WEST Search History

09/831 816

DATE: Thursday, May 22, 2003

Set Name side by side		Hit Count	Set Name result set
•	PT,PGPB; THES=ASSIGNEE; PLUR=YES; OP=ADJ	7	
L3	L-prolyl-L-m-sarcolysyl-L-p-fluorophenylalanine	0	L3
L2	PSF	1455	L2
L1	peptichemio	4	L1

END OF SEARCH HISTORY

```
=> d que
                STR
L15
           17
           Cl
           C 16
           C 15
        14 N~~ C~~ C~ Cl
           ₹ 18 19 29
           Cb 13
                      0
              21
   11
                    22 ℃~~ o
           C 120
    0
               1
                         24
              \sim C\sim N\sim C\sim C\sim Cb\sim F
   ^ C
       3
           4
               5
                  6 7 8 9 10
NODE ATTRIBUTES:
DEFAULT MLEVEL IS ATOM
GGCAT
        IS MCY UNS AT
        IS MCY UNS AT
                        13
GGCAT
DEFAULT ECLEVEL IS LIMITED
                El N AT
ECOUNT IS E4 C
        IS E6 C
ECOUNT
                ΑT
ECOUNT IS E6 C AT
                     13
GRAPH ATTRIBUTES:
RING(S) ARE ISOLATED OR EMBEDDED
NUMBER OF NODES IS 24
STEREO ATTRIBUTES: NONE
            11 SEA FILE=REGISTRY SSS FUL L15
L17
              6 SEA FILE=HCAPLUS ABB=ON PLU=ON L17(L)PREP/RL
L18
=> d ibib abs hitstr 118 1-6
L18 ANSWER 1 OF 6 HCAPLUS COPYRIGHT 2003 ACS
ACCESSION NUMBER:
                         2001:923824 HCAPLUS
DOCUMENT NUMBER:
                         136:31672
                         Melphalan derivatives, their preparation, and their
TITLE:
                         use as cancer chemotherapeutic drugs
INVENTOR(S):
                         Lewensohn, Rolf; Gullbo, Joakim; Larsson, Rolf;
                         Ehrsson, Hans; Luthman, Kristina
                         Oncopeptides AB, Swed.
PATENT ASSIGNEE(S):
                         PCT Int. Appl., 52 pp.
SOURCE:
                         CODEN: PIXXD2
DOCUMENT TYPE:
                         Patent
                         English
LANGUAGE:
FAMILY ACC. NUM. COUNT:
PATENT INFORMATION:
```

PATENT NO.

KIND DATE

APPLICATION NO. DATE

```
WO 2001096367
                       A1
                             20011220
                                             WO 2001-SE1318
                                                               20010611
         W: `AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
             CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
             GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
             LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT,
             RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US,
             UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
         RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY,
             DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF,
             BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
                                            EP 2001-938945 20010611
                        A1
                             20030312
             AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR
PRIORITY APPLN. INFO.:
                                          SE 2000-2202
                                                            Α
                                                               20000613
                                          US 2000-211227P
                                                           Ρ
                                                               20000613
                                          WO 2001-SE1318
                                                            W
                                                               20010611
```

MARPAT 136:31672 OTHER SOURCE(S):

The invention provides alkylating di- and tripeptides based on a melphalan unit, and one or two addnl. amino acids or amino acid derivs., which can be used in the treatment of carcinogenic diseases. Further, the invention provides a pharmaceutical compn. comprising the alkylating peptides of the invention. Compd. prepn. is included.

380449-56-9P

RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(melphalan deriv. prepn. and use as cancer chemotherapeutic drugs)

380449-56-9 HCAPLUS RN

L-Phenylalanine, L-prolyl-4-[bis(2-chloroethyl)amino]-L-phenylalanyl-4-CN fluoro-, ethyl ester, monohydrochloride (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 380449-57-0P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. and reaction; melphalan deriv. prepn. and use as cancer chemotherapeutic drugs)

RN 380449-57-0 HCAPLUS

CN L-Phenylalanine, 1-[(1,1-dimethylethoxy)carbonyl]-L-prolyl-4-[bis(2-chloroethyl)amino]-L-phenylalanyl-4-fluoro-, ethyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

REFERENCE COUNT: 3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L18 ANSWER 2 OF 6 HCAPLUS COPYRIGHT 2003 ACS ACCESSION NUMBER: 2000:368410 HCAPLUS

DOCUMENT NUMBER: 132:347949

TITLE: Method for producing L-prolyl-L-m-sarcolysyl-L-p-

fluorophenylalanine and derivatives thereof

INVENTOR(S): Mehlem, Francesco; Di Vittorio, Pietro

PATENT ASSIGNEE(S): Peptichemio A.-G., Switz. SOURCE: PCT Int. Appl., 20 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: German

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

	PA	TENT	NO.		KI	ND	DATE			A	PLI	CATI	ON N	ο.	DATE				
	WO	2000	0311	 19	Α	 1	2000	0602		WC	19:	 98-C	 H498		1998	1119			
		W:	AU,	CA,	ΗU,	IL,	JP,	US											
		RW:	AT,	BE,	CH,	CY,	DE,	DK,	ES,	FI,	FR,	GB,	GR,	ΙE,	IT,	LU,	MC,	NL,	
			PT,	SE														•	
	ΑU	9910	193		Α	1	2000	0613		JA	J 19:	99-1	0193		1998	1119			
	ΕP	1129	107		A	1	2001	0905		E	19	98-9	5249	6	1998	1119			
		R:	AT,	BE,	ES,	NL,	, SE												
	JP	2002	5304	28	T	2	2002	0917		JI	20	00-5	8394	6	1998	1119			
PRIO	RIT	Y APP	LN.	INFO	. :				,	WO 19	998-	CH49	8	Α	1998	1119			
OTHE	R S	OURCE	(S):			CAS	REAC	T 13	2:34	7949;	MA	RPAT	132	:347	7949				
AB	An	impr	oved	syn	thes	is o	of th	e ti	tle	compo	i.,	a co	mpon	ent	of the	he			
	che	emoth	erap	euti	c mi	xt.	Pept	iche	mio,	and	its	alk	yl e	stei	rs or	acio	d ado	dn.	
	sa.	lts.	is c	laim	ed.	Thu	ıs, C	-ter	mina	l pro	tec	ted	L-p-	fluc	prophe	envla	alani	ine wa	15

reacted with N-protected L-m-sarcolysine in the presence of dicyclohexylcarbodiimide, to give N,C-protected L-m-sarcolysyl-L-p-fluorophenylalanine. The N-protecting group was removed, to give C-protected L-m-sarcolysyl-L-p-fluorophenylalanine, which was then reacted with N-protected proline, to give N,C-protected L-prolyl-L-m-sarcolysyl-L-p-fluorophenylalanine. Finally the N-protecting group was removed and the HCl salt was prepd. to give Et L-prolyl-L-m-sarcolysyl-L-p-fluorophenylalanate hydrochloride in 5% yield.

IT 39064-36-3P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. of L-prolyl-L-m-sarcolysyl-L-p-fluorophenylalanine for use as chemotherapeutic agents)

RN 39064-36-3 HCAPLUS

CN L-Phenylalanine, 1-[(phenylmethoxy)carbonyl]-L-prolyl-3-[bis(2-chloroethyl)amino]-L-phenylalanyl-4-fluoro-, ethyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

IT 35849-47-9P

RL: SPN (Synthetic preparation); PREP (Preparation) (prepn. of L-prolyl-L-m-sarcolysyl-L-p-fluorophenylalanine for use as chemotherapeutic agents)

RN 35849-47-9 HCAPLUS

CN L-Phenylalanine, L-prolyl-3-[bis(2-chloroethyl)amino]-L-phenylalanyl-4-fluoro-, ethyl ester, monohydrochloride (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

● HCl

REFERENCE COUNT: 3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L18 ANSWER 3 OF 6 HCAPLUS COPYRIGHT 2003 ACS ACCESSION NUMBER: 1999:64700 HCAPLUS

DOCUMENT NUMBER: 130:144179

TITLE: Pharmaceutical composition containing Peptichemio for

cancer treatment

INVENTOR(S):
Mehlem, Francesco

PATENT ASSIGNEE(S): Peptichemio A.-G., Switz. SOURCE: PCT Int. Appl., 20 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: German

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PA:	rent :	NO.		KI	ND	DATE						ON NO		DATE			
WO	9902	 177		A	1	1999	0121							1998	0707		
	W:	AL,	AM,	AT,	AT,	ΑU,	ΑZ,	BA,	BB,	BG,	BR,	BY,	CA,	CH,	CN,	CU,	CZ,
		CZ,	DE,	DE,	DK,	DK,	EE,	EE,	ES,	FI,	FI,	GB,	GE,	GH,	GM,	GW,	HR,
		HU,	ID,	IL,	IS,	JP,	ΚE,	KG,	KP,	KR,	ΚZ,	LC,	LK,	LR,	LS,	LT,	LU,
		LV,	MD,	MG,	MK,	MN,	MW,	MX,	NO,	NZ,	PL,	PT,	RO,	RU,	SD,	SE,	SG,
		SI,	SK,	SK,	SL,	ТJ,	TM,	TR,	TT,	UA,	UG,	US,	UZ,	VN,	YU,	ZW,	AM,
		AZ,	BY,	KG,	KZ,	MD,	RU,	ТJ,	TM								
	RW:	GH,	GM,	ΚE,	LS,	MW,	SD,	SZ,	UG,	ZW,	AT,	ΒĖ,	CH,	CY,	DE,	DK,	ES,
		FI,	FR,	GB,	GR,	ΙE,	IT,	LU,	MC,	NL,	PT,	SE,	BF,	ВJ,	CF,	CG,	CI,
		CM,	GΑ,	GN,	ML,	MR,	ΝE,	SN,	TD,	TG							
ΑU	9879	049		Α	1	1999	0208		A	J 19	98-7	9049		1998	0707		
ΕP	1001	799		А	1	2000	0524		E	P 19	98-9	2919	4	1998	0707		
ΕP	1001	799		В	1	2001	1031										
	R:	CH,	DE,	FR,	GB,	IT,	LI										
JР	2001	5094	87	T.	2 .	2001	0724		J	P 20	00-5	0176	7	1998	0707		
ΕP	1132	395		A	2	2001	0912		E	P 20	01-2	0127	2	1998	0707		
ΕP	1132	395		Α	3	2002	0206										
	R:	CH,	DE,	FR,	GB,	IT,	LI										

PRIORITY APPLN. INFO.:

CH 1997-1651 A 19970707 EP 1998-929194 A3 19980707 WO 1998-CH300 W 19980707

AB Peptichemio, a mixt. of 6 synthetic peptides each contg. L-m-sarcolysin, shows anticancer activity, esp. against melanomas. The peptides, and their lower alkyl esters and /or acid addn. salts, are formulated as delayed-release compns. with a cyclodextrin as carrier to provide adequate bioavailability over an extended period. Thus, synthesis of 1 of the peptides, L-prolyl-L-m-sarcolysyl-L-p-fluorophenylalanine Et ester hydrochloride (I), from N-carbobenzoxy-L-proline, N-carbobenzoxy-L-m-sarcolysin, and L-p-fluorophenylalanine Et ester by the DCCD method is described. Oral cytostatic capsules contained I 12 mg and .beta.-cyclodextrin 25 g.

