An Introduction to Topological Data Analysis

Yuan Yao

School of Mathematical Sciences Peking University

April 10, 2017

- 1 Why Topological Methods?
 - Properties of Data Geometry
 - What Kind of Topological Methods?
- 2 Simplicial Complex for Data Representation
 - Simplicial Complex
- 3 Persistent Homology
 - Betti Number at Different Scales
 - Algebraic Theory
- 4 Some Applications
 - Coverage
 - Image
 - Molecular Dynamics
 - Progression Analysis of Disease

Introduction

- General method of manifold learning takes the following Spectral Kernal Embedding approach
 - construct a neighborhood graph of data, G
 - construct a positive semi-definite kernel on graphs, K
 - find global embedding coordinates of data by eigen-decomposition of $K = YY^T$
- Graph G may or may not reflect natural metric (e.g. similarity in genomics)
- Sometimes global embedding coordinates are not a good way to organize/visualize the data (e.g. d > 3)
- Sometimes all that is required is a qualitative view

Properties of Data Geometry

Fact

We Don't Trust Large Distances!

- In life or social sciences, distance (metric) are constructed using a notion of similarity (proximity), but have no theoretical backing (e.g. distance between faces, gene expression profiles, Jukes-Cantor distance between sequences)
- Small distances still represent similarity (proximity), but long distance comparisons hardly make sense

Why

000000000000

Properties of Data Geometry

Fact

We Only Trust Small Distances a Bit!

- Both pairs are regarded as similar, but the strength of the similarity as encoded by the distance may not be so significant
- Similar objects lie in neighborhood of each other, which suffices to define topology

Properties of Data Geometry

Fact

Even Local Connections are Noisy, depending on observer's scale!

- Is it a circle, dots, or circle of circles?
- To see the circle, we ignore variations in small distance (tolerance for proximity)

So we need Topology here

- Distance measurements are noisy
- Physical device like human eyes may ignore differences in proximity (or as an average effect)
- Topology is the crudest way to capture invariants under distortions of distances
- At the presence of noise, one need topology varied with scales

Topology

Figure: Homeomorphic

What Kind of Topological Methods?

Topology

Figure: Homeomorphic

Topology

- The see that these pairs are *same* requires distortion of distances, i.e. stretching and shrinking
- We do not permit *tearing*, i.e. distorting distances in a discontinuous way
- How to make this precise, especially in discrete and noisy setting?

- We would like to say that all points within tolerance are the same
- Moreover, all non-zero distances beyond tolerance are the same, i.e. invariant under distortion

- Origins of Topology in Math
 - Leonhard Euler 1736, Seven Bridges of Königsberg
 - Johann Benedict Listing 1847, Vorstudien zur Topologie
 - J.B. Listing (orbituary) Nature 27:316-317, 1883. "qualitative geometry from the ordinary geometry in which quantitative relations chiefly are treated."

What kind of topology?

- Topology studies (global) mappings between spaces
- Point-set topology: continuous mappings on open sets
- Differential topology: differentiable mappings on smooth manifolds
 - Morse theory tells us topology of continuous space can be learned by discrete information on critical points
- Algebraic topology: homomorphisms on algebraic structures, the most concise encoder for topology
- Combinatorial topology: mappings on simplicial (cell) complexes
 - simplicial complex may be constructed from data
 - Algebraic, differential structures can be defined here

Topological Data Analysis

- What kind of topological information often useful
 - 0-homology: clustering or connected components
 - 1-homology: coverage of sensor networks; paths in robotic planning
 - 1-homology as obstructions: inconsistency in statistical ranking; harmonic flow games
 - high-order homology: high-order connectivity?
- How to compute homology in a stable way?
 - simplicial complexes for data representation
 - filtration on simplicial complexes
 - persistent homology

