DIALOG(R) File 351: Derwent WPI (c) 2001 DERWENT INFO LTD. All rts. reserv.

010316816 **Image available**
WPI Acc No: 1995-218074/*199529*

XRPX Acc No: N95-170886

Liquid crystal type control filter for photoelectric converter of TV camera - has liquid crystal filter drive circuit which changes strength of light which is projected onto light receiving surface of photoelectric conversion part

Patent Assignee: NIPPON HOSO KYOKAI KK (NIHJ) Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week
JP 7128635 A 19950519 JP 93278351 A 19931108 199529 B

Priority Applications (No Type Date): JP 93278351 A 19931108 Patent Details:
Patent No Kind Lan Pg Main IPC Filing Notes
JP 7128635 A 9 G02F-001/13

Abstract (Basic): JP 7128635 A

The liquid crystal type light control filter has a photoelectric conversion part (2) which is provided with a light receiving surface (7). A dot matrix type liquid crystal filter (1) is arranged before the photoelectric conversion part. A drive circuit (3) makes changes in the liquid crystal filter transparency or density based on the signal pattern supplied by a signal generator (4).

ADVANTAGE - Prevents retention of image after exposure to excessive light. Enables variation in light intensity according to requirement. Dwg.1/5

Title Terms: LIQUID; CRYSTAL; TYPE; CONTROL; FILTER; PHOTOELECTRIC; CONVERTER; TELEVISION; CAMERA; LIQUID; CRYSTAL; FILTER; DRIVE; CIRCUIT; CHANGE; STRENGTH; LIGHT; PROJECT; LIGHT; RECEIVE; SURFACE; PHOTOELECTRIC; CONVERT; PART

Derwent Class: P81; V07; W04

International Patent Class (Main): G02F-001/13

International Patent Class (Additional): H04N-005/66

File Segment: EPI; EngPI

Manual Codes (EPI/S-X): V07-K01A; W04-M01B; W04-M01C

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-128635

(43)公開日 平成7年(1995)5月19日

 (51) Int.Cl.⁶
 数別記号
 庁内整理番号
 FI
 技術表示箇所

 G 0 2 F
 1/13
 5 0 5

 H 0 4 N
 5/66
 1 0 2 Z

審査請求 未請求 請求項の数6 OL (全 9 頁)

(21)出願番号

特顏平5-278351

(22)山頭日

平成5年(1993)11月8日

(71)出願人 000004352

日本放送協会

東京都渋谷区神南2丁目2番1号

(72) 発明者 太田 洋一

京都府京都市上京区智恵光院丸太町下ル主

税町964 日本放送協会 京都放送局内

(74)代理人 弁理士 谷 義一 (外1名)

(54)【発明の名称】 光電変換装置用液晶式入力光制御フィルタ

(57)【要約】

【目的】 光電変換装置の受光面へ入射する光の強さを一様に、あるいは受光面の所認の面積部分についてのみ、変化させることのできる光電変換装置用液晶式入力光制御フィルタを提供すること。

【構成】 光電変換部2の受光面7に近接して無彩色ドットマトリックス式液晶フィルタ1を配置し、この液晶フィルタ1をドットマトリックス駆動回路3で駆動する。この駆動回路3は図形信号発生器4から供給される図形信号に応じて液晶フィルタ1の濃度を一様に、あるいは部分的に上昇、すなわち光透過性を減少させる。これにより液晶フィルタ1を透過し、受光面7へ入射する光の強さを受光面の全面積にわたって一様に、あるいはそのうち所望する部分についてのみ自在に減衰させることができる。

1

【特許請求の範囲】

[請求項1] 人射光像を電気的な画像信号に変換する ための光電変換装置の光電変換部の受光面前方に配置され、濃度を変化させることができる液晶フィルタと、 制御信号を発生する信号発生手段と、

該信号発生手段から供給される制御信号に応じて前配被 晶フィルタの濃度を上昇させ、これにより前記光電変換 部の受光面へ入射する光の強さを減衰させることを可能 とした液晶フィルタ駆動手段とを具備したことを特徴と する光電変換装置用液晶式入力光制御フィルタ。

