Univerzita Karlova v Praze Matematicko-fyzikální fakulta

DIPLOMOVÁ PRÁCE

Bc. Matouš Lomnický

Metody vizualizace učiva

Katedra Aplikované Matematiky

Školitel: Doc. RNDr. Zdeněk Hedrlín, CSc.

Studijní program: Biologie

Studijní obor: Učitelství biologie a matematiky pro střední školy

Na tomto místě děkuji Doc. RNDr. Zdeňku Hedrlínovi, CSc. a Mgr. Tomáši Bílému za čas, který mi věnovali a za cenné odborné rady a připomínky, které přispěly ke vzniku této diplomové práce.

Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně a výhradně s použitím citovaných pramenů, literatury a dalších odborných zdrojů.

Beru na vědomí, že se na moji práci vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb., autorského zákona v platném znění, zejména skutečnost, že Univerzita Karlova v Praze má právo na uzavření licenční smlouvy o užití této práce jako školního díla podle § 60 odst. 1 autorského zákona.

V Praze dne	
	Matouš Lomnický

Název práce: Metody vizualizace učiva

Autor: Bc. Matouš Lomnický

Katedra: Katedra aplikované matematiky

Vedoucí diplomové práce: Doc. RNDr. Zdeněk Hedrlín, CSc, externí pracovník

Katedry Aplikované Matematiky MFF UK

Abstrakt: Program orgpad slouží k třídění, předávání a "projasňování" vlastních myšlenek. Orgpad je program navržen na základech Herbartovy psychologie, resp. Herbartově poznání o vlastní mysli. Tato práce se zabývá představením programu pi-mind.js, který je alokací orgpadu. V práci je diskutováno postavení programu pi-mind.js v kontextu současného "mapování mozku" a dále je program vsazen do kontextu výchovně-vzdělávacího procesu a jeho možného využití v tomto oboru, konkrétně je zkoumána formou dotazníkového šetření jeho užitečnost při psaní diplomových, resp. disertačních prací na Katedře Aplikované Matematiky MFF UK. Klíčová slova: orgpad, pi-mind, vzdělávací proces, aplikační program, mentální proces

Titel: Methods of the visualization in teaching

Author: Bc. Matouš Lomnický

Department: Department of Applied Mathematics

Supervisor: Doc. RNDr. Zdeněk Hedrlín, CSc, external co-worker on Department of

Applied Mathematics

Abstract: Program orgpad is used for sorting, sharing and "brightening" own ideas. Orgpad is the program, which was designed based on Herbart's psychology, respectively Herbart's knowledge of his own mind. This work is an introduction program pi-mind.js, which is the allocation of orgpad. The thesis discuss the status of the program pi-mind.js in the context of the current "brain mapping" and the program is put into the context of the educational process and its possible use in this field, in particular is examined through a questionnaire survey of its usefulness in writing thesis, respectively Ph.D. thesis at the Department of Applied Mathematics, Charles University.

Keywords: orgpad, pi-mind, educational process, application program, mental process

Obsah

1	Seznan	n zkratek	1
2	Úvod		2
3	Teoreti	cká část práce	3
	3.1 V	zdělávání, informační technologie a myšlení	3
	3.1.1	Vzdělávací proces	3
	3.1.2	Organizační formy vyučování	4
	3.1.3	Metody výuky	5
	3.1.4	Cíl výchovně-vzdělávacího procesu	6
	3.1.5	Výukový program	8
	3.1.6	Edukační program	9
	3.1.7	Autorova úvaha nad moderním pojetí gramotnosti	9
	3.1.8	Shrnutí	12
	3.2 H	ypertext	13
	3.2.1	Hypertext	13
	3.2.2	Hypermédium	14
	3.3 V	izualizace	15
	3.3.1	Základní terminologie	15
	3.3.2	Vizuální komunikace	15
	3.3.3	Vizualizace ve výchovně-vzdělávacím procesu	16
	3.4 K	artografie vlastních vědomostí	19
	3.4.1	Mentální mapování	19
	3.4.2	Myšlenkové mapy	20
	3.4.3	Pojmové mapy	21
	3.4.4	Kartografie vlastních mentálních dovedností	22
	3.5 H	erbart a jeho model mysli	24
	3.5.1	Intermezzo – Chvílový model mysli	25
	3.5.2	Představení pojmů Herbartova bójkového modelu mysli	26
	3.5.3	Herbartův bójkový model mysli, jeho rozšíření do bójkově-chví	lového
	modelu	ı a příklad	26
	3.5.4	Cíl aplikace Herbartova modelu mysli na mentální proces jedno	tlivce28
4	Prograi	nová část práce	30
	4.1 O	rgpad a jeho alokace	30
	4.1.1	Alokace orgpadu	30

	4.2	Pi-mind.js	31
	4.2.1	Obecné informace a myšlenkový základ "v pozadí"	31
	4.2.2	2 Představení programu	33
	4.2.3	Zařazení pi-mind.js do kategorií výukového programu	42
	4.2.4	Zařazení pi-mind.js v rámci výchovně-vzdělávacího procesu	45
	4.2.5	Srovnání orgpadu s mapami mozku	46
	4.2.6	6 Cíl práce	47
	4.2.7	Možné budoucí uplatnění	47
5	Dota	zník a výsledky	50
	5.1	Struktura dotazníku	50
	5.2	Výsledky a interpretace výsledků dotazníkového šetření	53
	5.2.1	Výsledky dotazníkového šetření	53
	5.2.2	2 Interpretace výsledků	53
6	Závě	ér	56
7	Sezn	nam použitých zdrojů	57
	7.1	Seznam použité literatury	57
	7.2	Seznam elektronických zdrojů	58
8	Sezn	nam tabulek	60
9	Přílo	hy	61
	9.1	Úvodní e-mail	61
	9.2	Úvodní stránka představující pi-mind.js - první úroveň	62
	9.3	Úvodní stránka představující pi-mind.js - druhá úroveň	63
	9.4	Úvodní stránka představující pi-mind.js - třetí úroveň	64

1 Seznam zkratek

UK

A	odpověď (zkratka vytvořena z anglického výrazu "answer")
ČR	Česká republika
d-d	dvojité ťuknutí do tlačítka počítačové myši; nespisovně tzv.
	"dvojklik"; (zkratka vytvořena z anglického výrazu "double
	dab")
GC	typ programu pi-mind.js užitý pomocí vzdáleného serveru
	(zkratka (mnemonika) pochází z anglického (amer.) spojení
	Grand Central Terminal)
ICT	informační a komunikační technologie (zkratka pochází
	z anglického originálu "information and communacation
	technology")
KAM	Katedra Aplikované Matematiky
MFF	Matematicko-fyzikální fakulta
Q	otázka (zkratka vytvořena z anglického výrazu "question")
Q RE	otázka (zkratka vytvořena z anglického výrazu "question") regulární výraz (zkratka vytvořena z anglického výrazu
	regulární výraz (zkratka vytvořena z anglického výrazu
RE	regulární výraz (zkratka vytvořena z anglického výrazu "regular expression")
RE	regulární výraz (zkratka vytvořena z anglického výrazu "regular expression") ťuknutí do tlačítka počítačové myši, nespisovně tzv.
RE	regulární výraz (zkratka vytvořena z anglického výrazu "regular expression") t'uknutí do tlačítka počítačové myši, nespisovně tzv. "kliknutí" (zkratka vytvořena z anglického výrazu "single
RE s-d	regulární výraz (zkratka vytvořena z anglického výrazu "regular expression") t'uknutí do tlačítka počítačové myši, nespisovně tzv. "kliknutí" (zkratka vytvořena z anglického výrazu "single dab")
RE s-d	regulární výraz (zkratka vytvořena z anglického výrazu "regular expression") t'uknutí do tlačítka počítačové myši, nespisovně tzv. "kliknutí" (zkratka vytvořena z anglického výrazu "single dab") typ programu pi-mind.js užitý pomocí lokálního počítače

Univerzita Karlova

2 Úvod

Jedním z měřítek kvality technického vynálezu je jeho využitelnost. Pokud se jedná čistě o "hardware", který byl použit pro konkrétní činnost, pak posouzení kvality vynálezu není problémem. Záleží, zda se využíval, využívá či bude využívat. Příkladem by mohlo být ruchadlo. Využívalo se, usnadnilo práci, je to tedy dobrý technický vynález své doby. S postupem času se vynálezy stávaly rafinovanějšími po technické stránce, např. parní stroj či elektromotor, a i posouzení kvality z pohledu využitelnosti se stává obtížnějším. Úskalím při rozhodování je otázka, jak by mohl být vynález plně využit, neboli otázka možné univerzálnosti užití vynálezu v porovnání s jeho reálným využitím. Tato otázka se ještě více zkomplikovala vynalezením informačních technologií. Vynález - stroj není jen hardwarem - tělem, ale ke svému využití nutně potřebuje i software - program. Mezitím, co hmotné komponenty informačních technologií se velmi rychle vyvíjejí, vývoj kvalitních programů je při nejmenším diskutabilní. Tato práce se zabývá využitím informačních komunikačních technologií (ICT¹) ve vzdělávacím procesu a to konkrétněji z úhlu pohledu edukačních programů.

Otázek, které bych si měl pokládat, budu-li chtít přemýšlet komplexně o ICT ve výchovně-vzdělávacím procesu, je mnoho. Omezím se tedy pouze na část z nich. Cílem této práce není, a ani být nemůže, pojednávat o uživatelích ICT vzhledem ke vzdělávacímu procesu tedy ani o těch, kteří by měli působit výchovně-vzdělávajíce, ani o těch, na které chceme působit výchovně-vzdělávacím procesem prostřednictvím ICT. Tato práce si nenárokuje ani vymezit, které konkrétní vědomosti by se měly předávat pomocí ICT. V této práci se zaměřuji na formu výchovně-vzdělávacího procesu, na metodiku vyučování speciálně pak na metodiku založenou na práci s orgpadem, konkrétněji s programem pi-mind.js, a na cíle výchovně-vzdělávacího procesu, které jsou s tím spojeny na univerzitní úrovni a které se týkají myšlení a komunikace.

_

¹ Zkratka pochází z anglického originálu: "information and communication technology".

3 Teoretická část práce

3.1 Vzdělávání, informační technologie a myšlení

3.1.1 <u>Vzdělávací proces</u>

"Vyučování je forma cílevědomého a systematického vzdělávání a výchovy dětí, mládeže a dospělých." (Vališová – Kasíková – et al., 2011, 121 s.)

Výchovně-vzdělávací proces, aby byl smysluplný, potřebuje dva subjekty s jejich specifickými dovednostmi vzhledem k tomuto procesu a samotný obsah učení, jak je ukázáno pomocí Herbartova trojúhelníka. Za prvé se jedná o subjekt, který znalosti a dovednosti na jednu stranu předává a na druhou stranu jim velmi dobře rozumí. Prvně zmíněnou specifickou dovednost tohoto subjektu, nazývejme jej učitelem, jsme pojmenovali učením a je to složka, která je v procesu předávání znalostí a dovedností dominantně lidstvem rozvíjena. Za druhé se jedná o subjekt, nazývejme jej žákem, který jednak dokáže porozumět učitelem předávaným znalostem a dovednostem a jehož specifickou dovednost vzhledem k tomuto procesu jsme pojmenovali učením se anebo sebevzděláváním a také je sám o sobě schopen porozumět znalostem a dovednostem vzhledem k nim samotným. (Obr. 1) Učení se je dovedností, která nebyla lidstvem, s jistým pochopením, rozvíjena s takovým úsilím jako "někoho něco naučit". Třetím důležitým faktorem výchovně-vzdělávacím procesu je samotný obsah učení. Obsah učení nejsou vždy jen vědou nashromážděná prostá fakta, ale mnohdy se jedná i o lidské postoje, mentální schopnosti, chování aj. Všechny tři pomyslné vrcholy jsou propojené dovednostmi obou subjektů, učitele a žáka. V této práci se zaměříme hlavně na spojnice učitel žák, kterou můžeme vymezit vzhledem k vyučování organizační formou, metodou a cílem výchovně-vzdělávacího procesu, i když při přemýšlením nad touto dvojicí musíme nutně brát v potaz i třetí vrchol Herbartova trojúhelníku - samotný obsah učiva. (Skalková, 2007)

Obr. 1 Herbartův trojúhelník s dovednostmi učitele a žáka.

3.1.2 Organizační formy vyučování

Organizační vyučování organizační rámec forma tvoří výchovně-vzdělávacího procesu, a proto je důležitým faktorem pro dosažení cílů ve výuce. Obvykle je organizační formou výuky myšlen způsob uspořádání výuky v konkrétních podmínkách jak prostorových, tak časových. Při volbě organizační formy je třeba brát v potaz nejen možnosti vzdělávací instituce, ale i možnosti samotných žáků. Zvolení organizační formy dále určuje použití vhodné vyučovací metody. Organizační formy se nepřímo vyvíjely v závislosti na společenské poptávce tak, jak společenská poptávka kladla cíle a požadavky na vzdělávací instituce. V současné době lze teoreticky organizační formy vyučování třídit podle dvou hledisek: a) způsobu řízení učebních činností žáka ve výuce; b) časové a prostorové organizace výuky.

Kategorie prvního způsobu třídění organizačních forem výuky určuje počet žáků a jejich interakci ve vyučovacím procesu. Z tohoto hlediska se jedná o vyučování individuální, individualizované, párové, skupinové a frontální.

Z úhlu pohledu druhého hlediska se více zajímáme o časový harmonogram vyučování a o prostorové podmínky, kde se výchovně-vzdělávací proces odehrává a přitom je snahou vsadit výchovně-vzdělávací proces do kontextu delšího časového období. V praxi by měly být obě hlediska od sebe neoddělitelná. (Vališová - Kasíková - et al., 2011)

Závěrem bych se zde více zaměřil na dvě konkrétní organizační formy vyučování, ve kterých lze realizovat práci s programem pi-mind.js a na které se tato

práce zaměřuje i s ohledem na jejich používání, a možného používání, na univerzitách při psaní bakalářských, diplomových a disertačních prací.

Individuální forma vyučování je známa z běžného univerzitního prostředí, a z prostředí ostatních vzdělávacích institucí, jako konzultace². Vzhledem k její vysoké pedagogické efektivitě je preferovaná i při doučování. Vzděláván je buď samostatný žák, nebo malá skupina žáků, ve které může každý mluvit s každým, přestože učitel má řídící úlohu, a tím se individuální vyučování odlišuje od individualizované organizační formy výuky, během které žáci pracují více samostatně. Z úhlu pohledu náročnosti či nákladnosti individuálního vyučování, není vhodnou formou pro vzdělávací systém jako celek, čímž nejen v dnešní době trpí převážně intelektuálně neprůměrní žáci. (Vališová - Kasíková - et al., 2011)

Druhou organizační vyučovací formou je skupinová výuka, při níž ve výuce pracují skupiny žáků, kteří pracují na řešení společného úkolu, který by měl vyžadovat větší mentální námahu. Žáci ve skupině mohou komunikovat mezi sebou navzájem i s učitelem, který skupinu koordinuje. Žáci ve skupině sice pracují na jednom cíli, jejich práce je však individuální. Můžeme to přirovnat k vedení některých univerzitních seminářů či cvičení. V literatuře je pojem skupinového vyučování někdy dán do souvislosti s kooperativním vyučováním, což znamená, že žáci by měli spolupracovat - měli by pracovat ve smyslu vzájemného prospěchu. Ze skupinové organizační formy výuky vychází tzv. projektové vyučování, které "je založeno na řešení komplexních teoretických nebo praktických problémů na základě aktivní činnosti žáků." (Skalková, 2007, s. 234); (Skalková, 2007)

3.1.3 Metody výuky

Slovo metoda je odvozeno od řeckého slova *methodos*, které znamená cesta k něčemu či postup k cíli, a proto by pojem metoda měl vzbuzovat dojem, že se jedná o podstatný faktor v každé činnosti, chceme-li dojít ke konkrétnímu výsledku. Velmi proto záleží na výběru vhodných metod a na jejich dokonalém ovládání. Ne jinak je tomu i u výchovně-vzdělávacího procesu, v němž metody výuky také patří k

² Z vlastní zkušenosti: Konzultace, jako individuální organizační forma, je při psaní závěrečných prací nepostradatelná součást procesu.

³ Domnívám se, že myšlenka kooperativního řešení složitých problémů v rámci více fakult (mezifakultně) jedné (i více) univerzity s výstupem v podobě série na sobě závislých závěrečných prací, které by, jako celek, tento složitý problém komplexně vyřešily, je při nejmenším uváženíhodná. Pravděpodobně by to ovšem asi znamenalo zřízení centra mezifakultní spolupráce.

nejdůležitějším faktorům. V současné etapě poznání lze metodu výuky vymezit jako koordinovaný systém vyučovacích činností učitele a učebních aktivit žáka, který je zaměřen na dosažení výchovně-vzdělávacích cílů. (Vališová - Kasíková - et al., 2011)

Vyučovací metody lze kategorizovat podle různých kritérií. Nejčastěji jde o aspekty: didaktický, psychologický, logický, procesuální, organizační a interaktivní. Tuto kategorizaci lze podrobněji najít v použité literatuře⁴. (Skalková, 2007) a (Vališová - Kasíková - et al., 2011)

Přesto si zde dovolím jedno kritérium napsat, neboť se jedná o další úhel pohledu na vyučovací metody, který v použité literatuře uveden není. Kritériem je znalost cílové vědomosti. Můžeme pak rozlišit metody, jejíž použití má za cíl odhalit vědomost lidstvu známou, a metody, jejíž použití má za cíl odhalit vědomost lidstvu zatím neznámou, ty obvykle nazýváme metody vědecké. I v druhém případě se však jedná o vyučovací metodu či metody, ač se to tak na první pohled nemusí jevit, která je převážně používaná při studiu na univerzitě, konkrétněji při tvoření diplomových, resp. disertačních prací.

