Sparse Logit Sampling: Accelerating Knowledge Distillation in LLMs

Anshumann*, Mohd Abbas Zaidi*, Akhil Kedia*, Jinwoo Ahn, Taehwak Kwon, Kangwook

Lee, Haejun Lee, Joohyung Lee

Paper & code!

anshu.mann, abbas.zaidi, akhil.kedia, jinwoo.ahn, taehwak.kwon@samsung.com

Samsung Research

1. Contributions

- 1. Run teacher once for KD for pre-training/SFT, pre-compute/store teacher soft-labels
- 2. Unlike top-K methods, provides **unbiased estimate** of teacher probs
- 3. Preserves KL Divergence **gradients** in expectation and empirically

3. Vanilla Top-K Distillation

- 1. Store only Top-K largest probs, eg. Top-100
- 2. Using KLD loss, $L = \sum_{i=1}^{|V|} t_i \log \frac{t_i}{p_i}$, student learns **upscaled targets** $p_i = \frac{t_i}{\sum t_i}$
- 3. Missing any supervision in the tail
- 4. Worse than no KD for Top-25! 60% of performance of Full-KD at Top-100

5. Random Sampling KD Analysis

- 1. Saved labels very sparse -12 for N=50
- 2. Only ≈ 36 GB of storage for 1B training tokens.
- 3. 2 3x compute savings of teacher
- 4. Well-calibrated student!
- 5. Mini-batch gradient perfectly matches FullKD

Method	Δ Angle \downarrow	Norm Ratio		
Top-K 12	58°	2.4		
Top-K 50	48°	1.8		
Top-K 300	30°	1.3		
Ours12	4°	1.0		
	No Grad Error			

7. Future Work

- 1. Larger Scale, Continual Pre-training, SFT/IF
- Better sampling (without replacement?)Optimal sampling depends on student perf..
- 3. Cross-tokenizer Offline KD Vocab mismatch?
- 4. Offline KD of Hidden States Invert LM Head and Softmax?

https://github.com/akhilkedia/RandomSamplingKD

2. Advantages

- 1. Store only 12 soft-labels/token, < 10% compute overhead
- 2. Comparable performance to using Full KD
- 3. The student in **well-calibrated**, improves 0-shot, IF scores, speculative decoding
- 4. 300M to 3B student, for 10B to 1T train tokens

4. Proposed: Random Sampling KD

Don't truncate to top-K, sample instead!

- 1. Sample tokens (with replacement) from teacher probability dist. for N rounds
- 2. For each token i, save sampled freqs $\frac{\text{count}_i}{N}$
- 3. Use saved freqs as soft label targets for KLD.

6. Results

Unique Tokens	LM Loss↓	ECE % ↓	Speculative Accept % ↑	0-shot Score ↑
CE	2.81	0.4	59.95	40.4
2.4	2.77	1.0	61.47	42.1
5.0	2.75	1.1	61.83	42.6
12.1	2.75	0.8	61.85	43.0
24.5	2.75	1.1	61.93	43.1
57.0	2.74	0.9	61.97	42.9
FullKD	2.75	0.7	62.02	42.1

 \approx 12 labels sufficient 3B → 300M

Method	LM Loss↓	ECE % ↓	Speculative Accept % ↑	0-shot Score ↑	IF SFT Score ↑	
CE	2.37	0.3	71.1	55.6	54.5	
Top-K 12	2.50	4.7	73.0	56.6	57.7	$8B \rightarrow 3B$
Top-K 50	2.40	1.8	73.1	57.1	58.3	_
Ours (12)	2.35	0.2	73.2	57.5	59.4	
FullKD	2.34	0.2	73.4	57.5	58.4	

Dataset	CE	Top-K 12	Top-K 50	Ours 12	FullKD
Dolly	64.2	59.0	65.4	71.3	66.1
SelfInst	64.6	60.9	63.4	73.1	66.1
Vicuna	49.1	48.9	53.1	58.2	56.9
S-NI	62.4	63.4	62.6	63.8	60.7
UnNI	60.4	58.0	58.3	61.4	61.0
Avg	60.2	58.0	60.6	65.6	62.2

Better than FullKD for NLG

Sampling noise = Regularization?