# Virtuelles Museum Analyse Prototyping Evaluation

Adrian Franken (Matr.nr.:s0538115), Chris-André Posselt (Matr.nr.:s0532341), Elsa Buchholz (Matr.nr.:s0544180), Igor Olegovich Turanin (Matr.nr.:s0549350)

Fachbereich: Informatik, Kommunikation und Wirtschaft Studiengang: Angewandte Informatik Seminar: Human-Computer Interaction Seminarverantwortlicher: Prof. Dr.-Ing. Johann Habakuk Israel

Hoschschule für Technik und Wirtschaft Berlin

# Inhaltsverzeichnis

| 1 | Ein | leitung                                          | 1  |
|---|-----|--------------------------------------------------|----|
| 2 | Anf | orderungsanalyse                                 | 1  |
|   | 2.1 | Anwendungsfälle und Nutzungskontext              | 2  |
|   | 2.2 | Stand der Technik                                | 3  |
|   | 2.3 | Fokusgruppe                                      | 5  |
| 3 |     | totyping: low-fidelity                           | 9  |
|   | 3.1 | Papierprototypen und deren Designentscheidung    | 10 |
|   |     | Prototyp I:                                      | 10 |
|   |     | Prototyp II:                                     | 12 |
|   |     | Prototyp III:                                    | 13 |
|   |     | Prototyp IV:                                     | 13 |
|   | 3.2 | Heuristische Evaluation                          | 15 |
|   | 3.3 | Fazit                                            | 18 |
| 4 | Pro | totyping: high-fidelity                          | 19 |
|   | 4.1 | Umsetzung des Papierprototypen                   | 19 |
|   | 4.2 | Anwendungsfälle für den high-fidelity Prototypen | 20 |
|   | 4.3 | Kritische Betrachtung                            | 21 |
| 5 | Zus | ammenfassung                                     | 21 |

# Abbildungsverzeichnis

| 1 | Mobile AR Anwendung                    | 10 |
|---|----------------------------------------|----|
| 2 | Use Case Diagramm: Mobile AR Anwendung | 11 |
| 3 | AR Anwendung mit TI                    | 14 |

# Tabellenverzeichnis

| 1 | Stakeholder des Systems                                | 2  |
|---|--------------------------------------------------------|----|
|   | Bewertung der Kategorien eines virtuellen Museums als  |    |
|   | Interaktionsmöglichkeiten                              | 7  |
| 3 | Funktionen und Anforderungen an ein virtuelles Museum. | 9  |
| 4 | Heuristische Evaluation: Mobile AR Anwendung           | 15 |
| 5 | Heuristische Evaluation: AR Anwendung mit TI           | 17 |

### 1 Einleitung

Ein Museum ist ein Ort, in dem Wissen und Zeitzeugnisse unterschiedlichster Art für die Öffentlichkeit zur Verfügung stehen. Dabei trägt der Kurator die Verantwortung für die Präsentation der Exponate. Dieser Herausforderung können Kuratoren mit Hilfe von modernen Technologien gerecht werden. Eine Idee ist die Visualisierung des Museums, sodass die Exponate unabhängig von Ort und Zeit für die Besucher durch eine dreidimensionale Darstellung erlebbar wird. Um den Ansprüchen der Museumsbesucher in einem virtuellen Museum gerecht zu werden, wird in dieser Arbeit zunächst erörtert, wer die Stakeholder sind und welches Interesse sie an einem Museum haben. Daraus werden Ziele formuliert, die für das virtuelle Museum Anwendung finden sollen. Die Recherche über die technologischen Möglichkeiten zur Virtualisierung eines Museums dienen der Orientierung an bereits bestehende Projekte und zur Ideenentwicklung. Anhand dessen wurde eine Fokusgruppe gebildet. Der Schwerpunkt der Fokusgruppe lag auf Interaktionsmöglichkeiten innerhalb eines virtuellen Museums. Aus der Fokusgruppe wurden die Anforderungen und Funktionen an ein virtuelles Museum abgeleitet. Daran anknüpfend werden vier Papierprototypen vorgestellt, die aus den Ergebnissen der Fokusgruppe gestaltet wurden. Die heuristische Evaluation wurde an zwei Prototypen durchgeführt, um Probleme in der Usability herauszufiltern. Weiterhin werden die daraus gewonnen Erkenntnisse für die Umsetzung eines digitalen Prototypen zusammengefasst. Feature und Ziele in Bezug zur User Experience werden formuliert und als digitaler Prototyp umgesetzt. Abschließend erfolgt eine kritische Betrachtung des Vorgehens und der Ergebnisse dieser Arbeit.

## 2 Anforderungsanalyse

In diesem Kapitel werden die Ziele, Anwendungsfälle und der Nutzungskontext eines virtuellen Museums erörtert. Anhand der Analyse bestehender Projekte und der Durchführung einer Fokusgruppe wird die Grundlage gelegt für die Entwicklung eines virtuellen Museums.

### 2.1 Anwendungsfälle und Nutzungskontext

Laut Miedler (2010) ist ein Museum eine Einrichtung für die Offentlichkeit, die Zeugnisse von Umwelt und Menschen zu Bildungs- und Forschungszwecken zur Verfügung stellt und aufbewahrt. Die Zeugnisse von Umwelt und Menschen können sehr vielfältig sein. Dabei kann es sich um Bauarten wie Schlösser, Burgen und Kunstobjekte aus der Malerei oder Fotografie oder naturwissenschaftliche oder technische Erzeugnisse handeln. Somit lassen sich Museen in verschiedene Arten einteilen, wie in Burg-, Schloss und Kunstmuseum oder technisches oder naturkundliches Museum. Nicht nur der Bildungsund Forschungszweck eines Museums soll erfüllt werden, sondern das Erleben der Zeugnisse soll innerhalb einer Ausstellung erreicht werden. Ausstellungen können dabei dauerhaft oder wechselnd kuratiert werden, wobei sie je nach Art des Museums an einem bestimmten Ort gebunden sind. Aufgrund der Vielzahl von Museumsarten und dem Zweck des Bildungs- und Forschungsauftrages, besitzen Museen eine weitgefasste Zielgruppe. Daraus entstehen Interessengruppen, die sich aus der jeweiligen Art des Museums oder aus verschiedenen Berufsgruppen wie Lehrer, Schüler, Studenten oder Museumsmitarbeiter wie Kuratoren oder Archivare ergeben [5, S. 29].

