Computación Gráfica 2019

Unidad 9 Curvas y Superficies

Curvas y Superficies en CG

Uso Curvas En Computación Gráfica

Modelar objetos "suaves" u orgánicos

Curvas y Superficies en CG

Uso Curvas En Computación Gráfica

Definir trayectorias para movimientos, cámaras, etc.

Usted NO está aquí

Algunos aspectos a tener en cuenta

Cómo define el "usuario" la forma de la curva

Qué información se guarda y qué información se calcula

Cómo se rasteriza o cómo se encuentran los puntos de la curva

Ecuaciones Explícitas

Mapeo directo entre una coordenada y la(s) otra(s):

$$y = f(x), \qquad x_0 \ge x \ge x_1$$

Ejemplo: Recta: y = mx + b

- + Fácil de graficar
- No todas pueden representarse

Se utilizan en la visualización de resultados de procesos experimentales

Ecuaciones Implícitas

Los puntos de la curva son los puntos que satisfacen una ecuación:

$$f(x,y)=0$$

Ejemplo: Círculo:
$$x^2 + y^2 - r^2 = 0$$

- + Es fácil asociar los miembros y coeficientes de la ecuación con propiedades de la curva
 - + Es fácil saber si un punto pertenece o no
 - + Son "orientables"
 - Difícil de graficar en CG

Ecuaciones Paramétricas

Mapeo entre un parámetro arbitrario t y los puntos de la curva:

$$\begin{aligned}
 x &= f(t) \\
 y &= g(t)
 \end{aligned}, \quad t_0 \le t \le t_1$$

Ecuaciones Paramétricas

Mapeo entre un parámetro arbitrario t y los puntos de la curva:

$$\begin{aligned}
 x &= f(t) \\
 y &= g(t)
 \end{aligned}, \quad t_0 \le t \le t_1$$

Ejemplo: Recta:
$$x=t$$
, $y=mt+b$, $x_0 \le t \le x_1$
Ejemplo: Círculo: $x=r\cos(t)$, $y=r\sin(t)$, $0 \le t < 2\pi$

- + Fácil de graficar
- + Pueden representar todo tipo de curvas

Generativas o Procedurales

Proveen un procedimiento para generar los puntos de la curva

Ejemplos: Subdivisiones, Fractales

$$\begin{aligned} x &= f(t) \\ y &= g(t), \quad \Rightarrow \quad x = F(t) = \begin{bmatrix} f(t) \\ g(t) \\ h(t) \end{bmatrix}, \quad t_0 \le t \le t_1 \end{aligned}$$

t puede verse como el tiempo:

 $\mathbf{F}(t)$ responde a ¿Donde está el lápiz en el tiempo t?

Introducen un elemento "invisible": velocidad ¿Donde está el punto para t=0.5?

$$\begin{aligned} x &= f(t) \\ y &= g(t), \quad \Rightarrow \quad x = \mathbf{F}(t) = \begin{bmatrix} f(t) \\ g(t) \\ h(t) \end{bmatrix}, \quad t_0 \leq t \leq t_1 \end{aligned}$$

t puede verse como el tiempo:

Reparametrización

Normalización del dominio:

$$t \in [t_0, t_1] \Rightarrow t = (1 - u)t_0 + ut_1 = t_0 + u(t_1 - t_0)$$

Velocidad constante = por longitud de arco Implica resolver para t:

$$u = \int_{0}^{t} \sqrt{\left[\mathbf{f}'(\mathbf{v})\right]^{2}} d\mathbf{v}$$

Forma de la funciones f,g,h:

Necesidad de definir y editar fácilmente Pocos parámetros Significado de los parámetros Eficiencia

Más usadas:

Polinomios/Series de Potencias

Trigonométricas

Series de Potencia y Funciones Base

Polinomios de grado N:

$$\boldsymbol{F}(t) = \sum_{i=0}^{N} \boldsymbol{a_i} t^i$$

N+1 parámetros (orden)

Ejemplo: Segmento de Recta

$$F(\alpha) = (1-\alpha) p_0 + \alpha p_1 \Rightarrow F(t) = \underbrace{a_0}_{p_0} t^0 + \underbrace{a_1}_{p_1-p_0} t^1$$

Series de Potencia y Funciones Base

Es más fácil definirlas mediante

- puntos de control (o polígono de control)
- funciones mezcladoras (blending functions)

$$\boldsymbol{F}(t) = \sum_{k=0}^{N} \boldsymbol{p_k} B_k(t)$$

Orden = Cantidad de puntos de control = Grado+1

Curvas de Bezier

Blending functions:

(polinomios de Bernstein)

$$B_{i}^{n}(u) = C_{i}^{n} u^{i} (1-u)^{n-i}$$

$$C_{i}^{n} = \frac{n!}{i!(n-i)!}$$

Ejemplo orden=3, grado=n=2:

$$B_0^2(u) = \frac{2}{0!(2-0)!}u^0(1-u)^{2-0} = \frac{2}{1(2)}u^0(1-u)^2 = (1-u)^2$$

$$B_1^2(u) = \frac{2!}{1!(2-1)!} u^1 (1-u)^{2-1} = \frac{2}{1(1)} u^1 (1-u)^1 = 2u(1-u)$$

$$B_2^2(u) = \frac{2!}{2!(2-2)!}u^2(1-u)^{2-2} = \frac{2}{2(1)}u^2(1-u)^0 = u^2$$

Curvas de Bezier

Blending functions:

(polinomios de Bernstein)

$$B_{i}^{n}(u) = C_{i}^{n} u^{i} (1-u)^{n-i}$$

$$C_{i}^{n} = \frac{n!}{i!(n-i)!}$$

Ejemplo orden=4, grado=n=3:

$$B_0^3(u) = \frac{3!}{0!(3-0)!} u^0 (1-u)^{3-0} = \frac{6}{1(6)} u^0 (1-u)^3 = (1-u)^3$$

$$B_1^3(u) = \frac{3!}{1!(3-1)!} u^1 (1-u)^{3-1} = \frac{6}{1(2)} u^1 (1-u)^2 = 3u(1-u)^2$$

$$B_2^3(u) = \frac{3!}{2!(3-2)!} u^2 (1-u)^{3-2} = \frac{6}{2(1)} u^2 (1-u)^1 = 3u^2 (1-u)$$

$$B_3^3(u) = \frac{3!}{3!(3-3)!} u^3 (1-u)^{3-3} = \frac{6}{6(1)} u^3 (1-u)^0 = u^3$$

Curvas de Bezier: Blending Functions

Curvas de Bezier

Blending functions:

(polinomios de Bernstein)

$$B_{i}^{n}(u) = C_{i}^{n} u^{i} (1-u)^{n-i}$$

$$C_{i}^{n} = \frac{n!}{i!(n-i)!}$$

- Interpola puntos extremos
- Aproxima puntos interiores
- Control global
- Los puntos de la curva son combinaciones afines convexas de los puntos de control
- Unicidad
- Suavidad

Algoritmo De Casteljau

¿Qué tiene que ver con los polinomios de Bernstein?

Algoritmo De Casteljau

Ejemplo n=3:

$$P_{01} = (1-u)P_0 + uP_1 \qquad P_{12} = (1-u)P_1 + uP_2$$

$$P(u) = (1-u)\underbrace{((1-u)P_0 + uP_1)}_{P_{01}} + u\underbrace{((1-u)P_1 + uP_2)}_{P_{12}}$$

$$P(u) = (1-u)^2 P_0 + (1-u)u P_1 + u (1-u) P_1 + u^2 P_2$$

$$P(u) = \underbrace{(1-u)^2}_{B_0^2} P_0 + \underbrace{2u(1-u)}_{B_1^2} P_1 + \underbrace{u^2}_{B_2^2} P_2$$

Derivada de una Curva

¿Qué es la derivada de un curva?

$$\frac{dP(u)}{du} = \lim_{\Delta u \to 0} \frac{P(u + \Delta u) - P(u)}{\Delta u}$$

$$\frac{dP}{du} = d \frac{\begin{pmatrix} (1-u)^3 & 3(1-u)^2u & 3(1-u)u^2 & u^3 \\ B_0^3 & P_0 + B_1^3 & P_1 + B_2^3 & P_2 + B_3^3 P_3 \end{pmatrix}}{du}$$

$$\frac{dP}{du} = d \frac{\left(\frac{(1-u)^3}{B_0^3} P_0 + \frac{B_1^3}{B_1^3} P_1 + \frac{B_2^3}{B_2^3} P_2 + \frac{B_3^3}{B_3^3} P_3\right)}{du}$$

$$\frac{dP}{du} = d \frac{\left(\frac{(1-u)^3}{A_0^3} P_0 + 3(1-u)^2 u P_1 + 3(1-u) u^2 P_2 + u^3 P_3\right)}{du}$$

