

MRC 랩업 리포트

- 1. Task 소개 및 그라운드 룰
- 2. **실험 환경 설정**
- 3. **데이터**
- 5. **모델링**
- 6. 앙상블
- 7. References
- 8. **자체 평가 의견**
- 9. <u>개인 회고</u>

1. Task 소개

• Open-Domain Question Answering(ODQA)는 질문에 관한 지문이 사전에 존재하지 않고 구축 되어 있는 knowledge resource 에서 질문에 대답할 수 있는 문서를 찾아 다양한 종류의 질문에 대답하는 인공지능을 만드는 Task 입니다.

Linking MRC and Retrieval: Open-domain Question Answering (ODQA)

ODQA: 지문이 따로 주어지지 않음. 방대한 World Knowledge에 기반해서 질의응답

- 평가 방법
 - Exact Match(EM): 모델의 예측과 실제 답이 정확하게 일치할 때만 점수가 주어짐
 - 。 **F1-Score**: EM과 다르게 겹치는 단어도 있는 것을 고려해 부분 점수를 받음

팀 구성 및 역할

- 이효정(PM): 프로젝트 역할 분담 및 진행 상황 관리, Reader 모델링
- 정지훈(Data): 데이터 분석 및 증강, 후처리 담당
- 김진호(Research): 리서치 및 Dense Retriever 구현 및 훈련
- 신혜진(Code review): 코드 리뷰, Sparse Retriever, Reader 모델링
- 이상문(Code review): 코드 리뷰, Dense Retriever 구현 및 훈련

수행 절차

• 팀 리포지토리는 Git-Flow 규칙에 따라 관리 (Git-flow를 간소화하여 feat → dev → master 로)

- 커밋 메시지 알아보기 쉽게 룰에 따라 작성
- Zoom 필수 접속 시간 외에 Gather, Slack을 이용하여 자유롭게 소통
- Notion의 각자의 실험결과를 정리하여 공유하기

2. 실험 환경 설정

- 모델 학습을 위해서 Huggingface Trainer 사용
- 모델별 성능을 확인하기 위해서 Weight & biases 사용
- 모델의 hyper-parameter search를 위해서 Wandb Sweep 사용

Project Directory 구조

```
├─_<mark></mark>config
    └─ base_config.yaml
├──<mark></mark>data_loaders
├── data_loader.py # reader모델을 위한 데이터셋 로드 및 전처리
   -dataset # huggingface load_dataset으로 불러오는 데이터셋
    ├──≝test_dataset
├──≝train_dataset
    ├────train_dataset
├── wikipedia_documents.json # retriever가 검색할 문서 corpus
     — dense_retrieval.py
— hard_negative.py
— dense_train.py
      elastic_retrieval.py
     ├── elasile_retrieval.py
├── faiss_retrieval.py
├── retrieval.py # retriever만 테스트할 때 실행
└── sparse_retrieval.py
      ├─ mlm.py
     ├── ssm.py
├── spm.py
└── pretrained # pretrained 모델 저장 경로
    🃁 models # reader 모델이 저장되는 경로.
     <u></u>18-14-42
          18-14-42

├── eval # train_eval dataset inference 결과

├── pred # test dataset inference 결과

├── nbest_predictions.json # soft voting에 사용

├── predictions.json # 제출
           ☐ prediction
☐ pytorch_model.bin
├──≝trainer
| └── trainer_qa.py
      └─ utils_qa.py
README.md
├─ arguments.py
├─ requirements.txt
├─ run_mrc.py
├─ run_retrieval.py
└─ train.py → train 코드
```

3. 데이터

▼ EDA

MRC 대회에서 주어진 데이터는 다음과 같음

1					
I	분류(디렉토리 명)	세부 분류	샘플 수	용	공개여부
	train dataset	train	3952	학습용	모든 정보 공개 (id, question, context, answers,
1	train_dataset	validation	240	700	document_id, title)
I	test_dataset	validation	240 (Public)	제출용	id, question 만 공개
l		validation	360 (Private)	세월등	iu, question E 8/II

