$PS10_{P}atel$

shreyapatel

April 2018

7		
	f1	gmean
$_{ m tree}$	0.8976425	2094.198
logit	0.8633508	0.000
nnet	0.9069514	2126.452
$_{ m knn}$	0.8977964	2106.887
svm	0.8939016	2086.292
nbayes	0.8825952	2043.110
8		
value	measure	model
21	minsplit	$_{ m tree}$
12	minbuck	et tree
0.003359	cp	${ m tree}$
24	k	$_{ m knn}$
2.354535	lambda	logit
0.472230	alpha	logit
radial	kernel	svm
47.00102	2 cost	svm
0.498152	gamma	svm
10	size	nnet
0.457640	decay	nnet
1000	maxit	nnet
9		

As a table in your .tex file, report the optimal values of the tuning parameters for each of the algorithms. How does each algorithm's out-of-sample performance compare with each of the other algorithms?

Most of them are similar, especially when looking at F values. They are more spread out in G values.