Problem 1.6.4

(a) We begin by showing that we can choose the ℓ_j such that $\sum_{k=0}^{\infty} 2^{k-1} \ell_k < 1$. This is clear if we choose $\ell_k \leq (2+\epsilon)^{-(k-1)}$ for any $\epsilon > 0$ because then

$$\sum_{k=0}^{\infty} 2^{k-1} \ell_k \le \sum_{k=0}^{\infty} \left(\frac{2}{2+\epsilon}\right)^{k-1}$$

and the sum on the right converges and is less than 1 for $\ell_0 < 1/2$. Next, we follow a process similar to the construction of the Cantor set in defining

$$\hat{\mathcal{C}} = \bigcap_{k=0}^{\infty} I_k$$

where $I_0 = [0,1], I_1 = [0,(1-\ell_0)/2] \cup [(1+\ell_0)/2,1]$ and each subsequent I_k is obtained by taking each of the pieces in the union of I_{k-1} and removing the middle ℓ_k . As before, repeating this procedure yields a sequence of nested compact sets $I_0 \supset I_1 \supset I_2 \supset \ldots$ and hence their intersection $\hat{\mathcal{C}} \neq \emptyset$. It then follows that $\hat{\mathcal{C}}$ is measurable. To find its measure, we instead compute the measure of $\hat{\mathcal{C}}^c$, which is also measurable because it is the complement of a measurable set. We can see that

$$\hat{\mathcal{C}}^c = \bigcup_{k=0}^{\infty} I_k^c$$

The complement of each I_k is precisely the 2^{k-1} intervals of length ℓ_k . Hence, the measure of each of these $m(I_k) = 2^{k-1}\ell_k$. And so

$$m(\hat{\mathcal{C}}^c) = m(\bigcup_{k=0}^{\infty} I_k^c) = \sum_{k=0}^{\infty} m(I_k^c) = \sum_{k=0}^{\infty} 2^{k-1} \ell_k$$

Noting that $[0,1] = \hat{\mathcal{C}} \cup \hat{\mathcal{C}}^c$ and so

$$m(\hat{\mathcal{C}}) = 1 - \sum_{k=0}^{\infty} 2^{k-1} \ell_k$$

Problem 1.6.6

Let B be a ball of radius r sitting in \mathbb{R}^d . We want to find the measure of this ball in terms of that of B_1 , the unit ball centered at the origin. It is shown in the book that the measure of a set is translation invariant. Hence, we need only worry about dilating B_1 to a ball of radius r. Consider the representation of the ball by almost disjoint cubes $B_1 = \bigcup_{k=1}^{\infty} Q_k$ and note that $m(B_1) = \sum_{k=1}^{\infty} Q_k$. We then scale each set by r to see that

$$rB_1 = r\left(\bigcup_{k=1}^{\infty} Q_k\right) = \bigcup_{k=1}^{\infty} rQ_k$$

where the last equality holds because the Q_k are disjoint. We then note that if Q is a cube of side length ℓ then rQ is a cube with side length $r\ell$ and therefore the volume (or measure in the case of cubes) of $v(rQ) = r^d v(Q)$. We then see that

$$m(rB_1) = m\left(r\bigcup_{k=1}^{\infty} Q_k\right) = m\left(\bigcup_{k=1}^{\infty} rQ_k\right)$$

Because the Q_k are almost disjoint we can write

$$m(rB_1)\sum_{k=1}^{\infty} m(rQ_k) = \sum_{k=1}^{\infty} r^d m(Q_k) = r^d \sum_{k=1}^{\infty} m(Q_k) = v_d r^d$$

where v_d is the measure of B_1 . This completes the proof.

Problem 1.6.7

We begin by proving the result in the special case of cubes with

Lemma. For any cube $Q \subset \mathbb{R}^n$ we have that $m_*(\delta Q) = \delta_1 \delta_2 \dots \delta_n m_*(Q)$

Proof. This is similar to the preceding problem. Choose any $p \in Q$ and note that $\delta p = (\delta_1 p_1, \delta_2 p_2, \dots, \delta_n p_n)$. So this scales the kth coordinate (side of the cube) by a factor of δ_k . Letting ℓ be the length of a side of Q and using the formula for the area of a rectangle gives

$$m_*(\delta Q) = \prod_{k=1}^n \delta_k \ell = \delta_1 \delta_2 \cdots \delta_n \ell^n = \delta_1 \delta_2 \cdots \delta_n m_*(Q)$$

