

## REPLACEMENT DRAWING SHEETS

Applicant(s): Shuhei ISHIKAWA, Tsutomu MITSUI, Ken SUZUKI, Nobuaki NAKAYAMA, Hiroyuki

TAKEUCHI and Seiji YASUI

Serial No.: 09/913,353

Title: HEAT SINK MATERIAL AND METHOD OF PRODUCING THE SAME

Our Docket No.: 789\_071

3/40



## REPLACEMENT DRAWING SHEETS

Applicant(s): Shuhei ISHIKAWA, Tsutomu MITSUI, Ken SUZUKI, Nobuaki NAKAYAMA, Hiroyuki

TAKEUCHI and Seiji YASUI

Serial No.: 09/913,353

Title: HEAT SINK MATERIAL AND METHOD OF PRODUCING THE SAME

Our Docket No.: 789\_071

4/40

FIG. 4





REPLACEMENT DRAWING SHEETS

Applicant(s): Shuhei ISHIKAWA, Tsutomu MITSUI, Ken SUZUKI, Nobuaki NAKAYAMA, Hiroyuki

TAKEUCHI and Seiji YASUI

Serial No.: 09/913,353

Title: HEAT SINK MATERIAL AND METHOD OF PRODUCING THE SAME

Our Docket No.: 789\_071

5/40

FIG. 5



## REPLACEMENT DRAWING SHEETS

Applicant(s): Shuhei ISHIKAWA, Tsutomu MITSUI, Ken SUZUKI, Nobuaki NAKAYAMA, Hiroyuki

TAKEUCHI and Seiji YASUI

Serial No.: 09/913,353

Title: HEAT SINK MATERIAL AND METHOD OF PRODUCING THE SAME

Our Docket No.: 789\_071

8/40

FIG. 8



## REPLACEMENT DRAWING SHEETS

Applicant(s): Shuhei ISHIKAWA, Tsutomu MITSUI, Ken SUZUKI, Nobuaki NAKAYAMA, Hiroyuki

TAKEUCHI and Seiji YASUI

Serial No.: 09/913,353

Title: HEAT SINK MATERIAL AND METHOD OF PRODUCING THE SAME

Our Docket No.: 789\_071

16/40

FIG. 16



## REPLACEMENT DRAWING SHEETS

Applicant(s): Shuhei ISHIKAWA, Tsutomu MITSUI, Ken SUZUKI, Nobuaki NAKAYAMA, Hiroyuki

TAKEUCHI and Seiji YASUI

Serial No.: 09/913,353

Title: HEAT SINK MATERIAL AND METHOD OF PRODUCING THE SAME

Our Docket No.: 789\_071

17/40

FIG. 17

METAL ADDED ELEMENT

| SAMPLE | SIZE<br>(mm)         | TYPE<br>OF<br>POWDER | PARTICLE<br>SIZE<br>OF<br>POWDER<br>( $\mu$ m) | FILLING<br>METHOD            | AMOUNT<br>OF<br>ADDITION<br>(wt%) | INFLI-<br>TRATION<br>METHOD | INFLI-<br>TRATION<br>PRESSURE<br>(MPa) | COEFFICIENT<br>OF THERMAL<br>CONDUCTIVITY<br>(W/mK) | WATER RESISTANCE                                                 |        |
|--------|----------------------|----------------------|------------------------------------------------|------------------------------|-----------------------------------|-----------------------------|----------------------------------------|-----------------------------------------------------|------------------------------------------------------------------|--------|
|        |                      |                      |                                                |                              |                                   |                             |                                        |                                                     | COEFFICIENT<br>OF THERMAL<br>EXPANSION<br>( $\times 10^{-9}/K$ ) | EFFECT |
| PW-1   | 30<br>x 120<br>x 190 | type<br>-P           | AVERAGE<br>120                                 | NO<br>PRESSUR-<br>IZATION    | Cu<br>Nb                          | 0.001                       | PRESS                                  | 60.0                                                | 321                                                              | 14.0   |
| PW-2   | 30<br>x 120<br>x 191 | type<br>-S           | AVERAGE<br>50                                  | NO<br>PRESSUR-<br>IZATION    | Cu<br>Nb                          | 0.001                       | PRESS                                  | 60.0                                                | 325                                                              | 13.5   |
| PW-3   | 30<br>x 120<br>x 192 | type<br>-R           | 212-<br>1180                                   | NO<br>PRESSUR-<br>IZATION    | Cu<br>Nb                          | 0.001                       | PRESS                                  | 60.0                                                | 305                                                              | 13.6   |
| PW-4   | 30<br>x 120<br>x 193 | type<br>-P           | AVERAGE<br>120                                 | NO<br>PRESSUR-<br>IZATION    | Cu<br>Nb                          | 0.001                       | PRESS                                  | 60.0                                                | 321                                                              | 14.0   |
| PW-5   | 30<br>x 120<br>x 194 | type<br>-P           | AVERAGE<br>120                                 | PRESSUR-<br>IZATION<br>7MPa  | Cu<br>Nb                          | 0.001                       | PRESS                                  | 60.0                                                | 311                                                              | 11.5   |
| PW-6   | 30<br>x 120<br>x 195 | type<br>-P           | AVERAGE<br>120                                 | PRESSUR-<br>IZATION<br>25MPa | Cu<br>Nb                          | 1.001                       | PRESS                                  | 60.0                                                | 301                                                              | 9.5    |



