Oxygen Sag Curve

Oxygen saturation (mg/l) in water at 1 atm

	Salinity (mg/L)						
Temperature (°C)	0	5000	10000	15000			
0	14.62	13.73	12.89	12.10			
5	12.77	12.02	11.32	10.66			
10	11.29	10.66	10.06	9.49			
15	10.08	9.54	9.03	8.54			
20	9.09	8.62	8.17	7.75			
25	8.26	7.85	7.46	7.08			
30	7.56	7.19	6.85	6.51			

$$k_d = k_{d,20} \cdot \theta^{T-20}$$
 with $\theta = 1.047$

 $k_{d,20} = 0.35-0.70$ raw sewage, 0.10-0.25 well-treated sewage and pollute river [day⁻¹]

$$k_{r,20} = \frac{3.9u^{1/2}}{H^{3/2}}$$
 [day⁻¹] with *H* in [m] and *u* in [m/s]

$$k_r = k_{r,20} \cdot \theta_r^{T-20}$$
 with $\theta_r = 1.024$

Oxygen deficit [mg/l]:

$$\begin{cases} \frac{dD}{dt} = k_d L_0 e^{-k_d t} - k_r D \\ D(t=0) = D_0 \end{cases}$$

$$D(t) = DO_s - DO(t) = \frac{k_d L_0}{k_r - k_d} \left(e^{-k_d t} - e^{-k_r t} \right) + D_0 e^{-k_r t}$$

$$t_{c} = \frac{1}{k_{r} - k_{d}} \ln \left(\frac{k_{r}}{k_{d}} \left(1 - \frac{D_{0} \left(k_{r} - k_{d} \right)}{k_{d} L_{0}} \right) \right)$$

Sedimentation

$$v_s = \frac{(\rho_s - \rho)gd^2}{18\mu} \text{ for Re}_p < 0.3 \text{ (Stokes regime)}$$

$$v_s = \sqrt{\frac{4(\rho_s - \rho)gd}{\rho}} \text{ for Re}_p > 0.3 \text{ (inertial regime)}$$

Cell growth kinetics

$$\frac{dX}{dt} = \mu_{\text{max}} \frac{S}{K_S + S} X - k_d X$$

$$\frac{dS}{dt} = -k_{\text{max}} \frac{S}{K_S + S} X \quad \text{with } k_{\text{max}} = \mu_{\text{max}} / Y$$

Typical values

 $k_{max} = 2-5 day^{-1}$

 $K_S = 2-100 \text{ mgBODeq/L}$

Y = 0.4-0.8 mgVSS/mgBODeq

 $k_d = 0.04 - 0.075 \text{ day}^{-1}$

Atmospheric gas dispersion

Class	Stability	Γ (°C/100 m)
Α	Very unstable	Γ<-1.9
В	Moderately unstable	-1.9 < Γ< -1.7
С	Slightly unstable	-1.7 < Γ< -1.5
D	Neutral	-1.5 < Γ< -0.5
E	Slightlystable	-0.5 < Γ< +1.5
F	Very stable	Г >1.5

Wind Profile Exponent p, for Rough Terrain

Stability Class	Description	Exponent p 0.15	
A	Very unstable		
В	Moderately unstable	0.15	
C	Slightly unstable	0.20	
D	Neutral	0.25	
E	Slightly stable	0.40	
F	Stable	0.60	

$$u_2 = u_1 \left(\frac{z_2}{z_1}\right)^p$$

$$c(x,y) = \frac{Q}{\pi U \sigma_y \sigma_z} \exp\left(-\frac{y^2}{2\sigma_y^2}\right) \exp\left(-\frac{H^2}{2\sigma_z^2}\right) \qquad \sigma_y = a \, x^{0.894} \qquad \sigma_z = c x^d + f$$

$$\sigma_{..} = a x^{0.894}$$

$$\sigma_z = cx^d + f$$

Values of the Constants a , c , d , and f for Use in (47) and (48)								
		$x \le 1 \text{ km}$			$x \ge 1 \text{ km}$			
Stability	a	С	d	f	с	d	f	
A	213	440.8	1.941	9.27	459.7	2.094	-9.6	
В	156	106.6	1.149	3.3	108.2	1.098	2.0	
C	104	61.0	0.911	0	61.0	0.911	0	
D	68	33.2	0.725	-1.7	44.5	0.516	-13.0	
E	50.5	22.8	0.678	-1.3	55.4	0.305	-34.0	
F	34	14.35	0.740	-0.35	62.6	0.180	-48.6	

Note: The computed values of σ will be in meters when x is given in kilometers.

$$H = h + \Delta h$$

Stable (E, F) Unstable & Neutral (A-D)
$$\Delta h = 2.6 \bigg(\frac{F}{US}\bigg)^{1/3} \qquad \qquad \Delta h = \frac{1.6F^{1/3}x_i^{2/3}}{U}$$

$$F = gr^2v_s \bigg(1 - \frac{T_a}{T_s}\bigg)$$

$$S = \frac{g}{T_a} \left(\frac{dT_a}{dz} + 0.01 \, ^{\circ}\text{C/m} \right) \qquad \qquad x_i = \begin{cases} 50F^{5/8} & \text{if } F < 55 \, \text{m}^4/\text{s}^3 \\ 120F^{0.4} & \text{if } F \geq 55 \, \text{m}^4/\text{s}^3 \end{cases}$$

$$\Delta h = \text{plume rise [m]} \\ g = \text{gravity acceleration [m/s^2]} \\ r = \text{inner radius of the stack [m]} \\ U = \text{wind speed at stack height h [m/s]} \\ v_s = \text{velocity of gas exiting from the stack [m/s]} \\ T_s = \text{stack gas temperature [K]} \\ T_a = \text{ambient temperature at stack height h [K]} \\ F = \text{buoyancy flux parameter [m^4/\text{s}^3]} \\ S = \text{stability parameter [s}^2] \\ x_i = \text{distance downwind to point of final plume rise [m]}$$

= distance downwind to point of final plume rise [m]

= actual lapse rate, positive if T_a increases with z [K/m]

$$c(x) = \frac{2}{\sqrt{2\pi}} \frac{q}{\sigma_z U}$$

Line source at ground level with perpendicular wind: