

第二章 放大电路基础

- 2.1 放大电路概述
- 2.2 基本共射放大电路的工作原理
- 2.3 放大电路的分析方法
- 2.4 放大电路静态工作点的稳定
- 2.5-2.7 基本放大电路分析

2.1 放大电路概述

一、放大的概念(Concept of Amplifying)

Magnifier: 光学中的放大

Lever: 力学中的放大

Transformer: 电学中的放大

一、放大的概念(Concept of Amplifying)

电子学中的放大现象:

扩音器, 手机接听, 收听宇航员从太空报告的声音

供能源

放大的对象: 变化量(幅值和频率)

放大的特征: 信号功率的放大

放大的本质:能量的转换和控制

放大的前提: 不失真

有源元件: 能够控制能量的元件, 如晶体管、场效应管。

(Active Device)

1、放大倍数(Gain): 衡量放大电路的放大能力

电压放大倍数
$$\dot{A}_{uu} = \dot{A}_{u} = \frac{\dot{U}_{o}}{\dot{U}_{i}}$$
 互阻放大倍数 $\dot{A}_{ui} = \frac{\dot{U}_{o}}{\dot{I}_{i}}$ 可究的重点
$$\ddot{A}_{ii} = \dot{A}_{i} = \frac{\dot{I}_{o}}{\dot{I}_{i}}$$
 互导放大倍数 $\dot{A}_{iu} = \frac{\dot{I}_{o}}{\dot{U}_{i}}$

2、输入电阻R_i (Input Resistance): 从放大电路输入端

看进去的等效电阻

 $R_{\rm i} = \frac{U_{\rm i}}{I}$

 $U_{\rm i}$, $I_{\rm i}$ 均为交流有效值

R_i: 衡量放大电路对输入信号影响的程度

问题:对于电压源, R_i 大些好还是小些好?

对于电流源呢?

3、输出电阻R。(Output Resistance): 从放大电路输出端

Ro: 衡量负载接入使输出变化的程度(带负载能力)

问题: R_0 大些好还是小些好?

 R_{i} , R_{o} 也描述了放大电路在相互连接时所产生的相互影响

 R_{i} , R_{o} 会直接或间接影响整个放大电路的放大倍数

- 4、最大不失真输出电压 $U_{\rm omax}$ (Maximum signal swing) 输出基本不失真情况下的最大 $U_{\rm o}$,一般用有效值表示
- 5、通频带f_{BW} (Band width)

电压放大倍数随信号频率变化

6、最大输出功率 $P_{\rm om}$ 和效率 η

 P_{om} :输出基本不失真情况下负载上能获得的最大功率

 η :最大输出功率与电源消耗的功率之比 $\eta = P_{\rm om}/P_{
m V}$

2.2 基本共射放大电路的工作原理

一、电路组成(Components of Amplifier)

_ 晶体管T: 起放大作用 $i_C \approx \beta i_B$, (β>1)

共射放大电路(Common-

Emitter Amplifier): 发射极为输入回路和输出回路公共端

> 输入回路

 u_i : 信号源,被放大的对象

V_{BB}: 保证发射结正偏

 $R_{\rm h}$: 基极偏置电阻,作用?

> 输出回路

 $V_{\rm CC}$: 保证集电结反偏

 R_{c} : 集电极负载电阻,作用?

放大交流量,但必须有直流量!

二、工作状态与静态工作点

静态、静态工作点、动态

- ightharpoonup 静态: $m eta u_i=0$ 时,电路中各处电压、电流都是不变的直流量,称为直流工作状态或静止状态,简称静态。
- 静态工作点:静态时晶体管各电极的直流电流和直流电压常称为静态工作点,简称为Q点(Quiescent point,Q-point)。

Q点: I_{BQ} 、 I_{CQ} 、 I_{EQ} 、 U_{BEQ} 、 U_{CEQ}

ightharpoonup 动态: $\exists u_i \neq 0$ 时,电路中各处的电压、电流便处于交变状态,此时电路处于动态工作状态,简称动态。

静态是动态的基础!

