

THE EISENHOWER LIBRARY

3 1151 02672 3266

On a Complete System
of Invariants of Two Triangles.
by
David D. Leib.
"

Dissertation
submitted to the Board of
University Studies of the Johns
Hopkins University in conform-
ity with the requirements for
the degree of Doctor of Philosophy

1909.

v

On a Complete System of Invariants of Two Triangles.

Introduction.

The simple invariants of two triangles as found from the cosine set up^{by} them, when regarded as two cubic curves of the third order and of the third class respectively, have been discussed at length by Dr. Stein.* The system thus derived is obviously incomplete as is pointed out in the article. The present author seems to present a complete system, by means of which all invariant relations can be conveniently expressed. I am indebted to the Transactions American Math. Soc., Vol. 1, p. 377,

is also given to a few of the co-invariants but no exhaustive treatment has been attempted.

In developing the system of invariants proposed in the previous paper the author was from time, compelled due to the very great complexity of the problem which to a large extent gave rise to this paper was by Prof. Dyer. We shall see that invariance relation between triangles is that as may be drawn in the interior of one triangle and touch the sides of the other? This problem will be treated in a subsequent chapter. In this way the selection of the present system of invariants was largely a matter of experiment.

and observation the method of reasoning
being to select such as would give
as far as to what does one want
relations in the most simple form,
and at the same time, to have the
fundamental equations themselves
as easily interpreted physically as
possible. In the original solution
of these special problems one triangle
was invariably taken as the refer-
ence example and the movement
relations were consequently expressed
in terms of the coefficients of the
other. Naturally, a great number
of the same simplification in much
of the discussion following.

It has, however, seemed advisable
in this paper to follow what may
be termed the historical, and at the
same time more logical order, and to

begin by giving the name and in
the most general form. This
was done in the first place
from the incomplete forms com-
munity in which the letter and
that interpretation was known.

§1. The Primary system.

Take the one triangle as a 3-line in the most general symbolic form

$$(\alpha x)(\beta x)(\gamma x) = 0,$$

and the other as a 3-point

$$(a \S)(b \S)(c \S) = 0$$

where the expressions in parentheses are the ordinary, symbolic forms of the 3-lines.

$$(\alpha x) = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3, \text{ etc.}$$

A system of equations to which we will use and later prove to be a complete system is the following:-

$$\text{Q} \quad A_1 = \begin{vmatrix} \alpha_1 & \beta_1 & \gamma_1 \\ \alpha_2 & \beta_2 & \gamma_2 \\ \alpha_3 & \beta_3 & \gamma_3 \end{vmatrix}$$

$$2) \quad D_1 = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}.$$

$$3) \quad I_1 = (a\alpha)(b\beta)(c\gamma) + (a\alpha)(b\gamma)(c\beta) \\ + (b\alpha)(c\beta)(a\gamma) + (b\alpha)(c\gamma)(a\beta) \\ + (c\alpha)(a\beta)(b\gamma) + (c\alpha)(a\gamma)(b\beta).$$

$$4) \quad I_2 = (a\alpha)(a\beta)(b\beta)(b\gamma)(c\gamma)(c\alpha) \\ + (a\gamma)(a\alpha)(b\alpha)(b\beta)(c\beta)(c\gamma) \\ + (a\beta)(a\gamma)(b\gamma)(b\alpha)(c\alpha)(c\beta) \\ + (a\alpha)(a\beta)(b\gamma)(b\alpha)(c\beta)(c\gamma) \\ + (a\gamma)(a\beta)(b\beta)(b\gamma)(c\alpha)(c\beta) \\ + (a\beta)(a\gamma)(b\alpha)(b\beta)(c\alpha)(c\alpha).$$

$$5). \quad D_2 = (a\alpha)(a\beta)(b\beta)(b\gamma)(c\gamma)(c\alpha) \\ + (a\gamma)(a\alpha)(b\alpha)(b\beta)(c\beta)(c\gamma) \\ + (a\beta)(a\gamma)(b\gamma)(b\alpha)(c\alpha)(c\beta) \\ - (a\alpha)(a\beta)(b\gamma)(b\alpha)(c\beta)(c\gamma) \\ - (a\gamma)(a\alpha)(b\beta)(b\gamma)(c\alpha)(c\beta) \\ - (a\beta)(a\gamma)(b\alpha)(b\beta)(c\gamma)(c\alpha).$$

$$6) \quad I_3 = (a\alpha)(a\beta)(a\gamma)(b\alpha)(b\beta)(b\gamma)(c\alpha)(c\beta)(c\gamma).$$

D_2 can be written as \dots

convenient form to represent as
a determinant

$$D_2 = \begin{vmatrix} (a\alpha)(a\beta) & (a\beta)(a\gamma) & (a\gamma)(a\alpha) \\ (b\alpha)(b\beta) & (b\beta)(b\gamma) & (b\gamma)(b\alpha) \\ (c\alpha)(c\beta) & (c\beta)(c\gamma) & (c\gamma)(c\alpha) \end{vmatrix},$$

and I_2 at the same determinant
represented and all signs made pos-
itive.

According to this notation*
for indicating the collective terms
in terms of Greek letters
specifically, the various terms ap-
peared as follows:-

$$D_1(0,0); \quad \Delta_1(0,3); \quad D_2(6,6); \\ I_1(3,3); \quad I_2(6,6); \quad I_3(1,1).$$

It is next to add the complete
similar notation to indicate the
terms in the dual coefficients
of the 3-point and 3-line respec-
* p. 42.

lying on the line.

$$D_1(0,0); \quad A_1(0,1); \quad I_1(1,1);$$

$$I_1(1,1); \quad I_2(2,2); \quad I_3(3,3).$$

The only advantage of this form is that it gives less room for the choice of subscripts attached to our six fundamental invariants.

From these 6 independent invariants we could expect to be able to form 4 independent absolute invariants, and such is found to be the case. Since the absolute invariant must not be of degree 3 or less (in Greek and Roman letters), the 4 independent ones, i.e. a set of 4, can be built up easily from the scheme above. Probably the complete set is,

$$\frac{I_2}{D_2}, \quad \frac{I_1^2}{D_1 D_1}; \quad \frac{I_1^2}{I_2}; \quad \frac{I_1 I_2}{I_3}.$$

What any other form of yours?

which is equal to the
determinant of that.

$$\frac{I_1 \Delta_{11}}{I_1} = \frac{I_2}{I_2} \cdot \frac{I_3}{I_3} \cdots \frac{I_n}{I_n}$$

$$\frac{I_1^2}{I_1^2} = \frac{I_2^2}{I_2^2} \cdot \frac{I_3^2}{I_3^2}, \text{ and so on.}$$

It will now be expected
on the analogy of what we
have learnt from the first two
or three examples to make

It is observed that the D's are
determinants hence change sign when
two letters are interchanged. Of course
when equated to zero this makes no
difference. On the other hand this
fact enables one at a glance to tell
whether the D's enter to an odd or
even number in any given arranged
form.

§ 2. Simplified Form of the Fundamental Equations.

If the 3-lines be now taken on the same scale, so that the elements of one forming system except Δ_1 , become homogeneous, the reduced integral fractions of the Roman letters, i.e., of the coefficients of the 3-points Δ_1 , will be unity. The simplification of the form of the equations is given in the following example in a very few lines, for the supplements of the left side are 1, 2, 3, 4, 5, 6, 7, 8, 9. So the only combination of these letters we need consider is $\alpha_1 \beta_2 \gamma_3$ and

* Dr. Collie in an unpublished article suggested a different complete system, based almost exclusively on this fact.

very simple forms

$$D_1 = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$I_1 = a_1 b_2 c_3 + a_3 b_1 c_2 + a_2 b_3 c_1 + a_1 b_3 c_2 + a_3 b_2 c_1 + a_2 b_1 c_3.$$

$$D_2 = \begin{vmatrix} a_2 a_3 & a_3 a_1 & a_1 a_2 \\ b_2 b_3 & b_3 b_1 & b_1 b_2 \\ c_2 c_3 & c_3 c_1 & c_1 c_2 \end{vmatrix}$$

$$I_2 = a_2 a_3 b_1 b_2 c_1 c_2 + a_1 a_2 b_2 b_3 c_3 c_1 + a_1 a_3 b_1 b_3 c_2 c_3 + a_2 a_3 b_1 b_2 c_3 c_1 + a_1 a_2 b_3 b_1 c_2 c_3 + a_3 a_1 b_2 b_3 c_1 c_2$$

$$I_3 = a_1 a_2 a_3 b_1 b_2 b_3 c_1 c_2 c_3$$

The first point is that the signs in D_1 and D_2 expanded and all signs made plus is of great advantage in remembering these forms.

§3. Proof of the Completeness of the System.

It is obviously of great im-
portance to prove that the system
as given is complete, i.e. that all
concurrent altitudes between the two
triangles can be expressed in terms of
the system proposed in the preceding
paragraphs.

Take the 3-lines as the reference-triangles and call it T_1 . The
3-point, $(a\beta)(b\gamma)(c\delta) = 0$, we will call T_2 . If
we look the 3-lines generally, $(xx)(yy)(zz) = 0$
we would define a related concur-
rentaneous of the two triangles
as a rational integral function of
the coefficients, which has the same
concurrent property and is generated by
a permutation of the 3-lines or of

the 3 factors, that is by any permutation of a_1, b_1, c_1 or of a_2, b_2, c_2 .
In which case it is known as taking up
the reference triangle, all rational
simultaneous equations (except 4),
the determination of the 3 lines which
lives to unity, but must be related
of T_1 and T_2 and homogeneous rational
integral functions of x, y, z , which
are unaffected by any permutation of
the letters or of the subscripts. The
converse is equally true and any
homogeneous, rational, integral func-
tion of the coefficients a, b, c , which
is unaffected by a permutation of
the letters or of the subscripts, has
the same and property. Hence any
such invariant can be written down
in the most general form as this
expression, —

$$I = \sum a_1^{e_1} a_2^{e_2} a_3^{e_3} b_1^{f_1} b_2^{f_2} b_3^{f_3} c_1^{k_1} c_2^{k_2} c_3^{k_3}$$

where the exponents are subject to the following conditions

$$e_1 + e_2 + e_3 = m \quad f_1 + f_2 + f_3 = n$$

$$e_1 + f_2 + k_3 = n \quad e_2 + f_3 + k_1 = n$$

$$k_1 + k_2 + k_3 = m \quad f_1 + f_2 + k_3 = m$$

The necessity of these conditions is evident.

We next prove the lemma:- Every individual term of I may be written where I is of the m th degree in the exponents of the a 's, of the n th degree in the factors of b , type c and also $e+f+k$.

To aid in establishing this lemma

$$a_1 b_1 c_1 - b_1 a_1 c_1 - a_1 b_1 c_1 - b_1 a_1 c_1$$

$$a_1 b_1 c_1 - a_1 b_1 c_1 - a_1 b_1 c_1 - a_1 b_1 c_1$$

$$a_1 b_1 c_1 - a_1 b_1 c_1 - a_1 b_1 c_1 - a_1 b_1 c_1$$

is morally the same as a term containing $a_1 b_1 c_1$ taken with every bracket and

script we can continue taking factors from it of type $a^r b^s c^t$, $r+s+t = k+l$.
 But some exponents may become zero,
 and we must look at that case. We
 will suppose some exponent say $c_1 \neq 0$.
 Then from our equations of condition
 become or tell us

$$c_1 > 0, \therefore c_2 < m \quad c_3 < n \quad \text{for } \Sigma c_i = n$$

$$\text{Also } j_2 + j_3 > 0 \quad \text{or } j_2 \text{ would} = m$$

$$\text{and } k_2 < n \quad k_3 < m$$

Hence $j_2 + j_3 > 0$ or j_2 would $= m$
 and $k_2 + k_3 > 0$ or k_2 would $= m$

From these inequalities it follows

if $j_2 = 0$, $k_2 > 0$ & $j_3 > 0$ and since $c_1 > 0$
 we have $a, b, c_2 = \beta_0$ as a factor.

If $k_3 = 0$, $j_3 > 0$, $k_2 > 0$, and again
 we have $a, b, c_2 = \beta_0$ as a factor.

But if j_2 and $k_3 = 0$, then $j_3 > 0$, $k_2 > 0$
 again $a, b, c_2 = \beta_0$ as a factor.

If $j_2 = 0$, or $k_3 = 0$, or both equal zero

at the same time α, β, γ - do not have a factor. Now if we factor $\alpha = \alpha_0 \alpha_1 \alpha_2$, we have with a factor of some type $\alpha_0^k \alpha_1^l \alpha_2^m$ instead of α . We can continue factoring out an α_i or a β_i , until the invariant term is expressed in terms of α_i and β_i . This proves the lemma and we can write

$$I = \cdot \sum \alpha_0^k \alpha_1^l \alpha_2^m \beta_0^\ell \beta_1^m \beta_2^n.$$

Now since I must remain unaltered by all permutations of a, b, c and of the subscripts $1, 2, 3$, it must remain unaltered by all permutations of the Greek letters and of their subscripts. To establish this; if we express the permutations as cycles in the use of the English letters it is an easy matter to meet the requirement that the permutations of the Greek letters are cycles now.

If $(a\ b\ c)$ represents a cyclic permutation
we have

- (1). $(a\ b\ c)$ is equivalent to $(\alpha_0 \alpha_2 \alpha_1) (\beta_0 \beta_1 \beta_2)$
- (2). $(1\ 2\ 3)$ " " " $(\alpha_0 \alpha_1 \alpha_2) (\beta_0 \beta_1 \beta_2)$
- (3). $(b\ c)$ " " " $(\alpha_0 \beta_0) (\alpha_1 \beta_1) (\alpha_2 \beta_2)$
- (4). $(2\ 3)$ " " " $(\alpha_0 \beta_0) (\alpha_1 \beta_2) (\alpha_2 \beta_1)$
- (5). $(a\ b)$ " " " $(\alpha_0 \beta_1) (\alpha_1 \beta_2) (\alpha_2 \beta_0)$

This includes all independent types.

This discussion can be still further
elucidated by writing

$$\alpha_0 + \alpha_1 + \alpha_2 = r_1, \quad \beta_0 + \beta_1 + \beta_2 = s,$$

$$\alpha_0 \alpha_1 + \alpha_1 \alpha_2 + \alpha_2 \alpha_0 = r_2 \quad \beta_0 \beta_1 + \beta_1 \beta_2 + \beta_2 \beta_0 = s_2$$

$$\alpha_0 \alpha_1 \alpha_2 = \beta_0 \beta_1 \beta_2 = p_3$$

$$(\alpha_1 - \alpha_2)(\alpha_2 - \alpha_0)(\alpha_0 - \alpha_1) = r \quad (\beta_1 - \beta_2)(\beta_2 - \beta_0)(\beta_0 - \beta_1) = s.$$

Since any invariant I admits of the transposition $(\alpha_0 \alpha_1 \alpha_2)$ and contains a term $\alpha_0^l \alpha_1^j \alpha_2^k \beta_0^m \beta_1^n \beta_2^o$, it must contain the 3 terms obtained by cyclically advancing the α 's. Since it also admits the permutation $(\beta_0 \beta_1 \beta_2)$, it must

contain the terms obtained by cyclically advancing the β 's. I.e. start with $\alpha_0 \alpha_1 \alpha_2$ and obtain the 9 terms

$$\sum_{(\beta_0, \beta_1, \beta_2)} \beta_0^l \beta_1^m \beta_2^n \sum_{\text{cyclic}} \alpha_0^c \alpha_1^d \alpha_2^k.$$

If $c = j = k$ or $l = m = n$, these 9 terms reduce to 3, and if both equalities exist simultaneously, they reduce to a single term. In any event we have the product of two alternating functions of $\alpha_0, \alpha_1, \alpha_2$ and $\beta_0, \beta_1, \beta_2$ respectively.

Carrying out the same argument for the other terms of I , we find that

$$\therefore I = R(r, s, r_1, s_1, p_3, r, s)$$

where R is a rational, integral, isobaric function of its arguments. The subscripts indicate the weight, r and s being of weight 3.

As a next step, r and s may be assumed to occur to the first degree only, for r^2 and s^2 can both be

expressed symmetrically in terms of the other 5 quantities. We find we have

$$(1) r^2 = r_1^2 r_2^2 - 4 r_1^3 p_3 + 18 r_1 r_2 p_3 - 4 r_2^3 - 27 p_3^2.$$

$$s^2 = s_1^2 s_2^2 - 4 s_1^3 p_3 + 18 s_1 s_2 p_3 - 4 s_2^3 - 27 p_3^2.$$

We also notice that the permutation $(\alpha_1 \alpha_2)(\beta_1 \beta_2)$ changes the sign of r and s . Hence r and s can occur only in the combination rs .

Therefore we can now write

$$I = R_1(r_1, s_1, r_2, s_2, p_3) + rs \cdot R_2(r_1, s_1, r_2, s_2, p_3)$$

Again, the permutation $(\alpha_0 \beta_0)(\alpha_1 \beta_1)(\alpha_2 \beta_2)$ interchanges r_1 and s_1 . Therefore I is unaltered by interchanging r_1 and s_1 . Or

$$(7) R_1(r_1, s_1, r_2, s_2, p_3) = R_1(s_1, r_1, s_2, r_2, p_3).$$

Now take a term of R_1 as $r_1^r s_1^s r_2^l s_2^m p_3^n$, then from (7), R_1 must contain the sum of the 2 terms

$$p_3^n [r_1 s_1]^r [r_2 s_2]^m [r_1^a r_2^b + s_1^a s_2^b] = A_1, \text{ say},$$

where for convenience we suppose $k \geq i$,
 i.e. k, l, r, s, e, a, b , $e - k = a$, $l - m = b$.

* Salmon - Leçons D'Algèbre Supérieure. p 87-90.

To reduce still further, do

$$\oint_3^n [r_1 s_1]^k [r_2 s_2]^m (r_1^a s_1^b + s_1^a r_2^b) = A_2$$

Then combining A₁ and A₂

$$A_1 + A_2 = \oint_3^n [r_1 s_1]^k [r_2 s_2]^m (r_1^a + s_1^a)(r_2^b + s_2^b)$$

$$= S_1 [r_1 + s_1, r_2 + s_2, r_1 s_1, r_2 s_2, \oint_3]$$

$$A_1 - A_2 = \oint_3^n [r_1 s_1]^k [r_2 s_2]^m (r_1^a - s_1^a)(r_2^a - s_2^a)$$

$$= (r_1 - s_1)(r_2 - s_2) S_2 [r_1 + s_1, r_2 + s_2, r_1 s_1, r_2 s_2, \oint_3]$$

where S₁ is a rational function of the arguments. This enables one to solve for A₁ in terms of (r₁ - s₁) (r₂ - s₂) and the 5 arguments of S₁. Carrying out the same process for all terms of R₁ we find

$$R_1 = M_1 [r_1 + s_1, r_2 + s_2, r_1 s_1, r_2 s_2, \oint_3]$$

$$+ (r_1 - s_1)(r_2 - s_2) M_2 [r_1 + s_1, r_2 + s_2, r_1 s_1, r_2 s_2, \oint_3]$$

where M₁ is a rational, integral, isobaric sum of its arguments. R₂ can be expanded in the same way. Since

Any rational, isobaric invariant T₁ and T₂ is a rational, integral, isobaric function of r₁ + s₁, r₂ + s₂, r₁ s₁, r₂ s₂,

p_3 , $(r_1 - s_1)(r_2 - s_2)$, and $r.s.$. Now these are themselves invariants. Seven arguments, hence we have as a final Theorem:-

The following seven invariants form a complete system of the simultaneous, rational invariants of T_1 and T_2 :

$$\underline{I_1 = r_1 + s_1},$$

$$\underline{J_2 = r_1 s_1},$$

$$\underline{I_2 = r_2 + s_2},$$

$$\underline{J_3 = (r_1 - s_1)(r_2 - s_2)};$$

$$\underline{I_3 = p_3},$$

$$\underline{I_6 = r s}.$$

$$\underline{I_4 = r_2 s_2},$$

Of these seven, the last two are skew. It does not follow from the argument presented that these seven are absolutely independent. In fact there is a syzygy connecting them, for, since we have already shown that r^2 and s^2 individually can be expressed in terms of the first six, it follows that I_6^2 is also expressible. Hence the

first six constitute a complete system.