In der Tabelle 1 werden die Stakeholder des Systems zusammengefasst. Sie beschreibt, welches Interesse und welchen Einfluss die Stakeholder auf das System haben.

| Stakeholder                | Interesse                              | Einfluss    |
|----------------------------|----------------------------------------|-------------|
| aktive Museumsgänger       | neue Möglichkeiten                     |             |
| aktive Museumsganger       | zur Erkundung der Exponate ermöglichen | sehr hoch   |
| nicht aktive Museumsgänger | Interesse am Museumsbesuch wecken      | hoch        |
| Archivar des Museums       | Erfassung der Exponate                 |             |
| Archivar des Museums       | innerhalb einer Datenbank              | sehr gering |
| Kurator des Museums        | Integration von Technologien           |             |
| Kurator des Museums        | innerhalb einer Ausstellung            | hoch        |
| pädagogische Kräfte        | Lehreiche Informationen erhalten       | sehr hoch   |
| Kinder                     | spielerischer Umgang mit den Exponaten | sehr hoch   |

Tabelle 1. Stakeholder des Systems

Daraus ergeben sich folgende Ziele:

- Aktive Museumsgänger sollen weiterhin motiviert werden in das Museum zu gehen und durch neue Technologien mit den Exponaten interagieren zu können. Die Interaktion soll dem Kenner des Museums ermöglichen, neue Informationen zu gewinnen.
- Nicht aktive Museumsgänger sollen durch neue Technologien einen Zugang zum Museum erhalten, wobei das Interesse für die Exponate geweckt werden soll.
- Mitarbeiter des Museums sollen von den Technologien profitieren, indem sie Exponate besser Verwalten und Ausstellungen mit einem höheren Gehalt an Interaktionen konzipieren können.
- Pädagogische Kräfte sollen Wissen mit Hilfe des Museums verständlicher vermitteln können.
- Kinder sollen spielerisch lernen und mit Freude das Museum als Lernraum entdecken können.

Das virtuelle Museum kann die Grenzen des Ortsbezuges aufheben. Ein virtuelles Museum kann über das Internet erreichbar sein, sodass die Ausstellungsstücke unabhängig von einem bestimmten Ort zugänglich sind. Aufgrund des Standes der Technik ist es möglich, das Erleben der Ausstellungstücke durch das Interagieren und Herstellen von Zusammenhängen im virtuellen Raum greifbar zu machen. Durch das Bereitstellen von Informationen im virtuellen Raum auf individuelle Art und Weise kann vor allem dem Bildungsanspruch und somit im besonderen der Zielgruppe Lehrer und Schüler entsprochen werden. Mitarbeiter eines Museums wie Kuratoren oder Archivare können von einem virtuellen Museum profitieren. Eine dreidimensionalen Datenbank kann einen Überblick zur Verwaltung, zum Austausch von Ausstellungsstücken oder beim virtuellen Zusammenstellen von Ausstellungen ermöglichen. Im folgenden Abschnitt zeigt der Stand der Technik weiterführende Möglichkeiten, wie ein virtuelles Museum verstanden werden kann.

### 2.2 Stand der Technik

Als eine Kategorie kann das Online-Museum als virtuelles Museum verstanden werden. Darunter können Museen fallen, die im Internet

virtuell, begehbar und interaktiv nutzbar sind. Ein Beispiel dafür ist das Google Art Projekt [1]. Es ermöglicht Ausstellungshäuser weltweit zu erkunden. Auf dieser Seite können sich Nutzer durch die Bestände der Museen klicken und eigene Galerien anlegen sowie virtuelle Rundgänge durch die Museen machen. Ziel eines Online-Museums ist es, die Nutzer in das entsprechende Museum zu locken.

Die zweite mögliche Kategorie einer Einordnung virtueller Museen ist das VR-Museum. Nach Jürgs (2017) wird dabei die VR-Technologie verwendet, um Nutzer mittels einer App und einer VR-Brille einen Museumsbesuch zu ermöglichen. Diese Variante ist ortund zeitunabhängig. Das Museum für Naturkunde in Berlin verwendet die Technologie, um einen Dinosaurier zum Leben zu erwecken. Dabei kann der Besucher sich vor Ort eine VR-Brille ausleihen oder sich ortsunabhängig via App sich den Dinosaurier ansehen [2].

In einer dritten Kategorie können mittels AR-Technologie auf einem Tablet zusätzliche Informationen zu Ausstellungsstücken angezeigt werden, wie es das Bayerische Nationalmuseum in München macht [2].

Im Bereich der 3D-Druck Technologie können Ausstellungsstücke als 3D-Objekt ausgedruckt werden. Das Projekt Museum in a Box verleiht gemäß Oates (2015) gedruckte 3D-Objekte aus einem Museum in einer kleinen Box. Die Ausstellungsstücke im Miniformat kommunizieren über das Internet, um Informationen zu einem bestimmten Objekt abzurufen und sprachlich wiederzugeben. Somit werden die Ausstellungsstücke anfassbar und können in einen bestimmten Kontext gestellt werden [4].

Im Bereich der Tangible Interfaces (TI) Technologie kann nach Capurro (2015) die 3D-Druck Technologie verwendet werden, um 3D-Ausdrucke von Ausstellungsstücken als Interface zu nutzen. Die 3D-Objekte sind mit Sensoren und Elektronik ausgestattet, sodass mit Ausstellungsstücken interagiert werden kann [3].

