

Sieci złożone

02. Wstęp do teorii grafów

Mosty Królewca - 1736

Czy można przejść przez siedem mostów i nigdy nie przekroczyć tego samego mostu dwa razy?

Euler L., Solutio problematis ad geometriam situs pertinentis w Commentarii academiae scientiarum Petropolitanae, wolumen 8, strony 128-140 (łac.)

Mosty Królewca

1736: Rozwiązanie Eulera:

- (a) Jeśli graf ma **więcej niż dwa wierzchołki** o nieparzystym stopniu, taka ścieżka nie istnieje.
- (b) Jeśli graf jest połączonym i ma **nie więcej niż dwa wierzchołki** o nieparzystym stopniu, istnieje co najmniej jedna taka ścieżka.

Mosty Królewca

1875:

Władze miasta rozwiązały problem

I TRIED TO USE A TIME MACHINE TO CHEAT ON MY ALGORITHMS FINAL BY PREVENTING GRAPH THEORY FROM BEING INVENTED.

Czy graf = sieć?

Elementy złożonego systemu

- Komponenty sieci N (lub V) węzły, wierzchołki (nodes, vertices)
- Interakcje, zależności pomiędzy komponentami L (lub E) – połączenia, krawędzie (links, edges)
- Cały system (N, L) sieć (network), graf (graph)

Sieć czy graf?

Sieć zazwyczaj odnosi się do rzeczywistego systemu

- Sieć www
- Sieć społeczna

Graf jest jedną z wielu możliwych matematycznych reprezentacji sieci

- Graf odnośników pomiędzy stronami www
- Graf relacji przyjaźni pomiędzy studentami

Wiele sieci jeden graf

Wiele sieci jeden system.

 Wybór właściwej reprezentacji sieci determinuje naszą zdolność do skutecznego wykorzystania teorii sieci.

- W niektórych przypadkach istnieje jednoznaczna reprezentacja. W innych przypadkach możemy mieć wiele różnych.
- Na przykład sposób, w jaki przypiszemy powiązania między osobami, określi charakter naszych badań.

Wybór właściwej reprezentacji

AUCS network

Wybór właściwej reprezentacji

Jeśli połączysz osoby na podstawie ich imienia (wszyscy Piotrowie są ze sobą połączeni), co możesz zbadać?

Niemniej dalej jest to sieć!

Grafy nieskierowane i skierowane

Grafy nieskierowane i skierowane

Nieskierowane

Krawędzie: nieskierowane (relacja symetryczna)

Przykłady

Sieć współpracy naukowej Sieć aktorów Interakcje pomiędzy białkami

Skierowane

Krawędzie: skierowane (*relacja niesymetryczna*)
Graf skierowany (ang. Digraph, directed graph:

Przykłady

Odnośniki na stronach WWW Rozmowy telefoniczne Uczucia

Grafy nieskierowane i skierowane

Przykładowe sieci

Sieć	Wierzchołki	Krawędzie	Skierowana/ni eskierowana	Liczba wierzchołków	Liczba Krawędzi	Średni stopień węzła
Internet						
www						
Sieć energetyczna						
Rozmowy telefoniczne						
Emaile						
Współpraca naukowa						
Sieć aktorów						
Sieć cytowań						
Metabolizm Ecoli						
Interakcje pomiędzy proteinami						