Vzhledem k úzkému propojení organizačních forem s metodami výuky se někdy obě části pedagogiky spojují v metodicko-organizační hledisko výuky. (Vališová - Kasíková - et al., 2011)

3.1.4 Cíl výchovně-vzdělávacího procesu

Jak organizační formy výuky, tak metody výuky prošly svým vývojem, jak se s postupem času utvářela představa o vyučování, a nejinak je tomu i u cíle výchovně-vzdělávacího procesu. Přemýšlením nad tímto určujícím elementem pedagogiky vedlo tak daleko, že vznikla i samostatná vědní disciplína, která se zabývá pouze cílem výuky - pedagogická teleologie. (Vališová - Kasíková - et al., 2011) V současné době je to jeden z nejvýraznějších prvků transformace vzdělávacího systému v České republice (ČR). Důraz z obsahové stránky výchovně-vzdělávacího procesu se přenesl na rozvoj klíčových kompetencí. Výchovně-vzdělávací cíl ve spojení s myšlením jsou uvedeny v Rámcovém vzdělávacím programu pro Základní školy:

6

.

⁴ "Proto soudobá didaktika klade důraz na takové metody, kde jde o výraznou aktivizaci žáků, o postupy heuristické, problémové, které vedou k objevování nových vztahů, o nalézání nových řešení, rozvíjení tvořivosti,". (Skalková, 2007, s. 206) Platí i pro další text v odstavci.

V základním vzdělávání se proto usiluje o naplňování (mj.) těchto cílů:

- podněcovat žáky k tvořivému myšlení, logickému uvažování a k
 řešení problémů;
- připravovat žáky k tomu, aby se projevovali jako svébytné, svobodné a zodpovědné osobnosti, uplatňovali svá práva a naplňovali své povinnosti (Jeřábek, 2005),

i v Rámcovém vzdělávacím programu pro gymnázia:

Na čtyřletých gymnáziích a na vyšším stupni víceletých gymnázií by si žák měl osvojit (mj.) kompetenci k řešení problémů a kompetence sociální a personální na těchto úrovních:

- rozpozná problém, objasní jeho podstatu, rozčlení ho na části;
- vytváří hypotézy, navrhuje postupné kroky, zvažuje využití různých postupů při řešení problému nebo ověřování hypotézy;
- uplatňuje při řešení problémů vhodné metody a dříve získané vědomosti a dovednosti, kromě analytického a kritického myšlení využívá i myšlení tvořivé s použitím představivosti a intuice;
- kriticky interpretuje získané poznatky a zjištění a ověřuje je, pro své tvrzení nachází argumenty a důkazy, formuluje a obhajuje podložené závěry;
- je otevřený k využití různých postupů při řešení problémů, nahlíží problém z různých stran;
- zvažuje možné klady a zápory jednotlivých variant řešení, včetně posouzení jejich rizik a důsledků.
- posuzuje reálně své fyzické a duševní možnosti, je schopen sebereflexe;
- stanovuje si cíle a priority s ohledem na své osobní schopnosti,
 zájmovou orientaci i životní podmínky;
- odhaduje důsledky vlastního jednání a chování v nejrůznějších situacích, své jednání a chování podle toho koriguje;
- přizpůsobuje se měnícím se životním a pracovním podmínkám a podle svých schopností a možností je aktivně a tvořivě ovlivňuje;
- přispívá k vytváření a udržování hodnotných mezilidských vztahů založených na vzájemné úctě, toleranci a empatii;
- projevuje zodpovědný vztah k vlastnímu zdraví a k zdraví druhých;

- rozhoduje se na základě vlastního úsudku, odolává společenským i mediálním tlakům. (Jeřábek, 2007)

Cíl rozvíjet myšlení a lidský intelekt se konečné dá vyčíst i v Dlouhodobém záměru UK (Univerzity Karlovy) 2011-2015. (Hampl, 2011)

3.1.5 <u>Výukový program</u>

Pro předpokládanou funkčnost informačních technologií je nutnou podmínkou software, neboli programy, které umožňují chod zařízení, případně i jeho ovládatelnost uživateli. Počítačové programy proto dělíme na systémové a aplikační. Systémové programy slouží k chodu počítače a aplikační programy umožňují použít počítač pro konkrétní činnost. (Wikipedia, 2013)

S vývojem a postupným masovým používáním ICT v běžném životě se využití ICT ve výuce stalo jen otázkou času. První na tento trend zareagovaly vysoké školy a univerzity a na jejich půdách se začaly provádět první studie ohledně širšího zařazování ICT do vzdělávání. Takovéto studie na vysokých školách jsou v některých částech světa, např. v Africe či u nás, dodnes aktuální (Onyia, 2013) či (Kubiatko, 2010), zatímco v jiných částech světa, např. v Severní Americe, v aktuální době probíhá masivní nárůst nejrůznějších e-učebních (e-learning) aktivit a to především v podobě on-line kurzů - snad nejvýznamnější představitel současnosti je projekt EdX (www.edx.org) pod záštitou Massachusetts Institute of Technology, Harvard University a dalších významných amerických universit. Že užití ICT má potenciál i na základních a středních školách se v ČR přesvědčila i trojice výzkumníků Rabe, Slegr a Machova. (Rabe - Slegr - Machova, 2010) a výzkum spjatý se zařazováním ICT do výuky na úrovni základních a středních škol pokračuje i v zahraničí např. (Angadi, 2013). Ve studiích bylo vesměs konstatováno, že užívání ICT ve výchovně-vzdělávacím procesu má kladný přínos.

Aplikační programy využívané ve vzdělávacím procesu nazýváme výukovým programem či výukovým softwarem. Přesnější definice výukového softwaru zní: Výukový software definujeme jako programové vybavení počítače, které je určeno k výukovým účelům a dokáže plnit alespoň jednu didaktickou funkcí. (Dostál, 2009a) Za didaktické funkce u výukových programů pokládáme: plánovací; organizační; řídící; motivační; komunikační; kontrolní; expoziční či "vyučovací"; upevňovací nebo procvičovací; diagnostickou anebo klasifikační. (Kútna – Palásthy, 2009)

Výukové programy lze také kategorizovat podle různých hledisek: dle míry interaktivity; úrovně vzdělání; míry poskytování zpětné vazby; organizovanosti vzdělání; on-line/off-line funkčnosti; počtu uživatelů; tematického rozsahu; možnosti vnímání; jazykových mutací; verze; počtu didaktických funkcí; zaměření na jednotlivé předměty. S tím je spjata volba vhodného výukového programu, která by měla brát na zřetel: výukové cíle; věk a úroveň psychického vývoje žáků; schopnost učitele integrovat je do výuky a podmínky realizace. (Dostál, 2009a)

O zařazení orgpadu, vlastně programu pi-mind.js, do jednotlivých kategorií výukových programů se zmíním v kapitole věnované přímo tomuto programu. Na závěr této podkapitoly napíši ještě dvě citace, o kterých si myslím, že je dobré je tu zmínit. Jednak možnosti ICT vzhledem k výchovně-vzdělávacímu procesu jsou, a v blízké době stále budou, omezené: "Ve školní výuce není a nikdy nebylo cílem využívání výukového software, jak se někteří mylně domnívali, nahradit v komplexní rovině učitele. Žádný software totiž není schopen nahradit osobnost vzdělaného pedagoga."; a za druhé, k výběru vhodného výukového programu: "I sebedokonalejší výukový program, pokud není využíván žákem příslušného věku a úrovně psychického vývoje, nemůže adekvátně plnit svou funkci." (Dostál, 2009a, s. 23; a za druhé s. 24)

3.1.6 Edukační program

Edukační program je pojem nadřazený pojmu výukový program a kromě výukových programů se jedná i o programy, které nebyly navrženy přímo pro výchovně-vzdělávací účel; např. Microsoft Word, nebo jakýkoliv jiný program, ve kterém lze psát, využit pro sepsání seminární práce. Edukační program definujeme jako jakékoliv programové vybavení počítače, které je předurčeno pro využití v situacích, kdy dochází k rozvoji osobnosti jedince. (Dostál, 2009a) Přestože edukační programy nejsou sensu stricto výukové programy, lze na ně použít kategorizaci výukových programů.

3.1.7 Autorova úvaha nad moderním pojetí gramotnosti

Pojem gramotnost se striktně užíval ve vztahu k vizualizovanému primárnímu jazyku, tedy ke schopnosti psát a číst text a přitom se textem rozuměla grafická podoba primární řeči. Pokud je člověk gramotný, má možnost vzájemné, relativně

neomezené, obousměrné komunikace s druhým gramotným člověkem či s více gramotnými lidmi jinak, než pomocí mluveného slova. Tato jedinečná charakteristika přinesla do školství výrazný pokrok. Pokud předpokládáme, že máme ve třídě více žáků⁵ a pokud dále předpokládáme, že všichni zúčastnění výuky jsou gramotní a pokud připustíme, že existují okamžiky při výuce, při kterých ne každý žák slyší vše, co učitel říká, potom zápis na tabuli zkvalitní výchovně-vzdělávacího proces, eliminuje nedorozumění mezi učiteli a žáky a napomůže ke kontinuitě při předávání učebního obsahu.

S akceptováním méně striktního myšlení, co by dostačujícího požadavku pro obecné uznání za chytré jedince, došlo k nárůstu chytrých lidí, kteří ač považováni za chytré nepochopili zcela smysl užívání a logickou strukturu jazyka a pojem gramotnosti začali svévolně užívat ve spojení s mnoha dalšími slovy za vzniku množství zcela nedefinovaných, krásných, jazykových anomálií jako informační gramotnost, počítačová gramotnost, fyzikální gramotnost aj.

Tento fenomén dnešní doby v konkrétním případu počítačové gramotnosti mi dává možnost se zamyslet nad potřebou pedagoga ovládat počítač a do jaké míry by měl pedagog tuto dovednost umět. Pokud dojdeme k nějaké odpovědi, tato odpověď nám může napovědět, jaký by měl být vhodný výukový program.

Naskýtá se zde logická otázka, co to vlastně je počítačová gramotnost. Omezíme-li se totiž na to, že budeme počítačovou gramotnost chápat jako schopnost pracovat s počítačem a jeho periférií při používání běžného softwarového vybavení a s možností využití počítačových sítí včetně internetu, potom se můžeme omezit na schopnost ťukání prsty v určitém pořadí na konkrétní místa (za předpokladu znalosti abecedy a ovládání dovedností čtení a psaní) a dodání papíru do tiskárny, neboť současné běžné programové vybavení počítačů na vyšší úrovni⁶ není, a pokud už existují funkce v rámci běžných programů, které by byly na vyšší uživatelské úrovni, pak se běžně neužívají; viz možnost tvorby maker v rámci Microsoft Excel. Budeme-li od pedagoga požadovat více, než jen "koordinované ťukání", můžeme přistoupit k obecnější definici a počítačovou gramotnost vymezit: "... jako kompetence, které umožní jedinci využívat nové technologie pro jeho profesní a osobní život v té míře, kdy se necítí komputerově handicapován, není za digitální

-

⁵ V počátcích hromadné školní výuky nebyly výjimkou třídy, ve které bylo i přes 100 žáků.

⁶ Pojmem "vyšší úroveň" zde rozumím úkony prováděné na počítači, při kterých je nutné znát a umět použít minimálně základy programování.

přehradou a jeho osobní i profesní rozvoj prostřednictvím počítače je otázkou jeho volby.". (Dostál, 2007) Jenomže v takovém případě, by každý učitel (a aby to bylo smysluplné i každý žák) musel umět používat jeden, stejný, programovací jazyk, jako při využívání původní gramotnosti při výuce.⁷ Pokud bychom i po žákovi nepožadovali počítačovou gramotnost obecnější definice, pak by se on sám učil pouze "koordinovaně ťukat" bez hlubšího smyslu a možná i bez dodávání papíru do tiskárny, a kontinuita dovedností, kterou má zajistit právě výchovně-vzdělávací proces, by byla narušena. Takovou situaci bychom mohli přirovnat k výuce kreativního (tvůrčího) psaní, při které bychom po žácích požadovali psaní písmen či jednotlivých slov namísto románu. Potom je ovšem otázkou, zda má cenu vůbec přemýšlet o počítačové gramotnosti ve výchovně-vzdělávacím procesu, neboť v prvním případě, viděno optikou dnešní tzv. "počítačové generace od kolébky", je zcela zbytečná, protože žákům nic nového nepřinese, a v druhém případě je takřka nerealizovatelná, protože i přes nazvání současné generace počítačovou, je to stále jen abstraktní pojem a velká část populace z této tzv. počítačové generace by nebylo schopno se programování v současné podobě vzdělávacího systému dostatečně naučit a jejich počítačová gramotnost by byla opět na úrovni uživatelského "koordinovaného ťukání". Vrátíme-li se k učitelům, potom vzhledem k výše napsané úvaze je zatím požadavek na jejich vyšší - obecnější počítačovou gramotnost minimálně neférový. Což napovídá odpověď i na případnou otázku, jaké jsou dnešní výukové programy.

Leccos nám to říká i o tom, jaký by měl být současný výukový program. Měli-li bychom se pokusit vytvořit program sofistikovaný co do ovládání s nárokem na znalost programovacího jazyka, nebo by to měl být program, pro jehož užití stačí prostá původní gramotnost s "koordinovaným ťukáním"? Obě varianty potom udávají směr, jak svobodomyslně v nich budou moci učitelé i žáci pracovat. Program založený na první myšlence by poskytoval větší svobodu pro uživatele s vyšším nárokem na znalosti ovládání takového programu. Program na bázi druhé myšlenky by byl striktní, po čase užívání by se mohl stát nudným, ale nevyžadoval by nadstandardní vzdělání.

Pokud se shodneme na tom, že učitel prozatím nemusí pro plné naplnění svého poslání umět programovat, není-li vyučovat programování jeho posláním, a

.

⁷ Protože dříve, než si žák může cokoliv napsaného přečíst z tabule, se musí před tím naučit samotnému psaní a čtení.

zároveň bychom chtěli předejít případnému zevšednění programu, potom by takový program neměl být specifický pro daný obor, měl by dát uživateli možnost s ním velmi kreativně pracovat, aniž by samotný uživatel potřeboval vstupovat do jeho zdrojového kódu anebo by potřeboval umět programovat.

3.1.8 Shrnutí

V této kapitole jsem popsal výchovně-vzdělávací proces a jeho součásti vzhledem k interakci učitele se žákem. Zaměřil jsem se na tři důležité jevy z pohledu pedagogiky na tuto interakci a to na organizační formy, metody a cíle výchovně-vzdělávacího procesu a přitom jsem se u organizačních forem detailněji zaměřil na formy individuální a skupinové výuky s navázáním na projektové vyučování, které zde bylo záměrně, sic pod čarou, zmíněno jako zajímavost pro akademickou obec. U vyučovacích metod jsem připsal další možné kritérium, které se týká znalosti cílové vědomosti, a v podkapitole o cíli výchovně-vzdělávacího procesu jsem dokumentoval, že jedním z cílů vzdělávací soustavy České republiky je u žáků rozvíjet myšlení či složitý mentální proces.

Dále jsem v této kapitole psal o informačních a komunikačních technologiích a jejich zařazování do vzdělávacích soustav a s tímto tématem jsem zde vymezil pojmy výukový a edukační software, resp. výukové a edukační programy. Na závěr jsem nastolil otázku smysluplnosti soudobého pojmu počítačové gramotnosti a napsal úvahu nad touto problematikou v kontextu s nároky na učitele a na možnou konkrétní podobu výukového programu.

3.2 Hypertext

3.2.1 Hypertext

O tradičním psaném textu, který je používán od vzniku prvního písma do dnes, můžeme napsat, že se jedná o text lineární, neboli o text, kde informace jsou napsány v přesně daném pořadí dle gramatiky tak, že čtenář postupuje po "jedné linii" textu podle autorova záměru; a to i v případě, že se jedná o smysl napsaný "meziřádky" textu. V roce 1945 Vannevar Bush ve svém článku "As We May Think" napsal myšlenku jinak písemně zaznamenané informace, než v podobě tradičně psaného lineárního textu. (Bush, 1945) V 60. letech minulého století v souvislosti s vývojem počítačů Bushův náznak rozvinul Theodor H. Nelson a dal lidstvu nový termín - "hypertext", o kterém se poprvé veřejně zmínil ve svém článku z roku 1965. (Kobíková, 2003) Nelsonova definování zní: "Let me introduce the word "hypertext" to mean a body of written or pictorial material interconnected in such a complex way that it could not conveniently be presented or represented on paper." (Nelson, 1965) Což lze přeložit: "Dovolte mi představit slovo "hypertext", které znamená soubor písemného nebo obrazového materiálu propojeného takovým komplexním způsobem, že to nemůže být vhodně prezentováno nebo vyjádřeno na papíře".

Při podrobnějším prostudování obou textů pánů Bushe a Nelsona jsou patrné určité rozdíly mezi jejich myšlenkovými modely, které se týkají hypertextu. Mezitím co Nelson vědomě používá termín hypertext a má pod ním určitou představu - definici, Bush tento termín nepoužívá a až realizace jeho myšlenky byla "zpětně" pojmenována hypertextem. Asi nejznámější realizace Bushova hypertextu je jeden z nejužívanějších systémů současnosti – World Wide Web, který je spíše znám pod zkráceným termínem – web, nebo webová encyklopedie Wikipedie⁸. I přes zásadní význam webu v dnešní době, budeme v této práci vycházet z definice Theodora H. Nelsona.

