Engy-5140: Chemical and Nuclear Waste Processing Fall 2019 UMass Lowell; Prof. V. F. de Almeida **06Dec2019**

Final Project 04 18Dec2019

Name: your name

Guidance:

- Work within your team only. Be clear and complete in your answers.
- Save your work frequently to a file locally to your computer.
- During your work and before submitting the final version do: `Kernel` -> `Restart & Run All`, to verify your notebook runs correctly.
- Save your file again.

Table of Contents

- Problem Statement
- Problem 1 (100 pts)

Problem Statement

A SO $_2$ -air mixture is scrubbed with water in a trayed tower at 20°C and 1 atm. Solute-free water enters the top at 1,000 lb/h. The liquid phase leaving the bottom contains 0.6 lb SO $_2$ /100 lb of solute-free water. The partial pressure of SO $_2$ in the gas leaving is 23 torr. The mole ratio of water to air is 25. Equilibrium data for solubility of SO $_2$ in H $_2$ O at 20 °C is tabulated below.

Partial Pressure of SO ₂ in Air, tor	lb SO ₂ / 100 lb H ₂ O
0.5	0.02
1.2	0.05
3.2	0.10
5.8	0.15
8.8	0.20
14.	0.30
26.0	0.50
39.0	0.70
59.0	1.0

Using the network modeling approach covered in this course, address the items to follow (based on Seader, Henly, and Roper textbook Separation Process Principles Chap. 6, 2016).

Problem 1 (100 pts)

- 1. Design a trayed column and provide construction/operation parameters.
- 2. What are the efficiencies of your absorber?
- 3. What percent of SO₂ in the entering gas is absorbed in the tower?
- 4. What is the mass of SO₂ per day leaving the tower in the gas phase?
- 5. Describe the hazards to humans if the exiting air is inhaled.

Answers: