1 Neural Network Algorithm and Optimization Selector

Esquema del proyecto

• Trainer

- getInputs:
 - 1. Saca parámetros comunes del nombre del fichero
 - 2. Recorre Results entrando en las carpetas que tengan los mismos parámetros comunes
 - 3. Guarda el menor tiempo y algoritmo correspondiente (en un futuro optimizaciones)
 - 4. Devuelve parámetros comunes + algoritmo (+ optimizaciones)
- getFullInputs:
 - 1. Saca los parámetros de todos los ficheros
- fill:
 - 1. Llama a las dos funciones de getInputs
 - 2. Escribe los datos en las bases de datos
- train:
 - 1. Llama a fill
 - 2. Crea un objeto DB que utiliza para hacer fit otra vez con la red neuronal

• Predict

- mutate:
 - 1. Manda los ficheros a Mutomvo (.c y tests) creando la carpeta si hace falta
 - 2. Ejecuta mutomvo para generar los mutantes del programa
 - 3. Comprime los mutantes y los manda a la carpeta de la app
 - 4. Genera los autotests

- predict:

- 1. Obtiene los inputs mutants, tests, tsSize y lines
- 2. Comprueba si hay valor de cores, si no saca el valor del ordenador
- 3. Llama a autotest para preparar una ejecución de Malone de solo el programa sin mutar
- 4. Realiza la ejecución en Malone y obtiene el valor del tiempo de ejecución
- 5. Crea un objeto input con los datos que se pasan por la red
- 6. El proceso se realiza dos veces para las optimizaciones 000000 y 100000 y el algoritmo 4

- Autotest
 - generate:
 - 1. Genera autotests de todos los posibles modos de ejecución
 - 2. Genera un fichero bash para ejecutar los autotests
 - generateSingle:
 - 1. Igual que generate pero modificando para que solo ejecute el programa original
- Naos
 - Interfaz gráfica del proyecto, llama a las funciones:
 - 1 fill
 - 2. train
 - 3. mutate
 - 4. predict

Inputs

- Nombre del programa
- #Mutantes
- \bullet #Tests
- $\bullet~\# {\rm Lineas~del~.c}$
- #Cores
- Tiempo total de ejecucion del programa sin mutar
- Tamaño del Test Suite
- Outputs (320)
- Algoritmo (1-5)
- Optimizaciones (0-1 en cada una de las 6 optimizaciones)
- Salida: array de 0s menos en la posición 64*(alg-1)+op a 1

			Apps
Name	line	mutants	description
add	13	11	suma dos números
massive	13	48	realiza el número pasado como argumento elevado a 5 iteraciones
factorial	18	30	calcula el factorial del número pasado
gcd	19	64	calcula el mcd de los números pasados
dictionaryOrder	29	70	ordena las palabras pasadas alfabéticamente
primes	30	67	comprueba si el número pasado es primo
countWays	34	46	maneras de subir n escalones de 1 o 2 a la vez
anagram	36	59	comprueba si dos cadenas son anagramas entre sí
transpose	39	148	traspone la matriz pasada
linearSearch	40	78	implementación de linear search
insertSort	40	107	implementación de insert sort
longestPalindrome	40	108	mayor palíndromo contenido en la palabra
bubbleSort	41	112	implementación de bubble sort
cutRod	42	94	mayor valor obtenible cortando el array
selectSort	45	91	implementación de select sort
binarySearch	54	126	implementación de binary search
quickSort	55	126	implementación de quick sort
interpolationSearch	59	180	implementación de interpolation search
eggDrop	60	95	implementación del egg dropping problem
genPassword	63	48	genera una contraseña aleatoria
maxArrSumNeg	63	112	suma máxima en un array después de K negaciones
partitionProblem	66	167	determina si se puede dividir un array en dos subarrays de igual suma
longestIncrease	70	114	longest subset in order in the array
squareMatrix	71	181	eleva al cuadrado la matriz pasada
minProd	72	181	mínimo producto dentro de un array
exponentialSearch	80	168	implementación de exponential search
fibonacciSearch	86	179	implementación de fibonacci search
mergeSort	130	218	algoritmo mergesort
huffmanCodingEff	240	199	construye un huffman code tree eficiente
huffmanCoding	318	314	construye un huffman code tree
beaufort	445	481	cifrado beaufort
http	708		envía una petición HTTP
cjson	1037		parsea objetos tipo JSON
parg	2518	2508	
rnnbit-bit	4053		recurrent neural network for arithmetic
textgen	4223		text generator
mnistcnn-cnn	4328		convolutional neural network for mnist database
ae	4339		tied-weight denoising encoder
mlp	4357		multi layer perceptron
vae	4379		variantional autoencoder
bzip2	6998		comprime un fichero con el algoritmo bzip2