Hypertextem rozumíme (nelineární) text, jehož podoba nemůže být zachycena na ničem, na čem se dá fyzicky psát, např. papíře. Pro hypertext je charakteristické absence hlavního textu, složení z více polí textu, vzájemným propojením jednotlivých textových polí a interaktivita mezi textem a čtenářem, což

⁸ Wikipedie je překlad z původního anglického názvu Wikipedia.

lze chápat jako aktivnější role čtenáře, který může pracovat s hypertextem dle vlastního uvážení a může tak, i zásadně, změnit smysl původního hypertextu. (Dostál, 2009b)

3.2.2 <u>Hypermédium</u>

Rozšířením definice hypertextu o další formy sdělení informací, např. schématem, filmem, zvukovým záznamem aj., dostáváme pojem hypermédium.⁹ (Dostál, 2009b), (Wardrip-Fruin, 2004)

⁹ V literatuře se můžeme dočíst i o pojmu multimédium či multimediální. Rozdíl mezi hypermédiem a multimédiem je v tom, že při práci s hypermédiem přijímatel informace může, stejně jako u hypertextu, s informacemi pracovat tak, že může až zásadním způsobem změnit smysl prezentované informace. U multimediální formy informace ji lze přijmout pouze sekvencí jednotlivých forem informace a zároveň samotné sekvence nejsou spolu více propojené. Bližší informace lze nalézt např. (Dostál, 2009b).

3.3 Vizualizace

3.3.1 Základní terminologie

Lidstvo se vizualizací *sensu lato* zabývá od svých nejranějších dob. Samotný pojem vizualizace pochází z latinského slova *videre* (viděti), což naznačuje i jeho možnou definici. Vizualizací rozumíme operaci transformující konkrétní nebo abstraktní jevy do podoby, která je zachytitelná zrakem. Vizualizovaným jevům pak říkáme vizuália. Pokud zachytíme pomocí zraku, tedy vizuálním pozorováním, jev, uloží se nám do naší tzv. vizuální paměti¹⁰. Schopnost vytvářet v mysli nové vizuální představy nazýváme vizuálním myšlením a schopnosti pracovat s vizualizovanými jevy říkáme vizuální gramotnost. Konkrétněji vizuální gramotností rozumíme schopnosti: porozumění vizuáliím, používání vizuálií při komunikaci, vizuální myšlení, učení se pomocí vizuálií a vytváření vizuálií¹¹. (Spousta, 2006)

3.3.2 <u>Vizuální komunikace</u>

Na název současné časové periody se lidé z různých odvětví své činnosti dívají odlišně. Biologové by převážně asi souhlasili s tvrzením, že jsme v době poznávání živých organismů na úrovni subcelulární, lépe vystihnuto - úrovni genetické. Samozřejmě, že ne každý biolog by s takovýmto tvrzením souhlasil, jistě hodně záleží na specializaci, na otázce, co je v současnosti nejpodstatnější charakteristický rys celé biologie, abychom podle něj mohli pojmenovat současnou periodu, aj.

V oblasti komunikace panuje názor, že současná epocha je epochou vizuální komunikace. Jedním z argumentů, proč se zabývat vizuální komunikací je samotný zrak, neboť k získání stejného počtu informací pomocí zraku potřebujeme nejméně času, což se v dnešní "uspěchané" době jistě hodí. Vzhledem k tomu, že vizuální komunikaci můžeme dělit na slovní, mimoslovní a smíšenou, je zřejmé, že periodou vizuální komunikace můžeme v historii lidstva nazvat více časových období. Obecně komunikace slouží k předávání myšlenek a současně věda o komunikaci rozumí myšlenkou racionální a emocionální obsah vědomí. Základními prvky slovní vizuální

_

Problematika počtu a typů paměti a zpracování informací v mozku není v současné době uspokojivě vyřešena. Obecně se pracuje s hypotézou, že lidé, pokud mohou, tak zpracovávají informace paralelně z více smyslů najednou. Tato hypotéze podporuje užívání multimédií ve výuce.

¹¹ Vizuální gramotnost bych striktně definoval, jako dovednost číst (s pochopením) a schopnost vytvářet (či zaznamenávat) vizuálie. Přesto jsem se přidržel definice z již vydaného článku, jako autority současné vědy.

komunikace jsou znaky - písmena, které reprezentují určitou hlásku. Mezi základní prvky mimoslovní vizuální komunikace kromě znaku dále patří zejména figura a symbol. 12 Znakem rozumíme strukturu zastupující skutečnost na základě dohody; figurou rozumíme strukturu vzniklou na základě podobnosti se skutečností a; symbolem rozumíme figuru či znak, která má podle dohody jiný význam, než který z ní na první pohled vyplývá. Základní prvky lze skládat do kombinace, variace a mutace. Kombinací prvků rozumíme použití více základních prvků, příkladem jsou římské číslice (symbol VI je složen ze dvou symbolů I a V); variací prvků rozumíme kombinaci prvků složených na sebe (symbol auta, na kterém je symbol kříže, tvoří symbol pro vůz rychlé záchranné služby) a; mutací prvků rozumíme vložení znaku do tabulky, čímž se změní smysl struktury, příkladem jsou dopravní značky. Prvky, které používáme ve vizuální komunikaci, tvoříme vizualizací skutečnosti. Vizualizovat proto můžeme konkrétní jevy, nebo abstraktní jevy. Vizualizaci konkrétních jevů provádíme zjednodušením či zvýrazněním existujících tvarů, nebo nalezením jejich optimálního úhlu zobrazení; příkladem může být obraz anatomie lidského těla. U abstraktních jevů hledáme vizuální formu tak, aby co nejlépe vystihla věci jinak vizuálně neexistující; příkladem může být obraz důkazu Pythagorovi věty. Aby nám prvky dávaly smysl a sloužily ke komunikaci, řídíme se při jejich používáním logickou systémovou vazbou a tuto dvojici {prvky, logická systémová vazba} nazýváme systémový soubor nebo zkráceně systém. Pro popis myšlenek ve vizuální komunikaci jsou nejvíce užívanými systémy: systém čar (kresba); systém plošek (malba); systém prostorových detailů (plastika) a; systém rozptylových kroužků (fotografie). (Fassati, 2009)

3.3.3 Vizualizace ve výchovně-vzdělávacím procesu

"Proto budiž učitelům zlatým pravidlem, aby všechno bylo předváděno všem smyslům, kolika možno. Totiž věci viditelné zraku, slyšitelné sluchu, vonné čichu, chutnatelné chuti a hmatatelné hmatu; a může – li něco být vnímáno najednou více smysly, budiž to předváděno více smyslům.": (převzato ze Spousta, 2006, s. 253-254) napsal ve svém díle Didactica magna (Velká didaktika) J. A. Komenský na základě zásady "nic není v rozumu, co předtím nebylo ve smyslech". I k výuce jazyků proto přistupoval názorně a svou snahu završil ve svém pozdějším díle, jehož název je vše

.

¹² Další prvky vizuální komunikace obecně jsou i mapy, tabulky, grafy, mimika, předvádění, gestikulace, vlajková abeceda, tištěná Morseova abeceda i čínské znakové písmo a kandži aj.

vypovídající, *Orbis sensualium pictus* (Svět v obrazech), ve kterém užil na 150 vizuálií. (Štverák, 1988)

V současné době, v kontextu s prudkým rozvojem informačních technologií a tím pádem větší dostupnosti a většího množství způsobů zaznamenání a příjmu informace a v kontextu výraznějšího nárůstu obsahu lidského vědění oproti ztrátám zdánlivě nepotřebných vědomostí, je stále více akcentována nutnost vizuální gramotnosti, neboť vhodná vizuália jsou pro člověka srozumitelná, názorná a přirozená; např. tváře lidí si obecně zapamatujeme lehčeji, než jejich jména. (Šedivý, 2009) Kromě toho, větší množství informací podmiňuje i potřebu tyto informace třídit, jinak ztrácí svojí hodnotu, k čemuž se jeví jako příhodný prostředek užití vhodné formy vizualizace. A proto bychom měli vizuální gramotnost rozvíjet na všech stupních školského systému. Jako u všech didaktických pomůcek, tak i u používání vizuálií, jako součásti výchovně-vzdělávacího procesu, platí určitá pravidla. Vesměs by se nejdůležitější zásada vůči příjemci informace dala shrnout tak, že velmi záleží na celkové mentální úrovni jedince. (Spousta, 2003) I pro samotná vizuália platí určitá kritéria, přitom dominantními kritérii jsou požadavky na srozumitelnost a na názornost. Přestože "Vizuália mohou být účinná jen ve spojení se slovní prezentací problému, protože teprve v této symbióze může vzniknout logicky strukturovaná vědomostní soustava. ", jak píše Spousta (Spousta, 2006, s. 259-260), vizuália by měla reprezentovat skutečnost názorněji (stručněji/intuitivněji), nežli bychom ji popsaly verbálně či lineárním psaným textem.

Vizuália ve vyučování mimo jiné rozvíjejí představivost a provokují k samostatnému myšlení. Pomocí nich lze snadněji proniknout do spleti vzájemných vztahů dané problematiky a mentálně ji uchopit. Pokud žák je schopen vytvářet vlastní vizuálie, snáze si vytvoří vlastní strukturu svých nabitých vědomostí, o kterých může pak snadněji přemýšlet a může nalézt nové souvislosti mezi nimi, zároveň se žák při sestavování vlastních vizuálií procvičí náročné myšlenkové operace. Edukologických funkcí vizuálií uvádí Spousta (Spousta, 2006) celkem 18 a já zde vypíši nejdůležitější, dle mého názoru, vzhledem k myšlení a poznání:

- Komunikativní zprostředkování komunikace mezi učitelem a žákem;
- Poznávací umožňují abstraktní poznání;
- Vzdělávací zvyšují kvalitu osvojených poznatků;
- Explikativni napomáhají pochopení při výkladu;
- Instruktivní znázorňují jednotlivé fáze určité činnosti;

- Petrifikační upevňují a začleňují poznatky do vědomostní soustavy;
- Regulační vyjadřují řízení procesu a posloupnost jeho etap;
- Facilitační usnadňují pochopení učiva a postižení souvislostí.

"...vizuália se v uvedených funkcích vzájemné ovlivňují a prostupují, a to vždy v závislosti na cílech výuky, na povaze učiva a intelektuální potenci a zkušenostech žáka, ale též ve vztahu k aktuálně aplikovaným metodám a kvalitě pedagogicky modifikovaného prostředí¹³, v němž výuka probíhá." (Spousta, 2006, s. 263)

Vizuálním vnímáním člověk získává největší množství informací z prostředí 14. V poslední době se tento jev ještě umocnil nejprve vynalezením a uplatněním televize a později i vytvořením internetu a jeho vizuální podoby. Přesto při výchovně-vzdělávacím procesu byl pojem vizualizace vnímán učiteli poměrně omezeně, když pod tímto pojmem rozuměli skutečný objekt či jeho, pokud možno co nejrealističtější, zobrazení. K tomuto názoru je vedli jak tvůrci učebnic, kteří také přisuzovali vizuáliím v učebnicích pouze pomocnou úlohu, tak i skutečnost, že nebyly adekvátní technické prostředky pro jejich vytváření. Ani v současné době se nenajde mnoho učitelů, kteří by užívali vizuálie pestřejším způsobem a s aktivním začleněním studentů do jejich přípravy, přestože vizualizace usnadňuje studium náročnější problematiky, umožňuje získat žákovi nadhled nad danou problematikou a pomáhá snáze dosáhnout vyššího teoretického myšlení. (Spousta, 2006)

_

¹³ Pedagogicky modifikované prostředí je ve své podstatě určitá organizační forma výuky.

¹⁴ Mám zde samozřejmě na mysli lidi, kteří disponují tímto čitím.

3.4 Kartografie vlastních vědomostí

Tato část práce pojednává o "mapování mozku", které je rozvíjeno od 60. let 20. stol. a které můžeme rozdělit do dvou skupin. Do první skupiny patří techniky nazývané mentální mapování, myšlenkové mapy a pojmové mapy a souhrnně jí nazývejme kartografií vlastních vědomostí. Do druhé skupiny náležejí techniky pojmenované kognitivní mapy, argumentační mapy či fuzzy kognitivní mapy a celkově hovořme o kartografii vlastních mentálních dovedností. 15 Rozdíl mezi dvěma výše definovanými skupinami spočívá v tom, že kartografie vlastních vědomostí pracuje primárně s vědomostmi a "hierarchickými" vztahy mezi nimi navzájem, zatímco kartografie vlastních mentálních dovedností pracuje s vědomostmi, vztahy mezi nimi navzájem a primárně je také zohledněna celková, "složitější", logická struktura, která zahrnuje např. mentální operace syntézu či dedukci.

3.4.1 Mentální mapování 16

Lidský mozek jsme pomyslně rozdělili na několik části a tyto části jsme nazvali prodloužená mícha, Varolův most, mozeček, střední mozek, mezimozek a koncový mozek. Koncový mozek je dále rozdělen na levou a pravou hemisféru, které jsou navzájem propojené kalózním tělesem, tzv. vazníkem. Mezi částí psychologů panuje názor, že pravá hemisféra je určená (spíše) pro rytmus, prostorové vědomí, dimenzi, představivost, denní snění, barvy, celostní vnímání (gestalt) a levá hemisféra je využívána pro slova, logiku, čísla, posloupnosti, linearitu, analýzu či seznamy. (Sternberg, 2009) Z této premisy vycházel i Tony Buzan, když zavedl pojem mentální mapa. (Buzan, 2007)

Mentální mapy jsou založené na principu synergie (vzniku asociace) mezi pravou a levou mozkovou hemisférou, což by mělo mít za následek propojení izolovaných informací vedoucí k lepšímu: uchování informací (paměti), plánování, tvořivosti, efektivnějšímu učení, komunikaci. (Buzan, 2007)

Mentální mapy mají strukturu paprskovitě rozšiřujícího se centra. Při jejich vzniku používáme různé barvy, křivky, symboly, (slova) a "pro náš mozek

~

¹⁵ V literatuře se můžeme dočíst i o mapování a modelování poznatkových schémat.

Mentální mapy jsou v literatuře často chápány podobně, neřkuli stejně, jako myšlenkové mapy (mind map) tedy, že tyto pojmy jsou navzájem zaměnitelné a vyjadřují stejnou skutečnost. Nabyl jsem dojmu, že mentální mapy jsou pojem nadřazené pojmu myšlenkové mapy, a proto v této práci budou rozebrány oba pojmy zvlášť a na rozdíl, který mezi nimi spatřuji, poukáži.

přirozených pravidel". Dále se držíme sedmy kroků, které vedou k vytvoření správné mentální mapy: 1) začínáme uprostřed (papíru - mentální mapy se kreslí ručně!); 2) začínáme obrázkem (ne slovem – odtud propojení pravé "umělecké" a levé "logické" hemisféry, podobně i body 3), 5) a 7)); 3) užíváme různých barev; 4) k počátečnímu (centrálnímu) obrázku přidáváme hlavní větve, 2. vedlejší větve, 3. vedlejší větve atd. (propojení bez mezer); 5) užíváme křivek (ne přímek); 6) pro každou větev užijeme 1 klíčový pojem (obrázek, symbol, slovo, slovní spojení, otázku) a; 7) více užívat obrázků (symbolů) než slov. (Obr. 2); (Buzan, 2007)

Obr. 2 Mentální mapa¹⁷

3.4.2 Myšlenkové mapy

Pojem mentální mapa můžeme chápat jako pojem nadřazený pojmu myšlenková mapa. V myšlenkové mapě na rozdíl od mentálních map jsou užívány k popisu "uzlů" mezi spojnicemi výhradně slova, a to má za následek, že myšlenkové mapy lze snadno tvořit pomocí počítačových programů, ale zároveň propojení obou mozkových hemisfér není tak pevné jako v případě ručně kreslených mentálních map. Tvorba myšlenkových map a jejich struktura je stejná jako tvorba a struktura mentálních map až na rozdíly vyplývající z popisu. (Obr. 3); (Stehlík, 2005)

¹⁷ Převzato z < http://thinkbuzan.com/how-to-mind-map/#prettyphoto/5/>, [cit 2017-03-29].

Obr. 3 Myšlenková mapa¹⁸

3.4.3 Pojmové mapy

Pojmové mapy jsou rozvíjeny od roku 1972, kdy je poprvé představil Joseph D. Novak. Myšlenka, která stojí v pozadí pojmových map, vychází z kognitivní psychologie Davida Ausubela, jehož teorie říká, že nové učivo je zařazováno do původní žákovy struktury vědomostí a přitom každý žák má vlastní reprezentaci učiva. Pojmové mapy byly vytvořené pro lepší pochopení a znázornění toho, jak žák chápe nové pojmy. (Novak – Cañas, 2008)

Pojmové mapy se skládají z pojmů, které reprezentujeme textem, objektů, do kterých pojmy píšeme např. elipsa, čtverec aj., a spojovacími čárami mezi objekty, které reprezentují vazby mezi pojmy. Samotné propojení bývá dále doplněné o popis vztahující se k dané vazbě. (Novak – Cañas, 2008)

Struktura pojmové mapy je hierarchická. Nejobecnější pojmy píšeme nejvýše a konkrétnější pojmy píšeme postupně níže. Obecnost pojmů závisí na konkrétním tématu, a proto můžeme pro snadnější zaměření se na cíl a pro lepší srozumitelnost mapy pro druhé lidi začít přímou otázkou. Na rozdíl od mentálních či myšlenkových map, ve kterých je právě jeden hlavní pojem, a to uprostřed celé mapy, do pojmové mapy můžeme napsat více hlavních pojmů. (Obr. 4); (Novak – Cañas, 2008)

 $^{18~}P\'{r}evzato~z \leq http://www.milosnemec.cz/clanek.php?id=147>,~[cit~2014-03-29].$

Obr. 4 Pojmová mapa¹⁹

3.4.4 Kartografie vlastních mentálních dovedností

Problematika kartografie vlastních mentálních dovedností, jak napovídá zařazení v této práci, není hlavní nástroj pro srovnání s programem pi-mid.js, a proto se zde pouze zmíním o podobě a principu vybraného reprezentanta této kategorie.

