

Complete Instantiation for Quantified Formulas in SMT CAV 2009

100

Yeting Ge New York University Leonardo de Moura Microsoft Research

Satisfiability Modulo Theories (SMT)

$$a > 3$$
, $(a = b \lor a = b + 1)$, $f(a) = 0$, $f(b) = 1$

Many Applications

- Dynamic symbolic execution (DART)
- Extended static checking
- Test-case generation
- Bounded model checking (BMC)
- Equivalence checking
- •

What is a Theory?

A theory T is a set of sentences.

F is satisfiable modulo T iff

 $T \cup F$ is satisfiable.

Theory: Examples

Array Theory:

```
\foralla,i,v: read(write(a,i,v), i) = v
```

```
\forall a,i,v: i = j \lor read(write(a,i,v), j) = read(a,j)
```

- Linear Arithmetic
- Bit-vectors
- Inductive datatypes
- •

SMT: Example

$$a > 3$$
, $(a = b \lor a = b + 1)$, $f(a) = 0$, $f(b) = 1$

f,g,h	Uninterpreted functions
a,b,c	Uninterpreted constants
+,-,<,≤,0,1,	Interpreted symbols

SMT: Example

$$a > 3$$
, $(a = b \lor a = b + 1)$, $f(a) = 0$, $f(b) = 1$

Model/Structure:

$$a \rightarrow 4$$

$$b \rightarrow 3$$

$$f \to \{4 \to 0, 3 \to 1, ...\}$$

SMT: Example

$$a > 3$$
, $(a = b \lor a = b + 1)$, $f(a) = 0$, $f(b) = 1$

Model M:

$$M(a) = 4$$

$$M(b) = 3$$

$$M(f) = \{ 4 \rightarrow 0, 3 \rightarrow 1, ... \}$$

SMT Solvers

Many SMT Solvers:

- Barcelogic, Beaver, Boolector,
- CVC3, MathSAT, OpenSMT,
- Sateen, Yices, Z3, ...

They are very efficient for quantifier-free formulas.

Modeling the runtime

```
∀ h,o,f:
    IsHeap(h) ∧ o ≠ null ∧ read(h, o, alloc) = t
    ⇒
    read(h,o, f) = null ∨ read(h, read(h,o,f),alloc) = t
```

- Modeling the runtime
- User provided assertions

```
\forall i,j: i \leq j \Longrightarrow read(a,i) \leq read(b,j)
```

- Modeling the runtime
- User provided assertions
- Unsupported theories

```
\forall x: p(x,x)
```

$$\forall x,y,z: p(x,y), p(y,z) \Rightarrow p(x,z)$$

$$\forall$$
 x,y: p(x,y), p(y,x) \Rightarrow x = y

- Modeling the runtime
- User provided assertions
- Unsupported theories

Solver must be fast in satisfiable instances.

We want to find bugs!

Many Approaches

- Superposition Calculus + SMT.
- Instantiation Based Methods
 - Implemented on top of "regular" SMT solvers.
 - Heuristic quantifier instantiation (E-Matching).
 - Complete quantifier instantiation.

Instantiation Based Methods: Related work

- Bernays-Schönfinkel class.
- Stratified Many-Sorted Logic.
- Array Property Fragment.
- Local theory extensions.

Simplifying Assumption: CNF

$$\forall x_1, x_2: \neg p(x_1, x_2) \lor f(x_1) = f(x_2) + 1,$$

p(a,b), a < b + 1

Simplifying Assumption: CNF

$$\neg p(x_1, x_2) \lor f(x_1) = f(x_2) + 1,$$

p(a,b), a < b + 1

Essentially uninterpreted fragment

 Variables appear only as arguments of uninterpreted symbols.

$$f(g(x_1) + a) < g(x_1) \lor h(f(x_1), x_2) = 0$$

$$f(x_1+x_2) \le f(x_1) + f(x_2)$$

Basic Idea

Given a set of formulas F, build an equisatisfiable set of quantifier-free formulas F*

"Domain" of f is the set of ground terms A_f $t \in A_f$ if there is a ground term f(t)

Suppose

- 1. We have a clause C[f(x)] containing f(x).
- 2. We have f(t).

