Ciências / Ciência da computação / Introduction to the Theory of Computation (3rd Edition)

## Exercício 7

Capítulo 4, Página 211





Introduction to the Theory of Computation ISBN: 9781133187790

Índice

Solução 🕏 Certificado

Passo 1

First assume that  $\mathcal{B}$  is countable; this means that there is a correspondence  $f: \mathbb{N} \to \mathcal{B}$ , i.e. we can arrange elements of  $\mathcal{B}$  in list as  $b_1, b_2, \ldots$ . Remember that elements of  $\mathcal{B}$  are infinite sequences over  $\{0, 1\}$ .

Now we arrive at contradiction, by constructing an element of  $\mathcal{B}$  which can not be on this list, using a diagonalization method. So, construct sequence b as follows: let the n-th digit in sequence b be the one which is not n-th digit in sequence  $b_n$ .

Now we prove that b is not on the list. Assume the contrary, i.e.  $b = b_k$  for some  $k \in \mathbb{N}$ . Diagonalize! Look at the k-th digit of b. By assumption, it should be different from k - th digit of  $b_k$ , i.e. different from itself! This contradiction proves that b is not on the list, i.e. there is no list of elements in  $\mathcal{B}$ , which means that it is uncountable.

**Resultado** 2 de 2

Classical diagonalization trick, look at **Theorem 4.17**.

Avaliar esta solução

< Exercício 6

公公公公公

Exercício 8 >

Privacidade Termos de serviço

Português (BR) ✓