1. Kinematics

Decay rate and cross section (Note: \mathcal{M} has a mass dimension of $4-N_i-N_f$.)

decay rate (rest frame;
$$\sqrt{s} = M_0$$
): $d\Gamma = \frac{\overline{d\Pi^{N_f}}}{2M_0} \left| \mathcal{M}(M_0 \to \{p_1, p_2, \cdots, p_{N_f}\}) \right|^2$, (1.1)

cross section (Lorentz invariant):
$$d\sigma = \frac{\overline{d\Pi^{N_{\rm f}}}}{2E_A 2E_B v_{\rm Mol}} \left| \mathcal{M}(p_A, p_B \to \{p_1, p_2, \cdots, p_{N_{\rm f}}\}) \right|^2, \tag{1.2}$$

where $\overline{\Pi}^n$ is n-particle Lorentz-invariant phase space with momentum conservation

$$\overline{d\Pi^n} := d\Pi_1 d\Pi_2 \cdots d\Pi_n (2\pi)^4 \delta^{(4)} \left(P_0 - \sum p_n \right); \quad d\Pi := \frac{d^3 \mathbf{p}}{(2\pi)^3} \frac{1}{2E_{\mathbf{p}}}. \tag{1.3}$$

At the CM frame, two-body phase-space are characterized by the final momentum $\|p\|$ and given by

$$\overline{d\Pi^2} = \frac{\|\boldsymbol{p}\|}{4\pi\sqrt{s}} \frac{d\Omega}{4\pi} = \frac{\|\boldsymbol{p}\|}{8\pi\sqrt{s}} d\cos\theta = \frac{1}{16\pi} \sqrt{1 - \frac{2(m_1^2 + m_2^2)}{s} + \frac{(m_1^2 - m_2^2)^2}{s^2}} d\cos\theta$$
(1.4)

with $\sqrt{s} = M_0$ or $E_{\rm CM}$, θ is the angle between initial and final motion, and

$$\|\boldsymbol{p}\| = \frac{\sqrt{s}}{2} \lambda^{1/2} \left(1; \frac{m_1^2}{s}, \frac{m_2^2}{s} \right), \quad E_1 = \frac{s + m_1^2 - m_2^2}{2\sqrt{s}}, \quad E_2 = \frac{s - m_1^2 + m_2^2}{2\sqrt{s}}, \quad p_1 \cdot p_2 = \frac{s - (m_1^2 + m_2^2)}{2}.$$

Mandelstam variables For $(k_1, k_2) \rightarrow (p_3, p_4)$ collision,

$$s = (k_1 + k_2)^2 = (p_3 + p_4)^2, t = (p_3 - k_1)^2 = (p_4 - k_2)^2, u = (p_3 - k_2)^2 = (p_4 - k_1)^2;$$

$$k_1 \cdot k_2 = (s - m_1^2 - m_2^2)/2, k_1 \cdot p_3 = (m_3^2 + m_1^2 - t)/2, s + t + u = m_1^2 + m_2^2 + m_3^2 + m_4^2,$$

$$p_3 \cdot p_4 = (s - m_3^2 - m_4^2)/2, k_1 \cdot p_4 = (m_4^2 + m_1^2 - u)/2;$$

$$(k_1 - k_2)^2 = 2(m_1^2 + m_2^2) - s, (p_3 - p_4)^2 = 2(m_3^2 + m_4^2) - s.$$

If the collision is with the "same mass" $(m_A, m_A) \rightarrow (m_B, m_B)$,

$$t = m_A^2 + m_B^2 - s/2 + 2kp\cos\theta, \qquad k = \sqrt{s/4 - m_A^2},$$

$$u = m_A^2 + m_B^2 - s/2 - 2kp\cos\theta, \qquad p = \sqrt{s/4 - m_B^2}.$$

$$k_1 = (E, \mathbf{k})$$

$$k_2 = (E, -\mathbf{k})$$

$$k_3 = (E, \mathbf{p})$$

$$k_4 = (E, -\mathbf{k})$$

Instead, if the collision is "initially massless" $(0,0) \rightarrow (m_3, m_4)$,

$$t = (m_3^2 + m_4^2 - s)/2 + p\sqrt{s}\cos\theta, \qquad p = (\sqrt{s}/2)\lambda^{1/2} (1; m_3^2/s, m_4^2/s),$$

$$u = (m_3^2 + m_4^2 - s)/2 - p\sqrt{s}\cos\theta. \qquad p = (\sqrt{s}/2)\lambda^{1/2} (1; m_3^2/s, m_4^2/s),$$

$$A = (E, E)$$

$$k_2 = (E, E)$$

$$k_3 = (E, E)$$

$$k_4 = (E, E)$$

1.1. Fundamentals

Lorentz-invariant phase space

$$\int d\Pi = \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \frac{1}{2E_{\mathbf{p}}} = \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \frac{1}{2\sqrt{m^2 + \|\mathbf{p}\|^2}} = \int \frac{dp_0 d^3 \mathbf{p}}{(2\pi)^4} (2\pi) \, \delta\left(p_0^2 - \|\mathbf{p}\|^2 - m^2\right) \Theta(p_0)$$

$$\lambda(x, y, z) = x^2 + y^2 + z^2 - 2xy - 2yz - 2zx = (x - y - z)^2 - 4yz;$$

$$\lambda(1;\alpha_1^2,\alpha_2^2) = (1 - (\alpha_1 + \alpha_2)^2)(1 - (\alpha_1 - \alpha_2)^2) = (1 + \alpha_1 + \alpha_2)(1 - \alpha_1 - \alpha_2)(1 + \alpha_1 - \alpha_2)(1 - \alpha_1 + \alpha_2).$$

$$\lambda^{1/2}\left(s;m_1^2,m_2^2\right) = s\,\lambda^{1/2}\left(1;\frac{m_1^2}{s},\frac{m_2^2}{s}\right); \qquad \qquad \lambda^{1/2}\left(1;\frac{m^2}{s},\frac{m^2}{s}\right) = \sqrt{1-\frac{4m^2}{s}},$$

$$\lambda^{1/2}\left(1;\frac{m_1^2}{s},\frac{m_2^2}{s}\right) = \sqrt{1-\frac{2(m_1^2+m_2^2)}{s}+\frac{(m_1^2-m_2^2)^2}{s^2}}, \qquad \lambda^{1/2}\left(1;\frac{m_1^2}{s},0\right) = \frac{s-m_1^2}{s}.$$

Two-body phase space If $f(p_1^{\mu}, p_2^{\mu})$ is Lorentz invariant, $f \equiv f(p_1^2, p_2^2, p_1^{\mu} p_{2\mu}) \equiv f(p_1, p_2, \cos \theta_{12})$. Meanwhile,

Two-body phase space If
$$f(p_1^{\mu}, p_2^{\mu})$$
 is Lorentz invariant, $f \equiv f(p_1^2, p_2^2, p_1^{\mu} p_{2\mu}) \equiv f(p_1, p_2, \cos \theta_{12})$. Meanwhile,
$$\int d\Pi_1 d\Pi_2 = \int \frac{\mathrm{d}^3 p_1}{(2\pi)^3} \frac{\mathrm{d}^3 p_2}{(2\pi)^3} \frac{1}{2E_1 2E_2} = \int \frac{(4\pi) \, \mathrm{d} p_1 \, p_1^2}{(2\pi)^3} \frac{(2\pi) \, \mathrm{d} p_2 \, p_2^2 \, \mathrm{d} \cos \theta_{12}}{(2\pi)^3} \frac{1}{2E_1 2E_2} = \int \frac{\mathrm{d} E_+ \, \mathrm{d} E_- \, \mathrm{d} s}{128\pi^4}, \quad (1.5)$$
 with the replacement of the variables

$$E_{\pm} = E_1 \pm E_2, \qquad s = (p_1 + p_2)^2 = m_1^2 + m_2^2 + 2E_1E_2 - 2\|\boldsymbol{p}_1\|\|\boldsymbol{p}_2\|\cos\theta_{12};$$

$$\left| \frac{\mathrm{d}(E_+, E_-, s)}{\mathrm{d}(p_1, p_2, \cos \theta_{12})} \right| = \frac{4p_1^2 p_2^2}{E_1 E_2}, \qquad \left| \frac{\mathrm{d}(E_1, E_2, s)}{\mathrm{d}(p_1, p_2, \cos \theta_{12})} \right| = \frac{2p_1^2 p_2^2}{E_1 E_2}.$$

Therefore,

$$\int d\Pi_1 d\Pi_2 = \frac{1}{128\pi^4} \int_{(m_1 + m_2)^2}^{\infty} ds \int_{\sqrt{s}}^{\infty} dE_+ \int_{\min}^{\max} dE_-,$$
(1.6)

$$\cos \theta_{12} = \frac{E_{+}^{2} - E_{-}^{2} + 2(m_{1}^{2} + m_{2}^{2} - s)}{\sqrt{(E_{+} + E_{-})^{2} - 4m_{1}^{2}}\sqrt{(E_{+} - E_{-})^{2} - 4m_{2}^{2}}} \in [-1, 1]$$

$$\therefore \quad \left| E_{-} - \frac{m_1^2 - m_2^2}{s} E_{+} \right| \leq \sqrt{E_{+}^2 - s} \cdot \lambda^{1/2} \left(1; \frac{m_1^2}{s}, \frac{m_2^2}{s} \right) = 2p \sqrt{\frac{E_{+}^2 - s}{s}}.$$

Two-body phase space with momentum conservation As a general representation in any frame,

$$\overline{d\Pi^2} = \frac{dp_1 d\Omega p_1^2}{16\pi^2} \frac{\delta(E_0 - \sqrt{m_1^2 + p_1^2} - \sqrt{m_2^2 + \|\mathbf{P}_0 - \mathbf{p}_1\|^2})}{E_1 E_2} = \frac{1}{8\pi} d\cos\theta_1 \frac{p_1^2}{E_0 p_1 - P_0 E_1 \cos\theta_1},$$
(1.7)

$$p_1 = \frac{(E_0^2 + m_1^2 - m_2^2 - P_0^2)P_0\cos\theta_1 + E_0\sqrt{\lambda(E_0^2, m_1^2, m_2^2) + P_0^4 - 2P_0^2(E_0^2 + m_1^2 - 2m_1^2\cos^2\theta_1 - m_2^2)}}{2(E_0^2 - P_0^2\cos^2\theta_1)}.$$
 (1.8)
CM frame result is recovered by setting $E_0 = \sqrt{s}$ and $P_0 = 0$.

CM frame result is recovered by setting $E_0 = \sqrt{s}$ and $P_0 =$

1.2. Decay rate and Cross section

As
$$\langle \text{out}|\text{in}\rangle = (2\pi)^4 \delta^{(4)}(p_i - p_f)\text{i}\mathcal{M}$$
 (for in \neq out) and $\langle \boldsymbol{p}|\boldsymbol{p}\rangle = 2E_{\boldsymbol{p}}(2\pi)^3 \delta^{(3)}(\boldsymbol{0}) = 2E_{\boldsymbol{p}}V$ for one-particle state,
$$\frac{N_{\text{ev}}}{\prod_{\text{in}} N_{\text{particle}}} = \int d\Pi^{\text{out}} \frac{|\langle \text{out}|\text{in}\rangle|^2}{\langle \text{in}|\text{in}\rangle} = \int d\Pi^{\text{out}} \frac{(2\pi)^8 |\mathcal{M}|^2}{\prod_{\text{in}} (2E)V} \frac{VT}{(2\pi^4)} \delta^{(4)}(p_i - p_f) = VT \int \overline{d\Pi^{N_f}} \frac{|\mathcal{M}|^2}{\prod_{\text{in}} (2E)V}. \quad (1.9)$$

Therefore, decay rate (at the rest frame) is given by
$$d\Gamma := \frac{1}{T} \frac{dN_{\text{ev}}}{N_{\text{particle}}} = \frac{1}{T} V T \overline{d\Pi^{N_{\text{f}}}} \frac{|\mathcal{M}|^2}{(2E)V} = \frac{1}{2M_0} \overline{d\Pi^{N_{\text{f}}}} |\mathcal{M}|^2. \tag{1.10}$$

We also define Lorentz-invariant cross section
$$\sigma$$
 by $N_{\text{ev}} =: (\rho_A v_{\text{Møl}} T \sigma) N_B = (\rho_A v_{\text{Møl}} T \sigma) (\rho_B V)$, or
$$d\sigma := \frac{dN_{\text{ev}}}{\rho_A v_{\text{Møl}} T N_B} = \frac{V}{v_{\text{Møl}} T} V T \overline{d\Pi^{N_{\text{f}}}} \frac{|\mathcal{M}|^2}{2E_A 2E_B V^2} = \frac{1}{2E_A 2E_B v_{\text{Møl}}} \overline{d\Pi^{N_{\text{f}}}} |\mathcal{M}|^2.$$
 (1.11) where the Møller parameter $v_{\text{Møl}}$ is equal to $v_{\text{rel}}^{\text{NR}} = \|\boldsymbol{v}_A - \boldsymbol{v}_B\|$ if $\boldsymbol{v}_A /\!\!/ \boldsymbol{v}_B$ (cf. Ref. [?]). Generally,

$$v_{\text{Møl}} := \frac{\sqrt{(p_A \cdot p_B)^2 - m_A^2 m_B^2}}{E_A E_B} = \frac{p_A \cdot p_B}{E_A E_B} v_{\text{rel}} = (1 - \boldsymbol{v}_A \cdot \boldsymbol{v}_B) v_{\text{rel}}, \tag{1.12}$$

where
$$v_{\text{rel}}$$
 is the actual relative velocity
$$v_{\text{rel}} = \sqrt{1 - \frac{(1 - v_A^2)(1 - v_B^2)}{1 - (v_A \cdot v_B)^2}} = \frac{\sqrt{\|v_A - v_B\|^2 - \|v_A \times v_B\|^2}}{1 - v_A \cdot v_B} = \frac{\lambda^{1/2}(s, m_A^2, m_B^2)}{s - (m_A^2 + m_B^2)} \neq v_{\text{rel}}^{\text{NR}}. \tag{1.13}$$
(Note that $v_B = v_B / E_B = 1$ if $v_B = 0$ on $v_B = 0$. Also Feeb of $v_B = V_B = 0$.

(Note that $p_A \cdot p_B/E_A E_B = 1$ if $\mathbf{p}_A = 0$ or $\mathbf{p}_B = 0$. Also, Each of $v_{\rm rel}$, VT, and $E_A E_B v_{\rm Møl}$ is Lorentz invariant.)

2. Gauge theory

SU(2) Fundamental representation $\mathbf{2} = (T^a)_{ij}$, adjoint representation adj. $= (\epsilon^a)^{bc}$.*1

$$T_a = \frac{1}{2}\sigma_a,$$
 $Tr(T_aT_b) = \frac{1}{2}\delta_{ab},$ $[T_a, T_b] = i\epsilon^{abc}T^c,$ $\epsilon^{abc}\epsilon^{ade} = \delta_{bd}\delta_{ce} - \delta_{be}\delta_{cd}$

Since $\overline{\bf 2} = -(T^a)_{ij}^*$ has identities $-\epsilon T^a \epsilon = -T^{a*}$ and $-\epsilon (-T^{a*})\epsilon = T^a$, we see that $\epsilon^{ab} {\bf 2}^b$ transforms as $\overline{\bf 2}^a$:

$$\epsilon^{ab}\mathbf{2}^b \to \epsilon^{ab}[\exp{(\mathrm{i}g\theta^\alpha T^\alpha)}]^{bc}\mathbf{2}^c = \epsilon^{ab}[\exp{(\mathrm{i}g\theta^\alpha T^\alpha)}]^{bc}(\epsilon^{-1})^{cd}(\epsilon^{de}\mathbf{2}^e) = [\exp{(-\mathrm{i}g\theta^\alpha T^{\alpha*})}]^{ab}(\epsilon^{bc}\mathbf{2}^c). \tag{2.1}$$

SU(3) Fundamental representation $\mathbf{3} = (\tau^a)_{ij}$, $\overline{\mathbf{3}} = -(\tau^a)_{ij}^*$; adjoint representation adj. $= \mathbf{8} = (f^a)^{bc}$. Gell-Mann matrices:

$$\lambda_{1-8} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$
 (2.2)

$$\tau_a = \frac{1}{2}\lambda_a, \qquad \operatorname{Tr}(\tau_a \tau_b) = \frac{1}{2}\delta_{ab}, \qquad [\tau_a, \tau_b] = \mathrm{i} f^{abc} \tau^c, \qquad f^{ade} f^{bcd} + f^{bde} f^{cad} + f^{cde} f^{abd} = 0.$$

$$\begin{aligned} \mathbf{3}: & \phi_a \to [\exp(\mathrm{i}g\theta^\alpha\tau^\alpha)]_{ab}\phi_b \simeq \phi_a + \mathrm{i}g\theta^\alpha\tau_{ab}^\alpha\phi_b \\ & \phi_a^* \to [\exp(-\mathrm{i}g\theta^\alpha\tau^{\alpha*})]_{ab}\phi_b^* \simeq \phi_a^* - \mathrm{i}g\theta^\alpha\tau_{ab}^{\alpha*}\phi_b^* \\ & = \phi_b^*[\exp(-\mathrm{i}g\theta^\alpha\tau^\alpha)]_{ba} \simeq \phi_a^* - \mathrm{i}g\theta^\alpha\tau_{ab}^{\alpha*}\phi_b^* \end{aligned} \qquad \begin{aligned} & \overline{\mathbf{3}}: & \phi_a \to [\exp(-\mathrm{i}g\theta^\alpha\tau^{\alpha*})]_{ab}\phi_b \simeq \phi_a - \mathrm{i}g\theta^\alpha\tau_{ab}^{\alpha*}\phi_b \\ & \phi_a^* \to [\exp(\mathrm{i}g\theta^\alpha\tau^\alpha)]_{ab}\phi_b^* \simeq \phi_a^* + \mathrm{i}g\theta^\alpha\tau_{ab}^\alpha\phi_b^* \end{aligned}$$

^{*1} We do not distinguish sub- and superscripts for gauge indices.

3. Spinors

$$(\overline{\psi_1}\psi_2)^* = (\psi_2)^{\dagger} (\overline{\psi}_1)^{\dagger} = \overline{\psi_2}\psi_1. \tag{3.1}$$

4. Standard Model

(summary page)

4.1. Particle content and convention

4.2. Lagrangian

4.3. Higgs mechanism

A general expression for composing a Dirac fermion from $\psi_L(T_{3L}, Y_L)$ and $\psi_R(T_{3R}, Y_R)$ is given by

$$(g_2 \cancel{W}_3 T_{3L} + g_Y \cancel{B} Y_L) P_L + (g_2 \cancel{W}_3 T_{3R} + g_Y \cancel{B} Y_R) P_R$$

$$(4.1)$$

$$= \left[\left(|e| \mathcal{A} + g_Z c_w^2 \mathcal{Z} \right) T_{3L} + \left(|e| \mathcal{A} - g_Z s_w^2 \mathcal{Z} \right) Y_L \right] P_L + (\text{right})$$

$$(4.2)$$

$$= \frac{T_{3L} + T_{3R} + Y_{L} + Y_{R}}{2} |e| \cancel{A} + \frac{T_{3L}c_{w}^{2} - Y_{L}s_{w}^{2} + T_{3R}c_{w}^{2} - Y_{R}s_{w}^{2}}{2} g_{Z} \cancel{Z}$$

$$+ \frac{-T_{3L} - Y_{L} + T_{3R} + Y_{R}}{2} |e| \cancel{A}\gamma_{5} + \frac{-c_{w}^{2}T_{3L} + s_{w}^{2}Y_{L} + c_{w}^{2}T_{3R} - s_{w}^{2}Y_{R}}{2} g_{Z} \cancel{Z}\gamma_{5}.$$
In the SM, $T_{3L} + Y_{L} = Y_{R} =: Q$ and $T_{3R} = 0$ lead to
$$Q|e| \cancel{A} + g_{Z} \cancel{Z} \left(T_{3L}P_{L} - Qs_{w}^{2}\right). \tag{4.4}$$

$$Q|e|A + g_Z Z \left(T_{3L} P_L - Q s_w^2\right). \tag{4.4}$$

4.4. Lagrangian in mass eigenstates

4.5. CKM matrix and Yukawa convention

Our convention is, with $Y = UY^{\text{diag}}V^{\dagger}$,

$$\mathcal{L} \supset \overline{U}Y_u H P_L Q - \overline{D}Y_d H^{\dagger} P_R Q - \overline{E}Y_e H^{\dagger} P_R L + \text{h.c.}$$

$$\tag{4.5}$$

$$= \overline{U_i} Y_{uij} \epsilon^{ab} H^a P_L Q_i^b - \overline{D_i} Y_{dij} H^{a*} P_L Q_i^a - \overline{E_i} Y_{eij} H^{a*} P_L L_i^a + \text{h.c.}$$

$$(4.6)$$

$$= \epsilon^{ab} \overline{U} U_u Y_u^{\text{diag}} H^a P_{\text{L}} V_u^{\dagger} Q^b - \overline{D} U_d Y_d^{\text{diag}} H^{a*} P_{\text{R}} V_d^{\dagger} Q^a - \overline{E} U_e Y_e^{\text{diag}} H^{a*} P_{\text{R}} V_e^{\dagger} L + \text{h.c.}$$

$$(4.7)$$

$$\rightarrow -\frac{v}{\sqrt{2}}\overline{U}U_{u}Y_{u}^{\mathrm{diag}}V_{u}^{\dagger}P_{\mathrm{L}}Q^{1} - \frac{v}{\sqrt{2}}\overline{D}U_{d}Y_{d}^{\mathrm{diag}}V_{d}^{\dagger}P_{\mathrm{L}}Q^{2} - \frac{v}{\sqrt{2}}\overline{E}U_{e}Y_{e}^{\mathrm{diag}}V_{e}^{\dagger}P_{\mathrm{L}}L^{2} + \text{h.c.}$$

$$(4.8)$$

Noting that $(\overline{\psi_A}P_L\psi_B)^* = \overline{\psi_B}P_R\psi_A$, this definition is equivalent to

$$\mathcal{L} \supset -\overline{Q^a} Y_u^{\dagger} \epsilon^{ab} H^{b*} P_R U - \overline{Q^a} Y_d^{\dagger} H^a P_R D - \overline{L^a} Y_e^{\dagger} H^a P_R E + \text{h.c.}$$

$$\tag{4.9}$$

Moving to the CKM basis, the weak interaction is amended as

$$\mathcal{L} \supset \overline{Q} i \gamma^{\mu} (-i g_2 W_{\mu}) P_{L} Q \supset \frac{g_2}{\sqrt{2}} \left[\overline{Q^1} W^{+} P_{L} Q^2 + \overline{Q^2} W^{-} P_{L} Q^1 \right] = \frac{g_2}{\sqrt{2}} \left[\overline{\hat{Q}^1} V_u^{\dagger} W^{+} P_{L} V_d \hat{Q}^2 + \overline{\hat{Q}^2} V_d^{\dagger} W^{-} P_{L} V_u \hat{Q}^1 \right], (4.10)$$

where hatted fields are in the CKM basis, and we define, with $s_{ij} > 0$ and $c_{ij} > 0$,

Here, a 3×3 unitary matrix has three angles and six phases, among which five phases are removed by the fermion rotation, but another phase Θ is introduced due to the Θ -term removal. TODO: link

PDG convention (consistent in 2006§11 and 2018§12)

$$\mathcal{L} \supset -Y_{ij}^{d} \overline{Q_{Li}^{I}} \phi d_{Rj}^{I} - Y_{ij}^{u} \overline{Q_{Li}^{I}} \epsilon \phi^{*} u_{Rj}^{I}, \quad Y^{\text{diag}} = V_{L} Y V_{R}^{\dagger}, \quad V_{\text{CKM}} = V_{L}^{u} V_{L}^{d\dagger}.$$

$$\text{So, } Y^{u} = Y_{u}^{\dagger}, Y^{d} = Y_{d}^{\dagger}; Y^{\text{diag}} = V_{R} Y^{\dagger} V_{L}^{\dagger} = V_{R} Y V_{L}^{\dagger} \text{ leads } V_{L} = V^{\dagger}, \text{ and } V_{\text{CKM}} = V_{u}^{\dagger} V_{d} = V_{\text{CKM}}.$$

$$(4.12)$$

SLHA2 convention (0801.0045)

$$W \supset \epsilon_{ab} \left[(Y_E)_{ij} H_1^a L_i^b \bar{E}_j + (Y_D)_{ij} H_1^a Q_i^b \bar{D}_j + (Y_U)_{ij} H_2^b Q_i^a \bar{U}_j \right]; \tag{4.13}$$

$$\mathcal{L} \supset -\epsilon_{ab} \left[(Y_E)_{ij} H_1^a \psi_{Li}^b \psi_{\bar{E}j} + (Y_D)_{ij} H_1^a \psi_{Qi}^b \bar{\psi}_{\bar{D}j} + (Y_U)_{ij} H_2^b \psi_{Qi}^a \bar{\psi}_{\bar{U}j} \right]$$

$$(4.14)$$

$$\longrightarrow -\left[\psi_{\bar{E}}v_{\mathrm{d}}Y_{E}^{\mathrm{T}}\psi_{L}^{2} + \psi_{\bar{D}}v_{\mathrm{d}}Y_{D}^{\mathrm{T}}\psi_{Q}^{2} + \psi_{\bar{U}}v_{\mathrm{u}}Y_{U}^{\mathrm{T}}\psi_{Q}^{1}\right]; \quad Y^{\mathrm{diag}} = U^{\dagger}Y^{\mathrm{T}}V, \quad V_{\mathrm{CKM}} = V_{u}^{\dagger}V_{d}.$$

$$(4.15)$$

Hence, $\underline{Y}_E = Y_e^{\mathrm{T}}$, $\underline{Y}_D = Y_d^{\mathrm{T}}$, $\underline{Y}_U = Y_u^{\mathrm{T}}$; $Y^{\mathrm{diag}} = \underline{U}^{\dagger} Y V$, V = V and $\underline{V}_{\mathrm{CKM}} = V_{\mathrm{CKM}}$.

