Corresponds to 215 6, 547, 992

EP1024167

Publication Title:

Combination of flame retardants for thermoplastic polymers

Abstract:

Abstract of EP1024167

Fire retardant combination for thermoplastic polymers contains: (A) a phosphinic acid salt and/or a diphosphinic acid salt and (B) a synthetic inorganic compound and/or a mineral product. A fire retardant combination for thermoplastic polymers contains (A) a phosphinic acid salt of formula (I) and/or a diphosphinic acid salt of formula (II) (and/or their polymers) and (B) a synthetic inorganic compound and/or a mineral product. R&It;1>, R&It;2> = 1-6C alkyl (linear or branched) and/or aryl; R&It;3> = 1-10C alkylene, 6-10C arylene, alkylarylene or arylalkylene; M = calcium, aluminum and/or zinc; m = 2 or 3; n = 1 or 3; and x = 1 or 2 An Independent claim is also included for fire-resistant plastic molding materials containing this combination. Data supplied from the esp@cenet database - Worldwide

Courtesy of http://v3.espacenet.com

THIS PAGE BLANK (USF 10)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 024 167 B1

(12)

P

EUROPÄISCHE PATENTSCHRIFT

(45) Veröffentlichungstag und Bekanntmachung des Hinweises auf die Patenterteilung: 21.12.2005 Patentblatt 2005/51

(51) Int Ci.7: C08K 5/5313, C08K 3/32, C08K 3/34, C08K 5/19, C08K 5/3472, C08K 5/3477

(21) Anmeldenummer: 00100470.4

(22) Anmeldetag: 11.01.2000

(54) Flammschutzmittel-Kombination für thermoplastische Polymere I

Combination of flame retardants for thermoplastic polymers Combinalson d'ignifuges pour polymères thermoplastiques

(84) Benannte Vertragsstaaten:
AT BE CH DE ES FR GB IT LI NL

(30) Priorität: 30.01.1999 DE 19903708 15.12.1999 DE 19960671

(43) Veröffentlichungstag der Anmeldung: 02.08.2000 Patentblatt 2000/31

(73) Patentinhaber: Clariant GmbH 65929 Frankfurt am Main (DE)

(72) Erfinder:

Schlosser, Elke, Dipl.-Ing.
 86163 Augsburg (DE)

 Nass, Bernd, Dipl.-Ing. 86152 Augsburg (DE)

 Wanzke, Wolfgang, Dr. 86405 Meitingen (DE)

(56) Entgegenhaltungen: DE-A- 19 614 424

DE-A- 19 708 726

EP 1 024 167 B1

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist. (Art. 99(1) Europäisches Patentübereinkommen).

Beschreibung

Die Erfindung betrifft eine Flammschutzmittel-Komblnation für thermoplastische Polymere.

[0002] Für thermoplastische Polymere haben sich die Salze von Phosphinsäuren (Phosphinate) als wirksame flammhemmende Zusätze erwiesen, dies gilt sowohl für die Alkalimetallsalze (DE-A-2 252 258) als auch für die Salze anderer

[0003] Calcium- und Aluminiumphosphinate sind in Polyestern als besonders wirksam beschrieben worden und beeinträchtigen die Materialeigenschaften der Polymerformmassen weniger als die Alkalimetallsalze (EP-A-0 699 708). [0004] Darüberhinaus wurden synergistische Kombinationen von den genannten Phosphinaten mit bestimmten stickstoffhaltigen Verbindungen gefunden, die in einer ganzen Reihe von Polymeren als Flammschutzmittel effektiver wirken, als die Phosphinate allein (PCT/EP97/01664 sowie DE-A-197 34 437 und DE-A-197 37 727).

[0005] Die DE-A 197 08 726 beschreibt bereits flammgeschützte Polymerformmassen die Salzgemische aus Phosphinsäuresalzen und Aluminiumsalzen enthalten und die zusätzlich noch Füll- und Verstärkungsstoffe wie Glasfasern und Kreide enthalten können. Es ist jedoch bekannt, dass Füllstoffe wie Kreide ein Flammschutzsystem stören können, womit eine nachteilige Beeinträchtigung der Flammschutzwirkung verbunden ist.

[0006] Es wurde nun überraschend gefunden, daß die Flammschutzwirkung der verschiedenen Phosphinate in thermoplastischen Polymeren auch durch Zusätze von kleinen Mengen anorganischer bzw. mineralischer Verbindungen, die keinen Stickstoff enthalten, deutlich verbessert werden kann.

[0007] Darüberhinaus wurde gefunden, daß die genannten Zusätze auch die Flammschutzwirkung von Phosphinaten in Kombination mit stickstoffhaltigen Synergisten verbessern können.

[0008] Gegenstand der Erfindung ist somit eine Flammschutzmittel-Kombination für thermoplastische Polymere, die als Komponente A ein Phosphinsäuresalz der Formel (I) und/oder ein Diphosphinsäuresalz der Formel (II) und/oder

30

5

10

$$\begin{bmatrix} R^1 & 0 \\ P & 0 \\ M^{m+1} & (1) \end{bmatrix}$$

40

55

worin

45 R1, R2 gleich oder verschieden sind und C₁-C₆-Alkyl, linear oder verzweigt und/oder Aryl; R^3

C₁-C₁₀-Alkylen, linear oder verzweigt, C₆-C₁₀-Arylen, -Alkylarylen oder -Arylaikylen;

M Calcium-, Aluminium- und/oder Zink-lonen;

m 2 oder 3;

n 1 oder 3:

50 X 1 oder 2

bedeuten,

und als Komponente B eine synthetische anorganische Verbindung und/oder ein mineralisches Produkt enthält, ausgewählt aus Salzen und Estern der Orthokieselsäure und deren Kondensationsprodukten, Silikate, Zeolithe und Kieselsäuren, Keramikpulver, Zinkborat, Zinkstannat, Zinkhydroxystannat, Zinkphosphat, Zinksulfid, Zinkoxid, Magnesiumhydroxid, Hydrotalcite, Magnesiumcarbonat, Calcium-Magnesiumcarbonat, oder roter Phosphor, wobei unabhängig voneinander die Komponente A in einer Konzentration von 1 bis 30 Gew.-% und die Komponente B in einer Konzentration von 0,1 bis 10 Gew.-%, jeweils bezogen auf die Kunststoff-Formmasse, eingesetzt werden.

[0009] Bevorzugt sind R¹, R² gleich oder verschieden und bedeuten C₁-C₆-Alkyl, linear oder verzweigt und/oder Phenyl.

[0010] Besonders bevorzugt sind R¹, R² gleich oder verschieden und bedeuten Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, tert.-Butyl, n-Pentyl und/oder Phenyl.

5 [0011] Bevorzugt bedeutet R³ Methylen, Ethylen, n-Propylen, iso-Propylen, n-Butylen, tert.-Butylen, n-Pentylen, n-Octylen oder n-Dodecylen.

[0012] Bevorzugt bedeutet R³ auch Phenylen oder Naphthylen.

[0013] Bevorzugt bedeutet R³ auch Methyl-phenylen, Ethyl-phenylen, tert.-Butylphenylen, Methyl-naphthylen, Ethyl-naphthylen oder tert.-Butylnaphthylen.

[0014] Bevorzugt bedeutet R3 auch Phenyl-methylen, Phenyl-ethylen, Phenyl-propylen oder Phenyl-butylen.

[0015] Bevorzugt handelt es sich bei rotem Phosphor um elementaren roten Phosphor oder um Zubereitungen, in denen der Phosphor oberflächlich mit niedermolekularen, flüssigen Substanzen wie Silikonöl, Paraffinöl oder Estem der Phthalsäure oder Adipinsäure oder mit polymeren oder oligomeren Verbindungen, z.B. mit Phenolharzen oder Aminoplasten sowie Polyurethanen beschichtet ist.

[0016] Bevorzugt enthält die erfindungsgemäße Flammschutzmittel-Kombination als weitere Komponente C Stickstoffverbindungen.

[0017] Bevorzugt handelt es sich bei den Stickstoffverbindungen um solche der Formeln (III) bis (VIII) oder Gemische davon

$$0 = \bigvee_{\substack{N \\ R^{12}}} \bigvee_{\substack{N \\ R^{11}}} \bigcap_{\substack{N \\ R^{0}}} \bigvee_{\substack{N \\ R^{0}}} \bigcap_{\substack{N \\ N^{0} \\ N^{0}}} \bigcap_{\substack{N \\ N^{0} \\ N^{0}}} \bigcap_{\substack{N \\ N^{0} \\ N^{0} \\ N^{0}}} \bigcap_{\substack{N \\ N^{0} \\ N^{0}$$

worin

10

15

20

25

30

35

40

45

50

55

R⁵ bis R⁷ Wasserstoff, C₁-C₈-Alkyl, C₅-C₁₆-Cycloalkyl oder -Alkylcycloalkyl, möglicherweise substituiert mit einer

Hydroxy- oder einer C₁-C₄-Hydroxyalkyl-Funktion, C₂-C₈-Alkenyl, C₁-C₈-Alkoxy, -Acyl, -Acyloxy, C₆-C₁₂-

Aryl oder -Arylalkyl, -OR8 und -N(R8)R9, sowie N-alicyclisch oder N-aromatisch,

R⁸ Wasserstoff, C₁-C₈-Alkyl, C₅-C₁₆-Cycloalkyl oder -Alkylcycloalkyl, möglicherweise substitulert mit einer

Hydroxy- oder einer C₁-C₄-Hydroxyalkyl-Funktion, C₂-C₈-Alkenyl, C₁-C₈-Alkoxy, -Acyl, -Acyloxy oder

C₆-C₁₂-Aryl oder -Arylalkyl,

R⁹ bis R¹³ dle gleichen Gruppen wie R3 sawle -O-R8, m und n unabhängig voneinander 1, 2, 3 oder 4,

X Säuren, die Addukte mit Triazinverbindungen (III) bilden können,

10 bedeuten:

5

30

45

50

55

oder um oligomere Ester des Tris(hydroxyethyl)isocyanurats mit aromatischen Polycarbonsäuren oder um stickstoffhaltige Phosphate der Formeln $(NH_4)_y$ H_{3-y} PO_4 bzw. $(NH_4 PO_3)_z$, mit y gleich 1 bis 3 und z gleich 1 bis 10.000. [0018] Bevorzugt handelt es sich bei der Komponente C um Benzoguanamin, Tris(hydroxyethyl)isocyanurat, Allan-

toin, Glycouril, Melamin, Melamincyanurat, Melaminphosphat, Dimelaminphosphat und/oder Melaminpyrophosphat.

[0019] Die Erfindung betrifft auch die Verwendung der erfindungsgemäßen Flammschutzmittel-Kombination zur flammfesten Ausrüstung von thermoplastischen Polymeren. Unter thermoplastischen Polymeren werden laut Hans Domininghaus in "Die Kunststoffe und ihre Eigenschaften", 5. Auflage (1998), S. 14, Polymere verstanden, deren Molekülketten keine oder auch mehr oder weniger lange und in der Anzahl unterschiedliche Seitenverzweigungen aufweisen, die in der Wärme erweichen und nahezu beliebig formbar sind. 20

[0020] Bevorzugt handelt es sich bei den thermoplastischen Polymeren um Polystyrol-HI (High-Impact), Polyphenylenether, Polyamide, Polyester, Polycarbonate und Blends oder Polymerblends vom Typ ABS (Acrylnitrii-Butadien-Styrol) oder PC/ABS (Polycarbonat/ Acrylnitril-Butadien-Styrol). Polystyrol-HI ist ein Polystyrol mit erhöhter Schlagzä-[0021]

Besonders bevorzugte thermoplastische Polymere sind Polyamide, Polyester und ABS.

[0022] Thermoplastische Polymere, die die erfindungsgemäßen Flammschutzmittel-Kombinationen und gegebe-25 nenfalls Füll- und Verstärkungsstoffe und/oder andere Zusätze, wie unten definiert, enthalten, werden im folgenden

[0023] Erfindungsgemäß werden für die genannte Verwendung unabhängig voneinander die Komponente A in einer Konzentration von 1 bis 30 Gew.-% und die Komponente B in einer Konzentration von 0,1 bis 10 Gew.-%, jeweils bezogen auf die Kunststoff-Formmasse, eingesetzt.

[0024] Die Erfindung betrifft schließlich auch eine flammfest ausgerüstete Kunststoff-Formmasse, enthaltend die erfindungsgemäße Flammschutzmittel-Kombination.

