Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

SUGARBEET RESEARCH 1991 REPORT

FOREWARD

SUGARBEET RESEARCH is an annual compilation of progress reports concerning research by Agricultural Research Service investigators and cooperators who are engaged in sugar beet variety and production research. The report has been assembled and reproduced at the expense of the Beet Sugar Development Foundation, and is for the sole use of its members and the coopera-Much of the data has not been sufficiently confirmed to justify general release and interpretations may be modified with additional experimentation. The report is not intended for publication and should not be used for cited reference nor quoted in publicity or advertising. Reproduction of any portion of the material contained herein will not be permitted without the specific consent of the contributor and the Beet Sugar Development Foundation.

The report presents results of investigations strengthened by contributions received under Cooperative Agreements between Agricultural Research Service, U.S. Department of Agriculture, and the Beet Sugar Development Foundation; the California Beet Growers Association; and the Sugarbeet Research and Education Board of Minnesota and North Dakota.

Trade names occur in this report solely to provide specific information and do not signify endorsement by the U.S. Department of Agriculture or the Beet Sugar Development Foundation.

			<u>PAGE</u>
SECTION	A	SALINAS, CALIFORNIA	
		Contents	A1
		Abstracts of Papers, 1991	A3
		Development of Breeding Lines and Germplasm	A20
SECTION	В	BELTSVILLE, MARYLAND	
		Contents	B1
		Publications	В3
		Engineered Resistance to Bacterial Pathogens	В6
		Gene Transfer Technology Improvement .	В7
SECTION	С	FORT COLLINS, COLORADO	
		Contents	C1
		Publications	C3
		Rhizoctonia Root Rot Research and Development of Genetic Resistance in Sugarbeet	C4
		Evaluation of Contributed Lines for Resistance to Rhizoctonia Root Rot	C11
		Evaluation of Contributed Lines for Resistance to Cercospora Leaf Spot	C11
		In Vitro Pollen Technology To Assay and Select for Economic Characters in Sugarbeet	C12

		PAGE
SECTION D FARGO	O, NORTH DAKOTA	
	Contents	D1
	Publications	D3
	Cercospora Resistance Breeding and Related Research	D10
	In Vitro Selection, Regeneration and Biopestice Development Research	D14
	Rhizoctonia Root Rot Research	D19
	Physiological Selection and Germplasm Research	D22
	Development of a Sugarbeet-Associated Microbe Culture Collection	D29
SECTION E EAS	ST LANSING, MICHIGAN	
	Contents	E1
	Publications	E3
	Characterization of Monogenic Sulfonylurea Herbicide Resistance Obtained from Somatic Cell Selection.	E8
	Attempting to Obtain Imidazolinone Herbicide Resistance	E12
	Evaluation of Sugarbeet Smooth Root Germplasm - 1991	E13
	Agronomic Evaluation of Smooth Root Rhizoctonia Root Rot Nursery Selections	E14
	Evaluation of Smooth Root and Other Experimental Hybrids in 22" Versus 28" Row Spacings	E17
	Comparative Agronomic Performance of Soil Free and Smooth Root Types with Standard Root Type Commercial	
	Cultivars	E19

			PAGE
SECTION	E	EAST LANSING, MICHIGAN - CONT'D	
		1991 Experiments of Genotype x Nitrogen Response	E21
		Selection in Diverse Breeding Populations for Nitrogen Use Efficiency	E28
		Molecular Studies of Diverse CMS Lines	E32
		Minirhizotron Observations for MHi E4 and SR87 at Three Plant Densities	E37
		Rhizoctonia Root Rot Evaluation for Commercial and Experimental Hybrids at East Lansing, MI - 1991	E43
SECTION	F I	DAHO	
		Contents	F1
		Sugar Beet Cyst Nematode Management .	F3
		Biological Control of Plant Pathogens	F6
SECTION	G	BUSHLAND, TEXAS	
		Contents	G1
		Publications	G3
		Combining Solid Matrix Priming with Biocontrol Agents to Enhance Biological Control of Sugar Beet Seedling Diseases	G8
		Developing Laboratory Techniques for Rearing the Sugar Root Aphid Pemphigus Betae Doane	G11

SUGARBEET RESEARCH

1991 Report

Section A

U.S. Agricultural Research Station, Salinas, California

Dr. J. E. Duffus, Plant Pathologist

Dr. L. L. Hoefert, Botanist

Dr. R. T. Lewellen, Geneticist

Dr. H. Y. Liu, Plant Pathologist

Dr. M. H. Yu, Geneticist

Dr. J. S. McFarlane, Collaborator

Cooperation:

Delta Sugar Company Holly Sugar Company Spreckels Sugar Division California Beet Growers Association

The research was supported in part by funds provided through the Beet Sugar Development Foundation (Projects 210, 211, 212, 215, 203, and 260) and the California Beet Growers Association.

		el.	
			ű.

	<u>Page</u>	5
I.	ABSTRACTS OF PAPERS, 1991	}
II.	DEVELOPMENT OF BREEDING LINES AND GERMPLASM by R. T. Lewellen	
	Breeding Lines C31-43 and C31-89	20
	Performance of Polish Accessions	
	Resistance to Cyst Nematode	2 1
	S ₁ Progeny Recurrent Selection	21
	Performance of S_1 Lines from Popn-790 (C4)	1
	Open-pollinated Commercial Cultivars?	22
	Rhizomania Resistance from PI206407	
	Genetic Variability from <u>Beta Maritima</u>	
	Variety Trials, Salinas, CA, 1991	24
	Progeny Tests	5
	Germplasm Lines	9
	CO vs C4, C5 of Popn-790 (C4)	4
	Performance of Experimental Hybrids	
	Area 4 Coded Variety Trial	
	Virus Yellows (BYV) Evaluation Trials	_
	Sugarbeet x <u>B. maritima</u> populations	
	Experimental Hybrids	
	Multigerm Germplasm	8
	Variety Trials, Brawley, CA, 1991 A6	
	Planting x Harvest Dates	7
	Performance of Experimental Hybrids	8
	Area 5 Coded Variety Trial	4
	Rhizomania Trials, Salinas, CA, 1991 A7	8
	Evaluation of Germplasm Lines	9
	Evaluation of Lines and Hybrids	
	CBGA/BSDF Coded Variety Trial	
	Lines from Fort Collins Germplasm	R R
	Lines from Sugarbeet x B. maritima	
	CO vs C6 Synthetics of Y39 and Y47	
	Near-isogenic Lines	
	Lines from PI206407 and B883	
	Monogerm Populations	
	Polish Lines and Hybrids	
	Reevaluation of Progeny Lines	
	Observation and Disease Evaluation Trials	
		Ω
	Curly Top Evaluation, Kimberly	
	Erwinia/Powdery Mildew of Lines	
	Erwinia/Powdery Mildew of Hybrids	
	Coded Powdery Mildew Test	y
	Evaluation of Ames PI Accessions	4

BABB, T.A., J.L. KIMMELL, J.S. GERIK, and R.P. HEIMFORTH.

<u>Evaluation of 1,3-dichloropropene soil fumigation and tolerant</u>

<u>varieties on California sugarbeet production in rhizomania-</u>

<u>infested soils.</u> Jour. of Sugar Beet Res. 28:62. 1991.

The production of sugarbeets (Beta vulgaris L.) is limited in California by the presence of rhizomania, a viral disease (beet necrotic yellow vein virus) transmitted by a fungus, Polymyxa betae Keskin. Trials in 1989 and 1990 evaluated the effect of tolerant varieties in combination with soil fumigation on sugarbeet yield in rhizomania-infested fields. split-plot experimental design was used with main plots of 0, 9 & 12 gallons per acre (gpa) fumigation rates using 1,3dichloropropene. Subplots were varieties with a range of tolerance to rhizomania. An attempt was made to quantify the inoculum density in each of three fields and relate it to subsequent yields. Main plots were applied in either October or April, and plots were planted in February or April. varied between locations, with unfumigated plots ranging from 0.45 tons of sugar per acre (TS/A) for a susceptible variety to 1.16 TS/A for a tolerant variety. The highest yielding tolerant variety yielded 3.3 TS/A in 1989 with 12 gpa of 1,3-dichloropropene. Results suggest varietal tolerance presently available is not sufficient to profitably produce sugarbeets in fields infested with rhizomania without soil fumigation. The success of a tolerant variety in combination with soil fumigation may be dependent on the original inoculum density in a field. technique to rapidly assay soil for disease inoculum levels would aid California growers in determining which field will produce economic returns when combined with soil fumigation and an adapted, rhizomania tolerant variety.

BAÑUELOS, G.S., S. TEBBETS, R. PERRY, J.E. DUFFUS, and P. VAIL. The potential of non-native selenium accumulating mustard plants as host for beet leafhopper and beet curly top virus. Southwestern Entomology (In Press). 1992.

Agricultural irrigation/drainage problems in the westside of central California have resulted in public concern after scientists determined that excessively high concentrations of naturally-occurring selenium (Se) accumulated in the food chain and caused deformities and reproductive problems in wildfowl (Presser and Barnes 1985, Ohlendorf et al. 1986). Consequently, environmentally sound approaches to control the amount of Se entering the agriculture ecosystem are being studied. Two

suggested plans for managing drainage-induced Se problems include reusing drainage water for irrigation where possible (Rhoades et al. 1989, Ayers et al. 1987) or using a recently introduced exotic species of mustard from Pakistan, Brassic juncea Czern L., to remove Se from the soil (Bañuelos and Schrale 1989). Because B. juncea is able to absorb high concentrations of soluble Se from the soil (Bañuelos and Meek 1990), interest exists in its potential for Se removal in central California. However, there is also concern that test plantings of native and/or non-native plant species might contribute to beet curly top virus (BCTV) dissemination by serving as host plants or harboring insect vectors.

In North America, the beet leafhopper, Circulifer tenellus (Baker), feeds in the phloem cells of dicotyledonous plants (Magyarosy and Duffus 1977). Many plant species serve as host to BCTV including field crops such as sugarbeets, tomatoes, cantaloupe, spinach, beans, and many ornamentals (Mumford 1982). In late fall, as food crops are harvested and the favored weed hosts are drying, insects colonize alternate host plants for food and shelter.

The beet leafhopper overwinters on weed hosts in central California. Much is known about the weed host range of the beet leafhopper and BCTV (Bennett 1971), and comparisons between major weeds as hosts for beet leafhopper and BCTV have been made in central California (Mumford and Doney 1984) and elsewhere (Gracia and Feldman 1972). It is necessary therefore to determine any relationship between beet leafhoppers, BCTV, and this exotic mustard before planting area-wide to facilitate Se Accordingly, planting of B. juncea located adjacent removal. to different agronomic crops in central California were sampled for beet leafhopper during the summer of 1990. In addition, B. juncea was experimentally inoculated with the BCTV, and the virus's rate of spread monitored with the enzyme-linked immunosorbent assay (ELISA).

Field experiments were conducted in west-central California between 15 May and 1 September 1990. Brassica juncea Czern L. was planted on three different field sites in two-week intervals: (1) site 1, located 25 km southwest of Fresno, consisted of a 0.1-ha parcel 25 m from corn and birdsfoot trefoil; (2) site 2, located 10 km west of Los Baños, consisted of six 0.05-ha parcels 50 m from cotton and ornamental eucalyptus; (3) site 3, located in the northeast sector of Fresno on California State University Fresno, consisted of a 0.1-ha parcel 25 m from turf and peach trees.

Two-week old *B.juncea* seedlings were transplanted to each growing site on beds spaced 15 cm apart. Plants were irrigated similarly to the crops grown near each respective site.

Eighteen days after transplanting, the plants were sampled for leafhoppers at 10 A.M. using an insect sweep net. Each sample consisted of eight random sweeps progressing from the outside towards the middle of the plot. Collected insects were placed into a glass jar and frozen for later identification. A total of four samples, 12 days apart, were collected at each field site.

Both Brassica juncea and Brassica alba (a mustard native to California) were inoculated with different strains of BCTV (Logan, St-11, Fresno I and HRCT) and then monitored for BCTV by serological methods (ELISA) (Mumford 1982). In addition to normal inoculation procedures (10 leafhoppers/plant with a 3 to 4-day inoculation feeding period), a large number of viruliferous leafhoppers (100) were colonized on test plants for 10 days; adults were removed and developing nymphs were monitored for BCTV.

During the study we collected insects representing 10 orders and over 22 families (data not shown). Circulifer tenellus was taken from all three test mustard plots; however, a total of only thirteen beet leafjoppers were found at site 1, three at site 2, and twelve at site 3. A few specimens of two other leafhopper species were also collected: Macrosteles quadralineatus Forbes, the aster leafhopper, and an unidentified species in the genus Empoasca.

In the inoculation experiments, BCTV was not detected in beet leafhoppers after an acquisition period of 3-4 days on BCTV-inoculated mustard plants and also was not detected in developing nymphs after an acquistion period of 10 days. In addition, test plants assayed for the BCTV virus ELISA were negative. Similar tests with B.alba, a known susceptible mustard host, produced positive results.

Several weeds, may of which are used by various insects as overwintering habitats, have been reported to be hosts of curly top virus (Gracia and Feldman 1972, Mumford and Doney 1984). The only insect vector of curly top virus described to date has been the beet leafhopper, which can undergo three or four generations per year in California (Magyarosy and Duffus 1977). According to Mumford (1982), an abundance of viruliferous leafhoppers is essential to cause a severe outbreak of curly top virus diesase; our sampling detected relatively low numbers feeding on wild brown mustard during the study. Even after inoculation of wild mustard with BCTV, nymphs collected from leafhoppers feeding on inoculated B. juncea did not exhibit a positive reaction to the virus with the ELISA technique. addition, the virus was not recovered in the plant tissue. Thus, the exotic B. juncea was shown to be a nonhost plant for BCTV, even though the same inoculationn produced ELISA

positive plants and the virus was recovered in B.alba. Increased cultivation of B. juncea along the western margin of the San Joaquin Valley in central California, where naturally high concentrations of Se are present, will modify vegetation in certain isolated areas and may influence insect patterns. damaging levels of beet leafhopper were to occur on these plantings, control measures, including insecticide applications might be necessary. However, multiple harvests of mustard plantings will be made during the year to remove Se accumulated in the plants. Repeated harvests would decrease population densities and reproductive capacities of beet leafhoppers and other insects. Our tests provide presumptive evidence that B. juncea Czern is a nonhost of BCTV under greenhouse conditions. Therefore, even if this plant becomes attractive to beet leafhopper, it is doubtful that the potential for outbreak of BCTV disease would increase due to plantings of this exotic brown mustard for the purpose of Se removal from the soil.

COHEN, S., J.E. DUFFUS, and H.Y. LIU. A new Bemisia tabaci biotype in the southwestern United States and its role in silverleaf of squash and transmission of lettuce infectious yellows virus. Phytopathology 82:86-90. 1992.

Collections of Bemisia tabaci from California desert regions have been shown to be a mixture of biotypes. These whitefly biotypes differ in a number of ways including their ability to induce silverleaf of squash. The physiological differences of the newly found whitefly biotype, including host preference, larval development, transmission of lettuce infectious yellows virus, and the induction of silverleaf symptoms, clearly distinguish it from the previously occurring biotype. Silverleaf of squash was induced by nymphal feeding activity; however, the physiological condition of the host as influenced by light intensity, quality, and duration are important factors in silverleaf expression. Differences between the whitefly biotypes in induction of silverleaf are quantitative and qualitative. Double-stranded RNA bands were not detected from nymph-infested leaves or from silverleaf symptomatic tissue, suggesting that whitefly-induced silverleaf in California is similar to a systemic phytotoxemia.

COHEN, S., J.E. DUFFUS, H.Y. LIU, and R. PERRY. <u>Induction of silverleaf of squash by Bemisia whitefly from California desert whitefly populations</u>. Plant Dis. 75-862. 1991.

The silverleaf syndrome in squash, induced by the feeding of the sweet potato whitefly [Bemisia tabaci (Gennadius)], is widespread in Florida. Populations of B. tabaci from the desert southwest have previously not been capable of inducing typical silverleaf. Recent isolations of B. tabaci from

California desert regions have shown that these populations are a mixture of biotypes. These whitefly biotypes differ in a number of ways including their ability to induce silverleaf of squash. The physiological differences of the newly introduced whitefly biotype, including host preference, larval development and the induction of silverleaf symptoms, clearly distinguish it from the common biotype. Double-stranded RNA bands were not detected from nymph-infested leaves or from symptomatic tissue, suggesting that whitefly induced silverleaf in California is similar to a systemic phytotoxemia. The occurrence of the silverleaf inducing whitefly biotype on nursery stock, including poinsettia and hibiscus, in various parts of the state, and the movement of such nursery stock from Florida to California, is the probable vehicle of the introduction of this new disease problem in California.

DUFFUS, J.E., and R.T. LEWELLEN. <u>Planting and harvesting alterations for the control of lettuce infectious yellows virus</u>. Jour. Sugar Beet Res. 28:67. 1991.

Lettuce infectious yellows virus (LIYV) has become a major disease inducing agent of sugarbeet in the southwest desert region of U.S.A. Losses as high as 20-30% have been reported. Monitoring of whitefly (Bemisia tabaci) populations and LIYV incidence indicate that they peak in August through October. The effects of altering planting and harvesting dates on whitefly incidence, LIYV incidence and sugarbeet yield were studied in an effort to design an agronomic control for the disease. Young plants at each observation had significantly higher whitefly numbers. There was a significant decrease in whitefly populations as the season progressed. This resulted in progressively less infection at the later planting dates. The cultivar The percentage US H11 had a higher infection rate than HH 41. of infection on US H11 was 45% at the late August planting date and was 12% at the late October planting date. Gross sugar yields under these relatively light infection rates were greater with increased growing periods indicating that delayed planting under relatively light LIYV infection pressure is of no value.

DUFFUS, J.E., S. COHEN, and H.Y. LIU. A new Bemisia whitefly biotype in the desert southwest and its role in systemic phytotoxemia and virus transmission. Phytopathology 81:1157. 1991.

Bemisia whitefly transmitted virus diseases have caused staggering losses to desert southwest agriculture since 1981.

In Florida, since about 1987, whitefly populations increased greatly and induced large losses to squash and tomato growers. These losses have been attributed to factors involved in whitefly feeding. Whitefly populations from the southwest desert collected in the fall of 1990 are a mixture of biotypes. The original biotype does not induce systemic phytotoxemia on squash, broccoli and other crops under natural conditions; whereas the newly found biotype does. Physiological differences in host preference, larval development and phytotoxemia clearly distinguish the biotypes. The biotypes differ significantly in their abilities to transmit viruses and this may explain epidemiological differences between Bemisia transmitted viruses occurring in various places in the world.

DUFFUS, J. E., and H.Y. LIU. <u>Unique beet western yellows virus</u> isolates from California and Texas. Jour. Sugar Beet Res. 28:68. 1991.

Yellowing virus isolates collected in California and Texas have been shown to have unique biological properties. They are very similar to "mild isolates" of the beet yellows virus (BYV) as reported in the late 1940's and early 1950's from Europe and The mild yellow- ing isolates produce only mild interveinal reddening symptoms on the BYV indicator Chenopodium capitatum, they have a host range which includes common indicator species of BYV, they are not mechanically transmitted as are severe BYV isolates, they do not cross protect against subsequent inoculation by severe BYV isolates, and they are serologically unrelated to severe BYV isolates. Insect transmission, host range studies, virus purification and serology have shown that these isolates are not mild isolates of BYV but are unique isolates of beet western yellows virus (BWYV). commonly found BWYV isolates from beet have a wide host range and are readily distinguished from BYV by "diagnostic" infection of Capsella bursa-pastoris and lack of infection of Chenopodium capitatum. These newly described isolates of BWYV do not affect Capsella but cause symptoms on Chenopodium. These "new" biological types may be more damaging to sugarbeet but may be more readily controlled by host-free periods than conventional BWYV strains.

DUFFUS, J. E., R. PERRY, H.Y. LIU, and C.WATSON. <u>Susceptibility of Atriplex sp. to beet curly top virus</u>. Jour. Sugar Beet Res. 28:68. 1991

Atriplex sp. are being evaluated in California by several government groups as a forage crop when irrigated with saline drainage water. Atriplex, a salt loving plant, has an

affinity for selenium. Perennial species are used as a multi-clipped forage crop and fed to selenium deficient cattle. Most Atriplex sp., reported in the literature of the 1920's, have been susceptible to beet curly top virus (BCTV) and may act as virus and vector (beet leafhopper) reservoirs.

Atriplex sp. found to be most promising (productivity, forage quality and agronomic characteristics) were evaluated as beet leafhopper hosts and for BCTV susceptibility. A. barclayana, A. camarones, A. canescens, A. canescens subsp. macropoda, A. cinera, A. deserticola, A. halimus, A. nummularia, and A. sagittifolia were all found to be poor hosts of the beet leafhopper and were not hosts of BCTV. The utilization of these species should not be considered as threats to curly top control efforts. A reevaluation of the host range of BCTV is probably justified.

DUFFUS, J.E., and E.G. RUPPEL. <u>Sugarbeet diseases in the sugar beet crop</u>. D.A. Cooke and R.K. Scott, ed., Chapman and Hall (In Press). 1992. (Book Chapter).

Diseases have played an extremely important role in the current distribution of sugar beet and its success as an agricultural crop. The sugar beet, a product of science, has depended upon in large measure the success of science in the control of destructive plant diseases.

The sugar beet introduced from Europe to wildly divergent areas of the world encountered numerous diseases unknown in its areas of development. The beet curly top virus virtually destroyed the sugar beet industry in the western United States in the 1920's and continued to be the principal factor limiting production, in this region, until the 1940's. In the absence of control measures, resistance and agronomic, sugar beet could only be grown in limited areas of western U.S.

Yellow wilt, first observed in Argentina in the 1920's, caused the complete collapse of the industry in that country and has severely limited the distribution of sugar beet in Chile.

In attempts to extend the cane sugar factory operations in southern U.S., sugar beet plantings were a complete failure due to two rots, Rhizoctonia crown rot and Sclerotium root rot.

Rhizomania was first discovered in the mid 1950's on the Po River Plains of Italy. By 1964 the disease had infested over 27,000 acres and caused their abandonment to sugar beet production. The disease discovered in California in 1983 has already been found in over 80,000 acres, has caused some areas to go out of beet production, and has seriously altered production in other regions.

This book chapter discusses the major and minor virus diseases, fungal diseases and diseases caused by bacterial and bacterialike organism.

FAIL, G.L., and L.L. HOEFERT. <u>Electron microscopy of sugarbeet</u> <u>leaves infected with Beet Distortion Mosaic Virus</u>. Jour. of Sugar Beet Res. 28:69. 1991.

Beet Distortion Mosaic Virus (BDMV), a soil-transmitted virus from the Texas panhandle, causes mosaic symptoms and hyperplasia of leaf mesophyll cells that externally appear as leaf distortions. Particles have flexuous rods which range in length from 650 nm (in leaf dips) to 2,000 nm (in purified samples). can be mechanically transmitted to several species in the Chenopodiaceae, and to Gomphrena globosa, in the Amarantha-Infections may be limited to local lesions, or may be The development of virus inclusions has been studied systemic. in systemic infections of sugar beet, spinach, and G.qlobosa. Initial examinations used light microscopy of unfixed tissues stained with Azure A. Infected plant tissues contained inclusion bodies in mesophyll and phloem. Electron microscopy showed that the inclusion bodies were composed of tightly packed bundles of virus particles, which commonly attached to the outer membranes of chloroplasts. Vesicles similar to thos described in closterovirus infections were present in advanced infections.

GERIK, J.S., and T.A. BABB. <u>Inoculum density of Polymyxa</u>

<u>betae</u> and beet necrotic yellow vein virus in soils from

<u>California sugarbeet fields fumigated and not fumigated with</u>

1,3-dichloropropene. Jour. of Sugar Beet Res. 28:71. 1991.

Soil was collected from several sugarbeet fields in California and were assayed for the number of infecting units of Polymyxa betae and beet necrotic yellow vein virus (BNYVV) using a most probably number (MPN) technique. This technique requires that the soils be diluted, in a systematic manner, with sterile soil, past a point were the pathogens can no longer be detected. The soil dilutions required for the MPN technique were made using aliquots of the soil to be assayed which had been sterilized in an autoclave. The culture of bait plants in the diluted soils was accomplished in 24 well tissue culture plates, as described by Ciafardini and Marotta (Appl. Environ. Microbiol.: 1273-1278, 1989). Roots of the bait plants were assayed visually for P. betae and tested by ELISA for infection by BNYVV. These

assays provide information as to the inoculum density in sugarbeet fields known to be heavily infested with P.betae and BNYVV. Additional studies were conducted with soil collected from 2 field plots fumigated with 0, 9 or 12 gallons/acre of 1,3-dichloropropene. These plots were designed as randomized complete blocks, and random soil samples were collected from each plot. Soil samples were assayed for number of infecting units of P.betae and BNYVV using the MPN technique. These assays provide information as to the effect of 1,3-dichloropropene on the population of P.betae and BNYVV.

GERIK, J.S., and S.R. TEMPLE. <u>Comparison of direct seeding and seedling transplanting on yield loss in sugarbeet due to rhizomania</u>. Jour. of Sugar Beet Res. 28:71. 1991.

Fumigation with 1,3-dichloropropene has been a successful control strategy for rhizomania in the spring plant - spring harvest area of California. The fumigant apparently reduces the soil population of Polymyxa betae to low levels, thereby protecting the taproot until the time when this tissue is no longer susceptible. Only primary tissues, the epidermal and cortical cells, are susceptible to infection by P. betae. As the sugar beet tap root emerges from the seed and grows through the soil it is susceptible and may be killed, until the cortex is sloughed and secondary growth commences. By the end of the summer feeder roots may be nearly 100% infected, but as the soil temperature drops in the fall of the year, infection is much reduced and the infected sugarbeets will recover and produce a near normal crop the following spring. Experiments were conducted to determine the effect of seedling transplanting on yield loss caused by rhizomania. Four sugarbeet varieties, susceptible or tolerant, were planted or transplanted, in a split plot in a field known to be heavily infested with the rhizomania pathogens. Observations made during the growing season indicated that the transplanted sugarbeets remained healthier than the direct seeded ones. experiment implies that transplanting sugarbeets may diminish the amount of damage caused by rhizomania and that transplanting could be a substitute for soil fumigation in an integrated control strategy.

HOEFERT, L.L., and S.S. MARTIN. <u>Trap crops for the sugarbeet cyst nematode (Heterodera schachtii)</u>, I, Structure. Jour. of Sugar Beet Res. 28:75. 1991.

Nematodes are attached to some members of the Brassicaceae, notably species of Radish, and *Sinapis*. The plants have been widely planted in Europe as cover crops to aid in the attraction and removal of nematodes from sugarbeet fields. The techniques have met with considerable success abroad. Our approach has been

to look at the seeds and seedlings of the trap crops to see if any structural anomalies may exist that could explain the attraction of nematodes to the cover crops. We have begun the investigation into the distribution of specialized cells in seedlings and dry seeds during hydration. Quantitative data have been collected that indicate higher numbers of specialized cells occur in non-trap crop Brassicaceae species but that the size of the specialized cells is greater in trap crop species. Electron microscopy during development shows that the specialized cells differentiate in a manner similar to laticifers in latex-bearing plants, but that the cell content differs. In the specialized cells, glucosinolates or their precursors accumulate via endoplasmic reticulum cisternae that fuse with the central vacuole to produce a cell lumen filled with the glucosinolate materials.

HUBBARD, J.C., and J.S. GERIK. <u>Temperature optima of California isolates of *Polymyxa betae*</u>. Jour. of Beet Sugar Res. 28:75. 1991.

Isolates of Polymyxa betae were collected from sugarbeet production fields in California. Cultures of these isolates were initiated using multiple resting spore clusters collected with a micromanipulator and added to pots of sterile sand in which sugarbeet seedlings were grown. Dried root tissue from these plants, containing resting spores of P. betae, was used to inoculate sugarbeet seedlings growing in 4" pots. Inoculated plants were grown in growth chambers for 8 weeks at 16, 20, 24, or 28 C, and root samples taken from the pots were assayed for the amount of infection by P. betae using a modification of the procedure developed for quantification of vesiculararbuscular mycorrhizae. The data indicate that the highest infection rate for P. betae occurs near 24 C, but one isolate from the Imperial Valley in California showed bimodal temperature optima, suggesting a mixed population of P.betae in that isolate. Further studies were conducted using single resting spore isolates of the above cultures established by the agar disk method and maintained on sugarbeets growing in sterile sand in a growth chamber. Zoospores collected from these cultures were used to inoculate further temperature experiments. The data from these studies will be discussed in conjunction with environmental data collected from areas of California where rhizomania is and is not a serious problem.

LEWELLEN, R.T., and I.O. SKOYEN. <u>Improvement and performance of populations of sugarbeet x Betamaritima</u>. Jour. of Sugar Beet Res. 28:79. 1991.

As a consequence of its rather narrow genetic base, sugarbeet (Beta vulgaris L.) has been highly vulnerable to endemic

diseases and pests, particularly in warmer and/or more humid environments. B. maritima is believed to be its ancestral species and should be an important and useful germplasm resource. An advanced sugarbeet breeding line was crossed to 59 accessions of B. maritima from the pre-1980 USDA Individual F1 and F2 lines from each B. collection. maritima accession were produced. Mother roots from the F2 lines grown in a field plot were selected based upon nonbolting and agronomic type and composited to produce an The F3 source and cycle 1 and 2 F3 population. synthetics from it were evaluated in comparison to the sugarbeet parental line. Genetic variability was obvious in the sugarbeet x B. maritima populations for most traits examined. Selections for resistance to beet yellows virus and rhizomania based upon individual plant performance for sugar yield and root conformation significantly increased the performance of the respective synthetic when grown under diseased conditions. under mild disease exposure, the selected synthetics were superior to the F3 source. The data suggested that an improvement for root and sugar yield also occurred. Compared to the sugarbeet parental line, root and sugar yield was higher but sucrose content and quality traits were poorer.

LEWELLEN, R.T., and I.O. SKOYEN. <u>Screening for bolting tendency within sugarbeet populations</u>. Jour. of Sugar Beet Res. 28:79. 1991.

It may be feasible to use a nonbolting, annual (BB), CMS inbred line of sugarbeet (Beta vulgaris L.) as a tester to evaluate and screen genotypes for bolting tendency. Based upon tests involving lines with known but extremes in bolting tendency, a good association occurred between the lines in overwintered tests and their corresponding annual testcrosses under long-day greenhouse conditions. It remained uncertain whether this evaluation procedure would be critical enough to sort genotypes within a breeding line. Plants from two lines were randomly selected, selfed to produce S1 lines and crossed to annual C600CMS. S2 lines were obtained from some S1 lines. Annual testcrosses were evaluated for bolting in greenhouse and field tests under long-day conditions. Biennial S1 and S2 lines were evaluated for bolting in conventional fall planted field trials. Testcrosses evaluated in the greenhouse showed wide dispersion for bolting but not when tested under long-day field conditions. S1 lines in an over-wintered test ranged from 0 to 91% bolted. Bolting tendency of S2 lines had good association with their S1 source but continued to show wide differences within sets from a common S1 line. The testcrosses evaluated in the greenhouse showed agreement with their corresponding S1 and S2 lines evaluated under overwintered conditions, but there were

some major discrepancies. Usually though, the very slow bolting testcrosses identified the very nonbolting S1 lines and S2 lines that showed little additional segregation for bolting.

LEWELLEN, R.T., and S.R. TEMPLE. Response of sugarbeet line C31/6 to selection for resistance to beet yellows virus. Jour. of Sugar Beet Res. 28:79. 1991.

Beet yellows virus (BYV) continues to plague sugarbeet growers and processors in the Central Valley of California. Partially resistant or tolerant breeding lines that have been developed at Salinas over the past 35 years reduce the losses caused by BYV; however, higher levels of resistance in more productive backgrounds would be highly desirable. From moderately resistant breeding line C31/6, 100 half-sib families were evaluated for yield under BYV infected conditions at Davis and Salinas to determine if additional progress for resistance or performance under BYV conditions could be made. A wide dispersion for sugar yield occurred at both Davis and Salinas, but the rank correlation was poor. Six half-sib families were selected and individually advanced. Based upon data from each site, separate cycle 1 (C1) synthetics from a 10% selection intensity were made. Corresponding hybrids were produced with the source, C1 synthetics, and advanced lines. These were evaluated at Salinas and Davis in 1990 under BYV infected and The performance and resistance (% loss) noninfected conditions. of the source and C1 synthetics were not significantly Differences did occur among the six lines and their different. The relative performance of the progenies and lines at Davis and Salinas suggested that location effects were important.

MARTIN, S.S., and L.L. HOEFERT. <u>Glucosinolate biochemistry and structure of trap crops for the sugarbeet cyst nematode</u>
(<u>Heterodera schachtii</u>). Suppl. to Amer. Jour. of Botany.
78:142. 1991.

Selected cultivars of Raphanus sativus or Sinapis alba (Brassicaceae) induce cyst hatching and attract larvae of the sugarbeet cyst nematode, but disrupt normal reproduction. Such plants can be used as "trap" crops to reduce field nematode levels. As part of a study of the mode of action of these nematode-trapping plants, we compared the distribution of specialized glucosinolate-containing cells (GCCs) in seedlings of trap- and nontrap-crop cultivars of R.sativus and S.alba, and determined quantitative glucosinolate (GSL) profiles in seeds and developing seedlings. Structural studies

were made by light and electron microscopy. For biochemical work, tissues were extracted in boiling 75% methanol; intact glucosinolates were analyzed by HPLC [C_{18} -column; gradient elution with mixtures of 0.1M (aq.) ammonium acetate and acetonitrile] with photodiode array UV detection. In specialized GCCs, GSLs or precursors accumulated via endoplasmic reticulum cisternae that fused with the central vacuole to produce a cell lumen filled with biochemical material. Number and distribution of GCCs differed between trap and non-trap cultivars. All S.alba samples contained mainly 4-hydroxybenzyl-GSL (glucosinalbin), with small amounts of three other GSLs. Seed of R.sativus contained 4-methylsulfinylbut-3-enyl-GSL as the predominant GSL; germinating seedlings rapidly synthesized 4-methylthiobut-3-enyl-GSL, with several other GSLs present in lesser amounts.

SAUNDERS, W., P. DOLEY, G. ACQUAAH, and M.H. YU. <u>Isoenzyme</u> <u>fingerprinting and in vitro shoot multiplication in Betalomatogona Fisc. et Mey</u>. ASSBT 26th Bienn. Meet. Abstr. p. 36. 1991.

The apomixis existing within Beta lomatogona Fisc. et Mey. might be very useful in developmnet of true breeding high performance hybrid sugarbeet cultivars if it can be transferred into B. vulgaris L. and harnessed in breeding programs. We studied isoenzyme fingerprinting and in vitro propagation as tools to identify apomictic and interspecific progeny and to clone individual genotypes, respectively. Variation among six accessions was seen with malate dehydrogenase (MDH), isocitrate dehydrogenase, shikimate dehydrogenase, phosphoglucomutase, and phosphoglucoisomerase but not with 6-phosphoglucose dehydrogenase. One accession had a unique MDH pattern. Some patterns were different from those found in sugarbeet. In vitro multiplication of shoots of three accessions was achieved starting with floral stalk axillary buds and using 6-benzyladenine as the sole growth regulator. 3.0 mg/L was the optimum concentration for overall shoot enlargement and multiplication. This is ten fold higher than routinely found This research indicated that isoenzyme for sugarbeet. fingerprinting and in vitro shoot multiplication could be used in genetic studies with Beta lomatogona and presumable with interspecific hybridization derivatives with sugarbeet.

SORIA, C., M.L. GOMEZ-GUILLAMON, and J.E. DUFFUS. <u>Transmission</u> of the agent causing a melon yellowing disease by the greenhouse whitefly *Trialeurodes vaporariorum* in southeast Spain.

Neth. Jour. of Plant Pathol. 97:289-296. 1991.

The agent causing a yellowing disease of melon (Cucumis melo),

which results in severe losses in crops under plastic on the coastal plains of Southeast Spain, was shown to be transmitted in a semipersistent manner by the greenhouse whitefly (<u>Trialeurodes vaporariorum</u> Westwood). The agent was transmitted by grafting, but not by mechanical inoculation or through seeds. The agent was acquired in the minimum period tested (2 h.) and could infect plants in an infection feeding interval of 6 h.

<u>Capsella bursa-pastoris, C. melo, C. sativus, Cucurbita moschata, Cichorium endivia, Lactuca sativa and Taraxacum officinale</u> were found susceptible.

Results suggest that the yellowing disease affecting melon crops in the southeast of Spain is due to a pathogen similar to beet pseudo yellows virus, but this has to be confirmed by serology.

STALLKNECHT, G.F., J.E. DUFFUS, and J. SCHAEFFER. <u>Curly top virus in grain Amaranth</u>. Proceedings Fourth National Amaranth Symposium, Minneapolis, MN, Aug. 23-25, 1990.

The curly top virus disease has caused severe and widespread losses to sugarbeets and numerous vegetable crops. The virus was first reported in 1888. The virus is transmitted only by a single insect, the beet leafhopper, <u>Circulifer</u> tenellus. virus has a wide host range which includes 44 plant families and 300 species. The virus appears to be more severe in arid and semi arid areas, and has a wide distribution on desert and weed plants, particularly Russian Thistle and Mustards in the Western The virus exists as a complex of strains, which can vary in virulence and host ranges. The principle method of control is the breeding of plants having resistance to the virus. Control of the leafhopper is quite difficult since the vector can be wind carried over several hundred miles, and can produce several generations of offspring yearly. However insecticide spray programs are presently being used in several western sugarbeet growing areas.

In 1989, a serious outbreak of curly top virus occurred (for the first time in the history of beet production 80 + years) in the Western sugarbeet Billings factory area. This area extened from west of Billings Mt. eastward 100 miles to approximately Forsyth Mt. Sugarbeets are grown on approximately 30,000 acres along the Yellowstone river valley.

The curly top virus was particularly severe in fields planted to sugarbeet varieties which had moderate or no resistance to the virus disease. In surveys the sugarbeet fields we noted that many of the Red Root Pigweed species (Amaranthus retroflexus)

exhibited the stunted, wilted and yellowing symptoms similar to the sugarbeet plants. At approximately the same time we noted similar symptoms in the grain Amaranth plants grown at the Southern Research Center. Plant samples of sugarbeets, Red Root Pigweed, and grain Amaranth species which exhibited symptoms were sent to the Salinas laboratory for evaluation. All plants tested positive for the curly top disease.

Grain Amaranth plants which were inoculated with either the two mild strains or one severe strain of curly top virus significantly reduce seed yields. Plant height was also reduced by the virus, inoculated plants heights ranged from 12 - 18 cm as compared to 100 - 120 cm for the untreated controls. No significant differences in either seed yield or plant height were noted among the three curly top virus strains.

The results of curly top virus disease on grain Amaranth observed at Huntley Montana in 1989, suggest that grain Amaranth production should not be considered in areas having the curly top virus. It is possible that the severe infestation of viruliferous leafhoppers could have been in part due to the fact that large acreages were planted to grasses in the crop reserve program in 1989, and that these fields had high population of Russian Thistle (Salsola kali) which is an excellent host for the beet leafhopper. Scouting observations in sugarbeet fields and in research grain Amaranth plots at Huntley in 1990 indicate that the virus is present in the crops, however the incidence of the disease appears to be significantly lower. Our results indicate that the curly top virus has the potential to be an important plant disease of grain Amaranth since it severely reduces seed production.

YU, M.H. <u>Chromosome complements of sugarbeet plants induced</u>
<u>from unpollinated ovules</u>. Proc. 8th Intl. Cong. Human Genet. p.
280. 1991.

Ovule culture has the potential to identify and isolate more rapidly and accurately superior genotypes, thus accelerating sugarbeet breeding procedures. Plants were obtained by in vitro culture of unpollinated ovules from diploid sugarbeet. Thederivative plants generally were smaller in size and less vigourous in greenhouse culture than comparable seed-grown sugarbeet. Chromosome numbers ranged from 9, 18, 36, 9/18, 18/36 to 9/18/36 based on root tip chromosome counts of 141 plants. Sixty-nine plants with 18 chromosomes were classified as diploids and 10 were haploids having 9 chromosomes. Even though spontaneous endopolyploidization occurs in root meristems more frequently than in shoot apices in sugarbeet, the occurrence of over 40% doubled haploid plants is a significant

event. If such rates for chromosome doubling are substantiated by subsequent seed production, then for future sugarbeet research mediated by ovule culture, artificial chromosome doubling could be omitted. If donor plants are hybrids or heterozygotes, a rapid recovery of homozygosity and creation of diversity for sugarbeet genotypes could result.

YU, M.H. <u>Susceptibility levels of beet germplasm and the infection of root-knot nematode</u>. Agron. Abstr. p. 122. 1991.

The root-knot nematode (Meloidogyne spp.) is a destructive pest of sugarbeet (Beta vulgaris L.); search for resistance to the nematode thus becomes important. Studies were conducted in the growth chamber and greenhouse. The second stage juveniles (J2) penetrated into beet roots which induced giant cells and formed stainable galls in six days, and started to show dimorphic traits in eight days. Nematode developed rapidly in plant tissue and exuded egg matrices within 28 days. A wide variety of Beta germplasm from different sources were screened through J2 inoculations. Most lines that were tested were highly susceptible. Even though variation on the levels of susceptibility among lines was broad, genotypes with high levels of resistance to root-knot nematode are yet to be identified.

YU, M.H., and L.M. PAKISH. <u>Association of a nematode resistance</u> bearing addition chromosome with a recurring leaf intumescence somaclonal variation in sugar beet. Genome, 34: 477-485. 1991.

Intumescent leaf variants of sugar beet (Beta vulgaris L.) were obtained through callus culture of a monosomic addition that carried resistance to Heterodera schachtii Schm. frothy pockmarked appearance of the leaf surface was due to hyperplastic growth of the mesophyll and epidermal cells. epidermis had many malformed stomata. Veins were underdeveloped, but protrusions beneath were pronounced. Intumescence occurred in 20.3% of the regenerated plants and it was heritable to F_1 and later progeny. Leaf intumescence is a new phenotype for Beta. About 73.5% of regenerants contained the donor somatic chromosome number, the remainder were doubled or mixoploids, with no chromosome losses apparent. The 38-chromosome intumescent plant represents a dual somaclonal variation, chromosome doubling and leaf intumescence. Progeny of the 19- and 38-chromosome intumescent plants intercrossed or pollinated by diploids or tetraploids had 9, 18, 19, 27, 28, 29, 36, 37, 38, or 39 chromosomes. All intumescent plants were aneuploids with the monosome addition. There were linkages for leaf intumescence (li), resistance to H.schachtii (Hs), and hypocotyl color (R^{pro}) on the addition

chromosome. The efficacy of *Hs* remained intactthrough the in vitro culture and succeeding crosses. The *Li*-bearing plants manifested depressed growth and markedly reduced seed set. Leaf intumescence was thought to be the alternative expression of galling potential of *Beta procumbens* Chr. Sm. germ plasm.

Papers Published Since Abstracted in Previous Report

HASSAN, A.H., and J.E. DUFFUS. A review of a yellowing and stunting disorder of curcubits in the United Arab Emirites. Emir. J. Agric. Sci. 2:1-16. 1991.

LEWELLEN, R.T. <u>Use of plant introductions to improve populations and hybrids of sugarbeet</u>. <u>In</u> Shands, H.L., and L.E. Weisner (eds). Use of Plant Introductions in Cultivar Development, Part 2, CSSA Special Publication no. 20. p. 117-136. 1992.

LEWELLEN, R.T. Registration of rhizomania-resistant germplasm of Beta vulgaris. Crop Sci. 37:244-245. 1991.

DEVELOPMENT OF SUGARBEET BREEDING LINES AND GERMPLASM

R.T. Lewellen

BREEDING LINES C31-43 AND C31-89 - In 1991, breeding lines C31-43 and C31-89 were officially released. This germplasm represented ongoing efforts to combine multiple disease resistance with high productivity and to enhance source populations for commercial breeders. These lines are multigerm and self-sterile and were selected from C31/6 for improved performance under BYV infected conditions. These lines were extensively tested in 1990 (see 1990 Report). Because of low seed inventory, they were less extensively tested in 1991. As lines per se in nondiseased Test 691, they had superior performance to C31/6 for both % sugar and sugar yield and were among the highest yielding entries which included several commercial hybrids. Under BYV infected conditions (Test 1591) they were the two superior lines. They had significantly higher sugar yield than nearly all of the other entries. Based upon Test 2091, they are resistant to Erwinia with an intermediate reaction to powdery mildew. good bolting resistance but are moderately susceptible to curly top. an ongoing program, they are being used as recurrent parents for a conversion to rhizomania resistance.

PERFORMANCE OF POLISH ACCESSIONS - In 1988, nine diploid sugarbeet accessions were received from Dr. Adam Szreder, Plant Breeding Station, Chodow, Poland. These lines coded P1 through P9 were of interest because of their putative high sucrose concentration. In 1989, a preliminary test of these lines was run and P1, P2, P3, P4, and P7 were increased for further evaluation. In addition, a composite of lines P1 through P7 was made. Experimental hybrids were produced with the composite, P2, and P4. In 1991, these increases and hybrids were tested at Salinas and Brawley. The increases of P1 through P7 were renumbered as Z011 through Z017, respectively, with the composite numbered as Z010. In Test 691 whereas a typical Salinas line had about 16% sugar, these Polish lines ranged from 17.35 to 18.94% sugar. However, their root yields and sugar yields were significantly less than most Salinas lines. As expected, these Polish lines were relatively susceptible to BYV (Test 1591). The experimental hybrids with the composite, P2, and P4 (see summary tables for tests throughout this 1991 Report) were generally lower in yield than the commercial hybrid checks and the level of sucrose concentration was intermediate between that expressed by the line and typical Salinas hybrids. These results do suggest that this Polish germplasm can be exploited as a source of high sucrose to make improvements in Salinas material. Toward this end, the composite, P2, and P4 were crossed to Popn-912 is a source of resistance to rhizomania, virus yellows, curly top, bolting, etc. Based upon the performance of these initial population hybrids (Tests 691, 1591, 2491, RZM 591, & RZM 3291), it appears very promising that these Polish lines will be useful as sources of sugar genes to improve disease resistant germplasm.

RESISTANCE TO CYST NEMATODE - Line B883 from the Netherlands is being used as a source of resistance to cyst nematode. As of 1991, three or four new homozygous, nematode resistant F_3 lines have been identified. These lines have the general appearance and growth characteristics of B883 but are slightly more vigorous. Their F_1 nematode resistant hybrids, however, appear to be nearly normal in appearance. At this time, they are being used in the Salinas program as bridges to continue backcrossing nematode resistance into rhizomania and disease resistant backgrounds. Except from the homozygous resistant sources, the transmission rate remains very low. Thus, resistance from this source will probably have to be stabilized and deployed with homozygous resistant parental lines. question remains as to whether even the F₁ hybrids with heterozygous but homogeneous resistance will be useable because of the very poor performance, particularly for % sucrose, of B883 extractions. clear whether this poor performance is due to linkage with deleterious factors from Beta procumbens or to the background of B883 independent of nematode resistance. In an attempt to transmit and breed nematode resistance on a population basis, breeding lines such as N911, N012, N941, NO42, N971, and NO72 were developed. It is now known that the level of nematode resistance in these F_2 and BC_1F_2 populations is extremely low and therefore probably also is any contribution from B. procumbens or other factors linked with nematode resistance. The performance of these lines relative to their respective recurrent parents (R78, popn-911, & popn-867) then, should give some insight into the relative background performance of B883. Results of 1990 (RZM 190-4, RZM 3490, RZM 190-5, RZM 290-2) and 1991 (691, 2491, RZM 591) tests suggested that a significant portion of the poor performance of derivities and hybrids involving B883 is due to factors not specifically associated with its nematode resistance. This evidence provides hope that nearly normally performing, nematode resistant hybrids can be developed.

 $\underline{S_1}$ PROGENY RECURRENT SELECTION - In the early 1970s, a monogerm self-fertile, O-type population that segregates for genetic male sterility was developed and identified as popn-790. Since 1977, five cycles of S_1 progeny recurrent selection have been completed. Test 791 summarizes the comparison in performance of cycles 0, 4, and 5. Based upon the results of this test, a 29% increase in population sugar yield occurred over five cycles of selection. Improvements occurred for both root yield and % sucrose. Near significant differences between cycle 4 and 5 for sugar and root yield and % sucrose showed that further improvements should be possible.

<u>PERFORMANCE OF S₁ LINES FROM POPN-790 (C4)</u> - In 1989, 100 S₁ lines derived from the fifth cycle of S₁ progeny recurrent selection within popn-790 were progeny tested at Brawley, under LIYV conditions (see page A68, 1989 Report) and at Salinas under BYV inoculated and November planted bolting conditions (see pages A22-A23, 1989 Report). Based upon these S₁ per se tests, eight S₁ lines were selected and genetic male sterile plants topcrossed to line R80. In 1991, these topcross hybrids were evaluated in tests at Brawley (B591) and Salinas under nondiseased (591) and BYV infected (1391) conditions. In these tests, three lines

consistently had high performance for sugar yield. These lines, 8790-6, 8790-15, and 8790-54 are targeted for release in 1992 as C790-6, C790-15, and C790-54. In the 1991 tests, there were usually four topcross hybrids above and four below the performance of the source population hybrid. These results suggested that the S_1 progeny per se tests were successful at identifying performance for disease resistance, adaptation, and % sucrose, but did not predict the hybrid performance of these progenies. In the 1991 hybrid tests, lines 8790-6, -15, and -54 consistently had better hybrid performance than C790-68. C790-68 was one of the superior lines extracted from popn-790 (C2). This suggested that the additional cycles of S_1 progeny recurrent selection had sufficiently improved the base performance of this population so that higher performing lines could be identified and isolated.

OPEN-POLLINATED COMMERCIAL CULTIVARS ? - Until about 1960, open-pollinated cultivars were used in California. One of the last O.P. varieties used in California was US75. US75 or actually increases of it, is still used as a check in our tests. Assuming that the present version of US75 is not substantially different in performance from the former commercial seed lots, large improvements in yield have been achieved in open-pollinated lines. For example, in Test 691, US75 was only about 75% of the yield of breeding lines such as C31-43, C49, and many others. This difference is even greater in comparisons under diseased conditions. In tests 1491 and 1591 under BYV infected conditions, US75 performs only at about 50% of the level of the best O.P. lines. These large improvements in performance show that our long term breeding project has made significant advances, however, it also raises a different question - how do these new O.P. lines compare to commercial hybrids in performance? Frequently, in our California trials in which there is a mix of hybrids and advanced O.P. breeding lines, the best performance is by an O.P. line. For example, in Test 691, the several commercial hybrid checks were only as good as the best O.P. lines. Under diseased conditions, it is usual that the disease resistant lines perform better than the hybrids. In disease prone areas of California, is it possible that the industry would be better off using monogerm, open-pollinated, commercial cultivars? With the potential threat of a smaller industry, particularly in some areas, should breeders be seriously looking at monogerm, O.P. cultivars that are easier and less expensive to develop and that would reduce the interval of time for improvements in productivity, quality, and improved disease resistance?

RHIZOMANIA RESISTANCE FROM PI206407 - Line C28 was released several years ago as a source of resistance to rhizomania. Tests of inheritance and allelism have not been conclusive, but suggested that the resistance from PI206407 (PI07) is inherited as a simple dominant factor and is not alletic to $\mathbf{R}_{\mathbf{Z}}$ (Holly gene). Near-isogenic lines are being developed to evaluate the level of protection provided against rhizomania by these sources. Differential performance for sugar yield obtained in Test 691 under nondiseased conditions and Test 2491 under rhizomania conditions suggested that they are different and that the PI07 factor may provide a higher level of protection.

Comparison of R _z and PI206407 Sources of Resistance						
	<u> </u>	Sugar Yiel				
<u>Variety</u>	<u>Description</u>	Non-Rhizom.	Rhizomania ²			
U86 - 37	C37	17,240	4,950			
R079	C37R _Z	16,450	6,440			
R028	C37 x (C37 x PI07)	14,550	7,160			
R030	$C37R_{Z} \times (C37 \times PI07)$	16,470	7,020			
	2					
5747	747		5,470			
0910	747R _Z	17,940	6,700			
R029	747 x (747 x PI07)	17,020	7,710			
R030	$747R_2 \times (747 \times PI07)$	17,020	7,710			
	.	·	·			
ISD (.05)	2,018	840			
^L Test 69:	1. ² Test 2491.					

The contribution to performance and modifying or background factors for resistance to rhizomania contributed by PIO7 may still be important because RO28 and RO29 represented only the first backcross. Most likely, however, the chard-like plant from PIO7 would have had a negative effect on yield as in Test 691, rather than a positive one. Under moderate rhizomania conditions in Test 2491, RO28 and RO29 were nearly significantly higher yielding than their corresponding R_z line counterpart. Although preliminary inheritance data and these performance data suggest different genetic factors, this relationship needs to be

investigated further.

GENETIC VARIABILITY FROM BETA MARITIMA - B. maritima is now known to be a source of resistance to rhizomania, cercospora leaf spot, etc. At Salinas, populations between sugarbeet x B. maritima have been developed, selected and evaluated for reaction to specific diseases, and tested for yield performance. Breeding lines with B. maritima as part of their germplasm base were included in many trials in 1991, but Tests 691-2, 1191, 2491-4, and RZM 291 focused on the performance of these materials under both nondiseased and diseased conditions. Tests under rhizomania conditions (Test 2491-4 and RZM 291) continued to show that high levels of resistance occur within these lines. Under BYV infected conditions (Tests 1191, 1491, 1591) after just one cycle of selection, line R022Y1 (50% B. maritima accessions) was within 85% of the sugar yield of the sugarbeet checks. Under powdery mildew conditions (Test 2491-4), breeding lines EDW-6,7 and EDW-8,9 with germplasm from WB97 and WB242 had a high frequency of plants that segregated for immunity to Erysiphe. Also in Test 2491-4, under moderate rhizomania conditions, breeding lines with WB258 and WB151 showed higher % sugar than rhizomania resistant sugarbeet breeding lines R080 and C39R, suggesting that B. maritima may also be a source of genes for sucrose content. In Test 691-2 under nondiseased conditions, R022Y1 (50% B. maritima) had 61 tons per acre at 15% sugar. The impression from these tests is that sugarbeet and B. maritima may not be as genetically different as generally thought and that it may be possible to relatively quickly transgress new genetic variability into the sugarbeet base from this wild germplasm.

VARIETY TRIALS, SALINAS, CALIFORNIA, 1991

U.S. Agricultural Research Station, Spence Field

Tests were located in Block 2, south half (10 acres). A series of three plantings were made. Following fall preparation, plot area was limed, prefertilized and listed, and then shaped just prior to planting. Nortron-Pyramin was used on all plantings. Emergence was obtained with sprinkler irrigation. Sprinkler irrigation was primarily used as needed through the season, but some tests were also furrow irrigated part of the time. Ammonium sulfate and irrigation applied soluble nitrogen were applied as needed. Even though soil tests showed the area to be infested with rhizomania, essentially no rhizomania was evident in the plants. Metasystox-R was applied to control green peach and black bean aphids. The tests in this planting showed no stress through the course of the 8 to 9 month season. Sugar yields were very high in all types of breeding material.

<u>Yield Trials</u> - Tests 191 through 1091 were planted January 25, 1991. The primary purpose was to evaluate breeding materials for yield under non-diseased condition. These tests were very uniform and showed very high productivity. Powdery mildew was controlled until late summer with Bayleton. Beet western yellows virus was evident on most plants in susceptible cultivars. Downey mildew occurred in late spring.

Beet Yellows Trials - Tests 1191 through 1691 were planted February 12, 1991. They were partially inoculated with BYV on May 10, 1991. The primary purpose was to measure differential effects of BYV on yield and to evaluate BYV resistance. Powdery mildew was not controlled and became moderately severe on susceptible entries.

Powdery Mildew/Erwinia Root Rot Trials - Tests 1791 through 2191 were planted April 16, 1991. They were to evaluate breeding material for reaction to powdery mildew and/or Erwinia root rot. Powdery mildew was from natural infection. Plots were inoculated with Erwinia on July 11, 1991. The level of root rot was higher and more uniform than obtained in recent tests at Salinas.

PROGENY TESTS - In 1991, three sets of half-sib progenies from three populations were evaluated at Brawley and Salinas. The populations were R80, 913, and 864. Line R80 is similar to C54 and is multigerm, self-sterile, and segregates for resistance to rhizomania (\underline{R}_7) . Popn-913 is multigerm and segregates for self-fertility and $\underline{\aleph}_7$. The progenies actually involved genetic male sterile plants of popn-911, popn-913, and popn-903 outcrossed to fertile plants of popn-911 and popn-913. Popn-864 is monogerm, self-fertile, and segregates for R_2 . For R80 and 913, 96 progenies were evaluated in four replications in each test. For 864, 40 families were evaluated at Salinas under nondiseased and rhizomania conditions. Progenies of popn-913 were evaluated at Brawley and at Salinas under BYV infected conditions and for Erwinia and powdery mildew. For Line R80, progenies were evaluated at Salinas under nondiseased, BYV, rhizomania, Erwinia and powdery mildew conditions. In Test 891 at Salinas under nondiseased conditions and a 9 month growing season, the mean root (62.6 t/a) and sugar (19,940 lbs/a) yields were the highest ever achieved in one of my yield tests. The harvester was "maxedout" and the sugar lab crew complained. These yields demonstrated the yield potential and capacity of sugarbeet when very few constraints are placed upon their growth.

TEST 1691. Means and Ranges for Line R80 at Salinas under BYV Infection

96 entries x 4 reps, RCB 1-row plots, 18 ft. long Planted: February 12, 1991 Harvested: October 24, 1991

	Mean	Range	<u>LSD</u> (.05) C.V.(%)
Sugar Yield (lbs/a)	11,240	8,920 - 13,0	30 1,530	9.8
Root Yield (t/a)	36.4	28.8 - 43	.3 4.6	9.2
% Sucrose	15.4	14.6 - 16	.5 0.7	3.1
Beets/100 ft.	137	93 - 1	53 13.5	7.1
RJAP	83.1	79.4 - 85	.6 2.3	1.9
Powdery Mildew	6.7	4.7 - 8	.4 0.9	10.0
Virus Yellows Score	4.3	3.3 - 5	.4 0.6	10.5

TEST 1891. Evaluation for Erwinia and Powdery Mildew for R80

96 entries x 4 reps, RCB 1-row plots, 18 ft. long Planted: April 16, 1991 E.c.b. Inoc: July 11, 1991 Scored: October 3, 1991

Erwinia (DI) ¹	9.0	0.0 - 35.9	
Erwinia (% Resist.)	82.3	50 - 100	
Powdery Mildew	5.2	2.8 - 7.0	
<pre>% Downey Mildew</pre>	6.8	0.0 - 38.1	

 $^{^{1}}$ DI for checks (8 reps): US H11 = 8.2; C40 = 65.2.

TEST 891. Means and Ranges for Line R80 at Salinas under Nondiseased Conditions

96 entries x 4 reps, RCB 1-row plots, 18 ft. long

Planted: January 24, 1991 Harvested: October 26, 1991

Variable	Mean	Rang	e	LSD (.05)	C.V. (%)
Sugar Yield (lbs/a)	19,940	16,580 -	23,360	2,590	9.3
Root Yield (t/a)	62.6	53.4 -	72.4	7.7	8.9
% Sucrose	15.9	15.3 -	16.7	0.7	3.0
% Bolting	0.9	0.0 -	8.2	2.5	191
Beets/100 ft.	141	121 -	1 57	13.3	6.7
RJAP	84.2	82.4 -	86.1	2.2	1.8
Powdery Mildew	3.9	1.4 -	6.6	1.5	27.2

TEST 2591. Means and Ranges for Line R80 at Salinas under Rhizomania Conditions

96 entries x 4 reps, RCB 1-row plots, 18 ft. long

Planted: May 8, 1991

Harvested: November 12, 1991

	Mean	Range	LSD (.05)	C.V. (%)
Sugar Yield (lbs/a)	6,971	4,940 - 8,500	1,600	16.5
Root Yield (t/a)	23.0	16.6 - 28.6	5. 5	17.2
% Sucrose	15.2	14.2 - 16.1	0.9	4.3
Beets/100 ft.	158	89 - 200	27.9	12.7
RJAP	82.3	79.7 - 84.4	3.3	2.9
Powdery Mildew	5.5	3.4 - 7.5	1.3	16.5

TEST B491. Means and Ranges for MM, S^f, A:aa Popn-913 at Brawley

96 entries x 4 reps, RCB 1-row plots, 10.5 ft. long Planted: September 27, 1990 Harvested: May 17, 1991

<u>Variable</u>	<u>Mean</u>	Range	ISD (.05)	C.V.(%)
Sugar Yield (lbs/a)	9,900	8,530 - 11,920	1,570	11.4
Root Yield (t/a)	34.0	28.2 - 40.5	5.3	11.1
% Sucrose	14.6	13.3 - 16.6	1.0	5.1
% Bolting	6.0	0.0 - 51.9	9.4	113
Beets/100 ft.	121	96.2 - 140.6	25.0	15
% Roots with Phoma	8.1	0.0 - 52.5	9.3	82
% Clean Roots	93.3	87.3 - 96.7	3.9	3.0

TEST 991. Means and Ranges for MM,S^f,A:aa Popn-913 at Salinas under BYV Infection

96 entries x 4 reps, RCB 1-row plots, 18 ft. long Planted: January 24, 1991 Harvested: October 22, 1991

Variable	_Mean_	Range		LSD (.05)	C.V.(%)
Sugar Yield (lbs/a)	13,720	10,780 - 17	7,020	1,890	9.9
Root Yield (t/a)	45.1	35.1 -	53.4	5.8	9.3
% Sucrose	15.2	13.6 -	16.3	0.8	3.6
% Bolting	0.1	0.0 -	3.2	1.2	655
Beets/100 ft.	145	127 -	159	13.0	6.5
RJAP	82.1	78.8 -	85.6	2.2	2.0
Powdery Mildew	4.5	1.5 -	7.4	1.2	19.1
Virus Yellows Score	5.1	3.7 -	6.9	0.9	12.9

TEST 1991. Evaluation for Erwinia and Powdery Mildew for Popn-913

96 entries x 4 reps, RCB 1-row plots, 18 ft. long Planted: April 16, 1991 E.c.b. Inoc: July 11, 1991 Scored: October 4, 1991

Erwinia (DI) ^I	9.8	0.0 - 46.2	
Erwinia (% Resist.)	79.2	40 - 100	
Powdery Mildew	4.6	2.0 - 7.0	
<pre>% Downey Mildew</pre>	6.2	0.0 - 56.0	
<u> </u>			

¹DI for checks (8 reps): US H11 = 8.2; C40 = 75.1.

TEST 1091. Means and Ranges for mm, S^f, A:aa Popn-864 at Salinas

40 entries x 4 reps, RCB 1-row plots, 18 ft. long Planted: January 24, 1991 Harvested: September 13, 1991

Variable	Mean	Rang	e	LSD (.05)	C.V. (%)
Sugar Yield (lbs/a)	13,020	10,780 -	14,310	1,780	9.8
Root Yield (t/a)	44.8	34.5 -	50.6	5.8	9.2
% Sucrose	14.5	13.6 -	15.6	0.7	3.7
% Bolting	1.8	0.0 -	14.1	3.2	129
Beets/100 ft.	145	127 -	154	12.9	6.4
RJAP	82.1	80.3 -	83.8	2.0	1.7
Powdery Mildew	5.5	4.5 -	7.8	1.2	15.3

TEST 2891. Means and Ranges for mm,S^f , A:aa Popn-864 at Salinas under Rhizomania

40 entries x 4 reps, RCB 1-row plots, 18 ft. long

Planted: May 8, 1991 Harvested: November 8, 1991

Variable	_Mean_	Range	LSD (.05)	C.V. (%)
Sugar Yield (lbs/a)	4,430	3,080 - 5,890	1,375	22.2
Root Yield (t/a)	16.0	11.5 - 20.5	5.0	22.3
% Sucrose	14.0	12.9 - 15.3	1.0	4.9
Beets/100 ft.	155	111 - 197	45.0	20.2
RJAP	78.2	74.8 - 81.4	3.2	2.9
Powdery Mildew	6.1	4.9 - 7.3	1.0	11.7

TEST 691-1.1 YIELD EVALUATION OF MULTIGERM, O.P. GERMPLASM LINES, SALINAS, CA., 1991

	•					2 3 7NS		0.700 * *
1991 7-9, 1991	RJAP	84.1 85.6 84.7 84.5	84.0 85.6 86.0 84.7	884 833.00	83.7 83.7 83.8	48 7.20 6.00		84.29 2.67 2.79 1.76
4.	PM Score Avg	00000 0000	3222	2644 7046	357.00 357.00	3.99 1.09 23.72 16.36**	reps, RCB	4.15 1.26 26.66 **10.16**
l: January 24 .ed: October	Beets/ 100' No.	146 149 150 147	146 145 156 143	146 152 147	144 147 148 145	147.2 8.9 5.3 1.1NS	∞ ×	146.8 10.35 6.21 1.68*
Planted: Harvested:	Root Not	0000	0.00 7.00 4.00	0.120	10000	0.59 2.04 302.73 1.84*	16 varieties	0.06 2.18 321.18 1.63**
	Bolters	1.2 0.0 7.7 14.3	13.0 0.0 0.0	0080	00.00	3.16 3.76 103.42 13.41**	each with	5.27 4.67 78.19 37.30**
	Sucrose	14.94 16.13 15.55 14.88	15.13 16.66 15.82 16.43	16.51 15.70 14.94 15.53	15.71 17.00 16.52 16.56	15.87 0.80 4.39 5.88**	POPULATIONS h 5 subsets compared.	15.92 0.81 4.46 11.07**
	Yield Beets Tons	50.84 53.43 52.99 49.00	54.54 53.50 59.05 61.65	57.67 58.60 58.60 56.09	62.58 51.43 61.48 57.79	56.20 5.40 8.35 4.61**	1 LINES AND Part Splocks with 3-5 can be con	54.99 5.84 9.35 7.41**
	Acre Sugar Ibs	15190 17240 16450 14550	16470 17780 18640 20240	19030 18420 17570 17440	19660 17500 20310 19160	17853 2019 9.83 5.41**	Q 0 4.	17486 2018 10.17 7.07**
16 entries x 6 replications, RCB 1-row plots, 18 ff. long	Description	Inc. 868 (US 75) Inc. C37 (86443) RZM R979 (C37R ₂) RZM 9221 (C28) ²	RZM 9225 (C37R,xC28) Inc. C46/2 (86342) RZM R978C2 (C46R,7) Inc. Y731-43 (C31-43)	Inc. Y731-89 (C31-89) Inc. C31/6 (86263) RZM R976 (C31R ₂) Inc. R971-R980 ²	Holly (L493302) Inc.Y948(C93) BYR-ER-PMR Y849 (C49) BYR-ER-PMR Y857		YIELD EVALUATION OF GERMPLA x x 8 replications, Incomplet ns across tests 691-1,-2,-3,-	
16 entries 1-row plots	Variety	768 U86–37 R079 R028	R030 U86-46/2 R078 Y931-43	Y931-89 F86-31/6 R076 R070	Rhizosen Y048 Y049 Y057	Mean ISD (.05) C.V. (%) F value	1TEST 691. 80 entries Thus, means	Mean ISD (.05) C.V. (%) F value

YIELD EVALUATION OF MULTIGERM, O.P. GERMPLASM LINES AND, SALINAS, CA., 1991 (continued) TEST 691-2.

Oil	10.010.0	10.00.0		0.0	m	** 6.995 6.995
RJAF	8888 823 823 833 833 833 833 833 833 833	881.5 835.28	84.9 84.0	84.0 82.0	8828 822.9 8.0.4.6	83 222 44.5 23.3
PM Score Avg	1231	3.77 7.16	64 64	2.4	4400 4000 4000	3.49 1.33 33.16 * 6.04**
Beets/ 100'/ No.	142 142 146 151	148 152 150 151	134 151	151 152	149 152 153 149	148.3 8.8 5.2 2.6**
Root Rot	0000	0000	000	0.6	0101	0.31 1.12 314.75 1.86*
Bolters	0000	0000	1.4	0.0	8 229.5 22.6 4	6.80 4.42 56.59 61.78**
Sucrose	15.65 15.97 15.71 15.72	16.19 16.24 16.36 15.72	16.14 15.49	16.09 14.98	15.47 15.05 14.70	15.62 0.77 4.27 4.39**
Yield Beets Tons	62.37 56.53 60.38 60.52	53.58 55.06 56.84 61.19	58.97 62.15	56.09 44.41	56.39 60.89 51.43 56.09	57.06 6.53 9.96 4.00**
Acre Sugar Ibs	19510 18080 19000 19020	17330 17880 18570 19270	19000 19250	18030 13330	17400 18330 15060 16240	17831 2155 10.51 4.88**
Description	Inc. Y854-2 Inc. Y854-12 Inc. Y854-23 Inc. Y854-38	Inc. Y854-63 Inc. Y854-85 BYR-ER-PMR Y854 (C54) RZM 8244-# (C54R ₂)	Inc. R980 (C54R _Z) RZM R980 (C54R _Z)	B.maritima Inc. 1854 Inc. F2 (Y54xB.m.) (C50)	BYVR R722 Inc. R922Y, R922S RZM R722 RZM R922R	
Variety ²	Y054-2 Y054-12 Y054-23 Y054-38	Y054-63 Y054-85 Y054 R980	R080 R080	Y54 x B.ma Y954 R722	R922Y1 R022Y1 R922R1 R022R2	Mean ISD (.05) C.V. (%) F value

²Y054-#'s = half-sib progenies from Y854. R722 = C50 = Y54 x B.maritima accessions. R922R1 and R022R2 = cycle 1 and 2 of selection for resistance to rhizomania from R722. R022Y = cycle 1 of mother root selection for BYV resistance.