IT 35849-47-9P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(pharmaceutical compn. contg. Peptichemio for cancer treatment)

RN 35849-47-9 HCAPLUS

CN L-Phenylalanine, L-prolyl-3-[bis(2-chloroethyl)amino]-L-phenylalanyl-4-fluoro-, ethyl ester, monohydrochloride (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

HCl

IT 39064-36-3P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(pharmaceutical compn. contg. Peptichemio for cancer treatment)

RN 39064-36-3 HCAPLUS

CN L-Phenylalanine, 1-[(phenylmethoxy)carbonyl]-L-prolyl-3-[bis(2-chloroethyl)amino]-L-phenylalanyl-4-fluoro-, ethyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS REFERENCE COUNT:

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L18 ANSWER 4 OF 6 HCAPLUS COPYRIGHT 2003 ACS

5

ACCESSION NUMBER:

1973:72600 HCAPLUS

DOCUMENT NUMBER:

78:72600

TITLE:

Tetracycline derivatives of synthetic

m-[bis(2-chloroethyl)amino]-L-phenylalanine-containing

oligopeptides

INVENTOR(S):

De Barbieri, Augusto

PATENT ASSIGNEE(S):

Istituto Sieroterapico Serafino Belfanti

SOURCE:

Ger. Offen., 37 pp. CODEN: GWXXBX

DOCUMENT TYPE:

Patent

LANGUAGE:

German

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
				
DE 2128623	A1	19730104	DE 1971-2128623	19710609
PRIORITY APPLN. INFO.	:	DE	1971-2128623	19710609
GI For diagram(s),	see pr	inted CA Issue.		

[In this abstr. FPhe = p-fluoro-L-phenylalanyl, ClPhe = ΑB m-[bis(2-chloroethyl)amino]-L-phenylalanyl, EtAsp = .beta.-ethyl-Laspartyl.] The title compds. (I; R = FPhe-ClPhe-Asn-OEt, Pro-ClPhe-FPhe-OEt, Pro-ClPhe-Nva-OEt, Ser-FPhe-ClPhe-OEt, FPhe-EtAsp-ClPhe-OEt, FPhe-Gly-ClPhe-Nva-OEt) were prepd. by treating tetracycline with H2CO and the corresponding peptide. I caused Sarcoma 180 tumor regression.

35849-47-9P 39064-35-2P 39064-36-3P

RL: SPN (Synthetic preparation); PREP (Preparation) (prepn. of)

RN 35849-47-9 HCAPLUS

L-Phenylalanine, L-prolyl-3-[bis(2-chloroethyl)amino]-L-phenylalanyl-4-CN fluoro-, ethyl ester, monohydrochloride (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

HC1

RN 39064-35-2 HCAPLUS

CN L-Phenylalanine, N-[3-[bis(2-chloroethyl)amino]-N-[1-[[[[4-(dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,6,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-2-naphthacenyl]carbonyl]amino]methyl]-L-prolyl]-L-phenylalanyl]-4-fluoro-, ethyl ester, monohydrochloride, [4S-(4.alpha.,4a.alpha.,5a.alpha.,6.beta.,12a.alpha.)]- (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 2-A

● HCl

RN 39064-36-3 HCAPLUS

CN L-Phenylalanine, 1-[(phenylmethoxy)carbonyl]-L-prolyl-3-[bis(2-chloroethyl)amino]-L-phenylalanyl-4-fluoro-, ethyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

L18 ANSWER 5 OF 6 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1973:30201 HCAPLUS

DOCUMENT NUMBER: 78:30201

TITLE: Tetracycline-containing peptides with antitumor

activity

PATENT ASSIGNEE(S): Istituto Sieroterapico Milanese "Serafino Belfanti"

Ente Morale

SOURCE: Fr. Demande, 28 pp.

CODEN: FRXXBL

DOCUMENT TYPE: Patent LANGUAGE: French

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE

FR 2101226 19720505

PRIORITY APPLN. INFO.: IT 1970-28334 19700805

GI For diagram(s), see printed CA Issue.

- AB Tetracycline derivs. (I) in which R is a di-, tri, or tetrapeptide contg. the m-[bis(2-chloroethyl)amino]phenylalanine residue were prepd. by the Mannich reaction of tetracycline with the appropriate peptide. The necessary peptides were prepd. by the dicyclohexylcarbodiimide procedure.
- IT 35849-47-9P 39064-35-2P 39064-36-3P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (prepn. of)
- RN 35849-47-9 HCAPLUS
- CN L-Phenylalanine, L-prolyl-3-[bis(2-chloroethyl)amino]-L-phenylalanyl-4-fluoro-, ethyl ester, monohydrochloride (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

HCl

- RN 39064-35-2 HCAPLUS
- CN L-Phenylalanine, N-[3-[bis(2-chloroethyl)amino]-N-[1-[[[[4-(dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,6,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-2-naphthacenyl]carbonyl]amino]methyl]-L-prolyl]-L-phenylalanyl]-4-fluoro-, ethyl ester, monohydrochloride, [4S-(4.alpha.,4a.alpha.,5a.alpha.,6.beta.,12a.alpha.)]- (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 2-A

HCl

RN 39064-36-3 HCAPLUS
CN L-Phenylalanine, 1-[(phenylmethoxy)carbonyl]-L-prolyl-3-[bis(2-chloroethyl)amino]-L-phenylalanyl-4-fluoro-, ethyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

L18 ANSWER 6 OF 6 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1972:86148 HCAPLUS

DOCUMENT NUMBER:

76:86148

TITLE:

Cytostatic m-[bis(2-chloroethyl)amino]-L-phenylalanine-

containing oligopeptides

INVENTOR(S):

De Barbieri, Agusto

PATENT ASSIGNEE(S):

Istituto Sieroterapico Serafino Belfanti

SOURCE:

Ger. Offen., 53 pp. CODEN: GWXXBX

DOCUMENT TYPE:

Patent

LANGUAGE:

German

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT. NO.	KIND	DATE	APPLICATION NO.	DATE
DE 2128549	Α	19720113	DE 1971-2128549	19710609
DE 2128549	B2	19760129		
DE 2128549	C3	.19760909		
FR 2094175	A1	19720204	FR 1970-29723	19700812
FR 2094175	A 5	19720204		
PRIORITY APPLN.	INFO.:		US 1970-45585	19700611

GI For diagram(s), see printed CA Issue.

(Y = -HNCH[CH2C6H4N(CH2CH2C1)2]CO-; -QPhe- = -HNCH-(CH2C6H4F-p)CO-; NArg = N.omega.-nitro-L-arginyl; Z = PhCH2O2C). The title compds. [I; R = H, H-QPhe; Pro; Ser-QPhe, H-QPhe-(EtO)Asp, or HCO-QPhe; R1 = Asp-OEt, OEt, QPhe-OEt, Nva-OEt, Lys-OEt, Lys-Nva-OEt, Lys-QPhe-OEt, N-Arg-Nva-OEt, NArg-QPhe-OEt, or Arg-Lys-QPhe-His-OH] were prepd. and used as cytostatics according to Cancer Chemotherapy National Service Center methods esp. against Sarcoma 180 and Adenocarcinoma 755 in mice and addnl. clinically against several tumors. Thus, Z-Asp-OEt was hydrogenated over Pd/C in MeOH-AcOH, HCl added, the base released in DMF, and ZyOH and dicylohexylcarbodiimide added to 0.degree. to give 79% ZYAsp-OEt. The Z group was removed by hydrogenolysis in MeOH-HCl in the presence of Pd/C to give 75% I.HCl (R = H, R1 = Asp-OEt). Similarly prepd. and used were 16 other I.

IT 35849-47-9P

RL: SPN (Synthetic preparation); PREP (Preparation) (prepn. of)

RN 35849-47-9 HCAPLUS

CN L-Phenylalanine, L-prolyl-3-{bis(2-chloroethyl)amino}-L-phenylalanyl-4-fluoro-, ethyl ester, monohydrochloride (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

HCl

```
=> d que
               STR
L21
PRO
          17
          Cl
           C 16
           C 15
        14 N\sim C\sim C\sim C1
          3 18 19 29
          Cb 13
                     0
           $ 21
   11
           C 120
    0
                  ζ 24
  \sim C\sim N\sim C\sim C\sim N\sim C\sim Cb\sim F
       3 4 5 6 7 8 9 10
NODE ATTRIBUTES:
DEFAULT MLEVEL IS ATOM
GGCAT
       IS MCY UNS AT
       IS MCY UNS AT 13
GGCAT
DEFAULT ECLEVEL IS LIMITED
ECOUNT IS E4 C E1 N AT
ECOUNT IS E6 C AT
ECOUNT IS E6 C AT
                   13
GRAPH ATTRIBUTES:
RING(S) ARE ISOLATED OR EMBEDDED
NUMBER OF NODES IS 24
STEREO ATTRIBUTES: NONE
             1 SEA FILE=CASREACT SSS FUL L21 ( 1 REACTIONS)
=> d ibib abs crd
L23 ANSWER 1 OF 1 CASREACT COPYRIGHT 2003 ACS
ACCESSION NUMBER:
                        132:347949 CASREACT
TITLE:
                        Method for producing L-prolyl-L-m-sarcolysyl-L-p-
                        fluorophenylalanine and derivatives thereof
INVENTOR(S):
                        Mehlem, Francesco; Di Vittorio, Pietro
                        Peptichemio A.-G., Switz.
PATENT ASSIGNEE(S):
SOURCE:
                        PCT Int. Appl., 20 pp.
                        CODEN: PIXXD2
DOCUMENT TYPE:
                        Patent
LANGUAGE:
                        German
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:
    PATENT NO.
                 KIND
                           DATE
                                         APPLICATION NO.
                                         -----
    ______
                          _____
                                         WO 1998-CH498
    WO 2000031119
                    A1
                           20000602
                                                          19981119
```

W: AU, CA, HU, IL, JP, US

RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,

PT, SE

AU 9910193 A1 20000613 AU 1999-10193 19981119 EP 1129107 A1 20010905 EP 1998-952496 19981119

R: AT, BE, ES, NL, SE

JP 2002530428 T2 20020917 JP 2000-583946 19981119

PRIORITY APPLN. INFO.: WO 1998-CH498 19981119

OTHER SOURCE(S): MARPAT 132:347949

AB An improved synthesis of the title compd., a component of the chemotherapeutic mixt. Peptichemio, and its alkyl esters or acid addn. salts, is claimed. Thus, C-terminal protected L-p-fluorophenylalanine was reacted with N-protected L-m-sarcolysine in the presence of dicyclohexylcarbodiimide, to give N,C-protected L-m-sarcolysyl-L-p-fluorophenylalanine. The N-protecting group was removed, to give C-protected L-m-sarcolysyl-L-p-fluorophenylalanine, which was then reacted with N-protected proline, to give N,C-protected L-prolyl-L-m-sarcolysyl-L-p-fluorophenylalanine. Finally the N-protecting group was removed and the HCl salt was prepd. to give Et L-prolyl-L-m-sarcolysyl-L-p-fluorophenylalanate hydrochloride in 5% yield.

