473 28.471 1.00 25.77 C		ATOM 1573 O ILE A 18	1 55.326 25.315 30.909 1.00 24.42	<u> </u>
ATOM 1576 CG2 ILE A 181 55.014 22.315 32.581 1.00 13.37 C ATOM 1577 CD1 ILE A 181 52.867 20.086 32.286 1.00 8.03 C ATOM 1578 N PRO A 182 56.452 23.779 29.718 1.00 22.21 N 40 ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.07 C ATOM 1580 C PRO A 182 57.379 25.852 28.828 1.00 24.18 C ATOM 1581 O PRO A 182 57.811 26.949 29.210 1.00 18.35 O ATOM 1582 CB PRO A 182 58.682 23.725 28.890 1.00 24.97 C ATOM 1583 CG PRO A 182 57.925 22.473 28.471 1.00 25.77 C	35	ATOM 1574 CB ILE A 18	1 54.285 22.018 31.264 1.00 20.20	<u>c</u>
ATOM 1577 CD1 ILE A 181 52.867 20.086 32.286 1.00 8.03 C ATOM 1578 N PRO A 182 56.452 23.779 29.718 1.00 22.21 N 40 ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.07 C ATOM 1580 C PRO A 182 57.379 25.852 28.828 1.00 24.18 C ATOM 1581 O PRO A 182 57.811 26.949 29.210 1.00 18.35 O ATOM 1582 CB PRO A 182 58.682 23.725 28.890 1.00 24.97 C ATOM 1583 CG PRO A 182 57.925 22.473 28.471 1.00 25.77 C		ATOM 1575 CG1 ILE A 18	1 52.878 21.428 31.528 1.00 18.22	c
ATOM 1578 N PRO A 182 56.452 23.779 29.718 1.00 22.21 N ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.07 C ATOM 1580 C PRO A 182 57.379 25.852 28.828 1.00 24.18 C ATOM 1581 O PRO A 182 57.811 26.949 29.210 1.00 18.35 O ATOM 1582 CB PRO A 182 58.682 23.725 28.890 1.00 24.97 C ATOM 1583 CG PRO A 182 57.925 22.473 28.471 1.00 25.77 C		ATOM 1576 CG2 ILE A 18	1 55.014 22.315 32.581 1.00 13.37	<u>C</u>
40 ATOM 1579 CA PRO A 182 57.664 24.605 29.640 1.00 22.07 C ATOM 1580 C PRO A 182 57.379 25.852 28.828 1.00 24.18 C ATOM 1581 O PRO A 182 57.811 26.949 29.210 1.00 18.35 O ATOM 1582 CB PRO A 182 58.682 23.725 28.890 1.00 24.97 C ATOM 1583 CG PRO A 182 57.925 22.473 28.471 1.00 25.77 C	•	ATOM 1577 CD1 ILE A 18	1 52.867 20.086 32.286 1.00 8.03	с
ATOM 1580 C PRO A 182 57.379 25.852 28.828 1.00 24.18 C ATOM 1581 O PRO A 182 57.811 26.949 29.210 1.00 18.35 O ATOM 1582 CB PRO A 182 58.682 23.725 28.890 1.00 24.97 C ATOM 1583 CG PRO A 182 57.925 22.473 28.471 1.00 25.77 C		ATOM 1578 N PRO A 18	2 56.452 23.779 29.718 1.00 22.21	N
ATOM 1581 O PRO A 182 57.811 26.949 29.210 1.00 18.35 O ATOM 1582 CB PRO A 182 58.682 23.725 28.890 1.00 24.97 C ATOM 1583 CG PRO A 182 57.925 22.473 28.471 1.00 25.77 C	40	ATOM 1579 CA PRO A 18	2 57.664 24.605 29.640 1.00 22.07	C
ATOM 1582 CB PRO A 182 58.682 23.725 28.890 1.00 24.97 C ATOM 1583 CG PRO A 182 57.925 22.473 28.471 1.00 25.77 C		ATOM 1580 C PRO A 18	2 57.379 25.852 28.828 1.00 24.18	С
ATON 1583 CG PRO A 182 57.925 22.473 28.471 1.00 25.77 C		ATOM 1581 0 PRO A 18	2 57.811 26.949 29.210 1.00 18.35	0
45		ATOM 1582 CB PRO A 18	2 58.682 23.725 28.890 1.00 24.97	C
45 ATOM 1584 CD PRO A 182 56.727 22.359 29.401 1.00 18.23 C		ATOM 1583 CG PRO A 18	2 57.925 22.473 28.471 1.00 25.77	c
	45	ATOM 1584 CD PRO A 18	2 56.727 22.359 29.401 1.00 18.23	c

	ATOM	1585	N	ALA A	183	56.628	25.707	27.729	1.00	21.45	N
	MOTA	1586	CA	ALA A	183	56.261	26.896	26.943	1.00	21.66	с
	MOTA	1587	С	ALA A	183	55.464	27.900	27.811	1,00	26,10	с
	ATOM	1588	0	ALA A	183	55.773	29.091	27.856	1.00	19.50	0
5	ATOM	1589	СВ	ALA A	183	55.473	26.513	25.703	1.00	13.26	c
	ATOM	1590	N_	LEU A	184	54.472	27.389	28.543	1.00	23.34	N
	ATOM	1591	CA	LEU A	184	53.642	28.215	29.401	1.00	19.05	С
	ATOM	1592	С	LEU A	184	54.312	28.693	30.655	1.00	21.91	c
	ATOM	1593	0	LEU A	184	54.017	29.771	31.158	1.00	19.71	
10	ATOM	1594	СВ	LEU A	184	52.309	27.553	29.715	1.00	14.41	c
	MOTA	1595	CG	LEU A	184	51.342	27.595	28.525	1.00	23.42	C
	ATOM	1596	CD1	LEU A	184	49.918	27.244	28.928	1.00	31.06	С
	MOTA	1597	CD2	LEU A	184	51.380	28.896	27.690	1.00	21.73	c
	ATOM	1598	N	LEU A	185	55.178	27.879	31.213	1.00	18.39	N N
15	ATOM	1599	CA	LEU A	185	55.833	28.332	32.417		16.39	C
	MOTA	1600	С	LEU A	185	56.669	29.528	31.985		23.67	C
	ATOM	1601	0	LEU A	185	56.681	30.590	32.644	1.00	29.38	0
	ATOM	1602	СВ	LEU A	185	56.723	27.233	33.015	1.00	15.05	c
	MOTA	1603	CG	LEU A	185	56.021	26,348	34.041	1.00	15.56	c
20	ATOM	1604	CD1	LEU A	185	56.819	25.022	34.301	1.00	21.06	С
	ATOM	1605	CD2	LEU A	185	55.722	27.113	35.321	1.00	11.02	c
	ATOM	1606	N	ARG A	186	57.337	29.397	30.852	1.00	17.09	N
	ATOM	1607	CA	ARG A	186	58.137	30.523	30.429	1.00	18.82	<u>c</u>
	ATOM	1608	С	ARG A	186	57.308	31.752	30.069	1.00	29.00	c
25	MOTA	1609	0	ARG A	186	57.629	32.880	30.476	1.00	23.91	0
	ATOM	1610	СВ	ARG A	186	59.026	30.146	29.281	1.00	22.06	с
	ATOM	1611	CG	ARG A	186	59.653	31.365	28.652	1.00	38.46	c
	ATOM	1612	CD	ARG A	186	60.825	31.804	29.462	1.00	83.66	с
	ATOM	1613	NE	ARG A	186	62.012	31.861	28.631	1.00	70.77	N
30	ATOM	1614	CZ	ARG A	186	63.058	32.622	28.904	1.00	91.68	c
	ATOM :	1615	NH1	ARG A	186	63.053	33.386	29.995	1.00	56.56	N
	ATOM	1616	NH2	ARG A	186	64.098	32.639	28.082	1.001	00.00	N
	ATOM	1617	N	ARG A	187	56.234	31.544	29.310	1.00	20.96	N
	ATOM 1	1618	CA	ARG A	187	55.361	32.662	28.941	1.00	19.32	C
35	ATOM	1619	<u>c</u>	ARG A	187	54.765	33.453	30.142	1.00	28.41	c
	ATOM 1	1620	0	ARG A	187	54.823	34.700	30.193	1.00	17.23	0
	ATOM 1	L621	СВ	ARG A	187	54.270	32.223	27.957	1.00	17.05	c
	ATOM 1	L622	CG	ARG A	187	54.813	31.546	26.720	1.00	61.42	c
	ATOM 1	1623	CD	ARG A	187	53.696	31.244	25.757	1.00	44.57	С
40	ATOM 1	1624	NE	ARG A	187	53.033					N
	ATOM 1	1625	CZ	ARG A	187	51.831					c
	ATOM 1	L626	NH1	ARG A	187	51,136					N
	ATOM 1	627	NH2	ARG A	187		33.716				N
	ATOM 1	628	N	PHE A	188		32.734				N
45	ATOM 1	629	CA	PHE A	188	53.604					c

WO 99/64618

PCT/US99/11576

Į	J	į	ă

	ATOM 1630 C PHE A 188	54.638 34.080 33.095 1.00 21.39	c
	ATOM 1631 O PHE A 188	54.394 35.126 33.626 1.00 23.90	0
	ATOM 1632 CB PHE A 188	52.723 32.466 33.077 1.00 19.95	С
	ATOM 1633 CG PHE A 188	51.389 32.215 32.435 1.00 22.28	<u></u>
5	ATOM 1634 CD1 PHE A 188	50.440 33.229 32.375 1.00 19.42	<u>c</u>
	ATOM 1635 CD2 PHE A 188	51.144 31.038 31.734 1.00 23.82	<u> </u>
	ATOM 1636 CE1 PHE A 188	49.191 33.026 31.742 1.00 24.77	<u> </u>
	ATOM 1637 CE2 PHE A 188	49.936 30.826 31.057 1.00 20.17	<u>C</u>
	ATOM 1638 CZ PHE A 188	48.945 31.815 31.068 1.00 23.14	<u> </u>
10	ATOM 1639 N HIS A 189	55.831 33.513 33.118 1.00 24.15	N
	ATOM 1640 CA HIS A 189	56.933 34.122 33.837 1.00 28.79	Ç
	ATOM 1641 C HIS A 189	57.303 35.506 33.315 1.00 28.58	C
	ATOM 1642 O HIS A 189	57.480 36.463 34.083 1.00 20.07	0
	ATOM 1643 CB HIS A 189	58.148 33.268 33.641 1.00 31.38	<u>C</u>
15	ATOM 1644 CG HIS A 189	59.364 33.844 34.290 1.00 29.98	<u>C</u>
	ATCM 1645 ND1 HIS A 189	59.548 33.833 35.658 1.00 31.00	<u> </u>
	ATOM 1646 CD2 HIS A 189	60.449 34.464 33.766 1.00 21.79	<u> </u>
	ATOM 1647 CE1 HIS A 189	60.722 34.371 35.945 1.00 24.04	<u>C</u>
	ATOM 1648 NE2 HIS A 189	61.257 34.815 34.821 1.00 19.53	<u> </u>
20	ATOM 1649 N GLU A 190	57.539 35.561 32.006 1.00 28.43	N
	ATOM 1650 CA GLU A 190	57.876 36.816 31.324 1.00 27.72	<u></u> c
	ATOM 1651 C GLU A 190	56.725 37.829 31.437 1.00 32.56	Ç
	ATOM 1652 O GLU A 190	56.949 38.995 31.717 1.00 27.06	0
	ATOM 1653 CB GLU A 190	58.122 36.529 29.849 1.00 28.55	<u> </u>
25	ATOM 1654 CG GLU A 190	59.150 35.461 29.614 1.00 35.29	<u>C</u>
	ATOM 1655 CD GLU A 190	60.553 35.941 29.892 1.00 99.81	<u>c</u>
	ATOM 1656 OE1 GLU A 190	60.913 36.037 31.085 1.00 86.56	0
	ATOM 1657 OE2 GLU A 190	61.293 36.167 28.910 1.00100.00	0
20	ATOM 1658 N ALA A 191	55.493 37.391 31.196 1.00 32.67	<u> </u>
30	ATOM 1659 CA ALA A 191	54.349 38.286 31.311 1.00 25.30	<u>c</u>
	ATOM 1660 C ALA A 191	54.287 38.795 32.742 1.00 36.20	<u>c</u>
	ATOM 1661 O ALA A 191	53.920 39.924 33.014 1.00 27.52	0
	ATOM 1662 CB ALA A 191	53.055 37.563 31.000 1.00 16.48	<u> </u>
25	ATOM 1663 N THR A 192	54.549 37.927 33.693 1.00 29.39	<u>N</u>
35	ATOM 1664 CA THR A 192	54.395 38.386 35.041 1.00 19.08	<u>c</u>
	ATOM 1665 C THR A 192	55.420 39.494 35.298 1.00 44.78	C
	ATOM 1666 O THR A 192	55.094 40.550 35.839 1.00 40.58	0
	ATOM 1667 CB THR A 192	54.515 37.235 35.983 1.00 18.99	<u> </u>
40	ATOM 1668 OG1 THR A 192	53.410 36.348 35.755 1.00 34.36	0
40	ATOM 1669 CG2 THR A 192	54.461 37.738 37.425 1.00 21.15	<u></u> C
	ATOM 1670 N ALA A 193	56.617 39.312 34.757 1.00 48.58	N
	ATOM 1671 CA ALA A 193	57.705 40.286 34.905 1.00 50.59	<u>c</u>
	ATOM 1672 C ALA A 193	57.496 41.613 34.145 1.00 54.42	<u>C</u>
4.5	ATOM 1673 O ALA A 193	57.952 42.698 34.553 1.00 48.28	0
15	1674 CD 373 3 103	EO 047 70 C40 74 40E 1 00 E1 70	_

	ATOM	1675	N_	GLN A 194	56.810	41.530	33.022	1.00 43.16	N
	ATOM	1676	_CA_	GLN A 194	56.586	42.722	32.242	1.00 38.03	с
	MOTA	1677	С	GLN A 194	55.264	43.389	32.576	1.00 40.85	с
•	MOTA	1678	0	GLN A 194	54.830	44.284	31.845	1.00 51.20	0
5	ATOM	1679	СВ	GLN A 194	56.599	42.358	30.750	1.00 35.96	с
	MOTA	1680	CG	GLN A 194	57.910	41.692	30.290	1.00100.00	<u>C</u>
	ATOM	1681	CD	GLN A 194	57.715	40.661	29.158	1.00100.00	с
	MOTA	1682	OE1	GLN A 194	56.619	40.546	28.579	1.00100.00	<u> </u>
	ATOM	1683	NE2	GLN A 194	58.782	39.904	28.848	1.00100.00	N
10	ATOM	1684	N_	GLY A 195	54.583	42.949	33.630	1.00 32.29	N
	MOTA	1685	<u>CA</u>	GLY A 195	53.236	43.464	33.864	1.00 36.26	c
	ATOM	1686	С	GLY A 195	52.299	43.332	32.593	1.00 45.33	С
	MOTA	1687	0	GLY A 195	51.515	44.242	32.346	1.00 45.16	0
	MOTA	1688	N	GLY A 196	52.405	42.245	31.788	1.00 36.33	N
15	MOTA	1689	CA	GLY A 196	51.515	41.965	30.608	1.00 19.06	с
	MOTA	1690	С	GLY A 196	50.037	41.958	31.117	1.00 22.49	<u>C</u>
	ATOM	1691	0	GLY A 196	49.724	41.479	32.223	1.00 33.09	<u>0</u>
	ATOM	1692	N	PRO A 197	49.144	42.657	30.431	1.00 29.22	N
	MOTA	1693	CA	PRO A 197	47.790	42.732	30.953	1.00 25.29	с
20	ATOM	1694	С	PRO A 197	47.091	41.413	30.674	1.00 24.64	с
	ATOM	1695	0	PRO A 197	46.192	40.991	31,411	1.00 24.75	0
	ATOM	1696	СВ	PRO A 197	47.162	43.911	30.176	1.00 26.31	C
	ATOM	1697	.CG	PRO A 197	48.188	44.407	29.252	1.00 26.56	c
	ATOM	1698	CD	PRO A 197	49.307	43.454	29.203	1.00 30.25	с
25	ATOM	1699	N	ASP A 198	47.572	40.723	29.658	1.00 16.88	N
	ATOM	1700	CA	ASP A 198	47.067	39.418	29.405	1.00 21.65	C
	MOTA	1701	С	ASP A 198	48.046	38.522	28.677	1.00 31.28	C
	MOTA	1702	0	ASP A 198	49.062	38.978	28.172	1.00 34.57	<u> </u>
	MOTA	1703	СВ	ASP A 198	45.739	39.507	28.669	1.00 32.80	c
30	ATOM	1704	CG	ASP A 198	45.868	40.055	27.256	1.00 46.13	<u>C</u>
	MOTA	1705	OD1	ASP A 198	46,982	40.230	26.725	1.00 57.45	0
	ATOM	1706	OD2	ASP A 198	44.817	40.271	26.640	1.00 67.61	<u>0</u>
	ATOM	1707	N_	VAL A 199	47.713	37.234	28.614	1.00 38.67	<u>N</u>
	MOTA	1708	CA	VAL A 199	48.499	36.226	27.901	1.00 27.79	c
35	MOTA	1709	С	VAL A 199	47.462	35.469	27.065	1.00 25.88	<u>c</u>
	MOTA	1710	0	VAL A 199	46.460	35.023	27.598	1.00 24.22	<u>0</u>
	ATOM	1711	СВ	VAL A 199	49.163	35.229	28.905	1.00 24.37	c
	MOTA	1712	CG1	VAL A 199	49.874	34.047	28.160	1.00 20.28	<u>c</u>
	ATOM	1713	CG2	VAL A 199	50.121	35.942	29.835	1.00 22.25	с
40	ATOM	1714	N	VAL A 200	47.661	35.386	25.757	1.00 23.72	N
	ATOM	1715	CA	VAL A 200	46.701	34.694	24.903	1.00 23.99	<u>c</u>
	ATOM	1716	С	VAL A 200	47.167	33.286	24.499	1.00 22.85	с
	MOTA	1717	0	VAL A 200	49,321	33.108	24.188	1.00 29.77	0
	MOTA	1718	СВ	VAL A 200	46.358	35.548	23.680	1.00 23.11	c
45	ATOM	1719	CG1	VAL A 200	45.561	34.737	22.598	1.00 16.25	с

	ATOM 1720 CG2 VAL A	200 45.652 36.823 24.130 1.00 27.86	с
	ATOM 1721 N VAL A	201 46.296 32.278 24.632 1.00 27.39	N
	ATOM 1722 CA VAL A	201 46.588 30.893 24.265 1.00 9.63	
	ATOM 1723 C VAL A	201 45.653 30.529 23.165 1.00 19.63	c
5	ATOM 1724 O VAL A	201 44.452 30.755 23.312 1.00 17.61	0
	ATOM 1725 CB VAL A	201 46.306 29.952 25.426 1.00 19.95	c
	ATOM 1726 CG1 VAL A	201 46.703 28.519 25.054 1.00 20.85	c
	ATOM 1727 CG2 VAL A	201 47.086 30.439 26.661 1.00 16.73	<u>C</u>
	ATOM 1728 N TRP A	202 46.210 30.080 22.030 1.00 14.36	N
10	ATOM 1729 CA TRP A	202 45.422 29.693 20.865 1.00 18.97	C
	ATOM 1730 C TRP A	202 44.495 28.572 21.313 1.00 36.22	<u>c</u>
	ATOM 1731 O TRP A	202 44.934 27.694 22.057 1.00 31.46	o
	ATOM 1732 CB TRP A	202 46.292 29.055 19.823 1.00 19.14	<u>c</u>
	ATOM 1733 CG TRP A	202 47.243 29.894 19.066 1.00 33.65	C
15	ATOM 1734 CD1 TRP A	202 48.391 29.463 18.429 1.00 35.28	c
	ATOM 1735 CD2 TRP A	202 47.126 31.282 18.772 1.00 39.90	c
	ATOM 1736 NEI TRP A	202 48.941 30.481 17.693 1.00 37.86	N
	ATOM 1737 CE2 TRP A	202 48.228 31.624 17.922 1.00 38.35	c
	ATOM 1738 CE3 TRP A	202 46,206 32,281 19,138 1,00 39,39	<u>c</u>
20	ATOM 1739 CZ2 TRP A	202 48.380 32.884 17.367 1.00 36.15	C
	ATOM 1740 CZ3 TRP A	202 46.356 33.542 18.578 1.00 39.60	<u>C</u>
	ATOM 1741 CH2 TRP A	202 47.428 33.828 17.684 1.00 40.99	<u>C</u>
	ATOM 1742 N GLY A	203 43,245 28.564 20.842 1.00 25.59	N
	ATOM 1743 CA GLY A	203 42.332 27.483 21.169 1.00 13.09	<u>C</u>
25	ATOM 1744 C GLY A	203 41.260 27.813 22.193 1.00 21.12	<u>c</u>
	ATOM 1745 O GLY A	203 41.340 28.815 22.886 1.00 22.86	0
	ATOM 1746 N SER A	204 40.270 26.919 22.262 1.00 16.88	N
	ATOM 1747 CA SER A	204 39.163 26.979 23.192 1.00 18.36	C
	ATOM 1748 C SER A	204 39.561 26.664 24.659 1.00 22.07	<u>C</u>
30	ATOM 1749 O SER A	204 38.888 27.096 25.604 1.00 34.39	0
	ATOM 1750 CB SER A	204 38.053 25.998 22.740 1.00 9.99	C
	ATOM 1751 OG SER A	204 38.237 24.695 23.291 1.00 16.37	0
	ATOM 1752 N GLY A	205 40.562 25.813 24.854 1.00 12.42	N
	ATOM 1753 CA GLY A	205 40.963 25.411 26.208 1.00 11.64	с
35	ATOM 1754 C GLY A	205 40.208 24.178 26.711 1.00 19.49	<u>C</u>
	ATOM 1755 O GLY A	205 40.422 23.723 27.838 1.00 13.59	0
	ATOM 1756 N THR A	206 39.292 23.683 25.881 1.00 15.38	N
	ATOM 1757 CA THR A	206 38.432 22.594 26.281 1.00 10.80	<u>C</u>
	ATOM 1758 C THR A		<u>C</u>
40	ATOM 1759 O THE A		0
	ATOM 1760 CB THR A	206 37.124 22.562 25.460 1.00 12.86	<u>c</u>
	ATOM 1761 OG1 THR A	206 37.438 22.395 24.082 1.00 13.12	0
	ATOM 1762 CG2 THR A		с
	ATOM 1763 N PRO A		N
45	ATOM 1764 CA PRO A	207 40.658 19.743 25.175 1.00 18.15	c

	ATOM	1765	<u>c</u>	PRO A 207	41.316	19.181	26.423	1.00 21.75	<u>c</u>
	ATOM	1766	_0_	PRO A 207	41.951	19.925	27.215	1.00 20.65	0
	ATOM	1767	СВ	PRO A 207	41.638	19.909	24.013	1.00 17.51	с
	ATOM	1768	CG	PRO A 207	41.146	21.213	23.307	1.00 21.45	с
5	MOTA	1769	CD	PRO A 207	40.698	22.062	24.431	1.00 23.44	с
	ATOM	1770	N_	MET A 208	41.112	17.876	26.624	1.00 15.60	N
	ATOM	1771	CA	MET A 208	41.694	17,167	27.775	1.00 22.94	c
	ATOM	1772	С	MET A 208	43.058	16.427	27.579	1.00 21.90	<u>c</u>
	MOTA	1773	٥	MET A 208	43.248	15.677	26.633	1.00 23.16	<u> </u>
10	MOTA	1774	СВ	MET A 208	40.645	16.273	28.386	1.00 32.86	<u>c</u>
	MOTA	1775	CG	MET A 208	39.630	17.057	29.223	1.00 46.17	<u>C</u>
	ATOM	1776	SD	MET A 208	38.301	15.990	29.826	1.00 57.85	s
	ATOM	1777	CE	MET A 208	37.999	15.028	28.343	1.00 58.23	<u>C</u>
	MOTA	1778	N_	ARG A 209	44.022	16.681	28.456	1.00 17.75	N
15	MOTA	1779	CA	ARG A 209	45.318	16.042	28.324	1.00 19.88	c
	MOTA	1780	С	ARG A 209	45.871	15.534	29.639	1.00 16.92	C
	MOTA	1781	0	ARG A 209	45.433	15.946	30.697	1.00 16.58	o
	MOTA	1782	СВ	ARG A 209	46.340	16.963	27.658	1.00 21.07	c
	ATOM	1783	CG	ARG A 209	45.980	17.478	26.275	1.00 22.57	с
20	ATOM	1784	CD	ARG A 209	45.833	16.357	25.282	1.00 28.26	C
	MOTA	1785	NE	ARG A 209	45.586	16.819	23.906	1.00 23.15	N N
	ATOM	1786	CZ	ARG A 209	44.420	16.742	23.267	1.00 34.52	С
	ATOM	1787	NH	ARG A 209	43.336	16.267	23.890	1.00 18.03	N
	ATOM	1788	NH2	ARG A 209	44.339	17.175	22.012	1.00 29.78	N
25	ATOM	1789	N	GLU A 210	46.878	14.675	29.547	1.00 20.87	N N
	ATOM	1790	CA	GLU A 210	47.530	14.079	30.720	1.00 17.37	<u>C</u>
	ATOM	1791	С	GLU A 210	49.031	14.490	30.851	1.00 20.96	c
	ATOM	1792	0	GLU A 210	49.748	14.622	29.841	1.00 22.44	o
	ATOM	1793	СВ	GLU A 210	47.400	12.562	30.571	1.00 16.26	c
30	ATOM	1794	ÇG	GLU A 210	47.807	11.785	31.809	1.00 19.91	c
	ATOM	1795	CD	GLU A 210	48.057	10.304	31.531	1.00 27.81	C
	MOTA	1796	OE:	GLU A 210	48.111	9.919	30.343	1.00 17.29	0
	ATOM	1797	OE:	2 GLU A 210	48.268	9.540	32.494	1.00 21.63	0
	ATOM	1798	N	PHE A 211	49.504	14.712	32.084	1.00 14.02	N
35	ATOM	1799	_CA	PHE A 211	50.887	15.159	32.353	1.00 17.48	C
	ATOM	1800	С	PHE A 211	51.458	14.414	33.531	1.00 33.62	<u>C</u>
•	ATOM	1801	0	PHE A 211	50.716	14.031	34.443	1.00 27.96	0
	ATOM	1802	СВ	PHE A 211	50.933	16.677	32.644	1.00 17.78	с
	ATOM	1803	_ ce	PHE A 211	50.303	17,490	31.541	1.00 21.49	c
40	ATOM			1 PHE A 211	51.009				
	MOTA			2 PHE A 211	48.933				
	ATOM			1 PHE A 211	50.399			1.00 16.37	
	ATOM	_1807		2 PHE A 211	48.288			1.00 9.61	Ç
	ATOM	1808			49.053			1.00 12.71	с
45	ATOM	1809						1.00 23.76	

