

LES SYSTÈMES D'EXPLOITATION

CHAPITRE 2: GESTION DES E/S

Enseignante: Yosra DIDI

Plan du cours

- Introduction
- Périphériques d'E/S
- Logiciels d'E/S: Moniteur, Pilote, Contrôleurs.
- Modes d'E/S: programmées, par interruptions, par accès direct à la mémoire.

Introduction

La gestion des E/S consiste en:

■ La gestion du transfert d'information entre le couple (unité centrale microprocesseur — mémoire) et l'extérieur (les périphériques locales ou distantes).

Gestionnaire des Entrées/Sorties

Périphériques d'E/S

Périphériques d'E/S: Les différents composants de liaison

- Les ports: (ports qui sont des registres connectés à des périphériques)
- Port série: capable de supporter beaucoup d'applications, n'utilise que quelques signaux.

Les signaux sont transmis les uns après les autres sur les fils.

- Port parallèle: L'appellation parallèle reflète la méthode de communication entre l'ordinateur et le périphérique (imprimante) qui s'opère simultanément sur plusieurs connexions (8 pins sont utilisés pour le transfert de données).

Périphériques d'E/S: Les différents composants de liaison(2)

> Les bus:

- Bus extérieurs (Bus d'extension(Front side Bus)): est un bus de communication plus lent, qui permet une connexion avec les périphériques extérieurs (USB, Série, disques, lecteurs...).
- Bus intérieurs (Bus système): il relie le microprocesseur à la mémoire vive.

Bus de commande

Périphériques d'E/S: Les différents composants de liaison (3)

Les contrôleurs:

Il s'agit d'un:

- O Composant électronique qui agit sur le bus, le port, le périphérique
- O Il contient un processeur, un microcode, un volume de mémoire privée.
- Le composant intermédiaire de connexion entre le périphérique et l'ordinateur.
- Transforme les signaux du périphérique en signaux adaptes a l'UC et viceversa.
- o Il peut gérer un ou plusieurs périphériques.
 - ⇒ Les actions du processeur vers le périphérique s'opéreront alors par l'intermédiaire de ce contrôleur.

Périphériques d'E/S: Les types des périphériques

Selon le type et le format des données, on distingue deux catégories:

* Périphériques par caractères:

- ✓ L'accès à l'information caractère par caractère.
- ✓ L'envoi et la réception de l'information sous forme d'un flux de caractères.

Périphériques par blocs:

✓ L'accès à l'information que par blocs et chaque bloc possède une adresse (Exemple » le disque)

Périphériques d'E/S: Les types des périphériques

Device	Input/Output	Data rate	Туре
Keyboard	Input	100 bps	char
Mouse	Input	3800 bps	char
Voice input/output	Input/Output	264 Kbps	block burst
Sound input	Input	3 Mbps	block burst or steady
Scanner	Input	3.2 Mbps	block burst
Laser printer	Output	3.2 Mbps	block burst
Sound output	Output	8 Mbps	block burst or steady
Flash drive	Storage	480-800 Mbps read;	block burst
USB	Input or output	80 Mbps write 1.6-480 Mbps	block burst
Network/Wireless LAN	Input or output	11-100 Mbps	block burst
Network/LAN	Input or output	100-1000 Mbps	block burst
Graphics display	Output	800-8000 Mbps	block burst or steady
Optical disk	Storage	4-400 Mbps	block burst or steady
Magnetic tape	Storage	32-90 Mbps	block burst or steady
Magnetic disk	Storage	240-3000 Mbps	block burst

- →Il est nécessaire d'assurer une compatibilité entre le format de données et les vitesses de transfert du processeur et du périphériques.
- → C'est le rôle du contrôleur du périphérique.

Logiciels d'Entrées/ Sorties

■ En général, on organise les logiciels d'E/S suivant quatre

couches:

- Ce découpage:
- > Sépare les problèmes lies aux matériels;
- Regroupe les commandes pour la présentation à l'utilisateur;
- Permet d'abstraire les numéros de périphériques en noms logiques;
- > Permet de gérer des unités par type(disque)

Logiciels d'Entrées/Sorties: Moniteur

- C'est la partie du SE qui assure la communication entre l'utilisateur et le système:
- → Propose des procédures générales, (écrire sur un écran ou dans un fichier se fait par la même fonction).
- → Réalise le partage des périphériques :
 - Accès exclusif pour une imprimante.
 - > Accès simultané pour un disque.
- → Assure les contrôles pour vérifier la cohérence du traitement demande
 - > prise en charge des défauts périphériques.
 - ➤ Gestion de la mémoire utilisée pour les échanges....