TEST 691-3. YIELD EVALUATION OF MULTIGERM, O.P. GERMPLASM LINES, SALINAS, CA., 1991 (continued)

0.1	72 810	102 010	10 00 10 10	0.005.10	52 30 39 30NS
RJAI	85.1 85.7 84.8 85.6	84.6 83.7 85.3	884.5 84.6 84.6	80.98 82.88 85.7.8	84. 33.33.
Score Avg	non Non	1.0 4.7 7.3	~~~~ ~~~~~	2.040 8.020 8.000	4.15 1.27 26.62 : 10.42**
Beets/ 100'/ No.	159 149 134	140 151 152 152	137 150 139	140 151 150 144	145.9 10.7 6.4 3.4**
Rot Not	10000	00.07	89000	0.000 0.000	1.00 2.65 230.71 0.98NS
Bolters	0010 0000	0 W H H	10200	0.000 0.400	3.87 3.70 83.26 7.30**
Sucrose	15.96 15.63 16.07 16.76	15.74 15.77 16.96 16.90	16.59 17.30 18.19 18.94	17.41 18.23 18.71 17.35	17.03 0.78 4.00 14.76**
Yield Beets Tons	57.94 58.60 57.61 48.88	57.69 59.49 58.90 57.12	57.96 58.97 43.52 45.01	51.35 43.23 42.34 48.40	52.94 5.42 8.90 * 11.84**
Acre Sugar Lbs	18480 18280 18490 16380	18210 18790 20000 19280	19230 20420 15790 17020	17880 15750 15820 16760	17912 1885 9.15 5.05*;
Description	RZM R947C5 (C47R6) Inc. R947C5 (C47R5) Inc. Y947 (C47) Inc. Y939 (C39)	Inc. R939C5 (C39R6) RZM R939C5 (C39R5) 9912aa x Polish C 9912aa x Polish 2	9912aa x Polish 4 Beta 6625 (0011-1) Inc. Polish C Inc. Polish 1	Inc. Polish 2 Inc. Polish 3 Inc. Polish 4 Inc. Polish 7	
Variety ²	R047C6 R047C5 Y047 Y039	R039C5 R039C6 Z012H12 Z012H12	Z014H12 6625 Z010 Z011	Z012 Z013 Z014 Z017	Mean ISD (.05) C.V. (%) F value

 $^29912 = MM$, S^f , A:aa, R, population. Z010 = increase of composite of Polish-2n accessions 1 thru 7. 22011 thru Z017 = increase of individual Polish accessions.

TEST 691-4. YIELD EVALUATION OF MULTIGERM, S^f, A:aa POPULATIONS, SALINAS, CA., 1991

RJAP	4.00.6 1.00.6	4466 400 400 400	6.247. 4.04.0	86.44 61.00	74.21 2.69 2.78 1.22NS
PM Score F Avg	4.05.04 2.0.3.2 2.0.3.2 2.0.3.2	04.4.0 6.4.0.0 8.00.0	ωω4ι ωναο αααα	1474 	4.53 8 1.29 24.66 8.33**
Beets/ 100' No.	145 146 152	151 149 152 148	150 147 151 153	149 142 151 143	148.6 6.7 3.9 2.0*
Root Rot	0000	0000	00100	7.00 6.00 6.6	0.77 3.16 358.57 2.10*
Bolters §	0.7 0.6 0.0 16.8	20 000 000 000	1000 0.03 8.00	1.9 14.2 14.0 66.2	10.23 7.27 61.80 46.82**
Sucrose &	15.54 15.14 14.95 14.90	14.84 15.93 15.96 15.56	15.70 15.76 15.47 16.22	16.06 14.30 14.52 12.51	15.21 0.89 5.09 8.40**
Vield Beets Tons	58.68 59.06 51.88 57.12	57.27 63.18 59.27 62.22	58.23 59.56 61.95 61.48	53.43 53.13 54.32 41.83	57.04 6.65 10.14 5.05**
Acre Sugar Ibs	18220 17940 15530 17020	17020 20140 18920 19380	18280 18800 19190 19880	17140 15260 15740 10430	17430 2321 11.58 8.50**
Description	8910aa x A RZM 9910H47 (A,aa) NR-RZM 9205,7,8 RZM 9223	RZM 9226 7909aa x A RZM 9911 (A,aa) 9911aa x 9911H49	9911H49aa x 9911H49 RZM 9911H49 (A,aa) 9903aa x 9911H49 RZM 8908,,11aa x A	RZM R939/4H44 (A,aa) Inc. R920 (C94) RZM R920 (C94) RZM R904 (Rovigo Acc.)	
Variety ²	9910 0910 N042 R029	R031 8909 0911 0911	0913 0913 0915 9912	0914 R020 R020 R004	Mean LSD (.05) C.V. (%) F value

 2 R020 = C94 = multigerm, self-sterile from Colorado germplasm sources.

TEST 691-5. YIELD EVALUATION OF GERMPLASM LINES AND POPULATIONS, SALINAS, CA., 1991

							*
RJAP	b/0	84.2 87.0 83.6 81.2	86.2 83.6 84.0 84.9	84.1 83.9	83.7	8886.9 856.9 84.3	84.42 2.44 2.51 2.64*
PM Score	Avg	~~~~ 0~~~	4004 8000	5.1	5.8	4214 2140	4.57 1.05 19.93 17.49**
Beets/ 100'	<u>No.</u>	141 146 147 145	148 143 146	150 144	146 146	141 143 141 137	144.0 7.4 4.5 1.6NS
Root	o⁄₀I	9.0000	0000	9.0	0.0	0000	0.32 1.29 346.01 0.54NS
Bolters	p/∘	0.00	0.104 0.6.0	1.3	9.4	₩₩₩ ₩₩₩	2.45 3.70 131.35 5.41**
Sucrose	p/o	15.06 15.75 16.21 16.08	15.75 15.42 15.66 15.81	15.69 15.66	15.51 15.97	16.44 16.68 15.89	15.84 0.73 4.01 2.27*
<u>Yield</u> Beets	Tons	41.96 42.94 49.88 43.82	53.73 53.87 50.65 53.13	52.69 51.69	54.54 50.99	59.12 57.05 64.39 47.13	51.72 5.53 9.30 9.06**
اانه	Ibs	12650 13510 16150 14090	16880 16600 15890 16790	16540 16200	16960 16260	19430 19040 20440 14990	16402 1814 9.62 10.18**
Description		Inc. T-0 9722-# BYR-ER-PMR 8755 (C310) RZM 9866H80 (C310R ₂) RZM 9865 (C309R ₂)) ²	BYR-ER-PWR 8787 RZM 9887H86 (787R,) RZM R9859H6 (C563Ř ₂) 9864aa x A	$\begin{array}{c} \text{RZM 9867H67 } \left(767\text{Rz}\right) \\ \text{RZM 9876H76 } \left(776\text{Rz}^2\right)) \end{array}$	popn-906,909 S ₁ lines 4 Inc. 8906A-4 (A,aa) 7 Inc. 8906A-7 (A,aa)	Inc. 8909A-7 (A, aa) Inc. 8909A-34 (A, aa) Inc. 8909A-37 (A, aa) Inc. 8909A-48 (A, aa)	
Variety ²		0722 0755 0866 0865	0787 0887 0859 0864	0867 0876	Inc. popn- 0906-4 0906-7	0909–7 0909–34 0909–37 0909–48	Mean LSD (.05) C.V. (%) F value

 2 0906-4 thru 0909-48 = increases of S_1 progenies from MM, S^f , A:aa, R_2 populations.

DEVELOPED BY S₁-PROGENY RECURRENT SELECTION, SALINAS, CA., 1991 EVALUATION OF C0 vs C4 vs C5 SYNTHETICS OF POPN-790 TEST 791.

4 entries x 8 replications, RCB

Harvested: October 7-9, 1991

Planted: January 24, 1991

	Sucrose	Actual Change § % pts	13.76 0.0	14.78 1.0	15.10 1.3	14.99	14.66 0.35 2.32
	ts	Change %	0.0	11.7	17.6	1	
Yield	Beets	<u>Actual</u> tons	54.43	60.80	64.02	62.94	60.55 4.46 7.08
Acre Yield	ar	Change <u>\$</u>	0.0	20.2	29.2	1	
	Sugar	<u>Actual</u> <u>lbs</u>	14950	17970	19310	18850	17770 1247 6.75
	Ć	Cycle	∞ , syn 2	C4, Syn 2	C5, Syn 1	R _z ,Syn 0	
		Description	7790Caa x A	7790Laa x A	8790-S ₁ (C)aa x A	9876mmaa x 8790-S ₁	
	•	<u>Variety</u>	7790C	8790L	0420	0790H124	Mean ISD (.05) C.V. (%)

¹ 7790C = source populationfrom 1977 (Syn 2 in 1987) developed by randomly mating a large number of unselected S_1 lines. 8790L = cycle 4 (synthesis 2) by S_1 progeny recurrent selection. 0790 = cycle 5 by S_1 progeny recurrent selection. 0790H124 = cross of selected S_1 lines to rhizomania ($\underline{R_2}$) resistant source.

 $^{^2}$ C = cycle of \mathbf{S}_1 progeny recurrent selection. Syn = generation of resynthesis throught genetic male sterile plants.

TEST 791. EVALUATION OF C0 vs C4 vs C5 SYNTHETICS OF POPN-790 DEVELOPED BY $\rm S_1$ -PROGENY RECURRENT SELECTION, SALINAS, CA., 1991

Planted: January 24, 1991 Harvested: October 7-9, 1991	Powdery Mildew Avg.	8.9	6.3	5.8	8.9	6.44 0.63 9.40 5.52**
lanted: Jan arvested: O	RJAP 	83.35	83.54	84.93	84.60	84.11 1.99 2.27 1.33NS
Б. Ж	Beets/ 100' <u>No.</u>	155	156	152	149	153.25 5.87 3.68 2.39NS
RCB	Root Rot	0.0	0.0	1.3	0.0	0.32 1.33 396.81 2.03NS
4 entries x 8 replications, RCB 1-row plots, 18 ft. long	Bolters 	1.8	0.0	0.0	0.0	0.44 1.93 418.92 1.82NS
4 entries x 8 r 1-row plots, 18	Variety	7790C	8790L	0420	0790H124	Mean ISD (.05) C.V. (%) F value

TEST 191. HYBRID PERFORMANCE OF MULTIGERM GERMPLASM, SALINAS, CA., 1991

1991 -12, 1991	Powdery Mildew Rating	<u> </u>	www. o.o.a.i.	លលយុង ឯយឯល	04.04 50.00	<u>ი</u> იგი 4004	4444 4440
January 24 _{, 1991} September 11—12,	Beets/ 100' No.	159 161 162 158	154 157 160	156 152 159	161 152 153 156	159 154 161	155 160 157
	Root Rot	0000	0000	0000	0000	0000	0000
Planted: Harvested:	Bolters	000w 8400	0000 0844	01750 0880	0.0 0.0 12.7	6000 6408	0000 0400
	Sucrose	15.89 15.47 17.56 16.95	16.28 16.15 16.48 15.78	15.95 15.87 15.76 16.07	15.67 15.63 15.25	16.46 16.93 16.93	15.93 15.90 16.33 17.14
	Yield Beets Tons	58.39 56.15 48.50 45.89	54.77 55.05 52.99 55.17	53.71 53.93 54.21 53.04	54.26 54.24 53.43 54.59	49.77 48.22 49.22 46.45	55.92 55.75 53.98 51.10
	Acre Sugar Ibs	18560 17370 17030 15550	17830 17780 17490 17400	17140 17120 17080 17050	17000 16960 16740 16630	16380 16320 16100 15710	17790 17730 17610 17530
32 entries x 8 replications, RCB equalized 1-row plots, 18 ft. long	Description1	Beta (1/6/89) Holly (141138) Beta 0011-1 Holly (1543003)	1tigerms 87-309H3 x BYR Y854 (C54) 87-309H3 x Y947 (C47) 87-309H3 x Y939 (C39) 87-309H3 x Y731S (C31/6)	87-309H3 x R947C5 (C47R5) 87-309H3 x R971-R980 87-309H3 x R939C5 (C39R5) 87-309H3 x Y746 (C46/3)	87-309H3 x RZM 8909-11 87-309H3 x 9911H49, 9911 87-309H3 x R980 87-309H3 x R920 (C94)	87-309H3 x Polish 2 87-309H3 x Polish 1-7 87-309H3 x Y948 (C93) 87-309H3 x Polish 4	<pre>x multigerms 88-790-68H26 x R971-R980 88-790-68H26 x 9911H49 9911 88-790-68H26 x Y731S (C31/6) 88-790-68H26 x P01ish 1-7</pre>
32 entries ; 1-row plots	Variety	<u>Checks</u> 4757 HH41 6625 HH54	C309H3 X mu- Y054H20 Y047H20 Y039H20 Y931SH20	R047C5H20 R070H20 R039C5H20 Y846H20	9912H20 0913H20 R080H20 R020H20	Z012H20 Z010H20 Y048H20 Z014H20	C790-68H26 x R070H18 0913H18 Y931SH18 Z010H18

TEST 191. HYBRID PERFORMANCE OF MULTIGERM GERMPLASM, SALINAS, CA., 1991 (continued)

Powdery Mildew Rating	4446. 4446.	4744 8860	4.50 0.89 20.13 9.03**
Beets/ 100'/ <u>No.</u>	158 155 147	142 152 148 143	154.55 10.10 6.63 1.98**
Root Rot	4000	0000	0.08 0.52 0.52 697.74 1.34NS
Bolters	0001 4000	18422 1863 1863 1863 1863 1863 1863 1863 1863	2.13 3.20 152.26 11.37**
Sucrose	16.10 16.43 16.10 16.19	16.04 15.89 15.81 15.69	16.14 0.41 2.61 11.95**
Yield Beets Tons	54.43 53.04 53.04 53.04	53.42 52.93 52.30 51.66	52.92 3.71 7.12 4.48**
Acre Sugar Lbs	17520 17440 17330 17180	17130 16820 16530 16190	17063 1203 7.32 2.17**
Description ¹	C790-68H26 x multigerms (cont.) Y954H18	88-790-68H26 x R980 88-790-68H26 x R939C5 (C39R5) 88-790-68H26 x R947C5 (C47R5) 88-790-68H26 x R820 (C94)	
Variety	C790-68H26 > Y954H18 Y048H18 Y047H18 Y039H18	R080H18 R039C5H18 R047C5H18 R020H18	MEAN ISD (.05) C.V. (%) F value

 $1_{309H3} = C562GMS \times C309$. $790-68H26 = C309GMS \times C790-68$.

TEST 291. PERFORMANCE OF POPULATION HYBRIDS, SALINAS, CA., 1991

32 entries x 8 replications, RCB equalized 1-row plots, 18 ft. long Variety Description- Checks Beta (1/6/89) HH41 Rhizosen Holly (1493302) 6625 Beta 0011-1 mm-boons x MM-boons	Acre Sugar Ibs 17050 17050 16540 16540	Yield Beets Tons 58.75 55.31 52.71 48.05	Sucrose 2 2 15.79 15.42 15.42 15.70	Planted: Harvested: Bolters R Bolters R 0.4 0 1.3 0 1.3 0 0.4 0	95%	January 24 September 11. ot Beets/ No. No. 156 156 156	1991 -12, 1991 Mildew Rating 1.9 4.6 5.2
x R980 R939C5 (C39R5) x Polish 4 x R947C5 (C47	17180 17120 17070 7R5) 17040	54.45 53.49 51.15 53.98	15.78 16.02 16.69 15.80	2.10 1.44 4.84	0000	145 153 152	64774 8477
9865aa x R980 9865aa x R947C5 (C47R5) 9867H67aa x R939C5 (C39R 9859H6aa x Polish 2	16960 16800 3R5) 16550 16500	52.35 50.65 53.87 50.73	16.19 16.61 15.41 16.25	2.8 2.0 2.7	0000	152 153 155	17000 17000
9865aa x Y939 (C39) 8855aa x Y854 (C54) 9865aa x Y948 (C93) 9865aa x Y947 (C47)	16480 16480 16430 16130	50.17 51.21 49.55 49.38	16.42 16.10 16.58 16.34	1.7 0.0 4.5	0000	159 159 163	4444
9867H67aa x R971-R980 9867H67aa x Polish 1-7 9865aa x R920 (C94) 9859H6aa x Polish 1-7	16020 15990 15670 15490	51.05 48.71 50.94 47.48	15.68 16.43 15.40 16.31	6.7 0.0 21.5 0.6	0000	154 159 149	6400 6404
: popn-913 89-762-17CMS x 9911H49 87-309CMS x 9911H49 9887H86aa x 9911H49 87-309H3 x 9911H49	18800 17610 17450 17080	60.69 54.87 55.76 53.82	15.49 16.03 15.65 15.89	0000	0000	161 149 153	4040 5.844

TEST 291. PERFORMANCE OF POPULATION HYBRIDS, SALINAS, CA., 1991 (continued)

		Acre Yield	eld			Root	Beets/	Powdery
-	Description=	Sugar	Beets	Sucrose %	Bolters %	% Rot	100' No.	Mildew Rating
×I	$m-popns \times popn-913$ (cont.)							
	88-790-68H26 x 9911H49	17070	54.55	15.67	0.5	0.0	156	4.3
	9867H67aa x 9911H49	16900	54.37	15.53	0.0	0.0	153	4.9
	9865aa x 9911H49	16780	52.88	15.86	0.9	0.0	153	5.7
	9911H49aa x 9864	16620	53.82	15.44	0.5	0.0	143	4.3
	9859H6aa x 9911H49	16520	53.25	15.51	6.0	0.0	148	5.7
	9864aa x 9911H49	16420	52.27	15.73	0.8	0.0	156	3,3
	$9866H80aa \times 9911H49$	15860	50.71	15.64	0.0	0.4	162	4.4
	9876H76aa x 9911H49	15500	51.03	15.20	0.0	0.0	148	5.1
		16722.25	52.56	15.93	1.86	0.09	154.72	4.58
		1174.00	3.42	0.52	2.54	0.55	10.65	0.80
		7.12		3.29	139.89	645.79	7.02	17.64
		3.05**	5.45**	6.10**	18.22**	1.20NS	1.86**	9.24**

¹9865, 9867H67, 9859H6, 8855, 9866H80, 9876H76, 9887H86, 9864 segregate for resistance to rhizomania $(\underline{R}_2:\underline{r}_Z)$ and are backcross developments from $S^{\underline{t}}$, mm, A:aa populations. R980 is $\underline{R}_{\underline{Z}}$ version of C54. 9911H49 = $S^{\underline{t}}$, MM, A:aa popn segregating for $\underline{R}_{\underline{Z}}:\underline{r}_{\underline{Z}}$.

TEST 491. GCA EVALUATION OF MONOGERM LINES, SALINAS, CA., 1991

1991 -17, 1991	Powdery ₂ Mildew <u>-</u> <u>Rating</u>	പ്രന <u>ു</u> രജസര	4464 0047	พ44ณ ข44ณ	იოო დიდ	ഡപ്പുപ്പു അപ്പസ്പ	ოგ4ო ∞440
January 24 September 16	Bolters	000 <i>V</i> 004.v	1001 7004	0010 www4	1.00	2444 5456 5466	23.45 23.25 3.15.6
Planted: J Harvested: S	Beets/ 100' No.	156 159 150	145 145 151	154 154 134 147	147 143 150	148 145 149	153 147 145 150
Plan Harv	RJAP	8888 855.2 9.000 9.000	84.6 84.6 83.8	8884 82.9 82.9	84.4 83.4 84.3	883.5 83.5 853.5 1	85.1 84.4 83.9
	NSSS §	2.82 2.65 2.92	2.82 3.11 3.11	2.92 3.04 3.47	3.28	2.79 3.19 2.87	2.77 3.05 2.94 3.10
	Sucrose	16.19 17.43 15.78 17.35	15.50 15.84 16.27 16.45	16.36 16.10 15.87 16.73	15.74 16.38 16.20	15.93 16.06 15.73 16.30	15.85 16.48 16.54 16.09
zed	Vield Beets Tons	59.80 47.55 52.65 46.34	59.28 57.86 54.98 53.26	52.93 53.26 53.89 50.77	53.93 50.05 50.44	56.09 54.62 55.28 53.29	53.96 51.93 53.13
CB equali	Acre Sugar Lbs	19350 16580 16560 16060	18370 18340 17870 17520	17280 17130 17110 16980	16960 16380 16350	17870 17540 17390 17380	17110 17100 17090 17070
es x 8 replications, RCB equalots, 18 ft. long	Description 1	Beta (1/6/89) Beta 0011-1 Holly (141138) Holly (1543003)	X R8(87-7(83-7) 88-75	C742-24HO x R980 F82-562HO x R980 C766-62HO x R980 87-309CMS x R980	F82–546H3 x R980 C767–46H0 x R980 87–309H3 x R980	x R80 8790Laa x R980 8767aa x R980 9867mmaa x R980 9858aa x R980	9864aa x R980 9859aa x R980 9866H80aa x R980 9887H86aa x R980
32 entries x 1-row plots,	Variety	Checks 4757 6625 HH41 HH54	CMS Lines R080H39 R080H72 R080H89 R080H18	R080H42 R030H3 R080H70 R080H26	R080H8 R080H54 R080H20	aa-popns R080H90 R080H67 R080H123 R080H123	RO80H133 RO80H121 RO80H112 RO80H115

GCA EVALUATION OF MONOGERM LINES, SALINAS, CA., 1991 (continued) TEST 491.

Powdery ₂	Rating	ო ი ო4 თ 4 თთ	7.444.05 1.064.06 1.064.06	4.32 0.91 21.38 6.15**
Rolters	p%I	2401 0220	24-11-14-2 20-20-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	1.84 2.50 137.28 2.41**
Beets/	<u>N</u>	145 153 143	152 145 146 135	147.30 9.30 6.41 2.54**
RTAP	 - 	8835.2 84.2 84.2	86.0 86.0 84.1 82.5	84.47 1.80 2.16 1.64**
S. S) 	2.76 3.16 2.93 3.08	2.62 3.03 3.19 3.19	2.97 0.39 13.21 1.94**
Sucrose) 	15.92 16.38 15.61 16.14	16.03 16.13 16.00 15.72 15.05	16.13 0.54 3.37 6.03**
ield Reets	Tons	53.10 50.71 52.49 50.72	50.99 49.71 48.97 48.50	52.55 3.83 7.41 3.94**
Acre Vi Sugar	SqI	16870 16620 16390 16360	16330 16000 15660 15580 14620	16931.80 1370.10 8.22 3.40**
Description 1		aa-popns x R80 (cont.) R080H113 9867H67aa x R980 R080H132 9865aa x R980 R080H59 9776-1aa x R980 R080H125 9887mmaa x R980	9859H6aa x R980 9866mmaa x R980 8776aa x R980 9876H76aa x R980 9876mmaa x R980	
Varietv		aa-popns x R080H113 R080H132 R080H59 R080H125	ROSOH111 ROSOH122 ROSOH76 ROSOH114 ROSOH124	MEAN ISD (.05) C.V. (%) F value

aa = genetic male sterility. R980 = MM, O.P. line similar to C54 that segregates 9858, 9859,... are mm, S^1 , A:aa popns that segregate for $\frac{1}{2}$ 2 Mean for ratings of 8/30 & 9/5/91. FM controlled with Bayleton. Ratings are for late in season after Bayleton lost its effacacy and probably reflect interactions between chemical and varietial control. $^{1}_{\text{HO}} = \text{CMS.}$ $^{\text{for } \underline{R}_{\underline{Z}}\underline{R}_{\underline{Z}}}.$

HYBRID PERFORMANCE OF SELECTED PROGENY LINES, SALINAS, CA., 1991 TEST 591.

	1991 -17, 1991	Powdery2 Mildew Rating	5.7 4.4 7.1	0400 4.004	იღ4. 46.40	ი ფთოთ	4.9 6.0 7.0 8.4	2.3 4.7 5.1
	January 24 September 16	Bolters	0000	0000 0400	0000	0010 4000	0000	00008
•		Beets/ 100' No.	155 152 144 155	152 161 153 154	149 154 155	156 154 157	157 149 162 154	152 155 154 147
•	Planted: Harvested:	RJAP	881.7 885.9 84.9	8888 6468 0	884.9 85.44.9 85.2	8884 823.5 6.00	84.8 82.8 83.7 85.0	85.4 85.7 84.5
		NSSS	23.23 81.96	8388 9911.	0000		0 4 0 0	32.7.8
		Sucrose	16.16 17.54 17.09 15.10	16.47 16.05 16.35 16.63	16.59 16.30 16.17 16.18	16.45 16.37 16.37 16.23	16.42 16.34 16.34 16.51	16.41 16.11 16.27 16.73
	zed	Yield Beets Tons	54.26 48.83 53.49	55.48 56.03 54.98 51.82	51.66 52.54 51.32 50.10	53.15 53.15 51.93 52.38	51.55 51.52 51.43 50.71	58.03 58.31 55.98 54.15
	RCB equalize	Acre Sugar Lbs	17490 17130 -7 16910 16160	18280 17980 17960 17230	17130 17090 16600 16210	5 & -909 17480 17360 1 16990 16960	16910 16780 16780 16740	19030 18770 18200 18110
	8 replications, 18 ft. long	Description 1	9865aa x 9911H49 Beta 6625 (0011-1) 9859H6aa x Polish 1- Lot 786442	HS Lines from C54 20 87-309H3 x Y854-38 20 87-309H3 x Y854-2 20 87-309H3 x Y854-23 20 87-309H3 x Y854-63	87-309H3 x R980 87-309H3 x Y854-12 87-309H3 x BYR Y854 20 87-309H3 x Y854-85	Progenies from popn-906 87-309H3 x 8909-7 87-309H3 x 9911H49 87-309H3xRZM 8909-11 20 87-309H3 x 8909-37	20 87–309H3 x 8909–48 87–309H3 x 8906–7 87–309H3 x 8906–4 80 87–309H3 x 8909–34	from popn-790 x R980 8790-15aa x R980 8790-54aa x R980 8790- 6aa x R980 88-790-68H26 x R980
	32 entries x 1-row plots,	Variety	Checks 0913H132 6625 2010H111 US H11	C309H3 x H5 Y054-38H20 Y054-2H20 Y054-23H20 Y054-63H20	R080H20 Y054-12H20 Y054H20 Y054-85H20	C309H3 x Pr 0909-7H20 0913H20 9912H20 0909-37H20	0909-48H20 0906-7H20 0906-4H20 0909-34H20	S, Lines Re80H30 R080H33 R080H29 R080H18

HYBRID PERFORMANCE OF SELECTED PROGENY LINES, SALINAS, CA., 1991 (continued) TEST 591.

Powdery ₂ Mildew ²	Rating	5.04 3.01 3.01	0048 6029 6029	5.27 0.94 17.12 10.72**
Bolters	o/OI	10071	0000 0000	0.57 1.65 293.78 2.17**
Beets/ 100'	No.	145 154 146	159 140 147	152.27 9.92 6.61 2.12**
RJAP	p/9	85.9 83.6 86.0 84.7	833.6 85.1 85.7	84.59 1.59 1.91 3.05**
NSSS	p\0	0,000 0,000	7865	2.99 0.36 12.22 3.36**
Sucrose	o/ol	16.66 16.21 16.50 16.15	16.82 15.91 15.92 16.13	16.36 0.50 3.13 4.90**
<u>Yield</u> Beets	Tons	54.37 55.70 53.81 54.70	52.04 52.82 50.55 46.65	52.91 3.41 6.54 ** 4.35**
Acre Yi Sugar	Ibs	ont.) 18090 18080 17740 17640	17510 16820 16060 15030	17288.41 1189.02 6.98 3.80 ⁴
Description1		Lines from popn-790 x R980 (cont.) 30H89 88-790-68CMS x R980 18090 30H90 8790-68CMS x R980 18080 30H34 8790-55aa x R980 17740 30H31 8790-23aa x R980 17640	87-309CMS x R980 8790-61aa x R980 8790-71aa x R980 8790-47aa x R980	
Variety		S ₁ Lines f Resource Rosonso Rosonso Rosonso	R080H26 R080H35 R080H36 R080H32	MEAN ISD (.05) C.V. (%) F value

¹BYR Y854 = C54. R980 = C54R. Popn-906 & -909 = MM, S^f , A:aa, R_Z populations. 8790-#'s = S_1 lines from soutce popn-790 (C4) = 8790L.

²Mean for ratings of 8/30 & 9/5/91. FM controlled with Bayleton. Ratings are for late in season after Bayleton lost its effacacy and probably reflect interactions between chemical and varietial control.

TEST 391. AREA 4 CODED VARIETY TRIAL, SALINAS, CA., 1991

.19, 1991	PM Score Avg	1155	1.44 1.04.0	4640 8010	4.12.8 9.44.8	4446 47.64	6046 1001
January 24, 1993 September 18-	Beets/ 100' No.	145 136 147	133 148 142	144 142 151 147	144 145 152 143	144 146 139 140	145 147 149
ed: Janu sted: Se	Root Rot	0000	0000	0000	0000	0000	0000
Planted: Harvested:	Bolters	0000	0000 m0N0	90007	0000	0000	0000
	Sucrose	16.65 16.35 16.39 16.27	16.28 16.47 16.35 16.29	16.55 16.43 16.02 15.74	16.10 16.34 16.48 16.81	16.15 16.37 16.50 15.97	16.86 15.17 15.97 15.95
	Yield Beets Tons	60.14 60.01 59.64 58.58	57.56 56.26 54.92 54.87	53.82 53.59 54.59 55.51	54.18 53.12 52.52 50.99	53.10 52.16 51.49 53.15	50.16 55.45 52.43 52.36
	Acre Sugar Lbs	20030 19620 19550 19060	18730 18520 17960 17870	17800 17610 17520 17470	17440 17350 17310 17160	17150 17080 17010 16970	16910 16820 16730 16710
m m	Source	Beta Beta Eta	Beta Beta Holly Sprec	USDA Holly Holly Beta	Holly H-MH Sprec Holly	Holly Sprec Beta Sprec	HOLLY HOLLY HOLLY HOLLY
32 entries x 8 reps, RCB 1-row plots, 38 ft. long	Variety	9BG6381 6BG6209 9BG6374 4757	7BG6103 8BG6169 Rhizosen H87545	R080H132 86C 15-014 HH-37 4581	HH-66 Hill 2 H86558 86-84C65-05	88-1459-049 H87497 9BG6276 SS-NB3	89N 158-02 HH-41 85C 62-016 88C 155-016
32 entri 1-row pl	<u>code</u> 1	21 27 7	24 10 2	32 12 19	13 18 16	23 39 39	31 11 17

TEST 391. AREA 4 CODED VARIETY TRIAL, SALINAS, CA., 1991

Score Avg	4746 4788	4044 1000	3.61 0.83 23.29 14.85**
Beets/ 100'/ No.	145 142 149	146 144 145 145	144.12 7.13 5.02 2.46**
Root Rot	0000	0000	0.03 0.22 775.44 1.53*
Bolters	0.000	0000 0000	0.33 0.75 229.59 5.73**
Sucrose	16.51 16.11 16.15 16.37	17.39 15.84 16.81 15.74	16.29 0.40 2.46 8.13**
eld eets Tons	50.58 51.77 51.43 50.60	47.65 51.13 47.37 50.14	53.48 2.86 5.42 10.05**
Acre Yield Sugar Beet Ibs To	16700 16680 16610 16580	16560 16220 15920 15800	17420.63 1038.00 6.05 7.94**
Source	Sprec Sprec Sprec Sprec	Holly Holly Sprec Sprec	
Variety	SS-NB2 H89238 H88242 H87354	HH-54 HH-81 SS-22 SS-21	
Code-1	200 200 200 200 200	0808 380	MEAN ISD (.05) C.V. (%) F value

TEST 391. AREA 4 CODED VARIETY TRIAL, SALINAS, CA., 1991

	Impur. Value	6492 6903 6806 7319	7601 7966 6445 6865	8092 8004 6808 7830	7281 7809 7435 7258	7257 6704 6322 7594	6633 6807 7764 7049
	N-CHN Digital	213 214 222 243	269 300 193 237	318 312 232 258	253 282 261 266	276 221 189 310	248 216 298 232
	Potassium	1405 1562 1484 1567	1594 1633 1414 1473	1717 1556 1392 1672	1554 1630 1604 1535	1385 1451 1377 1458	1350 1433 1503 1408
	Sodium	273 276 283 311	303 295 309 267	223 329 344	282 301 272 255	336 280 311 286	258 336 337 378
;	known Sugar <u>Loss</u> <u>Lbs/a</u>	1173 1242 1219 1287	1313 1348 1064 1130	1311 1284 1118 1304	1185 1244 1178 1114	1154 1052 979 1210	998 1131 1223 1110
6	Kecover. Sugar	99.20 93.77 93.38 93.38	93.0 94.1 93.7	92.7 93.7 93.6 92.5	99999 9323 9323	0000 60000 600400	94.1 93.7 93.7
ç	sugar Sugar Ibs/t	314 306 307 303	303 305 308 305	307 305 300 291	300 303 307 315	301 307 311 297	317 283 296 298
	Sugar Lbs/a	18850 18370 18330 17780	17420 17170 16900 16740	16490 16330 16400 16170	16260 16110 16130 16040	16000 16030 16030 15760	15910 15690 15510 15600
	Code ¹ Variety	9BG6381 6BG6209 9BG6374 4757	7BG6103 8BG6169 Rhizosen H87545	R080H132 86C 15-014 HH-37 4581	HH-66 Hill 2 H86558 86-84C65-05	88-1459-049 H87497 9BG6276 SS-NB3	89N 158-02 HH-41 85C 62-016 88C 155-016
	Code ¹	21 27 7	24 10 2	32 12 19	13 18 16	23 3 3	31 11 17

TEST 391. AREA 4 CODED VARIETY TRIAL, SALINAS, CA., 1991 (continued)

			22 50 37 94**
Impur. Value	8307 7512 7286 7333	5763 7091 7358 7961	7239. 668. 9.
N- 'HN	384 274 272	169 246 280 280	257.57 48.31 19.03 6.37**
Potassium ppm	1514 1600 1465 1513	1270 1471 1473 1583	1501.47 120.50 8.15 5.46**
Sodium	251 261 304 276	282 308 385 385	296.76 54.76 18.72 3.42**
Known SugarLoss Ibs/a	1262 1166 1123 1118	826 1087 1048 1201	1162.53 126.30 11.02 6.16**
Recover. Sugar	922.0	99999999999999999999999999999999999999	93.32 0.66 0.72 6.39**
Recover. Sugar <u>lbs/t</u>	305 300 301 305	331 296 314 291	304.14 8.40 2.80 8.43**
Recover. Sugar <u>Ibs/a</u>	15440 15510 15490 15460	15740 15130 14870 14600	16258.10 988.10 6.17 8.04**
ode ^l Variety	SS-NB2 H89238 H88242 H87354	HH-54 HH-81 SS-22 SS-21	05) (%)
Code 1	22 26 29 25	808 308 80	MEAN ISD (. C.V. (F valu

¹Variety 32 (R080H132 = 9865aa x R980) was a filler from USDA. 9865 is approximately C309 \overline{R}_{Z} . R980 is approximately C54 \overline{R}_{Z} .

²FM was scored on a scale of 0 to 9 where 9 = 90-100% of leaf area covered. FM was scored on 8/29/91 and 9/5/91. FM was controlled with Bayleton. Ratings are for late season development after Bayleton lost its effacacy and probably reflect interactions between chemical control and varietal reaction.

Test was highly uniform and very good growth occurred. Beet western yellows was 100% by May 1. Beet yellows virus appeared to be unimportant. Black applies were severe and required chemical control on 4/22/91 and 6/1/91. Field soil samples tested positive for BNYVV but no symptoms of rhizomania were observed. Note:

NONINOCULATED BYV EVALUATION OF SUGARBEET x B.MARITIMA GERMPLASM, TEST 1191.

8 entries x 1-row plots,	8 entries x 2 virus trimts x 8 reps, Split-plot 1-row plots, 18 ft. long, 32 blocks	Split-plo	ñ				Planted Harvest Not BYV	H.B.	February 12, September oculated	, 1991 20, 1991
	7	5 4	Acre Yigld			Root	Beets,	1	2.3	0
variety	Describuion-	Sugar- 10s	Sugar	Tons	Sucrose	중 	No.	XA.	Rating	Bolters ²
768 U86-37	Inc. 868 (US 75) Inc. C37	7738 9585	9866 10878	36.49 36.59	13.50	0.0	137	81.1 80.3	6.51 6.51	0.0
R080 Y054	RZM R980 BYR-ER-PMR Y854 (C54)	11 1 90 10970	12491 12631	41.97	14.87	00.	137 149	81.5 82.0	2.3	0.00
R722 (C50) R022V1	Inc. F ₂ (Y54 x B.m.) Inc. R922Y & S	8426 10140	9007	32.47		•	146	•	0.6	23.9
R022R2 89-C58	RZM R922R Inc. WB1-2	9081 8930	10522 10837	38.91 37.98	13.53	000	147 129	79.5		10.8
Mean ISD (.05)	Mean ISD (.05)	9508 802.5	10991	38.37	14.30 0.65	0.2	140.9	80.3	.3 4.3	6.9
C.V. (%) F value for	varietv	13.9 18.3**	13.9 18.3**	133	4.60 30.4**	480.5 1.0NS	7.3	% % % % %	19.7	55.6
F value for	virus treatments	185.9**	185.9**	124.	31.8**	2.7NS	o	*0.0	17.6**	0.4NS
F value for	variety x virus	2.0NS	2.0NS	3 1.9NS	1.3NS	0.8NS	1.0NS	1.9NS	0.7	5.6**

¹BYV inoculated means and % loss are summarized on the following page.

²Means over both virus treatments.

PM was controlled with Bayleton $^3\mathrm{FM}$ rated 8/15/91, 8/26/91, & 9/6/91 on a scale of 0 to 9. until late in season.

⁴R722 = F₂ (Y54 x Beta maritima accessions). R022Y1 = 1 cycle of selection from R722 (C50) for resistance to BYV (mother root selection based upon individual plant performance for root type and gross sugar). R022R2 = 2 cycles of selection from R722 for resistance to rhizomania. 89—C58 = development of Dr. E.D. Whitney from crosses between sugarbeet and four B. maritima accessions.

 5 Variety means over both virus treatments analyzed as RCB (8 x 16 reps)

Evariety means for noninoculated treatment.

Downey mildew infection occurred in plots of R722, R022Y1, and R022R2 to a moderate level.

TEST 1191. BYV INOCULATED EVALUATION OF SUGARBEET X B.MARITIMA GERMPLASM, 1991

Planted: February 12, 1991 Harvested: September 20, 1991 BYV Inoculated: May 10, 1991 8 entries x 2 virus trtmts x 8 reps, Split-plot 1-row plots, 18 ft. long, 32 blocks

clean Beets	20084 2004	86.0 92.9 89.3 73.4	89.24 4.37 7.60 20.47** 5.58* 1.08NS
7000	. 99999 . 99999	<u>∞</u> .60,80,7	30 89 67 67 23** 20
Mean Yellow	0.4.0.0 0.0.0.0	3000 2000 2000	12.05.
RJAP	78.0 81.2 82.0 82.0	79.2 81.2 76.9 75.6	79.51 2.45 3.10 8.83** 8.98* 1.92NS
OSe Loss	0.00	1.000	* * 10
Sucr Inoc.	12.92 14.44 14.76 15.00	13.89 14.00 13.34 13.07	13.93 0.65 4.60 30.35** 31.80**
Yield Loss	40.56 21.73 20.16 25.74	13.37 24.90 26.68 29.52	
Beets Y Inoc.	21.69 28.64 33.50 31.02	28.13 30.62 28.54 26.77	28.61 4.42 13.13 10.93** 124.51** 1.87NS
Vield Loss	43.13 23.77 20.79 26.29	12.90 26.65 27.39 35.19	
Sugar Y Inoc. Ibs/A	5611 8292 9894 9310	7845 8582 7640 7023	8025 1337 13.99 18.28** 185.96**
Variety Description	Inc. 868 (US 75) Inc. C37 RZM R980 BYR-ER-PMR Y854 (C54)	Inc. F ₃ (Y54 x B.m.) Inc. R922Y & S RZM R922R Inc. WB1-2	: variety : virus treatments : variety x virus
Variety	768 U86–37 R080 Y054	R722 (C50) R022Y1 R022R2 89-C58	Mean LSD C.V. (%) F value for F value for F value for

⁷Mean virus yellows scored from 6/18/91, 6/28/91 & 7/25/91. Score from 0 to 9 (100% of matured leaf canopy yellowed.

TEST 1291. NONINOCULATED PERFORMANCE OF EXPERIMENTAL HYBRIDS, 1991

1991	Bolters	00000	0000	4000 4000	00000	0000
12, 1991 cr 23-25,	RM2.3 Bo	40777 60048	49/78 747.8	იიიი იოფ4	დდდ ი დ 4დ-1-ით	งกุบ งกุบง
February 12, September noculated	RJAP	84.2 883.7 84.7 84.7	84.2 83.1 83.8	884 833.1 83.5	888888 822.3 4.203.6	83.7 83.6 81.8
Planted: Febl Harvested: Se Not BYV Inocul	Beets 100'2 No.	156 150 155 152	142 147 151	147 142 143	143 139 145 141	145 145 147
Plar Hary Not	Root Rot2	00000	0000	0000	00000	0000
	Sucrose	15.39 15.39 14.33 16.47	15.03 15.57 16.15 15.15	14.77 14.90 14.94 15.67	14.46 14.73 15.42 15.17	15.46 14.82 14.94 14.56
	Beets Jons	50.10 49.11 47.11 48.55 41.01	50.10 49.22 46.45 45.34	47.00 43.90 46.00 43.20	49.39 46.78 40.68 45.03	49.33 49.44 46.76 47.57
lot	Acre Yield Sugar	15465 15029 14471 13907 13481	15087 15311 15012 13742	13911 13104 13747 13538	14258 13795 12529 13330 13869	15255 14637 13954 13836
Split-plot	Sugar [§] 1 Ibs	12540 12540 12290 12290 10700	13150 13010 12890 12470	12470 12340 12280 12190	12180 11960 11750 11660 11650	12940 12520 11910 11820
32 entries x 2 virus trtmts x 4 reps, 1-row plots, 18 ft. long, 16 blocks	Description4	Beta (1/6/89) Hilleshog (1/25/91) Holly (1/93302) Holly (1/12305) Beta (0011-1)	R80 88-790-68CMS x R980 9865aa x R980 87-309CMS x R980 C742-24HO x R980	9864aa x R980 9867H67aa x R980 C766-62HO x R980 C767-46HO x R980	89-762-17CMS x R980 9887H86aa x R980 9866H80aa x R980 9859H6aa x R980 9876H76aa x R980	<pre>c popn-913 9865aa x 9911H49 9867H67aa x 9911H49 9864aa x 9911H49 9859H6aa x 9911H49</pre>
32 entries ; 1-row plots,	Variety	4757 Vyxen Rhizosen HH41 6625	Females x R8 R080H89 R080H132 R080H26 R080H42	RO80H133 RO80H113 RO80H70 RO80H54	ROBOH115 ROBOH1115 ROBOH1112 ROBOH1111 ROBOH1114	Popn-aa x pc 0913H132 0913H113 0913H133 0913H111

TEST 1291. NONINOCULATED PERFORMANCE OF EXPERIMENTAL HYBRIDS, 1991

Bolters	o⁄0I	00000 00040	00000	0.20 0.74 0.74 1.88* 0.48
PW2,3	Rating	0.0.040 0.000	000000 000000	5.82 0.89 16.60 6.43** 3.68NS
RJAP	o/ ∘I	84.2 85.2 83.0 83.0	883.3 880.9 84.8 84.8	83.3 22.5 31.18*
Beets $\underline{2}$	<u>%</u>	147 1489 151	133 150 153 145	146.0 8.3 6.7 2.7**
Root Rot-	b/9I	00000	00000	0.04 0.37 0.37 1.9NS 2.4NS 0.94
Sucrose	Þ⁄9I	15.81 15.69 15.29 15.27	15.33 15.08 14.87 15.17 15.94	15.26 0.72 3.4 4.82** 187.35**
ld Beets	Tons	50.66 47.89 49.55 49.77	47.89 48.22 50.22 46.11 44.45	47.1 4.64 7.9 4.1** 352.7** 1.5NS
cre Viel Sugar	l Sol	16001 15032 15118 15208 14849	14675 14555 14981 13981 14107	14368 1410 8.0 329.4 1.9*
Sugar ⁵	Sol	14490 13760 13760 13410 13180	12790 12720 12660 12590 11970	12538 1093 8.01 3.56**
Description4		-68) x Male 88-790-68H26 x Y731S 88-790-68H26 x Y939 88-790-68H26 x Y947 88-790-68H26 x R939C5 88-790-68H26 x Y948	88-790-68H26 x R980 88-790-68H26 x R971-80 88-790-68H26 x 9911H49 88-790-68H26 x R947C5 88-790-68H26 x Polish Composi	variety virus variety x virus
Variety		(C309 x C790–68 Y931SH18 8 Y039H18 8 Y047H18 8 R039C5H18 8 Y048H18 8	R080H18 R070H18 0913H18 R047C5H18 Z010H18	Mean ISD (.05) C.V. (%) F value for variety F value for virus F value for virus

 $^{^1\}mathrm{BYV}$ inoculated means and $^{\circ}$ loss are summarized on the following page.

²Means over both virus treatments.

³PM rated 8/15/91, 8/26/91, & 9/6/91 on a scale of 0 to 9. PM was not controlled in tests 1291 thru 1591 and was quite severe on susceptible varieties.

 $^{^4}$ R980 = C54R, 9911H49 = popn-913 = MM,S^f,A:aa,R, popn. R939C5 = C39R. Y939 = C39. R947C5 = C47R. Y947 = C47. Y948 = C93. Y731S \(\frac{2}{2} \) C31/6. 9859-9887 = mm,S^f,A:aa,R₂ popns.

 $^{^5}$ Variety means over both virus treatments analyzed as RCB (32 x 8 reps).

Wariety means for noninoculated treatment.

TEST 1291. BYV INOCULATED PERFORMANCE OF EXPERIMENTAL HYBRIDS, 1991

1991 3-25, 1991 , 1991	Mean 7 Yellows 7 Rating	で4.04.0 たら1.8.0	0.440 6.00	4464	იიიიი გ.ქ.ქ.დ.	4ռռռ ಒ പ ഹ
Planted: February 12, Harvested: September 2. BYV Inoculated: May 10	RJAP	88888 24.4.2 20.0.0	8888 323.38 82.338	83.6 82.5 81.7 82.6	8881.9 81.9 20005.	882.0 832.0 33.4
	JSe Loss & Pts	0.10 0.7 1.4.1	0000	0.007	00001	0000
	Sucrose Inoc. Lo	14.16 14.38 14.73 14.87	15.14 14.80 14.95 14.57	14.84 14.99 15.00	15.10 14.65 14.15 14.41 14.10	14.58 14.71 14.49 14.28
мдн	Vield Loss	22.45 28.30 27.05 31.14	12.89 24.37 17.06 19.36	9.16 16.11 19.02 22.59	27.91 26.13 27.75 22.91 26.58	26.25 28.42 27.29 27.94
	Beets 1 Inoc. Tons/A	37.69 35.92 34.36 33.81 26.05	38.24 37.89 37.57 37.90	36.97 36.24 37.25 35.92	35.47 34.57 35.69 33.48	36.36 35.36 34.03 34.30
plot	Vield Loss	23.25 33.22 30.11 33.15 41.31	11.70 25.68 18.45 20.72	12.51 19.98 21.28 28.30	30.00 26.63 29.12 25.03 32.01	30.42 28.93 29.32 29.13
ps, Split-plot s	Sugar Inoc. Ibs/A	10674 10327 10114 10047 7912	11571 11212 11206 11028	10961 10833 10821 10764	10717 10122 10106 9994 9429	10615 10402 9863 9805
32 entries x 2 virus trtmts x 4 reps, 1-row plots, 18 ft. long, 16 blocks	Description	Holly (L412305) Beta (1/6/89) Holly (L493302) Hilleshog (1/25/91) Beta (0011-1)	R80 9867H67aa x R980 88-790-68CMS x R980 C742-24H0 x R980 9864aa x R980	9866H80aa x R980 C767-46H0 x R980 C766-62H0 x R980 87-309CMS x R980	9865aa x R980 9887H86aa x R980 89-762-17CMS x R980 9859H6aa x R980 9876H76aa x R980	 Popn-913 9865aa x 9911H49 9867H67aa x 9911H49 9864aa x 9911H49 9859H6aa x 9911H49
32 entries 1-row plot	Variety	Checks HH41 4757 Rhizosen Vyxen 6625	Females x 1 R080H113 R080H89 R080H42 R080H133	R080H112 R080H54 R080H70 R080H26	ROBOH132 ROBOH115 ROBOH39 ROBOH111 ROBOH114	Popn-aa x 1 0913H132 0913H113 0913H133 0913H111

TEST 1291. BYV INOCULATED PERFORMANCE OF EXPERIMENTAL HYBRIDS, 1991

Mean 7 Yellows- Rating	44444 67	44440 20100	4.97 0.52 10.45 5.20**
RJAP	833.4 823.4 821.8 821.8	8883.2 882.0 82.0 82.0 882.0	82.78 2.47 2.12 1.78* 31.06* 1.09NS
JSE LOSS % Pts	00000	0000	חזיאה אר
Sucrose Inoc. Lo	15.07 16.05 15.15 15.06 15.52	15.21 15.21 15.54 14.28 15.60	14.85 0.72 3.40 4.82** 187.35**
ield Loss	15.15 19.00 17.64 22.53 18.82	20.17 24.99 27.32 27.79 29.17	
Beets Yiel Inoc. Lo Tons/A	43.02 38.80 40.85 38.58	36.80 35.93 35.03 31.52	36.05 4.64 7.95* 4.05** 352.68** 1.50NS
Yield Loss	18.94 16.96 18.02 23.68	19.96 25.69 25.19 31.04 30.31	01 56** 86**
Sugar Inoc. Ibs/A	12970 12482 12394 11607 11515	11191 10905 10888 10331 9831	10707 1410 8.03 3.56 3.29.36
Description	90-68) x Male 88-790-68H26 x Y731S 88-790-68H26 x Y939 88-790-68H26 x Y947 88-790-68H26 x R939C5 88-790-68H26 x Y948	88-790-68H26 x R947C5 88-790-68H26 x R980 88-790-68H26 x R971-80 88-790-68H26 x 9911H49 88-790-68H26 x Polish Composi	r variety r virus r variety x virus
Variety	(C309 x C790-68) 19315H18 88- Y039H18 88- Y047H18 88- R039C5H18 88- Y048H18 88-	R047C5H18 R080H18 R070H18 0913H18 Z010H18	Mean LSD (.05) C.V. (%) F value for F value for F value for

⁷Mean virus yellows scored from 6/18/91, 6/28/91 & 7/18/91. Score from 0 to 9 (100% of matured leaf canopy yellowed.

TEST 1391. NONINOCULATED PERFORMANCE OF PROGENY LINE HYBRIDS, 1991

, 1991	PM2.3 Rating	7.6.9	78.50	7.7.7. 2848	8877 8.085	7.7 8.3 8.3	8.7 8.1 8.1
12, 1991 er 23-25	RJAP	84.1 85.0 85.6	83.7 84.8	82.9 84.3 83.7	885.6 825.0 3.7	83.0 82.9 83.2	81.9 83.1 82.7 82.6
1: February 12, sed: September 2 / Inoculated	Beets/ 100'2/ No.	149 145 149	144 142 147	146 1499 1499	143 149 146	150 152 140 146	154 151 147 149
ed: Fe sted: XV Ino		000	000	0000	0000	0000	0000
Planted: Harvested: Not BYV In	Sucrose	15.12 15.53 15.62	14.44 15.47 16.26	14.91 14.99 15.28	14.36 14.75 14.23	14.80 14.93 15.43	15.24 15.20 15.64 14.66
	Beets Tons	44.01 46.00 40.79	41.49 38.02 39.68	43.79 44.56 44.23 46.34	45.12 43.90 44.48 41.98	47.22 43.12 43.68 42.35	45.78 41.57 40.79 40.13
olot	Acre Yield Sugare Ibs	13318 14299 12789	12028 11816 12909	13066 13405 13060 14144	12987 12926 12699 12369	14046 12922 13468 12695	13932 12634 12780 11774
Split-plot	Sugar ⁵	12210 11130 10710	10370 9899 9812	11660 11270 11050 10770	10700 10680 10580 10330	11770 11520 11080 10960	10880 10880 10710 10450
x 2 virus trtmts x 4 reps, , 18 ft. long, 16 blocks	Description ⁴	87-309H3 x Y731S(C31/6) Beta (1/6/89) Hilleshog (1/25/91)	Hilleshog (1/25/91) 87-309H3 x Polish (C) Beta 6625 (0011-1)	Lines from C54 87-309H3 x R980 87-309H3 x Y854-38 87-309H3 x BYR Y854 87-309H3 x BYR Y854	87-309H3 x Y854-2 87-309H3 x Y854-23 87-309H3 x Y854-85 87-309H3 x Y854-63	nes from popn-906 & -909 87-309H3 x 8909-37 87-309H3 x 8909-7 87-309H3 x 8906-7 87-309H3 x RZM 8909-11	87-309H3 x 8906-4 87-309H3 x 8909-34 87-309H3 x 8909-48 87-309H3 x 9911,9911H49
32 entries x 1-row plots,	Variety	Checks Y931SH20 4757 HM2009	Vyxen Z010H20 6625	C309H3 x HS R080H20 Y054-38H20 Y054H20 Y054-12H20	Y054-2H20 Y054-23H20 Y054-85H20 Y054-63H20	C309H3 x Lines 0909-37H20 0909-7H20 0906-7H20 9912H20	0906-4H20 0909-34H20 0909-48H20 0913H20
				Σ	.54		

NONINOCULATED PERFORMANCE OF PROGENY LINE HYBRIDS, 1991 TEST 1391.

w2,3	Rating	6.1 7.5 7.8	6.76 33512	6.1	7.29 1.62 15.55 4.80** 3.52NS 0.85NS
ז מגדמ		84.7 83.5 83.5	883.0 83.0 85.0	83.2	83.56 2.44 2.09 2.09 4.1.85* 8.68NS
Beets/	No.	147 139 145	140 146 140 136	140 145	145 7.6 6.8 2.3** 0.1
Root Port 2	500	0000	0000	0.0	0.06 NS 963.31 0.95NS 2.99NS 0.94NS
Chroso	001000 001000	15.52 14.92 15.34	15.11 15.25 15.15 15.08	14.66 14.83	15.05 3.70 2.45** 28.35*
Roofe	Tons	49.33 46.72 47.00 46.64	47.67 42.46 46.45 43.76	44.67 43.65	43.98 6.77 12.85 4.68** 964.01**
re Yield		15327 13892 13637 14315	14401 12958 14055 13221	13117 12962	13248 2302 14.7 3.2** 545.4** 9
Sugar ⁵ Acre		12770 12620 12400 12310	11860 11480 11470 11030	11000 10130	11140 1454 13.24 2.14**
Description4	TOTO ATTOCK	lines from popn-790 x R80 0H33 8790-54aa x R980 0H30 8790-15aa x R980 0H29 8790-6aa x R980 0H31 8790-23aa x R980	88-790-68CMS x R980 8790Laa x R980 8790-55aa x R980 8790-71aa x R980	8790-61aa x R980 8790-47aa x R980	: variety : virus treatment : variety x virus
Variety		S ₁ lines fr Regord3 ROSOH30 ROSOH29 ROSOH31	R080H89 R080H90 R080H34 R080H36	R080H35 R080H32	MEAN LSD (.05) C.V. (%) F value for F value for F value for

 $^{^{}m 1}{
m BYV}$ inoculated means and % loss are summarized on the following page.

 $^{^{2}{\}mbox{Means}}$ over both virus treatments.

PM was not controlled in tests 3 FM rated 8/15/91, 8/26/91, & 9/6/91 on a scale of 0 to 9. FM 1291 thru 1591 and was quite severe on susceptible varieties.

⁴R980 = C54R. BYR Y854 = C54. Y854-#'s = Half-sib lines from Y54 selected for per se performance under BYV conditions in 1989. 8906-#'s, 8909-#'s = S₁ and FS lines selected under thizomania conditions. 8790-#'s = S₁ lines selected for per se performance at Salinas under BYV and Brawley under LIYV conditions in 1989.

 $^{^5}$ Variety means over both virus treatments analyzed as RCB (32 x 8 reps).

Wariety means for noninoculated treatment.

TEST 1391. BYV INOCULATED PERFORMANCE OF PROGENY LINE HYBRIDS, 1991

,							
1991 3-25 1, 1991	Mean 7 Yellows 7 Rating	47.0 41.6	66.5 01.0	2447 2804	4040 8080	იიი4 აപ∕აფ.	7.7. 7.3.7.
ebruary 12, September 2 sted: May 10	RJAP	82.3 82.3	83.4 83.4 83.4	8823.2 82.082.0	82.9 83.1 82.0	81.1 81.4 82.7 81.9	81.5 80.5 79.5
	JSe Loss % Pts	1.2	010	0000	0.0 0.7 1.1	1.1 0.3 4.0	0.000
Planted: Harvested: BYV Inocula	Sucrose Inoc. Lo	14.55 14.78 14.46	14.93 13.95 15.44	14.74 14.25 14.45 14.92	13.86 13.68 14.63	13.88 14.48 14.20 14.29	14.33 14.25 14.78 14.20
	Yield Loss	14.1 28.9 27.2	29.7 37.8 45.2	21.0 28.4 29.3 36.5	30 32.2 42.7	15.5 23.3 20.4	23.7 30.1 28.3 40.0
, Split-plot	Beets Inoc.	37.82 28.49 29.71	26.72 28.62 21.74	34.59 31.93 31.26 28.27	30.37 30.60 28.15 26.54	36.42 32.70 32.48 31.93	31.70 30.51 29.26 27.49
	Yield Loss	16.67 27.61 32.44	32.45 44.33 47.98	21.51 31.92 30.82 33.35	34.76 35.19 33.02 47.72	21.67 32.41 27.29 22.46	27.83 35.39 32.41 43.86
	Sugar Inoc. Ibs/A	11098 8707 8640	7982 7960 6715	10255 9126 9035 8463	8433 8417 8285 7394	10122 9494 9230 9129	9118 8702 8638 7821
32 entries x 2 virus trtmts x 4 reps, 1-row plots, 18 ft. long, 16 blocks	Variety Description	Checks Y931SH20 87-309H3 x Y731S(C31/6) Vyxen Hilleshog (1/25/91) HM2009 Hilleshog (1/25/91)	Z010H20 87-309H3 x Polish (C) 4757 Beta (1/6/89) 6625 Beta 6625 (0011-1)	C309H3 x HS Lines from C54 R080H20 87-309H3 x R980 Y054-38H20 87-309H3 x Y854-38 Y054H20 87-309H3 x BYR Y854 Y054-85H20 87-309H3 x Y854-85	Y054-23H20 87-309H3 x Y854-23 Y054-2H20 87-309H3 x Y854-2 Y054-63H20 87-309H3 x Y854-63 Y054-12H20 87-309H3 x Y854-12	C309H3 x Lines from popn-906 & -909 0909-7H20 87-309H3 x 8909-7 0909-37H20 87-309H3 x 8909-37 9912H20 87-309H3 x 8911,9911H49	0909–34H20 87–309H3 x 8909–34 0906–7H20 87–309H3 x 8906–7 0909–48H20 87–309H3 x 8909–48 0906–4H20 87–309H3 x 8906–4

TEST 1391. BYV INOCULATED PERFORMANCE OF PROGENY LINE HYBRIDS, 1991

(continued)

e Mean 7	ທເ	-0.2 82.7 4.3 -0.4 84.3 4.4 0.9 84.2 4.8 0.9 84.0 4.2	0.9 82.3 4.7 0.1 83.3 4.4 0.7 82.8 4.7 0.3 82.9 4.0	-0.1 83.4 5.2 0.8 81.0 5.5	82.55 4.98 2.44 0.53 2.09 10.71 1.85* 4.34** 8.68NS
Sucrose	19/0	15.09 -0 14.97 -0 14.44 0	14.38 0 14.97 0 14.00 0 14.81 0	15.14 -0 14.05 0	14.48 0.76 3.70 2.45** 28.35* 1.90*
<u>Yield</u>] 	19.6 20.9 29.2	18.3 34.9 35.6	33.5	
Beets 1	Tons/A	37.58 37.25 35.81 34.79	34.70 31.02 31.83 29.93	29.08 26.05	31.14 6.77 12.85 4.68** 964.01** 1.10NS
Yield) 	18.26 18.17 27.94 33.36	22.88 35.29 32.21 36.78	33.14	71 20** 45** 05NS
Sugar	Ibs/A	11355 11159 10315 10213	9994 9319 8891 8885	8840 7297	9032 2302 14.7 545.4
Description		rom popn-790 x R80 8790-15aa x R980 8790- 6aa x R980 8790-23aa x R980 8790-54aa x R980	8790Laa x R980 88-790-68CMS x R980 8790-61aa x R980 8790-55aa x R980	8790-71aa x R980 8790-47aa x R980	r variety r virus treatment r variety x virus
Varietv		S ₁ lines from Re80H30 8 R080H29 8 R080H31 8 R080H33	R080H90 R080H89 R080H35 R080H34	R080H36 R080H32	MEAN ISD (.05) C.V. (%) F value for F value for F value for

⁷Mean virus yellows scored from 6/18/91, 6/28/91 & 7/18/91. Score from 0 to 9 (100% of matured leaf canopy yellowed.

TEST 1491. NONINOCULATED EVALUATION OF MULTIGERM GERMPLASM, 1991

.30, 1991	Bolters ²	11.6 0.5 0.0	1.9	8.3	9000	0.0	000	20.9 12.7 0.5 41.2	0000
Planted: February 12, 1991 Harvested: September 26,27, Not BYV Inoculated	2,3 ng _	7 88.0 8.0	7.3	6.9	5.5 7.1	ტ. იი	6.0 5.0	66.50 6.50 6.50	7.06.0 0.47.8
	RJAP	83.8 82.3 81.2	83.2	78.9	80.5 84.8	83.1 81.8	83.8 84.1	80.9 81.1 79.7 79.6	83.1 82.3 83.4 82.7
	Beets/ 100/2 No.	142 142	145	152	147 149 147	139 148	149 152	143 142 141	139 145 145
	Root Rots	000	0.0	0.0	000	0.0	0.0	0000	0000
	Sucrose	13.97 14.03 15.30	15.06	12.71	14.19 15.14 15.61	15.16 14.29	14.99 15.30	14.08 13.26 13.73 11.97	14.26 16.12 15.89 14.75
	d Beets Tons	31.93 38.58 41.05	40.35	41.68	41.90 43.68 42.53	48.66 46.22	45.89 43.90	36.69 43.68 42.35 32.26	43.77 41.90 50.77 48.22
lot	Acre Yield Sugare Ibs T	8922 10815 1 2 556	12141	10604	11911 13230 13267	14775 13249	13754 13434	10333 11583 11661 7754	12474 13510 16119 14252
, Split-plot	Sugar 5	6921 8557 11000	10020	2966	10420 10970 11160	13910 12160	12640 12390	9321 9881 11090 6336	11590 11880 14320 12580
32 entries x 2 virus trtmts x 4 reps, 1-row plots, 18 ft. long, 16 blocks	Description4	Inc. SP22-0 (L80466) Inc. 868 (US 75) Inc. C37 (86443)	RZM R979 (C37 $R_{ m Z}$)	RZM 9221 (B ₁ F ₂ PIO7) RZM 9225 (F ₂ R x		Inc. C31/6 (86263) RZM R976 (C31 $R_{ m Z}$)	RZM R980 (C54R _z) BYR-ER-PMR Y854 (C54)	Inc. F ₂ (Y54 x B.m.) RZM R922R Inc. R922Y RZM R904	Inc. R971-R980 Inc. Y948 (C93) BYR-ER-PMR Y849 (C49) BYR-ER-PMR Y857
32 entries 1-row plots	Variety	Checks SP7622-0 768 U86-37	R079	R028 R030	U86-46/2 R078	F86-31/6 R076	R080 Y054	R722 R022R2 R022Y R004	R070 Y048 Y049 Y057

TEST 1491. NONINOCULATED EVALUATION OF MULTIGERM GERMPLASM, 1991 (continued)

$\frac{\text{Bolters}^2}{\frac{2}{3}}$	1000 4.000	000	3.4	0000	•	ωως 7.7.α	40.71** 8.74* 2.52**
PM ^{2,3} Rating	7.446 7.12.7	യപ്പ പ്ര	9.9	10100 10100	•	6.23 1.00 15.88	
RJAP	88882 4.24 5.34 5.34	83.4 81.3 81.0	83.1	83.1	4.		3.7** 199.4** 1.6*
Beets 100'2 No.	143 134 142	146 142 143	143	147 146 145	4	144 8.	1.7* 0.8NS 1.4NS
Root Rot2	0000 4.000	000	9.0	0000	0.0	0.22	1.24NS 0.59NS
Sucrose	13.68 15.87 15.05 15.46	14.98 13.97 14.32	14.79	14.32 15.13 14.83	•	0.00	20.24** 11.76* 2.01**
Beets Tons	45.45 45.01 51.58 44.25	44.70 41.46 44.92	47.79	47.89 47.12 40.02	∞	43.56 5.0	12.7** 1781.3** 1.5*
Acre Vield Sugar ²	12436 14297 15528 13701	13372 11627 12858	14160	13701 14278 11832	14203	127	* 16.80** 5914.4** 1.61*
Sugar ⁵ A	9643 12650 13500 12410	11180 10590 10810	11940	11880 12540 11200	17210	11186 1219 11 60	4 4 *
Description4	RZM R920 (C94) Inc. Y939 (C39) RZM R939C5 (C39R) Inc. Y947 (C47)	RZM R947C5 (C47R) RZM R939/4H44 RZM 9223(B ₁ F ₂ PIO7) RZM 9226 (F ₁ F ₂ PIO7))	RZM 9910H47 (A,aa) RZM 9911H49 (A,aa) RZM 9911H49 (A,aa)	ууизаа х уулднүү		c variety r virus treatment r variety x virus
Variety	R020 Y039 R039C6 Y047	R047C6 0914 R029 R031	1	0910 0911 0913	0915	Mean LSD (.05)	F value for F value for F value for

 $^{^{1}\}mathrm{BYV}$ inoculated means and % loss are summarized on the following page.

 $^{^2{\}mbox{\scriptsize Means}}$ over both virus treatments.

 $^{^3}$ FM rated 8/16/91, 8/27/91, & 9/6/91 on a scale of 0 to 9. FM was not controlled in tests 1291 thru 1591 and was quite severe on susceptible varieties.

 $^{^4}$ R022R2 = 2 cycles sel, for resistance to rhizomania from R722. R022Y = 1 cycle selection for BYV resistance. R004 = rhizomania resistant accession.

 $^{5 \}mathrm{variety}$ means over both virus treatments analyzed as RCB (32 x 8 reps).

Wariety means for noninoculated treatment.

BYV INOCULATED EVALUATION OF MULTIGERM GERMPLASM, 1991 TEST 1491.

Planted: February 12, 1991 Harvested: September 26,27,30, 1991 BYV Inoculated: May 10, 1991	Mean Yellows Z Rating	യ യ യ	5.1	4.8	5.2 5.2	3.3 4.1	4.2	4040 007.6	44.4 8.3 8.3 4.4
	RJAP	76.9 78.4 79.7	82.0	82.2	81.4 82.2 81.3	82.2 83.0	83.0 83.2	80.2 76.5 81.0 76.7	80.6 83.8 82.5
	ose Loss % Pts	11.0 7.48	1.0	8.0-	0.0	0.2	0.1	1.53	0-00-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0
	Sucrose Inoc. L	12.44 12.63 14.47	14.05	13.57	14.12 14.53 14.15	14.94 14.60	14.92 15.24	13.09 13.18 14.01 10.43	14.80 15.73 15.44 15.58
	Vield Loss	38.24 35.33 20.62	30.39	17.56	24.76 31.73 24.67	10.50	15.94	13.59 28.93 11.52 26.88	17.45 22.22 20.09 27.36
	Beets Inoc. Tons/A	19.67 24.95 32.59	28.09	34.36	31.53 29.82 32.04	43.55	38.58 37.25	31.70 31.04 37.47 23.59	36.14 32.59 40.57 35.03
32 entries x 2 virus trumts x 4 reps, Split-plot 1-row plots, 18 ft. long, 16 blocks	Vield g Loss g	44.85 41.75 24.94	34.98	12.00	25.09 34.19 31.79	11.66	16.21 15.48	19.59 29.40 9.86 36.58	14.12 24.12 22.36 23.48
	Sugar Inoc. Ibs/A	4920 6300 9443	7894	9331	8923 8707 9049	13052 11078	11525 11355	8309 8178 10511 4917	10714 10252 12515 10906
	Description	Inc. SP22-0 (L80466) Inc. 868 (US 75) Inc. C37 (86443)	RZM R979 (C37 $R_{ m Z}$)	RZM 9221 (B_1F_2 PIO7) RZM 9225 (F_2F_3	$\frac{1}{1}$ $\frac{1}$	Inc. C31/6 (86263) RZM R976 (C31R ₂)	RZM R980 (C54R ₂) BYR-ER-PMR Y854 (C54)	Inc. F ₂ (Y54 x B.m.) RZM R922R Inc. R922Y RZM R904	Inc. R971-R980 Inc. Y948 (C93) BYR-ER-PMR Y849 (C49) BYR-ER-PMR Y857
	Variety	<u>Checks</u> <u>SP7622</u> –0 768 U86–37	R079	R028 R030	U86-46/2 R078	F86-31/6 R076	R080 Y054	R722 R022R2 R022Y R004	R070 Y048 Y049 Y057

BYV INOCULATED EVALUATION OF MULITIGERM GERMPLASM, 1991 (continued) TEST 1491.

