UNIVERSITY OF SCIENCE &

AHSANULLAH

# CSE 2213 - COMPUTER ARCHITECTURE LECTURE I-OVERVIEW OF COMPUTER ARCHITECTURE

PROF. DR. MD. SHAMIM AKHTER



AISIP-Applied Intelligent System and Information Processing.

#### **TEXTBOOKS**





#### Text Books have a common name:

- a) Computer Organization
- b) Design / Architecture

## Interesting!!

- Architecture describes what the computer does.
- Organization describes how it does it.

Architectural issue: whether a computer has a multiply instruction

Organizational issue: whether the instruction execute by a special multiply unit or use repeated add unit of the system.

#### **COMPUTER ARCHITECTURE DESIGN**



Chapter 1 @Computer Organization and Architecture, William Stallings

## What is Computer Architecture?

#### **Computer Architecture is the science and art of**

-selecting and interconnecting hardware components



Analogy to architecture of buildings...

## What is Computer Architecture

#### • The role of a building architect:



## What is Computer Architecture?

#### • The role of a computer architect:



#### Important differences:

- age (~80 years vs thousands),
- rate of change (technology, applications, goals)

#### Rate of Changes **Applications** Machine Heat Learning, Global **Cooling Pattern** Warming generation, **Green energy Optimization Magnifies Earth quakes** DATA, BIG design DATA **HPC Analytics** Cyclone Powerful computing **Simulation Tsunami Prediction**

## Rate of Changes

#### Technology



## "Technology"

| Year | Technology used in computers                                             |              |           | Relative performance/unit cost |     |  |  |  |
|------|--------------------------------------------------------------------------|--------------|-----------|--------------------------------|-----|--|--|--|
| 1951 | Vacuum tube                                                              |              |           | 1                              |     |  |  |  |
| 1965 | Transistor                                                               | ON/OFF switc | ctricity  | 35                             |     |  |  |  |
| 1975 | Integrated circuit 100 transistors into a s                              |              | ngle chip |                                | 900 |  |  |  |
| 1995 | Very large scale integrated circuitMicroprocessor- VLSI device 2,400,000 |              |           |                                |     |  |  |  |
| 2005 | Ultra large scale integrated circuit                                     |              |           | 6,200,000,000                  |     |  |  |  |



- Increasing opportunities for integrating multiple technologies
  - Inter-connection technologies
  - Disk, optical storage, ethernet, fiber optics, wireless

## Interconnection technology: Example

μP -> Multi-Processors-> dual-core >Quad-core->multicore

multiple pipelines, and multiple sets of caches.

## We want more! 100 cores in a single die!

- Need to make smaller cores but lose the functionality
- Making a bigger die but increases cost

#### What else???

How about to reduce the cost of chip-to-chip communication

- power, bandwidth, latency

# Processor 0 Core 0 Core 1 Core 2 Core 3 L1 Cache L2 Cache System Bus Main Memory

#### **Break a multi-core chip into a many-chip-system**

- -smaller chips lead to higher yields and lower cost
- -different chips lead to system adaptability and reconfigure ability
- -aggregate systems of chips effectively

Interconnection Technology Exploration

## How does the interconnection technology change the word?

#### **Example: Wire Technology**

- 1. Alexander Graham Bell invented the telephone in 1876, messages were traveled as electric currents and transmitted over copper wire.
- 2. Need better sound quality, cover greater distances, greater capacity
  - integration of metallic two-wire circuits, loading coils, vacuum-tube amplifiers, coaxial cable, and microwave radio relay systems.
- 3. Then came conversion from Analog Signal to Digital Signal
  - achieved more frequency, greater capacity
  - use in TV and Digital Computer
- 4. Need to carry information much faster
  - Solution Laser -> Optoelectronics
  - Transmission rate-10kb/S
  - Problem: Clouds, Haze, Rain ---> Block beam.
- 5. Use laser inside glass fibers
  - -achieved 100Mb/S
- 6. Can data transmit as the speed of light?

More higher frequency (Gb/S, Tera b/S .....) Replace microwave to light wave

- Light waves ----> Noble Prize in Physics-2009, Prof. Charles K. Kao





Glass Fiber

## Technology Change Drives Everything

- Computers get **10x faster, smaller, cheaper** every 5-6 years!
- O Doubling every 1.5 years:
  - -memory capacity
  - -processor speed (due to advances in technology <u>and</u> hardware organization)
  - example: if Boeing had kept up with IBM we could *fly from Bangkok to Dhaka in 10 minutes for 500 Taka*!!

## Computer and Top Level Structure **Interrelated Components**



Chapter 1,3 @Computer Organization and Architecture, William Stallings

## **CPU Structure**



**Chapter 1 @Computer Organization and Architecture, William Stallings** 

## Control Unit Structure



## Computer Architecture = Microarchitecture + ISA

The micro architecture includes:

- the parts of the processor and
- how these interconnect and
- interoperate to implement ISA.

Basic function of a micro architecture to execute instructions.

O The instruction set architecture
(ISA) is implemented on a processor

The ISA includes:

- the execution model,
- processor registers,
- address and data formats.



Single Bus Organization

## The Instruction Set Architecture (ISA)

- that part of the architecture that is visible to the programmer
  - operations-how many?, which one?
  - operands -how many?, location
  - number and types of registers
  - instruction formats-size, formats
  - storage access, addressing modes



(add r1, r2, r5)

- advantage: allows different implementations of the same architecture example: each instruction in MIPS is 32 bits
- disadvantage: sometimes prevents adding new innovations
- Modern instruction set architectures:
  - 80x86/Pentium, PowerPC, DEC Alpha, MIPS

## RISC VS CISC

| RISC                                                      | CISC                                            |  |  |  |  |
|-----------------------------------------------------------|-------------------------------------------------|--|--|--|--|
| Reduced Instruction Set Computing                         | Complex Instruction Set Computing               |  |  |  |  |
|                                                           | Predecessor of RISC                             |  |  |  |  |
| Designed for Simpler H/W                                  | Designed for Complex H/W                        |  |  |  |  |
| Code length fixed                                         | Small code sizes                                |  |  |  |  |
|                                                           | Variable length code                            |  |  |  |  |
| One clock cycle/instruction                               | Multiclock complex instruction                  |  |  |  |  |
| Instruction pipeline can be implemented                   | Instruction pipeline can not be implemented     |  |  |  |  |
| Can use less RAM as no need to store intermediate results | Can use more RAM to handle intermediate results |  |  |  |  |
| Only load/store instruction can access memory             | Many instructions can access memory             |  |  |  |  |

## Example: RISC vs CISC

#### **RISC Approach**

LOAD A, 2:3 LOAD B, 5:2

PROD A; B

STORE 2:3,A

Sun Ultra SPARC IBM Power PC

Resisters





B E C F

ALU Execution

#### **CISC Approach**

MULT 2:3, 5:2

Intel x86



How does system notify to wait for the next instruction from stage to stage?

Solution: Need H/W support.