【請求項2】 前記信号発生手段は前記入射光像の色温 度差を検知する色温度検知手段を含み、

前記液晶フィルタ駆動手段は、前記色温度検知手段の色 温度差信号に応じて、前記液晶フィルタの濃度を可変制 御し、これにより可変式色温度変換フィルタを実現する ことを特徴とする請求項1に記載の光電変換装置用液晶 式入力光制御フィルタ。

【請求項3】 前記信号発生手段は前記入射光線の強さ を検知する光強度検知手段を含み、

前記液晶フィルタ駆動手段は、前記光強度検知手段の検 20 知信号に応じて、前記液晶フィルタの濃度を可変制御 し、これにより可変式減光フィルタを実現することを特 徴とする請求項1に記載の光電変換装置用液晶式入力光 制御フィルタ。

【請求項4】 入射光像を電気的な画像信号に変換する ための光電変換装置の光電変換部の受光面前方に配置され、部分的に濃度を変化させることができるドットマト リックス式液晶フィルタと、

入力制御信号に応じて図形信号を発生する図形信号発生 手段と、

該図形信号発生手段から供給される図形信号に応じて前記ドットマトリックス式液晶フィルタの濃度を部分的に上昇させ、これにより前配受光面へ入射する光の強さを該受光面の全面積のうちの必要とする部分についてのみ減衰させることを可能とした液晶フィルタ駆動手段とを具備したことを特徴とする光電変換装置用液晶式入力光制御フィルタ。

[請求項5] 前記図形信号発生手段は、前記光電変換装置の出力信号のピーク成分を検出し、検出した該ピーク成分に対応した図形信号を発生する過大入射光防止用 40ピーク検出回路であることを特徴とする請求項4に記載の光電変換装置用液晶式入力光制御フィルタ。

【請求項6】 前記ドットマトリックス式液晶フィルタの前方に入射光像を分離する光学部材をさらに有し、前記図形信号発生手段は該光学部材を介して入射する前記入射光像を電気信号に変換し、該電気信号から高レベル成分を抽出して、これをキー信号として前記液晶フィルタ駆動手段に供給する特殊機影効果用キー信号検出回路であることを特徴とする請求項4に記載の光電変換装置用液晶式人力制御フィルタ。

【発明の詳細な説明】

[0001]

[産業上の利用分野] 本発明は、液晶ディバイスを用いて光電変換装置の受光面へ入射する光の強度を一様に、あるいは部分的に変化させることのできる光電変換装置用液晶式入力光制御フィルタに関する。

[0002]

【従来の技術】従来、テレビカメラ等において、光電変換装置の受光面へ入射する光をその受光面の全体にわた 10 って一様に調整するトリミングフィルタや色温度変換フィルタ等が知られている。

【0003】一方、液晶ディバイスを光紋り器として応用したものは提案されている。さらには、液晶ディバイスを調光装置として応用した例として、電圧で透明度を制御できる電子式カーテンとして動作する窓バネルや衝立などがある。この窓バネルと同様の構成のバネルを舞台照明装置の調光手段として用いた例も報告されている。

[0004]

【発明が解決しようとする課題】しかしながら、従来では、操像画像の色温度変化や輝度変化等に応じて色温度や輝度等を自動調整することの可能な液晶ディバイスを用いたフィルタ装置は存在しなかった。

[0005]また、従来では、光電変換装置の受光雨へ入射する光の強さを、受光面の全面積のうちの所望する (または指示された)面積部分についてのみ自由に変化させることが可能な装置は存在しなかった。

【0006】そこで、本発明の目的は、上述の点に鑑みて、光電変換装置の受光面へ入射する光の強さを一様30に、あるいは、受光面の所望の面積部分についてのみ、変化させることを可能にした光電変換装置用液晶式入力光制御フィルタを提供することにある。

[0007]