Nástroje, které spadají do kartografie vlastních mentálních dovedností, používají kromě schémat, které mohou mít podobnou strukturu jako pojmové mapy, i možnost více používat vazby mezi objekty tak, aby ovlivňovaly čtení konečné mapy. (Stehlík, 2005)

Např. kognitivní mapy užívají vztah implikace mezi dvěma objekty (Jestliže..., potom...). (Obr. 5) Objekty obvykle nemají hierarchické seřazení, ale mají rovnocenné postavení ve schématu. Pracujeme s nimi tak, že pokud dostaneme informaci o daném problému, potom použitím vhodné kognitivní mapy můžeme získat více informací a lépe tak porozumět problému anebo si vytvořit představu o problému jako celku. (Obr. 6); (Stehlík, 2005)

_

¹⁹ Převzato z < http://cmap.ihmc.us/Publications/ResearchPapers/TheoryUnderlyingConceptMaps.pdf >, [cit 2014-03-30].

Obr. 5 Kognitivní mapa²⁰

Obr. 6 Užití kognitivní mapy z Obr. 5²¹

Převzato z (Stehlík, 2005, s. 43).
 Převzato z (Stehlík, 2005, s. 44).

3.5 Herbart a jeho model mysli

Johann Friedrich Herbart byl učenec působící v první polovině 19. století. Pocházel z německého města Oldenburg, kde se narodil 4. května 1776. Svůj profesní život však prožil převážně na univerzitách v Královci (1808-1833) a v Gotinkách (1802-1808 a 1833-1841), kde přednášel a rozvíjel svojí filosofii a pedagogiku a kde také v Gotinkách 11. srpna 1841 zemřel. (Hofmann - Kyrášek, 1977)

V Českých zemích je znám hlavně pro svou pedagogiku, jejímž představitelem byl u nás např. profesor Gustav Adolf Lindner a která byla základem pro Bonitz-Exnerovu školskou reformu nazvanou: "Entwurf der Organisation der Gymnasien und Realschulen in Oestereich", což v překladu je: "Nástin organizace gymnázií a reálek v Rakousku" (Štverák, 1988, s. 170), a realizovanou v Rakouském císařství v roce 1854. Pro Herbartovu pedagogiku se postupem času vžil název herbartismus, který nebyl pedagogickým systémem pouze podle Herbarta, ale který už byl rozvíjen dalšími jeho pokračovateli a ne zcela v duchu jeho práce. (Štverák, 1988)

Herbartova teoretická pedagogika vychází z jeho filosofie, resp. etiky a psychologie, neboť se domníval, že etika udává cíl výchovy a psychologie ukazuje cestu a prostředky k překonávání obtíží. V etice Herbart navazoval na Kanta s tím rozdílem, že místo Kantova kategorického imperativu stanovil patero praktických kritérií regulující mravní život jednotlivce i celé společnosti. Herbartova etika není ovšem východiskem pro tento text a dále se ji nebudu zabývat. (Štverák, 1988)

Pro tuto práci je důležitější pochopit jeho psychologii, která vychází z Herbartova chápání reálů jako nezměnitelných elementů všech věcí, a tedy i mysl Herbart vnímá jako jednoduchý reál, kdy evokovatelné chvíle vystupují jako základní jevy mysli. Evokovatelnou chvílí rozumíme každou představu v mysli o "vnější" konkrétní věci či o "vnitřní" abstraktní myšlence. Každá evokovatelná chvíle, která jednou v mysli vznikla, z vědomí mizí, ale v mysli zůstává a interaguje s dalšími evokovatelnými chvílemi podle určitých pravidel myšlení, které vedou k jednotě mysli. Zároveň se každá evokovatelná chvíle snaží vrátit zpět do vědomí, pokud se ve vědomí nevyskytuje jiná evokovatelná chvíle. Tato cirkulace chvil je

základ všech ostatních činností mysli, mezi které patří paměť, pozornost a proces apercepce.²² (Štverák, 1988)

Výše popsaný princip mysli a myšlení v Herbartově psychologii je možná známější pod názvem bójkový model mysli, a protože na ideji bójkového modelu mysli je založen program pi-mind.js, na závěr této části popíši pečlivěji tento model mysli, a potom i v kontextu s chvílovým modelem mysli. (Šejnoha, 2011)

3.5.1 Intermezzo – Chvílový model mysli

Dříve ještě než se dostaneme k bójkovému modelu mysli, seznámíme se zběžně s pojmy chvílového modelu mysli.

Základní pojem chvílového modelu mysli je chvíle. Chvíli lze vymezit jako obsah a strukturu myšlení během časového úseku, ve kterém bereme v potaz stejné aspekty myšlení. Jinak napsáno, pokud aktuálním stavem mysli budeme brát myšlenku, nad kterou právě přemýšlíme, a změnou stavu mysli budeme brát přechod od jedné (současné) myšlenky ke druhé (právě budoucí) myšlence, potom chvílí rozumíme stav mysli mezi dvěma po sobě přímo následujícími změnami stavu mysli.

Evokovatelnou chvílí rozumíme chvíli, kterou si můžeme zpětně vybavit do vědomí, jinak napsáno je to chvíle, nad kterou jsme přemýšleli a nad kterou můžeme přemýšlet i v budoucnu. Na to, abychom si evokovatelnou chvíli zpětně vybavili do vědomí, je třeba mít v mysli jinou chvíli, která ji evokuje, takovou chvíli nazýváme evokující chvílí pro evokovatelnou chvíli. Dále samozřejmě platí i možné porozumění evokovatelné chvíli z odstavce o Herbartově psychologii.

Aktuální chvílí rozumíme chvíli, která je právě ve vědomí, jinak napsáno se jedná o chvíli, nad kterou právě (přítomně/aktuálně) přemýšlíme. Napsáno opačně, evokovatelnou chvíli, která se časově - aktuálně nalézá v mysli, nazýváme aktuální chvílí.

Pojmem pojmová struktura rozumíme systém chvil a jejich vzájemné evokování.²³ (Šejnoha, 2011)

_

²² Odstavec byl přizpůsoben s ohledem na zaměření práce. V použité literatuře je místo pojmu mysl použit termín duše a místo pojmu evokovatelná chvíle je použit termín představa. Domnívám se, že substituce termínů je bez újmy na smyslu Herbartovy práce a lépe vystihuje současnou pojmovou strukturu. Pojmy mysl a evokovatelná chvíle jsou z teorie chvílového modelu, o kterém si čtenář může přečíst dále.

³ Detailněji je chvílový model popisován v použité literatuře (Šejnoha, 2011).

3.5.2 <u>Představení pojmů Herbartova bójkového modelu mysli</u>

Bójkový model mysli pracuje s pojmy bazén, bóje a lano a jeho dynamika je dána změnou stavu bójí a lan vzhledem k hladině vody v bazénu. V rámci dynamiky modelu existují tři možné stavy: nad hladinou, na hladině a pod hladinou. Bóje nemusí být navázány za sebou (lineárně), ale mohou tvořit i různě rozvětvenou síť. (Hofmann - Kyrášek, 1977)

Bójkový model je v této části dále dán do souvislosti s chvílovým modelem, jehož potřebné termíny byly užity v odstavci o Herbartově psychologii a vysvětleny v části věnované tomuto modelu mysli (3.5.1.).

3.5.3 <u>Herbartův bójkový model mysli, jeho rozšíření do bójkově-chvílového modelu a příklad</u>

Představme si bazén naplněný vodou, ve kterém jsou bóje různě provázány lany, které jsou různě dlouhé.

Bazén symbolizuje mysl. Bóje symbolizuje evokovatelnou chvíli (představu) o konkrétní věci z vnějšího světa či o vnitřní myšlence. Lano symbolizuje vztah jednotlivých evokovatelných chvil mezi sebou - pojmovou strukturu, tak jak je máme zařazené v našem systému vědění včetně jejich blízkosti.

Konkrétní příklad je např. Vaše vybudovaná teorie matematiky (ve Vaší mysli ≈²⁴ Vašemu bazénu), kde jednotlivé pojmu/jevy (definice/věty, atd. ≈ bójím ≈ evokovatelným chvílím) se sebou různě souvisejí (např. důkaz vět pomocí definice ≈ provázanosti lany ≈ pojmové struktuře).

Každá bóje se může pohybovat ve třech výškových úrovních: nad hladinou, na hladině a pod hladinou vody v bazénu.

Výskyt bóje v každé ze tří úrovní má svůj přesný význam vzhledem k mysli. Výskyt bóje nad hladinou znamená, že evokovatelná chvíle je ve vědomí, mluvíme o ní jako o aktuální chvíli; o daném jevu právě přemýšlíme. Bóje na hladině znamená, mít evokovatelnou chvíli v podvědomí; evokovatelná chvíle, která souvisí s aktuální chvílí, která je ve vědomí. A pozice bóje pod hladinou znamená, mít evokovatelnou chvíli aktuálně v nevědomí. Délka lana mezi dvěma bójemi je přímo úměrná vzdálenosti odpovídajících evokovatelných chvíl v pojmové struktuře. Může se stát,

²⁴ ≈ symbolizuje pojem "odpovídá" v souladu s M - ISO 12 (dle Fassati, 1997).

že bude více aktuálních chvil ve vědomí, neboť jsou v systému myšlení "blízko u sebe", takový stav mysli pokládáme za složitý.

Konkrétně si to lze představit na příkladu definice derivace. Vaše aktuální chvíle "derivace" je ve vědomí, přemýšlíte nad ní, potom evokovatelné chvíle, které souvisejí s aktuální chvílí "derivace" jsou ve vědomí anebo v podvědomí. Bude se jednat pravděpodobně o evokovatelné chvíle "limita", "spojitost", "příklad užití derivace v praxi" aj. Zda evokovatelné chvíle budou ve vědomí, či v podvědomí bude záležet na jejich blízkosti ve Vašem systému mysli. Ve Vašem podvědomí pak budou evokovatelné chvíle, které nijak nesouvisejí s aktuální chvílí "derivace", např. evokovatelné chvíle "mrkev", "co jsem dělal 14. 5.1999 v 13:54:25" a mnoho dalších.

Určení pozice bójí je dáno jejich provázáním lany, jako v reálném světě, a délkou spojujícího lana. Vytáhneme-li jednu bóji nad hladinu, potom zároveň bóje s ní provázané povytáhneme nad hladinu či na hladinu, ostatní bóje s ní nesvázané, nebo svázané velmi dlouhým lanem, zůstanou pod hladinou. Povytáhneme-li jinou bóji, pak původní bóje buď zůstane nad hladinou, nebo spadne na hladinu, či spadne pod hladinu v závislosti na přítomnosti a délce lana propojujícího nově vytaženou bójí a podobně se budou chovat i ostatní bóje. Výtah bóje symbolizuje impulz pro mysl.

Konkrétním příkladem by mohla být výše zmíněná aktuální chvíle "derivace". Pokud pracujete ve Vaší mysli s aktuální chvílí "derivace" a Váš partner či partnerka Vás vyruší větným ekvivalentem "Oběd!" a Vy ucítíte vývar a představíte si pod touto skutečností ve Vašem vědomí právě aktuální chvíli "vývar", pak do Vašeho vědomí a podvědomí se dostanou bóje "mrkev", "nudličky", "drůbež" aj. a evokovatelná chvíle "derivace" s ostatními do té doby vědomími a podvědomími evokovatelnými chvílemi zapadnou do Vašeho nevědomí. Pokud ovšem pracujete s aktuální chvílí "derivace" a Váš kolega se zeptá: "Jak je to s větou o implicitní funkci?", aktuální chvíle "derivace" spadne do vědomí, nebo podvědomí, do vědomí se dostane evokovatelná a právě aktuální chvíle "věta o implicitní funkci", do vědomí a podvědomí se dále dostanou další evokovatelné chvíle, které jsou provázány s Vaší už aktuální chvílí "věta o implicitní funkci" a které do té doby byly v nevědomí a naopak do nevědomí se přesunou evokovatelné chvíle spjaté s

_

²⁵ Předpokládám, že čtenář nemá polévku, jako jídlo, nijak myšlenkově spojenou s matematickým pojmem derivace.

evokovatelnou chvílí "derivace", které už nemáte myšlenkově propojeny s aktuální chvílí "věta o implicitní funkci".

Bójkový model vychází z Herbartovy metafyziky a "pozorování" vlastního mentálního procesu. Skutečnost, že model vychází právě z metafyziky, zcela eliminuje jeho zdánlivý nedostatek vzhledem k faktům nashromážděným v přírodních vědách, a dává mu konzistentnost vůči stále ještě objevovaným fyziologickým pochodům, a kvalita modelu, jako modelu mentálního procesu, proto není rozrušena. Kromě toho je v současné době tento model mentálního procesu doveden až na model mentálního procesu na buněčné bázi.

Bójkový model vsazen do pojmové struktury chvílového modelu přechází do Bójkově-chvílového modelu. (Šejnoha, 2011)

3.5.4 Cíl aplikace Herbartova modelu mysli na mentální proces jednotlivce

Cílem každého vědce by mělo být hledání pravdy o jevech, které studuje. Toto hledání začíná sbíráním informací o tom jevu a vytvořením si pojmové struktury problematiky kolem tohoto jevu. Pokud už známe dostatečné množství informací o dané problematice, predikujeme konkrétní závěr o daném jevu a snažíme se jej dokázat či vyvrátit. Predikce závěru je většinou postavena na obecné, ale osobité, struktuře určité mentální operace (analýza a syntéza, dedukce a indukce, klasifikace aj.) a na použití vědomostí a dovedností, i třeba z jiné problematiky, které velmi dobře známe a ovládáme.

Výše popsaný vědecký postup, si můžeme velmi snadno představit v pojmech bójkového modelu mysli, kdy do části bazénu náležející studované oblasti přibývají bójky reprezentující konkrétní informace a tyto bójky jsou provázány lany tak, jak se domníváme, že spolu souvisejí. Když je oblast uspokojivě zaplněná bójkami s lany, v hlavě dojde k nějakému mentálnímu procesu a vznikne nová "vnitřní" bójka navázaná na zbudovanou strukturu, u které se pokusíme rozhodnout, zda navázání je skutečné či pouze zdánlivé. Z pohledu bójkově-chvílového modelu se pak jedná o situace, kdy kolem bójky ve vědomí, tedy aktuální chvíle ≈ zkoumanému jevu, shromažďujeme další bójky propojené lany ve vědomí či podvědomí, tedy evokovatelné (aktuální) chvíle s jejich pojmovou strukturou ≈ souvisejícím informacím o zkoumaném jevu, a po dosažení jisté meze zaplnění bójkami s jejich provázáním, chvílemi s pojmovou strukturou, dojde k vytvoření nové "vnitřní"

evokovatelné chvíle, o které se snažíme rozhodnout, zda jí je možné zařadit do pojmové struktury či nikoliv.

Kdy dojde k tomu, že na "něco přijdeme"? Na tuto otázku zde však konkrétně odpověď nenalezneme, ale její položení nám dává příležitost se nad možnou odpovědí zamyslet alespoň v obecné rovině. A toto zamyšlení nám pomůže zavést další důležité pojmy. Budu vycházet ze zapsaného tvrzení o predikci, které je uvedeno, jako poslední věta prvního odstavce této části (3.5.3), kde píši o vědomostech a dovednostech, který dotyčný vědec velmi dobře zná a ovládá. Jak charakterizovat takové znalosti a jak je nazvat v našem modelu myšlení? Charakteristika takových znalostí je, že je známe jako "svoje vlastní boty"²⁶. Jistý pán docent z MFF (Matematicko-fyzikální fakulty) UK by o takových znalostech prohlásil: "Vím a vím, že vím!". Jinak by šlo na velmi dobře známé věci reagovat slovy: "Je mi to jasné jako facka.". V našem modelu myšlení nazýváme evokovatelnou chvíli, kterou velmi dobře známe, jasnou chvíli. Naopak chvíli, která není jasná, nazýváme *mlhavou chvílí*. A proces, při kterém naše mysl "porovnává"²⁷ aktuální chvíli (zkoumanou problematiku) s jasnými chvílemi nebo mentálně pracuje s aktuální chvílí, nazýváme *projasňováním*. Projasňování je mentální proces jedince, který je cílem aplikace Herbartova modelu mysli. Kromě cíle projasňování složitých myšlenek, patří mezi další primární cíle třídění a předávání takovýchto myšlenek. Pojem složitá myšlenka si můžeme představit v bójkovém modelu mysli jako stav, kdy je nad hladinou více bójí. Pokud budeme mluvit o předávání, neboli komunikaci, složitých myšlenek mezi dvěma či více jedinci, potom takový proces budeme nazývat dvojslovným termínem sbližování myslí.

²⁶ Pokoušet se o propracovanější charakteristiku by asi nemělo smysl, neboť každý si intuitivně představí, co to znamená "znát něco jako vlastní boty".