## REPLACEMENT DRAWING SHEETS

Applicant(s): Shuhei ISHIKAWA, Tsutomu MITSUI, Ken SUZUKI, Nobuaki NAKAYAMA, Hiroyuki

TAKEUCHI and Seiji YASUI

Serial No.: 09/913,353

Title: HEAT SINK MATERIAL AND METHOD OF PRODUCING THE SAME

Our Docket No.: 789\_071

19/40

FIG. 19

| SAMPLE | SIZE<br>(mm) | METAL<br>ELEMENT | AMOUNT<br>OF<br>ADDITION<br>(wt%) | INFIL-<br>TRATING<br>METHOD | COEFFICIENT<br>OF THERMAL<br>CONDUCTIVITY<br>(W/mK) | COEFFICIENT<br>OF THERMAL<br>EXPANSION<br>( $\times 10^{-6}/^{\circ}\text{C}$ ) | BENDING<br>STRENGTH<br>(MPa) |                | WATER<br>RESISTANCE | EFFECT |
|--------|--------------|------------------|-----------------------------------|-----------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------|------------------------------|----------------|---------------------|--------|
|        |              |                  |                                   |                             |                                                     |                                                                                 | SUR-<br>FACE                 | THICK-<br>NESS | SUR-<br>FACE        |        |
| p1-1   | 20x60x60     | Al               | NONE                              | PRESS                       | 171                                                 | 171                                                                             | 5.3                          | 5.5            | 33.3                | 53.9   |
| p1-2   | 20x60x60     | Gu               | NONE                              | PRESS                       | 162                                                 | 170                                                                             | 5.1                          | 5.1            | 27.4                | 41.2   |
| p2-1   | 20x60x60     | Gu               | Bi 2                              | PRESS                       | 168                                                 | 178                                                                             | 5.0                          | 5.1            | 28.4                | 45.1   |
| p2-2   | 20x60x60     | Gu               | Sb 0.5                            | PRESS                       | 178                                                 | 186                                                                             | 5.0                          | 5.1            | 27.4                | 41.2   |
| p2-3   | 20x60x60     | Gu               | Te 0.5                            | PRESS                       | 180                                                 | 189                                                                             | 5.0                          | 5.1            | 26.5                | 39.2   |
| p2-4   | 20x60x60     | Gu               | Te 2                              | PRESS                       | 172                                                 | 178                                                                             | 4.9                          | 5.0            | 25.5                | 38.2   |
| p2-5   | 20x60x60     | Gu               | Te, Bi 0.5, 0.5                   | PRESS                       | 169                                                 | 176                                                                             | 5.0                          | 5.0            | 26.5                | 39.2   |
| p2-6   | 20x60x60     | Gu               | Te, Pb 0.5, 2.0                   | PRESS                       | 172                                                 | 185                                                                             | 5.0                          | 5.0            | 27.4                | 41.2   |
| p3-1   | 20x60x60     | Gu               | Be 1                              | PRESS                       | 184                                                 | 204                                                                             | 5.0                          | 5.0            | 34.3                | 57.8   |
| p3-2   | 20x60x60     | Gu               | Cr 0.5                            | PRESS                       | 187                                                 | 192                                                                             | 5.0                          | 5.0            | 37.2                | 58.8   |
| p3-3   | 20x60x60     | Gu               | Mn 0.5                            | PRESS                       | 175                                                 | 181                                                                             | 5.0                          | 5.0            | 34.3                | 56.8   |
| p3-4   | 20x60x60     | Gu               | Nb 0.05                           | PRESS                       | 187                                                 | 190                                                                             | 5.0                          | 5.0            | 34.3                | 56.8   |
| p3-5   | 20x60x60     | Gu               | Zr 0.5                            | PRESS                       | 172                                                 | 174                                                                             | 5.0                          | 5.0            | 24.5                | 40.2   |
| p4-1   | 20x60x60     | Gu               | Te, Ni 0.5, 0.5                   | PRESS                       | 165                                                 | 177                                                                             | 5.0                          | 5.0            | 27.4                | 45.1   |
| p5-1   | 20x60x60     | Gu               | NONE                              | GAS                         | 170                                                 | 188                                                                             | 5.0                          | 5.0            | 27.4                | 41.2   |
| p6-1   | 10x85x180    | Gu               | Te 2                              | GAS                         | 185                                                 | 196                                                                             | 5.0                          | 5.1            | 26.5                | 39.2   |
| p6-2   | 20x60x60     | Gu               | Te 2                              | GAS                         | 192                                                 | 204                                                                             | 5.0                          | 5.0            | 28.4                | 42.1   |



