Docket No.: M4065.1006/P1006-B (PATENT)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of:

Terry L. Gilton

Application No.: 10/618,824

Group Art Unit: N/A

Filed: July 14, 2003

Examiner: Not Yet Assigned

For:

PROGRAMMABLE CONDUCTOR

MEMORY CELL STRUCTURE AND

METHOD THEREFOR

INFORMATION DISCLOSURE STATEMENT

Commissioner for Patents Washington, DC 20231

Dear Sir:

Pursuant to 37 C.F.R. § 1.56, the attention of the Patent and Trademark Office is hereby directed to the documents listed on the attached PTO/SB/08. It is respectfully requested that the subject matter of the documents be expressly considered during the prosecution of this application and that the documents be made of record therein and appear among the "References Cited" on any patent to issue form this application. A copy of each document is attached.

Those patents and publications which are marked with an asterisk (*) in the attached form PTO/SB/08 are not supplied because they were previously cited by or submitted to the Office in a prior application no. 10/121,790, filed April 10, 2002, and relied upon in this application for an earlier filing date under 35 U.S.C. 120.

A brief explanation of relevance of the non-U.S. patent documents listed on form PTO/SB/08 is provided and attached hereto as Appendix A. The brief explanation provided for each document is <u>not</u> tantamount to an admission that a document is

Application No.: 10/618,824 Docket No.: M4065.1006/P1006-B

"material" or that it qualifies as prior art. The Examiner is respectfully requested to utilize Appendix A only as a tool by which to better categorize the documents for substantive use in examining the claims of the application.

Documents discussed in Appendix A marked with an asterisk (**) are indicated to be potentially more relevant than others. Such marking is provided only to assist the Examiner; however, the Examiner is requested to thoroughly review all documents cited herein.

In accordance with 37 C.F.R. § 1.97(g), the filing of this Information Disclosure Statement shall not be construed to mean that a search has been made or that no other material information as defined in 37 C.F.R. § 1.56(a) exists. It is submitted that the Information Disclosure Statement is in compliance with 37 C.F.R. § 1.98 and the Examiner is respectfully requested to consider and cite the listed documents.

The Commissioner is hereby authorized to charge any deficiency in the fees filed, asserted to be filed or which should have been filed herewith (or with any paper hereafter filed in this application by this firm) to our Deposit Account No. 04-1073, under Order No. M4065.1006/P1006-A. A duplicate copy of this paper is enclosed.

Dated: February 27, 2004

Respectfully submitted,

Thomas J. D'Amico

Registration No.: 28,371

Peter F. McGee

Registration No. 35,947

DICKSTEIN SHAPIRO MORIN &

OSHINSKY LLP

2101 L Street, N.W.

Washington, DC 20037-1526

(202) 785-9700

Attorneys for Applicants

Substitu	ute for form 1449A	VPTO		Complete if Known		
				Application Number	Not Yet Assigned	
	-		SCLOSURE	Filing Date	February 25, 2004	
ST	ATEMEN	IT BY A	PPLICANT	First Named Inventor	Terry L. Gilton	
	luse as ma	ny sheets as i	necessary)	Art Unit	N/A	
	(000 00 1110	ny anotic do l		Examiner Name	Not Yet Assigned	
Sheet	1	of	12	Attorney Docket Number	M4065.1006/P1006-B	

	1		U.S. PA	TENT DOCUMENTS	Pages, Columns, Lines,
Examiner Initials*	Cite No.1	Document Number Number-Kind Code ² (if known)	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Where Relevant Passages or Relevant Figures Appear
*	AA	2002/0000666	1/2002	Kozicki et al.	
*	AB	2002/0072188	6/2002	Gilton	
*	AC	2002/0106849	08/2002	Moore	
*	AD	2002/0123169	09/2002	Moore et al.	
*	AE	2002/0123170	09/2002	Moore et al.	
*	AF	2002/0123248	09/2002	Moore et al.	
*	AG	2002/0127886	09/2002	Moore et al.	
*	АН	2002/0132417	09/2002	Li	
*	ΑI	2002/0160551	10/2002	Harshfield	
*	AJ	2002/0163828	11/2002	Krieger et al.	
*	AK	2002/0168852	11/2002	Harshfield et al.	
*	AL	2002/0190289	12/2002	Harshfield et al.	
*	AM	2003/0001229	01/2003	Moore et al.	
*	AN	2003/0027416	02/2003	Moore	
*	AO	2003/0032254	02/2003	Gilton	
*	AP	2003/0038301	02/2003	Moore	
*	AQ	2003/0043631	03/2003	Gilton et al.	
*	AR	2003/0045049	03/2003	Campbell et al.	
*	AS	2003/0045054	03/2003	Campbell et al.	
*	AT	2003/0047765	03/2003	Campbell	
*	AU	2003/0047772	03/2003	Li	
*	AV	2003/0047773	03/2003	Li	
*	AW	2003/0049912	03/2003	Campbell et al.	
*	AX	2003/0068861	04/2003	Li	
*	AY	2003/0068862	04/2003	Li	
*	AZ	2003/0095426	05/2003	Hush et al.	
*	AA1	2003/0096497	05/2003	Moore et al.	
*		2003/0107105	06/2003	Kozicki	
*	AC1	2003/0117831	06/2003	Hush	
*	AD1	2003/0128612	07/2003	Moore et al.	
*	AE1	2003/0123012	07/2003	Kozicki	·
*	AF1	2003/0143782	07/2003	Gilton et al.	
*		2003/0155589	08/2003	Campbell et al.	
*		2003/0155606	08/2003	Campbell et al.	
*	AI1	2003/0156447	08/2003	Kozicki	
*	AJ1	2003/0156463	08/2003	Casper et al.	
*		2003/0209728	11/2003	Kozicki et al	
*		2003/0209720	11/2003	Kozicki et al	
*		2003/0203971	11/2003	Kozicki et al	
*		3,622,319	11/1971	Sharp	
*		3,743,847	7/1973	Boland	
*		4,269,935	5/1981	Masters et al.	+
*		4,312,938	1/1982	Drexler, et al.	
*		4,316,946	1/1982	Masters, et al.	