【課題を解決するための手段】上記目的を達成するため、本発明の第1の形態は、入射光像を電気的な画像信号に変換するための光電変換装置の光電変換部の受光面前方に配置され、濃度を変化させることができる液晶フィルタと、制御信号を発生する信号発生手段と、該信号発生手段から供給される制御信号に応じて前記液晶フィルタの濃度を上昇させ、これにより前記光電変換部の受光面へ入射する光の強さを減衰させることを可能とした液晶フィルタ駆動手段とを具備したことを特徴とする。

[0008] また、木発明はその一態様として、前記信号発生手段は前記入射光像の色温度差を検知する色温度検知手段を含み、前記液晶フィルタ駆動手段は、前記色温度検知手段の色温度差信号に応じて、前記液晶フィルタの濃度を可変制御し、これにより可変式色温度変換フィルタを実現することを特徴とすることができる。

【0009】また、本発明は他の態様として、前記信号 50 発生手段は前記入射光線の強さを検知する光強度検知手 3

段を含み、前記液晶フィルタ駆動手段は、前記光強度検 知手段の検知信号に応じて、前記液晶フィルタの濃度を 可変制御し、これにより可変式減光フィルタを実現する ことを特徴とすることができる。

【0010】上記目的を達成するため、本発明の第2の 形態は、入射光像を電気的な画像信号に変換するための 光電変換装置の光電変換部の受光面前方に配置され、部 分的に濃度を変化させることができるドットマトリック ス式液晶フィルタと、入力制得信号に応じて図形信号を 発生する図形信号発生手段と、該図形信号発生手段から 供給される図形信号に応じて前記ドットマトリックス式 被晶フィルタの濃度を部分的に上昇させ、これにより前 記受光面へ入射する光の強さを該受光面の全面積のうち の必要とする部分についてのみ減衰させることを可能と した液晶フィルタ駆動手段とを具備したことを特徴とす る。

【0011】また、本発明はその一態様として、前記図形信号発生手段は、前記光電変換装置の出力信号のピーク成分を検出し、検出した該ピーク成分に対応した図形信号を発生する過大入射光防止用ピーク検出回路である 20 ことを特徴とすることができる。

【0012】また、本発明は他の形態として、前記ドットマトリックス式被晶フィルタの前方に入射光像を分離する光学部材をさらに有し、前記図形信号発生手段は該光学部材を介して入射する前記入射光像を電気信号に変換し、該電気信号から高レベル成分を抽出して、これをキー信号として前記液晶フィルタ駆動手段に供給する特殊提影効果用キー信号検出回路であることを特徴とすることができる。

[0 0 1 3]

【作用】本発明の第1形態では、液晶フィルタを光電変換装價の受光面近傍に配置し、その液晶フィルタの電圧を駆動手段により入力信号に応じて変化させて、液晶フィルタの光透過率を可変制御するようにしているので、可変式色温度変換フィルタや、可変式減光(ND)フィルタ等として使用することができる。

【0014】また、本発明の第2形態では、ドットマトリックス式液晶フィルタを光電変換装置の受光面に取り付け、フィルタを駆動制御する駆動手段により、その液晶フィルタの指定された座標位置範囲の電圧を変化させ、その座標位置範囲の光透過率を可変制御するようにしているので、光電変換装置の光電変換部において、受光面前方の入射光通過空間に、任意に部分的に濃度を変化させることができる。従って、その液晶フィルタを透過して光電変換装置の受光面へ入射する光の強さを、受光面の全面積のうちの所望する部分についてのみ、減衰させることができる。

[0015]

【実施例】以下、図面を参照して本発明の実施例を詳細 に説明する。 【0016】(基本構成)まず、最初に本発明の基本構成を図1に示す。図1において、1は無彩色ドットマトリックス式液晶フィルタ(以下、液晶フィルタと称する)、2はその液晶フィルタを透過した光を受光する光電変換装置を構成する光電変換部、3は液晶フィルタ1の濃度(透明度あるいは光透過率に対応する)を自在に上昇させる制御を行うための駆動手段に相当するドットマトリックス駆動回路、4はドットマトリックス駆動回路3へ上記濃皮上昇範囲(座標位置範囲)と濃度の程度を指示する指示手段に相当する図形信号発生器である。また、5は光電変換部2の出力を増幅する増幅部であり、増幅部5から圓像信号が得られる。

