(a) [[ Multiplying a complex number by  $i = \exp(i\pi/2)$  rotates it clockwise by  $\pi/2$ . Drawing 1 - i and 1 + i on a Venn diagram we see that rotating 1 - i in this way gives 1 + i. ]]

Since i(1-i) = 1 + i then 
$$\left(\frac{1-i}{1+i}\right)^3 = \left(\frac{1-i}{i(1-i)}\right)^3 = \frac{1}{i^3} = i$$
.

[[ I have included a couple of other methods. ]]

$$\left(\frac{1-i}{1+i}\right)^{3} = \left(\frac{\sqrt{2}\exp(-\pi/4)}{\sqrt{2}\exp(\pi/4)}\right)^{3} = (\exp(-\pi/2))^{3} = \exp(-3\pi/2) = i.$$

$$\left(\frac{1-i}{1+i}\right)^{3} = \left(\frac{(1-i)^{2}}{(1+i)(1-i)}\right)^{3} = \left(\frac{-2i}{2}\right)^{3} = -i^{3} = i.$$

- (b)  $\exp(2 + \pi i/6) = e^2 \{\cos(\pi/6) + i \sin(\pi/6)\}$  (Unit A2, Section 4, Para. 1) =  $\frac{e^2}{2} (\sqrt{3} + i)$
- (c) [[ Parts c and d are very similar to those on the 2007 paper. In both cases the value in the bracket can be written as  $\exp(i\theta)$ . ]]

$$Log\left(\frac{1+i\sqrt{3}}{2}\right) = Log(\exp(i\pi/3)) = \frac{\pi}{3}i.$$

Alternatively using A2, Sect 5, Para. 1

$$Log\left(\frac{1+i\sqrt{3}}{2}\right) = \log_e\left(\left|\frac{1+i\sqrt{3}}{2}\right|\right) + iArg\left(\frac{1+i\sqrt{3}}{2}\right) = \log_e 1 + \frac{\pi}{3}i = \frac{\pi}{3}i$$

(d) 
$$\left(\frac{1+i\sqrt{3}}{2}\right)^{3-i} = \exp\left(\left(3-i\right) Log\left(\frac{1+i\sqrt{3}}{2}\right)\right)$$
 (A2, Sect. 5, Para. 3) 
$$= \exp\left(\left(3-i\right)\frac{\pi}{3}i\right) = \exp\left(i\pi + \frac{\pi}{3}\right) = -\exp\left(\frac{\pi}{3}\right)$$
 using result from part (c)



# **(b)**

|                                          | A   | В   | B - A |
|------------------------------------------|-----|-----|-------|
| (i) open<br>A3, Sect. 4, Para. 1         | No  | Yes | Yes   |
| (ii) connected<br>A3, Sect. 4, Para. 3   | Yes | Yes | No    |
| (iii) a region<br>A3, Sect. 4, Paras 6-8 | No  | Yes | No    |
| (iv) bounded<br>A3, Sect. 5, Para. 4     | No  | Yes | Yes   |
| (v) compact<br>A3, Sect. 5, Para. 5      | No  | No  | No    |
|                                          |     |     |       |

(a) The standard parametrization for the line segment  $\Gamma$  is (A2, Sect. 2, Para. 3)  $\gamma(t) = (1-t)i + t1 = t + (1-t)i$   $(t \in [0, 1])$ 

Since  $\gamma$  is a smooth path and (Re z)(Im z) is continuous along the path  $\Gamma$  then (B1, Sect. 2, Para. 1)

$$\int_{\Gamma} (\operatorname{Re} z) (\operatorname{Im} z) \, dz = \int_{0}^{1} (\operatorname{Re} \gamma(t)) (\operatorname{Im} \gamma(t)) \gamma'(t) \, dt$$

$$= \int_{0}^{1} t (1-t) (1-i) dt = (1-i) \left[ \frac{t^{2}}{2} - \frac{t^{3}}{3} \right]_{0}^{1} = \frac{1-i}{6}$$

(b)  $f(z) = \frac{z^2 - 1}{\overline{z}^2 + 1}$  is continuous on  $\mathbb{C} - \{-i, i\}$  and hence on the circle C.

