As we will show, for integer parameters $p \geq 0$, $q \geq 0$, 2t > 0 and 2s > 0, the function $\frac{f_p^{n-p}(t)}{(n-p)!}$ dominates $\frac{f_q^{n-q}(s)}{(n-q)!}$, that is, for sufficient large n the sequence $\frac{f_q^{n-q}(s)(n-p)!}{f_p^{n-p}(t)(n-q)!}$ decreases, iff p+2t>q+2s or p+2t=q+2s and $\frac{1}{2}\leq t < s$. The first case can be proven by the asymptotic behavior of $f_p^n(t)$ which can be found by its Rodrigues-type formula

$$f_p^n(t) = \frac{\sum_{k=0}^n (-1)^k \binom{n}{k} \left(\Gamma\left(\frac{p}{2} + n - k + t\right)\right)^2 \left(\Gamma\left(\frac{p}{2} + k - t\right)\right)^2}{\left(n + 2p - 1\right)_n \left(\Gamma\left(\frac{p}{2} + t\right)\right)^2 \left(\Gamma\left(\frac{p}{2} - t\right)\right)^2}.$$
 (1)

By rewriting f_p^n as the sum $\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \phi_k$, with

$$\phi_k(n) = \frac{(-1)^k \binom{n}{k}}{(n+2p-1)_n} \left(\frac{\left(\Gamma\left(\frac{p}{2}+n-k+t\right)\Gamma\left(\frac{p}{2}+k-t\right)\right)^2}{\left(\Gamma\left(\frac{p}{2}+t\right)\Gamma\left(\frac{p}{2}-t\right)\right)^2} + (-1)^n \frac{\left(\Gamma\left(\frac{p}{2}+n-k-t\right)\Gamma\left(\frac{p}{2}+k+t\right)\right)^2}{\left(\Gamma\left(\frac{p}{2}+t\right)\Gamma\left(\frac{p}{2}-t\right)\right)^2} \right),$$

the order $\mathcal{O}\left(\frac{n^{p+2t-\frac{3}{2}}}{2^{2n+2p}}n^{-k}\right)$ asymptotic behaviour can be found by using all ϕ up to ϕ_k , the leading behavior for $t \geq 0$ is

$$\frac{f_p^n(t)}{n!} \sim \frac{\sqrt{2\pi} \ n^{2t+p-\frac{3}{2}}}{2^{2n+2p-\frac{3}{2}} \left(\Gamma\left(\frac{p}{2}+t\right)\right)^2} \left(1 + \mathcal{O}\left(n^{-1}\right) + (-1)^n \mathcal{O}\left(n^{-4t}\right)\right) \equiv \frac{A f_p^n(t)}{n!}.$$
 (3)

As we can see at sufficient large n the ratio $\frac{f_q^{n-q}(s)(n-p)!}{f_p^{n-p}(t)(n-q)!}$ behave as $\mathcal{O}(n^{2s+q-p-2t})$. For the second case we will need the relation from the forward shift operator

$$f_p^n(t) - f_p^n(t-1) = n f_{p+1}^{n-1} \left(t - \frac{1}{2} \right).$$
 (4)

From this expression $\frac{f_p^{n-p}(t)}{(n-p)!} = \frac{f_p^{n-p}(t-1)}{(n-p)!} + \frac{f_{p+1}^{n-p-1}(t-\frac{1}{2})}{(n-p-1)!}$, or

$$\frac{\frac{f_p^{n-p}(t)}{(n-p)!}}{\frac{f_{p+1}^{n-p-1}(t-\frac{1}{2})}{(n-p-1)!}} = 1 + \frac{\frac{f_p^{n-p}(t-1)}{(n-p)!}}{\frac{f_{p+1}^{n-p-1}(t-\frac{1}{2})}{(n-p-1)!}},$$
(5)

the second term decreases for sufficient large n. Now suppose a dominates b and b dominates c, then a dominates c, to show this suppose that the $\frac{b}{a}$ decreases for $n \geq m_1$ and $\frac{c}{b}$ decreases for $n \geq m_2$, then for $n \geq Max[m_1, m_2]$

$$\frac{c(n)}{a(n)} - \frac{c(n+1)}{a(n+1)} = \frac{c(n)}{b(n)} \frac{b(n)}{a(n)} - \frac{c(n+1)}{b(n+1)} \frac{b(n+1)}{a(n+1)} \ge$$

$$\frac{c(n+1)}{b(n+1)} \frac{b(n)}{a(n)} - \frac{c(n+1)}{b(n+1)} \frac{b(n+1)}{a(n+1)} = \frac{c(n+1)}{b(n+1)} \left(\frac{b(n)}{a(n)} - \frac{b(n+1)}{a(n+1)} \right) \ge 0.$$
(6)

