

What fraction p of the balls in the urn is orange?

What fraction p of the balls in the urn is orange?

A random selection: X

What fraction p of the balls in the urn is orange?

A random selection: X

• with probability p = 101/360 = 0.28

What fraction p of the balls in the urn is orange?

A random selection: X

- with probability p = 101/360 = 0.28
- with probability q = 259/360 = 0.72

The toss of a coin

Fixed but unknown proportion p

The toss of a coin

Fixed but unknown proportion p

Fixed but unknown proportion q = 1 - p

Bernoulli trial with success probability p

 $X \sim Bernoulli(p)$

$$X = \begin{cases} 1 & \text{with probability p,} \\ 0 & \text{with probability q.} \end{cases}$$

Random sample: repeated independent trials

Random sample: repeated independent trials

X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X9	X ₁₀	X ₁₁	X_{12}
0	1	1	0	0	0	0	1	0	0	1	0

Random sample: repeated independent trials

X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X9	X ₁₀	X ₁₁	X ₁₂
0	1	1	0	0	0	0	1	0	0	1	0

type 1 in sample: 4

frequency of type 1 in sample: 4/12 = 1/3

Random sample: repeated independent trials

X_1	X_2	X_3	X_4	X_5	X_6	X ₇	X ₈	X 9	X ₁₀	X ₁₁	X ₁₂
0	1	1	0	0	0	0	1	0	0	1	0

type 1 in sample: 4 frequency of type 1 in sample: 4/12 = 1/3

Are the subpopulation proportions in the sample representative of the proportions in the entire population?

Random sample: repeated independent trials

Are the subpopulation proportions in the sample representative of the proportions in the entire population?

Bernoulli(p) trials:
$$X_1, X_2, ..., X_n = \begin{cases} 1 & \text{with probability p,} \\ 0 & \text{with probability q.} \end{cases}$$

type 1 in sample: 4 frequency of type 1 in sample: 4/12 = 1/3

Random sample: repeated independent trials

 X1
 X2
 X3
 X4
 X5
 X6
 X7
 X8
 X9
 X10
 X11
 X12

 0
 1
 1
 0
 0
 0
 0
 1
 0
 0
 1
 0

type 1 in sample: 4

frequency of type 1 in sample: 4/12 = 1/3

Are the subpopulation proportions in the sample representative of the proportions in the entire population?

Bernoulli(p) trials:
$$X_1, X_2, ..., X_n = \begin{cases} 1 & \text{with probability p,} \\ 0 & \text{with probability q.} \end{cases}$$

Accumulated successes:
$$S_n = X_1 + X_2 + \cdots + X_n$$

Random sample: repeated independent trials

type 1 in sample: 4 frequency of type 1 in sample: 4/12 = 1/3

Are the subpopulation proportions in the sample representative of the proportions in the entire population?

Bernoulli(p) trials:
$$X_1, X_2, ..., X_n = \begin{cases} 1 & \text{with probability p,} \\ 0 & \text{with probability q.} \end{cases}$$

Accumulated successes:
$$S_n = X_1 + X_2 + \cdots + X_n$$

Is $\frac{S_n}{n}$ a good approximation to p?

Enter the binomial

Bernoulli(p) trials:
$$X_1, X_2, ..., X_n = \begin{cases} 1 & \text{with probability p,} \\ 0 & \text{with probability q.} \end{cases}$$

Accumulated successes: $S_n = X_1 + X_2 + \cdots + X_n$

Is $\frac{S_n}{n}$ a good approximation to p?