Introduction to Digital Integrated Circuits

Workshop-CANELOS24

Sistemas Digitales

Digital Signal: A signal that represents information as a sequence of discrete values.

In a **binary** system, values are either 0 or 1.

Why Binary?

It comes from the hardware!

- Switching devices
- Ease of distinguishing 2 states

75 years of the MOS transistor

- activated by voltage
- simple geometry
- scalable for mass production

predominant in today's technology

Operation

Digital Operation of an NMOS

Operation

Digital Operation of an PMOS

Operation

Complementary operation of NMOS and PMOS

V_{in}	$V_{\rm out}$
0	1
1	0

Truth table

OR and NOR gates

V ₁	V_2	OR: V _{out,or}	NOR: V _{out}
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

OR and NOR gates

OR gate

V ₁	V ₂	NOR, V _{out}
0	0	1
0	1	0
1	0	0
1	1	0

NOR gate

11 CapUSM

AND and NAND gates

V ₁	V ₂	AND, V _{out}	NAND, V _{out}
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

NAND gate

NAND gate

V₁

AND gate

 V_1

 V_2

13

Logic gates

х	Υ	V _{ou}
0	0	1
0	1	0
1	0	0
1	1	0

Х	Y	
0	0	0
0	1	1
1	0	1
1	1	1

х	Υ	
0	0	1
0	1	1
1	0	1
1	1	0

Х	Y	
0	0	0
0	1	0
1	0	0
1	1	1

Axioms and Properties

$$A + 0 = A$$

$$A + 1 = 1$$

$$A \cdot 0 = 0$$

$$A \cdot 1 = A$$

$$A + A = A$$

$$A + \bar{A} = 1$$

$$A \cdot A = A$$

$$A \cdot \bar{A} = 0$$

$$\overline{\overline{A}} = A$$

Commutativity of addition: A + B = B + A

Commutativity of the product: $A \cdot B = B \cdot A$

Associativity of addition: A + (B + C) = (A + B) + C

Associativity of the product: $A \cdot (B \cdot C) = (A \cdot B) \cdot C$

Distributivity of addition: $A + (B \cdot C) = (A + B) \cdot (A + C)$

Distributivity of the product: $A \cdot (B + C) = A \cdot B + A \cdot C$

Note: Two expressions are equivalent <u>if</u> and only <u>if</u> they have the same truth table.

De Morgan's Law

$$A + B = \overline{\overline{A} \cdot \overline{B}}$$

$$A \cdot B = \overline{\overline{A} + \overline{B}}$$

Any Questions?