Basel III 市場風險新規範的挑戰

昀騰金融科技

技術長

董夢雲 博士

dongmy@ms5.hinet.net

目 錄

一、銀行的資產負債表與業務	4
二、交易簿與銀行簿的分野	17
三、市場風險管理的演化	22
四、Basel III 新標準法的邏輯	30
五、SBM 下選擇權交易的風險計算範例	44
六、下一步的發展	70

昀騰金融科技股份有限公司

技術長

金融博士、證券分析師

董夢雲 Andy Dong

ID:50917111

Line/WeChat:andydong3137 E:andydong1209@gmail.com

https://github/andydong1209

M:(T)0988-065-751 (C)1508-919-2872

10647 台北市大安區辛亥路一段 50 號 4 樓

現職:國立台灣大學財務金融研究所兼任教授級專家

國立台灣科技大學財務金融研究所兼任助理教授

台灣金融研訓院 2020 年菁英講座

經歷:中國信託商業銀行交易室研發科主管

凱基證券風險管理部主管兼亞洲區風險管理主管

中華開發金控、工業銀行風險管理處處長

永豐金控、商業銀行風險管理處處長

永豐商業銀行結構商品開發部副總經理

學歷:國立台灣大學電機工程學系學士

國立中央大學財務管理學研究所博士

專業:證券暨投資分析人員合格(1996)

專長:風險管理理論與實務,資本配置與額度規劃、資產負債管理實務

外匯與利率結構商品評價實務,股權與債權及衍生商品評價實務

GPU 平行運算與結構商品系統開發, CUDA、OpenCL

CPU 平行運算與 ALM 系統開發,C#/C++/C、.Net Framework、SQL

人丁智慧(Deep Learning)交易策略開發, Python、Keras、TensorFlow

主題一、銀行的資產負債表與業務

- (一)銀行的業務
 - ◆ 資金需求與供給的中介。
 - > 存款與放款
 - ✓ 信用中介, Credit Intermediation
 - ✓ 到期日轉換, Maturity Transformation
 - ✓ 貨幣創造, Money Creation
 - ◆ 支付處理的傳送機制。
 - ▶ 支存、信用卡。
 - ✓ 支付清算, Settle Payments

Business lines in banking

◆ 主要業務與風險

Service or function	Revenue generated	Risk	
Lending			
– Retail	Interest income, fees	Credit, market	
Commercial	Interest income, fees	Credit, market	
– Mortgage	Interest income, fees	Credit, market	
Syndicated	Interest income, fees	Credit, market	
Credit cards	Interest income, fees	Credit, operational	
Project finance	Interest income, fees	Credit	
Trade finance	Interest income, fees	Credit, operational	
Cash management		· •	
- Processing	Fees	Operational	
– Payments	Fees	Credit, operational	
Custodian	Fees	Credit, operational	
Private banking	Commission income,	Operational	
A soot management	interest income, fees	Credit marks anarational	
Asset management Capital markets	Fees, performance payments	Credit, market, operational	
 Investment banking 	Fees	Credit, market	
 Corporate finance 	Fees	Credit, market	
– Equities	Trading income, fees	Credit, market	
– Bonds	Trading income, interest income, fees	Credit, market	
 Foreign exchange 	Trading income, fees	Credit, market	
– Derivatives	Trading income, interest income, fees	Credit, market	

◆ 收入

- > Interest Income
- > Fees & Commissions
- > Trading Income

♦ Costs

- ➤ 人員(Staff Costs)
- ▶ 壞帳費用(Provision)
- > IT Costs

業務範疇:商業銀行

▶ 傳統業務

- ◆ 業務範疇:投資銀行
 - > 交易與手續費為主業務(上市、購併)

(二)Balance Sheet

◆ 主要成分

資金用途			資金來源				
項目	利率	均量	比重	項目	利率	均量	比重
Cash/存放同業 存放央行 拆放同業 應收/付遠匯款				同業拆放/RP 應收/付遠匯款			
買入有價證券 央行 NCD 票券 債券 放款 短期 中長期 Factoring				存款 活期 定期			
長投 固定資產 其他				金融債 其他 資本&公積			

(三)銀行的產品

甲、負債面

- **♦** Interest-Bearing & Non-Interest-Bearing Current Account
 - Checking Accounts
- **♦** Demand Deposit
 - Savings Account
- **♦** Time Deposit
- ◆ Saving Deposit(Non-Instant Access)
 - A Notice Account
- **♦** Structured Deposit

乙、資產面

- **♦** Personal & Corporate Loans
- ◆ On-Demand Overdraft(透支)
 - > 客戶事先安排
 - ▶ 銀行提前通知可收回
 - ▶ 通常每年 Renew
- **♦** Liquidity Facilities
 - ➤ Standing loan agreement, 放款額度。
 - ▶ 客戶付費用取得,可分四類
 - ✓ Back-up facility
 - ✓ Revolving credit facility
 - ✓ Overdraft:如上
 - ✓ Credit card:如下
- Credit Card

- **◆** Trade Finance: Letter of Credit
 - Commercial LC
 - Standby LC
- **♦** Syndicated Loan

Table 2.1 Vanilla commercial banking products

Retail products	Corporate banking products	Wholesale banking products
Assets		
Personal loan (unsecured, fixed-rate, or floating-rate)	Corporate loan, unsecured or secured	Money market (CD/CP)
Personal loan (secured, fixed-rate, or floating-rate)	Corporate loan, fixed-rate or floating-rate	Fixed income securities
Personal loan, bullet or amortising	Corporate loan, bullet or amortising	Equity market making
Residential mortgage	Commercial mortgage	Derivatives market making
Credit card	Credit card	
Overdraft	Overdraft	
Foreign exchange (spot)	Liquidity line, revolving credit, etc.	
	Trade finance (letter of credit, trade bill, guarantee, etc.)	
	Invoice discounting, factoring	
	Foreign exchange (spot and forward)	
Liabilities		
Current account	Current account	Structured products (MTNs, etc.)
Deposit account	Deposit account	Structured deposit
Notice and fixed term, fixed-rate deposit accounts	Structured deposit	

