Page No. /

	The state of the s		rage No.
	Solutions	Marks	Comments
ruestin/	(a) $\frac{1+a^{-1}}{1+a^{-3}} = \frac{1+a^{-1}}{1+a^{-1}}$ $= \frac{a+1}{a} = \frac{a+1}{a} \times \frac{a^{3}}{a^{3}+1}$ $= \frac{(a+1)(a^{2}-a+1)}{(a^{2}-a+1)}$	2	Ore mark for correctly forming algebraic fraction
	$=\frac{a^2}{a^2-\alpha+1}$		Ore mark for lowerethy factions to and simplifying
	b) y = sec x. = (cox)-1	4	1 10
	$i = \frac{dy}{dx} = -1. \left(\cos x\right)^{-2} - \sin x$ $= \frac{\sin x}{\cos^2 x}$]	
	$= \frac{1}{\cos x} \cdot \frac{\sin x}{\cos x}$	į	
	= Sec x. tan x ii d²y = tan x. Sec x. tanx + Sec x. Sec²x		
	= Secx (tan2x + Sec2x)	1	
	$\lim_{x \to 0} \frac{1 - \cos 2x}{x^2} = \lim_{x \to 0} \frac{2\sin^2 x}{x^2}$ $= 2 \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^2$	(2)	
	$= 2 \times 1^{2}$ $= 2 \times 1^{2}$	I	
	= 2	densigo	

2000 Western Region Trial HSC Marking Scheme

Course: 3/4 UNIT Mathematics

Page No. 2

Solutions Marks Comments d) $\int_{0}^{2} x^{2} (1+x^{3})^{3} dx$ Let $u = 1+x^{3}$ When x = 0, u = 1 $du = 3x^{2} \cdot dx$ x = 1, u = 2(2) $= \int_{0}^{\pi} \int_{0}^{\pi} 3\pi^{2} \left(1+x^{3}\right)^{3} dx$ $=\frac{1}{3}\int_{0}^{3}u^{3}.du:$ = 3 [4 4] = { (4 - {4) e) Sink doc = [log (1-cox)] = = log 1 - log = = 0 - log/ + log 2 = log 2

) | ONT

2000 Western Region Trial HSC Marking Scheme
Course: 3/4 Unit Mathematics

		Page No.
Solutions	Marks	Comments
$\frac{\partial}{\partial x} = 1 + y$	(2)	
$\frac{dx}{dy} = \frac{1}{i+y} = (i+y)^{-1}$		
$\therefore x = \int (1+y)^{-1} dy$. I he
= log(1+y)+C	Ì	one mark for correctly integraling
Sub $\kappa = 0$, $g = 2$ $\omega = \log 3 + C$		witg
$c = -\log 3$ $x = \log \left(\frac{1+y}{3}\right)$		
$\therefore e^{x} = \frac{1+9}{3}$		
$y = 3e^{x} - 1$		
(b) (t3+1) Typical term is TK+1 = 1 a k 3 n-k	2	
$T_{K+1} = {7 \choose c} t^{3k} t^{-(7-k)} K$ $= {7 \choose k} t^{4k-7}$ $= {7 \choose k} t^{4k-7}$		م با باد
= 7c + 4k-1	1 7	One mak for finding exportersion of typical term
For a constant 4K-7 must egual 0 4K=7		y lypical term
4K=7 K=Z Since K is NoT an integer	1 6	are mark for
there is no constant term		statug k is not on integer.
	ly.	les of No without
		istification receive

Course: 3/4 Unit Malteration Page No. 4 Solutions Marks Comments @ Proof Join Pd N.B. There may be attende (3) LTSR = LSPQ (Angle in alternate segment)
LTSR = LSPQ (" " " " ") -: [RPS = |TRS + [TSR LRTS = 180 - (LT.RS+LTSR) (Angleson ARTS) = 180 - LRPS (from above) -: LRTS and LRPS are supplementing -: LPST and LPRT are supplementer (angle sum of good PSTR) .. TSPR is a cyclic grad (opp. agle supplements) (5) Function is odd. Graph is asymetrical about the y-axis is reflected in the y=x and passes through drigin Both answers I'm) D to E and Fto G hAbB and E &F 脏 One mark for

12 ont

Jet Only Mathematics		Page No.
Solutions	Marks	Comments
(a) (i) To keep S,S,T together, there we be groups. 1e M,O,N,E,R,SST No of ways = $6! \times \frac{3!}{2!}$	1	
= 2160	1	
(11) Total number of juries that can form = 100,		
Number of juries containing majority of females: Must choose 4 females	j	One Mark for recognition
Need to select 3 males in 6C3 ways PMajority females = 6C3		of this.
D) (i) In $\triangle ABC$; $AC = \frac{100}{3 \text{ in } 34}$	(3)	
AC = 100 Sin34 Sin 94		
= 56.05584 A is 56m fina fort of pole		
(ii) In Afoc; Dc = tan 580 Dc = 56 tan 58°		
=89.618733 : height of pole is 89-6m		

