Lecture Summary: Correlation Coefficient and Scatter Plots

Source: Lecture 3.6.pdf

Key Points

• Motivation:

- Covariance measures the relationship between two random variables, but its magnitude depends on the scale of the variables, making it challenging to interpret.
- The correlation coefficient, $\rho(X,Y)$, normalizes covariance, providing a dimensionless measure that is easier to interpret.

• Definition of Correlation Coefficient:

- Formula:

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma(X)\sigma(Y)},$$

where $\sigma(X)$ and $\sigma(Y)$ are the standard deviations of X and Y.

- Properties:
 - * $\rho(X,Y) \in [-1,1].$
 - * $\rho(X,Y) = 1$: Perfect positive correlation (linear relationship where Y = aX + b with a > 0).
 - * $\rho(X,Y) = -1$: Perfect negative correlation (linear relationship where Y = aX + b with a < 0).
 - * $\rho(X,Y) = 0$: No linear relationship between X and Y (uncorrelated).

• Interpreting Correlation:

- $-\rho$ summarizes the trend between two variables:
 - * Positive values: As X increases, Y tends to increase.
 - * Negative values: As X increases, Y tends to decrease.
 - * Near zero: No observable trend between X and Y.
- If $|\rho(X,Y)| = 1$, Y is a linear function of X.

• Scatter Plots for Visualizing Correlation:

- A scatter plot represents paired observations (X, Y) as points in a 2D space.
- Patterns in the scatter plot indicate the type and strength of the correlation:
 - * Tight linear alignment: $\rho \approx \pm 1$.
 - * Broad linear trend: Moderate correlation $(0 < |\rho| < 1)$.
 - * Random scatter: $\rho \approx 0$.
- Example:
 - * Case 1: Points are widely spread, $\rho \approx 0$.
 - * Case 2: Clear positive trend, $\rho > 0$ but not close to 1.
 - * Case 3: Almost perfect positive correlation, $\rho \approx 1$.

- * Case 4: Clear negative trend, $\rho < 0$ but not close to -1.
- * Case 5: Strong negative correlation, $\rho \approx -1$.

• Examples of Correlation Coefficient:

- Joint PMF of X, Y is used to compute $\rho(X, Y)$ systematically.
- Variance and covariance calculations lead to:

$$\rho(X,Y) = \frac{\mathrm{Cov}(X,Y)}{\sqrt{\mathrm{Var}(X) \cdot \mathrm{Var}(Y)}}.$$

- Example calculations demonstrate scenarios with positive, negative, and zero correlations.

• Applications of Scatter Plots and Correlation:

- Scatter plots help identify potential relationships in large datasets, such as sports statistics (e.g., IPL cricket data).
- Correlation quantifies trends for further analysis or modeling.

Simplified Explanation

Correlation Coefficient (ρ): Measures the strength and direction of a linear relationship between two variables: - 1: Perfect positive correlation. - -1: Perfect negative correlation. - 0: No linear correlation.

Scatter Plots: Visualize paired data to detect patterns: - Tight alignment: Strong correlation. - Random scatter: Weak or no correlation.

Example: For X, Y with Cov(X, Y) = -0.5, $\sigma(X) = 1$, and $\sigma(Y) = 2$:

$$\rho(X,Y) = \frac{-0.5}{1 \cdot 2} = -0.25.$$

Conclusion

In this lecture, we:

- Defined and interpreted the correlation coefficient.
- Demonstrated scatter plots as a tool for visualizing relationships.
- Discussed practical applications and examples of correlation in data analysis.

Correlation is a powerful tool for summarizing trends and relationships in multivariable datasets.