The case t=0 is a special case which needs to be treated apart, it is possible to show that $f_p^n(-t) = (-1)^n f_p^n(t)$, so for odd n they will always be 0, not only that but we can also prove that $f_p^n(t) \ge 0$ by using its recurrence relation

$$f_p^{n+1}(t) = t f_p^n(t) + \frac{n(n+p-1)^2(n+2p-2)}{4(2n+2p-1)(2n+2p-3)} f_p^{n-1}(t), \quad f_p^0(t) = 1, \quad f_p^1(t) = t.$$
 (7)

In practice, the fact that $f_p^n(t)$ is 0 for odd n together with the appearance of $(-1)^n$ terms will be the reason we will have to test even and odd n separately.

By using the forward shift relation (4) we have for odd n-p

$$\frac{f_p^{n-p}\left(\frac{1}{2}\right)}{(n-p)!} - \frac{f_p^{n-p}\left(-\frac{1}{2}\right)}{(n-p)!} = \frac{f_{p+1}^{n-p-1}\left(0\right)}{(n-p-1)!} \Longrightarrow \frac{f_{p+1}^{n-p-1}\left(0\right)}{(n-p-1)!} = 2\frac{f_p^{n-p}\left(\frac{1}{2}\right)}{(n-p)!}.$$
 (8)

Although $f_p^n(t)$ is only defined for integer n, the simple expressions for integer and half-integer t are defined for all n. With the hierarchy defined we need to know when the sequences start to decrease, if $n \geq n_{p,p+2t}^{q,q+2s}$ then $\frac{f_p^{n-q}(s)(n-p)!}{f_p^{n-p}(t)(n-q)!} \geq \frac{f_p^{n-q+2}(s)(n-p+2)!}{f_p^{n-p+2}(t)(n-q+2)!}$. As we will show these n obey multiple inequalities, starting with

$$\frac{f_q^{n-q} \left(\Delta - 1 - \frac{q}{2}\right) (n-p)!}{f_p^{n-p} \left(\Delta - \frac{p}{2}\right) (n-q)!} = \frac{f_{q-1}^{n-q+1} \left(\Delta - 1 - \frac{q-1}{2}\right) (n-p)! - f_{q-1}^{n-q+1} \left(\Delta - 2 - \frac{q-1}{2}\right) (n-p)!}{f_p^{n-p} \left(\Delta - \frac{p}{2}\right) (n-q+1)!} \tag{9}$$

$$=\frac{f_{q-1}^{n-q+1}\left(\Delta-1-\frac{q-1}{2}\right)(n-p)!}{f_{p}^{n-p}\left(\Delta-\frac{p}{2}\right)(n-q+1)!}\left(1-\frac{f_{q-1}^{n-q+2}\left(\Delta-2-\frac{q-1}{2}\right)}{f_{q-1}^{n-q+1}\left(\Delta-1-\frac{q-1}{2}\right)}\right).$$

$$\frac{f_{q-1}^{n-q+1}\left(\Delta - 1 - \frac{q-1}{2}\right)(n-p)!}{f_p^{n-p}\left(\Delta - \frac{p}{2}\right)(n-q+1)!} \left(1 - \frac{f_{q-1}^{n-q+1}\left(\Delta - 2 - \frac{q-1}{2}\right)}{f_{q-1}^{n-q+1}\left(\Delta - 1 - \frac{q-1}{2}\right)}\right) - \frac{f_{q-1}^{n-q+3}\left(\Delta - 1 - \frac{q-1}{2}\right)(n-p+2)!}{f_p^{n-p+2}\left(\Delta - \frac{p}{2}\right)(n-q+3)!} \left(1 - \frac{f_{q-1}^{n-q+3}\left(\Delta - 2 - \frac{q-1}{2}\right)}{f_{q-1}^{n-q+3}\left(\Delta - 1 - \frac{q-1}{2}\right)}\right), \tag{10}$$

