Natural Language Processing

Lecture 11: Hidden Markov Models

Finding POS Tags

Bill directed plays about English kings

Bill directed plays about English kings

PropN Verb Noun Adj Verb Verb PIN Prep Adv Part Adj Noun

Bill directed plays about English kings

PropN Verb Noun Adj Verb Verb PIN Prep Adv Part Adj Noun

PIN Verb

p(t | Bill)

PropN 41 0.118

Verb 2 0.006

Noun 30 0.870

Adj 0 0.000

Ver 1 1.000
b 0

p(t |plays) Ver 1 b 8 0.750 PIN 6 0.250

		p(t about)
Prep	154 6	0.750
Adv	502	0.244
Part	12	0.006

Running Example: POS

PIN

Verb

Bill directed plays about English kings

-			,	PIN A		•	dj Ioun
			p(t English)			p(t kings)	
	Adj	11	0.344	PIN	3	1.000	
	Noun	21	0.656	Verb	0	0.000	

Hidden Markov Model

- q0: start state ("silent")
- qf: final state ("silent")
- Q: set of "normal" states (excludes q0 and final qf)
- Σ: vocabulary of observable symbols
- γi,j: probability of transitioning to qj given current state qi
- $\eta i, w$: probability of emitting $w \in \Sigma$ given current state qi

HMM as a Noisy Channel

States vs. Tags

Bill directed plays about English kings

PropN Verb Noun Adj Verb

Verb PIN Prep Adv Part Adj Noun

p(PropN <s> <s>)</s></s>	0.202
p(Verb <s> <s>)</s></s>	0.023
p(Noun <s> <s>)</s></s>	0.040

Bill directed plays about English kings

PropN A
Verb Noun

Adj Verb Verb PIN Prep Adv Part Adj Noun

	0.202	p(Adj <s> PropN)</s>	0.004	0.00081
p(PropN <s> <s>)</s></s>		p(Verb <s> PropN)</s>	0.139	0.02808
n()/orb <c> <c>)</c></c>	0.023	p(Adj <s> Verb)</s>	0.062	0.00143
p(Verb <s> <s>)</s></s>		p(Verb <s> Verb)</s>	0.032	0.00074
p(Noun <s> <s>)</s></s>	0.040	p(Adj <s> Noun)</s>	0.005	0.00020
p(Noull <5> <5>)		p(Verb <s> Noun)</s>	0.222	0.00888

Bill directed plays about English kings

PropN Adj		Verb		Prep	A	\dj	PIN
Verb	Verb	PII	N	Adv	N	loun	Verb
Noun				Part			
n (A di I	C> DropN)	0.00001	p(Verb	PropN Adj)	0.011		0.00001
p(Adj	<s> PropN)</s>	0.00081	p(PIN	PropN Adj)	0.157	7	0.00013
n/\/orb	L <c> DropN)</c>	0 02000	p(Verb	PropN Verb)	0.162	2	0.00455
p(verb	<s> PropN)</s>	0.02606	p(PIN	PropN Verb)	0.022	2	0.00062
n(Adi l	<s> Verb)</s>	0.00143 0.00074	p(Verb	Verb Adj)	0.009)	0.00001
p(Au)	<3/ Verb)		∎D(PIN I	Verb Adj)	0.246	5	0.00035
n()/orb	<s> Verb)</s>		p(Verb	Verb Verb)	0.078	3	0.00006
b(selp	<3> Velu)	0.00074	p(PIN	Verb Verb)	0.034	<u>l</u>	0.00003
p(Adi l	∠C> Moup)	0.00020	p(Verb	Noun Adj)	0.020)	0.00000
p(Au)	<s> Noun)</s>		∎D(PIN I	Noun Adj)	0.103	3	0.00002
n(\/orb	<s> Noun)</s>	0 0000	p(Verb	Noun Verb)	0.176	5	0.00156
h(verb	\3 / NOUII)	0.0000	p(PIN	Noun Verb)	0.018	3	0.00016

Bill directed plays about English kings

PropN Verb Noun Adj Verb

Verb PIN Prep Adv Part Adj Noun

		p(t Bill)	p(Bill t)
PropN	41	0.118	0.00044
Verb	2	0.006	0.00002
Noun	303	0.870	0.00228

Bill directed plays about English kings

PropN Verb Noun Adj Verb Verb PIN Prep Adv Part Adj Noun

			p(t directed)	p(directed t)
	Adj	0	0.000	0.00000
	Verb	10	1.000	0.00008

Bill directed plays about English kings

PropN Verb Noun Adj Verb Verb PIN Prep Adv Part Adj Noun

		p(t plays)	p(plays t)
Verb	18	0.750	0.00014
PIN	6	0.250	0.00010

HMM as a Noisy Channel

Part-of-Speech Tagging Task

- Input: a sequence of word tokens x
- Output: a sequence of part-of-speech tags y, one per word

HMM solution: find the most likely tag sequence, given the word sequence.

If I knew the best state sequence for words $x1 \dots xn - 1$, then I could figure out the last state.

That decision would depend only on state n-1.

$$y_n^* = \arg \max_{q_i \in Q} p(Y_1 = y_1^*, \dots, Y_{n-1} = y_{n-1}^*, Y_n = q_i \mid \mathbf{x})$$

$$= \arg \max_{q_i \in Q} V[n - 1, y_{n-1}^*] \cdot \gamma_{y_{n-1}^*, i} \cdot \eta_{i, x_n} \cdot \gamma_{i, f}$$

$$= \arg \max_{q_i \in Q} \gamma_{y_{n-1}^*, i} \cdot \eta_{i, x_n} \cdot \gamma_{i, f}$$

I don't know that best sequence, but there are only |Q| options at n-1.

So I only need the score of the best sequence up to n-1, ending in each possible state at n-1. Call this V[n-1, q] for $q \in Q$.

Ditto, at every other timestep n - 2, n - 3, ... 1.

Viterbi Algorithm (Recursive Equations)

$$V[0, q_0] = 1$$

$$V[t, q_j] = \max_{q_i \in Q \cup \{q_0\}} V[t - 1, q_i] \cdot \gamma_{i,j} \cdot \eta_{j,x_t}$$

$$\text{goal} = \max_{q_i \in Q} V[n, q_i] \cdot \gamma_{i,f}$$

Viterbi Algorithm (Procedure)

```
V[*, *] \leftarrow 0
V[0, q0] \leftarrow 1
for t = 1 ... n
  foreach qj
      foreach qi
         V[t, qj] \leftarrow \max\{V[t, qj], V[t-1, qi] \times \gamma i, j \times \eta i, xt\}
foreach qi
  goal \leftarrow max{ goal, V[n, qi] \times \gamma i, f }
return goal
```

Bill directed plays about English kings

q0	1				_
q0q1q2q3q4					
<i>q</i> 2					
<i>q</i> 3					
q 4					
q					
Q					
qf					

Bill directed plays about English kings