²⁷ Že pojem porovnávat asi není zcela vhodným z lingvistického úhlu pohledu, odtuší každý člověk s citem pro jazyk, ale nejsem si vědom speciálních termínů používaných při popisu činnosti mozku.

4 Programová část práce

4.1 Orgpad a jeho alokace

"Orgpadem rozumíme počítačový program, pomocí kterého třídíme, předáváme a projasňujeme složité myšlenky.": je parafrázovaná definice, kterou v tomto smyslu vyslovil spoluautor orgpadu Mgr. Tomáš Bílý²⁸. Je vytvořen na základě myšlenek Herbartovy psychologie tak, jak si Herbart představoval a ve svém díle měl možnost popsat naší mysl.

Přesto, vyjdeme-li z definice Mgr. Bílého, obecně se jedná o speciální typ aplikačního programu. Můžeme konstatovat, že se jedná dokonce o edukační program, neboť lze užít při výchovně-vzdělávacím procesu; např. pro třídění učiva, jak vyplývá z definice orgpadu²⁹ a definice edukačního programu. A protože se jedná o program, který byl vytvořen primárně také pro předávání složitých myšlenek, neboli pro komunikaci složitých myšlenek mezi lidmi a současně komunikace patří mezi didaktické funkce určující výukové programy, můžeme se shodnout i s tvrzením, že každý orgpad patří mezi výukové programy.

Velmi podstatnou vlastností je hned první funkce zmíněná v parafrázované definici Mgr. Bílého. Tříděním myšlenek zde rozumíme proces vedoucí k vyznání se ve vlastní mysli, což bychom mohli jinak nazvat vytvořením nějakého systému v naší hlavě. Pokud dojde k situaci, že dva lidé si vytvoří svojí mentální reprezentaci stejného problému, např. důkazu nějaké matematické věty, v orgpadu, potom si mohou navzájem reprezentace svých myslí ukázat, čímž dojde k situaci, kterou jsme nazvali sbližováním myslí.

4.1.1 Alokace³⁰ orgpadu

Pro přenos informace mezi dvěma lidmi lze použít všechny možné smysly, kterými lidské tělo disponuje, a dokonce čím více jich použijeme najednou, tím větší bude šance, že bude přenos úspěšný a pro příjemce bude mít informace trvalejší charakter. Přesto z kulturního úhlu pohledu z těch pěti možných typů lidských

²⁸ Druhý myslitel, který se podílel na vytvoření orgpadu doc. Zdeněk Hedrlín se domnívá, že orgpad lze jen stěží slovy definovat, ale může se ukázat, což implikuje jeho skutečnou existenci, která ovšem existuje "pouze" prostřednictvím jeho alokací.

²⁹ Kromě edukačního programu se jedná hlavně o "self-educational programm", neboli o sebevzdělávací program, kde sebevzdělávací je vztaženo k uživateli nikoli k programu. Viz níže.

³⁰ Pojem "alokace" je zde myšlen jako "možné použití v...".

smyslů jsou dva podstatnější a preferovanější, i proto jsou také známy pod pojmem kulturní smysly. Mezi ně řadíme, již výše zmíněný, zrak a sluch. (Spousta, 2006) Rozdíl mezi sluchem a zrakem je jednak ve kvalitě přijímané informace, nikoliv druhu přijímané informace³¹, a dále ve zpracování přijaté informace příslušnými mozkovými centry.

Volba smyslu, na který se chceme primárně zaměřit, podmiňuje výslednou alokaci orgpadu. Pokud budeme chtít vytvořit orgpad, který vychází ze zaměření na sluch, potom informace v něm předložené nutně potřebují být předložené dynamicky, neboli nemohou mít statický charakter, neboť nelze vnímat "statický zvuk" či "statické zvukové vlny". Např. i rádio nemůžeme vnímat "staticky", ale potřebujeme dynamickou změnu zvuku (zvukových vln), abychom pochopili předávanou informaci. Konkrétní program, který je alokací orgpadu "na ucho", vytvořil Mgr. Tomáš Mikula a byl pojmenován "Herbart's mind web".

Budeme-li chtít mít orgpad zaměřen na vizuální vnímání, lze v něm prezentovat informace jak staticky, tak dynamicky. Kupříkladu si jistě dovedeme představit pozorování statického uměleckého díla v galerii v podobě obrazu i dynamické vizuální informace v podobě filmu přehrávaného v televizi. Konkrétní alokací orgpadu "na oko" je program navržený Mgr. Tomášem Bílým pi-mind.js (01) a na tento program, neboť jeho použití ve výuce je středem zájmu této diplomové práce, se nyní detailněji zaměříme.

4.2 Pi-mind.js

4.2.1 Obecné informace a myšlenkový základ "v pozadí"

Pi-mind.js je alokací orgpadu pro vědomé použití ve smyslu jeho definice. Proto je i jedním z cílů pi-mid.js snaha o snadnější uchopení Herbartovy napsavší teorie o myšlení, kterou on sám popsal ve své teorii o psychologii, pomocí vizualizace. Jedná se tedy o vytvoření modelu mysli, který je přístupný dominantnímu používání zraku, neboli je "na oko".

Grafická podoba programu pi-mind.js vizualizuje pohled na mysl "ze shora". Pokud použijeme terminologii bójkového modelu mysli, můžeme napsat, že pohled na bazén s bójkami provázanými lany (naší mysl) je z oblohy, jako kdybychom se dívali na bazén z letícího vrtulníku kolmo dolů. Nejedná se tedy o pohled na bazén

_

³¹ Viděné optikou dnešních znalostí fyziky.

tak, abychom mohli vidět horizontální strukturu jako při možném pohledu ze břehu, který je použit ve výše zmíněném programu Herbart's mind web Mgr. Tomáše Mikuly.

Možnost vhledu na vlastní mysl či vlastní mentální proces nám dává příležitost se nad určitým problémem více zamyslet a zároveň problematiku porovnat s již vytvořenými vhledy. Pokud bychom aktuální problém řešili s porovnáním nám již velmi dobře známému problému, jednalo by se o proces projasňování. Při používání programu, který vizualizuje naší mysl, nutně dochází k tzv. sebevzdělávání (self-education), což je jeden ze smyslů existence programu pi-mind.js. Vizualizace našeho mentálního procesu nám dále dává možnost porovnávat si zaznamenané myšlenky o konkrétním jevu s ostatními lidmi, resp. pokud ostatní lidé mají také své myšlenky o tomto jevu vizualizované, lze tyto záznamy porovnat a pod touto skutečností rozumíme pojmu sbližování myslí pomocí pi-mind.js.

Porovnávání zaznamenaných myšlenek lze samozřejmě i "na dálku" neosobním vztahem aniž bychom použili jiné dovednosti, než lineární psaní a čtení. Program pi-mind.js má v tomto ohledu sloužit ke snadnějšímu a názornějšímu zaznamenávání stavu mysli autora, lepšímu pochopení předávaných myšlenek příjemcem a reaguje na možnosti současných technických vynálezů a jejich uživatelských možností. Protože se dají myšlenky vizualizovat i prostým lineárním textem, jak byla naznačeno výše, pro sblížení mysli pomocí programu, který není založen pouze na předávání myšlenek lineárním textem, je potřeba, aby všichni zúčastnění procesu sbližování myslí používali pro záznam myšlenek stejného programu, neboť používáním samotného programu uživatel přistupuje i na konvence komunikace, který tento program nutně zavádí. Proto i používáním pi-mind.js uživatel zároveň přistupuje i na konvence komunikace, na jejichž principu tento program pracuje. Více o těchto pravidlech se dočteme níže v kapitole, ve které je program pi-mind.js představen.

Program pi-mid.js je konstruován tak, že pro jeho spuštění je nutné mít v počítači nainstalován jiný aplikační program, ve kterém jej můžeme spustit. Tím aplikačním programem jsou obecně webové prohlížeče, konkrétněji, vzhledem ke stále měnícím se podmínkám v tomto odvětví lidské činnosti, se jedná o programy

Google Chrome či Mozilla Firefox³². Spuštění programu pi-mind.js ve webovém prohlížeči nemusí být podmíněné přístupem na síť internet.

4.2.2 <u>Představení programu</u>

Po spuštění programu pi-mind.js se na obrazovce počítače v rámci okna webového prohlížeče objeví plocha a lišta s nástroji programu. (Obr. 7) Pokud se kurzor myši nalézá na ploše programu, potom po dvojitém kliknutí (d-d) na levé tlačítko počítačové myši se objeví tabulka pro modifikaci a zadání informací do tripadu tzv. editor tripadu. O této tabulce (o tomto editoru) budeme nadále mluvit jako o *základní tabulce pro tripad*.

Obr. 7 Výchozí vzhled po spuštění programu pi-mind.js ve webovém prohlížeči.

Tripad

Tripad je základní jednotkou celého programu pi-mind.js. Jedná se o tři pole anebo ohraničené plochy, které se mohou postupně objevovat na obrazovce. O prvním poli budeme mluvit jako o první úrovni tripadu (layer passive)³³, o druhém poli budeme mluvit jako o druhé úrovní tripadu (layer focused) a o třetím poli budeme mluvit jako o třetí úrovni tripadu (layer active). Pokud je na ploše vytvořen tripad, pak je z něho vidět první úroveň. Druhá úroveň tripadu se objeví na místo

³² I zde ovšem záleží na verzi programu. Autor programu doporučuje pro spuštění, pokud možno novou verzi, program Google Chrome.

³³ V závorce je uveden originální termín užitý v programu pi-mind.js.

první úrovně, pokud na první úroveň tripadu přemístíme kurzor a ponecháme ho tam. V případě že vidíme druhou úroveň tripadu, což je za předpokladu, že jsme na první úroveň přemístili kurzor myši a ponechali ho tam, a kurzor vzdálíme z plochy vymezené druhou úrovní, potom druhá úroveň tripadu zmizí a objeví se (zůstane vidět) první úroveň tripadu. Pokud zmáčkneme a podržíme levé tlačítko myši s kurzorem na druhé, resp. třetí úrovni tripadu, lze tahem kurzoru po ploše přemisťovat tripad, který pak bude kopírovat dráhu kurzoru. Třetí úroveň tripadu se objeví na místě první, resp. druhé úrovně tripadu, pokud na druhé úrovni jednou klikneme (s-d) na levé tlačítko myši a setrváme s kurzorem na místě. Pokud vidíme třetí úroveň tripadu, jejího opětovného zmizení a objevením se první úrovně tripadu docílíme tím, že kurzor myši přemístíme na plochu, kam nezasahuje třetí úroveň tripadu. Pokud je kurzor myši na konkrétním tripadu a my d-d na levé tlačítko, potom se objeví základní tabulka pro tento konkrétní tripad.

Postupné objevování od první do třetí úrovně tripadu má symbolizovat vynořování bójí v Herbartově bójkovém modelu mysli z hladiny až nad hladinu.

Pokud máme zobrazenou druhou, nebo třetí úroveň tripadu, pak jejich vnitřní plocha lze vinout (scroll) pomocí kolečka počítačové myši.

Základní tabulka pro tripad

Základní tabulka pro tripad je část programu pi-mind.js, která se objeví pokaždé, když provedeme d-d na levé tlačítko myši kdekoliv na ploše. (Obr. 8) Pokud provedeme d-d na levé tlačítko myši a zároveň se bude kurzor nalézat na nějakém konkrétním tripadu, pak se objeví základní tabulka pro ten daný konkrétní tripad. Základní tabulka pro tripad se napoprvé objeví prázdná. Pokud už je vytvořen a vyplněn nějaký tripad, objeví se základní tabulka pro tripad vyplněná buď posledním obsahem vytvořeného a uloženého tripadu (tedy v případě další nově vyplňující jednotky), nebo v případě změny konkrétního tripadu příslušným obsahem daného tripadu.

Obr. 8 Základní tabulka pro tripad.

Základní tabulka pro tripad obsahuje názvy příslušných úrovní tripadu, pod kterými lze měnit parametry a vkládat obsah do příslušné úrovně. (Obr. 9) Úrovně jsou zaznamenané vedle sebe v pořadí první, druhá a třetí úroveň, což odpovídá názvům layer passive, focused a active. V levém spodním rohu z pohledu uživatele jsou pak dvě tlačítka "Archiv a While" pro vložení či uložení změny tripadu na plochu a "Cancel", které zavírá základní tabulku pro tripad beze změny na ploše. Část, ve které lze měnit parametry, je možné nechat objevit zmáčknutím "-show" a skrýt zmáčknutím "+hide".

Obr. 9 Základní tabulka pro tripad s odhalenou částí pro úpravu parametrů a popisem částí.

Do obsahové části jednotlivých úrovní lze vkládat text³⁴. Pro jednoduchost v této práci budeme nadále hovořit pouze o možnosti vkládání a tvorby textu. Vzhledem k poznámce 34 by mohlo běžnému uživateli dělat problémy ukončení řádku, které se v běžných textových programech způsobí zmáčknutím tlačítka "Enter", zde se musí použít grafický symbol
br>. (Obr. 10) V části, kde uživatel může měnit parametry pro tripad, lze zadat jméno pro konkrétní úroveň (Name). Dále lze nastavit šířku (Width) a výšku (Height) ploch tripadu; barvu ohraničení (Boredr Color) tripadu; barvu plochy (Background Color) tripadu, obě nastavení barev lze pomocí jména, hexa kódu anebo decimálního kódu HTML barvy; tloušťku hranice (Border Width); zaoblení rohů ve směru vodorovném/svislém (Corner x/y); spojitost hranice (Border dash) plochy tripadu. (Obr. 10) Tyto parametry lze měnit i jiným způsobem než jejich změnou v základní tabulce pro tripad - o této možnosti bude napsáno níže.

Obr. 10 Část (první úroveň) základní tabulky pro tripad s ukázkou textu (pravá část) a výslednou vizualizací tripadu (levá část).

Nástrojová lišta

_

Nástroje programu pi-mind.js (toolbox) jsou navrženy tak, aby simulovaly 23 mentálních procesů lidského mozku. Na nástrojové liště lze nalézt 22 funkcí, které jsou k tomu potřeba a které v této části budou představeny. (Obr. 11)

³⁴ Toto tvrzení platí pro člověka neznalého HTML kódování. Ten kdo ovládá tuto dovednost, může do obsahu vkládat vše, jako by tvořil webovou stránku.

Obr. 11 Nástrojová lišta programu pi-mind.js.

Na obrázku (Obr. 11) nástrojové lišty lze z 22 funkcí spatřit na první pohled pět, resp. lze spatřit pět políček s pěti funkcemi, které se po stlačení levého tlačítka u myši, když je kurzor na nich, "vyrolují". Funkce jsou tak rozděleny do pěti skupin podle své příbuznosti. První skupina obsahuje funkce Edit, Select, Observe, Pitch a Explore; druhá skupina obsahuje Create Assoc, Remove While a Edit Attrs; třetí skupina obsahuje Save, Import a Export; čtvrtá skupina obsahuje Journal Off, Journal On, Play Journal, To Last J, Clear All Js, Clear Last J a Options a; pátá skupina obsahuje funkce Hide others, Select, Show focused a Show active.

<u>Edit</u> – tato funkce umožnuje v programu pi-mind.js upravovat a pohybovat s tripady. Úprava je zajištěna pomocí jednoho či dvou ťuknutí do levého tlačítka myši tak, jak bylo popsáno výše. Zároveň lze přemisťovat s tripady a to buď s jednotlivými tripady zvlášť, viz výše, nebo s celou vytvořenou strukturou tím, že stlačíme levé tlačítko u myši, pokud se nachází kurzor na volném místě na ploše, a kurzorem táhneme, celá struktura potom kopíruje tah myší. Pokud při pozici kurzoru mimo jakýkoliv tripad použijeme kolečko počítačové myši, potom přibližujeme a oddalujeme celou strukturu, popř. celou plochu mimo nástrojové lišty.

<u>Select</u> – pomocí této funkce označujeme tripady tj. zvýrazní se a jsou označené. Označíme je tak, že na konkrétní tripad přitáhneme kurzor a s-d na levé tlačítko myši.

Observe – použitím funkce observe se na ploše objeví další ohraničená plocha, ve které se zobrazí třetí úroveň (layer active) vybraného tripadu, ten je vybrán tak, jako bychom se chtěli u něj podívat na třetí úroveň. Rozdíl je v tom, že toto zobrazení je zachováno i navzdory prohlížení jiných tripadu do úrovně dvě (lze s kurzorem pohybovat libovolně po ploše). Pokud bychom tím samým způsobem vybrali (podívali se na třetí úroveň) jiný tripad, v okně "observe" se ukáže třetí úroveň nově zvoleného tripadu.

Funkci Observe lze nahradit tak, že při zobrazování třetí úrovně tripadu spolu s s-d zmáčkneme tlačítko Ctrl a tím nám na ploše zůstane třetí úroveň daného tripadu. Návrat k první úrovni docílíme tím samým způsobem (Ctrl + s-d na levé

tlačítko myši kdy kurzor je na daném tripadu). Tímto způsobem lze vizualizovat třetí úroveň libovolného počtu tripadů najednou.

<u>Pitch</u> – funkce pitch zobrazí v novém okně webového prohlížeče obsahy všech tři úrovní tripadu pod sebou (ve smyslu vodorovném, ne ve smyslu do hloubky, pokud koukáme na obrazovku monitoru počítače), tedy jako lineární text pod sebou.

