N 点渦系

竹田航太

2021年5月11日

目次

1	基礎的な問い	1
2	Preliminary	2
2.1	Notation	2
2.2	渦度場	2
2.3	Poison 方程式	3
2.4	Bio-Savart の法則	4
3	点渦	4
3.1	N 点渦系	4
4	2 次元	5
4.1	無限平面	5
4.2	単位円盤	5
4.3	一般の領域	7

概要

非粘性非圧縮流体において渦度が delta 関数の線形和で表される系を点渦系と呼ぶ. ここではいくつかの領域における点渦系の Hamiltonian についてまとめる.

1 基礎的な問い

主に [1] の 1.3 による. N 点渦に対する基礎的な問いをまとめる.

(1) N 点渦系が完全可積分になる条件は?:点渦の強さ, 領域に依存する.

- (2) 完全可積分系では解は全時間で存在するか?準周期的/閉な解であるか?有限時間渦衝突 は起きるか?
- (3) どのような(固定/相対)平衡状態が存在するか?どのような性質を持つか?
- (4) どの点渦問題が非可積分系となるか?可積分性が壊れるメカニズムはなにか?
- (5) 与えられた N 点渦配置からどのような瞬間的流線パターンが得られるか?特にトポロ ジーはどのように遷移するか?
- (6) 特定の N 点渦配置を得るために(離散・連続的)対称性はどのように利用できるか?
- (7) KAM 理論を渦系に適用し物理的な結論を得られるか?どんな座標を取れば相空間の次元 を下げ、一般渦問題に KAM 理論を適用できるか?
- (8) どんな渦配置から幾何的位相が生じるか?それを計算できるか?物理的関係を見出せ るか?
- (9) Nが大きい場合, N点渦問題にどんな道具が使えるか. 2次元乱流が意味するものは 何か?
- (10) 2次元から3次元渦問題への一般化

2 Preliminary

2.1 Notation

いくつか Notation をまとめる. $N \in \mathbb{N}$ が明らかな場合は省略する.

- 和の記号 -

- $\sum_{\alpha} = \sum_{\alpha=1}^{N}$ $\sum_{\beta \neq \alpha}^{N} = \sum_{\beta=1, \beta \neq \alpha}^{N}$ $\sum_{\alpha \neq \beta} = \sum_{\alpha} \sum_{\beta \neq \alpha}^{N}$

ベクトル —

- $(x,y)^{\perp} = (-y,x)$ と書く、2 次元での時計回り 90° 回転を表す。
- 2 次元の流れ関数 $\psi: \mathbb{R}^2 \to \mathbb{R}$ に対して、回転を次のように定める. $\nabla \times \psi = \nabla^{\perp} \psi$

2.2 渦度場

3次元の流れ場 $u \in \mathbb{R}^3$ から誘導される渦度は以下で与えられる.

$$\omega = \nabla \times u \tag{2.1}$$

非圧縮流体を扱うので

$$\nabla \cdot u = 0 \tag{2.2}$$

が成り立つ.

(2.1) の勾配と回転をとると次がわかる.

$$\nabla \cdot \omega = 0 \tag{2.3}$$

$$\nabla^2 u = -\nabla \times \omega \tag{2.4}$$

Theorem 2.1 (渦度 flux). (2.3) から閉曲面での渦度 flux の合計は 0

Proof.~(2.3) と発散定理から閉曲面 S とその外向き法ベクトル n,~S で囲まれた領域 V として

$$\int_{S} \omega \cdot n dS = \int_{V} \nabla \cdot \omega dV = 0$$

2.3 Poison 方程式

一般のベクトル値関数に対して以下が成り立つ

Theorem 2.2 (Helmholtz/Hodge decomposition). 任意の $u: \mathbb{R}^3 \to \mathbb{R}^3$ に対して、 $\exists \phi, \psi \ s.t.$

$$u = u_{\phi} + u_{\psi} = \nabla \phi + \nabla \times \psi \tag{2.5}$$

流体の分野では ϕ を速度ポテンシャル, ψ を流れ関数と呼ぶ.