(四)銀行的風險

- ◆ 資本吸收損失的功能
 - ▶ 風險:未預期的損失
 - ▶ 風險的大小是資本數量的關鍵
- ◆ 如何衡量與管理整體部位的風險?
 - ▶ Basel 的風險管理架構觀點
 - ✓ 市場風險
 - ✓ 信用風險
 - ✓ 作業風險
 - ✓ 流動性風險

◆ 業務產生收入

▶ 收入的不確定性為風險

◆ 風險需要資本

▶ 收入的衡量亦是風險的衡量

◆ 收入的衡量越來越複雜

- ▶ 從簡單的利息收入變成價值的差異
- 》 資產不是只有產生利息收益
- ▶ 資產可以出售(證券化、交易活動)
- ▶ 價值需要評估
- ▶ MTM 不是只有交易活動需要

主題二 交易簿與銀行簿的分野

- ◆ 2008 年金融風暴,銀行交易簿產生重大損失。
- ◆ 交易簿的管理需要更嚴格的執行。
 - ▶ 認列交易部位要更嚴謹。
 - ▶ 部位管理要更嚴格。
- ◆ 重大變革有三:
 - ▶ 重新釐清交易簿與銀行簿的分野。
 - ✓ 基金權益投資的處理與外幣部位的處理。
 - ▶ 內部模型法的 VaR 計算, 改採 Expected Shortfall。
 - ✓ 損益認列的改變,以及無法模型化的風險因子之處理。
 - ▶ 標準法的風險計算採敏感性的架構。
 - ✓ 更符合 VaR 法的精神。
 - ✓ 重新校準 Basel 2.5 的標準法,對擁有簡單或小規模交易部位的銀行,在監理機關同意下可以繼續使用。

(一)交易簿

- ◆ 交易簿包含下面的工具(Instreuments):
 - ➤ 金融工具(Financial Instrument, FI)
 - ✔ 此金融工具對交易的一方產生金融資產,另一方產生金融負債。
 - ✓ 包含基本金融工具(Primary FI)與衍生金融工具(Derivative FI)。
 - ▶ 外匯(FX)
 - ➤ 商品(Commodities)
- ◆ 上述工具需要符合下面的特性:
 - ▶ 在買賣這些工具時,沒有法律上的限制。
 - ▶ 必須每日市價評估,並將其變動認入損益帳戶。

(甲)認列簿別的標準

- ◆ 銀行以下面任何一項(以上)目的持有的工具,必須在初始認列時即指定為交易簿,除非有特別條件。
 - > 短期再出售
 - ▶ 短期價格的變動獲利
 - ▶ 鎖定套利
 - ▶ 規避由前三項工具產生的風險
- ◆ 基於上列因素,持有的下列工具必須放入交易簿,除非有特別條件。
 - ▶ 在相關性交易組合的工具
 - ▶ 在銀行簿中會產生信用與權益淨短部位的工具
 - ▶ 因證券承銷承諾產生的工具
- ◆ 非上述兩者持有的工具,需放入銀行簿。

(二)銀行簿

- ◆ 下列工具必須列為銀行簿之部位。
 - > 未上市之權益部位
 - ▶ 證券化的躉售部位
 - > 不動產的部位,現貨與衍生商品
 - > 零售與中小型企業的信用
 - ▶ 基金權益投資,除非可符合下列任一條件
 - ✓ 可以直接看穿基金的每一成分
 - ✓ 可以每日取得價格資料及基金資訊
 - > 避險基金
 - ▶ 上列工具為標的物的衍生商品
 - ▶ 為規避上列工具風險所持有之工具

◆ 下列工具也須列於交易簿工具

- ▶ 被視為會計交易資產或負債所持有之工具
- ▶ 因造市活動產生之工具
- ▶ 歸屬銀行簿以外的權益基金投資
- ▶ 上市權益
- ▶ 交易相關的 Repo 形式交易
- ▶ 含嵌入式衍生商品的選擇權,
 - ✔ 此衍生商品與銀行簿售出的工具有關,連結到信用或權益風險
- ◆ 偏離上述原則之簿別分類,需逐筆提供證明,取得監管機構明白的核可。
- ▶ 若未取得同意,必需將之認列交易簿。
- ▶ 對於任何偏離上述原則之認列,銀行必須詳細且持續性地備妥文件。

主題三 市場風險管理的演化

(一)管理架構

- ◆ 交易簿的管理
 - ▶ 以市場風險涉險值(Market Risk Value at Risk, MVaR)的方法計算交易部位的風險。

◆ 銀行簿的管理

▶ 以信用風險涉險值(Credit Risk Value at Risk, CVaR)的方法計算放款與投資部位的風險。

◆ 存放利率與流動性的管理

- ▶ 以 ALM 系統來控管流動性與利率缺口(Interest Rate Gape)的風險。
- ▶ 利率缺口起源於存、放款不同期限所致。
- ▶ 流動性缺口源於現金的流出、流入時點不匹配所致。