	MOTA	1810	CA	LEU A	212	53.405	13.448	34.603	1.00 21.24	<u>c</u>
	MOTA	1811	c	LEU A	212	54.772	14.053	34.898	1.00 14.00	<u>C</u>
	MOTA	1812	٥	LEU A	212	55.519	14.398	33.985	1.00 13.99	<u> </u>
	MOTA	1813	СВ	LEU A	212	53.548	11.954	34.294	1.00 21.52	с
5	ATOM	1814	CG	LEU A	212	54.033	11.039	35.406	1.00 21.09	с
	ATOM	1815	CD1	LEU A	212	52.866	10.634	36.280	1.00 20.84	с
	ATOM	1816	CD2	LEU A	212	54.768	9.829	34.832	1.00 13.18	C
	MOTA	1817	N	HIS A	213	55.023	14.302	36.175	1.00 9.60	N
	MOTA	1818	CA	HIS A	213	56.290	14.864	36.555	1.00 13.66	<u>C</u>
10	ATOM	1819	С	HIS A	213	57.380	13.828	36.293	1.00 20.37	с
	MOTA	1820	۰	HIS A	213	57.238	12.614	36.542	1.00 16.08	o
	ATOM	1821	CB	HIS A	213	56.280	15.250	38.002	1.00 18.72	с
	ATOM	1822	CG	HIS A	213	57.491	16.017	38.408	1.00 21.22	c
	ATOM	1823	ND1	HIS A	213	58.703	15.406	38.656	1.00 24.29	N
15	ATOM	1824	CD2	HIS A	213	57.716	17.353	38.499	1.00 23.67	с
	ATOM	1825	CE1	HIS A	213	59.615	16.331	38.917	1.00 19.13	с
	ATOM	1826	NE2	HIS A	213	59.041	17.523	38.847	1.00 21.99	N
	ATOM	1827	N	VAL A	214	58.459	14.295	35.698	1.00 21.07	N
	MOTA	1828	_CA_	VAL A	214	59.532	13.383	35.361	1.00 19.23	<u>c</u>
20	ATOM	1829	С	VAL A	214	60.067	12.523	36.551	1.00 27.20	<u>_</u>
	ATOM	1830	_ 0	VAL A	214	60.604	11.444	36.359	1.00 22.23	0
	ATOM	1831	СВ	VAL A	214	60.625	14.125	34.566	1.00 11.84	<u> </u>
	ATOM	1832	CG1	VAL A	214	61.390	15.199	35.485	1.00 8.52	c
	MOTA	1833	CG2	VAL A	214	61.560	13.097	33.902	1.00 12.39	c
25	ATOM	1834	N	ASP A	215	59.893	12.984	37.790	1.00 25.29	N
	ATOM	1835	CA	ASP A	215	60.406	12.228	38.936	1.00 18.19	C
	MOTA	1836	С	ASP A	215	59.530	11.023	39.230	1.00 13.85	c
	MOTA	1837	0	ASP A	215	59.988	9.981	39.666	1.00 17.44	0
	MOTA	1838	СВ	ASP A	215	60.575	13.129	40.155	1.00 16.27	c
30	ATOM	1839	CG	ASP A	215	61.859	13.979	40.068	1.00 30.73	c
	ATOM	1840	OD1	ASP A	215	62.782	13.614	39.308	1.00 23.02	<u> </u>
	ATOM	1841	OD2	ASP A	215	61.957	15.029	40.730	1.00 26.00	o
	MOTA	1842	_N_	ASP A	216	58.276	11.136	38.863	1.00 20.08	N
	MOTA	1843	CA	ASP A	216	57.378	10.017	39.016	1.00 18.78	c
35	ATOM	1844	С	ASP A	216	57.761	9.083	37.894	1.00 23.56	С
	ATOM	1845	0	ASP A	216	57.715	7.880	38.026	1.00 20.79	o
	ATOM	1846	СВ	ASP A	216	55.912	10.457	38.821	1.00 17.18	С
	ATOM	1847	CG	ASP A	216	55.193	10.757	40.162	1.00 38.03	С
	MOTA	1848	OD1	ASP A	216	55,503	10.119	41.223	1.00 26.02	0
40	MOTA	1849	OD2	ASP A	216	54.249	11.587	40.124	1.00 25.41	<u> </u>
	ATOM	1850	N	MET A	217	58.092	9.653	36.755	1.00 18.11	N
	ATOM	1851	CA	MET A	217	58.394			1.00 22.41	
	MOTA	1852	Ç	MET A	217	59.572			1.00 27.54	
	ATOM	1853	0	MET A	217	59.579	6.752	35.710	1.00 20.86	o
45	MOTA	1854	СВ	MET A	217	_58.637	9.592	34.345	1.00 21.24	Ç

	ATOM 1855	CG	MET A 2	217 59	.478	8.918	33.287	1.00	16.37	<u>c</u>
	ATOM 1856	SD	MET A 2	217 58	.962	7.412	32.473	1.00	30.51	s
	ATOM 1857	CE	MET A 2	17 57	465	7.608	32.391	1.00	19.57	С
	ATOM 1858	N_	ALA A 2	218 60	.561	8.562	36.623	1.00	19.09	N
5	ATOM 1859	CA	ALA A 2	18 61	.774	7.841	37.002	1.00	13.65	c
	ATOM 1860	<u> </u>	ALA A 2	218 61	.436	6.778	38.028	1.00	22.61	с
	ATOM 1861		ALA A 2	18 61	.934	5.670	37.967	1.00	19.36	0
	ATOM 1862	СВ	ALA A 2	18 62	.809	8.780	37.579	1.00	12.23	C
	ATOM 1863	N	ALA A 2	19 60	.605	7.109	39.000	1.00	19.34	N
10	ATOM 1864	CA	ALA A 2	19 60	.310	6.105	40.023	1.00	18.01	C
	ATOM 1865	C	ALA A 2	19 59	.630	4.901	39.413	1.00	23.57	С
	ATOM 1866	٥	ALA A 2	219 59	.781	3.777	39.898	1.00	22.71	0
	ATOM 1867	СВ	ALA A 2	19 59	.387	6.678	41.083	1.00	10.11	c
	ATCM 1868	N	ALA A 2	20 58	.753	5.174	38.454	1.00	18.99	N
15	ATOM 1869	CA	ALA A 2	20 57	.905	4.158	37.855	1.00	14.12	<u>,c</u>
	ATCM 1870	С	ALA A 2	20 58	.753	3.213	37.034	1.00	25.33	Ç
	ATOM 1871		ALA A 2	20 58	.584	2.006	37.114	1.00	20.63	Q
	ATOM 1872	СВ	ALA A 2	20 56	796	4.798	37.023	1.00	8.53	Ç
	ATOM 1873	N	SER A 2	21 59	.770	3,772	36.379	1.00	23.92	N
20	ATOM 1874	CA	SER A 2	21 60	.702	3.011	35.556	1.00	18.38	С
	ATCM 1875	С	SER A 2	21 61	.537	1.989	36.353	1.00	20.90	C
	ATOM 1876	0	SER A 2	21 61	.683	0.799	35.983	1.00	19.84	Q
	ATOM 1877	СВ	SER A 2	21 61	.604	3.985	34.804	1.00	10.67	<u>C</u>
	ATOM 1878	OG	SER A 2	21 60	.847	4.744	33.867	1.00	15.61	0
25	ATOM 1879	N	ILE A 2	22 62	.083	2.476	37.463	1.00	18.12	N
	ATOM 1880	CA	ILE A 2	22 62	.866	1.644	38.381	1.00	21.56	<u> </u>
	ATOM 1881	_c_	ILE A 2	22 62	.020	0.554	39.068	1.00	29.10	c
	ATOM 1882	0	ILE A 2	22 62	.504 -	0.566	39.307	1.00	19.03	<u> </u>
	ATOM 1883	СВ	ILE A 2	22 63	.467	2.516	39.432	1.00	24.56	<u>c</u>
30	ATOM 1884	CG1	ILE A 2	22 64	.465	3.473	38.765	1.00	32.13	C
	ATOM 1885	CG2	ILE A 2	22 64	.129	1.671	40.500	1.00	28.26	c
	ATOM 1886	CD1	ILE A 2	22 64	.973	4.585	39.649	1.00	15.61	с
	ATOM 1887	N	HIS A 2	23 60	.772	0.907	39.384	1.00	19.34	N
	ATOM 1888	CA	HIS A 2	23 59	.829 -	0.031	39.996	1.00	20.46	с
35	ATOM 1889	C ·	HIS A 2	23 59	.599 -	1.097	38.964	1.00	24.82	С
	ATOM 1890	0	HIS A 2	23 59	.723 -	2.283	39.270	1.00	24.66	<u> </u>
	ATOM 1891	СВ	HIS A 2	23 58	.465	0.637	40.359	1.00	19.53	С
	ATOM 1892	CG	HIS A 2	23 57	.373 -	0.333	40.759	1.00	28.64	c
	ATOM 1893	ND1	HIS A 2	23 57	.021 -	0.564	42.082	1.00	24.16	N
40	ATOM 1894	CD2	HIS A 2	23 56	.497 -	1.062	40.004	1.00	30.39	C
	ATOM 1895	CE1	HIS A 2	23 55	.983 -	1.399	42.112	1.00	30.39	С
	ATOM 1896		HIS A 2		.652 -	1.727	40.869	1.00	28.13	N
	ATOM 1897		VAL A 2		.354 -	0.684	37.725	1.00	22.06	N
	ATOM 1898	CA	VAL A 2		.111 -	1.657	36.652	1.00	19.15	С
45	ATOM 1899	С	VAL A 2	24 60	.350 -	2.490	36.333	1.00	25.89	С

	ATOM 1900 O VAL A 224	60.282 -3.709 36.250 1.00 22.37	0
	ATOM 1901 CB VAL A 224	58.559 -1.022 35.377 1.00 22.59	<u> </u>
	ATOM 1902 CG1 VAL A 224	58.512 -2.050 34.231 1.00 22.61	С
	ATOM 1903 CG2 VAL A 224	57.161 -0.491 35.650 1.00 23.44	С
5	ATOM 1904 N MET A 225	61.499 -1.838 36.255 1.00 27.83	N
	ATOM 1905 CA MET A 225	62.710 -2.577 36.004 1.00 23.69	<u>c</u>
	ATOM 1906 C MET A 225	62.896 -3.678 37.071 1.00 31.95	С
	ATOM 1907 O MET A 225	63.290 -4.805 36.785 1.00 24.33	0
	ATOM 1908 CB MET A 225	63.902 -1.604 36.056 1.00 21.34	С
10	ATOM 1909 CG MET A 225	65.295 -2.296 35.999 1.00 17.83	<u> </u>
	ATOM 1910 SD MET A 225	65.750 -2.958 34.306 1.00 23.33	s
	ATOM 1911 CE MET A 225	67.080 -1.896 33.785 1.00 16.46	c
	ATOM 1912 N GLU A 226	62.644 -3.319 38.316 1.00 19.54	N
	ATOM 1913 CA GLU A 226	62.988 -4.161 39.428 1.00 21.58	c
15	ATOM 1914 C GLU A 226	61.999 -5.200 39.918 1.00 30.77	
	ATOM 1915 O GLU A 226	62.308 -6.012 40.780 1.00 29.39	
	ATOM 1916 CB GLU A 226	63.613 -3.323 40.547 1.00 20.47	c
	ATOM 1917 CG GLU A 226	64.937 -2.673 40.122 1.00 23.03	c
	ATOM 1918 CD GLU A 226	65.504 -1.809 41.208 1.00 32.62	c
20	ATOM 1919 OE1 GLU A 226	64.721 -1.455 42.122 1.00 26.12	0
	ATOM 1920 OE2 GLU A 226	66.711 -1.479 41.152 1.00 17.67	
	ATOM 1921 N LEU A 227	60.837 -5.248 39.295 1.00 34.11	N
	ATOM 1922 CA LEU A 227	59.883 -6.296 39.642 1.00 35.26	c
	ATOM 1923 C LEU A 227	60.537 -7.644 39.320 1.00 27.91	C
25	ATOM 1924 O LEU A 227	61.291 -7.766 38.340 1.00 19.89	0
	ATOM 1925 CB LEU A 227	58.693 -6.236 38.678 1.00 36.48	c
	ATOM 1926 CG LEU A 227	57.381 -5.569 38.955 1.00 40.30	C
	ATOM 1927 CD1 LEU A 227	57.697 -4.194 39.382 1.00 42.04	С
	ATOM 1928 CD2 LEU A 227	56.610 -5.577 37.647 1.00 46.21	c
30	ATOM 1929 N ALA A 228	60.026 -8.688 39.955 1.00 27.15	N
	ATOM 1930 CA ALA A 228	60.425 -10.051 39.616 1.00 25.26	c
	ATOM 1931 C ALA A 228	59.801 -10.435 38.279 1.00 27.93	C
	ATOM 1932 O ALA A 228	58.624 -10.093 37.934 1.00 31.26	
	ATOM 1933 CB ALA A 228	60.003 -11.052 40.703 1.00 22.05	
35	ATOM 1934 N HIS A 229	60.624 -11.160 37.539 1.00 27.05	N
	ATOM 1935 CA HIS A 229	60.275 -11.605 36.222 1.00 24.42	c
	ATOM 1936 C HIS A 229	58.905 -12.260 36.184 1.00 21.74	. c
	ATOM 1937 O HIS A 229	58.015 -11.851 35.398 1.00 22.22	
	ATOM 1938 CB HIS A 229	61.351 -12.520 35.698 1.00 17.71	с
40	ATOM 1939 CG HIS A 229	61.284 -12.701 34.220 1.00 27.24	с
	ATOM 1940 ND1 HIS A 229	61.060 -11.650 33.350 1.00 34.38	N N
	ATOM 1941 CD2 HIS A 229	61.292 -13.821 33.465 1.00 31.45	 C
	ATOM 1942 CE1 HIS A 229	60.992 -12.113 32.115 1.00 30.50	C
	ATOM 1943 NE2 HIS A 229	61.124 -13.427 32.159 1.00 35.23	N
45	ATOM 1944 N GLU A 230	58.681 -13.161 37.140 1.00 20.24	N

	ATOM 1945	5 CA GLU A 230	57.425 -13.895 37.209 1.00 29.41	c
	ATOM 1946	6 C GLUA 230	56.181 -13.051 37.341 1.00 22.20	c
	ATOM 1947	7 O GLUA 230	55.159 -13.359 36.679 1.00 17.78	0
	ATOM 1948	CB GLU A 230	57.464 -14.997 38.274 1.00 38.51	<u> </u>
5	ATOM 1949	9 CG GLU A 230	58.085 -14.582 39.567 1.00 63.09	С
	ATOM 1950	CD GLU A 230	57.036 -14.473 40.661 1.00100.00	с
	ATOM 1951	L OE1 GLU A 230	55.859 -14.872 40.400 1.00100.00	0
	ATOM 1952	2 OE2 GLU A 230	57.409 -14.003 41.768 1.00 81.48	0
	ATOM 1953	N VAL A 231	56.272 -12.004 38.182 1.00 16.53	N
10	ATOM 1954	CA VAL A 231	55.202 -11.029 38.356 1.00 20.23	С
	ATCM 1955	C VAL A 231	55.009 -10.164 37.102 1.00 24.45	C
	ATOM 1956	0 VAL A 231	53.864 -9.834 36.705 1.00 21.00	Q
	ATOM 1957	CB VAL A 231	55.541 -10.057 39.426 1.00 28.61	
	ATOM 1958	CG1 VAL A 231	54.362 -9.098 39.610 1.00 29.78	С
15	ATOM 1959	CG2 VAL A 231	55.881 -10.757 40.677 1.00 28.96	c
	ATOM 1960		56.133 -9.798 36.486 1.00 17.17	N
	ATOM 1961	CA TRP A 232	56.052 -9.044 35.262 1.00 21.52	C
	ATOM 1962		55.388 -9.844 34.156 1.00 20.53	c
	ATOM 1963		54.588 -9.306 33.380 1.00 24.31	
20	ATOM 1964		57.438 -8.644 34.801 1.00 29.88	c
	ATOM 1965		57.430 -7.843 33.500 1.00 27.65	c
	ATOM 1966		57.184 -6.464 33.356 1.00 25.42	c
	ATOM 1967	· ·	57.714 -8.336 32.169 1.00 27.75	
	ATOM 1968		57.325 -6.095 32.033 1.00 22.53	N
25	ATOM 1969		57.655 -7.203 31.279 1.00 25.11	
	ATOM 1970		58.037 -9.603 31.640 1.00 22.72	c
	ATOM 1971		57.917 -7.316 29.879 1.00 17.23	c
	ATOM 1972		58.238 -9.720 30.223 1.00 25.97	c
	ATOM 1973		58.154 -8.581 29.368 1.00 22.07	<u>c</u>
30	ATOM 1974		55.749 -11.121 34.018 1.00 23.80	N
	ATOM 1975		55.141 -11.949 32.937 1.00 24.78	<u></u>
	ATOM 1976		53.652 -12.118 33.122 1.00 24.51	<u>s</u>
	ATOM 1977		52.865 -12.075 32.163 1.00 28.50	0
	ATOM 1978		55.765 -13.348 32.820 1.00 26.20	<u>s</u>
35	ATOM 1979		57.250 -13.505 32.503 1.00 19.39	c
	ATOM 1980		57.745 -14.850 33.023 1.00 19.90	<u>c</u>
	ATOM 1981	· · · · · · · · · · · · · · · · · · ·	57.561 ~13.287 31.017 1.00 16.01	
	ATOM 1982		53.298 -12.343 34.372 1.00 25.45	<u>C</u>
	ATOM 1983		51.929 -12.523 34.822 1.00 30.04	N
40	ATOM 1984		51.128 -11.319 34.367 1.00 35.69	<u> </u>
	ATOM 1985		49.926 -11.390 34.052 1.00 28.25	
	ATOM 1986		52.007 -12.468 36.344 1.00 37.30	
	ATOM 1987		50.908 -13.133 37.118 1.00 45.39	<u>c</u>
	ATOM 1988			<u>c</u>
45		OE1 GLU A 234	51.112 -12.881 38.601 1.00100.00	<u>c</u>
	21711 1303	VET AND W 734	52.240 -13.137 39.104 1.00 99.09	<u>o</u>

	ATOM 1990 OE2 GLU A 234	50.211 -12.257 39.211 1.00100.00	0
	ATOM 1991 N ASN A 235	51.802 -10.184 34.364 1.00 25.04	N
	ATOM 1992 CA ASN A 235	51.109 -8.986 33.992 1.00 26.17	<u>c</u>
	ATOM 1993 C ASN A 235	51.280 -8.494 32.571 1.00 30.46	<u>c</u>
5	ATOM 1994 O ASN A 235	50.824 -7.393 32.259 1.00 22.90	
	ATOM 1995 CB ASN A 235	51.427 -7.895 34.981 1.00 29.23	С
	ATOM 1996 CG ASN A 235	50.878 -8.197 36.342 1.00 39.27	С
	ATOM 1997 OD1 ASN A 235	49.722 -7.882 36.628 1.00 29.06	0
	ATOM 1998 ND2 ASN A 235	51.653 -8.934 37.140 1.00 40.22	N
10	ATCM 1999 N THR A 236	51.935 -9.268 31.708 1.00 20.97	N
	ATOM 2000 CA THR A 236	52.108 -8.795 30.344 1.00 22.30	c
	ATOM 2001 C THR A 236	51.867 -9.943 29.419 1.00 29.74	c
	ATOM 2002 O THR A 236	51.551 -11.033 29.895 1.00 21.23	0
	ATOM 2003 CB THR A 236	53.545 -8.306 30.161 1.00 22.73	с
15	ATOM 2004 OG1 THR A 236	54.422 -9.325 30.636 1.00 21.23	0
	ATOM 2005 CG2 THR A 236	53.801 -7.048 31.041 1.00 19.69	c
	ATOM 2006 N GLN A 237	52.003 -9.699 28.109 1.00 22.23	N
	ATOM 2007 CA GLN A 237	52.097 -10.783 27.122 1.00 16.69	
	ATOM 2008 C GLN A 237	53.335 -10.507 26.331 1.00 21.02	С
20	ATOM 2009 O GLN A 237	53.729 -9.362 26.204 1.00 22.19	
	ATOM 2010 CB GLN A 237	50.913 -10.999 26.189 1.00 8.23	C
	ATOM 2011 CG GLN A 237	49.639 -11.096 26.904 1.00 21.04	С
	ATOM 2012 CD GLN A 237	48.907 -9.862 26.606 1.00 62.07	c
	ATOM 2013 OE1 GLN A 237	48.437 -9.712 25.460 1.00 59.32	0
25	ATOM 2014 NE2 GLN A 237	49.220 -8.847 27.388 1.00 37.82	N
	ATOM 2015 N PRO A 238	54.002 -11.579 25.917 1.00 28.76	N
	ATOM 2016 CA PRO A 238	55.275 -11.438 25.246 1.00 30.28	С
	ATOM 2017 C PRO A 238	55.194 -10.643 23.958 1.00 29.08	c
	ATOM 2018 O PRO A 238	56.181 -10.029 23.600 1.00 15.95	0
30	ATOM 2019 CB PRO A 238	55.733 -12.879 25.011 1.00 22.54	С
	ATOM 2020 CG PRO A 238	54.898 -13.710 25.886 1.00 18.92	С
	ATOM 2021 CD PRO A 238	53.626 -12.998 26.068 1.00 11.75	С
	ATOM 2022 N MET A 239	54.041 -10.635 23.286 1.00 17.26	N
	ATOM 2023 CA MET A 239	53.924 -9.807 22.104 1.00 17.85	С
35	ATOM 2024 C MET A 239	53.109 -8.509 22.362 1.00 18.63	С
	ATOM 2025 O MET A 239	52.792 -7.741 21.419 1.00 16.82	0
	ATOM 2026 CB MET A 239	53.460 -10.588 20.881 1.00 15.22	
	ATOM 2027 CG MET A 239	54.536 -11.534 20.261 1.00 12.90	
	ATOM 2028 SD MET A 239	53.994 -12.534 18.808 1.00 17.49	s
40	ATOM 2029 CE MET A 239	54.350 -11.357 17.422 1.00 13.12	C
	ATOM 2030 N LEU A 240	52.847 -8.252 23.646 1.00 18.55	N
	ATOM 2031 CA LEU A 240	52.159 -7.037 24.131 1.00 16.68	С
	ATOM 2032 C LEU A 240	52.774 -6.733 25.493 1.00 11.82	<u>c</u>
	ATOM 2033 O LEU A 240	52.124 -6.803 26.549 1.00 13.84	
45	ATOM 2034 CB LEU A 240	50.645 -7.249 24.240 1.00 16.91	C

	ATOM 2035 CG LEU A 240	49.646 -6.120 23.852 1.00 22.29	С
	ATOM 2036 CD1 LEU A 240	48.968 -5.488 25.033 1.00 25.51	C
	ATOM 2037 CD2 LEU A 240	50.070 -5.059 22.815 1.00 28.07	<u>c</u>
	ATOM 2038 N SER A 241	54.076 -6.467 25.456 1.00 13.09	N
5	ATOM 2039 CA SER A 241	54.842 -6.315 26.682 1.00 24.20	С
	ATOM 2040 C SER A 241	54.947 -4.938 27.377 1.00 30.52	с
	ATOM 2041 O SER A 241	55.363 -4.854 28.547 1.00 17.02	. 0
	ATOM 2042 CB SER A 241	56.247 -6.900 26.495 1.00 14.04	с
	ATOM 2043 OG SER A 241	57.062 -6.144 25.598 1.00 13.95	0
10	ATOM 2044 N HIS A 242	54.661 -3.861 26.659 1.00 17.87	N
	ATOM 2045 CA HIS A 242	54.894 -2.548 27.221 1.00 13.55	С
	ATOM 2046 C HIS A 242	53.990 -2.254 28.373 1.00 13.70	c
	ATOM 2047 O HIS A 242	52.974 -2.885 28.539 1.00 13.29	0
	ATOM 2048 CB HIS A 242	54.826 -1.430 26.130 1.00 16.05	С
15	ATOM 2049 CG HIS A 242	53.595 -1.504 25.272 1.00 18.88	C
	ATOM 2050 ND1 HIS A 242	52.591 -0.553 25.326 1.00 23.24	N
	ATOM 2051 CD2 HIS A 242	53,165 -2,461 24,413 1.00 13,19	c
	ATOM 2052 CE1 HIS A 242	51.629 -0.887 24.483 1.00 17.44	C
	ATOM 2053 NE2 HIS A 242	51.962 -2.031 23.901 1.00 19.54	N
20	ATOM 2054 N ILE A 243	54.310 -1.203 29.095 1.00 15.84	N
	ATOM 2055 CA ILE A 243	53.492 -0.809 30.192 1.00 19.10	c
	ATOM 2056 C ILE A 243	53.336 0.714 30.191 1.00 23.23	C
	ATOM 2057 0 ILE A 243	54.312 1.406 30.385 1.00 12.10	. 0
	ATOM 2058 CB ILE A 243	54.166 -1.273 31.482 1.00 24.62	c
25	ATOM 2059 CG1 ILE A 243	54.014 -2.783 31.576 1.00 25.60	С
	ATOM 2060 CG2 ILE A 243	53.497 -0.665 32.735 1.00 17.37	C
	ATOM 2061 CD1 ILE A 243	54.725 -3.365 32.714 1.00 14.82	c
-	ATOM 2062 N ASN A 244	52.112 1.217 30.013 1.00 16.43	N
	ATOM 2063 CA ASN A 244	51.824 2.689 30.038 1.00 18.99	c
30	ATOM 2064 C ASN A 244	52.252 3.292 31.348 1.00 18.83	
	ATOM 2065 O ASN A 244	51.965 2.727 32.405 1.00 19.58	
	ATOM 2066 CB ASN A 244	50.304 2.987 29.910 1.00 15.67	c
	ATOM 2067 CG ASN A 244	49.768 2.702 28.517 1.00 14.57	c
	ATOM 2068 OD1 ASN A 244	50.546 2.583 27.580 1.00 13.64	
35	ATOM 2069 ND2 ASN A 244	48.443 2.491 28.393 1.00 10.16	N
	ATOM 2070 N VAL A 245	52,800 4,499 31.326 1.00 13.50	N
	ATOM 2071 CA VAL A 245	53.159 5.134 32.602 1.00 13.49	<u>.</u>
	ATOM 2072 C VAL A 245	52.528 6.566 32.644 1.00 16.25	<u>c</u>
	ATOM 2073 O VAL A 245	52.786 7.405 31.770 1.00 15.20	
40	ATOM 2074 CB VAL A 245	54.754 5.163 32.810 1.00 21.07	<u>c</u>
	ATOM 2075 CG1 VAL A 245	55.154 6.085 33.937 1.00 15.08	
	ATOM 2076 CG2 VAL A 245	55.280 3.817 33.143 1.00 15.82	<u>c</u>
	ATOM 2077 N GLY A 246	51.696 6.843 33.649 1.00 14.03	
	ATOM 2078 CA GLY A 246		<u>N</u>
45			<u>c</u>
7.7	ATOM 2079 C GLY A 246	50.146 8.203 34.939 1.00 26.95	<u> </u>

