Matriks, Relasi, dan Fungsi

Review: Fungsi??

Matriks

- Matriks adalah adalah susunan skalar elemen-elemen dalam bentuk baris dan kolom.
- Matriks A yang berukuran dari m baris dan n kolom $(m \times n)$ adalah:

$$A = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

- Matriks bujursangkar adalah matriks yang berukuran $n \times n$.
- Dalam praktek, kita lazim menuliskan matriks dengan notasi ringkas $A = [a_{ij}]$.

Contoh Di bawah ini adalah matriks yang berukuran 3×4 :

$$A = \begin{bmatrix} 2 & 5 & 0 & 6 \\ 8 & 7 & 5 & 4 \\ 3 & 1 & 1 & 8 \end{bmatrix}$$

• Matriks simetri adalah matriks yang $a_{ij} = a_{ji}$ untuk setiap i dan j.

Contoh Di bawah ini adalah contoh matriks simetri.

$$\begin{bmatrix} 2 & 6 & 6 & -4 \\ 6 & 3 & 7 & 3 \\ 6 & 7 & 0 & 2 \\ -4 & 3 & 2 & 8 \end{bmatrix}$$

• Matriks *zero-one* (0/1) adalah matriks yang setiap elemennya hanya bernilai 0 atau 1.

Contoh Di bawah ini adalah contoh matriks 0/1:

$$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

Relasi

- Relasi biner R antara himpunan A dan B adalah himpunan bagian dari $A \times B$.
- Notasi: $R \subseteq (A \times B)$.
- a R b adalah notasi untuk $(a, b) \in R$, yang artinya a dihubungankan dengan b oleh R
- a R b adalah notasi untuk $(a, b) \notin R$, yang artinya a tidak dihubungkan oleh b oleh relasi R.
- Himpunan A disebut daerah asal (domain) dari R, dan himpunan B disebut daerah hasil (range) dari R.

Contoh Misalkan $P = \{2, 3, 4\}$ dan $Q = \{2, 4, 8, 9, 15\}$. Jika kita definisikan relasi R dari P ke Q dengan

 $(p, q) \in R$ jika p habis membagi q

maka kita peroleh

$$R = \{(2, 2), (2, 4), (4, 4), (2, 8), (4, 8), (3, 9), (3, 15)\}$$

- Relasi pada sebuah himpunan adalah relasi yang khusus
- Relasi pada himpunan A adalah relasi dari $A \times A$.
- Relasi pada himpunan A adalah himpunan bagian dari $A \times A$.

Contoh Misalkan R adalah relasi pada $A = \{2, 3, 4, 8, 9\}$ yang didefinisikan oleh $(x, y) \in R$ jika x adalah faktor prima dari y. Maka

$$R = \{(2, 2), (2, 4), (2, 8), (3, 3), (3, 9)\}$$

Representasi Relasi

1. Representasi Relasi dengan Diagram Panah

. Representasi Relasi dengan Tabel

• Kolom pertama tabel menyatakan daerah asal, sedangkan kolom kedua menyatakan daerah hasil.

Tabel 1

P	Q
2	2
2	4
4	4
2	8
4	8
2 2 4 2 4 3	2 4 4 8 8 9 15
3	15

Tabel 2

A	A
2	2
2	4
2	8
2 3	4 8 3 9
3	9

3. Representasi Relasi dengan Matriks

- Misalkan R adalah relasi dari $A = \{a_1, a_2, ..., a_m\}$ dan $B = \{b_1, b_2, ..., b_n\}$.
- Relasi *R* dapat disajikan dengan matriks $M = [m_{ij}]$,

yang dalam hal ini

$$m_{ij} = \begin{cases} 1, & (a_i, b_j) \in R \\ 0, & (a_i, b_j) \notin R \end{cases}$$

Contoh Relasi *R* pada Contoh sebelumnya dapat dinyatakan dengan matriks

Matriks untuk tabel 1

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

yang dalam hal ini, $a_1 = 2$, $a_2 = 3$, $a_3 = 4$, dan $b_1 = 2$, $b_2 = 4$, $b_3 = 8$, $b_4 = 9$, $b_5 = 15$

Matriks untuk tabel 2

$$\left[\begin{array}{ccccc} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{array}\right]$$

yang dalam hal ini, $a_1 = 2$, $a_2 = 3$, dan $b_1 = 2$, $b_2 = 3$, $b_3 = 4$, $b_4 = 8$, $b_5 = 9$.

