

Combination of Higgs to Invisible Direct Measurements

HIG-13-030

 $\frac{P.~Dunne}{\text{on behalf of the H\rightarrow-invisible analysis groups}}$

Introduction

- ▶ Many BSM theories predict invisible final states of the Higgs:
- SUSY, Extra Dimensions, etc.
- Direct searches must be performed in the associated production channels
- ► There are currently three approved CMS Higgs to invisible results in the following channels:
- VBF (HIG-13-013), Z($\ell\ell$)H(inv) (HIG-13-018), Z($b\bar{b}$)H(inv) (HIG-13-028)
- ▶ These results have been combined for a paper (HIG-13-030)

Indirect Result from Visible Decays

- ▶ Observed (expected) limit of 64% (67%) at 95% C.L. on BR_{inv} for a 125 GeV Higgs (HIG-13-005)
- Combination between direct and indirect methods is being investigated e.g. talk by M. Zanetti

Datacards

► All three channels have signal MC at different mass points

Channel	Mass Points/GeV		
$Z(\ell\ell)H(inv)$	105, 115, 125, 135, 145, 175, 200 & 300		
$Z(b\bar{b})H(inv)$	105, 115, 125, 135, 145 & 150		
VBF	110, 125, 150, 200, 300 & 400		

- New VBF datacards were produced for 115,135 and 145 GeV
- Nuisances are linearly interpolated between mass points.
- Signal yields are interpolated using the method described below.

Signal Yield interpolation

- $N_{Signal} = eff. \times acc. \times \mathcal{L}\sigma$
- Luminosity is constant
- Yield over cross-section is thus proportional to efficiency times acceptance
- Cross-sections from LHC-HXSWG were used

Combination Method

- The cards for the three channels were combined using the standard Higgs combination tool
- ► The following uncertainties were considered correlated between channels in decreasing order of importance:

Nuisance	Analyses which it affects		
Jet energy scale	VBF, $Z(\ell\ell)H(inv)$		
PDF uncertainties	VBF, $Z(b\bar{b})$, $Z(\ell\ell)H(inv)$		
QCD scale	VBF, $Z(b\bar{b})$, $Z(\ell\ell)H(inv)$		
Luminosity	VBF, $Z(b\bar{b})H(inv)$, $Z(\ell\ell)H(inv)$		
Jet energy resolution	VBF, $Z(\ell\ell)H(inv)$		
Unclustered energy scale	VBF, $Z(b\bar{b})H(inv)$, $Z(\ell\ell)H(inv)$		
Muon identification efficiency	VBF, $Z(\ell\ell)H(inv)$		
Electron identification efficiency	VBF, $Z(\ell\ell)H(inv)$		

Separate results: Direct

VBF

Observed (expected) limit of 67% (52%) at 95% C.L. on BRiny for a 125 GeV Higgs

▶ 7H

Observed (expected) limit of 81% (83%) at 95% C.L. on BRiny for a 125 GeV Higgs

Separate results: Cross-Section limits

VBF

Observed (expected) limit of 67% (52%) at 95% C.L. on BRiny for a 125 GeV Higgs

▶ 7H

Observed (expected) limit of 81% (83%) at 95% C.L. on BR_{inv} for a 125 GeV Higgs

Combined Results

▶ Observed (expected) limit at 125 GeV is 58(46)%

High mass combination

- $ightharpoonup Z(\ell\ell)H(inv)$ and VBF both have datacards up to 300 GeV
- ▶ The same combination method as used above was used to combine these two channels between 115 and 300 GeV

Conclusions

- ► All three H→invisible channels have been combined using the standard Higgs combination tool
- ► The result is compatible with the SM
- The combined result gives the strongest limit on the invisible branching fraction of the 125 GeV Higgs

Backup

Previous Limits

- ▶ CMS PAS limits on BR_{inv} for a 125 GeV Higgs boson are:
- VBF: observed (expected) limit of 69% (53%) at 95% C.L.
- Z($\ell\ell$)H(inv): observed (expected) limit of 75% (91%) at 95% C.L.
- Z($b\bar{b}$)H(inv): ovserved (expected) limit of 182% (199%) at 95% C.L.
- CMS indirect limit, from visible channels: observed (expected) limit of 64% (67%) at 95% C.L.
- ATLAS also produce an indirect limit and a limit in the ZH channel:
- Indirect limit 60% (no expected limit given)
- ZH: observed (expected) 65% (84%)

VBF Cross-sections

Mass/GeV	σ/pb	
110	1.809 ± 0.048	
115	1.729 ± 0.046	
125	1.578 ± 0.042	
135	1.448 ± 0.038	
145	1.333 ± 0.035	
150	1.280 ± 0.033	
200	0.869 ± 0.023	
300	0.441 ± 0.011	
400	0.254 ± 0.007	

Summary of Uncertainties

Background	Source	Uncertainty
$Z \rightarrow \nu \nu$		
	Statistics in control region	29%
	MC statistics	14%
	Theory uncertainty	20%
	Jet/MET scale/resolution	5%
$W \rightarrow \mu \nu$		
	Statistics in control region	5%
	MC statistics	10%
	Theory uncertainty	20%
	Jet/MET scale/resolution	4%
$W \rightarrow e \nu$		
	Statistics in control region	10%
	MC statistics	10%
	Theory uncertainty	20%
	Jet/MET scale/resolution	+5 %
$W \rightarrow \tau \nu$		
	Statistics in control region	30%
	MC statistics	20%
	Theory uncertainty	20%
	Jet/MET scale/resolution	+16% -2
	Tau ID efficiency	8%
	Electron contamination	5%

-OCD	1/4 11	
QCD	Statistics in control region	2%
	MC stats (background)	2%
\ \ \ \	Jet/MET scale/resolution	+45% -75%
		35%
Other backgr	ounds	
	Luminosity	4%
	MC statistics	10%
	Jet/MET scale/resolution	28-81%
	Cross-section uncertainty	8-20%
Signal		
_	MC statistics	10%
	Jet/MET scale/resolution	11%
	PDF uncertainty	5%
	QCD Scale uncertainty	4%