

FACULTATEA DE AUTOMATICĂ ȘI CALCULATOARE

ELECTRONICĂ DIGITALĂ proiect

Tema: ALU - v3

Studenți:

Arhip Constantin-Alexandru Hriţcu Marina-Dumitriţa Budu Daniel

Grupa: 1206B

Coordonator:

Asist. Drd. Marius Obreja

1. Specificațiile proiectului:

ALU - v3

Să se implementeze în FPGA prin descriere în limbaj VHDL, utilizând programul VIVADO, modulul prezentat în figura 1 care este descris prin urmatoarele specificații:

- a) operanzii A și B au dimensiunea de 8 biți
- b) operațiile vor fi stabilite prin portul de intrare OPCODE
- c) lista de operații: operații logice pe biți: OR, AND, NAND, XOR

Rezultatele vor fi asignate la portul C şi vor fi vizualizate prin LED-urile de pe placa de dezvoltare.

Descrierea va fi făcută în mod structural

Fișierul bitstream rezultat în urma procesului de implementare va fi verificat utilizând placa de dezvoltare BASYS3.

2. Modulul ALU - v3

Modulul ALU - v3 are urmatoarele functionalitati:

- 1. Contine 2 numere pe 8 biti, care sunt introduce de utilizator cu ajutorul celor 16 switch-uri. (Primul numar poate fi introdus de la dreapta la stanga, incepand cu switch-ul 0 pana la 7 [V17, V16, W16, W17, W15, V15, W14, W13], urmand ca cel de al doilea numar sa fie introdus de la switch-ul 8 pana la 15 [U2, T3, T2, R3, W2, U1, T1, R2]).
- 2. Odata introduse cele doua numere pe 8 biti, pe langa butonul din centru (U18) al carui rol este de a confirma operatia dorita, avem implementate si celelalte butoane care-l inconjoara, astfel:
 - Butonul de deasupra (T18) va executa operatia "AND" intre cele doua numere pe 8 biti.
 - Butonul din stanga (W19) va executa operatia "OR" intre cele doua numere pe 8 biti.
 - Butonul de dedesubt (U17) va executa operatia "NAND" intre cele doua numere pe 8 biti.
 - Butonul din dreapta (T17) va executa operatia "XOR" intre cele doua numere pe 8 biti
 - Butonul din miloc (U18) va executa operatia de confirmare a uneia dintre operatiile alese.
- 3. Rezultatul oricaror din aceste operatii, este stocat intr-un registru "C", care este pe 8 biti, urmand ca acesta sa fie afisat, de la dreapta la stanga, cu ajutorul ledurilor de deasupra switch-urile, respectiv (U16, E19, U19, V19, W18, U15, U14, V14).
- 4. Switch-urile și LED-urile sunt situate pe placă după cum este reprezentat mai jos in figura.

3. Metoda de implementare

Pentru implementarea acestui modul s-au folosit programul de sinteza Vivado si limbajul VHDL. Implementarea proiectului a fost facuta printr-o descriere comportamentala. S-a proiectat entitatea Proiect ALUv3. Aceasta are mai multe "procese":

- 1. Doua numere pe 8 biti (A,B).
- 2. Un if statement ce contine operatia "AND".
- 3. Un if statement ce contine operatia "OR".
- 4. Un if statement ce contine operatia "NAND".
- 5. Un if statement ce contine operatia "XOR".
- 6. Rezultatul, in functie de operatia dorita va fi stocat intr-o variabila temporara, ulterior aceasta fiind afisata prin intermediul ledurilor.

Toate operatiile mentionate anterior sunt deja implementate si definite in libraria "IEEE.STD_LOGIC_1164.ALL". Fisierul bitstream creeat de programul Vivado a fost testat cu ajutorul placii BASYS 3 Artix-7xc7a35tcpg236-1.

4. Descrierea (scurtă) a sistemului de dezvoltare BASYS 3

Placa de dezvoltare BASYS 3 este un circuit de dezvoltare complet si ready-to-use bazat pe ultimele Artix-7 Field Programmable Gate Array(FPGA) produse de Xilinx. Cu o mare capacitate de FPGA si cu o colectie de porturi USB, VGA si altele, placa de dezvoltare BASYS 3 permite proiectarea unor design-uri variate, atat circuite introductorii combinationale, cat si circuite secventiale complexe ca procesoarele si controllerele embedded.