$$\frac{dP}{du} = \frac{d(1-u)^3}{A_0^3} P_0 + 3\frac{d(1-u)^2 u}{A_0^3} P_1 + 3\frac{d(1-u)u^2}{A_0^3} P_2 + \frac{du^3}{A_0^3} P_3$$

$$\frac{dP}{du} = \frac{d(1-u)^3}{du} P_0 + 3 \frac{d(1-u)^2 u}{du} P_1 + 3 \frac{d(1-u)u^2}{du} P_2 + \frac{du^3}{du} P_3$$

$$\frac{dP}{du} = (-3(1-u)^2) P_0 + 3(-2(1-u)u + 1(1-u)^2) P_1 + 3(2u(1-u)-u^2) P_2 + (3u^2) P_3$$

$$\frac{dP}{du} = (-3(1-u)^{2})P_{0} + 3(-2(1-u)u+1(1-u)^{2})P_{1} + 3(2u(1-u)-u^{2})P_{2} + (3u^{2})P_{3} + 3(2u(1-u)-u^{2})P_{2} + (3u^{2})P_{3}$$

$$\frac{dP}{du} = -3B_{0}^{2}(P_{0}) + -3B_{1}^{2}(P_{1}) + 3B_{0}^{2}(P_{1}) + 3B_{1}^{2}(P_{2}) + 3B_{2}^{2}(P_{3})$$

$$\frac{dP}{du} = 3(B_{0}^{2}(P_{1}-P_{0}) + B_{1}^{2}(P_{2}-P_{1}) + B_{2}^{2}(P_{3}-P_{2}))$$

$$\frac{dP}{du} = 3(B_0^2(P_1 - P_0) + B_1^2(P_2 - P_1) + B_2^2(P_3 - P_2))$$

$$\frac{dP}{du} = 3(B_0^2(P_1 - P_0) + B_1^2(P_2 - P_1) + B_2^2(P_3 - P_2))$$

$$\frac{dP}{du} = 3(B_0^2P_1 - B_0^2P_0 + B_1^2P_2 - B_1^2P_1 + B_2^2P_3 - B_2^2P_2)$$

$$\frac{dP}{du} = 3\left(\underbrace{B_0^2P_1 + B_1^2P_2 + B_2^2P_3}_{P_{123}}\right) - \underbrace{\left(\underbrace{B_0^2P_0 + B_1^2P_1 + B_2^2P_2}_{P_{012}}\right)}_{P_{012}}$$

$$\frac{dP}{du} = 3 \left(\underbrace{B_0^2 P_1 + B_1^2 P_2 + B_2^2 P_3}_{P_{123}} - \underbrace{B_0^2 P_0 + B_1^2 P_1 + B_2^2 P_2}_{P_{012}} \right)$$

Globalmente:

$$\frac{d}{du}P = n\sum_{i=0}^{n-1} B_i^{n-1} \Delta_i$$

Propiedad: Variation Diminishing

Localmente:

$$\frac{d}{du}P_0^n = n\Delta_0^{n-1} = n(P_i^{n-1} - P_0^{n-1})$$

Último segmento de DC tangente a la curva

Subvidisión de Curvas de Bezier

De Casteljau genera los nuevos puntos de control

El tamaño del Convex-Hull se reduce cuadráticamente

Unión de Curvas de Bezier

Piecewise Bézier Curves (Bézier por tramos)

¿Cuantos tramos usar?

¿Cuan bien aproximo la forma que busco?

¿Cuán complicado es cada tramo?

Continuidad Paramétrica vs Geométrica

¿Cómo se pegan?

Continuidad **Paramétrica**Derivadas iguales

Continuidad **Geométrica**

Derivadas Proporcionales Independiente de la parametrización

Splines de Catmull-Rom

$$P_{i}^{-} = P_{i} - \frac{l_{i}}{3}$$

$$P_{i}^{+} = P_{i} + \frac{l_{i}}{3}$$

$$l_{i} = \frac{dP(i)}{du} = \frac{P_{i+1} - P_{i-1}}{(i+1) - (i-1)} = \frac{P_{i+1} - P_{i-1}}{2}$$

Elevación de Grado

$$P = \underbrace{(1-u)^{2}}_{B_{0}^{2}} P_{0} + \underbrace{2(1-u)u}_{B_{1}^{2}} P_{1} + \underbrace{u^{2}}_{A} P_{2}$$

$$P = \underbrace{(1-u)^{3}}_{B_{0}^{3}} \hat{P}_{0} + \underbrace{3(1-u)^{2}u}_{B_{1}^{3}} \hat{P}_{1} + \underbrace{3(1-u)u^{2}}_{B_{2}^{3}} \hat{P}_{2} + \underbrace{u^{3}}_{B_{3}^{3}} \hat{P}_{3}$$