4. Representasi Relasi dengan Graf Berarah

- Relasi pada sebuah himpunan dapat direpresentasikan secara grafis dengan **graf berarah** (*directed graph* atau *digraph*)
- Graf berarah tidak didefinisikan untuk merepresentasikan relasi dari suatu himpunan ke himpunan lain.
- Tiap elemen himpunan dinyatakan dengan sebuah titik (disebut juga simpul atau *vertex*), dan tiap pasangan terurut dinyatakan dengan busur (*arc*)
- Jika $(a, b) \in R$, maka sebuah busur dibuat dari simpul a ke simpul b. Simpul a disebut **simpul asal** (*initial vertex*) dan simpul b disebut **simpul tujuan** (*terminal vertex*).
- Pasangan terurut (a, a) dinyatakan dengan busur dari simpul a ke simpul a sendiri. Busur semacam itu disebut **gelang** atau **kalang** (loop).

Contoh Misalkan $R = \{(a, a), (a, b), (b, a), (b, c), (b, d), (c, a), (c, d), (d, b)\}$ adalah relasi pada himpunan $\{a, b, c, d\}$.

R direpresentasikan dengan graf berarah sbb:

Relasi Inversi

• Misalkan R adalah relasi dari himpunan A ke himpunan B. Invers dari relasi R, dilambangkan dengan R^{-1} , adalah relasi dari B ke A yang didefinisikan oleh

$$R^{-1} = \{(b, a) \mid (a, b) \in R \}$$

Contoh Misalkan $P = \{2, 3, 4\}$ dan $Q = \{2, 4, 8, 9, 15\}$. Jika kita definisikan relasi R dari P ke Q dengan

$$(p, q) \in R$$
 jika p habis membagi q

maka kita peroleh

$$R = \{(2, 2), (2, 4), (4, 4), (2, 8), (4, 8), (3, 9), (3, 15)\}$$

 R^{-1} adalah *invers* dari relasi R, yaitu relasi dari Q ke P dengan

$$(q, p) \in R^{-1}$$
 jika q adalah kelipatan dari p

maka kita peroleh

Jika M adalah matriks yang merepresentasikan relasi R,

$$M = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

maka matriks yang merepresentasikan relasi R^{-1} , misalkan N, diperoleh dengan melakukan transpose terhadap matriks M,

$$N = M^{T} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Mengkombinasikan Relasi

- Karena relasi biner merupakan himpunan pasangan terurut, maka operasi himpunan seperti irisan, gabungan, selisih, dan beda setangkup antara dua relasi atau lebih juga berlaku.
- Jika R_1 dan R_2 masing-masing adalah relasi dari himpuna A ke himpunan B, maka $R_1 \cap R_2$, $R_1 \cup R_2$, $R_1 R_2$, dan $R_1 \oplus R_2$ juga adalah relasi dari A ke B.

Contoh Misalkan $A = \{a, b, c\}$ dan $B = \{a, b, c, d\}$.

Relasi
$$R_1 = \{(a, a), (b, b), (c, c)\}$$

Relasi $R_2 = \{(a, a), (a, b), (a, c), (a, d)\}$
 $R_1 \cap R_2 = \{(a, a)\}$
 $R_1 \cup R_2 = \{(a, a), (b, b), (c, c), (a, b), (a, c), (a, d)\}$
 $R_1 - R_2 = \{(b, b), (c, c)\}$
 $R_2 - R_1 = \{(a, b), (a, c), (a, d)\}$
 $R_1 \oplus R_2 = \{(b, b), (c, c), (a, b), (a, c), (a, d)\}$

• Jika relasi R_1 dan R_2 masing-masing dinyatakan dengan matriks M_{R1} dan M_{R2} , maka matriks yang menyatakan gabungan dan irisan dari kedua relasi tersebut adalah

$$M_{R1 \cup R2} = M_{R1} \vee M_{R2}$$
 dan $M_{R1 \cap R2} = M_{R1} \wedge M_{R2}$

Contoh Misalkan bahwa relasi R_1 dan R_2 pada himpunan A dinyatakan oleh matriks

$$R_1 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \quad \text{dan} \quad R_2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

maka

$$M_{R1 \cup R2} = M_{R1} \lor M_{R2} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$M_{R1 \cap R2} = M_{R1} \wedge M_{R2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Sifat-sifat Relasi Biner

• Relasi biner yang didefinisikan pada sebuah himpunan mempunyai beberapa sifat.

1. **Refleksif** (reflexive)

- Relasi R pada himpunan A disebut **refleksif** jika $(a, a) \in R$ untuk setiap $a \in A$.
- Relasi R pada himpunan A tidak refleksif jika ada $a \in A$ sedemikian sehingga $(a, a) \notin R$.

