脑科学与类脑系统 Homework 02

姓名: 雍崔扬

学号: 21307140051

Problem 1

计算以下网络的平均最短路径 L 和集聚系数 CC:

Solution:

首先我们计算节点之间的最短路径,并将结果排列为一个严格上三角阵:

Γ	$\mid A \mid$	B	C	D	E	F	G	H	sum
A	0	1	2	3	1	1	2	3	13
B		0	1	2	2	1	2	2	10
C			0	1	2	1	1	1	6
D				0	3	2	2	1	8
E					0	1	2	3	6
F						0	1	2	3
G							0	1	1
$\lfloor H$								0	

因此网络的平均最短路径 L 为:

$$L = \frac{2}{8(8-1)}[13+10+6+8+6+3+1]$$

$$= \frac{2}{56} \cdot 47$$

$$= \frac{47}{28}$$

其次我们计算每个节点的集聚系数:

$$egin{aligned} C_A &= rac{2 \cdot 2}{3(3-1)} = rac{2}{3} \ C_B &= rac{2 \cdot 2}{3(3-1)} = rac{2}{3} \ C_C &= rac{2 \cdot 4}{5(5-1)} = rac{2}{5} \ C_D &= rac{2 \cdot 1}{2(2-1)} = 1 \ C_F &= rac{2 \cdot 1}{5(5-1)} = rac{2}{5} \ C_G &= rac{2 \cdot 2}{3(3-1)} = rac{2}{3} \ C_H &= rac{2 \cdot 2}{3(3-1)} = rac{2}{3} \end{aligned}$$

因此网络的集聚系数 CC 为:

$$CC = \frac{1}{8} \left(\frac{2}{3} + \frac{2}{3} + \frac{2}{5} + 1 + 1 + \frac{2}{5} + \frac{2}{3} + \frac{2}{3} \right)$$
$$= \frac{41}{60}$$