Лишь одна ОВР

Бесцветный газ **A** при нормальных условиях занимает объем 2,24 л. Данное количество вещества **A** полностью нейтрализуется стехиометрическим количеством водного раствора КОН (*p-ция* 1) с образованием **раствора** 1. При добавлении к полученному **раствору** 1 избытка раствора нитрата бария выпадает 19,73 г белого осадка **B** (*p-ция* 2), который в природе встречается в виде минерала витерита, массовая доля бария в нём составляет 69,59 %. При добавлении к такому же объёму **раствора** 1 избытка раствора нитрата серебра выпадает осадок массой 52,35 г, представляющий собой смесь двух веществ **C** и **D** (*p-ции* 3, 4).

Окисление того же количества **A** (2,24 л при н.у.) простым газообразным веществом **E** приводит к образованию двух газообразных соединений **F** и **G** (*p-ция* 5), причем **F** – ядовитое, а **G** – безвредное. Если полученную смесь нейтрализовать водным раствором КОН (*p-ция* 6) (**F** полностью поглощается, а **G** с раствором щёлочи не взаимодействует), то образуется **раствор 2**, при добавлении к которому избытка раствора нитрата бария, выпадает 37,26 г белого осадка, состоящего из двух веществ **B** и **H** (*p-ции* 2, 7). Если к **раствору 2** вместо нитрата бария добавить избыток раствора нитрата серебра, то выпадает только 27,57 г белого осадка **C** (*p-ция* 3).

Вопросы:

- 1) Определите соединения $\mathbf{A} \mathbf{H}$.
- 2) Приведите названия соединений А и Г.
- 3) Напишите уравнения реакций 1 7.
- 4) Объясните, с чем связана инертность вещества G и почему F ядовитое?

Решение задачи 9-1 (автор: Гаркуль И.А.)

1. Вычислим молярную массу осадка В, используя массовую долю бария:

$$M(\mathbf{B}) = 137.3 / 0.6959 = 197.3$$
 г/моль.

Тогда $v(\mathbf{B}) = 0,1$ моль. Найдём молярную массу аниона соли **B**:

$$197,3 - 137,3 = 60,0$$
 г/моль – CO_3^{2-} , тогда **B** – $BaCO_3$

Количество **A** было
$$\nu(\mathbf{A}) = V/V_m = (2,24 \text{ л})/(22,4 \text{ л/моль}) = 0,1 \text{ моль} = \nu(\mathbf{B}).$$

Бесцветный газ **A** нейтрализуется в щелочном растворе и образует анион, осаждающий как Ba^{2+} , так и Ag^+ , в виде белых осадков. Однако, если бы газом **A** являлся CO_2 , и в **растворе 1** находился только CO_3^{2-} , то с серебром выпало бы $m(Ag_2CO_3) = (0,1 \text{ моль}) \cdot (275,7 \text{ г/моль}) = 27,57 \text{ г.}$ Вторым веществом в осадке («вторым осадком»), его масса равна 52,35 г – 27,57 г =24,78 г, может быть соль с анионом (обозначим его **Y**), который осаждает катионы серебра, но не осаждает катионы бария. Таких анионов в таблице растворимости немного: OH^- , CI^- , Br^- , I^- , S^{2-} .

Проведем расчет для нахождения молярной массы аниона **Y**. Рассмотрим два случая:

- 1) когда это одновалентный анион Y и ν (второго осадка) = $\nu(A)$ = 0,1 моль,
- 2) когда это двухвалентный анион Y и ν (второго осадка) = $2\nu(A)$ = 0,2 моль.

Первый случай:

$$M$$
(второго осадка) = $(52,35 \ \Gamma - 27,57 \ \Gamma)/(0,1 \ моль) = 247,8 \ \Gamma/моль$
 $M(\mathbf{Y}) = 247,8 \ \Gamma/моль - 107,9 \ \Gamma/моль = 139,9 \ \Gamma/моль - нет решений;$

$$M(\mathbf{Y}) = 247,8$$
 г/моль $-215,7$ г/моль $=32,1$ г/моль $-Ag_2S$.

Второй случай:

$$M$$
(второго осадка) = $(52,35 \ \Gamma - 27,57 \ \Gamma)/(0,2 \ моль) = 123,9 \ \Gamma/моль$

 $M(\mathbf{Y}) = 123,9$ г/моль — 107,9 г/моль = 16 г/моль (соединение «AgO», оно же Ag₂O₂, существует, однако не соответствует степени окисления серебра +1).

