PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-059207

(43)Date of publication of application: 04.03.1994

(51)Int.CI.

G02B 26/10

B41J 2/44

HO4N 1/04

(21)Application number: 04-216083

(71)Applicant: MINOLTA CAMERA CO LTD

(22)Date of filing:

13.08.1992

(72)Inventor: HIRAGUCHI HIROSHI

SHINKAWA KATSUHITO

(54) SCANNING OPTICAL SYSTEM

(57)Abstract:

PURPOSE: To provide a scanning optical system capable of easily detecting the intensity and shape of a beam from a light source and/or where the beam from the light source does not leak out of the system while a polygon mirror is stopped.

CONSTITUTION: A polygon scanner 5 is constituted of the polygon mirror 20, a polygon motor 21, a base 35, an electromagnet 30 for home position being a means stopping the polygon mirror 20 to a prescribed position set previously and an iron piece 32. By utilizing attracting force between the electromagnet 30 for home position and the iron piece 32, the polygon mirror 20 is stopped forcedly to a prescribed position.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

BEST AVAILABLE COPY

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.

3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] Scan optical system characterized by having the light source, the polygon mirror which carries out the scan deviation of the light beam from the light source, the polygon motor which carries out the rotation drive of said polygon mirror, and a means for making a position stop said polygon mirror when said polygon motor stops.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Industrial Application] This invention relates to the scan optical system used being included in an optical printer etc.

[0002]

[Description of the Prior Art] If it was in the conventional scan optical system, when stopping the polygon motor which carries out the rotation drive of the polygon mirror, especially the halt location of a polygon mirror was not set up. Therefore, where a polygon mirror is stopped, when the reinforcement and the configuration of a light beam from the light source were inspected and adjusted, the polygon mirror had to be turned manually and had to be positioned so that a light beam might go into the visual field of the video monitor of light beam observation equipment. For this reason, inspection and adjustment had taken long duration.

[0003] Moreover, where a polygon mirror is stopped, when inspecting and adjusting the light beam from the light source, there was a possibility of performing inspection and tuning without noticing the light beam having leaked from the beam injection hole out of scan optical system, and when especially a light beam was a laser beam, the problem was in the safety at the time of an activity. Then, the technical problem of this invention has a light beam from the light source in offering the scan optical system which does not leak out of a system, where it could shorten the time amount which inspection of a light beam conducted where a polygon mirror is stopped, and adjustment take and/or a polygon mirror is

stopped.

[0004]

[Means for Solving the Problem and its Function] In order to solve the above technical problem, scan optical system concerning this invention is characterized by having a means for making a position stop said polygon mirror, when (a) light source, the polygon mirror which carries out the scan deviation of the light beam from (b) light source, the polygon motor which carries out the rotation drive of the (c) aforementioned polygon mirror, and the (d) aforementioned polygon motor stop.

[0005] In the above configuration, when stopping the polygon motor which carries out the rotation drive of the polygon mirror, and the means for making a position stop a polygon mirror works, a polygon mirror stops in the location set up beforehand. The position of a polygon mirror means the location where the light beam from the light source goes into the visual field of the television monitor of light beam observation equipment, or the location from which the light beam from the light source does not leak out of scan optical system.

[0006]

[Example] Hereafter, the example of the scan optical system concerning this invention is explained with reference to an accompanying drawing.

The 1st example of [the 1st example, <u>drawing 1</u> - <u>drawing 6</u> reference] explains the scan optical system which can shorten the time amount which inspection of the light beam under polygon mirror halt and adjustment take.

[0007] The laser beam scan optical system 1 is shown in <u>drawing 1</u>. This scan optical system 1 attaches a laser diode 2, a collimator lens 3, a cylindrical lens 4, the polygon scanner 5, and the ftheta lens 8 in housing 10. The laser beam by which outgoing radiation was carried out from the laser diode 2 passes a collimator lens 3 and a cylindrical lens 4. It converges the laser beam made parallel light by the collimator lens 3 by passing a cylindrical lens 4 in the shape of [which is in agreement near the reflector of the polygon scanner 5 in the deviation side] a straight line. A rotation drive is carried out with constant speed in the direction of arrow-head c, and the polygon scanner 5 carries out the deviation scan of the laser beam with constant angular velocity continuously. After the scanned laser beam penetrates the ftheta lens 8, it passes slit 10a of housing 10, and it carries out image formation on the photo conductor drum 12. At this time, a laser beam is scanned by the shaft orientations of the photo conductor drum 12 at uniform velocity in the direction of arrow-head a.