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (use as many sheets as necessary) Filing Date February 25, 2004 First Named Inventor Terry L. Gilton Mt Unit N/A Examiner Name Not Yet Assigned Mt Vet Assigned Not Yet Assigned Not Yet Assigned Not Yet Assigned Mt Vet Assi		- <u> </u>	m 1449A/PTC	_	· ·			Complete if	Known
STATEMENT BY APPLICANT			— . – .			_	Application Number	Not Yet A	ssigned
Ant Unit NIA NIA Examiner Name Not Yet Assigned		-					Filing Date	February	25, 2004
Sheet 2	S	TATE	MENT	BY A	APPLICAN	Ī	First Named Inventor	Terry L. G	Gilton
Sheet 2		(40	o oo many sh	noote as	nococcan/l		Art Unit	N/A	
Sheet		(use as many sheets as necessary)					Examiner Name	Not Yet A	ssigned
* AS1 4,320,191 3/1982 Yoshikawa et al. * AT1 4,405,710 9/1983 Balasubramanyam et al. * AU1 4,419,421 12/1983 Wichelhaus, et al. * AU1 4,499,557 2/1985 Holmberg et al. * AW1 4,671,618 06/1987 Wu et al. * AW1 4,800,526 01/1989 Lewis * AX1 4,800,526 01/1989 Lewis * AX1 4,800,526 01/1989 Lewis * AX1 4,847,674 7/1989 Silva et al. * AA2 5,177,567 1/1993 Klersy et al. * AA2 5,177,567 1/1993 Klersy et al. * AA2 5,177,567 1/1993 Blacke et al. * AA2 5,177,567 1/1993 Representation of the al. * AA2 5,238,662 8/1993 Representation of the al. * AA2 5,314,772 5/1994 Kozicki * AA2 5,314,772 5/1994 Kozicki * AA2 5,314,772 5/1994 Kishimoto et al. * AA2 5,314,713 15/1994 Owen et al. * AA2 5,350,484 9/1994 Owen et al. * AA2 5,350,484 9/1996 Wooff et al. * AA2 5,512,328 4/1996 Wooff et al. * AA2 5,512,773 4/1996 Wooff et al. * AA2 5,726,083 3/1998 Wolstenholme et al. * AA2 5,726,083 3/1998 Wolstenholme et al. * AA2 5,789,277 8/1998 Wolstenholme et al. * AA2 5,841,527 9/1998 Wolstenholme et al. * AA2 5,841,527 9/1998 Horshifeld * AA2 5,841,527 9/1998 Harshifeld * AA2 5,841,550 11/1999 Harshifeld * AA2 5,861,869 12/1999 Harshifeld * AA2 5,861,869 12/1999 Harshifeld * AA2 6,072,716 6/2000 Jacobson et al. * AA3 6,117,720 9/2000 Harshifeld * AA3 6,117,720 9/2000 Harshifeld * AA3 6,117,720 9/2000 Harshifeld * AA3 6,343,664 11/2001 Claime et al. * AA3 6,346,689 12/1999 Representation et al. * AA3 6,346,689 12/1999 Representation et al. * AA3 6,346,689 12/1999 Representation et al. * AA43 6,347,740 9/2000 Karshifeld * AA44 6,072,716 6/2000 Jacobson et al. * AA3 6,416,740 4/1900 Claime et al. * AA3 6,346,689 12/1999 Representation et al. * AA3 6,346,689 12/1999 Representation et al. * AA3 6,346,689 12/1990 Representation et al. * AA3 6,346,689 12/19	Sheet	at 2 of 12			Attorney Docket Number	 			
AIT				0.				111.1000.10	700/1 1000 2
* AV1 4.499.557 2/1985 Holmberg et al. * AV1 4.99,557 2/1985 Holmberg et al. * AV1 4,99,557 2/1985 Holmberg et al. * AV1 4,99,557 1/1989 Formigoni et al. * AV1 4,800,526 0/1/1989 Formigoni et al. * AV1 4,800,526 0/1/1989 Ewis * AZ1 4,847,674 7/1989 Silwa et al. * AP2 5,177,567 1/1993 Kilersy et al. * AB2 5,219,788 6/1993 Abernathey et al. * AB2 5,219,788 6/1993 Bialock et al. * AC2 5,338,682 8/1993 Bialock et al. * AC2 5,338,682 8/1993 Bialock et al. * AC2 5,315,131 5/1994 Kozicki * AC2 5,315,131 5/1994 Kishimoto et al. * AC2 5,350,484 9/1994 Gardner et al. * AC3 5,350,484 9/1994 Gardner et al. * AL2 5,500,532 3/1996 Kozicki et al. * AL2 5,500,532 3/1996 Kozicki et al. * AL2 5,512,773 4/1996 Wolf et al. * AL2 5,512,773 4/1996 Yoshimura et al. * AL2 5,720,803 3/1998 Takaishi * AL2 5,789,277 8/1998 Takaishi * AL2 5,789,277 8/1998 Wolstenholme et al. * AL2 5,814,527 9/1998 Wolstenholme et al. * AL2 5,846,889 12/1998 Wolstenholme et al. * AL2 5,846,889 12/1998 Harshfield * AL2 5,846,889 12/1998 Harshfield * AL2 5,869,843 2/1999 Harshfield * AL2 5,920,788 7/1999 Reinberg * AL2 6,077,729 6/2000 Harshfield * AL3 6,320,606 12/1999 Harshfield * AL3 6,320,606 12/1999 Reinberg * AL3 6,320,606 12/1990 Reinberg * AL3 6,320,606 12/1990 Reinberg * AL3 6,320,606 12/1990 Reinberg * AL3 6,330,688 Septemberg * AL3 6,341,376 7/2002 Reinberg * AL3 6,414,376 7/2002 Reinberg *									
AV1 4,499,557 21985			<u> </u>						
• AW1 4,71,618 06/1987 Wu et al. • AX1 4,795,657 1/1989 Formigoni et al. • AX1 4,800,526 01/1989 Sliwa et al. • AZ1 4,847,674 7/1989 Sliwa et al. • AB2 5,219,788 6/1993 Abernathey et al. • AC2 5,238,862 8/1993 Blalock et al. • AC2 5,238,862 8/1993 Blalock et al. • AC2 5,247,359 12/1993 Nagasubramanian et al. • AC2 5,315,131 5/1994 Kozicki • AC2 5,350,484 9/1994 Gardner et al. • AI2 5,360,981 11/1994 Owen et al. • AI2 5,512,238 4/1996 Yoshimura et al. • AI2 5,512,338 4/1996 Yoshimura et al. • AI2 5,512,033 3/1998 Takishi • AI2 5,726,083 3/1998 Takishi • AIX 5,781,5791 5/1998 Wolstenholme et al. • AIX 5,814,	L								-
* AX1 4.795,657 11/1989 Formigoni et al. * AX1 4,800,526 01/1989 Lewis * AX1 4,847,674 7/1989 Sliwa et al. * AX2 5,177,567 1/1993 Klersy et al. * AB2 5,219,788 6/1993 Abernathey et al. * AC2 5,238,862 8/1993 Blatock et al. * AC2 5,272,359 12/1993 Nagasubramanian et al. * AC2 5,314,772 5/1994 Kozicki * AC2 5,314,772 5/1994 Kishimoto et al. * AC2 5,350,484 9/1994 Gardner et al. * AL2 5,500,532 3/1996 Kozicki et al. * AL2 5,512,328 4/1996 Kozinki et al. * AL2 5,512,737 4/1996 Wolf et al. * AL2 5,750,131 5/1998 Wolstenholme et al. * AL2 5,750,151 5/1998 Wolstenholme et al. * AL2 5,814,527 9/1998 Wolstenholme et al. * AL2	<u> </u>								
. AY1 4,800,526 01/1989 Lewis . AZ1 4,847,674 7/1989 Sliwa et al. . AA2 5,177,567 1/1993 Klersy et al. . AB2 5,219,788 6/1993 Abernathey et al. . AC2 5,238,862 8/1993 Blalock et al. . AD2 5,272,359 12/1993 Nagasubramanian et al. . AD2 5,314,772 5/1994 Kozicki . AP2 5,315,131 5/1994 Kozicki . AP2 5,350,981 11/1994 Cardner et al. . AP2 5,500,532 3/1996 Kozicki et al. . AP2 5,500,532 3/1996 Kozicki et al. . AP2 5,512,328 4/1996 Yoshimura et al. . AP2 5,512,328 4/1996 Wolf et al. . AP2 5,512,328 4/1998 Wolstenholme et al. . AP2 5,751,012 5/1998 Wolstenholme et al. . AP2 5,751,012 5/1998 Wolstenholme et al. . AP2 <									
* AZ1 4,847,674 7/1989 Sliwa et al. * AA2 5,177,567 1/1993 Klersy et al. * AB2 5,219,788 6/1993 Abernathey et al. * AC2 5,238,862 8/1993 Blatock et al. * AC2 5,238,862 8/1993 Blatock et al. * AC2 5,338,862 8/1993 Blatock et al. * AC3 5,314,772 5/1994 Kozicki * AC3 5,315,131 5/1994 Kozicki * AC4 5,3515,131 5/1994 Kishimoto et al. * AC5 5,350,484 9/1994 Gardner et al. * AC6 5,350,484 9/1994 Owen et al. * AC7 5,350,581 11/1994 Owen et al. * AC8 5,550,532 3/1996 Kozicki et al. * AL2 5,500,532 3/1996 Kozicki et al. * AL2 5,512,773 4/1996 Wolf et al. * AL2 5,726,083 3/1998 Takaishi * AL2 5,726,083 3/1998 Takaishi * AL2 5,726,083 3/1998 Takaishi * AL2 5,751,012 5/1998 Wolstenholme et al. * AN2 5,789,277 8/1998 Wolstenholme et al. * AN2 5,818,274 9/1998 Takaishi * AN2 5,818,749 10/1998 Harshfield * AC2 5,814,150 11/1998 Harshfield * AC2 5,844,150 11/1998 Harshfield * AC2 5,869,843 2/1999 Harshfield * AC2 5,869,843 2/1999 Harshfield * AC2 5,800,72,716 6/2000 Harshfield * AC2 5,977,729 6/2000 Harshfield * AC3 6,072,716 6/2000 Jacobson et al. * AC4 6,077,729 6/2000 Harshfield * AC5 6,072,716 6/2000 Harshfield * AC8 6,072,716 6/2000 Harshfield * AC8 6,072,716 6/2000 Harshfield * AC8 6,072,716 6/2000 Harshfield * AC9 6,071,738 1/1/2001 Gonzalez et al. * AC9 6,077,739 6/2000 Harshfield * AC9 6,071,7720 9/2000 Harshfield * AC9 6,072,7720 10/2001 Gonzalez et al. * AC9 6,072,772 4/10 10	*								
* AA2 5,177,567 1/1993 Klersy et al. * AB2 5,219,788 6/1993 Abernathey et al. * AC2 5,238,862 8/1993 Blalock et al. * AD2 5,272,359 12/1993 Nagasubramanian et al. * AE2 5,315,131 5/1994 Klozicki * AF2 5,315,131 5/1994 Kishimoto et al. * AG2 5,350,484 9/1994 Gardner et al. * AH2 5,300,532 3/1996 Kozicki et al. * AI2 5,500,532 3/1996 Yoshimura et al. * AI2 5,512,773 4/1996 Yoshimura et al. * AI2 5,726,083 3/1998 Takaishi * AM2 5,789,277 8/1998 Zahorik et al. * AM2 5,789,277 8/1998 Wolstenholme et al. * AP2 5,841,527 9/1998 Wolstenholme et al. * AP2 5,841,539 10/1998 Harshfield * AP2 5,841,840 11/1998 Harshfield * AP2	_ *								
* AB2 5,219,788 6/1993 Abernathey et al. * AC2 5,238,862 8/1993 Blatock et al. * AD2 5,272,359 12/1994 Kozicki * AE2 5,314,772 5/1994 Kozicki * AF2 5,315,131 5/1994 Kishimoto et al. * AG2 5,350,484 9/1994 Gardner et al. * AG2 5,360,981 11/1994 Owen et al. * AH2 5,360,981 11/1994 Owen et al. * AL2 5,500,532 3/1996 Kozicki et al. * AL2 5,500,532 3/1996 Kozicki et al. * AL2 5,500,532 3/1996 Yoshimura et al. * AL2 5,500,633 3/1998 Takaishi * AL2 5,726,083 3/1998 Takaishi * AL2 5,726,083 3/1998 Wolstenholme et al. * AL2 5,726,083 3/1998 Wolstenholme et al. * AN2 5,751,012 5/1998 Wolstenholme et al. * AN2 5,789,277 8/1998 Wolstenholme et al. * AN2 5,89,277 8/1998 Takaishi * AQ2 5,814,527 9/1998 Wolstenholme et al. * AQ2 5,814,527 9/1998 Wolstenholme et al. * AQ2 5,841,150 11/1998 Gonzalez et al. * AQ2 5,841,150 11/1998 Harshfield * AQ2 5,846,889 12/1998 Harshfield * AQ2 5,843,843 2/1999 Harshfield * AQ2 5,980,866 12/1999 Reinberg * AV2 5,998,066 12/1999 Reinberg * AV2 5,998,066 12/1999 Reinberg * AV2 6,031,287 2/2000 Harshfield * AX2 6,072,716 6/2000 Jacobson et al. * AX3 6,117,720 9/2000 Harshfield * AX4 6,317,733 1/2001 Usiaw et al. * AX5 6,305,059 5/2001 Wolsteinholme et al. * AX6 6,316,784 11/2001 Zahorik et al. * AX7 6,316,059 5/2001 Wolsteinholme et al. * AX8 6,316,784 4/12001 Zahorik et al. * AX9 6,336,059 5/2001 Wolsteinholme et al. * AX9 6,336,084 10/2001 Gonzalez et al. * AX9 6,316,784 11/2001 Zahorik et al. * AX9 6,316,784 4/12001 Zahorik et al. * AX9 6,316,784 4/12001 Zahorik et al. * AX9 6,316,784 4/2002 Gonzalez et al. * AX1 6,416,376 7/2002 Thakur et al. * AX3 6,418,049 7/2002 Kozicki et al. * AX3 6,418,049 7/2002 Kozicki et al. * AX3 6,418,049 7/2002 Harshfield		AA2 5	,177,567						
• AD2 5,272,359 12/1993 Nagasubramanian et al. • AF2 5,314,772 5/1994 Kozicki • AF2 5,315,131 5/1994 Kishimoto et al. • AF2 5,350,484 9/1994 Gardner et al. • AH2 5,500,532 3/1996 Kozicki et al. • AJ2 5,512,328 4/1996 Yoshimura et al. • AJ2 5,752,083 3/1998 Takaishi • AL2 5,726,083 3/1998 Takaishi • AM2 5,751,012 5/1998 Wolstenholme et al. • AM2 5,751,012 5/1998 Wolstenholme et al. • AM2 5,751,012 5/1998 Wolstenholme et al. • AM2 5,781,527 9/1998 Wolstenholme et al. • AM2 5,814,527 9/1998 Wolstenholme et al. • AP2 5,818,749 10/1998 Harshfield • AP2 5,814,527 9/1998 Harshfield • AR2 5,846,889 12/1998 Harshfield • AR2		AB2 5	,219,788						
