Non-Negative Matrix Factorization

Overview

- What is NMF?
- Popular Applications
 - Document Clustering
- Deeper Dive into Mechanics

What is NMF?

Non-negative Matrix Factorization (NMF)

Matrix $V_{m \times n}$ where each entry $v_{ij} \ge 0$

$$W * H = V$$

also $w_{ij} \ge 0$ $h_{ij} \ge 0$

- Cannot be solved analytically, so approximated numerically
- r set by user;r < min(m,n)

- Notice the columns of V are sum of columns of W weighted by corresponding column in here $v_i=W*h_i$
- NMF is a relatively new way of reducing dimensionality of data into linear combination of bases
 - Columns of W as basis, weighted by hi
- Non-negativity constraint
 - Unlike the decompositions we've looked at thus far

Popular Applications

- Computer Visioning
 - Identify / classifying objects
 - Generally reducing feature space of images

- Document Clustering
 - This afternoon!
- Recommender systems
 - In just 2 days!

Document Clustering with NMF

$$V = W * H$$

Think of column of W as <u>document archetype</u> where the higher the word's cell value, the higher the word's rank for that latent feature.

Think of column of H as the <u>original</u> <u>document</u>, where cell value is document's rank for a particular latent feature.

Recall
$$v_i = W * h_i$$

Think of <u>reconstituting a particular document</u> as linear combination of "document archetypes" weighed by how important they are.

Mechanics

Minimize $||V - WH||^2$ with respect to W and H subject to W, $H \ge 0$

<u>Steps</u>

- (1) Start with some random W and H
- (2) Repeatedly adjust W and H to make RMSE smaller

$$H_{a\mu} \leftarrow H_{a\mu} \frac{(W^T V)_{a\mu}}{(W^T W H)_{a\mu}} \qquad W_{ia} \leftarrow W_{ia} \frac{(V H^T)_{ia}}{(W H H^T)_{ia}}$$

- Lee and Seung's popular "multiplicative update rules" offers compromise between speed and implementation.
- Gradient descent is simple but can be slow. Also convergence sensitive to choice of step size.
- (3) Stop when some threshold is met
 - Decrease in RMSE, # of iterations, etc.

Questions

- What parameter choice must you make before performing NMF?
- When doing document clustering using NMF...
 - What does a column in the W matrix represent?
 - What does a column in the H matrix represent?
 - How do we combine W and H to reconstitute a document in V (column in V)?

Appendix

Update rule:

Basic idea: multiply current value by a factor depending on the quality of the approximation.

If ratio > 1, then we need to increase denominator.

If ratio < 1, then we need to decrease denominator.

If ratio = 1, do nothing.

PCA

Unsupervised dimensionality reduction

Orthogonal vectors with positive and negative coefficients

"Holistic"; difficult to interpret

Non-iterative

NMF

Unsupervised dimensionality reduction

Non-negative coefficients

"Parts-based"; easier to interpret

Iterative (the presented algorithm)