Modelos del mundo - ¿Un programa puede aprender a partir de sus sueños?

https://twitter.com/osanseviero www.linkedin.com/in/omarsanseviero/

Modelos del mundo

- Los humanos tenemos un modelo mental del mundo
 - Basado en lo que hemos vivido
 - Conceptos y relaciones entre ellos

Modelos del mundo

- Para manejar tanta información, nuestro cerebro aprende representaciones abstractas de la información espacial y temporal.
- Lo que percibimos se basa en lo que nuestro cerebro predice para el futuro.

Modelo del cerebro

 No predice el futuro en general, predice información sensorial basándose en el input motor actual.

• ¿Cómo bateamos en milisegundos?

Modelo del cerebro

 No predice el futuro en general, predice información sensorial basándose en el input motor actual.

- Predecimos con instinto dónde y cuándo irá la pelota
- Pasa subconscientemente para profesionales
- Reaccionan gracias a las predicciones internas del modelo

Tipos de Aprendizaje

Supervisado

Supervised Learning: Regression

Observation #	Years of Higher Education (X)	Income (Y)
1	4	\$80,000
2	5	\$91,500
3	0	\$42,000
4	2	\$55,000
N	6	\$100,000

test set

training set

1	4	???
2	6	???

Tipos de Aprendizaje

Supervisado

No Supervisado

Tipos de Aprendizaje

Supervisado

No Supervisado

Aprendizaje por Refuerzo

Reinforcement Learning

- Aprendizaje a partir de interacciones
- Utilizamos ambientes con reglas definidas
 - o Agente aprende a interactuar en el ambiente

- Mucha relación con psicología y neurociencia
- El más parecido a aprendizaje humano

Aplicaciones

- Coches autónomos (<u>https://selfdrivingcars.mit.edu/</u>)
- Juegos
 - Backgammon (90s)
 - Se descubrieron nuevas estrategias
 - 10²⁰ estados posibles
 - AlphaGo
 - Atari (Deep Reinforcement Learning)
 - o Dota
- Robótica
 - Enseñar a caminar
 - Aviones
 - Barcos
- Muchos otros campos

RL para un robot humanoide

Reinforcement Learning

- Un agente se beneficia de tener una buena representación de estados del pasado y del presente.
- Necesitamos un modelo poderoso que pueda predecir en el tiempo
- Podemos utilizar Recurrent Neural Networks (RNNs)
 - Modelos muy expresivos de información temporal
 - No se usa tanto en RL se prefieren redes neuronales sencillas para entrenar rápidamente
 - Costo en algoritmos tradicionales es muy alto
- Objetivo: Crear un agente de RL con RNNs

Modelo del agente

Autoencoder

- Modelos usados para comprimir la información
- Se crea una modelo fino que permite representar la información de manera más sencilla.

Modelo VAE (Visión)

- El ambiente da al agente un input de muchas dimensiones.
 - o Ejemplo: Un frame 2D de un video, pero en secuencia
- Objetivo: Aprender representación abstracta de los frames observados
- Usamos autoencoders (Variational Autoencoders 2013, 2014)

Modelo VAE (Visión)

Modelo del agente

RNN

- Tienen memoria
- Dependencia sobre el tiempo
- No sólo usamos el input actual, sino el input previo

- Ejemplos:
 - Completar secuencias
 - o Distinguir acciones de videos

RNN

RNN

- Recurrent: Ocurre repetidamente
- Hacemos la misma tarea en la secuencia de entrada múltiples veces

Aplicaciones - Agregando Sonido

Modelo del agente

Modelo MDN-RNN (Memoria)

- Comprime lo que ocurre en el tiempo
- Modelo que predice el futuro
- Predice vectores z que espera que V produzca

Modelo MDN-RNN (Memoria)

- Lo manejamos como una densidad de probabilidades en vez de un modelo determinístico
- Parámetro t es la temperatura - se ajusta para cambiar incertidumbre del modelo

MDN-RNN - Mixture Density Network RNN

Modelo del agente

Modelo Controlador (C)

- Determina acciones para maximizar recompensa
- Simple y pequeño

- Pocos parámetros la complejidad está en V y M
 - V y M están entrenados con backpropagation
 - C se puede entrenar de otras maneras, como algoritmos evolutivos
 - Convariance-Matrix Adaptation Evolution Strategy (CMA-ES)
 - Funciona bien en espacios con pocos parámetros

