User Manual/Instruction

Instruction

The folder "Project Code" consists of three R Markdown files:

- 1. Data & RDS file Preperation.Rmg
- 2.1 Single Merchant.Rmd
- 2.2 Two Merchants.Rmd

In each R Markdown file, sections marked with "(Editable)" require user input, typically prefilled with "XXXXX". To navigate the files, open the Outline on the right side of the interface and click on the sections you wish to execute.

Flow diagram

Metric Specifications

Before delving into predictive modeling, it's crucial to define and accurately compute relevant metrics from the raw data. The table below outlines the metrics critical for evaluating merchant performance and customer behavior. Metrics like 'Total Sales', 'Total Customers', and 'Average Transaction Value' (ATV) provide direct insights into revenue and customer engagement. Customer dynamics are analyzed through metrics like 'Retention Rate', 'New Customer Rate', and 'Reactivated Rate', crucial for understanding customer engagement trends.

These preparations ensure our models are built on a solid foundation of accurately measured data, supporting strategic decision-making with robust, data-driven insights.

Ⅲ Table

Aa Metric	≡ Formula	☐ Coded in R markdown?	
Year_Period	CALENDARDAY (aggregated by year)	Done	
Total_Sales_	sum(TRXN_ARTICLE_VALUE)	Done	
Total_Customer	n_distinct(SUBSCRIBERKEY)	Done	
Total_Transactions	n_distinct(TRXNID)	Done	
ATV (Average Transaction Value)	Total_Sales / Total_Transactions	Done	
ATF (Average Transaction Freq.)	Total_Transactions / Total_Customer	Done	
AS (Average Spend)	Total_Sales / Total_Customer	Done	
Program_Penetration (by month)	Total_Customer / Total_Subscribers (Total_Subscribers is the total count of unique SUBSCRIBERKEYs in the database)	No avaliable data	
Scan_Rate	Not directly mapped, requires additional context for calculation	No avaliable data	
Redemption_Rate	Not directly mapped, requires additional context for calculation	No avaliable data	
Retention_Rate (by month)	(Number of Customers whose Join Month equals Transaction Month) / (Total Unique Customers in Transaction Month)	Done	
New_Customer_Rate (by month)	(Customers active in both the current and previous months) / (Total Unique Customers in the previous month)	Done	
Reactivated rate (by month)	(Customers with a transaction after a gap of at least 1 month) / (Total Unique Customers in that month)	Done	
Retained rate	1 - Reactivated Rate + New Customer Rate	Correlated	
Churn	1 - Retention Rate	Correlated	
One_time_Purchase_Rate	sum(ifelse(Total_Transactions == 1, 1, 0)) / Total_Customer	No avaliable data	

Model Specifications

1. To proceed, select and execute one of the following modelling approaches:

1.1 Scaling absolute values and omitting NA for numeric columns

Remove NA values and drop the YYYYMM column if it's not needed for modeling model_data_clean <- combined_data %>% na.omit() %>% dplyr::select(-YYYYMM) # Scale only numeric columns # Identify numeric columns numeric_columns <- sapply(model_data_clean, is.numeric) # Apply scaling to numeric columns only model_data_clean[numeric_columns] <- scale(model_data_clean[numeric_columns]) # Convert back to a data frame if it was converted to a matrix by scale() model_data_clean <- as.data.frame(model_data_clean)

1.2 Calculate Lift and omit NA for numeric columns

```
model_data_clean <- combined_data %>% group_by(Merchant) %>% # for dataset with two merchants mutate(across(where(is.numeric),
    ~ifelse(lag(.x) == 0 | is.na(lag(.x)), NA, .x / lag(.x) - 1))) %>% ungroup() model_data_clean <- na.omit(model_data_clean)</pre>
```

2.1 Splitting training and test data sets

75% of the data is randomly split into training set, the remaining 25% is used as the test set

2.2 Prepare data for Ridge and LASSO Regression

We split the data again for Ridge and LASSO regression. This step ensures that our models have the correct input format for efficient computation and accurate predictions.

You may modify the model formula, for instance, by setting Total_Customer as the dependent variable.