Mean Mean Zoss RJAP Yellows 7	Pts 8 Rating	2.1 77.7 6.3 -0.1 83.0 4.2 0.1 82.8 4.9 0.8 83.0 4.5	0.4 82.2 4.7 -0.1 81.1 4.3 0.7 79.7 5.1	0.6 80.9 5.2	0.3 81.1 4.3 0.2 80.5 4.4	1 81.7 3.	81.05 4.69 3.18 0.50 2.78 10.69	65** 7 40**
Sucrose Inoc. I	9/VI	11.53 15.97 14.97 14.71	14.58 14.10 13.65	14.20	14.02		14.19 0.98 4.86	20.24**
<u>Yield</u> Loss	Þ⁄•I	34.58 23.40 25.77 14.82	31.05 18.19 28.59	28.46	25.00			
Beets Y	Tons/A	29.73 34.47 38.29 37.69	30.92 33.92 32.08	34.19	35.92 36.25	90	33.58 5.04	12.68** 1781.28**
Vield g	 	44.92 23.03 26.18 18.83	32.73 17.87 31.89	31.36	26.53		~	* * * 000 000 000
Sugar Inoc.	Ibs/A	6850 11004 11463 11120	8996 9548 8758	9720	10066	10815	9612 1764 11,2	16.8 5914.3
Description		RZM R920 (C94) Inc. Y939 (C39) RZM R939C5 (C39R) Inc. Y947 (C47)	RZM R947C5 (C47R) RZM R939/4H44 RZM 9223(B ₁ F ₂ PIO7)	$(\frac{1}{1})^{220}$ (1)	RZM 9910H47 (A, aa) RZM 9911 (A, aa) B7M 9911H/9 (A, aa)	9903aa x 9911H49		variety virus treatment
Variety		R020 Y039 R039C6 Y047	R047C6 0914 R029 B031		0910 0911 0913		Mean ISD (.05) C.V. (%)	F value for F value for

⁷Mean virus yellows scored from 6/18/91, 6/28/91 & 7/18/91. Score from 0 to 9 (100% of matured leaf canopy yellowed.

8% losses calculated from difference between noninoculated and inoculated variety means. Because there were only 4 reps of each variety per treatment, experimental error will be fairly larger. Deviations of 10±% are usual for this type of test.

TEST 1591. NONINOCULATED BYV EVALUATION OF SELECTED LINES, 1991

Planted: February 12, 1991 Harvested: September 26,27,30, 1991 Not BYV Inoculated	Bolters ²	0000	0.0	0.0	0000	0.0 0.0 18.1	0000	0.00	0.0
	PM ^{2,3} Rating	7.0 6.7 6.2	7.8	7.1 6.5	4.02.7 9.88 8.	6.77.2 8.7.2 8.1	87.288	7.88	8.4
	RJAP	882.6 84.6 84.5	84.3 82.4	83.2	83.2 83.4 84.0	8833 82.08 50.08	83.4 82.2 81.4	82.6 84.7 85.1	83.4
	Beets/ 100/2/ No.	152 145 144 147	144 146	145 138	143 136 138 151	150 144 146 141	148 143 147	142 142 144	131
	Root Rot2	0000	0.0	0.0	0000	0000	0000	0.00	1.0
32 entries x 2 virus trtmts x 4 reps, Split-plot 1-row plots, 18 ft. long, 16 blocks	Sucrose	14.94 14.03 15.17	15.43 15.52	14.19 14.89	15.16 14.77 15.89 15.68	15.47 15.15 14.20 13.96	14.57 15.00 15.97 15.64	16.04 15.79 16.88	17.03
	Beets Tons	41.04 43.04 39.95 43.36	44.67 45.72	40.76 36.58	45.59 41.25 39.08 40.68	40.90 43.41 43.13 33.66	45.41 44.02 45.12 43.68	41.90 44.04 47.44	32.36
	Acre Vield Sugar Ibs	12268 12106 12129 13369	13780 14182	11590 10888	13821 12194 12411 12748	12686 13143 12252 9465	13254 13304 14359 13651	13447 13973 16036	11036
	Sugar ⁵ / Ibs	11700 11770 12440 12350	13290 13180	10360 9779	11580 10530 10230 10320	10490 11330 10890 7978	11770 11540 12840 11710	11480 11520 12940	9254
	Description4	Inc. C31/6 (86263) Inc. Y731 Inc. Y731-HS (Davis) Inc. Y731-HS (Salinas)	Inc. Y731-43 (C31-43) Inc. Y731-89 (C31-89)	Inc. Y854-2 Inc. Y854-12	Inc. Y854-23 Inc. Y854-38 Inc. Y854-63 Inc. Y854-85	BYR-ER-PMR Y854 (C54) RZM R980 Inc. R922Y Inc. F ₂ (Y54 x B.m.) (C50)	9911aa x A 9911H49aa x A 8911-4aa x A 8911-12aa x A	9912aa x Polish(C) 9912aa x Polish-2 9912aa x Polish-4	Inc. Polish(C)
	Variety	U86-31/6 Y931 Y931D Y931S	Y931-43 Y931-89	Y054-2 Y054-12	Y054-23 Y054-38 Y054-63 Y054-85	Y054 R080 R022Y R722	0911 0913 9911-4 9911-12	Z010H12 Z012H12 Z014H12	2010

LINES, 1991 NONTROCULATED BYV EVALUATION OF SELECTED (continued) TEST 1591.

Bolters	\ 	100001	0.00	58 0.96 73 2.30 88 239.72 04** 17.86** 82* 0.02NS
PM2.3	Ratir	0.100.7	7.88	***10 **11
' RJAP	p\0	84.2 84.0 84.1 86.3 84.8	81.1 78.8 83.6	13222
Beets 100	No	136 131 129 133	147 140 138	142 10. 2. 0.
Root Roti	0/01	10000	000	0.19 0.97 506.75 ** 0.88NS
Sucros	p/0	17.56 16.92 17.40 18.11 15.71	14.60 13.28 13.68	15.44 0.93 4.35 15.52
Beets	Tons	28.98 33.79 31.73 31.81 33.25	36.41 38.91 31.75	39.80 4.90 9.96 24.66** 557.78**
cre Yield Sugar	Ibs	10189 11431 10979 11552 10449	10642 10283 8738	12261 1629 10.9 * 19.6** 197.2**
Sugar-	SQI	8672 9173 9398 9367 8744	9639 8222 6165	10645 1070 10.90 19.58*
Description4		Inc. Polish-1 Inc. Polish-2 Inc. Polish-3 Inc. Polish-4 Inc. Polish-7	Inc. C37 (86443) Inc. 868 (US 75) Inc. SP22-0 (L80466)	r variety r virus treatment
Variety		Z011 Z012 Z013 Z014 Z017	Checks 1086-37 768 SP7622-0	Mean ISD (.05) C.V. (%) F value for F value for

 $^{^1\}mathrm{BYV}$ inoculated means and $^{\circ}$ loss are summarized on the following page.

²Means over both virus treatments.

PM was not controlled in tests ³FM rated 8/16/91, 8/27/91, & 9/6/91 on a scale of 0 to 9. FW 1291 thru 1591 and was quite severe on susceptible varieties.

 $^{^4}$ Y931 = YRS C31/6 by mass sel. Y931D & S = Cycle 1 synthetics from HS progeny evaluation under BYV at Davis and Salinas. C31-43 & C31-89 = Increases of HS lines released in 1991. Y054-#'s = Increases of HS progenies selected for performance under BYV. R022Y = BYV sel. from C50. 9911-4 & -12 = HS lines from popn-911 under BYV and LIYV conditions.

 $^{^5\!\}mathrm{Variety}$ means over both virus treatments analyzed as RCB (32 x 8 reps).

Evariety means for noninoculated treatment.

TEST 1591. BYV INOCULATED EVALUATION OF SELECTED LINES, 1991

32 entries 1-row plots	32 entries x 2 virus trtmts x 4 reps. 1-row plots, 18 ft. long, 16 blocks	, Split	Split-plot ugar Yield_8	Beets		Planted: February 12, Harvested: September BYV Inoculated: May 1 Sucrose	Februs 1: Sept 11ated:	233	991 -25, 1991 1991 Mean 7
variety	Description	Inoc.	Tossol No.	Tons/A	LOSS	Inoc.	Loss % Pts	RJAP	Yellows/ Rating
U86-31/6 Y931 Y931D Y931S	Inc. C31/6 (86263) Inc. Y731 Inc. Y731-HS (Davis) Inc. Y731-HS (Salinas)	11123 11431 12755 11338	15.55 25.55 25.55	38.58 38.13 41.23 38.35	0.6 11.4 -0.3 11.5	14.40 14.96 15.44 14.78	1000	81.7 84.1 83.4 83.4	0,000 0,000
Y931-43 Y931-89	Inc. Y731-43 (C31-43) Inc. Y731-89 (C31-89)	12797 12173	7.1	39.91 39.57	10.7	16.00 15.38	-0.6	83.6 82.4	დო ოო
Y054-2 Y054-12	Inc. Y854-2 Inc. Y854-12	9136 8670	21.2	30.82	24.4 17.0	14.79	0.0	84.1 82.5	5.2
Y054-23 Y054-38 Y054-63 Y054-85	Inc. Y854-23 Inc. Y854-38 Inc. Y854-63 Inc. Y854-85	9341 8862 8053 7893	32.4 27.3 35.1 38.1	32.92 30.34 27.71 26.59	27.8 26.5 34.6	14.18 14.60 14.50 14.85	0100	883.38 83.23 83.23	4440 6.22.1
Y054 R080	BYR-ER-FMR Y854 (C54) RZM R980	8304 9511	34.5 27.6	27.93 32.04	31.7	14.81 14.89	0.0	82.9 82.6	5.1
R022Y R722	Inc. R922Y Inc. F ₂ (Y54 x B.m.) (C50)	9531 6492	22.2 31.4	33.59 25.05	22.1 25.6	14.16 13.06	0.0	79.3 78.6	.43 88
0911 0913 9911-4 9911-12	9911aa x A 9911H49aa x A 8911-4aa x A 8911-12aa x A	10287 9775 11324 9760	22.4 26.5 21.1 28.5	35.47 33.26 37.58 34.14	21.9 24.5 16.7 21.8	14.47 14.72 15.03 14.31	0001	81.2 82.3 80.9 83.1	4ოოო ი.თ.4ო
Z010H12 Z012H12 Z014H12	9912aa x Polish(C) 9912aa x Polish-2 9912aa x Polish-4	9504 9069 9848	29.3 35.1 38.6	30.37 29.26 30.93	27.5 33.6 34.8	15.64 15.49 15.91	000 4.00	82.7 83.4 84.4	.00 .00 .00
Z010	Inc. Polish(C)	7473	32.3	24.95	22.9	15.19	1.9	78.3	5.0

TEST 1591. BYV INOCULATED EVALUATION OF SELECTED LINES, 1991

(continued)

Mean Yellows 7	40400 6000	0000 0000	4.42 0.57 13.01 12.16**
RJAP	377303 337303 337503	81.1 79.2 78.3	82.29 2.83 2.43 2.03** 13.76*
Se Loss Prs	100010	0.6	
Sucro	16.61 16.04 16.55 15.83	14.01 12.54 11.82	14.87 0.93 4.35 15.52** 19.78* 2.03**
Vield Loss	25.8 36.2 32.9 32.9	15.3 36.9 52.5	
Beets Y Inoc.	21.51 21.55 23.39 21.69 22.31	30.82 24.57 15.08	30.31 4.90 9.96 24.66** 557.78**
Yield 8 Loss	337899 37899 37899 377899 3778	18.8 40.1 58.9	90 58** 09**
Sugar Inoc.	7155 6915 7818 7182 7039	8637 6161 3593	9030 1629 10.99 19.55
Description	Inc. Polish-1 Inc. Polish-2 Inc. Polish-3 Inc. Polish-4 Inc. Polish-7	Inc. C37 (86443) Inc. 868 (US 75) Inc. SP22-0 (L80466)	variety virus treatment variety x virus
Variety	Z011 Z012 Z013 Z014 Z017	Checks U86-37 768 SP7622-0	Mean ISD (.05) C.V. (%) F value for Y F value for Y

Score from 0 to 9 (100% of ⁷Mean virus yellows scored from 6/18/91, 6/28/91 & 7/18/91. matured leaf canopy yellowed.

8% losses calculated from difference between noninoculated and inoculated. Because there were only 4 reps of each variety per treatment, experimental error will be fairly large. Based upon prior experience, a 104% deviation can be expected. However, for the checks C37, US75, and SP22-0, the measured values of 19, 40, and 59% losses are near expectations.

VARIETY TRIALS, BRAWLEY, CALIFORNIA, 1990-91

USDA-ARS. Irrigated Desert Research Station

Tests were located in 88 beds on the south side of block J. Rotation previously had not included sugarbeet. All fertilizer was applied preplant as 46:0:0 and 11:52:0 for a total of 155 units of N and 166 units of P_2O_5 .

	Summar	y: Arra	angement	of 1990-91	Tests		
	_						No.
	Entries		Row	Plot			Sugar
Test	per	No.	per	Length	Harv.	Test	Samples/
No.	Test	Reps	_Plot≤_	(ft)	Date	Design	Plot
B19 1	2	6	2	12.0	Ι	1	2
B291	32	8	1	24.0	5/22	RCB	1
B391 ³	32	8	1	24.0	5/21	RCB_	2
B491 ⁴	96	4	1	10.5	5/17	RCB ⁵	1
B591	32	8	1	24.0	5/16	RCB	1
B691	32	8	1	24.0	5/15	RCB	1

Planted 9/24/90. Watered 9/27 by sprinkler. After emergence, watered by furrow on 10/30, 11/26, 1/3/92, 2/5, 2/26, 3/21, 4/9, and 4/23. Thinned 10/18-19/90. 0.67 pints/acre of Methonyl for fleabeetle control applied 10/11/90.

Remarks - During mid-winter, petiole nitrates were at normal levels; but for each subsequent sampling date were increasingly higher than commercial average. Tests were uniform and had no cultural problems. LIYV was low, probably less than 10% incidence based upon ELISA from Test B191. BWYV incidence was probably 100%, but infection occurred mid-season to late, when there had been heavy aphid infestations. Powdery mildew was not controlled and was moderate. Very little wet root rot occurred. A surface rot (black scruff) possibly caused by Phoma occurred on some genotypes and caused moderate damage on highly susceptible hybrids. Mites and Empoasca infestations were light up to May 1, 1991 but were moderate by harvest time. Bolting was higher than usual, probably due to a very cold December. Though this block did not have a history of sugarbeet or evidence of rhizomania, breeding materials with rhizomania resistance and/or from the rhizomania resistance breeding program did relatively better than expected. Also, in the near absence of LIYV, some breeding lines performed differently than expected based upon prior testing under LIYV conditions.

Acknowledgement - Clifford Brown, IDRS, for managing these trials.

¹Split-block with 2 varieties x 4 planting dates x 3 harvest dates.

Test in Field N.

²Rows 30" wide.

³ Area 5 Coded Variety Trial.

⁴96 x 4 half-sib progeny test. ⁵Incomplete blocks with 12 entries per set.

NO EFFECTS OF DATE OF PLANTING, VARIETY AND DATE OF HARVEST LIYV INCIDENCE AND YIELD IN IMPERIAL VALLEY, 1990-91 B191 TEST

RCB 2 varieties) in 6 replications treatments (4 planting dates x x 3 dates in split-block x ω

LIYV Inf.	25. 5.	0000		3.75
Nitrate <u>Nitrogen</u> <u>rating</u>	4.1	4ww4 0w00	43.0 4.0 0.0	6. 4. 00 1 6. 4. 00 1 6. 4. 00 0. 0. 0 6. 6. 00 1 6.
Clean <u>Beets</u>	993 8	99993 7 1	000 604 602	0
Beets/ 100 ft No.	153 154	127 152 156 170	171 139 151	154 1054 1105.3 170.9 100.9 100.0 100.9 10
% Bolters	0.7	00H00 0	0.00	3200. 4.4.000. 8.000. 1.000. 1.000. 1.000. 1.000. 1.000.
\$ Sucrose	14. 14.9	11111 4411 •••••5	14.4 14.6 15.0	14.6 0.** 0.** 16.** 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Vield Beets t/a	24.3 28.0	2200 8200 3200 3200 3200	23.0 26.4 29.1	26.22 26.22 27.20 20
Acre Sugar Ibs/a	6992 8361	9380 8473 7563 5290	6605 7704 8721	7677 **54 301 123.47 203.14 7.65 97.65 1.3NS
	<u>Treatment</u> Varieties US H11 HH 41	Planting Date 8/30/90 9/20/90 10/11/90 11/01/90	Harvest Date 4/23/91 5/18/91 6/18/91	Grand Mean Varieties LSD(.05) Plant Date LSD(.05) Harvest Date C.V.(%) V x P x H F value Varieties F value Plant Date F value W x P F value W x H F value P x H F value P x H

LIYV incidence in Imperial Valley in 1990-91 was low. However, pattern of infection was similar to that obtained in 1989-90, Test B190, page A64, 1990 Report. This test was a repeat of the B190 test to determine the effects of variety, planting date, and harvest date on incidence of LIYV and yield. The highest yielding treatment was HH41 planted 8/30/90 and harvested 6/18/91 (11,730 lbs/a). The lowest was US H11 planted 11/1/90 and harvested 4/23/91 (4,070 lbs/a). Note

TEST B291. PERFORMANCE OF MULTIGERM GERMPLASM, BRAWLEY, CA., 1990-91

27 ₁₉₉₀ 1991	Nitrate Nitrogen	4.4 5.1 5.0	4444 លិលលិល	4444 6000	4444 4484	4444 & 0 E &	4444 0.0.0.0
September May 22,	Clean Beets	95.4 95.0 91.2	995.6 93.51 95.1	00000 80000 00000	93.3 94.5 92.7	94.4 94.3 94.7	00004 40004 •••00 04000
Planted: Se Harvested:	Beets/	122 140 143	130 130 143	130 133 145	143 140 130 138	133 130 131 135	139 144 137 137 94.8
Plar Harv	.1	0.0 0.0 0.0	1230	4444 9629	6261 6466	3000	04004
	Bolters	8 8.0 1.0 1.4	04.00°C	0004 0000	7.0%4 7.0%0	0004	01001
	Sucrose	2 14.21 14.07 13.23	14.56 15.30 15.19	14.81 14.52 13.81 14.35	14.59 15.89 14.45 16.07	15.63 14.59 15.37 14.65	15.02 14.63 15.30 14.67
	Vield Beets	35.21 35.05 29.48	34.88 32.23 32.21	31.67 31.75 33.11 31.27	30.04 27.46 30.02 25.76	31.93 33.65 31.90 32.92	32.09 31.56 31.11 31.11
	Acre Sugar	10007 9889 7801	10147 9831 9802 9608	9362 9219 9113 8979	8771 8733 8696 8294	9964 9814 9792 9664	9631 9263 9176 9154 9094
:8 reps, RCB 24 ft. long	Description ¹	9807HO x R980 L41138 L786442	87-309H3 x R971-R980 87-309H3 x R947C5 (C47R) 87-309H3 x Polish #2 87-309H3 x Y939 (C39)	87-309H3 x Y746 (C46/3) 87-309H3 x Y731/S (C31/6) 87-309H3 x R920 (C94) 87-309H3 x R939C5 (C39R)	87-309H3 x Y947 (C47) 87-309H3 x Polish #1 to 7 87-309H3 x Y948 (C93) 87-309H3 x Polish #4	87–309H3 x Y854–38 87–309H3 x Y854–23 87–309H3 x Y854–85 87–309H3 x R980	87-309H3 x BYR Y854 87-309H3 x Y854-12 87-309H3 x Y854-63 87-309H3 x Y854-2 87-309H3 x Y854-2
32 entries x 1-row plots,	Variety	Checks R080H37 HH 41 US H11	MM lines R070H20 R047C5H20 Z012H20 Y039H20	Y846H20 Y931SH20 R020H20 R039C5H20	Y047H20 Z010H20 Y048H20 Z014H20	HS lines Y054-38H20 Y054-23H20 Y054-85H20 R080H20	Y054H20 Y054-12H20 Y054-63H20 Y054-2H20 Y954H20

PERFORMANCE OF MULTIGERM GERMPLASM, BRAWLEY, CA., 1990-91 TEST B291.

(continued)

Nitrate Nitrogen	Rating	J.	1.4	4.3	1.8	£.3	3.9	4.6	1.8	1.5	7.7	5.2	1.0NS
Ni:	Rat	7	7	7	7	7	(-)	4	4	4	J	16	
Clean Beets	o/o	94.8	94.3	96.1	94.8	95.0	94.0	95.1	95.8		2.1		
Beets/	No.	136	132	131	134	139	120	142	138	135.6	16.7	12.5	1.1NS
Root Rot2	Score	0.4	0.0	0.0	1.2	0.0	0.4	1.6	7.2	1.6	1.6	107.8	7.6**
Root Bolters Rot ²	%1	4.8	2.5	9.4	1.8	0.3	8.4	2.2	1.7		4.1		3.7**
Sucrose	o/e	14.43	14.48	14.90	14.66	14.60	15.06	14.15	14.24	14.7	0.8	5.5	4.1**
eld Beets	Tons	34.23	33.94	32.32	32.56	32.18	31.08	33.07	31.65	31.9	2.5	7.8	5.1**
Acre Yield Sugar Bee	Ibs	9854	9829	9625	9536	9388	9366	9329	9031	9367.6	845.5	9.5	3.0**
$ ext{Description}^{rac{1}{2}}$		87-309H3 x 8906-4	87-309H3 x 8909-37	87-309H3 x 8909-34	87-309H3 x 8906-7	87-309H3 x 8909-48	87-309H3 x 8909-7	$87-309H3 \times RZM 8909-11$	87-309H3 x 9911H49				
Variety		<u>S₁ lines</u> 0906-4H20	0909-37H20	0909-34H20	0906-7H20	0909-48H20	0909-7H20	9912H20	0913H20	MEAN	ISD (.05)	C.V. (%)	F value

selected for per se performance under BVV conditions in 1989. 8906-4 thru 8909-48 are S_1 families from MM, S_1^L , A:aa popns evaluated per se in 1989. 9807H0 = C306/2CMS. 309H3 = C562HO x C309. R980 = Y54R, 9911H49 = MM, S_1^L , A:aa popn-913. 8909-11 = Composite MM, S_1^L , A:aa popns-909, 910,911. Polish #1-7 = Y854-#'s are from individual HS families 1 BYR Y854 = C54 which was mass selected for resistance to BYV. 2n accessions from Poland.

² Root rot score was for a black scruff ($\frac{\text{Phoma}}{\text{Phoma}}$) where 0 = 0% of roots infected to 9 = 90-100% infected.

TEST B591. PERFORMANCE OF MONOGERM GERMPLASM, BRAWLEY, CA., 1990-91

1990	Nitrate Nitrogen Rating	3.4	32.3 3.1.85	4466 6 6	20000 2000 2000 2000	0000 0000	თოო 0 ოოოო
27,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4 4 7 7 7			
September May 16,	Clean Beets	95.4 92.4	9944 944 93.58	944 943.2 94.8	99999999999999999999999999999999999999	94 995 94.2	95.0 94.3 94.6
Planted: S Harvested:	Beets/ 100' No.	147 144	137 133 126 128	121 126 134 118	131 126 154 126 116	134 138 121	132 129 147 128
Plar Harv	Root Rot 2	0.0	0.525 0.555 0.555	01-22 01-22	32710	0.500	0114 0.00.0
	Bolters	1.3	7.0 9.7 13.1	4.7 12.8 6.0 17.2	3.55 13.58 36.44	6.5 7.1 5.6	15.1 5.3 13.5 6.8
	Sucrose	14.62 14.36	14.55 15.17 15.57 14.42	14.10 14.49 15.25 14.09	14.87 15.00 15.12 14.84	15.46 15.32 15.34 15.34	14.23 14.95 14.85 15.16
	Yield Beets Tons	35.19 33.09	38.39 35.62 33.94 36.08	36.84 35.54 33.12 35.74	33.22 32.50 31.81 31.36 30.37	36.13 36.33 34.48 33.21	34.85 33.19 31.56
	Acre Sugar Lbs	10281 9499	11195 10771 10548 10393	10354 10301 10093 10021	9875 9743 9612 9311 9004	11176 11112 10506 10122	9918 9902 9864 9553
32 entries x 8 replications, RCB 1-row plots, 24 ft. long	Description ¹	L41138 L786442	89-762-17CMS x R980 87-309H37 x R980 88-790-68CMS x R980 8767-30H0 x R980	89-312CMS x R980 89-313CMS x R980 87-309H3 x R980 9807HO x R980	F82-546H3 x R980 C742-24H0 x R980 87-309CMS x R980 C767-46H0 x R980 8767-20H0 x R980	9867H67aa x R980 9866H80aa x R980 9887H86aa x R980 9859H6aa x R980	9864aa x R980 9858aa x R980 9865aa x R980 9876H76aa x R980
32 entries 1-row plots	Variety	HH 41 US H11	mm lines R080H39 R080H23 R080H89 R080H52	R080H38 R080H40 R080H20 R080H37	R080H8 R080H42 R080H26 R080H54 R080H50	mm popris R080H113 R080H112 R080H115 R080H111	ROBOH133 ROBOH131 ROBOH132 ROBOH114

PERFORMANCE OF MONOGERM GERMPLASM, BRAWLEY, CA., 1990-91 TEST B591.

(continued)

Nitrate	Rating	2.8	2.9	2.9	3.0	2.8	3.4	3.0	3.0	2.6	,	3.0	6.0	27.6	1.9**
Clean	₩ ₩ ₩	95.3	94.7	95.5	94.8	94.9	93.5	94.0	92.9	95.3	70	***	1.5	1.6	2.1**
Beets/	No.	128	144	134	118	136	129	134	137	128	1316	0.101	18.6	14.3	1.8*
Root	Ø %I	1.0	0.5	0.5	1.5	1.0	3.5	3.5	2.0	7.5	c	۲۰٦	5.8	263.6	** 1.0NS
·	Bolters 3	8 و.	12.4	9.8	11.2	17.5	15.0	7.3	12.9	9.6	د 0	TO-7	11.0	107.7	2.6**
	Sucrose	15.70	15.35	15.07	15.70	15.14	15.17	15.61	15.19	15.19					3.0**
eld	Tons	36.57	36.28	36.43	33.34	33.65	33.61	32.11	32.14	30.91	۲ د	T . P)	2.8	8.4	
Acre Yield	Sugar	11458	11153	10974	10444	10181	10168	8866	9730	9391	10207	TO701	910.5	9.1	3.5**
	Describeron=	8790 – 54aa x R980	8790-15aa x R980	8790–6aa x R980	8790-55aa x R980	8790Laa x R980	8790-71aa x R980	8790-47aa x R980	8790-23aa x R980	8790 - 61aa x R980					
	variety	<u>S₁ lines</u> RO80H33	R080H30	R080H29	R080H34	R080H90	R080H36	R080H32	R080H31	R080H35	MEAN	ATC-TIL	ISD (.05)	C.V. (%)	F value

¹ R980 = Y54R, 8790L = mm, S^f, A:aa popn-790 (C4 by S₁RS). 8970-#'s = selected S₁ lines from popn-790 (C4) tested per se in 1989 in progeny tests at Salinas (Nov. planted and BYV infected) and Brawley (#'s 54, 15, 55 selected on basis of Imperial Valley performance). This is a different set of lines than any C790-# lines tested or released previously. 309H3 = C562CMS x C309. C306CMS x C309. 9807H0 = C306/2CMS. 9858-9887H86 = mm, S^f, A:aa popns being converted to R₂. 9859H6 is similar to C563. 9865 is similar to C309. 9866H80 is similar to C310.

² Root rot score was for a black scruff ($\frac{\text{Phoma}}{\text{Phoma}}$) where 0 = 0% of roots infected to 9 = 90-100% infected.

TEST B691. PERFORMANCE OF POPULATION HYBRIDS, BRAWLEY, 1990-91

7, 1990 9 9 1	Nitrate Nitrogen <u>Rating</u>	8.0.	44464 64666	ww4www 440Hvv	8478 6816	4444 3.08 3.08 3.08
September 27 May 15, 19	Clean N Beets N	95.2 92.4	99995 994.52 93.74 5	9995 9955 9955 9955 9955 995	999 999 33.5 93.5 93.5 99	99999999999999999999999999999999999999
Planted: Se Harvested:	Beets/ 100' No.	129 145	126 126 1259 127	129 1230 1255 1255	137 129 132 129	129 138 132 134 135
Pla Har	Bolters	11. 4.0	104.14 E0E1E	0.000 0.000 0.000 0.000	7.4 18.0 8.4 4.7	00401w 40%0r4
	Sucrose	15.39 14.86	14.55 14.90 14.90 14.57	15.63 15.56 15.47 15.36	14.94 14.96 14.35	15.09 14.97 15.46 15.46 14.93
	Vield Beets Tons	34.05 31.19	39.94 37.21 35.23 34.76 35.95	33.55 32.91 32.52 32.71 31.28	35.85 33.82 35.15	34.57 32.61 32.90 30.78 30.41
	Acre Y Sugar Lbs	10484 9290	11623 11356 10502 10474 10459	10455 10242 10135 10105 10003	10771 10123 10105 9845	10429 9746 9681 9474 9409
2 entries x 8 replications, RCB -row plots, 24 ft. long	Description ¹	L41138 L786442	89-762-17CMS x 9911H49 C762-17HO x Y854 89-313CMS x 9911H49 89-312CMS x 9911H49 9807HO x 9911H49	87-309H3 x 9911H49 87-309H37 x 9911H49 F82-546H3 x 9911H49 87-309CMS x R971-R980 87-309CMS x 9911H49 7776-21aa x Y854	er 9912aa x 9864 6237-14aa x 8852 & 57 9911449aa x 9864 9912aa x 8790-S ₁ (C5)	9867H67aa x 9911H49 9864aa x 9911H49 9866H80aa x 9911H49 9859H6aa x 9911H49 9876H76aa x 9911H49
32 entries x 1-row plots,	Variety	checks HH41 US H11	mm lines 0913H39 Y954H39 0913H40 0913H38	0913H20 0913H23 0913H8 R070H26 0913H26 Y954H59	MM x mm tester 0864H12 9867H33 0864H13 0790H12	mm popns 0913H113 0913H133 0913H112 0913H111 0913H114

PERFORMANCE OF POPULATION HYBRIDS, BRAWLEY, 1990-91 TEST B691.

(continued)

1 7776-21 = HS line. 546H3 = C562HO x C546. C309H3 = C562HO x C309. C309H37 = C306 x C309. 9807H0 = C306/2CMS. 9859H6 - 9987H86 = mm, S^{L} , A:aa popns being converted to R_{Z} . 9865 & 8855 are similar to C309. Y854 is similar to C54. 9237-14 = FS line from popn-909. 9912 = MM, S^{L} , A:aa, R_{Z} popn. 9911H49 = MM, S^{L} , A:aa, R_{Z} popn. 0864H13 and 0913H133 are reciprocal population hybrids made with aa.

TEST B391. CODED VARIETY TRIAL: AREA 5, BRAWLEY, CA, 1991

No on rating Planted: September 27, 1990 8.4.6.6 8.0.8.7. 3.5 3.7 4.3 3.6 Harvested: May 20, 1991 Beets Clean 93.3 93.7 94.8 95.5 92.5 93.9 93.6 93.5 94.4 94.5 94.2 94.5 93.0 93.7 94.3 96.1 % Beets/ 100 147 148 144 138 8 143 144 161 150 151 147 132 147 139 150 150 139 147 139 138 153 Root 0.0 0.2 0.0 0.8 0.0 0.0 0.2 0.1 0.0 Rot 0.0 % Bolters 9.7 4.6 21.9 1.3 1.2 3.9 2.6 10.0 10.0 20.9 3.9 5.9 4.6 9.5 12.9 4.9 3.7 6.9 7.8 2.2 % Sucrose 13.90 14.39 14.89 14.66 13.39 13.75 14.72 15.46 14.22 14.80 13.86 14.09 14.19 14.77 14.44 40.26 37.03 37.16 36.64 32.82 34.71 35.56 33.95 35.36 35.89 39.12 35.43 37.35 34.55 36.97 35.93 35.42 35.06 35.55 Beets Tons Acre Yield Sugar 10520 11210 10270 10930 10690 10580 10470 10170 10120 10100 10440 10140 9960 9927 9873 10150 10060 8966 lbs Source Beta Beta SS HS Beta Beta HS HS SS Beta SS SS USDA SH SH H SS H 出出 32 entries X 8 reps, RCB 1-row plots, 27 ft. long 87C40-011 Variety 87C40-08 9BG6372 9BG6346 0BG6486 8BG6329 8BG6332 X047H23 3690GE H90543 HM3013 HM3014 H90547 H86519 H88589 HM3015 HH77 HH70 69HH HH41 Code **-**16 -15 -21 - 4 -22 -20 -27 **-**19 9 -26 A5- 6 -12 1 I 8 H -10 -32 1 1

TEST B391. CODED VARIETY TRIAL: AREA 5, BRAWLEY, CA, 1991 (continued)

NON	rating	3.5	3.5	3.1	4.5	4.0	3.8	4.0	3.5	89	3.4	3.6	4.1	3.7	0.5	14.5	2.3**
Clean Beets	% I	93.6	93.6	91.7	94.6	92.4	93.8	94.4	91.3	93.8	91.6	91.2	92.3		1.5		2.0**
Beets/ 100'	No.	131	148	145	146	146	133	148	138	148	154	137	143	145	14.1	6.6	1.7*
Root	o/∘I	2.2	0.1	0.5	0.1	0.3	1.0	0.0	1.1	0.1	0.1	0.3	0.1	0.4	0.4	107	12**
Bolters	% I	12.6	16.3	1.8	9.6	0.9	16.8	16.5	3.5	2.8	1.1	1.2	1.2	7.5	4.8	64.5	12.2**
Sucrose	o%l	14.00	14.23	14.69	13.21	14.23	14.10	13.68	14.26	14.65	16.02	14.61	13.65	14.36	0.46	3.22	14.5**
Zield Beets	Tons	35.24	34.42	33.20	36.87	34.04	34.11	35.11	33.71	32.54	29.34	31.23	32.92	35.00	2.48	7.19	**0*9
Acre Yield Sugar Bee	sqI	9863	9800	9754	9738	8696	9624	9624	1096	9523	9402	9123	8979	10032	740	7.5	3.4**
Source		USDA	SS	HS	SS	Beta	USDA	Beta	HS	HS	Beta	HS	CBGA				
Variety		R080H23	H90280	HH79	H89262	0BG6177	Y048H23	0BG6488	HH80	НН66	9BG6270	87C40-012	US H11				
Code		A5-30	- 29	-28	-14	-25	-31	_ 7	- 2	-17	-18	-13	-24	Mean	ISD (.05)	C.V. (%)	F value

TEST B391. CODED VARIETY TRIAL: AREA 5, BRAWLEY, CA, 1991 (continued)

Recover. Sugar	Ibs/Ton	238	259	254	254	263	252	228	257	237	279	259	232	272	256	249	265	237	245	248	237	244	244	260	231
Recover. Sugar	o/o	85.6	87.6	88.2	87.9	88.6	85.9	85.1	87.4	86.4	89.1	88.1	84.5	88.1	87.9	87.4	89.4	85.5	87.0	87.3	85.3	87.2	85.7	88.6	87.2
Recover. Sugar	<u>Ibs/Acre</u>	9631	9587	9434	9312	9315	9033	8902	9136	9688	9110	8962	8597	8934	8902	8833	9005	8550	6998	8658	8446	8616	8399	8648	8521
Amino Nitrogen	Mdd	390	391	352	318	342	453	377	401	415	357	386	479	404	357	401	322	452	364	427	450	386	473	414	328
Potassium	PPM	3131	2772	2531	2698	2562	2952	3032	2790	2904	2613	2512	3170	2741	2656	2598	2343	2826	2763	2663	2928	2695	2983	2498	2585
Sodium	<u>PPM</u>	470	427	456	482	457	557	583	434	326	399	472	444	402	463	428	399	545	487	324	526	417	447	257	417
Source		Beta	HM	SS	HM	Beta	SS	Beta	SS	HS	Beta	HS	HS	Beta	HS	HS	SS	SS	USDA	HS	HI	USDA	SS	HS	SS
Variety		9BG6372	HM3013	H90636	HM3014	9BG6346	H90543	0BG6486	H90547	HH77	8BG6329	HH70	87C40-08	8BG6332	69HH	HH41	H86519	H88589	Y047H23	87C40-011	HM3015	R080H23	H90280	HH79	H89262
Code		A5- 6	-16	-27	-15	-21	- 4	-22	-20	-11	-19	6	-12	-23	-26	- 1	∞ I	-10	-32	1	ო 1	-30	-29	-28	-14

TEST B391. CODED VARIETY TRIAL: AREA 5, BRAWLEY, CA, 1991 (continued)

Test was harvested wet (3 weeks off water). Test had good stands and was uniform. LIYV infection yield, and % sucrose is probably good. Reliability for recoverable sugar per acre and per ton is suspect a black scruff, probably caused by Phoma, which ranged on individual roots from slight to moderate where 0 = 0% of roots infected to 9 = 90-100% of roots infected. Test reliability for gross sugar yield, root had high nitrogen status. No Erwinia root rot or other soft rots were observed. Root rot score was for was low, probably less than 10%. BWYV infection was high. Powdery mildew was mild to moderate. Test because of high experimental error involved with the measurement of Na, K, and NH₂-N. Codes 30, 31, and 32 are USDA experimental hybrid fillers: 30 = R080H23; 31 = Y048H23; and 32 = Y047H23, where $H23 = C306 \text{CMS} \times C309$. Notes:

RHIZOMANIA TRIALS, SALINAS, CALIFORNIA, 1991

U.S. Agricultural Research Station

A series of three plantings in four field plot areas were made in 1991 to evaluate reaction to rhizomania.

Spence Field Trials - Tests 2291 through 2891 were planted May 8, 1991 in Block 2, north (3 acres) where rhizomania was known to occur. Rhizomania was moderate to severe in these tests. These trials were primarily used to evaluate reaction to rhizomania using yield performance. Powdery mildew was not controlled and became moderately severe. Seedlings showed some evidence of damping-off due to Aphanomyces. Cyst nematodes were moderate in some areas.

Field C and B, Research Station - Tests RZM 191 through RZM 1091 and RZM 3191 through RZM 3491 were planted June 6, 1991. Tests RZM 991 and RZM 1091 were under severe conditions in Field B. Tests RZM 191 through RZM 891 were under moderate conditions. For this area, infested soil was dribbled into the seed line in 1990 and beets grown for about 3 months. In 1991, after listing beds, infested soil was again applied in the seed line prior to planting. The subsequent development of symptoms was only moderate. Tests RZM 191 through RZM 691 and RZM 1091 were to evaluate resistance using yield as the criterion. Tests RZM 791 and RZM 891 were inheritance and allelism tests. Tests RZM 3191 through RZM 3491 were planted in the rows bordering the other yield tests and contained the sprinkler line laterals. Because of higher watering rates, Tests RZM 3191 through RZM 3491 showed somewhat more severe rhizomnia. Powdery mildew was not controlled.

Field A, Research Station - Tests RZM 1191 through RZM 2491 were planted August 6, 1991. These tests were primarily involved in the evaluation and selection of resistance to rhizomania. Tests RZM 2291 through RZM 2491 were also to evaluate and select for resistance to cyst nematode. obtain one cycle of selection for rhizomania and/or nematode resistance per year, seed obtained from the previous year's mother root selections is planted in late July or early August. After 4 months growth under severe rhizomania conditions, mother roots are selected for resistance based upon visual criteria. After 4 months cold induction and 3-4 months reproductive growth, seed is obtained in mid-July for the next cycle of selection and evaluation. Tests 2291 through 2891 at Spence Field, Tests RZM 191 through RZM 1091, and Tests RZM 3191 through RZM 3491 were used to evaluate breeding materials previously developed in this rhizomania resistance breeding program. In addition, lines and experimental hybrids from the rhizomania program were evaluated in all other trials at Brawley and Salinas.

RHIZOMANIA EVALUATION OF CO TO C6 SYNTHETICS OF Y39 & Y47 SALINAS, CA., 1991 TEST 2491-1.1

Planted: May 7, 1991 Harvested: October 29–30, 1991 16 entries x 8 replications, RCB 1-row plots, 18 ft. long

P.M. Score	Avg.	7.2 7.3 8.4 6.6	044444 088440	400000 640000	5.50 1.06 19.4 10.7**
RJAP	0/0	882.0 83.4 83.4	83.6 83.5 82.5 84.1	8888888 40222 4000000	83.25 2.37 2.9 1.0NS
Bolters	0/0	0000	000000 40004%	000000	0.10 0.53 544.3 1.4NS
Beets/ 100'	No.	209 213 192 163	190 193 205 205 170 191	203 203 207 184 209	196.51 20.53 10.5 3.9**
Sucrose	p\0	12.36 14.35 15.08 14.85	14.72 14.81 14.70 14.68 14.66	14.55 14.04 14.27 14.38 14.38	14.42 0.59 4.2 8.5*
<u>Yield</u> Beets	tons	15.82 22.10 20.24 21.26	19.56 24.98 24.83 22.78 23.75 25.57	18.02 20.145 20.145 22.34 22.34	21.58 2.87 13.4 6.4**
Acre Y Sugar	Ibs	3918 6340 6094 6332	5764 7405 7310 6691 6982 7596	5204 6039 5833 5708 6412 6311	6246.1 829.9 13.4 9.4**
Description		L 786442 Holly 1493302 SES (3/15/89) Inc. Y939 (C39)	Inc. Y339 RZM R639 RZM R739(3) RZM R839C4 Inc. R939C5 RZM R939C5	YR-ER-PMR Y347 RZM R647 RZM R747 RZM R847C4 Inc. R947C5 (C47R)	
cycle ²			884888	884888	
Variety		US H11 Rhizosen Rima Y039	Y439 R739C3 R839C4 R939C5 R039C5 R039C6	Y547 R747 R847 R947C5 R047C5 R047C6	Mean ISD (.05) C.V. (%) F value

Test 2491. RHIZOMANIA EVALUATION OF LINES. 64 entries x 8 replications, Incomplete blocks with 4 subtests each with 16 varieties x 8 reps, RCB. Thus, means across tests 2491-1, -2, -3, -4 can be compared. ¹Test 2491.

82.38 5.87 2.22 0.97 2.7 16.8 3.1** 10.0** 189.49 1.42 20.75 2.06 11.1 147.6 3.3** 59.5** 14.09 0.64 4.6 8.8** 22.52 3.37 15.2 * 6.3** 6353.5 946.2 15.2 8.2** 1 Mean ISD (.05) C.V. (%) F value

²Cycle of selection for resistance to rhizomania. Criterion of selection was root shape and size (freedom from visable rhizomania symptoms) when grown under rhizomania conditions in an August 1 to December 1 planting. CO = source population. Y039, Y439, and Y547 from virus yellows resistance breeding program. See Tests 691 & 1491 for performance under nonthizomania conditions.

RHIZOMANIA EVALUATION OF NEAR-ISOGENIC LINES, SALINAS, CA., 1991 TEST 2491-2.

1991	P.M. Score Avg.	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	6.8	4.4 6.5	5.1	6.2 4.24	6.3	5.84 0.95 6.5 4.7*
1 29-30,	RJAP S		82.0 82.5	82.3	83.6	84.1 81.8 84.1	84.2	82.98 1.96 1.9* 1.9*
May 7, 1991 : October 2	Bolters		0.0	0.0	0.0	000	0.0	0.0
Planted: Harvested:	Beets/ 100' No.	194 166 178 181	194 195	196 177	193 174	195 171 185	190	185.26 18.74 10.2 2.1*
	Sucrose	13. 14. 14. 13. 14. 14. 15. 16. 17. 18. 18. 18. 18. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	13.80	13.60 14.08	14.03 14.77	14.62 14.58	14.24	14.16 0.53 3.8 3.3**
	Yield Beets tons	255.31 23.50 23.70 24.37	16.95 20.97	19.32 23.32	20.09	19.87 26.08 25.14	24.62	22.55 3.24 14.5 5.6**
	Acre Yi Sugar Ibs	5254 7243 6985 6629 6961	4676 5956	5213 6556	5617 6851	5596 7597 7322	6950	6387.0 876.5 13.8 7.8**
16 entries x 8 replications, RCB 1-row plots, 18 ft. long	Description	YR-ER-PMR 7903 (A,aa) RZM 9911 (A,aa) 9911aa x 9911149 RZM 9911149 (A,aa) 9903aa x 9911149	Inc. C37 (86443) RZM R979	Inc. C31/6 (86263) RZM R976	Inc. C46/2 (86342) RZM R978C2	Inc. Y854 (C54) Inc. R980 RZM R980	Inc. R971-R980	
16 entries 11-row plots	Variety ¹	9903 0911 0913 0913 0915	U86-37 R079	F86-31/6 R076	U86-46/2 R078	Y954 R080 R080	R070	Mean ISD (.05) C.V. (%) F value

¹9903 = MM,S^f,A:aa population susceptible to rhizomania. Populations 911, 913, and 915 are backross populations to popn-903 that segregte for resistance to rhizomania. Lines R079, R076, R078, and R080 are the rhizomania resistant, near-isogenic equivalents of C37, C31/6, C46/2, and C54, respectively.

TEST 2491-3. RHIZOMANIA EVALUATION OF LINES DERIVED FROM PI206407 & B883, SALINAS, CA., 1991

1991	P.M. Score	AVQ.	6.1 7.1 5.1	4.07.00 0.00.10	5.8 7.3 8.0	0.0 0.0	6.45 0.78 12.2 10.3**	a se with
1991 sper 29-30, 1	RJAP	۱۹	82.9 79.5 82.8 81.3	888833 0.04.0 54.0	83.0 83.0 81.6 81.2	82.2 83.6	82.17 2.18 2.7 2.6**	rhizomania R030 = series with istant lines w. R004 =
May 7,	Bolters	% I	00%00 00400	00000	0000	1.6	0.39 1.26 324.0 * 3.5**	vith PIO7. alent s ia resi ery low
Planted: Harvested:	s'	·	211 180 181 185 177	189 181 186 172	193 185 169 177	177 171	182.39 15.50 8.6 3.3**	0640 fro equi zoma is is
	Sucrose	⁄∘I	13.72 14.89 13.36 13.53 14.11	13.26 13.55 13.49 14.23	14.66 13.61 13.81 13.57	12.83 15.40	13.92 0.65 4.7 9.0**	CC37 Aresis RO31 ar NO72 Tuency
	Yield Beets	COUS	18.07 21.62 24.33 26.41 24.83	20.65 24.72 23.72 27.10 26.12	26.73 23.37 22.35 19.92	26.09 23.46	23.72 3.14 13.4 5.5**	
		SOT	4952 6444 6448 7162 7018	5471 6699 6369 7711	7835 6357 6165 5409	6670 7236	6603.2 842.2 12.9 7.9**	resistance. of C37 with 0, R929C1, R ble base. N 83. However
16 entries x 8 replications, RCB 1-row plots, 18 ft. long	Description		Inc. C37 (86443) RZM R979 RZM 8828-# RZM 9221 RZM 9225	4747aa x A RZM 9910H47 RZM 8229-# RZM 9223 RZM 9228	RZM 9911H49(A,aa) NR-RZM 9201,2 NR-RZM 9205,7,8 NR-RZM 9210-14	RZM R904 9912aa x Polish		of C37 with R2 R028 = BC F3 D7)] 5747, 091 mania suscepti derived from B8 accession from
16 entries x 1-row plots,	<u>Variety</u> l		U86-37 R079 R928C1 R028 R030	5747 0910 R929C1 R029 R031	0913 N012 N042 N072	R004 Z010H12	Mean ISD (.05) C.V. (%) F value	1R079 = near-isoline or resistance from P107, F2[C37R, x (C37 x P10) popn-747 as the rhizonania resistance resistant

SALINAS, CA., 1991 RHIZOMANIA EVALUATION OF LINES DERIVED FROM B.MARITIMA, TEST 2491-4.

, 1991	P.M. Score Avq.	0440 0.0.40	6.7 7.8 5.9	7.887	დდდა და40	5.72 1.10 19.3 11.3**
1991 ber 29-30,	RJAP	83.0 82.3 81.7	80.0 79.7 79.0 82.4	79.1 78.7 82.8 80.0	80.8 81.5 82.9	81.12 2.37 2.9 3.2**
May 7, Octo	Bolters	0000	4400 6400	4.3 27.9 25.8	0001	5.19 3.92 76.1 59.4**
Planted: Harvested:	Beets/ 100' No.	213 165 191 181	199 202 217 206	194 200 173 174	200 204 201 181	193.78 16.78 8.7 6.3**
	Sucrose	12.75 14.70 13.63 14.65	13.23 13.45 13.32 14.05	13.47 13.92 12.62 12.57	13.88 14.96 15.11 15.23	13.85 0.76 5.5 10.6**
	Yield Beets tons	16.62 27.73 18.24 25.76	20.95 23.86 29.42 23.34	22.14 23.83 13.85 19.97	22.52 22.59 22.24 22.48	22.22 2.90 13.2 14.1**
	Acre Y Sugar Ibs	4255 8137 4939 7542	5554 6422 7782 6563	5966 6629 3506 5028	6246 6726 6728 6821	6177.6 805.1 13.2 19.3**
16 entries x 8 replications, RCB 1-row plots, 18 ft. long	Description	L786442 Inc. R939C5 (C39R) Inc. Y854 (C54) RZM R980	Inc. F ₂ (Y54 x <u>B.m.</u>) RZM R722 RZM R922R Inc. R922Y, S	RZM R918 Inc. WB1-2 (Whitney) Composite (WB97 x C37) Composite (WB242 x C37)	RZM W1-89 (C92 x WB169) RZM W2-89 (C92 x WB258) RZM W3-89 (C92 x WB151) RZM W4-89 (C39 x WB151)	
16 entries 1-row plots	<u>Variety</u> l	US H11 R039C5 Y954 R080	R722 R922R1 R022R2 R022Y	R018 89-C58 EDW-6,7 EDW-8,9	90-W1 90-W2 90-W3 90-W4	Mean ISD (.05) C.V. (%) F value

A82

TEST 2491-5. OBSERVATION PLOTS OF S^f, mm, A:aa LINES FOR REACTION TO RHIZOMANIA SALINAS, CA., 1991

Planted: May 7, 1991 Harvested: November 4-6, 1991	Acre Yield qarBeets/Beets BeetsBolters No.B.M. Score 	32 10.64 12.99 167 0.0 79.92 3.5 74 21.81 13.93 142 0.0 80.49 6.5 39 13.30 13.52 164 0.0 87.84 4.8 36 21.38 14.00 147 0.0 83.97 6.3	74 12.64 12.94 175 0.0 86.09 4.8 58 16.75 13.58 156 0.0 83.29 7.5 43 8.07 13.29 128 0.0 83.60 7.0 37 17.00 14.36 142 0.0 81.35 7.3	10 8.43 13.78 175 0.0 81.82 6.8 36 15.42 14.57 153 0.0 80.26 6.8 35 22.42 14.51 145 0.0 82.70 6.8 57 17.74 14.53 164 0.0 83.26 7.8	19 21.64 14.90 159 0.0 83.21 8.3 57 18.58 14.40 170 0.0 84.97 7.0 92 25.02 13.98 172 0.0 84.44 3.5 38 14.75 13.34 156 0.0 80.33 7.5	59.9 16.60 13.91 157.07 0.0 82.97 6.36 10.0 4.63 1.18 20.50 4.52 2.29 15.5 13.1 4.0 6.1 2.6 16.9 6.1 ** 2.0
16 entries x 2 replications 1-row plots, 18 ft. long	Variety Description Sugar Sugar Ibs	0755 BYR-ER-FMR 8755 (C310) 279 0866 RZM 9866H80 (C310R _Z) 607 0787 BYR-ER-FMR 8787 359 0887 RZM 9887H86 (787R _Z) 600	0790 8790-S ₁ (C)aa x A 0790H124 9876mmda x 8790-S ₁ (C) 455 F82-546H3 C562HO x C546 0859 RZM 9859H6 (C563R _Z) 488	87-309 Inc. C309 231 0865 RZM 9865 (C309R _Z) 449 0867 RZM 9867H67 650 0864 9864aa x A 516	0864HO 9867H68 x 9864 644 0876 RZM 9876H76 0914 RZM R939/4H44 699 US H11 L786442	Mean (.05) 154 C.V. (%) 154

TEST 2291. RHIZOMANIA EVALUATION OF LINES AND HYBRIDS, SALINAS, CA., 1991

6, 1991	P.M. Score Avg.	800 800	ის. დ 0.4 .	4.7.0 6.8.0	4.4	3.8	, , , , ,	66.7
1991 mber	RJAP %	84.0 83.0 79.8	82.4 82.8 81.7	83.6 83.8	85.4 83.2 82.0	8882	80.8 82.2 83.7	82.3 81.2 81.8
Planted: May 7, Harvested: Nove	Root Rot	000	000	000	0.00	000	000	0.0
Plante Harves	Bolters	000	1.5	000	000	000	000	000
	Beets/ 100' No.	169 156 159	136 160 155	138 167 152	162 167 167	151 166 165	157 164 151	147 152 160
	Sucrose	12.66 14.51 14.74	14.27 14.02 14.12	14.47 14.10 14.74	14.04 13.71 14.20	13.83 13.63 14.65	14.29 14.37 13.96	14.56 14.59 14.70
	Acre Vield gar <u>Beets</u> s <u>tons</u>	15.57 21.89 21.70	21.28 22.65 24.89	19.76 18.82 20.19	21.81 20.18 22.62	18.05 18.47 23.13	25.89 23.15 25.39	24.32 23.58 21.96
	Acre Sugar Ibs	3943 6333 6398	6089 6354 7000	5735 5296 5951	6130 5532 6440	5027 5055 6779	7393 6650 7080	7082 6890 6438
30 entries x 5 replications, RCB 1-row plots, 18 ft. long	Description	L786442 Holly (L493302) SES	Line & Hybrid combinations R039C5 Inc. R939C5 (C39R) R039C5H18 88-790-68H26 x R939C5 R039C5H132 9865aa x R939C5	Inc. Y939 (C39) 88-790-68H26 x Y939 9865aa x Y939	Inc. R947C5 (C47R) 88–790–68H26 x R947C5 9865aa x R947C5	Inc. Y947 (C47) 88-790-68H26 x Y947 9865aa x Y947	Inc. R971-R980 88-790-68H26 x R971-R980 9867H67 x R971-R980	Inc. R980 88-790-68H26 x R980 9865aa x R980
30 entries ; 1-row plots	Variety ¹	Checks US H11 Rhizosen Rima	Line & Hybr. R039C5 R039C5H18 R039C5H132	Y039 Y039H18 Y039H132	R047C5 R047C5H18 R047C5H132	Y047 Y047H18 Y047H132	R070 R070H18 R070H113	R080 (Sp) R080H18 R080H132
				_	0.4			

TEST 2291. RHIZOMANIA EVALUATION OF LINES AND HYBRIDS, SALINAS, CA., 1991

(continued)

,		Acre Yield	ield		Beets/		Root		P.M.
Variety ¹	Description	Sugar	Beets	Sucrose	100,	Bolters	Rot	RJAP	Score
		<u>lbs</u>	tons	%	No.	%	o/ol	o/ol	Avg.
R020	Inc. R920 (C94)	5439	21.12	12.89	154	0.0	0.0	80.4	5.5
R020H18	88-790-68H26 x R920	5325	20.26	13.14	155	0.0	0.8	82.5	6.2
R020H132	9865aa x R920	6557	23.89	13.75	161	0.0	0.0	82.3	7.1
0913	9911H49aa x A	7287	25.78	14.13	146	0.0	0.0	83.4	5.4
0913H18	88-790-68H26 x 9911H49	5835	20.40	14.30	167	0.0	1.3	81.0	8.9
0913H132	9865aa x 9911H49	6985	24.45	14.32	164	0.0	0.0	81.4	7.0
2010	Inc. Polish acc. 1-7	3244	11.13	14.58	130	0.0	0.0	82.1	5.7
Z010H18	88-790-68H26 x P1-P7	4069	15.38	13.19	151	0.0	0.0	83.7	5.7
Z010H113	9867H67aa x P1 - P7	5032	18.06	14.03	158	0.0	0.0	83.0	9.9
Mean		5978.9	21.19	14.08	156.13	0.05	0.14	82.56	5.87
ISD (.05)		983.3	3.25	0.68	17.02	0.79	0.81	3.05	1.16
C.V. (%)		13.1	12.2	3.8	8.7	1224.7	459.3	3.0	15.8
F value		8.6**	8.4**	5.1**	2.6**	1.0NS	1.7*	1.3NS	6.8**

Note: Moderate rhizomania. Moderate powdery mildew infection.

¹Entries in sets of three where first member is a multigerm line; the second member is a rhizomania susceptible monogerm toporossed to the MM line; and the third member is a monogerm line that segregates for resistance to rhizomania topcrossed to the MM line.

TEST 2391. CBGA CODED RHIZOMANIA TEST, SALINAS, CA., 1991

1991	RJAP	83.1 82.2 82.6 83.4	882.8 832.8 83.3	83.5 83.1 82.0 82.6	82.6 83.8 83.2	82.5 81.1 83.5 81.7	83.9 84.2 83.1
y 7, 1991 November 4-5,	PM Score Avg	6.0 6.1 7.	72.08.0 70.08.0	5.72	57.00	0000 0000	7.1 7.2 6.1 6.7
wa.	Beets/ 100' No.	130 137 175 152	154 136 160 138	152 155 131 163	154 152 154 164	138 140 146 163	158 155 162 174
Planted: Harvested	Root Rot-3	0000	0000	0.00	0000	0000	0000
	Bolters	0000	0000	0000	0000	0000	0000
	Sucrose	14.03 13.99 14.82 14.88	14.49 14.44 14.67 14.62	14.97 14.37 13.85 13.67	13.39 14.25 14.65 14.26	14.15 14.15 14.17 14.94	14.26 13.92 14.19 14.33
	Yield Beets Tons	26.09 25.85 24.30 23.95	24.58 24.27 23.63 23.43	22.80 23.49 24.38 24.54	24.92 23.37 22.73 22.79	22.94 22.79 22.58 20.88	21.62 22.14 21.31 21.09
	Acre Sugar Ibs	7340 7202 7187 7150	7110 6955 6907 6851	6832 6760 6743 6712	6659 6650 6636 6503	6481 6452 6417 6241	6178 6145 6053 6044
RCB ong	Source	Holly Holly Sprec Holly	Holly USDA Sprec Sprec	Holly Holly Holly Holly	Holly Sprec Holly Beta	Holly Holly Holly USDA	USDA Holly Holly Sprec
13 entries x 10 reps, RCB -row plots, 18 ft. long	Variety ¹	90C 64-02 90C 59-05 H88289 90C 61-03	90C 61-06 C39R5 H88293 SS-334R	90C 63-03 90-1459-0168 90C 60-05 90U-03	90U-05 H88292 90-1459-0154 4581	90C 64-03 90C 64-05 90-87C34-04 Rima	Rhizosen 90–87C34–09 90–1459–0161 H88287
33 ent 1-row	Code	11 7 19	26 24 18	23 31 31	22 13 29	17 12 3 4	15 16 33

TEST 2391. CBGA CODED RHIZOMANIA TEST, SALINAS, CA., 1991

(continued)

RJAP	83.3 82.8 82.7	883.2 882.3 82.3 92.3	82.84 1.54 2.12 1.68*
PM Score Avg	5.75 5.74 8.84	2000 2000 2000 2000 2000 2000 2000 200	6.31 0.87 15.64 7.01**
Beets/ 100' No.	139 156 159	159 162 152 159	152.97 13.01 9.66 5.76**
Root Rot-3	0.000	00000 40640	0.14 0.60 484.94 1.49*
Bolters	0000	00000	
Sucrose	13.81 14.13 14.18 13.53	14.10 13.28 13.67 13.33	14.13 0.39 3.17 * 13.11**
Yield Beets Tons	21.45 20.43 19.92 20.72	19.60 20.68 18.56 18.67 15.59	22 22.31 00 2.81 30 14.29 94** 5.08**
Acre Sugar Ibs	5912 5757 5651 5588	5524 5481 5041 4971 3973	6306.22 794.00 14.30 6.94
Source	Holly Holly Sprec Holly	Holly Holly Holly USDA	
Variety ¹	90C 59-03 90-88C11-09 SS-462R 90-87C34-06	90C 63-016 90-88C11-02 90C 62-05 90-88C11-05 US H11	05) :} !e
Code	32 28 25 25	20 27 10 30	MEAN ISD (.05) C.V.(%) F value

¹Checks were US H11 (susceptible), C39R5 (moderately resistant), and Rima (moderately resistant).

²FM was scored on a scale of 0 to 9 where 9 = 90-100% of leaf area covered. FM was scored on 9/10/91 and 9/23/91. No FM chemical control was used. Disease development was late but reached a high level, then after 10/1/91 decreased in severity to nearly nil at harvest. Highly susceptible varieties, such as Rima, probably had differential loss due to FM.

 $^3\mathrm{Root}$ rot was primarily due to Erwinia.

Test was moderately uniform and moderately severe for rhizomania. Although differential yield performance was probably partially due to differences in yield potential and adaptation, observations within this test and from adjacent USDA tests suggested that the most important factor was level and uniformity of resistance to rhizomania. Note:

RHIZOMANIA EVALUATION OF LINES DERIVED FROM FORT COLLINS GERMPLASM, SALINAS, CA., 1991 TEST RZM 191.

1991	Soil Tare	1.7 4.1 5.9	იღი. განი. 1909	7.1	7.8	7.3	5.9 4.1 49.4 1.9NS
ne 5, 1991 November 25,	P.M. Score Avg.	7.3 6.1 6.0	00000 0.1480	3.30 2.30 3.30	4.0	7.8 8.1	6.5 1.0 10.6 5.8**
ď.	RJAP	73.1 74.7 73.4 71.8	67.2 69.5 67.5 70.5 68.2	67.1 66.8 67.4	71.6 70.1	70.3	70.0 5.2 5.2 1.8NS
Planted: Harvested	Bolters	0000	00000	000	0.0	0.0	0.1 0.8 403.4 2.0*
	Beets/ 100' No.	200 169 216 206	198 213 216 211 233	213 219 225	206 228	188 219	210 25 8.5 3.2**
	Sucrose	8.42 11.81 11.93 11.98	00000 0.0000 0.0000 0.0000	10.08 9.72 10.78	10.28 10.61	11.38	10.41 1.52 10.3 4.3**
	Yield Beets Tons	12.10 20.51 19.08 17.18	18.80 20.14 19.59 17.07 21.41	18.81 18.81 16.69	17.20 19.92	17.06 16.41	18.17 3.32 12.8 3.6**
	Acre Yi Sugar Ibs	2047 4846 4613 4118	3417 3949 3741 3381 4119	3774 3640 3599	3512 4190	3845 3826	3789 892 16.5 3.9**
16 entries x 4 replications, RCB 1-row plots, 16 ft. long	Description	L786442 Inc. R939C5 (C39R) Inc. R947C5 (C47R) RZM R980 (C54R _Z)	RZM 6220-#'s RZM R720 RZM R820 (C94) Inc. R920 (C94) RZM R920	1 Rhizoc. R920 2 Rhizoc. R820 2 Rhizoc. R720	1 Rhizoc. R720 1 Rhizoc. R820	C790-68H26 x R920 9865aa x R920	
k 4 repli	Cycle ²	88	88228	2 22	38	11	
16 entries > 1-row plots,	<u>Variety¹</u>	US H11 R039C5 R047C5 R080	R720 R820 R920 R020 R020	911019 911020 911021	891041 901008	RO2 OH18 RO2 OH132	Mean ISD (.05) C.V. (%) F value

Rhizomania was mild-moderate. This plot area did not have rhizomania. In August 1990, infested soil was placed in the seed line and US H11 sown. After 3 months, the sugarbeets were killed with Roundup. Prior to planting in 1991, the seed line was again infested with rhizomania soil. Powdery mildew (PM) was not controlled and became severe on susceptible entries. Note:

¹R720 thru R020 were cycles 2 thru 5 selected for resistance to rhizomania from a base of Fort Collins and old GW lines (FC703, FC709, GW674, GW359). 911019 thru 911021 were reselections at Fort Collins by Dr. Hecker for resistance to rhizoctonia. See Fort Collins BSDF for rhizoctonia ratings. ²Cycle of selection for resistance to rhizomania.

TEST RZM 291. RHIZOWANIA EVALUATION OF LINES DERIVED FROM B.MARITIMA, SALINAS, CA., 1991

Planted: June 5, 1991 Harvested: 8 entries x 8 replications, RCB 1-row plots, 16 ft. long

		Acre Yield	<u>ie1</u> d		Beets/			P.M.	Soil
Variety	Description	Sugar	Beets	Sucrose	100,	Bolters	RJAP	Score	Tare
		<u>sq1</u>	Tons	%	No.	o\o	% I	Avg.	o\0
US H11	L786442	1939	11.52	8.47	221	0.0	70.2	9•9	09.9
R039C5	Inc. R939C5	5118	20.88	12.22	191	2.5	73.7	4.5	5.16
X954	Inc. Y854	3792	15.12	12.55	211	0.0	75.1	4.1	9.07
R080 (Iso)	RZM R980	4788	17.94	13.35	222	0.0	78.5	5.9	69.9
R722	Inc. F ₂								
	$(Y54 \times B.m.)$		13.32	11.23	220	4.2	71.1	5.9	13.17
R022R	RZM R922R		18.61	10.85	214	0.3	71.4	6.4	14.07
R022Y	Inc. R922Y,S	3523	14.76	12.01	216	0.0	72.8	5.8	12.18
89-C58	Inc. WB1-2		11.33	11.62	196	2.1	70.4	5.3	31.12
Mean		3607.0	15.44	11.54	211.43	1.15	72.90	5.57	12.26
ISD (.05)		527.7	2.01	0.80	27.89	1.73	3.88	0.79	8.18
C.V. (%)		14.6	13.0	6.9	13.1	150.2	5,3	14.2	66.4
F value		33.0*	* 23.7**	26.8**	1.4NS	7.0**	4.3**	4*1.6	8.4**

TEST RZM 391. RHIZOMANIA EVALUATION OF CO-C6 SYNTHETICS OF Y39 & Y47, SALINAS, CA., 1991

, 1991	Soil Tare	7.50 4.40 6.99 10.22	0.00000 0.0000 0.0000 0.0000	08.452 3.04.62 3.04.62 5.04.62	6.27 3.71 59.6 2.2*
ne 5, 1991 November 26, 1	P.M. Score Avg.	38.77	444444 401151	000000 000000 000000000000000000000000	5.58 0.73 13.2 29.8**
д.	RJAP %	71.4 77.1 74.2 78.2	775.5 9.44.4 7.6 9.6 9.6	77.2 78.2 77.7 77.1	75.97 2.80 3.7 3.2**
Planted: Harvested	Bolters	0000	000000	000000	0.08 0.44 562.5 * 1.3NS
	Beets/ 100' No.	222 265 253 189	217 228 230 243 202 237	200 200 200 200 200 200 200 200	234.3 22.5 9.7 8.0**
	Sucrose	9.56 13.00 12.77 13.35	13.99 13.13 12.75 12.74 12.61	13.40 12.86 13.37 13.27 13.77	12.86 0.79 6.2 11.3**
	Vield Beets tons	9.47 18.39 16.80 15.27	14.43 19.01 21.18 21.25 24.10 23.39	13.36 18.52 18.36 17.13 19.42 21.05	18.20 2.56 14.2 **17.3**
	Acre Sugar Ibs	1783 4784 4304 4075	4024 4995 5412 5442 6047 6018	3587 4747 4904 4559 5190 5401	4704.5 721.2 15.5 16.4*
16 entries x 8 replications, RCB 1-row plots, 16 ft. long	Description	L786442 Holly L493302 SES (3/15/89) Inc. Y939 (C39)	Inc. Y339 RZM R639 RZM R739(3) RZM R839C4 Inc. R939C5 RZM R939C5	YRS Y347 RZM R647 RZM R747 RZM R847C4 (C47R) Inc. R947C5 RZM R947C5	
s x 8 rots, 16	Cycle		S84888	S84888	
16 entrie 1-row plc	Variety	US H11 Rhizosen Rima Y039	Y439 R739C3 R839C4 R939C5 R039C5 R039C5	Y547 R747 R847 R947C5 R047C5	Mean ISD (.05) C.V. (%) F value

Note: Rhizomania was mild to moderate.

lCycle of selection for resistance to rhizomania. Criterion of resistance based upon visual assessment of freedom from root symptoms, root size, and root shape. One cycle per year was made. Seed planted in late july into field soil with severe rhizomania. Harvested and selected in late November or early December. Roots induced in cold room. Seed production from March to July. Y39 and Y47 appear to have quantitative (additive) type resistance.