## REPLACEMENT DRAWING SHEETS

Applicant(s): Shuhei ISHIKAWA, Tsutomu MITSUI, Ken SUZUKI, Nobuaki NAKAYAMA, Hiroyuki

TAKEUCHI and Seiji YASUI

Serial No.: 09/913,353

Title: HEAT SINK MATERIAL AND METHOD OF PRODUCING THE SAME

Our Docket No.: 789\_071



20/40

FIG. 20

| SAMPLE | SIZE<br>(mm) | METAL ELEMENT | AMOUNT<br>OF<br>ADDITION<br>(wt%) | INFIL-<br>TRATING<br>METHOD | COEFFICIENT<br>OF THERMAL<br>CONDUCTIVITY<br>(W/mK) | COEFFICIENT<br>OF THERMAL<br>EXPANSION<br>( $\times 10^{-6}/^{\circ}\text{C}$ ) | BENDING<br>STRENGTH<br>(MPa) | WATER<br>RESISTANCE | EFFECT          |
|--------|--------------|---------------|-----------------------------------|-----------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------|------------------------------|---------------------|-----------------|
|        |              |               |                                   |                             |                                                     |                                                                                 |                              |                     |                 |
| m1-1   | 20x60x60     | Al            | NONE                              | PRESS                       | 161                                                 | 187                                                                             | 4.5                          | 5.6                 | 34.3 56.8 △     |
| m1-2   | 20x60x60     | Cu            | NONE                              | PRESS                       | 145                                                 | 181                                                                             | 4.5                          | 5.1                 | 28.4 42.1 ○     |
| m2-1   | 20x60x60     | Cu            | Te                                | 0.50                        | PRESS                                               | 168                                                                             | 199                          | 4.5                 | 5.1 26.5 39.2 ○ |
| m3-1   | 20x60x60     | Cu            | Be                                | 1.00                        | 184                                                 | 213                                                                             | 4.5                          | 5.1                 | 36.3 59.8       |
| m3-2   | 20x60x60     | Cu            | Cr                                | 0.50                        | 170                                                 | 193                                                                             | 4.5                          | 5.1                 | 37.2 60.8       |
| m3-3   | 20x60x60     | Cu            | Mn                                | 0.50                        | 165                                                 | 192                                                                             | 4.5                          | 5.1                 | 35.3 57.8       |
| m3-4   | 20x120x190   | Cu            | Nb                                | 0.05                        | PRESS                                               | 162                                                                             | 192                          | 4.5                 | 5.1 35.3 57.8   |
| m3-5   | 20x60x60     | Cu            | Nb                                | 0.05                        |                                                     | 169                                                                             | 207                          | 4.5                 | 5.1 35.3 57.8   |
| m3-6   | 20x60x60     | Cu            | Zr                                | 0.50                        |                                                     | 158                                                                             | 182                          | 4.5                 | 5.1 32.3 52.9   |
| m5-1   | 20x60x60     | Cu            | NONE                              | GAS                         | 166                                                 | 198                                                                             | 4.5                          | 5.1                 | 25.5 38.2 ○     |

