

«Московский государственный технический университет имени Н.Э. Баумана» (национальный исследовательский университет) (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ФУНДАМЕНТАЛЬНЫЕ НАУКИ

КАФЕДРА ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И МАТЕМАТИЧЕСКАЯ ФИЗИКА (ФН11)

НАПРАВЛЕНИЕ ПОДГОТОВКИ МАТЕМАТИКА И КОМПЬЮТЕРНЫЕ НАУКИ (02.03.01)

Отчет

по лабораторной работе № 3

Название лабораторной работы: Моделирование выборки из абсолютно непрерывного закона распределения методом обратных функций.

Вариант № 9

Дисциплина:

Теория вероятности и математическая статистика

Студент группы ФН11-52Б		<u>Очкин Н.В.</u>
	(Подпись, дата)	(И.О. Фамилия)
Преподаватель		Облакова Т.В.
•	(Подпись, дата)	(И.О. Фамилия)

Содержание

1	Зад	Задание			
2	Исх	одные	данны	е	1
3	Pen	ление			1
	3.1	Часть	1		1
		3.1.1	Функци	я распределения	1
		3.1.2	Обратна	ая функция	3
			3.1.2.1	Метод Ньютона	3
			3.1.2.2	Метод центральных разностей	3
		3.1.3	Реализа	ция численного нахождения обратной	
			функци	и	4
			3.1.3.1	Реализация метода центральных разностей	4
			3.1.3.2	Реализация метода Ньютона	4
			3.1.3.3	Реализация нахождения обратной функции	5
		3.1.4	Генерац	ия псевдослучайных чисел	5
			3.1.4.1	Линейный конгруэнтный метод	5
			3.1.4.2	Реализация ЛКМ	6
			3.1.4.3	Моделирование выборки	6
	3.2	Часть			8
		3.2.1	Первона	ачальная обработка полученных статистиче-	
			ских да	нных	8
			3.2.1.1	Крайние члены вариационного ряда и раз-	
				мах выборки	8
			3.2.1.2	Группировка данных	9
			3.2.1.3	1	10
	3.3	Часть			11
		3.3.1	_	ческие и теоретические характеристики	12
			3.3.1.1	Математическое ожидание	12
			3.3.1.2	Метод интегрирования Монте-Карло	12
			3.3.1.3	Реализация метода Монте-Карло	12
			3.3.1.4	Реализация численного нахождения мате-	
				матического ожидания	13
			3.3.1.5	Дисперсия	15
4	Спи	исок ис	спользо	ванных источников	16

1 Задание

- 1. Для данного n методом обратных функций смоделируйте выборку из закона распределения с заданной плотностью p(x).
- 2. Для полученной выборки найдите гистограмму относительных частот. Постройте на одном рисунке графики теоретической плотности p(x) и гистограмму относительных частот.
- 3. Вычислите выборочное среднее и выборочную дисперсию и сравните с истинными значениями этих характеристик.
- 4. Используя неравенство Dvoretzky-Kiefer-Wolfowitz, постройте 90% доверительный интервал для функции распределения F(x).

Приведите графическую иллюстрацию

2 Исходные данные

Вариант: 9
$$n:120$$

$$p(x) = \frac{1}{\sqrt{0.4\pi}x} e^{-(\ln x - 2)^2/0.4}, \quad x > 0$$
 (1)

3 Решение

3.1 Часть 1

Для данного n методом обратных функций смоделируйте выборку из закона распределения с заданной плотностью p(x).

3.1.1 Функция распределения

Найдем функцию распределения:

$$F_X(x) = \int_{-\infty}^x f_X(t)dt$$
, где (2)

 $f_X(x)$ - плотность распределения.