Contoh Misalkan $A = \{1, 2, 3, 4\}$, dan relasi R di bawah ini didefinisikan pada himpunan A, maka

- (a) Relasi $R = \{(1, 1), (1, 3), (2, 1), (2, 2), (3, 3), (4, 2), (4, 3), (4, 4) \}$ bersifat refleksif karena terdapat elemen relasi yang berbentuk (a, a), yaitu (1, 1), (2, 2), (3, 3), dan (4, 4).
- (b) Relasi $R = \{(1, 1), (2, 2), (2, 3), (4, 2), (4, 3), (4, 4)\}$ tidak bersifat refleksif karena $(3, 3) \notin R$.

Contoh Relasi "habis membagi" pada himpunan bilangan bulat positif bersifat refleksif karena setiap bilangan bulat positif habis dibagi dengan dirinya sendiri, sehingga $(a, a) \in R$ untuk setiap $a \in A$.

• Relasi yang bersifat refleksif mempunyai matriks yang elemen diagonal utamanya semua bernilai 1, atau $m_{ii} = 1$, untuk i = 1, 2, ..., n,

• Graf berarah dari relasi yang bersifat refleksif dicirikan adanya gelang pada setiap simpulnya.

2. Menghantar (transitive)

• Relasi R pada himpunan A disebut **menghantar** jika $(a, b) \in R$ dan $(b, c) \in R$, maka $(a, c) \in R$, untuk $a, b, c \in A$.

Contoh Misalkan $A = \{1, 2, 3, 4\}$, dan relasi R di bawah ini didefinisikan pada himpunan A, maka

(a) $R = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\}$ bersifat menghantar. Lihat tabel berikut:

Pasangan berbentuk			
(a, b)	(<i>b</i> , <i>c</i>)	(a, c)	
(3, 2) (4, 2) (4, 3) (4, 3)	(2, 1) (2, 1) (3, 1) (3, 2)	(3, 1) (4, 1) (4, 1) (4, 2)	

- (b) $R = \{(1, 1), (2, 3), (2, 4), (4, 2)\}$ tidak manghantar karena (2, 4) dan $(4, 2) \in R$, tetapi $(2, 2) \notin R$, begitu juga (4, 2) dan $(2, 3) \in R$, tetapi $(4, 3) \notin R$.
- (c) Relasi $R = \{(1, 1), (2, 2), (3, 3), (4, 4)\}$ jelas menghantar
- (d) Relasi $R = \{(1, 2), (3, 4)\}$ menghantar karena tidak ada $(a, b) \in R$ dan $(b, c) \in R$ sedemikian sehingga $(a, c) \in R$.

Relasi yang hanya berisi satu elemen seperti $R = \{(4, 5)\}$ selalu menghantar.

Contoh Relasi "habis membagi" pada himpunan bilangan bulat positif bersifat menghantar. Misalkan bahwa a habis membagi b dan b habis membagi c. Maka terdapat bilangan positif b dan b sedemikian sehingga b = ma dan b habis membagi b bersifat menghantar.

Note:

• Sifat menghantar pada graf berarah ditunjukkan oleh: jika ada busur dari *a* ke *b* dan dari *b* ke *c*, maka juga terdapat busur berarah dari *a* ke *c*.

3. Setangkup (symmetric) dan tolak-setangkup (antisymmetric)

- Relasi R pada himpunan A disebut **setangkup** jika $(a, b) \in R$, maka $(b, a) \in R$ untuk $a, b \in A$.
- Relasi R pada himpunan A tidak setangkup jika $(a, b) \in R$ sedemikian sehingga $(b, a) \notin R$.
- Relasi R pada himpunan A sedemikian sehingga $(a, b) \in R$ dan $(b, a) \in R$ hanya jika a = b untuk $a, b \in A$ disebut **tolak-setangkup**.
- Relasi R pada himpunan A tidak tolak-setangkup jika ada elemen berbeda a dan b sedemikian sehingga $(a, b) \in R$ dan $(b, a) \in R$.