Wolfenstein parameterization The CKM matrix is precisely written in terms of λ , A, and $\bar{\rho} + i\bar{\eta}$.

$$\lambda := s_{12} = \frac{|V_{us}|}{\sqrt{|V_{ud}|^2 + |V_{us}|^2}}, \quad A := \frac{s_{23}}{\lambda^2} = \lambda^{-1} \left| \frac{V_{cb}}{V_{us}} \right|, \quad \bar{\rho} + i\bar{\eta} := \frac{-V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}. \tag{4.16}$$

They are independent of the phase convention and used for SLHA2 input, i.e., VCKMIN should contain $(\lambda, A, \bar{\rho}, \bar{\eta})$. Also, $\bar{\rho} + i\eta$ is approximately written by

$$R = \rho + i\eta := \frac{s_{13} e^{i\delta}}{A\lambda^3} = \frac{V_{ub}^*}{A\lambda^3} \frac{V_{ud}}{|V_{ud}|} = \frac{(\bar{\rho} + i\bar{\eta})\sqrt{1 - A^2\lambda^4}}{\sqrt{1 - \lambda^2} [1 - A^2\lambda^4(\bar{\rho} + i\bar{\eta})]} = (\bar{\rho} + i\bar{\eta}) \left(1 + \frac{\lambda^2}{2} + \mathcal{O}(\lambda^4)\right), \tag{4.17}$$

with which

$$V_{\text{CKM}} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3 R^* \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3 (1 - R) & -A\lambda^2 & 1 \end{pmatrix} e^{i\Theta} + \begin{pmatrix} \mathcal{O}(\lambda^4) & \mathcal{O}(\lambda^7) & 0 \\ \mathcal{O}(\lambda^5) & \mathcal{O}(\lambda^4) & \mathcal{O}(\lambda^8) \\ \mathcal{O}(\lambda^5) & \mathcal{O}(\lambda^4) & \mathcal{O}(\lambda^4) \end{pmatrix}.$$
(4.18)

4.6. Values of SM parameters

5. Supersymmetry with $\eta = diag(+, -, -, -)$

Convention Our convention follows DHM (except for D_{μ}):

$$\begin{split} & \eta = \operatorname{diag}(1, -1, -1, -1); \quad \epsilon^{0123} = -\epsilon_{0123} = 1, \quad \epsilon^{12} = \epsilon_{21} = \epsilon^{\dot{1}\dot{2}} = \epsilon_{\dot{2}\dot{1}} = 1 \quad \left(\epsilon_{\alpha\beta}\epsilon^{\beta\gamma} = \epsilon^{\alpha\beta}\epsilon_{\beta\gamma} = \delta^{\alpha}_{\gamma}\right), \\ & \psi^{\alpha} = \epsilon^{\alpha\beta}\psi_{\beta}, \quad \psi_{\alpha} = \epsilon_{\alpha\beta}\psi^{\beta}, \quad \bar{\psi}^{\dot{\alpha}} = \epsilon^{\dot{\alpha}\dot{\beta}}\bar{\psi}_{\dot{\beta}}, \quad \bar{\psi}_{\dot{\alpha}} = \epsilon_{\dot{\alpha}\dot{\beta}}\bar{\psi}^{\dot{\beta}}; \\ & \sigma^{\mu}_{\alpha\dot{\alpha}} := (\mathbf{1}, \boldsymbol{\sigma})_{\alpha\dot{\alpha}}, \qquad \sigma^{\mu\nu}_{\alpha}{}^{\beta} := \frac{\mathrm{i}}{4}(\sigma^{\mu}\bar{\sigma}^{\nu} - \sigma^{\nu}\bar{\sigma}^{\mu})_{\alpha}{}^{\beta}, ^{*2} \qquad \left(\sigma^{\mu}_{\alpha\dot{\beta}} = \epsilon_{\alpha\delta}\epsilon_{\dot{\beta}\dot{\gamma}}\bar{\sigma}^{\mu\dot{\gamma}\delta}, \quad \bar{\sigma}^{\mu\dot{\alpha}\beta} = \epsilon^{\dot{\alpha}\dot{\delta}}\epsilon^{\beta\gamma}\sigma^{\mu}_{\gamma\dot{\delta}}\right) \\ & \bar{\sigma}^{\mu\dot{\alpha}\alpha} := (\mathbf{1}, -\boldsymbol{\sigma})^{\dot{\alpha}\alpha}, \quad \bar{\sigma}^{\mu\nu\dot{\alpha}}_{\dot{\beta}} := \frac{\mathrm{i}}{4}(\bar{\sigma}^{\mu}\sigma^{\nu} - \bar{\sigma}^{\nu}\sigma^{\mu})^{\dot{\alpha}}_{\dot{\beta}}, ^{*2} \\ & (\psi\xi) := \psi^{\alpha}\xi_{\alpha}, \quad (\bar{\psi}\bar{\chi}) := \bar{\psi}_{\dot{\alpha}}\bar{\chi}^{\dot{\alpha}}; \qquad \frac{\mathrm{d}}{\mathrm{d}\theta^{\alpha}}(\theta\theta) := \theta_{\alpha} \quad [\text{left derivative}]. \end{split}$$

Especially, spinor-index contraction is done as ${}^{\alpha}{}_{\alpha}$ and ${}_{\dot{\alpha}}{}^{\dot{\alpha}}$ except for ϵ_{ab} (which always comes from left). Noting that complex conjugate reverses spinor order: $(\psi^{\alpha}\xi^{\beta})^* := (\xi^{\beta})^*(\psi^{\alpha})^*$,

$$\begin{split} \bar{\psi}^{\dot{\alpha}} &:= (\psi^{\alpha})^*, \quad \epsilon^{\dot{\alpha}\dot{b}} := (\epsilon^{ab})^*, \qquad (\psi\chi)^* = (\bar{\psi}\bar{\chi}), \\ \left(\sigma^{\mu}_{\alpha\dot{\beta}}\right)^* &= \bar{\sigma}^{\mu}{}_{\dot{\alpha}\beta} = \epsilon_{\beta\delta}\epsilon_{\dot{\alpha}\dot{\gamma}}\bar{\sigma}^{\mu\dot{\gamma}\delta}, \qquad (\sigma^{\mu\nu})^{\dagger\alpha}{}_{\beta} = \bar{\sigma}^{\mu\nu\dot{\alpha}}{}_{\dot{\beta}}, \qquad (\sigma^{\mu\nu}{}_{\alpha}{}^{\beta})^* = \bar{\sigma}^{\mu\nu\dot{\beta}}{}_{\dot{\alpha}} = \bar{\sigma}^{\mu\nu}{}_{\dot{\alpha}}{}^{\dot{\beta}} = \epsilon_{\dot{\alpha}\dot{\gamma}}\epsilon^{\dot{\beta}\dot{\delta}}\bar{\sigma}^{\mu\nu\dot{\gamma}}{}_{\dot{\delta}}, \\ \left(\bar{\sigma}^{\mu\dot{\alpha}\beta}\right)^* &= \sigma^{\mu\alpha\dot{\beta}} = \epsilon^{\dot{\beta}\dot{\delta}}\epsilon^{\alpha\gamma}\sigma^{\mu}{}_{\gamma\dot{\delta}}, \qquad (\bar{\sigma}^{\mu\nu})^{\dagger}{}_{\dot{\alpha}}{}^{\dot{\beta}} = \sigma^{\mu\nu}{}_{\alpha}{}^{\beta}, \qquad (\bar{\sigma}^{\mu\nu\dot{\alpha}}{}_{\dot{\beta}})^* = \sigma^{\mu\nu}{}_{\beta}{}^{\alpha} = \bar{\sigma}^{\mu\nu\alpha}{}_{\beta} = \epsilon_{\beta\delta}\epsilon^{\alpha\gamma}\sigma^{\mu\nu}{}_{\gamma}{}^{\delta}. \end{split}$$

Contraction formulae

$$\begin{array}{lll} \theta^{\alpha}\theta^{\beta} = -\frac{1}{2}(\theta\theta)\epsilon^{\alpha\beta} & \bar{\theta}^{\dot{\alpha}}\bar{\theta}^{\dot{\beta}} = \frac{1}{2}(\bar{\theta}\bar{\theta})\epsilon^{\dot{\alpha}\dot{\beta}} & (\theta\xi)(\theta\chi) = -\frac{1}{2}(\theta\theta)(\xi\chi) & (\theta\sigma^{\nu}\bar{\theta})\theta^{\alpha} = \frac{1}{2}(\theta\theta)(\bar{\theta}\bar{\sigma}^{\nu})^{\alpha} \\ \theta_{\alpha}\theta_{\beta} = \frac{1}{2}(\theta\theta)\epsilon_{\alpha\beta} & \bar{\theta}_{\dot{\alpha}}\bar{\theta}_{\dot{\beta}} = -\frac{1}{2}(\bar{\theta}\bar{\theta})\epsilon_{\dot{\alpha}\dot{\beta}} & (\bar{\theta}\bar{\xi})(\bar{\theta}\bar{\chi}) = -\frac{1}{2}(\bar{\theta}\bar{\theta})(\bar{\xi}\bar{\chi}) & (\theta\sigma^{\nu}\bar{\theta})\bar{\theta}_{\dot{\alpha}} = -\frac{1}{2}(\theta\sigma^{\nu})_{\dot{\alpha}}(\bar{\theta}\bar{\theta}) \\ \theta^{\alpha}\theta_{\beta} = \frac{1}{2}(\theta\theta)\delta^{\alpha}_{\beta} & \bar{\theta}_{\dot{\alpha}}\bar{\theta}^{\dot{\beta}} = \frac{1}{2}(\bar{\theta}\bar{\theta})\delta^{\dot{\alpha}}_{\dot{\beta}} & (\theta\sigma^{\mu}\bar{\theta})(\theta\sigma^{\nu}\bar{\theta}) = \frac{1}{2}(\theta\theta)(\bar{\theta}\bar{\theta})\eta^{\mu\nu} \\ (\theta\sigma^{\mu}\bar{\sigma}^{\nu}\theta) = (\theta\theta)\eta^{\mu\nu} & (\bar{\theta}\bar{\sigma}^{\mu}\sigma^{\nu}\bar{\theta}) = (\bar{\theta}\bar{\theta})\eta^{\mu\nu} & (\sigma^{\mu}\bar{\theta})_{\alpha}(\theta\sigma^{\nu}\bar{\theta}) = \frac{1}{2}(\bar{\theta}\bar{\theta})(\sigma^{\mu}\bar{\sigma}^{\nu}\theta)_{\alpha} \end{array}$$

$$\begin{split} \sigma^{\mu}\bar{\sigma}^{\nu} &= \eta^{\mu\nu} - 2\mathrm{i}\sigma^{\mu\nu} \\ \bar{\sigma}^{\mu}\sigma^{\nu} &= \eta^{\mu\nu} - 2\mathrm{i}\bar{\sigma}^{\mu\nu} \\ \bar{\sigma}^{\mu}\sigma^{\nu} &= \eta^{\mu\nu} - 2\mathrm{i}\bar{\sigma}^{\mu\nu} \\ \bar{\sigma}^{\mu}\sigma^{\nu} &= \eta^{\mu\nu} - 2\mathrm{i}\bar{\sigma}^{\mu\nu} \\ \bar{\sigma}^{\mu}\sigma^{\nu} &= Tr\left(\bar{\sigma}^{\mu}\sigma^{\nu}\right) = 2\eta^{\mu\nu} \\ \bar{\sigma}^{\mu}\sigma^{\nu}\bar{\sigma}^{\rho} + \bar{\sigma}^{\rho}\bar{\sigma}^{\nu}\sigma^{\mu} &= 2\left(\bar{\sigma}^{\mu}\eta^{\rho\nu} - \bar{\sigma}^{\nu}\eta^{\mu\rho} + \bar{\sigma}^{\rho}\eta^{\mu\nu}\right) \\ \bar{\sigma}^{\mu}\sigma^{\nu}\bar{\sigma}^{\rho} &= Tr\left(\bar{\sigma}^{\mu}\sigma^{\nu}\right) = 2\eta^{\mu\nu} \\ \bar{\sigma}^{\mu}\sigma^{\nu}\bar{\sigma}^{\rho} + \bar{\sigma}^{\rho}\sigma^{\nu}\bar{\sigma}^{\mu} &= 2\left(\bar{\sigma}^{\mu}\eta^{\rho\nu} - \bar{\sigma}^{\nu}\eta^{\mu\rho} + \bar{\sigma}^{\rho}\eta^{\mu\nu}\right) \\ \bar{\sigma}^{\mu}\sigma^{\nu}\bar{\sigma}^{\rho} &= \bar{\sigma}^{\rho}\sigma^{\nu}\bar{\sigma}^{\mu} &= 2\left(\bar{\sigma}^{\mu}\eta^{\rho\nu} - \bar{\sigma}^{\nu}\eta^{\mu\rho} + \bar{\sigma}^{\rho}\eta^{\mu\nu}\right) \\ \bar{\sigma}^{\mu}\sigma^{\nu}\bar{\sigma}^{\rho} &= \bar{\sigma}^{\rho}\sigma^{\nu}\bar{\sigma}^{\mu} &= 2\left(\bar{\sigma}^{\mu}\eta^{\rho\nu} - \bar{\sigma}^{\nu}\eta^{\mu\rho} + \bar{\sigma}^{\rho}\eta^{\mu\nu}\right) \\ \bar{\sigma}^{\mu}\sigma^{\nu}\bar{\sigma}^{\rho} &= \bar{\sigma}^{\rho}\sigma^{\nu}\bar{\sigma}^{\mu} &= 2\left(\bar{\sigma}^{\mu}\eta^{\rho\nu} - \bar{\sigma}^{\nu}\eta^{\mu\rho} + \bar{\sigma}^{\rho}\eta^{\mu\nu}\right) \\ \bar{\sigma}^{\mu}\sigma^{\mu}\bar{\sigma}^{\mu}\bar{\sigma}^{\mu} &= 2\bar{\sigma}^{\mu}\sigma^{\nu}\bar{\sigma}^{\rho} - \bar{\sigma}^{\rho}\sigma^{\nu}\bar{\sigma}^{\mu} &= 2\left(\bar{\sigma}^{\mu}\eta^{\rho\nu} - \bar{\sigma}^{\nu}\eta^{\mu\rho} + \bar{\sigma}^{\rho}\eta^{\mu\nu}\right) \\ \bar{\sigma}^{\mu}\sigma^{\mu}\bar{\sigma}^{\mu}\bar{\sigma}^{\mu} &= 2\bar{\sigma}^{\mu}\sigma^{\mu}\bar{\sigma}^{\mu}\bar{\sigma}^{\mu}\bar{\sigma}^{\mu} &= 2\bar{\sigma}^{\mu}\sigma^{\mu}\bar{\sigma}^{\mu}\bar{\sigma$$

$$\begin{split} \bar{\xi}\bar{\sigma}^{\mu}\chi &= -\chi\sigma^{\mu}\bar{\xi} & \bar{\xi}\bar{\sigma}^{\mu}\sigma^{\nu}\bar{\chi} = \bar{\chi}\bar{\sigma}^{\nu}\sigma^{\mu}\bar{\xi} & \xi\sigma^{\mu}\bar{\sigma}^{\nu}\chi = \chi\sigma^{\nu}\bar{\sigma}^{\mu}\xi & \bar{\xi}\bar{\sigma}^{\mu}\sigma^{\nu}\bar{\sigma}^{\rho}\chi = -\chi\sigma^{\rho}\bar{\sigma}^{\nu}\sigma^{\mu}\bar{\xi} \\ \left(\xi\sigma^{\mu}\bar{\chi}\right)^{*} &= \chi\sigma^{\mu}\bar{\xi} & \left(\bar{\xi}\bar{\sigma}^{\mu}\chi\right)^{*} = \bar{\chi}\bar{\sigma}^{\mu}\xi & \left(\bar{\chi}\bar{\sigma}^{\mu}\sigma^{\nu}\bar{\xi}\right)^{*} = \xi\sigma^{\nu}\bar{\sigma}^{\mu}\chi & (\xi[\sigma\mathrm{s}]\chi)^{*} = \bar{\chi}[\sigma\mathrm{s}_{\mathrm{reversed}}]\bar{\xi} \\ (\xi\chi)\psi^{\alpha} &= -(\psi\xi)\chi^{\alpha} - (\psi\chi)\xi^{\alpha} & (\xi\chi)\bar{\psi}_{\dot{\alpha}} = \frac{1}{2}(\xi\sigma^{\mu}\bar{\psi})(\chi\sigma_{\mu})_{\dot{\alpha}} \\ \mathrm{i}\psi_{i}\sigma^{\mu}\partial_{\mu}\bar{\psi}_{j} &= -\mathrm{i}\partial_{\mu}\bar{\psi}_{j}\bar{\sigma}^{\mu}\psi_{i} \equiv \mathrm{i}\bar{\psi}_{j}\bar{\sigma}^{\mu}\partial_{\mu}\psi_{i} = -\mathrm{i}\partial_{\mu}\psi_{i}\sigma^{\mu}\bar{\psi}_{j} \end{split}$$

^{*2} As the definition of $\sigma^{\mu\nu}$ and $\bar{\sigma}^{\mu\nu}$ are not unified in literature, they are not used in this CheatSheet except for this page.

Superfields

$$\Phi = \phi(x) + \sqrt{2}\theta\psi(x) - i\partial_{\mu}\phi(x)(\theta\sigma^{\mu}\bar{\theta}) + F(x)\theta^{2} + \frac{i}{\sqrt{2}}(\partial_{\mu}\psi(x)\sigma^{\mu}\bar{\theta})\theta^{2} - \frac{\theta^{4}}{4}\partial^{2}\phi(x), \tag{5.1}$$

$$\Phi^* = \phi^*(x) + \sqrt{2}\bar{\psi}(x)\bar{\theta} + F^*(x)\bar{\theta}^2 + i\partial_\mu\phi^*(x)(\theta\sigma^\mu\bar{\theta}) - \frac{i}{\sqrt{2}}[\theta\sigma^\mu\partial_\mu\bar{\psi}(x)]\bar{\theta}^2 - \frac{\theta^4}{4}\partial^2\phi^*(x), \tag{5.2}$$

$$V = (\bar{\theta}\bar{\sigma}^{\mu}\theta)A_{\mu}(x) + \bar{\theta}^{2}\theta\lambda(x) + \theta^{2}\bar{\theta}\bar{\lambda}(x) + \frac{\theta^{4}}{2}D(x) \qquad \text{(in Wess-Zumino supergauge)}.$$
 (5.3)

Without gauge symmetries

$$\mathcal{L} = \Phi_i^* \Phi_i \Big|_{\theta^4} + \left(W(\Phi_i) \Big|_{\theta^2} + \text{H.c.} \right); \tag{5.4}$$

$$\Phi_i^* \Phi_i \Big|_{\theta^4} = (\partial_\mu \phi_i^*)(\partial^\mu \phi_i) + i \bar{\psi}_i \sigma^\mu \partial_\mu \psi_i + F_i^* F_i, \tag{5.5}$$

$$W(\Phi_{i})\Big|_{\theta^{2}} \rightsquigarrow \Big[\kappa_{i}\Phi_{i} + m_{ij}\Phi_{i}\Phi_{j} + y_{ijk}\Phi_{i}\Phi_{j}\Phi_{k}\Big]_{\theta^{2}}$$

$$= \kappa_{i}F_{i} + m_{ij}\left(-\psi_{i}\psi_{j} + F_{i}\phi_{j} + \phi_{i}F_{j}\right)$$

$$+ y_{ijk}\Big[-(\psi_{i}\psi_{j}\phi_{k} + \psi_{i}\phi_{j}\psi_{k} + \phi_{i}\psi_{j}\psi_{k}) + \phi_{i}\phi_{j}F_{k} + \phi_{i}F_{j}\phi_{k} + F_{i}\phi_{j}\phi_{k}\Big].$$

$$(5.6)$$

With a U(1) gauge symmetry *

$$\mathcal{L} = \Phi_i^* e^{2gVQ_i} \Phi_i \Big|_{\theta^4} + \left[\left(\frac{1}{4} - \frac{ig^2 \Theta}{32\pi^2} \right) \mathcal{W}^{\alpha} \mathcal{W}_{\alpha} \Big|_{\theta^2} + W(\Phi_i) \Big|_{\theta^2} + \text{H.c.} \right] + \Lambda_{\text{FI}} D; \tag{5.7}$$

$$\Phi_i e^{2gQ_iV} \Phi_i \Big|_{\rho 4} \equiv D^\mu \phi_i^* D_\mu \phi_i + i \bar{\psi}_i \bar{\sigma}^\mu D_\mu \psi_i + F_i^* F_i - \sqrt{2}gQ_i \phi_i^* \lambda \psi_i - \sqrt{2}gQ_i \bar{\psi}_i \bar{\lambda} \phi_i + gQ_i \phi_i^* \phi_i D, \quad (5.8)$$

$$\left(\frac{1}{4} - \frac{ig^2\Theta}{32\pi^2}\right) \mathcal{W}^{\alpha} \mathcal{W}_{\alpha} \Big|_{\theta^2} + \text{H.c.} = \frac{1}{2} \operatorname{Re} \mathcal{W} \mathcal{W} \Big|_{\theta^2} + \frac{g^2\Theta}{16\pi^2} \operatorname{Im} \mathcal{W} \mathcal{W} \Big|_{\theta^2}
\equiv i\bar{\lambda}\bar{\sigma}^{\mu} D_{\mu} \lambda + \frac{1}{2} DD - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{g^2\Theta}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma},$$
(5.9)

$$\begin{aligned} \mathbf{D}_{\mu}\phi_{i} &= (\partial_{\mu} - \mathrm{i}gQ_{i}A_{\mu})\phi_{i}, & \mathbf{D}_{\mu}\psi_{i} &= (\partial_{\mu} - \mathrm{i}gQ_{i}A_{\mu})\psi_{i}, \\ \mathbf{D}^{\mu}\phi_{i}^{*} &= (\partial^{\mu} + \mathrm{i}gQ_{i}A^{\mu})\phi_{i}^{*}, & F_{\mu\nu} &= \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}, & \mathbf{D}_{\mu}\lambda &= \partial_{\mu}\lambda. \end{aligned}$$

$$\{\phi, \psi, F\} \xrightarrow{\text{gauge}} e^{igQ_i\theta} \{\phi, \psi, F\}, \qquad A_{\mu} \xrightarrow{\text{gauge}} A_{\mu} + \partial_{\mu}\theta, \qquad \lambda \xrightarrow{\text{gauge}} \lambda, \qquad D \xrightarrow{\text{gauge}} D.$$
 (5.10)

^{*3} We use the convention with $V \ni \lambda(x)\theta\bar{\theta}^2$, which corresponds to $\lambda = i\lambda_{SLHA}$. In SLHA convention, the scalar-fermion-gaugino interaction is replaced to

 $^{-\}sqrt{2}g\mathrm{i}\lambda_{\mathrm{SLHA}}^{a}(\phi^{*}t^{a}\psi)-\sqrt{2}g(-\mathrm{i}\bar{\lambda}_{\mathrm{SLHA}}^{a})(\bar{\psi}t^{a}\phi).$

With an SU(N) gauge symmetry

$$\mathcal{L} = \Phi^* e^{2gV} \Phi \Big|_{\theta^4} + \left[\left(\frac{1}{2} - \frac{ig^2 \Theta}{16\pi^2} \right) \operatorname{Tr} \mathcal{W}^{\alpha} \mathcal{W}_{\alpha} \Big|_{\theta^2} + W(\Phi) \Big|_{\theta^2} + \text{H.c.} \right]; \tag{5.11}$$

$$\Phi^* e^{2gV} \Phi \Big|_{\theta^4} := \Phi_i^* \left[e^{2gV^a t_{\Phi}^a} \right]_{ij} \Phi_j \Big|_{\theta^4}$$

$$(5.12)$$

$$= (\partial_{\mu}\phi_{i}^{*})(\partial^{\mu}\phi_{i}) + i\bar{\psi}_{i}\bar{\sigma}^{\mu}\partial_{\mu}\psi_{i} + F_{i}^{*}F_{i} - \sqrt{2}g\lambda^{a}(\phi^{*}t^{a}\psi) - \sqrt{2}g\bar{\lambda}^{a}(\bar{\psi}^{*}t^{a}\phi) + gA_{\mu}^{a}\bar{\psi}\bar{\sigma}^{\mu}(t^{a}\psi) + 2igA_{\mu}^{a}\phi^{*}\partial_{\mu}(t^{a}\phi) + g^{2}A^{a\mu}A_{\mu}^{b}(\phi^{*}t^{a}t^{b}\phi) + gD^{a}(\phi^{*}t^{a}\phi)$$
(5.13)

$$= D^{\mu}\phi^* D_{\mu}\phi + i\bar{\psi}_i\bar{\sigma}^{\mu} D_{\mu}\psi_i + F^*F - \sqrt{2}g\lambda^a(\phi^*t^a\psi) - \sqrt{2}g\bar{\lambda}^a(\bar{\psi}t^a\phi) + gD^a(\phi^*t^a\phi) \quad (5.14)$$

$$\left(\frac{1}{2} - \frac{\mathrm{i}g^{2}\Theta}{16\pi^{2}}\right) \operatorname{Tr} \mathcal{W}^{\alpha} \mathcal{W}_{\alpha}\Big|_{\theta^{2}} + \operatorname{H.c.} = \operatorname{Re} \operatorname{Tr} \mathcal{W} \mathcal{W}\Big|_{\theta^{2}} + \frac{g^{2}\Theta}{8\pi^{2}} \operatorname{Im} \operatorname{Tr} \mathcal{W} \mathcal{W}\Big|_{\theta^{2}}
= \mathrm{i}\lambda^{a} \sigma^{\mu} \operatorname{D}_{\mu} \bar{\lambda}^{a} + \frac{1}{2} D^{a} D^{a} - \frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} + \frac{g^{2}\Theta}{64\pi^{2}} \epsilon^{\mu\nu\rho\sigma} F^{a}_{\mu\nu} F^{a}_{\rho\sigma};
\operatorname{D}_{\mu} \phi_{i} = \partial_{\mu} \phi_{i} - \mathrm{i}g A^{a}_{\mu} t^{a}_{ij} \phi_{j}, \qquad \operatorname{D}_{\mu} \psi_{i} = \partial_{\mu} \psi_{i} - \mathrm{i}g A^{a}_{\mu} t^{a}_{ij} \psi_{j}, \qquad F^{a}_{\mu\nu} = \partial_{\mu} A^{a}_{\nu} - \partial_{\nu} A^{a}_{\mu} + g A^{b}_{\mu} A^{c}_{\nu} f^{abc},
\operatorname{D}^{\mu} \phi^{*}_{i} = \partial^{\mu} \phi^{*}_{i} + \mathrm{i}g A^{a\mu} \phi^{*}_{i} t^{a}_{ij}, \qquad \operatorname{D}_{\mu} \lambda^{a}_{\alpha} = \partial_{\mu} \lambda^{a}_{\alpha} + g f^{abc} A^{b}_{\mu} \lambda^{c}_{\alpha}.$$

$$(5.15)$$

$$\begin{split} \{\phi,\psi,F\} &\xrightarrow{\text{gauge}} e^{\mathrm{i}g\theta^at^a} \{\phi,\psi,F\}, \\ A_\mu^a &\xrightarrow{\text{gauge}} A_\mu^a + \partial_\mu\theta^a + gf^{abc}A_\mu^b\theta^c + \mathcal{O}(\theta^2), \\ D^a &\xrightarrow{\text{gauge}} D^a + gf^{abc}D^b\theta^c + \mathcal{O}(\theta^2), \end{split} \qquad \lambda^a \xrightarrow{\text{gauge}} \lambda^a + gf^{abc}\lambda^b\theta^c + \mathcal{O}(\theta^2), \\ \bar{\lambda}^a &\xrightarrow{\text{gauge}} \bar{\lambda}^a + gf^{abc}\bar{\lambda}^b\theta^c + \mathcal{O}(\theta^2).^{*4} \end{split}$$

Auxiliary fields and Scalar potential In all of the above three theories,

$$\mathcal{L} \supset F_i^* F_i + F_i \frac{\partial W}{\partial \Phi_i} \Big|_{\text{scalar}} + F_i^* \frac{\partial W^*}{\partial \Phi_i^*} \Big|_{\text{scalar}} + \frac{1}{2} D^a D^a + g D^a (\phi^* t^a \phi); \tag{5.16}$$

$$\langle F_i^* \rangle = -\frac{\partial W}{\partial \Phi_i} \Big|_{\text{scalar}}, \qquad \langle D^a \rangle = -g \phi^* t^a \phi;$$
 (5.17)

$$\mathcal{L} \supset -V_{\text{SUSY}} = -\left[\langle F_i^* \rangle \langle F_i \rangle + \frac{g^2}{2} (\phi^* t^a \phi) (\phi^* t^a \phi) \right]. \tag{5.18}$$

^{*4\$}TODO: give in non-infinitesimal form\$

5.1. Lorentz symmetry as $SU(2)\times SU(2)$

5.2. Supersymmetry algebra

We define the generators as

$$P_{\mu} := i\partial_{\mu}, \quad \{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\} = -2i\sigma^{\mu}_{\alpha\dot{\alpha}}\partial_{\mu} = -2\sigma^{\mu}_{\alpha\dot{\alpha}}P_{\mu}, \quad \{Q_{\alpha}, Q_{\beta}\} = \{\bar{Q}_{\dot{\alpha}}, \bar{Q}_{\dot{\beta}}\} = 0,$$

$$(5.19)$$
It is realized by

$$\begin{split} \mathcal{Q}_{\alpha} &= \frac{\partial}{\partial \theta^{\alpha}} + i(\sigma^{\mu}\bar{\theta})_{\alpha}\partial_{\mu}, \quad \bar{\mathcal{Q}}_{\dot{\alpha}} = -\frac{\partial}{\partial \bar{\theta}^{\dot{\alpha}}} - i(\theta\sigma^{\mu})_{\dot{\alpha}}\partial_{\mu}, \quad \mathcal{Q}^{\alpha} = -\frac{\partial}{\partial \theta_{\alpha}} - i(\bar{\theta}\bar{\sigma}^{\mu})^{\alpha}\partial_{\mu}, \quad \bar{\mathcal{Q}}^{\dot{\alpha}} = \frac{\partial}{\partial \bar{\theta}_{\dot{\alpha}}} + i(\bar{\sigma}^{\mu}\theta)^{\dot{\alpha}}\partial_{\mu}, \\ \mathcal{D}_{\alpha} &= \frac{\partial}{\partial \theta^{\alpha}} - i(\sigma^{\mu}\bar{\theta})_{\alpha}\partial_{\mu}, \quad \bar{\mathcal{D}}_{\dot{\alpha}} = -\frac{\partial}{\partial \bar{\theta}^{\dot{\alpha}}} + i(\theta\sigma^{\mu})_{\dot{\alpha}}\partial_{\mu}, \quad \mathcal{D}^{\alpha} = -\frac{\partial}{\partial \theta_{\alpha}} + i(\bar{\theta}\bar{\sigma}^{\mu})^{\alpha}\partial_{\mu}, \quad \bar{\mathcal{D}}^{\dot{\alpha}} = \frac{\partial}{\partial \bar{\theta}^{\dot{\alpha}}} - i(\bar{\sigma}^{\mu}\theta)^{\dot{\alpha}}\partial_{\mu}; \end{split}$$

 \mathcal{D}_{α} etc. works as covariant derivatives because of the commutation relations

$$\{\mathcal{D}_{\alpha},\bar{\mathcal{D}}_{\dot{\alpha}}\} = +2\mathrm{i}\sigma^{\mu}_{\alpha\dot{\alpha}}\partial_{\mu}, \qquad \{\mathcal{Q}_{\alpha},\mathcal{D}_{\beta}\} = \{\mathcal{Q}_{\alpha},\bar{\mathcal{D}}_{\dot{\beta}}\} = \{\bar{\mathcal{Q}}_{\dot{\alpha}},\mathcal{D}_{\beta}\} = \{\bar{\mathcal{Q}}_{\dot{\alpha}},\bar{\mathcal{D}}_{\dot{\beta}}\} = \{\bar{\mathcal{D}}_{\alpha},\bar{\mathcal{D}}_{\dot{\beta}}\} = \{\bar{\mathcal{D}}_{\dot{\alpha}},\bar{\mathcal{D}}_{\dot{\beta}}\} = \{\bar{\mathcal{D}}_$$

$$\begin{aligned} & \text{Derivative formulae} \\ & \epsilon^{\alpha\beta}\frac{\partial}{\partial\theta^{\beta}} = -\frac{\partial}{\partial\theta_{\alpha}} & \frac{\partial}{\partial\theta^{\alpha}}\theta\theta = 2\theta_{\alpha} & \frac{\partial}{\partial\theta^{\alpha}}\frac{\partial}{\partial\theta_{\beta}}\theta\theta = -2\delta^{\beta}_{\alpha} & \frac{\partial}{\partial\bar{\theta}^{\dot{\alpha}}}\frac{\partial}{\partial\bar{\theta}^{\dot{\beta}}}\bar{\theta}\bar{\theta} = 2\delta^{\dot{\beta}}_{\dot{\alpha}} \\ & \epsilon_{\alpha\beta}\frac{\partial}{\partial\theta_{\beta}} = -\frac{\partial}{\partial\theta^{\alpha}} & \frac{\partial}{\partial\theta_{\alpha}}\theta\theta = -2\theta^{\alpha} & \frac{\partial}{\partial\theta_{\alpha}}\frac{\partial}{\partial\theta_{\beta}}\theta\theta = 2\epsilon^{\alpha\beta} & \frac{\partial}{\partial\bar{\theta}^{\dot{\alpha}}}\frac{\partial}{\partial\bar{\theta}^{\dot{\beta}}}\bar{\theta}\bar{\theta} = -2\epsilon^{\dot{\alpha}\dot{\beta}} \\ & \epsilon^{\dot{\alpha}\dot{\beta}}\frac{\partial}{\partial\bar{\theta}^{\dot{\beta}}} = -\frac{\partial}{\partial\bar{\theta}^{\dot{\alpha}}} & \frac{\partial}{\partial\bar{\theta}^{\dot{\alpha}}}\bar{\theta}\bar{\theta} = 2\bar{\theta}^{\dot{\alpha}} & \frac{\partial}{\partial\theta_{\alpha}}\frac{\partial}{\partial\theta^{\beta}}\theta\theta = 2\delta^{\alpha}_{\beta} & \frac{\partial}{\partial\bar{\theta}^{\dot{\alpha}}}\frac{\partial}{\partial\bar{\theta}^{\dot{\beta}}}\bar{\theta}\bar{\theta} = -2\delta^{\dot{\alpha}\dot{\beta}}_{\dot{\beta}} \\ & \epsilon_{\dot{\alpha}\dot{\beta}}\frac{\partial}{\partial\bar{\theta}^{\dot{\beta}}} = -\frac{\partial}{\partial\bar{\theta}^{\dot{\alpha}}} & \frac{\partial}{\partial\bar{\theta}^{\dot{\alpha}}}\bar{\theta}\bar{\theta} = -2\bar{\theta}_{\dot{\alpha}} & \frac{\partial}{\partial\theta^{\alpha}}\frac{\partial}{\partial\theta^{\beta}}\theta\theta = -2\epsilon_{\alpha\beta} & \frac{\partial}{\partial\bar{\theta}^{\dot{\alpha}}}\frac{\partial}{\partial\bar{\theta}^{\dot{\beta}}}\bar{\theta}\bar{\theta} = 2\epsilon_{\dot{\alpha}\dot{\beta}} \end{aligned}$$