TEST RZM 491. RHIZOMANIA EVALUATION OF NEAR-ISOGENIC LINES, SALINAS, CA., 1991

1991	Soil Tare	11.86 8.69	12.15 9.08	5.76	7.65 9.09 8.37	9.04 6.69 7.97	14.36 11.37 11.03 8.34	9.38 4.07 43.8 2.3**
ne 5, 1991 November 25,	P.M. Score Avg.	ojα	89	43	91.0	000	4 1 1	13 69 0**
June 5 Nove	F. W. P.	7.	4.9	4.9	4.	.44	စ်စ်စည	* 11. 16.
ö	RJAP	74.1 75.3	77.0	77.6	79.1 76.7 76.8	75.7 75.4 69.6	77.2 74.6 75.8	75.85 1.905 2.55 9.3*
Planted: Harveste	Bolters	00.0	0.0	000	000	000 000	0000	0.03 0.27 804.6 0.9NS
	Beets/ 100' No.	230	245 228	229 234	237 234 224	253 257 252	252 245 241	239.94 21.35 9.0 1.7NS
	Sucrose	13.30	13.65	13.81	14.43 13.90 14.20	12.98 13.29 9.86	13.58 13.22 13.94 13.39	13.41 0.66 5.0 19.0**
	eld Beets Tons	9.38 14.99	14.21 18.62	17.06 21.54	15.54 19.04 19.86	19.74 23.45 25.24	14.76 17.39 18.36 17.03	17.89 2.22 12.5 23.3**
g	Acre Vield Sugar Be Lbs To	2480 4154	3866 5157	4719 5727	4480 5276 5650	5127 6238 4991	4006 4590 5123 4564	4759.4 636.4 13.5 15.2**
16 entries x 8 replications, RCB 1-row plots, 16 ft. long	Description	Inc. C37 (86443) RZM R979	Inc. C46/2 (86342) RZM R978C2	Inc. C31/6 (86263) RZM R976	Inc. Y854 (C56) RZM R980 Inc. R980	Inc. R971-R980 RZM R939C5 (C39R) RZM R920 (C94)	YR-ER-PMR 7903 RZM 9911 (A,aa) RZM 9911H49 (A,aa) 9903aa x 9911H49A	
16 entries 1-row plot	<u>Variety 1</u>	86-37 R079	86-46/2 R078	F86-31/6 R076	Y954 R080 R080	R070 R039C6 R020	9903 0911 0913 0915	Mean LSD (.05) C.V. (%) F value

Note: Rhizomania was mild to moderate.

Near-isogenic lines where disease resistant base lines C37, C46/2, C31/6, C54, and popn-903 were used as recurrent parents and selected for R, source of resistance. Pairs are: C37 & R079; C46/2 & R078; C31/6 & R076; C54 & R080; and popn-903 & 0915. 0911 & 0913 are intermediate backcross popns. R070 is a root composite of C37, C31, C46, & C54 types.

RHIZOMANIA EVALUATION OF LINES DERIVED FROM PI206407 and B883, SALINAS, CA., 1991 TEST RZM 591.

Planted: June 5, 1991 Harvested: December 2, 1991 16 entries x 8 replications, RCB 1-row plots, 16 ft. long

Soil	Tare %	7.42 6.19 16.93 12.75 9.72	6.05 7.84 13.91 11.52 6.01	94.23 5.00 930 930	13.25	8.97 3.96 44.5 6.9**
P.M.	Avg.	7 5 7 7 7 7 7 7	0.705 0.707 1.709	7875	5.3	6.68 0.87 13.1 8.2**
(₩. W.	72.4 72.2 71.2 74.3	72.3 73.0 73.2 71.1	72.9 72.6 74.0 71.6	72.5	73.03 2.90 4.0 1.8*
-	BOITERS See 1	00000	00000	0000	1.3	0.24 1.20 499.5 1.3NS
Beets/	No.	234 255 214 2246 229	213 231 212 235 222	242 253 261 241	238 242	235.45 26.48 11.3 2.5**
,	Sucrose	13.27 14.13 11.20 12.38 12.67	11.78 12.40 12.35 12.38 13.07	14.00 11.88 12.31 12.49	9.88	12.51 0.84 6.8 13.2**
Yield	Tons	10.06 14.30 14.82 13.74 18.75	13.20 15.33 18.20 19.50	17.81 21.21 19.92 21.18	21.08 16.71	17.25 2.25 13.2 * 17.1**
Acre	Sugar	2662 4050 3324 3423 4742	3154 4739 3901 4516 5241	4983 5031 4896 5255	4195 4696	4300.6 600.4 14.1 14.1*
-	Description	Inc. C37 (86443) RZM R979 RZM 8828-# RZM 9221 RZM 9225	4747aa x A RZM 9910H47 RZM 8229-# RZM 9223 RZM 9228	RZM 9911H49 NR-RZM 9201,2 NR-RZM 9205,7,8 NR-RZM 9210-14	RZM R904 9912aa x Polish(C)	
-	variety=	86–37 R079 R928C1 R028 R030	5747 0910 R929 R029 R031	0913 N012 N042 N072	R004 Z010H12	Mean ISD (.05) C.V. (%) F value

Note: Rhizomania was mild to moderate.

]o ₹ ¹PI206407 is a Turkish accession; one plant with chard-like traits was highly resistant to rhizomania and crossed to C37 and popn-747. R928C1 = F₂(C37 x P107). R028 = BC₁F₃(C37*2xP107) R030 = F₂(R₂ x P107). R079 = C37R₂. 0910 = 747R₂. R929 = F₂(747aa x P107). R029 = BC₁F₃(R₂ x P2P107). R031 = F₂(R₂ x X²P107). R031 = F₃(R₂ x P107). R032 = BC₁F₃(R₃ x B883); these N#'s have very low frequency of fesistance to cyst nematode because of trains sion of resistance. These N# lines' performance is in part due to the non-nematode resistance background of B883. R004 = accession from Italy with wild beet traits and high resistance to rhizomania. Z010H12 = F₁(R₂ x high sugar Polish accessions).

EVALUATION OF MONOGERM S^{f} , A: aa, R_{z} POPULATIONS, SALINAS, CA., 1991 TEST RZM 3191.

Planted: June 5, 1991 Harvested: December 2, 1991 16 entries x 2 replications 1-row plots, 16 ft. long

Soil Tare	%	17.32 8.56	3.08	8.51 9.03	6.37	7.74	8.35 10.19 11.09 14.58	7.89	11.49 22.46 91.8 0.7NS
P.M. Score	Avg.	5.5	6.0	6.3	8.53	m ∞ ∞ ∞	7.3	4.0	6.91 2.00 13.6 3.1*
RJAP	o/ o	80.2	78.9	78.9	75.1 74.5	74.1	76.8 82.5 75.5	74.3	77.23 5.21 3.2 2.3NS
Bolters	%	0.0	00.0	0.0	0.0	0.0	0000	00.0	0.0
Beets/ 100'	No.	269 247	219 213	216 206	244 234	234 234	225 219 209 197	250 197	225.78 37.05 7.7 2.7*
Sucrose	%	14.18 16.42	12.27 13.98	12.74 13.24	11.63	13.41 15.69	13.97 14.57 14.44 14.76	14.06 12.99	13.86 1.89 3.84 3.8*
<u>Yield</u> Beets	Tons	5.58 12.20	8.56 15.18	12.07 14.53	7.66	6.36 12.85	15.57 12.59 15.18 11.03	15.18 8.56	11.38 3.52 14.5 8.3**
Acre Yi Sugar	Ibs	1580 4010	2110 4253	3055 3815	1748 2380	1731 3984	4329 3682 4398 3268	4337 2212	3180.8 1203.0 17.7 7.0**
Description ¹		BYV-ER-PMR 8755 RZM 9866H80	BYR-ER-PMR 8787 RZM 9887H86	$8790-S_1(C)$ aa x A 9876 mmda x $8790-S_1(C)$	C562HO x C546 RZM 9859H6,9858	Inc. C309 RZM 9865	RZM 9867H67 9864aa x A 9867H68 x 9864 RZM 9876H76	RZM R939/4H44 L786442	
Variety		0755 (C310) 0866	0787 0887	0790 0790H124	F82-546H3 0859	87–309 0865	0867 0864 0864HO 0876	0914 US H11	Mean ISD (.05) C.V. (%) F value

Note: Rhizomania was mild to moderate.

¹Near-isogenic pairs are 0755(C310) & 0866; 0787 & 0887; 0790 & 0790H124; 546H3 & 0859; C309 & 0865. 0800 #'s segregate for $R_{\rm Z}$ & monogerm. 0914 = MM,S^T,A:aa version of C39R.

OBSERVATION OF POLISH LINES AND HYBRIDS, SALINAS, CA., 1991 TEST RZM 3291.

1991	Soil Tare	3.56 3.96 3.68	2.78 8.82 7.20 6.05	11.98 7.29 6.92 4.35	1.92 6.35 4.17 4.05	5.83 6.77 54.5 1.4NS
ne 5, 1991 December 2,	P.M. Score Avg.	7.0 8.3 8.3	0000 0000	7.57.0	7.578	7.66 1.29 7.9 2.2NS
Ju	RJAP	79.0 81.8 77.7 78.3	78.9 76.3 77.2	83.7 77.7 78.7 77.6	83.4 80.9 81.2 76.5	78.94 3.61 2.1 4.8**
Planted: Harvested:	Bolters 2	0000	0000	0000	0000	0.0
	Beets/ 100' No.	200 191 216 225	184 188 259 213	156 194 206 181	181 213 181 209	199.8 65.6 15.4 1.2NS
	Sucrose	16.37 14.20 15.41 12.61	15.86 14.49 13.61 13.95	16.33 15.34 15.55 14.47	16.85 17.28 15.49 11.74	14.97 1.73 5.4 6.9**
	Yield Beets Tons	11.16 11.33 14.92 14.54	10.38 13.23 14.27 14.92	8.48 16.09 9.47 11.94	11.68 10.12 13.46 8.95	12.18 3.68 14.2 3.8**
	Acre Yi Sugar Ibs	3639 3233 4704 3673	3277 3837 3859 4168	2783 4932 2952 3451	3946 3500 4149 2114	3638.6 1241.0 16.0 2.9*
16 entries x 2 replications 1-row plots, 16 ft. long	Description	Inc. Polish (C) F82-546H3 x Polish (C) 9912aa x Polish (C) 9859H6aa x Polish (C)	Inc. Polish-2 9912aa x Polish-2 87-309H3 x Polish-2 9859H6aa x Polish-2	Inc. Polish-4 9912aa x Polish-4 87-309H3 x Polish-4 9859H6aa x Polish-4	Inc. Polish-1 Inc. Polish-3 Inc. Polish-7 L786442	
16 entries 1-row plot	Variety ¹	2010 2010H8 2010H12 2010H111	2012 2012H12 2012H20 2012H111	2014 2014H12 2014H20 2014H11	Z011 Z013 Z017 US H11	Mean ISD (.05) C.V. (%) F value

Note: Rhizomania mild to moderate.

 1 Z010 = composite of seven Polish accessions. Hybrids with H8 & H20 are susceptible to rhizomania. Hybrids with H12 & H111 codes segregate for $R_{\rm Z}$.

TEST RZM 3391. THIRD PROGENY SET, SALINAS, CA., 1991

Planted: June 5, 1991	ä
16 entries x 2 replications	1-row plots, 16 ft. long

Soil Tare	24.48 16.48 17.18 8.41	10.59 10.23	10.71 18.29 8.47 14.77	19.04 17.08 12.73 15.28 9.67	14.04 10.33 34.5 1.8NS
P.M. Score Avg.	0000 0000	6.3	53.30	72.00	6.23 1.88 14.1 3.0*
RJAP	77.9 77.6 79.3 81.3	78.5	80.9 77.5 80.0 80.1	75.8 78.7 75.8 77.9	78.74 3.57 2.1 1.9NS
Bolters	0000	0.0	0000	000000	0.0
Beets/ 100' <u>No.</u>	216 216 259 203	219 209	225 188 150 188	234 234 234 254 254	218.56 49.21 10.6 3.4*
Sucrose	16.08 15.60 16.19 15.68	15.02 15.10	15.69 15.69 15.83 15.39	12.92 15.16 14.90 14.99 13.16	15.17 1.49 4.6 3.5*
Vield Beets Tons	20.11 17.60 20.24 21.67	20.89 17.78	17.65 18.13 17.00 15.96	6.88 17.21 18.42 16.09 9.34 18.04	17.06 5.31 14.6 4.9**
Acre Yi Sugar Ibs	6469 5489 6556 6798	6274 5375	5538 5708 5362 4900	1788 5217 5477 4826 2455 5495	5232.8 1623.0 14.6 6.3**
Description	8911aa x A 8911aa x A 8911aa x A 8911aa x A	RZM 8909,9,10,11aa x A RZM 8909,9,10,11aa x A	7903aa x 8911 7903aa x 8911 7903aa x 8911 7903aa x 8911	L786442 9911aa x A 9911H49aa x A 9903aa x 9911H49 L412305 L493302	
<u>Variety</u>	0911- 4 9911-12 9911-14 9911-50	9912- 3 9912-11	9911H49- 5 9911H49-18 9911H49-22 9911H49-25	Checks US_H11 0911 0913 0915 HH41 Rhizosen	Mean ISD (.05) C.V. (%) F value

Half-sib (HS) families from popns-911,-912,-913. Popns-911,-912,-913 are MM,S^f,A:aa,R, populations in a popn-747 to popn-903 background. Half-sib families were produced in 1989. Progeny tests were run in 1990 at Brawley (LIVV) and Salinas (Bolting, ByV, PM, & Rhizomania). Based upon these progeny tests, 10 lines were selected and increased in isolators from stecklin in 1991. TX's of these families will be performance tested in 1992. Seed is from original HS productions.

TEST RZM 3491. EVALUATION OF S_1 PROGENY FAMILIES FROM MM, S^f , A: aa, R_2 POPULATIONS, SALINAS, CA., 1991

1991	Soil Tare	18-7, 11.	6.36 10.61 8.21 7.92	25.26 7.50 10.23	Progeny	7.18 6.24 17.61	6.21 12.60 5.17	6.52 8.70 11.76	9.88 11.63 55.2 1.8NS
ne 5, 1991 December 2	P.M. Score Avq.	-14, 9908- s in 1991	7.086 5.353	8.0 6.8		788	6.3 7.8	7.3 7.0 6.3	7.20 2.15 14.0 1.7NS
Ju	RJAP	Lines 9907-14, n isolators in	79.4 78.2 75.9	77.6 75.2 72.5	and Salinas.	75.5 74.9 77.7	76.8 78.5 76.2	75.5 76.6 74.6	76.11 4.65 2.9 1.5NS
Planted: Harvested:	Bolters	2290, B790. Lincreased in	0000	000	Brawley a	000	000	000	0.
	Beets/ 100' No.	590, 2290, being incr	244 172 203 219	206 181 272	ests at in 1990.	238 222 222	238 225 156	228 197 197	213.67 39.65 8.7 4.9**
	Sucrose	in tests froots are k	14.39 13.11 13.09 13.46	13.73 13.29 14.35	l in 1991 t isolators	14.38 14.68 14.95	13.87 13.69 14.78	14.04 13.90 11.48	13.83 0.91 3.1 8.0**
	Yield Beets Tons	in 1990 mother	15.70 12.72 9.73 17.78	10.64 8.56 8.95	ing evaluated increased in	14.53 12.85 13.36	17.97 15.31 10.64	15.96 18.23 6.86	13.11 3.06 11.0 12.5**
	Acre Y. Sugar Ibs	ids tested n 1990 and	4522 3344 2557 4783	2921 2271 2570	ids being were incl	4176 3774 3997	4970 4183 3150	4482 5050 1576	3645.3 840.9 10.8 14.2**
16 entries x 2 replications 1-row plots, 16 ft. long	Description	First Progeny Set $(S_1's)$: TX hybric and 9909-13 were selected for $R_{\rm Z}$ in	Inc. 7907-14-# Inc. 7907-21-# Inc. 8908- 2-# Inc. 7908- 7-#	Inc. 8909-13-# Inc. 8909-14-# Inc. 8909-16-#	Second Progeny Set (S ₁ 's): TX hybrids being tests were run in 1989. Selections were inc	Inc. 8906A- 4 Inc. 8906A- 7 Inc. 8909A- 7	Inc. 8909A-34 Inc. 8909A-37 Inc. 8909A-48	Composite aa x A 9911aa x A L786442	
16 entrie 1-row plo	<u>Variety</u>	First Pro and 9909—	9907-14 9907-21 9908- 2 9908- 7	9909-13 9909-14 9909-16	Second Protests were	0906- 4 0906- 7 0909- 7	0909–34 0909–37 0909–48	<u>Checks</u> 8909 0911 US H11	Mean ISD (.05) C.V. (%) F value

SCREEN OF HYBRIDS UNDER MILD RHIZOMANIA, SALINAS, CA., 1991 TEST RZM 691.

Planted: June 5, 1991 Harvested: November 21, 1991 12 entries x 5 replications, RCB 1-row plots, 16 ft. long

Soil	Tare	%	3.25	8.60	4.80	6.75	6.54	6.59	9.24	3.88	5.35	6.73	4.43	7.87	6.17	4.06	51.6	1.7NS
P.M.	Score	Avg.	7.8	7.8	7.3	7.4	4.9	7.3	6.3	7.8	7.1	6.3	8.6	7.3	7.16	0.94	10.3	8.3**
	RJAP	%	73.0	73.6	70.0	73.2	6.69	75.7	72.4	77.2	72.3	73.7	73.8	72.0	73.07	3.65	3.9	2.6*
	Bolters	%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Beets/	100,	No.	245	248	244	268	226	249	243	259	254	279	236	245	249.48	36.23	11.4	1.2NS
	Sucrose	o/ o	12.27	12.73	9.51	12.94	12.23	14.18	12.62	14.48	12.74	13.11	12.19	12.01	12.58	1.06	9.9	11.0**
eld	Beets	Tons	19.88	18.53	12.92	20.97	21.59	18.48	20.14	19.31	19.62	18.37	17.54	17.39	18.73	2.82	11.8	5.1**
Acre Yield	Sugar	<u>sq1</u>	4880	4728	2482	5428	5273	5241	5076	5567	4993	4831	4273	4168	4744.8	799.0	13.2	8.7**
	Description		Holly L493302	SES (3/15/89)	L786442	9864aa x R980	Inc. R939C5	9912aa x Polish-2	9867H67aa x R939C5									
	Variety		Rhizosen		US H11	R080H133	R039C5	Z012H12	R039C5H113	0.77081	OJ7062	OJ0157	OJ5019	OJ0175	Mean	ISD (.05)	C.V. (%)	F value

CURLY TOP EVALUATION OF SALINAS ENTRIES AT KIMBERLY, IDAHO, 1991

150 entries x 3 replications Test Conducted by Terry Brown, BSDF

Grade	2nd Rating	0.3 20.0	44mmmmm 77mom7om		00000
101	lst Rating	4.7	44404444 6000////	40004404 	44444 wooow
Description		popn-865aa x 9911H49 popn-864aa x 9911H49	popn-911H49aa x popn-864 (C562H0 x C546) x C36 (C562H0 x C546) x R980 (C309CMS x C790-68) x R980 (C306CMS x C309) x R980 C306CMS x R980 C306/2CMS x R980 C312CMS x R980	C762-17CMS x R980 C313CMS x R980 C742-24CMS x R980 C767-46CMS x R980 C766-62CMS x R980 C718HO x R980 C790-68CMS x R980 popn-767aa x R980	popn-776aa x R980 C790aa x R980 popn-859H6aa x R980 popn-866H80aa x R980 popn-867H67aa x R980
	Variety	0913H132 0913H133	0864H13 US H11 R080H8 R080H18 R080H23 R080H23 R080H37 R080H37	R080H39 R080H40 R080H42 R080H54 R080H70 R080H72 R080H89	ROBOH76 ROBOH90 ROBOH111 ROBOH112 ROBOH113
rade	Zna Rating	40.04 * 40.05	40400440 ~~00~~~0	00040044 00060077	07.0.0.7.
	Rating	4.7*	40000444 01101000	4444444 	4444 07.0.0
Description		check check	L786442 Holly Hilleshog-MH Hilleshog Betaseed Spreckels (C562HO x C309) x C54 (C562HO x C309) x R980	(C562HO x C309) x C46/3 (C562HO x C309) x C31/6 (C562HO x C309) x C31/6 (C562HO x C309) x C394 (C562HO x C309) x C39R5 (C562HO x C309) x C47R5 (C562HO x C309) x C47R5 (C562HO x C309) x C47R5	(C562HO x C309) x C93) (C562HO x C309) x Polish C (C562HO x C309) x Polish 2 (C562HO x C309) x Polish 4 (C562HO x C309) x Polish 4
	Variety	US 33 US 41	HYBRIDS US_H11_ Rhizosen WS-FM9 Vyxen 6625 SS-NB3 Y954H20 R080H20	Y846H20 Y931SH20 R020H20 R039C5H20 Y039H20 R047C5H20 Y047H20	Y048H20 Z010H20 Z012H20 Z014H20 0913H20

 1 Mean of 3 replications.

* = average of 21 to 23 times repeated in test.

(continued)

Grade	Zna g <u>Rating</u>	ດທູດທູດ ພຸດພວດ	65.00 65.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	000000000000000000000000000000000000000	7.3 7.0 6.0 6.0	400444000
Ū	Lst <u>Rating</u>	44004 77067	0.0440 0.000 0.000 0.000	0.04.0.0.0 0.0.0.0.0.0	00000 00070	40444444 -0-660
Description	רישיויאעד ז זעל	Inc. Y854-63 Inc. Y854-85 Inc. Y948 (C93) BYR-ER-PMR Y849 (C49) BYR-ER-PMR Y857	RZM R920 (C94) Inc. Y939 (C39) RZM R939C5 (C39R5) Inc. Y947 (C47) RZM R947C5 (C47R5)	Inc. C58 (EDW) RZM R922R (C50) Inc. R922Y,S Inc. 2n Polish C Inc. 2n Polish-1 Inc. 2n Polish-2 Inc. 2n Polish-3	Inc. 2n Polish-4 Inc. 2n Polish-7 9912aa x Polish C 9912aa x Polish-2 9912aa x Polish-4	ta POPULATIONS & LINES DODN-747aa x A NR-RZM 9205, 7,8 DODN-747aa*2 x PI07 RZM 9910 RZM 9911 9911aa x 9911H49 RZM 9911H49 9911H49aa x 9911H49 9903aa x 9911H49
	Variety	Y054-63 Y054-85 Y048 Y049 Y057	R020 Y039 R039C6 Y047 R047C6	89—C58 R022R R022Y Z010 Z011 Z012	2014 2017 2010H12 2012H12 2014H12	MM, s ^f , A: aa 5747 N042 N029 0910 0913 0913
<u>Srade</u>	Rating	ດທູດທູດ ກວກວວ	ນທູນທູນ 7000m	0.444 0.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6	00000 00000	0
L	Rating	007-04 000-06	44444 77.000	44440/4 	ທູນຈູນທ ວິດພິພິພິດ	4400000000 wrormwrwo
Description		popn-876H76aa x R980 popn-887H86aa x R980 popn859mmaa x R980 popn-866mmaa x R980 popn-867mmaa x R980	popn-876mmaa x R980 popn-887mmaa x R980 popn-858aa x R980 popn-865aa x R980 popn-864aa x R980	ILINATED Inc. 868 (US 75) Inc. C37 (86443) RZM R979 (C37R2) RZM (C37*2 x Pf07) Inc. C11T Inc. C12T Inc. C46/2 (86342)	RZM R978C2 (C46R ₂) Inc. C31/6 (8626 3) Inc. Y731-43 Inc. Y731-89 RZM R976 (C31R ₂)	NR-RZM 9201,2 Inc. R971-R980 RZM R980 (C54R ₇) Inc. R980 (C54R ₇) BYR-ER-PMR Y854 ² (C54) Inc. Y854-2 Inc. Y854-12 Inc. Y854-13 Inc. Y854-33 Inc. Y854-33
Į,	Variety	ROBOH114 ROBOH115 ROBOH121 ROBOH122 ROBOH123	R080H124 R080H125 R080H131 R080H132 R080H133	MM, OPEN-POI 768 86-37 R079 R028 9101 9102 86-46/2	R078 86-31/6 Y931-43 Y931-89 R076	NO12 R070 R080 R080 Y054 Y054-12 Y054-12 Y054-23

CURLY TOP EVALUATION OF SALINAS ENTRIES AT KIMBERLY, IDAHO, 1991

(continued)

CT Grade 1st 2nd Rating Rating	7.4444.04.0 7.6.6.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	400444 060666 4000000	0.0044044000 0.000000000000000000000000
Description	ED. T-0 9722-# C162HO x C546 (82460) NB1CMS x NB 4 C562HO x C309 (87671) C306CMS x C309 (87242) Inc. C309 (87672) Inc. C562 (82196) Inc. C790-68	Inc. C762-17 Inc. C766-23 Inc. C766-62 Inc. C767-46 Inc. C796-43 Inc. ST-0 9833-#	8790A- 6 8790A-15 8790A-23 8790A-47 8790A-54 8790A-55 8790A-61 8790A-71 Inc. 9852- 7 Inc. 9852- 7
Variety	0722 0722 F82-546H3 9554H1 87-309H37 87-309H37 87-309 F82-562 88-790-68	0762-17 0766-23 0766-62 0767-46 0796-43	0790- 6 0790-15 0790-23 0790-47 0790-54 0790-51 0790-71 0852- 7
rade= 2nd - Rating	070070000	000040 000770	007.7.W.
CT C 1st Rating	400000004 	0.44.0 0.04.0 0.00.0	444440 0000 0000
Description	INC. 8909A- Inc. 8908A- Inc. 8909A- Inc. 8909A- Inc. 8909A- Inc. 8909A- Inc. 8909A- Inc. 8909A- Inc. 8909A-	POPULATIONS BYR-ER-PMR 8755 (C310) RZM 9866H80 (C310R _Z) RZM 8855 RZM 9865 (C309R _Z) RZM 9859H6 (C563R _Z) 9864aa x A (ppn-767R _Z)	RZM 9867H67 (popn-767R _Z) RZM 9876H76 (popn-776R _Z) RZM 9887H86 (popn-787R _Z) BYR-ER-FWR 8787 (popn-787) 8790-S ₁ (C) aa x A (C790) NR-RZM ¹ 9210-14
Variety	47 77 78 78 78	mm, S ^I , A: aa 0755 0866 9855 0865 0869 0864	0867 0876 0887 0787 0790 N072

TEST 2091. ERWINIA ROOT ROT AND POWDERY MILDEW EVALUATION AND OBSERVATION OF LINES, SALINAS, CA., 1991

160 entries x 3 replications 1-row plots, 18 ft. long Planted: April 16, 1991

E.c.b. Inoculated: July 11, 1991 Scored: September 25,26,27,30, 1991

October 1, 1991

Variety	Description	Harv. Count/ Plot	Downey Mildew %1	Erwir DI	nia Reaction ² % Resistant	P.M. Avg. ³
MM, O.P. 1	inec					
	Inc. E440, E640	25	6.9	84.7	7.8	7.9
768	Inc. 868 (US 75)	23	1.6	29.0	45.8	7.0
U86-37	C37, 86443	25	1.3	17.3	65.0	7.6
R979	Inc. R879	24	0.0	3.2	85.8	6.2
R079	RZM R979	26	1.2	9.0	79.1	6.2
R928C1	RZM (C37 x PI07)	23	0.0	9.2	76.3	5.2
R028	RZM 9221 (C28)	23	4.2	22.5	62.8	6.6
R030	RZM 9225	25	1.3	17.0	68.5	5.5
11050		23	1.0	2, 00	33.3	
Y854	Inc. Y654	23	4.0	5.7	85.7	5.4
Y954	Inc. Y854	22	0.0	4.6	85.0	4.8
R980	RZM 8244-#'s	23	0.0	9.6	87.2	5.4
R080	Inc. R980	23	0.0	13.3	71.7	5.6
R080	RZM R980	25	0.0	17.7	69.5	5.5
	BYR-ER-PMR Y854 (C54)	24	0.0	2.1	92.9	3.5
· · ·	,					
Y054-2	Inc. Y854-2	24	1.3	3.2	94.0	3.9
Y054-12	Inc. Y854-12	24	1.4	1.8	94.6	4.9
US H11	L786442	27	0.0	11.9	79.9	7.3
Y054-23	Inc. Y854-23	24	0.0	0.3	97.2	5.4
Y054-38	Inc. Y854-38	24	1.6	3.6	91.6	3.8
Y054-63	Inc. Y854-63	24	2.8	13.5	70.5	5.5
Y054 - 85	Inc. Y854-85	23	3.3	26.6	64.6	5.7
V54 D						
<u>Y54 x B.ma</u>		24	4.3	20.0	69.2	6.3
	Inc. F ₂ (SBx <u>B.m.</u>)	24 25	2.8	37.4	45.3	6.6
R922R1	RZM R722	25 25	0.0	37.4	45.7	7.0
R022R2 R022Y	RZM R922R	25 25	0.0	23.5	67.9	5.8
RU221	Inc. R922Y	25	0.0	23.3	07.9	5.0
MM. O.P. 1	ines					
R970	RZM R871-R879, 8244	25	1.4	14.6	72.5	5.8
R070	Inc. R971-R980	25	3.9	13.0	81.6	5.6
86-46/2	C46/2, 86342	26	0.0	6.6	86.8	4.5
Y846	Inc. Y746 (C46/2)	25	2.7	9.7	78.3	3.7
R978C2	RZM R878	22	1.6	16.9	67.5	4.6
R078	RZM R978C2	23	2.9	19.7	69.9	5.3
N012	NR-RZM 9201,2	25	4.0	12.1	82.8	6.3

TEST 2091. ERWINIA ROOT ROT AND POWDERY MILDEW EVALUATION AND OBSERVATION OF LINES, SALINAS, CA., 1991

Variety	Description	Harv. Count/ Plot	Downey Mildew %1	<u>Erwi</u> DI	nia Reaction ² % Resistant	P.M. Avg. ³
F86-31/6	86263, Inc. C31/6	23	3.0	18.4	66.6	5.4
Y931	Inc. Y731	24	0.0	15.3	65.4	4.8
R976	RZM R876	24	5.5	18.6	70.2	5.3
R076	RZM R976	22	3.1	22.8	65.9	5.6
E840	Inc. E440, E640	25	0.0	94.9	2.8	7.8
Y931-43	Inc. Y731-43 (C31-43)	26	0.0	1.7	92.3	5.6
Y931-89	Inc. Y731-89 (C31-89)	26	0.0	5.5	81.9	5.1
F86-91	Inc. C91, 86019	26	0.0	1.7	94.8	3.8
Y941	YR-ER-PMR Y741	25	1.3	5.7	89.1	3.7
Y048	Inc. Y948 (C93)	25	0.0	4.2	87.0	4.3
Y949	Inc. Y849 (C49)	23	0.0	6.1	85.7	3.7
Y049	BYR-ER-PMR Y849	26	0.0	2.1	90.9	3.7
Y057	BYR-ER-PMR Y857	26	0.0	0.7	93.8	6.5
Y939 (C39)	YR-ER-PMR Y739	27	0.0	2.5	95.1	3.9
Y039	Inc. Y939 (C39)	23	0.0	3.4	90.0	3.3
R939C5	RZM R839C4 (C39R)	25	1.3	24.6	61.3	4.3
R039C5	Inc. R939C5 (C39R)	22	1.6	22.6	65.8	4.4
R039C6	RZM R939C5	24	0.0	25.2	60.5	3.8
Y947 (C47)	YR-ER-PMR Y747	26	1.2	4.8	83.2	4.1
Y047	Inc. Y947 (C47)	23	1.5	5.2	80.0	4.1
US H11	L786442	27	0.0	5.5	80.5	7.3
R047C5	Inc. R947C5 (C47R)	25	0.0	9.5	77.2	6.2
R047C6	RZM R947C5	26	0.0	7.5	85.8	6.8
R903	RZM R803 (Alba gp)	26	0.0	49.9	35.9	6.8
R904	RZM ROVIGO Acc.	25	1.4	20.6	58.2	4.8
R004	RZM R904	22	7.9	22.9	54 . 9	5.8
R920	RZM R820 (C94)	27	0.0	47.5	42.5	6.3
R020	Inc. R920 (C94)	27	0.0			5.8
R020	RZM R920	23	1.6	54.6	36.9	6.5
9101 9 1 02	Inc. 8101 (C11T) Inc. 8102 (C12T)	22 22	0.0	5.3 10.8	81.9 73.2	4.1 4.1
Z010	Inc. Polish 1-7	22	0.0	26.4		
Z010 Z010H12	9912aa x P#(C)	22	0.0	26.4	54.8	6.8
Z010H12 Z010H111	9859H6aa x P#(C)	25	0.0	9.5	76.6	6.3
Z010H111 Z011	• •	24	0.0	25.0	61.0	6.8
Z011 Z012	Inc. Polish #1	21	0.0	25.8	57.2	6.8
201Z	Inc. Polish #2	23	1.4	27.6	61.8	6.4

TEST 2091. ERWINIA ROOT ROT AND POWDERY MILDEW EVALUATION AND OBSERVATION OF LINES, SALINAS, CA., 1991

		Harv.	Downey		•	
Variety	Description	Count/	Mildew	Erwir	nia Reaction ²	P.M. 3
_	-	Plot	\S^1	DI	% Resistant	Avg. 3
E0101110	0010 D			26.0	60.6	6.0
Z012H12	9912aa x P ₂	23	0.0	16.9	69.6	6.8
Z012H111	9859H6aa x [*] P ₂	24	0.0	19.0	67.4	7.1
Z013	Inc. Polish #3	24	0.0	8.4	82.1	7.0
Z014	Inc. Polish #4	22	0.0	42.4	46.5	6.0
E840	Inc. E440, E640	27	1.3	90.7	3.8	8.0
Z014H12	9912aa x P4	23	1.6	14.8	67.5	6.5
Z014H111	9859H6aa x P4	25	0.0	28.3	52.2	6.8
Z 017	Inc. Polish #7	23	0.0	8.1	79.1	5.8
MM SE A	aa lines and populatio	ns				
5747	4747aa x A	26	1.2	2.4	88.4	6.1
9910	8910aa x A	22	0.0	11.8	74.7	5.5
9910H47	5747aa x 8910	24	0.0	12.4	72.6	6.1
0910	RZM 9910H47 (A,aa)	25	1.4	12.3	75.7	6.3
0010	1211 99101147 (11,da)	23	1	12.5	, , , ,	
R929C1	RZM 8229-#	25	2.5	4.6	86.4	4.0
R029	RZM 9223	24	1.3	14.2	70.0	5.0
R031	RZM 9226	24	1.3	13.2	78.3	6.4
N042	NR-RZM 9205,7,8	22	0.0	17.0	59.8	7.4
7903	6903aa x A	21	1.6	3.4	89.4	4.6
9903	YR-ER-PMR 7903 (A,aa)		0.0	6.6	78.0	4.3
8909	7909,7239aa x A	24	0.0	13.4	73.8	4.8
9911	RZM 7239	25	0.0	11.1	65.9	4.8
9911	KZII 1239	2.5	0.0	11.1	03.3	
US H11	L786442	26	2.6	5.1	78.6	7.6
9911H49	7903aa x 8911(C)	24	1.5	14.9	73.8	5.3
0911	9911aa x A	25	2.8	19.6	64.1	6.4
0911	RZM 9911 (A,aa)	24	0.0	13.2	73.5	5.2
0913	RZM 9911H49 (A,aa)	22	0.0	10.6	80.5	4.8
0913	9911H49aa x A	23	0.0	7.8	71.9	5.0
0915	9903aa x 9911H49	21	3.3	7.5	78.6	4.8
0906-4	Inc. 8906-A-4	26	1.4	25.8	60.8	7.2
0906-7	Inc. 8906 A 4	25	0.0	19.0	64.6	7.8
0906-7	Inc. 8900A-7	24	1.4	10.8	79.1	5.2
		24	1.5	3.5	89.7	3.5
0909-34	Inc. 8909A-34			6.9	85.6	3.3
0909-37	Inc. 8909A-37	24	0.0		68.0	5.6
0909-48	Inc. 8909A-48	21	1.4	17.7	00.0	٥.0
0914	RZM R939/4H44	24	0.0	10.9	80.9	3.8

TEST 2091. ERWINIA ROOT ROT AND POWDERY MILDEW EVALUATION AND OBSERVATION OF LINES, SALINAS, CA., 1991

Variety	Description (Harv. Count/ Plot	Downey Mildew %1	Erwir DI	nia Reaction ² % Resistant	P.M. Avg. ³
Monogerm, SI	, A:aa populations					
8790 (C790)	7790aa x A (C4,Syn 2)	25	0.0	33.4	44.8	5. 8
0790	8790-S ₁ (C)aa x A	26	0.0	35.0	36.6	5.9
0790H124	9876mmāa x 8790-S ₁ (C)	23	0.0	40.0	36.5	6.1
8 7 76	NB 6776 (A,aa)	24	0.0	9.7	75.1	6.3
0876	RZM 9876H76	24	1.3	16.9	68.5	6.6
8787	7755-7797aa x A	25	0.0	17.9	59.4	6.8
E840	Inc. E440, E640	24	0.0	88.3	5.6	7.6
0787	BYR-ER-PMR 8787	23	0.0	14.8	66.7	5.3
0887	RZM 9887H86	25	1.4	33.8	46.8	6.3
9858	Inc. RZM 8858	26	0.0	29.4	53.3	6.9
9859H6	1566aa x 88 5 0,1,4,8	24	0.0	28.4	41.9	6.5
0859	RZM 9859H6	25	0.0	36.3	38.3	6.8
N072	NR-RZM 9210-14	23	0.0	22.9	63.3	7.3
8767	NB 6767 (A,aa)	26	0.0	28.8	58.3	5.1
9864	RZM 8247-#	23	0.0	35.8	46.7	6.0
0864	9864aa x A	25	0.0	39.3	39.5	6.1
9867H67	87 6 7aa x 8852,88 5 7	23	0.0	27.1	57.4	6.3
0867	RZM 9867H67	25	1.3	40.4	40.2	6.4
8755	77 55, 6aa x A	26	0.0	21.6	59.9	6.0
0755	BYR-ER-PMR 8755	27	0.0	15.7	67.2	5.2
9866H80	87 55 aa x 8853,5,6	25	0.0	21.5	59.7	5.9
0866	RZM 9866H80	28	0.0	25.0	58.1	6.5
US H11	L786442	26	1.4	6.2	78.8	7.6
98 55	RZM 8855	24	0.0	33.3	53.4	6.2
9865	RZM 8246-#	26	0.0	24.4	65.4	7.0
0865	RZM 9865	26	0.0	37.2	44.7	7.2
Monogerm, Sf	lines					
0722	Inc. T-0 9722-#	23	0.0	8.5	80.7	4.6
F82-546H3	78155, C562HO x C546	23	0.0	8.0	71.8	6.3
87 - 309H37	87242, C306 x C309	24	0.0	27.6	40.3	7.8
87-309H3	87671, C562 x C309	25	0.0	14.8	54.1	7.9
88-790-68H26	C309CMS x C790-68	25	0.0	26.9	41.3	8.2
88-790-68H92	C796-22CMS x C790-68	26	0.0	16.4	56.4	6.2
88-790-68H37	C306CMS x C790-68	23	0.0	49.0	16.8	5.1
F82-546	82372, C546	23	0.0	2.7	89.6	6.3

TEST 2091. ERWINIA ROOT ROT AND POWDERY MILDEW EVALUATION AND OBSERVATION OF LINES, SALINAS, CA., 1991

		Harv.	Downey		2	
Variety	Description	Count/	Mildew	Erwin	<u>ia Reaction²</u>	P.M.
		Plot	$\$_{T}$	DI	% Resistant	P.M. Avg. ³
F82-562	82196, C562	23	0.0	34.0	46.0	6.8
F82-562HO	82196, C562HO	24	0.0	28.6	44.4	6.7
87 -3 09	87672	23	0.0	24.4	44.2	7.9
87-309CMS	87670	26	0.0	22.7	39.4	8.1
88-790-68	C790-68	20	0.0	31.0	41.0	5.3
88-790-68CMS	C790-68CMS	24	0.0	47.5	35.4	5.4
89-762-17	89121, C762-17	21	0.0	61.7	24.8	5.0
E840	Inc. E440, E640	27	0.0	92.0	3.7	8.0
0762-17	Inc. 89-762-17	22	1.5	50.1	37.8	5.1
89 - 312	89482, C312	19	0.0	19.9	67.9	3.3
89-313CMS	C313CMS, L89439	22	0.0	65.5	19.1	3.5
9807	T-O 8807-# (C306)	23	0.0	45.6	34.7	4.5
9833	T-O 8833-#	25	0.0	31.7	52.3	6.0
0833	Inc. T-0 9833-#	26	0.0	34.7	39.2	7.8
0766-23	9766-23 (C766-23)	26	0.0	19.2	63.6	5.3
0766 - 62	9766-62 (C766-62)	25	0.0	10.0	83.8	6.3
0767-20	Inc. 8767-20	25	0.0	2.8	94.5	5.4
0767 - 30	Inc. 8767-30	23	0.0	4.5	85.7	5.8
9767-46	5767-46 (C767-46)	27	0.0	5.5	81.6	5.5
0767-46	Inc. T-0 9767-46-#	25	0.0	0.3	95.8	5.8
0796-43	5796-43 (C796-43)	25	0.0	8.5	68.5	5.8
0852-7	Inc. 9852-7	23	0.0	22.2	64.1	5.7
0852-52	Inc. 9852-52	16	0.0	29.5	63.3	5.2
US H11	L786442	26	1.3	7.7	72.4	7.0
Mean		24	0.76	20.87	64.95	5.77
LSD (.05)		3.6		13.67	19.59	1.06
C.V. (%)		9.3	243.2	40.9	18.9	11.5
F value		1.8	** 1.6**	13.9**	8.6**	9.9**

 $^{^{1}\%}$ plants infected with downey mildew on 6/17/91. Counts difficult to make and highly variable.

²Erwinia root rot: DI = average % rot per root at harvest; % resistant = percent of roots scored 0 and 1% rot.

 $^{^3}$ Powdery mildew not controlled. Scored on scale of 0 to 9 where 9 = 90-100% of mature leaf area covered by visable mildew. PM scored 8/14,8/21, and 8/28/91.

TEST 2091B. ERWINIA ROOT ROT AND POWDERY MILDEW EVALUATION AND OBSERVATION OF LINES & HYBRIDS, SALINAS, CA., 1991

32 entries x 1 replication 1-row plots, 18 ft. long Planted: April 16, 1991

E.c.b. Inoculated: July 11, 1991

Scored: October 3, 1991

1		Downey					
Variety ¹ De	escription Root		Mildew			.M.	
		No	. %	DI	% Resistant	Avg.	
E840	Inc. E440, E640	28	0.0	92.6	3.6	7.8	
US H11	L786442	24	0.0	2.9	70.8	6.5	
87-309	Inc. C309 (87672)	25	0.0	19.2	56.0	7.3	
88-790-68	Inc. C790-68	23	0.0	46.3	34.8	4.3	
F82-546	Inc. C546 (82372)	21	0.0	11.7	61.9	4.8	
F82-562	Inc. C562 (82196)	23	0.0	38.9	34.8	5.3	
0790 - 6	8790 - 6 (C790-6)	17	0.0	47.3	23.5	4.5	
0790 - 15	8790-15 (C790-15)	22	0.0	31.8	27.3	1.0	
0790-23	8790-23	17	0.0	25.9	35.3	4.0	
0790-47	8790-47	22	0.0	38.7	45.5	4.3	
0790-54	8790 - 54 (C790-54)	13	0.0	9.2	84.6	3.8	
0 7 90 – 55	8790-55	19	0.0	44.4	31.6	4.3	
0790-61	8790-61	24	0.0	59.4	16.7	3.8	
0790-71	8790 – 71	18	0.0	44.8	38.9	3.8	
0790A	Inc. 8790-S ₁ (C)	25	0.0	42.6	40.0	4.8	
0790	8790-S ₁ (C)aā x A	27	0.0	39.1	48.1	5.0	
US H11	L 7 86442	26	0.0	4.0	73.1	7.3	
E840	Inc. E440, E640	24	0.0	90.3	4.2	6.5	
R080H26	87-309CMS x R980	25	0.0	28.7	52.0	7.3	
R080H89	88-790-68CMS x R980	24	0.0	56.2	25.0	4.8	
R080H8	F82-546H3 x R980	24	0.0	15 .5	62.5	4.5	
R080H3	F82-562HO x R980	25	0.0	32.0	40.0	6.3	
R080H29	8790A- 6aa x R980	26	0.0	23.0	61.5	5.0	
R080H30	−15aa x R980	24	0.0	21.2	62.5	3.5	
R080H31	8790A-23aa x R980	22	0.0	8.1	81.8	5.5	
R080H32	−47aa x R980	22	0.0	13.0	54.5	5.0	
R080H33	- 54aa x R980	26	0.0	20.0	69.2	4.5	
R080H34	− 55aa x R980	28	0.0	2.2	92.9	5.8	
R080H35	- 61aa x R980	25	0.0	24.4	32.0	5 .5	
R080H36	−71aa x R980	20	0.0	13.2	65.0	4.5	
R080H90	8790Laa x R980	25	0.0	35.0	56.0	5.0	
0790H12	9912aa x 8790-S ₁ (C)	27	0.0	13.8	55. 6	5.5	

¹Corresponding lines and testcross hybrids with R980. 0790-#'s (8790-#'s) = increases of S_1 lines from popn-790(C4). E840 = C40 = highly susceptible Erwinia check.

TEST 2191. ERWINIA ROOT ROT AND POWDERY MILDEW EVALUATION AND OBSERVATION OF HYBRIDS, SALINAS, CA., 1991

64 entries x 2 replications 1-row plots, 18 ft. long

Planted: April 16, 1991 E.c.b. Inoculated: July 11, 1991

Scored: October 2, 1991

Variety	Description	Harv. Count/ Plot	Downey Mildew	Erwin	ia Reaction ² % Resistant	P.M. Avg. 3
	·_ · · · · · · · · · · · · · · · · · ·					
E840	Inc. E440, E640 (C40)	29	0.0	89.1	7.1	7.9
E840H72	$83-718HO \times E440 (C40)$	24	0.0	67.2	15.1	7.1
E840H8	F82-546H3 x E440 (C40)		0.0	27.1	55.9	7.4
US H11	L786442	26	0.0	5.1	88.6	7.4
WS-PM 9	PMR Hilleshog	27	0.0	12.1	66.7	4.9
Vyxen	VYR monogerm hybrid	24	0.0	15.4	71.1	5.6
HM 2009	Hilleshog VYR hybrid	26	0.0	7.5	80.8	7.0
B6625	Beta 6625 (0011-1)	27	0.0	5.6	84.6	6.4
Rhizosen	L493302	25	0.0	17.6	69.4	6.4
HH41	L412305	27	2.0	19.5	62.4	6.3
HH54	L543003	26	0.0	21.7	70.4	6.1
4757	Betaseed	27	0.0	5.6	79.6	5.0
CCMDO	Spreckels (1/22/89)	28	0.0	3.0	89.0	6.8
SSNB3	87-309H3 x Y939 (C39)	24	0.0	14.9	73.5	5.8
Y039H20	87-309H3 x R939C5	2 4 25	0.0	19.8	66.1	6.1
R039C5H20 Y048H20	87-309H3 x Y948 (C93)	28	0.0	7.4	82.0	7.1
		07	0.0	T 0	86.9	6.8
Y047H20	87-309H3 x Y947 (C47)	27	0.0	5.9		7.3
R047C5H20	87-309H3 x R947C5	25	0.0	5.6	84.0	6.9
R020H20	87-309H3 x R920 (C94)	27	0.0	22.0	70.4	6.8
R070H20	87-309H3 x R971-R980	25	0.0	6.7	77.3	0.0
Y054H20	87-309H3 x BYR Y854	26	0.0	6.2	79.0	5.5
R080H20	87-309H3 x R980	27	0.0	12.3	75.8	6.9
Y054- 2H20	87-309H3 x Y854- 2	26	0.0	15.5	71.9	6.4
Y054-12H20	87-309H3 x Y854-12	29	0.0	8.0	73.7	5.8
Y054-23H20	87-309H3 x Y854-23	26	0.0	6.1	84.6	6.3
_	87 - 309H3 x Y854-38	25	0.0	2.8	92.0	5.3
	87-309H3 x Y854-63	25	0.0	11.2		6.5
	87-309H3 x Y854-85	26	0.0	8.9		5.8
7010020	87-309H3 x Polish 1-7	26	0.0	12.6	67.5	7.1
Z010H20	87-309H3 x Polish-2	26	0.0	22.5	55.0	7.0
Z012H20		23	0.0	22.9		7.6
Z014H20	87-309H3 x Polish-4		0.0	90.5		7.6
E840	Inc. E440, E640	24	0.0	90.0	0.9	,
0906- 4H20	87-309H3 x 8906A- 4	27	0.0	9.5	79.3	6.8
	87-309H3 x 8906A- 7	25	0.0	14.2	75.7	6.5

TEST 2191. ERWINIA ROOT ROT AND POWDERY MILDEW EVALUATION AND OBSERVATION OF HYBRIDS, SALINAS, CA., 1991

(continued)

Popo	Variety	Description	Harv. Count/ Plot	Downey Mildew %1	Erwin DI	ia Reaction ² % Resistant	P.M. Avg. ³
0909-37H20 87-309H3 × 8909A-37 27 0.0 8.1 79.3 4.5 0909-48H20 87-309H3 × 8909A-48 24 0.0 16.9 74.1 5.6 0913H20 87-309H3 × 9911H49 26 0.0 14.0 73.3 6.3 0913H8 F82-546H3 × 9911H49 20 0.0 6.4 82.7 5.3 F82-546H3 × 9911H49 20 0.0 6.4 82.7 5.3 F82-546H3 × 9911H49 20 0.0 6.4 82.7 5.3 F82-546H3 × P980 24 0.0 9.5 75.9 5.9 R080H18 88-790-68H26 × R980 22 0.0 16.1 73.3 5.3 F8080H23 87-309H37 × R980 23 0.0 20.7 62.1 5.8 F8080H26 87-309CMS × R980 23 0.0 20.7 62.1 5.8 F8080H26 87-309CMS × R980 23 0.0 8.9 76.3 6.8 F8080H28 89-312CMS × R980 25 0.0 49.3 32.6 6.4 F8080H38 89-312CMS × R980 21 0.0 34.3 44.4 5.0 F8080H39 89-762-17CMS × R980 25 0.0 32.0 40.7 5.9 F8080H39 89-762-17CMS × R980 25 0.0 32.0 40.7 5.9 F8080H49 89-313CMS × R980 23 0.0 25.9 52.8 4.8 F8080H42 C742-24H0 × R980 25 0.0 32.0 40.7 5.9 F8080H40 89-313CMS × R980 22 0.0 16.1 62.2 4.5 F8080H54 C767-46H0 × R980 24 1.9 8.0 34.4 4.4 F8080H66 C766-23H0 × R980 22 0.0 14.1 68.1 6.3 F8080H70 C766-62H0 × R980 22 0.0 10.1 82.2 6.0 F8080H21 9859mmaa × R980 25 0.0 23.9 61.3 6.6 F8080H21 9859mmaa × R980 25 0.0 19.6 66.1 6.3 F8080H22 9865mmaa × R980 25 0.0 11.1 77.9 5.1 F8080H123 9867mmaa × R980 24 0.0 11.2 83.3 5.8 F8080H124 9876mmaa × R980 25 0.0 11.1 77.9 5.1 F8080H131 9858aa × R980 24 0.0 11.2 83.3 5.8 F8080H124 9876mmaa × R980 24 0.0 11.2 83.3 5.8 F8080H124 9876mmaa × R980 25 0.0 11.1 77.9 5.1 F8080H131 9858aa × R980 24 0.0 11.2 83.3 5.8 F8080H124 9876mmaa × R980 25 0.0 11.1 77.9 5.1 F8080H131 9858aa × R980 24 0.0 11.2 83.3 5.8 F8080H124 9876mmaa × R980 24 0.0 11.2 83.3 5.8 F8080H124 9876mmaa × R980 25 0.0 11.1 77.9 5.1 F8080H131 9858aa × R980 25 0.0 11.1 77.9 5.1 F8080H131 9858aa × R980 25 0.0 11.1 77.9 5.1 F8080H131 9858aa × R980 25 0.0 11.1 77.9 5.1 F8080H131 9858aa × R980 25 0.0 11.1 77.9 5.1 F8080H131 9858aa × R980 25 0.0 11.1 77.9 5.1 F8080H131 9858aa × R980 25 0.0 11.1 77.9 5.1 F8080H131 9858aa × R980 25 0.0 11.1 77.9 5.1 F8080H131 9858aa × R980 25 0.0 11.1 77.9 5.1 F8080H131 9858aa × R980 25 0.0 11.1 77.9 5.1 F8080H131 9858aa × R980 25 0.0 11.1 77.9 5.1 F8080H131 9858a							
0909-48H20 87-309H3 x 8909A-48 24 0.0 16.9 74.1 5.6 0913H20 87-309H3 x 8901H49 26 0.0 14.0 73.3 6.3 0913H8 F82-546H3 x 9911H49 20 0.0 6.4 82.7 5.3 ROBOHB F82-546H3 x R980 24 0.0 9.5 75.9 5.9 ROBOH18 88-790-68H26 x R980 22 0.0 16.1 73.3 5.3 ROBOH23 87-309H37 x R980 23 0.0 20.7 62.1 5.8 ROBOH26 87-309CMS x R980 23 0.0 8.9 76.3 6.8 ROBOH37 9807HO (C306) x R980 25 0.0 49.3 32.6 6.4 ROBOH38 89-312CMS x R980 21 0.0 34.3 44.4 5.0 ROBOH39 89-762-17CMS x R980 25 0.0 32.0 40.7 5.9 ROBOH40 89-313CMS x R980 23 0.0 25.9 52.8 4.8 ROBOH42 C742-24H0 x R980 25 0.0 32.0 40.7 5.9 ROBOH40 89-313CMS x R980 24 1.9 8.0 84.4 4.4 ROBOH64 C766-23H0 x R980 22 0.0 14.1 68.1 6.3 ROBOH70 C766-62H0 x R980 22 0.0 14.1 68.1 6.3 ROBOH70 C766-62H0 x R980 22 0.0 10.1 82.2 6.0 ROBOH72 83-718H0 x R980 25 0.0 23.9 61.3 6.6 ROBOH121 9859mmaa x R980 25 0.0 19.6 66.1 6.3 ROBOH122 9866mmaa x R980 25 0.0 11.1 77.9 5.1 ROBOH124 9876mmaa x R980 25 0.0 11.1 77.9 5.1 ROBOH124 9876mmaa x R980 25 0.0 11.1 77.9 5.1 ROBOH124 9876mmaa x R980 24 0.0 11.2 83.3 5.8 ROBOH124 9876mmaa x R980 24 0.0 11.1 77.9 5.1 ROBOH124 9876mmaa x R980 25 0.0 11.1 77.9 5.1 ROBOH124 9876mmaa x R980 24 0.0 11.2 83.3 5.8 ROBOH125 9887mmaa x R980 24 0.0 11.2 83.3 5.8 ROBOH124 9876mmaa x R980 25 0.0 11.1 77.9 5.1 ROBOH131 9858aa x R980 24 0.0 11.2 83.3 5.8 ROBOH125 9887mmaa x R980 25 0.0 11.1 77.9 5.1 ROBOH131 9858aa x R980 25 0.0 18.3 61.9 5.4 ROBOH131 9858aa x R980 25 0.0 7.8 82.0 6.5 ROBOH131 9858aa x R980 25 0.0 17.7 92.0 6.9 E840 Inc. E440, E640 23 0.0 87.0 10.4 7.9 E840 Inc. E440, E640 23 0.0 87.0 10.4 7.9 E840 Inc. E440, E640 23 0.0 87.0 10.4 7.9	0909-34H20	87-309H3 x 8909A-34	24	0.0	2.7	82.9	5.3
0913H20 87-309H3 x 9911H49 26 0.0 14.0 73.3 6.3 0913H8 F82-546H3 x 9911H49 20 0.0 6.4 82.7 5.3 R080H8 F82-546H3 x R980 24 0.0 9.5 75.9 5.9 R080H18 88-790-68H26 x R980 22 0.0 16.1 73.3 5.3 R080H23 87-309CHS x R980 23 0.0 20.7 62.1 5.8 R080H37 9807H0 (C306) x R980 25 0.0 49.3 32.6 6.4 R080H38 89-312CMS x R980 25 0.0 49.3 32.6 6.4 R080H39 89-762-17CMS x R980 25 0.0 49.3 32.6 6.4 R080H40 89-313CMS x R980 25 0.0 32.0 40.7 5.9 R080H42 C742-24H0 x R980 25 0.0 16.1 62.2 4.5 R080H54 C76-64H0 x R980 24 1.9 8.0 84.4 4.4							
0913H8 F82-546H3 x 991 H49 20 0.0 6.4 82.7 5.3 R080H8 F82-546H3 x P880 24 0.0 9.5 75.9 5.9 R080H18 88-790-68H26 x R980 22 0.0 16.1 73.3 5.3 R080H23 87-309H37 x R980 23 0.0 20.7 62.1 5.8 R080H26 87-309CMS x R980 23 0.0 8.9 76.3 6.8 R080H37 9807H0 (C306) x R980 25 0.0 49.3 32.6 6.4 R080H38 89-312CMS x R980 21 0.0 34.3 44.4 5.0 R080H39 89-762-17CMS x R980 25 0.0 32.0 40.7 5.9 R080H40 89-313CMS x R980 23 0.0 25.9 52.8 4.8 R080H42 C742-24H0 x R980 25 0.0 16.1 62.2 4.5 R080H54 C767-46H0 x R980 25 0.0 16.1 62.2 4.5 R080H66 C766-23H0 x R980 22 0.0 14.1 68.1 6.3 R080H70 C766-62H0 x R980 22 0.0 10.1 82.2 6.0 R080H72 83-718H0 x R980 25 0.0 23.9 61.3 6.6 R080H89 88-790-68CMS x R980 25 0.0 24.8 54.6 5.6 R080H121 9859mmaa x R980 25 0.0 11.1 77.9 5.1 R080H122 9866mmaa x R980 25 0.0 11.1 77.9 5.1 R080H123 9867mmaa x R980 25 0.0 11.7 77.9 5.1 R080H131 9858aa x R980 23 0.0 18.3 61.9 5.4 R080H132 9865aa x R980 25 0.0 7.8 82.0 6.5 R080H132 9865aa x R980 25 0.0 17.7 92.0 6.9 R080H131 P36442 25 0.0 1.7 92.0 6.9 R080H32 P364aa x R980 23 0.0 16.7 72.5 5.8 R080H33 9864aa x R980 25 0.0 1.7 92.0 6.9 R080H33 9864aa x R980 25 0.0 1.7 92.0 6.9 R080H34							
R080H8 F82-546H3 x R980 24 0.0 9.5 75.9 5.9 R080H18 88-790-68H26 x R980 22 0.0 16.1 73.3 5.3 R080H23 87-309H37 x R980 23 0.0 20.7 62.1 5.8 R080H26 87-309H37 x R980 23 0.0 8.9 76.3 6.8 R080H26 87-309CMS x R980 25 0.0 49.3 32.6 6.4 R080H38 89-312CMS x R980 21 0.0 34.3 44.4 5.0 R080H38 89-312CMS x R980 25 0.0 32.0 40.7 5.9 R080H39 89-762-17CMS x R980 25 0.0 32.0 40.7 5.9 R080H40 89-313CMS x R980 23 0.0 25.9 52.8 4.8 R080H42 C742-24H0 x R980 25 0.0 32.0 40.7 5.9 R080H40 89-313CMS x R980 24 1.9 8.0 84.4 4.4 R080H66 C766-23H0 x R980 22 0.0 14.1 68.1 6.3 R080H70 C766-62H0 x R980 22 0.0 14.1 68.1 6.3 R080H70 C766-62H0 x R980 22 0.0 10.1 82.2 6.0 R080H21 9859mmaa x R980 25 0.0 23.9 61.3 6.6 R080H121 9859mmaa x R980 25 0.0 19.6 66.1 6.3 R080H121 9859mmaa x R980 25 0.0 11.1 77.9 5.1 R080H123 9866mmaa x R980 25 0.0 11.1 77.9 5.1 R080H124 9876mmaa x R980 25 0.0 18.3 61.9 5.4 R080H131 9858aa x R980 24 0.0 18.3 61.9 5.4 R080H131 9858aa x R980 25 0.0 18.3 61.9 5.4 R080H131 9858aa x R980 25 0.0 18.4 60.8 6.0 R080H131 9858aa x R980 25 0.0 18.4 60.8 60.8 60.0 R080H131 9858aa x R980 25 0.0 18.5 15.1 17.7 95.5 5.8 E840 1 10.0 15.1 12.2 1.4 1.4 1.5 1.5 11.7 11.5 11.7 11.5 11.5 11.7 11.5 11.5							
R080H18 88-790-68H26 x R980 22 0.0 16.1 73.3 5.3 R080H23 87-309H37 x R980 23 0.0 20.7 62.1 5.8 R080H23 87-309CMS x R980 23 0.0 8.9 76.3 6.8 R080H26 87-309CMS x R980 23 0.0 8.9 76.3 6.8 R080H26 87-309CMS x R980 25 0.0 49.3 32.6 6.4 R080H38 89-312CMS x R980 21 0.0 34.3 44.4 5.0 R080H38 89-312CMS x R980 25 0.0 32.0 40.7 5.9 R080H40 89-313CMS x R980 25 0.0 32.0 40.7 5.9 R080H40 89-313CMS x R980 25 0.0 32.0 40.7 5.9 R080H40 89-313CMS x R980 25 0.0 16.1 62.2 4.5 R080H54 C767-46H0 x R980 25 0.0 16.1 62.2 4.5 R080H54 C766-23H0 x R980 24 1.9 8.0 84.4 4.4 R080H66 C766-23H0 x R980 22 0.0 14.1 68.1 6.3 R080H70 C766-62H0 x R980 22 0.0 10.1 82.2 6.0 R080H72 83-718H0 x R980 22 0.0 10.1 82.2 6.0 R080H72 83-718H0 x R980 25 0.0 23.9 61.3 6.6 R080H39 88-790-68CMS x R980 23 0.0 24.8 54.6 5.6 R080H121 9859mmaa x R980 25 0.0 19.6 66.1 6.3 R080H122 9866mmaa x R980 25 0.0 11.1 77.9 5.1 R080H123 9867mmaa x R980 25 0.0 11.1 77.9 5.1 R080H123 9867mmaa x R980 24 0.0 11.2 83.3 5.8 R080H124 9876mmaa x R980 24 0.0 16.7 61.9 5.6 R080H125 9887mmaa x R980 24 0.0 18.3 61.9 5.4 R080H131 9858aa x R980 24 0.0 18.3 61.9 5.4 R080H131 9858aa x R980 23 0.0 18.3 61.9 5.4 R080H131 9858aa x R980 23 0.0 18.3 61.9 5.4 R080H131 9858aa x R980 23 0.0 18.3 61.9 5.4 R080H131 9858aa x R980 23 0.0 16.7 72.5 5.8 US H11 L786442 25 0.0 7.8 82.0 6.5 R080H133 9864aa x R980 23 0.0 16.7 72.5 5.8 US H11 L786442 25 0.0 1.7 92.0 6.9 E840 Inc. E440, E640 23 0.0 87.0 10.4 7.9 Mean 1.1 L786442 25 0.0 15.1 21.2 1.4 C.V. (%) 726.5 41.2 15.5 11.7	0913H8	F82-546H3 x 9911H49	20	0.0	6.4	82.7	5.3
RO80H23 87-309H37 x R980 23 0.0 20.7 62.1 5.8 RO80H26 87-309CMS x R980 23 0.0 8.9 76.3 6.8 RO80H26 87-309CMS x R980 23 0.0 8.9 76.3 6.8 RO80H37 9807H0 (C306) x R980 25 0.0 49.3 32.6 6.4 RO80H38 89-312CMS x R980 21 0.0 34.3 44.4 5.0 RO80H39 89-762-17CMS x R980 25 0.0 32.0 40.7 5.9 RO80H40 89-313CMS x R980 23 0.0 25.9 52.8 4.8 RO80H42 C742-24H0 x R980 25 0.0 16.1 62.2 4.5 RO80H54 C767-46H0 x R980 24 1.9 8.0 84.4 4.4 RO80H66 C766-23H0 x R980 22 0.0 14.1 68.1 6.3 RO80H70 C766-62H0 x R980 22 0.0 10.1 82.2 6.0 RO80H72 83-718H0 x R980 22 0.0 10.1 82.2 6.0 RO80H39 88-790-68CMS x R980 23 0.0 24.8 54.6 5.6 RO80H121 9859mmaa x R980 25 0.0 19.6 66.1 6.3 RO80H122 9866mmaa x R980 25 0.0 11.1 77.9 5.1 RO80H124 9876mmaa x R980 25 0.0 11.1 77.9 5.1 RO80H125 9887mmaa x R980 21 0.0 16.7 61.9 5.6 RO80H124 9876mmaa x R980 21 0.0 16.7 61.9 5.6 RO80H125 9887mmaa x R980 24 5.0 18.4 60.8 6.0 RO80H131 9858a x R980 24 5.0 18.4 60.8 6.0 RO80H131 9858a x R980 24 5.0 18.4 60.8 6.0 RO80H131 9858a x R980 25 0.0 17.7 92.0 6.9 E840 Inc. E440, E640 23 0.0 87.0 10.4 7.9 RO80H131 9858a x R980 25 0.0 17.7 92.0 6.9 E840 Inc. E440, E640 23 0.0 87.0 10.4 7.9 RO80H131 SPERSON SPERS	R080H8						
R080H26 87-309CMS x R980 23 0.0 8.9 76.3 6.8 R080H37 9807H0 (C306) x R980 25 0.0 49.3 32.6 6.4 R080H38 89-312CMS x R980 21 0.0 34.3 44.4 5.0 R080H39 89-762-17CMS x R980 25 0.0 32.0 40.7 5.9 R080H40 89-313CMS x R980 23 0.0 25.9 52.8 4.8 R080H42 C742-24H0 x R980 25 0.0 16.1 62.2 4.5 R080H54 C767-46H0 x R980 24 1.9 8.0 84.4 4.4 R080H66 C766-23H0 x R980 22 0.0 14.1 68.1 6.3 R080H70 C766-62H0 x R980 22 0.0 10.1 82.2 6.0 R080H72 83-718H0 x R980 25 0.0 23.9 61.3 6.6 R080H89 88-790-68CMS x R980 23 0.0 24.8 54.6 5.6 R080H121 9859mmaa x R980 25 0.0 19.6 66.1 6.3 R080H122 9866mmaa x R980 25 0.0 11.1 77.9 5.1 R080H123 9867mmaa x R980 25 0.0 11.1 77.9 5.1 R080H124 9876mmaa x R980 24 0.0 11.2 83.3 5.8 R080H125 9887mmaa x R980 21 0.0 16.7 61.9 5.6 R080H131 9858aa x R980 23 0.0 18.3 61.9 5.4 R080H132 9865aa x R980 25 0.0 18.4 60.8 6.0 R080H133 9864aa x R980 25 0.0 17.7 92.0 6.9 E840 Inc. E440, E640 23 0.0 87.0 10.4 7.9 Mean LSD (.05) LSD							
R080H37 9807H0 (C306) x R980 25 0.0 49.3 32.6 6.4 R080H38 89-312CMS x R980 21 0.0 34.3 44.4 5.0 R080H39 89-762-17CMS x R980 25 0.0 32.0 40.7 5.9 R080H40 89-313CMS x R980 23 0.0 25.9 52.8 4.8 R080H42 C742-24H0 x R980 25 0.0 16.1 62.2 4.5 R080H54 C767-46H0 x R980 24 1.9 8.0 84.4 4.4 R080H66 C766-23H0 x R980 22 0.0 14.1 68.1 6.3 R080H70 C766-62H0 x R980 22 0.0 10.1 82.2 6.0 R080H70 C766-62H0 x R980 25 0.0 23.9 61.3 6.6 R080H121 9859mmaa x R980 25 0.0 19.6 66.1 6.3 R080H122 9866mmaa x R980 25 0.0 11.1 77.9 5.1 R080H123 9867mmaa x R980 25 0.0 11.1 77.9 5.1 R080H124 9876mmaa x R980 24 0.0 11.2 83.3 5.8 R080H124 9876mmaa x R980 24 0.0 11.2 83.3 5.8 R080H125 9887mmaa x R980 24 0.0 18.3 61.9 5.4 R080H131 9858aa x R980 24 5.0 18.4 60.8 6.0 R080H131 9858aa x R980 25 0.0 18.3 61.9 5.4 R080H131 9858aa x R980 25 0.0 18.4 60.8 6.0 R080H132 9865aa x R980 25 0.0 18.4 60.8 6.0 R080H132 9865aa x R980 25 0.0 18.4 60.8 6.0 R080H132 9865aa x R980 25 0.0 18.4 60.8 6.0 R080H133 9864aa x R980 25 0.0 17.7 92.0 6.9 E840 Inc. E440, E640 23 0.0 87.0 10.4 7.9 R080H133 9864aa x R980 25 0.0 17.7 92.0 6.9 E840 Inc. E440, E640 23 0.0 87.0 10.4 7.9 R080H							
R080H38 89-312CNS x R980 21 0.0 34.3 44.4 5.0 R080H39 89-762-17CMS x R980 25 0.0 32.0 40.7 5.9 R080H40 89-313CNS x R980 23 0.0 25.9 52.8 4.8 R080H42 C742-24H0 x R980 25 0.0 16.1 62.2 4.5 R080H54 C767-46H0 x R980 24 1.9 8.0 84.4 4.4 R080H66 C766-23H0 x R980 22 0.0 14.1 68.1 6.3 R080H70 C766-62H0 x R980 22 0.0 10.1 82.2 6.0 R080H70 E766-62H0 x R980 25 0.0 23.9 61.3 6.6 R080H89 88-790-68CMS x R980 23 0.0 24.8 54.6 5.6 R080H121 9859mmaa x R980 25 0.0 11.1 77.9 5.1 R080H122 9866mmaa x R980 25 0.0 11.1 77.9 5.1 R080H123 9867mmaa x R980 24 0.0 11.2 83.3 5.8 R080H124 9876mmaa x R980 21 0.0 16.7 61.9 5.6 R080H125 9887mmaa x R980 21 0.0 16.7 61.9 5.6 R080H125 9887mmaa x R980 23 0.0 18.3 61.9 5.4 R080H131 9858aa x R980 24 5.0 18.4 60.8 6.0 R080H132 9865aa x R980 25 0.0 17.7 92.0 6.9 E840 Inc. E440, E640 23 0.0 87.0 10.4 7.9 R080H133 9864aa x R980 23 0.0 87.0 10.4 7.9 R080H133 PROBABLE SERVICE	R080H26	87-309CMS x R980	23	0.0	8.9	76.3	6.8
R080H39 89-762-17CMS x R980 25 0.0 32.0 40.7 5.9 R080H40 89-313CMS x R980 23 0.0 25.9 52.8 4.8 R080H42 C742-24HO x R980 25 0.0 16.1 62.2 4.5 R080H54 C767-46HO x R980 24 1.9 8.0 84.4 4.4 R080H66 C766-23HO x R980 22 0.0 14.1 68.1 6.3 R080H70 C766-62HO x R980 22 0.0 10.1 82.2 6.0 R080H72 83-718HO x R980 25 0.0 23.9 61.3 6.6 R080H89 88-790-68CMS x R980 23 0.0 24.8 54.6 5.6 R080H121 9859mmaa x R980 22 0.0 19.6 66.1 6.3 R080H122 9866mmaa x R980 25 0.0 11.1 77.9 5.1 R080H123 9867mmaa x R980 24 0.0 11.2 83.3 5.8 R080H125 9887mmaa x R980 23 0.0 16.7 61.9 5.4	R080H37	9807HO (C306) x R980	25	0.0	49.3	32.6	6.4
R080H40 89-313CMS x R980 23 0.0 25.9 52.8 4.8 R080H42 C742-24HO x R980 25 0.0 16.1 62.2 4.5 R080H54 C767-46HO x R980 24 1.9 8.0 84.4 4.4 R080H66 C766-23HO x R980 22 0.0 14.1 68.1 6.3 R080H70 C766-62HO x R980 22 0.0 10.1 82.2 6.0 R080H89 88-790-68CMS x R980 23 0.0 24.8 54.6 5.6 R080H121 9859mmaa x R980 25 0.0 19.6 66.1 6.3 R080H122 9866mmaa x R980 25 0.0 11.1 77.9 5.1 R080H123 9867mmaa x R980 25 0.0 11.1 77.9 5.1 R080H124 9876mmaa x R980 21 0.0 16.7 61.9 5.6 R080H125 9887mmaa x R980 21 0.0 16.7 61.9 5.6 R080H126 9887mmaa x R980 24 5.0 18.4 60.8 6.0 R080H131 9858aa x R980 25 0.0 7.8 82.0 6.5 R080H132 9865aa x R980 25 0.0 16.7 72.5 5.8 US H11 L786442 25 0.0 1.7 92.0 6.9 E840 Inc. E440, E640 23 0.0 87.0 10.4 7.9 Mean LSD (.05) C.V. (%) 726.5 41.2 15.5 11.7	R080H38	89-312CMS x R980	21	0.0	34.3	44.4	5.0
R080H42 C742-24H0 x R980 25 0.0 16.1 62.2 4.5 R080H54 C767-46H0 x R980 24 1.9 8.0 84.4 4.4 R080H66 C766-23H0 x R980 22 0.0 14.1 68.1 6.3 R080H70 C766-62H0 x R980 22 0.0 10.1 82.2 6.0 R080H70 C766-62H0 x R980 25 0.0 23.9 61.3 6.6 R080H89 88-790-68CMS x R980 23 0.0 24.8 54.6 5.6 R080H121 9859mmaa x R980 22 0.0 19.6 66.1 6.3 R080H122 9866mmaa x R980 25 0.0 11.1 77.9 5.1 R080H123 9867mmaa x R980 25 0.0 11.1 77.9 5.1 R080H124 9876mmaa x R980 21 0.0 16.7 61.9 5.6 R080H124 9876mmaa x R980 21 0.0 16.7 61.9 5.6 R080H125 9887mmaa x R980 21 0.0 16.7 61.9 5.6 R080H125 9887mmaa x R980 21 0.0 16.7 61.9 5.6 R080H121 9858aa x R980 23 0.0 18.3 61.9 5.4 R080H131 9858aa x R980 24 5.0 18.4 60.8 6.0 R080H132 9865aa x R980 25 0.0 7.8 82.0 6.5 R080H133 9864aa x R980 25 0.0 16.7 72.5 5.8 US H11 L786442 25 0.0 1.7 92.0 6.9 E840 Inc. E440, E640 23 0.0 87.0 10.4 7.9 Mean LSD (.05) C.V. (%) 726.5 41.2 15.5 11.7	R080H39	89-762-17CMS x R980	25	0.0	32.0	40.7	5.9
R080H54	R080H40	89-313CMS x R980	23	0.0	25.9	52.8	4.8
R080H66 C766-23HO x R980 22 0.0 14.1 68.1 6.3 R080H70 C766-62HO x R980 22 0.0 10.1 82.2 6.0 R080H72 83-718HO x R980 25 0.0 23.9 61.3 6.6 R080H89 88-790-68CMS x R980 23 0.0 24.8 54.6 5.6 R080H121 9859mmaa x R980 22 0.0 19.6 66.1 6.3 R080H122 9866mmaa x R980 25 0.0 11.1 77.9 5.1 R080H123 9867mmaa x R980 24 0.0 11.2 83.3 5.8 R080H124 9876mmaa x R980 21 0.0 16.7 61.9 5.6 R080H125 9887mmaa x R980 23 0.0 18.3 61.9 5.4 R080H131 9858aa x R980 25 0.0 7.8 82.0 6.5 R080H132 9865aa x R980 25 0.0 7.8 82.0 6.5 R080H133 9864aa x R980 23 0.0 16.7 72.5 5.8	R080H42	C742-24HO x R980	25	0.0	16.1	62.2	4.5
R080H70 C766-62HO x R980 22 0.0 10.1 82.2 6.0 R080H72 83-718HO x R980 25 0.0 23.9 61.3 6.6 R080H89 88-790-68CMS x R980 23 0.0 24.8 54.6 5.6 R080H121 9859mmaa x R980 22 0.0 19.6 66.1 6.3 R080H122 9866mmaa x R980 25 0.0 11.1 77.9 5.1 R080H123 9867mmaa x R980 24 0.0 11.2 83.3 5.8 R080H124 9876mmaa x R980 21 0.0 16.7 61.9 5.6 R080H125 9887mmaa x R980 23 0.0 18.3 61.9 5.4 R080H131 9858aa x R980 24 5.0 18.4 60.8 6.0 R080H132 9865aa x R980 25 0.0 7.8 82.0 6.5 R080H133 9864aa x R980 23 0.0 16.7 72.5 5.8 US H11 L786442 25 0.0 1.7 92.0 6.9	R080H54	C767-46HO x R980	24	1.9	8.0	84.4	4.4
R080H72 83-718H0 x R980 25 0.0 23.9 61.3 6.6 R080H89 88-790-68CMS x R980 23 0.0 24.8 54.6 5.6 R080H121 9859mmaa x R980 22 0.0 19.6 66.1 6.3 R080H122 9866mmaa x R980 25 0.0 11.1 77.9 5.1 R080H123 9867mmaa x R980 24 0.0 11.2 83.3 5.8 R080H124 9876mmaa x R980 21 0.0 16.7 61.9 5.6 R080H125 9887mmaa x R980 21 0.0 16.7 61.9 5.6 R080H125 9887mmaa x R980 23 0.0 18.3 61.9 5.4 R080H131 9858aa x R980 24 5.0 18.4 60.8 6.0 R080H132 9865aa x R980 25 0.0 7.8 82.0 6.5 R080H133 9864aa x R980 23 0.0 16.7 72.5 5.8 US H11 L786442 25 0.0 1.7 92.0 6.9 E840 Inc. E440, E640 23 0.0 87.0 10.4 7.9 Mean	R080H66	C766-23HO x R980	22	0.0	14.1	68.1	6.3
RO80H89 88-790-68CMS x R980 23 0.0 24.8 54.6 5.6 R080H121 9859mmaa x R980 22 0.0 19.6 66.1 6.3 R080H122 9866mmaa x R980 25 0.0 11.1 77.9 5.1 R080H123 9867mmaa x R980 24 0.0 11.2 83.3 5.8 R080H124 9876mmaa x R980 21 0.0 16.7 61.9 5.6 R080H125 9887mmaa x R980 23 0.0 18.3 61.9 5.4 R080H131 9858aa x R980 24 5.0 18.4 60.8 6.0 R080H132 9865aa x R980 25 0.0 7.8 82.0 6.5 R080H133 9864aa x R980 25 0.0 7.8 82.0 6.5 R080H133 9864aa x R980 25 0.0 16.7 72.5 5.8 US H11 L786442 25 0.0 1.7 92.0 6.9 E840 Inc. E440, E640 23 0.0 87.0 10.4 7.9 Mean	R080H70	C766-62HO x R980	22	0.0	10.1	82.2	6.0
R080H121 9859mmaa x R980 22 0.0 19.6 66.1 6.3 R080H122 9866mmaa x R980 25 0.0 11.1 77.9 5.1 R080H123 9867mmaa x R980 24 0.0 11.2 83.3 5.8 R080H124 9876mmaa x R980 21 0.0 16.7 61.9 5.6 R080H125 9887mmaa x R980 23 0.0 18.3 61.9 5.4 R080H131 9858aa x R980 24 5.0 18.4 60.8 6.0 R080H132 9865aa x R980 25 0.0 7.8 82.0 6.5 R080H133 9864aa x R980 25 0.0 7.8 82.0 6.5 R080H133 9864aa x R980 23 0.0 16.7 72.5 5.8 US H11 L786442 25 0.0 1.7 92.0 6.9 E840 Inc. E440, E640 23 0.0 87.0 10.4 7.9 Mean	R080H72	83-718HO x R980	25	0.0	23.9	61.3	6.6
R080H122 9866mmaa x R980 25 0.0 11.1 77.9 5.1 R080H123 9867mmaa x R980 24 0.0 11.2 83.3 5.8 R080H124 9876mmaa x R980 21 0.0 16.7 61.9 5.6 R080H125 9887mmaa x R980 23 0.0 18.3 61.9 5.4 R080H131 9858aa x R980 24 5.0 18.4 60.8 6.0 R080H132 9865aa x R980 25 0.0 7.8 82.0 6.5 R080H133 9864aa x R980 23 0.0 16.7 72.5 5.8 US H11 L786442 25 0.0 1.7 92.0 6.9 E840 Inc. E440, E640 23 0.0 87.0 10.4 7.9 Mean LSD (.05) C.V. (%) 726.5 41.2 15.5 11.7	R080H89	88-790-68CMS x R980	23	0.0	24.8	54.6	5.6
R080H123 9867mmaa x R980 24 0.0 11.2 83.3 5.8 R080H124 9876mmaa x R980 21 0.0 16.7 61.9 5.6 R080H125 9887mmaa x R980 23 0.0 18.3 61.9 5.4 R080H131 9858aa x R980 24 5.0 18.4 60.8 6.0 R080H132 9865aa x R980 25 0.0 7.8 82.0 6.5 R080H133 9864aa x R980 23 0.0 16.7 72.5 5.8 US H11 L786442 25 0.0 1.7 92.0 6.9 E840 Inc. E440, E640 23 0.0 87.0 10.4 7.9 Mean	R080H121	9859mmaa x R980	22	0.0	19.6	66.1	6.3
R080H124 9876mmaa x R980 21 0.0 16.7 61.9 5.6 R080H125 9887mmaa x R980 23 0.0 18.3 61.9 5.4 R080H131 9858aa x R980 24 5.0 18.4 60.8 6.0 R080H132 9865aa x R980 25 0.0 7.8 82.0 6.5 R080H133 9864aa x R980 23 0.0 16.7 72.5 5.8 US H11 L786442 25 0.0 1.7 92.0 6.9 E840 Inc. E440, E640 23 0.0 87.0 10.4 7.9 Mean 0.1 18.4 68.3 6.2 LSD (.05) 2.0 15.1 21.2 1.4 C.V. (%) 726.5 41.2 15.5 11.7	R080H122	9866mmaa x R980	25	0.0	11.1	77.9	5.1
R080H125 9887mmaa x R980 23 0.0 18.3 61.9 5.4 R080H131 9858aa x R980 24 5.0 18.4 60.8 6.0 R080H132 9865aa x R980 25 0.0 7.8 82.0 6.5 R080H133 9864aa x R980 23 0.0 16.7 72.5 5.8 US H11 L786442 25 0.0 1.7 92.0 6.9 E840 Inc. E440, E640 23 0.0 87.0 10.4 7.9 Mean 0.1 18.4 68.3 6.2 LSD (.05) 2.0 15.1 21.2 1.4 C.V. (%) 726.5 41.2 15.5 11.7	R080H123	9867mmaa x R980	24	0.0	11.2	83.3	5.8
R080H131 9858aa x R980 24 5.0 18.4 60.8 6.0 R080H132 9865aa x R980 25 0.0 7.8 82.0 6.5 R080H133 9864aa x R980 23 0.0 16.7 72.5 5.8 US H11 L786442 25 0.0 1.7 92.0 6.9 E840 Inc. E440, E640 23 0.0 87.0 10.4 7.9 Mean 0.1 18.4 68.3 6.2 LSD (.05) 2.0 15.1 21.2 1.4 C.V. (%) 726.5 41.2 15.5 11.7	R080H124	98 76 mmaa x R980	21	0.0	16.7	61.9	5.6
R080H132 9865aa x R980 25 0.0 7.8 82.0 6.5 R080H133 9864aa x R980 23 0.0 16.7 72.5 5.8 US H11 L786442 25 0.0 1.7 92.0 6.9 E840 Inc. E440, E640 23 0.0 87.0 10.4 7.9 Mean	R080H125	9887mmaa x R980	23	0.0	18.3	61.9	5.4
R080H133 9864aa x R980 23 0.0 16.7 72.5 5.8 US H11 L786442 25 0.0 1.7 92.0 6.9 E840 Inc. E440, E640 23 0.0 87.0 10.4 7.9 Mean 0.1 18.4 68.3 6.2 LSD (.05) 2.0 15.1 21.2 1.4 726.5 41.2 15.5 11.7	R080H131	9858aa x R980	24	5.0	18.4	60.8	6.0
R080H133 9864aa x R980 23 0.0 16.7 72.5 5.8 US H11 L786442 25 0.0 1.7 92.0 6.9 E840 Inc. E440, E640 23 0.0 87.0 10.4 7.9 Mean 0.1 18.4 68.3 6.2 LSD (.05) 2.0 15.1 21.2 1.4 726.5 41.2 15.5 11.7	R080H132	9865aa x R980	25	0.0	7.8	82.0	6.5
US H11 L786442 25 0.0 1.7 92.0 6.9 E840 Inc. E440, E640 23 0.0 87.0 10.4 7.9 Mean 0.1 18.4 68.3 6.2 LSD (.05) 2.0 15.1 21.2 1.4 C.V. (%) 726.5 41.2 15.5 11.7							
E840 Inc. E440, E640 23 0.0 87.0 10.4 7.9 Mean 0.1 18.4 68.3 6.2 LSD (.05) 2.0 15.1 21.2 1.4 C.V. (%) 726.5 41.2 15.5 11.7							
LSD (.05) 2.0 15.1 21.2 1.4 C.V. (%) 726.5 41.2 15.5 11.7	E840	Inc. E440, E640	23	0.0			
LSD (.05) 2.0 15.1 21.2 1.4 C.V. (%) 726.5 41.2 15.5 11.7	Mean			0.1	18.4	68.3	6.2
C.V. (%) 726.5 41.2 15.5 11.7	LSD (.05)						
	F value			1.0NS	12.8**	6.8**	