if $n \ge n_{q-1,2\Delta-2}^{q-1,2\Delta-4}$, then the following expression is an upper bound on (10)

$$\left(1 - \frac{f_{q-1}^{n-q+3}\left(\Delta - 2 - \frac{q-1}{2}\right)}{f_{q-1}^{n-q+3}\left(\Delta - 1 - \frac{q-1}{2}\right)}\right) \left(\frac{f_{q-1}^{n-q+1}\left(\Delta - 1 - \frac{q-1}{2}\right)(n-p)!}{f_p^{n-p}\left(\Delta - \frac{p}{2}\right)(n-q+1)!} - \frac{f_{q-1}^{n-q+3}\left(\Delta - 1 - \frac{q-1}{2}\right)(n-p+2)!}{f_p^{n-p+2}\left(\Delta - \frac{p}{2}\right)(n-q+3)!}\right), \tag{11}$$

If $n = n_{p,2\Delta}^{q-1,2\Delta-2} - 1$ then the expression is negative. We assumed that $n_{p,2\Delta}^{q-1,2\Delta-2} \ge n_{q-1,2\Delta-2}^{q-1,2\Delta-4}$, in this case the result is that at $n = n_{p,\Delta}^{q-1,2\Delta-2} - 1$ we have $\frac{f_q^{n-q} \left(\Delta - 1 - \frac{q}{2}\right) (n-p)!}{f_p^{n-p} \left(\Delta - \frac{p}{2}\right) (n-q)!} \le \frac{f_q^{n-q+2} \left(\Delta - 1 - \frac{q}{2}\right) (n-p+2)!}{f_p^{n-p+2} \left(\Delta - \frac{p}{2}\right) (n-q+2)!}$, so $n_{p,2\Delta}^{q,2\Delta-2} \ge n_{p,\Delta}^{q-1,2\Delta-2}$.

Let's prove this assumption, first note the $n_{p,a}^{q,b} \geq Max\left[p,q\right]$, that is because for n < p the denominator is 0 while for n < q the numerator is 0, so $n_{p,2\Delta}^{q-1,2\Delta-2} \geq Max\left[q-1,p\right]$ while $n_{q-1,2\Delta-2}^{q-1,2\Delta-4} \geq q-1$, we will show that it is q-1

$$\frac{f_p^n(t-1)}{f_p^n(t)} \ge \frac{f_p^{n+2}(t-1)}{f_p^{n+2}(t)} \Longrightarrow \frac{f_p^{n+2}(t)}{f_p^n(t)} \ge \frac{f_p^{n+2}(t-1)}{f_p^n(t-1)} \Longrightarrow (12)$$

$$t \frac{f_p^{n+1}(t)}{f_p^n(t)} + \frac{n(n+p-1)^2(n+2p-2)}{4(2n+2p-1)(2n+2p-3)} \ge (t-1) \frac{f_p^{n+1}(t-1)}{f_p^n(t-1)} + \frac{n(n+p-1)^2(n+2p-2)}{4(2n+2p-1)(2n+2p-3)}$$

$$\Longrightarrow t \frac{f_p^{n+1}(t)}{f_p^n(t)} \ge (t-1) \frac{f_p^{n+1}(t-1)}{f_p^n(t-1)}.$$

We introduce the $s_p^n\left(t\right) = \frac{f_p^{n+1}(t)}{(n+1)f_n^n(t)}$ and its recursion relation

$$s_p^n(t) = \frac{t}{n+1} + \frac{(n+p-1)^2 (n+2p-2)}{4 (n+1) (2n+2p-1) (2n+2p-3) s_p^{n-1}(t)},$$
(13)

$$\Longrightarrow ts_p^{n+1}(t) = \frac{t^2}{n+2} + \frac{\frac{ts_p^{n-1}(t)(n+1)(p+n)^2(n+2p-1)(2n+2p-3)}{(2n+2p+1)\left((n+p-1)^2(n+2p-2)+4ts_p^{n-1}(t)(2n+2p-3)(2n+2p-1)\right)}}{n+2}.$$
 (14)

It is simple to show that the second term in the second equation increases when $ts_p^{n-1}(t)$ increases, this is enough to prove our assumption. Calculating $ts_p^0(t) = t^2$ and $ts_p^1(t) = \frac{t^2}{2} + \frac{p^2}{8+16p}$ we can see that the case with larger t is bigger so by the expression above it will continue to be bigger for all even and odd n.