RX(1) OF 1
$$ClCH_2$$
 $ClCH_2$ $ClCH_2$

RX(1) OF 1

HCl

REFERENCE COUNT:

THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

Connecting via Winsock to STN

Welcome to STN International! Enter x:x

LOGINID:ssspta1653rxt

PASSWORD:

TERMINAL (ENTER 1, 2, 3, OR ?):2

```
Welcome to STN International
                 Web Page URLs for STN Seminar Schedule - N. America
NEWS
NEWS
        Apr 08
                 "Ask CAS" for self-help around the clock
                 New e-mail delivery for search results now available
NEWS
         Jun 03
NEWS
        Aug 08
                 PHARMAMarketLetter(PHARMAML) - new on STN
NEWS 5
        Aug 19
                 Aquatic Toxicity Information Retrieval (AQUIRE)
                 now available on STN
NEWS
                 Sequence searching in REGISTRY enhanced
        Aug 26
      6
NEWS
         Sep 03
                 JAPIO has been reloaded and enhanced
         Sep 16
                Experimental properties added to the REGISTRY file
NEWS
         Sep 16
                 CA Section Thesaurus available in CAPLUS and CA
NEWS
NEWS 10
                CASREACT Enriched with Reactions from 1907 to 1985
        Oct 01
NEWS 11
        Oct 24
                BEILSTEIN adds new search fields
NEWS 12
        Oct 24 Nutraceuticals International (NUTRACEUT) now available on STN
NEWS 13 Nov 18
                DKILIT has been renamed APOLLIT
NEWS 14 Nov 25
                More calculated properties added to REGISTRY
NEWS 15 Dec 04
                CSA files on STN
NEWS 16 Dec 17
                 PCTFULL now covers WP/PCT Applications from 1978 to date
NEWS 17
        Dec 17
                 TOXCENTER enhanced with additional content
NEWS 18 Dec 17
                 Adis Clinical Trials Insight now available on STN
NEWS 19
                 Simultaneous left and right truncation added to COMPENDEX,
        Jan 29
                 ENERGY, INSPEC
                 CANCERLIT is no longer being updated
NEWS 20
        Feb 13
NEWS 21
         Feb 24
                METADEX enhancements
NEWS 22
                PCTGEN now available on STN
        Feb 24
NEWS 23
                TEMA now available on STN
        Feb 24
        Feb 26 NTIS now allows simultaneous left and right truncation
NEWS 24
NEWS 25
        Feb 26
                PCTFULL now contains images
NEWS 26
        Mar 04
                SDI PACKAGE for monthly delivery of multifile SDI results
NEWS 27
        Mar 20
                EVENTLINE will be removed from STN
NEWS 28
        Mar 24
                PATDPAFULL now available on STN
NEWS 29
        Mar 24
                Additional information for trade-named substances without
                 structures available in REGISTRY
NEWS 30
        Apr 11
                Display formats in DGENE enhanced
NEWS 31
        Apr 14
                MEDLINE Reload
NEWS 32
        Apr 17
                 Polymer searching in REGISTRY enhanced
        Apr 21
NEWS 33
                 Indexing from 1947 to 1956 being added to records in CA/CAPLUS
NEWS 34
        Apr 21
                New current-awareness alert (SDI) frequency in
                 WPIDS/WPINDEX/WPIX
NEWS 35
        Apr 28
                 RDISCLOSURE now available on STN
NEWS 36
        May 05
                 Pharmacokinetic information and systematic chemical names
                 added to PHAR
                 MEDLINE file segment of TOXCENTER reloaded
NEWS 37
         May 15
NEWS 38
         May 15
                 Supporter information for ENCOMPPAT and ENCOMPLIT updated
NEWS 39
         May 16
                 CHEMREACT will be removed from STN
NEWS 40
        May 19
                Simultaneous left and right truncation added to WSCA
NEWS 41
        May 19
                RAPRA enhanced with new search field, simultaneous left and
                 right truncation
```

NEWS EXPRESS April 4 CURRENT WINDOWS VERSION IS V6.01a, CURRENT
MACINTOSH VERSION IS V6.0b(ENG) AND V6.0Jb(JP),
AND CURRENT DISCOVER FILE IS DATED 01 APRIL 2003
NEWS HOURS STN Operating Hours Plus Help Desk Availability
NEWS INTER General Internet Information
NEWS LOGIN Welcome Banner and News Items
NEWS PHONE Direct Dial and Telecommunication Network Access to STN

CAS World Wide Web Site (general information)

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 07:49:19 ON 22 MAY 2003

=> file caplus biosis medline uspatfull
COST IN U.S. DOLLARS

SINCE FILE TOTAL ENTRY SESSION 0.21 0.21

FULL ESTIMATED COST

NEWS WWW

FILE 'CAPLUS' ENTERED AT 07:49:37 ON 22 MAY 2003 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2003 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'BIOSIS' ENTERED AT 07:49:37 ON 22 MAY 2003 COPYRIGHT (C) 2003 BIOLOGICAL ABSTRACTS INC.(R)

FILE 'MEDLINE' ENTERED AT 07:49:37 ON 22 MAY 2003

FILE 'USPATFULL' ENTERED AT 07:49:37 ON 22 MAY 2003
CA INDEXING COPYRIGHT (C) 2003 AMERICAN CHEMICAL SOCIETY (ACS)

=> s peptichemio
L1 391 PEPTICHEMIO

=> s PSF

L2 3400 PSF

=> s 11 and 12 and 13

L4 0 L1 AND L2 AND L3

=> s l1 and l2

L5 3 L1 AND L2

=> s 11 and 13

L6 2 L1 AND L3

=> s 15 and 16

L7 0 L5 AND L6

=> d 15 1-3

L5 ANSWER 1 OF 3 CAPLUS COPYRIGHT 2003 ACS

```
1992:165859 CAPLUS
AN
DN
    116:165859
    Cytotoxicity and DNA cross-linking induced by peptide conjugated
ΤI
    m-L-sarcolysin in human melanoma cells
    Hansson, Johan; Lewensohn, Rolf; Ringborg, Ulrik
ΑU
    Dep. Gen. Oncol., Karolinska Hosp., Stockholm, S-104 01, Swed.
CS
    Anticancer Research (1991), 11(5), 1725-30
SO
     CODEN: ANTRD4; ISSN: 0250-7005
DT
    Journal
LΑ
    English
    ANSWER 2 OF 3 BIOSIS COPYRIGHT 2003 BIOLOGICAL ABSTRACTS INC.
L5
    1992:121167 BIOSIS
AN
    BA93:66967
DN
    CYTOTOXICITY AND DNA CROSS-LINKING INDUCED BY PEPTIDE CONJUGATED M-L
TΙ
     SARCOLYSIN IN HUMAN MELANOMA CELLS.
    HANSSON J; LEWENSOHN R; RINGBORG U
ΑU
    DEP. GENERAL ONCOLOGY, RADIUMHEMMET, KAROLINSKA HOSPITAL, S-104 01
CS
     STOCKHOLM 60, SWEDEN.
     ANTICANCER RES, (1991) 11 (5), 1725-1730.
SO
     CODEN: ANTRD4. ISSN: 0250-7005.
FS
     BA; OLD
    English
LA
    ANSWER 3 OF 3
                      MEDLINE
L5
     92117487
                MEDLINE
AN
              PubMed ID: 1768043
     92117487
DN
     Cytotoxicity and DNA cross-linking induced by peptide conjugated
ΤI
     m-L-sarcolysin in human melanoma cells.
     Hansson J; Lewensohn R; Ringborg U
ΑU
     Department of General Oncology, Karolinska Hospital, Stockholm, Sweden.
ÇS
     ANTICANCER RESEARCH, (1991 Sep-Oct) 11 (5) 1725-30.
SO
     Journal code: 8102988. ISSN: 0250-7005.
CY
     Greece
     Journal; Article; (JOURNAL ARTICLE)
DT
     English
LA
     Priority Journals
FS
EM
     199202
     Entered STN: 19920308
ED
     Last Updated on STN: 19970203
     Entered Medline: 19920218
=> d 16 1-2
     ANSWER 1 OF 2 CAPLUS COPYRIGHT 2003 ACS
L6
ΑN
     2000:368410 CAPLUS
DN
     132:347949
     Method for producing L-prolyl-L-m-
TI
     sarcolysyl-L-p-fluorophenylalanine
     and derivatives thereof
     Mehlem, Francesco; Di Vittorio, Pietro
IN
     Peptichemio A.-G., Switz.
PΑ
     PCT Int. Appl., 20 pp.
SO
     CODEN: PIXXD2
DT
     Patent
LΑ
     German
FAN.CNT 1
                    KIND DATE
                                          APPLICATION NO. DATE
     PATENT NO.
     ______
                                          ______
                                          WO 1998-CH498
                      A1 20000602
                                                          19981119
PT
     WO 2000031119
         W: AU, CA, HU, IL, JP, US
         RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
             PT, SE
```

```
AU 9910193 A1 20000613 AU 1999-10193
EP 1129107 A1 20010905 EP 1998-952496
                                                           19981119
                                         EP 1998-952496 19981119
        R: AT, BE, ES, NL, SE
     JP 2002530428 T2 20020917
WO 1998-CH498 A 19981119
                                     JP 2000-583946 19981119
PRAI WO 1998-CH498
    CASREACT 132:347949; MARPAT 132:347949
             THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD
RE.CNT 3
             ALL CITATIONS AVAILABLE IN THE RE FORMAT
     ANSWER 2 OF 2 CAPLUS COPYRIGHT 2003 ACS
L6
     1999:64700 CAPLUS
AN
     130:144179
DN
     Pharmaceutical composition containing Peptichemio for cancer
TI
     Mehlem, Francesco
TN
     Peptichemio A.-G., Switz.
PΑ
     PCT Int. Appl., 20 pp.
SO
     CODEN: PIXXD2
DT
    Patent
LΑ
    German
FAN.CNT 1
     PATENT NO. KIND DATE
                                   APPLICATION NO. DATE
    WO 9902177 Al 19990121 WO 1998-CH300 19980707
PΙ
         W: AL, AM, AT, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ,
            CZ, DE, DE, DK, DK, EE, EE, ES, FI, FI, GB, GE, GH, GM, GW, HR,
            HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU,
            LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG,
            SI, SK, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, AM,
            AZ, BY, KG, KZ, MD, RU, TJ, TM
         RW: GH, GM, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES,
            FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI,
            CM, GA, GN, ML, MR, NE, SN, TD, TG
     AU 9879049 A1 19990208 AU 1998-79049 19980707
EP 1001799 A1 20000524 EP 1998-929194 19980707
     EP 1001799 B1 20011031
        R: CH, DE, FR, GB, IT, LI
                                        JP 2000-501767 19980707
     JP 2001509487 T2 20010724
    EP 1132395 AZ 20020206
                     A2 20010912
                                         EP 2001-201272 19980707
        R: CH, DE, FR, GB, IT, LI
PRAI CH 1997-1651 A 19970707
                     A3 19980707
     EP 1998-929194
                    W 19980707
     WO 1998-CH300
RE.CNT 5 THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS RECORD
             ALL CITATIONS AVAILABLE IN THE RE FORMAT
=> s francesco mehlem/inv
'INV' IS NOT A VALID FIELD CODE
            0 FRANCESCO MEHLEM/INV
=> s francesco mehlem/in
'IN' IS NOT A VALID FIELD CODE
            0 FRANCESCO MEHLEM/IN
```

=> s francesco mehlem L10 0 FRANCESCO MEHLEM Larsson et al. "Comparison of the cytologic activity of molphalan with L-probyl-m-L-salcolyant L-P-gluorophonylalamine in human tumor cell lines & primary collins of Tumor cells from patients Cytotoxic activity of L-probyl-m-L-sarcolysyl-L-p-fluorophehylalanine in vitro 329

British Journal of Cancer, 1998, wh. 78 (3) pp. 328-335

The 8226/Dox 40 was selected for doxorubicin resistance and Table 1 Ch 155n: 0007-0920

thows the classical MDR phenotype with overexpression of Pdycoprotein 170 (Dalton et al, 1986). The 8226/LR-5 was selected for Mel resistance, proposed to be associated with increased levels of glutathione (Bellamy et al, 1991; Mulcahy et al. 1994). The 11-937-Vcr was selected for vincristine resistance, proposed to be mbulin associated (Botling et al. 1994). The H69AR, selected for doxorubicin resistance, expresses a multidrug-resistant (MDR) chenotype proposed to be mediated by a multidrug resistanceessociated protein (MRP, Mirski et al, 1987; Cole et al, 1992). The CEM/VM-1, selected for teniposide resistance, expresses an atypical MDR, which is proposed to be topoisomerase II (topolI) associated (Danks et al, 1987, 1988). The exact mechanism of resistance for the primary resistant ACHN cell line is not known and may be multifactorial (Nygren and Larsson, 1990).

