Md: Israil Hosen

Roll: 2010876110

Neural Network and Deep Learning Assignment-2

[Code link]

(A) Effect of Different Types of Activation Functions

Figure 1: Output of effect on different types activation function

(B). Classification of CNN Architectures Based on Convolution Kernel Types

Model	Kernel Types Used
VGG16	Regular Kernel
VGG19	Regular Kernel
ResNet50	Regular Kernel, Pointwise Kernel (1×1 conv)
InceptionV3	Regular Kernel, Pointwise Kernel (1×1 conv)
Xception	Depthwise Separable Kernel, Pointwise Kernel
MobileNet	Depthwise Separable Kernel, Pointwise Kernel
DenseNet121	Regular Kernel, Pointwise Kernel (1×1 conv)
EfficientNetB1	Modified Depthwise Separable Kernel, Pointwise Kernel
NASNetMobile	Regular Kernel, Depthwise Separable Kernel, Pointwise Kernel
NASNetLarge	Regular Kernel, Depthwise Separable Kernel, Pointwise Kernel

Table 1: Kernel Types Used in Popular Pretrained CNN Models

(C). Understanding Layer-wise Feature Map Representation in ResNet50

Layer Name Type Input Shape Output Shape Description conv1 Conv2D $(7 \times 7, \text{ stride } 2)$ $224 \times 224 \times 3$ $112{\times}112{\times}64$ Captures low-level features like edges and blobs MaxPool $(3\times3, \text{ stride } 2)$ $112 \times 112 \times 64$ $56 \times 56 \times 64$ Reduces resolution while conv1_pool preserving important edges Residual block (3 layers) $56 \times 56 \times 64$ conv2_x $56{\times}56{\times}256$ Captures simple textures and color blobs Extracts $conv3_x$ Residual block (4 layers) $56 \times 56 \times 256$ $28{\times}28{\times}512$ more complex shapes and patterns Residual block (6 layers) $28 \times 28 \times 512$ $14{\times}14{\times}1024$ Encodes object parts and $conv4_x$ mid-level patterns conv5_x Residual block (3 layers) $14 \times 14 \times 1024$ $7 \times 7 \times 2048$ High-level abstraction; object-like patterns Global Average Pooling $7 \times 7 \times 2048$ $1 \times 1 \times 2048$ Reduces to 1 vector per avg_pool channel (global descriptor) Dense Layer 2048 20 Final classification layer fc (classifier head)

Table 2: Feature Map Summary of Key Layers in ResNet50