Logiciels d'Entrées/Sorties: Pilote

■ C'est un programme de plus bas niveau;

■ Il est responsable de la gestion d'un type particulier de périphérique;

■ Il est adapté aux signaux que ce type de périphérique émet ou reçoit;

■ Il traite les interruptions et détecte les erreurs.

Logiciels d'Entrées/Sorties: Contrôleur

- Le contrôleur sert d'interface entre le périphérique et le processeur.
- Il reçoit les requêtes du processeur et les transforme en commande pour les périphériques:
 - ✓ Les requêtes: Read, Wrtie.
- Et réciproquement, il envoie les requêtes du périphérique au processeur.

Logiciels d'Entrées/Sorties: Contrôleur

- Les principales composantes d'un contrôleur d'E/S:
 - ✓ La mémoire tampon pour des données (sous formes de registres),
 - ✓ Une logique de contrôle pour décoder l'adresse et les lignes de contrôles,
 - ✓ Une ou plusieurs interfaces avec un ou plusieurs périphériques

Logiciels d'Entrées/Sorties: Contrôleur

- Les contrôleurs d'E/S ont plusieurs fonctions:
 - ✓ Lire ou Ecrire des données du périphérique;
 - ✓ Lire ou Ecrire des données du processeur.
 - ✓ Contrôler le périphérique et lui faire exécuter des séquences de taches.
 - ✓ Tester le périphérique et détecter des erreurs.
 - ✓ Mettre certaines données du périphérique ou du processeur en mémoire tampon afin d'ajuster les vitesses de communications.

Modes d'Entrées/Sorties

- ➤ Il existe plusieurs techniques pour communiquer à partir du processeur vers un périphérique à travers un contrôleur E/S
- Les trois principales techniques sont:
 - ✓ E/S programmées
 - ✓ E/S par interruptions
 - ✓ E/S par accès direct à la mémoire (DMA)

Modes d'Entrées/Sorties: Programmées

■ Le processeur contrôle directement les opérations d'E/S en envoyant des commandes spécifiques aux périphériques.

Utilisé pour des tâches simples où le contrôle direct est nécessaire.

Exemples: Lecture/écriture de données sur des périphériques simples, comme des LEDs ou des boutons.

Modes d'Entrées/Sorties: Par interruptions

■ Les périphériques envoient des signaux d'interruption au processeur lorsqu'ils sont prêts à échanger des données.

■ Le processeur peut continuer à exécuter d'autres tâches et réagir aux interruptions seulement quand nécessaire.

Exemples: Clavier, souris, réseaux où l'E/S n'est pas continue mais par événements.

Modes d'Entrées/Sorties: Contrôleur DMA

- ☐ Le DMA permet aux unités d'échanges d'accéder à la RAM sans intervention du processeur.
- Utilisation d'un processeur spécialisé pour accès mémoire

Contrôleur DMA (direct-memory-access)

- ☐ Les périphériques gérés par le DMA sont:
 - > Contrôleur de la disquette
 - > Contrôleur du disque dur
 - > Carte son
 - > Imprimante

Modes d'Entrées/Sorties: Contrôleur DMA

- ☐ Configuration du DMA par le CPU
 - 1. Pointeurs vers **source** (adresse début) et **destination** (adresse destination) du transfert pour chaque dispositif
 - 2. Nombre d'octets à transférer
- ☐ Déchargement du processeur de toute E/S.
- ☐ Le processeur n'a plus qu' à initialiser l'opération en utilisant le contenu des registres DMA.

Modes d'Entrées/Sorties: Contrôleur DMA

- 1. Le pilote du périphérique est exécuté
- Le nombre d'octets à transférer et l'adresse en mémoire principale sont déterminés.
- 2. Processeur initialise le transfert
 - initialiser le contenu des registres du DMA.
- 3. Le contrôleur du disque initialise un transfert DMA
 - →il écrit un bloc de commandes DMA en mémoire.
- 4. A la fin du transfert, le contrôleur DMA interrompt le processeur.

The end