Instantiate x with t: C[f(t)].

$$g(x_1, x_2) = 0 \lor h(x_2) = 0,$$

 $g(f(x_1),b) + 1 \le f(x_1),$
 $h(c) = 1,$
 $f(a) = 0$

F*

F
$$f$$

 $g(x_1, x_2) = 0 \lor h(x_2) = 0,$ $h(c) = 1,$
 $g(f(x_1),b) + 1 \le f(x_1),$ $f(a) = 0$
 $h(c) = 1,$
 $f(a) = 0$

Copy quantifier-free formulas

$$f$$

 $g(x_1, x_2) = 0 \lor h(x_2) = 0,$ $h(c) = 0$
 $g(f(x_1),b) + 1 \le f(x_1),$ $f(a) = 0$
 $f(a) = 0$

```
"Domains":
A_f: \{a\}
A_g: \{ \}
A_h:\{c\}
```

Microsoft® Research

$$f$$

 $g(x_1, x_2) = 0 \lor h(x_2) = 0,$
 $g(f(x_1),b) + 1 \le f(x_1),$
 $h(c) = 1,$
 $f(a) = 0$

$$f^*$$

$$h(c) = 1,$$

$$f(a) = 0,$$

$$g(f(a),b) + 1 \le f(a)$$

```
"Domains":
A<sub>f</sub>: { a }
A<sub>g</sub>: { [f(a), b] }
A<sub>h</sub>: { c }
```

$$g(x_1, x_2) = 0 \lor h(x_2) = 0,$$

 $g(f(x_1),b) + 1 \le f(x_1),$
 $h(c) = 1,$
 $f(a) = 0$

$$f*$$

$$h(c) = 1,$$

$$f(a) = 0,$$

$$g(f(a),b) + 1 \le f(a),$$

```
"Domains":
A<sub>f</sub>: { a }
A<sub>g</sub>: { [f(a), b] }
A<sub>h</sub>: { c }
```

F

$$g(x_1, x_2) = 0 \lor h(x_2) = 0,$$

 $g(f(x_1),b) + 1 \le f(x_1),$
 $h(c) = 1,$
 $f(a) = 0$

F*

$$h(c) = 1,$$

 $f(a) = 0,$
 $g(f(a),b) + 1 \le f(a),$
 $g(f(a),b) = 0 \lor h(b) = 0$

"Domains":

 $A_f: \{a\}$

 $A_g : \{ [f(a), b] \}$

 $A_{b} : \{ c, b \}$

F

$$g(x_1, x_2) = 0 \lor h(x_2) = 0,$$

 $g(f(x_1),b) + 1 \le f(x_1),$
 $h(c) = 1,$
 $f(a) = 0$

F*

$$h(c) = 1,$$
 $f(a) = 0,$
 $g(f(a),b) + 1 \le f(a),$
 $g(f(a),b) = 0 \lor h(b) = 0$

"Domains":

 $A_f: \{a\}$

 $A_g: \{ [f(a), b] \}$

 $A_{b}: \{ c, b \}$

F

 $g(x_1, x_2) = 0 \lor h(x_2) = 0,$ $g(f(x_1),b) + 1 \le f(x_1),$ h(c) = 1,f(a) = 0 F*

$$h(c) = 1,$$

 $f(a) = 0,$
 $g(f(a),b) + 1 \le f(a),$
 $g(f(a),b) = 0 \lor h(b) = 0,$
 $g(f(a),c) = 0 \lor h(c) = 0$

"Domains":

 A_f : { a }

A_g: { [f(a), b], [f(a), c] }

 $A_{b}: \{ c, b \}$

F

$$g(x_1, x_2) = 0 \lor h(x_2) = 0,$$

 $g(f(x_1),b) + 1 \le f(x_1),$
 $h(c) = 1,$
 $f(a) = 0$

$$h(c) = 1,$$
 $f(a) = 0,$
 $g(f(a),b) + 1 \le f(a),$
 $g(f(a),b) = 0 \lor h(b) = 0,$
 $g(f(a),c) = 0 \lor h(c) = 0$

V

a
$$\rightarrow$$
 2, b \rightarrow 2, c \rightarrow 3
f \rightarrow { 2 \rightarrow 0, ...}
h \rightarrow { 2 \rightarrow 0, 3 \rightarrow 1, ...}
g \rightarrow { [0,2] \rightarrow -1, [0,3] \rightarrow 0, ...}

Basic Idea (cont.)

```
Given a model M for F^*, Build a model M^{\pi} for F
```

```
Define a projection function \pi_f s.t. range of \pi_f is M(A_f), and \pi_f(v) = v if v \in M(A_f)
```

```
Then, M^{\pi}(f)(v) = M(f)(\pi_f(v))
```


Basic Idea (cont.)

