DEEP LEARNING ASSIGNMENTS

Assignment 1 - Predict Diabetes Onset with an ANN

Dataset: Pima Indians Diabetes (UCI)

Task: Build and optimise an ANN that predicts the Outcome (diagnosed diabetes).

Steps:

🚣 Problem framing	Define baseline metric (e.g., ROC-AUC ≥ 0.80).
. Data handling	Load the CSV from the URL, inspect class balance, split 60-20-20 (train/val/test).
* Pre-processing	Scale numeric features, handle any zeros as missing for medical realism.
Modelling	1) Baseline logistic regression 2) Build a Keras ANN (≥ 2 hidden layers).
Optimisation	Experiment with units, activation functions, dropout, learning-rate schedules, early-stopping.
ii Evaluation	Accuracy, precision/recall/F1, ROC-AUC, confusion-matrix heat-map.
Reporting	Compare ANN vs. baseline, justify architecture choices, discuss error patterns.

Stretch ideas

- K-Fold cross-validation with tf.keras.wrappers.scikit_learn.KerasClassifier.
- Hyperparameter search via KerasTuner or Optuna.
- SHAP feature-importance plots.

Starter notebook: Provided in the assignment folder

Submit:

Link to completed notebook with the outputs in it

Assignment 2 - Classify Histopathology Images with a CNN

Dataset: PathMNIST (9-class tissue-type images, part of MedMNIST). Small (4-MB) yet realistic.

Task: Train a CNN in PyTorch to label pathology tiles.

👲 Data setup	Use medmnist to download pathmnist; visualise a grid of images per class.
<u>I</u> Model	Implement a CNN (\geq 3 conv blocks) from scratch or finetune a pretrained ResNet-18.
Training loop	Leverage GPU, track loss/accuracy curves, use early stopping & LR scheduler.
ii Evaluation	Overall accuracy plus macro & weighted F1, confusion matrix; discuss misclassifications.
Explainability	Optional: Grad-CAM or Torch-CAM on a few tiles.
Report Re	Describe augmentation choices, architecture reasoning, and how performance could improve with more data.

Stretch ideas

- MixUp or CutMix augmentations.
- Class-imbalance handling with focal-loss or weighted sampling.
- Export to TorchServe or ONNX for inference demo.

Starter notebook:

Provided with the assignment.

Submit:

Link to completed notebook with the outputs

Assignment 3 - Sentiment Analysis with an LSTM

Dataset: IMDB Movie Reviews (large movie-review corpus, 25 000 training + 25 000 test examples, balanced positive/negative)

Task: Build and optimise an LSTM-based sequence model that predicts sentiment from raw text.

Steps:

Data ingestion	Load the dataset with tensorflow_datasets; create 80-20 train/validation split from the official training set.
19 Text prep	Fit a Tokenizer (20 k vocab), convert to integer sequences, and pad/trim to a fixed length (e.g., 300 tokens).
 ★ Baseline	Implement a TF-IDF + Logistic Regression classifier and report validation accuracy.
™ Modelling	Build a Bidirectional LSTM with an Embedding layer (≥ 128 dims) and at least one stacked LSTM layer; add dropout/regularisation.
Optimisation	Tune embedding size, LSTM units, learning rate, and early-stopping patience to beat the baseline.
ii Evaluation	Accuracy, precision/recall/F1, and a confusion matrix on the held-out test set.
Reporting	Compare baseline vs. LSTM, discuss misclassified examples, and propose next improvements.

Stretch ideas

- Replace the LSTM with a 1-D CNN or Transformer encoder and compare.
- Use pre-trained GloVe or FastText embeddings.
- Quantise or prune the model for on-device inference, then measure size vs. accuracy.

Starter notebook:

Provided with the assignment

Submit:

Link to completed notebook with the outputs