GMM, Indirect Inference and Bootstrap

Stochastic convergence and limit theorems

Willi Mutschler

TU Dortmund

Winter 2015/2016

Sequences of real numbers

- Convergence of real sequences: Let $a_1, a_2, ...$ be a sequence of real numbers
- The sequence $\{a_n\}_{n\in\mathbb{N}}$ converges to the limit a if for every (arbitrarily small) $\varepsilon>0$ there is a number $N(\varepsilon)$ such that

$$|a_n - a| < \varepsilon$$

for all
$$n \geq N(\varepsilon)$$

Notation:

$$\lim_{n\to\infty} a_n = a \quad \text{or} \quad a_n \to a$$

Sequences of random variables

Important questions:

- How can we transfer the idea of convergence to sequences of random variables?
- How can we visualize a sequence of random variables?
- What does convergence of sequences of random variables mean?
- Which sequences of random variables do we typically encounter in econometrics?

Sequences of random variables

• Let X_1, X_2, \ldots be random variables

$$X_i:\Omega\to\mathbb{R}.$$

Then X_1, X_2, \ldots is called a **sequence of random variables**

- X_1, X_2, \ldots are (countably infinite) multivariate random variables
- Formally, it is a sequence of functions (not real numbers)

Almost sure convergence

• A sequence $X_1, X_2, ...$ of random variables converges almost surely (fast sicher) to a random variable X, if

$$P\left(\left\{\omega: \lim_{n\to\infty} X_n(\omega) = X(\omega)\right\}\right) = 1$$

Notation

$$X_n \stackrel{a.s.}{\rightarrow} X$$

This definition of convergence is not very important in econometrics

Convergence in probability

• A sequence $X_1, X_2, ...$ of random variables converges in probability (nach Wahrscheinlichkeit) to a random variable X, if

$$\lim_{n\to\infty}P\left(|X_n-X|<\varepsilon\right)=1$$

Notation

$$X_n \stackrel{p}{\rightarrow} X$$
 $plim X_n = X$

This definition of convergence is very important in econometrics

Convergence in probability

- Special case: convergence in probability to a constant
- A sequence $X_1, X_2, ...$ of random variables converges in **probability** to a constant $a \in \mathbb{R}$, if

$$\lim_{n\to\infty}P\left(\left|X_{n}-a\right|<\varepsilon\right)=1$$

Notation

$$X_n \stackrel{p}{\rightarrow} a$$

$$plim X_n = a$$

This special case is very often encountered in econometrics

Convergence in distribution

• A sequence X_1, X_2, \ldots of random variables with distribution functions F_1, F_2, \ldots converges in distribution (weakly; in law; nach Verteilung) to a random variable X with distribution function F, if

$$\lim_{n\to\infty}F_n(x)=F(x)$$

for all $x \in \mathbb{R}$ where F(x) is continuous

Notation

$$X_n \stackrel{d}{\to} X$$

Rules of calculus

• Let $plim X_n = a$ and $plim Y_n = b$, then

$$plim (X_n \pm Y_n) = a \pm b$$

$$plim (X_n Y_n) = ab$$

$$plim \left(\frac{X_n}{Y_n}\right) = \frac{a}{b}, \quad \text{if } b \neq 0$$

If a function g is continuous in a, then

$$plim g(X_n) = g(a)$$

Rules of calculus

• If $Y_n \stackrel{d}{\to} Z$ and h is a continuous function, then

$$h(Y_n) \stackrel{d}{\rightarrow} h(Z)$$

• Cramér's theorem: If $X_n \stackrel{p}{\to} a$ and $Y_n \stackrel{d}{\to} Z$, then

$$X_n + Y_n \stackrel{d}{\to} a + Z$$
$$X_n Y_n \stackrel{d}{\to} aZ$$