【0017】さらに詳述すると、液晶フィルタ1は、縦n列、機m列の液晶ドットでマトリックスを構成している液晶板であり、これら液晶ドットはドットマトリックス駅動回路3(以下、駆動回路と称する)の制御によってそれぞれの濃度が自在に変化する。この液晶フィルタ1としては、例えばネマティック液晶の動的散乱(DS)モードやコレステリック・ネマティック相転移モードを利用した液晶ディバイス、あるいは高分子ポリマー中にネマティック液晶を微小な球状形として分散させたタイプの液晶ディバイス、さらにはTN(捩れネマティックモード)液晶ディバイス、GH(ゲストホストモード)液晶ディバイス等の公知の液晶ディバイスが利用できる。

【0018】駆動回路3は、液晶フィルタ1の各ドットの濃度を制御するマトリックス制御回路であり、その制御の原因となる信号(以下、図形信号と称する)は、図形信号発生器4によって発生される。

70 【0019】図形信号発生器4は、液晶フィルタ1の各ドットをどれくらいの濃度にするか、つまり液晶フィルタ1上に濃度上昇による図形をどんな形で、どれくらいの濃度パランスで描かせるかを決定する図形信号を発生するものであり、この図形・濃度パランスの設定は人為的または外部からの信号によって行う。

【0020】光電変換部2、その受光面7および増幅部5は、従来の光電変換装置を構成するものであり、受光面7に入射した光を光電変換部2で電気信号に変換し、増幅部5で増幅して出力する。ここで、液晶フィルタ1と受光面7はほぼ密着しており、液晶フィルタ1を透過する光の像と受光面7に入射する光の像とは、形・大きさとも一致すると考えてよい。なお、液晶フィルタ1は無彩色であるから、入射する光の像の色についても変化しない。

【0021】以上の構成により、図2に示すように、被 品フィルタ1を通過し受光面7へ入射する光の像について、被品フィルタ1の一部面積の濃度を上昇させること により、像の一部面積についてその光の強さを滅じさせ る場合につき説明する。図2において、Aは液晶フィル 50 夕1への入射光像、Bは液晶フィルタ1の透過光像、す

なわち受光面7への入射光像である。

【0022】まず、通常時において、光入力が液晶フィ ルタ1を透過し、受光面7へそのまま入射する。 つま り、液晶フィルタ1に入射した光の像はそのままの形・ 光の強さで受光面7へ入射する。

【0023】次に、図形信号発生器4を動作させると、 図形信号発生器4からは駆動回路3へ液晶フィルタ1の 一部の面積について濃度を上昇させるよう指示が送られ る。駆動回路3はこの指示に従い、液晶フィルタ1を制 御する。すると、液晶フィルタ1を透過する光の像B は、濃度が上昇した部分を透過する部分について、光の 強さを滅じられる。つまり、液晶フィルタ1に入射した 光の像Aはその一部について光の強さの減衰を受けて、 受光面7へ入射する。

【0024】上記の図形信号発生器4の出力信号が液晶 フィルタ1の全面積をカパーする信号の場合は、液晶フ ィルタ1の光透過率は一様に変化する。

【0025】 (第1の実施例) 図3は、本発明の第2形 態に対応するもので、図1における図形信号に操像装置 大入射光防止回路を構成した木発明の第1の実施例の回 路を示す。図3において、1,2,3,5および7の構 成要素は図1と同様なものである。6はピーク検出回路 であり、増幅部5の出力信号のピーク成分を検出し、検 出したピーク成分の位置等に応じてドットマトリックス 駆動回路3へ図形信号発生器4に代わって図形信号を発 生し、これにより光電変換部2への過大入射光を防止す るものである。

