

Introduction to Data Mining Concepts

Dr. Shipra Maurya

Department of Management Studies

IIT (ISM) Dhanbad

Email: shipra@iitism.ac.in

What is Data Mining?

- "Data mining is the process of finding anomalies, patterns and correlations within large data sets to predict outcomes".
- The foundation of data mining consists of three intertwined disciplines:
 - Statistics: numeric study of data relationships
 - AI: human-like intelligence displayed by machines
 - ML: algorithms learn from data to make predictions

Why Data Mining?

- Making smart business decisions is not driven by how much data you have – but by how quickly you can discover insights from all that data
- Data mining helps to achieve above objective with the help of descriptive, predictive and prescriptive modeling

Data Mining Pipeline/ Process

Key concepts (1/3)

- Target variable / Dependent variable / Response variable Outcome variable / Output variable
- Feature / Input variable / Independent variable / Predictor / Attribute / Input feature
- Categorical variable / Factor variable
- Holdout set / Holdout data / Test set / Test data
- Training data / Training set
- Validation data / Validation set

Key concepts (2/3)

- Algorithm
- Model
- **Prediction / Estimation**
- Observation / Record / Case
- **Sample** single observation in ML / collection of observations in Statistics
- **Score** a predicted value or class
- Scoring using a model developed with training data to predict output values in new data
- Variable Any measurement on the records, including both the input (X) and the output (Y) variables

Key concepts (3/3)

- Fitting a model
- Re-fit a model
- **Supervised learning Regression and Classification Methods**
- **Unsupervised learning** Cluster analysis, Collaborative filtering association rules
- Semi-supervised learning
- Reinforcement learning

Types of data

- Qualitative Nominal, Ordinal
- **Quantitative Discrete, Continuous**

known as unlabeled data)

known as labeled data)

Reinforcement learning

A technique that enables an agent to learn in an interactive environment by trial and error using feedback from its own actions and experiences

Reinforcement Learning in ML

Reinforcement Learning Workflow

Reinforcement Learning example

Reinforcement Learning vs. Supervised Learning

Supervised Learning

Reinforcement Learning

Error = (target output - actual output)

Correct set of action for performing a task is supplied to the agent in the form of actual target value

Objective: Get as much reward as possible

Uses rewards and punishments as signals for positive and negative behavior

Dr. Shipra Maurya, Department of Management Studies, IIT (ISM) Dhanbad 13

Reinforcement Learning vs. Unsupervised Learning

- The goal is different in both learning types
- Goal of unsupervised learning is to find similarities and differences between the data points
- Goal of reinforcement learning is to find a suitable action model that would maximize the total cumulative reward of the agent

Types of Reinforcement

अध्यक्षित्र प्राप्ति प्राप्त वराजिनीयत् वराजिनीयत् वराजिनीयत्

- Positive
- Negative

Mostly used Reinforcement Learning Algorithms

- **Model-based methods**: Example Markov Decision Processes (MDPs)
- Model-free methods:
 - Q-learning (value-based)
 - SARSA (State-Action-Reward-State-Action) (Policy based)
 - Deep-Q-Networks(DQN)
 - Deep Deterministic Policy Gradient (DDPG)

Applications of Reinforcement Learning

- Autonomous self-driving cars
- Robotics for Industrial automation
 - https://youtu.be/ZhsEKTo7V04
- Building AI for computer games
- RL based agents for stock trading
- Chatbots

Reinforcement Learning – Reading material

Reinforcement Learning-An Introduction by Richard Sutton and Andrew Barto