输入回路方程:

$$u_{\rm BE} = (V_{\rm BB} + u_{\rm i}) - i_{\rm B} \cdot R_{\rm b}$$

输出回路方程:

$$u_0 = V_{CC} - i_C \cdot R_c$$

2. 动态分析: $u_i \neq 0$

输入回路方程: $u_{BE} = (V_{BB} + u_i) - i_B \cdot R_b$

输出回路方程: $u_0 = V_{CC} - i_C \cdot R_c$

思考: Q点的设置会影响共射放大电路的正常工作吗?

四、静态工作点的设置及失真分析(Distortion Analysis)

1、为什么要设置静态工作点?

 \triangleright 若输入回路没有 $V_{\rm BB}$,则静态时 $U_{\rm BEO}$ =0

四、静态工作点的设置及失真分析(Distortion Analysis) $i_{ m C}$

四、静态工作点的设置及失真分析(Distortion Analysis)

个周期内全部处于放大状态,波形才不会失真。

五、放大电路的组成原则(Design Rules of an Amplifier)

1. 组成原则

- a. 晶体管工作在放大区且*Q*点合适 电阻及电源的选择合理
- b. 保证交流信号的有效传输

输入回路:输入信号 \rightarrow 发射结 $\rightarrow \Delta i_{\rm B}, \Delta i_{\rm C}$

输出回路: Δi_{C} (Δi_{E}) \rightarrow 输出信号 \rightarrow 负载

- c. 对实用放大电路的要求:
 - · 信号源与放大电路共地
 - · 直流电源种类尽可能少
 - · 静态功耗小 (电路直流功耗小,负载直流功耗尽可能为零)

思考:如何只用一个直流电源 V_{CC} 来设计共射放大电路?

2. 常见的两种共射放大电路

> 直接耦合共射放大电路

直接耦合(Direct Coupled): u_i与放大电路或放大电路与负载直接相连

静态: $u_{\rm I} = 0$, $U_{\rm BEQ} = U_{R_{\rm b1}}$

■ 动态: $u_{\rm I} \rightarrow R_{\rm b1} \rightarrow$ 发射结 $\rightarrow u_{\rm be}$ $\rightarrow i_{\rm b} \rightarrow i_{\rm c} \rightarrow R_{\rm C}, R_{\rm L} \rightarrow u_{\rm o}$

问题:

- $R_{\rm b1}$ 、 $R_{\rm b2}$ 、 $R_{\rm c}$ 作用? 它们可以没有吗?
- 电路有何优点?有何缺点?

2. 常见的两种共射放大电路

> 阻容耦合共射放大电路

阻容耦合(Capacitively Coupled): u_i 与放大电路或放大

 u_i 可放入电路以放入 电路与负载通过电容相连

 $egin{aligned} egin{aligned} R_{\rm L} & \blacksquare & \pmb{\hat{P}}$ 静态: $U_{C_1} = U_{
m BEQ} \ U_{C_2} = U_{
m CEQ} \end{aligned}$

■ 动态: $u_i + U_{C_1} \rightarrow$ 发射结 $\rightarrow i_B, i_C \rightarrow u_O \rightarrow u_o \rightarrow R_L$

问题: C_1 、 C_2 大些好还是小些好? 电路有何优点?有何缺点?

2. 常见的两种共射放大电路

> 直接耦合共射放大电路

> 阻容耦合共射放大电路

	直接耦合	阻容耦合
共同点	信号源与放大电路共地 单电源供电	
不同点	•电阻 R_{b1} 有交流损耗 •负载上有直流损耗 •低频特性好,易于集成	•电容 C_{1} 、 C_{2} 交流损耗很小 •负载上没有直流损耗 •低频特性较差,不易于集成

思考:还能设计出其它电路吗?

讨论1:如何用PNP型管组成共射放大电路

> 直接耦合

> 阻容耦合

问题:

- •输出信号 u_0 与输入信号 u_i 反相吗?
- •若输出信号出现顶部失真,则是饱和失真还是截止失真?
- •若出现饱和失真,如何消除?截止失真呢?
- •减小 $R_{\rm b1}$ 易出现何种失真?减小 $R_{\rm b2}$ 呢?增大 $R_{\rm c}$ 呢?