K-MEANS E CLUSTERIZAÇÃO HIERÁRQUICA

Shirlei Dalila Machado Rezende

PERGUNTAS TEÓRICAS

Escreva em tópicos as etapas do algoritmo de K-médias até sua convergência.

- 1. Inicia-se k centróides em pontos aleatórios, pois o K-means não dá o valor de K.
- 2. Para cada ponto escolhido, deve-se encontrar o centróide mais próximo
- 3. Calcula-se o baricentro dos pontos para cada centróide
- 4. Mover o centróide na direção do baricentro
- 5. Repetir a partir de 2.

O algoritmo converge quando o movimento for menor que um valor pré-definido ou quando o número de iterações pré-especificado for atingido.

O algoritmo de K-médias converge até encontrar os centróides que melhor descrevem os clusters encontrados (até o deslocamento entre as interações dos centróides ser mínimo). Lembrando que o centróide é o baricentro do cluster em questão e não representa, em via de regra, um dado existente na base. Refaça o algoritmo apresentado na questão 1 a fim de garantir que o cluster seja representado pelo dado mais próximo ao seu baricentro em todas as iterações do algoritmo.

Obs: nesse novo algoritmo, o dado escolhido será chamado medóide.

O medoide é o ponto mais central localizado no cluster e precisa, necessariamente pertencer ao conjunto.

Passo a passo:

Selecionar k objetos para virar medoides.

calcular a matriz de dissimilaridade,

Atribuir cada objeto ao medoido mais proximo -

para cada cluster, observar se existe algum objeto que diminiu o coeficiente de dissimilidade e se existir, usar como novo medoide.

PERGUNTAS TEÓRICAS

O algoritmo de K-médias é sensível a outliers nos dados. Explique.

A base do K-means é o calculo de médias. O outlier desloca o centroide para fora dos pontos "corretos", pois a média é calculada de forma enviezada, de acordo com com o outlier e nao de acordo com o cluster. Portanto, tratar outlier é importante para que o K-means funcione corretamente.

Por que o algoritmo de DBScan é mais robusto à presença de outliers?

Porque é necessário que a vizinhança de cada ponto do cluster tenha um número mínimo de pontos. Isso se mostra eficiente na detecção e tratamento de outliers.

K-MEANS

30000 0 10000 100000 120000 PC1

Modelo com dados normalizados

Média geral(.mean)

K-MEANS

Variável: Maior taxa de mortalidade infantil por país

Cluster 0: países em desenvolvimento

Cluster 1: países desenvolvidos

Cluster 2: países subdesenvolvidos

Cluster	País	País %		
0	Myanmar	3.2%		
1	Saudi Arabia*	8.8%		
2	Haiti	5.0%		
País que melhor representa cada cluster				

também é o país que melhor representa o conjunto de dados completo, com 3,3%

CLUSTERIZAÇÃO HIERÁRQUICA

Variável: Maior taxa de mortalidade infantil por país

Cluster 0: países desenvolvidos

Cluster 1: países subdesenvolvidos

Cluster 2: países em desenvolvimento

	Cluster	País	%	
	0	Saudi Arabia*	7.3%	
	1	Haiti	4.9%	
	2	Myanmar	3.3%	
7	País que melhor representa cada cluster			

também é o país que melhor representa o conjunto de dados completo, com 3,3%

Dendograma

A clusterização hierárquica mostra 3 clusters principais, mas com diferenças de taxas percentuais para os mesmos países e também diferença na quantidade de elementos em cada conjunto.

K-means

Cluster Elementos

0 (em desenvolvimento)	92	
1 (subdesenvolvidos)	43	
2 (desenvolvidos)	32	

H-cluster

Cluster Elementos

2 (em desenvolvimento)	85	
1 (subdesenvolvidos)	44	
0 (desenvolvidos)	38	