[0025] Bevorzugt handelt es sich bei dem Polymeren der flammfest ausgerüsteten Kunststoff-Formmasse um Po-

[0026] Bei der bereits weiter vorne genannten Komponente B handelt es sich um eine synthetische anorganische 35 Verbindung und/oder um ein mineralisches Produkt aus den nachfolgend genannten Gruppen:

[0027] Sauerstoffverbindungen des Siliciums, wie Salze und Ester der Orthokieselsäure und deren Kondensationsprodukte (Silikate). Eine Übersicht über geeignete Silikate wird beispielsweise in Riedel, Anorganische Chemie, 2.Aufl., S. 490 - 497, Walter de Gruyter, Berlin-New York 1990 gegeben. Von besonderem Interesse sind dabei Phyllosilikate

(Blatt-Silikate, Schichtsilikate) wie etwa Talk, Kaolinit und Glimmer und die Gruppe der Bentonite und Montmorinollite, 40 sowie Tektosilikate (Gerüstsilikate) wie z.B. die Gruppe der Zeolithe. Daneben kann auch Siliciumdioxid in Form von hochdisperser Kleselsäure eingesetzt werden.

[0028] Die Kieselsäure kann dabei nach einem pyrogenen oder nach einem naßchemischen Verfahren hergestellt sein. Die genannten Silikate bzw. Kieselsäuren können zur Erzielung bestimmter Oberflächeneigenschaften gegebenenfalls mit organischen Modifizierungsmitteln ausgerüstet sein.

[0029] Ebenfalls als Komponente B eingesetzt werden können Glas-, Glas-Keramik- und Keramik-Pulver unterschiedlicher Zusammensetzung, wie sie z.B. In "Ullmann's Encyclopedia of Industrial Chemistry", 5th Edition, Vol. A 12 (1989), S. 372-387 (Glas) bzw. S. 443-448 (Glas-Keramik) beschrieben sind. Entsprechende Keramische Materialien sind in Vol. 6 (1986) auf S. 12-18 (Commercial Ceramic Clays) beschrieben. Es können sowohl Gläser und/oder Keramiken mit definiertem Schmelzpunkt verwendet werden, als auch Mischungen von Produkten mit einem breiten Schmelzbereich, etwa Keramik-Fritten, wie sie zur Herstellung von Glasuren eingesetzt werden. Solche Fritten oder Mischungen mehrerer Fritten können auch zusätzlich Glas-, Basalt- oder keramische Fasern enthalten. Mischungen dieser Art sind z. B. in der EP 0 287 293 B1 beschrieben.

[0030] Ebenfalls als Komponente B eingesetzt werden können Magnesiumverbindungen, wie Magnesiumhydroxid sowie Hydrotalcite der allgemeinen Formel

 $Mg_{(1-a)}Ai_a(OH)_2 A_{a/2} \cdot pH_2O$,

wabel

5

10

15

20

25

30

35

40

45

50

55

1

- A für die Anlonen SO₄2- oder CO₃2- steht,
- a größer 0 und kleiner/gleich 0,5 ist und
- p die Anzahl der Wassermoleküle des Hydrotalcits bedeuten und einen Wert zwischen 0 und 1 darstellt.

Hydrotalcite, bel denen A das Anion CO_3^{2-} repräsentiert, und $0,2 \le a \le 0,4$ gilt, sind bevorzugt.

Die Hydrotalcite können sowohl natürliche Hydrotalcite, die gegebenfalls durch entsprechende chemische Behandlung modifiziert sein können, als auch synthetisch hergestellte Produkte sein.

[0031] Ebenfalls als Komponente B eingesetzt werden können Metallcarbonate von Metallen der zweiten Hauptgruppe des Periodensystems und deren Mischungen.

[0032] Geeignet sind Magnesium-Calcium-Carbonate (b₁) der allgemelnen Formel

$$Mg_bCa_c(CO_3)_{b+c} \cdot q H_2O$$
,

wobei b und c Zahlen von 1 bis 5 bedeuten und b/c \geq 1 gilt und q \geq 0 ist, sowie basische Magnesium-Carbonate (b₂) der allgemeinen Formel

$$Mg_d(CO_3)_e(OH)_{2d-2e} \cdot rH_2O$$
,

wabei

d eine Zahl von 1 bls 6, e eine Zahl größer als 0 und kleiner als 6 bedeutet und d/e >1glit und r≥ 0 lst.

Besonders geeignet sind Mischungen aus b_1 und b_2 , wobei das Mengenverhältnis von b_1 : b_2 im Bereich von 1:1 bis 3:1 liegt.

Die Magnesium-Calclum-Carbonate b_1 und basischen Magneslum-Carbonate b_2 können sowohl in wasserhaltiger als auch wasserfreier Form und mit oder ohne Oberflächenbehandlung eingesetzt werden. Zu diesen Verbindungstypen gehören die natürlich vorkommenden Mineralien wie Huntit (b_1) und Hydromagnesit (b_2) und deren Mischungen.

[0033] Ebenfalls als Komponente B eingesetzt werden können Zinkverbindungen wie Zinkoxid, -stannat, -hydroxy-stannat, -phosphate und -sulfide sowie Zinkborate der allgemeinen Formel f ZuO · g B_2O_3 · h H_2O , wobei f, g und h Werte zischen 0 und 14 bedeuten.

[0034] Die erfindungsgemäßen Flammschutzmittel-Kombinationen können gegebenenfalls als Komponente C eine Stickstoffverbindung der Formel (III) bis (VIII) oder ein Gemisch der durch die Formeln bezeichneten Verbindungen, wie sie in der DE-A-197 37 727 beschrieben sind, und auf die hier ausdrücklich Bezug genommen wird, enthalten.

[0035] Zusätzlich zu den oben genannten können als Komponente C oligomere Ester des Tris(hydroxyethyl)isocyanurats mit aromatischen Polycarbonsäuren, wie sie in EP-A 584 567 beschrieben sind, und stickstoffhaltige Phosphate der Formeln (NH₄)_y H_{3-y} PO₄ bzw. (NH₄ PO₃)_z, wobei y Zahlenwerte von 1 bis 3 annehmen kann und z eine beliebig große Zahl ist (etwa 1 bis 10.000), typischerweise auch als Durchschnittswert einer Kettenlängenverteilung dargestellt, elngesetzt werden.

[0036] Geelgnete Polymere, in denen die erfindungsgemäße Flammschutzmittel-Kombination wirksam eingesetzt werden kann, sind auch in der Internationalen Patentanmeldung PCT/WO 97/01664 auf den Seiten 6 bis 9 beschrieben, worauf hier ausdrücklich Bezug genommen wird.

[0037] Im folgenden umfaßt der Begriff "Phosphinsäuresalz" Salze der Phosphin- und Diphosphinsäuren und deren Polymere.

[0038] Die Phosphinsäuresalze, die in wäßrigem Medium hergestellt werden, sind im wesentlichen monomere Verbindungen. In Abhängigkeit von den Reaktionsbedingungen können unter Umständen auch polymere Phosphinsäuresalze entstehen.

[0039] Geeignete Phosphinsäuren als Bestandteil der Phosphinsäuresalze sind beispleisweise:

Dimethylphosphinsäure, Ethyl-methylphosphinsäure, Diethylphosphinsäure, Methyln-propyl-phosphinsäure, Methylphosphinsäure), Benzol-1,4-(dimethylphosphinsäure), Methyl-phenyl-phosphinsäure, Diphenylphosphinsäure.

[0040] Die Salze der Phosphinsäuren gemäß der Erfindung können nach bekannten Methoden hergestellt werden, wie sie beispielsweise in der EP-A-699 708 näher beschrieben sind. Die Phosphinsäuren werden dabei beispielsweise in wäßriger Lösung mit Metallcarbonaten, Metallhydroxiden oder Metalloxiden umgesetzt.

[0041] Die Menge des den Polymeren zuzusetzenden Phosphinsäuresalzes kann innerhalb weiter Grenzen variie-

ren. Im aligemeinen verwendet man 1 bis 30 Gew.-%, bezogen auf die Kunststoff-Formmasse. Die optimale Menge hängt von der Natur des Polymeren, der Art der Komponenten B und gegeben enfalls C und vom Typ des eingesetzten Phosphinsäuresalzes seibst ab. Bevorzugt sind 3 bis 25, insbesondere 5 bis 20 Gew.-%, bezogen auf die Kunststoff-Formmasse.

- [0042] Die vorgenannten Phosphinsäuresalze können für die erfindungsgemäße Flammschutzmittel-Kombination je nach Art des verwendeten Polymeren und der gewünschten Eigenschaften in verschiedener physikalischer Form angewendet werden. So können die Phosphinsäuresalze z.B. zur Erzielung einer besseren Dispersion im Polymeren zu einer feinteiligen Form vermahlen werden. Falls erwünscht können auch Gemische verschiedener Phosphinsäuresalze eingesetzt werden.
- 10 [0043] Die Phosphinsäuresalze gemäß der Erfindung sind thermisch stabil, zersetzen die Polymeren weder bei der Verarbeitung noch beeinflussen sie den Herstellprozess der Kunststoff-Formmasse. Die Phosphinsäuresalze sind unter den üblichen Herstellungs- und Verarbeitungsbedingungen für thermoplastische Polymere nicht flüchtig.
 - [0044] Die optimale Menge der den Polymeren zuzusetzenden erfindungsgemäßen anorganischen Verbindungen (Komponente B) hängt von der Natur des Polymeren, der Art des eingesetzten Phosphinsäuresalzes (Komponente A), der gegebenenfalls eingesetzten stickstoffhaltigen Verbindung (Komponente C) sowie vom Typ der anorganischen Verbindung selbst ab. Bevorzugt sind 0,3 bis 7, insbesondere 0,5 bis 5 Gew.-%. Es ist auch möglich, eine Kombination der genannten anorganischen Verbindungen zuzusetzen.
 - [0045] Die Menge der den Polymeren zuzusetzenden Stickstoffverbindung (Komponente C) kann innerhalb weiter Grenzen variieren. Im allgemeinen verwendet man 1 bis 30 Gew.-% bezogen auf die Kunststoff-Formmasse. Die optimale Menge hängt von der Natur des Polymeren, der Art des eingesetzten Phosphinsäuresalzes (Komponente A), der Art der eingesetzten anorganischen Verbindung (Komponente B) sowie vom Typ der Stickstoffverbindung selbst ab. Bevorzugt sind 3 bis 20, insbesondere 5 bis 15 Gew.-%.
- [0046] Die flammhemmenden Komponenten A, B und gegebenenfalls C können in thermoplastische Polymere eingearbeitet werden, Indem z. B. alle Bestandteile als Pulver und/oder Granulat in einem Mischer vorgemischt und anschließend in einem Compoundieraggregat (z. B. einem Doppel-schneckenextruder) in der Polymerschmelze homogenisiert werden. Die Schmelze wird üblicherweise als Strang abgezogen, gekühlt und granuliert. Die Komponenten A, B (und gegebenenfalls C) können auch separat über eine Dosieranlage direkt in das Compoundieraggregat eingebracht werden.
- [0047] Es ist ebenso möglich, die flammhemmenden Zusätze A, B und C einem fertigen Polmergranulat bzw. -pulver beizumischen und die Mischung direkt auf einer Spritzgußmaschine zu Formteilen zu verarbeiten.
 - [0048] Bei Polyestem beispielsweise können die flammhemmenden Zusätze A, B und C auch bereits während der Polykondensation in die Polyestermasse gegeben werden.
 - [0049] Den Formmassen können neben der erfindungsgemäßen flammhemmenden Kombination aus A, B und gegebenenfalls C auch Füll- und Verstärkungsstoffe wie Glasfasern, Glaskugeln oder Mineralien wie Kreide zugesetzt werden. Zusätzlich können die Formmassen noch andere Zusätze wie Antioxidantien, Lichtschutzmittel, Gleitmittel, Farbmittel, Nukleierungsmittel oder Antistatika enthalten. Beispiele für die verwendbaren Zusätze sind in EP-A-584 angegeben.
 - [0050] Die flammwidrigen Kunststoff-Formmassen eignen sich zur Herstellung von Formkörpern, Filmen, Fäden und Fasern, z. B. durch Spritzgießen, Extrudieren oder Verpressen.

Beispiele

35

40

- 1. Eingesetzte Komponenten
- 45 Handelsübliche Polymere (Granulat):

[0051]

Delate (1)	®Novodur P2X (Fa. Bayer AG, D) enthält keine Füll- bzw. Verstärkungsstoffe. ®Durethan BKV 30 (Fa. Bayer AG, D) enthält 30 % Glasfasern. ®Celanex 2300 GV1/30 (Fa. Hoechst ®Celanese, USA) enthält 30 % Glasfasern.

