Universidade Federal do Rio Grande do Sul (UFRGS) Instituto de Informática Sistemas Digitais Prof. Fernanda Lima Kastensmidt

Definição Trabalho 3 - Sistemas Digitais - 2017-1

1) Implementar uma versão em VHDL de um hardware que realize o cálculo da **média e o desvio padrão** (raiz quadrada da variância) da produção de um conjunto de funcionários produzindo peças em uma fábrica por 30 dias segundo a tabela, prototipar na placa e apresentar resultados conforme descrito a seguir.

Numero de peças fabricadas por dia para cada funcionário A a O

															D	ias														
Funcionarios	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	18	20	21	22	23	24	25	26	27	28	29	30
A	10	9	11	13	14	13	15	15	12	13	15	16	17	11	10	9	7	8	13	18	12	13	15	15	13	10	9	8	7	14
В	21	22	12	12	24	21	12	16	17	18	16	19	21	20	22	21	12	12	13	15	16	16	16	12	12	21	21	21	21	21
С	13	13	21	12	11	21	21	11	11	11	13	14	19	9	9	9	8	7	11	12	13	15	18	18	18	17	18	19	11	12
D	14	14	21	12	11	21	21	11	14	14	15	16	14	13	15	16	18	17	12	18	18	12	12	15	15	16	17	18	19	20
E	15	15	12	12	17	21	21	10	11	12	11	9	9	8	7	6	6	6	5	4	6	7	8	9	11	12	11	12	7	6
F	16	16	12	10	13	12	21	10	15	16	17	17	14	15	15	16	14	13	12	14	15	15	16	16	17	14	13	13	12	11
G	11	17	13	12	16	14	19	11	18	19	19	20	5	17	21	20	20	21	22	13	18	19	19	19	21	21	21	22	22	20
Н	21	12	17	15	18	16	21	11	17	18	17	18	17	18	18	18	17	18	17	18	18	17	18	18	18	17	19	17	18	18
I	11	12	14	14	11	12	12	12	11	11	11	11	11	11	11	11	11	11	11	11	11	12	12	12	12	12	12	12	13	11
J	12	13	19	18	12	21	20	14	20	21	22	23	22	21	21	22	18	17	18	18	16	17	17	18	11	18	19	19	19	22
K	10	11	0	0	0	19	19	13	19	20	21	22	22	22	21	22	18	19	17	18	16	17	17	19	11	18	22	22	21	19
L	14	14	21	12	11	21	21	11	14	14	15	16	14	13	15	16	18	17	12	18	18	12	12	15	15	16	17	18	19	20
M	13	10	23	12	11	18	19	11	18	19	19	20	5	17	21	20	20	21	22	13	18	19	19	19	21	21	21	22	22	20
N	15	9	20	13	10	19	21	11	17	18	17	18	17	18	18	18	17	18	17	18	18	17	18	18	18	17	19	17	18	18
0	16	8	19	15	11	18	12	12	11	11	11	11	11	11	11	11	11	11	11	11	11	12	12	12	12	12	12	12	13	11

Sobre a entrada dos dados

- a) A tabela deve ser gravada em memoria usando .COE
- b) A organização dos dados na memoria é de escolha do projetista

Sobre o processamento

c) a simulação sem e com atraso deve apresentar o numero de ciclos de relógio para realizar as operações e se foi implementado pipeline, paralelismo, etc.

Nesta etapa será importante apresentar dados de

- AREA
- DESEMPENHO em numero de ciclos de relógio, frequência máxima de operação, tempo de execução.
- arquitetura como organização da memoria, operadores, registradores e interfaces.
- d) O resultado da media e do desvio padrão de cada funcionário deve ser gravado em 15 endereços de memoria consecutivos. (15 funcionários de A a O).

Sobre apresentar os resultados

e) As chaves da placa devem poder selecionar os endereços de memoria para informar os resultados de cada funcionário, e esses resultados devem ser expostos no display 7 segmentos.

Exemplo

A 202

B 193

Criar um contador que conta do inicio da operação (BOTAO de START) ate o DONE (termino do calculo) e mostra o numero de ciclos de relógio nos LEDS da placa.

Avaliação

4 pontos: definição da arquitetura, organização, fluxograma ASM e diagrama de blocos do PC e PO

2 pontos: implementação do VHDL e simulação sem atraso

1 ponto: simulação com atraso

1 ponto: testbench inteligente que compara resposta com valor gold

2 pontos: implementação na placa

+ 1 ponto para a implementação que funcionar na placa e for a mais rápida em TEMPO (s)

+ 1 ponto para a implementação que funcionar na placa e tiver a menor área (# LUT, ffp, DSP)

Fi	Quantidade de peças produzidas por dia											
Funcionários	Segunda	Terça	Quarta	Quinta	Sexta							
Α	10	9	11	12	8							
В	15	12	16	10	11							
С	11	10	8	11	12							
D	8	12	15	9	11							

Para saber a produção média de seus funcionários, o chefe faz o cálculo da <u>média aritmética</u> (x) de produção, isto é, a soma do número de peças produzido em cada dia dividida pela quantidade analisada de dias.

A partir desse cálculo, temos a produção diária média de cada funcionário. Mas se observarmos bem a tabela, veremos que há valores distantes da média. O funcionário B, por exemplo, produz uma média de 12,8 peças por dia. No entanto, houve um dia em que ele produziu 16 peças e outro dia em que ele confeccionou apenas 10 peças. Será que o processo utilizado pelo dono da empresa é suficiente para o seu propósito?