In addition, we define

$$(y, \theta', \bar{\theta}') := (x - i\theta \sigma^{\mu} \bar{\theta}, \theta, \bar{\theta}) : \tag{5.20}$$

$$\bar{\mathcal{D}}_{\dot{\alpha}} = -\frac{\partial}{\partial \bar{\theta}'^{\dot{\alpha}}}; \qquad \begin{pmatrix} \frac{\partial}{\partial \bar{y}^{\mu}} \\ \frac{\partial}{\partial \theta^{\alpha}} \\ \frac{\partial}{\partial \bar{\theta}^{\dot{\alpha}}} \end{pmatrix} = \begin{pmatrix} \delta^{\nu}_{\mu} & 0 & 0 \\ -\mathrm{i}(\sigma^{\nu}\bar{\theta})_{\alpha} & \delta^{\beta}_{\alpha} & 0 \\ \mathrm{i}(\theta\sigma^{\nu})_{\dot{\alpha}} & 0 & \delta^{\dot{\beta}}_{\dot{\alpha}} \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial y^{\nu}} \\ \frac{\partial}{\partial \theta'^{\dot{\beta}}} \\ \frac{\partial}{\partial \bar{\theta}'^{\dot{\beta}}} \end{pmatrix}, \qquad \begin{pmatrix} \frac{\partial}{\partial y^{\nu}} \\ \frac{\partial}{\partial \theta'^{\dot{\beta}}} \\ \frac{\partial}{\partial \bar{\theta}'^{\dot{\beta}}} \end{pmatrix} = \begin{pmatrix} \delta^{\mu}_{\nu} & 0 & 0 \\ \mathrm{i}(\sigma^{\mu}\bar{\theta})_{\beta} & \delta^{\alpha}_{\beta} & 0 \\ -\mathrm{i}(\theta\sigma^{\mu})_{\dot{\beta}} & 0 & \delta^{\dot{\alpha}}_{\dot{\beta}} \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial y^{\mu}} \\ \frac{\partial}{\partial \theta^{\dot{\alpha}}} \\ \frac{\partial}{\partial \bar{\theta}'^{\dot{\alpha}}} \end{pmatrix}, \qquad (5.21)$$

and a function $f: \mathbb{C}^4 \to \mathbb{C}$ (independent of θ' and $\bar{\theta}'$) is expanded as

$$f(y) = f(x - i\theta\sigma\bar{\theta}) = f(x) - i(\theta\sigma^{\mu}\bar{\theta})\partial_{\mu}f(x) - \frac{1}{4}\theta^{4}\partial^{2}f(x). \tag{5.22}$$

Note that we differentiate $[f(y)]^*$ and $f^*(y)$

$$[f(y)]^* = f(x) + i(\theta \sigma^{\mu} \bar{\theta}) \partial_{\mu} f^*(x) - \frac{1}{4} \theta^4 \partial^2 f^*(x) = f^*(y + i\theta \sigma \bar{\theta}) = f^*(y^*).$$
 (5.23)

5.3. Superfields

SUSY-invariant Lagrangian SUSY transformation is induced by $\xi Q + \bar{\xi} \bar{Q} = \xi^{\alpha} \partial_{\alpha} + \bar{\xi}_{\dot{\alpha}} \partial^{\dot{\alpha}} + i(\xi \sigma^{\mu} \bar{\theta} + \bar{\xi} \bar{\sigma}^{\mu} \theta) \partial_{\mu}$. Therefore, for an object Ψ in the superspace,

$$\left[\Psi\right]_{\theta^4} \xrightarrow{\text{SUSY}} \left[\Psi + \xi^{\alpha}\partial_{\alpha}\Psi + \bar{\xi}_{\dot{\alpha}}\partial^{\dot{\alpha}}\Psi + i(\xi\sigma^{\mu}\bar{\theta} + \bar{\xi}\bar{\sigma}^{\mu}\theta)\partial_{\mu}\Psi\right]_{\theta^4} = \left[\Psi + i(\xi\sigma^{\mu}\bar{\theta} + \bar{\xi}\bar{\sigma}^{\mu}\theta)\partial_{\mu}\Psi\right]_{\theta^4},\tag{5.24}$$

which means $[\Psi]_{\theta^4}$ is SUSY-invariant up to total derivative, i.e., $\int d^4x [\Psi]_{\theta^4}$ is SUSY-invariant action. Also,

$$\left[\Psi\right]_{\theta^{2}} \xrightarrow{\text{SUSY}} \left[\Psi + \bar{\xi}_{\dot{\alpha}} \left(\partial^{\dot{\alpha}} + i(\bar{\sigma}^{\mu}\theta)^{\dot{\alpha}}\partial_{\mu}\right)\Psi\right]_{\theta^{2}} = \left[\Psi + \bar{\xi}_{\dot{\alpha}}\bar{\mathcal{D}}^{\dot{\alpha}}\Psi + 2i(\bar{\sigma}^{\mu}\theta)^{\dot{\alpha}}\partial_{\mu}\Psi\right]_{\theta^{2}}$$
(5.25)

will be SUSY-invariant if $\bar{\mathcal{D}}_{\dot{\alpha}}\Psi=0$, i.e., Ψ is a chiral superfield. Therefore, SUSY-invariant Lagrangian is given by

$$\mathcal{L} = \left[(\text{any real superfield}) \right]_{\theta^4} + \left[(\text{any chiral superfield}) \right]_{\theta^2} + \left[(\text{any chiral superfield})^* \right]_{\bar{\theta}^2}. \tag{5.26}$$

Chiral superfield A chiral superfield is a superfield that satisfies $\bar{\mathcal{D}}_{\dot{\alpha}}\Phi=0$, i.e., we find

$$\Phi = \phi(y) + \sqrt{2}\theta'\psi(y) + \theta'^2 F(y) \tag{5.27}$$

$$= \phi(x) + \sqrt{2}\theta\psi(x) - i\partial_{\mu}\phi(x)(\theta\sigma^{\mu}\bar{\theta}) + F(x)\theta^{2} + \frac{i}{\sqrt{2}}(\partial_{\mu}\psi(x)\sigma^{\mu}\bar{\theta})\theta^{2} - \frac{1}{4}\partial^{2}\phi(x)\theta^{4}$$

$$(5.28)$$

$$\Phi^* = \phi^*(x) + \sqrt{2}\bar{\psi}(x)\bar{\theta} + F^*(x)\bar{\theta}^2 + i\partial_{\mu}\phi^*(x)(\theta\sigma^{\mu}\bar{\theta}) - \frac{i}{\sqrt{2}}[\theta\sigma^{\mu}\partial_{\mu}\bar{\psi}(x)]\bar{\theta}^2 - \frac{1}{4}\partial^2\phi^*(x)\theta^4;$$
 (5.29)

their product is expanded as

$$\Phi_{i}^{*}\Phi_{j} = \phi_{i}^{*}\phi_{j} + \sqrt{2}\phi_{i}^{*}(\theta\psi_{j}) + \sqrt{2}(\bar{\psi}_{i}\bar{\theta})\phi_{j} + \phi_{i}^{*}F_{j}\theta^{2} + 2(\bar{\psi}_{i}\bar{\theta})(\theta\psi_{j}) - i\left(\phi_{i}^{*}\partial_{\mu}\phi_{j} - \partial_{\mu}\phi_{i}^{*}\phi_{j}\right)(\theta\sigma^{\mu}\bar{\theta}) + F_{i}^{*}\phi_{j}\bar{\theta}^{2} \\
+ \left[\sqrt{2}\bar{\psi}_{i}\bar{\theta}F_{j} - \frac{i\left(\partial_{\mu}\phi_{i}^{*}\cdot\psi_{j}\sigma^{\mu}\bar{\theta} - \phi_{i}^{*}\partial_{\mu}\psi_{j}\sigma^{\mu}\bar{\theta}\right)}{\sqrt{2}}\right]\theta^{2} + \left[\sqrt{2}F_{i}^{*}\theta\psi_{j} + \frac{i\left(\theta\sigma^{\mu}\bar{\psi}_{i}\partial_{\mu}\phi_{j} - \theta\sigma^{\mu}\partial_{\mu}\bar{\psi}_{i}\phi_{j}\right)}{\sqrt{2}}\right]\bar{\theta}^{2} \\
+ \frac{1}{4}\left(4F_{i}^{*}F_{j} - \phi_{i}^{*}\partial^{2}\phi_{j} - (\partial^{2}\phi_{i}^{*})\phi_{j} + 2(\partial_{\mu}\phi_{i}^{*})(\partial^{\mu}\phi_{j}) + 2i(\psi_{j}\sigma^{\mu}\partial_{\mu}\bar{\psi}_{i}) - 2i(\partial_{\mu}\psi_{j}\sigma^{\mu}\bar{\psi}_{i})\right)\theta^{4} \tag{5.30}$$

$$\equiv \phi_i^* \phi_j + \sqrt{2} \phi_i^* (\theta \psi_j) + \sqrt{2} (\bar{\psi}_i \bar{\theta}) \phi_j + \phi_i^* F_j \theta^2 + 2 (\bar{\psi}_i \bar{\theta}) (\theta \psi_j) - 2 \mathrm{i} (\phi_i^* \partial_\mu \phi_j) (\theta \sigma^\mu \bar{\theta}) + F_i^* \phi_j \bar{\theta}^2
+ \sqrt{2} (\bar{\psi}_i \bar{\theta} F_j + \mathrm{i} \phi_i^* \partial_\mu \psi_j \sigma^\mu \bar{\theta}) \theta^2 + \sqrt{2} (F_i^* \theta \psi_j - \mathrm{i} \theta \sigma^\mu \partial_\mu \bar{\psi}_i \phi_j) \bar{\theta}^2
+ (F_i^* F_j + (\partial_\mu \phi_i^*) (\partial^\mu \phi_j) + \mathrm{i} \bar{\psi}_i \bar{\sigma}^\mu \partial_\mu \psi_j) \theta^4$$
(5.31)

$$\Phi_i \Phi_j \Big|_{\theta^2} = -\psi_i \psi_j + F_i \phi_j + \phi_i F_j \tag{5.32}$$

$$\Phi_i \Phi_j \Phi_k \Big|_{\theta^2} = -(\psi_i \psi_j) \phi_k - (\psi_k \psi_i) \phi_j - (\psi_j \psi_k) \phi_i + \phi_i \phi_j F_k + \phi_k \phi_i F_j + \phi_j \phi_k F_i$$

$$(5.33)$$

$$e^{k\Phi} = e^{k\phi} \left[1 + \sqrt{2}k\theta\psi + \left(kF - \frac{k^2}{2}\psi\psi \right) \theta^2 - ik\partial_\mu\phi(\theta\sigma^\mu\bar{\theta}) + \frac{ik\left(\partial_\mu\psi + k\psi\partial_\mu\phi \right)\sigma^\mu\bar{\theta}\theta^2}{\sqrt{2}} - \frac{k}{4} \left(\partial^2\phi + k\partial_\mu\phi\partial^\mu\phi \right)\theta^4 \right];$$
(5.34)

note that $\Phi_i \Phi_j$, $\Phi_i \Phi_j \Phi_k$, and $e^{k\Phi}$ are all chiral superfields.

Vector superfield A vector superfield V that satisfies $V = V^*$. It is given by real fields $\{C, M, N, D, A_{\mu}\}$ and Grassmann fields $\{\chi, \lambda\}$ as *5

$$V(x,\theta,\bar{\theta}) = C(x) + i\theta\chi(x) - i\bar{\theta}\bar{\chi}(x) + \frac{1}{2}\left(M(x) + iN(x)\right)\theta^{2} + \frac{1}{2}\left(M(x) - iN(x)\right)\bar{\theta}^{2} + (\bar{\theta}\bar{\sigma}^{\mu}\theta)A_{\mu}(x)$$

$$\left(\lambda(x) + \frac{1}{2}\partial_{\mu}\bar{\chi}(x)\bar{\sigma}^{\mu}\right)\theta\bar{\theta}^{2} + \theta^{2}\bar{\theta}\left(\bar{\lambda}(x) + \frac{1}{2}\bar{\sigma}^{\mu}\partial_{\mu}\chi(x)\right) + \frac{1}{2}\left(D(x) - \frac{1}{2}\partial^{2}C(x)\right)\theta^{4}.$$

$$(5.35)$$

With this convention,

$$V \to V - i\Phi + i\Phi^* \iff \begin{cases} C \to C - i\phi + i\phi^*, & \chi \to \chi - \sqrt{2}\psi, & \lambda \to \lambda, \\ M + iN \to M + iN - 2iF, & A_\mu \to A_\mu + \partial_\mu(\phi + \phi^*), & D \to D. \end{cases}$$
(5.36)

The exponential of a vector superfield is also a vector superfield:

$$e^{kV} = e^{kC} \left\{ 1 + ik(\theta \chi - \bar{\theta}\bar{\chi}) + \left(\frac{M + iN}{2}k + \frac{\chi\chi}{4}k^2 \right) \theta^2 + \left(\frac{M - iN}{2}k + \frac{\bar{\chi}\bar{\chi}}{4}k^2 \right) \bar{\theta}^2 + (k^2\theta\chi\bar{\theta}\bar{\chi} - k\theta\sigma^\mu\bar{\theta}A_\mu) \right.$$

$$\left. + \left[k\bar{\theta}\bar{\lambda} - ik\bar{\theta}\bar{\chi} \left(\frac{M + iN}{2}k + \frac{\chi\chi}{4}k^2 \right) + \frac{1}{2}k\bar{\theta}\bar{\sigma}^\mu \left(\partial_\mu\chi - ik\chi A_\mu \right) \right] \theta^2 \right.$$

$$\left. + \left[k\theta\lambda + ik\theta\chi \left(\frac{M - iN}{2}k + \frac{\bar{\chi}\bar{\chi}}{4}k^2 \right) - \frac{1}{2}k\theta\sigma^\mu \left(\partial_\mu\bar{\chi} + ik\bar{\chi}A_\mu \right) \right] \bar{\theta}^2 \right.$$

$$\left. + \left[\frac{k}{2} \left(D - \frac{1}{2}\bar{\partial}^2 C \right) - \frac{1}{2}ik^2(\lambda\chi - \bar{\lambda}\bar{\chi}) + \left(\frac{M + iN}{2}k + \frac{\chi\chi}{4}k^2 \right) \left(\frac{M - iN}{2}k + \frac{\bar{\chi}\bar{\chi}}{4}k^2 \right) \right.$$

$$\left. + \frac{k^3}{4}\bar{\chi}\bar{\sigma}^\mu\chi A_\mu + \frac{k^2}{4}\left(i\bar{\chi}\bar{\sigma}^\mu\partial_\mu\chi - i\partial_\mu\bar{\chi}\bar{\sigma}^\mu\chi + A^\mu A_\mu \right) \right] \theta^4 \right\}.$$

$$(5.37)$$

Supergauge symmetry The gauge transformation $\phi(x) \to e^{ig\theta^a(x)t^a}\phi(x)$ is not closed in the chiral superfield; i.e., $e^{ig\theta^a(x)t^a}\Phi(x)$ is not a chiral superfield if the parameter $\theta(x)$ has x^{μ} -dependence. Hence, in supersymmetric theories, it is extended to *supergauge symmetry* parameterized by a chiral superfield $\Omega(x)$, which is given by

$$\Phi \to e^{2ig\Omega^a(x)t^a}\Phi, \qquad \Phi^* \to \Phi^* e^{-2ig\Omega^{*a}(x)t^a}$$
(5.38)

for a chiral superfield Φ and an anti-chiral superfield Φ^* . The supergauge-invariant Lagrangian should be

$$\mathcal{L} \sim \Phi^* \cdot (\text{real superfield}) \cdot \Phi; \tag{5.39}$$

we parameterize the "real superfield" as $\mathrm{e}^{2gV^a(x)t^a}\colon$

$$\mathcal{L} = \left[\Phi^* e^{2gV^a(x)t^a} \Phi \right]_{\theta^4}; \qquad e^{2gV^a(x)t^a} \to e^{2ig\Omega^{*a}(x)t^a} e^{2gV^a(x)t^a} e^{-2ig\Omega^a(x)t^a}. \tag{5.40}$$

^{*5} Different coordination of "i"s are found in literature. Take care, especially, $\lambda(\text{ours}) = i\lambda(\text{Wess-Bagger}) = i\lambda(\text{SLHA})$.

In Abelian case, t^a is replaced by the charge Q of Φ and

$$\mathcal{L} = \left[\Phi^* e^{2gQV(x)} \Phi \right]_{a^4}; \qquad \Phi \to e^{2igQ\Omega(x)} \Phi, \quad \Phi^* \to \Phi^* e^{-2igQ\Omega^*(x)}, \tag{5.41}$$

$$e^{2gQV(x)} \to e^{2igQ\Omega^*(x)} e^{2gQV(x)} e^{-2igQ\Omega(x)} = e^{2gQ(V-i\Omega+i\Omega^*)}.$$
 (5.42)

The usual gauge transformation corresponds to the real part of the lowest component of Ω , i.e., $\theta \equiv 2 \operatorname{Re} \phi = \phi + \phi^*$, and we use the other components to fix the supergauge so that C, M, N and χ are eliminated:

supergauge fixing:
$$V(x) \longrightarrow (\bar{\theta}\bar{\sigma}^{\mu}\theta)A_{\mu}(x) + \bar{\theta}^{2}\theta\lambda(x) + \theta^{2}\bar{\theta}\bar{\lambda}(x) + \frac{1}{2}D(x)$$
 (Wess-Zumino gauge); (5.43)

$$e^{2gQV} \longrightarrow 1 + qQ\left(-2\theta\sigma^{\mu}\bar{\theta}A_{\mu} + 2\theta^{2}\bar{\theta}\bar{\lambda} + 2\bar{\theta}^{2}\theta\lambda + D\theta^{4}\right) + q^{2}Q^{2}A^{\mu}A_{\mu}\theta^{4}. \tag{5.44}$$

The gauge transformation is the remnant freedom: $\Theta = \phi(y) = \phi - i\partial_{\mu}\phi(\theta\sigma^{\mu}\bar{\theta}) - \partial^{2}\phi\theta^{4}/4$ with ϕ being real;

$$\Phi_i \to e^{2igQ\Theta} \Phi_i, \qquad e^{2gQV} \to e^{2gQ(V - i\Theta + i\Theta^*)}.$$
(5.45)

Rules for each component is obvious in $(y, \theta, \bar{\theta})$ -basis and given by

$$\{\phi, \psi, F\} \to e^{igQ\theta} \{\phi, \psi, F\}, \qquad A_{\mu} \to A_{\mu} + \partial_{\mu}\theta, \qquad \lambda \to \lambda, \qquad D \to D.$$
 (5.46)

For non-Abelian gauges, the supergauge transformation for the real field is evaluated as

$$e^{2gV} \to e^{2ig\Omega^*} e^{2gV} e^{-2ig\Omega} \tag{5.47}$$

$$= \left(e^{2ig\Omega^*} e^{2gV} e^{-2ig\Omega^*} \right) \left(e^{2ig\Omega^*} e^{-2ig\Omega} \right)$$

$$(5.48)$$

$$= \exp\left(e^{\left[2ig\Omega^*,2gV\right)}e^{2ig(\Omega^*-\Omega)} + \mathcal{O}(\Omega^2)\right)$$
(5.49)

$$= \exp\left(2gV + \left[2ig\Omega^*, 2gV\right]\right) e^{2ig(\Omega^* - \Omega)} + \mathcal{O}(\Omega^2); \tag{5.50}$$

$$= \exp \left[2gV + [2ig\Omega^*, 2gV] + \int_0^1 dt \, g(e^{[2gV, 2gV]}) + \mathcal{O}(\Omega^2) \right]$$
 (5.51)

$$= \exp \left[2gV + [2ig\Omega^*, 2gV] + \sum_{n=0}^{\infty} \frac{B_n ([2gV_n)^n}{n!} 2ig(\Omega^* - \Omega)] \right] + \mathcal{O}(\Omega^2)$$
 (5.52)

$$= \exp \left[2g \left(V + \mathrm{i}(\Omega^* - \Omega) - [V, \mathrm{i}g(\Omega^* + \Omega)] + \sum_{n=2}^{\infty} \frac{\mathrm{i}B_n \left([2gV,)^n}{n!} (\Omega^* - \Omega) \right] \right) + \mathcal{O}(\Omega^2) \right]. \tag{5.53}$$

Here, again we can use the "non-gauge" component of Ω to eliminate the C-term etc., i.e., we fix $i(\Omega^* - \Omega)$, the second term of the expansion, to remove those terms:

$$V - [V, ig(\Omega^* + \Omega)] + \left(i + \sum_{n=2}^{\infty} \frac{iB_n \left([2gV,)^n}{n!} \right) (\Omega^* - \Omega) \right] + \mathcal{O}(\Omega^2) = (\bar{\theta}\bar{\sigma}^{\mu}\theta)A_{\mu} + \bar{\theta}^2\theta\lambda + \theta^2\bar{\theta}\bar{\lambda} + \frac{1}{2}D; \qquad (5.54)$$

this defines the Wess-Zumino gauge:

supergauge fixing:
$$V^a(x) \longrightarrow (\bar{\theta}\bar{\sigma}^{\mu}\theta)A^a_{\mu}(x) + \bar{\theta}^2\theta\lambda^a(x) + \theta^2\bar{\theta}\bar{\lambda}^a(x) + \frac{1}{2}D^a(x),$$
 (5.55)

$$e^{2gV^a t^a} \longrightarrow 1 + g \left(-2\theta \sigma^\mu \bar{\theta} A^a_\mu + 2\theta^2 \bar{\theta} \bar{\lambda}^a + 2\bar{\theta}^2 \theta \lambda^a + D^a \theta^4 \right) t^a + g^2 A^{a\mu} A^b_\mu \theta^4 t^a t^b. \tag{5.56}$$

The gauge transformation is given by

$$\Phi \to e^{2ig\Theta^a t^a} \Phi, \quad e^{2gV^a t^a} \to e^{2ig\Theta^b t^b} e^{2gV^a t^a} e^{-2ig\Theta^c t^c}. \tag{5.57}$$

For components in chiral superfields,

$$\{\hat{\phi}, \psi, F\} \to e^{ig\theta^a t^a} \{\hat{\phi}, \psi, F\},$$
 (5.58)

while for vector superfield we can express as infinitesimal transformation:

$$V \to V' \simeq V + i(\Theta^* - \Theta) - [V, ig(\Theta^* + \Theta)] + \sum_{n=2}^{\infty} \frac{iB_n \left([2gV_n)^n + \Theta(\Theta^* - \Theta) \right)}{n!}$$

$$(5.59)$$

$$= V + 2(\bar{\theta}\bar{\sigma}^{\mu}\theta)\partial_{\mu}\phi - \left[V, ig\left(2\phi - \frac{\theta^{4}}{2}\partial^{2}\phi\right)\right] + 2\sum_{n=2}^{\infty} \frac{B_{n}\left([2gV,)^{n}}{n!}(\bar{\theta}\bar{\sigma}^{\mu}\theta)\partial_{\mu}\phi\right]$$

$$(5.60)$$

$$= V + 2(\bar{\theta}\bar{\sigma}^{\mu}\theta)\partial_{\mu}\phi + 2gf^{abc}V^{b}\phi^{c}t^{a} \qquad \text{(Wess-Zumino gauge)}$$
(5.61)

$$\therefore A^{a}_{\mu} \to A^{a}_{\mu} + \partial_{\mu}\theta^{a} + gf^{abc}A^{b}_{\mu}\theta^{c} + \mathcal{O}(\theta^{2}), \quad \lambda^{a} \to \lambda^{a} + gf^{abc}\lambda^{b}\theta^{c} + \mathcal{O}(\theta^{2}),$$

$$D^{a} \to D^{a} + gf^{abc}D^{b}\theta^{c} + \mathcal{O}(\theta^{2}), \qquad \bar{\lambda}^{a} \to \bar{\lambda}^{a} + gf^{abc}\bar{\lambda}^{b}\theta^{c} + \mathcal{O}(\theta^{2}).$$

$$(5.62)$$

Gauge-field strength The real superfield e^V is gauge-invariant in Abelian case and a candidate in Lagrangian term, but this is not case in non-Abelian case. We thus define a chiral superfield from e^V :

$$W_{\alpha} = \frac{1}{4} \bar{\mathcal{D}}_{\dot{\alpha}} \bar{\mathcal{D}}^{\dot{\alpha}} \left(e^{-2gV} \mathcal{D}_{\alpha} e^{2gV} \right); \tag{5.63}$$

$$\mathcal{W}_{\alpha} \xrightarrow{\text{gauge}} e^{2ig\Omega} \mathcal{W}_{\alpha} e^{-2ig\Omega} \quad \left(\mathcal{W}_{\alpha}^{a} \xrightarrow{\text{gauge}} \left[e^{+2g\tilde{f}^{c}\Omega^{c}} \right]^{ab} W_{\alpha}^{b} \quad \text{with} \quad [\tilde{f}^{c}]_{ab} = f^{abc} \right);^{*6}$$

$$(5.64)$$

it is not supergauge- or Lorentz-invariant, but $\text{Tr}(W^{\alpha}W_{\alpha}) = \text{Tr}(\epsilon^{\alpha\beta}W_{\beta}W_{\alpha})$ is supergauge- and Lorentz-invariant, and its θ^2 -term is SUSY-invariant, which becomes a candidate in SUSY Lagrangian with its Hermitian conjugate.

