MMA Fight Outcome Prediction

Rohan Chaturvedi, Final Project

Problem Statement

- Create a binary classification model to predict the outcome of an MMA fight (win or loss for a given fighter) based on a set of features extracted from a database
- Use cases in live bookmaking and fight promotion data collection
- Distinct lack of predictive modelling and statistical analysis in the sport

Overview

Database:

- Retrieved from Kaggle, webscraped from ufcstats.com
- 13000+ rows, 500+ feature columns in csv file

Technical Stack:

- Python based in Jupyter Notebook
- Libraries include:
 - \circ tensorflow
 - o scipy
 - o sklearn
 - o numpy
 - matplotlib

Data Pre-processing

Steps taken to clean the data:

- 1. Remove entries with missing data
- 2. Split data into training, validation, test sets
- 3. Transform data into normal distributions centred at 0 (normalise)

Number of rows was reduced from ~ 13000 to ~ 3600

Model 1: Logistic Regression & Neural Network

- Create Logistic Regression using Least Squares Approx
 - o LU Factorisation
- Regularisation (both L1 and L2)
- Feed the significant independent variables and predictions into a feed-forward neural network

Model 2: SVM Classifier Using QR Factorisation

- Perform QR Factoristion
 - Decompose training dataset into QR matrices
 - Transform validation and test dataset using the obtained R matrix
- Refine parameters
 - RandomSearch
 - Recursive Feature Elimination (RFE)
- Train SVM based on identified best features

```
Training - Accuracy: 0.7916
Training - Precision: 0.8197
Training - Recall: 0.7436
Training - F1 Score: 0.7798
```

```
Validation - Accuracy: 0.7992
Validation - Precision: 0.8151
Validation - Recall: 0.7691
Validation - F1 Score: 0.7915
```

Test - Accuracy: 0.7969 Test - Precision: 0.8134 Test - Recall: 0.7572 Test - F1 Score: 0.7843

Conclusions and Evaluation

Metric/Aspect	Model 1 (Logistic Regression + Feedforward Neural Network)	Model 2 (SVM with QR Factorization and Hyperparameter Tuning)
Accuracy	Higher	Lower
Discriminative Ability (AUC)	Lower	Higher
Precision-Recall Trade-off (AP)	Lower	Higher
Scalability	Limited	Better
Adaptability to New Data/Live Data	Limited	Better
Future Development Potential	Limited	Higher
Best Use Case	High accuracy priority, stable data inputs	Complex/diverse datasets, live fight data integration