Network Effects

- One-way delay between sender/receiver
 - Includes encoding, packetization, transmission, propagation, queueing, jitter compensation, decoding
 - Typically, acceptable if < 150msec for domestic calls and < 400msec for international
 - Depends on call's interactivity
 - What can we do to reduce packet delay?

What is propagation delay? (Ethernet Physical Layer)

The propagation speed of a medium refers to the speed that the data travels through that medium.

Propagation delays differ between mediums, which affect the maximum possible length that medium.

	Medium	Propagation/ Backbone Networks Transmission Delay	Percentage
I	Thick Coax	231,000 km/sec	77%
I	Thin Coax	195,000 km/sec	65%
	Twisted Pair	177,000 km/sec	59%
	Fiber	198,000 km/sec	66%

Network effects (cont')

- Packet losses
 - Low-bitrate codecs are very sensitive to packet losses (why?)
 - Should we do retransmissions?
 - Should we do Forward-Error-Correction?
 - Or just, packet loss concealment? How?
- Delay variation or jitter
 - Jitter compensation buffer at receiver
 - How large should this buffer be?
 - Losing vs discarding packets
 - Delay budget calculations
- Insufficient network capacity
 - Rate adaptation (use multiple codecs)

Communication Satellites

Communication satellites and some of their properties, including altitude above the earth, round-trip delay time and number of satellites needed for global coverage.

Propagation/Backbone Networks Transmission Delay Delay example: distance from A to B is 20 000 km in Fiber: Delay= 20 000 km/s Satellite on the Geostationary orbit: Delay= $\frac{80\ 000\ \text{km}}{300\ 000\ \text{km/s}} = 266\ \text{ms}$

Delay Budget On-net Budget (ms) Delay Source (G.729) Device Sample Capture Encoding Delay (Algorithmic Delay + Processing Delay) 17.5 Packetization/ Depacketization Delay 20 0.5 Move to Output Queue/Queue Delay 10 Access (up) Link Transmission Delay Backbone Network Transmission Delay Dnw 10 Access (down) Link Transmission Delay 0.5 Input Queue to Application 60 Jitter Buffer Decoder Processing Delay Device Playout Delay 0.5 Total 121.1 + Dnw

Application performance requirements:

delay: time from the data are transmitted to the time the data are received.

Propagation delay + queueing delay + transmission delay

propagation delay = distance / signal propagation speed

queueing delay: depend on the network load

transmission delay: how fast can you put bits on the wire?

Compression Methods

Compression Method	Bit Rate (kbps)	Processing (MIPS)	Compression Delay(ms)	MOS Score
G711 PCM	64	0.34	0.75	4.1
G726 ADPCM	32	14	1	3.85
G728 LD-CELP	16	18	5	3.61
G729 CS-ACELP	8	20	10	3.92
G729a CS-ACELP	8	10.5	10	3.7
G723.1 ACELP	5.3/6.3	16	30	3.65