MRC 랩업 리포트 2

각각 train data와 valid data의 answer, context, question 컬럼에 대하여 describe() 를 통하여 기초 통계를 확인하였더니 별다른 특징은 없었음.

	ans_start	ans_len	ctx_len	qu_len
count	3952.000000	3952.000000	3952.000000	3952.000000
mean	376.794028	6.275051	920.220648	29.322368
std	309.122555	5.346842	356.500514	8.727421
min	0.000000	1.000000	512.000000	8.000000
25%	138.000000	3.000000	645.000000	23.000000
50%	310.000000	5.000000	819.000000	29.000000
75%	538.000000	8.000000	1099.250000	35.000000
max	1974.000000	83.000000	2059.000000	78.000000

train dataset 기초 통계

	ans_start	ans_len	ctx_len	qu_len
count	240.000000	240.000000	240.000000	240.000000
mean	391.516667	6.912500	916.725000	29.195833
std	311.943965	6.858755	360.032122	8.728301
min	0.000000	1.000000	517.000000	9.000000
25%	154.000000	3.000000	616.750000	23.000000
50%	317.000000	5.000000	820.500000	29.000000
75%	536.000000	8.000000	1107.250000	35.000000
max	1429.000000	64.000000	2064.000000	59.000000

valid dataset 기초 통계

train과 valid의 context 컬럼의 **length**에 대한 분포를 각각 확인하였음.

→ context 길이는 대부분 **1000 이하**로 이루어져 있음.

train과 valid의 answer 컬럼 **start index**에 대한 분포를 각각 확인하였음.

→ answer start index 도 역시 대부분 **1000 이하**로 이루어져 있음.

wikipedia document 내 특수문자

1. 한문, 일어, 러시아어 : (靑空文庫, あおぞらぶんこ, раф Лев Никола́евич)

2. 개행문자 : \n, \n\n

3. 괄호: 《》, 〈〉,()

4. 기타 문자 : ・, 『』, ⑥, ↑, ≪, °, ç, *, **, ", '

→ wikipedia document 내 특수문자가 존재하지만 tokenizer에서 [UNK]로 나와 따로 처리 X

wikipedia document 문서를 text 기준으로 중복을 제거

60613 → 56737로 줄어듦

▼ Post processing

모델 예측 결과, 단어나 문장 끝에 조사가 함께 나오는 경우가 드물게 있음.

konlpy 라이브러리의 Mecab, Hannanum, Okt을 사용하여 예측된 결과의 형태소 분석을 진행함.

- 1. 예측 결과를 형태소 단위로 분리
- 2. 예측 결과가 조사로 끝나는 경우 조사를 제거

4. Retriever

▼ Sparse Retriever

• Elastic Search 기본 세팅

filter : shingle tokenizer : nori_tokenizer decompound_mode : mixed similarity : BM25

- Retriever별 top-k 성능 비교
 - ∘ 각 Top-1, 5, 10, 30, 50, 100 별로 성능을 비교

	Top-1	Top-5	Top-10	Top-30	Top-50	Top-100
TF-IDF	0.2791	0.5833	0.6666	0.8000	0.8458	0.9041
FAISS	0.0750	0.0916	0.0916	0.1083	0.1125	0.1166
Elastic BM25	0.5916	0.8666	0.9166	0.9625	0.9666	0.9791

- topk, similarty, wiki 데이터 전처리를 다양한 형태로 실험해봄
 - o reader model은 klue/roberta-large 고정

Sparse Retriver setting \ 리더보드 public score	EM	F1-score
TF_IDF topk30 + normal wiki_document data	56.25	67.45
Elastic Search BM25 topk50 + normal wiki_document data	61.25	71.41
Elastic Search BM25 topk25 + normal wiki_document data	62.92	73.27
Elastic Search BM25 topk20 + normal wiki_document data	63.33	73.62
Elastic Search DFR topk20 + wiki_document data(전처리 + 제목)	65.00	75.34
Elastic Search BM25 topk20 + wiki_document data(전처리 + 제목)	65.00	75.34