Now suppose that E is a measurable set and recall from Observation 3 that

$$m_*(E) < m_*\left(\bigcup_{j=1}^{\infty} |Q_j|\right) + \epsilon$$

Where $\bigcup_{j=1}^{\infty} Q_j$ is any covering of E by cubes. Then $\delta E \subset \delta \bigcup_{j=1}^{\infty}$ and so by monotonicity we get that

$$m_*(\delta E) \le m_* \left(\delta \bigcup_{j=1}^{\infty} Q_j\right) + \epsilon/2$$

Now we need to cover each rectangle δQ_j by cubes $Q_{j,k}$ with

$$\sum_{k=1}^{\infty} |Q_{j,k}| < |Q_j| + \epsilon/2^{j-1}$$

Then

$$m_*(\delta E) \le m_*(\bigcup_{j=1}^{\infty} \delta Q_j) + \epsilon/2$$
$$\le m_*(\bigcup_{j,k} |Q_{j,k}|) + \epsilon/2$$
$$\le \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} |Q_{j,k}| + \epsilon/2$$

Using the above estimate and and the lemma we get

$$\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} |Q_{j,k}| \le \sum_{j=1}^{\infty} (|\delta Q_j| + \epsilon/2^{j-1}) + \epsilon/2$$
$$= \delta_1 \delta_2 \cdots \delta_n \sum_{j=1}^{\infty} |Q_j| + \epsilon$$
$$= \delta_1 \delta_2 \cdots \delta_n m_*(E) + \epsilon$$

So now we need just establish that δE is measurable and we are done. The measurability of E gives us an $\mathcal{O} \supset E$ open such that

$$m_*(\mathcal{O} - E) < (\delta_1 \delta_2 \cdots \delta_n)^{-1} \epsilon$$

To cover δE we propose to use the open set $\delta \mathcal{O}$. This set is open because for any $p \in \mathcal{O}$ we have that $B_{\overline{\delta}}(p) \subset \delta \mathcal{O}$ when $\overline{\delta} = \min\{\delta_1, \delta_2, \dots, \delta_n\}$. The above coupled with the fact that $\delta(\mathcal{O} - E) = \delta \mathcal{O} - \delta E$ with $\delta \mathcal{O}$ open gives

$$m_*(\delta \mathcal{O} - \delta E) = m_*(\delta (\mathcal{O} - E)) < \delta_1 \delta_2 \cdots \delta_n m_*(\mathcal{O} - E) < \epsilon$$

So δE is measurable with measure $m_*(\delta E) = \delta_1 \delta_2 \cdots \delta_n m_*(E)$.

Problem 1.6.9

We begin with a Cantor-like set $\hat{\mathcal{C}}$ as described in Exercise 4. Our plan is to construct an open set whose closure has boundary $\hat{\mathcal{C}}$. At the k^{th} stage of the construction we remove 2^{k-1} intervals each of length ℓ_j with the property that

$$\sum_{j=1}^{k} 2^{j-1} \ell_j < 1$$

for each k. We now consider the set

$$\mathcal{I} = \bigcup_{k=1}^{\infty} \bigcup_{j=1}^{2^k} I_{2j-1,k}$$

which is the union of those intervals I_k that are removed at odd numbered steps in the construction. We have the following

Claim. Every $x \in \hat{C}$ is a limit point of a sequence in \mathcal{I}

Proof. We construct \hat{C} iteratively as described in problem 4. Let C_j denote the remaining set after j iterations of the removal step and \mathcal{R}_j the set of elements removed. Recall that

$$\hat{\mathcal{C}} = \bigcap_{j=1}^{\infty} \mathcal{C}_j$$

Next, we note that each of the C_j is the disjoint union of 2^j intervals which we denote $C_{j,k}$. Because the intervals are centrally situated we know that after n iterations x lies no further than $1/2^n$ from an element of \mathcal{R}_n . For each n, choose such an element, x'_n , of \mathcal{R}_j . This yields a convergent sequence $x'_n \to x$ because for any $\epsilon > 0$ we simply choose n large enough that $1/2^n < \epsilon$. Next, note that the subsequence x_n of odd numbered terms in x'_n must also converge and each $x_n \in \mathcal{I}$. Then $x_n \to x$ and so x is a limit point of a sequence in \mathcal{I} .