* AE2 5,314,772 5/1994 Kozicki * AF2 5,315,131 5/1994 Kishimoto et al. * AF2 5,315,131 5/1994 Kishimoto et al. * AF2 5,315,131 5/1994 Kishimoto et al. * AF2 5,350,884 9/1994 Gardner et al. * AF2 5,500,532 3/1996 Kozicki et al. * AF2 5,500,532 3/1996 Kozicki et al. * AF2 5,500,532 3/1996 Kozicki et al. * AF2 5,512,773 4/1996 Wolf et al. * AF2 5,726,083 3/1998 Takaishi * AF2 5,726,083 3/1998 Takaishi * AF2 5,726,083 3/1998 Wolstenholme et al. * AF2 5,726,083 3/1998 Wolstenholme et al. * AF2 5,726,083 3/1998 Wolstenholme et al. * AF2 5,814,527 9/1998 Wolstenholme et al. * AF2 5,814,527 9/1998 Wolstenholme et al. * AF2 5,846,889 10/1998 Harshfield * AF2 5,846,889 12/1998 Harshfield * AF2 5,846,889 12/1998 Harshfield * AF2 5,851,882 12/1999 Harshfield * AF2 5,990,666 12/1999 Block et al. * AF2 5,990,666 12/1999 Block et al. * AF2 6,077,729 6/2000 Harshfield * AF2 6,077,729 6/2000 Harshfield * AF2 6,177,338 1/2001 Liaw et al. * AF3 6,317,738 1/2001 Liaw et al. * AF3 6,326,059 5/2001 Wolsteinholme et al. * AF3 6,300,684 11/2001 Chiang et al. * AF3 6,316,784 11/2001 Chiang et al. * AF3 6,391,688 5/2002 McDaniel et al. * AF3 6,391,688 5/2002 McDaniel et al. * AF3 6,441,376 7/2002 Harshfield * AF3 6,441,376 7/2002 Harshfield * AF3 6,441,476 7/2002 Harshfield	<u> </u>								
* AF2 5,315,131 5/1994 Kishimoto et al. * AG2 5,350,484 9/1994 Gardner et al. * AH2 5,360,891 11/1994 Owen et al. * AH2 5,360,891 11/1996 Wolf et al. * AH2 5,500,532 3/1996 Kozicki et al. * AJ2 5,512,328 4/1996 Wolf et al. * AK2 5,512,773 4/1996 Wolf et al. * AK2 5,72,773 4/1996 Wolf et al. * AK2 5,751,012 5/1998 Wolstenholme et al. * AN2 5,751,012 5/1998 Wolstenholme et al. * AN2 5,789,277 8/1998 Zahorik et al. * AN2 5,841,527 9/1998 Wolstenholme et al. * AN2 5,841,527 9/1998 Wolstenholme et al. * AN2 5,846,889 10/1998 Harshfield * AR2 5,846,889 12/1998 Harshfield * AR2 5,846,889 12/1998 Harshfield * AR2 5,846,889 12/1998 Harshfield * AR2 5,891,882 12/1999 Harshfield * AR2 5,920,788 7/1999 Reinberg * AV2 5,998,066 12/1999 Block et al. * AV2 6,003,1287 2/2000 Harshfield * AV2 6,077,729 6/2000 Harshfield * AV2 6,077,729 6/2000 Harshfield * AV2 6,177,338 1/2001 Llaw et al. * AV3 6,36,36,364 11/2001 Chiang et al. * AV3 6,30,684 11/2001 Chiang et al. * AV3 6,30,684 11/2001 Gonzalez et al. * AV3 6,30,684 11/2001 Gonzalez et al. * AV3 6,30,684 11/2001 Gonzalez et al. * AV3 6,30,684 11/2001 Freyman et al. * AV3 6,30,684 11/2001 Freyman et al. * AV3 6,30,684 11/2001 Freyman et al. * AV3 6,30,689 5/2001 McDaniel et al. * AV3 6,30,689 5/2001 Freyman et al. * AV3 6,30,684 11/2001 Freyman et al. * AV3 6,30,689 5/2001 McDaniel et al. * AV3 6,30,689 5/2002 McDaniel et al. * AV3 6,418,049 7/2002 Harshfield	L								
* AG2 5,350,484 9/1994 Gardner et al. * AH2 5,360,981 11/1994 Oven et al. * AH2 5,560,532 3/1996 Kozicki et al. * AJ2 5,512,328 4/1996 Yoshimura et al. * AJ2 5,512,328 4/1996 Yoshimura et al. * AK2 5,512,773 4/1996 Wolf et al. * AK2 5,751,012 5/1998 Wolstenholme et al. * AM2 5,751,012 5/1998 Wolstenholme et al. * AM2 5,789,277 8/1998 Wolstenholme et al. * AN2 5,789,277 8/1998 Wolstenholme et al. * AP2 5,818,749 10/1998 Harshfield * AP2 5,818,749 10/1998 Harshfield * AP2 5,841,150 11/1998 Harshfield * AR2 5,846,889 12/1998 Harshfield * AR2 5,846,889 12/1998 Harshfield * AR2 5,869,843 2/1999 Harshfield * AV2 5,998,066 12/1999 Reinberg * AV2 5,998,066 12/1999 Block et al. * AV2 6,072,716 6/2000 Jacobson et al. * AV2 6,077,729 6/2000 Harshfield * AV2 6,077,729 6/2000 Harshfield * AV3 6,072,716 6/2000 Jacobson et al. * AV4 6,072,716 6/2000 Jacobson et al. * AV3 6,072,710 0/10/10/10/10/10/10/10/10/10/10/10/10/10									
* AH2 5,360,981 11/1994 Owen et al. * AI2 5,500,532 3/1996 Kozicki et al. * AI2 5,500,532 3/1996 Wolf et al. * AI2 5,512,328 4/1996 Wolf et al. * AK2 5,512,773 4/1996 Wolf et al. * AK2 5,512,773 4/1996 Wolf et al. * AK2 5,751,012 5/1998 Wolstenholme et al. * AM2 5,751,012 5/1998 Wolstenholme et al. * AN2 5,781,071 9/1998 Wolstenholme et al. * AN2 5,781,779 10/1998 Harshfield * AO2 5,814,527 9/1998 Wolstenholme et al. * AP2 5,818,749 10/1998 Harshfield * AO2 5,841,150 11/1998 Gonzalez et al. * AR2 5,846,889 12/1998 Harshfield * AR2 5,866,889 12/1998 Harshfield * AX2 5,998,066 12/1999 Harshfield * AV2 5,998,066 12/1999 Reinberg * AV2 6,072,716 6/2000 Harshfield * AV2 6,077,729 6/2000 Harshfield * AV2 6,077,729 6/2000 Harshfield * AV2 6,077,729 6/2000 Harshfield * AV3 6,074,740 11/2000 Chiang et al. * AV3 6,074,740 11/2000 Chiang et al. * AV3 6,030,684 11/2001 Gonzalez et al. * AV3 6,316,784 11/2001 Gonzalez et al. * AV3 6,316,784 11/2001 Tahvir et al. * AV3 6,376,284 4/2002 Gonzalez et al. * AV3 6,376,284 4/2002 Gonzalez et al. * AV3 6,414,376 7/2002 Harshfield * AV3 6,414,376 7/2002 Harshfield									
* Al2 5,500,532 3/1996 Kozicki et al. * Al2 5,512,328 4/1996 Yoshimura et al. * Al2 5,512,773 4/1996 Wolf et al. * Al2 5,726,083 3/1998 Takaishi * Al2 5,751,012 5/1998 Wolstenholme et al. * Al2 5,789,277 8/1998 Wolstenholme et al. * Al2 5,814,527 9/1998 Wolstenholme et al. * Al2 5,818,749 10/1998 Harshfield * Al2 5,841,150 11/1998 Harshfield * Al2 5,841,150 11/1998 Harshfield * Al2 5,846,889 12/1998 Harshfield * Al2 5,851,882 12/1998 Harshfield * Al2 5,869,843 2/1999 Harshfield * Al2 5,920,788 7/1999 Reinberg * Al2 5,920,788 7/1999 Block et al. * Al2 6,072,716 6/2000 Harshfield * Al2 6,072,716 6/2000 Harshfield * Al2 6,177,338 1/2001 Llaw et al. * Al2 6,117,720 9/2000 Harshfield * Al3 6,117,720 9/2000 Harshfield * Al3 6,143,604 11/2000 Chiang et al. * Al3 6,297,170 10/2001 Gabriel et al. * Al3 6,329,606 12/2001 Gonzalez et al. * Al3 6,316,784 11/2001 Zahorik et al. * Al3 6,350,679 2/2002 McDaniel et al. * Al3 6,350,679 2/2002 McDaniel et al. * Al3 6,316,888 5/2002 Gonzalez et al. * Al3 6,418,049 7/2002 Kozicki et al. * Al3 6,418,049 7/2002 Harshfield * Al3 6,418,049 7/2002 Harshfield * Al3 6,418,049 7/2002 Harshfield		AG2 5	,350,484						
* AJ2 5,512,328 4/1996 Yoshimura et al. * AK2 5,512,773 4/1996 Wolf et al. * AK2 5,726,083 3/1998 Takaishi * AM2 5,751,012 5/1998 Wolstenholme et al. * AM2 5,818,749 10/1998 Harshfield * AQ2 5,841,150 11/1998 Gonzalez et al. * AR2 5,846,889 12/1998 Harshfield * AR2 5,846,889 12/1998 Harshfield * AX2 5,851,882 12/1998 Harshfield * AX2 5,869,843 2/1999 Harshfield * AV2 5,998,066 12/1999 Reinberg * AV2 5,998,066 12/1999 Block et al. * AW2 6,072,716 6/2000 Jacobson et al. * AX2 6,072,716 6/2000 Jacobson et al. * AX2 6,077,729 6/2000 Harshfield * AX2 6,177,338 1/2001 Liaw et al. * AX3 6,117,720 9/2000 Harshfield * AA3 6,117,720 9/2000 Harshfield * AA3 6,117,720 9/2000 Harshfield * AA3 6,17,720 9/2000 Harshfield * AA3 6,316,804 11/2000 Chiang et al. * AA3 6,371,70 10/2001 Gabriel et al. * AA3 6,391,684 10/2001 Freyman et al. * AA3 6,391,684 11/2001 Freyman et al. * AA3 6,300,684 11/2001 Freyman et al. * AA3 6,316,784 11/2001 Freyman et al. * AA3 6,316,784 11/2001 Tahorik et al. * AA3 6,316,784 11/2001 Tahorik et al. * AA3 6,316,884 5/2002 Gonzalez et al. * AA3 6,414,376 7/2002 Harshfield * AA3 6,414,376 7/2002 Thakur et al. * AA3 6,418,049 7/2002 Kozicki et al.								•	
* AK2 5,512,773	L								
* AL2 5,726,083 3/1998 Takaishi * AM2 5,751,012 5/1998 Wolstenholme et al. * AN2 5,789,277 8/1998 Wolstenholme et al. * AO2 5,814,527 9/1998 Wolstenholme et al. * AO2 5,814,527 9/1998 Wolstenholme et al. * AO2 5,814,527 9/1998 Horshfield * AQ2 5,841,150 11/1998 Gonzalez et al. * AR2 5,846,889 12/1998 Harbison et al. * AS2 5,851,882 12/1998 Harbison et al. * AS2 5,851,882 12/1999 Harshfield * AU2 5,920,788 7/1999 Reinberg * AU2 5,920,788 7/1999 Reinberg * AV2 6,072,716 6/2000 Harshfield * AV2 6,072,716 6/2000 Jacobson et al. * AV2 6,077,729 6/2000 Harshfield * AZ2 6,177,338 1/2001 Liaw et al. * AA3 6,117,720 9/2000 Harshfield * AA3 6,143,604 11/2000 Chiang et al. * AA3 6,236,059 5/2001 Wolsteinholme et al. * AA3 6,316,784 11/2001 Gonzalez et al. * AA3 6,316,784 11/2001 Zahorik et al. * AA3 6,350,679 2/2000 Molzalez et al. * AA3 6,383,324 5/2002 Molzalez et al. * AA3 6,391,688 5/2002 Gonzalez et al. * AA3 6,448,049 7/2002 Kozicki et al. * AA3 6,448,049 7/2002 Conzalez et al. * AA3 6,448,049 7/2002 Kozicki et al.								-	
* AM2 5,751,012 5/1998 Wolstenholme et al. * AN2 5,789,277 8/1998 Zahorik et al. * AO2 5,814,527 9/1998 Wolstenholme et al. * AP2 5,818,749 10/1998 Harshfield * AQ2 5,841,150 11/1998 Gonzalez et al. * AR2 5,846,889 12/1998 Harshfield * AT2 5,869,843 2/1999 Harshfield * AT2 5,869,843 2/1999 Harshfield * AT2 5,869,843 2/1999 Reinberg * AV2 5,998,066 12/1999 Block et al. * AV2 6,031,287 2/2000 Harshfield * AX2 6,072,716 6/2000 Jacobson et al. * AX2 6,077,729 6/2000 Harshfield * AX2 6,077,729 6/2000 Harshfield * AX3 6,117,720 9/2000 Harshfield * AX3 6,117,720 9/2000 Harshfield * AX3 6,236,059 5/2011 Wolsteinholme et al. * AX3 6,236,059 5/2001 Wolsteinholme et al. * AX3 6,300,684 10/2001 Gabriel et al. * AX3 6,300,684 11/2001 Cabriel et al. * AX3 6,329,606 12/2001 Freyman et al. * AX3 6,376,284 4/2002 Gonzalez et al. * AX3 6,376,284 4/2002 Gonzalez et al. * AX3 6,391,688 5/2002 Gonzalez et al. * AX3 6,414,376 7/2002 Thakur et al. * AX3 6,414,376 7/2002 Thakur et al. * AX3 6,418,049 7/2002 Colicki et al. * AX3 6,418,049 7/2002 Kozicki et al.									1
* AN2 5,789,277 8/1998 Zahorik et al. * AO2 5,814,527 9/1998 Wolstenholme et al * AP2 5,818,749 10/1998 Harshfield * AQ2 5,841,150 11/1998 Gonzalez et al. * AR2 5,846,889 12/1998 Harbison et al. * AS2 5,851,882 12/1998 Harshfield * AV2 5,989,843 2/1999 Harshfield * AV2 5,989,866 12/1999 Reinberg * AV2 5,998,066 12/1999 Block et al. * AW2 6,031,287 2/2000 Harshfield * AX2 6,072,716 6/2000 Jacobson et al. * AY2 6,077,729 6/2000 Harshfield * AZ2 6,177,338 1/2001 Liaw et al. * AX3 6,117,720 9/2000 Harshfield * AA3 6,117,720 9/2000 Harshfield * AA3 6,297,170 10/2001 Gabriel et al. * AA3 6,300,684 10/2001 Gonzalez et al. * AA3 6,316,784 11/2001 Zahorik et al. * AA3 6,316,784 11/2001 Zahorik et al. * AA3 6,376,284 4/2002 Gonzalez et al. * AA3 6,391,688 5/2002 Kozicki et al. * AA3 6,414,376 7/2002 Thakur et al. * AA3 6,391,688 5/2002 Gonzalez et al. * AA3 6,441,376 7/2002 Thakur et al. * AA3 6,441,376 7/2002 Thakur et al.		AM2 5	.751.012						