Zusammenfassend lässt sich sagen, dass es die Technologien 3D-Druck, Augmented Reality (AR) und Virtuell Reality (VR) ermöglichen, ein virtuelles Museum auf unterschiedlichste Art und Weise entstehen zu lassen. Dabei können die Technologien ein Museum virtuell ergänzen oder es gänzlich ersetzen. Die Interaktion innerhalb eines virtuellen Museums ist mit TIs denkbar, bei dem dreidimensionale Objekte mit Hilfe von einem anfassbaren Objekt die virtuellen Ausstellungsstücke bewegt und gesteuert werden. Der 3D-Druck kann Ausstellungsstücke im Miniformat haptisch erlebbar und zu einem Sammelobjekt machen, das mit einem Informationsgewinn verknüpft wird. Die Technologie AR kann ein Museum ergänzen, indem Ausstellungstücke in einen virtuellen Kontext gesetzt oder mit Informationen versehen werden, die der Nutzer individuell anpassen kann. Der Nutzer kann entscheiden, wie die Information ausgeben wird. Vorstellbar ist, dass die Sprache oder Textform, die Tiefe der Information und die Geschwindigkeit der Darstellung gewählt werden können.

Im folgenden Abschnitt werden die Ziele und Ergebnisse der durchgeführten Fokusgruppe zum Thema Umsetzungsmöglichkeiten virtueller Museen vorgestellt.

### 2.3 Fokusgruppe

Im Rahmen der Fokusgruppe wurde untersucht, wie die Interaktion mit den Ausstellungsstücken in einem virtuellen Museum gestaltet werden kann. Dafür wurde zunächst erörtert, wie ein klassischer Museumsbesuch und die Interaktion mit den Ausstellungsstücken aussieht. Im zweiten Schritt wurde herausgearbeitet, wie die Interaktion in einem virtuellen Museum mit den Ausstellungsstücken aussehen könnte. Ziel war es herauszufinden, wie sich die Nutzer ein interaktives Museum vorstellen, welche Technologien dafür verwendet werden sollten und wie Interaktionsmöglichkeiten mit Hilfe entsprechender Technologien auf ein virtuelles Museum anwendbar sind.

Insgesamt waren vier Teilnehmer an der Fokusgruppe beteiligt. Jeder der Teilnehmer hat bereits ein Museum besucht, wobei drei der Teilnehmer mindestens zweimal im Jahr ins Museum gehen. Dabei handelt es sich vor allem um Kunstmuseen und Fotoausstellungen. Die Fokusgruppe wurde von einem Moderator und einem Komoderator geführt. Die Erebnisse wurden durch zwei Protokollanten dokumentiert. Nach einer inhaltlichen Einleitung stellten sich die Teilnehmer vor. Sie sollten Fragen beantworten, welchen Anlass es für den Museumsbesuch gab und welche Erfahrungen sie bisher während eines Museumsbesuchs gemacht haben. Nach der Vorstellungsrunde wurden weiter folgende offene Fragen beantwortet, die sich an einem halboffen Leitfaden orientierten:

- Was erwarte ich von einem guten Museumsbesuch?
- Wie sollen die Ausstellungsstücke präsentiert werden?
- Wie sieht ein Museumsbesuch aus? Gibt es Vor- oder Nachbereitungen?
- Wie agiert ihr mit den Ausstellungsstücken?

Als gute Museen wurden das Mathematikum Gießen, das Museum für Naturkunde Berlin und das jüdische Museum Berlin benannt. Das Mathematikum begeistert, da Mathematik in Form von interaktiven Experimenten erlebt werden kann. Das Museum für Naturkunde hingegen besticht vor allem durch seine Ausstellungsstücke wie durch den Dinosaurier in Lebensgröße. Beeindruckend ist das Jüdische Museum, weil es die Ausstellungsstücke mit begehbaren Installationen erlebbar macht.

Grundsätzlich wird ein Museum auf Reisen ohne Vor- oder Nachbereitungen besucht. Dabei wird Kunst als interessant bezeichnet. Am ehesten werden Fotoausstellungen besucht. Innerhalb des Museums wird meist durch die Ausstellungsräume geschlendert. Dabei werden die Tafeln für den Informationsgewinn gelesen. Ein Museumsbesuch sollte lehrreich sein, wobei Interaktionen nicht wichtig sind. Weiterhin wird das Museum gerne genutzt, um Freunde zu treffen und gemeinsam über die Ausstellungsstücke zu sprechen. Wenn es was zum Anfassen gibt, wird das gerne ausprobiert. Meist wird mit den Ausstellungsstücken durch Beobachtungen interagiert.

Nach der Diskussion wurde das Video Museum in a Box gezeigt, indem die Organisation ihr Konzept vom Museum in der Box darstellt. Das Video dient als Überleitung zu virtuellen Museen als neue Museumsform mit veränderten Möglichkeiten zur Interaktion mit

Ausstellungsstücken. Im folgenden wurde der Frage nachgegangen, wie sie sich ein virtuelles Museum vorstellen und wie darin mit Ausstellungsstücken interagiert werden kann.

In Form einer Diskussion haben die Teilnehmer die Kategorien eines virtuellen Museums aus dem Abschnitt Stand der Technik herausgearbeitet und bewertet. Die Tabelle 2 fasst die Ergebnisse dieser Diskussion zusammen.

| Kategorie         | Beurteilung                                       |  |
|-------------------|---------------------------------------------------|--|
| Online-Museum     | - negativ bewertet,                               |  |
| Omme-wuseum       | da viel aus dem Museum verloren geht              |  |
|                   | - innerhalb eines Museums negativ, weil man       |  |
|                   | das zu Haus machen kann                           |  |
| Virtual Reality   | - die Technik wird als positiv bewertet, weil     |  |
|                   | damit eigentlich                                  |  |
|                   | unerreichbare Orte erreichbar sind                |  |
|                   | - positiv in einem Museum,                        |  |
| Augmented Reality | um über Gesten, Schieben und Ziehen               |  |
|                   | mit Ausstellungsstück zu agieren                  |  |
|                   | - positiv bewertet                                |  |
| 3D-Druck          | - Figuren als Teaser, um Ausstellungstücke        |  |
| 5D-Druck          | im Museum in echt zu sehen                        |  |
|                   | - Zusammenstellen von eigener Ausstellung möglich |  |
| Interface         | nicht benannt                                     |  |

**Tabelle 2.** Bewertung der Kategorien eines virtuellen Museums als Interaktionsmöglichkeiten

Während der Diskussion sind viele Ideen entstanden, wie die Technologien verwendet werden können. Dabei stand vor allem die spielerische Auseinandersetzung mit den Ausstellungsstücken im Mittelpunkt. Das eigene Zusammenstellen und Ausdrucken einer eigenen Ausstellung, das Nachstellen und Erleben von unmöglichen Situationen entstanden als Ideen, wie der Reise zum Mond oder das spielerische nachzeichnen der Mona Lisa.