Betti Numbers

$$\beta_0 = 1$$
, $\beta_1 = 1$, and $\beta_i = 0$ for $i \geq 2$

Betti Numbers

$$\beta_0 = 1$$
, $\beta_1 = 0$, $\beta_2 = 0$, and $\beta_k = 0$ for $k \ge 3$

Figure: Typo: $\beta_2 = 1$

Betti Numbers

$$\beta_0 = 1$$
, $\beta_1 = 2$, $\beta_2 = 1$, and $\beta_k = 0$ for $k \ge 3$

Simplicial Complexes for Data Representation

Definition (Simplicial Complex)

An abstract simplicial complex is a collection Σ of subsets of V which is closed under inclusion (or deletion), i.e. $\tau \in \Sigma$ and $\sigma \subseteq \tau$, then $\sigma \in \Sigma$.

- Chess-board Complex
- Point cloud data:
 - Nerve complex
 - Cech, Rips, Witness complex
 - Mayer-Vietoris Blowup
- Term-document cooccurance complex
- Clique complex in pairwise comparison graphs
- Strategic complex in flow games

Chess-board Complex

Definition (Chess-board Complex)

Let V be the positions on a Chess board. Σ collects position subsets of V where one can place queens (rooks) without capturing each other.

■ Closedness under deletion: if $\sigma \in \Sigma$ is a set of "safe" positions, then any subset $\tau \subseteq \sigma$ is also a set of "safe" positions

Nerve complex

Definition (Nerve Complex)

Define a cover of X, $X = \bigcup_{\alpha} U_{\alpha}$. $V = \{U_{\alpha}\}$ and define $\Sigma = \{U_I : \cap_{\alpha \in I} U_I \neq \emptyset\}.$

- Closedness under deletion
- Can be applied to any topological space X
- In a metric space (X, d), if $U_{\alpha} = B_{\epsilon}(t_{\alpha}) := \{x \in X : d(x - t_{\alpha}) \le \epsilon\},$ we have Čech complex C_{ϵ} .
- **Nerve Theorem**: if every U_I is contractible, then X has the same homotopy type as Σ .

Figure: Čech complex of a circle, C_{ϵ} , covered by a set of balls.

Vietoris-Rips complex

- Čech complex is hard to compute, even in Euclidean space
- One can easily compute an upper bound for Čech complex
 - Construct a Čech subcomplex of 1-dimension, i.e. a graph with edges connecting point pairs whose distance is no more than ϵ .
 - Find the clique complex, i.e. maximal complex whose 1-skeleton is the graph above, where every k-clique is regarded as a k-1 simplex

Definition (Vietoris-Rips Complex)

Let
$$V = \{x_{\alpha} \in X\}$$
. Define $VR_{\epsilon} = \{U_{I} \subseteq V : d(x_{\alpha}, x_{\beta}) \le \epsilon, \alpha, \beta \in I\}$.

Figure: Left: Čech complex gives a circle; Right: Rips complex gives a sphere S^2 .

Generalized Vietoris-Rips for Symmetric Relations

Definition (Symmetric Relation Complex)

Let V be a set and a symmetric relation $R = \{(u, v)\} \subseteq V^2$ such that $(u, v) \in R \Rightarrow (v, u) \in R$. Σ collects subsets of V which are in pairwise relations.

- Closedness under deletion: if $\sigma \in \Sigma$ is a set of related items, then any subset $\tau \subseteq \sigma$ is a set of related items
- Generalized Vietoris-Rips complex beyond metric spaces
- E.g. Zeeman's tolerance space
- C.H. Dowker defines simplicial complex for unsymmetric relations

Sandwich Theorems

- Rips is easier to compute than Cech
 - even so, Rips is exponential to dimension generally
- However Vietoris-Rips CAN NOT preserve the homotopy type as Cech
- But there is still a hope to find a lower bound on homology –

Theorem("Sandwich")

$$VR_{\epsilon} \subseteq C_{\epsilon} \subseteq VR_{2\epsilon}$$

■ If a homology group "persists" through $R_{\epsilon} \to R_{2\epsilon}$, then it must exists in C_{ϵ} ; but not the vice versa.