[0008] In order to inspect and adjust the reinforcement and the configuration of a laser beam of this scan optical system 1, light beam observation equipment 15 is used. Beam observation equipment 15 is equipped with the clinch mirror 16, the image formation lens group 17, the two-dimensional image sensors 18, and a video monitor. Attachment and detachment of beam observation equipment 15 are attained to the housing 10 of the scan optical system 1, and where the beam which is equivalent to the laser beam on the photo conductor drum 12 in the condition of having been attached in housing 10 is expanded, it is observed. That is, it is reflected by the clinch mirror 16, and where the image formation lens group 17 is expanded, incidence of the beam led to the mirror 16 by return by minding the ftheta lens 8 from the polygon scanner 5 is carried out to image sensors 18. And the beam which carried out incidence to these image sensors 18 is observed by the video monitor.

[0009] Next, the polygon scanner 5 is explained. As shown in drawing 2, the polygon scanner 5 consists of the electromagnets 30 for home positions and the pieces 32 of iron which are a means for making the position (it considering as a home position hereafter) set up beforehand stop the polygon mirror 20, the polygon motor 21, the base board 35, and the polygon mirror 20.

[0010] It unites with the base board 35 and the polygon motor 21 consists of an outline, the base board 35, a stator 23, the drive magnet 24, Rota York 25, and a revolving shaft 26. The base board 35 joins the drive circuit board 36 to the top face of the tabular member 37 made from aluminum. Cylinder part 37a is prepared in the member 37. The revolving shaft 26 is supported free [rotation] by the ball bearings 27a and 27b currently arranged by opening of cylinder part 37a in the condition of having penetrated in

the hole of this cylinder part 37a. Rota York 25 has fixed in the center section of the revolving shaft 26. The drive magnet 24 is arranged in the wall head-lining side of Rota York 25. The stator 23 is arranged in the location which faces the drive circuit board 36 with the drive magnet 24.

[0011] The polygon mirror 20 is carrying out the forward hexagon, and aluminum, resin, etc. are adopted as the ingredient. Hole 20a is prepared in the center section of the polygon mirror 20, and after inserting a revolving shaft 26 in this hole 20a and laying the polygon mirror 20 in the top face of Rota York 25, the polygon mirror 20 is fixed to a revolving shaft 26 by the mirror anchoring member 28.

[0012] Two electromagnets 30 for home positions are arranged in the location of 165 degrees, and the location of -15 degrees to the scan center line CL by the drive circuit board 36 (refer to <u>drawing 1</u>). On the other hand, two pieces 32 of iron are arranged in the location which faces an electromagnet 30 at the edge of the base of the polygon mirror 20. The drive circuit block diagram of the polygon scanner 5 which consists of the above structure is shown in <u>drawing 3</u>.

[0013] The polygon motor 21 is DC brushless motor, and has adopted PLL control (Phase Locked Loop) as the roll control. The polygon motor 21 is equipped with the frequency generator FG made to generate a pulse synchronizing with rotation of a motor. The frequency generator FG has the magnet (not shown) prepared in Rota York 25, and the magnetic sensing element (not shown) prepared in the drive circuit board 36.

[0014] If a motor 21 drives the frequency generator FG, a magnetic sensing element will detect a magnet and will generate the signalling frequency according to the rotational frequency of the polygon mirror 20. This signalling frequency is sent to the PLL control-section circuit 40, and is compared with the reference frequency equivalent to the rotational frequency set up beforehand (a phase shift is compared). If a gap is in a rotational frequency, an amendment signal will be sent to the motor control section circuit 41 from the PLL control-section circuit 40. The motor control section circuit 41 to which the amendment signal was sent changes the resistance welding time of the current passed to the stator 23 of a motor 21, and it is made for the polygon mirror 20 to rotate it at a setting rotational frequency. [0015] Drawing 4 shows build up time until it results in the rotational frequency by which an Ecklonia setup was beforehand carried out from rotation initiation of the polygon motor 21. The motor 21 of this example takes 12 seconds to make 4000rpm into a setting rotational frequency, and to stabilize and carry out a rotation drive at this rotational frequency. The output signal of OR element 47 is inputted into the polygon motor drive circuit 39 which consists of a PLL control-section circuit 40 and a motor control section circuit 41. Scanner-on signal 17a goes into one input terminal of OR element 47. The input terminal of another side is connected to bias resistance 44 and the scanner safety switch 45 through a timer 46, and scanner home-position signal 17c for operating the electromagnet 30 for home positions enters.