The cell lines were grown in complete culture medium described below at 37°C in humidified atmosphere containing 5% carbon dioxide. The 8226/Dox 40 was treated once a month with δοxorubicin at 0.24 µg ml-1 and the 8226/LR-5 at each change of medium with Mel at 1.53 μg ml-1. The U-937-Vcr was continuously cultured in the presence of 10 ng ml-1 vincristine and the 1169AR was alternately fed with drug-free medium and medium containing 0.46 µg ml⁻¹ doxorubicin. The CEM/VM-1 cell line was cultured in drug-free medium without any loss of resistance for a period of 6-8 months. The resistance patterns of the cell lines were routinely confirmed in control experiments.

Patient samples

ktotal of 49 patient tumour samples from the different diagnostic group was used to determine the activity of P2. Mel, and, for comparison, five other cytotoxic drugs were chosen to represent different mechanistic classes. However, because of a limited number of cells, all drugs could not be tested in all samples. wenty-eight solid and 21 haematological tumours were used to determine the dose-response relationship for P2 and Mel. The diagnostic groups of origin were: acute lymphocytic leukaemia (ceven), acute myelocytic leukaemia (eight), chronic lymphocytic **L**ukaemia (four), myeloma (two), carcinoma of the bladder (one), breast cancer (four), non-small-cell lung cancer (six), ovarian arcinoma (eight), phaeochromocytoma (one), sarcoma (two), carcinoma of the thyroid (one), mesothelioma (one), unknown mary (one), gastric cancer (one), cardiac carcinoma (one), Leuroblastoma (one). The overall percentage of previously utreated patients was 58%. Five samples of normal peripheral blood mononuclear cells (PBMCs) from healthy blood donors vere compared with those of the five chronic lymphocytic takaemia (CLL) samples.

The tumour samples were obtained by bone marrow/peripheral dood sampling, routine surgery or diagnostic biopsy, and this ampling was approved by the local ethics committee at the Uppsala University Hospital. Leukaemic cells and PBMCs were colated from bone marrow or peripheral blood by 1.077 g ml-Coll-Paque (Kabi-Pharmacia, Uppsala, Sweden) density Gadient centrifugation (Larsson et al. 1992). Tumour tissue from id tumour samples was minced into small pieces and tumour ells were then isolated by collagenase dispersion followed by Percoll (Kabi-Pharmacia) density gradient centrifugation (Csoka al, 1994). Cell viability was determined by the trypan blue clusion test and the proportion of tumour cells in the preparation s judged by inspection of May-Grünwald-Giemsa-stained

Table 1 Chemical composition of peptichemio oligopeptides

Peptide 1 (P1): L-Ser-LpFPhe-L-mSL.OEt Peptide 2 (P2): L-Pro-L-mSL-LpFPhe.OEt Peptide 3 (P3): L-pFPhe-L-mSL-Asn.OEt Peptide 4 (P4):L-mSL-L-Arg(NO₂)-L-Nval.OEt Peptide 5 (P5): L-pFPhe-Gly-L-mSL-L-Nval.OEt Peptide 6 (P6): L-mSL-L-Arg-L-Lys-L-mSL-L-His.OMe

cytospin preparations by a cytopathologist. In some cases, cells were cryopreserved in a culture medium containing 10% dimethylsulphoxide (DMSO; Sigma Chemical Co., St Louis, MO, USA) and 50% inactivated fetal calf serum (FCS; HyClone, Cramlington, UK) by initial freezing for 24 h at -70°C, followed by storage in liquid nitrogen or in the deep freeze at -150°C. Cryopreservation in this way does not affect drug sensitivity (Nygren et al, 1992).

Reagents and drugs

Fluorescein diacetate (FDA; Sigma) was dissolved in DMSO and kept frozen (-20°C) as a stock solution protected from light. A complete medium consisting of culture medium RPMI-1640 (HyClone, Cramlington, UK) supplemented with 10% inactivated FCS, 2 mm glutamine, 50 µg ml⁻¹ streptomycin and 60 µg ml⁻¹ penicillin was used throughout for both cell lines and patient samples. Mel was obtained from the Wellcome Foundation, London, UK. The drug was received as a sterile powder, 2 mg of which were dissolved in 0.5-1 ml of 92% ethanol with 2% hydrogen chloride and further diluted in cell culture medium to the desired drug concentrations. The components of PTC and m-L-m-L-SL were obtained from Istituto Sieroterapico, Milanese, S. Belfanti, Milan, Italy. The peptides 1-5 were obtained as ethyl esters and peptide 6 as methyl ester (Table 1). An aliquot of 2 mg of each was dissolved in 0.5-1 ml of 92% ethanol with hydrochloric acid and further diluted in cell culture medium to the desired drug concentrations. Cisplatin, cytarabine, doxorubicin, etoposide and vincristine were obtained from commercial sources and were dissolved according to guidelines from the manufacturer and further diluted in phosphate-buffered saline (PBS; HyClone) or sterile water.

In the cell line panel all drugs were tested at four different drug concentrations, obtained by fivefold serial dilution from the maximum 10 μg ml-1. On a molar basis the concentration of the different oligopetides are 39-43% of that of Mel and m-L-SL. To determine the dose-response relationship for Mel and P2 in patient samples, five different drug concentrations were used, obtained by a fivefold serial dilution of the drugs from 50 µg ml-1. In the patient samples, the concentrations chosen for comparison with standard drugs were the empirically derived cut-off concentrations (EDCCs), defined as the concentration that produces a significant scatter of survival index (SI) values among haematological tumours. This concentration was used to optimize the conditions for evaluating cross-resistance. The concentrations 2 and 0.08 µg ml-1 were chosen for Mel and P2, respectively, and the EDCCs for the other drugs have been described previously (Larsson et al, 1992).

Ninety-six-well microtitre plates (Nunc. Roskilde, Denmark) were prepared with 20 μ l per well of drug solution at ten times the desired concentration, with the aid of a programmable pipetting robot (Propette, Perkin Elmer, Norwalk, CT, USA). The plates

were stored frozen at -70°C for up to 2 months until further use. Under these conditions, no apparent change in drug activity was observed (Larsson et al, 1992).

The fluorometric microculture cytotoxicity assay procedure

The fluorometric microculture cytotoxicity assay (FMCA) is based on measurement of fluorescence generated from hydrolysis of FDA to fluorescein by cells with intact plasma membranes and has been described in detail previously (Larsson et al, 1992). Briefly, the cells were resuspended in complete medium, and 180 μ l of cell suspension was seeded into the wells of 96-well experimental microtitre plates prepared with drugs as described. Cell densities were $5-20 \times 10^3$ cells per well for the cell lines, $10-20 \times 10^3$ cells per well for the solid tumour cells and $50-100 \times 10^3$ cells per well for the haematological tumour cells. Each drug and concentration was tested in triplicate. Six wells with cells but without drugs served as control and six wells with only culture medium as blank.

The plates were incubated for 72 h at 37°C in humidified conditions containing 5% carbon dioxide. At the end of the incubation period the plates were centrifuged (200 g, 5 min) and the medium was removed by aspiration. After one wash in PBS, 100 μ l per well of FDA dissolved in PBS (10 μ g ml⁻¹) was added. The plates were incubated for 45 min and the generated fluorescence (excitation 480 nm) from each well was measured at 538 nm in a 96-well scanning fluorometer (Fluoroscan II, Labsystems Oy, Helsinki, Finland). The fluorescence is proportional to the number of intact cells in the well.

To evaluate the schedule dependency of drug activity, CCRF-CEM cells and ACHN cells were used and were exposed to the drug for 2, 4 or 72 h followed by washing with PBS, addition of new culture medium and analysis at 72 h. Stability of P2 and Mel under assay conditions was investigated by a bioassay. Plates prepared with Mel and P2 were preincubated with 100 μl medium per well for different time periods, ranging from 0 to 72 h. at 37°C before cell suspension (U-937-GTB) was added. The activity of the drugs after different preincubation times was evaluated by comparing the SI values obtained after a further 72 h incubation with FMCA, as described above.

Quality control

Quality criteria for a successful analysis included a fluorescence signal in the control wells of more than five times mean blank value, a mean coefficient of variation (CV) in the control wells of less than 30% and more than 70% tumor cells in the cell preparation before incubation.

Quantification of FMCA results

Cell survival is presented as survival index (SI), defined as the fluorescence in experimental wells in per cent of that in control wells, with blank values subtracted. The IC_{50} was defined as the concentration giving a SI of 50%.

For both cell lines and primary cultures, the $IC_{50}s$ were evaluated for each individual cell line and drug with custom-made computer software (Dhar et al. 1996). A delta value was calculated as the logarithm of the IC_{50} of the individual cell line minus the mean of all ten $log IC_{50}s$ (Fridborg et al. 1996). The resistance

factors (RFs) in each subline were defined as the IC $_{50}$ of the resistant subline divided by the IC $_{50}$ of its sensitive parental cell line. The pairs of parental/resistant cell lines used for RF calculations of P-glycoprotein (P-gp), MRP, topo II, glutathione (GSH) and tubulin-associated resistance were RPMI 8226S/8226Dox40, NCI-H69/H69AR, CCRF-CEM/CEM-VM-1, RPMI 8226S/8226LR-5 and U-937-GTB/U-937-Vcr respectively. Correlation coefficients were determined using Pearson's correlation coefficient. Response rate was defined as the fraction of samples having a SI below 50% at 0.5 μ g ml⁻¹ for all samples investigated. In vitro therapeutic index was calculated as median IC $_{50}$ of CLL samples/median IC $_{50}$ of normal PBMCs.

Measurement of DNA synthesis

In some experiments bromodeoxyuridine (BrdU) incorporation into cellular DNA was determined with an enzyme-linked immunosorbent assay (ELISA) kit from Boehringer Mannheim (Mannheim, Germany) essentially according to the protocol provided by the manufacturer. Briefly, cells were incubated in 96-well plates for 72 h in the presence of BrdU. The cells were then fixed and an antibody directed to BrdU was added. The formed immune complex was detected by a substrate reaction using tetramethylbenzidine and measured in a spectrophotometric microplate reader (Dynatech, Billingshurst, UK).

