

A CNN-Based Reinforcement Learning Method to Learn How Fires Behave Beyond the Limits of Physics-Based Empirical Models

Will Ross - Stanford University
Department of Earth, Energy, and Environmental Sciences
NeurlPS & Climate Change AI - Autumn 2021

The problem in 2020/21

4M acres burnt

31 fatalities

\$10B damages

Prediction | Mitigation | Evacuation | Insurance

All of this innovation depends on one model

"The model describes very well a fire burning in a field of wheat. As you get further away from that uniformity, the less accurate it becomes."

Richard Rothermel

Innovation 2: high resolution remote sensing

VS.

RapidEye 5m resolution daily

planet

LandSat 30m resolution every 8 Days

Research Direction

Methods

Results - Quantitative Performance

CNN-Based RL, TD(0) Q-Learning

FARSITE Benchmark

Fire Name	Precision	Recall	F-1	Precision	Recall	F-1
Buck	.82	.78	.74	.64	.45	.44
Highline	.77	.69	.59	.62	.43	.39
Pinal	.84	.84	.81	.84	.20	.08
Sulfur	.78	.72	.64	.79	.73	.74

Weighted average F-1 of 0s and 1s in T=0 unburned sample area

Results - Qualitative Performance

Conclusions

- CNN-based RL is an important direction of research for fire spread modeling
 - Tail wind of improved data availability/resolution
 - Tail wind of ML research generally
 - Head wind of interpretability
- All methods will be challenged by reality of modeling a highly stochastic physical process
 - Existing methods performance below expectations
 - Consequences for downstream research

Acknowledgements

Advisors

- John Weyant, Stanford MSE + Precourt Institute
- Stace Maples, Stanford Geospatial Center
- Mykel Kochenderfer, Stanford AA/CS + SISL
- Seungjin Whang, Stanford GSB + OIT

Consultants

- Jason Forthofer, USFS Missoula Fire Science Lab
- Samapriya Roy, Planet Labs
- William Steenbergen, Stanford ICME
- Peter Dolan, Google Research