The system of seven variables, which we have proven complete, was first suggested by Dr. Coble in 1891, which might be suitable for the simple representation of all the relations between the triangles. A considerable amount of working out of all possible combinations of these variables could be used as a fundamental or primary system, and the next to meet the system proposed in the body of this paper is the simplest system available. This system is easily shown to be as good as the Coble system which has been proven complete.

10 variables chosen

$$I_1 = r_1 + s_1, \quad D_1 = r_1 - s_1,$$

$$I_2 = r_2 + s_2, \quad D_2 = r_2 - s_2,$$

and P_{34} as a primary system.

Clearly the 3rd system can be expressed in terms of the first two giving the form we want:

$$I_1' = I_1, \quad I_6' = \frac{1}{4}(I_1' + I_2')$$

$$I_2' = I_2, \quad I_3' = I_1 + I_2$$

$$I_4' = I_3, \quad I_4' = \frac{1}{4}(I_2 + D_2')$$

and of course I_6' can be expressed linearly although the form is somewhat long. Of course A_1 , which is unity when the 3rd row is taken as the reference triangle (as in the paragraph) must be included in the complete system. Hence we have proven the fundamental theorem of the paragraph, viz., The system of equations proposed in the previous paragraph is complete; although without completeness we must add I_6 which has been defined above.

The principles employed in this paragraph to prove the completeness

of the system, if every element contains a term $\alpha_0 \alpha_1 \alpha_2 \beta_0 \beta_1 \beta_2$, it will contain terms obtained by dividing the α 's and β 's, will be found very useful in determining the important elements, & we need only consider about a single term of each type. This reduces the necessary algebra very materially. In some cases it is convenient to use the equations α and β as defined in this section, but in general very unpractical, these would be complications.

It may be well to add the form of I_6 in terms of the coefficients of the three points:-

$$I_6 = (\alpha_2 \alpha_3 - \alpha_3 \alpha_2)(\alpha_1 \alpha_2 - \alpha_2 \alpha_1, \alpha_3 \alpha_1 - \alpha_1 \alpha_3)$$

$$(\alpha_3 \alpha_1 - \alpha_1 \alpha_3)(\alpha_1 \alpha_2 - \alpha_2 \alpha_1, \alpha_3 \alpha_2 - \alpha_2 \alpha_3)$$

The meaning of $I_6 = 0$, will be shown later on page 51.

§ 4. Reciprocal or Dual Forms.

Having to do the properties of the dual forms so derived, we shall now consider the transformation of the invariants when the role of the two concepts is interchanged. That is, if the 3-line is taken as the 3-line and the 3-point is taken as the 3-point and vice-versa. The formulas thus obtained will be found very useful, for if we know a certain projection relation exists between the 3-line and the 3-point due to the vanishing of a certain invariant form, then the vanishing of the other or dual form, which is found immediately by applying the formulas now to be found) will indicate the existence of the second relation between the

joins of the 3-point and the
 meets of the 3-line. To get the
 dual forms in the general case
 would obviously be equivalent to re-
 placing each Greek and Roman
 letter by one of the fundamental
 numbers in the corresponding
 row in the tableau we have
 used Δ , and D , respectively. But
 already in defining the dual forms
 we took the simplified form of
 the original system, for example
 with the relation $a_1 \cdot b_1 = 1$. We shall
 the dual form by form.

$$\begin{aligned}
 D'_1 &= \begin{vmatrix} b_2 c_3 - b_3 c_2 & a_3 c_2 - a_2 c_3 & a_1 c_2 - a_2 c_1 \\ b_3 c_1 - b_1 c_3 & a_1 c_3 - a_3 c_1 & a_2 c_1 - a_1 c_2 \\ b_1 c_2 - b_2 c_1 & a_2 c_1 - a_1 c_2 & a_1 b_2 - a_2 b_1 \end{vmatrix} \\
 &\quad - D_1
 \end{aligned}$$

This is evidently a simple algebraic
 consequence of the given relations.

in determinants; - If each term in
~~the~~ determinant is replaced
 by its minor, the resultant is the
~~transposed~~ determinant of the second.

$$\therefore I_1' = \underline{L_1''}.$$

I_1' is one of the expansion of
 the determinant D_1' , with all six

$$\begin{aligned}
 I_1' &= (b_2 c_3 - b_3 c_2)(a_1 c_3 - a_3 c_1)(a_1 b_2 - a_2 b_1) \\
 &\quad + (b_1 c_2 - b_2 c_1)(a_3 c_2 - a_2 c_3)(a_3 b_1 - a_1 b_3) \\
 &\quad + (b_2 c_3 - b_3 c_2)(a_2 c_1 - a_1 c_2)(a_3 b_1 - a_1 b_3) \\
 &\quad + (b_3 c_1 - b_1 c_3)(a_3 c_2 - a_2 c_3)(a_1 b_2 - a_2 b_1) \\
 &\quad + (b_1 c_2 - b_2 c_1)(a_1 c_3 - a_3 c_1)(a_2 b_3 - a_3 b_2), \\
 &= \sum_{i=1}^3 a_i b_i^2 c_i^2 - \sum_{i=1}^3 a_i^2 b_i c_i^2 \\
 &\quad - 4 \left[\sum_{i=1}^3 a_1 a_2 b_1 b_2 c_3 c_i - \sum_{i=1}^3 a_1 a_2 b_i b_2 c_2 c_3 \right].
 \end{aligned}$$

one term of the type $a_1 a_2 b_1 b_2 c^2$ an-
 nul lified.

* In all places a figure over a summa-
 tions, either the result, or some Σ .

This can be expressed rather easily, in terms of our invariants, for it is of the second degree and by observation we see the D's must enter to an odd, i.e. the first degree. Now

$$I_1 D_1 = \sum_{\text{cyc}}^3 a_1^2 b_2^2 c_3^2 - \sum_{\text{cyc}}^3 a_1^2 b_3^2 c_2^2 + 2 \sum_{\text{cyc}}^3 a_1 a_2 b_2 b_3 c_1 c_3 - 2 \sum_{\text{cyc}}^3 a_1 a_2 b_3 b_1 c_2 c_3.$$

$$D_2 = \sum_{\text{cyc}}^3 a_1 a_2 b_2 b_3 c_3 c_1 - \sum_{\text{cyc}}^3 a_1 a_2 b_3 b_1 c_2 c_3$$

$$\therefore I_1' = I_1 D_1 - 6D_2.$$

I_1' and D_2' will be developed simultaneously from the determinant :-

$$(I) \begin{vmatrix} (bc_1 - b_1 c)(bc_2 - b_2 c) & (ca_1 - c_1 a)(ca_2 - c_2 a) & (ab_1 - a_1 b)(a_2 b_2 - a_2 b_1) \\ (b_1 c_1 - b c_1)(b_2 c_2 - b_2 c_1) & (c_1 a_1 - c a_1)(c_2 a_2 - c_2 a_1) & (a_1 b_2 - a_2 b_1)(a_2 b_3 - a_3 b_2) \\ (b_2 c_2 - b c_2)(b_3 c_1 - b_1 c_2) & (c_2 a_1 - c_1 a_2)(c_3 a_2 - c_2 a_3) & (a_2 b_3 - a_3 b_2)(a_3 b_1 - a_1 b_3) \end{vmatrix}$$

The expansion of this determinant is D_2' , and taken with all six signs positive it is I_1' . The problem now is to express these two forms in terms

Before completing the determination of dual forms, it will be of advantage to write down a series of summations of terms of the same type of the 4th degree in the coefficients of the system, and designate them by arbitrarily chosen letters. As these summations are used frequently, their notation will be referred to throughout the work.

Table of summations

$$\sum_{\sigma}^3 a_1^{\sigma} b_2^{\sigma} c_3^{\sigma} - \sum_{\sigma}^{3\sigma} a_1^{\sigma} b_3^{\sigma} c_2^{\sigma} = A' - A''$$

$$\sum_{\sigma}^3 a_1^{\sigma} b_2^{\sigma} b_3^{\sigma} c_2^{\sigma} - \sum_{\sigma}^3 a_1^{\sigma} b_2^{\sigma} b_3^{\sigma} c_2^{\sigma} c_3^{\sigma} = B' - B''$$

$$\sum_{\sigma}^3 a_1^{\sigma} a_2^{\sigma} b_2^{\sigma} b_3^{\sigma} c_2^{\sigma} c_3^{\sigma} - \sum_{\sigma}^3 a_1^{\sigma} a_2^{\sigma} b_2^{\sigma} b_3^{\sigma} c_2^{\sigma} c_3^{\sigma} = C' - C''$$

$$\sum_{\sigma}^3 a_1^{\sigma} a_2^{\sigma} b_2^{\sigma} b_3^{\sigma} c_2^{\sigma} c_3^{\sigma} - \sum_{\sigma}^3 a_1^{\sigma} a_2^{\sigma} b_2^{\sigma} b_3^{\sigma} c_2^{\sigma} c_3^{\sigma} = D' - D''$$

$$\sum_{\sigma}^3 a_1^{\sigma} a_2^{\sigma} b_2^{\sigma} b_3^{\sigma} c_2^{\sigma} c_3^{\sigma} - \sum_{\sigma}^3 a_1^{\sigma} a_2^{\sigma} b_2^{\sigma} b_3^{\sigma} c_2^{\sigma} c_3^{\sigma} = E' - E''$$

$$\sum_{\sigma}^3 a_1^{\sigma} a_2^{\sigma} b_2^{\sigma} b_3^{\sigma} c_2^{\sigma} c_3^{\sigma} - \sum_{\sigma}^3 a_1^{\sigma} a_2^{\sigma} b_2^{\sigma} b_3^{\sigma} c_2^{\sigma} c_3^{\sigma} = F' - F''$$

$$\sum_{\sigma}^3 a_1^{\sigma} a_2^{\sigma} b_2^{\sigma} b_3^{\sigma} c_2^{\sigma} c_3^{\sigma} - \sum_{\sigma}^3 a_1^{\sigma} a_2^{\sigma} b_2^{\sigma} b_3^{\sigma} c_2^{\sigma} c_3^{\sigma} = G' - G''$$

$$\sum_{\sigma}^3 a_1^{\sigma} a_2^{\sigma} b_2^{\sigma} b_3^{\sigma} c_2^{\sigma} c_3^{\sigma} = H$$

$$\sum_{\sigma}^3 a_1^{\sigma} a_2^{\sigma} b_2^{\sigma} b_3^{\sigma} c_2^{\sigma} c_3^{\sigma} = K.$$

Of course the above form connected with the mixed signs will often appear connected with the plus signs.

In that case we shall still have
the same at the algebra by using

$$\sum_{i=1}^6 \alpha_i^4 \beta_i^4 \gamma_i^4 = A'^4 + B'^4 = A,$$

$$\sum_{i=1}^{18} \alpha_i^9 \beta_i^3 \gamma_i^3 = B'^4 + B''^4 = B, \text{ etc., etc.}$$

It is well to remember that if one term of a γ of these numbers does not appear, all numbers ^{be} present. So we need no more than one number of each type to determine the constants. With this notation the expansion of determinants is made very easily. The expansion for D_1 and D_2 presents no difficulty except that of being absolute. It is necessary to give the expanded form of each term in the determinant, but mostly the

the three positive terms, which we will call ϕ , and of the three negative terms which we will call θ .

It follows that by direct calculation

$$\phi = E' + 3E'' - 2D' + 2C' + C'' - 5F' + 6F'' - g'$$

$$\theta = 3E' + E'' - 2D'' + C' + 2C'' + 6F' - 5F'' - g''$$

Hence adding and subtracting in turn

$$I_2' = 4E - 2D + 3C + F - g$$

$$D_2' = -2(E-E'') - 2(D'-D'') + (C-C'') - 11(F'-F'') - (g-g'')$$

Now as hinted at before, we can always tell if D_1 and D_2 (or both) enter into an odd or even degree. For if all terms of the same type are positive or all negative, then the D_i 's enter into every term of the invariant to an even degree. If however the terms of a given type are half positive and half negative, then they enter into the invariant to an odd degree. This theorem requires no proof being evident. Hence since

D_2' is of the 4th degree in the coefficients, and contains by above rule from the D_i 's to an odd degree it must contain the terms $D_1^2 D_2$, $D_1 I_3$, $I_1 I_2$, $D_1 I_2$ and $I_1 D_2$.

Expressing these in terms of the summations just given we have

$$D_1^2 D_2 = 2(E-E'') + 2(D-D'') - (C-C'') + 11(F-F'') + (G-G'').$$

It is unnecessary to write down the terms at the signs, as we already know precisely the negatives of D_2' .

$$\therefore \underline{D_2'} = -D_1^2 D_2.$$

Similarly I_2' can contain only the terms $D_1^2 I_2$, $I_1 D_1 D_2$, D_1^2 and D_1^4 . In fact only the first two are needed,

$$\therefore D_1^2 I_2 = C - 2D + 2E - F + G + 4H$$

$$I_1 D_1 D_2 = -C + 2E + 5F + 2 - 4H$$

$$D_1^2 = \quad E + 2F - 2H$$

$$\therefore \underline{I_2'} = \underline{D_1^2 I_2} - 2 \underline{I_1 D_1 D_2} + 6 \underline{D_1^2},$$

and by a comparison with the original 2nd and 4th degrees term is seen that our result

the preceding page.

Some other 4th degree forms
which were of frequent use in
later computations will be placed
here for reference.

$$I_1^2 I_2 = 2E + 2D + 13 + 11F + G - 4H$$

$$I_1^3 = - - 2F - 3 + 4$$

$$I_1 I_3 - F$$

$$I_1^4 = A + 6E + 12C + 4G + 36F + 4B + 12D + 24H + 6K$$

$$D_1^4 = A + 6E + 12C + 4G - 12F - 4B - 12D + 24H + 6K$$

$$I_1^2 D_1^2 = A + 6E + 12C + 4G + 12F + 24H - 2K.$$

The derivation of these formulae
is identical in general terms
to our second method, though less
self explanatory. It must however
be remembered that a considerable
amount of actual work

was done in the construction of the tables.

law of I_3 . We have

$$I_3' = (b_2 c_2 - b_3 c_2)(b_2 c_1 - b_1 c_2)(b_1 c_2 - b_2 c_1)(c_2 a_1 - c_1 a_2) \\ (c_3 a_1 - c_1 a_3)(c_1 a_2 - c_2 a_1)(ab_3 - ab_2)(ab_1 - ab_3)(ab_2 - ab_1).$$

By merely repeating the substitutions made in the former case the algebra becomes almost unmanageable. The following method, which involves the rotation of the former paragraph, seems a good one for the direct definition. The equations are

$$(b_2 - b_3)(b_1 - b_2) = 0,$$

$$(b_3 - b_1)(b_2 - b_3) = 0,$$

$$\alpha_1(b_1 - b_3) + \alpha_3(b_3 - b_1) = 0,$$

$$\alpha_0\alpha_1\beta_2 - \alpha_1\alpha_2\beta_0 = 0, \quad (\alpha_0\alpha_1\beta_2 + \alpha_1\alpha_2\beta_0 = S_{23}),$$

$$\alpha_0\alpha_1\alpha_2 + \alpha_1\alpha_2\alpha_0 = \tau_2, \quad (\beta_0\beta_1 + \beta_1\beta_2 + \beta_2\beta_0 = S_{12}),$$

$$\alpha_0\alpha_1\alpha_2 = \beta_0\beta_1\beta_2 = \tau_3 = S_3 = I_3,$$

and the law of I_3 is obtained.

$$I_3 = \Gamma_1, \quad \text{if } \alpha_0 \neq 0,$$

$$= I_2, \quad \text{if } \alpha_0 = 0.$$

Next group the terms of I_3 thus -

$$(1) [(b_1 c_3 - b_3 c_1)(c_3 a_1 - c_1 a_3)(a_1 b_3 - a_3 b_1)]$$

$$[(b_1 c_3 - b_3 c_1)(c_1 a_3 - a_3 c_1)(a_1 b_3 - a_3 b_1)]$$

$$[(b_1 c_3 - b_3 c_1)(c_2 a_3 - c_3 a_2)(a_3 b_1 - a_1 b_3)]$$

It is then very simple to express each of these three factors by means

of the symbols defined.

$$(2) I_3' = (\alpha_0^2 - \alpha_0 s_1 + s_2 - \alpha_1 \alpha_2)(\alpha_1^2 - \alpha_1 s_1 + s_2 - \alpha_0 \alpha_2)$$
$$(\alpha_2^2 - \alpha_2 s_1 + s_2 - \alpha_0 \alpha_1).$$

Expanding the right hand side, collecting and simplifying as much as possible in same symbols,

$$\begin{aligned} (3) I_3' &= I_3(\alpha^3) - \frac{3}{2} \alpha_1^3 \alpha_2^3 - I_3 r_2 s_1 - I_3 \bar{s}_1 \alpha^3 + \sum_{k=1}^6 \alpha_k^2 \alpha_k s_1 \\ &\quad + I_3 r_1 s_2 - \sum_{k=1}^6 \alpha_k^2 \alpha_k s_2^2 - I_3 s_1^3 + \sum_{k=1}^6 \alpha_k^2 \alpha_k s_2 + I_3 r_1 s_2 \\ &\quad - \sum_{k=1}^6 \alpha_k \alpha_k^2 s_2 + r_2 s_1^2 s_2 - r_1 \alpha_k^2 s_1 + s_2^3 - r_2 s_2^2 + (\alpha^2) s_2^2. \end{aligned}$$

$$\text{where } (\alpha^3) = \alpha_0^3 + \alpha_1^3 + \alpha_2^3, \text{ etc}$$

$$\text{and } c = 0, 1, 2; \quad k = 0, 1, 2, \quad c \neq k.$$

In order to get this expression entirely in terms of r_i and s_i , it may be best to employ the following

identities, which are derived
by simple calculation;

$$\sum_{k=1}^6 \alpha_k^2 = r_1^2 + I_3 r_2^2 - 2 I_3 r_1 r_2.$$

$$\sum_{k=1}^6 \alpha_k \alpha_{k+1} = r_1^2 r_2 - I_3 r_1 - 3 I_3 r_2.$$

$$\sum_{k=1}^6 \alpha_k^2 \alpha_{k+1}^2 = r_1^4 - 2 I_3 r_1^2 - 3 I_3^2 r_2^2.$$

$$(\alpha^3) = r_1^3 - 2 r_1 r_2 - 3 I_3 r_2.$$

$$(\alpha^2) = r_1^2 - 2 r_2.$$

$$\sum_{k=1}^6 \alpha_k^3 \alpha_{k+1} = r_2^3 - 3 I_3 r_1 r_2 - 3 I_3^2 r_2.$$

Proceeding in this manner, finally in (4) we have

$$(5) \quad I_3 r_1^3 - 3 I_3 r_1 r_2 + 3 I_3^2 r_2 - r_2^3 + 3 I_3 r_1 r_2 - 3 I_3^2 r_1 - I_3 r_2 s_1 - I_3 r_1 s_1 + - I_3 r_2 s_1 + r_1 r_2^2 s_1 - I_3 r_2 s_1 - I_3 r_1 s_1 - 3 I_3 r_1^2 s_1 + I_3 r_1 s_1^2 - r_2^2 s_1^2 + 2 I_3 r_1 s_1^2 - I_3 s_1^3 + r_1^2 s_2 - 2 I_3 r_1 s_2 + I_3 r_1 s_2 - r_2^2 r_2 s_2 + I_3 r_1 s_2 + 2 r_2^2 s_2 + r_2 s_1^2 s_2 - r_1 s_2^2 s_1 + s_2^3 - r_2 s_2^2 + r_1^2 s_2^2 - 2 r_2 s_2^2.$$

