Démonstrations analyse L2

Maximilien ANTOINE

7 octobre 2020

Ce sont les réponses aux questions du cours d'analyse 2 en L2 maths à la FST Nancy disponible ici. N'hésitez pas à me dire si des choses sont fausses, incompréhensibles, si vous voulez que je rajoute quelque chose ou si j'ai fait dé fote dortograf. La bise à vous et bonne chance pour vos examens. :)

1 Séries numériques

Théorème . Caractérisation de la convergence des séries à termes positifs.

Démonstration. D'après le théorème de la limite monotone appliquée à (S_n) : comme $u_n = S_{n+1} - S_n \ge 0$, cette suite est croissante. Elle converge si et seulement si elle est majorée. \square

Théorème . $\sum_n u_n$ converge $\Rightarrow \lim_{n \to +\infty} u_n = 0$

Démonstration.
$$\sum u_n < \infty \Rightarrow (S_n) \longrightarrow s \Rightarrow (S_{n+1}) \longrightarrow s \Rightarrow \lim_{n \to +\infty} (S_{n+1} - S_n) = 0$$

Donc $\lim_{n \to +\infty} u_{n+1} = 0 \Rightarrow \lim_{n \to +\infty} u_n = 0$

Définition : Critère de Cauchy. Soit u_n une suite de nombres réels ou complexes. Pour que la série de terme général u_n soit convergente, il faut et il suffit que, pour tout $\epsilon > 0$, il existe un rang N tel que la distance entre les termes $|u_{n+k} - u_n|$ sont inférieures à ϵ à partir d'un certain rang, c'est à dire :

$$\forall \epsilon \in \mathbb{R}_{+}^{*}, \exists n_{0} \in \mathbb{N}, \forall n \geq n_{0}, \forall k \in \mathbb{N}, |u_{n+k} - u_{n}| \leq \epsilon$$

D'ailleurs, toute série absolument convergente est convergente.

Définition. Soient $\sum u_n$ et $\sum v_n$ des séries à termes positifs telles que, à partir d'un certain rang : $u_n \leq v_n$, alors :

— si $\sum v_n$ converge, alors $\sum u_n$ converge;

— si $\sum u_n$ diverge, alors $\sum v_n$ diverge.

Démonstration. Supposons que : $\forall n \in \mathbb{N}, u_n \leq v_n$ et notons (U_n) et (V_n) les suites des sommes partielles associées respectivement à $\sum u_n$ et $\sum v_n$. Donc, si $\sum u_n$ converge alors (V_n) est majorée d'après la supposition ci-dessus. Or $u_n \leq v_n \Rightarrow U_n \leq V_n$. Donc si (V_n) est majorée, alors (U_n) l'est aussi ce qui implique que $\sum u_n$ converge.

La seconde assertion est laissée en exercice au lecteur. (Sinon c'est juste la contraposée de la première.)

Théorème des équivalents. Soit $\sum v_n$ une série à termes positifs, alors :

- si $u_n = +\infty O(v_n)$ alors $\sum v_n$ converge $\Rightarrow \sum u_n$ converge;
- si $u_{n \to \infty} v_n$ alors $\sum v_n$ et $\sum u_n$ sont de mêmes natures.

Définition : Séries de Riemann. Soit $S_n = \sum \frac{1}{n^{\alpha}}, \alpha \in \mathbb{R}$, alors :

- S_n converge si et seulement si $\alpha > 1$;
- S_n diverge sinon.

Définition : Critère de Riemann. Soit $\sum u_n$ une série à termes positifs et $\alpha \in \mathbb{R}_+^*$, alors :

- si $\lim n^{\alpha}u_n = l > 0$, $\sum u_n$ converge $\Leftrightarrow \alpha \geq 0$;
- si $\alpha > 1$ et $\lim n^{\alpha} u_n = 0$, $\sum u_n$ converge;
- si $\lim nu_n = +\infty$, $\sum u_n$ est divergente.

Définition : Séries de Bertrand. Soit $S_n = \sum \frac{1}{n^{\alpha} \ln^{\beta} n}, \alpha, \beta \in \mathbb{R}$, alors : — S_n converge si et seulement si $\alpha > 1$ ou $(\alpha = 1 \text{ et } \beta > 1)$;

- S_n diverge sinon.

- Démonstration. Posons $u_n = \frac{1}{n^{\alpha} \ln^{\beta} n}$, alors :

 Si $\alpha > 1, \gamma = (1 + \alpha)/2 > 1$ et $n^{\gamma} u_n = \frac{1}{n^{(\alpha 1)/2} \ln^{\beta} n} \longrightarrow 0$: $\sum u_n$ converge d'après le
 - critère de Riemann; Si $\alpha < 1$, $nu_n = \frac{n^{1-\alpha}}{\ln^{\beta} n} \longrightarrow +\infty$: $\sum u_n$ diverge d'après le critère de Riemann.
 - Si $\alpha = 1$, la démonstration est triviale et n'est pas demandée. Elle est donc laissée au lecteur pour qu'il s'amuse.

Définition : Test de d'Alembert. Soit $\sum u_n$ une série à termes strictements positifs et la suite $(\frac{u_{n+1}}{u_n})_{n \geq n_0}$ admet une limite $l \in \mathbb{R}$, alors :
— si l < 1, alors $\sum u_n$ converge;

- si l > 1, alors $\sum u_n$ diverge;
- si l = 1, alors on ne peut pas savoir.

Définition : Test de Cauchy. Soit $L = \lim_{n \to +\infty} \sqrt[n]{u_n}$, alors :

- si L < 1, la série de terme général u_n converge;
- si L > 1, la série de terme général u_n diverge.

Définition : Critère de Leibniz. Soit $(u_n)_{n\in\mathbb{N}}$ qui vérifie :

- $--u_n \ge 0, \forall n \ge 0;$
- $(u_n)_n$ décroit;
- $-\lim_{n\to\infty}u_n=0$

Alors la série alternée $\sum (-1)^n u_n$ converge.

Définition : Critère d'Abel. Soient (a_n) et (b_n) deux suites réelles ou complexes (ps : c'est plus utilisé pour les suites complexes/trigonométriques) qui vérifient :

- La suite (a_n) est réelle et décroit vers 0;
- Les sommes partielles de (b_n) sont bornées;

Alors, $\sum a_n b_n$ converge.

Théorème : Produit de Cauchy. Supposons deux séries (u_n) et (v_n) avec leurs séries $U_n = \sum u_n$ et $V_n = \sum v_n$ sont absolument convergente, leur produit de Cauchy est absolument convergente et l'on a :

$$\sum_{n=0}^{\infty} c_n = \left(\sum_{i=0}^{\infty} a_i\right) \left(\sum_{j=0}^{\infty} b_j\right)$$