Family list

1 application(s) for: JP61251302 (A)

MUTING CIRCUIT

Inventor: SASAKI HIROYUKI ; IZAWA KAORU Applicant: ROHM CO LTD

EC: IPC: H03F1/00; (IPC1-7): H03F1/00

Publication JP61251302 (A) - 1986-11-08 JP5016765 (B) - 1993-03-05

JP1811009 (C) - 1993-12-27

Data supplied from the **espacenet** database — Worldwide

Priority Date: 1985-04-30

(19) 日本国特許庁(JP) (11) 特許出願公告

⑫特 許 公 報(B2) 平5-16765

Sint. Cl. 5

識別記号

庁内整理番号

2040公告 平成5年(1993)3月5日

H 03 F 1/00

Α 7239 - 5 J

発明の数 1 (全6頁)

60発明の名称 ミユーテイング回路

> 21)特 顧 昭60-92914

63公 開 昭61-251302

願 昭60(1985)4月30日 223出

@昭61(1986)11月8日

佐々木、浩行 **@**発 明 者

京都府京都市右京区西院溝崎町21番地 ローム株式会社内

芳 @発 明 者 澤

京都府京都市右京区西院溝崎町21番地 ローム株式会社内

勿出 願 人 ローム株式会社 京都府京都市右京区西院溝崎町21番地

弁理士 畝本 正一 個代 理 人

審査官 鈴木 隆盛

特開 昭60-80305 (JP, A) 50多考文献

特開 昭50-75104 (JP, A)

特開 昭55-143807 (JP, A)

1

劉特許請求の範囲

1 増幅すべき信号がコンデンサを介して加えら れる第1の増幅器と、この第1の増幅器の出力を 増幅する第2の増幅器と、電源の投入に応動して 発生するバイアス回路と、このバイアス回路の出 力電圧に応動して特定の時定数を持つて立ち上が る電圧を発生する電圧源と、この電圧源が発生し た前記電圧と基準電圧とを比較する比較器と、前 挿入された抵抗に並列に接続されて前記比較器の 出力によつて開閉される第1のスイツチと、前記 バイアス回路の出力と第1の増幅器の出力とを前 記比較器の出力によつて選択的に切り換えて第2 たことを特徴とするミユーテイング回路。

2 前記バイアス回路は、分圧抵抗に付加された コンデンサを電源の投入時、急速に充電するブリ チャージ回路を付加したことを特徴とする特許請 求の範囲第1項に記載のミユーテイング回路。

発明の詳細な説明

〔産業上の利用分野〕

この発明は、電源の投入時、増幅器の出力発生 を抑制するミユーテイング回路に係り、特に、ミ 2

イズの発生防止に関する。

〔従来の技術〕

従来、電源の投入時の過渡的な電位変動により ノイズの発生防止には、電源の投入に応動して信 特定の時定数を持つて立ち上がるパイアス電圧を 5 号増幅系の特定の増幅器に対する増幅すべき信号 を遮断するとともに、その入力部にバイアス回路 から緩やかに立ち上がる直流電圧を加えるように したミユーテイング回路が提案されている。

すなわち、第3図に示すように、信号増幅用の 記バイアス回路の出力と前記コンデンサとの間に 10 第1および第2の増幅器2,4が設けられ、第1 の増幅器2の入力端子6には、カツプリング用の コンデンサ10および抵抗12が接続されてい る。そして、入力端子8には信号源から増幅すべ き信号がコンデンサ10を介して加えられ、第1 の増幅器に加える第2のスイツチとから構成され 15 の増幅器2で増幅された信号出力は、ミユーテイ ング用のスイッチ14を介して第2の増幅器4に 加えられている。

> スイツチ14は、第1の増幅器2からの出力、 または、バイアス回路16が発生した直流電圧を 20 比較器 1 8 の出力によつて選択的に切り換えるも のである。

そして、バイアス回路16には、図示していな い電源から電源スイツチ20を介して加えられる 電源電圧Vccを分圧する分圧抵抗22,24が設 ユーティング解除時の過渡的な電位変動によるノ 25 けられ、この分圧抵抗22,24の分圧点に設け 3