Przykładowe sieci

Sieć	Wierzchołki	Krawędzie	Skierowana/ni eskierowana	Liczba wierzchołków	Liczba Krawędzi	Średni stopień węzła
Internet	Rutery	Połączenia internetowe	Nieskierowana	192,244	609,066	6.34
www	Strony www	Linki	Skierowana	325,729	1,497,134	4.60
Sieć energetyczna	Elektrownie, transformatory	Kable	Nieskierowana	4,941	6,594	2.67
Rozmowy telefoniczne	Abonenci	Połączenia	Skierowana	36,595	91,826	2.51
Emaile	Adresy email	Emaile	Skierowana	57,194	103,731	1.81
Współpraca naukowa	Naukowcy	Współautors two	Nieskierowana	23,133	93,437	8.08
Sieć aktorów	Aktorzy	Wspólna gra w filmie	Nieskierowana	702,388	29,397,908	83.71
Sieć cytowań	Art. naukowe	Cytowania	Skierowana	449,673	4,689,479	10.43
Metabolizm Ecoli	Metabolity	Reakcje chemiczne	Skierowana	1,039	5,802	5.58
Interakcje pomiędzy proteinami	Proteiny (Białka)	Reakcje łączenia	Nieskierowana	2,018	2,930	2.90

Stopień węzła (node degree)

Stopień Węzła k_i

Nieskierowana

$$k_a = 1, k_v = 7$$

Skierowana

$$k_y^{in} = 6 \quad k_y^{out} = 1 \quad k_y = 7$$

Stopień węzła i: liczba krawędzi połączonych z węzłem i.

Średni stopień węzła <k>

Nieskierowana

L – liczba krawędzi w grafie

N – liczba wierzchołków w grafie

$$\langle k \rangle = \frac{L}{N} = \frac{12}{10}$$

Rozkład stopni węzła P(k)/P_k

- P(k) jest to prawdopodobieństwo, że losowo wybrany wierzchołek w sieci ma stopień węzła k
- $P(k) = N_k / N$
- N_k liczba wierzchołków o stopniu k

Rozkład stopni węzła

Macierz sąsiedztwa (Adjacency matrix)

Nieskierowane Skierowane

 $A_{ij} = 1$ jeżeli istnieje krawędź od i do j $A_{ij} = 0$ jeżeli nie istnieje krawędź od i do j

Nieskierowane					Skierowane						
	0	1	1	0				0	0	1	0
	1	0	1	1				1	0	1	0
	1	1	0	0				0	0	0	0
	Λ	1	0	0				0	1	0	0

$$k_2 = \sum_{j=1}^4 A_{2j} = \sum_{i=1}^4 A_{i2} = 3$$
 $k_2^{\text{in}} = \sum_{j=1}^4 A_{2j} = 2$, $k_2^{\text{out}} = \sum_{i=1}^4 A_{i2} = 1$

$$A_{ij} = A_{ji} \qquad A_{ii} = 0 \qquad \qquad A_{ij} \neq A_{ji} \qquad A_{ii} = 0$$

$$L = \frac{1}{2} \sum_{i=1}^{N} A_{ij}$$

$$L = \sum_{i,j=1}^{N} A_{ij}$$

$$\langle k \rangle = \frac{2L}{N}$$
 $\langle k^{\text{in}} \rangle = \langle k^{\text{out}} \rangle = \frac{L}{N}$

	a	b	C	d	е	f	g	h
a	0	1	0	0	1	0	1	0
b	1	0	1	0	0	0	0	1
C	0	1	0	1	0	1	1	0
d	0	0	1	0	1	0	0	0
е	1	0	0	1	0	0	0	0
f	0	0	1	0	0	0	1	0
g	1	0	1	0	0	1	0	0
h	0	1	0	0	0	0	0	0

Rzeczywiste sieci są rzadkie

Graf pełny

• Maksymalna liczba krawędzi w sieci z N wierzchołkami wynosi: $L_{max} = \frac{N(N-1)}{2}$

• Graf mający $L = L_{max}$ nazywamy grafem pełnym a jego średni stopień węzła wynosi < k >= N-1

Rzeczywiste sieci są rzadkie

 Większość sieci obserwowanych w rzeczywistych systemach jest rzadka:

Sieć	Liczba wierzchołków	Liczba Krawędzi	Średni stopień węzła
Internet	192,244	609,066	6.34
WWW	325,729	1,497,134	4.60
Sieć energetyczna	4,941	6,594	2.67
Rozmowy telefoniczne	36,595	91,826	2.51
Emaile	57,194	103,731	1.81
Współpraca naukowa	23,133	93,437	8.08
Sieć aktorów	702,388	29,397,908	83.71
Sieć cytowań	449,673	4,689,479	10.43
Metabolizm Ecoli	1,039	5,802	5.58
Interakcje pomiędzy proteinami	2,018	2,930	2.90

Rzeczywiste sieci są rzadkie

Sieć dwudzielna (Bipartite network)

Sieć dwudzielna

Graf dwudzielny jest to graf którego wierzchołki mogą być podzielone na dwa rozdzielne zbiory **U** i **V** tak że każda krawędź łączy wierzchołek ze zbioru **U** i wierzchołek ze zbioru **V**.

Przykłady:

Sieć aktorów Sieć współautorstwa Sieć chorób

Sieć genów – Sieć chorób

Sieć Genów

Sieć Chorób

Sieć chorób

Sieć trójdzielna/Tripartite Network

Sieć trójdzielna

Sieć trójdzielna

Sieci ważone

Sieci ważone i nieważone

Nieważona

U		ı	U
1	0	1	1
1	1	0	0
0	1	0	0

Ważona

- Liczba m³ przesylana wodociagiem
- Przesłane kWh
- Wartość wymiany handlowej pomiędzy krajami

Liczba lotów pomiędzy lotniskami

0

1,0 0,5 0

0,2 0

 Stopień zapełnienia autobusów na danej trasie

Ścieżki w grafie

Ścieżka (Path)

- Ścieżka to sekwencja węzłów, w której każdy węzeł sąsiaduje z następnym
- P_{io,in} o długości n między węzłami i_o i i_n jest uporządkowanym zbiorem n+1 węzłów i n krawędzi

$$P_n = \{i_0, i_1, i_2, ..., i_n\}$$
 $P_n = \{(i_0, i_1), (i_1, i_2), (i_2, i_3), ..., (i_{n-1}, i_n)\}$

 W grafie skierowanym ścieżka może podążać tylko zgodnie ze zwrotem krawędzi.

Dystans (Distance)

- Odległość (najkrótsza ścieżka, shortest path) między dwoma węzłami jest to liczba krawędzi wzdłuż najkrótszej ścieżki pomiędzy nimi.
- Jeżeli nie istnieje ścieżka pomiędzy dwoma węzłami, odległość jest nieskończona
- Nieskierowane d(x,e)=d(e,x)
- Skierowane d(x,y) nie musi być takie samo jak d(y,x)

Dystans (Distance)

- W grafach ważonych odległość jest sumą wag krawędzi.
- W poniższym grafie najkrótszą ścieżką od węzła X do F jest ścieżka XBYF, a nie XF czy XYF

Przeszukiwanie wszerz (BFS - Breadth First Search)

- 1. Rozpocznij od wierzchołka *i*, przypisz mu etykietę m=0
- 2. Wybierz wierzchołki bezpośrednio połączone z *i*. Przypisz im etykietę m=1 i umieść w kolejce.
- 3. Weź pierwszy wierzchołek z kolejki (wierzchołek *k* o etykiecie *m*). Wybierz wierzchołki bez etykiety bezpośrednio połączone z *k*. Przypisz im etykietę *m+1* i umieść w kolejce.
- 4. Powtórz krok 3 aż poszukiwany wierzchołek *j* otrzyma etykietę lub nie ma już wierzchołków w kolejce.

Odległość pomiędzy i oraz j jest równa etykiecie wierzchołka j. Jeżeli j nie ma etykiety wtedy $d(i,j) = \infty$.

Przeszukiwanie wszerz (BFS - Breadth First Search)

 Najkrótsza ścieżka (Shortest path) – ścieżka pomiędzy dwoma wierzchołkami o najmniejszym dystansie.