◆ Basel 管制演進

Overview of Basel regulations

Basel III Basel II 1. 使用條件預期損失(ES, Expected Shortfall),取代原先特 內 定損失(VaR, Value at Risk) 部 2. 可以以 Desk 為適用範圍選擇 模 3. 需核可,方可採用 型 內 法 部 模 型 標 1. 採用 VaR 邏輯的價值變動分解 法 2. 需計算 Delta、Vega、Gamma 的數量 準 3. 價值的估計需與評價邏輯一致 法 4. 參數與模型的選用,需合乎評價邏輯 5. 包含信用違約損失 6. 考慮組合部位(ABS, CDO)的風險 7. 可以以 Desk 為適用範圍選擇 標 簡 1. 類似原先標準法 2. 需核可,方可採用 準 易 法 標 準 法

(二)Basel II 中的標準法

- ◆ 以權益證券為例,分為一般市場風險與個別風險兩個成分。
 - ▶ 一般市場風險計提8%,
 - ▶ 個別風險計提8%,若投資組合為高度流動性與充分分散者,計提4%。
- ◆ 選擇權的處理有三種方式,
 - ➤ 簡易法(Simplified Approach)
 - ➤ 敏感性分析法(Delta-plus method)
 - ▶ 情境矩陣分析法(Scenario matrix approach)

甲、簡易法(Simplified Approach)範例

◆ 買入股價 S = 10 元之股票現貨 100 股,買入此股票之賣權 100 股,K = 11。

Equity Risk =
$$V * 16\%$$
 (8% systematic + 8% individual) - Put Option In-the-money = $10 * 100 * 16\%$ - $(11 - 10) * 100 = 160 - 100 = 60$

乙、敏感性分析法(Delta-plus method)

- ◆ 將選擇權價值變動分解成三部分
 - Delta Capital = DeltaValue * 8%
 - Gamma Capital = 0.5 * gamma *(DeltaValue * 8%)²
 - Vega Capital = vega * (25% * sig)
- ◆ 範例:持有股票歐式買權之賣出部位(Sell Call),
 - K = 490 , T = 1 Year , S = 500 , r = 8% , sig = 20% ∘
 - $ightharpoonup C_0 = 65.48$, delta = -0.721, gamma = -0.0034, vega = 1.68 \circ

```
Delta Capital = (500 * 0.721) * 8\% = 28.84

Gamma Capital = 0.5 * 0.0034 * (500 * 8\%)^2 = 2.72

Vega Capital = 1.68 * (25\% * 20) = 8.40

Total = = 39.96
```

(三) Basel II 中的 VaR 法

- ◆ 使用 VaR 來衡量可能部位損失。
 - ▶ 交易簿部位為 VaR(99%, 10D)。
- ◆ 使用前一日 VaR_{t-1} 與前 60 營業日之平均風險值 VaR^A,取其大者在呈上乘數(k=3),為資本需求。

$$MRC = k \times \max[VaR_{t-1}, VaR^{A}]$$

$$VaR^{A} = \frac{1}{60} \left(\sum_{i=t-1}^{t-60} VaR_{i} \right)$$

$$VaR_t = VaR(99\%,10D)$$

◆ Basel 2.5 修正,要在加入壓力 VaR^S。

$$MRC = k \times \max[VaR_{t-1}, VaR^A] + VaR^S$$

(四)Basel II 在實務管理上的問題

- ◆ 目前沒有任何銀行可以使用 VaR 法申報資本
 - ▶ 銀行部位複雜,全面計算不容易
 - ▶ 監管單位設立高門檻
 - ▶ 亞洲區(日本除外)幾乎沒有銀行獲准

◆ 內部管理使用 VaR 已成標準

- > 實質衡量風險,較有意義
- ▶ 大部分的銀行與券商,都已建置 VaR 計算系統

◆ 內、外使用不一致性

- ▶ 管理與法定申報不一致
- ▶ 績效考核(RAROC)上,無法使用

主題四、Basel III 新標準法的邏輯

- (一)衍生商品的涉險值
 - ◆ 金融資產之價格呈隨機性的變動。
 - ➤ Samuelson(1965)指出,適當預期的價格,呈現出隨機性的變動。
 - ➤ EMH 也認為 Weak Form 的市場價格,呈現出 Random Walk 的變動。
 - ◆ 然而,金融資產價格在長期間內,往往有一些趨勢現象。
 - 外匯價格有循環性的變動。
 - ▶ 利率有長期的平均值。
 - ▶ 短期的波動性會高於長期的波動性。
 - ▶ 有時呈現大幅度的跳動。

◆ Black-Scholes(1973)模型的假設,

▶ 金融資產的價格遵行著所謂的擴散程序(Diffusion Process)

$$\frac{dS}{S_t} = \mu \cdot dt + \sigma \cdot dZ \tag{4.1}$$

- $\checkmark \frac{dS}{S_t} = \lim_{dt \to 0} \frac{S_{t+dt} S_t}{S_t} = \text{a Im } \frac{S_{t+dt} S_t}{S_t}$
- ✓ dt =瞬間的時間間格,
- ✓ µ=預期瞬間金融資產的報酬率,
- ✓ σ=預期瞬間金融資產報酬率的標準差,
- ✓ dZ = 隨機變數,期望值為零且變異數為dt之常態分配, $dZ \sim \Phi(0,dt)$ 。

◆ 以 Plain Vanilla 之歐式外幣選擇權買、賣權為例,定價公式如下

$$C = Se^{-yT}N(d_1) - Ke^{-rT}N(d_2)$$
(4.2)

$$P = Ke^{-rT}N(-d_2) - Se^{-yT}N(-d_1)$$
(4.3)

$$d_1 = \frac{\ln(\frac{S}{K}) + (r - y + \frac{\sigma^2}{2})T}{\sigma\sqrt{T}}$$

$$d_{2} = \frac{\ln(\frac{S}{K}) + (r - y - \frac{\sigma^{2}}{2})T}{\sigma\sqrt{T}} = d_{1} - \sigma\sqrt{T}$$