Collecting terms, we get

$$(6) \quad I_3^2 - I_3(r_1^2 - s_1^2) - (r_2^2 - s_2^2) - 3 I_3(r_1^2 - r_1 s_1^2) + r_1 s_1(r_2^2 - r_2 s_2^2) - I_3(r_1^2 - r_1 s_1^2) + 3 r_1^2 r_2 s_2 - r_1 s_1(r_2^2 - r_2 s_2^2).$$

Before we can finally reduce the system of equations we need the following additional identities.

$$r_2 s_1 - r_1 s_2 = \frac{1}{2} (I_1 D_2 - I_2 D_1) .$$

$$r_1 r_2 - s_1 s_2 = \frac{1}{2} (I_1 I_2 + D_1 D_2) .$$

$$r_1 s_1 + s_1 s_2 = \frac{1}{2} (I_1 I_2 - I_1 D_2) .$$

$$r_2 s_2 = \frac{1}{4} (I_2^2 - D_2^2) .$$

$$r_1 r_2 = \frac{1}{4} (I_1^2 - D_1^2) .$$

Reducing (6) by steps we have

$$\begin{aligned} \bar{I}_3' &= D_1 I_3 (r_1^2 + r_1 s_1 + s_1^2) - D_2 (r_2^2 + r_2 s_2 + s_2^2) \\ &\quad - 3 D_1 \bar{I}_3 r_1 s_1 + \frac{1}{4} I_2 D_2 (I_1^2 - D_1^2) \\ &\quad - \frac{1}{4} (I_1 D_2 - I_2 D_1) (I_1 I_2 - D_1 D_2) - 3 D_2 r_2 s_2 - \frac{1}{4} I_1 D_1 (I_2^2 - D_2^2) \end{aligned}$$

$$\begin{aligned} &= D_1^3 \bar{I}_3 - D_2^3 + \frac{1}{4} (I_1^2 I_2 D_2 - I_2 D_1^2 D_2 - I_1^2 I_2 D_2 \\ &\quad + I_1 I_2^2 D_1 + I_1 D_1 D_2^2 - I_2 D_1^2 D_2 - I_1 I_2^2 D_1 - I_1 D_1 D_2^2) \end{aligned}$$

$$= D_1^3 \bar{I}_3 - D_2^3 + \frac{1}{4} (2 I_1 D_1 D_2^2 - 2 I_2 D_1^2 D_2) .$$

Or as a final form

$$(7) \quad \underline{\bar{I}_3'} = \underline{D_1^3 \bar{I}_3} - \underline{D_2^3} + \underline{\frac{1}{2} D_1 D_2 (I_1 D_2 - I_2 D_1)} .$$

Summarizing the results of this section we have the following table of dual forms.

$$I_1' = I_1 D_1 - 6 D_2$$

$$D_1' = D_1^2$$

$$A. \left\{ \begin{array}{l} I_2' = D_1^2 I_2 - 2 I_1 D_1 D_2 + 6 D_2^2 \\ D_2' = - D_1^2 D_2 \end{array} \right.$$

$$I_3' = D_1^3 I_3 - D_2^3 + \frac{1}{2} D_1 D_2 (I_1 D_2 - I_2 D_1) .$$

I have given one explicitly real imaginary, but can be made so by changing in the former powers of A , (which equals unity in the denominator from regularity condition) in the form. The dual values therefore for the 3-line and 3-point books taken separately are

$$B. \left\{ \begin{array}{l} I_1' = I_1 D_1 \Delta_1 - 6 D_2 , \quad D_1' \Delta_1' = D_1^2 \Delta_1^2 \\ I_2' = I_2 D_1^2 \Delta_1^2 - 2 I_1 D_1 \Delta_1 D_2 + 6 D_2^2 \\ D_2' = - D_1^2 \Delta_1^2 D_2 \\ I_3' = I_3 D_1 \Delta_1^3 - D_2^3 - \frac{1}{2} D_1 D_2 (I_1 D_2 - I_2 D_1) \end{array} \right.$$

Coming to the amount of labor involved in calculating the dual forms, it is well to apply a very convenient check to the work. It is evident that if we interchange the order of the triangles a second time, they will be back to their original order again. In order, then, if we carry out transmutation (A) on the right hand sides of the equations (A) we ought to get back to our original system of invariants, for, if applied once, it gives form (B). We will denote the result of this second substitution by the "double prime" or seconds symbol.

$$I_1'' = (I_1 D_1 - 6 D_2) D_1^2 + 6 I_1^2 D_2 = D_1^3 I_1$$

Comparing this with various formulas
available the value we have,

$$D_1''' = D_1^4,$$

$$I_2''' = D_1^6 T_2;$$

$$D_2''' = D_1^6 D_2,$$

$$I_3''' = D_1^6 I_3.$$

Making these formulae with the
values of the constants they furnish
a reasonable guarantee of the ac-
curacy of the solution up to the
point.

41.

S 5. Some invariant Relations of The 3-Point and The 3-Line.

Before working out any problems it should be noted, as pointed out before, that when the 3-line is taken as the reference triangle, Δ & Δ_1 do not appear explicitly in the invariant forms, having assumed the value unity. It is necessary therefore, if the result is to be accurate for the general case, that the factor Δ_1 be incorporated in a form of the result to such a power as to make it of the proper degree in the Greek letters. If Δ_1 or D_1 is a factor of any resulting invariant form, it implies at once that the condition under discussion holds when the

I now consider the case where
only degenerate . . . are concerned
in collinear respectively. In the
existing case you have each one
one of the factors A_i usually
zero or part, for we always con-
sider the 3 lines as a frame. On
any - throughout or otherwise, thus
fully securing that the 3 lines
are not concurrent, and D_i is
therefore unity. A few of the sim-
pler invariant relations will be
calculated directly.

1). If the 3-points are collinear,

$$D_i = 0.$$

2) if the 3 lines are concurrent,

$$D_i = 0.$$

These two agree so well
that, in the limit of their 3 lines
being nearly flat out.

3) If we define an operator to
be a 3-line,

$$I_1 = 0.$$

Let the 3-lines be $x_1 x_2 x_3 = 0$,
and the 3-point, $(a \circ)(b \circ)(c \circ) = 0$. As
is customary in polar calculations
regard the x 's as operators, and op-
erate with $x_1 x_2 x_3$ on $(a \circ)(b \circ)(c \circ)$ in the
usual way, and ask that the
~~resulting function of the coefficients~~
~~and constants~~ be 0. By the method
of elimination, we easily get the
condition $I_1 = 0$ in the equation
of the 3-point. That is, the required
condition is that

$$a_1 b_2 c_3 + a_2 b_3 c_1 + a_3 b_1 c_2 + a_1 b_3 c_2 + a_2 b_1 c_3 + a_3 b_2 c_1 = 0.$$

And hence, from the preceding 2 parts
of the construction, we finally

$$I_1 = 0.$$

4) If the 3 points and their 3 meets
of the 3-line lie on a conic

$$A_1^2 D_2 = 0.$$

For, taking as before the 3-line
as the triangle of reference, the
general conic on the 3-meets is

$$d_1 x_2 x_3 + d_2 x_1 x_3 + d_3 x_1 x_2 = 0.$$

If now the 3-points $(\alpha_1) = 0$, $(\beta_1) = 0$
and $(\gamma_1) = 0$ are to be on this conic
the following three equations must
hold simultaneously:-

$$d_1 \alpha_1 \alpha_3 + d_2 \alpha_1 \alpha_2 + d_3 \alpha_1 \alpha_2 = 0$$

$$d_1 b_2 b_3 + d_2 b_1 b_3 + d_3 b_1 b_2 = 0$$

$$d_1 c_2 c_3 + d_2 c_1 c_3 + d_3 c_1 c_2 = 0$$

Therefore eliminating $\alpha_1, \alpha_2, \alpha_3$ from
the 3 equations, the required con-
dition is

$$\begin{vmatrix} d_1 \alpha_3 & \alpha_3 \alpha_1 & \alpha_1 \alpha_2 \\ b_2 b_3 & b_3 b_1 & b_1 b_2 \\ c_2 c_3 & c_3 c_1 & c_1 c_2 \end{vmatrix} = 0$$

But this is nothing more than
 $D_2 = 0$.

A study of the details in the
 book letters on the general case
 show that D_1^2 must be regarded
 as a factor. Therefore in general
 the condition is

$$D_1^2 D_2 = 0,$$

as we started to prove.

6) If the 3 lines and the 3 joins
 of the 3-point are on a conic

$$D_1^2 D_2 = 0.$$

For if the 6 lines are on a conic
 there must be a line η , such that
 the polocomic ^{of η} as to the 3-point touches
 the 3 at one time*. For this polocomic
 will touch the joins of the 3-point, for
 the Hessian of a triangle is the triangle
 *Hesse - i. e. double. L. January 2. 1875.

45

itself, and the policones of every line
is to a cover of the first order, touches
the curves in three points. Then the
characteristics of the second order again
necessarily have each a branch on
it also follows directly from the fact
that we will know than that the
first cover of every point is to a
cover passes through the double
points, or else will the policones
of every line not to a cubic order
also do it. Then the policones
of η as to the 3, pass around another
in a spiral turn. But if we want
find the policones of η as to the 3-
point and we let the condition
of ξ^2 be zero simultaneously.

Then the 3 points appear in one
and an especially, it can be written as

$$(1) \sum_{i=1}^3 a_{i,b,c} \xi_i^3 + \sum_{i=1}^6 (a_{b,c,k} a_{i,b,c} + a_{i,b,c}) \xi_i^2 \xi_k + \sum_{i=1}^6 a_{b,c,e} \xi_i \xi_k^2 \xi_3$$

where $c \neq k \neq l$; $i = 1, 2, 3$; $\alpha = 1, 2, 3$; $c = 1, 2, 3$.

Take the polynomials of η as to (1) and equate the coefficients of ξ_1^3 , ξ_2^3 and ξ_3^3 respectively to zero. Without writing down the complete equations of the polynomials these coefficients are respectively

$$3a_{1,b,c}\eta_1 + (a_{1,b,c} + a_{2,b,c} + a_{3,b,c})\eta_2 + (a_{1,b,c} + a_{2,b,c} + a_{3,b,c})\eta_3 = 0$$

$$(a_{2,b,c} + a_{3,b,c} + a_{1,b,c})\eta_1 + 3a_{2,b,c}\eta_2 + (a_{2,b,c} + a_{3,b,c} + a_{1,b,c})\eta_3 = 0$$

$$(a_{3,b,c} + a_{1,b,c} + a_{2,b,c})\eta_1 + (a_{3,b,c} + a_{2,b,c} + a_{1,b,c})\eta_2 + a_{3,b,c}\eta_3 = 0$$

In order that these three equations hold simultaneously, the determinant obtained by eliminating η_1, η_2, η_3 must vanish. That is

$$\begin{vmatrix} 3a_{1,b,c}, & a_{1,b,c} + a_{2,b,c} + a_{3,b,c}, & a_{1,b,c} + a_{2,b,c} + a_{3,b,c}, \\ a_{2,b,c} + a_{3,b,c} + a_{1,b,c}, & 3a_{2,b,c}, & a_{2,b,c} + a_{3,b,c} + a_{1,b,c}, \\ a_{3,b,c} + a_{1,b,c} + a_{2,b,c}, & a_{3,b,c} + a_{1,b,c} + a_{2,b,c}, & 3a_{2,b,c} \end{vmatrix} = 0$$

The expansion of the determinant is somewhat long, and many terms will cancel out and the condition is

out and the condition is

The determinant vanishing reduces above to

$$D_1^2 D_2 = 0.$$

Since this problem is exactly the dual of 6), the same result would have been obtained by merely taking the dual of 6) from the formulae page 38. This example verifies the dualistic formulae and also the great advantage of taking them.

7) The problem of Duch triangles in a normal collineation furnishes a nice example of calculating directly a well known invariant relation in terms of our fundamental system. The theorem to be proven is:-

If the two triangles are such that the 3 points in a Duch triangle in a normal collineation having the 3 line for a fixed

triangle

$$\Delta(I_1 A_1 - I_2 A_2) = 0.$$

The proof is simple. The fixed triangle of the substitution is the triangle of reference, — the 3-line. Using a, b, c as the points to agree with my originally stated notation, the required substitution is in the form

Now it is to be transformed so as to be on the side bc , kb is to be on the sides ac and kc is on the side ab . This gives us the required transformation

$$\begin{vmatrix} k_a & k_{2a} & k_{3a} \\ b_1 & b_2 & b_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = 0$$

If we take the expansion of these determinants we are in a position to determine the necessary conditions and

we can make the three equations

$$(1) \begin{cases} k_1 \alpha_1 + k_2 \beta_2 + k_3 \gamma_3 = 0, \\ k_1 b_1 \beta_1 + k_2 b_2 \beta_2 + k_3 b_3 \beta_3 = 0, \\ k_1 c_1 \gamma_1 + k_2 c_2 \gamma_2 + k_3 c_3 \gamma_3 = 0. \end{cases}$$

Now these three equations must hold for all values of k , hence eliminating the k 's we have as the necessary and sufficient condition that

$$(2) \begin{vmatrix} \alpha_1 \alpha_2 \alpha_3 & \beta_1 \beta_2 \beta_3 & \gamma_1 \gamma_2 \gamma_3 \\ \alpha_1^2 \alpha_2^2 \alpha_3^2 & \beta_1^2 \beta_2^2 \beta_3^2 & \gamma_1^2 \gamma_2^2 \gamma_3^2 \\ \alpha_1^3 \alpha_2^3 \alpha_3^3 & \beta_1^3 \beta_2^3 \beta_3^3 & \gamma_1^3 \gamma_2^3 \gamma_3^3 \end{vmatrix} = 0$$

Expanding this determinant, replacing the Greek letters by their equivalents in Latin letters, and collecting terms, the result can

be written

$$(3) \frac{6}{D_1 D_2 D_3} a_1^3 a_2^3 a_3^3 - \frac{18}{D_1^2 D_2^2 D_3^2} a_1^2 a_2^2 a_3^2 + \frac{18}{D_1^3 D_2^3 D_3^3} a_1 a_2 a_3 = 0$$
$$- 6 a_1 a_2 a_3 b_1 b_2 b_3 c_1 c_2 c_3 = 0$$

In this the D_i 's must enter to an even degree, and it turns out that

$I_1 D_1^2$ and $D_1 D_2$ are the only combinations that enter. So (4) reduces at once to $I_1 D_1^2 - 3D_1 D_2$, or as before the condition is

$$D_1(I_1 D_1 - 3D_2) = 0.$$

8) As a final example of this section we will look for the meaning of $I_6 = 0$, or what is the consequence, from the theory,

If the bin has zero linear polarization.

$$I_6 = 0$$

As we saw I_6 is composed of six binomial coefficients taken in the coefficients, such factor corresponding to a particular ordering of the polarization. In particular, by way of proof, suppose we ask that the last gamma coefficient and the first three, i.e., γ_{11}, γ_{12} and γ_{13} , be respectively 0, 0, 0, and 1, 0, 0, respectively.

met at a point. The equation of the three joining lines was

$$b_1 x_1 - b_2 x_2 = 0,$$

$$b_2 x_1 - b_3 x_3 = 0,$$

$$b_3 x_2 - b_1 x_1 = 0,$$

and we saw by the condition that they met at a point is

$$\begin{vmatrix} 0 & b_2 & b_3 \\ b_3 & 0 & b_1 \\ b_1 & b_2 & 0 \end{vmatrix} = 0.$$

$$b_1 b_2 b_3 + b_1 b_2 b_3 = 0.$$

And in the same way each ordering requires one factor of \mathcal{L}_6 to vanish. To do this we can also state it like this: If the condition for \mathcal{L}_6 such that there was a cone, such that the 3 lines are the polars of the 3 points as to that cone,

$$\mathcal{L}_6 = 0$$

All the simpler relations discussed

by Dr. Stein could be taken up
was independently, and the results
thus expressed in terms of our present
system. But since the present
system has been found complete, Dr.
Stein's manuscript would be directly im-
possible in terms of the present sys-
tem. By constructing such a transformation
table it became possible to take ad-
vantage of all and done by the
former writer. In addition, the
expenses thus effected is not with-
out interest, so a paragraph will
be devoted to the formation of the
agreements of terms and conditions in
time of the second year.

5.6. Expression of the mutual inductance of the second system.

Now the fundamental quantity is derived from the current law for induction.

$$I_1 = \gamma_1 E_{11}$$

$$I_2 = \gamma_2 (L_{12} t_{12} + L_{22} t_{22})$$

$$I_3 = \begin{vmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \\ B_{31} & B_{32} & B_{33} \end{vmatrix}$$

The B 's are in turn defined in the general case as follows

$$B_{11} = \alpha_1 (\beta\gamma)_1 + \beta_1 (\gamma\alpha)_1 + \gamma_1 (\alpha\beta)_1$$

$$B_{22} = \alpha_2 (\beta\gamma)_2 + \beta_2 (\gamma\alpha)_2 + \gamma_2 (\alpha\beta)_2$$

$$B_{33} = \alpha_3 (\beta\gamma)_3 + \beta_3 (\gamma\alpha)_3 + \gamma_3 (\alpha\beta)_3$$

$$B_{12} = \alpha_1 (\beta\gamma)_{12} + \beta_1 (\gamma\alpha)_{12} + \gamma_1 (\alpha\beta)_{12}$$

$$B_{23} = \alpha_2 (\beta\gamma)_{23} + \beta_2 (\gamma\alpha)_{23} + \gamma_2 (\alpha\beta)_{23}$$

and so on for $B_{31}, B_{13}, B_{13}, B_{23} \text{ and } B_{32}$.