A further simplification: Witness complex

Definition (Strong Witness Complex)

Let
$$V = \{t_{\alpha} \in X\}$$
. Define $W_{\epsilon}^{s} = \{U_{I} \subseteq V : \exists x \in X, \forall \alpha \in I, d(x, t_{\alpha}) \leq \frac{d(x, V)}{\epsilon} + \epsilon\}.$

Definition (Week Witness Complex)

Let
$$V = \{t_{\alpha} \in X\}$$
. Define $W_{\epsilon}^{w} = \{U_{I} \subseteq V : \exists x \in X, \forall \alpha \in I, d(x, t_{\alpha}) \leq \frac{d(x, V_{-I})}{\epsilon} + \epsilon\}$.

- V can be a set of landmarks, much smaller than X
- Monotonicity: $W_{\epsilon}^* \subseteq W_{\epsilon'}^*$ if $\epsilon \leq \epsilon'$
- But not easy to control homotopy types between W^* and X

Term-Document Co-occurrence Complex

- Left is a term-document co-occurrence matrix
- Right is a simplicial complex representation of terms
- Connectivity analysis captures more information than Latent Semantic Index (Li & Kwong 2009)

Strategic Simplicial Complex for Flow Games

			$(O,O) \xleftarrow{2} (O,O)$,F)
	О	F	↑	
О	3, 2	0, 0	3	2
F	0, 0	2, 3	3	
(a) Battle of the sexes			$(F,O) \xrightarrow{3} (F,G)$	F

- Strategic simplicial complex is the clique complex of pairwise comparison graph above, inspired by ranking
- Every game can be decomposed as the direct sum of potential games and zero-sum games (harmonic games) (Candogan, Menache, Ozdaglar and Parrilo 2010)

•000000

Figure: Scale ϵ_1 : $\beta_0 = 1$, $\beta_1 = 3$

Persistent Homology 0000000

Figure: Scale ϵ_1 : $\beta_0 = 1$, $\beta_1 = 2$

Example II: Persistence 0-Homology induced by Height **Function**

Example III: Persistent Homology as Online Algorithm to Track Topology Changements

Persistent Betti Numbers: Barcodes

- Toolbox: JPlex (http://comptop.stanford.edu/)
 - Java version of Plex, work with matlab
 - Rips, Witness complex, Persistence Homology
- Other Choices: Plex 2.5 for Matlab (not maintained any more), Dionysus (Dimitry Morozov)

Persistent Homology: Algebraic Theory [Zormorodian-Carlsson]

All above gives rise to a filtration of simplicial complex

$$\emptyset = \Sigma_0 \subseteq \Sigma_1 \subseteq \Sigma_2 \subseteq \dots$$

■ Functoriality of inclusion: there are homomorphisms between homology groups

$$0 \to H_1 \to H_2 \to \dots$$

• A persistent homology is the image of H_i in H_i with j > i.

- Equivalent to single-linkage clustering
- Barcode is the single linkage dendrogram (tree) without labels
- Kleinberg's Impossibility Theorem for clustering: no clustering algorithm satisfies scale invariance, richness, and consistency
- Memoli & Carlsson 2009: single-linkage is the unique persistent clustering with scale invariance
- Open: but, is persistence the necessity for clustering?
- Notes: try matlab command linkage for single-linkage clustering.

Application I: Sensor Network Coverage by Persistent Homology

- V. de Silva and R. Ghrist (2005) Coverage in sensor networks via persistent homology.
- Ideally sensor communication can be modeled by Rips complex
 - two sensors has distance within a short range, then two sensors receive strong signals;
 - two sensors has distance within a middle range, then two sensors receive weak signals;
 - otherwise no signals

Sandwich Theorem

Theorem (de Silva-Ghrist 2005)

Let X be a set of points in \mathbb{R}^d and $C_{\epsilon}(X)$ the Čech complex of the cover of X by balls of radius $\epsilon/2$. Then there is chain of inclusions

$$R_{\epsilon'}(X) \subset C_{\epsilon}(X) \subset R_{\epsilon}(X)$$
 whenever $\frac{\epsilon}{\epsilon'} \geq \sqrt{\frac{2d}{d+1}}$.