	ATOM 2080 O GLY A 246	50.323 7.401 35.850 1.00 23.04	0
	ATOM 2081 N THR A 247	49.207 9.161 34.963 1.00 21.44	N
	ATOM 2082 CA THR A 247	48.232 9.276 36.063 1.00 21.39	<u>c</u>
	ATOM 2083 C THR A 247	46.868 8.677 35.673 1.00 24.08	с
5	ATOM 2084 O THR A 247	46.069 8.306 36.508 1.00 21.03	<u> </u>
	ATOM 2085 CB THR A 247	47.988 10.730 36.404 1.00 22.24	C
	ATOM 2086 OG1 THR A 247	47.409 11.389 35.265 1.00 18.62	0
	ATOM 2087 CG2 THR A 247	49.275 11.378 36.724 1.00 18.99	С
	ATCM 2088 N GLY A 248	46.583 8.651 34.384 1.00 24.95	N
10	ATOM 2089 CA GLY A 248	45.319 8.143 33.924 1.00 22.61	С
	ATOM 2090 C GLY A 248	44.223 9.160 34.226 1.00 21.42	С
	ATOM 2091 O GLY A 248	43.059 8.866 34.137 1.00 25.70	0
	ATOM 2092 N VAL A 249	44.615 10.386 34.521 1.00 30.72	N
	ATOM 2093 CA VAL A 249	43.673 11.464 34.827 1.00 26.09	C
15	ATOM 2094 C VAL A 249	43.747 12.596 33.786 1.00 32.70	C
	ATOM 2095 O VAL A 249	44.853 13.006 33.387 1.00 26.92	
	ATOM 2096 CB VAL A 249	44.020 12.085 36.214 1.00 38.59	С
	ATOM 2097 CG1 VAL A 249	43.225 13.324 36.470 1.00 36.11	c
	ATCM 2098 CG2 VAL A 249	43.782 11.083 37.306 1.00 41.30	c
20	ATOM 2099 N ASP A 250	42.581 13.125 33.397 1.00 27.95	N
	ATOM 2100 CA ASP A 250	42.488 14.232 32.439 1.00 20.64	c
	ATOM 2101 C ASP A 250	42.611 15.581 33.155 1.00 27.63	c
	ATOM 2102 O ASP A 250	42.188 15.783 34.308 1.00 26.23	
	ATOM 2103 CB ASP A 250	41.075 14.302 31.827 1.00 23.89	
25	ATOM 2104 CG ASP A 250	40.768 13.180 30.850 1.00 39.52	C
	ATOM 2105 OD1 ASP A 250	41.283 13.184 29.688 1.00 39.96	0
	ATOM 2106 OD2 ASP A 250	39.767 12.501 31.153 1.00 45.34	
	ATOM 2107 N CYS A 251	43.029 16.566 32.388 1.00 20.12	N
	ATOM 2108 CA CYS A 251	42.962 17.906 32.851 1.00 27.20	C
30	ATOM 2109 C CYS A 251	42.918 18.779 31.577 1.00 26.47	С
	ATOM 2110 0 CYS A 251	43.699 18.560 30.633 1.00 19.45	0
	ATOM 2111 CB CYS A 251	44.148 18.157 33.778 1.00 34.86	C
	ATOM 2112 SG CYS A 251	45.129 19.619 33.453 1.00 29.47	s
	ATOM 2113 N THR A 252	41.932 19.673 31.494 1.00 14.85	N
35	ATOM 2114 CA THR A 252	41.834 20.588 30.335 1.00 21.21	c
	ATOM 2115 C THR A 252	42.999 21.592 30.236 1.00 20.53	c
	ATOM 2116 O THR A 252	43.657 21.926 31.249 1.00 15.24	
	ATOM 2117 CB THR A 252	40.506 21.407 30.329 1.00 32.08	<u>C</u>
	ATOM 2118 OG1 THR A 252	40.460 22.304 31.447 1.00 19.26	0
40	ATOM 2119 CG2 THR A 252	39.309 20.495 30.372 1.00 13.91	c
	ATOM 2120 N ILE A 253	43.228 22.095 29.024 1.00 14.81	N
	ATOM 2121 CA ILE A 253	44.264 23.118 28.812 1.00 16.90	c
	ATOM 2122 C ILE A 253	43.934 24.383 29.627 1.00 23.41	<u>c</u>
	ATOM 2123 O ILE A 253	44.834 25.012 30.247 1.00 15.27	0
45	ATOM 2124 CB ILE A 253	44.404 23.452 27.302 1.00 24.05	c
			×

	MOTA	2125	CG1	ILE A 253	44.862	22.200	26.561	1.00 27.33	C
	MOTA	2126	CG2	ILE A 253	45.473	24.479	27.077	1.00 9.22	C
	ATOM	2127	CD1	ILE A 253	45.662	21,276	27.452	1.00 49.56	C
	MOTA	2128	N	ARG A 254	42.637	24.709	29.707	1.00 19.56	N
5	ATOM	2129	CA	ARG A 254	42.228	25.865	30.522	1.00 19.41	C
	MOTA	2130	С	ARG A 254	42.712	25.713	31,970	1.00 18.10	c
	MOTA	2131	0	ARG A 254	43.311	26.616	32.515	1.00 13.89	0
	MOTA	2132	СВ	ARG A 254	40.704	26.101	30.480	1.00 15.98	C
	MOTA	2133	CG	ARG A 254	40.282	27.378	31.255	1.00 9.96	C
10	MOTA	2134	CD	ARG A 254	38.809	27.702	31,218	1.00 24.79	C
	MOTA	2135	NE	ARG A 254	38.498	28.414	29.997	1.00 29.42	N
	MOTA	2136	CZ	ARG A 254	38.693	29.723	29.794	1.00 59.85	C
	ATOM	2137	NH1	ARG A 254	39.194	30.527	30.732	1.00 42.58	N
	MOTA	2138	NH2	ARG A 254	38.377	30.245	28,620	1.00 18.44	N
15	ATOM	2139	N	ASP A 255	42.406	24.564	32.586	1.00 20.22	N
	ATOM	2140	CA	ASP A 255	42.795	24.205	33.974	1.00 16.48	c
	MOTA	2141	С	ASP A 255	44.321	24.372	34.069	1.00 22.43	c
	ATOM	2142	0	ASP A 255	44.868	24.897	35.060	1.00 18.53	0
	MOTA	2143	СВ	ASP A 255	42.478	22.686	34.157	1.00 19.17	c
20	MOTA	2144	CG	ASP A 255	42.144	22.246	35.610	1.00 47.08	C
	MOTA	2145	OD1	ASP A 255	41.780	23.090	36.429	1.00 49.66	0
	MOTA	2146	OD2	ASP A 255	42.020	21.016	35.880	1.00 48.12	0
	MOTA	2147	N_	LEU A 256	45.014	23.809	33.078	1.00 15.98	N
	MOTA	2148	CA	LEU A 256	46.465	23.844	33.069	1.00 21.76	с
25	ATOM	2149	С	LEU A 256	47.020	25.275	33.076	1.00 16.79	<u>C</u>
	MOTA	2150	0_	LEU A 256	47.825	25.697	33.946	1.00 15.24	0
	MOTA	2151	CB	LEU A 256	46,967	23.056	31.859	1.00 23.33	<u>C</u>
	MOTA	2152	CG	LEU A 256	48.491	23.100	31.765	1.00 26.80	c
	ATOM	2153	CD1	LEU A 256	49.171	22.334	32.984	1.00 17.13	C
30	ATOM	2154	CD2	LEU A 256	49.040	22.724	30.346	1.00 15.42	C
	ATOM	2155	N.	ALA A 257	46.520	26.048	32.140	1.00 13.77	<u> </u>
	ATOM	2156	CA	ALA A 257	46.938	27.436	32.025	1.00 12.70	<u> </u>
	ATOM	2157	С	ALA A 257	46.656	28.237	33.267	1.00 10.73	с
	MOTA	2158	0	ALA A 257	47.451	29.073	33.672	1.00 20.33	0
35	MOTA	2159	СВ	ALA A 257	46.208	28.073	30.834	1.00 13.34	c
	ATOM	2160	N_	GLN A 258	45.470	28.080	33.835	1.00 12.40	N
	MOTA	2161	CA	GLN A 258	45.102	28.911	34.981	1.00 8.39	с
	MOTA	2162	С.	GLN A 258	45.879	28.480	36.166	1.00 13.48	C
	ATOM	2163	0	GLN A 258	46.178	29.281	37.029	1.00 22.96	Q
40	ATOM	2164	СВ	GLN A 258	43.614	28.761	35.305	1.00 16.12	С
	ATOM	2165	CG	GLN A 258	42.674	29.096	34.130	1.00 30.19	<u>C</u>
	ATOM	2166	CD	GLN A 258	42.574	30.585	33.781	1.00 37.29	c
	MOTA	2167	0E1	GLN A 258	42.911	31.471	34.610	1.00 21.24	0
	ATOM	2168	NE2	GLN A 258	42.021	30.876	32.572	1.00 15.94	N
45	MOTA	2169	N_	THR A 259	46.179	27.182	36.232	1.00 16.21	N

	ATOM 2170	CA THR A 259	46.982 26.678	37.336 1.00 16.85	с
	ATOM 2171	C THR A 259	48.410 27.186	37.233 1.00 20.56	c
	ATOM 2172	O THR A 259	49.002 27.621	38.214 1.00 21.44	0
	ATOM 2173	CB THR A 259	47.066 25.192	37.361 1.00 27.56	<u> </u>
5	ATOM 2174	OG1 THR A 259	45.752 24.620	37.509 1.00 20.92	0
	ATOM 2175	CG2 THR A 259	47.936 24.796	38.545 1.00 12.85	C
	ATOM 2176	N ILE A 260	48.952 27.170	36.028 1.00 19.96	N
	ATOM 2177	CA ILE A 260	50.292 27.704	35.839 1.00 23.01	с
	ATOM 2178	C ILE A 260	50.313 29.180	36.225 1.00 31.73	с
10	ATOM 2179	O ILE A 260	51.211 29.627	36.993 1.00 25.90	0
	ATOM 2180	CB ILE A 260	50.835 27.456	34.390 1.00 22.46	с
	ATOM 2181	CG1 ILE A 260	51.153 25.940	34.232 1.00 24.12	С
	ATOM 2182	CG2 ILE A 260	52.099 28.361	34.106 1.00 13.47	c
	ATCM 2183	CD1 ILE A 260	51.501 25.443	32.810 1.00 12.58	С
15	ATOM 2184	N ALA A 261	49.280 29.910	35.764 1.00 15.35	N
	ATOM 2185	CA ALA A 261	49.177 31.355	36.048 1.00 16.00	С
	ATOM 2186	C ALA A 261	49.316 31.604	37.550 1.00 20.58	c
	ATOM 2187	O ALA A 261	50.104 32.443	37.987 1.00 16.09	0
	ATOM 2188	CB ALA A 261	47.832 31.958	35.487 1.00 13.65	C
20	ATOM 2189	N LYS A 262	48.551 30.843	38.323 1.00 11.50	N
	ATOM 2190	CA LYS A 262	48.578 30.905	39.770 1.00 10.13	С
	ATOM 2191	C LYS A 262	49.968 30.460	40.296 1.00 28.08	c
	ATOM 2192	O LYS A 262	50.503 31.084	41.205 1.00 29.37	0
	ATOM 2193	CB LYS A 262	47.453 30.032	40.335 1.00 12.50	С
25	ATOM 2194	CG LYS A 262	47.332 29.962	41.888 1.00 16.51	c
	ATOM 2195	CD LYS A 262	46.092 29.092	42.371 1.00 46.61	С
	ATOM 2196	CE LYS A 262	46.344 27.555	42.661 1.00 99.70	С
	ATOM 2197	NZ LYS A 262	45.157 26.703	43.200 1.00 36.59	N
	ATOM 2198	N VAL A 263	50.589 29.443	39.705 1.00 17.44	N
30	ATOM 2199	CA VAL A 263	51.915 29.039	40.171 1.00 18.72	<u>c</u>
	ATOM 2200	C VAL A 263	52.997 30.170	39.997 1.00 32.12	<u>c</u>
	ATOM 2201	O VAL A 263	53.871 30.412	40.834 1.00 21.18	0
	ATOM 2202	CB VAL A 263	52.389 27.709	39.476 1.00 16.35	c
	ATOM 2203	CG1 VAL A 263	53.920 27.518	39.647 1.00 11.83	С
35	ATOM 2204	CG2 VAL A 263	51.646 26.522	40.093 1.00 14.99	с
	ATOM 2205	N VAL A 264	52.913 30.899	38.909 1.00 21.75	N
	ATOM 2206	CA VAL A 264	53.917 31.877	38.653 1.00 19.81	c
	ATOM 2207	C VAL A 264	53.719 33.208	39.377 1.00 35.79	с
	ATOM 2208	0 VAL A 264	54.632 34.032	39.482 1.00 28.99	0
40	ATOM 2209	CB VAL A 264	54.059 32.014	37.175 1.00 24.27	c
	ATOM 2210	CG1 VAL A 264	54.728 33.269	36.822 1.00 33.58	c
	ATOM 2211	CG2 VAL A 264	54.840 30.808	36.674 1.00 23.01	C
	ATOM 2212	N GLY A 265	52.550 33.378	39.969 1.00 25.30	N
	ATOM 2213	CA GLY A 265	52.241 34.620	40.636 1.00 24.14	<u>c</u>
45	ATOM 2214	C GLY A 265	51.730 35.694	39.632 1.00 35.03	С

	ATOM 2215 O GLY A 265	51.773 36.911 39.962 1.00 33.71
	ATOM 2216 N TYR A 266	51.294 35.257 38.428 1.00 26.25
	ATOM 2217 CA TYR A 266	50.698 36.151 37.373 1.00 26.55
	ATOM 2218 C TYR A 266	49.364 36.745 37.818 1.00 31.01
5	ATOM 2219 O TYR A 266	48.532 36.067 38.456 1.00 27.99
	ATOM 2220 CB TYR A 266	50.501 35.463 36.008 1.00 24.31
	ATOM 2221 CG TYR A 266	49.994 36.381 34.884 1.00 28.64
	ATOM 2222 CD1 TYR A 266	50.670 37.582 34.542 1.00 35.05
	ATOM 2223 CD2 TYR A 266	48.860 36.038 34.118 1.00 22.60
10	ATOM 2224 CE1 TYR A 266	50.212 38.434 33.472 1.00 20.73
	ATOM 2225 CE2 TYR A 266	48.428 36.859 33.012 1.00 20.91
	ATOM 2226 CZ TYR A 266	49.088 38.062 32.735 1.00 23.85
	ATOM 2227 OH TYR A 266	48.622 38.851 31.710 1.00 33.40
	ATOM 2228 N LYS A 267	49.217 38.043 37.604 1.00 25.72
15	ATOM 2229 CA LYS A 267	47.988 38.697 38.009 1.00 30.77
	ATOM 2230 C LYS A 267	47.217 39.280 36.798 1.00 28.85
	ATOM 2231 O LYS A 267	46.179 39.894 36.949 1.00 31.17
	ATOM 2232 CB LYS A 267	48.279 39.741 39.092 1.00 27.13
	ATOM 2233 CG LYS A 267	48.728 39.128 40.403 1.00 23.18
20	ATOM 2234 CD LYS A 267	48.420 40.096 41.562 1.00 30.98
	ATOM 2235 CE LYS A 267	47.933 39.358 42.820 1.00 48.52
	ATOM 2236 NZ LYS A 267	47.005 38.208 42.505 1.00100.00
	ATOM 2237 N GLY A 268	47.716 39.054 35.594 1.00 22.67
	ATOM 2238 CA GLY A 268	47.019 39.518 34.394 1.00 21.38
25	ATOM 2239 C GLY A 268	45.856 38.568 34.085 1.00 31.03
	ATOM 2240 O GLY A 268	45,455 37.728 34.911 1.00 19.71
	ATOM 2241 N ARG A 269	45.387 38.645 32.849 1.00 30.40
	ATOM 2242 CA ARG A 269	44.263 37.846 32.399 1.00 26.47
	ATOM 2243 C ARG A 269	44.680 36.705 31.489 1.00 22.35
30	ATOM 2244 O ARG A 269	45.378 36.926 30.524 1.00 22.75
	ATOM 2245 CB ARG A 269	43.297 38.753 31.626 1.00 22.65
	ATOM 2246 CG ARG A 269	42.201 39.390 32.463 1.00 24.21
	ATOM 2247 CD ARG A 269	40.936 39.465 31.568 1.00 83.45
	ATOM 2248 NE ARG A 269	40.113 40.676 31.762 1.00100.00
35	ATOM 2249 CZ ARG A 269	38.808 40.751 31.431 1.00100.00
	ATOM 2250 NH1 ARG A 269	38,201 39,691 30,921 1.00 99.93
	ATOM 2251 NH2 ARG A 269	38.094 41.865 31.663 1.00100.00
	ATOM 2252 N VAL A 270	44.195 35.494 31.758 1.00 19.87
	ATOM 2253 CA VAL A 270	44.468 34.389 30.856 1.00 24.82
40	ATOM 2254 C VAL A 270	
	ATOM 2255 O VAL A 270	42.145 34.501 30.181 1.00 25.79
	ATOM 2256 CB VAL A 270	44.436 32.979 31.571 1.00 24.03
	ATOM 2257 CG1 VAL A 270	44.576 31.861 30.533 1.00 20.72
	ATOM 2258 CG2 VAL A 270	45.506 32.849 32.639 1.00 11.27
45	ATOM 2259 N VAL A 271	

	ATOM 2260 CA VAL A 271	42.666 34.492 27.487 1.00 28.32	c
	ATOM 2261 C VAL A 271	42.819 33.370 26.442 1.00 24.89	<u>c</u>
	ATOM 2262 O VAL A 271	43.923 33.115 25.980 1.00 21.98	0
	ATOM 2263 CB VAL A 271	42.901 35.813 26.736 1.00 29.25	<u> </u>
5	ATOM 2264 CG1 VAL A 271	42.256 35.773 25.370 1.00 31.91	c
	ATOM 2265 CG2 VAL A 271	42.421 36.989 27.565 1.00 18.72	<u>c</u>
	ATOM 2266 N PHE A 272	41.716 32.758 26.019 1.00 26.14	N
	ATOM 2267 CA PHE A 272	41.752 31.747 24.963 1.00 24.34	C
	ATOM 2268 C PHE A 272	41.236 32.266 23.623 1.00 28.95	<u>C</u>
10	ATOM 2269 O PHE A 272	40.155 32.826 23.582 1.00 22.01	0
	ATOM 2270 CB PHE A 272	40.960 30.506 25.391 1.00 20.97	с
	ATOM 2271 CG PHE A 272	41.764 29.570 26.243 1.00 21.77	<u>c</u>
	ATOM 2272 CD1 PHE A 272	41.940 29.842 27.610 1.00 14.60	<u>C</u>
	ATOM 2273 CD2 PHE A 272	42.504 28.550 25.656 1.00 22.19	<u>c</u>
15	ATOM 2274 CE1 PHE A 272	42.763 29.041 28.434 1.00 17.89	<u>C</u>
	ATOM 2275 CE2 PHE A 272	43.336 27.726 26.454 1.00 27.64	<u>C</u>
	ATOM 2276 CZ PHE A 272	43.478 27.979 27.851 1.00 25.14	C
	ATOM 2277 N ASP A 273	42.012 32.114 22.542 1.00 29.45	N
	ATOM 2278 CA ASP A 273	41.557 32.536 21.214 1.00 22.33	<u>C</u>
20	ATOM 2279 C ASP A 273	40.896 31.365 20.493 1.00 25.67	с
	ATOM 2280 O ASP A 273	41.539 30.570 19.793 1.00 17.81	0
	ATOM 2281 CB ASP A 273	42.672 33.114 20.343 1.00 21.45	<u>c</u>
	ATOM 2282 CG ASP A 273	42.131 33.626 18.990 1.00 26.89	C
٥.	ATOM 2283 OD1 ASP A 273	40.975 33.249 18.598 1.00 27.76	0
25	ATOM 2284 OD2 ASP A 273	42.838 34.421 18.327 1.00 30.06	<u>Q</u>
	ATOM 2285 N ALA A 274	39.589 31.284 20.649 1.00 15.59	N
	ATOM 2286 CA ALA A 274	38.932 30.128 20.128 1.00 23.75	<u>c</u>
	ATOM 2287 C ALA A 274	38.853 30.168 18.653 1.00 32.30	<u>C</u>
20	ATOM 2288 O ALA A 274	38.284 29.256 18.029 1.00 29.37	
30	ATOM 2289 CB ALA A 274	37.567 29.905 20.777 1.00 18.87	<u>c</u>
	ATOM 2290 N SER A 275	39.372 31.243 18.081 1.00 21.10	<u> </u>
	ATOM 2291 CA SER A 275	39.343 31.288 16.631 1.00 26.90	<u>c</u>
	ATOM 2292 C SER A 275	40.390 30.300 16.116 1.00 43.37	<u>C</u>
25	ATOM 2293 O SER A 275	40.421 29.949 14.927 1.00 46.32	0
35	ATOM 2294 CB SER A 275	39.547 32.683 16.074 1.00 15.19	<u>c</u>
	ATOM 2295 OG SER A 275	40.904 33.070 16.078 1.00 28.71	<u> </u>
	ATOM 2296 N LYS A 276	41.192 29.780 17.037 1.00 22.98	N
	ATOM 2297 CA LYS A 276	42.178 28.791 16.638 1.00 23.28	c
	ATOM 2298 C LYS A 276	41.645 27.405 16.976 1.00 29.73	с
40	ATOM 2299 O LYS A 276	40.992 27.206 18.010 1.00 25.10	0
	ATOM 2300 CB LYS A 276	43.544 29.051 17.275 1.00 19.19	с
	ATOM 2301 CG LYS A 276	43.957 30.496 17.218 1.00 32.11	<u>C</u>
	ATOM 2302 CD LYS A 276	44.062 30.852 15.798 1.00 22.43	<u>c</u>
4.5	ATOM 2303 CE LYS A 276	44.930 32.067 15.570 1.00 23.18	c
45	ATOM 2304 NZ LYS A 276	45.454 32.117 14.152 1.00 29.42	N

	ATOM 2305 N PRO A 277	41.892 26.476 16.055 1.00 36.04	N
	ATOM 2306 CA PRO A 277	41.446 25.087 16.170 1.00 35.93	c
	ATOM 2307 C PRO A 277	42.022 24.332 17.363 1.00 29.30	C
	ATOM 2308 O PRO A 277	43.103 24.650 17.885 1.00 30.54	0
5	ATOM 2309 CB PRO A 277	41.975 24.453 14.878 1.00 39.65	c
	ATOM 2310 CG PRO A 277	43.249 25.261 14.566 1.00 42.90	c
	ATOM 2311 CD PRO A 277	42.787 26.670 14.892 1.00 37.84	c
	ATOM 2312 N ASP A 278	41.273 23.339 17.809 1.00 22.35	N
	ATOM 2313 CA ASP A 278	41.745 22.501 18.903 1.00 22.16	C
10	ATOM 2314 C ASP A 278	42.184 21.189 18.272 1.00 19.66	<u>C</u>
	ATOM 2315 O ASP A 278	41.905 20.917 17.117 1.00 23.49	0
	ATOM 2316 CB ASP A 278	40.636 22.241 19.971 1.00 15.09	c
	ATOM 2317 CG ASP A 278	40.216 23.503 20.702 1.00 22.86	с
	ATOM 2318 OD1 ASP A 278	41.113 24.254 21.096 1.00 25.18	0
15	ATOM 2319 OD2 ASP A 278	38.999 23.787 20.812 1.00 39.55	
	ATOM 2320 N GLY A 279	42.846 20.355 19.044 1.00 30.65	N
	ATOM 2321 CA GLY A 279	43.229 19.034 18.546 1.00 33.78	C
	ATOM 2322 C GLY A 279	42.115 18.099 18.944 1.00 38.10	с
	ATOM 2323 O GLY A 279	40.963 18.517 19.068 1.00 47.52	0
20	ATOM 2324 N THR A 280	42.419 16.839 19.177 1.00 29.44	N
	ATOM 2325 CA THR A 280	41.328 15.990 19.587 1.00 26.68	ç
•	ATOM 2326 C THR A 280	40.889 16.439 20.972 1.00 23.52	С
	ATOM 2327 O THR A 280	41.670 17.067 21.713 1.00 23.62	
	ATOM 2328 CB THR A 280	41.695 14.492 19.540 1.00 40.78	С
25	ATOM 2329 OG1 THR A 280	42.889 14.272 20.296 1.00 25.56	
	ATOM 2330 CG2 THR A 280	41.893 14.054 18.095 1.00 37.71	С
	ATOM 2331 N PRO A 281	39.672 16.063 21.346 1.00 25.54	N
	ATOM 2332 CA PRO A 281	39.129 16.454 22.628 1.00 25.72	с
	ATOM 2333 C PRO A 281	39.776 15.778 23.800 1.00 26.02	c
30	ATOM 2334 O PRO A 281	39.752 16.314 24.915 1.00 22.68	0
	ATOM 2335 CB PRO A 281	37.650 15.990 22.559 1.00 28.89	с
	ATOM 2336 CG PRO A 281	37.417 15.540 21.201 1.00 29.39	с
	ATOM 2337 CD PRO A 281	38,761 15.138 20.646 1.00 26.82	C
	ATOM 2338 N ARG A 282	40.281 14.567 23.587 1.00 27.88	N
35	ATOM 2339 CA ARG A 282	40.806 13.817 24.720 1.00 34.08	
	ATOM 2340 C ARG A 282	41.977 12.918 24.384 1.00 27.62	С
	ATOM 2341 0 ARG A 282	41.913 12.182 23.425 1.00 23.83	0
	ATOM 2342 CB ARG A 282	39.676 13.017 25.405 1.00 20.89	с
	ATOM 2343 CG ARG A 282	40.035 12.467 26.775 1.00 22.81	C
40	ATOM 2344 CD ARG A 282	38.762 11.925 27.442 1.00 26.77	c
	ATOM 2345 NE ARG A 282	38.963 11.345 28.781 1.00 36.48	N
	ATOM 2346 CZ ARG A 282	38.518 10.139 29.164 1.00 37.74	c
	ATOM 2347 NH1 ARG A 282	37.813 9.360 28.346 1.00 28.45	N
	ATOM 2348 NH2 ARG A 282	38.754 9.700 30.384 1.00 27.25	N
45	ATOM 2349 N LYS A 283	43.016 12.963 25.223 1.00 28.91	N