* AO2 5,814,527 9/1998 Wolstenholme et al * AP2 5,818,749 10/1998 Harshfield * AQ2 5,841,150 11/1998 Gonzalez et al. * AR2 5,846,889 12/1998 Harshfield * AS2 5,851,882 12/1999 Harshfield * AT2 5,869,843 2/1999 Harshfield * AU2 5,920,788 7/1999 Reinberg * AV2 5,998,066 12/1999 Block et al. * AW2 6,031,287 2/2000 Harshfield * AX2 6,072,716 6/2000 Jacobson et al. * AY2 6,077,729 6/2000 Harshfield * AZ2 6,177,338 1/2001 Liaw et al. * AX3 6,117,720 9/2000 Harshfield * AA3 6,143,604 11/2000 Chiang et al. * AA3 6,236,059 5/2001 Wolsteinholme et al. * AA3 6,36,36,884 10/2001 Gabriel et al. * AA3 6,350,679 2/2002 McDaniel et al. * AA3 6,350,679 2/2002 McDaniel et al. * AA3 6,376,284 4/2002 Gonzalez et al. * AA3 6,391,688 5/2002 Gonzalez et al. * AA3 6,418,049 7/2002 Harshfield * AA3 6,418,049 7/2002 Kozicki et al. * AA3 6,418,049 7/2002 Kozicki et al. * AA3 6,418,049 7/2002 Kozicki et al.	*								
* AQ2 5,841,150	*								
* AR2 5,846,889	*				10/1998	Hars	hfield		
* AS2 5,851,882 12/1998 Harshfield * AT2 5,869,843 2/1999 Harshfield * AU2 5,920,788 7/1999 Reinberg * AV2 5,998,066 12/1999 Block et al. * AW2 6,031,287 2/2000 Harshfield * AX2 6,072,716 6/2000 Jacobson et al. * AY2 6,077,729 6/2000 Harshfield * AZ2 6,177,338 1/2001 Liaw et al. * AA3 6,117,720 9/2000 Harshfield * AB3 6,143,604 11/2000 Chiang et al. * AC3 6,236,059 5/2001 Wolsteinholme et al. * AC3 6,300,684 10/2001 Gabriel et al. * AE3 6,300,684 11/2001 Zahorik et al. * AF3 6,316,784 11/2001 Zahorik et al. * AG3 6,329,606 12/2001 Freyman et al. * AG3 6,350,679 2/2002 McDaniel et al. * AH3 6,350,679 2/2002 McDaniel et al. * AH3 6,350,688 5/2002 Gonzalez et al. * AJ3 6,388,324 5/2002 Gonzalez et al. * AJ3 6,414,376 7/2002 Thakur et al. * AH3 6,418,049 7/2002 Harshfield * AN3 6,418,049 7/2002 Harshfield									
* AT2 5,869,843 2/1999 Harshfield * AU2 5,920,788 7/1999 Reinberg * AV2 5,998,066 12/1999 Block et al. * AW2 6,031,287 2/2000 Harshfield * AX2 6,072,716 6/2000 Jacobson et al. * AY2 6,077,729 6/2000 Harshfield * AZ2 6,177,338 1/2001 Liaw et al. * AA3 6,117,720 9/2000 Harshfield * AB3 6,143,604 11/2000 Chiang et al. * AA3 6,236,059 5/2001 Wolsteinholme et al. * AA3 6,297,170 10/2001 Gabriel et al. * AB3 6,300,684 10/2001 Gonzalez et al. * AF3 6,316,784 11/2001 Zahorik et al. * AG3 6,329,606 12/2001 Freyman et al. * AH3 6,350,679 2/2002 McDaniel et al. * AH3 6,376,284 4/2002 Gonzalez et al. * AJ3 6,388,324 5/2002 Kozicki et al. * AK3 6,391,688 5/2002 Gonzalez et al. * AL3 6,414,376 7/2002 Thakur et al. * AM3 6,418,049 7/2002 Kozicki et al. * AM3 6,418,049 7/2002 Harshfield									
* AU2 5,920,788 7/1999 Reinberg * AV2 5,998,066 12/1999 Block et al. * AW2 6,031,287 2/2000 Harshfield * AX2 6,072,716 6/2000 Jacobson et al. * AY2 6,077,729 6/2000 Harshfield * AZ2 6,177,338 1/2001 Liaw et al. * AA3 6,117,720 9/2000 Harshfield * AB3 6,143,604 11/2000 Chiang et al. * AC3 6,236,059 5/2001 Wolsteinholme et al. * AC3 6,300,684 10/2001 Gabriel et al. * AE3 6,300,684 11/2001 Zahorik et al. * AF3 6,316,784 11/2001 Zahorik et al. * AG3 6,329,606 12/2001 Freyman et al. * AG3 6,350,679 2/2002 McDaniel et al. * AI3 6,376,284 4/2002 Gonzalez et al. * AI3 6,376,284 5/2002 Kozicki et al. * AI3 6,391,688 5/2002 Gonzalez et al. * AI3 6,414,376 7/2002 Thakur et al. * AM3 6,418,049 7/2002 Kozicki et al. * AM3 6,418,049 7/2002 Harshfield	L								
* AV2 5,998,066 12/1999 Block et al. * AW2 6,031,287 2/2000 Harshfield * AX2 6,072,716 6/2000 Jacobson et al. * AY2 6,077,729 6/2000 Harshfield * AZ2 6,177,338 1/2001 Liaw et al. * AA3 6,117,720 9/2000 Harshfield * AB3 6,143,604 11/2000 Chiang et al. * AC3 6,236,059 5/2001 Wolsteinholme et al. * AD3 6,297,170 10/2001 Gabriel et al. * AE3 6,300,684 10/2001 Gonzalez et al. * AF3 6,316,784 11/2001 Zahorik et al. * AG3 6,329,606 12/2001 Freyman et al. * AG3 6,350,679 2/2002 McDaniel et al. * AG3 6,388,324 4/2002 Gonzalez et al. * AJ3 6,388,324 5/2002 Kozicki et al. * AJ3 6,414,376 7/2002 Thakur et al. * AM3 6,418,049 7/2002 Kozicki et al. * AM3 6,418,049 7/2002 Harshfield									
* AW2 6,031,287 2/2000 Harshfield * AX2 6,072,716 6/2000 Jacobson et al. * AY2 6,077,729 6/2000 Harshfield * AZ2 6,177,338 1/2001 Liaw et al. * AA3 6,117,720 9/2000 Harshfield * AB3 6,143,604 11/2000 Chiang et al. * AC3 6,236,059 5/2001 Wolsteinholme et al. * AD3 6,297,170 10/2001 Gabriel et al. * AE3 6,300,684 10/2001 Gonzalez et al. * AF3 6,316,784 11/2001 Zahorik et al. * AG3 6,329,606 12/2001 Freyman et al. * AH3 6,350,679 2/2002 McDaniel et al. * AH3 6,376,284 4/2002 Gonzalez et al. * AJ3 6,388,324 5/2002 Kozicki et al. * AK3 6,391,688 5/2002 Gonzalez et al. * AL3 6,414,376 7/2002 Thakur et al. * AM3 6,418,049 7/2002 Kozicki et al. * AM3 6,420,725 7/2002 Harshfield			 						
* AX2 6,072,716 6/2000 Jacobson et al. * AY2 6,077,729 6/2000 Harshfield * AZ2 6,177,338 1/2001 Liaw et al. * AA3 6,117,720 9/2000 Harshfield * AB3 6,143,604 11/2000 Chiang et al. * AC3 6,236,059 5/2001 Wolsteinholme et al. * AC3 6,297,170 10/2001 Gabriel et al. * AE3 6,300,684 10/2001 Gonzalez et al. * AE3 6,316,784 11/2001 Zahorik et al. * AG3 6,329,606 12/2001 Freyman et al. * AH3 6,350,679 2/2002 McDaniel et al. * AH3 6,350,679 2/2002 McDaniel et al. * AJ3 6,388,324 4/2002 Gonzalez et al. * AJ3 6,388,324 5/2002 Kozicki et al. * AJ3 6,391,688 5/2002 Gonzalez et al. * AJ3 6,414,376 7/2002 Thakur et al. * AM3 6,418,049 7/2002 Kozicki et al. * AM3 6,418,049 7/2002 Harshfield									
* AY2 6,077,729 6/2000 Harshfield * AZ2 6,177,338 1/2001 Liaw et al. * AA3 6,117,720 9/2000 Harshfield * AB3 6,143,604 11/2000 Chiang et al. * AC3 6,236,059 5/2001 Wolsteinholme et al. * AD3 6,297,170 10/2001 Gabriel et al. * AE3 6,300,684 10/2001 Gonzalez et al. * AF3 6,316,784 11/2001 Zahorik et al. * AG3 6,329,606 12/2001 Freyman et al. * AH3 6,350,679 2/2002 McDaniel et al. * AH3 6,376,284 4/2002 Gonzalez et al. * AJ3 6,388,324 5/2002 Kozicki et al. * AK3 6,391,688 5/2002 Gonzalez et al. * AK3 6,414,376 7/2002 Thakur et al. * AM3 6,418,049 7/2002 Kozicki et al. * AM3 6,420,725 7/2002 Harshfield				-					
* AZ2 6,177,338 1/2001 Liaw et al. * AA3 6,117,720 9/2000 Harshfield * AB3 6,143,604 11/2000 Chiang et al. * AC3 6,236,059 5/2001 Wolsteinholme et al. * AD3 6,297,170 10/2001 Gabriel et al. * AE3 6,300,684 10/2001 Gonzalez et al. * AF3 6,316,784 11/2001 Zahorik et al. * AG3 6,329,606 12/2001 Freyman et al. * AH3 6,350,679 2/2002 McDaniel et al. * AI3 6,376,284 4/2002 Gonzalez et al. * AJ3 6,388,324 5/2002 Kozicki et al. * AK3 6,391,688 5/2002 Gonzalez et al. * AL3 6,414,376 7/2002 Thakur et al. * AM3 6,418,049 7/2002 Kozicki et al. * AM3 6,420,725 7/2002 Harshfield	*								
* AA3 6,117,720 9/2000 Harshfield * AB3 6,143,604 11/2000 Chiang et al. * AC3 6,236,059 5/2001 Wolsteinholme et al. * AD3 6,297,170 10/2001 Gabriel et al. * AE3 6,300,684 10/2001 Gonzalez et al. * AF3 6,316,784 11/2001 Zahorik et al. * AG3 6,329,606 12/2001 Freyman et al. * AH3 6,350,679 2/2002 McDaniel et al. * AI3 6,376,284 4/2002 Gonzalez et al. * AJ3 6,388,324 5/2002 Kozicki et al. * AK3 6,391,688 5/2002 Gonzalez et al. * AL3 6,414,376 7/2002 Thakur et al. * AM3 6,418,049 7/2002 Kozicki et al. * AN3 6,420,725 7/2002 Harshfield	*								
* AB3 6,143,604 11/2000 Chiang et al. * AC3 6,236,059 5/2001 Wolsteinholme et al. * AD3 6,297,170 10/2001 Gabriel et al. * AE3 6,300,684 10/2001 Gonzalez et al. * AF3 6,316,784 11/2001 Zahorik et al. * AG3 6,329,606 12/2001 Freyman et al. * AH3 6,350,679 2/2002 McDaniel et al. * AI3 6,376,284 4/2002 Gonzalez et al. * AJ3 6,388,324 5/2002 Kozicki et al. * AK3 6,391,688 5/2002 Gonzalez et al. * AL3 6,414,376 7/2002 Thakur et al. * AM3 6,418,049 7/2002 Harshfield	*								
* AC3 6,236,059 5/2001 Wolsteinholme et al. * AD3 6,297,170 10/2001 Gabriel et al. * AE3 6,300,684 10/2001 Gonzalez et al. * AF3 6,316,784 11/2001 Zahorik et al. * AG3 6,329,606 12/2001 Freyman et al. * AH3 6,350,679 2/2002 McDaniel et al. * AI3 6,376,284 4/2002 Gonzalez et al. * AJ3 6,388,324 5/2002 Kozicki et al. * AK3 6,391,688 5/2002 Gonzalez et al. * AL3 6,414,376 7/2002 Thakur et al. * AM3 6,418,049 7/2002 Kozicki et al. * AN3 6,420,725 7/2002 Harshfield	*								
* AE3 6,30,684 10/2001 Gonzalez et al. * AF3 6,316,784 11/2001 Zahorik et al. * AG3 6,329,606 12/2001 Freyman et al. * AH3 6,350,679 2/2002 McDaniel et al. * AI3 6,376,284 4/2002 Gonzalez et al. * AJ3 6,388,324 5/2002 Kozicki et al. * AK3 6,391,688 5/2002 Gonzalez et al. * AL3 6,414,376 7/2002 Thakur et al. * AM3 6,418,049 7/2002 Kozicki et al. * AN3 6,420,725 7/2002 Harshfield		AC3 6	,236,059		5/2001	Wols	teinholme et al.		
* AF3 6,316,784 11/2001 Zahorik et al. * AG3 6,329,606 12/2001 Freyman et al. * AH3 6,350,679 2/2002 McDaniel et al. * AI3 6,376,284 4/2002 Gonzalez et al. * AJ3 6,388,324 5/2002 Kozicki et al. * AK3 6,391,688 5/2002 Gonzalez et al. * AL3 6,414,376 7/2002 Thakur et al. * AM3 6,418,049 7/2002 Kozicki et al. * AN3 6,420,725 7/2002 Harshfield									
* AG3 6,329,606 12/2001 Freyman et al. * AH3 6,350,679 2/2002 McDaniel et al. * AI3 6,376,284 4/2002 Gonzalez et al. * AJ3 6,388,324 5/2002 Kozicki et al. * AK3 6,391,688 5/2002 Gonzalez et al. * AL3 6,414,376 7/2002 Thakur et al. * AM3 6,418,049 7/2002 Kozicki et al. * AN3 6,420,725 7/2002 Harshfield									
* AH3 6,350,679 2/2002 McDaniel et al. * AI3 6,376,284 4/2002 Gonzalez et al. * AJ3 6,388,324 5/2002 Kozicki et al. * AK3 6,391,688 5/2002 Gonzalez et al. * AL3 6,414,376 7/2002 Thakur et al. * AM3 6,418,049 7/2002 Kozicki et al. * AN3 6,420,725 7/2002 Harshfield									
* Al3 6,376,284 4/2002 Gonzalez et al. * AJ3 6,388,324 5/2002 Kozicki et al. * AK3 6,391,688 5/2002 Gonzalez et al. * AL3 6,414,376 7/2002 Thakur et al. * AM3 6,418,049 7/2002 Kozicki et al. * AN3 6,420,725 7/2002 Harshfield									
* AJ3 6,388,324 5/2002 Kozicki et al. * AK3 6,391,688 5/2002 Gonzalez et al. * AL3 6,414,376 7/2002 Thakur et al. * AM3 6,418,049 7/2002 Kozicki et al. * AN3 6,420,725 7/2002 Harshfield									
* AK3 6,391,688 5/2002 Gonzalez et al. * AL3 6,414,376 7/2002 Thakur et al. * AM3 6,418,049 7/2002 Kozicki et al. * AN3 6,420,725 7/2002 Harshfield									
* AL3 6,414,376 7/2002 Thakur et al. * AM3 6,418,049 7/2002 Kozicki et al. * AN3 6,420,725 7/2002 Harshfield									
* AM3 6,418,049 7/2002 Kozicki et al. * AN3 6,420,725 7/2002 Harshfield									
* AN3 6,420,725 7/2002 Harshfield	*								
	—								
	*				7/2002				