Para esse exemplo, ficou fácil concluir que há uma grande variação entre a produção de cada funcionário. Mas e se essa fosse uma grande empresa, com mais de mil funcionários, ou se fosse observada a produção em um ano, será que conseguiríamos definir essa variação com tanta facilidade?

O estudo da <u>Estatística</u> apresenta **medidas de dispersão** que permitem a análise **da dispersão dos dados**. Inicialmente veremos a **variância**, <u>uma medida de dispersão que mostra quão distantes os valores estão da média</u>. Nesse caso, como estamos analisando todos os valores de cada funcionário, e não apenas uma "amostra", trata-se do cálculo da **variância populacional (var)**.

O cálculo da variância populacional é obtido através da soma dos quadrados da diferença entre cada valor e a média aritmética, dividida pela quantidade de elementos observados. Observe o cálculo simplificado para esse exemplo:

 $var = \frac{(\text{segunda} - \text{média aritmética})^2 + (\text{terça} - \text{média aritmética})^2 + \cdots + (\text{sexta} - \text{média aritmética})^2}{\text{quantidade de dias}}$

Vamos então calcular a variância populacional para cada funcionário:

Funcionários	Média Aritmética (x)							
А	$\overline{X}_A = \underline{10 + 9 + 11 + 12 + 8} = \underline{50}$	X _A = 10,0						
В	$\overline{X}_B = \underline{15 + 12 + 16 + 10 + 11} = \underline{64}$ 5	X _B = 12,8						
С	$\overline{X}_{c} = \underline{11 + 10 + 8 + 11 + 12} = \underline{52}$	X _c = 10,4						
D	$\overline{X}_D = 8 + 12 + 15 + 9 + 11 = 55$	X _D = 11,0						

^{***}Os dados finais serão todos inteiros então serão arredondados para cima ou para baixo.

Variância → Funcionário A:

var (A) =
$$(10-10)^2 + (9-10)^2 + (11-10)^2 + (12-10)^2 + (8-10)^2$$
5
$$var (A) = \frac{10}{5} = 2,0$$

Variância → Funcionário B:

var (B) =
$$(15 - 12.8)^2 + (12 - 12.8)^2 + (16 - 12.8)^2 + (10 - 12.8)^2 + (11 - 12.8)^2$$
5

Variância → Funcionário C:

var (C) =
$$(11 - 10,4)^2 + (10 - 10,4)^2 + (8 - 10,4)^2 + (11 - 10,4)^2 + (12 - 10,4)^2$$
5

$$var(C) = 9.2 = 1.84$$

Variância → Funcionário D:

var (D) =
$$(8-11)^2 + (12-11)^2 + (15-11)^2 + (9-11)^2 + (11-11)^2$$
5

$$var(D) = 30 = 6,0$$

Podemos afirmar que a produção diária do funcionário C é mais uniforme do que a dos demais funcionários, assim como a quantidade de peças diárias de D é a mais desigual. Quanto maior for a variância, mais distantes da média estarão os valores, e quanto menor for a variância, mais próximos os valores estarão da média.

Em algumas situações, apenas o cálculo da variância pode não ser suficiente, pois essa é uma medida de dispersão muito influenciada por valores que estão muito distantes da média. Além disso, o fato de a variância ser calculada "ao quadrado" causa uma certa camuflagem dos valores, dificultando sua interpretação. Uma alternativa para solucionar esse problema é o **desvio padrão**, outra **medida de dispersão**.

O desvio padrão (dp) <u>é simplesmente o resultado positivo da raiz quadrada da variância</u>. Na prática, o desvio padrão indica qual é o "erro" se quiséssemos substituir um dos valores coletados pelo valor da média. Vamos agora calcular o desvio padrão da produção diária de cada funcionário:

O desvio padrão (dp) <u>é simplesmente o resultado positivo da raiz quadrada da variância</u>. Na prática, o desvio padrão indica qual é o "erro" se quiséssemos substituir um dos valores coletados pelo valor da média. Vamos agora calcular o desvio padrão da produção diária de cada funcionário:

Desvio Padrão → Funcionário A:

$$dp(A) = \sqrt{var} (A)$$

$$dp(A) = \sqrt{2},0$$

$$dp(A) \approx 1,41$$

Desvio Padrão → Funcionário B:

$$dp(B) = \sqrt{var} (B)$$

$$dp(B) = \sqrt{5,36}$$

$$dp(B) \approx 2,32$$

Desvio Padrão → Funcionário C:

$$dp(C) = \sqrt{var} (C)$$

$$dp(C) = \sqrt{1,84}$$

$$dp(C) \approx 1,36$$

Desvio Padrão → Funcionário D:

$$dp(D) = \sqrt{var} (D)$$

$$dp(D) = \sqrt{6},0$$

$$dp(D) \approx 2,45$$

Podemos ver a utilização do desvio padrão na apresentação da média aritmética, informando o quão "confiável" é esse valor. Isso é feito da seguinte forma:

média aritmética (x) ± desvio padrão (dp)

média aritmética (x) ± desvio padrão (dp)

Se o dono da empresa de nosso exemplo pretende concluir seu relatório com a produção média diária de seus funcionários, ele fará da seguinte forma:

Funcionário A: $10,0 \pm 1,41$ peças por dia Funcionário B: $12,8 \pm 2,32$ peças por dia Funcionário C: $10,4 \pm 1,36$ peças por dia Funcionário D: $11,0 \pm 2,45$ peças por dia

*** Iremos trabalhar com números inteiros positivos apenas logo no nosso caso veríamos

10 +- 1

12 +- 2

10 +- 1

11 +- 2