Flammschutzmittelkomponenten (pulverförmig):

Komponente A:

5 [0052] Aluminiumsalz der Diethylphosphinsäure, im folgenden als DEPAL bezeichnet. Zinksalz der Diethylphosphinsäure, im folgenden als DEPZn bezeichnet.

Komponente B:

10 [0053]

15

20

30

35

40

45

50

Aluminlumphosphat, Fa. Riedel de Haen, DE
CEEPREE® Microfine, Fa. Brunner Mond & Co. Ltd., UK
DHT-4A (Dihydrotalcit) Fa. Kyowa Chemical Industry, JP
DHT Exm 697-2 (Dihydrotalcit), Fa. Süd-Chemle AG, DE
Exolit® RP 605 (roter Phosphor), Fa. Clariant GmbH, DE
FIREBRAKE® ZB (Zinkborat), Fa. US Borax & Chemical Corporation, USA
Martinal OL 104 (Aluminiumhydroxid), Fa. Martinswerke, DE
Securoc® C 10N (Huntit/HydromagnesIt), Fa. IncemIn AG, CH
Zinkoxid, Fa. MERCK, DE
Zinkstannat, Fa. Storey + Co., UK

Komponente C:

25 [0054]

Melamine Grade 003 (Melamin), Fa. DSM, NL Melapur® MC (Melamincyanurat), Fa. DSM Melapur, NL Melapur® MP (Melaminphosphat), Fa. DSM Melapur, NL

2. Herstellung, Verarbeitung und Prüfung von flammhemmenden Kunststoff-Formmassen

[0055] Die Flammschutzmittelkomponenten wurden in dem in den Tabellen angegebenen Verhältnis mit dem Polymergranulat und evtl. Additiven vermischt und auf einem Doppelschnecken-Extruder (Typ Leistritz LSM 30/34) bei Temperaturen von 190 bis 225 °C (ABS) bzw. von 230 bis 260 °C (PBT-GV) bzw. von 240 bis 280 °C (PA 6-GV) eingearbeitet. Der homogenisierte Polymerstrang wurde abgezogen, im Wasserbad gekühlt und anschließend granuliert.

[0056] Nach ausreichender Trocknung wurden die Formmassen auf einer Spritzgießmaschlne (Typ Toshiba IS 100 EN) bei Massetemperaturen von 210 bls 240 °C (ABS) bzw. von 240 bls 270 °C (PBT-GV) bzw. von 260 bls 280 °C (PA 6-GV) zu Prüfkörpern verarbeitet und anhand des UL 94-Tests (Underwriter Laboratories) auf Flammwidrigkeit geprüft und klassifiziert. Die Brennbarkeit der Prüfkörper wurde durch Bestimmung des Sauerstoffindex (LOI nach ASTM D 2863-77) beurtellt.

[0057] Tabelle 1 zeigt Vergleichsbelsplele, In denen das Aluminium- bzw. Zlnksalz der Diethylphosphinsäure (DEPAL bzw. DEPZn) als alleinige Flammschutzmittelkomponenten in glasfaserverstärktem PBT bzw. PA bzw. in ABS geprüft wurden.

[0058] In Tabelle 2 sind Vergleichsbeispiele mit stickstoffhaltigen Verbindungen (Komponente C) allein bzw. in Kombination mit In geringen Mengen wirksamen Verbindungen (Komponente B) in glasfaserverstärktem PBT bzw. in ABS widergegeben.

[0059] Tabelle 3 zeigt Vergleichsbeispiele, in denen das Aluminium- bzw. Zinksalz der Diethylphosphinsäure in Kombination mit stickstoffhaltigen Synergisten in glasfaserverstärktem PBT bzw. PA geprüft wurden, wie in der PCT/WO 97/01664 beschrieben.

[0060] Die Ergebnisse der Beispiele, in denen die Flammschutzmittel-Kombination gemäß der Erfindung eingesetzt wurden, sind in den Tabellen 4 bis 8 aufgelistet. Alle Mengen sind als Gew.-% angegeben und beziehen sich auf die Kunststoff-Formmasse einschließlich der Flammschutzmittel-Kombination.

[0061] Aus den Beispielen geht hervor, daß die erfindungsgemäßen Zusätze (Komponente B) in der Kombination mlt Metallsalzen der Phosphinsäuren eine eindeutige Steigerung des Flammschutzeffekts bewirken, wenn sie in entsprechenden Mengen zugemischt werden. Auch synergistische Kombinationen aus den Metallsalzen der Phosphinsäuren und stickstoffhaltigen Verbindungen (Komponenten A+C) werden durch Zugabe einer gewissen Menge an

Komponente B in ihrer flammhemmenden Wirksamkeit erheblich verbessert.

[0062] Die Flammschutzmittelmenge bezogen auf die Kunststoff-Formmasse, die nötig ist, um eine V-0, V-1 bzw. V-2 Einstufung zu erreichen, kann in der Kombination A+B gegenüber A allein bzw. A+B+C gegenüber A+C verringert werden. Zudem wird bei gleicher Flammschutzmittelmenge bezogen auf die Kunststoff-Formmasse eine Erhöhung des Sauerstoff-Index (LOI) in der erfindungsgemäßen Kombination gegenüber den Vergleichsbeispielen festgestellt.

• • • • • • • • • • • • • • • • • • • •			ibelie 1:	
Vergleichst	peispiele. Phos	phinate in gla	sfaserverstärktem PBT, PA bzw.	in ABS.
Polymer	DEPAL [%]	DEPZn [%]	Klasse nach UL 94 (1,6 mm)	LOI [% O2
PBT-GV	15		V-1	
PBT-GV	17		V-1	
PBT-GV	20		V-0	
PBT-GV		20	V-2	29,0
PBT-GV		25	V-2	
PA 6-GV	20		V-2	29,5
PA 68-GV	20		n.k.*	33,5
PA 66-GV	25			
PA 66-GV	30		n.k.*	
ABS	26		V-2	25,5
ABS			n.k*	33,0
* n.k. = nicht kle	30		n.k*	37,5

^{*} n.k. = nicht klassifizierbar

ergleichsbeis erbindungen	spiele. Stickstoffhaltige in glasfaserverstärkte	e Verbindungen allein b m PBT bzw. in ABS.	zw. in Kombir	nation mit in geringen M	lengen wirksan
Polymer	Melamincyanurat [%]	Melaminphosphat [%]	RP 605	Klasse nach UL 94 (1,6 mm)	LOI [% O ₂]
PBT-GV	20				
PBT-GV				n.k.*	23,5
		20		n.k.*	25,0
PBT-GV		15	3	V-2	
ABS	30				26,0
ABS				n.k.*	21,0
. = nicht klassit		30		n.k,*	21,5

Tabelle 3:

		spninate in Ko	mbination mit stickst bzw. PA 6 bzw.	offhaltigen Synergiste PA 66.	en in glasfaservers	tärktem PBT
Polymer	DEPAL [%]	DEPZn [%]	Melamincyanurat [%]	Melaminphosphat [%]	Klasse nach UL 94 (1,6 mm)	LOI [% O ₂]
PBT-GV	8		8			
PBT-GV	10		5		V-2	
PBT-GV	10				V-1	37,5
	10		10		V-0	40,0
PBT-GV		10	10		V-2	27,0

5

10

15

20

25

30

35

40

45

Tabelle 3: (fortgesetzt)

Vergleichs	beispiele. Pho	sphinate in Ko	mbination mit stickst bzw. PA 6 bzw.	offhaltigen Synergiste PA 66.	n in glasfaservers	tärktem PBT
Polymer	DEPAL [%]	DEPZn [%]	Melamincyanurat [%]	Melaminphosphat [%]	Klasse nach UL 94 (1,6 mm)	LOI [% O ₂]
PA 6-GV	10			10	V-1	35,0
PA 66-GV	20		10		n.k.*	

* n.k. = nicht klassifizierbar

	Erf	indus no			Tabelle 4:	;	
DEPAL [%]	DEDZ	muungsgemalk.	Phosphinate In F	Combination mit in	n geringen Men	gen wirksamen \	/erbindungen in
	DEPZn	Ceepree [%]	DHT Exm [%]	Zinkborat [%]	Zinkstannat [%]	Al-hydroxid [%]	Al-phosphat
15		1					
15			1				
15			·				
15				2			
12					1		
14						3	
	15						1

Tabelle 5:

Polymer	DEPAL [%]	Al- phosphat [%]	Ceepree [%]	Securoc C [%]	Zinkborat [%]	Zinkoxid [%]	Klasse nach UL 94 (1,6 mm)	LOI [% O ₂]
PA 6-GV	18	2					V-0	40,0
PA 6-GV	18		2				V-1	35,0
PA 6-GV	18			2			V-1	45,0
PA 6-GV	18				2		V-0	37,0
PA 6-GV	18					2	V-0	37,0
PA 66-GV	22		3				V-1	41,0
PA 66-GV	13,5				1,5		V-1	36,5
PA 66-GV	16				4		V-0	

Tabelle 6:

Erfindungsge	mäß. DEPAL	in Kombinatk	on mit in gering	en Mengen wirk	samen Verbind	lungen in ABS.	,
DEPAL [%]	DHT-4A [%]	RP 605 [%]	Zinkborat [%]	Zinkoxid [%]	Zinkstannat [%]	Klasse nach UL 94 (1,6 mm)	LOI [% O ₂]
25	1					V-1	38,5
13		2				V-1	41,0
25			1			V-1	40,0
25				1		V-1	35,0
25					1	V-1	47,0

Tabelle 7:

_	Erfindungsgemäß. DEPAL in Kombination mit stickstoffhaitigen Verbindungen und mit in geringen Mengen wirksamen Verbindungen in glasfaserverstärktem PBT.											
DEPAL [%]	Meiamincyanurat [%]	Melamin [%]	Al- phosphat [%]	Securoc C [%]	Zinkborat [%]	Zinkstannat [%]	Klasse nach UL 94 (1,6 mm)	LOI[% O ₂]				
10	3			1			V-0	36,0				
10	4				1		V-0	37,5				
10	4					1	V-0	35,0				
9		4	2				V-0	48,0				

Erfindungs	gemäß. DEPAI	in Kombination		Tabe	elle 8:		
Polymer	DEPAL [%]	Melamin [%]	Melamincyanurat	л Verbindungen und i			Verb
			[%]	[%]	Al-phosphat [%]	Ceepree [%]	Zini
PA 6-GV	10	5					
PA 6-GV	9				5		
PA 66-GV	14	8,5		9		2	
PA 66-GV	13		13				
						4	_

Patentansprüche

5

10

15

20

25

30

35

50

1. Flammschutzmittel-Kombination für thermoplastische Polymere, die als Komponente A ein Phosphinsäuresalz der Formel (I) und/oder ein Diphosphinsäuresalz der Formel (II) und/oder deren Polymere enthält,

 $\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & -\frac{11}{P} - R^{\frac{3}{P}} - 0 & 0 \\
\frac{1}{R} & \frac{1}{R} & 0
\end{bmatrix}$ (II)

worin

R¹, R² gleich oder verschieden sind und C₁-C₆-Alkyl, linear oder verzweigt und/oder Aryl;

R³ C₁-C₁₀-Alkylen, linear oder verzweigt, C₆-C₁₀-Arylen, -Alkylarylen oder -Arylalkylen;

M Calcium-, Aluminium- und/oder Zink-Ionen;

m 2 oder 3;

n 1 oder 3;

x 1 oder 2

bedeuten,

und als Komponente B eine synthetische anorganische Verbindung und/oder ein mineralisches Produkt ausgewählt aus Salzen und Estern der Othokieselsäure und deren Kondensationsprodukten, Silikate, Zeolithe und Kieselsäuren, Keramikpulver, Zinkborat, Zinkstannat, Zinkhydroxystannat, Zinkphosphat, Zinksulfid, Zinkoxid, Magnesiumhydroxid, Hydrotalcite, Magnesiumcarbonat, Calcium-Magnesiumcarbonat oder roter Phosphor, wobei unabhängig voneinander die Komponente A in einer Konzentration von 1 bis 30 Gew.-% und die Komponente B in einer Konzentration von 0,1 bis 10 Gew.-%, jeweils bezogen auf die Kunststoff-Formmasse, eingesetzt werden.