A valid concern is that we've assumed that $1 - \frac{f_{q-1}^{n-q+1}\left(\Delta - 2 - \frac{q-1}{2}\right)}{f_{q-1}^{n-q+1}\left(\Delta - 1 - \frac{q-1}{2}\right)}$ is positive, however, this can be proven by using the recurrence relation. In general $f_p^n\left(t_1\right) > f_p^n\left(t_2\right)$ if $t_1 > t_2 \ge 0$, so $q \le 2\Delta - 3$ for this relation to be true.

With this result we have that the biggest $n_{p,2\Delta}^{q,2\Delta-2}$ for fixed p and Δ is either $n_{p,2\Delta}^{2\Delta-3,2\Delta-2}$ or $n_{p,2\Delta}^{2\Delta-2,2\Delta-2}$, let's find which is bigger.

$$\frac{f_{2\Delta-2}^{n-2\Delta+2}(0)(n-p)!}{f_p^{n-p}(\Delta-\frac{p}{2})(n-2\Delta+2)!} - \frac{f_{2\Delta-2}^{n-2\Delta+4}(0)(n-p+2)!}{f_p^{n-p+2}(\Delta-\frac{p}{2})(n-2\Delta+4)!},$$
(15)

this expression is either 0 for odd n, or for even $n \ge 2\Delta - 2$, (8),

$$2\frac{f_{2\Delta-3}^{n-2\Delta+3}\left(\frac{1}{2}\right)(n-p)!}{f_p^{n-p}\left(\Delta-\frac{p}{2}\right)(n-2\Delta+3)!} - 2\frac{f_{2\Delta-3}^{n-2\Delta+5}\left(\frac{1}{2}\right)(n-p+2)!}{f_p^{n-p+2}\left(\Delta-\frac{p}{2}\right)(n-2\Delta+5)!},\tag{16}$$

so it is equal to $n_{p,2\Delta}^{2\Delta-3,2\Delta-2}$. Now we know that we don't need to check every possible q in $n_{p,2\Delta}^{q,2\Delta-2}$, only one suffice. Let's try to find an ordering for $n_{p,2\Delta}^{2\Delta-3,2\Delta-2}$ by varying p. A we've shown before $\frac{f_p^{n-p}\left(\Delta-\frac{p}{2}\right)}{(n-p)!}$ dominates $\frac{f_q^{n-q}\left(\Delta-\frac{q}{2}\right)}{(n-q)!}$ if p>q, so we can use this to our advantage

$$\frac{f_{2\Delta-3}^{n-2\Delta+3}\left(\frac{1}{2}\right)(n-p)!}{f_{p+1}^{n-p}\left(\Delta-\frac{p}{2}\right)(n-2\Delta+3)!} - \frac{f_{2\Delta-3}^{n-2\Delta+5}\left(\frac{1}{2}\right)(n-p+2)!}{f_{p}^{n-p+2}\left(\Delta-\frac{p}{2}\right)(n-2\Delta+5)!} =$$

$$\frac{f_{2\Delta-3}^{n-2\Delta+3}\left(\frac{1}{2}\right)(n-p-1)!}{f_{p+1}^{n-p-1}\left(\Delta-\frac{p+1}{2}\right)(n-p-1)!} - \frac{f_{p+1}^{n-p-1}\left(\Delta-\frac{p+1}{2}\right)(n-p)!}{f_{p+1}^{n-p-1}\left(\Delta-\frac{p+1}{2}\right)(n-p-1)!} - \frac{f_{2\Delta-3}^{n-2\Delta+5}\left(\frac{1}{2}\right)(n-p+1)!}{f_{p+1}^{n-p+1}\left(\Delta-\frac{p+1}{2}\right)(n-2\Delta+5)!} =$$

$$\frac{f_{2\Delta-3}^{n-2\Delta+5}\left(\frac{1}{2}\right)(n-p+1)!}{f_{p+1}^{n-p+1}\left(\Delta-\frac{p+1}{2}\right)(n-p+2)!} \leq$$

$$\frac{f_{p+1}^{n-p+1}\left(\Delta-\frac{p+1}{2}\right)(n-p+2)!}{f_{p+1}^{n-p+2}\left(\Delta-\frac{p}{2}\right)(n-p+1)!} \left(\frac{f_{2\Delta-3}^{n-2\Delta+3}\left(\frac{1}{2}\right)(n-p-1)!}{f_{p+1}^{n-p+2}\left(\Delta-\frac{p}{2}\right)(n-p+1)!} - \frac{f_{2\Delta-3}^{n-2\Delta+5}\left(\frac{1}{2}\right)(n-p+1)!}{f_{p+1}^{n-p+2}\left(\Delta-\frac{p}{2}\right)(n-p+1)!} - \frac{f_{2\Delta-3}^{n-2\Delta+5}\left($$

