第5章练习P99

作业布置: P₁₀₀

2(1)(2)(3)

3(补充:分析符号串 bef 是否为文法的句子)

7(1)(2)

2. 对下面的文法

G[E]: $E \rightarrow TE^{/}$

 $E' \rightarrow +E|\epsilon$

 $T \rightarrow FT'$

 $T \rightarrow T | \epsilon$

 $F \rightarrow PF'$

 $F \rightarrow *F | \epsilon$

 $P \rightarrow (E)|a|b|^{\wedge}$

- (1)计算这个文法的每个非终结符的 FIRST 集和 FOLLOW 集。
- (2) 证明这个方法是 LL(1)的。
- (3) 构造它的预测分析表。
- (4) 构造它的递归下降分析程序。

解:

(1)计算这个文法的每个非终结符的 FIRST 集和 FOLLOW 集。 FIRST 集合有:

 $FIRST(E)=FIRST(T)=FIRST(F)=FIRST(P)=\{(,a,b,^{\wedge}\};$

```
FIRST(E') = \{+, \epsilon\}
 FIRST(T)=FIRST(F)=FIRST(P)=\{(a,b,^{\circ}\};
 FIRST(T')=FIRST(T) \cup {\varepsilon}={(,a,b,^,\varepsilon};
 FIRST(F)=FIRST(P)=\{(a,b,^{\wedge}\};
 FIRST(F')=FIRST(P)=\{*,\epsilon\};
 FIRST(P)=\{(a,b,^{\wedge})\};
 FOLLOW 集合有:
 FOLLOW(E)=\{\},\#\};
 FOLLOW(E')=FOLLOW(E)=\{\},\#\};
 FOLLOW(T)=FIRST(E<sup>′</sup>)∪FOLLOW(E)={+,),#};//不包含ε
 FOLLOW(T') = FOLLOW(T) = FIRST(E') \cup FOLLOW(E) = \{+, \}, \#\};
 FOLLOW(F)=FIRST(T')∪FOLLOW(T)={(,a,b,^,+,),#}://不包含 ε
FOLLOW(F')=FOLLOW(F)=FIRST(T') \cup FOLLOW(T)=\{(,a,b,^+,+,),\#\};
 FOLLOW(P)=FIRST(F')∪FOLLOW(F)={*,(,a,b,^,+,),#};//不包含ε
      (2) 证明这个方法是 LL(1)的。
     各产生式的 SELECT 集合有:
   SELECT(E\rightarrowTE')=FIRST(T)={(,a,b,^\};
   SELECT(E^{\prime} \rightarrow +E)={+};
   SELECT(E' \rightarrow \varepsilon)=FOLLOW(E')={),#}
   SELECT(T\rightarrowFT')=FIRST(F)={(,a,b,^\};
   SELECT(T' \rightarrow T)=FIRST(T)={(,a,b,^\};
   SELECT(T' \rightarrow \varepsilon)=FOLLOW(T')={+,),#};
   SELECT(F \rightarrow PF')=FIRST(P)={(,a,b,^};
```

SELECT(
$$F' \rightarrow *F'$$
)={*};
SELECT($F' \rightarrow \varepsilon$)=FOLLOW(F')={(,a,b,^,+,),#};
SELECT($P \rightarrow (E)$)={(}
SELECT($P \rightarrow a$)={a}
SELECT($P \rightarrow b$)={b}
SELECT($P \rightarrow b$)={^}

可见,相同左部产生式的 SELECT 集的交集均为空,所以文法 G[E]是 LL(1)文法。

(3) 构造它的预测分析表。

文法 G[E]的预测分析表如下:

	+	*	()	a	b	^	#
Е			TE [/]		TE [/]	TE [/]	TE/	
\mathbf{E}'	+E			3				3
T			\mathbf{FT}'		\mathbf{FT}'	\mathbf{FT}'	FT [/]	
\mathbf{T}'	3		Т	ε	Т	Т	Т	3
F			PF [/]		PF [/]	\mathbf{PF}^{\prime}	PF [/]	
F [/]	3	*F′	3	3	3	3	3	3
P			(E)		a	b	^	

(4) 构造它的递归下降分析程序。(没有布置作业)