- TF_IDF 보다는 Elastic Search가 월등한 성능을 보여줌
- topk는 20이 제일 좋은 성능을 보여주었으며 topk가 20에서 증가할 수록 성능은 떨어졌음
- 이전 기수에서는 bm25보다는 DFR이 조금 더 나은 성능을 보여주었다고 하였으나 이번 대회에서는 성능상에 차이점을 발견하지 못함 ⇒ 이후 BM25를 계속 사용하기로 결정
- wiki document에 간단한 전처리와 제목을 붙여주니 성능이 소폭 증가함 ⇒ 제목에 정답과 근접한 키워드가 많이 포함이 되어있다라고 추측

▼ Dense Retriever

- 본 대회 특성상 Sparse Retriever가 성능이 매우 좋게 나오나 Sparse Retriever로 커버가 불가능한 question들이 존재
 - 。 '프랑크 왕족의 무덤의 위치는?'이라는 query에 '전라북도 고성군'이라는 응답이 나옴
 - 단어 기반의 유사도 알고리즘으로는 찾을 수 없는 정답이 포함된 passage들이 있음을 추측함
- 'Dense Passage Retrieval for Open-Domain Question Answering' 논문을 참조하여 in-batch-negative와 hard negative 기반의 Dense Passage Retriever를 실험
 - ∘ 대회에서 제공하는 기본 데이터로 DPR을 학습 및 검증 (train : 3952, valid : 240)
 - hard negative는 하나의 question에 대하여 Elastic Search로 가장 유사한 passage 2개(top2)중에서 하나를 hard-negative passage로 추가
 - top1, top2중에서 top1이 정답 passage일 경우 ⇒ top2를 hard-negative로 추가
 - top2가 정답이거나 정답이 top1, top2중에 없을 경우 ⇒ top1을 hard-negative로 추가

setting\accuracy	top-1	top-5	top-30	top-50	top-100
in-batch-num_neg 3	0.1167	0.3167	0.4500	0.5250	0.6458
in-batch-num_neg 7	0.2000	0.3542	0.5750	0.6083	0.6875
in-batch-num_neg 3 + hard_negative	0.1917	0.3542	0.5375	0.5792	0.6375
in-batch-num_neg 7 + hard_negative	0.2208	0.4124	0.6125	0.6375	0.7000

- 추가적으로 squad 데이터셋을 추가적으로 활용하여 DPR을 훈련함
 - 。 기본 훈련세트에 squad 데이터 세트 3000개를 추가로 훈련함

setting\a	ccuracy	top-1	top-5	top-30	top-50	top-100

5

in-batch-num_neg 5	0.3542	0.5083	0.7250	0.8042	0.8667
+ hard_negative					

• Dense Retriever 단독으로는 성능이 나오지 않아 Sparse Retriver와 앙상블로 이용함

▼ Re-Ranking

- Sparse Retriver와 Dense Retriver에서 각각 top 20개의 passage를 뽑아서 유사도 점수를 기준으로 Re-Ranking을 하여 다시 top passage 를 선정함
 - o Sparse Retriver
 - 위의 세팅과 동일하게 사용 + wiki document(전처리 + 제목)
 - bm25 score를 사용함(score range : 60 ~ 0)
 - o Dense Retriever
 - 가장 성능이 좋았던 Dense Retriever 사용
 - dot_prod_scores를 사용(score range: 250 ~ 120)
 - \circ 수식 : argsort(Sparse Retriver Scores* α , Dense Retriver Scores*(1- α))

setting \ score	EM	F1
($lpha$ =0.1), after re-rank top 20	60.83	73.48
($lpha$ =0.1), after re-rank top 30	64.58	76.46

- Sparse Retriver 실험때와는 달리 top 30 passage가 더 성능이 좋았으나 Sparse Retriver를 단독으로 사용했을 때보다 성능이 떨어짐
 - 추후 Sparse Retriver만 단독으로 사용해서 달성한 sota 모델의 결과와(EM:65)
 Sparse Retriver와 Dense Retriver를 Re-Ranking한 결과를 soft-voting하니 성능이 향상됨 (EM:66.25)

5. Reader

▼ Pre-training

1. Masked Language Modeling

- Reader모델이 답을 찾아야 하는 문서에 대한 사전지식을 Task Adaptive Pre-Training처럼한 번 더 학습하면 좋을 것이라고 가정함.
- Reader가 읽고 이해해야 하는 wikipedia 문서 전체에 대해서 추가적으로 MLM을 수행.
- klue/roberta-large모델을 사용해 15% 확률로 token masking해서 1 epoch MLM 결과, evaluation 점수는 EM, F1 점수 모두 1점 정도, 제출 점수는 3~5점 정도 하락함.
- klue/roberta-large모델이 매우 큰 corpus에 대해 이미 MLM으로 학습되었기 때문에 wikipedia문서에 대한 추가적인 MLM은 불필요하다고 결론 내림.