Basic Idea (cont.)

```
Given a model M for F^*, Build a model M^{\pi} for F
```

In our example, we have:
$$h(b)$$
 and $h(c)$ $\rightarrow A_h = \{ b, c \}$, and $M(A_h) = \{ 2, 3 \}$

$$\pi_h = \{ 2 \rightarrow 2, 3 \rightarrow 3, \text{ else} \rightarrow 3 \}$$

$$M(h) \qquad \qquad M^{\pi}(h) \\ \{\, 2 \rightarrow 0, \, 3 \rightarrow 1, \, ...\} \qquad \qquad \{\, 2 \rightarrow 0, \, 3 \rightarrow 1, \, \text{else} \rightarrow 1\}$$

$$M^{\pi}(h) = \lambda x. \text{ if } (x=2, 0, 1)$$

F

$$g(x_1, x_2) = 0 \lor h(x_2) = 0,$$

 $g(f(x_1),b) + 1 \le f(x_1),$
 $h(c) = 1,$
 $f(a) = 0$

F*

$$h(c) = 1,$$

 $f(a) = 0,$
 $g(f(a),b) + 1 \le f(a),$
 $g(f(a),b) = 0 \lor h(b) = 0,$
 $g(f(a),c) = 0 \lor h(c) = 0$

$$a \rightarrow 2$$
, $b \rightarrow 2$, $c \rightarrow 3$
 $f \rightarrow \lambda x$. 2
 $h \rightarrow \lambda x$. if(x=2, 0, 1)
 $g \rightarrow \lambda x$, y. if(x=0 \land y=2,-1, 0)

M

a
$$\rightarrow$$
 2, b \rightarrow 2, c \rightarrow 3
f \rightarrow { 2 \rightarrow 0, ...}
h \rightarrow { 2 \rightarrow 0, 3 \rightarrow 1, ...}
g \rightarrow { [0,2] \rightarrow -1, [0,3] \rightarrow 0, ...}

Example: Model Checking

\mathbf{M}^{π}

$$a \rightarrow 2$$
, $b \rightarrow 2$, $c \rightarrow 3$
 $f \rightarrow \lambda x$. 2
 $h \rightarrow \lambda x$. if(x=2, 0, 1)
 $g \rightarrow \lambda x$,y. if(x=0 \land y=2,-1, 0)

Does M^{π} satisfies?

$$\forall x_1, x_2 : g(x_1, x_2) = 0 \lor h(x_2) = 0$$

$$\forall x_1, x_2$$
: if($x_1=0 \land x_2=2,-1,0$) = 0 \lor if($x_2=2,0,1$) = 0 is valid

$$\exists x_1, x_2$$
: if($x_1=0 \land x_2=2,-1,0$) $\neq 0 \land$ if($x_2=2,0,1$) $\neq 0$ is unsat

$$if(s_1=0 \land s_2=2,-1,0) \neq 0 \land if(s_2=2,0,1) \neq 0$$
 is unsat

Why does it work?

Suppose M^{π} does not satisfy C[f(x)].

Then for some value v, $M^{\pi}\{x \rightarrow v\}$ falsifies C[f(x)].

 $M^{\pi}\{x \to \pi_f(v)\}$ also falsifies C[f(x)].

But, there is a term $t \in A_f$ s.t. $M(t) = \pi_f(v)$ Moreover, we instantiated C[f(x)] with t.

So, M must not satisfy C[f(t)]. Contradiction: M is a model for F*.

Refinement 1: Lazy construction

- F* may be very big (or infinite).
- Lazy-construction
 - Build F* incrementally, F* is the limit of the sequence

$$\mathsf{F}^0 \subset \mathsf{F}^1 \subset ... \subset \mathsf{F}^k \subset ...$$

- If F^k is unsat then F is unsat.
- If F^k is sat, then build (candidate) M^{π}
- If M^{π} satisfies all quantifiers in F then return sat.

Refinement 2: Model-based instantiation

Suppose M^{π} does not satisfy a clause C[f(x)] in F.

Add an instance C[f(t)] which "blocks" this spurious model. Issue: how to find t?