In Wess-Zumino gauge, it is given by

$$W_{\alpha} = \left\{ \lambda_{\alpha}^{a}(y) + \theta_{\alpha} D^{a}(y) + \frac{\left[i(\sigma^{\mu} \bar{\sigma}^{\nu} - \sigma^{\nu} \bar{\sigma}^{\mu}) \theta \right]_{\alpha}}{4} F_{\mu\nu}^{a}(y) + \theta^{2} \left[i\sigma^{\mu} D_{\mu} \bar{\lambda}^{a}(y^{*}) \right]_{\alpha} \right\} t^{a}$$

$$(5.65)$$

$$= \left[\lambda_{\alpha}^{a} + \theta_{\alpha} D^{a} + \frac{\mathrm{i}}{2} (\sigma^{\mu} \bar{\sigma}^{\nu} \theta)_{\alpha} F_{\mu\nu}^{a} + \mathrm{i} \theta^{2} (\sigma^{\mu} D_{\mu} \bar{\lambda}^{a})_{\alpha} + \mathrm{i} (\bar{\theta} \bar{\sigma}^{\mu} \theta) \partial_{\mu} \lambda_{\alpha}^{a} - \frac{\theta^{4}}{4} \partial^{2} \lambda_{\alpha}^{a} + \frac{\mathrm{i} \theta^{2} (\sigma^{\mu} \bar{\theta})_{\alpha}}{2} \left(\partial_{\mu} D^{a} + \mathrm{i} \partial^{\nu} F_{\mu\nu}^{a} - g f^{abc} \epsilon_{\mu\nu\rho\sigma} A^{\nu b} \partial^{\rho} A^{\sigma c} \right) \right] T^{a},$$

$$(5.66)$$

where, as usual,

$$F_{\mu\nu}^{a} = \partial_{\mu}A_{\nu}^{a} - \partial_{\nu}A_{\mu}^{a} + gA_{\mu}^{b}A_{\nu}^{c}f^{abc}, \qquad D_{\mu}\lambda_{\alpha}^{a} = \partial_{\mu}\lambda_{\alpha}^{a} + gf^{abc}A_{\mu}^{b}\lambda_{\alpha}^{c}. \tag{5.67}$$

Also

$$\left[\operatorname{Tr}(\mathcal{W}^{\alpha}\mathcal{W}_{\alpha})\right]_{\theta^{2}} = \left[\mathrm{i}\lambda^{a}\sigma^{\mu}\,\mathrm{D}_{\mu}\bar{\lambda}^{b} + \mathrm{i}\lambda^{b}\sigma^{\mu}\,\mathrm{D}_{\mu}\bar{\lambda}^{a} + D^{a}D^{b} - \frac{1}{4}\left(\mathrm{i}\epsilon^{\sigma\mu\nu\rho} + 2\eta^{\mu\rho}\eta^{\nu\sigma}\right)F_{\mu\nu}^{a}F_{\rho\sigma}^{b}\right]\operatorname{Tr}(t^{a}t^{b}) \tag{5.68}$$

$$= i\lambda^{a}\sigma^{\mu} D_{\mu}\bar{\lambda}^{a} + \frac{1}{2}D^{a}D^{a} - \frac{1}{4}F^{a}_{\mu\nu}F^{a\mu\nu} + \frac{i}{8}\epsilon^{\mu\nu\rho\sigma}F^{a}_{\mu\nu}F^{a}_{\rho\sigma},$$
 (5.69)

$$\left[\operatorname{Tr}(\mathcal{W}^{\alpha}\mathcal{W}_{\alpha})\right]_{\theta^{4}} = \frac{\theta^{4}}{4} \left(2(\partial^{\mu}\lambda^{a})(\partial_{\mu}\lambda^{b}) - \lambda^{a}\partial^{2}\lambda^{b} - (\partial^{2}\lambda^{a})\lambda^{b}\right)\operatorname{Tr}(t^{a}t^{b}) = \frac{\theta^{4}}{4} \left((\partial^{\mu}\lambda^{a})(\partial_{\mu}\lambda^{a}) - \lambda^{a}\partial^{2}\lambda^{a}\right). \tag{5.70}$$

For Abelian theory,

$$W_{\alpha} = \frac{1}{4} \bar{\mathcal{D}}_{\dot{\alpha}} \bar{\mathcal{D}}^{\dot{\alpha}} \left(e^{-2gV} \mathcal{D}_{\alpha} e^{2gV} \right) = \frac{1}{4} \bar{\mathcal{D}}_{\dot{\alpha}} \bar{\mathcal{D}}^{\dot{\alpha}} \mathcal{D}_{\alpha} (2gV), \tag{5.71}$$

$$\mathcal{W}^{\alpha}\mathcal{W}_{\alpha}\Big|_{\theta^{2}} = 2\left(i\lambda\sigma^{\mu}D_{\mu}\bar{\lambda} + \frac{1}{2}DD - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{i}{8}\epsilon^{\mu\nu\rho\sigma}F_{\mu\nu}F_{\rho\sigma}\right). \tag{5.72}$$

5.4. Lagrangian blocks

 $\textbf{Lagrangian construction} \quad \text{The supergauge transformation is summarized as}$

$$\Phi_i \rightarrow [U_{\Phi}]_{ij}\Phi_j, \quad \tilde{\Phi}_i \rightarrow \tilde{\Phi}_i[U_{\Phi}^{-1}]_{ij}, \quad W_{\alpha} \rightarrow U_{\mathcal{W}}W_{\alpha}U_{\mathcal{W}}^{-1},$$

$$(5.73)$$

where

$$\tilde{\Phi}_j^* := \Phi_i^* [e^{2gVt_{\Phi}^a}]_{ij}, \qquad U_{\Phi} := \exp(2ig\Omega^a t_{\Phi}^a), \qquad U_{\mathcal{W}} := \exp(2ig\Omega^a t_{\mathcal{W}}^a), \tag{5.74}$$

 t_{Φ}^{a} is the representation matrix or U(1) charge for the field Φ , and $t_{\mathcal{W}}^{a}$ is the representation matrix that is used to define \mathcal{W}_{α} . To construct a Lagrangian, we should composite these ingredients in real and invariant under SUSY, supergauge, and Lorentz transformation. A sufficient condition for SUSY invariance is given by (5.26), so

$$\mathcal{L} = \left[K(\Phi_i, \tilde{\Phi}_j^*) \right]_{\theta^4} + \left\{ \left[f_{ab}(\Phi_i) \mathcal{W}^a \mathcal{W}^b \right]_{\theta^2} + \text{H.c.} \right\} + \left\{ \left[W(\Phi_i) \right]_{\theta^2} + \text{H.c.} \right\} + D$$
(5.75)

is one possible construction. The Kähler function K should be real and supergauge invariant, the gauge kinetic function f should be holomorphic and supergauge invariant with W^aW^b , and the superpotential W is holomorphic and supergauge invariant. The last term D (Fayet-Illiopoulos term) comes from V of an U(1) gauge boson; note that its supergauge invariance is due to the intentional definition of V.

One can construct more general Lagrangian; for example, one can introduce a vector superfield that is not associated to a gauge symmetry, but then the supergauge fixing is not available and one has to include C or M fields.

Renormalizable Lagrangian Since $[\Phi]_{\theta^4}$ is a total derivative, renormalizable Lagrangian is limited to

$$\mathcal{L} = \left[\Phi_i^* [e^{2gVt_{\Phi}^a}]_{ij} \Phi_j \right]_{\theta^4} + \left\{ [\mathcal{W}^a \mathcal{W}^a]_{\theta^2} + [W(\Phi_i)]_{\theta^2} + \text{H.c.} \right\} + D$$
 (5.76)

up to numeric coefficients. With multiple gauge groups, the Kähler part is extended as $\Phi_i^* [e^{2gVt_{\Phi}^a} e^{2gV't_{\Phi}^{\prime a}} \cdots]_{ij} \Phi_j$, where the inner part is obviously commutable.

^{*6♣}TODO: This equivalence should be checked/explained in gauge-theory section; especially, the sign is not verified and might be opposite.♣

6. Minimal Supersymmetric Standard Model

Gauge symmetry: $SU(3)_{color} \times SU(2)_{weak} \times U(1)_Y$

Particle content:

(a) Chiral superfields

	SU(3)	SU(2)	U(1)	В	L	scalar/spinor
$ \begin{array}{c} Q_i \\ L_i \\ U_i^c \\ D_i^c \\ E_i^c \\ H_u \end{array} $	$\frac{3}{3}$	2 2	$ \begin{array}{r} 1/6 \\ -1/2 \\ -2/3 \\ 1/3 \\ 1 \\ 1/2 \end{array} $	$\begin{vmatrix} 1/3 \\ -1/3 \\ -1/3 \end{vmatrix}$	1 -1	$ \begin{array}{c c} \tilde{q}_{\rm L} \;, q_{\rm L} & [\rightarrow (u_{\rm L}, d_{\rm L})] \\ \tilde{l}_{\rm L} \;, l_{\rm L} \; [\rightarrow (\nu_{\rm L}, l_{\rm L})] \\ \tilde{u}_{\rm R}^{\rm c} \;, u_{\rm R}^{\rm c} \\ \tilde{d}_{\rm R}^{\rm c} \;, d_{\rm R}^{\rm c} \\ \tilde{e}_{\rm R}^{\rm c} \;, e_{\rm R}^{\rm c} \\ h_{\rm u} \;, \tilde{h}_{\rm u} \; [\rightarrow (h_{\rm u}^+, h_{\rm u}^0)] \end{array} $
$H_{ m d}$		2	-1/2			$ h_{\mathrm{d}}, \tilde{h}_{\mathrm{d}} \stackrel{\text{\tiny [}}{[} \rightarrow (h_{\mathrm{d}}^{0}, h_{\mathrm{d}}^{-})] $

(b) Vector superfields

	SU(3)	SU(2)	U(1)	ino/boson
$g \\ W \\ B$	adj.	adj.		$ \begin{vmatrix} \tilde{g}, g_{\mu} \\ \tilde{w}, W_{\mu} \\ \tilde{b}, B_{\mu} \end{vmatrix} $

Here, each of the column groups shows (from left to right) superfield name, charges for the gauge symmetries, other quantum numbers if relevant, and notation for corresponding fields (and SU(2) decomposition).

"c"-notation For scalars, $\tilde{\phi}_R^c := \phi_R^* = C\phi_R C$ (because the intrinsic phase for C is +1 for quarks and leptons.)

For matter spinors, $\psi_{R}^{c} := \bar{\psi}_{R}$ (and $\psi_{R} = \bar{\psi}_{R}^{c}$); Dirac spinors are thus

$$\psi_{\mathbf{L}} = \begin{pmatrix} \psi_{\mathbf{L}} \\ 0 \end{pmatrix}, \quad \overline{\psi_{\mathbf{L}}} = \begin{pmatrix} 0 & \bar{\psi}_{\mathbf{L}} \end{pmatrix}, \quad \psi_{\mathbf{R}}^{\mathbf{c}} := \begin{pmatrix} \psi_{\mathbf{R}}^{\mathbf{c}} \\ 0 \end{pmatrix} = C \begin{pmatrix} 0 \\ \psi_{\mathbf{R}} \end{pmatrix} = C \psi_{\mathbf{R}}, \quad \overline{\psi_{\mathbf{R}}^{\mathbf{c}}} = \begin{pmatrix} 0 & \bar{\psi}_{\mathbf{R}} \end{pmatrix} = (\bar{\psi}_{\mathbf{R}} \quad 0) C = \overline{\psi_{\mathbf{R}}} C.$$

Superpotential and SUSY-terms

$$W_{\text{RPC}} = \mu H_{\text{u}} H_{\text{d}} - y_{uij} U_i^{\text{c}} H_{\text{u}} Q_j + y_{dij} D_i^{\text{c}} H_{\text{d}} Q_j + y_{eij} E_i^{\text{c}} H_{\text{d}} L_j, \tag{6.1}$$

$$W_{\text{RPV}} = -\kappa_i L_i H_{\text{u}} + \frac{1}{2} \lambda_{ijk} L_i L_j E_k^{\text{c}} + \lambda'_{ijk} L_i Q_j D_k^{\text{c}} + \frac{1}{2} \lambda''_{ijk} U_i^{\text{c}} D_j^{\text{c}} D_k^{\text{c}}, \tag{6.2}$$

$$\mathcal{L}_{\text{SUSY}} = -\frac{1}{2} \left(M_3 \tilde{g}_0 \tilde{g}_0 + M_2 \tilde{w} \tilde{w} + M_1 \tilde{b} \tilde{b} + \text{H.c.} \right) - V_{\text{SUSY}}; \tag{6.3}$$

$$V_{\text{SUSY}}^{\text{RPC}} = \left(\tilde{q}_{\text{L}}^* m_Q^2 \tilde{q}_{\text{L}} + \tilde{l}_{\text{L}}^* m_L^2 \tilde{l}_{\text{L}} + \tilde{u}_{\text{R}}^* m_{U^c}^2 \tilde{u}_{\text{R}} + \tilde{d}_{\text{R}}^* m_{D^c}^2 \tilde{d}_{\text{R}} + \tilde{e}_{\text{R}}^* m_{E^c}^2 \tilde{e}_{\text{R}} + m_{H_u}^2 |h_{\text{u}}|^2 + m_{H_d}^2 |h_{\text{d}}|^2 \right)$$

$$+ \left(-\tilde{u}_{\text{R}}^* h_{\text{u}} a_{\text{u}} \tilde{q}_{\text{L}} + \tilde{d}_{\text{R}}^* h_{\text{d}} a_{\text{d}} \tilde{q}_{\text{L}} + \tilde{e}_{\text{R}}^* h_{\text{d}} a_{\text{e}} \tilde{l}_{\text{L}} + b H_{\text{u}} H_{\text{d}} + \text{H.c.} \right)$$

$$+ \left(+\tilde{u}_{\text{R}}^* h_{\text{d}}^* c_{\text{u}} \tilde{q}_{\text{L}} + \tilde{d}_{\text{R}}^* h_{\text{u}}^* c_{\text{d}} \tilde{q}_{\text{L}} + \tilde{e}_{\text{R}}^* h_{\text{u}}^* c_{\text{e}} \tilde{l}_{\text{L}} + \text{H.c.} \right),$$

$$(6.4)$$

$$V_{\text{SUSY}}^{\text{RPV}} = \left(-b_i \tilde{l}_{\text{L}i} H_{\text{u}} + \frac{1}{2} T_{ijk} \tilde{l}_{\text{L}i} \tilde{l}_{\text{L}j} \tilde{e}_{\text{R}k}^* + T'_{ijk} \tilde{l}_{\text{L}i} \tilde{q}_{\text{L}j} \tilde{d}_{\text{R}k}^* + \frac{1}{2} T''_{ijk} \tilde{u}_{\text{R}i}^* \tilde{d}_{\text{R}j}^* \tilde{d}_{\text{R}k}^* + \tilde{l}_{\text{L}i}^* M_{Li}^2 H_{\text{d}} + \text{H.c.} \right) + \left(C_{ijk}^1 \tilde{l}_{\text{L}i}^* \tilde{q}_{\text{L}j} \tilde{u}_{\text{R}k}^* + C_i^2 h_{\text{u}}^* h_{\text{d}} \tilde{e}_{\text{R}i}^* + C_{ijk}^3 \tilde{d}_{\text{R}i} \tilde{u}_{\text{R}j}^* \tilde{e}_{\text{R}k}^* + \frac{1}{2} C_{ijk}^4 \tilde{d}_{\text{R}i} \tilde{q}_{\text{L}j} \tilde{q}_{\text{L}k} + \text{H.c.} \right),$$
 (6.5)

$$(\lambda_{ijk} = -\lambda_{jik}, \lambda_{ijk}^{"} = -\lambda_{ikj}^{"}, \text{ and } C_{ijk}^4 = C_{ikj}^4.)$$

6.1. Notation

Our notation in this section (and the previous section) follows DHM [?, PhysRept] and Martin [?, v7] (but note that Martin uses (-, +, +, +)-metric) for RPC part and SLHA2 convention for RPV part. In particular, the sign of gauge bosons are fixed by $D_{\mu}\phi = \partial_{\mu}\phi - igA^{a}_{\mu}t^{a}_{ij}\phi_{j}$, and the phase of gauginos are by $\mathcal{L} \ni \sqrt{2}g(\phi^{*}t^{a}\psi\lambda^{a})$. Phases of ϕ and ψ in chiral superfields are not yet specified; they are later used to remove $F\tilde{F}$ terms and diagonalize Yukawa matrices.

6.2. Lagrangian construction

The most generic form of the Lagrangian is given by

$$\mathcal{L} = \mathcal{L}_{matter} + \mathcal{L}_{gauge} + \mathcal{L}_{super} + \mathcal{L}_{FI} + \mathcal{L}_{SUSY}, \tag{6.6}$$

$$\mathcal{L}_{\text{matter}} = \Phi_Q^* \exp\left(2g_Y(\frac{1}{6})V_B + 2g_2V_W^a T^a + 2g_3V_g^a \tau^a\right) \Phi_Q\Big|_{\mathcal{O}^4} + \cdots; \tag{6.7}$$

$$\mathcal{L}_{\text{gauge}} = \left[\frac{1}{4} \left(1 - \frac{ig_Y^2 \Theta_B}{8\pi^2} \right) \mathcal{W}_B \mathcal{W}_B + \frac{1}{4} \left(1 - \frac{ig_2^2 \Theta_W}{8\pi^2} \right) \mathcal{W}_W^a \mathcal{W}_W^a + \frac{1}{4} \left(1 - \frac{ig_3^2 \Theta_g}{8\pi^2} \right) \mathcal{W}_g^a \mathcal{W}_g^a \right]_{\theta^2} + \text{H.c.}; \quad (6.8)$$

$$\mathcal{L}_{\text{super}} = W(\Phi)\Big|_{\theta^2} + \text{H.c.}, \tag{6.9}$$

$$W(\Phi) = W_{\text{RPC}} + W_{\text{RPV}},\tag{6.10}$$

$$W_{\rm RPC} = \mu H_{\rm u} H_{\rm d} - y_{uij} U_i^{\rm c} H_{\rm u} Q_j + y_{dij} D_i^{\rm c} H_{\rm d} Q_j + y_{eij} E_i^{\rm c} H_{\rm d} L_j, \tag{6.11}$$

$$W_{\text{RPV}} = -\kappa_i L_i H_{\text{u}} + \frac{1}{2} \lambda_{ijk} L_i L_j E_k^{\text{c}} + \lambda'_{ijk} L_i Q_j D_k^{\text{c}} + \frac{1}{2} \lambda''_{ijk} U_i^{\text{c}} D_j^{\text{c}} D_k^{\text{c}};$$
(6.12)

$$\mathcal{L}_{\text{FI}} = \Lambda_{\text{FI}} D_B; \tag{6.13}$$

$$\mathcal{L}_{\text{SUSY}} = -\frac{1}{2} \left(M_3 \tilde{g}_0 \tilde{g}_0 + M_2 \tilde{w} \tilde{w} + M_1 \tilde{b} \tilde{b} + \text{H.c.} \right) - \left(V_{\text{SUSY}}^{\text{RPC}} + V_{\text{SUSY}}^{\text{RPV}} \right), \tag{6.14}$$

$$\begin{split} V_{\text{SUSY}}^{\text{RPC}} &= \left(\tilde{q}_{\text{L}}^* m_Q^2 \tilde{q}_{\text{L}} + \tilde{l}_{\text{L}}^* m_L^2 \tilde{l}_{\text{L}} + \tilde{u}_{\text{R}}^* m_{U^c}^2 \tilde{u}_{\text{R}} + \tilde{d}_{\text{R}}^* m_{D^c}^2 \tilde{d}_{\text{R}} + \tilde{e}_{\text{R}}^* m_{E^c}^2 \tilde{e}_{\text{R}} + m_{H_{\text{u}}}^2 |h_{\text{u}}|^2 + m_{H_{\text{d}}}^2 |h_{\text{d}}|^2 \right) \\ &+ \left(-\tilde{u}_{\text{R}}^* h_{\text{u}} a_{\text{u}} \tilde{q}_{\text{L}} + \tilde{d}_{\text{R}}^* h_{\text{d}} a_{\text{d}} \tilde{q}_{\text{L}} + \tilde{e}_{\text{R}}^* h_{\text{d}} a_{\text{e}} \tilde{l}_{\text{L}} + b H_{\text{u}} H_{\text{d}} + \text{H.c.} \right) \end{split}$$

$$+ \left(\tilde{u}_{R}^{*} h_{d}^{*} c_{u} \tilde{q}_{L} + \tilde{d}_{R}^{*} h_{u}^{*} c_{d} \tilde{q}_{L} + \tilde{e}_{R}^{*} h_{u}^{*} c_{e} \tilde{l}_{L} + H.c. \right), \tag{6.15}$$

$$V_{\text{SUSY}}^{\text{RPV}} = \left(-b_i \tilde{l}_{\text{L}i} H_{\text{u}} + \frac{1}{2} T_{ijk} \tilde{l}_{\text{L}i} \tilde{l}_{\text{L}j} \tilde{e}_{\text{R}k}^* + T_{ijk}' \tilde{l}_{\text{L}i} \tilde{q}_{\text{L}j} \tilde{d}_{\text{R}k}^* + \frac{1}{2} T_{ijk}'' \tilde{u}_{\text{R}i}^* \tilde{d}_{\text{R}j}^* \tilde{d}_{\text{R}k}^* + \tilde{l}_{\text{L}i}^* M_{Li}^2 H_{\text{d}} + \text{H.c.} \right) + \left(C_{ijk}^1 \tilde{l}_{\text{L}i}^* \tilde{q}_{\text{L}j} \tilde{u}_{\text{R}k}^* + C_i^2 h_{\text{u}}^* h_{\text{d}} \tilde{e}_{\text{R}i}^* + C_{ijk}^3 \tilde{d}_{\text{R}i} \tilde{u}_{\text{R}j}^* \tilde{e}_{\text{R}k}^* + \frac{1}{2} C_{ijk}^4 \tilde{d}_{\text{R}i} \tilde{q}_{\text{L}j} \tilde{q}_{\text{L}k} + \text{H.c.} \right).$$

$$(6.16)$$

As usual, we remove Θ_W and Θ_B by rotating fermions^{*7}, which is compatible with mass diagonalization (discussed later), and assume the absence of Fayet-Illiopoulos term: $\Lambda_{\rm FI}=0$. The SU(3) angle Θ_g forms QCD phase $\Theta_{\rm QCD}$ together with the phases from Yukawa matrices. Then,

$$\mathcal{L}_{\text{matter}} = \sum_{\text{matters}} \left[D^{\mu} \phi^* D_{\mu} \phi + i \bar{\psi} \bar{\sigma}^{\mu} D_{\mu} \psi - \sqrt{2} \sum_{\text{gauge}} g \left(\lambda^a (\phi^* t^a \psi) + \bar{\lambda}^a (\bar{\psi} t^a \phi) \right) \right] + (F\text{-terms}), \tag{6.17}$$

$$\mathcal{L}_{\text{gauge}} = \sum_{\text{gauge}} \left(-\frac{1}{4} F_{\mu\nu}^a F^{a\mu\nu} + i\bar{\lambda}^a \bar{\sigma}^\mu D_\mu \lambda^a \right) + \frac{g_3^2 \Theta_g}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} G_{\mu\nu}^a G_{\rho\sigma}^a + (D\text{-terms}), \tag{6.18}$$

$$\mathcal{L}_{\text{super}} = \epsilon^{ab} \left(-\mu \tilde{h}_{u}^{a} \tilde{h}_{d}^{b} - y_{dij} h_{d}^{a} d_{\text{R}i}^{cx} q_{Lj}^{bx} - y_{dij} \tilde{d}_{\text{R}i}^{x*} \tilde{h}_{d}^{a} q_{Lj}^{bx} + y_{dji} \tilde{q}_{\text{L}i}^{ax} \tilde{h}_{d}^{b} d_{\text{R}j}^{cx} \right. \\
\left. - y_{eij} \tilde{e}_{\text{R}i}^{*} \tilde{h}_{d}^{b} l_{\text{L}j}^{b} - y_{eij} h_{d}^{a} e_{\text{L}i}^{c} l_{Lj}^{b} + y_{eji} \tilde{l}_{\text{L}i}^{a} \tilde{h}_{d}^{b} e_{\text{R}j}^{c} + y_{uij} h_{u}^{a} u_{\text{R}i}^{cx} q_{\text{L}j}^{bx} + y_{uij} \tilde{u}_{\text{R}i}^{x*} \tilde{h}_{u}^{a} q_{\text{L}j}^{bx} - y_{uji} \tilde{q}_{\text{L}i}^{ax} \tilde{h}_{u}^{b} u_{\text{R}j}^{cx} \right. \\
\tilde{s}_{ab} = \tilde{s}_{ab} \tilde{s}_{ab}$$

$$-\kappa_{i}\tilde{h}_{u}^{a}l_{Li}^{b} - \lambda_{ikj}\tilde{l}_{Li}^{a}e_{Rj}^{c}l_{Lk}^{b} - \frac{1}{2}\lambda_{jki}\tilde{e}_{Ri}^{*}l_{Lj}^{a}l_{Lk}^{b} - \lambda'_{ikj}\tilde{l}_{Li}^{a}d_{Rj}^{cx}q_{Lk}^{cx} + \lambda'_{kij}\tilde{q}_{Li}^{ax}d_{Rj}^{cx}l_{Lk}^{b} + \lambda'_{kji}\tilde{d}_{Ri}^{x*}q_{Lj}^{ax}l_{Lk}^{b}\right) \\ - \frac{1}{5}\epsilon^{xyz}\lambda''_{ijk}\tilde{u}_{Ri}^{x*}d_{Rj}^{cy}d_{Rk}^{cz} + \epsilon^{xyz}\lambda''_{jik}\tilde{d}_{Ri}^{x*}u_{Rj}^{cy}d_{Rk}^{cz} + \text{H.c.} + (F\text{-terms}),$$

$$\mathcal{L}_{\text{SUSY}} = -\frac{1}{2} \left(M_3 \tilde{g}_0 \tilde{g}_0 + M_2 \tilde{w} \tilde{w} + M_1 \tilde{b} \tilde{b} + \text{H.c.} \right) - \left(V_{\text{SUSY}}^{\text{RPC}} + V_{\text{SUSY}}^{\text{RPV}} \right), \tag{6.20}$$

and the F- and D-terms form the supersymmetric scalar potential

$$V_{\rm SUSY} = F_i^* F_i + \frac{1}{2} D^a D^a; \qquad F_i = -W_i^* = -\frac{\delta W^*}{\delta \phi_i^*}, \qquad D^a = -g(\phi^* t^a \phi),$$
 (6.21)

$$V = V_{\text{SUSY}} + V_{\text{SUSY}}^{\text{RPC}} + V_{\text{SUSY}}^{\text{RPV}}, \tag{6.22}$$

^{*7}Fail-safe memo: The Θ-terms are total derivatives and relevant in non-perturbative discussion. Redefinition of chiral fermions generates those terms (Fujikawa method) as a non-perturbative effect, so we can remove Θ-terms as long as we have such freedoms. Note also that the absence of gauge anomaly means the corresponding gauge transformations do not induce additional Θ-terms.

where t_a corresponds to the gauge-symmetry generator relevant for each ϕ .

Each auxiliary term is given by

$$-F_{h_{\mathbf{u}}^{*}}^{*} = \epsilon^{ab} \left(-\tilde{u}_{\mathbf{R}}^{**} y_{u} \tilde{q}_{\mathbf{L}}^{bx} + \mu h_{\mathbf{d}}^{b} + \kappa_{i} \tilde{l}_{\mathbf{L}i}^{b} \right), \tag{6.23}$$

$$-F_{h_{\mathbf{d}}^{*}}^{*} = \epsilon^{ab} \left(\tilde{e}_{\mathbf{R}}^{*} y_{e} \tilde{l}_{\mathbf{L}}^{b} + \tilde{d}_{\mathbf{R}}^{x*} y_{d} \tilde{q}_{\mathbf{L}}^{bx} - \mu h_{\mathbf{u}}^{b} \right), \tag{6.24}$$

$$-F_{\tilde{q}_{Li}^{ax}}^{*} = \epsilon^{ab} \left(-y_{dji} h_d^b \tilde{d}_{Rj}^{x*} + y_{uji} h_u^b \tilde{u}_{Rj}^{x*} - \lambda'_{kij} \tilde{d}_{Rj}^{x*} \tilde{t}_{Lk}^b \right), \tag{6.25}$$

$$-F_{\tilde{u}_{R_i}^{x*}}^* = -y_{uij}h_{u}\tilde{q}_{L_j}^x + \frac{1}{2}\epsilon^{xyz}\lambda_{ijk}''\tilde{d}_{R_j}^{y*}\tilde{d}_{R_k}^{z*}, \tag{6.26}$$

$$-F_{\tilde{d}_{R_{j}}^{x*}}^{*} = y_{dij}h_{d}\tilde{q}_{Lj}^{x} + \lambda'_{jki}\tilde{l}_{Lj}\tilde{q}_{Lk}^{x} - \lambda''_{jik}\epsilon^{xyz}\tilde{u}_{Rj}^{y*}\tilde{d}_{Rk}^{z*},$$
(6.27)

$$-F_{\tilde{l}_{L,i}^{*}}^{*} = \epsilon^{ab} \left(-y_{eji} \tilde{e}_{Rj}^{*} h_{d}^{b} - \kappa_{i} h_{u}^{b} + \lambda_{ikj} \tilde{e}_{Rj}^{*} \tilde{l}_{Lk}^{b} + \lambda'_{ikj} \tilde{d}_{Rj}^{**} \tilde{q}_{Lk}^{b*} \right), \tag{6.28}$$

$$-F_{\tilde{e}_{R_i}^*}^* = y_{eij} h_d \tilde{l}_{Lj} + \frac{1}{2} \lambda_{jki} \tilde{l}_{Lj} \tilde{l}_{Lk}. \tag{6.29}$$

$$D_{SU(3)}^{\alpha} = -g_3 \sum_{i=1}^{3} \left(\sum_{a=1,2} \tilde{q}_{Li}^{a*} \tau^{\alpha} \tilde{q}_{Li}^{a} - \tilde{u}_{Ri}^{*} \tau^{\alpha} \tilde{u}_{Ri} - \tilde{d}_{Ri}^{*} \tau^{\alpha} \tilde{d}_{Ri} \right), \tag{6.30}$$

$$D_{\text{SU}(2)}^{\alpha} = -g_2 \left[\sum_{i=1}^{3} \left(\sum_{x=1}^{3} \tilde{q}_{\text{L}i}^{x*} T^{\alpha} \tilde{q}_{\text{L}i}^{x} + \tilde{l}_{\text{L}i}^{*} T^{\alpha} \tilde{l}_{\text{L}i} \right) + h_{\text{u}}^{*} T^{\alpha} h_{\text{u}} + h_{\text{d}}^{*} T^{\alpha} h_{\text{d}} \right],$$
(6.31)

$$D_{\mathrm{U}(1)} = -g_1 \left(\frac{1}{6} |\tilde{q}_{\mathrm{L}}|^2 - \frac{1}{2} |\tilde{l}_{\mathrm{L}}|^2 - \frac{2}{3} |\tilde{u}_{\mathrm{R}}|^2 + \frac{1}{3} |\tilde{d}_{\mathrm{R}}|^2 + |\tilde{e}_{\mathrm{R}}|^2 + \frac{1}{2} |h_{\mathrm{u}}|^2 - \frac{1}{2} |h_{\mathrm{d}}|^2 \right). \tag{6.32}$$

