MODELLI E ALGORITMI PER IL SUPPORTO ALLE DECISIONI

ESERCIZIO 1. (10 punti) Sia data la rete G = (V, A) con

$$V = \{1, 2, 3, 4, 5, 6\}$$

$$A = \{(1,2), (1,3), (2,4), (3,4), (3,5), (3,6), (4,6), (5,6)\}$$

con i seguenti costi unitari di trasporto c_{ij} e capacità d_{ij}

arco	(1,2)	(1,3)	(2,4)	(3,4)	(3,5)	(3,6)	(4, 6)	(5,6)
c_{ij}	4	8	2	20	2	4	7	1
d_{ij}	6	3	8	1	4	6	11	2

e i seguenti valori b_i associati ai nodi

nodo	1	2	3	4	5	6
b_i	+5	0	0	0	0	-5

Verificare che alla terna

$$B = \{(1,2), (1,3), (2,4), (3,5), (4,6)\}$$
 $N_0 = \{(3,6), (5,6)\}$ $N_1 = \{(3,4)\}.$

corrisponde una soluzione di base ammissibile e partire da questa per determinare una soluzione ottima e il valore ottimo per questo problema.

ESERCIZIO 2. (9 punti)

In un grafo orientato G = (V, E) con pesi w_{ij} associati agli archi $(i, j) \in E$ e il problema di albero di supporto a peso minimo (MST) su tale grafo. Per ciascuna delle seguenti affermazioni dire se è vera o falsa **MOTIVANDO LA RISPOSTA**:

- se aumento di M > 0 il peso di tutti gli archi incidenti su un dato nodo, l'albero di supporto a peso minimo rimane lo stesso anche se aumenta il suo peso;
- se aumento di M > 0 il peso di tutti gli archi del grafo, l'albero di supporto a peso minimo rimane lo stesso anche se aumenta il suo peso;
- \bullet se diminuendo di M>0 il peso di un singolo arco l'albero di supporto a peso minimo cambia, allora l'arco non faceva parte dell'albero di supporto a peso minimo.

ESERCIZIO 3. (6 punti) Si descrivano le classi di problemi P, NP e NP-completi e i legami esistenti tra queste classi.

ESERCIZIO 4. (6 punti) Si dimostri la correttezza dell'algoritmo di Ford-Fulkerson per il problema di flusso massimo e per il corrispondente problema di taglio a costo minimo.