McCullock Pitts Newson/ Thresholding Lagic
* Mucullock a pitts proposed a highly Simplified Computational model of neuron (1943).
x. (g f) > YE (0,13. xi. Summation Activation for
9 aggregates the mout:
g aggregates the input.
g^{12} $\sum_{x=i}^{n} x_i$ — (1)
$\Rightarrow x_1 + x_2 + x_n \cdot - 2$
function of takes decision based.
on aggregation (g).
function f is threshold function in this case.
y=1 if $g(x) > 0$. -3
4=0 rf g(x)<0 - 3
as called the thesholding palameters
1 1

Let us emplement some Boolean of uncon Using this Mucullock PHIs (MP) neuron 42 (a) 7(0,1) = YEE0,13 Implement AND Gate Teuth Table for AND. Pata 2 (X1 | X2) Y | 9 = X4 + X2 | O | O | O | O | O | O | O | D | O | When both input are 1 we get ofp 21 so the Q=2. +23(gf)-ye0,1 Q=2 * MuCulloch newson can be used to superent booleon function which are linearly separable

2

The bins parameter allow you to adjust the activation function when in such a way that a previse output is achieved

Summation functions The product of the espective imput a weight is taken Adding all these products gives us the Weighted Sum.

Weighte = \(\sum_{i=1}^{n} \times_{i} \widtharpoonup_{i} \tag{i} \tag

(expand) - eq (1)

= x, w, + x2w2+ - - - xn60nt bias

We,

= Activation function: > To map the weight sum to the output.

for ex

$$x_{i} = \sum_{i=1}^{n} x_{i} w_{i} + b_{i} q_{s} = 0$$
 $y = 1$
 $y = 1$

1 1 1

Achvation fri f(z)= 91 z>0 0 otherwise.

We Want

x w E Z Y Activation

 $V = W_1 \times_1 + W_2 \times_2 + b = Label \cdot - 0$ $W_1 \cdot 0 + W_2 \cdot 0 + b = 0 - 3$ $W_1 \cdot 0 + W_2 \cdot 1 + b = 0 - 3$ $W_1 \cdot 0 + W_2 \cdot 0 + b = 0 - 3$ $W_1 \cdot 1 + W_2 \cdot 1 + b = 1 - 3$

Can De switably adjust weight & bias par meters 80 that all eqn (2. tos) are satisfied. Yes choose $\omega_1 = 0.3$ $\omega_2 = 0.3$ 4 b = 0.

(P-3)