Subs	Substitute for form 1449A/PTO				Complete if Known					
						_	Application Number	ı	Not Yet A	ssigned
					LOSURE		Filing Date	F	ebruary:	25, 2004
S	TATE	EME	NT B	Y AP	PLICANT	_	First Named Inventor	-	Terry L. G	ilton
		1150 35 M	nany sheet	s as nece	accan/l		Art Unit	1	V/A	
	,	use as <i>n</i>	iany sneet	3 43 11000	.ssary)		Examiner Name	ı	Not Yet A	ssigned
Sheet		3	of	f	12		Attorney Docket Numbe	_		06/P1006-B
-	AP3	6,440,	837		8/2002	Hars	hfield			
+		6,469,			10/2002	Kozio				
*	AR3	6,473,	332		10/2002		iev et al.			
*		5,76 <u>1</u> ,			6/1998		cki et al.			
*		5,896,			4/1999		cki et al.			
*	AU3	5,914,	893		6/1999		cki et al.			
*	AV3	6,084,	796		7/2000		cki et al.			
		6,348,			2/2002		e et al.			
<u> </u>		6,487,			11/2002	Kozio				
<u> </u>			168820		11/2002		cki et al.			
*			190350		12/2002		cki et al.			
<u> </u>		2003/3			2/2003	Kozio				
<u> </u>		2003/3			2/2003	Kozio				
<u> </u>	AC4	2003/4	18519		3/2003	Kozio	CKI			
		ļ				<u> </u>				
<u> </u>	┼──	 				<u> </u>				
<u> </u>	 	 								
	-				-					
	 									