Remark 2.3. 渦なしの流れ $\nabla \times u_{\phi} = 0$ に対して,スカラーポテンシャル ϕ s.t. $u = \nabla \phi$ の存在がわかり,非圧縮の流れ $\nabla \cdot u_{\psi} = 0$ に対して,ベクトルポテンシャル ψ s.t. $u = \nabla \times \psi$ の存在がわかる.

今, 非圧縮性の条件 (2.2) から以下を満たす流れ関数 ψ の存在が言える

$$u = \nabla \times \psi \tag{2.6}$$

(2.1) に代入して、非圧縮性から整理すると流れ関数は以下の Poison 方程式を満たす.

$$\nabla^2 \psi = -\omega \tag{2.7}$$

Poison 方程式は Laplace 作用素の (全空間の)Green 関数を用いて

$$\psi(x) = \int G(x, z)\omega(z)dz \tag{2.8}$$

と表される.

2.4 Bio-Savart の法則

与えられた渦度 ω に対して (2.8) から流れ関数が定まり、それより誘導される速度場は $u_{\omega} = \nabla \times \psi$ より次を満たす

Theorem 2.4. 非圧縮流体において、与えられた ω に対して誘導される速度場 u_{ω} は次で与えられる.

$$u_{\omega}(x) = \nabla \times \int G(x, z)\omega(z)dz$$
 (2.9)

$$= \int K(x-z)\omega(z)dz \tag{2.10}$$

ただし、Bio-Savart Kernel K は次で与えられる.

$$K(x) = \begin{cases} \frac{1}{2\pi} \frac{1}{\|x\|^2} (-y, x) & (in \mathbb{R}^2) \\ \frac{1}{4\pi} \frac{1}{\|x\|^3} \begin{pmatrix} 0 & z & -y \\ -z & 0 & x \\ y & -x & 0 \end{pmatrix} & (in \mathbb{R}^3) \end{cases}$$
 (2.11)

Remark 2.5. \mathbb{R}^3 の場合 *Bio-Savart* の法則はよく次のように表される.

$$u_{\omega} = -\frac{1}{4\pi} \int \frac{(x-z) \times \omega(z)}{\|x-z\|^3} dz$$
 (2.12)

3 点渦

3.1 N 点渦系

 $N \in \mathbb{N}$ とする. 非粘性非圧縮 d 次元流体において以下のような渦度の分解を考える.

$$\omega(x) = \sum_{\alpha=1}^{N} \Gamma_{\alpha} \delta(x - x_{\alpha})$$

ただし、渦度の強さ Γ_{α} は $\Gamma>0$ または $-\Gamma$ のみを値にとる.孤立した点渦 x_{α} $(\alpha=1,\cdots,N)$ から誘導される位置 $x\in\mathbb{R}^d$ 上の速度場は

$$\dot{x} = u(x,t)$$
$$= \nabla^{\perp} \psi_{\alpha}(x,t)$$

ここで ψ_{α} は流れ関数であり、Green 関数 G(x,z) を用いて

$$\psi_{\alpha}(x,t) = \Gamma_{\alpha} \int G(x,z)\delta(z-x_{\alpha})dz$$
$$= \Gamma_{\alpha}G(x,x_{\alpha})$$

と表される.

さらに、点渦系は Hamilton 系になることが知られており、Green 関数を用いて系の Hamiltonian は以下で与えられる. $X_N=(x_1,\cdots,x_N)$ とおいて、

$$H(X_N) = \frac{1}{2} \sum_{\alpha \neq \beta} \Gamma_{\alpha} \Gamma_{\beta} G(x_{\alpha}, x_{\beta})$$

$$= \frac{1}{2} \sum_{\alpha} \Gamma_{\alpha} \sum_{\beta \neq \alpha}^{N} \psi_{\beta}(x_{\alpha})$$
(3.1)

点渦系は Hamilton 方程式 (のようなもの) を満たす.