^{1,2,3} See Test 2091.

TEST 1791. CODED POWDERY MILDEW TEST, 1991

Planted: February 12, 199

160 varieties x 5 replications 1-row plots, 14 ft. long, 20 rows wide

Variety	Variety		Stand	Pov	vdery Milo	dew Ratino	1
No.	<u>Name</u>	Company	Count	7/31	8/07	8/14	<u>Mean</u>
PM- 1	HH-77	Holly	21	4.4	6.0	7.8	6.07
PM- 2	HM 3015	HM	20	4.4	5.8	7.2	5.80
PM- 3	SS-334R	Spreck	20	6.2	7.6	8.6	7.47
PM- 4	89-1459-041	Holly	21	4.4	5.2	7.0	5.53
PM- 5	89N 158-015	Holly	21	4.0	5.4	7.2	5.53
PM- 6	85C 62-016	Holly	22	4.2	5.6	7.2	5.67
PM- 7	4625	Beta	21	3.8	5.6	6.8	5.40
PM- 8	H89298	Spreck	21	5.4	6.4	8.2	6.67
PM- 9	SS-377	Spreck	22	5.0	6.0	8.0	6.33
PM- 10	OBG6365	Beta	21	4.4	5.6	6.6	5.53
PM- 11	SS-NB3	Spreck	21	4.2	5.8	7.6	5.87
PM- 12	H87398	Spreck	21	4.4	5.6	7.6	5.87
PM- 13	H88236	Spreck	21	4.0	5.4	7.4	5.60
PM- 14	6BG6207	Beta	21	3.0	4.8	6.2	4.67
PM- 15	SS-462R	Spreck	20	6.2	7.8	8.8	7.60
PM- 16	H89684	Spreck	21	4.8	6.2	7.8	6.27
PM- 17	H87245	Spreck	20	4.0	5.6	6.8	5.47
PM- 18	SS-270	Spreck	17	4.8	6.2	7.2	6.07
PM- 19	H90636	Spreck	21	5.0	6.8	8.4	6.73
PM- 20	89C 58-07	Holly	21	5.8	7.2	8.4	7.13
PM- 21	84C 39-024	Holly	20	5.0	6.0	7.6	6.20
PM- 22	H87316	Spreck	20	5.8	7.0	8.0	6.93
PM- 23	SS-231	Spreck	20	3.4	5.0	6.8	5.07
PM- 24	HM 3005	HM	20	3.8	5.4	7.0	5.40
PM- 25	87C 40-012	Holly	21	5.6	6.8	7.8	6.73
PM- 26	SS-502	Spreck	21	4.8	6.4	7.6	6.27
PM- 27	HH-56	Holly	20	4.8	6.0	7.2	6.00
PM- 28	SS-Y1	Spreck	20	4.8	5.6	7.6	6.00
PM- 29	H90280	Spreck	20	4.6	6.4	8.0	6.33
PM- 30	7BG6103	Beta	22	4.0	5.0	6.8	5.27
PM- 31	H87354	Spreck	20	4.0	5.4	7.2	5.53
PM- 32	9BG6379	Beta	20	3.0	4.0	5.0	4.00

TEST 1791. CODED POWDERY MILDEW TEST, 1991 (continued)

Variety	Variety		Stand	Po	wdery Mile	dew Rating	1
No.	Name	Company	<u>Count</u>	7/31	<u>8/07</u>	8/14	<u>Mean</u>
PM- 33	H902 87	Spreck	21	6.2	7.2	8.0	7.13
PM- 34	9BG6346	Beta	21	4.8	6.6	7.4	6.27
PM- 35	89 - 1459-056	Holly	20	4.2	6.2	7.2	5.87
PM- 36	4480	Beta	22	3.4	5.6	7.0	5.33
PM- 37	6BG6209	Beta	20	3.0	4.8	6.2	4.67
PM- 38	SS-Z2	Spreck	21	5.2	7.0	8.4	6.87
PM- 39	8BC6391	Beta	21	3.8	5.6	7.2	5.53
PM- 40	86C 148-04	Holly	20	5.2	7.6	8.6	7.13
PM- 41	89-1459-082	Holly	21	6.4	7.4	8.6	7.47
PM- 42	H892 3 8	Spreck	21	4.0	5.0	6.0	5.00
PM- 43	HM 6036	HM	20	3.0	5.2	7.0	5.07
PM- 44	86-84C80-05	Holly	20	4.4	5.8	7.0	5.73
PM- 45	89N 15 8- 029	Holly	21	4.6	6 .6	7.8	6.33
PM- 46	86-1459-026	Holly	21	5.6	6.2	8.0	6.60
PM- 47	HM 3020	HM	21	4.0	5.2	6.2	5.13
PM- 48	HH-69	Holly	22	6.0	6.8	8.6	7.13
PM- 49	H88199	Spreck	21	3.0	5.4	7.6	5.33
PM- 50	86C 15-014	Holly	20	3.8	5.6	7.6	5.67
PM- 51	H87240	Spreck	21	3.6	5.0	7.4	5.33
PM- 52	HM 6027	HM	20	4.0	5.6	7.2	5.60
PM- 53	HH-38	Holly	21	4.0	5.6	7.2	5.60
PM- 54	86-84C65-05	Holly	21	5.0	6.8	8.0	6.60
PM- 55	4587	Beta	21	5.0	6.2	8.0	6.40
PM- 56	HH - 54	Holly	19	4.4	5.4	7.4	5.73
PM- 57	8BG6169	Beta	21	5.0	6.6	7.6	6.40
PM- 58	HM 3019	HM	21	4.2	5.8	7.2	5.73
PM- 59	H90543	Spreck	21	4.4	6.0	7.6	6.00
PM- 60	OBG6217	Beta	21	3.8	5.2	6.2	5.07
PM- 61	90C 63 - 04	Holly	20	4.4	5.8	7.4	5.87
PM- 62	90C 148 - 06	Holly	20	4.2	5.8	7.2	5.73
PM- 63	9BG6374	Beta	20	2.4	4.2	5.8	4.13
PM- 64	9BG6271	Beta	21	4.2	6.0	7.6	5.93
PM- 65	HM 3018	HM	21	4.0	5.4	7.0	5.47
PM- 66	H8 828 9	Spreck	21	4.4	5.4	7.2	5.67
PM- 67	86-84C25-013	Holly	20	4.0	6.0	7.4	5.80
PM- 68	HH-84	Holly	21	4.6	6.4	8.2	6.40

TEST 1791. CODED POWDERY MILDEW TEST, 1991 (continued)

Variety No.	Variety Name	Company	Stand <u>Count</u>	Pow 7/31	dery Mild 8/07	dew Ratino 8/14	Mean
PM- 69	88-1459-049	Holly	22	5.8	7.0	8.8	7.20
PM- 70	HM 5330	HM	21	4.2	5.2	5.8	5.07
PM- 71	9BG6371	Beta	21	4.0	6.8	8.0	6.60
PM- 72	9BG6380	Beta	21	3.8	5.0	6.6	5.13
PM- 73	HH-80	Holly	22	5.8	7.4	8.6	7.27
PM- 74	HH-81	Holly	21	5.8	7.6	8.6	7.33
PM- 75	88C 155-016	Holly	22	5.4	6.8	8.4	6.87
PM- 76	HM 3013	HM	21	5.6	6.8	8.2	6.87
PM- 77	US H11	Stand.	22	5.4	7.0	8.8	7.07
PM- 78	8BC6384	Beta	21	3.2	5.0	6.8	5.00
PM- 79	87-1459-080	Holly	21	4.0	5.0	7.6	5.53
PM- 80	90-1459-0108	Holly	21	4.2	5.0	7.2	5.47
PM- 81	89N 158-02	Holly	21	4.6	6.2	8.0	6.27
PM- 82	4757	Beta	20	2.8	4.2	5.8	4.27
PM- 83	H88589	Spreck	21	4.8	6.6	7.8	6.40
PM- 84	7BG6088	Beta	20	2.4	4.4	5.2	4.00
PM- 85	0BG6113	Beta	21	4.4	6.0	7.2	5.87
PM- 86	SS-NB2	Spreck	21	5.2	7.0	8.6	6.93
PM- 87	OBG6431	Beta	21	3.0	4.2	6.0	4.40
PM- 88	H87356	Spreck	21	4.6	6.8	8.2	6.53
PM- 89	HH-85	Holly	19	4.6	5.4	7.4	5.80
PM- 90	89-1459-015	Holly	21	3.6	4.4	6.0	4.67
PM- 91	HH-41	Holly	20	5.0	7.2	8.2	6.80
PM- 92	9BG6381	Beta	21	4.2	5.6	6.4	5.40
PM- 93	HH-37	Holly	20	5.6	6.8	8.4	6.93
PM- 94	H88249	Spreck	21	4.8	6.2	7.8	6.27
PM- 95	H89760	Spreck	20	4.6	5.8	7.6	6.00
PM- 96	87C 40-011	Holly	20	5.2	6.2	7.6	6.33
PM- 97	8BG6329	Beta	21	4.6	6.6	7.6	6.27
PM- 98	HM 3012	HM	21	5.2	6.6	8.0	6.60
PM- 99	HM 3014	HM	20	1.4	4.0	4.6	3.33
PM-100	HM 3016	HM	21	3.8	5.8	7.6	5.73
PM-101	9BG6276	Beta	19	4.0	6.2	7.6	5.93
PM-102	HM 3017	HM	21	5.4	7.4	8.6	7.13
PM-103	H88242	Spreck	20	4.0	5.4	7.4	5.60
PM-104	Hill 2	HM	21	3.0	4.0	5.2	4.07

TEST 1791. CODED POWDERY MILDEW TEST, 1991 (continued)

Variety	Variety		Stand	P	owdery Mi	ldew Rati	ng
No.	<u>Name</u>	Company	<u>Count</u>	7/31	8/07	<u>8/14</u>	Mean
PM-105	OBG6336	Beta	19	2.4	3.6	5.2	3.73
PM-106	USC-1	Holly	20	4.0	5.8	8.2	6.00
PM-107	SS-Z1	Spreck	19	5.4	6.6	8.2	6.73
PM-108	H88500	Spreck	22	5.2	6.8	8.2	6.73
PM-109	87C 40-08	Holly	01	5.8	7.2	8.2	7.07
PM-110	HH-46	Holly	21	4.4	5.6	7.0	5.67
PM-111	89-1459-092	Holly	21	4.4	6.2	7.4	6.00
PM-112	89N 158 -0 17	Holly	21	4.4	6.0	7.6	6.00
PM-113	HH - 66	Holly	21	5.2	6.4	7.6	6.40
PM-114	H88335	Spreck	21	3.2	5.2	6.6	5.00
PM-115	87C 40-013	Holly	20	3.6	5.8	7.8	5.73
PM-116	HH - 79	Holly	21	5.8	7.4	8.6	7.27
PM-117	89-84C65-07	Holly	20	4.4	5.8	7.2	5.80
PM-118	9BG6372	Beta	21	3.6	4.8	6.0	4.80
PM-119	SS-334	Spreck	21	4.2	5.6	8.0	5.93
PM-120	H88287	Spreck	21	4.8	6.2	8.0	6.33
PM-121	90-1459-167	Holly	21	4.2	5.8	7.6	5.87
PM-122	7BG6092	Beta	21	2.6	4.2	5.4	4.07
PM-123	US H11	Stand.	21	5.4	7.4	8.6	7.13
PM-124	H90547	Spreck	21	5.8	7.4	8.4	7.20
PM-125	4581	Beta	21	4.0	4.6	6.2	4.93
PM-126	HH-70	Holly	20	6.4	7.8	8.2	7.47
PM-127	OBG6177	Beta	21	4.0	5 . 6	6.6	5.40
PM-128	H87545	Spreck	21	5.4	7 . 2	7.8	6.80
		opicen	21	J.4	7.2	7.0	0.00
PM-129	SS-LS2	Spreck	21	4.2	5.8	7.4	5.80
PM-130	HM 3021	HM	21	3.8	5.0	6.2	5.00
PM-131	HH-45	Holly	21	4.6	6.0	7.6	6.07
PM-132	H86519	Spreck	21	5.6	7.2	8.6	7.13
PM-133	9BG6257	Beta	20	4.6	5.8	7.6	6.00
PM-134	86-1459-038	Holly	20	5.2	6.0	8.0	6.40
PM-135	US H11	Stand.	20	6.0	7.4	8.8	7.40
PM-136	89C 58-03	Holly	20	6.4	7.6	9.0	7.67
PM-137	9BG6272	Beta	21	6.2	7.4	8.2	7.27
PM-138	9BG6270	Beta	20	5.0	6.6	8.0	
PM-139	H87497	Spreck	22	5.0	6.4	8.0	6.53
PM-140	H86558	Spreck	21	3.6	5.0		6.47
	1.00000	oproon.	2 ±	5.0	5.0	6.0	4.87

TEST 1791. CODED POWDERY MILDEW TEST, 1991 (continued)

Variety	Variety		Stand	P	owdery Mi	ldew Rati	ng
No.	Name	Company	Count	7/31	<u>8/07</u>	8/14	Mean
PM-141	OBG6351	Beta	20	3.0	4.0	5.2	4.07
PM-142	HH-55	Holly	20	3.4	4.6	6.0	4.67
PM-143	OBG6488	Beta	20	5.0	6.0	7.2	6.07
PM-144	9BG6259	Beta	20	4.6	6.2	7.6	6.13
PM-145	8BG6332	Beta	21	4.2	6.2	7.4	5.93
PM-146	US H11	Stand.	21	6.0	7.8	8.8	7.53
PM-147	Rhizosen	Holly	21	5.4	7.2	8.4	7.00
PM-148	OBG6486	Beta	20	4.6	5.4	7.6	5.87
PM-149	SS-181	Spreck	22	4.0	6.2	7.2	5.80
PM-150	H89262	Spreck	21	3.2	5.4	6.6	5.07
PM-151	H86246	Spreck	21	3.0	5.2	6.4	4.87
PM-152	90C 62-011	Holly	21	5.2	6.8	8.2	6.73
Entries ac US H11 US H11 WS-PM-9 WS-PM-9	dded by USDA	USDA USDA HM HM	22 20 21 20	6.4 6.0 3.0 3.2	7.8 7.4 4.8 5.2	8.8 8.2 6.6 6.8	7.67 7.20 4.80 5.07
WS-PM-9		HM	21	2.6	4.4	6.8	4.60
WS-PM-9		HM	20	3.2	4.8	6.4	4.80
Y039		USDA	18	0.2	3.0	3.0	2.07
Y039		USDA	18	1.4	3.2	4.0	2.87
Mean ISD (.05) C.V. (%) F value			20.5 1.6 6.4 9.0**	4.4 1.2 11.7 6.8**	5.9 1.0 13.8 7.4**	7.4 1.1 11.7 6.8**	5.9 0.85 11.6 10.3**

Footnote:

Powdery mildew scored on a scale of 0 to 9, where 9 = 90-100% of visible leaf area infected. In 1991, mildew was late to start but then developed quickly and to a high incidence. To retain differences between entries, only three weekly ratings were used to calculate the mean powdery mildew (area under disease progress curve).

Entry #109 had two missing plots and very poor stands and data may not be accurate.

PI #'s FOR VIRUS YELLOWS AND RHIZOWANIA CA., 1991 1991 EVALUATION OF AMES TEST RZM 991.

#81 Beet Cyst Nematode⁸ Planted: June 5, 1991 Natural infection to EWIV Harvested: December 5, 1991 MMMMMMMM 0000000 00000000 Rhizomania⁷ DI %H 37.9 37.9 37.9 12.0 37.02 37.03 37.09 65.79 61.09 51.7 60.2 37.9 37.9 37.3 37.3 0.8 #74 7807m89m 4m997797 0m0007007 6.3 6.3 7.7 7.0 8.4 8.6 8.4 10/03 BWYVE 7.0°C 440.46 7.0°C 7.00 7.0°C W2744404 0W007700W 0.4040 0.000 0.000 0.000 #61 Bolting Tend. 44448448 88848844 8444888 Petiole Color 44444444 なななななななな **4444444** #12 Mature Leaf Blage Pigment 00000000 7070000 00000000 Pop.2 Unif.2 α End₁ Use¹ $\omega \omega \omega \omega \omega \omega \omega \omega \omega$ 00000L00 Harv. Count 250 250 250 250 250 250 250 250 64 entries x 3 reps, RCB 1-row plots, 10 ft., long Spain Uncertain Uncertain Uncertain Unknown US Israel France Greece Unknown Unknown Unknown Spain Spain Source Unknown Unknown Jnknown Jnknown Turkey Greece Greece France France 44444 42424 42644 42664 4268 7268 177 4188 421918 42224 42224 42224 42400 4240 44272 44272 44274 43330 43331 P.I.# Variety Ames Ames Ames Ames Ames Ames Ames
Ames
Ames
Ames
Ames
Ames
Ames
Ames Ames
Ames
Ames
Ames
Ames
Ames
Ames

1991 EVALUATION OF AMES PI #'s FOR VIRUS YELLOWS AND RHIZOMANIA SALINAS, CA., 1991 TEST RZM 991.

(continued)

#81 Beet Cyst Tematode		ุดพดพดพดพ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ania ⁷	17.8 18.0 18.0 60.6 50.5 81.3	44847418 1017,0282 00178158	36 20 20 20 20 30 30 30 30 30 30 30 30
#74 Rhizoma DI	044WW44W 000088404	4444W4RW G04G4G4W	4040444 00064000
#61 <u>Bwyy</u> 6 10/03	6.446.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6	0.000.044.00.000.000.000.000.000.000.00	ო <u>იო</u> 4ო <i>0</i> 4ო ოო r -ოოიო
#37 Boltigg Tend.	ดดดดดดดด	NNNNNNNN	NNNNNNN
#19 Petiole Color	ੀ ਧਾਧਾਧਾਧਾਧਾ	ব'ব'ব'ব'ব'ব'ব'	ひこかなななな な
#12 Mature Leaf Blage Pigment	H0000000	ппппппппппппппппппппппппппппппппппппппп	NUNNNN
#5 Pop.2 Unif.2	пноннонн	наматаман	нананана
#1 End1 Use1	RV000000	ουουουουο	00000000
Harv. Count	4443344 4443344 1	33444498 334643698	488888888 2288888888
Source	SS SS SS SS SS SS SS SS SS SS SS SS SS	************	***************************************
P.I.# Variety	PI 355960 PI 518298 PI 518299 PI 518300 PI 518301 PI 518302 PI 518303	PI 518307 PI 518313 PI 518316 PI 518317 PI 518327 PI 518327 PI 518328 PI 518328	PI 518330 PI 518332 PI 518333 PI 518338 PI 518341 PI 518342 PI 518343

TEST RZM 991. 1991 EVALUATION OF AMES PI #'S FOR VIRUS YELLOWS AND RHIZOMANIA SALINAS, CA., 1991

(continued)

#81 Beet Cyst Nematode	NWWWW	NNNNN	7	0 000
ania ⁷	39 39 39 39 39 57 39 39	34 37.8 38.0 41.8 50.0 50.0	6.1	0.0 74.9 70.0
#74 Rhizom	4.0444.0 2.00.010	404644 006466	5.4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
#61 BWYV ⁶ 10/03	7700044 7.00000	4.2.2.2.0 07.2.7.2.0	0.9	4.23 7.30 7.30 7.30
#37 Boltigg Tend.	NNNNN	mmmNNN	3	NNNN
#19 Petiole Color	44444	ਰਰਰਰਰ	4	ਜਜਜਜ
#12 Mature Leaf Blage Pigment	000000	NNNNN	2	1881
#5 Pop.2 Unif.2	ппппппппппппппппппппппппппппппппппппппп	HOHOOH	М	ннн
#1 End Use ¹	००००००	००००००	9	പാവവ
Harv. Count	33 443 37 35	228 322 322 322 322	28	45 71 41
Source	<u> </u>	Ireland Ireland Ireland Ireland Ireland	Ireland	USDA USDA USDA USDA
P.I.# Variety	PI 518356 PI 518358 PI 518364 PI 518369 PI 518370 PI 518372	PI 518381 PI 518385 PI 518390 PI 518400 PI 518415 PI 518415	PI 518398	Checks US H11 R039C5 0911 SP7622-0

1991 EVALUATION OF AMES PI #'s FOR VIRUS YELLOWS AND RHIZOMANIA SALINAS, CA., 1991 TEST RZM 991.

(continued)

- 1 #1 End use based upon field plot appearance where: 1=chard; 2=DDR-like; 3=DDR, chard, spinach; 4=fodder; 5=sugar; 6=wild beet type; 7=mixed, 8=annual.
- ² #5 Population Uniformity: 1=all plants alike; 2=uneven different types; 3=mixed, green, red, yellow, high, low, large leaves, small leaves, etc.
 - 5-mutant. 3 #12 Mature Leaf Blade Pigmentation: 1=light green (chard), 2=green, 3=red & green, 4=red,
 - #19 Petiole Color: 1=green, 2=pink, 3=red, 4=candy stripe, 9=yellow, 6=mixed. 4
- #37 Bolting Tendency without cold induction: 1=B-(annual)=100%, 2=bb(biennial)-0%, 3=B:bb(mixed) 1-99%. S
- #61 Beet Western Yellows (BWYV): 0=jnmune; 1=very resistant; 3=resistant; 5=intermediate; 7=susceptible;
 9=highly susceptible based upon Yellowing of leaves. Mean disease ratings (DI) from Oct. 3, 1991. ဖ
- 7 #74 Rhizomania: DI-disease index based upon 0=no visual symptoms; 1=very minor root symptoms; 3=normal tap root, slight bearding; 5=wine-glass shaped, bearded, moderate damage; 7=severly damaged, loss of tap root; 9=dead due to rhizomania %Healthy=classes (0+1+2+3)/total.
 - Natural infection in field and visual rating at harvest where: 1=Nematode res.; 8#81 Beet Cyst nematode: 2=Nematode Susc.; 3=Seg.
- 64 entries = 60 PI lines from Ames plus checks. Checks are: US H11=highly susc. to rhizomnania, mod. susceptible to BWYV; C39 (R039C5) = moderately resistant to BWYV and rhizomania; 0911 = mod. resistant to BWYV and rhizomania; SP7622-0 = susceptible to BWYV and rhizomania.

Conclusion: Roots within some lines of B.maritima showed resistance to rhizomania. Individual plants were selected and will be crossed to sugarbeet to determine the nature and inheritance of this resistance. Many of the B.maritima lines showed very mild symptoms to BWYV. The dark green, thick leaves of B.maritima have a tendency to mask virus yellows sypmtoms. Crosses to sugarbeet will be made to determine if this apparent resistance is heritable. Plants and plots were found free of nematode infestation but this is thought to be field variability rather than genetic resistance. No line or PI was found that was uniformly free of cyst

|--|--|--|--|

SUGARBEET RESEARCH

1991 Report

Section B

Plant Molecular Biology Laboratory
Agricultural Research Service
United States Department of Agriculture
Beltsville, Maryland

Dr. Lowell D. Owens, Plant Physiologist Dr. Russell O. Nordeen, Molecular Biologist

The research was supported in part by funds provided through the Beet Sugar Development Foundation (Project 800)

CONTENTS

PUBLICATIONS	AGE
Abstracts of Papers Published or Approved for Publication	. B3
Papers Published Since Abstracted in Previous Report	. B5
ENGINEERED RESISTANCE TO BACTERIAL PATHOGENS	
Introduction and Transcription of Cecropin gene in Tobacco Stability of Cecropin to Intercellular Extracts from Plant Leaves .	
GENE TRANSFER TECHNOLOGY IMPROVEMENT	
UGA Codon Usage in Sugarbeet	

Abstracts of Papers Published or Approved for Publication

Owens, L.D. and D. R. Eberts. 1992. Sugarbeet leaf disc culture: an improved procedure for inducing morphogenesis. *Plant Cell Tiss. Org. Cult.* (In press).

In preparation for gene transfer experiments we investigated factors that might affect the production of shoots and somatic embryos from the wound callus of cultured sugarbeet leaf discs. A complex interaction was found between the leaf disc plating density, the disc culture medium, the sourceshoot culture medium and the frequency of disc transfer to fresh medium. The most productive protocol utilized: source shoots maintained on MS medium containing 0.25 mg 1-1 BA; multiple leaf discs (ten 4-mm discs/plate) plated onto an enriched modification of MS medium (RV) containing 1.0 mg l-1 BA and solidified with 0.3 % Gelrite, (not permitted to dry during hardening); and transfer of the discs to fresh medium every two weeks during the first month. This standard protocol produced more callus per plate and higher rates of morphogenesis per unit dry weight of callus than did the one-step method of Saunders and Doley. Water availability considerations were found to be critical to obtaining high morphogenic rates. Root induction frequency and quality was superior on shoots transplanted to MS medium containing 1 mg-1 NAA as the sole growth regulator compared to IAA at the same concentration.

Nordeen, R. O. and L. D. Owens. 1992. Introduction and transcription of an antibacterial cecropin gene in tobacco plants. *Plant Physiol. Suppl.* (In press) (Abstract)

We are investigating the feasibility of introducing a modified cecropin gene into plants for protection against bacterial pathogens. Cecropins are a family of small basic polypeptides (~4 kD) that possess potent antibacterial activity and are important in the immune response of insects. A DNA sequence encoding a modified form of the mature cecropin polypeptide was fused to a barley α -amylase secretory sequence DNA by PCR (polymerase chain reaction) and introduced into tobacco (Nicotiana tabacum) by transformation with Agrobacterium tumefaciens. The progeny of transformed plants that were resistant to kanamycin were analyzed for β -glucuronidase (GUS) and cecropin gene expression. Northern hybridization analysis indicated that about 75% of the R1 plants produced a transcript of the expected size that hybridized specifically with a cecropin gene probe. Most of these plants also tested positive for GUS. Production and stability of cecropin polypeptide is currently being analyzed.

Owens, L.D. 1992. Measurement of water availability in gel-solidified culture media. (Letter to the Editor) Agricell Rep. 18:11. (Industry publication)

Plant nursery operators and scientists alike have a problem in choosing the right gelling agent for their particular tissue application. This problem is made worse by the recent explosion of new gel products on the market. None of these gelling agents are defined in terms of the physical property most important to cultured tissues, namely water availability as determined mainly by the matric potential of the gel. Only recently have methods been devised for measuring the matric potential of gels. Of the three published methods two (Beruto and Debergh, Acta Hort. 289:331,1991; Obeidy and Smith, Plant Cell Rep. 9:463, 1990) employ rate measurements of water loss from gels; but since the rates may not be linear, the measurements may not accurately reflect the equilbrium value. Other methodological deficiencies of these two methods either render the measurements sensitive to slight temperature and relative humidity fluctuations or introduce errors caused by gravitational potential and gel shrinkage. In contrast the method of Owens and Woziak (Plant Cell Tiss. Org. Cult. 26:127, 1991) is simple and quick; minimizes errors due to gravitational potential and gel shrinkage; utilizes equilibrium measurements; and has a proven accuracy in predicting the physiological performance of various gels with cultured tissue.

Hatfield, D., C. I. Soon, S. Mischke and L. D. Owens. 1992. SelenocysteyltRNAs recognize UGA in *beta vulgaris*, a higher plant, and in *Gliocadium virens*, a filamentous fungus. *Biochem. Biophys. Res. Comm.* (In press).

Selenocysteyl-tRNAs that decode UGA were previously identified in representatives of three of the five kingdoms, namely the monera, animal and protist kingdoms. In the present study we show that these tRNAs also occur in representatives of the two remaining kingdoms, plants and fungi; i.e., selenocysteyl-tRNAs which code for UGA occur in *Beta vulgaris*, a higher plant and in *Gliocladium virens*, a filamentous fungus. The fact that selenocysteyl-tRNAs are present in all five life kingdoms strongly suggests that UGA, in addition to dictating the cessation of protein synthesis, also codes for selenocysteine in the universal genetic code.

Papers Published Since Abstracted in Previous Report

Nordeen, R.O., S. L. Sinden, J. M. Jaynes and L. D. Owens. 1992. Activity of cecropin SB37 against protoplasts from several plant species and their bacterial pathogens. *Plant Sci.* 82: 101-107.

Owens, L. D. and C. A. Wozniak. 1991. Measurement and effects of gel matric potential and expressibility on production of morphogenic callus by cultured sugarbeet leaf discs. *Plant Cell Tiss. Org. Cult.* 26:127-133.

ENGINEERED RESISTANCE TO BACTERIAL PATHOGENS BSDF Project 800

R. O. Nordeen and L. D. Owens

Introduction and transcription of cecropin gene in tobacco plants - Cecropins are a family of small polypeptides (~40 amino acids in length) that possess potent antibacterial activity and are important to the immune response of insects. A synthetic version of cecropin B was constructed. consists of the coding region of cecropin fused (by polymerase chain reaction techniques) to the secretory sequence from barley α-amylase and placed under control of a tandem 35S promoter from cauliflower mosiac This gene construct, called MB39, was introduced into the model test plant tobacco by Agrobacterium tumefaciens-mediated gene transfer. Plants were selected on kanamycin and scored for β-glucuronidase (GUS) GUS-positive regenerants (R₀) were selfed and taken to seed. Germination of the seed on kanamycin medium indicated a 3:1 segregation pattern of a monohybrid for kanamycin resistance. hybridization analyses of kanamycin-resistant progeny (R₁) indicated that about three fourths produced an mRNA transcript of the expected size that hybridized with a cecropin gene probe. More than 90 % of the R₁ plants also tested positive for GUS. There was a fair correspondence between the level of GUS expression, as visually determined from a histochemical assay, and the amount of cecropin transcript. correlation probably reflects the inherent transcriptional activity of the chromosomal site of T-DNA integration.

Stability of cecropin to intercellular extracts from plant leaves - Overnight incubations of cecropin with intercellular extracts from tobacco leaves resulted in considerable degradation. The degradation could be prevented by initially heating the extract to 100 °C indicating the presence of proteases. Preliminary results suggest that cecropin is more stable in intercellular extracts from sugarbeet than from tobacco.

GENE TRANSFER TECHNOLOGY IMPROVEMENT

L. D. Owens

UGA Codon usage in sugarbeet - Sugarbeet suspension cells were used to demonstrate that the codon UGA, in addition to its assignment as a

translation stop signal in the universal genetic code, also serves as the codon for the essential amino acid selenocysteine. ⁷⁵SeO²⁻³ was fed to log phase sugarbeet cells, and the resulting 75Se-containing aminoacyl-tRNAs were isolated from the cells and seperated by chromatography. extracts were found to contain two large peaks and a smaller one that were radiolabeled. All three peaks specifically recognized and bound the trinucleotide diphosphate of UGA, as determined by the ribosomal binding assay. That the 75Se-containing moiety attached to the UGA-recognizing tRNAs was, in fact, selenocysteine was determined by deacylating the aminoacyl-tRNA from each peak and characterizing the amino acid product by chromatography. Thus, there appear to be at least three isoaccepting tRNAs in sugarbeet that accept selenocysteine and recognize UGA. codon usage information could be critical for cloning genes from sugarbeet that encode proteins containing selenocysteine and for chemically synthesizing such genes.

Improvement of Agrobacterium gene vectors for sugarbeet - Of the several classes of Agrobacterium tumefaciens, we had previously shown that a wild type strain (A281) of the succinamopine class was vastly superior in forming tumors on excised sugarbeet petioles as compared to an octopine type strain. This "supervirulence" may be due to more efficient transfer of T-DNA to the recipient plant cell and/or integration into the chromosome. To test this hypothesis a binary vector carrying genes for cecropin, GUS and NPTII (kanamycin resistance) within T-DNA borders was constructed (pGT3941) and mated into the disarmed (non-tumorigenic) version of A281 (called strain EHA101). The binary vector pGT3941 was similarly mated into disarmed strains of the octopine and nopaline classes of A. tumefaciens. To insure a uniform chromosomal background the host strain for all three classes of disarmed virulence plasmids was C58 cured (voided) of its resident Ti plasmid.

The ability of each virulence plasmid to transfer the T-DNA carried on the binary plasmid construct pGT3941 was tested by inoculating tobacco leaf discs and plating them on kanamycin-containing medium. The rapidity with which kanamycin-resistant (and GUS-positive) shoots appeared was taken as an indication of virulence. In repeated tests the succinamopine-type virulence plasmid pEHA101 was clearly superior to the nopaline type - producing transgenic shoots 1 to 2 weeks earlier. The comparison with the octopine-type virulence plasmid was variable - pEHA101 displayed superiority in one experiment and equal virulence in the second. An interaction between virulence response and the physiological state of the cultured shoots likely accounted for this variation. We conclude that the supervirulent vector is efficient and ready for use with sugarbeet.

SUGARBEET RESEARCH

1991 REPORT

Section C

Crops Research Laboratory, Agricultural Research Service U.S. Department of Agriculture, Fort Collins, Colorado

Dr. E. G. Ruppel, Plant Pathologist Dr. S. S. Martin, Plant Physiologist

Ms. M. E. McClintock, Biological Lab Tech.

Dr. R. J. Hecker, Geneticist (retired)

Cooperation:

Colorado Agricultural Experiment Station

This research was supported in part by funds provided through the Beet Sugar Development Foundation (Projects 402, 403, 903, and 904)

		200	
		·	
			- 1
			- 1
			7

<u>Contents</u>

	Page
PUBLICATIONS	
Abstracts of Papers Published	C3
RHIZOCTONIA ROOT ROT RESEARCH AND DEVELOPMENT OF GENETIC RESISTANCE IN SUGARBEET (BSDF Project 402)	C 4
1991 Field Research on Rhizoctonia Root Rot of Sugarbeet Germplasm Developments for Resistance to Rhizoctonia Root Rot Combining Ability Test of Rhizoctonia-Resistant Pollinators Induction of Tetraploids of Rhizoctonia-Resistant Lines	C4 C4 C9 C9
EVALUATION OF CONTRIBUTED LINES FOR RESISTANCE TO RHIZOCTONIA ROOT ROT (BSDF Project 903)	C11
EVALUATION OF CONTRIBUTED LINES FOR RESISTANCE TO CERCOSPORA LEAF SPOT (BSDF Project 904)	C11
IN VITRO POLLEN TECHNOLOGY TO ASSAY AND SELECT FOR ECONOMIC CHARACTERS IN SUGARBEET (BSDF Project 403)	C12
Comparison of constant and variable environment on pollen development and subsequent germination	
pH of beet root tissue in relation to Rhizoctonia	C16 C16 C17 C17
Selection of Pollen under Environmental Extremes	C17 C17 C17 C18

Publications

Abstracts of Papers Presented, Published, or Approved for Publication.

Ruppel, E. G. 1992. <u>Survival of Rhizoctonia solani in fallow field soil and buried sugarbeet roots at three depths</u>. J. Sugar Beet Res. 28:141-153.

Survival of Rhizoctonia solani AG-2-2 in infected sugarbeet root tissue and in soil adjacent to the roots at 5-, 10-, and 20-cm depths in fallow field soil was assayed bimonthly in two tests between June 1988-June 1989 and June 1989-June 1990. By August, percent recovery of the fungus from tissue declined 80 and 74% in 1988 and 1989, respectively. Thereafter, recovery was variable but generally continued to decline in both years. In the first test, R. solani was not recovered from root tissue buried 5-cm deep after 4 mo, but in the second test, tissue buried at 5 cm yielded the fungus throughout the year. For tissue buried 10 cm deep, the fungus survived without decline for 6 mo in 1988, but only for 4 mo in 1989. In 1988-89, the fungus was not recovered from tissue buried 20-cm deep after 2 and 4 mo, but was recovered at the 6- and 12-mo assays. In 1989-90, R. solani was recovered only at the 2- and 4-mo assays from tissue buried 20-cm deep. Population densities of R. solani were 1.6-2.0 colony-forming units (CFU) per gram of air-dry soil at the 2-mo assay in 1988 and 1989, respectively. Thereafter, population densities tended to decline over time in both years, reaching 0.5-0.7 CFU g⁻¹ after 12 mo. All isolates from buried tissue and a 10% random sample of soil isolates were pathogenic in 3-mo-old sugarbeets in the greenhouse, except for one AG-4 isolate from soil. Decline in pathogen survival apparently was not related to precipitation or air and soil temperatures but may have been associated with the degradation of organic food base.

Martin, S. S. and Lynn L. Hoefert. 1991. <u>Glucosinolate biochemistry and structure of trap crops for the sugar-beet cyst nematode (Heterodera schachtii)</u>. Amer. J. Bot. Suppl. 78(6): 142. (Abstract)

Selected cultivars of Raphanus sativus or Sinapis alba (Brassicaceae) induce cyst hatching and attract larvae of the sugarbeet cyst nematode, but disrupt normal Such plants can be used as "trap" crops to reduce field nematode reproduction. levels. As part of a study of the mode of action of these nematode-trapping plants, we compared the distribution of specialized glucosinolate-containing cells (GCCs) in seedlings of trap- and nontrap-crop cultivars of R. sativus and S. alba, and determined quantitative glucosinolate (GSL) profiles in seeds and Structural studies were made by light and electron developing seedlings. biochemical work, tissues were extracted in boiling For glucosinolates were analyzed by HPLC [C18-column; gradient methanol; intact elution with mixtures of 0.1 M (aq.) ammonium acetate and acetonitrile] with array UV detection. In specialized GCCs, GSLs or precursors accumulated via endoplasmic reticulum cisternae that fused with the central vacuole to produce a cell lumen filled with biochemical material. Number and distribution of GCCs differed between trap and non-trap cultivars. All S. alba 4-hydroxybenzyl-GSL (glucosinalbin), with small samples contained mainly amounts of three other GSLs. Seed of R. sativus contained 4-methylsulfinylbut-3-enyl-GSL as the predominant GSL; germinating seedlings rapidly synthesized 4-methylthiobut-3-enyl-GSL, with several other GSLs present in lesser amounts.

RHIZOCTONIA ROOT ROT RESEARCH AND DEVELOPMENT OF GENETIC RESISTANCE IN SUGARBEET (BSDF Project 402)

1991 Field Research on Rhizoctonia Root Rot of Sugarbeet.--E. G. Ruppel and R. J. Hecker (retired).

Our project primarily involved field research conducted on the Colorado State University South Campus in an area reserved for Rhizoctonia root rot research. Our Rhizoctonia research project is a cooperative effort of ARS, the BSDF, and Colorado State University. We are pleased to be able to lead this three-way cooperative research.

The 1991 field experiments were planted on an area that had been in barley for 3 years and was the site of our inoculated Rhizoctonia nursery in 1988. As has been our past experience, no Rhizoctonia root rot occurred from residual fungus before inoculation in 1991. Thus, the dense soil population of *Rhizoctonia* in 1988 essentially had been inactivated during the intervening years of barley culture.

All Rhizoctonia evaluation experiments were planted in one-row plots 56 cm (22 in) apart, and 6.1 m (20 ft) or 4.3 m (14 ft) long. Experiments were planted May 18 and thinned June 24-28. Dry, ground, barley-grain inoculum of $R.\ solani\ (R-9)$ was banded at 1.97 or 3.11 g/m over each row with a tractor-mounted four-row granule applicator on July 16. One experiment involving our most resistant germplasms received the higher inoculum rate, whereas all other experiments with more susceptible germplasms received the lower rate. Our standard sprinkler irrigation regime was used to moisten and activate the inoculum. Succeeding irrigations were done by furrow.

Roots in all experiments were lifted September 9-13 and individually rated for rot on a disease index (DI) scale of 0 to 7, with 0 = no evidence of rot and 7 = plant dead. Percent healthy roots were those with DIs of 0 and 1, roots with no active infection. Roots with DIs 0 through 3 also were analyzed as a class; these roots were sufficiently sound and large to be recovered in a commercial harvest. The root rot epiphytotic in 1991 Rhizoctonia experiments was more severe than that of 1990, but comparable to most previous nurseries. Across the nursery, DI means were 1.8, 2.3, and 5.6 for our highly resistant, resistant, and highly susceptible checks.

Germplasm Developments for Resistance to Rhizoctonia Root Rot.--R. J. Hecker (retired) and E. G. Ruppel.

One of our objectives in this project is the identification and development of sugarbeet germplasms that are genetically resistant to root-rotting strains of $Rhizoctonia\ solani$. We feel that this objective has been accomplished from a practical standpoint. The most resistant germplasms developed in this project are not immune but had up to 97% harvestable roots in the 1991 inoculated field test at Ft. Collins. We believe that this level of resistance expressed in the rigorous field test should be sufficient to provide adequate protection in most indigenous Rhizoctonia-infested fields. However, all the genes for resistance in these germplasms would need to be present on both homologous chromosomes in

commercial hybrids if the same level of resistance is to be expected. In earlier experiments, we have demonstrated that this quantitative resistance shows only a little genetic dominance. It now becomes the task of sugarbeet breeders to incorporate this resistance into their hybrids to the degree necessary to meet various disease intensity potentials.

We have made some effort toward introgression of resistance genes into germplasms with good combining ability and resistance to other diseases. These are listed in Table 1, along with many other entries in our 1991 field test. Following are brief comments about some of the entries and some germplasms that are in the release process.

Entry 472 (FC714) is a monogerm (mm) 0-type with excellent resistance. It is being increased and probably will be released in 1992 or 1993. Entries 473-477 and 541-544 are rhizomania-resistant sublines from ARS Salinas, some of which we have further selected for Rhizoctonia resistance. Entries 478-480 (FC720, FC721, & FC721CMS) are mm 0-types and a CMS, with some resistance to both *Rhizoctonia* and curly top virus (CTV). They will be released in 1992. Entries 481 and 482 were the result of an effort to integrate Rhizoctonia resistance and good combining ability (CA). This mm 0-type and CMS may be released if the Rhizoctonia resistance is improved in current selections. Entry 483 resulted from an effort to develop a multigerm (MM) pollinator with Rhizoctonia resistance and good CA.

Entries 484 and 485 will be released in 1992. This mm O-type and CMS integrate Rhizoctonia and CTV resistance. Entry 488 is a nematode-resistant line from ARS Salinas. It is among the most Rhizoctonia susceptible lines we have ever tested. Entry 489 is the long-time susceptible check. Entries 490 and 491 are a mm O-type and CMS that will be released in 1992. Entries 492 and 498 are MM resistant pollinators that have been released previously.

Entries 501 and 502 are F_2 s of Rhizoctonia-resistant lines crossed with the Salinas nematode-resistant line (B883). They show some partial dominance for resistance, which may be of value in the potential development of Rhizoctonia-nematode-resistant hybrids. Entry 504 is a successful introgression of Rhizoctonia and leaf spot resistance (LSR), and it is mm and 0-type but it has very low vigor. Entry 508 (FC725) will be released in 1992. It has good Rhizoctonia and CTV resistance; it is designed to serve as a pollinator or a source for pollinator development.

Entries 509 and 510 are a mm O-type and CMS with Rhizoctonia and leaf spot resistance. They are not yet ready for immediate release. Entry 511 (FC709) is the most resistant germplasm we have developed; it was released in 1987. An advanced FC709 will be offered for redistribution in 1992.

Entries 513, 514, and 515 (FC726, FC727, & FC728) are resistant lines with diversity. FC726 originally was 50% fodder beet germplasm. FC727 and FC728 were 50% from high sucrose or commercial hybrid sources. These three germplasms are MM pollinator types and are being released in 1992.

Entries 516-529 are various hybrids or experimental lines. Entry 530 (FC705-1) is the high resistance check. Entries 531 and 532 (FC715 & FC715CMS) integrate Rhizoctonia and leaf spot resistance, with a little resistance to CTV. They are currently being released. Entries 533 and 534 have been 0-type indexed and

currently are being synthesized as 0-type and CMS lines. They will be released if sufficiently Rhizoctonia resistant. Entries 535-538 are experimental hybrids with 75% of their genes from Rhizoctonia-resistant sources and 25% from susceptible sources. Their value is in having some resistance on the CMS side of hybrids. Entry 540 (FC710) was released in 1990. It is MM and has good resistance. Entries 539 and 545 are the resistant and susceptible checks, respectively.

Currently in the release process are four other germplasms (FC716, FC717, FC718, & FC719). All are Rhizoctonia-resistant MM pollinator types that are diverse and have potential for good CA and high sucrose.

Kg root/ 20' plot 13.4 15.0 9.4 12.2 --15.5 20.0 20.1 8.3 20.3 26.6 21.2 7.1 : : : : : : i 1 1 1 1 1 1 1 germplasms in various stages of resistance development; 1991 inoculated field test 15.0 15.2 15.7 15.4 Sucrose 14.1 14.3 11.7 15.5 12.2 1 1 1 Curly top rating 7.7 6.3 1 ! : -: 7.3 1 -1 ; 1 1 1 1 1 Leaf spot rating 4.3 4.5 5.3 4.3 1 : : -Harvestable roots (%) 50 33 23 26 43 26 31 Healthy roots (%) 50000 Disease index 4.0 4.0 5.0 5.0 5.0 5.0 22.6 22.6 22.6 3.4 3.4 3.5 R820, 1 cy Rh; RZM resist, MM; RZM sel at Salinas R820, 2 cy Rh; RZM resist, MM R720, 1 cy Rh; RZM resist, MM; RZM sel at Salinas R720, 2 cy Rh; RZM resist, MM R920, 1 cy Rh; RZM resist, MM FCZO; C718/FC708, BC1P1, 3 cy Rh; mm, OT, CTR FCZO; Syn(FC701/LSR-CTR)/C718,4 cy Rh;mm, OT, CTR 8883; MM, low vigor, nematode resist Salinas line (Syn fr FC701/mm OT)aa//mm, OT, LSR-CTR///B883,F2 FC721 CMS; C718CMS//Syn(FC701/LSR-CTR), 4 cy Rh; FC709rr/B883, F₂ FC701/LSR-CTR; OT, mm, high LSR, CTS; low vigor, FC712/Mono-hy A4, 2 cy Rh; OT, ~mm Mono-hy A4/FC712, 2 cy Rh; CMS, ~mm FC712/Mono-hy A4, 3 cy Rh; MM FC722; C718/FC708, 4 cy Rh; OT, mm, CTR FC722 CMS; C718CMS/FC708, 4 cy Rh; CMS, mm, CTR Means for Rhizoctonia root rot assessment of FC727; FC703/three hi suc lines, 7 cy Rh; MM Rhizoctonia susceptible check
FC723; EL44/FC708, 4 cy Rh; OT, mm
FC723 CMS; EL44CMS/FC708, 4 cy Rh; CMS, mm
FC708; OT (reindexed), mm, Rh
FC708 CMS; mm, Rh
FC707(4x); MM, Rh
FC707-2; MM, Rh
FC707-2; MM, Rh E FC728; three comm hybs/FC708, 5 cy Rh; MM, non-OI, S-cyto FC724; FC702/LSR-CTR, 7 cy Rh; OI, mm FC607/FC708, 4 cy Rh; OT, mm, LSR FC607CMS/FC708, 4 cy Rh; CMS, mm, LSR FC709; MM, Rh, LSR FC726; FC703-5/Paramano, 3 cy Rh; MM FC725; C37/FC707-2, 4 cy Rh; MM, CTR Monohikari; comm Rh susc hyb , mm, Rh y Rh; RZM resist, M / Rh; RZM resist, M ACH861350; comm Rh hyb ACH895121; 3x, comm Rh hyb Germplasm & description¹ HM RH83; comm Rh hyb small tops and roots HM RH1; comm Rh hyb HM RH2; comm Rh hyb ACH184; comm Rh hyb HH32; comm Rh hyb FC702-7; MM, Rh FC712; MM, Rh CMS, mm, CTR Table 1. Entry 506 508 509 510 511 513 515 516 517 518 519 520 521 522 523 4773 4774 4775 4776 4777 4778 4779 4779

Table 1, continued

Entry	Germplasm & description ¹	Disease index ²	Healthy roots (%)	Harvestable roots (%)	Leaf spot rating	Curly top rating	Sucrose %	Kg root/ 20' plot
:								
524	SR87; smooth root from E. Lansing	5.0	-	18	;			;
525	Beta 4689; comm Rh hyb	9.4	M	23	:	;	:	;
526	HM LSR88; comm LSR-Rh hyb	5.3	0	10	;	;	;	;
527	HM 1605; comm Rh susc hyb	0.9	0	. 49	;	;	;	;
528	Smooth root fr E. Lansing	5.4	-	15	:	:	;	;
529	Rhizosen; comm RZM hyb	5.8	0	9	-	:	:	;
530	FC705-1; high Rh resist check	2.4	56	84	0.9	:	:	;
531	FC715; FC609/FC708, 4 cy Rh; 01, mm	2.8	22	69	5.0	:	13.3	11.1
532	FC715 CMS; FC609CMS/FC708, 4 cy Rh; CMS, mm	3.1	17	57	4.5	:		: :
533	FC712/Mono 309, 2 cy Rh; seg mm OT	4.3	12	35	5.0	:	12.7	23 1
534	Mono 309CMS/FC712, 2 cy Rh; seg mm, CMS	3.9	2	43		:		; ;
535	FC505CMS/FC708//FC707-2; hi recov suc exp hyb	5.9	18	99		:	;	:
536	1861CMS/FC708//FC707-2; hi recov suc exp hyb	5.9	19	99	-	:	;	;
537	FC607CMS/FC708, 2 cy Rh//FC709; hi recov suc	2.4	20	62	4.8	:	:	;
	exp hyb							
538	FC505CMS/FC708//FC712; hi recov suc exp hyb	5.9	6	99	;	;	;	1
539	FC703; resist ck	2.8	22	89	;			
240	FC710; MM, Rh	2.0	42	88	:	7.0	:	ì
541	R720; 2 cy RZM from FC Rh & other lines	3.7	14	5.2	:		;	i
245	R820; 3 cy RZM fr FC Rh & other lines	3.9	8	7.7	:	:	;	;
543	R920; 4 cy RZM fr FC Rh & other lines	4.1	7	37	:	;	;	1
244	R020; 5 cy RZM fr FC Rh & other lines	7.7	2	37	;	;	;	;
545	Rh susc check	0.9	-	2	;	;	;	;
:	Curly top susc check; US33	:	;	:	:	2,3	:	;
:	Curly top resist check; US41	:	:	:	1 0	0.0	;	;
:	Leaf spot susc check	;	:	;	6.8	: :	;	1
:	Leaf spot resist check	:	:	;	4.3	:	;	:
	1000							

|MM = multigerm; mm = monogerm; Rh = Rhizoctonia resistant; LSR = leaf spot resistant; CTR = curly top resistant; non-OI = non O-type; S-cyto = sterile cytoplasm; cy Rh = cycles of selection for Rhizoctonia resistance; RZM = rhizomania. ²Disease index = 0 (no disease) to 7 (all plants dead); healthy roots = no disease or small arrested lesions; harvestable roots = roots sufficiently large and sound to be included in a grower's harvest.

Combining Ability Test of Rhizoctonia Resistant Pollinators.--R. J. Hecker (retired)

We conducted a very limited combining-ability test on four Rhizoctonia-resistant pollinators at Ft. Collins in 1991, in a disease-free field. Results are presented in Table 1.

Table 1. Means of groups of Rhizoctonia-tolerant test hybrids with common pollinators, Exp. 1, 91, Ft. Collins, CO

Pollinator of the set of hybrids & two checks	Sucrose	Plot wt	Gross sucrose
	(%)	(kg/plot)	(kg/plot)
FC707-2	14.7	19.7	2.90
FC702-7	15.5	18.9	2.93
FC712	14.5	19.8	2.87
FC709	15.0	19.2	2.88
Susceptible check (HM1605)	16.0	20.0	3.20
Tolerant check (HM RH1)	14.6	21.2	3.10
$LSD (\underline{P} = 0.05)$	0.8	3.1	NA

There were significant differences for sucrose among the four sets of hybrids; FC702-7 was the pollinator of the hybrid set with the highest sucrose content (15.5), but its set had the lowest average root yield (18.9 kg/21' single-row plot). The two commercial hybrid checks (HM 1605 and HM RH 1) were included for comparisons. Some of the individual hybrids within the sets of hybrids were equal to the checks.

Induction of Tetraploids of Rhizoctonia-Resistant Lines.--R. J. Hecker.

We used colchicine to convert three Rhizoctonia-resistant lines to tetraploidy. FC709(4x), FC710(4x), and FC712(4x) may be available for release in approximately 2 years.

Effect of Rhizoctonia Root Rot on Yield of Sugarbeet Varieties with Varied Degrees of Resistance.--E. G. Ruppel and R. J. Hecker (retired).

To address a concern among sugarbeet breeders and sugar producers that losses in root or sucrose yields may occur in Rhizoctonia-resistant hybrids even though disease symptoms may be mild or absent, we have conducted an experiment in 1989, 1990, and 1991 to resolve this question. We report herein the results of our third trial; results of previous tests were reported in Sugarbeet Research reports for 1989 and 1990. Materials and methods of our third trial were identical to those described in Sugarbeet Research, 1990 Report.

Disease indices (DI) and root yield are given in Table 1; DIs are compared with % sucrose, recoverable sucrose, and % purity in Table 2. As in our previous trials, early inoculation induced more root rot and decreased yields more than late inoculation. There was a direct relationship between disease severity and

yield parameters for the susceptible HM55 and the moderately resistant HH32. Reduction in root yield, % sucrose, and recoverable sucrose were not as great in ACH184, FC709, or the experimental three-way hybrid (FC505/FC708//FC712), the latter having two genomes from resistant pollinators, as compared with HM55 or HH32.

Table 1. Disease indices (DI) and root yield at harvest of five sugarbeet cultivars inoculated with *Rhizoctonia solani* 60 or 70 days postplanting in the field

		DI ²		Root yield (t/ha)²			
Entry ¹	1	2	CK	1	2	CK	
HM 55 HH 32	6.4	4.5	0.8	5.2 13.8	23.9	47.7 46.3	
ACH 184 FC505/FC708//FC712	4.0	2.6	0.5	33.2 38.8	44.4 42.5	43.4 44.5	
FC 709	1.6	1.1	0.5	36.6	35.0	35.8	

¹HM 55 = susceptible commercial hybrid; HH 32 and ACH 184 = moderately resistant commercial hybrids; FC505/FC708//FC712 = resistant experimental hybrid; FC 709 = resistant breeding line.