	-									
	 						····			
	 									
	1									
-	1							-		-
					İ					
							· · · · · · · · · · · · · · · · · · ·			
	<u> </u>									
						<u> </u>				
	-	ļ								
<u> </u>	 									
—	 		_							
	-	-				 				
 	-				<u> </u>	 				
<u> </u>	+			_	 	ļ				
<u> </u>	-	ļ			 	ļ			· — — —	
L					L	L				l

Approved for use through 10/31/2002.OMB 0651-0031

U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Sub	ostitute for form 1449A/PTC)	·	Complete if Known		
				Application Number	Not Yet Assigned	
	NFORMATIO			Filing Date	February 25, 2004	
S	STATEMENT	BY A	APPLICANT	First Named Inventor	Terry L. Gilton	
	(use as many sl	heets as	necessarv)	Art Unit	N/A	
	(200 20 many or		,,,,,	Examiner Name	Not Yet Assigned	
Sheet	4	of	12	Attorney Docket Number	M4065.1006/P1006-B	

		FOREI	GN PATENT	DOCUMENTS		
Examiner	Cite	Foreign Patent Document	Publication Date	Name of Patentee or	Pages, Columns, Lines, Where Relevant	
Initials* No.1		Country Code ³ -Number ⁴ -Kind Code ⁵ (if known)	MM-DD-YYYY	Applicant of Cited Document	Passages or Relevant Figures Appear	76
*	ВА	JP-56126916	10/1981	Akira et al.		
*	ВВ	WO 97/48032	12/18/1997	Kozicki et al.		
*	ВС	WO 99/28914	06/10/1999	Kozicki et al.		
*	BD	WO 00/48196	8/17/00	Arizona Board of Regents		
*	BE	WO 02/21542-A1	3/14/02	Axon Technologies Corp.		

Examiner	Date	
Signature	Considered	

^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant

¹ Applicant's unique citation designation number (optional). ² See attached Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. ³ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ⁴ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the application number of the patent document. ⁵ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ⁶ Applicant is to place a check mark here if English language Translation is attached.