Now we observe that \mathcal{I} and $\hat{\mathcal{C}}$ are disjoint so we apply the claim to get that $\hat{\mathcal{C}} \subseteq \partial \overline{\mathcal{I}}$. Then by monotonicity of the measure and the results of Problem 4.a we have

$$m(\overline{\mathcal{I}}) \ge \hat{\mathcal{C}} > 0$$

Verifying that \mathcal{I} satisfies the requirements.

Problem 1.6.11

We can construct this Cantor-like set \mathcal{C}' iteratively. We begin with the interval [0,1] and remove 1/10 of it. This leaves nine intervals of length 1/10. At the next step we remove the last 1/10 of each of these intervals, giving 81 intervals of length 1/100. In general, after k iterations we are left with the union \mathcal{C}'_k of 9^k intervals each of length 10^{-k} . Taking the limit as $k \to \infty$ gives

$$m(\mathcal{C}') = \lim_{k \to \infty} m(\mathcal{C}'_k) = \lim_{k \to \infty} (9/10)^k = 0$$

Problem 1.6.15

Let E be some subset of \mathbb{R}^n . First we begin by considering the outer measure of E, given by $m_*(E) = \inf \sum_{j=1}^{\infty} |Q_j|$. Consider any covering of E by closed cubes $E \subset \bigcup_{j=1}^{\infty} Q_j$. For each Q_j with side length ℓ_j we can pick the rectangle R_j whose sides have length $r_1 = \ell + \epsilon/2^j \ell^{n-1}$ and $r_k = \ell$ for every other side. Then $R_j \supset E_j$ and

$$|R_j| = |Q_j| + \epsilon/2^j$$

So

$$\sum_{j=1}^{\infty} |Q_j| < \sum_{j=1}^{\infty} |R_j| = \sum_{j=1}^{\infty} |Q_j| + \epsilon$$

Passing to the infimum gives

$$m_*^{\mathcal{R}}(E) \le \sum_{j=1}^{\infty} |R_j| \le m_*(E) + \epsilon$$

Then letting $\epsilon \to 0$ gives $m_*^{\mathcal{R}} \leq m_*(E)$.

Now begin with a covering of E by rectangles R_j . Then we divide \mathbb{R}^n into a grid of cubes with side length 1/k. Then we can define $Q_{j,k}$ to be the set of rectangles that have non-empty intersection with R_j . We need to be precise about how much extra measure these cubes add. We know that there are Ck^{d-1} that could intersect partially intersect R_j (cubes not fully contained in R_j) for some suitably large C. The total volume these add is C/k and so if $k \geq 2^j C$ then the total volume is less than $\epsilon/2^j$. That is

$$\sum_{k} |Q_{j,k}| \le |R_j| + \epsilon/2^j$$

Then

$$\sum_{j} |R_{j}| \le \sum_{j} \sum_{k} |Q_{j,k}| \le \sum_{j} |R_{j}| + \epsilon$$

As we did before, we pass to the infimum yielding

$$m_*(E) \le \sum_j \sum_k |Q_{j,k}| < m_*^{\mathcal{R}} + \epsilon$$

Letting $\epsilon \to 0$ again gives $m_*(E) \le m_*^{\mathcal{R}}$. This completes the proof.

Problem 1.6.16

(a) We need to formalize the notion of being in infinitely many of the E_k . To do this let $X_n = \bigcup_{k \geq n} E_k$. Then $x \in E$ is equivalent to $x \in X_n$ for each n. We can then rephrase

$$E = \bigcap_{n=1}^{\infty} X_n = \bigcap_{n=1}^{\infty} \bigcup_{k \ge n} E_k$$

Each X_n is a countable union of measurable sets, and hence measurable. Then E is a countable intersection of measurable sets, and so it is also measurable.

(b) The convergence of $m(E_k)$ is equivalent to

$$\sum_{k=N}^{\infty} m(E_k) < \epsilon$$

for sufficiently large N and any $\epsilon > 0$. This means that for m > n

$$m(B_m) = m\left(\bigcup_{k \ge m} E_k\right) \le \sum_{k=N}^{\infty} m(E_k) < \epsilon$$

which holds by sub-additivity. We then note that $E = \bigcap_{n=1}^{\infty} B_n \subset B_k$ for every k, means that we can use monotonicity to get

$$m(E) \le m(B_N) < \epsilon$$

So m(E) = 0.