Contingency Tables

Andy Grogan-Kaylor

18 Sep 2020

Key Concepts and Commands

- Matrices of data
- Probabilities, risks, and odds
- χ^2 Tests
- tabulate x y, row col chi2

Flipping Two Coins

Figure 1: Quarter (Courtesy Wikipedia)

Setup

- . clear all
- . set seed 3846

Good value labels are **key** here.

```
. label define nickel ///
> 1 "heads for nickel" ///
> 0 "tails for nickel" // define value label
. label define quarter ///
> 1 "heads for quarter" ///
> 0 "tails for quarter" // define value label
. set obs 1000 // 1000 observations
number of observations (_N) was 0, now 1,000
. * curiously it takes around 1000 obs for the proportions
. * below to "take hold"
. generate nickel = rbinomial(1, .75) // unfair nickel
. generate quarter = rbinomial(1, .5) // fair quarter
```

- . label values nickel nickel // assign value label
- . label values quarter quarter // assign value label

The Graph We Think We Want But Don't

- . graph bar, over(nickel) scheme(burd) title(Nickel) name(nickel)
- . graph bar, over(quarter) scheme(burd) title(Quarter) name(quarter)
- . graph combine nickel quarter, title(Nickel And Quarter) scheme(burd)
- . graph export unhelpfulgraph.png, width(500) replace (file unhelpfulgraph.png written in PNG format)

Nickel And Quarter

Figure 2: A Graph That May Not Be That Helpful

Crosstabulation

. tabulate nickel quarter, row col

Key
frequency
row percentage
column percentage

	quarter		
nickel	tails for	heads for	Total
tails for nickel	104	140	244
	42.62	57.38	100.00

	21.62	26.97	24.40
heads for nickel	377	379	756
	49.87	50.13	100.00
	78.38	73.03	75.60
Total	481	519	1,000
	48.10	51.90	100.00
	100.00	100.00	100.00

Graphing (Mosaic Plot)

- . * ssc install spineplot // mosaicplots (spineplots)
- . * ssc install scheme-burd, replace // BuRd graph scheme
- . spineplot nickel quarter, scheme(burd)
- . graph export nickel-quarter.png, width(500) replace (file nickel-quarter.png written in PNG format)

Figure 3: Mosaic Plot

Bar Chart

Does a bar chart work to visualize these relationships?

- . graph bar, over(quarter) over(nickel) scheme(burd)
- . graph export nickel-quarter-bar1.png, width(500) replace (file nickel-quarter-bar1.png written in PNG format)

Figure 4: Bar Chart 1

Bar Chart (2)

Option asyvars adds a crucial color element.

- . graph bar, over(quarter) over(nickel) scheme(burd) asyvars
- . graph export nickel-quarter-bar2.png, width(500) replace (file nickel-quarter-bar2.png written in PNG format)

Horizontal Bar Chart

And hbar may improve legibility even more.

- . graph hbar, over(quarter) over(nickel) scheme(burd) asyvars
- . graph export nickel-quarter-bar3.png, width(500) replace (file nickel-quarter-bar3.png written in PNG format)

1961 French Skiiers

. clear all

Define Matrix

. matrix input FrenchSkiiers = (31, 109 \ 17, 122)

Figure 5: Bar Chart 2

Figure 6: Bar Chart 3

- . matrix rownames FrenchSkiiers = Placebo AscorbicAcid
- . matrix colnames FrenchSkiiers = Cold NoCold
- . matrix list FrenchSkiiers

FrenchSkiiers[2,2]

Cold NoCold
Placebo 31 109
AscorbicAcid 17 122

Theme Music

Polo And Pan on YouTube

Try Making a Data Set From Matrix

. symat FrenchSkiiers, name(count) number of observations will be reset to 2 Press any key to continue, or Break to abort number of observations (_N) was 0, now 2

. list

	count1	count2
1.	31	109
2.	17	122

Enter Data By Hand

There are many alternative commands to do this, but the easiest way is using edit.

I have already done this. Note the structure of the data is different from above.