RPM

RPMI {

Figure

Surviva

blank v

mean l

ten ind

log₁₀ o

variabl

specifi[,]

visuali

the left

and ba

than th

P2 is

tumc

The a

fresh

solid

active with

samp lines,

cultur

With

tumo

samo

Value

canc€

cance

© Ca

Th

RESULTS

Activity patterns of PTC oligopeptides in the cell line panel resembles that of Mel

Concentration-response curves for Mel in the cell line panel are shown in Figure 1A. Delta, the deviation of $\log IC_{50}$ from the mean $\log IC_{50}$ of the cell line panel, is shown in Figure 1B. When the patterns of deltas for Mel were compared with those of m-L-SL and the components of PTC using Pearson's correlation analysis, a high correlation was obtained for several of the m-L-SL oligopeptides (Table 2). For m-L-SL, P1, P2 and P4 the correlation coefficients were > 0.90. No correlation was established with P6 as an IC_{50} was reached in only one cell line.

P2 is more potent than the other PTC oligopeptides

P2 was the most active m-L-SL oligopeptide, which showed a slightly lower mean IC_{50} (2.6 μg ml⁻¹) compared with Mel (3.9 μg ml⁻¹) and m-L-SL (4.1 μg ml⁻¹). However, on a molar basis, the IC_{50} value for P2 was 3.3 times lower than m-L-SL. P1 showed an IC_{50} of 4.1 μg ml⁻¹ whereas the remaining m-L-SL oligopeptides had IC_{50} between 5.8 and 9.1 (Table 2). P2 was the only oligopeptide producing a S1 below 50% in all the tested cell lines (Table 2).

P2 appears not to be affected by GSH-associated resistance

Although, the overall activity profile resembled that of Mel. P2 appeared not to be affected by GSH-associated resistance as determined by the low resistance factor obtained using the LR5-parental IC₅₀ ratio (RF 1.05, Table 3). Mel and m-L-SL, on the other hand, showed RFs of 3.1 and 3.8 respectively. P2 also appeared less sensitive to MRP-associated resistance than Mel and m-L-SL with RFs of 1.55, 4.0 and 4.17 respectively (Table 3). Neither of the drugs was affected by the remaining resistance mechanisms.

Figure 1 Effect of Mel on survival index (SI) for all investigated cell lines. Survival index: fluorescence in test wells/fluorescence in control wells with bank values subtracted (A). From these concentration-response curves, mean \log_{10} $|C_{s0}$ was determined defined as the mean of the \log_{10} values of all fen individual $|C_{s0}|$ s obtained for the drug. Then, the difference between the \log_{10} of each cell line and the mean \log_{10} IC_{50} was calculated to yield a variable defined as delta (x-axis). A mean graph consisting of the drugspecific deltas across the cell line panel could then be constructed to sualize differential cytotoxicity patterns of drugs (B). Thus, bars projecting to he left (negative values) indicate cell lines more sensitive than the average and bars projecting to the right (positive values) indicate drugs more resistant an the average for a particular drug. See also Materials and methods

2 is more active than Mel against primary human tumour cells from patients

the activity of P2 and Mel was then further characterized in 49 tesh human tumour samples, 21 from haematological and 28 from wild tumour patients. In these samples P2 was considerably more Crive than Mel, showing IC₅₀ values of 0.51 and 8.6 compared th 2.3 and 23.8 μg ml⁻¹ for haematological and solid tumour imples respectively (Figure 2). When compared with the cell mes, P2 was significantly more active against the primary tures, showing an IC₅₀ ratio for Mel over P2 of 11.2 compared 1.5 for the cell lines. A tendency towards higher relative solid mour activity for P2 was also observed, two and six solid tumour imples showing negative deltas compared with overall mean for P2 and Mel respectively (Figure 2).

The six solid tumour samples were from patients with ovarian cer (two), neuroblastoma, non-small-cell lung cancer, breast ecer and carcinoid tumour. At clinically achievable exposure for

Table 2 Results of comparative testing of Mel (melphalan) and the related compounds in a mechanism-based cell line panel.

Rank	Drug	IC ₅₀ ª mean	RÞ	IC ₅₀ max	IC ₅₀ min
	Mel	3.9	1.0	10	0.00
2	m-L-SL	4.1	0.99	9.1	0.29
3	P1	4.1	0.97	10	0.61
	P4	6.8	0.92		1.1
	P2	2.6		10	1.8
	P5	5.8	0.90	5.3	0.38
	P3		0.81	10	1.5
		7.6	0.69	10	1.6
)	P6	9.1	nd	10	1.2

 $^{
m e}$ For the ten cell lines depicted in Figure 1 mean IC $_{
m so}$ s were determined for all oligopeptides and the results are expressed as μg ml-1. $^{\text{\tiny b}} Correlations$ of the cell line panel log $\rm IC_{50}$ values using MeI as the reference compound.

Table 3 Resistance factors for Mel (melphalan), m-L-SL (Sarcolysine) and

	Resistance factors (RF						
Resistance mechanism	Mel	m-L-SL	P2				
P-gp-associated MDR	0.99	0.05					
Topo II-associated MDR		0.95	0.96				
Tubulin-associated MDR	0.52	0.76	0.69 1.02				
	0.75	0.96					
GSH-associated MDR	3.10 4.0	3.80					
MRP-associated MDR			1.05				
	7.0	4.17	1.55				

 $^{\mathrm{a}}$ Resistance factor (RF) = $^{\mathrm{IC}}_{\mathrm{50}}$ in resistant cell line/ $^{\mathrm{IC}}_{\mathrm{50}}$ in parental cell line. Results are presented as one typical experiment out of three.

Mel (2.0 $\mu g \text{ ml}^{-1}$) an in vitro response rate (percentage of samples with > 50% decrease in SI) of 67% and 0% was observed for haematological and solid tumour samples respectively. The corresponding response rates for P2 was 100% and 43% (Table 4).

P2 is more active than Mel on low-proliferating tumour cell systems

To investigate whether the increased activity of P2 could be related to the low proliferative rate of the primary cultures, the ratio of Mel vs P2 IC₅₀s in the cell lines was plotted against the rate of proliferation under assay conditions in V-shaped plates (Figure 3). An inverse relationship was observed (R = 0.70), P2 being more active against the low-proliferating cell lines. The next series of experiments aimed to determine whether this relationship was causally related to proliferation rather than being cell-type specific. ACHN, which shows a low growth rate in V-shaped plates but proliferates rapidly when seeded into flat-bottomed plates, was used for this purpose. When tested in flat-bottomed plates P2, Mel and m-L-SL showed similar IC_{50} s (not shown). In V-shaped plates, on the other hand, the corresponding IC₅₀ for Mel and m-t-SL was significantly increased (four- to fivefold). whereas, by comparison P2 retained much of its activity (< two fold, not shown). Stability under assay conditions determined by a bioassay was similar for Mel and P2 (half-life of approximately 2 h, not shown) and 2-, 4- and 72-h exposure times showed similar relative concentration-response relationships for the two drugs (not shown).

13

10

7

4

-1.5

	IC ₅₀ (:	s.d.)	Response rate (%)			
Tumour type	P2	Mel	P2	Mei	п	
Haematological tumours	0.51 (0.52)	2.3 (2.6)	100	67	21	
Solid tumours	8.6 (13.4)	23.8 (18.8)	43	0	28	
Total	5.2 (10.9)	14.6 (17.8)	67	28	49	

^{*}Response rate was defined as the number of samples with >50% decrease in SI/total number of samples \times 100 at 2 μg ml⁻¹ for each drug.

46 43 40 Haematological 37 samples 34 (29 - 49)31 28 25 22 19 16 Solid tumour 13 samples (1-28) 10 7 4 -1.5 -0.5 В 49 46 43 Haematological 40 (29 - 49)37 34 31 28 25 22 19 16 Solid tumour samples

Figure 2 From concentration–response curves of MeI (A) and P2 (B) obtained from 49 primary human tumour cell samples (21 haematological and 28 solid tumour samples), mean $\log_{10} IC_{\rm so}$ was determined defined as the mean of the \log_{10} values of all 49 individual $IC_{\rm so}$ s obtained for the drug. Then, the difference between the \log_{10} of each tumour cell sample and the mean $\log_{10} IC_{\rm so}$ was calculated to yield a variable defined as delta (x-axis). A mean graph consisting of the drug-specific deltas across the cell line panel could then be constructed to visualize differential cytotoxicity patterns of drugs (B). Thus, bars projecting to the left (negative values) indicate tumour samples more sensitive than the average and bars projecting to the right (positive values) indicate drugs more resistant than the average for a particular drug. See also Materials and methods

-0.5

Delta

P2 shows a low degree of cross-resistance to standard agents

Not only in the cell line panel (Table 2) but also in the primary cultures (Figure 4), was the correlation between P2 and Mel relatively high, indicating a similar mode of action. However, cross-resistance to standard drugs determined using the haematological

samples was generally low (0.14–0.43, Table 5). The correlation with doxorubicin, etoposide and cisplatin was much lower for P2 than Mel, whereas the correlations with cytarabine and vincristine were of similar magnitude (Table 5)

P2 shows a similar in vitro therapeutic index to Mel in low-proliferating cell systems

P2 also showed lower IC₅₀s than MeI in PBMCs with median values of 0.27 and 4.0 respectively (n = 5). However, when compared with median IC₅₀ values of malignant CLL samples, 0.07 and 1.4 µg ml⁻¹ respectively (n = 5) the in vitro therapeutic index (IC₅₀ PBMCs/IC₅₀ CLL) was 3.9 for P2 and 2.8 for MeI (Table 6).

DISCUSSION

Mel and m-L-SL are closely related aromatic nitrogen mustard derivatives. The two molecules differ only in the position of the di-(2-chloroethyl) amino-group, which is in the para position in Mel and in the meta position in m-L-SL. By conjugation of additional amino acids to the carboxyl and amino groups of m-L-SL, a complex consisting of six different peptides has been developed. This mixture of peptides, PTC, has shown clinical activity in several human malignancies (Hug et al, 1980; Paccagnella et al, 1986; Zaniboni et al, 1988). In previous investigations with the human melanoma cell line RPMI 8322, PTC as well as some of its individual peptides were more effective than Mel and m-L-SL (Lewensohn et al, 1991a; Hansson et al, 1991). Myeloma cells isolated from bone marrow of patients with primary myelomas were more sensitive to PTC than to Mel (Paccagnella et al, 1985). In the human melanoma cell line RPMI 8322, used in the abovementioned investigation, we found that one of the peptides in PTC. L-prolyl-m-L-sarcolysyl-L-p-fluorophenylalanine (P2), showed a higher toxicity than free m-L-SL as measured by the clonogenic assay (Hansson et al, 1991).

In the present study we show that P2 was the most active component of PTC when tested in a panel of human tumour cell lines. Moreover, P2 was also more active than Mel and m-L-SL against several of the cell lines. Correlation analysis of cell line panel activity patterns demonstrated a close relationship between P2 and Mel, suggesting a similar mode of action. However, unlike Mel and m-L-SL. P2 appeared not to be affected by GSH- and MRP-associated resistance to any greater extent. We have previously found, using a clonogenic assay, that buthionine sulphoximine, which depletes GSH, sensitizes a melanoma cell line to Mel but to a lesser extent to P2 (Hansson et al. 1991). The previous results with BSO as well as the present, showing low RFs for GSH-mediated resistance, may indicate less dependence on

Figure 3 Relationship between Mel/P2 IC₅₀ ratios and number of doubling times 72 h-1 determined by haemocytometer counts in the cell line panel (n = 10). R = Pearson's correlation coefficient

Figure 4 Correlation between log IC $_{50}$ values for MeI and P2 in 49 primary human turnour samples. R = Pearson's correlation coefficient

cellular GSH levels for P2 than Mel sensitivity. The explanation for the lack of GSH-mediated resistance in reponse to P2 does not appear to involve intracellular liberation of m-L-SL as this compound shows RFs of similar magnitude to Mel for GSH-associated resistance. Altered substrate recognition of m-L-SL Oligopeptides by cellular GSH-dependent enzymes is one potential Explanation for the phenomenon. In vitro sensitivity to Mel has previously been noted to result in only a limited increase in toxi-Gity exerted by PTC as compared with Mel in freshly obtained one marrow myeloma cells from untreated patients.