Zusammenfassend ergeben sich aus den definierten Zielen aus dem Kapitel Anwendungsfälle und Nutzungskontext und Ergebnissen der Fokusgruppe die Funktionen zur Entwicklung des Systems. Die beiden Aussagen der Fokusgruppenteilnehmer "Webseiten sind doof, da geht viel zu viel verloren vom Museum." und "Homepage auf gar keinen Fall! Eine Online-Galerie ist doof und es geht viel verloren." zeigten, dass eine Online-Museum nicht gewünscht wird. Die ursprüngliche Idee wird verworfen, ein interaktives Online-Museum in Form einer Webseite mit 3D-Objekten zu entwickeln. Die Diskussion ergab, dass Interaktionen in einem virtuellen Museum weniger über Webseiten zu realisieren sind, als über Technologien wie AR, VR oder 3D-Druck. Die Aussage "Die Situation erlebbar zu machen ist wichtig in einem virtuellen Museum. Orte wo man nicht hin kann." zeigt den Wunsch VR-Technologien für ein virtuelles Museum anzuwenden, indem interaktiv agiert werden kann. Weiterhin wurden Wünsche nach AR-Technologie geäußert. Es sei spannend, wenn es zusätzlich zum Museum angeboten werde. Nebeninformationen seien super. Daraus lassen sich für die Entwicklung des Systems die in der Tabelle aufgeführten Funktionen und Anforderungen ableiten.

| Funktion                       | Anforderung                                         |  |
|--------------------------------|-----------------------------------------------------|--|
|                                | Das System muss dem Nutzer                          |  |
|                                | die Möglichkeit bieten                              |  |
|                                | Informationen zum Exponat                           |  |
| Präsentation von Informationen | 1. anzuzeigen                                       |  |
|                                | 2. zu sortieren                                     |  |
|                                | 3. zu filtern                                       |  |
|                                | 4. zu vertiefen.                                    |  |
|                                | Das System soll dem Nutzer                          |  |
|                                | die Möglichkeit bieten                              |  |
|                                | das Exponat                                         |  |
| Interaktion mit Exponaten      | 1. zu erkunden                                      |  |
|                                | 2. zu gestalten                                     |  |
|                                | 3. in einen Kontext zu setzen                       |  |
|                                | 4. spielerisch zu erfassen.                         |  |
|                                | Das System soll dem Nutzer                          |  |
| Individualisierung             | die Möglichkeit bieten                              |  |
| individualisierung             | 1. eigenen Interessen zu folgen                     |  |
|                                | 2. eigene Ausstellungen zu gestalten.               |  |
|                                | Das System soll dem Nutzer                          |  |
| Lerneigenschaft                | die Möglichkeit bieten                              |  |
|                                | etwas über die Exponate zu lernen.                  |  |
|                                | Das System soll dem Nutzer                          |  |
| Erreichbarkeit von Orten       | die Möglichkeit bieten                              |  |
| Effection with Official        | 1. andere Welten zu erkunden                        |  |
|                                | 2. an unerreichbare Orte zu gelangen.               |  |
|                                | Das System soll dem Nutzer                          |  |
| Spielcharakter                 | die Möglichkeit bieten                              |  |
| Spicicital accor               | 1. 3D-Objekte von den Exponaten zu sammeln          |  |
|                                | 2. ein gemeinsames Erlebnis mit Freunden zu bieten. |  |

Tabelle 3. Funktionen und Anforderungen an ein virtuelles Museum

Im nächsten Abschnitt wird beschrieben, wie die gewonnen Erkenntnisse über die Anforderungen eines virtuellen Museums in Form eines Papierprototypen umgesetzt werden.

# 3 Prototyping: low-fidelity

Insgesamt wurden vier Prototypen entwickelt, die im Kapitel Papierprototypen und deren Designentscheidung vorgestellt werden. Für die Umsetzung wurden Anwendungen für das Museum für Naturkunde hergestellt. Aufgrund der Ergebnisse der Fokusgruppe sind vier unterschiedliche Anwendungen entstanden, wovon drei AR Anwendungen sind. Für die heuristische Evaluation wurden zwei Prototypen ausgewählt. Eine gute Gebrauchstauglichkeit ist gegeben, wenn mit dem System die Ziele erreicht werden können. Mit Hilfe der heuristischen Evaluation soll die Gebrauchstauglichkeit anhand der Heuristiken von Nielson (1994) ermittelt werden [6].

### 3.1 Papierprototypen und deren Designentscheidung

Prototyp I: In der ersten Variante wurde eine mobile Anwendung entwickelt, die über die Kamera des mobilen Gerätes mit dem Exponat interagiert. Mit Hilfe der Kamera kann das Exponat auf dem mobilen Gerät angesehen werden. Dabei werden auf dem Bildschirm Informationen zu dem Exponat angezeigt. Nach dem Gesetz der Dialoggestaltung zur Selbstbeschreibungsfähigkeit soll der Nutzer durch die offene Kamera erkennen, dass er das Objekt scannen muss zu dem er Informationen haben möchte. Die Steuerbarkeit ist hier gegeben, da der Nutzer mit der Kamera die volle Kontrolle über das Objekt besitzt. Das Objekt ist über die Kamera immer sichtbar, solange es gescannt wird. Abbildung 1 zeigt das gescannte Objekt auf dem mobilen Gerät mit spezifischen Informationen zum Objekt. Die Informationen zum Objekt sind am Objekt fest verankert, sodass sie beim Zoomen mit vergrößert werden und eine Zugehörigkeit zwischen Objekt und Information besteht.