$\gamma = \gamma_1, \gamma_2, \gamma_3, \dots$, etc.,

$\alpha = \alpha_1, \alpha_2, \alpha_3, \dots$, etc.,

$$(3) \alpha = \alpha_0(1-r/\beta r) + \alpha_1(r^2/\beta r) + \alpha_2(r^3/\beta r),$$

and finally

$$(1-r/\beta r) = (1-\beta)(\beta r) + (1-r)(\beta^{-1}),$$

(1-β) and β are numbers we want.

We can always expand in powers to enable the reader to write out any term we will need by the simple rule given. This formulae, very materially if we now take the cubic as follows, enough, for us,

$$\alpha_0 \beta^2 \gamma_0 = 0, \quad \alpha_0 \beta^2 \gamma_K = 0 = \alpha_0 \beta_K \gamma_L = \alpha_K \beta_L \gamma_0.$$

$$\sum \alpha_0 \beta_K \gamma_L = 1; \quad K=1, 2, 3; \quad L=1, 2, 3; \quad -7 \leq l \leq 0.$$

So we need only retain terms containing $\alpha_0 \beta_K \gamma_L$ (owing to symmetry) and replace it anywhere by unity. We thus have the 3: result as follows,

$$B_{11} - B_{33} = \sum \alpha_0 \beta_K \gamma_L,$$

$$B_{21} = -\alpha_0 \beta_1 \gamma_3 + \alpha_1 \beta_1 \gamma_3 + \alpha_2 \beta_1 \gamma_3,$$

$$B_{12} = -(\alpha_0 \beta_2 \gamma_1 + \alpha_1 \beta_2 \gamma_1 + \alpha_2 \beta_2 \gamma_1),$$

$$B_{ij} = 2(a_j b_k c_l + a_j b_k c_l + a_k b_j c_l).$$

Or we can write down, where the three invariants are those on the left and will be marked with a bar merely to avoid confusion.

$$\bar{I}_1 = -\frac{2}{3} B_{ii} = -\frac{2}{3} \sum_{i=1}^6 a_i b_i c_i = -3 I_1,$$

$$\bar{I}_2 = \sum_{i=1}^3 (B_{22} B_{33} - B_{23} B_{32})$$

$$= 3 \left[\sum_{i=1}^6 a_i b_i c_i \right]^2 - 4 \left[(a_3 b_3 c_1 + a_3 b_1 c_3 + a_1 b_3 c_3) \right.$$

$$(a_2 b_2 c_1 + a_2 b_1 c_2 + a_1 b_2 c_2) + (a_3 b_3 c_2 + a_3 b_2 c_3 + a_2 b_3 c_3) (a_1 b_1 c_1 + a_1 b_2 c_2 + a_2 b_1 c_2)$$

$$+ (a_2 b_2 c_3 + a_2 b_3 c_2 + a_3 b_2 c_2) (a_1 b_1 c_3 + a_1 b_3 c_1 + a_3 b_1 c_1) \Big]$$

$$= 3 \bar{I}_1^2 - 4 \left(\sum_{i=1}^6 a_i b_i c_i \right)^2 + 3 \sum_{i=1}^6 a_i a_3 b_i b_3 c_i c_3$$

$$= 3 \bar{I}_1^2 - (\bar{I}_1^2 - 4 \bar{I}_1^2 + 12 \bar{I}_2) = 2 \bar{I}_1^2 + 4 \bar{I}_1^2 - 12 \bar{I}_2,$$

as is easily verified.

$\bar{I}_3 = -4 D \bar{I}_1$ is now simplified by transform and separate, we can

$$-\bar{I}_3 = \begin{vmatrix} I_1 & 2(a_1 b_2 c_3 + a_1 b_3 c_2 + a_3 b_2 c_1), 2(a_2 b_3 c_1 + a_2 b_1 c_3 + a_3 b_2 c_1) \\ 2(a_1 b_2 c_3 + a_1 b_3 c_2 + a_3 b_1 c_2) & I_1, 2(a_3 b_1 c_2 + a_3 b_2 c_1 + a_1 b_3 c_2) \\ 2(a_1 b_2 c_3 + a_1 b_3 c_1 + a_3 b_1 c_2) & 2(a_2 b_1 c_3 + a_2 b_3 c_1 + a_1 b_2 c_3) \end{vmatrix}$$

we can divide this determinant

$$= I_1^3 + 8(a_1 b_2 c_3 + a_1 b_3 c_2 + a_3 b_1 c_2)(a_2 b_3 c_1 + a_2 b_1 c_3 + a_1 b_2 c_1) \\ (a_3 b_2 c_3 + a_3 b_3 c_2 + a_2 b_3 c_1)$$

$$+ 8(a_1 b_2 c_2 + a_1 b_3 c_1 + a_3 b_2 c_1)(a_2 b_3 c_3 + a_2 b_1 c_2 + a_1 b_2 c_3) \\ (a_3 b_1 c_2 + a_3 b_2 c_1 + a_2 b_1 c_3)$$

$$- 4I_1 [(a_1 b_2 c_3 + a_1 b_3 c_2 + a_3 b_1 c_2)(a_2 b_3 c_1 + a_2 b_1 c_3 + a_1 b_2 c_1) \\ + (a_1 b_2 c_2 + a_1 b_3 c_1 + a_3 b_2 c_1)(a_2 b_3 c_3 + a_2 b_1 c_2 + a_1 b_2 c_1)]$$

$$+ (a_2 b_3 c_1 + a_2 b_1 c_3 + a_1 b_2 c_2)(a_3 b_1 c_2 + a_3 b_2 c_1 + a_2 b_1 c_3)]$$

= since the last expression was found
in the preceding paragraph, page
to be equal to $\frac{1}{4}(I_1^2 - D_1^2 + 12I_2)$

$$= I_1^3 + 16 \sum a_1 a_2 a_3 b_1^2 b_2^2 b_3^2 c_1^2 c_2^2 c_3^2 + 8 \sum a_2^2 b_1^2 b_2^2 b_3^2 c_1^2 c_2^2 \\ + 48 a_1 a_2 a_3 b_1 b_2 b_3 c_1 c_2 c_3 - I_1(I_1^2 - D_1^2 + 12I_2)$$

whence by direct calculation we get

$$= I_1^3 + 12I_1 I_2 - 4D_1 D_2 - I_1^3 + I_1^2 I_2^2 - 12I_1 I_2 \\ = I_1 D_1^2 - 4D_1 D_2 = D_1(I_1 D_1 - 4D_2)$$

And since \bar{D} and D are similarly
the same as I_1 , I_2 , D_1 , D_2 are found

at each. Now $\bar{A} = 1$, is I_1 , and

$$\bar{A}\bar{F}\bar{N} = L_1(S, I_1 - \dots)$$

$$N = I_2 - I_1 I_1.$$

In this instance we must always see that A is inserted to a proper power in each term when the 3-line is taken generally.

Supposing the final results in the form of a table, which we can use in translating all of \mathcal{L}_1 . Then, making all terms of the present table, we have the left hand side below:

$$D = D_1$$

$$A = I_1$$

$$I_1 = -\bar{A}^2 I_1$$

$$I_2 = -\bar{A}^2 I_1 + I_1^2 - I_1^3$$

$$N = -\bar{A}^2 I_1 + I_1^3 - I_1^4$$

The translation of the table we have

wrote down the equations of the
curves calculated by Dr. Stein on
pages 50 and 51 of his article.

The 3-point de- | The 3-line de
generates, if | generates, if

$$D_1 = 0.$$

$$\Delta_1 = 0.$$

The 3 point is
apolar to the
3-line, if
 $I_1 = 0.$

The 3-line is
apolar to the
3-point, if
 $I_1 = 0.$

The meets of the
3-lines are apolar
to the zone of the
3 point, if

$$I_1 D_1 \Delta_1 - 6 D_2 = 0.$$

The zones of the
3-points are apolar
to the meets of the
3-lines, if

$$I_1 \Delta_1 \lambda_1 + D_2 = 0.$$

60

A conic circumscribed to the 3-point and apolar to the 3-line exists if	A conic inscribed in the 3-line and apolar to the 3-point exists if
---	---

$$I, D, \Delta, -2D_2 = 0 .$$

$$I, D, \Delta, -2D_2 = 0 .$$

A point conic apolar to both the 3-point and the 3-line exists if

$$D_1^2 D_2 = 0 .$$

A line conic apolar to both the 3-line and the 3-point exists if

$$\Delta_1^2 D_2 = 0 .$$

A conic circumscribed about both the 3-point and the 3-line exists if

$$\Delta_1^2 D_2 = 0 .$$

A conic inscribed to both the 3-point and the 3-line exists if

$$D_1^2 D_2 = 0 .$$

It then results a forced choice between

One need a

conic as to the 3-line is apolar to the 3-point if $D_1 \Delta_1 (I, D_1 \Delta_1 - 4D_2) = 0$.

The three polar lines as to the 3-lines, of the points of the 3-point taken two at a time, will be a point if $\Delta_1 (I, D_1 \Delta_1 - 4D_2) = 0$.

There exists a conic whose tangent at the 3-point is a fixed triangle, which divides each one of the 3-lines into a point on the one through the

polar as to the 3-point is a polar to the 3-line if $D_1 \Delta_1 (I, D_1 \Delta_1 - 4D_2) = 0$.

The three polar points as to the 3-point, of the lines, of the 3-line taken two at a time, will be a point if $D_1 (I, D_1 \Delta_1 - 4D_2) = 0$.

There exists a conic whose tangent at the 3-point is a fixed triangle which divides each one of the 3-points into a point on the one through the

points and if

$$\Delta_1(I, D, \Delta_1 - 3D_2) = 0.$$

opposite point of

$$D(I, D, \Delta_1 - 3D_2) = 0.$$

There exists a 3-line such that its joins of the 3-line as fixed points, point as fixed lines which sends each which sends each join of the 3-line to each of the 3-line and a point on the other two through join of the other two if

$$I, D, \Delta_1 - 3D_2 = 0.$$

the meet of the other two if

$$I, D, \Delta_1 - 3D_2 = 0.$$

There exists a point, such that its polar conic as to the joins of the 3-point

line such that its conic polar as to the meets of the 3-line is opposite to the line opposite to the other two joins of the 3-point

if

$$D_1^2 D_1^2 (I, D, \Delta_1 - 2 D_2) = 0.$$

if

$$D_1^2 D_1^2 (I, D, \Delta_1 - 2 D_2) = 0.$$

Another Theorem adapted from
Hunt's article is :-

The exists a circle touching
the sides of the 3-point and parallel
to the 3-line if

$$D_1^2 (I, D, \Delta_1 - 4 D_2) = 0.$$

As is seen from this summary, all
Hunt's invariant forms are linear
in the pencil

$$I, D, \Delta_1 + \lambda D_2 = 0.$$

As will be more evident from subsequent discussion, if two of the points are taken at the circular points at infinity, and the third point is taken variable, this pencil becomes the pencil of circles of which the Feuerbach circle and the circumcircle are members. It will

be observed that parallel theorems
in the two columns are not duals
in the sense we meet that terms in
describing the dual forms of the four
fundamental moments.

We might add here a pair of
dual theorems :-

$\text{If one of the } 3\text{-} \begin{cases} \text{bands lies on either } \\ \text{3-lines lie on a pair} \\ \text{of the 3 lines} \end{cases}$	$\text{If a meet of the } \\ \text{3-lines lies on a pair} \\ \text{of the 3 points}$
$I_1 = 0.$	$dD_{13}^3 : D_2^3 : 1, 1_2, 1, 1 - 2E_1 = 0.$

The theorem on the left is almost
obvious. For if $(a_8) = 0$ say is to be on
 $x_1 = 0, x_2 = 0$ or $x_3 = 0, a_1 = 0, a_2 = 0$ or $a_3 = 0$
respectively. In either case I_3 vanishes
for $(b_8) + (c_8)$. The theorem on the
right is gotten by using the dual
transformation formulae. The powers
of L , have not been inserted.

It may be worthy of note that

we have found a simple means
for the vanishing of each of the
fundamental invariants involving
 t_1 , with the exception of t_3 .
Several indirect interpretations are
available, but probably the best
geometrically is the one on page 134.

§ 7. Condition that a Conic may
be Inscribed in one Triangle and
Circumscribed about the Other.

To find the invariant condition on two triangles such that a conic may be drawn touching the three sides of one triangle and on the vertices of the other is of particular interest and will be discussed at length. An attempt to solve this problem was in fact the genesis of this article. It is in general of no special import whether we regard the triangle taken as the reference triangle as a 3-line or a 3-point. But as a matter of consistency we shall speak of having taken the 3-line as triangle

of incidence, and shall apply
to the triangle.

We shall first take the polar
cones α , β and γ relative
to the 3-line, - The reference triangle
they are

$$(1). \alpha_1 x_2 x_3 + \alpha_2 x_3 x_1 + \alpha_3 x_1 x_2 = 0.$$

$$(2). \beta_1 x_2 x_3 + \beta_2 x_3 x_1 + \beta_3 x_1 x_2 = 0.$$

$$(3). \gamma_1 x_2 x_3 + \gamma_2 x_3 x_1 + \gamma_3 x_1 x_2 = 0.$$

Now take any line η of (1), the
polar cone of α as to the 3-
line, and the polar cones of
 β and γ through α^* (i.e. the axis
of the conic the conic polar.) Hence
it follows that if the three polar
cones, (1), (2) and (3), be a common
~~conic~~ ^{*} surface.

p 202. Clebsch, "Lecons sur la Geometrie, Vol II
part 1. See also Clebsch, page 316, 317.

line, the poloconic of these points
is to the ∞ -line would be one
of all those points x, y, z, w . But
further this poloconic would also
touch the three sides xw, yz, wx .
For the poloconic of any line is to
a curve of the third order touching
the sides of the triangle in three
points.* But the Hessian, in case
the curve is a triangle, is the
triangle itself, and since all three
sides of the triangle enter sym-
metrically, the poloconic would
touch each line of the Hessian
once. That this poloconic touches the
three lines can also be shown directly
as the last of the other known theo-
rems that the given point of a γ
point is to a side xw in contact with

* Kneser. "Über die Kurven der dritten Ordnung," p. 18.

64.

the double points of the cubic. Polar curves and polar cones are dual terms.

Consequently ~~any~~ condition is equivalent to finding the conic such that the above three polar cones may have a common line.

know^{*} or as the condition that three points have a common point at $T^2 = 64M$, where T and M are invariants of the net of conics determined by the three polar cones. This meaning need not be repeated here. As for three polar cones to have a common line we need only form the line equations of (1), (2), (3) and form the invariants for them, corresponding to T and M and express the results in our new system.

* Conic Sections, § 367-8.

The line equations of the three polar conics (1), (2), (3), can be written down in the usual way as

$$(4). \quad a_1^2 \xi_1^2 + a_2^2 \xi_2^2 + a_3^2 \xi_3^2 - 2a_2 a_3 \xi_2 \xi_3 - 2a_3 a_1 \xi_3 \xi_1 - 2a_1 a_2 \xi_1 \xi_2 = 0 = U.$$

$$(5). \quad b_1^2 \xi_1^2 + b_2^2 \xi_2^2 + b_3^2 \xi_3^2 - 2b_2 b_3 \xi_2 \xi_3 - 2b_3 b_1 \xi_3 \xi_1 - 2b_1 b_2 \xi_1 \xi_2 = V.$$

$$(6). \quad c_1^2 \xi_1^2 + c_2^2 \xi_2^2 + c_3^2 \xi_3^2 - 2c_2 c_3 \xi_2 \xi_3 - 2c_3 c_1 \xi_3 \xi_1 - 2c_1 c_2 \xi_1 \xi_2 = W.$$

From this it will be found that in each of the equations above one of the terms will be a double line, so in a web of line conics as determined by U , V and W , $M=0$ requires that one of the webs $\ell U + mV + nW$ be a double point. In that case the reciprocal of that particular one of the webs must vanish identically.

for point $\alpha\beta\gamma$, the reciprocals
are dual of

$$(7) \quad lU + mV + nW = 0$$

can be written in abridged form

$$(8) \quad l^2\Sigma + m^2\Sigma' + n^2\Sigma'' + mn\phi_{23} + nl\phi_{31} + lm\phi_{12} = 0$$

where the Σ 's are the reciprocals of U , V and W respectively and the ϕ 's are the Clebschians or intermediates of the same taken two at a time. By the term Clebschian or intermediate is meant the

symbolic notation $(a\beta)^2 \equiv (b\beta)^2 = 0$ is

a homogeneous linear equation in α , β , γ , δ , ϵ , ζ or ℓ equations, where the symbol

abx^2 means the ab covariant of x^2 . But if $(a\beta)^2$ and $(b\beta)^2$ are distinct

conics, then abx^2 is a covariant (really contravariant) point conic

Clebsch "Lecons" Vol I p. 345;

which we will call the determinant.
In Salmon's non-symbolic notation^{*} the development of the second
order form can be well known
and from it

$$\begin{aligned}\phi = & (bc' + b'c - 2ff')\xi^2 + (ca' + c'a - 2gg')\eta^2 \\ & + ab' + b'a - 2\alpha'\xi + \alpha(b' - g' - f' - if)\eta\xi \\ & + \alpha(bf' - bf) \xi \eta + \alpha(f' - f - b' - bg') \eta^2.\end{aligned}$$

The form can easily be reduced
to the much simpler looking
symbolic form. This might
be used in continuing our work.
But as the present case since
 U, V & W are precisely $(\alpha\xi)^2, (b\xi)^2$
and $(c\xi)^2$, save as to the signs of
the product terms, it is obviously
of advantage to use the symbolic

* Burn uses the term intermediate, p. 44.
See also Codd, Trans. Roy. Soc. Vol. 10, p. 10.
Four lectures, p. 394.

form for the celsch and can be written down at once by expanding $(a + x)^2$, $(b + x)^2$ and $(c + x)^2$, if we make the proper changes of sign after expansion.

