General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

"Made available under NASA sponsorship in the interest of early and wide dissemination of Earth Resources Survey Program information and without liability for any use made thereot."

E7.6-10.273

NASA CR. 147465

SIGNATURE EXTENSION FOR SUN ANGLE

VOLUME II

J. A. Smith, J. K. Berry, and F. Heimes

Final Report
Earth Observations Division
NASA Johnson Spacecraft Center
NAS 9-14467

(E76-10273) SIGNATURE EXTENSION FOR SUN ANGLE, VOLUME 2 Final Report, 15 Nov. 1974 - 14 Nov. 1975 (Colorado State Univ.) 130 p HC \$6.00 CSCL 03B

N76-21640

Unclas G3/43 00273

November, 1975

Department of Earth Resources Colorado State University Fort Collins, Colorado 80523

SIGNATURE EXTENSION FOR SUN ANGLE

VOLUME II

J. A. Smith, P. ? J. K. Berry, and F. Heimes

Final Report
Earth Observations Division
NASA Johnson Spacecraft Center
NAS 9-14467

November, 1975

Department of Earth Resources Colorado State University Fort Collins, Colorado 80523 THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL NASA POSITION, UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

ABSTRACT

This is the second volume in a two-volume final report series for Project NAS 9-14467 sponsored by the Earth Observations Division, NASA/JSC. This report series summarizes the work covered between the period November 15, 1974, and November 14, 1975. The objectives of the project were to evaluate the LACIE II table look-up approach to sun-angle correction. Canopy reflectance modeling was employed as a technique for evaluating sun-angle signature extension.

Volume I presents the multiplicative and additive coefficient matrices for a linear sun-angle correction approach. These coefficient tables are calculated using either measured empirical canopy reflectance functions or model derived data. These values are then incorporated into an atmospheric radiation transfer model. The dependence of the coefficient matrices on crop stage, crop type, and canopy directional reflectance variations is reviewed. Finally, a method for inferring leaf area index, an intrinsic scene characteristic, from canopy reflectance is discussed.

Volume II presents the basic data and computer programs used in the study. A brief review of the radiometric and geometric data collection procedures is also given. In particular, two recent methods developed by the investigators for determining plant geometry are discussed. These include the Fourier diffraction and multiple view angle approach. The data compilation consists of canopy reflectance, constituent reflectance, Leaf-Area-Indices, and leaf slope distributions for four wheat crop development stages at Garden City, Kansas.

FOREWORD

The research described in this report was supported under contract NAS9-14467, issued by the National Aeronautics and Space Administration, Earth Observations Division, Johnson Spacecraft Center, Houston, Texas. Mr. T. Barnett was the technical monitor of the project. The efforts described in this report represent Task 4.1.1.2 f(S) described in LACIE 00200, Volume III. Field data for the project were gathered over the LACIE Intensive Test Sites in Garden City, Kansas. The measurements were performed in cooperation with Dr. J. C. Harlan, Remote Sensing Center, Texas A & M University. Mr. Barrett Robinson, Laboratories for Applications of Remote Sensing, Purdue University, constructed the diffuse radiometer attachment for measuring leaf transmittance.

Participating project personnel included Dr. James A. Smith, Department of Earth Resources and Principal Investigator; Mr. Joe Berry, Graduate Research Assistant, and Mr. Rick Heimes, Graduate Research Assistant. Other project personnel included Miss Carol Conrad and Mrs. Pam Solomon, Colorado State University, who assisted in preparing the final report. Mr. Berry received the degree, Doctor of Philosophy, for work related to project sub-tasks.

The authors would particularly like to express their appreciation to Dr. Harlan and his research team for their field measurement support and to Dr. A. E. Potter, Chief of the Research, Test, and Evaluation Branch, Earth Observations Division, under whose auspices this work was performed.

TABLE OF CONTENTS

			<u>Page</u>
	ABST	RACT	i
· ·.	FORE	WORD	ii
I.	INTR	ODUCTION	7
II.	FIEL	D DATA COLLECTION TECHNIQUES	3
	1.0	Radiometric Measurements	3
٠.	2.0	Techniques for Assessing Leaf Angle Distribution	7
		A. Introduction	7
		B. Point Quadrat Technique	7
		C. Orthogonal Tracing Technique	8
		D. Fredholm Integral Technique	8
,		E. Diffraction Pattern Technique	10
III.	DATA	COMPILATION	15
	1.0	General Description	15
	2.0	Data Set Presentation	18
		A. March 20, 1975	18
	•	B. April 23, 1975	22
		C. May 20, 1975	26
		D. June 26, 1975	30
IV.	PROG	RAM LISTINGS AND CONTROL CARDS	33
	1.0	SRVC	33
	2.0	COEFF	92
	3.0	DATAUSE	95
	4.0	PLANTS	99
	5.0	FRDHLM	113
	6.0	PROP	118

INTRODUCTION

This is the second volume in a two-volume report series for Project NAS9-14467 which represents Task 4.1.1.2f(s) in the LACIE 00200, Volume VIII. Specific objectives of this task in order of priority include:

- A. To evaluate the current LACIE II table look-up sun angle correction algorithms relative to:
 - 1. The effect of canopy reflectance variations with sun angle;
 - The effect of canopy sun angle reflectance variations with crop development stages;
 - The effect of applying a uniform sun angle correction developed specifically for wheat to all crop types.
- B. To recommend modifications to the current LACIE II sun angle correction algorithm.
- C. To investigate the alternative sun angle correction procedures for present and future satellite systems. In particular, to investigate the possibility of extracting intrinsic scene characteristics from wheat canopy modeling.

The first volume in this report series summarizes the alpha, beta coefficient matrices required for a linear sun angle correction algorithm. The effects of crop stage, type, and canopy directional reflectance properties on the correction approach are reviewed. In addition, the relationship of Leaf-Area Index to canopy reflectance is discussed.

This volume provides a brief description of the field data collection techniques, Section II, and a complete listing of the radiometric and geometric data measured at the Garden City, Kansas, test sites for each of the four crop

development stages, Section III. Program listings and control cards for the computer programs used in the study are given in Section IV. The recently developed Fourier diffraction and multiple-view angle techniques for assessing plant geometry discussed in Section II should be of particular interest.

II. FIELD DATA COLLECTION TECHNIQUES

1.0 Radiometric Measurements

All of the reflectance data given in Volume II and analyzed in this report were collected with an Exotech ERTS radiometer which was modified for digital read out. The field procedure involved taking two readings centered on a row, then two more centered between rows for a total of four tripod movements. A while panel reference reading was made at each set-up. A final measurement of diffuse/direct irradiation was made by reading a sun-lit and shaded reference panel, respectively. These measurements were repeated for each of three intensive plots four times during the day. In addition, periodic bare soil reflectance measurements were made. Figures 1, 2, and 3 show the radiometer in its various field configurations.

Leaf transmission measurements were made using a special attachment for the ERTS radiometer that was developed by the Laboratory for Applications of Remote Sensing at Purdue University. The attachment consists of a cylindrical barrel, a sphere, and two flat discs which have small slots cut in them between which the leaf or other material is placed. The apparatus fits over the individual sensor ports on the ERTS radiometer and must be shifted to measure transmission for each of the four bands. Once the radiometer and attachment are aligned with the sun, it is a simple matter to shift from port to port for measurements in each band. The unit is aligned by the use of a pin-hole type site on the side of the barrel assembly. The barrel is directed towards the sun and collects the direct rays which pass into the sphere. The sphere is coated on the inside with ${\tt BaSO_4}$ and contains a blocking baffle which prevents the passage of direct solar radiation through the sphere, allowing only diffuse radiation to pass. The diffuse light then passes through the material contained between the disc holders and is recorded by the sensor. The attachment is illustrated in Figures 4 and 5.

Figure 1. ERTS radiometer in its field configuration.

Figure 2. Four measurements were made (2 over a row and 2 between rows) for each "set-up" at an intensive site. Four such set-ups were completed during the day, covering a wide range of sun angles.

Figure 3. Percent reflectance for each band was determined by dividing the sample reading by a reading made from a white reflectance panel, which approximates total scene irradiance.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 4. The leaf transmission attachment, in turn, is placed over each apeture. Two readings are made; the first is an unobstructed measure to establish a reference signal with the second having the leaf placed over the apeture of the attachment. The percent transmission of the leaf is calculated by dividing the reference signal by the sample reading.

Figure 5. A baffle in the center of the sphere prevents direct sunlight from hitting the radiometer's detector and saturating the signal.

ORIGINAL PAGE IS

OF POOR QUALITY

All radiometric data were recorded manually in the field as illustrated on the enclosed data sheet.

2.0 Techniques for Assessing Leaf Angle Distributions

A. Introduction

The Second Quarterly Progress Report referenced our preliminary work in developing rapid in situ techniques for measuring leaf slope distributions in wheat canopies. In particular, we discussed the Fourier diffraction and Fredholm approach. The field procedure for these two techniques has been implemented as part of the LACIE Field Measurements Program at Garden City, Kansas. Two alternative methods for measuring leaf slope distributions include the standard point quadrat approach and the orthogonal photographic method. The procedures for all four methods are described below.

B. Point Quadrat Technique

It has been shown that the mean foliage angle can be calculated from the number of contacts made by point quadrats passed vertically and horizontally through a plant canopy (Wilson, 1959). In practice the error associated with this method rarely exceeds 10% (Wilson, 1962). The technique is in situ, however appreciable localized trampling is induced around the field plot. The time required for a single angle determination is about 18 man hours (Knight, 1973). This method is most commonly used to characterize foliage geometry, however, it only estimates the mean inclination angle rather than a distribution.

The field procedure involves the calculation of the average number of contacts a long slender pin makes with the vegetation during a pass through the plant canopy. The length of the pass, for both the horizontal and vertical transects, is dictated by the height of the canopy. Several hundred passes are made from both directions, with the averages for each being multiplied by theoretically obtained coefficients to determine the mean foliage angle.

C. Orthogonal Tracing Technique

The distribution of foliage angles for an individual plant can be accurately determined by analyzing two orthogonal photos of the plant (Oliver and Smith, 1974). The distribution of angles for an entire plot is statistically determined by averaging the distributions of several representative plants. This technique has many of the limiting features associated with the point quadrat method. It is slow, tedious and destructive. However, its accuracy makes it a prime technique for evaluating the results of the other methods.

With this procedure, individual plants are clipped from a field plot and the silhouetted profiles are photographed from two orthogonal directions (Figure 1). The photographs (Figure 2) are then digitized by placing a transparent grid over the photographs and recording the two-dimensional coordinates of straight line segments along the profiles. The profiles are then plotted on microfilm (Figure 3) using the digitized data in order to verify the hand digitization. A computer program determines the three-dimensional coordinates of the foliage elements from the two sets of orthogonal data, and calculates the average foliage inclination angle by direct computation (Figure 4). The distribution for the entire plot is calculated by weighted averaging of the individual plant distributions based on the size of the plant.

D. Fredholm Integral Technique

This technique has the easiest data collection and reduction procedures of all the proposed methods. However, the technique cannot be applied to dense plant canopies (Oliver and Smith, 1974).

The proportion of gap or "probability of hit," as a function of view angle is a function of the mean canopy projection in the direction of view averaged over all foliage elements. Several explicit expressions of this

Figure 1. The field procedure for the orthogonal method involves making orthogonal photos of a silhouetted plant. Markers for several branches are used to avoid confusion when a pair of photos is digitized.

Figure 2. Orthogonal views of a silhouetted plant.

Figure 3. Computer plot of the digitized photos.

Figure 4. Distribution of angles of the plant in three-space. An estimate of angular bias within the canopy is made by averaging the distribution of several plants.

functional dependence are given in the literature (Nilson, 1971). For example: $P_0(\theta_r) = e^{-LAIg(\theta_r)} \sec \theta_r$ where $g(\theta_r)$ is the mean canopy projection in direction θ_r . LAI is leaf area

Given a measured $P_o(\theta r)$, we can then invert the expression to derive $g(\theta r)$.

This mean canopy projection in direction θr , $g(\theta r)$ can then be related to the leaf slope distribution $f(\theta a)$ via a Fredholm integral equation of the first kind (Oliver and Smith, 1974) $g(\theta r) = \int_{0}^{\pi/2} K(\theta, \theta a) f(\theta) d\theta$ where the kernel $k(\theta, \theta a)$ takes a different form depending on whether $\theta a \leq \frac{\pi}{a} - \theta r$ or $\theta a > \frac{\pi}{a} - \theta r$.

A numerical solution to this equation given a measured $P_0(9r)$ has been implemented in the CSU CDC 6400 computer, PROGRAM FREDHOLM. Program listings are given in Volume II.

The field procedure for this technique involves taking a series of offangle photos of a small plot (Figure 5 and 6). The probability of gap in
each photo is determined by overlaying a transparent dot grid and recording
the proportion of dots which do not intersect a foliage element. The vector
of the probabilities of gap serves as input to a computer algorithm as discussed
above which calculates the distribution of angles within the original plot
(Figure 7).

E. Diffraction Pattern Technique

index.

The diffraction pattern technique is much slower and more tedious than the Fredholm integral method, yet is still relatively easy and rapid when compared to either the point quadrat or orthogonal techniques. A limited localized distrubance of the canopy is encountered when field photographs are taken. Subsequent data reduction requires several photographic and measurement steps.

Figure 5. The field procedure for the Fredholm technique involves making a series of off-angle photos of the canopy.

0° Z

30'

60°

<u>Figure 6.</u> A full set of multiple view angle photos consists of all 10 increments between 0 and 70 Z. The probability of gap in each photo is determined by use of a transparent grid.

Figure 7. Distribution of angles for the entire canopy is calculated through the solution of a Fredholm integral equation.

ORIGINAL PAGE IS OF POOR QUALITY This technique requires a horizontal field photo of a portion of the plant canopy silhouetted against a white backdrop (Figure 8). High contrast film is used to enhance the contrast between the plants and the backdrop. The negative of the field photo acts as input to an optical diffractometer (Figures 9 and 10) which generates a unique diffraction pattern dependent on the angles of the foliage elements. A high contrast photograph is taken of the diffraction pattern, and the negative measured using a photo cell densitometer (Figure 11). A wedge blocking filter is used on the densitometer in order to determine distribution of angles in the diffraction pattern. This distribution, in turn, serves as input to a computer algorithm, PROGRAM PROP, which solves for the distribution of angles in the original field scene (Figure 12). Program listings are given in Appendix B. A mathematical convolution of several scene angle distributions then yields the overall distribution of angles for the area.

LITERATURE CITED

- Knight, D. H. 1973. Leaf area dynamics of a shortgrass praire in Colorado. Ecology. Vol. 54, No. 4"891-896.
- Nilson, T. 1971. A Theoretical Analysis of the Frequency of Gaps in Plant Canopies. Ag. Meteor. 8:25-38.
- Wilson, J. W. 1959. Analysis of the spatial distribution of foliage by two-dimensional point quadrats. New Phytol., 58:92-100.
- Wilson, J. W. 1962. Estimation of foliage denseness and foliage angle by inclined point quadrats. Aust. J. Bot., 11:95-105.
- Oliver, R. E. and Smith, J. A. 1974. A stochastic canopy model of diurnal reflectance. Final report under contract DAHCO4-74-GOO1, Colorado State University, Fort Collins, Colorado.

Figure 8. Field photos for the Fourier method are taken of silhouetted portions of the canopy.

Figure 9. The high contrast field photos act as input to a LASER diffractometer which generates a unique diffraction pattern for each scene.

Figure 10. The input is placed between the LASER and a planoconvex lens. The quality of the diffraction pattern generated is primarily dependent on the alignment and cleanliness of the optics.

Figure 11. Sampling the angular information in the diffraction pattern is achieved by rotating a narrow wedge blocking filter attached to a photometer through half of the pattern. Program PROF reduces this information to a density function.

 $\overline{\text{Figure 12.}}$ An example of Fourier analysis for determining the leaf angle distribution of a wheat scene.

III. DATA COMPILATION

1. General Description

The principle field data collected by TAMU/CSU for the canopy modeling effort consists of periodic canopy reflectance, intensive leaf area index (LAI) measures, extensive LAI estimates, individual leaf transmission measurements, and canc geometry photos. Relatively complete data sets are available for March 20, 1975 (Tillering Stage, TAMU), April 23, 1975 (Jointing Stage, TAMU/CSU), and May 20, 1975 (Heading Stage, TAMU). Less complete data sets were collected on November 24, 1974 (Winter tillering stage, TAMU/CSU) and June 26, 1975 (Ripening stage, TAMU/CSU). The following two tables summarize the data sets. A more detailed presentation of each of these data sets is included in the remaining four parts of this section.

FINNEY COUNTY DATA SUMMARY (Collected by TAMU/CSU)

I.	March 20, 1975 - Canopy reflecta	nce:	illerin	g Stage			Field 41	6
	Time:	1.	<u>lot 1</u> 100 hrs 145	•	Plot 1045 1130	2		Plot 3 1030
	I A T -];]4	300 100 ,		1245 1345			1115 1230 1330
	LAI:Canopy geometryLeaf transmissi	: Fredholm f	.07 ield pho 1	otos	4.06			1.31
	- 10" LAI plots:	Field 367 Plot 1 1.82 Plot 2 1.04	369 .70 .41	370 .50 1.60	414 1.46 .39	421 .49 .35		

II.	April 23, 1975 - Canopy reflectance:	Jointing Stage	Field	416
	Time: - LAI: - Canopy geometry: Four	Plot 1 1000 hrs. 1130 1315 1715 5.13 ier field photos	Plot 2 1045 1145 1345 1730 5.36	Plot 3 1115 1200 1400 1800 6.15
	Leaf transmission: No10" LAI plots: <u>Field</u>	t taken 367 369 370 2.22 2.15 1.4	8 8.53 4.54	
III.	May 20, 1975 - Canopy reflectance:	Heading Stage	Field	416
	Time:	Plot 1 0945 hrs. 1100 1200 1300 4.11	Plot 2 1015 1115 1215 1315 5.32	Plot 3 1045 1130 1245 1345 6.04
	- Canopy geometry: Four - Leaf transmission: Gr - 10" LAI plots: Field Plot 1 Plot 2	een, yellowing, dead 367 369 370 3.82 1.83 3.1	414 421 2 5.65 1.80	
IV.	June 26, 1975 - Canopy reflectance:	Ripening Stage	Field	416
	Time:	<u>Plot 1</u> 	<u>Plot 2</u> 1115 1200 1245 1330	Plot 3 1000 1115
	- LAI: - Canopy geometry: Four	1.79 ier field photos	2.17	2.04
	- Leaf transmission: De - 10" LAI plots: Field Plot 1 Plot 2	367 369 370 .78 1.15 .94	4 1.79 1.02	

In addition, the diffuse to direct irradiance ratio and soil reflectance were sampled periodically for each date.

LANDSAT RADIOMETER DATA FOR FINNEY COUNTY FIELD SITE, KANSAS (Averaged Over On-Off Row Set-Ups)

March 20	Band 4	5	6	7	<u> April 23</u>	Band 4	5	6	7
PLOT 1 1052 hrs. 1136 1304 1355 1635	.076 .065 .062 .067 .067	.078 .072 .059 .070	.235 .217 .209 .210 .240	.315 .316 .299 .299	PLOT 1 1009 hrs. 1128 1320 1738	.023 .047 .058 .054	.027 .033 .058 .029	.258	.381 .409 .405 .416
PLOT 2 1044 1127 1252 1342 1515 PLOT 3	.075 .074 .066 .067	.071 .070 .070 .069	.260 .244 .237 .231 .242	.340 .333 .326 .322 .335	PLOT 2 1042 1146 1340 1738	.039 .043 .049 .054	.025 .030 .035 .025	.266 .261 .275 .321	.401 .381 .402 .503
1033 1114 1236 1331 1623	.071 .055 .055 .060 .068	.083 .075 .050 .055 .073	.298 .300 .250 .258 .288	.475 .443 .383 .390 .430	PLOT 3 1110 1203 1407 1754	.040 .045 .049 .055	.025 .031 .035 .025	.262 .266 .276 .338	.391 .395 .408 .519
<u>May 20</u>	Band 4	5	6	7	June 26	Band 4	5	6	7 .
PLOT 1 0945 1100 1200 1307	.037 .038 .049 .048	.028 .029 .038 .049	.197 .201 .205 .206	.320 .328 .293 .279	PLOT 1				
PLOT 2 1018 1119 1220 1323	.027 .029 .041 .043	.023 .027 .033 .038	.193 .161 .210 .193	.290 .264 .307 .302	PLOT 2 1110 1154 1240 1325	.083 .087 .092 .092	.098 .116 .124 .117	.153 .180 .166 .158	
PLOT 3 1042 1138 1245 1345	.039 .038 .040 .047	.026 .030 .036 .037	.236 .217 .232 .251	.333 .376 .392 .347	PLOT 3 1006 1119 	.070 .078 	.134	.155 .152 	

2. Data Set Presentation

Reflectance Data and Associated Parameters

Α.	March 20, 1975	Tillering Stag	Te .	Field 416	5
		Satanta Wheat (10" drill		11614 410	<u>.</u>
	Height:	8-9 cm.			
	Chlorotic:	Green foliage		<u></u>	
	Weeds:	0%		` `	
	Soil condition:	Moist			
	Wind:	12-15 mph NW			
÷			PLOT 1	PLOT 2	PLOT 3
	Leaf Area Index		2.07	4.60	1.31
	Dry Weight (2' X	2' Plot)	58.10 gm		39.90
	Number of Tiller	s (2' X 2' Plot)			
	Live		803.60		1372.00
	Dead		0.00		0.00
	Total		803.00		1372.00
	Average Tillers/	Plant			
	Live		8.64	Amp gag	11.00
	Dead		0.00		0.00
	Total		8.64		11.00
	Average Leaf Area	a/Plant			
	Green		37.39 cm ²		60.09
	Yellow		0.00		0.00
	Dead		0.00	·	0.00
	Tota1		37.39		60.09

ANGLE(DEG) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 P(X) .031 .032 .030 .033 .034 .034 .034 .035 .041 .050 .056 .065 .073 .081 .085 .082 .078 .065 .061

LEAF ANGLE DISTRIBUTION FOR MARCH 20, 1975

~ 	1						1		1		1		arc.	48F	to r	APER	. 91	YA!	i i L	нот	" ១០	0120	'' - 1	iiis 	† (1-4)	¥ ,t 	PER Y	EL AL		'WAS	1t H1	3 7 W C	1KD 1	I A E	ILADII	HAR	ָר 	j. Sissi	1	-		٠	
														•																						,							-
43.4 05.6	292	910	218		407	60.0	, 280	414	206	700	307	100	118	5.51	.11.	.343	747	133	 	35.8	410 677	338	4.5. 43.8.	-138	ι α α τ τ	133	203	*337 112	.333	u 4.	.311	477 TA 74	360		725	0 H - 1	47.1	4480	. nan	430	450	430	.070
. 254	, 22h	ָה מיני	217	, c.	20B	47P	191	41€.	31.0	, v	233	. io	200	.115	 	244	,262	102	0.00	376	6.0	250	135	250	950	23B	227	0.00	232	0 0 0 0	7.27 I	ָר ק	253	4 C	.241	45. 86.	125.	274	070	303	29.0	• 41°	100
.091 .079	. ŋ7a	47.0	62J.	7.0	ć Lů	650	0.50	-0.0.	198	410	ÕΖE	074	1000	# 0,7A	. 0 - 0 0 - 1 0 - 1	, i73	n77	119	0.66	077	. T.	996	0.59	070	* 060 047	0.75	, ñ69	070	n n	071	. 0.71	G .	0.00	460	can.	169	. pan	070	033	070	nan.	. pan	000
.076 .078	2200	470.	. n63	090	\$9u*	LV.	Pan.	690*	193	200	276	070	.074	6443	470,	050	47v.	130	.082	070	401.	180	800°	080	190°	790	990	700-	£90°	A60.	690	161	υ <u>θ</u> υ•	673	120"	141	7Lu*	.070	100	070	190.	. 080	
Opf Row On Row	ON ROW	OFF ROW	OFF ROW	ON ROW	OFF ROW	PERCENT	ON ROW	NOR NO	DEE BOK	01 NO	OFF BOW	OFF ROW	PERCENT	PEFLECT	WOR PROV	WUG NO	NPF POW	OF BOS	OFF ROW	OFF ROW	PERCENT	OFF ROW	ON ROW	OFF ROW	PERCENT	OM. ROW	ON RON	DERCENT	NO ROM		OFF ROW	PERCENT	NO BOM	OFF ROW ON BOW	OFF ROW	PERCENT NOR NO	ON AOM	MOR NO 200 HEO	PERCENT	OFF ROW	MOR IND	0FF 204	1240000
416-1 416-1	415-1	415-1	416-1	415-1	415-1	916	416-1	415-1	415-1	616-1	416-1	416+1	41541 ATF	SOIL	415-1	416-1	416-1	41622	416-2	415.2	510 510	416-2	4 15 15 10	415-2	01F	416-2	416-2	415=2 DIF	416-2	41512	416-2	91F 5018	415-2	41612	416-2	0.1F	416-3	416-3	414	416-3	415-3	A16-3	<u>.</u>
WHEAT CSU		WHEAT CAU				WHEAT CALL		1-	9 5	יאנ				WHEAT CSU		•	WHEAT CSU				MARAT CSU		100 Lana					WHEAT CSU			WHEAT CSI	WHEAT CSU				MARAT CSD		WHEAT CSU		ANSAT CSU		O	۲,
1052	30≒7	19.18 6.20.1	3136	1136	1142	1145	1105	9010	7110	114	1155	8510 8710	1202	4210	74 45 54 45	2640	1740	1064	1049	1144	1043	1127	1124	1120	1117	1254	1256	1259	5716	7 4 6 7 4 6 1 4 4 1	n164	7 45 2 45	4315	3330	0341	10 kg	1,35	1636	10.74	1114	134	1117	•
032075 032075	032075	832675 873767	1236175	032475	0.32075	6.126.75	032075	632675	13217F	875%E8	032075	032075	032075	032075	073250	032075	032075	032478	032075	032075	132075	032475	632475	0.320.75	632675	032075	032675	032675	672675	632675	032075	632175	032475	637675	632175	632075	632125	032075	0321.75	037075	032075	67.726.0	10000

