Curneu MedTech Innovations Private Limited

SD03Q03-1

Problem Statement 1: - Mandatory

A dataset labelled based on fruit height, width, mass and colour score is given in fruits.xlsx. A classifier based on k Nearest Neighbour (KNN) algorithm is to be crafted for classification.

- Generate scatter plots for various combination of parameters and do the feature engineering meaning thereby which parameters of best suited to build the classifier.
- Split the data into test and training split.
- Building a classifier using KNN from scratch.
- Figure out the best value of k with highest r_score.
- Run at least three test cases on the parameter and assess the fruit using the classifier.
- Only use python

Dataset:

The given dataset consists of 6 columns and 59 rows. "Fruit_label, Fruit_name, mass, width, height, color_score" are columns where "fruit_name" column consists the name of the fruits and the rest have the details (in numbers) of the fruits.

	fruit_label	fruit_name	mass	width	height	color_score
0	1	apple	192	8.4	7.3	0.55
1	1	apple	180	8.0	6.8	0.59
2	1	apple	176	7.4	7.2	0.60
3	2	mandarin	86	6.2	4.7	0.80
4	2	mandarin	84	6.0	4.6	0.79

Pre-processing:

The data Pre-processing has been done by plotting scatter plots for each and every combinations of the parameters. In those scatter plots the combination between "width" and "color_score" has been the best. "width" and "Color_score" had been taken as feature variables. "Fruit_label" has been taken as predictor variable. The dataset has been scaled by Scalar using Sklearn.metrics.

Columns of data frame:

```
Index(['fruit_label', 'fruit_name', 'mass', 'width', 'height', 'color_s
core'], dtype='object')
```

Describe dataframe:

	fruit_label	mass	width	height	color_score
count	59.000000	59.000000	59.000000	59.000000	59.000000
mean	2.542373	163.118644	7.105085	7.693220	0.762881
std	1.208048	55.018832	0.816938	1.361017	0.076857
min	1.000000	76.000000	5.800000	4.000000	0.550000
25%	1.000000	140.000000	6.600000	7.200000	0.720000
50%	3.000000	158.000000	7.200000	7.600000	0.750000
75%	4.000000	177.000000	7.500000	8.200000	0.810000
max	4.000000	362.000000	9.600000	10.500000	0.930000

Plots for various combination of parameters:

Mass,Width:

Mass,Height:

Mass,color_score:

Correlation table:

	mass	width	height	color_score
mass	1.000000	0.877687	0.609571	-0.079794
width	0.877687	1.000000	0.396848	-0.076576
height	0.609571	0.396848	1.000000	-0.247047
color_score	-0.079794	-0.076576	-0.247047	1.000000

KNN from scratch:

K-Nearest Neighbour is one of the simplest Machine Learning algorithms based on Supervised Learning technique

The data is split in into train and test data and are scaled by using Scalar library. The KNN model is fitted to train and test datasets.

The model is created with an accuracy of 91.666

The best value for k with highest R score has been figured out by finding the K-values with less mean errors.

Text(0, 0.5, 'Mean Error')

Using the predict function the test cases have been performed on the train and test dataset.

Code link:

 $\frac{https://github.com/shreetheerthaen/Curneu-Assessment/blob/main/fruits/Fruits_047.ipynb}{}$