2. Salient Span Masking

- MLM은 token을 무작위로 masking하지만, Sailent Span Masking은 인물, 장소, 수량 등 named entity에 대해서만 masking해서 pretraining하는 기법임.
- OA task는 대부분의 정답이 named entity이므로 SSM Pretraining이 MLM보다 도움 될 것이라고 생각.
- Pororo Ner로 named entity를 추출 후 50%의 확률로 token masking 해서 1 epoch, 2 epoch Pre-training 진행.
- 두 번째 epoch때는 첫 번째에서 제외된 나머지 50%의 token을 마스킹하여 학습함.
- 실험 결과 1 epoch SSM 학습 시 evaluation점수는 비슷하게 유지되었고 제출 점수는 5점 정도 하락했지만, 2 epoch 학습했을 때에는 evaluation점수는 2점 상승, 제출 점수는 거의 비슷함.
- 또한 MLM에 비해서도 약간의 성능 향상을 보임.
- epoch을 더 여러 번 학습한다면 성능 향상이 있을 것이라고 기대되지만 시간 관계상 실험하지 못함.

3. Salient Span Masking with QA dataset

- 추출된 entity가 QA answer가 아닌 경우에 성능 향상에 방해가 될 수도 있다고 생각해 train dataset의 passage에서 정답인 단어들을 masking하고 pre-training하는 방법 시도.
- passage하나 당 한 개의 단어만 masking하면 너무 적기 때문에 정답 위치가 아니더라도 정답 단어와 일치한다면 모두 마스킹함.
- 실험 결과 wikipedia dataset보다 훨씬 적은 데이터로 학습했음에도 SSM 1epoch와 비슷한 성능을 보임. 하지만 epoch를 늘리면 성능이 떨어졌는데, 데이터셋과 masking할 token 수의 한계 때문인 것으로 추측함.

reader	eval/EM	eval/F1	public/EM	public/F1	private/EM	private/F1	
klue/roberta- large	68.75	77.79	64.17	74.39	60.83	73.87	

MRC 랩업 리포트 6

klue/roberta- large + MLM 1 epoch	67.08	76.36	56.25	65.99	56.50	68.73	
klue/roberta- large + SSM 1 epoch	68.75	77.80	56.25	67.62	56.56	69.04	
klue/roberta- large + SSM 2 epoch	70.0	78.38	57.92	68.67	60.28	72.26	
klue/roberta- large + SSM with QA dataset	67.91	77.52	50.42	64.04	54.44	68.11	

▼ Reader + CNN

- CNN은 토큰의 지역적인 특징을 반영할 수 있다. 이를 이용하여, 모델이 좀더 제대로 위치를 예측할 수 있도록 CNN 을 모델 끝에 추가함.
- 모델 구조는 아래와 같다. 마지막 Fully Connected layer의 경우 Istm으로 바꿔 사용하는 실험도 진행함.

• 결과

실험은 transformer model(klue/roberta-large)을 epoch 2로 학습한 뒤 이를 freeze 하고 cnn과 lstm 모델만 epoch 5로 학습을 진행함. 실험결과 cnn은 점수에 영향을 주었지만 lstm은 점수에 영향을 주지 않음.

cnn과 klue/roberta-large를 동시에 epoch 2로 학습시켰을 때 학습이 제대로 이루어지지 않았다. 이러한 결과는 transformer model, cnn, lstm이 각각 학습에 있어 필요한 하이퍼 파라미터 수가 다르기 때문으로 추측함.