Table 2. Disease indices (DI) and % sucrose, recoverable sucrose (t/ha), and % sucrose at harvest of five sugarbeet cultivars inoculated with Rhi-zoctonia solani 60 or 70 days postplanting in the field

		DI;	2	Sucr	ose	(%) ²	SI	over ucro /ha		F	Purity (%)	['] 2
Entry ¹	1	2	CK	1	2	CK	1	2	CK	1	2	CK
HM 55 HH 32 ACH 184 FC505/FC708//FC712 FC 709	5.2 4.0 3.1	4.0 2.6 1.4	0.8 0.5 0.5 0.5 0.5		9.2 13.4 15.0	15.9	0.7 2.8 4.0	2.3 4.9 5.4	6.8	81.8 85.9 86.7 88.2 91.8	84.1 91.2 92.0	94.1 94.4 92.6

¹See footnote for Table 1.

 $^{^{2}1}$ = inoculated 60 days postplanting; 2 = inoculated 7 days postplanting; CK = uninoculated check.

²See footnote for Table 2.

Further analyses of our data over the 3-year experiment are needed for definitive conclusions. However, from our results, we believe that there were no hidden yield losses due to *Rhizoctonia*, as measured in our inoculated nursery. Based on our data, we conclude that there is a linear relationship between disease index and the yield parameters and that our most resistant three-way hybrid was little affected by the pathogen.

EVALATION OF CONTRIBUTED LINES FOR RESISTANCE TO RHIZOCTONIA ROOT ROT (BSDF Project 903)

E. G. Ruppel and R. J. Hecker (retired)

Randomized complete block designs with five replicates were used to evaluate a total of 182 contributed lines from six companies; additionally, one company also had another test with three replicates. Rhizoctonia-resistant line FC703 and highly susceptible FC901 were included as internal controls, along with highly resistant FC705-1. The experimental design, methods, results, and statistical analyses were provided to the appropriate company breeders.

The 1991 epiphytotic was quite severe compared with the 1990 nursery, but differences between resistant and susceptible entries were quite evident and highly significant (P < 0.0001) in all tests. Mean disease indices (DIs; scale of 0-7, with 7 = dead) for FC705-1, FC703, and FC901 controls were 1.8, 2.3, and 5.6, respectively. Percent healthy means were 32.4, 24.7, and 0.3, whereas mean percentages of roots in classes 0 through 3 were 95.8, 86.7, and 7.1 for these controls, respectively. Mean DIs of contributor lines ranged from 2.6 to 6.4, and from 0 to 30.4% healthy roots.

EVALUATION OF CONTRIBUTED LINES FOR RESISTANCE TO CERCOSPORA LEAF SPOT (BSDF Project 904)

E. G. Ruppel

Randomized complete block designs with three replicates in most tests and two replicates in two special tests, as requested by the contributors, were used to evaluate 207 lines from six contributors. Internal controls included a highly susceptible synthetic and a resistant check, FC(504 X 502/2) X SP6322-0. Two-row plots were 4 m long with 56 cm between rows and a 20- to 25-cm within-row spacing. We inoculated twice (June 27 and July 3), and evaluations were made on August 23, 27, and September 3; the peak of the epiphytotic occurred around August 27.

High temperatures in August, along with our overhead irrigation to maintain high canopy humidity, helped induce a relatively severe epiphytotic by the end of the month. Disease severity was comparable to that induced in 1990, but the peak occurred about 1 week earlier. On August 27, the resistant and susceptible internal controls rated 4.4 and 7.0 (increasing disease scale of 0-10), respectively, across the nursery. In 1990 (September 4), these means were 4.1 and 6.9, respectively. Means of contributor lines on August 27 ranged from 3.0-8.0. Means of individual tests were tabulated, statistically analyzed, and sent to the appropriate contributor.

IN VITRO POLLEN TECHNOLOGY TO ASSAY AND SELECT FOR ECONOMIC CHARACTERS IN SUGARBEET (BSDF Project 403)

M. E. McClintock and R. J. Hecker (retired)

Our project objective was the development of in vitro techniques with pollen or other tissues to assay plants or populations for genotype or genetic worth, and to make selections for specific genetic traits. This year, we completed our in vitro studies, focusing on three areas: (a) improvement of techniques to use pollen as an assay method, (b) use of sugarbeet root or leaf tissue as assay tools, and (c) use of pollen to select for resistance to environmental stresses.

Techniques with Pollen as an Assay Method

Comparison of constant and variable environment on pollen development and subsequent germination:

Day-to-day variability in pollen germination for greenhouse-grown plants is observed frequently. To assess if this variability was due to environmental extremes encountered in the greenhouse, we compared pollen germination of two sugarbeet populations of greenhouse-grown plants with that of the same populations grown under controlled conditions in a growth chamber. Sampling results over a 15-day period in August and September are presented in Figs. 1 and 2.

Fig. 1. Comparison of percent pollen germination of sugarbeet population #1 plants grown under variable greenhouse and constant growth-chamber conditions. Plants in the chamber began flowering earlier and had a shorter flowering period than those in the greenhouse.

Fig. 2. Comparison of pecent pollen germination of sugarbeet population #2 plants grown under variable greenhouse and constant growth-chamber conditions.

Variances in pollen germination were not significantly different (P=0.05) between the constant environment of the growth chamber and the variable environment of the greenhouse. Average germination was similar in both cases. Apparently, variability in pollen germination is due to post-collection environment, pollen treatment after collection, or an interaction of pre- and post-collection environment.

Pollen germination declined over the flowering period for the two populations. Because germination tended to increase at the end of the flowering period in earlier experiments, we could detect no clear-cut relationship between percent germination and time elapsed in the flowering period.

Studies on pollen vigor:

Shivanna, Linskens, and Cresti (Theor. Appl. Genet. 81:38-42) differentiated pollen vigor, i.e., germination in a relatively short time, from other measures of viability, such as long-term germination or the fluorochromatic reaction. In several tests, we compared pollen vigor (germination in 1 hr) and pollen viability (germination after 24 hr) for sugarbeet and various *Beta maritima* introductions.

Pollen vigor generally declined as flowering progressed in six populations of sugarbeet. Germination in 1 hr (= vigor) ranged from 1.1-18.0%, with a mean across populations of 7.0%. Standardized desiccation and storage techniques (see long-term pollen storage section) did not improve vigor.

Pollen vigor of sugarbeet populations also was compared with that of various B. maritima introductions. Vigor, viability (24-hr germination), and the ratio of the two were higher for B. maritima pollen than for sugarbeet pollen, indicating that this wild species may have a greater evolutionary need for pollen survival than does sugarbeet, which has been bred for genetic characteristics unrelated to pollen germination.

HPLC analysis of pollen sugars:

To our knowledge, there are no reports on the analysis of sugars in sugarbeet pollen. In a cooperative effort with plant physiologist Susan Martin, we developed and tested methods for sample preparation and high performance liquid chromatography (HPLC) analysis of sugars in fresh sugarbeet pollen, which we reported in Sugarbeet Research, 1990 Report. In 1991, we used our best extraction method and HPLC analysis with a Waters Sugar Pak I column to determine sugars in pollen that had been stored for 6 months.

Sucrose concentration differed for fresh and stored pollen. Sucrose concentration of 12 samples of fresh pollen averaged 9.8% by weight, whereas 18 samples of stored pollen averaged 11.0% sucrose. For both types of pollen, as a percentage of fresh weight, other components were the same: glucose and fructose, 0.1% each; and betaine, 1.6%. For all samples, root sucroses for the parent plants had been determined polarimentrically. We calculated a correlation coefficient between fresh or stored pollen sucrose and root sucrose to determine whether we could assay pollen sucrose to predict root sucrose. Although the correlation of pollen sucrose with root sucrose was slightly better with fresh than with stored pollen, the correlation coefficient was nonsignificant in either case.

Experiments to upgrade pollen viability by fractionation:

Any procedure that upgrades the quality of sugarbeet pollen may result in a desirable increase in pollen germination. We have tested several procedures and practices that affect sugarbeet pollen germination. Recently, we examined mechanical separation as a method to separate pollen into more- and less-viable fractions.

Worsley (Silvae Genet. 8:1-188) described a method of tree pollen fractionation. A compressor supplied a steady flow of air through a vertical glass tube containing pollen. Lighter, nonviable grains were carried away, leaving the more viable, "heavier" fraction behind.

We adapted Worseley's method in a simplified apparatus. We attached a compressed air source to the base of a small, fritted-glass funnel (36-mm-diameter), and placed 20 mg of humidified (3 hr) pollen in the funnel. In the funnel stopper, we fitted a glass tube to carry the lighter pollen to a collection vessel; an outlet through the top of the collecting vessel allowed air to escape (Fig. 3). Air pressure was turned on slightly. Some pollen was carried into the upper portion of the funnel, through the glass tube, and into the collection vessel. Complete separation took 30-60 sec. Most of the pollen remained in the funnel and was designated "heavier pollen." Approximately 5% was carried into the collection vessel. This pollen was designated "lighter pollen." Pollen from 11 different lines was separated with the fractionator. Pollen from lines was freshly collected from flowering greenhouse plants. Pollen from other lines had

been collected and stored for 2 yr.

Fig. 3. Pollen fractionation apparatus.

A standard germination test was performed on the two fractions of each line. In poor quality pollen (<1% germination), the lighter and heavier fractions had equal germination. In six populations with pollen germination of more than 1%, in contrast to Worsley's findings with tree pollen, the lighter fraction always was more viable than the heavier fraction (Table 1). Highly significant differences (P = 0.01) existed among pollen lines and between fractions within lines, as determined by analysis of variance and Duncan's multiple range test. The interaction between pollen line and fraction also was highly significant.

pollen fractions									
Source	Lighter pollen	Heavier pollen							
Diploid 1 Diploid 2 Diploid 3 Diploid 4 Diploid 5 Tetraploid	22.5 31.8 16.1 6.0 25.5 22.1	18.3 29.6 9.7 5.6 23.8 7.5							

20.6

15.7

Table 1. Mean percent germination of

The greatest difference in germination between fractions occurred in tetraploid pollen. Counts of normal and aborted pollen grains were made for each sample of

Average

tetraploid pollen in an attempt to explain the difference observed. According to a t-test, there was no difference in the frequency of normal pollen in the two fractions of tetraploid pollen. The reason for the great difference between the lighter and heavier pollen remains unresolved.

Our fractionation method, although somewhat effective, did not upgrade sugarbeet pollen quality enough to warrant its use. High quantities of pollen are required for tests, and large losses of pollen occur due to adhesion to the inside of the collection apparatus. In most cases, pollen can be collected in small quantities only, especially when collected daily from the same source plants. Pollen loss in fractionation usually would deplete pollen quantity to an unacceptable level.

Effects of aeration and different sugars on pollen viability:

We tested three sugars in varied concentrations as an osmoticum in a germination medium. We also tested the effect of aeration on pollen germination. Although the germination medium we use is a solution of 32% sucrose in culture dishes placed on a stationary lab bench, Bamberg and Hanneman (Amer. Potato J. 68:373-379) described enhanced pollen germination and growth in actively aerated lactose compared with sucrose medium. Using Bamberg and Hanneman's methods, we tested three aeration techniques at two durations (4 or 24 hr), with lactose, dextrose, or sucrose in the medium. Aeration was accomplished by (a) a reciprocating flatbed shaker, (b) a wrist-action shaker, and (c) active bubbling of air through the medium. These techniques were compared with stationary controls.

In one experiment, samples on a reciprocating shaker had significantly higher germination than stationary controls 4 hr after pollen immersion, but there was no overall effect on total germination after 24 hr. However, in two subsequent tests, the other two methods of aeration were detrimental to pollen germination. There were no significant differences among sugars or aeration treatments, and no sugar X aeration treatment interaction was detected. Thus, our standard medium with 32% sucrose in stationary dishes is satisfactory for pollen germination studies.

Long-term storage of pollen:

In Sugarbeet Research, 1990 Report, we described the most recent results of a long-term pollen storage study. Pollen was collected in 1985, desiccated over solid CaCl_2 to 9% moisture, and then cryopreserved in liquid nitrogen. Pollen slowly lost viability over time. Recently, we found that CaCl_2 may overdesiccate small quantities of pollen. Using saturated salts (Winston and Bates, Ecology 41:232-237, 1960), other researchers obtained more consistent results than with solid CaCl_2 . In 1991, we exposed a pollen sample to a saturated solution of MgCl₂ in a closed container for 2 days, drying it to a standard moisture of 9%. After 11 mo of storage, pollen desiccated over MgCl₂ had slightly greater viability than pollen desiccated over solid CaCl_2 .

Sugarbeet Root or Leaf Tissue as an Assay Medium

pH of beet root tissue in relation to Rhizoctonia resistance:

We conducted an experiment to determine if there was any relationship between the pH of beet root tissue and resistance to Rhizoctonia root rot. For this test, we compared a typical root from a *Rhizoctonia*-resistant line (FC709) with a root

from a susceptible line. Each of the two halves of a root represented one replication. For each comparison, we finely grated off root tissue in four different areas: crown surface, crown subsurface, root surface, and root subsurface. Five grams of tissue was mixed with 15 ml distilled water (pH 7.0), sonicated 15 sec, and the pH recorded immediately. This test was repeated 1 week later. The pH of these tissues, regardless of resistance, ranged from 6.3-6.8. There were no significant (P = 0.05) differences in pH between root tissues of the two sugarbeet lines.

Anatomical leaf differences between <u>Rhizoctonia</u>-resistant and -susceptible sugarbeets:

We reported (Sugarbeet Research, 1990 Report) apparent anatomical differences between leaves of *Rhizoctonia*-resistant and -susceptible plants. We noted a higher number of dense bodies in the leaf spongy perenchyma in vegetative resistant plants compared with susceptible plants. Recently, we microscopically compared eight different lines, which varied from susceptible to highly resistant to *Rhizoctonia*. Leaves were examined at three different periods. In contrast to our preliminary report, there was no relationship between leaf anatomical differences and resistance at any sampling time.

Hypocotyl color frequency and Rhizoctonia resistance:

In onions, outer scale color relates to the degree of fungal resistance. To determine whether a similar relationship existed between hypocotyl color and Rhizoctonia resistance in sugarbeet, we conducted a study of five Rhizoctonia-resistant lines to determine if hypocotyl color frequency changed as disease resistance increased via several cycles of selection. We recorded hypocotyl color of seedlings from seed produced between 1976 and 1990. Whereas the disease index decreased due to additional selections for resistance, there was no consistent relationship between hypocotyl color frequency and disease index. Thus, we did not detect any linkage or genetic relationship between Rhizoctonia resistance and hypocotyl color.

Selection of Pollen under Environmental Extremes

Selection of pollen for cold tolerance:

In our study involving the chilling injury of pollen, the hypothesis was that pollen that germinated best at low temperature would effect the most fertilization, and that this functional superiority would be expressed in progeny that grew faster at low temperatures. In Sugarbeet Research, 1990 Report, we detailed procedures and testing for the fourth cycle of selection. We completed and tested the fifth cycle of selection in 1991. We have no consistent evidence that resultant progeny developed faster in the cold than did the controls.

Selection of pollen for heat tolerance:

We completed the first cycle of selection for pollen challenge and testing. Procedures were similar to those described in Sugarbeet Research, 1990 Report. Seedlings resulting from the first cycle were compared with control seedlings for their ability to withstand high temperatures.

There were no significant differences in radicle length or percent seed

germination of selected seed compared with controls. Thus, improvement in heat tolerance was not realized with one cycle of heat challenge and selection via pollen.

Selection of pollen for aluminum tolerance:

Challenge and selection of pollen for aluminum tolerance was completed through the second cycle for two different lines of sugarbeet. Parent plants were evaluated during the flowering period. There were no significant differences in pollen germination and tube length among selected lines in their ability to survive in media with high aluminum concentrations compared with controls.

The second cycle of selection produced sufficient seed for tests of aluminum tolerance. Seed of selected lines and controls were germinated in boxes containing blotter paper saturated with one of three treatment solutions: Al $_2$ SO $_4$ at 20 mmol/L, K_2 SO $_4$ (same concentration to test for any osmotic effect), and distilled water. Distilled water and the K_2 SO $_4$ solution were adjusted to the same pH (3.3) as the Al $_2$ SO $_4$ solution.

No significant differences were detected in germination or radicle length of seed from selected plants compared with the controls. Selection for aluminum tolerance via pollen challenged with high concentrations of aluminum in vitro was not effected for the two cycles of selection.

SUGARBEET RESEARCH

1991 Report

SECTION D

Northern Crop Science Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Fargo, North Dakota

Dr. W. M. Bugbee, Plant Pathologist

Dr. L. G. Campbell, Agronomist

Dr. D. L. Doney, Geneticist

Dr. C. A. Wozniak, Molecular Biologist

Dr. G. A. Smith, Research Leader, Geneticist

Cooperation:

American Crystal Sugar Co.
Colorado State University Experiment Station
Minn-Dak Sugar Cooperative
Minnesota Agricultural Experiment Station
Sugarbeet Research and Education Board of
Minnesota and North Dakota

This research was supported in part by funds provided through the Beet Sugar Development Foundation (Projects 600, 601, 610, 630 and 640) and the Sugarbeet Research and Education Board of Minnesota and North Dakota.

CONTENTS

PUBLICATIONS	PAGE
Abstracts of Papers Presented, Published or Approved for Publication and Germplasm Registrations	D3 D9
CERCOSPORA RESISTANCE BREEDING AND RELATED RESEARCH (BSDF Project 600) - G. A. Smith	
Relationship Between Cercospora Resistance and Yield in Commercial Hybrids 1991 Cercospora Breeding Nursery	
IN VITRO SELECTION, REGENERATION, AND BIOPESTICIDE DEVELOPMENT RESEARCH (BSDF Project 601) - G. A. Smith and J. D. Eide	
Isolation, Identification, and Characterization of Bacteria for Potential Use in Transformation of Sugarbeet Isolation, Identification, and Characterization of Sugarbeet	D14
Rhizospheric Bacteria for Potential Use as Vectors for Endotoxin Gene Incorporation	D17
RHIZOCTONIA ROOT ROT RESEARCH (BSDF Project 610) - W. M. Bugbee	
An Inhibitor of Pectin Lyase	D19
PHYSIOLOGICAL SELECTION AND GERMPLASM RESEARCH (BSDF Project 630) - D. L. Doney	
Pre-Breeding	D24 D26
DEVELOPMENT OF A SUGARBEET-ASSOCIATED MICROBE CULTURE COLLECTION (RSDE Project 640) C. A. Wozniek	D 2 0

Abstracts of Papers Presented, Published, or Approved for Publication and Germplasm Registrations

Bugbee, W. M. 1991. A pectin lyase inhibitor from sugar beet. Journal of Sugar Beet Research 28:64.

A constitutive glycoprotein inhibitor of pectin lyase (PNL) was purified by affinity chromatography on a cyanogen bromide activated gel to which pectin lyase was coupled. Further purification was done by size exclusion chromatography where four fractions with estimated masses of 28, 15, 8 and 3 kD were resolved. Subunits within each fraction were resolved with polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The inhibitor was in higher concentrations in a root rot resistant germplasm than in a susceptible cultivar and also higher in root than in hypocotyl or crown tissue. The inhibitor gave partial protection to cell damage caused by PNL. The inhibitor was unequally effective against PNL from *Rhizoctonia solani*, *Phoma betae* and *Aspergillus japonicus*.

CAMPBELL, L. G. and A. W. ANDERSON. 1991. Selection for sugarbeet root maggot resistance. Annual Plant Resistance to Insects Newsletter 17:15.

Sugarbeet root maggot (*Tetanops myopaeformis* Röder), the major insect pest of sugarbeet (*Beta vulgaris* L.) in the Red River Valley, traditionally has been controlled with insecticides applied at planting. Attempts to identify resistant sugarbeet genotypes have been marginally successful. Populations resulting from four cycles of mass selection had average damage ratings of 2.9, compared to 3.4 for commercial hybrids (0 = no damage to 5 = severely damaged). The most resistant lines currently in the program were originally selected in a cooperative project between USDA (Logan, Utah) and Amalgamated Sugar Co. and have since been screened in North Dakota. This material had an average damage rating of 1.9. This level of control was comparable to that obtained with insecticides at the same site. Over a 5-year period, plots with the most effective insecticide treatment had average damaging ratings of 1.6, compared to 3.6 for untreated checks. Because resistance is not simply inherited, it may be of limited commercial value. Methods of utilizing this level of resistance and/or obtaining higher levels are being explored.

CAMPBELL, L. G., A. W. ANDERSON, and K. A. PRODOEHL. 1991. Selection for sugarbeet root maggot resistance. *Agronomy Abstracts* p. 89.

Sugarbeet root maggot (*Tetanops myopaeformis* Röder) is the major insect pest of sugarbeet (*Beta vulgaris L.*) in the Red River Valley. Attempts to identify resistant genotypes have been marginally successful. Populations resulting from four cycles of mass selection had average damage ratings of 2.9, compared to 3.4 for five commercial

hybrids (0=no damage to 5=severely damaged). The most resistant lines currently in the program were originally selected in a cooperative project between USDA and Amalgamated Sugar Co. This material had a 2-year average damage rating of 1.9. This level of control was similar to that obtained with insecticides at the same site. Methods of utilizing this level of resistance and/or obtaining higher level are being explored.

CAMPBELL, L. G. and K. A. PRODOEHL. 1991. Effects of temperature and seed lot on seedling emergence. Sugarbeet Research and Extension Reports 21:230-231.

Poor stand establishment is a frequent problem in sugarbeet (*Beta vulgaris*) production. Percent emergence and days to 50% emergence were measured at temperatures between 10 and 25° C on a thermogradient plate. Percent emergence 14 days after planting increased rapidly between 10 and 16° C. Above 22° C there was no increase in emergence percent. Days to 50% emergence decreased sharply as temperature increased and reached a minimum at 25° C. No significant differences in emergence percent or rate of emergence were found among the 14 commercial hybrids examined. Significant year by hybrid interactions suggested that seed lots of individual hybrids differed in emergence characteristics. Relating the above results to local soil temperatures provides information needed for determining optimum planting date.

DONEY, D. L. 1991. Sugarbeet leaf lifespan. Sugarbeet Research and Extension Reports 21:232-235.

Characteristics of the sugarbeet canopy such as 1) a genetically alterable partitioning of the photosynthate to the root or top, 2) an excessive leaf canopy throughout much of the growing season, and 3) the continuous dying and initiation of leaves, suggests that an extension of the leaf life span would be beneficial in increasing sucrose storage and production. Tests designed to identify genetic variation showed significant genetic variation for leaf life span (green leaf duration) of the first leaves. Selection was conducted for the leaf life span of the first leaves in a heterozygous population. One cycle of selection produced new populations significantly differing in leaf life span by at least two days. These studies demonstrate that appropriate selection can alter sugarbeet life span. Future studies will focus on the effects leaf life span can have on important agronomic and physiological characteristics.

DONEY, D. L. 1991. Beta genetic resources: North American activities. Proceedings of the International Beta Genetics Resources Workshop (in press).

Beta germplasm activities in North America are coordinated by the Sugarbeet Crop Advisory Committee (CAC). This is a committee of the American Society of Sugar Beet Technologists (ASSBT) with the responsibility of providing advice, guidance and supervision of Beta germplasm. It works closely and coordinates all activities with the

National Plant Germplasm System (NPGS) of the United States Department of Agriculture (USDA). The Committee is composed of scientists drawn from the private, federal and state sectors. The Sugarbeet CAC provides both general and specific guidelines as well as supervision of the following Beta activities: 1) development of descriptor and priority descriptor lists; 2) collection and exchange; 3) preservation; 4) multiplication; 5) evaluation; and 6) enhancement of Beta germplasm. organization of the Sugarbeet CAC in 1983, the Committee has been instrumental in the development and supervision of the following activities: 1) the development of Beta descriptor lists; 2) four collection expeditions to collect wild species of Beta in Italy, Ireland, the United Kingdom, France, Belgium, Denmark, and the USSR; 3) oversees the maintenance and preservation of Beta collections located at Ames, Iowa (working collection) and Fort Collins, Colorado (back-up collection); 4) developed and supervises a seed multiplication program at Logan, Utah; 5) supervises the evaluation of Beta germplasm for priority descriptors; and 6) advises on Beta enhancement activities. These activities have significantly increased the quality, quantity and value of the Beta collection. The preservation and availability of this germplasm to the user community will be a long lasting resource.

DONEY, D. L. 1991. Morphology of North Atlantic Beta. Proceedings of the International Beta Genetics Resources Workshop (in press).

Collection expeditions to Italy, Sardinia and Corsica in 1985; to England, Wales and Ireland in 1987; and to France, Belgium and Denmark in 1989; as well as earlier collections of Coons and McFarlane, have resulted in the collection and preservation of much of the North Atlantic Beta maritima germplasm. The systematic collection efforts of the past three expeditions succeeded in preserving most of the genetic variation present in the wild Beta maritima of the North Atlantic. This collection has been evaluated for morphological characteristics in field studies at Fargo, North Dakota, and in greenhouse Significant differences were found between populations for seven experiments. measured leaf characteristics. Each population differed from its nearest neighbor by at least one leaf character. Some, but not all, populations exhibited genetic variation between individual plants. Leaves of North Atlantic maritima are generally thicker than leaves of sugarbeet, some twice as thick. Plant life cycle changed from annual in the extreme southern part of France to biennial in Denmark. Most plants had 3-6 germs per seed ball; however, some monogerm plants were found on each side of the English Channel. Growth habit ranged from mostly erect in southern France to prostrate in Denmark; however, many populations were segregating for growth habit. As distances between populations exceeded 25 kilometers, gene frequencies significantly changed. It was determined that the distance of 25-50 kilometers was sufficient to induce the development of new ecotypes. Osmotic pressures were measured on the leaves and roots of the collection from the United Kingdom. Leaf osmotic pressures were higher, whereas root osmotic pressure was not different than sugarbeet.

DONEY, D. L. 1991. Sugarbeet Crop Advisory Committee activities. *Agronomy Abstracts* p. 205.

The Sugarbeet Crop Advisory Committee (CAC) was organized in 1983 as a committee of the American Society of Sugar Beet Technologists (ASSBT). It consists of representatives from the federal, state, and industry sectors with expertise in genetics, plant breeding, plant pathology, and cytogenetics. All geographical sugarbeet growing regions are represented on this committee. Since its organization, all *Beta* germplasm activities have been coordinated and supervised through this committee. The Sugarbeet CAC has been instrumental in the development and supervision of the following activities: 1) the development of a *Beta* descriptor list; 2) four collection expeditions to Italy, Sardinia, and Corsica in 1985; England, Wales, and Ireland in 1987; France, Belgium, and Denmark in 1989; and the USSR in 1990; 3) works closely with the *Beta* curator and oversees the *Beta* working collection located at Ames, Iowa; 4) developed and supervises a seed multiplication program at Logan, Utah; 5) supervises the evaluation of *Beta* germplasm for priority descriptors; and 6) advises on enhancement activities. The Sugarbeet CAC participates and cooperates in *Beta* germplasm activities with foreign curators, genebanks and the World *Beta* Network.

EIDE, J. D., G. A. SMITH, and C. A. WOZNIAK. 1991. Isolation of Agrobacterium tumefaciens from Beta vulgaris for enhanced transformation of sugarbeet. Journal of Sugar Beet Research 28:69.

Transformation of sugarbeet, Beta vulgaris L., with Agrobacterium tumefaciens is the most promising method for insertion of foreign genes into the sugarbeet genome. The number of virulent strains of Agrobacteria for use in sugarbeet is limited. In a search for compatible gene vectors, Agrobacteria were isolated from homogenized sugarbeet crown galls. Samples of serial dilutions were plated on selective media D1 or New and Kerr with or without 65 units ml⁻¹ bacitracin and 30 μ g/ml streptomycin. Isolates that tested positive for 3-ketolactose were tested for virulence on sugarbeet seedlings and petiole sections. Those strains showing the greatest virulence will be candidates for disarmament and incorporation into our sugarbeet transformation program.

EIDE, J. D., G. A. SMITH, and C. A. WOZNIAK. 1991. Isolation and characterization of Agrobacterium tumefaciens from Beta vulgaris for enhanced transformation of sugarbeet. Proceedings of the North Dakota Academy of Science 45:37.

The use of Agrobacterium tumefaciens for transformation of plant genomes has been used with great success. In sugarbeets, Agrobacterium mediated transformation is limited due to the recalcitrant nature of sugarbeet (Beta vulgaris) cultures. The number of virulent strains of Agrobacterium for use on sugarbeet is limited. We have isolated strains of Agrobacterium from sugarbeet galls. Twelve galls from field grown sugarbeets were ground in 150 ml of 0.5 M potassium phosphate buffer (pH 7.5) using a Waring blender.

A 1 ml aliquot was plated onto selectable media D1 or New and Kerr containing 65 units per ml bacitracin and 30 micrograms per ml streptomycin. All *Agrobacterium* strains isolated from D1 plates were olive colored. The *Agrobacterium* isolates were separated into biovar I or biovar II by testing for utilization of lactose (3-ketoglucoside production), erythritol, and melezitose. *Agrobacterium* strains were tested for antibiotic susceptibility using Difco Dispens-O-Disc. Of the 12 antibiotics examined, only two wild strains showed susceptibility to chloramphenicol. Plasmid mini-preparations were done to look for a plasmid profile. Of the 12 strains tested, none had plasmids less than 20 kilo-base pairs. We are presently checking the wild *Agrobacterium* strains for virulence on sugarbeet petiole sections *in vitro*. In addition, virulence will be determined on sunflower, tobacco and sugarbeet plant stems *in planta*. Those showing high virulence will be incorporated into our sugarbeet transformation program.

SEILER, G. J. and D. L. DONEY. 1991. Collection of Wild Sugarbeet Species (Beta spp.) from Europe. Journal of Sugar Beet Research 28:88.

Preservation of wild sugarbeet germplasm is imperative because of the continued loss of native habitats. Cultivated sugarbeet (*Beta vulgaris* L.) is presently based on a narrow genetic base. Wild *Beta* spp. have the potential of contributing unique genes for insect and disease resistance to cultivated sugarbeet. Since 1988, sugarbeet explorations have been undertaken in five European countries: France, Denmark, Belgium, Channel Islands (Guernsey and Jersey), and the Soviet Union. Seeds from 120 collections of *B. vulgaris* L. spp. *maritima* (L.) Thell. (sea beet) were collected from France, 19 from Denmark, five from Belgium, five from Guernsey Island, and three from Jersey Island. The addition of the sea beet populations to the USDA-ARS *Beta* collection makes it the most complete in the world. Seeds from three populations of *B. corolliflora* Zoss., one population of *B. lomatogona* Fisch. et Mayer, and two populations of *B. macrorrhiza* Stev. were collected from the Soviet Union. The germplasm collected from the Soviet Union is the first seed of these wild species obtained in over 50 years. The wild sugarbeet germplasm collected is a valuable genetic resource. It's potential will be realized through systematic evaluation for specific characters.

SMITH, G. A. 1991. Development of a biopesticide targeting the sugarbeet root maggot. *Journal of Sugar Beet Research* 28:89.

The development of a biopesticide for control of the sugarbeet root maggot (*Tetanops myopaeformis* Röder) is a major project of the USDA-ARS Fargo sugarbeet unit. Three basic phases of the project have begun at the laboratory: 1) development of a bioassay, 2) identification of appropriate bacterial gene vectors, and 3) identification and isolation of the gene for use in transformation. Associated with phase 1 is the development of a laboratory rearing method for the root maggot to complete the life cycle under controlled conditions. Phase 2 includes identification and characterization of endophytic and rhizospheric bacteria. Phase 3 involves the insertion of entomocidal genes into a vector

such as Agrobacterium for transfer to the plant genome or the transformation of endophytic or rhizospheric bacteria for introduction to the plant and ingestion by the insect larvae. Gene products of interest are being selected for expression of high insecticidal activity with low mammalian and plant toxicities.

WOZNIAK, C. A. 1991. Occurrence of an immunorelated auxin-induced peptide in higher plant species. Proceedings of the Third International Congress of Plant Molecular Biology (in press).

A peptide of approximately 27kDa in relative molecular mass (by 2-D PAGE) was found to accumulate concommittantly with auxin-induced callus formation in Sorghum bicolor. This callus-associated peptide (CAP1) accumulated to become the most abundant peptide in callus tissues as observed on silver stained 2-D gels. A 2-D PAGE screen of whole plant organs detected this peptide in crown tissues, but not in anthers, ovules, seeds, leaves, leaf sheaths, roots or stems of sorghum; this peptide was greatly enhanced in crowns following whole plant treatment with natural or synthetic auxins. A second callus-associated peptide (CAP2) was found to accumulate in callus which had lost the ability to regenerate. A polyclonal antiserum raised against purified CAP1 also reacted with this 44kDa peptide on 2-D immunoblots. Both peptides also bind Con A and are considered glycoproteins. This antiserum reacted with two bands of approximately 23kDa and 27kDa in etiolated coleoptiles of sorghum and maize as well. Examination of callus of other plant species revealed the presence of an immunorelated peptide of identical size (by SDS-PAGE/westerns) in 14 of 15 grass species evaluated; six cultivars representing the three subspecies of Oryza sativa failed to show any immunoreaction. The tribe in which rice is placed, the Oryzeae, is often considered an arbitrary grouping of uncertain affinities. None of the 17 species of dicots or 4 species of non-gramineous monocots tested indicated the presence of any immunoreactive peptide. CAP1 is being evaluated for a possible role in auxin metabolism or binding and any taxonomic relevance it may have. EM localization and cDNA construction are being pursued.

WOZNIAK, C. A., A. W. ANDERSON, and A. MOHAMMAD. 1991. Production of gnotobiotic larvae of the sugarbeet root maggot. *Annual Plant Resistance to Insects Newsletter* 17:15.

In conjunction with *in vitro* evaluation of biopesticide products aimed at the sugarbeet root maggot (*Tetanops myopaeformis* Röder), we are currently evaluating methods for surface disinfestation of eggs which do not reduce hatch or subsequent viability of larvae. Two year-old third instars were allowed to pupate and adults mated to yield eggs for this study. Following a prewash with 0.1% Tween-20 / 0.1% Triton-X 100 for two minutes, sodium hypochlorite at 0.5% or 0.1% for three minutes, or Roccal II at 0.1% or 0.01% for five minutes, were used to disinfest eggs. Hatching ability was rated by placing eggs on sterile Whatman #3 filter discs wetted with PBS and incubated at 23 to 24° C. Percent hatch ranged from 51% to 77% for untreated, washed only, and surface sterilized

eggs with no obvious ill effects on percent hatch or viability of hatched larvae for any of the treatments. Roccal II treatments at both levels resulted in 6 to 10% of eggs retaining at least one colony forming unit when plated, whereas hypochlorite treatments yielded gnotobiotic eggs at both concentrations. Homogenization of eggs that showed no microbial growth on LBS5 plates (i.e., were surface disinfested) and plating of that homogenate indicated these eggs were devoid of any endogenous aerobic organisms capable of growing on this rich medium. These gnotobiotic larvae will be reared on axenic *in vitro* sugarbeet root cultures for evaluation of larvicidal compounds.

Papers Published Since Abstracted in Previous Report

CAMPBELL, L. G. 1991. Registration of four sugarbeet germplasms selected from the NC-7 Beta collection. Crop Science 31:237.

DONEY, D. L. and J. C. THEURER. 1990. Osmolality of L19 type sugarbeet germplasm. Journal of Sugar Beet Research 27:81-89.

CERCOSPORA RESISTANCE BREEDING AND RELATED RESEARCH BSDF Project 600

RELATIONSHIP BETWEEN CERCOSPORA RESISTANCE AND YIELD IN COMMERCIAL HYBRIDS

G. A. Smith and L. G. Campbell

Plant breeders are all too aware of the difficulty of incorporating disease resistance into parental lines and hybrids while also improving, or at least maintaining, yield and quality. This task is especially difficult if the resistance is not simply inherited, as is the case with Cercospora and many other economically important diseases of sugarbeet. Although these trade-offs are widely recognized their magnitude is not well documented. Commercial yield trials are often planted at sites that avoid infection or diseases are controlled with chemicals. Under these conditions neither the value of disease resistance in the absence of control measures nor the yield reduction associated with selecting for resistance is apparent.

Forty commercial hybrids, all reported to be recommended for growing in Cercospora threat areas, were grown at Fargo, North Dakota (non-disease) and Ft. Collins, Colorado (Table 1). The field at Ft. Collins was inoculated with Cercospora and disease damage ratings were recorded on three dates (Table 2). Yield and sucrose data were taken at both Ft. Collins and at Fargo. The resistance level of the hybrids encompassed the difference between the Cercospora resistant check and the susceptible check. High correlations among the reading dates (Table 3) indicated that time of rating had only a minor effect on the characterization of resistance. The largest correlation coefficients between disease damage rating and root yield or sucrose were associated with the 23 August observations. As damage rating increased root yield and sugar concentration decreased at Ft. Collins, whereas at Fargo (in the absence of Cercospora) root yield increased as the Cercospora susceptibility increased. Regression of root yield on damage rating (23 August) indicated that for each unit increase in the rating scale there

Table 1. Commercial hybrids in Cercospora resistance experiment at Ft. Collins, Colorado and Fargo, North Dakota, 1991.

Commercial Hybrids									
HH-55 HH-85 HH-46 HH-54 HH-32 HH-39 HH-42 HH-57 HH-87 ACH-180	ACH-194 ACH-196 ACH-192 ACH-181 ACH-184 ACH-176 ACH-198 ACH-197 Maribo-403	Maribo-410 Maribo-862 Maribo-875 Maribo-897 Ultramono Beta-5315 Beta-1238 Beta-2988 Beta-6269 Beta-6625	KW-3265 KW-2398 Hilleshog-5090 Hilleshog-5135 Hilleshog-8277 Hilleshog-8351 Monohikari SX-1 SX-2 KW-3145						

Table 2. Cercospora leaf spot ratings of 40 commercial hybrids, Ft. Collins, Colorado, 1991 (0 = no symptoms to 10 = complete defoliation).

	Commerc	cial Hybrids	Contro	ls
Date	Mean	Range	Susceptible	Resistant
		disea	se rating	_
23 August 27 August 3 September	6.05 6.62 6.58	4.50 - 7.00 4.75 - 7.75 5.25 - 7.50	7.00 7.50 7.00	3.75 5.00 5.25

Table 3. Correlation coefficients for Cercospora leaf spot damage ratings, root yield, and sugar concentration of 40 commercial hybrids grown at Ft. Collins, Colorado and Fargo, North Dakota, 1991.

	Disease	rating	Ro	ot yield	Sugar %
	27 Aug.	3 Sept.	Fargo	Ft. Collins	Ft. Collins
Disease Rating:					
23 Aug. 27 Aug. 3 Sept.	0.83**	0.67** 0.81**	0.40** 0.27* 0.12	-0.43** -0.34** -0.44**	-0.44** -0.35* -0.08
Root Yield:					
Ft. Collins		-	-0.19		-0.05

^{*,**} Significant at 0.05 and 0.01 probability levels, respectively.

was a 1.3 ton/acre reduction in root yield at Ft. Collins (Figure 1). This substantiates the importance of resistance in the absence of other control measures in areas where Cercospora is prevalent. The slope of the regression line for Fargo indicated a 1.0 ton/acre increase in yield for each increment on the damage scale. This suggested that yield reduction had accompanied enhanced Cercospora resistance. The spread of the points about the regression lines indicated varying degrees of success in overcoming the negative association between yield and resistance. In the presence of Cercospora (at Ft. Collins) the more susceptible lines had lower sugar concentrations with approximately a 0.6% decrease for each increase in damage rating (23 August). When this loss is combined with the root yield reduction the economic impact of the disease is substantial. There was no obvious relationship between sugar concentration and disease resistance in the absence of the disease (at Fargo).

Without a doubt, differences between Ft. Collins and Fargo involve more than the absence or presence of Cercospora. However, the differences in patterns for Fargo and Ft. Collins strongly suggested that Cercospora resistance was a major The number of hybrids and breeding programs represented strengthen the validity of these conclusions. results demonstrated that resistance is essential if the disease is present and other forms of control are unavailable. It also provided a measure of the yield loss has. in general, accompanied breeding for resistance. The number of hybrids with relatively high damage ratings would suggest that in many breeding programs selection Cercospora resistance is a low priority and producers will need to rely on other control measures. The above observations are based upon one year's Additional testing will provide further insight into the relationship between Cercospora resistance and other important agronomic characters.

Figure 1. Cercospora resistance vs. yield at Ft. Collins, Colorado and Fargo, North Dakota, 1991.

1991 CERCOSPORA BREEDING NURSERY

G. A. Smith

Evaluations of breeding lines were carried out at the ARS nursery located on CSU land in Ft. Collins. The nursery was planted April 20 and inoculated on June 27 and July 3. Disease evaluations were conducted August 23, 27, and on September 3. The peak of the epidemic occurred about August 27. The mean leaf spot ratings of the resistant and susceptible checks on August 27 were 4.4 and 7.0, respectively. These values compared with 4.1 and 6.9 for resistant and susceptible checks, respectively, in 1990. The epidemic developed slowly but favorable conditions in August induced a good epidemic during the month.

Sixty-five entries were included in the Cercospora nursery and 34 in the curly top nursery in 1991 (Table 4). Ten entries (entries 1383-1392) included crosses between Yugoslavian lines and diploid and tetraploid versions of FC 606 CMS and FC 607 CMS. The use of FC 607 CMS at the 4x level resulted in the most resistant crosses. Other entries evaluated for leaf spot resistance included lines developed for storage rot resistance. These lines did not display high

resistance to Cercospora. The new line designated FC 907 sent to Oregon for seed increase in anticipation of release in 1992-93 will not be released. Problems in expression of the multigerm character were discovered in the field. As reported last year, this line is a Cercospora resistant multigerm pollinator developed via backcrossing with FC 607 as the recurrent parent. Further work is in progress with this line.

Table 4. Leaf spot and curly top ratings of breeding lines at Ft. Collins, Colorado and Kimberly, Idaho, respectively, in 1991.

				Rat	ings*	
Entry			T O	af Spc	.+	Curly
No.	Seed No.	Description/Pedigree	8/23			Top
1383	902002	NS-174,2x,MM,LSR,Yugo	5.0	5.3	4.8	7.3
1384	902003	NS-4,2x,mm,Yugo	6.8	7.5	7.0	7.0
1385	902004H2	FC607cms,2x,mm X NS-174,2x,MM, LSR,Yugo	4.8	5.0	4.5	7.7
1386	902004Н3	FC607cms,4x,mm X NS-174,2x,MM, LSR,Yugo	4.3	4.3	4.3	6.7
1387	902004H4	FC606cms,2x,mm X NS-174,2x,MM, LSR,Yugo	4.0	4.5	4.8	6.0
1388	902004H5	FC606cms,4x,mm X NS-174,2x,MM, LSR,Yugo	4.8	5.0	5.0	5.7
1389	902005H2	FC607cms, 2x, mm X NS-4, 2x, mm, Yugo	5.3	5.8	5.8	6.3
1390	902005H3	FC607cms, 4x, mm X NS-4, 2x, mm, Yugo	5.3	4.8	5.5	7.0
1391	902005H4	FC606cms, 4x, mm X NS-4, 2x, mm, Yugo	5.5	6.0	6.3	6.0
1392	902005H5	FC606cms, 2x, mm X NS-4, 2x, mm, Yugo	5.5	5.3	5.8	
1393	902006	Rhizor, MM, 2x, LSR, seg. for 0-type, Italy	4.3	4.3	4.5	
1394	892001H2	FC607cms,mm X L19	5.3	5.8	6.5	6.0
1395	892018H2	FC606T.O. X B2007	4.8	5.0	5.0	
1396	AF90-2	F1004,M ,R ,rr,Storage rot res.	5.8	6.5	6.0	6.7
1397	AF90-3	F1005,M ,rr,Storage rot res.	6.3	7.3	6.5	7.7
1398	AF90-4	F1009, M , R , rr, Storage rot res.	6.3	6.5	6.8	7.3
1399	AF90-5	F1010, M , R , rr, Storage rot res.	6.5	7.8	7.0	6.7
1400	892003но2	FC607cms, mm X FC609T.O.	4.5	4.5	4.5	
1401	892004HO2	FC607cms, mm X FC502/3T.O.mm	4.5	5.0	5.0	6.3
1402	892005H2	(FC506cms X FC607T.O.) X H8277	5.0	5.0	5.0	
1403	892005H3	(FC607cms X 662119HO) X H8277	6.0	6.5	5.5	
1404	892005H4	(FC607cms X FC502/3T.O.) X H8277	5.8	6.0	6.0	6.3
1405	892005H6	FC609cms X H8277	5.3	6.0	5.0	
1406	892007H2	(FC506cms X FC607T.O.) X B2007	4.8	5.0	5.0	
1407	892007H2	(FC607cms X 662119HO X B2007	5.8	6.3	5.5	
1407	892007H3	(FC607cms X FC502/3T.O.) X B2007	5.3	5.8	6.3	
		(FC607cms X FC506T.O.) X B2007	5.5	5.8	5.8	
1409	892007H5	FC609cms X B2007	5.5	6.0	6.5	6.3
1410	892007H6 892008H2	FC907	3.8	4.0	4.0	6.0
1411	892009H2	([FC606T.O.,rr,mm X FC701/4 97% R_,MM] X FC606T.O.,rr,mm) X FC606T.O.,rr,mm BC4	4.8	5.0	5.5	5.0
1413	892010H	H8277 X FC607T.O.	6.0	6.3	6.5	
1414	892010H2	FC607T.O. X H8277	4.5	4.5	4.5	5.7
1415	892011H	H8277 X FC609T.O.	6.3	6.5	6.8	6.7
1416	892011H2	FC609T.O. X H8277	6.0	6.3	6.0	
1417	892013Н	A200 X FC607T.O.	5.5	6.0	5.8	
1418	892013H2	FC607T.O. X A200	4.8	4.5	4.3	
1419	892014H	A200 X FC609T.O.	6.3	6.8	6.5	
7477	J J L U L 711	1.200 11 1 00072101				

Table 4. Continued.

				Rat	ings*	
Entry			Lε	eaf Spo	ot	Curly
No.	Seed No.	Description/Pedigree	8/23	8/27	9/3	Top
1420	892016н	B2007 X FC607T.O.	5.5	6.3	6.3	
1421	892016H2	FC607T.O. X B2007	4.3	4.5	4.8	
1422	AF90-8	891021H2; (FC504cms X FC502/2,mm) SP6322-0,LSR CK increase	4.0	3.8	4.3	6.3
1423	AF90-7	891021H;Sp6322-0,MM,R_),rr increase	4.5	4.5	4.0	
1424	892017H2	FC609T.O. X B2007	4.5	5.0	5.0	
1425	AF89-191	881019H3;FC607cms,mm X FC901,mm	5.0	5.0	5.0	5.3
1426	AF89-199	881021HO2; FC506cms, mm X FC502T.O., mm	4.0	4.3	4.8	
1427	881022HO4	FC609cms, mm X FC607T.O., mm	4.5	4.5	4.3	
1428	AF89-205	881022HO5;761036HO1cms,mm X FC607T.O.	4.5	4.5	4.3	5.0
1429	881022HO6	65201H01cms, mm X FC607T.O.	4.3	4.0	4.0	
1430	881033	FC702/7	4.8	5.3	5.3	
1431	AF89-151	871028H03;FC607cms X FC502/3T.O.	4.0	4.5	4.5	5.7
1432	AF89-157	871032HO3; FC607cms X FC506T.O.	4.5	4.8	4.8	5.7
1433	AF89-164	871034H02; FC502cms X FC607T.O.	4.5	4.3	4.3	5.7
1434	AF89-167	871034H06;652016cms X FC607T.O.	4.8	4.5	4.8	5.0
1435	AF89-168	871034H07;662119H01cms X FC607T.O.	4.0	4.5	4.5	3.0
1436	861016HO	FC607(4x)T.O.(C3)	4.3	4.0	4.3	
1437	861016H01	FC607(4x) (C3)	4.3	4.0	4.3	
1438	AF89-109	861019H02;FC506cms X FC607T.O.	3.8	3.5	3.8	5.0
1440	AF89-13	861020HO2; FC607cms X 662119HO	6.5	6.0	5.0	7.7
1441	AF89-16	861025HO4; FC607cms X 64010T.O.	4.0	3.8	4.3	6.7
1442	801123HO	FC607T.O. Reselected	4.0	4.5	4.3	0. /
1443	AF91-2	L8 91N0001	6.3	6.5	6.5	7.3
1444	AF91-3	F1006 90N0019H0	6.3	5.5	4.5	5.0
1445	821052	Yellow-leaf mutant	7.0	8.0	6.8	3.0
1448	821051H2	LSR Check	4.5	4.5	4.8	
1449	AF90-6	891018; LSS Check	6.8	7.5	7.0	
1450		US 33, CTS Check				6.2
1451		US 41, CTR Check				4.8
		•				

^{*}Ratings based on 0 to 10 scale, with 0 = no symptoms and 10 = complete defoliation for leaf spot and death for curly top.

IN VITRO SELECTION, REGENERATION, AND BIOPESTICIDE DEVELOPMENT RESEARCH BSDF Project 601

G. A. Smith and J. D. Eide

ISOLATION, IDENTIFICATION, AND CHARACTERIZATION OF BACTERIA FOR POTENTIAL USE IN TRANSFORMATION OF SUGARBEET.—Routine transformation of sugarbeet using *Agrobacterium tumefaciens* has been difficult at best. Highly virulent strains

would help one's transformation efficiency when dealing with potential gene or genes products active against sugarbeet root maggot (Diptera: *Tetanops myopaeformis*). We isolated and examined wild type *A. tumefaciens* in order to find more virulent strains. *A. tumefaciens* strains were examined for virulence against sugarbeet, sunflower and tobacco. No isolated strains displayed enhanced virulence. After 41 days the positive control strain A281 produced galls in excess of 10.0 grams on sugarbeets. *A. tumefaciens* isolated from sugarbeets and type strains were characterized for antibiotic resistance profiles.

After transformation it is necessary to remove Agrobacterium from tissue culture. Some strains have proven difficult to remove from culture without phytotoxic effects. We examined various antibiotic activity against A. tumefaciens. Difco Dispens-O-Disk susceptibility test disks containing erythromycin, chloramphenicol, norfloxacin, rifampin, tetracycline, vancomycin, carbenicillin, gentamicin, cefotaxime, nalidixic acid, colistin, polymyxin b, kanamycin, streptomycin, bacitracin, ampicillin, imipenem, and nitrofurantoin were tested. The Agrobacterium were resistant to vancomycin, erythromycin, rifampin, gentamicin, naladixic acid, streptomycin, bacitracin, and sulfisoxazole. Antibiotics identified as bacteriostatic or bactericidal against A. tumefaciens were norfloxacin, carbenicillin, imipenem, cefotaxime, and tetracycline (Table 1). These antibiotics will be effective in removal of A. tumefaciens from transformed sugarbeet material. Extrachromosomal DNA may be involved in various antibiotic resistance. Plasmid-mini preparations of A. tumefaciens were examined. No plasmids less than 20 kilo-base pairs were detected.

Table 1. Antibiotic resistance of selective Agrobacterium tumefaciens.

Antibiotics																			
Strain	E	С	NOR	RA	TE	VA	СВ	GM	CTX	NA	CL	PB	K	S	В	AM	IMP	FD	G
B1C	R	R	s	R	s	R	s	R	s	R	R	R	R	R	R	R	s	R	R
B2A	R	R	S	R	s	R	s	R	s	R	s	S	R	R	R	S	S	R	R
взв	R	S	S	R	S	R	s	R	S	R	R	R	R	R	R	R	S	R	R
B4KA	R	R	S	R	s	R	s	R	S	R	R	R	R	R	R	R	S	R	R
B5A	R	R	S	R	S	R	S	R	S	R	S	S	R	R	R	R	S	R	R
B6A	R	R	S	R	S	R	S	R	S	R	S	S	R	R	R	R	S	R	R
B7A	R	R	S	R	S	R	S	R	S	R	S	S	R	R	R	R	S	R	R
B8A	R	S	S	R	S	R	S	R	S	R	S	R	S	R	R	R	S	R	R
B9A	R	R	S	R	S	R	S	R	S	R	R	R	R	R	R	R	S	R	R
B10A	R	R	S	R	S	R	S	R	S	R	R	R	R	R	R	S	S	S	R
B11A	R	R	S	R	S	R	S	R	S	R	R	R	R	R	R	R	S	R	R
A281	R	R	S	R	S	R	S	R	S	R	S	S	R	R	R	R	S	R	R
EHA101	R	R	S	R	S	R	S	R	S	R	S	S	R	R	R	R	S	R	R

R=Resistant, S=susceptible, Dispens-O-Disc antimicrobial agent and disk content; E=15 mcg erythromycin, C=30 mcg chloramphenicol, NOR=10 mcg norfloxacin, RA=5 mcg rifampin, TE=30 mcg tetracycline, VA=30 mcg vancomycin, CB=100 mcg carbenicillin, GM=10 mcg gentamicin, CTX=30 mcg cefotaxime, NA=30 mcg nalidixic acid, CL=10 mcg colistin, PB=300 units polymyxin B, K=30 mcg kanamycin, S=10 mcg streptomycin, B=10 units bacitracin, AM=10 mcg ampicillin, IMP=10 mcg imipenem, FD=300 mcg nitrofurantoin, and G=300 mcg sulfisoxazole.

RHIZOSPHERIC BACTERIA FOR POTENTIAL USE AS VECTORS FOR ENDOTOXIN GENE INCORPORATION.—A suitable vector is needed for inserting a gene or genes detrimental to the sugarbeet root maggot. This bacterial vector must be able to colonize both the sugarbeet and/or maggot and be present in high numbers. This bacteria must be nonpathogenic, and preferably be growth promoting and/or have disease fighting capabilities. Sugarbeet rhizospheric bacteria were collected from the five following sites in the Red River Valley: Fargo, Prosper, Casselton, and Park River, North Dakota; and Crookston, Minnesota.

After three successive single colony isolations the bacteria were identified by gram staining and then using a Biolog MicroLog 2N system interfaced to a SLT instruments microplate reader. This system consists of loading the bacteria into a 96-well microplate containing 95 different carbon sources. The bacteria oxidize the substrate resulting in a 95-test color pattern. This pattern provides identification at the species and subspecies levels. *Pseudomonas* was the most predominant genera of bacteria isolated. The following species of *Pseudomonas* were identified: *P. putida* subgroup b; *P. fluorescens* subgroup a; *P. fluorescens* subgroup b; *P. fluorescens* subgroup c; *P. corrugata*; *P. marginalis*; and *P. fulva*. Other species isolated included *Enterobacter cloacae* subgroup b, *Xanthomonas maltophilia* and *Serratia marcescens*. *Xanthomonas maltophilia* and *Serratia marcescens* had previously been found to be associated with the sugarbeet root maggot. Some strains are being tested for antifungal activity (Table 2). The isolates *Serratia marcescens* and *Xanthomonas maltophilia* had antifungal activity against *Phoma betae*, *Pythium ultimum*, *Rhizoctonia solani*, *Aphanomyces cochliodes*, *Cercospora beticola* and *Botrytis cinerea*. The antifungal activities may be due to chitinase activity.

Table 2. Diameter of fungal growth in the presence of selective bacteria.

Bacteria Strain	Botrytis	Rhizoctonia	Cercospora	Pythium	Phoma
91CassPS2T19 # 91PrPS2W17 # 91PrPS3Y18 \$ 91PrPS2Y23 # 91CassLBS5W1 % 91CassPS2Y17 #	1 1 3 1 5.5	8.4 8.4 8.4 7.5 8.4 8.0	1.1 1.2 2.3 1.2 2.5	1.3 1.1 1.2 1.2 4.0 1.2	3.0 2.3 1.0 3.0 7.1 3.4
Control	7.8	8.4	3.3	4.4	6.9

^{# =} Xanthomonas maltophilia, \$ = Pseudomonas fluorescens, % = Serratia marcescens. One ml of an overnight turbid suspension of bacteria was spread and allowed to dry on a Falcon 1029, 15 X 100 petri dish containing potato dextrose agar. One cm diameter fungal plugs were placed in the middle of the petri dish. The growth of the fungus was recorded after 7 days.

Sugarbeet rhizospheric bacteria Pseudomonas putida and Pseudomonas corrugata were examined for colonization and recovery on field grown sugarbeets. Seeds of sugarbeet hybrids ACH180 and KW1745 were vacuum infiltrated with P. putida (PF4) and Pseudomonas corrugata (PC1)bacteria. The seeds were planted in the field plot at Fargo, North Dakota on May 17, 1991 in a split block with replications. Bacteria collected from five beets per treatment. The wash was serially diluted and plated onto PS2 and PS3 media. PS3 selected for PF4 type *Pseudomonads* while PS2 selected both PC1 and PF4 types. Selective media showed the mean colony

Figure 1. The number of fluorescent Pseudomonad bacteria per gram fresh weight of sugarbeet root recorded June 28, 1991.

forming units (CFU) ranged from 6.27 X 10⁶ to 76.0 X 10⁶ bacteria per gram fresh weight (GFW) when selected on PS2 media (Figure 1). The PS3 media selected for fluorescent *Pseudomonas* bacteria populations ranged from 1.34 X 10⁶ to 20.76 X 10⁶ per GFW. The August mean fluorescent *Pseudomonas* bacterial population ranges dropped to 6.55 X 10⁴ to 28.25 X 10⁴ per GFW for PC1 and PF4 types and 3.09 X 10⁴ to 22.9 X 10⁴ for PF4 types (Figure 2). This may be due to fluctuating soil moisture conditions and decreasing surface area to weight ratio. No significant differences were observed between treatments using the Duncan's multiple range test (P=0.05). The fluorescent *Pseudomonads* high bacterial density may make it a suitable cloning vector for a gene or genes detrimental to the sugarbeet root maggot. We will continue to look for and characterize suitable cloning vectors.

A NEW IN VITRO SELECTION METHOD FOR CERCOSPORA RESISTANCE.-- A new system for induction of Cercospora PR proteins and transcription products was devised. A

double-sided Lutri-plate consisting of sugarbeets grown on MS media separated from Cercospora inoculated dextrose agar by a 0.2μ polycarbonate membrane allows toxins to continuously diffuse through the membrane and induction of PR proteins. Isolation of the induced proteins and activated mRNA transcripts can be accomplished without fungal contaminants. Preparation of antibodies against these PR proteins may allow the selection of Cercospora resistant plants in the seedling stage. This would our *Cercospora* breeding accelerate program.

Figure 2. The number of fluorescent Pseudomonad bacteria per gram fresh weight of sugarbeet root recorded in August 1991.

Total protein was extracted from *Cercospora* LSS and LSR leaves. Separation by polyacrylamide gel electrophoresis found numerous polypeptides with a molecular mass of 30 and 35 kDa. These are the size ranges of the plant PR proteins chitinase and glucanase. Identification of these enzymes' roles in *Cercospora* resistance may lead to a new tool for quickly identifying fungal resistant germplasm.

IN VIVO SELECTION FOR CERCOSPORA RESISTANCE.—We are examining different selection schemes for *Cercospora* resistant germplasm. The use of the *Cercospora* toxins cercosporin and CBT in selection schemes is difficult. This is due to their lengthy isolation procedures and poor solubility in aqueous solutions. Use of *Cercospora* spore suspension is difficult in the greenhouse isolators. We decided to look at the *Cercospora* toxin-mimicking chemicals paraquat and rose bengal. Greenhouse sugarbeet plants were sprayed *in vivo* with *Cercospora* paraquat and rose bengal. Plants were sprayed with 10 μ g/ml, 50 μ g/ml, 100 μ g/ml, or 1000 μ g/ml rose bengal (A, B, C, D, E); 10 μ g/ml, 50 μ g/ml, 100 μ g/ml, 500 μ g/ml paraquat (F, G, H, I, J). The controls were sprayed with water Application of paraquat at 10 to 1000 μ g/ml resulted in a large variation in leaf damage from 0.8 to 9.6. No significant difference was found between leaf spot susceptible (LSS) and leaf spot resistant (FC607 T.O.) lines using the Duncan's multiple range test (P=0.05). A sig-

nificant difference was observed between paraquat treatments. Application of rose bengal at 10 to 1000 μ g/ml resulted in leaf spot ratings of 0.4 to 1.6. No significant difference was found between lines or chemical treatments using the Duncan's multiple range tests (P=0.05). Use of rose bengal as a *Cercospora*-mimicking toxin *in vivo* is questionable. We will continue to examine these selection methods for selection of *Cercospora* resistant germplasm.

Figure 3. Leaf spot ratings based on a 0 to 10 scale. Bars with the same letters are not significant (P=0.05).

FURTHER INVESTIGATIONS OF A PECTIN LYASE INHIBITOR PROTEIN FROM SUGAR BEET BSDF Project 610

W. M. Bugbee

Rhizoctonia has been investigated for decades by those looking for ways to reduce the damage this fungus causes to many crops; sugarbeet is but one of a long list of hosts of this pathogen. Resistant germplasm lines developed at Ft. Collins are being used by seed companies to develop resistant cultivars. In addition to genetic resistance, there are cultural practices that will help reduce losses. Although resistant cultivars and proper cultural practices comprise the entire

package of root rot control measures, the amount of protection from root rot the grower can expect depends largely on the level of resistance in the chosen cultivar. The root rot resistant cultivars that are available today have moderate levels of resistance. Higher levels of resistance are needed along with acceptable yield and quality. So the goal of this research is to gather basic information about the *R. solani*-sugarbeet association and to utilize this information to enhance genetic resistance.

AN INHIBITOR OF PECTIN LYASE.—Cell-wall-degrading enzymes which are produced by many fungal and bacterial pathogens have been recognized for quite some time now as playing a major role in pathogenesis. In the case of the isolate of Rhizoctonia worked with here, AG 2-2, the enzyme pectin lyase was the predominant cell-destroying enzyme found associated with rotted root tissue. When infected roots were extracted, the yield of pectin lyase was always less from root than from crown tissue. This led to the speculation that there might be an inhibitor of pectin lyase that was already present in the root before infection or produced in response to infection. A preformed pectin lyase inhibitor protein (PNLIP) was found and partially purified and characterized. Pectin lyase inhibitory activity was found in both an aqueous extract and in a buffered saline extract of the cell walls. Assays and analyses were performed on cell wall extracts because of ease in working with this type of preparation.

Earlier work had shown that PNLIP was most effective at pH 6.5 to 7.0. Salt (NaCl) also was found to effect the activity of PNLIP as well as PNL. The data in Figure 1 shows that PNL was most active at a NaCl concentration of 200 mM whereas PNLIP was most active at 100 mM. Therefore, inhibitory assays are being run in mixtures containing 100 mM NaCl.

Assays using standard procedures showed that the type of inhibition expressed by PNLIP is uncompetitive or coupling (Figure 2). The coupling mode of inhibition is indicated if parallel lines result when the reciprocals of the

Figure 1. The effect of NaCl on the activity of pectin lyase with and without the pectin lyase inhibitor.

substrate concentations are plotted against the reciprocals of the rate of the reaction. In coupling inhibition, the inhibitor binds to the pectin-pectin lyase complex to retard or completely prevent the formation of product, thus the rate of the enzymatic reaction is decreased.

LIVING TISSUE DAMAGE REDUCED BY INHIBITOR.—Pectolytic enzymes, including pectin lyase, destroy the semi-permeability of cell membranes. The mechanism is not known. In this experiment, slices of root tissue, washed to remove sugars from exposed cut surfaces and intercellular spaces, were exposed for 1 hour to pectin lyase with or without the inhibitor. The bathing solution was 0.1 M KPB at pH 6.8 and was assayed for the hexoses that diffused from pectin lyase damage cells into the bathing medium. The data in Table 1 shows that PNLIP was

able to protect the living tissue from full damage caused by PNL. The amount of inhibition was a function of inhibitor:pectin lyase ratio. Less inhibition occurred at the higher level of pectin lyase. Theoretically then, when R. solani initiates infection by the production of relatively low levels of pectin lyase, the enzyme is met with tissue containing high levels of PNLIP in resistant tissue or low levels of PNLIP in susceptible tissues. The duration of a inhibitor:pectin lyase ratio may characterize a portion of the sugarbeet's resistance mechanism.

Figure 2. The reciprocals of PNL rate (1/V) vs. pectin content (1/S) of PNL alone (bottom line) and two levels of inhibitor.

Table 1. Reduction by pectin lyase inhibitor protein (PNLIP) of damage to root slices caused by pectin lyase as measured by the diffusion of sugars from root slices.

	Units of Pectin Lyase							
PNLIP		100	200					
Units	Sugars	Inhibition	Sugars	Inhibition				
	μg	8	μg	8				
0 CK	35	0	75	0				
80	44	0	60	20				
160	5	86	28	63				
320	0	100	21	72				

Sugars in the diffusate were estimated from a standard curve of d-galacturonic acid. The % inhibition was based on the amount of sugars that diffused from the check slices (pectin lyase only, with no inhibitor).

IMMUNOASSAYS FOR PECTIN LYASE INHIBITOR PROTEIN.—Based on this new information, it was concluded that PNLIP has an important role in biochemical resistance to crown and root rot. To apply this information for useful purposes, we are developing an immunoassay to identify plants with high levels of PNLIP and then to correlate these high level plants with root rot resistance under field conditions. We have produced a monoclonal antibody and a polyclonal antibody to the inhibitor and are using these two antibodies in a double antibody sandwich enzyme-linked immunosorbant assay (DAS-ELISA). Using the DAS-ELISA, it was observed that extracts from petioles gave a greater reaction than root extract. This was good because it meant we could simply remove a petiole from the sugar beet, squeeze-out some juice

with a pair of pliers and proceed with the assay. Trials have shown that only 1 μ l of juice is required, but in practice we take 5 μ l and dilute to 1 ml with a buffer. A positive response can be detected with extracts that are diluted 800 times.

When 2-month-old plants were assayed, extract from root-rot-resistant FC 712 had a higher PNLIP value than the susceptible Ultramono but the variability was so great that the difference was significant only at the 6% level.

Petiole extracts from root-rot-resistant and susceptible plants of different ages were assayed using DAS-ELISA. The trend was for older plants (60 days old) to have higher PNLIP content than younger plants (18-46 days old). PNLIP content was detectable in the youngest plants that were tested (18 days after planting in the greenhouse). There was no statistical difference between the resistant and susceptible plants in PNLIP content in this test.

Petiole extracts from root-rot-resistant and susceptible plants grown in a growth chamber at 15° or 30° were assayed using DAS-ELISA. The PNLIP content was higher in the plants that were grown at 30° than at 15°. In this test, the PNLIP content was higher in the susceptible than in the resistant plants.

An assay using DAS-ELISA was performed on 80 greenhouse-grown plants of a root rot resistant germplasm (FC 712) and 80 plants of a susceptible germplasm (F 1010). The results showed considerable variation in both genotypes with no clear indication that the resistant genotype had the higher PNLIP content. But in another experiment, where PNLIP was expressed on a dry weight basis, the resistant FC 709 had five times more PNLIP than the susceptible F 1010 (Table 2). Furthermore, PNLIP was detected in all 10 plants of FC 709, whereas PNLIP was not detected in five of the 10 plants of susceptible F 1010. Expressing PNLIP on a dry weight basis is an accurate but tedious method. Attempts will be made to develop an accurate protocol that will not require this time-consuming step.

Table 2. Pectin lyase inhibitor activity in root rot resistant FC 709 and susceptible F 1010.

	Units	s of PNLIP/g dry we	eight
Lines		max	min
FC 709	10	30	3
F 1010	2	10	0
t test, P = 0.001	***		

PNLIP content was determined in rotted and adjacent root tissue using DAS-ELISA. Rotted tissue had elevated levels of PNLIP and the levels decreased with distance from the rotted area (Table 3). This suggested that 1) infection stimulated the production of PNLIP or 2) bound PNLIP was released from root cell walls as a result of infection. When extracts of rotted root

tissue were assayed using a buffered pectin solution, the results also showed pectin lyase inhibitor activity but the levels were not greater than those levels found in healthy tissue, indicating that infection did not induce elevated inhibitory activity. More experiments are planned to reconcile this point.

Table 3. Estimates of relative content of PNLIP in infected root tissue using double antibody sandwich enzyme-linked immunosorbent assay.

			Absorban	ce at 425	nm*		
			Distanc	ce from r	otted tis	sue, mm	
Lines	Rot	1	2	3	4	5	6
FC 712 Ultramono	.498 .658	.267 .376	.190 .315	.270	.208	.212	.167

^{*} Higher absorbance values indicate higher PNLIP levels.

GERMPLASM RESEARCH AND PHYSIOLOGICAL SELECTION BSDF Project 630

D. L. Doney

PRE-BREEDING.--The current gene pool from which most present-day hybrids originated is considered by many to be narrow. A review of the history of sugarbeet breeding confirms this assumption.

Improvements in sugarbeet production can be achieved by improving either harvest index or biomass production or a combination of the two. Improvement in harvest index changes the partitioning of photosynthate from top to root and will result in a larger root coupled with a smaller top. Improvement in biomass production implies an increase in both top and root yield. This can be achieved by an increase in vigor or growth as a result of an increased efficiency in either photosynthesis or metabolism. Hybrid vigor "heterosis" has been shown to be the result of increased respiration efficiency and to be more substantial between wide genetic crosses. Considering the narrow genetic background of sugarbeet, it seems probable that much of the potential hybrid vigor in the total beet germplasm is not being realized.