Таким образом **A** нейтрализуется щелочью с образованием **раствора 1**, содержащего CO_3^{2-} и S^{2-} . При этом $\nu(CO_3^{2-}) = \nu(S^{2-})$, следовательно, **A** – COS, сульфоксид углерода. Тогда **B** – BaCO₃, **C** и **D** – Ag₂CO₃ и Ag₂S. Почему **C** – это именно Ag₂CO₃, становится ясно из второй части задачи, в которой

фигурирует только \mathbb{C} , и при том снова выпадает Ag_2CO_3 .

газообразное Окисляет А простое вещество Ε. Выраженные окислительные свойства из простых газообразных веществ проявляют только O₂, F₂ и Cl₂. При этом в продуктах должны образоваться только два газообразных вещества. Под это условие не подходит хлор, так как при нормальных условиях S_2Cl_2 и SCl_2 – жидкости, а SCl_4 - разлагается. Можно прийти к правильному ответу и не зная этого. Если обратить внимание на тот факт, что из **раствора 2**, содержащего CO_3^{2-} и еще один анион, выпадают два осадка с барием и один с серебром. Значит, нужен анион, осаждающий барий, но не осаждающий серебро. Единственный вариант $-F^-$. Подтвердим расчетом. Если общая масса осадка с барием 37,26 г, а количество углерода при окислении измениться не может, т.е. масса карбоната бария должна остаться неизменной, то $m(BaF_2) = 37,26 \ \Gamma - 19,73 = 17,53 \ \Gamma$. Тогда $\nu(BaF_2) = (17,53)$ Γ)/(175,3 Γ /моль) = 0,1 моль, а ν (F^-) = $2 \cdot \nu$ (BaF₂) = 0,2 моль. Значит, в продукте окисления **A** фтором образуется соединение с соотношением C:F = 1:2. CF_2 в присутствии фтора образоваться не может, и степень окисления углерода не соответствует степени окисления в карбонате. Таким образом, ${\bf F}$ – это ${\rm COF}_2$, карбонилфторид. Тогда \mathbf{G} – SF_6 , гексафторид серы, безвредное и очень инертное соединение.

A	В	C	D	E	F	G	Н
COS	BaCO ₃	Ag ₂ CO ₃	Ag ₂ S	F ₂	COF ₂	SF ₆	BaF ₂

2. COS — сульфоксид углерода, оксисульфид углерода, сульфид оксид углерода, сульфид карбонила, карбонилсульфид, химический косинус.

COF₂ – карбонилфторид, фторид карбонила, фторфосген, оксофторид углерода.

3. Уравнения реакций:

- 1) $COS + 4KOH = K_2CO_3 + K_2S + 2H_2O$
- 2) $K_2CO_3 + Ba(NO_3)_2 = BaCO_3 + 2KNO_3$
- 3) $K_2CO_3 + 2AgNO_3 = Ag_2CO_3 + 2KNO_3$
- 4) $K_2S + 2AgNO_3 = Ag_2S + 2KNO_3$
- 5) $COS + 4F_2 = COF_2 + SF_6$
- 6) $COF_2 + 4KOH = K_2CO_3 + 2KF + 2H_2O$

7) $2KF + Ba(NO_3)_2 = BaF_2 + 2KNO_3$

4. Инертность SF_6 объясняется стерическим фактором. Атом серы имеет октаэдрическое окружение атомами фтора из-за чего осложняется подход других частиц к сере. Кроме того, молекула SF_6 неполярная и плохо поляризуемая.

 ${
m COF_2}$ является высокотоксичным соединением вследствие гидролиза даже при небольших примесях паров воды и образования HF.

$$COF_2 + H_2O = CO_2 + 2HF$$

Система оценивания:

1.	Определение А 2 балла, В – Н по 1 баллу	9 баллов			
2.	. Названия A и F по 1 баллу (оценивается 1 правильное				
	название для каждого)				
3.	Уравнения реакций 1 – 7 по 1 баллу каждое	7 баллов			
4.	Объяснение инертности G с упоминанием стерических	2 балла			
	факторов или неполярности молекулы – 1 балл				
	Объяснение вредности F с упоминанием гидролиза и				
	образования HF (<i>даже без уравнения реакции</i>) – 1 балл				
	ИТОГО:	20 баллов			