られた端子26には、電源のノイズやリップル成 分を除去するコンデンサ28が接続され、電源ス イツチ20の投入に基づいて分圧点に発生する、 たとえばVcc/2の値の電圧は、バツフア増幅器 30からスイッチ14に加えられるとともに、抵 5 状態で立ち上がる。 抗32を介して増幅器2の入力部に供給されてい る。

この場合、バイアス回路16には、ダイオード 34を直列に接続した分圧抵抗36、38が設け R22, R24, R36, R38とすると、各抵抗値は、R22 =R₂₄, R₃₆=R₃₈に設定されているので、抵抗2 2,24の定常時の分圧点電位に対して抵抗3 6,38の分圧点電位はダイオード34のカソー ド側でその順方向降下V_Fの1/2だけ低い値に設定 15 ΔVが生ずる。 されている。これら各分圧点電位は、比較器18 に加えられて比較され、その比較出力は、ミュー テイング制御信号としてスイツチ14の切換えに 用いられている。

このようなミユーテイング回路を付加した信号 20 増幅系統では、電源スイツチ20の投入時、瞬時 にb点の電位が立ち上がるのに対し、a点の電位 は抵抗22およびコンデンサ28の時定数を持つ て立ち上がる。このため、コンデンサ28の電位 が b 点の電位を超えるまでの間、比較器 18 は高 25 【問題点を解決するための手段】 電位出力を発生し、これによつてスイッチ 1 4 が 接点 y 側に閉じる。このとき、増幅器 2 からの信 号が遮断されるとともに、電源投入を起点として 緩やかに立ち上がるa点の電位が、バツフア増幅 増幅器4に加えられる。

コンデンサ28が充電されていき、a点の電位 が b 点の電位を超えると、比較器 18 は低電位出 力となり、スイッチ **1 4** は接点 **x** 側に閉じ、増幅 が解除されて増幅器2からの信号が加えられる。

すなわち、電源の投入時の一定の期間(電源の 投入からコンデンサ28の充電電位が6点の電位 に到達するまでの時間)において、増幅器4に対 する信号が遮断され、かつ、バイアス回路16か 40 2のスイツチとから構成されたものである。 ら緩やかな立ち上がりを持つ直流電圧が加えら れ、信号入力のミユーテイングが実現される。

〔発明が解決しようとする問題点〕

しかしながら、増幅器2の入力部には、コンデ

ンサ10が設置されており、このコンデンサ10 に対してバイアス回路 16から直流電圧が加えら れてチャージが行われているが、バイアス回路1 6の出力点a'に対してc点の電位は僅かに遅れた

第4図のAにおいて、Aiはa'点電位、Azはc 点電位の立ち上がりを示す。

このため、a点とb点の電位の比較により、第 4図のBに示すように、比較器 18 がミユーティ られ、各抵抗22,24,36,38の抵抗値を 10 ング制御出力を発生し、ミューティング解除によ つて増幅器2にはコンデンサ10の充電電圧が加 わり、その出力が増幅器4に加わることから、増 幅器4とバイアス回路16の電位の差により、第 4図のAに示すように、過渡的な直流電位の変化

> これは信号系にミユーテイング解除のショック ノイズとして現れ、そのノイズはカップリング用 のコンデンサ10の容量、増幅器2,4の利得の 両者に比例しして大きくなる傾向がある。

そこで、この発明は、ミューテイング制御を緩 やかに行うとともに、ミユーテイング解除時の直 流電位の変動を抑制し、ミユーテイング解除時の ショックノイズの発生を防止しようとするもので ある。

すなわち、この発明は、増幅すべき信号がコン デンサを介して加えられる第1の増幅器と、この 第1の増幅器の出力を増幅する第2の増幅器と、 電源の投入に応動して特定の時定数を持つて立ち 器30を介して出力され、スイツチ14を介して 30 上がるバイアス電圧を発生するバイアス回路と、 このバイアス回路の出力電圧に応動して特定の時 定数を持つて立ち上がる電圧を発生する電圧源 と、この電圧源が発生した前記電圧と基準電圧と を比較する比較器と、前記バイアス回路の出力と 器 4 には、バイアス回路 1 6 からの直流バイアス 35 前記コンデンサとの間に挿入された抵抗に並列に 接続されて前記比較器の出力によって開閉される 第1のスイツチと、前記バイアス回路の出力電圧 と第1の増幅器の出力とを前記比較器の出力によ つて選択的に切り換えて第2の増幅器に加える第