- 40 2. Flammschutzmittel-Kombination nach Anspruch 1, dadurch gekennzeichnet, dass unabhängig voneinander die Komponente A in einer Konzentration von 3 bis 25 Gew.-% und die Komponente B in einer Konzentration von 0,3 bis 7 Gew.-%, jewells bezogen auf die Kunststoff-Formmasse, eingesetzt werden.
- 3. Flammschutzmittel-Kombination nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß R^1 , R^2 gleich oder verschieden sind und C_1 - C_6 -Alkyl, linear oder verzweigt und/oder Phenyl bedeuten.
 - 4. Flammschutzmittel-Kombination nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß R¹, R² gleich oder verschieden sind und Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, tert.-Butyl, n-Pentyl und/oder Phenyl bedeuten.
 - 5. Flammschutzmittel-Kombination nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß R³ Methylen, Ethylen, n-Propylen, iso-Propylen, n-Butylen, tert.-Butylen, n-Pentylen, n-Octylen oder n-Dodecylen bedeutet.
- 6. Flammschutzmittel-Kombination nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß R³ Phenylen oder Naphthylen bedeutet.
 - 7. Flammschutzmittel-Kombination nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet,

daß R3 Methyl-phenylen, Ethyl-phenylen, tert.-Butylphenylen, Methyl-naphtthylen, Ethyl-naphthylen oder tert.-Butylnaphthylen bedeutet.

- Flammschutzmittel-Kombination nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzelchnet, daß R³ Phenyl-methylen, Phenyl-ethylen, Phenyl-propylen oder Phenyl-butylen bedeutet.
- Flammschutzmittel-Kombination nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß sie als weitere Komponente C Stickstoffverbindungen enthält.
- 10. Flammschutzmittel-Kombination nach Anspruch 9, dadurch gekennzeichnet, daß es sich bei den Stickstoffver-10 bindungen um salche der Formeln (III) bis (VIII) oder Gemische davon

20
$$\mathbb{R}^{5}$$
 \mathbb{R}^{11} \mathbb{R}^{9} \mathbb{R}^{13} \mathbb{R}^{11} \mathbb{R}^{10} \mathbb{R}^{9} \mathbb{R}^{12} \mathbb{R}^{11} \mathbb{R}^{10} \mathbb{R}

50 worin

*5*5

5

 R^5 bis R^7 Wasserstoff, C₁-C₈-Alkyl, C₅-C₁₆-Cycloalkyl oder -Alkylcycloalkyl, möglicherweise substituiert mit einer Hydroxy- oder einer C₁-C₄-Hydroxyalkyl-Funktion, C₂-C₈-Alkenyl, C₁-C₈-Alkoxy, -Acyl, -Acyloxy, C₆-C₁₂-Aryl oder -Arylalkyl, -OR⁸ und -N(R⁸)R⁹, sowie N-alicyclisch oder N-aromatisch, R8

Wasserstoff, C₁-C₈-Alkyl, C₅-C₁₈-Cycloalkyl oder -Alkylcycloalkyl, möglicherweise substituiert mit einer Hydroxy- oder einer C₁-C₄-Hydroxyalkyl-Funktion, C₂-C₈-Alkenyl, C₁-C₈-Alkoxy, -Acyl, -Acyloxy oder C₆-C₁₂-Aryl oder -Arylalkyl,

R⁹ bis R¹³ die gleichen Gruppen wie R8 sowie -O-R8,

m und n

unabhängig voneinander 1, 2, 3 oder 4,

X

5

10

15

20

30

35

40

45

50

55

Säuren, die Addukte mit Triazinverbindungen (III) bilden können,

bedeuten;

oder um oligomere Ester des Tris(hydroxyethyl)isocyanurats mit aromatischen Polycarbonsäuren oder um stickstoffhaltige Phosphate der Formeln $(NH_4)_y H_{3-y} PO_4$ bzw. $(NH_4 PO_3)_z$, mit y gleich 1 bis 2 und z gleich 1 bis 10.000 handelt.

- 11. Flammschutzmittel-Kombination nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß es sich bei der Komponente C um Senzoguanamin, Tris(hydroxyethyl)isocyanurat, Allantoin, Glycouril, Melamin, Melamincyanurat, Melaminphosphat, Dimelaminphosphat und/oder Melaminpyrophosphat handelt.
 - 12. Verwendung einer Flammschutzmittel-Kombination gemäß einem oder mehreren der Ansprüche 1 bis 11 zur flammfesten Ausrüstung von thermoplastischen Polymeren.
 - 13. Verwendung nach Anspruch 12, dadurch gekennzeichnet, daß es sich bei den thermoplastischen Polymeren um Polystyrol-HI (High-Impact), Polyphenylenether, Polyamide, Polyester, Polycarbonate und Blends oder Polymerblends vom Typ ABS (Acrylnitril-Butadien-Styrol) oder PC/ABS (Polycarbonat/ Acrylnitril-Butadien-Styrol) handelt.
 - 14. Verwendung nach Anspruch 13, dadurch gekennzeichnet, daß es sich bei den thermoplastischen Polymeren um Polyamid, Polyester und ABS handelt.
- 15. Flammfest ausgerüstete Kunststoff-Formmasse, enthaltend eine Flammschutzmittel-Kombination gemäß einem oder mehreren der Ansprüche 1 bls 11.
 - 16. Flammfest ausgerüstete Kunststoff-Formmasse gemäß Anspruch 15, dadurch gekennzeichnet, daß es sich bei dem Polymeren um Polyamid, Polyester und/oder ABS handelt.

Claims

1. A flame retardant combination for thermoplastic polymers comprising, as component A, a phosphinate of the formula (I) and/or a diphosphinate of the formula (II) and/or polymers of these

$$\begin{bmatrix} R^1 \\ R^2 \end{bmatrix} = 0$$
 m $m+$ (1)

$$\begin{array}{c|c}
0 & 0 \\
-P & R & P & 0 \\
\hline
R & R & R & 0
\end{array}$$

$$\begin{array}{c|c}
0 & M_X & M + M_X & M + M_X & M + M_X & M_X$$

where

R 1 and R² are identical or different and are C₁-C₆-alkyl, linear or branched, and/or aryl;

R ³ M m	is C_1 - C_{10} -alkylene, linear or branched, C_6 - C_{10} -arylene, -alkylarylene or -arylalkylene; are calcium ions, aluminum ions and/or zinc ions; is 2 or 3:
n	is 1 or 3;
X	is 1 or 2,

and, as component B, a synthetic inorganic compound and/or a mineral product selected from salts and esters of orthosilicic acid and condensation products thereof, silicates, zeolites and silicas, ceramic powders, zinc borate, zinc stannate, zinc hydroxystannate, zinc phosphate, zinc sulfide, zinc oxide, magnesium hydroxide, hydrotalcites, magnesium carbonate, calcium magnesium carbonate or red phosphorus, where, independently of one another, component A is used at a concentration of from 1 to 30% by weight and component B at a concentration of from 0.1 to 10% by weight, based in each case on the plastics molding composition.

- 2. The flame retardant combination as claimed in claim 1, wherein, independently of one another, component A is used at a concentration of from 3 to 25% by weight and component B at a concentration of from 0.3 to 7% by weight, based in each case on the plastics molding composition.
 - 3. The flame retardant combination as claimed in claim 1 or 2, wherein R^1 and R^2 are identical or different and are C_1 - C_6 -alkyl, linear or branched, and/or phenyl.
 - 4. The flame retardant combination as claimed in one or more of claims 1 to 3, wherein R¹ and R² are identical or different and are methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, n-pentyl and/or phenyl.
- 5. The flame retardant combination as claimed in one or more of claims 1 to 4, wherein R³ is methylene, ethylene, n-propylene, isopropylene, n-butylene, tert-butylene, n-pentylene, n-actylene or n-dodecylene.
 - 6. The flame retardant combination as claimed in one or more of claims 1 to 4, wherein R3 is phenylene or naphthylene.
- 7. The flame retardant combination as claimed in one or more of claims 1 to 4, wherein R³ is methylphenylene, ethylphenylene, tert-butylphenylene, methylnaphthylene, ethylnaphthylene or tert-butylnaphthylene.
 - 8. The flame retardant combination as claimed in one or more of claims 1 to 4, wherein R³ is phenylmethylene, phenylene, phenylpropylene or phenylbutylene.
- 35 9. The flame retardant combination as claimed in one or more of claims 1 to 8, which comprises nitrogen compounds, as further component C.
 - 10. The flame retardant combination as claimed in claim 9, wherein the nitrogen compounds have the formulae (III) to (VIII) or are mixtures of these

55

40

5

10

5
$$R^9$$
 R^{10} $R^$

25 where

30

35

40

50

55

R⁵ to R⁷ are hydrogen, C₁-C₈-alkyl, C₅-C₁₆-cycloalkyl or -alkylcycloalkyl, unsubstituted or substituted with a

hydroxyl function or with a C₁-C₄-hydroxyalkyl function, C₂-C₈-alkenyl, C₁-C₈-alkoxy, -acyl or -acyloxy,

C₆-C₁₂-aryl or -arylalkyl, -OR⁸ or -N(R⁸)R⁹, or else N-alicyctic or N-aromatic systems,

is hydrogen, C₁-C₈-alkyl, C₅-C₁₆-cycloalkyl or -alkylcycloalkyl, unsubstituted or substituted with a hy-

droxyl function or with a C₁-C₄-hydroxyalkyl function, C₂-C₈-alkenyl, C₁-C₈-alkoxy, -acyl or -acyloxy,

or C_B-C₁₂-aryl or -arylalkyl,

R9 to R13 are groups identical with R8 or else -O-R8,

m and n, Independently of one another, are 1, 2, 3 or 4,

X are acids which can form adducts with triazine compounds (III);

or the nitrogen compounds are oligomeric esters of tris(hydroxyethyl) isocyanurate with aromatic polycarboxylic acids or are nitrogen-containing phosphates of the formula $(NH_4)_yH_{3-y}PO_4$ or $(NH_4PO_3)_z$, where y is from 1 to 2 and z is from 1 to 10 000.

- 11. The flame retardant combination as claimed in claim 9 or 10, wherein component C is benzoguanamine, tris(hydroxyethyl) Isocyanurate, allantoln, glycourll, melamine, melamine cyanurate, melamine phosphate, dimelamine phosphate and/or melamine pyrophosphate.
- 12. The use of a flame retardant combination as claimed in one or more of claims 1 to 11 for rendering thermoplastic polymers flame-retardant.
 - 13. The use as claimed in claim 12, wherein the thermoplastic polymers are HI (high-impact) polystyrene, polyphenylene ethers, polyamides, polyesters, polycarbonates or blends or polymer blends of ABS (acrylonitrile-butadienestyrene) type or PC/ABS (polycarbonate/acrylonitrile-butadiene-styrene) type.
 - 14. The use as claimed in claim 13, wherein the thermoplastic polymers are polyamide, polyester or ABS.
 - 15. A flame-retardant plastics molding composition comprising a flame retardant combination as claimed in one or more of claims 1 to 11.
 - 16. The flame-retardant plastics molding composition as claimed in claim 15, wherein the polymers are polyamide, polyester and/or ABS.

Revendications

5

10

15

20

25

30

35

50

1. Combinaison d'agents retardateurs de flamme pour des polymères thermopiastiques, qui en tant que composant A contient un sel d'acide phosphinique de formule (I) et/ou un sel d'acide diphosphinique de formule (II) et/ou des

$$\begin{bmatrix} R^1 & 0 \\ R^2 & 0 \end{bmatrix}_{m} M^{m+1}$$
 (1)

dans lesquels

R¹ et R² sont identiques ou différents et sont des groupes alkyle en C₁-C₆, à chaîne droite ou ramifiée, et/ ou aryle;

R³ est un radical alkylène en C₁-C₁₀ à chaîne droite ou ramifiée, arylène, alkylarylène ou arylalkylène en C₆-C₁₀;

M représente des ions calcium, aluminium et/ou zinc ;

m vaut 2 ou 3;

n vaut 1 ou 3;

x vaut 1 ou 2,

et en tant que composant B un composé inorganique synthétique et/ou un produit minéral choisi parmi les sels et esters de l'acide orthosilicique et ses produits de condensation, les silicates, les zéolites et les acides siliciques, les poudres céramiques, le borate de zinc, le stannate de zinc, l'hydroxystannate de zinc, le phosphate de zinc, le sulfure de zinc, l'oxyde de zinc, l'hydroxyde de magnésium, les hydrotalcites, le carbonate de magnésium, le carbonate de calcium et de magnésium ou le phosphore rouge, où, indépendamment l'un de l'autre, on utilise le composant A en une concentration de 1 à 30 % en poids et le composant B en une concentration de 0,1 à 10 % en poids, dans les deux cas par rapport au mélange à mouler de matière plastique.