Therefore the Estimation Theorem (Unit B1, Section 4, Para. 3) will be used to find an upper limit.

The length of C is  $L = 2\pi * 2 = 4\pi$ .

[[ We hve to find an upper limit for f(z). Sometimes I get confused over whether I need to find an upper limit or lower limit for the numerator (top) and denominator of f(z). I then think of a simple example. 2/2 < 3/2 < 3/1. So we need an upper limit for the numerator (2 < 3) and a lower limit for the denominator (2 > 1). ]]

Using the Triangle Inequality (Unit A1, Section 5, Para. 3b) then, for  $z \in C$ , we have

$$|z^2 - 1| \le |z^2| + 1 = |z|^2 + 1 = 4 + 1 = 5$$

Using the Backwards form of the Triangle Inequality (Unit A1, Section 5, Para. 3c) then, for  $z \in C$ , we have

$$\left|\overline{z}^2 + 1\right| \ge \left|\left|\overline{z}^2\right| - 1\right| = \left|4 - 1\right| = 3$$

Therefore  $M = \left| \frac{z^2 - 1}{\overline{z}^2 + 1} \right| \le \frac{5}{3}$  for  $z \in \mathbb{C}$ .

So 
$$\left| \int_{\Gamma} f(z) dz \right| \le ML = \frac{5}{3} * 4\pi = \frac{20}{3} \pi$$
.

Let  $\mathscr{R}$  be the simply-connected region  $\{z: |z| < 3\}$ .

(a)

C is a closed contour in  $\mathscr{R}$ , and  $\frac{\cos z}{z-\pi}$  is analytic on  $\mathscr{R}$ .

By Cauchy's Theorem (B2, Sect. 1, Para. 4)

$$\int_C \frac{\cos z}{z - \pi} dz = 0.$$

(b)

As C is a simple-closed contour in  $\mathcal{R}$ ,  $f(z) = \cos z$  is analytic on  $\mathcal{R}$ , and  $\alpha = \pi/3$  is inside C, then by Cauchy's Integral Formula (B2, Sect. 2, Para. 1)

$$\int_{C} \frac{\cos z}{z - \pi/3} dz = \int_{C} \frac{f(z)}{z - \pi/3} dz = 2\pi i f(\pi/3) = 2\pi i \cos^{\pi}/3 = \pi i.$$

(c)

As C is a simple-closed contour in  $\mathcal{R}$ ,  $f(z) = \cos z$  is analytic on  $\mathcal{R}$ , and  $\alpha = \pi/2$  is inside C, then by Cauchy's n'th Derivative Formula (B2, Sect. 3, Para. 1) with n = 3 we have

$$\int_{C} \frac{\cos z}{(z-\pi/2)^4} dz = \frac{2\pi i}{3!} f^{(3)}(\pi/2) = \frac{\pi i}{3} \sin \frac{\pi}{2} = \frac{\pi i}{3}.$$

(a)

$$f(z) = \frac{z+1}{z(z^2+4)} = \frac{z+1}{z(z-2i)(z+2i)}$$
 has simple poles at  $z = 0$ , and  $z = \pm 2i$ .

Res 
$$(f,0) = \lim_{z \to 0} (z-0) f(z) = \lim_{z \to 0} \frac{z+1}{(z^2+4)} = \frac{1}{4}$$
 [[ C1, Sect. 1, Para. 1]]

Res
$$(f,2i) = \lim_{z \to 2i} (z-2i) f(z) = \lim_{z \to 2i} \frac{z+1}{z(z+2i)} = -\frac{1+2i}{8}$$

Res 
$$(f, -2i)$$
 =  $\lim_{z \to -2i} (z + 2i) f(z)$  =  $\lim_{z \to -2i} \frac{z+1}{z(z-2i)}$  =  $-\frac{1-2i}{8}$ 

[[ You may prefer the Cover-Up Rule (C1, Sect. 1, Para. 3) ]]

(b)

I shall use the result given in Unit C1, Section 3, Para. 8.