【0026】まず、時間的に連続した高輝度成分(以 し、滅疫をなんら受けずに受光面7へ入射する。する と、増幅部5からはピーク成分を含んだ映像信号が出力 され、ピーク検出回路6へ入力する。さらにピーク検出 回路6からはピーク成分のみの信号(以下、ピーク信号 と称する) が駆動回路3へ人力される。

【0027】ここで駆動回路3は、同期信号により光電 変換部2の走査とまったく同期して動作するから、ヒー ク信号が入力されることによって、その原因となるビー ク光が通過する液晶フィルタ1の一部面積の液晶ドット について濃度を上昇させる。この濃度はピーク信号のレ 40 ベル、つまりピーク光の強さに比例するから、ピーク光 の透過は一定レベル以下に制限され、受光面7へ入射す る光の像はある一定の光の強さ以下のものとなり、過大 入射光を防止することができる。

【0028】なお、本実施例回路では光電変換部2の出 力を利用するので、光電変換部2の走査が一巡するまで の時間は、つまりNTSCテレビジョン方式においては 最大1フィールド(60分の1秒)は液晶フィルタが作 動しないため、受光面7への過大入射光を防止すること はできない。しかし、通常、光の過大入射は摄像装置の 50 晶フィルタ1の濃度調整は、増幅部5の色温度検知回路

レンズ絞りの解放や撮像方向の変化(パン・チルト)に 伴って生じることであるから、60分の1秒を越えるよ うな急激な速さでのレベル上昇は極めて事例が少ないと 考えられ、したがって、本実施例の回路はレベル上昇過 渡期の早い時期に動作するから、ほとんどの場合の過大 入射については防止できる。

【0029】 (第2の実施例) 図4は本発明の第1形態 に対応するもので、本発明を特殊効果フィルタとしてカ ラー撮像装置に適用した本発明の第2の実施例の構成を 10 示す。光入力は撮像レンズ14を通って色分解プリズム 8によりR (赤), G (緑), B (青) の各色成分に分 解されて、それぞれ対応する液晶フィルタ1R, 1G, 1 Bを通り撮像素子2R, 2G, 2Bに受光される。撮 像素子2R, 2G, 2Bの出力信号は増幅部5で増幅さ れて映像出力15となる。11は図1の図形発生器4に 代わってドットマトリックス駆動回路3へ図形信号を供 給する色温度検知回路であり、増幅部5に入力する信号 の色温度差を検知する。本実施例の回路は、後述のよう に(1)可変式色温度変換フィルタ、および(2)可変 信号出力のピーク成分を利用して、摄像装置における過 20 式減光(ND)フィルタの機能を有する。以下、これら の機能について説明する。

【0030】(1)可変式色温度変換フィルタ

これはカラー撮像装置の入射光の色温度をカラー撮像装 置の設計値に変換するためのものであり、入射光の色温 度に応じてその変換率を任意に変化させることができる ものである。通常、カラー撮像装置の色温度変化の手段 としては、光電変換された後の電気回路における各色信 号のレベル調整 (ホワイトパランス調整) による場合 と、レンズの前面に色温度変換フィルタを取り付けて行 下、ピーク光)を含んだ光の像が液晶フィルタ1に入射 30 うものがある。特に色温度の変換する度合いが大きい場 合は後者の方法によっておおざっぱな色温度変換がなさ れ、その後前者の方法による微調整が行われる。

> 【0031】ここで後者の場合の色温度変換の原理は、 入射光が色温度変換フィルタを通過することにより各色 成分についてそれぞれ減衰を受け、色温度が変換される というものであり、その後に色分解プリズムによって各 色に分解され、各色用の撮像素子に入射する。色温度変 換フィルタの色変換の度合いはフィルタの製作時の着色 によって決定されるから、その度合いを変化させようと する場合は、従来では複数のフィルタを取り付けること が必要である。

【0032】これに対し、本実施例では図1に示すよう に、3つある撮像素子2R, 2G, 2Bの受光面前面に それぞれ無彩色のドットマトリックス式液晶フィルタ1 (1R, 1G, 1B) を合計3枚取り付け、色分解プリ ズム8で分解されてそれぞれの機像素子2に入射する光 ごとに滅光できるようになっており、これらの減光パラ ンスを調整することにより色温度の調整を行う。