- 2. Combinaison d'agents retardateurs de flamme selon la revendication 1, caractérisée en ce que, indépendamment 40 l'un de l'autre, on utilise le composant A en une concentration de 3 à 25 % en poids et le composant B en une concentration de 0,3 à 7 % en poids, dans les deux cas par rapport au mélange à mouler de matière plastique.
- 3. Combinaison d'agents retardateurs de flamme selon la revendication 1 ou 2, caractérisée en ce que R¹ et R² 45 sont identiques ou différents et représentent des groupes alkyle en C_1 - C_6 à chaîne droite ou ramifiée et/ou phényle.
 - 4. Combinaison d'agents retardateurs de flamme seion l'une ou plusieurs des revendications 1 à 3, caractérisée en ce que R¹ et R² sont identiques ou différents et représentent des groupes méthyle, éthyle, n-propyle, isopropyle, n-butyle, tert-butyle, n-pentyle et/ou phényle.
 - 5. Combinaison d'agents retardateurs de flamme selon l'une ou plusieurs des revendications 1 à 4, caractérisée en ce que R³ est le radical méthylène, éthylène, n-propylène, isopropylène, n-butylène, tert-butylène, n-pentylène, n-actylène ou n-dodécylène.
- 6. Combinaison d'agents retardateurs de flamme selon l'une ou plusieurs des revendications 1 à 4, caractérisée en 55 ce que R3 est le radical phénylène ou naphtylène.
 - 7. Combinaison d'agents retardateurs de flamme selon l'une ou plusieurs des revendications 1 à 4, caractérisée en

ce que R³ est le radical méthylphénylène, éthylphénylène, tert-butylphénylène, méthylnaphtylène, éthylnaphtylène ou tert-butylnaphtylène.

- 8. Combinaison d'agents retardateurs de flamme selon l'une ou plusieurs des revendications 1 à 4, caractérisée en ce que R³ est le radical phénylméthylène, phénylène, phénylpropylène ou phénylbutylène.
- 9. Combinaison d'agents retardateurs de flamme selon l'une ou plusieurs des revendications 1 à 8, caractérisée en ce qu'elle contient, en tant qu'autre composant C, des composés azotés.
- 10. Combinaison d'agents retardateurs de flamme selon la revendication 9, caractérisée en ce que, pour ce qui concerne les composés azotés, il s'agit de composés azotés ayant les formules (III) à (VIII) ou de mélange de ceux-ci

$$0 = \bigvee_{N=0}^{R^{10}} \bigvee_{N=0}^{R^{10}}$$

dans lesquelles

5

35

40

45

50

55

 R^5 à R^7 sont des atomes d'hydrogène, des groupes alkyle en C_1 - C_8 , cycloalkyle ou alkylcycloalkyle en C_5 - C_{16} éventuellement substitués par une fonction hydroxy ou hydroxyalkyle en C_1 - C_4 , alcényle en C_2 - C_8 , alcoxy, acyle, acyloxy en C_1 - C_8 , aryle ou arylalkyle en C_6 - C_{12} , - OR^8 et - $N(R^8)R^9$, ainsi que des radicaux N-alicycliques ou N-aromatiques,

 R^8 est un atome d'hydrogène ou un groupe alkyle en C_1 - C_8 , cycloalkyle ou alkylcycloalkyle en C_5 - C_{16} , éventuellement substitué par une fonction hydroxy ou hydroxyalkyle en C_1 - C_4 , alcényle en C_2 - C_8 , alcoxy, acyle, acyloxy en C_1 - C_8 , ou aryle ou arylalkyle en C_6 - C_{12} .

* ,

R9 à R13 sont les mêmes groupes que R8, ainsi que -O-R8,

m et n représentent chacun indépendamment de l'autre 1, 2, 3 ou 4,

X représente des acides pouvant former des adduits avec les triazines (III);

ou encore d'esters aligomères de l'isocyanurate de tris(hydroxyéthyle) et d'acides polycarboxyliques aromatiques, ou de phosphates azotés ayant les formules $(NH_4)_yH_{3-y}PO_4$ ou $(NH_4PO_3)_z$, y valant 1 à 2 et z valant 1 à 10 non

10

5

11. Combinaison d'agents retardateurs de flamme selon la revendication 9 ou 10, caractérisée en ce que, pour ce qui concerne le composant C, il s'agit de la benzoguanamine, de l'isocyanurate de tris(hydroxyéthyle), de l'allantoïne, du glycourile, de la mélamine, du cyanurate de mélamine, du phosphate de mélamine et/ou du pyrophosphate de mélamine.

15

12. Utilisation d'une combinaison d'agents retardateurs de flamme selon l'une ou plusieurs des revendications 1 à 11, pour conférer un finissage ininflammable à des polymères thermoplastiques.

20

13. Utilisation selon la revendication 12, caractérisée en ce que, pour ce qui concerne les polymères thermoplastiques, il s'agit de polystyrène HI (High-Impact, à grande résistance au choc), de poly(oxyde de phénylène), de polyamides, de polyesters, de polycarbonates et de mélanges, ou de mélanges de polymères du type ABS (acrylonitrile-butadiène-styrène) ou PC/ABS (polycarbonate/acrylonitrile-butadiène-styrène).

25

14. Utilisation selon la revendication 13, caractérisée en ce que, pour ce qui concerne les polymères thermoplastiques, il s'agit de polyamide, de polyester et d'ABS.
15. Mélange à mouler de matière plastique à finissage ininflammable, contenant une combinaison d'agents retardateurs de flamme selon l'une ou plusieurs des revendications 1 à 11.

30 16 1

16. Mélange à mouler de matière plastique à finissage ininflammable selon la revendication 15, caractérisé en ce que, pour ce qui concerne les polymères, il s'agit de polyamide, de polyester et/ou d'ABS.

35

40

45

50

Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 1 024 167 A1 (11)

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 02.08.2000 Patentblatt 2000/31

(21) Anmeldenummer: 00100470.4

(22) Anmeldetag: 11.01.2000

(51) Int. Cl.⁷: **C08K 5/5313**, C08K 3/32, C08K 3/34, C08K 5/19, C08K 5/3472, C08K 5/3477

(84) Benannte Vertragsstaaten:

AL LT LV MK RO SI

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Benannte Erstreckungsstaaten:

(30) Priorität: **30.01.1999 DE 19903708**

15.12.1999 DE 19960671

(71) Anmelder: Clariant GmbH 65929 Frankfurt am Main (DE)

(72) Erfinder:

· Schlosser, Elke, Dipl.-Ing. 86163 Augsburg (DE)

· Nass, Bernd, Dipl.-Ing. 86152 Augsburg (DE)

· Wanzke, Wolfgang, Dr. 86405 Meitingen (DE)

(54)Flammschutzmittel-Kombination für thermoplastische Polymere I

(57) Die Erfindung betrifft eine Flammschutzmittel-Kombination für thermoplastische Polymere, die als Komponente A ein Phosphinsäuresalz der Formel (I) und/oder ein Diphosphinsäuresalz der Formel (II) und/oder deren Polymere enthält,

und als Komponente B eine synthetische anorganische Verbindung und/oder ein mineralisches Produkt enthält.

worin

R¹, R²

gleich oder verschieden sind und C1-C6-Alkyl, linear oder verzweigt und/oder Aryl;

 R^3

C₁-C₁₀-Alkylen, linear oder verzweigt, C₆-C₁₀-Arylen, -Alkylarylen oder -Arylalkylen;

Calcium-, Aluminium- und/oder Zink-lonen;

2 oder 3;

1 oder 3;

1 oder 2

bedeuten,

Beschreibung

Die Erfindung betrifft eine Flammschutzmittel-Kombination für thermoplastische Polymere. [0001]

Für thermoplastische Polymere haben sich die Salze von Phosphinsäuren (Phosphinate) als wirksame [0002] flammhemmende Zusätze erwiesen, dies gilt sowohl für die Alkalimetallsalze (DE-A-2 252 258) als auch für die Salze anderer Metalle (DE-A-2 447 727).

Calcium- und Aluminiumphosphinate sind in Polyestern als besonders wirksam beschrieben worden und [0003] beeinträchtigen die Materialeigenschaften der Polymerformmassen weniger als die Alkalimetallsalze (EP-A-0 699 708).

Darüberhinaus wurden synergistische Kombinationen von den genannten Phosphinaten mit bestimmten stickstoffhaltigen Verbindungen gefunden, die in einer ganzen Reihe von Polymeren als Flammschutzmittel effektiver wirken, als die Phosphinate allein (PCT/EP97/01664 sowie DE-A-197 34 437 und DE-A-197 37 727).

Es wurde nun überraschend gefunden, daß die Flammschutzwirkung der verschiedenen Phosphinate in [0005]thermoplastischen Polymeren auch durch Zusätze von kleinen Mengen anorganischer bzw. mineralischer Verbindungen, die keinen Stickstoff enthalten, deutlich verbessert werden kann.

Darüberhinaus wurde gefunden, daß die genannten Zusätze auch die Flammschutzwirkung von Phosphi-[0006] naten in Kombination mit stickstoffhaltigen Synergisten verbessern können.

Gegenstand der Erfindung ist somit eine Flammschutzmittel-Kombination für thermoplastische Polymere, die als Komponente A ein Phosphinsäuresalz der Formel (I) und/oder ein Diphosphinsäuresalz der Formel (II) und/oder deren Polymere enthält,

20

(1) m

30

25

35 **(II)** П

worin

40

 R^1 , R^2 gleich oder verschieden sind und C₁-C₆-Alkyl, linear oder verzweigt und/oder Aryl; \mathbb{R}^3 C₁-C₁₀-Alkylen, linear oder verzweigt, C₆-C₁₀-Arylen, -Alkylarylen oder -Arylalkylen;

Calcium-, Aluminium- und/oder Zink-lonen; M 45

2 oder 3; m n 1 oder 3: X 1 oder 2

bedeuten,

und als Komponente B eine synthetische anorganische Verbindung und/oder ein mineralisches Produkt enthält.

Bevorzugt sind R¹, R² gleich oder verschieden und bedeuten C₁-C₆-Alkyl, linear oder verzweigt und/oder [8000] Phenyl.

Besonders bevorzugt sind R¹, R² gleich oder verschieden und bedeuten Methyl, Ethyl, n-Propyl, iso-Propyl, [0009] n-Butyl, tert.-Butyl, n-Pentyl und/oder Phenyl.

Bevorzugt bedeutet R³ Methylen, Ethylen, n-Propylen, iso-Propylen, n-Butylen, tert.-Butylen, n-Pentylen, n-[0010] Octylen oder n-Dodecylen.

Bevorzugt bedeutet R³ auch Phenylen oder Naphthylen. [0011]

- [0012] Bevorzugt bedeutet R³ auch Methyl-phenylen, Ethyl-phenylen, tert.-Butylphenylen, Methyl-naphthylen, Ethyl-naphthylen oder tert.-Butylnaphthylen.
- [0013] Bevorzugt bedeutet R³ auch Phenyl-methylen, Phenyl-ethylen, Phenyl-propylen oder Phenyl-butylen.
- [0014] Bevorzugt handelt es sich bei der Komponente B um eine Sauerstoffverbindung des Siliciums, um Magnesiumverbindungen, um Metallcarbonate von Metallen der zweiten Hauptgruppe des Periodensystems, um roten Phosphor, um Zink- oder Aluminiumverbindungen.
 - [0015] Bevorzugt handelt es sich bei den Sauerstoffverbindungen des Siliciums um Salze und Ester der Orthokieselsäure und deren Kondensationsprodukte, um Silikate, Zeolithe und Kieselsäuren, um Glas-, Glas-Keramik oder Keramik-Pulver.
- 10 [0016] Bevorzugt handelt es sich bei den Magnesiumverbindungen um Magnesiumhydroxid, Hydrotalcite, Magnesium-Carbonate oder Magnesium-Calcium-Carbonate.
 - [0017] Bevorzugt handelt es sich bei rotem Phosphor um elementaren roten Phosphor oder um Zubereitungen, in denen der Phosphor oberflächlich mit niedermolekularen, flüssigen Substanzen wie Silikonöl, Paraffinöl oder Estern der Phthalsäure oder Adipinsäure oder mit polymeren oder oligomeren Verbindungen, z.B. mit Phenolharzen oder Aminoplasten sowie Polyurethanen beschichtet ist.
 - [0018] Bevorzugt handelt es sich bei den Zinkverbindungen um Zinkoxid, -stannat, -hydroxystannat, -phosphat, -borat oder sulfide.
 - [0019] Bevorzugt handelt es sich bei den Aluminiumverbindungen um Aluminiumhydroxid oder -phosphat.
 - [0020] Bevorzugt enthält die erfindungsgemäße Flammschutzmittel-Kombination als weitere Komponente C Stickstoffverbindungen.
 - [0021] Bevorzugt handelt es sich bei den Stickstoffverbindungen um solche der Formeln (III) bis (VIII) oder Gemische davon

