

Today's Learning Objectives

01

Set up complete MLOps environment with industry- standard tools 02

Master MLflow for experiment tracking and model management

03

Implement model versioning and dataset management

04

Hands-on practice with real MLflow workflows

•

Objectives

Production-Ready Environment

Consistency: Same environment across development, testing, production

Reproducibility: Anyone can recreate your results

Scalability: Easy to deploy and scale applications

Collaboration: Team members work with identical setups

What is MLflow?

MLflow Tracking: Record and query experiments

MLflow Projects: Package ML code for reuse

MLflow Models: Deploy models to various platforms

MLflow Registry: Centralized model store

Core Components Overview

MLFlow Tracking

- Experiments
- Runs
- Parameters
- Metrics

MLFlow Projects

- Code Package
- Dependencies
- Entry Points

MLFlow Models

- Model Format
- Deployment
- Serving

MLFlow Registry

- Model Store
- Versioning
- Stage Mgmt

Verify Installation

Configuration Options

Tracking Server: Remote or local

Backend Store: SQLite, MySQL, PostgreSQL

Artifact Store: Local, S3, Azure, GCS

Why Flask + MLflow?

Benefits

Key Concepts

Concepts Breakdown

Tracking Workflow

Workflow Steps

1. **Start experiment** or use default

2. **Log parameters** before training

3. **Log metrics** during/after training

4. **Save artifacts** (model, plots, data)

5. **End run** and review results

Parameters vs Metrics

Comparison

Parameters	Metrics
Static values	Dynamic values
Set once per run	Can change over time
Hyperparameters	Performance measures
String/Number	Numeric only

Code Examples

```
import mlflow
# Start run
with mlflow.start run():
    # Log parameters
    mlflow.log_param("learning_rate", 0.01)
    mlflow.log param("n estimators", 100)
    # Log metrics
    mlflow.log_metric("accuracy", 0.95)
    mlflow.log metric("loss", 0.05)
    # Log multiple metrics
    mlflow.log metrics({
        "precision": 0.92,
        "recall": 0.88
   })
```


What are Artifacts?

Logging Artifacts

```
# Log single file
mlflow.log_artifact("model.pkl")

# Log directory
mlflow.log_artifacts("plots/", artifact_path="visualizations")

# Log model with metadata
mlflow.sklearn.log_model(
    model,
    "model",
    registered_model_name="my_model"
)
```

Artifact Storage

Storage Solutions

Network filesystems

Local filesystem (default)

Cloud storage (S3, Azure, GCS)

Why Version Models?

Versioning Levels

1. Code versioning: Git commits

3. Model versioning: MLflow registry

2. Data versioning: Dataset snapshots

4.Environment versioning: Docker images

Best Practices

Semantic versioning (v1.2.3)

Document changes

Tag important versions

Automate versioning

Registry Features

None → Staging → Production → Archived

Registry Operations

```
# Register model
mlflow.register_model(
    "runs:/12345/model",
    "MyModel"
)

# Transition stage
client = mlflow.MlflowClient()
client.transition_model_version_stage(
    name="MyModel",
    version=1,
    stage="Production"
)
```


Dataset Tracking Challenges

MLflow Dataset Features


```
import mlflow.data
from mlflow.data.pandas_dataset import PandasDataset

# Create dataset
dataset = mlflow.data.from_pandas(
    df,
    source="data/train.csv",
    name="training_data"
)

# Log dataset
with mlflow.start_run():
    mlflow.log_input(dataset, context="training")
```

Dataset Versioning Benefits

Experiment Hierarchy

Descriptive names:

"customer_churn_rf_v1"

Team prefixes:

"ds_team_sentiment_analysis"

Date stamps:

"model_training_20240727"

Version tags: "baseline_v1.0"

Organization Tips

Main Sections

Experiments: View all experiments

01

Models: Access model registry

02

Runs: Detailed run information

03

Compare: Side-by-side comparisons

04

Key Features

Collaboration Benefits

Shared experiment tracking

Team visibility

Result sharing

Knowledge transfer

