Apellidos:		
Nombre:		
Convocatoria:		
DNI:		

Examen PED febrero 2008 Modalidad 0

Normas: •

- La entrega del test <u>no</u> corre convocatoria.
- Tiempo para efectuar el test: 30 minutos.
- Una pregunta mal contestada elimina una correcta.
- Las soluciones al examen se dejarán en el campus virtual.
- Una vez empezado el examen no se puede salir del aula hasta finalizarlo.
- En la **hoja de contestaciones** el verdadero se corresponderá con la **A**, y el falso con la **B**.

21. M 210 30 40 40 210 20 210 210 210 210 210 210 210 210				
	V	F		
La complejidad logarítmica aparece en algoritmos que descartan muchos valores (generalmente la mitad) en un único paso.		Ц	1	V
Dada la sintaxis de la función $IC(lista, item) \rightarrow lista$, que inserta un elemento a la cabeza de la lista pasada como parámetro y $crear() \rightarrow lista$, que crea una lista vacía. La siguiente secuencia: $IC(IC(IC(crear(),a),b),c)$, daría como resultado una lista con los elementos en este orden: $a \rightarrow b \rightarrow c$, donde a es el primer elemento de la lista			2	F
Dentro de la especificación algebraica de los números naturales definimos la sintaxis de la función F como: F : natural \rightarrow BOOL, y su semántica como: F (cero)=TRUE, F (suc(cero))= F ALSE, F (suc(suc(x)))= F (x). Para el número natural x =35, la función F devolvería TRUE.			3	F
En C++, si un objeto se sale de ámbito entonces se invoca automáticamente al destructor de ese objeto.			4	V
En C++, el constructor de copia recibe como argumento un objeto del mismo tipo pasado por referencia o por valor.			5	F
El algoritmo de búsqueda binaria estudiado en clase (búsqueda de un elemento en un vector ordenado) tiene una complejidad de $\Omega(1)$.			6	V
La complejidad espacial es la cantidad de recursos espaciales que un algoritmo consume o necesita para su ejecución			7	V
La operación BorrarItem, que borra todas las ocurrencias del item i que se encuentren en la lista, tiene la siguiente sintaxis y semántica: BorrarItem: LISTA, ITEM -> LISTA BorrarItem(Crear, i) = Crear			8	V
BorrarItem($IC(L1,j)$, $i) = si (i == j)$ entonces BorrarItem (L1, i) sino IC (BorrarItem (L1, i), j)			0	Г
La semántica de la operación obtener en una lista con acceso por posición es la siguiente (IC=InsertarCabeza(Lista, Ítem), p: posición, l1: lista, x: ítem): obtener(crear(),p)=error_item() si p = = primera(IC(11,x)) entonces obtener(IC(11,x),p)=x		u	9	F
sino obtener(IC(11,x),p)=IC(obtener(11,p),x) El máximo número de nodos en un nivel i-1 de un árbol binario es 2^{i-2} , $i \ge 2$			10	V
Sea el TIPO arbin definido en clase. La semántica de la operación nodos es la siguiente: Var i,d:arbin; x:item; nodos(crear_arbin())=0			11	F
nodos(enraizar(i,x,d))=nodos(i)+nodos(d) El coste temporal en su peor caso de insertar una etiqueta en un árbol binario de búsqueda es			12	V
lineal con la altura del árbol	_	_	12	3 7
Se puede obtener un único árbol 2-3-4 a partir de su recorrido por niveles			13	V

Apellidos:		
Nombre:		
Convocatoria:		
DNI:		

Examen PED febrero 2008 Modalidad 1

- Normas:

 La entrega del test no corre convocatoria.

 Tiempo para efectuar el test: 30 minutos
 - Tiempo para efectuar el test: 30 minutos.
 - Una pregunta mal contestada elimina una correcta.
 - * Las soluciones al examen se dejarán en el campus virtual.
 - * Una vez empezado el examen no se puede salir del aula hasta finalizarlo.