Under th	e Paperwork Reduction	n Act of 1999	5, no persons are required to	U. S. Patent and Tradem	PTO/SB/08B (10-01) roved for use through 10/31/2002.OMB 0651-0031 rark Office: U.S. DEPARTMENT OF COMMERCE nation unless it contains a valid OMB control number.
Sub	stitute for form 1449B	/PTO			Complete if Known
000	Substitute to form 1449b/FTO		Application Number	10/618,824	
IN	FORMATION	ON DI	SCLOSURE	Filing Date	July 14, 2003
S	TATEMEN'	T BY	APPLICANT	First Named Inventor	Terry L. Gilton
				Group Art Unit	N/A
	(use as man	y sheets as	necessary)	Examiner Name	Not Yet Assigned
Sheet	5	of	12	Attorney Docket Number	M4065.1006/P1006-B

	I	OTHER PRIOR ART – NON PATENT LITERATURE DOCUMENTS Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the	
Examiner nitials	Cite No.1	item (book, magazine, journal, serial, symposium, catalog, etc), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T²
*	CA	Abdel-All, A.; Elshafie, A.; Elhawary, M.M., DC electric-field effect in bulk and thin-film Ge5As38Te57 chalcogenide glass, Vacuum 59 (2000) 845-853.	
*	СВ	Adler, D.; Moss, S.C., Amorphous memories and bistable switches, J. Vac. Sci. Technol. 9 (1972) 1182-1189.	
*	СС	Adler, D.; Henisch, H.K.; Mott, S.N., The mechanism of threshold switching in amorphous alloys, Rev. Mod. Phys. 50 (1978) 209-220.	
*	CD	Afifi, M.A.; Labib, H.H.; El-Fazary, M.H.; Fadel, M., Electrical and thermal properties of chalcogenide glass system Se75Ge25-xSbx, Appl. Phys. A 55 (1992) 167-169.	
*	CE	Afifi,M.A.; Labib, H.H.; Fouad, S.S.; El-Shazly, A.A., Electrical & thermal conductivity of the amorphous semiconductor GexSe1-x, Egypt, J. Phys. 17 (1986) 335-342.	
*	CF	Alekperova, Sh.M.; Gadzhieva, G.S., Current-Voltage characteristics of Ag2Se single crystal near the phase transition, Inorganic Materials 23 (1987) 137-139.	
*	CG	Aleksiejunas, A.; Cesnys, A., Switching phenomenon and memory effect in thin-film heterojunction of polycrystalline selenium-silver selenide, Phys. Stat. Sol. (a) 19 (1973) K169-K171.	
*	СН	Angell, C.A., Mobile ions in amorphous solids, Annu. Rev. Phys. Chem. 43 (1992) 693-717.	L
*	CI	Aniya, M., Average electronegativity, medium-range-order, and ionic conductivity in superionic glasses, Solid state Ionics 136-137 (2000) 1085-1089.	
*	CJ	Asahara, Y.; Izumitani, T., Voltage controlled switching in Cu-As-Se compositions, J. Non-Cryst. Solids 11 (1972) 97-104.	
*	СК	Asokan, S.; Prasad, M.V.N.; Parthasarathy, G.; Gopal, E.S.R., Mechanical and chemical thresholds in IV-VI chalcogenide glasses, Phys. Rev. Lett. 62 (1989) 808-810	
*	CL	Axon Technologies Corporation, Technology Description: <i>Programmable Metalization Cell(PMC)</i> , pp. 1-6 (Pre-May 2000).	
*	СМ	Baranovskii, S.D.; Cordes, H., On the conduction mechanism in ionic glasses, J. Chem. Phys. 111 (1999) 7546-7557.	
*	CN	Belin, R.; Taillades, G.; Pradel, A.; Ribes, M., Ion dynamics in superionic chalcogenide glasses: complete conductivity spectra, Solid state Ionics 136-137 (2000) 1025-1029.	
*	со	Belin, R.; Zerouale, A.; Pradel, A.; Ribes, M., Ion dynamics in the argyrodite compound Ag7GeSe5I: non-Arrhenius behavior and complete conductivity spectra, Solid State Ionics 143 (2001) 445-455.	
*	СР	Benmore, C.J.; Salmon, P.S., Structure of fast ion conducting and semiconducting glassy chalcogenide alloys, Phys. Rev. Lett. 73 (1994) 264-267.	
*	CQ	Bernede, J.C., Influence du metal des electrodes sur les caracteristiques courant-tension des structures M-Ag2Se-M, Thin solid films 70 (1980) L1-L4.	
*	CR	Bernede, J.C., Polarized memory switching in MIS thin films, Thin Solid Films 81 (1981) 155-160.	
*	cs	Bernede, J.C., Switching and silver movements in Ag2Se thin films, Phys. Stat. Sol. (a) 57 (1980) K101-K104.	
*	СТ	Bernede, J.C.; Abachi, T., Differential negative resistance in metal/insulator/metal structures with an upper bilayer electrode, Thin solid films 131 (1985) L61-L64.	
*	CU	Bernede, J.C.; Conan, A.; Fousenan't, E.; El Bouchairi, B.; Goureaux, G., Polarized memory switching effects in Ag2Se/Se/M thin film sandwiches, Thin solid films 97 (1982) 165-171.	
*	CV	Bernede, J.C. et al., Transition from S- to N-type differential negative resistance in Al-Al2O3-Ag2-xSe1+x thin film structures, Phys. Stat. Sol. (a) 74 (1982) 217-224.	
*	cw	Bondarev, V.N.; Pikhitsa, P.V., A dendrite model of current instability in RbAg4l5, Solid State	T

Sı	ubstitute for form 1449B/PT	0		Complete if Known		
0.		•		Application Number	10/618,824	
ll.	NFORMATIO	N DI	SCLOSURE	Filing Date	July 14, 2003	
9	STATEMENT	BY A	APPLICANT	First Named Inventor	Terry L. Gilton	
				Group Art Unit	N/A	
	(use as many s	heets as	necessary)	Examiner Name	Not Yet Assigned	
Sheet	6	of	12	Attorney Docket Number	M4065.1006/P1006-B	