Подставим (1) в (2):

$$F_X(x) = \int_0^x \frac{1}{\sqrt{0.4\pi y}} e^{-(\ln y - 2)^2/0.4} dy =$$

$$= \begin{bmatrix} t = \frac{\ln(y) - 2}{\sqrt{0.4}} & dt = \frac{1}{y\sqrt{0.4}} dy \\ \ln(y) - 2 = t\sqrt{0.4} & dy = y\sqrt{0.4} dt \\ \ln(y) = t\sqrt{0.4} + 2 & x : t = \frac{\ln(x) - 2}{\sqrt{0.4}} \\ y = \exp\left[t\sqrt{0.4} + 2\right] & 0 : t = -\infty \end{bmatrix} =$$

$$= \frac{1}{\sqrt{0.4\pi}} \int_{-\infty}^{\frac{\ln(x) - 2}{\sqrt{0.4}}} e^{\left[-t\sqrt{0.4} - 2\right]} \cdot e^{-t^2} \cdot e^{\left[t\sqrt{0.4} + 2\right]} \cdot \sqrt{0.4} dt =$$

$$= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\frac{\ln(x) - 2}{\sqrt{0.4}}} e^{-t^2} dt = \frac{1}{\sqrt{\pi}} \left(\int_{-\infty}^0 e^{-t^2} dt + \int_0^{\frac{\ln(x) - 2}{\sqrt{0.4}}} e^{-t^2} dt \right) =$$

$$= \frac{1}{\sqrt{\pi}} \left(\frac{\pi}{2} \operatorname{erf}(t) \Big|_{-\infty}^0 + \frac{\sqrt{\pi}}{2} \cdot \operatorname{erf}\left(\frac{\ln(x) - 2}{\sqrt{0.4}}\right) \right) \Leftrightarrow$$

где erf(x) - **функция ошибок** (также называемая функция ошибок Гаусса).

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

Примечание: из графика видно, что $\operatorname{erf}(0)=0,\,\operatorname{erf}(-\infty)=-1$

В конечном итоге, функция распределения имеет вид

$$F_X(x) = \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{\ln(x) - 2}{\sqrt{0.4}}\right)$$
 (3)

3.1.2 Обратная функция

Так как для нахождения обратной функции распределения требуется найти обратную функцию ошибок, что аналитически сделать сложно, воспользуемся численными методами.

3.1.2.1 Метод Ньютона

Для нахождения обратной функции воспользуемся методом касательных (Ньютона). Рабочая формула

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Вообще говоря, метод используется для нахождения корня заданной функции. Так что для нахождения обратной функции y = f(x), т.е. $x = f^{-1}(y)$ будем искать решение уравнения: f(x) - y = 0

$$x_{n+1} = x_n - \frac{f(x_n) - y}{(f(x_n) - y)_x'} = x_n - \frac{f(x_n) - y}{f'(x_n)}$$
(4)

Погрешность ε возьмем равной 1e-6.

3.1.2.2 Метод центральных разностей

Производные будем искать методом центральных разностей. Рабочая формула

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h} \tag{5}$$

Погрешность определяется как O(h), h примем равной 1e-6.

Подставив (5) в (4), получим:

$$x_{n+1} = x_n - \frac{(f(x_n) - y) \cdot 2h}{f(x_n + h) - f(x_n - h)}$$
(6)

3.1.3 Реализация численного нахождения обратной функции

3.1.3.1 Реализация метода центральных разностей

Реализуем на языке программирования python метод центральных разностей (5):

Листинг 1: Реализация метода центральных разностей

class CDM:

$$\begin{aligned} \textbf{def} & \text{ diff (self , f, x):} \\ & \text{numerator } = f(x + self.h) - f(x - self.h) \\ & \text{denominator } = 2 * self.h \end{aligned}$$

return numerator / denominator

f x = self.f(x) - y

if abs(f prime x) < 1e-10:

3.1.3.2 Реализация метода Ньютона

Теперь реализуем метод Ньютона (4), используя метод центральных разностей (листинг 1):

Листинг 2: Реализация метода Ньютона

class Newton:

f prime x = self.CDM.diff(self.f, x)

```
raise ValueError("Derivative_is_zero,_method_fails.")
x_new = x - f_x / f_prime_x
if abs(x_new - x) < self.tol:
    return x_new
x = x_new
raise ValueError(f"Method_did_not_converge.({x new})")</pre>
```

3.1.3.3 Реализация нахождения обратной функции

В конечном итоге получим:

Листинг 3: Реализация нахождения обратной функции

```
if __name__ == '__main___':

def cdf(x): \# F_X

return float(1/2 + 1/2 * \
    scipy.special.erf((np.log(x) - 2)/(np.sqrt(0.4))))

cdm = CDM(h=1e-6)
    newton = Newton(cdf, cdm, tol=1e-6, max_iter=1000)

def inverse(y, x0): \# x = f^-1(y)
    return newton.solve(y, x0)
```

где

функция cdf - программная запись, найденной ранее функции распределения (3); функция inverse - функция, возвращающее значение обратной функции к (3) в точке.