$$\Gamma_{\alpha}\dot{x}_{\alpha} = -\frac{\partial H}{\partial y_{\alpha}}, \ \Gamma_{\alpha}\dot{y}_{\alpha} = \frac{\partial H}{\partial x_{\alpha}} \qquad \alpha = 1, \cdots, N$$
 (3.2)

定数 Γ_{α} の分だけ厳密には Hamilton 方程式を満たしていないが,各変数 x_{α}, y_{α} を $\sqrt{\Gamma_{\alpha}} \mathrm{sign}(\Gamma_{\alpha})$ 倍すれば定数なしの Hamilton 方程式を満たすようにできる.

また、(3.2) は Bio-Savart の法則から次のようにもかける. $r_{\alpha} = (x_{\alpha}, y_{\alpha})$ と書いて、

$$\dot{r}_{\alpha} = \frac{1}{2\pi} \sum_{\beta \neq \alpha}^{N} \Gamma_{\beta} \frac{(r_{\alpha} - r_{\beta})^{\perp}}{\|r_{\alpha} - r_{\beta}\|^{2}}$$
(3.3)

4 2 次元

4.1 無限平面

2 次元平面 \mathbb{R}^2 における Poison 方程式の Green 関数は次で与えられる. この Green 関数を G_0 とかく.

$$G(x,y) = -\frac{1}{2\pi}\log(|x-y|) = G_0(x,y)$$

N 点渦系の Hamiltonian は

$$H(X_N) = -\frac{1}{4\pi} \sum_{\alpha \neq \beta} \Gamma_{\alpha} \Gamma_{\beta} \log(|x_{\alpha} - x_{\beta}|)$$

4.2 単位円盤

境界がある場合は境界での流れ関数を 0 にするように境界の形に合わせて Green 関数を調整する必要がある.

4.2.1 鏡像法

鏡像法を使う.単位円盤 $\mathbb{D}=\{x\in\mathbb{R}^2;|x|<1\}$ では x_α にある点渦に対して,次のように鏡像渦があたえられる.

$$\bar{x}_{\alpha} = \frac{R^2}{|x_{\alpha}|^2} x_{\alpha} \bigg|_{R=1} = \frac{x_{\alpha}}{|x_{\alpha}|^2}$$

これを使って D上の Poison 方程式の Green 関数は次で与えられる.

$$G(x,y) = -\frac{1}{2\pi} \log|x - y| + \frac{1}{2\pi} \log|x - \bar{y}| + \frac{1}{2\pi} \log|y|$$
(4.1)

x,y について対称性が直ちには確認できないが後で確かめられる.

また、N点渦系の Hamiltonian は次で与えられる.

$$H(X_N) = -\frac{1}{4\pi} \sum_{\alpha \neq \beta} \Gamma_{\alpha} \Gamma_{\beta} \log |x_{\alpha} - x_{\beta}|$$

$$+ \frac{1}{4\pi} \sum_{\alpha, \beta} \Gamma_{\alpha} \Gamma_{\beta} \log |x_{\alpha} - \bar{x}_{\beta}|$$

$$+ \frac{1}{4\pi} \sum_{\alpha, \beta} \Gamma_{\alpha} \Gamma_{\beta} \log |x_{\beta}|$$

$$(4.2)$$

ただし、半径 R の円盤の場合は定数が入る. *1 第 3 項は $\sum_{\alpha} \Gamma_{\alpha} = 0$ のとき 0 になるが、流れ関数を境界で 0 にするために必要.