5. Editarea fișierului VHDL

-----Proiect_ALUv3.vhd(TOP MODULE)-----

Entitatea Proiect_ALUv3:

```
library IEEE;
    use IEEE.STD LOGIC 1164.ALL;
5 🖯 entity Proiect_ALUv3 is
    port (
              ok : in STD LOGIC;
             A : in STD_LOGIC_VECTOR (7 downto 0);
B : in STD_LOGIC_VECTOR (7 downto 0);
Op_AND : in STD_LOGIC;
              Op OR : in STD LOGIC;
              Op NAND : in STD LOGIC;
              Op_XOR : in STD LOGIC;
                 : out STD_LOGIC_VECTOR(7 downto 0)
         );
6 end Proiect_ALUv3;
   Architecture behavior of Proiect ALUv3 is
         signal tmp : std logic vector(7 downto 0);
    begin
         process (A, B, Op_AND, Op_OR, Op_NAND, Op_XOR, ok)
         begin
```

If statement "AND":

If statement "OR":

```
33 | if rising_edge (ok) then | if Op_OR = '1' then | tmp <= A or B; | end if; | 39 |
```

If statement "NAND":

```
39 | 40 □ if rising_edge (ok) then 41 □ if Op_NAND = '1' then 42 □ tmp <= not (A and B); 43 □ end if; 44 | end if; 45 |
```

If statement "XOR":

Pentru cresterea lizibilitatii codului, acesta a fost decupat din fisierele vhd vazute prin intermediul programului Vivado 2021.2.

6. Editarea fișierului de constrângeri

Switch-uri:

```
set property PACKAGE PIN V17 [get ports {A[0]}]
13
        set property IOSTANDARD LVCMOS33 [get ports {A[0]}]
14
    set property PACKAGE PIN V16 [get ports {A[1]}]
15
      set property IOSTANDARD LVCMOS33 [get ports {A[1]}]
    set property PACKAGE PIN W16 [get ports {A[2]}]
16
        set property IOSTANDARD LVCMOS33 [get ports {A[2]}]
18
    set property PACKAGE PIN W17 [get ports {A[3]}]
19
        set property IOSTANDARD LVCMOS33 [get ports {A[3]}]
20
    set property PACKAGE PIN W15 [get ports {A[4]}]
21
        set property IOSTANDARD LVCMOS33 [get ports {A[4]}]
22
   set property PACKAGE PIN V15 [get ports {A[5]}]
23
        set property IOSTANDARD LVCMOS33 [get ports {A[5]}]
    set property PACKAGE PIN W14 [get ports {A[6]}]
25
        set property IOSTANDARD LVCMOS33 [get ports {A[6]}]
26
    set property PACKAGE PIN W13 [get ports {A[7]}]
27
        set property IOSTANDARD LVCMOS33 [get ports {A[7]}]
28
29
    set property PACKAGE PIN V2 [get ports {B[0]}]
30
        set property IOSTANDARD LVCMOS33 [get ports {B[0]}]
31
    set property PACKAGE PIN T3 [get ports {B[1]}]
32
        set property IOSTANDARD LVCMOS33 [get ports {B[1]}]
33
    set property PACKAGE_PIN T2 [get ports {B[2]}]
     set property IOSTANDARD LVCMOS33 [get ports {B[2]}]
35
    set property PACKAGE PIN R3 [get ports {B[3]}]
36
        set property IOSTANDARD LVCMOS33 [get ports {B[3]}]
37
    set property PACKAGE_PIN W2 [get ports {B[4]}]
38
        set property IOSTANDARD LVCMOS33 [get ports {B[4]}]
39
    set property PACKAGE_PIN U1 [get ports {B[5]}]
40
        set property IOSTANDARD LVCMOS33 [get ports {B[5]}]
    set property PACKAGE PIN T1 [get ports {B[6]}]
42
        set property IOSTANDARD LVCMOS33 [get ports {B[6]}]
43
    set property PACKAGE_PIN R2 [get ports {B[7]}]
        set property IOSTANDARD LVCMOS33 [get ports {B[7]}]
```

