CLAIMS

What is claimed is:

1	1. A method for reducing feature size in a thin film magnetic write head using
2	low temperature deposition coating of photolithographically-defined trenches, comprising the
3	steps of:
4	forming a base layer;
5	applying a plating seed layer over said base layer;
6	applying a photoresist layer over said plating seed layer to a desired thickness;
7	defining a trench in said photoresist layer that exposes said plating seed layer, said
8	trench having substantially vertical side walls and a bottom defined by said plating seed layers
9	depositing an insulative spacer layer using a low temperature chemical vapor
10	deposition process to cover said trench side walls;
11	anisotropically etching horizontal portions of said spacer layer to remove spacer layer
12	material from said trench bottom to expose said plating seed layer while leaving intact vertical
13	portions of said spacer layer that cover said trench side walls, thereby defining a narrowed
14	trench;
15	electroplating metallic material onto said plating seed layer to form a structure in said
16	narrowed trench;
17	stripping away said photoresist layer; and
18	stripping away said spacer layer vertical portions;
19	whereby a structure of reduced feature size is formed.

3

A method in accordance with Claim 1 wherein said feature is a pole piece or a 1 2. 2 coil. A method in accordance with Claim 1 wherein said spacer layer comprises a 1 3. material from the group consisting of semiconductors, metal oxides and metal nitrides. 2 A method in accordance with Claim 1 wherein said spacer layer comprises a 4. 1 material from the group consisting of including tantalum oxide, silicon dioxide and silicon 2 3 nitride. A method in accordance with Claim 1 wherein said chemical vapor deposition 5. 1 process is an atomic layer chemical vapor deposition process. 2 A method in accordance with Claim 1 wherein said spacer layer is deposited at 1 2 a thickness of up to about 200 nm. 7. A method in accordance with Claim 1 wherein said chemical vapor deposition 1

in said photoresist layer.

process is performed at a temperature that does not cause deformation of said trench defined

2

1

1	8.	A method in accordance with Claim 1 wherein said chemical vapor deposition
2	process is per	formed without exceeding a temperature of about 120° Celsius.

- 9. A method in accordance with Claim 1 wherein said write head is part of an integrated read/write head having a thin film read sensor, and said chemical vapor deposition process is performed without exceeding a temperature that could cause degradation of material layers in said read sensor.
 - 10. A method in accordance with Claim 1 wherein said photoresist layer and said spacer layer vertical portions are stripped away in a single step.
 - 11. A magnetic recording transducer, said transducer having a thin film magnetic

 write head of reduced feature size formed by a process that comprises the steps of:

 forming a base layer;

 applying a plating seed layer over said base layer;
- applying a photoresist layer over said plating seed layer to a desired thickness;
- defining a trench in said photoresist layer that exposes said plating seed layer, said
- 7 trench having substantially vertical side walls and a bottom defined by said plating seed layer;
- depositing an insulative spacer layer using a low temperature chemical vapor
- 9 deposition process to cover said trench side walls;

	11	material from said trench bottom to expose said plating seed layer while leaving intact vertical						
	12	portions of said spacer layer that cover said trench side walls, thereby defining a narrowed						
	13	trench;						
	14	electroplating a metallic material onto said plating seed layer to form a structure in						
	15	said narrowed trench;						
	16	stripping away said photoresist layer; and						
	17	stripping away said spacer layer vertical portions;						
# 11"1 11"1	18	whereby a structure of reduced feature size is formed.						
=								
## 4.4 4.4 14. 14. 14. 14. 14. 14. 14. 14.	1	12. A transducer in accordance with Claim 11 wherein said pole piece is a pole						
•	2	piece or a coil.						
7- 1		· · · · · · · · · · · · · · · · · · ·						
	1	13. A transducer in accordance with Claim 11 wherein said spacer layer comprises						
IJ	2	a material from the group consisting of semiconductors, metal oxides and metal nitrides.						
	1	14. A transducer in accordance with Claim 11 wherein said spacer layer comprises						
	2	a material from the group consisting of tantalum oxide, silicon dioxide and silicon nitride.						
	1	15. A transducer in accordance with Claim 11 wherein said chemical vapor						

anisotropically etching horizontal portions of said spacer layer to remove spacer layer

deposition process is an atomic layer chemical vapor deposition process.

2

2

1

•	16.	A transducer	in accordance	with Claim	11	wherein	said	spacer	layer	is
	:									
der	osited at a	thickness of u	ip to about 200	nm.						

- 17. A transducer in accordance with Claim 11 wherein said chemical vapor deposition process is performed at a temperature that does not cause deformation of said
- 18. A transducer in accordance with Claim 11 wherein said chemical vapor deposition process is performed without exceeding a temperature of about 120° Celsius.
 - 19. A transducer in accordance with Claim 11 wherein said write head is part of an integrated read/write head having a thin film read sensor, and wherein said chemical vapor deposition process is performed without exceeding a temperature that could cause degradation of material layers in said read sensor.
- 20. A transducer in accordance with Claim 11 wherein said photoresist layer and said spacer layer vertical portions are stripped away in a single step.
- 1 21. In a disk drive having a housing, a rotatable magnetic recording medium in the 2 housing, an actuator carrying an actuator arm, a suspension, and a read/write head disposed in

3	adjacent relationship with the recording medium, an improved till magnetic write head				
4	having reduced feature size formed by a process that comprises the steps of:				
5	forming a base layer;				
6	applying a plating seed layer over said base layer;				
7	applying a photoresist layer over said plating seed layer to a desired thickness;				
8	defining a trench in said photoresist layer that exposes said plating seed layer, said				
9	trench having substantially vertical side walls and a bottom defined by said plating seed layer;				
10	depositing an insulative spacer layer using a low temperature chemical vapor				
11	deposition process to cover said trench side walls;				
12	anisotropically etching horizontal portions of said spacer layer to remove spacer layer				
13	material from said trench bottom to expose said plating seed layer while leaving intact vertical				
14	portions of said spacer layer that cover said trench side walls, thereby defining a narrowed				
1-5	_ trench;				
16	electroplating a metallic material onto said plating seed layer to form a structure in				
17	said narrowed trench;				
18	stripping away said photoresist layer; and				
19	stripping away said spacer layer vertical portions;				
20	whereby a structure of reduced track width feature size is formed.				
1	22. A disk drive in accordance with Claim 21 wherein said pole piece is a pole				
2	piece or a coil.				
	* - W -				

SJ09-2001-0034US1

A disk drive in accordance with Claim 21 wherein said spacer layer comprises

deposition process is performed without exceeding a temperature that could cause degradation

2 said spacer layer vertical portions are stripped away in a single step.