```
In [1]:
        #Name :Ankita Gulde
          #Roll no :44
          #section : 3A
In
   []:
         #Aim : To perform simple linear regression
   [2]:
ln
         import pandas as pd
   [3]:
ln
         import OS
In
   [4]:
         os.getcwd()
```

Out[4]: 'C:\\Users\\HP'

In [5]: os.chdir("C:\\Users\\HP\\Desktop")

In [7]: df=pd.read_csv("salary.csv")

In [8]:

df

Out[8]:

	YearsExperienc e	Salar y
0	1.1	39343
1	1.3	46205
2	1.5	37731
3	2.0	43525
4	2.2	39891
5	2.9	56642
6	3.0	60150
7	3.2	54445
8	3.2	64445
9	3.7	57189
10	3.9	63218
11	4.0	55794
12	4.0	56957
13	4.1	57081
14	4.5	61111
15	4.9	67938
16	5.1	66029
17	5.3	83088
18	5.9	81363
19	6.0	93940
20	6.8	91738
21	7.1	98273

	YearsExperience	Salary
		- Ja.u. y
22	7.9	
23	8.2	113812
24	0 7	109431
25		105582
26	9.5	116969
27	9.6	112635
28 29		122391 121872
29	10.5	121072
30	11.2	127345
31		126756
32		128765
33	12.9	135675
34	12.5	139465
J-4	10.0	100400
df.	head()	
	YearsExperience	Salary
_	TouroExpondino	
0	1.1	39343
1	1.3	46205
2	1.5 2.0	37731 43525
	2.0	40020
4	2.2	39891
df.	tail()	
	V	0-1-
	YearsExperience	Salary

Out[10]:		YearsExperience	Salary
	30	11.2	127345
	31	11.5	126756
	32	12.3	128765
	33	12.9	135675

In [9]:

Out[9]:

In [10]:

13.5 139465

34

In [11]:	df.shape
Out[11]:	(35, 2)
In [12]:	df.size
Out[12]:	70
In [13]:	df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 35 entries, 0 to 34

Data columns (total 2 columns):

Column Non-Null Count Dtype

YearsExperience 1. Salary

35 non-null 35 non-null float64 int64

dtypes: float64(1), int64(1) memory usage: 692.0 bytes

In [14]:

df.describe()

Out[14]:

	YearsExperienc e	Salary
cou nt	35.000000	35.000000
mea n	6.308571	83945.600000
std	3.618610	32162.673003
min	1.100000	37731.000000
25%	3.450000	57019.000000
50%	5.300000	81363.000000
75%	9.250000	113223.50000 0
max	13.500000	139465.00000 0

In [15]:

df.ndim

Out[15]:

2

In [16]:

df.isnull()

Out[16]:

	YearsExperienc e	Salar y
0	False	Fals e
1	False	Fals e
2	False	Fals e
3	False	Fals e
4	False	Fals e
5	False	Fals e
6	False	Fals e
7	False	Fals e
8	False	Fals e

9	False	Fals e
10	False	Fals e
11	False	Fals e
12	False	Fals e
13	False	Fals e
14	False	Fals e
15	False	Fals e

	YearsExpe	rience	Salary
	16	Falsa	Foloo
	16	False False	False False
	18	False	False
	19	False	False
	20	False	False
	21	False	False
	22	False	False
	23	False	False
	24	-	-
	24 25	False False	False False
	20	1 0100	1 0100
	26	False	False
	27	False	False
	28	False	False
	29	False	False
	30	False	False
	31	False	False
	32	False	False
	33	False	False
	34	False	False
In [17]:	df.isnull().any	()	
Out[17]:	YearsExperience	e	False False
	Salary dtype: bool		False
In [18]:	df.isnull().sum	·()	
Out[18]:	ui . isiiull() . suii	I()	
Out[10].	YearsExperience	0	0
	Salary	C	0
	dtype: int64		
In [19]:	a="ashish"		
In [20]:	print(a)		

