Amendments to the Claims

page 1, before the first paragraph:

-- CROSS-REFERENCE TO RELATED APPLICATION

The present application claims priority to Provisional U.S. Application U.S.S.N. 60/258,482 filed on December 28, 2000, which is herein incorporated by reference.--

page 2, first paragraph:

(Amended) For US purposes the following references are mentioned: US 4,845,067; US 4,999,327; JP-1126111; US 4,508,842; and UK 1015054.

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1-13 (Cancelled)

14. (Currently amended) An A polymerization catalyst comprising a combination of at least one activator and a reaction product of a transition metal compound with a tridentate ligand generating composition represented by a formula of:

$$R_3$$
 $(R^*)n$ R_4 R_5 R_6 R_8 R_7

(I)

or

wherein: R₂ and R₃ are hydrocarbyl radicals or substituted hydrocarbyl radicals, R₅ - R₈ are each, independently, hydrogen, a hydrocarbyl radical or a substituted hydrocarbyl radical; one of R₁, R₂, R₃, R₄, or R₉ is a radical that contains a Group 16 atom and R* is a hydrocarbyl radical or substituted hydrocarbyl radical when R₁ is a radical that contains a Group 16 atom, otherwise R₁, R₂, R₃, R₄, R₉ and R* are each, independently, hydrogen, a hydrocarbyl radical or a substituted hydrocarbyl radical; and for formula (I) m and n are values of 0 or 1, and when m is 0 and n is 0 R₂ and R₃ may be joined together to form an aromatic ring structure, and when n is 0 and m is 1 R₂ and R₃ may be joined together to form ring structures; any two adjacent groups of R₅ to R₉ may be joined together to form ring structures; for formula (II) R₁ through R₉ and R* are as explained above and R₁₀ is hydrogen, a hydrocarbyl radical or a substituted hydrocarbyl radical; and p, q and r are values of 0 or 1 wherein p is 0 only when q is 1 and r is 0.

15. (Original) The polymerization catalyst of claim 14 wherein the tridentate ligand generating compound is represented by the formula:

wherein R₄ is a radical that contains an oxygen based functional group selected from an alcohol, an aldehyde, a ketone, or an epoxide and R₅ and R₉ are alkyl radicals.

16. (Currently amended) The polymerization catalyst of claim 14 wherein the tridentate ligand generating compound is represented by the formula:

wherein R_1 is a radical that contains an oxygen based functional group such as an alcohol, an alcohol, a ketone, an epoxide and R^* , R_4 , R_5 , R_9 , and R_{10} are hydrocarbyl radicals.

17. (Original) The polymerization catalyst of claim 14 wherein the tridentate ligand generating compound is represented by the formula:

$$R_2$$
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}

wherein R_1 is a radical that contains an oxygen based functional group selected from an alcohol, an aldehyde, a ketone, an epoxide and R^* , R_2 , R_4 , R_5 , R_7 , R_9 , and R_{10} are hydrocarbyl radicals.

- 18. (Original) The polymerization catalyst of claim 14 wherein the transition metal compound is of a Group 4 metal.
- 19. (Original) The polymerization catalyst of claim 18 wherein the transition metal is Zr.

- 20. (Currently amended) The polymerization catalyst of claim 14 wherein the exygen centaining ligand of the catalyst Group 16 atom, when bonded to the transition metal, forms a ring of 5 to 8 atoms.
- (Currently amended) The polymerization catalyst of claim 14 wherein the oxygen centaining ligand of the catalyst Group 16 atom, when bonded to the transition metal, forms a ring of 5 to 7 atoms.
- 22. (Currently amended) The polymerization catalyst of claim 14 wherein the oxygen containing ligand of the catalyst Group 16 atom, when bonded to the transition metal, forms a ring of 6 atoms.
- 23. (Currently amended) The polymerization catalyst of claim 14 wherein the oxygen based-functional group radical that contains a Group 16 atom is a ketone.
- 24. (Currently amended) The polymerization catalyst of claim 14 wherein the oxygen based functional group radical that contains a Group 16 atom is an alcohol.
- 25. (Original) The polymerization catalyst of claim 14 wherein the a Group 16 atom is a sulfur based functional group.

26-27 (Cancelled)