CS 207: Discrete Structures

Instructor: S. Akshay

 $\begin{array}{c} \text{July 30, 2015} \\ \text{Lecture 06-Countable and uncountable sets} \end{array}$

L

Chapter 2: Basic mathematical structures

Sets and Functions

- ▶ Finite and infinite sets, Russell's paradox, axioms of ZFC.
- ► Functions, their properties, associativity, inverse.
- ▶ Types of functions: surjective, injective and bijective.
- ► Two sets have the same "size" or cardinality iff there is a bijection between them.

Chapter 2: Basic mathematical structures

Sets and Functions

- ▶ Finite and infinite sets, Russell's paradox, axioms of ZFC.
- ▶ Functions, their properties, associativity, inverse.
- ▶ Types of functions: surjective, injective and bijective.
- ► Two sets have the same "size" or cardinality iff there is a bijection between them.

Today's class

- ► Countable, countably infinite and uncountable sets.
- ▶ A new proof technique.

Some important properties (H.W.: Prove them!)

- ▶ \exists **bij** from A to B and B to C, implies \exists **bij** from A to C.
- ▶ \exists **bij** from A to B, implies \exists **bij** from B to A.
- ▶ \exists inj from A to B, implies \exists surj from B to A (& vice-versa)
- ▶ Schröder-Bernstein Theorem: \exists surj from A to B and \exists surj B to A, implies \exists bij from A to B.

Some important properties (H.W.: Prove them!)

- ▶ \exists **bij** from A to B and B to C, implies \exists **bij** from A to C.
- ▶ \exists **bij** from A to B, implies \exists **bij** from B to A.
- ▶ \exists inj from A to B, implies \exists surj from B to A (& vice-versa)
- ▶ Schröder-Bernstein Theorem: \exists surj from A to B and \exists surj B to A, implies \exists bij from A to B.

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

Some important properties (H.W.: Prove them!)

- ▶ \exists **bij** from A to B and B to C, implies \exists **bij** from A to C.
- ▶ \exists **bij** from A to B, implies \exists **bij** from B to A.
- ▶ \exists inj from A to B, implies \exists surj from B to A (& vice-versa)
- ▶ Schröder-Bernstein Theorem: \exists surj from A to B and \exists surj B to A, implies \exists bij from A to B.

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

Corollary

For any infinite set A, there is a surjection from A to \mathbb{N} .

Some important properties (H.W.: Prove them!)

- ▶ \exists **bij** from A to B and B to C, implies \exists **bij** from A to C.
- ▶ \exists **bij** from A to B, implies \exists **bij** from B to A.
- ▶ \exists **inj** from A to B, implies \exists **surj** from B to A (& vice-versa)
- ▶ Schröder-Bernstein Theorem: \exists surj from A to B and \exists surj B to A, implies \exists bij from A to B.

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

Corollary

For any infinite set A, there is a surjection from A to \mathbb{N} .

Is there also a injection? Are all (infinite) sets bijective to \mathbb{N} ?

Countable and countably infinite sets

Definition

- ▶ For a given set C, if there is a bijection from C to \mathbb{N} , then C is called countably infinite.
- ▶ A set is countable if it is finite or countably infinite.

Examples: even numbers, number of horses,...

By previous corollary

Countably infinite sets are the "smallest" infinite sets.

Countable and countably infinite sets

Definition

- ▶ For a given set C, if there is a bijection from C to \mathbb{N} , then C is called countably infinite.
- ▶ A set is countable if it is finite or countably infinite.

Examples: even numbers, number of horses,...

By previous corollary

Countably infinite sets are the "smallest" infinite sets.

What are the other properties of countable sets?

Some questions...

Are the following sets countable?

That is, is there a bijection from these sets to \mathbb{N} ?

- ▶ the set of all integers \mathbb{Z}
- $ightharpoonup \mathbb{N} \times \mathbb{N}$
- \triangleright $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- \triangleright the set of rationals \mathbb{Q}
- \triangleright the set of all (finite and infinite) subsets of N
- ▶ the set of all real numbers \mathbb{R}

Some questions...

Are the following sets countable?

That is, is there a bijection from these sets to \mathbb{N} ?

- ▶ the set of all integers \mathbb{Z}
- $ightharpoonup \mathbb{N} \times \mathbb{N}$
- $ightharpoonup \mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- \triangleright the set of rationals \mathbb{Q}
- \triangleright the set of all (finite and infinite) subsets of $\mathbb N$
- \triangleright the set of all real numbers \mathbb{R}

To show these it suffices to show that

 \triangleright there is an injection from these sets to $\mathbb N$

Some questions...

Are the following sets countable?

That is, is there a bijection from these sets to \mathbb{N} ?

- ▶ the set of all integers \mathbb{Z}
- $ightharpoonup \mathbb{N} \times \mathbb{N}$
- $ightharpoonup \mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- \triangleright the set of rationals \mathbb{Q}
- \triangleright the set of all (finite and infinite) subsets of N
- \triangleright the set of all real numbers \mathbb{R}

To show these it suffices to show that

- \triangleright there is an injection from these sets to $\mathbb N$
- \triangleright or there is a surjection from \mathbb{N} (or any countable set) to these sets.