Elevación de Grado

$$P = \underbrace{(1-u)^{2}}_{B_{0}^{2}} P_{0} + \underbrace{2(1-u)u}_{P_{1}} P_{1} + \underbrace{u^{2}}_{P_{2}} P_{2} \qquad P = uP + (1-u)P$$

$$P = \underbrace{u(1-u)^{2}}_{uP} P_{0} + 2(1-u)u^{2}P_{1} + u^{3}P_{2} + \underbrace{(1-u)^{3}}_{(1-u)P} P_{0} + 2(1-u)^{2}uP_{1} + (1-u)u^{2}P_{2}$$

$$\underbrace{(1-u)^{3}}_{\hat{P}_{0}} P_{0} + \underbrace{u(1-u)^{2}}_{(1-u)P} \underbrace{(P_{0} + 2P_{1})}_{3\hat{P}_{1}} + \underbrace{(1-u)u^{2}}_{B_{2}^{3}} \underbrace{(2P_{1} + P_{2})}_{3\hat{P}_{2}} + \underbrace{u^{3}}_{B_{3}^{3}} P_{2}$$

$$P = \underbrace{(1-u)^{3}}_{B_{0}^{3}} \hat{P}_{0} + \underbrace{3(1-u)^{2}u}_{B_{1}^{3}} \hat{P}_{1} + \underbrace{3(1-u)u^{2}}_{B_{2}^{3}} \hat{P}_{2} + \underbrace{u^{3}}_{B_{3}^{3}} \hat{P}_{3}$$

B-Splines

Base polinómica (Cox/de Boor):

$$B_{k,1}(t) = \begin{cases} 1 & \text{si } u_k \le t \le u_{k+1} \\ 0 & \text{en otro caso} \end{cases}$$

$$B_{k,d}(t) = \frac{t - u_k}{u_{k+d-1} - u_k} B_{k,d-1}(t) + \frac{u_{k+d} - t}{u_{k+d} - u_{k+1}} B_{k+1,d-1}(t)$$

u = vector de knots

knot= valor de t donde cambian las funciones activas Continuidad Cⁿ⁻¹ (ahorrando puntos de control)

Suma 1

No interpolantes*

Control local

knots =
$$\{1, 2, 3, 4, 5, 6, 7\}$$

$$P = \{\underbrace{wx, wy, wz}, w\} = \{wX, w\} \Rightarrow P^* = \frac{wX}{w}$$

$$\underbrace{\{wX_{01}, w_{01}\}}_{P_{01}} = (1-u)\{\underbrace{w_0X_0, w_0}_{P_0}\} + \underbrace{u\{\underbrace{w_1X_1, w_1}\}}_{P_1} = \underbrace{(1-u)w_0X_0 + uw_1X_1}_{w_{01}X_{01}}, \underbrace{(1-u)w_0 + uw_1}_{w_{01}}\}$$

$$P_{01}^{*} = \frac{(1-u)w_{0}X_{0} + uw_{1}X_{1}}{w_{01}} = \frac{(1-u)w_{0}}{w_{01}}X_{0} + \frac{uw_{1}}{w_{01}}X_{1}$$

$$P_{01} = \left\{ \underbrace{(1-u)w_{0}X_{0} + uw_{1}X_{1}}_{w_{01}X_{01}}, \underbrace{(1-u)w_{0} + uw_{1}}_{w_{01}} \right\}$$

$$P_{12} = \left\{ \underbrace{(1-u)w_{1}X_{1} + uw_{2}X_{2}}_{w_{12}X_{12}}, \underbrace{(1-u)w_{1} + uw_{2}}_{w_{12}} \right\}$$

$$P_{012}^{*} = \underbrace{(1-u)w_{01}}_{w_{012}}X_{01} + \underbrace{uw_{12}}_{w_{012}}X_{12} \qquad w_{012} = (1-u)w_{01} + uw_{12}$$

Coordenadas Homogéneas

$$P_{i}^{*} = \{w_{i} x_{i}, w_{i} y_{i}, w_{i} z_{i}, w_{i}\} = \{w_{i} P_{i}, w_{i}\}$$

$$\boldsymbol{P} = \frac{\sum B_i^n w_i \boldsymbol{P_i}}{\sum B_j^n w_j} = \sum \frac{w_i B_i^n}{\sum B_j^n w_j} \boldsymbol{P_i}$$

