

A Case Study for Moving Targets

Let's consider a more practical use case for MT

We will still tackle a synthetic problem, but one closer to practice

- In particular, given a classification problem
- We will require to have roughly balance class predictions

$$\left|\sum_{i=1}^{m} z_{ij} - \frac{m}{n_c}\right| \le \beta \frac{m}{n_c}, \quad \forall j \in 1..n_c$$

- Where $z_{ij}=1$ iff the classifier predicts class j for example i
- I.e. the result of an argmax applied to the output of a probabilistic classifier

...Basically, this the example from the previous section

The Dataset

We will use the "wine quality" dataset from UCI

```
In [11]: data = util.load_classification_dataset(fname, onehot_inputs=['quality'])
    display(data.head())
```

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality_3	quality_4	quality_5	qua
0	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.0010	3.00	0.45	8.8	False	False	False	True
1	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.9940	3.30	0.49	9.5	False	False	False	True
2	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.9951	3.26	0.44	10.1	False	False	False	True
3	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	False	False	False	Tru€
4	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	False	False	False	True

- We will learn a model to predict wine quality
- There are 7 possible classes, represented via a one-hot encoding
- An ordinal encoding would be better, but our choice makes for a better example

The Dataset

We perform pre-processing as usual

```
In [12]: dtout = [c for c in data.columns if c.startswith('quality_')]
    dtin = [c for c in data.columns if c not in dtout]
    trl, tsl, scalers = util.split_datasets([data], fraction=0.7, seed=42, standardize=dtin)
    tr, ts, scaler = trl[0], tsl[0], scalers[0]
    tr.describe()
```

Out[12]:

density	total sulfur dioxide	free sulfur dioxide	chlorides	residual sugar	citric acid	volatile acidity	fixed acidity	
3 1.469000e+03	1.469000e+03	1.469000e+03	1.469000e+03	1.469000e+03	1.469000e+03	1.469000e+03	1.469000e+03	count
-8.416231e-15	1.463167e-16	-1.813843e-16	-1.015752e-16	1.644551e-16	-1.934766e-16	1.475259e-16	5.235960e-16	mean
0 1.000341e+00	1.000341e+00	1.000341e+00	1.000341e+00	1.000341e+00	1.000341e+00	1.000341e+00	1.000341e+00	std
00 -2.338980e+00	-2.969922e+00	-1.916670e+00	-1.436585e+00	-1.170902e+00	-2.750607e+00	-1.981296e+00	-3.513954e+00	min
1 -7.862395e-01	-7.262526e-01	-6.550002e-01	-4.519909e-01	-9.256225e-01	-5.421591e-01	-6.660564e-01	-6.396233e-01	25%
1 -5.839245e-02	-1.309932e-01	-8.151391e-02	-1.387109e-01	-2.306630e-01	-1.331873e-01	-1.601951e-01	-4.080447e-02	50%
7.387734e-01	6.474229e-01	5.493210e-01	1.745692e-01	7.197965e-01	4.393732e-01	4.468384e-01	5.580144e-01	75%
3.112941e+00	6.897646e+00	1.454239e+01	1.006527e+01	4.031074e+00	5.347035e+00	4.898418e+00	8.821714e+00	max
	-7.262526e-0° -1.309932e-0° 6.474229e-01	-6.550002e-01 -8.151391e-02 5.493210e-01	-4.519909e-01 -1.387109e-01 1.745692e-01	-9.256225e-01 -2.306630e-01 7.197965e-01	-5.421591e-01 -1.331873e-01 4.393732e-01	-6.660564e-01 -1.601951e-01 4.468384e-01	-6.396233e-01 -4.080447e-02 5.580144e-01	25% 50% 75%

Dataset Balance

We can use the (avg. of) our constraint metric to assess the dataset balance:

$$\frac{1}{n_c} \sum_{j=1}^{n_c} \left| \sum_{i=1}^{m} z_{ij} - \frac{m}{n_c} \right|, \quad \forall j \in 1..n_c$$

• Where \hat{z} are the class columns (one-hot encoding)

```
In [19]: bal_thr = 0.3
    tr_true = np.argmax(tr[dtout].values, axis=1)
    ts_true = np.argmax(ts[dtout].values, axis=1)
    tr_bal_src = util.avg_bal_deviation(tr_true, bal_thr, nclasses=len(dtout))
    ts_bal_src = util.avg_bal_deviation(ts_true, bal_thr, nclasses=len(dtout))
    print(f'Original avg deviation: {tr_bal_src*100:.2f}% (training), {ts_bal_src*100:.2f}% (text)
Original avg deviation: 101.42% (training), 98.71% (test)
```

- Our goal will be to push the balance deviation down to 30%
- I.e. we will assume $\beta = 0.3$ in the constraint

The Learner

Our "learner" will be a multilayer perceptron

The code can be found as usual in the util module

- We are using a standard scikit-learn API
- ...With the ability to use different #epochs for the first and subsequent training
- ...Which will prove useful later

