

ICLR 22'

LoRA: Low-Rank Adaptation of Large Language Models

Presented by

Tianyu Zhang | zhtianyu@umich.edu

PARAMETER EFFICIENT FINE TUNING FOR LLMS | EECS | ELECTRICAL ENGINEERING | UNIVERSITY OF MICHIGAN

PEFT seeks to adapt and specialize PLMs with changes of a small portion of parameters.

CATEGORIZATION OF PEFT

denote the pre-trained parameters, and represent the well-tuned parameters.

Addition-Based Method

(1) Adapter-based tuning

(2) Prompt-based tuning

Specification-Based Methods

$$\mathbf{Q}^{m,\ell}(\mathbf{x}) = \mathbf{W}_q^{m,\ell}\mathbf{x} + \mathbf{b}_q^{m,\ell}$$

$$\mathbf{K}^{m,\ell}(\mathbf{x}) = \mathbf{W}_k^{m,\ell}\mathbf{x} + \mathbf{b}_k^{m,\ell}$$

$$\mathbf{V}^{m,\ell}(\mathbf{x}) = \mathbf{W}_v^{m,\ell}\mathbf{x} + \mathbf{b}_v^{m,\ell}$$

$$\mathbf{h}_2^{\ell} = \text{Dropout}(\mathbf{W}_{m_1}^{\ell} \cdot \mathbf{h}_1^{\ell} + \mathbf{b}_{m_1}^{\ell})$$

$$\mathbf{h}_3^{\ell} = \mathbf{g}_{LN_1}^{\ell} \odot \frac{(\mathbf{h}_2^{\ell} + \mathbf{x}) - \mu}{\sigma} + \mathbf{b}_{LN_1}^{\ell}$$

$$\mathbf{h}_4^{\ell} = \text{GELU}(\mathbf{W}_{m_2}^{\ell} \cdot \mathbf{h}_3^{\ell} + \mathbf{b}_{m_2}^{\ell})$$

$$\mathbf{h}_5^{\ell} = \text{Dropout}(\mathbf{W}_{m_3}^{\ell} \cdot \mathbf{h}_4^{\ell} + \mathbf{b}_{m_3}^{\ell})$$

$$\text{out}^{\ell} = \mathbf{g}_{LN_2}^{\ell} \odot \frac{(\mathbf{h}_5^{\ell} + \mathbf{h}_3^{\ell}) - \mu}{\sigma} + \mathbf{b}_{LN_2}^{\ell}$$

Heuristic Specification

$$egin{aligned} oldsymbol{ heta}_{ au} &= oldsymbol{ heta} + oldsymbol{\delta}_{ au}, \ &\min_{oldsymbol{\delta}_{ au}} L(\mathcal{D}_{ au}, f_{ au}, oldsymbol{ heta} + oldsymbol{\delta}_{ au}) + \lambda R(oldsymbol{ heta} + oldsymbol{\delta}_{ au}), \ &L(\mathcal{D}_{ au}, f_{ au}, oldsymbol{ heta}_{ au}) = rac{1}{N} \sum_{n=1}^{N} C\left(f_{ au}(x_{ au}^{(n)}; oldsymbol{ heta}_{ au}), y_{ au}^{(n)}
ight) \ &R(oldsymbol{ heta} + oldsymbol{\delta}_{ au}) = \|oldsymbol{\delta}_{ au}\|_{0} = \sum_{i=1}^{a} \mathbb{1}\{oldsymbol{\delta}_{ au,i}
eq 0\} \end{aligned}$$

Learn the Specification

Reparameterization-Based Method

What is Intrinsic Dimensionality?

The intrinsic dimension of an objective function measures the minimum number of parameters needed to reach satisfactory solutions to the respective objective

- Pre-training implicitly reduces the intrinsic dimension.
- Larger models, after a certain number of training iterations, tend to exhibit lower intrinsic dimensions.
- Simpler downstream tasks correspond to lower intrinsic dimensions.
- Lower intrinsic dimensionality is associated with better generalization performance.

MOTIVATION1: LOW RANK

The learned over-parametrized models in fact reside on a low intrinsic dimension. We hypothesize that the change in weights during model adaptation also has a low "intrinsic rank".

MOTIVATION2: COMPARISION

- There is no direct ways to bypass the extra compute in **adapter** layers.
- Prefix tuning is difficult to optimize
 and that its performance changes non monotonically in trainable parameters.
- Reserving a part of the sequence length for adaptation reduces the sequence length available to process a downstream task.

METHODOLOGY

Only adapting the **attention weights** for downstream tasks and freeze the MLP modules both for simplicity and parameter-efficiency.

	# of Trainable Parameters = 18M						
Weight Type Rank r	$\left \begin{array}{c}W_q\\8\end{array}\right $	W_k 8	$W_v \\ 8$	W_o 8	W_q, W_k 4	W_q, W_v 4	W_q, W_k, W_v, W_o
WikiSQL (±0.5%) MultiNLI (±0.1%)					71.4 91.3	73.7 91.3	73.7 91.7

EXPERIMENTS

WHAT IS THE OPTIMAL RANK

	Weight Type	r=1	r = 2	r = 4	r = 8	r = 64
WikiSQL(±0.5%)	$\left \begin{array}{c} W_q \\ W_q, W_v \\ W_q, W_k, W_v, W_o \end{array}\right $	68.8 73.4 74.1	69.6 73.3 73.7	70.5 73.7 74.0	70.4 73.8 74.0	70.0 73.5 73.9
MultiNLI (±0.1%)	$ \begin{vmatrix} W_q \\ W_q, W_v \\ W_q, W_k, W_v, W_o \end{vmatrix} $	90.7 91.3 91.2	90.9 91.4 91.7	91.1 91.3 91.7	90.7 91.6 91.5	90.7 91.4 91.4

HOW DOES THE ADAPTION COMPARED TO W | ELCS ELECTRICAL ENGINEERING UNIVERSITY OF MICHIGAN

		r=4	:	r = 64			
	ΔW_q	W_q	Random	ΔW_q	W_q	Random	
$ U^{\top}W_qV^{\top} _F =$	0.32	21.67	0.02	1.90	37.71	0.33	
$ W_q _F = 61.95$	$ \Delta W_q _F = 6.91$			$ \Delta W_q _F = 3.57$			

FUTURE WORK

- 1. LoRA can be combined with other efficient adaptation methods, potentially providing orthogonal improvement.
- 2. The mechanism behind fine-tuning or LoRA is far from clear how are features learned during pre-training transformed to do well on downstream tasks? We believe that LoRA makes it more tractable to answer this than full fine-tuning.
- 3. We mostly depend on heuristics to select the weight matrices to apply LoRA to.

 Are there more principled ways to do it?
- 4. Finally, the rank-deficiency of the adaption matrix suggests that W could be rank-deficient as well, which can also be a source of inspiration for future works.

A Unified View

POTENTIAL IMPACT OF LORA

QUESTIONS

- 1. What are the different types of PEFT?
- 2. What are the advantages of LORA compared to adapter and prompt tuning?
- 3. (OPEN) Why is LORA considered better for training than prompt tuning?

THANKS!