Planche d'Exercices N<sup>0</sup>1 Circuits Combinatoires L1 - MI – S2 / 2019-2020

Le savoir qui compte est celui qu'on se donne soi-même par curiosité, passion de savoir. P. Léautaud

### Exercice 1 : Analyser les circuits logiques suivants :



<u>Exercice 2</u>: Concevoir un circuit qui permet de faire l'addition ou la soustraction (additionneur/soustracteur) de deux nombres binaires A et B de 1 bit. On rappelle que dans la représentation en complément à 2,  $A - B = A + \overline{B} + 1$ . Cet additionneur/soustracteur possèdera une entrée de commande C qui sera utilisée comme suit :

- C=0, fonctionnement en addition.
- C=1, fonctionnement en soustraction.

En utilisant ce schéma bloc de additionneur-soustracteur, dessiner un schéma bloc d'un additionneur – soustracteur en parallèle à 4 bits, c'est-à-dire un circuit logique qui peut faire la somme des nombres binaires  $A = A_3 A_2 A_1 A_0$  et  $B = B_3 B_2 B_1 B_0$  si C = 0 et A - B si C = 1.

#### Exercice 3

1. Soit la fonction combinatoire f(x,y,z) définie par la table de Karnaugh ci dessous

| ab | 00 | 0 1 | 11 | 10 |
|----|----|-----|----|----|
| 0  | 1  | 0   | 1  | 1  |
| 1  | 1  | 1   | 1  | 0  |

- 1. Synthétiser cette fonction avec un multiplexeur  $8 \rightarrow 1$ .
- 2. Synthétiser cette fonction avec un multiplexeur  $4 \rightarrow 1$ .

### **Exercice 4**

Faire la synthèse d'un multiplexeur 2 vers 1. En utilisant le schéma bloc ci-dessous, réalisé le schéma bloc d'un multiplexeur 4 vers 1 en utilisant que trois multiplexeurs 2 vers 1.



### Exercice 5

On veut réaliser un transcodeur permettant de convertir un nombre en binaire réfléchi de trois bits ABC vers le binaire naturel XYZ. Ce transcodeur a trois entrées : A, B et C et trois sorties X, Y et Z.



- 1. Dresser une table de vérité traduisant le fonctionnement,
- 2. A l'aide du tableau de Karnaugh, trouver les équations des sorties : X, Y et Z,
- 3. Donner le logigramme de ce transcodeur.
- 4. Dessiner le logigramme avec uniquement des portes "XOR" à deux entrées,
- 5. En déduire le logigramme si le code d'entrée est sur 4 bits.

### **Annexe**













## Corrigé série 1

### **Exercice 1**

1. Expression logique :  $f(x_0, x_1, y_0, y_1) = \overline{\overline{x_0} \cdot y_0 + x_0 \cdot \overline{y_0}} \cdot (\overline{x_1} \oplus y_1) = \overline{x_0} \oplus \overline{y_0} \cdot (\overline{x_1} \oplus y_1)$ . Table de vérité

| $x_0$ | $x_1$ | $y_0$ | $y_1$ | $\overline{x_0 \oplus y_0}$ | $(x_1 \oplus y_1)$ | $f(x_0, x_1, y_0, y_1)$ |
|-------|-------|-------|-------|-----------------------------|--------------------|-------------------------|
| 0     | 0     | 0     | 0     | 1                           | 1                  | 1                       |
| 0     | 0     | 0     | 1     | 1                           | 0                  | 0                       |
| 0     | 0     | 1     | 0     | 0                           | 1                  | 0                       |
| 0     | 0     | 1     | 1     | 0                           | 0                  | 0                       |
| 0     | 1     | 0     | 0     | 1                           | 0                  | 0                       |
| 0     | 1     | 0     | 1     | 1                           | 1                  | 1                       |
| 0     | 1     | 1     | 0     | 0                           | 0                  | 0                       |
| 0     | 1     | 1     | 1     | 0                           | 1                  | 0                       |
| 1     | 0     | 0     | 0     | 0                           | 1                  | 0                       |
| 1     | 0     | 0     | 1     | 0                           | 0                  | 0                       |
| 1     | 0     | 1     | 0     | 1                           | 1                  | 1                       |
| 1     | 0     | 1     | 1     | 1                           | 0                  | 0                       |
| 1     | 1     | 0     | 0     | 0                           | 0                  | 0                       |
| 1     | 1     | 0     | 1     | 0                           | 1                  | 0                       |
| 1     | 1     | 1     | 0     | 1                           | 0                  | 0                       |
| 1     | 1     | 1     | 1     | 1                           | 1                  | 1                       |

