Some of my white board writing from week 12

1) I continued the discussion after formula (25) on p.71 of the notes. I pointed out that when applying this formula for a specific random variable which is the anthonetic mean of n i.i.d. variables X1, X2, X4, and By utilizing the relationship between cumulant generating functions as given in Exercise I on p. 66 (i.e. K = k(t) = nK_{X,}(t))
we get the saddle point approximation formula for the density $f(\bar{x})$ of $\bar{X} = \int_{i=1}^{\infty} \hat{\xi} \hat{x}_{i}$ as:

 $f(\overline{z}) \approx \sqrt{\frac{n}{2\pi K''(\xi)}} e^{\{nK_X(\xi) - n\widehat{\tau}, \overline{z}\}} \int_{\mathbb{R}^2} 1 + \left[\frac{1}{2n}\widehat{y}_4 - \frac{5}{24}\widehat{y}_3^2\right]^2}$

Here K_x is the Cumulant generatry function of a <u>Single</u> observation X_i, t is the saddlepoint (i.e. it has to be re-calculated for every value

 \overline{x} of the argument as the solution to $K(t) = \overline{x}$, and $\hat{p}_i = n^{1-\frac{1}{2}} p_i(\hat{t})$, with $p_i(t) = \frac{k_x''(t)}{|k_x''(t)|^{\frac{1}{2}}}$, i = 3

Even the simpler version of the above secondorder saddlepoint approximation, namely the first order one:

 $f(\bar{x}) \approx \sqrt{\frac{n}{2\pi K_X''(\bar{x})}} \cdot e^{nK_X(\bar{x}) - n\bar{x}}$

is extremely accurate for sample sizes such as 5,6,10.

2) Then I discussed the structure (not the derivation) of a Similar formula for the <u>CDF</u> of X (called the Lugannani-Rice formula: $F_{X}(x) = P(X \in \overline{x}) = \Phi(\widehat{\omega}_{n}) + P(\widehat{\omega}_{n}) \left(\frac{1}{\widehat{\omega}_{n}} - \frac{1}{\widehat{\omega}_{n}}\right) + O\left(\frac{1}{n}\right)$ Here $\hat{w}_{u} = Sgn(\hat{t}) \sqrt{2nL\hat{t}} \bar{x} - K_{\chi}(\hat{t})$, $\hat{u}_{h} = \hat{t} \sqrt{n} K_{\chi}''(\hat{t})$ where again \hat{t} is the saddlepoint, i.e. $K_{\chi}'(\hat{t}) = \bar{x}$ holds. 3.) I then plugged in the formulae above on 2 occasions: i) Example 1: (saddlepoint approximation for the sample mean of the stendard normal: in this case the approximation is precise; i.e. no error): $f(x) = f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$. For this, the coff is known to be $K_{X}(t) = \log M_{X}(t) = \log (e^{\frac{t^{2}}{2}}) = \frac{t^{2}}{2}$ Hence Kx (4) = + ; Kx (+) = 1. The saddlepoint equation gives $\hat{t}=X$, hence the first order approximation for the density becomes $\hat{f}(\bar{x}) = \sqrt{\frac{n}{2\pi}} e^{n(\bar{x})^2 - n(\bar{x})^2} = \sqrt{\frac{n}{2\pi}} e^{n\bar{x}}$ which is precisely the density of N(O, f) (and we know that $X \sim N(O, f)$ in this case). tor the cdf we get: $\widehat{w}_n = \operatorname{sgn}(x) \left[2n(x)^2 - (x)^2 \right] = x \ln x$ and $\hat{u}_n = \hat{w}_n = \times \bar{v}_n$, hence $\ell(\hat{w}_n)(\hat{w}_n - \hat{u}_n) = 0$ in this case and we get $F_{\overline{X}}(\overline{x}) = \overline{\Phi}(\overline{x}\overline{v}n)$ which is the cdf of Mo_1h) (again precise)

