Лабораторная работа 17

Задания для самостоятельной работы

Шияпова Дарина Илдаровна

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы 3.1 Моделирование работы вычислительного центра	6
	3.2 Модель работы аэропорта	9
	3.3 Моделирование работы морского порта	-
4	Выводы	21

Список иллюстраций

3.1	Модель работы вычислительного центра	7
3.2	Отчёт по модели работы вычислительного центра	8
3.3	Отчёт по модели работы вычислительного центра	8
3.4	Модель работы аэропорта	10
3.5	Отчёт по модели работы аэропорта	11
3.6	Отчёт по модели работы аэропорта	12
3.7	Модель работы морского порта	13
3.8	Отчет по модели работы морского порта	14
3.9	Модель работы морского порта с оптимальным количеством при-	
	чалов	15
3.10	Отчет по модели работы морского порта с оптимальным количе-	
	ством причалов	16
3.11	Модель работы морского порта	17
	Отчет по модели работы морского порта	18
3.13	Модель работы морского порта с оптимальным количеством при-	
	чалов	19
3.14	Отчет по модели работы морского порта с оптимальным количе-	
	ством причалов	20

1 Цель работы

Реализовать с помощью gpss модели работы вычислительного центра, аэропорта и морского порта.

2 Задание

Реализовать с помощью gpss:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.

3 Выполнение лабораторной работы

3.1 Моделирование работы вычислительного центра

На вычислительном центре в обработку принимаются три класса заданий A, B и C. Исходя из наличия оперативной памяти ЭВМ задания классов A и B могут решаться одновременно, а задания класса C монополизируют ЭВМ. Задачи класса C загружаются в ЭВМ, если она полностью свободна. Задачи классов A и B могут дозагружаться к решающей задаче.

Смоделируем работу ЭВМ за 80 ч. и определим её загрузку.

Построим модель (рис. 3.1).

```
17 - Файловый менеджер
 GPSS World - 17_1.gps
File Edit Search View Command Window Help
17_1.gps
 ram STORAGE 2
 ; моделирование заданий класса А
 GENERATE 20,5
 QUEUE class A
 ENTER ram, 1
 DEPART class A
 ADVANCE 20,5
 LEAVE ram, 1
 TERMINATE 0
 ; моделирование заданий класса В
 GENERATE 20,10
 QUEUE class B
 ENTER ram, 1
 DEPART class B
 ADVANCE 21,3
 LEAVE ram, 1
 TERMINATE 0
 ; моделирование заданий класса С
 GENERATE 28,5
 QUEUE class C
 ENTER ram, 2
 DEPART class C
 ADVANCE 28,5
 LEAVE ram, 2
 TERMINATE 0
 ; таймер
 GENERATE 4800
 TERMINATE 1
 START 1
```

Рис. 3.1: Модель работы вычислительного центра

Задается хранилище ram на две заявки. Затем записаны три блока: первые два обрабатывают задания класса A и B, используя один элемент ram, а третий обрабатывает задания класса C, используя два элемента ram. Также есть блок

времени генерирующий 4800 минут (80 часов).

После запуска симуляции получаем отчёт (рис. 3.2, 3.3).

	GPSS	World	Simulation 1	Report - 17_	1.2.1		
		суббо	та, июня 14,	2025 22:36:	07		
	START II	ME	END 1	TIME BLOCKS	FACILIT	IES STO	BAGES
	0.0		4800	.000 23	0		1
	***	-					-
	NAME			VALUE			
	CLASS A			10001.000			
	CLASS_B			10002.000			
	CLASS C			10003.000		_	
	RAM			10000.000		Ī	
LABEL			BLOCK TYPE				
		1	GENERATE	240		0	0
		2	QUEUE	240		4	0
		3	ENTER	236		0	0
		4	QUEUE ENTER DEPART	236		D	0
		5	ADVANCE	236		1	0
		6	LEAVE	235		0	0
		7	TERMINATE	235		0	0
		8	GENERATE QUEUE ENTER DEPART	236		0	0
		9	QUEUE	236		5	0
		10	ENTER	231		0	0
		11	DEPART	231		0	0
		12	ADVANCE	231		1	0
		13	ADVANCE LEAVE	230		D	0
		14	TERMINATE	230		0	0
		15	GENERATE	172		0	0
		16	TERMINATE GENERATE QUEUE ENTER DEPART	172		172	0
		17	ENTER	0		0	0
		18	DEPART	0		0	0
		19	ADVANCE	0		0	0
		20	LEAVE	0		0	0
		21	LEAVE TERMINATE GENERATE	0		0	0
		22	GENERATE	1		0	0

