Chapter 6.3

1. Find two λ' s and \mathbf{x}' s so that $\mathbf{u} = \mathbf{e}^{\lambda t}\mathbf{x}$ solves

What combination $u = c_1 e^{\lambda_1 t} x_1 + c_2 e^{\lambda_2 t} x_2$ starts from u(0) = (5, -2?)

$$u(0) = 2x_1 + 3x_2$$

 $C = (2, 3)$
 $u = 2e^{t}x_1 + 3e^{4t}x_2$

3.

a. If every column of A adds to 0, why is $\lambda = 0$ an eigenvalue?

If every column of A adds to 0, then the rows are not linearly independent, therefore A is not invertible and as such λ = 0 must be an eigenvalue.

b. With negative diagonal and positive off-diagonals adding to 0, u' = Au will be a continuous Markov equation. Find the eigenvalues and eigenvectors, and the steady state as $t \to \infty$.

du =
$$\begin{bmatrix} -2 & 3 \end{bmatrix}$$
u
dt $\begin{bmatrix} 2 & -3 \end{bmatrix}$
u(0) = (4, 1)
Trace: -5
Det: 6 - 6 = 0
 $(-2 - \lambda)(-3 - \lambda) - 6$
 $\lambda^2 - 5\lambda$
 $\lambda 1 = 0$

$$\lambda 2 = -5$$

$$\frac{\lambda = 0:}{\begin{bmatrix} -2 & 3 \\ 0 & 0 \end{bmatrix}}$$

$$x1 = (3, 2)$$

$$\frac{\lambda = -5:}{\begin{bmatrix} 2 & 3 \\ 2 & 3 \end{bmatrix}}$$

$$\begin{bmatrix} 2 & 3 \\ 0 & 0 \end{bmatrix}$$

$$x2 = (3, -2)$$

$$u(0) = (4, 1)$$

6. A has real eigenvalues but B has complex eigenvalues.

$$A = [a 1] \\ [1 a]$$

$$B = [b -1] \\ [1 b]$$

Find the conditions on a and b so that all solutions du/dt = Au and dv/dt = Bv approach 0 as t $\rightarrow \infty$.

a:
$$(-\infty, -1)$$

b: $(-\infty, 0)$

10. Find A to change the scalar equation y'' = 5y' + 4y into a vector equation for u = (y, y')

What are the eigenvalues of A?

$$\lambda 2 - 5\lambda - 4$$
 $5 \pm \sqrt{(25) - 4(-4)} / 2$
 $= 5 \pm \sqrt{(9)} / 2$
 $= 5 \pm 3 / 2$

 $(-\lambda)$ $(5 - \lambda) - 4$

= 1, 4

$$\lambda 1 = -1$$

 $\lambda 2 = -4$
 $y'' = 5y' + 4y$ $y = e\lambda t$.
 $\lambda^2 e^{\lambda t} - 5\lambda e^{\lambda t} - 4e^{\lambda t} = 0$

13. Write down two familiar functions that solve d2y / dt2 = -9y. Which one starts with y(0) = 3 and y'(0) = 0?

$$y1 = -e^{3t}$$

 $y2 = -(3/2) y3$

 $(\lambda + 1)(\lambda - 4)$

 $(\lambda^2 - 5\lambda - 4)e^{\lambda t} = 0$

19. The matrix B has $B^2=0$. Find e^{Bt} from a (short) infinite series. Check that the derivative of $e^{Bt}=Be^{Bt}$.

$$B = [0 -4] \\ [0 0]$$

21. Write A in the form $S\Lambda S^{-1}.$ Find eAt from $Se^{\Lambda t}S^{-1}.$

$$A = [1 \ 4] \\ [0 \ 0]$$

- 22. If $A^2=A$, show that the infinite series produces $e^{At}=I+(e^t-1)A$. For the previous problem, this gives $e^{At}=$ _____.
- 24. Write A as $S\Lambda S^{-1}$. Multiply $Se^{\Lambda t}S^{-1}$ to find e^{At} . Check e^{At} and its derivative when t = 0.