〔作用〕

この発明は、電源の投入時、バイアス回路の出 力電圧によつて第1の増幅器の入力部に設けられ たコンデンサを第1のスイツチを介して充電し、

5

バイアス回路の出力電圧とコンデンサの充電電圧 を等しくするとともに、バイアス回路のバイアス 出力電圧に応動して緩やかに立ち上がる電圧源が 発生する電圧と、基準電圧との比較によつてミュ グ制御の解除を緩やかにしている。

また、バイアス回路は、分圧抵抗に付加された コンデンサのプリチャージを行うことにより、バ イアス出力電圧の立ち上がりスピードを高めてい る。

〔実施例〕

以下、この発明の実施例を図面を参照して詳細 に説明する。

第1図はこの発明のミユーテイング回路の実施 一部分には同一符号を付してある。

第1図において、バイアス回路16には、コン デンサ28を電源の投入時プリチヤージするプリ チャージ回路40が付加されており、このプリチ ヤージ回路40は、コンデンサ28の電位と、ダ 20 持つて緩やかに充電される。 イオード34と抵抗38の分圧点電位とを比較す る比較器42と、この比較器42の出力によつて 導通するスイツチング素子としてトランジスタ4 4および抵抗46で構成されている。

力電圧に応動して緩やかに立ち上がる電圧を発生 する電圧源として抵抗47および端子48を介し て接続されたコンデンサ50が設けられている。 このコンデンサ50の充電電圧と、抵抗38に発 生する基準電圧とが比較器 18に加えられてお 30 り、比較器18はコンデンサ50の充電電圧が基 **準電圧を超えるまでの間、ミユーテイング信号を** 発生する。

また、抵抗32の両端には、比較器18の出力 によつて開閉される第1のスイツチ52が付加さ 35 た、スイツチ52は開かれる。 れ、増幅器2,4の間には、比較器18の出力に よつて切り換えられる利得可変スイッチなどのア ナログスイツチで構成される第2のスイツチ54 が設置されている。

以上の構成に基づき、その動作を説明する。

電源スイツチ20の投入直後、ダイオード34 のカソード側に発生する基準電圧は、瞬時に立ち 上がるのに対し、コンデンサ28の充電電圧は緩 やかに立ち上がるため、コンデンサ28の充電電

位が基準電圧を超えるまで、比較器42は低電位 出力を発生し、トランジスタ44が導通する。こ の結果、電源電圧Vccからトランジスタ44を通 じコンデンサ28にプリチャージ電流が流れる。 ーテイング解除を行うことにより、ミユーテイン 5 このとき、トランジスタ44の導通によつて、抵 抗22に対して抵抗46が並列に接続されるた め、抵抗22と抵抗46の並列合成抵抗とコンデ ンサ18の時定数によりコンデンサ28は急速に 充電される。このコンデンサ**28**の充電は、コン 10 デンサ28の充電電圧がダイオード34のカソー ド側に発生する基準電圧を超える時点、すなわ ち、比較器 4 2 が高電位に移行するまで接続す る。

このとき、コンデンサ28の充電電圧は、バツ 例を示し、第3図に示すミユーテイング回路と同 15 フア増幅器30を介してバイアス出力電圧として 出力され、抵抗47を介してコンデンサ50に加 えられる。したがつて、コンデンサ50は、コン デンサ28の充電電圧にさらに抵抗47とコンデ ンサ50の充電時定数を加算した特定の時定数を

一方、電源の投入時、ダイオード34のカソー ド側に発生する基準電圧に比較し、コンデンサ5 0の充電電位は低いので、比較器 18は、ミュー テイング制御信号を発生する。これによつて、ス また、バイアス回路16の出力部には、その出 25 イツチ54は接点 y側に閉じるとともに、スイツ チ52は導通し、バイアス回路16からそのバイ アス出力電圧が、コンデンサ10および増幅器2 に加えられ、かつ、増幅器4にもスイツチ54を 介して加えられる。