LED-uri:

```
## LEDs
48
49 set property PACKAGE PIN U16 [get ports {C[0]}]
50
        set property IOSTANDARD LVCMOS33 [get ports {C[0]}]
51
   set property PACKAGE_PIN E19 [get ports {C[1]}]
       set property IOSTANDARD LVCMOS33 [get ports {C[1]}]
53
    set property PACKAGE_PIN U19 [get ports {C[2]}]
54
        set property IOSTANDARD LVCMOS33 [get ports {C[2]}]
55 set property PACKAGE_PIN V19 [get_ports {C[3]}]
56
        set property IOSTANDARD LVCMOS33 [get ports {C[3]}]
   set property PACKAGE_PIN W18 [get ports {C[4]}]
        set property IOSTANDARD LVCMOS33 [get ports {C[4]}]
59 | set property PACKAGE_PIN U15 [get ports {C[5]}]
60
        set property IOSTANDARD LVCMOS33 [get ports {C[5]}]
61
   set property PACKAGE_PIN U14 [get ports {C[6]}]
62
       set property IOSTANDARD LVCMOS33 [get ports {C[6]}]
63
   set property PACKAGE_PIN V14 [get ports {C[7]}]
64
        set property IOSTANDARD LVCMOS33 [get ports {C[7]}]
```

Butoane externe:

```
##Buttons
113
114 | set property PACKAGE_PIN U18 [get ports ok]
115
       set property IOSTANDARD LVCMOS33 [get ports ok]
116
        set property CLOCK DEDICATED ROUTE FALSE [get nets ok]
117
118 | set property PACKAGE PIN T18 [get ports Op AND]
119
         set property IOSTANDARD LVCMOS33 [get ports Op_AND]
120
121 :
    set property PACKAGE PIN W19 [get ports Op OR]
122
        set property IOSTANDARD LVCMOS33 [get ports Op_OR]
123
124
     set property PACKAGE_PIN T17 [get ports Op_XOR]
125
         set property IOSTANDARD LVCMOS33 [get ports Op_XOR]
126
127
    set property PACKAGE PIN U17 [get ports Op NAND]
128
         set property IOSTANDARD LVCMOS33 [get ports Op NAND]
129
```

7. Descrierea pașilor de sinteză și testarea circuitului rezultat

- 1. S-a creeat un proiect nou in programul Vivado
- 2. S-a implementat modulul "Proiect_ALUv3" printr-o descriere comportamentala (avand drept "procese" 4 if statement-uri cu operatiile pe biti OR,AND,NAND,XOR.)
- 3. S-a editat fisierul de constrangeri in vederea realizarii legaturilor intre switch-uri si intrari(A,B), cele 5 butoane care au rolul de a alege operatia dorita cat si de a confirma selectia, led-urile de deasupra switch-urilor si iesirea C.
- 4. S-a realizat analiza RTL(Register Transfer Level)
- 5. S-a sintetizat modulul(pentru se vedea design-ul sintetizat)
- 6. S-a lansat implementarea proiectului care a avut ca efect final generarea fisierului bitstream.
- 7. S-a programat placa de dezvoltare BASYS 3 cu fisierul bitstream si s-a testat functionarea corespunzatoare a modulului implementat

8. Fotografii cu functionarea modulului

Primul numar: 01010101 Al doilea numar: 00110011

Operatia "AND":

Operatia "OR":

Rezultat: 01110111

Operatia "NAND":

Rezultat: 11101110

Operatia "XOR":

Rezultat: 01100110

9. Concluzii

In concluzie s-a implementat ca proiect 2 numere pe 8 biti, cu posibilitate de incarcare de la switch-uri a numerelor cu care putem implementa operatiile OR,AND,NAND,XOR, a carui iesire in urma alegerii unei operatii este conectata la led-urile de pe placa de dezvoltare BASYS3.

Bibliografie:

- 1. VHDL Reference Manual, http://www.ics.uci.edu/~jmoorkan/vhdlref/Synario%20VHDL%20Manual.pdf
- 2. BASYS 3 Reference Manual, https://reference.digilentinc.com/reference/programmable-logic/basys-3/reference-manual