Let 
$$p(t) = t + 1$$
,  $q(t) = t(t^2 + 4)$ .

p and q are polynomial functions such that the degree of q exceeds that of p by at least 2, and the pole of p/q on the real axis at z = 0 is simple. Therefore

$$\int_{-\infty}^{\infty} \frac{p(t)}{q(t)} dt = \int_{-\infty}^{\infty} \frac{t+1}{t(t^2+4)} dt = 2\pi i S + \pi i T$$

where S is the sum of the residues of f at the poles in the upper half-plane, and T is the sum of the residues of f at the poles on the real axis.

As S = Res(f, 2i) and T = Res(f, 0).

$$\int_{-\infty}^{\infty} \frac{t+1}{t(t^2+4)} dt = 2\pi i \left(-\frac{1+2i}{8}\right) + \pi i \frac{1}{4} = \frac{\pi}{2}$$

[[ As it is a real integral we expect the imaginary terms to cancel]]

(a) Let  $f(z) = z^7 + 3z^5 - 1$ . The function f is analytic on the simply-connected region  $\mathbf{R} = \mathbb{C}$  so Rouché's theorem (C2, Sect. 2, Para. 4) can be used.

Let 
$$g_1(z) = z^7$$
.

Using the Triangle Inequality (A1, Sect. 5, Para. 2) when  $z \in C_1 = \{z : |z| = 2\}$  then

$$| f(z) - g_1(z) | = |3z^5 - 1| \le |3z^5| + |-1| = 96 + 1 < 128 = 2^7 = | g_1(z) |.$$

Since  $C_1$  is a simple-closed contour in  $\mathbf{R}$  then by Rouché's theorem f has the same number of zeros as  $g_1$  inside the contour  $C_1$ . Therefore f has 7 zeros inside  $C_1$ .

Let 
$$g_2(z) = 3z^5$$
.

Using the Triangle Inequality when  $z \in C_2 = \{z : |z| = 1\}$  we have

$$| f(z) - g_2(z) | = |z^7 - 1| \le |z^7| + | -1| = 1 + 1 < 3 = | g_2(z) |.$$

As  $C_2$  is a simple-closed contour in R then by Rouché's theorem f has the same number of zeros as  $g_2$  inside the contour  $C_2$ . Therefore f has 5 zeros inside  $C_2$ .

So f(z) has 7 - 5 = 2 solutions in the set  $\{z: 1 \le |z| < 2\}$ . Now we have to find if there are any solutions on  $C_2$ .

Since 
$$|z_1 \pm z_2 \pm \dots z_n| \ge |z_1| - |z_2| - \dots - |z_n|$$
, (A1, Sect. 5, Para. 3(e)) then on  $C_2$  
$$|z^7 + 3z^5 - 1| = |3z^5 + z^7 - 1| \ge |3z^5| - |z^7| - |1| = 3 - 1 - 1 > 0.$$

As f(z) is non-zero on  $C_2$  then there are exactly 2 solutions of f(z) = 0 in the set  $\{z : 1 \le |z| \le 2 \}$ .

(b)  $f'(z) = 7z^6 + 15z^4$ . On the real-axis f'(z) > 0 when  $z \ne 0$  and so f(z) is increasing except at z = 0. Since f(0) = -1 and f(1) = 3 then f has only one real solution. Therefore the other 6 solutions are imaginary.

If  $\alpha$  is a solution of  $z^7+3z^5-1=0$  then taking the complex conjugate of both sides of the equation gives  $\bar{\alpha}^{-7}+3\bar{\alpha}^{-5}-1=0$ . So both  $\alpha$  and its conjugate are solutions of the equation

As one member of each of the 3 conjugate pairs lies above the real-axis then there are 3 solutions in the upper half-plane.

(a)

The conjugate velocity function  $\bar{q}(z) = -i/z^2$ .

