Group_A11_Lab2

Obaid, Sridhar, Naveen 26 November 2018

Q3

Part 1

EX Vs MET Plot

As we can see in the above plot, there is high variance among data as the data points are scattered. So linear of polynomial regression will not be a good fit to it. We think, decision trees would be good to fit for this data.

Part 2
Selection of tree using cross validation

##

Fitted Tree:

Deviance Vs Size

##
Optimal tree: 3

As see from the CV plot of deviance vs size, the least deviance (174057.6) is at 3, therefore best size is 3.

Predictions using best size

Histogramm of residuals

Histogram of resids

Residuals are not normally distributed and , in generally, models work better with more symmetrical or bell shaped distribution of residuals. This means ,in our case, fitting can be improved.

Part 395% Confidence band (Non-Parametric)

The band is not smooth, instead it is bumpy. The reason being, it is combination of different intervals calculated for different bootstrap iterations.

Part 495% Confidence band (Parametric)

The cofidence band for parametirc bootstrap is also bumpy.

As the predictions we made in step 2 lie inside the prediction bounds therefore the model in step 2 appears reliable

As we can see formm the plot above, the prediction band contains almost all the data except some which is almost 5%.

Part 5

Histogram of residuals

Histogram of resids

The histograms shows that, parametric booststrap is better than non-parametric bootstraping in this case. Because, as we saw in above graphs, the band for parametric bootstraping does not fit the data well.