2014 前期 数理社会学 I

4月18日(金) 1・2時限目 第2回目進化生態学の基礎1 担当:中丸 麻由子

講義室 W934に変更

前期授業スケジュール・予定

回	日にち	講義内容		
1	4/11	ガイダンス		
2	4/18	進化生態学基礎		
3	4/25	進化ゲーム		
4	5/2	進化ゲーム		
5	5/9	進化ゲーム・採餌行動		
6	5/23	採餌行動		
7	5/30	性比•性転換	進	化生態学の基本
8	6/6	性選択	+,	人への適用例
9	6/13	血縁淘汰		
10	6/20	人の性選択・人の血縁淘汰		
11	6/27	協力の進化		
12	7/4	協力の進化		
13	7/11	遺伝と多様性		
14	7/18	予備日・テスト範囲説明		
15	7/25	テスト日		

成績について 100点満点

- 出席点 30点×(出席回数/講義回数)
 - 毎回、講義の確認を兼ねた小問題で出席確認
- テスト 50点満点
- 文献を読む 20点(必修)
 - -小田亮(2011)「利他学」新潮選書
 - アマゾンで中身を閲覧できます!
 - 締め切り: 6月27日(金) 西9号館レポート ボックス
 - -A4 2-3枚。自由記述。

小田亮(2011)「利他学」

小田亮(2011)「利他学」裏表紙

大災害と知り、あなたはどう行動しようと思っただろうか?

自分の遺伝子を後世に残すことが生物の最大の目的ならば、なぜ人は見ず知らずの他人のために命を落とすことがあるのか? 自分の損失になるのに、なぜ震災の被災者に物資や義援金を送るのか? 生物学、心理学、経済学、哲学などの知見を総合して、こうした不可思議なヒトの特性を解明する。「情けは人の為ならず」が、実は人類の進化に大いに関係しているのだ。

進化生態学一般

進化生態学の一般的な知識の説明。 人間行動・社会研究にどう適応出来 るのか考えてみる。

自然選択説とその周辺

- (1) 自然選択による進化について
- (2)性選択
- (3)獲得形質の遺伝について
- (4)進化への誤解
- (5)種の保存について
- (6)群淘汰(群選択)
- (7)自然環境、社会環境の影響 (遺伝と多様性、7月下旬)

マーティン&ベイトソンによる生物 への4つのなぜ?

- •「なぜ、赤信号で車は止まるのか?」
 - 至近要因:赤い光に脳が刺激されブレーキを踏 むから
 - 発生要因:自動者教習所で教え込まれたから
 - 歴史要因:赤で止まるという規則が歴史的に成立 したから
 - 究極要因:止まる方が有利(安全)だから

人の場合もこの問いはあてはまるだろう。 いままでは、究極要因の研究が少なすぎた。 自然選択説

例として・・

- ・親による子の世話
- 道徳性(出席課題)

長谷川眞理子(2002)「生き物をめぐる4つの「なぜ」」集英社新書を参考にしている

親による子の世話

- ・ 至近要因(ほ乳類の場合)
 - 繁殖に関するホルモン
 - 妊娠の成立と維持:プロゲステロンやエストロゲンの仲間
 - ・分娩前から
 - 一プロゲステロンのレベルが急減し、エストロゲンのレベルが上がる。そしてプロラクチンの増加
 - →赤ちゃんの世話行動
 - 子の母親への働きかけも重要
 - 雄(父親)の子育て
 - プロラクチン量(カルフォルニアネズミ、マーモセット)
 - 母親>父親>これから父親になる雄

親による子の世話

- 究極要因
 - 世話行動の進化をさぐる
 - トレードオフがある
 - 子育てにより子供の生存率の上昇
 - 子育ての(時間、エネルギー)コスト
 - メス/オスでの非対称性
 - オス:子育てをすると、他のメスとの交尾可能性が減る
 - メス:出産や子育てに非常に労力がかかる
 - 講義にて有名なゲーム理論モデルを紹介する

長谷川眞理子(2002)「生き物をめぐる4つの「なぜ」」

親による子の世話

- 発達要因
 - 子育ての発達について
 - 経験によって子育てのスキルは上昇
- 系統要因(歴史)
 - 世話の無い状態からどのような道筋を経て、世話は進化したのか?
 - 異なる動物の系統で何度も独立に進化

