上海交通大学试卷(__卷)

(2015 至 2016 学年 第2学期)

班级号_____

学号_____

姓名 _____

课程名称	线性代数			成绩			
一、选择题(共 18	一、选择题(共 18 分, 每题 3 分)						
1、设 A, B 是 3 阶方	方阵,已知 A = −1 , B =	: 2, 则 <mark>A</mark> -B	$\binom{2A}{0}$ = ().			
A4	B. 4	C16	D. 1	6			
2 、设 α , β 是非齐	2 、设 α , β 是非齐次线性方程组 $(\lambda E-A)x=b$ 的两个不同的解,则以下选项中一定是 A 对应特征值 λ						
的特征向量为()						
Α. α;	B. β ;	C.	$\alpha + \beta$;	D. $\alpha - \beta$			
3、已知 $β_1$, $β_2$ 是非齐次线性方程组 $Ax = b$ 的两个不同的解, $α_1$, $α_2$ 是齐次线性方程组 $Ax = 0$ 的基础解							
$\mathbf{A}, \mathbf{k}_1, \mathbf{k}_2$ 为任意常数,则一定是方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 通解的为 ().							
A. $\frac{\beta_1 - \beta_2}{2} + k_1 \alpha_1 + k_2 (\alpha_1 + \alpha_2)$ B. $\frac{\beta_1 + \beta_2}{2} + k_1 \alpha_1 + k_2 (\alpha_1 - \alpha_2)$							
C. $\frac{\beta_1 - \beta_2}{2}$	$+ k_1 \alpha_1 + k_2 (\beta_1 + \beta_2)$	D. $\frac{\beta_1+}{2}$	$\frac{\beta_2}{\beta_2} + k_1 \alpha_1 + k_2 ($	$\beta_1 - \beta_2$)			
4、设向量组 α_1 , α_2 , α_3 线性无关,向量 β_1 , β_2 , β_3 线性相关但相互不成比例,且,							
$\beta_1 = k\alpha_1 + \alpha_2 + \alpha_3 , \beta_2 = \alpha_1 + k\alpha_2 + \alpha_3 , \beta_3 = \alpha_1 + \alpha_2 + k\alpha_3 , $							
(A) $k = 1$;	(E	k = -2	或 $k=1$;				
(C) $k = -2$;	(D	$k \neq -2$	且 k ≠ 1.				
5 、设向量组 $lpha_1$, $lpha_2$, $lpha_3$ 线性无关,向量 eta_1 可以由 $lpha_1$, $lpha_2$, $lpha_3$ 线性表示,而向量 eta_2 不能由 $lpha_1$, $lpha_2$, $lpha_3$ 线性表示,则							
对任意常数k,必有	有()						
A. 由 α_1 , α_2 , α_3 , $k\beta_1$ + β_2 生成的线性空间维数为 4.							
B. 由 $\alpha_1,\alpha_2,\alpha_3,k\beta_1+\beta_2$ 生成的线性空间维数不等于 4.							
C. 由 $\alpha_1, \alpha_2, \alpha_3, \beta_1 + k\beta_2$ 生成的线性空间维数为 4.							
D. 由 $\alpha_1, \alpha_2, \alpha_3, \beta_1 + k\beta_2$ 生成的线性空间维数不等于 4.							

我承诺,我将严 格遵守考试纪律。

承诺人:_____

题号	1-6	7-12	13-16	17-20
得分				
批阅人(流水阅				
卷教师签名处)				