Примечание: Библиотеки scipy и numpy используются только для доступа к функции ошибок, натуральному логарифму и квадратному корню.

3.1.4 Генерация псевдослучайных чисел

3.1.4.1 Линейный конгруэнтный метод

Для генерации случайных величин воспользуемся одним из методов генерации псевдослучайных чисел - **Линейным конгруэнтным методом**.

Суть метода заключается в вычислении последовательности случайных чисел X_n , полагая

$$X_{n+1} = (aX_n + c) \bmod m, \quad \text{где}$$
 (7)

```
m - модуль (m \ge 2); a - множитель (0 \le a < m); c - приращение (0 \le c < m); X_0 - начальное значение (0 \le X_0 < m).
```

За значениями параметров обратимся к [1].

$$m = 2^{(60)} - 93$$
 $a = 561860773102413563$ $c = 0.$ (8)

В случае когда c=0, метод называют **мультипликативным конгруэнтным методом**.

3.1.4.2 Реализация ЛКМ

Реализуем линейный конгруэнтный метод (7), используя параметры (8):

Листинг 4: Реализация ЛКМ

3.1.4.3 Моделирование выборки

Наконец смоделируем 120 случайных величин в виде вектора линейным конгруэнтным методом:

```
n = 120
lcg = LCG(seed=340751464)
data = [lcg.next() for _ in range(n)]
print(data)
```

Начальное значение (seed) в ЛКМ выбирается так, чтобы $x_0 \neq 0$. Это необходимо для того, чтобы последовательность была полной длины, т.е. имела максимальную периодичность при генерации чисел. Обычно используют случайное или произвольно выбранное значение из множества $\{1, ..., m-1\}$ [1].

$$Y = [\\ 0.32949885091783276, & 0.9732846125910063, & 0.39434856188646605, & 0.8210789016402354, \\ 0.20093003622010405, & 0.9707650441880256, & 0.4178790819080603, & 0.2974690498690837, \\ 0.32632062605066997, & 0.8137561621450644, & 0.6418089688930682, & 0.72226998934102, \\ 0.12543257092465954, & 0.39665152743167287, & 0.7205668938187388, & 0.18456086494051507, \\ \dots \\ 1$$

Теперь пересчитаем полученный вектор случайных величин, в соответствии с функцией inverse из листинга 3.

Однако сперва подеберем вектор начальных приближений, так как того требует метод Ньютона.

Из графика видно, что функция (3) приблизительно принимает значения 0 < x < 20 при 0 < y < 1. Исходя из этого подберем вектор начальных приближений: [0, 3, 6, 9, 12, 15, 18, 21].

Итого имеем:

```
guesses = [0, 3, 6, 9, 12, 15, 18, 21]
for ind, el in enumerate(data):
    for attempt, guess in enumerate(guesses):
        try:
        inv_value = inverse(el, guess)
        data[ind] = inv_value
        break
```

```
except:
    pass

if attempt == len(guesses) - 1:
    raise Exception('Solution_was_not_found')
```

$$X = \lceil$$

]

3.2 Часть 2

Для полученной выборки найдите гистограмму относительных частот. Постройте на одном рисунке графики теоретической плотности p(x) и гистограмму относительных частот.

3.2.1 Первоначальная обработка полученных статистических данных

3.2.1.1 Крайние члены вариационного ряда и размах выборки

Найдем крайние члены вариационного ряда как минимальное и максимальное значения набора данных, а также размах выборки, как их разницу:

```
mini, maxi = min(data), max(data)
print(mini, maxi)

range_ = maxi - mini
print(range_)
```

Крайние члены: 2.1028, 23.4245

Размах выборки: 21.3217

Примечание: Выводимые данные округлены до 4х знаков для удобства чтения.