- ▶ N(x)表標準常態累積機率密度函數(CDF)在 x 的值。
- ▶ S = 即期匯率, K = 執行匯率, r = 本國貨幣資金成本,
- \triangleright y = 外國貨幣持有收益, \top = 到期日的時間, σ = 匯率之波動性。

<<Case 5 1 BSModel>>

甲、價值變動分解

- ◆ 如果我們採用風險因子分解的架構,則需要對選擇權價值變動,進行分解。
 - ▶ 衍生性金融商品其價格受到標的資產價格所影響,其風險來源即為標的資產。
 - ✓ 以選擇權為例,買權價格 C 為標的資產價格 S、波動性 σ 與時間 t 的函數

$$C = f(S, \sigma, t) \tag{4.4}$$

- ✓ 買權價格 C 可視為因變數,標的資產價格 S、波動性σ與時間 t 可視為自變數。
- 風險因子為標的資產價格 S、波動性 σ。
 - ✓ 實務上波動性 σ 是一個期限結構,不是一個定值。
 - ✓ 因此,波動性風險因子是各個時點的 σ_t 。

- ◆ 衍生商品價格的變動,可分解成自變數變動分量的相加。
 - ➤ 根據 Ito's Lemma,

$$dC = \frac{\partial C}{\partial S}dS + \frac{1}{2}\frac{\partial^2 C}{\partial S^2}(dS)^2 + \frac{\partial C}{\partial \sigma}d\sigma + \frac{\partial C}{\partial t}dt \qquad (4.5)$$

▶ 右式第一項可視為對選擇權價格變動的一階近似項,其中係數稱之為 Delta,

$$dC = \left[\frac{\partial C}{\partial S}\right] dS \tag{4.6}$$

- ◆ 選擇權價格變動量 dC 與標的資產價格變動量 dS 存在著線性關係。
 - ▶ Delta 描述衍生商品變動量約當之現貨資產價格變動量。
 - ▶ 針對衍生商品分別求的其約當現貨變動量,並入現貨投資組合中,計算投資組合之 VaR 即可。

乙、Delta與Gamma

◆ 使用 Center Difference 的方法,以減少誤差。

$$\Delta = \frac{\partial C}{\partial S} = \frac{C(S+h) - C(S-h)}{2h} \tag{4.7}$$

$$\Gamma = \frac{\partial^2 C}{\partial S^2} \approx \frac{C(S+h) - 2C(S) + C(S-h)}{h^2}$$
(4.8)

- ▶ 使用同一組亂數可使估計誤差較小。
- C(S, σ, r, t, h), C(S-h), C(S+h), 三個值。
- ◆ 由(1.2)與(1.3)式, Call 之 Delta Δε與 Put 之 Delta Δε可求得為

$$\Delta_C = \frac{\partial C}{\partial S} = e^{-yT} N(d_1)$$

$$\Delta_P = \frac{\partial P}{\partial S} = e^{-yT} [N(d_1) - 1]$$

丙、Vega、Theta與Rho

◆ 類似差分,

$$Vega = \frac{\partial C}{\partial \sigma} = \frac{C(\sigma + h) - C(\sigma)}{h}$$

$$Theta = \frac{\partial C}{\partial t} = \frac{C(t - h) - C(t)}{h}$$

$$delta = \frac{\partial C}{\partial r} \approx \frac{C(r + h) - C(r)}{h}$$

$$(4.10)$$

- ✓ Theta 日數減少。
- C(S, σ, r, t, h), C(σ+h), C(t-h), C(r+h), 四個值。
- ▶ 全部六個值,便足夠了。

◆ 由(1.2)與(1.3)式可得,選擇權之 Gamma 為

$$\Gamma = \frac{\partial \Delta}{\partial S} = e^{-yT} \frac{N'(d_1)}{S\sigma\sqrt{T}}$$
(4.12)

- 選擇權的 Gamma, Γ, 衡量股價變動下 Delta 的改變情形。
- ▶ 上式對買賣權都成立。
- ◆ 由(1.5)式可知,在考量二階非線性效果下,Gamma 會影響選擇權價格的變化, Delta-Gamma-Delta 法以下式計算其約當現貨部位的數量,來反映 Gamma 效果

$$\sqrt{\Delta^2 + \frac{1}{2} (\Gamma S \sigma)^2} \tag{4.13}$$

◆ BS 公式下,Greeks 解析解

Table 19.6 Greek letters for European options on an asset providing a yield at rate q.

Greek letter	Call option	Put option
Delta	$e^{-qT}N(d_1)$	$e^{-qT}[N(d_1)-1]$
Gamma	$\frac{N'(d_1)e^{-qT}}{S_0\sigma\sqrt{T}}$	$rac{N'(d_1)e^{-qT}}{S_0\sigma\sqrt{T}}$
Theta	$- S_0 N'(d_1) \sigma e^{-qT} / (2\sqrt{T}) + q S_0 N(d_1) e^{-qT} - rK e^{-rT} N(d_2)$	$- S_0 N'(d_1) \sigma e^{-qT} / (2\sqrt{T}) - q S_0 N(-d_1) e^{-qT} + r K e^{-rT} N(-d_2)$
Vega	$S_0\sqrt{T}N'(d_1)e^{-qT}$	$S_0\sqrt{T}N'(d_1)e^{-qT}$
Rho	$KTe^{-rT}N(d_2)$	$-KTe^{-rT}N(-d_2)$