Moreover, this ratio is the smallest for which the inclusions hold in general.

Note: this gives a sufficient condition to detect holes in sensor network coverage

- Čech complex is hard to compute while Rips is easy;
- If a hole persists from $R_{\epsilon'}$ to R_{ϵ} , then it must exists in C_{ϵ} .

Persistent 1-Homology in Rips Complexes

Figure: Left: $R_{\epsilon'}$; Right: R_{ϵ} . The middle hole persists from $R_{\epsilon'}$ to R_{ϵ} .

Application II: Natural Image Statistics

- G. Carlsson, V. de Silva, T. Ishkanov, A. Zomorodian (2008)
 On the local behavior of spaces of natural images,
 International Journal of Computer Vision, 76(1):1-12.
- An image taken by black and white digital camera can be viewed as a vector, with one coordinate for each pixel
- Each pixel has a "gray scale" value, can be thought of as a real number (in reality, takes one of 255 values)
- lacktriangle Typical camera uses tens of thousands of pixels, so images lie in a very high dimensional space, call it pixel space, $\mathcal P$

Natural Image Statistics

- **D. Mumford**: What can be said about the set of images $\mathcal{I} \subseteq \mathcal{P}$ one obtains when one takes many images with a digital camera?
- **Lee, Mumford, Pedersen**: Useful to study local structure of images statistically

Natural Image Statistics

Image

Figure: 3×3 patches in images

Natural Image Statistics

Lee-Mumford-Pedersen [LMP] study only high contrast patches.

- Collect: 4.5*M* high contrast patches from a collection of images obtained by van Hateren and van der Schaaf
- Normalize mean intensity by subtracting mean from each pixel value to obtain patches with mean intensity = 0
- Puts data on an 8-D hyperplane, $\approx R^8$
- Furthermore, normalize contrast by dividing by the norm, so obtain patches with norm = 1, whence data lies on a 7-D ellipsoid. $\approx S^7$

Natural Image Statistics: Primary Circle

High density subsets $\mathcal{M}(k=300, t=0.25)$:

- Codensity filter: $d_k(x)$ be the distance from x to its k-th nearest neighbor
 - the lower $d_k(x)$, the higher density of x
- Take k = 300, the extract 5,000 top t = 25% densest points, which concentrate on a primary circle

Natural Image Statistics: Three Circles

■ Take k = 15, the extract 5,000 top 25% densest points, which shows persistent $\beta_1 = 5$, 3-circle model

Natural Image Statistics: Three Circles

Generators for 3 circles

Natural Image Statistics: Klein Bottle

Image

Natural Image Statistics: Klein Bottle Model

Application III: Persistent Homology and Discrete Morse Theory

- Persistent homology gives a pairing (birth-death) between a simplex and its co-dimensional one faces
- It leads to a particular implementation of Robin Forman's combinatorial gradient field
- Thus Persistent homology is equivalent to discrete Morse Theory by Robin Forman

Morse Theory and Reeb graph

- lacksquare a nice (Morse) function: $h:\mathcal{X}\to\mathbb{R}$, on a smooth manifold \mathcal{X}
- topology of \mathcal{X} reconstructed from level sets $h^{-1}(t)$
- topological of $h^{-1}(t)$ only changes at 'critical values'
- Reeb graph: a simplified version, contracting into points the connected components in $h^{-1}(t)$

Figure: Construction of Reeb graph; *h* maps each point on torus to its height.

In applications.

Reeb graph has found various applications in computational geometry, statistics under different names.