3.2.1.2 Группировка данных

Для начала определим количество интервалов, воспользовавшись правилом Стерджеса:

$$k = 1 + \lfloor \log_2 n \rfloor,$$

где n — общее число наблюдений величины, \log_2 — логарифм по основанию 2, $\lfloor x \rfloor$ — обозначает целую часть числа x.

И определим шаг интервала разделив размах выборки на количество интервалов:

```
 \begin{array}{l} trunc = \textbf{lambda} \ x : \ \textbf{int}(\textbf{str}(x)[:\textbf{str}(x).index('.')]) \\ k = 1 + trunc(np.log2(n)) \\ h = range\_ \ / \ k \end{array}
```

Количество интервалов: 7

Шаг интервала: 3.046

Теперь сгруппируем данные:

```
grouped_data = []
begin = mini
for i in range(k):
    end = begin + h
    middle = (begin + end) / 2
    freq = sum(begin <= el < end for el in data)
    if i = k - 1:
        freq += 1
    relative freq = freq / n
    grouped_element = {
        'interval_numero': i,
        'interval': f'[{begin},_{end})',
        'middle': middle,
        'frequency': freq,
        'relative_frequency': relative_freq
    }
```

```
grouped_data.append(grouped_element)
begin = end
```

Полученную группировку представим в виде таблицы:

номер	интервал	середина	частота	относительная
интервала	тторыш	интервала		частота
0	[2.1028, 5.1488)	3.6258	30	0.25
1	[5.1488, 8.1947)	6.6718	46	0.3833
2	[8.1947, 11.2407)	9.7177	24	0.2
3	[11.2407, 14.2867)	12.7637	11	0.09167
4	[14.2867, 17.3326)	15.8096	6	0.05
5	[17.3326, 20.3786)	18.8556	2	0.0167
6	[20.3786, 23.4245)	21.9016	1	0.00833

Таблица 1: Сгруппированные данные

3.2.1.3 Гистограмма относительных частот

Построим на одном рисунке графики теоретической плотности (1) и гистограмму относительных частот.

По оси абсцисс для гистограммы укажем середины интервалов, по оси ординат - вектор относительных частот, разделенный на шаг интервала:

Для построения графиков воспользуемся библиотекой матрьотыв.

```
import matplotlib.pyplot as plt

def pdf(x):
    return 1 / (np.sqrt(0.4 * np.pi) * x) \
```

```
* np.exp(-(np.log(x) - 2)**2 / 0.4)

def buildBar(x, y):

# histogtamm
plt.bar(x, y, color='white', edgecolor='black')

# pdf
x_values = np.linspace(0.01, trunc(maxi), 1000)
y_values = pdf(x_values)
plt.plot(x_values, y_values, color='red', linestyle='-', linewidth=1.5)

plt.show()
```

buildBar(x_axis, y_axis)

3.3 Часть 3

Вычислите выборочное среднее и выборочную дисперсию и сравните с истинными значениями этих характеристик.

3.3.1 Эмпирические и теоретические характеристики

3.3.1.1 Математическое ожидание

Запишем формулу для математического ожидания:

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx, \qquad \text{где}$$
 (9)

 $f_X(x)$ - плотность распределения.

3.3.1.2 Метод интегрирования Монте-Карло

Для вычисления интеграла воспользуемся численным методом интегрирования Монте-Карло

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{N} \sum_{i=1}^{N} f(u_i), \quad \text{где}$$
 (10)

u - равномерно распредленная на отрезке интегрирования [a,b] случайная величина.

Геометрическая интерпретация данного метода похожа на известный детерминистический метод, с той разницей, что вместо равномерного разделения области интегрирования на маленькие интервалы и суммирования площадей получившихся «столбиков» мы забрасываем область интегрирования случайными точками, на каждой из которых строим такой же «столбик», определяя его ширину как $\frac{b-a}{N}$, и суммируем их площади.

Точность оценки данного метода зависит только от количества точек N.

