

Laboratório de Pesquisa em Redes e Multimídia

Gerência de Memória

Universidade Federal do Espírito Santo Departamento de Informática

Introdução

- Considerações:
 - Recurso caro e escasso;
 - Programas só executam se estiverem na memória principal;
 - Quanto mais processos residentes na memória principal, melhor será o compartilhamento do processador;
 - Necessidade de uso otimizado;
 - O S.O. não deve ocupar muita memória;
 - "É um dos fatores mais importantes em um projeto de S.O.".

Introdução

- Sistema operacional deve
 - controlar quais regiões de memória são utilizadas e por qual processo
 - decidir qual processo deve ser carregado para a memória, quando houver espaço disponível
 - alocar e desalocar espaço de memória
- Algumas funções do Gerenciador de memória:
 - Controlar quais as unidades de memória estão ou não estão em uso, para que sejam alocadas quando necessário;
 - Liberar as unidades de memória que foram desocupadas por um processo que finalizou;
 - Tratar do Swapping entre memória principal e memória secundária.
 - Transferência temporária de processos residentes na memória principal para memória secundária.

(em ling de máquina)

Execução de um Programa (2)

Executável: programa em **ling de máquina**

Espaço de Endereçamento Lógico

Código absoluto:

- Endereços relativos ao início da memória (endereços reais)
- Gerado quando a localização do processo na memória é conhecida a Priori
- Ex: arquivos .COM do DOS

Código relocável

- O programa pode ser carregado em qualquer posição da memória.
- Deve haver uma **tradução** de endereços (ou relocação de endereços)

Código Absoluto

Código Relocável (1)

Executável: programa em ling de máquina

Espaço de Endereçamento Lógico

Espaço de Endereçamento Físico

Conjunto de endereços reais

Código Relocável (2)

- Relocação de Endereços Estática
 - O Loader (em tempo de carga) reloca os endereços das instruções relocávies (ex: JMP endx)
- Relocação de Endereços Dinâmica
 - O Loader (em tempo de carga) reloca os endereços das instruções relocávies (ex: JMP endx)
 - Em tempo de execução
 - O processo pode ser movimentado dentro da memória física
 - Um hardware especial deve estar disponível para que funcione (MMU)

Código Relocável (3)

- Relocação Estática

Código Relocável (4)

- Relocação Dinâmica

Gerência de Memória

Memória Lógica - é aquela que o processo enxerga, o processo é capaz de acessar.

Memória Física - é aquela implementada pelos circuitos integrados de memória, pela eletrônica do computador (memória real)

CPU

Endereço lógico Gerenciador de Memória

Endereço físico

Memória

Técnicas de Gerência de Memória Real

- Alocação Contígua Simples
- Alocação Particionada
 - Partições Fixas
 - Alocação Particionada Estática;
 - Partições Variáveis
 - Alocação Particionada Dinâmica.

Alocação Contígua Simples (1)

- Implementada nos primeiros sistemas
 - Ainda usada nos monoprogramáveis
- Memória é dividida em duas áreas:
 - Área do Sistema Operacional
 - Área do Usuário
- Um usuário não pode usar uma área maior do que a disponível
- Registrador de proteção delimita as áreas
 - Sistema verifica acessos à memória em relação ao valor do registrador;
- Simples, mas não permitia utilização eficiente de processador/memória

Memória principal

Reg

Sistema
Operacional

Área de Programas do usuário

Alocação Contígua Simples (2)

- Limitados pelo tamanho da memória principal disponível...
- Solução: Overlay
 - Dividir o programa em módulos;
 - Permitir execução independente de cada módulo, usando a mesma área de memória;
- Área de Overlay
 - Área de memória comum onde módulos compartilham mesmo espaço.

Memória principal

Sistema Operacional

> Área do Módulo Principal

Área de Overlay

Alocação Particionada

- Multiprogramação.
 - Necessidade do uso da memória por vários usuários simultaneamente.
- Ocupação mais eficiente do processador;
- Alocação Particionada Estática=>Partições fixas
 - Memória dividida em pedaços de tamanho fixo chamados partições;
- O tamanho de cada partição era estabelecido na inicialização do sistema;
- Para alteração do particionamento, era necessário uma nova inicialização com uma nova configuração.

Alocação Particionada Estática (1)

- Partições fixas
 - Tamanho fixo ; número de partições fixo
- a) Alocação Particionada Estática Absoluta:
 - Código absoluto;
 - Programas exclusivos para partições específicas.
 - Simples de gerenciar
 - E se todos os processos só pudessem ser executados em uma mesma partição
- b) Alocação Particionada Estática Relocável:
 - Código relocável
 - Programas podem rodar em qualquer partição

Alocação Particionada Estática (2)

- Proteção:
 - Registradores com limites inferior e superior de memória acessível.
- Programas não ocupam totalmente o espaço das partições, gerando uma fragmentação interna.