•	٠		,				٠.					NE¢:	*CIES	PAI t	a - **	WASI	t uc	, T L1	101111	1"· 1	102.60	31:44 8		es 41		en 11's					{'		
				•						-															12.		, pa	10 ts		lii 1341			
								٠																									
																																!	
			ļ .																														
785		130	1						1																					•			
0.40	1	0	1				ŀ		1 *																					,			
,050 ,050	1		1		1		Ī	070			i											٠											
000	9	e e	190.	2.0	169	070		0.7.1	-11																								
٠				!														•															
-																						.											
233		5 8	3	2.3	1	. 3	2	7 3	1-						İ																		
ON ROW OFF ROW	OFF B	PERCE!	NO R	OFF 3	PERCE	REFLEC	NO NO	S E	PERCEN											1													
																									}			j					
415-3 416-3 415-3	16-3		16-3	5-3 7-3	775	501C	6-3	415-3	910																				٠				
कंकक	4		4	٠٠		*	4	4.4	<u>.</u>				:																				
74 CSU 17 CSU 18 CSU	USO I	12 CSD	17 CSU	(S)					riso L														•										
VHEAT WHEAT	ZHE.	WHEAT	AHO!	MHEAT	1 in	445	MI I	MESOT	NHW.								OI OI	210	IIV	ĮĄ.	T.	P	GE	I	3								
	٠.																\begin{array}{c} \text{1.5} \text	·	· U		, i c	ζΨ. 	AL	1.3	4	•.							
1235 1237 8551						- 1		- 1																									
032675 632675 632675	32675	32675	32075	32,125	321.75	321.75	37.075	32075	32075																								
	ع ت	۱-	U	1		4	<i>-</i>	' 디'	ت									1		,						,							

В.	April 23, 1975	Jointing	Stage			Field	416
	Crop type:	Satanta Wheat (10"	drill;	EW)			
	Height:	28-35 cm					
	Chlorotic:	2-5% yellowing					
	Weeds:	0%					
	Soil condition:	Dry					
	Wind:	Calm					
				PLOT 1		PL07 2	PLOT 3
	Leaf Area Index			5.13		5.36	6.15
	Dry Weight (2' X	2¹ Plot)		142.24	gm	148.70	207.63
	Number of Tiller	s (2' X 2' Plot)					
	Live			907.00		1179.00	931.00
	Dead			52.00		75.00	33.00
	Total			959.00		1254.00	964.00
	Average Tillers/	Plant					
	Live			8.80		10.80	8.40
	Dead			.60		1.60	.80
	Total			9.40		12.40	9.20
	Average Leaf Are	ea/Plant					
	Green			100.84	cm ²	83.48	89.70
	Yellow			33.21		42.50	19.16
	Dead			40.99		32.02	31.49

175.04

Total

140.35

158.00

ANGLE(DEG) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 P(X) .003 .009 .012 .022 .032 .034 .037 .042 .052 .064 .073 .086

.072 .036 .032

LEAF ANGLE DISTRIBUTION FOR APRIL 23, 1975

.094

.105 .105

.090

														HE	CV:	ili (PA	rtn	- " 1	Nr.	STE	10	T'" I	ion	b" ·	1969;	a FOI	149 12		e c	AITE	\$° "4	W+ L1	t na	T fiD	н п (ID A	TRAC	00	Alte	~l ur ₹	arec.	, gui	r.		•	
							-																																								
.417 165	.39.1	.357	145	434	104	369		-368	767	463	. 143	# 60 P	3,80	, 47¢	203	1 L C C C C C C C C C C C C C C C C C C	350	175.	. 17ª		7 6	348	£ .	441	みみと	رد. د. د.	121	777	175	, m	503	F (_453	772.	127	.401	• 444	103	V LI	ΛŞΛ	, A1F	, 144 , 000	162	-11u	521	, rn,	0 . V
251	250	. 262	156	0	י ט י	224	44	240	, i	277	.141	0,00	. 253	. 27a			243	75c°	. 3.	277	. 1.	747	in d	766	, 254	- E.	194	4	3	. 56	201	56.	10t	, 21A	, Сп	- 263	166.	285		15	757	196	130	, y .	127	ה ה ה	7
024	* 035	rs.	1	750		AF0.	. 42	159	. 40.	036	. j 4n	4 50 5	FF0.	160.	561	ינ עיני		• 026	. 154	150	200		151	037	÷034	ر و د د د	191	10.	2	1 m	195		0 20	49.23	C	1677	• 134	1					1		-1		7.70
. 035	050*	140.	-521	e t t t t t t t t t t t t t t t t t t t	1 to 1 to 1	690	.143			.052	651*	e e	150.	580.	-214-	, e	650	140.	9.1.	043	140	344	+185	150	670*	14 T	181	680	726		314	416.	740.	AEU.	440	240	PSU	590	- 6	100°	544.	C 4 C 4	120	110	050	י היה היה	
ON ROW	OFF ROW	MOR PRO	PERCENT		30X 00 0	OFF ROW	PEACENT .	NDE BOM	BOW INCO	3 CG	- ACENT	JFF ROW	ON ROW	0FF ROW	PERCENT	20.00 20.00 30.00 30.00	SON ACT	OFF 40W	PERCENT	ON ROW	*Or NO	OFF ROW	PERCENT	* 3C0 NC	OFF ROW	0FF ROW	PEFLECT	ON ROW	ON ROW	077 ACM	PERCENT	REFLECT	MOB NO	OFF ROW	208 P 708 FX010000	MOP NO		1	- MCM FAC	ON ROW	ON ROW	OFF RCW	0700154	REFLECT	0N 80×	OFF ROW	
416-1	416-1	415-1	DIE	415-1	416-1	\$16-1	710	416-1	415-1	4 5 - 1	016	414-1	415-1	415-1	115	415-2	4 (714)	416-2	DIF	416-2	41417	416-2	916	41414	416-2	4-4-2	907L	416-2	415-2	6 4 5 5 7 6 1 1	DIF	5011	416-3	415-3	416-3	416-3	414-3	415-3	4-16+3	416-3	414-3	416-7	A16-3	5011	416-3	416-3	A 1 5 - 3
WHEAT CSU		WHEAT CSU	- 1	Ç	PHEAT CSU		WHEAT CSU			SHEAT COL		WHEAT CSU		WHEAT CSU	WHEST CSIL	こいい トタルスタ	LECTION COL		WHEAT CSU		AHEAT CSU	STUDIO COO				WHEAT CSIJ		WHEAT CS!	- 1	SHEET CALL			WHEAT CSU.		AHMAT CSU			u,		SINC LUMBER	١		٥	WHEAT CSU]	U (٠
1609 F161	101	5151	1019	1128	£ [:	1135	1135	127	47.19	1145	6c1u	0521	3525	0527	052A	1942	1044	1948	1040	1146	1148	ָר װָּרְ בּייִר בּייִר	1154	0.140	144	0144	0152	9539	2540	6.44.44.44.44.44.44.44.44.44.44.44.44.44	11544	n547	511	11114	21.5	1203	1207	1219	1212	- tu-	6020	1211	2712	1195	n544	សិក សិក្សា សិក្សា	1
042375	23.75	2375	2375	5222	2375	123.75	27.75	2375	2375	2375	12375	642375	2375	2375	2.175	22.75	7 7 7	12375	12375	527.2	22.75	1000	42375	2.7	23.75	2375	7375	2375	2375	27.50	23.75	2375	12375	2375	042375	2375	42375	22,75	42375	47375	42375	642375	2375	042375	642375	5	;

ORIGINAL PAGE IS
OF POOR QUALITY

		. 1	ı	(· ベ	1	FFC7LIF	D PAPLD :	124W.	t NOT "	'amjar	- 1HIS F) 1834 s - \$c4	S++afit	E 1784	ua ton 3:	HD ISA1	i arii a	11	
.264 .241 .230 .234 .161 .207 .254 .342																			
PERCENT REFLECT					٠										•				
OIF SOIL																			
WHEAT CSU WHEAT CSU																			
0600							01	RIGI F PC	NA j OR	U P QU	IGE LLIJ	EI P							
042375			.									₹3							

€.	May 20, 1975	Неа	ading	Stage		Field	416
	Crop type:	Satanta Wheat	(10°	drill;	EW)		
	Height:	72-89 cm					
	Chlorotic:	13% yellowing					
	Weeds:	0%					
	Soil condition:	Dry					
	Wind:	10-15 mph EW					
					PLOT 1	PLOT 2	PLOT 3
	Leaf Area Index				4.11	5.32	6.03
	Dry Weight (2' X	2' Plot)			197.70 gm	254.00	287.00
	Number of Tiller	s (2' X 2' Plot	:)				
	Live			,			
	Dead						
	Total						
	Average Tillers/	Plant					
	Live				4.80	5.60	4.60
	Dead				3.40	1.40	2.60
	Total				8.20	7.00	7.20
	Average Leaf Area	a/Plant					
	Green				95.26 cm ²	68.15	151.27
	Yellow				12.88	5.09	18.25
	Dead				68.13	28.97	74.94
	Total				176.27	102.21	244.46

ANGLE(DEG) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

P(X) .035 .027 .010 .007 .006 .006 .011 .014 .043 .061 .061 .083 .098 .112 .120 .115 .101 .059 .033

LEAF ANGLE DISTRIBUTION FOR MAY 20, 1975

						•		•						et G		EB	T T	. 11	d	e S	45					and .					PLAT				•												
1		7.46 10.1	1		L		230		•	-			774		1	• •	1	4 d	•	1		- 1					1	10L C	- 1		i i	ı		t		77 110		-		12 - 12 - 12			- !		- C-		
. ń31 .204 . ñ17 .156		.n34 .727	ľ.	F\$4. 0E4.	Ī		002 - 650		.037 .212	1	11. 460.	ļ	. n44 . 724		100 ACO.	• •	ı	300 .434	24.	1	20. 000	026 715		.010 .187		. ncg.	ı	000	-1		100 . Acc.	ı		1	61. 460.		בוני בנולי			120	1		- 1		902 PEU.		
. 029		F 40	!	. 045					070	043	660.		150	440°	200	620	177	596*	.212	111	7 00	ם מי	∂EU"	60°	030	15u	- 220	1.75	T43	C+0	KEC.	Eat.	, n3A	046		101	0.50 0.50	1 60	140.	74u°	101	760.	PEU.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		agu.	427
OFF ROW			DESCENT DOM DOW	ON ROW	OFF ROW	OFF ROW	PERCENT	MOD DEC	NO NO	ON ROW	PERCENT	ADT NO	OFF ROW	AUR NO	PERCENT	6.4.6.4.2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	180 L 184	YFLLOWZ	YELLOW3	YELLOWA	DEAU	MOD 440			OFF DOW	0FF R0%	MO NO	WOR NO	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DFF ROM	ON ROW	DEPCENT	OFF ROW		*CH NC	PERCENT	REFLECT	200 MG	ON BON	OFF ROW	PERCENT	WOR 170	ON ROW	POS NO	PERCENT	OFF ROW	
416*1	4 16 1	416-1	315	4 571	415-1	416-1	910	4.6-1	1 6 6 7	415-1	715	419-1	4 5 5 1	415-1	416	T#46.9	. CNAPT	TRANS	TRANS	TGANS	THANS	415-3	416-2	416-2	316	4 4 7 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7	415-2	416-2	1) LF	416-2	416-2	416-2	415-2	416-2	41.51.4	710	SOIL	416-3	4 15-3	416-3	DIF	416-3	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	415-3	510 610 7	416-3	,
WHEAT CSU	낰:	SO LEGAR		AHEAT CSC		-	_	. 1.	200 F4073				CANDAT CSU	THE AT CSI	YHEAT CS11	THE CALL	OC LABEL	WHEAT CSU	WHEAT CSU	WHEAT COIL		SHEAT CSU		WHERT CSU		TVO LVERN					WHEST CSU					SHIPP COU			WHEAT CS!	WHEAT CSU	WHE QT CS11			WHEST CAN	WHEAT CAU	ع إد	,
		3474 1950																					٦٦		٦	7111	-			1	223	ı		Į			ı				- 1			ŀ		- 1	
052475	n52075	632675	052575	27.25.00	01200	052075	052075	P52074	040040	ロンさんから	652375	052075	352775	0.0000	CE2:75	652175	657075	137073	20000	052075	64 3650	05.21.75	052975	032075	557,75	626175	55.7550.	052775	052073	0524.Zz	655075	152: 75	いたいいい	052675	052075	#79267 #74777	052075	P52075	052675	U10000	652575	659675	25207	570250	520250	1970	r / , / r

ORIGINAL PAGE IS OF POOR QUALITY

·					•		٠.		ar ca	ralen e	artu - *	JT2AW	нот '	י פט	D., 110	· ropu is	HELVEL	AIRF W	151E 140T E	940-15 A	tù vor -a vi-	- [1,	
-																							
												-											
33.0	130	c. c.	242	17.0 10.0 10.0	17.0	n. n. n.	613																
7.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	240	050	230	4 1 0 C	787	705 707	504 724																
0.00 4.00 4.00	.037	900	163	ر بر بر در بر	162	377	245.																
4000	, P54	.042	129	. 234 44	.185	ម្ចាស់ ស	303																
PERCENT OFF ROW	ON ROW	077 00% 000 1400 1400	PEFLECT	GOEENI	YELLOWI	YELLOWS	YELLOW4 9540																
617 416-3	415-3	41413	SAIL	\$ N t #1	THANS	704VS	TRANS	-															
WHEAT CSU WHEAT CSU							MARAT CAU																
1249 0)45	6719	(2) 4.1 (2) (3)	6519									OR OF	TG IT	VA IR	P.	G_{F_i}							
052075 842075	057:75	GII3648	032075	62.056.0	652075	E525.75	140045								V/A	T/T	43						

D.	June 26, 1975	Ripening Stage	ļ	Field 416							
	Crop type:	Satanta Wheat (10" drill									
	Height:	92-106 cm	92-106 cm								
	Chlorotic•	All except stems and hea	ds whi ch are	yellowing							
	Weeds:	0%									
	Soil condition:	Dry									
	Wind:	20-25 mph SN									
			PLOT 1	PLOT 2	PLOT 3						
	Leaf Area Index		1.79	2.17	2.04						
	Dry Weight (2' X	2' Plot)	181.40 gm	219.70	206.70						
	Number of Tiller	s (2' X 2' Plot)									
	Live		443.00	624.00	515.00						
	Dead		71.00	96.00	89.00						
	Total		514.00	720.00	604.00						
	Average Tillers/	Plant									
	Live		5.20	3.80	5.00						
	Dead		2.80	2.00	3.80						
	Total		8.00	5.80	8.80						
	Average Leaf Are	a/Plant									
	Green		0.00	0.00	0.00						
	Yel!ow		76.38	54.80	78.23						
	Dead		70.72	42.59	66.46						
	Total		147.10	97.39	144.69						
NOTE	· The shave mass		7 . 70								

NOTE: The above measurements were conducted on June 18 and 19, 1975. However, due to adverse weather conditions at this time, collection of radiometric data was delayed until June 26, 1975. Radiometric data was collected by NASA, LEC personnel.

ANGLE(DEG) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

P(X) 0 .017 .009 .003 0 .001 .005 .011 .017 .026 .046 .075 .099 .124 .147 .159 .143 .081 .040

LEAF ANGLE DISTRIBUTION FOR JUNE 26, 1975

				•												,, n.	ne.	•	est B	e 4 1-	NO			m 144	.510	n 64 171	nte	rct Ari	11 -	1EAW	1 103 1	epelli	IŞ A TII	ATIEL	- WILL	[ını	.
4											cr													B* - 144	101	nu 19	MEGY	I I		EAW.	***************************************		D A III	AIIEL	7,414	hitta	ını	
אאם בחו	_ 1	ď	70 0.000	000 0 44	97 0,000	33 0.000	21 0.00	25 0 00C	000 0 20		12# 0.46B		180 0 081	144 0 000			7 9	111 0.00	, 4			Ç	101 0.00															
BAND SANDS	475. STI.	ŀ	090 070	i		1	126	1	130 20	- 1		ı			ı		1		- 1				.08A	l .												•		
PAND1 B	F 90		- 501	1		i	160		130	- 1	. 670.				ı	• 066	1		- 1		103	ļ	456			ě												
REFLECTANCE=	/																																					
OPTENTATION	05An1	MON NO	ON ROW	OFF POW	PERCENT	MUZ HEO	20 T 20	MOR NO	PERCENT NO.	ACA NO	0FF R0¥	**************************************	HOR NO	*04 VO	OFF ROW	PERCENT	ON BOW	NOW NO	DEF ROW	PERCENT	20 00 00 00 00 00 00 00 00 00 00 00 00 0	WOP F 40W	NFF PUM	HEBCENI HEBCENI														
PLOT NUMBER	TAANS	749NS	414-2	415-2	DIF	415-2	41512	416-2	다. 다.	413-6	8-91.5	416-2	416-2	414.2	4 6 2	910	415-3	414-3	4 4 3	31 U	416.3	416-3	415-3	DIF														
CROP AND LOCATION	WHEAT CSU		MEGAT CSU		WHEAT CSU	WHEAT COLL	WHENT CSU	WHEAT CSU	WHEAT CSU	WHENI COU	WHEAT CSU	FEMAL CST	WEAT CSU	WHEAT COIL	WEERT CSU	WHEAT CSU	WHEAT CS!		STEAT COL		WHEAT CAU	ጓኁ	WHEAT CSU	9							,							
∓1ME	1050	1130	1112	1114	1115	1154	1156	1263	1159	1240	1244	9721	21.25	1127	0129	0130	1005	10FR	619	0101	6(11		133	1124		٠					4)B	IGI	NA	ΔĽ	PA	GI	i IS
DATE	061975	061975	062675	0.626.75	062675 062675	062475	062675 062675	162575	642675	(6670 /5 (670 /5	662675	062175	092575	662475	0.52675	662675	062675	062675	662675	062675	6.62 to 7.3	062675	062675	0.62675							1 .	Œ			R (UA	1	TY

IV. PROGRAM LISTINGS AND CONTROL CARDS

1. SRVC

Program Name: SRVC

Subroutines Required: BLOCK DATA

LAMBTN
SUN
ETHRES
LANGLE
NRM
SETZ
UTIL
COP
PDENS
PGAP
OPTICAL

Narrative:

The CSU SRVC (Solar Radiation Vegetation Canopy) (Oliver and Smith, 1974) is a stochastic model for simulating the interaction of global radiation with a vegetation canopy to determine its apparent directional reflectance. Input requirements for the model are:

- Latitude of the target area
 Longitude of the target area
- 2. Time, date and solar declination
- LAI (leaf area index)
- 4. Leaf slope distribution
- Soil Reflectance
- 6. Diffuse/Direct Radiation Ratio
- Leaf reflectanceLeaf transmittance

Outputs from the model are:

- 1. Direction cosines of the sun
- 2. PHIT -- the probability of interaction of flux at specified source directions
- Predicted apparent directional reflectance values for discrete wavelengths.

A thorough description of the model is given in the report by Oliver and Smith (1974). An abbreviated discussion of the model and its application is also given in the <u>Applied Optics</u> article by Smith and Oliver (1974).

A detailed flowchart of the SRVC main program is included and program listings are well-commented.

Control Card Input:

Card 1	(8A10)	T4+7-
Card 2	CONTO	Title
	(I3) (I4) (I2) (I2) (F6.2) (F7.2) (F7.2) (I2)	Day Year Hours Minutes Latitude) Longitude) Declination Bandwidth
<u>Card 3</u>	(I2) (I1) (I5) (I5) (I5)	Number of wavelengths Number of constituents Initialization variable Number of samples desired Number of trial; desired
<u>Card 4</u>	(110)	Number of canopy layers
Card 5	(8F10.5)	Threshold vector for downward flux
Card 6	(8F10.5)	Threshold vector for upward flux
Card 7	(110)	Number of angles in leaf slope
Card 8	(011)	Material type
Card 9	(8F10.5)	Leaf angle distribution
Card 10	(2F10.5)	S factor: leaf area index
<u>Cards 7-70</u> -	repeat for	each canopy layer

Card 11

(8F10.5) Wavelengths

Card 12

(110,7A10) Number of input optimal vectors Description

Card 13

(8F10.5) Optical vector

Cards 11-13 - repeat for:
measured canopy reflectance total study irradiance total diffuse irradiance

soil reflectance leaf reflectance leaf transmittance

Mathematical Model

The Monte Carlo model assumes that the canopy is composed of nonhomogeneous layers of Lambertian surfaces of known optical properties, statistical composition, and geometric arrangement.

The model is presented schematically in Figure 1.

Figure 1. Schematic of a Plant Canopy Approximated by Stratified Foliage Layers Containing Statistical Ensembles of Lambertian Surfaces.

Global radiation which reaches the top of the vegetation canopy is composed of direct solar and diffuse sky radiation. The partitioning into fractions of total radiation is determined from the position of the sun, i.e., time of day, latitude, and solar declination, and from measured global and diffuse sky radiation distributions incident on a horizontal sensor. The direct solar radiation component is treated as a point source whereas the diffuse fraction is divided into source sectors of the local hemisphere. These sectors are formed by partitioning the hemisphere into 10 degree inclination bands and further subdividing these bands to form 20 degree azimuthal sectors. The interaction with the canopy of each of these initial radiation sources is treated independently.

Diffuse flux resulting from the interaction of global radiation with a canopy element or with the background become new sources which may further interact with the canopy. The downward directed flux is combined with the appropriate hemispherical band of diffuse sky radiation. Upward directed flux is treated in a similar manner as diffuse sky radiation except the direction associated with each sector is the opposite from incoming radiation from that sector.

A frequency distribution of foliage inclination angle is determined for each layer from the geometric measurements of the canopy and is integrated using Simpson's rule to obtain a cumulative frequency distribution. This integral is normalized and partitioned into areas of equal

probability. The domains of each partition have equal probability of occurrence and may be sampled from a uniform distribution.

The next step in the model is to calculate the interaction probabilities within each layer for both incoming and outgoing flux at each specified source direction. Several potential expressions are available in the literature cited (Idso and deWit, 1970; Pielou, 1969; and Nilson, 1971). The following expressions from Idso and deWit have been employed:

$$P_o = [1 - s g(\theta_r) sec \theta_r]$$
 LAI/s

where

P is the probability of a gap

 $g(\theta_r)$ is the mean canopy projection in the direction of the source

 θ_{r} is the source zenith angle

LAI is the leaf area index for the canopy

s is the leaf area index of statistically independent incremental canopy layers.

it is usually adjusted by optimizing the reflection prediction for either one view angle or a set of wavelengths since it does not change with either wavelength or view angle.

A given source finds a gap in the top layer of the canopy if a random number is smaller than P. The flux in this direction passes through the top layer and reaches the next canopy layer. The absence of a gap necessitates the determination of material type with which contact has been made. This is accomplished by sampling from the distribution of canopy constituent. The orientation of the leaf is

determined by sampling from the inclination distribution and a uniform azimuthal distribution. These parameters determine the direction cosines of the leaf from which the angle between the leaf and the source is determined. The optical properties of the leaf are then utilized to calculate the flux exiting the leaf in all directions. Each sector of the hemisphere on the reflecting side of the leaf receives flux for each wavelength according to the equation:

$$I = \frac{I_o}{18} \rho \sin(\theta_{LS}) (\sin^2 \theta_2 - \sin^2 \theta_1)$$

where

I is the source spectral flux

ρ is the material spectral reflectance

 θ is the angle between the leaf and the source T.S

θ are the inclination angles defining the hemispherical band

The solid angle sectors receiving reflected and transmitted flux are defined in the same manner as for canopy flux sources only extended to include the entire sphere about the leaf. The leaf is not necessarily horizontal so a sector receiving reflected flux from the leaf is not necessarily directed upward with respect to the local vertical. Hence, the direction cosines of the flux sector are rotated to the local vertical system and the flux pooled with the flux in the appropriate source band. Transmitted flux is calculated and treated in the same manner as reflected flux.

Flux which passes through a gap or is reflected or transmitted downward from an upper layer of the canopy interacts with the next lower layer. Flux which reaches the soil surface is reflected into each of the upward directed source bands. Upward directed flux from a lower layer of the canopy or from the background reaches the next higher layer and may interact with it. The upward directed flux from the top layer escapes the canopy.

The interaction procedure continues until the level of flux in any source direction within any layer is below a threshold value. The flux exiting the canopy into each of the bands is separately accumulated.

The ratio of the flux intercepted by a sensor placed within one of these bands to the global radiation intercepted by a vertical sensor with the same field of view gives the canopy apparent directional reflectance.

Figure 2 shows the calculated mean response surface in the visible wavelength region for zenith view angles of 5 to 65 degrees. The non-Lambertian character of the canopy reflectance is evident and there is a general increase in canopy reflectance with increasing zenith angle. This variation of reflectance with view angle is significant for the pattern recognition process. Sensor scan angle corrections may be required or this variation might be utilized as an additional characteristic feature. The distortion in the response surface with view angle indicates that methods employing channel ratio techniques for preprocessing (Kriegler, 1971) or for specialized classification

The sale of the sa

approaches (Pearson and Miller, 1972) may require modification in some circumstances.

The model was evaluated (Smith and Oliver, 1972; Oliver and Smith, 1973) for a Blue grama canopy with a leaf area index of 6.5.

Figure 3 shows a comparison of the model results, labeled SRVC 2-layer, with measured data for a vertical view angle. Agreement is good except for the chlorophyll absorption band. Recent evidence (Breece and Holmes, 1971) indicates that the foliage surfaces are non-Lambertian in this region which will necessitate a modification to the model assumptions for regions of strong absorption. Off-angle predictions of the model are qualitatively correct but do not display the same precision as the vertical view case (Smith and Oliver, 1972).

Prediction results using the original Kubelka-Munk model of Allen and Richardson (1968) are also shown for comparison.

ORIGINAL PAGE IS OF POOR QUALITY

Fig. 2 Calculated mean response surface for reflectance changes with zenith view angle and wavelength.

Fig. 3 Comparison of calculated Kubelka-Munk differential equation model and the stochastic SRVC model predictions with measured canopy reflectance for a vertical view angle.

References

- Allen, W. A. and A. J. Richardson. 1968. Interaction of Light with a Plant Canopy. J. Opt. Soc. Am., 58(8): 1023-1028.
- Breece, H. T. III and R. A. Holmes. 1971. Bidirectional Scattering Characteristics of Healthy Green Soybean and Corn Leaves in Vivo. Appl. Opt., 10(1): 119-127.
- Idso, S. B. and C. T. deWit. 1970. Light Relations in Plant Canopies. Appl. Opt., 9(1): 177-184.
- Kriegler, F. J. 1971. Implicit Determination of Multispectral Scanner Variation over Extended Areas. Proc. Seventh Int. Symp. Remote Sensing Envir., Univ. Mich., Center for Remote Sensing Info. and Analysis, Ann Arbor, Mich., 1: 759-777.
- Marrill, T. and D. M. Green. 1963. On the Effectiveness of Receptors in Recognition Systems. IEEE Trans. on Information Theory, IT-9: 11-17.
- Nilson, T. 1971. A Theoretical Analysis of the Frequency of Gaps in Plant Stands. Agr. Meteor., 8: 25-38.
- Oliver, R. E. and J. A. Smith. 1973. Vegetation Canopy Reflectance Models. Final Report Under Contract DA-ARO-D-31-124-71-G165, Colo. State Univ., Fort Collins, Colo.
- Pearson, R. L. and L. D. Miller. 1972. Remote Mapping of Standing Crop Biomass for Estimation of the Productivity of the Shortgrass Prairie. Proc. Eighth Int. Symp. Remote Sensing Envir., Univ. Mich., Center for Remote Sensing Info. and Analysis, Ann Arbor, Mich., 2: 1355-1379.
- Pielou, E. 1969. An Introduction to Mathematical Ecology. Wiley, New York, N.Y., 286p.
- Smith, J. A. and R. E. Oliver. 1972. Plant Canopy Models for Simulating Composite Scene Spectroradiance in the 0.4 to 1.05 Micrometer Region. Proc. Eighth Int. Symp. Remote Sensing Envir., Univ. Mich., Center for Remote Sensing Info. and Analysis, Ann Arbor, Mich., 2: 1333-1353.
- Suits, G. H. 1972. The Calculation of the Directional Reflectance of a Vegetative Canopy. Remote Sensing of Envir., 2: 117-125.

