

Chapter 7

COMBINATIONAL LOGIC BUILDING BLOCKS

Multiplexer (Data selectors)

- A device that selects binary information from one of many input lines and directs it to a single output line.
- Control signal pattern forms binary index of input connected to output
- Two forms:
 - Logical form (with n selection lines)
 - Functional form (with n-1 selection lines)

• Implement the function $F = \sum (1,3,5,6)$ using a MUX in (a) Logical form and (b) Functional form

(a) $F = \sum (1,3,5,6)$ in Logical form (Use an 8-to-1 MUX)

(b) $F = \sum (1,3,5,6)$ in Functional form (Use a 4-to-1 MUX)

(b) $F = \sum (1,3,5,6)$ in Functional form (Use a 4-to-1 MUX)

(b) $F = \sum (1,3,5,6)$ in Functional form (Use a 4-to-1 MUX)

Subtracter

- Half-Subtracter
 - combinational
 circuit that subtracts
 two bits and
 produces their
 difference
- Full-Subtracter
 - combinational circuit
 that performs
 subtraction between
 bits, taking into
 account that a 1 may
 have been borrowed
 by a lower significant
 stage

Half-Subtracter

X	У	В	D	
0	0	0	0	
0	1	1	1	
1	0	0	1	
1	1	0	0	

X	D
Υ	В

$$B = x'y$$

$$D = x'y + xy'$$

$$= x \oplus y$$

Full-Subtracter

X	У	Z	В	D	
0	0	0	0	0	
0	0	1	1	1	
0	1	0	1	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	0	0	
1	1	0	0	0	
1	1	1	1	1	

where:

x = minuend

y = subtrahend

z = previous borrow

B = Borrow

D = Difference

$$B = x'y + x'z + yz$$

$$D = x'y'z + x'yz' + xy'z' + xyz$$

Magnitude Comparator

- Combinational circuit that compares two numbers,
 A and B, and determines their relative
 magnitudes
- Two ways to compare numbers:
 - Bit-by-bit comparison
 - Subtraction

Magnitude Comparator

- Bit-by-bit comparison
 - Given two binary numbers

$$A = A_n A_{n-1} ... A_1 A_0$$

$$B = B_n B_{n-1} ... B_1 B_0$$

 A_n is compared to B_n , A_{n-1} is compared to B_{n-1} , and so on. If the two bits are the same, $X_i = 1$, where i denotes the position of the bit. If they are different, $X_i = 0$. A = B only if all X_i 's are equal to $1 \cdot (X_n X_{n-1} ... X_1 X_0)$

Bit-by-bit comparison

• To determine if A > B or A < B, compare first the MSBs: A_n and B_n . If $A_n = 1$ and $B_n = 0$, then A > B. If $A_n = 0$ and $B_n = 1$, then A < B. If $A_n = B_n$, proceed to the next significant pair of bits, comparing them, until two unequal bits are found.

Bit-by-bit comparison

• Example: compare two 4-bit numbers

$$(A = B) = X_3 X_2 X_1 X_0$$

$$(A > B) = A_3 B_3' + X_3 A_2 B_2' + X_3 X_2 A_1 B_1' + X_3 X_2 X_1 A_0 B_0'$$

$$(A < B) = A_3'B_3 + X_3A_2'B_2 + X_3X_2A_1'B_1 + X_3X_2X_1A_0'B_0$$

Cascading Comparators

- an XNOR gate acts as one bit comparator
 - high if equal
 - low if not

Example: 4-bit comparator

• A circuit that receives information on a single line and transmits this information on one of 2ⁿ possible output lines.

 The selection of the specific output line is controlled by the values of n selection lines.

Encoder

- An encoder is a combinational circuit that performs the inverse operation of a decoder function.
- It has 2ⁿ input lines (or fewer) and n output lines.

Example: Encoder

7	6	5	4	3	2	1	0	X	у	z
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

$$x = 4 + 5 + 6 + 7$$

 $y = 2 + 3 + 6 + 7$
 $z = 1 + 3 + 5 + 7$

Octal to Binary Encoder

Code Converter

 A combinational circuit that makes two code systems compatible even though each uses a different binary code

- Some types:
 - BCD-to-excess-3code converter
 - BCD-to-binarycode converter

Parity Checker

 The sum (disregarding carries) of an even number of 1s is always 0 and the sum of odd number of 1s is always 1.

Programmable Logic Devices

- Any Boolean function can be expressed in a Sum of Product form
- SOP form => AND-OR implementation

Programmable Logic Devices:

- Pre-fabricated building blocks of many AND/OR gates (or NOR, NAND)
- Programmed by making or breaking connections among the gates

Block Diagram of a Programmable Array of AND and OR for Sum of Products Form

Programmable Logic Devices

Programmable Logic Array (PLA): The AND array and the OR array are programmable.

PLA

PLA

PLAs

 Metal fuses are used by the manufacturer to establish the connections among the gates

- Kinds of metal fuses:
 - blown fuse
 - intact fuse
- Programming a PLA:
 "blowing" fuses for
 unwanted connections.

- A PLA program table is needed to program a PLA
- The size of a PLA is determined by three factors:
 - -# of inputs, # of product terms, # of outputs

- Types of PLA
 - mask programmable
 - designer submits a
 PLA program table
 to manufacturer
 - field programmable
 - PLA can be
 programmed by
 the designer using
 special instruments

Programmable Logic Devices

Programmable Array Logic (PAL): The AND array is programmable but the OR array is fixed

-0

Programmable Logic Devices

 Programmable Read-Only Memory(PROM): The AND array is fixed and the OR array is programmable.

Conclusions/Key ideas

- Combinational circuit outputs depend only on current input.
- Design aims: cheaper circuit, faster circuit, simpler to design
- Simple circuits can be designed using function simplification methods (K-map or more complicated computer aided methods)
- More complicated circuits can be designed by decomposing it into simpler circuits
- Signals suffer propagation delays as they go through gates