## REPLACEMENT DRAWING SHEETS

Applicant(s): Shuhei ISHIKAWA, Tsutomu MITSUI, Ken SUZUKI, Nobuaki NAKAYAMA, Hiroyuki

TAKEUCHI and Seiji YASUI

Serial No.: 09/913,353

Title: HEAT SINK MATERIAL AND METHOD OF PRODUCING THE SAME

Our Docket No.: 789\_071

21/40

FIG. 21

| SAMPLE | SIZE<br>(mm) | METAL | INFILTRATING<br>METHOD | AMOUNT OF<br>ADDITION<br>(wt%) | INFILTRATION PRESSURE |        |                        | COEFFICIENT OF THERMAL CONDUCTIVITY |                                  |                | WATER RESISTANCE |                |              |      |
|--------|--------------|-------|------------------------|--------------------------------|-----------------------|--------|------------------------|-------------------------------------|----------------------------------|----------------|------------------|----------------|--------------|------|
|        |              |       |                        |                                | (MPa)                 | (W/mK) | ( $\times 10^{-6}/K$ ) | BENDING<br>STRENGTH<br>(MPa)        | COMPRESSIVE<br>STRENGTH<br>(MPa) | THICK-<br>NESS | SUR-<br>FACE     | THICK-<br>NESS | SUR-<br>FACE |      |
| n1-1   | 20×60×60     | Al    | NONE                   | NONE                           | PRESS 26.7            | 156    | 311                    | 5.6                                 | 6.0                              | 31.4           | 51.9             | 46.1           | 51.0         | △    |
| n1-4   | 20×120×190   | Al    | NONE                   | NONE                           | PRESS 60.0            | 185    | 350                    | 5.5                                 | 6.5                              |                |                  |                |              | None |
| n1-2   | 20×60×60     | Cu    | NONE                   | NONE                           | PRESS 26.7            | 150    | 310                    | 3.8                                 | 4.5                              | 26.5           | 39.2             |                |              | △    |
| n1-3   | 20×120×190   | Cu    | NONE                   | NONE                           | PRESS 26.7            | 147    | 268.                   | 3.9                                 | 4.5                              | 26.5           | 39.2             |                |              | None |
| n2-1   | 20×60×60     | Cu    | Te                     | 0.500                          | PRESS 26.7            | 190    | 351                    | 3.8                                 | 4.5                              | 26.5           | 39.2             |                |              | ○    |
| n3-1   | 20×60×60     | Cu    | Be                     | 1.000                          | PRESS 26.7            | 183    | 341                    | 3.8                                 | 4.5                              | 38.2           | 62.7             |                |              | ○    |
| n3-2   | 20×120×190   | Cu    | Be                     | 1.000                          | PRESS 156.1           | 189    | 342                    | 4.0                                 | 4.6                              | 37.2           | 61.7             |                |              | △    |
| n3-3   | 20×60×60     | Cr    | 0.500                  | PRESS 26.7                     | 180                   | 320    | 3.8                    | 4.5                                 | 36.3                             | 59.8           |                  |                | △            |      |
| n3-4   | 20×60×60     | Mn    | 0.500                  | PRESS 26.7                     | 176                   | 330    | 3.8                    | 4.5                                 | 34.3                             | 55.9           |                  |                | ○            |      |
| n3-5   | 20×60×60     | Nb    | 0.050                  | PRESS 156.1                    | 198                   | 336    | 3.8                    | 4.5                                 | 35.3                             | 57.8           |                  |                | ○            |      |
| n3-6   | 20×120×190   | Cu    | Nb                     | 0.050                          | PRESS 26.7            | 167    | 309                    | 3.8                                 | 4.5                              | 35.3           | 57.8             |                |              | ○    |
| n3-7   | 20×60×60     | Zr    | 0.500                  | PRESS 26.7                     | 168                   | 312    | 3.8                    | 4.5                                 | 34.3                             | 56.8           |                  |                | △            |      |
| n3-8   | 20×120×190   | Cu    | Nb                     | 0.001                          | PRESS 43.3            | 182    | 352                    | 4.5                                 | 3.0                              |                |                  | 40.2           | 51.9         | △    |