OF POOR QUALITY


```
PROGRAM SHYC(INPUT.OUTPUT.FILMPL.PUNCH.DSET72.TAPE1.
     | Tape 6 = OUTPUT + TAPE 5 = INFUT |
C.... SOLAH RADIATION - VFGETATION CANOPY REFLECTANCE MODEL
C.... THIS PROGRAM CALCULATES THE APPARENT DIRECTIONAL REFLECTANCE OF A
C.... VEGETATION CANOPY AS A FUNCTION OF CANOPY GEOMETRY. LEAF REFLEC-
C.... TANCE AND TRANSMISSION. SOIL PEFLECTANCE. AND CANOPY THRADIANCE
C.... FOR A GIVEN SOLAR POSITION.
C.... R.E. GLIVER AND J.A. SMITH COLOHADO STATE UNIVERSITY JUNE: 1974
         ...... COMMON BLOCKS AND HEFFHENCES ...........
C . . .
C
C
     LAHEL
              EXTERNAL REFERENCES
۴
               BLOCK BATA. LAMBIN. SUN: ETHRES: LANGLE: NRM. SETZ: UTIL:
Ĉ
      CI
C
               AND COD.
^
C
      Ç۶
               LAMBIN. PUENS. AND OPTICAL.
C
      C4-
               LANGLE. PUFNS. AND PGAP.
C
               ETHRES. SETZ. AND LAMBIN.
      C٠
C
      C ~
               LANGLE.
C
      E4
               OPTICAL .
C
      CHAT
               PGAP AND LAMATN
C
               LANGLE AND LAMBTH.
      11
      COMMUNICIZODAY.YEAP.TIME.GLAT.GLONG.DEC.RANDW.NLAM.THETS1.THETS2.
     INNAT # EXTRA (4) #NOP #INIT #DUM1(13) #
     2CEC1++CFFT0+CEMTR+CE+IO2+CE1+I+CF2PI+DUN2(14)+
     39INLAT+COSLAF.STNDEC+COSDEC.COSH+SINZ+COSZ+SINA7+COSA7+LXS+LYS+LYS
      COMMON/02/CANAM(17).SKYIM(17).DJFIM(17).XMAT1R(17)
     2×1 AM (17) + SOURCE (10+17) + THETA (10) + ZENITH(10)
      CCHMUN/C4/FANGLE (3.3).FLA(3.3.10).SLAI(3.3).FLAT(3.3).PHIT(3.3.10)
      CCMMCG/C6/NF(4+10+17)+UR(4+10+17)+THRESD(10)+IGnD(4+1n)+160U(4+10)
     1.164559710)
      CUMPONICHISINE + COSE+SINP+COSE
      COMMENT 1/04TAID (7.4) .XMU(17.4) .C(17.17.9) .NVEC(9)
      CCMMUNICMATIMITP (3) + NLAY + OPM (10)
      CONNOR AVEC (17) . XK (9) . SXL . SYL . SZL . XLF . YLF . ZLF
     1 a x 4 (1 n + 1 8) + Y $ (1 n + 1 8) + Z $ (1 n )
     A • 图ND # 使
 DIMENSION JOHID (8) + VECT (17) . SIG (17) . V(17.17) . COR (17.17)
      DIMENSION COV(1:0-17-17) .COVM(17-17)
      DIMENSION YEFA(19) .YEFA(19) .DM(17) .DM1(17) .REFER(17)
      DIMENSION DIT(10.17) . #ITBAH(10.17) . #BAH(10.17)
      DIMENSIAN F(14).OP(9)
      REAL LYS+LYS+LZ5+INCLF
      INTEGER DAY.YEAR.TH.TM.ZDEG
 HARD CALL SETC (A. + CARRM(1) - ENDLC)
      CALL SETC (n. + AVEC (1) + ENDBR)
      CALL SETC(n..JUNTD(1),OP(9))
                                    PRECEDING PAGE BLANK NOT FILM
C.... PERIPPERAL CONTROLS
```

ORIGINAL PAGE IS OF POOR QUALITY

```
1-151 = 0
       ISTOR = 1
       IFILE = 5
C
       READ (5.102) IFILE
       IF (FOF (F) . NE . . . ) STOP
       IF (IFIST . EG. 1) CALL FLN (-1 --1)
C.... GENERAL SIMPLATION CONSTRAINTS
       READ (IFILE, 100) JOBIC . DAY . YFAP . TH . TM . GLAT . GLONG . DEC . NRANDS .
      INLAM . N. N. T. T. IT . N. SAMP . N. TRIAL
       IF (EUF (5) . NE . U.) STOP
       READ (IFTLE, 102) NLAY
       BANDW=90/NRANDS
       WETTE (6.200) JOHID, DAY, YEAR. TH, TM, GLAT, GLONG, DEC, BANDW, NLAM, NMAT.
      IINIT , A SAMP , A TRIAL , NLAY
       READ (IFTLE . 101) [HRESD SREAD (IFTLE . 101) THRESU
       WETTE (6.221) THUESU. THRESU
C.... PARAMETER INITIALIZATION AND CONVERSION
       NSOUR=NEANDS+1
       NI AYPI = NL AY+1
       FOV=2. +CENTE
       FCV02=F0V/2.0
       SINFUV=CIN(FUVO>)
       CALL HANSET (INIT)
       XII=IH
       XTZ=TM
       TIME=> T1+ (YTZ/60.)
       GL GT=GLAT*CEDTR
       GI CNG=GI ONG+CFUTH
       DEC=UEC#CEDIX
       ANDW=HANDWOCFUTH
C ... SUN FUSITION PARAMETERS
       CALL SUN
       WETTE (6.222) LXS.LYS.LZS
       ZS(1) = L75
C.... COFFFICIENTS FOR DIFFUSE RADIATION VECTORS
C.... SENSOR/HAND AREA RATIC FOR ALL DIFFUSE BANDS
       AL PHASES.
       STNAZ=0.
       DC 2 1=1 + NRANDS
       STABLESTNAP
      ALPHAZ=ALPHAZ+BANDW
       SINAZ=STN (ALPHAD)
       XK(I)=STNA2+SINA2-SINA1+SINA1
    2 DMI(I+1)=SINFOV+SINFCV/XK(I)
       WETTE (6.208) (XK(T). I=1.NRANDS)
       WEITE (6.212) (DW1(1) . I=2.NSOUP)
C....SCI ACE DIRECTION INCLINATION ANGLES
      TrTAL= 11.
       THETA(1) = (RANDW/2.) -BANDW
      DC 3 [=1 , NRANDS
      THETA ( ] + ] ) = THETA ( ] ) + BANDW
    3 TOTAL=TOTAL + (xK(I)/SIN (THETA(I+1)))
       THETA(1)=CFPIOZ-ACUS(COST)
      CONS=LZS*TOTAL
      Dr 50 [=1.10
   50 ZENITH(T)=CEPIO2-THETA(I)
      WEITE (6.223) THETA
C... UIFECTION COSINES OF AZIMUTHAL SECTORS IN THE DIFFUSE RANDS
      DEG20=20. *CEUTR
```

2

```
DC 60 JSOR=2.NSOUR
            ZS (JSUR) = SIN (THFTA (JSCR))
            PHI=1 . CEPTR
            DC 60 IPHI=1-18
            XS(JSOR, IPHI) = CoS(THETA(JSOD)) *COS(PHI)
            YS (JSUR. IPHI) = COS (THETA (JSOP)) +SIN (PHI)
      AU PHI=PHI+DEGED
                                                FACH CANOPY LAYER IS COMPOSED OF ONE OPTICAL
C...CANDRY GEOMETRY.
C....MATERIAL WHICH MAY BE SPECIFIED AND UNIQUE GEOMETRICAL PROPERTIES.
C....CANOPY GEOMETRIC PARAMETERS CONSIST OF (1) LEAF ANGLE EPEQUENCY
C ... DISTRIBUTION FUNCTION DENOTED BY XLFA AND YLFA (2) LEAF AREA INDEX
C....DENOTED BY FLAT AND (3) CANOPY DENSITY DENOTED BY SLAI. XLFA (DEG)
C...AND YERA MUST HE SPECIFIED AT AN UDD NUMBER (NANG) OF EVENLY SPACED
C ... POINTS. FLAI IS NON-NEGATIVE AND SLAI HANGES BETWEEN A AND 1.
            DELF=10. *CFDTR
            WFITE (6.227)
            DC 35" TL=1 .NLAY
            READ (IFTLE. 102) NANG
            READ (IFTLE, 102) IMAT
            MIR(IL) = IMAT
            FFAD ([FTLF.10]) (XLFA(I).YLFA(I).I=].NANG)
            READ (IFTLE . 101) SI AJ (IL . IMAT) . FLAJ (IL . IMAT)
C.... INTEGRATE AND NORMALIZE THE LEAF ANGLE FREQUENCY DISTRIBUTION
C....FUNCTION USING SIMPSONS RULE--THIS IS TEMPORARILY DENOTED BY F.
C...M-I EQUALLY SPACED INTERVALS OF F ARE THEN DETERMINED AND DENOTED
C...BY FLA (M FOINTS). THE TABLE FLA IS USED FOR RANDOMLY SELECTING
C...LEAF INCI INATION ANGLES.
            DC 365 T=1.NANG
            XLFA(1)=XLFA(T)*CFUTF
            N=((N:NG-1)/2)+1
            NANGLE (TL. TMAT) = M
            CALL THIR (N.XLFC.YLFA.DM.F)
            WEITE (6.233) (F(I) , I=1.M)
            Dr 31. TANG=1.M
    310 FLA(IL . TMAT . IANG) = UM (IANG)
C....NCBWALLZF THE INPUT LEAF FREQUENCY DISTRIBUTION FUNCTION TO OBTAIN
C.... DENSITY FUNCTION F WHICH IS SPECIFIED AT M POINTS.
            FICT= .
            CO 311 T=1 . NAME
    311 FICT=FICT+YLFA(T)
            Cr 312 T=1.9
    312 F(I)=(Y1FA(2*I)+YLFA(2*I+1))/FTOT
            DC 315 T=1.NANG
315
            XLFA(1)=XLFA(1) &CERTO
             (BNANA : I = 1 ( I ) A T + L A A C ( ) + L F A ( I ) + Y L F A ( I ) + I = 1 + N A N G + L F A ( I ) + Y L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 + N A N G + L F A ( I ) + I = 1 +
             WEITE (6.231) NANGLE (IL. IMAT)
             WPITE (6.232) (FLA(IL, IMAT, I) . I=1, M)
             WEITE (6.233) (F(I), I=1,M)
             WEITE (6.207) FLAI (IL, IMAT) . SLAI (IL, IMAT)
C....CALCULAIF THE MEAN PROJECTION (OP) IN THE DIRECTION OF THE SOURCE
C... (THETA) OF ONE UNIT LEAF AREA WITH INCLINATION INCLE. THE LEAVES
C....AT THIS ANGLE ARE ASSUMED TO BE AZIMUTHALLY ISOTROPIC.
            DC 33" TANGLE=1.NSOUR
             INCIF=== +CEUTR
            CC 32. T=1.9
             INCLF=INCLF+DELF
    320 CALL COP(INCLF + THETA (IANGLE) + OP(I))
C....CALCULATE THE MEAN PROJECTION (OPM) IN THE DIRECTION OF THE SOURCE
```

```
C.... (THETA) OF ONE UNIT LEAF APEA AVERAGED OVER THE CANOPY LEAF ANGLE
C.... DENSITY FUNCTION F.
      CALL COPM (F. OP, OPM (IANGLE))
C....CALCULATE THE PROBABILITY OF A HIT (PHIT) FOR A LIGHT DAY WITH
C.... SCI ACE DIRECTION THETA.
      CALL PDFNS(IL.IMAT.IANGLE.OPM(IANGLE))
      WEITE (6.235) OP. OPM (IANGLE) . PHIT (IL. IMAT. IANGLE)
  330 CONTINUE
  350 CONTINUE
      WEITE (6.228)
C.... HEFLECTANCE AND TRANSMISSION VECTORS ARE READ FOR EACH CANOPY
C.... CONSTITUENT. IN ADDITION REFLECTANCE VECTORS ARE READ FOR THE SOIL
C.... PACKGROUND AND THE MEASURED CANORY. THE MEAN VECTOR AND COVARIANCE
C...AND COPRELATION MATRICES ARE CALCULATED AS WELL AS THE SQUARE-ROOT
C....MATRIX WHICH IS SUBSECUENTLY USED FOR MULTIVARIATE NORMAL
C ... STUCHASTIC VECTOR SAMPLING.
C ... . WAVELENGTHS TO BE SIMULATED
      READ (IFTLE . 101) (XLAM (I) . T=1 . NLAM)
      WEITE (6.201) (XLAM(I) . I=1.NLAM)
C....CONSTITUENT OPTICAL VECTORS
      NCP=24NNAT+4
      CO 11 L=1.NOP
      NI =1 -1
      IF (L.EG. 1) NL=1
      IF (L. EG. 2) CALL SF(C(0. DATAID(1.1) . C(17.17.9))
      CALL SETC(r. + V(1 + 1) + V(17 + 17))
      READ (IFTLE. 192) NVEC (NL) . (DATAID (I . NL) . I=1.7)
      IF (L.EC. 1) NM=NVEC(1)
      XVEC=NVEC(NL)
      WF [TE (6.202) (DATAID (I.NL) .T=1.3) .NVEC (NL)
      IVEC=NVFC(NL)
C ... READ CHTICAL CONSTITUENT VECTORS
      Dr 4 1=1 . IVEC
      IF ((L.NF.2).AND.(L.NF.3)) RFAD(IFILE.101) (VECT(J).J=1.NLAM)
      IF((L.En.2).0P.(L.En.3)) READ(IFILE.103) (VECT(J).J=1.NLAM)
      WETTE (6.251) (VECT (J) , J=1 . NI AM)
C ... OPTICAL CONSTITUENT SUNS AND CROSS PRODUCTS
      Dr 4 J=1 . NL AM
      XNU(J,NL) = YMU(J,NL) + VECT(J)
      Dr 4 K=J.NLAM
    4 V (J.K) = V (J.K) + VECT (J) & VECT (K)
      IF (NVEC(NL).LF.1) GO TO 7
C ... OFTICAL CONSTITUENT COVARIANCE MATRIX
      DC = 1=1 . NLAM
      DO 5 J=1.NLAM
      V(I \bullet \cup) = (V(I \bullet J) - (XVEC) - (I \bullet NL)) \times V(I \bullet U) \times V(I \bullet U) = (V(I \bullet U) - (XVEC - I \bullet)
      IF (I.GT.J) V(I,J)=V(J.I)
    5 CONTINUE
C ... OFFICAL CONSTITUENT MEAN VECTOR
      DC 6 1=1 .NI AM
    & XNI (I.NL) = XMU (I.NL) / XVEC
      IF (L.EG.1) GO TO 7
      CALL MATSOP (V.C(1.1.NL) .NLAM)
    7 IF (L.NF.1) GO TO 8
C....MEASURED CANOPY REFLECTANCE VECTOR FOR COMPARISON WITH MODEL RESULT
      CALL UTTL ( XMU (1 . NL) . CANRM)
      DC 36: T=1. NLAM
      Dr 36" J=1.NLAM
```

```
340 \text{ COVM}(I \cdot J) = V(I \cdot J)
    B WPITE (6.204) (XMU(I.NL) . I=1.NLAM)
      IF (NVEC(NL) . LE . 1) GO TO 11
      WEITE (6.205) (DATAID (I.NL) . T=1.7)
      DO 10 I=1 . NLAM
   10 WEITE (6.25)) (V(I.J), J=1, NLAM)
      WRITE (6.211)
C...OFTICAL CONSTITUENT CORRELATION MATRIX
      DC 12 I=1.NLAM
      DC 9 J=1.NLAM
    9 CCH(I,J)=V(I,J)/(SQPT(V(I,I))*SQRT(V(J,J)))
      WEITE (6.251) (COR([.J).J=1.NLAM)
   12 CUNTINUF
   11 CONTINUE
      WEITE (6.210)
                                  BIG LOUP
ISTOF=0
      DC 7000 ISAMP=1.NSAMP
      DC- FOOD ITDIAL = 1 . NIRIAL
      COTTME=SECOND (ANG)
      IF ((ITRIAL.GT.1) . AND . (ISTOH. EQ. a)) GO TO 9050
C....GENERATE RANDOM DIRECT AND OTHFUSE IRRADIANCE VECTORS FROM THE
C.... INPUT DISTRIBUTIONS ASSUMING THEY ARE MULTIVARIATE NORMAL.
      WEITE (6.292)
      or 25 I=1.2
      CALL UTTL (YMU(1. () , AVEC)
      IF (NVEC(I) . LE. 1) GO TO 14
      COLL NAM (C(1.).I) . XML (1.I) . AVEC)
   14 WFITE (6.206) (DATAID (...) . J=1.7) . (AVEC (J) . J=1.NLAM)
      G( TC (15.16) . I
C....TOTAL SKY IPPADIANCE
   15 CALL UTTL ( LVEC , SKY IM)
      GC TC 25
C ... DIFFUSE TRPADIANCE
   16 CALL LITE (AVEC + DIFIM)
   25 CONTINUE
C.... COMPUTE PROPORTION OF IRRADIANCE WHICH IS DIRECT AND PROPORTION
C ... . WHICH IS DIFFUSE.
      DC 40 J=1+1-LAM
      SCURCE(1,J)=(SKYIM(J)-DIF(M(J))/(SKYIM(J)*LZS)
      DC 40 J=1. NBANDS
   40 SCURCE (T+1.J)=DIFTM(J) *XK(I)/(SKYIM(J)*SIN(THETA(I+1)))
      WEITE (6.200)
      DO 45 I=1. N SOUR
   45 WETTE (6.203) (SOURCE (1.J) . J=1.NLAM)
C....PCPULATE FIRST (TOP) DOWN DWELL LAYER (DR) WITH INCIDENT DIRECT AND
C....DIFFUSE LIGHT. DOWN DWELL RADIATION FLUX (DR) IS INDEXED FROM 1 TO
C....NLAY IN A DOWN GOING SEQUENCE. UPWARD DWELL RADIATION FLUX (UR)
C....IS INDEXED FROM 1 TO NEAY+1 IN UPWARD GOING SEQUENCE. THAT IS FOR
C....FOR UH. LAYER 1 IS THE LAYER IMMEDIATELY ABOVE THE BACKGROUND.
C....FLUX IN LAYER NLAY+1 IS THAT WHICH ESCAPES THE CANORY AND TOGETHER
C.... WITH THE INCIDENT FLUX DETERMINES THE CANORY REFLECTANCE.
905' CONTINUE
      CALL SETCIO. . FEFER(1) . REFER(17))
      CALL SETC(n. . DR(1.1.1) . UR(4.10.17))
      CALL SETC(n. IGUD(1.1) . IGOU(4.10))
      DC 1003 J=1 . NSOUR
      DC 1003 K=1.NLAM
                                          ORIGINAL PAGE IS
 1003 DF (1, J.K) = COUPCF (J.K)
```

```
C....SET FLUX LEVEL INDICATORS (DOWNWARD)
      CALL FTHRES (NLAY , NSOUR , -1)
C ... TOTAL INCIDENT FLUX REFLECTED FROM A LAMBERTIAN SURFACE AND DE-
C ... TECTED BY A VERTICAL SENSOR
      DO 1500 JSOR=1 .NSOUR
      DC 1400 KL=1 . NLAM
      REFER(KI) = PEFER(KL) + SCURCE (JSOR . KL) *SIN (THETA (JSOR)) *SINFO V *SINFO V
 1400 CONTINUE
 1500 CONTINUE
      WPITE (6.282) (HFFFH(KL) . KL=1 . NLAM)
C.....FAST LOOP TRACES LIGHT ATTENUATION THROUGH CANOPY......
C....FLLX PASSING THROUGH LAYERS IN A DOWNWARD DIRECTION
2000 CONTINUE
      DC 2600 IL=1.NLAY
      DC 25"0 JSOR=1 . N SOUP
C ... CHECK FLIX LEVEL INDICATOR
      IF (IGOD (IL. JSCR) . FQ. 0.) GO TO 2500
C....DIC LIGHT STRIKE LEAF
      CALL HGAP (IL . JSON . - 1 . IHIT . MTYPE)
      IF (IHIT.EG.G) GC TO 2200
      Or 21:0 IPHIP=1.18
C...DIDECTION COSINES OF SCURCE SECTOR (LVLH)
      SYL = KR(JENR. IOHTP)
      SYL = YE (JEOR . IPHTP)
      STL = ZS(JSOR)
      CALL LAMBTA (IL . JSOR . MTYPE . - 1 . NSOUR)
 PION CONTINUE
      Gr TC 2400
C ... GAP ENCOUNTERED IN DOWNWARD PATH
 2200 DC 2250 KI =1 . NLAM
 22FO DR(JL+1.JSOF.KL)=DR(JL+1.JSOR.KL)+DR(JL.JSOR.KL)
 2400 CALL SETZ(TL. JSOR .- 1)
SENO CONTINUE
      CALL ETHRES (NLAY . NSOUR . - 1)
 2600 CONTINUE
C ... BACKGROUND REACHED - REFLECTS LAMBERTIAN
      CALL ETHRES (NLAY , NSOLF .- 1)
      Dr 3600 JERR=1.NSOUR
      CALL UTTL (YMU(1,3) + AVEC)
       IF (NVEC (3) . LE. 1) GO TC 3100
      CALL NRM (C(1+1+3) . XMU(1+3) . AVEC)
 3100 CALL UTTL (AVEC + = G)
       DC 3400 JJ=2.NSOUP
       IL = NLAY + 1
       DO 3400 KL=1.NLAM
      UP (] +JJ.KL) =UP (1+JJ.KL) +PG (KL) +DR (TL+JSOR+KL) +ZS (JSOR) *XK (JJ-1)
3400
       CALL SETZ (NLAY+1 . JSOF .- 1)
 3600 CONTINUE
       CALL ETHRES (NLAY . NSOUR . +1)
C....FLUX PASSING THROUGH LAYERS IN AN UPWARD DIRECTION
       DO 4600 IL=1.NLAY
      DO 4500 JSOR=2.KSOUR
C.... CHECK FLIIX LEVEL INDICATOR
       IF ( | GOU / | L. JSOR) . FW. 0) GO TO 4500
C.... DID LIGHT STPIKE LFAF
       CALL PGAP (IL. JSOR. +1, IHIT. MTYPE)
       IF (THIT.EQ. 0) GO TO 4200
       Dr 4110 IPHIP=1.19
C... DIRECTION COSINES OF SCURCE SECTOR (LVLH)
```

```
SXL = XC(JCOR. IPHIP)
      SYL = YS(JSOK. IPHTP)
      S7L = 75 (J50R)
      CALL LAMBTH (IL . JSOR . MTYPE . + 1 . NSOUR)
 4100 CONTINUE
      GC 10 4400
C ... GAP ENCOUNTERED IN UPWARD PATH
 4200 DC 4250 KL=1.NLAM
 4250 UP (TL+1.JSOR, KL) = UR (IL+1.JSOR, KL)+UR (IL, JSOR, KL)
 4400 CALL SETZ(IL .JSCR .+1)
4500 CONTINUE
      CALL ETHRES(NLAY . NSOLE . +1)
 4600 CONTINUE
      CALL ETHRES (NLAY . NSOUR . - 1)
      CALL ETHRES (NLAY . NSOLF , +1)
C.... PECYCLE THROUGH LAYERS UNTIL FLUX EXHAUSTED
      DO SONO IL-1.NLAY
      DC 5000 JSOF=2. NSOUP
      IF (16011(11. JSOP) . NE. a) GO TO 2000
SARA CONTINUE
      DO 5001 IL=2.NL4YP1
      DO FORT JSOR=1 . NSOUP
      IF (JGOD (IL. JSOR) . NE. 0) GO TO 2000
5001 CONTINUE
C....FLLX EXHAUSTED IN ALL SOURCES--COMPUTE REFLECTANCE FOR THIS TRIAL
      DO 5200 USOP=2. NSOUP
      DC 5240 KL=1.NLAM
      RIT(JSOR, KL) = HK(NLAY+1.JCOK.KL) +DM1(JSOR)/REFER(KL)
 5200 RITHAR (JSOP.KL)=RITHAR (JSOR.KL)+9II (JSOR.KL)
      DIEME = SECOND (ARG) - COTIME
      WETTE (6.283) ISAMP, ITETAL, DTIME
      DC 53"0 JSCH=2 NSCUP
      20EG=105-10#J50F
5300 WETTE (6.284) 7DFG. (RIT (USOR, KL) . KL=1. NLAM)
      IF (TIMLET (AFG) . I.T. DTIME +2.) GO TO 6100
 SOCO CONTINUE
C....TRIALS COMPLETE FOR THIS SAMPLE POINT
      FTGIAL = NTHTAL
      Gr TC 6200
 6100 FTRIAL=TTPTAL
      WEITE (6.285) ISAMP. ITAL
 ASUN DO 6300 JSOF=2. KSOUP
      DO 6300 KL=1.NLAM
 6300 RITEAR (USOP.KL)=RITBAP (USOR.KL) /FTRIAL
      WEITE (6.284) ISAMP
      DC 6400 JSOH=2. N SOUR
      ZDEG=10=-10*JSOG
 64") WEITE (6.284) 7DEG. (PITBAR (JCOP.KL) .KL=1.NLAM)
      DC 6660 JSOR=2. KSOUR
      DO 6500 KL=1 . NLAM
      RHAR (JSOR . KL) = RHAP (JSCR . KL) + RITHAR (JSOR . KL)
      DO 6500 KLL=1.NLAM
 6500 CCV (JSOP *KL *KLL) = COV (JSOR *KL *KLL) + FITHAP (JSOR *KL) *RITHAP (JSOR *KLL)
      DO 6600 KL=1.NLAM
 6600 FITRAR (JSCP.KL)=0.
      IF (ISTOP.EQ.1) GO TO 7100
 7000 CONTINUE
      FCAMPINCAMP
      GO TO 7150
```