> そして、コンデンサ50の充電が進み、その充 **電電圧がダイオード34のカソード側に発生して** いる基準電圧を超えると、その偏差に応じて比較 器18は徐々にミユーテイング制御出力を解除 し、スイツチ54は徐々に接点x側に閉じ、ま

第2図は、以上の動作を示しており、Aにおい て、A,はバイアス回路16のバイアス出力電圧 の立ち上がり特性、A2はコンデンサ50の端子 電圧の立ち上がり特性、A3は増幅器2の直流出 40 力の立ち上がり特性を示す。A,において、0な いしtiの期間は、比較器 42 の出力が反転してト ランジスタ44が導通する期間、tiからt2はトラ ンジスタ44が非導通となり、抵抗22を介して コンデンサ28の充電期間であり、V_Bはバイア

7

ス出力電圧の定常値、Vcはダイオード34のカ ソード側に発生する基準電圧である。

また、第2図のBは、比較器18の出力であ り、電源スイツチ20の投入と同時にミユーティ ング制御が開始され、コンデンサ50の充電電圧 5 が特定の基準電圧を超えた後、ミユーテイングが 解除される。

ミユーテイングが解除され、スイツチ52が開 き、スイツチ54が接点x側に閉じると、コンデ に加えられるが、この場合、増幅器2の出力とバ イアス回路 16 の出力の直流電位差が生じていな いので、直流電位差によるミユーテイング解除の ショツクノイズはなく、ミユーテイングが解除さ れた後は入力端子8に加えられた信号が増幅器 15 2, 4で増幅され、出力端子56から外部増幅器 やスピーカに加えられる。

実施例では、バイアス回路16にコンデンサ2 8のプリチャージ回路40を付加しているので、 コンデンサ28の充電時間が短縮され、コンデン 20 サ50によるミユーテイング時間を付加しても、 全体のミユーテイング時間は比較的は短くなる利 点がある。

〔発明の効果〕

ような効果が得られる。

(a) 電源の投入時、バイアス回路の出力電圧によ つて第1の増幅器の入力部に設けられたコンデ ンサを第1のスイツチを介して充電するととも で、第1の増幅器の入力部とコンデンサの充電 電圧とが等しくなるとともに、第1の増幅器の 直流出力電圧と第2の増幅器の入力側直流電圧 が等しくできる。

(b) 電源投入時にある時定数は持つて立ち上がる バイアス回路の直流出力電圧にさらに特定の時 定数を持つて立ち上がる電圧源の電圧の立ち上 がりを利用してミーテイング解除の制御を行う ので、ミユーテイング解除が緩やかになる。

8

- (c) (a)および(b)によつて、過渡的な直流電位の変 動が抑制でき、ミユーテイング解除に伴うショ ツクノイズの発生を防止できる。
- ンサ10の充電電位は増幅器2を介して増幅器4 10 (d) 第1の増幅器の入力部に設置されるカツブリ ング用コンデンサをバイアス回路の出力電圧を 用いて急速に充電し、かつ、ミユーテイングを 実現するので、その容量を大きくできる。
 - (e) ミューテイングが確実になるので、第1およ び第2の増幅器の増幅利得を高くすることがで き、高利得増幅回路が実現できる。
 - (f) 電源の投入時、バイアス回路のコンデンサを プリチャージするためのプリチャージ回路を付 加すれば、そのコンデンサの充電を急速に行う ことができ、バイアス出力の早期安定化ととも に、ミユーテイング時間の短縮化を図ることが できる。

図面の簡単な説明

第1図はこの発明のミユーテイング回路の実施 以上説明したように、この発明によれば、次の 25 例を示す回路図、第2図はその動作液形を示す説 明図、第3図は従来のミューティング回路を示す 回路図、第4図はその動作波形を示す説明図であ

2……第1の増幅器、4……第2の増幅器、1 に、第1および第2の増幅器に加えているの 30 6 ……バイアス回路、10,28 ……コンデン サ、18……比較器、32……抵抗、40……プ リチャージ回路、52……第1のスイツチ、54 ·····・第2のスイツチ。

1 図 第

2:第1の増幅器

32:抵抗

4:第2の増幅器 16: バイアス回路 10,28: コンデンサ 18: 比較器 40:プリチャージ回路 52:第1のスイッチ

54:第2のスイッチ

2 🗵 第