6.3. Full Lagrangian

Here the Lagrangian $\mathcal{L} = \mathcal{L}_{\text{vector}} + \mathcal{L}_{\text{fermions}} + \mathcal{L}_{\text{SFG}} + \mathcal{L}_{\text{scalar}}$ is explicitly given:

$$\mathcal{L}_{\text{vector}} = -\frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu} + \frac{g_3^2 \Theta_g}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma}, \tag{6.33}$$

$$\mathcal{L}_{\text{fermions}} = i\bar{\psi}\bar{\sigma}^{\mu} D_{\mu}\psi + i\bar{\lambda}^{a}\bar{\sigma}^{\mu} D_{\mu}\lambda^{a} - \frac{1}{2} \left(M_{3}\tilde{g}_{0}\tilde{g}_{0} + M_{2}\tilde{w}\tilde{w} + M_{1}\tilde{b}\tilde{b} + \text{H.c.} \right) + \mathcal{L}_{\text{super}}|_{\text{no }F\text{-terms}}, \tag{6.34}$$

$$\mathcal{L}_{SFG} = -\sqrt{2}g\lambda^a(\phi^*t^a\psi) - \sqrt{2}g\bar{\lambda}^a(\bar{\psi}t^a\phi), \tag{6.35}$$

$$\mathcal{L}_{\text{scalar}} = D^{\mu} \phi^* D_{\mu} \phi - V. \tag{6.36}$$

6.3.1. Vector part

$$\mathcal{L}_{\text{vector}} = -\frac{1}{2} (\partial_{\mu} B_{\nu} - \partial_{\nu} B_{\mu}) \partial^{\mu} B^{\nu} - \frac{1}{2} (\partial_{\mu} g_{\nu}^{a} - \partial_{\nu} g_{\mu}^{a}) \partial^{\mu} g^{a\nu} - \frac{1}{2} (\partial_{\mu} W_{\nu}^{a} - \partial_{\nu} W_{\mu}^{a}) \partial^{\mu} W^{a\nu}$$

$$- g_{2} \epsilon^{abc} W_{\mu}^{b} W_{\nu}^{c} \partial^{\mu} W^{a\nu} - \frac{g_{2}^{2}}{4} \epsilon^{abe} \epsilon^{cde} W_{\mu}^{a} W_{\nu}^{b} W^{c\mu} W^{d\nu}$$

$$- g_{3} f^{abc} g_{\mu}^{b} g_{\nu}^{c} \partial^{\mu} g^{a\nu} - \frac{g_{3}^{2}}{4} f^{cde} f^{abe} g_{\mu}^{a} g_{\nu}^{b} g^{c\mu} g^{d\nu} + \frac{g_{3}^{2} \Theta_{g}}{64\pi^{2}} \epsilon^{\mu\nu\rho\sigma} G_{\mu\nu}^{a} G_{\rho\sigma}^{a},$$

$$= (\text{gluons}) - \frac{1}{2} (\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}) \partial^{\mu} A^{\nu} - (\partial_{\mu} W_{\nu}^{-} - \partial_{\nu} W_{\mu}^{-}) \partial_{\mu} W^{+\nu} - \frac{1}{2} (\partial_{\mu} Z_{\nu} - \partial_{\nu} Z_{\mu}) \partial^{\mu} Z^{\nu}$$

$$+ i g_{2} c_{w} \left[(W_{\mu}^{-} Z_{\nu} - W_{\nu}^{-} Z_{\mu}) \partial^{\mu} W^{+\nu} - (W_{\mu}^{+} Z_{\nu} - W_{\nu}^{+} Z_{\mu}) \partial^{\mu} W^{-\nu} + (W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} W_{\mu}^{-}) \partial^{\mu} Z^{\nu} \right]$$

$$+ i |e| \left[(W_{\mu}^{-} A_{\nu} - W_{\nu}^{-} A_{\mu}) \partial^{\mu} W^{+\nu} - (W_{\mu}^{+} A_{\nu} - W_{\nu}^{+} A_{\mu}) \partial^{\mu} W^{-\nu} + (W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} W_{\mu}^{-}) \partial^{\mu} A^{\nu} \right]$$

$$+ \frac{g_{2}^{2}}{2} W^{+\mu} W_{\mu}^{+} W^{-\nu} W_{\nu}^{-} - \frac{g_{2}^{2}}{2} W^{+\mu} W^{+\nu} W_{\mu}^{-} W_{\nu}^{-} - g_{2}^{2} W^{+\mu} W_{\mu}^{-} Z^{\nu} Z_{\nu} + g_{2}^{2} W^{+\mu} W^{-\nu} Z_{\mu} Z_{\nu}$$

$$- e^{2} W^{+\mu} W_{\mu}^{-} A^{\nu} A_{\nu} + e^{2} W^{+\mu} W_{\mu}^{-} Z^{\nu} Z_{\nu} + e^{2} W^{+\mu} W^{-\nu} A_{\mu} A_{\nu} - e^{2} W^{+\mu} W^{-\nu} A_{\nu} Z_{\mu},$$

$$(6.38)$$

where

$$\begin{split} W_{\mu}^{1} &= \frac{W_{\mu}^{+} + W_{\mu}^{-}}{\sqrt{2}}, \quad W_{\mu}^{2} = \frac{\mathrm{i}(W_{\mu}^{+} - W_{\mu}^{-})}{\sqrt{2}}; \qquad W_{\mu}^{\pm} = \frac{W_{\mu}^{1} \mp \mathrm{i}W_{\mu}^{2}}{\sqrt{2}}; \\ \begin{pmatrix} W_{\mu}^{3} \\ B_{\mu} \end{pmatrix} &= \begin{pmatrix} \mathrm{c_{w}} & \mathrm{s_{w}} \\ -\mathrm{s_{w}} & \mathrm{c_{w}} \end{pmatrix} \begin{pmatrix} Z_{\mu} \\ A_{\mu} \end{pmatrix}; \qquad \begin{pmatrix} Z_{\mu} \\ A_{\mu} \end{pmatrix} &= \begin{pmatrix} \mathrm{c_{w}} & -\mathrm{s_{w}} \\ \mathrm{s_{w}} & \mathrm{c_{w}} \end{pmatrix} \begin{pmatrix} W_{\mu}^{3} \\ B_{\mu} \end{pmatrix}; \\ |e| &= g_{2}\mathrm{s_{w}} = g_{Y}\mathrm{c_{w}} = g_{Z}\mathrm{s_{w}c_{w}}, \quad g_{Z} = g_{Z}/\mathrm{c_{w}} = g_{Y}/\mathrm{s_{w}}; \qquad g_{Y} = |e|/\mathrm{c_{w}} = g_{Z}\mathrm{s_{w}} = g_{Z}\mathrm{t_{w}}, \quad g_{Z} = |e|/\mathrm{s_{w}} = g_{Z}\mathrm{c_{w}}. \end{split}$$

6.3.2. Fermion part

 $\mathcal{L}_{\mathrm{fermions}}$

$$\begin{split} &= \mathrm{i} \bar{q}_L \bar{\sigma}^\mu \left(\partial_\mu - \mathrm{i} g_3 g_\mu^a \tau^a - \mathrm{i} g_2 W_\mu^a T^a - \frac{1}{6} \mathrm{i} g_1 Y_B \mu \right) q_L \\ &+ \mathrm{i} \bar{u}_R^c \bar{\sigma}^\mu \left(\partial_\mu + \mathrm{i} g_3 g_\mu^a \tau^{a*} + \frac{2}{3} \mathrm{i} g_2 Y_B \right) u_L^c + \mathrm{i} \bar{d}_R^c \bar{\sigma}^\mu \left(\partial_\mu + \mathrm{i} g_3 g_\mu^a \tau^{a*} - \frac{1}{3} \mathrm{i} g_2 Y_B \right) d_R^c \\ &+ \mathrm{i} \bar{l}_L \bar{\sigma}^\mu \left(\partial_\mu - \mathrm{i} g_2 W_\mu^a T^a + \frac{1}{2} \mathrm{i} g_2 Y_B \right) l_L + \mathrm{i} \bar{e}_R^c \bar{\sigma}^\mu \left(\partial_\mu - \mathrm{i} g_2 Y_B \mu \right) \bar{h}_A \\ &+ \mathrm{i} \bar{h}_a \bar{\sigma}^\mu \left(\partial_\mu - \mathrm{i} g_2 W_\mu^a T^a - \frac{1}{2} \mathrm{i} g_2 Y_B \right) \bar{h}_a + \mathrm{i} \bar{h}_a \bar{\sigma}^\mu \left(\partial_\mu - \mathrm{i} g_2 W_\mu^a T^a - \frac{1}{2} \mathrm{i} g_2 Y_B \right) \bar{h}_a \\ &+ \mathrm{i} \bar{g}_0^a \bar{\sigma}^\mu \left(\partial_\mu \bar{g}_0^a + g_3 f^{abc} g_\mu^b \bar{g}_0^c \right) + \mathrm{i} \bar{w}^a \bar{\sigma}^\mu \left(\partial_\mu \bar{w}^a + g_2 \epsilon^{abc} W_\mu^b \bar{w}^c \right) + \mathrm{i} \bar{b} \bar{\sigma}^\mu \partial_\mu \bar{h} \\ &- \frac{1}{2} \left(M_3 \bar{g}_0^a g_0^a + M_2 \bar{w}^a \bar{w}^a + M_1 \bar{b} \bar{b} + \mathrm{H.c.} \right) + \mathcal{L}_{\mathrm{super}} \Big|_{\mathrm{no} \ F-\mathrm{terms}} \\ &= \mathrm{i} \bar{b} \bar{\sigma}^\mu \partial_\mu \bar{h}_0 - \frac{1}{2} \left(M_1 \bar{b} \bar{b} + M_1^* \bar{b}^a \bar{b}^a \right) + \mathrm{i} \bar{g}_0^a \bar{\sigma}^\mu \partial_\mu \bar{g}_0^a - \frac{1}{2} \left(M_3 g_0^a g_0^a + M_3 \bar{g}_0^a \bar{g}_0^a \right) - \mathrm{i} g_3 f^{abc} (\bar{g}_0^a \bar{\sigma}^\mu \bar{g}_0^b) g_\mu^c \\ &+ \mathrm{i} \bar{w}^+ \bar{\sigma}^\mu \partial_\mu \bar{w}^+ + \mathrm{i} \bar{w}^- \bar{\sigma}^\mu \partial_\mu \bar{w}^- + \mathrm{i} \bar{w}^3 \bar{\sigma}^\mu \partial_\mu \bar{g}_0^a - \frac{1}{2} \left(M_2 \bar{w}^a \bar{g}_0^a - M_3 \bar{g}_0^a \bar{g}_0^a \right) - \mathrm{i} g_3 f^{abc} (\bar{g}_0^a \bar{\sigma}^\mu \bar{g}_0^b) g_\mu^c \\ &+ \mathrm{i} \bar{w}^+ \bar{\sigma}^\mu \partial_\mu \bar{w}^+ + \mathrm{i} \bar{w}^- \bar{\sigma}^\mu \partial_\mu \bar{w}^- + \mathrm{i} \bar{w}^3 \bar{\sigma}^\mu \partial_\mu \bar{g}_0^a - \frac{1}{2} \left(M_2 \bar{w}^a \bar{g}_0^a - M_3 \bar{g}_0^a \bar{g}_0^a \right) - \mathrm{i} g_3 f^{abc} (\bar{g}_0^a \bar{\sigma}^\mu \bar{g}_0^b) g_\mu^c \\ &+ \mathrm{i} \bar{w}^+ \bar{\sigma}^\mu \partial_\mu \bar{w}^+ + \mathrm{i} \bar{w}^- \bar{\sigma}^\mu \partial_\mu \bar{w}^- + \mathrm{i} \bar{w}^3 \bar{\sigma}^\mu \partial_\mu \bar{g}_0^a - \frac{1}{2} \left(M_2 \bar{w}^a \bar{w}^a \bar{w}^a + M_2^* \bar{w}^a \bar{w}^a \right) - \frac{1}{2} \left(M_2 \bar{w}^a \bar{w}^a + M_2^* \bar{w}^a \bar{w}^a \right) \\ &+ 2 (\bar{w}^- \bar{w}^- \bar{$$

here.

$$\mathcal{L}_{\text{super}}\big|_{\text{no F-terms}} = -\mu \tilde{h}_{\text{u}}^{+} \tilde{h}_{\text{d}}^{-} + \mu \tilde{h}_{\text{u}}^{0} \tilde{h}_{\text{d}}^{0} + y_{uij} h_{\text{u}}^{+} u_{\text{R}i}^{c} d_{\text{L}j} - y_{uij} h_{\text{u}}^{0} u_{\text{R}i}^{c} u_{\text{L}j} + y_{uij} \tilde{d}_{\text{L}j} \tilde{h}_{\text{u}}^{+} u_{\text{R}i}^{c} - y_{uij} \tilde{u}_{\text{L}j} \tilde{h}_{\text{u}}^{0} u_{\text{R}i}^{c} \\
+ y_{uji} \tilde{u}_{\text{R}j}^{*} \tilde{h}_{\text{u}}^{+} d_{\text{L}i} - y_{uji} \tilde{u}_{\text{R}j}^{*} \tilde{h}_{\text{u}}^{0} u_{\text{L}i} + y_{dij} h_{\text{d}}^{-} d_{\text{R}i}^{c} u_{\text{L}j} - y_{dij} h_{\text{d}}^{0} d_{\text{R}i}^{c} d_{\text{L}j} - y_{dij} \tilde{h}_{\text{d}}^{0} d_{\text{R}i}^{c} d_{\text{L}j} - y_{dij} \tilde{h}_{\text{d}}^{0} d_{\text{R}i}^{c} + y_{dij} \tilde{u}_{\text{L}j}^{*} \tilde{h}_{\text{d}}^{0} d_{\text{L}i} + y_{dij} \tilde{d}_{\text{R}j}^{*} \tilde{h}_{\text{d}}^{0} d_{\text{L}i} + y_{eij} h_{\text{d}}^{0} e_{\text{R}i}^{c} \nu_{\text{L}j} - y_{eij} h_{\text{d}}^{0} e_{\text{R}i}^{c} e_{\text{L}j} \\
- y_{eij} \tilde{e}_{\text{L}j} \tilde{h}_{\text{d}}^{0} e_{\text{R}i}^{c} + y_{eij} \tilde{\nu}_{\text{L}j} \tilde{h}_{\text{d}}^{c} e_{\text{R}i}^{c} + y_{eji} \tilde{e}_{\text{R}j}^{*} \tilde{h}_{\text{d}}^{c} \nu_{\text{L}i} - y_{eji} \tilde{e}_{\text{R}j}^{*} \tilde{h}_{\text{d}}^{0} e_{\text{L}i} \\
- \kappa_{i} \tilde{h}_{\text{d}}^{+} e_{\text{L}i} + \kappa_{i} \tilde{h}_{\text{u}}^{0} \nu_{\text{L}i} - \lambda_{ijk} \tilde{e}_{\text{R}k}^{*} \nu_{\text{L}i} e_{\text{L}j} - \lambda_{jki} \tilde{e}_{\text{L}k} e_{\text{R}i}^{c} \nu_{\text{L}j} + \lambda_{jki} \tilde{\nu}_{\text{L}k} e_{\text{R}i}^{c} e_{\text{L}j} \\
- \lambda_{jik}^{\prime} \tilde{d}_{\text{R}k}^{*} d_{\text{L}i} \nu_{\text{L}j} + \lambda_{jik}^{\prime} \tilde{d}_{\text{R}k}^{*} u_{\text{L}i} e_{\text{L}j} - \lambda_{jki}^{\prime} \tilde{d}_{\text{L}k} d_{\text{R}i}^{c} \nu_{\text{L}j} + \lambda_{kji}^{\prime} \tilde{u}_{\text{L}k}^{c} d_{\text{R}j}^{c} d_{\text{R}j}^{c} + H.c.$$
(6.41)

6.3.3. Scalar-fermion-gaugino interaction

$$\mathcal{L}_{SFG} = -g_2 \tilde{u}_L^* d_L \tilde{w}^+ - g_2 \tilde{u}_L \bar{d}_L \bar{w}^+ - g_2 \tilde{d}_L^* u_L \tilde{w}^- - g_2 \tilde{d}_L \bar{u}_L \bar{w}^- - g_2 \tilde{d}_L \bar{u}_L \bar{u}_L \bar{b}^- + g_2 \tilde{d}_L \bar{d}_L \bar{u}_L \bar{b}^- + g_2 \tilde{d}_L \bar{d}_L \bar{u}_L \bar{b}^- - g_2 \tilde{d}_L \bar{u}_L \bar{u}_L \bar{b}^- + g_2 \tilde{d}_L \bar{d}_L \bar{u}_L \bar{b}^- - g_2 \tilde{d}_L \bar{u}_L \bar{u}_L \bar{b}^- + g_2 \tilde{d}_L \bar{d}_L \bar{u}_L \bar{b}^- - g_2 \tilde{d}_L \bar{u}_L \bar{u}_L \bar{b}^- + g_2 \tilde{d}_L \bar{u}_L \bar{u}_L \bar{b}^- - g_2 \tilde{u}_L \bar{u}_L \bar{u}_L \bar{b}^- + g_2 \tilde{d}_L \bar{u}_L \bar{u}_L \bar{b}^- - g_2 \tilde{u}_L \bar{u}_L \bar{u}_L \bar{b}^- - g_2 \tilde{u}_L \bar{u}_L \bar{u}_L \bar{b}^- - g_2 \tilde{u}_L \bar{u}_L \bar{u}_L \bar{u}_L \bar{b}^- - g_2 \tilde{u}_L \bar{u}_L \bar{$$

6.3.4. Scalar part

$$\begin{split} &\mathcal{L}_{coolsis} = (\partial_{\mu} \bar{\mathbf{u}}_{1}^{\perp} + \mathrm{i} \mathrm{g} \bar{\mathbf{u}}_{1}^{\perp} \gamma^{2} g_{\mu}^{\perp})(\partial^{\mu} \bar{\mathbf{u}}_{1} - \mathrm{i} \mathrm{g} \mathrm{g}^{2} \mathrm{g}^{\mu} \gamma^{2} \bar{\mathbf{u}}_{1}) + (\partial_{\mu} \bar{\mathbf{u}}_{1} - \mathrm{i} \mathrm{g} \mathrm{g}^{2} \mathrm{g}^{\mu} \gamma^{2} \bar{\mathbf{u}}_{1}) + (\partial_{\mu} \bar{\mathbf{d}}_{1} - \mathrm{i} \mathrm{g} \mathrm{g}^{2} \mathrm{g}^{\mu} \gamma^{2} \bar{\mathbf{u}}_{1}) + (\partial_{\mu} \bar{\mathbf{d}}_{1} - \mathrm{i} \mathrm{g} \mathrm{g}^{2} \mathrm{g}^{\mu} \gamma^{2} \bar{\mathbf{u}}_{1}) + (\partial_{\mu} \bar{\mathbf{d}}_{1} - \mathrm{i} \mathrm{g} \mathrm{g}^{2} \mathrm{g}^{\mu} \gamma^{2} \bar{\mathbf{u}}_{1}) + (\partial_{\mu} \bar{\mathbf{d}}_{1} - \mathrm{i} \mathrm{g} \mathrm{g}^{2} \bar{\mathbf{u}}_{1} \gamma^{2} \bar{\mathbf{u}}_{1}) + (\partial_{\mu} \bar{\mathbf{d}}_{1} - \mathrm{i} \mathrm{g} \mathrm{g}^{2} \bar{\mathbf{u}}_{1} \gamma^{2} \bar{\mathbf{u}}_{1}) + (\partial_{\mu} \bar{\mathbf{u}}_{1} \gamma^{2} \bar{\mathbf{u}}_{1} - \mathrm{i} \mathrm{g} \mathrm{g}^{2} \bar{\mathbf{u}}_{1} \gamma^{2} \bar{\mathbf{u}}_{1}) + (\partial_{\mu} \bar{\mathbf{u}}_{1} \gamma^{2} \bar{\mathbf{u}}_{1} - \mathrm{i} \mathrm{g} \mathrm{g}^{2} \bar{\mathbf{u}}_{1} \gamma^{2} \bar{\mathbf{u}}_{1}) + (\partial_{\mu} \bar{\mathbf{u}}_{1} \gamma^{2} \bar{\mathbf{u}}_{1} - \mathrm{i} \mathrm{g} \mathrm{g}^{2} \bar{\mathbf{u}}_{1} \gamma^{2} \bar{\mathbf{u}}_{1}) + (\partial_{\mu} \bar{\mathbf{u}}_{1} \gamma^{2} \bar{\mathbf{u}}_{1} - \mathrm{i} \mathrm{g} \bar{\mathbf{u}}_{2}) + (\partial_{\mu} \bar{\mathbf{u}}_{1} \gamma^{2} \bar{\mathbf{u}}_{1} - \mathrm{i} \mathrm{g} \bar{\mathbf{u}}_{2}) + (\partial_{\mu} \bar{\mathbf{u}}_{1} \gamma^{2} \bar{\mathbf{u}}_{1} - \mathrm{i} \mathrm{g} \bar{\mathbf{u}}_{2}) + (\partial_{\mu} \bar{\mathbf{u}}_{1} - \partial_{\mu} \bar{\mathbf{u}}_{1} - \partial_{\mu} \bar{\mathbf{u}}_{2}) + (\partial_{\mu} \bar{\mathbf{u}}_{1} - \partial_{\mu} \bar{\mathbf{u}}_{1} - \partial_{\mu} \bar{\mathbf{u}}_{2}) + (\partial_{\mu} \bar{\mathbf{u}}_{1} - \partial_{\mu} \bar{\mathbf{u}}_{1} - \partial_{\mu} \bar{\mathbf{u}}_{1} - \partial_{\mu} \bar{\mathbf{u}}_{1}) + (\partial_{\mu} \bar{\mathbf{u}}_{1} - \partial_{\mu} \bar{\mathbf{u}}_{1} - \partial_{\mu} \bar{\mathbf{u}}_{1} - \partial_{\mu} \bar{\mathbf{u}}_{1}) + (\partial_{\mu} \bar{\mathbf{u}}_{1} - \partial_{\mu} \bar{\mathbf{u}}_{1}) + (\partial_{\mu} \bar$$

(6.43)

where the scalar potential is given by

$$\begin{split} V_{SUSY} &= \left| h_{al} \right|^{2} \left(\left| \mu_{l} \right|^{2} + \sum_{i} \left| \kappa_{i} \right|^{2} \right) + \left| \mu_{l}^{2} \left| h_{al} \right|^{2} + \left(\kappa_{i} \mu_{Li}^{2} h_{al} + \text{H.c.} \right) + \kappa_{i}^{2} \kappa_{i} \bar{h}_{Li}^{2} \bar{h}_{Lj} \\ &+ \left[- y_{aij} y^{*} h_{a}^{2} \bar{h}_{Li}^{2} h_{al} + \left(\lambda_{jk} \kappa_{k}^{2} - y_{aij} \kappa_{k}^{2} \bar{h}_{Li}^{2} \bar{h}_{al}^{2} \bar{h}_{Lj}^{2} + \left(\lambda_{ij} h_{a}^{2} + \lambda_{ij} \kappa_{k}^{2} \right) h_{a}^{2} \bar{h}_{Li}^{2} \bar{h}_{Lj} + \text{H.c.} \right] \\ &+ \frac{1}{8} \left(g_{2}^{2} + g_{2}^{2} \right) \left| h_{a} \right|^{4} + \frac{1}{8} \left(g_{2}^{2} + g_{2}^{2} \right) \left| h_{a} \right|^{4} + \left(- \frac{g_{2}^{2}}{4} \left| h_{a} \right|^{2} \left| h_{a} \right|^{2} \right) + \frac{2}{9} \left[h_{a}^{2} \bar{h}_{Lj}^{2} + H_{a}^{2} \right] \\ &+ \left(- \frac{g_{2}^{2}}{4} \left| h_{a} \right|^{2} \left| \bar{h}_{a} \right|^{2} \left| \bar{h}_{a}^{2} \right|^{2} + \frac{2}{2} \left| h_{a}^{2} \bar{h}_{c}^{2} \right|^{2} + \epsilon^{ac} e^{bd} \left(y_{a}^{1} y_{a} \right)_{j,h}^{a} h_{a}^{b}^{b} \bar{q}_{L}^{c} \bar{q}_{Lj}^{2} \right) \\ &+ \left(- \frac{g_{2}^{2}}{4} \left| h_{a} \right|^{2} \left| \bar{h}_{a} \right|^{2} \left| \bar{h}_{a}^{2} \right|^{2} + \frac{2}{2} \left| h_{a}^{2} \bar{h}_{c}^{2} \right|^{2} + \epsilon^{ac} e^{bd} \left(y_{a}^{1} y_{a} \right)_{j,h}^{a} h_{a}^{b} \bar{q}_{L}^{c} \bar{q}_{Lj}^{2} \right) \\ &+ \left(- \frac{g_{2}^{2}}{4} \left| h_{a} \right|^{2} \left| \bar{h}_{a} \right|^{2} \left| \bar{h}_{a}^{2} \right|^{2} + \frac{2}{2} \left| h_{a}^{2} \bar{h}_{c}^{2} \right|^{2} \right) \\ &+ \left(- \frac{g_{2}^{2}}{4} \left| h_{a} \right|^{2} \left| \bar{h}_{a}^{2} \right|^{2} \left| \bar{h}_{a}^{2} \right|^{2} \right) \\ &+ \left(- \frac{g_{2}^{2}}{4} \left| h_{a} \right|^{2} \left| \bar{h}_{a}^{2} \right|^{2} \left| \bar{h}_{a}^{2} \right|^{2} \right) \\ &+ \left(- \frac{g_{2}^{2}}{4} \left| h_{a} \right|^{2} \left| \bar{h}_{a}^{2} \right|^{2} \left| \bar{h}_{a}^{2} \right|^{2} \right) \\ &+ \left(- \frac{g_{2}^{2}}{4} \left| h_{a} \right|^{2} \left| \bar{h}_{a}^{2} \right|^{2} \left| \bar{h}_{a}^{2} \right|^{2} \right) \\ &+ \left(- \frac{g_{2}^{2}}{4} \left| h_{a} \right|^{2} \left| \bar{h}_{a}^{2} \right|^{2} \left| \bar{h}_{a}^{2} \right|^{2} \right| \right) \\ &+ \left(- \frac{g_{2}^{2}}{4} \left| h_{a} \right|^{2} \left| \bar{h}_{a}^{2} \right|^{2} \left| \bar{h}_{a}^{2} \right|^{2} \right) \\ &+ \left(- \frac{g_{2}^{2}}{4} \left| h_{a} \right|^{2} \left| \bar{h}_{a}^{2} \right|^{2} \right|^{2} \right) \\ &+ \left(- \frac{g_{2}^{2}}{4} \left| h_{a} \right|^{2} \left| \bar{h}_{a}^{2} \right|^{2} \right|^{2} \right) \\ &+ \left(- \frac{g_{2}^{2}}{4} \left| h_{a} \right|^{2} \left| \bar{h}_{a}^{2} \right|^{2} \right) \\ &+ \left(- \frac{g_{2}^{2}}{4} \left| h_{a} \right|^{2} \left| \bar{h}_{a}^{2} \right|^{2} \right) \\$$

6.4. Higgs mechanism and fermion composition

The scalar potential includes

$$V_{\text{SUSY}} \supset |h_{\text{u}}|^2 \left(|\mu|^2 + \sum_{i} |\kappa_i|^2 \right) + |\mu|^2 |h_{\text{d}}|^2 + \frac{g_Z^2}{8} \left(|h_{\text{u}}|^2 - |h_{\text{d}}|^2 \right)^2 + \frac{g_2^2}{2} |h_{\text{d}}^* h_{\text{u}}|^2 + \left(\kappa_i^* \mu \tilde{l}_{\text{L}i}^* h_{\text{d}} + \text{H.c.} \right) + \kappa_i^* \kappa_j \tilde{l}_{\text{L}i}^* \tilde{l}_{\text{L}j}$$

$$(6.45)$$

$$V_{\text{SUSY}} \supset m_{H_{\text{u}}}^2 |h_{\text{u}}|^2 + m_{H_{\text{d}}}^2 |h_{\text{d}}|^2 + \epsilon^{ab} \left(b h_{\text{u}}^a h_{\text{d}}^b + b^* h_{\text{u}}^{a*} h_{\text{d}}^{b*} - b_i \tilde{l}_{\text{L}i}^a h_{\text{u}}^b - b_i^* \tilde{l}_{\text{L}i}^{a*} h_{\text{u}}^{b*} \right) + \tilde{l}_{\text{L}i}^* M_{Li}^2 h_{\text{d}} + \tilde{l}_{\text{L}i} M_{Li}^{2*} h_{\text{d}}^*; \quad (6.46)$$

the Higgs mass term is given by

$$V \supset \left(h_{\mathrm{u}} \quad h_{\mathrm{d}}^{*} \quad \tilde{l}_{\mathrm{L}i}^{*}\right) \begin{pmatrix} |\mu|^{2} + m_{H_{\mathrm{u}}}^{2} + \sum |\kappa_{i}|^{2} & b & -b_{j} \\ b^{*} & |\mu|^{2} + m_{H_{\mathrm{d}}}^{2} & \kappa_{j}\mu^{*} + M_{Lj}^{2*} \\ -b_{i}^{*} & \kappa_{i}^{*}\mu + M_{Li}^{2} & (m_{L}^{2})_{ij} + \kappa_{i}^{*}\kappa_{j} \end{pmatrix} \begin{pmatrix} h_{\mathrm{u}}^{*} \\ h_{\mathrm{d}} \\ \tilde{l}_{\mathrm{L}j} \end{pmatrix}$$

$$(6.47)$$

while corresponding fermion terms

$$\mathcal{L} \supset \epsilon^{ab} \left(-\mu \tilde{h}_{u}^{a} \tilde{h}_{d}^{b} - \kappa_{i} \tilde{h}_{u}^{a} l_{L_{i}}^{b} \right). \tag{6.48}$$

If the R-parity is not conserved, we redefine $(H_{\rm d},L)$ superfields so that the mass matrix is block-diagonal, which corresponds to $U(4)_{H_d,L} \to U(3)_L \times U(1)_{H_d}$ (DOF counting: $16 \to 9 + 1$ to remove b_i'). Then lepton and \tilde{h}_d are mixed.*8 With R-parity conservation, we do not suffer from these mixings.

