	Solutions for Fixed Effects					
Effect	Estimate	Standard Error	DF	t Value	Pr > t	
Intercept	3.5687	0.4442	361	8.03	<.0001	
time1	-0.3628	0.2708	724	-1.34	0.1808	
time2	-0.4316	0.2703	724	-1.60	0.1107	
male	-0.3818	0.4429	724	-0.86	0.3889	

Covariance Parameter Estimates

Cov Parm	Subject	Estimate	Standard Error
Intercept	id	9.5543	2.0156

Q1.
$$logit\ PLY = 11MJ_1 = Mi + \beta t + r \times i; t = 1,2,3.$$
 $\hat{M}i = (1 + 0.346 \times 9.5543)^{\frac{1}{2}} \times 3.587. = 1.7198$
 $\hat{\beta}_{i} = (1 + 0.346 \times 9.5543)^{\frac{1}{2}} \times (-0.3628) = -0.1748$
 $\hat{\beta}_{i} = (1 + 0.346 \times 9.5543)^{\frac{1}{2}} \times (-0.4316) = -0.2080$
 $\hat{\beta}_{i} = (1 + 0.346 \times 9.5543)^{\frac{1}{2}} \times (-0.4316) = -0.2080$
 $\hat{\gamma} = (1 + 0.346 \times 9.5543)^{\frac{1}{2}} \times (-0.3818). = -0.1840.$

	Analysis Of GEE Parameter Estimates						
	Empirical Standard Error Estimates						
Parameter	Estimate	Standard Error				Pr > Z	
Intercept	1.6497	0.1859	1.2853	2.0141	8.87	<.0001	
time1	-0.1814	0.1451	-0.4659	0.1030	-1.25	0.2112	
time2	-0.2154	0.1317	-0.4736	0.0428	-1.64	0.1020	
male	-0.1731	0.2180	-0.6004	0.2542	-0.79	0.4271	

Compared to our results to the output above, the results are really close to each other.

Covar	Covariance Parameter Estimates					
Cov Parm	Subject	Estimate	Standard Error			
Intercept	id	0.4589	0.8318			

Solutions for Fixed Effects						
Effect	у	Estimate	Standard Error	DF	t Value	Pr > t
Intercept	1	-0.9809	0.4244	117	-2.31	0.0226
Intercept	2	0.9810	0.4245	117	2.31	0.0226
time		1.9225	0.6612	116	2.91	0.0044
trt		-2.9382	0.5938	116	-4.95	<.0001
time*trt		1.0973	0.7225	116	1.52	0.1316

Another: legit $\{P\{Y \leq k|b\}\}\}= a_k + b_i + \beta_i I + \beta_i t + \beta_i I \times t + \beta_i I$

Parameter		DF	Estimate
Intercept		0	0.0000
id	1	0	0.4000
id	2	0	0.8000
id	3	0	0.2000
id	4	0	0.6000
id	5	0	0.6000
id	6	0	1.0000
id	7	0	0.8000
id	8	0	0.4000
id	9	0	0.6000
id	10	0	0.2000
Scale		0	1.0000

(a) From the autput above. probability from 1 to 10 is .0.4, a.8, 0.2, o.6, o.6, 1.0, o.8, o.4, a.6, o.2.

(b)

Solutions for Fixed Effects					
Effect	Estimate	Standard Error	DF	t Value	Pr > t
Intercept	0.2589	0.3452	9	0.75	0.4724

Effect	Subject	Estimate
Intercept	id 1	-0.1839
Intercept	id 2	0.2660
Intercept	id 3	-0.4074
Intercept	id 4	0.04000
Intercept	id 5	0.04000
Intercept	id 6	0.4955
Intercept	id 7	0.2660
Intercept	id 8	-0.1839
Intercept	id 9	0.04000
Intercept	id 10	-0.4074

(b). Model: $logit(\pi) = 0.4 lii$; $logit(\pi) = 0.4 lii$; $logit(\pi) = 0.2660$, $logit(\pi) = 0.2$

(c)

id	р	pihat
1	0.4	0.51874
2	8.0	0.62830
3	0.2	0.46296
4	0.6	0.57418
5	0.6	0.57418
6	1.0	0.68014
7	0.8	0.62830
8	0.4	0.51874
9	0.6	0.57418
10	0.2	0.46296

(c) From the autitate publishing from 1 to 10 is 0.41874, 0.62830, 0.46296, 0.57418. 0.68014, 0.6830, 0.41874, 0.47418.

(d) The answer from b is better. As we know, the random sample has really unstable used for estimate population when sample side is small. Therefore, really unstable used for estimate population when sample side is small, if we used the random effect and fixed effect uhen sample side is small, if we used the random effect and fixed effect when sample side is small, the estimate areany is higher.

(e) (e) Part A Average Absorbate Distance = $\frac{10}{2}|0.t - \pi_i| = 2.2$ Part C augus from Pent C

Averye Aberlut Pistance = \$\frac{1}{2} \big| 0.5 - \tau_i| = 0.77084. So ous ne cra se e tere, êle average orbsolute obstant is smaller num une used with part c is smaller conjune to the point A. It is because the variance of the estimate is smaller compared to the data in part a So the estimate is more above to the true value.

04

(a). From the adjust from the question. Bi = 4.2227. Bi = -0.7741

-: β₁ - β₂ = 4.9978 -: e^{β₁-β₃} = 148.087°.

-: The odds ratio of cigramaties (Tex) is to maniferiana (Fex) is 148.0870.

(b). The value of & supplys the difference between subjects. So the large value indicates a big/huge varial. between subjects

(c). As we know, his follows or mornal distribution. so if the value is positive, it indicates a big random effect. If the value is two large, it may over the supper, as an overlier.