【0033】減光パランスの調整、つまり各分解色用液

7

11から色温度差信号がドットマトリックス駆動回路3 に送られ、同駆動回路3はその色温度差信号に応じて各 液晶フィルタ1の濃度を調整する。したがって、本実施 例では入射光の色温度に応じた色温度変換が可能である ため、従来のようにレンズにフィルタを重ねてつける必 要もなく、さらに電気回路で行われる色温度の微調整、 つまりホワイトバランス調整をも同時に実施することが できるという利点がある。

【0031】(2)可変式減光(ND)フィルタこれは入射光の強さを減じる(減光する)ものであり、上記(1)の機能を減光する目的だけで利用した場合のものである。したがって(1)と同様に減光率を任意に変化させることができ、(1)と同時に機能させることも可能である。すなわち、本実施例では液晶フィルタを3枚使用しているが、これらを同一の減光率で動作させれば、(2)のNDフィルタ機能を実現できる。

【0035】(第3の実施例)図5は本発明の第2形態に対応するもので、図4の構成に自動キー信号検出回路10を付加して特殊撮影フィルタとしての機能も有するようにした本発明の第3の実施例の構成を示す。なお、図5の9はレンズ4と色分解プリズム8間の光路中に挿入配設したハーフミラー9であり、ハーフミラー9の反射光は分解プリズム8に入射し、ハーフミラー9の反射光はキー信号検用回路10に入射する。

【0036】ここで、特殊撮影フィルタは、「液晶フィルタ1の部分的な濃度の上昇」を利用して、撮像装置の映像出力画面に演出的特殊効果を得るものである。たとえば、画面下半分や人物の周囲だけといった部分を暗くしたり、明るくしたり、また色を変えたりといったものである。

【0037】なお、通常こういった映像の特殊効果は、撮影・記録後に専用の映像処理装置によって行われること(ポストプロダクション処理)が多いが、本実施例では光電変換前の"光"を加工するものであり、撮像装置の各電気処理(ガンマ補正、レベル制限、周波数帯域制限など)を受けた映像出力を電気的に処理するものとは本質的に異なる。

【0038】具体的な例を挙げると、たとえば明るく大きな窓をパックにした人物を撮影した場合、通常では窓の外の景色は撮像装置の電気処理(レベル制限)によってほとんど白くつぶれてしまう。そこで撮影時に本実施例による「人物を除いて窓の明るい部分だけを減光する」という"光"の段階での処理を行えば、白くつぶれることもなく、窓の外の景色を含んだ損像が可能である(逆光補正効果)。しかし、これを撮影・記録後にポストプロダクション処理によってその部分を復活させようとしても、すでにつぶれているためそれは絶対に不可能である。このように本実施例は、"光"の段階での処理をしなければ実現不可能な特殊撮影に有効である。

【0039】この特殊撮影フィルタでは、前記第2の実 50 防止できるということが期待できる。

施例における(1), (2)の動作が液晶フィルタ1の全面積について濃度を変化させるのに対し、その一部面積の濃度上昇をさせるものである。一部面積の濃度上昇の動作原理についてはすでに述べた。

8

【0040】さて、本実施例を撮影時に利用する場合、 特に被写体の明るい部分だけを減光して撮影したい場合 などは、その部分の特定を効率よく行うためには撮影せ 置そのものにその機能を付加することが有効である。 図 5 に示すように、レンズ14に入射した光像は、ハーフ 10 ミラー9によってその光の強さの一部レベルを分岐さ れ、分岐された光の像はキー信号検出回路10に入射す る。キー信号検出回路10には撮像素子が内蔵されてお り、攝像装置本体の摄像素子(図4の撮像素子2R, 2 G, 2B) とまったく同じ形の光像が入射することによ り、同じ形の被写体画像(映像)が出力される。キー信 号検出回路10は、この出力信号から高レベル成分(キ 一信号)を抽出し、このキー信号16をドットマトリッ クス駆動回路3に送る。以後の動作は図3の過大入射光 防止回路と同じであり、本体100の機像素子(図4の 撮像素子2R, 2G, 2B) に入射するそれぞれの光の 像の所望する部分について減光する。このとき、図4に おいて3枚の液晶フィルタ1の濃度パランスを同じにす れば、光の像の明るい部分のみがその明るさを減じら れ、濃度パランスをずらせばその部分だけが色が変わ る。つまり色を変化させることができる。また、光像の 明るい部分ではなく、あるレベルの部分だけ、またある 色の部分だけをキー信号検出回路10で抽出することも 可能であり、その部分だけを同様に加工することができ る.