reader	eval/EM	eval/F1	public/EM	public/F1	private/EM	private/F1	
klue/roberta- large + cnn	68.75	77.19	60.45	72.70	63.06	74.95	
klue/roberta- large + cnn + lstm	68.75	76.99	60.83	73.20	62.78	74.94	

• 추가 실험

deberta와 electra에 대해서도 실험을 진행했는데 이 두 모델 모두 baseline에 대해 30점대의 낮은 성능을 보였을 뿐만 아니라, cnn에 대해서도 학습이 제대로 이뤄지지 않음 baseline보다 더 좋지 않은 pred 값을 내보낸 것으로 보아 학습된 모델을 불러오는 것에 문제가 있었던 것으로 보임.

▼ Curriculum Learning

- Curriculum Learning에서는 데이터의 난이도에 따라 데이터 종류를 상/중/하로 나누고 난이도 하, 난이도 중, 난이도 상 순서로 데이터를 학습 하
- 방법
 - 。 klue/roberta-large로 1차 inference를 진행하여 train dataset에 대한 예측값을 계산. 각 학습의 epoch은 2로 고정함.
 - 。 start_index와 end_index 예측값에 대해 각각 L2 Loss를 계산. 두 값의 합을 각 데이터의 Loss로 계산함.
 - 。 Loss가 작은 순서로 나열하여 전체 데이터의 1/3을 난이도 하로 지정하고 이를 학습함.
 - 。 난이도 하에 대해 학습된 모델로 다시 train dataset을 예측함.

- train dataset의 L2 loss 합을 계산하여 전체 데이터의 1/3을 난이도 중으로 지정한다. 처음 난이도 하로 1/3을 사용하고, 이 단계에서 1/3을 난이도 중으로 사용한다. 남은 데이터는 난이도 상으로 본다.
- 난이도 중, 난이도 상으로 학습을 진행함.

• 결과

실험 결과 학습이 제대로 진행되지 않았다. 난이도를 L2 Loss 값을 기준으로 하지 않고 데이터의 양으로 한 것이 문제일 수도 있다. 다른 이유로는 CNN 실험과 마찬가지로 난이도 중, 난이도 상 학습에는 이전에 학습된 가중치를 불러와 업데이트하는 방향으로 학습을 진행했는데 가중치 업데이트가 제대로 이뤄지지 않았을 가능성이 있다.

reader	eval/EM	eval/F1	public/EM	public/F1	private/EM	private/F1	
Curriculum Learning	61.66	71.28	50.00	63.91	54.44	67.76	

6. 앙상블

· Soft voting

o Ensemble model (reader 기본 모델은 klue/roberta-large)

model \ public score	EM	F1-score
Elastic bm25 top 20	65.42	75.66
Re-Rank(Elastic bm25 top20 + DPR top20) dpr 가중치 0.1	64.58	76.46
Re-Rank(Elastic bm25 top20 + DPR top20) dpr 가중치 0.115	62.33	75.65
Salient Span masking + Elastic bm25 top20	57.92	68.6700
CNN layer + Elastic bm25 top20	60.83	73.2

위의 다섯개 모델을 앙상블 + 후처리

public EM score	public F1-score	private EM score	private F1-score
67.5	78.17	65.56	77.25

7. References

- Kumar, Varun, Ashutosh Choudhary, and Eunah Cho. "Data augmentation using pre-trained transformer models." arXiv preprint arXiv:2003.02245 (2020).
- Karpukhin, Vladimir, et al. "Dense passage retrieval for open-domain question answering." arXiv preprint arXiv:2004.04906 (2020).
- Guu, Kelvin, et al. "Retrieval augmented language model pre-training." International Conference on Machine Learning. PMLR, 2020.
- Bengio, Yoshua, et al. "Curriculum learning." Proceedings of the 26th annual international conference on machine learning. 2009.

8. 자체 평가 의견

- 잘했던 부분
 - 。 Retriever(DPR)에서 다양한 실험을 진행했다.
 - 。 이전 기수와 달리 Salient Span masking을 시도했다.
- 아쉬웠던 점
 - 。 데이터 분석이 부족했다.
 - 。 시간이 부족해 다양한 실험을 진행하지 못했다.