[0016] This scanner home-position signal 17c is sent to the circuit which operates the electromagnet 30 for home positions shown in <u>drawing 5</u>. This circuit connects the electromagnet 30 for home positions to the emitter of the PNP mold transistor 49, connects resistance 50 to the base, and grounds a collector. If scanner home-position signal 17c is set to Low level, base current will be supplied to a transistor 49 through resistance 50. Thereby, a transistor 49 will be in ON condition, a current flows on an electromagnet 30, and an electromagnet 30 operates.

[0017] Next, the polygon mirror 20 is explained with reference to the timing diagram shown in <u>drawing 6</u> about the procedure which a home position is made to suspend. If the scanner safety switch 45 is turned on in the condition that the polygon mirror 20 has stopped as shown in <u>drawing 6</u>, scanner—on signal 17a will be set to Low level by only for 0.5 seconds. Thereby, an output signal is sent to the polygon motor drive circuit 39 from OR element 47, and a current is supplied to the polygon motor 21 for 0.5 seconds from the drive circuit 39 based on this output signal. Since the polygon motor 21 drives for 0.5 seconds, the rotational frequency of the polygon mirror 20 rises from the graph of <u>drawing 4</u> from 0rpm to about 500 rpm.

[0018] Next, when scanner-on signal 17a returns to High level after 0.5 seconds, the electric supply to

the polygon motor 21 will be stopped, and the polygon mirror 20 will continue rotation with inertial force. On the other hand, according to the timing from which scanner—on signal 17a returns to High level, scanner home—position signal 17c is set to Low level with the timer 46 set to 0.5 seconds. Thereby, a transistor 49 will be in ON condition, a current flows on the electromagnet 30 for home positions, and an electromagnet 30 operates. Consequently, a suction force works between the piece 32 of iron prepared in the polygon mirror 20, and an electromagnet 30, and the polygon mirror 20 which was being rotated with inertial force is slowed down compulsorily, and is positioned at a home position, i.e., the condition by which it is shown in drawing 1. Therefore, since a laser beam goes into the visual field of the video monitor of beam observation equipment 15 easily, the time amount which inspection of the reinforcement of a laser beam or a configuration conducted where the polygon mirror 20 is stopped, and adjustment take can be shortened.

[0019] The 2nd example and the 2nd example of [the drawing 7 reference] explain the scan optical system from which the light beam from the light source does not leak out of a system during a polygon mirror halt. The scan optical system of the 2nd example is the same as the scan optical system 1 of the 1st example except the electromagnet for home positions. Therefore, in the 2nd example, the same sign was given to the same components as the scan optical system 1 and the same part of the 1st example. [0020] Laser beam scan optical-system 1' is shown in drawing 7. This scan optical-system 1' has polygon scanner 5' equipped with the electromagnet 60 for home positions. Two electromagnets 60 for home positions are arranged by the drive circuit board 36 so that the polygon mirror 20 may stop in the location to which a laser beam does not leak from injection hole 10a of housing 10. That is, the electromagnet 60 is arranged so that it may be reflected on the scan square theta 2 with the larger laser beam by which outgoing radiation was carried out from the laser diode 2 than the greatest scan angle theta 1 which leaks from injection hole 10a according to the reflector of the polygon mirror 20 under halt.

[0021] In scan optical—system 1' which consists of the above configuration, by turning on the scanner safety switch 45 in the condition that the polygon mirror 20 has stopped, the polygon mirror 20 is compulsorily made into a home position, i.e., the condition by which it is shown in <u>drawing 7</u>, and positioned in this condition. Therefore, even if it makes a laser diode 2 turn on accidentally, it is lost that a laser beam leaks out of the system of scan optical—system 1', and the safety at the time of an activity is secured.

[0022] [3rd example, drawing 8 - drawing 11 reference] drawing 8 and drawing 9 show the polygon scanner 70 of the 3rd example. The polygon scanner 70 fixed to the anchoring substrate 78 consists of a polygon motor 71 and a polygon mirror 72. The square is carried out, a hole is established in a center section, and the polygon mirror 72 inserts revolving-shaft 71a of the polygon motor 71 in this hole, and is being fixed to revolving-shaft 71a. Photosensor 76 is formed in the top face of the polygon motor 71. On the other hand, one mark member 75 is arranged in the location which can detect photosensor 76 in the edge of the base of the polygon mirror 72. Whenever photosensor 76 detects the mark member 75, it sends a detecting signal to the below-mentioned home-position halt control circuit 80. [0023] The home-position halt control circuit block diagram of the polygon scanner 70 which consists of the above configuration is shown in drawing 10.80 is a home-position halt control circuit. This control circuit 80 receives delivery and the detecting signal from photosensor 76 for an energization signal to the polygon motor 71. Next, the polygon mirror 72 is explained with reference to the timing diagram shown in drawing 11 about the procedure which a home position is made to suspend. [0024] As shown in drawing 11, a stop signal for the polygon mirror 72 to make a home position stopping the polygon mirror 72 in the condition of rotating with constant speed is sent to the homeposition halt control circuit 80. Then, by receiving the detecting signal from photosensor 76, a control circuit 80 makes Low level the energization signal to the polygon motor 71, and stops the electric supply to the polygon motor 71. On the other hand, even after the electric supply to a motor 71 stops, the polygon mirror 72 is rotated until inertial force will not carry out natural damping. The natural damping of this inertial force makes a fixed location (home position) always stop the polygon mirror 72.

