

Distribuyendo dulces

La Tía Khong está preparando n cajas de dulces para estudiantes de una escuela cercana. Las cajas son numeradas de 0 a n-1 y están inicialmente vacías. La caja i ($0 \le i \le n-1$) tiene una capacidad de c[i] dulces.

La Tía Khong se lleva q dias para preparar las cajas. En el día j ($0 \le j \le q-1$), ella realiza la acción especificada por tres enteros $l[j], \ r[j]$ y v[j], donde $0 \le l[j] \le r[j] \le n-1$ y $v[j] \ne 0$. Para cada caja k que satisface $l[j] \le k \le r[j]$:

- Si v[j]>0, la Tía Khong agrega dulces a la caja k, uno por uno, hasta que ha agregado exactamente v[j] dulces o hasta que la caja esté llena. En otras palabras, si la caja tenía p dulces antes de la acción, tendrá $\min(c[k], p+v[j])$ dulces después de la acción.
- Si v[j] < 0, la Tía Khong quita dulces de la caja k, uno por uno, hasta que ha removido exactamente -v[j] dulces o hasta que la caja esté vacía. En otras palabras, si la caja tenía p dulces antes de la acción, tendrá $\max(0, p + v[j])$ después de la acción.

Tu tarea será determinar el número de dulces en cada caja después de q dias.

Detalles de Implementación

Deberás implementar la siguiente función:

```
int[] distribute_candies(int[] c, int[] l, int[] r, int[] v)
```

- c: un arreglo de tamaño n. Para $0 \le i \le n-1$, c[i] denota la capacidad de la caja i.
- l, r y v: tres arreglos de tamaño q. En el día j, para $0 \le j \le q-1$, la Tía Khong realiza una acción especificada por los enteros l[j], r[j] y v[j], como se describió anteriormente.
- Esta función deberá retornar un arreglo de tamaño n. Se denota dicho arreglo por s. Para $0 \le i \le n-1$, s[i] deberá ser el número de dulces en la caja i después de los q dias.

Ejemplos

Ejemplo 1

Considera la llamada siguiente:

```
distribute_candies([10, 15, 13], [0, 0], [2, 1], [20, -11])
```

Esto significa que la caja $\,0$ tiene capacidad de $\,10$ dulces, la caja $\,1$ tiene capacidad de $\,15$ dulces, y la caja $\,2$ tiene capacidad de $\,13$ dulces.

Al final del día 0, la caja 0 tiene $\min(c[0], 0 + v[0]) = 10$ dulces, la caja 1 tiene $\min(c[1], 0 + v[0]) = 15$ dulces y la caja 2 tiene $\min(c[2], 0 + v[0]) = 13$ dulces.

Al final del día 1, la caja 0 tiene $\max(0,10+v[1])=0$ dulces y la caja 1 tiene $\max(0,15+v[1])=4$ dulces. Ya que 2>r[1], no hay cambio en el número de dulces de la caja 2. El número de dulces al final de cada día se resume en la siguiente tabla:

Día	Caja 0	Caja 1	Caja 2
0	10	15	13
1	0	4	13

Es decir, la función deberá devolver [0,4,13].

Restricciones

- $1 \le n \le 200\,000$
- $1 \le q \le 200\,000$
- $1 \leq \overset{ ext{-}}{c}[i] \leq 10^9$ (para todo $0 \leq i \leq n-1$)
- $0 \le l[j] \le r[j] \le n-1$ (para todo $0 \le j \le q-1$)
- ullet $-10^9 \le v[j] \le 10^9, v[j]
 eq 0$ (para todo $0 \le j \le q-1$)

Subtareas

- 1. (3 puntos) $n, q \leq 2000$
- 2. (8 puntos) v[j] > 0 (para todo $0 \le j \le q-1$)
- 3. (27 puntos) $c[0] = c[1] = \ldots = c[n-1]$
- 4. (29 puntos) l[j]=0 y r[j]=n-1 (para todo $0\leq j\leq q-1$)
- 5. (33 puntos) Sin restricciones adicionales.

Calificador de Ejemplo

El calificador de ejemplo lee la entada en el siguiente formato:

- línea 1: n
- Iínea 2: c[0] c[1] ... c[n-1]
- línea 3: q
- Iínea 4+j ($0 \leq j \leq q-1$): $l[j] \; r[j] \; v[j]$

El calificador de ejemplo imprime tus respuestas en el siguiente formato:

• Iínea 1: s[0] s[1] ... s[n-1]