Functional Analysis

Lectured by Pierre Germain Scribed by Yu Coughlin

Autumn 2025

Contents

1 Banach Spaces 1

1 Banach Spaces

I'll write these notes mostly over \mathbb{R} , everything works similarly over \mathbb{C} or any complete normed field. So when I say "vector space", I mean a real one.

Definition 1.0.1. A norm on a vector space E is a map $\|-\|: E \to \mathbb{R}_{\geq 0}$ such that for all $x, y \in E, \lambda \in \mathbb{R}$:

$$||x|| = 0 \iff x = 0$$
 $||\lambda x|| = |\lambda| ||x||$ $||x + y|| \le ||x|| + ||y||$

called definiteness, homogenaity, and the triangle innequality respectively.

Common examples are $\|-\|_1$, $\|-\|_2$, and $\|-\|_{\infty}$ on \mathbb{R}^n .

Definition 1.0.2. For a compact $K \subseteq \mathbb{R}^n$ the **uniform norm** on the set of continuous functions $\mathcal{C}(K,\mathbb{R})$ is given by:

$$||f||_{\infty} := \sup_{x \in K} |f(x)| = \max_{x \in K} |f(x)|.$$

Letting K be n discrete points recovers $\|-\|_{\infty}$ on \mathbb{R}^n , how can we recover the other defintions like this?

Definition 1.0.3. A Banach space is a complete normed vector space.

We will show in the finite case that all normed vector spaces are complete. Note that the on the space $\mathcal{C}([0,1],\mathbb{R})$ the norm:

$$||f|| := \int_0^1 f(x)dx$$

is not complete, many progressive continuous approximations to non-conintuous shapes are an example. The change is normally increasingly localised and extreme, the uniform norm will properly detect this.

Definition 1.0.4. Two norms, $\|-\|, \|-\|'$ on a vector space E are **equivalent** if there exists $C_1, C_2 \ge 0$ such that for all $x \in E$:

$$C_1 \|x\|' \le \|x\| \le C_2 \|x\|'$$

This is obviously an equivalence relation. Equivalent norms induce homeomorphic topologies by id, as:

$$B'_{r/C_2}(x) \subseteq B_r(x) \subseteq B'_{r/C_1}(x).$$

Proposition 1.0.5. All finite dimensional normed vector spaces are equivalent.

Proof. Choose any norm on a d dimensional vector space E, and let $\{e_1, \ldots, e_d\}$ be a basis for E:

$$\left\|x\right\| = \left\|\sum x_i e_i\right\| \leq \sum \left\|x_i e_i\right\| = \sum \left|x_i\right| \left\|e_i\right\| \leq \max_{1 \leq i \leq d} \left\|e_i\right\| \sum \left|x_i\right| = \max_{1 \leq i \leq d} \left\|e_i\right\| \left\|x\right\|_1.$$

Now, let K be the unit sphere for $\|-\|_1$. This is closed and bounded so, by the Heine-Borel theorem, compact. The previous step shows $x \mapsto \|x\|$ is continuous wrt $\|-\|_1$, so it will attain its infinum on K. By definiteness, this minimum, m, will be positive. And for all $x \in E$: $\|x\| = \|x\|_1 \|x/\|x\|_1 \| \ge m \|x\|_1$. \square

From now onwards, let Ω be an open subset of \mathbb{R}^d such that $\overline{\Omega}$ is compact and $\partial\Omega$ is smooth. The particulars of these restrictions isn't important.

Definition 1.0.6. The uniform norm for $f \in \mathcal{B}(\Omega, \mathbb{R})$ is given by $||f||_{\infty} := \sup_{x \in \Omega} |f(x)|$.

Think of $C_b^0(\Omega, \mathbb{R})$ as a subspace of $\mathcal{B}(\Omega, \mathbb{R})$.

Proposition 1.0.7. $C_h^0(\Omega, \mathbb{R})$ is closed (contains all limit points) w.r.t. the uniform norm.

Proof. Let $(f_n) \to f$, and fix some $\varepsilon > 0$. By assumption, there exists some $N \ge 0$ such that $||f_N - f||_{\infty} < \varepsilon$. As f_N is continuous, there will exist some $B_{\delta}(x) \subseteq \Omega$ such that for all $y \in B_{\delta}(x)$ we have $|f_N(x) - f_N(y)| < \varepsilon$. So we can write:

$$|f(x) - f(y)| = |(f(x) - f_N(x)) - (f(y) - f_N(y)) + (f_N(x) - f_N(y))|$$

$$\leq |(f(x) - f_N(x))| + |(f(y) - f_N(y))| + |(f_N(x) - f_N(y))| < 3\varepsilon.$$

Proposition 1.0.8. $C_b^0(\Omega, \mathbb{R})$ is complete w.r.t. the uniform norm.

Proof. Let (f_n) be Cauchy w.r.t $\|-\|_{\infty}$, for any $x \in \Omega$, $(f_n(x))$ will be a Cauchy sequence in $\mathbb R$ so converges to a limit we will call f(x). It now suffices to show $(f_n) \to f$ w.r.t. $\|-\|_{\infty}$ and appeal to the previous proposition. Fix $\varepsilon > 0$, by assumption there exists N such that $\forall n, m \geq N$, $\|f_n - f_m\|_{\infty} < \varepsilon$. Consider for all $x \in \Omega$:

$$|f_n(x) - f(x)| = \lim_{m \to \infty} |f_n(x) - f_m(x)| \le \varepsilon.$$

As each $|f_n(x) - f(x)| \le is \varepsilon$, so will $||f_n - f||_{\infty}$, the supremum.

Definition 1.0.9. Let $C^k(\Omega, \mathbb{R})$ be the set of k-times bounded continuously differentiably functions, equipped with the norm:

$$||f||_{\mathcal{C}^k} := \sum_{|\alpha| \le k} ||\partial^{\alpha} f||_{\infty} \qquad \alpha \in \mathbb{N}^d$$

The simplest example is with d = k = 1 where $||f||_{\mathcal{C}^1} = ||f||_{\infty} + ||f'||_{\infty}$.

Proposition 1.0.10. For $\Omega \subset \mathbb{R}$, $C^1(\Omega, \mathbb{R})$ with the $\|-\|_{C^1}$ norm is complete.

Proof. Let (f_n) be Cauchy w.r.t. $\|-\|_{\mathcal{C}^1}$, then both (f_n) and (f'_n) must be Cauchy w.r.t. $\|-\|_{\infty}$. So, by the previous proposition, there exists continuous, uniform limits $(f_n) \to f$, $(f'_n) \to g$. Thus:

$$||f_n - f||_{\mathcal{C}^1} = ||f_n - f||_{\infty} + ||f'_n - g||_{\infty} \to 0.$$

How do we know f' = g or even $f \in \mathcal{C}^1$? By FTC and the exchange of uniform limits with Riemann integrals, we have:

$$f(x) - f(y) = \lim_{n \to \infty} f_n(x) - f_n(y) = \lim_{n \to \infty} \int_x^y f'_n = \int_x^y g(x) dx$$

for all $x, y \in \Omega$, and all n.

TODO: Hölder.