Use model checking, and the "inverse" mapping π_f^{-1} from values to terms (in A_f). $\pi_f^{-1}(v) = t$ if $M^{\pi}(t) = \pi_f(v)$

Model-based instantiation: Example

Infinite F*

- Is our procedure refutationally complete?
- FOL Compactness

 A set of sentences is unsatisfiable
 iff
 it contains an unsatisfiable finite subset.

 A theory T is a set of sentences, then apply compactness to F*∪T

Infinite F*: Example

F

$$\forall x_1$$
: $f(x_1) < f(f(x_1))$,
 $\forall x_1$: $f(x_1) < a$,
 $1 < f(0)$.

Unsatisfiable

F*

Every finite subset of F* is satisfiable.

Infinite F*: What is wrong?

- Theory of linear arithmetic T_Z is the set of all first-order sentences that are true in the standard structure Z.
- T₇ has non-standard models.
- F and F* are satisfiable in a non-standard model.
- Alternative: a theory is a class of structures.
- Compactness does not hold.
- F and F* are still equisatisfiable.

Δ_{F} and Set Constraints

Given a clause $C_k[x_1, ..., x_n]$

Let

 $S_{k,i}$ be the set of ground terms used to instantiate x_i in clause $C_k[x_1, ..., x_n]$

How to characterize $S_{k,i}$?

F j-th argument of f in C _k	$\Delta_{ extsf{F}}$ system of set constraints
a ground term t	$t \in A_{f,j}$
t[x ₁ ,, x _n]	$t[S_{k,1},,S_{k,n}] \subseteq A_{f,j}$
x_i	$S_{k,i} = A_{f,j}$

Δ_{F} : Example

$$g(x_1, x_2) = 0 \lor h(x_2) = 0,$$

 $g(f(x_1),b) + 1 \le f(x_1),$
 $h(c) = 1,$
 $f(a) = 0$

$$S_{1,1} = A_{g,1}, S_{1,2} = A_{g,2}, S_{1,2} = A_{h,1}$$

 $S_{2,1} = A_{f,1}, f(S_{2,1}) \subseteq A_{g,1}, b \in A_{g,2}$
 $c \in A_{h,1}$
 $a \in A_{f,1}$

 Δ_{F} : least solution

Use Δ_F to generate F^*

$$S_{1,1} = \{ f(a) \}, S_{1,2} = \{ b, c \}$$

 $S_{2,1} = \{ a \}$

Complexity

 \bullet Δ_{F} is stratified then the least solution (and F^*) is finite

$t[S_{k,1},,S_{k,n}] \subseteq A_{f,j}$	$level(S_{k,i}) < level(A_{f,j})$
$S_{k,i} = A_{f,j}$	$level(S_{k,i}) = level(A_{f,j})$

- New decidable fragment: NEXPTIME-Hard.
- The least solution of Δ_F is exponential in the worst case.

$$a \in S_1$$
, $b \in S_1$, $f_1(S_1, S_1) \subseteq S_2$, ..., $f_n(S_n, S_n) \subseteq S_{n+1}$

F* can be doubly exponential in the size of F.

Extensions

• Arithmetical literals: π_f must be monotonic.

Literal of C _k	Δ_{F}
$\neg (x_i \leq x_j)$	$S_{k,i} = S_{k,j}$
$\neg(x_i \leq t), \neg(t \leq x_i)$	$t\inS_{k,i}$
$x_i = t$	$\{t+1, t-1\} \subseteq S_{k,i}$

Offsets:

j-th argument of f in C _k	Δ_{F}
x _i + r	$S_{k,i}+r\subseteq A_{f,j}$
Λ ₁ · ·	$A_{f,i}+(-r)\subseteq S_{k,i}$

Extensions: Example

Shifting

$$\neg (0 \le x_1) \lor \neg (x_1 \le n) \lor f(x_1) = g(x_1+2)$$

More Extensions

- Many-sorted logic
- Pseudo-Macros

$$0 \le g(x_1) \lor f(g(x_1)) = x_1,$$

 $0 \le g(x_1) \lor h(g(x_1)) = 2x_1,$
 $g(a) < 0$

Conclusion

- SMT solvers usually return unsat or unknown for quantified SMT formulas.
- Z3 was the only SMT-solver in SMT-COMP'08 to correctly answer satisfiable quantified formulas.
- New decidable fragments.
- Model-based instantiation and Model checking.
- Conditions for refutationally complete procedures.
- Future work: more efficient model checking techniques.

Thank you!

