```
In [1]: ! wget --header="Host: archive.ics.uci.edu" --header="User-Agent: Mozilla/5.0
         (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/7
         .0.3626.81 Safari/537.36" --header="Accept: text/html,application/xhtml+xml,a
         plication/xml;q=0.9,image/webp,image/apng,*/*;q=0.8" "https://archive.ics.uc
         .edu/ml/machine-learning-databases/00463/XOR_Arbiter_PUFs.zip" -0 "XOR_Arbite
         PUFs.zip" -c
        --2019-02-06 06:42:37-- https://archive.ics.uci.edu/ml/machine-learning-data
         ases/00463/XOR_Arbiter_PUFs.zip
         esolving archive.ics.uci.edu (archive.ics.uci.edu)... 128.195.10.249
         onnecting to archive.ics.uci.edu (archive.ics.uci.edu) | 128.195.10.249 | :44
         ... connected.
         TTP request sent, awaiting response... 200 OK
         ength: 159800482 (152M) [application/zip]
         aving to: 'XOR_Arbiter_PUFs.zip'
         OR Arbiter PUFs.zi 100%[==========] 152.40M 40.6MB/s
                                                                            in 6.5s
         019-02-06 06:42:49 (23.3 MB/s) - 'XOR_Arbiter_PUFs.zip' saved [159800482/159
         004821
In [2]:
        !unzip 'XOR Arbiter PUFs.zip'
         rchive: XOR Arbiter PUFs.zip
           creating: XOR Arbiter PUFs/
          inflating: XOR Arbiter PUFs/.DS Store
           creating: XOR Arbiter PUFs/5xor 128bit/
          inflating: XOR_Arbiter_PUFs/5xor_128bit/.DS_Store
          inflating: XOR Arbiter PUFs/5xor 128bit/README.txt
          inflating: XOR Arbiter PUFs/5xor 128bit/test 5xor 128dim.csv
          inflating: XOR Arbiter PUFs/5xor 128bit/train 5xor 128dim.csv
           creating: XOR Arbiter PUFs/6xor 64bit/
          inflating: XOR Arbiter PUFs/6xor 64bit/.DS Store
          inflating: XOR_Arbiter_PUFs/6xor_64bit/README.txt
          inflating: XOR_Arbiter_PUFs/6xor_64bit/test_6xor_64dim.csv
          inflating: XOR Arbiter PUFs/6xor 64bit/train 6xor 64dim.csv
           creating: __MACOSX/
           creating: __MACOSX/XOR_Arbiter_PUFs/
          inflating: __MACOSX/XOR_Arbiter_PUFs/._.DS_Store
           creating: __MACOSX/XOR_Arbiter_PUFs/5xor_128bit/
          inflating: __MACOSX/XOR_Arbiter_PUFs/5xor_128bit/._.DS_Store
          inflating: __MACOSX/XOR_Arbiter_PUFs/5xor_128bit/._README.txt
          inflating: __MACOSX/XOR_Arbiter_PUFs/5xor_128bit/._test_5xor_128dim.csv
           creating: __MACOSX/XOR_Arbiter_PUFs/6xor_64bit/
          inflating: MACOSX/XOR Arbiter PUFs/6xor 64bit/. .DS Store
          inflating: __MACOSX/XOR_Arbiter_PUFs/6xor_64bit/._README.txt
```

In [66]: mport pandas as pd
 _train = pd.read_csv(r'./XOR_Arbiter_PUFs/6xor_64bit/train_6xor_64dim.csv',he
 der = None)
 _train.head()

Out[66]:

	0	1	2	3	4	5	6	7	8	9	 55	56	57	58	59	60	61	62	63	64
0	1	1	-1	1	-1	-1	-1	1	1	-1	 1	1	1	1	1	1	1	1	-1	1
1	-1	1	1	1	1	1	1	1	-1	-1	 -1	1	-1	1	-1	1	1	-1	1	-1
2	-1	-1	1	1	-1	1	1	1	1	-1	 1	-1	1	-1	1	-1	-1	-1	1	1
3	1	-1	-1	1	-1	1	1	1	-1	1	 1	-1	1	-1	1	-1	-1	1	-1	-1
4	1	1	1	-1	-1	-1	-1	1	1	-1	 -1	1	-1	1	-1	1	-1	-1	1	1

5 rows × 65 columns

In [0]: rom keras.utils import np_utils
 rom keras.initializers import he_normal
 mport seaborn as sns
 rom keras.models import Sequential
 rom keras.layers import Dense , Activation
 rom keras import optimizers

In [0]: X_train = X_train.replace([-1],0)

In [69]: _train.describe()

Out[69]:

	0	1	2	3	4	
count	2.000000e+06	2.000000e+06	2.000000e+06	2.000000e+06	2.000000e+06	2.000
mean	1.158000e-03	9.120000e-04	4.270000e-04	-1.580000e-04	-1.760000e-04	-3.02
std	9.999996e-01	9.999998e-01	1.000000e+00	1.000000e+00	1.000000e+00	1.000
min	-1.000000e+00	-1.000000e+00	-1.000000e+00	-1.000000e+00	-1.000000e+00	-1.00
25%	-1.000000e+00	-1.000000e+00	-1.000000e+00	-1.000000e+00	-1.000000e+00	-1.00
50%	1.000000e+00	1.000000e+00	1.000000e+00	-1.000000e+00	-1.000000e+00	-1.00
75%	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00	1.000
max	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00	1.000

8 rows × 65 columns

In [70]: _train.shape

Out[70]: (2000000, 65)

```
In [0]: istrb = X_train.iloc[:,64].value_counts()
```

In [0]: mport matplotlib.pyplot as plt

In [73]: istrb.plot(kind = 'bar')

Out[73]: <matplotlib.axes._subplots.AxesSubplot at 0x7f93a549ef60>


```
In [74]: mport numpy as np
_train.isnull().values.any()
```

Out[74]: False

In [0]: _train = X_train[[64]]

In [0]: _train.drop([64],axis = 1,inplace = True)

In [77]: _train.shape

Out[77]: (2000000, 64)

In [78]: mport pandas as pd
 _test = pd.read_csv(r'./XOR_Arbiter_PUFs/6xor_64bit/test_6xor_64dim.csv',head
 r = None)
 _test.head()

Out[78]:

	0	1	2	3	4	5	6	7	8	9	 55	56	57	58	59	60	61	62	63	64
0	-1	-1	1	1	-1	1	1	1	1	-1	 -1	-1	-1	-1	-1	-1	-1	-1	1	-1
1	1	1	-1	1	-1	-1	1	1	-1	1	 -1	-1	-1	-1	-1	-1	1	1	-1	1
2	1	1	1	-1	1	1	-1	1	-1	1	 -1	-1	-1	-1	-1	-1	1	1	1	1
3	1	-1	1	-1	-1	-1	-1	-1	-1	1	 1	1	1	1	1	1	1	1	1	1
4	1	-1	1	-1	1	-1	-1	1	1	1	 1	1	1	1	1	1	1	1	1	-1

5 rows × 65 columns

Out[80]: False

```
In [0]: _test = X_test[[64]]
```

```
In [0]: _test.drop([64],axis = 1,inplace = True)
```

```
In [83]: _test.shape
```

Out[83]: (400000, 64)

```
In [0]: epoch = 30
    utlayer = 2
    atch_size = 10000
```

```
In [91]:
          rom keras.layers.normalization import BatchNormalization
          rom keras.layers import Dropout
          rom keras.layers.merge import concatenate
          rom keras.utils import plot model
          rom keras.layers import Input
          rom keras.models import Model
          nput layer = Input(shape = (64,))
          ut1 = Dense(64,activation = 'relu')(input_layer)
          ut1 = Dropout(0.5)(out1)
          ut1 = BatchNormalization()(out1)
          ut2 = Dense(64,activation = 'relu')(input layer)
          ut2 = Dropout(0.5)(out2)
          ut2 = BatchNormalization()(out2)
          ut3 = Dense(64,activation = 'relu')(input layer)
          ut3 = Dropout(0.5)(out3)
          ut3 = BatchNormalization()(out3)
          erge = concatenate([out1,out2,out3])
          utput = Dense(2,activation = 'sigmoid')(merge)
          odel = Model(inputs=input layer, outputs=output)
           summarize layers
          rint(model.summary())
           plot graph
          lot_model(model, to_file='MODEL.png')
          dam = optimizers.Adam(lr = 0.001)
          odel.compile(loss='binary_crossentropy', optimizer = adam, metrics=['accurac
          '])
```

ayer (type)		Output	Shape	Param #	Connected to
nput_11 (InputLayer)		(None,	64)	0	
ense_41 (Dense) 0]		(None,	64)	4160	input_11[0]
ense_42 (Dense) 0]		(None,	64)	4160	input_11[0]
ense_43 (Dense) 0]		(None,	64)	4160	input_11[0]
ropout_9 (Dropout) 0]		(None,	64)	0	dense_41[0]
ropout_10 (Dropout) 0]		(None,	64)	0	dense_42[0]
ropout_11 (Dropout) 0]		(None,	64)	0	dense_43[0]
atch_normalization_1 0]	(BatchNor	(None,	64)	256	dropout_9[0]
atch_normalization_2 0][0]	(BatchNor	(None,	64)	256	dropout_10
atch_normalization_3 0][0]	(BatchNor	(None,	64)	256	dropout_11
oncatenate_11 (Concat zation_1[0][0]	cenate)	(None,	192)	0	batch_normal
zation_2[0][0]					batch_normal
zation_3[0][0]					batch_normal
ense_44 (Dense) 1[0][0]		(None,	2)	386	concatenate_