- computer science: contour trees, reeb graphs
- statistics: density cluster trees (Hartigan)

Outline

Mapper: an extension for topological data analysis

[Singh-Memoli-Carlsson. Eurograph-PBG, 2007] Given a data set \mathcal{X} ,

- choose a filter map $h: \mathcal{X} \to T$, where T is a topological space such as \mathbb{R} , S^1 , \mathbb{R}^d , etc.
- choose a cover $T \subseteq \bigcup_{\alpha} U_{\alpha}$
- cluster/partite level sets $h^{-1}(U_{\alpha})$ into $V_{\alpha,\beta}$
- **graph** representation: a node for each $V_{\alpha,\beta}$, an edge between $(V_{\alpha_1,\beta_1},V_{\alpha_2,\beta_2})$ iff $U_{\alpha_1}\cap U_{\alpha_2}\neq\emptyset$ and $V_{\alpha_1,\beta_1}\cap V_{\alpha_2,\beta_2}\neq\emptyset$.
- extendable to simplicial complex representation.

Note: it extends Morse theory from \mathbb{R} to general topological space T; may lead to a particular implementation of Nerve theorem through filter map h.

Figure: An illustration of Mapper.

Note:

- degree-one nodes contain local minima/maxima;
- degree-three nodes contain saddle points (critical points);
- degree-two nodes consist of regular points

Example: RNA Tetraloop

Figure: RNA GCAA-Tetraloop

Biological relevance:

- serve as nucleation site for RNA folding
- form sequence specific tertiary interactions
- protein recognition sites
- certain Tetraloops can pause RNA transcription

Note: simple, but, biological debates over intermediate states on folding pathways

Debates: Two-state vs. Multi-state Models

(a) 2-state model

multi-state model

- 2-state: transition state with any one stem base pair, from thermodynamic experiments [Ansari A, et al. PNAS, 2001, 98: 7771-7776]
- multi-state: there is a stable intermediate state, which contains collapsed structures, from kinetic measurements [Ma H, et al. PNAS, 2007, 104:712-6
- experiments: no structural information
- computer simulations at full-atom resolution:
 - exisitence of intermediate states
 - if yes, what's the structure?

Mapper with density filters in biomolecular folding

Reference: Bowman-Huang-Yao et al. J. Am. Chem. Soc. 2008; Yao, Sun, Huang, et al. J. Chem. Phys. 2009.

- densest regions (energy basins) may correspond to metastates
 (e.g. folded, extended)
- intermediate/transition states on pathways connecting them are relatively sparse

Therefore with Mapper

- clustering on density level sets helps separate and identify metastates and intermediate/transition states
- graph representation reflects kinetic connectivity between states

$K = \begin{pmatrix} \exp(-d_{11}) & \exp(-d_{12}) \\ \exp(-d_{21}) & \exp(-d_{22}) \\ & \ddots & \\ & & & \\ &$

Figure: Mapper Flow Chart

- **I** Kernel density estimation $h(x) = \sum_i K(x, x_i)$ with Hamming distance for contact maps
- \blacksquare Rank the data by h and divide the data into n overlapped sets
- 3 Single-linkage clustering on each level sets
- 4 Graphical representation

Mapper output for Unfolding Pathways

Figure: Unfolding pathway

Mapper output for Refolding Pathways

Figure: Refolding pathway

Application IV: Progression Analysis for Breast Cancer

- Nicolau, Levine, Carlsson, PNAS, 2010
- Deviation functions from normal tissues are used as filters. (Morse-type functions)
- Mapper (Reeb Graph) with such filters leads to Progression Analysis of Disease

PAD analysis of the NKI data

CICIICC

- Edelsbrunner, Letscher, and Zomorodian (2002) Topological Persistence and Simplification.
- Ghrist, R. (2007) Barcdes: the Persistent Topology of Data. Bulletin of AMS, 45(1):61-75.
- Edelsbrunner, Harer (2008) Persistent Homology a survey.
 Contemporary Mathematics.
- Carlsson, G. (2009) Topology and Data. Bulletin of AMS, 46(2):255-308.