What is claimed is:

- 1. (previously presented) A composition comprising:
 - water;
 - a corn hemicellulose in solution in said water; and
- a surfactant, said surfactant being present in an amount effective to reduce the viscosity of said solution.
- 2. (original) A composition according to claim 1, said solution further including a amount of chloride salt effective to enhance the hygroscopicity of said solution.
- 3. (original) A composition according to claim 1, further comprising a crosslinking agent in an amount effective to enhance the water resistance of said composition.
- 4. (original) A composition according to claim 1, further comprising a lignin corr pound.
- 5. (original) A composition comprising:
 - water;
 - a hemicellulose in solution in said water; and
- a crosslinking agent, said crosslinking agent being present in an amount effective to enhance the water resistance of said composition.
- 6. (original) A composition according to claim 5, further comprising a chloride salt, said chloride salt being present in an amount effective to increase the hygroscopicity of sail solution.
- 7-23. Canceled.
- 24. (previously presented) A composition according to claim 1, said corn hemicell close comprising hemicellulose obtained by alkaline hydrolysis of corn hulls.
- 25. (previously presented) A composition according to claim 5, said hemicellulose comprising corn hemicellulose.

- 26. (previously presented) A composition according to claim 25, said hemicellulos a being derived from alkaline cooking of corn hulls.
- 27. (new) The composition of claim 1 comprising:
 approximately 0.1 90 % corn hemicellulose on a dry solid basis; and approximately 0.1 10% surfactant on a dry solid basis.
- 28. (new) The composition of claim 27 comprising approximately 10 50% hemic ellulose on a dry solid basis.
- 29. (new) The composition of claim 27 further comprising an amount of chloride s dt effective to enhance the hygroscopicity of said composition.
- 30. (new) The composition of claim 29 comprising approximately 4% by weight surfactant.
- 31. (new) The composition of claim 27 further comprising a cross-linking agent in amount effective to enhance the water resistance of the composition.
- 32. (new) The composition of claim 27 wherein the hemicellulose is derived from alkaline cooking of corn hulls.
- 33. (new) A composition useful for dust suppression comprising:
 corn hulls cooked under alkaline conditions; and
 an amount of chloride salt effective to enhance the hygroscopicity of said composition.
- 34. (new) The composition of claim 33 wherein alkalinity is caused by an alkaline; gent and the ratio of corn hulls to the alkaline agent is approximately 9:1.
- 35. (new) The composition of claim 34 wherein the alkaline agent is sodium hydroxide.
- 36. (new) The composition of claim 33wherein the corn hulls are cooked in an extra der.
- 37. (new) The composition of claim 36 further comprising a surfactant, wherein the ratio of surfactant to corn hulls is approximately 1:25.

- 38. (new) The composition of claim 33 further comprising a lignin compound and wherein alkalinity is caused by an alkaline agent and the ratio of corn hulls to the alkaline agen is approximately 9:1.
- 39. (new) The composition of claim 33 further comprising a cross-linking agent.
- 40. (new) The composition of claim 39 further comprising a lignin compound.
- 41. (new) The composition of claim 33 further comprising an aqueous substance.
- 42. (new) The composition of claim 41 wherein the aqueous substance is water.
- 43. (new) An aqueous solution comprising:
 approximately 0.1 90 % hemicellulose on a dry solid basis; and
 approximately 0.1 10% surfactant on a dry solid basis.
- 44. (new) The aqueous solution of claim 43 further comprising water.
- 45. (new) The aqueous solution of claim 43 comprising approximately 10 50% hemicellulose on a dry solid basis.
- 46. (new) The aqueous solution of claim 45 further comprising an amount of chlori le salt effective to enhance the hygroscopicity of said solution.
- 47. (new) The aqueous solution of claim 43 comprising approximately 4% by weig it surfactant.
- 48. (new) The aqueous solution of claim 46 further comprising a cross-linking agent in an amount effective to enhance the water resistance of the solution.
- 49. (new) The aqueous solution of claim 43 wherein the hemicellulose comprises or rn hemicellulose.

- 50. (new) The aqueous solution of claim 49 wherein the hemicellulose is derived f om alkaline cooking of corn hulls.
- 51. (new) A method for manufacturing a dust suppressant composition comprising combining (1) an extrudate that was formed from extrusion cooking of com hu ls in the presence of alkalinity with (2) water and (3) a chloride salt.
- 52. (new) The method of claim 51 wherein the chloride salt comprises magnes um chloride salt.
- 53. (new) The method of claim 51 wherein the combination of extrudate, water and chloride salt is further combined with a cross-linking agent.
- 54. (new) The method of claim 51 wherein the combination of extrudate, water and chloride salt is further combined with a lignin compound.
- 55. (new) The method of claim 54 wherein the combination of extrudate, water, ch oride salt and a lignin compound is further combined with a cross-linking agent.
- 56. (new) A method of reducing the release of airborne dust from a surface containing dust fines comprising applying a solution to the surface in an amount sufficient to bind a portion of the dust fines, the solution comprising water and an extrudate, wherein the extrudate or mprises the product of the extrusion of corn hulls in the presence of an alkaline agent.
- 57. (new) The method of claim 56 wherein the solution further comprises a chlorid: salt.
- 58. (new) The method of claim 57 wherein the chloride salt comprises magnesium :hloride salt.
- 59. (new) The method of claim 56 wherein the application of the solution to the surface comprises spraying the solution onto the surface at a rate of approximately 0.33 gallon per square yard.