For Σ we would naturally expect (since it was the reciprocal of (1)) that we would get

$a_1 x_2 x_3 + a_2 x_3 x_1 + a_3 x_1 x_2 = 0$ again, but the ever-present outside factor may not be omitted in this case for reasons which are evident. so we have finally the values for the quantities in (8) the following:

$$(V). \Sigma = 4 a_1 a_2 a_3 (a_1 x_2 x_3 + a_2 x_3 x_1 + a_3 x_1 x_2).$$

$$(VI). \Sigma' = 4 b_1 b_2 b_3 (b_1 x_2 x_3 + b_2 x_3 x_1 + b_3 x_1 x_2).$$

$$(VII). \Sigma'' = 4 c_1 c_2 c_3 (c_1 x_2 x_3 + c_2 x_3 x_1 + c_3 x_1 x_2).$$

$$(12). \phi_{12} = (a_1 b_3 - a_3 b_1)^2 x_1^2 + (a_1 b_1 - a_2 b_3)^2 x_2^2 + (a_1 b_2 - a_2 b_1)^2 x_3^2 \\ + (a_2 b_3 - a_3 b_2) (a_1 b_2 - a_2 b_1) x_2 x_3 \\ + (a_1 b_2 - a_2 b_1) (a_2 b_3 - a_3 b_2) x_1 x_3 \\ + (a_2 b_3 - a_3 b_2) (a_3 b_1 - a_1 b_3) x_1 x_2 = 0$$

$$(13). \phi_{23} = (b_2 c_3 - b_3 c_2)^2 x_1^2 + (b_3 c_1 - b_1 c_3)^2 x_2^2 + (b_1 c_2 - b_2 c_1)^2 x_3^2 \\ + (b_1 c_3 - b_3 c_1) (b_2 c_1 - b_1 c_2) x_2 x_3 \\ + (b_2 c_1 - b_1 c_2) (b_3 c_2 - b_2 c_3) x_1 x_3 \\ + (b_2 c_3 - b_3 c_2) (b_1 c_3 - b_3 c_1) x_1 x_2 = 0$$

$$(14). \phi_{31} = (c_2 a_3 - c_3 a_2)^2 x_1^2 + (c_3 a_1 - c_1 a_3)^2 x_2^2 + (c_1 a_2 - c_2 a_1)^2 x_3^2 \\ + (c_1 a_1 - c_2 a_3) (c_1 a_2 - c_3 a_1) x_2 x_3 \\ + (c_2 a_2 - c_3 a_1) (c_2 a_3 - c_1 a_2) x_3 x_1 \\ + (c_2 a_3 - c_3 a_2) (c_3 a_1 - c_1 a_3) x_1 x_2 = 0.$$

Following Salmon's determinant
form for M :

$$(15) M = \begin{vmatrix} A & B & C & F & G & H \\ A' & B' & C' & F' & G' & H' \\ A'' & B'' & C'' & F'' & G'' & H'' \\ A_{2,3} & B_{2,3} & C_{2,3} & F_{2,3} & G_{2,3} & H_{2,3} \\ A_{3,1} & B_{3,1} & C_{3,1} & F_{3,1} & G_{3,1} & H_{3,1} \\ A_{1,2} & B_{1,2} & C_{1,2} & F_{1,2} & G_{1,2} & H_{1,2} \end{vmatrix}$$

* Corres. sections p. 361

where + 15 C, F x, 11 and the co-efficients of x_1^2 , x_2^2 , x_3^2 , $x_1 x_3$, $x_3 x_1$, $x_1 x_2$ respectively in Σ . Now the other 7 rows, we have the coefficients of Σ' , Σ'' , ϕ_{23} , ϕ_3 , and ϕ_{12} .

Considering now the actual row counts found in equations (1)-(4) we have

$$(1) \quad M_1 =$$

$$\begin{array}{ccccccc} 0 & 0 & 0 & 2a_1^2a_2^2a_3^2, & 2a_1^2a_2^2a_3^2, & 2a_1^2a_2^2a_3^2 \\ 0 & 0 & 0 & 2b_1^2b_2^2b_3^2, & 2b_1^2b_2^2b_3^2, & 2b_1^2b_2^2b_3^2 \\ 0 & 0 & 0 & 2c_1^2c_2^2c_3^2, & 2c_1^2c_2^2c_3^2, & 2c_1^2c_2^2c_3^2 \\ (a_3b_2-a_2b_3)^2, & (a_3b_1-a_1b_3)^2, & (a_1b_2-a_2b_1)^2, & \sim & \sim & \sim \\ (b_3c_2-b_2c_3)^2, & (b_3c_1-b_1c_3)^2, & (b_1c_2-b_2c_1)^2, & \sim & \sim & \sim \\ (c_3a_2-c_2a_3)^2, & (c_3a_1-c_1a_3)^2, & (c_1a_2-c_2a_1)^2, & \sim & \sim & \sim \end{array}$$

It is not necessary to write down completely, the \sim a term divided by wave strokes, as their complementary factors are zeros. So M at most reduces to the product of two

These are determinants of 3.

$$(11) \quad M =$$

$$\begin{vmatrix} (a_2 b_3 - a_3 b_2)^2 & (a_3 b_1 - a_1 b_3)^2 & (a_1 b_2 - a_2 b_1)^2 \\ (b_2 c_3 - b_3 c_2)^2 & (b_3 c_1 - b_1 c_3)^2 & (b_1 c_2 - b_2 c_1)^2 \\ (c_2 a_3 - c_3 a_2)^2 & (c_3 a_1 - c_1 a_3)^2 & (c_1 a_2 - c_2 a_1)^2 \end{vmatrix}$$

$$\times \begin{vmatrix} 2a_1^2 a_2 a_3 & 2a_1 a_2^2 a_3 & 2a_1 a_2 a_3^2 \\ 2b_1^2 b_2 b_3 & -b_1 b_2 b_3 & 2b_1 b_2 b_3 \\ 2c_1^2 c_2 c_3 & -c_1 c_2 c_3 & 2c_1 c_2 c_3 \end{vmatrix}$$

Each of these determinants is readily expressed in terms of three determinants. The latter are to be given by

$$(11) \quad \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

$$= 8 I_3 D.$$

The first determinant is itself not so simple, but is recognized as the dual of

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

which is only of the second degree and is equal to

$$(19). \quad I_1 D_1 - 2 D_2.$$

Applying the dual transfor-
mation formulae to this we get
the expression in the first term
or factor of (17) to be

$$(I_1 D_1 - 6 D_2) L^2 + 2 D_1 E_2$$

$$(20). \quad D_1^2 (I_1 D_1 - 4 D_2).$$

Substituting these values for
the determinants of (17) we get

$$(21). \quad M = 8 I_3 D_1^3 (I_1 D_1 - 4 D_2)$$

Or if we wish to make this of
the proper degree in the variables
this for the greatest term

$$(22). \quad M = 8 I_3 D_1^3 \Delta_1^3 (I_1 D_1 - 4 D_2).$$

To express T similarly we can start with another of our moments from

$$(33). \quad T = C_{123}^2 - 4(C_{123}G_{13} + G_{13}G_{23}) + 12G_1^2,$$

or the other form $\times \times$

$$(24) \quad T = (ab'c'')^2 + 4(ab'f'')(acf'') + 4(bc'g'')(bc'g'') \\ + 4(cad'')(cb'h'') + 8(af'g'')(bf'g'') + 8(af'h'')(cf'h'') \\ + 2(c'h'')(bf'g'') - 3(a'c'')(c'd'f'') - 3(ah'f'')(c'd'f'') \\ - 8(cf'g'')(ab'h'') + 4(ac'b'')(bf'g'') - 8(fg'h'')^2,$$

where

$$(ab'c'') = ab'c'' + abc' + a'b'c + ab'c' + db'c + a'b'c.$$

and so for all similar forms.

In fact owing to the complicated algebra in either case it was deemed best to develop both independently, which we will do now and give. Taking (24) first we have from (23) in the

$$a, b, c, f, g, h = u_1^2, u_2^2, u_3^2 - u_1 u_2, - u_1 u_3, - u_2 u_3$$

$$\underline{a', b', c', f', g', h'} = b_1^2, b_2^2, b_3^2, - u_1 u_2, - u_1 u_3, - u_2 u_3$$

* Some Sections, p. 361. ** and p. 365.

a^4, b^4, c^4 , $a^2b^2c^2$, $a^2b^2c^2$, $a^2b^2c^2$, $a^2b^2c^2$

respectively. Making these substitutions directly in (24), and collecting the terms, which is a long task we have this expression

$$\begin{aligned}
 T = & \sum_{1}^6 a_1^4 b_2^4 c_3^4 + 2 \sum_{1}^4 a_1^4 b_2^2 b_3^2 c_2^2 c_3^2 + 2 \sum_{1}^6 a_1^2 a_2^2 b_2^2 b_3^2 c_3^2 c_1^2 \\
 & + 4 \left[2 \sum_{1}^4 a_1^4 b_2^2 b_3^2 c_2^2 c_3^2 + \sum_{1}^{36} a_1^2 a_2^2 a_3^2 b_2^2 b_3^2 c_2^2 c_3^2 - \sum_{1}^{18} a_1^4 b_2^2 b_3^2 c_2^3 c_3 \right. \\
 & \quad \left. - 2 \sum_{1}^4 a_1^2 a_2^2 b_2^2 b_3^2 c_2^2 c_3^2 - 3 \sum_{1}^6 a_1^2 a_2^2 b_2^2 b_3^2 c_3^2 c_1^2 \right] \\
 & + 8 \left[3 \sum_{1}^6 a_1^2 b_2^2 b_3^2 c_2^2 c_3^2 + 3 \sum_{1}^6 a_1^2 a_2^2 b_2^2 b_3^2 c_2^2 c_3^2 - 2 \sum_{1}^6 a_1^2 a_2^2 b_2^2 b_3^2 c_2^2 c_3^2 \right. \\
 & \quad \left. - 2 \sum_{1}^4 a_1^2 a_2^2 b_2^2 b_3^2 c_2^2 c_3^2 - \sum_{1}^{36} a_1^2 a_2^2 b_2^2 b_3^2 c_2^2 c_3^2 \right] \\
 & + 8 \left[\sum_{1}^{36} a_1^2 a_2^2 a_3^2 b_2^2 b_3^2 c_2^3 c_3 + 3 \sum_{1}^6 a_1^2 a_2^2 a_3^2 b_2^2 b_3^2 c_2^2 c_3^2 \right. \\
 & \quad \left. - 4 \sum_{1}^4 a_1^2 a_2^2 b_2^2 b_3^2 c_2^2 c_3^2 - \sum_{1}^{18} a_1^2 a_2^2 b_2^2 b_3^2 c_2^3 c_3 \right] \\
 & + 4 \left[\sum_{1}^6 a_1^2 a_2^2 a_3^2 b_2^2 b_3^2 c_2^2 c_3^2 + \sum_{1}^{12} a_1^2 a_2^2 b_2^2 b_3^2 c_2^3 c_3^2 - \sum_{1}^{18} a_1^2 a_2^2 b_2^2 b_3^2 c_2^2 c_3^2 \right] \\
 & - 8 \left[2 a_1^2 b_2^2 c_3^4 + 2 \sum_{1}^6 a_1^2 a_2^2 a_3^2 b_2^2 b_3^2 c_2^2 c_3^2 - 2 \sum_{1}^4 a_1^2 a_2^2 b_2^2 b_3^2 c_2^3 c_3 \right].
 \end{aligned}$$

Collecting similar terms and using the abbreviations of § 4, p. 30.

$$T = A - 4B + 4C + 4D + 6E + 28F - 4G - 40H + 6K.$$

Recalling from same paragraph

$$D^4 = A - 4B + 12C - 12D + 6E - 12F + 4G + 24H + 6K.$$

$$D_1^2 I_2 = C - 2D + 2E - F + G + 4H.$$

$$D_2^2 = E + 2F - H.$$

We have Γ finally expressed in the second form,

$$(23) \quad \Gamma = D_1^4 - 8D_1^2I_2 + 16D_2^2.$$

The above method is connected with long and tedious algebra, but we may describe an application of the form derived by starting with (23), i.e.

$$(23) \quad \Gamma = \theta_{123}^2 - 4(\theta_{122}\theta_{233} + \theta_{211}\theta_{233} + \theta_{311}\theta_{322}) + 12 \Theta$$

Recall what these θ 's are as defined in Salmon. If one of a net of conics

$$\ell(\alpha x)^2 + m(\beta x)^2 + n(\gamma x)^2 = 0,$$

and we write the discriminant

$$\begin{vmatrix} \ell\alpha_1^2 + m\beta_1^2 + n\gamma_1^2, & \ell\alpha_1\alpha_2 + m\beta_1\beta_2 + n\gamma_1\gamma_2, & \ell\alpha_1\alpha_3 + m\beta_1\beta_3 + n\gamma_1\gamma_3 \\ \ell\alpha_1\alpha_2 + m\beta_1\beta_2 + n\gamma_1\gamma_2, & \ell\alpha_2^2 + m\beta_2^2 + n\gamma_2^2, & \ell\alpha_2\alpha_3 + m\beta_2\beta_3 + n\gamma_2\gamma_3 \\ \ell\alpha_1\alpha_3 + m\beta_1\beta_3 + n\gamma_1\gamma_3, & \ell\alpha_2\alpha_3 + m\beta_2\beta_3 + n\gamma_2\gamma_3, & \ell\alpha_3^2 + m\beta_3^2 + n\gamma_3^2 \end{vmatrix}$$

then we can determine

this is the coefficient of $\ell^2m^2n^2$.

~~the discussion.~~

θ_{122} is the coefficient of $x_1 x_2^2$, etc.
It is unnecessary to write out all
the θ 's for the general case. We
shall write out one or two to illus-
trate the process.

$$\gamma_3 = \sum^6 \alpha_1^2 \beta_2^2 f_3^2 + 2 \sum^6 \alpha_1 \alpha_2 \beta_2 \beta_3 f_2 f_1 - 2 \sum^6 \alpha_1^2 \beta_2 \beta_3 f_2 f_3$$

Now for our conics U , V and W , we
simply replace the Greek letters
by the corresponding Roman ones, and
observe that the product terms have
different signs. That is $\alpha_1 \alpha_2$ must
be replaced by $-\alpha_1 \alpha_2$, and so on.

This gives at once

$$\theta_{122} = \sum^6 \alpha_1^2 \beta_2^2 f_3^2 + 2 \sum^6 \alpha_1 \alpha_2 \beta_2 \beta_3 f_2 f_1 - \sum^6 \alpha_1^2 \beta_2 \beta_3 f_2 f_3$$

which can at once be expressed
in invariant form as

$$(1) \quad \theta_{122} = U_1^2 - 4 U_2.$$

In transforming θ_{122} and other
terms, care must be taken with the

case of three. It is quite likely that the sign would appear to be minus in the transformed form, i.e. $-b_1 b_2 b_3^2$, whereas a study of its composition shows that it is actually $b_1 b_2 b_3^2$. Observing this we get, writing

$$\begin{aligned} \theta_{122} &= \alpha_1^2 \beta_2^2 \beta_3^2 + \alpha_2^2 \beta_1^2 \beta_3^2 + \alpha_3^2 \beta_1^2 \beta_2^2 \\ &\quad + 2 (\alpha_2 \alpha_3 \beta_2 \beta_1 \beta_3 + \alpha_3 \alpha_2 \beta_2 \beta_1 \beta_3 + \alpha_1 \alpha_3 \beta_2 \beta_3 \beta_2) \\ &= (\alpha_1^2 \beta_2^2 \beta_3^2 + \alpha_2^2 \beta_1^2 \beta_3^2 + \alpha_3^2 \beta_1^2 \beta_2^2) \\ &\quad - 2 (\alpha_1 \alpha_3 \beta_2^2 \beta_3 \beta_1 + \alpha_2 \alpha_3 \beta_1^2 \beta_3 \beta_2 + \alpha_2 \alpha_1 \beta_3^2 \beta_1 \beta_2), \end{aligned}$$

on comparing this with the corresponding Roman ones, with sign changed as indicated, we have as a final form of the identity, to prove

$$\theta_{122} = -4(a_1 a_2 b_1 b_2 b_3^2 + a_2 a_3 b_2 b_3 b_1^2 + a_3 a_1 b_3 b_1 b_2^2).$$

Similarly

$$\theta_{123} = -4(a_1 a_2 c_1 c_2 c_3^2 + a_2 a_3 c_2 c_3 c_1^2 + a_3 a_1 c_3 c_1 c_2^2).$$

$$\theta_{111} = -4(b_1 b_2 a_1 a_2 a_3^2 + b_2 b_3 a_1 a_3 a_1^2 + b_3 b_1 a_2 a_3 a_2^2).$$

$$\theta_{233} = -4(b_1 b_2 c_1 c_2 c_3^2 + b_2 b_3 c_2 c_3 c_1^2 + b_3 b_1 c_3 c_1 c_2^2).$$

$$\theta_{311} = -4(c_1 c_2 c_3 a_1 a_2 a_3^2 + c_2 c_3 c_1 a_1 a_3 a_2^2 + c_3 c_1 c_2 a_2 a_3 a_1^2).$$

$$\theta_{322} = -4(c_1 c_2 b_2 b_3 b_1^2 + c_2 c_3 b_2 b_3 b_1^2 + c_1 c_3 b_3 b_2 b_1^2).$$

Forming now from these the products required in (23) we get

$$\begin{aligned}\theta_{122} \theta_{133} &= 16 \left(\bar{a}_1 \bar{a}_2 b_1 b_2 b_3 c_1 c_2 c_3 + \bar{a}_2 \bar{a}_3 b_1 b_2 b_3 c_1 c_2 c_3 + \bar{a}_3 \bar{a}_1 b_1 b_2 b_3 c_1 c_2 c_3 \right. \\ &\quad + \bar{a}_1 \bar{a}_2 b_1 b_2 b_3 c_1 c_2 c_3 + \bar{a}_2 \bar{a}_3 b_1 b_2 b_3 c_1 c_2 c_3 + \bar{a}_3 \bar{a}_1 b_1 b_2 b_3 c_1 c_2 c_3 \\ &\quad \left. + \bar{a}_1 \bar{a}_2 b_1 b_2 b_3 c_1 c_2 c_3 + \bar{a}_2 \bar{a}_3 b_1 b_2 b_3 c_1 c_2 c_3 + \bar{a}_3 \bar{a}_1 b_1 b_2 b_3 c_1 c_2 c_3 \right),\end{aligned}$$

$$\begin{aligned}\theta_{211} \theta_{233} &= 16 \left(\bar{a}_1 \bar{a}_2 b_1 b_2 b_3 c_1 c_2 c_3 + \bar{a}_2 \bar{a}_3 b_1 b_2 b_3 c_1 c_2 c_3 \right. \\ &\quad \left. + \sum^6 \bar{a}_1 \bar{a}_2 a_3 b_1 b_2 b_3 c_1 c_2 c_3 \right).\end{aligned}$$

$$\begin{aligned}\theta_{311} \theta_{322} &= 16 \left(\bar{a}_1 \bar{a}_2 a_3 b_1 b_2 b_3 c_1 c_2 c_3 + \bar{a}_2 \bar{a}_3 a_3 b_1 b_2 b_3 c_1 c_2 c_3 \right. \\ &\quad \left. + \sum^6 \bar{a}_1 \bar{a}_2 a_3 b_1 b_2 b_3 c_1 c_2 c_3 \right).\end{aligned}$$

Hence

$$\begin{aligned}(25) \quad &(\theta_{122} \theta_{133} + \theta_{211} \theta_{233} + \theta_{311} \theta_{322}) \\ &= 16 \left(\sum^6 \bar{a}_1 \bar{a}_2 b_1 b_2 b_3 c_1 c_2 c_3 + 3 \sum^6 \bar{a}_1 \bar{a}_2 a_3 b_1 b_2 b_3 c_1 c_2 c_3 \right), \\ &= 16 \left[\frac{1}{4} (I_2^2 - D_2^2) + 3 I_1 I_3 \right] \\ &= 4 I_2^2 - 4 D_2^2 + 48 I_1 I_3.\end{aligned}$$

In a final step in obtaining T , we must find an expression for Θ in terms of our invariants. Θ or Θ_{123} is defined by adding the coefficients of $I_1 I_2 I_3$ in the expression for T .

$$l\Sigma + m\Sigma' + n\Sigma''.$$

Taking values of Σ , Σ' and Σ'' from (9) (10) and (11), The discriminant can be written down from Salmon's *determinant form as

$$8 a_1 a_2 a_3 b_1 b_2 b_3 c_1 c_2 c_3$$

$$\times \begin{vmatrix} 0 & la_3 + mb_3 + nc_3 & la_2 + mb_2 + nc_2 \\ la_3 + mb_3 + nc_3 & 0 & la_1 + mb_1 + nc_1 \\ la_2 + mb_2 + nc_2 & la_1 + mb_1 + nc_1 & 0 \end{vmatrix}$$

$$= 16 a_1 a_2 a_3 b_1 b_2 b_3 c_1 c_2 c_3 (la_1 + mb_1 + nc_1)(la_2 + mb_2 + nc_2)(la_3 + mb_3 + nc_3).$$

In this the coefficient of $a_1 a_2 a_3$ is found to be

$$16 a_3 n b_3 c_3 (a_1 b_2 - a_2 b_1 + 2 a_2 b_3 - a_3 b_2) (a_1 + a_2 + a_3).$$

$$= 16 I_3 I_1. \quad \text{So we have}$$

$$(26) \quad \Theta = 16 I_1 I_3.$$

Now substituting these values (24)

(23) and (26) in our expression (23) for T we have

*
Cubic Sections, p. 266.

$$T = (D_1^2 - 4I_2)^2 - 4(I_3^2 - D_1^2) + 4(I_1 I_3) + 17 \times I_1 I_3.$$

On collecting terms

$$(27) \quad T = D_1^4 - 8D_1^2 I_2 + 16I_2^2$$

which is the expression (25) obtained by the barycentric expansion of (24).