Abb. 1. Mobile AR Anwendung

Zur Umsetzung des Papierprototypen wurde beispielhaft die Fossilie eines Archaeopteryx als Gattung der Archosaurier als Exponat gewählt. Mit der Anwendung sollen Szenarien möglich sein, die in Abbildung 2 dargestellt sind.



Abb. 2. Use Case Diagramm: Mobile AR Anwendung

Der Papierprototyp wurde für den Use Case "Informationen anzeigen" (Abb. 2) entwickelt. Inkludiert ist dabei das Zoomen des Exponats. Die Gestaltung und Anzahl der Dialoge wurde bewusst gehalten, um die Konzentration auf die Informationen lenken zu können. Die Interaktionen sollten aus den Informationen selbst erkennbar und durch bekannte Interaktionen umsetzbar sein. Als bekannte Interaktion ist das Zoomen mit Hilfe von zwei Fingern möglich, die auseinander bzw. zusammengezogen werden. Ebenfalls als bekannt vorausgesetzt, ist das Zurücksetzten der Skalierung über das doppelte Tippen auf das Display. Nach dem Öffnen der Anwendung öffnet sich die Kamera. Der Nutzer soll im weiteren Schritt die Kamera auf das Exponat richten, sodass Informationen angezeigt werden können. Sobald das Exponat von der Kamera erfasst ist, werden zum Exponat allgemeine Informationen angezeigt. Sie können durch

Scrollen mittels Wischen nach Oben bzw. Unten angesehen werden. Am Ende können über einen Button spezielle Informationen, wie die Merkmale des Archeopteryx angezeigt werden. Für das Anzeigen von weiteren Informationen wird eine Slideshow umgesetzt. Die Benutzung der Slideshow erfolgt durch das Wischen nach links und rechts. Die Überschriften regen das Vorwissen des Nutzers an und sollen das Wischen als Interaktion zum Anzeigen von weiteren Informationen hervorrufen. Die Slideshow wird nach den Grundsätzen der Dialoggestaltung nach der Erwartungskonformität gewählt. Sie dient der Navigation, mit der sich mehrere Informationen zu einem Hintergrundbild anzeigen lassen können.

Prototyp II: In der zweiten Variante wurde eine mobile Anwendung entwickelt, die über die Kamera einer AR-Brille mit dem Exponat interagiert. Mit Hilfe der Kamera kann das Exponat erfasst und die Ansicht mit Informationen erweitert werden. Dabei werden auf den Brillengläsern Informationen zum Exponat angezeigt. Nach dem Gesetz der Dialoggestaltung und dem Gesetz der Einfachheit zur Selbstbeschreibungsfähigkeit soll der Nutzer durch das Aufsetzen der Brille erkennen, dass das Objekt betrachtet muss, um sich Informationen anzeigen zu lassen. Die virtuellen Informationen zum Objekt sind um das Objekt herum angelegt. Sie können gescrollt oder geswitcht werden. Die Steuerbarkeit der Informationen wird über die Kopfhaltung realisiert. Das Scrollen und Switchen durch die Informationen erfolgt durch Heben oder Senken des Kopfes. Eine Interaktion mit dem Exponat findet nicht direkt statt. Der Text wird entsprechend der vertikalen Kopfhaltung gescrollt. Zur Orientierung im Raum werden die Informationen zu den Exponaten in vier Informationsblöcke aufgeteilt. Sie sind nach den vier Himmelsrichtungen ausgerichtet, sodass sich der Nutzer zu den Exponaten navigieren kann. Zur Unterstützung der Navigation enthält die Anwendung eine kleine Karte mit Positionskursor. Die Karte ist halb transparent, damit sie nicht im Vordergrund steht. Sobald der Nutzer an ein Exponat herantritt, werden die entsprechenden Informationen angezeigt und die übrigen Informationen ausgeblendet. Das Starten und Beenden der Anwendung erfolgt durch An- und Ausschalten der Brille.

**Prototyp III:** Als dritte Variante wurde eine Anwendung konzipiert, mit der Exponate gestaltet werden können. Auf einem Terminal, das fest im Museum installiert ist, können Exponate gewählt werden, die mit Hilfe eines Bildbearbeitungsprogrammes gestaltet und mit einem 3D-Drucker ausgedruckt werden können. Die Exponate werden zum Bearbeiten dreidimensional dargestellt, sodass detailgetreu am Exponat gearbeitet werden kann. Die Wahrnehmung von direktem Interagieren mit dem Exponat wird über die dreidimensionale Darstellung vermittelt. Mit Hilfe der Anwendung kann ein Zugang zu den Exponaten hergestellt werden, damit das Interesse auf weitere Informationen geweckt wird. Mit dem ausgedruckten Objekt kann das Exponat zusätzlich haptisch erlebt wird. Hervorzuheben ist, dass der Skeumorphismus für die Umsetzung angewandt wurde. Für das Gestalten der Exponate sind die physischen Elemente der realen Welt wie Pinsel, Stift und Radiergummi originalgetreu in der digitalen Anwendung als Werkzeug integriert. Die Farben bestehen aus den Grundfarben und können selbst auf einer Farbpalette gemischt werden. Gleichzeitig ist der Aufforderungscharakter durch die originalgetreuen Werkzeuge gegeben. Der Nutzer wird durch die Werkzeuge motiviert zu handeln. Insgesamt verhält sich die Anwendung so wie es das Weltbild vermutet.

Prototyp IV: In dieser Variante der Papierprototypen wurde als zentrales Element ein TI verwendet, das zur Interaktion mit den Exponaten im Museum dient. Mit Hilfe einer AR-Brille wird das Exponat virtuell dreidimensional dargestellt. Die Darstellung erfolgt über das Einlesen eines QR-Codes, der mit Hilfe der AR-Brille gescannt werden kann. Der erfolgreiche Scan wird mit einem Ton an den Nutzer zurückgemeldet. Durch den QR-Code kann der Nutzer bewusst und selbstbestimmt entscheiden, dass das Exponat virtuell angezeigt wird. Nach dem Scannen des QR-Codes wird das Exponat angezeigt und kann über das TI erkundet und gesteuert werden, wobei das virtuelle Exponat mit der Bewegung des Nutzers mitgeht. Ein Herumgehen um das virtuelle Exponat ist nicht möglich.