Рис. 3.2: Отчёт по модели работы вычислительного центра

QUEUE		MAX C	ONT.	ENTRY	ENTRY (0)	AVE.CON	T. AVE.TIME	AVE. (-0)	RETR
CLASS A		7	4	240	3	3.288	65.765	66.597	0
CLASS B		7	5	236	1	3.280	66.703	66.987	0
CLASS_C		172	172	172	ī °	85.786	2394.038	2394.038	0
STORAGE		CAP.	REM.	MIN. M	AX. EN	TRIES AVL	. AVE.C. UT	IL. RETRY	DELAY
RAM		2	0	0	2	467 1	1.988 0.9	994 0	181
FEC XN	PRI	BDT		ASSEM	CURRE	T NEXT	PARAMETER	VALUE	
650	0	4803.	512	650	0	1			
636	0	4805.	704	636	5	6			
651	0	4807.	869	651	0	15			
637	0	4810.	3.60	637	12	13			

Рис. 3.3: Отчёт по модели работы вычислительного центра

Из отчета увидим, что загруженность системы равна 0.994.

3.2 Модель работы аэропорта

Самолёты прибывают для посадки в район аэропорта каждые 10 ± 5 мин. Если взлетно-посадочная полоса свободна, прибывший самолёт получает разрешение на посадку. Если полоса занята, самолет выполняет полет по кругу и возвращается в аэропорт каждые 5 мин. Если после пятого круга самолет не получает разрешения на посадку, он отправляется на запасной аэродром.

В аэропорту через каждые 10 ± 2 мин к взлетно -посадочной полосе выруливают готовые к взлёту самолёты и получают разрешение на взлёт, если полоса свободна. Для взлета и посадки самолёты занимают полосу ровно на 2 мин. Если при свободной полосе одновременно один самолёт прибывает для посадки, а другой – для взлёта, то полоса предоставляется взлетающей машине.

Требуется:

- выполнить моделирование работы аэропорта в течение суток;
- подсчитать количество самолётов, которые взлетели, сели и были направлены на запасной аэродром;
- определить коэффициент загрузки взлетно-посадочной полосы.

Построим модель (рис. 3.4).

```
iii 17_2.gps
 ; посадка
GENERATE 10,5,,,1
ASSIGN 1,0
QUEUE arrival
landing GATE NU runway, wait
SEIZE runway
DEPART arrival
ADVANCE 2,0
RELEASE runway
TERMINATE 0
; ожидание
wait TEST L p1,5,goaway
ADVANCE 5,0
ASSIGN 1+,1 ; если значение атрибута меньше 5,
;то счетчик прибавляет 1 (круг) и идет попытка приземления
TRANSFER 0, landing
goaway SEIZE reserve
DEPART arrival
RELEASE reserve
TERMINATE O
GENERATE 10,2,,,2
QUEUE takeoff
SEIZE runway
DEPART takeoff
ADVANCE 2,0
RELEASE runway
TERMINATE O
 ; таймер
GENERATE 1440
TERMINATE 1
 START 1
```

Рис. 3.4: Модель работы аэропорта

Блок для влетающих самолетов имеет приоритет 2, для прилетающий приоритет 1 (чем выше значение, тем выше приоритет). Происходит проверка: если полоса пустая, то заявка просто отрабатывается, если нет, то происходит переход в блок ожидания. При ожидании заявка проходит в цикле 5 раз, каждый раз проверяется не освободилась ли полоса, если освободилась – переход в блок обработки, если нет – самолет обрабатывается дополнительным обработчиком отправления в запасной аэродром. Время задаем в минутах – 1440 (24 часа).

После запуска симуляции получаем отчёт (рис. 3.5, 3.6).

	ey	ббота, ипп	sg 14, 2025	22:42:07			
	START TIME		END TIME	BLOCKS	FACILITIES	STORAGES	
	0.000		1440.000	26	1		
	NAME ARRIVAL GCAWAY LANDING		100				
	RESERVE		UNS	SPECIFIED			
	RUNNAY		100	01.000			
	TAKEOFF		100	000.000			
	WAIT			10.000			
LABEL	_				T CURRENT		
	1			142		D	0
	2			142	I	0	0
	3			142		0	0
LANDING				183		D	0
	5			142		0	0
	6			142		0	0
	7			142		D	0
	8			142		0	0
	9		MIE	142		0	0
AIT	10			.43		0	0
	11			41		0	0
	12			42		0	0
	13			41		D	0
PAWAY	14			0		0	0
	15			0		0	0
	1.6		SE.	0		0	0
	17			0		0	0
	18	GENERA	TE	142		0	0
	1.9	QUEUE		142		0	0
	20	SEIZE		142		0	0
	21	DEPART		142		0	0
	2.2	ADVANC	35	142		0	0
	23	RELEAS	2	142		0	0
	24	TERMIN	STA	142		0	0
	25	GENERA	STA	1		0	0
	26	TERMIN	ATE	1		0	0