7

```
7100 FSAMP=ISAMP
C ... ALL SAMPLE POINTS ESTIMATED
 7150 Dr 7200 JSOR=2. NSOUP
      DC 7200 KL=1 . NLAM
 72:10 REAR (JSOR . KL) = REAR (JSOR . KL) / ESAMP
      DC 7900 JSOH=2. NSOUR
      ZCFG=105-104JSOR
      IF (FSAMP.LE.1.) GO TO 7600
      DC 7400 I=1.NLAM
      DC 7300 J=1.NLAM
 73/0 COV(USOR . I . J) = (COV(USOR . I . J) =FSAMP#RBAR(USOR . I) #RBAR(USOR . J))
      1/(FSAMP-1.)
 7460 SIG(1) = SQPT(COV(JSOR . [ . I))
       DC 75:0 I=1 , NL AM
       DC 7510 J=1 . NL AM
 750; CCR(I+J)=COV(JSOR.I+J)/(SIG(I)*SIG(J))
 7690 WRITE (6.287) 7DEG. (REAR (JSOP.KL) .KL=1.NLAM)
       IF(FSAMP.LF.1.) GO TC 7900
       WALTE (6.288)
       DC 7700 I=1.NLAM
 7700 WF[1E(6.289) (COV(JSCF.I.J).J=1.NL4M)
       WE [TE (6.291)
       DC 78:0 I=1 . NLAN
 7800 WEITE (6.280) (COR(I.L) . J=1 . NLAM)
 7900 CONTINUE
       IF (JF ILF . Ec. 5) GO TO 8000
       STOP
C.....DATA FORMATS.....
   100 FORMAT (BALC+/+4x+13.7x+14+7x+212+6x+F6+2+7X+F7+2+5x+F7+2+8x+12+/+
      15x • 12 • 7y • 11 • 7x • 15 • 9x • 15 • 8x • 15)
   1-1 FCHMAT (9F10.5)
   1-2 FORMAL (T10.7A10)
   1-3 FCRMAT (REIn.4)
   200 FORMAT(#14,43X,850LAR RADIATION/VEGETATION CANOPY REFLECTANCE MODE
      1L* . // . 64X . 4 INPUT DATA* . // . 1x . 8A10 . / .
      24 JULIAN DAY # . T3.4. YEAR 4.14.4. TIME 4.212.4 HOURS4./.
      34 LATITHDE = *, F6.2. + DEGREFS. LONGITUDE = *, F7.2, * DEGREES +./.
      44 SOLAH DECLINATION = 4.FA. 2.4 DEGREES4./.
      S# BAND WIDTH OF DIFFUSE VECTORS = #.F5.1.# DEGREES#./.
      64 NUMBER OF WAVELENGTH BANDS SIMULATED 4,12,/,
      74 NUMBER OF CANCRY CONSTITUENTS 4.11./.
      H# K DIGTT ODD NO. TO INITIALIZE RANDOM SEGUENCE = # . IE . / .
       44 NSAMP =4. 15./.
       44 ATRIAL = 4.15./.
      BA VEAL = 4.11.
      (1)
   ZAL FORMAT (*OWAVELENGTHS SIMULATED* . / . * 0 * . F 7 . 4 . 16F8 . 4)
   2 2 FORMAT ( +0 . . . . . . . 3 4 1 0 . . . NUMBER OF VECTORS = 4 . 12)
   203 FORMAT (# #.F7.4.16F8.4)
                       MFAN+ . / . 8x . 1 UF12 . 4)
   2 4 FCRMAT (#0
                       COVARIANCE MATRIX#)
   2 5 FORMAT (#1)
   246 FORMAT (+ORANDOM VECTOR GENERATED FROM THE +.7410./. (+ +.10E12.4))
   217 FORMAT ( +OLAI = 4.F4.2.4X + 45 = 4.F4.2)
   2:8 FORMAT (*ODIFFUSE VECTOR COEFFICIENTS*./.
                K #) ./ . (9FR . 4))
       19 (#
   209 FORMAT (#01PRADIANCE SCURCE VECTORS#)
   210 FCGMAI(IHL)
                      COMPELATION MATRIX#)
    211 FCRMA! (#0)
   212 FCRMAT (#0DN1 = 4.9F8.4)
```

-- YET ..

```
7100 FRAMP=ISAMP
C...ALL SAMPLE POINTS ESTIMATED
 7150 CC 7200 JSOR=2+NSOUR
      DO 7200 KL=1.NLAM
 7290 REAR (USOR+KL) = REAR (USOR+KL) / FRAME
      DO 7900 JSOR=2#NSOUR
      ZCFG=105-104JSOR
      IF (FSAMP.LE.1.) GO TO 7600
      DC 7440 I=1.NLAM
      DC 7300 J=1.NLAM
 TRANCO COV (USOR • I • J) = (COV (USOR • I • J) =FSAMP#RBAR (USOR • I) #RBAR (USOR • J))
     */(FSAMP+1.)
 7400 STG(1)=SQRT(COV(JSOR:1:1))
      DC 7518 I=1.NLAM
      DC 7500 J=1.NLAM
 7509 COR([:U)=COV(JSOR.1.4)/(SIG(I)*SIG(J))
 7690 WRITE (6.287) YOEG. (REAR (JSOP.KL) .KL=1.NLAM)
       IF(FSAMP+LF+1+) GO TC 7900
       WETTELA.288)
       Do 77co I=1.NLAM
 77ag WE[TE(6.289) (COV(JSCR.I.J).J=1.NLAM)
       WEITE (4.291)
       EC 78:0 I=1.NLAM
 7800 WEITE (6.280) (COR(I.U) JEL MLAM)
 79ro CONTINUE
       IF([FILF.ER.5) 60 TO 8000
       SICE
100 FCBMAT (8A1C+/+4x+13+7x+14+7x+212+6x+F6+2+7X+F7+2+5x+F7+2+8x+12+/+
      15x • 12 • 7y • 11 • 7x • 15 • 9x • 15 • 8X • 15)
   1-1 FCHMAT(AF10.5)
   L-2 Frandi(T10.7A1U)
   1-3 FCRMAT (REIn.4)
   ZEG FORMAT(#1#,43x,#50LAR RADIATION/VEGETATION CANODY REFLECTANCE MODE
      1L8.//964X44JNDUT DATA4.//.1x48A104/4
      24 JULIAN DAY *+T3.4. YEAR 4.14.4. TIME *+ZIZ+* HOURS*./.
      34 LATITUDE = 4,F6.2.* DEGREFS. LONGITUDE = 4,F7.2,* DFGREES++/+
      44 SOLAR DECLINATION = 4.FA. 2.4 DEGREES4./.
      S# BANG WIDTH OF BIFFUSE VECTORS = #.F5.1.# DEGREES#./.
      ON NUMBER OF WAVELENGTH BANDS SIMULATED #.12./.
      74 NUMBER OF CANCRY CONSTITUENTS 4.11./
      H# K DIGTT ODD NO. TO INITIALIZE RANDOM SEGUENCE = **15./
      44 NSAMP =4, I5./.
      44 ATRIAL = 4.15./.
      AR ALAY = *.Il.
      \cap
   201 FCPMAT (#OWAVELENGTHS SIMULATED# . / . # 0 # . F 7 . 4 . 16F8 . 4)
   2 2 FORMAT ( 40 . . . . . . . 3410 . * NUMBER OF VECTORS = * . IZ)
   2n3 FCRMAT(# **F7.4.16F8.4)
                      MFAN# . / . 8 x . 1 UF12 . 4)
   2 4 FCPMAT (#0
                      COVARIANCE MATRIX#)
   2.5 FORMAT(#0
   216 FORMAT (#ORANDOM VECTOR GENERATED FROM THE *.7410./. (* *.10E12.41)
   2 .7 FORMAT (#0LAT = # .F4 . 2 . 4X . 45 = # .F4 . 2)
   2.8 FORMAT (*ODTFFUSF VECTOR COEFFICIENTS* ./.
               K #) ./.(9F8.4)}
       19 (#
   209 FORMAT (#OIRRADIANCE SCURCE VECTORS#)
   218 FORMAT(1H1)
                      COMPELATION MATRIXA)
   ZII FORMAL(#0)
    212 FCHMAT(#0DF1 = #*9F8*4)
```

. _ _ ...4

- (村)

```
221 FORMAT (*OTHRESD = *.10F8.4/* THRESU = *.10F8.4)
222 FORMAT (*ODTRECTION COSINES OF SUN
                                              *,3F8.4)
273 FORMAT (+OTHETA = 4.10F8.4)
277 FCRMAT(///* *.25(1H.).2X.*CANOPY GEOMETRY*,2X,25(1H.)//)
228 FORMAT (/# #.25(1H.))
230 FORMAT (*OLFAF ANGLE COMPUTATIONS - IL = *.II,
   14 IMAT = *. I 1. * NANG = *. T2./. * XLFA.YLFA*,
   1/ · (2X · 14F8.3))
231 FORMAT (*ONANGLE (IL . INAT) = * . IZ)
272 FORMAT(#0 FLA =#.10F8.3)
              F =*,10F8.3)
233 FCHMAT (#0
235 FORMAT(#0 OP = *. 9F8.3.3x. *OPM = *. FP.3.3X. *PHIT = *. F8.3)
251 FORMAT (PX . 10E12.4)
282 FCGMAT (#0PFFEF = 4,8E13.4)
203 FCHMAI (* ORFFLECTANCE FOR SAMPLE* . T3 . # TRIAL . 13.5X .
   14CCMPUTATION TIME WASH . F5.1.4 SECONDS. 4)
284 FORMAT(* 7 = *, 13.4 DEG*, 3x.10F7.3)
285 FCRMAT( #OCAUTTON .... SAMPLE * . I3 . # CONTAINS ONLY * . I3 . # TRIALS . #)
296 FORMAI (*0*.75(1H.)/* MEAN REFLECTANCE FOR SAMPLE*.13)
247 FCRMAT (#UGRAND NEAN FCR 7 = # . 13.# DEGREES . 4.3 x . 10F7 . 3)
SAB EUSKAT (40 CUARTANCE MATHIXA)
249 FCGNA) (7X+10F12.8)
291 FCHMAT (#0 CORPELATION MAIRIX#)
202 FCFMAT(1X.120(14-))
    ENO
```

```
SUBROUTINE LAMBIN(IL, JSOR . MTYPE, IDIR, NSOUR)
C .... FOR A GIVEN FLUX SOURCE THIS PROGRAM CALLS THE APPROPRIATE
C .... PROGRAMS TO DETERMINE LEAF ORIENTATION AND OPTICAL PROPERTIES
C .... AND UPDATES THE DIFFUSE SOUPCES WITH SCATTERED FLUX.
      SXL. SYL. S7L
C
      JSOR
      LXS. LYS. L75
      IDIA
      NLAM
C
      DRII.J.K)
 C
      UR ([ .J.K)
 C
      MTYPE
      IL
 C
      NSOUR
      XMATIR, XMATIT
 C
       TSTAMK . HSTAMK
 -
       TETAMX . HETAMX
 C
       ZENITH
 Ç
    OUTPUF VAPTABLES
 C
       DR (I . J.K)
       UR (I . J . K)
        CORMON DUMO (17) .XK(9) .SXL .SYL .SZL .XLF ,YLF .ZLF
        CCMMON/C1/DUM1 (7) .NLAN , DUM2 (26) .CE1PI .DUM3 (24) .LXS.LYS.LZS
        COMMON/CZ/DUM4 (51) , XMATIR(17) , XMATIT(17) , XMATZR(17) , XMATZT(17) .
        1 XNA T3+ (17) XMAT3T (17) . DUM5 (214) . ZENITH (10)
         COMMON/C6/110 (4,10.17), UP (4,10.17)
         COMMUNICATIMTP (3) , NLAY . OPM (10)
         DIMENSION H(17) .R(17) .T(17) .PTRP(2.17)
         REAL LXS.LYS.LZS
         DATA -102/1.570796327/
  C ... SET DIRECTION COSINES OF SOUPCE
         XL=SXL
          YL=SYL
          ZL=52L
          IF (USUR.NE.1) GO TO 100
          XL=LXS
          YL=LYS
   C ... PANDOM LEAF ORJENTATION, DIRECTION COSINES OF NORMAL, AND
   C ... LEAF OPTICAL PROPERTIES
      100 IF (IDIR.EG.-1) IXL=IL
          IF (ICIR.EG. !) IXL=NLAY-IL+1
    C ... SET SIDE OF LEAF NHICH LIGHT STRIKES. ISIDE=1 (TOP) . -1 (BOTTOM) .
           ISIDE=-IDIR
           DOT=XL4XLF+YL4YLF+ZL4ZLF
           IF (OUT .LT. p.) ISINE=IDIP
           COSLS=ARS (DOT)
           IF (IDIR.EG.1) GO TO 5
         4 H(KL)=DR(IL.JSOR.KL)+COS(7ENITH(JSOR)-THETAL)/18.
           GC TC 9
         7 H(KL)=UP(IL . JSOR . KL) +COS(ZENITH(JSOR)-THETAL)/18.
     C .... SET OPTICAL PROPERTIES FOR LEAF TYPE
           GO TO (10.20.30) . MIYPE
        10 DC 15 KI = 1 . NLAM
```

```
R(KL) = XMATIR(KL)
   15 T(KL) = XMATIT(KL)
      GO TO 46
   20 DC 25 KI =1 . NLAM
      F(KL) = XMATOF(KL)
   35 T(KL)=XWAT2T(KL)
      GC TO 40
   30 DC 35 KI = 1 . NLAM
      F(KL)=XMATAF(KL)
   35 T(KL) = XMATaT(KL)
   40 CONTINUE
C.... UPDATE DIFFUSE SOURCES WITH SCATTERED RADIATION FLUX
      DC =0 JJSOR=2.NSOLIR
      IF (ISIDF.ER.-1) CALL BFLUY (THETAL.ZENITH (JJSOR) .H.T.R.NLAM.PTRP)
      IF (IS(DF.EG.1) CALL BFLUX(THETAL.ZENITH(JJSOR), H.P.T.NLAM.PTRP)
      DO 50 KL=1.NLAM
      IF ( | L | 9. EQ. 1) GO TO 45
      DR(JL+1.JJCOR.KI) = DR(JL+1.JJSOR.KL) +PTRP(2.KL)
      UF (NLAY+2-TL . JUSOR . KL) =UR (NLAY+2-IL . JUSOR . KL) +PTRP (1 . KL)
      GO TO SA
   45 DH (NLAY+2-IL + JJSOR+KL) =DP (NLAY+2-IL+JJSOR+KL)+PTRP(2+KL)
      UF ([L+1.JJCOR.KI]) =UQ ([L+1.JJSOR.KL) +PTHP (1.KL)
   SO CONTINUE
      RETURN
      END
```

```
SUPPOLITINE AFILUX (TA. TRP. H.R. T. NLAM. PTRP)
C....GIVEN THE TERADIANCE H OF A LEAF INCLINED AT TA THIS PROGRAM
C....DETERMINES THE FLUX REFLECTED AND TRANSMITTED INTO A SOURCE
C ... . BAND WHOSE ZENITH ANGLE IS TRP.
      DIMENSION PTRP(2+17) ++ (17) +0 (17) +T (17)
      DATA PI/3.141592654/.PI02/1.570796327/
      F: (X,Y) = COS(TA) * (SIN(X) ** ? - SIN(Y) ** ?)
      F = (x) = ACOS(-1/(TAN(TA) + TAN(x)))
      F3(X,Y,T)=2.45IN(TA)+SIN(X)+(DEL+.25+(SIN(2.4Y)-SIN(2.4Z)))/PI
      DFL= . 187266463
      TI=TRP-DEL
      TZ=TRP+DEL
      IF (TA.LF.PIN2-TZ) GO TO 10
      IF (TA.GF.PI02-T1) GO TO 20
      Gr TC 3h
C....CASE 1
   10 XF]=F1 (T2.T1)
      DO 15 KI = 1 . NLAM
      PTRP(1,KL)=P(KL)+H(KL)+XF)
      PTAP (2 . KL) = T (KL) + H (KL) + XF!
   15 CONTINUE
      RETURN
C....CASE 2
   70 XF1=F1(T2.T1)
      IF (TA.LF.1.5533) GU TC 21
      PEP=PIO>
      GO TO 22
   21 PEP=F2 (TRP)
   22 XF3=F3(PPP.T1.T2)
      DC 25 KI = 1 . NLAM
      PTRP (1, KL) = H (KL) + (R (KL) + T (KL)) + XF3+
     1 (F(KL) *+ (KL) *PRP-T(KL) *H(KL) *PI+T(KL) *H(KL) *PRP) *XF1/PI
      PIRP(3+KL)=+(KL)*(T(KL)+R(KL))*xF3+
     1 ( [ (KL) *H (KL) *PRP-P (KL) *H (KL) *PI+R (KL) *H (KL) *PRP) *XF1/PI
   25 CONTINUE
      RETURN
C...CASE 3
   30 TE=PIC2-TA
      XF1=F ( (TB + T1)
      DC 35 KI =1 . NLAM
      PTRP(1.KL)=P(KL)*H(KL)*XF1
   35 PTRP (2, KL) =T (KL) *H(KL) *XF1
       IF (TE+T2.LE.3.196) GC TO 36
      PAP=+102
      GC TG 37
   36 PPP=F2((T8+T2)/2.)
   37 XF1=F1(T2+TB)
      DEL=((TRP+TA)/2.) -. 74176493
      XF3=F3(PRP.TB.T2)
      DC 40 KI = 1 . NLAM
      PTRP (1 + KL) = PTRP (1 + KL) + H (KL) + (P (KL) + T (KL) ) + XF3+
     1 (c (KL) +H(KL) +PRP-T/KL) +H(KL) +PI+T(KL) +H(KL) +PRP) +xF1/pI
      PTRP(2.KL)=PTRP(2.KL)+H(KL)+(T(KL)+R(KL))+XF3+
     1 (T(KL) *+ (KL) *PRP-R(KL) *+ (KL) *PI+R(KL) *+ (KL) *PRP) *XF1/PI
   40 CONTINUE
      RETURN
      END
```

```
SUBPOUTINE LANGLE (IL . MTYPE . THETAL . PHIL)
 C----THIS PROGRAM SELECTS A RANDUM LEAF INCLINATION (THETAL) AND AZIMUTH
      (PHIL) AND THEN COMPUTES ITS DIRECTION COSINES XLF. YLF. AND ZLF.
      THE INTERMEDIATE PARAMETERS SINL . COSL . SINP . AND COSP ARE ALSO
 C
      OLTPUT. RANDOM LEAF REFLECTANCE AND TRANSMITTANCE VECTORS ARE ALSO
 C
 C
      SELECTED.
 C
 0
      INPUT
 0
        IL
 C
        NTYPE
 C
        MANGLE
 ^
      OUTPUT
 C
        THETAL
        PHIL
 C
        XLF . YLF . ZLF
•
        SINL, COSL. SINP. COSP
C
        TETAME , RETAME . TETAME . TITAME . TITAME . TITAME
       COMMON/CI/DUMZ (31) + CERTD + DUM7 (3) + CEZPI
       COMMUN/C4/NANGLE (3,3) .FLA (3.3.10) .SLAI (3,3) .FLAI (3,3) .PHIT (3,3.10)
       COMMON/CB/CINL, COSL, SINP, COSP
       COMMON DUM3 (29) . XLF . YLF . ZLF
C --- DETERMINE RANDOM LEAF CRIENTATION.
       FN=NANGLE (TL. MTYPF)
       XT=RANF (0.)
      X[=1.+(FM-1.) #XT
       I Y = Y I
      IF (IX.ED.NANGLE (IL.MTYPE)) TX=IX-1
       [xp]=[x+]
      THETAL=FLA(IL.MTYPE,IX)+.54(FLA(IL.MTYPE,IXP1)-FLA(IL.MTYPE,IX))
      PHIL=CEPPI#FANF (0.)
C----THETAL, PHIL ARE LEAF INCLINATION AND AZIMUTH, RESPECTIVELY.
      CONTINUE
      SINL=SIN (THETAL)
      COSL=COS (THETAL)
      SINP=SIN(PHIL)
      COSP=COS(PHIL)
C----COMPUTE LEAF NORMAL DIRECTION COSINES
      XLF=-SINL#COSP
      YLF=-SINL#CIND
      ZLF=COSI
C----SELECT RANDOM LEAF REFLECTANCE AND TRANSMITTANCE VECTORS.
      CALL OPTICAL (MTYPF)
      RETURN
      END
```

SURROUTINE COP(ALPHA, BETA, OP)

C...THIS PROGRAM CALCULATES THE MEAN PROJECTION OF A UNIT LEAF AREA IN C...THE DIRECTION OF THE SCURCE. THE LEAF IS INCLINED AT AN ANGLE C...ALPHA AND IS ASSUMED TO BE AZIMUTHALLY ISOTROPIC. THE SOURCE C...DIRECTION IS AT AN AZIMUTH OF ZERO AND AN INCLINATION OF BETA.

CCMMON/c1/DUM1(33), CEPIO2 OP=COS(ALPHA) #SIN(BETA) IF(ALPHA.LF.BFTA) RETURN

C....THETAU IS THE LEAF AZINUTH ANGLE AT WHICH OF BECOMES NEGATIVE AND C....IS IN THE FIRST GUADRANT. THE FUNCTION OF IS SYMMETRIC AND HENCE

C....IS AVERAGED OVER LEAF AZIMUTH ANGLES OF N TO PI RADIANS.

THETAN=ACOS(TAN(HETA)/TAN(ALPHA))

TANTU=TAN(THETAN)

OP=OP+(1.+(TANTO-THETAO)/CEPIOZ)

RETURN
END

SURROUTINE COPM(G,OP.CPM)

C...THIS PROGRAM CALCULATES THE MEAN PROJECTION OF A UNIT LEAF AREA IN C...THE DIRECTION OF THE SCURCE (OPM) FOR THE SIMULATED CANOPY. THE C...LEAVES OF THE CANOPY ARE ASSUMED TO BE AZIMUTHALLY ISOTROPIC. THE C...OP FUNCTION USED IN THE CALCULATION HAS BEEN PREVIOUSLY DETERMINED C...FOR A GIVEN SOURCE DIRECTION FOR LEAF INCLINATION ANGLES OF C...S. 15. ... 85 DEGREES. G IS THE LEAF INCLINATION ANGLE DENSITY C...FUNCTION.

DIMENSION OP(9).G(9)
CPM=0.

DC 1 I=1.9
1 CPM=UPM+OP(I)*G(I)
RETURN
END

```
SUBROUTINE PDENS (IL . MTYPE . I ANGLE . OPM)
C----THIS PROGRAM COMPUTES THE PROBABILITY THAT LIGHT AT INCIDENT ANGLE
     THETA (IANGLE) INTERACTS WITH MATERIAL TYPE MTYPE WITHIN CANOPY
C
C
     LAYER IL.
C
     INPUT
        IL
        NTYPE
~
C
       IANGLE
•
        CPM
C
        CLAI
C
        FLAI
C
        THETO
~
     OUTPUT
        PHIT
C
       CCMMON/C2/DUM(357) . THETA(10)
       COMMON/C4/NANGLE (3.3) .FLA (3.3.10) .SLAI (3.3) .FLAI (3.3) .PHIT (3.3.10)
       ARG=1 .- (SLAI (TL.MTYPE) *OPM/SIN (THETA (IANGLE)))
       IF (AFG.LE.O.) GO TO 1
       P = AHG ** (FI AI (IL . MTYPE) / SLAT (IL . MTYPE))
       G0 T0 2
       Po = 0.
1
       WEITE (6.100) TANGLE
      FORMAT (1HO. # PO SET TO 7ERO#,15)
100
       CONTINUE
       PHIT(IL.MTYPE.IANGLE)=1.-PO
       PETURN
       END
```

```
SURROUTINE PGAP (IL . IANGLE . INIR . IHIT . MTYPE)
    -THIS PROGRAM DETERMINES IF AN INTERACTION IS BEING MADE IN LAYER IL
C--
     AND SETS THE MATERIAL TYPE OF LAYER IL.
C
C
     INPUT
C
       IL
       IANGLE
c
       ICIR
       NLAY
C
       NTP
^
       PHIT
     OUTPUT
C
0
       IHIT
C
       MTYPE
C
      COMMUNICA/NANGLE (3+3) .FLA (3.3.10) .SLAI (3+3) .FLAT (3+3) .PHIT (3+3.10)
       CCMNON/CMAT/MTP (3) + NLAY
       IF (IUIR.LT.0) GO TO 10
       ILAYER=NLAY+1-IL
       95 OT 09
    10 ILAYEL= TL
    20 MTYPE=MTP(ILAYER)
       IHIT=
       TEST=RANF (n.)
       IF (PHIT (ILAYER . M (YPE . IANGLE) . LT . TEST) GO TO 30
       IHIT=1
    30 BETURN
       END
```

```
SURROUTINE ETHRES (NLAY . NSOUP . IDIR)
C----THIS PROGRAM DETERMINES (FOR EACH LAYER AND FOR ALL LIGHT SOURCE
0
     DIRECTIONS) IF THE SOURCE FLOX IS ABOVE THRESHOLD REQUIREMENTS IN
     THE DIRECTION INDICATED BY INTP. INDICATORS IGOD OR IGOU ARE SET
C
     ACCORDINGLY.
C
00000
      INPUT
       NLAY
       NSOUF
       TOIR
       NLAM
       DA
c
       LP
       THRES
C
     OUTPUT
•
      TGOD
       IGOU
      COMMON/C1/DUMA (7) . NLAN
      COMMON/C6/DR(4.10.17), UR(4.10.17). THRESD(10). IGOD(4.10). IGOU(4.10)
     1.THRESU(10)
C----DOWNWARD FLUX
      IF (IDIR.GT.O) GO TO 10
      NL GYER=NL AY+1
      DO 7 I=1 . NLAYFR
      DO 2 J=1 . NEOUR
      IGOD (1.J) =0
      DC 1 K=1 .NL AM
      IF (DR (I.J.K).LT. THRESD(J)) GO TO 1
      IeGo (I . J) =1
      Gr TC 2
    1 CONTINUE
    2 CONTINUE
      RETURN
C----UPWARD FLUX
      CONTINUE
      DO 4 I=1.NLAY
      DO 4 J=> NSOUP
      IGOU (I.J) =0
      DO 3 K=1, NLAM
      IF (UR (I.J.K).LT. THRESU(J)) GO TO 3
      Icon(I . J) =1
      GC TO 4
    3 CONTINUE
    4 CONTINUE
      RETURN
      END
```

14

```
SUBROUTINE SETZ(IL . IANGLE . IDIR)
     -THIS PROGRAM SETS THE FLUX (AND ITS APPROPRIATE INDICATORS) IN THE
C
     IDIR DIRECTION AT ANGLE THETA (IANGLE) IN LAYER IL TO ZERO.
ç
     INPUT
_
        IL
00000000
        TANGLE
        IDIR
       NLAM
     OUTPUT
       DR
       LR
        IGOD
        IGOU
C
      CCMMON/C1/DUM1 (7) . NLAM
      CCMMUN/C6/DR (4,10,17), UR (4,10.17), THRES (10), IGOD (4,10), IGOU (4,10)
      IF (ICIR.EQ.1) Go TO 10
C---- DOWNWARD FLUX
      DO 1 K=1 . NLAM
    1 DR (IL . IANGLE . K) = 0 .
      IGOD (IL. IANGLE) =0
      RETURN
CONTINUE
      CONTINUE
      DO 2 K=1 . NLAM
    2 UR(IL.IANGLE.K)=0.
      IGOU(IL. IANGLE) =0
      RETURN
      END
```

19

```
SUBROUTINE OPTICAL (MTYPE)
C .--- THIS PROGRAM SELECTS RANDOM LEAF REFLECTANCE AND TRANSMITTANCE
     VECTORS FOR MATERIAL TYPE MTTPE.
C
     INPUT
C
       NTYPE
~
       NVEC
~
•
       UNX
     OUTPUT
C
        XMATIR. XMATIT. XMATER. XMATET. XMATER. XMATET
C
      COMMON/LI/DATAID(7,9) .XMU(17,9) .C(17,17,9) .NVEC(9)
      CCMMON/CZ/CANRM(17) .SKYIM(17) .DIFIM(17) ,XMAT1R(17)
     1.XMATIT(17),XMAT2R(17).XMAT2T(17).XMAT3R(17).XMAT3T(17).RG(17).
     2XLAM(17) . SOURCE (10,17) , THETA(10)
      I=2#MTYPE+2
       J=[+]
      GC-TO (10.20,30) . MTYPE
C----SELECT MATERIAL TYPE 1 VECTORS
1"
       CCNTINUE
       IF (NVEC(I) .LE.1) GO TC 11
      CALL NRM(C(1.1.T).XML(1.I).XMATIR)
       Gr TG 12
      CALL UTTL (XMU(1.I) , XMATIR)
11
       IF (NVEC(J) .LE.1) GO TO 13
12
       CALL NAM (C(1.1.J), XMU(1.J), XMATIT)
       RETURN
       CALL UITL (XMU(1.J) .XMAT1T)
13
       RETURN
C---- SELECT MATERIAL TYPE 2 VECTORS
       CONTINUE
20
       IF (NVEC(I) .LE.1) GO TO 21
       CALL NRW (C(1.1.1).XMU(1.1).XMATZR)
       GO TO 22
       CALL UTTL (XMU(1.1) .XMATZR)
21
22
       IF (NVEC(J) .LE.1) GO TO 23
       CALL NRM (C(1,1,J), XMU(1,J), XMATZT)
       RETURN
       CALL UTTL ( YMU (1, J) . XMAT2T)
23
       RETURN
C---- SELECT MATERIAL TYPE 3 VECTORS
       CONTINUE
3"
       TF(NVEC(I).LE.1) GO TO 31
       CALL NAM(C(1.1.1).XML(1.1).XMAT3R)
       GC TC 32
       CALL UTIL (YMU(1.1) ,XMAT3R)
71
       IF (NVEC (J) . LE. 1) GO TO 33
37
       CALL NRM (C(1,1,J), XMU(1,J), XM473T)
       RETURN
       CALL UTTL (YMU(1.J), XMAT3T)
37
       RETURN
       END
```

SURROUTINE NRM(C,7,x)

C....THIS PROGRAM GENERATES RANDOM SAMPLES FROM A GIVEN MULTIVARIANGE

C....NORMAL DISTRIBUTION

COMMON/C1/DUM(7),NLAM

DIMENSION x(17), y(17)

CIMENSION C(17,17), Z(17)

DO 10 1=1,NLAM

y(I)=GAUSS(0.,1.)