[0025] Therefore, if photosensor 76 is arranged in the position of the top face of the polygon motor 71 so that the home position of the polygon mirror 72 may become the location where a laser beam goes into the visual field of the video monitor of beam observation equipment 15 easily, the scan optical system which can shorten the time amount which the detection of the reinforcement of a laser beam or a configuration performed where the polygon mirror 72 is stopped, and adjustment take will be acquired. Moreover, if photosensor 76 is arranged in the position of the top face of the polygon motor 71 so that the home position of the polygon mirror 72 may become the location from which a laser beam does not leak out of the system of scan optical system, the scan optical system which can secure the safety of the activity done where the polygon mirror 72 is stopped will be acquired.

[0026] the scan optical system concerning example] this invention besides [is not limited to said example, within the limits of the summary, can be boiled variously and can deform although the polygon scanner explained in the 1st example and the 2nd example is equipped with the electromagnets 30 and 60 for home positions, and two pieces 32 of iron, respectively — also *****(ing) — it is not limited to this and you may have only one piece, respectively.

[0027] Moreover, as shown in <u>drawing 12</u>, the operation which the polygon scanner explained in the 1st example and the 2nd example, and the scan optical system having effectiveness are acquired by forming 2 sets of electromagnets 30 and 60 for home positions in the drive circuit board 36, and passing a current on the electromagnet of one of groups alternatively. Furthermore, although the polygon scanner of the 3rd example stops a polygon mirror by the natural damping of inertial force, it may stop a polygon mirror compulsorily in addition to this, and using a pulse control (when a stepping motor is adopted as a polygon motor). [using electromagnetic brake] [0028]

[Effect of the Invention] Since it made make the halt location set up beforehand stop a polygon mirror with a means make a position stop a polygon mirror, by the above explanation when a polygon motor stops according to this invention so that clearly, the scan optical system from which the time amount which the detection of the reinforcement of a light beam or a configuration performed where a polygon mirror is stopped, and adjustment take can shorten, and/or a light beam does not leak out of a system is acquired.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

Drawing 1 thru/or drawing 6 show the 1st example of the scan optical system concerning this invention.

[Drawing 1] The top view showing the configuration of scan optical system.

[Drawing 2] The sectional view of the polygon scanner shown in drawing 1.

[Drawing 3] The drive circuit block diagram of a polygon scanner.

[Drawing 4] The graph which shows the standup property of a polygon motor.

[Drawing 5] The actuation electrical diagram of the electromagnet for home positions.

[Drawing 6] The drive timing diagram of a polygon scanner.

[Drawing 7] The top view showing the 2nd example of the scan optical system concerning this invention.

<u>Drawing 8</u> thru/or <u>drawing 11</u> show the 3rd example of the scan optical system concerning this invention.

[Drawing 8] The top view of a polygon scanner.

[Drawing 9] The front view of a polygon scanner.

[Drawing 10] The home-position halt control circuit block diagram of a polygon scanner.

[Drawing 11] The drive timing diagram of a polygon scanner.

[Drawing 12] The top view of the polygon scanner in which other examples are shown.

[Description of Notations]

1 1' -- Laser beam scan optical system

2 -- Laser diode

5 5' -- Polygon scanner

20 -- Polygon mirror

21 -- Polygon motor

30 -- Electromagnet for home positions

32 -- Piece of iron

60 -- Electromagnet for home positions

70 -- Polygon scanner

71 -- Polygon motor

72 - Polygon mirror

75 -- Mark member

76 -- Photosensor

[Translation done.]