The objective of this research is to develop new near-sugarbeet type populations from crosses between wild relatives and sugarbeet. These near-sugarbeet type populations should have new or different growth genes from those in current sugarbeet breeding pools and, therefore, should

add additional genetic variation for growth and vigor. Near-sugarbeet type populations could be integrated into elite sugarbeet breeding pools for future improvement.

Several new populations are in the development stage as noted in Table 1. These populations are being developed as regional or sub-species type. Plant totals for each population at each stage of development are also shown in Table 1.

Table 1. Development of new near-sugarbeet type populations. Number of plants in each stage of development.

Region	Sub-species	Populations	Total plants	Male sterile plants ^a '	F1 plants <u>b</u> /
Belgium	maritima	3	76	8	36
Denmark	maritima	19	269	10	118
Ireland	maritima	39	249	13	51
TII	maritima	8	50	8	70
	macrocarpa	11	119	16	91
	atriplicifolia	6	35	8	70
	patula	3	11	2	9

Mumber of genetic male sterile plants from the sugarbeet parent.

Population TII is from the Eastern Mediterranean Region and all were annual in growth habit. Fifty plants from eight different populations within the Eastern Mediterranean Region were crossed to eight genetic male sterile sugarbeet plants to produce the F_1 population. Seventy F_1 plants (all annual) were intercrossed to produce Sib_1 seed. All annuals were eliminated from approximately 1100 Sib_1 plants, leaving 300 Sib_1 biennial plants for intercrossing in the next generation. Selection for sugarbeet type will not begin until after the second cycle of intercrossing (Sib_2).

Seven crosses (sugarbeet x B. maritima) made in 1986 have been selected for root type in four successive cycles. Selection for soluble solids was also included in one cycle. Resulting populations were tested in a replicated field trial in 1991 (Table 2). Stands were poor in some of the entries; however, the quality data should be reliable. The new populations were generally lower in sodium and sucrose percentage and higher in potassium, amino nitrogen, sugar loss to molasses and tare. One population (x115) is worthy of noting. Population x115 was equal to hybrid Ultramono in sugar percentage and equal to or less than the hybrids in sodium, potassium, amino nitrogen, sugar loss to molasses and tare. The low tare may be due to the round shape of beets within this population. This population was low in root yield, probably because of poor stand.

W Number of F, plants used in the first intercross.

Table 2. Root yield, sucrose, sodium, potassium, amino nitrogen and sugar loss to molasses concentrations for seven populations selected from sugarbeet x wild crosses and for two sugarbeet hybrid checks.

Entry	Root yield	Sucrose	Sodium	Potassium	Amino nitrogen	Sucrose loss	Tare
	T/A	8	ppm	ppm	ppm	ક	lbs
x110	8.8	13.1	430	2132	1288	2.8	12.8
x111	11.4	13.9	346	1843	1053	2.2	9.0
x112	10.4	14.2	339	1986	1115	2.3	8.9
x113	10.3	14.4	480	1848	942	2.1	8.7
x114	8.7	13.7	277	1870	1208	2.3	10.6
x115	8.9	15.3	365	1600	822	1.8	6.8
x116	10.1	13.8	345	1803	1106	2.3	8.7
Ultramono(ck)	16.1	15.8	443	1796	903	2.0	7.7
ACH 194(ck)	12.1	16.5	409	1839	844	1.9	6.9
LSD P = 0.05	3.1	0.7	88	111	41	0.2	4.4

Populations x115 and x116 will be saved for future selecting and testing. The remaining populations were judged to have insufficient genetic variation (root shape, quality factors, etc.) to warrant further selection efforts and were discarded.

EVALUATION.—As part of the Sugarbeet Crop Advisory Committee evaluation program, 60 accessions were evaluated in replicated field trials for sugar concentration and quality. Forty of the accessions were from the British Isles collection of *B. maritima* and 20 were from the Greek Islands collection of *B. maritima*. The accessions from the Greek Islands were all annual. Some bolted too early for root analyses and were discarded. Root analyses were conducted by the American Crystal Sugar Co. tare lab. The small sprangled roots made analyses difficult; however, sufficient root material was present in most plots to obtain reliable data. The sucrose percentages of these wild *maritima* types were higher than expected. They ranged from 70% to 94% of a commercial sugarbeet hybrid check. Fifteen of the accessions had sucrose percentages not significantly different from the sugarbeet hybrid. Sodium concentration was generally lower in the wild accessions, ranging from 33% to 101% of the commercial sugarbeet check. However, potassium (81% to 124%) and amino nitrogen (93% to 152%) concentrations were higher than sugarbeet.

STRESS SELECTION.--Stress selection is a greenhouse selection approach designed to identify genotypes in the seedling stage that store sucrose in the early stages of growth. Earlier studies have shown small positive increases in both sucrose concentration and root yield from one cycle of selection.

Stress selection has been conducted in several diverse populations to evaluate its potential in a broad range of germplasm. Four selection cycles in population r22 and five selection cycles in

populations 3747 and r528 have been completed. All the successive cycles of selection for each population were tested in replicated (six reps) field trials. Each field trial included two commercial sugarbeet hybrids as checks. Results of these trials are found in Table 3.

There was an increase in root yield in the first selection cycle in each population (r22, r528, and 3747) (Table 3) with no apparent root yield increase in succeeding cycles. A nonsignificant decrease in root yield occurred in the fifth selection cycle of population 3747. This population was the least heterozygous of the three populations and the slight reduction in cycle 5 may reflect inbreeding depression.

Table 3. Root yield, sucrose percentage, and total sugar yield for four successive cycles of stress selection in population r22 and for two hybrid checks.

Entry	Root yield	Sucrose	Total sugar yield
	T/A	8	lbs/A
r22s1*	13.9 b§	13.4a	3724 b
r22s2	16.2a	13.7a	4437a
r22s3	16.2a	13.6a	4390a
r22s4	16.1a	14.2a	4572a
r528s2**	9.2 b	11.7a	2145 b
r528s3	15.2a	12.3b	3754a
r528s4	13.6a	12.7b	3427a
r528s5	15.1a	12.3b	3692a
3747s1ms†	13.1 b	13.8a	3606 b
3747s2ms	16.4a	13.8a	4524a
3747s3ms	15.6ab	13.5a	4237ab
3747s4ms	16.9a	13.6a	4597a
3747s5ms	14.2ab	13.8a	3910ab

^{*} Numbers 1-5 indicate selection cycle number.

An increase in sucrose percentage occurred in cycle three of population r528. Succeeding cycles had no further effect on sucrose percentage. Sucrose percentage was unaffected by stress selection in the other two populations (r22 and 3747). Since sucrose percentage was little affected by stress selection, total sugar yield reflected the effect on root yield.

All three populations experienced significant positive results in the first cycles of stress selection; however, continued selection pressure appeared to have little influence. The reason for this apparent leveling off of effects is unexplained; however, it may reflect the early fixing of genes subject to this type of selection pressure. Poor stands in tests 3 and 4 may have also influenced the results. These tests will be repeated in 1992.

^{**}The first cycle not tested due to insufficient seed.

[†] The original population was segregating for male-sterility; each cycle was harvested on male sterile plants.

[§] Means followed by the same letter are not different at P = 0.05.

GREEN LEAF DURATION.--Another means of increasing total sucrose production is to change the harvest index, i.e. partition more photosynthate to the root and less to the top. Since root/shoot partitioning is unrelated to partitioning of photosynthate in the root, any increase of photosynthate to the root should increase total sucrose production regardless of whether it affects root yield or percent sucrose.

One method of changing the harvest index is by reducing the number of leaves produced during the growing season. If the photosynthetic activity of the leaves could be extended, fewer leaves would be needed and more photosynthate could be translocated to the root.

Three cycles of divergent selection for early and late senescence of the first true leaf have been completed in a very heterozygous population. This selection pressure has significantly changed the green leaf duration of the first leaf. After three cycles of divergent selection, the first leaves lived seven days longer than the first leaves of the earliest senescing population.

These selected populations were tested in replicated field trials to evaluate the effect of extending the green leaf duration of the first leaf on root yield, sucrose percentage and canopy. This is the subject of a MS thesis and will be published more extensively later. Preliminary analyses reveal a positive effect on root yield for each successive selection cycle for longer leaf life (senescence of the first leaf) and a negative effect on root yield for successive cycles of selection for shorter leaf life. Sucrose percentage was unaffected by selection pressure in either direction. Canopy structure was also affected.

Selection for green leaf duration has been initiated in two additional populations to evaluate the influence of this selection parameter on a broader range of germplasm.

LEAF INITIATION.--During the evaluation of the green leaf duration selections above it was observed that the early senescing populations tended to initiate leaves earlier and faster while the late senescing populations tended to initiate leaves slower. It was also noted that the early senescing populations had a higher frequency of annuals than the late senescing populations. The original population was carrying the annual gene at a low frequency. It appeared that selection for early senescence favored or was linked to annualism.

Studies were initiated to evaluate the effect and relationship of leaf initiation with leaf senescence (Table 4). A highly heterozygous population was grown under controlled conditions in growth chambers. Selection was carried out for all combinations of early and late leaf initiation and leaf senescence and for fast and slow leaf growth. These selected plants were intercrossed in separate isolation chambers for each selection criterion. The resulting new populations were tested for leaf initiation, leaf senescence and leaf growth under similar growth chamber growing conditions.

Leaf initiation was measured as hours post-planting that leaves reached 5 cm in length. Leaf growth was measured as leaf length at 220, 262, 320 and 406 hours post-planting. Data are reported as the mean over all populations for the diverging selection criterion of each parameter (leaf initiation, leaf growth, and leaf senescence).

Table 4. Mean initiation and senescence (first true leaf) for progeny of divergent selections for leaf initiation, leaf growth, and leaf senescence. Data are in hours post-planting.

	Initiation		Leaf growth		Senescence	
Parameter	First	Last	Fast	Slow	First	Last
Leaf initiation Senescence	167 647	171** 667**	167 646	171** 668**	170 662	168ns 652ns

^{**} Significant difference at P = 0.01.

Divergent selection for leaf initiation resulted in a significant change in the leaf initiation and leaf senescence of the resulting populations (Table 5). Selection for leaf growth (fast and slow) gave similar results to selection for leaf initiation, i.e. plants selected for fast leaf growth produced progeny that were the first to initiate new leaves and were the first to senesce. Plants selected for first and last leaf senescence produced progeny that were not different in leaf initiation or leaf senescence.

Table 5. Mean leaf growth (mm) at 220, 262, 320 and 406 hours post-planting for progeny of divergent selections for leaf initiation, leaf growth, and leaf senescence.

	Initia	tion	Leaf G	rowth	Seneso	Senescence	
Hours and Leaf	First	Last	Fast	Slow	First	Last	
First Leaf							
220	32**	28	32**	28	30	31ns	
262	60**	54	61**	53	57	58ns	
320	89**	83	91**	81	86	86ns	
406	115**	111	117**	108	114	112ns	
Third Leaf							
262	8**	3	7**	4	5	5ns	
320	51**	38	48**	40	44	45ns	
406	102**	89	101**	91	96	95ns	
Fifth Leaf							
320	7**	2	5	4ns	5	5ns	
406	50**	34	45**	40	43	42ns	
Seventh Leaf							
406	8**	3	6	6ns	6*	5	

^{*,**} Significant difference at P = 0.05 and P = 0.01, respectively.

In all measurements, progeny of selections for first leaf initiation grew faster than progeny of selections for last leaf initiation (Table 5). The same trend followed for progeny of selections for fast and slow leaf growth; however, differences were not as great as the differences for leaf initiation. Selection for either first or last leaf senescence had no effect on leaf growth.

These data confirm that leaf initiation is genetically controlled and can be altered by appropriate selection pressure. They further suggest that the earlier a leaf initiates the faster it grows and senesces. This reasoning seems logical; however, it has been observed that commercial hybrids initiate leaves faster and have a longer leaf life than these populations, suggesting that leaf initiation and leaf senescence are not completely linked. Ideally, progress for earlier leaf initiation and longer leaf life should be possible. In this study, this was not achieved. Leaf initiation appears to have a higher heritability than leaf senescence and therefore masked any attempt to select for longer leaf life. The large number of selection criteria (eight) may also have placed a restriction on potential progress. Studies are currently underway to evaluate more precisely the relationship between these selection criteria and their effects on field production.

WORLD BETA NETWORK.--The second meeting of the World *Beta* Network was held June 1991 at Braunschweig, Germany. There were about 40 participants representing 19 countries in attendance. Reports were presented on *Beta* genetic activities from the five regions (North America, Eastern Europe, Western Europe, Asia, and the Mediterranean). Based on these reports, discussions and cooperative activities were developed for the following activities.

International Data Base for Beta (IDBB): Contributions to the data base were acknowledged. Numerous requests for information have been received. The IDBB can provide information concerning Beta gene banks, collections, seed availability, evaluation data, accession duplication, etc. It was determined that it is not necessary to include all information currently held in the various gene banks in the IDBB, but to include information about the collections. The IDBB will periodically send reminders to update current information.

Collection: Collection gaps were identified and future cooperative efforts were proposed in India, Egypt, Turkey, Iran, Romania, Spain, and Pakistan.

Joint Seed Increase Program: The regeneration program in the first network meeting was considered a sound concept and all agreed to continue this approach.

Germplasm Evaluation: The new Beta Coordinating Committee was mandated to develop an international proposal for Beta evaluation to be presented to the IIRB council. The U.S. Sugarbeet Crop Advisory Committee evaluation program will be implemented into this global approach.

A research session on taxonomy, biosystematics, and the use of biotechniques in *Beta* germplasm research was of high interest. Some new approaches that may be useful tools were outlined.

The next meeting of the network will be held in the summer of 1993 at Fargo, North Dakota.

DEVELOPMENT OF A SUGARBEET-ASSOCIATED MICROBE CULTURE COLLECTION BSDF Project 640

C. A. Wozniak

Various microbes present in association with plants and their insect pests are known to provide both positive and negative influence on crop yield. Some bacterial groups, primarily pseudomonads, enhance yield by providing an antibiotic effect against invading pathogens that would weaken the host plant. These groups are naturally occurring in many instances but are also being applied in furrow as growth promoting rhizospheric flora. In some cases they are being used as vectors for toxins (e.g., Cry protein of Bt) following genetic modification.

Many insects, Diptera included, have a natural microflora that must be maintained for metamorphosis and nutrition of the developing larvae. Three such microbes were implicated in a previous study of the sugarbeet root maggot based on analysis of Red River Valley samples. Interestingly, one of these insect-endogenous bacteria (IEB) is also a known rhizospheric commensal of sugarbeets and would provide a well placed vector for any strategy aimed at the root maggot. Our purpose in this project is to continually collect, identify and characterize sugarbeet-associated microbes (SAM) for our use and any other concerned sugarbeet researcher.

During the 1991 growing season, eggs and larvae of the sugarbeet root maggot (SBRM) were sampled for the presence of bacterial flora associated with this insect. Populations of third instar larvae were collected during July and August from four geographically distinct locations where sugarbeets are grown: Red River Valley (Fargo-Sabin), western North Dakota (Williston), north-central Wyoming (Powell) and the Nebraska panhandle (Bayard). SBRM were transported to the lab on ice for homogenization and sampling. External surfaces of larvae were bleached to remove casually associated microbes and soil particles. Areas of scar tissue on the root surface resulting from SBRM feeding and tunnels of host and insect exudate on peripheral feeder roots were sampled collectively as 'slime tunnels'. These were sampled directly without treatment to detect microflora associated with the feeding larvae.

Sugarbeet seed ('B1745') was disinfested with 0.5% hypochlorite, washed and planted in a mixture of pasteurized Jiffy mix and autoclaved sand in Konetainers in the greenhouse. After four weeks, roots were cleaned of loose sand and peat moss with sterile forceps, and washings of root surfaces plated in a dilution series on selective and nonselective media. Root surfaces were then disinfested with hypochlorite and internal root tissues sampled similarly to detect endophytic bacteria.

Homogenates of larvae were plated on selective and nonselective media in dilution series to estimate numbers of total bacteria as well as those species known to exist as IEB. Medium "XS" and "CT" from existing literature were chemically modified to select for *Xanthomonas maltophilia* and *Serratia spp.*, respectively, from larval, slime tunnel, rhizospheric, internal root and soil samples. These species have been previously demonstrated to be associated with SBRM collected in the Red River Valley.

In total, approximately 900 sugarbeet-associated microbes (SAM) were isolated, purified to homogeneity and stored (-80C). These isolates are currently being identified to the species level using the Biolog Microlog 3N computerized database and API 20E biochemical evaluation systems. Over 200 have been identified to species to date from the above mentioned sources.

From the four geographic areas sampled, Xanthomonas maltophilia (Xm) was the most commonly encountered bacterium associated with larvae of SBRM. Serratia liquefaciens and S. marcescens were found associated with larvae from the Sabin area but Serratia spp. were, in general, less commonly encountered in other growing areas than expected based on published data (Table 1). The other 12 species listed in Table 1 were also found occassionally in slime tunnel and greenhouse root isolations; of these Flavobacterium gleum was commonly encountered in slime tunnel isolations, even in areas where it was not detected in larval sampling. The presence of this species in non-inoculated roots grown in the greenhouse (Table 2) and in slime tunnels suggests that it may be a common endophyte involved in the beet-maggot interaction. We are currently devising a selective medium for F. gleum to more accurately assess the numbers of this species in this season's sampling of larvae and slime tunnels.

The presence of several species of *Pseudomonas* from greenhouse sampling of surface sterilized seed is particularly interesting in that the source of these bacteria is presently uncertain. Attempts to extract a similar complement of flora from surface sterilized seed ground in the lab and plated yielded a small percentage of seed carrying a portion of this flora. Current experiments are aimed at ascertaining the source of these microbes, as they are known to play a role in plant defense against fungal pathogens (and possibly insects) of the root and provide plant growth promoting substances in some cropping systems.

The most striking datum in this analysis of SAM was the omnipresence of Xm in all samples regardless of geographic origin. Xm was the most commonly encountered bacterium in larvae and slime tunnels and has also been routinely isolated from all stages of lab reared SBRM. This species, as well as the *Serratia* species, are known to produce extracellular chitinase and protease in abundance and have been applied as biocontrol agents in other cropping systems in other countries. The role that these flora, especially Xm and F. gleum, play in larval development and nutrition is a current area of experimentation in my laboratory.

In addition to the SAM isolated from sugarbeet growing areas, we have collected over 75 strains of Xm from other researchers for comparison. Preliminary data indicates that protein profiles of excreted and membrane bound peptides show distinct differences based on strain origin. Similarly, chitinase assays show levels of variability between strains, suggesting that selection for high and low producers from natural sources may be feasible. Type strains of several species have also been purchased from the American Type Culture Collection for use as positive contols in identification systems and biochemical comparison to SAM. A repeat sampling this summer will give us corroboration of data as well as new insights to the function these SAM play in host-parasite relationships.

Table 1. Larval isolates.*

Species	Sabin, Minnesota	Williston, North Dakota	Powell, Wyoming	Bayard, Nebraska
Xanthomonas maltophilia	7	9	14	15
Serratia liquefaciens	9	1	0	2
Serratia marcescens	1	0	0	0
Serratia sonticola	0	0	3	0
Flavobacterium gleum	0	0	3	3
Flavobacterium breae	0	Ö	Ō	1
Pseudomonas aureofaciens	0	0	0	4
Pseudomonas corrugata	0	1	0	0
Pseudomonas fluorescens	1	0	0	0
Enterobacter cloacae	1	5	2	0
Enterobacter agglomerans	0	1	0	0
Enterobacter amnigenus	0	1	0	0
Enterobacter aerogenes	0	1	0	0
Klebsiella terrigena	0	0	2	0
Alcaligenes denitrificans	0	0	3	1
Agrobacterium radiobacter	1	1	1	1

^{*}Gram negative isolates; numbers represent positive isolations from third instar larvae.

Table 2. Greenhouse root isolates.*

Species	Rhizospheric	Endophytic
Flavobacterium gleum	3	3
Flavobacterium indologenes	1	1
Pseudomonas sp.	2	2
Pseudomonas fluorescens	5	0
Pseudomonas putida	1	0
Pseudomonas aureofaciens	0	1
Pseudomonas marginalis	0	1
Pseudomonas syringae	1	0
Pseudomonas corrugata	1	0
Enterobacter taylorae	2	0
Enterobacter agglomerans	2	2
Enterobacter amnigenus	1	0
Serratia liquefaciens	0	2
Serratia marcescens	1	0
Serratia plymuthica	0	1
Klebsiella terrigena	2	1
Xanthomonas maltophilia	0	1

^{*}Gram negative isolates only; numbers represent positive isolations of 10 roots total.

SUGARBEET RESEARCH

1991 Report

Section E

Sugarbeet, Bean and Cereal Research Unit Agricultural Research Service, USDA East Lansing, Michigan

Dr. J. C. Theurer, Research Plant Geneticist

Dr. J. W. Saunders, Research Geneticist, Plants

Dr. J. M. Halloin, Plant Physiologist

Cooperation:

Michigan Agricultural Experiment Station Michigan Sugar Company Monitor Sugar Company

This research was supported in part by funds provided through the Beet Sugar Development Foundation (Projects 700 and 710)

		No.
		- L

CONTENTS

	AGE
Publications	E3
Characterization of Monogenic Sulfonylurea Herbicide Resistance Obtained from Somatic Cell Selection by J. W. Saunders, S. E. Hart, D. Penner and K. A. Renner	E8
Attompting to Obtain Indianalinas Harlinias Davids	
Attempting to Obtain Imidazolinone Herbicide Resistance by J. W. Saunders, E. E. Hart, and D. Penner	E12
Evaluation of Sugarbeet Smooth Root Germplasm - 1991 by J. C. Theurer	E13
Agronomic Evaluation of Smooth Root Rhizoctonia Root	
Rot Nursery Selections by J. C. Theurer I	E14
Evaluation of Smooth Root and Other Experimental Hybrids	
in 22" Versus 28" Row Spacings by J. C. Theurer	E17
Comparative Agronomic Performance of Soil Free and Smooth Root Types with Standard Root Type Commercial Cultivars by J. C. Theurer	E19
1991 Experiments of Genotype x Nitrogen Response by J. C. Theurer and J. W. Saunders	E21
Selection in Diverse Breeding Populations for Nitrogen	
Use Efficiency by J. C. Theurer	E28
Molecular Studies of Diverse CMS Lines by J. C. Theurer and Carrie Heiser	E32
Minirhizotron Observations for MHI E4 and SR87 at Three	
Plant Densities by A. J. M. Smucker and J. C. Theurer	E37
Rhizoctonia Root Rot Evaluation for Commercial and Experimental Hybrids at East Lansing, MI - 1991 by J. C. Theurer, Lee Hubble and J. H. Halloin	E43

Doley, W. P. and J. W. Saunders. 1991. Effects of genotype, subculture interval and growth regulators on shoot regeneration from serially-subcultured hormone-autonomous sugarbeet (Beta vulgaris L.) callus. J. Sugar Beet Res. 28:67. (Abstract)

Shoot regeneration rapidly declines when hormone-autonomous sugarbeet callus is serially subcultured. We investigated effects of genotype, subculture interval, concentration and TIBA on regeneration from calli up to 18 wk Calli of three genotypes were initiated from leaf disks on B1 medium (MS + 1 mg/L BA) and subcultured to various media after 3 wk growth. When calli were subcultured every 3 wk on B1, genotypes differed in rate of decline in shoot regeneration. After 15 wk on B1, more than half of EL 45/2-108 calli were still regenerating, while regeneration by calli of REL-1 and FC 607-0-20 was approaching zero. Subculture interval did not effect subsequent shoot regeneration. Regeneration from calli maintained on B1 was increased after subculture to B3 medium (MS + 3 mg/L BA). The frequency of regenerating calli and the number of shoots per callus were both enhanced by doubling the BA concentration at each subculture or by maintenance on B1 + 1 mg/L TIBA. Calli of REL-1 were more responsive than calli of FC 607-0-20 to maintenance on TIBA. Increases in shoot regeneration were greater when concentrations of both BA and TIBA were higher in subsequent medium. Calli maintained in a non-regenerating state on hormone-free medium were induced to regenerate by transfer to B3. Manipulation of shoot regeneration with BA and TIBA appears to be compatible with a model involving auxin/cytokinin ratio.

Halloin, J. M. and D. L. Roberts. 1991. A parasitic storage rot of sugar beets caused by Aspergillus fumigatus. Plant Dis. (Accepted for publication February 1991)

The fungus, <u>Aspergillus fumigatus</u>, was observed on rotting sugar beets incubated at warm temperatures. Research at USDA, ARS, East Lansing, Michigan established that the fungus is a parasite of live beets stored at warm (>35°), but not at cool temperatures. Sugar beet lines resistant to root rots in the field caused by the fungus, <u>Rhizoctonia solani</u>, had some resistance to this storage rot. Sugar beets stored at 40°C and then moved to cooler temperatures were no longer resistant to the storage rot at cool temperatures. Storage rots of sugar beets have been thought to be a problem mostly of heated, dead beets. This research establishes that such rots can be a problem in live beets, and that any live beets that have been heated should be processed quickly.

Hart, S. E., J. W. Saunders, K. A. Renner, and D. Penner. 1991. <u>Initial field evaluations of sulfonylurea resistant</u> <u>sugarbeet</u>. Proc. North Centr. Weed Sci. Soc. Meet. (Abstract)

Field studies were conducted at Saginaw and Bay City, Michigan, to compare the yield, sugar content, and purity of sulfonylurea resistant and susceptible sugarbeet germplasm. Herbicide efficacy studies were also conducted at Saginaw to evaluate the response of sulfonylurea resistant sugarbeet to simulated carryover residues and postemergence (POST) applications of selected sulfonylurea herbicides. In the absence of herbicides there were no differences between resistant and susceptible sugarbeets for root yield, sugar content, and clear juice purity at both locations. Nicosulfuron applied Preplant incorporated (PPI) at 9 g ai ha⁻¹ had no effect on the growth of resistant or susceptible Mono Hy E-4 sugarbeets. Primisulfuron and chlorimuron applied PPI at 10 and g ai ha-1, respectively, caused over 95% visual injury 6 weeks after treatment to the susceptible E-4 sugarbeet but had no adverse effects on the growth of resistant sugarbeet. POST applications of primisulfuron at 40 and 80 g ai ha⁻¹ and thifensulfuron at 4 and 8 g ha 1 caused only slight visual injury (< 15%) to the resistant sugarbeet 4 weeks after treatment while primisulfuron applied at 160 g ai ha⁻¹ caused 21% visual injury to the resistant sugarbeet. However, the resistant sugarbeet showed no visual injury symptoms from these POST treatments 8 weeks after treatment. The susceptible E-4 sugarbeet was severely injured (95% or greater) by all POST applications of primisulfuron and thifensulfuron. sulfonylurea resistant sugarbeet grew normally at concentrations of primisulfuron and chlorimuron in the soil that killed the susceptible E-4 sugarbeet. The sulfonylurea resistant sugarbeet was tolerant to POST applications of primisulfuron at four times the field use rate and thifensulfuron at two times the field use rate. magnitude of resistance is high enough for potential use of primisulfuron and thifensulfuron for weed control in sulfonylurea resistant sugarbeet.

Saunders, J. W., W. P. Doley, G. Acquaah, and M. H. Yu. 1991. <u>Isoenzyme fingerprinting and in vitro shoot multiplication in Beta lomatogona Fisc. et Mey</u>. J. Sugar Beet Res. 28:86. (Abstract)

The apomixis existing within <u>Beta lomatogona</u> Fisc. et Mey. might be useful in development of true-breeding high performance hybrid sugarbeet cultivars if it can be transferred into <u>B. vulgaris</u> L. and harnessed in breeding programs. We studied isoenzyme fingerprinting and in vitro propagation as tools to identify apomictic and interspecific progeny and to clone individual genotypes, respectively. Variation among six accessions was seen with malate dehydrogenase (MDH), isocitrate dehydrogenase, shikimate

dehydrogenase, phosphoglucomutase, and phosphoglucoisomerase, but not with 6-phosphoglucose dehydrogenase. One accession had a unique MDH pattern. Some patterns were different from those found in sugarbeet. In vitro multiplication of shoots of three accessions was achieved, starting with floral stalk axillary buds and using 6-benzyladenine as the sole growth regulator. 3.0 mg/L was the optimum concentration for overall shoot enlargement and multiplication. This 10-fold higher than routinely found for sugarbeet. This research indicated that isoenzyme fingerprinting and in vitro shoot multiplication could be used in genetic studies with B. lomatogona and, presumably, with interspecific hybridization derivatives with sugarbeet.

Saunders, J. W., S. E. Hart, and D. Penner. 1991. Physiological and genetic basis of sulfonylurea herbicide resistance obtained from somatic cell selection. J. Sugar Beet Res. 28:23-30. (Abstract)

Publicly released clone CR1-B is a direct selection via somatic cell culture for resistance to the sulfonylurea CR1-B was found to be 300- to herbicide chlorsulfuron. 1000-fold more resistant to chlorsulfuron than source clone REL-1 in in vitro shoot culture tests. Greenhouse tests CR1-B resistant as well to the other sulfonylurea herbicides primisulfuron and thifensulfuron, but not to imidazolinone herbicides. Both CR1-B and REL-1 exhibited similar low (10%) rates of metabolism of primisulfuron. CR1-B had acetolactate synthase (ALS) activity at least 8-fold less sensitive to inhibition by chlorsulfuron than CR1-B is heterozygous for the resistance factor, which has been transmitted and expressed in a 1:1 fashion for 4 successive outcrosses in a stable manner. These results indicate that this sulfonylurea resistance is encoded by a dominant allele (designated Sur) that conditions an altered ALS enzyme, which is less sensitive to inhibition by the sulfonylurea herbicides.

Smucker, A. J. M. and J. C. Theurer. 1991. <u>Dynamics of fibrous root growth for selected sugarbeet germplasm</u>. J. Sugar Beet Res. 28:89. (Abstract)

Knowledge of the growth dynamics of fibrous root systems of sugarbeet, <u>Beta vulgaris</u> L., could be an important factor for enhancing production. Root activities of selected sugarbeet germplasms were quantified by the minirhizotron and micro-video camera techniques in field experiments in central Michigan. Root activities are expressed as the number of roots at the surface of minirhizotron tubes to a depth of 130 cm. Genotypes tended to show the greatest variability at approximately 55 days growth. Growth rates of the fibrous roots were greatest for the high yielding cultivar Mono-Hy-E4 and lowest for the high taproot to leaf weight ratio (TLWR) line EL-46 and the smooth root line 85700. The greatest

accumulation of fibrous roots on Mono-Hy-E4 moves down through the soil profile with the growing season. In the smooth root line, the greatest number of fibrous roots tended to stay in the top 50 cm of soil. Duration (growth vs. death) was similar over years for both Mono-Hy-E4 and the smooth root line.

Theurer, J. C. 1991. <u>Comparison of smooth taproot sugarbeet versus standard taproot cultivars at different plant densities</u>. J. Sugar Beet Res. 28:91. (Abstract)

Smooth root beets have the advantage of being harvested with less soil adhering to the roots, which is primarily because of the lack of the two grooves with numerous fiberous and branched roots typical of standard root type cultivars. question arises as to the ability of smooth root types to develop adequate fibrous root systems to maintain optimal plant growth under water stress that could occur with today's desired high plant densities. Field experiments were conducted in central Michigan over three years to compare smooth root types with commercial cultivars in 28 (standard), 22, 20, 18, and 14-inch row spacings. In all experiments, smooth root lines had typically the highest root yield, and the commercial varieties had significantly higher sugar percentage at all row spacings. Smooth root lines showed parallel response to that of the commercial cultivars and no adverse effects under high density planting.

Theurer, J. C., S. A. Owens, and F. W. Ewers. 1991. <u>Anatomy of a new sepaloid mutant flower in sugarbeet</u>. J. Sugar Beet Res. 28:23-30.

A mutant sugar beet plant with clusters of 12-20 flowers was discovered in progeny of a male sterile plant from the NC-7 collection of <u>Beta</u> crossed with inbred NB-1. Anatomical studies revealed that most flowers had 10-25 sepals instead of the normal five. Anthers were not produced in any of the flowers. Pistil development was highly variable, some flowers had no ovules, some possessed exposed or naked ovules, and a few that appeared normal. Even though plants were subjected to large amounts of pollen from several sugarbeet sources, no seed could be obtained, and inheritance of the trait could not be determined.

Theurer, J. C. and R. C. Zielke. 1991. <u>Field evaluation of SR87 smooth root sugarbeet hybrids</u>. J. Sugar Beet res. 28:105-113.

Four smooth root type (SR) experimental hybrid sugarbeets (Beta vulgaris L.) were compared in replicated field trails (1988, 1989) with standard root type commercial hybrids and smooth root inbred lines for root and sugar yield, clear juice purity, root smoothness score, and pounds of soil harvested per ton of beets. SR hybrids had root yield and

clear juice purity readings about equal to the commercial hybrids, but they were significantly lower in recoverable sugar per ton (29 lbs.) and sucrose percentage (1.7%). Two smooth root inbred lines (85700 and SR87) had significantly the best root smoothness scores and the lowest quantity of soil per ton of roots harvested of the 10 entries evaluated. Soil harvested with SR inbreds was 26% less than for SR hybrids, while the commercial cultivars averaged about 36% more soil harvested with the beets than for the SR hybrids. Results demonstrated that SR hybrids with high yield, good quality, and greatly reduced soil tare can be produced. However, a 1% to 2% increase in sucrose percentage must be attained in current SR lines to make SR commercial varieties a reality.

Yu, M. H., L. M. Pakish, and J. W. Saunders. 1991. <u>Association of a nematode resistance bearing addition chromosome with a recurring leaf intumescence somaclonal variation in sugar beet.</u> Genome 34: 477-485.

Intumescent leaf variants of sugar beet (Beta vulgaris L.) were obtained through callus culture of a monosomic addition that carried resistance to Heterodera schachtii Schm. frothy pockmarked appearance of the leaf surface was due to hyperplastic growth of the mesophyll and epidermal cells. The epidermis had many malformed stomata. Veins were underdeveloped, but protrusions beneath were pronounced. Intumescence occurred in 20.3% of the regenerated plants and it was heritable to F_1 and later progeny. Leaf intumescence is a new phenotype for <u>Beta</u>. About 73.5% of regenerants contained the donor somatic chromosome number, the remainder were doubled or mixoploids, with no chromosome losses apparent. The 38-chromosome intumescent plant represents a dual somaclonal variation, chromosome doubling and leaf intumescence. Progeny of the 19- and 38-chromosome intumescent plants intercrossed or pollinated by diploids or tetraploids had 9, 18, 19, 27, 28, 29, 36, 37, 38, or 39 chromosomes. All intumescent plants were aneuploids with the There were linkages for leaf intumescence monosome addition. ($\underline{\text{Li}}$), resistance to $\underline{\text{H}}$. $\underline{\text{schachtii}}$ ($\underline{\text{Hs}}$), and hypocotyl color (R^{Pro}) on the addition chromosome. The efficacy of $\underline{\text{Hs}}$ remained intact through the in vitro culture and succeeding crosses. The <u>Li</u>-bearing plants manifested depressed growth and markedly reduced seed set. Leaf intumescence was thought to be the alternative expression of galling potential of Beta procumbens Chr. Sm. germ plasm.

CHARACTERIZATION OF MONOGENIC SULFONYLUREA HERBICIDE RESISTANCE OBTAINED FROM SOMATIC CELL SELECTION

J. W. Saunders, S. E. Hart, D. Penner and K. A. Renner

Distinguishing Homozygotes from Heterozygotes. Sulfonvlurea herbicide resistant hybrid cultivars could be produced using a single resistant parent if that parent were the pollinator and were homozygous resistant. Because resistance is dominant, homozygotes must be identified and distinguished from heterozygotes for production of the homozygous pollinator. most reliable way to do this is by testcross, but this is also the most consumptive of calendar time. If dominance is complete, there are no alternatives. However, incomplete dominance may permit additional procedures to identify homozygotes that do not cost as much calendar time, as well as raising the possibility of homozygous hybrids with maximum resistance, derived from multiple resistant parents (albeit involving greater efforts to develop such a hybrid).

Previous work in our group had found qualitative evidence for incomplete dominance, based on a visual scoring of primisulfuron (CIBA-Geigy's Beacon[®]), damage using an S₁ population from heterozygous resistant clone CR1-B, followed by testcrossing to determine the genotypes. We have now found indirect quantitative evidence for the magnitude of incomplete dominance.

Two counterpart pairs of populations were generated: (1) susceptible vs. 100% heterozygous (L03 cms X S_1 plants of REL-1, the immediate source of CR1-B, vs. L03 cms X homozygous resistant S_1 plants of CR1-B); and (2) susceptible vs. 100% homozygous resistant (S_2 of REL-1 vs. S_1 plants from homozygous resistant S_1 plants of CR1-B). Both counterpart population pairs were evaluated against concentration gradients of three sulfonylurea herbicides: chlorimuron (DuPont's Classic), thifensulfuron (DuPont's Pinnacle), and primisulfuron, in both foliar sprays and reaction mixtures for the enzyme ALS (acetolactate synthase). The former would assess whole plant damage and the latter the sensitivity to enzyme inhibition by the herbicide.

For each herbicide, the 2 counterpart population pairs gave estimates of magnitudes of heterozygous and of homozygous resistance over susceptibility. Dividing the first respective magnitude into the second gives an indirect multiplicative factor for the advantage of homozygote over heterozygote, i.e., a measure of the incompleteness of dominance. This inference should be valid if significant genetic background effects are absent.

For whole plant damage, the fold magnitudes of heterozygous and of homozygous resistance over susceptibility were 57 and 144, 76 and 269, and 107 and 377 for chlorimuron, thifensulfuron, and primisulfuron, respectively. The homozygote advantage was thus

2.5, 3.5, and 3.5 fold for the respective herbicides. For the second parameter, ALS enzyme inhibition, the respective pairs of values were 21 and 157, 36 and 140, and 28 and 117 fold. The homozygote advantage was thus 7.5, 3.9, and 4.2 fold, respectively. Thus, there is a small advantage of homozygote over heterozygote. Considering that the individual plant level is more important than the population level in identification of resistant homozygotes for generating a true-breeding parental line, the enzyme assay is probably the most reliable.

Two other procedures are potentially available to distinguish homozygotes from heterozygotes at the whole plant level. These involve the in vitro exposure of either shoots or leaf discs to the herbicide. Both procedures have been used to distinguish resistant from susceptible plants, and both require less skill and equipment than the ALS enzyme inhibition test. However, we have been unable to distinguish homozygotes from heterozygotes by these tests in initial attempts, using clones previously identified by testcross. This failure might be ascribed to the low sensitivity of the in vitro methods, given the customarily high amount of experimental error experienced in tissue culture experiments. In other words, the homozygote advantage may be too small to be detected by the in vitro shoot or leaf disc herbicide test.

Agronomic Performance of Resistant and Susceptible Beets. initial comparison of counterpart sulfonylurea resistant and susceptible populations for agronomic traits was made using near equivalent populations derived from a cross of susceptible clone TR504 with heterozygous resistant clone CR1-B. F₁ progeny segregated 1:1 for resistance and susceptibility as measured by in vitro leaf disc test. After annual segregants were rogued out, resistant and susceptible plants were isolated as two respective groups and allowed to produce seed. As CR1-B is self-fertile, much of this was self seed. F2 seed was bulked There were at least twenty F1 plants in in each isolation. each category. Four rep, 2-row tests were conducted at 2 locations in 1991. There were four entries: Mono Hy E4 as a general reference standard, the susceptible F2 population, the $ilde{ t F}_2$ population from the heterozygous resistant $ilde{ t F}_1$ segregants (containing 25% F₂ susceptible segregants), and the preceding population treated with a sulfonylurea herbicide before thinning to eliminate susceptible segregants.

We can conclude from the test results in Table 1 that the presence of the resistance alleles caused no adverse response in agronomic performance. There was a significant increase in sugar per acre in the Bay City test when the resistant population was sprayed with primisulfuron. This should not be interpreted as due to extra weed control because all plots were kept weed-free throughout the test.

Field Evaluations of Sulfonylurea Resistant Sugarbeet. Herbicide efficacy studies were conducted at the Bean and Beet research farm at Saginaw, to evaluate the response of resistant F₂ beets from the cross TR504 X CR1-B to simulated carry-over residues as well as to postemergence (POST) applications of several sulfonylurea herbicides. Primisulfuron and chlorimuron applied pre-plant incorporated at 10 and 3 g/ha of active ingredient, respectively, (to simulate a 25% carry-over) caused over 95% visual injury 6 weeks after treatment to the susceptible Mono Hy E4 beet, but had no adverse effects on the growth of the resistant beets. POST applications of primisulfuron at 40 and 80 g ai ha⁻¹ and thifensulfuron at 4 and 8 g ha⁻¹ caused only slight visual injury (< 15%) to the resistant sugarbeet 4 weeks after treatment, while primisulfuron applied at 160 g ai ha caused 21% visual injury to the resistant sugarbeet. However, the resistant sugarbeet showed no visual injury symptoms from these POST treatments 8 weeks after treatment. The susceptible E-4 sugarbeet was severely injured (95% or greater) by all POST applications of primisulfuron and thifensulfuron. The sulfonylurea resistant sugarbeet grew normally at concentrations of primisulfuron and chlorimuron in the soil that killed the susceptible E-4 sugarbeet. sulfonylurea resistant sugarbeet was tolerant to POST applications of primisulfuron at 4 times the field use rate and thifensulfuron at 2 times the field use rate. The magnitude of resistance is high enough for potential use of primisulfuron and thifensulfuron for weed control in sulfonylurea resistant sugarbeet.

Agronomic Performance of Sulfonylurea Resistant and Susceptible Sugarbeet Lines in the Absence of Herbicides.

Location	Suç	Sugarbeet line	Yield	Sugar	C.J.P. ¹
			(kg/ha)	(%)	(%)
Saginaw	Susceptible	Mono Hy E4	40200	18.5	95
		1 K504 X CK1-B progency	35600	17.0	93
	Resistant	Non-Treated	33400	16.9	94
		10 g ai ha ⁻¹ primisulfuron ²	35000	16.5	93
	LSD (0.05)		3800	6.0	2
Bay City	Susceptible	Mono Hy E4	21500	15.2	95
(Nematode Infested Site)		TR504 X CR1-B progeny	11500	14.0	93
	Resistant	Non-Treated	12700	14.3	94
		10 g ai ha ⁻¹	14600	13.9	94
	LSD (0.05)		2600	0.4	8

¹ C.J.P. = Clear Juice Purity

 2 Plots sprayed with 10 g ai ha $^{-1}$ of primisulfuron prior to thinning to eliminate susceptible segregates.

ATTEMPTING TO OBTAIN IMIDAZOLINONE HERBICIDE RESISTANCE

J. W. Saunders, S. E. Hart, and D. Penner

In Michigan, most sugarbeets follow dry beans in the rotation. With the withdrawal of Amiben from the list of available herbicides, growers have started using American Cyanamide's Pursuit. Imazethapyr, an imidazolinone herbicide, is the active ingredient of Pursuit. Carry-over of Pursuit from dry beans into sugarbeet crops has caused damage in commercial fields, and Pursuit can be considered a more significant problem for sugarbeets in Michigan than the sulfonylurea herbicides for which we have found resistance. Both the imidazolinones and the sulfonylureas inhibit aceto-lactate synthetase (ALS).

Nearly 100 survivors have been recovered from plating out unmutagenized REL-1 cell clusters onto lethal doses of imazethapyr, the active ingredient in Pursuit. However, none began as clean callus colonies like the sulfonylurea resistant colony obtained 5 years ago. These recent survivors quickly turned green and regenerated shoots almost immediately. After in vitro shoot multiplication, shoots were challenged in vitro with normally lethal concentrations of imazethapyr. All died.

Our tentative conclusion is that these survivors relied somehow on a partly differentiated structure to survive herbicide toxicity. From leaf disc callusing to liquid suspension culture to cluster plate-out, all media contain the concentration of benzyladenine optimal for shoot regeneration. Perhaps the suspension culture is not homogeneously undifferentiated. This suggests that modifying the media to retard shoot regeneration might reduce or eliminate this kind of response. The risk with that approach is that recovery of shoots, and thus whole plants, from surviving callus might become more difficult. Another thought is that if the escapes are derived from the coarsest size fraction of the suspension, then use of a finer sieve might prevent the problem.

One genetic consideration must be dealt with. If there is a single active ALS gene in sugarbeet, obtaining a resistance to the imidazolinone herbicides that is not cross-resistant to the sulfonylureas, would make it highly difficult to sexually combine the new imidazolinone resistance with the existing sulfonylurea resistance in homozygous condition, because they would be on opposing alleles. One solution to this is to start with a homozygous sulfonylurea resistant genotype that is tissue culture friendly. Then, if imidazolinone resistance is obtained, it most likely will be obtained by a second "hit" on the ALS gene, and it would be easy to then produce doubly-resistant homozygotes for use as a pollinator for hybrids, assuming the second mutation did not undo the first.

EVALUATION OF SUGARBEET SMOOTH ROOT GERMPLASM - 1991

J. C. Theurer

Evaluation of SR87 and SR80 Experimental Hybrids. SR87 is a high yield smooth root type sugarbeet breeding line that was released to the industry in 1990. SR80 is a line that showed less smoothness of root, but significantly higher sucrose content than SR87 in preliminary field evaluation tests for three years. Seed of SR80 and experimental hybrids, with this line as a pollinator, were produced in Oregon in 1990 in preparation of a field test to evaluate the combining ability of SR80 in preparation for possible release of this line to the sugarbeet industry.

An experiment was conducted in 1991 to compare the agronomic performance of SR87 and SR80 with two commercial cultivars, MHI E4 and ACH 185, and to observe the combining ability of the SR lines when they were each crossed to five CMS lines. the CMS lines were used in common in crosses to both SR87 and The fourteen entries were planted in two 28" row plots, 30 feet in length in a random block design of six replications. Individual beets were thinned to a spacing of 8-12 inches within the row. All beets in a plot were harvested and weighed for root weight and a 15 beet sample was selected for laboratory analysis to determine sucrose percentage and clear juice These analyses were performed in the Michigan Sugar Company Research Lab at Carrollton using standard methods. subjective smoothness of root score on a scale of 1 (very smooth) to 4 (grooved/rough) was given to each plot by observing each beet as it fell from the grab rolls into the weighing basket on the harvester. Data were analyzed using MSTAT statistical programs.

Results

Sugar yield, root yield, sucrose percentage, clear juice percentage and smoothness of root scores are given in Table 1. SR87 was equal to the commercial varieties in recoverable sugar per acre (RWSA) and SR80 was significantly lower. experimental hybrids tended to exceed MHI E4 and ACH 185 in RWSA with 576CMS x SR80 and H23CMS x SR87 significantly out yielding the commercials. The commercial varieties were better than the SR lines or their hybrids in recoverable sugar per ton (RWST). The RWST for SR80 was significantly higher than for SR87. of the hybrids except one produced more tons of beets per acre than the commercials. They averaged 4.8 tons more root weight. The root yield of the SR lines was equal to that of the checks. HMI E4 and ACH 185 significantly exceeded all of the SR and experimental hybrids in sucrose percentage. SR87 had the lowest sucrose percentage of the fourteen entries with a reading of SR80 was significantly higher in sucrose than SR87 (almost 1%) but was 0.9% lower than MHI E4 and 2.0% lower than ACH 185. Marked differences were noted in the effect of the CMS

parentage of the experimental hybrids for sucrose percentage and RWST. The 576CMS crosses had the highest values. In general the SR inbreds and hybrids were similar to the commercial varieties in their clear juice purity. SR87 had the lowest smooth root score. SR80 also was significantly better in root score than the commercial varieties and most of the experimental SR hybrids.

AGRONOMIC EVALUATION OF SMOOTH ROOT RHIZOCTONIA ROOT ROT NURSERY SELECTIONS

J. C. Theurer

Polycross progenies of individual Rhizoctonia tolerant beets selected from smooth root breeding lines grown in the 1989 disease nursery were planted in a replicated field experiment in 1991 to evaluate their agronomic performance. The field test consisted of 32 SR selections and two check varieties, MHI E4 and ACH 185. Individual field plots consisted of two 28" rows 30 feet in length in a randomized block with 3 replications. All beets in the plot were weighed for root yield and a sample of 15 roots was taken for sucrose percentage and purity determinations. At harvest, a score for smoothness was given for each plot by observing the beets as they fell from the harvester grab rolls into the weighing basket.

Results

Most SR progenies were equal to the checks in RWSA, but all SR progenies were significantly lower in RWST (Table 2). The SR entries ranged from 22.7 to 29.5 tons per acre compared to 22.3 tons averaged by the checks. The SR progenies averaged 4 tons more per acre with the highest yielding progeny exceeding the average of the commercials by 7 tons. Thus the SR material has outstanding root yield capability. Sucrose percentage of the SR progenies ranged from 1.3% to 3.0 less than the checks. Eleven of the 32 SR progenies had equal CJP percentage with the checks, but 21 were significantly lower in purity. A wide range was noted in the smooth root scores of the RS material. Twenty one of the progenies had significantly smoother roots than the checks. The best performing progenies will be selected, crossed with high sugar lines to increase their sucrose content, and then will be reselected for disease resistance.

Table 1. RWSA, RWST, tons/acre, sucrose percentage, clear juice purity percentage and root smoothness score for SR87, SR80, 10 experimental SR hybrids and two commercial varieties.

B&B Farm, Swan Creek, MI. 1991.

Variety Name	RWSA	RWST	T/A
1 MHI E4	5098 EF*	254.2 B	20.07 DEF
2 ACH185	5367 CDEF	271.8 A	19.76 ED
$3 \text{ H23CMS} \times \text{SR80}$	5653 ABCD	230.8 EF	24.49 B
4 657CMS x SR80	5700 ABCD	230.3 EF	24.78 AB
5 576CMS x SR80	6106 A	245.5 C	24.90 AB
6 6926/EL48CMS \times SR80	5597 ABCDE	223.4 FG	25.07 AB
7 BMC-CMS x SR80	5157 DEF	232.4 DE	22.22 CD
8 H23CMS x SR87	5915 AB	219.6 G	26.98 A
9 EL36CMS \times SR87	5635 ABCDE	220.2 G	25.60 AB
10 576CMS x SR87	5675 ABCD	239.6 CD	23.71 BC
11 657CMS x SR87	5483 BCDE	223.2 FG	24.58 B
12 FC607CMS x SR87	5726 ABC	229.2 EF	24.98 AB
13 SR87	4832 FG	220.6 G	21.88 CDE
14 SR80	4521 G	236.5 DE	19.14 F
Mean	5462	234.1	23.44
lsd (0.05)	545	8.5	2.25
CV	8.66	3.13	8.33

			Root
Variety Name	Sucr%	CJP %	Sm Score
1 MHI E4	17.52 B	94.19 ABC	3.25 A
2 ACH185	18.65 A	94.22 ABC	3.17 AB
$3 \text{ H23CMS} \times \text{SR80}$	16.18 EFG	93.71 ABCD	2.67 CDE
$4 657 \text{CMS} \times \text{SR}80$	16.22 EF	93.49 BCD	2.75 ABC
5 576CMS x SR80	16.74 C	94.87 A	2.92 ABC
6 6926/EL48CMS x SR80	15.85 FGH	93.24 BCD	2.83 BCD
7 BMC-CMS x SR80	16.30 DE	93.65 BCD	3.17 AB
8 H23CMS x SR87	15.72 HI	92.89 D	2.17 F
9 EL36CMS x SR87	15.68 HI	93.14 CD	2.42 EF
10 576CMS x SR87	16.59 CD	94.18 ABC	3.00 ABC
11 657CMS x SR87	15.84 GH	93.22 BCD	2.50 DEF
12 FC607CMS x SR87	16.22 EF	93.29 BCD	2.50 DEF
13 SR87	15.40 I	94.16 ABC	1.75 G
14 SR80	16.32 DE	94.42 AB	2.25 F
Mean	16.37	93.76	2.67
lsd (0.05)	0.37	1.20	0.41
CV	1.94	1.11	13.44

^{*} Duncan's Multiple Range test - values with same letter suffix are not significantly different at the 0.05 level.

Table 2. Sugar yield, root yield, sucrose percentage, CJP percentage and root smoothness score for 32 SR Rhizoctonia tolerant polycross progenies. B&B Farm, Swan Creek, MI. 1991.

Variety	Description	RWSA	RWST	T/A	SUCR%	CJP %	Root
MHE4	MHE4	5391	247.0	21.86	17.12	94.01	3.50
ACH185	ACH185	5969	261.8	22.81	18.15	93.84	3.17
WC90729	SR87	5412	205.4	26.39	15.01	92.18	1.67
WC90016	SR80	5443	220.7	24.72	15.67	93.25	2.50
90H22	UR88H6-1 (8549-58)	5531	203.6	27.20	15.19	91.23	3.00
90H24	UR88H11-17 (85700)	5301	202.8	26.13	14.90	91.96	3.00
90H28	UR88H13-5 (85700)	5207	214.0	24.35	15.45	92.55	2.33
90H30	UR88H13-21 (85700)	5319	191.0	27.86	14.72	90.07	2.50
90H32	UR88H45-2 (8549-10)	5548	216.1	25.68	15.62	92.48	2.67
90H33	UR88H49-4 (8549-18)	4502	198.0	22.67	14.87	91.06	2.67
90H37	UR88H56-2 (8549-38)	6000	207.4	28.99	15.24	91.87	2.00
90H38	UR88H56-6 (8549-38)	5398	212.8	25.43	15.48	92.24	2.83
90H39	UR88H56-16 (8549-38)	5293	212.9	24.88	15.40	92.48	2.83
90H40	UR88H57-3 (8549-4)	5735	208.6	27.52	15.07	92.63	2.67
90H41	UR88H60 - 1 (8549-51)	4947	201.0	24.62	14.98	91.35	2.50
90H43	UR88H64-1 8549-59)	5774	209.8	27.54	15.46	91.70	2.50
90H44	UR88B1-2 (86B19-3)	6106	214.2	28.52	15.57	92.23	3.00
90H45	UR88B1-18 (86B19-66)	5332	206.0	25.90	15.03	92.23	3.00
90H46	UR86B19-10 (84B7-8)	5437	225.3	24.17	16.32	92.24	2.83
90H47	UR86B19-16 (84B7-34)	5491	210.7	26.05	15.47	91.83	2.67
90H50	88H11-12 (85700 H/S)	5405	205.4	26.30	15.11	91.86	1.83
90H52	88H11-16 (85700 H/S)	5072	208.5	24.34	15.14	92.39	1.83
90H57	88H13-3 (85700 H/S)	5336	209.2	25.53	15.23	92.26	2.17
90H58	88H13-4 (85700 H/S)	5379	212.1	25.37	15.38	92.41	1.83
90H59	88H13-5 (85700 H/S)	5916	200.8	29.50	14.76	91.93	2.00
90H65	88H8-6 (8549-27 H/S)	5658	207.8	27.27	15.04	92.57	1.50
90H69	88H17-1 (85115-3 H/S	5490	209.4	26.20	14.82	93.67	2.17
90H70	88H26-2 (85131-16H/S	5671	194.9	29.05	14.60	91.23	1.83
90H74	88H49-5 (8549-18 H/S	4646	202.7	22.92	14.80	92.23	1.83
90H75	88H49-8 (8549-18 H/S	5314	203.8	26.01	14.86	92.31	2.17
90H76	88H56-1 (8549-38 H/S	5798	202.1	28.71	14.82	92.06	1.50
90H78	88H56-3 (8549-38 H/S	5635	208.7	26.95	15.26	92.06	2.00
90H79	88H56-10 (8549-38H/S	5055	209.3	24.19	15.13	92.58	1.67
90H80	88H60-1 (8549-51 H/S	5574	218.6	25.51	15.32	93.99	1.67
Mean		5443	210.7	25.92	15.32	92.27	2.35
lsd (0.05)		731	13.4	3.34	0.59	1.51	0.55
CV		8.25		7.91	2.35	1.01	

EVALUATION OF SMOOTH ROOT AND OTHER EXPERIMENTAL HYBRIDS IN 22" VERSUS 28" ROW SPACINGS

J. C. Theurer

Eight varieties were seeded in a field test to compare agronomic performance of experimental hybrids under 2 plant population densities. The entries included MHI E4 and ACH 185 commercial hybrids, two SR87, two SR80, one 84B9-24-00, and one 85300-115 experimental hybrids. The entries were planted May 31, 1991 in a randomized design of 4 replications with the restriction of having the row widths in strips across the field so that all plots could be machine harvested. Two row widths, 22" and 28", with plants spaced 8-10 inches apart within the row were used to give plant densities of approximately 28,000 and 22,000 plants, respectively. The plots were planted between the wheel tracks of a tractor with wheels spaced 84" apart. Individual plots consisted of 3 rows for the 28" and 4 rows for the 22" row widths. Plot length was 25 feet. At harvest on October 17, all beets from the center row of each plot of the 28" spacing and the center 2 rows of the 22" spacing were machine harvested and weighed. The weights for the two plant densities were adjusted for the size of the harvested plot area in calculating the tons per acre yield of roots. A bag of 15 to 20 beets was randomly selected from each plot for laboratory analyses of sucrose percentage and clear juice purity. Beets from each plot were observed as they fell off the grab rolls of the harvester into the weighing bucket and a root smoothness score from 1= very smooth to 5= grooved and rough shaped roots, was given for each The analyses of sugar and purity were performed by Michigan Sugar Company personnel in their research laboratory at Carrollton, MI.

Results

Yield, sucrose percentage, purity, and smooth root scores are listed in Table 3. There were no significant differences between the two plant densities for any of the variables Also, there was no interaction among the varieties under the 2 plant densities. These results differ from previous years studies which had shown a tendency for the narrower row planting to be slightly higher in root yield. This test was planted quite late due to the unavailability of a needed drill. It may be that the shortness of the growing season was responsible for the lack of differences between the 2 plant densities. There was a significant difference between the hybrids for each variable except for the CJP percentage. 185 was better than most experimental varieties for RWSA and RWST and sugar percentage. Of the experimental hybrids, SR80 and 85300-115 had higher RWST and sucrose percentage, while SR87 and the 84B9-24 hybrids had the greater root yield and RWSA. Sucrose percentage for SR 80 was 0.9% lower than MHI E4, and 1.3% lower than ACH 185. SR87 had 1.1% lower sucrose than MHI E4 and 2.4% less than ACH 185. SR87 and SR80 with the exception of the 576CMS x SR80 hybrid were significantly lower than the commercial varieties, in smooth root score.

Table 3. RWSA, RWST, sucrose percentage, clear juice purity, and root smoothness score for standard and smooth root experimental hybrids grown in two plant densities. B&B Farm, Swan Creek, MI. 1991.

Variety Description	RWSA		RWST			T/A	
	22"	28"	22"	28"	22"	28"	
MHI E4 ACH185 H23CMS x SR80 H23CMS x SR87 576CMS x SR80 576CMS x SR80 (6926xEL48) x 84B9-24 EL36xEL45) x85300-115	5221 6246 4594 5199 4599 5264 4701 5237	4946 5512 5197 5171 4773 5428 4241 5628	254.3 276.5 243.0 238.0 248.0 240.4 246.9 243.1	252.1 272.0 247.9 229.1 245.7 239.3 245.3 242.2	20.51 22.59 18.97 21.83 18.55 21.88 19.02 21.68	19.55 20.27 20.99 22.55 19.45 22.73 17.33 23.25	
Overall Mean lsd (0.05) Row Spacing lsd (0.05) Variety lsd (0.05) Var. x Row (CV	Sp.	5122 NS 675 NS 3.10		47.7 NS 9.9 NS 3.97		0.70 NS 2.68 NS .89	

	Sucr%		CJP %		Root Sm Score	
	22"	28"	22"	28"	22"	28"
MHI E4 ACH185	17.80 19.03	17.53 18.89	93.46 93.99	93.79	3.25	3.25
H23CMS x SR80 H23CMS x SR87	16.94	17.13	93.77	93.61 94.15	2.88 2.50	3.13 2.63
576CMS x SR80	16.67 17.17	16.21 16.94	93.64 94.07	93.28 94.38	2.13 3.00	2.25 3.00
576CMS x SR87 (6926xEL48) x 84B9-24	16.68 16.92	16.62 17.09	94.05 94.70	94.08 93.80	2.25 3.13	2.75 3.25
EL36xEl45)x85300-115	17.09	16.92 	93.38	93.69	3.13	3.13
Overall Mean lsd (0.05) Row Spacing lsd (0.05) Variety	_	7.23 NS	9	3.86 NS		.85 NS
lsd (0.05) Var. x Row S	Sp.	0.35 NS 2.06		NS NS 1.48		.35 NS .04

COMPARATIVE AGRONOMIC PERFORMANCE OF SOIL FREE AND SMOOTH ROOT TYPES WITH STANDARD ROOT TYPE COMMERCIAL CULTIVARS

J. C. Theurer

An experiment was planted May 14, 1991, in sandy loam soil at the Botany Research Farm in East Lansing, to compare the agronomic performance of soil-free and smooth root varieties with commercial hybrids. This field trial was similar to a 1990 experiment conducted at the B & B Farm near Saginaw, MI. However, the 1990 experiment was on land of heavy clay soil and did not provide opportunity to distinguish variety performance for the quantity of soil that was harvested with roots.

There were 6 entries in the field trial: 3 commercial hybrids, MHI E4, ACH 185, and ACH 176; Univers, a soil-free European commercial hybrid developed by Van der Have Seed Company in the Netherlands; a globe shaped beet, A90-MM, developed by Dr. M. Meskin at the Wageningen, Netherlands, breeding station; and the smooth root line, SR87, developed at East Lansing. experiment was a randomized block of 4 replications. Individual field plots consisted of two 28" rows 30 feet in length, with beets spaced 8"-12" within the row. The plots were harvested October 22, 1991, using a single row miniharvester. All beets were placed in bags with care to avoid knocking off soil that was adhering to each root. Beets were subsequently cleaned, and a weight was taken of all the roots harvested in each plot and also the weight of the soil removed from the roots. A sample of soil from each plot was dried in an 85° F oven to determine the dry weight of the soil harvested with the beet roots. A 12-beet sample from each plot was processed and evaluated at the Michigan Sugar Company Research Laboratory at Carrollton, MI., for sucrose percentage and clear juice purity.

Results

The long growing season and the relatively high fertility under which the beets were grown resulted in extremely large beets, both for tops and roots. Significant differences were observed between the 6 entries for all variables except CJP percentage (Table 4). The commercial hybrid ACH 185 had the highest RWSA, RWST, and sucrose percentage. SR87 significantly outyielded all other entries in tons per acre root yield. ACH176 and MHI E4 also were significantly higher than the smooth root types for RWST and sucrose percentage. The quantity of soil harvested RWST and sucrose percentage. with the commercial cultivars was 2- to 4-fold of that harvested with the smooth root type beets. The globe shaped root variety, A90MM, had only 67 pounds of soil harvested per ton of beets. Roots of this variety are shaped like a huge table beet and they grow well out of the ground. This no doubt accounted for the low quantity of soil adhering to the beet surface. Results of

this experiment were different from those observed last year. In particular, Univers had the highest RWSA, and Univers and 90 MM were highest in tonnage. SR87 was better than 90 MM globe beet for sucrose percentage and clear juice purity in 1990, but not in 1991 field tests.

Table 4. Sugar yield, root yield, sucrose percentage, CJP percentage and pounds of soil harvested with the taproots. Botany Farm, East Lansing, 1991.

		IM DUDE I	Jansing, 19	91.
Variety		RWSA	RWST	T/A
MHE4 ACH185 ACH176 UNIVERS A90-MM5 WC87021	Commercial Hybrid High Sugar Hybrid High Sugar Hybrid Low soil tare hybrid Globe Shape Triploid SR87 Smooth Root	7561 b 8624 a 7938 ak 6327 c 6549 c 7672 b	217 b 251 a 226 b 191 c 183 c 180 c	34.89 b 34.42 b 35.13 b 33.06 b 36.04 b 42.57 a
Mean lsd (0.0 CV	05)	7444 704 6.28	208 20 6.30	36.02 4.04 7.44
Variety		Sucr%	CJP% 	Soil lb/T
MHE4 ACH185 ACH176 UNIVERS A90-MM5 WC87021	Commercial Hybrid High Sugar Hybrid High Sugar Hybrid Low soil tare hybrid Globe shape triploid SR87 Smooth Root	16.68 b 17.89 a 16.42 b 14.58 c 13.88 c 13.87 c	90.28 a 91.55 a 92.08 a 90.90 a 92.03 a 90.31 a	287.5 a 268.2ab 246.7 b 140.5 c 67.0 d 105.7 c
Mean lsd (0.0 CV 44.2	5)	15.55 0.73 3.10	91.11 NS 2.74	185.9 38.6 13.79

1991 EXPERIMENTS OF GENOTYPE X NITROGEN RESPONSE

J. C. Theurer and J. W. Saunders

Two field experiments were conducted in 1991 to observe variation for nitrogen use response. These 2 experiments were a repeat of 1990 field trials. Experiment 913 was set up to evaluate the nitrogen use response of high sugar breeding lines. Experiment 914 was an evaluation of the nitrogen use response for high sugar type commercial and experimental varieties developed with high sucrose germplasm from diverse sources.

Experiment 913 - High Sugar Breeding Line Evaluation For Nitrogen Use Response. Seven diverse high sugar lines and 3 commercial varieties, MHI E4, ACH 185, and ACH 176, were planted in a 3-replication randomized block experiment on May 15, 1991. Individual plots were 2 rows 28" apart and 30 feet in length. Prior to planting, composite soil samples at 1', 2', and 3' depths were taken to the soils laboratory at Michigan State University and analyzed for plant nutrients. Phosphorus and potassium fertilizer as recommended by soil test was applied to the soil preplant, but no nitrogen fertilizer was applied. After thinning, on July 15, four fertilizer treatments (N_0 =0, N_1 =60, N_2 =120, and N_3 =180 pounds available N per acre) were applied to the experiment by hand side dressing of urea along one side of each plant row. Each nitrogen treatment was applied across a block within each replication. Four buffer rows of MHI E4 were used to border the fertilizer trials from other adjacent experiments. The experiment was harvested by machine on October 9, and a 15-beet sample from each plot was taken for laboratory analyses of sucrose percent, clear juice purity, and residual amino nitrogen in the root.

Results

Plants in the $\rm N_0$ treatment showed yellowing of leaves in August, and at harvest the canopy did not completely cover the soil surface between rows. The 3 other treatments also showed lighter green color of the foliage than observed in the 1990 field fertility trial with the same entries. This was probably a reflection of inadequate N in the early spring and the late date of application of the differential fertilizer treatments.

The analyses of variance indicated that there were significant differences between N levels and between varieties for all of the variables measured (Table 1-1). The root yield (tons/acre) and sugar yield per acre (RWSA) was low for N $_0$ compared to the other fertilizer treatments. However, there was no increase in yield above the N $_1$ level. Sucrose percentage, RWST, and purity decreased and the quantity of amino N in the root at harvest increased as nitrogen increments were increased. The 3 commercial hybrids had the highest RWSA and tons per acre as

would be expected. The 550 high sugar line was by far the lowest yielding variety. The L19 selected line had significantly the highest sucrose percentage and RWST. Lines 550, C51, and 4n Polish ranked second for high sucrose percentage and RWST, while A3952 was lowest. C40, A3952, and F1010 had significantly low CJP percentage values. Lines 550, C51 and L19 were significantly higher than the other entries in ppm amino N, while 4n Polish and the commercial hybrids were lowest among the entries for this variable.

Nitrogen x variety interactions were highly significant for tons per acre, sugar percentage, CJP percentage and amino N (Table 1-2). In general, tons per acre yield increased as nitrogen increments increased. However, for 4 of the entries (ACH 185, C51, L19, and 550), significant differences in yield were not observed among the N treatments. Four of the entries (ACH 176, A3952, F1010, and C40) showed a significant difference between N_0 and the other N treatments for root yield. MHI E4 had significantly the highest root yield at N_3 . treatment had significantly higher sucrose for L19, F1010, MHI E4, and ACH 185 than at higher N levels. Three entries, 4n Polish, A3952, and C51 gave equal sucrose percentage for the ${\rm N}_{\,0}$ and ${\rm N}_{\,1}$ levels, but showed a reduction in sucrose percentage at higher N Levels. C40 showed no significant reduction in sugar percentage up to N2.

Although there was a general trend for CJP percentages to decrease as N levels increased, differences were nonsignificant across N levels for ACH 185, L19, F1010, or 550. The 4n Polish line had significantly higher CJP percentage at N $_0$ level, but the purity was similar for the other N levels. The other entries, C40, C51, and A3925, showed significantly lower purity when N level reached 180# per acre.

Three different groupings were observed for the interaction of varieties and N levels for m.e.q. amino N/100 grams sugar. ACH 185, L19, C51, and 550 at N $_3$ were significantly higher in amino N than at N $_2$ or other lower N Levels. The second group consisting of MHI E4, ACH 176, and 4n Polish showed a step wise pattern of significant differences, wherein N $_3$ was equal to N $_2$ but higher than N $_1$, and N $_2$ was equal with N $_1$ but higher than N $_0$. In the third group (C40, A3952 and F1010), N $_2$ and N $_3$ were equal and significantly higher than N $_0$ or N $_1$.

Experiment 914 - Evaluation of High Sugar Hybrid Varieties for Nitrogen Use Response. Eleven high sugar commercial and experimental hybrids were planted May 15, 1991, in 3 replications of a randomized block field test. Prior to planting, a soil sample was taken and analyzed for nutrients as cited above for Experiment 913. Experiment 914 was grown on land adjacent to Experiment 903 and subsequently fertilized in the same manner and at the same rates as cited above. Harvest

was made on October 17, and a 15-beet sample was taken for laboratory analyses similar to experiment 913 listed above.