| n3-9   | 20×120×190   | Cu    | Nb                     | 0.001                          | PRESS 60.0            | 182    | 363                    | 4.0                                 | 3.0                              |                |                  | 42.1           | 51.9         | △    |
| n3-10  | 20×120×190   | Cu    | Nb                     | 1.100                          | PRESS 60.0            | 196    | 359                    | 4.0                                 | 2.5                              |                |                  | 51.0           | 58.8         | △    |
| n3-11  | 20×120×190   | Cu    | Be                     | 1.900                          | PRESS 60.0            | 186    | 366                    | 4.5                                 | 3.5                              |                |                  | 57.8           | 64.7         | △    |
| n3-12  | 20×120×190   | Cu    | Ni, Sn                 | 9.4, 6.7                       | PRESS 60.0            | 190    | 343                    |                                     |                                  |                |                  | 51.9           | 51.0         | ○    |
| n3-13  | 20×120×190   | Cu    | Ni, Si, P              | 1.0, 0.23, 0.04                | PRESS 60.0            | 190    | 353                    |                                     |                                  |                |                  | 48.0           | 51.9         | △    |
| n3-14  | 20×120×190   | Cu    | Mn                     | 4.180                          | PRESS 60.0            | 181    | 352                    |                                     |                                  |                |                  | 51.0           | 54.9         | ○    |
| n3-15  | 20×120×190   | Cu    | Cr                     | 2.870                          | PRESS 60.0            | 195    | 387                    |                                     |                                  |                |                  | 48.0           | 51.9         | △    |
| n3-16  | 20×120×190   | Cu    | Zr                     | 4.490                          | PRESS 60.0            | 207    | 367                    |                                     |                                  |                |                  | 53.9           | 63.7         | △    |
| n3-17  | 20×120×190   | Cu    | Si                     | 11.300                         | PRESS 26.7            | 167    | 333                    |                                     |                                  |                |                  | 53.9           | 60.8         | ○    |
| n3-18  | 20×120×190   | Cu    | Si                     | 10.900                         | PRESS 60.0            | 159    | 316                    |                                     |                                  |                |                  | 56.8           | 68.6         | ○    |
| n3-19  | 20×120×190   | Cu    | Si                     | 5.110                          | PRESS 153.0           | 165    | 343                    |                                     |                                  |                |                  | 52.9           | 62.7         | ○    |
| n3-20  | 20×120×190   | Cu    | Si                     | 5.300                          | PRESS 43.3            | 163    | 325                    |                                     |                                  |                |                  | 54.9           | 60.8         | ○    |
| n5-1   | 20×60×60     | Cu    | NONE                   | NONE                           | GAS 26.7              | 110    | 320                    | 3.8                                 | 4.5                              | 26.5           | 39.2             |                |              | ○    |
| n7-1   | 20×120×190   | Al    | Be                     | 2.000                          | PRESS 60.0            | 177    | 332                    | 5.0                                 | 6.5                              |                |                  | 57.8           | 62.7         | △    |
| n7-2   | 20×120×190   | Al    | Si                     | 5.000                          | PRESS 60.0            | 169    | 329                    | 5.0                                 | 6.5                              |                |                  | 50.0           | 61.7         | ○    |
| n7-3   | 20×120×190   | Al    | Si                     | 12.000                         | PRESS 60.0            | 181    | 327                    | 5.0                                 | 6.5                              |                |                  | 56.8           | 68.6         | ○    |

COEFFICIENT OF THERMAL EXPANSION  
( $\times 10^{-6}/K$ )

SURFACE THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

COEFFICIENT OF THERMAL EXPANSION  
( $\times 10^{-6}/K$ )

SURFACE THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

COEFFICIENT OF THERMAL EXPANSION  
( $\times 10^{-6}/K$ )