Interestingly, this finding was contrasted by the relatively pronounced sensitivity to PTC in cell populations with in vitro resistance to Mel (Lewensohn et al. 1991b). When comparing Mel. L-SL. PTC and P2 on freshly obtained myeloma cells. P2 dsplayed the highest activity (data not shown).

Table 5 Correlation of Mel and P2 with standard drugs in haematological tumour cell samples from patients at EDCC

Compound	Mel (R)	P	P2(<i>R</i>)	P	n
Doxorubicin	0.63	<0.01	0.32	NS	20
Vincristine	0.36	NS⁵	0.43	NS	20
Etoposide	0.45	NS	0.14	NS	19
Cytarabine	0.39	NS	0.37	NS	20
Cisplatin	0.58	< 0.05	0.24	NS	14

Pearson's correlation coefficient. NS, not significant (P > 0.05).

Table 6 Comparison of median IC_{so}s in CLL and normal PBMC samples for P2 and Mel

Cell type	IC ₅₀ P2	IC ₅₀ Mel
PBMC (n = 5)	0.27	4.0
CLL (n = 5)	0.07	1.4
Ratio PBMC/CLL	3.9	2.8

PBMC, peripheral blood mononuclear cell; CLL, chronic lymphocytic leukaemia

In contrast to proliferating cell lines, human tumour biopsy cells were as a group significantly more sensitive to the cytotoxic activity of P2 than Mel. The reason for this may be related to the low proliferative activity of the primary cultures in the present assay system (Weisenthal et al, 1991) as low-proliferating cell lines also showed higher relative P2 sensitivity. Furthermore, direct manipulation of the proliferative rate of the ACHN cell line produced the corresponding alterations of Mel vs P2 sensitivity. From a clinical point of view, the demonstrated ability of P2 to retain activity against non-cycling cells may be a distinct advantage as the low growth fraction of many solid tumours is a limiting factor for therapeutic responses of most currently used antineoplastic agents. The indications of a wider spectrum of anti-tumour activity and a favourable therapeutic index in vitro as well as the low cross-resistance with standard agents clearly adds to the potential of P2 being a clinically useful anti-tumour agent. What then is the mechanism for increased toxicity of P2 against primary cultures and other non-proliferating cell systems? Although, the drug appears to act mechanistically similar to Mel both in the cell lines and the primary cultures, one may speculate on, at least, two possible explanations. On one hand the effect of a bifunctional alkylating agent is related to the frequency of DNA damage such as DNA cross-links (Lewensohn et al, 1991a). The frequency of DNA cross-links may, however, be regulated by DNA repair mechanisms, which at least in some cell lines is correlated with drug sensitivity (Batist et al, 1989). It would then seem possible that a bifunctional alylating agent in the form of an oligopeptide would not be recognized and excised from the DNA by the same repair mechanism as Mel. On the other hand another possible explanation is that of a more effective cellular uptake of the bifunctional alkylator when in the form of an oligopeptide as compared with Mel only. In this context, it is interesting to note that another tripeptide of m-L-SL, 3-(p-fluorophenyl)-L-alanyl-3-[m-bis(2-chloroethyl) aminophenyl]-L-alanyl-L-methionine ethyl ester], PTT.119, has shown increased anti-tumour activity (Yagi et al. 1984. 1988) and the delivery of this peptide into tumour cells was found to be significantly greater than Mel. It was subsequently

found that this peptide used multiple transport pathways in L1210 cells (Yagi et al, 1988). Both the above alternatives are currently being explored.

In whole blood P2 is rapidly degraded to m-L-SL, a fact that may limit the activity of the drug in vivo (Ehrsson et al, 1993). This finding indicates that peptidase activity probably degrades the P2 compound intracellularly. Degradation of di-, tri- and tetrapeptides has previously been observed in erythrocytes and leucocytes that have high peptidase activity (Stern et al, 1951). More attempts will be made to characterize exactly the intracellular degradation of P2 and test its efficacy in comparison with m-L-SL in vivo.

In the present study, we used a human cell line panel in combination with a panel of primary tumour cultures from patients for in vitro evaluation of differential drug responses of PTC oligopeptides. In a previous study (Dhar et al, 1996) we showed that the present cell line panel is capable of detecting mechanisms of action of standard drugs in addition to its ability to evaluate sensitivity to drugs to defined types of mechanisms of resistance. Complementary to this, non-clonogenic assays used on fresh primary tumour cultures from patients have been shown to mimic the known clinical activity pattern of standard drugs. We have also previously shown that non-clonogenic cytotoxicity assays such as the FMCA can detect tumour type specific activity retrospectively for a series of standard drugs (Nygren et al. 1994) and prospectively for early phase I-II drugs such as vinorelbine, idarubicin, CdA, gemcitabine, taxol and topotecan (Larsson et al. 1994; Larsson and Nygren, 1994; Csoka et al. 1995; Nygren et al. 1995; Fridborg et al. 1996; Jonsson et al, 1997). Thus, experience gained so far suggests that these model systems may be valid tools for initial predictions of the activity and potential utility of novel anticancer drugs.

In summary, we have demonstrated high anti-tumour activity of a m-t-SL oligopeptide against cell lines and primary cultures of tumour cells from patients. The drug appears to show retained activity against non-proliferating cell systems, shows a positive therapeutic index and demonstrates low levels of cross-resistance with standard drugs. Formal testing of these in vitro predictions will require in vivo testing in relevant tumour models and these studies are currently under way.

ACKNOWLEDGEMENTS

This work was supported by a grant from the Swedish Cancer Foundation and King Gustav the V Jubilee Fund, Stockholm, Sweden.

REFERENCES

- Batist G, Torres S, Demuys JM, Greene D, Lehnert S, Rochon M and Panasci L (1989) Enhanced DNA cross-link removal: the apparent mechanism of resistance in a clinically relevant melphalan-resistant human breast cancer cell line. Mol Pharmacol 36: 224–230
- Bellamy WT, Dalton WS, Gleason MC, Grogan TM and Trent JM (1991) Development and characterisation of a melphalan-resistant human multiple myeloma cell line. Cancer Res 51: 995–1002
- Botling J, Liminga G, Larsson R, Nygren P and Nilsson K (1994) Development of vineristine resistance and increased sensitivity to cyclosporin A and verapamil in the human U-937 lymphoma cell line without over expression of the 170 kDa P-glycoprotein. *Int J Cancer* 58: 269–274
- Cole S, Bhardwaj G, Gerlach JH, Almquist KC and Deeley RG (1992) A novel ATP binding cassette transporter gene overexpressed in multidrug resistant human lung tumor cells. Science 268: 1650–1654

- Csoka K, Larsson R, Tholander B, Gerdin E, De La Torre M and Nygren P (1994) Cytotoxic drug sensitivity testing of tumor cells from patients with ovarian carcinoma using the fluorometric microculture cytotoxicity assay (FMCA). Gynecol Oncol 54: 163–170
- Csoka K, Liliemark J, Larsson R and Nygren P (1995) Evaluation of the cytotoxic activity of Gemcitabine in primary cultures of tumor cells from patients with hematologic or solid tumors. Semin Oncol 22: 47–53
- Dalton WS, Durie BG, Alberts DS, Gerlach JH and Cress AE (1986) Characterisation of a new drug-resistant human myeloma cell line that expresses P-glycoprotein. Cancer Res 46: 5125-5130
- Danks MK. Yalowich JC and Beck WT (1987) Atypical multidrug resistance in a human leukemic cell line selected for resistance to teniposide (VM-26). Cancer Res 47: 1297-1301
- Danks MK, Schmidt CA, Cirtain MC, Suttle DP and Beck WT (1988) Altered catalytic activity of and DNA cleavage by DNA topoisomerase II from human leukemic cells selected for resistance to VM-26. *Biochemistry* 27: 8861-8869
- De Barbieri A (1972) Peptichemio: a synthesis of pharmacological, morphological, biochemical and biomolecular investigations. In: *Proceedings of the Symposium on Peptichemio*, Milan 18: 13–59
- Dhar S. Nygren P. Csoka K. Botling J. Nilsson K and Larsson R (1996) Anti-cancer drug characterisation using a human cell line panel representing defined types of drug resistance. Br J Cancer 74: 888–896
- Ehrsson H, Lewensohn R, Wallin I, Hellström M, Merlini G and Johansson B (1993) Pharmacokinetics of peptichemio in myeloma patients: release of M-L-sarcolysin in vivo and in vitro. Cancer Chemother Pharmacol 31: 265-268
- Fridborg H, Nygren P, Dhar S, Csoka K, Kristensen J and Larsson R (1996) In vitro evaluation of new anticancer drugs, exemplified by vinorelbine, using the fluorometric microculture cytotoxicity assay on human tumor cell lines and patient biopsy cells. J Expt Ther Oncol 1: 286–295
- Gingold N. Pitterman E and Stacher A (1974) Peptichemio in the therapy of malignancies (phase-1-study). The evaluation committee. Int J Clin Pharmacol Biopharm 110: 190–202
- Hansson J. Lewensohn R. Ringborg U (1991) Cytotoxicity and DNA cross-linking induced by peptide conjugated m-1.-Sarcolysin in human melanoma cells. Amicancer Res 11: 1725–1730
- Hug V, Hortobagyi GN, Buzdar AU, Blumenschein GR, Grose W, Burgess MA and Bodey GP (1980) A phase II study of Peptichemio in advanced breast cancer. Cancer 45: 2524–2528
- Jonsson E. Fridborg H. Csoka K. Dhar S. Sundström C. Nygren P and Larsson R (1997) Cytotoxic activity of Toptecan in human tumour cell lines and primary cultures of human tumour cells from patients. Br J Cancer 76: 211–219
- Larsson R and Nygren P (1994) Cytotoxic activity of topoisomerase II inhibitors in primary cultures of human tumour cells from patients with human hematologic and solid tumors. Cancer 74: 2857–2862
- Larsson R, Kristensen J, Sandberg C and Nygren P (1992) Laboratory determination of chemotherapeutic drug resistance in tumor cells from patients with leukemia using a fluorometric microculture cytotoxicity assay (FMCA). Int J Cancer 50: 177–185
- Larsson R, Fridborg H, Liliemark J, Csoka K, Kristensen J, De La Torre M and Nygren P (1994) In vitro activity of 2-chlorodeoxyadenosine (CdA) in primary cultures of human hematological and solid tumors. Eur J Cancer 30A: 1022–1026
- Lewensohn R, Ehrsson H, Hansson J and Ringborg U (1991a) Increased toxicity and DNA cross-linking by peptide bound m-t-Sarcolysin (Peptichemio) as compared to melphalan and m-t-Sarcolysin in human melanoma cell lines. Anticancer Res 11: 321–324
- Lewensohn R, Fernberg JO. Ehrsson H and Merlini G (1991b) Efficacy of peptide bound m-t-sarcolysin (Peptichemio) on melphalan resistant human myeloma cells in vitro. Med Oncol Tumor Pharmacother 8: 265–269
- Merlini G. Gobbi GP. Riccardi A, Riva G, Sardi C and Perugini S (1982) Peptichemio induction therapy in myelomatosis. Cancer Chemother Pharmacol 8: 9–16
- Mirski SE, Gerlach JH and Cole SP (1987) Multidrug resistance in a human small cell cancer cell line selected in adriamycin. *Cancer Res* 47: 2594–2598
- Mulcahy RT. Bailey HH and Gipp JJ (1994) Up-regulation of gamma-glutamyleysteine synthetase activity in melphalan-resistant human multiple myeloma cells expressing increased glutathione levels. Cancer Chemother Pharmacol 34: 67–71
- Nygren P and Larsson R (1990) Verapamil and cyclosporin A sensitize human kidney tumor cells to vincristine in absence of membrane P-glycoprotein and without apparent changes in the cytoplasmic free Ca²⁺ concentration. *Biosci Rep* 10: 231–237