• Średnica (Diameter) – najdłuższa najkrótsza ścieżka w grafie. Gdy graf nie jest połączony to średnica = ∞, lub średnica największego komponentu

Średnia długość ścieżki

 (Average Path Length) –
 średnia długość najkrótszych
 ścieżek pomiędzy wszystkimi
 parami wierzchołków w grafie.

90 ścieżek – APL = 1.867

 Cykl (Cycle) – ścieżka która zaczyna się i kończy w tym samym wierzchołku

 Samounikająca ścieżka (Selfavoiding Path) – ścieżka która się nie krzyżuje sama ze sobą

Ścieżka Eulera (Eulerian Path) – ścieżka która
 przechodzi przez wszystkie krawędzie (Edges) w grafie
 dokładnie jeden raz

 Ścieżka Hamiltona (Hamiltonian path) – ścieżka która przechodzi przez wszystkie wierzchołki dokładnie jeden raz

Połączenie (Connectedness)

Graf połączony

Graf połączony (nieskierowany) występuje wtedy gdy można wyznaczyć ścieżkę pomiędzy dwoma dowolnymi wierzchołkami.

Graf niepołączony
 (nieskierowany) Występuje
 wtedy gdy występuje co
 najmniej jedna para
 wierzchołków miedzy którymi
 nie można wytyczyć ścieżki.

Graf połączony

 Macierz sąsiedztwa sieci składającej się z kilku elementów może być zapisana w postaci blokowo-przekątnej, tak że niezerowe elementy są ograniczone do kwadratów, a wszystkie inne elementy są zerowe

Graf połączony

 Silnie połączony graf skierowany: każdy węzeł ma ścieżkę od każdego węzła.

 Słabo połączony graf skierowany: jest połączony, jeśli pominiemy kierunki krawędzi (zrobimy projekcję na graf nieskierowany).

Znajdowanie podłączonych komponentów

- 1. Rozpocznij od losowego wierzchołka j i wykonaj dla niego algorytm BFS. Wszystkim wierzchołom do których dotarłeś nadaj etykietę m = 1.
- 2. Jeżeli liczba wierzchołków z etykietą wynosi N to graf jest połączony natomiast jeżeli jest mniejsza niż N to graf składa się z kilku komponentów. By je zidentyfikować przejdź do kroku 3.
- 3. Rozpocznij od losowego wierzchołka k bez etykiety i wykonaj dla niego algorytm BFS. Wierzchołom do których dotarłeś nadaj etykietę m = m + 1.
- 4. Jeżeli liczba wierzchołków z etykietą wynosi N to liczba komponentów wynosi m. Jeżeli liczba wierzchołków z etykietą jest mniejsza od N wróć do kroku 3.

Współczynnik grupowania

Lokalny współczynnik grupowania

- Współczynnik grupowania (Clustering coefficient) C_i
 mówi nam jak dobrze połączone jest sąsiedztwo
 wierzchołka i
- Jeżeli stopień węzła k_i wynosi 0 lub 1 to współczynnik grupowania wynosi 0

$$C_i = \frac{2e_i}{k_i(k_i - 1)}$$

Współczynnik grupowania

 Średni współczynnik grupowania (average clustering) coefficient)

$$\langle C \rangle = \frac{1}{N} \sum_{i=1}^{N} C_i$$

 Globalny współczynnik grupowania (global clustering) clustering) $C_{\Delta} = \frac{3 \times Liczba \ trójkątów}{Liczba \ połączonych \ trójek}$

$$\langle C \rangle = \frac{13}{42} \approx 0.310$$

$$C_{\triangle} = \frac{3}{8} = 0.375$$

$$C_{\triangle} = \frac{3}{8} = 0.375$$

Grafy podsumowanie

Nieskierowane

Undirected

$$A_{ij} = \left(\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right)$$

$$A_{ii} = 0 \qquad A_{ij} = A_{ji}$$

$$L = \frac{1}{2} \sum_{i,j=1}^{N} A_{ij} \qquad \langle k \rangle = \frac{2L}{N}$$

