

Problems

Chapter

- How to build a scalable network that will support different applications?
- What is a computer network?
- How is a computer network different from other types of networks?
- What is a computer network architecture?

POSICIAL MAJORIAN

Chapter Outline

- Applications
- Requirements
- Network Architecture
- Implementing Network Software
- Performance

M< 3

Chapter Goal

- Exploring the requirements that different applications and different communities place on the computer network
- Introducing the idea of network architecture
- Introducing some key elements in implementing Network Software
- Define key metrics that will be used to evaluate the performance of computer network

MK ROLEAN KAUFFANN

Applications

- Most people know about the Internet (a computer network) through applications
 - World Wide Web
 - Email
 - Online Social Network
 - Streaming Audio Video
 - File Sharing
 - Instant Messaging
 -

M< 5

Example of an application

A multimedia application including video-conferencing

M<

6

Application Protocol

- URL
 - Uniform resource locater
 - http://www.cs.princeton.edu/~llp/index.html
- HTTP
 - Hyper Text Transfer Protocol
- TCP
 - Transmission Control Protocol
- 17 messages for one URL request
 - 6 to find the IP (Internet Protocol) address
 - 3 for connection establishment of TCP
 - 4 for HTTP request and acknowledgement
 - Request: I got your request and I will send the data
 - Reply: Here is the data you requested; I got the data
 - 4 messages for tearing down TCP connection

Requirements

- Application Programmer
 - List the services that his application needs: delay bounded delivery of data
- Network Designer
 - Design a cost-effective network with sharable resources
- Network Provider
 - List the characteristics of a system that is easy to manage

NICA KAUPAN

Cost-Effective Resource Sharing

Multiplexing multiple logical flows over a single physical link

Resource: links and nodes

- How to share a link?
 - Multiplexing
 - De-multiplexing
 - Synchronous Time-division Multiplexing
 - Time slots/data transmitted in predetermined slots

VI<

11

Cost-Effective Resource Sharing

A switch multiplexing packets from multiple sources onto one shared link

- FDM: Frequency Division Multiplexing
- Statistical Multiplexing
 - Data is transmitted based on demand of each flow.
 - What is a flow?
 - Packets vs. Messages
 - FIFO, Round-Robin, Priorities (Quality-of-Service (QoS))
 - Congested?
- LAN, MAN, WAN
- SAN (System Area Networks

M<

12

Support for Common Services

- Logical Channels
 - Application-to-Application communication path or a

Process communicating over an abstract channel

M<

13

Common Communication Patterns

- Client/Server
- Two types of communication channel
 - Request/Reply Channels
 - Message Stream Channels

M<

14

Reliability

- Network should hide the errors
- Bits are lost
 - Bit errors (1 to a 0, and vice versa)
 - Burst errors several consecutive errors
- Packets are lost (Congestion)
- Links and Node failures
- Messages are delayed
- Messages are delivered out-of-order
- Third parties eavesdrop

