Διανύσματα

$$\hat{i} = (1,0) \qquad \hat{j} = (0,1)$$

$$\vec{R} + \vec{V} = (R_x + V_x)\hat{i} + (R_y + V_y)\hat{j}$$
$$|\vec{R} + \vec{V}| = \sqrt{((R_x + V_x)^2 + (R_y + V_y)^2)}$$

Η κατεύθυνση του διανύσματος $\vec{R} + \vec{V}$ θα δίνεται από την γωνία φ

$$\varphi = arc(\tan \varphi) = arc\left(\frac{\left(R_y + V_y\right)}{\left(R_x + V_x\right)}\right)$$

Ανάλογες σχέσεις ισχύουν και για 3 διαστάσεις

$$R_{x} = R_{xy}\cos\phi = R\sin\theta\cos\varphi$$

$$R_{v} = R_{xv} \sin \phi = R \sin \theta \sin \varphi$$

$$R_z = R\cos\theta$$

$$R = R_x \hat{i} + R_y \hat{j} + R_z \hat{k}$$

Παράδειγμα/πρόβλημα

Να βρεθούν οι συντεταγμένες (x,y) συναρτήσει των (x',y') του περιστρεφόμενου συστήματος συντεταγμένων

Κινηθείτε μια απόσταση χ' κατά μήκος του χ'-άξονα (η προβολή στο χ')

$$\Rightarrow$$
 y₁ είναι: $\sin \theta = \frac{Oy_1}{Ox'} = \frac{y_1}{x'} \Rightarrow y_1 = x' \sin \theta$

Από το χ' πηγαίνουμε στο V (κίνηση κατά y')

$$\Rightarrow$$
 $y_2 \in iv\alpha: \cos\theta = \frac{wV}{x'V} = \frac{y_2}{y'} \Rightarrow y_2 = y'\cos\theta$

Το ύψος δεν εξαρτάται από το δρόμο που ακολουθήσατε: $y = y_1 + y_2 = x'\sin\theta + y'\cos\theta$

Παράδειγμα συνέχεια

Πως βρίσκουμε το x συναρτήσει των x' και y'?

Κινούμαστε και πάλι στον χ'-άξονα κατά χ'
$$\Rightarrow \mathbf{x}_1 \in \mathbf{v} \mathbf{\alpha} : \cos \theta = \frac{Ox_1}{Ox'} = \frac{x_1}{x'} \Rightarrow x_1 = x' \cos \theta$$

Κινούμαστε στον Υ'-άξονα κατά y'

Κινούμαστε στον Υ'-άξονα κατά y'
$$\Rightarrow x_1 x_2 είναι: sin \theta = \frac{wx'}{y'} = \frac{x_1 x_2}{y'} \Rightarrow x_1 x_2 = y' sin \theta$$

Aλλά:
$$x = Ox_2 = Ox_1 - x_1x_2 \Rightarrow x = x'\cos\theta - y'\sin\theta$$

Επομένως καταλήγουμε:
$$\begin{cases} x = x'\cos\theta - y'\sin\theta \\ y = x'\sin\theta + y'\cos\theta \end{cases}$$

Θα μπορούσαμε να το γράψουμε και με τη μορφή:
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$$

Διανύσματα: εσωτερικό γινόμενο

Εσωτερικό γινόμενο 2 διανυσμάτων α,β ορίζεται σαν

$$|\vec{a} \cdot \vec{b}| = |\vec{a}| |\vec{b}| \cos \theta$$

Είναι βαθμωτό μέγεθος και όχι διάνυσμα Συμβολίζει την προβολή του διανύσματος α στο διάνυσμα β

Το εσωτερικό γινόμενο μπορεί να γραφτεί σαν συνάρτηση των συνιστωσών των 2 διανυσμάτων ως:

$$\vec{a} \cdot \vec{b} = (a_x b_x + a_y b_y + a_z b_z) = \vec{b} \cdot \vec{a}$$

επειδή
$$\hat{i}\cdot\hat{i}=\hat{j}\cdot\hat{j}=\hat{k}\cdot\hat{k}=1$$
 και $\hat{i}\cdot\hat{j}=\hat{j}\cdot\hat{k}=\hat{i}\cdot\hat{k}=0$

Το εσωτερικό γινόμενο υπακούει στον επιμεριστικό κανόνα

$$\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$$

Διανύσματα: εξωτερικό γινόμενο

Εξωτερικό γινόμενο 2 διανυσμάτων α και b είναι ένα διάνυσμα c

$$|\vec{c}| = |\vec{a}| |\vec{b}| \sin \phi$$
 όπου ϕ η γωνία των a,b.

Η διεύθυνση του c είναι κάθετη στο επίπεδο των α και b και το μέτρο του ισούται με το εμβαδό του παραλ/μου.