Abb. 3. AR Anwendung mit TI

Das TI ist ein kugelförmiges Gerät mit drei Sensoren. Die Form des TI hat einen hohen Aufforderungscharkter. Das TI soll in die Hand genommen werden, um mit dem Exponat interagieren und das Exponat bewegen zu können. Als Sensoren sind ein Gyrosensor, ein Beschleunigungssensor und ein Drucksensor in der Kugel verbaut. Der Gyrosensor dient zur Bestimmung der Rotation des TI, wohingegen der Beschleunigungssensor eine Schüttelgeste ermöglicht. Der Drucksensor ermöglicht das Drücken des Interfaces. Die drei Sensoren ermöglichen die Steuerung des Exponates, auf die mehrere Funktionen gemappt werden können. Als Funktionen sind das Schütteln zum Beenden der Darstellung des Exponats, das Drehen zum Rotieren und das Drücken zum Zoomen des Exponates gemappt. Das Exponat kann durch einmaliges Drücken hineingezoomt und durch zweimaliges Drücken wieder zurück skaliert werden.

Im Vordergrund steht die User Experience, wobei der Nutzer über das TI die Lust am Entdecken des Exponates entwickeln soll. Um dieser Anforderung entsprechen zu können, wurde der Anwendungsfall für die heuristische Analyse auf das Bewegen und Erkunden des Exponats gewählt. Weitere Anwendungsfälle sind das Abspielen eines Videos und das Anzeigen von Informationen zum Exponat.

Im folgenden werden die Ergebnisse der heuristischen Evaluation vorgestellt. Sie wurde anhand des Prototypen I und des Prototypen IV vollzogen. Prototyp I ist eine mobile Anwendung zum Anzeigen von Informationen. Prototyp IV ist eine Anwendung zum Anzeigen von Exponaten als 3D-Objekt mit Hilfe eines TI.

### 3.2 Heuristische Evaluation

Um Usability Probleme zu entdecken, wurden die Heuristiken von Nielson verwendet [6]. Damit lassen sich Eigenschaften des Systems herausfinden, die erfüllt sein müssen, damit die Interaktion für den Nutzer gebrauchstauglich sind. Zunächst werden die Ergebnisse tabellarisch zusammengefasst, worauf eine Auswertung folgt. In der Tabelle sind die Heuristiken erfasst, die gefunden wurden. Heuristiken, die während der Evaluation nicht gefunden wurden, sind nicht mit aufgeführt.

Nachfolgend fasst Tabelle 4 die Ergebnisse der heuristischen Analyse des Prototypen I zusammen und wird anschließend analysiert.

| Dialog            | Erwartung              | Lösungsvorschlag        | Heuristik           |
|-------------------|------------------------|-------------------------|---------------------|
|                   | Automatisches Scrollen | - Scrollbar einfügen    |                     |
|                   |                        | zur Erkennung der       |                     |
| Allg. Information |                        | Interaktionsmöglichkeit | Sichtbarkeit        |
| anzeigen          |                        | - Umsetzen einer        | des Systemstatus    |
|                   |                        | automatischen           |                     |
|                   |                        | Wiedergabe              |                     |
|                   | Herangehen             | - Info anzeigen,        | Übereinstimmung     |
| Zoomen            |                        | wie das Zoomen          | zwischen dem System |
|                   |                        | funktioniert            | und der realen Welt |
|                   | Nicht erkannt          | - Einfügen von          | Benutzerkontrolle,  |
| Wischen           |                        | Punkten zur Anzeige     | Hilfe und           |
|                   |                        | der Anzahl der Slides   | Dokumentation       |

Tabelle 4. Heuristische Evaluation: Mobile AR Anwendung

Das System hat keine Statusmeldung zum Scrollen der Informationen ausgegeben. Deshalb entstand die Erwartung, dass die Informationen automatisch scrollen. Durch Einfügen einer Scrollbar wird dem Nutzer angezeigt, dass der Text nach unten hin bewegbar ist. Über die Größe des Rechtecks in der Scrollbar wird die aktuelle Position im Text angezeigt und ein Gefühl für die Länge des Textes gegeben.

Das System spricht beim Verwenden des Zoommechanismus nicht die Sprache des Nutzers. Durch die Verwendung der AR-Technologie

nimmt der Nutzer wahr, dass die Interaktion mit dem Objekt genauso funktioniert wie im realen Raum. Dadurch wird erwartet, dass durch Herangehen an das Exponat ein Zoomen möglich ist. Durch hinzufügen einer Informationshilfe wie das Zoomen anzuwenden ist, könnte der Nutzer die Interaktion lernen. Allerdings würde das der Heuristik von Nielson [6] widersprechen, dass das System ohne Hilfe auskommen muss.

Das Nichterkennen der Funktion Wischen zum Anzeigen von weiteren Informationen lässt den Nutzer in eine Situation geraten, aus der er nicht wieder zurückfindet. Das wurde anhand der Benutzerkontrolle festgestellt. Um die Funktion deutlich zu machen, können am unteren Rand kleine Kreise dargestellt werden, die für jeweils eine Seite stehen. Die Kreise werden unter Anwendung des Gestaltgesetzes der Verbundenheit zusammen und nebeneinander in gleichmäßigen Abstand positioniert. Der Kreis, der die aktuelle Seite repräsentiert, wird farbig dargestellt. Durch die Hervorhebung wird der Nutzer schneller auf seine Position in der Anwendung aufmerksam. Durch Wischen wird die nächste Seite angezeigt und der entsprechende Kreis farbig dargestellt. Eine direkte Auswahl der Seite, die angezeigt werden soll, kann durch das Tippen auf den Kreis vollzogen werden.