We can now substitute the values (21) and (27) for M and T in Salmon's condition $T^2 = 64M$ and have as a final Theorem:-

If the 3-point and the 3-line
are such that a conic may be inscribed in the 3-line and circumscribed in the 3-point, then

$$\Rightarrow (D_1^4 - 8D_1^2 I_2 + 16I_2^2)^2 - 3I_2 I_3 D_1^2 (I_1 D_1 - 4I_2) = 0.$$

If we now apply the dual transformation to (21) we get the dual theorem which leads to some interesting conclusions. The dual form is

$$[D_1^8 - 8D_1^6(D_1^2I_2 - 2I_1D_1D_2 + 6D_2^2) + 16D_1^4D_2^2]^2$$

$$- 512D_1^6(D_1^3I_3 - D_2^3 + \frac{1}{2}I_1D_1D_2^2 - \frac{1}{2}I_2D_1^2D_2)(I_1D_1^3 - 2D_1^3D_2) = 0.$$

Expanding and collecting, this becomes

$$(29). D_1^6 [D_1(D_1^4 + 64I_2^2 + 32I_1D_1D_2 - 16D_1^2I_2 - 64D_2^2) - 312I_3(I_1D_1 - I_2D_2)] = 0.$$

Hence the dual theorem reads:-

A conic can be drawn on the meets of the 3-lines and touching the joins of the 3-points if (29) = 0.

It may be noted in these sections that no reference has been made to the introduction of Δ_1 , so as to render the forms general. In fact it is scarcely necessary, for obviously in (28) there will be no extraneous factor Δ_1^6 .

When all are given to draw mechanically, place in their individual term the proper power of Δ_1 to make the new expression homogeneous. This is done.

$$(30). (D_1^4 \Delta_1^4 - 8 D_1^2 \Delta_1^2 I_2 + 16 D_2^4)^2 - 512 I_3 D_1^3 \Delta_1^3 (I_1 D_1 \Delta_1 - 4 D_2) = 0$$

hence we would have

$$\begin{aligned} & \cdot [D_1^6 \{I_1 \Delta_1 (D_1^4 \Delta_1^4 - 8 D_1^2 \Delta_1^2 I_2 + 16 D_2^4) \\ & - 512 I_3 (I_1 D_1 \Delta_1 - 4 D_2)\}] = 0. \end{aligned}$$

It is to be noted that the essential factor of (31) is the quintic factor in the square brackets. The other factor merely expresses the fact that the construction is always possible if the three points are on a line.

We shall next consider (28) and (29) under the special condition that two of points of the 3-point are taken as I and J , the circular point at infinity, and the third point is taken as a variable point x . Then (28) and (29) become equations of the 8th and 5th degree respectively. It is this factor and this greater one

as shall discuss fully. We shall designate them by λ and μ respectively. That is

$$R = (D_1^4 - 8I_1 D_2 + 16D_2)^2 - 512 I_1 D_1 (I_1 D_1 - 4D_2) = 0$$

$$Q = D_1 (D_1^4 + 64I_2^2 + 32I_1 D_2 D_1 - 16D_1^2 I_2 - 64D_2^2) \\ - 512 I_3 (I_1 D_1 - 2D_2) = 0$$

where we understand b_c and c_c are replaced by the coordinates of I and J , and a_c by x_c .

In the case of conics on the 3-line and on the 3-points, if two of the points are taken at I and J , obviously all the conics known which is on the 3-line is touching the three lines. In other words $R=0$, is merely the locus of four points which circles can be drawn touching the three lines of the 3-line. This in turn says that $R=0$ is simply the equation of the four circles which

touch the three lines
and we show in
the adjoining figure
that they can be
constructed.

If we look at Q, we see that
we have a quadratic equation. In this
case the conics touch the line passing
through I and J, - the line at infinity.
Hence they are parabolas. Further
the lines joining I and J to x are
tangents to the corresponding para-
bolas. Hence x being the meet of
the tangents from I and J is
the focus. So we have the Theo-
rem:-

The locus of the foci of all
parabolas on three points is a
quadratic curve, and if the three

points are taken so the vertices of the triangle & since the equation of this geometric locus is

$$Q = 0.$$

It is possible to read off some facts in regard to P and Q without working out the explicit equations, although the above method gives a rather simple way of doing that. It is well to note first what curves are represented by certain simple equations when no other constraints are taken at I and J and the third condition.

$I_3 = 0$, is equation of reposed triangle.
 $H_1 = 0$, is equation of the horizontal axis.

$I_1 = 0$, is equation of the polar line of I and J to the triangle.
 $H_2 = 0$ is equation of circumcircle.

$I_1 D_1 - 2D_2 = 0$, is equation of the apole circle.

$I_1 D_1 - 4D_2 = 0$ is Feuerbach circle.

Of these forms, none requires any special proof except possibly the last. By Stein*, the equation of the Feuerbach conic, or in the present case the Feuerbach circle is $N = 0$. But we saw $-N = I_1 D_1 - 4D_2$. Or it can be shown directly from the fact that $I_1 D_1 - 4D_2$ is the locus of centers of circles of rectangular hyperbolae in the ratios of the 3-lines. But the feet of the 3 perpendiculars are clearly centers of such hyperbolae.

But they are also points of the 9-point or Feuerbach circle. Hence since $I_1 D_1 - 4D_2$ is a circle it must be the Feuerbach circle.

* Prop. 77. loc. cit.

Now take the equation

$R = [D_1^4 - 8I_1^2 I_2 + 16I_2^3]^2 - 64I_2 I_3 D_1^3(I_1 D_1 - 4I_2) = 0$,
which we know is the equation of the
four touching circles.

If $I_3 = 0$, $(D_1^4 - 8I_1^2 I_2 + 16I_2^3)^2 = 0$, hence
 $I_1 = 0$. The reference triangle touches
the octane, where it (the reference
triangle) cuts the quartic $D_1^4 - 8I_1^2 I_2 + 16I_2^3 = 0$.

If $I_1 = 0$, $(D_1^4 - 8I_1^2 I_2 + 16I_2^3)^2 = 0$, which
merely says that the quartic passes
through the multiple point of R ,
where the line at infinity cuts.

If $I_1 D_1 - 4I_2 = 0$ the second quartic
squared equals zero. Hence the
Steiner circle touches the octane
or passes through double points,
where it is cut by the quartic.
 $D_1^4 - 8I_1^2 I_2 + 16I_2^3 = 0$. This is
a characteristic of the circle now
shown that the Steiner circle
touches the marked and marked

conic.

Now you see what we as yet
in this connection as pretty interesting
are still. Using the equation

$$K = I_1^2 + I_2^2 + 16 I_3^2 - 0,$$
we see that $I_1 = 0, I_2 = 0$, which
with earlier considerations, shows that
 K is a bicircular quartic. We know
all its intersections with the octavic; -
 12 , where the reference triangle touches
the octavic, 4 , where the Feuerbach
circle touches it, and 8 at each circu-
lar point at infinity. But it is not
of importance now and we proceed
directly to this quartic. Before, this
conic, $D_1^2 - 8I_2 = 0$, which is met at
several places is probably also of
great geometrical interest. It
itself being completely known, we
will take up K directly.

Taking the form

$$(32) Q = D_1(I_1 - 8I_2) + 32I_1I_2I_3 + 64I_3(I_1 - 8I_2) = 0$$

we can eliminate by setting

$$D_1^2 - 8I_2 = V$$

$16(I_1, 0, -2D_2) = V$, where $V=0$, $V=\infty$ cases. We have then

$$(33) Q = D_1(V^2 - D_2V) - 32I_3V = 0$$

If in this $D_1=0$, then $I_3V=0$, that is Q cuts the line at infinity in the five points where I_3 and V cut it. But $I_3=0$ is the reference triangle and $V=0$ is the apolar circle. Since the quartic $Q=0$, passes through the circle at infinity, and has its asymptotes parallel to the sides of the reference triangle.

Again if $V=0$ $\cap D_2=0$, which says that V , therefore cuts D_2 in the points where I_3 and V inter-

and S_{∞} can be proven as
trivial, and its six double points
will not in general lie on a con-
ic, it follows that V does not cut
 Γ in double points. Hence the
theorem.

If the up-side vertex $V = 0$, the
four-fold contact with the quadrat-
ic Γ , touching it at the four
points where $V = 0$ and $V = \infty$.

This shows that we can prove
our theorem by taking the dual
of $V = 0$, which turns out to be

$$I, L - 4L - 7, \text{ say } F = 0$$

and we have proven this to be the
Feuerbach circle. But it is a well
known theorem that the Feuerbach
circle of any triangle touches each
of the four tangent circles. That
is $F = 0$, whence $V = 0$ is our result.

Since no contact is met destroyed
on taking the dual, we have

Q is the dual of R , and V of F , it
follows that V touches Q at four
points, which was Theorem to be
proved.

Suppose we rewrite Q . Thus

$$(34) \quad Q = D_1 V^2 + 2V(D_1 D_2 - 16 I_3) = 0$$

$$\text{or } = D_1 V^2 + 2VW = 0$$

$W=0$ is a cubic meeting the line
 $z=0$ at 4 points where the values of the
roots are the same, so that it must
pass through them. Through the values of the
roots in Example 3 we have the
curve $W=0$.

$W=0$ touches Q where V cuts W .

If course these contacts are real or
imaginary according as the inter-
sections of V and W are real or imagi-
nary. This argument applies elsewhere.

We can also consider the case when
where $Q = 0$, cut the circumcircle.
For in Q , let $D_2 = 0$ and it becomes
(35) $(D_1 D_1^2 - I_2)^2 = 5/12 I_1 I_3 D_1^4$
so unless the 3 points are on a
~~line~~

$$(36). \quad (D_1^2 - 8I_2)^2 - 5/12 I_1 I_3 = 0$$

Also in $R = 0$, let $D_2 = 0$ and it
becomes $(D_1^4 - 8D_1^2 I_2)^2 - 5/12 I_1 I_3 D_1^4 = 0$
or dropping D_1^4 as a factor,
(37) $(D_1^2 - 8I_2)^2 - 5/12 I_1 I_3 = 0. \quad = (36).$

Hence Theorem, -

Q and R cut the circumcircle
in the same points.

If the triangle is real, six of
these points are always real and
can be constructed very easily. We
will not go into any further dis-
cussion of this or other loci prob-
lems. P.S. There is one very im-

25

mediated and simpler remarks which may be made. It concerns the question of whether a focus, obtained by allowing one point to vary, is on the fundamental point or not. The term fundamental point we applies to both the ^{fixed} points of the 3-point and 4-points of the 3-line. If a focus is on a fundamental point, it denotes that of my variable point coincides with that fundamental point, the covariant condition is satisfied. To illustrate this take the fundamental covariants. -

$D_1 = 0$, is the equation of the join of the two fixed points, hence D_1 vanishes if the middle fraction coincides with a fixed point but does not vanish even if a coincidence of x with a meet of the others.

Similarly.

I_1 vanishes at no time, due to a coincidence of x with a fundamental point.

D_2 vanishes if x coincides with a point of the 3-lines, and also if it coincides with a fixed point.

I_2 does not vanish due to any coincidence of x with a fundamental point.

E_1 vanishes if x is any place on any of the three lines, but not when x coincides with a fixed point.

These facts are of importance at times as they enable us to tell whether a given invariant vanishes because of a particular position of one point or whether the vanishing or non-vanishing of the invariant is unaffected by such a coincide, for instance

we know that any ~~square~~ ^{triangle} built up of terms containing a 0, or a 0,
or each of them, if two of the points
^{blocks} boundary which are ~~square~~ ^{triangle} built
up of combinations of 1, and 2, will
not exceed of the point one taken ex-
clusively, and if one point is taken
and a water or sand of the 3 lines.

S. 8. The Clebschans and Their Invariants.

In the case of two general line cubics, the Clebschan has been defined analytically thus. Let $(\alpha \wp)^3$ and $(\beta \wp)^3$ be the cubics, then

$$(1) \quad X = 1abx^1^3$$

~~is the Clebschan or intermediate.~~

If we were now to write the joint equations of the ~~same~~ two cubics, say $(\alpha x)^3$ and $(\beta x)^3$, we would obtain entirely analogous results, except that we have one cubic.

$$(2) \quad X' = |\alpha \beta \wp|^3 = 0$$

~~The Clebschan of the two point cubics. The general X and X' are not the same for two cubics.~~

In coming Clebschans, it is obvious that we must take both tai-

101

angles in points (and both in lines), in this section. Of course the \pm line equation $x_1 x_2 x_3$, has as its equation in three dimensions $x_1 x_2 x_3 = 0$.
 Starting with one cubic as the reference triangle, and the other as a general cubic $(a \cdot \xi)^3 = 0$, we have by simply substituting in the expanded form of (1)

$$(1). X = 6(a_2^2 x_1^2 x_2 + a_2^2 x_1 x_3^2 + a_2^2 a_3 x_2^2 x_3 - a_2 a_3^2 x_1^2 x_3 - a_2^2 a_3 x_2^2 x_1 - a_2^2 a_3 x_1^2 x_2).$$

If now the second cubic is taken as the 3-point $(a \cdot \xi)(b \cdot \xi)(c \cdot \xi)$, we must replace

$$3a_2 a_3^2 \text{ by } (a_2 b_3 c_3 + a_3 b_2 c_3 + a_3 b_3 c_2)$$

$$3a_2 a_3^2 \text{ by } (a_1 b_2 c_2 + a_2 b_1 c_2 + a_2 b_2 c_1) \text{ etc}$$

Hence we have

$$(2) X = 3[(a_2 b_3 c_3 + a_3 b_2 c_3 + a_3 b_3 c_2)x_1^2 x_2 + (a_1 b_2 c_2 + a_2 b_1 c_2 + a_2 b_2 c_1)x_1 x_3^2 + (a_3 b_1 c_1 + a_1 b_3 c_1 + a_1 b_1 c_3)x_2^2 x_3 - (a_1 b_3 c_3 + a_3 b_1 c_3 + a_3 b_3 c_1)x_1 x_2^2 - (a_1 b_1 c_1 + a_1 b_3 c_1 + a_3 b_1 c_1)x_1^2 x_3 - (a_1 b_1 c_1 + a_1 b_2 c_2 + a_2 b_1 c_2)x_2^2 x_1].$$

Before going further it may be desirable to fix the idea of the Clébschian of two triangles. When

The triangles are both taken as 3-points. The Clébschian may be defined as the locus of points y such that the two triads of lines $y\text{-}abc$ and $y\text{-}def$ are similar. The other Clébsch is the locus of lines y having the dual property. From (4) we can read directly some of the properties of this curve. Since it does not contain any cubic terms, it is on the vertices of the reference triangle, and from the similarity - the relation in the general case - have the theorem -

. 83

The Clebschian of two 3-points
is a cubic curve in the 3x points.

Again since the Clebschian
has no terms in $x_1 x_2 x_3$, it fol-
lows that the reference triangle
is apolar to it. Hence since both
triangles enter the same we have.

The Clebschian of two 3-points
is a cubic curve to which both
3-points are apolar.

* A similar theorem holds for
the Clebschian of two 3-lines.

Going back to (4) we shall
try to express the invariants S
and T of this cubic in terms
of our fundamental system. This
must clearly be possible for S and
T are ~~also~~ ~~not~~ ~~invariants~~ of the
original triangles.