Nygren P

(199

for c

lym

Paccagne

Paccagne

A. I

in p

- Nygren P, Kristensen J, Sundström C, Lönnerholm G, Kreuger A and Larsson R (1992) Feasibility of the fluorometric microculture cytotoxicity assay (FMCA) for cytotoxic drug sensitivity testing of tumor cells from patients with acute lymphoblastic leukemia. Leukemia 6: 1121-1128
- Nveren P, Fridborg H, Csoka K, Sundström C, De La Torre M, Kristensen J, Bergh J, Hagberg H, Glimelius B, Rastad J, Tholander B and Larsson R (1994) Detection of tumor-specific cytotoxic drug activity in vitro using the fluorometric microculture cytotoxicity assay and primary cultures of tumor cells from patients. Int J Cancer 56: 715-720
- Nygren P, Csoka K, Jonsson B, Fridborg H, Bergh J, Hagberg H, Glimelius B. Brodin O. Tholander B. Kreuger A. Lönnerholm G. Jakobsson Å. Olsen L. Kristensen J and Larsson R (1995) The cytotoxic activity of Taxol in primary cultures of tumor cells from patients is partly mediated by Cremophore EL. Br J Cancer 71: 478-481
- Paccagnella A, Tredese F, Salvagno L, Brandes A, Sileni VC, Daniele O, Fornasiero A, Fosser V, Nicoletto O, Maggino T and Florentino MV (1985) Peptichemio in pretreated patients with ovarian cancer. Cancer Treat Rep 69: 17-20
- Paccagnella A, Salvagno L, Chiarion-Sileni II V, Boiznella S, De Besi P, Frizzarin M, Pappagallo GL, Fosser VP, Fornasiero A, Segati R and Florentino MV (1986) Peptichemio in pretreated patients with plasma cell neoplasms. Eur J Cancer Clin Oncol 22: 1053-1058

- Perugini S, Bobbio PE, Ghizzi A, Riccardi A, Martinotti A and Merlini P (1976) Peptichemio in the treatment of plasma cell leukemia. Haematologica 61:
- Stern K, Birmingham MK, Cullen A and Richer R (1951) Peptidase activity in leucocytes, erythrocytes and plasma of young adult and senile subjects. J Clin Invest 30: 84-89
- Weisenthal LM, Dill P and Birkhofer M (1991) Accurate identification of diseasespecific activity of antineoplastic agents with an in vitro fresh tumor assay measuring killing of largely non-dividing cells. Proc Am Assoc Cancer Res 32:
- Yagi MJ, Bekesi JG, Daniel MD, Holland JF and De Barbieri A (1984) Increased cancericidal activity of PTT.119, a new synthetic bis-(2-chloroethyl)amino-t.phenylalanine derivative with carrier amino acids. Cancer Chemother Pharmacol 12: 70-76
- Yagi MJ, Scanlon KJ, Chin SE, Holland JF and Bekesi JG (1988) Multiple transport pathways for L1210 cells: uptake of PTT.119, a bifunctional alkylator with carrier amino acids. Chemotherapy 34: 235-247
- Zaniboni A. Simoncini E, Marpicati P, Montini E, Rossi G and Marini G (1988) Peptichemio, teniposide and high-dose dexamethasone: a new active combination for relapsing and refractory multiple myeloma. A pilot study. Anticancer Res 8: 125-128

CYDEX AND PEPTICHEMIO ANNOUNCE THE SIGNING OF A CAPTISOL® LICENSING AGREEMENT

(OVERLAND PARK, KS, June 14, 1999) - CyDex, Inc. and Peptichemio, AG today announced the signing of a licensing agreement granting Peptichemio worldwide rights to CyDex's CAPTISOL® sulfobutylether beta-cyclodextrin (SBE-b-CD) drug delivery technology for Peptichemio's unique anticancer compound. Under the license agreement, Peptichemio will conduct initial clinical trials utilizing CyDex's CAPTISOL® 's drug delivery technology to deliver their drug. Economic terms of the agreement were not announced.

Peter Higuchi, President and CEO of CyDex said, "We are pleased to be working with Peptichemio on this exciting opportunity. It affords us the opportunity to partner with another small company and to create additional value for the both of us."

"We evaluated several delivery systems and CyDex's CAPTISOL® proved superior. The animal results we obtained on our compound are very encouraging, and we are very pleased that CyDex is willing to partner with us to further develop our technology," said Dr. Victor E. Hofmann, CEO of Peptichemio.

CyDex, Inc., a privately owned company located in Overland Park, Kansas, was established to license, develop and commercialize a series of anionically charged sulfobutylether beta-cyclodextrins originally synthesized and patented by scientists from the University of Kansas Higuchi Biosciences Center for Drug Delivery Research for use in drug development and formulation. CAPTISOL, a modified anionic beta-cyclodextrin derivative, is a donut shaped molecule with a hydrophilic outer surface and a lipophilic cavity. CAPTISOL can complex some poorly water soluble drug compounds in its lipophilic cavity, producing a CAPTISOL/drug complex that is more water soluble than the drug alone. The CAPTISOL/drug complex can then be formulated and administered to patients where the complex disassociates, allowing the drug to produce its desired pharmacological activity.

Peptichemio, AG is a closely held private Swiss company headquartered in Bern Switzerland. Peptichemio is developing a unique alkylating agent linked to a specific protein carrier that targets the alkylating agent's activity and reduces systemic side effects. Peptichemio has generated preclinical animal data showing encouraging anticancer activity.

CAPTISOL is a registered trademark of CyDex, Inc.

CyDex Contact: Karl Strohmeier: 913-685-8850 (office)

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:		(11) International Publication Number: WO 94/2013
A61K 39/12, C07K 3/00, 13/00, 15/00	A1	(43) International Publication Date: 15 September 1994 (15.09.94)
(21) International Application Number: PCT/US(22) International Filing Date: 28 February 1994 (22)		DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(30) Priority Data: 08/027,524 8 March 1993 (08.03.93)	τ	Published With international search report.
(71) Applicant: DEPARTMENT OF THE ARMY, STATES GOVERNMENT [US/US]; Moran, John of Command Judge Advocate, HQ USAMRDC, De of the Army, Fort Detrick, Frederick, MD 217 (US).	n, Offi partme	te
(72) Inventors: CHIANG, Peter, K.; 9509 Stamont, Bethe 20817 (US). BUTLER, Dennis, L.; 8211 Dures Severn, MD 21144 (US). BROWN, Nesbit, I Celestial Way, Columbia, MD 21044 (US).	ss Cou	t,
(74) Agents: HENDRICKS, Glenna et al.; 9669-A Main Str Box 2509, Fairfax, VA 22031-2509 (US).	reet, P.).
(54) Title: CYCLODEXTRIN-PEPTIDE COMPOSITION	S	

(57) Abstract

This invention provides improved compositions containing cyclodextrin complexes of peptides, particularly synthetic peptides and peptides of ≤ 40 amino acids. Such peptides are particularly useful for administration as receptor agonists, receptor antagonists, and as vaccines. The compositions of the invention provide improved means for delivery of such peptides.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑU	Australia	GE	Georgia	MW	Malawi
BB	Berbedos	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	EC.	Hungary	NO	Norway
BG	Bulgaria	DB.	Keland	NZ	New Zealand
BJ	Benin	TT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kcuya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sadan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	ш	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxenbourg	TG	Togo
cz	Czech Republic	LV	Latvia	· IJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DEK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UŽ	Uzbekistan
FR	Prance	MN	Mongolia	VN	Viet Nam
	Calan		-		

WO 94/20136 PCT/US94/01847

CYCLODEXTRIN-PEPTIDE COMPOSITIONS

Field of the Invention:

5

10

15

20

25

30

This invention relates to a method of presenting pharmaceutically active peptides, particularly receptor blockers and immunogenic peptides, in cyclodextrin compositions.

Background of the Invention:

Cyclodextrins are cyclic molecules containing six or more α -D-glucopyranose units linked together at the 1,4 positions. The 2-hydoxypropyl-B-cyclodextrin (HPCD) has been used for stabilization and solubilization of various compounds, including proteins and steroids. Brewster, et al. described use of cyclodextrins in solubilizing proteins to prevent aggregation , precipitation, and loss of biopotency. ("Application of 2-hydroxypropyl beta cyclodextrin to Proteins", Minutes Int. Symp. Cyclodextrins, 5th, 1990, pp 440-444) proteins studied therein were interleukin-3, and insulin, two large regulatory proteins. There is no suggestion that the 2hydroxypropyl beta cyclodextrin would be useful in formulating peptides for use as receptor blockers or immunogens. Brewster article suggests that the improved potency of the proteins is due to the avoidance of hydrolysis, deamidation, racemization, oxidation and disulfide bond exchange, changes in dimensional protein structure related to folding of the protein. There is no suggestion that the cyclodextrins can be useful for formulations containing synthetic peptides, nor is there any suggestion that the preparations disclosed therein can be administered by application to the mucosa.

Josef Pitha, in U.S. patent 4,727,064, which is incorporated herein by reference, suggests the use of cyclodextrin in solubilizing medicinals including steroids and vitamins, but does not disclose the solubilization of peptides in cyclodextrin.

Szejtli, et al., in U.S. patent 4,380,626, teach the use

35

5

10

15

20

25

30

35

of cyclodextrins in preparations of plant growth regulators including 2-chloroethylphosphonic acid. No use of cyclodextrins for preparation of peptides is taught or suggested therein.

Gideon Goldstein, in U.S. Patent 5,140,010, which is incorporated herein by reference, teaches the stabilization of aqueous formulations of synthetic peptides corresponding to position 32-36 of thymopoietin and known as thymopentin or TP-5 (Arg-Lys-Asp-Val-Tyr) in glycine. Goldstein does not disclose or suggest use of cyclodextrin for stabilization of peptides. TP-5 is effective in blocking the stimulation of smooth muscle contraction caused by the neurotoxin (+)-anatoxin-a (ANTX). ANTX is a bicyclic amine exotoxin produced by the blue-green algae, Anabaena flos-aquae, and has been found to cause death to livestock and waterfowl. The toxin acts by depolarizing blockade of neuromuscular transmission. Such depolarization results in respiratory paralysis. The action of ANTX has been ascribed to its potent nicotinic cholinergic agonist activities in skeletal muscle and mammalian skeletal muscle and the ANTX can also cause cardiovascular central nervous system. aberrations by activation of nicotinic receptors in the adrenal medulla and sympathetic ganglia. The antagonist effect of TP-5 has been attributed to its ability to block nicotinic receptors in a noncompetitive manner.