As q is a steady continuous 2-dimensional velocity function on the region  $\mathbb{C} - \{0\}$  and  $\overline{\mathbf{q}}$  is analytic on  $\mathbb{C} - \{0\}$  then q is a model fluid flow (Unit D2, Section 1, Para. 14).

(b) On  $\mathbb{C} - \{0\}$ ,  $\Omega(z) = \frac{i}{z}$  is a primitive of  $\overline{\mathbf{Q}}$ . Therefore  $\Omega$  is a complex potential function for the flow (Unit D2, Section 2, Para. 1).

The stream function 
$$\Psi(x, y) = \operatorname{Im}\Omega(z)$$
 (Unit D2, Section 2, Para. 4)  

$$= \operatorname{Im}\left(\frac{i}{x+iy}\right) = \operatorname{Im}\left(\frac{ix+y}{x^2+y^2}\right) = \frac{x}{x^2+y^2}$$
, where  $z = x + iy$ ,  $(x,y) \neq (0,0)$ 

A streamline through the point 2 satisfies the equation

$$\frac{x}{x^2+y^2} = \Psi((2,0)) = \frac{1}{2}$$
 (Unit D2, Section 2, Para. 4)

Therefore the streamline through i has the equation  $x^2 - 2x + y^2 = 0$  or  $(x-1)^2 + y^2 = 1$ 

Since q((2,0)) = i/4 (positive y direction) then the direction of flow is as shown.

[[ As q is not defined at 0 the origin is omitted from the circle in the diagram below. ]]



(c) If  $C_{\Gamma}$  is the circulation of along  $\Gamma$  and  $F_{\Gamma}$  is the flux of q across  $\Gamma$  then (D1, Sect. 1, Para. 1 and D2, Sect. 1, Paras. 9 & 10)

$$C_{\Gamma} + iF_{\Gamma} = \int_{\Gamma} \overline{q}(z)dz = \Omega\left((4,0)\right) - \Omega\left((2,0)\right) = \frac{i}{4} - \frac{i}{2} = -\frac{i}{4}$$

Therefore the flux of q across  $\Gamma$  is  $-\frac{1}{4}$ .

[[ The normal is in the direction -i. ]]

(a)

Using the result in Unit D3, Section 2, Para. 1 then the iteration sequence  $z_{n+1} = 2z_n^2 - 4z_n + 2$  is conjugate to the iteration sequence

$$W_{n+1} = W_n^2 + (2*2 + (-4)/2 - (-4)^2/4) = W_n^2 - 2$$

and conjugating function h(z) = 2z - 2.

Therefore  $w_0 = h(z_0) = 2z_0 - 2 = 2 - 2 = 0$ . (Unit D3, Section 1, Para. 7).

(b)

If 
$$\square$$
 is a fixed point of  $P_{-2}$  then  $P_{-2}(\square) = \square^2 - 2 = \square$  (D3, Sect. 1, Para 3).  
As  $\square^2 - \square - 2 = (\square + 1)(\square - 2) = 0$  then  $P_{-2}(z)$  has fixed points at  $z = -1$  and  $z = 2$ .

$$P_{-2}'(z) = 2z.$$

As  $|P_{-2}'(-1)| = 2 > 1$  and  $|P_{-2}'(2)| = 4 > 1$  then both are repelling fixed points (D3, Sect. 1, Para. 5).

(c) [[ If you have add coordinates on the axes of the diagram of the Mandelbrot set then you will see that c is not in the Mandelbrot set.]]

The Mandelbrot set M can be specified as

$$|c:|P_c^n(0)| \le 2$$
, for  $n = 1,2,...$ 

where  $P_c(z) = z^2 + c$ . (D3, Sect. 4, Para. 5 and D3, Sect. 2, Para. 2).

Let  $c = \frac{1}{2} + i$ 

$$P_c(0) = c = \frac{1}{2} + i$$
.

$$P_c^2(0) = (\frac{1}{2} + i)^2 + (\frac{1}{2} + i) = \frac{1}{4} - 1 + i + \frac{1}{2} + i = -\frac{1}{4} + 2i.$$

As  $|P_c^2(0)| > 2$  then c does not lie in the Mandelbrot set.