BEST AVAILABLE COPY

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-59207

(43)公開日 平成6年(1994)3月4日

審査請求 未請求 請求項の数1(全 6 頁)

(21)出願番号 特願平4-216083

(22)出願日 平成 4年(1992) 8月13日

(71)出願人 000006079

- ミノルタカメラ株式会社

大阪府大阪市中央区安土町二丁目 3 番13号 大阪国際ビル

(72)発明者 平口 寛

大阪府大阪市中央区安土町二丁目 3 番13号 大阪国際ビル ミノルタカメラ株式会社

内

(72)発明者 新川 勝仁

大阪府大阪市中央区安土町二丁目 3 番13号 大阪国際ビル ミノルタカメラ株式会社

·内

(74)代理人 弁理士 森下 武一

(54) 【発明の名称 】 走査光学系

(57) 【要約】

【目的】 ポリゴンミラー停止中、光源からの光ビームの強度や形状を容易に検出でき、および/または、光源からの光ビームが系外に漏れない走査光学系を得る。

【構成】 ポリゴンスキャナ5は、ポリゴンミラー2 0、ポリゴンモータ21、ベース盤35、ポリゴンミラー20を予め設定した所定の位置に停止させるための手段であるホームポジション用電磁石30及び鉄片32とで構成されている。ホームポジション用電磁石30と鉄片32との間に働く吸引力を利用することによりポリゴンミラー20が強制的に所定の位置に停止させられる。

【特許請求の範囲】

【請求項1】 光源と、

光源からの光ビームを走査偏向するポリゴンミラーと、 前記ポリゴンミラーを回転駆動させるポリゴンモータ と、

前記ポリゴンモータが停止した際に前記ポリゴンミラー を所定の位置に停止させるための手段と、

を備えたことを特徴とする走査光学系。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、光プリンタ等に組み込まれて使用される走査光学系に関する。

[0002]

【従来の技術と課題】従来の走査光学系にあっては、ポリゴンミラーを回転駆動させるポリゴンモータを停止させたとき、ポリゴンミラーの停止位置は特に設定されていなかった。従って、ポリゴンミラーを停止させた状態で光源からの光ビームの強度や形状を検査、調整する場合、光ビーム観測装置のビデオモニタの視野に光ビームが入るようにポリゴンミラーを手動で回して位置決めしなければならなかった。このため、検査、調整に長時間を要していた。

【0003】また、ポリゴンミラーを停止させた状態で 光源からの光ビームを検査、調整する場合、光ビームが ビーム射出孔から走査光学系の外に漏れているのに気づ かないで検査、調整作業を行うおそれがあり、特に光ビ ームがレーザビームであるときは作業時の安全性に問題 があった。そこで、本発明の課題は、ポリゴンミラーを 停止させた状態で行なう光ビームの検査、調整に要する 時間を短縮でき、および/または、ポリゴンミラーを停 止させた状態で光源からの光ビームが系外に漏れない走 査光学系を提供することにある。

[0004]

【課題を解決するための手段と作用】以上の課題を解決するため、本発明に係る走査光学系は、(a)光源と、(b)光源からの光ビームを走査偏向するポリゴンミラーと、(c)前記ポリゴンミラーを回転駆動させるポリ

コンモータと、(d)前記ポリゴンモータが停止した際に前記ポリゴンミラーを所定の位置に停止させるための手段と、を備えたことを特徴とする。

【0005】以上の構成において、ポリゴンミラーを回転駆動させるポリゴンモータを停止させた際、ポリゴンミラーを所定の位置に停止させるための手段が働くことにより、ポリゴンミラーが予め設定された位置に停止する。ポリゴンミラーの所定の位置とは、例えば、光源からの光ビームが光ビーム観測装置のテレビモニタの視野に入る位置、あるいは、光源からの光ビームが走査光学系外に漏れない位置等を意味する。

[0006]

【実施例】以下、本発明に係る走査光学系の実施例を添 50

付図面を参照して説明する。

[第1実施例、図1~図6参照] 第1実施例は、ポリゴンミラー停止中の光ビームの検査、調整に要する時間を 短縮できる走査光学系について説明する。

【0007】図1にレーザビーム走査光学系1を示す。 この走査光学系1は、レーザダイオード2、コリメータ レンズ3、シリンドリカルレンズ4、ポリゴンスキャナ 5、 $f\theta$ レンズ8をハウジング10に取り付けたもので ある。レーザダイオード2から出射されたレーザビーム 10 はコリメータレンズ3、シリンドリカルレンズ4を通過 する。コリメータレンズ3によって平行光にされたレー ザビームは、シリンドリカルレンズ4を通過することに よりポリゴンスキャナ5の反射面付近にその偏向面に一 致する直線状に収束される。ポリゴンスキャナ5は矢印 c 方向に一定速度で回転駆動され、レーザビームを連続 的に等角速度で偏向走査する。走査されたレーザビーム は $f \theta$ レンズ 8 を透過した後、ハウジング 1 0 のスリッ ト10aを通過して感光体ドラム12上で結像する。こ のとき、レーザビームは感光体ドラム12の軸方向に矢 印a方向に等速で走査される。