(二)標準法計算架構

- ◆ 在標準法下,將風險資本分為三大模塊,
 - ▶ 使用敏感性基礎法資本(Sensitivity-based method, SBM)捕捉系統性的市場風險。下分三項風險, 考慮相關性彙整。
 - ✓ Delta 風險資本:反應 Delta 風險因子
 - ✓ Vega 風險資本:反應 Vega 風險因子
 - ✓ Curvature 風險資本:反應 Curvature 風險因子
 - ▶ 使用違約風險資本(Default risk capital, DRC)捕捉系統性的信用風險。
 - ✓ 交易簿的部位,有違約的可能性。
 - ▶ 使用殘差風險附加資本 (RRAO)來捕捉殘差的市場風險。

- ◆ 所有交易部位都要計算 Delta Risk, 有下述條件的部位, 要計算 Vega 與 Curvature Risk。
 - ▶ 任何工具具有權利性質,
 - ▶ 任何有嵌入式的提前支付權利的工具,
 - ▶ 工具的現金流量無法表示為標的資產名目本金的線性函數,
 - ▶ 針對有 Delta 風險的工具,可能需要計算其曲度風險,這些工具不限於前三項。
 - ✓ 可以將沒有權利性質的工具一併併入曲度風險的計算。
 - ✓ 處理須一致性。
 - ✓ 曲度風險需實施於所有 SBM 計算的工具上。
 - ▶ 每個月要計算,申報監理機關。(MAR20.2)

- ◆ 敏感性基礎法的標準法,將部位的市場風險分為七大類別(模塊, Building Blocks),
 - > 一般利率風險
 - ▶ 信用價差風險(CSR):非證券化
 - ▶ 信用價差風險:證券化(無相關交易組合, non-CTP)
 - ▶ 信用價差風險:證券化(有相關交易組合, CTP)
 - ▶ 權益風險
 - ▶ 外匯風險
 - ▶ 商品風險
- ◆ 類別彙整合併時,直接相加。

- ◆ 每一大類別的風險,可以將相似的風險因子集合成一個 Bucket,
 - ▶ 新興市場電信股票為一個 Bucket,先進市場電信股票為另一個 Bucket。
 - ▶ 能源類的電力與炭交易商品為一個 Bucket。
 - ▶ 一個外匯匯率為一個 Bucket。
 - ▶ 一個幣別的一般利率風險為一個 Bucket。
 - ✓ 0.25 年內的利率為一個 Time Bucket(Risk Factor), 0.25 年到 0.5 年的利率為另一個 Time Bucket(Risk Factor)。
 - ▶ 投資級的主權信用與多邊開發銀行信用為一個 Bucket,投資級的科技與電信公司信用為另一個 Bucket。
- ◆ Buckets 內(Intra-Bucket)與 Buckets 間(Inter-Buckets)的風險彙整,要考慮相關性。
 - ▶ Basel 文件有公式,很複雜。
- ◆ 相關性彙整要考慮不同的情境。
 - ▶ 正向、中立、負向。
 - ✓ 取其大者為市場風險資本需求。
 - ▶ 將市場風險資本需求乘上 12.5,為市場風險資產數量。

主題五、SBM 下選擇權交易的風險計算範例

(一)Delta 的計算

- ◆ 一項金融工具對一個風險因子變化量的一階微分,稱之為 Delta,
 - ▶ 令 V 表工具價格, S 為因子數量, 一階線性變化下,

$$dV = \left[\frac{\partial V}{\partial S}\right] dS$$

$$\Delta = \left[\frac{\partial \mathbf{V}}{\partial S} \right]$$

- ✓ △就是 Delta, Basel 中是以差分的方式來定義。
- ▶ 對於現貨之類的線性工具(債券除外), Delta 根據定義就是 1.0。

$$\Delta = \left\lceil \frac{\partial S}{\partial S} \right\rceil = 1.0$$

◆ 在權益風險中,令第 k 個風險因子價格為 EQ_k,金融工具 i 的價格為 V_i,則 Delta 風險的 敏感性(Sensitivity),一般也稱 Delta,

$$s_k = \frac{V_i(1.01EQ_k) - V_i(EQ_k)}{0.01}$$

- ▶ EQk上漲 1%, Vi的金額變動量乘上 100 倍(MAR 21.21(3), p40)。
- ▶ 此 Delta 的單位是\$,不是教科書中的約當現貨數量。
 - ✓ 方便計算,不用再考慮數量等問題。
- ◆ 每一項風險因子,有其風險權數,反映其波動性。
 - ▶ 根據 Basel 文件(MAR 21.77, p57), 大型新興市場電信股票權數為 60%,
 - ▶ 根據 Basel 文件(MAR 21.77, p57), 大型先進市場電信股票權數為 35%。
 - ▶ 同一風險因子各工具的 Delta 要淨額結算。
- ◆ Delta 風險敏感性乘上風險權數(Risk Weight),求得加權敏感性(Weighted Sensitivity)。 $WS_k = RW_k \cdot s_k$

甲、Bucket內的彙整

- ◆ 同一個 Bucket 內的各個風險因子,比此應有較高的相關性。
 - ▶ 新興市場電信股票間的相關性,高於與他類 Bucket 內的股票。
 - ▶ Basel 文件有交代相關係數的計算。
- ◆ 對於 Bucket b 的加權風險敏感性, K_b, 計算如下,

$$K_b = \sqrt{\max\left(0, \sum_{k} WS_k^2 + \sum_{k} \sum_{k \neq l} \rho_{kl} WS_k WS_l\right)}$$

