

Class Objectives

By the end of today's class you will understand:

Mysticism of Machine Learning

Line Equation

$$y = mx + b$$

m = slope

b = y-intercept (the value of y when x = 0)

5

Linear Regression: Find the Line That Best Describes the Data

Best Fit Line

7

Regression Metrics

8

Instructor Demonstration Linear Regression

Multiple Linear Regression

Instructor Demonstration Multiple Regression for Time Series Data

Multiple Regression

Each week (X) is assigned its weight, or coefficient.

$$y = b_0 + b_1 X_1 + b_2 X_2 \dots$$

Multiple Regression

Overfitting

Underfit

Overfit

Overfitting

Overfit models learn the 'noise' found in the training data, rather than just the 'signal'

Variance vs Bias

Parsimony

Instructor Demonstration Train, Test, Split

A Rolling Out-of-Sample Approach