Рис. 3.5: Отчёт по модели работы аэропорта

FACILITY RUNWAY	ENTRII 28			2.000		OWNER PEND 0 0	INTER RETRY	DELAY 0
QUEUE	MAX	CONT.	ENTRY	ENTRY(0)	AVE.CONT	. AVE.TIME	AVE. (-0)	RETRY
TAKEOFF	1	0	142	114	0.015	0.154	0.780	0
ARRIVAL	2	0	142	107	0.142	1.444	5.857	0
FEC XN PRI	В	DT	ASSE	CURRENT	NEXT	PARAMETER	VALUE	
286 1	1440	0.015	286	0	1			
287 2	1443	5.948	287	0	18			

Рис. 3.6: Отчёт по модели работы аэропорта

Взлетело 142 самолета, село 146, а в запасной аэропорт отправилось 0. В запасной аэропорт не отправились самолеты, поскольку процессы обработки длятся всего 2 минуты, что намного быстрее, чем генерации новых самолетов. Коэффициент загрузки полосы равняется 0.4, полоса большую часть времени не используется.

3.3 Моделирование работы морского порта

Морские суда прибывают в порт каждые $[\alpha \pm \delta]$ часов. В порту имеется N причалов. Каждый корабль по длине занимает M причалов и находится в порту $[b\pm \varepsilon]$ часов. Требуется построить GPSS-модель для анализа работы морского порта в течение полугода, определить оптимальное количество причалов для эффективной работы порта.

Рассмотрим два варианта исходных данных:

1)
$$a = 20 \text{ y}, \delta = 5 \text{ y}, b = 10 \text{ y}, \varepsilon = 3 \text{ y}, N = 10, M = 3;$$

2)
$$a = 30 \text{ y}, \delta = 10 \text{ y}, b = 8 \text{ y}, \varepsilon = 4 \text{ y}, N = 6, M = 2.$$

Первый вариант модели

Построим модель для первого варианта (рис. 3.7).

```
pier STORAGE 10
GENERATE 20,5
;моделирование занятия причала
QUEUE arrive
ENTER pier,3
DEPART arrive
ADVANCE 10,3
LEAVE pier,3
TERMINATE 0
;таймер
GENERATE 24
TERMINATE 1
START 180
```

Рис. 3.7: Модель работы морского порта

После запуска симуляции получаем отчёт (рис. 3.8).

		cybb	ora, s	upng 1	4, 202	5 22:4	8:01					
	START T								STO	RAGES		
	0.	000		43	20.000	9		0	0 1			
	NAME				VALUE							
	ARRIVE				10	0001.00						
	PIER				10	000.00	0					
					_							
LABEL								CURRENT				
		2	GENI	EKATE		21	5		0	0		
		2	QUE	UE.		21	.5		0	0		
		3	DED	ENTER DEPART ADVANCE LEAVE TERMINATE GENERATE		21	5		0	0		
		=	3 002			21			1			
						21						
										0		
				MINATE		18 18	0		0	0		
QUEUE ARRIVE								T. AVE.T				
STORAGE												
PIER		10	7	0	3	645	1	1.485	0.14	B 0	0	
FEC XN	PRI	BD	ī	ASSE	M CUP	RENT	NEXT	PARAMETE	ER '	VALUE		
395	0	4324	.260	395		5	6					
396	0	4335	.233	396		0	1					
9.07	0	4344	.000	397		0	8					

Рис. 3.8: Отчет по модели работы морского порта

При запуске с 10 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 3 (рис. 3.9), получаем оптимальный результат, что видно на отчете (рис. 3.10).

```
GPSS World - [17_3.gps]
                     17 - Файловый менеджер
File Edit Search View Command Window Help
 pier STORAGE 3
 GENERATE 20,5
 ; моделирование занятия причала
 QUEUE arrive
 ENTER pier, 3
 DEPART arrive
 ADVANCE 10,3
 LEAVE pier, 3
 TERMINATE 0
 ; таймер
 GENERATE 24
 TERMINATE 1
 START 180
```