Contoh Misalkan $A = \{1, 2, 3, 4\}$, dan relasi R di bawah ini didefinisikan pada himpunan A, maka

- (a) Relasi $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (2, 4), (4, 2), (4, 4)\}$ bersifat setangkup karena jika $(a, b) \in R$ maka (b, a) juga $\in R$. Di sini (1, 2) dan $(2, 1) \in R$, begitu juga (2, 4) dan $(4, 2) \in R$.
- (b) Relasi $R = \{(1, 1), (2, 3), (2, 4), (4, 2)\}$ tidak setangkup karena (2, 3) $\in R$, tetapi (3, 2) $\notin R$.
- (c) Relasi $R = \{(1, 1), (2, 2), (3, 3)\}$ tolak-setangkup karena 1 = 1 dan $(1, 1) \in R$, 2 = 2 dan $(2, 2) \in R$, dan 3 = 3 dan $(3, 3) \in R$. Perhatikan bahwa R juga setangkup.
- (d)Relasi $R = \{(1, 1), (1, 2), (2, 2), (2, 3)\}$ tolak-setangkup karena $(1, 1) \in R$ dan 1 = 1 dan, $(2, 2) \in R$ dan 2 = 2 dan. Perhatikan bahwa R tidak setangkup.
- (e) Relasi $R = \{(1, 1), (2, 4), (3, 3), (4, 2)\}$ tidak tolak-setangkup karena $2 \neq 4$ tetapi (2, 4) dan (4, 2) anggota R. Relasi R pada (a) dan (b) di atas juga tidak tolak-setangkup.
- Relasi $R = \{(1, 1), (2, 2), (2, 3), (3, 2), (4, 2), (4, 4)\}$ tidak setangkup dan tidak tolak-setangkup. R tidak setangkup karena $(4, 2) \in R$ tetapi $(2, 4) \notin R$. R tidak tolak-setangkup karena $(2, 3) \in R$ dan $(3, 2) \in R$ tetapi $2 \neq 3$.

Contoh Relasi "habis membagi" pada himpunan bilangan bulat positif tidak setangkup karena jika a habis membagi b, b tidak habis membagi a, kecuali jika a = b. Sebagai contoh, 2 habis membagi 4, tetapi 4 tidak habis membagi 2. Karena itu, $(2, 4) \in R$ tetapi $(4, 2) \notin R$. Relasi "habis membagi" tolak-setangkup karena jika a habis membagi b dan b habis membagi a maka a = b. Sebagai contoh, 4 habis membagi 4. Karena itu, $(4, 4) \in R$ dan b dan b habis membagi a maka a = b.

• Relasi yang bersifat setangkup mempunyai matriks yang elemen-elemen di bawah diagonal utama merupakan pencerminan dari elemen-elemen di atas diagonal utama, atau $m_{ij} = m_{ji} = 1$, untuk i = 1, 2, ..., n:

• Sedangkan graf berarah dari relasi yang bersifat setangkup dicirikan oleh: jika ada busur dari *a* ke *b*, maka juga ada busur dari *b* ke *a*.

• Matriks dari relasi tolak-setangkup mempunyai sifat yaitu jika $m_{ij} = 1$ dengan $i \neq j$, maka $m_{ji} = 0$. Dengan kata lain, matriks dari relasi tolak-setangkup adalah jika salah satu dari $m_{ij} = 0$ atau $m_{ji} = 0$ bila $i \neq j$:

• Sedangkan graf berarah dari relasi yang bersifat tolaksetangkup dicirikan oleh: jika dan hanya jika tidak pernah ada dua busur dalam arah berlawanan antara dua simpul berbeda.

Relasi Kesetaraan

DEFINISI. Relasi *R* pada himpunan *A* disebut **relasi kesetaraan** (*equivalence relation*) jika ia refleksif, setangkup dan menghantar.

 Secara intuitif, di dalam relasi kesetaraan, dua benda berhubungan jika keduanya memiliki beberapa sifat yang sama atau memenuhi beberapa persyaratan yang sama.

 Dua elemen yang dihubungkan dengan relasi kesetaraan dinamakan setara (equivalent).

Contoh:

A = himpunan mahasiswa, R relasi pada A: $(a, b) \in R$ jika a satu angkatan dengan b.

R refleksif: setiap mahasiswa seangkatan dengan dirinya sendiri

R setangkup: jika a seangkatan dengan b, maka b pasti seangkatan dengan a.

R menghantar: jika a seangkatan dengan b dan b seangkatan dengan c, maka pastilah a seangkatan dengan c.

Dengan demikian, R adalah relasi kesetaraan.

Daftar Pustaka

- Munir, R. (2005). *Matematika Diskrit*. Bandung:Informatika
- Munir, R. (2014). *Materi Kuliah Matematika Diskrit*
- Anton, H. (2012). Discrete Mathematichs and Its Applications 7thed. New York: The McGraw-Hill Companies, Inc.
- Lipschultz, S. (1998). Set Theory and Related Topics 2-nd ed. USA: The McGraw-Hill Companies, Inc.