Nieskierowane z pętlami

Multigrafy

Skierowane

d. Directed

$$A_{ij} = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

$$A_{ij} \neq A_{ji}$$

$$L = \sum_{i,j=1}^{N} A_{ij} \quad \langle k \rangle = \frac{L}{N}$$

Ważone

$$A_{ij} = \begin{pmatrix} 0 & 2 & 0.5 & 0 \\ 2 & 0 & 1 & 4 \\ 0.5 & 1 & 0 & 0 \\ 0 & 4 & 0 & 0 \end{pmatrix}$$

$$A_{ii} = 0$$

$$A_{ij} = A_{ji}$$

$$< k >= \frac{2L}{N}$$

Pełne

f. Complete Graph

(undirected)

$$A_{ij} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

$$A_{ii} = 0$$
 $A_{i \neq j} = 1$
 $L = L_{\text{max}} = \frac{N(N-1)}{2}$ $< k >= N-1$

Przykłady

- WWW
 - skierowane multigrafy z pętlami
- Interakcje pomiędzy białkami
 - Nieskierowane, nieważone z pętlami
- Sieć współautorstwa
 - Nieskierowane, ważone multigrafy
- Połączenia telefoniczne
 - Skierowane, ważone, multigrafy
- "Przyjaźń" na Facebooku
 - Nieskierowane, nieważone

Główne miary centralności

Centralność

 Centralność (centrality) identyfikuje najważniejsze z jakiegoś punktu widzenia wierzchołki w grafie.

- Stopień węzła (degree)
- Przewodnictwo (betweenness)
- Bliskość (closeness)
- PageRank
- eigenvector (prestige score)
- Katz
- K-shell
- VoteRank

Stopień Węzła k_i

Nieskierowana

$$k_a = 1, k_v = 7$$

Skierowana

$$k_y^{in} = 6 \quad k_y^{out} = 1 \quad k_y = 7$$

Stopień węzła: liczba krawędzi połączonych z węzłem.

Przewodnictwo

Przewodnictwo (Betweenness centrality) określa
pozycję węzła na podstawie liczby najkrótszych ścieżek
przechodzących przez ten węzeł w stosunku do liczby
wszystkich najkrótszych ścieżek.

całkowita liczba najkrótszych ścieżek od węzła s do węzła t

Także może być policzona dla krawędzi

Bliskość

- W połączonym grafie bliskość (closeness centrality) to średnia długość najkrótszej ścieżki między węzłem a wszystkimi innymi węzłami w grafie.
- Im bardziej centralny węzeł, tym znajduje się "bliżej" wszystkich innych węzłów.

$$C(x) = rac{1}{\sum_y d(y,x)}$$

Przykład

	C _D	C _c	C _B
Diane			
Fernando			
Garth			
Andre			
Beverly			
Carol			
Ed			
Heather			
Ike			
Jane			

Przykład

	C _D	cc	C_{B}
Diane	0.666	0.600	0.102
Fernando	0.556	0.643	0.231
Garth	0.556	0.643	0.231
Andre	0.444	0.529	0.023
Beverly	0.444	0.529	0.023
Carol	0.333	0.500	0.000
Ed	0.333	0.500	0.000
Heather	0.333	0.600	0.389
Ike	0.222	0.429	0.222
Jane	0.111	0.310	0.000

PageRank

 PageRank polega na liczeniu liczby i jakości linków do strony (węzła), aby określić przybliżoną ocenę ważności witryny (węzła). Podstawowym założeniem jest to, że im strona jest ważniejsza tym więcej odnośników na nią wskazuje.