- 1. $B = \{b_0\}$ is a singleton
- 2. $B = \{b_0, \ldots, b_n\}$ is a finite set
- 3. $B = \{b_0, \ldots\}$ is a countably infinite set

- 1. $B = \{b_0\}$ is a singleton
- 2. $B = \{b_0, \ldots, b_n\}$ is a finite set
- 3. $B = \{b_0, \ldots\}$ is a countably infinite set Can we say $\{a_0, \ldots, b_0, \ldots\}$ is a countably infinite set?

- 1. $B = \{b_0\}$ is a singleton
- 2. $B = \{b_0, \ldots, b_n\}$ is a finite set
- 3. $B = \{b_0, \ldots\}$ is a countably infinite set Can we say $\{a_0, \ldots, b_0, \ldots\}$ is a countably infinite set?
- ▶ But then what is the position of b_i (i.e., natural number corresponding to it)?

- 1. $B = \{b_0\}$ is a singleton
- 2. $B = \{b_0, \ldots, b_n\}$ is a finite set
- 3. $B = \{b_0, \ldots\}$ is a countably infinite set Can we say $\{a_0, \ldots, b_0, \ldots\}$ is a countably infinite set?
 - ▶ But then what is the position of b_i (i.e., natural number corresponding to it)?
 - Rather, choose $\{a_0, b_0, a_1, b_1, \ldots\}$, then b_i is at $(2i+1)^{th}$ position.

- 1. $B = \{b_0\}$ is a singleton
- 2. $B = \{b_0, \ldots, b_n\}$ is a finite set
- 3. $B = \{b_0, \ldots\}$ is a countably infinite set Can we say $\{a_0, \ldots, b_0, \ldots\}$ is a countably infinite set?
 - ▶ But then what is the position of b_i (i.e., natural number corresponding to it)?
 - Rather, choose $\{a_0, b_0, a_1, b_1, \ldots\}$, then b_i is at $(2i+1)^{th}$ position.
 - ▶ Formally, define a bijection $f: (A \cup B) \to \mathbb{N}$ by $f(a_i) = 2i$ and $f(b_i) = 2i + 1$

- 1. $B = \{b_0\}$ is a singleton
- 2. $B = \{b_0, \ldots, b_n\}$ is a finite set
- 3. $B = \{b_0, \ldots\}$ is a countably infinite set Can we say $\{a_0, \ldots, b_0, \ldots\}$ is a countably infinite set?
 - ▶ But then what is the position of b_i (i.e., natural number corresponding to it)?
- Rather, choose $\{a_0, b_0, a_1, b_1, \ldots\}$, then b_i is at $(2i+1)^{th}$ position.
- ▶ Formally, define a bijection $f: (A \cup B) \to \mathbb{N}$ by $f(a_i) = 2i$ and $f(b_i) = 2i + 1$
- ▶ Are we done? What is missing?

Theorem: The cartesian product of two countably infinite sets is countably infinite

Proof: Let A, B be countably infinite. Find a way to "number" the elements in $A \times B = \{(a, b) \mid a \in A, b \in B\}$.

▶ That is, define a bijection from $A \times B$ to \mathbb{N} .

Theorem: The cartesian product of two countably infinite sets is countably infinite

Proof: Let A, B be countably infinite. Find a way to "number" the elements in $A \times B = \{(a,b) \mid a \in A, b \in B\}$.

▶ That is, define a bijection from $A \times B$ to \mathbb{N} .

$$f(a_i, b_j) = \left(\sum_{k=1}^{i+j} k\right) + j + 1$$

Theorem: The cartesian product of two countably infinite sets is countably infinite

Proof: Let A, B be countably infinite. Find a way to "number" the elements in $A \times B = \{(a,b) \mid a \in A, b \in B\}$.

▶ That is, define a bijection from $A \times B$ to \mathbb{N} .

$$f(a_i, b_j) = \left(\sum_{k=1}^{i+j} k\right) + j + 1$$

Corollaries

 $ightharpoonup \mathbb{N} \times \mathbb{N}, \, \mathbb{N} \times \mathbb{N} \times \mathbb{N}, \, \mathbb{N} \times \mathbb{Z} \times \mathbb{N}$ are countable.

Theorem: The cartesian product of two countably infinite sets is countably infinite

Proof: Let A, B be countably infinite. Find a way to "number" the elements in $A \times B = \{(a, b) \mid a \in A, b \in B\}$.

▶ That is, define a bijection from $A \times B$ to \mathbb{N} .

$$f(a_i, b_j) = \left(\sum_{k=1}^{i+j} k\right) + j + 1$$

Corollaries

- \triangleright N × N, N × N × N, N × Z × N are countable.
- ▶ The set of (positive) rationals is countable.

Theorem: The cartesian product of two countably infinite sets is countably infinite

Proof: Let A, B be countably infinite. Find a way to "number" the elements in $A \times B = \{(a, b) \mid a \in A, b \in B\}$.