SURFACE THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

COEFFICIENT OF THERMAL EXPANSION  
( $\times 10^{-6}/K$ )

SURFACE THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

COEFFICIENT OF THERMAL EXPANSION  
( $\times 10^{-6}/K$ )

SURFACE THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

COEFFICIENT OF THERMAL EXPANSION  
( $\times 10^{-6}/K$ )

SURFACE THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

COEFFICIENT OF THERMAL EXPANSION  
( $\times 10^{-6}/K$ )

SURFACE THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

COEFFICIENT OF THERMAL EXPANSION  
( $\times 10^{-6}/K$ )

SURFACE THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

COEFFICIENT OF THERMAL EXPANSION  
( $\times 10^{-6}/K$ )

SURFACE THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

COEFFICIENT OF THERMAL EXPANSION  
( $\times 10^{-6}/K$ )

SURFACE THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

COEFFICIENT OF THERMAL EXPANSION  
( $\times 10^{-6}/K$ )

SURFACE THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

COEFFICIENT OF THERMAL EXPANSION  
( $\times 10^{-6}/K$ )

SURFACE THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

COEFFICIENT OF THERMAL EXPANSION  
( $\times 10^{-6}/K$ )

SURFACE THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

COEFFICIENT OF THERMAL EXPANSION  
( $\times 10^{-6}/K$ )

SURFACE THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

COEFFICIENT OF THERMAL EXPANSION  
( $\times 10^{-6}/K$ )

SURFACE THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

COEFFICIENT OF THERMAL EXPANSION  
( $\times 10^{-6}/K$ )

SURFACE THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

COEFFICIENT OF THERMAL EXPANSION  
( $\times 10^{-6}/K$ )

SURFACE THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICKNESS

BENDING STRENGTH

COMPRESSIVE STRENGTH

THICKNESS

SURFACE THICK

## REPLACEMENT DRAWING SHEETS

Applicant(s): Shuhei ISHIKAWA, Tsutomu MITSUI, Ken SUZUKI, Nobuaki NAKAYAMA, Hiroyuki

TAKEUCHI and Seiji YASUI

Serial No.: 09/913,353

Title: HEAT SINK MATERIAL AND METHOD OF PRODUCING THE SAME

Our Docket No.: 789\_071



23/40

FIG. 23

| SAMPLE | SIZE<br>(mm) | METAL ELEMENT | AMOUNT<br>OF<br>ADDITION<br>(wt%) | INFIL-<br>TRATING<br>METHOD | COEFFICIENT<br>OF THERMAL<br>CONDUCTIVITY<br>(W/mK) | COEFFICIENT<br>OF THERMAL<br>EXPANSION<br>( $\times 10^{-6}/^{\circ}\text{C}$ ) | BENDING<br>STRENGTH<br>(MPa) |                | WATER<br>RESISTANCE | EFFECT         |
|--------|--------------|---------------|-----------------------------------|-----------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------|------------------------------|----------------|---------------------|----------------|
|        |              |               |                                   |                             |                                                     |                                                                                 | SUR-<br>FACE                 | THICK-<br>NESS | SUR-<br>FACE        | THICK-<br>NESS |
| p1-2   | 20x60x60     | Cu            | NONE                              | PRESS                       | 162                                                 | 170                                                                             | 5.1                          | 5.1            | 27.4                | 41.2           |
| p5-1   | 20x60x60     | Cu            | NONE                              | GAS                         | 170                                                 | 188                                                                             | 5.0                          | 5.0            | 27.4                | 41.2           |
| p2-4   | 20x60x60     | Cu            | Te                                | 2                           | PRESS                                               | 172                                                                             | 178                          | 4.9            | 5.0                 | 25.5           |
| p6-2   | 20x60x60     | Cu            | Te                                | 2                           | GAS                                                 | 192                                                                             | 204                          | 5.0            | 5.0                 | 28.4           |
| m1-2   | 20x60x60     | Cu            | NONE                              | PRESS                       | 145                                                 | 181                                                                             | 4.5                          | 5.1            | 28.4                | 42.1           |
| m5-1   | 20x60x60     | Cu            | NONE                              | GAS                         | 166                                                 | 198                                                                             | 4.5                          | 5.1            | 25.5                | 38.2           |
| n1-2   | 20x60x60     | Cu            | NONE                              | PRESS                       | 150                                                 | 310                                                                             | 3.8                          | 4.5            | 26.5                | 39.2           |
| n5-1   | 20x60x60     | Cu            | NONE                              | GAS                         | 170                                                 | 320                                                                             | 3.8                          | 4.5            | 26.5                | 39.2           |