We shall make use of

$$\begin{aligned}
 & \text{From } \star \text{ from } 5 \\
 (5) \quad S = & abc(m(a_2c_3 + a_3c_2) + b_1b_2b_3) \\
 & - m(a_1a_2c_3 + a_1a_3c_2 + a_2a_3c_1) + (a_1b_2c_2^2 + a_2b_1c_3^2 \\
 & + a_1c_1b_3^2 + b_1c_1^2 + c_1b_3c_2^2 + a_3b_3^2) - m^2(a_1a_2a_3 \\
 & + c_2a_2 + a_3b_3) - 3m(a_2b_3c_1 + a_3b_1c_2) - (b_1^2c_1^2 + c_2^2a_2^2 + a_3^2b_3^2) \\
 & + (c_2a_2a_3b_3 + a_3b_3b_1c_1 + b_1c_1c_2a_2).
 \end{aligned}$$

On the corresponding coefficients

$$a = a_1a_2a_3$$

$$b = b_1b_2b_3$$

$$c = (a_2b_3c_3 + a_3b_2c_3 + a_1b_3c_2).$$

$$a_3 = -(a_2b_3c_1 + a_3b_1c_2 + a_1b_2c_3).$$

$$b_1 = -(a_1b_3c_3 + a_3b_1c_3 + a_3b_2c_1).$$

$$b_3 = (a_3b_1c_1 + a_1b_3c_1 + a_1b_2c_3).$$

$$c_1 = -(a_2b_1c_3 + a_1b_2c_3 + a_1b_3c_2).$$

$$c = (a_1b_3c_1 + a_3b_1c_2 + a_1b_2c_3).$$

It will be observed that we have dropped the common non-essential numerical factor. Making

Final simplifications on 5

* Higherin & Eberius Curves, 1874

$$\begin{aligned}
 (6) \quad S &= -(a_1 b_1 c_1 + a_2 b_2 c_2 + a_3 b_3 c_3) \\
 &\quad - (a_2 b_3 c_1 + a_3 b_2 c_1 + a_1 b_2 c_3)^2 (a_3 b_1 c_1 + a_1 b_3 c_1 + a_2 b_1 c_2)^2 \\
 &\quad - (a_1 b_3 c_2 + a_2 b_1 c_2 + a_3 b_2 c_2)^2 (a_3 b_1 c_1 + a_1 b_3 c_1 + a_2 b_1 c_3)^2 \\
 &\quad + (a_1 b_1 c_3 + a_2 b_2 c_3 + a_3 b_3 c_3) (a_2 b_1 c_1 + a_1 b_2 c_1 + a_3 b_1 c_2) \\
 &\quad \quad (a_3 b_2 c_2 + a_2 b_3 c_2 + a_1 b_2 c_3) (a_3 b_1 c_1 + a_1 b_3 c_1 + a_2 b_1 c_3) \\
 &\quad + (a_3 b_2 c_2 + a_2 b_3 c_2 + a_1 b_2 c_3) (a_3 b_1 c_1 + a_1 b_3 c_1 + a_2 b_1 c_3) \\
 &\quad \quad (a_1 b_3 c_3 + a_3 b_1 c_3 + a_2 b_3 c_1) (a_1 b_2 c_2 + a_2 b_1 c_2 + a_3 b_2 c_1) \\
 &\quad + (a_1 b_3 c_3 + a_3 b_1 c_3 + a_2 b_3 c_1) (a_1 b_2 c_2 + a_2 b_1 c_2 + a_3 b_2 c_1) \\
 &\quad \quad (a_2 b_1 c_1 + a_1 b_2 c_1 + a_3 b_1 c_2) (a_2 b_3 c_3 + a_3 b_2 c_3 + a_1 b_3 c_2)
 \end{aligned}$$

The actual work of expanding and collecting the terms in (6) is long but the result can be very concisely expressed, for many terms cancel :-

$$\begin{aligned}
 (7) \quad S &= 16, \left[\sum_{i=1}^{18} a_i^2 b_i^2 c_i^2 \right] - \sum_{i=1}^9 a_i^4 b_i^2 c_i^2 \\
 &\quad - \sum_{i=1}^9 a_i^4 b_i^2 c_i^2 \left. \right]
 \end{aligned}$$

We can here again use the summation symbols of § 4 to advantage, for we have

$$(8) \quad S = 16(C - H - R).$$

We observe that the D_c 's never enter to an even degree (or not at all) in every term. Combining the equalities found § 4, page 30 we find the only combinations required are

$$I_c(I_1^2 + I_2^2) = 3C + 4E + 16F + \dots + H = P$$

$$I_2^2 - D_2^2 = 4H = P'$$

$$(I_1^2 - D_1^2)^2 = 32C + 64H + 16R = P''$$

$$I_1 D_1 D_2 = -C + 2E + 5F + \dots - 4H = P'''$$

It remains to properly choose coefficients, which is relatively easy, being a solution of many simple equations involving expressions of type

$$(4) \quad \lambda P + \mu P' + \nu P'' + \rho P'''$$

It turns out, $\lambda = 12$, $\mu = -36$, $\nu = 1$
 $\rho = -24$

The solution of this system of equations gives the values of P , P' , P'' , P''' in terms of the given quantities.

$$12P_1 = 24C + 48E + 120F + 24G + 96H$$

$$4P'' = 24C - 48E - 120F - 144G + 16H$$

$$-36P' = -144H$$

$$-\underline{P'' = -32C} \quad -64H - 16I$$

$$\therefore 12P_1 - 6P' - P'' - 4P' = 16C - 16H - 16I = S.$$

Q.E.D.

$$(10). S = 12I_2(D_1^2 + I_1^2) - 36(I_2^2 - D_2^2) - (I_1^2 - D_1^2)^2 - 112D_1D_2$$

where $S = 0$, is the condition that

the stress in the Clebschian is

three lines.

Owing to the fact that the Clebschian treats the two triangles symmetrically, it is clear that S should be self-dual and a trial as to the truth of this is a good check on the work. The dual is

$$(11) S' = 12(I_2(D_1^2 - 2I_1D_1D_2 + 6D_2^2)(D_1^4 + I_1^2H_1^2 - 12I_1D_1D_2 + 36D_2^2) \\ - 36[(D_1^2I_2 - 2I_1D_1D_2 + 6D_2^2)^2 - D_1^4H_1^2] - (I_1^2D_1^2 - 12I_1D_1D_2 + 36D_2^2 - D_1^6)^2 \\ + 24(I_1^2D_1^2 - 6D_2^2)D_1^4D_2^2.$$

$$(12) = D_1^4S.$$

To express S in somewhat more concise form we can write it as the difference of two squares,

$$(13). \quad S = 4(I_1 D_1 - 3D_2)^2 - (I_1^2 + D_1^2 - 6I_2)^2.$$

$I_1 D_1 - 3D_2$ is one of the two self dual forms, and in the special case when the points are taken at I and J and the third case, it is the one having the form of the circle center and the confocal as a diameter.

The invariant T of a cubic curve is written in the full general form for the general case. If we substitute the coefficients of X , the Clebschian directly into the form there given, and attempt to expand the result, by direct processes, in terms of first derivatives, the algebra becomes very cumbersome if not entirely unfeasible on paper and

Surgeon. The following method, which was my own, consists of a few difficulties.

Take at the start one cubic as the reference triangle, and the other as a general cubic, in Salmon's form
 (4). $a\dot{\xi}_1^3 + b\dot{\xi}_2^3 + c\dot{\xi}_3^3 + 3a_2\dot{\xi}_1^2\dot{\xi}_2 + 3a_3\dot{\xi}_1^2\dot{\xi}_3 + 3b_1\dot{\xi}_2^2\dot{\xi}_1 + \dots + 3b_3\dot{\xi}_2^2\dot{\xi}_3 + 3c_1\dot{\xi}_3^2\dot{\xi}_1 + 3c_2\dot{\xi}_3^2\dot{\xi}_2 + 6m\dot{\xi}_1\dot{\xi}_2\dot{\xi}_3$.

Now following Clebsch, we will write the connex set up by two general cubics $(\alpha x)^3$ and $(a\dot{\xi})^3$,

$$(\alpha x)^2 (\alpha x) (a\dot{\xi}) = 0$$

and follow his method of getting the invariants of the connex. The fixed points of the connex are given by the three equations

$$(5). \quad a_c(\alpha x)(\alpha x)^2 = \lambda x_c \quad c = 1, 2, 3.$$

which requires in order to be consistent that $\lambda(\lambda)$ vanish, which

$$(16) \quad \Delta(\lambda) = \begin{vmatrix} a_1\alpha_1(\lambda a)^2 + \lambda, & a_2\alpha_1(\lambda a)^2, & a_3\alpha_1(\lambda a)^2 \\ a_1\alpha_2(\lambda a)^2, & (a_2\alpha_2)(\lambda a)^2 + \lambda, & a_3\alpha_2(\lambda a)^2 \\ a_1\alpha_3(\lambda a)^2, & (a_2\alpha_3)(\lambda a)^2, & a_3\alpha_3(\lambda a)^2 + \lambda \end{vmatrix}$$

and the invariants of the cubic are the coefficients of the terms of a complete expansion of the determinant, and are in fact the particular invariants (in the case of two examples) discussed by Dr. Hunt.

As soon as one of the cubics is taken as the reference 3-line, (16) reduces to

$$(17) \quad \Delta(\lambda) = \begin{vmatrix} 2a_1a_2a_3 + \lambda & 2a_1^2a_3 & 2a_1a_3^2 \\ 2a_1^2a_3 & 2a_1a_2a_3 + \lambda & 2a_1a_3 \\ 2a_1^2a_2 & 2a_2^2a_1 & 2a_1a_2a_3 + \lambda \end{vmatrix}$$

If now our second cubic is taken in the same form, instead of in the symbolic form, symbolic products must be replaced as follows:

$$\Delta(\lambda)$$

$$\begin{array}{l}
 \alpha_1 \alpha_2 \alpha_3 \text{ by } b_1, \quad \alpha_1 \alpha_2 \text{ by } b_1, \\
 \alpha_2 \alpha_3 \text{ by } b_2, \quad \alpha_1 \alpha_3 \text{ by } b_2, \\
 \alpha_1 \alpha_3 \text{ by } c_2, \quad \alpha_2 \alpha_3 \text{ by } b_1, \\
 \alpha_1 \alpha_2 \text{ by } c_3
 \end{array}$$

Method based on substitutions

$$(8) \quad T(\lambda) = \begin{vmatrix} +\lambda & a_2 & a_3 \\ b_3 & +\lambda & b_1 \\ c_2 & b_1 & +\lambda \end{vmatrix}$$

$$(9) = \lambda^3 + J_1 \lambda^2 + J_2 \lambda + J_3, \quad \text{where}$$

$$J_1 = 3m.$$

$$J_2 = 3m^2 - (b_1 a_1 + c_2 a_2 + a_3 b_3).$$

$$J_3 = \begin{vmatrix} m & a_3 & a_2 \\ b_3 & m & b_1 \\ c_2 & b_1 & m \end{vmatrix} = m^3 + a_3 b_1 c_2 + a_2 b_3 c_1 - m(b_1 a_1 + c_2 a_2 + a_3 b_3).$$

It is quite customary to write equations in the above form
 but there appears to be no necessity,
 but an apparent disadvantage in
 so doing. In expressing T , it is
 necessary to use three components

and also it is the form we obtain when in (5), we let $a = b = c = m$
 i.e. $S = -(b_1^2 \zeta_1^2 + c_2^2 \zeta_2^2 + a_3^2 b_3) + c_2 a_2 a_3 b_3 + a_3 b_3 b_1 \zeta_1 + b_1 c_1 c_2 \zeta_2$.
 To avoid we will use $I_1 = m$, instead
 of I_1 . This is the I_1 of the present
 system so is doubly convenient.

Now take X , The Clebschian,

$$c_2 x_1^2 x_2 + b_1 x_2 x_3^2 + a_3 x_2^2 x_3 - c_1 x_1 x_2^2 - a_2 x_3^2 x_2 - b_3 x_1^2 x_3 = 0$$

and compare it with Salmons general
 form. First of all $a = b = c = m = 0$,
 and this at once causes T to assume
 the very simple form

$$(60). T = -6(b_1 c_1 - a_3 b_3) + 2((\zeta_1^3 \zeta_2^3 + \zeta_1^3 \zeta_3^3) - 21(a_2^2 b_1^2 + \zeta_1^2 b_1^2 \zeta_2^2) \\ + 12(b_1^2 c_1^2 a_3 + \zeta_1^2 c_1^2 a_3 + (\zeta_1^2)^2 b_3^2 + a_2^2 c_2^2 + 6b_1^2 + 4b_3^2 a_2)$$

Comparing further we find we must
 have

$$a_2 b_1 c_2, \quad a_3 b_1 - b_3$$

$$b_3 b_1 a_3, \quad b_1 c_1 - c_2$$

$$\zeta_1 b_1 b_3, \quad \zeta_2 b_1 - a_2.$$

Moving these subjects to the denominator

$$(21) T = 6 b_1 c_1 c_2 a_2 a_3 b_3 - 8(b_1 c_1 (a_2^2 + a_3 b_3) - 27(a_1 b_1^2 + a_2 b_2^2)) \\ + 12(b_1^2 c_2 c_3 + 7a_1 b_2 + a_2^2 a_3^2 + a_2^2 b_3 + 3b_1 a_1 + 3b_1 a_2).$$

which we may for brevity write
 $T = 6x - 4z + 12t.$

We can now express T in terms of I_1 , J_2 , J_3 and S . Without going into the logic, the following combinations suggest themselves,

$$(3I_1^2 - J_2)^3 = 27b_1^3c_1^3 + 3b_1^2c_1^2a_2^2 + 6b_1c_1a_2a_3b_3 = 6x + y + 3t$$

$$(J_3 + 2I_1^2 - I_1 J_2)^2 = a_2^2 b_1^2 c_1^2 + a_3^2 b_2^2 c_2^2 + 2b_1 c_1 a_2 a_3 b_3 = x + 2z$$

$$S(3I_1^2 - J_2) = -27b_1^3c_1^3 + 3b_1c_1a_2a_3b_3 = 3x + y,$$

and from these T is found to one by a simple process of substitution. It turns out to be

$$(22) T = 4(3I_1^2 J_2)^3 - 27(J_3 + 2I_1^2 I_1 J_2)^2 + S(3I_1^2 - J_2).$$

Expanding terms and collecting

$$(23) T = 54 I_1 J_2 J_3 + 7I_1^2 J_2^2 - 27J_3^2 - 4I_1^3 - 18I_1^2 J_3 + 12S(3I_1^2 - 4).$$

Now J_2 , J_3 and S must be replaced by constants, and have already been derived. For surely I_1

and ν_3 are working for States I.
and $-I_3$ respectively. Then

$$J_2 = 2(I_1^2 + D_1^2) + I_2$$

$$J_3 = D_1(4I_2 - I_1D_1),$$

$$S = 12I_2(D_1^2 + I_1^2) - 24I_1D_1D_2 - 36(I_2^2 - D_2^2) - (I_1^2 - D_1^2)^2.$$

Carrying through (22)

$$(24) \quad T = 4(I_1^2 - D_1^2 + 12I_2)^3 \cdot 27(4I_1D_1 + 12I_1I_2)^3 \\ + 12(12I_2D_1^2 + 12I_2I_1^2 - 24I_1D_1D_2 - 36I_2^2 + 36D_2^2 \\ - I_1^4 + 2I_1^2D_1^2 - D_1^4)(I_1^2 - D_1^2 + 12I_2)$$

Expanding and collecting terms

$$(25) \quad T = -8I_1^6 + 12D_1^6 + 4I_1^4D_1^2 + 4I_1^2D_1^4 + 12I_2^3 - 144I_1^2I_2 \\ - 864I_1^2I_2^2 - 144D_1^2I_2 + 432D_1^2I_2^2 - 288I_1^3D_1D_2 \\ + 288I_1D_1^3 + 432I_1^2D_2^2 - 864D_1^2D_2^2 - 864I_1I_2D_1D_2 + 5184I_2D_2^2.$$

Or grouping terms, $T =$

$$(26) \quad -8[(I_1^2 - D_1^2)^3 - 216I_2^3 - 18I_2(I_1^4 - D_1^4) + 108(I_1^2I_2^2 + D_1^2D_2^2) \\ - 34(D_1I_2 - I_1D_2)^2 + 36I_1D_1D_2(I_1^2 - D_1^2) - 648I_2D_2^2].$$

Now as S is clearly defined,
so must T be, if the result is correct. Carrying out the formation of
the dual we have

$$\begin{aligned}
 T' &= (I_1^2 D_1^2 - 12 I_1 D_1 D_2 + 36 D_2^2 - D_1^4)^3 - 216 (D_1^2 I_2^2 - 2 I_1 D_1 D_2 + 6 D_2^2)^3 \\
 &\quad - 18 (D_1^2 I_2^2 - 2 I_1 D_1 D_2 + 6 D_2^2) (I_1^2 D_1^2 - 24 I_1^2 D_1^3 D_2 + 216 I_1^2 D_2^2) \\
 &\quad - 864 I_1^2 D_1^2 (I_1^3 + 12 I_1^2 D_1^2 + 36 D_1^4) \\
 &\quad + 108 [(I_1^2 D_1^2 - 12 I_1 D_1 D_2 + 36 D_2^2) (D_1^2 I_2^2 - 2 I_1 D_1 D_2 + 6 D_2^2)]^2 - 54 [D_1^2 (D_1^2 I_2^2 - 2 I_1 D_1 D_2 + 6 D_2^2) + D_2^2 (I_1 D_1 - 6 D_2)]^2 \\
 &\quad - 36 D_1^4 D_2 (I_1 D_1 - 6 D_2) (I_1^2 D_1^2 - 12 I_1 D_1 D_2 + 36 D_2^2 - D_1^4) \\
 &\quad - 108 I_1^2 D_1^2 (D_1^2 I_2^2 - 2 I_1 D_1 D_2 + 6 D_2^2)
 \end{aligned}$$

Expanding and collecting

$$\begin{aligned}
 &= I_1^6 D_1^6 - D_1^{12} - 3 I_1^8 D_1^8 - 54 I_1^6 D_1^6 D_2^2 + 3 I_1^2 D_1^{10} - 36 I_1^4 D_1^8 D_2 \\
 &\quad + 16 I_1^6 D_2^4 + 14 I_1^4 D_2^6 - 10 I_1^6 I_2^3 + I_1^8 I_2^2 + I_1^6 D_2^8 \\
 &\quad - 108 I_1^2 I_2^2 D_1^6 - 54 D_1^8 I_2^2 - 648 I_2^6 D_2^2 + 108 I_1^2 I_2^2 D_2^2 \\
 &= D_1^6 T.
 \end{aligned}$$

so T is reduced, being a root of the cubic equation $D_1^6 = -T$

knowing S and T we can immediately write down the discriminant of the Clebschian in terms of our invariants, since it is merely $T^2 + 64 S^3$.
 The general case of two triangles in space will be done similarly.

118

long and short sides of the triangle. If we take the two triangles in turn we can describe in a conic. The form is much simplified for them $D_2 = 0$. Calling the circuminant D ,

$$D = 64 I_2 I_1^2 D_1^2 (5I_1^4 D_1^2 - 324 I_1^2 I_2^2 - 3I_1^6 - I_1^2 D_1^4 + 521 I_1^4 I_2 \\ + 48 I_1^2 I_2 D_1^2 - D_1^6 + 26 I_2 D_1^4 - 225 D_1^2 I_2^2 + 648 I_2^3).$$

Before taking up X , the line P which, and its invariant, which really present little of importance, we will look for the invariant condition of the two triangles. This will call for some trouble.