	R.	1 age 110
Solutions	Marks	Comments
(C)(i) $f(x) = 1 - \tan x$ $0 \le x \le \frac{\pi}{4}$	\$	
y=1-tank.		dre mark for graph.
(ii) $A = \int (1 - \tan x) dx = \int (1 - \frac{\sin x}{\cos x}) dx$		
$= \left[x + \log(\omega x) \right]^{\frac{1}{4}}$ $= \frac{7}{4} + \log\left(\frac{1}{4}\right) - 0$	1	one mark for Correct integration
$= \frac{7}{4} + \log 1 - \log(2)^{\frac{1}{2}}$ $= \frac{7}{4} - \frac{1}{2} \log 2$		
$= \frac{\pi}{4} - \frac{2}{4} \log^2 2$ $= \frac{\pi}{4} - \frac{1}{4} \log^2 2$,	
$= \frac{\pi - \log 4}{4} \text{ with}^2$ $V = \pi \int (1 - \tan \kappa)^2 dx$		
= TI S (1-2 tan x + tan x) dec = TI S (Sec 2 x - 2 tan x) dec.		
= $\pi \left[\tan x + 2 \log (\cos x) \right]_0^{\pi}$ = $\pi \left(1 + 2 \log \left(\frac{1}{4x} \right) - 0 \right)$		ne for this stage
= T(1-/092) units3		

Solutions	Marks	Comments	
(0) Area $\triangle ABO = \frac{1}{2}a^2 \sin x$	3	Comments	
Area of sector opp = $\frac{1}{2}t^2x$ =: $\frac{1}{2}a^2\sin x = 2x\frac{1}{2}t^2x$		one mark for stating both) ; -
$t^2 = \frac{a^2 \sin x}{2x}$ $ii x = \frac{\pi}{3}$	dennegg	One mark for expressing to correctly	2
$+^2 = \frac{\alpha^2 \sin \frac{\pi}{2}}{\pi}$ $= \frac{\alpha^2}{\pi}$ $= \frac{\alpha^2}{\pi}$ $= \frac{\alpha}{\pi}$	1		
(b) (i) $P(x) = 6x^3 - 7x^2 + ax + b$	(5)		
$P(-1)=0 : -6-7-a+b=0$ $-a+b=13$ Let remaining tects be α and $\frac{1}{\alpha}$ $\alpha \times \frac{1}{\alpha} \times -1 = -\frac{b}{6}$		Ore mork for this slager	-
$b=6$ $= -7$ $1' \text{if } -1 \text{ is a fact then } 2+1 \text{ is a factor}$ $6x^2 - 13x + 6$ $2+1 \text{if } 3 = 2^2 = 7 \text{ if } 1$	1	ire mak for values of see are	es
$\frac{6x^{3}+6x}{43x^{4}-7x}$ $-\frac{13x^{2}-13x}{6x+6}$	1 8	de la Correct	
$\frac{6x+6}{6}$ = $(x+i)(6x^2-13x+6)$	1 0	ne for correct	۷
Beron of P(x) are -1, \frac{1}{3}, \frac{3}{2}	,	he for corrections.	+

2000 Western Region Trial HSC Marking Scheme

Course: 3/4 Unit Mathematics

Page No:

4 c) Solutions	Marks	Comments
To prove: $\sum_{r=1}^{n} r(r+1) = n \frac{(n+1)(n+2)}{3}$ Stap 1 when $n = 1$ LHS = $1(2)$ RHS = $1(2)(3)$ = 2 : true when $n = 1$	1	
Step2 assume true when n= K		
ie $J_{k} = k \frac{(k+i)(k+2)}{3}$	/	for correctly phrasing statemen in algebra
Step3 now prove for n = k+1		
(C 1x2 + 2x3 + + K(K+1) + (K+1)(K+2) = (K+1)(K+2)(K+1)(K+2)(K+1)(K+2)(K+1)(K+2)(K+1)(K+2)(K+1)(K+2)(K+1)(K+2)(K+1)(K+2)(K+1)(K+2)(K+2)(K+2)(K+2)(K+2)(K+2)(K+2)(K+2	+3)	
LHS = $k \left(\frac{(k+1)(k+2)}{2} \right) + \left(\frac{(k+1)(k+2)}{2} \right)$ from Step:		
= k (k+1/(k+2) + 3(k+1/(k+2))		
= $(k+1)(k+2)(k+3)$ as required	/	
Thus if true when $n=k$ statement follow when $n=k+1$.		
Stept Since statement is true when n=1 it follows that the statement holds for n=2 from Step 3. Since it is true when n = 1 it also holds for n= 3 etc The statement holds for all n E/N	/	for invoking the process of induction

