

CS/ECE/EEE/INSTR F215:Digital Design

Lecture 34: ASM_3 *Sat, 04 Dec 2021*

BITS Pilani

Hyderabad Campus

Dr. R. N. Ponnalagu, EEE

Mistakes

Easy to judge when others do it Difficult to realize when we do it.

Never Lose Heart

Remember

The best view comes

after the hardest climb

BINARY MULTIPLIER

- To Multiply two unsigned binary numbers.
- Sequential Multiplier
- Uses One adder and a shift register.
- Less hardware but takes more clock cycles to complete the operation
- The process consists of successively adding and shifting copies of the multiplicand.

The product obtained from the multiplication of two binary numbers of n bits each can have up to 2 n bits.

multiply the two binary numbers 10111 and 10011:

Block diagram of Sequential Multiplier

Register configuration of the data path unit

- ➤ Multiplicand in Register B
- ➤ Multiplier in register Q

Control

logic

- > Partial product formed in register A and stored in A and Q
- ➤ Parallel adder adds the contents of register B to A
- > C Flip-flop stores the carry resulting from addition
- Counter P initially set to hold a binary number equal to the number of bits in the multiplier
- Counter P is decremented after formation of each partial product
- When Counter is zero, the product is formed in the double register A and Q and the process stops

- ➤ Initial state S-idle until start signal (external input) is 1.
- ➤ After Ready signal from controller Machine starts to perform multiplication.
- Sum of A and B forms the 'n' most significant bits of the partial product which is transferred to A from parallel adder
- > Output carry after addition (whether a 0 or 1) is transferred to C flip-flop
- The partial formed in register A and stored in A and Q are shifted to right
- LSB of A is shifted to MSB of Q, carry C is shifted into MSB of A and a 0 is shifted into C FF
- After shifting right, one bit of the partial product is transferred into Q while the multiplier bits in Q are shifted one position right
- LSB of register Q, Q[0] holds the bit of the multiplier that must be inspected next
- \triangleright Control logic determines whether to add or not on the basis of Q[0].
- > Q[0] from multiplier register & Zero signal from the counter P are status signals for control unit
- ➤ Based on Start, Q[0] and Zero signal controller generates five output control signals, Ready, Load_regs, Add_regs, Shift_regs, Decr_P

➤ Based on Start, Q[0] and Zero signal controller generates five output control signals, Ready, Load_regs, Add_regs, Shift_regs, Decr_P

Numerical Example For Binary Multiplier

Multiplicand $B = 10111_2 = 17_H = 23_{10}$

Multiplier in Q

 $Q_0 = 1$; add B

First partial product

Shift right CAQ

 $Q_0 = 1$; add B

Second partial product

Shift right CAQ

 $Q_0 = 0$; shift right CAQ

 $Q_0 = 0$; shift right CAQ

 $Q_0 = 1$; add B

Fifth partial product

Shift right CAQ

Final product in $AQ = 0110110101_2 = 1b5_H$

Multiplier	Q =	100112	= 13 _H =	19 ₁₀
	-	<u> </u>	• • • • • • • • • • • • • • • • • • • •	

c	Α	Q	P
0	00000	10011	101
	10111		
(0)	10111		100
0	>01011	→1100(l) -	has gone
	10111		
12	>00010		011
$\cdot (0)$		01100	
0	>01000	10110	010
0	>00100	>0101(1)	001
	<u>10111</u>		
0	11011		

10101

000

01101

Zero = 1Start = 0Old sow 1 S_idle S_{add} _shift Start = 1Zero = 0State assignment Binary wooll Gray woll one hot assisment

3 States Start 200 OLO

one-hot Gray Binary 35,5 00 L 3 States 3 Ftg 100 (0) 12 states specialized methods for control logic degism 12 FFS 4 bts

) somerce register en deloder 2) one Experstate > one hot assignment

Sequence Register & de loder

Asmchart 3 states 3i/ps

Binary state assistment 00,01,10

2 ffs for the Register and 2 to 4 line de loder

Next State G, = Dh,
when Present state is or > s add Next State Go = S DGO

DGO = S idle & Start + S Shift & Zero = O

To Start + T2 zero

FF DhizTi moore type State Table for Control Circuit Present Next 0/1 State State Inputs **Present-State** Q[0]Symbol Start G₁ Zero State is X X 0 0 S_idle S idle Sid6 S add $\begin{pmatrix} \mathbf{X} \\ \mathbf{0} \end{pmatrix}$ S_add X S_shift X S_shift X 0 10 Ready delr-P 2 10 4 Shift hegs Gro D devolet

		ent ite	Inputs			Next State		-				
Present-State Symbol	G ₁	Go	Start	Q[0]	Zero	G ₁	Go	Ready	Load_regs	Decr_P	Add_regs	Shift_regs
S_idle	0	0	0	X	X	0	0	1	0	0	0	0
S_idle	0	0	1	X	X	0	\bigcirc	1	$\overline{1}$	0	0	0
S_add	0	1	X	0	X	1	0	0	0	1	0	0
S_add	0	1	X	1	X	1	0	0	0	1	(1)	0
S_shift	1	0	X	X	(0)	0		0	0	0	0	1
S_shift	1	0	X	X	1	0	0	0	0	0	0	1

Dho = S-idle Start +

Shift Zero

= To Start + Te Zero

Load-Regs = State > 3-idle

load-Regs = To Start

load-Regs = To Start

Add-Regs = State S-ord & QCOJ=1

Add-Regs = T, QCOJ

Ready = To

Devr-P= T1

Shift, Regs=T2

Dhi = Ti

one hot design
one FFI

That by seeing 3 FFS

State den we can
State den we controller

Jesign the bond hot design
in case of one hot design

one FF I state

3 FFS Sidle Solo

V 001

3 DFFS 60 67 & 42.