9. 개인 회고

▼ 이효정

- 대회에 집중하지 못해 다양한 실험을 진행하지 못한 것이 아쉽다.
- baseline code가 이전과 달리 복잡하게 설계되어 있어 이해하는 것이 어려웠지만, 많은 도움이 되었다.

▼ 정지훈

• 잘했던 부분

- 다른 팀원들이 작성한 코드를 돌려보면서 전체적인 코드 구성과 흐름을 파악하는데 집중함. 덕분에 MRC 일련의 과정에 대한 이해를 할수 있었음.
- 대회 난이도에 비해 짧은 기간에도 불구하고, 다른 팀원들이 작성한 코드를 통해 다양한 조건에서 retrieval을 실험해 보았고 reader에서도 한두 가지 모델을 적용해 볼 수 있었음.
- 。 외부 데이터가 사용 가능했기 때문에 데이터 증강은 필수적이지 않았지만, mT5 모델을 사용한 질문 생성을 시도해 보았음. 다만 생성된 질문의 질이 좋지 않아 사용하지는 않았음.

• 아쉬웠던 점들

- 입출력 데이터 분석을 자세히 해보고 싶었는데, 대회 특성상 수치화 또는 시각화를 통한 데이터 분석의 폭이 넓지 않아 아쉬웠음.
- 새로운 모델을 시도해보지 않고, 다른 팀원들이 빌드업한 코드를 돌리는 수준에 그쳤음.
- 。 임베딩 단에서 출력을 조정하거나 앙상블 시도를 하지 못한 점은 아쉬움.

▼ 김진호

• 잘했던 부분

- 。 리서치 부분을 담당하여 시도해볼만한 내용들을 상세히 정리하였음
- Dense Passage Retriever 논문을 구현하는 과정을 거친 좋은 경험을 하였음
- 。 기존 Klue-MRC와 KorQuAD 데이터 약 3000개를 더하여 학습한 것과 비교
- 。 Sparse retrieval와 dense retrieval를 top-k에 대하여 상세히 비교하였음

• 아쉬웠던 점들

- 。 다양한 방식으로 EDA를 진행하지 못하였음
- 。 Retrieval 및 Reader 모델이 inference을 통해 나온 결과에 대하여 분석을 못하였음
- 。 이번 대회는 절대적으로 시간이 부족했다 보니 여러 가지 시도를 못한 것이 많이 아쉬움

▼ 신혜진

- Salient Span Masking에 대해 새로 알게 되었고, 직접 구현하고 테스트해 보면서 많이 배울 수 있었다. 또한 이전 기수들이 시도해보지 않은 방법을 시도해본 것이라서 좋았다.
- 첫 번째 주는 강의 듣느라, 두 번째 주는 새로고침 데이 때문에 프로젝트에 집중할 시간이 많이 없어서 이전 대회들만큼 다양한 방법들을 시도 해보지 못한 것이 조금 아쉽다.
- QA task는 데이터 EDA나 output분석이 어려워서 거의 하지 못했는데, 어떻게 하면 더 잘 할 수 있을지 알아보고 싶다.
- Eval 점수, 리더보드 Public 점수, Private점수 차이가 심해서 SSM의 eval score는 좋았지만 public점수가 좋지 않아 성능이 안 좋은 줄 알고 더 실험하지 않았는데 private점수 공개 후 점수가 나쁘지 않아서 더 실험해봤어도 좋을 것 같다.

▼ 이상문

- 잘했던 부분
 - Dense Passage Retriver 논문에 기반하여 해당 내용을 구현해본것은 매우 좋은 경험이 였다고 생각함
- 아쉬웠던 부분
 - 。 Dense Retriver부분에서 좀 더 다양한 시도를 해보지 못한점은 매우 아쉬웠음
 - Private score가 공개된 후 Reader쪽에서 다양한 시도를 해본 모델들이 오히려 점수가 올라간 것을 확인함.
 - Public score 점수만 보고 Reader쪽의 실험들이 효과가 없다고 너무 빠르게 결론을 내려버렸음
 - 。 전체적으로 다양한 시도들을 실험해 볼 시간이 너무 적었던 부분이 너무 아쉬웠음