Statistics II

Week 2: Foundations

The potential outcomes framework and experiments

Content for today

- 1. Review of core concepts from lecture
- 2. R refresher
- Calculating NATE, ATT, ATU and ATE with in R using dplyr

Lecture Review

Causal Inference

The *reasoning* process of

- ruling out non-causal explanations of the observed association
- pointing out the assumptions necessary to rule out such sources

plus

providing evidence to support or refute these assumptions

Remember these to make sense of every method we will see in the class.

Potential Outcomes Framework

Key concept: Every individual has a potential outcome (Y_i) both under treatment and under control (no treatment).

The fundamental problem of causal inference: we can only ever observe one of these states.

So, we <u>cannot</u> observe the individual treatment effect (ITE), nor directly observe the average treatment effect (ATE).

But we can understand them theoretically...

Getting familiar with POF notation

- Don't panic. Don't avoid the equations.
- Break down the equation into parts.
- Practice reading them in English.

"The expected outcome when treated, for those in the treatment group"

Key definitions (in POF notation)

ATE
$$= E[y_{1i} - y_{0i}] = E[y_{1i}] - E[y_{0i}]$$

ATT
$$= E[y_{1i}|d_i = 1] - E[y_{0i}|d_i = 1]$$

ATU =
$$E[y_{1i}|d_i = 0] - E[y_{0i}|d_i = 0]$$

NATE
$$= E[y_{1i}|d_i = 1] - E[y_{0i}|d_i = 0]$$

Unattainable: we cannot observe counterfactuals.

ATE, ATT, ATU

If we could observe counterfactuals...

we	Could	KHOW.

Student (i)	Prejudice			Contact
	y_{0i}	y_{1i}	δ_i	
1	6	5	-1	0
2	4	2	-2	1
3	4	4	0	0
4	6	7	1	0
5	3	1	-2	1
6	2	2	0	1
7	8	7	-1	0
8	4	5	1	0

$$ATE = E[\delta_i] = \frac{-1 + (-2) + 0 + 1 + (-2) + 0 + (-1) + 1}{8} = -0.5 \quad (5)$$

$$ATT = \frac{-2 + (-2) + 0}{3} = -1.333$$

$$ATU = \frac{-1+0+1+(-1)+1}{5} = 0$$

NATE

We can only observe half of the potential outcomes we need to get to the ATE...

Student (i)	Prejudice		Contact	
	y_{0i}	y_{1i}	δ_i	
1	6			0
2		2		1
3	4			0
4	6			0
5		1		1
6		2		1
7	8			0
8	4			0

Information we do have

...so we can only calculate a naïve average treatment effect.

NATE =
$$E[y_{1i}|d_i = 1] - E[y_{0i}|d_i = 0]$$

= $\frac{2+1+2}{3} - \frac{6+4+6+8+4}{5}$
= $1.666 - 5.6$
= -3.933

NATE and biases

Student (i)	Prejudice		Contact	
	y_{0i}	y_{1i}	δ_i	
1	6			0
2		2		1
3	4			0
4	6			0
5		1		1
6		2		1
7	8			0
8	4			0

Information we do have

The treated and untreated groups may differ in more ways than just being treated or not and, therefore, have different potential outcomes.

$$\textit{NATE} = \textit{ATE} + \underbrace{\textit{E}[\textit{Y}_0|\textit{D}=1] - \textit{E}[\textit{Y}_0|\textit{D}=0]}_{\textit{selection bias}} + \underbrace{(1-p)(\textit{ATT}-\textit{ATU})}_{\textit{HTE bias}}$$

Estimating Bias

Total bias of NATE = NATE - ATE

Selection bias: difference in average outcome without treatment for the treatment and control groups.

Heterogeneous treatment effect bias: the difference in the average treatment effect between the treatment and control groups, weighted by the proportion of the population in the control group.

Tackling biases

Randomization: randomly assigning subjects to D=0 or D=1.

- The probability of being assigned to treatment is the same for all subjects.
- Being assigned to treatment does not depend of any characteristic of the subjects.
- The treatment and control groups have the same potential outcomes (average)

Key point: when using random assignment (and the SUTVA holds), then ATE = NATE

$$ATE = E[Y_{1i}] - E[Y_{0i}] \longrightarrow ATE = E[Y_{1i}|D_i = 1] - E[Y_{0i}|D_i = 0]$$

Because, when randomly assigned, the expected outcomes of each group are the same as those of the entire population.

Questions?