Results

Significant differences were noted between varieties summed across N levels, and for nitrogen levels summed across varieties for root yield, sugar yield, sucrose percentage, clear juice purity, and ppm amino N in the roots at harvest (Table 2-1). The N_0 level produced lower RWSA than the other N levels. Sucrose percentage and RWST decreased and amino N increased with each added increment of N fertilizer. Tons per acre significantly increased and CJP percentage decreased from No. to N_1 and from N_1 to N_2 . KW2398 and HMI 5135 had the highest and KW1119, and MHI E4 had the lowest RWSA. ACH87-353 and Beta 5315 were best for sucrose percentage and RWST, while WC87212, MHI E4 and Monohikari had the lowest values for these 2 variables. The experimental hybrid WC87212 produced significantly the greatest root yield followed by HMI 5135. 85-323 and KW1119 had the lowest tons per acre. Monohikari was highest in CJP percentage. ACH 85-153, Monohikari and ACH 87-353 were the varieties with the lowest amino N in the root at harvest.

The varieties had similar responses with increased levels of nitrogen for sucrose percentage, RWST, CJP percentage, and amino N (Table 2-2). However, there were significant variety x nitrogen interactions for tons per acre and RWSA. Monohikari and KW2398 showed no increase in RWST with increases in N. WC87212 and ACH 85-323 were only significantly different in RWSA between the zero and higher N levels. ACH 185 had significantly higher RWST at the 120# N rate, and ACH 85-153 at the 60# N rate than at other N levels. While most varieties showed increased tons per acre root yield with increasing increments of N, Beta 5315 showed no difference among the 4 fertility levels. ACH 185 gave significantly the highest root yield at the 160# N rate, and ACH 85-153 was highest at the 60# rate.

Table 1-1. Means by nitrogen level and variety for sugar yield, root yield, sucrose percentage, clear juice purity percentage, and meq/l amino N. B&B Farm. 1991.

N Level		RWSA	RWST	T/A	Sucr%	CJP% 	Amino N meq/l
0	Nitrogen	3984	276.0	14.70	18.83	94.43	9.60
60	Nitrogen	4492	257.2	17.52	18.01	93.40	11.57
120	Nitrogen	4357	242.7	18.09	17.15	93.14	15.41
180	Nitrogen	4350	236.7	18.56	17.09	92.24	17.83
Mean	5)	4296	253.2	17.22	17.77	93.30	13.60
lsd (0.09		253	5.6	1.08	0.24	0.62	1.91

Variety Description	RWSA	RWST	T/A	Sucr%	CJP%	Amino N meq/l
MHE4	4992	243.8	20.62	16.97	93.84	12.18
ACH 185	5148	258.3	20.05	17.99	93.60	12.16
ACH 176	5542	252.7	22.14	17.59	93.70	12.10
C40 High Sugar	3973	243.5	16.38	17.61	92.07	12.78
C51 High Sugar	3774	256.9	14.78	18.03	93.23	16.41
A3952 High Sugar	4489	225.7	20.04	16.34	92.23	15.95
L19 Sel. High Sugar	3952	278.4	14.25	19.33	93.53	14.78
F1010 High Sugar	4364	249.7	17.65	17.66	93.01	12.54
EL550 High Sugar	1812	260.4	7.37	18.18	93.50	17.08
4N Polish High Sugar	4909	262.3	18.88	17.98	94.34	10.06
			·			
Mean	4296	253.2	17.22	17.77	93.30	13.60
lsd (0.05)	400	8.9	1.72	0.38	0.98	1.56

Table 1-2. RWSA, RWST, sucrose percentage, CJP percentage, and meq/l amino nitrogen for high sugar lines and 3 commercial varieties at 4 applied nitrogen levels. B&B Farm, Swan Creek, MI. 1991.

at 4 applied nitrogen levels. B&B Farm, Swan Cr							MI. 1
Variety Description	RWSA	RWST	T/A	SURC%	CJP %	Amino N meq	Level N
MHE4	5172	262.7	19.69	17.94	94.57	7.52	0
	5039	253.1	19.99	17.30	94.63	10.64	60
	4477	237.8	18.85	16.64	93.69	13.97	120
	5281	221.7	23.96	15.99	92.46	16.61	180
ACH 185	4873	278.6	17.54	19.05	94.30	10.58	0
	5476	267.0	20.60	18.48	93.82	9.09	60
	5309	251.8	21.13	17.62	93.48	11.74	120
	4934	235.7	20.92	16.82	92.79	17.23	180
ACH 176	4533	275.9	16.46	18.78	94.54	8.30	0
	6441	259.8	24.89	17.85	94.29	10.41	60
	5519	242.8	22.76	17.03	93.50	13.92	120
	5674	232.2	24.44	16.70	92.46	15.77	180
C40 High Sugar	3763	262.8	14.30	18.29	93.61	8.68	0
	3688	245.5	15.03	17.64	92.34	11.08	60
	4504	244.2	18.38	17.60	92.27	16.22	120
	3937	221.4	17.81	16.90	90.05	15.13	180
C51 High Sugar	3672	285.1	12.93	19.41	94.44	12.48	0
	3947	264.9	14.90	18.34	93.85	14.16	60
	3671	233.1	15.68	16.76	92.48	17.43	120
	3805	244.3	15.62	17.62	92.15	21.59	180
A3952 High Sugar	4430	256.9	17.28	17.70	94.19	9.92	0
	4933	235.4	21.01	16.80	92.78	14.58	60
	4510	201.1	22.38	15.05	91.22	15.76	120
	4084	209.6	19.51	15.79	90.74	14.44	180
L19 Sel. High Sugar	3520	293.9	11.97	19.99	94.42	10.58	0
	4187	285.9	14.64	19.86	93.44	14.22	60
	3960	268.2	14.79	18.64	93.61	15.14	120
	4143	265.5	15.61	18.85	92.65	19.17	180
F1010 High Sugar	3480	269.1	12.94	18.53	94.07	9.35	0
	4612	247.3	18.80	17.88	92.09	10.62	60
	4701	238.8	19.70	16.96	92.98	15.76	120
	4663	243.5	19.16	17.29	92.91	14.44	180
EL550 High Sugar	2138	286.8	9.23	19.66	94.07	12.57	0
	1629	247.8	6.55	17.71	92.53	12.15	60
	1944	255.8	7.58	17.55	94.46	19.54	120
	1537	251.0	6.14	17.80	92.94	24.07	180
4N Polish High Sugar	4253	288.0	14.69	18.97	96.13	6.07	0
	4967	265.3	18.76	18.24	94.19	8.79	60
	4975	253.4	19.63	17.62	93.76	11.76	120
	5441	242.3	22.43	17.08	93.27	13.60	180
Mean	4296	253.2	17.22	17.77	93.30	13.60	
lsd (0.05) Var. x N	799	17.8	3.43	0.76	1.96	3.11	
CV	11.45	4.33	12.26	2.62	1.29	15.93	

Table 2-1. Means by nitrogen level and variety for sugar yield, root yield, sucrose percentage, clear juice purity percentage, and meq/l amino N. B&B Farm, 1991.

N Level		RWSA	RWST	T/A	Sucr%	CJP %	Amino N meq/l
0 60 120 180	Nitrogen Nitrogen Nitrogen Nitrogen	5364 5847 5813 5711	276.6 266.8 248.3 241.3	21.99 23.49	18.32 17.54	94.34 94.23 93.06 92.66	9.4 13.9 12.1 14.1
Mean lsd (0.05)		5684 219	258.2 4.3	22.20	18.00 0.21	93.58 0.38	12.4 2.2

Va	riety	RWSA	RWST	T/A	Sucr%	CJP %	Amino N meq/l
1 2 3 4 5 6 7 8 9 10 11	MHE4 Monohikari KW 1119 KW 2398 ACH 185 ACH 85-153 ACH 87-353 ACH 85-323 Beta 5315 HMI 5135 WC87212	5407 5513 5326 5942 5769 5826 5519 5711 5815 5933 5763	248.6 251.9 261.0 259.3 265.7 267.1 273.6 266.2 273.6 253.0 220.7	21.87 21.95 20.53 22.97 21.83 21.81 20.27 21.72 21.36 23.63 26.29	17.35 17.39 18.23 18.07 18.57 18.39 18.84 18.61 18.84 17.82 15.93	93.82 94.15 93.44 93.60 93.36 94.06 94.01 93.33 93.99 93.12 92.44	12.9 13.1 11.5 13.7 15.0 14.1 12.9 11.1 10.1 10.1
Mea lsd	n (0.05)	5684 364	258.2 7.1	22.20	18.00	93.58	12.4

Table 2-2. RWSA, RWST, sucrose percentage, CJP percentage, and meq/l amino N for commercial and experimental high sugar varieties at four applied nitrogen levels. B&B Farm, Swan Creek, MI. 1991.

Variety	RWSA	RWST		Sucr%	7	Amino N	N
 MHE4	- 5192	 259.9		17.94	94.82		0
THILT?	5427		20.29		94.85		
		235.5	22.44		92.85		120
		231.4	24.75		92.74		180
Monohikari	5524	268.6	20.56		95.34		0
HOROTEKAL I	5547	259.7	21.35		94.57		60
	5664	235.8	24.02		93.07		120
	5318	243.4	21.85		93.60		180
KW 1119	4819	282.6	17.08		94.02		0
W 1119	5512	264.7	20.85		94.02		60
		250.8	20.83		93.04		120
							180
MM 2300	5727		23.26		92.68		
KW 2398	5955 5773	280.5	21.24		94.72 94.68	8.1	0
	5772	264.8	21.79				60 120
	5905	245.0	24.03		92.86		120
ACTI 105	6135	247.0	24.84		92.13		180 0
ACH 185	4987		17.76		94.03		60
		270.4	21.58				
	6726	262.2	25.65		93.44		120
NOTE OF 150	5536	248.2	22.32		92.66		180
ACH 85-153	5634	288.9	19.52		94.94		0
	6721	274.3	24.54		94.39		60
	6033	265.7			94.11		
		239.5			92.80		180
ACH 87-353		289.5	17.10		94.33		0
	5539	277.2	19.97		94.50		60
	5768	266.1	21.66		93.80	13.4	120
.0	5842		22.33			13.8	180
ACH 85-323		287.0			93.89		0
		274.5			94.26		60
	5754				92.78		120
		246.3		17.67			180
Beta 5315	6304	295.0	21.71		94.61	12.5	0
	5675	285.4	19.89				60
	5729	259.8	22.06				120
	5550	254.1	21.79		93.49		180
HMI 5135	5456	276.6	19.81		94.00		0
	6378	261.2	24.45			8.3	60
	5777	241.4	23.95				120
	6121	232.7	26.30			11.1	180
WC87212	5030	231.5	21.77				0
	5931	235.3	25.24				60
	6057	212.2	28.55		91.73		120
	6034	204.0	29.61	15.14	91.47	10.4	180
Mean	5684	258.2	22.20				
lsd (0.05) Var. x N	727	14.1	2.70	0.68	1.25	3.6	
cv `	7.88	3.37	7.50	2.34	0.82	18.05	

SELECTION IN DIVERSE BREEDING POPULATIONS FOR NITROGEN USE EFFICIENCY

J. C. Theurer

A series of 13 sugarbeet breeding lines of wide diversity were planted under low (no nitrogen fertilization) and high (180 pounds available N per acre) for yield and sucrose evaluation. The purpose of the experiment was to see if there were differences in the way the genotypes responded to nitrogen, and to make selections for N use efficiency. The goal under the low N treatment was to select beets that demonstrated their N use efficiency by producing good yield and high sugar content in the absence of what might be termed optimal fertilization (usually 90-100 pounds N per acre). Selection in the high nitrogen treatment was aimed at isolating genotypes that had the ability to metabolize high N levels to an advantage giving rise to larger yields without appreciable loss of sucrose content nor substantial rise in nitrogenous impurities in the sugarbeet root at harvest. Individual plots consisted of two 28" rows 30 feet There were 2 replications for each N treatment. in length. high nitrogen treatment was made by side dressing each row of beets with 180 pound per acre rate of urea fertilizer on July 30, 1991.

The experiment was machine harvested on October 17, 1991. Individual beets with good root size and shape, and single crowns were also selected from each line for use in the breeding program. A 15-beet sample was taken from each plot for laboratory analysis of sucrose percentage, clear juice purity and amino N content. One-half root of each individual beet was sawed into brei and used for laboratory analysis while the other half was stored in a cold room at 40° C for use in breeding. Any individual beet determined to have sucrose percentage lower or amino N higher than the mean of the plot sample for these 2 variables was discarded. The other half-roots will be used for seed increase and recurrent selection for N use efficiency. Since there were only 2 replications and 2 fertilizer treatments, significance between means and variances were estimated using the statistical "t" test.

Results

Significant differences were noted between varieties and between the two nitrogen levels for all of the variables measured, with 2 exceptions. These 2 were the RWSA N treatments and m.e.g. amino N /100 grams sugar for the varieties (Table 3). All of the nitrogen x variety interactions across all of the variables were non-significant. However, differences in tons per acre approached the 0.05 level. The general trend of higher yield, lower sucrose percentage, and higher amino N with increased nitrogen was observed. Varieties 89B9-15 and 88B23-00 had the highest sucrose percentage of the 13 varieties at both N levels. Varieties 89B2-13-2, 89B12-1, and 88B23-00 showed the

greatest negative effect among the varieties for sucrose percentage at low versus high N level. These varieties showed in excess of 1% decrease under the high N treatment. M101 showed the least change in sucrose percentage with a reduction of only 0.04%. The amino N content of the root for the N 0 versus N 180 treatment showed an average increase of 8.49 m.e.q./ 100 grams sugar. Varieties 88B24-00 and 88B2-00 showed the least change and 84289-34 had the greatest change in amino N due to increased N fertilization. Varieties 88B19-00 and 88B21-00 had the lowest amino N content under the zero fertilization, while 8B24-00 was lowest in m.e.q./ 100 grams under the high N treatment. Variety 88B2-00 had the highest amino N under the N 0 treatment and 89B12-1 had the highest amino N content under the N 180 treatment.

RWSA, RWST, Sucrose percentage, CJP percentage and Amino N Content for diverse genotypes, under two nitrogen treatments, B & B Farm, Swan Creek, MI 1991 Table 3.

T/AC	N ¹⁸⁰ MEAN	22.08 24.18 (0.69 (1.09 (0.56 1.49 3.33 7.37 3.74 2.95 3.35	L.5	2.80 21.53	3.10 NS 88
T/	N 0 N	5.28 5.80 2.80 2.20 1.53 2.46 2.41 2.41 2.69 2.69 2.53 2.53 2.07	3.76 2 3.12 2	2	1.65 Z
	MEAN	217.5 17.59 16.32 19.66 20.67 18.57 20.96 16.59 23.95 22.84	9.4 <u>16</u> .	224.1	18.5
RWST	_N 180	211.2 239.8 229.0 228.0 235.2 241.1 235.2 200.5 211.3 199.9	37.	215.0	/ 3 NS 5.68
	0 _N	223.9 224.3 218.3 225.6 232.3 266.4 227.8 175.0 196.7 195.0	ان ذا	223.1	10.73
	MEAN	[2 2 2 2 3 4 4 4 4 6 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5	49.	.808,	1101
RWSA	_N 180	4664. 4924. 4374. 4806. 4834. 5137. 5470. 3454. 5004. 4568.		4914.	NS 11.11
	0 N	5861. 5346. 4837. 5092. 4748. 5516. 5849. 3173. 4606. 4493.	3827.	4/02. NS	
Variety			9H92 SR8	MEAN N "t" test 0.05	Variety LSD 0.05 N X Variety LSD 0.05 CV

MEAN 13.2 13.7 16.3 20.0 18.9 15.5 NS Amino N/100gm Sugar 13.7 13.7 180 28.05 19.0 17.2 16.7 18.3 28.2 21.0 19.4 NS 19.1 20.4 17.1 m.e.q. 5.25 0 N 8.8 10.2 10.7 14.2 11.9 16.9 9.9 11.7 94.24 93.20 92.13 93.26 93.42 91.33 91.38 91.39 93.14 93.09 92.78 1.73 93.41 93.48 MEAN 180 93.39 92.53 92.66 92.77 92.47 89.50 90.22 92.67 90.67 92.57 92.12 CJP % 1.28 NS 93.86 91.59 93.75 93.46 93.16 0 N 94.35 92.54 92.12 93.60 93.43 93.61 16.56 16.94 16.56 15.66 14.88 15.77 16.82 16.12 0.59 16.62 14.91 MEAN Sucrose % 180 16.09 15.49 16.19 16.60 13.78 14.80 15.90 15.66 15.75 15.07 16.31 16.21 NS 2.51 0.45 17.57 16.06 17.43 17.16 16.92 16.64 16.04 16.25 16.71 14.97 0 N M101 CANADA SR87 SELECT FC811059H N X Variety LSD 0.05 85B2-R14 84298-34 MEAN 84B9-66 WC86403 86B1-00 85B2R26 84B9-24 84B9-71 8454-00 Table 3. Continued FC912 Variety LSD 0.05 N "t" test 0.05 Variety 89B2-13-2 88B19-00 88B20-00 88B21-00 88B17-00 88B23-00 88B24-00 89B9-15 89B2-15 89B12-1 88B2-00 89H18 89H92

MOLECULAR STUDIES OF DIVERSE CMS LINES

J. C. Theurer and Carrie Heiser

Five potentially different CMS sources (Table 1) were studied by molecular techniques in 1991 to ascertain whether they had similar or different endonuclease restriction patterns. were compared with lines C1 and C1 CMS which we have used as standards for the Owen "S" source of male-sterile cytoplasm, which is being used internationally today in the development of hybrid sugarbeet seed. Mitochondrial DNA was extracted from tap roots of sugarbeets for each source of cytoplasm. The MtDNA was cut with ECO R1 and BAM H1 restriction enzymes and then hybridized with 4 maize probes (Atp-6, Atp-9, COX I, and COX II) thought to be associated with cytoplasmic male sterility. Results are summarized in Table 2. C23 and C24 had similar restriction patterns and were different from C1 and C1 CMS. There was a prominent band found in C23 and C24 that was not observed when the MtDNA was cut with ECO R1 and probed with COX II (Figure 1) and Atp-9 (Figure 3). C7 and C9 showed a unique band when cut with Bam H1 and probed with COX II (Figure 2). C5 lacked a band which was common to all other sources when cut with ECO R1 and probed with Atp-9 (Figure 3).

Table 1. Source of male sterile cytoplasm.

Plasm	Source No.	Description
C1		Normal cytoplasm O-type maintainer (NB-1)
C1	CMS	Owens "S" type CMS
C5	CMS	Powers red anther CMS
C7	CMS	CMS from a KWS source
C9	CMS	CMS found in NC 7 Collection of Beta
C23	CMS	CMS found in NC 7 Collection of Beta
C24	CMS	CMS found in NC 7 Collection of Beta

Table 2. Summary comparison of RFLP's of diverse sources of sterile cytoplasm

Source	Restriction	n Enzyme
of CMS	ECO R1	BAM H1
Probe: COX I		
C5	Similar to C1	Similar to C1
C5 & C9	Partially cut - appears different than C1	Similar to C1
C23 & 24	Different than C1	Similar to C1
Probe: COX II		
C5	Didn't cut - no conclu- sions could be made	Only partially cut but is similar to C1
C 7	Only partially cut-appears to be similar to C23 & C24	Only partially cut but was not similar to other lines - has 1 unique band
C9	11	11
C23 & C24	Distinctly different than C1 and C1 CMS - has a unique band not found in C1 or C1 CMS	Distinctly different than than C1 and C1 CMS
<u>Probe: Atp-6</u> C5, C7, C9	Are similar and not like C1 or C1 CMS	Staining too faint for conclusions except C7 is similar to C9
C23 & C24	Are similar but not like C1 or C1 CMS	Staining too faint for any conclusions
Probe: Atp-9 C5	Different from other lines. Marked absence of 1 band occurring in other CMS	Similar to C1 normal
C 7	Partially cut - may be like C1	Partially cut — probably similar to C1
C9	Appears similar to C23 & C24 or may be unique	Similar to C23 & C24 and different from C1
C23 & C24	Are alike and different from C1	Are alike and different from C1

Fire A - Early in My that on a W

FIGURE 1

Filter B-BandHI cut s garbeet mEDNA probed with OOX II

FIGURE 2

Filter A- EcoRI-cut sugarbate mt DNA probed with ATP9

Filter A

FIGURE 3

MINIRHIZOTRON OBSERVATIONS FOR MHI E4 AND SR87 AT THREE PLANT DENSITIES

A. J. M. Smucker and J. C. Theurer

Two sugarbeet varieties, MHI E4 (standard) and SR87 (smooth root type), were planted in a Conover loam soil in East Lansing, MI., at row spacings of 25, 40, and 55 cm to observe the growth of fibrous roots and root turnover. Three minirhizotrons were installed in a center row of each 4-row plot. There were 4 replications in the experiment. Seedling beets were thinned to 25 cm between plants within the row. Weed control was maintained by hand pulling. The sugarbeet plants showed a deficiency in nitrogen during the months of May and June, and were side dressed with urea the first week of July.

Fibrous root growth was measured at biweekly intervals using a small microvideo color camera. The number of roots and the root turnover was determined by special programed microcomputer analyses of the data. A sample of 15 beets from the opposite end of the plot from where the minirhizotrons were installed was harvested on August 13 to compare the growth of different parts of the sugarbeet.

RESULTS

At 84 days after planting (DAP), plant size was significantly larger in the 40 and 50 cm row widths than in the 25 cm width (Table 1). Fresh weight of petioles at 25 cm spacing and dry weight of petioles and leaf blades at all spacings were greater for MHI E4 than for SR87. MHI E4 also had significantly larger dry weight of taproots than SR87 at the 25 cm spacing. There were little differences in the yields and quality at final harvest in October, which was no doubt a result of N deficiency early in the year. The sucrose percentage of SR87 was 1 - 2% lower than for MHI E4 at each row spacing.

The growth and development of roots were influenced by both variety and row spacing (Figures 2-5). Taproots had grown to depths of 80-100 cm during the first 52 days of growth. data suggest an average taproot growth of 1.5 - 2.1 cm/day. Variety MHI E4 appeared to produce more fibrous roots than SR87 at 52 DAP for all row spacings, especially at the 55 cm row width, where 30-60% more roots were observed for this variety in the upper 40 cm of the soil profile (Figures 2A, 3A, and 4A). Root growth for MHI E4 appeared to be greater than for SR87 through 123 DAP for the 55 cm row spacing. However, this trend was not consistent at the 25 and 40 row spacings for the period from 93 - 123 DAP (Figures 2, 3, and 4). Greater root turnover rates also occurred in the upper 60 cm of the soil profile for the MHI E4 variety from 52 - 93 DAP (Figure 5). The rate of root turnover was quite variable for the 2 varieties at the narrower row spacings during the period from 93 - 123 DAP. Greater numbers and turnover rates of the fibrous roots occurred when the sugarbeets were planted at the 55 cm row spacing.

Table 1. Plant growth responses of MHI E4 and SR87 in three row spacings on August 13 (84 DAP). Conover loam soil at Michigan State University Agronomy Farm. 1991.

Row Spacing	Fr.		Blades Dry wt.		Petio wt.	les Dry wt	•	Ta Fr. v	ap Roc vt.	ot Dry w	t.
am					- g						
				M	IHI E4						
25 40 55	811 1249 1379	a	89 c 151 ab 160 a	487 702 843	ab	34 d 58 b 71 a	13	90 ak)	161 204 236	abc
55	13/2	a	100 a	043	a	/1 a	10	os ar	,	230	a
					SR87						
25	605	C	55 d	322	d	18 e		701	С	93	d
40	1060	ab	107 c	575	bc	42 c		1174	abc	150	cd
55	1286	a	134 b	809	a	61 b		1709	a	220	ab

^{*} Duncan's multiple range test - means with same letter suffix are not significantly different at 0.05.

Figure 2. Sugarbeet root growth responses of two varieties planted at 25 cm row spacings for the period from 52 - 123 days after planting (D.A.P.) on a Conover loam at the M.S.U. Soils Research Farm, 1991

Figure 3. Sugarbeet root growth responses of two varieties planted at 40 cm row spacings for the period from 52 - 123 D.A.P.

Sugarbeet Root Growth - no./m2 1991 1000 3000 5000

Sugarbeet Root Growth - no./m2

Sugarbeet Root Growth - no./m2

Sugarbeet Root Growth - no./m2

Figure 4. Sugarbeet root growth responses of two varieties planted at 55 cm row spacings for the period from 52 - 123 D.A.P.

Figure 5. Sugarbeet root turnover rates for two varieties planted at 25, 40 and 55 cm row spacings for the period from 52-93 D.A.P.

RHIZOCTONIA ROOT ROT EVALUATION FOR COMMERCIAL AND EXPERIMENTAL HYBRIDS AT EAST LANSING MI. 1991

J. C. Theurer, L. Hubble and J. H. Halloin

Eighteen hybrid varieties were evaluated for their resistance to Rhizoctonia root rot in the disease nursery maintained at E. Lansing, MI. The natural source of inoculum in the soil was supplemented with an application of ground millet infected R. solani, which was applied to the crowns of the beets just prior to layby. The roots were dug by hand in early November and scored for disease on a scale of 0 = no infection lesions to 4 = dead plant. This year, the infection in the nursery was rather light. The same procedures were followed as for previous years, but for some unknown reason, good infection did not develop. For the most part, varieties had similar ranking for disease resistance in 1991 as observed in 1990 (See 1990 Bluebook Report, p. E11). However, Beta 5315 and Beta 5639 ranked higher, s and Beta 5435 and MH E4 ranked lower in 1991 compared with 1990 observations.

Table 1. 1991 Commercial Variety Rhizoctonia Evaluation,
USDA Disease Nursery. East Lansing, MI.

	<u>Variety</u>	Average Score	% Crown Rot
1	ACH 197	2.06 abcd	51.5 abcd
2	ACH 185	1.76 bcd	43.9 bcd
3	ACH 176	1.87 bcd	46.6 bcd
4	USH23 (Susc. Check)	2.17 abc	54.2 abc
5	SXIIOI	2.10 abcd	52.4 abcd
6	MH E4	1.59 bcd	39.7 bcd
7	MH E9	1.81 bcd	45.3 bcd
8	MH E10	2.31 abc	57.6 abc
9	BETA 5315	2.12 abcd	53.0 abcd
10	BETA 5435	1.71 bcd	42.7 bcd
11	BETA 5639	2.11 abcd	52.9 abcd
12	BETA BG4603	2.87 ab	71.7 ab
13	ACH 86-1353	1.34 cd	33.4 cd
14	ACH 86-1350	1.57 bcd	39.2 bcd
15	UNIVERS	2.85 ab	71.4 ab
16	MONOHIKARI	3.25 a	81.2 a
17	HM 5135	2.23 abc	55.8 abc
18	KW 2398	2.70 abc	67.5 abc
19	FC 607	2.31 abc	57.7 abc
20	FC 501/5(Res.Check)	0.78 d	19.5 d
	Mean	2.08	51.9
	LSD 0.05	1.14	28.5
	CV	38.8	38.8

CONTENTS

				I	PAGE
Publications					E47
Identifying and Manipulating the Betaine Synthesis in Sugarbeet	Enzymes	and	Genes	for	
Cell Selection by A. D. Hanson and K. F. McCue					E48

SUGARBEET RESEARCH 1991 REPORT

Department of Energy, Plant Research Laboratory, Michigan State University East Lansing, Michigan

Dr. A. D. Hanson^A, Plant Physiologist Dr. K. F. McCue^B, Molecular Biologist

^APresent address: Institut de recherche en biologie végétale, 4101 rue Sherbrooke Est, Montréal, Québec H1X 2B2, Canada.

^BPresent address: Plant Gene Expression Center, USDA/ARS/UC Berkeley, 800 Buchanan Street, Albany, California 94710, USA.

This research was supported in part by funds through the Beet Sugar Development Foundation (Project 730).

PUBLICATIONS

Abstracts of papers published or submitted for publication.

McCue, K.F. and Hanson, A.D. 1992. <u>Regulation by Soil Salinity of the Expression of Betaine Aldehyde Dehydrogenase in Leaves: Investigation of Hydraulic, Ionic and Biochemical Signals</u>. Australian Journal of Plant Physiology (Submitted for publication).

Betaine aldehyde dehydrogenase (BADH) catalyses the last step in glycine betaine synthesis, and is induced several-fold by salt stress. To investigate this Induction, BADH enzyme activities and mRNA levels were analyzed in leaves of salinized sugar beet plants (Beta vulgaris L.). In plants which had adjusted osmotically to growth at various NaCl concentrations, the steady state level of enzyme rose almost linearly between 0 and 500 mM NaCl, whereas that of BADH mRNA reached a plateau at 100 mM NaCl. Following a salt shock (transfer from 0 to 400 mM NaCl) BADH mRNA level first decreased for several hours, then Increased; BADH enzyme activity rose slowly for several days. When salt was leached from the rooting medium of salinized plants, the level of BADH mRNA declined sharply with an apparent half-life of 2 h; enzyme activity also declined, but with a half life of more than 4 days. These data indicate (a) that transcription of the BADH gene or the stability of BADH mRNA In leaves responds far more dynamically to salinity changes around the root than does BADH enzyme activity; and (b) that the pattern of the mRNA responses is consistent with the participation of a non-hydraulic signal or signals coming from the root. The non-hydraulic signal is unlikely to be NaCl, because leaf disks exposed to salt concentrations typical of the apoplast of salinized leaves did not accumulate BADH mRNA. Some biochemical messenger is thus implied and, consistent with this, abscisic acid application to leaf disks elicited modest increases in BADH mRNA level.

McCue, K.F. and Hanson, A.D. 1992, <u>Salt-Inducible Betaine Aldehyde Dehydrogenase from Sugar Beet: cDNA Cloning and Expression</u>.Plant Molecular Biology <u>18</u>:1-11.

Members of the Chenopodiaceae, such as sugar beet and spinach, accumulate glycine betaine in response to salinity or drought stress. The last enzyme in the glycine betaine biosynthetic pathway is betaine aldehyde dehydrogenase (BADH). In sugar beet the activity of BADH was found to Increase two- to four-fold in both leaves and roots as the NaCl level In the irrigation solution was raised from 0 to 500 mM. This increase in BADH activity was paralleled by an increase in level of translatable BADH mRNA. Several cDNAs encoding BADH were cloned from a λ gt10 library representing poly(A)⁺ RNA from salinized leaves of sugar beet plants, by hybridization with a spinach BADH cDNA. Three nearly full length cDNA clones were confirmed to encode BADH by their nucleotide and deduced amino acid sequence identity to spinach BADH; these clones showed minor nucleotide sequence differences consistent with their being of two different BADH alleles. The clones averaged 1.7 kbp and contained an open reading frame predicting a polypeptide of 500 amino acids with 83% identity to spinach BADH. RNA gel blot analysis of total RNA showed that salinization to 500 mM NaCl increased BADH mRNA levels four-fold in leaves and three-fold in the taproot. DNA gel blot analyses indicated the presence of at least two copies of BADH in the haploid sugar beet genome.

Identifying and Manipulating the Enzymes and Genes for Betaine Synthesis in Sugarbeet.

Andrew D. Hanson and Kent F. McCue

Introduction:

Glycine betaine accumulates in sugarbeets and decreases the recovery of sugar from the expressed juice. The accumulation of glycine betaine is increased when sugarbeets are subjected to environmental stresses such as drought and salinity. Previous studies funded in part by the BSDF have helped to elucidate the biosynthetic pathway of glycine betaine in chenopods, and to clone the gene for the second enzyme in the pathway betaine aldehyde dehydrogenase (BADH) from sugar beet. This clone provides the basis for our attempts to understand the regulation of glycine betaine biosynthesis and to manipulate the pathway in an attempt to reduce betaine accumulation. We have used this clone to examine the regulation of the BADH gene in response to various chemical and environmental stimuli, and to repress the expression of the BADH gene using antisense technology which may reduce or eliminate betaine synthesis.

Results:

Kinetics of BADH gene and enzyme expression.

We have studied the effects of salinization, an osmotic stress known to induce betaine biosynthesis in sugar beet, on the levels of leaf solute potential, glycine betaine accumulation, BADH enzyme activity, and BADH mRNA abundance. All of these elements increase in parallel with increasing salinity in the irrigation medium (0 to 500 mM NaCl). The increases observed are all nearly linear with increasing NaCl concentrations with the exception of BADH mRNA levels. Upon salinization, the levels of BADH mRNA rise very rapidly, and reach a plateau at relatively low salt concentrations (100 to 200 mM), indicating an additional level of control between BADH gene expression and accumulation of the active BADH enzyme. These experiments have involved gradual salinization and represent steady state adaptation to osmotic stress, and do not reveal the kinetics of the response, or the nature of the signals involved.

Our latest studies have shown that although the levels of active BADH enzyme rise slowly upon onset of osmotic shock, and decrease slowly upon relief, the levels of BADH mRNA respond very rapidly. In both instances the initial osmotic shock causes a dramatic decrease in the levels of BADH mRNA. In the salt shock experiment, BADH mRNA levels decreased by over 50% in the first 6 to 12 hours, and recovered to non-stressed levels in 24 hours. The levels then continued to rise to a maximum at 3 to 5 days, while enzyme activity

reached a maximum after 7 to 9 days. In the reciprocal experiment, osmotic stress was relieved from plants gradually salinized to 400 mM NaCl, by irrigation with media without salt. Levels of BADH mRNA decreased within 4 to 5 hours to levels below those of the control, and slowly recovered to control levels after 24 to 48 hours. In contrast, the levels of BADH enzyme activity slowly decreased to control levels over a period of 5 to 7 days. Thus, the control of BADH gene activity, as judged by the abundance of BADH mRNA, is quickly affected by changes in the osmotic strength of the media. Although, betaine biosynthesis, as a result of BADH enzyme activity appears to be subject to additional regulatory controls at level of protein synthesis and degradation.

Regulation of BADH by hydraulic, ionic and chemical signals.

With the use of our cDNA as a probe of the transcriptional activation of the BADH gene, we have been able to ask questions in regarding the nature of the signals involved in the activation of the BADH gene.

Our *in vitro* assay has allowed us to examine various signals which are likely to be involved in the regulation of BADH using northern blot analysis of BADH mRNA isolated from leaf disks. In these experiments, total RNA is extracted from sister leaf disks taken from 6-week old sugar beet seedlings after treatment by floating for 24 to 72 hours in various control and test solutions.

The first signal we examined was NaCl at concentrations ranging from 0 to 100 mM, concentrations we have determined to be present in the apoplastic fluid of sugar beet leaves gradually salinized with 0 to 500 mM NaCl in the irrigation medium. Surprisingly, there was no significant effect of floating disk on NaCl solutions. The next experiment employed the use of abscisic acid, a naturally occurring plant hormone known to be involved in senescence and drought stress. ABA at physiological concentrations did show a significant effect on the relative abundance of the BADH mRNA levels above those of the control, although less than the induction observed in whole plants. Additional leaf disk experiments involved osmotic stress induced by wilting of leaves or by flotation on polyethylene glycol (PEG 4000). Both treatments caused significant but less dramatic results of maintaining BADH mRNA levels above those of the control.

In summary, we have been unable to show a direct effect of NaCl levels on the expression of BADH mRNA levels, while ABA, and treatments known to induce formation of ABA (wilting and PEG treatment) resulted in elevated levels of BADH mRNA abundance. Although, the induction by ABA suggests a role for this plant hormone in the regulation of BADH gene activity, the magnitude of the response indicates additional factors are also involved.

Manipulation of BADH gene activity by antisense.

The manipulation of betaine synthesis using antisense technology is the focus of the research funded by the Beet Sugar Development Foundation. In these experiments we are attempting to regulate the expression of the BADH gene, in order to reduce or eliminate the production of active BADH enzyme and hence glycine betaine biosynthesis. In antisense technology, the cDNA of the BADH gene isolated from sugar beet is transformed back into sugar beet in the "antisense", or inverted orientation. With this method, the gene is transcribed from the DNA in the opposite orientation from the endogenous BADH gene.

We have constructed as series of plasmids containing different parts of the BADH gene from sugarbeet inserted in the antisense orientation. The antisense gene is driven by the 35S promoter, taken from the cauliflower mosaic virus, and uses a 3-prime termination sequence from the *Agrobacterium* nopaline synthase gene. These transformation vectors are predicted to function in the plant to actively transcribe the antisense gene. These vectors have been prepared with the entire gene for BADH (derived from the cDNA encoding BADH isolated from sugar beet), as well the 5-prime half (750 bp), and the 3-prime half (1000 bp) of the gene. The constructs have been transferred to *Agrobacterium rhizogenes* from the intermediate host *E. coli* using direct transformation, and presence of the plasmids with the appropriate inserts has been verified.

Successful infection of surface sterilized petiole explants of sugar beet leaves with *A. rhizogenes* containing the various antisense constructs has resulted in the production of several cloned lines of "hairy roots". These roots have been cultured free of the bacteria and are being tested for levels of BADH enzyme activity. Preliminary results indicate that one of the transformed root clones is deficient in BADH enzyme activity. The initiation of hairy roots after *Agrobacterium* infection is based upon the endogenous root inducing plasmid. Transformation with the antisense gene requires a co-transformation with the endogenous plasmid and our engineered plasmid, so it is not unexpected that only a fraction of the hairy root clones express the antisense gene.

Future Goals:

The next step will be to analyze the levels of BADH enzyme activity in additional clones for altered levels of BADH activity. Clones which exhibit reduced BADH activity can then be used for the regeneration of plants to examine the effect of reduced betaine levels at the whole plant level. At this stage the desirability of reduced betaine on plant viability and beet development can be investigated. If this proves promising the long term goal would be to introduce this trait into sugarbeet breeding lines for further research.

SUGARBEET RESEARCH

1991 Report

Section F

University of Idaho Idaho

Dr. S. L. Hafez Dr. A. J. Anderson Dr. J. J. Gallian

The research was supported in part by funds provided through the University of Idaho and the Beet Sugar Development Foundation.

CONTENTS

	PAGE
Sugarbeet Cyst Nematode Management	77.0
by S. L. Hafez	.F3
Biological Control of Plant Pathogens by A. J. Anderson and J. J. Gallian	.F6

SUGARBEET CYST NEMATODE MANAGEMENT

Saad L. Hafez

The sugarbeet nematode can dramatically affect the growth and development of the sugarbeet plant. Severe nematode infestations have reduced root yields as much as 70 percent. It is a common practice for sugarbeet growers to spend \$80 to \$120 per acre for nematicides to control the pest. The availability of two of the most commonly used nematicides, Telone II and Temik, is in question since both compounds are presently under review by the Environmental Protection Agency and have come under attack recently by several environmental groups.

BASIC STRATEGIES FOR SUGARBEET CYST NEMATODE MANAGEMENT

Prevention
Cultural practices
Resistant cultivars
Nematode resistant catch crops
Chemical control

ACCOMPLISHMENTS

The Effects of different nematode resistant sugarbeet hybrids, oil radish or mustard on sugarbeet cyst nematode population.

Trap crops of oil radish and yellow mustard have been developed for control of the sugarbeet nematode. Trap crops are planted after small grain harvest in the summer and are allowed to grow until winter temperatures kill the crop. The development of the trap crop on nematode-infested soils triggers the nematode eggs to hatch. The nematode larvae enter the trap crop root but are not able to reproduce. The nematode population density in the soil is reduced and conditions are again favorable for sugarbeet production. The practice is presently being utilized on about 250,000 acres in Germany.

In several greenhouse and field studies, several nematode-resistant sugarbeet hybrids and nematode-resistant catch crops, oil radish Raphanus sativus oleifera and white mustard Sinapis alba, were tested in the greenhouse and commercial fields to evaluate their potential use in SCN integrated management program. Results showed that the percent of reduction in SCN population among different sugarbeet hybrids ranged from 50 to 89% of the initial population. Although these hybrids showed good level of resistance to the SCN, their agronomic characters are not acceptable. In different studies, two nematode-resistant oil radish varieties (Pegletta and Nemex) and white mustard var. (Maxi) were planted in sugarbeet fields heavily infested with SCN. Results indicated that Pegletta, Nemex and Maxi significantly reduced the number of SCN eggs by 67, 23, and 87% respectively. The control treatment, Fallow, reduced SCN eggs by 28% of the initial population. Table 1 & 2 showed the result of fall and spring planting of oil radish and mustard.

Table 1. The effect of FALL planting of oil radish (Pegletta) and buckwheat (Prego) on sugarbeet cyst nematode population. Dry Lake, ID. 191, Saad L. Hafez.

Crops	Befor	ematode Popula re Planting /12/91 Total E&L**	After	cc soil Planting /4/91 Total E&L	% Reduction
Oil Radish	4.2	510.8	2.0	114.0	77.7
(Pegletta) Buckwheat (Prego)	16.0	2,121.6	12.7	1,739.9	18.0

^{*}V.C. = Viable Cyst

Results of these studies indicated that resistant catch crops should be used as a part of integrated systems. Also different varieties of catch crops has different level of resistance (none of them are absolute).

Important conditions to increase the effectiveness of nematode-resistant catch crops on reducing S.B.C.N. nematode populations.

- 1. Dense planting and deep root penetration
- 2. Create optimum conditions for egg hatching (Temperature and moisture)
- 3. High resistant levels in the varieties

^{**}E&L = Eggs and larvae Planting date: 8/08/91 Plowing date: 10/17/91

The effect of spring planting of oil radish and white mustard on sugarbeet cyst nematode population. Parma, ID 1991, Saad L. Hafez Table 2.

Crops	Pre-P	Pre-Planting 3/24/91	Nema	tode Pop	pulation ii 06/04/91	Pre-Planting Post Planting Post Planting 2/24/91		07/15/91		% Reduction
	V.C.*	V.C.* E&L/ Total cyst E&L	Total E&L	V.C.	V.C. E&L/ Total cyst E&L	Total E&L	V.C.	V.C. E&L/ cyst	Total E&L	
Pegletta	18.0	178	3,204	12.2	108	1,318	8.0	134	1,072	5.99
Nemex	12.0	132	1,584	8.6	110	1,078	9.6	127	1,219	23.0
Maxi	8.0	168	1,344	11.0	111	1,221	1.6	108	173	87.1
No Plant	17.6	176	3,086	20.6	146	3,008	12.2	174	2,223	28.0

*V.C. = Viable Cyst Planting date: 3/29/91 Plowing date: 7/16/91

Progress Report 1992. <u>Beet Sugar Development Foundation</u> Biological Control of Plant Pathogens

Anne J. Anderson, Utah State University and John J. Gallian, University of Idaho.

Our goal is to identify bacteria with biocontrol potential for pathogens of sugar beet seedlings. Studies have been directed at control of *Phoma betae*, a seedborne pathogen and *Rhizoctonia solani*, a soilborne organism. Because biocontrol agents must be competitive with the pathogen under field conditions our initial studies were to isolate the bacteria from sugar beet seeds and roots. Bacteria from these sources should have field competency under Idaho growing conditions.

Organisms were identified for their antagonistic activity *in vitro* against either or both of the pathogens. Of the nearly 100 bacterial isolates that were initially selected we have performed *in planta* studies with about 10 isolates that displayed good antagonism on the *in vitro* plate assays. The *in planta* studies have been conducted at a constant temperature of 25°C in greenhouse conditions. The seed was sterilized to kill existing microbes and planted into sterilized vermiculite with or without defined pathogenic and or bacterial inocula. The inocula consisted of 10⁴ conidia of *Phoma* or 10² propagules of *Rhizoctonia* in a 50 ml volume containing 50 seeds. Bacteria were added to the seeds at 10⁸ CFU/ml in all studies except as noted. Plants were grown under a 12 hr light/dark regime and emergence and seedling health was scored visually on a daily basis. The data are shown on the following Tables 1 and 2.

TABLE 1

Effect of bacterial treatment on emergence and disease in seedlings from *Phoma*-infected seed.

Treatment	% Emergence	% Healthy seedlings
Phoma alone	75 a	0 a
Group I		
Phoma +R 1-I-1	60 b	50 b
Group II		
Phoma +P1E	84 a	83 d
Phoma + P2E	82 a	73 c
Phoma + P5A	64 b	87 d
Phoma + P9D	82 a	81 d
Group III		
Phoma + R3L-2	7 5 a	76 c

Bacteria and P. betae were applied to sugar beet seeds prior to planting. Germination and seedling health were determined after 7 and 10 days of incubation. Data are expressed as the % germinated seeds relative to the number of seeds planted, and then the % of those seeds that germinated which grew to healthy plants. Data are the means from 3 batches each of 50 seeds; values followed by the same letter in a column are not different according to Duncans multiple range test at P = 0.05.

<u>TABLE 2</u> Effect of bacterial seed treatments on disease caused by *Rhizoctonia solani*

Treatment	Germinated Seeds	Healthy Seedlings	Survival %
Control	33 ^a	32 ^a	96
Rhizoctonia	17 ^b	0	0
Group I			
Rhizoctonia + R1-I-1	19 ^b	10 ^b	53
Rhizoctonia + P8E	19 ^b	16 ^c	84
Rhizoctonia + R6	21 ^b	8 ^b	38
Group II			
Rhizoctonia + P1E	18 ^b	11 ⁶	71
Rhizoctonia + P5A	21 ⁶	16 ^c	76
Rhizoctonia + P9D	15 ^b	9 ^b	55
Group III			
Rhizoctonia + R3L-2	20 ^b	12 ^b	60
Rhizoctonia + J1A8	15 ⁶	10 ^b	66
Rhizoctonia + J6B1	20 ^b	18 ^c	90

Seed was treated with water as a control or inoculated with R. solani or R. solani plus bacteria. Data are the results after 10 days of 3 studies each of 40 seeds; Values followed by the same letter in a column are not different according to Duncans Multiple range test at p = 0.05.

[%] survival calculated from the ratio <u>healthy seedling x 100%</u> germinated seeds

Good control of both *Phoma* and *Rhizoctonia* was measured with several of the isolates. Inoculation with isolates P1E, P5A and P9D in studies with *Phoma* resulted in a seedling stand of about 80 % whereas all of the control plants which lacked a bacterial inoculum were killed. With *Rhizoctonia*, these same bacterial isolates also gave good control. Other isolates P8E and J6B1 gave slightly better control of *Rhizoctonia*.

To more closely approximate field conditions in which the *Rhizoctonia* inoculum is present in the soil, sugarbeet seed was vacuum infiltrated with bacteria, sown in vermiculite into which *R. solani* mycelium had been added. Emergence was recorded seven days after sowing and incubation at 25°C. Emergence in the treatments was 22% to 59% greater upon treatment with bacteria selected from Group I, II and III than the control seeds exposed to the pathogen only (Table 3).

Table 3. Emergence of sugarbeet seedlings treated with selected isolates of biocontrol bacteria and planted in vermiculite infested with *Rhizoctonia*

Treatment	Emergence	% above <i>Rhizoctonia</i> treatment
R3L-2	3.9 a	44
P1E	3.8 a	41
R1-I-1	4.3 a	59
P9D	3.3 ab	22
No inocula	3.8 a	41
Rhizoctonia	2.7 b	

R. solani mycelium from 12 day old potato dextrose broth liquid culture was ground and added to vermiculite at 0.006 g per pot. Seed was infiltrated with 10^6 to 10^8 CFU/ml suspensions of bacteria. Values are means of 5 seeds/pot, 5 pots/treatment, replicated four times. Values followed by the same letter are not different according to Duncan's Multiple Range Test, P=0.05.

Selected bacteria with biocontrol potential were field tested at the University of Idaho Research and Extension Center at Kimberly. Seed were inoculated with *Phoma* and the biocontrol agents in the same manner as in the greenhouse studies. Emergence counts indicate that little disease resulted from the *Phoma* inoculum (Table 4). Consequently it was not possible to determine whether there was a protective effect of the bacterial inocula.

Table 4. Field emergence of sugarbeet seed inoculated with *Phoma betae* and beneficial bacteria.

Treatment	Emergence per 25 foot row/100 seed
P9D	64.8
P1E	62.5
R1-I-1	62.5
R3L-2	59.3
<i>Phoma</i> only	58.3
Phoma + P9D	59.0
Phoma + P1E	52.0
Phoma + R1-I-1	30.5
Phoma + R3L-2	58.0
<i>Phoma</i> + Apron + Thiram	69.5
Untreated	62.3
Water control	59.3
LSD 0.05	12.1

100 seed per row, six row plots, 25 ft long, replicated 4 times. Values are means of emergence counts for the 2 center rows/plot.

The same bacterial isolates were tested for activity against *Rhizoctonia solani* at the University of Idaho Research and Extension Center at Parma in a field severely infested with *Rhizoctonia solani*. Seed were inoculated with bacteria only and planted on April 25. Emergence was recorded on May 23 and plants were dug and rated for *Rhizoctonia* infection on August 6 (Table 5). Grain was subsequently planted next to our plots, resulting in some stress to the sugarbeets from shading. Consequently, these plants were not as vigorous as normally would be expected and plots displayed variability. A moderate to high disease rating was recorded, and little effect of treatments with the chemical fungicides Apron and Thiram or bacteria was observed.

Table 5. Field emergence and *Rhizoctonia* root rot disease rating of sugar beet in response to seed inoculation with biocontrol bacteria.

Treatment	Emergence per <u>10</u> <u>feet of row</u>	Disease <u>Rating</u>
P1E	37.2	4.4
R1-I-1	36.8	6.0
P9D	34.9	4.7
R3L-2	28.5	5.1
Apron-Thiram	35.8	4.0
Untreated	33.0	4.9
Water Control	31.6	4.8
LSD 0.05	6.8	1.1

Disease ratings: 1 = no disease; 7 = plant dead. 100 seed planted per single row plot 25 ft long, replicated 4 times.

The data from both field plots were interesting with isolate R1-I-1. In the presence of the pathogens *Phoma* or *Rhizoctonia* this bacterium appears to enhance the pathogen's effects measured as emergence for *Phoma* and as disease rating with *Rhizoctonia*. Isolate R1-I-1 produced HCN and incites an hypersensitive response in bean and tobacco. Whether these traits are responsible for or involved in the deleterious interactions of R1-I-1 with the sugar beet pathogens is being studied. These data stress the need for bioassays of each possible isolate and indicate that not every plant-associated microbe that shows antagonism toward pathogens in culture will have a beneficial function in the field.

The bacteria were grouped in to three types dependent on their pigmentation on agar medium. Group I and II isolates were all fluorescent pseudomonads whereas Group III were mixed genera. The organisms were identified by mass spectral /GC analysis of their fatty acid compositions. Their designations are denoted in Table 6.

TABLE 6 Isolate characterization by GC/mass spectral analysis

Group I	
R1-I-1 R6 P8E	P. aureofaciens P. aureofaciens P. aureofaciens
Group II	
P1E	P. tolaasii

P2E P. tolaasii P5A P. tolaasii P9A P. tolaasii P9D P. tolaasii

Group III

R3-L-2

J2B3

Enterobacter

J1A8

Bacillus subtilis

J6B1

Bacillus subtilis

We have initiated studies to uncover the antagonistic principles involved in the highly effective Group II isolates which are classified as P. tolaasi. These bacteria when cultured on potato dextrose agar in the presence of the pathogen produced an intense green- brown pigment. This pigment resembles the pigment produced by P. fluorescens 2-79, an organism which is an effective antagonist of the fungus that causes take-all in wheat. pigmentation in 2-79 has been attributed to the secretion of a phenazine derivative, 1,3, phenazine carboxylic acid (PCA) which has antibiotic activity. We have purified the PCA from culture filtrates of 2-79 by procedures in the literature. We have demonstrated that this yellow pigment moves with the same RF as the yellow pigment extracted from culture filtrates of the P. tolaasi strains upon thin layer chromatography. The purified PCA from 2-79 and the yellow compound from each of the P. tolaasi strains are readily soluble in chloroform and displayed the same absorbance characteristics with maxima at 279 and 350nm. These data suggest that the biocontrol active Group II isolates are producing PCA. A role for PCA in the antagonism of both Phoma and Rhizoctonia is strengthened by our observations that both Phoma and Rhizoctonia are inhibited in vitro by 2-79 but not by a mutant B-46. The B-46 mutant was derived by Thomashow et al. and is deficient in PCA production. These data suggest that phenazine production may be an important feature of antagonism against the sugar beet pathogens displayed by certain of the fluorescent pseudomonads. We have observed that other antagonistic bacteria in Group I and in Group III do not produce PCA. However additional materials which absorb in the UV are detected in culture filtrates of these antagonistic bacteria and the antibiotic potential of these compounds is being tested.

	-	

SUGARBEET RESEARCH

1991 Report

Section G

Texas Agricultural Experiment Station Bushland, Texas

Dr. C. M. Rush Dr. G. J. Michels

Cooperation:

Imperial Holly - Hereford, Texas

The research was supported in part by funds provided through the Texas A&M University and the Beet Sugar Development Foundation (Project 500, 502 and 520).

CONTENTS

	PAGE
Abstracts of Papers Published or Approved	. G3
Combining Solid Matrix Priming with Biocontrol Agents to Enhance Biological Control of Sugar Beet Seedling Diseases	
by C. M. Rush & K. M. Vaughn	. G8
Developing Laboratory Techniques for Rearing the Sugarbeet Root Aphid <i>Pemphigus Betae</i> Doane by G. J. Michels, Jr., R. L. Deerberg, K. M. Vaughn	
and B. J. Thompson	.G11

Vaughn, K, M. and C. M. Rush. 1991. <u>Reducing Aphanomyces seeding disease of sugar beets by limited irrigation</u>. 1991 APS Annual Meeting, St. Louis, MO, August 17-21, 1991.

One of the most common seedling diseases of sugar beets in the Texas Panhandle is caused by *Aphanomyces cochlioides*, a zoosporic fungus. A study was conducted to determine if this seedling disease could be reduced by irrigation and/or seed treatments. In a greenhouse study, unprimed, unprimed+Tachigaren, solid matrix primed (SMP), and SMP+fluid seed treatments were planted in boxes that were pre-irrigated and artificially infested with oospores of *A. cochlioides*. Half the boxes were then irrigated post-plant. Seedlings from SMP and SMP+fluid seed treatments emerged faster than unprimed nontreated seed, but after 6 days there was no significant difference. No seed treatment affected disease incidence, however, irrigation treatments did. In post irrigated boxes, average seedling disease was 56%, but in pre-irrigated boxes only 5%.

Rush, C. M. and R. D. Martyn. 1991. <u>Variation in sugar beet susceptibility to isolates of Fusarium oxysporum f. sp. betae from Texas and Oregon</u>. 1991 APS Annual Meeting, St. Louis, MO, August 17-21, 1991.

Isolates of Fusarium oxysporum f. sp. betae from sugar beets in Texas are morphologically and genetically distinct from those from Oregon. It was unknown whether these differences related to pathogenicity, so a study was conducted to determine if sugar beet germplasm reacted differently to Fusarium isolates from Texas and Oregon. Seed from 90 entries were planted and later seedlings were inoculated with each pathogen using the tray dip method. Poor seed quality resulted in erratic seedling emergence and only 60 entries were evaluated for disease severity, and top and root weight. When data was sorted by isolate, high variability resulted in little difference in disease rating among entries. However, 16 entries differed significantly in their susceptibility to the two isolates with nine more resistant to the Texas isolate and seven more resistant to the Oregon isolate. Fourteen entries had a disease rating value ≤1.2 on a 0-3 scale. Root and top weight were highly correlated to disease rating.

Rush, C. M. and K. M. Vaughn. 1991. <u>Relation of root rot severity to sugar beet quality parameters</u>. 1991 APS Annual Meeting, St. Louis, MO, August 17-21, 1991.

A study was conducted to evaluate the effects of Aphanomyces and Rhizoctonia root rot on sugar beet quality. Beets were collected from 15 fields during 1990 harvest, and beets from each field were separated into disease severity categories 0-4, with 0=healthy and 4=severely rotted. Multiple subsamples were then taken from each category and evaluated for sucrose content and impurities. From these, loss to molasses was calculated. Sugar loss from beets in each disease category was analyzed using regression analyses. As disease severity increased, percent sugar decreased significantly r=.79 (P=0.05), but impurities and loss to molasses were not correlated with disease rating. The relation between disease severity rating and sugar loss was best described by the equation, percent sugar loss = .43 rating², P=0.0001. Compared to healthy beets, total recoverable sugar was significantly reduced in disease severity categories 2 through 4. The type of root rot did not affect these results.

Heidel, G. B., C. M. Rush, and R. E. Mock. 1991. <u>Preliminary studies on the incidence of beet necrotic yellow vein virus and beet distortion mosaic virus in Texas</u>. 1991 APS Annual Meeting, St. Louis, MO, August 17-21, 1991.

Beet necrotic yellow vein virus (BNYVV), a soilborne virus, was found in Texas in 1985. Beet distortion mosaic virus (BDMV) was reported in 1987. Currently, no information on the incidence of either virus in Texas is available. 160 soil samples were collected from two counties. Sugar beet seed was planted in two replications of each sample. After 9-10 weeks, root tissue was serologically assayed for BNYVV. At least one replication was positive in 29% of samples tested. Both replications were positive in 13% of samples. In a second study, beets with rhizomania symptoms were collected from eight fields. Veinal yellowing and necrosis, symptoms associated with systemic BNYVV infection, were observed in leaf growth from defoliated beets. Particles similar to both BNYVV and BDMV were observed by electron microscopy in leaf dips. Leaf tissue extracts reacted positively by ELISA against BNYVV antiserum.

Rush, C. M. 1992. <u>Stand Establishment of Sugar Beet Seedlings in Pathogen Infested Soils as Influenced by Cultivar and Seed Priming Technique</u>. Plant Disease (in press).

A greenhouse study was conducted to determine whether selected sugar beet (Beta vulgaris L.) cultivars responded differently to various seed priming techniques. Priming techniques included osmopriming with -1.5 MPa NaCl or -1.2 MPa PEG 8000, and solid matrix priming (SMP) with water and a hydrous silicate clay mineral as the solid substrate. Washed and nontreated seed were used as controls. Treated seed of cultivars Ach146, Ach177, HH42, and Tx9 was planted in a silt loam plus peat soil mix artificially infested with Aphanomyces cochlioides, Pythium ultimum, or noninfested. Seedling emergence and damping off were recorded daily. Although varying in degree, all cultivars responded similarly to the different seed treatments. There was typically no seed treatment x cultivar interaction with any of the recorded variables at any time. All priming treatments increased the rate and uniformity of seedling emergence, and also reduced the incidence of preemergence damping off in soils infested with P. ultimum. There was a small but significant, positive correlation between T50, i.e., the weighted mean time for emergence of all seedlings, and preemergence damping off ($R^2 = .23$, $P \le 0.05$). As T50 increased (i.e., slower emergence), preemergence damping off increased. Pythium ultimum caused both preemergence and postemergence damping off; however, A. cochlioides caused only postemergence damping off. Although priming treatments reduced preemergence damping off, no treatment significantly reduced postemergence damping off.

COMBINING SOLID MATRIX PRIMING WITH BIOCONTROL AGENTS TO ENHANCE BIOLOGICAL CONTROL OF SUGAR BEET SEEDLING DISEASES

Kathy M. Vaughn and Charles M. Rush

Plant diseases caused by soilborne pathogens often result in economic losses in crop production. Control of many different plant pathogens is strongly dependent on the use of chemicals. However, sufficient control of plant diseases are not always achieved with the use of pesticides. The need to develop alternative measures for disease control has become a priority for many research programs.

Biological control is a promising approach for disease reduction and can be used in combination with other systems. For advancement of biocontrol technology, improved methods of preparation and application of antagonistic microorganisms are necessary.

Solid matrix priming (SMP) is a physiological seed treatment in which hydration is controlled through matric potential, and improves the rate and uniformity of seedling emergence. Little research has been done concerning the integration of biocontrol agents with solid matrix priming to control soilborne pathogens. In 1989, G.E. Harman and A.G. Taylor, at Cornell University, tested different bacterial strains and their interaction with solid matrix priming seed treatment on a range of crops and pathogens. Results indicated there is potential to improve biological seed treatments by combining effective biocontrol agents and solid matrix priming. However, little of no work has been done with sugar beets. Therefore, our research objectives are to identify bacterial or fungal strains capable of reducing sugar beet seedling pre- and postemergence damping-off caused by *Rhizoctonia solani* and to evaluate the combination of solid matrix priming with biological control agents to reduce seedling diseases caused by soilborne pathogens.

All bacterial and fungal isolates were selected because of previous reports of antagonism against soilborne plant pathogens. In preliminary testing, six bacterial isolates were tested for their ability to control damping-off caused by *R. solani*. Bacterial strains *Pseudomonas cepacia* (AMMD) and *Pseudomonas fluorescens* (PRA25), from J.L. Parke, and *Enterbacter cloacae* (E.C.), from C.R. Howell, showed promising results for possible disease control. These three isolates were combined with solid matrix priming to test their ability to reduce damping-off caused by *R. solani*.

Screening of fungal biocontrol agents to suppress *R. solani* will include *Gliocladium virens*, strains Cr-4, G-3, and G-9, from C.R. Howell, and strain GL-21, from G.C. Papavizas. Preliminary testing will begin when preparations concerning growth of fungal isolates has been accomplished.

MATERIALS AND METHODS

Storage of pathogen and biocontrol agents. Isolate R-26 of R. solani, anastomosis group AG-4, was isolated from diseased sugar beet seedlings and maintained on barley.

Bacterial isolates were stored in 80% glycerol vials in the freezer at -15 to -20 C, while fungal isolates Cr-4, G-3 and G-9 were maintained on millet at 5 C, and G-21 on potato dextrose agar at room temperature.

Seed priming. The solid matrix priming technique used in these studies, and devised by John Easton (U.S. patent #4,921,874), is a procedure in which a dry hydrous, silicate clay is mixed with equal portions of seed and sterile DI water, incubated for 3-5 days at a controlled temperature on a rotator machine, and then air dried at room temperature.

Combining biocontrol agents with SMP. Bacterial strains were grown in NBY broth at room temperature, and after 48 hours NBY agar plates were inoculated with 2.5 ml spore suspension and incubated at room temperature for 24 hours. Sugar beet seed was inoculated with bacteria during the priming process.

Planting materials and seed treatments. The soil mixture used consisted of sterile field soil and sand, 1:1 ratio. Five barley kernels colonized with *R. solani* were used to infest soil in pots, measuring 13 cm x 11 cm.

Two studies were conducted to test the efficacy of seed treatments against R-26. The first study contained 11 seed treatments, planted in infested and noninfested soil, with 3 replications. Seed treatments consisted of 3 bacterial isolates (AMMD, PRA25, and E.C.) added during the priming process, 3 bacterial isolates added to primed (SMP) seed, 3 bacterial isolates added to nonprimed seed, SMP control, and nonprimed control. The second study consisted of 5 seed treatments, 3 bacterial isolates added during the priming process, SMP control, and nonprimed control. In the second study, seed treated with bacteria during priming received a higher bacterial concentration than did the same seed treatments in the first study. Additional treatments were omitted in this study because the main point of interest was whether an increase in bacterial concentration would significantly reduce disease. Serial dilutions were performed to determine bacterial populations for both studies. Experiments were conducted in an incubator at 21 C. Seedling emergence and preand postemergence damping-off of sugar beet seedlings were recorded.

RESULTS AND DISCUSSION

Seedlings from SMP seed treatments showed a more rapid emergence than nonprimed seed treatments, in infested and noninfested soil. In the first study, adding bacteria during the priming process did not significantly improve disease control. However, in the second study, with higher bacterial populations applied during priming, AMMD/SMP seed treatments significantly reduced disease. In both studies, seedlings from E.C./SMP

seed treatment exhibited a possibility of phytotoxicity. However, no other seed treatments displayed this problem.

Bacterial populations did not proliferate during the priming process as expected. In some instances with certain biocontrol agents, populations were reduced by the SMP process. Reasons for this are unclear and will be investigated in future study.

Once methods and procedures have been developed to our satisfaction, biological seed treatments will be tested against other soilborne fungi, such as *Aphanomyces* and *Pythium*.

Developing Laboratory Techniques for Rearing the Sugarbeet Root Aphid *Pemphigus Betae* Doane

A Report of Research Sponsored by the Beet Sugar Development Foundation 1991

Project Number 520

by

G. J. Michels, Jr., R. L. Deerberg, K. M. Vaughn, and B. J. Thompson

Texas Agricultural Experiment Station 6500 Amarillo Blvd. West Amarillo, Texas 79106 The sugarbeet root aphid *Pemphigus betae* Doane is a heteroecious aphid, exhibiting two life cycles involving cottonwood trees, *Populus* sp., as its primary host and herbaceous plants such as sugarbeets, *Beta vulgaris* L., as its secondary host. Most damage is done to the sugarbeet when its water and nutrient uptake are interfered with as a result of the aphids feeding on the secondary roots. Both yield and sugar content can be reduced.

The majority of the studies conducted have involved the life cycle of the sugarbeet root aphid in relationship with its primary host. Little research has been done concerning the life cycle of the root aphid while living on sugarbeets.

If sugarbeet root aphids can be reared in a controlled environment in a laboratory, more specific information about their life cycle on the secondary host can be obtained. Therefore, the objectives are to develop *in vitro* techniques for rearing sugarbeet root aphids and observing their growth and reproduction cycles while on the sugarbeet.

MATERIALS AND METHODS

We investigated different methods for rearing sugarbeet root aphids *in vitro* using petri dishes (100 x 15 mm). Sections of sugarbeet taproot with intact secondary roots were treated with different concentrations of sodium hypochlorite (Chlorox), rinsing three times with sterile deionized water, or fungicides and then subjected to a number of different water agar media containing antibiotics and fungicides. Aphids from infested sugarbeets were transferred to the beet sections via a paintbrush

moistened with sterile water. The plates were kept on a lab bench at room temperature.

Different water agar solution plates, as previously mentioned, were lined with sterile circles of filter paper or sections of plastic biohazard bags to allow the aphids to roam around more freely. The circles fit over the agar allowing the beet section to be placed directly on the agar for its nutrient source. These beet sections were also treated as previously mentioned. Aphids were transferred to the beet section and kept on a lab bench at room temperature.

A moist, sterile soil mixture contained in petri dishes was used to maintain young sugarbeets about 2 to 4 months old. 400 g of sieved field soil was mixed with 70 ml sterile deionized water, covered, and autoclaved 15 minutes. Beet leaves were removed at the crown and the entire sugarbeet root was used. Beet roots were not subjected to any treatments other than washing 15 minutes with tap water. Working under a laminar flow hood, the sugarbeets were patted dry using sterile paper towels and individually placed in sterile petri dishes containing soil. The plates were wrapped with parafilm.

Aphids were retrieved from an infested sugarbeet field. Sometimes the aphids were dipped in a 1% sodium hypochlorite solution for 10 seconds before being transferred to sugarbeet plates, and other times the aphids were transferred directly from infested beets to sugarbeet plates. Since the first objective was to develop a method for rearing the aphids *in vitro*, we were not concerned with separating the aphids according to their different growth stages. The number of aphids transferred to each plate ranged from 5 to 25 aphids per plate. The plates were sealed with

parafilm. At first the aphid plates were kept at room temperature on a lab bench, subjecting them to light and cooler temperatures at night, but then we decided to keep the aphid plates in a dark incubator at about 26 C. The progress of the aphids were checked periodically using a microscope. Data concerning soil appearance, beet growth and appearance, and aphid reproduction were recorded. Whenever the soil lost too much moisture causing the sugarbeet tissue to degrade, the aphids were transferred to fresh sugarbeet plates and stored properly.

RESULTS AND DISCUSSION

The first two methods using the different water agar solutions as a nutrient source for sugarbeet sections contained in petri dishes were not successful. The aphids were not able to move about freely on the media without getting trapped, nor was mycelial growth sufficiently inhibited by the media solutions or beet treatments. Also, fungicides that were used to treat beet sections had a tendency to discolor the beet tissue. Using sterile circles of filter paper and biohazard bags helped somewhat to alleviate the problem of aphids getting trapped in the agar, but there was still the problem of mycelial growth which was possibly due to the exudates produced when the beets were cut.

We decided a more natural environment would be conducive for rearing aphids. To avoid exudates caused by injury or cuts to the root, the entire taproot of the sugarbeet was used. Dipping the aphids in sodium hypochlorite was time consuming, and there were no indications that the beet-aphid plates containing the dipped aphids performed better than those plates in which the aphids were not

dipped. The sugarbeets retrieved enough moisture and nutrients from the soil to start producing new, delicate, white roots and regrowth at the crown. These were good signs that the beet was continuing to grow and develop, at least for a short time period.

At first, when the beet-aphid plates were kept at room temperature on a lab bench, the aphids response to their environment was not as anticipated. The aphids started to form wings. We were not sure the reasons for this, but thought that temperature and light might be major factors. Consequently, the beet-aphid plates were moved to a dark incubator at a controlled temperature of 26 C. This eliminated the winged phase.

For the most part, the aphids responded well to their new environment. However, the beet-aphid plates varied in performance. Some aphids responded very well to their environment and reproduction rate was high, while other aphids responded poorly and died or seemed to disappear from the plates. Also, some beets remained healthy longer than others. Again, information was recorded concerning the growth and reproduction of the aphids, and the overall appearance of the beet and soil.

The time period that the aphids were kept in the beet-aphid plates varied. Aphids were transferred to new beet plates when the reproduction rate was high, about 50 to 100 plus aphids per plate, or when the sugarbeet tissue started to degrade, not supplying the aphids with enough food. The time that the aphids could survive and reproduce in the beet-aphid plates varied, 1 to 2 months.

Presently, we have accomplished our first objective and have developed a technique for rearing sugarbeet root aphids *in vitro*. We have enough aphids at this point to start studies for monitoring the growth and reproduction cycle responses to different temperature regimes.