The last inequality happens when $n \geq n_{p+1,2\Delta}^{p,2\Delta}$, if now $n = n_{p+1,2\Delta}^{2\Delta-3,2\Delta-2} - 1$ the expression will be negative, again we are assuming that $n_{p+1,2\Delta}^{2\Delta-3,2\Delta-2} \geq n_{p+1,2\Delta}^{p,2\Delta}$, but this is easy to show

$$\frac{f_p^{n-p}\left(\Delta - \frac{p}{2} - 1\right)}{f_p^{n-p}\left(\Delta - \frac{p}{2}\right)} = \frac{f_p^{n-p}\left(\Delta - \frac{p}{2} - 1\right)}{f_p^{n-p}\left(\Delta - \frac{p}{2} - 1\right) + f_{p+1}^{n-p-1}\left(\Delta - \frac{p+1}{2}\right)} = \frac{1}{1 + \frac{f_{p+1}^{n-p-1}\left(\Delta - \frac{p+1}{2}\right)}{f_p^{n-p}\left(\Delta - \frac{p}{2} - 1\right)}}, \quad (18)$$

so $n_{p+1,2\Delta}^{p,2\Delta}=n_{p,2\Delta}^{p,2\Delta-2}$. At the end there is just one term we need to calculate between all $n_{p,2\Delta}^{q,2\Delta-2}$, the $n_{0,2\Delta}^{2\Delta-3,2\Delta-2}$. Although we do need to know all of the $n_{p,2\Delta}^{q,2\Delta-i}$ for all i in practice the one is enough, to show suppose $n\geq Max\left[n_{0,2\Delta}^{2\Delta-3,2\Delta-2},n_{0,2\Delta-2}^{2\Delta-5,2\Delta-4}\right]$, then $\frac{f_q^{n-q}\left(\Delta-\frac{q}{2}-2\right)(n-p)!}{f_p^{n-p}\left(\Delta-\frac{p}{2}\right)(n-q)!} = \frac{f_q^{n-q}\left(\Delta-\frac{q}{2}-2\right)(n-r)!}{f_r^{n-r}\left(\Delta-\frac{r}{2}-1\right)(n-q)!} \frac{f_r^{n-r}\left(\Delta-\frac{r}{2}-1\right)(n-p)!}{f_p^{n-p}\left(\Delta-\frac{p}{2}\right)(n-r)!}$ both terms are decreasing, so the full sequence is decreasing.

All of this would be useless unless we had a way to write the $f_p^n(t)$ exactly. The t=0 case can be found by solving the recursion relation, $t=\frac{1}{2}$ can be solved by first calculating

the odd n case with the forward shift operator and the even n with the recursion relation, for $t \ge 1$ we just need the forward shift relation.

for the ones with p=0 we have another recursion relation

$$\frac{f_0^n(t+1)}{n!} = \left(2 + \frac{n(n-1)}{t^2}\right) \frac{f_0^n(t)}{n!} - \frac{f_0^n(t-1)}{n!},$$

$$\frac{f_0^n(1)}{n!} = \frac{2^{2-2n}\sqrt{\pi}\Gamma(n)}{\Gamma(n-\frac{1}{2})}, \quad \frac{f_0^n(2)}{n!} = \frac{2^{2-2n}\sqrt{\pi}\Gamma(n)}{\Gamma(n-\frac{1}{2})} \left(2 + n^2 - n\right),$$
(19)

or

$$g(t+1,n) = \left(2 + \frac{n(n-1)}{t^2}\right)g(t,n) - g(t-1,n),$$

$$g(1,n) = 1, \quad g(2,n) = 2 + n^2 - n, \quad \frac{f_0^n(t)}{n!} = \frac{2^{2-2n}\sqrt{\pi}\Gamma(n)}{\Gamma(n-\frac{1}{2})}g(t,n).$$
(20)