▶ 根據 Basel 文件(MAR 21.78(2)(a), p57), 大型新興市場電信股票間的相關性為 15%。

乙、Buckets間的彙整

- ◆ 不同 Bucket 間的風險彙整,也要考慮相關性。
- ▶ Basel 文件有交代相關係數的計算。
- ◆ 首先,計算 Bucket b 的 S_b與 Bucket b 的 S_c如下,

$$\mathbf{S}_b = \sum_k \mathbf{W} \mathbf{S}_k$$
 , $\mathbf{S}_c = \sum_k \mathbf{W} \mathbf{S}_k$

▶ 如果 Sb與 Sc的值,會造成下面式子負值,則改變計算公式。

if
$$\sum_{b} K_b^2 + \sum_{b} \sum_{b \neq c} \gamma_{bc} S_b S_c < 0$$

$$S_b = \max \left[\min \left(\sum_{k} WS_k, K_b \right), -K_b \right]$$

$$S_c = \max \left[\min \left(\sum_{k} W S_k, K_c \right), -K_c \right]$$

◆ Delta 風險資本可計算如下,

Delta =
$$\sqrt{\sum_{b} K_{b}^{2} + \sum_{b} \sum_{c \neq b} \gamma_{bc} S_{b} S_{c}}$$

▶ 根據 Basel 文件(MAR 21.80(1), p58), 大型新興市場電信股票與大型先進市場電信股票跨 Bucket 之間的相關性為 15%。

丙、情境計算

- ◆ 上面計算要分三種情境計算(MAR 21.6, p28),
 - ▶ 情境一,正常相關:如前述。
 - ho 情境二,高度相關: ho_{kl} 與 γ_{bc} 皆乘上 1.25,但最大為 100%。
 - ▶ 情境三,低度相關: ρ_{kl}與γ_{bc}修正如下,

$$\rho_{kl}^{low} = \max(2 \times \rho_{kl} - 100\%, 75\% \times \rho_{kl})$$

$$\gamma_{bc}^{low} = \max(2 \times \gamma_{bc} - 100\%, 75\% \times \gamma_{bc})$$

- ◆ 每個情境計算 Delta 風險資本、Vega 風險資本、Curvature 風險資本。
 - ▶ 將三者直接相加,取其大者,為其總資本需求。
 - ▶ 可以直接用於全交易簿部位。
 - ▶ 亦可於 Trading desk 的範圍,各 Desk 計算。

(二)計算範例

<<Case_5_2_Delta>>

- ◆ 評估日,2011/7/13,市場利率如下,買入一單位陽春型股票 Call,九個月後到期,執行價格皆為 100。
 - ▶ 標的資產為 Bucket 6 之股票,股價 S = 100。

Date	DiscountFunc	ZeroRate
2011/7/13	1.000000	1.7043%
2011/10/13	0.995551	1.7848%
2012/1/13	0.990815	1.8474%
2012/7/13	0.982055	1.8223%
2013/7/13	0.963877	1.8541%
2014/7/13	0.944892	1.9057%
2016/7/13	0.905235	2.0090%
2021/7/13	0.813707	2.0829%
2026/7/13	0.734010	2.0829%
2031/7/13	0.662119	2.0829%
2041/7/13	0.538771	2.0829%

◆ 波動性期限結構,

Dates	Strikes	0.5Y	1Y	3Y	5Y	10Y	15Y	20Y	
2012/1/13	80		25%	30%	35%	40%	35%	30%	30%
2012/7/13	90		25%	30%	35%	40%	35 %	30%	30%
2014/7/13	100		25%	30%	35%	40%	35%	30%	30%
2016/7/13	110		25%	30%	35%	40%	35%	30%	30%
2021/7/13	120		25%	30%	35%	40%	35 %	30%	30%
l					<u> </u>		<u> </u>	<u> </u>	

2026/7/13 2031/7/13

◆ 此工具的 Delta 數值可計算如下,

VØ	V1	. d'	V :	sk	RW	WS
	10.453	11.032	0.579	57.909	35	% 20.268

Kb	20.27

(三)Vega 的定義

- ◆ 一項金融工具對資產價格波動性變化量的一階微分,稱之為 Vega,
 - 令 V表工具價格,σ為因子價格的波動性,一階線性變化下,

$$d\mathbf{V} = \left[\frac{\partial \mathbf{V}}{\partial \boldsymbol{\sigma}}\right] d\boldsymbol{\sigma}$$

$$\nu = \left[\frac{\partial \mathbf{V}}{\partial \boldsymbol{\sigma}}\right]$$

- ✓ v就是 Vega, Basel 中是以差分的方式來定義,。
- > 沒有到期日的選擇權,指定為最長的期限。
- ▶ 多重執行價格或阻隔價格者,以內部評價方式,應對到其值。
 - ✓ 沒有執行價格或阻隔價格者,亦同。

- ◆ Equity 的 Vega Risk 的風險因子,為標的權益現貨的隱含波動性,以到期日為其維度。
 - ▶ 需要映射到,0.5年、1年、3年、5年、10年。
- ◆ Vega 定義
 - ▶ 選擇權市場價值變動,對波動性微小變動的比值,

$$vega = \frac{\partial V_i}{\partial \sigma_i}$$

- ✓ 金融工具i的價格為 V_i , σ_i 為其隱含波動性。
- ✓ 此處的波動性變動量可用 0.0001。(Explanatory note, page 19.)
- ightharpoonup 在權益風險中,令第 k 個風險因子的 Vega 敏感性為, $s_k = vega \times implied _volatility$
- ◆ Vega Risk 的 Bucket 定義與 Delta Risk 相同,