ATOM 2350 CA LWS A 283 44.217 12.171 25.051 1.00 24.32 C ATOM 2351 C LWS A 283 44.795 11.766 26.404 1.00 22.557 C ATOM 2352 O LWS A 283 45.262 12.626 27.138 1.00 31.16 O ATOM 2352 CB LWS A 283 45.262 13.008 24.287 1.00 21.93 C ATOM 2354 CG LWS A 283 45.266 13.008 24.287 1.00 21.93 C ATOM 2355 CB LWS A 283 45.266 13.171 22.143 1.00 95.177 C ATOM 2355 CB LWS A 283 45.710 12.937 20.836 1.00100.00 C ATOM 2355 NB LWS A 283 45.710 12.937 20.836 1.00100.00 M ATOM 2355 NB LWS A 283 45.710 12.937 20.836 1.00100.00 M ATOM 2359 CA LEU A 284 44.747 10.467 26.734 1.00 23.37 N 10 ATOM 2359 CA LEU A 284 45.327 9.905 27.997 1.00 16.08 C ATOM 2359 CA LEU A 284 45.327 9.905 27.997 1.00 16.08 C ATOM 2359 CA LEU A 284 44.641 10.387 29.284 1.00 16.30 C ATOM 2353 CG LEU A 284 44.641 10.387 29.284 1.00 16.30 C ATOM 2353 CG LEU A 284 44.641 10.387 29.284 1.00 16.30 C ATOM 2353 CG LEU A 284 42.281 10.089 31.152 1.00 22.46 C ATOM 2353 CG LEU A 284 42.281 10.089 31.152 1.00 25.45 C ATOM 2356 C LEU A 284 44.641 10.387 29.284 1.00 16.30 C ATOM 2355 CG LEU A 284 44.641 10.387 29.284 1.00 16.30 C ATOM 2356 C LEU A 284 42.881 10.089 31.152 1.00 22.11 C ATOM 2356 C LEU A 284 42.281 10.099 31.152 1.00 22.15 C ATOM 2356 C LEU A 284 42.281 10.099 31.152 1.00 22.11 C ATOM 2356 C LEU A 284 42.285 10.090 30.155 C ATOM 2356 C LEU A 285 46.152 7.999 28.820 1.00 18.51 N ATOM 2356 C LEU A 285 46.152 7.999 28.820 1.00 18.51 N ATOM 2357 CA LEU A 285 46.152 7.999 29.903 1.00 22.02 C ATOM 2358 C LEU A 285 46.152 7.099 29.989 1.00 10.90 6.77 C ATOM 2357 C LEU A 285 49.307 6.970 28.672 1.00 16.50 C ATOM 2358 C LEU A 285 49.307 6.970 28.672 1.00 15.15 C ATOM 2371 CG LEU A 285 49.307 6.970 28.672 1.00 15.15 C ATOM 2372 CD LEU A 285 49.307 6.970 28.672 1.00 15.15 C ATOM 2373 CD LEU A 285 49.307 6.970 28.672 1.00 15.15 C ATOM 2371 CG LEU A 285 49.307 6.970 28.672 1.00 15.15 C ATOM 2372 CD LEU A 285 49.307 6.970 28.672 1.00 15.15 C ATOM 2377 N A SPA 286 46.128 3.055 31.498 1.00 20.05 4 C ATOM 2373 CD LEU A 287 49.307 6.970 29.92 1.00 1.05 5.5 C ATOM 2373 CD LEU A										
ATCH 2352 O LYS A 283		ATOM 235	O CA LYS	A 283	44.217	12.171	25.051	1.00 2	24.32	
5 ATCH 2353 CB LYS A 283 45.226 13.008 24.287 1.00 21.93 C ATCH 2355 CD LYS A 283 46.111 12.251 23.316 1.00 32.38 C ATCH 2355 CD LYS A 283 46.526 13.171 22.143 1.00 95.77 C ATCH 2355 CB LYS A 283 45.710 12.937 20.836 1.00100.00 C ATCH 2355 N LYS A 283 46.111 13.332 19.535 1.00100.00 N ATCH 2355 N LEU A 284 44.747 10.467 26.734 1.00 23.37 N ATCH 2359 CA LEU A 284 45.327 9.905 27.997 1.00 16.08 C ATCH 2360 C LEU A 284 45.327 9.905 27.997 1.00 16.08 C ATCH 2360 C LEU A 284 45.463 8.386 28.047 1.00 20.46 C ATCH 2363 C LEU A 284 43.334 9.705 27.997 1.00 16.00 C ATCH 2363 C LEU A 284 43.334 9.705 29.714 1.00 25.45 O ATCH 2363 C LEU A 284 43.334 9.700 29.714 1.00 25.97 C ATCH 2363 C LEU A 284 43.334 9.700 29.714 1.00 25.97 C ATCH 2363 CD LEU A 284 42.203 9.951 28.693 1.00 23.21 C ATCH 2363 CD LEU A 284 42.203 9.951 28.693 1.00 23.92 C ATCH 2365 CD2 LEU A 284 42.203 9.951 28.693 1.00 23.92 C ATCH 2366 C D LEU A 285 46.453 7.939 28.820 1.00 18.51 N ATCH 2366 CD2 LEU A 285 46.153 7.939 28.820 1.00 18.51 N ATCH 2366 C LEU A 285 46.153 7.939 28.820 1.00 18.51 N ATCH 2367 C LEU A 285 46.192 6.527 29.003 1.00 16.77 C ATCH 2367 C LEU A 285 45.850 5.865 30.006 1.00 30.75 C ATCH 2369 C LEU A 285 45.860 5.865 30.006 1.00 30.75 C ATCH 2369 C LEU A 285 45.860 5.865 30.006 1.00 30.75 C ATCH 2367 C LEU A 285 45.860 5.865 30.006 1.00 30.75 C ATCH 2370 C LEU A 285 49.001 6.392 29.585 1.00 15.85 C ATCH 2370 C LEU A 285 49.001 6.392 29.595 1.00 15.85 C ATCH 2370 C LEU A 285 49.001 6.392 29.595 1.00 15.85 C ATCH 2370 C ATCH 2375 C A ASP A 286 49.903 1.00 22.02 O ATCH 2375 C A ASP A 286 49.001 6.399 29.585 1.00 15.95 C ATCH 2375 C A ASP A 286 49.001 6.399 29.585 1.00 15.95 C ATCH 2375 C A ASP A 286 49.001 6.399 29.585 1.00 15.69 C ATCH 2375 C A ASP A 286 49.001 6.399 29.590 1.00 16.94 C ATCH 2375 C A ASP A 286 49.001 6.399 29.590 1.00 16.94 C ATCH 2375 C A ASP A 286 49.001 3.00 3.00 3.00 16.94 C ATCH 2375 C A ASP A 286 49.001 3.00 3.00 3.00 16.94 C ATCH 2375 C A ASP A 286 49.00 3.00 3.00 3.00 16.94 C ATCH 2375 C A ASP A 286 49.00 3.00 3.0		ATOM 235	1 C LYS	A 283	44.796	11.766	26.404	1.00 2	29.57	_ <u>c</u>
ATCM 2354 CG LYS A 283 46.111 12.251 23.316 1.00 32.38 C		ATOM 235	2 O LYS	A 283	45.262	12.626	27.138	1.00 3	33.16	_0
ATOM 2355 CD LYS A 283 46.526 13.171 22.143 1.00 95.77 C ATOM 2356 CE LYS A 283 45.710 12.937 20.836 1.00100.00 C ATOM 2357 NZ LYS A 283 46.418 13.332 19.535 1.00100.00 N ATOM 2358 N LEU A 284 44.747 10.467 26.734 1.00 23.37 N N ATOM 2350 CA LEU A 284 45.727 9.905 27.997 1.00 16.08 C ATOM 2350 CA LEU A 284 45.327 9.905 27.997 1.00 16.08 C ATOM 2360 C LEU A 284 45.327 9.905 27.997 1.00 16.08 C ATOM 2360 C LEU A 284 44.679 7.655 27.446 1.00 25.45 0 O ATOM 2361 CA LEU A 284 44.679 7.655 27.446 1.00 25.45 0 O ATOM 2362 CB LEU A 284 44.679 7.655 27.446 1.00 25.45 0 O ATOM 2363 CB LEU A 284 44.641 10.387 29.284 1.00 16.30 C ATOM 2363 CG LEU A 284 42.881 10.089 31.152 1.00 22.11 C ATOM 2363 CD LEU A 284 42.881 10.089 31.152 1.00 22.11 C ATOM 2366 CD LEU A 284 42.881 10.089 31.152 1.00 22.11 C ATOM 2366 CD LEU A 284 42.803 9.953 28.693 1.00 23.92 C ATOM 2366 N LEU A 285 46.453 7.939 28.800 1.00 18.51 N ATOM 2366 C LEU A 285 46.453 7.939 28.800 1.00 18.51 N ATOM 2366 C LEU A 285 46.792 6.527 29.003 1.00 16.77 C ATOM 2369 C LEU A 285 45.880 5.865 30.006 1.00 30.75 C ATOM 2369 C LEU A 285 45.880 5.865 30.006 1.00 30.75 C ATOM 2367 CB LEU A 285 45.850 5.805 30.006 1.00 30.75 C ATOM 2370 CB LEU A 285 49.307 6.970 28.672 1.00 21.51 C ATOM 2371 CD LEU A 285 49.307 6.970 28.672 1.00 15.85 C ATOM 2371 CD LEU A 285 49.307 6.970 28.672 1.00 15.85 C ATOM 2371 CD LEU A 285 49.307 6.970 28.672 1.00 15.85 C ATOM 2371 CD LEU A 285 49.307 6.970 28.672 1.00 25.62 C ATOM 2372 CD1 LEU A 285 49.307 6.970 29.122 1.00 15.15 C ATOM 2373 CD1 LEU A 285 49.307 6.970 29.122 1.00 15.15 C ATOM 2373 CD2 LEU A 285 49.051 6.388 27.330 1.00 16.94 C ATOM 2373 CD2 LEU A 285 49.051 6.388 27.330 1.00 16.94 C ATOM 2373 CD2 LEU A 285 49.051 6.388 27.330 1.00 16.94 C ATOM 2373 CD2 LEU A 285 49.051 6.388 27.330 1.00 16.94 C ATOM 2373 CD2 LEU A 285 49.051 6.388 27.330 1.00 15.85 C ATOM 2373 CD2 LEU A 285 49.051 6.388 27.330 1.00 15.95 C ATOM 2373 CD2 LEU A 285 49.051 6.388 27.330 1.00 15.95 C ATOM 2379 CG ASP A 286 49.073 2.722 29.970 1.00 15.55 C ATOM 2379 CG		ATOM 235	3 CB LYS	A 283	45.226	13.008	24.287	1.00 2	21.93	
ATON 2356 CE LYS A 283	5	ATOM 235	4 CG LYS	A 283	46.111	12.251	23.316	1.00 3	12.38	C
ATON 2357 NZ LYS A 283		ATOM 235	5 CD LYS	A 283	46.526	13.171	22.143	1.00 9	5.77	c
ATCM 2358 N LEU A 284 44.747 10.467 26.734 1.00 23.37 N		ATOM 235	6 CE LYS	A 283	45.710	12.937	20.836	1.0010	0.00	С
10 ATCM 2359 CA LEU A 284 45.327 9.905 27.997 1.00 16.08 C ATCM 2360 C LEU A 284 45.463 8.386 28.047 1.00 20.46 C ATCM 2361 O LEU A 284 44.679 7.655 27.446 1.00 25.45 O ATCM 2362 CB LEU A 284 44.679 7.655 27.446 1.00 25.45 O ATCM 2363 CG LEU A 284 44.641 10.387 29.284 1.00 16.30 C ATCM 2363 CG LEU A 284 42.881 10.089 31.152 1.00 22.11 C ATCM 2365 CD2 LEU A 284 42.881 10.089 31.152 1.00 22.11 C ATCM 2366 N LEU A 284 42.881 10.089 31.152 1.00 22.11 C ATCM 2366 N LEU A 285 46.453 7.939 28.820 1.00 18.51 N ATCM 2367 CA LEU A 285 46.453 7.939 28.820 1.00 16.77 C ATCM 2368 C LEU A 285 45.880 5.865 30.006 1.00 30.75 C ATCM 2369 O LEU A 285 45.880 5.865 30.006 1.00 30.75 C ATCM 2370 CB LEU A 285 45.880 5.865 30.006 1.00 30.75 C ATCM 2371 CG LEU A 285 49.051 6.399 29.585 1.00 21.51 C ATCM 2372 CD1 LEU A 285 49.051 6.368 27.330 1.00 21.51 C ATCM 2373 CD2 LEU A 285 49.051 6.368 27.330 1.00 21.51 C ATCM 2373 CD2 LEU A 285 49.051 6.368 27.330 1.00 21.51 C ATCM 2373 CD2 LEU A 285 49.951 6.368 27.330 1.00 15.95 C ATCM 2373 CD2 LEU A 285 49.951 6.368 27.330 1.00 16.94 C ATCM 2373 CD2 LEU A 285 49.951 6.368 27.330 1.00 16.94 C ATCM 2373 CD2 LEU A 285 49.951 6.368 27.330 1.00 16.94 C ATCM 2373 CD2 LEU A 285 49.951 6.368 27.330 1.00 16.94 C ATCM 2373 CD2 LEU A 285 49.951 6.368 27.330 1.00 16.95 C ATCM 2373 CD2 LEU A 285 49.951 6.368 27.330 1.00 16.94 C ATCM 2375 CA ASP A 286 46.991 2.372 30.938 1.00 20.54 C ATCM 2378 CB ASP A 286 46.991 2.372 30.938 1.00 20.54 C ATCM 2378 CB ASP A 286 46.991 2.372 30.938 1.00 20.54 C ATCM 2380 OD1 ASP A 286 43.992 1.699 30.943 1.00 24.60 C ATCM 2381 OD2 ASP A 286 43.992 1.699 30.943 1.00 24.60 C ATCM 2381 OD2 ASP A 286 43.992 1.699 30.943 1.00 24.60 C ATCM 2382 CD VAL A 287 46.293 3.173 32.083 1.00 24.60 C ATCM 2389 CD VAL A 287 46.293 3.173 32.791 1.00 15.18 C ATCM 2389 CD VAL A 287 46.293 3.155 34.521 1.00 16.48 C ATCM 2389 CD VAL A 287 46.293 3.655 34.521 1.00 16.48 C ATCM 2389 CD VAL A 287 46.993 34.522 1.00 16.63 C ATCM 2389 CD VAL A 287 46.504 0.992 34.152 1.00 22.27 N ATCM 2389 CD VAL A 28		ATOM 235	7 NZ LYS	A 283	46.418	13.332	19.535	1.0010	0.00	_N
ATOM 2360 C LEU A 284		ATOM 2351	8 N LEU	A 284	44.747	10.467	26.734	1.00 2	3.37	N
ATCM 2361 O LEU A 284 44.679 7.655 27.446 1.00 25.45 O ATCM 2362 CB LEU A 284 44.641 10.387 29.284 1.00 16.30 C ATCM 2363 CG LEU A 284 43.334 9.700 29.714 1.00 25.97 C ATCM 2365 CD1 LEU A 284 42.881 10.089 31.152 1.00 22.11 C ATCM 2365 CD2 LEU A 284 42.881 10.089 31.152 1.00 23.92 C ATCM 2365 CD2 LEU A 284 42.881 9.959 28.693 1.00 23.92 C ATCM 2366 N LEU A 285 46.453 7.939 28.820 1.00 18.51 N ATCM 2367 CA LEU A 285 46.92 6.527 29.003 1.00 16.77 C ATCM 2368 C LEU A 285 45.880 5.865 30.006 1.00 30.75 C ATCM 2369 O LEU A 285 45.866 53.0.006 1.00 30.75 C ATCM 2370 CB LEU A 285 49.307 6.970 28.672 1.00 21.51 C ATCM 2371 CG LEU A 285 49.307 6.970 28.672 1.00 21.51 C ATCM 2372 CD1 LEU A 285 49.307 6.970 28.672 1.00 21.51 C ATCM 2373 CD2 LEU A 285 45.565 4.599 29.734 1.00 26.62 N ATCM 2375 CA ASP A 286 44.945 3.726 30.698 1.00 10.90 C ATCM 2376 C ASP A 286 44.945 3.726 30.698 1.00 20.54 C ATCM 2378 CB ASP A 286 44.945 3.726 30.938 1.00 23.38 C ATCM 2379 CG ASP A 286 44.945 3.726 30.938 1.00 24.60 C ATCM 2379 CG ASP A 286 43.932 1.437 32.083 1.00 24.60 C ATCM 2380 OD1 ASP A 286 43.932 1.437 32.083 1.00 24.60 C ATCM 2380 OD1 ASP A 286 43.932 1.437 32.083 1.00 24.60 C ATCM 2381 CD2 ASP A 286 43.932 1.437 32.083 1.00 24.60 C ATCM 2380 CD1 ASP A 286 43.932 1.437 32.083 1.00 24.60 C ATCM 2380 CD1 ASP A 286 43.932 1.437 32.083 1.00 24.60 C ATCM 2380 CD1 ASP A 286 43.932 1.437 32.083 1.00 24.60 C ATCM 2380 CD1 ASP A 286 43.932 1.437 32.083 1.00 24.60 C ATCM 2380 CD1 ASP A 286 43.932 1.437 32.083 1.00 24.60 C ATCM 2381 CD2 ASP A 286 43.932 1.437 32.083 1.00 24.60 C ATCM 2389 CD1 ASP A 286 43.932 1.437 33.556 1.00 15.58 C ATCM 2389 CD1 ASP A 286 43.932 1.437 33.556 1.00 15.59 C ATCM 2389 CD1 ASP A 286 45.910 1.00 53.558 1.00 24.70 C ATCM 2389 CD1 ASP A 286 45.910 1.00 53.558 1.00 24.70 C ATCM 2389 CD1 ASP A 286 45.910 1.00 53.558 1.00 24.70 C ATCM 2389 CD1 ASP A 286 45.910 1.00 53.558 1.00 24.70 C ATCM 2389 CD1 ASP A 286 45.910 1.00 53.558 1.00 24.70 C ATCM 2389 CD1 ATR A 288 45.948 0.999 34.244 1.00 22.86 C	10	ATOM 235	9 CA LEU	A 284	45.327	9.905	27.997	1.00 1	6.08	
ATOM 2362 CR LEU A 284 44.641 10.387 29.284 1.00 16.30 C ATOM 2363 CG LEU A 284 43.334 9.700 29.714 1.00 25.97 C ATOM 2364 CD1 LEU A 284 42.881 10.089 31.152 1.00 22.11 C ATOM 2365 CD2 LEU A 284 42.203 9.953 28.693 1.00 23.92 C ATOM 2366 N LEU A 285 46.453 7.939 28.820 1.00 18.51 N ATOM 2367 CA LEU A 285 46.792 6.527 29.003 1.00 16.77 C ATOM 2368 C LEU A 285 45.880 5.865 30.006 1.00 30.75 C ATOM 2369 O LEU A 285 45.880 5.865 30.006 1.00 30.75 C ATOM 2370 CB LEU A 285 48.229 6.389 29.585 1.00 22.02 O ATOM 2371 CG LEU A 285 48.229 6.389 29.585 1.00 21.51 C ATOM 2372 CD1 LEU A 285 59.703 6.705 29.122 1.00 15.15 C ATOM 2373 CD2 LEU A 285 49.051 6.368 27.330 1.00 16.94 C ATOM 2374 N ASP A 286 45.565 4.599 29.334 1.00 26.62 N ATOM 2375 CA ASP A 286 44.945 3.726 30.698 1.00 20.95 C ATOM 2376 C ASP A 286 44.945 3.726 30.698 1.00 20.54 C ATOM 2377 C ASP A 286 44.945 3.726 30.998 1.00 20.54 C ATOM 2378 CA ASP A 286 46.991 2.372 30.938 1.00 23.38 O ATOM 2378 CA ASP A 286 44.945 3.726 30.698 1.00 20.554 C ATOM 2378 CA ASP A 286 44.945 3.726 30.698 1.00 20.54 C ATOM 2378 CA ASP A 286 44.973 2.702 29.970 1.00 14.65 C ATOM 2378 CA ASP A 286 44.973 3.702 29.970 1.00 14.65 C ATOM 2378 CA ASP A 286 43.932 1.437 32.083 1.00 23.38 O ATOM 2378 CA ASP A 286 43.932 1.437 32.083 1.00 23.38 O ATOM 2380 OD1 ASP A 286 43.932 1.437 32.083 1.00 24.60 C ATOM 2381 OD2 ASP A 286 43.932 1.437 32.083 1.00 24.60 C ATOM 2383 CA VAL A 287 46.230 3.317 32.791 1.00 15.44 N ATOM 2383 CA VAL A 287 46.230 3.317 32.791 1.00 15.44 N ATOM 2383 CA VAL A 287 46.230 3.317 32.791 1.00 15.44 N ATOM 2383 CA VAL A 287 47.613 1.473 35.572 1.00 16.63 C ATOM 2389 CO THR A 288 45.428 -0.152 34.956 1.00 37.79 C ATOM 2389 C THR A 288 45.428 -0.152 34.956 1.00 19.34 C ATOM 2389 C THR A 288 45.428 -0.152 34.956 1.00 19.34 C ATOM 2389 C THR A 288 45.428 -0.152 34.956 1.00 22.86 C		ATOM 2360	O C LEU	A 284	45.463	8.386	28.047	1.00 2	0.46	Ç
ATOM 2363 CG LEU A 284 43.334 9.700 29.714 1.00 25.97 C ATOM 2364 CD1 LEU A 284 42.881 10.089 31.152 1.00 22.11 C ATOM 2365 CD2 LEU A 284 42.881 10.089 31.152 1.00 22.11 C ATOM 2366 N LEU A 285 46.453 7.939 28.820 1.00 18.51 N ATOM 2367 CA LEU A 285 46.453 7.939 28.820 1.00 18.51 N ATOM 2368 C LEU A 285 45.880 5.865 30.006 1.00 30.75 C ATOM 2368 C LEU A 285 45.880 5.865 30.006 1.00 30.75 C ATOM 2369 O LEU A 285 48.576 6.439 31.058 1.00 22.02 O ATOM 2370 CB LEU A 285 49.307 6.970 28.672 1.00 15.15 C ATOM 2371 CG LEU A 285 49.307 6.970 28.672 1.00 15.15 C ATOM 2372 CD1 LEU A 285 50.703 6.705 29.122 1.00 15.15 C ATOM 2373 CD2 LEU A 285 49.951 6.368 27.330 1.00 16.94 C ATOM 2373 CA ASP A 286 45.565 4.599 29.734 1.00 26.62 N ATOM 2375 CA ASP A 286 44.945 3.726 30.699 1.00 10.90 C ATOM 2376 C ASP A 286 46.991 2.372 30.938 1.00 23.38 O ATOM 2378 CB ASP A 286 44.973 2.702 29.970 1.00 14.65 C ATOM 2379 CG ASP A 286 43.932 1.437 30.938 1.00 23.38 O ATOM 2379 CG ASP A 286 43.932 1.437 32.083 1.00 23.38 O ATOM 2378 CB ASP A 286 43.932 1.437 32.083 1.00 23.38 O ATOM 2380 OD1 ASP A 286 43.932 1.437 32.083 1.00 23.38 O ATOM 2381 OD2 ASP A 286 43.932 1.437 32.083 1.00 23.38 O ATOM 2383 CA VAL A 287 46.230 3.317 32.791 1.00 15.58 C ATOM 2383 CA VAL A 287 46.230 3.317 32.791 1.00 15.46 N ATOM 2383 CA VAL A 287 46.230 3.317 32.791 1.00 15.46 N ATOM 2383 CA VAL A 287 46.230 3.317 32.791 1.00 15.44 N ATOM 2383 CA VAL A 287 46.230 3.317 32.791 1.00 15.44 N ATOM 2383 CA VAL A 287 46.230 3.317 32.791 1.00 15.46 C ATOM 2383 CA VAL A 287 48.501 4.006 34.260 1.00 29.84 C ATOM 2380 CD1 ASP A 286 45.955 33.224 1.00 18.39 C ATOM 2380 CD1 ASP A 286 45.954 5.085 33.224 1.00 18.39 C ATOM 2380 CD1 ASP A 286 45.955 29.85 33.224 1.00 18.39 C ATOM 2380 CD1 ASP A 286 46.230 3.317 32.791 1.00 15.48 N ATOM 2383 CA VAL A 287 48.501 4.006 34.260 1.00 29.84 C ATOM 2389 C THR A 288 45.904 0.992 34.152 1.00 27.27 N ATOM 2389 C THR A 288 45.948 -0.152 34.956 1.00 19.34 C ATOM 2389 C THR A 288 45.948 -0.999 34.244 1.00 22.86 C		ATOM 236	1 O LEU	A 284	44.679	7.655	27.446	1.00 2	5.45	
15 ATOM 2365 CD2 LEU A 284		ATOM 2362	CB LEU	A 284	44.641	10.387	29.284	1.00 1	6.30	С
15 ATOM 2365 CD2 LEU A 284		ATOM 2363	G LEU	A 284	43.334	9.700	29.714	1.00 2	5.97	С
ATOM 2365 CD2 LEU A 284 42.203 9.953 28.693 1.00 23.92 C ATOM 2366 N LEU A 285 46.453 7.939 28.620 1.00 18.51 N ATOM 2367 CA LEU A 285 46.792 6.527 29.003 1.00 16.77 C ATOM 2368 C LEU A 285 45.880 5.865 30.006 1.00 30.75 C ATOM 2369 O LEU A 285 45.880 5.865 30.006 1.00 30.75 C ATOM 2370 CB LEU A 285 49.307 6.970 28.672 1.00 21.51 C ATOM 2371 CG LEU A 285 49.307 6.970 28.672 1.00 15.85 C ATOM 2372 CD1 LEU A 285 49.307 6.970 28.672 1.00 15.15 C ATOM 2373 CD2 LEU A 285 49.051 6.368 27.330 1.00 16.94 C ATOM 2374 N ASP A 286 45.565 4.599 29.734 1.00 26.62 N ATOM 2376 C ASP A 286 44.945 3.726 30.698 1.00 10.90 C ATOM 2376 C ASP A 286 46.128 3.055 31.498 1.00 20.54 C ATOM 2378 CB ASP A 286 46.991 2.372 30.938 1.00 23.38 O ATOM 2379 CG ASP A 286 43.409 1.699 30.943 1.00 24.60 C ATOM 2381 OD2 ASP A 286 43.932 1.437 32.093 1.00 14.65 C ATOM 2381 OD2 ASP A 286 42.316 1.231 30.583 1.00 24.60 C ATOM 2381 OD2 ASP A 286 42.316 1.231 30.583 1.00 24.60 C ATOM 2383 CB VAL A 287 46.230 3.317 32.791 1.00 15.48 C ATOM 2385 C VAL A 287 46.530 3.355 1.00 15.98 C ATOM 2385 C VAL A 287 46.530 3.355 1.00 15.98 C ATOM 2389 N THR A 288 45.940 0.992 34.521 1.00 15.48 C ATOM 2389 N THR A 288 45.940 0.992 34.524 1.00 18.39 C ATOM 2389 N THR A 288 45.940 0.992 34.524 1.00 18.39 C ATOM 2380 C THR A 288 45.940 0.992 34.524 1.00 19.34 C ATOM 2389 N THR A 288 45.940 0.992 34.524 1.00 19.34 C ATOM 2389 N THR A 288 45.940 0.992 34.524 1.00 19.34 C ATOM 2389 N THR A 288 45.940 0.992 34.524 1.00 19.34 C ATOM 2389 N THR A 288 45.940 0.992 34.524 1.00 19.34 C	15	ATOM 2364	4 CD1 LEU	A 284	42.881	10.089	31.152	-		
ATOM 2367 CA LEU A 285		ATOM 2365	5 CD2 LEU	A 284	42.203	9.953	28.693	1.00 2	3.92	
ATOM 2367 CA LEU A 285		ATOM 236	6 N LEU	A 285	46.453	7.939	28.820			
20		ATOM 236	7 CA LEU	A 285	46.792	6.527	29.003	1.00 1	6.77	
ATOM 2370 CB LEU A 285		ATOM 2368	C LEU	A 285	45.880	5.865	30.006	1.00 3	0.75	
ATOM 2371 CG LEU A 285 49.307 6.970 28.672 1.00 21.51 C ATOM 2372 CD1 LEU A 285 50.703 6.705 29.122 1.00 15.15 C ATOM 2373 CD2 LEU A 285 49.051 6.368 27.330 1.00 16.94 C 25 ATOM 2374 N ASP A 286 45.565 4.599 29.734 1.00 26.62 N ATOM 2375 CA ASP A 286 46.128 3.055 31.498 1.00 20.54 C ATOM 2377 O ASP A 286 46.991 2.372 30.938 1.00 23.38 O ATOM 2378 CB ASP A 286 44.073 2.702 29.970 1.00 14.65 C ATOM 2379 CG ASP A 286 43.409 1.699 30.943 1.00 24.60 C ATOM 2380 OD1 ASP A 286 43.932 1.437 32.083 1.00 24.60 O ATOM 2381 OD2 ASP A 286 42.316 1.231 30.583 1.00 24.60 O ATOM 2382 N VAL A 287 46.230 3.317 32.791 1.00 15.58 C 35 ATOM 2383 CA VAL A 287 46.973 1.695 34.521 1.00 15.58 C ATOM 2385 O VAL A 287 48.101 4.006 34.260 1.00 29.84 C ATOM 2387 CG1 VAL A 287 48.504 1.406 34.260 1.00 29.84 C ATOM 2388 CG2 VAL A 287 48.534 5.085 33.224 1.00 18.39 C ATOM 2389 N THR A 288 45.904 0.992 34.152 1.00 22.27 N ATOM 2389 C THR A 288 45.428 -0.152 34.956 1.00 19.34 C ATOM 2391 C THR A 288 45.428 -0.152 34.956 1.00 19.34 C ATOM 2392 O THR A 288 46.778 -1.586 36.365 1.00 24.87 O ATOM 2393 CB THR A 288 46.778 -1.586 36.365 1.00 24.87	20	ATOM 2369	O LEU	A 285	45.576	6.439	31.058	1.00 2	2.02	0
ATCM 2372 CD1 LEU A 285 50.703 6.705 29.122 1.00 15.15 C ATCM 2373 CD2 LEU A 285 49.051 6.368 27.330 1.00 16.94 C ATCM 2374 N ASP A 286 45.565 4.599 29.734 1.00 26.62 N ATCM 2375 CA ASP A 286 44.945 3.726 30.698 1.00 10.90 C ATCM 2376 C ASP A 286 46.128 3.055 31.498 1.00 20.54 C ATCM 2377 O ASP A 286 46.991 2.372 30.938 1.00 23.38 O ATCM 2378 CB ASP A 286 44.073 2.702 29.970 1.00 14.65 C ATCM 2379 CG ASP A 286 43.409 1.699 30.943 1.00 24.60 C ATCM 2380 OD1 ASP A 286 43.932 1.437 32.083 1.00 24.60 C ATCM 2381 OD2 ASP A 286 42.316 1.231 30.583 1.00 26.03 O ATCM 2382 N VAL A 287 46.230 3.317 32.791 1.00 15.44 N ATCM 2383 CA VAL A 287 46.973 1.695 34.521 1.00 16.48 C ATCM 2385 C VAL A 287 47.613 1.473 35.572 1.00 16.63 O ATCM 2387 CG1 VAL A 287 48.534 5.085 33.224 1.00 18.39 C ATCM 2389 N THR A 288 45.904 0.992 34.152 1.00 22.27 N ATCM 2389 C A THR A 288 45.904 0.992 34.152 1.00 22.27 N ATCM 2391 C THR A 288 45.661 -1.177 35.227 1.00 27.47 C ATCM 2392 O THR A 288 46.561 -1.177 35.227 1.00 27.47 C ATCM 2393 CB THR A 288 46.561 -1.177 35.227 1.00 27.47 C ATCM 2393 CB THR A 288 46.561 -1.177 35.227 1.00 27.47 C		ATOM 2370	CB LEU	A 285	48.229	6.389	29.585	1.00 1	.5.85	
ATOM 2373 CD2 LEU A 285		ATOM 2371	L CG LEU	A 285	49.307	6.970	28.672	1.00 2	1.51	С
25 ATOM 2374 N ASP A 286 45.565 4.599 29.734 1.00 26.62 N ATOM 2375 CA ASP A 286 44.945 3.726 30.698 1.00 10.90 C ATOM 2376 C ASP A 286 46.128 3.055 31.498 1.00 20.54 C ATOM 2377 O ASP A 286 46.991 2.372 30.938 1.00 23.38 O ATOM 2378 CB ASP A 286 44.073 2.702 29.970 1.00 14.65 C ATOM 2379 CG ASP A 286 43.409 1.699 30.943 1.00 24.60 C ATOM 2380 OD1 ASP A 286 43.932 1.437 32.083 1.00 24.60 O ATOM 2381 OD2 ASP A 286 42.316 1.231 30.583 1.00 24.60 O ATOM 2382 N VAL A 287 46.230 3.317 32.791 1.00 15.44 N ATOM 2383 CA VAL A 287 47.354 2.816 33.556 1.00 15.58 C 35 ATOM 2384 C VAL A 287 46.973 1.695 34.521 1.00 16.48 C ATOM 2385 O VAL A 287 47.613 1.473 35.572 1.00 16.63 O ATOM 2386 CB VAL A 287 48.101 4.006 34.260 1.00 29.84 C ATOM 2388 CG2 VAL A 287 48.534 5.085 33.224 1.00 18.39 C ATOM 2388 CG2 VAL A 287 48.534 5.085 33.224 1.00 18.39 C ATOM 2389 CG THR A 288 45.904 0.992 34.152 1.00 22.27 N ATOM 2390 CA THR A 288 45.904 0.992 34.152 1.00 27.47 C ATOM 2391 C THR A 288 45.928 -0.152 34.956 1.00 27.47 C ATOM 2392 O THR A 288 46.561 -1.177 35.227 1.00 27.47 C ATOM 2392 O THR A 288 46.561 -1.177 35.227 1.00 27.47 C		ATOM 2372	CD1 LEU	A 285	50.703	6.705	29.122	1.00 1	5.15	
ATOM 2375 CA ASP A 286 44.945 3.726 30.698 1.00 10.90 C ATOM 2376 C ASP A 286 46.128 3.055 31.498 1.00 20.54 C ATOM 2377 O ASP A 286 46.991 2.372 30.938 1.00 23.38 O ATOM 2378 CB ASP A 286 44.073 2.702 29.970 1.00 14.65 C 30 ATOM 2379 CG ASP A 286 43.409 1.699 30.943 1.00 24.60 C ATOM 2380 OD1 ASP A 286 43.932 1.437 32.083 1.00 24.60 O ATOM 2381 OD2 ASP A 286 42.316 1.231 30.583 1.00 24.60 O ATOM 2382 N VAL A 287 46.230 3.317 32.791 1.00 15.44 N ATOM 2383 CA VAL A 287 46.230 3.317 32.791 1.00 15.58 C 35 ATOM 2384 C VAL A 287 46.973 1.695 34.521 1.00 16.48 C ATOM 2385 O VAL A 287 47.613 1.473 35.572 1.00 16.63 O ATOM 2386 CB VAL A 287 48.101 4.006 34.260 1.00 29.84 C ATOM 2387 CG1 VAL A 287 48.534 5.085 33.224 1.00 18.39 C ATOM 2388 CG2 VAL A 287 48.534 5.085 33.224 1.00 18.39 C ATOM 2389 CG1 VAL A 287 48.534 5.085 33.224 1.00 18.39 C ATOM 2389 CG2 TAR A 288 45.904 0.992 34.152 1.00 22.27 N ATOM 2390 CA THR A 288 45.904 0.992 34.152 1.00 27.47 C ATOM 2391 C THR A 288 45.924 -0.152 34.956 1.00 19.34 C ATOM 2392 O THR A 288 46.561 -1.177 35.227 1.00 27.47 C ATOM 2393 CB THR A 288 46.561 -1.177 35.227 1.00 27.47 C		ATOM 2373	CD2 LEU	A 285	49.051	6.368	27.330	1.00 1	6.94	<u>c</u>
ATOM 2376 C ASP A 286 46.128 3.055 31.498 1.00 20.54 C ATOM 2377 O ASP A 286 46.991 2.372 30.938 1.00 23.38 O ATOM 2378 CB ASP A 286 44.073 2.702 29.970 1.00 14.65 C 30 ATOM 2379 CG ASP A 286 43.409 1.699 30.943 1.00 24.60 C ATOM 2380 OD1 ASP A 286 43.932 1.437 32.083 1.00 24.60 O ATOM 2381 OD2 ASP A 286 42.316 1.231 30.583 1.00 26.03 O ATOM 2382 N VAL A 287 46.230 3.317 32.791 1.00 15.44 N ATOM 2383 CA VAL A 287 47.354 2.816 33.556 1.00 15.58 C 35 ATOM 2384 C VAL A 287 46.973 1.695 34.521 1.00 16.48 C ATOM 2385 O VAL A 287 47.613 1.473 35.572 1.00 16.63 O ATOM 2386 CB VAL A 287 48.101 4.006 34.260 1.00 29.84 C ATOM 2388 CG2 VAL A 287 48.534 5.085 33.224 1.00 18.39 C ATOM 2388 CG2 VAL A 287 47.173 4.670 35.258 1.00 37.79 C ATOM 2389 N THR A 288 45.904 0.992 34.152 1.00 22.27 N ATOM 2390 CA THR A 288 45.904 0.992 34.152 1.00 27.47 C ATOM 2391 C THR A 288 45.428 -0.152 34.956 1.00 19.34 C ATOM 2391 C THR A 288 46.778 -1.586 36.365 1.00 24.87 O ATOM 2392 O THR A 288 46.778 -1.586 36.365 1.00 24.87 O ATOM 2393 CB THR A 288 44.288 -0.909 34.244 1.00 22.866 C	25	ATOM 2374	N ASP	A 286	45.565	4.599	29.734	1.00 2	6.62	_N
ATOM 2377 O ASP A 286 46.991 2.372 30.938 1.00 23.38 O ATOM 2378 CB ASP A 286 44.073 2.702 29.970 1.00 14.65 C ATOM 2379 CG ASP A 286 43.409 1.699 30.943 1.00 24.60 C ATOM 2380 OD1 ASP A 286 43.932 1.437 32.083 1.00 24.60 O ATOM 2381 OD2 ASP A 286 42.316 1.231 30.583 1.00 26.03 O ATOM 2382 N VAL A 287 46.230 3.317 32.791 1.00 15.44 N ATOM 2383 CA VAL A 287 46.973 1.695 34.521 1.00 15.58 C ATOM 2385 O VAL A 287 47.613 1.473 35.572 1.00 16.63 O ATOM 2386 CB VAL A 287 48.101 4.006 34.260 1.00 29.84 C ATOM 2388 CG2 VAL A 287 48.534 5.085 33.224 1.00 18.39 C ATOM 2388 CG2 VAL A 287 47.173 4.670 35.258 1.00 37.79 C ATOM 2389 N THR A 288 45.904 0.992 34.152 1.00 19.34 C ATOM 2391 C THR A 288 45.428 -0.152 34.956 1.00 19.34 C ATOM 2392 O THR A 288 46.778 -1.586 36.365 1.00 24.87 O ATOM 2393 CB THR A 288 46.778 -1.586 36.365 1.00 24.87 O ATOM 2393 CB THR A 288 44.288 -0.909 34.244 1.00 22.86 C		ATOM 2375	CA ASP	A 286	44.945	3.726	30.698	1.00 1	0.90	С
ATOM 2378 CB ASP A 286 44.073 2.702 29.970 1.00 14.65 C ATOM 2379 CG ASP A 286 43.409 1.699 30.943 1.00 24.60 C ATOM 2380 OD1 ASP A 286 43.932 1.437 32.083 1.00 24.60 O ATOM 2381 OD2 ASP A 286 42.316 1.231 30.583 1.00 26.03 O ATOM 2382 N VAL A 287 46.230 3.317 32.791 1.00 15.44 N ATOM 2383 CA VAL A 287 47.354 2.816 33.556 1.00 15.58 C 35 ATOM 2384 C VAL A 287 46.973 1.695 34.521 1.00 16.48 C ATOM 2385 O VAL A 287 47.613 1.473 35.572 1.00 16.63 O ATOM 2386 CB VAL A 287 48.101 4.006 34.260 1.00 29.84 C ATOM 2387 CG1 VAL A 287 48.534 5.085 33.224 1.00 18.39 C ATOM 2388 CG2 VAL A 287 47.173 4.670 35.258 1.00 37.79 C 40 ATOM 2389 N THR A 288 45.904 0.992 34.152 1.00 22.27 N ATOM 2390 CA THR A 288 45.428 -0.152 34.956 1.00 19.34 C ATOM 2391 C THR A 288 46.561 -1.177 35.227 1.00 27.47 C ATOM 2392 O THR A 288 46.778 -1.586 36.365 1.00 24.87 Q ATOM 2393 CB THR A 288 44.288 -0.909 34.244 1.00 22.86 C		ATOM 2376	C ASP	A 286	46.128	3.055	31.498	1.00 2	0.54	Ç
ATOM 2379 CG ASP A 286 43.409 1.699 30.943 1.00 24.60 C ATOM 2380 OD1 ASP A 286 43.932 1.437 32.083 1.00 24.60 O ATOM 2381 OD2 ASP A 286 42.316 1.231 30.583 1.00 26.03 O ATOM 2382 N VAL A 287 46.230 3.317 32.791 1.00 15.44 N ATOM 2383 CA VAL A 287 47.354 2.816 33.556 1.00 15.58 C 35 ATOM 2384 C VAL A 287 46.973 1.695 34.521 1.00 16.48 C ATOM 2385 O VAL A 287 47.613 1.473 35.572 1.00 16.63 O ATOM 2386 CB VAL A 287 48.101 4.006 34.260 1.00 29.84 C ATOM 2387 CGI VAL A 287 48.534 5.085 33.224 1.00 18.39 C ATOM 2388 CG2 VAL A 287 47.173 4.670 35.258 1.00 37.79		ATOM 2377	O ASP	A 286	46.991	2.372	30.938	1.00 2	3.38	
ATOM 2380 OD1 ASP A 286 43,932 1.437 32.083 1.00 24.60 O ATOM 2381 OD2 ASP A 286 42.316 1.231 30.583 1.00 26.03 O ATOM 2382 N VAL A 287 46.230 3.317 32.791 1.00 15.44 N ATOM 2383 CA VAL A 287 47.354 2.816 33.556 1.00 15.58 C 35 ATOM 2384 C VAL A 287 46.973 1.695 34.521 1.00 16.48 C ATOM 2385 O VAL A 287 47.613 1.473 35.572 1.00 16.63 O ATOM 2386 CB VAL A 287 48.101 4.006 34.260 1.00 29.84 C ATOM 2387 CG1 VAL A 287 48.534 5.085 33.224 1.00 18.39 C ATOM 2388 CG2 VAL A 287 47.173 4.670 35.258 1.00 37.79 C 40 ATOM 2389 N THR A 288 45.904 0.992 34.152 1.00 22.27 N ATOM 2390 CA THR A 288 45.428 -0.152 34.956 1.00 19.34 C ATOM 2391 C THR A 288 46.561 -1.177 35.227 1.00 27.47 C ATOM 2393 CB THR A 288 46.778 -1.586 36.365 1.00 24.87 Q ATOM 2393 CB THR A 288 46.778 -1.586 36.365 1.00 24.87 Q ATOM 2393 CB THR A 288 44.288 -0.909 34.244 1.00 22.86 C		ATOM 2378	CB ASP	A 286	44.073	2.702	29.970	1.00 1	4.65	<u>C</u>
ATOM 2381 OD2 ASP A 286 42.316 1.231 30.583 1.00 26.03 Q ATOM 2382 N VAL A 287 46.230 3.317 32.791 1.00 15.44 N ATOM 2383 CA VAL A 287 47.354 2.816 33.556 1.00 15.58 C ATOM 2384 C VAL A 287 46.973 1.695 34.521 1.00 16.48 C ATOM 2385 O VAL A 287 47.613 1.473 35.572 1.00 16.63 O ATOM 2386 CB VAL A 287 48.101 4.006 34.260 1.00 29.84 C ATOM 2387 CG1 VAL A 287 48.534 5.085 33.224 1.00 18.39 C ATOM 2388 CG2 VAL A 287 47.173 4.670 35.258 1.00 37.79 C ATOM 2389 N THR A 288 45.904 0.992 34.152 1.00 22.27 N ATOM 2390 CA THR A 288 45.428 -0.152 34.956 1.00 19.34 C ATOM 2391 C THR A 288 46.561 -1.177 35.227 1.00 27.47 C ATOM 2393 CB THR A 288 46.778 -1.586 36.365 1.00 24.87 Q ATOM 2393 CB THR A 288 44.288 -0.909 34.244 1.00 22.86 C	30	ATOM 2379	CG ASP	A 286	43.409	1.699	30.943	1.00 2	4.60	c
ATOM 2382 N VAL A 287 46.230 3.317 32.791 1.00 15.44 N ATOM 2383 CA VAL A 287 47.354 2.816 33.556 1.00 15.58 C ATOM 2384 C VAL A 287 46.973 1.695 34.521 1.00 16.48 C ATOM 2385 O VAL A 287 47.613 1.473 35.572 1.00 16.63 O ATOM 2386 CB VAL A 287 48.101 4.006 34.260 1.00 29.84 C ATOM 2387 CG1 VAL A 287 48.534 5.085 33.224 1.00 18.39 C ATOM 2388 CG2 VAL A 287 47.173 4.670 35.258 1.00 37.79 C ATOM 2389 N THR A 288 45.904 0.992 34.152 1.00 22.27 N ATOM 2390 CA THR A 288 45.428 -0.152 34.956 1.00 19.34 C ATOM 2391 C THR A 288 46.561 -1.177 35.227 1.00 27.47 C ATOM 2393 CB THR A 288 46.778 -1.586 36.365 1.00 24.87 O ATOM 2393 CB THR A 288 44.288 -0.909 34.244 1.00 22.86 C		ATOM 2380	OD1 ASP	A 286	43.932	1.437	32.083	1.00 2	4.60	0
ATOM 2383 CA VAL A 287 47.354 2.816 33.556 1.00 15.58 C ATOM 2384 C VAL A 287 46.973 1.695 34.521 1.00 16.48 C ATOM 2385 O VAL A 287 47.613 1.473 35.572 1.00 16.63 Q ATOM 2386 CB VAL A 287 48.101 4.006 34.260 1.00 29.84 C ATOM 2387 CG1 VAL A 287 48.534 5.085 33.224 1.00 18.39 C ATOM 2388 CG2 VAL A 287 47.173 4.670 35.258 1.00 37.79 C ATOM 2389 N THR A 288 45.904 0.992 34.152 1.00 22.27 N ATOM 2390 CA THR A 288 45.428 -0.152 34.956 1.00 19.34 C ATOM 2391 C THR A 288 46.561 -1.177 35.227 1.00 27.47 C ATOM 2392 O THR A 288 46.778 -1.586 36.365 1.00 24.87 Q ATOM 2393 CB THR A 288 44.288 -0.909 34.244 1.00 22.86 C		ATOM 2381	OD2 ASP	A 286	42.316	1.231	30.583	1.00 2	6.03	_0
35 ATOM 2384 C VAL A 287 46.973 1.695 34.521 1.00 16.48 C ATOM 2385 O VAL A 287 47.613 1.473 35.572 1.00 16.63 O ATOM 2386 CB VAL A 287 48.101 4.006 34.260 1.00 29.84 C ATOM 2387 CG1 VAL A 287 48.534 5.085 33.224 1.00 18.39 C ATOM 2388 CG2 VAL A 287 47.173 4.670 35.258 1.00 37.79 C ATOM 2389 N THR A 288 45.904 0.992 34.152 1.00 22.27 N ATOM 2390 CA THR A 288 45.428 -0.152 34.956 1.00 19.34 C ATOM 2391 C THR A 288 46.561 -1.177 35.227 1.00 27.47 C ATOM 2392 O THR A 288 46.778 -1.586 36.365 1.00 24.87 O ATOM 2393 CB THR A 288 44.288 -0.909 34.244 1.00 22.86 C		ATOM 2382	N VAL	A 287	46.230	3.317	32.791	1.00 1	5.44	_N
ATOM 2385 O VAL A 287 47.613 1.473 35.572 1.00 16.63 O ATOM 2386 CB VAL A 287 48.101 4.006 34.260 1.00 29.84 C ATOM 2387 CG1 VAL A 287 48.534 5.085 33.224 1.00 18.39 C ATOM 2388 CG2 VAL A 287 47.173 4.670 35.258 1.00 37.79 C ATOM 2389 N THR A 288 45.904 0.992 34.152 1.00 22.27 N ATOM 2390 CA THR A 288 45.428 -0.152 34.956 1.00 19.34 C ATOM 2391 C THR A 288 46.561 -1.177 35.227 1.00 27.47 C ATOM 2392 O THR A 288 46.778 -1.586 36.365 1.00 24.87 O ATOM 2393 CB THR A 288 44.288 -0.909 34.244 1.00 22.86 C		ATOM 2383	CA VAL	A 287	47.354	2.816	33.556	1.00 1	5.58	
ATOM 2386 CB VAL A 287 48.101 4.006 34.260 1.00 29.84 C ATOM 2387 CG1 VAL A 287 48.534 5.085 33.224 1.00 18.39 C ATOM 2388 CG2 VAL A 287 47.173 4.670 35.258 1.00 37.79 C 40 ATOM 2389 N THR A 288 45.904 0.992 34.152 1.00 22.27 N ATOM 2390 CA THR A 288 45.428 -0.152 34.956 1.00 19.34 C ATOM 2391 C THR A 288 46.561 -1.177 35.227 1.00 27.47 C ATOM 2392 O THR A 288 46.778 -1.586 36.365 1.00 24.87 Q ATOM 2393 CB THR A 288 44.288 -0.909 34.244 1.00 22.86 C	35	ATOM 2384	C VAL	A 287	46.973	1.695	34.521	1.00 1	6.48	ء
ATOM 2387 CG1 VAL A 287 48.534 5.085 33.224 1.00 18.39 C ATOM 2388 CG2 VAL A 287 47.173 4.670 35.258 1.00 37.79 C 40 ATOM 2389 N THR A 288 45.904 0.992 34.152 1.00 22.27 N ATOM 2390 CA THR A 288 45.428 -0.152 34.956 1.00 19.34 C ATOM 2391 C THR A 288 46.561 -1.177 35.227 1.00 27.47 C ATOM 2392 O THR A 288 46.778 -1.586 36.365 1.00 24.87 O ATOM 2393 CB THR A 288 44.288 -0.909 34.244 1.00 22.86 C		ATOM 2385	O VAL	A 287	47.613	1.473	35.572	1.00 1	6.63	_0
ATOM 2388 CG2 VAL A 287 47.173 4.670 35.258 1.00 37.79 C ATOM 2389 N THR A 288 45.904 0.992 34.152 1.00 22.27 N ATOM 2390 CA THR A 288 45.428 -0.152 34.956 1.00 19.34 C ATOM 2391 C THR A 288 46.561 -1.177 35.227 1.00 27.47 C ATOM 2392 O THR A 288 46.778 -1.586 36.365 1.00 24.87 O ATOM 2393 CB THR A 288 44.288 -0.909 34.244 1.00 22.86 C		ATOM 2386	CB VAL	A 287	48.101	4.006	34.260	1.00 2	9.84	Ç
40 ATOM 2389 N THR A 288 45.904 0.992 34.152 1.00 22.27 N ATOM 2390 CA THR A 288 45.428 -0.152 34.956 1.00 19.34 C ATOM 2391 C THR A 288 46.561 -1.177 35.227 1.00 27.47 C ATOM 2392 O THR A 288 46.778 -1.586 36.365 1.00 24.87 O ATOM 2393 CB THR A 288 44.288 -0.909 34.244 1.00 22.86 C		ATOM 2387	CG1 VAL	A. 287	48.534	5.085	33.224	1.00 1	8.39	
40 ATOM 2389 N THR A 288 45.904 0.992 34.152 1.00 22.27 N ATOM 2390 CA THR A 288 45.428 -0.152 34.956 1.00 19.34 C ATOM 2391 C THR A 288 46.561 -1.177 35.227 1.00 27.47 C ATOM 2392 O THR A 288 46.778 -1.586 36.365 1.00 24.87 O ATOM 2393 CB THR A 288 44.288 -0.909 34.244 1.00 22.86 C		ATOM 2388	CG2 VAL	A 287	47.173	4.670	35.258	1.00 3	7.79	
ATOM 2390 CA THR A 288 45.428 -0.152 34.956 1.00 19.34 C ATOM 2391 C THR A 288 46.561 -1.177 35.227 1.00 27.47 C ATOM 2392 O THR A 288 46.778 -1.586 36.365 1.00 24.87 O ATOM 2393 CB THR A 288 44.288 -0.909 34.244 1.00 22.86 C	40	ATOM 2389	N THR	A 288	45.904	0.992	34.152	1.00 2	2.27	
ATOM 2391 C THR A 288 46.561 -1.177 35.227 1.00 27.47 C ATOM 2392 O THR A 288 46.778 -1.586 36.365 1.00 24.87 Q ATOM 2393 CB THR A 288 44.288 -0.909 34.244 1.00 22.86 C		ATOM 2390	CA THR	A 288	45.428	-0.152				
ATOM 2392 O THR A 288 46.778 -1.586 36.365 1.00 24.87 O ATOM 2393 CB THR A 288 44.288 -0.909 34.244 1.00 22.86 C		ATOM 2391	C THR	A 288	46.561					
ATOM 2393 CB THR A 288 44.288 -0.909 34.244 1.00 22.86 C		ATOM 2392			-					
AF										
	45	ATOM 2394	OG1 THR							