【0008】この走査光学系1のレーザピームの強度や形状を検査、調整するために光ピーム観測装置15が利用される。ピーム観測装置15は、折り返しミラー16、結像レンズ群17、2次元イメージセンサ18及びピデオモニタを備えている。ピーム観測装置15は、走査光学系1のハウジング10に対して着脱自在になっており、ハウジング10に取り付けられた状態で感光体ドラム12上のレーザビームに相当するビームを拡大した状態で観測するものである。すなわち、ポリゴンスキャナ5からf θ レンズ8を介して折り返しミラー16に違かれたピームは折り返しミラー16によって反射され、結像レンズ群17によって拡大された状態でイメージセンサ18に入射する。そして、このイメージセンサ18に入射する。そして、このイメージセンサ18に入射する。

【0009】次に、ポリゴンスキャナ5について説明する。図2に示すように、ポリゴンスキャナ5は、ポリゴンミラー20、ポリゴンモータ21、ベース盤35、ポリゴンミラー20を予め設定した所定の位置(以下、ホームポジションとする)に停止させるための手段であるホームポジション用電磁石30及び鉄片32とで構成されている。

【0010】ポリゴンモータ21はベース盤35と一体化され、概略、ベース盤35、ステータ23、駆動マグネット24、ロータヨーク25、回転軸26からなる。ベース盤35は板状のアルミ製部材37の上面に駆動回路基板36を接合したものである。部材37には筒部37aが設けられている。回転軸26はこの筒部37aの穴に貫通された状態で筒部37aの開口部に配設されている玉軸受27a、27bにて回転自在に支えられてい

3

る。回転軸26の中央部にはロータヨーク25が固着されている。ロータヨーク25の内壁天井面には駆動マグネット24が配設されている。駆動回路基板36には駆動マグネット24と相対する位置にステータ23が配設されている。

【0011】ポリゴンミラー20は正六角形をしてお」り、その材料としてはアルミや樹脂等が採用される。ポリゴンミラー20の中央部には穴20aが設けられており、この穴20aに回転軸26を挿通してポリゴンミラー20をロータヨーク25の上面に載置した後、ミラー 10取付け部材28にてポリゴンミラー20を回転軸26に固定している。

【0012】駆動回路基板36には、2個のホームポジション用電磁石30が、走査中心線CLに対して、165度の位置と-15度の位置に配設されている(図1参照)。一方、ポリゴンミラー20の底面の縁部には、電磁石30と相対する位置に2個の鉄片32が配設されている。以上の構造からなるポリゴンスキャナ5の駆動回路ブロック図を図3に示す。

【0013】ポリゴンモータ21は、DCブラシレスモータであり、その回転制御にはPLL制御(Phase Lock ed Loop)を採用している。ポリゴンモータ21は、モータの回転に同期してパルスを発生させる周波数発生器FGを備えている。周波数発生器FGは、ロータヨーク25に設けたマグネット(図示せず)と駆動回路基板36に設けた磁気検出素子(図示せず)とを有している。

【0014】周波数発生器FGは、モータ21が駆動すると、磁気検出素子がマグネットを検出し、ポリゴンミラー20の回転数に応じた周波数信号を発生させる。この周波数信号はPLL制御部回路40に送られ、予め設定しておいた回転数に相当する基準周波数と比較(位相のずれを比較)される。回転数にずれがあると、PLL制御部回路40からモータ制御部回路41に補正信号が送られる。補正信号が送られたモータ制御部回路41は、モータ21のステータ23に流す電流の通電時間を変え、設定回転数にてポリゴンミラー20が回転するようにする。

【0015】図4はポリゴンモータ21の回転開始から予かじめ設定された回転数に到るまでの立ち上がり時間を示したものである。本実施例のモータ21は4000 rpmを設定回転数とし、この回転数で安定して回転駆動するまでに12秒を要する。PLL制御部回路40とモータ制御部回路41からなるポリゴンモータ駆動回路39には、OR素子47の出力信号が入力される。OR素子47の一方の入力端子にはスキャナのN信号17aが入る。他方の入力端子にはスキャナのN信号17aが入る。他方の入力端子はタイマ46を介してバイアス抵抗44とスキャナ停止スイッチ45に接続され、ホームポジション用電磁石30を作動させるためのスキャナホームポジション信号17cが入る。