CONTINUF

CALL VMULT(Y,C,x,NLAM)

RETURN

END

```
SUBROUTINE MATSOR (V.C.N)
    DIMENSION V(17,17),C(17,17)
    Dr 30 J=1.N
    DO 30 I=1.N
    C([.u)=n.
    IF (I.LT.J) GO To 25
    IF (J.NE.1) GO TO 5
    C(I+J) = V(I+J) / SQRT(V(1+1))
    GC TO 30
  5 IF (I.NE.J) GO TO 15
    SUM2=0.
    IK=I-1
    K=1
 10 SLM2=SUM2+C(I.K) *C(I.K)
    K=K+1
    IF (K.LF.IK) GO TO la
    IF (V(I.J)-SUM2.GE.O.) GO TO 11
    DIF=V(I.J)-SUM2
    WRITE (6.201) T.J.V(I.J).SUM2.DIF
201 FORMAT (#0*,2110.3F14.8)
    C(1+J)=n.
    GC TO 3A
 11 CONTINUE
    C(I.J) = SQRT(V(I.J) SUN2)
    GC TC 3n
 15 SLNPRO=n.
    IJ=J-1
    K=1
 20 SLMPHO=CUMPRO+C(I.K) +C(J.K)
    K=K+1
    IF (K.LE.IJ) GO TO 20
    C(I,J) = (V(I,J) - SUMPRC) /C(J.J)
    en TO 3n
 75 C(I.u)=n
 30 CONTINUE
    FFTURN
    END
```

BLOCK DATA CCMMON/C1/DUM(30), CEDTR.CERTD.CEMTR.CEPIO2.CE1PI.CE2PI DATA CEDTR.CERTD.CEMTR/.01/453293.57.2957795,.00029088821/ DATA CEPIO2.CE1PI.CE2PI/1.57079632.3.14159265.6.28318530/ END

```
SUBROUTINE TBLR(M. X. Y. XX. Z)
```

```
C....THIS PROGRAM FINDS THE INTEGRAL 7(X) OF THE FUNCTION Y(X) FROM X(1)
C...TC X(2M-1) USING SIMPSONS RULE. THE INTEGRAL Z(X) IS NORMALIZED TO C...l. AT X(2M-1). THE TABLE OF Z VERSUS X IS THEN INVERTED TO DETER-
C ... MINE X AS A FUNCTION OF Z AT M REGULARLY SPACED POINTS ALONG Z.
     INPUT VARIABLES
       N = DESIFED NUMBER OF REGULARLY SPACED POINTS ALONG Z
        x = SPECIFIED AT 2M-1 POINTS
        Y = SPECIFIED AT 2M-1 POINTS
0
     OUTPUT VARIABLES
C
        XX = THE TABLE OF X VALUES FOR M REGULARLY SPACED POINTS
C
              (M-1 INTERVALS) ALONG Z.
        7 = THE NORMALIZED INTEGRAL OF Y AT X(1), X(3), .... X(2M-1).
0
C
       DIMENSION x(19), Y(19), Z(10). XI(10), XX(10)
C....SIMPSONS RULE INTEGRATION
       Z(1) = 0.0
1 "
       Dx = x(7) - x(1)
211
       DO 50 J = 2.M
       uc = 24J - 3
       31 = S#J - S
3-
       J2 = 2*J - 1
       Z(J) = 7(J - 1) + Dx*(Y(J0) +4.*Y(J1) + Y(J2))/3.0
 40
       xI(T) = x(TS)
       x_{1}(1) = x(1)
 C....NCGMALIZE INTEGRAL Z(X)
       DC 70 J = 1.M
 60
       Z(J) = 7(J)/Z(M)
 70
 C....FIND X AT M REGULARLY SPACED POINTS ALONG Z.
       xx(1) = x(1)
       EN = N - 1
       F = 1.0/EM
        JS=2
        DC 151 K = 5.W
 80
        ZT = K - 1
        ZT = / T#F
        00 11: J =JS.M
 20
        IF(Z(J) - 7T) 110. 100, 100
        G = (ZT - 7(J - 1)) / (Z(J) - Z(J - 1))
 100
        xx(K) = XI(J - 1) + G*(XI(J) - XI(J - 1))
        GC TO 115
        CONTINUE
 110
        J==J
 115
        CONTINUE
  120
        RETURN
        END
```

```
SUBROUTINE SUN
C----THIS PROGRAM CALCULATES THE POSITION OF THE SUN
C
r,
     INPUT
C
       TIME
C
       GLAT
C
       DEC
•
     OUTPUT
C
       SINLAT. COSLAT
C
       SINDEC. COSDEC
C
       COSH
       SINZ: COST
C
       STNAZ, COSAZ
C
       LXS: LYS. LZS
0
C
         TIME OF SIMULATION (HOURS)
         GLAT IS SITE GEOGRAPHICAL LATITUDE
C
C
         GLUNG IS SITE LONGITUDE
C
         DEC IS FOLAR DECLINATION
C
         H IS SOLAR HOUP ANGLE
0
         COSZ IS COSINE OF SOLAR TENITH ANGLE
C
         COSAT IS COSINE OF SOLAR AZIMUTH
         LXS. LYS. LZS ARE SOLAR DIRECTION CUSINES
C
~
C
      COMMON/CI/DAY, YEAR, TIME, GLAT, GLONG, DEC, DUM (24),
     ICEDTH . CFRTD . CEMTR . DUM ? (17) .
     ZSINLAT.COSLAT.SINDEC,COSDEC.COSH.SINZ,COSZ.SINAZ,COSAZ,LXS.LYS.LZS
      REAL LXS.LYS.LZS
      H=ABS(((12.-TIME) +15.) +CEDTA)
      SINLAT= SIN (GLAT)
      CCSLAI=COS (GLAT)
      SINDEC=CIN (DEC)
      COSDEC=COS(DEC)
      COSH=COS(H)
      CCSZ=SINLAT#SINDEC+CCSLAT#COSDEC#COSH
      STAZ=SGPT(1.-COSZ#COSZ)
      COSAZ=(SINDEC-SINLAT*COSZ)/(COSLAT*SINZ)
      SINAZ=SORT (1.-COSAZ+COSAZ)
      LYS=SIN7#COSAZ
      LYS=SIN7#SINA7
      L75=C057
      RETURN
      END
```

SUBROLTINE VMULT(X+Y+Z+N)

C....VECTOR MULTIPLICATION
DIMENSION Y(17)+Y(17+17)+7(17)

DC 10 I=1+N

Z(I)=-
DO 10 J=1+N

10 Z(I)=Z(I)+X(J)*Y(I+J)

RETURN
END

SUPROUTINE VADD(X,Y.Z,N)
DIMENSION X(17).Y(17).Z(17)
DC 10 I=1.N

IO Z(I)=X(I)+Y(I)

RFIURN
END

FUNCTION GAUSS(X+S)

C....GENERATE RANDOM SAMPLES FROM THE UNIVARIATE NORMAL DISTRIBUTION.

X1=RANF(0.)

X2=RANF(0.)

C1=SIN(4.283185+X1)+SGRT(-2.*ALOG(X2))

GAUSS=C1*S+X

RETURN
END

SUBROUTINE UTIL(A.B)

C....SET VECTOR B = VECTOR A

COMMON/CI/DUM(7) * NLAM

DIMENSION A(17) * B(17)

DO 1 I=1*NLAM

1 B(I)=A(T)

RETURN

END

2. COEFF

Program Name: COEFF

Narrative:

This program calculates the alpha and beta coefficients of a linear correction algorithm for sun angle. The form of Y = Ax + B results, where x is the measured response and Y is the spatially or temporally extended response.

Control Card Input:

Card 1 Column 1-5 Column 6-10 Column 11-80	(I5) (I5) (7A10)		Number of wavelengths Number of solar zenith angles Title for computation
Card 2, 3, 4, Column 1-10 Column 11-20 Column 21-30 Column 31-40	(F10.3) (F10.3)	(LP) (L) (RFL) (WAVEL)	Path radiance for sun angle THZ Target irradiance for sun angle THZ Canopy reflectance at sun angle THZ Wavelength band for reflectance measurement
Column 41-50	(F10.3)	(THZ)	Solar zenith angle

All possible non-repetitive pairwise combinations of sun angles for each wavelength are computed.

	PROGRAM COEFF(INPUT+OUTPUT+TAPES=INPUT,TAPE6=OUTPUT) PEAL LP1,LP2,L1,L2 PEAL L(15),LP(15),MAVE(15),TH7(15)
į	DIALNSION DEL(15)
ن ن ن	
000	TEMPOHALLY EXTENDED RESPONSE AND Y IS THE SPATIALLY OR TABLE TABLES OF TABLE
000	LPJ AND LPZ LJ AND LZ L OUTPUT
טטכ	ALPA COEFFICIENT PETA COEFFICIENT
900	LP1 AND LP2 ARE THE RESPECTIVE PATH IRRADIANCES FOR
000	SUM AMOLE 1 AND 2. THE ALPHA COEFFICIENT IS THE MULTIPLICATIVE CORRECTION.
υu	WGTTE(A,600)
1 6.7	
10	IF (EOF (5): 5:10 COMIL:4UE WRITE (5:003). NL:NNANG: (TITLE (I):1=1:7)
541	00 10: J=1:NANG PEQUIS:501) LP(J):C(J):RFL(J):WAVEL(J):THZ(J) 1. FORD (MICELLU:3) CONTINIE
o.	
	LP1=LP(T); LP2=LP(J); 1.1=[(T)
	53
	MAVELI=WAVEL(II) MAVELI=WAVEL(IJ) MAVELI=WAVEL(IJ)
	TH72=1H21_JJ1
,	WRITE (6.561) LP1-LL1-BELL1-WAVELL1-THZ)

РВОСРАМ	COEFF	CDC 6400 FTN V3.0-P365 OPT#1 11/11/75 09.58.09.	PAGE	2
	615 FORMAT(11.4 PPATH IPRADIANCE-8-F7.33.2X.**, TARGET IPRADIANCE 1.FT.33.2X.**, TARGET IPRADIANCE 1.FT.3.2X.**, TARGET IPRADIANCE 1.FT.3.X.**, TARGET 1.FT.3.X.**, TARGET 1.FT.3.X.**, TARGET 1.FT.3.X.**, TARGET 1.FT.3.X.**, TARGET 1.FT.3.X.**, TARGET	05) LP2.L2.PFL2.WAVEL2.TH22 .*PATH IRRADIANCE*.F7.3.2X.*, TARGET IRRADIANCE*,F7.3.2X.* 2RFE!ECTANCE.WARLENGTH.THFIA = 8.387.3)	(
r.	C ALBHAZ(1,2-LP31/4(1-LP1) BETA=LP2-(LP1*ALPHA)			
70	WPTTE16.0	101 ALPHA, BETA +*ALPHA COEFFICIENT FOR 1 TO 2 =*, F7.4, 10X, **BETA COEFFICI 10 2 =*, F7.4, //)		
	BUTCH STREET			
75	60 TO 1 5 CONTINUE 5 CONTINUE			
	Fig			

3.0 DATAUSE

Program Name: DATAUSE

Subroutines Required: PLOT1

IDIOT

Narrative:

This program is designed to reduce radiometric data obtained using the CSU J-16 spectroradiometer or other similar instruments. The program calculates reflectance from ratios of sample reading and reference panel readings. The program currently contains the option to plot reflectance versus wavelength for a given time period. The program is designed so that other options of data manipulation can easily be added in the form of another subroutine. The desired types of data manipulation can be selected and input at the start of the data section.

Control Card Input:

Card 1		
Column 1-3	(13)	(N1)
Column 4-33	(1013)	(N2)

Number of PLOT types
Numbers to select each data manipulation
option in a specific order, i.e., (#l=plot
of reflectance versus wavelength "PLOTI")
position 1 cols. 4-6 will be first in
sequence and so on. Up to 10 data manipulation subroutines can be created
and inserted in the program. At present
only PLOT1 is included.

Card 2			
Columns	1-30	(1013)	(M1-M10)

The number of times each data manipulation option will be repeated.

Card 3 - until	terminati	on of data	
	(16)	(IDATE)	Date in 6 integers
Column 7-11	(15)	(ITIME)	Time in 4 integers right justified
Column 13-22	(A10)	(ITAR)	Target type
Column 23-25	(13)	(IANGL)	View angle; 2 integers right justified
	(15)	(IWAVE)	Wavelength; 4 integers right justified
Column 31-37	(E7.0)	(DIRRD)	Direct radiation measure
Column 38-44	(E7.0)	(DIFRD)	Diffuse radiation measure
Column 45-51	(E7.0)	(SMPRD)	Target (sample) radiation measure
Column 66-79	(A14)	(ICOMA and	Extra comments
		ICOMB)	

Termination of data in this format is indicated by inserting 999999 in columns 1-6.

Cards following 999999 card (if option PLOT1 is selected)