1657101

	7	1 age 110/
Solutions	Marks	Comments
(a) y=m,x+C, y=mxx+C2	3	
Angle between 2 lines is given by $\tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $ if $0 = 45^\circ$ then $\tan \phi = 1$		
$\left \frac{m_i - m_2}{1 + m_i m_2} \right = 1$.	One mark for Leve
$\frac{m_1 - m_2}{1 + m_1 m_2} = 1 \qquad \text{of} \qquad \frac{m_1 - m_2}{1 + m_1 m_2} = -1$		
$m_1 - m_2 = l + m_1 m_2$ $m_1 - m_2 = -l - m_1 m_2$ $m_1 - m_2 = l + m_1 - m_2 - l$ $-m_1 - l$	1	One most for each correct solution
	(3)	
(b) (i) dx = -0.075	7	for correct expression of di
(ii) dr = dr dx Volume = x3		expression of chi att nel neg. sign
$=3\pi^{2}0.075$ When $x=4$		me mak be
dv = 3×16×-0.075 =-3.6 : tate of change in volume is decreasing at 3.6cm/ni		ne mark here.
(II) Surface Area = 6x2		
If Swface area = 100 cm^2 then $6x^2 = 100$ $x = \frac{19}{16} \text{ cm}$	1 0	Ine mak

Solutions	Marks	Comments
: dV = 3 × 100 × -0.076		
= -3.75	l	mak here
- volume decreasing at rate of 3-75 cm /mi		
	¥	Note: If in
		Part (1) students did not have
î }		neg, syn
		and parts (ii)
		+(iii) are confects worked the
		4 marks are
		awarded.
(O) i) dv = K(6-V)	4)	
(· · · · · · · · · · · · · · · · · · ·		
On integraling both sides		
$-\log(6-v) = kt+c$		
log(6-v) = -kt+c		
$6-v=e^{-kt+c}$		
V= 6-E-KE+C		
=6-e-kt c	·	ore mak here
=6+Ae-kt (whoe A=-ec)		Accept A = -e-c
When t=0, V=30		
-: 30 = 6 + Ae°		, 0
A = 0		One mark for lower of A
1. V=6+24e-kt		conter vous pri

maries		Page No. //
Solutions	Marks	Comments
(i) when $t = 1$, $V = 10.7$ $10.7 = 6 + 24e^{-K}$ $e^{-K} = \frac{4.7}{2F}$ $K = 1.63$ (2 decominal places) (iii) $V = 6 + 24e^{-1.63}$ 2 $= 6.92$ $= 6.92$ $= 4.7$ $= 6.92$ $= 6.92$ $= 6.92$		one mark here.

	Solutions	Marks	Comments
(a) Sin	L= 712-10	(2)	
Letfc	$= \chi^2 - \beta \ln \pi = 0$		
	$f'(u)=2u-\cos x$	1	One mark for expressing fine + fice)
			expressing.
•-•	a, = a - f(a) f(a)		Contect
	$=\pi-\frac{f(\pi)}{f'(\pi)}$		\bigcirc
	y		
	$= \pi - \pi^2 / 2m \pi - 10$		
	2π - ιου π		
	$= \Pi - \frac{\pi^2 - 10}{2}$		
	217+1		
-	= 3.1595 (4d.p)		
	cosnt + bsm nt	6	
~ x = -	na smint + nb cos nt		
γ̈́ = -	n'a coont -n's sin nt	, ,	One mark for
	(acount + bomnt)	ç	one mark for getting here
= -N			
-'- Mol	in is Simple Hatmanie		Dre mark
)	=-na sinnt +nb cosnt		
	$= n^2 a^2 \sin^2 nt + n^2 b^2 \cos^2 nt - 2n^2 a b \sin nt \cos n$	_	
	$c^2 a s^2 n t + b^2 s m^2 n t + \lambda = a b cos n t s n n t$		
, N ₂ , 2	inicosint + nibismint + 2niasaint cont.		
		6	
-	an (sm nt + cco nt) + bn (sm nt + co nt)		
=	n² (a²+6²) which is independent of t		
5	is a constant thoughout		
	motion I	===-1==	