【0016】このスキャナホームポジション信号17c

は、図5に示されているホームポジション用電磁石30を作動させる回路に送られる。この回路はPNP型トランジスタ49のエミッタにホームポジション用電磁石30を接続し、ベースに抵抗50を接続し、コレクタを接地したものである。スキャナホームポジション信号17cがLowレベルになると、抵抗50を介してトランジスタ49にベース電流が供給される。これにより、トランジスタ49はON状態になり、電磁石30に電流が流れて電磁石30が作動する。

【0017】次に、ポリゴンミラー20をホームポジションに停止させる手順について図6に示すタイムチャートを参照して説明する。図6に示すように、ポリゴンミラー20が停止している状態において、スキャナ停止スイッチ45をONすると、スキャナON信号17aが0.5秒間だけLowレベルになる。これにより、OR素子47からポリゴンモータ駆動回路39に出力信号が送られ、この出力信号に基づいて駆動回路39からポリゴンモータ21に0.5秒間電流が供給される。ポリゴンモータ21は0.5秒間だけ駆動するので、図4のグラフからポリゴンミラー20の回転数は0rpmから約500rpmまで上昇する。

【0018】次に、スキャナON信号17aが0.5秒 後にHighレベルに戻ると、ポリゴンモータ21への 給電が停止され、ポリゴンミラー20は慣性力で回転を 続けることになる。一方、0.5秒にセットされたタイ マ46により、スキャナON信号17aがHignレベ ルに戻るタイミングに合わせて、スキャナホームポジシ ョン信号17cがLowレベルになる。これにより、ト ランジスタ49はON状態になり、ホームポジション用 電磁石30に電流が流れて電磁石30が作動する。この 結果、ポリゴンミラー20に設けられた鉄片32と電磁 石30の間に吸引力が働いて、慣性力で回転していたポ リゴンミラー20は強制的に減速され、ホームポジショ ン、すなわち、図1に示されている状態で位置決めされ る。従って、レーザビームがビーム観測装置15のビデ オモニタの視野に容易に入るので、ポリゴンミラー20 を停止させた状態で行なうレーザビームの強度や形状の 検査、調整に要する時間を短縮することができる。

【0019】 [第2実施例、図7参照] 第2実施例は、ポリゴンミラー停止中に光源からの光ビームが系外に漏れない走査光学系について説明する。第2実施例の走査光学系は、ホームポジション用電磁石以外は第1実施例の走査光学系1と同様のものである。従って、第2実施例においては第1実施例の走査光学系1と同じ部品及び同じ部分には同一符号を付した。

【0020】図7にレーザビーム走査光学系1、を示す。この走査光学系1、はホームポジション用電磁石60を備えたポリゴンスキャナ5、を有したものである。2個のホームポジション用電磁石60は、ポリゴンミラー20がハウジング10の射出孔10aからレーザビー

5

ムが漏れない位置で停止するように駆動回路基板 3 6 に 配設されている。すなわち、レーザダイオード 2 から出 射されたレーザビームが、停止中のポリゴンミラー 2 0 の反射面によって射出孔 1 0 a から漏れる最大の走査角 θ 1 より大きい走査角 θ 2 にて反射されるように、電磁石 6 0 は配設されている。

【0021】以上の構成からなる走査光学系1、において、ポリゴンミラー20が停止している状態でスキャナ停止スイッチ45をONすることにより、ポリゴンミラー20は強制的にホームポジション、すなわち、図7に 10 示されている状態にされ、この状態で位置決めされる。従って、誤ってレーザダイオード2を点灯させてもレーザビームが走査光学系1、の系外に漏れることはなくなり、作業時の安全性が確保される。

【0022】[第3実施例、図8~図11参照]図8及び図9は第3実施例のポリゴンスキャナ70を示すものである。取付け基板78に固定されたポリゴンスキャナ70はポリゴンモータ71とポリゴンミラー72で構成されている。ポリゴンミラー72は正方形をしており、中央部には穴が設けられ、この穴にポリゴンモータ71の回転軸71aに固定されている。ポリゴンモータ71の上面にはフォトセンサ76が設けられている。一方、ポリゴンミラー72の底面の縁部には、フォトセンサ76が検出できる位置に1個のマーク部材75が配設されている。フォトセンサ76はマーク部材75を検出するごとに検出信号を後述のホームポジション停止制御回路80に送る。