Columns 1-40 (4A10) (LTIT) Title of graph

1 card for each graph desired under this option

RFLCT(1) = SWARD (1) VIRRUIT TABLES TABLES TO THE TABLES T	NSDM=NSDM+1		READ (5:200) V1:(N2(T):1=1:N1)	C "=PLOTI =PLOTE PEFFECT. VS WAVELENGTH FOR EACH DATA SET SELECTED	CPEAD IN THE NUMBER OF PLOT TYPES DESIRED: (N.)		TIME TARGET	. C PRINT HEADINGS FOR DATA	ASSESSED ASSESSED.	NSET=0	10) + Y (20) + N2 (10) + LTT (4) + LABX (4) + LABY (4) + SMPPD (500)	1000 1000 1000 1000 1000 1000 1000 100	CLABY=LABLE Y AXIS			VERTICAL . IMAVE=WAVELE	PROGRAM DATAUSE (INPUT.OUTPUT.FILMPL.TAPES=INPUT.TAPES=OUTPUT) C. IDATS=DATE OF OBS.,ITIME=TIME OF OBS.,ITAR=TARGET.IANGL=VIEW ANGLE FROM
NSDM NSDM+1		2 4 -0.	209 FORWAT(1113) C., PEAO IN THE NUMBER OF TIMES A PLOI TYPE IS TO WE USFO (M) FRAD (S-519) M1-M2-M3-M4-M5-M5-M5-M10 S10 FORMAT(1013) C	READ (5:200) N1:(N2(I):I=1:N1) 200 FORWIT(1113) CPEAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO WE USFO (M) CPEAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO WE USFO (M) S10 FORWIT(1013) C. READ IN DAIA.CALCULATE REFLECTANCE.WRITE OUT ALL DATA DO 1000 I=1550 READ (5:300) IDATE(I):ITHE(I):ITAR(I):IANGL(I):IMAVE(I):DIRPD(I):n 300 FORWIT(I):MORDIT:IS:GOMALI):ICOMALI):ITST(I) 300 FORWIT(I):SUSS:IX:A10:I3:IS:3ET.0.14X:A10:A4:I1)	C=PLOT1=PLOTS REFLECT. VS. MAVELENGTH FOR EACH DATA SET SELECTED 200 FORWIT(1113) CPEAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO WE USFO (M) CPEAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO WE USFO (M) CPEAD IN DATA.CALCULATE REFLECTANCE.WRITE OUT ALL DATA DO 1000 I=1500 READ (5:300) IDATE(1):ITIME(1):ITAR(1):IANGL(1):IWAVE(1):DIRPD(1):D 1 IFROTE):SSORD (1:100MA 1:1:100MA 1:1:100MA 1:1:15T(1) 300 FORWAT(15:15:1X:A10:13:15:3ET.0:14X:A10:A4:11)	CPEAD IN THE NUMBER OF PLOT TYPES DESIRED.(N1) CPEAD IN TUNNERATE OF PLOT TYPES DESIRED.(N1) CPEAD IN VUNNERATE OF LOST FACH BLOT TYPE IN THE DESIRED ORDER (N2) CPEAD IN VUNNERATE OF TIMES A PLOT TYPE IS TO 9E USED (M) CPEAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO 9E USED (M) CPEAD IN DATA.CALCULATE REFLECTANCE.WRITE OUT ALL DATA CPEAD IN DATA.CALCULATE REFLECTANCE.WRITE OUT ALL DATA DO 1000 1=1.500 READ (S.3001DATE(1).TIME(1).TTAP(1).IANGL(1).IWAVE(1).DIRPD(1).D READ (S.3001DATE(1).TIME(1).TTAP(1).TAT(1). 300 FORMAT(15.15.13.13.13.13.13.13.13.13.14.11)	1CIANCE COMMENTS**/) CREAD IN THE NUMBER OF PLOT TYPES DESIRED.(N1) CREAD IN VUM-SERT OF SELECT EACH PLOT TYPE IN THE DESIRED ORDER (N2) CREAD IN VUM-SERT OF SELECT EACH PLOT TYPE IN THE DESIRED ORDER (N2) CREAD IN VUM-SERT OF SELECT EACH PLOT TYPE IS TO GENERAL SET SELECTED E.O. FEAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO GENERO (M) CREAD IN DATA.CALCULATE REFLECTANCE.WRITE OUT ALL DATA CREAD IN DATA.CALCULATE REFLECTANCE.WRITE OUT ALL DATA CREAD IN DATA.CALCULATE REFLECTANCE.WRITE OUT ALL DATA READ (S.300) 100 0 1=1.500 READ (S.300) 100 0 (1.1COMA(1).1COMB(1).1TST(1) 1.1FRD (1).1COMA(1).1COMB(1).1TST(1) 300 FORMATICS.1S.1X.410.13.13.33ET.0.14X.410.44.11)	MARTE (5*100) MARTE (5*100) MARTE (5*100) MARTE (5*100) CPEAD IN THE NUMBER OF PLOT TYPES DESIRED.(NI) CPEAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO 9E USED (NI) READ (5:510) NI+NZ*W3.M4.W5*M6.NT+M9+M9.W10 S10 FORWATION S) CPEAD IN DATA.CALCULATE REFLECTANCE.WRITE OUT ALL DATA CPEAD IN DATA.CALCULATE REFLECTANCE.WRITE OUT ALL DATA READ (5:510) NIMMER (1)+ITIME(1)+ITAP(1)+ITANG(1)+I	C PRINT HEADINGS FOR DATA WRITE(5:100) 100 FORWAT(** DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAWPLE REFLE 1CTANAT(** DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAWPLE REFLE 1CTANAT(** DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAWPLE REFLE CPEAD IN THE NUMBER OF PLOT TYPES DESIRED.(N) CPEAD IN NUMBER OF PLOT TYPES DESIRED.(N) CPEAD IN NUMBER OF TIMES A PLOT TYPE IS TO 9E USED (M) CPEAD IN THE NUMBER DE TIMES A PLOT TYPE IS TO 9E USED (M) CPEAD IN DATA:CALCULATE REFLECTANCE.WRITE OUT ALL DATA CPEAD IN DATA:CALCULATE REFLECTANCE.WRITE OUT ALL DATA CPEAD IN DATA:CALCULATE REFLECTANCE.WRITE OUT ALL DATA READ (5:501) CPEAD IN DATA:CALCULATE REFLECTANCE.WRITE OUT ALL DATA CPEAD IN DATA:CALCULATE REFLECTANCE.WRITE OUT ALL DATA READ (5:501) C PRINCES OCHARAT (* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAWPLE REFLE OCHARAT (* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAWPLE REFLE CPEAD IN THE NUMBER OF TO TYPES DESIRED. (NI) CPEAD IN THE NUMBER OF TIMES DESIRED. (NI) CPEAD IN THE NUMBER OF TIMES A PLOT TYPE IN THE DESIRED ORDER (N2) CPEAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) CPEAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) CPEAD IN DATA, CALCULATE REFLECTANCE, WRITE OUT ALL DATA CPEAD IN DATA, CALCULATE REFLECTANCE, WRITE OUT ALL DATA CPEAD IN DATA, CALCULATE REFLECTANCE, WRITE OUT ALL DATA DO 1000 1=1.500 READ (S.300) 1007 (1), 1009 (1), 1109 (1), 1157 (1) SOOF FORWATTISTS AND OF TIME (1), 1157 (1) SOOF FORWATTISTS AND OF TIME (1), 1157 (1) SOOF FORWATTISTS AND OF TIME (1), 1157 (1)	NSST=n NSST-n NS	1019 (1919) (191	1PRO (SOUTH OF THE CONTROL CONTROL CONTROL OF THE CONTROL CO	CLABY=LABLE Y AXIS DIMENSION IDDITED(SOO).IIIME(SOO).IIIMR(500).IIMRUF(FOO).DI IRROFGOO).DIFFRECTOO.RELITIME(SOO).IIMR(500).IIMRUF(FOO).TIST(SOO).X(2) IRROFGOO).DIFFRECTOOON.RELIT(4).LABX(4).LABY(4).SMPRD(500) INSTEMATION IDDITED(SOO).RELIT(4).LABX(4).LABY(4).SMPRD(500) INSTEMATION INTERPRETATION	CLASTERST FOR END OF DATA SET.LITETILE FOR PLOT.LARX=LABLF X AXIS CLASTERST FOR END OF DATA SET.LITETILE FOR PLOT.LARX=LABLF X AXIS DIMENSION. IDEACTESODITIME(SOD).ITAR(500).ITAR(500).ITST(500).Y(2) DIMENSION. DIEDECTODITIME(SOD).ITAR(500).ITAR(500).ITST(500).Y(2) DIMENSION. DIEDECTODITIME(SOD).ITAR(500).ITAR(500).ITST(500).Y(2) DIO YOTST-A VANTAL HEADINGS FOR DATA WRITH CANADINGS FOR DATA WRITH CANADINGS FOR DATA CREAD IN THE TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLE CREAD IN THE NUMBER OF PLOT TYPES DESIRED.(NI) CREAD IN THE NUMBER OF PLOT TYPE IN THE DESIRED ORDER (NZ) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) READ (S.SOD) VI.NZ.WAS.MA.WS.WILDIAS. DO 1000 1=1.500 TOWN (115): SOD (11).TAR(1).ITAR(1).IWAVE(1).TWAVE(1).DIRD(1).N READ (S.SOD) IDATA(CI.).ITAR(1).LAXANORMALIS.LINES.CON (115).EXANORMALIS.SOD FORWATIGS.IX.A.10.13.5.3.ST.A.LAXANORMALY.II) 300 FORWATIGS.IX.XA10.13.5.3.ST.A.LAXANORMALY.II)	CONTENDEDIFFUSE DO. SUMBLE ADATA STIS. HIGH STRUCTURE OFF. PER SET C. ASTMETCHEN OF ANY STEWN OF	DOM, COLL TARRES M. T. LOC	
.E0.399	.EG.399	CPEAD IN THE NUMBER OF ITMES A PLOI ITPE 15 10 ST USED (M) READ (5:519) "11:M2.M3.M4.M5.M6.NT.M8.M3.M10 S10 FORMAT (1013) C READ IN DAIA.CALCULATE REFLECTANCE.WRITE OUT ALL DAIA READ (5:300) 1010 READ (5:300) 1011 (1):ITME(1):ITAP(1):IANG(1):IWAVE(1):DIRPD(1):D 11FPD(1):SMPROF(1):COMA(1):ICOMA(1):IST(1)	200 FORWAT(1113) CPEAD IN THE NUMBER OF TIMES A PLOI TYPE IS TO WE USFO (M) SIO FORWAT(1013) C. READ IN DAIA.CALCULATE REFLECTANCE.WRITE OUT ALL DAIA READ (5:300) 100 I=1:500 READ (5:300) 101 TE(1):ITIME(1):ITAR(1):IMAG(1):IWAVE(1):DIRPD(1):N	READ (5:200) N1:(N2(I):I=1:N1) 200 FORNT(1113) CPEAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO WE USED (M) SIO FORNT(1013) C. READ IN DATA,CALCULATE REFLECTANCE.WRITE OUT ALL DATA READ IN DATA,CALCULATE (1):ITME(I):ITAR(I):IMAGL(I):IWAVE(I):DIRPD(I):N READ (5:30)DATA,CALCULATE(I):ITME(I):ITAR(I):IMAGL(I):IWAVE(I):DIRPD(I):N	C= PLOIS PEFLECT. VS WAVELENGTH FOR EACH DATA SET SELECTED 200 FORWIT(1113) CPEAD IN THE NUMBER OF TIMES A PLOI TYPE IS TO WE USED (M) CPEAD IN THE NUMBER OF TIMES A PLOI TYPE IS TO WE USED (M) SIO FORWIT(1013) CPEAD IN DAIA, CALCULATE REFLECTANCE, WRITE OUT ALL DATA READ IN DAIA, CALCULATE (1), ITHME(1), ITAR(1), IMANE(1), IMANE(1), OIRPD(1), OI	CREAD IN THE NUMBER OF PLOT TYPES DESIRED.(N1) CREAD IN NUMBER OF PLOT TYPES DESIRED.(N1) CREAD IN NUMBER OF SELECT EACH PLOT TYPE IN THE DESIRED ORDER (N2) CREAD IN NUMBER DE TIMES A PLOT TYPE IS TO GE USED (M) CREAD IN THE NUMBER DE TIMES A PLOT TYPE IS TO GE USED (M) CREAD IN DATA.CALCULATE REFLECTANCE.WRITE OUT ALL DATA CREAD IN DATA.CALCULATE REFLECTANCE.WRITE OUT ALL DATA READ IN DATA.CALCULATE REFLECTANCE.WRITE OUT ALL DATA READ (S.SED) (S.SED) (S.SED) READ (S.SED) (S.	1CIANCE COMMENS) CREAD IN THE NUMBER OF PLOT TYPES DESIRED.(N1) CREAD IN THE NUMBER OF PLOT TYPES DESIRED.(N1) CREAD IN AUTHERN OF SELECT EACH PLOT TYPE IN THE DESIRED ORDER (N2) CREAD IN AUTHERN OF SELECT EACH PLOT TYPE IS IN THE DESIRED ORDER (N2) CREAD IN SELECTED. CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) CREAD IN DATA, CALCULATE REFLECTANCE.WRITE OUT ALL DATA CREAD IN DATA, CALCULATE REFLECTANCE.WRITE OUT ALL DATA READ (S.SED) OF TIMES A PLOT TYPE IS TO BE USED (I) IN AVE(I) IN THE NOT SELECTED.	#ARITE(5+100) WARITE(5+100) 100 FORMAT(* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLE 10IANGE CLARCALLIS**/) CPEAD IN THE NUMBER OF PLOT TYPES DESIRED.*(N1) CPEAD IN NUMBER OF PLOT TYPES DESIRED.*(N1) CPEAD IN NUMBER OF PLOT TYPES IN THE DESIRED ORDER (N2) CPEAD IN NUMBER OF PLOT TYPE IN THE DESIRED ORDER (N2) CPEAD IN NUMBER OF TIMES A PLOT TYPE IS TO GE USED (M) CPEAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO GE USED (M) READ (5+519) MI*M2*W3*M4*M5*M6*N7*M9*M10 SIO FORMAT(1013) CPEAD IN DATA*CALCULATE REFLECTANCE.WRITE OUT ALL DATA READ (5+519) THE NUMBER OF TIMES A PLOT TYPE IS TO GE USED (M) READ (5+519) MI*M2*W3*M4*M5*M6*W7*M9*M10 SIO FORMAT(1013) CPEAD IN DATA*CALCULATE REFLECTANCE.WRITE OUT ALL DATA READ (5+519) THE NUMBER OF TIME (1)*ITAR	C. PRINT HEADINGS FOR DATA WRITE(5:100) 100 FORWAT(**) LOTANET COMMENTS**** CREAD IN THE NUMBER OF PLOT TYPES DESIRED*(N1) CREAD IN THE NUMBER OF PLOT TYPES DESIRED*(N1) CREAD IN NUMBER OF PLOT TYPES DESIRED*(N1) CREAD IN NUMBER OF TIMES A PLOT TYPE IS TO GENERAL CONDER (N2) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO GENERAL CONDER (N2) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO GENERAL CONDER (N3) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO GENERAL CONDER (N3) CREAD IN DATA*CALCULATE REFLECTANCE.WRITE OUT ALL DATA CREAD IN DATA*CALCULATE REFLECTANCE.WRITE OUT ALL DATA READ (5:50) 000 1=1:500	1CH3=1H* NSIM=0 WRITE(5:100) 100 FORMAT(* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLE 1.00 FORMAT(* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLE CPEAD IN THE MOUNTERN DEC PLOT TYPES DESIRED.*(N1) CPEAD IN THE NUMBER OF LIMES DESIRED.*(N1) CPEAD IN THE NUMBER OF LIMES A PLOT TYPE IN THE DESIRED ORDER (N2) CPEAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) CPEAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) EACH (5:200) M1.M2.M3.M4.M5.M6.M7.M9.M9.M10 SIO FORMAT(1013) CPEAD IN DATA.CALCULATE REFLECTANCE.WRITE OUT ALL DATA PEAD IN DATA.CALCULATE REFLECTANCE.WRITE OUT ALL DATA READ (5:300) 1007 (1:1.500M4(1).1TAP(1).1TAP(1).1MAVE(1).01RPD(1).0	NSSTER LCHAELH* LCHAELH* LCHAELH* LCHAELH* LO PRINTHEADINGS FOR DAIA LO PORMAT(* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAWPLE REFLE CPEAD IN THE NUMBER OF PLOT TYPES DESIRED.(N1) CPEAD IN VUMPER TO SELECT EACH PLOT TYPE IN THE DESIRED ORDER (N2) CPEAD IN VUMPER TO SELECT EACH PLOT TYPE IN THE DESIRED ORDER (N2) CPEAD IN VUMPER TO SELECT EACH PLOT TYPE IN THE DESIRED ORDER (N2) CPEAD IN VUMPER OF TIMES A PLOT TYPE IS TO BE USED (N) CPEAD IN VUMBER OF TIMES A PLOT TYPE IS TO BE USED (N) CPEAD IN DAIA*CALCULATE REFLECTANCE,WRYTE OUT ALL DAIA CPEAD IN DAIA*CALCULATE REFLECTANCE,WRYTE OUT ALL DAIA FRAD IN DAIA*CALCULATE REFLECTANCE,WRYTE OUT ALL DAIA READ IN SAUGH S	10); YIZD); NZ(10); LITT(4); LABX(4); LABY(4); SMOPD(500) NSEINT 1CH3=1H* NSIN=0 NSIN=0 NSIN=0 NSIN=0 NSIN=1 NS	1840 (500) +01FRD (170) +14 BX (4) +1A8Y (4) +5MPRD (500) +1TST (500) +X (7) +12 CONTROL (10) +1 CONTROL (10)	CLABY=LABLE Y AXIS JIMENSION IDATE(500).IIIME(500).IIARR(500).AIMAVE(500).AIMAVE(500).DI JERNSION IDATE(500).DICTIT(4).LABX(4).LABY(4).SMPRD(500) NOST=C LOPINT HEADINGS FOR DATA WRITE(5010) JOO FORMAT(** DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLE LOCAMAT(** COMMENTS************************************	CITST=TEST FOR END OF DATA SET.LTIT=TITLE FOR PLOT.LARX=LABLE x AXIS CLABY=LARLE Y AXIS DIMENSION IDATESTOD.LIIME(500).IIANGL(500).IWAVE(500).DI DAMENSION IDATESTOD.LIIME(500).IICOMA(600).ICOMA(500).IVAVE(500).DI DAMENSION IDATESTOR LARGET (4).LABY(4).SMPRD(500) 10).v120).NCITO.LTIT(4).LABX(4).LABY(4).SMPRD(500) 10).v120).NCITO.LTIT(4).LABX(4).LABY(4).SMPRD(500) 10).v120).NCITO.LTIT(4).LABX(4).LABY(4).SMPRD(500) 10).v120).NCITO.LTIT(4).LABX(4).LABY(4).SMPRD(500) 100.FORMAT(************************************	C. ASUM=TOTAL GYS.ANSTENDESAMPLE PDICOM=COMMENTS APPLCT=RIPLY CLANCE CITSY==ESTS FOR END O'S EXTENDED DATA ENTER ENDINGE CITSY==ESTS FOR END O'S EXTENDED DATA ENTER ENDINGE ENDINGE ENTER ENDINGE END	DOM CON 1 2 TEMPO M I PO
FORWAT(15:15:1X:A10 IF (1DATE(1):E0:399 NSUM=NSUM+1	FORMAT(15.15.1X.al)	SIO FORWATIONIA SIO FORWATIONIA C READ IN DAIA, CALCULATE REFLECTANCE, WRITE OUT ALL DATA C READ IN DAIA, CALCULATE REFLECTANCE, WRITE OUT ALL DATA C READ IN 500 11 + 500 1000 11 + 500 100 100 11 + 500 1000 10	200 FORWIT(1113) C., PEAO IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) READ (5+510) M1.M2.M3.M4.M5.M6.N7.M9.M10 S10 FORWAT(1013) C. READ IN DATA.CALCULATE REFLECTANCE.WRITE OUT ALL DATA DO 1000 II.500 BO 1000 II.500 BO 1000 II.500	200 F02431(1113) C.,PEGO (M) C	C==LDT1==LDTS REFLECT. VS WAVELENOTH FOR EACH DATA SET SELECTED 200 FORWIT(1113) CPEAD IN WHUBER OF TIMES A PLOT TYPE IS TO WE USED (M) 510 FORWAT(1013) C. READ IN DATA CALCULATE REFLECTANCE.WRITE OUT ALL DATA C. READ IN DATA CALCULATE REFLECTANCE.WRITE OUT ALL DATA DO 1000 I=1.500	CPEAD IN THE NUMBER OF PLOT TYPES DESIRED.(NI) CPEAD IN NUMBER OF PLOT TYPES DESIRED.(NI) CPEAD IN NUMBER OF DECT EACH PLOT TYPE IN THE DESIRED ORDER (N2) CPEAD IN NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) CPEAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) READ (5-519) M1-M2-M3-M4-M5-M6-M7+M9+M9-M10 SID FORWAT(1013) CPEAD IN DATA-CALCULATE REFLECTANCE.WRITE OUT ALL DATA CPEAD IN DATA-CALCULATE REFLECTANCE.WRITE OUT ALL DATA CPEAD OF CONTROL OF THE CITATINE (I).ITAR(I).ITAR(I).ITANCE.I).OIRPD(I).D	CPEAD IN THE NUMBER OF PLOT TYPES DESIRED.(NI) CPEAD IN THE NUMBER OF PLOT TYPES DESIRED.(NI) CPEAD IN NUMBER OF PLOT TYPES DESIRED.(NI) CPEAD IN NUMBER OF PLOT TYPES DESIRED.(NI) CPEAD IN NUMBER OF PLOT TYPE IN THE DESIRED ORDER (N2) CPEAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) CPEAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) CPEAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) CPEAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) CPEAD IN DATA.CALCULATE REFLECTANCE.WRITE OUT ALL DATA CPEAD IN DATA.CALCULATE THE (I).ITAP(I).ITANC(I).ITANC(I).ITANCE(I)	NATTE (5*100) 100 FORMAT (* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLE 101 AND FORMAT (* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLE 101 AND THE COMMENTS**/J CREAD IN VUMBER OF PLOT TYPES DESIRED.*(N1) CREAD IN NUMBER OF PLOT TYPES DESIRED.*(N1) CREAD IN NUMBER OF PLOT TYPES DESIRED.*(N1) 200 FORMAT (113) CREAD IN NUMBER OF TIMES A PLOT TYPE IS TO 9E USED (M) 200 FORMAT (1013) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO 9E USED (M) READ (5:519) M1+M2+M3+M6+M7+M9+M9+M10 SIO FORMAT (1013) CREAD IN DATA*CALCULATE REFLECTANCE, WRITE OUT ALL DATA DO 1000 I=1.500	ARTIE (5*100) 100 MATTE (5*100) 100 MATTE (5*100) 100 MATTE (5*100) 100 GOMENIS************************************	C PRINTED NSIME N	NSST=C 1CH3=1H* NSIM=CANDINGS FOR DATA 100 PRINT HEADINGS FOR DATA 101 FORMAT(* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAWPLE REFLE 102 FORMAT(* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAWPLE REFLE CREAD IN VUMBER OF PLOT TYPES DESIRED.(NI) CREAD IN VUMBER OF PLOT TYPES IN THE DESIRED ORDER (NZ) CREAD IN VUMBER OF PLOT TYPE IN THE DESIRED ORDER (NZ) CREAD IN VUMBER OF TIMES A PLOT TYPE IS TO GE USED (N) READ (5.519) MI-MZ-W3-W4-W5-W6-WRITE OUT ALL DATA SID FORWAT(1013) C. READ IN DATA-CALCULATE REFLECTANCE-WRITE OUT ALL DATA	10) **(720).N2(10).LTIT(4).LABX(4).LABY(4).SMORD(500) NSET=C NSET=C NSET=C NSET=C NSET=C NSIMA LCANSI 100 FORMAT(* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLE NSIMA CREAD IN THE NUMBER OF PLOT TYPES DESIRED.(N.1) CREAD IN NUMBER OF TIMES A PLOT TYPE IS TO GE USED.(M.) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO GE USED.(M.) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO GE USED.(M.) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO GE USED.(M.) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO GE USED.(M.) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO GE USED.(M.) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO GE USED.(M.) CREAD IN DATA.CALCULATE REFLECTANCE.WRITE OUT. ALL DATA DO TOOD IS TOOD IS TOOD IS TO THE CITATAR (T).TARGET (T).	1840(500).01FAD(500).4FLCT(500).1COMA(500).1COMB(500).1TST(500).x(? 10).v(20).N2(10).LTIT(4).LABX(4).LABY(4).SMPRD(500) NSST=0 NSST	CLASY=LABLE Y AXIS JIMENSION IDDIE(500).IIIME(500).IIANGL(500).IWAVE(500).DI JRAD (500) DIFRAD (500).RELCT (500).IICOMA (500).IICOMB (500)) JOSTICA (100).PTIT (4).LABX (4).LABY (4).SMPRD (500) NSET=0	CITST=TEST FOR END OF DATA SET.LTT=TITLE FOR PLOT.LARX=LABLF X AXIS CLABY=LABLE Y AXIS DIMENSION IDDITOR; 100).VIEND.LITIME(500).IIAR(500).IIARGL(500).IIXVE(400).DI 100).VIEND.LITIME(500).IIAR(500).IIARGL(500).IIXVE(400).DI 100).VIEND.LITIME(500).IIIAR(500).IIARGL(500).IIXVE(400).DI 100).VIEND.LITIME(500).IIIAR(40).LABX(40).LABY(40).SMPRD(500) NSST=C CHARLI HEADINGS FOR DATA WRITE(50100) 100 FORMAT(**) DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAWPLE REFLE CREAD IN THE NNWBER OF PLOT TYPES DESIRED.(NI) CREAD IN VIENE TARGET VIEW WL DIRECT DIFFUSE SAWPLE REFLE CREAD IN VIENE TARGET VIEW WL DIRECT DIFFUSE SAWPLE REFLE CREAD IN VIENE AND THE TARGET VIEW WL DIRECT DIFFUSE SAWPLE REFLECTED CREAD IN VIENE AND THE TARGET VIEW WL DIRECT DIFFUSE SAWPLE REFLECTED CREAD IN VIENE AND THE TARGET VIEW WL DIRECT DIFFUSE SAWPLE REFLECTED CREAD IN VIENE AND THE TARGET VIEW WL DIRECT DIFFUSE SAWPLE REFLECTED CREAD IN VIENE AND THE TARGET VIEW WL DIRECT DIFFUSE SAWPLE REFLECTED CREAD IN VIENE AND THE REFLECTANCE.WRITE OUT ALL DATA CREAD IN DATA.CALCULATE REFLECTANCE.WRITE OUT ALL DATA CREAD IN DATA.CALCULATE REFLECTANCE.WRITE OUT ALL DATA CREAD IN DATA.CALCULATE REFLECTANCE.WRITE OUT ALL DATA	CITST=DIFFUSE RDSEX=RNDESEMBLE RDICOM=COMMENTS.FFLCT=FFFTLCTANCE CITST=FOR END OF DATA SET.LTITLE FS.THKMETS.FFLCT=FFFTLCTANCE CITST=FOR END OF DATA SET.LTITLE FS.THKMETS.FFLCT=FFFSTT CITST=FOR END OF DATA SET.LTITLE FS.THKMETS.FFLCTARELABLE X AXIS CLABY=LABLE Y AXIS CLABY=LABLE Y AXIS DIMENSION IDATE(FORD).ITIME(EDD).ITAR(500).IANGL(500).ITST(500).X(? 10).Y(20).DITE(FORD).DITIME(EDD).ITAR(500).IANGL(500).ITST(500).X(? 10).Y(20).DITE(FORD).DITIME(EDD).ITAR(500).ITST(500).X(? 10).Y(20).DITE(FORD).DITIME(EDD).ITAR(40).SMPRD(500) DID FORMAT(**DATA** CRADINGS FOR DATA** CREAD IN VUMPER OF DOT TYPES DESIRED.(N) CREAD IN VUMPER OF DOT TYPES DESIRED.(N) CREAD IN VUMPER OF DOT TYPE SON TAYOR IN THE DESIRED ORDER (NZ) CREAD IN VUMPER OF TIMES A PLOT TYPE IS TO WE WANTON (SON TOTAL) CREAD IN VUMPER OF TIMES A PLOT TYPE IS TO WE WANTON (SON TOTAL) CREAD IN VUMPER OF TIMES A PLOT TYPE IS TO WE WANTON (SON TOTAL) CREAD IN VUMPER OF TIMES A PLOT TYPE IS TO WE WANTON (SON TOTAL) CREAD IN AUMBER DE TIMES A PLOT TYPE IS TO WE WANTON (SON TOTAL) CREAD IN DATA*CALCULATE REFLECTANCE.WRITE OUT ALL DATA* CREAD IN DATA*CALCULATE REFLECTANCE.MRITE OUT ALL DATA* CREAD	man con latement me
300 FORWAT(15:15:1X:410:13:15:3ET,0:14X:410:44:11) IF (1DATE(1).E0.399399) GO TO 1001 NSW=NSUM+1	300 FORWAT(15:15:17:410:13:15:3ET.0:14X:A10:A4:11) If (10ATE(1).E0.399399) GO TO 1001	2 4	2 4	200 FORWAT(1113) C. PERO (5:200) WI-(N2(I)-I=1+N1) C. PERO (M) C. PERO (5:519) WI-W2+W3+W4-W5+W6+W7+W9+W5+W10 C. PERO (1:519) WI-W2+W3+W4-W5+W6+W7+W7+W10 C. PERO IN DAIA-CALCULATE PEFLECTANCE-WRITE OUT ALL DAIA	C==================================	CPEAD IN THE NUMBER OF PLOT TYPES DESIRED.(NI) CPEAD IN NUMBER OF PLOT TYPES DESIRED.(NI) CPEAD IN NUMBER OF PLOT TYPE IN THE DESIRED ORDER (NZ) CPEAD IN NUMBER OF TIMES A PLOT TYPE IS TO 9E USED (M) CPEAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO 9E USED (M) CPEAD IN DAIA.CALCULATE REFLECTANCE.WRITE OUT ALL DATA	1.CIANCE COMMENTS*./) CPEAD IN THE NUMBER OF PLOT TYPES DESIRED.(N1) CPEAD IN THE NUMBER OF PLOT TYPES DESIRED.(N1) CPEAD IN NUMBER OF SELECT EACH PLOT TYPE IN THE DESIRED ORDER (N2) CPEAD IN NUMBER OF TIMES A PLOT TYPE IS TO GE USED (M) CPEAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO GE USED (M) CPEAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO GE USED (M) CPEAD IN DATA*CALCULATE REFLECTANCE.WRITE OUT ALL DATA	NATITE (5*100) 100 FORMAT (* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLE 101 AND FORMAT (* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLE 101 AND THE CONMENTS**/) CPEAD IN NUMBER OF PLOT TYPES DESIRED.(NI) CPEAD IN NUMBER OF PLOT TYPES DESIRED.(NI) CPEAD IN NUMBER OF PLOT TYPES IN THE DESIRED ORDER (NZ) CPEAD IN NUMBER OF TIMES A PLOT TYPE IS TO 9E USED (M) CPEAD IN DATA*CALCULATE REFLECTANGE.WRITE OUT ALL DATA CPEAD IN DATA*CALCULATE REFLECTANGE.WRITE OUT ALL DATA	C. PRINT HEADINGS FOR DATA NRITE(5*100) 100 FORMAT(* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLE 101 FORMAT(* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLE 101 FORMAT(* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLE 101 FORMAT(* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLE 102 FORMAT(* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLECTED 103 FORMAT(* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAMPLE REPLECTED 104 FORMAT(* DATA*OALCULATE REFLECTANGE.WRITE OUT ALL DATA*	C PRINTERS FOR DATA NSIME NSI	NSST=n 1CH3=1H* NSWITCH MEADINGS FOR DATA 100 FORMAT(* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAWPLE REFLE 101 FORMAT(* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAWPLE REFLE 1CHANG: COMMENS**/1 CREAD IN NUMBER OF TO SELECT EACH PLOT TYPE IN THE DESIRED ORDER (NZ) CREAD IN NUMBER OF TARGET WORTH FOR EACH DATA SET SELECTED READ (5:209) N1:(NZ(1):1=1:N1) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) CREAD IN DATA*CALCULATE REFLECTANCE.WRITE OUT ALL DATA	10) Y(Z0):NZ(10):LTIT(4):LABX(4):LABY(4):SMORD(500) NSST=C ICH=1H* NSING RICHAL CREAD IN THE NUMBER OF LOT TYPES DESIRED.(NI) CREAD RICHAL RICHAL CREAD RICHAL RICHAL RICHAL CREAD RICHAL	1840(500).01FAD(500).4FLCT(500).1COMA(500).1COMB(500).TST(500).X(? 10).Y(20).N2(10).LTIT(4).LABX(4).LABY(4).SMPRD(500) NSST=^C NSST=^	CLABYTELNBLE Y AXIS DIMENSION IDATE(STOD. ITIME(SOD). ITAR (500). ITARCK (500). DI DIMENSION IDATE(STOD. ITIME(SOD). ITOMA (500). ITST (500). X (7 DISTORTION IDATE(STOD). ITIME(SOD). ITOMA (500). ITST (500). X (7 DISTORTION INTERPRETATION OF THE TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLE CREAD IN THE NUMBER OF LOT TYPES DESIRED. (NI) CREAD IN THE NUMBER OF LIMES A PLOT TYPE IS TO BE USED (M) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) CREAD (S.200) NI. (N2(1):1=1:NI) CREAD (S.200) NI. (N2(1):1=1:NI) CREAD (S.200) NI. MINAZ, WAX, WG.NT, WG.WS.MIO SIO FORWAT(1)(3) CREAD (S.510) MINAZ, WAX, WG.NT, WG.WRIE OUT ALL DATA	DATA SET.LTI 0).ITIME(500));RFLCT(500);)T(4).LABK(4) ME TARGET 1/1) ME TARGET 1/2 LLOT TYPES ELECT EACH PL T1. VS. MAVELEN 2(1).I=1.N1) E TIMES A PL WA3.M4.M5.M6 LATE REELECT	SWPROBEAMPLE 51=NUNDEK_OF DO.1IIME(SDD)),RFLCT(SDD)),RFLCT(SDD)),RFLCT(SDD)),RFLCT(SDD)),RFLCT(SDD) (4) - LABX(4) E TARGET (1) - LE TYPES E TIMES A PL(***3.M4.M5.M6.	DAM COLL TERMENT
DO 1000 I=1.500 READ (5.3001DATE(1).TITME(I).TTAR(I).IANGL(I).IMAVE(I).DIRPD(I).D 11.FOC(1).SMFD(I).LCCUA(I).LCCURE(I).LIST(I) 300 FORWIT(15.TT.1X.A10.I3.I5.3ET.0.14X.A10.A4.I1) IF (IDATE(I).E0.399399) GO TO 1001 NSUM=NSUM+1	DO 1000 I=1.500 READ (5.300)IDATE(1).ITTME(I).ITAR(I).IMAGL(I).IWAVE(I).DIRPD(I).D IJERD (1).500 (1).LCGMAII.LCGMAII.LCGMAII.LTST(I) 300 FORM(I[5.15.1X.410.13.IS.13ET.0.14X.410.A4.II) IF (IDATE(I).E0.399999) GO TO 1001	2	2	READ (5:200) N1.(N2(I).I=1.NI) 200 FORNAT(1113) C. PEAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO 9E USFO (M) READ (5:510) N1.M2.M3.M4.M5.M6.N7.M8.M10 5.0 FORMAT(1013)	C:= D.T.:= D.T.S PEFLECT. VS. WAVELENGTH FOR EACH DATA SET SELECTED 200 FORMAT(1)13) CPEAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO 9E USED (M) READ (5.510) W1.W2.W3.W4.W5.W6.W7.W9.W10 5.0 FORWAT(1)13)	CPEAD IN THE NUMBER OF PLOT TYPES DESIRED.(N1) CPEAD IN THE NUMBER OF PLOT TYPES DESIRED.(N1) CPEAD IN NUMBER OF ELECT EACH PLOT TYPE IN THE DESIRED ORDER (N2) CPEAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO 9E USED (M) READ (5:200) N1.(N2(1):1.1.1.N1) CPEAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO 9E USED (M) READ (5:510) N1.M2.M3.M4.M5.M6.N7.M9.M10	1CIANCF COMMENTS**/) CPEAD IN THE NUMBER OF PLOT TYPES DESIRED*(N1) CPEAD IN THE NUMBER OF PLOT TYPES DESIRED*(N1) CPEAD IN VUMPERAT TO SELECT EACH PLOT TYPE IN THE DESIRED ORDER (N2) CPEAD IN VUMPERAT TO SELECT AS ANAVELENGTH FOR EACH DATA SET SELECTED 200 FORMAT(1113) CPEAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO 9E USED (M) READ (5.510) W1*M2*W3*M4*W5*M6*N7*M9*W3*M10	#ARITE(5:100) 100 FORMAT(* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLE 10[ANDF COMMENTS*./] CREAD IN THE NUMBER OF PLOT TYPES DESIRED.(NI) CREAD IN VUMPER OF PLOT TYPES DESIRED.(NI) CREAD IN VUMPER OF PLOT TYPES DESIRED.(NI) 200 FORMAT(113) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M)	LOD FORWATTE STANDARD AND AND AND AND AND AND AND AND AND AN	ICHABLH* ASIMAD C PRINCE 100 FORMAT(* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLE 101 FORMAT(* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLE CREAD IN THE NUMBER OF PLOT TYPES DESIRED*(N1) CREAD IN THE NUMBER OF PLOT TYPES DESIRED*(N1) CREAD IN THE NUMBER OF LIMES A PLOT TYPE IN THE DESIRED ORDER (N2) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) READ (5.200) N1*(N2(1):1=1*N1) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M)	NSETEN LICHSEINS LICHSEINS LICHSEINS LICHSEINS LONGINATION LONGINATION CREAD IN THE NUMBER OF PLOT TYPES DESIRED.(NI) CREAD IN THE NUMBER OF PLOT TYPES DESIRED.(NI) CREAD IN THE NUMBER OF PLOT TYPES DESIRED.(NI) CREAD IN THE NUMBER OF LIMES A PLOT TYPE IN THE DESIRED ORDER (NZ) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) S.O. FORMATINIS)	10) Y 20) .NZ(101) LTIT(4) LABX(4) LABY(4) SMORD (500) NSEI-C DENNIT HEADINGS FOR DATA NSIN=0 NSIN	1870 F000) JDIFRO 5001, RFLCT (500), ICOMA (500), ICOMB (500), ITST (500), X (2 10), Y (2 0), N2 (10), LTTT (4), LABX (4), LABY (4), SMPRD (500) 100 F00AMAT (8 10) LTTT (4), LABSX (4), LABY (4), SMPRD (500) 100 F00AMAT (8 10)	CLABY=LABLE Y AXIS DIMENSION IDATE(FORD).IIIME(500).IIANGL(500).IWAVF(\$C0).DI IDADE(SION IDATE(500).IIIME(500).IIANGL(500).IIAT(500).IIAT(500).DI ID).Y(20).NZ(IO).LIIT(4).LABX(4).LABY(4).SMPRO(500) NSTIC ICHS=IN* NSTIC NSTI	DATA SET.LTI 0).ITIME(500) 17(4).LABX(4) IT(4).LABX(4) IT(4).LABX(4) IT(4).LABX(4) ME TARGET ************************************	SWPROBEAMPLE 51=NURDER_OF DATA SET.LTI 0).ITIME(500), IT(4).LABX(4), IT(4).LABX(4), F PCT EACET E CT EACET E CT EACET 2(1).TYPES E TIMES A PL(6), ************************************	man con zermen me
C SIGNATOR OF THE SECULATE REFLECTANCE, WRITE OUT ALL DATA DO 1000 I=1.500 READ (S.3001DATE(I).TITME(I).ITAR(I).IMGL(I).IWAVE(I).DIRPD(I).D SIGNATOR (S.3001DATE(I).TITME(I).ITAR(I).ITAR(I) SIGNATOR (S.3001DATE(I).TITME(I).TITRE(I).TITRE(I) SIGNATOR (S.3001DATE(I).TITME(I).TITRE(I).TITRE(I) SIGNATOR (S.3001DATE(I).TITME(I).TITRE(I).TITRE(I) NSUM=NSUM+1.	C 310 FERT IN DATA.CALCULATE REFLECTANCE.WRITE OUT ALL DATA DO 1000 I=1.500 READ (5.300)10ATE(1).TITME(1).TIAR(I).IANGL(I).TWAVE(I).DIRPD(I).N ILFNO(I).5.MAND(I).LCGMA(I).LCGMA(I).LTST(I) 300 FORM(T(5.15.A.Al0.13.15.3ET.0.14X.Al0.A4.I) IF (IDATE(I).E0.399999) GO TO 1001		Company III	200 FORWAT(1113) C. PERO IN THE NUMBER OF TIMES A PLOI TYPE IS TO WE USFO (M)	C PEAD (5:20) NI: (N2(E): I=1:NI) 200 FORWAT(1):3) C PEAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO 9E USED (M)	CPEAD IN THE NUMBER OF PLOT TYPES DESIRED.(N1) CPEAD IN NUMBER OF PLOT TYPES DESIRED.(N1) CPEAD IN NUMBER OF PLOT TYPE IN THE DESIRED ORDER (N2) CPEAD IN NUMBER OF TIMES A PLOT TYPE IS TO 9E USED (M) CPEAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO 9E USED (M)	1CTANCE COMMENTS**/) CPEAD IN THE NUMBER OF PLOT TYPES DESIRED*(N1) CPEAD IN VUMBER OF PLOT TYPES DESIRED*(N1) CPEAD IN VUMBER OF PLOT TYPES DESIRED*(N1) CPEAD IN VUMBER OF PLOT TYPES DESIRED*(N2) CPEAD IN VUMBER OF TIMES A PLOT TYPE IS TO GE USED (N) CPEAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO GE USED (N)	WRITE(\$*100) 100 FORMAT(* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAWPLE REFLE 1 COMMENTS************************************	LO FRINT HEADINGS FOR DATA WRITE(6:100) 100 FORMAT(8' DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLE 1CIANSE COMMENTS**/) CPEAD IN THE NUMBER OF PLOT TYPES DESIRED*(N1) CPEAD IN NUMBER OF PLOT TYPES IN THE DESIRED ORDER (N2) CPEAD IN NUMBER OF TIMES A PLOT TYPE IS TO 9E USED (N) CPEAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO 9E USED (N)	ICHABLH* NSUMBO C PRINCE 100 FORMAT(* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLE 101 FORMAT(* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLE CREAD IN THE NUMBER OF PLOT TYPES DESIRED*(N1) CREAD IN NUMBER OF PLOT TYPES DESIRED*(N1) CREAD IN NUMBER OF PLOT TYPES DESIRED*(N1) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M)	NSETECH NICESTAND NEW PARTY NEW WILDIRECT DIFFUSE SAMPLE REFLE TARGET VIEW WILDIRECT DIFFUSE SAMPLE REFLE COMMENS ************************************	10) **YIZO) **NZ(ION)**LITT(4) **LABX(4) **LABY(4) **SMORD(500) NSEI=0 CHAS=14* NSUM=0 OFFICE TO THE TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLE 100 FORMAT(** DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLE CREAD IN THE NUMBER OF PLOT TYPES DESIRED**(N1) CREAD IN THE NUMBER OF PLOT TYPES DESIRED**(N1) CREAD IN THE NUMBER OF PLOT TYPE EACH DATA SET SELECTED CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M) 200 FORMAT(1113) CREAD IN THE NUMBER OF TIMES A PLOT TYPE IS TO BE USED (M)	101-Y-120	CLABY=NALE Y AXIS SIME:SION IDATE(FD0).IIIME(500).IIDAR(500).IMANGL(500).IMANF(500).DI 100.Y(20).NIFD(500).IIITA(500).IIIME(500).IIONA(500).IITA(500).X(P) 100.Y(20).NIFD(500).IIITA(4).LABX(4).LABY(4).SMPRD(500) NSST=0 NSST=0 NST=0	DATA SET.LTI 0).ITIME(500) 17(4).LABX(4) IT(4).LABX(4) IT(4).LABX(4) IT(4).LABX(4) ME TARGET F PLOT TYPES F PLOT TYPES F PLOT TYPES F PLOT TYPES F CT EACH PE T1.VS MAVELEN T1.VS MAVELEN F TIMES A PL(SWPROSEAMPLE 51=NURDER_OF DATA SETITI 0).IIIME (500)).RFLCT(500) IT(4).LABX(4) IT(4).LABX(4) F PLOT TYPES F PLOT TYPES F PLOT TYPES C I : 1 : 1 : 1 : N I : N	man con 1 5 cm men m
READ (5:519)	READ (5:519)			200 FORWAT(1113)	C= 10.11 = 0.015 PEFLECT. VS. MAVELENGTH FOR EACH DATA SET SELECTED READ (50.200) N1 * (N2(I) * I = 1 * N1) 200 FORWAT(1113)	CPEAD IN THE NUMBER OF PLOT TYPES DESIRED.(N1) CPEAD IN THE NUMBER OF PLOT TYPES IN THE DESIRED ORDER (N2) CPEAD IN UNYSERY TO SELECT EACH PLOT TYPE IN THE DESIRED ORDER (N2) CPEAD IN UNYSERY TO SELECT VS WAVELENGTH FOR EACH DATA SET SELECTED READ (5.200) N1 (N2(1):1=1:N1) 200 FORMAT(1113)	1CIANCE COMMENTS**/) CREAD IN THE NUMBER OF PLOT TYPES DESIRED*(N1) CREAD IN THE NUMBER OF PLOT TYPES DESIRED*(N1) CREAD IN AUMBER OF PLOT TYPES DESIRED*(N1) CREAD IN AUMBER OF PLOT TYPES DESIRED*(N2) EACH DATA SET SELECTED 200 FORMAT(1113)	NATITE(5:100) NATITE(5:100) LOTANCE COMMENTS**/) C.*.READ IN THE NUMBER OF PLOT TYPES DESIRED*(NI) C.*.READ IN VUMPER OF PLOT TYPES IN THE DESIRED ORDER (NZ) C.*.READ IN VUMPER OF PLOT TYPES OF THE OF TH	LOT PRINT HEADINGS FOR DATA WAITE(5:100) LOT FORMAT(*) DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLE LOTANCE COMMUNIS**/1) C.**READ IN THE NUMBER TO SELECT EACH PLOT TYPE IN THE DESIRED ORDER (NZ) C.**READ IN VUMPER TO SELECT EACH PLOT TYPE IN THE DESIRED ORDER (NZ) C.**READ IN VUMPER TO SELECT EACH PLOT TYPE IN THE DESIRED ORDER (NZ) C.**READ IN VUMPER TO SELECT EACH PLOT TYPE IN THE DESIRED ORDER (NZ) C.**READ IN VUMPER TO SELECT EACH PLOT TYPE IN THE DESIRED ORDER (NZ) READ (5:200) NI*(NZ(1):1=1*NI)	1CH3=1H* NSUM=0 C PRINCE 100 FORWAT(* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLE 101 FORWAT(* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLE CREAD IN THE NUMBER OF PLOT TYPES DESIRED*(N1) CREAD IN THE NUMBER OF PLOT TYPES DE	NSET=CONTROL NOTE TO SET TIME TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLECTION TO FORMAT(* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLECT. TO SELECT EACH PLOT TYPES DESIRED.(N1) CREAD IN THE NUMBER OF PLOT TYPES DESIRED.(N1)	10):YIZ0):NZ(101):LTIT(4):LABX(4):LABY(4):SMORD(500) NSEI=C ICHA=1H* NSUM=0 ARITE(5):NZ(101):LTIT(4):LABX(4):LABY(4):SMORD(500) 100 FORMAT(*** DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLE CREAD IN THE NUMBER OF PLOT TYPES DESIRED*(N1) CREAD IN THE NUMBER OF EACH PLOT TYPE IN THE DESIRED ORDER (N2) CREAD IN THE NUMBER OF EACH PLOT TYPE IN THE DESIRED ORDER (N2) CREAD IN THE NUMBER OF EACH PLOT TYPE IN THE DESIRED ORDER (N2) CREAD IN THE NUMBER OF EACH PLOT TYPE IN THE DESIRED ORDER (N2) CREAD IN THE NUMBER OF EACH PLOT TYPE IN THE DESIRED ORDER (N2) CREAD IN THE NUMBER OF EACH PLOT TYPE IN THE DESIRED ORDER (N2) CREAD IN THE NUMBER OF THE TARGET FOR EACH DATA SET SELECTED CREAD IN THE NUMBER OF THE TARGET FOR THE TARGET OF THE TARGET SELECTED CREAD IN THE NUMBER OF THE TARGET FOR THE TARGET SELECTED CREAD IN THE NUMBER OF THE TARGET FOR THE TARGET SELECTED CREAD IN THE NUMBER OF THE TARGET FOR THE TARGET SELECTED CREAD IN THE NUMBER OF THE TARGET FOR THE TARGET SELECTED CREAD IN THE NUMBER OF THE TARGET FOR THE TARGET SELECTED CREAD THE TARGET FOR THE TARGET FOR THE TARGET SELECTED CREAD THE TARGET FOR THE TARGET FOR THE TARGET SELECTED	18PD(500).DIFRD(500).RELGT(500).ICOMA(500).COMB(500).TST(500).X(P 10).Y(20).N2(10).RELGT(500).ICOMA(500).COMB(500) NSST=N NSIN=0 C PRINCED 10 FORMAT(* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLE 100 FORMAT(* DATE TIME TARGET VIEW WL DIRECT DIFFUSE SAMPLE REFLE CREAD IN THE NUMBER OF PLOT TYPES DESIRED.(NI) CREAD IN THE NUMBER OF PLOT TYPES DESIRED.(NI) CREAD IN THE NUMBER OF PLOT TYPES DESIRED.(NI) CREAD IN THE NUMBER OF SAMPLENGTH FOR EACH DATA SET SELECTED READ (5.200) NI:(N2(1):1=1:NI)	CLABY=LABLE Y AXIS JIMEDSION IDATE(FD0).IIIME(500).IIANGL(500).IMAVE(500).IWAVE(500).DI JOHNESSION IDATE(FD0).IIIME(500).IICOMB(500) JOHNESSION IDATE(FD0).IIIME(500).IICOMB(500) JOHNESSION IDATE(FD0) LCHS=1H* NSEI= LCHS=1H* NSEI LCHS=1H* NSEI= LCH	DATA SET.LTI 0).ITIME(500)).RFLCT(500))T(4).LABX(4) IT(4).LABX(4) F LOT TYPES F LOT TYPES F LCT EACH PLE T L YS WAVELEN 2(1).I=1.N1)	SWPROSEAMPLE 51=NURDER_OF DATA (4); RECT (500); 17(4); LABX (4); 17(4); LABX (4); F PLOT TYPES F F LOT TYPES F F LOT TYPES T LO	mon con 2 en meso
0.(1)					N2)		REFLE					1.x(2	01.001	AXIS	Sign		

