COL333 Assignment 3

Raja Kumar 2021CS10915 Esha Patel 2021CS10566

1 Part 1

- There are two variables for each vertex. Let N be the number of vertices in the graph. For vertex x_i $(1 \le i \le N)$, variable g_1, i is represented as i for G_1 and similarly variable $g_{2,i}$ is represented as i+N for G_2 . If x_i is included in G_1 then $g_{1,i}$ is 1 else 0. Similarly, if x_i is included in G_2 then $g_{2,i}$ is 1 else 0.
- For graph G_1 , $s_{1,i,j}$ is represented as $(2*N+1)+i*(k_1+2)+j$ $(0 \le i \le N \text{ and } 0 \le j \le k_1+1)$ and for G_2 , $s_{2,i,j}$ is represented as $(2*N+1)+(N+1)*(k_1+1)+i*(k_2+2)+j$ $(0 \le i \le N \text{ and } 0 \le j \le k_2+1)$. $s_{1,i,j}$ is 1 if j vertices are chosen from the first i vertices for G_1 , similarly for G_2 .
- For G_1 , as we want a clique of size k_1 . So $g_{1,i} = 0$ if degree $(x_i) \le k_1 1$, similarly for G_2 .
- Since a vertex can't be in both G_1 and G_2 , so we generated the clause

$$-g_{1,i} \text{ or } -g_{2,i} \text{ for } 1 \le i \le N.$$

- If edge is not present between x_i and x_j , we generated clauses $-g_{1,i}$ or $-g_{1,j}$ for G_1 , similarly for G_2 , $-g_{2,i}$ or $-g_{2,j}$.
- Initializing the base case:

$$s_{1,i,0} = 1 \text{ for } 0 \le i \le N$$

$$s_{1,0,j} = 0 \text{ for } 1 \le j \le k_1 + 1$$

• Array $s_{1,i}$ can be seen as a unary number which represents how many vertices are selected from the first i vertices.

$$s_{1,i,j} = s_{1,i-1,j}$$
 or $(s_{1,i-1,j-1} \text{ and } g_{1,i})$ for $1 \le i \le N$ and for $1 \le j \le k_1+1$

• To force the size to be exactly equal to k_1 :

$$s_{N,k_1} = 1$$
 and

$$s_{N,k_1+1} = 0.$$

• Similar clauses are generated for G_2 .

2 Part 2

We have used binary search on the size of clique k.

We have defined two types of literals g_i and $s_{i,j}$, where g_i represents nodes of the graph, and $s_{i,j}$ represents at least j of the first i nodes being true.

1. Degree Constraint Clause: If the degree of node g_i is less than k-1, then set g_i to 0.

Clause: if degree
$$(g_i) < k - 1$$
, then $\neg g_i$

2. Edge Constraint Clause: If there is no edge between nodes g_i and g_j , then both g_i and g_j should be 0.

Clause: if no edge between
$$(g_i, g_j)$$
, then $\neg g_i$ and $\neg g_j$

3. Base Size Constraint Clauses:

$$s_{0,j} = 0 \text{ for } 1 \le j \le k+1$$

$$s_{i,0} = 1 \text{ for } 0 \le i \le N$$

4. Size Constraint Clauses: For $1 \le i \le N$ and $1 \le j \le k+1$:

Clause:
$$s_{i,j} \Leftrightarrow (s_{i-1,j} \text{ or } (g_i \text{ and } s_{i-1,j-1}))$$

5. Final Constraint to Fix Size to be k:

$$s_{N,k} = 1$$

$$s_{N,(k+1)} = 0$$