	ATOM 2395 CG2 TH	R A 288 43.	916 -2.113	35.024	1.00 25.08	c
	ATOM 2396 N AR	G A 289 47.	290 -1.585	34.179	1.00 26.08	N
	ATOM 2397 CA AR	G A 289 48.	428 -2.506	34.319	1.00 16.92	<u>c</u>
	ATOM 2398 C AR	G A 289 49.	405 -2.037	35.408	1.00 22.96	c
5	ATOM 2399 O AR	G A 289 49.	847 -2.790	36.275	1.00 23.03	0
	ATOM 2400 CB AR	G A 289 49.	208 -2.607	32.976	1.00 12.43	c
	ATOM 2401 CG AR	G A 289 48.	934 -3.804	32.103	1.00 29.39	c
	ATOM 2402 CD AR	G A 289 50.	016 -4.102	31.037	1.00 25.88	c
	ATOM 2403 NE AR	GA 289 49.	441 -4.996	30.020	1.00 17.26	N
10	ATOM 2404 CZ AR	GA 289 50.	053 -5.459	28.930	1.00 38.82	C
	ATOM 2405 NH1 AR	GA 289 51.	306 -5.153	28.660	1.00 13.51	Ŋ
	ATOM 2406 NH2 AR	GA 289 49.	400 -6.262	28.096	1.00 37.68	N
	ATOM 2407 N LE	U A 290 49.	815 -0.786	35.306	1.00 26.60	N
	ATOM 2408 CA LE	U A 290 50.	809 -0.254	36.219	1.00 25.42	c
15	ATOM 2409 C LE	U A 290 50.	324 -0.376	37.656	1.00 24.17	c
	ATOM 2410 O LE	U A 290 51.	072 -0.759	38.574	1.00 19.94	o
	ATOM 2411 CB LE	U A 290 51.	000 1.219	35.876	1.00 24.66	Ç
	ATOM 2412 CG LE	U A 290 52.	281 2.019	36.066	1.00 24.67	C
	ATOM 2413 CD1 LEG	JA 290 51.	992 3.479	36.504	1.00 29.25	c
20	ATOM 2414 CD2 LE	JA 290 53.	450 1.335	36.788	1.00 15.82	c
	ATOM 2415 N HI	S A 291 49.	093 0.075	37.868	1.00 30.10	N
	ATOM 2416 CA HI	A 291 48.	513 0.074	39.212	1.00 34.17	C
	ATOM 2417 C HI	S A 291 48.	411 -1.367	39.730	1.00 43.41	c
	ATOM 2418 O HI	A 291 48.	621 -1.654	40.929	1.00 38.81	Q
25	ATOM 2419 CB HIS	5 A 291 47.	113 0.674	39.143	1.00 28.01	c
	ATOM 2420 CG HIS	A 291 47.	097 2.153\	38.984	1.00 29.68	C
	ATOM 2421 ND1 HIS	A 291 48.	242 2.921	39.015	1.00 35.63	N
	ATOM 2422 CD2 HIS	A 291 46.	068 3.024	38.855	1.00 31.18	<u>c</u>
	ATOM 2423 CE1 HIS	A 291 47.	926 4.197	38.845	1.00 24.20	C
30	ATOM 2424 NE2 HIS	A 291 46.	612 4.289	38.747	1.00 21.92	N
	ATOM 2425 N GLI	NA 292 48.	048 -2.260	38.821	1.00 30.71	N
	ATOM 2426 CA GLI	NA 292 47.	950 -3.654	39.181	1.00 34.82	C
	ATOM 2427 C GLY	NA 292 49.	287 -4.197	39.622	1.00 36.93	c
	ATOM 2428 O GLI	VA 292 49.	323 -5.040	40.510	1.00 27.56	<u>0</u>
35	ATOM 2429 CB GL	IA 292 47.	322 -4.487	38.069	1.00 28.23	<u>c</u>
	ATOM 2430 CG GL	I A 292 45.	798 -4.405	38.171	1.00 81.15	c
	ATOM 2431 CD GL	I A 292 45.	023 -4.954	36.963	1.00100.00	C
	ATOM 2432 OE1 GL	I A 292 45.	597 -5.410	35.951	1.00 99.65	0
	ATOM 2433 NE2 GLN	IA 292 43.	687 -4.895	37.073	1.00 40.86	N
40	ATOM 2434 N LEG	JA 293 50.	375 -3.658	39.058	1.00 31.75	N
	ATOM 2435 CA LEG	7 A 293 51.	750 -4.072	39.383	1.00 22.67	c
	ATOM 2436 C LEG	JA 293 52.	238 -3.323	40.613	1.00 28.64	C
	ATOM 2437 O LEG	J A 293 53.	420 -3.377	41.017	1.00 22.27	Q
	ATOM 2438 CB LEU	TA 293 52.	665 -3.769	38.205	1.00 25.57	c
45	ATOM 2439 CG LEU	TA 293 52.	497 -4.703	37.016	1.00 35.11	C