<u>Explore</u> – je funkce sloužící k pohybu po ploše takovým způsobem, že pokud jsou dva tripady spojené šipkou (viz níže), potom užitím funkce Explore a při s-d na levé tlačítko myši, jejíž kurzor je na propojovací šipce, se na středu obrazovky objeví vzdálenější z obou propojených tripadů.

Create Assoc – aplikací funkce Create Assoc uživatel propojuje dva tripady šipkou (hranou) a to dvěma možnými způsoby. Buď propojí první tripad s druhým, nebo propojí první tripad s druhým tak, že třetí tripad, resp. jeho druhá a třetí úroveň se objevuje po najetí kurzorem na šipku (celou hranu) a s-d na levé tlačítko myši. Nutnou podmínkou pro použití této funkce je předem označení příslušných tripadů funkcí Select v pořadí: první označený je tripad, ze kterého směřuje šipka ke druhému označenému, případně třetí označený tripad je potom tripad, ze kterého se zobrazuje druhá anebo třetí úroveň na šipce (hraně). V rámci této funkce lze u vznikající šipky upravit její tloušťku (Weight), barvu (Color) a rozhodnout se označením příslušného políčka o přítomnosti jevů: šipka značící směr (Arrowed); zakřivení šipky, myšleno hrany, (Curved); a možnosti využít vložení třetího tripadu, jako "poznámku do šipky" (Annotation). Spojení dokončíme s-d na levé tlačítko myši, jejíž kurzor je na políčku "Archive Association", pokud zvolíme tlačítko "Cancel", celou proceduru zrušíme. D-d na levé tlačítko myši, jejíž kurzor je na šipce (hraně) propojující dva tripady bez třetího "mezitripadu", zobrazí tabulku s parametry propojení, které lze měnit a ve které se určovaly původní parametry při zadávání propojení. Spojenými tripady lze stále pohybovat po ploše. Propojené tripady lze použít při tvoření dalšího propojení.

<u>Remove While</u> – je funkce, kterou použijeme, pokud chceme vymazat příslušný tripad a všechny šipky, které z něho vycházejí. Pro vymazání tripadu je nutné před použitím funkce Remove While, použít funkci pro výběr Select a konkrétní tripad určený pro vymazání označit.

<u>Edit Attrs</u> – je sada nástrojů, které používáme pro změnu parametrů tripadu, které lze nastavit v základní tabulce pro tripad s odhalenou částí pro úpravu

parametrů. Upravovaný tripad je třeba před použitím funkce označit funkcí Select. Úpravy se zde nedělají vkládáním konkrétních hodnot, ale buď výběrem (např. u barvy), nebo tahem kurzoru se stlačeným levým tlačítkem počítačové myši. Výběr úrovně je určen možností označení příslušného políčka u příslušné úrovně (Pasive pro první úroveň, Focused pro druhou, Active pro třetí úroveň)

<u>Save</u> – použitím této funkce uložíme obsah vytvořeného HTML souboru, aniž bychom přitom ukládali samotný program pi-mind.js. Po najetí kurzorem na tlačítko "Save" a s-d na levé tlačítko myši se objeví "běžné" okno uložení. Zvolením možnosti "Uložit soubor", najetím kurzorem na tlačítko "OK" a s-d na levé tlačítko myši se dále objeví adresář, ve kterém zvolíme přesné umístění ukládaného souboru, popř. zadáme jeho název.

<u>Save deep</u> – pomocí funkce Save deep uložíme vytvořený soubor do adresáře v počítači v podobě webové (HTML) stránky. Po najetí kurzorem na tlačítko "Save deep" a s-d na levé tlačítko myši, se objeví na obrazovce počítače nové okno webového prohlížeče s rámečkem, ve kterém je napsáno "*Your browser do not support automatic saving. Please save this page (not original one) manualy by using 'Save as' ability of your browser.*", a až tuto stránku uložíme. S vytvořeným souborem je uložen i samotný program, což má za důsledek, že každý, kdo si chce soubor prohlédnout, může, aniž by měl v počítači nainstalován program pi-mind.js a také, že s daným souborem může jakkoliv manipulovat (s možnostmi programu pi-mind.js), viz níže.

<u>Import</u> – po najetí kurzoru na tuto funkci a s-d na levé tlačítko myši se na ploše objeví tabulka s plochou a dvěma tlačítky "Import" a "Cancel" v levém spodním rohu. Do plochy můžeme vložit textovou reprezentaci tripadu či tripadů včetně jejich propojení a zmáčknutím tlačítka "Import" pomocí kurzoru a levého tlačítka myši nechat převést textovou podobu tripadu na vizuální reprezentaci. Tlačítkem "Cancel" opět celou operaci máme možnost zrušit.

<u>Export</u> – tuto funkci volíme, když chceme vybrané tripady anebo celý soubor převést do textové podoby. Po určení cílových tripadů (všechny, nebo označené funkcí Select) a spuštění této funkce se objeví tabulka s plochou, ve které je textová podoba určených tripadů, a v levém dolním rohu dvě tlačítka "Ok" a "Cancel" které slouží k uzavření tabulky "exportu". Pokud budeme chtít vybrané tripady převést (importovat) do jiného prostředí pi-mind.js, třeba na jiném vzdáleném počítači, použijeme funkci Export a textovou podobu vybraných tripadů označíme a

kopírujeme (po označení lze užít i zkratku "Ctrl + c"). Okopírovaný text potom vložíme do cílového pi-mind.js pomocí plochy v tabulce funkce Improt a přenesení potvrdíme kliknutím na tlačítko "Import".

<u>Journal On</u> – spuštěním této funkce spustíme nahrávání záznamu tak, jak pracujeme s programem pi-mind.js.

<u>Journal Off</u> – spuštěním této funkce zastavíme nahrávání nahrávaného záznamu. Nahrávání může být přerušované, neboli lze několikrát spustit a zastavit nahrávání, potom se konečný záznam skládá ze sekvencí a počet sekvencí je určen počtem spuštění záznamu, nebo vypnutí záznamu.

<u>Play Journal</u> – pomocí této funkce přehrajeme v novém okně webového prohlížeče záznam zaznamenaný pomocí funkcí Journal On/Journal Off.

<u>To Last J</u> – tuto funkci využijeme, pokud budeme chtít odstranit poslední aktuálně nahrávanou sekvenci, tedy sekvenci spuštěnou Journal On, ale neukončenou Journal Off.

<u>Clear All Js</u> – spuštěním funkce Clear All Js dosáhneme vymazání všech nahraných sekvencí.

<u>Clear Last J</u> – je nástroj, pomocí něhož odstraníme poslední nahranou sekvenci, tedy sekvenci ukončenou pomocí funkce Journal Off.

Options – je sada nástrojů, pomocí nichž můžeme upravovat nahrávající sekvence. Upravovat lze rychlost záznamu vyplněním políčka "Speed Factor". Jedná se o tzv. implikační faktor, což znamená, že pokud vyplníme do políčka číslo 2, potom záznam bude přehrán dvakrát pomaleji, než jsme jej zaznamenali a naopak, pokud vyplníme "Speed Factor" číslem 0,5, potom záznam se přehraje dvakrát rychleji. Nastavení rychlosti záznamu musíme ještě potvrdit najetím kurzoru na tlačítko "Set" a s-d na levé tlačítko myši, tlačítko "Set" se nalézá v levém dolním rohu tabulky "Options". Dále lze nastavit, aby se nahrávací rychlost vztahovala pouze k právě probíhajícímu nahrávání, nebo ke všem nahráváním. Pro všechny nahrávané sekvence je přednastavena nahrávací rychlost 1 a zaškrtnuta možnost použití pro všechna nahrávání. Opuštěním funkce "Options" docílíme kliknutím na tlačítko "Cancel".

Následující, čtyři, závěrečné funkce jsou užívány spolu s oknem, do kterého lze psát text, lépe řečeno regulární výraz (RE³⁵) a tato skutečnost napovídá, že půjde o funkce týkající se vyhledávání.

<u>Hide others</u> – užití této funkce ve spojení s napsaným RE ponechává viditelné na ploše pouze ty tripady, které obsahují ve kterékoliv svojí úrovní napsaný RE, a přitom z tripadů vidíme první úroveň. Všechna spojení v tomto případě se stávají také neviditelné, a pokud obsahují "mezitripad", který obsahuje hledaný RE, potom z tohoto tripadu vidíme opět první úroveň.

<u>Select</u> – pomocí funkce Select použité ve spojení s napsaným RE označíme, jako při "klasickém" předchozím použití funkce Select, všechny tripady, které ve kterékoliv svojí úrovni obsahují RE. Všechny ostatní tripady zůstávají viditelné. Tripady užité v šipce v propojení nejsou viditelné, ale obsahují-li RE, jsou označené.

<u>Show focused</u> – tento nástroj s použitím zadaného RE ponechává všechny tripady viditelné. U těch tripadů, které obsahují v kterékoliv své úrovni zadaný RE, se zviditelní druhá úroveň. Nejedna se tak v případě tripadů použitých jako třetích spojovacích tripadů.

<u>Show active</u> – tato funkce s použitím napsaného RE funguje stejně jako funkce Show focused s tím rozdílem, že místo zviditelnění druhé úrovně tripadu se zviditelní třetí úroveň tripadu.

Typy programu pi-mind.js

Nejen vzhledem ke spouštění programu pi-mind.js prostřednictvím webového prohlížeče, můžeme užít tento program dvěma způsoby. O prvním způsobu budeme mluvit, jako o Small Local (SL) a druhý způsob užití pi-mind.js budeme nazývat Grand Central (GC). Názvy vycházejí z pojmenování železničních stanic. SL či small local station je termín pro malou, jednokolejnou, lokální stanici a GC neboli Grand Central Terminal/Station je název jednoho z největších nádraží na světě ležícím na Manhattanu v New Yorku. Názvy obrazně vyjadřují počet možných uživatelů programu.

Užití programu ve verzi Small Local je zcela popsáno výše. Jedná se o použití na lokálním počítači, kdy uživatel spouští program pomocí webového prohlížeče bez

_

³⁵ Zkratka pochází z původního anglického termínu: "regular expression".

nutnosti připojení k internetové síti a vytvořené soubory ukládá na pevný disk vlastního počítače v podobě HTML stránek včetně samotného programu.

Pro vysvětlení, proč se soubor ukládá i se samotným programem. Představme si, že vytvoříme text v nějakém textovém programu a tento text lze upravovat pouze pomocí tohoto programu anebo některé úpravy, které jsme udělali v našem textu, zobrazuje pouze tento program. Potom, kdybychom chtěli tento text poslat někomu, aby jej ohodnotil, daná osoba musí nutně mít daný program, aby viděla náš text se všemi úpravami. Kdybychom k textu přidali zároveň daný textový program, každá osoba, která by měla přístup k počítači, by text mohla vidět se všemi úpravami, aniž bychom ji vystavili problému vlastnictví konkrétního programu či konkrétní verzi programu. Příkladem si vezměme třeba jen kompatibilitu souborů vytvořených v různých verzích programu MS Word; může nastat situace, že text vytvořený v novější verzi tohoto programu, neotevřeme ve starší verzi, pokud jej explicitně neuložíme v požadovaném formátu. Objektivně nutno podotknout, že tuto výhodou prozatím stírají aktualizace webových prohlížečů, jak bylo poznamenáno výše s ohledem na otevření programu pi-mind.js.

Verze programu pi-mind.js, kterou jsme nazvali Grand Central, má oproti SL jednu funkci navíc, která vychází z používání programu ze vzdáleného serveru. GC je forma pi-mind.js, kterou také spouštíme prostřednictvím webového prohlížeče, ale na rozdíl od SL a, jak napovídají řádky výše, je nutné mít zároveň připojení na internetovou síť. Soubor, který vytvoříme, uložíme pomocí tlačítka "Send", na které když najedeme kurzorem a s-d na levé tlačítko myši, se soubor uloží, jako webová stránka na serveru a přitom se na náš e-mail odešle zpráva s adresou na tuto stránku. Umístěný program na vzdálený server, a i jak zároveň napovídá jeho název GC, může užívat více osob najednou. Pokud bychom upravovali stránku již na konkrétní uložené adrese a zároveň by se na tu samou stránku díval někdo další, potom by ovšem neviděl naší úpravu dané stránky "v přímém přenosu".

4.2.3 Zařazení pi-mind.js do kategorií výukového programu

V části věnované výukovému programu (3.1.5) jsem vypsal kategorie, do kterých lze výukový program zařadit a které by měli každému učiteli pomoci s vhodným užitím programu. V této části si jednotlivé kategorie popíšeme detailněji a zařadíme si do nich program pi-mind.js.

Dříve než tak učiníme, je vhodné napsat několik obecných poznatků. Zařazení aplikačních počítačových programů do jednotlivých kategorií závisí na charakteru cíle, k čemu byl daný program vyvinut, a také jaké prostředky k tomuto cíli může uživatel použít. Čím obecnější charakter cíle očekáváme od daného programu a čím obecnější prostředky lze použít k jejich konkrétním dosažením, tím počítačový program může odpovídat více podkategoriím možného zařazení, neboť kategorie, které jsou zde brány v úvahu, jsou poměrně úzce profilované. Vzhledem k tomu, že program pi-mind.js je určen k práci s obsahem myšlení a vzhledem k jeho nástrojům, které může uživatel k tomu použít, bude program pi-mind.js zařazen do nejvhodnější podkategorie či nejvhodnějších podkategorií a i o možném dalším zařazení bude dále pojednáno.

První kategorie je míra interaktivity, ve které dělíme programy na interaktivní, nebo bez interaktivních prvků a současně interaktivitou zde rozumíme možnost žáka ovlivňovat právě probíhající program. (Dostál, 2009a) V této kategorii je program pi-mind.js řazen do skupiny interaktivních programů, avšak vzhledem k možnému, poměrně širokému uplatnění tohoto programu, jej lze použít i ve zcela neinteraktivní podobě.

Druhou důležitou kategorií je určení podle úrovně vzdělávání. Za důležitou ji považuji i zvýše druhé citované pasáže³⁶ v části věnované výukovým programům (3.1.5). Pod názvem této kategorie se skrývá podrobnější dělení výukových programů podle typu školských zařízení, na kterých je vhodné je použít. Jedná se o programy vhodné pro mateřské, základní, střední či vysoké školy včetně univerzit. (Dostál, 2009a) V této práci je program pi-mind.js představován pro užívání na vysokých školách či univerzitách. Svojí grafickou podobou by mohl být využit ještě na středních školách typu gymnasium i s ohledem na mentální vyspělost středoškolských – gymnasiálních žáků ve vyšších ročnících v rámci seminářů a dlouhodobější práce, zvláště vhodným nástroj by mohl být při skupinovém vyučování.

Třetí kategorie dělí výukové programy podle míry poskytování zpětné vazby na programy zpětnovazebné, nebo na programy bez zpětné vazby. Zpětnou vazbou zde můžeme chápat možnost komunikace žáka s učitelem, nebo možnost

_

³⁶ (Dostál, 2009a, s. 24)

komunikace žáka s programem³⁷. (Dostál, 2009a) V prvním případě je pi-mind.js řazen mezi programy zpětnovazebné, v druhém případě program pi-mind.js je řazen mezi programy bez zpětné vazby, i když kreativním zacházením s nástroji programu by šlo zpětné vazby druhého typu docílit.

Čtvrtou kategorii je možnost organizovanosti vzdělání, ve které lze programy dělit na programy pro školní výuku a programy specifičtěji určené pro samostudium. (Dostál, 2009a) Jak bylo výše zmíněno, orgpad, resp. jeho alokace v podobě programu pi-mind.js, byl vytvořen s jedním z hlavních cílů jako "self-educational programm", neboli programový nástroj určen pro sebevzdělávání uživatele. Užití programu pi-mind.js však lze i v rámci vyučování, neboť další jeho charakteristickou funkcí je předávání (komunikace) myšlenek.

Pátá kategorie třídí programy na on-line, off-line s on-line podporou a off-line funkčností, podle toho zda je program nainstalován na školním serveru, nebo zda je nainstalován v lokálních počítačích. (Dostál, 2009a) Protože existují dvě formy programu pi-mind.js, formu GC řadíme mezi programy s on-line funkčností a formu SL řadíme mezi programy s off-line funkčností.

Šestým kritériem je dělení do dvou podkategorií dle počtu uživatelů, kteří jej ve stejném času sdílejí, na víceuživatelský a pro jednoho uživatele (monoužovatelský). (Dostál, 2009a) V tomto kritériu pak pi-mind.js patří do podkategorie monouživatelských programů.

Podle tematické kategorizace programy dělíme na monotematické a polytematické. Toto dělení nás informuje o počtu témat, které program obsahuje. (Dostál, 2009a) S ohledem na zaměření programu pi-mind.js se jedná o monotematický program, neboť je zaměřen na myšlení, příp. na obsah "hlav", což ho ale zároveň řadí i mezi polytematické programy, protože mysl nezahrnuje pouze myšlení, ale zahrnuje veškeré tematické obory.

Osmá kategorie rozděluje programy z pohledu možnosti jeho vnímání uživatelem na vizuální, nebo audiovizuální. (Dostál, 2009a) V rámci takovéhoto dělení náleží pi-mind.js do kategorie vizuálně vnímaných programů.

Dále lze programy dělit podle jazykových mutací na jednojazyčné či vícejazyčné. Toto určení se vztahuje k obsahu výukového programu, neboli v jakém jazyce jsou prezentovány informace žákovi. (Dostál, 2009a). I zde je poněkud

³⁷ V použité literatuře je pravděpodobně myšlena varianta zpětné vazby s programem, což poněkud odporuje jiným zde citovaným článkům.

nejednoznačné určení programu pi-mind.js, protože obsah a jeho jazykové pojetí přímo závisí na uživateli. Jednotlivé nástroje programu jsou popsány anglicky, ale tato skutečnost na jazyk, ve kterém je napsán obsah, nemá vliv.