【0023】以上の構成からなるポリゴンスキャナ70のホームポジション停止制御回路ブロック図を図10に示す。80はホームポジション停止制御回路である。こ 30の制御回路80はポリゴンモータ71へ通電信号を送り、フォトセンサ76からの検出信号を受ける。次に、ポリゴンミラー72をホームポジションに停止させる手順について図11に示すタイムチャートを参照して説明する。

【0024】図11に示すように、ポリゴンミラー72が一定速度で回転している状態において、ポリゴンミラー72をホームポジションに停止させるための停止信号をホームポジション停止制御回路80に送る。この後、制御回路80はフォトセンサ76からの検出信号を受けることにより、ポリゴンモータ71への通電信号をLowレベルにしてポリゴンモータ71への給電を停止させる。一方、モータ71への給電が停止した後もポリゴンミラー72は慣性力が自然減衰してなくなるまで回転する。この慣性力の自然減衰は常に一定の位置(ホームポジション)にポリゴンミラー72を停止させることになる。

【0025】従って、ポリゴンミラー72のホームポジションが、レーザビームがビーム観測装置15のビデオモニタの視野に容易に入る位置になるように、フォトセ

ンサ76をポリゴンモータ71の上面の所定の位置に配設すれば、ポリゴンミラー72を停止させた状態で行なうレーザビームの強度や形状の検出、調整に要する時間を短縮することができる走査光学系が得られる。また、ポリゴンミラー72のホームポジションが、レーザビームが走査光学系の系外に漏れない位置になるように、フォトセンサ76をポリゴンモータ71の上面の所定の位置に配設すれば、ポリゴンミラー72を停止させた状態で行なう作業の安全性が確保できる走査光学系が得られる。

【0026】 [他の実施例] 本発明に係る走査光学系は 前記実施例に限定するものではなく、その要旨の範囲内 で種々に変形することができる。第1実施例及び第2実 施例で説明したポリゴンスキャナは、ホームポジション 用電磁石30,60及び鉄片32を、それぞれ2個備え たものであるが、必らずしもこれに限定されるものでは なく、それぞれ1個しか備えないものであってもよい。 【0027】また、図12に示すように、2組のホーム ポジション用電磁石30,60を駆動回路基板36に設 け、選択的にいずれか一方の組の電磁石に電流を流すこ とにより、ポリゴンスキャナが第1実施例及び第2実施 例で説明した作用、効果を併せもつ走査光学系が得られ る。さらに、第3実施例のポリゴンスキャナは、慣性力 の自然減衰によりポリゴンミラーを停止させるものであ るが、これ以外に電磁ブレーキを利用したり、パルス制 御(ポリゴンモータにステッピングモータを採用した場 合) を利用したりして強制的にポリゴンミラーを停止さ せてもよい。

[0028]

【発明の効果】以上の説明で明らかなように、本発明によれば、ポリゴンモータが停止した際、ポリゴンミラーを所定の位置に停止させる手段により、ポリゴンミラーを予め設定した停止位置に停止させるようにしたので、ポリゴンミラーを停止させた状態で行なう光ビームの強度や形状の検出、調整に要する時間を短縮することができ、および/または、光ビームが系外に漏れない走査光学系が得られる。

【図面の簡単な説明】

図1ないし図6は本発明に係る走査光学系の第1実施例 を示すものである。

- 【図1】走査光学系の構成を示す平面図。
- 【図2】図1に示されているポリゴンスキャナの断面図。
- 【図3】ポリゴンスキャナの駆動回路ブロック図。
- 【図4】ポリゴンモータの立ち上がり特性を示すグラフ。
- 【図5】ホームポジション用電磁石の作動電気回路図。
- 【図6】ポリゴンスキャナの駆動タイムチャート。
- 【図7】本発明に係る走査光学系の第2実施例を示す平面図。図8ないし図11は本発明に係る走査光学系の第

BEST AVAILABLE COPY

7

3実施例を示すものである。

【図8】ポリゴンスキャナの平面図。

【図9】ポリゴンスキャナの正面図。

【図10】ポリゴンスキャナのホームポジション停止制 御回路ブロック図。

【図11】ポリゴンスキャナの駆動タイムチャート。

【図12】他の実施例を示すポリゴンスキャナの平面図。

【符号の説明】

1,1 …レーザビーム走査光学系

2…レーザダイオード

(5)

5,5'…ポリゴンスキャナ

20…ポリゴンミラー

21…ポリゴンモータ

30…ホームポジション用電磁石

3 2 … 鉄片

60…ホームポジション用電磁石

70…ポリゴンスキャナ

71…ポリゴンモータ

72…ポリゴンミラー

10 75…マーク部材

76…フォトセンサ

【図1】

【図5】

【図3】

【図8】

【図9】

(6)