对每个非终结符写出不带回溯的递归子程序如下:

char CH;//存放当前的输入符号 void P_E()//非终结符 E 的子程序 {

if(IsIn(CH,FIRST_TEP)) //FIRST_TEP 为 T→TE/的右部的

```
FIRST集合,产生式E→TE/
  {
    P_T();
    P EP();
  else ERR;
void P EP()//非终结符 E/的子程序
  if(CH=='+') //产生式 E/→+E
    READ(CH);
    P_E();
  else//产生式 E/→ε
    if(IsIn(CH,FOLLOW EP)) //FOLLOW EP 为 E/的 FOLLOW
  集合
        return;
    else ERR;
void P T()//非终结符 T 的子程序
  if(IsIn(CH,FIRST_FTP)) //FIRST_TEP 为 T→FT/的右部的
FIRST 集合,产生式 T→FT/
  {
    P F();
    P_TP();
  else ERR;
void P TP()//非终结符 T/的子程序
{
  if(IsIn(CH,FIRST_T)) //FIRST_T 为产生式 T/→T 的右部的
FIRST 集合,产生式 T/→T
  {
```

```
P T();
  else//产生式 T<sup>/</sup>→ε
     if(IsIn(CH,FOLLOW TP)) //FOLLOW TP 为 T/的 FOLLOW
  集合
         return;
     else ERR;
void P_F()//非终结符 F 的子程序
  if(IsIn(CH,FIRST_PFP)) //FIRST_PFP 为 F→PF 的 右 部 的
FIRST集合,产生式F→PF/
  {
     P_P();
     P_FP();
  else ERR;
void P FP()//非终结符 F/的子程序
{
  if(CH=='*') //产生式 F/→*F/
     READ(CH);
     P_FP();
  else//产生式 F/→ε
     if(IsIn(CH,FOLLOW FP)) //FOLLOW FP 为 F<sup>/</sup>的 FOLLOW
  集合
         return;
     else ERR;
void P_P()//非终结符 P 的子程序
```

```
if(CH=='(')
         READ(CH);
         P E();
         if(CH==')') READCH(CH);
         else
            ERR;
      else if(CH=='a') READ(CH);
      else if(CH=='b') READ(CH);
      else if(CH=='^') READ(CH);
      else ERR;
   }
    3. 已知文法 G[S]: S→MH | a
                         H→LSo | ε
                         K \rightarrow dML \mid \varepsilon
                         L→eHf
                         M \rightarrow K \mid bLM
    判断 G 是否是 LL(1) 文法,如果是,构造 LL(1)分析表,
并分析符号串 bef 是否为文法的句子。
    解:
      (1) 首先求各非终结符的 FIRST 集合:
    FIRST(S)=\{a\} \cup FIRST(M) \cup FIRST(H)=\{a\} \cup \{b,d, \epsilon\} \cup \{e,d\}
\varepsilon = \{a,b,d,e, \varepsilon \};
    FIRST(H)=FIRST(L) \cup { \epsilon }={e, \epsilon };
    FIRST(K)=\{d, \epsilon\};
    FIRST(L)=\{e\};
```

FIRST(M)=FIRST(K) \cup {b}={b,d, ε };

然后求非终结符的 FOLLOW 集合:

 $FOLLOW(S) = \{o, \#\}$

 $FOLLOW(H)=FOLLOW(S) \cup \{f\}=\{f,o,\#\}$

FOLLOW(K)=FOLLOW(M)=FIRST(H) U FOLLOW(S)={e,o,#};// 不包含 ε

 $FOLLOW(L) = FIRST(S) \ \cup \ \{o\} \ \cup \ FOLLOW(K) \ \cup \ FIRST(M) \ \cup \ FOLLOW(M)$

={a,b,d,e,o,#} U FOLLOW(M)={a,b,d,e,o,#};//不包含 ε

FOLLOW(M)=FIRST(L) U FIRST(H) U FOLLOW(S)={e,o,#}//不包含ε

最后求各产生式的 SELECT 集合:

SELECT(S \rightarrow MH)=(FIRST(MH)-{ ϵ }) \cup FOLLOW(S)={b,d,e} \cup {o,#}={b,d,e,o,#};