(a)(i)

$$f(x + iy) = 2e^{iRez} - \bar{z} = 2e^{ix} - (x - iy) = (2\cos x - x) + i(2\sin x + y) = u(x, y) + iv(x, y)$$
where  $u(x,y) = 2\cos x - x$ , and  $v(x,y) = 2\sin x + y$  are real-valued functions.

(a)(ii)

f is defined on the region  $\mathbb{C}$ .

$$\frac{\partial u}{\partial x} = -2\sin x - 1, \qquad \frac{\partial u}{\partial y} = 0, \qquad \frac{\partial v}{\partial x} = 2\cos x, \qquad \frac{\partial v}{\partial y} = 1$$

If f is differentiable at  $(a, b) \in \mathbb{C}$ , then the Cauchy-Riemann equations hold (A4, Sect. 2, Para. 1) so

$$\frac{\partial u}{\partial x}(a,b) = -2\sin a - 1 = 1 = \frac{\partial v}{\partial y}(a,b), \text{ and}$$

$$\frac{\partial v}{\partial x}(a,b) = 2\cos a = 0 = -\frac{\partial u}{\partial v}(a,b)$$

So  $\sin a = -1 \text{ and } \cos a = 0.$  (A)

Therefore the Cauchy-Riemann equations hold on the set

 $S = \{(a, b) : a = (2n + 3/2)\pi \text{ for any integer n, any real number b} \}.$ 

As f is defined on the region  $\mathbb{C}$ , and the partial derivatives  $\frac{\partial u}{\partial x}$ ,  $\frac{\partial u}{\partial y}$ ,  $\frac{\partial v}{\partial x}$ ,  $\frac{\partial v}{\partial y}$ 

- 1. exist on  $\mathbb{C}$
- 2. are continuous on S.
- 3. satisfy the Cauchy-Riemann equations on S then, by the Cauchy-Riemann Converse Theorem (A4, Sect. 2, Para. 3), f is differentiable on S.

(a)(iii) If  $(a, b) \in S$ , then using equations (A)

$$f'(a, b) = \frac{\partial u}{\partial x}(a, b) + i \frac{\partial v}{\partial x}(a, b) = (-2 \sin a - 1) + i 2 \cos a = 1$$
 (A4, Sect. 2, Para. 3).

Therefore f' is constant on S.

(b)(i) The domain of g is  $\mathbb{C}$  (Unit A4, Section 1, Para. 7) and its derivative g'(z) = 2z also has domain  $\mathbb{C}$  (Unit A4, Section 3, Para. 4). Therefore g is analytic on  $\mathbb{C}$  -  $\{0\}$ . Since  $g'(z) \neq 0$  on  $\mathbb{C}$  -  $\{0\}$  then g is conformal on  $\mathbb{C}$  -  $\{0\}$  (Unit A4, Section 4, Para. 6).

(b)(ii) As g is analytic on  $\mathbb{C}$  and  $g'(2i) \neq 0$  then a small disc centred at 2i is mapped approximately (Unit A4, Section 1, Para. 11) to a small disc centred at g(2i) = -4 + 2 = -2. The disc is rotated by Arg  $(g'(2i)) = \text{Arg } 4i = \pi/2$ , and scaled by a factor |g'(2i)| = |4i| = 4.

(b)(iii) 1 is in the domain of 
$$\gamma_1$$
 and 
$$\gamma_1(1) = 1 - 1 + 2i = 2i$$

0 is in the domain of  $\gamma_2$  and  $\gamma_2(0) = (0+2)i = 2i$ . Therefore  $\Gamma_1$  and  $\Gamma_2$  meet at the point 2i.

As 
$$\gamma_1'(t) = 2t + 2i$$
 then at 1,  $Arg(\gamma_1'(1)) = Arg(2(1+i)) = \frac{\pi}{4}$ .

As 
$$\gamma_{2}'(t) = 3i$$
 then at 0,  $Arg(\gamma_{2}'(0)) = Arg(3i) = \frac{\pi}{2}$ .

