

Machine Learning in the Elastic Stack

Elvis Saravia

Education Engineer
Virtual Meetup - April 2020
Slides: https://ela.st/ml-meetup

Elastic StackSearch, Observe, and Protect

Machine Learning with the Elastic Stack

Machine Learning in the Elastic Stack

An Elasticsearch cluster can include the following ML capabilities:

- Data visualizer
- Data transformation
- Modeling
- Evaluation
- Visualization

Classification

Regression Analysis

Supervised ML

Outlier Detection

Unsupervised ML

Data Transformation

Event-Centric vs Entity-Centric Data

We typically store data as *event-centric*:

- tweets
- web apache logs
- network activity
- customer transactions

Aggregations

Using aggregations (metrics or buckets) we can summarize our data in different ways and obtain insights or create powerful features

Typical Aggregations

most frequent URLs?
blogs?
terms?
user?
agent?

terms aggregation

page views per minute?
published blogs per month?
published comments per day?

date histogram aggregation

Clickstream data

how long was session x?

scripted aggregations (max - min)

Clickstream data

Average session duration?

We are doing behavioral analytics!

Transform

time

Continuous Pivot Transform

time

ML Modeling

Data Frame Analytics

- Allows different analyses of the data to gather insights
- Allows to train a model and evaluate it:
 - Outlier Detection (unsupervised)
 - Regression Analysis (supervised)
 - Classification (supervised)

Outlier Detection

- The goal is to identify data points that do not follow the model of the data
- Uses an ensemble of distance and density based outlier detection methods
- Outputs an outlier score and the feature influence score
- Applications:
 - Bank fraud
 - Threat detection
 - Medical problems

Classification

- The goal is to predict the category/class of a given data point in a dataset
- Users a boosted tree regression model
- Requires feature variables and a dependent variable
- Applications:
 - Detect cancer
 - Classifying music or text
 - Predict loan risk

Demo

References

Demos

Data Transforms Overview

Machine Learning Data Frame Analytics

Transforms API

Elastic Stack 7.3 Release

Introducing Transforms in Elastic Machine Learning

