Standard 8K x 8 SRAM

Features

☐ 8192 x 8 bit static CMOS RAM ¬ 70 ns Access Times Common data inputs and outputs ☐ Three-state outputs ☐ Typ. operating supply current 70 ns: 10 mA ☐ Standby current: < 2 μ A at $T_a \le 70$ °C Data retention current at 2 V: < 1 μA at T_a ≤ 70 °C ☐ TTL/CMOS-compatible Automatic reduction of power dissipation in long Read or Write ☐ Power supply voltage 5 V ☐ Operating temperature ranges: 0 to 70 °C -40 to 85 °C -40 to 125 °C QS 9000 Quality Standard ☐ ESD protection > 2000 V (MIL STD 883C M3015.7) ☐ Latch-up immunity > 100 mA ☐ Packages: PDIP28 (600 mil)

Description

The U6264B is a static RAM manufactured using a CMOS process technology with the following operating modes:

- Read Standby
- Write Data Retention

The memory array is based on a 6-transistor cell.

The circuit is activated by the rising edge of E2 (at E1 = L), or the falling edge of E1 (at E2 = H). The address and control inputs open simultaneously. According to the information of W and G, the data inputs, or outputs, are active. In a Read cycle, the data outputs are activated by the falling edge of \overline{G} , afterwards the data word read will be available at the outputs DQ0 -DQ7. After the address change, the data outputs go High-Z until the new read information is available. The data outputs have no preferred state. If the memory is driven by CMOS levels in the active state, and if there is no change of the

address, data input and control signals \overline{W} or \overline{G} , the operating current (at $I_O = 0$ mA) drops to the value of the operating current in the Standby mode. The Read cycle is finished by the falling edge of \overline{E} 2 or \overline{W} , or by the rising edge of \overline{E} 1, respectively.

Data retention is guaranteed down to 2 V. With the exception of E2, all inputs consist of NOR gates, so that no pull-up/pull-down resistors are required. This gate circuit allows to achieve low power standby requirements by activation with TTL-levels too.

If the circuit is inactivated by E2 = L, the standby current (TTL) drops to 150 μ A typ.

Pin Configuration

SOP28 (330 mil)

Pin Description

Signal Name	Signal Description
A0 - A12	Address Inputs
DQ0 - DQ7	Data In/Out
E1	Chip Enable 1
E2	Chip Enable 2
G	Output Enable
W	Write Enable
VCC	Power Supply Voltage
VSS	Ground
n.c.	not connected

Block Diagram

Truth Table

Operating Mode	E1	E2	w	G	DQ0 - DQ7	
Standby/not selected	* L * * High-2		High-Z			
Standby/flot selected	Н	*	*	*	High-Z	
Internal Read	L	Н	Н	Н	High-Z	
Read	L	Н	Н	L	Data Outputs Low-Z	
Write	L	Н	L	*	Data Inputs High-Z	

^{*} H or L

Characteristics

All voltages are referenced to $V_{SS} = 0 \text{ V (ground)}$.

All characteristics are valid in the power supply voltage range and in the operating temperature range specified. Dynamic measurements are based on a rise and fall time of ≤ 5 ns, measured between 10 % and 90 % of V_I , as well as input levels of $V_{IL} = 0$ V and $V_{IH} = 3$ V. The timing reference level of all input and output signals is 1.5 V, with the exception of the t_{dis} -times, in which cases transition is measured \pm 200 mV from steady-state voltage.

Absolute Maximum Ratings ^a		Symbol	Min.	Max.	Unit	
Power Supply Voltage		V _{CC}	-0.3	7	V	
Input Voltage		V _I	-0.3	V _{CC} + 0.5 ^b	V	
Output Voltage		Vo	-0.3	V _{CC} + 0.5 ^b	V	
Power Dissipation		P _D	-	1	W	
Operating Temperature	C-Type K-Type A-Type	T _a	0 -40 -40	70 85 125	°C °C °C	
Storage Temperature	C/K-Type A-Type	T _{stg}	-55 -65	125 150	°C °C	
Output Short-Circuit Curre at V _{CC} = 5 V and V _O = 0 V		I _{os}		100	mA	

^a Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability

^c Not more than 1 output should be shorted at the same time. Duration of the short circuit should not exceed 30 s.

Recommended Operating Conditions	Symbol	Conditions	Min.	Max.	Unit
Power Supply Voltage	V _{CC}		4.5	5.5	V
Data Retention Voltage	V _{CC(DR)}		2.0		V
Input Low Voltage d	V _{IL}		-0.3	0.8	V
Input High Voltage	V _{IH}		2.2	V _{CC} + 0.3	V