Alocação Particionada Dinâmica (1)

- Não existe realmente o conceito de partição dinâmica.
 - O espaço utilizado por um programa é a sua partição.
- Não ocorre fragmentação interna.
 - o tamanho da memória alocada é igual ao tamanho do programa
- Ao terminarem, os programas deixam espalhados espaços pequenos de memória, provocando a fragmentação externa.
 - os fragmentos são pequenos demais para serem reaproveitados

Memória principal

Sistema Operacional

Processo A

Processo C

Processo F

Processo E

Alocação Particionada Dinâmica (2)

Sistema Operacional -ÁREA LIVRE **11 KB**

A - 2 kB B - 4 kB C - 1 kB D - 3 kB

Alocação Particionada Dinâmica (3)

- Soluções:
 - Reunião dos espaços contíguos.
 - Realocar todas as partições ocupadas eliminando espaços entre elas e criando uma única área livre contígua-> Relocação Dinâmica de endereços:
 - Movimentação dos programas pela memória principal.
 - Resolve o problema da fragmentação
 - Consome recursos do sistema
 - Processador, disco, etc.
 - Proteção
 - Não correção ou correção errada implica em acesso a outra partição

Alocação Particionada Dinâmica (4)

- Definição do tamanho das partições pode ser difícil
 - Processos crescem quando em execução
 - É bom definir áreas extra para dados e pilhas
- Process
 B
 Data
 Code
 Stack
 Process
 A
 Data
 Code
 OS
- Como gerenciar as partições alocáveis de memória ?
 - Mapamento de bits
 - Mapeamento da Memória com listas encadeadas

Mapa de bits

- Usado para o gerenciamento com alocação dinâmica
- Memória é dividida em unidades de alocação
 - De algumas palavras a vários kilobytes
 - Qto menor → maior o mapa de bits
 - Qto maior → desperdiço na última unidade
- A cada unidade é associado um bit que descreve a disponibilidade da unidade

Principal problema:

- Busca de k zeros consecutivos para alocação de k unidades
- Raramente é utilizado atualmente (Muito lenta!) LPRM/DI/UFES

Mapeamento da Memória com lista encadeada (1)

- Lista ligada de segmentos alocados ou livres
- Um segmento é uma área de memória alocada ou livre
- Cada elemento da lista indica
 - Estado do segmento (P) Alocado por um processo ou (H) Buraco livre
 - Unidade em que inicia
 - Tamanho em unidades
- Lista duplamente encadeada facilita de concatenação de segmentos
- Lista ordenada por endereço permite vários algoritmos de alocação

Mapeamento da Memória com lista encadeada (2)

A escolha da partição ideal (1)

- Existem 4 maneiras de percorrer a lista de espaços livre atrás de uma lacuna de tamanho suficiente, são eles:
 - Best-fit (utiliza a lacuna que resultar a menor sobra)
 - Espaço mais próximo do tamanho do processo;
 - Tempo de busca grande;
 - Provoca fragmentação.
 - Worst-Fit (utiliza a lacuna que resultar na maior sobra):
 - Escolhe o maior espaço possível;
 - Tempo de busca grande;
 - Não apresenta bons resultados.

A escolha da partição ideal (2)

- First-Fit (primeira alocação):
 - utiliza a primeira lacuna que encontrar com tamanho suficiente
 - Melhor performance.
- Circular-fit ou Next-Fit (próxima alocação):
 - como first-fit mas inicia a procura na lacuna seguinte a última sobra
 - Performance inferior ao First-Fit.

A escolha da partição ideal (3)

- Considerações sobre Mapeamento da Memória com listas ligadas :
 - Todos melhoram em performance se existirem listas distintas para processos e espaços, embora o algoritmo fique mais complexo.
 - Listas ordenadas por tamanho de espaço melhoram a performance.

Referências

- A. S. Tanenbaum, "Sistemas Operacionais Modernos",
 3a. Edição, Editora Prentice-Hall, 2009.
 - Capítulo 3 (até seção 3.2 inclusa)
- Silberschatz A. G.; Galvin P. B.; Gagne G.; "Fundamentos de Sistemas Operacionais", 8a. Edição, Editora LTC, 2010.
 - Capítulo 9 (até seção 9.3 inclusa)

Referências

- A. S. Tanenbaum, "Sistemas Operacionais Modernos",
 2a. Edição, Editora Prentice-Hall, 2003.
 - Capítulo 4 (até seção 4.2 inclusa)
- Silberschatz A. G.; Galvin P. B.; Gagne G.; "Fundamentos de Sistemas Operacionais", 6a. Edição, Editora LTC, 2004.
 - Capítulo 9 (até seção 9.3 inclusa)
- Deitel H. M.; Deitel P. J.; Choffnes D. R.; "Sistemas Operacionais", 3^a. Edição, Editora Prentice-Hall, 2005
 - ??