ii/ Example 2 Saddlepoint approximation for the density of the sample mean of n ind. observations from the Gramma (4,1) The density of a single observation is $f(x) = \frac{1}{\Gamma(4)} x^{4-1} e^{-x}$, x > 0. Hence if t < 1: $M_X(t) = \frac{1}{\Gamma(x)} \int_{\infty}^{\infty} e^{-(t-t)x} dx = \frac{1}{\Gamma(x)(1-t)} \int_{\infty}^{\infty} e^{-\frac{t}{2}t-\frac{t}{2}} dy$ $= \frac{1}{\Gamma(x)} \cdot \frac{1}{(1-t)^{2}} = (-t)^{-\alpha} \qquad \qquad dx = \frac{dy}{t^{2}t}$ Hence Kx(t) = - xlog(1-t), Kx(t)= x, Kx(t)= x (1-t)2 Saddlepoint equation is: $X = \overline{x}$, i.e. $t = 1 - \stackrel{\leftarrow}{=} .$ Hence $K_{\chi}^{\mu}(\hat{t}) = (\Xi)^{2}$ and substituting in the first-order saddlepoint approximation formula we get $f(\bar{x}) = \left[\frac{n\lambda}{2\pi(\bar{x})^2} \exp\left(-n\lambda \log\left(\frac{\lambda}{x}\right) - n(\bar{x}-\lambda)\right] =$ $= \left(\sqrt{\frac{2\pi}{n\alpha}} (n\alpha)^{n\alpha} e^{-n\alpha} \right)^{-1} (n\overline{x})^{n\alpha-1} e^{-n\overline{x}}$ Now: $\frac{1}{\sqrt{(nx)}}(n\overline{x})^{nx-1}e^{-n\overline{x}}$ is the exact density of \overline{x} (Because $X = \frac{1}{n} \stackrel{E}{\underset{i=1}{\sum}} X_{i}$, and $\stackrel{E}{\underset{i=1}{\sum}} X_{i} \sim Gausma (n \chi_{i})$. Hence the difference between the exact and the approximation is that the norming 1 hos been replaced by 1211 (nx) However the formour Stirling approximation of 1211 (nx) e the Gamma function tells I us precisely that $\Gamma(n\lambda) \approx \sqrt{\frac{2\pi}{n\lambda}} (n\lambda)^{n\lambda} - n\lambda$

Hence the difference is only that the norming constant in the true clemeity (I has been replaced by its very accurate approximation given by stirling.

3) In the betwee about robustness, I first discussed the fact that \bar{x} is a disastrously bad estimator for the location parameter of the Cauchy distribution.

Indeed, it is known that the characteristic function of a single observation X_1 ~ Cauchy (0) with cleasify $f(x,0) = \frac{1}{11} \cdot \frac{1}{1+(x-\theta)^2}$ is f(t) = eHence for the characteristic function of $x = \frac{e}{h} \frac{$

that is, X has the same distribution as a single X. no water what the sample size! Hence X can not be consistent for θ .

With respect to the remaining discussions, I believe that may derivatione in the lecture notes are detailed enough to reproduce them again here. Finally, I note that the asymptotic variance for the sample quantile as given by $V(T,F) = \frac{p(I-p)}{f(q_p)^2}$ on p. 78 of the notes,

Specialises to $\frac{2^{-1}}{f(0)^2}$ when applied for the median $(p=\frac{1}{2})$ of the location family $f(x-\theta) = f(x,\theta)$. In particular this justifies the result $IN(\theta_n - \theta) \stackrel{d}{\to} N(0) \stackrel{1}{\to} V(0)$ which IWas using on p.75 of the notes (formula (29)). tor the normal location family this gave us. $VII (\widehat{O}_{II} - \Theta) \stackrel{d}{\to} N(O, \frac{\pi}{2})$, i.e. the empitical i Median for the normal is asympotically normally distributed with agruptobic variance $\frac{\pi}{2} > 1$ and (as we know), is less efficient than the empirical (sample) mean for which we have precisely $Vn(x-0) \sim N(0,1).$

This illustrates the claim that we "pay for robustness by a slight loss of efficiency."