Derivation Document

April 6, 2025

Let f_w be the rate of wind energy production, f_s be the rate of solar energy production. Let $x = [x_1, x_2]$ be the state vector where x_1 is the amount of energy in the grid and x_2 is the amount of energy in the battery. Let u_1 be the battery output, u_2 be the battery input, u_g be the gas energy production rate, u_w be the wind energy production rate, and u_s be the solar energy production rate. Let d be the demand rate.

We let $\mathbf{u} = [u_1, u_2, u_g, u_w, u_s]^T$ be the control vector. Let $\alpha, \beta, \gamma, \delta, \epsilon$ be tunable parameters.

The state equations are given by:

$$\dot{x_1} = u_w f_w + u_s f_s + u_g - u_1 - (d - u_2)$$

$$\dot{x_2} = u_1 - u_2 - \epsilon x_2$$

We seek to minimize the cost functional:

$$J[u,x] = \int_{t_0}^{t_f} (\alpha C_M + \beta C_E)u^2 + \gamma (u_w f_w + u_s f_s + u_g + u_2 - u_1 - (d + \delta - u_2))^2$$

Subject to the constraints on battery capacity and the control input:

$$0 \le x_2 \le x_2^{\max}$$
$$\mathbf{u} > 0$$

We can use the Pontryagin's Minimum Principle to derive the necessary conditions for optimality. The Lagrangian is given by:

$$\mathcal{L}(x, u, \lambda) = p_1(u_w f_w + u_s f_s + u_g - u_1 - (d - u_2)) + p_2(u_1 - u_2 - \epsilon x_2) - (\alpha C_M + \beta C_E) \mathbf{u}^2 + \gamma (u_w f_w + u_s f_s + u_g + u_2 - u_1 - (d + \delta - u_2))^2 + \mu_1 x_2 + \mu_2 (x_2^{\text{max}} - x_2) - \lambda^T \mathbf{u}$$

Subject to the conditions:

$$\mu_1, \mu_2 \ge 0$$

$$\mu_1 x_2 = 0$$

$$\mu_2 (x_2^{\text{max}} - x_2) = 0$$

$$\lambda \ge 0$$

$$\lambda^T \mathbf{u} = 0$$

The costate equations are given by:

$$\dot{p_1} = -\frac{\partial \mathcal{L}}{\partial x_1} = 0$$

$$\dot{p_2} = -\frac{\partial \mathcal{L}}{\partial x_2} = -\epsilon p_2 + \mu_1 - \mu_2$$

The optimality conditions are given by:

$$u_1^* = \frac{\partial \mathcal{L}}{\partial u_1} = -p_1 + p_2 - 2(\alpha C_{M_1} + \beta C_{E_1})u_1 - 2\gamma(u_w f_w + u_s f_s + u_g + u_2 - u_1 - (d + \delta - u_2)) - \lambda_1 = 0$$

$$u_2^* = \frac{\partial \mathcal{L}}{\partial u_2} = -p_1 - p_2 - 2(\alpha C_{M_1} + \beta C_{E_1})u_2$$

$$u_g^* = \frac{\partial \mathcal{L}}{\partial u_g} = 0$$

$$u_w^* = \frac{\partial \mathcal{L}}{\partial u_w} = 0$$

$$u_s^* = \frac{\partial \mathcal{L}}{\partial u_s} = 0$$