長谷川眞理子(2002)「生き物をめぐる4つの「なぜ」」

道徳性

- ・ 道徳の本質
 - 自己と他者との間で葛藤が存在する時、自己の 適応度(生存率、繁殖率)の最適化を抑えて、他 者の適応度の増大をはかることにあるだろう

4月19日出席確認課題

「マーティン&ベイトソンによる生物への4つのなぜ?」に即して、道徳性の起こる4つの要因を説明すること

自然選択による進化の起こるための3つ

- 変異
 - 個体間である性質の違い
- 選択
 - 性質の異なる個体間では、残す子の数の平均や 子の生存率が違う
- 遺伝
 - その性質は遺伝する(次世代へ伝わる)

自然選択による進化

自然選択による進化が生じない場合

ランダムな浮動による進化

変異と遺伝のみ必要。淘汰はいらない。

小集団で起こりやすい

野生型も変異型も同じ出産率だが(淘汰なし)、 たまたま変異型が多く子を残す あるいは、野生型の子が少ない

変異

適応度の定義

ある遺伝的性質を持った型(遺伝子型)の個体が、1個体あたり次世代に残す子の数の平均

X

繁殖齢に達した個体が残す 子供の数の平均

子の繁殖齢まで の生存率

ライフサイクルが一周したら、 ある遺伝的性質を受け継ぐ 個体が何倍になっているのか を示す言葉でもある

酒井など「生き物の進化ゲーム」page 8より

子。 死亡 自然選択 聚殖齢 死亡 n+1 世代

性選択(性淘汰)

配偶者を得る上で有利な性質の進化

自然選択では説明できない形質の進化を 説明できる

例)クジャクの雄の羽

(現代の進化生物学では、性淘汰は自然選択の一部であると見なされている)

獲得形質の遺伝(ラマルク)との違い

ダーウィンの遺伝

獲得形質の遺伝(ラマルク)

次世代

生殖細胞(卵、精子)中の遺 伝子に変異が無ければ、次世 代には遺伝しない。

放射能によって生殖細胞に変異が起こると→遺伝(ただし、癌である場合が多い:生存率を下げる)

ある形質を獲得し、それが そのまま次世代へ伝わる

文化継承のモデル

文化と遺伝子

文化形質が繁殖率や生存率に影響

自然選択説と誤解

自然選択説とその周辺2

- (1)自然選択による進化について
- (2)性選択
- (3)獲得形質の遺伝について
- (4)進化への誤解
- (5)「種の保存」は間違っている
- (6)群淘汰(群選択)
- (7)自然環境、社会環境の影響 (遺伝と多様性、7月下旬)

進化への誤解

- ・進化には目的はない
 - 変異には目的無し。遺伝子上の化学的変化
- 進化 is not 進歩
- 何年後かすればチンパンジーは人になる?→そんな分けない!
 - チンパンジーと人の系統樹は600万年前にわか れた
- 進化はただの解釈ではない

種の保存 1

種の利益のために行動する遺伝子は進化しない

有名な例)レミング: 齧歯類 レミングは数が増えすぎると、種の保存のために集団自殺し、個 体数を減らして種の存続を図る

(「進化と人間行動」75ページ)

間違っている!!

実際は。。

自殺していると人が勝手に解釈。

数が増え過ぎる→その場での、自分の繁殖がうまくいかなくなる →自分の新たな繁殖機会を増やすために

別の場所へ移動→途中で不慮の事故に遭遇

種の保存 2

- 種の保存が間違っていることを示す例(1)
 - 遺伝子A:「種の利益を優先させるために個体の利益を犠牲にする」
 - 遺伝子 B:「種の利益を優先させずに個体の利益 を優先させる」

- 遺伝子Bが残る!!
 - ・「進化と人間行動」75ページの図

第4章 「利己的遺伝子」と「種の保存」

THE FAR SIDE

By GARY LARSON

「進化と人間行動」 75ページ

図4.1 レミングの死への行軍のパロディ (ゲイリー・ラーソン画)

種の保存3

両方いると・・

突然変異によってAばかりの集団にBが生じる Bの集団から移動してくる

酒井など「生き物の進化ゲーム」より

群淘汰とは?一まずは例から一

白形質が多いと

赤が多いのに・・

参考: 粕谷英一「行動生態学入門」東海大学出版社

群淘汰

よく見ると、集団内にサブグループがあったのだった

サブグループ内で、白の形質が多いとき、 白同士で相互作用をすることで適応度があがる時

白集団の方が集団増殖率が高い、と仮定すると、

白形質は進化

集団内で、白サブグループが大きくなり・・

群淘汰で白が進化

群淘汰

集団内の構造がポイント 空間構造のために、隣接個体としか相互作用しない 社会構造があり、似た個体と交流しやすい (人で言えば、同じ職業)

その結果、群淘汰(グループセレクション)は生じる

「種の保存」と混合されていたが、違うものである。

参考: 粕谷英一「行動生態学入門」東海大学出版社