55

50

25

30

35

5
$$R^{5}$$
 R^{11}
 R^{9}
 R^{10}
 R^{10}

worin

40

50

R⁵ bis R⁷ Wasserstoff, C₁-C₈-Alkyl, C₅-C₁₆-Cycloalkyl oder -Alkylcycloalkyl, möglicherweise substituiert mit einer Hydroxy- oder einer C₁-C₄-Hydroxyalkyl-Funktion, C₂-C₈-Alkenyl, C₁-C₈-Alkoxy, -Acyl, -Acyloxy, C₆-C₁₂-

Aryl oder -Arylalkyl, -OR⁸ und -N(R⁸)R⁹, sowie N-alicyclisch oder N-aromatisch,

R⁸ Wasserstoff, C₁-C₈-Alkyl, C₅-C₁₆-Cycloalkyl oder -Alkylcycloalkyl, möglicherweise substituiert mit einer Hydroxy- oder einer C₁-C₄-Hydroxyalkyl-Funktion, C₂-C₈-Alkenyl, C₁-C₈-Alkoxy, -Acyl, -Acyloxy oder C₆-45 C₁₂-Aryl oder -Arylalkyl,

R⁹ bis R¹³ die gleichen Gruppen wie R⁸ sowie -O-R⁸, unabhängig voneinander 1, 2, 3 oder 4, m und n X

Säuren, die Addukte mit Triazinverbindungen (III) bilden können,

bedeuten:

oder um oligomere Ester des Tris(hydroxyethyl)isocyanurats mit aromatischen Polycarbonsäuren oder um stickstoffhaltige Phosphate der Formeln $(NH_4)_y$ H_{3-y} PO_4 bzw. $(NH_4 PO_3)_z$, mit y gleich 1 bis 3 und z gleich 1 bis 10.000. Bevorzugt handelt es sich bei der Komponente C um Benzoguanamin, Tris(hydroxyethyl)isocyanurat, Allantoln, Glycouril, Melamin, Melamincyanurat, Melaminphosphat, Dimelaminphosphat und/oder Melaminpyrophosphat. Die Erfindung betriffi auch die Verwendung der erfindungsgemäßen Flammschutzmittel-Kombination zur flammfesten Ausrüstung von thermoplastischen Polymeren. Unter thermoplastischen Polymeren werden laut Hans Domininghaus in "Die Kunststoffe und ihre Eigenschaften", 5. Auflage (1998), S. 14, Polymere verstanden, deren Mole-

külketten keine oder auch mehr oder weniger lange und in der Anzahl unterschiedliche Seitenverzweigungen aufweisen, die in der Wärme erweichen und nahezu beliebig formbar sind.

[0024] Bevorzugt handelt es sich bei den thermoplastischen Polymeren um Polystyrol-HI (High-Impact), Polyphenylenether, Polyamide, Polyester, Polycarbonate und Blends oder Polymerblends vom Typ ABS (Acrylnitril-Butadien-Styrol) oder PC/ABS (Polycarbonat/ Acrylnitril-Butadien-Styrol). Polystyrol-HI ist ein Polystyrol mit erhöhter Schlagzähigkeit.

[0025] Besonders bevorzugte thermoplastische Polymere sind Polyamide, Polyester und ABS.

[0026] Thermoplastische Polymere, die die erfindungsgemäßen Flammschutzmittel-Kombinationen und gegebenenfalls Füll- und Verstärkungsstoffe und/oder andere Zusätze, wie unten definiert, enthalten, werden im folgenden als Kunststoff-Formmassen bezeichnet.

[0027] Bevorzugt werden für die genannte Verwendung unabhängig voneinander die Komponente A in einer Konzentration von 1 bis 30 Gew.-% und die Komponente B in einer Konzentration von 0,1 bis 10 Gew.-%, jeweils bezogen auf die Kunststoff-Formmasse, eingesetzt.

[0028] Die Erfindung betrifft schließlich auch eine flammfest ausgerüstete Kunststoff-Formmasse, enthaltend die erfindungsgemäße Flammschutzmittel-Kombination.

[0029] Bevorzugt handelt es sich bei dem Polymeren der flammfest ausgerüsteten Kunststoff-Formmasse um Polyamid Polyester und ABS.

[0030] Bei der bereits weiter vorne genannten Komponente B handelt es sich um eine synthetische anorganische Verbindung und/oder um ein mineralisches Produkt aus den nachfolgend genannten Gruppen:

[0031] Sauerstoffverbindungen des Siliciums, wie Salze und Ester der Orthokieselsäure und deren Kondensationsprodukte (Silikate). Eine Übersicht über geeignete Silikate wird beispielsweise in Riedel, Anorganische Chemie, 2.Aufl.,
S. 490 - 497, Walter de Gruyter, Berlin-New York 1990 gegeben. Von besonderem Interesse sind dabei Phyllosilikate
(Blatt-Silikate, Schichtsilikate) wie etwa Talk, Kaolinit und Glimmer und die Gruppe der Bentonite und Montmorinollite,
sowie Tektosilikate (Gerüstsilikate) wie z.B. die Gruppe der Zeolithe. Daneben kann auch Siliciumdioxid in Form von
hochdisperser Kieselsäure eingesetzt werden.

[0032] Die Kieselsäure kann dabei nach einem pyrogenen oder nach einem naßchemischen Verfahren hergestellt sein. Die genannten Silikate bzw. Kieselsäuren können zur Erzielung bestimmter Oberflächeneigenschaften gegebenenfalls mit organischen Modifizierungsmitteln ausgerüstet sein.

[0033] Ebenfalls als Komponente B eingesetzt werden können Glas-, Glas-Keramik- und Keramik-Pulver unterschiedlicher Zusammensetzung, wie sie z. B. in "Ullmann's Encyclopedia of Industrial Chemistry", 5th Edition, Vol. A 12 (1989), S. 372-387 (Glas) bzw. S. 443-448 (Glas-Keramik) beschrieben sind. Entsprechende Keramische Materialien sind in Vol. 6 (1986) auf S. 12-18 (Commercial Ceramic Clays) beschrieben. Es können sowohl Gläser und/oder Keramiken mit definiertem Schmelzpunkt verwendet werden, als auch Mischungen von Produkten mit einem breiten Schmelzbereich, etwa Keramik-Fritten, wie sie zur Herstellung von Glasuren eingesetzt werden. Solche Fritten oder Mischungen mehrerer Fritten können auch zusätzlich Glas-, Basalt- oder keramische Fasern enthalten. Mischungen dieser Art sind z. B. in der EP 0 287 293 B1 beschrieben.

[0034] Ebenfalls als Komponente B eingesetzt werden können Magnesiumverbindungen, wie Magnesiumhydroxid sowie Hydrotalcite der allgemeinen Formel

 $Mg_{(1-a)}AI_a(OH)_2 A_{a/2} \cdot pH_2O$, wobei

A für die Anionen SO_4^{2-} oder CO_3^{2-} steht,

- a größer 0 und kleiner/gleich 0,5 ist und
- p die Anzahl der Wassermoleküle des Hydrotalcits bedeuten und einen Wert
- zwischen 0 und 1 darstellt.

40

55

[0035] Hydrotalcite, bei denen A das Anion CO_3^{2-} repräsentiert, und $0.2 \le a \le 0.4$ gilt, sind bevorzugt. Die Hydrotalcite können sowohl natürliche Hydrotalcite, die gegebenfalls durch entsprechende chemische Behandlung modifiziert sein können, als auch synthetisch hergestellte Produkte sein.

[0036] Ebenfalls als Komponente B eingesetzt werden können Metallcarbonate von Metallen der zweiten Hauptgruppe des Periodensystems und deren Mischungen. Geeignet sind Magnesium-Calcium-Carbonate (b₁) der allgemeinen Formel

 $Mg_bCa_c(CO_3)_{b+c}$ • q H_2O , wobei

b und c Zahlen von 1 bis 5 bedeuten und b/c \geq 1 gilt und q \geq 0 ist, sowie basische Magnesium-Carbonate (b₂) der allgemeinen Formel

 $Mg_d(CO_3)_e(OH)_{2d-2e} \cdot r H_2O$, wobei

d eine Zahl von 1 bis 6, e eine Zahl größer als 0 und kleiner als 6 bedeutet und d/e >1gilt und $r \ge 0$ ist.

Besonders geeignet sind Mischungen aus b_1 und b_2 , wobei das Mengenverhältnis von b_1 : b_2 im Bereich von 1:1 bis 3:1 liegt.

Die Magnesium-Calcium-Carbonate b_1 und basischen Magnesium-Carbonate b_2 können sowohl in wasserhaltiger als auch wasserfreier Form und mit oder ohne Oberflächenbehandlung eingesetzt werden. Zu diesen Verbindungstypen gehören die natürlich vorkommenden Mineralien wie Huntit (b_1) und Hydromagnesit (b_2) und deren Mischungen.

[0037] Ebenfalls als Komponente B eingesetzt werden können Zinkverbindungen wie Zinkoxid, -stannat, -hydroxy-stannat, -phosphate und -sulfide sowie Zinkborate der allgemeinen Formel f ZnO \cdot g B₂O₃ \cdot h H₂O, wobei f, g und h Werte zischen 0 und 14 bedeuten.

[0038] Die erfindungsgemäßen Flammschutzmittel-Kombinationen können gegebenenfalls als Komponente C eine Stickstoffverbindung der Formel (III) bis (VIII) oder ein Gemisch der durch die Formeln bezeichneten Verbindungen, wie sie in der DE-A-197 37 727 beschrieben sind, und auf die hier ausdrücklich Bezug genommen wird, enthalten.

[0039] Zusätzlich zu den oben genannten können als Komponente C oligomere Ester des Tris(hydroxyethyl)isocyanurats mit aromatischen Polycarbonsäuren, wie sie in EP-A 584 567 beschrieben sind, und stickstoffhaltige Phosphate der Formeln (NH₄)_y H_{3-y} PO₄ bzw. (NH₄ PO₃)_z, wobei y Zahlenwerte von 1 bis 3 annehmen kann und z eine beliebig große Zahl ist (etwa 1 bis 10.000), typischerweise auch als Durchschnittswert einer Kettenlängenverteilung dargestellt, eingesetzt werden.

[0040] Geeignete Polymere, in denen die erfindungsgemäße Flammschutzmittel-Kombination wirksam eingesetzt werden kann, sind auch in der internationalen Patentanmeldung PCT/WO 97/01664 auf den Seiten 6 bis 9 beschrieben, worauf hier ausdrücklich Bezug genommen wird.

[0041] Im folgenden umfaßt der Begriff "Phosphinsäuresalz" Salze der Phosphin- und Diphosphinsäuren und deren Polymere.

[0042] Die Phosphinsäuresalze, die in wäßrigem Medium hergestellt werden, sind im wesentlichen monomere Verbindungen. In Abhängigkeit von den Reaktionsbedingungen können unter Umständen auch polymere Phosphinsäuresalze entstehen.

25 [0043] Geeignete Phosphinsäuren als Bestandteil der Phosphinsäuresalze sind beispielsweise:

Dimethylphosphinsäure, Ethyl-methylphosphinsäure, Diethylphosphinsäure, Methyl-n-propyl-phosphinsäure, Methylphosphinsäure, Methylphosphinsäure, Diphenylphosphinsäure.

[0044] Die Salze der Phosphinsäuren gemäß der Erfindung können nach bekannten Methoden hergestellt werden, wie sie beispielsweise in der EP-A-699 708 näher beschrieben sind. Die Phosphinsäuren werden dabei beispielsweise in wäßriger Lösung mit Metallcarbonaten, Metallhydroxiden oder Metalloxiden umgesetzt.

[0045] Die Menge des den Polymeren zuzusetzenden Phosphinsäuresalzes kann innerhalb weiter Grenzen variieren. Im allgemeinen verwendet man 1 bis 30 Gew.-%, bezogen auf die Kunststoff-Formmasse. Die optimale Menge hängt von der Natur des Polymeren, der Art der Komponenten B und gegebenenfalls C und vom Typ des eingesetzten Phosphinsäuresalzes selbst ab. Bevorzugt sind 3 bis 25, insbesondere 5 bis 20 Gew.-%, bezogen auf die Kunststoff[0046] Die vorgenannten Phosphinsäuresalze Litter et au.