	ATOM 244	0 CD1 LEU A 293	53.306 -4.	170 35.836 1.00 28.2	5 <u>C</u>
	ATOM 244	1 CD2 LEU A 293	52.965 -6.	110 37.439 1.00 47.8	1 <u>c</u>
	ATOM 244	2 N GLY A 294	51.316 -2.	510 41.111 1.00 33.0	8 <u>N</u>
	ATOM 244	3 CA GLY A 294	51.488 -1.	793 42.347 1.00 24.9	<u>о</u> с
5	ATOM 244	4 C GLY A 294	52.272 -0.	<u>512 42.326 1.00 29.3</u>	<u> </u>
	ATOM 244	5 O GLY A 294	53.070 -0.	249 43.223 1.00 25.2	<u>5 0</u>
	ATOM 244	6 N TRP A 295	52.000 0.	347 41.368 1.00 27.8	3 N
	ATOM 244	7 CA TRP A 295	52.687 1.	623 41.385 1.00 19. 4	5 <u>C</u>
	ATOM 244	8 C TRP A 295	51.684 2.	731 41.081 1.00 25.7	9 <u>c</u>
10	ATOM 244	9 O TRP A 295	50.765 2.	527 40.297 1.00 20.4	3 0
	ATOM 245	0 CB TRP A 295	53.961 1.	614 40.524 1.00 12.8	5 <u>C</u>
	ATOM 245	1 CG TRP A 295	54.750 2.	911 40.618 1.00 23.0	4 <u> </u>
	ATOM 245	2 CD1 TRP A 295	55.897 3.	161 41.368 1.00 23.6	8 <u>C</u>
	ATOM 245	3 CD2 TRP A 295	54.415 4.	159 39.979 1.00 20.7	2 <u> </u>
15	ATOM 245	4 NE1 TRP A 295	56.258 4.	493 41.244 1.00 18.6°	7 N
	ATOM 245	5 CE2 TRP A 295	55.389 5.	113 40.373 1.00 20.9	5 <u>C</u>
	ATOM 245	6 CE3 TRP A 295	53.406 4.	550 39.102 1.00 21.4	7 <u>c</u>
	ATOM 245	7 CZ2 TRP A 295	55.338 6.	439 39.958 1.00 17.5	8 <u>C</u>
	ATOM 245	8 CZ3 TRP A 295	53.403 5.	873 38.632 1.00 21.5	7 <u>c</u>
20	ATOM 245	9 CH2 TRP A 295	54.368 6.	787 39.058 1.00 19.4	<u>5 C</u>
	ATOM 246	0 N TYR A 296	51.709 3.	797 41.884 1.00 25.1	7 <u> </u>
	ATOM 246	1 CA TYR A 296	50.720 4.	883 41.731 1.00 24.9	<u>с</u>
	ATOM 246	2 C TYR A 296	51.517 6.	178 41.857 1.00 30.8	5 <u>C</u>
	ATOM 246:	3 O TYR A 296	52.363 6.	272 42.745 1.00 21.2	70
25	ATOM 246	4 CB TYR A 296	49.654 4.	813 42.840 1.00 25.1	8 <u>C</u>
	ATOM 246	5 CG TYR A 296	48.685 3.	651 42.744 1.00 23.0	4 <u>C</u>
	ATOM 246	6 CD1 TYR A 296	49.078 2.	343 43.088 1.00 31.6	
	ATOM 246	7 CD2 TYR A 296	47.380 3.	853 42.289 1.00 26.0	
	ATOM 246	8 CE1 TYR A 296	48.203 1.	268 42.935 1.00 24.4	
30	ATOM 246	9 CE2 TYR A 296	46.493 2.	770 42.127 1.00 24.8	1C
	ATOM 247	0 CZ TYR A 296	46.902 1.	483 42.464 1.00 39.4	<u> </u>
	ATOM 247	1 OH TYR A 296	45.984 0.	434 42.337 1.00 66.1	9 0
	ATOM 247	2 N HIS A 297	51.324 7.	123 40.924 1.00 20.9	5 <u>N</u>
	ATOM 247:	3 CA HIS A 297	52.130 8.	343 40.938 1.00 26.8	<u>c</u>
35	ATOM 247	4 C HIS A 297	51.947 9.	175 42.210 1.00 35.0	1 <u>c</u>
	ATOM 247		50.885 9.	132 42.874 1.00 26.9	20
	ATOM 247	6 CB HIS A 297	51.819 9.	192	7c
	ATOM 247	7 CG HIS A 297	50.489 9.	842 39.803 1.00 31.1	<u>c</u>
	ATOM 247			145 39.633 1.00 34.2	
40	ATOM 247	9 CD2 HIS A 297	50.135 11.	094 40.167 1.00 25.8	3 <u> </u>
	ATOM 248	0 CE1 HIS A 297	48.290 9.	972 39.776 1.00 24.1	
	ATOM 248	1 NE2 HIS A 297	48.761 11.	164 40.087 1.00 23.3	5 <u>N</u>
	ATOM 248		52.983 9.9	926 42.554 1.00 24.9	
	ATOM 248:		52.957 10.		
45	ATOM 2484	4 C GLU A 298	52.831 12.	187 43.741 1.00 36.8	6 <u>C</u>

	ATOM 2485	O GLU A 298	52.433 12.792 44.718 1.00 43.61	0
	ATOM 2486	CB GLU A 298	54.153 10.319 44.686 1.00 22.02	c
	ATOM 2487	CG GLU A 298	54.004 8.943 45.285 1.00 36.42	с
	ATOM 2488	CD GLU A 298	54.999 8.664 46.406 1.00100.00	с
5	ATOM 2489	OE1 GLU A 298	56.223 8.561 46.152 1.00 44.79	0
	ATOM 2490	OE2 GLU A 298	54.526 8.470 47.547 1.00100.00	0
	ATOM 2491	N ILE A 299	53.232 12.800 42.639 1.00 23.49	N
	ATOM 2492	CA ILE A 299	53,268 14,244 42,562 1.00 13,25	с
	ATOM 2493	C ILE A 299	52.016 14.848 41.906 1.00 27.05	С
10	ATOM 2494	O ILE A 299	51.681 14.530 40.757 1.00 26.73	0
	ATOM 2495	CB ILE A 299	54.586 14.711 41.862 1.00 15.93	C
	ATOM 2496	CG1 ILE A 299	55.836 14.183 42.606 1.00 23.83	С
	ATOM 2497	CG2 ILE A 299	54.596 16.213 41.541 1.00 17.37	С
	ATOM 2498	CD1 ILE A 299	57.232 14.221 41.787 1.00 21.32	C
15	ATOM 2499	N SER A 300	51.323 15.716 42.648 1.00 18.55	N N
	ATOM 2500	CA SER A 300	50.177 16.449 42.091 1.00 19.58	<u>C</u>
	ATOM 2501	C SER A 300	50.714 17.415 41.042 1.00 17.29	<u>c</u>
	ATOM 2502	O SER A 300	51.824 17.941 41.178 1.00 21.06	0
	ATOM 2503	CB SER A 300	49.542 17.307 43.181 1.00 16.78	c
20	ATOM 2504	OG SER A 300	50.548 17.969 43.923 1.00 75.80	0
	ATOM 2505	N LEU A 301	49.870 17.755 40.075 1.00 16.13	N.
	ATOM 2506	CA LEU A 301	50.246 18.675 39.014 1.00 17.70	C
	ATOM 2507	C LEU A 301	50.689 19.964 39.646 1.00 20.11	с
	ATOM 2508	O LEU A 301	51.714 20.568 39.303 1.00 20.46	0
25	ATOM 2509	CB LEU A 301	48.990 18.981 38.197 1.00 17.92	<u>c</u>
	ATOM 2510	CG LEU A 301	49.182 20.030 37.112 1.00 25.15	<u> </u>
	ATOM 2511	CD1 LEU A 301	50.233 19.552 36.086 1.00 18.82	c
	ATOM 2512	CD2 LEU A 301	47.854 20.177 36.436 1.00 25.88	<u>C</u>
	ATOM 2513	N GLU A 302	49.845 20.398 40.554 1.00 27.01	<u> </u>
30	ATOM 2514	CA GLU A 302	50.053 21.636 41.280 1.00 37.72	<u>c</u>
	ATOM 2515	C GLU A 302	51.410 21.618 41.996 1.00 29.99	<u>C</u>
	ATOM 2516	O GLU A 302	52.245 22.514 41.798 1.00 27.15	0
	ATOM 2517	CB GLU A 302	48.899 21.841 42.275 1.00 43.10	c
	ATOM 2518	CG GLU A 302	49.061 23.061 43.174 1.00 90.85	c
35	ATOM 2519	CD GLU A 302	48.451 24.324 42.580 1.00100.00	<u>c</u>
	ATOM 2520	OE1 GLU A 302	47,566 24.209 41.706 1.00100.00	
	ATOM 2521	OE2 GLU A 302	48.808 25.432 43.036 1.00 64.50	0
	ATOM 2522	N ALA A 303	51.646 20.591 42.801 1.00 8.72	N
	ATOM 2523	CA ALA A 303	52.937 20.455 43.459 1.00 15.03	c
40	ATOM 2524	C ALA A 303	54.102 20.355 42.450 1.00 19.85	<u> </u>
	ATOM 2525	O ALA A 303	55.104 21.090 42.553 1.00 22.24	0
	ATOM 2526	CB ALA A 303	52.938 19.258 44.410 1.00 18.97	c
	ATOM 2527	N GLY A 304	53.953 19.472 41.467 1.00 13.05	N
	ATOM 2528	CA GLY A 304	54.970 19.321 40.448 1.00 8.94	c
45	ATOM 2529	C GLY A 304	55.239 20.621 39.695 1.00 20.31	С

	ATOM 2530	0 G	LY A 304	56.394	20.900	39.322	1.00 14.30	0
	ATCM 2531	N I	EU A 305	54.191	21.383	39.361	1.00 10.76	N
	ATOM 2532	CA L	EU A 305	54.483	22.622	38.611	1.00 20.29	C
	ATOM 2533	C I	EU A 305	55.281	23.669	39,456	1.00 28.92	С
5	ATOM 2534	O L	EU A 305	56.194	24.385	38.974	1.00 17.69	<u> </u>
	ATOM 2535	CB L	EU A 305	53.202	23.245	38.033	1.00 24.03	<u></u>
	ATOM 2536	CG L	EU A 305	52.357	22.647	36.880	1.00 27.66	<u>C</u>
	ATOM 2537	CD1 L	EU A 305	50.975	23.384	36.789	1.00 13.44	<u> </u>
	ATOM 2538	CD2 L	EU A 305	53.079	22.724	35.543	1.00 18.39	C
10	ATOM 2539	N A	LA A 306	54.904	23.757	40.724	1.00 19.94	N
	ATOM 2540	CA A	LA A 306	55.544	24.660	41.655	1.00 24.79	_ <u>c</u>
	ATOM 2541	C A	LA A 306	57.035	24.380	41.743	1.00 27.51	
	ATOM 2542	0 A	LA A 306	57.852	25.280	41.662	1.00 29.68	_0
	ATOM 2543	CB A	LA A 306	54.937	24.471	43.002	1.00 17.87	<u> </u>
15	ATOM 2544	n s	ER A 307	57.378	23.137	42.011	1.00 18.46	N
	ATOM 2545	CA S	ER A 307	58.793	22.756	42.162	1.00 16.31	С
	ATOM 2546	c s	ER_A 307	59.547	22.885	40.832	1.00 22.66	c
	ATOM 2547	o s	ER A 307	60.742	23.212	40.786	1.00 28.47	
	ATOM 2548	CB S	ER A 307	58.851	21.304	42.622	1.00 20.47	с
20	ATOM 2549	og s	ER A 307	58.517	20.454	41.526	1.00 29.03	0
	ATOM 2550	N T	HR A 308	58.849	22.631	39.735	1.00 27.31	N
	ATOM 2551	CA T	HR A 308	59.458	22.738	38.413	1.00 22.89	C
	ATOM 2552	с т	HR A 308	59.757	24.216	38.107	1.00 26.06	C
	ATOM 2553	о т	HR A 308	60.819	24.546	37.591	1.00 29.89	0
25	ATOM 2554	CB T	HR A 308	58.536	22.115	37.318	1.00 18.72	C
	ATOM 2555	OG1 T	HR A 308	58.356	20.714	37.545	1.00 20.17	0
	ATOM 2556	CG2 T	HR A 308	59.094	22.330	35.923	1.00 12.37	<u> </u>
	ATOM 2557	N T	YR A 309	58.846	25.118	38.453	1.00 28.20	N
	ATOM 2558	CA T	YR A 309	59.110	26.549	38.241	1.00 31.09	<u> </u>
30	ATOM 2559	СТ	YR A 309	60.383	27.059	39.045	1.00 16.31	C
	ATOM 2560	ОТ	YR A 309	61.179	27.858	38.577	1.00 16.91	0
	ATOM 2561	св т	YR A 309	57.819	27.373	38.533	1.00 31.19	С
	ATOM 2562	CG T	YR A 309	57.944	28.895	38.392	1.00 14.57	<u>C</u>
	ATOM 2563	CD1 T	YR A 309	58.397	29.457	37.224	1.00 17.51	_ <u>c</u>
35	ATOM 2564	CD2 T	YR A 309	57.575	29.757	39.442	1.00 24.99	<u> </u>
	ATOM 2565	CE1 T	YR A 309	58.527	30.801	37.100	1.00 18.41	С
	ATOM 2566	CE2 T	YR A 309	57.744	31.129	39.351	1.00 19.04	С
	ATOM 2567	CZ T	YR A 309	58.212	31.641	38.164	1.00 29.13	
	ATOM 2568		YR A 309	58.300	33.004		1.00 28.22	
40	ATOM 2569		LN A 310	60.560	26.579	40.260	1.00 15.41	N
	ATOM 2570		LN A 310	61.705	26.964	41.087	1.00 22.35	
	ATOM 2571		LN A 310	63.001	26.492		1.00 31.46	<u>c</u>
	ATOM 2572		LN A 310	64.009	27.191		1.00 33.42	0
	ATOM 2573		LN A 310	61.587	26.335		1.00 17.67	
45	ATOM 2574		LN A 310	62.579	26.921		1.00 57.58	С

	ATOM 2575	CD GLN A 310	62.287 28.370	43.782 1.00 65.14	С
	ATOM 2576	OE1 GLN A 310	61.134 28.754	44.000 1.00 41.94	0
	ATOM 2577	NE2 GLN A 310	63.330 29.194	43.801 1.00 99.09	N
	ATOM 2578	N TRP A 311	62.957 25.321	39.830 1.00 28.76	N
5	ATOM 2579	CA TRP A 311	64.146 24.822	39.163 1.00 26.29	с
	ATOM 2580	C TRP A 311	64.474 25.769	38.040 1.00 17.91	c
	ATOM 2581	O TRP A 311	65.599 26.193	37.880 1.00 22.89	0
	ATOM 2582	CB TRP A 311	63.938 23.383	38.643 1.00 27.53	<u>c</u>
	ATOM 2583	CG TRP A 311	65.176 22.784	38.119 1.00 17.82	С
10	ATOM 2584	CD1 TRP A 311	66.132 22.090	38.826 1.00 20.21	c
	ATOM 2585	CD2 TRP A 311	65.652 22.881	36.784 1.00 17.99	С
	ATOM 2586	NE1 TRP A 311	67.197 21.776	37.992 1.00 20.39	N
	ATOM 2587	CE2 TRP A 311	66.933 22.284	36.746 1.00 19.57	С
	ATOM 2588	CE3 TRP A 311	65.141 23.461	35.621 1.00 20.26	С
15	ATOM 2589	CZ2 TRP A 311	67.686 22.236	35.599 1.00 14.25	c
	ATOM 2590	CZ3 TRP A 311	65.901 23.446	34.501 1.00 18.59	С
	ATOM 2591	CH2 TRP A 311	67.169 22.831	34.494 1.00 16.86	<u> </u>
	ATOM 2592	N PHE A 312	63.469 26.109	37.256 1.00 17.47	N N
	ATOM 2593	CA PHE A 312	63.665 27.064	36.179 1.00 20.14	c
20	ATOM 2594	C PHE A 312	64.224 28.371	36.733 1.00 18.33	c
	ATOM 2595	O PHE A 312	65.080 29.024	36.104 1.00 24.76	Q
	ATOM 2596	CB PHE A 312	62.328 27.318	35.458 1.00 29.51	C
	ATOM 2597	CG PHE A 312	62.328 28.544	34.603 1.00 28.52	с
	ATOM 2598	CD1 PHE A 312	62.883 28.508	33.338 1.00 30.53	<u>c</u>
25	ATOM 2599	CD2 PHE A 312	61.825 29.758	35.104 1.00 29.31	<u>c</u>
	ATOM 2600	CE1 PHE A 312	62.936 29.660	32.554 1.00 34.73	с
	ATOM 2601	CE2 PHE A 312	61.900 30.904	34.362 1.00 38.40	<u>c</u>
	ATOM 2602	CZ PHE A 312	62.432 30.860	33.063 1.00 40.73	с
	ATOM 2603	N LEU A 313	63.697 28.787	37.876 1.00 22.46	<u> </u>
30	ATOM 2604	CA LEU A 313	64.170 30.025	38.516 1.00 28.47	<u>c</u>
	ATOM 2605	C LEU A 313	65.627 29.827	38.898 1.00 37.53	<u>c</u>
	ATOM 2606	O LEU A 313	66.452 30.693	38.629 1.00 34.20	0
	ATOM 2607	CB LEU A 313	63.375 30.410	39.783 1.00 20.44	<u>c</u>
	ATOM 2608	CG LEU A 313	61.955 30.897	39.555 1.00 16.29	c
35	ATOM 2609	CD1 LEU A 313	61.499 31.399	40.871 1.00 15.94	<u>C</u>
	ATCM 2610	CD2 LEU A 313	61.959 31.961	38.524 1.00 14.44	<u> </u>
	ATOM 2611	N GLU A 314	65.953 28.685	39.508 1.00 30.70	N
	ATOM 2612	CA GLU A 314	67.353 28.432	39.875 1.00 24.15	С
	ATOM 2613	C GLU A 314	68.291 28.149	38.703 1.00 36.34	<u> </u>
40	ATOM 2614	O GLU A 314	69.485 28.047	38.890 1.00 43.10	0
	ATOM 2615	CB GLU A 314	67.459 27.366	40.947 1.00 19.90	С
	ATOM 2616	CG GLU A 314	66.634 27.754	42.141 1.00 27.37	C
	ATOM 2617	CD GLU A 314	66.450 26.666	43.182 1.00 31.09	<u>c</u>
	ATOM 2618	OE1 GLU A 314	67.157 25.648	43.085 1.00 59.60	0
45	ATOM 2619	OE2 GLU A 314	65.634 26.872	44.125 1.00 46.20	0

	ATOM 2620 N ASN A 315	67.778 28.114 37.479 1.00 40.17 N
	ATOM 2621 CA ASN A 315	68.637 27.802 36.343 1.00 37.76 C
	ATOM 2622 C ASN A 315	68.383 28.578 35.112 1.00 43.75 C
	ATOM 2623 O ASN A 315	68.591 28.001 34.047 1.00 39.15 o
5	ATOM 2624 CB ASN A 315	68.425 26.360 35.884 1.00 33.74 C
	ATOM 2625 CG ASN A 315	69.028 25.383 36.801 1.00 53.18 C
	ATOM 2626 OD1 ASN A 315	68.456 25.087 37.835 1.00 49.13 O
	ATOM 2627 ND2 ASN A 315	70.239 24.926 36.479 1.00 97.72 N
	ATOM 2628 N GLN A 316	67.852 29.803 35.197 1.00 49.87 N
10	ATOM 2629 CA GLN A 316	67.627 30.550 33.957 1.00 77.90 C
	ATOM 2630 C GLN A 316	68.797 31.448 33.525 1.00100.00 C
	ATOM 2631 O GLN A 316	69.272 31.387 32.375 1.00 51.33 O
	ATOM 2632 CB GLN A 316	66.280 31.276 33.902 1.00 75.89 C
	ATOM 2633 CG GLN A 316	65.683 31.589 35.231 1.00 80.97 C
15	ATOM 2634 CD GLN A 316	65.233 33.036 35.350 1.00 54.58 C
	ATOM 2635 OE1 GLN A 316	64.881 33.699 34.367 1.00 46,46 o
	ATOM 2636 NE2 GLN A 316	65.257 33.538 36.566 1.00 33.46 N
	TER 2637 GLN A 316	
	CONECT 110 111	
20	CONECT 111 110 112	
	CONECT 112 111 113 114	
	CONECT 113 112 118	
	CONECT 114 112 115 116	
	CONECT 115 114	
25	CONECT 116 114 117 118	
	CONECT 117 116 129	
	CONECT 118 113 116	
	CONECT 120 121	
	CONECT 121 120 122	
30	CONECT 122 121 123 124	
	CONECT 123 122 128	
	CONECT 124 122 125 126	
	CONECT 125 124	
	CONECT 126 124 127 128	
35	CONECT 127 126	
	CONECT 128 123 126	
	CONECT 129 117 130 131 132	
	CONECT 130 129	
	CONECT 131 129	
40	CONECT 132 129	. —
	MASTER 208 0 1 13	10 0 3 6 2636 1 22 25
	END	,

5

While various embodiments of the present invention have been described in detail, it is apparent that modifications and adaptations of those embodiments will occur to those skilled in the art. However, it is to be expressly understood that such modifications and adaptations are within the spirit and scope of the present invention, as set forth in the following claims.