上記の Hamiltonian を複素数 z = x + iy で表すと次のようになる.

$$H(Z_N) = -\frac{1}{4\pi} \sum_{\alpha \neq \beta} \Gamma_{\alpha} \Gamma_{\beta} \log |z_{\alpha} - z_{\beta}| + \frac{1}{4\pi} \sum_{\alpha, \beta} \Gamma_{\alpha} \Gamma_{\beta} \log |1 - z_{\alpha} z_{\beta}^*|$$

4.2.2 解析

Lemma 4.1 ([1] の Chapter 3 Exercise 8 p.138). \mathbb{D} 上の N 点渦系の Hamiltonian は次のように表せる.

$$H = \frac{1}{4\pi} \sum_{\alpha} \Gamma_{\alpha}^{2} \log(1 - |x_{\alpha}|^{2}) + \frac{1}{8\pi} \sum_{\alpha \neq \beta} \Gamma_{\alpha} \Gamma_{\beta} \log\left(1 + \frac{(1 - |x_{\alpha}|^{2})(1 - |x_{\beta}|^{2})}{|x_{\alpha} - x_{\beta}|^{2}}\right)$$
(4.3)

Proof. 次の恒等式が証明の本質である.

$$(x-y)^{2} + (1-x^{2})(1-y^{2}) = (xy-1)^{2}$$

$$(|x-y|^{2} + (1-|x|^{2})(1-|y|^{2}) = |xy^{*} - 1|^{2} \text{ for complex})$$
(4.4)

 $^{^{*1}}$ 第3項が $-rac{1}{4\pi}\sum_{lpha,eta}\Gamma_{lpha}\Gamma_{eta}\lograc{R}{|x_{lpha}|}$

Remark 4.2. (4.4) を実質的に適用することで \mathbb{D} 上の Green 関数の対称性が確かめられる.

$$G(x,y) = -\frac{1}{2\pi} \log|x - y| + \frac{1}{4\pi} \log\left[|x - y|^2 + (1 - |x|^2)(1 - |y|^2)\right]$$

4.2.3 中立渦

N 点渦系において正負の点渦が同数である条件を中立渦条件という.

Definition 4.3 (中立渦). $N \in 2\mathbb{N}$ の場合に、ある $\lambda > 0$ が存在して、渦の強さが

$$\lambda_i = \begin{cases} \lambda & (i = 1, \dots, N/2) \\ -\lambda & (i = N/2 + 1, \dots, N) \end{cases}$$

$$(4.5)$$

と表されるとき中立渦という.

ここでは D 上 2 点中立渦を考える. 系の Hamiltonian は次のように整理できる.

Theorem 4.4 (\mathbb{D} 上 2 点中立渦の Hamiltonian). \mathbb{D} 上 2 点中立渦系の *Hamiltonian* は次のようにかける.

$$H(x_1, x_2) = \frac{\lambda^2}{4\pi} \log \left[\frac{(1 - |x_1|^2)(1 - |x_2|^2)|x_1 - x_2|^2)}{|x_1 - x_2|^2 + (1 - |x_1|^2)(1 - |x_2|^2)} \right]$$
$$= \frac{\lambda^2}{4\pi} \log \left[\frac{1}{2} S((1 - |x_1|^2)(1 - |x_2|^2), |x_1 - x_2|^2) \right]$$

ただし, S(a,b) = 2ab/(a+b)

Proof.

Remark 4.5. *Theorem 4.4* から次のことがわかる.

- 中立渦系の Hamiltonian は自己相互作用と渦間相互作用の「平均」で表される.
- 境界と渦衝突での特異性を持つ. $(|x_1|=1 \ or \ |x_2|=1 \ or \ |x_1-x_2|)$

4.3 一般の領域

一般の領域 Ω 上の Green 関数を G とかき、全平面に対する残差を g とかく.

$$g(x,y) = G(x,y) - G_0(x,y)$$

N 点渦系の Hamiltonian は次のようにかける.

$$H = \frac{1}{2} \sum_{\alpha \neq \beta} \Gamma_{\alpha} \Gamma_{\beta} G(x_{\alpha}, x_{\beta}) + \frac{1}{2} \sum_{\alpha} \Gamma_{\alpha}^{2} g(x_{\alpha}, x_{\alpha})$$
 (4.6)

参考文献

[1] Paul K. Newton. *The N-Vortex Problem*. Applied Mathematical Sciences. Springer, New York, NY, 1 edition, 2001.