Therefore the angle from  $\Gamma_1$  to  $\Gamma_2$  at their point of intersection is  $\pi/4$ .

(b)(iv)  $\gamma_1(t) = x + iy$ , where  $x = t^2 - 1$  and y = 2t. Therefore  $y^2 = 4t^2 = 4(x + 1)$ . So  $\Gamma_1$  is a parabola.



In diagram (b)(iv) the imaginary-axis is  $\Gamma_2$ . In diagram (b)(v) the horizontal line is  $g(\Gamma_2)$ .

(a)

The domain of f,  $A = \mathbb{C} - \{2n\pi : n \text{ is an integer}\}.$  [[ as  $cos(2n\pi) = 1$  ]]

(b)

$$\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} \dots$$
, for  $z \in \mathbb{C}$ . (B3, Sect. 3, Para. 5)

So 
$$1 - \cos z = \frac{z^2}{2} \left( 1 - \frac{2z^2}{4!} + \frac{2z^4}{6!} \dots \right) = \frac{z^2}{2} \left( 1 - \frac{z^2}{12} + \frac{z^4}{360} \dots \right).$$

So 
$$\frac{z}{1-\cos z} = \frac{2}{z} \left( 1 - \frac{z^2}{12} + \frac{z^4}{360} - \dots \right)^{-1}$$

$$= \frac{2}{z} \left\{ 1 + \left( \frac{z^2}{12} - \frac{z^4}{360} + \dots \right) + \left( \frac{z^2}{12} - \frac{z^4}{360} + \dots \right)^2 + \dots \right\}$$

$$= \frac{2}{z} \left\{ 1 + \frac{z^2}{12} + z^4 \left( -\frac{1}{360} + \frac{1}{144} \right) + \dots \right\}$$

As 
$$-\frac{1}{360} + \frac{1}{144} = \frac{1}{720}(-2+5) = \frac{1}{240}$$
 then the Laurent series about 0 for f is 
$$\frac{2}{z} + \frac{z}{6} + \frac{z^3}{120} + \dots = \sum_{n=-\infty}^{\infty} a_n z^n \text{ for } 0 < |z| < 2\pi$$

As C is a circle with centre 0 then (B4, Sect. 4, Para. 2)

$$\int_{C} f(z)dz = 2\pi i a_{-1} = 2\pi i (2) = 4\pi i.$$

(c) [[ Is this correct? ]]

Suppose that g is another analytic function with domain A which agrees with f on  $\{iy: y > 0\}$ 

The set  $S = \left\{ i \left( 1 + \frac{1}{n} \right) : n = 1, 2, 3, ... \right\} \subseteq A$  and has the limit point  $i \in A$ .

f agrees with g throughout the set  $S \subseteq A$  and S has a limit point which is in A. By the Uniqueness theorem (B3, Sect. 5, Para. 7) f agrees with g throughout A. Hence f is the only analytic function with domain A such that  $f(iy) = \frac{iy}{1-\cosh y}$  for y > 0.

(d)

Since  $\cos z = 1$  when z = 0,  $z = \pm 2\pi$ ,  $z = \pm 4\pi$ , .... then f(z) has singularities at points of the form  $2k\pi$ ,  $k \in \mathbb{Z}$ .

Singularity at z = 0 (k = 0).

At z = 0 we can use the Laurent series found in part (a). Since  $\lim_{z \to 0} zf(z) = 2$  then the singularity at 0 is a pole of order 1 (B4, Sect. 3, Para. 2).

Singularities at  $z = 2k\pi$  where  $k \in \mathbb{Z} - \{0\}$ .

$$f(z) = \frac{z}{1 - \cos z} = \frac{z - 2k\pi}{1 - \cos(z - 2k\pi)} + \frac{2k\pi}{1 - \cos(z - 2k\pi)}$$

Since

$$\lim_{z \to 2k\pi} (z - 2k\pi)^2 f(z) = \lim_{z \to 2k\pi} \left\{ \frac{(z - 2k\pi)^2}{1 - \cos(z - 2k\pi)} + \frac{2k\pi (z - 2k\pi)^2}{1 - \cos(z - 2k\pi)} \right\} = 0 + 4k\pi$$

then there is a pole of order 2 at  $z = 2k\pi$  (B4, Sect. 3, Para. 2).