Рис. 3.9: Модель работы морского порта с оптимальным количеством причалов

	6822	MOTIO	51301	ation	Mebol	t - 17_3	. 4. 2						
		суббо	та, ию	, можя 14, 2025 22:50:30									
	START T	IME		END	TIME	BLOCKS	FACILITIES	ILITIES STORAGES					
	0.	000		4320	0.000	9	0		1				
	NAME					VALUE							
	ARRIVE				3.00	01 000							
	DIEB				100	VALUE 01.000		I					
	STER				100	00.000		Tr					
LABEL		toc	BLOCK	TYPE		ETRY COD	NT CURRENT	COUNT	DETDY				
HADEL			GENER				NI CORREST						
						215		0					
			ENTER			215		0					
		4	DEPAR	T		215		0	0				
		5	ADVAN	CE		215		1	0				
			LEAVE			214		0	-				
			TERMI			214		0					
			GENER			180		0	0				
			TERMI			180		D	0				
QUEUE		MAX C	ONT. E	NTRY B	ENTRY (O) AVE.C	ONT. AVE.T	IME	AVE. (-0)	RETRY			
ARRIVE		1	0	215	215	0.0	00 0.0	000	0.000	0			
STORAGE		CAD	DEM M	TN M		UTDIFF A	VL. AVE.C	11977	DETRY	NET NV			
PIER							1 1.485						
PILK		3	0		3	010	1 1.400	0.49	0				
FEC YN	PRT	BDT		ASSEM	CURR	ENT NEX	T DARAMETI	FD .	VALUE				
395	0	4324	260	395	5	6	T PARAMETI		111000				
396	0	4335	233	396	0	1							
200	0	4944	000	207	0								

Рис. 3.10: Отчет по модели работы морского порта с оптимальным количеством причалов

Второй вариант модели

Построим модель для второго варианта (рис. 3.11).

```
Pile Edit Search View Command Window Help

Pier STORAGE 6
GENERATE 30,10
; моделирование занятия причала
QUEUE arrive
ENTER pier,3 I
DEPART arrive
ADVANCE 8,4
LEAVE pier,3
TERMINATE 0
; таймер
GENERATE 24
TERMINATE 1
START 180
```

Рис. 3.11: Модель работы морского порта

После запуска симуляции получаем отчёт (рис. 3.12).

	GPSS	World	i Sim	ulatio	n Rep	ort -	17_3.5	.1				
		субба	OTA, 1	та, июня 14, 2025 22:53:03								
	START T	ME		F30	D TIM	E 810	CKS F	ACTIVITIES	S STO	BACKS		
		000						FACILITIES STORAG				
	NAME					VALU	Ε					
	ARRIVE					0001.0						
	PIER					0000.0						
LABEL		LOC	BLO	CK TYP	5	ENTRY	COUNT	CURRENT	COUNT	RETRY		
		1	GEN	ERATE		1	43		0	0		
		2	QUE	UE		1	43		0	0		
		3	ENT	ER		1	13		D			
		4	DEP	ART		1	43		0	0		
		5	ADV	ANCE		1	43		1	0		
		6	LEA	VE.		1	12		0	0		
		7	TER	MINATE		1	42		0	0		
I		8	GENI	ERATE		1	80		0	0		
		9	TER	MINATE		1	80		D	0		
ONERE								. AVE.T				
ARRIVE		1	0	143	1	43	0.000	0.0	000	0.000	0	
STORAGE								. AVE.C.				
PIER		0	4	0	2	28	6 1	0.524	0.08	7 0	0	
FEC YN	PRI	BD		ASSE	и сп	DDFNT	NEVT	DADAMETI	rp 1	UATRE		
	0							- 117411011		111111111		
	0	4336	699	324		0	1					
325	0	4344	000	324 325		0						

Рис. 3.12: Отчет по модели работы морского порта

При запуске с 6 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 2 (рис. 3.13), получаем оптимальный результат, что видно из отчета (рис. 3.14).

Рис. 3.13: Модель работы морского порта с оптимальным количеством причалов

	GPSS	Worl	d Sim	alation	Repor	t - 17	3.6.	1				
		субб	OTA, 1	umms 14	, 2025	22:54:	20					
	START T	IME		ENG	TIME	BLOCKS	FA	CILITIES	5 5	TORA	AGES	
	0.000			END TIME BLOCKS FACILITIES STORAGES 4320.000 9 0 1								
	NAME			VALUE								
	ARRIVE				100	10001.000						
	PIER					000.000						
LABEL								CURRENT				
		1	GEM	ERATE		143			0	Y	0	
		2	QUE	UE ER		143					0	
						143					0	
				ART		143			0		0	
		5	ADV)	ANCE		143			1		0	
		6	LEA	V.E.		142			D		0	
		7	TER	MINATE		142			0		0	
		8	GENE	ERATE		180			0		0	
		9	TER	MINATE		180			0		0	
ARRIVE		1	0	143	143	0.	000	0.0	000		0.000	0
STORAGE		CAP.	REM.	MIN. N	CAX. E	NTRIES	AVL.	AVE.C.	UT	IL.	RETRY	DELAY
PIER								0.524				
EC XN	PRI 0	BD	T	ASSEN	CURR	ENT NE	XT	PARAMETS	ER	V3	LUE	
322	0	4325	.892	322	5	6	3					
324	0	4336	.699	324	0	1						
325	0	4344	.000	325	0	8	3					

Рис. 3.14: Отчет по модели работы морского порта с оптимальным количеством причалов

4 Выводы

В результате выполнения данной лабораторной работы я реализовала с помощью gpss:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.