----- otal params: 13,634

rainable params: 13,250
on-trainable params: 384

one

In [92]: ist = model.fit(X_train, y_train, epochs=nepoch, batch_size=batch_size,valida
ion_data = (X_test,y_test))
 Final evaluation of the model
 cores = model.evaluate(X_test, y_test, verbose=0)
 rint("Accuracy: %.2f%%" % (scores[1]*100))

```
rain on 2000000 samples, validate on 400000 samples
poch 1/30
1 - acc: 0.8695 - val loss: 0.0094 - val acc: 1.0000
poch 2/30
6 - acc: 0.9998 - val loss: 0.0012 - val acc: 1.0000
poch 3/30
9 - acc: 1.0000 - val loss: 4.4878e-04 - val acc: 1.0000
poch 4/30
4 - acc: 1.0000 - val loss: 2.2683e-04 - val acc: 1.0000
poch 5/30
8e-04 - acc: 1.0000 - val_loss: 1.3536e-04 - val_acc: 1.0000
poch 6/30
6e-04 - acc: 1.0000 - val_loss: 8.9262e-05 - val_acc: 1.0000
poch 7/30
0e-04 - acc: 1.0000 - val_loss: 6.2621e-05 - val_acc: 1.0000
poch 8/30
7e-04 - acc: 1.0000 - val_loss: 4.6066e-05 - val_acc: 1.0000
poch 9/30
0e-04 - acc: 1.0000 - val loss: 3.5049e-05 - val acc: 1.0000
poch 10/30
5e-04 - acc: 1.0000 - val_loss: 2.7222e-05 - val_acc: 1.0000
9e-04 - acc: 1.0000 - val_loss: 2.1630e-05 - val_acc: 1.0000
poch 12/30
6e-04 - acc: 1.0000 - val loss: 1.7446e-05 - val acc: 1.0000
poch 13/30
0e-05 - acc: 1.0000 - val loss: 1.4305e-05 - val acc: 1.0000
poch 14/30
9e-05 - acc: 1.0000 - val_loss: 1.1810e-05 - val_acc: 1.0000
poch 15/30
9e-05 - acc: 1.0000 - val loss: 9.8847e-06 - val acc: 1.0000
poch 16/30
9e-05 - acc: 1.0000 - val loss: 8.3016e-06 - val acc: 1.0000
poch 17/30
8e-05 - acc: 1.0000 - val loss: 7.0298e-06 - val acc: 1.0000
poch 18/30
6e-05 - acc: 1.0000 - val loss: 5.9908e-06 - val acc: 1.0000
poch 19/30
```

06/02/2019 6XOR PUF 64bit

```
9e-05 - acc: 1.0000 - val loss: 5.1543e-06 - val acc: 1.0000
     poch 20/30
     8e-05 - acc: 1.0000 - val loss: 4.4315e-06 - val acc: 1.0000
     poch 21/30
     4e-05 - acc: 1.0000 - val loss: 3.8321e-06 - val acc: 1.0000
     poch 22/30
     6e-05 - acc: 1.0000 - val loss: 3.3260e-06 - val acc: 1.0000
     poch 23/30
     5e-05 - acc: 1.0000 - val loss: 2.8841e-06 - val acc: 1.0000
     poch 24/30
     5e-05 - acc: 1.0000 - val loss: 2.5205e-06 - val acc: 1.0000
     poch 25/30
     1e-05 - acc: 1.0000 - val loss: 2.2010e-06 - val acc: 1.0000
     poch 26/30
     0e-05 - acc: 1.0000 - val loss: 1.9307e-06 - val acc: 1.0000
     poch 27/30
     3e-05 - acc: 1.0000 - val loss: 1.6964e-06 - val acc: 1.0000
     poch 28/30
     6e-06 - acc: 1.0000 - val loss: 1.4888e-06 - val acc: 1.0000
     poch 29/30
     000000/2000000 [=========== ] - 28s 14us/step - loss: 8.25
     6e-06 - acc: 1.0000 - val_loss: 1.3121e-06 - val_acc: 1.0000
     poch 30/30
     4e-06 - acc: 1.0000 - val loss: 1.1546e-06 - val acc: 1.0000
     ccuracy: 100.00%
In [0]:
     ef plt_dynamic(x, vy, ty):
      plt.figure(figsize=(10,5))
      plt.plot(x, vy, 'b', label="Validation Loss")
      plt.plot(x, ty, 'r', label="Train Loss")
      plt.xlabel('Epochs')
      plt.ylabel('Binary Crossentropy Loss')
      plt.title('\nBinary Crossentropy Loss VS Epochs')
      plt.legend()
      plt.grid()
      plt.show()
```

