Algorithms in Structural Bioinformatics

I.Z. Emiris and E. Chrysina, Assignment 1

Announced March 30, 2023, Deadline: 23/04/23, midnight

Assignments must be submitted on e-class: Assignments as a single PDF or ZIP file whose name starts with your last name. All questions must be answered in a single PDF file; further files (e.g. code) may be included in the ZIPfile (along with the PDF).

1. RNA folding

Find all optimal secondary structures of the RNA sequence AAUACUCCGUUGCAGCAU with the following crude energy minimization algorithm. Starting from the slides' algorithm, use the following initialisation:

$$j+5>i \implies E(i,j)=100, \quad i>j,$$

and bond energy: -4, 0, 4, for Watson-Crick bonds, GU, and all other possible pairs respectively.

Implement your algorithm in Matlab, R, Python or other convenient system; submit your code. Print the filled-in table E. Draw (by hand) all optimal folds, show the bonds, and each corresponding backtrack path.

2. c-RMSD and d-RMSD

Given are 10 conformations of a molecule in file "10_conformations.txt" on eclass: Assignments with n = 369 atoms on the backbone (hence in correspondence). The file starts with 2 lines containing 10 and n; the rest uses tabs to define 3 columns containing n triplets x y z per conformation i.e. 2 + 10n rows total:

369

0.046

2.816 -11.005 10.087

4.43 -10.545 10.011

. . .

Implement c-RMSD and d-RMSD in Matlab, Mathematica, Maple or other system offering linear algebra (SVD); submit your code. If your system provides either of these functions, it is OK to just use it.

- 1. Compute the c-RMSD distances between all $\binom{10}{2}$ pairs of conformations. Use them to find the L1-centroid conformation i.e. the one that minimizes the sum of distances to the other 9 conformations.
- 2. Repeat (1) for d-RMSD using (a) all $k = \binom{n}{2}$ distances within each conformation, or (b) a random subset of k = 3n distances.
- 3. Do they all 3 approaches yield the same centroid? How do they compare in terms of speed?

3. Distances

Consider 50 Ca atoms starting at A102 of the main protease of SARS-COV-2 given in complex with a peptide-like inhibitor (PDB id: 6LU7). Construct the 51×51 Cayley-Menger matrix B.

- 1. Compute rank(B); explain why the obtained value is correct.
- 2. Perturb entries of B by 5% (maintaining symmetry, positive entries, 0's, 1's), then explain the new value of rank(B). Compute Gram matrix G, apply SVD: $G = U\Sigma U^T$. Let S be the diagonal matrix containing the 3 largest singular values of G. Get the 3D coordinates as $\sqrt{S}U^T$, and report the c-RMSD against the original structure.