6.4.1. Higgs potential and induced mass in R-parity conserved case

We perform "SU(2)-notation fixing", i.e., use the freedom associated to T_1 and T_2 of SU(2), so that $\langle h_u^+ \rangle = 0$. Then $\langle h_{\rm d}^- \rangle = 0$ and effectively

$$V_{\text{pot}} = (|\mu|^2 + m_{H_{\text{u}}}^2)|h_{\text{u}}^0|^2 + (|\mu|^2 + m_{H_{\text{d}}}^2)|h_{\text{d}}^0|^2 + \frac{g_Z^2}{8} (|h_{\text{u}}^0|^2 - |h_{\text{d}}^0|^2)^2 - (bh_{\text{u}}^0 h_{\text{d}}^0 + \text{H.c.}).$$
(6.49)

We redefine
$$H_{\rm d}$$
 superfield so that $b > 0$.*9 Then $\arg \langle h_{\rm u}^0 \rangle = -\arg \langle h_{\rm d}^0 \rangle$ and, with T_3 -rotation, $\langle h_{\rm u}^0 \rangle > 0$ and $\langle h_{\rm d}^0 \rangle > 0$: $\langle h_{\rm u}^0 \rangle =: v_{\rm u} =: \frac{v_{\rm SM}}{\sqrt{2}} \sin \beta$, $\langle h_{\rm d}^0 \rangle =: v_{\rm d} =: \frac{v_{\rm SM}}{\sqrt{2}} \cos \beta$; (6.50)

$$V_{\rm pot} = \frac{1}{2} (|\mu|^2 + m_{H_{\rm u}}^2) v_{\rm SM}^2 \sin^2\beta + \frac{1}{2} (|\mu|^2 + m_{H_{\rm d}}^2) v_{\rm SM}^2 \cos^2\beta + \frac{g_Z^2}{32} v_{\rm SM}^4 \cos^22\beta - \frac{1}{2} v_{\rm SM}^2 b \sin2\beta. \tag{6.51}$$
 This potential can have two minima; one with $0 < \beta \le \pi/4$ and the other with $\pi/4 \le \beta < \pi/2$:

$$\tan \beta = \frac{B \mp \sqrt{B^2 - 4b^2}}{2b} \quad \left(\cos 2\beta = \pm \frac{\sqrt{B^2 - 4b^2}}{B}\right), \qquad m_Z^2 := \frac{g_Z^2}{4} v_{\rm SM}^2 = \left(\pm \frac{m_{H_{\rm d}}^2 - m_{H_{\rm u}}^2}{\sqrt{B^2 - 4b^2}} - 1\right) B, \quad (6.52)$$

where $B:=2|\mu|^2+m_{H_{\rm u}}^2+m_{H_{\rm d}}^2>2b>0$ and m_Z is the Z-boson tree-level mass. Also,

$$\sin 2\beta = \frac{2b}{2|\mu|^2 + m_{H_{\rm u}}^2 + m_{H_{\rm d}}^2}, \qquad m_Z^2 = \frac{-(m_{H_{\rm d}}^2 - m_{H_{\rm u}}^2)}{\cos 2\beta} - \left(2|\mu|^2 + m_{H_{\rm u}}^2 + m_{H_{\rm d}}^2\right)$$
(6.53)

Higgs sector The Nambu-Goldstone–Higgs mixings and the mass terms for the charged Higgs bosons are given by

$$\mathcal{L} \supset \partial_{\mu} h_{\mathbf{d}}^{-*} \partial^{\mu} h_{\mathbf{d}}^{-} + \partial_{\mu} h_{\mathbf{u}}^{+*} \partial^{\mu} h_{\mathbf{u}}^{+} + \left(-b - \frac{1}{2} g_{2}^{2} v_{\mathbf{u}} v_{\mathbf{d}} \right) \left(h_{\mathbf{u}}^{+} h_{\mathbf{d}}^{-} + h_{\mathbf{u}}^{+*} h_{\mathbf{d}}^{-*} \right)$$

$$+ \left[\frac{g_{Y}^{2} (v_{\mathbf{u}}^{2} - v_{\mathbf{d}}^{2}) - g_{2}^{2} (v_{\mathbf{u}}^{2} + v_{\mathbf{d}}^{2})}{4} - |\mu|^{2} - m_{H_{\mathbf{d}}}^{2} \right] |h_{\mathbf{d}}^{-}|^{2} + \left[\frac{g_{Y}^{2} (v_{\mathbf{d}}^{2} - v_{\mathbf{u}}^{2}) - g_{2}^{2} (v_{\mathbf{u}}^{2} + v_{\mathbf{d}}^{2})}{4} - |\mu|^{2} - m_{H_{\mathbf{u}}}^{2} \right] |h_{\mathbf{u}}^{+}|^{2}$$

$$+ \frac{ig_{2}}{\sqrt{2}} W_{\mu}^{-} \partial^{\mu} \left(v_{\mathbf{u}} h_{\mathbf{u}}^{+} - v_{\mathbf{u}} h_{\mathbf{u}}^{+*} - v_{\mathbf{d}} h_{\mathbf{d}}^{-*} + v_{\mathbf{d}} h_{\mathbf{d}}^{-} \right)$$

$$+ color + \frac{ig_{2}}{\sqrt{2}} W_{\mu}^{-} \partial^{\mu} \left(v_{\mathbf{u}} h_{\mathbf{u}}^{+} - v_{\mathbf{u}} h_{\mathbf{u}}^{+*} - v_{\mathbf{d}} h_{\mathbf{d}}^{-*} + v_{\mathbf{d}} h_{\mathbf{d}}^{-} \right)$$

$$+ color + \frac{ig_{2}}{\sqrt{2}} W_{\mu}^{-} \partial^{\mu} \left(v_{\mathbf{u}} h_{\mathbf{u}}^{+} - v_{\mathbf{u}} h_{\mathbf{u}}^{+*} - v_{\mathbf{d}} h_{\mathbf{d}}^{-*} + v_{\mathbf{d}} h_{\mathbf{d}}^{-} \right)$$

and those for the neutral Higgs bosons are

$$\mathcal{L} \supset \partial_{\mu} h_{\mathrm{d}}^{0*} \partial^{\mu} h_{\mathrm{d}}^{0} + \partial_{\mu} h_{\mathrm{u}}^{0*} \partial^{\mu} h_{\mathrm{u}}^{0} - \frac{g_{Z}^{2} v_{\mathrm{d}}^{2}}{8} (h_{\mathrm{d}}^{0} h_{\mathrm{d}}^{0} + h_{\mathrm{d}}^{0*} h_{\mathrm{d}}^{0*}) - \frac{g_{Z}^{2} v_{\mathrm{u}}^{2}}{8} (h_{\mathrm{u}}^{0} h_{\mathrm{u}}^{0} + h_{\mathrm{u}}^{0*} h_{\mathrm{u}}^{0*})$$

$$+ \left(b + \frac{g_{Z}^{2} v_{\mathrm{u}} v_{\mathrm{d}}}{4} \right) (h_{\mathrm{u}}^{0} h_{\mathrm{d}}^{0} + h_{\mathrm{u}}^{0*} h_{\mathrm{d}}^{0*}) + \frac{g_{Z}^{2} v_{\mathrm{u}} v_{\mathrm{d}}}{4} (h_{\mathrm{u}}^{0} h_{\mathrm{d}}^{0*} + h_{\mathrm{u}}^{0*} h_{\mathrm{d}}^{0})$$

$$+ \left(\frac{g_{Z}^{2} (v_{\mathrm{u}}^{2} - 2 v_{\mathrm{d}}^{2})}{4} - |\mu|^{2} - m_{H_{\mathrm{d}}}^{2} \right) |h_{\mathrm{d}}^{0}|^{2} + \left(\frac{g_{Z}^{2} (v_{\mathrm{d}}^{2} - 2 v_{\mathrm{u}}^{2})}{4} - |\mu|^{2} - m_{H_{\mathrm{u}}}^{2} \right) |h_{\mathrm{d}}^{0}|^{2}$$

$$+ \frac{ig_{Z}}{2} Z_{\mu} \partial^{\mu} \left(v_{\mathrm{d}} h_{\mathrm{d}}^{0} - v_{\mathrm{d}} h_{\mathrm{d}}^{0*} - v_{\mathrm{u}} h_{\mathrm{u}}^{0} + v_{\mathrm{u}} h_{\mathrm{u}}^{0*} \right).$$

$$(6.55)$$

^{*8} If we separated leptons and $\tilde{h}_{\rm d}$ first, sleptons would acquire VEVs and lepton-gaugino mixings would be induced. *9 Note that T_3 -rotation induces $h_{\rm u}^0 \to {\rm e}^{{\rm i}\theta/2} h_{\rm u}^0$ and $h_{\rm d}^0 \to {\rm e}^{-{\rm i}\theta/2} h_{\rm d}^0$; it cannot the remove phase of b.

Therefore, with $m_W := c_w m_Z$ and

$$\begin{pmatrix} h_{\mathbf{u}}^{+} \\ h_{\mathbf{d}}^{-*} \end{pmatrix} = \begin{pmatrix} \mathbf{s}_{\beta} & \mathbf{c}_{\beta} \\ -\mathbf{c}_{\beta} & \mathbf{s}_{\beta} \end{pmatrix} \begin{pmatrix} -\mathrm{i}G^{+} \\ H^{+} \end{pmatrix}, \quad \begin{pmatrix} h_{\mathbf{u}}^{0} \\ h_{\mathbf{d}}^{0} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_{\mathbf{u}} \\ \phi_{\mathbf{d}} \end{pmatrix} + \frac{\mathrm{i}}{\sqrt{2}} \begin{pmatrix} \mathbf{s}_{\beta} & \mathbf{c}_{\beta} \\ -\mathbf{c}_{\beta} & \mathbf{s}_{\beta} \end{pmatrix} \begin{pmatrix} G^{0} \\ A^{0} \end{pmatrix}, \tag{6.56}$$

we have

$$\mathcal{L} \supset \partial_{\mu} G^{+*} \partial^{\mu} G^{+} + \partial_{\mu} H^{+*} \partial^{\mu} H^{+} + m_{W} (W_{\mu}^{-} \partial^{\mu} G^{+} + W_{\mu}^{+} \partial^{\mu} G^{+*}) + \left(\frac{m_{H_{d}}^{2} - m_{H_{u}}^{2}}{\cos 2\beta} + m_{Z}^{2} s_{w}^{2} \right) |H^{+}|^{2}$$

$$+ \frac{1}{2} (\partial_{\mu} \phi_{1})^{2} + \frac{1}{2} (\partial_{\mu} \phi_{2})^{2} + \frac{1}{2} (\partial_{\mu} A^{0})^{2} + \frac{1}{2} (\partial_{\mu} G^{0})^{2} + m_{Z} Z_{\mu} \partial^{\mu} G^{0} - \frac{B}{2} A_{0}^{2}$$

$$- \frac{1}{4} \left(B + m_{Z}^{2} + (B - m_{Z}^{2}) \cos 2\beta \right) \phi_{u}^{2} - \frac{1}{4} \left(B + m_{Z}^{2} - (B - m_{Z}^{2}) \cos 2\beta \right) \phi_{d}^{2} + \frac{1}{2} (B + m_{Z}^{2}) (\sin 2\beta) \phi_{u} \phi_{d}.$$

$$(6.57)$$

In particular, the tree-level masses are

$$m_{A_0}^2 = B = 2|\mu|^2 + m_{H_0}^2 + m_{H_d}^2, (6.58)$$

$$m_{H^+}^2 = m_{A_0}^2 + m_W^2, (6.59)$$

$$m_{h,H} = \frac{1}{2} \left(m_{A_0}^2 + m_Z^2 \mp \sqrt{\left(m_{A_0}^2 - m_Z^2 \right)^2 + 4m_{A_0}^2 m_Z^2 \sin^2 2\beta} \right)$$
 (6.60)

with

$$\begin{pmatrix} \phi_{\rm d} \\ \phi_{\rm u} \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} H \\ h \end{pmatrix}, \qquad \frac{\tan 2\alpha}{\tan 2\beta} = \frac{m_{A_0}^2 + m_Z^2}{m_{A_0}^2 - m_Z^2}. \tag{6.61}$$

The mixing α is stored in ALPHA block of SLHA, while HMIX stores

$$\mu = \mu, \quad \tan \beta = \tan \beta, \quad v = v_{\rm SM} (\sim 246 \,\text{GeV}), \quad m_A^2 = \frac{2b}{\sin 2\beta},$$
 (6.62)

at the scale specified. The above discussion holds even with CP-violation, but quantum corrections mix the three Higgs bosons; such information should be stored in (IM)VCHMIX. \$TODO: discuss when needed.

 $\textbf{Mass terms in the Lagrangian} \quad \text{The other mass terms are given by}$

$$\mathcal{L} \supset m_W^2 W^{+\mu} W_{\mu}^- + \frac{1}{2} m_Z^2 Z_{\mu} Z^{\mu} - \frac{1}{2} M_3 \tilde{g}_0^a \tilde{g}_0^a - \frac{1}{2} M_3^* \tilde{g}_0^a \tilde{g}_0^a \\
+ \left(-\frac{1}{2} M_1 \tilde{b} \tilde{b} - \frac{1}{2} M_2 \tilde{w}^3 \tilde{w}^3 + \mu \tilde{h}_0^0 \tilde{h}_0^0 + c_{\beta} m_Z s_{\mathbf{w}} \tilde{h}_0^0 \tilde{b} - c_{\mathbf{w}} c_{\beta} m_Z \tilde{h}_0^0 \tilde{w}^3 - m_Z s_{\mathbf{w}} s_{\beta} \tilde{h}_0^0 \tilde{b} + c_{\mathbf{w}} m_Z s_{\beta} \tilde{h}_0^0 \tilde{w}^3 + \text{h.c.} \right) \\
- M_2 \tilde{w}^+ \tilde{w}^- - \mu \tilde{h}_u^+ \tilde{h}_d^- - M_2^* \tilde{w}^+ \tilde{w}^- - \mu^* \tilde{h}_u^+ \tilde{h}_d^- - \sqrt{2} m_W \left(c_{\beta} \tilde{h}_d^- \tilde{w}^+ + s_{\beta} \tilde{h}_u^+ \tilde{w}^- + c_{\beta} \tilde{h}_d^- \tilde{w}^+ + s_{\beta} \tilde{h}_u^+ \tilde{w}^- \right) \\
- v_u y_{uij} u_{Ri}^c u_{Lj} - v_d y_{dij} d_{Ri}^c d_{Lj} - v_d y_{eij} e_{Ri}^c e_{Lj} - v_u y_{uij}^* \tilde{u}_{Ri}^c \tilde{u}_{Lj} - v_d y_{uij}^* \tilde{d}_{Ri}^c \tilde{d}_{Lj} - v_d y_{eij}^* \tilde{e}_{Ri}^c \tilde{e}_{Lj} \\
- \tilde{u}_L^* \left(m_Q^2 + v_u^2 y_u^\dagger y_u + \frac{3 - 4 s_w^2}{6} c_{2\beta} m_Z^2 \right) \tilde{u}_L - \tilde{u}_R^* \left(m_{U^c}^2 + v_u^2 y_u y_u^\dagger + \frac{4 s_w^2}{6} c_{2\beta} m_Z^2 \right) \tilde{u}_R \\
- v_u a_{uij} \tilde{u}_{Ri}^* \tilde{u}_{Lj} + v_d \mu^* y_{uij} \tilde{u}_{Ri}^* \tilde{u}_{Lj} - v_u a_{uij}^* \tilde{u}_{Ri}^* \tilde{u}_{Lj} + v_d \mu y_{uij}^* \tilde{u}_{Ri}^* \tilde{u}_{Lj} + v_d \mu y_{uij}^* \tilde{u}_{Ri}^* \tilde{u}_{Lj} - v_d a_{uij}^* \tilde{u}_{Ri}^* \tilde{d}_{Lj} + v_u \mu^* y_{dij} \tilde{d}_{Ri}^* \tilde{d}_{Lj} - v_d a_{dij}^* \tilde{d}_{Ri}^* \tilde{d}_{Lj} - v_d a_{dij}^* \tilde{d}_{Ri}^* \tilde{d}_{Lj} + v_u \mu^* y_{dij}^* \tilde{d}_{Ri}^* \tilde{d}_{Lj} - v_d a_{dij}^* \tilde{d}_{Ri}^* \tilde{d}_{Lj} + v_u \mu^* y_{dij}^* \tilde{d}_{Ri}^* \tilde{d}_{Lj} - v_d a_{dij}^* \tilde{d}_{Ri}^* \tilde{d}_{Lj} + v_u \mu^* y_{dij}^* \tilde{d}_{Ri}^* \tilde{d}_{Lj} - v_d a_{dij}^* \tilde{d}_{Ri}^* \tilde{d}_{Lj} + v_u \mu^* y_{dij}^* \tilde{d}_{Ri}^* \tilde{d}_{Lj} + v_u \mu^* y_{dij}^* \tilde{d}_{Ri}^* \tilde{d}_{Lj} - v_d a_{eij}^* \tilde{e}_{Ri}^* \tilde{e}_{Lj}^* + v_u \mu^* y_{eij}^* \tilde{e}_{Ri}^* \tilde{e}_{Lj}^* + v_$$

where, at the tree level, the gauge boson mass m_W and m_Z , the gluino mass M_3 , and matter-fermion masses $v_u y_u$, $v_d y_d$, and $v_d y_e$ are given with the "correct" sign (as far as $M_3 > 0$, etc.).

Neutralinos and charginos The mass matrices for neutralinos and charginos are given by

$$-\mathcal{L} \supset \frac{1}{2} \begin{pmatrix} \tilde{b} \\ \tilde{w}^{3} \\ \tilde{h}_{d}^{0} \\ \tilde{h}_{u}^{0} \end{pmatrix}^{T} \begin{pmatrix} M_{1} & 0 & -c_{\beta}s_{w}m_{Z} + s_{\beta}s_{w}m_{Z} \\ 0 & M_{2} & +c_{\beta}c_{w}m_{Z} - s_{\beta}c_{w}m_{Z} \\ -c_{\beta}s_{w}m_{Z} & +c_{\beta}c_{w}m_{Z} & 0 & -\mu \\ +s_{\beta}s_{w}m_{Z} & -s_{\beta}c_{w}m_{Z} - \mu & 0 \end{pmatrix} \begin{pmatrix} \tilde{b} \\ \tilde{w}^{3} \\ \tilde{h}_{d}^{0} \\ \tilde{h}_{u}^{0} \end{pmatrix} + \text{h.c.}$$

$$+ (\tilde{w}^{-} \quad \tilde{h}_{d}^{-}) \begin{pmatrix} M_{2} & \sqrt{2}s_{\beta}m_{W} \\ \sqrt{2}c_{\beta}m_{W} & \mu \end{pmatrix} \begin{pmatrix} \tilde{w}^{+} \\ \tilde{h}_{u}^{+} \end{pmatrix} + \begin{pmatrix} \bar{w}^{-} & \bar{h}_{d}^{-} \\ \tilde{h}_{u}^{+} \end{pmatrix} \begin{pmatrix} M_{2}^{*} & \sqrt{2}s_{\beta}m_{W} \\ \sqrt{2}c_{\beta}m_{W} & \mu^{*} \end{pmatrix} \begin{pmatrix} \bar{w}^{+} \\ \tilde{h}_{u}^{+} \end{pmatrix}.$$

$$(6.64)$$

Note that the mass matrices themselves are the same as those in SLHA convention, $\mathcal{M}_{\tilde{\psi}^0}$ and $\mathcal{M}_{\tilde{\psi}^+}$, while the fields are in different convention. Therefore, we continue our discussion based only on the mass matrices so that the discussion is free from the choice of field convention.

As $\mathcal{M}_{\tilde{\psi}^0}$ is a complex symmetric matrix, there is a unitary matrix \tilde{N} such that $M_{\tilde{\psi}^0} = \tilde{N}^* \mathcal{M}_{\tilde{\psi}^0} \tilde{N}^{\dagger}$, where $M_{\tilde{\psi}^0}$ is a positive diagonal matrix whose elements are (non-negative) singular values of $\mathcal{M}_{\tilde{\psi}^0}$ and in increasing order (Autonne-Takagi factorization). In SLHA2 convention with CP-violation, this matrix \tilde{N} is stored as the (IM)NMIX blocks and the (positive) masses are stored in the MASS block. Meanwhile, if M_1 , M_2 and μ are real, $\mathcal{M}_{\tilde{\psi}^0}$ is a real symmetric matrix and there is a real orthogonal matrix \hat{N} such that $\hat{M}_{\tilde{\psi}^0} = \hat{N}^* \mathcal{M}_{\tilde{\psi}^0} \hat{N}^{\dagger} = \hat{N} \mathcal{M}_{\tilde{\psi}^0} \hat{N}^{\mathrm{T}}$, where $\hat{M}_{\tilde{\psi}^0}$ is a real diagonal matrix whose elements are the eigenvalues of $\mathcal{M}_{\tilde{\psi}^0}$ and in absolute-value-increasing order (spectral theorem). This matrix \hat{N} is the NMIX block of SLHA convention and \hat{M}_{ii} is stored in the MASS block, hence MASS block may have negative values for neutralinos.

The chargino mass matrix $\mathcal{M}_{\tilde{\psi}^+}$ is decomposed as $M_{\tilde{\psi}^+} = U^* \mathcal{M}_{\tilde{\psi}^+} V^{\dagger}$, where U and V are unitary matrices and the elements of the diagonal matrix $M_{\tilde{\psi}^+}$ are singular values of $\mathcal{M}_{\tilde{\psi}^+}$ (thus non-negative) and sorted in increasing order (singular value decomposition). These U and V are stored in (IM)UMIX and (IM)VMIX, and the singular values are stored in MASS block. Because the SVD theorem is closed in \mathbb{R} , if M_2 and μ are real, U and V can be real, and the IM-blocks are omitted.

In summary,

$$M_{\tilde{\psi}^0} = \tilde{N}^* \mathcal{M}_{\tilde{\psi}^0} \tilde{N}^\dagger, \qquad \tilde{N} = \text{(IM)NMIX}, \qquad \qquad (\text{MASS}) = [M_{\tilde{\psi}^0}]_{ii} \geq 0 \quad \text{(singular values)}; \qquad (6.65)$$

$$\hat{M}_{\tilde{w}^0} = \hat{N} \mathcal{M}_{\tilde{w}^0} \hat{N}^{\mathrm{T}}, \qquad \hat{N} = \mathrm{NMIX}, \tag{MASS} = [\hat{M}_{\tilde{w}^0}]_{ii} \in \mathbb{R} \quad (\text{eigenvalues}); \tag{6.66}$$

$$M_{\tilde{\psi}^+} = U^* \mathcal{M}_{\tilde{\psi}^+} V^\dagger, \quad U = \text{(IM)UMIX}, \quad V = \text{(IM)VMIX}, \quad (\text{MASS}) = [M_{\tilde{\psi}^+}]_{ii} \geq 0 \quad \text{(singular values)}. \quad (6.67)$$

Note that the singular values are equal to absolute values of the eigenvalues, which guarantees consistency of the two decomposition.

We then define matrix N by *10

$$N = \begin{cases} \tilde{N} \\ \operatorname{diag}(\varphi_i) \cdot \hat{N} \end{cases} = \operatorname{diag}(\varphi_i) \cdot \Big((\mathtt{NMIX}) + \mathrm{i}(\mathtt{IMNMIX}) \Big); \qquad \qquad \varphi_i = \begin{cases} 1 & \text{if } (\mathtt{MASS})_i \geq 0, \\ \mathrm{i} & \text{if } (\mathtt{MASS})_i < 0. \end{cases} \tag{6.68}$$

It gives the proper mass diagonalization in both of the NMIX convention:

$$N^* \mathcal{M}_{\tilde{\psi}^0} N^{\dagger} = \begin{cases} \tilde{N}^* \mathcal{M}_{\tilde{\psi}^0} \tilde{N}^{\dagger} = M_{\tilde{\psi}^0}, \\ \operatorname{diag}(\varphi_i^*) \hat{N}^* \mathcal{M}_{\tilde{\psi}^0} \hat{N}^{\dagger} \operatorname{diag}(\varphi_i^*) = \operatorname{diag}(\varphi_i^*) \hat{M}_{\tilde{\psi}^0} \operatorname{diag}(\varphi_i^*) \end{cases} = M_{\tilde{\psi}^0} \quad \text{(neutralino masses } \geq 0 \text{).} \quad (6.69)$$

Noting that the discussion up here is irrelevant of the convention, we have the neutralino/chargino mass eigenstates,

$$\tilde{\chi}_{i}^{0} = N_{ij} \begin{pmatrix} \tilde{b} \\ \tilde{w}^{3} \\ \tilde{h}_{d}^{0} \\ \tilde{h}_{u}^{0} \end{pmatrix}_{i}, \quad \tilde{\chi}_{i}^{+} = V_{ij} \begin{pmatrix} \tilde{w}^{+} \\ \tilde{h}_{u}^{+} \end{pmatrix}_{j}, \quad \tilde{\chi}_{i}^{-} = U_{ij} \begin{pmatrix} \tilde{w}^{-} \\ \tilde{h}_{d}^{-} \end{pmatrix}_{j}, \tag{6.70}$$

in our convention and the mass terms are now
$$-\mathcal{L} \supset \frac{1}{2} (\tilde{\chi}^0)^{\mathrm{T}} M_{\tilde{\psi}^0} \tilde{\chi}^0 + (\tilde{\chi}^-)^{\mathrm{T}} M_{\tilde{\psi}^+} \tilde{\chi}^+ + \text{h.c.}$$
(6.71)

Quarks, leptons, and super-CKM basis We here take the super-CKM basis. In the "original" Lagrangian,

$$-\mathcal{L} \supset u_{\rm R}^{\rm c}(v_{\rm u}y_{u})u_{\rm L} + d_{\rm R}^{\rm c}(v_{\rm d}y_{d})d_{\rm L} + e_{\rm R}^{\rm c}(v_{\rm d}y_{e})e_{\rm L} + \text{h.c.}$$
(6.72)

$$= u_{\mathrm{R}}^{\mathrm{c}}(v_{\mathrm{u}}U_{u}y_{u}^{\mathrm{diag}}V_{u}^{\dagger})u_{\mathrm{L}} + d_{\mathrm{R}}^{\mathrm{c}}(v_{\mathrm{d}}U_{d}y_{d}^{\mathrm{diag}}V_{d}^{\dagger})d_{\mathrm{L}} + e_{\mathrm{R}}^{\mathrm{c}}(v_{\mathrm{d}}U_{e}y_{e}^{\mathrm{diag}}V_{e}^{\dagger})e_{\mathrm{L}} + \mathrm{h.c.}, \tag{6.73}$$

so the super-CKM basis is given by

$$[Q^{1}, Q^{2}, L, U^{c}, D^{c}, E^{c}]_{\text{super-CKM}} = [V_{u}^{\dagger}Q^{1}, V_{d}^{\dagger}Q^{2}, V_{e}^{\dagger}L, U^{c}U_{u}, D^{c}U_{d}, E^{c}U_{e}]_{\text{"original"}}.$$
Then the CKM mixings appear as, for example,

$$\left[\bar{u}_{\mathcal{L}}\bar{\sigma}^{\mu}d_{\mathcal{L}}W_{\mu}^{+} + \bar{d}_{\mathcal{L}}\bar{\sigma}^{\mu}u_{\mathcal{L}}W_{\mu}^{-}\right]_{\text{"original"}} = \left[\bar{u}_{\mathcal{L}}V_{u}^{\dagger}V_{d}\bar{\sigma}^{\mu}d_{\mathcal{L}}W_{\mu}^{+} + \bar{d}_{\mathcal{L}}V_{d}^{\dagger}V_{u}\bar{\sigma}^{\mu}u_{\mathcal{L}}W_{\mu}^{-}\right]_{\text{super-CKM}}; \tag{6.75}$$

i.e., defining $V_{\text{CKM}} = V_u^{\dagger} V_d$ as in Sec. 4.5, the Lagrangian is amended as, e.g., $\bar{u}_{\text{L}} d_{\text{L}} \to \bar{u}_{\text{L}} V_{\text{CKM}} d_{\text{L}}$, $\tilde{d}_{\text{L}}^* \tilde{u}_{\text{L}} \to \tilde{d}_{\text{L}}^* V_{\text{CKM}}^{\dagger} \tilde{u}_{\text{L}}$. The Θ_{B} - and Θ_{W} -terms are now removable. To this end, we rotate the matter superfields as

$$Q^1 \to e^{i\theta} Q^1, \quad Q^2 \to e^{i\theta'} Q^2, \quad U^c \to e^{-i\theta} U^c, \quad D^c \to e^{-i\theta'} D^c,$$
 (6.76)

which induces $\Delta\Theta_G = 0$, $\Delta\Theta_W \propto \theta + \theta'$, and $\Delta\Theta_B \propto 5\theta + \theta'$, while the Lagrangian is unchanged except for the overall phase of V_{CKM} . So we can remove Θ_B and Θ_W , or in other words, pass the CP-violation in Θ -terms to V_{CKM} .*11 If one (or more) quarks were massless, we could rotate the corresponding right-handed quark to remove Θ_G as well.

^{**}The sign of φ_i is arbitrary and (should be) unphysical.

^{*11} There are other possible transformations $(L, E^c) \to e^{(\pm)i\theta''}(L, E^c)$ and in total we may have $\Delta\Theta_W \propto \theta + \theta' + 2\theta''$ and $\Delta\Theta_B \propto 5\theta + \theta' + 6\theta''$. To remove both Θ -terms, we have to take $\theta \neq \theta'$ and $V_{\rm CKM}$ is anyway modified. The angle may chosen generation-dependently, and then $\Delta\Theta$'s should be read as $\theta \to \sum \theta_i/3$, etc.