◆ Vega Risk 的風險權數表,

Regulatory liquidity horizon, $LH_{risk\ class}$ and risk weights per risk class

Table 13

Risk class	LH _{risk class}	Risk weights
GIRR	60	100%
CSR non-securitisations	120	100%
CSR securitisations (CTP)	120	100%
CSR securitisations (non-CTP)	120	100%
Equity (large cap and indices)	20	77.78%
Equity (small cap and other sector)	60	100%
Commodity	120	100%
FX	40	100%

$$RW_{k} = \min \left[RW_{\sigma} \cdot \frac{\sqrt{LH_{risk_class}}}{\sqrt{10}}, 100\% \right]$$

$$\sim RW_{\sigma} = 55\%$$

✓ risk _class : Table _13

- ◆ Vega 風險量乘上風險權數(Risk Weight),求得加權敏感性(Weighted Sensitivity)。 $WS_k = RW_k \cdot s_k$
- ◆ Intra-Bucket 相關性(non-GIRR):

$$\rho_{kl} = \min[\rho_{kl}^{(Delta)} \cdot \rho_{kl}^{(option_maturity)}, 1]$$

- ρ_{kl} :Delta Risk 中,風險因子k與l的相關性。
 - ✓ 例如,權益選擇權 X 有 Vega 風險因子 k,權益選擇權 Y 有 Vega 風險因子 1,則 $\rho_{kl}^{(Delta)}$ 便是適用於 X 與 Y 的 Delta 相關性。

$$\rho_{kl}^{(option_maturity)} = \exp\left(-\alpha \frac{|T_k - T_l|}{\min[T_k, T_l]}\right)$$

- \checkmark $\alpha = 1\%$
- ✓ T_k表選擇權到期時間,從VR_k計算起算,以年為單位。
- ◆ Inter-Bucket 相關性:
 - ightharpoons 不同 Buckets,彙整 Vega 風險部位時,參數 γ_{bc} 設定同 Delta 風險部位,為 50%。

(四)計算範例

- ◆ 同前例,評估日,2011/7/13。
 - ▶ 標的資產為 Bucket 6 之股票,股價 S = 100,執行價格 K = 100。

		dsig	0.01%				
ini V0	Vi						
10.453	10.454	10.455	10.453	10.453	10.453	10.453	10.453
vega	10.03	23.93	0.00	0.00	0.00	0.00	0.00
sk	2.51	7.18	0.00	0.00	0.00	0.00	0.00
		RW(sig)	55%	LH	20		
RW	0.7778	0.7778	0.7778	0.7778	0.7778	0.7778	0.7778
ws	1.950	5.585	0.000	0.000	0.000	0.000	0.000

rho_kl	1.00					
		1.950	5.585	1.950		
rho_option_maturity	0.990			5.585		
alpha	0.01					
				34.990		
rho	0.990					
		1.950	5.585	0	0.990	1.950
				0.990	0	5.585
				5.5290	1.9305	
						21.562
		Kb	7.5201			

(五)Curvature 的計算

- ◆ Curvature Risk 主要是反映工具價值對風險因子變化,產生的非線性效果。
 - ▶ 通常當風險因子的變化量大時,以線性效果衡量工具價值變動,誤差會大。
- ◆ 以權益選擇權為例,敏感性是選擇權真實價值的變動,減去以 Delta 估計的價值變動量。
 - ▶ 這時的標的權益價格,通常會有大量的變動。
 - ▶ 以前例,Telco D 股票選擇權為例,我們會對標的股價施以 35%的價格變動。

◆ 數學上表示為,

▶ 令 V_i表選擇權價格, S_k為標的權益價格,

$$CVR_k = [V_i(S_k \pm dS_k) - V_i(S_k)] - RW_k^{Curvature} \times S_{ik}, \quad dS_k = 0.35 \times S_k$$

$$CVR_k = dV_i(S_k) - \left[\frac{\partial V_i}{\partial S_k}\right] dS_k, \quad dS_k = 0.35 \times S_k$$

- ✓ 計算時,假設波動性 σ 為定值不變。
- ✓ RW^{Curvature} 等於 Delta 的風險權數。(MAR21.98, p63)
- ▶ 適用標的股價的變動量,參考 Table 10, Bucket 6為35%的上下震盪。

◆ 上、下震盪,計算 Curvature Risk 資本需求,

$$CVR_{k}^{+} = -\sum_{i} \left\{ V_{i} \left(x_{k}^{RW(Curvature)^{+}} \right) - V_{i}(x_{k}) - RW_{k}^{Curvature} \times s_{ik} \right\}$$

$$CVR_{k}^{-} = -\sum_{i} \left\{ V_{i} \left(x_{k}^{RW(Curvature)^{-}} \right) - V_{i}(x_{k}) + RW_{k}^{Curvature} \times s_{ik} \right\}$$

- ▶ FX 的 Curvature Risk 資本需求有特別調整。(MAR21.98, p63)
 - ✓ 沒有參考到 Reporting CCY,可以除 1.5。
 - ✓ 監理機管可以全部除 1.5。

甲、Bucket內的彙整

- ◆ 使用 Bucket 對應的相關係數,彙整 Bucket 資本需求。
 - ▶ 對於 Bucket b 的加權風險敏感性,K_b,計算如下,

$$\mathbf{K}_b = \max(K_b^+, K_b^-)$$

✓ 相同則取 Up。

$$K_{b}^{+} = \sqrt{\max\left(0, \sum_{k} \max(CVR_{k}^{+}, 0)^{2} + \sum_{l \neq k} \sum_{k} \rho_{kl}CVR_{k}^{+}CVR_{l}^{+}\psi(CVR_{k}^{+}, CVR_{l}^{+})\right)}$$

$$K_{b}^{-} = \sqrt{\max\left(0, \sum_{k} \max(CVR_{k}^{-}, 0)^{2} + \sum_{l \neq k} \sum_{k} \rho_{kl}CVR_{k}^{-}CVR_{l}^{-}\psi(CVR_{k}^{-}, CVR_{l}^{-})\right)}$$

$$\psi(x, y) = \begin{cases} 1, & \text{otherwise} \\ 0, & x < 0, y < 0 \end{cases}$$