Taking my triangles as $\triangle ABC$ to $\triangle A'B'C'$, from the same triangle ($\triangle ABC$) the joint relation is then as we had in equation (4)

$$(27). X = (a_1, c_1 + b_1 c_2, c_2) x_1 x_2 + (a_1 c_2 - b_1 c_1, c_2) x_1 x_3 \\ + (a_2 b_1 + a_1 b_2, c_1 + a_1 b_2) x_2 x_3 - (a_2 b_2 + a_1 b_1, c_2 + a_1 b_2) x_1 x_2 \\ - (a_2 b_1 + a_1 b_2, c_1 + a_1 b_2) x_1 x_3 - (a_2 b_2 + a_1 b_1, c_2 + a_1 b_2) x_1 x_3.$$

If we now take my triangles as 3-sides, that is with the point equation, the only effect on the coefficients in the second line $(a_1, c_1 + b_1 c_2, c_2)$ will be to replace each letter, by its minor in D. Of course the coordinates will be line coordinates, and the triangle will be the reference triangle. Representing the minors by the corresponding capitals we have

$$(28) X' = (A_2 B_1^2 + A_1 B_2^2, A B_1 B_2) F_1 F_2 + (A F_1 F_2 + A_1 F_2^2 + A B C_1^2, F_1^2 \\ + (A_2 B_2 C_1 + A_1 B_1 C_2 + A B C_2) F_1 F_2 - (A F_1^2, A B_1 C_1 + A_1 B_1 C_2) F_1 F_2 \\ - (A_2 B_1 C_1 + A_1 B_2 C_1 + A B C_1) F_2 F_3 - (A_2 B_1 C_2 + A_1 B_2 C_2 + A B C_2) F_1 F_3.$$

Now let us consider the condition
we will follow the usual procedure
regard the F 's as differential operators,
and equate the result of the
equation to zero. This gives

$$(29). \quad (a_1 b_2 c_3 + a_2 b_1 c_3 + a_3 b_1 c_2) (A_1 B_2 C_3 + A_2 B_1 C_3 + A_3 B_1 C_2)$$

$$+ (a_1 b_2 c_2 + a_2 b_1 c_2 + a_3 b_1 c_1) (A_1 B_2 C_2 + A_2 B_1 C_2 + A_3 B_1 C_1)$$

$$+ (a_1 b_3 c_3 + a_2 b_3 c_2 + a_3 b_2 c_1) (A_1 B_3 C_3 + A_2 B_3 C_2 + A_3 B_2 C_1)$$

$$+ (a_2 b_1 c_1 + a_2 b_2 c_1 + a_2 b_3 c_1) (A_2 B_1 C_1 + A_2 B_2 C_1 + A_2 B_3 C_1)$$

$$+ (a_3 b_1 c_2 + a_3 b_2 c_2 + a_3 b_3 c_2) (A_3 B_1 C_2 + A_3 B_2 C_2 + A_3 B_3 C_2) = 0.$$

The work of expanding (29) is long and the result only will be indicated. It requires the summing of 6 terms like

$$(a_1 b_3 c_3 + a_2 b_2 c_3 + a_3 b_1 c_2) (2 a_1^2 b_1 b_2 c_2 c_3 + 2 a_2 a_3 b_1 b_2 c_2 c_3 + 2 a_2 a_3 b_2 b_3 c_1^2 - 2 a_1^2 a_3 b_3 c_1 c_2 - 2 a_2 a_3 b_2 c_1^2 - 2 a_1 a_2 b_1^2 c_2 c_3 + a_2^2 b_1^2 c_1 c_3 + a_1 a_3 b_2^2 c_1^2 + a_1^2 b_3 c_2^2 - a_2^2 b_1 b_3 c_1^2 - a_1 a_3 b_1^2 c_2^2 - a_1^2 b_2^2 c_1 c_3).$$

These reduce to zero very concisely thus

$$(30) \quad 2 \left(\sum a_1 a_2 b_1 b_3 c_1 c_3 - \sum a_1 a_3 b_1 b_2 c_2 c_3 \right) \\ + 3 \left(\sum a_1^2 b_2 b_3 c_1^2 - \sum a_2 a_3 b_1 b_2 c_1 c_3 \right) \\ + 2 \left(\sum a_1^3 b_2 b_3 c_2 c_3 - \sum a_1 b_2^2 b_3 c_1 c_3 \right) = 0$$

To express this in terms of the fundamental invariants, we observe first

to form a cubic invariant
that D_1^3 , $I_1^2 D_1$, $I_1 I_2 D_2$ are the only terms which can enter. Detracting the coefficient of $I_1^2 D_1$ we have

$$(31) \quad D_1^3 - I_1^2 D_1 - 3I_1 D_2 + 9I_2 D_1 = 0.$$

Hence Theorem:

The two Clebschians of triangles are apolar if

$$D_1^3 - I_1^2 D_1 - 3I_1 D_2 + 9I_2 D_1 = 0$$

This expression is also self dual so we shall expect

the invariants S' and T' of χ' , that is of the Clebschian arising from the dual equation. The equation of this dual cubic has already been given (28) where the coefficients were $-S' - T'$ the "Dual" of the coefficients of χ , (27) it is evident that we can

invariant form of the coefficient of x^2 by simply applying the linear transformation to the corresponding form of η . But we found that S and T were self dual forms, whereas

$$S' = S \text{ and } T' = T$$

is not true in general of η . Therefore we have the theorem.

If neither of two triangles is degenerate, the same condition [$\delta = 0$] which makes the ^{Stress}_{of} Clebschans ^{Stress}_{of} down into three lines, makes the ^{Stress}_{of} other two degenerate to three points.

A corollary of Theorem could be formulated multiplying the two sides T and T' ~~and similarly~~.

The fact that the two Clebschans in the case of two triangles do not coincide, can be verified by calculating the ^{Stress}_{of} equation of (27) which does not

reduced to about 1000 m. above sea-level.
The topography of the section is very
irregular, but the south of the plateau ab-
ounds from swampy localities to the
extremes of elevation over 3000

§ 9. Self-dual Invariant Forms.

A number of self-dual forms have arisen in the course of this article, and the question naturally arises as to the number of such forms which are independent. These self-dual forms acquire especial interest from the fact that the vanishing of such a form indicates a mutual relation between the two triangles. We shall look for the most general forms of the form dependent on the dual transformation, to within a power of D_1 .

If degree one, the only form is

$$\text{D}_1.$$

For the form of degree ten, the most general one is,

$$3) \quad aI_1^5 + bI_2 + cI_3 = dL_{14} + eS_{15} \quad (\text{check})$$

that this equal the dual form, i.e.

$$\begin{aligned} D^2(a I_1^2 + b I_2 + c D_2 + d I_1 D_1 + e D_1^2) \\ \equiv a(I_1^2 D_1^2 - I_1 I_2 D_2 - 36 D_2^2) \\ + b(I_1^2 I_2 - I_1 D_1 D_2 + 6 I_1^2) - c D_1^2 D_2 \\ + d(D_1^2(I_1 D_1 - 3 D_2) + e D_1^4). \end{aligned}$$

~~equation of condition, the equation~~
~~constant is zero~~

$$12a + 2b = 0 \quad b = -6a$$

$$36a + 6b = 0$$

$$-c - 6d = +c$$

$\therefore c = 3d$ & $b = -6a$ are the only restrictions. \therefore

$\therefore a(I_1^2 - 6I_2) + d(I_1 D_1 - 3D_2) + e D_1^2 = 0$, is the most general self-dual invariant form of the second degree, where a, d & e are arbitrary constants. Since (3). $I_1^2 - 6I_2$ and $I_1 D_1 - 3D_2$ are the only two independent, irreducible self-dual invariants of degree 2. It may be noted that while $I_2 = 0$ implies a

mutual relation, being one of the two mutual ones, it is not strictly self dual, for it changes sign under the dual transformation, hence could not be used in building up a pencil of self dual forms. D_2^2 is self dual.

To the most general form we must have

$$\begin{aligned}
 (4). \quad & I_1^3 (a I_1^3 + b D_1^4 + c I_1^2 D_1 + d I_1 I_2 + e I_2^2 + f I_1 D_2 \\
 & + g D_1 D_2 + h I_2 D_1 + i k I_3) \\
 \equiv & a (I_1^3 D_1^3 - 18 I_1^2 D_1^2 + 108 I_1 I_2 D_2^2 - 216 D_2^3) \\
 & + b D_1^6 + c D_1^2 (I_1^2 D_1^2 - 12 I_1 I_2 D_2 + 36 D_2^2) \\
 & + d (I_1 D_1^5 - 6 D_1^4 D_2) \\
 & + e (I_1 I_2 D_1^3 - 2 I_1^2 D_1^2 + 3 I_1 I_2 D_2^2 - 6 I_1 I_2 D_1 + 12 I_2 D_1^2 - 36 D_2^3) \\
 & + f (-I_1 D_1^3 D_2 + 6 D_1^2 D_2^2) - g (D_1^4 D_2) \\
 & + h (D_1^4 I_2 - 24 D_1^3 D_2 + 6 D_1^2 D_2^2) + k (2 D_1 I_3 - 2 D_2^3 + I_1 D_1^2 - I_2 D_1^2 D_2).
 \end{aligned}$$

Since a number of the equations condition resulting from the above is equivalent, we can only expect such a result that they are

$$-12a - 2c = 0$$

$$6a + 7c = 0$$

$$16a^2 + 18ac + 7c^2 = 0 \quad , \quad a = 3 + c$$

$$36a^2 + 60ac + 21c^2 = 0 \quad \text{or} \quad 6a^2 + 10ac + 7c^2 = 0$$

$$-6d - g = g \quad \text{or} \quad g = -3d$$

Introducing these equalities in the left of (4) we have

$$\begin{aligned} & \text{cub. } (I_1^3 - 9I_1 I_2 + 108I_3) + 2(I_1^2 D_1 - 11I_1) \\ & + 2(-4I_1 + 2I_2 + I_3) + 6(-5D_1 - I_1 D_2), \end{aligned}$$

The next general and dual invariant cubic form. We have here three simple cubic forms which are self dual

$$\text{I. } I_1^3 - 9I_1 I_2 + 108I_3.$$

$$\text{II. } I_1^2 D_1 - 6I_1 D_2.$$

$$\text{III. } I_2 D_1 - I_1 D_2.$$

It is well to consider the 6 simple self dual invariants we have derived: They are not independent, as we might suspect. For we should reasonably expect not more than five independent ones as our entire rational

system consisted of but six. Of
 these the second invariant that all
 self dual forms are expressible, in
 terms of five. A distinct set of five
 is

$$A. \quad I_1 D_1 - 6I_1 D_2, \quad I_1^2 - 6I_2,$$

$$I_2 D_1 - I_1 D_2; \quad I_1^3 - 9I_1 I_2 + 108I_3.$$

The other cubic form in the four
 angles can be expressed thus

$$I_1^2 D_1 - 6I_1 D_2 = 6(I_2 D_1 - I_1 D_2) + D_1(I_1^2 - 6I_2).$$

The most general self dual quartic invariant was found to be
 $a(I_1^4 - 12I_1^2 I_2 + 36I_2^2) + b(I_1 D_1 I_2 - 12I_3 D_1 - 9I_1^3 D_1)$
 $+ c(I_3 D_1 - 6I_1 D_2 + I_1 I_2 + I_1^2 I_2) + d(I_1^2 D_1 - 6I_1 I_2)$
 $+ e(D_1^2 I_2 - I_1 D_1 D_2) + f(I_1 D_1^3 - 3D_1^2 D_2) + g D_2^2 + h D_1^4.$

It turns out that all the several simple invariants making up the
 general form are dependent on three
 of the 5 forms of (A). I_1^2 seems to
 prove to be an independent quantity

form, but it can be written

$$\begin{aligned} D_2^2 &= \frac{1}{9} [(I_1 D_1 - 3D_2)^2 - D_1 (I_1^2 D_2 - 6 I_1 D_2)] \\ &= \frac{1}{9} [I_1 (I_1 - 3D_2) - 6 I_1 (I_1^2 D_2 - 6 I_1 D_2)] \cdot \end{aligned}$$

This shows that it is of advantage to retain the third cubic form for certain purposes.

The most general self dual quinquean can also be found, and while there is a number of equivalent expressions in terms of the general expression, such an expression is obviously preferable in terms of one for simpler ones. In this case there is one of very convenient form to be expressed in terms of the given form, and therefore it is self dual. The expression was not originally found, but we find all self dual forms we have found can be so expressed. For example from the previous chapters S and T, for

really covered by the general quartic

$$\begin{aligned} S &= 4(I_1 D_1 - 3D_2)^2 - (I_1^2 + D_1^2 - 6I_2)^2 \\ &= 4(I_1 D_1 - 3D_2)^2 - [(I_1^2 - 6I_2) + D_1^2]^2. \end{aligned}$$

$$\begin{aligned} T &= (I_1 - I_2)^2 (2.6I_1^3 + 1.2I_1^2 I_2 + 1.2I_1 I_2^2 + I_2^3) \\ &\quad - 34(I_1^2 - I_2 I_2) + 16I_1 I_2 (I_1 D_1) - 108D_1^2 \\ &= (I_1^2 - 6I_2)^2 - D_1^6 - 3(I_1 D_1 - 6I_2 D_2)^2 + 34(I_1 D_1 - 6D_2)^2 \\ &\quad + 3(36D_2^2 + I_2^4)(I_1^2 - 6I_2) + 36D_1^3(I_2 D_1 - I_1 D_2) \\ &\quad + 108D_1^2 D_2^2. \end{aligned}$$

And since

$$\begin{aligned} 8I_2^2 &= (I_1 D_1 - 3D_2)^2 = D_1(I_1 I_2 - I_1 D_2) - I_1^2(I_1^2 - 6I_2) \\ &\quad + I_1^2 D_1 - 6I_1 D_2 = 6(I_2 D_1 - I_1 D_2) + D_1(I_1^2 - 6I_2) \end{aligned}$$

$$\begin{aligned} T &= (I_1^2 - 6I_2)^3 - D_1^6 - 162(I_2 D_1 - I_1 D_2)^2 - 18D_1^2(I_1^2 - 6I_2)^2 \\ &\quad - 108(I_2 D_1 - I_1 D_2)D_1(I_1^2 - 6I_2) + 12(I_1 D_1 - 3D_2)^2(I_1^2 - 6I_2) \\ &\quad - 36D_1^3(I_2 D_1 - I_1 D_2) + 12D_1^2(I_1 D_1 - 3D_2)^2 - 9D_1^4(I_1^2 - 6I_2). \end{aligned}$$

This might be grouped more compactly but it establishes the point aimed at. It thus turns out that all self dual forms

arising are found to be rational functions of these five.

If we consider four to be ideal it is naturally of peculiar interest unfortunately however the same is not true for other than idealized or the only of the points, present, is simple geometric interpretation.

$$D_1 = H_1$$

$$I_1 D_1 - 3 D_2 = H_2 \quad I_1^2 - 6 I_2 = K_2$$

$$I_2 D_1 - I_1 D_2 = H_3 \quad I_1^3 - 9 I_1 I_2 + 108 I_3 = K_3$$

$$D_1 = H_1$$

$$-3 D_2 = H_2 - I_1 H_1$$

$$-6 I_2 = K_2 - I_1^2$$

$$108 I_3 = K_3 - \frac{3}{2} I_1 K_2 + \frac{1}{2} I_1^3$$

$$\text{From } * \quad I_1^2 H_1 - 2 H_2 I_1 = -H_3 + H_1 K_2$$

Hence any self dual invariant by multiplying with a power of H_1 can be changed into an invariant of the form $S_1 + I_1 S_2 \equiv I$ where S_1 and S_2 are functions of the self dual invariants H_1, H_2, K_2, H_3, K_3

Since I_1, S_1, S_2 and $S_1 + S_2$ are all self dual while I_1 is not, S_2 must vanish and I is a function of H_1, H_2, K_2, H_3, K_3 alone. Hence these five self-dual invariants are a complete system of self dual invariants.

120

§ 10. The Fundamental Invariants under a Special Cremona Transformation.

It is the purpose here to show the changes produced in the fundamental invariants, by carrying out a special Cremona transformation, and to illustrate by a single example the value of this method.

Take the simplest, most elementary transformation

$$y_i = \frac{x_i}{x_0}.$$

The effect of this transformation is to replace each symbol in the invariant by its reciprocal. Since all invariant forms are homogeneous, it is clear that the same power of x_0 appears in each term, hence can be dropped without loss of generality.

Carrying out this transformation we find fundamental invariants

$$D'_1 = \frac{D_2}{I_3} \quad I_2 = \frac{I'_1}{I_3}$$
$$B. \left\{ \begin{array}{l} D'_2 = \frac{D_1}{I_3} \\ I_1 = \frac{I_2}{I_3} \end{array} \right. \quad I_3 = \frac{I'_2}{I_3}.$$

As a typical illustration we take the rational quartic which we can write parametrically as

$$x_i = \frac{t - \alpha_i}{(t - \beta_i)^2}$$

which has 3 cusps, 3 double points, 3 double tangents, 3 places and is a plane \mathcal{F} , and which has been the subject of considerable study. It can be shown by the simple counting of constants that any two of the singular triangles are not dependent, but there is a combination consisting of them, namely taking the triangle of double points and reference 3-line, as well

why; what is the condition in
the language of curves?

From the theory of Bilinear trans-
formations,* it is well known that if
a cubic inventory transformation is
carried out on the quartic genus, taking
the double points as fundamental
points, the quartic goes into a rational
of genus one cubic cusp, and leav-
ing simple points at the three funda-
mental points. If we next carry out
the same transformation regarding
the cusps as fundamental points (which
is itself equivalent to taking the dual)
the rational quartic goes into a con-
ic, which has the fundamental
lines, and has the three cusp points
as ordinary points. But we already

* Clebsch - Lessons - Vol II, page 192 ff.

122

now form a cubic after the evolution has ^{been} carried out
in the 3-line and circumscribed
about the 3-point. It is

$$(1). (D_1^4 - 8D_1^2I_2 + 16D_2^2)^2 - 512I_3D_1^3(I_1D_1 - 4D_2) = 0.$$

Hence to find the condition on the cusp triangle we must take (1) and carry out in reverse order the trans-
formations ~~as~~ ^{as} ~~we~~ ^{we} do on the curves. That is first carry out trans-
formation (B) of this section, then the
~~direct transformation of~~ ^{inverse transformation of} ~~the~~ ^{of the}
chapter, and finally transformation (B), again. This gives a rather long expression of the 24th degree in the coefficients of the original triangles. So the relation is probably not a very simple one geometrically.

If we multiply the right hand side as it is given

3-line, then consider on the right
of double points, and so on
the next stage by a similar argument
will determine these forms.

$$\begin{aligned} & D_1^8 D_2^{55} + (16 I_1^2 D_2 - 64 I_1 D_1 D_2^2 + 64 D_2^3 - 16 D_1^4 D_2 - 256 I_3 D_1^3) \\ & (2 D_1^3 I_3 - 2 D_1^3 + I_1 D_1 D_2^2 - I_2 D_1^2 D_2)^2 \\ & - D_2 (16 I_2^4 D_2^6 - 34 I_2 D_1 D_2^5 + 4 I_2^2 D_2^3) (2 D_1 I_3 - 2 D_2^3 + I_1 D_1 D_2^2 - I_2 D_1^2 D_2) = 0. \end{aligned}$$

This is sufficient to illustrate our point. For by a direct attack this problem would have been impossible, yet by aid of this transformation it is comparatively simple. Other examples might be carried out to still further illustrate this.

Incidentally this gives me a convenient geometrical interpretation of $I_2 = 0$. If we carry out the transformation $y_i = \frac{x_i}{x_1}$ on the coordinates of my 3-point. They are carried into three new points whose equations are

$$a_2 a_3 g_1 + a_3 a_1 g_2 + a_1 a_2 g_3 = 0$$

$$b_2 b_3 g_1 + b_3 b_1 g_2 + b_1 b_2 g_3 = 0$$

$$c_2 c_3 g_1 + c_3 c_1 g_2 + c_1 c_2 g_3 = 0$$

and, having the conditions that there
be similar to the reference triangle

$$\text{as } L_1 = 0. \quad \text{the } \gamma \text{ is definite}$$

therefore:

If two triangles are such that
when one is taken as a three-line and
the other as a three-point, and the
transformation $g_1 - \frac{1}{2} \gamma$ is carried out,
the three point is polar to the three
line, then

$$L_2 = 0.$$

of course this gives no direct information as to the geometrical relationship between the two triangles in their original position.

Vita.

David Deitch Leib was born at Allen, Pa., Oct. 28, 1879. After a course in the public schools, he entered Dickinson Preparatory School, now Conway Hall, Carlisle, Pa., in 1897. Two years later he entered Dickinson College, receiving the A. B. degree in 1903 and A.M. in 1905. After teaching Mathematics and Physics at Pennington Seminary, at Pennington, N.J. for three years he attended the Princeton University as a graduate student in Mathematics Applied Electricity and Geological Physics. During the years 1907-8 he was a University Scholar; during the year 1908-9, Fellow in Mathematics.

In his graduate work in the

aced courses under Professor
Morley, Cohen, Coble, Whitehead
and Reed. To each of these he
would express his thanks for
their kindness and interest shown
at all times, especially to Dr Coble
for his many valuable suggestions
and to Professor Morley for his
constant consideration during the
preparation of his dissertation, and
throughout his course.

145,971

Library

Johns Hopkins of the University