Nachfolgend fasst Tabelle 5 die Ergebnisse der heuristischen Analyse des Prototypen IV zusammen und wird anschließend analysiert.

| Dialog                    | Erwartung                                                                                                 | Lösungsvorschlag                                                                                                                        | Heuristik                                 |
|---------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
|                           | - Visuelles Feedback                                                                                      | - Ladebalken mit                                                                                                                        | - Sichtbarkeit                            |
| QR-Code scannen           | zum Status                                                                                                | Fortschrittsanzeige                                                                                                                     | des                                       |
|                           | des Scannprozesses                                                                                        | einblenden                                                                                                                              | Systemstatus                              |
|                           | - Virtuelles Exponat                                                                                      | - Mögliche Funktion                                                                                                                     | - Übereinstimmung                         |
| Virtuelles                | durch Bewegung                                                                                            | durch feste                                                                                                                             | zwischen System                           |
| Exponat ansehen           | des Nutzers von allen                                                                                     | Verankerung des                                                                                                                         | und realem                                |
|                           | Seiten betrachten                                                                                         | Exponats                                                                                                                                | Raum                                      |
| Mapping der<br>Funktionen | Anwendung der<br>Funktionen vergessen                                                                     | - Tutorial und<br>Hilfestellungen<br>oder besseres<br>Mapping der<br>Funktionen                                                         | - Wiedererkennen<br>statt sich erinnern   |
| Zoomen                    | - Einmaliges Drücken für<br>rein- und rauszoomen                                                          | <ul> <li>zweimaliges Drücken<br/>auf andere Funktion<br/>mappen</li> <li>Gedrückt halten zum<br/>Umsetzen von<br/>Zoomstufen</li> </ul> | - Konsistenz und<br>Standards             |
| Schütteln                 | <ul><li>Funktion Schütteln<br/>nicht erkannt</li><li>Exponat verlassen<br/>als Funktion gesucht</li></ul> | - Tutorial<br>- besseres Mapping                                                                                                        | - Benutzerkontrolle<br>- Benutzerfreiheit |

Tabelle 5. Heuristische Evaluation: AR Anwendung mit TI

Der Ton als Rückmeldung für das Beenden des Ladens des QR-Codes wird vom Nutzer nicht bewusst wahrgenommen. Deshalb wird nicht erkannt, ob der Ladevorgang beendet ist und der Blick vom QR-Code entfernt werden kann. Das ist ein Beispiel dafür, das der Nutzer nicht mehr weiter kommt. Das Objekt, dass sich nach dem Laden vor seinen Augen befand wird nicht wahrgenommen. Der Nutzer ist von Systemen gewohnt ein visuelles Feedback für den Ladeprozess zu erhalten. Die Erwartungshaltung hat sich entsprechend auf das visuelle Feedback konzentriert und weniger auf das auditive Verhalten der Anwendung. Durch Hinzufügen eines visuellen Feedbacks wird dem Nutzer ein Einstieg in die Anwendung erleichtert, weil der Fokus durch die Brille auf die visuelle Wahrnehmung gesetzt wird.

Die Betrachtung des virtuellen Exponates durch die Brille verleiht dem Nutzer die Vorstellung, dass das virtuelle Objekt im Raum fest verankert ist und dadurch ein herumgehen um das Objekt möglich ist. Während des Verlaufs der heuristischen Evaluation wurden die Funktionen vergessen, die auf das TI gemappt wurden wie Zoomen durch Drücken und Beenden eines Modus durch Schütteln des TIs. Das Verhalten des Nutzers brachte uns darauf die Funktionen einfacher zu gestalten und sie den Nutzerbewegungen anzupassen. Deshalb wurde das Zoomen durch langsames und kräftiges Drücken realisiert, sodass ein Zoom mit nahtlosen Übergängen zu weiteren Zoomstufen möglich ist. Das Drehen wurde als Konsistenz vom Nutzer bewertet und entspricht den natürlichen Bewegungen des Nutzers. Das Schütteln des TIs wurde als Funktion entfernt, da es keine bekannte Aktion des Nutzers ist.

### 3.3 Fazit

Nach der Durchführung der heuristischen Evaluation entstand die Idee, die Funktionen der mobilen AR Anwendung wie Zoomen, Scrollen, Drehen und anzeigen von Informationen eines Objektes auf das TI anzuwenden. Somit soll eine Anwendung zum Interagieren mit einem Exponat über ein TI entstehen. Die Anwendung soll in zwei Modi verwendet werden können, die über einen Knopf oder durch einmaliges Drücken des TIs gewechselt werden können. Im ersten Modus kann das Exponat angesehen, gedreht und vergrößert werden. Im zweiten Modus können Informationen zu dem Exponat angezeigt werden. Sobald ein Wechsel in den Informationsmodus stattfindet, werden Informationen zu dem Objekt angezeigt. Durch Drehen des TIs kann durch die Informationen gescrollt werden. Damit soll erreicht werden, dass das Wiedererkennen der Funktionen besser funktioniert und sich der Nutzer die Funktionen nicht merken muss.

Beim Nutzer soll die Neugier geweckt werden das Exponat zu erkunden. Der Entdeckergeist soll durch Freude geweckt werden. Durch die zwei Modi das Anzeigen von Informationen und das Ansehen des Exponats, kann dem Bedürfnis nach Informationen entsprochen werden. Durch das Betrachten des Exponats durch Zoomen und Drehen soll ein Interesse nach mehr Informationen geweckt werden. Das explorative Vorgehen steht bei der Verwendung des TIs im Vordergrund. Dabei wird ein haptisches Empfinden und eine Art direkter

Kontakt durch das Drücken des TIs hergestellt, sodass der Nutzer das Gefühl bekommt, sich direkt in das Exponat hinein versetzen zu können.

### 4 Prototyping: high-fidelity

Nach der heuristischen Evaluation konnten die umzusetzenden Feature und Ziele zum Erreichen der User Experience definiert werden. In diesem Kapitel wird dargestellt, welche Funktionen und Änderungen für den high-fidelity Prototypen im Vergleich zu dem Papierprototypen vorgenommen wurden.