## REPLACEMENT DRAWING SHEETS

Applicant(s): Shuhei ISHIKAWA, Tsutomu MITSUI, Ken SUZUKI, Nobuaki NAKAYAMA, Hiroyuki TAKEUCHI and Seiji YASUI

Serial No.: 09/913,353

Title: HEAT SINK MATERIAL AND METHOD OF PRODUCING THE SAME

Our Docket No.: 789\_071

24/40

FIG. 24



## REPLACEMENT DRAWING SHEETS

Applicant(s): Shuhei ISHIKAWA, Tsutomu MITSUI, Ken SUZUKI, Nobuaki NAKAYAMA, Hiroyuki  
TAKEUCHI and Seiji YASUI

Serial No.: 09/913,353

Title: HEAT SINK MATERIAL AND METHOD OF PRODUCING THE SAME  
Our Docket No.: 789\_071

26/40



## REPLACEMENT DRAWING SHEETS

Applicant(s): Shuhei ISHIKAWA, Tsutomu MITSUI, Ken SUZUKI, Nobuaki NAKAYAMA, Hiroyuki

TAKEUCHI and Seiji YASUI

Serial No.: 09/913,353

Title: HEAT SINK MATERIAL AND METHOD OF PRODUCING THE SAME

Our Docket No.: 789\_071

27/40



FIG. 27



## REPLACEMENT DRAWING SHEETS

Applicant(s): Shuhei ISHIKAWA, Tsutomu MITSUI, Ken SUZUKI, Nobuaki NAKAYAMA, Hiroyuki

TAKEUCHI and Seiji YASUI

Serial No.: 09/913,353

Title: HEAT SINK MATERIAL AND METHOD OF PRODUCING THE SAME

Our Docket No.: 789\_071

28/40



FIG. 28



## REPLACEMENT DRAWING SHEETS

Applicant(s): Shuhei ISHIKAWA, Tsutomu MITSUI, Ken SUZUKI, Nobuaki NAKAYAMA, Hiroyuki