	rage No.	
Solutions	Marks	Comments
(1) (iii) i = -na sinnt + nb cont		
=0 when namnit=nbcoomt.]
tan nt = a		
$nt = tan^{-1}(\frac{b}{a})$		
$t=\frac{1}{n}\tan^{n}\left(\frac{1}{n}\right)$		
$-: x = a \cos\left(x(\frac{1}{2}tan^{-1}(\frac{b}{a})) + b \sin\left(n \cdot \frac{1}{n}tan^{-1}(\frac{b}{a})\right)$. 1	
Let $d = \tan^{-1}(\frac{b}{a})$:: $\cos \alpha = \frac{\alpha}{\sqrt{a^2+6^2}}$, $\sin \alpha = \frac{b}{\sqrt{a^2+6^2}}$		
$\therefore \chi = \alpha \cdot \frac{\alpha}{\sqrt{a^2 + b^2}} + b \cdot \frac{b'}{\sqrt{a^2 + b^2}}$		
$=\frac{\alpha^2+b^2}{\sqrt{a^2+b^2}}=\sqrt{a^2+b^2}$.	
1 7		
: amplitude of motion is Ta2+62 cm		,
	`	,
		·
		!
-		
		:
	İ	

Course: Ji Unii Malfemalics		Page No. 14
Solutions	Marks	Comments
(c) $(1+x)^{2n} = 2n + 2n \times + 2n \times + 2n \times + \dots + 2n \times +$	4	dre mak for gettom here
and, in the expansion of (1+x)"(1+x") the terms in x" is given by The Mex"+ The Mex"+ The Mex+ + The Me And since 1 = Me , The mex - we the me Co = Me , The mex - we the mean of t		de mak for here
then the weff of x^{n} are $\binom{n}{c} + \binom{n}{l} + \binom{n}{2} + \cdots + \binom{n}{n}^{2}$		On make her
$\frac{2n}{n} = \binom{n}{0} + \binom{n}{1}^2 + \binom{n}{2}^2 + \cdots + \binom{n}{n}^2$	1-	
	er .	
-		

Course:		Page No. 15
Solutions	Marks	Comments
(a) V	5	
(60° 120°	· d	
$ \begin{aligned} &\dot{x} = 0 \\ &\dot{x} = C_1 \\ &\dot{y} = -g \\ &\dot{y} = -g \\ &\dot{y} = -g \\ &\dot{y} = -g \\ &\dot{y} = -g \\ &\dot{y} = -g \\ &\dot{y} = -g \\ &\dot{y} =$		
= $V\cos d$ = $V\sin ce d=0$ when $t=0$, $y=V\sin d$ = 0		
$x = Vt + C_2$ $when t = 0, x = 0$ $-: \dot{y} = -gt$	31 1	one mark for getting x=rt
$-1.C_{2}=0$ $-1.C_{2}=0$ $-1.C_{2}=0$	i i	One mark for golling
$\therefore x = vt \qquad t = 0, y = h$ $\therefore y = -\frac{1}{2}gt^2 + h$	11 1	J=-1gt2th One mark for
Projectile will het grond when y=0		t=121
$-: -h = -\frac{1}{2}gt^2$ $t^2 = \frac{2h}{3}$		
t = \fail (negatie t is ignised)		
i) if projectile states grand at 60°, the angle to positive		
dy =tan 120°		
$\frac{dy}{dz} = \frac{dy}{dt} \cdot \frac{dt}{dz}$ $= -gt \cdot t$		
$= -\frac{gt}{3}$ $= -\frac{g}{3}\sqrt{2}$		oney Luc
- 3/1-9		

		Page No. 18
Solutions	Marks	Comments
-: Siretan 120° = - [3		
$-\sqrt{3} = -g\sqrt{\frac{2}{g}}$		
V		
$3v^2 = g^2 \frac{2l}{g}$		
= 2gh		One mark here
(h) (1= /- (e ^x , 2-) 1	4	7,00
(b) y=loge(exam²x) = logeex + loge sm²x		
= x + 2 loge smx		
$\frac{dy}{dx} = 1 + 2 \frac{\cos x}{\sin x}$		
=1+2 cotx		che mak.
		_
(1) dy = 1 + 2 cot x		
When x= \frac{1}{2}, dy = 1+2cot \frac{1}{2}		
=1	1	• .
Also whe xi= # , y= # + 2 log sin #		
Egtin of notmal $\frac{y-\overline{z}}{x-\overline{z}}=-1$		
J-= =-xf		
· ·		
$x + y = \pi$	(
		`

2000 Western Region Trial HSC Marking Scheme

Course: 3/4 UNIT Mathematics

Page No: 17

Solutions	Marks	Comments
C)(i) $y = \sin^{-1}x$ $x = \sin y$ $\frac{dx}{dy} = \cos y$ $= \sqrt{1-\sin^{2}y}$	†	one Mark for <u>dz</u> =cosy dy
$\frac{1}{1-x^2}$ $\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}$	1	
(ii) $\int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{1-x^{2}}} dx = \left[\sin^{-1}x\right]_{0}^{\frac{1}{2}}$ $= \frac{\pi}{6} - 0$ $= \frac{\pi}{6}$	**	
• • •		