TRABAJO PRÁCTICO N° 1 - AÑO 2025 - 2° SEMESTRE -PROCESAMIENTO DE IMÁGENES I - IA 4.4

ALUMNOS: SANZ ALFREDO - DI PRINZIO ELVIO

TRABAJO PRÁCTICO Nº 1 - AÑO 2025 - 2º SEMESTRE

TP1_2025-C2

Informe Técnico: Validación y Procesamiento de Formularios Escaneados

Este informe describe el proceso y la lógica implementada en el código Python proporcionado, cuyo objetivo principal es la **validación automática** del llenado de formularios escaneados. El sistema utiliza técnicas de **Procesamiento Digital de Imágenes (PDI)** con la librería cv2 (OpenCV) para localizar campos y analizar su contenido, y pandas para estructurar y reportar los resultados.

1. Propósito del Código

El código está diseñado para:

- Localizar y segmentar los campos de datos dentro de una imagen de formulario escaneado.
- 2. Extraer y analizar el contenido de cada campo (texto o selección).
- 3. **Validar** si el contenido cumple con criterios predefinidos para considerar el campo como "OK" o "MAL".
- 4. Generar un **informe consolidado** y un archivo **CSV** (validacion_resultados_final.csv) con el resultado de la validación por campo y una validación global para cada formulario.

2. Archivos y Estructura de Datos

El sistema opera sobre una lista de archivos de imagen de formulario (.png) y define la estructura de datos para el reporte:

Variable	Descripción	
ARCHIVOS_FORMULARIO	Lista de archivos de entrada (ej: formulario_01.png a formulario_05.png).	

Variable	Descripción	
CAMPO_NOMBRES	Nombres de los campos del formulario (Nombre y Apellido, Edad, Mail, Legajo, Pregunta 1, Pregunta 2, Pregunta 3, Comentarios).	
CSV_OUTPUT	Nombre del archivo de salida para el reporte final (validacion_resultados_final.csv).	

3. Descripción de las Funciones Clave y Lógica de Procesamiento

El flujo de procesamiento principal se realiza a través de la función procesar_formulario(file_path).

3.1. Detección de Coordenadas de Campos (detectar_coordenadas_campos)

Paso de Localización (OCR Layout Analysis):

- 1. **Umbralización y Proyección:** La imagen en escala de grises se umbraliza inversamente (cv2.THRESH_BINARY_INV). Se calculan las **proyecciones horizontales y verticales** (sumas de píxeles) para detectar las líneas que delimitan los campos del formulario.
- 2. **Identificación de Líneas:** Se aplican umbrales a las proyecciones para identificar las coordenadas (filas y columnas) donde las líneas son más densas.
- 3. **Filtrado y Asignación:** Las coordenadas de línea detectadas (y_lines y x_lines) se utilizan para calcular las regiones (coordenadas \$(y_1, y_2, x_1, x_2)\$) correspondientes a cada campo definido en CAMPO_NOMBRES.
 - Campos de Pregunta (Checkboxes): Para las preguntas (1 a 3), se definen dos celdas adicionales con nombre P#_Si y P#_No, que corresponden a las áreas de las casillas de verificación.

3.2. Extracción de Contenido de la Celda (extraer_contenido_celda)

Paso de Análisis de Contenido:

- 1. **Segmentación:** Se recorta la región de interés (celda) de la imagen.
- Preprocesamiento: Se aplica un filtro de mediana (cv2.medianBlur) y una Umbralización de Otsu (cv2.THRESH_OTSU) para aislar la tinta (texto o marcas) del fondo.
- 3. Análisis de Componentes Conectados (CC): Se utiliza cv2.connectedComponentsWithStats para encontrar todas las regiones de tinta (píxeles blancos) en la celda umbralizada. Cada región representa un posible carácter, parte de un carácter, o una marca.
- 4. **Filtrado y Conteo:** Se filtran los componentes conectados por un área mínima (MIN_CHAR_AREA).
 - El número de componentes conectados (num_componentes) es la métrica clave para inferir la presencia y cantidad de texto.

- Se realiza una estimación rudimentaria del número de palabras
 (num_palabras_estimado) y caracteres a partir del conteo de componentes y el
 ancho total de los bounding boxes.
- 5. **Resultado:** Devuelve un diccionario con el tipo de contenido (vacío o texto) y las estadísticas de los componentes conectados.

3.3. Validación del Campo (validar_campo)

Paso de Lógica de Negocio/Validación:

Esta función aplica reglas de validación específicas para cada tipo de campo, basándose principalmente en el **número de componentes conectados** (num_componentes) detectados en la celda.

Campo	Criterio de Validación (Métricas)	Reglas (Basadas en Conteo de Componentes)
Nombre, Edad, Legajo, Comentarios	Conteo de Componentes en la celda de datos.	Se definen rangos mínimos y máximos (ej: MIN_CC_ESTRICTO2, MAX_CC_LARGO) para inferir si hay texto razonable. Un campo "Edad" debe tener un conteo menor que "Comentarios".
Mail	Conteo de Componentes en la celda de datos.	Criterios más laxos. Excepción: Si el campo está vacío (0 componentes), se considera " OK " (posiblemente aceptando que el campo puede ser opcional).
Pregunta 1, 2, 3	Conteo de Componentes en las sub-celdas Si (info_si) y No (info_no).	Se compara el conteo de componentes entre las celdas Si y No. Se requiere que una sea dominante sobre la otra por un factor de RATIO_THRESHOLD (1.1) y que el conteo no exceda MAX_CC_CHECK para evitar falsos positivos por ruido.
Resultado		Devuelve "OK" si cumple con las reglas, o "MAL" si no las cumple.

4. Proceso de Reporte Final

- 1. **Iteración:** Se ejecuta procesar_formulario para cada archivo en ARCHIVOS_FORMULARIO.
- 2. **Consolidación: Reporte A**: Los resultados de cada formulario (ID, Tipo, Validación de cada campo y Validación Global) se recopilan en todos_los_resultados.
- 3. **Reporte B (Por Tipo):** Se crea un *DataFrame* de pandas para agrupar los resultados por Tipo de formulario (A, B, C) y se imprime el conteo de validaciones **OK** y **MAL** por cada tipo.

4. **Reporte C (CSV):** Se genera el archivo **CSV** final con la validación de cada formulario y campo.