d -2 V at Pulse Width 10 ns

^b Maximum voltage is 7 V

U6264B

Electrical Characteristics	Symbol	Conditions		Min.	Max.	Unit
Supply Current - Operating Mode	I _{CC(OP)}	V _{CC} V _{IL} V _{IH} t _{cW}	= 5.5 V = 0.8 V = 2.2 V = 70 ns		55	mA
Supply Current - Standby Mode (CMOS level)	I _{CC(SB)}	V_{CC} $V_{\overline{E1}} = V_{E2}$ or V_{E2} C-Type K-Type A-Type	= 5.5 V = V _{CC} - 0.2 V = 0.2 V		2 5 100	μΑ μΑ μΑ
Supply Current - Standby Mode (TTL level)	I _{CC(SB)1}	$V_{CC} V_{\overline{E1}} = V_{E2}$ or V_{E2}	= 5.5 V = 2.2 V = 0.8 V		3	mA
Supply Current - Data Retention Mode	I _{CC(DR)}	$V_{CC(DR)}$ $V_{\overline{E1}} = V_{E2}$ or V_{E2} C-Type K-Type A-Type	= 2 V = V _{CC(DR)} - 0.2 V = 0.2 V		1 3 50	μΑ μΑ μΑ
Output High Voltage	V _{OH}	V _{CC}	= 4.5 V = -1.0 mA	2.4		V
Output Low Voltage	V _{OL}	I _{OH} V _{CC} I _{OL}	= 4.5 V = 3.2 mA		0.4	V
Output High Current	Іон	V _{CC} V _{OH}	= 4.5 V = 2.4 V		-1	mA
Output Low Current	I _{OL}	V _{OL}	= 4.5 V = 0.4 V	3.2		mA
Input Leakage Current High	I _{IH}	V _{CC} V _{IH} C/K-Type A-Type	= 5.5 V = 5.5 V	- -	1 2	μΑ μΑ
Low	I _{IL}	V _{CC} V _{IL} C/K-Type A-Type	= 5.5 V = 0 V	-1 -2	- -	μΑ μΑ
Output Leakage Current High at Three-State Outputs	l _{OHZ}	V _{CC} V _{OH} C/K-Type A-Type	= 5.5 V = 5.5 V	- -	1 2	μΑ μΑ
Low at Three-State Outputs	l _{OLZ}	V _{CC} V _{OL} C/K-Type A-Type	= 5.5 V = 0 V	-1 -2	- -	μΑ μΑ

Syr	mbol			
Alt.	IEC	Min.	Max.	Unit
t _{LZ}	t _{t(QX)}	5	10	ns
t _{wc}	t _{cW} t _{cR}	70 70		ns ns
t _{ACE} t _{OE} t _{AA}	t _{a(E)} t _{a(G)} t _{a(A)}	- - -	70 40 70	ns ns ns
t _{WP}	t _{w(W)} t _{w(E)}	50 65		ns ns
t _{AS} t _{CW} t _{WP}	$\begin{array}{c} t_{su(A)} \\ t_{su(E)} \\ t_{su(W)} \\ t_{su(D)} \end{array}$	0 65 50 35		ns ns ns ns
t _{DH} t _{AH}	t _{h(D)}	0		ns ns
t _{OH}	t _{v(A)}	5		ns
t _{HZCE} t _{HZWE}	t _{dis(E)}	0 0 0	25 30 25	ns ns ns
	twc tace toe take tow twp tcw tach tach take tow twp take toh take toh take toh take toh take take take take take take take take	twc tcw ta(A) twp tw(B) tas taken ta(B) taken ta(B) taken ta(B) taken ta(B) taken ta(C) taken	Alt. IEC tLZ tt(QX) 5 tWC tRC tcW 70 70 70 tACE tOE ta(E) ta(E) to E ta(E) ta	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Data Retention Mode E1-Controlled

Data Retention Mode E2-Controlled

 $V_{CC(DR)} \geq 2 \ V$

$$\begin{split} &V_{E2(DR)} \geq V_{CC(DR)} \text{ - } 0.2 \text{ V or } V_{E2(DR)} \leq 0.2 \text{ V} \\ &V_{CC(DR)} \text{ - } 0.2 \text{ V} \leq V_{E1(DR)} \leq V_{CC(DR)} \text{ + } 0.3 \text{ V} \end{split}$$

Chip Deselect to Data Retention Time t_{DR} : min 0 ns Operating Recovery Time t_{rec} : min t_{cR}

-E2

0.8 V

Test Configuration for Functional Check

 $^{^{\}text{e}}$ In measurement of $t_{\text{dis}(E)},\,t_{\text{dis}(W)},\,t_{\text{dis}(G)}$ the capacitance is 5 pF.

Capacitance	Conditions	Symbol	Min.	Max.	Unit
Input Capacitance	$V_{CC} = 5.0 \text{ V}$ $V_{I} = V_{SS}$	C _I		8	pF
Output Capacitance	f = 1 MHz T _a = 25 °C	Co		10	pF

All pins not under test must be connected with ground by capacitors.

Ordering Code

Read Cycle 1 (during Read cycle: $\overline{E1} = \overline{G} = V_{IL}$, $E2 = \overline{W} = V_{IH}$)

Read Cycle 2 (during Read cycle: $\overline{W} = V_{IH}$)

Write Cycle 1 (W-controlled)

Write Cycle 2 (E1-controlled)

Write Cycle 3 (E2-controlled)

The information describes the type of component and shall not be considered as assured characteristic. Terms of delivery and rights to change design reserved.

LIFE SUPPORT POLICY

ZMD products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the ZMD product could create a situation where personal injury or death may occur. Components used in life-support devices or systems must be expressly authorized by ZMD for such purpose.

LIMITED WARRANTY

The information in this document has been carefully checked and is believed to be reliable. However Zentrum Mikroelektronik Dresden AG (ZMD) makes no guarantee or warranty concerning the accuracy of said information and shall not be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon it. The information in this document describes the type of component and shall not be considered as assured characteristics.

ZMD does not guarantee that the use of any information contained herein will not infringe upon the patent, trademark, copyright, mask work right or other rights of third parties, and no patent or licence is implied hereby. This document does not in any way extent ZMD's warranty on any product beyond that set forth in its standard terms and conditions of sale.

ZMD reserves terms of delivery and reserves the right to make changes in the products or specifications, or both, presented in this publication at any time and without notice.