Paper 1: Wasserstein Distributionally Robust Optimization (DRO) Module

Formulation

The Wasserstein Distributionally Robust Optimization (DRO) module penalizes portfolio updates based on possible distribution shifts measured using the Wasserstein distance. The penalty is formulated as:

Penalty =
$$\rho \|\boldsymbol{\mu}_p - \boldsymbol{\mu}_o\|_2$$

where:

- μ_p : mean vector of perturbed (stress) scenario returns.
- μ_o : historical mean return vector.
- ρ : robustness parameter controlling the strength of the penalty.

Why this Works

Including this penalty discourages overfitting to historical return distributions and hedges against model misspecification. It enforces stability by accounting for potential transport costs when distributions shift.

Algorithm Steps

- 1. Compute historical mean vector μ_o .
- 2. Generate perturbed means μ_p by adding noise or stress perturbations.
- 3. Calculate Wasserstein penalty as $\rho \| \boldsymbol{\mu}_p \boldsymbol{\mu}_o \|_2$.
- 4. Update weights by scaling them with (1 Penalty).
- 5. Normalize updated weights to ensure they sum to 1.

Code Equivalent

```
def dro_wasserstein_penalty(weights, perturbed_mean, original_mean, rho=0.1):
    distance = np.linalg.norm(perturbed_mean - original_mean)
    penalty = rho * distance
    return penalty

# Example usage:
penalty = dro_wasserstein_penalty(weights, perturbed_mean, mean_ret, rho=0.1)
adjusted_weights = weights * (1 - penalty)
adjusted_weights = np.maximum(adjusted_weights, 1e-5)
adjusted_weights /= np.sum(adjusted_weights)
```

Summary

- Strengthens out-of-sample robustness.
- Proven in convex robust optimization frameworks.
- Simple yet powerful tool for defensive portfolio design.