BUSCA EM PROFUNDIDADE E BUSCA EM LARGURA DCE529 - Algoritmos e Estruturas de Dados III

Atualizado em: 2 de setembro de 2024

Iago Carvalho

Departamento de Ciência da Computação

BUSCA EM GRAFOS

Como vimos na última aula, grafos são estruturas muito úteis em computação

- Representar um conjunto de elementos
- Representar as conexões ou relacionamentos entre estes elementos

Por diversas vezes, estamos interessados em inferir algo sobre os dados armazenados em um grafo

A coisa mais simples que podemos fazer é uma busca!

- O Saber se existe um caminho entre dois vértices quaisquer
- O Descobrir se o grafo é conexo ou não

BUSCA EM PROFUNDIDADE

É um algoritmo para se caminhar em grafos

Em Inglês, é chamado de Depth First Search (DFS)

A estratégia é buscar o mais profundo no grafo sempre que possível

As arestas são exploradas a partir do vértice mais recentemente descoberto

BUSCA EM PROFUNDIDADE

Quando todas as arestas adjacentes a um vértice v já tiverem sido exploradas, o algoritmo anda para trás

 \bigcirc Tenta explorar outros vértices adjacentes ao vértice pai de v

Algoritmo com diversas aplicações

- Ordenação topológica
- Componentes conectados
- Verificação de ciclos

BUSCA EM PROFUNDIDADE

Para acompanhar o algoritmo, utilizam-se vértices de diferentes cores

O Branco, cinza e preto

Inicialmente, todos os vértices são brancos

- Quando eles são descobertos, são pintados de cinza
- Quando eles são fechados, são pintados de preto

Também utilizamos marcadores de tempo para denotar o tempo de abertura e fechamento dos vértices

PSEUDOCÓDIGO

```
1 DFS(G)
2 para cada vértice u ← V[G]
3     cor[u] ← BRANCO
4 tempo ← 0
5 para cada vértice u ∈ V[G]
6     se cor[u] = BRANCO
7     DFS-VISIT(u)
```

```
1 DFS-VISIT(u)
2 \operatorname{cor}[u] \leftarrow \operatorname{CINZA}
3 tempo ← tempo + 1
4 d[u] \leftarrow tempo
5 para cada vértice v \in Adj(u)
    se cor[v] = BRANCO
            DFS-VISIT( v)
    f[u] \leftarrow \mathsf{tempo} \leftarrow (\mathsf{tempo}+1)
```


COMPLEXIDADE

A função DFS tem complexidade $\mathcal{O}(|V|)$

Toda chamada de DFS-VISIT realiza um máximo de adj[v] operações

$$\bigcirc \sum_{v \in V} adj[v] = \Theta(|E|)$$

A complexidade final do algoritmo é de $\mathcal{O}(|V| + |E|)$

BUSCA EM LARGURA

Ideia contrária a busca em profundidade

 Aqui tentamos explorar todos os vértices que estão a uma mesma profundidade de uma só vez

Em Inglês, é chamado de Breadth First Search (BFS)

Não aprofunda em um único caminho

- Ao invés disso, faz uma busca ampla ou larga
- Expande a fronteira de busca de maneira uniforme a partir de um vértice raiz

BUSCA EM LARGURA

Algoritmo base para outros

- Algoritmo de Prim para Árvore Geradora Mínima
- Algoritmo de Dijkstra para Caminho Mínimo

No fim, ele produz uma árvore de níveis

BUSCA EM LARGURA

Utiliza os mesmos conceitos de cores que a busca em profundidade

Vértices brancos, cinzas e pretos

Também utiliza uma fila Q, uma medida de nível d e um vetor de antecessores π

- Fila *Q* armazena os vértices a serem visitados
- Medida de nível d guarda a distância do vértice até a raiz
- \bigcirc Vetor de antecessores π guarda o vértice pai de outro vértice

PSEUDOCÓDIGO PSEUDOCÓDICO PSEUD

```
1 BFS(G,s)
 2 para cada vértice u \leftarrow V[G] - \{s\}
 3 \quad cor[u] \leftarrow BRANCO
      d[u] \leftarrow \infty
 5 \pi[u] \leftarrow \text{NULL}
 6 cor[s] \leftarrow CINZA
 7 d[s] \leftarrow 0
 8 \pi[s] \leftarrow NULL
    Q ← novaFila()
10 ENFILEIRA(\mathbf{Q}, s)
```

```
11 enquanto !vazia(Q)

12  u \leftarrow DESENFILEIRA(Q)

13  para \ cada \ v \leftarrow Adj[u]

14  se \ cor[v] = BRANCO

15  cor[v] \leftarrow CINZA

16  d[v] = d[u] + 1

17  \pi[v] \leftarrow u

18  ENFILEIRA(Q, v)

19  cor[u] \leftarrow PRETO
```


Fila Q	r	t	x
Nível	ı	2	2

Fila Q	r	t	x
Nível	Ι	2	2

Fila Q	t	x	٧
Nível	2	2	2

COMPLEXIDADE

A complexidade da busca em largura é a mesma do algoritmo de busca em profundidade

$$\bigcirc$$
 $\mathcal{O}(|V| + |E|)$

PROPRIEDADES

Ambos os algoritmos funcionam bem em grafos direcionados e não direcionados

Entretanto, não consideram o peso das arestas (ou dos arcos)

A complexidade dos algoritmos depende da estrutura de dados utilizada para representar o grafo

 A complexidade apresentada é obtida utilizando uma lista de adjacência

Existe uma versão iterativa e uma recursiva para o algoritmo de busca em profundidade