- . use "FrenchSkiiers.dta", clear
- . list // list the data

	Tx	Outcome	Count
1.	Ascorbic Acid	Cold	17
2.	Ascorbic Acid	No Cold	122
3.	Placebo	Cold	31
4.	Placebo	No Cold	109

Mosaic Plot

- . spineplot Tx Outcome, scheme(burd)
- . graph export FrenchSkiiers1.png, width(500) replace (file FrenchSkiiers1.png written in PNG format)

Figure 7: Mosaic Plot Attempt 1

Mosaic Plot (2)

- . spineplot Outcome Tx [fweight=Count], scheme(burd) // order matters to interpretability
- . graph export FrenchSkiiers2.png, width(500) replace (file FrenchSkiiers2.png written in PNG format)

Definitions and Notation

Counts

- c_{ij} c_{ij} $c_{i\bullet}$
- c_{ij} c_{ij} $c_{i\bullet}$
- $c_{\bullet j}$ $c_{\bullet j}$ $c_{\bullet \bullet}$

Probabilities

- p_{ij} p_{ij} p_{i}
- p_{ij} p_{ij} $p_{i\bullet}$
- $p_{\bullet j}$ $p_{\bullet j}$ $p_{\bullet \bullet}$

Terms

 p_{ij} are joint probabilities.

 $p_{i\bullet}$ and $p_{\bullet j}$ are marginal probabilities.

Figure 8: Mosaic Plot Attempt 2

 $p_{ij} \mid p_{i \bullet}$ and $p_{ij} \mid p_{\bullet j}$ are conditional probabilities.

Formulas

Counts

$$\sum_{1}^{i} \sum_{1}^{j} c_{ij} = N$$

Probabilities

$$\sum_{1}^{i} \sum_{1}^{j} p_{ij} = 1.0$$

Expected Probabilities p and Counts m or Frequencies

$$p_{ij} = p_{i \bullet} p_{\bullet j}$$

$$m_{ij} = \frac{m_{i \bullet} m_{\bullet j}}{m_{\bullet \bullet}}$$

Observed counts are represented by c while expected counts are represented by m.

Fundamental Rule

conditional = joint / marginal

Independence (Robert Mare)

If independence is true, then joint probabilities = products of marginal probabilities.

That is, under independence, the conditional distribution equals the marginal distribution.

Under independence, row membership provides no information about the column distribution; and column membership provides no information about the row distribution.

Independence is a model, which is never exactly true in the real world.

Observed vs. Expected

Chi-Square Test

Compare With Tabulate

```
. use "FrenchSkiiers.dta", clear
```

. tabulate Tx Outcome [fweight = Count], row col chi2

Key
frequency
row percentage
column percentage

	Outcor	Outcome	
Tx	No Cold	Cold	Total
Placebo	109	31	140
	77.86	22.14	100.00
	47.19	64.58	50.18
Ascorbic Acid	122	17	139
	87.77	12.23	100.00
	52.81	35.42	49.82
Total	231	48	279
	82.80	17.20	100.00
	100.00	100.00	100.00
Pears	on chi2(1) =	4 8114	Pr = 0.028

Risk Differences and Risk Ratios (Relative Risk)

Following Viera, 2008:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

	Develop Outcom	me Do Not Develop Outcor	ne
Exposed	la	a b	
Not Exp	posed c	d	

$$R = \frac{a}{a+b}$$
 (in Exposed)

$$RR = \frac{\text{risk in exposed}}{\text{risk in not exposed}} = \frac{a/(a+b)}{c/(c+d)}$$

Odds Ratios

	Develop Outcome	Do Not Develop Outcome
Exposed	a	b
Not Expo	osed c	d

$$OR =$$

 $\frac{\rm odds\ that\ exposed\ person\ develops\ outcome}{\rm odds\ that\ unexposed\ person\ develops\ outcome}$

$$= \tfrac{\frac{a}{a+b}/\frac{b}{a+b}}{\frac{c}{c+d}/\frac{d}{c+d}} = \tfrac{a/b}{c/d} = \tfrac{ad}{bc}$$

Properties of the Odds Ratio (Robert Mare)

In general for the 2 X 2 Table,

0<OR<1

indicates that one row is less likely to make the first response than the other row.

 $1 < OR < \infty$

indicates that one row is more likely to make the first response than the other row.