Wednesday, January 23
San converges to ZEC ill
$n=0$ $\psi \circ m$
for every 6>0 3 N 3 2 an -2 26
0 0 0=0
whenever $m \geq N$.
E converges absolutely if Elant converges.
n=0 0 0 0 0
proposition: If Zan converges absolutely, then Zan converges.
proof: The Key idea must be the triangle inequality. Let 6>0 Be
given and define In = 90+9,+111+an. Since 21an converges,
IN > > an < E. Thus if m>K > N,
IN > S an Z E. Thus if m>K > N,
m os
2m-2k = 2 an = 5 an = 2 an < 6.
15W 5K1 N=K+1
Eriangle inequality
This proves that 32m3 is a laucky sequence, so 7 ZEC3
Zo→Z. This completes the proof.
Recall that fiming an = lim [in [3 an, answer 3]
Recall that liming an = lim [in { an, ant, in }]
$\lim_{n\to\infty} \sup a_n = \lim_{n\to\infty} \left[\sup_{n\to\infty} \left\{ a_n, q_{n+1}, \dots \right\} \right]$
n-700
$\int d\rho d\rho d\rho d\rho d\rho d\rho d\rho$
possible quiz problem: why does lim t lim
always exist?
O .

A power series about a is an infinite series of the form
Zan (z-a) The simplest meaning but cose is
$a=0$ $a_n=1$
$\frac{1}{2}$
$\frac{1+2++2^{2}=1-2}{1-2} = \frac{1-2}{1-2}$
<u> </u>
diverges in 12/>1; interesting if 121=1.
Theorem: Define 1 - Pim 1901
O R
i) Il 12-a1< R, the series converges absolutely
11 12-01 > 0 Al booms became unbounded to the
ii) I 2-a > R, the terms become unbounded, so the series diverges
iii) If O <r< converges="" on<="" r="" series="" td="" the="" then="" uniformly=""></r<>
{z: z-a ≥ r }. Morcoyer, R is the unique number satisfying i) \$ ii).
satisfying i) & ii).
Proof: Let a=0. If 121< R, 3 p 3 121 <p<r.< td=""></p<r.<>
1 1212 N.
It follows that IN > Ign 17 < The V n > N. It follows
ZKat 19n < P so 19n2 / (121) 1kis implies
that 5 0 30 0 (121) 2 more of conveners
Zilai Zunz = Z
n=N n=N absolutely for each 12/2K.
Suppose that ICR and choose & > IC OZR Let N
be such that
$ a_n < \infty \forall n \ge N$. Then if $ z \le P$.
IGNZ 12 [] and r 1. This implies uniform convergence
P) on {z: z = n } by Weirstrass.

To prove iit) let 121>R and choose r w/ 121>r>R.
Hence + < R. This implies that for infinitely many n
Hence $\frac{1}{r} < \frac{1}{R}$. This implies that for infinitely many n , $\frac{1}{r} < a_n ^{\frac{1}{n}} = > a_n z^n > z \text{for those } n's \neq 0$
We call R "the radius of the since 121 > 1, the tenms convergence" of the Become unbounded, powed series.
we call R "the radius of the Become unbounded.
powed series
Proposition: If $\sum a_n(z-a)$ is a given power series with a
Proposition: If $\sum a_n(z-a)^n$ is a given power series with a radius of convergence R , then $R = \lim_{n \to \infty} \frac{a_n}{a_{n+1}}$ if this limit $\lim_{n \to \infty} \frac{a_n}{a_{n+1}}$ exists.
Proof: What you should be thinking is roughly the following: - lim an n => 1 an R 2 very (deliberately) imprecise => 1 an 4 1 2 Gate , so
=> 1 Gay SD Imprecise
R^{n+1}
$\left \frac{G_{n+1}}{G_n} \right \sim \frac{1}{R^{n+1}} \left \frac{1}{R^n} - \frac{1}{R^n} \right O \cap \left \frac{G_n}{G_{n+1}} \right \sim R,$
but this is not a proof.
Real proof: Let a=0 and set &= lim an let 12/2/2
Real proof: Let $a=0$ and set $\alpha = \lim_{n\to\infty} \frac{a_n}{a_{n+1}}$. Let $ z < r < \alpha$ and find $ x \to r < \frac{a_n}{a_{n+1}} $ $\forall n > N$. Then if $ B = a_N r$,
then an+1 r N+1 = an+1 . p. p × 2 an p = B;
$\frac{t \ln a_{N+1} r^{N+1} = a_{N+1} \cdot r \cdot r^{N} < a_{N} r^{N} = B;}{ a_{N+2} r^{N+2} = a_{N+1} \cdot r \cdot r^{N+1} < a_{N+1} r^{N+1} < B}$
lanlir ° ≥ B V n ≥ N.

(4) Then $|a_n z^n| \neq |a_n r^n| |z|^n \geq B |z|^n + n \geq N$ Since |z| < r, $\geq a_n z^n$ converges. Since $r < \omega$ is arbitrary, $\omega < R$. In the opposite direction, if 121>17>0, then $|a_n| < r |a_{n+1}| i | n \ge N$ This implies that |anr' | > B = |anr' | for n > N. This gives $|a_n z^n| \ge B \frac{|z|^n}{|p|^n} \xrightarrow{n \to \infty} \infty = > \text{divergence},$ $|p|^n \xrightarrow{n \to \infty} so \ R \le \alpha, \ \text{yielding}$ $|p|^n \xrightarrow{n \to \infty} R = \alpha, \ \text{yielding}$ Define $e = \sum_{n=0}^{\infty} \frac{z^n}{n!}$ radius of convergence Proposition: Zan, ZEn absolutely convergent. Define Cn = 2 ax bn-x. Then 2 cn is absolutely convergent with sum Brief open discussion about how to prove this HW 1.1: Go, Gi, , sequence in C Go = Q, = 1 and Z |an - an | < 00. Prove that the radius of convergence of $\geq q_n z^n$ is ≥ 1 . Proposition: Let Z an (z-a) 1 Z bn (z-a) w/ radius of convergence Put co = 2 ax box, then 2 (an+ bn) (2-a) 4 2 co (2-a) Rave radius of convergence is $\geq r$ & $\geq r$ &

6 First, suppose that ((20) + f(20+hn) 4 n Then go (to+hn)-go (to) = g(s(to+hn))-g(s(to)) s(to+hn)-s(to) -> g (f(20)) f(to) Now suppose that $\{(z_0) = \{(z_0 + h_n)\}\$ for infinitely many n. Then $\{(z_0) = \{(z_0 + h_n)\}\$ $\{(z_0) \neq \{(z_0 + k_n)\}\$ $f(to) = f(to + f(n)) \forall n.$ It follows that s(to) = lim s(to+ln)-s(to) = 0 # lim 90 (to+ln) - 90 (to) - 0. lim gos(to+Kn)-gos(to) - g(s(to))(to) = 0. Therefore, lim gos(20+hn) - gos(20) - 0 = g((20)) The general case follows easily.
So far severy thing, is onone or less like in the nat
But this is about to charge.