3.3.1.3 Реализация метода Монте-Карло

Так как данный метод опирается на генерацию случайных чисел на промежутке, расширим функционал нашей реализации ЛКМ (листинг 4) и добавим следующий метод:

$$\begin{array}{lll} \mathbf{def} & \mathrm{next_in_range(self, a, b):} \\ & \mathbf{return} & \mathrm{a + (b - a) * self.next()} \end{array}$$

Теперь реализуем интегрирование методом Монте-Карло, используя описаннный ЛКМ:

Листинг 5: Реализация метода Монте-Карло

```
class MonteCarlo:
    def __init__(self , N, PRNG_object):
        self .N = int(N)
        self .PRNG = PRNG_object

def integrate(self , f , a , b):
    mult = (b - a) / self .N

    generatedValues = []
    for _ in range(self .N):
        randomArg = self .PRNG.next_in_range(a , b)
        randomFuncVal = f(randomArg)

        generatedValues.append(randomFuncVal)

    return mult * sum(generatedValues)
```

3.3.1.4 Реализация численного нахождения математического ожидания

Прежде чем реализовывать вычисление самого интеграла, заметим, что в пределах интегрирования (9) присутствует бесконечность, что затрудняет интегрирование методом Монте-Карло (10).

Воспользуемся заменой, чтобы свести бесконечные пределы в конечные:

$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} x f_X(t) dt =$$

$$= \begin{bmatrix} x = \tan(t) \\ t = \arctan(x) \end{bmatrix}$$

$$= \frac{1}{\cos^2(t)} dt$$

$$-\infty : t = \arctan(-\infty) = -\frac{\pi}{2}$$

$$+\infty : t = \arctan(+\infty) = \frac{\pi}{2}$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \tan(t) \cdot f_X(\tan(t)) \cdot \frac{1}{\cos^2(t)} dt$$

Итого получим:

$$\mathbb{E}[X] = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} g(t)dt, \qquad g(t) = \tan(t) \cdot f_X(\tan(t)) \cdot \frac{1}{\cos^2(t)}$$
 (11)

Объединим теперь (11) и (10) и получим:

$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} x f_X(x) dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} g(t) dt \approx \frac{\pi}{N} \sum_{i=1}^{N} g(u_i), \quad \text{где}$$
 (12)

$$g(x) = \tan(x) \cdot f_X(\tan(x)) \cdot \frac{1}{\cos^2(x)},$$

 u_i ищем в соответствии с (листинг 4).

Подставляя (1) в (12) и (8) в (7):

$$\mathbb{E}[X] = \int_0^{+\infty} x f_X(x) dx = \int_0^{\frac{\pi}{2}} \tan(t) f_X(\tan(t)) \frac{1}{\cos^2(t)} dt \approx$$

$$\approx \frac{\pi/2}{N} \sum_{i=1}^N \left[\tan(u_i) \cdot \frac{1}{\sqrt{0.4\pi} \tan(u_i)} e^{-(\ln(\tan(u_i)) - 2)^2/0.4} \cdot \frac{1}{\cos^2(u_i)} \right], \quad \text{где}$$

 $u_i = (561860773102413563 \cdot u_{i-1}) \bmod 2^{60} - 93$

При программной реализации, как уже было сказано ранее, N отвечает за точность полученной оценки метода, так что чем оно больше, тем лучше.

monteCarlo = MonteCarlo(1e7, lcg)

def subs(t):

ExpectedValue = monteCarlo.integrate(subs, 0, np.pi/2)

где классы \mathbf{LCG} и $\mathbf{MonteCarlo}$ представлены в листингах 4 и 5 соответственно. Итого получаем:

$$\mathbb{E}[X] \approx 8.16 \tag{13}$$

3.3.1.5 Дисперсия

Аналогично найдем дисперсию, как

$$D[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

def subs2(t):
return np.tan(t)**2 * pdf(np.tan(t)) * (1 / np.cos(t)**2)

$$\label{eq:Var} Var = monteCarlo.integrate(subs2\,,\ 0\,,\ np.\,pi\,/2)\,-\,\backslash\\ monteCarlo.integrate(subs\,,\ 0\,,\ np.\,pi\,/2)**2$$

Итого получаем:

$$D[X] \approx 14.65 \tag{14}$$

4 Список использованных источников

1. L'Ecuyer, Pierre (January 1999). "Tables of Linear Congruential Generators of Different Sizes and Good Lattice Structure C. 256