University of Technology Sydney Department of Mathematical and Physical Sciences

37233 Linear Algebra Problem Set 3

Question 1.

Find $\|\mathbf{x}\|_1$, $\|\mathbf{x}\|_2$ and $\|\mathbf{x}\|_{\infty}$ for

- (a) $\mathbf{x} = (3, -4, 0, 3/2);$
- (b) $\mathbf{x} = (\sin k, \cos k, 2^k), \text{ for } k > 1;$

Question 2.

Find the limit of the sequence $\{\mathbf{x}^{(k)}\}_{k=1}^{\infty}$ defined by

$$\mathbf{x}^{(k)} = \left(\frac{1}{k}, 1 - e^{1-k}, \frac{-2}{k^2}\right)$$

Question 3.

Compute by hand the first two iterations $(\mathbf{x}^{(1)} \text{ and } \mathbf{x}^{(2)})$ of the Jacobi method for the following linear system, using $\mathbf{x}^{(0)} = \mathbf{0}$.

Question 4.

Compute by hand the first two iterations $(\mathbf{x}^{(1)})$ and $\mathbf{x}^{(2)}$ of the Gauss-Seidel method for the following linear system, using $\mathbf{x}^{(0)} = \mathbf{0}$.

Question 5.

Use the theorems from the lectures to try to determine whether Jacobi's method converges for the system

$$\begin{pmatrix} 3 & 1 & -1 \\ 0 & 2 & 1 \\ 1 & 2 & -4 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

.../Over

Question 6.

Show that, for the system in Question 3 the Jacobi iteration equation may be written in the form

$$\mathbf{x}^{(k+1)} = T\mathbf{x}^{(k)} + \mathbf{c}$$

where

$$T = \begin{pmatrix} 0 & \frac{1}{3} & \frac{-1}{3} \\ \frac{-1}{2} & 0 & \frac{-1}{3} \\ \frac{-3}{7} & \frac{-3}{7} & 0 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} \frac{1}{3} \\ 0 \\ \frac{4}{7} \end{pmatrix}.$$

Question 7.

Show that, the system in Question 4 the Gauss-Seidel iteration equation may be written in the form,

$$\mathbf{x}^{(k+1)} = L\mathbf{x}^{(k+1)} + U\mathbf{x}^{(k)} + \hat{\mathbf{c}},$$

where L is lower triangular matrix, and U is upper triangular matrix

Hence find a matrix \mathbf{T} (in terms of \mathbf{L} and \mathbf{U}) and a vector \mathbf{c} such that the Gauss-Seidel iteration equation can be written in the form

 $\mathbf{x}^{(k+1)} = T\mathbf{x}^{(k)} + \mathbf{c}.$

Above representation can be done for an arbitrary $n \times n$ system of equations $A\mathbf{x} = \mathbf{b}$, find a lower triangular matrix L, an upper triangular matrix U and a vector $\hat{\mathbf{c}}$ such that the Gauss-Seidel iteration equation can be written in the form

Question 8.

Solve (by hand)

$$\frac{1}{3}x_1 + \frac{1}{2}x_2 + \frac{1}{4}x_3 = -1$$

$$\frac{1}{4}x_1 + \frac{1}{3}x_2 + \frac{1}{5}x_3 = 0$$

$$\frac{1}{2}x_1 + x_2 + \frac{1}{3}x_3 = 2$$

using partial pivoting.