$$= \beta_0 + (\beta_1 + \beta_3 \times {\tt radio}) \times {\tt TV} + \beta_2 \times {\tt radio} + \epsilon.$$
 Results:

6.7502

0.0191

sales = $\beta_0 + \beta_1 \times TV + \beta_2 \times radio + \beta_3 \times (radio \times TV) + \epsilon$

0.248

0.002

27.23

12.70

< 0.0001

< 0.0001

< 0.0001

0.0014

□ Bookmark this page

1/1 point (graded)

3.5.R1	radio	0.0289	0.009	3.24	0
1/1 point (graded)	TV×radio	0.0011	0.000	20.73	< 0
According to the model for sales vs TV interacted with radio, what is the effect of an additional \$1 of radio advertising if					

TV=\$50? (with 4 decimal accuracy) $0.0289 + (0.0011 \times 50) =$ Answer: .0839 0.0839

What if TV=\$250? (with 4 decimal accuracy)

Explanation

0.3039

The effect of an additional unit of radio is .0289 plus .0011 times TV.