

OptiMOS® Power-Transistor

Features

- N-channel Logic Level Enhancement mode
- Automotive AEC Q101 qualified
- MSL1 up to 260°C peak reflow
- 175°C operating temperature
- Green package (lead free)
- Ultra low Rds(on)
- 100% Avalanche tested

Product Summary

V _{DS}	55	V
R _{DS(on),max} (SMD version)	12.7	mΩ
I _D	50	Α

PG-TO252-3-11

Туре	Package	Marking		
IPD50N06S2L-13	PG-TO252-3-11	PN06L13		

Maximum ratings, at T_i =25 °C, unless otherwise specified

Parameter	Symbol	Conditions	Value	Unit
Continuous drain current ¹⁾	I _D	T _C =25 °C, V _{GS} =10 V	50	А
		T _C =100 °C, V _{GS} =10 V ²⁾	50	
Pulsed drain current ²⁾	I _{D,pulse}	T _C =25 °C	200	1
Avalanche energy, single pulse	E _{AS}	/ _D =50A	240	mJ
Gate source voltage	V_{GS}		±20	V
Power dissipation	P _{tot}	T _C =25 °C	136	W
Operating and storage temperature	$T_{\rm j},T_{\rm stg}$		-55 +175	°C
IEC climatic category; DIN IEC 68-1			55/175/56	

Parameter	Symbol	Conditions	Values		Unit	
			min.	typ.	max.	
Thermal characteristics						
Thermal resistance, junction - case	R _{thJC}		-	-	1.1	K/W
Thermal resistance, junction - ambient, leaded	$R_{ m thJA}$		-	-	100	
SMD version, device on PCB	R_{thJA}	minimal footprint	-	-	75	
		6 cm ² cooling area ³⁾	-	-	50	

Electrical characteristics, at $T_{\rm j}$ =25 °C, unless otherwise specified

Static characteristics

Drain-source breakdown voltage	$V_{(BR)DSS}$	V _{GS} =0 V, I _D = 1 mA	55	ı	ı	V
Gate threshold voltage	$V_{\rm GS(th)}$	$V_{\rm DS} = V_{\rm GS}, I_{\rm D} = 80 \mu {\rm A}$	1.2	1.6	2.0	
Zero gate voltage drain current	I _{DSS}	$V_{\rm DS}$ =55 V, $V_{\rm GS}$ =0 V, $T_{\rm j}$ =25 °C	ı	0.01	1	μΑ
		$V_{\rm DS}$ =55 V, $V_{\rm GS}$ =0 V, $T_{\rm j}$ =125 °C ²⁾	-	1	100	
Gate-source leakage current	I _{GSS}	V _{GS} =20 V, V _{DS} =0 V	-	1	100	nA
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =4.5 V, I _D =34 A	-	12.7	16.7	mΩ
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =10 V, I _D =34 A	-	10.2	12.7	mΩ

Parameter	Symbol Conditions		Values			Unit
			min.	typ.	max.	
Dynamic characteristics ²⁾						
Input capacitance	C iss		-	1800	-	pF
Output capacitance	Coss	$V_{\rm GS}$ =0 V, $V_{\rm DS}$ =25 V, f=1 MHz	-	508	-	
Reverse transfer capacitance	C _{rss}		-	172	-	
Turn-on delay time	$t_{\rm d(on)}$		-	9	-	ns
Rise time	t _r	V _{DD} =30 V, V _{GS} =10 V,	-	29	-	_
Turn-off delay time	$t_{d(off)}$	$I_{\rm D}$ =50 A, $R_{\rm G}$ =3.6 Ω	-	43	-	
Fall time	t _f		-	12	-	
Gate Charge Characteristics ²⁾						
Gate to source charge	Q _{gs}		-	6	8	nC
Gate to drain charge	Q_{gd}	V _{DD} =44 V, I _D =50 A,	-	18	26	
Gate charge total	Q _g	V _{GS} =0 to 10 V	-	54	69	
Gate plateau voltage	$V_{ m plateau}$		-	3.4	-	V
Reverse Diode						
Diode continous forward current ²⁾	Is	- T _C =25 °C	-	-	50	А
Diode pulse current ²⁾	I _{S,pulse}	7 _C =25 C	-	-	200	
Diode forward voltage	V _{SD}	V _{GS} =0 V, I _F =50 A, T _j =25 °C	-	0.9	1.3	V
Reverse recovery time ²⁾	t _{rr}	V_R =30 V, I_F = I_S , di_F / dt =100 A/ μ s	-	52	-	ns
Reverse recovery charge ²⁾	Q _{rr}	V_R =30 V, I_F = I_S , di_F / dt =100 A/ μ s	-	99	-	nC

¹⁾ Current is limited by bondwire; with an RthJC=1.1 K/W the chip is able to carry 72 A. For detailed information see Application Note ANPS071E at www.infineon.com/optimos

²⁾ Defined by design. Not subject to production test.

 $^{^{3)}}$ Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm 2 (one layer, 70 μ m thick) copper area for drain connection. PCB is vertical in still air.

1 Power dissipation

$$P_{\text{tot}} = f(T_{\text{C}}); V_{\text{GS}} \ge 6 \text{ V}$$

160 140 120 100 P_{tot} [W] 80 60 40 20 0 0 50 100 200 150 *T*_c [°C]

2 Drain current

$$I_D = f(T_C); V_{GS} \ge 10 \text{ V}$$

3 Safe operating area

$$I_{\rm D} = f(V_{\rm DS}); T_{\rm C} = 25 \,^{\circ}{\rm C}; D = 0$$

parameter: t_p

4 Max. transient thermal impedance

$$Z_{\rm thJC} = f(t_{\rm p})$$

parameter: $D = t_p/T$

5 Typ. output characteristics

 $I_{\rm D} = f(V_{\rm DS}); T_{\rm j} = 25 \,{}^{\circ}{\rm C}$

parameter: $V_{\rm GS}$

6 Typ. drain-source on-state resistance

 $R_{DS(on)} = (I_D); T_j = 25 \text{ }^{\circ}\text{C}$

parameter: $V_{\rm GS}$

7 Typ. transfer characteristics

 $I_D = f(V_{GS}); V_{DS} = 6V$

parameter: T_i

8 Typ. Forward transconductance

 $g_{fs} = f(I_D); T_j = 25^{\circ}C$

parameter: g fs

9 Typ. Drain-source on-state resistance

 $R_{DS(ON)} = f(T_j)$

parameter: I_D = 34 A; V_{GS} = 10 V

10 Typ. gate threshold voltage

 $V_{GS(th)} = f(T_j); V_{GS} = V_{DS}$

parameter: I_D

11 Typ. capacitances

 $C = f(V_{DS}); V_{GS} = 0 \text{ V}; f = 1 \text{ MHz}$

12 Typical forward diode characteristicis

 $IF = f(V_{SD})$

parameter: T_i

13 Typical avalanche energy

$E_{AS} = f(T_i)$

parameter: I_D

14 Typ. gate charge

$$V_{GS} = f(Q_{gate}); I_D = 50 A pulsed$$

15 Typ. drain-source breakdown voltage

 $V_{BR(DSS)} = f(T_j); I_D = 1 \text{ mA}$

16 Gate charge waveforms

Published by Infineon Technologies AG Am Campeon 1-12 D-85579 Neubiberg © Infineon Technologies AG 1999 All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices, please contact your nearest Infineon Technologies Office (www.infineon.com)

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact your nearest Infineon Technologies Office.

Infineon Technologies' components may only be used in life-support devices or systems with the expressed written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.