ashish
In [21]: a[0]
Out[21]: 'a'
In [22]: a[-1]
Out[22]: 'h'
In [23]: a[1:3]

```
Out[23]:
            'sh'
In [25]:
             a[1:4]
Out[25]:
             'shi'
             #Assiging values in X & Y
In [26]:
             x = df.iloc[:, :-1].values
             y = df.iloc[:, -1].values
             #X = df['YearsExperience']
             #y = df['Salary']
             print(x)
In [27]:
             [[
                  1.1]
             [
                  1.3]
             [
                  1.5]
             [
                  2.]
             [
                  2.2]
                  2.9]
             [
                  3.]
                  3.2]
             [
                  3.2]
             [
                  3.7]
             [
                  3.9]
                  4.]
             [
                  4.]
             [
                  4.1]
             [
                  4.5]
             [
                  4.9]
                  5.1]
             [
                  5.3]
             [
                  5.9]
                  6.]
             [
                  6.8]
             [
                  7.1]
             [
                  7.9]
             [
                  8.2]
                  8.7]
                  9.]
                  9.5]
                  9.6]
```

[10.3]

```
[10.5]
            [11.2]
            [11.5]
            [12.3]
            [12.9]
            [13.5]]
   [28]:
           print(y)
           [ 39343
                      46205
                              37731
                                       43525
                                               39891
                                                       56642
                                                               60150
                                                                        54445
                                                                                64445
                                                                                         57189
              63218
                      55794
                              56957
                                       57081
                                                       67938
                                                               66029
                                                                        83088
                                               61111
                                                                                81363
                                                                                         93940
              91738
                      98273 101302 113812 109431 105582 116969 112635 122391 121872
            127345 126756 128765 135675 139465]
   [29]:
In
           import matplotlib.pyplot as plt
           import seaborn as sns
           import numpy as np
```

```
#Splitting testdata into x_train,x_test,y_train,y_test
In [37]:
              from sklearn.model_selection import train_test_split
              X_{\text{train}}, X_{\text{test}}, y_{\text{train}}, y_{\text{test}} = \text{train\_test\_split}(x, y, \text{test\_size=.3}, \text{random\_state})
In [39]:
              print(X_train)
              [[12.9]
                [ 1.1]
                   2.2]
                    5.3]
                   9.6]
                  2.9]
                   4.]
                   1.3]
                   1.5]
               [12.3]
               [ 2. ]
               [11.2]
               [ 8.2]
               [11.5]
               [ 3.9]
                [ 7.9]
                [ 5.9]
               [ 9. ]
               [ 3. ]
               [ 6.8]
               [13.5]
               [ 3.2]
               [ 4.5]
               [10.3]]
In [40]:
              print(X_test)
                  [[ 9.5]
                   [ 4.1]
                   [ 8.7]
                   [ 7.1]
                   [ 4.9]
                   [10.5]
                    [ 6. ]
                   [ 4. ]
                   [ 3.2]
                   [ 5.1]
               [ 3.7]]
In [41]:
              print(y_train)
                           39343
                172201
                                        \mathcal{S}
                                                  Q20QQ 117Q33
                                                                      20042
                                                                                  22/9
                                                                                           40ZUD
                                                                                                       3//3
                                                                                                                 170/0
                                                                                                                   5
                                                                                    4
                                                                                                         1
                                                   126756
                                                                                  8136
                                                                                           10558
                                                                                                       6015
                                                                                                                  9173
                 43525
                           12734
                                      113812
                                                                      10130
                                                                           2
                                                                                    3
                                                                                                 2
                                 5
                                                      63218
                                                                                                         0
                                                                                                                    8
                                      61111 122391]
                139465
                            54445
```

In [42]: print(y_test) [116969 57081 109431 98273 67938 121872 93940 56957 64445 66029 57189]

In [43]: from sklearn.linear_model import LinearRegression lr =
LinearRegression()
lr.fit(X_train, y_train)

```
▼ LinearRegression

Out[43]:
           LinearRegression()
            #Assigning Coefficient (slope) to m
In [44]:
            m = lr.coef_
                                    :" , m)
            print("Coefficient
In [45]:
            Coefficient
                          : [8555.33918938]
            #Assigning Y-intercept to a
In [46]:
            c = lr.intercept_
            print("Intercept : ", c)
In [47]:
           Intercept:
                            29602.07353482097
   In [48]: Ir.score(X_test,y_test) * 100
  Out[48]: 91.71426108885095
     In []:
```