V desáté kategorii jsou programy rozděleny podle formy verze, zda se jedná o plnou verzi programu, nebo o tzv. demo verzi. (Dostál, 2009a) U programu pi-mind.js se jedná o plnou verzi programu. I když se stále pracuje na jeho zdokonalování, myšlenkový základ, na kterém je programu pi-mind.js vytvořen, je celistvý.

Výukové program můžeme rozdělit i podle počtu didaktických funkcí na programy s jednou didaktickou funkci a na programy didakticky polyfunkční. (Dostál, 2009a) Z tohoto úhlu pohledu je pi-mind.js zařazen mezi programy s možnou didaktickou polyfunkčností.

Poslední dvanáctá kategorie se týká zaměřenosti na jednotlivé (školské) předměty. Zde pak lze nalézt programy předmětově zaměřené a programy bez žádného předmětového zaměření. (Dostál, 2009a) Tato kategorie souvisí trochu s kategorií o počtu témat, nicméně ve vzdělávacím systému, kde je výuka řazena do jednotlivých předmětů, jako je tomu ve vzdělávací soustavě ČR³⁸, má i toto dělení své opodstatnění. Pi-mind.js řadíme do podkategorie programů bez předmětového zaměření.

4.2.4 Zařazení pi-mind.js v rámci výchovně-vzdělávacího procesu

V teoretické části této práce jsme měli možnost si přečíst o výchovně-vzdělávacím procesu, a podrobněji se zpravit o určitých jeho částech. Zvláště pak se jednalo o ty oddíly, které měly spojitost s programem pi-mind.js a jeho případného využití v rámci školství. Dále byla v teoretické části nastíněna problematika hypertextu, resp. hypermédia, vizualizace a pár slov bylo napsáno i o Johannu Friedrichovi Herbartovi a jeho vlivu na vzdělávání.

Naznačení toho, jak souvisí Herbartovy myšlenky s orgpadem a tím i s programem pi-mind.js, bylo napsáno výše stejně tak jako vztah programu pi-mind.js s oborem vizualizace.

³⁸ V současné době ve vzdělávacím systému ČR je situace kolem předmětového zaměření výuky z pohledu možného výkladu závazných norem a vyhlášek poněkud zmatečná. Proto se zde přidržuji vzdělávací praxe v ČR.

Program pi-mind.js představuje jednu z možných podob naplnění představ pánů V. Bushe a zvláště pak T. H. Nelsona o podobě hypertextu a o jeho používání v komunikaci. Se zavedením uživatelsky přátelštějšího zadávání jiných forem vizuálií než pouze textu do tripadu a pokud bychom brali v úvahu i možnost tvoření videí pomocí funkcí Journal Off, Journal On, Play Journal, To Last J, Clear All Js, Clear Last J a Options, potom bychom pi-mind.js mohli zařadit mezi hypermédia.

Možný vzdělávací obsah programu pi-mind.js je vzhledem k jeho konstrukci dominantně závislý na učiteli, který se pro jeho vytvoření potřebuje seznámit s ovládacími prvky programu, které nezahrnují hlubší pochopení programování a zároveň svou obecností dovolují tvořit velké množství forem užitelných pro rozvoj žáků. Vhodné užití programu se jeví, pokud použijeme program v rámci individuální popř. skupinové organizační formy výuky, jako metodu zaměřenou na mentální operace, tedy s cílem rozvoje myšlení a předávání (komunikaci) myšlenek.

4.2.5 Srovnání orgpadu s mapami mozku

Alokace orgpadu v podobě programu pi-mind.js spadá (také) do kartografie vlastních vědomostí. I když rozšíření programu pi-mind.js, nebo nějaké další alokace orgpadu, do podoby, která by spadala i do kartografie vlastních mentálních dovedností je jistě technicky možné, v současné podobě o programu pi-mind.js nemůžeme takto smýšlet, nicméně je to výzva pro případné budoucí rozšíření celého konceptu.

V rámci kartografie vlastních vědomostí jsme se mohli seznámit s mentálními mapami (3.4.1), které jsou do jisté míry nadřazeným pojmem pro myšlenkové mapy, o kterých jsme se mohli dozvědět základní informace (3.4.2), a s pojmovými mapami (3.4.3). Všechny tři koncepty poznatkových map se skládají z pojmů (uzlů), jejich spojeními a se základním principem - hierarchie pojmů. Účel poznatkových map byl vesměs stejný, vytvořit nástroj obecně pro vzdělávání.

Orgpadem rozumíme program pro třídění, předávání a projasňování vlastních myšlenek. Program pi-mind.js je konkrétní alokace orgpadu.

Samotná alokace orgpadu v podobě programu pi-mind.js je nástroj, který lze užít pro tvorbu myšlenkových map a pojmových map. Nelze užít pro tvorbu mentálních map. Pokud budeme užívat programu pi-mind.js pouze pro tvorbu myšlenkových a pojmových map, potom nevyužijeme plný potenciál tohoto programu.

Rozdíl je v pojetí "uzlů" na straně poznatkových map reprezentovány pojmy a na straně orgpadu reprezentovány tripady. Poznatkové mapy pracují s pojmy - slovy, orgpad pracuje s myšlenkami - reprezentacemi myšlenek.

Hierarchizace (třídění) pojmů je pouze jeden z primárních smyslů orgpadu. Podobně jako použití zaměřené na vzdělávání. Spojnice symbolizující vztah mezi dvěma "uzly" jsou vesměs chápány podobně.

4.2.6 Cíl práce

Cílem práce je zjistit metodou dotazníkového šetření vhodnost použití programu pi-mind.js při individuální či skupinové organizační formě výuky jako metody, která je zaměřená na rozvoj mentálních činností uživatelů a pro komunikaci "obsahů hlav" (myšlenek) uživatelů. Konkrétněji je toto šetření zaměřené na školitele diplomových anebo disertačních prací a na studenty píšící diplomové nebo disertační práce na Katedře Aplikované Matematiky (KAM) MFF UK. Při tomto šetření autor nepředpokládá od respondentů nutnost pochopení všech funkcí programu, za důležité funkce pro pochopení základních principů programu pokládá funkce ve skupinách 1, 2 a (5) a to konkrétně funkce: Edit, Select, Pitch, Create Assoc, Remove While, Edit Attrs a políčko pro zadávání vyhledávání regulárních výrazů; s možností odzkoušení i dalších, všech výše popsaných, funkcí.

4.2.7 Možné budoucí uplatnění

Zpravodajství na webových stránkách je v současné době vizuálně stejné, jako zpravodajství v tištěné podobě. Každá zpráva má tři části titulek, perex a samotný článek. Vynález počítače a internetové sítě přinesl zatím jedinou "nadstavbu" do psané žurnalistiky, kterou už před tím disponovaly televizní a rozhlasové zpravodajství, v podobě možnosti okamžitě zveřejnit aktuální zprávu, čímž "papírová" žurnalistika pouze dohnala zprostředkovatelský náskok ostatních médií. Uplatněním virtuálního prostředí, které by vycházelo z myšlenek, na kterých je založen program pi-mind.js, by pomohlo k jasnější strukturalizaci zpráv, možnosti časové periodizace a dávání důrazu na kontext aktuální zprávy s důležitými skutečnostmi, které se zprávou souvisí.

V rámci vzdělávacího systému ČR by program pi-mind.js mohl sloužit pro tvorbu elektronických portfolií. Povinnost tvorby portfolií mají již dnes např. studenti Pedagogické fakulty UK. Mohl by být využit i pro správu elektronické

knihovny. V současné době, v rámci semináře doc. Hedrlína, se zkouší implementovat program pi-mind.js na nižší stupně vzdělávací soustavy, kdy jsou v programu vytvořené nejrůznější hry, např. zaměřené na tvorbu slov pomocí jednotlivých písmen podle obrázků. (Obr. 12) V neposlední řadě, co se týče vzdělávání, pro každého jedince, který se bude chtít v čemkoliv vyznat, zvláště pak, pokud se bude chtít vyznat ve své hlavě.

Obr. 12 Užití pi-mind.js jako nástroj pro tvorbu slov z jednotlivých písmen podle obrázku.

Prostředí programu pi-mind.js by se mohlo použít i jako komplexní, softwarový, "kancelářský balík". Tato možnost by se naskytla, pokud by se mohlo pracovat v jednotlivých úrovních s různými "typy" prostředí (v současné době lze tripad jednoduše užít jako textový editor, bereme-li to jako jeden typ prostředí, potom další varianty by mohly být tabulkový editor, editor pro tvorbu prezentací aj.). Soubory by se potom skládali ze tří "přirozených" částí "za sebou": název, osnova, text, nebo jinak: nadpis, abstrakt, článek. Prostředí programu by se potom dalo využít i pro tvorbu složek souborů či adresářů.

Vhodné uplatnění by program pi-mind.js mohl mít i v genealogii při tvorbě rodokmenů s možností vepsání více informací o členech rodu.

V současné podobě program pi-mind.js není uživatelský přívětivý tak, jak by si jeho autoři přáli. Nedokonale propracované místo spatřuji v ukládání souborů a ve vkládání tripadů na plochu z jiného prostředí, tedy ve funkcích Save, Import a Export, kde lze zlepšit ovladatelnost programu. Na druhou stanu, současná podoba programu nabízí velký prostor pro "dotvoření na míru" dle úrovně každého uživatele.

Realizace výše zmíněných nápadů včetně nápadů zmíněných pod čarou v průběhu celé práce na jeho potencionální snadné využití je podmíněna dalším jeho vývojem, který stále probíhá v rámci semináře doc. Hedrlína a práci Mgr. Bílého.

5 Dotazník a výsledky

Metodou dotazníku byla šetřena potencionální užitečnost programu pi-mind.js vzhledem ke komunikaci mezi studenty píšící diplomovou, resp. disertační práci na KAM MFF UK a vedoucími jejich prací na této katedře, byla šetřena jeho užitečnost vzhledem k práci s vlastním mentálním procesem a zároveň vhodnost, nebo spíše srozumitelnost, použitého představení programu pomocí jeho samotného.

Dotazník byl vytvořen za pomoci webové aplikace oursurvey.biz a odkaz na něj byl rozeslán úvodním e-mailem (Příloha 8.1) prostřednictvím IT oddělení KAM MFF UK³⁹ 26 studentům píšící diplomovou nebo disertační práci na této katedře a jejich 11 školitelům. Na dotazník byl také odkaz v rámci představení programu.

V úvodním e-mailu kromě odkazu na dotazník byl zaslán stručný úvod do problematiky a adresa na webovou stránku (Příloha 8.2, 8.3 a 8.4), na které byl představen program pi-mind.js a na které měli respondenti možnost si program plně odzkoušet.

5.1 Struktura dotazníku

První otázka charakterizovala respondenta a zároveň určovala další charakter otázek.

Q1-1: Jaký je Váš aktuální status na Katedře Aplikované Matematiky MFF UK?

Na tuto otázku mohl respondent odpovědět vybráním žádné až všech čtyř nabízených možností.

A1-1: Student píšící diplomovou práci.

A1-2: Student píšící disertační práci.

A1-3: Školitel diplomové práce.

A1-4: Školitel disertační práce.

Další soubor otázek zjišťoval současný stav v komunikaci mezi studenty píšícími závěrečné práce a mezi školiteli jejich závěrečných prací; a zda respondenti používají nějaký nástroj pro uspořádání vlastních myšlenek.

<u>Q2-1-1:</u> Jaké nástroje používáte pro komunikaci myšlenkově složitějších jevů ve Vaší diplomové práci s Vaším školitelem či Vašimi kolegy?

³⁹ Děkuji za rozeslání úvodního e-mailu vedoucímu IT oddělení KAM MFF UK Mgr. Martinu Marešovi, Ph.D.

Q2-1-2: Jaké nástroje používáte pro komunikaci myšlenkově složitějších jevů ve Vaší disertační práci s Vaším školitelem či Vašimi kolegy?

Q2-1-3: Jaké nástroje jako školitel používáte pro komunikaci myšlenkově složitějších jevů s Vašimi studenty píšící diplomovou práci?

<u>Q2-1-4:</u> Jaké nástroje jako školitel používáte pro komunikaci myšlenkově složitějších jevů s Vašimi studenty píšící disertační práci?

Otázky se zobrazovaly na monitoru počítače podle charakteristiky respondenta, která byla určena v otázce Q-1, tedy žádná až více možností otázek Q2-1. S výběrem žádné až všech nabízených možností pro odpověď a s možností vlastního komentáře.

A2-1-1: Nezažil jsem takovou situaci.

A2-1-2: Ústně při konzultaci.

A2-1-3: Písemně.

A2-1-4: Jinak.

Q2-2: Používáte nějaké nástroje pro uspořádání Vašich myšlenek?

S možností výběru právě jedné odpovědi a možností vlastního komentáře.

A2-2-1: Ano.

A2-2-2: Ne.

Následovaly dvě otázky týkající se vhodnosti prezentace programu pi-mind.js, neboli zda byl návod programu ve srozumitelné formě pro respondenta, a týkající se vhodnosti vizualizace hypertextu pomocí programu pi-mind.js

Q3-1: Byla forma seznámení se s programem pi-mind.js pro Vás vhodná?

S množností výběru právě jedné z pěti možných odpovědí.

A3-1-1: Ano.

A3-1-2: Spíše ano.

A3-1-3: Spíše ne.

A3-1-4: Ne.

A3-1-5: Neumím posoudit.

Q3-2: Myslíte si, že použitá forma záznamu hypertextu je vhodnější pro komunikaci myšlenkově složitějších jevů, než lineární text?

S možností výběru právě jedné z 6 alternativ odpovědí.

A3-2-1: Rozhodně ano.

A3-2-2: Spíše ano.

A3-2-3: Stejně.

A3-2-4: Spíše ne.

A3-2-5: Rozhodně ne.

A3-2-6: Neumím posoudit.

V závěrečné sadě otázek měl respondent zhodnotit svůj názor na vhodnost použití programu pi-mind.js při komunikaci složitějších jevů a měl vyjádřit své hodnocení programu, jako nástroje pro urovnávání vlastních myšlenek.

Q4-1-1: Myslíte si, že program pi-mind.js by Vám pomohl ke zlepšení komunikace myšlenkově složitějších jevů mezi Vámi a Vaším školitelem diplomové práce?

Q4-1-2: Myslíte si, že program pi-mind.js by Vám pomohl ke zlepšení komunikace myšlenkově složitějších jevů mezi Vámi a Vaším školitelem disertační práce?

Q4-1-3: Myslíte si, že program pi-mind.js by Vám pomohl ke zlepšení komunikace myšlenkově složitějších jevů mezi Vámi a Vaším studentem píšící diplomovou práci?

Q4-1-4: Myslíte si, že program pi-mind.js by Vám pomohl ke zlepšení komunikace myšlenkově složitějších jevů mezi Vámi a Vaším studentem píšící disertační práci?

Otázky se zobrazovaly na monitoru počítače podle charakteristiky respondenta, která byla určena v otázce Q-1, tedy žádná až více možností otázek Q4-1. S možností výběru právě jedné z nabízených 6 možností odpovědi.

A4-1-1: Rozhodně ano.

A4-1-2: Spíše ano.

A4-1-3: Stejně.

A4-1-4: Spíše ne.

A4-1-5: Rozhodně ne.

A4-1-6: Neumím posoudit.

Q4-2: Myslíte si, že program pi-mind.js je užitečný nástroj k uspořádání vlastních myšlenek?

S množností výběru právě jedné odpovědi z pěti nabízených možností.

A4-2-1: Rozhodně Ano.

A4-2-2: Spíše ano.

A4-2-3: Spíše ne.

A4-2-4: Rozhodně ne.

A4-2-5: Neumím posoudit.

5.2 Výsledky a interpretace výsledků dotazníkového šetření

Dotazník byl rozeslán prostřednictvím IT oddělení Katedry Aplikované Matematiky MFF UK celkem 37 respondentům, z toho bylo 26 studentů píšící diplomovou, resp. disertační práci a 11 školitelů. Nelze posoudit kolika osloveným lidem úvodní e-mail skutečně došel. Přesto, že byl rozeslán oficiální cestou, nemusel každému respondentovi dojít či mohl být zařazen mezi spamy.

5.2.1 <u>Výsledky dotazníkového šetření</u>

Dotazník vyplnili čtyři respondenti. (Tab. 1)

Respondenti/Otázky (Q)	1	2	3	4
Q1-1	A1-1	A1-2	A1-2	A1-3/4
Q2-1	A2-1-1	A2-1-2/4	A2-1-2/3/4	
Q2-2	Ne.	Ano.	Ne	Ano.
Q3-1	Ano.	Spíše ano.	Ano.	Spíše ano.
Q3-2	Spíše ano.	Rozhodně ano.	Spíše ano.	Stejně.
Q4-1	Spíše ano.	Stejně.	Spíše ano.	
Q4-2	Spíše ano.	Spíše ano.	Spíše ano.	Spíše ne.

Tab. 1 Výsledky dotazníkového šetření.

5.2.2 Interpretace výsledků

Z předpokládaného počtu 37 respondentů odpověděli čtyři. Dotazník vyplnili jeden student píšící diplomovou práci (sloupec 1), dva studenti píšící disertační práci (sloupec 2,3) a jeden vedoucí diplomových a disertačních prací (sloupec 4).