Η διεύθυνσή του βρίσκεται σύμφωνα με το κανόνα του δεξιόστροφου κοχλία:

Με το δεξί μας χέρι να στρέφεται προς τη διεύθυνση φ του διανύσματος a προς το b, ο αντίχειρας δηλώνει την διεύθυνση του διανύσματος c.

Το εξωτερικό γινόμενο ισούται με το γινόμενο του μέτρου του ενός διανύσματος επί την κάθετη συνιστώσα του άλλου διανύσματος ως προς το πρώτο

Διανύσματα: εξωτερικό γινόμενο/ιδιότητες

$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$

$$\vec{a} \times \vec{a} = 0$$

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

$$\vec{a} \times \vec{b} = (a_x \hat{i} + a_y \hat{j} + a_z \hat{k}) \times (b_x \hat{i} + b_y \hat{j} + b_z \hat{k})$$

$$= (a_x \hat{i} \times b_x \hat{i}) + (a_x \hat{i} \times b_y \hat{j}) + (a_x \hat{i} \times b_z \hat{k})$$

$$= (a_x \hat{i} \times b_x \hat{i}) + (a_x \hat{j} \times b_y \hat{j}) + (a_x \hat{i} \times b_z \hat{k})$$

$$+ (a_x \hat{j} \times b_x \hat{i}) + (a_x \hat{j} \times b_y \hat{j}) + (a_x \hat{j} \times b_z \hat{k})$$

$$+ (a_x \hat{k} \times b_x \hat{i}) + (a_x \hat{k} \times b_y \hat{j}) + (a_x \hat{k} \times b_z \hat{k}) \Rightarrow$$

$$\vec{a} \times \vec{b} = a_x b_y (+\hat{k}) + a_x b_z (-\hat{j}) + a_y b_x (-\hat{k}) + a_y b_z (+\hat{i}) + a_z b_x (+\hat{j}) + a_z b_y (-\hat{i})$$

$$\vec{a} \times \vec{b} = (a_y b_z - a_z b_y) \hat{i} + (a_x b_z - a_z b_x) \hat{j} + (a_x b_y - a_y b_x) \hat{k}$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_x & a_y & a_z \\ b_y & b_z \end{vmatrix} = \hat{i} \times \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} - \hat{j} \times \begin{vmatrix} a_x & a_z \\ b_x & b_y \end{vmatrix} + \hat{k} \times \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix}$$

Άλγεβρα

$$a^{-x} = \frac{1}{a^x} \qquad a^{(x \pm y)} = a^x a^{\pm y}$$

$$\log a = x \Rightarrow a = 10^x$$
 $\log a \pm \log b = \log(ab^{\pm 1})$ $\log(a^n) = n\log(a)$

$$\ln a = x \Rightarrow a = e^x \qquad \ln a \pm \ln b = \ln(ab^{\pm 1}) \qquad \ln(a^n) = n \ln(a)$$

Διαφορικός λογισμός

Έστω y = f(x) μια συναρτησιακή σχέση της μεταβλητής y ως προς την μεταβλητή x: $y = f(x) = ax^3 + bx^2 + cx + d$

Η παράγωγος του y ως προς το χ ορίζεται ως το όριο των κλίσεων των χορδών που φέρονται μεταξύ 2 σημείων στην γραφική παράσταση του y ως προς το x καθώς το x τείνει στο μηδέν

$$\frac{dy}{dx} = \lim_{dx \to 0} \frac{\Delta y}{\Delta x} = \lim_{dx \to 0} \frac{y(x + \Delta x) - y(x)}{\Delta x}$$

Διαφορικός λογισμός – ιδιότητες παραγώγων

Η παράγωγος του αθροίσματος 2 συναρτήσεων είναι

$$\frac{d}{dx}f(x) = \frac{d}{dx}\left[g(x) + h(x)\right] = \frac{d}{dx}g(x) + \frac{d}{dx}h(x)$$

□ Η παράγωγος του γινομένου 2 συναρτήσεων είναι

$$\frac{d}{dx}f(x) = \frac{d}{dx}[g(x)h(x)] = h\frac{dg}{dx} + g\frac{dh}{dx}$$

- \Box Πηλίκο δύο συναρτήσεων? $\frac{d}{dx}\left(\frac{g(x)}{h(x)}\right) = \frac{h\frac{ag}{dx} g\frac{an}{dx}}{h^2}$
- □ Αν y = f(x) και x είναι συνάρτηση μιας άλλης μεταβλητής z τότε

$$\frac{dy}{dx} = \frac{dz}{dx}\frac{dy}{dz}$$

Η δεύτερη παράγωγος της y ως προς x ορίζεται $\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right)$

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right)$$

Διαφορικός λογισμός - τυπολόγιο

$$\frac{d}{dx}ax^n = nax^{n-1}$$

$$\frac{d}{dx}(\sin ax) = a\cos ax$$

$$\frac{d}{dx}(\cos ax) = -a\sin ax$$

$$\frac{d}{dx}(e^{ax}) = ae^{ax}$$

$$\frac{d}{dx}\ln(ax) = \frac{a}{x}$$

Ολοκληρωτικός λογισμός

Θεωρούμε την ολοκλήρωση ως το αντίστροφο της διαφόρισης:

$$f(x) = \frac{dy}{dx} \to dy = f(x)dx$$

Μπορούμε να βρούμε την y(x) αθροίζοντας για όλες τις τιμές του x.