 $SELECT(S \rightarrow a) = \{a\}$

 $SELECT(H \rightarrow LSo) = \{e\}$

SELECT($H \rightarrow \varepsilon$)=FOLLOW(H)={f,o,#}

 $SELECT(K \rightarrow dML) = \{d\}$

 $SELECT(K \rightarrow \varepsilon) = FOLLOW(K) = \{e,o,\#\}$

 $SELECT(L \rightarrow eHf) = \{e\}$

SELECT(M \rightarrow K)=(FIRST(K)-{ ϵ }) \cup FOLLOW(M)={d,e,o,#}

 $SELECT(M \rightarrow bLM) = \{b\}$

可见,相同左部产生式的 SELECT 集的交集均为空,所以文法 G[S]是 LL(1)文法。

(2) 文法 G[E]的预测分析表如下:

	a	О	d	e	f	b	#
S	a	MH	MH	MH		MH	MH
Н		3		LSo	3		3
K		3	dML	3			3
L				eHf			
M		K	K	K		bLM	K

(3) 下面用预测分析程序、栈和预测分析表对符号串 bef 进行分析,给出栈的变化过程如下表:

步骤	符号栈	读入符号	剩余符号串	使用产生式
1	#S	b	ef#	ѕ→мн
2	#HM	b	ef#	M→bLM
3	#HMLb	b	ef#	"b" 匹配
4	#HML	e	f#	L→eHf
5	#HMfHe	e	f#	"e"匹配
6	#HMfH	f	#	н→ε
7	#HMf	f	#	"f"匹配
8	#HM	#		м→к
9	#HK	#		K→ ε
10	#H	#		н→ε
11	#	#		接受

分析成功, 所以符号串 bef 是文法的句子。

7、对于一个文法若消除了左递归,提取了左公共因子后是否一定为 LL(1)文法? 试对下面方法进行改写,并对改写后的文法进行判

断。

- (1) A→baB|εB→Abb|a
- (2) A→aABe|a B→Bb|d

解:对于一个文法若消除了左递归,提取了左公共因子后不一定为 LL(1)文法。如果新的文法中无空产生式,则一定为 LL(1)文法,如果有空产生式,则需要进行 LL(1)判断才能决定新方法是否一定是 LL(1)文法。

(1) 由于 SELECT(A→baB)={b},

SELECT(A→ε)=FOLLOW(A)={b,#}, 两集合有交集, 所以该文法不 是 LL(1)方法。

该文法已经消除了左递归与左公共因子,一般来说是不能再改写了。但根据本文法的具体情况有以下改写:

用产生式 $A \rightarrow baB$ 与 $A \rightarrow \varepsilon$ 分别替换产生式 $B \rightarrow Abb$ 有: $B \rightarrow baBbb|bb$, 提取这两个新产生式的左公共因子有:

B→bB', B'→aBbb|b, 这样改写后文法 G'[A]为:

A→baB|ε

B→bB'|a

B'→aBbb|b

每个产生式的 SELECT 集合为:

 $SELECT(A \rightarrow baB) = \{b\}$

SELECT(A \rightarrow ϵ)= Φ

 $SELECT(B \rightarrow bB') = \{b\}$

 $SELECT(B \rightarrow a) = \{a\}$

 $SELECT(B' \rightarrow aBbb) = \{a\}$

 $SELECT(B' \rightarrow b) = \{b\}$

可见,相同左部产生式的 SELECT 集的交集均为空,所以文法 G'[A]是 LL(1)文法。

(2) 显然文法的第1, 2个产生式的右部具有左公共因子 a, 而产生式 B→Bb 具有左递归, 因此文法可改写为:

 $A \rightarrow aA'$

 $A' \rightarrow ABe | \varepsilon$

B→dB'

B'→bB'|ε

由于 SELECT(A/'→ABe)={a},

SELECT(A'→ε)=FOLLOW(A')=FOLLOW(A)=FIRST(B)∪{#}={d,#}, 交集为空。

而 SELECT(B'→bB'={b},

SELECT(B'→ε)=FOLLOW(B')=FOLLOW(B)={e}, 交集也为空。

而非终结符 A 与 B 都只有一个产生式,不存在求 SELECT 的交集问题。所以改写后的方法为 LL(1)文法。