CAS 756: Modelling and Metamodelling

Homework Assignment 1

Overview

- For this assignment you need to design a number of metamodels (DSLs) using the UML class diagram notation <u>on paper</u>
 - In some cases, you also need to design models conforming to these metamodels, using the UML object-diagram notation
- There are 3 DSLs/metamodels for you to produce.
- Attempt each question.
- Hand your answers in at the start of class on Friday 7 February (on paper!)

CONFERENCE DSL

Language Description

- Design a DSL for modelling conferences
- A conference runs over a number of days
- On every day, there are several talks organised in (potentially parallel) tracks
- There are breaks between tracks (e.g. for lunch, coffee etc.)
- Each track/break takes place in one room
- Each talk can be delivered by one ore more speakers
- Each talk has a pre-defined duration

Why?

- To ensure that the conference program is clashfree e.g.
 - Parallel tracks happen in different rooms
 - The total duration of the talks of a track does not exceed the duration of the track
 - Breaks don't overlap with tracks
- To generate booklets, web-pages etc. from the program in a consistent manner
 - Instead of maintaining them manually (risking inconsistency)

What now?

- Sketch a metamodel for the conference DSL using pen and paper
- Use only the UML class diagram syntax.
- If you identify any constraints that are needed to prevent invalid models from being produced, write them down in English.

SOFTWARE DISTRIBUTION DSL

Problem Description

- Software vendors need to build several bundles for different types of customers
- All these bundles are typically assembled from the same pool of components
 - Different bundles contain different subsets of these components
- Components have dependencies between them
 - e.g. if component C2 depends on component C1, then bundles that contain C2 must always also contain C1
- Exercise
 - Create a DSL for designing such bundles
 - Create a model that conforms to the DSL and exercises all its features at least once

Example

- You are a vendor of an Enterprise Resource Planning system implemented in Java that consists of several components
 - E.g. Sales, Warehouse, Payroll
- Each component consists of a number of JAR files
 - Components can share JARs
- The dependencies between your components are as shown in the next slide
- You wish to assemble different bundles for e.g.
 - Sole Traders: Core, Sales, CRM
 - Service Companies: Core, Payroll, CRM
 - Manufacturing Companies: All components excluding Real-Time Warehouse Analytics
 - Large Manufacturing Companies: All components

Why?

- You could write a packaging (e.g. shell, ANT, Gradle) script for each distribution manually however
 - It would be error-prone
 - They would contain a lot of duplication
 - They would be hard to maintain for a large set of components
- Using a domain-specific model
 - You can capture bundle configurations at an appropriate level of abstraction
 - You can perform checks for e.g.
 - components with cyclic dependencies
 - components/JARs that are not used in any products (obsolete?)
 - You can generate these packaging scripts automatically and they will be correct by construction
- This is how we actually produce all the different bundles available under the JARs tab of http://www.eclipse.org/epsilon/download/

What to do?

- Sketch a metamodel for this domain-specific language using the UML class diagram syntax.
- If you identify any constraints that are needed to prevent invalid models from being produced, write them down in English.
- BONUS: explore the Object Constraint Language, and use that to specify any constraints you identify.

RESEARCH PROJECT DSL

Language Description

- Research projects are typically conducted in a collaborative manner by a number of partners (universities, companies, charities etc.) and have a fixed duration (in months – e.g. 36 months)
- A project is split into a number of work-packages
- Each work-package has a start and an end month and is further broken down into more fine-grained tasks and deliverables
 - Tasks also have a start and an end month and each deliverable is due in a specific month
- Each partner declares how much effort (in person/months) they will allocate to each task

Why?

- Proposal documents contain several tables with overlapping information (screenshots in the following slides) e.g.
 - Effort per partner per task for a work-package
 - Effort per partner for the whole project
 - Table of deliverables for the whole project in chronological order
 - A Gantt chart that summarises the timeline of the project
- Unless these tables are generated from a common source (i.e. a model) they can become inconsistent with each other
 - e.g. a partner may change their effort for a task but forget to change the
 overall effort figure for the entire project
- Other consistency problems can also appear e.g.
 - Tasks that start before / end after the work-package in which they are contained
 - Deliverables that are due after their work-package ends
- This is how we actually write proposals for research projects

	Table 8: Deliverables by	wP	Nature	Dissemination level ¹⁵	Delivery date
ID	Title	WP7 WP4	S R	PU	6
D7.1	Project Website Data Collected for Thread Analysis Discoursements	WP1	R	RE	6
D4.1	Data Collected for Transports	WP1	R	RE	6
D1.1	Project Requirements	WP2	R	PU PU	6
D1.2	Evaluation Plan Domain Analysis of OSS Projects Ambitecture Specification	WP5	R	PU	6
D2.1	Domain Analysis of OS3 Feyer Platform Architecture Specification Platform and Brochure	WP7		RE	6
D5.1		WP8	R	PU	8
D7.2	Project Presentation 1st Interim Project Report 1st Interim Project Report 1st Interim Project Report 1st Interim Project Report	m WP4	I S		10
D8.1	- Lion/Answel Extra			R	10
D4.2	Online Threads	WP	4		
	Training Data Annotations	Comple	tion (M10)	777	
D4.3	1. Requirements and Case Studies		•		
Mil	Online Threads Training Data Annotations estone 1: Requirements and Case Studies				

Table 7: Work Packages

	Table 7: V	Vork Pac	ckages	-	Start	End
		Type ¹¹	Leader	Person months ¹²	12	month ¹⁴
WP#	Title	RTD	TOG	45.5 71	1	26
	Requirements and Use Cases Domain Modeling and OSS Project		UDA	51.25	1	26
	Lifecycle Analysis Source Code Quality and Activity	RTD	CWI		-	
WP3	Analysis					

Table 10: Effort table for WP1

	Table 10: Effort table for WP1	1
Work package Work package title Activity type Participant name Person-months Participant name Person-months	1	CWI 5 UNINOVA 7.5

Table 18: Summary of efforts per partner and work package

Table 18: Summary of effo	rts per partiter and WP6 WP7	WP8 Total
No Name WP1 WP2 WP3 1 TOG 6 0 4 6 8 3	WP4 W13 5 5 5 2 8 5 4 5 4	11 36 1 65.5
2 YORK 0	55	

3 CWI 4 UDA 5 UNIMAN 6 TEC 7 TXT	5 5 40.25 2 40 2 2 1 0 8 15 0 9 1 1 75 1 1	5 4 4 3 5 39 3 0 5 1 4 1 2	3 2 2 3 2.1 4 16 4 21.5 2 17 2	1.5 64.75 1.5 58.5 2 53.1 1.5 49.5 1 40.5 1 32.5
7 IXI 8 UNINOVA	7.5			

$M1 \rightarrow M1 \rightarrow$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
MI I	T1.1	

What to do?

- Create a DSL for designing such projects (that is, specify a metamodel using the UML class diagram syntax).
- Create a model that conforms to the DSL and exercises all its features at least once
 - Use the UML object diagram syntax for this.