40	CPROVIDE SPACE BETWEEN SETS IN PRINT OUT	
	WHITE(6.410)	
	410 FORMAT(***)	
	GO TO 1000	
	1002 WRITE(5:420)	
57	420 FODMAT(01s)	
	NSET=1NST+1	
	1000 CONTINUE	
	1001 CONTINUE	
	C CACULATE NUMBER OFS. PER SET	
50	TERNINESTERS	
ı	C PRINT OUT WSUM:NSET INSET	
	KPITE(0.500)DSU4*NSET,INSET	
	500 FORWAT(*OTOTAL DRS, -*-13.3X.*NUMBER OF DATA SFIS=*,13.3X.*NUMBER O	
	1F 099. PER SET=+,131	,
in in	5703	
	UNI	

4.0 PLANTS

Program Name: PLANTS

Subroutines Required: IMAGE

PLOT STATS

Functions Required: GAUSS

Narrative:

Program PLANTS is designed to generate an abstract plant canopy defined by a group of straight lines in three dimensional space. This configuration is represented by the projection of each plant element onto XZ and YZ planes. The elements in the scene can be controlled (IFIGI=1) in which the user supplies the X-Y coordinates of the plants position on the ground (XGRD,YGRD and ZGRD, where ZGRD=0.), the length of the plant (DIST), the inclination angle (THETA), and the azimuth angle (PHI). A second option (IFIGI=2) allows the user to designate plant position, as before, however, the inclination angle, plant length and azimuth angle are randomly determined. The inclination angle is determined from a normal distribution with TMEAN and TSTD. The plant length is similarly calculated from DMEAN and DSTD. Output from either mode of operation includes a microfilm plot of the orthogonal views; a graymap printout of the same views; statistics of the elements in the scene; and a permanent file containing a 64 x 64 boolean representation of the two views.

Control Card Input:

Card 1 Column 1-10 (I10) Column 11-20 (I10) Column 21-30 (I10)	(N) (K) (KDATE)	Number of plants in a scene Number of scenes (cases) Date of the run
Column 31-40 (I10) Column 41-50 (I10)	(IFLG1) (IFLG2)	<pre>Flag for random/static modes Flag for plant branching (unavailable at present)</pre>

```
Cards 2 and Following (IFLG1) - one card for each plant
Column 1-10
                (F10.3)
                           (THETA)
                                        Inclination angle (deg)
Column 11-20
                (F10.3)
                           PHI)
                                        Azimuth angle (deg)
Column 21-30
                (F10.3)
                           DIST)
                                       Plant length (inches)
Column 31-40
                (F10.3)
                           (XGRD)
                                       X coordinates of ground pt.
Column 41-50
                (F10.3)
                           YGRD)
                                       Y coordinates of ground pt.
Column 51-60
                (F10.3)
                           (ZGRD)
                                       Z coordinates of ground pt.=0
Card 2 (IFLG2) - one card for each scene (K cards)
Column 1-10 (F10.3) (TMEAN) Mean of inclin
                                       Mean of inclination angle
Column 11-20
                (F10.3)
                           (TSTD)
                                       Standard deviation of inclination angle
Column 21-30
               (F10.3)
                           DMEAN)
                                       Mean of Azimuth angle
Column 31-40
               (F10.3)
                          (DSTD)
                                       Standard Leviation of Azimuth angle
Card 3 + N cards (IFLG2) - one card for each plant
Column 1-10
               (F10.3)
                          (XGRD)
                                       X coordinates of ground pt.
Column 11-20
               (F10.3)
                           (YGRD)
                                       Y coordinates of ground pt.
Column 21-30
               (F10.3)
                          (ZGRD)
                                       Z coordinates of ground pt. Z=0
```

Repeat cycle of Card 2 and Cards 3 + N cards format for each new scene that is input under $\underline{\text{IFLG2}}$.

Example Output:

Figures 1 through 4 illustrate the current flexibility of Program Plants. Each of the following figures includes a printout of the line segments generated by the program and a print of the microfilm image of the computer-generated plants in both the XZ and YZ planes. The microfilm negative produced by the program then serves as an input to an optical diffractometer to produce the corresponding diffraction patterns. Figures 1 through 3 represent different cases of the static option (IFLG1=1) in which the coordinates of plant leaves are specified. Figure 4 is an example of the random case (IFLG1=2). In this example the zenith angles were sampled from a normal distribution and the azimuthal angles from a uniform distribution.

In the examples presented here a starting x, y, z ground coordinate is specified for each plant leaf. The polar angles and line segment length are then either specified or randomly selected and permit the calculation of the end coordinates of the line segment. For example, in Figure 1 the first point is located at X=45, Y=50 (Z=0). Given a zenith angle of 45° , a azimuth angle of 270° and a length of 30 units yields an end set of coordinates of X=23.79, Y=50., and Z=21.21.

-		_	30.0	
-	91	a	10	

	CASE NU	MBER >	101			
	x 45.00 23.79 47.00 25.79 49.00 27.79 51.00 29.79 53.00 31.79 55.00	Y 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	7. 9.09 21.21 9.00 21.21 0.00 21.21 0.00 21.21 0.00 21.21 0.00	THETA 45.00 0.00 45.00 45.00 45.00 45.00 45.00 45.00	PHI 270.00 0.00 270.00 0.00 270.00 0.00 270.00 0.00	DIST 30.00 0.00 30.00 0.00 30.00 0.00 30.00 0.00 30.00
MEAN STU.	33.79 DEV.	50.30	21.21	0.00 45.00 0.00	270.00 0.00	30.00
MATTER OF CASE	-			*****		•••

Output from Program Plants for Static Case 2 and optically generated Diffraction patterns. Note that within each view the border was masked; thus, only those elements within the border affect the diffraction. Figure 1.

Figure 2. Output from Program Plants for Static Case 3 and diffraction patterns.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 3. Output from Program Plants for Static Case 5 and corresponding Diffraction Patterns.

CASE NU	MBER 2				
x	Y	Z	THETA	PHI	DIST
45.00	50.00	0.00	29.68	234.90	22.05
36.07	43.72	19.16	0.00	7.00	0.00
47.00	50.00	0.00	19.69	210.11	16.37
44.23	45.23	15.42	0.00	0.00	0.00
49.00	50.00	0.00	65.51	252.93	24.22
27.93	43.53	10.04	0.00	0.00	0.00
51.00	50.00	0.00	65.37	183.77	16.68
50.00	34.87	6.95	0.00	0.00	0.00
53.00	50.00	0.00	47.00	15.81	23.20
57.62	66.33	15.82	0.00	0.00	0.00
55.00	50.00	0.00	41.97	76.38	15.51
65.08	52.44	11.53		0.00	0.00
MEAN			44.97	162.32	19.67
STD. DEV.	•		18.57	94.95	3.90
	1				

Figure 4. Output from Program Plants for Random Case 2 and corresponding optical diffraction patterns.

	C OF AN ABSTRACT PLANT CANOPY: THE USER DEFINES THE GEOMETRIC PARAMETERS C A POLANT CANOPY IN THREE SPACE TERMS, AND THE PROGRAW DETERMINES THE C OFFICE OFF	COUTPUT COUTPUT COUTPUT COUTPUT COODDINATES DEFINING LINE OF EACH PLANT IN THE SIMULATED SCENE (POINTS) COODDINATES DEFINING LINE OF EACH PLANT (ANG: AZ; PDIST) COTAISTICS OF PLANT CANDY GEONITRY (AVGT, AVGD, STDT, STDP, STDD) COFILM PLOT OF ORTHOGONAL VIEWS (SUBROUTINE IMAGE) COTAINTER PLOT OF ORTHOGONAL VIEWS (SUBROUTINE PLOT) COTAINTER PLOT OF ORTHOGONAL VIEWS (SUBROUTINE PLOT) COTAINTER COODGONAL DAGANETERS	### ##################################	Η Σ	IF(IFLGI.EG.1) GO TO 5 IF(MTEST.GT.0) GO TO 5 CREAD DECRIPTIVE STATISTICS FOR RANDOMLY DETERMINING THETA AND PHI (MODE 2) C. READ(S,510) TMEAN.TSTD;DMEAN.DSTD 510 FORMIT(8F10.3)
--	--	--	--	-----	---

00	15 (1FLG1:F0:1) GO TO 12
65	CREAD BASE COORDINATES OF INDIVIDUAL PLANT (MODE 2)
	PEAD (5+5
7.0	ETERMINE T
75	39-THEIA=G4USS(TMEAN,ISTD) IF(IHETA+GT,90.0.0R*IHETA+LT.0.0) GO TO 30 40 DIST=GAUSS(DMEAN.DSID)
	IF (DIST.GT.30:0.0R.DIST.EE.5.07 GV 10 40 GO TO 15 12 IF (MIEST.GT.0) GO TO 15
08	CREAD THETA:PHI LENGTH.BASE COORDINATES (MODE 1)
	READ(5;510) THETA;PHI;DIST;XGRD;YGRD;ZGAD
85	CDETERMINE COORDINATES OF ORTHOGONAL PROGECTIONS
	C 15 ANG(I)=THETA AZ(I)=PHI
06	PDIST(I)=DIST THETA=THETA=*017453293 PHI=PHI**017453293
	POINTS(1)1) = XGRD POINTS(1)2) = YGRD POINTS(1)3 = ZGRD
- 35	POINTS(I+1,1) = XGRD+(DIST+SIN(THETA) *SIN(PHI)) POINTS(I+1,2) = YGRD+(DIST+SIN(THETA) *COS(1I)) POINTS(I+1,3) = ZGRD+(DIST+COS(THETA))
	10
100	CGENERATE OUTPUT
24 25 25 25 27	WRITE(6,
105	THETA* 6X * 9PH * * 7X * 9 15 17 1
	CALL STAIS(BIIST+N-L-AVGD'STDD) DO NO KE-1-L WP.17E(6+6-15) POINTS(KK+1) +POINTS(KK+2) +POINTS(KK+3) +ANG(KK) +AZ(KK)
	ST (K AT (S INUE
115	
	625 FORNATISX * 8STD., DEV. * * +20 X + 3FIO. 27

PAGE CDC 6400 FTN V3.0-P365 OPT=1 11/10/75 14.16.38. Z00 CONTINUE STOP END PLANTS PROGRAM 120

SUBROUTINE IMAGE (POINTS, JCASE, LPTS, LSEG, KDATE) DIMENSION PAR (44) SIZE=30. * LSIZE=30 \$ ALIGN=35. \$ LALIGN=35 NPID64 \$ NPZ=64 \$ LP1=64 \$ LP2=3+ \$ NCH=1 DXSIZED SCALE=DEN/SIZE LVIEW=10MXZ VIEW DO 10 L=1.2 PPITE (6.670) KDITE, JCASE, LVIEW DO 10 L=1.2 NOTE (1.01) NOTE (1.01) PPITE (6.670) KDITE, JCASE, LVIEW NOTE (1.02) NOTE (1.02) PPITE (6.670) KDITE, JCASE, LVIEW SCALE (1.02) DO 10 L=1.2 PPITE (6.670) KDITE, JCASE, LVIEW NOTE (1.02) DO 10 L=1.2 PPITE (6.670) KDITE, JCASE, LVIEW NOTE (1.02) DO 10 L=1.2 PPITE (6.670) KDITE, JCASE, LVIEW NOTE (1.02) DO 10 L=1.2 PPITE (6.670) KDITE, JCASE, LVIEW NOTE (1.02) DO 10 LINE, LILED DO 10 LILE, LVIEW NOTE (1.02) DO 10 LILE, LVIEW NOT
--

SO CONTINUE

DO 60 I=1.LP1

DO 15 J=1.64

VARTAJ = PCTUR(I.7.J)

15 CONTINUE

#RITE(6.675) (PCTUR(I.7K).K=1.LP1)