(a)

Let  $D_f = \{z: |z| < 3\}$  and  $D_g = \{z: |z| > 3\}$ .  $D_f$  and  $D_g$  are regions. Since  $D_f \cap D_g = \emptyset$  then f and g are not direct analytic continuations of each other (C3, Sect. 1, Para. 1).

When  $z \in D_f$  then |z|/3 < 1 and the geometric series  $\sum_{n=0}^{\infty} \left(\frac{z}{3}\right)^n$  is convergent and has the sum

$$\frac{1}{1-\frac{z}{3}} = \frac{3}{3-z}$$
. (B3, Sect. 3, Para. 5)

When  $z \in D_g$  then 3/|z| < 1 and the geometric series  $\sum_{n=0}^{\infty} \left(\frac{3}{z}\right)^n$  is convergent and has

the sum 
$$\frac{1}{1-\frac{3}{z}} = \frac{z}{z-3}$$
. So  $-\sum_{n=1}^{\infty} \left(\frac{3}{z}\right)^n = -\frac{3}{z}\sum_{n=0}^{\infty} \left(\frac{3}{z}\right)^n = -\frac{3}{z}\left(\frac{z}{z-3}\right) = \frac{3}{3-z}$ .

Let 
$$h(z) = \frac{3}{3-z}$$
 on  $D_h$ , where  $D_h = \mathbb{C} - \{3\}$ .

Since f = h when  $z \in D_f \subseteq D_f \cap D_h$  then h is a direct analytic continuation of f.

Since g = h when  $z \in D_g \subseteq D_g \cap D_h$  then g is a direct analytic continuation of h.

Since  $(f, D_f)$ ,  $(g, D_g)$ ,  $(h, D_h)$  form a chain then f and g are indirect analytic continuations of each other (C3, Sect. 2, Para. 3).

(b)

Let 
$$f(z) = z^2 \exp(1 + z^2)$$
 and  $R = \{z : |z| < 2\}$ .

[[ The boundary  $\partial R$  is defined in A3, Sect. 5, Para. 10. ]]

As f is analytic on the bounded region R and continuous on its closure  $\overline{R}$  (C2, Sect. 4, Para. 3) then, by the Maximum Principle (C2, Sect. 4, Para. 4), there exists an  $\alpha \in \partial R = \{ z : |z| = 2 \}$  such that  $|f(z)| \le |f(\alpha)|$  for  $z \in \overline{R}$ .

When  $z \in \partial R$  we can write it in the form  $z = 2 \exp(i\theta)$ , where  $\theta$  is real.

Then 
$$|z^2 \exp(1+z^2)| = |z^2| |\exp(1+z^2)|$$
 (A1, Sect. 1, Para. 8)  
=  $4 \exp(\text{Re}(1+z^2))$  (A2, Sect. 4, Para. 2)  
=  $4 \exp(\text{Re}(1+4\exp(i2\theta)))$   
=  $4 \exp(1+4\cos 2\theta)$ .

This is a maximum when  $\cos 2\theta = 1$ . So  $2\theta$  is a multiple of  $2\pi$ .

Therefore max  $\{ | z^2 \exp(1+z^2) | : | z | \le 2 \} = 4e^5$ . The maximum is attained when  $z = 2e^0 = 2$ , and  $z = 2e^{i\pi} = -2$ .