5

10

15

20

25

30

What is claimed:

- 1. A method for producing ascorbic acid or esters thereof in a microorganism, comprising culturing a microorganism having a genetic modification to increase the action of an enzyme selected from the group consisting of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-D-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono-γ-lactone dehydrogenase; and recovering said ascorbic acid or esters thereof.
- 2. A method, as claimed in Claim 1, wherein said genetic modification is a genetic modification to increase the action of an enzyme selected from the group consisting of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono-γ-lactone dehydrogenase.
- 3. A method, as claimed in Claim 1, wherein said genetic modification is a genetic modification to increase the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose.
- 4. A method, as claimed in Claim 3, wherein said genetic modification is a genetic modification to increase the action of GDP-D-mannose:GDP-L-galactose epimerase.
- 5. The method of Claim 3, wherein said genetic modification comprises transformation of said microorganism with a recombinant nucleic acid molecule that expresses said epimerase.
 - 6. The method of Claim 5, wherein said epimerase has a tertiary structure that substantially conforms to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.
 - 7. The method of Claim 5, wherein said epimerase has a structure having an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.

10

15

20

25

- 8. The method of Claim 5, wherein said epimerase has a tertiary structure having an average root mean square deviation of less than about 1 Å over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1 bws.
- 9. The method of Claim 5, wherein said epimerase comprises a substrate binding site having a tertiary structure that substantially conforms to the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code lbws.
- 10. The method of Claim 9, wherein said substrate binding site has a tertiary structure with an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.
- 11. The method of Claim 5, wherein said epimerase comprises a catalytic site having a tertiary structure that substantially conforms to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.
- 12. The method of Claim 11, wherein said catalytic site has a tertiary structure with an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.
- 13. The method of Claim 11, wherein said catalytic site comprises the amino acid residues serine, tyrosine and lysine.
- 14. The method of Claim 13, wherein tertiary structure positions of said amino acid residues serine, tyrosine and lysine substantially conform to tertiary structure positions of residues Ser107, Tyr136 and Lys140, respectively, as represented by atomic coordinates in Brookhaven Protein Data Bank Accession Code 1bws.
 - 15. The method of Claim 5, wherein said epimerase binds NADPH.

10

15

20

- 16. The method of Claim 5, wherein said epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in said amino acid sequence align with 100% identity with at least about 50% of non-Xaa residues in SEQ ID NO:11.
- 17. The method of Claim 5, wherein said epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in said amino acid sequence align with 100% identity with at least about 75% of non-Xaa residues in SEQ ID NO:11.
- 18. The method of Claim 5, wherein said epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in said amino acid sequence align with 100% identity with at least about 90% of non-Xaa residues in SEQ ID NO:11.
- 19. The method of Claim 5, wherein said epimerase comprises an amino acid sequence having at least 4 contiguous amino acid residues that are 100% identical to at least 4 contiguous amino acid residues of an amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8 and SEQ ID NO:10.
- 20. The method of Claim 5, wherein said recombinant nucleic acid molecule comprises a nucleic acid sequence comprising at least about 12 contiguous nucleotides having 100% identity with at least about 12 contiguous nucleotides of a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 and SEQ ID NO:9.
- 21. The method of Claim 5, wherein said epimerase comprises an amino acid sequence having a motif: Gly-Xaa-Xaa-Gly-Xaa-Xaa-Gly.
- 22. The method of Claim 5, wherein said recombinant nucleic acid molecule comprises a nucleic acid sequence that is at least about 15% identical to a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 and SEQ ID NO:9, as determined using a Lipman-Pearson method with Lipman-Pearson standard default parameters.
- 30 23. The method of Claim 5, wherein said recombinant nucleic acid molecule comprises a nucleic acid sequence that is at least about 20% identical to a nucleic acid

10

15

sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 and SEQ ID NO:9, as determined using a Lipman-Pearson method with Lipman-Pearson standard default parameters.

- 24. The method of Claim 5, wherein said recombinant nucleic acid molecule comprises a nucleic acid sequence that is at least about 25% identical to a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 and SEQ ID NO:9, as determined using a Lipman-Pearson method with Lipman-Pearson standard default parameters.
- 25. The method of Claim 5, wherein said recombinant nucleic acid molecule comprises a nucleic acid sequence that hybridizes under stringent hybridization conditions to a nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase.
- 26. The method of Claim 25, wherein said nucleic acid sequence encoding said GDP-4-keto-6-deoxy-D-mannose epimerase/reductase is selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3 and SEQ ID NO:5.
- 27. The method of Claim 25, wherein said GDP-4-keto-6-deoxy-D-mannose epimerase/reductase comprises an amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4 and SEQ ID NO:6.
- 28. A method, as claimed in Claim 1, wherein said microorganism is selected from the group consisting of bacteria, fungi and microalgae.
 - 29. A method, as claimed in Claim 1, wherein said microorganism is acid-tolerant.
 - 30. A method, as claimed in Claim 1, wherein said microorganism is a bacterium.
- 25 31. A method, as claimed in Claim 30, wherein said bacterium is selected from the group consisting of *Azotobacter* and *Pseudomonas*.
 - 32. A method, as claimed in Claim 1, wherein said microorganism is a fungus.
 - 33. A method, as claimed in Claim 32, wherein said microorganism is a yeast.
- 34. A method, as claimed in Claim 33, wherein said yeast is selected from the group consisting of *Saccharomyces* yeast.

15

- 35. A method, as claimed in Claim 1, wherein said microorganism is a microalga.
- 36. A method, as claimed in Claim 35, wherein said microalga is selected from the group consisting of microalgae of the genera *Prototheca* and *Chlorella*.
- 37. A method, as claimed in Claim 36, wherein said microalga is selected from the genus *Prototheca*.
- 38. A method, as claimed in Claim 1, wherein said microorganism further comprises a genetic modification to decrease the action of an enzyme having GDP-D-mannose as a substrate, other than GDP-D-mannose: GDP-L-galactose epimerase.
- 39. A method, as claimed in Claim 38, wherein said genetic modification to decrease the action of an enzyme having GDP-D-mannose as a substrate, other than GDP-D-mannose:GDP-L-galactose epimerase is a genetic modification to decrease the action of GDP-D-mannose-dehydrogenase.
 - 40. A method, as claimed in Claim 1, wherein said microorganism is acidtolerant and said step of culturing is conducted at a pH of less than about 6.0.
 - 41. A method, as claimed in Claim 1, wherein said microorganism is acid-tolerant and said step of culturing is conducted at a pH of less than about 5.5.
 - 42. A method, as claimed in Claim 1, wherein said microorganism is acid-tolerant and said step of culturing is conducted at a pH of less than about 5.0.
 - 43. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that is magnesium (Mg) limited.
 - 44. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that is Mg limited during a cell growth phase.
- 45. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that comprises less than about 0.5 g/L of Mg during a cell growth phase.
 - 46. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that comprises less than about 0.2 g/L of Mg during a cell growth phase.

10

15

- 47. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that comprises less than about 0.1 g/L of Mg during a cell growth phase.
- 48. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that comprises a carbon source other than D-mannose.
 - 49. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that comprises glucose as a carbon source.
 - 50. A microorganism for producing ascorbic acid or esters thereof, wherein said microorganism has a genetic modification to increase the action of an enzyme selected from the group consisting of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-D-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono-γ-lactone dehydrogenase.
 - 51. A microorganism, as claimed in Claim 50, wherein said genetic modification is a genetic modification to increase the action of an enzyme selected from the group consisting of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono-γ-lactone dehydrogenase.
 - 52. A microorganism, as claimed in Claim 50, wherein said genetic modification is a genetic modification to increase the action of GDP-D-mannose:GDP-L-galactose epimerase.
- 53. A microorganism, as claimed in Claim 50, wherein said microorganism has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, wherein said epimerase has a tertiary structure having an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.

15

20

25

- 54. A microorganism, as claimed in Claim 50, wherein said microorganism is selected from the group consisting of bacteria, fungi and microalgae.
- 55. A microorganism, as claimed in Claim 50, wherein said microorganism is a bacterium.
- 56. A microorganism, as claimed in Claim 55, wherein said bacterium is selected from the group consisting of Azotobacter and Pseudomonas.
 - 57. A microorganism, as claimed in Claim 50, wherein said microorganism is a fungus.
- 58. A microorganism, as claimed in Claim 57, wherein said microorganism is a yeast.
 - 59. A microorganism, as claimed in Claim 58, wherein said yeast is selected from the group consisting of *Saccharomyces* yeast.
 - 60. A plant for producing ascorbic acid or esters thereof, wherein said plant has a genetic modification to increase the action of an enzyme selected from the group consisting of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-D-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono-γ-lactone dehydrogenase.
 - 61. A plant, as claimed in Claim 60, wherein said genetic modification is a genetic modification to increase the action of an enzyme selected from the group consisting of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono-γ-lactone dehydrogenase.
 - 62. A plant, as claimed in Claim 60, wherein said genetic modification is a genetic modification to increase the action of GDP-D-mannose:GDP-L-galactose epimerase.
 - 63. A plant, as claimed in Claim 60, wherein said plant has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, wherein said epimerase has a tertiary structure having an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-

10

15

20

25

30

deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.

- 64. A plant, as claimed in Claim 60, wherein said plant further comprises a genetic modification to decrease the action of an enzyme having GDP-D-mannose as a substrate other than GDP-D-mannose:GDP-L-galactose epimerase.
- 65. A plant, as claimed in Claim 60, wherein said genetic modification to decrease the action of an enzyme having GDP-D-mannose as a substrate other than GDP-D-mannose: GDP-L-galactose epimerase is a genetic modification to decrease the action of GDP-D-mannose-dehydrogenase.
 - 66. A plant, as claimed in Claim 60, wherein said plant is a microalga.
- 67. A plant, as claimed in Claim 66, wherein said plant is selected from the group consisting of microalgae of the genera *Prototheca* and *Chlorella*.
- 68. A plant, as claimed in Claim 66, wherein said microalga is selected from the genus *Prototheca*.
 - 69. A plant, as claimed in Claim 60, wherein said plant is a higher plant.
- 70. A plant, as claimed in Claim 60, wherein said plant is a consumable higher plant.
- 71. A microorganism for producing ascorbic acid or esters thereof, wherein said microorganism has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, wherein said epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in said amino acid sequence align with 100% identity with at least about 50% of non-Xaa residues in SEQ ID NO:11.
- 72. A plant for producing ascorbic acid or esters thereof, wherein said plant has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, wherein said epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in said amino acid sequence align with 100% identity with at least about 50% of non-Xaa residues in SEQ ID NO:11.

Proposed Pathway from Glucose to L-Ascorbic Acid through GDP-D-Mannose

FIG. 1A

Proposed Pathway from Glucose to Ascorbic Acid through GDP-D-Mannose GDP-L-galactose-1-P to L-Ascorbic Acid

FIG. 1C

FIG. 2A

FIG. 2B

Genealogy of Selected Isolates

FIG. 3

Conversion of Substrates by Resting Cells of NA45-3 (ATCC 209681) Growth/Resuspension in Various Mg Concentrations

Fig. 4

Average Specific Epimerase Activity vs. Average Whole Broth AA Specific Formation

Average Specific AA Formation, mg AA per

Fig. 5

L/Culture A620 Specific AA Formation, mg AA per

9/12

Published Mechanism for the Conversion of GDP-D-mannose to GDP-4-keto-6-deoxy-D-mannose

Fig. 8A

Published Mechanism for the Conversion of GDP-4-keto-6-deoxy-D-mannose to GDP-L-fucose

SEQUENCE LISTING

<110> Berry, Alan Running, Jeffrey A. Severson, David K. Burlingame, Richard P. <120> "VITAMIN C PRODUCTION IN MICROORGANISMS AND PLANTS" <130> 3161-24-PCT <140> not yet assigned <141> 1999-05-25 <150> 60/125,073 <151> 1999-03-17 <150> 60/125,054 <151> 1999-03-18 <150> 60/088,549 <151> 1998-06-08 <160> 15 <170> PatentIn Ver. 2.0 <210> 1 <211> 1583 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (49)..(993) <400> 1 tagtetttaa tttegeageg tttttataat tgtgeagagg tttegtee atg tet gae 57 Met Ser Asp aaa tot goo aaa ato tto goo gog ggt cat cgt ggt ttg gtt gga tot 105 Lys Ser Ala Lys Ile Phe Val Ala Gly His Arg Gly Leu Val Gly Ser 10 gcc att gtc cgc aag ctt cag gaa caa ggt ttc acc aat ctc gtt ctt 153

1

25

Ala Ile Val Arg Lys Leu Gln Glu Gln Gly Phe Thr Asn Leu Val Leu

aaa	aca	cac	gcc	gag	ctt	gat	ctc	act	cgt	caa	gcc	gat	gtt	gaa	tcc	201
Lys	Thr	His	Ala		Leu	Asp	Leu	Thr	_	Gln	Ala	Asp	Val		Ser	
				40					45					50		
++-		+ = +		~~	224		~++	+-+	at a	250	ata	~~~	703	~~+	222	249
			caa Gln		_		-		-			_	-	-		243
1110		201	55	014	2,0		• • • •	60					65		2,5	
			-													
gtt	ggt	ggt	att	cac	gct	aac	aac	acc	tat	cct	gct	gat	ttc	att	ggt	297
Val	Gly	Gly	Ile	His	Ala	Asn	Asn	Thr	Tyr	Pro	Ala	Asp	Phe	Ile	Gly	
		70					75					80				
																245
•			cag		_							-				345
vaı	85 85	пеп	Gln	TIE	GIII	90	ASII	Val	116	nis	95	ма	ı yı.	GIU	nis	
	03					50					,,					
ggt	gtg	aag	aag	ctt	ctc	ttc	ctt	gga	tca	tcc	tgc	att	tac	cct	aaa	393
Gly	Val	Lys	Lys	Leu	Leu	Phe	Leu	Gly	Ser	Ser	Cys	Ile	Tyr	Pro	Lys	
100					105					110					115	
ttt	gct	cct	cag	cca	att	cct	gag	tct	gct	ttg	tta	aca	gca	tcg	ctt	441
Phe	Ala	Pro	Gln		Ile	Pro	Glu	Ser		Leu	Leu	Thr	Ala		Leu	
				120					125					130		
паа	cca	act	aat	gag	taa	tat	act	att	act	ааσ	atc	act	aaa	att	aaa	489
-			Asn	, ,			_		-	_		-			-	
			135		-	-		140		-			145		•	
act	tgt	cag	gct	tat	agg	att	cag	cac	gga	tgg	gat	gca	atc	tct	ggc	537
Thr	Cys		Ala	Tyr	Arg	Ile		His	Gly	Trp	Asp		Ile	Ser	Gly	
		150					155					160				
ato	cct	act	aat	ctc	tat	aat	cct	aat	gac.	aat	ttc.	cac	cca	aaa	tct	585
_			Asn						_				_			303
	165				- , -	170					175					
cat	gtg	ctt	cct	gct	ctt	atg	agg	agg	ttc	cac	gag	gcg	aaa	gtg	aat	633
His	Val	Leu	Pro	Ala	Leu	Met	Arg	Arg	Phe	His	Glu	Ala	Lys	Val	Asn	
180					185					190					195	
			gga													681
Trp	ser	GTA	Gly		cys	GTÀ	val	GIA	_	гуѕ	val	val	Pro		Glu	
				200					205					210		
gaa	aag	ttc	ttg	cat	qtt	gat	gat	tta	gct	gat	gct	tat	att	ttc	tta	729
	-		Leu		-	-	-	_	_	_	-	_	_		_	
-			215			•	·	220		-		_	225			

_				_			_			_				agt Ser		777
	-				_		_	-		_				gtt Val	_	825
		-		-				-	-		_		-	ggc Gly		873
_				_	-	-		-				_		tgg Trp 290		921
														tgg Trp		969
_	_		gtt Val	_		-	taa 315	gtta	aatgo	ytt 1	ctct	tete	a ta	atata	caca	1023
acta	ttga	igt d	ctcag	gtaa	aa to	agct	tato	acc	cacat	tgt	gatt	taaa	icc t	ttct	ttgag	1083
atto	gaga	at t	gctt	tttt	t tt	tato	aaaa	ı ttg	gatto	att	taga	gata	ag a	actto	cttct	1143
ttat	acaa	ıca t	tgto	tgag	gg aa	tttt	aatt	ttg	ggato	tcc	gagt	atgg	ıtc t	tatta	ttagc	1203
tctc	ttct	at a	caaa	ttat	c aa	aaca	gttg	, taa	gaag	jttt	caaç	jaaaa	ac a	atttg	gatatc	1263
tcac	taat	tt ç	ggcta	tcct	t go	aagt	tgca	acç	ıctaa	aat	gaca	aata	at ç	gaatt	ctcgg	1323
ccca	atgg	ıgc t	taca	caag	jc ct	tgtt	aaag	ata	ıgcgt	gaa	caaa	acgo	gg d	ctcac	tagcc	1383
ctaa	cctg	ıtc t	ctct	ttcg	jc tt	acct	tctt	ctt	cgto	ttc	gttg	gctc	ag t	cact	tgact	1443
tcac	ggcc	cg c	ctcaa	igcto	t ga	cacg	aaac	: tca	tttc	aaa	ttaa	ttta	at a	aaaac	cttaa	1503
tcac	aaaa	igg ç	gcaa	aagc	a at	cgcc	ggcg	att	atgo	ctt	ctcc	tccg	igt g	geegg	agacg	1563
gttg	tgag	icc a	acco	gtto	:g											1583

<210> 2 <211> 314

<212> PRT

<213> Arabidopsis thaliana

<400> 2

Met Ser Asp Lys Ser Ala Lys Ile Phe Val Ala Gly His Arg Gly Leu

1 5 10 15

Val Gly Ser Ala Ile Val Arg Lys Leu Gln Glu Gln Gly Phe Thr Asn 20 25 30

Leu Val Leu Lys Thr His Ala Glu Leu Asp Leu Thr Arg Gln Ala Asp
35 40 45

Val Glu Ser Phe Phe Ser Gln Glu Lys Pro Val Tyr Val Ile Leu Ala 50 55 60

Ala Ala Lys Val Gly Gly Ile His Ala Asn Asn Thr Tyr Pro Ala Asp 65 70 75 80

Phe Ile Gly Val Asn Leu Gln Ile Gln Thr Asn Val Ile His Ser Ala 85 90 95

Tyr Glu His Gly Val Lys Lys Leu Leu Phe Leu Gly Ser Ser Cys Ile 100 105 110

Tyr Pro Lys Phe Ala Pro Gln Pro Ile Pro Glu Ser Ala Leu Leu Thr 115 120 125

Ala Ser Leu Glu Pro Thr Asn Glu Trp Tyr Ala Ile Ala Lys Ile Ala 130 135 140

Gly Ile Lys Thr Cys Gln Ala Tyr Arg Ile Gln His Gly Trp Asp Ala 145 150 155 160

Ile Ser Gly Met Pro Thr Asn Leu Tyr Gly Pro Asn Asp Asn Phe His 165 170 175

Pro Glu Ser His Val Leu Pro Ala Leu Met Arg Arg Phe His Glu Ala 180 185 190

Lys Val Asn Trp Ser Gly Gly Ser Cys Gly Val Gly Tyr Lys Val Val
195 200 205

Pro Leu Glu Gly Lys Phe Leu His Val Asp Asp Leu Ala Asp Ala Cys 210 215 220

Val Phe Leu Leu Asp Arg Ile Gln Arg Gly Leu Glu His Val Asn Ile 225 230 235 240

Gly Ser Gly Gln Glu Val Thr Ile Arg Glu Leu Ala Glu Leu Val Lys 245 250 Glu Val Val Gly Phe Glu Gly Lys Leu Gly Trp Asp Cys Thr Lys Pro Asp Gly Thr Pro Arg Lys Leu Met Asp Ser Ser Lys Leu Ala Ser Leu 280 Gly Trp Thr Pro Lys Val Ser Leu Arg Asp Gly Leu Ser Gln Thr Tyr Asp Trp Tyr Leu Lys Asn Val Cys Asn Arg 310 <210> 3 <211> 966 <212> DNA <213> Escherichia coli <220> <221> CDS <222> (1)..(966) <400> 3 atg agt aaa caa cga gtt ttt att gct ggt cat cgc ggg atg gtc ggt Met Ser Lys Gln Arg Val Phe Ile Ala Gly His Arg Gly Met Val Gly 1 5 10 tcc gcc atc agg cgg cag ctc gaa cag cgc ggt gat gtg gaa ctg gta 96 Ser Ala Ile Arg Arg Gln Leu Glu Gln Arg Gly Asp Val Glu Leu Val 20 tta cgc acc cgc gac gag ctg aac ctg ctg gac agc cgc gcc gtg cat 144 Leu Arg Thr Arg Asp Glu Leu Asn Leu Leu Asp Ser Arg Ala Val His 40 gat ttc ttt gcc agc gaa cgt att gac cag gtc tat ctg gcg gcg gcg 192 Asp Phe Phe Ala Ser Glu Arg Ile Asp Gln Val Tyr Leu Ala Ala Ala aaa gtg ggc ggc att gtt gcc aac acc tat ccg gcg gat ttc atc 240 Lys Val Gly Gly Ile Val Ala Asn Asn Thr Tyr Pro Ala Asp Phe Ile 70 75

tac cag aac atg atg att gag agc aac atc att cac gcc gcg cat cag

W	99/6	4618												•	PCT/US	99/115
Tyr	Gln	Asn	Met	Met 85	Ile	Glu	ser	Asn	Ile 90	Ile	His	Ala	Ala	His 95	Gln	
	-		aac Asn 100		_	_				_		-			•	336
	_	-	aaa Lys	_	_	-	-	-	_		-	_	_		-	384
_		_	act Thr					-		-			-			432
	_	_	gaa Glu				_	_			_	_		-		480
_	_	_	acc Thr		_					-				_	_	528
	-		gtg Val 180			-	_	_	-	-					-	576
_	_		gcg Ala	_	-			-			-			_	_	624
			ctg Leu													672
		-	gcg Ala		-	-		_				-	_	_	_	720
			aac Asn	-		_		_	_	-			_	_		768
			atc Ile 260											-		816
gat	gcc	agc	aaa	ccg	gat	ggc	acg	ccg	cgc	aaa	ctg	ctg	gat	gtg	acg	864

Asp Ala Ser Lys Pro Asp Gly Thr Pro Arg Lys Leu Leu Asp Val Thr 275 280 285

cgc ctg cat cag ctt ggc tgg tat cac gaa atc tca ctg gaa gcg ggg 912 Arg Leu His Gln Leu Gly Trp Tyr His Glu Ile Ser Leu Glu Ala Gly 290 295 300

ctt gcc agc act tac cag tgg ttc ctt gag aat caa gac cgc ttt cgg 960 Leu Ala Ser Thr Tyr Gln Trp Phe Leu Glu Asn Gln Asp Arg Phe Arg 305 310 315 320

ggg taa 966 Gly

<210> 4

<211> 321

<212> PRT

<213> Escherichia coli

<400> 4

Met Ser Lys Gln Arg Val Phe Ile Ala Gly His Arg Gly Met Val Gly

1 5 10 15

Ser Ala Ile Arg Arg Gln Leu Glu Gln Arg Gly Asp Val Glu Leu Val 20 25 30

Leu Arg Thr Arg Asp Glu Leu Asn Leu Leu Asp Ser Arg Ala Val His
35 40 45

Asp Phe Phe Ala Ser Glu Arg Ile Asp Gln Val Tyr Leu Ala Ala 50 55 60

Lys Val Gly Gly Ile Val Ala Asn Asn Thr Tyr Pro Ala Asp Phe Ile 65 70 75 80

Tyr Gln Asn Met Met Ile Glu Ser Asn Ile Ile His Ala Ala His Gln 85 90 95

Asn Asp Val Asn Lys Leu Leu Phe Leu Gly Ser Ser Cys Ile Tyr Pro 100 105 110

Lys Leu Ala Lys Gln Pro Met Ala Glu Ser Glu Leu Leu Gln Gly Thr 115 120 125

Leu Glu Pro Thr Asn Glu Pro Tyr Ala Ile Ala Lys Ile Ala Gly Ile 130 135 140

WO 99/64618 PCT/US99/11576 Lys Leu Cys Glu Ser Tyr Asn Arg Gln Tyr Gly Arg Asp Tyr Arg Ser 150 155 Val Met Pro Thr Asn Leu Tyr Gly Pro His Asp Asn Phe His Pro Ser 165 170 175 Asn Ser His Val Ile Pro Ala Leu Leu Arg Arg Phe His Glu Ala Thr 185 Ala Gln Asn Ala Pro Asp Val Val Val Trp Gly Ser Gly Thr Pro Met 200 Arg Glu Phe Leu His Val Asp Asp Met Ala Ala Ala Ser Ile His Val 210 215 Met Glu Leu Ala His Glu Val Trp Leu Glu Asn Thr Gln Pro Met Leu Ser His Ile Asn Val Gly Thr Gly Val Asp Cys Thr Ile Arg Asp Val 245 250 Ala Gln Thr Ile Ala Lys Val Val Gly Tyr Lys Gly Arg Val Val Phe 265 Asp Ala Ser Lys Pro Asp Gly Thr Pro Arg Lys Leu Leu Asp Val Thr 275 280 285 Arg Leu His Gln Leu Gly Trp Tyr His Glu Ile Ser Leu Glu Ala Gly Leu Ala Ser Thr Tyr Gln Trp Phe Leu Glu Asn Gln Asp Arg Phe Arg 310 315 Gly <210> 5 <211> 1340 <212> DNA <213> Homo sapiens

<220>

<221> CDS

<222> (75)..(1040)