Αυτή η αντίστροφη πράξη γράφεται $y(x) = \int f(x) dx$

π.χ. για μιά συνάρτηση $f(x) = 3ax^2 + b$ η παραπάνω ολοκλήρωση δίνει

$$y(x) = \int (3ax^2 + b)dx = ax^3 + bx + c$$

Το ολοκλήρωμα ονομάζεται αόριστο ολοκλήρωμα επειδή η τιμή του εξαρτάται από τη τιμή της σταθεράς c.

Το αόριστο ολοκλήρωμα ορίζεται ως $I(x) = \int f(x) dx$

Η συνάρτηση f(x) ονομάζεται ολοκληρωτέα συνάρτηση: $f(x) = \frac{dI(x)}{dx}$

Για μια συνεχή συνάρτηση το ολοκλήρωμα μπορεί να περιγραφεί σα το εμβαδό που ορίζεται από την καμπύλη της f(x) και του άξονα x, μεταξύ 2 ορισμένων τιμών x_1 και x_2 Οριμένο ολοκλήρωμα

Ολοκληρωτικός λογισμός

□ Ένα από τα πιο χρήσιμα ολοκληρώματα που συναντιούνται είναι:

$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$

Διαφόριση του δεξιού μέλους δίνει $f(x) = x^n$. Αν τα όρια της ολοκλήρωσης είναι γνωστά τότε το ολοκλήρωμα δίνει:

$$\int x^n dx = \frac{x^{n+1}}{n+1} \Big|_{x_q}^{x_2} = \frac{x_2^{n+1} - x_1^{n+1}}{n+1}$$

- □ Μερικοί τρόποι ολοκληρώσεως
 - ightharpoonup Ολοκλήρωση κατά παράγοντες: $\int u dv = uv \int v du$

Για παράδειγμα:
$$I(x) = \int x^2 e^x dx = \int (x^2)^2 d(e^x) = x^2 e^x - 2 \int e^x x dx + c_1$$

Επαναλαμβάνοντας στο δεύτερο όρο έχουμε

$$-2\int e^{x}xdx = -2e^{x}x + 2\int e^{x}dx = -2e^{x}x + 2e^{x} + c_{2}$$

Ολοκληρωτικός λογισμός

Τέλειο διαφορικό: προσπαθούμε με αλλαγή της μεταβλητής ολοκλήρωσης το διαφορικό της συνάρτησης να είναι διαφορικό της ανεξάρτητης μεταβλητής που εμφανίζεται στην ολοκληρωτέα συνάρτηση

$$I(x) = \int \cos^2 x \sin x dx$$

$$I(x) = \int \cos^2 x \sin x dx$$

$$I(x) = -\int \cos^2 x d(\cos x)$$

$$d(\cos x) = -\sin x dx$$

Μερικά χρήσιμα ολοκληρώματα

$$\int \frac{dx}{x} = \int x^{-1} dx = \ln x \qquad \int \frac{dx}{a + bx} = \frac{1}{b} \ln(a + bx) \qquad \int \frac{dx}{(a + bx)^2} = -\frac{1}{b(a + bx)}$$

$$\int \sin(ax) dx = -\frac{1}{a} \cos(ax) \qquad \int \cos(ax) dx = \frac{1}{a} \sin(ax)$$

$$\int \frac{x dx}{\sqrt{a^2 - x^2}} = -\sqrt{a^2 - x^2} \qquad \int x e^{ax} dx = \frac{e^{ax}}{a^2} (ax - 1)$$

Αναπτύγματα σε σειρές

$$(a+b)^{n} = a^{n} + \frac{n}{1!}a^{n-1}b + \frac{n(n-1)}{2!}a^{n-2}b^{2} + \frac{n(n-1)(n-2)}{3!}a^{n-3}b^{3} + \cdots$$

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{2!}x^{2} + \cdots \qquad \text{Fia } x <<1 \quad (1+x)^{n} \approx 1 + nx$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots \qquad \text{Fia } x <<1 \qquad e^{x} \approx 1 + x$$

$$\ln(1\pm x) = \pm x - \frac{x^{2}}{2} \pm \frac{x^{3}}{3} - \frac{x^{4}}{4} + \cdots \qquad \text{Fia } x <<1 \qquad \ln(1\pm x) \approx \pm x$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \cdots$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \cdots$$

$$\tan x = x + \frac{x^{3}}{3} + \frac{2x^{5}}{15} + \frac{17x^{7}}{315} + \cdots \qquad |x| < \frac{\pi}{2}$$