Na otázku Q2-1, která se týkala specifikace nástrojů, které respondenti používají pro komunikaci myšlenkově složitějších jevů, se student píšící diplomovou práci s takovou situací nesetkal. Studenti píšící disertační práci takovýto problém řeší ústně při konzultaci, písemně, nebo jinak (obrázkem). Odpověď nebyla zaznamenána v případě školitele diplomových a zároveň disertačních prací. Vzhledem k tomu, že se tak nestalo i u další podmíněné otázky Q4-1 pravděpodobně došlo k autorem nepředpokládanému zachování softwaru, pomocí něhož byl dotazník vytvořen. Přesto lze napsat, že minimálně polovina respondentů se setkala s problémem řešit myšlenkově složitější jevy v interakci s někým druhým a tuto potřebu řešila ústní konzultací popř. dalšími standardními možnostmi.

Polovina respondentů se vyslovila kladně na otázku, zda používají nějaký nástroj pro uspořádání vlastních myšlenek. V jednom případě se jednalo o papír s tužkou a v druhém případě o software (http://piggydb.net/).

Dva respondenti shledali seznámení s programem pi-mind.js prostřednictvím úvodní webové stránky a možností si odzkoušet vybrané a popsané funkce a možností odzkoušet si všechny zbylé funkce programu za vhodné a dva respondenti shledali tuto formu seznámení se s programem za spíše vhodnou. Tento výsledek podporuje možnost šířit tento software mezi zbytek učitelů a žáků prostřednictvím jeho samotného bez nějakých externích návodů a postupů.

Jeden respondent se vyjádřil velmi kladně na otázku, zda shledává hypertext jako lepší formu pro komunikaci myšlenkově složitějších jevů než lineární text. Dva respondenti cítili, že se jedná spíše o lepší formu. Čtvrtý respondent obě formy vnímá stejně, resp. použití jedné z těchto dvou forem podle jeho vyjádření spočívá na okolnostech konkrétního předávaného obsahu a na situaci. Dá se usuzovat, že mít alespoň podvědomí o hypertextu rozšiřuje možnosti komunikace.

Na hypotetickou otázku, zda užívání pi-mind.js by vedlo ke zlepšení komunikace mezi studenty píšící diplomovou, resp. disertační práci a jejich školiteli. Dva respondenti odpověděli spíše ano a jeden respondent neviděl žádný přínos. U jednoho respondenta nebyla odpověď zaznamenána.

Na otázku, zda respondenti shledávají program pi-mind.js jako užitečný nástroj pro uspořádávání vlastních myšlenek tři čtvrtiny respondentů odpověděla spíše ano a jeden respondent odpověděl spíše ne. U této otázky spatřuji užitečné porovnání s otázkou Q2-2, zda respondent užívá vůbec nějaký nástroj pro uspořádávání myšlenek. Neboť právě ze dvou respondentů, kteří používají nějaký nástroj pro tvorbu, jeden odpověděl spíše ano a druhý spíše ne. Rozdíl mezi názory může být vyvolán preferencí podstatou zcela jiných nástrojů (papír + tužka vs. počítač + software).

Dotazníkové šetření mělo kromě významu sběru dat o programu pi-mind.js i ambici tento program více přiblížit lidem na KAM MFF UK. Počet respondentů, kteří odzkoušeli software a zároveň vyplnili dotazník, je nízký (cca 10,8%), čímž samotné šetření a následná interpretace dat ztrácí relevantnost, stejně tak i přiblížení programu pi-mind.js a možnosti využívat hypertext jinak, se nepovedlo v takovém rozsahu, jak bylo zamýšleno. Nízký počet respondentů mohl být zapříčiněn volbou pouze jednoho seznamovacího jazyka, nepravděpodobnou možností nedostání

úvodního e-mailu nebo neochotou respondentů. Vyšší zájem o program mohl být docílen osobním kontaktem (metodou strukturovaného rozhovoru). Celkově je software hodnocen spíše kladně.

6 Závěr

V práci je program pi-mind.js zařazen do výchovně-vzdělávacího procesu, tak jak by mohl být užíván v běžné praxi. V teoretické části jsou naznačeny preferované organizační formy výchovně-vzdělávacího procesu, při níž by mohl být pi-mind.js použit. Orgpad, jehož alokací je program pi-mind.js, je definován, jako program sloužící k práci s vlastními myšlenkami - jejich tříděním, rozvíjením a předáváním dál. Je dokumentováno, že cíle současného vzdělávacího systému v ČR jsou také mj. zaměřeny na proces myšlení a to od úrovně základních škol až po úroveň postgraduálního studia. Dále jsou v teoretické části popsány důvody v podobě zmínění o oboru vizualizace či prospěšnosti poznatkových schémat, opravňující pro výzkumem tohoto zaměření, stejně tak i myšlenkový základ, ze kterého orgpad, resp. program pi-mind.js vycházejí.

V programové části je program pi-mind.js popsán a představen pomocí lineárního textu a je naznačeno možné použití v budoucnosti za zmíněné podmínky dalšího rozvoje, spíše na bázi přívětivosti vzhledem k uživateli.

V další části pak měli studenti a školitelé z KAM MFF UK možnost seznámit se z programem pi-mind.js pomocí programu samotného - hypertextové podoby. Zároveň formou dotazníkového šetření bylo zjištěno, že s programem pi-mind.js se může širší veřejnost seznámit "pouze" pomocí úvodní webové stránky, která je vytvořena pomocí tohoto programu, aniž by potencionální uživatel znal podrobnější návod pro tento software. Zároveň je shledána spíše vhodnější forma reprezentace informací pomocí konkrétní vizualizace hypertextu, než pomocí lineárního textu. Stejně tak jsou spíše pozitivně brány možnosti potencionálního použití programu pro komunikaci složitějších myšlenek mezi studenty píšícími závěrečné práce a jejich školiteli a podobně (spíše pozitivně) je program vnímán, jako užitečný nástroj k uspořádání vlastních myšlenek. Vstřícnější postoj k softwaru v poslední otázce projevoval respondent již užívající softwarový nástroj pro třídění vlastních myšlenek, než respondent užívající papíru a tužky.

7 Seznam použitých zdrojů

7.1 Seznam použité literatury

- ANGADI, G. R. Science Teachers Attitudes towards ICT. *International Educational E-Journal* [onine]. 2013, Karnatak, India, vol. II, iss. IV {Quarterly} [cit. 2014.01-22]. URL < http://www.oiirj.org/ejournal/oct-nov-dec2013/edu/05.pdf >
- BUSH, V. As We May Think. *The Atlantic Monthly* [online]. 1945, 7 [cit. 2014-02-18]. URL http://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/?single_page=true
- BUZAN, T. *Mentální mapování*. 1. vyd. Praha: Portál, 2007. 168 s. ISBN 978-80-7367-200-3.
- DOSTÁL, J. Informační a počítačová gramotnost klíčové pojmy informační výchovy.

 Infotech 2007 moderní informjační a komunikační technologie ve vzdělávání
 [online]. 2007, Olomouc: Votobia. [cit. 2014-02-05]. s. 60 65. URL

 < http://nazornost-ucebni-pomucky.xf.cz/informacni gramotnost.pdf >
- DOSTÁL, J. Instructional Software and Computer Games Tools of Modern Education.

 Journal of Technology and Information Education [online]. 2009a, Olomouc, Vydala
 Univerzita Palackého, vol. 1, iss. 1 [cit. 2014-01-19]. s. 23 28. URL

 < http://www.jtie.upol.cz/clanky 1 2009/dostal.pdf >
- DOSTÁL, J. Multimedia, Hypertext and Hypermedia Teaching Aids a Current Trend in Education. *Journal of Technology and Information Education* [online]. 2009b, Olomouc, Vydala Univerzita Palackého, vol. 1, iss. 2, [cit. 2014-01-07]. s. 18 23. URL < http://www.jtie.upol.cz/clanky_2_2009/multimedialni_hypertextove_a_hypermed ialni_ucebni_pomucky.pdf >
- FASSATI, T. *Slovník vizuální komunikace I.* 2. rozšířené vydání. Benešov u Prahy: Galerie výtvarného umění, 1997. 214 s. ISBN: 8023830511.
- FASSATI, T. *Praktická vizuální komunikace: učebnice druhé gramotnosti.* Benešov: Muzeum umění a designu, 2009. Různ. Str. ISBN 978-80-87400-01-2.
- HAMPL, V. *Dlouhodobý záměr UK 2011-2015* [online]. Praha: 2011 [cit. 2014-01-19]. URL < http://www.cuni.cz/UK-4512.html >
- HOFMANN, F. KYRÁŠEK, J. J. F. Herbart a jeho pedagogika. 1. vyd. Praha: SPN, 1977. s. 272 JEŘÁBEK, J. - et al. *Rámcový vzdělávací program pro základní vzdělávání:s přílohou*
- upravující vzdělávání žáků s lehkým mentálním postižením. Praha: VÚP, 2005. 126 s. ISBN 80-87000-02-1.
- JEŘÁBEK, J. et al. Rámcový vzdělávací program pro gymnázia. Praha: VÚP, 2007. 100 s. ISBN 978-80-87000-11-3.
- KOBÍKOVÁ, Z. Hypertext. *Revue pro média* [online]. 2003, iss. 5 [cit. 2014-01-19]. URL < http://rpm.fss.muni.cz/Revue/Heslar/hypertext.htm >
- KUBIATKO, M. Czech University Students' Attitudes Towards ICT Used in Science Education. Journal of Technology and Information Education [online]. 2010, Olomouc, Vydala Univerzita Palackého, vol. 2, iss. 3, [cit. 2014-01-23]. s. 20 - 25. URL < http://www.jtie.upol.cz/clanky_3_2010/kubiatko.pdf >
- KÚTNA, A PALÁSTHY, H. The Didactic Aspect of Information Technologies in Teaching the Technical Subjects. *Journal of Technology and Information Education* [online]. 2009, Olomouc, Vydala Univerzita Palackého, vol. 1, iss. 3, [cit. 2014-01-21]. s. 110 114. URL < http://www.jtie.upol.cz/clanky_3_2009/kutna.pdf >

- NOVAK, J. D. CAÑAS, A. J. The Theory Underlying Concept Maps and How to Construct and Use Them. *Technical Report IHMC CmapTools 2006-01 Rev 01-2008* [online]. 2008, Florida, Institute for Human and Machine Cognition. [cit 2014-03-30]. URL < http://cmap.ihmc.us/Publications/ResearchPapers/TheoryUnderlyingConceptMaps .pdf >
- NELSON, T. H. A File Structure for the Complex, the Changing and the Indeterminate.

 Association for Computing Machinery: Proceedings of the 20th, 1965. s. 84-100
- ONYIA, M. N. The Impact of ICT on University Students' Academic Studies. *Journal of Educational and Social Research* [online]. 2013, Rome, Italy, MCSER Publishing, vol. 3, no. 8 [cit. 2014-01-22]. p. 105-109. URL
 - < http://www.mcser.org/journal/index.php/jesr/article/view/1745/1749 >
- RABE, V. SLEGR, J. MACHOVA, T. ICT in non Informatic Subject. *Journal of Technology* and Information Education [online]. 2010, Olomouc, Vydala Univerzita Palackého, vol. 2, iss. 3, [cit. 2014-01-22]. p. 33 36. URL http://www.jtie.upol.cz/clanky_3_2010/rabe.pdf >
- SKALKOVÁ, J. *Obecná didaktika*. 2., rozšířené a aktualizované vydání. Praha: Grada Publishing, 2007. 322 s. ISBN 978-80-247-1821-7.
- SPOUSTA, V. Vidění je vědění ke gnozeologickým aspektům vizualizace. *Pedagogická orientace*. 2003, Brno, Vydala Masarykova univerzita, č. 3. s. 22 27
- SPOUSTA, V. Vizualizace jako edukologický Fenomén. *Pedagogická revue.* 2006, Brno, Vydala Masarykova univerzita, roč. 58, č. 3. s. 253 273
- STEHLÍK, L. *Nástroje mapování a modelování poznatkových schémat: SVOČ.* Praha: Univerzita Karlova, Filozofická fakulta, 2005. 83 s. PhDr. Pavel Uhlář
- STERNBERG, R. J. *Kognitivní psychologie*. 2. vyd. Praha: Portál, 2009. 640 s. ISBN 978-80-7367-638-4.
- ŠEDIVÝ, J. Computer Illustration and Computer Visualization in Teaching process. *Journal of Technology and Information Education* [online]. 2009, Olomouc, Vydala Univerzita Palackého, vol. 1, iss. 3 [cit. 2014-01-30]. s. 115 117. URL < http://www.jtie.upol.cz/clanky_3_2009/sedivy.pdf >
- ŠEJNOHA, J. *Vizuální pomůcky pro podporu mentálních procesů: Diplomová práce.* Praha: Univerzita Karlova, Matematicko-fyzikální fakulta, 2011. s. 72. 7 l. příl. Doc. RNDr. Z. Hedrlín, CSc.
- ŠTVERÁK, V. Stručné dějiny pedagogiky. 2. vyd. Praha: SPN, 1988. s. 308.
- VALIŠOVÁ, A. KASÍKOVÁ, H. et al. *Pedagogika pro učitele*. 2., rozšířené a aktualizované vydání. Praha: Grada Publishing, 2011. 456 s. ISBN 978-80-247-3357-9.
- WARDRIP-FRUIN, N. What Hyertext Is. 2004. Santa Cruz, CA. USA
- Wikipedia: *Počítačový program* [online]. 2013 [cit 2014-01-19]. URL http://cs.wikipedia.org/w/index.php?title=Po%C4%8D%C3%ADta%C4%8Dov%C3%BD_program >

7.2 Seznam elektronických zdrojů

www.edx.org

http://thinkbuzan.com/how-to-mind-map/#prettyphoto/5/

http://www.milosnemec.cz/clanek.php?id=147

 $\underline{http://cmap.ihmc.us/Publications/ResearchPapers/TheoryUnderlyingConceptMaps.p} \\ df$

oursurvey.biz

http://www.muzeum-umeni-benesov.cz/iid/ucebnice/default.htm http://jtie.upol.cz/

8	Seznam	tabulek	
---	--------	---------	--

Tab.	1 \	/vsledky	dotazníkového	šetření	5	53

9 Přílohy

9.1 Úvodní e-mail

Dobrý den,

jmenuji se Matouš Lomnický a píši na Katedře Aplikované Matematiky (MFF UK) diplomovou práci, která se zabývá vizualizací a informačními komunikačními technologiemi (ICT) ve vzdělávání. Konkrétněji jsem se zaměřil na využití programu, pomocí kterého lze vizualizovat hypertext (Hypertextem rozumíme (nelineární) text, jehož podoba nemůže být zachycena na ničem, na čem se dá fyzicky psát, např. papíře.) a který, jak se domnívám, by měl sloužit k srozumitelnější komunikaci mj. mezi studenty a jejich vyučujícími.

Prostřednictvím tohoto mailu bych Vás rád požádal o spolupráci ve formě jednak seznámením se s programem pi_mind.js, který naleznete zde: http://kam.mff.cuni.cz/~cll/matous/uvod.html a zadruhé vyplněním dotazníku, který naleznete zde: http://login.oursurvey.biz/9574 (nebo se na něj také dostanete ze stránky programu); program je vhodné spouštět v prohlížeči Google Chrome (doporučuji) nebo Mozilla Firefox či v Chromiu (u všech zmíněných v novějších verzích), naopak správně nepoběží v Internet Explorer; dotazník se Vám potom správně zobrazí snad v každém prohlížeči.

Program pi_mind.js vychází z Herbartovy teorie o psychologii, která se zabývá myšlením. Samotný program by měl proto sloužit jako nástroj k uspořádání vlastních myšlenek a snadnější komunikaci "obsahu hlavy", tedy právě myšlenek, za pomoci vizualizace hypertextu. V rámci jeho zkoušení se můžete zamyslet nad svojí přípravou na zkoušku pomocí tohoto nástroje či nad přípravou přednášky; konzultaci možných problémů ve Vaší práci či práci Vašich studentů, což je připomenuto v "Motivaci".

Po spuštění programu uvidíte obrazovku, na niž bude část prezentující program (v horní části (nalevo) – "Tripad", "Funkce"); dva tripady: "Motivace" a "Odkaz na dotazník"; příklad užití tripadu (v pravém dolním rohu). Samotný program si můžete sami odzkoušet v tom samém okně.

Vzhledem k faktu, že se jedná o "<u>proof of concept version</u>" (verze pro ověření konceptu), Vás žádám i o shovívavost, pokud by snad nastaly nějaké potíže při chodu programu.

V dotazníku <u>nevyplňujete</u> žádná osobní data, která by mohla být zneužita proti Vám a je zcela anonymní. Jedná se standardně o 7 otázek, v určitých případech se může jednat o 9 a více (teoreticky ale nepravděpodobně maximálně o 13) otázek, případně vyšší počet otázek je však dán modifikací otázek, nikoliv charakterově jinými typy otázek.

Časová náročnost seznámení se s použitím a se základními funkcemi programu je individuální. Vyplnit dotazník by nemělo trvat déle než 10 minut.

Pro případ dotazu mě můžete kontaktovat e-mailem: M.Lomnicky@seznam.cz.

Dotazník vyplňte, prosím Vás, nejpozději do sedmi dní od doručení tohoto mailu (do čtvrtka 27. 3.2014).

Děkuji za Vaší spolupráci i Váš čas.

S pozdravem, Bc. Matouš Lomnický

9.2 Úvodní stránka představující pi-mind.js - první úroveň

9.3 Úvodní stránka představující pi-mind.js - druhá úroveň

9.4 Úvodní stránka představující pi-mind.js - třetí úroveň