▶ That is, define a bijection from $A \times B$ to \mathbb{N} .

$$f(a_i, b_j) = \left(\sum_{k=1}^{i+j} k\right) + j + 1$$

Corollaries

- \triangleright N × N, N × N × N, N × Z × N are countable.
- ► The set of (positive) rationals is countable.

Hint: Show that f(a, b) = a/b is a surjection. How does the result follow?

Countable sets and functions

Are the following sets countable?

- \triangleright the set of all integers \mathbb{Z}
- $\triangleright \mathbb{N} \times \mathbb{N}$
- $\triangleright \mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- \triangleright the set of rationals \mathbb{Q}
- \triangleright the set of all (finite and infinite) subsets of $\mathbb N$
- \triangleright the set of all real numbers \mathbb{R}

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

Theorem (Cantor, 1891)

There is no bijection between $\mathbb N$ and the set of all subsets of $\mathbb N.$

But, there is a surjection from set of all subsets of \mathbb{N} to \mathbb{N} .

Theorem (Cantor, 1891)

There is no bijection between $\mathbb N$ and the set of all subsets of $\mathbb N$.

But, there is a surjection from set of all subsets of \mathbb{N} to \mathbb{N} .

Thus, the "size" of this infinity (i.e., set of all subsets of \mathbb{N}) must be greater than the other infinity (i.e., \mathbb{N})!

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

		1	2	3	
f(0)	√	×	×	×	
f(1)	✓	×	\checkmark	\checkmark	
f(2)	×	×	×	×	
f(0) $f(1)$ $f(2)$ $f(3)$	×	\checkmark	×	\checkmark	

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

▶ Consider the set $S \subseteq \mathbb{N}$ obtained by switching the diagonal elements.

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

► Consider the set $S \subseteq \mathbb{N}$ obtained by switching the diagonal elements. As f is bij, $\exists j \in \mathbb{N}, f(j) = S$. But,

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

	0				
f(0)	√×	×	×	×	
f(0) $f(1)$ $f(2)$ $f(3)$	\checkmark	* <	\checkmark	\checkmark	
f(2)	×	×	* <	×	
f(3)	×	\checkmark	X	√×	

- ▶ Consider the set $S \subseteq \mathbb{N}$ obtained by switching the diagonal elements. As f is bij, $\exists j \in \mathbb{N}$, f(j) = S. But,
- $S \neq f(0)$ as they differ at position 0.
- $S \neq f(1)$ as they differ at position 1.
- ▶ $S \neq f(i)$ as they differ at position i.

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

		1	2	3	
f(0)	√×	×	×	×	
f(1)	✓× ✓ ×	* <		\checkmark	
f(2)	×	×	* <	×	
f(3)	×	\checkmark	×	√×	

- ▶ Consider the set $S \subseteq \mathbb{N}$ obtained by switching the diagonal elements. As f is bij, $\exists j \in \mathbb{N}, f(j) = S$. But,
- $ightharpoonup S \neq f(0)$ as they differ at position 0.
- ▶ $S \neq f(1)$ as they differ at position 1.
- ▶ $S \neq f(i)$ as they differ at position i.
- ▶ Thus, $S \neq f(j)$ for any $j \in \mathbb{N}$ which is a contradiction!

Does this proof look familiar??

Does this proof look familiar??

Figure: Cantor and Russell

Does this proof look familiar??

▶ In fact, $S = \{i \in \mathbb{N} \mid i \notin f(i)\}$ is like the one from Russell's paradox!

Figure: Cantor and Russell

Does this proof look familiar??

- ▶ In fact, $S = \{i \in \mathbb{N} \mid i \notin f(i)\}$ is like the one from Russell's paradox!
- ▶ Thus, if $\exists j \in \mathbb{N}$ such that f(j) = S, then we have a contradiction.
 - ▶ If $j \in S$, then $j \notin f(j) = S$.
 - If $j \notin S$, then $j \in f(j) = S$.

Figure: Cantor and Russell

Does this proof look familiar??

Figure: Cantor and Russell

In fact, using diagonalization Cantor showed that...

- ► There cannot be a bijection between any set and its power set (i.e., its set of subsets).(H.W)
- ▶ So there is an infinite hierarchy of "larger" infinities...

Does this proof look familiar??

Figure: Cantor and Russell

In fact, using diagonalization Cantor showed that...

- ► There cannot be a bijection between any set and its power set (i.e., its set of subsets).(H.W)
- ▶ So there is an infinite hierarchy of "larger" infinities...
- ▶ There is no bijection from \mathbb{R} to \mathbb{N} (H.W). Moreover, there is a bijection from \mathbb{R} to set of subsets of \mathbb{N} .

Does this proof look familiar??

Figure: Cantor and Russell

In fact, using diagonalization Cantor showed that...

- ► There cannot be a bijection between any set and its power set (i.e., its set of subsets).(H.W)
- ▶ So there is an infinite hierarchy of "larger" infinities...
- ▶ There is no bijection from \mathbb{R} to \mathbb{N} (H.W). Moreover, there is a bijection from \mathbb{R} to set of subsets of \mathbb{N} .
- ▶ What about the set of all sets??