POINT NORMAL TRIANGLES

Rick van Veen Laura Baakman December 14, 2015

Advanced Computer Graphics

GOURAUD

PN GEOMETRY

PN TRIANGLES

SINGLE PN TRIANGLE

OVERVIEW

GEOMETRY

From input to geometry control net

Input primitive

GEOMETRY - VERTEX COEFFICIENTS

$$b_{ijk} = (iP_1 + jP_2 + kP_3)/$$

$$b_{300} = P_1,$$

$$b_{030} = P_2,$$

$$b_{003} = P_3$$

GEOMETRY - VERTEX COEFFICIENTS

$$b_{ijk} = (iP_1 + jP_2 + kP_3)/3$$

 $b_{300} = P_1,$
 $b_{030} = P_2,$
 $b_{003} = P_3$

GEOMETRY - VERTEX COEFFICIENTS

$$b_{ijk} = (iP_1 + jP_2 + kP_3)/3$$

 $b_{300} = P_1,$
 $b_{030} = P_2,$
 $b_{003} = P_3$

GEOMETRY - TANGENT COEFFICIENTS

$$w_{ij} = (P_j - P_i) \cdot N_i \in \mathbb{R}$$

$$b_{210} = \frac{2P_1 + P_2 - w_{12}N1}{3}$$

$$\vdots$$

$$b_{201} = \frac{2P_1 + P_3 - w_{13}N1}{3}$$

GEOMETRY - TANGENT COEFFICIENTS

$$w_{ij} = (P_j - P_i) \cdot N_i \in \mathbb{R}$$

$$b_{210} = \frac{2P_1 + P_2 - w_{12}N1}{3}$$

$$\vdots$$

$$b_{201} = \frac{2P_1 + P_3 - w_{13}N1}{3}$$

GEOMETRY - CENTER COEFFICIENT

$$E = (b_{210} + b_{120} + b_{021} + b_{012} + b_{102} + b_{201})/6,$$

$$V = (P_1 + P_2 + P_3)/3$$

$$b_{111} = E + (E - V)/2$$

GEOMETRY - CENTER COEFFICIENT

$$E = (b_{210} + b_{120} + b_{021} + b_{012} + b_{102} + b_{201})/6,$$

$$V = (P_1 + P_2 + P_3)/3,$$

$$b_{111} = E + (E - V)/2$$

GEOMETRY

with control net point to curve (shading)

OVERVIEW

CUBIC PATCH

$$b: \mathbb{R}^2 \to \mathbb{R}^3, \text{ for } w = 1 - u - v, u, v, w \ge 0$$

$$b(u, v) = \sum_{i+j+k=3} b_{ijk} \frac{3!}{i!j!k!} u^i v^j w^k$$

$$= b_{300} w^3 + b_{030} u^3 + b_{003} v^3$$

$$+ b_{210} 3w^2 u + b_{120} 3w u^2 + b_{201} 3w^2 v$$

$$+ b_{021} 3u^2 v + b_{102} 3w v^2 + b_{012} 3u v^2$$

$$+ b_{111} 6w u v.$$

OVERVIEW

NORMALS

from input to more normals

Input primitive

NORMALS - THEORY

Why do we want to compute these normals?

Quadratic

NORMALS - THEORY

Why do we want to compute these normals?

NORMALS - EXAMPLE

Linear

Quadratic

NORMALS - THEORY

How to compute them

$$V_{ij} = 2 \frac{(P_j - P_i) \cdot (N_i + N_j)}{(P_j - P_i) \cdot (P_j - P_i)} \in \mathbb{R}$$

NORMALS - THEORY

How to compute them

$$v_{ij} = 2 \frac{(P_j - P_i) \cdot (N_i + N_j)}{(P_j - P_i) \cdot (P_j - P_i)} \in \mathbb{R}$$

$$h_{110} = N_1 + N_2 - V_{12}(P_2 - P_1)$$

NORMALS - RESULT

OVERVIEW

QUADRATIC PATCH

$$n: \mathbb{R}^2 \to \mathbb{R}^3$$
, for $w = 1 - u - v$, $u, v, w \ge 0$
 $n(u, v) = \sum_{i+j+k=2} n_{ijk} u^i v^j w^k$
 $= n_{200} w^2 + n_{020} u^2 + n_{002} v^2$
 $+ n_{110} wu + n_{011} uv + n_{101} wv$

LEVEL OF DETAIL

LOD verhaal

OVERVIEW

PROPERTIES

"Pn triangles should not deviate too much from the original triangle to preserve the shape and avoid interference with other curved triangles." ¹

¹Vlachos et al.

CONTINUITY

Continuity reference book.

PN triangles have:2

- C^1 continuity in the vertex points
- C^0 continuity everywhere else

²Jiao and Alexander

SHARP EDGES

SEPARATE NORMALS

Normals

Cracks

HARDWARE - PIPELINES

HARDWARE - PIPELINES

FIN.

Questions?

REFERENCES

- Xiangmin Jiao and Phillip J Alexander. "Parallel feature-preserving mesh smoothing". In: Computational Science and Its Applications—ICCSA 2005. Springer, 2005, pp. 1180–1189.
- J McDonald and M Kilgard. Crack-free point-normal triangles using adjacent edge normals. 2010.
- Alex Vlachos et al. "Curved PN triangles". In: Proceedings of the 2001 symposium on Interactive 3D graphics. ACM. 2001, pp. 159–166.