[0046] Die vorgenannten Phosphinsäuresalze können für die erfindungsgemäße Flammschutzmittel-Kombination je nach Art des verwendeten Polymeren und der gewünschten Eigenschaften in verschiedener physikalischer Form angewendet werden. So können die Phosphinsäuresalze z.B. zur Erzielung einer besseren Dispersion im Polymeren zu einer feinteiligen Form vermahlen werden. Falls erwünscht können auch Gemische verschiedener Phosphinsäuresalze gemäß der Ertieden ein die Phosphinsäuresalze gemäß der Ertieden ein der Ertieden eine Ertieden eine der Ertieden eine Ertieden eine

[0047] Die Phosphinsäuresalze gemäß der Erfindung sind thermisch stabil, zersetzen die Polymeren weder bei der Verarbeitung noch beeinflussen sie den Herstellprozess der Kunststoff-Formmasse. Die Phosphinsäuresalze sind unter den üblichen Herstellungs- und Verarbeitungsbedingungen für thermoplastische Polymere nicht flüchtig.

[0048] Die Menge der den Polymeren zuzusetzenden erfindungsgemäßen anorganischen Verbindungen (Komponente B) kann innerhalb weiter Grenzen variieren. Im allgemeinen verwendet man 0,1 bis 10 Gew.-%, bezogen auf die Kunststoff-Formmasse. Die optimale Menge hängt von der Natur des Polymeren, der Art des eingesetzten Phosphinsäuresalzes (Komponente A), der gegebenenfalls eingesetzten stickstoffhaltigen Verbindung (Komponente C) sowie möglich, eine Kombination der genannten anorganischen Verbindungen zuzusetzen.

[0049] Die Menge der den Polymeren zuzusetzenden Stickstoffverbindung (Komponente C) kann innerhalb weiter Grenzen variieren. Im allgemeinen verwendet man 1 bis 30 Gew.-% bezogen auf die Kunststoff-Formmasse. Die optimale Menge hängt von der Natur des Polymeren, der Art des eingesetzten Phosphinsäuresalzes (Komponente A), der Art der eingesetzten anorganischen Verbindung (Komponente B) sowie vom Typ der Stickstoffverbindung selbst ab. [0050] Die flammhemmenden Komponenten A. R. ...

[0050] Die flammhemmenden Komponenten A, B und gegebenenfalls C können in thermoplastische Polymere ein-

20

gearbeitet werden, indem z. B. alle Bestandteile als Pulver und/oder Granulat in einem Mischer vorgemischt und anschließend in einem Compoundieraggregat (z. B. einem Doppel-schneckenextruder) in der Polymerschmelze homogenisiert werden. Die Schmelze wird üblicherweise als Strang abgezogen, gekühlt und granuliert. Die Komponenten A, B (und gegebenenfalls C) können auch separat über eine Dosieranlage direkt in das Compoundieraggregat eingebracht werden.

[0051] Es ist ebenso möglich, die flammhemmenden Zusätze A, B und C einem fertigen Polmergranulat bzw. -pulver beizumischen und die Mischung direkt auf einer Spritzgußmaschine zu Formteilen zu verarbeiten.

[0052] Bei Polyestern beispielsweise können die flammhemmenden Zusätze A, B und C auch bereits während der Polykondensation in die Polyestermasse gegeben werden.

[0053] Den Formmassen können neben der erfindungsgemäßen flammhemmenden Kombination aus A, B und gegebenenfalls C auch Füll- und Verstärkungsstoffe wie Glasfasern, Glaskugeln oder Mineralien wie Kreide zugesetzt werden. Zusätzlich können die Formmassen noch andere Zusätze wie Antioxidantien, Lichtschutzmittel, Gleitmittel, Farbmittel, Nukleierungsmittel oder Antistatika enthalten. Beispiele für die verwendbaren Zusätze sind in EP-A-584 567 angegeben.

15 [0054] Die flammwidrigen Kunststoff-Formmassen eignen sich zur Herstellung von Formkörpern, Filmen, Fäden und Fasern, z. B. durch Spritzgießen, Extrudieren oder Verpressen.

Beispiele

1. Eingesetzte Komponenten

[0055] .

25

30

35

40

45

50

*5*5

Handelsübliche Polymere (Granulat):

ABS:

®Novodur P2X (Fa. Bayer AG, D) enthält keine Füll- bzw. Verstärkungsstoffe.

Polyamid 6 (PA 6-GV):

®Durethan BKV 30 (Fa. Bayer AG, D) enthält 30 % Glasfasern.

Polybutylenterephthalat (PBT-GV):

[®]Celanex 2300 GV1/30 (Fa. Hoechst [®]Celanese, USA) enthält 30 % Glasfasern.

Flammschutzmittelkomponenten (pulverförmig):

Komponente A:

Aluminiumsalz der Diethylphosphinsäure, im folgenden als DEPAL bezeichnet. Zinksalz der Diethylphosphinsäure, im folgenden als DEPZn bezeichnet.

Komponente B:

Aluminiumphosphat, Fa. Riedel de Haen, DE CEEPREE® Microfine, Fa. Brunner Mond & Co. Ltd., UK DHT-4A (Dihydrotalcit) Fa. Kyowa Chemical Industry, JP DHT Exm 697-2 (Dihydrotalcit), Fa. Süd-Chemie AG, DE Exolit® RP 605 (roter Phosphor), Fa. Clariant GmbH, DE FIREBRAKE® ZB (Zinkborat), Fa. US Borax & Chemical Corporation, USA Martinal OL 104 (Aluminiumhydroxid), Fa. Martinswerke, DE Securoc® C 10N (Huntit/Hydromagnesit), Fa. Incemin AG, CH Zinkoxid, Fa. MERCK, DE Zinkstannat, Fa. Storey + Co., UK

Komponente C:

Melamine Grade 003 (Melamin), Fa. DSM, NL Melapur[®] MC (Melamincyanurat), Fa. DSM Melapur, NL Melapur[®] MP (Melaminphosphat), Fa. DSM Melapur, NL

2. Herstellung, Verarbeitung und Prüfung von flammhemmenden Kunststoff-Formmassen

[0056] Die Flammschutzmittelkomponenten wurden in dem in den Tabellen angegebenen Verhältnis mit dem Polymergranulat und evtl. Additiven vermischt und auf einem Doppelschnecken-Extruder (Typ Leistritz LSM 30/34) bei Temperaturen von 190 bis 225 °C (ABS) bzw. von 230 bis 260 °C (PBT-GV) bzw. von 240 bis 280 °C (PA 6-GV) eingearbeitet. Der homogenisierte Polymerstrang wurde abgezogen, im Wasserbad gekühlt und anschließend granuliert.

[0057] Nach ausreichender Trocknung wurden die Formmassen auf einer Spritzgießmaschine (Typ Toshiba IS 100 EN) bei Massetemperaturen von 210 bis 240 °C (ABS) bzw. von 240 bis 270 °C (PBT-GV) bzw. von 260 bis 280 °C (PA 6-GV) zu Prüfkörpern verarbeitet und anhand des UL 94-Tests (Underwriter Laboratories) auf Flammwidrigkeit geprüft und klassifiziert. Die Brennbarkeit der Prüfkörper wurde durch Bestimmung des Sauerstoffindex (LOI nach ASTM D 2863-77) beurteilt.

[0058] Tabelle 1 zeigt Vergleichsbeispiele, in denen das Aluminium- bzw. Zinksalz der Diethylphosphinsäure (DEPAL bzw. DEPZn) als alleinige Flammschutzmittelkomponenten in glasfaserverstärktem PBT bzw. PA bzw. in ABS geprüft wurden.

[0059] In Tabelle 2 sind Vergleichsbeispiele mit stickstoffhaltigen Verbindungen (Komponente C) allein bzw. in Kombination mit in geringen Mengen wirksamen Verbindungen (Komponente B) in glasfaserverstärktem PBT bzw. in ABS widergegeben.

[0060] Tabelle 3 zeigt Vergleichsbeispiele, in denen das Aluminium- bzw. Zinksalz der Diethylphosphinsäure in Kombination mit stickstoffhaltigen Synergisten in glasfaserverstärktem PBT bzw. PA geprüft wurden, wie in der PCT/WO 97/01664 beschrieben.

[0061] Die Ergebnisse der Beispiele, in denen die Flammschutzmittel-Kombination gemäß der Erfindung eingesetzt wurden, sind in den Tabellen 4 bis 8 aufgelistet. Alle Mengen sind als Gew.-% angegeben und beziehen sich auf die Kunststoff-Formmasse einschließlich der Flammschutzmittel-Kombination.

Fig. [0062] Aus den Beispielen geht hervor, daß die erfindungsgemäßen Zusätze (Komponente B) in der Kombination mit Metallsalzen der Phosphinsäuren eine eindeutige Steigerung des Flammschutzeffekts bewirken, wenn sie in entsäuren und stickstoffhaltigen Verbindungen (Komponenten A+C) werden durch Zugabe einer gewissen Menge an Komponente B in ihrer flammhemmenden Wirksamkeit erheblich verbessert.

[0063] Die Flammschutzmittelmenge bezogen auf die Kunststoff-Formmasse, die nötig ist, um eine V-0, V-1 bzw. V-2 Einstufung zu erreichen, kann in der Kombination A+B gegenüber A allein bzw. A+B+C gegenüber A+C verringert werden. Zudem wird bei gleicher Flammschutzmittelmenge bezogen auf die Kunststoff-Formmasse eine Erhöhung des Sauerstoff-Index (LOI) in der erfindungsgemäßen Kombination gegenüber den Vergleichsbeispielen festgestellt.

Tabelle 1

Polymer	DEDAL tota		faserverstärktem PBT, PA b	
rolymer	DEPAL [%]	DEPZn [%]	Klasse nach UL 94 (1,6 mm)	LOI [% O ₂]
PBT-GV	15		V-1	·
PBT-GV	17		V-1	
PBT-GV	20		V-O	
PBT-GV		20	V-2	29,0
PBT-GV		25	V-2	29,5
PA 6-GV	20		V-2	33,5
PA 66-GV	20		n.k.*	
PA 66-GV	25		n.k.*	
PA 66-GV	30		V-2	25,5
ABS	26		n.k*	33,0
ABS	30		n.k*	37,5

^{*} n.k. = nicht klassifizierbar

8

35

40

45

50

Tabelle 2

-					
Polymer	Melamincyanurat [%]	Melaminphosphat [%]	RP 605	Klasse nach UL 94 (1,6 mm)	LOI [% O ₂]
PBT-GV	20			n.k.*	23,5
PBT-GV		20		n.k.*	25,0
PBT-GV		15	3	V-2	26,0
ABS	30		10 mg 10	n.k.*	21,0
ABS		30		· n.k.*	21,5

^{*} n.k. = nicht klassifizierbar

·

Tabelle 3

		·	bzw. PA 6 bzw.	PA 66.		
Polymer	DEPAL [%]	DEPZn [%]	Melamincyanu- rat [%]	Melaminphos- phat [%]	Klasse nach UL 94 (1,6 mm)	LOI [% O ₂]
PBT-GV	8		8		V-2	
PBT-GV	10		5		V-1	37,5
PBT-GV	10		10		V-0 -	40,0
PBT-GV		10	10		V-2	27,0
PA 6-GV	10			10	V-1	35,0
PA 66-GV	20		10		n.k.*	

^{*} n.k. = nicht klassifizierbar

40

5

10

15

20

25

30

35

Tabelle 4

45	Erfindungsgemäß. Phosphinate in Kombination mit in geringen Mengen wirksamen Verbindungen in glasfaserver- stärktem PBT.										
50	DEPAL [%]	DEPZn	Ceepre e [%]	DHT Exm [%]	Zinkbo- rat [%]	Zinks- tannat [%]	Al- hydro- xid [%]	Al-phos- phat [%]	RP 605 [%]	Klasse nach UL 94 (1,6	LOI [% O ₂]
30	15	1	4							mm)	
	15		1			<u> </u>				V-0	38
	15			1				<u> </u>		V-0	
55	15				2					V-0	
	15					1				V-0	38,5
	12						. 3			V-0	39,0

Tabelle 4 (fortgesetzt)

				oination mit st	in geringer ärktem PB	i Wengen T.	wirksamen	Verbindun	gen in glas	staserve
DEPAL [%]	DEPZn	Ceepre e [%]	DHT Exm [%]	Zinkbo- rat [%]	Zinks- tannat [%]	Al- `hydro- xid [%]	Al-phos- phat [%]	RP 605 [%]	Klasse nach UL 94 (1,6 mm)	LOI [9 O ₂]
14							1		V-1	42,0
	15							3	V-O	33,5

