Due Date: 16th September, 2017 Maximum Marks: 30

Instructions

- \bullet Submit the assignment in KD213 before 4 pm on 16th September .
- Yours answers should be precise and clearly written on A4 sheets.
- Cheating/plagiarizing in any form will be heavily penalized.
- Late submissions will receive a mark of zero.

An important aspect of study of curves is to understand when can they be parameterized. We explore this question below. Consider curves on a plane with rational coefficients; these are specified by elements of $\mathbb{Q}[x,y]$. A parametrization of curve C(x,y)=0, $C(x,y)\in\mathbb{Q}[x,y]$, is given by equations x=f(t) and y=g(t) such that C(f(t),g(t))=0 for rational functions f and g. For example, parameterization of circle $x^2+y^2=1$ is $x=\frac{2t}{t^2+1}$ and $y=\frac{t^2-1}{t^2+1}$.

- Question 1. (10 marks) Given a parameterization of curve C(x,y) = 0, $C(x,y) \in \mathbb{Q}[x,y]$, via rational functions $f, g \in \mathbb{Q}(t)$, prove that it gives rise to a ring homomorphism from ring $\mathbb{Q}[x,y]$ to field $\mathbb{Q}(t)$, $A(x,y) \mapsto A(f(t),g(t))$, with kernel containing ideal (C(x,y)).
- Question 2. (5 marks) Conversely, given any ring homomorphism $\phi : \mathbb{Q}[x,y] \mapsto \mathbb{Q}(t)$, show that its kernel is a prime ideal. It can be shown that the kernel is also a principle ideal and hence equals (C(x,y)) for some $C(x,y) \in \mathbb{Q}[x,y]$.

Therefore, ring homomorphisms from $\mathbb{Q}[x,y]$ to $\mathbb{Q}(t)$ capture parameterization of curves. Let ϕ be such a homomorphism with kernel I = (C(x,y)). Let $R = \mathbb{Q}[x,y]/I$. Since I is prime, R is an integral domain. Let F be its field of fractions. We can view ϕ as a homomorphism from F to $\mathbb{Q}(t)$ by extending it as:

$$\phi(\frac{A(x,y)+I}{B(x,y)+I}) = \frac{\phi(A(x,y))}{\phi(B(x,y))} = \frac{A(\phi(x),\phi(y))}{B(\phi(x),\phi(y))}.$$

As we have seen in the class, as a homomorphism of fields, ϕ must be 1-1. A special case occurs when ϕ is an isomorphism.

Question 3. (15 marks) Prove that the map given by $\phi(x) = \frac{2t}{t^2+1}$ and $\phi(y) = \frac{t^2-1}{t^2+1}$ is an isomorphism from F to $\mathbb{Q}(t)$ where F is the field of fractions of integral domain $\mathbb{Q}[x,y]/(x^2+y^2-1)$.