60 CONTINUE

100 CONTINUE

100 CONTINUE

END 20 55

Suggoutive PLOT(POINTS.Ju.t.w.KDATE)			
LTIT(3)=10HPY LTIT(2)=10HPLAN LTIT(2)=10HPLAN LTIT(2)=10HPLAN LTIT(3)=10HPLAN		SUBPOUTINE PLOT(POINTS+J+L+N+KDATE) DIMENSION LTIT(3)+XPL(2)+YPL(2)+PDINTS(::0+3)	
LTIT(2)=104PLAN LTIT(1)=1045UAB CALL FRAME CALL FRETING CALL SETING CALL FRETING CALL STRING CALL FRETING CAL			
LTIT(1) = 10 H\$U ABB CALL SET (0.0 11: 2 CALL SET (0.0 11: 2 CALL SET 10 (0.1 1: 2 CALL STRING (1.2 1) CALL STRING (1.2 1) CALL STRING (LVI CALL FRSTPT (20.1 1) CALL FRS		LTITICS)=10HPLANT CANO	
20 100 11=1;2 CALL FRAME CALL FRAME CALL FRAME CALL FRAME CALL FRAME SETTINE (1 1.0 T) CALL FRAME C	c C	LTIT(1)=10+%UABSTRACT	
CALL SETLINE (1) CALL STAING (LVI CALL NUMBER (10) CALL NUMBER (10) CALL LINE (1		00 100 111112	
CALL FRSIPT(20, CALL FRSIPT(21, CALL FRSIPT(21, CALL FRSIPT(21, CALL FRSIPT(21, CALL FRSIPT(20, CALL FRSIPT(20, CALL FRSIPT(20, CALL FRSIPT(20, CALL FRSIPT(20, CALL FRSIPT(20, CALL FRSIPT(30, CALL FRSIPT(30			
20-L SETLINE (1 CALL STRING (1 CALL STRING (2 CALL STRING (2 CALL STRING (2 CALL STRING (2 CALL NUMBRICH STRING (2 CALL NUMBRI		55110.0.11.	
CALL FRSION (CONTROL OF CONTROL O		SETLINE (1	
CALL STRING (LT (II.67.1) GO LVIEW=1045UY VI 30 CALL FRSTPT(20.40.40.40.40.40.40.40.40.40.40.40.40.40	10	FRSIPT (
TF (II.GT.1) GO		STRING	
LVIEW=10H5UX VI 50 TO 30 10 CALL FENDENCION CALL STRING(LVI CALL FRSTPT(70) CALL FRSTP		II.67.1)	
20 LVIEW=10HSUY VI 30 CALL FRSTP1(720- CALL FRSTP1(770- CALL FRSTP1(770- CALL FRSTP1(770- CALL NUMBRUJ-2H CALL NUMBRUJ-2H CALL LINE (350-) CALL LINE (350-) CAL		I VIEWEI DASIX VIEWS.	
20 - VIEW=10HS.VY			
20 LVIEW=10HS/Y VI 30 CALL FRSTP1/C00 CALL FRSTP1/C100 CALL FRSTP1/C100 CALL FRSTP1/C00 CALL F		06 01 09	•
30 CALL FRSTPT(20. CALL STRING(LV) CALL NUMBPT(70. CALL NUMBPLJ-21. CALL LINE(35.30. CALL LINE(35.30. CALL LINE(55.30. CALL L	15	LVIE	
CALL STRING(LVI CALL FRSTP1(70) CALL FUNBREAL CALL FUNBREAL CALL LINE(35) CALL LINE(35) CALL LINE(65) CALL LINE(65		CALL	
CALL NUMBP(KD4T CALL NUMBP(L)21 CALL LINE(35:0) CALL LINE(35:0) CALL LINE(35:0) CALL LINE(35:0) CALL LINE(35:0) CALL LINE(55:0) CALL LINE(55:0		CAL	
CALL NUMBP(KDAT CALL NUMBP(L) CALL LINE (35.40 CALL LINE (35.40 CALL LINE (35.40 CALL LINE (45.40 CALL LINE (45.40 CALL LINE (41) CALL LINE (FRSTPT (70.	
CALL FRSTPT(80. CALL NUMBR J. 24 CALL LINE (35.13 CALL LINE (55.13 CALL LI		NUMBE (KDAT	
CALC NUMBB(U.2P CALC LINE (35.03 CALC LINE (65.03 CALC LINE (65.03 CALC LINE (65.03 DO 100 KK#1-L/2 NPL (1) = POINTS (K XPL (2) = POINTS (K XPL (2	20	FRSTPT (80.	
CALL LINE (350 CALL LINE (350 CALL LINE (550 CALL LINE (550 CALL LINE (550 CALL LINE (550 XPL (1) = POINTS (XXPL (1) = POINTS (XXPL (2) = POINTS (XXPL (2		NUMBE (J.2H	
CALL LINE (55.9 CALL LINE (65.9 CALL LINE (65.9 DO 100 KK=11-L+2 DO 100 KK=11-L+2 YPL (1) = POINTS (K YPL (1) = POINTS (K YPL (1) = POINTS (K YPL (2) = POINTS (K YPL			
CALC LINE (65:0) CALC LINE (65:0) DO 100 KA:1+1+2 DO 100 KA:1+1+3 XPL (1) = POINTS (XYR (1) = POINTS (XYR (1) = POINTS (XYR (2) = POINTS (LINE (3530	
CALL LINE (650 D0 100 KK=1.L.2 D0 100 KK=1.L.2 YPL (1) = POINTS(K YPL (1) = POINTS(K YPL (2) = POINTS(K YP		LINE (65: +30	
DO 100 KK#1+L+2 XPL(1) = F01N1S(K YPL(2) = F01N1S(K XPL(2) = F01N1S(K XPL(2) = F01N1S(K XPL(2) = F01N1S(K YPL(2) = F01N1	25	LINE (650	
XPL(1) = FOINTS(K YPL(1) = POINTS(K XPL(2) = POINTS(K YPL(2) = POINTS(K YPL(2) = POINTS(K CALL LINE(XPL(1) 100 CONTINUE		00 KK=1.L.2	
YP(1)=POINTS(K XP(2)=POINTS(K YP(2)=POINTS(K CALL LINE(XPL(1) 100 CONTINUE		xpL(1)=601NTS(KK+11)	
XPL(2)=POINTS(K YPL(2)=POINTS(K CALL LINE(XPL(1 100 CONTINUE		YPI (1)=D0111S (KK+3)	
YPL (2) = POINTS (K CALL LINE (XPL (1 100 CONTINUE PFIURN		XPL(2)=POTNTS(XX+1+11)	
100 CONTINUE 100 CONTINUE BETURN	30		
CONTINUE	;	CALL TINE (X) (1) * YPL (2) * YPL (2)	
		CONTINUE	

ř

CDC 6400 FTN V3.0-P365 OPT=1 11/10/75 14.16.38.			
FUNCTION GAUSS	FUNCTION GAUSS(X+S) X1=QANF(0,)	X2=FAN=(0,1) C1=51N(5+283185+X1)+SQ1 GAUSS=C1*S+X	END

SUBROUTINE STATS(X*N*L*AVG*STD) DIMENSION X (50)	
CITACI	,L,AVG,STD)
S S S S S S S S S S S S S S S S S S S	
TOT=TOT+X (KK) SS=SS+(X (KK) #*2)	
SO CONTINUE AVG=TOT/SAMP STD=SQRT((SS-(SAMP*)	(SAMP*((TOT/SAMP)**2)))/(SAMP-1.0))

5. FRDHLM

Program Name: FRDHLM

Subroutines Required:

KERNAL INVERT DENS COP MATMPY PCTAO SETC

Narrative:

A detailed discussion of the inversion of the vector of percent vegetation cover as a function of the view angle is given in Section II.

Basically, FRDHLM inverts the following equation to solve for $f(\theta)$, the

leaf slope distribution:

$$g(\theta_r) = \int_0^{\pi/2} K(\theta_r, \theta_a) f(\theta) d\theta.$$

Control Card Input:

Card 1			
Column 1-10	(A10)	(LABT)	Title of PLOT
Column 11-20	(A10)	(LABX)	Label of X axis
Column 21-30	(A10)	(LABY)	Label of Y axis

Cards 2, 3, 4
Column 1-80; Cards 2 & 3 (8F10.0) (G) Probability of Gap
Column 1-30; Card 4 19 values using 10 columns for each value

Cards 5, 6, 7
Column 1-80; Cards 5 & 6 (8F10.0)(RSOL)Input comparison

Column 1-30; Card 7 CURVE (can be blank)

Cards 8 and following
Column 1-10 (F10.0) (GAMMA)

Is a smoothing function ranging from 1-10,000; any values for gamma may be selected within this range. One value per card.

	C SEVERAL VIEW ANGLES. THE PROCEDURE INVOLVES SOLVING A FREDHOLM INTEGRAL	
r	101101	
	C LAMITLAMATICATION (TITLE AND LABLES FOR FILM PLOT)	
	C SOUL (COMPARISON SOLUTIONS IN CALCULATIONS)	
	C SAMMA (SOUTHING FACTOR- ANY POSITIVE NUMBER, WITH LEASED VALUES	
	C EFFECTING GARATES SADOTHINGS	
	C + FAS (INTERNATIVE) FEINED - CHO-CHO-CHO-CHO-CHO-CHO-CHO-CHO-CHO-CHO-	
	SNAN	c.
	GAMMA (S.301HIMS FACTOR)	
>.	VALUE PERSISIS. THEY SHOULD BE SET TO ZERO AND A NEW DENSITY	
Ü		
	PSJC (Frankland Solution)	
	A A A A A A A A A A A A A A A A A A A	
	C	
	3	
e.	C:WWON/CZ/A(19+19)+H(19+19)+E(19)+F(19)+G(19)+ATN(19+19)+ANG(19)	
	1.4TMT(19,19)	
	•	
	DISENSION LABT(4).LABX(4).LABY(4).APCH(19:19).PEOLICE	
	0 FC277	
	0.0 5 (=1+15	
35	5 4.6(i+1)=446(11+5.	
	CP. D BRUSBU: DADAMETERS	
.4	100 100 100 100 100 100 100 100 100 100	
•	201000	
	(0.4 f) (1.4 f) (1.4 f) (1.4 f)	
	7057 (13) 330	
	W211E(6.200) ANG.C	
45	9	
	CESTARLISH ASSUMED DENSITY FUNCTION FORM	
	101. 100	
	11 01 01 Marie 1140	
4		
i	•	
	Contra Grand Industry	
S		
	10 0510 (5.101) 60000	

C nn 21 121 wanh 20 0 2 2 121 wanh 20 0 2 2 121 wanh 20 0 121	
0.059.NANG) 0.059.NANG) 0.07 0.07 0.08 0.08 0.08 0.09	LET LE OF
1010 1010 1010 1010 1010 1010 1010 101	2545 (1.J) and 2545
SOURCE OF FLUE SOURCE OF FLUE SOURCE OF FLUE SOURCE OF FLUE TEQ OUTPUT TE	77 14 17 12 14 17 12 14 17 12 14 17 12 14 17 12 14 17 12 14 17 12 14 17 12 14 17 12 14 17 17 17 17 17 17 17 17
SGS(I-J)*G(J) ANA ANA ANA ANA BUIT PLOT ANG. FYMI=0. \$FWA=.5 SUM OF SUUAPEO ERPOH SUM OF SUUAPEO ERPOH I GAMMATSSEANG:FFE:PSOL LUTION TO FREDHOLM INTEGRAL OF THE FTAST KIND*// LUTION TO FREDHOLM INTEGRAL OF THE FTAST KIND*// 19F6.11 BY 6.31 ANA ANA ANA ANA ANA ANA ANA A	Unda ta Ten Co.
# # # # # # # # # # # # # # # # # # #	
######################################	DD 40 [=1.1246
######################################	0. 45
11) 2	0-(1) 3=(1) 3
11) PLUT PLUT ANG-950L-19-1-1-LABT-LABX-LABY-10-1) SUM OF SUUAPED ERROH SUM OF SUUAPED ERROH SUM OF FILE END OF FILE END OF FILE END OF FILE SUM OF SUUAPEDHOLM INTEGRAL OF THE FTRST KIND*.// 1975-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
SUM PLUT 30. \$YMA=.5 3 \$M8Y=5 \$MSY=7 \$MSY	(1) ST 115 LET 134 6V
SUM 90. \$YMI=0. \$YMA=.5 3 \$RRY=5 \$MSY=7 4NG=55 \$MSY=7 4NG=51-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	DO 50 I=1-10
PLUT PLUTON TO FREDHOLM INTEGRAL OF THE FTRST KIND**// END OF FILE END OF FILE FND OF FND	34(1)=(1) d (b-
PLOT PLOT 970. \$YMI=0. \$YMA=.5 3 \$HRY=5. \$AMSY=? ANG.PETI-11-LABT.LABY.LABY.1.1) SUM OF SUUAPED ERROH 10 6 FILE END OF FILE END OF FILE END OF FILE 9050LUTION FOR GAMMA = 0.F10.3.4X.**SSE = 0.F10.6. / 6.33./ 6.33./ 6.33./ 6.33./ 6.33./ 6.33./ 6.33./ 6.33./ 6.33./ 6.33./ 6.33./	
SUM OF SQUAPEO ERROH SUM OF SQUAPEO ERROH TEQ OUTPUT TEQ OUTPUT TO OF FILE END OF FILE END OF FILE SOUND TO FREDHOLM INTEGRAL OF THE FTRST KIND**// 1976-31 9050LUTION FOR GAMMA = **FIO.3*4X.*SSE = **FIO.6**/ 633.*/ 633.*/ 633.*/ 633.*/ 633.*/ 633.*/	
PERTATE THE STATE SHAPE ANSYE? COLCACTOR COLCACTO	S. SAMAE. GAMAE. SAMAE. S
CALL POTATION OF SUIABED ERROH CALL MARCHANG SSOL-19-11-1-LABT-LABX-LABY-1-1) CALL ATE THE SUM OF SUIABED ERROH CASE SERVE (1) PE(1) CASE SERVE (1) PE	SHYSMA CHYSMA CHYSMA SHYMA
COULTAIN AND SAND AND	COLUMN CASSIVITATION OF THE LABOR TEAST OF THE CAST OF
CCalculate THE Sum of Sudabed ERROH SEEC. SEEC. CGENEDATE PRINTED OUTDUT CGENEDATE PRINTED	C21L PCTA0(ANG.850L.19.11.LABT.LABX.LABY.1.1)
CCalchilate THE SUM OF SOUAPED ERROH SSEEC. On 45 Tel.19 A5 SSESSEL(1) = 1.10 CGENEDATE PRINTER OUTPUT CGENEDATE PRINTER OUTPUT CRECYCLE UNTIL END OF FILE CRECYCLE	
CGENEDATE PRINTER OUTPUT CGENEDATE PRINTER OUTPUT CRECYCLE UNTIL END OF FILE CRECYCLE UNTIL END OUT FILE CRECYCLE UNTIL END O	
CGENEDATE PRINTER OUTPUT CRECYCLE UNTIL END OF FILE CRECYCLE UNTIL END OUT OU	00 45 1=1.1
CRECYCLE UNITL END OF FILE CREC	
CPECYCLE UNTIL END OF FILE C AN TO 10 ZNA FARAL PERMINION TO FREDHOLM INTEGRAL OF THE FTRST KIND®.// ZNA FARAL PERMINION FOR GAMMA = **FIO.3*4X**SSE = **FIO.6* / ZNA FARAL PERMINION FOR GAMMA = **FIO.6	"PTTETA:ENT)
	60 TO 10 200 From 41 (*150
1011/3=0-10=6.1./ 2015	137.4475 * 1976.1:/ 23X.4941 = * 1976.3) 201 FG:MAT(////*0SOLUTION FOR GAMMA = **FIO.3:4X.*SSE = **FIO.6: /
- 1	

D & MATRICES	J. G. I. S.	•										SH(2,4)=1,			54(18,19)=-2.	## ((4(MM+L) +L=1+19). #M=1+19) +JJ=1+19).II=1+23).			
SURGOUTINE KEDNAL(NANG) CSET ALRWAL VALUES: WEIGHT MATRIX: A AND 8 MATRICES C.C.MAGNACA/CALADOM/S3).CEPIOS	1.01MT(10.19) REAL MET (10.19) - W(10) - H(19.19)	COFTFPMINE VERNAL MAIPIX	ALLEGE	ACONDERITIONS OF ACTUANG DEFAULT OF ACTUANG DEFAULT OF A CTUANG DE	100	NC 20 [=1		::5		Section 12 Transport	A5 AFWT (J.1) = 1 (1.1) + (1.19.19)) Coll Service + + (1.1) + (119.19))	2. SH(2.2)=5. SH(2.3)=-4.	H(TR-ICI)=1. H(TR-ICI)=1. H(TR-ICI)=-4.	0. 4	H(19:)7)=1. SH(19:17)=-4. SH(18:19)=5. SH(18:19)==2. H(19:)7)=1. SH(19:18)=-2. SH(19:19)=1. CALL MATMPY(AINT+H:8:19:19:19:19)		100,2019 100 100 100 100 100 100 100 100 100	300 - 200 / 10 / 10 / 10 / 10 / 10 / 10 / 10	הבדותיו פיס
	Acres Marie						PERSONAL STREET, STREE		100 CM 100 CM			NOT YOR VINE ALL			Dell'established		and the second second	The last record of the last	

								-				X -) . 						
INVERT(A+N) HIX A A(19+19)+B(19)+C(19)+LZ(19)			113-13-12						7 B(J) •C(K)		001100	00.500			· ·	MPY(A*B.C.W.M.L)	S & AND B	DIMENSION & (M.N) -P (N.L) -C (M.L)	. (K*J)
CINVERT WATHIX A	(J)=J	Y=1(1.1) Y=1(1.1)	15 (455(W)-A95(Y))13+13+12	13 CONTINUE 14 DO 15 JEL-N	Y(U)=Y(U)+ 4(U+V)=b(U+V) A(U+V)=-C(U)	15 A(1,1)=4(1,1) 15 A(1,1)=A(1,1) 16(1,1)=1(1,1)	(2) = (2) (4) (7) = (2) (4) = (3) =	16 PO 15 VEL 19-16	17 & (<. J) = & (x. J) = 17 . 18. 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1	2 CONTINUE 2 ON TRUE	196 (11) 200 Jev. N. 200 Jev.	6nn M=12(1) 6nn M=12(1) LZ(1)=(7(J)	()-() = (); ()		END CONTINUE PETURA END	SUAROUTINE MAT	CVULTIPLY MATRICES A AND B		101 S = S-4(1-4) ea(K
	A STATE OF PERSONS PROPERTY.					52			35		i			i.				n	

EIP1.CE2PI 707029088831/ 5-6.28318530/									
#LOCK 7014 COMMON/CL/DUM(30).CEDTR.CEPTD.CEMTR.CEPID2.CEIPT.CE2PI DATI CEMTW.CEMTR.CEMTRY.NITA53293:57.2957795:.D0290888217 NAT4 CFPID2.CEIPI.CE2PI/1.57079632:3.14159265:6.28318530/	SURROUTINE DENS(G.NANG.IND) CCALCULNTE-RASIC DENSITY-FUNCTION FLRY	XLA1 = .74 DE = .007266463 TH = .007266463 TO 10 T=1.kaN9 IF(IND.FU.1) 30 TO 5	CDEMSITY FUNCTION 2 C G(1) = -A, GG(1,-G(1))*COS(TH)/X[A]	x = S/xLAT fill = (1(1641))**x))*COS(TH)/S TH = TH + DEL WDITE(64200) 6	$\sim 10^{-1}$	CCALCULATE GEOMETRICAL PROJECTION FACTOR C COMMON/CL/DUMI(33), CEF102 IFTALPH4:FT577 GO 10 10 IF (9ETAL) 17.057 GO 10 20 OP = COS(ALPH4) SSTN (9ETA)	TETALPHATE SETAPETUDA THETAL = GOS(TAW(BETA)/TAW(ALPHA)) TATO = TAK(THETAO) OP = OP = (TANTO-THETAO)/CEPIOZ) PETURA PETURA	PETUNA OP = SIN(alpha)/CEP102 OETUNA	SURPOUTING PCTAD(DUM) CREWERAT FILM PLOT CREWENSTON DIMERSA.

6. PROP

Program Name: PROP

Subroutines Required: GRAPH

Narrative:

PROP accepts as input densitometer readings which wedge sample the diffraction pattern of an orthogonal view of a plant canopy. A plot of the distribution of leaf slopes contained in the original image is then generated. This program is referenced in Section II.

Control Card Input:

Card ! Column 1-4 Column 5-10 Column 11-20 Column 21-30 Column 31-40 Column 41	(I4) (I6) (F10.5) (F10.5) (F10.5) (I1)	(NRUN) (NDATE) (DERCT) (BADJ) DTEST) (MTRAIL)	Number of runs Date in 6 INTEGERS Threshold value Base adjustment for aperture Minimum divergence test value Test for end of data (other than O for end of data)
--	---	--	--

Cards 2 & 3 Column 1-80; Card 2 (16F5.1) (DATAE) Densitometer values Column 1-15; Card 3

Repeat Card 1 and Card 2 and 3 formats for each successive group of 3 data cards until all desired data has been entered. End of data is indicated by a single card with some integer value other than 0 for Column 41.

5 0PT=1 11704/75 16,43.04. PAGE 1 FILMPL) FIHE 14	(10 DEGREE INCREMENTS)		-CTIT(8)					
CONTRACTOR PROPERTY OUTPUT. TAPES=INPUT. TAPES=OUTPUT. PUNCH. FILMPL) C ANGLES IN THE IS-DESIGNED TO DEVELOP A DENSITY FUNCTION OF THE C CORRESPONDING DIFFRACTION PATTERN NEGATIVE. THE PRINCIPAL C IN 10 DEGREE INCREMENTS FROM 0 TO 180 DEGREES.	THRESHOLD -VALUE (PERCT) BASE ADJUSTMENT FOR APERTURE (BADJ) MINIMUM DIVERGENCE TEST VALUE (DTEST) MEASURED VALUES OF DIFFRACTION PATTERN INTENSITY	C AVERAGE DEVIATION IN THE DATA AVERAGE DEVIATION C AVERAGE DEVIATION C DEVIATIONS C DIFFRACTION PATTERN DENSITY FUNCTION C SCENE-DENSITY-FUNCTION	DIMENSION DATAE(19), PROPORT(20), DEV(19), TEMP(19), XAXIS(19), LTIT(8) CSET UP AXIS FOR GRAPHING ROUTINE	DO-5-J=1+18 XAXIS(J)=J*10. 5 CONTINUE HT=10HPROPORTT	AOS MI	20	ENTER MAJOR LOOP DO 200 K=1.50 READ-DATA	PEAD (5,510) NPUN,NDATE STO FORMAT(14,16) T REOF (5) 1000,7 T READ (5,505) (DATAE(1),1=1,19) T REOF (5) 1000,8 T R
b	10	15	25	30	36	04 84	000	588

	S DEVITOTES.
The second secon	
65	
	CTEST FOR INCOMPATABILITY BETWEEN 0 AND 180 OEGREE READINGS. IF C. TEST IS POSITIVE THEN THE DATA MAY BE IN ERROR.
70	ETESTI=ABS(DATAE(1)-DATAE(19)) ETEST2=BASE*.075 IF(ETEST1.GE.ETEST2) GO TO 9
75	9 WRITE(6;670) NRUN;NDATE 670 FORKAT(*1***********************************
	CTHRESHOLD IS DETERMINED
80	T6 THRES=PERCT#8
	C. THE BASE VALUE IS CORRECTED FOR APETURE EFFECTS.
90	BMAKO=0.
0	IF (J. EQ. 10.00R. J. EQ. 10.00R. J. EQ. 19) GO TO 11 GO TO 13
	11 DEVIJI#118ASE=18ASE*8BADJII#DATAE[JJ]
06	13 DEVIJIE ETHOREIDEVITIEN
	DEVTOT=DEVTOT
56	C C C CONTINUE. CA TEST IS MADE FOR INSUFFICIENT DIVERGENCE.
	IF (DEVTOT.LE.DTEST) GO TO 250
100	C.*PERCENT-DEVIATIONS-ARE-DETERMINED-FOR-EACH-10-DEGREE-INCREMENTS.
	00 30 1*18
105	30 CONTINUE
	DIFFRACTION PAT BAND OF THE DIF
110	C DO 40 J=1,8
	PROPORT(J.49)=TEMP(J.49) PROPORT(J)=TEMP(J.49) 40 CONTINUE
-1.15	PROPORT(9)=TEMP(18) PROPORT(18)=TEMP(9) PROPORT(20)=RMAXD

CPRINYER DUTBUT
6n5 FORMATICIETS NEGRINDAL: ************************************
WRITE (6,610)
SIO FORMATION DATAE(I) - I=1 - 19) 650 FORMAT(10F8.3)
FORMAT (/// WRITE (6:650)
620 FORMAT(///+ DENSITY FUNCTION VALUES FOR INPUT*) WRITE(6.650) (PROPORT(I)+I=1+18)
CDENSITY FUNCTION VALUES FOR INPUT ANGLES 0-180 DEGREES ARE COLLAPSED C TO ANGLES 0-90 DEGREES WITH INTERPRETED INCREMENTS OF 5 DEGREES.
C COATA(1)=PROPORT(1)*2. CDATA(19)=PROPORT(10)*2.
STATE OF STATE
84 INDEX*1
CSUM=0. D0-86_1*1;19 86_CSUM=CSUM+CDATA(1)
DO 88 1=1.19 BB-COATA(I)-COATA(I)-COATA(I)-WITE (6.640)
640 FORMAT(///, COLLAPSED DENSITY FUNCTION VALUES (0-90 DEG. INCL.)
10) WRITE(6.650), (CDATA(I),1=1.19)
Dd::
PUNCH 705-NRUN,NDA E-BASE.AVUEV 705-FORMAT(14-16-2F10.5) 710-FORMAT(18-16-16-18-18-18-18-18-18-18-18-18-18-18-18-18-
GRAPHIC OUTPU
C CALL MAPA (5:XAXIS:PROPORT:1:18:HL'9HK*VL;VH;HT:VY;LTIT:1) NUMPI=18 YMAX=0.
OF 10 Jal. 18 TE PROPORTION THAX PROPORTION .

180 CALL GRAPHIXAXIS,PROPORT,YMAX,NUMPT,NRUN,NDATE) CALL GRAPHIXAXIS,PROPORT,YMAX,NUMPT,NRUN,NDATE) CALL GRAPHIXAXIS,PROPORT,YMAX,NUMPT,NRUN,NDATE) CALL GRAPHIXAXIS,PROPORT,YMAX,NUMPT,NRUN,NDATE) CALL GRAPHIXAXIS,PROPORT,YMAX,NUMPT,NDATION,NDATE) 100 CONTINUE 1000 CONTINUE		YMAXHAX	
FICANT DEVIATION	180	YM4X=YHAX/10. CALL GRAPH(XAXIS,PROPORT,YMAX,NUMPT,NRUN,NDATE) GO TO 200	
		250 WRITE(6.625) NRUN *.18.* DOES NOT CONTAIN SIGNIFICANT DEVIATION. 1 TO DEVELOP A DENSITY FUNCTION*)	
	601	200 CONTINUE 300 CONTINUE 1000 CONTINUE	

					i
				u,	
					-
				LABX=SHANGLE	
				LARY=10HPROPORTION	
				CALL SFT(.1.8.11.8.0.+180.+0.+YMAX.1)	
		·		CAL PWRT (5:400-LABY:10:1:1)	
				CALL PART (430.5. LABX.5.1.0)	
			10	CAIL PWRT (382,1015, LTTT1-10-1+0)	-
CALL PWRT(395,960,LTIZ,51,0) CALL NWBP(NDATE,2HI6) CALL GROFMT(SHFI0,075HFI0,3) 15 CALL GROFM(\$4,1,10,1) CALL GROFM(\$4,1,10,1)	CALL PWRT(395,960,LTIT2,5,1,0) CALL NUMBP(NDATF,2M16) CALL GRDFMT(5HF10,0;5HF10,3) 15 CALL CURVE(1,10,1) CALL CURVE(1,10,1) CALL FRAME	CALL PWRT(395,960,LTIT2:5:1.0) CALL NUMBP(NDATE;2HI6) 15 CALL PRIML(18:1:10:1) CALL CURVE(x+Y+NUMPT) RETURN		CALL NUMBERNARUNI ZHI37	
CALL NUMBP(NDATE, ZHI6)	Call NUMBP(NDATE, ZMI6)	CALL GROFWT(SHFI0.3) 15		CALL PWRT (395,960,LTIT2,511,0)	
15 CALL PERIML(18.11.10.1) CALL PERIML(18.11.10.1)	15	15		CALL NUMBP(NDATE+2MI6)	
15 CALL PERIML(18-11-10-1)	15 CALL PERIML(18:1:10:1) CALL CURVE(x+Y+NUMPT) CALL FRAME	PRIML JRVE (
CALL CLIBVE (X+Y-NUMPT)	CALL CURVE(x+Y+NUMPT)	JAVE (15	CALL PERIML(18,1,10,1)	
	CALL FRAME	AME	:	CALL CURVE (x+Y+NUMPT)	