3. Run all for all the predictive models.

OLS Regression

A linear regression model with **Total_Sales** as the dependent variable.

The model is trained on the train dataset.

You may modify the model formula, for instance, by setting Total_Customer as the dependent variable.

Ridge Regression

It is a variable selection method that could handle multicollinearity in data (correlation in variables).

This code finds the optimal lambda, shrinks coefficients close to 0, refits the model, and makes predictions on the test set.

75% of the sample size smp_size <- floor(0.75 * nrow(model_data_clean)) ## set the seed to make your partition reproducible
set.seed(1234) train_ind <- sample(seq_len(nrow(model_data_clean)), size = smp_size) train <- model_data_clean[train_ind,] test <model_data_clean[-train_ind,]</pre>

For the training set x_train <- model.matrix(Total_Sales ~ Total_Customer + Total_Transactions + ATV + AS + ATF + New_Customer_Rate + Reactivated_Rate + Retention_Rate - 1, data = train) y_train <- train\$Total_Sales # For the test set x_test <- model.matrix(Total_Sales ~ Total_Customer + Total_Transactions + ATV + AS + ATF + New_Customer_Rate + Reactivated_Rate + Retention_Rate - 1, data = test) y_test <- test\$Total_Sales # Case for Total_Customer as a dependent variable # For the training set x_train <- model.matrix(Total_Customer ~ Total_Sales + Total_Transactions + ATV + AS + ATF + New_Customer_Rate + Reactivated_Rate + Retention_Rate - 1, data = train) y_train <- train\$Total_Customer # For the test set x_test <- model.matrix(Total_Customer ~ Total_Sales + Total_Transactions + ATV + AS + ATF + New_Customer_Rate + Reactivated_Rate + Reactivated_Rate + Retention_Rate - 1, data = test) y_test <- test\$Total_Customer

```
lm_model_train <- lm(Total_Sales ~ Total_Customer + Total_Transactions + ATV + AS + ATF + New_Customer_Rate + Reactivated_Rate +
Retention_Rate, data = train) # Case for Total_Customer as a dependent variable | lm_model_train <- lm(Total_Customer ~ Total_Sales +
Total_Transactions + ATV + AS + ATF + New_Customer_Rate + Reactivated_Rate + Retention_Rate, data = train)</pre>
```

Perform cross-validation for Ridge Regression on the training data cv_fit_ridge <- cv.glmnet(x_train, y_train, alpha = 0) # Get the optimal lambda for Ridge from the training data lambda_min_ridge <- cv_fit_ridge\$lambda.min # Refit the Ridge Regression model using the optimal lambda on the training data model_ridge <- glmnet(x_train, y_train, alpha = 0, lambda = lambda_min_ridge) # Use the fitted Ridge model to make predictions on the test set predictions_ridge <- predict(model_ridge, s = lambda_min_ridge, newx = x_test)

LASSO Regression

It is a method that performs both variable selection and regularization to enhance the prediction accuracy and interpretability.

It does this by shrinking the coefficients of less important features to exactly 0, effectively eliminating them from the model.

Perform cross-validation for Lasso Regression on the training data cv_fit_lasso <- cv.glmnet(x_train, y_train, alpha = 1) # Get the optimal lambda for Lasso from the training data lambda_min_lasso <- cv_fit_lasso\$lambda.min # Refit the Lasso Regression model using the optimal lambda on the training data model_lasso <- glmnet(x_train, y_train, alpha = 1, lambda = lambda_min_lasso) # Use the fitted Lasso model to make predictions on the test set predictions_lasso <- predict(model_lasso, s = lambda_min_lasso, newx = x_test)

Random Forest

it is a machine learning method capable of performing both regression and classification tasks.

The code trains a Random Forest model on the training data, and then uses this model to make predictions on the test set.