Combinando todo...


```
def rollout(controller):
''' env, rnn, vae are '''
''' global variables
obs = env.reset()
h = rnn.initial_state()
done = False
cumulative_reward = 0
while not done:
  z = vae.encode(obs)
  a = controller.action([z, h])
  obs, reward, done = env.step(a)
  cumulative reward += reward
  h = rnn.forward([a, z, h])
return cumulative_reward
```

Experimento 1. Carrera de coches

Experimento 1

- Crear un modelo predictivo del mundo
 - o Representar tiempo y espacio
- Tarea de control continua

- Ambiente genera mapa aleatoriamente
- Recompensa es número de lugares visitado
- Acciones: girar, acelerar, frenar

E1. Entrenamos V

E1. Resultado

- MDN-RNN se entrena con resultado de V
- Sólo C sabe la recompensa
 - Sólo hay 867 parámetros

E1. Procedimiento

- 1. Se generan 10mil corridas con política aleatoria
- 2. Se entrena VAE para codificar cada frame
- 3. Se entrena MDN-RNN para dar distribución de probabilidades
- 4. Definimos un controlador
- 5. Usamos CMA-ES para maximizar recompensa

Model	Parameter Count	
VAE	4,348,547	
MDN-RNN	422,368	
Controller	867	

V vs V con M

Comparando

Method	Average Score over 100 Random Tracks
DQN [54]	343 ± 18
A3C (continuous) [53]	591 ± 45
A3C (discrete) [52]	652 ± 10
ceobillionaire's algorithm (unpublished) [48]	838 ± 11
V model only, z input	632 ± 251
V model only, z input with a hidden layer	788 \pm 141
Full World Model, \boldsymbol{z} and \boldsymbol{h}	906 \pm 21

Soñando carreras de coches

- Como el modelo puede predecir el futuro, puede halucinar carreras hipotéticas.
- Podemos pedir al MDN-RNN que genere z.
- Ponemos nuestro controlador entrenado en el sueño.

Soñando carreras de coches

- Podemos aplicar lo que hemos aprendido en el mundo real en el sueño.
- ¿Podemos aprender en el sueño y usar eso en el mundo real?
 - o Transferir la política aprendida en el sueño al mundo real

Experimento 2. VizDoom

Entrenando en el sueño

¿Qué pasa?

- VAE es entrenado con información aleatoria.
- Luego, podemos ir al sueño, donde el RNN va generando (o prediciendo) el mundo
 - Aprendió a simular aspectos del juego lógica, comportamiento de enemigos, física y el rendering en 3D
 - Si el agente envía acción a la izquierda, M sabe cómo cambiar los pixeles. También aprende a que no pase las paredes
- A diferencia del ambiente verdadero, podemos agregar incertidumbre, haciendo el juego más difícil en el sueño
 - Si el agente se desempeña bien con alta temperatura, generalmente desempeñará bien en el ambiente real
 - Aumentar temperatura previene que agente tome ventaja de errores del mundo real (exploits del juego)

Transferimos la política (policy transfer)

Agente aprende a hacer trampa

Cómo evitamos eso

- Temperatura da incertidumbre. El modelo M es sólo una representación imperfecta abstracta del mundo real.
- Por lo tanto, en M, las bolas de fuego no siempre seguirán las trayectorias correctas. Esto hace que se generen exploits en M que no se aplican en el mundo real.
- Es esto que ha hecho que muchas técnicas de RL no se apliquen en la vida real.
- MDN-RNN, como es distribución de probabilidades, previene esto.
 - o Cambiar la temperatura nos permite cambiar entre explotabilidad y realismo.

Temperature	Score in Virtual Environment	Score in Actual Environment
0.10	2086 ± 140	193 \pm 58
0.50	2060 ± 277	196 ± 50
1.00	1145 \pm 690	868 ± 511
1.15	918 \pm 546	1092 \pm 556
1.30	$\textbf{732} \pm \textbf{269}$	753 \pm 139
Random Policy Baseline	N/A	210 \pm 108
Gym Leaderboard [34]	N/A	820 ± 58

¡Gracias!

https://twitter.com/osanseviero www.linkedin.com/in/omarsanseviero/