TAKEUCHI and Seiji YASUI

Serial No.: 09/913,353

Title: HEAT SINK MATERIAL AND METHOD OF PRODUCING THE SAME

Our Docket No.: 789\_071

30/40

FIG. 30



| No.      | POROSITY [%] | PORE DIAMETER [ $\mu\text{m}$ ] | Ni PLATING | Si INFILTRATION | TEMPERATURE [°C] | PRESSURIZATION [MPa ( $\text{kgf/cm}^2$ )] | PRESSURIZATION TIME [sec] | COOLING SPEED [°C/min] | REACTION OF Si/Cu | INFILTRATION |
|----------|--------------|---------------------------------|------------|-----------------|------------------|--------------------------------------------|---------------------------|------------------------|-------------------|--------------|
| SAMPLE1  | 35           | 70                              | ABSENT     | ABSENT          | 1130             | 0.78(8)                                    | 60                        | 260                    | △                 | △            |
| SAMPLE2  | 44           | 22                              | ABSENT     | ABSENT          | 1130             | 7.84(80)                                   | 20                        | 900                    | ○                 | ○            |
| SAMPLE3  | 59           | 42                              | ABSENT     | PRESENT         | 1130             | 11.8(120)                                  | 10                        | 480                    | ○                 | ○            |
| SAMPLE4  | 15           | 5                               | PRESENT    | ABSENT          | 1130             | 23.5(240)                                  | 10                        | 900                    | ○                 | ○            |
| SAMPLE5  | 59           | 42                              | ABSENT     | PRESENT         | 1180             | 0.78(8)                                    | 60                        | 900                    | △                 | △            |
| SAMPLE6  | 15           | 5                               | ABSENT     | ABSENT          | 1180             | 3.92(40)                                   | 20                        | 480                    | ○                 | △            |
| SAMPLE7  | 59           | 42                              | ABSENT     | PRESENT         | 1180             | 11.8(120)                                  | 10                        | 900                    | ○                 | △            |
| SAMPLE8  | 44           | 22                              | ABSENT     | ABSENT          | 1180             | 23.5(240)                                  | 10                        | 900                    | ○                 | ○            |
| SAMPLE9  | 44           | 22                              | ABSENT     | PRESENT         | 1230             | 0.78(8)                                    | 20                        | 620                    | ○                 | ○            |
| SAMPLE10 | 59           | 42                              | PRESENT    | ABSENT          | 1230             | 3.92(40)                                   | 35                        | 480                    | ○                 | △            |
| SAMPLE11 | 35           | 70                              | ABSENT     | ABSENT          | 1230             | 7.84(80)                                   | 100                       | 620                    | ○                 | ○            |
| SAMPLE12 | 44           | 22                              | ABSENT     | PRESENT         | 1230             | 23.5(240)                                  | 5                         | 620                    | ○                 | ○            |
| SAMPLE13 | 59           | 42                              | ABSENT     | ABSENT          | 1280             | 3.92(40)                                   | 50                        | 790                    | ○                 | ○            |
| SAMPLE14 | 35           | 70                              | ABSENT     | ABSENT          | 1280             | 7.84(80)                                   | 35                        | 480                    | △                 | △            |
| SAMPLE15 | 44           | 22                              | PRESENT    | ABSENT          | 1280             | 7.84(80)                                   | 5                         | 620                    | ○                 | ○            |
| SAMPLE16 | 59           | 42                              | ABSENT     | PRESENT         | 1280             | 11.8(120)                                  | 10                        | 790                    | ○                 | ○            |
| SAMPLE17 | 20           | 21                              | ABSENT     | ABSENT          | 1150             | 156.1                                      | 3                         | 900                    | ○                 | ○            |
| SAMPLE18 | 20           | 19                              | ABSENT     | ABSENT          | 1150             | 156.1                                      | 5                         | 900                    | ○                 | ○            |
| SAMPLE19 | 20           | 23                              | ABSENT     | ABSENT          | 1140             | 69.3                                       | 5                         | 900                    | ○                 | ○            |
| SAMPLE20 | 20           | 22                              | ABSENT     | ABSENT          | 1145             | 26.7                                       | 7                         | 900                    | ○                 | ○            |

NOTES REACTION of Si/Cu: ○NO REACTION   ○SLIGHT REACTION   △STRONG REACTION  
 INFILTRATION OF Cu :   ○GOOD INFILTRATION   ○SLIGHTLY INSUFFICIENT INFILTRATION  
 △INSUFFICIENT INFILTRATION



## REPLACEMENT DRAWING SHEETS

Applicant(s): Shuhei ISHIKAWA, Tsutomu MITSUI, Ken SUZUKI, Nobuaki NAKAYAMA, Hiroyuki

TAKEUCHI and Seiji YASUI  
Saitama 353-0022/13-353

Serial No.: 09/913,353

**Title: HEAT SINK MATERIAL AND METHOD OF PRODUCING THE SAME**

Our Docket No.: 789\_071

34/40

FIG. 34



## REPLACEMENT DRAWING SHEETS

Applicant(s): Shuhei ISHIKAWA, Tsutomu MITSUI, Ken SUZUKI, Nobuaki NAKAYAMA, Hiroyuki

TAKEUCHI and Seiji YASUI

Serial No.: 09/913,353

Title: HEAT SINK MATERIAL AND METHOD OF PRODUCING THE SAME

Our Docket No.: 789\_071

38/40



FIG. 38



## REPLACEMENT DRAWING SHEETS

Applicant(s): Shuhei ISHIKAWA, Tsutomu MITSUI, Ken SUZUKI, Nobuaki NAKAYAMA, Hiroyuki

TAKEUCHI and Seiji YASUI

Serial No.: 09/913,353

Title: HEAT SINK MATERIAL AND METHOD OF PRODUCING THE SAME

Our Docket No.: 789\_071

40/40

FIG. 40