- ▶ 根據 Basel 文件(MAR 21.78(2)(a), p57), 大型新興市場電信股票間的相關性為 15%。
- ▶ Intra-Bucket Curvature 的相關性為 Delta 計算相關性的平方,15%*15%=2.25%。

乙、Buckets間的彙整

- ◆ 不同 Bucket 間的風險彙整,也要考慮相關性。
 - ▶ Basel 文件有交代相關係數的計算。
- ◆ 首先,計算 Bucket b 的 S_b如下,
 - > 如果前面選擇向上震盪,

$$S_b = \sum_k CVR_k^+$$

> 如果前面選擇向下震盪,

$$S_b = \sum_k CVR_k^-$$

◆ 其次,如下定義ψ。

$$\psi(x, y) = \begin{cases} 1, & \text{otherwise} \\ 0, & x < 0, y < 0 \end{cases}$$

◆ Curvature 風險資本可計算如下,

Curvature_Risk =
$$\sqrt{\max\left(0, \sum_{b} K_{b}^{2} + \sum_{b \neq c} \sum_{b} \gamma_{bc} S_{b} S_{c} \psi(S_{b}, S_{c})\right)}$$

- ▶ 根據 Basel 文件(MAR 21.80(1), p58), 大型新興市場電信股票與大型先進市場電信股票跨 Bucket 之間的相關性為 15%。
- ▶ Inter-Bucket Curvature 的相關性為 Delta 計算相關性的平方,15%*15%=2.25%。

丙、情境計算

- ◆ 上面計算要分三種情境計算(MAR 21.6, p28),
 - ▶ 情境一,正常相關:如前述。
 - ho 情境二,高度相關: ho_{kl} 與 ho_{bc} 皆乘上 1.25,但最大為 100%。
 - ▶ 情境三,低度相關:ρ_{kl}與γ_{bc}修正如下,

$$\rho_{kl}^{low} = \max(2 \times \rho_{kl} - 100\%, 75\% \times \rho_{kl})$$

$$\gamma_{bc}^{low} = \max(2 \times \gamma_{bc} - 100\%, 75\% \times \gamma_{bc})$$

- ◆ 有三種情況要計算,每個情境計算 Delta、Vega 與 Curvature 風險資本。
 - ▶ 將三者直接相加,取其大者,為其總資本需求。
 - ▶ 可以直接用於全交易簿部位。
 - ▶ 亦可於 Trading desk 的範圍,各 Desk 計算。

(六)計算範例

- ◆ 評價日 2011/7/13, 兩個 Vanilla 選擇權部位, 相同標的資產, 電信股 Bucket 6, S=100。
 - ➤ Buy Call and Buy Put,9 M 後到期,K=100。
 - ➤ Sell Call and Sell Put,9 M 後到期,K=100。

♦ Long Portfolio

Undderlying	Bucket 6	RW	0.350	rho_kl	1.000	same issuer	
				gamma_bc	0.150		
			V	dv	s	WS	
Call	S	100	10.7581				
Long	1	101	11.3475	0.5894	58.9365	20.6278	
		135	38.3005	27.5423			
		65	0.3911	-10.3670			
			V	dv	s	ws	
Put	S	100	8.7465				
Long	1	101	8.3358	-0.4106	-41.0635	-14.3722	
		135	1.2888	-7.4577			
		65	33.3794	24.6330			
Long Option							
S		V0	V1	dV	RW	sk	CVR
135	Call	10.7581	38.3005	27.54	0.35	58.9365	-6.91
	Put	8.7465	1.2888	-7.46	0.35	-41.0635	-6.91
						CVR+	-13.83
65	Call	10.7581	0.3911	-10.37	0.35	58.9365	-10.26
	Put	8.7465	33.3794	24.63	0.35	-41.0635	-10.26
						CVR-	-20.52

	max(CVR+,0)^2
Kb+^2	0
	max(CVR-,0)^2
Kb-^2	0
Kb	0

♦ Short Portfolio

			V	dv	s	ws	
Call	S	100	-10.7581				
Short	-1	101	-11.3475	-0.5894	-58.9365	-20.6278	
		135	-38.3005	-27.5423			
		65	-0.3911	10.3670			
			V	dv	s	ws	
Put	S	100	-8.7465				
Short	-1	101	-8.3358	0.4106	41.0635	14.3722	
		135	-1.2888	7.4577			
		65	-33.3794	-24.6330			
Short Option							
S		V0	V1	dV	RW	sk	CVR
135	Call	-10.7581	-38.3005	-27.54	0.35	-58.9365	6.91
	Put	-8.7465	-1.2888	7.46	0.35	41.0635	6.91
						CVR+	13.83
65	Call	-10.7581	-0.3911	10.37	0.35	-58.9365	10.26
	Put	-8.7465	-33.3794	-24.63	0.35	41.0635	10.26
						CVR-	20.52

	max(CVR+,0)^2
Kb+^2	191.25
Kb+	13.83
	max(CVR-,0)^2
Kb-^2	421.13
_	
Kb-	20.52
Kb	20.52

六、下一步的發展

- ◆ 全面性的風險管理(ERM)
- ◆ 現值的概念進入到所有的層面
- ◆ VaR 的概念全面被落實
- ◆ 財務評價模型被充分使用
- ◆ 高能運算能力(HPC)與平行運算勢在必行
- ◆ 與財務計算結合的多核與異質性計算(CPU+GPU+FPGA)的能力