For $n \ge n_{0,2\Delta}^{2\Delta-3,2\Delta-2}$

$$\frac{f_{2\Delta-3}^{n-2\Delta+3}\left(\frac{1}{2}\right)n!}{f_0^n\left(\Delta\right)(n-2\Delta+3)!} \ge \frac{f_{2\Delta-3}^{n-2\Delta+5}\left(\frac{1}{2}\right)(n+2)!}{f_0^{n+2}\left(\Delta\right)(n-2\Delta+5)!} \Longrightarrow$$

$$\frac{n\left(2\Delta+n-3\right)g\left(\Delta,n\right)}{(n+1)\left(4+n-2\Delta\right)g\left(\Delta,n+2\right)} \le 1 \quad even \ n,$$

$$\frac{(n+1)\left(2\Delta+n-4\right)g\left(\Delta,n\right)}{n\left(5+n-2\Delta\right)g\left(\Delta,n+2\right)} \le 1 \quad odd \ n.$$

But for $\Delta > 2$ we just need to test the even case. Although we cannot solve this exactly for all Δ we can find an upper bound for the value of n, by rewriting the previous expression as

$$\frac{n\left(2\Delta + n - 3\right)}{\left(n + 1\right)\left(4 + n - 2\Delta\right)} \le \frac{g\left(\Delta, n + 2\right)}{g\left(\Delta, n\right)},\tag{22}$$

and using the recurrence relation of $f_0^n(t)$ in terms of g

$$g(t, n+2) = \frac{2(2n+1)t}{(n+1)(n+2)}g(t, n+1) + \frac{n(n-1)}{(n+1)(n+2)}g(t, n), \qquad (23)$$

we have

$$\frac{n\left(2\Delta+n-3\right)}{\left(n+1\right)\left(4+n-2\Delta\right)} \leq \frac{2\left(2n+1\right)\Delta}{\left(n+1\right)\left(n+2\right)} \frac{g\left(\Delta,n+1\right)}{g\left(\Delta,n\right)} + \frac{n\left(n-1\right)}{\left(n+1\right)\left(n+2\right)}
\Longrightarrow \frac{g\left(\Delta,n+1\right)}{g\left(\Delta,n\right)} \geq \frac{n\left(\Delta-1\right)}{\left(n-2\Delta+4\right)\Delta}.$$
(24)

Although it may not seem much we know have all the information needed, introducing $s(t,n) = \frac{g(t,n+1)}{g(t,n)}$ and rewriting the recurrence relation in terms of s

$$s(t, n+1) = \frac{2(2n+1)t}{(n+1)(n+2)} + \frac{n(n-1)}{(n+1)(n+2)} \frac{1}{s(t,n)}$$
(25)

and reapplying on itself

$$s(t, n+1) = \frac{2(2n+1)t}{(n+1)(n+2)} + \frac{n^2(n-1)s(t, n-1)}{(n+2)(n^2-3n+4s(t, n-1)nt-2s(t, n-1)t+2)}.$$
(26)

This expression has three important properties, first, it grows monotonically, if s(t, n-1) > r(t, n-1) are two initial conditions then s(t, n+1) > r(t, n+1). Second, it is attractive, there is a positive solution $s^*(t, n)$ for the equation s(t, n+1) = s(t, n-1) and if $s(t, n-1) \ge s^*(t, n)$ then $s(t, n-1) \ge s(t, n+1)$. This tell us about that the flow in the phase space approximately contracts around s^* . The last is that for $t, n \ge 1$ $s^*(t, n)$, decreases when n increases, this guarantees that any point above s^* will stay above it.

For n=2 we have $s\left(t,2\right)=t>s^*\left(t,3\right)$, so $s\left(t,n\right)>s^*\left(t,n+1\right)$, so we just need to solve $s^*\left(\Delta,n+1\right)=\frac{n(\Delta-1)}{(n-2\Delta+4)\Delta}$ and take the value $\lceil n \rceil$. The result is $n=\lceil \sqrt{2}\Delta^{\frac{3}{2}}+\frac{\Delta}{4}-\frac{95\sqrt{\Delta}}{32\sqrt{2}}-\frac{9}{8} \rceil$. Checking with the exact solution shows an error of order $\mathcal{O}\left(\Delta\right)\approx\frac{\Delta}{4}$.

Figure 1: The exact minus the upper bound.

Figure 2: taking out the $\frac{\Delta}{4}$ term from the upper bound.