Neutral Network

Designed to recognize patterns by algorithms modeled after the human brain, the code fits a neural network model to the training data, and then uses this model to make predictions on both the training and test sets.

rf_model <- randomForest(Total_Sales ~ Total_Customer + Total_Transactions + ATV + AS + ATF + New_Customer_Rate + Reactivated_Rate + Retention_Rate, data = train, importance = TRUE) # Use the fitted model to make predictions on the test set predictions_rf <- predict(rf_model, newdata = test)

Fit a neural network model nn_model <- nnet(Total_Sales ~ Total_Customer + Total_Transactions + ATV + AS + ATF + New_Customer_Rate + Reactivated_Rate + Retention_Rate, data = train, size = 15, # Increased number of units in the hidden layer linout = TRUE, # Linear output neurons decay = 0.01, # Adding weight decay to prevent overfitting maxit = 500) # Increased max iterations for more training # Predict on the training set train_predictions_nn_complex <- predict(nn_model, newdata = train, type = "raw") # Predict on the test set predictions_nn <- predict(nn_model, newdata = test, type = "raw")

Visualization Plots

Line Plots track data changes over time, highlighting trends and anomalies.

Seasonal Plots illustrate patterns within each month, showing deviations from typical seasonal behaviors.

Seasonal Subseries Plots enable the underlying seasonal pattern to be seen clearly, and changes in seasonality over time to be visualized.

■ Visualization Plots							
Aa Name		Plot type	Ø Files & media				
<u>1</u>	МЈВ	Line Plot					
<u>2</u>	МЈВ	Seasonal Plot					
<u>3</u>	МЈВ	Seasonal Subseries Plot					
<u>4</u>	Forever New	Line Plot					
<u>5</u>	Forever New	Seasonal Plot					
<u>6</u>	Forever New	Seasonal Subseries Plot					
<u>7</u>	Spotlight	Line Plot					
<u>8</u>	Spotlight	Seasonal Plot					
<u>9</u>	Spotlight	Seasonal Subseries Plot					
<u>10</u>	Synthetic	Line Plot					
<u>11</u>	Synthetic	Seasonal Plot					
<u>12</u>	Synthetic	Seasonal Subseries Plot					

Model Performance

Aa Name	Merchant		Method	# R-squared on Test set	# MAE on Test set	# RMSE on Test set	
<u>1</u>	МЈВ	OLS Linear Regression	Absolute Scale	0.987196352994771	0.0732405546654706	0.088003361391959	
2	МЈВ	OLS Linear Regression	Lift	0.97926817991676	0.0158882623005136	0.0204145620429069	
<u>3</u>	МЈВ	Ridge Regression	Absolute Scale	0.970882344469285	0.0964750922284649	0.13271212913077	
<u>4</u>	МЈВ	Ridge Regression	Lift	0.944982863160178	0.0250265513729297	0.0332560254956158	
<u>5</u>	МЈВ	LASSO Regression	Absolute Scale	0.981748710261208	0.08876948597414	0.105070111841379	
<u>6</u>	МЈВ	LASSO Regression	Lift	0.964307634263198	0.0192719588926407	0.026786071206212	
<u>7</u>	МЈВ	Random Forest	Absolute Scale	0.90674515295867	0.196746380786792	0.237502465187024	
8	МЈВ	Random Forest	Lift	0.802893039007624	0.0466361284311704	0.0629466080684115	
9	МЈВ	Neural Network	Absolute Scale	0.992137789389171	0.0246228557483691	0.0689611906918178	
<u>10</u>	МЈВ	Neural Network	Lift	0.951887462626349	0.020842498816342	0.0310992905956767	
<u>11</u>	Forever New	OLS Linear Regression	Absolute Scale	0.972599748984071	0.103794918136639	0.223252215707665	
<u>12</u>	Forever New	OLS Linear Regression	Lift	0.997634051813743	0.0113059228639219	0.0159850412891577	
<u>13</u>	Forever New	Ridge Regression	Absolute Scale	0.99236948245244	0.0865133844229934	0.117813621155274	
<u>14</u>	Forever New	Ridge Regression	Lift	0.998504210386187	0.0105212613356203	0.0127100249864247	
<u>15</u>	Forever New	LASSO Regression	Absolute Scale	0.996661933000234	0.0585284045698689	0.0779230659263861	
16	Forever New	LASSO Regression	Lift	0.997541642928562	0.0128901819783543	0.0162942220146016	