Tabelle 5

\vdash		emäß. DEPAL		PA	6 bzw. PA 6	86.			
	Polymer	DEPAL [%]	Al-phos- phat [%]	Ceepree [%]	Securoc C [%]	Zinkborat [%]	Zinkoxid [%]	Klasse nach UL 94 (1,6 mm)	LOI [% O ₂
	PA 6-GV	18	2					V-0	40,0
	PA 6-GV	18		2				V-1	
	PA 6-GV	18			2				35,0 ———
	PA 6-GV	18						V-1	45,0
	PA 6-GV					2		V-0	37,0
-		18					2	V-0	37,0
	PA 66-GV	22		3				V-1	
F	PA 66-GV	13,5				1,5			41,0
F	PA 66-GV	16						V-1	36,5
					1	4		V-0	

Tabelle 6

DEPAL [%]	DUT 44 TO/3			geringen Menge	- wiredainen	verbindungen il	n ABS.
25	DHT-4A [%]	RP 605 [%]	Zinkborat [%]	Zinkoxid [%]	Zinkstannat [%]	Klasse nach UL 94 (1,6 mm)	LOI [% O ₂
25		1				V-1	38,5
13		2					38,5
25						V-1	41,0
23			1	I		V-1	40,0
25							40,0
25			······································			V-1	35,0
25					1	V-1	47,0

Tabelle 7

Erfindungsg	emäß. DEPA				Verbindunge rverstärktem		geringen Mer	ngen wirksa-
DEPAL [%]	Melamin- cyanurat [%]	Melamin [%]	Al-phos- phat [%]	Securoc C [%]	Zinkborat [%]	Zinkstan- nat [%]	Klasse nach UL 94 (1,6 mm)	LOI [% O ₂]
10	3			1			V-0	36,0
10	4	•			1		V-0	37,5
10	4			-		1	V-0	35,0
9		4	2				V-0	48,0

Tabelle 8

Erfindungs	gemäß. DE		oination mit s nen Verbind		_		-	ingen Meng	en wirksa
Polymer	DEPAL [%]	Melamin [%]	Melamin- cyanurat [%]	Mel- amin- phospha t [%]	Al-phos- phat [%]	Ceepree [%]	Zinkbo- rat [%]	Klasse nach UL 94 (1,6 mm)	LOI [% O ₂]
PA 6-GV	10	5			5			V-0'	34,0
PA 6-GV	9			9		2		V-0*	27,0
PA 66-GV	14	8,5					2,5	V-0 **	36,0
PA 66-GV	13		13			4		V-0 -	33,5

Patentansprüche

1. Flammschutzmittel-Kombination für thermoplastische Polymere, die als Komponente A ein Phosphinsäuresalz der Formel (I) und/oder ein Diphosphinsäuresalz der Formel (II) und/oder deren Polymere enthält,

$$\begin{bmatrix} R^1 & 0 \\ R^2 & P & 0 \end{bmatrix} \qquad M^{m+} \tag{I}$$

$$\begin{bmatrix}
O & O & O & O \\
O & P & R & P & O \\
I & 1 & R & P
\end{bmatrix}$$

$$M_{X}^{m+}$$
(II)

worin

 R^1 , R^2 gleich oder verschieden sind und C_1 - C_6 -Alkyl, linear oder verzweigt und/oder Aryl; C_1 - C_{10} -Alkylen, linear oder verzweigt, C_6 - C_{10} -Arylen, -Alkylarylen oder - Arylalkylen; C_6 - C_{10} - C_{1

bedeuten,

5

15

25

40

45

50

und als Komponente B eine synthetische anorganische Verbindung und/oder ein mineralisches Produkt enthält.

- 2. Flammschutzmittel-Kombination nach Anspruch 1, dadurch gekennzeichnet, daß R^1 , R^2 gleich oder verschieden sind und C_1 - C_6 -Alkyl, linear oder verzweigt und/oder Phenyl bedeuten.
- 3. Flammschutzmittel-Kombination nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß R¹, R² gleich oder verschieden sind und Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, tert.-Butyl, n-Pentyl und/oder Phenyl bedeuten.
- 4. Flammschutzmittel-Kombination nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß R³ Methylen, Ethylen, n-Propylen, iso-Propylen, n-Butylen, tert.-Butylen, n-Pentylen, n-Octylen oder n-Dodecylen bedeutet.
 - 5. Flammschutzmittel-Kombination nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß R³ Phenylen oder Naphthylen bedeutet.
 - 6. Flammschutzmittel-Kombination nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß R³ Methyl-phenylen, Ethyl-phenylen, tert.-Butylphenylen, Methyl-naphtthylen, Ethyl-naphthylen oder tert.-Butylnaphthylen bedeutet.
- 7. Flammschutzmittel-Kombination nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß R³ Phenyl-methylen, Phenyl-ethylen, Phenylpropylen oder Phenyl-butylen bedeutet.
- 8. Flammschutzmittel-Kombination nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß es sich bei der Komponente B um eine Sauerstoffverbindung des Siliciums, um Magnesiumverbindungen, um Metallcarbonate von Metallen der zweiten Hauptgruppe des Periodensystems, um roten Phosphor, um Zink- oder Aluminiumverbindungen handelt.
 - 9. Flammschutzmittel-Kombination nach Anspruch 8, dadurch gekennzeichnet, daß es sich bei den Sauerstoffverbindungen des Siliciums um Salze und Ester der Orthokieselsäure und deren Kondensationsprodukte, um Silikate, Zeolithe und Kieselsäuren, um Glas-, Glas-Keramik oder Keramik-Pulver handelt.
 - 10. Flammschutzmittel-Kombination nach Anspruch 8, dadurch gekennzeichnet, daß es sich bei dem Magnesiumverbindungen um Magnesiumhydroxid, Hydrotalcite, Magnesium-Carbonate oder Magnesium-Calcium-Carbonate handelt.
 - 11. Flammschutzmittel-Kombination nach Anspruch 8, dadurch gekennzeichnet, daß es sich bei den Zinkverbindungen um Zinkoxid, -stannat, -hydroxystannat, -phosphat, -borat oder -sulfide handelt.
 - 12. Flammschutzmittel-Kombination nach einem oder mehreren der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß es sich bei den Aluminiumverbindungen um Aluminiumhydroxid oder -phosphat handelt.
 - 13. Flammschutzmittel-Kombination nach einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß sie als weitere Komponente C Stickstoffverbindungen enthält.
- 14. Flammschutzmittel-Kombination nach Anspruch 13, dadurch gekennzeichnet, daß es sich bei den Stickstoffverbindungen um solche der Formeln (III) bis (VIII) oder Gemische davon

$$\begin{array}{c}
R^9 \\
N-C-N
\end{array}$$

$$\begin{array}{c}
R^{10} \\
R^1
\end{array}$$

40 worin

 R^8

30

45

55

 R^5 bis R^7 Wasserstoff, C_1 - C_8 -Alkyl, C_5 - C_{16} -Cycloalkyl oder -Alkylcycloalkyl, möglicherweise substituiert mit einer Hydroxy- oder einer C_1 - C_4 -Hydroxyalkyl-Funktion, C_2 - C_8 -Alkenyl, C_1 - C_8 -Alkoxy, -Acyloxy, C_6 - C_{12} -Aryl oder -Arylalkyl, -OR 8 und -N(R^8) R^9 , sowie N-alicyclisch oder N-aromatisch,

Wasserstoff, C₁-C₈-Alkyl, C₅-C₁₆-Cycloalkyl oder -Alkylcycloalkyl, möglicherweise substituiert mit einer Hydroxy- oder einer C₁-C₄-Hydroxyalkyl-Funktion, C₂-C₈-Alkenyl, C₁-C₈-Alkoxy, -Acyl, -Acyl

loxy oder C₆-C₁₂-Aryl oder -Arylalkyl,

R⁹ bis R¹³ die gleichen Gruppen wie R⁸ sowie -O-R⁸, m und n unabhängig voneinander 1, 2, 3 oder 4,

50 X Säuren, die Addukte mit Triazinverbindungen (III) bilden können,

bedeuten;

oder um oligomere Ester des Tris(hydroxyethyl)isocyanurats mit aromatischen Polycarbonsäuren oder um stickstoffhaltige Phosphate der Formeln $(NH_4)_y H_{3-y} PO_4$ bzw. $(NH_4 PO_3)_z$, mit y gleich 1 bis 2 und z gleich 1 bis 10.000 handelt.

15. Flammschutzmittel-Kombination nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß es sich bei der Komponente C um Benzoguanamin, Tris(hydroxyethyl)isocyanurat, Allantoin, Glycouril, Melamin, Melamincyanurat, Mel-

aminphosphat, Dimelaminphosphat und/oder Melaminpyrophosphat handelt.

- 16. Verwendung einer Flammschutzmittel-Kombination gemäß einem oder mehreren der Ansprüche 1 bis 15 zur flammfesten Ausrüstung von thermoplastischen Polymeren.
- 17. Verwendung nach Anspruch 16, dadurch gekennzeichnet, daß es sich bei den thermoplastischen Polymeren um Polystyrol-HI (High-Impact), Polyphenylenether, Polyamide, Polyester, Polycarbonate und Blends oder Polymerblends vom Typ ABS (Acrylnitril-Butadien-Styrol) oder PC/ABS (Polycarbonat/ Acrylnitril-Butadien-Styrol) handelt.
- 18. Verwendung nach Anspruch 16, dadurch gekennzeichnet, daß es sich bei den thermoplastischen Polymeren um Polyamid, Polyester und ABS handelt.
 - 19. Verwendung einer Flammschutzmittel-Kombination gemäß einem oder mehreren der Ansprüche 16 bis 18, dadurch gekennzeichnet, daß unabhängig voneinander die Komponente A in einer Konzentration von 1 bis 30 Gew.-% und die Komponente B in einer Konzentration von 0,1 bis 10 Gew.-%, jeweils bezogen auf die Kunststoff-Formmasse, eingesetzt wird.
 - 20. Flammfest ausgerüstete Kunststoff-Formmasse, enthaltend eine Flammschutzmittel-Kombination gemäß einem oder mehreren der Ansprüche 1 bis 15.
 - 21. Flammfest ausgerüstete Kunststoff-Formmasse gemäß Anspruch 20, dadurch gekennzeichnet, daß es sich bei dem Polymeren um Polyamid, Polyester und/oder ABS handelt.

25

20

15

5

30

35

40

45

50

EUROPÄISCHER RECHERCHENBERICHT

EP 00 10 0470

	EINSCHLAGIGE DO	EINSCHLÄGIGE DOKUMENTE							
atagorie	Kennzeichnung des Doiquinents i der maßgeblichen Tel		Betrtfft Anapruch	KLASSIFIKATION DER ANNELDUNG (Int.CL7)					
X	DE 197 08 726 A (HOECHS 10. September 1998 (199 * Ansprüche; Beispiele	98-09-10)	1-4,8, 12,18-22	C08K5/5313 C08K3/32 C08K3/34 C08K5/19					
A	DE 196 14 424 A (HOECHS 16. Oktober 1997 (1997- * Ansprüche; Beispiele	-10-16)	1-22	C08K5/3472 C08K5/3477					
	, , , , , , , , , , , , , , , , , , ,								
		-	١	RECHERCHERTE					
				SACHGEBIETE (INLCLT)					
				•					
		·							
		•							
	·								
i									
				. *					
			_						
Dervo	rtiegende Recherchenbericht wurde für	Abschlüßstein der Recherche		Profer					
	DEN HAAG	28. Apr11 2000	Fri	ederich, P					
X : von Y : von and	ATEGORIE DER GENANNTEN DOKUMEN besonderer Bedeutung allein betrachtet besonderer Bedeutung in Verbindung mit eitern Veröffentlichung derselben Kategorie	E : Alteres Patentido nach dem Anme	okument, des jedo Adedatum veröffer Ag angeführtes Do	idicht worden let kuznent					
A : tect	mologiecher Hintergrund Nechrittliche Offenberung	& : Mitalied der alei	chen Patentiamilie	, Obereinstimmendes					

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 00 10 0470

in diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentidikumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

28-04-2000

im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Detum der Veröffentlichung
DE 19708726 A	10-09-1998	WO 9839381 A EP 0964886 A	11-09-1998 22-12-1999
DE 19614424 A	16-10-1997	AU 711202 B AU 2293997 A CA 2250995 A WO 9739053 A EP 0892829 A NO 984726 A	07-10-1999 07-11-1997 23-10-1997 23-10-1997 27-01-1999 30-11-1998

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europälschen Patentamts, Nr.12/82