Puisque  $f(x_0, x_1, y_0, y_1) = 1$  si  $x_0x_1 = y_0y_1$  donc ce circuit est un comparateur d'égalité de nombres binaires à deux bits.

2. Expression logique :  $S_1=B_1\oplus B_2,\ S_2=B_2\oplus B_3, S_3=B_3\oplus B_4, S_4=B_4.$  Table de vérité

| $B_4$ | $B_3$ | $B_2$ | $B_1$ | $S_4$ | $S_3$ | $S_2$ | $S_1$ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 0     | 0     | 0     | 1     | 0     | 0     | 0     | 1     |
| 0     | 0     | 1     | 0     | 0     | 0     | 1     | 1     |
| 0     | 0     | 1     | 1     | 0     | 0     | 1     | 0     |
| 0     | 1     | 0     | 0     | 0     | 1     | 1     | 0     |
| 0     | 1     | 0     | 1     | 0     | 1     | 1     | 1     |
| 0     | 1     | 1     | 0     | 0     | 1     | 0     | 1     |
| 0     | 1     | 1     | 1     | 0     | 1     | 0     | 0     |
| 1     | 0     | 0     | 0     | 1     | 1     | 0     | 0     |
| 1     | 0     | 0     | 1     | 1     | 1     | 0     | 1     |
| 1     | 0     | 1     | 0     | 1     | 1     | 1     | 1     |
| 1     | 0     | 1     | 1     | 1     | 1     | 1     | 0     |
| 1     | 1     | 0     | 0     | 1     | 0     | 1     | 0     |
| 1     | 1     | 0     | 1     | 1     | 0     | 1     | 1     |
| 1     | 1     | 1     | 0     | 1     | 0     | 0     | 1     |
| 1     | 1     | 1     | 1     | 1     | 0     | 0     | 0     |

Ce circuit réalise la conversion en code de Gray d'un nombre binaire de quatre bits.

### Exercice 2

| В | C | S |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

$$S = \overline{C}.B + C.\overline{B} = C \oplus B.$$



### Exercice 3

1. Réalisation de la fonction f avec un MUX  $8 \rightarrow 1$ . 2. Réalisation de la fonction f avec un



Exercice 4 Synthèse d'un MUX à 2 entrées



Symbole logique d'un MUX  $2 \rightarrow 1$ 

Ce MUX possède une lignes de sélection des données, puisqu'il est possible de sélectionner l'une ou l'autre des 2 lignes d'entrée de données avec seulement un bit. Soit, la table de vérité suivante :

| Entrée de sélection<br>S <sub>0</sub> | Entrée sélectionnée |
|---------------------------------------|---------------------|
| 0                                     | $D_0$               |
| 1                                     | $D_1$               |

La sortie des données est égale à  $D_0$  seulement si  $S_0=0$  :  $Y=D_0\overline{S}_0$  . La sortie des données est égale à  $D_1$  seulement si  $S_0 = 1$ :  $Y = D_1 S_0$ . D'où la fonction de sortie :

$$Y = D_{\scriptscriptstyle 0} \overline{S}_{\scriptscriptstyle 0} + D_{\scriptscriptstyle 1}.S_{\scriptscriptstyle 0}..$$

Soit, le logigramme correspondant est :





MUX  $2 \rightarrow 1$ 

# Exercice 5

Table de vérité

| a | b | c | x | y | z |
|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 1 | 1 |
| 1 | 0 | 1 | 1 | 1 | 0 |
| 1 | 1 | 0 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 | 1 |

Expressions logiques x = a.

$$x = a$$

$$y = a \oplus b$$
.

$$z = (a \oplus b) \oplus c.$$

