Practice problems

ISYS90088 Introduction to Application Development

Semester 2, 2016

-- adapted from dept. resources --

Exercises

1. What is wrong with the following code, and how can you fix it?

```
eggs == 3
if eggs = 5:
    print('spam')
else:
    print('not spam')
```

- 2. Given the assignment mylist = [3, ["green", "eggs"], True, "computing"], evaluate the following statements and provide: (a) the value the expression evaluates to; and (b) the value of mylist after the code statement has been executed. Assume that mylist is reassigned to its original value for each sub-question:
 - (a) mylist[2](b) mylist[3:](c) mylist[1][1][:-1]
- 3. Rewrite the following code using a for loop:

```
count = 0
items = ['eggs', 'spam', 'moreeggs']
while count < len(items):
    print("We need to buy {0}!".format(items[count]))
    count += 1</pre>
```

4. Rewrite the following code using a while loop:

```
for i in range(1,6):
    print("The square of {n} is {nsq}.".format(n=i, nsq=i*i))
```

Problems

- 5. [Note: this problem contains no Python. Instead, it serves two purposes: to build your algorithmic thinking, and to prepare you for Project 1.]
 - Euclid was a great mathematician of Ancient Greece. Among his many achievements was a simple algorithm for determining the **greatest common divisor** (gcd) of two non-negative integers m and n. The algorithm goes like this:
 - Step 1: If n = 0, return the value of m and stop; otherwise go to Step 2.
 - Step 2: Divide m by n, and assign the value of the remainder to r
 - Step 3: Assign the value of *n* to *m*, and the value of *r* to *n*. Return to Step 1.

Let's walk through the algorithm, with m = 15 and n = 6:

Step	m	n	r	Action
1	15	6	_	$n \neq 0$, so go to Step 2.
2	15	6	3	Divide m (=15) by n (=6), assigning remainder to r .
3	6	3	3	Swap values according to algorithm, go to Step 1.
1	6	3	3	$n \neq 0$, so go to Step 2.
2	6	3	0	Divide m (=6) by n (=3), assigning remainder to r .
3	3	0	0	Swap values, go to Step 1.
1	3	0	0	n = 0, so return $m = 3$.

Thus, gcd(15,6) = 3. Determine the gcd of the following inputs:

- (a) m = 60, n = 12
- (b) m = 34, n = 3
- (c) m = 105, n = 30
- 6. Write a function <code>num(obj)</code> that takes a single object <code>obj</code> as an argument, and returns <code>True</code> if <code>obj</code> is an <code>int</code> or a <code>float</code>, and <code>False</code> otherwise.
- 7. Write a function sqsum(n) that takes a single positive integer n as an argument, and returns the sum of the squares of the integers from 1 to n inclusive, i.e. $\sum_{i=1}^{n} i^2$.