30 [0041]

【発明の効果】以上説明したように、本発明によれば、 光電変換装置の受光面に入射する光の強さをその受光面 の全面積のうち所望する部分について減衰させることが できるので、例えば以下の効果が得られる。

【0042】(1) 図3のような過大入力光防止回路への応用により、過大入力光による振像素子における以下の弊害の防止が可能となる。

【0043】(i) 機像管の「焼き付き」防止

撮像管の「焼き付き」とは、受光面へ過大入力光が入射することにより受光面が組織破壊または組織変化を起こすことで、操像管の映像出力に「焼き付き跡」が常時残ってしまい、振像装置の出力映像の品質を損なうものである。通常、焼き付きを生じた撮像管は、受光面全面に過大入力光を入射し、全面焼き付けを行うことによりのに焼き付いた部分をあたかも強りつぶすようにして、運用を継続するか、最悪の場合は新品に交換しなければならない。したがって、本発明により「焼き付き」が防止できるということは、「焼き付き」による操像装を防止できるということが顕結できる

特開平7-128635

[0044] (ii) 固体撮像素子の「スメア」防止 固体撮像素子の「スメア」とは、受光面へ過大入力光が 人射することにより出力映像に白い縦の線が現れる現象 で、これにより提像素子が組織破壊されたりすることは ないが、映像の品質を著しく損なうものであり、「スメ ア」の発生は固体撮像素子の最大の欠点といえる。これ に対し、本発明により「スメア」の発生が防止できるの で、提像装置の映像の品質向上ができる。なお、近年

「スメア」防止のために固体操像素子そのものの改良が 行われているが、現在のところ完全ではなく、「スメ ア」の根本的な原因である過大入力光を防止する本発明 は有効なものといえる。

[0045] (2) 図4. 図5のような「特殊効果フィルタ内蔵カラー撮像装置」への応用により、「可変式色温度フィルタ」、「可変式NDフィルタ」、「特殊撮影効果フィルタ」といった機能が利用できるようになるため、撮像装置のフィルタ系の改善、特殊撮影(特に逆光補正)の実現などが期待できる。

【図面の簡単な説明】

【図1】本発明の基本構成を示すプロック図である。

【図2】図1の液晶フィルタに入射する光の像と出射する光の像の変化の一例を示す概念図である。

【図3】光電変換装置の信号出力の高レベル成分を利用 した過大入力光防止回路の本発明の第1の実施例の回路 構成を示すプロック図である。

【図4】本発明を特殊効果フィルタとしてカラー撮像装置に適用した本発明の第2の実施例の回路構成を示すブロック図である。

【図5】図4の回路に自動キー信号検出回路を付加した本発明の第3の実施例の回路構成を示すプロック図である。

【符号の説明】

- 1, 1R, 1G, 1B 液晶フィルタ
- 10 2 光電変換部
 - 2R, 2G, 2B 摄像案子
 - 3 ドットマトリックス駆動回路
 - 4 図形信号発生回路
 - 5 増幅部
 - 6 ピーク検出回路
 - 7 受光面
 - 8 色分解プリズム
 - 9 ハーフミラー
 - 10 キー信号検出回路
- 20 11 色温度検出回路
 - 14 レンズ
 - 15 映像出力
 - 16 外部キー信号入力

[図1]

[図2]

[数3]