Summary of the Invention:

This invention provides improved compositions containing cyclodextrin complexes of peptides, particularly synthetic peptides and peptides of \leq 40 amino acids. Such peptides are particularly useful for administration as receptor agonists, receptor antagonists, and as vaccines. The compositions of the invention provide improved means for delivery of such peptides.

Many peptides, especially peptides of about three to 20 amino acids, are unstable in low concentrations and tend to loose biological activity. While Brewster describes the value of preparing formulations of cyclodextrin and regulatory proteins to avoid conformational changes, there is no suggestion therein that cyclodextrin would be useful for increasing

WO 94/20136 PCT/US94/01847

3

stability of small peptides such as thymopentin.

The instant invention improves methods of administration of peptides to the mucosa of mammals in need of treatment with effective peptides.

Detailed Description of the Invention:

5

10

15

20

25

30

່ 35

The invention provides a means of formulating peptides to avoid loss of efficacy and to facilitate delivery of the active peptides to the reactive site. The method has been exemplified using the synthetic peptides corresponding position 32-36 of thymopoietin and known as TP-5 (Arg-Lys-Asp-Val-Tyr). While the hydroxypropyl cyclodextrin has been exemplified, other cyclodextrins, including mixed cyclodextrins, may be used in the method of the invention.

One problem in use of peptides is their instability in aqueous solution, especially very dilute compositions. Furthermore, many of the solvents used to provide stable, soluble compositions for treatment of other mammals can not be used in man. At present, there is no known compatible solvent for TP-5 in which the peptide is stable and easily administered. This is a significant problem because the instability will hinder acceptance for prophylactic and/or therapeutic applications.

Materials and Methods:

The 2-hydroxypropyl-ß-cyclodextrin used in the examples was purchased from Pharmatec in Alachua, Florida. TP-5 (10-2 M) was synthesized as describe in Chiang, et al, Life Sci 49: (1991) PL13-19 and was made up in various percentages of HPCD dissolved in sterile water. Mixtures were stirred for about one hour. The solutions were then maintained at room tempera-Control solutions of TP-5 dissolved in sterile water ture. without HPCD were also prepared in the same manner. sets of solutions were stored at ambient room temperatures (25°C) for 14 months. Aliquots were removed monthly for The stability study was performed by stability testing. assaying the ability of the TP-5 solutions to counteract the stimulation of contraction of guinea pig ileum by ANTX. Guinea pig ileum contraction stimulated by ANTX was performed as 4

reported in Chiang, et al. (<u>supra</u>). The final concentration of TP-5 for use was obtained by diluting with Krebs-Ringer buffer.

EXAMPLE I

5

10

15

20

25

Aqueous solution of 2-hydroxy- β -cyclodextrin (HPCD) were prepared at concentration of 2.5%, 5.0%, 10%, 15%, 20%, 25% and 30% (w/v). TP-5 was added in sufficient amounts to provide a final molarity of 10^{-2} molar solution of TP-5. Further dilution to provide final dosage was made using Krebs-Ringer buffer. The solutions were then stored at ambient temperature for 14 months, after which activity of the cyclodextrin solutions was compared to freshly made solutions. As a control a 10^{-2} solution without cyclodextrin was prepared. After storage at ambient temperature (25°C) for four weeks the control solution showed no activity.

EXAMPLE II

Evaluation of Anatoxin-A Response alone and in conjunction with TP-5 was carried out in accord with standard procedures as disclosed in U.S. Patent 4,973,734 issued November 27, 1990, which is incorporated herein by reference.

Results:

IC₅₀ values of the inhibition by TP-5 of guinea-pig ileum contraction stimulation by ANTX at 3 x 10^{-5} N was compared using freshly made 10_{-2} molar solutions of TP-5 and similar concentrations of TP-5 in 5%, 15% and 20% solutions of HPCD which had been stored for 14 months at ambient temperature to determine relative activity. The results are shown as mean \pm s.e. of four separate experiments as indicated in Table I

TABLE I

	HPCD (%)	$IC_{50} (\times 10^{-5} M)$
	0 (freshly made)	3.9 ± 1.9
	5%	4.1 ± 3.1
	15%	4.9 <u>+</u> 4.4
35	20%	3.3 ± 3.0

10

15

20

25

30

35

EXAMPLE III

A composition containing 0.5 mg TP-5 is administered intraperitoneally to rabbits to provide protection against ANTX. Formulations may be administered for up to 4 days. Dosage range for thymopentin may vary from 1 μ g/kg/day to 1 g/kg/day. It is, of course, understood that smaller animals will require higher dosage per kilogram than larger mammals.

Formulations of active agents in HPCD for administration may be prepared using any pharmaceutically appropriate solvent, including water, isotonic saline, glucose, or saline. formulations may be administered orally in the form of liquid bolus, or may be administered as lyophilized powders or tablets. When provided as lyophilized powders, many of the compositions may be administered nasally for inhalation. Compositions of the invention may be administered parenterally by, for example intramuscular, subcutaneous or intraperitoneal Solutions of the cyclodextrin inclusion complexes can be administered to the mucosa by any means appropriate such as by nasal spray, buccal tablet or sublingually as drops. site of administration will be governed, in many instances, by For example, it is often the site of effective response. advantageous to administer immunogenic peptides to the mucosa.

Many other peptides could be formulated in a similar manner. Such peptides include splenopentin (SP-5) having the structure Arg-Lys-Glu-Val-Tyr. This peptide is effective for inducing T-cell differentiation and for modulation of neuromus-cular transmission. (Proc. Natl. Acad. Sci. USA 81: 2847-2847 (1984)) Others include a nine amino acid sequence known as delta sleep inducing peptide (DSIP) of the structure Trp-Ala-Gly-Gly-Asp-Ala-Ser-Gly-Glu (Neurosci. Biobehav. Rev.: 83-93 (1984)), vasoactive intestinal peptide (VIP) or biotinyl-VIP from human, porcin, chick, rat or other sources, having the sequence His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Lys-Gln-Met-Ala-Val-Lys-Tyr-Leu-Asn-Ser-Ile-Leu-Asn-NH₂ for prevention for cell killing by human immunodeficiency virus (Nature 335: 639-642 (1984)) and for pharmacological treatment of tissues involving neuromuscular transmission (Arch. int.

<u>Pharmacodyn 305, 14-24 (1990)</u>. The peptide HG165-178 representing the sequence 165-178 of gp120 is represented by the sequence Asn-Ile-Ser-Thr-Ser-Ile-Arg-Gly-Lys-Val-Gln-Lys-Gln-Lys-Glu-Tyr, which is analogous to sequences in snake neurotoxins and rabies virus glycoprotein is conjugated to a keyhole limpet hemocyanin (KLH) and can be, thereafter, encapsulated in cyclodextrin to prevent the binding of viruses, toxins, viral coatings and gp120 to cells. (See <u>FEBS Letters 311:</u> 115-118 (1992)).

10

5

The methods of the invention should be particularly considered to stabilize peptides containing asparytyl, asparaginyl and glycine residues.

PCT/US94/01847

CLAIMS

5

15

30

ś

- 1. A pharmaceutically effective composition comprising an effective amount of a receptor agonist, antagonist or immunogenic peptide of 3 to 40 amino acids in a cyclodextrin inclusion complex in a pharmaceutically acceptable diluent.
- 2. A composition of claim 1 wherein the immunogenic peptide is TP-5.
 - 3. A composition of claim 1 wherein cyclodextrin is present at a concentration of .5% to 30%.
 - 4 A composition of claim 3 wherein a cyclodextrin is 2-hydroxypropyl-8-cyclodextrin.
- 5. A composition of claim 1 wherein the active peptide is an immunogen.
 - 6. A composition of claim 1 wherein the peptide is splenopentin.
- 7. A composition of claim 1 wherein the peptide is delta sleep-inducing peptide.
 - 8. A composition of claim 1 wherein the peptide is vasoactive intestinal peptide.
 - 9. A composition of claim 1 wherein the peptide is HG 165-178.
- 10. A method of administering an immunogen to an animal by
 administering an immunogenic effective amount of a
 pharmaceutical composition of claim 5.

PCT/US94/01847

8

- 11. A method of claim 10 wherein the pharmaceutical composition is administered directly to the mucosa.
- 12. A method of claim 11 wherein the pharmaceutical composition is administered sublingually.
- 13. A method of claim 11 wherein the pharmaceutical composition is administered to the nasal mucosa by inhalation.

10

5

INTERNATIONAL SEARCH REPORT

International application No. PCT/US94/01847

A. CLASSIFICATION OF SUBJECT MATTER [PC(5) :A61K 39/12; CO7K 3/00, 13/00, 15/00 US CL : 424/89, 85.1, 88,; 530/395, 350 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED						
	Minimum documentation searched (classification system followed by classification symbols)					
U.S. :	U.S. : 424/89, 85.1, 88,; 530/395, 350					
Documenta	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
APS, Di	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) APS, Dialog, search terms: cyclodextrin, pharmaceutical, thymopentin, splenopentin, vasoactive intestinal peptide, neuronal peptide					
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where a	appropriate, of the relevant passages	Relevant to claim No.			
Y	US, A, 4,923,964 (GOLDSTEIN E 7-10.	T AL) 08 May 1990, cols.	1-13			
Y	US, A, 5,140,010 (GOLDSTEIN see entire patent.	ET AL) 18 August 1992,	1-13			
Y	US, A, 5,024,998 (BODOR) 18 .	June 1991, cols. 1-11.	1-13			
Y	US, A, 4,956,274 (KHANNA ET cols. 9-12.	AL) 11 September 1990,	1-13			
Y	Nature, Volume 335, issued 1 Brenneman, et al, "Neuronal Ce Protein of HIV and its Prevention Peptide", pages 639-642, see ent	Il Killing by the Envelope n by Vasoactive Intestinal	1-13			
X Further documents are listed in the continuation of Box C. See patent family annex.						
Special categories of cited documents: T later document published after the international filing date or priority						
"A" document defining the general state of the art which is not considered data and not in conflict with the application but cited to understand the principle or theory underlying the invention						
"E" cartier document published on or after the international filling date "L" document which may throw doubts on priority claim(s) or which is "L" document which may throw doubts on priority claim(s) or which is "A" document in taken alone						
cited to enablish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means						
"P" document published prior to the international filing date but later than "&" document member of the same patent family the priority date claimed						
Date of the actual completion of the international search Ol June 1994 Date of mailing of the international search report Jun 1 7 1994						
Commission Box PCT	nailing address of the ISA/US her of Patents and Trademarks , D.C. 20231 p. (703) 305-3230	Authorized officer LYNETTE F. SMITH Telephone No. (703) 308-0196	Kryza fo			

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US94/01847

(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where appropriate, of the relevant	ant passages	Relevant to claim No.		
Y	Proceedings National Academy Sciences, USA, Volume May 1984, T. Audhya et al, "Contrasting Biological Academy Thymopentin and Splenin, Two Closely related Polyper Products of Thymus and Spleen", pages 2847-2849, sea article.	ctivities of ptide	1-13		
Y	FEBS Letters, Volume 311, No. 2, issued October 199 Bracci, et al, "Binding of HIV-1 gp120 to the Nicotinic Receptor", pages 115-118, see entire article.	2, L.	1-13		
,					
	<u>.</u>				
			·		
	,				
٠					