6、设**A**, **B**, **C**为**n**阶方阵, 若**ABC** = **E**, 则下列等式

- 二、填空题(共18分,每题3分)
- 7、设向量 α , β 的长度分别为 3 和 5, 则向量 α + β 与 α β 的内积(α + β , α β) = _____.
- 8、设A为n阶可逆阵, B为A交换第i行和第i行所得到的矩阵, 则 AB^{-1} |=
- 9、设A为4阶方阵, ξ_1 , ξ_2 ,是齐次线性方程组Ax=0的两个线性无关的解,则A的伴随矩阵 $A^*=$ ______.
- 10、设 α_1 , α_2 , β_1 , β_2 , γ 都是 3 维行向量,且行列式 $\begin{vmatrix} \alpha_1 \\ \beta_1 \\ \gamma \end{vmatrix} = \begin{vmatrix} \alpha_1 \\ \beta_2 \\ \gamma \end{vmatrix} = \begin{vmatrix} \alpha_2 \\ \beta_1 \\ \gamma \end{vmatrix} = 2$, $\parallel \begin{vmatrix} \alpha_1 + \alpha_2 \\ \beta_1 + \beta_2 \end{vmatrix} = \underline{ } .$
- 11、设向量组 $\alpha_1 = (1,2,-1,0)^T$, $\alpha_2 = (1,1,0,2)^T$, $\alpha_3 = (2,1,1,k)^T$ 。 已知由 $\alpha_1,\alpha_2,\alpha_3$ 生成的子空间的维数为 2,则常数 k =_______.
- 12、设 3 阶方阵 A 的特征值为 2, 3, 4, 且 A 相似于 B , 则行列式 $|B^2+E|=$ _____.

三、计算题(共48分,每题8分)

13、已知3阶矩阵
$$A$$
, B 且满足方程 $AB = 5B - 8E$,其中 $B = \begin{pmatrix} 1 & 2 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$,求矩阵 A 。

14、计算行列式|A|,|B|, $\begin{vmatrix}O&A\\B&O\end{vmatrix}$,其中

$$A = \begin{vmatrix} a_1 + 1 & a_2 & a_3 & \cdots & a_n \\ a_1 & a_2 + 2 & a_3 & \cdots & a_n \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_1 & a_2 & a_3 & \cdots & a_n + n \end{vmatrix}, \qquad B = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 2 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & n - 1 & \cdots & 0 & 0 \\ n & 0 & \cdots & 0 & 0 \end{pmatrix}$$

15、设齐次线性方程组

$$(I): \begin{cases} x_1 + 2x_2 + 3x_3 = 0 \\ 2x_1 + 3x_2 + 5x_3 = 0, \\ x_1 + x_2 + ax_3 = 0 \end{cases} \not\exists I \quad (II): \begin{cases} x_1 + bx_2 + cx_3 = 0 \\ 2x_1 + b^2x_2 + (c+1)x_3 = 0 \end{cases}$$

同解, 求 a,b,c.

16、设 A =
$$\begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & -4 & 2 \end{pmatrix}, (1) 试求 A^{n}$$

(2) 若 $p(x) = 1 + x + x^2 + \dots + x^{n-1}$, q(x) = 1 - x 试求: p(A)q(A).

17、设三维实线性空间R3中的两组基为

$$\alpha_1 = (1 \quad 0 \quad 1)^T, \quad \alpha_2 = (1 \quad 1 \quad -1)^T, \quad \alpha_3 = (0 \quad 1 \quad 0)^T$$

$$\beta_1 = (1 \quad -2 \quad 1)^T, \quad \beta_2 = (1 \quad 2 \quad -1)^T, \quad \beta_3 = (0 \quad 1 \quad -2)^T$$

- (1) 求从基 α_1 , α_2 , α_3 到基 β_1 , β_2 , β_3 的过渡矩阵;
- (2) 求向量 $\eta = 3\beta_1 + 2\beta_2$ 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的坐标.

18 设矩阵
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$
。求正交矩阵 Q ,使得 $Q^T A Q$ 为对角阵。

四、证明题(8分)

19、设
$$A = (a_{ij})_{n \times n}$$
为实矩阵, A^T 为 A 的转置矩阵, A 的迹为 $tr(A) = \sum_{i=1}^n a_{ii}$ 。证明:

(1) 若
$$AA^T$$
 的迹 $tr(AA^T) = 0$,则 $A = 0$; (2) 若 $A^2 = AA^T$,则 A 为实对称阵。.

五、应用题(8分)

20、假设你是一个建筑师,某小区要建设一栋公寓,现在有一个模块构造计划方案需要你来设计:根据基本建筑面积,公寓每层楼设置户型可选下述 A,B,C 三种方案之一,如下表所示。

方案	一居室(套)	两居室(套)	三居室(套)
A	8	7	3
В	8	4	4
С	9	3	5

要设计出一栋公寓, 其中含有 136 套一居室, 74 套两居室, 66 套三居室, 请问是否可行? 如果可行, 请写出设计方案, 并判断设计方案是否唯一?