<400> 5

ctagaattca gcggccgctg aattctagct agaattcagc ggccgctgaa ttctagaacc 60

WO 99/64618				PCT/US99/11576
caggtgcaac tgac		ccc cag gga tcc a Pro Gln Gly Ser N 5	atg cgg att cta	gtg 110
		ggc aaa gcc atc o Gly Lys Ala Ile 0 20		-
		gag gac tgg gtg t Glu Asp Trp Val E	-	
		gca cag acc cgc g Ala Gln Thr Arg A 55		-
=		cat ctt gct gca a His Leu Ala Ala M 70		•
* -		etg gac ttc tgg a Geu Asp Phe Trp A 85		
	Val Leu His S	ccg gcc ttt gag g Ser Ala Phe Glu V 100	· •	-
	-	gt atc ttc cct g Cys Ile Phe Pro A 1		
	-	eac aat ggg cct c His Asn Gly Pro P 135	Pro His Asn Ser	
		agg atg atc gac g Arg Met Ile Asp V 150		-
		ncc ttc acc gct g Thr Phe Thr Ala V 165		
	His Asp Asn P	tc aac atc gag g Phe Asn Ile Glu A .80		-

w	99/6	4618												•	PCT/US	99/11576
														tcg		686
Pro	Gly	Leu	Ile	His	Lys	Val	His	Leu	Ala	Lys	Ser	Ser	Gly	Ser	Ala	
	190					195					200					
ctq	acg	gtg	tgg	ggt	aca	ggg	aat	ccg	cgg	agg	cag	ttc	ata	tac	tcg	734
														Tyr		
205					210					215					220	
cta	G2C	cta	acc	can	ctc	+++	atc	taa	atc	cta	caa	σаσ	tac	aat	gaa	782
														Asn		
Dea	Д	DC 4	,	225					230				_	235		
		•														
														tcc		830
Val	Glu	Pro	Ile	Ile	Leu	Ser	Val	Gly	Glu	Glu	Asp	Glu		Ser	Ile	
			240					245					250			
aad	gag	gca	acc	gag	aca	ata	ata	gag	acc	atq	gac	ttc	cat	ggg	gaa	878
														Gly		
-,-		255					260				_	265		_		
								2								
gtc	acc	ttt	gat	aca	acc	aag	tcg	gat	ggg	cag	ttt	aag	aag	aca	gcc	926
Val	Thr	Phe	Asp	Thr	Thr	Lys	Ser	Asp	Gly	Gln	Phe	Lys	Lys	Thr	Ala	
	270					275					280				•	
																034
														aca		974
	Asn	Ser	Lys	Leu		Thr	Tyr	Leu	Pro	295	Pne	Arg	Pne	Thr	Pro 300	
285					290					293					300	
ttc	aag	cag	gcg	gtg	aag	gag	acc	tgt	gct	tgg	ttc	act	gac	aac	tac	1022
Phe	Lys	Gln	Ala	Val	Lys	Glu	Thr	Суз	Ala	Trp	Phe	Thr	Asp	Asn	Tyr	
				305					310					315		
							.			at a a	~~ +.	~~~ a	acaa	3		1070
		gcc Ala			cga	agc	cgga	aga	cayy	acca	gg c	gcca.	gegg	a		1070
Giu	GIII	AIG	320	Lys												
cca	tcgg	ctg	gcag	agcc	ca g	cggc	cacc	a cc	cgtc	aacc	ctg	ccag	gag	ctga	gggcac	1130
cac	ccag	caa (cctg	ggcc	tg c	atto	catc	c gc	tctg	cagc	ccc	aagc	atc	tttc	cagtgg	1190
ggc	cccc	att	cacg	ttgg	tc c	tcag	ggaa	а сс	aggg	tccg	ggg	cagg	ccc	ggcg	ctttgc	1250
too	ררפת	acc	aacc	aaat	ac a	cata	toca	e te	tgat	ccta	cat	ccca	ctc	ccta	ggagcc	1310
	-cuc.		-900		2	-9-9				9						
aat	aaag	tgc .	attt	tcac	ag a	aaaa	aaaa	a								1340

<210> 6

<211> 321

<212> PRT

<213> Homo sapiens

<400> 6

Met Gly Glu Pro Gln Gly Ser Met Arg Ile Leu Val Thr Gly Gly Ser 1 10 15

Gly Leu Val Gly Lys Ala Ile Gln Lys Val Val Ala Asp Gly Ala Gly
20 25 30

Leu Pro Gly Glu Asp Trp Val Phe Val Ser Ser Lys Asp Ala Asp Leu 35 40

Thr Asp Thr Ala Gln Thr Arg Ala Leu Phe Glu Lys Val Gln Pro Thr 50 55 60

His Val Ile His Leu Ala Ala Met Val Gly Gly Leu Phe Arg Asn Ile 65 70 75 80

Lys Tyr Asn Leu Asp Phe Trp Arg Lys Asn Val His Met Asn Asp Asn 85 90 95

Val Leu His Ser Ala Phe Glu Val Gly Ala Arg Lys Val Val Ser Cys 100 105 110

Leu Ser Thr Cys Ile Phe Pro Asp Lys Thr Thr Tyr Pro Ile Asp Glu 115 120 125

Thr Met Ile His Asn Gly Pro Pro His Asn Ser Asn Phe Gly Tyr Ser 130 135 140

Tyr Ala Lys Arg Met Ile Asp Val Gln Asn Arg Ala Tyr Phe Gln Gln 145 150 155 160

Tyr Gly Cys Thr Phe Thr Ala Val Ile Pro Thr Asn Val Phe Gly Pro 165 170 175

His Asp Asn Phe Asn Ile Glu Asp Gly His Val Leu Pro Gly Leu Ile 180 185 190

His Lys Val His Leu Ala Lys Ser Ser Gly Ser Ala Leu Thr Val Trp 195 200 205

Gly Thr Gly Asn Pro Arg Gln Phe Ile Tyr Ser Leu Asp Leu Ala 210 215 220

Gln Leu Phe Ile Trp Val Leu Arg Glu Tyr Asn Glu Val Glu Pro Ile

Ile Leu Ser Val Gly Glu Glu Asp Glu Val Ser Ile Lys Glu Ala Ala 245 250 255

Glu Ala Val Val Glu Ala Met Asp Phe His Gly Glu Val Thr Phe Asp 260 265 270

Thr Thr Lys Ser Asp Gly Gln Phe Lys Lys Thr Ala Ser Asn Ser Lys 275 280 285

Leu Arg Thr Tyr Leu Pro Asp Phe Arg Phe Thr Pro Phe Lys Gln Ala 290 295 300

Val Lys Glu Thr Cys Ala Trp Phe Thr Asp Asn Tyr Glu Gln Ala Arg 305 310 315 320

Lys

<210> 7

<211> 1017

<212> DNA

<213> Escherichia coli

<220>

<221> CDS

<222> (1)..(1017)

<400> 7

atg aga gtt ctg gtt acc ggt ggt agc ggt tac att gga agt cat acc 48 Met Arg Val Leu Val Thr Gly Gly Ser Gly Tyr Ile Gly Ser His Thr 1 5 10 15

tgt gtg caa tta ctg caa aac ggt cat gat gtc atc att ctt gat aac 96 Cys Val Gln Leu Leu Gln Asn Gly His Asp Val Ile Ile Leu Asp Asn 20 25 30

ctc tgt aac agt aag cgc agc gta ctg cct gtt atc gag cgt tta ggc 144
Leu Cys Asn Ser Lys Arg Ser Val Leu Pro Val Ile Glu Arg Leu Gly
35 40 45

ggc aaa cat cca acg ttt gtt gaa ggc gat att cgt aac gaa gcg ttg 192 Gly Lys His Pro Thr Phe Val Glu Gly Asp Ile Arg Asn Glu Ala Leu 50 55 60

atg acc gag atc ctg cac gat cac gct atc gac acc gtg atc cac ttc 240 Met Thr Glu Ile Leu His Asp His Ala Ile Asp Thr Val Ile His Phe

WO 99/64618 PCT/US99/11576 75 65 70 80 gcc ggg ctg aaa gcc gtg ggc gaa tcg gta caa aaa ccg ctg gaa tat 288 Ala Gly Leu Lys Ala Val Gly Glu Ser Val Gln Lys Pro Leu Glu Tyr tac gac aac aat gtc aac ggc act ctg cgc ctg att agc gcc atg cgc 336 Tyr Asp Asn Asn Val Asn Gly Thr Leu Arg Leu Ile Ser Ala Met Arg 100 gcc gct aac gtc aaa aac ttt att ttt agc tcc tcc gcc acc gtt tat 384 Ala Ala Asn Val Lys Asn Phe Ile Phe Ser Ser Ala Thr Val Tyr 115 120 ggc gat cag ccc aaa att cca tac gtt gaa agc ttc ccg acc ggc aca 432 Gly Asp Gln Pro Lys Ile Pro Tyr Val Glu Ser Phe Pro Thr Gly Thr 135 ccg caa agc cct tac ggc aaa agc aag ctg atg gtg gaa cag atc ctc 480 Pro Gln Ser Pro Tyr Gly Lys Ser Lys Leu Met Val Glu Gln Ile Leu 150 acc gat ctg caa aaa gcc cag ccg gac tgg agc att gcc ctg ctg cgc 528 Thr Asp Leu Gln Lys Ala Gln Pro Asp Trp Ser Ile Ala Leu Leu Arg 165 170 tac ttc aac ccg gtt ggc gcg cat ccg tcg ggc gat atg ggc gaa gat Tyr Phe Asn Pro Val Gly Ala His Pro Ser Gly Asp Met Gly Glu Asp 180 185 ccg caa ggc att ccg aat aac ctg atg cca tac atc gcc cag gtt gct 624 Pro Gln Gly Ile Pro Asn Asn Leu Met Pro Tyr Ile Ala Gln Val Ala 195 200 205 gta ggc cgt cgc gac tcg ctg gcg att ttt ggt aac gat tat ccq acc 672 Val Gly Arg Arg Asp Ser Leu Ala Ile Phe Gly Asn Asp Tyr Pro Thr 210 215 220 gaa gat ggt act ggc gta cgc gat tac atc cac gta atg gat ctg qcg Glu Asp Gly Thr Gly Val Arg Asp Tyr Ile His Val Met Asp Leu Ala 225 230 gac ggt cac gtc gtg gcg atg gaa aaa ctg gcg aac aag cca ggc gta Asp Gly His Val Val Ala Met Glu Lys Leu Ala Asn Lys Pro Gly Val 245 255 cac atc tac aac ctc ggc gct ggc gta ggc aac agc gtg ctg gac gtg

His Ile Tyr Asn Leu Gly Ala Gly Val Gly Asn Ser Val Leu Asp Val

270

gtt aat gcc ttc agc aaa gcc tgc ggc aaa ccg gtt aat tat cat ttt 86

265

Val Asn Ala Phe Ser Lys Ala Cys Gly Lys Pro Val Asn Tyr His Phe
275 280 285

gca ccg cgt cgc gag ggc gac ctt ccg gcc tac tgg gcg gac gcc agc 912
Ala Pro Arg Arg Glu Gly Asp Leu Pro Ala Tyr Trp Ala Asp Ala Ser
290 295 300

aaa gcc gac cgt gaa ctg aac tgg cgc gta acg cgc aca ctc gat gaa 960 Lys Ala Asp Arg Glu Leu Asn Trp Arg Val Thr Arg Thr Leu Asp Glu 305 310 315 320

atg gcg cag gac acc tgg cac tgg cag tca cgc cat cca cag gga tat 1008 Met Ala Gln Asp Thr Trp His Trp Gln Ser Arg His Pro Gln Gly Tyr 325 330 335

ccc gat taa 1017 Pro Asp

<210> 8

<211> 338

<212> PRT

<213> Escherichia coli

260

<400> 8

Met Arg Val Leu Val Thr Gly Gly Ser Gly Tyr Ile Gly Ser His Thr
1 5 10 15

Cys Val Gln Leu Leu Gln Asn Gly His Asp Val Ile Ile Leu Asp Asn 20 25 30

Leu Cys Asn Ser Lys Arg Ser Val Leu Pro Val Ile Glu Arg Leu Gly
35 40 45

Gly Lys His Pro Thr Phe Val Glu Gly Asp Ile Arg Asn Glu Ala Leu 50 55 60

Met Thr Glu Ile Leu His Asp His Ala Ile Asp Thr Val Ile His Phe 65 70 75 80

Ala Gly Leu Lys Ala Val Gly Glu Ser Val Gln Lys Pro Leu Glu Tyr 85 90 95

Tyr Asp Asn Asn Val Asn Gly Thr Leu Arg Leu Ile Ser Ala Met Arg 100 105 110

Ala	Ala	Asn 115	Val	Lys	Asn	Phe	11e 120	Phe	Ser	Ser	Ser	Ala 125	Thr	Val	Tyr
Gly	Asp 130	Gln	Pro	Lys	Ile	Pro 135	Tyr	Val	Glu	Ser	Phe 140	Pro	Thr	Gly	Thr
Pro 145	Gln	Ser	Pro	Tyr	Gly 150	Lys	Ser	Lys	Leu	Met 155	Val	Glu	Gln	Ile	Leu 160
Thr	Asp	Leu	Gln	Lys 165	Ala	Gln	Pro	Asp	Trp 170	Ser	Ile	Ala	Leu	Leu 175	Arg
Tyr	Phe	Asn	Pro 180	Val	Gly	Ala	His	Pro 185	Ser	Gly	Asp	Met	Gly 190	Glu	Asp
Pro	Gln	Gly 195	Ile	Pro	Asn	Asn	Leu 200	Met	Pro	Tyr	Ile	Ala 205	Gln	Val	Ala
Val	Gly 210	Arg	Arg	Asp	Ser	Leu 215	Ala	Ile	Phe	Gly	Asn 220	Asp	Tyr	Pro	Thr
Glu 225	Asp	Gly	Thr	Gly	Val 230	Arg	Asp	Туr	Ile	His 235	Val	Met	Asp	Leu	Ala 240
Asp	Gly	His	Val	Val 245	Ala	Met	Glu	Lys	Leu 250	Ala	Asn	Lys	Pro	Gly 255	Val
His	Ile	Tyr	Asn 260	Leu	Gly	Ala	Gly	Val 265	Gly	Asn	Ser	Val	Leu 270	Asp	Val
Val	Asn	Ala 275	Phe	Ser	Lys	Ala	Cys 280	Gly	Lys	Pro	Val	Asn 285	Туr	His	Phe
Ala	Pro 290	Arg	Arg	Glu	Gly	Asp 295	Leu	Pro	Ala	Tyr	Trp 300	Ala	Asp	Ala	Ser
Lys 305	Ala	Asp	Arg	Glu	Leu 310	Asn	Trp	Arg	Val	Thr 315	Arg	Thr	Leu	Asp	Glu 320
Met	Ala	Gln	Asp	Thr	Trp	His	Trp	Gln	Ser	Arg	His	Pro	Gln	Gly	Tyr

Pro Asp

<210> 9 <211> 1047 325

330

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(1047)

<400> 9

atg gca gag aag gtg ctg gta aca ggt ggg gct ggc tac att ggc agc 48 Met Ala Glu Lys Val Leu Val Thr Gly Gly Ala Gly Tyr Ile Gly Ser 1 5 10 15

cac acg gtg ctg gag ctg ctg gag gct ggc tac ttg cct gtg gtc atc 96
His Thr Val Leu Glu Leu Glu Ala Gly Tyr Leu Pro Val Val Ile
20 25 30

gat aac ttc cat aat gcc ttc cgt gga ggg ggc tcc ctg cct gag agc 144
Asp Asn Phe His Asn Ala Phe Arg Gly Gly Ser Leu Pro Glu Ser
35 40 45

ctg cgg cgg gtc cag gag ctg aca ggc cgc tct gtg gag ttt gag gag 192 Leu Arg Arg Val Glu Glu Leu Thr Gly Arg Ser Val Glu Phe Glu Glu 50 55 60

atg gac att ttg gac cag gga gcc cta cag cgt ctc ttc aaa aag tac 240 Met Asp Ile Leu Asp Gln Gly Ala Leu Gln Arg Leu Phe Lys Lys Tyr 65 70 75 80

agc ttt atg gcg gtc atc cac ttt gcg ggg ctc aag gcc gtg ggc gag 288 Ser Phe Met Ala Val Ile His Phe Ala Gly Leu Lys Ala Val Gly Glu 85 90 95

tcg gtg cag aag cct ctg gat tat tac aga gtt aac ctg acc ggg acc 336 Ser Val Gln Lys Pro Leu Asp Tyr Tyr Arg Val Asn Leu Thr Gly Thr 100 105 110

atc cag ctt ctg gag atc atg aag gcc cac ggg gtg aag aac ctg gtg 384

Ile Gln Leu Leu Glu Ile Met Lys Ala His Gly Val Lys Asn Leu Val

115 120 125

ttc agc agc tca gcc act gtg tac ggg aac ccc cag tac ctg ccc ctt 432
Phe Ser Ser Ser Ala Thr Val Tyr Gly Asn Pro Gln Tyr Leu Pro Leu
130 135 140

gat gag gcc cac ccc acg ggt ggt tgt acc aac cct tac ggc aag tcc 480 Asp Glu Ala His Pro Thr Gly Gly Cys Thr Asn Pro Tyr Gly Lys Ser 145 150 155 160

W	O 99/6	4618												•	PCT/US	899/1157
aag	ttc	ttc	atc	gag	gaa	atg	atc	cgg	gac	ctg	tgc	cag	gca	gac	aag	528
Lys	Phe	Phe	Ile	Glu	Glu	Met	Ile	Arg	Asp	Leu	Cys	Gln	Ala	Asp	Lys	
•				165				-	170		-			175	_	
act	t.aa	aac	σta	ata	cta	cta	cac	tat	ttc	aac	ccc	aca	aat	acc	cat	576
		Asn	_		_	_	-									
		• •••	180					185					190			
acc	tct	ggc	tac	att	aat	σασ	gat	ccc	caq	aac	ata	ccc	aac	aac	ctc	624
		Gly														
лта	Ser	195	Cys	116	GLY	GIU	200	110	G111	CLY		205	ты.,	7.511	Deu	
		193					200					203				
						~+~	~~~	a t. a			~~~	~~~	~~~	a+ a	225	672
-		tat	-		-	-				-			_	_		0,2
met		Tyr	val	Ser	GIU		Ald	TTE	GIA	Arg	_	GIU	ALA	Leu	ASII	
	210					215					220					
																200
-		ggc		_		-			_				_		-	720
	Phe	Gly	Asn	Asp	-	Asp	Thr	Glu	Asp		Thr	Gly	Val	Arg	_	
225					230					235					240	
tac	atc	cat	gtc	gtg	gat	ctg	gcc	aag	ggc	cac	att	gca	gcc	tta	agg	768
Tyr	Ile	His	Val	Val	Asp	Leu	Ala	Lys	Gly	His	Ile	Ala	Ala	Leu	Arg	
				245					250					255		
							_									
		aaa														816
Lys	Leu	Lys	Glu	Gln	Cys	Gly	Cys	Arg	Ile	Tyr	Asn	Leu	Gly	Thr	Gly	
			260					265					270			
aca	ggc	tat	tca	gtg	ctg	cag	atg	gtc	cag	gct	atg	gag	aag	gcc	tct	864
Thr	Gly	Tyr	Ser	Val	Leu	Gln	Met	Val	Gln	Ala	Met	Glu	Lys	Ala	Ser	
		275					280					285				
ggg	aag	aag	atc	ccg	tac	aag	gtg	gtg	gca	cgg	cgg	gaa	ggt	gat	gtg	912
Gly	Lys	Lys	Ile	Pro	Tyr	Lys	Val	Val	Ala	Arg	Arg	Glu	Gly	Asp	Val	
	290					295					300					
gca	gcc	tgt	tac	gcc	aac	ccc	agc	ctg	gcc	caa	gag	gag	ctg	ggg	tgg	960
Ala	Ala	Cys	Tyr	Ala	Asn	Pro	Ser	Leu	Ala	Gln	Glu	Glu	Leu	Gly	Trp	
305					310					315					320	
aca	gca	gcc	tta	ggg	ctg	gac	agg	atg	tgt	gag	gat	ctc	tgg	cgc	tgg	1008
	-	Ala			-	-		_	-							
				325			3		330		-		•	335	•	
can	aao	cag	aat	cct	tca	aac	ttt	aac	acσ	caa	acc	taa				1047
-	_	Gln							_		_	- 5-				- ·
	2,3		340	0				345								

<210> 10

<211> 348

<212> PRT

<213> Homo sapiens

<400> 10

Met Ala Glu Lys Val Leu Val Thr Gly Gly Ala Gly Tyr Ile Gly Ser 1 5 10 15

His Thr Val Leu Glu Leu Glu Ala Gly Tyr Leu Pro Val Val Ile 20 25 30

Asp Asn Phe His Asn Ala Phe Arg Gly Gly Ser Leu Pro Glu Ser 35 40 45

Leu Arg Arg Val Glu Glu Leu Thr Gly Arg Ser Val Glu Phe Glu Glu 50 55 60

Met Asp Ile Leu Asp Gln Gly Ala Leu Gln Arg Leu Phe Lys Lys Tyr 65 70 75 80

Ser Phe Met Ala Val Ile His Phe Ala Gly Leu Lys Ala Val Gly Glu 85 90 95

Ser Val Gln Lys Pro Leu Asp Tyr Tyr Arg Val Asn Leu Thr Gly Thr 100 105 110

Ile Gln Leu Leu Glu Ile Met Lys Ala His Gly Val Lys Asn Leu Val 115 120 125

Phe Ser Ser Ala Thr Val Tyr Gly Asn Pro Gln Tyr Leu Pro Leu 130 135 140

Asp Glu Ala His Pro Thr Gly Gly Cys Thr Asn Pro Tyr Gly Lys Ser 145 150 155 160

Lys Phe Phe Ile Glu Met Ile Arg Asp Leu Cys Gln Ala Asp Lys 165 170 175

Thr Trp Asn Val Val Leu Leu Arg Tyr Phe Asn Pro Thr Gly Ala His 180 185 190

Ala Ser Gly Cys Ile Gly Glu Asp Pro Gln Gly Ile Pro Asn Asn Leu 195 200 205

Met Pro Tyr Val Ser Gln Val Ala Ile Gly Arg Arg Glu Ala Leu Asn 210 215 220

Val Phe Gly Asn Asp Tyr Asp Thr Glu Asp Gly Thr Gly Val Arg Asp 225 230 235 240

Tyr Ile His Val Val Asp Leu Ala Lys Gly His Ile Ala Ala Leu Arg 245 250 255

Lys Leu Lys Glu Gln Cys Gly Cys Arg Ile Tyr Asn Leu Gly Thr Gly 260 265 270

Thr Gly Tyr Ser Val Leu Gln Met Val Gln Ala Met Glu Lys Ala Ser 275 280 285

Gly Lys Lys Ile Pro Tyr Lys Val Val Ala Arg Arg Glu Gly Asp Val 290 295 300

Ala Ala Cys Tyr Ala Asn Pro Ser Leu Ala Gln Glu Glu Leu Gly Trp 305 310 315 320

Thr Ala Ala Leu Gly Leu Asp Arg Met Cys Glu Asp Leu Trp Arg Trp 325 330 335

Gln Lys Gln Asn Pro Ser Gly Phe Gly Thr Gln Ala 340 345

<210> 11

<211> 317

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: CONSENSUS

<400> 11

Xaa Xaa Arg Xaa Xaa Xaa Gly Xaa Xaa Gly Xaa Xaa Gly Xaa Xaa 1 5 10 15

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Val Xaa Xaa Xaa Ala Xaa Xaa Xaa 50 55 60

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Ser Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Pro Xaa Xaa Glu Xaa Xaa Xaa Xaa Gly Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Tyr Xaa Xaa Xaa Lys Xaa Gly Xaa His Xaa Gly Xaa Gly Xaa Xaa Xaa Arg Xaa Xaa Xaa Xaa Xaa Asp Xaa Ala Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Thr Xaa Xaa Trp Xaa Xaa Xaa Xaa Xaa Xaa Xaa

WO 99/64618	PCT/US99/11576
<210> 12	
<211> 34	
<212> DNA	
<213> Escherichia coli	
<400> 12	
tagaattcag taaacaacga gtttttattg ctgg	34
<210> 13	
<211> 32	
<212> DNA	
<213> Escherichia coli	
<400> 13	·
aactcgagtt acccccaaag cggtcttgat tc	32
<210> 14	
<211> 30	
<212> DNA	
<213> Escherichia coli	
<400> 14	
ctggagtcga attcatgagt aaacaacgag	30
<210> 15	
<211> 33	
<211> 33 <212> DNA	
<213> Escherichia coli	
<400> 15	
aactgcagtt acccccgaaa gcggtcttga ttc	33

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/11576

IPC(6) :0	SIFICATION OF SUBJECT MATTER C12P 19/00, 17/04; C12N 1/12, 1/20, 5/00, 5/04		
US CL :4	35/72, 126, 252.1, 252.3, 410, 419 International Patent Classification (IPC) or to both n	ational classification and IPC	
B. FIELI	OS SEARCHED		
Minimum do	cumentation searched (classification system followed	by classification symbols)	
	35/72, 126, 252.1, 252.3, 410, 419		
	on searched other than minimum documentation to the		
	ata base consulted during the international search (national search (natio		search terms used)
c. Doc	UMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.
Y	WO 85/01745 A1 (KRAFT, INC.) 25 A entire document specially ages 4-7.	April 1985 (23.04.85), see the	1-72
Y	NIKISHIMI et al. Occupance in Y Oxidase which is similar to a key of biosynthesis in animals, L-Gulonolacto Biophys. December 1978, Vol. 191, N entire article, specially abstract and interpretations.	enzyme for Ascorbic Acid one Oxidase. Arch. Biocem. o. 2, pages 479-486, see the	1-72
A,P	WO 99/33995 A1 (ASCORBX LIMIT) see the entire article.	ED) 08 July 1999 (08.07.99),	1-72
Furth	er documents are listed in the continuation of Box C	. See patent family annex.	
, .	ecial estagories of cited documents:	°T° later document published after the int date and not in conflict with the app	lication but cited to understand
	cussest defining the general state of the art which is not considered be of particular relevance	the principle or theory underlying the	invention
I	rlier document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be considered when the document is taken alone	red to involve an inventive step
cit	oument which may throw doubts on priority claim(s) or which is ad to establish the publication date of another citation or other sois! reason (as specified)	"Y" document of particular relevance; the	e claimed invention cannot be
O do	comment referring to an oral disclosure, use, exhibition or other	considered to involve an inventive combined with one or more other suc being obvious to a person skilled in	h documents, such combination
°P° do	cument published prior to the international filing date but later than priority date claimed	"&" document member of the same paten	
Date of the	actual completion of the international search	Date of mailing of the international sec	arch report
23 AUGU	JST 1999	2 2 OCT 1999	
Box PCT	mailing address of the ISA/US mer of Patents and Trademarks n, D.C. 20231	Authorized officer MARYAM MONSHIPOURI	JOYCE BRIDGERS PART PECIALIST CHICKING AL MATRIX
Facsimile N	lo. (703) 305-3230	Telephone No. (703) 308-0196	TO SO

Form PCT/ISA/210 (second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
Please See Extra Sheet.
1. X As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/11576

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This international Preliminary Examining Authority has found 2 inventions claimed in the International application covered by the claims indicated below:

Group I, claims 1-59 and 71, drawn to a method of producing ascorbic acid or esters thereof in a microorganism comprising culturing a microorganism having a genetic modification to increase the action of an enzyme selected from the group consisting of hexokinase, glucose phosphate isomerase etc. as well as a microorganism genetically modified for producing ascorbic acid.

Group II, claims 60-70 and 72, drawn to a plant for producing ascorbic acid or esters thereof, wherein said plant has a genetic modification to increase the action of an enzyme selected from the group consisting of hexokinase, glucose phosphate isomerase etc.

The inventions listed as Groups I-II do not relate to a single inventive concept because they are considered to be two different categories of invention and are not drawn to combination of categories (i.e. categories 1-5), specified in 37 CFR section 1.475(b).