Assignment 2 Temporal Logic

- 1. For which of the two logics LTL and CTL (if any) are these legal (i.e., syntactically correct) formulae? You can assume that a, b and c are atomic propositions.
 - (a) $\Diamond \Box \Diamond b$
 - (b) $\exists (c \mathsf{U} \forall \bigcirc a)$
 - (c) $b \wedge c \square (a \rightarrow \bigcirc \neg c)$
 - (d) $\neg ((\Box \Box a) U \bigcirc (b \land c))$
 - (e) $\exists \Box \Diamond a$

[5 marks]

2. Consider the following LTS:

and the temporal logic formulae below:

- (a) $c \wedge \bigcirc b \wedge \lozenge a$
- (b) $\forall \bigcirc a \land \exists \Diamond c$
- (c) $\exists \Diamond (\exists \bigcirc (a \land b) \land \exists \bigcirc (\neg a \land \neg b))$
- (d) $\Box \Diamond (a \land \neg c)$
- (e) $\Box \Diamond (b \lor c)$

For each LTL formula, state whether the LTS satisfies it and, for each CTL formula, give the set of states of the LTS that satisfy it.

[5 marks]

- 3. Translate the following informally described properties into the specified temporal logic, explaining the meaning of any atomic propositions that you use.
 - (a) "servers 1 and 2 are never both down simultaneously" (in CTL)
 - (b) "the robot eventually reaches room A and never passes through corridor B or C whilst doing so" (in LTL)
 - (c) "program location l_7 is visited infinitely often and program locations l_2 and l_3 are visited only finitely often" (in LTL)

[6 marks]

- 4. We saw in lectures that, in addition to standard equivalences for propositional logic, various LTL equivalences exist for temporal operators, for example:
 - $\bullet \ \Box \psi \ \equiv \ \neg \Diamond \neg \psi$
 - $\bullet \ \Diamond \psi \ \equiv \ \psi \lor \bigcirc \Diamond \psi$

Using these (where needed), either prove or disprove each of the following proposed LTL equivalences. You can assume that a, b and c are atomic propositions.

- (a) $\neg(\Box \Diamond a \rightarrow \Diamond \Box b) \equiv \Box \Diamond a \wedge \Box \Diamond \neg b$
- (b) $\Box(b \land c) \rightarrow \Diamond a \equiv \neg(\Box(b \land c) \land \Box a)$

[9 marks]