Representación de Circunferencias

Curvas NURBS

Knot vector arbitrario

Coordenadas Homogéneas

$$P_{i}^{*} = \{w_{i}x_{i}, w_{i}y_{i}, w_{i}z_{i}, w_{i}\} = \{w_{i}P_{i}, w_{i}\}$$

$$\boldsymbol{P} = \frac{\sum B_i^n w_i \boldsymbol{P_i}}{\sum B_j^n w_j} = \sum \frac{w_i B_i^n}{\sum B_j^n w_j} \boldsymbol{P_i} -$$

NURBS:

NU: Non-Uniform

► R: Rational

BS: B-Splines

Base polinómica (Cox/de Boor):

$$B_{k,1}(t) = \begin{cases} 1 & \text{si } u_k \le t \le u_{k+1} \\ 0 & \text{en otro caso} \end{cases}$$

$$B_{k,d}(t) = \frac{t - u_k}{u_{k+d-1} - u_k} B_{k,d-1}(t) + \frac{u_{k+d} - t}{u_{k+d} - u_{k+1}} B_{k+1,d-1}(t)$$

Curva:
$$\mathbf{x} = \mathbf{F}(u)$$
, $u_0 \le u \le u_1$

Superficie: $\mathbf{x} = \mathbf{F}(u, v)$, $\begin{array}{c} u_0 \leq u \leq u_1 \\ v_0 \leq v \leq v_1 \end{array}$

En base al producto cartesiano o tensorial:

$$P(u,v) = \sum_{i}^{n} \sum_{j}^{m} B^{n}(u) B^{m}(v) P_{i,j} =$$

$$= \sum_{i}^{n} B^{n}(u) \left(\sum_{j}^{m} B^{m}(v) P_{i,j} \right) = \sum_{j}^{m} B^{m}(v) \left(\sum_{i}^{n} B^{n}(u) P_{i,j} \right)$$

Pts de Control: grilla regular de (n+1)x(m+1)

$$P(u,v) = \sum_{i}^{n} \sum_{j}^{m} B^{n}(u) B^{m}(v) P_{i,j} =$$

$$= \sum_{i}^{n} B^{n}(u) \left(\sum_{j}^{m} B^{m}(v) P_{i,j} \right)$$

$$= \sum_{j}^{m} B^{m}(v) \left(\sum_{i}^{n} B^{n}(u) P_{i,j} \right)$$
Parameters of the proof of t

Tangentes y Normales:

$$\hat{\mathbf{N}}(u,v) = \frac{\partial \mathbf{P}(u,v)}{\partial u} \times \frac{\partial \mathbf{P}(u,v)}{\partial v}$$

$$\mathbf{N}(u,v) = \frac{\hat{\mathbf{N}}(u,v)}{|\hat{\mathbf{N}}(u,v)|}$$

Superficie Bilineal

$$P(u,v) = (1-v) [(1-u) P_{11} + u P_{12}] + v [(1-u) P_{21} + u P_{22}]$$

Superficie Cilídrica

$$P(u,v) = (1-v) \sum_{i} B_{i}^{n}(u) P_{i} + v \sum_{i} B_{i}^{n}(u) (P_{i}+d)$$

$$= \sum_{i} B_{i}^{n}(u) P_{i} + v d$$

$$P_{2}$$

$$P_{1}$$
Curve

Curvas y Superficies

Superficie Reglada

$$P(u,v) = (1-v) \sum_{i} B_{i}^{n}(u) P_{1,i} + v \sum_{i} B_{i}^{n}(u) P_{2,i}$$

Superficie Traslacional

$$P_{ij} - P_{kj} = cte \ \forall \ j$$
 $P_{ij} - P_{ik} = cte \ \forall \ i$

Copia por traslación paralela de cada curva sobre la otra

Superficie de Revolución

Superficie Cónica

$$P(u,v) = (1-v) \sum_{i} B_{i}^{n}(u) P_{i} + v P_{\infty}$$

Patch de Coons

Superficies Recortadas ("Trimmed")

Subvidision Surfaces

Doo-Sabin

Catmull-Clark

Butterfly, Loop, Midedeg, Kobbelt, etc...

Doo-Sabin

Catmull-Clark
$$P' = \frac{F + 2R + (n-3)P}{n} = \frac{\frac{4R'}{n} - \frac{F}{n} + P * (n-3)}{n}$$