The Learner

Let's start by checking how regular training fares

```
In [20]: learner = XGBClassifier(n_estimators=20, max_depth=2, learning_rate=0.5, objective='binary:
    learner.fit(tr[dtin].values, tr[dtout].values)
    tr_pred_prob = learner.predict_proba(tr[dtin])
    ts_pred_prob = learner.predict_proba(ts[dtin])
    tr_acc, tr_bal = util.mt_balance_stats(tr[dtout].values, tr_pred_prob, bal_thr)
    ts_acc, ts_bal = util.mt_balance_stats(ts[dtout].values, ts_pred_prob, bal_thr)
    print(f'Accuracy: {tr_acc:.2f} (training), {ts_acc:.2f} (test)')
    print(f'Classifier avg deviation: {tr_bal*100:.0f}% (training), {ts_bal*100:.0f}% (test)')
    print(f'Balance violation threshold: {bal_thr*100:.0f}%')

Accuracy: 0.67 (training), 0.55 (test)
    Classifier avg deviation: 119% (training), 124% (test)
    Balance violation threshold: 30%
```

- The tets accuracy is slightly above 50%
- ...But the balance violation is far larger than our threshold

```
def mt_balance_master(y_true, y_pred, bal_thr, rho=1, ...):
    # Build a model
    slv = pywraplp.Solver.CreateSolver('SAT')
    ...
    # Solve
    status = slv.Solve()
    ...
    # Return the solution and stats
    return sol, stats
```

- ullet y_true corresponds to \hat{y} and y_pred to the current prediction vector
- The balance threshold **bal_thr** is a fractional value
- A mode parameter allows one to adjust a bit the problem behavior

- We are using integer variables for the targets
- ...Which is consistent with the semantic of our constraint

- The balance constraint is implemented via two inequalities
- Class counts are easy to compute by relying on integer one-hot targets

- lacktriangle As a loss $oldsymbol{L}$ for the master, the categorical crossed-entropy
- ullet ...With logarithms capped and scaled by $\log arepsilon$
- The formula can be simplified since the original targets are 0-1

- We use the scaled cross-entropy for the loss w.r.t. the predictions, too
- ...But no simplification is possible, since the predictions are continuous

Loss-driven Projection

A simpler approach to inject constraints in the ML model...

...Starts by directly "projecting" the ground truth \hat{y} in feasible space

- This can be obtained by setting $\rho = \infty$
- The projection can be done using the loss itself as a distance:

$$\operatorname{argmin}_z \left\{ L(z, \hat{y}) \mid z \in C \right\}$$

By doing this, we can obtain the best possible feasible target vector

```
In [21]: %%time
   zp, stats = util.mt_balance_master(tr[dtout].values, tr[dtout].values, bal_thr, time_limit=:
        tmp_acc, tmp_bal = util.mt_balance_stats(tr[dtout].values, zp, bal_thr)
        print(f'Accuracy: {tmp_acc:.2f}, Balance deviation: {tmp_bal*100:.2f}%, Optimal solution: {
        Accuracy: 0.62, Balance deviation: 25.38%, Optimal solution: True
        CPU times: user 8.88 s, sys: 77.6 ms, total: 8.96 s
        Wall time: 865 ms
```

Loss-driven Projection

Then, the simple approach consists training against this "ideal" vector

The method is implemented in util as part of the MT code:

```
In [22]: from xgboost import XGBClassifier
    learner_prj = XGBClassifier(n_estimators=50, max_depth=2, learning_rate=0.5, objective='binautil.mt_balance(tr[dtin].values, tr[dtout].values, learner_prj, bal_thr, rho=np.inf, master_tr_pred_prob = learner_prj.predict_proba(tr[dtin])
    ts_pred_prob = learner_prj.predict_proba(ts[dtin])
    tr_acc, tr_bal = util.mt_balance_stats(tr[dtout].values, tr_pred_prob, bal_thr)
    ts_acc, ts_bal = util.mt_balance_stats(ts[dtout].values, ts_pred_prob, bal_thr)
    print(f'Accuracy: {tr_acc:.2f} (training), {ts_acc:.2f} (test)')
    print(f'Classifier balance violation: {tr_bal*100:.0f}% (training), {ts_bal*100:.0f}% (test)

Accuracy: 0.57 (training), 0.40 (test)
    Classifier balance violation: 58% (training), 66% (test)
```

The constraint violation is still too high!

Moving Targets

Let's now test the actual MT method

We use fewer training epochs after the first fit call to speed up the process

- Constraint satisfaction improves across iterations
- The learner/master accuracy tends to decrease/increase

Moving Targets

Let's check generalization over the test set

```
In [24]: tr_pred_prob = learner_mt.predict_proba(tr[dtin])
    ts_pred_prob = learner_mt.predict_proba(ts[dtin])
    tr_acc, tr_bal = util.mt_balance_stats(tr[dtout].values, tr_pred_prob, bal_thr)
    ts_acc, ts_bal = util.mt_balance_stats(ts[dtout].values, ts_pred_prob, bal_thr)
    print(f'Accuracy: {tr_acc:.2f} (training), {ts_acc:.2f} (test)')
    print(f'Classifier balance deviation: {tr_bal*100:.0f}% (training), {ts_bal*100:.0f}% (test)
    Accuracy: 0.53 (training), 0.34 (test)
    Classifier balance deviation: 29% (training), 28% (test)
```

We do have some overfitting in terms of accuracy

- This is due to the fact that we have very restrictive constraints
- ...And they directly oppose information in the data

Constraint satisfaction generalizes without issues

...And this is a big deal!