Squark masses in super-CKM basis Finally, the squark masses are given by

$$-\mathcal{L} \supset \tilde{u}_{L}^{*} \left(m_{Q}^{2} + m_{u}^{2} + \frac{3 - 4s_{w}^{2}}{6} c_{2\beta} m_{Z}^{2} \right) \tilde{u}_{L} + \tilde{u}_{R}^{*} \left(m_{U^{c}}^{2} + m_{u}^{2} + \frac{4s_{w}^{2}}{6} c_{2\beta} m_{Z}^{2} \right) \tilde{u}_{R}$$

$$+ \tilde{u}_{R}^{*} (v_{u} a_{u} - \mu^{*} m_{u} \cot \beta) \tilde{u}_{L} + \tilde{u}_{L}^{*} (v_{u} a_{u}^{\dagger} - \mu m_{u} \cot \beta) \tilde{u}_{R}$$

$$+ \tilde{d}_{L}^{*} \left(V_{d}^{\dagger} (V_{u} m_{Q}^{2} V_{u}^{\dagger}) V_{d} + m_{d}^{2} + \frac{-3 + 2s_{w}^{2}}{6} c_{2\beta} m_{Z}^{2} \right) \tilde{d}_{L} + \tilde{d}_{R}^{*} \left(m_{D^{c}}^{2} + m_{d}^{2} + \frac{-2s_{w}^{2}}{6} c_{2\beta} m_{Z}^{2} \right) \tilde{d}_{R}$$

$$+ \tilde{d}_{R}^{*} (v_{d} a_{d} - \mu^{*} m_{d} \tan \beta) \tilde{d}_{L} + \tilde{d}_{L}^{*} (v_{d} a_{d}^{\dagger} - \mu m_{d} \tan \beta) \tilde{d}_{R}$$

$$+ \tilde{v}_{L}^{*} \left(m_{L}^{2} + \frac{1}{2} c_{2\beta} m_{Z}^{2} \right) \tilde{v}_{L}$$

$$+ \tilde{e}_{L}^{*} \left(m_{L}^{2} + m_{e}^{2} + \frac{-1 + 2s_{w}^{2}}{2} c_{2\beta} m_{Z}^{2} \right) + \tilde{e}_{R}^{*} \left(m_{E^{c}}^{2} + m_{e}^{2} + (-s_{w}^{2}) c_{2\beta} m_{Z}^{2} \right) \tilde{e}_{R}$$

$$+ \tilde{e}_{R}^{*} (v_{d} a_{e} - \mu^{*} m_{e} \tan \beta) \tilde{e}_{L} + \tilde{e}_{L}^{*} (v_{d} a_{e}^{\dagger} - \mu m_{e} \tan \beta) \tilde{e}_{R},$$

$$(6.77)$$

where the sfermion soft masses, yukawas, and a-terms are rewritten in super-CKM basis:

$$[m_Q^2, m_{U^c}^2, m_{D^c}^2, m_L^2, m_{E^c}^2]_{\text{super-CKM}} = [V_d^{\dagger} m_Q^2 V_d, U_u^{\dagger} m_{U^c}^2 U_u, U_d^{\dagger} m_{D^c}^2 U_d, V_e^{\dagger} m_L^2 V_e, U_e^{\dagger} m_{E^c}^2 U_e]_{\text{``original''}},$$
(6.78)

$$[a_u, a_d, a_e]_{\text{super-CKM}} = [U_u^{\dagger} a_u V_u, U_d^{\dagger} a_d V_d, U_e^{\dagger} a_e V_e]_{\text{``original''}}$$

$$(6.79)$$

(note that m_Q^2 is diagonalied for down-type; not for up-type). In matrix form,

$$-\mathcal{L} \supset (\tilde{u}_{Li}^{*} \quad \tilde{u}_{Ri}^{*}) \begin{pmatrix} [V_{CKM}m_{Q}^{2}V_{CKM}^{\dagger}]_{ij} + \left(m_{u}^{2} + \frac{3-4s_{w}^{2}}{6}c_{2\beta}m_{Z}^{2}\right)\delta_{ij} & v_{u}[a_{u}^{\dagger}]_{ij} - (\mu m_{u}\cot\beta)\delta_{ij} \\ v_{u}[a_{u}]_{ij} - (\mu^{*}m_{u}\cot\beta)\delta_{ij} & [m_{U^{c}}^{2}]_{ij} + \left(m_{u}^{2} + \frac{2s_{w}^{2}}{3}c_{2\beta}m_{Z}^{2}\right)\delta_{ij} \end{pmatrix} \begin{pmatrix} \tilde{u}_{Lj} \\ \tilde{u}_{Rj} \end{pmatrix}$$

$$+ (\tilde{d}_{Li}^{*} \quad \tilde{d}_{Ri}^{*}) \begin{pmatrix} [m_{Q}^{2}]_{ij} + \left(m_{d}^{2} + \frac{-3+2s_{w}^{2}}{6}c_{2\beta}m_{Z}^{2}\right)\delta_{ij} & v_{d}[a_{d}^{\dagger}]_{ij} - (\mu m_{d}\tan\beta)\delta_{ij} \\ v_{d}[a_{d}]_{ij} - (\mu^{*}m_{d}\tan\beta)\delta_{ij} & [m_{D^{c}}^{2}]_{ij} + \left(m_{d}^{2} - \frac{s_{w}^{2}}{3}c_{2\beta}m_{Z}^{2}\right)\delta_{ij} \end{pmatrix} \begin{pmatrix} \tilde{d}_{Lj} \\ \tilde{d}_{Rj} \end{pmatrix}$$

$$+ \tilde{\nu}_{Li}^{*} \left([m_{L}^{2}]_{ij} + \left(\frac{1}{2}c_{2\beta}m_{Z}^{2}\right)\delta_{ij}\right)\tilde{\nu}_{Lj}$$

$$+ (\tilde{e}_{Li}^{*} \quad \tilde{e}_{Ri}^{*}) \begin{pmatrix} [m_{L}^{2}]_{ij} + \left(m_{e}^{2} + \frac{-1+2s_{w}^{2}}{2}c_{2\beta}m_{Z}^{2}\right)\delta_{ij} & v_{d}[a_{e}^{\dagger}]_{ij} - (\mu m_{e}\tan\beta)\delta_{ij} \\ v_{d}[a_{e}]_{ij} - (\mu^{*}m_{e}\tan\beta)\delta_{ij} & [m_{E^{c}}^{2}]_{ij} + \left(m_{e}^{2} - s_{w}^{2}c_{2\beta}m_{Z}^{2}\right)\delta_{ij} \end{pmatrix} \begin{pmatrix} \tilde{e}_{Lj} \\ \tilde{e}_{Rj} \end{pmatrix}$$

$$(6.80)$$

$$= \begin{pmatrix} \tilde{u}_{\mathrm{L}i}^* & \tilde{u}_{\mathrm{R}i}^* \end{pmatrix} \mathcal{M}_u \begin{pmatrix} \tilde{u}_{\mathrm{L}j} \\ \tilde{u}_{\mathrm{R}j} \end{pmatrix} + \begin{pmatrix} \tilde{d}_{\mathrm{L}i}^* & \tilde{d}_{\mathrm{R}i}^* \end{pmatrix} \mathcal{M}_d \begin{pmatrix} \tilde{d}_{\mathrm{L}j} \\ \tilde{d}_{\mathrm{R}j} \end{pmatrix} + \tilde{\nu}_{\mathrm{L}}^* \mathcal{M}_\nu \tilde{\nu}_{\mathrm{L}} + \begin{pmatrix} \tilde{e}_{\mathrm{L}i}^* & \tilde{e}_{\mathrm{R}i}^* \end{pmatrix} \mathcal{M}_e \begin{pmatrix} \tilde{e}_{\mathrm{L}j} \\ \tilde{e}_{\mathrm{R}j} \end{pmatrix}$$
(6.81)

The sfermion mass matrices are diagonalized by unitary matrices as

$$\mathcal{M} = R \mathcal{M}^{\text{diag}} R^{\dagger}; \quad \tilde{f}_{i} = R_{ij} \begin{pmatrix} \tilde{f}_{L} \\ \tilde{f}_{R} \end{pmatrix}_{i} = \begin{pmatrix} R_{ij}^{L} & R_{ij}^{R} \end{pmatrix} \begin{pmatrix} \tilde{f}_{Lj} \\ \tilde{f}_{Rj} \end{pmatrix}; \quad \tilde{f}_{Li} = [R^{L\dagger}]_{ij} \tilde{f}_{i}, \quad \tilde{f}_{Ri} = [R^{R\dagger}]_{ij} \tilde{f}_{i}. \quad (6.82)$$

where R_{ij} is 6×6 and $R_{ij}^{L,R}$ are 3×6 matrices (except for sneutrinos). These R-matrices are the same as DSQMIX etc. of SLHA2 format, but note that our notation for the other parameters is slightly different from SLHA's:

mity different from SLHA's:
$$m_{\tilde{Q},\tilde{L}}^{2} = m_{Q,L}^{2}|_{\text{"orig"}}, \qquad m_{\tilde{u},\tilde{d},\tilde{e}}^{2} = (m_{U^{c},D^{c},E^{c}}^{2}|_{\text{"orig"}})^{\mathrm{T}}, \qquad T_{U,D,E} = (a_{u,d,e}|_{\text{"orig"}})^{\mathrm{T}}, \qquad (6.83)$$

$$\hat{m}_{\tilde{Q},\tilde{L}}^{2} = m_{Q,L}^{2}|_{\text{SCKM}}, \qquad \hat{m}_{\tilde{u},\tilde{d},\tilde{e}}^{2} = U^{\dagger}T^{\mathrm{T}}V = m_{U^{c},D^{c},E^{c}}^{2}|_{\text{SCKM}}, \qquad \hat{T}_{U,D,E} = U^{\dagger}T^{\mathrm{T}}V = a_{u,d,e}|_{\text{SCKM}}, \qquad (6.84)$$

$$\hat{m}_{\tilde{Q},\tilde{L}}^2 = m_{Q,L}^2|_{\text{sCKM}}, \qquad \hat{m}_{\tilde{u},\tilde{d},\tilde{e}}^2 = U^{\dagger}T^{\text{T}}V = m_{U^c,D^c,E^c}^2|_{\text{sCKM}}, \qquad \hat{T}_{U,D,E} = U^{\dagger}T^{\text{T}}V = a_{u,d,e}|_{\text{sCKM}}, \tag{6.84}$$

together with $Y_{u,d,e} = (y_{u,d,e})^{\mathrm{T}}$. Anyway, the SLHA2 blocks corresponds to the variable in our convention as

$$(\text{IM}) \text{MSX2}(\text{IN}) = m_{Q,L,U^c,D^c,E^c}^2|_{\text{sCKM};\overline{\text{DR}}}, \quad (\text{IM}) \text{TX}(\text{IN}) = a_{u,d,e}|_{\text{sCKM};\overline{\text{DR}}}, \quad \text{YX} = y_{u,d,e}|_{\text{sCKM};\overline{\text{DR}}}. \tag{6.85}$$

The sfermion mass matrices above are in super-CKM basis, so their off-diagonal entries immediately induce flavor violation or sfermion left-right mixing. In old SLHA format, we assume that flavor- and CP-violation is absent and left-right mixing is ignorable except for third generation, which leads

Squark masses in super-CKM basis The gluino mass and phase is given by
$$m_{\tilde{g}} = |M_3|; \quad M_3 = m_{\tilde{g}} \, \mathrm{e}^{\mathrm{i}\theta_3} = m_{\tilde{g}} \varphi_{\tilde{g}}^{-2}; \quad \tilde{g}_0 = \varphi_{\tilde{g}} \tilde{g}. \tag{6.87}$$

6.4.2. Fermion composition

Now we show the fermion-related Lagrangian terms verbosely. In super-CKM basis, the interaction terms are $\mathcal{L}_{\mathrm{fermions}} + \mathcal{L}_{\mathrm{SFG}} = \mathrm{i}\bar{\tilde{\chi}}_{i}^{0}\bar{\sigma}^{\mu}\partial_{\mu}\tilde{\chi}_{i}^{0} + \mathrm{i}\bar{\tilde{\chi}}_{i}^{-}\bar{\sigma}^{\mu}\partial_{\mu}\tilde{\chi}_{i}^{-} + \mathrm{i}\bar{\tilde{\chi}}_{i}^{+}\bar{\sigma}^{\mu}\partial_{\mu}\tilde{\chi}_{i}^{+} + \mathrm{i}\bar{\tilde{g}}^{a}\bar{\sigma}^{\mu}\partial_{\mu}\tilde{g}^{a} + \mathrm{i}\bar{u}_{\mathrm{L}i}\bar{\sigma}^{\mu}\partial_{\mu}u_{\mathrm{L}i} + \mathrm{i}\bar{u}_{\mathrm{R}i}^{\mathrm{c}}\bar{\sigma}^{\mu}\partial_{\mu}u_{\mathrm{R}i}^{\mathrm{c}}$ $+\mathrm{i}\bar{d}_{\mathrm{L}i}\bar{\sigma}^{\mu}\partial_{\mu}d_{\mathrm{L}i}+\mathrm{i}\bar{d}_{\mathrm{R}i}^{\mathrm{c}}\bar{\sigma}^{\mu}\partial_{\mu}d_{\mathrm{R}i}^{\mathrm{c}}+\mathrm{i}\bar{\nu}_{\mathrm{L}i}\bar{\sigma}^{\mu}\partial_{\mu}\nu_{\mathrm{L}i}+\mathrm{i}\bar{e}_{\mathrm{L}i}\bar{\sigma}^{\mu}\partial_{\mu}e_{\mathrm{L}i}+\mathrm{i}\bar{e}_{\mathrm{R}i}^{\mathrm{c}}\bar{\sigma}^{\mu}\partial_{\mu}e_{\mathrm{R}i}^{\mathrm{c}}-\frac{m_{\tilde{g}}}{2}(\tilde{g}^{a}\tilde{g}^{a}+\mathrm{h.c.})$ $- m_{\tilde{\chi}_{i}^{\pm}} \left(\tilde{\chi}_{i}^{-} \tilde{\chi}_{i}^{+} + \bar{\tilde{\chi}}_{i}^{-} \bar{\tilde{\chi}}_{i}^{+} \right) - m_{di} \left(d_{\mathrm{R}i}^{\mathrm{c}} d_{\mathrm{L}i} + \bar{d}_{\mathrm{R}i}^{\mathrm{c}} \bar{d}_{\mathrm{L}i}^{x} \right) - m_{ui} \left(u_{\mathrm{R}i}^{\mathrm{c}} u_{\mathrm{L}j} + \bar{u}_{\mathrm{R}i}^{\mathrm{c}} \bar{u}_{\mathrm{L}i} \right) - m_{ei} \left(e_{\mathrm{R}i}^{\mathrm{c}} e_{\mathrm{L}i} + \bar{e}_{\mathrm{R}i}^{\mathrm{c}} \bar{e}_{\mathrm{L}i} \right) + m_{ei} \left(e_{\mathrm{R}i}^{\mathrm{c}} e_{\mathrm{L}i} + \bar{e}_{\mathrm{R}i}^{\mathrm{c}} \bar{e}_{\mathrm{L}i} \right) + m_{ei} \left(e_{\mathrm{R}i}^{\mathrm{c}} e_{\mathrm{L}i} + \bar{e}_{\mathrm{R}i}^{\mathrm{c}} \bar{e}_{\mathrm{L}i} \right) + m_{ei} \left(e_{\mathrm{R}i}^{\mathrm{c}} e_{\mathrm{L}i} + \bar{e}_{\mathrm{R}i}^{\mathrm{c}} \bar{e}_{\mathrm{L}i} \right) + m_{ei} \left(e_{\mathrm{R}i}^{\mathrm{c}} e_{\mathrm{L}i} + \bar{e}_{\mathrm{R}i}^{\mathrm{c}} \bar{e}_{\mathrm{L}i} \right) + m_{ei} \left(e_{\mathrm{R}i}^{\mathrm{c}} e_{\mathrm{L}i} + \bar{e}_{\mathrm{R}i}^{\mathrm{c}} \bar{e}_{\mathrm{L}i} \right) + m_{ei} \left(e_{\mathrm{R}i}^{\mathrm{c}} e_{\mathrm{L}i} + \bar{e}_{\mathrm{R}i}^{\mathrm{c}} \bar{e}_{\mathrm{L}i} \right) + m_{ei} \left(e_{\mathrm{R}i}^{\mathrm{c}} e_{\mathrm{L}i} + \bar{e}_{\mathrm{R}i}^{\mathrm{c}} \bar{e}_{\mathrm{L}i} \right) + m_{ei} \left(e_{\mathrm{R}i}^{\mathrm{c}} e_{\mathrm{L}i} + \bar{e}_{\mathrm{R}i}^{\mathrm{c}} \bar{e}_{\mathrm{L}i} \right) + m_{ei} \left(e_{\mathrm{R}i}^{\mathrm{c}} e_{\mathrm{L}i} + \bar{e}_{\mathrm{R}i}^{\mathrm{c}} \bar{e}_{\mathrm{L}i} \right) + m_{ei} \left(e_{\mathrm{R}i}^{\mathrm{c}} e_{\mathrm{L}i} + \bar{e}_{\mathrm{R}i}^{\mathrm{c}} \bar{e}_{\mathrm{L}i} \right) + m_{ei} \left(e_{\mathrm{R}i}^{\mathrm{c}} e_{\mathrm{L}i} + \bar{e}_{\mathrm{R}i}^{\mathrm{c}} \bar{e}_{\mathrm{L}i} \right) + m_{ei} \left(e_{\mathrm{R}i}^{\mathrm{c}} e_{\mathrm{L}i} + \bar{e}_{\mathrm{R}i}^{\mathrm{c}} \bar{e}_{\mathrm{L}i} \right) + m_{ei} \left(e_{\mathrm{R}i}^{\mathrm{c}} e_{\mathrm{L}i} + \bar{e}_{\mathrm{R}i}^{\mathrm{c}} \bar{e}_{\mathrm{L}i} \right) + m_{ei} \left(e_{\mathrm{R}i}^{\mathrm{c}} e_{\mathrm{L}i} + \bar{e}_{\mathrm{R}i}^{\mathrm{c}} \bar{e}_{\mathrm{L}i} \right) + m_{ei} \left(e_{\mathrm{L}i}^{\mathrm{c}} e_{\mathrm{L}i} + \bar{e}_{\mathrm{L}i}^{\mathrm{c}} \bar{e}_{\mathrm{L}i} \right) + m_{ei} \left(e_{\mathrm{L}i}^{\mathrm{c}} e_{\mathrm{L}i} + \bar{e}_{\mathrm{L}i}^{\mathrm{c}} \bar{e}_{\mathrm{L}i} \right) + m_{ei} \left(e_{\mathrm{L}i}^{\mathrm{c}} e_{\mathrm{L}i} + \bar{e}_{\mathrm{L}i}^{\mathrm{c}} \bar{e}_{\mathrm{L}i} \right) + m_{ei} \left(e_{\mathrm{L}i}^{\mathrm{c}} e_{\mathrm{L}i} + \bar{e}_{\mathrm{L}i}^{\mathrm{c}} \bar{e}_{\mathrm{L}i} \right) + m_{ei} \left(e_{\mathrm{L}i}^{\mathrm{c}} e_{\mathrm{L}i} + \bar{e}_{\mathrm{L}i}^{\mathrm{c}} \bar{e}_{\mathrm{L}i} \right) + m_{ei} \left(e_{\mathrm{L}i}^{\mathrm{c}} e_{\mathrm{L}i} + \bar{e}_{\mathrm{L}i}^{\mathrm{c}} \bar{e}_{\mathrm{L}i} \right) + m_{ei} \left(e_{\mathrm{L}i}^{\mathrm{c}} e_{\mathrm{L}i} + \bar{e}_{\mathrm{L}i}^{\mathrm{L}i} \right) + m_{ei} \left(e_{\mathrm{L}i}^{\mathrm{c}} e_{\mathrm{L}i} + \bar{e}_{\mathrm{L}i}^{\mathrm{L}i} \right) + m_{ei} \left(e_{\mathrm{L}i}^{\mathrm{L}i} e_{\mathrm{L}i} + \bar{e}_{\mathrm{L}i}$ $+ \left[\sqrt{2} g_3 \varphi_{\tilde{g}} \tilde{g}^a \left(\tau^{yxa*} \tilde{d}_{\mathrm{R}}^y d_{\mathrm{R}}^{\mathrm{c}x} + \tau^{yxa*} \tilde{u}_{\mathrm{R}}^y u_{\mathrm{R}}^{\mathrm{c}x} - \tau^{yxa} \tilde{d}_{\mathrm{L}}^{y*} d_{\mathrm{L}}^x - \tau^{yxa} \tilde{u}_{\mathrm{L}}^{y*} u_{\mathrm{L}}^x \right) + \mathrm{h.c.} \right] - \mathrm{i} g_3 f^{abc} g_{\mu}^a (\bar{g}^b \bar{\sigma}^\mu \tilde{g}^c)$ $+ g_3 g_{\mu}^a \left(\bar{d}_{\rm L} \bar{\sigma}^{\mu} \tau^a d_{\rm L} + \bar{u}_{\rm L} \bar{\sigma}^{\mu} \tau^a u_{\rm L} - \bar{d}_{\rm R}^c \bar{\sigma}^{\mu} \tau^{a*} d_{\rm R}^c - \bar{u}_{\rm R}^c \bar{\sigma}^{\mu} \tau^{a*} u_{\rm R}^c \right) + A_{\mu} |e| \left[\frac{2}{3} \bar{u}_{\rm L} \bar{\sigma}^{\mu} u_{\rm L} - \frac{2}{3} \bar{u}_{\rm R}^c \bar{\sigma}^{\mu} u_{\rm R}^c - \frac{1}{3} \bar{d}_{\rm L} \bar{\sigma}^{\mu} d_{\rm L} \right] + C_{\mu} |e| \left[\frac{2}{3} \bar{u}_{\rm L} \bar{\sigma}^{\mu} u_{\rm L} - \frac{2}{3} \bar{u}_{\rm R}^c \bar{\sigma}^{\mu} u_{\rm R}^c - \frac{1}{3} \bar{d}_{\rm L} \bar{\sigma}^{\mu} d_{\rm L} \right]$ $+\frac{1}{2}\bar{d}_{\rm R}^{\rm c}\bar{\sigma}^{\mu}d_{\rm R}^{\rm c} - \bar{e}_{\rm L}\bar{\sigma}^{\mu}e_{\rm L} + \bar{e}_{\rm R}^{\rm c}\bar{\sigma}^{\mu}e_{\rm R}^{\rm c} + \bar{\bar{\chi}}_{i}^{+}\bar{\sigma}^{\mu}\tilde{\chi}_{i}^{+} - \bar{\bar{\chi}}_{i}^{-}\bar{\sigma}^{\mu}\tilde{\chi}_{i}^{-} \right] + g_{Z}Z_{\mu} \left[\frac{3 - 4s_{\rm w}^{2}}{6}\bar{u}_{\rm L}\bar{\sigma}^{\mu}u_{\rm L} + \frac{2s_{\rm w}^{2}}{2}\bar{u}_{\rm R}^{\rm c}\bar{\sigma}^{\mu}u_{\rm R}^{\rm c} + \bar{\bar{\chi}}_{i}^{-}\bar{\sigma}^{\mu}\tilde{\chi}_{i}^{-} \right] + g_{Z}Z_{\mu} \left[\frac{3 - 4s_{\rm w}^{2}}{6}\bar{u}_{\rm L}\bar{\sigma}^{\mu}u_{\rm L} + \frac{2s_{\rm w}^{2}}{2}\bar{u}_{\rm R}^{\rm c}\bar{\sigma}^{\mu}u_{\rm R}^{\rm c} \right]$ $-\frac{3-2 s_{\rm w}^2}{6} \bar{d}_{\rm L} \bar{\sigma}^{\mu} d_{\rm L} - \frac{s_{\rm w}^2}{2} \bar{d}_{\rm R}^{\rm c} \bar{\sigma}^{\mu} d_{\rm R}^{\rm c} + \frac{1}{2} \bar{\nu}_{\rm L} \bar{\sigma}^{\mu} \nu_{\rm L} + \frac{2 s_{\rm w}^2-1}{2} \bar{e}_{\rm L} \bar{\sigma}^{\mu} e_{\rm L} - s_{\rm w}^2 \bar{e}_{\rm R}^{\rm c} \bar{\sigma}^{\mu} e_{\rm R}^{\rm c} + \frac{N_{j3} N_{i3}^* - N_{j4} N_{i4}^*}{2} \bar{\chi}_{j}^0 \bar{\sigma}^{\mu} \tilde{\chi}_{i}^0 \bar{\sigma}^{\mu} \tilde{\chi}_{i}^0 \bar{\sigma}^{\mu} \bar{\chi}_{i}^0 \bar{\chi}_{$ $+\left(c_{\mathbf{w}}^{2}V_{j1}V_{i1}^{*}+\frac{V_{j2}V_{i2}^{*}(c_{\mathbf{w}}^{2}-s_{\mathbf{w}}^{2})}{2}\right)\bar{\chi}_{j}^{+}\bar{\sigma}^{\mu}\tilde{\chi}_{i}^{+}+\left(\frac{U_{j2}U_{i2}^{*}(s_{\mathbf{w}}^{2}-c_{\mathbf{w}}^{2})}{2}-c_{\mathbf{w}}^{2}U_{j1}U_{i1}^{*}\right)\bar{\chi}_{j}^{-}\bar{\sigma}^{\mu}\tilde{\chi}_{i}^{-}$ $+\frac{g_2}{\sqrt{2}}W_{\mu}^{+}\left[\bar{u}_{\rm L}\bar{\sigma}^{\mu}V_{\rm CKM}d_{\rm L}+\bar{\nu}_{\rm L}\bar{\sigma}^{\mu}e_{\rm L}+\left(V_{j2}N_{i4}^*-\sqrt{2}V_{j1}N_{i2}^*\right)\bar{\chi}_{j}^{+}\bar{\sigma}^{\mu}\bar{\chi}_{i}^{0}+\left(\sqrt{2}N_{j2}U_{i1}^*+N_{j3}U_{i2}^*\right)\bar{\bar{\chi}}_{j}^{0}\bar{\sigma}^{\mu}\tilde{\chi}_{i}^{-}\right]$ $+\frac{g_2}{\sqrt{2}}W_{\mu}^{-}\left[\bar{d}_{\rm L}\bar{\sigma}^{\mu}V_{\rm CKM}^{\dagger}u_{\rm L}+\bar{e}_{\rm L}\bar{\sigma}^{\mu}\nu_{\rm L}+\left(N_{j4}V_{i2}^{*}-\sqrt{2}N_{j2}V_{i1}^{*}\right)\bar{\tilde{\chi}}_{j}^{0}\bar{\sigma}^{\mu}\tilde{\chi}_{i}^{+}+\left(\sqrt{2}U_{j1}N_{i2}^{*}+U_{j2}N_{i3}^{*}\right)\bar{\tilde{\chi}}_{j}^{-}\bar{\sigma}^{\mu}\tilde{\chi}_{i}^{0}\right]$ + $\phi_{\rm u} \left(-\frac{y_{ui}}{\sqrt{2}} u_{\rm Ri}^{\rm c} u_{\rm Li} + \frac{N_{i4}^* (g_2 N_{j2}^* - g_Y N_{j1}^*)}{2} \tilde{\chi}_i^0 \tilde{\chi}_j^0 - \frac{g_2 U_{i1}^* V_{j2}^*}{\sqrt{2}} \tilde{\chi}_i^- \tilde{\chi}_j^+ + \text{h.c.} \right)$ $+\phi_{\rm d}\left(-\frac{y_{di}}{\sqrt{2}}d_{\rm R}^{\rm c}d_{\rm Li}-\frac{y_{ei}}{\sqrt{2}}e_{\rm Ri}^{\rm c}e_{\rm Li}+\frac{N_{i3}^{*}(g_{Y}N_{j1}^{*}-g_{2}N_{j2}^{*})}{2}\tilde{\chi}_{i}^{0}\tilde{\chi}_{j}^{0}-\frac{g_{2}U_{i2}^{*}V_{j1}^{*}}{\sqrt{2}}\tilde{\chi}_{i}^{-}\tilde{\chi}_{j}^{+}+{\rm h.c.}\right)$ $+\frac{A^{0}}{\sqrt{2}}\left[-\mathrm{i}\mathrm{c}_{\beta0}y_{ui}u_{\mathrm{R}i}^{\mathrm{c}}u_{\mathrm{L}i}-\mathrm{i}\mathrm{s}_{\beta0}y_{di}d_{\mathrm{R}i}^{\mathrm{c}}d_{\mathrm{L}i}-\mathrm{i}\mathrm{s}_{\beta0}y_{ei}e_{\mathrm{R}i}^{\mathrm{c}}e_{\mathrm{L}i}-\frac{\mathrm{i}(\mathrm{s}_{\beta0}N_{i3}^{*}-\mathrm{c}_{\beta0}N_{i4}^{*})(g_{Y}N_{j1}^{*}-g_{2}N_{j2}^{*})}{\sqrt{2}}\tilde{\chi}_{i}^{0}\tilde{\chi}$ $+ ig_2 \left(c_{\beta 0} U_{i1}^* V_{j2}^* + s_{\beta 0} U_{i2}^* V_{j1}^* \right) \tilde{\chi}_i^- \tilde{\chi}_j^+ + \text{h.c.} \right] + \frac{G^0}{\sqrt{2}} \left[-i s_{\beta 0} y_{ui} u_{\text{R}i}^{\text{c}} u_{\text{L}i} + i c_{\beta 0} y_{di} d_{\text{R}i}^{\text{c}} d_{\text{L}i} + i c_{\beta 0} y_{ei} e_{\text{R}i}^{\text{c}} e_{\text{L}i} \right] \right]$ (6.88)+ $\frac{\mathrm{i}(g_Y N_{j1}^* - g_2 N_{j2}^*)(c_{\beta 0} N_{i3}^* + s_{\beta 0} N_{i4}^*)}{\sqrt{2}} \tilde{\chi}_i^0 \tilde{\chi}_j^0 - \mathrm{i}g_2(c_{\beta 0} U_{i2}^* V_{j1}^* - s_{\beta 0} U_{i1}^* V_{j2}^*) \tilde{\chi}_i^- \tilde{\chi}_j^+ + \mathrm{h.c.}$ $+\left[\left(\frac{U_{i2}^{*}(g_{Y}N_{j1}^{*}+g_{2}N_{j2}^{*})}{\sqrt{2}}-g_{2}U_{i1}^{*}N_{j3}^{*}\right)s_{\beta+}H^{+}\tilde{\chi}_{i}^{-}\tilde{\chi}_{j}^{0}-\left(g_{2}V_{i1}^{*}N_{j4}^{*}+\frac{V_{i2}^{*}\left(g_{Y}N_{j1}^{*}+g_{2}N_{j2}^{*}\right)}{\sqrt{2}}\right)c_{\beta+}H^{-}\tilde{\chi}_{i}^{+}\tilde{\chi}_{j}^{0}$ + $c_{\beta+}(u_{R}^{c}y_{u}V_{CKM}d_{L})H^{+}$ + $s_{\beta+}(d_{R}^{c}y_{d}V_{CKM}^{\dagger}u_{L})H^{-}$ + $s_{\beta+}(e_{R}^{c}y_{e}\nu_{L})H^{-}$ + h.c. $+\left[iG^{+}c_{\beta+}\left(\frac{U_{i2}^{*}(g_{Y}N_{j1}^{*}+g_{2}N_{j2}^{*})}{\sqrt{2}}-g_{2}U_{i1}^{*}N_{j3}^{*}\right)\tilde{\chi}_{i}^{-}\tilde{\chi}_{j}^{0}-iG^{-}s_{\beta+}\left(g_{2}V_{i1}^{*}N_{j4}^{*}+\frac{V_{i2}^{*}(g_{Y}N_{j1}^{*}+g_{2}N_{j2}^{*})}{\sqrt{2}}\right)\tilde{\chi}_{i}^{+}\tilde{\chi}_{j}^{0}$ $-\operatorname{is}_{\beta+}(u_{\mathrm{R}}^{\mathrm{c}}y_{u}V_{\mathrm{CKM}}d_{\mathrm{L}})G^{+} - \operatorname{ic}_{\beta+}(d_{\mathrm{R}}^{\mathrm{c}}y_{d}V_{\mathrm{CKM}}^{\dagger}u_{\mathrm{L}})G^{-} - \operatorname{ic}_{\beta+}(e_{\mathrm{R}}^{\mathrm{c}}y_{e}\nu_{\mathrm{L}})G^{-} + \operatorname{h.c.}]$ $+\left[-\frac{\tilde{u}_{\rm L}^{*}u_{\rm L}\tilde{\chi}_{j}^{0}\left(g_{Y}N_{j1}^{*}+3g_{2}N_{j2}^{*}\right)}{3\sqrt{2}}+\frac{2}{3}\sqrt{2}g_{Y}\tilde{u}_{\rm R}u_{\rm R}^{\rm c}\tilde{\chi}_{j}^{0}N_{j1}^{*}-y_{ui}u_{\rm R}^{\rm c}\tilde{u}_{\rm Lk}\tilde{\chi}_{j}^{0}N_{j4}^{*}-y_{ui}\tilde{u}_{\rm Ri}^{*}u_{\rm Li}\tilde{\chi}_{j}^{0}N_{j4}^{*}\right]$ $-\frac{\tilde{d}_{\mathrm{L}i}^{*}d_{\mathrm{L}i}\tilde{\chi}_{j}^{0}\left(g_{Y}N_{j1}^{*}-3g_{2}N_{j2}^{*}\right)}{2\sqrt{2}}-\frac{1}{2}\sqrt{2}g_{Y}\tilde{d}_{\mathrm{R}i}d_{\mathrm{R}i}^{\mathrm{c}}\tilde{\chi}_{j}^{0}N_{j1}^{*}-y_{di}\tilde{d}_{\mathrm{L}i}d_{\mathrm{R}i}^{\mathrm{c}}\tilde{\chi}_{j}^{0}N_{j3}^{*}-y_{di}\tilde{d}_{\mathrm{R}i}^{*}d_{\mathrm{L}i}\tilde{\chi}_{j}^{0}N_{j3}^{*}$ $+\frac{\tilde{\nu}_{\text{L}i}^{*}\nu_{\text{L}i}\tilde{\chi}_{j}^{0}\left(g_{Y}N_{j1}^{*}-g_{2}N_{j2}^{*}\right)}{\sqrt{2}}-\sqrt{2}g_{Y}\tilde{e}_{\text{R}i}e_{\text{R}i}^{\text{c}}\tilde{\chi}_{j}^{0}N_{j1}^{*}+\frac{\tilde{e}_{\text{L}i}^{*}e_{\text{L}i}\tilde{\chi}_{j}^{0}\left(g_{Y}N_{j1}^{*}+g_{2}N_{j2}^{*}\right)}{\sqrt{2}}$ $-y_{ei}\tilde{e}_{\mathrm{L}i}e_{\mathrm{R}i}^{\mathrm{c}}\tilde{\chi}_{j}^{0}N_{j3}^{*}-y_{ei}\tilde{e}_{\mathrm{R}i}^{*}e_{\mathrm{L}i}\tilde{\chi}_{j}^{0}N_{j3}^{*}+\mathrm{h.c.}\right]+\left[V_{i2}^{*}(u_{\mathrm{R}}^{\mathrm{c}}y_{u}V_{\mathrm{CKM}}\tilde{d}_{\mathrm{L}})\tilde{\chi}_{i}^{+}+V_{i2}^{*}(\tilde{u}_{\mathrm{R}}^{*}y_{u}V_{\mathrm{CKM}}d_{\mathrm{L}})\tilde{\chi}_{i}^{+}\right]$ $+ U_{i2}^* (d_{\mathrm{R}}^\mathrm{c} y_d V_{\mathrm{CKM}}^\dagger \tilde{u}_{\mathrm{L}}) \tilde{\chi}_j^- + U_{j2}^* (\tilde{d}_{\mathrm{R}}^* y_d V_{\mathrm{CKM}}^\dagger u_{\mathrm{L}}) \tilde{\chi}_j^- - U_{j1}^* g_2 (\tilde{d}_{\mathrm{L}}^* V_{\mathrm{CKM}}^\dagger u_{\mathrm{L}}) \tilde{\chi}_j^- - V_{i1}^* g_2 (\tilde{u}_{\mathrm{L}}^* V_{\mathrm{CKM}} d_{\mathrm{L}}) \tilde{\chi}_i^+$ $-V_{i1}^* g_2 \tilde{\nu}_{\rm L}^* e_{\rm L} \tilde{\chi}_i^+ - U_{j1}^* g_2 \tilde{e}_{\rm L}^* \nu_{\rm L} \tilde{\chi}_j^- + U_{j2}^* y_{ei} \tilde{\nu}_{\rm Li} e_{\rm Ri}^{\rm c} \tilde{\chi}_j^- + U_{j2}^* y_{ei} \tilde{e}_{\rm Ri}^* \nu_{\rm Li} \tilde{\chi}_j^- + \text{h.c.}$ $-\epsilon^{xyz} \left(\lambda''_{ijk} \tilde{d}^{x*}_{Rk} u^{cy}_{Ri} d^{cz}_{Rj} + \frac{1}{2} \lambda''_{kij} \tilde{u}^{x*}_{Rk} d^{cy}_{Ri} d^{cz}_{Rj} \right) + \lambda_{ijk} \left(-\tilde{e}^*_{Rk} \nu_{Li} e_{Lj} - \tilde{e}_{Lj} e^c_{Rk} \nu_{Li} + \tilde{\nu}_{Lj} e^c_{Rk} e_{Li} \right)$ $+\lambda'_{ijk}\left(-\tilde{d}_{Rk}^*d_{Lj}\nu_{Li}+\tilde{d}_{Rk}^*u_{Lj}e_{Li}-\tilde{d}_{Lj}d_{Rk}^c\nu_{Li}+\tilde{u}_{Lj}d_{Rk}^ce_{Li}+\tilde{e}_{Li}d_{Rk}^cu_{Lj}-\tilde{\nu}_{Li}d_{Rk}^cd_{Lj}\right)+\text{h.c.},$

