Corrigé exercice 60:

- 1. $e^{2x} 5e^x + 6 = 0 \Leftrightarrow X^2 5X + 6 = 0$ en posant $X = e^x$. On remarque que, nécessairement, X > 0. L'équation $X^2 5X + 6 = 0$ a pour discriminant $\Delta = 1$ et donc cette équation a deux solutions réelles $X_1 = 2$ et $X_2 = 3$. Ces deux nombres sont strictement positif donc les solutions de $e^{2x} 5e^x + 6 = 0$ sont $x_1 = \ln(X_1) = \ln(2)$ et $x_2 = \ln(X_2) = \ln(3)$.
- 2. $e^{2x} 6e^x + 4 = 0 \Leftrightarrow X^2 6X + 4 = 0$ en posant $X = e^x$. On remarque que, nécessairement, X > 0. L'équation $X^2 6X + 4 = 0$ a pour discriminant $\Delta = 20$ et donc cette équation a deux solutions réelles $X_1 = 3 + \sqrt{5}$ et $X_2 = 3 \sqrt{5}$. Ces deux nombres sont strictement positif donc les solutions de $e^{2x} 6e^x + 4 = 0$ sont $x_1 = \ln(3 + \sqrt{5})$ et $x_2 = \ln(3 \sqrt{5})$.

Corrigé exercice 62:

- 1. L'inéquation $e^{2x} 7e^x + 12 > 0$ peut s'écrire $X^2 7X + 12 > 0$ avec $X = e^x$. On remarque que, nécessairement, X > 0. Les racines du trinôme $X^2 7X + 12$ sont $X_1 = 4$ et $X_2 = 3$. Donc $X^2 7X + 12 > 0 \Leftrightarrow X \in]-\infty; 3[\cup]4; +\infty[\Leftrightarrow x \in]-\infty; \ln(3)[\cup]\ln(4); +\infty[$.
- 2. L'inéquation $e^{2x} + e^x 6 > 0$ peut s'écrire $X^2 + X 6 > 0$ avec $X = e^x$. On remarque que, nécessairement, X > 0. Les racines du trinôme $X^2 + X 6$ sont $X_1 = -3$ et $X_2 = 2$. Donc $X^2 + X 6 > 0 \Leftrightarrow X \in]-\infty; -3[\cup]2; +\infty[\Leftrightarrow x \in]\ln(2); +\infty[$.

Corrigé exercice 63:

- 1. $(\ln(x))^2 + 4\ln(x) + 4 = 0 \Leftrightarrow X^2 + 4X + 4 = 0$ en posant $X = \ln(x)$. On remarque que $X \in \mathbb{R}$ alors que x > 0. L'équation $X^2 + 4X + 4 = 0$ a une seule solution X = -2. Ainsi $\ln(x) = -2$ et donc $x = e^{-2}$. L'équation a donc une seule solution : $x = e^{-2}$.
- 2. $2(\ln(x))^2 + 20\ln(x) + 43 = 1 \Leftrightarrow (\ln(x))^2 + 10\ln(x) + 21 = 0 \Leftrightarrow X^2 + 10X + 21 = 0$ en posant $X = \ln(x)$. On remarque que $X \in \mathbb{R}$ alors que x > 0. L'équation $X^2 + 10X + 21 = 0$ a deux solutions $X_1 = -3$ et $X_2 = -7$. Ainsi $\ln(x) = -3$ ou $\ln(x) = -7$ et donc $x = e^{-3}$ ou $x = e^{-7}$. L'équation a donc deux solutions : $x_1 = e^{-3}$ et $x_2 = e^{-7}$.