(a)

Using the formula for a transformation mapping points to the standard triple (D1, Sect. 2, Para. 11) then the Möbius transformation  $\hat{f}_1$  which maps -1 - i, 0, and 1 + i to the standard triple of points 0, 1, and  $\infty$  respectively is

$$f_1(z) = \frac{(z - (-1 - i))}{(z - (1 + i))} \frac{(0 - (1 + i))}{(0 - (-1 - i))} = \frac{-z - (1 + i)}{z - (1 + i)}$$

(b)(i)



(b)(ii) Let C be the boundary of S. Then C is a generalised circle (D1, Sect. 1, Para. 10), and -1 - i and 1 + i are inverse points of C since, when z ∈ C,
| z - (-1 - i) | = | z - (1 + i) | (D1, Sect. 3, Para. 4)

Therefore  $\hat{f}_1(-1-i) = 0$  and  $\hat{f}_1(1+i) = \infty$  are inverse points with respect to  $\hat{f}_1(C)$  (D1, Sect. 3, Para. 6). So  $\hat{f}_1(C)$  is a circle with centre 0 (D1, Sect. 3, Para. 5) and, as  $\hat{f}_1(0) = 1$ , of radius 1. Therefore  $\hat{f}_1(S) = T$ .

[[ Before I consulted the handbook I said a general point on the boundary of S was a – ia where a is real.

As  $\hat{f}_1(a-ia) = \frac{-a+ia-1-i}{a-ia-1-i} = \frac{-(a+1)+i(a-1)}{(a-1)-i(a+1)}$  then a-ia is mapped to a point on the unit circle as  $|\hat{f}_1(a-ia)| = 1$ . As extended Mobius transformations map generalised circles onto generalized circles that the boundary of S is mapped onto the unit circle. As the point  $-1-i \in S$  and is mapped to 0 then  $0 \in \hat{f}_1(S)$ . Therefore  $\hat{f}_1(S) = T$ .

(b)(iii) [[ Unit D1, Sect. 4, Para. 5 shows the effect of exp z on  $\{z : \frac{\pi}{2} < \text{Im } z < \frac{\pi}{2} \}$ . ]]

If  $w \in R$  then

$$\exp(w) = \exp(z + 5\pi i/4) = \exp(5\pi i/4) \exp(z)$$
, where  $z \in \{z : \frac{\pi}{2} < \text{Im } z < \frac{\pi}{2} \}$ .

Therefore the image of R may be found by finding the image of  $\{z : \frac{\pi}{2} < \text{Im } z < \frac{\pi}{2}\}$  and then rotating it counter-clockwise about the origin by  $5\pi/4$ . Using the figure in D1, Sect. 4, Para. 5 it is apparent that  $\exp(R) = S$ .

[[ I find it easier to imagine a clockwise rotation by  $3\pi/4$ . ]]

So a conformal mapping from f(R) onto S is  $g(z) = \exp(z)$ .

Since the combination of conformal mapping is also conformal then a conformal mapping from R to T is

$$f(z) = (f_1 \circ g)(z) = f_1(\exp(z)) = \frac{-e^z - (1+i)}{e^z - (1+i)}$$

(b)(iv) As  $(g^{-1} \circ g)(z) = z$  then  $g^{-1}(z) = \text{Log } z + 2\pi i$ .

Since  $f^{-1} = (f_{1 \circ g})^{-1} = (g^{-1} \circ f_{1}^{-1})$  then using Unit D1, Section 2, Para. 6 we have

$$f^{-1}(w) = Log(f_1^{-1}(w)) + 2\pi i = Log \frac{-(1+i)w + (1+i)}{-w - 1} + 2\pi i = Log((1+i)\frac{w - 1}{w + 1}) + 2\pi i$$

(b)(v) Therefore

$$p = f^{-1}(0) = Log(-(1+i)) + 2\pi i = \log_e |-1-i| + iArg(-1-i) + 2\pi i = \log_e \sqrt{2} + i\frac{5}{4}\pi.$$

Not every conformal mapping from R to T maps p to 0.

If a is real then, for any point  $w \in R$ , the point  $w + a \in R$ . So the function  $g_1(z) = \exp(z + a)$  also maps R to S and  $(f_1 \circ g_1)(z)$  maps R to T. Therefore if a is non-zero then the conformal mapping  $(f_1 \circ g_1)$  will map another point, p - a, to 0.