Internet das Coisas (IoT) e Robótica

Pedro Henrique D. V. Affonso

Agenda

- Robótica Introdução
 - Tipos de robôs
 - Robótica em Nuvem
- Robótica e Internet das Coisas
 - Semelhanças com RSSF/IoT e convergência
 - Internet das Coisas Robóticas
 - Vantagens de RSSF/IoT + robôs
- Aplicações em diferentes segmentos
 - Robôs Domésticos
 - Warehouses
 - Outros

Robótica

Robôs: Realizam tarefas para os seres humanos

- Perigosas, repetitivas, distantes, ...
- Operados de maneira autônoma ou semi-autônoma
- Se comunicam com seres humanos ou outros robôs
- Interagem com o ambiente por meio de sensores (sonar, laser, infravermelho, câmeras, bumpers) e atuadores

Principais Aplicações

- Indústria
- Tarefas Domésticas
- Exploração
- Missões em Ambientes Perigosos
- Missões Espaciais
- Fins Educacionais

Tipos de Robôs

Robôs Móveis

- Terrestres
 - ▶ Rodas ou esteiras
 - ▶ Pernas
 - Híbridos
- Humanóides
- Aéreos
- Aquáticos
- Modulares

Tipos de Robôs

Pedro H. Affonso - Nov/2016

Robótica em Nuvem

- Se torna possível quando o robô pode se conectar com a rede
- Recursos computacionais locais podem ser muito limitados, ou terem custo de hardware e consumo altos
- Ideia Principal: não se limitar aos recursos (memória, processamento, algoritmos, dados) presentes no robô, utilizando recursos em nuvem (SaaS, PaaS, RaaS)
 - Exemplo: Localização e Planejamento de trajetória "as a service"

Robótica em Nuvem

Processamento paralelo em nuvem

 Utilizar algoritmos que exigem processamento intenso comum custo de hardware e consumo de bateria menores

Aprendizado Coletivo

Muitas pesquisas sendo feitas envolvendo Deep Learning, ex: aprendizagem de grasping

Big Data

 Acesso a grandes bases de dados de mapas, imagens, etc sob demanda

Computação Humana

 Teleoperação, recuperação de falhas, resolução de problemas complexos

Robótica e IoT

Semelhanças com RSSF e convergência

- Rede de nós capazes de comunicação M2M
- Dispositivos capazes de sensoriamento, processamento, transmissão de dados
- Segurança é uma questão importante
- Pode-se pensar em uma Rede de Robôs Móveis e Sensores como uma RSSF com nós móveis
- Diferenças
 - ▶ Largura de banda: imagens, vídeo e alguns sensores LIDAR
 - Vida útil da bateria

Robôs de baixo custo cooperativos

Robomote Alice

Robótica de enxame

Mil robôs - Harvard https://www.youtube.com/watch?v=GIt4M2Xnlhl

Internet das Coisas Robóticas

- Apontado por alguns como o próximo passo da Internet das Coisas, acrescentando novas possibilidades
- Será possível controlar robôs domésticos pela internet da maneira que se controla um termostato por celular
- Os robôs não se limitam mais aos seus próprios sensores para perceber o ambiente – grande disponibilidade de dados de dispositivos e ambientes inteligentes
- Robôs poderão usar bases de dados na internet mapas, receitas, palavras, objetos, movimentos

Vantagens de RSSF/IoT + robôs

- Deployment de rede de sensores/objetos
- Localização
 - Robôs móveis quase sempre precisam se localizar no ambiente em que se encontram, e muitas vezes realizar o mapeamento da área
 - Robôs localizando sensores/objetos
 - Sensores/objetos auxiliando robôs na localização
 - ▶ Com o uso de RSSI Radio Signal Strength Indicators
- Aumento da conectividade, confiabilidade e eficiência energética da rede
 - Coleta de dados de maneira mais eficiente
 - Redução de envios multi-hop
 - Diminuição do problema de afunilamento

RSSF + Robôs: maior conectividade, confiabilidade e eficiência energética da rede

Access Points

MULEs

Sensors

Data Mules

- Os robôs podem ser usados como
 - Data Mules
 - Estações-base móveis
 - Nós que se posicionam de maneira otimizada (em redes mesh)
 - Meio para (re)posicionar os sensores de maneira otimizada

Aplicações em diferentes segmentos

Robôs Domésticos

- Presente: robôs aspiradores
 - ▶ Roomba e similares já existem versões loRT
- Robôs autônomos
 - Capazes de realizar tarefas diversas e de interação social
 - Para ajusar idosos e pessoas com necessidades especiais
 - Competição RoboCup @Home

Warehouses

- Robôs já são amplamente utilizados
- Amazon adquiriu a Kiva em 2012 por US\$775 milhões
 - Mudou o nome para Amazon Robotics e deixou de atender todos os demais clientes – GAP, Walgreens, Office Depot e muitos outros
 - Mais de 30 mil robôs em seus depósitos
- Ambientes com sensores, produtos e pallets com tags RFID auxiliam o robô na tarefa de localizar e transportar produtos
- ▶ Robô pode ser acionado assim que um pedido online é feito

Outros Setores

Cidades Inteligentes

- Coleta automática de lixo
- Segurança e monitoramento com uso de drones

Indústrias

- Robôs já são lugar comum e vendas crescem a cada ano
- Serão integrados com loT conforme for sendo implantada
- Se tornarão mais inteligentes

Varejo

- Atendentes/vendedores robóticos
- Armazenar e buscar produtos como em depósitos

Automóveis

▶ Carro autônomo ⇔ Robô móvel

Conclusão

- Já existem muitas aplicações envolvendo robótica e IoT
- Torna possíveis robôs muito mais inteligentes
- Bastante interesse acadêmico e da indústria
- A tendência é que haja um crescimento muito grande
 - Conforme os custos de loT caem
 - Com o amadurecimento da robótica

Dúvidas

Referências

- ▶ The integration of mobile (tele) robotics and wireless sensor networks: A survey
 - A Wichmann, BD Okkalioglu, T Korkmaz Computer Communications 51 (2014): 21-35.
- Indoor localization system using RSSI measurement of wireless sensor network based on ZigBee standard
 - M Sugano, T Kawazoe, Y Ohta, M Murata Target, 538 (2006), 050
- Analysis of deployment and movement policies in wireless sensor and robot networks
 - A Wichmann, T Korkmaz WoWMoM. IEEE, 2015.
- Batch forwarding in wireless sensor networks
 - T. Korkmaz Military Communications Conference, IEEE (2010), 116–124
- Data mules: modeling and analysis of a three-tier architecture for sparse sensor networks
 - R.C. Shah, S. Roy, S. Jain, W. Brunette *Ad Hoc Networks* 1.2 (2003): 215-233.
- Equipment location in hospitals using RFID-based positioning system.
 - Shirehjini, A. Nazari, A. Yassine, S. Shirmohammadi IEEE Transactions on information technology in biomedicine 16.6 (2012): 1058-1069.
- IoT-aided robotics applications: Technological implications, target domains and open issues
 - LA Grieco et al. Computer Communications 54 (2014): 32-47
- http://cacm.acm.org/news/205836-the-beginning-of-the-internet-of-robot-things/fulltext