where R-parity violating terms are also shown as a reference; they are also redefined in super-CKM basis.

The full Lagrangian is given then by

$$\mathcal{L} = (\mathcal{L}_{\text{fermions}} + \mathcal{L}_{\text{SFG}}) + \mathcal{L}_{\text{vector}} + \mathcal{L}_{\text{scalar}}, \tag{6.89}$$

where $\mathcal{L}_{\text{vector}}$ is given by Eq. (6.38), which should be amended with $m_W^2 W^{+\mu} W_{\mu}^- + (m_Z^2/2) Z^{\mu} Z_{\mu}$, mass and kinetic terms of $\mathcal{L}_{\text{scalar}}$ should be read from this section, and the interaction terms of $\mathcal{L}_{\text{scalar}}$ should be read from Eq. (6.43) and Eq. (6.44), replacing Higgs fields by VEVs, Higgs bosons, and Nambu-Goldstone bosons.

These Weyl fermions are combined to Dirac and Majorana fermions:

$$\tilde{\chi}_{i}^{0} = \begin{pmatrix} \tilde{\chi}_{i}^{0} \\ \bar{\chi}_{i}^{0} \end{pmatrix}, \quad \tilde{\chi}_{i}^{+} = \begin{pmatrix} \tilde{\chi}_{i}^{+} \\ \bar{\chi}_{i}^{-} \end{pmatrix}, \quad f = \begin{pmatrix} f_{\rm L} \\ \bar{f}_{\rm R}^{\rm c} \end{pmatrix}; \quad \overline{\tilde{\chi}_{i}^{0}} = \begin{pmatrix} \tilde{\chi}_{i}^{0} & \bar{\tilde{\chi}}_{i}^{0} \end{pmatrix}, \quad \overline{\tilde{\chi}_{i}^{+}} = \begin{pmatrix} \tilde{\chi}_{i}^{-} & \bar{\tilde{\chi}}_{i}^{+} \end{pmatrix}, \quad \overline{f} = \begin{pmatrix} f_{\rm R}^{\rm c} & \bar{f}_{\rm L} \end{pmatrix}. \tag{6.90}$$

For example,

$$\begin{split} &\overline{u}P_{\mathrm{L}}d=u_{\mathrm{R}}^{\mathrm{c}}d_{\mathrm{L}},\quad \overline{u}P_{\mathrm{R}}d=\bar{u}_{\mathrm{L}}\bar{d}_{\mathrm{R}}^{\mathrm{c}},\quad u_{\mathrm{R}}^{\mathrm{c}}d_{\mathrm{L}}+\mathrm{h.c.}=\overline{u}P_{\mathrm{L}}d+\overline{d}P_{\mathrm{R}}u,\quad \overline{u}\gamma^{\mu}P_{\mathrm{L}}d=\bar{u}_{\mathrm{L}}\bar{\sigma}^{\mu}d_{\mathrm{L}},\quad \overline{u}\gamma^{\mu}P_{\mathrm{R}}d=-\bar{d}_{\mathrm{R}}^{\mathrm{c}}\bar{\sigma}^{\mu}u_{\mathrm{R}}^{\mathrm{c}};\\ &\tilde{\chi}^{0}u_{\mathrm{L}}+\mathrm{h.c.}=\overline{\chi}^{0}P_{\mathrm{L}}u+\overline{u}P_{\mathrm{R}}\tilde{\chi}^{0},\quad \tilde{\chi}^{0}u_{\mathrm{R}}^{\mathrm{c}}+\mathrm{h.c.}=\overline{u}P_{\mathrm{L}}\tilde{\chi}^{0}+\overline{\tilde{\chi}^{0}}P_{\mathrm{R}}u,\\ &\overline{u}\gamma^{\mu}P_{\{\mathrm{L},\mathrm{R}\}}\tilde{\chi}^{0}=\{\bar{u}_{\mathrm{L}}\bar{\sigma}^{\mu}\tilde{\chi}^{0},-\bar{\tilde{\chi}}^{0}\bar{\sigma}^{\mu}u_{\mathrm{R}}^{\mathrm{c}}\},\quad \overline{\tilde{\chi}^{0}}\gamma^{\mu}P_{\{\mathrm{L},\mathrm{R}\}}u=\{\bar{\tilde{\chi}}^{0}\bar{\sigma}u_{\mathrm{L}},-\bar{u}_{\mathrm{R}}^{\mathrm{c}}\bar{\sigma}\tilde{\chi}^{0}\},\\ &\bar{\tilde{\chi}}^{0}_{i}\bar{\sigma}\tilde{\chi}^{0}_{j}=\overline{\tilde{\chi}}^{0}_{i}\gamma^{\mu}P_{\mathrm{L}}\tilde{\chi}^{0}_{j}=-\overline{\tilde{\chi}}^{0}_{j}\gamma^{\mu}P_{\mathrm{R}}\tilde{\chi}^{0}_{i}. \end{split}$$

With abbreviations

$$\begin{split} &(\mathcal{N}_{\phi_{\mathbf{u}}})_{ij} := N_{i4}^{*}(g_{2}N_{j2}^{*} - g_{Y}N_{j1}^{*})P_{\mathbf{L}} + N_{i4}(g_{2}N_{j2} - g_{Y}N_{j1})P_{\mathbf{R}}, \\ &(\mathcal{N}_{\phi_{\mathbf{d}}})_{ij} := N_{i3}^{*}(g_{Y}N_{j1}^{*} - g_{2}N_{j2}^{*})P_{\mathbf{L}} + N_{i3}(g_{Y}N_{j1} - g_{2}N_{j2})P_{\mathbf{R}}, \\ &(\mathcal{N}_{A^{0}})_{ij} := -(\mathbf{s}_{\beta 0}N_{i3}^{*} - \mathbf{c}_{\beta 0}N_{i4}^{*})(g_{Y}N_{j1}^{*} - g_{2}N_{j2}^{*})P_{\mathbf{L}} + (\mathbf{s}_{\beta 0}N_{i3} - \mathbf{c}_{\beta 0}N_{i4})(g_{Y}N_{j1} - g_{2}N_{j2})P_{\mathbf{R}}, \\ &(\mathcal{N}_{G^{0}})_{ij} := (g_{Y}N_{j1}^{*} - g_{2}N_{j2}^{*})(\mathbf{c}_{\beta 0}N_{i3}^{*} + \mathbf{s}_{\beta 0}N_{i4}^{*})P_{\mathbf{L}} - (g_{Y}N_{j1} - g_{2}N_{j2})(\mathbf{c}_{\beta 0}N_{i3} + \mathbf{s}_{\beta 0}N_{i4})P_{\mathbf{R}}, \\ &(\mathcal{C}_{\phi_{\mathbf{u}}})_{ij} := -U_{i1}^{*}V_{j2}^{*}P_{\mathbf{L}} - U_{i1}V_{j2}P_{\mathbf{R}}, \\ &(\mathcal{C}_{\phi_{\mathbf{d}}})_{ij} := -U_{i2}^{*}V_{j1}^{*}P_{\mathbf{L}} - U_{i2}V_{j1}P_{\mathbf{R}}, \\ &(\mathcal{C}_{A^{0}})_{ij} := (\mathbf{c}_{\beta 0}U_{i1}^{*}V_{j2}^{*} + \mathbf{s}_{\beta 0}U_{i2}^{*}V_{j1}^{*})P_{\mathbf{L}} - (\mathbf{c}_{\beta 0}U_{i1}V_{j2} + \mathbf{s}_{\beta 0}U_{i2}V_{j1})P_{\mathbf{R}}, \\ &(\mathcal{C}_{G^{0}})_{ij} := -(\mathbf{c}_{\beta 0}U_{i2}^{*}V_{j1}^{*} - \mathbf{s}_{\beta 0}U_{i1}^{*}V_{j2}^{*})P_{\mathbf{L}} + (\mathbf{c}_{\beta 0}U_{i2}V_{j1} - \mathbf{s}_{\beta 0}U_{i1}V_{j2})P_{\mathbf{R}}, \\ &(\mathcal{C}_{H^{-}})_{ij} := g_{2}V_{i1}^{*}N_{j4}^{*} + \frac{V_{i2}^{*}(g_{Y}N_{j1}^{*} + g_{2}N_{j2}^{*})}{\sqrt{2}} \\ &, (\mathcal{C}_{H^{+}})_{ij} := \frac{U_{i2}^{*}(g_{Y}N_{j1}^{*} + g_{2}N_{j2}^{*})}{\sqrt{2}} - g_{2}U_{i1}^{*}N_{j3}^{*} \end{aligned}$$

(6.91)

we have

$$\begin{split} & -\frac{1}{2} \overline{g}^{\pi} \left[(i \beta - m_{\beta})^{\alpha b} - i g_{\beta} f^{\alpha b} g^{\beta} \right] g^{b} + \frac{1}{2} \overline{\chi_{i}^{2}} \left[(i \beta - m_{S_{i}^{2}}) \delta_{i,j} + g_{Z} \left(N_{i,3} N_{j,3}^{*} - N_{i,4} N_{j,4}^{*} \right) Z P_{L} \right] \overline{\chi_{i}^{0}} \\ & + \overline{\chi_{i}^{+}} \left[(i \beta - m_{\chi_{i}^{+}} + |e|A) \delta_{i,j} + g_{Z} Z \left(\frac{2c_{i}^{2} V_{i} V_{i}^{*} + i - ev_{i}^{2} V_{i}^{*} V_{j}^{*}}{2} + \frac{c_{2} w_{i} U_{i} U_{j,2}^{*} - 2c_{w}^{2} V_{i} U_{j,1}^{*}} P_{R} \right) \right] \overline{\chi_{i}^{0}} \\ & + \overline{w} \left[i \beta - m_{ui} + g_{3} \tau^{0} g^{4} + \frac{2|e|}{3} A + g_{Z} Z \left(\frac{3 - 4c_{w}^{2}}{6} P_{L} - \frac{2c_{w}^{2}}{3} P_{R} \right) \right] d_{i} \\ & + \overline{w} \left[i \beta - m_{ui} + g_{3} \tau^{0} g^{4} + \frac{2|e|}{3} A + g_{Z} Z \left(\frac{3 - 2c_{w}^{2}}{6} P_{L} - \frac{2c_{w}^{2}}{3} P_{R} \right) \right] d_{i} \\ & + \overline{w} \left[i \beta + \frac{2c_{z}}{2} Z P_{L} \right) \nu_{i} + \overline{c}_{i} \left[i \beta - m_{si} - |e|A + g_{Z} Z \left(\frac{2c_{w}^{2} - 1}{2} P_{L} + c_{w}^{2} P_{R} \right) \right] e_{i} \\ & + \frac{2c_{z}}{\sqrt{2}} W_{h}^{+} \left[\overline{u}_{i}^{\gamma} V_{CKM} P_{L} d + \overline{v}_{i}^{\gamma} P_{L} e + \overline{\chi}_{i}^{\gamma} \gamma^{\mu} \left(\left(-\sqrt{2} V_{ij} N_{i}^{2} + V_{2} N_{i}^{2} \right) P_{L} + \left(-\sqrt{2} N_{i2} U_{j1}^{*} - N_{i3} U_{j2}^{*} \right) P_{R} \right) \overline{\chi_{i}^{3}} \right] \\ & + \frac{2c_{z}}{\sqrt{2}} W_{h}^{+} \left[\overline{u}_{i}^{\gamma} V_{CKM} P_{L} d + \overline{v}_{i}^{\gamma} P_{L} e + \overline{\chi}_{i}^{\gamma} \gamma^{\mu} \left(\left(-\sqrt{2} N_{i3} V_{i}^{*} + N_{i4} V_{j2}^{*} \right) P_{L} + \left(-\sqrt{2} N_{i2} U_{j1}^{*} - N_{i3} U_{j2}^{*} \right) P_{R} \right) \overline{\chi_{i}^{3}} \right] \\ & + \frac{2c_{z}}{\sqrt{2}} W_{h}^{+} \left[\overline{u}_{i}^{\gamma} V_{CKM} P_{L} d + \overline{v}_{i}^{\gamma} P_{L} e + \overline{\chi}_{i}^{\gamma} \gamma^{\mu} \left(\left(-\sqrt{2} N_{i3} V_{j}^{*} + N_{i4} V_{j2}^{*} \right) P_{L} + \left(-\sqrt{2} N_{i2} U_{j1}^{*} - N_{i3} U_{j2}^{*} \right) P_{R} \right) \overline{\chi_{i}^{3}} \right] \\ & + \frac{2c_{z}}{\sqrt{2}} W_{h}^{+} \left[\overline{u}_{i}^{\gamma} V_{CKM} P_{L} d + \overline{u}_{i}^{\gamma} V_{CKM} P_{L} d +$$

Note that squarks and sleptons are in super-CKM basis and not in mass eigenstates.

6.5. SLHA convention

The SLHA convention [?] is different from our notation; the reinterpretation rules for the MSSM parameters are given in the right table (magenta color for objects in other conventions), while

 $\mu, b, m_{Q,L,H_{\mathrm{u}},H_{\mathrm{d}}}^2, \mathrm{RPV}\text{-trilinears}~(\lambda \mathrm{s}~\mathrm{and}~T \mathrm{s})$ are in common.

SLHA		our notation	Martin/DHM
(H_1,H_2)	=	$(H_{ m d},H_{ m u})$	
$Y_{ m u,d,e}$	=	$(y_{\mathrm{u,d,e}})^{\mathrm{T}}$	
$T_{ m u,d,e}$	=	$(a_{\mathrm{u,d,e}})^{\mathrm{T}}$	
$A_{ m u,d,e}$	=	$(A_{\mathrm{u,d,e}})^{\mathrm{T}}$	
$m_{U^{\mathrm{c}},D^{\mathrm{c}},E^{\mathrm{c}}}^{2}$, =	$(m_{U^{\mathrm{c}},D^{\mathrm{c}},E^{\mathrm{c}}}^2)^\dagger$	
$M_{1,2,3}$	=	$-M_{1,2,3}$	
m_3^2	=	b	
m_A^2	=	$m_{A_0}^2$ (tree)	
		κ_i	$=-\mu_i'$ (rarely used)
D_i	=	b_i	,
$m_{\tilde{L}_i H_1}^2$	=	M_{Li}^2	

In particular, the chargino/neutralino mass terms in RPC case are given by

$$\mathcal{L} \supset \left[\frac{1}{2} \underline{M_1} \tilde{b} \tilde{b} + \frac{1}{2} \underline{M_2} \tilde{w} \tilde{w} - \mu \tilde{h}_u \tilde{h}_d - \frac{g_Y}{2\sqrt{2}} \left(h_u^* \tilde{h}_u - h_d^* \tilde{h}_d \right) \tilde{b} - \sqrt{2} g_2 \left(h_u^* T^a \tilde{h}_u + h_d^* T_a \tilde{h}_d \right) \tilde{w} \right] + \text{H.c.}$$

$$(6.92)$$

$$\rightarrow \frac{1}{2} \begin{pmatrix} \tilde{b} \\ \tilde{w} \\ h_{u}^{0} \\ h_{d}^{0} \end{pmatrix}^{T} \begin{pmatrix} -M_{1} & 0 & -m_{Z}c_{\beta}s_{w} & m_{Z}s_{\beta}s_{w} \\ 0 & -M_{2} & m_{Z}c_{\beta}c_{w} & -m_{Z}s_{\beta}c_{w} \\ -m_{Z}c_{\beta}s_{w} & m_{Z}c_{\beta}c_{w} & 0 & -\mu \\ m_{Z}s_{\beta}s_{w} & -m_{Z}s_{\beta}c_{w} & -\mu & 0 \end{pmatrix} \begin{pmatrix} \tilde{b} \\ \tilde{w} \\ h_{u}^{0} \\ h_{d}^{0} \end{pmatrix} \tag{6.93}$$

6.6. GMSB formulae

$$\Gamma^{-1}(\tilde{l} \to l\tilde{G}) = \frac{1}{48\pi M^2} \frac{m_l^5}{m_{\tilde{G}}^2} \times \text{(phase space)} \approx 5.9 \times 10^{-7} \,\text{s} \frac{(m_{3/2}/\text{MeV})^2}{(m_{\tilde{l}}/\text{TeV})^5}$$
(6.94)

$$= \frac{3m_l^5}{48\pi F_{\text{tot}}^2} \times (\text{phase space}) \approx 3.3 \times 10^{-9} \,\text{s} \frac{(F_{\text{tot}}/10^{12} \,\text{GeV}^2)^2}{(m_{\tilde{l}}/100 \,\text{GeV})^5} = 1.0 \,\text{m} \frac{(F_{\text{tot}}/10^{12} \,\text{GeV}^2)^2}{(m_{\tilde{l}}/100 \,\text{GeV})^5} \quad (6.95)$$

$$= \frac{3m_l^5}{48\pi F_{\text{tot}}^2} \times (\text{phase space}) \approx 3.3 \times 10^{-9} \,\text{s} \frac{(F_{\text{tot}}/10^{12} \,\text{GeV}^2)^2}{(m_{\tilde{l}}/100 \,\text{GeV})^5} = 1.0 \,\text{m} \frac{(F_{\text{tot}}/10^{12} \,\text{GeV}^2)^2}{(m_{\tilde{l}}/100 \,\text{GeV})^5}$$
(6.95)

$$\Gamma^{-1}(\tilde{B} \to \gamma \tilde{G}) = \frac{c_{\text{w}}^2 m_{\tilde{B}}^5}{48\pi M^2 m_{\tilde{G}}^2} (1 - r)^3 (1 + 3r) \quad \text{where} \quad r := \left(\frac{m_{\tilde{G}}}{m_{\tilde{B}}}\right)^2.$$
(6.96)
(cf. [?])

A. Mathematics

A.1. Matrix exponential

Excerpted from §2 and §5 of Hall 2015 [?]:

$$e^X := \sum_{m=0}^{\infty} \frac{X^m}{m!}$$
 (converges for any X), $\log X := \sum_{m=1}^{\infty} (-1)^{m+1} \frac{(A-1)^m}{m}$ (conv. if $||A-I|| < 1$). (A.1)

$$e^{\log A} = A \text{ (if } ||A - I|| < 1), \quad \log e^X = X \text{ and } ||e^X - 1|| < 1 \text{ (if } ||X|| < \log 2).$$
 (A.2)

Hilbert-Schmidt norm:
$$||X||^2 := \sum_{i,j} |X_{ij}|^2 = \operatorname{Tr} X^{\dagger} X.$$
 (A.3)

Properties:

$$e^{(X^T)} = (e^X)^T$$
, $e^{(X^*)} = (e^X)^*$, $(e^X)^{-1} = e^{-X}$, $e^{YXY^{-1}} = Y e^X Y^{-1}$,

$$\det \exp X = \exp \operatorname{Tr} X, \qquad \frac{\mathrm{d}}{\mathrm{d}t} \operatorname{e}^{tX} = X \operatorname{e}^{tX} = \operatorname{e}^{tX} X \qquad \operatorname{e}^{(\alpha+\beta)X} = \operatorname{e}^{\alpha X} \operatorname{e}^{\beta X} \text{ for } \alpha, \beta \in \mathbb{C};$$

Baker-Campbell-Hausdorff:

$$e^{X}Ye^{-X} = Y + [X,Y] + \frac{1}{2!}[X,[X,Y]] + \frac{1}{3!}[X,[X,[X,Y]]] + \dots = e^{[X,]}Y;$$
 (A.4)

$$e^{X} e^{Y} e^{-X} = \sum_{n=0}^{\infty} \frac{1}{n!} (e^{X} Y e^{-X})^{n} = \exp(e^{[X,]} Y);$$
 (A.5)

$$\log(e^{X} e^{Y}) = X + \int_{0}^{1} dt \, g(e^{[X, e^{t[Y, Y]}}) Y \qquad \left[g(z) = \frac{\log z}{1 - z^{-1}} = 1 - \sum_{n=1}^{\infty} \frac{(1 - z)^{n}}{n(n+1)}; \quad g(e^{y}) = \sum_{n=0}^{\infty} \frac{B_{n} y^{n}}{n!}\right]$$
(A.6)

$$= X + Y + \frac{1}{2}[X, Y] + \frac{1}{12}[X, [X, Y]] - \frac{1}{12}[Y, [X, Y]] + \cdots$$
 (Baker-Campbell-Hausdorff). (A.7)

$$\log(e^{X} e^{Y}) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \left(\sum_{m,n=0}^{\infty} \frac{X^{m} Y^{n}}{m! n!} - 1 \right)^{k} = \sum_{k=1}^{\infty} \sum_{m_{1}+n_{1}>0} \cdots \sum_{m_{k}+n_{k}>0} \frac{(-1)^{k-1}}{k} \frac{X^{m_{1}} Y^{n_{1}} \cdots X^{m_{k}} Y^{n_{k}}}{m_{1}! n_{1}! \cdots m_{k}! n_{k}!}$$
(A.8)

$$\log(e^{X} e^{Y}) = \sum_{k=1}^{\infty} \sum_{m_1 + n_1 > 0} \cdots \sum_{m_k + n_k > 0} \frac{(-1)^{k-1}}{k \sum_{i=1}^{k} (m_i + n_i)} \frac{\left([X, \right)^{m_1} \left([Y, \right)^{n_1} \cdots \left([X, \right)^{m_k} \left([Y, \right)^{n_k}] \cdots \right)}{m_1! n_1! \cdots m_k! n_k!}$$
(A.9)

with [X] := X understood.

If matrices t^a satisfies $[t^a, t^b] = \mathrm{i} f^{abc} t^c$ with totally-antisymmetric $f^{abc} \in \mathbb{R}$.

$$\left[e^{\theta^a t^a} t_b e^{-\theta^c t^c}\right]_{ij} = \left[e^{\theta^a [t^a} t_b\right]_{ij} = \left[e^{i\theta^a f^a}\right]^{bc} t_{ij}^c$$
(A.10)

holds for $\theta^a \in \mathbb{C}$, where $[f^a]_{bc} = f^{abc}$. $\ref{TODO:needs}$ verification, generalization/restriction, and a nice proof or

A.2. General unitary matrix

$$U_{2} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\alpha} \end{pmatrix} \begin{pmatrix} c_{\theta} & s_{\theta} \\ -s_{\theta} & c_{\theta} \end{pmatrix} \begin{pmatrix} e^{i\beta} & 0 \\ 0 & e^{i\gamma} \end{pmatrix} = \begin{pmatrix} c_{\theta} e^{i\beta} & s_{\theta} e^{i\gamma} \\ -s_{\theta} e^{i(\alpha+\beta)} & c_{\theta} e^{i(\alpha+\gamma)} \end{pmatrix}$$
(A.11)

$$U_{3} = \begin{pmatrix} 1 & & & \\ & e^{ia} & & \\ & & e^{ib} \end{pmatrix} \begin{pmatrix} 1 & & & \\ & c_{23} & s_{23} \\ & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & s_{13} e^{-i\delta} \\ & 1 \\ & -s_{13} e^{i\delta} & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} \\ -s_{12} & c_{12} \end{pmatrix} \begin{pmatrix} e^{ic} & & \\ & e^{id} & \\ & & e^{ie} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & & & \\ & e^{ia} & & \\ & & e^{ib} \end{pmatrix} \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13} e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13} e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13} e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13} e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13} e^{i\delta} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} e^{ic} & & \\ & e^{id} & & \\ & & e^{ie} \end{pmatrix}$$

$$(A.12)$$

$$= \begin{pmatrix} 1 & & & \\ & e^{ia} & & \\ & & e^{ib} \end{pmatrix} \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} e^{ic} & & \\ & e^{id} & \\ & & e^{ie} \end{pmatrix}$$
(A.13)

(e.g., hep-ph/9708216)