### 4.1 Umsetzung des Papierprototypen

Zunächst wurden die grundlegenden Ideen des ersten und vierten Prototypen in einem Prototypen zusammengeführt. Hauptsächlich steht das TIs im Fokus mit dem Exponate entdeckt und neue Informationen entdeckt werden können. Daraus wurden folgende Feature entwickelt:

- Die Anwendung wird gestartet, wenn das TI aus der Halterung am Terminal genommen wird.
- Beim Starten der Anwendung wird der Modus zum Interagieren geöffnet.
- Der Nutzer kann durch Drücken des TIs das Exponat vergrößern. Dabei soll je nach Kraftaufwand eine entsprechende Skalierung stattfinden.
- Der Nutzer kann das Exponat durch vertikales und horizontales Drehen des TIs drehen.
- Der Nutzer kann durch Drücken des Informationsknopfs am TI Informationen zu einem Exponat angezeigt bekommen.
- Der Nutzer kann durch vertikales Drehen des TIs den Informationstext scrollen.
- Der Nutzer kann durch Drücken des Informationsknopfes am TI die angezeigten Informationen zu einem Exponat ausblenden.
- Der Nutzer kann durch horizontales Drehen des TIs weitere Informationen angezeigt bekommen.

• Die Anwendung wird durch Zurücklegen des TIs in das Terminal beendet. Wenn die Anwendung beendet ist, wird das Exponat ohne Zoom und Informationensanzeige in einem voreingestellten Skalierungsmodus gesetzt.

Durch das TI soll die User Experience mit folgenden Zielen umgesetzt werden:

- Beim Nutzer soll die Neugier geweckt werden das Exponat zu erkunden.
- Beim Nutzer soll dem Bedürfnis nach Informationen entsprochen werden.
- Beim Nutzer soll das Gefühl hergestellt werden, sich in das Exponat hineinzuversetzen.

Die Papierprototypen wurden nicht nur mit den Funktionen der Informationsanzeige, der Betrachtung von 3D-Objekten und dem Interagieren über ein TI zusammengeführt, sondern auch verändert. Aus der AR-Anwendung ist eine Desktopanwendung entstanden, die mit einem TI gesteuert werden kann. Für das Museum soll der Desktop als Terminal mit Leinwand umgesetzt werden, sodass auch Zuschauer partizipieren können und somit Interesse für das Exponat geweckt wird.

Um den Nutzern die Anwendung näher zu bringen, werden im nächsten Abschnitt die Use Cases skizziert, die mit der Anwendung im high-fidelity Status vollzogen werden können.

### 4.2 Anwendungsfälle für den high-fidelity Prototypen

Die Aufgabe des Nutzers besteht hauptsächlich darin, dass TI in seiner Handhabung zu erlernen und das Exponat auf zwei Arten zu erkunden. Zum einen soll das Exponat in seiner Tiefe betrachtet werden. Insbesondere Details wie die Anzahl der Fußknochen durch selbstständiges Zählen oder das Erkennen der Knochenstruktur am Beispiel Archeopteryx. Um das Wissen des Nutzers zu vertiefen, soll über den Modus der Informationsanzeige weiteres Informationsmaterial visualisiert werden.

Daraus ergeben sich folgende zwei Aufgaben für den Nutzer:

- Zählen Sie die Zähne des Archeopteryx.
- Informieren Sie sich über den Aufbau der Zellstruktur eines Knochens am Beispiel des Schlüsselbeins des Archeopteryx.

### 4.3 Kritische Betrachtung

In der Bedienung des TIs ist die Funktion des Zooms durch festes Drücken kritisch zu sehen. Da das Interface gehalten werden muss, um den entsprechenden Zoommodus beizubehalten, ist das Entdecken erschwert. Eine Variante ist das TI so zu gestalten, dass es seine Form beibehalten kann und der Zoommodus fixiert ist.

### 5 Zusammenfassung

Die Analyse der bestehenden Systeme ergab, dass es die Technologien 3D-Druck, AR und VR ermöglichen, ein virtuelles Museum auf unterschiedlichste Art und Weise entstehen zu lassen. Eine Fokusgruppe beschäftigte sich mit dem Schwerpunkt, welche Interaktionsmöglichkeiten im Museum möglich sind. Die Interaktion innerhalb eines virtuellen Museums ist mit TIs denkbar. Durch ein Objekt in der Hand eines Museumsbesuchers können virtuelle deidimensional dargestellte Exponate bewegt und gesteuert werden. Weiterhin wurde festgestellt, dass die Technologie AR ein Museum ergänzen kann. Aus den definierten Zielen der Anwendungsfälle, sowie aus Ergebnissen der Fokusgruppe resultieren die Funktionen zur Entwicklung eines Systems. Sie wurden in Form eines Papierprototypen umgesetzt. Es entstanden vier Papierprototypen, wobei zwei für die heuristische Analyse verwendet wurden. Entstanden sind zwei AR-Anwendungen für ein Naturkundemuseum und ein TI zur Steuerung der Objekte. Nach der Durchführung der heuristischen Analyse konnten neue Ziele anhand der gefundenen Probleme in der Usability bezüglich der User Experience und Feature für den digitalen Prototypen formuliert werden. Das Ergebnis ist ein digitaler Prototyp, der Anwendung in einem Museum finden kann, um Exponate mit Hilfe eines TI erkunden zu können.

### Literatur

- 1. Google arts and culture (2011), http://www.googleartproject.com (Zugriff am: 2018-05-11)
- Alexander Jürgs: Virtual reality im museum: Wenn dinosaurier zum leben erwachen (2017), https://www.goethe.de/de/kul/bku/20949031.html (Zugriff am: 2018-05-11)
- 3. Capurro, C., Nollet, D., Pletinckx, D.: Tangible interfaces for digital museum applications. In: Tangible interfaces for digitalmuseum applications. pp. 271–276. IEEE (2015)
- 4. George Oates: Museum in an box: Object-oriented experience design for museums (2015), http://www.museuminabox.org/ (Zugriff am: 2018-05-11)
- Miedler, E. (ed.): Ethische Richtlinien für Museen von ICOM. ICOM Schweiz, Zürich, überarb. 2. aufl. der dt. version edn. (2010)
- Nielsen, J.: Enhancing the explanatory power of usability heuristics. In: Adelson, B., Dumais, S., Olson, J. (eds.) Proceedings of the SIGCHI conference on Human factors in computing systems celebrating interdependence - CHI '94. pp. 152–158. ACM Press, New York, New York, USA (1994)