* En la floja de contestaciones el verdadero se corresponderá con la A , y el falso con la D .				
	\mathbf{V}	F		
El algoritmo de búsqueda binaria estudiado en clase (búsqueda de un elemento en un vector			1	V
ordenado) tiene una complejidad de $\Omega(1)$.				
El coste temporal en su peor caso de insertar una etiqueta en un árbol binario de búsqueda es			2	V
lineal con la altura del árbol				
Dada la sintaxis de la función <i>IC</i> (<i>lista</i> , <i>item</i>) → <i>lista</i> , que inserta un elemento a la cabeza de la			3	F
lista pasada como parámetro y $crear() \Rightarrow lista$, que crea una lista vacía. La siguiente secuencia:				
IC(IC(IC (crear(),a),b),c), daría como resultado una lista con los elementos en este orden:				
$a \rightarrow b \rightarrow c$, donde a es el primer elemento de la lista	_		4	E
Dentro de la especificación algebraica de los números naturales definimos la sintaxis de la función F como: F: natural→BOOL, y su semántica como: F(cero)=TRUE,	u	ч	4	F
F(suc(cero))=FALSE, $F(suc(suc(x)))=F(x)$. Para el número natural x=35, la función $F(suc(x))=F(x)$				
devolvería TRUE.				
El máximo número de nodos en un nivel i-1 de un árbol binario es 2^{i-2} , $i \ge 2$			5	V
En C++, el constructor de copia recibe como argumento un objeto del mismo tipo pasado por			6	F
referencia o por valor.			Ü	-
En C++, si un objeto se sale de ámbito entonces se invoca automáticamente al destructor de			7	V
ese objeto.				
La operación BorrarItem, que borra todas las ocurrencias del item i que se encuentren en la			8	V
lista, tiene la siguiente sintaxis y semántica:				
BorrarItem: LISTA, ITEM -> LISTA				
BorrarItem(Crear, i) = Crear				
BorrarItem($IC(L1,j)$, i) = si (i == j) entonces BorrarItem (L1, i)				
sino IC (BorrarItem (L1, i), j)		_		_
La semántica de la operación obtener en una lista con acceso por posición es la siguiente (IC=	ч	Ц	9	F
InsertarCabeza(Lista, Ítem), p: posición, 11: lista, x: ítem):				
obtener(crear(),p)=error_item() si $p = primera(IC(11,x))$ entonces obtener($IC(11,x)$, p)= x				
sino obtener(IC(11,x),p)=IC(obtener(11,p),x)				
La complejidad espacial es la cantidad de recursos espaciales que un algoritmo consume o			10	V
necesita para su ejecución			10	•
La complejidad logarítmica aparece en algoritmos que descartan muchos valores			11	V
(generalmente la mitad) en un único paso.				
Se puede obtener un único árbol 2-3-4 a partir de su recorrido por niveles			12	V
Sea el TIPO arbin definido en clase. La semántica de la operación nodos es la siguiente:			13	F
Var i,d:arbin; x:item;				
nodos(crear_arbin())=0				
nodos(enraizar(i,x,d))=nodos(i)+nodos(d)				

Apellidos:		
Nombre:		
Convocatoria:		
DNI:		

Examen PED febrero 2008 Modalidad 2

Normas: • La entrega del test no corre convocatoria.

- Tiempo para efectuar el test: 30 minutos.
- * Una pregunta mal contestada elimina una correcta.
- * Las soluciones al examen se dejarán en el campus virtual.
- * Una vez empezado el examen no se puede salir del aula hasta finalizarlo.
- * En la **hoja de contestaciones** el verdadero se corresponderá con la **A**, y el falso con la **B**.

	_			
	\mathbf{V}	\mathbf{F}		
Dentro de la especificación algebraica de los números naturales definimos la sintaxis de la			1	F
función F como: F: natural→BOOL, y su semántica como: F(cero)=TRUE,				
F(suc(cero))=FALSE, $F(suc(suc(x)))=F(x)$. Para el número natural x=35, la función F				
devolvería TRUE.				
La operación BorrarItem, que borra todas las ocurrencias del item i que se encuentren en la			2	V
lista, tiene la siguiente sintaxis y semántica:				
BorrarItem: LISTA, ITEM -> LISTA				
BorrarItem(Crear, i) = Crear				
BorrarItem($IC(L1,j)$, i) = si (i == j) entonces BorrarItem (L1, i)				
sino IC (BorrarItem (L1, i), j)				
La complejidad logarítmica aparece en algoritmos que descartan muchos valores			3	V
(generalmente la mitad) en un único paso.		_		
La complejidad espacial es la cantidad de recursos espaciales que un algoritmo consume o			4	V
necesita para su ejecución		_		
En C++, si un objeto se sale de ámbito entonces se invoca automáticamente al destructor de			5	V
ese objeto.				
En C++, el constructor de copia recibe como argumento un objeto del mismo tipo pasado por			6	F
referencia o por valor.				
El máximo número de nodos en un nivel i-1 de un árbol binario es 2^{i-2} , $i \ge 2$			7	V
Sea el TIPO arbin definido en clase. La semántica de la operación nodos es la siguiente:			8	F
Var i,d:arbin; x:item;				
nodos(crear_arbin())=0				
nodos(enraizar(i,x,d))=nodos(i)+nodos(d)				
Se puede obtener un único árbol 2-3-4 a partir de su recorrido por niveles			9	V
El coste temporal en su peor caso de insertar una etiqueta en un árbol binario de búsqueda es			10	V
lineal con la altura del árbol		_		
La semántica de la operación obtener en una lista con acceso por posición es la siguiente (IC=			11	F
InsertarCabeza(Lista, Ítem), p: posición, l1: lista, x: ítem):				
obtener(crear(),p)=error_item()				
si $p = primera(IC(11,x))$ entonces obtener $(IC(11,x),p)=x$				
sino obtener($IC(11,x),p$)= $IC(obtener(11,p),x)$				
El algoritmo de búsqueda binaria estudiado en clase (búsqueda de un elemento en un vector			12	V
ordenado) tiene una complejidad de $\Omega(1)$.				
Dada la sintaxis de la función $IC(lista, item) \rightarrow lista$, que inserta un elemento a la cabeza de la			13	F
lista pasada como parámetro y <i>crear()</i> \rightarrow <i>lista</i> , que crea una lista vacía. La siguiente secuencia:		_		
IC(IC(IC(crear(),a),b),c), daría como resultado una lista con los elementos en este orden:				
$a \rightarrow b \rightarrow c$, donde a es el primer elemento de la lista				