Lokalny współczynnik grupowania

- Współczynnik grupowania (Clustering coefficient) C_i
 mówi nam jak dobrze połączone jest sąsiedztwo
 wierzchołka i
- Jeżeli stopień węzła k_i wynosi 0 lub 1 to współczynnik grupowania wynosi 0

$$C_i = \frac{2e_i}{k_i(k_i - 1)}$$

Współczynnik grupowania dla krawędzi

$$CLECC(x, y, \alpha) = \frac{\left| MN(x, \alpha) \cap MN(y, \alpha) \right|}{\left| (MN(x, \alpha) \cup MN(y, \alpha)) / \{x, y\} \right|}$$

$$CLECC(x, y, 1) = \frac{|MN(x, 1) \cap MN(y, 1)|}{|(MN(x, 1) \cup MN(y, 1))/\{x, y\}|} = \frac{|\{a, b, y, g, h\} \cap \{b, c, d, e, f, g, x\}|}{|\{a, b, y, g, h\} \cup \{b, c, d, e, f, g, x\}|/\{x, y\}|} = \frac{|\{b, f, g\}|}{|\{a, b, c, d, e, f, g, h, x, y\}|/\{x, y\}|} = \frac{3}{|\{a, b, c, d, e, f, g, h\}|} = \frac{3}{8}$$

Trzej królowie

- Stopień węzła, średni stopień i rozkład stopni węzła
- Długości najkrótszych ścieżek, ich rozkład i średnia długość ścieżki
- Współczynnik grupowania globalny i lokalny i rozkład współczynników grupowania

Typy sieci a grafy

Sieć prosta

- Jeden typ relacji (jednowarstwowa)
 - Uniplex
 - Monoplex
 - Singleplex
 - Singlex
 - Simplex
 - One layer
 - Single layer

- Jednomodowa (te same wierzchołki)
 - Homogenous nodes
 - Unimodal

Sieć prosta wielomodowa

- Jeden tym relacji (uniplex)
- Wiele typów wierzchołków (multimodal)

Sieć Xdzielna

- X typów wierzchołków (multimodal)
- Brak połączeń między wierzchołkami tego samego typu

Sieć multipleksowa (Multiplex Network)

- Każda warstwa to sieć prosta o:
 - Dokładnie tym samym zbiorze wierzchołków (node-align multiplex)*
 - Różne zbiory krawędzi
 - np. multigraf

Sieć wielowarstwowa (Multilayer Network)

- Każda warstwa to sieć prosta
- Każda warstwa może mieć inny zbiór wierzchołków i krawędzi (intralayer edges)
- Mogą występować relacje pomiędzy warstwami (interlayer edges)

Sieć sieci (Network of networks)

- Każda warstwa to sieć prosta
- Mogą być różne typy wierzchołków na każdej warstwie (multimodal)
- Różne typy relacji w ramach warstwy
- Różne typy relacji pomiędzy warstwami

Sieci teporalne (Temporal Network)

- Sieć uwzględniając a czas i uwzględnia ewolucję sieci
- Agregacja do "okien czasowych" (time frames, time windows, snapshots)
- Każde okno to sieć agregująca relacje z zadanego okresu
- Mogą być postrzegana jako sieć wielowarstwowa

Sieci temporalne (Temporal Network)

- a) Oknasąsiadujące
- b) Okna nachodzące
- c) Okna rozszerzające się
- d) Okna sąsiadujące z przerwą
- e) Mieszane

Sieci teporalne (Temporal Network)

- Sieć uwzględniając a czas i uwzględnia ewolucję sieci.
- Przetwarzane jako strumień danych bez agregacji do "klasycznej" sieci

Następne laboratorium

- Jeżeli w trakcie laboratorium chcecie używać własnego sprzętu proszę upewnić się że macie:
 - a) Działające środowisko do programowania w Pythonie wraz z biblioteką NetworkX i zależnymi (https://networkx.org/)
 - b) Działające środowisko do programowania w R wraz z biblioteką igraph i zależnymi (https://igraph.org/)

- Można także wcześniej pobrać ze strony http://konect.cc/networks/
 - Sieć http://konect.cc/networks/radoslaw-email/

Pytania