Ionics 70/71 (1994) 72-76. CX Boolchand, P., The maximum in glass transition temperature (Tg) near x=1/3 in GexSe1-x (Glasses, Asian Journal of Physics (2000) 9, 709-72. OX Boolchand, P.; Georgiev, D.G.; Goodman, B., Discovery of the Intermediate Phase in Chalcogenide Glasses, J. Optoelectronics and Advanced Materials, 3 (2001), 703 CZ Boolchand, P.; Selvanathan, D.; Wang, Y.; Georgiev, D.G.; Bresser, W.J., Onset of rigidity in steps in chalcogenide glasses, Properties and Applications of Amorphous Materials, M.F., Thorpe and Tichy, L. (eds.), Kluwer Academic Publishers, the Netherlands, 2001, pp. 97-132. CA1 Boolchand, P.; Enzweiler, R.N.; Tenhover, M., Structural ordering of evaporated amorphous chalcogenide alloy films: role of thermal annealing, Diffusion and Defect Data Vol. 53-54 (1987) 415-420. CB1 Boolchand, P.; Grothaus, J.; Bresser, W.J.; Suranyi, P., Structural origin of broken chemical order in a GeSe2 glass, Phys. Rev. B 25 (1982) 2975-2978. CC1 Boolchand, P.; Grothaus, J.; Phillips, J.C., Broken chemical order and phase separation in GexSe1+x glasses, Solid state comm. 45 (1983) 183-185. CD1 Boolchand, P., Bresser, W.J., Compositional trends in glass transition temperature (Tg), network connectivity and nanoscale chemical phase separation in chalcogenides, Dept. of ECECs, Univ. Cinclinnati (October 28, 1999) 45221-0030. CE1 Boolchand, P.; Grothaus, J., Molecular Structure of Mell-Quenched GeSe2 and GeS2 glasses compared, Proc. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17th (1995) 833-36. CF1 Bresser, W.J., Boolchand, P.; Suranyi, P.; de Neufville, J.P., Intrinsically broken chalcogen chemical order in stoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. Ch1 Bresser, W.J., Boolchand, P.; Suranyi, P.; de Neufville, J.P., Intrinsically broken chalcogenide reperture for gest glasses, hyperfine Interactions 27 (1986) 389-399. CI1 Cahen, D.; Gilet, JM.; Schmitz, C.; Chemyak, L.; Gartsman, K.; Jakubowicz, A., Roo	Sheet		6	of	12	Attorney Docket Number	M4065.1006/P1006-B		
 CX Boolchand, P., The maximum in glass transition temperature (Tg) near x=1/3 in GexSe1-x Glasses, Asian Journal of Physics (2000), 9, 709-72. CY Boolchand, P.; Georgiev, D.G.; Goodman, B., Discovery of the Intermediate Phase in Chalcogenide Glasses, J. Optoelectronics and Advanced Materials, 3 (2001), 703. CZ Boolchand, P.; Selvanathan, D.; Wang, Y.; Georgiev, D.G.; Bresser, W.J., Onset of rigidity in steps in chalcogenide glasses, Properties and Applications of Amorphous Materials, M.F. Thrope and Tichy, L. (eds.) Kluwer Academic Publishers, the Netherlands, 2001, pp. 97-132. CA1 Boolchand, P.; Enzweiler, R.N.; Tenhover, M., Structural ordering of evaporated amorphous chalcogenide alloy films: role of thermal annealing, Diffusion and Defect Data Vol. 53-54 (1987) 415-420. CB1 Boolchand, P.; Grothaus, J.; Bresser, W.J.; Suranyi, P., Structural origin of broken chemical order in a GeSe2 glass, Phys. Rev. B 25 (1982) 2975-2978. CC1 Boolchand, P.; Grothaus, J.; Phillips, J.C., Broken chemical order and phase separation in GexSe1-x glasses, Solid state comm. 45 (1983) 183-185. CD1 Boolchand, P.; Grothaus, J.; Phillips, J.C., Broken chemical order and phase separation in network connectivity and nanoscale chemical phase separation in chalcogenides, Dept. of ECECS, Univ. Cincinnati (October 28, 1999) 45221-0030. CE1 Boolchand, P.; Grothaus, J. Molecular Structure of Melt-Quenched GeSe2 and GeS2 glasses compared Proc. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17th (1985) 833-36. CF1 Bresser, W.; Boolchand, P.; Suranyi, P., Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1988) 2493-2496. CG1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Neufville, J.P., Intrinsically broken chalcogen chemical order in stoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. CB1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Henander, J.G., Molecular phase separation and cluster si		1	Ionics 70/7	1 /100	24) 72-76				
 CY Boolchand, P.; Georgiev, D.G.; Goodman, B., Discovery of the Intermediate Phase in Chalcogenide Glasses, J. Optoelectronics and Advanced Materials, 3 (2001), 703 CZ Boolchand, P.; Selvanathan, D.; Wang, Y.; Georgiev, D.G.; Bresser, W.J., Onset of rigidity in steps in chalcogenide glasses, Properties and Applications of Amorphous Materials, M.F. Throppe and Tichy, L. (eds.) Kluwer Academic Publishers, the Netherlands, 2001, pp. 97-132. CA1 Boolchand, P.; Enzweiler, R.N.; Tenhover, M., Structural ordering of evaporated amorphous chalcogenide alloy films: role of thermal annealing, Diffusion and Defect Data Vol. 53-54 (1987) 415-420. CB1 Boolchand, P.; Grothaus, J.; Fhillips, J.C., Broken chemical order and phase separation in GexSe1-x glasses, Solid state comm. 45 (1982) 2975-2978. CC1 Boolchand, P.; Grothaus, J.; Phillips, J.C., Broken chemical order and phase separation in GexSe1-x glasses, Solid state comm. 45 (1983) 183-185. CD1 Boolchand, P., Bresser, W.J., Compositional trends in glass transition temperature (Tg), network connectivity and nanoscale chemical phase separation in chalcogenides, Dept. of ECECS, Univ. Cincinnati (October 28, 1999) 45221-0030. CE1 Boolchand, P.; Grothaus, J. Molecular Structure of Melt-Quenched GeSe2 and GeS2 glasses compared, Proc. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17th (1985) 833-36. CF1 Bresser, W.; Boolchand, P.; Suranyi, P., Rejudity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496. CG1 Bresser, W.J.; Boolchand, P.; Suranyi, P., Heunfulle, J.P., Intrinsically broken chalcogen chemical order in stoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P., Hemandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392. CG1 Chen, D.; Gilet, JM.; Schmitz, C.; Chern	*	сх	Boolchand	, P., T	he maximum in glass tra		Tg) near x=1/3 in GexSe1-x		
Chalcogenide Glasses, J. Optoelectronics and Advanced Materials, 3 (2001), 703 CZ Boolchand, P.; Selvanathan, D.; Wang, Y.; Georgiev, D.G.; Bresser, W.J., Onset of rigidity in steps in chalcogenide glasses, Properties and Applications of Amorphous Materials, M.F. Thorpe and Tichy, L. (eds.) Kluwer Academic Publishers, the Netherlands, 2001, pp. 97-132. CA1 Boolchand, P.; Enzweiler, R.N.; Tenhover, M., Structural ordering of evaporated amorphous chalcogenide alloy films: role of thermal annealing, Diffusion and Defect Data Vol. 53-54 (1987) 415-420. CB1 Boolchand, P.; Grothaus, J.; Bresser, W.J.; Suranyi, P., Structural origin of broken chemical order in a GeSe2 glass, Phys. Rev. B 25 (1982) 2975-2978. CC1 Boolchand, P.; Grothaus, J.; Phillips, J.C., Broken chemical order and phase separation in Ges/Se1-x glasses, Solid state comm. 45 (1983) 183-185. CD1 Boolchand, P., Bresser, W.J., Compositional trends in glass transition temperature (Tg), network connectivity and nanoscale chemical phase separation in chalcogenides, Dept. of ECECS, Univ. Cincinnati (October 28, 1999) 45221-0030. CE1 Boolchand, P.; Grothaus, J. Molecular Structure of Meli-Quenched GeSe2 and GeS2 glasses compared, Proc. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17th (1985) 833-36. CF1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496. CG1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hernandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392. CC1 Cahen, D.; Gilet, JM.; Schmitz, C.; Chernyak, L.; Gartsman, K.; Jakubowicz, A., Room-temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274. CC1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcog		1							
steps in chalcogenide glasses, Properties and Applications of Amorphous Materials, M.F. Thorpe and Tichy, L. (eds.) Kluwer Academic Publishers, the Netherlands, 2001, pp. 97-132. CA1 Boolchand, P.; Enzweiler, R.N.; Tenhover, M., Structural ordering of evaporated amorphous chalcogenide alloy films: role of thermal annealing, Diffusion and Defect Data Vol. 53-54 (1987) 415-420. CB1 Boolchand, P.; Grothaus, J.; Bresser, W.J.; Suranyi, P., Structural origin of broken chemical order in a GeSe2 glass, Phys. Rev. B 25 (1982) 2975-2978. CC1 Boolchand, P.; Grothaus, J.; Phillips, J.C., Broken chemical order and phase separation in GeSSe1+x glasses, Solid state comm. 45 (1983) 183-185. CD1 Boolchand, P., Bresser, W.J., Compositional trends is glass transition temperature (Tg), network connectivity and nanoscale chemical phase separation in chalcogenides, Dept. of ECECS, Univ. Cincinnati (October 28, 1999) 45221-0330. CE1 Boolchand, P.; Grothaus, J. Molecular Structure of Mell-Quenched GeSe2 and GeS2 glasses compared, Proc. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17th (1985) 833-36. CF1 Bresser, W.; Boolchand, P.; Suranyi, P., Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496. CG1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Neuville, J.P., Intrinsically broken chalcogen chemical order in stoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Neuville, J.P., Intrinsically broken chalcogen chemical order in stoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Houchade, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392. CI1 Cahen, D.; Gilet, JM.; Schmitz, C.; Chernyak, L.; Gartsman, K.; Jakubowicz, A., Room-temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274. CJ1 Chen, G.; Cheng, J., Role of nitrogen in the crys	*	CY							
Thompe and Tichy, L. (eds.) Kluwer Academic Publishers, the Netherlands, 2001, pp. 97-132. CA1 Boolchand, P.; Enzweiler, R.N.; Tenhover, M., Structural ordering of evaporated amorphous chalcogenide alloy films: role of thermal annealing, Diffusion and Defect Data Vol. 53-54 (1987) 415-420. CB1 Boolchand, P.; Grothaus, J.; Bresser, W.J.; Suranyi, P., Structural origin of broken chemical order in a GeSe2 glass, Phys. Rev. B 25 (1982) 2975-2978. CC1 Boolchand, P.; Grothaus, J.; Phillips, J.C., Broken chemical order and phase separation in GexSe1-x glasses, Solid state comm. 45 (1983) 183-185. CD1 Boolchand, P.; Bresser, W.J., Compositional trends in glass transition temperature (Tg), network connectivity and nanoscale chemical phase separation in chalcogenides, Dept. of ECECS, Univ. Cincinnati (October 28, 1999) 45221-0030. CE1 Boolchand, P.; Grothaus, J., Molecular Structure of Melt-Quenched GeSe2 and GeS2 glasses compared, Proc. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17th (1985) 833-36. CF1 Bresser, W.; Boolchand, P.; Suranyi, P., Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496. CG1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Neufville, J.P., Intrinsically broken chalcogen chemical order in stoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hermandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392. C11 Cahen, D.; Gillet, JM.; Schmitz, C.; Chemyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274. CJ1 Chatterjee, R.; Asokan, S.; Titus, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As-Te-Se glasses, J. Phys. D. Appl. Phys. 27 (1994) 2624-2627. CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-107	*	CZ							
 CA1 Boolchand, P.; Enzweiler, R.N.; Tenhover, M., Structural ordering of evaporated amorphous chalcogenide alloy films: role of thermal annealing, Diffusion and Defect Data Vol. 53-54 (1987) 415-420. CB1 Boolchand, P.; Grothaus, J.; Bresser, W.J.; Suranyi, P., Structural origin of broken chemical order in a GeSe2 glass, Phys. Rev. B 25 (1982) 2975-2978. CC1 Boolchand, P.; Grothaus, J.; Phillips, J.C., Broken chemical order and phase separation in GexSe1-x glasses, Solid state comm. 45 (1983) 183-185. CD1 Boolchand, P.; Grothaus, J.; Phillips, J.C., Broken chemical order and phase separation in GexSe1-x glasses, Solid state comm. 45 (1983) 183-185. CD1 Boolchand, P.; Grothaus, J.; Phillips, J.C., Broken chemical phase separation in chalcogenides, Dept. of ECECS, Univ. Cincinnati (October 28, 1999) 45221-0030. CE1 Boolchand, P.; Grothaus, J., Molecular Structure of Melt-Quenched GeSe2 and GeS2 glasses compared, Proc. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17th (1985) 833-36. CF1 Bresser, W.; Boolchand, P.; Suranyi, P.; Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496. CG1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hernandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 398-392. CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hernandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 398-392. CI1 Cahen, D.; Gilet, JM.; Schmitz, C.; Chemyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274. CJ1 Chaterjee, R.; Asokan, S.; Titus, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As-Te-Se glasses, J. Phys. D. Appl. Phys. 27 (1994) 2624-2627. CK1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of									
chalcogenide alloy films: role of thermal annealing, Diffusion and Defect Data Vol. 53-54 (1987) 415-420. * CB1 Boolchand, P.; Grothaus, J.; Bresser, W.J.; Suranyi, P., Structural origin of broken chemical order in a GeSe2 glass, Phys. Rev. B 25 (1982) 2975-2978. * CC1 Boolchand, P.; Grothaus, J.; Phillips, J.C., Broken chemical order and phase separation in GexSe1-x glasses, Solid state comm. 45 (1983) 183-185. * CD1 Boolchand, P.; Bresser, W.J., Compositional trends in glass transition temperature (Tg), network connectivity and nanoscale chemical phase separation in chalcogenides, Dept. of ECECS, Univ. Cincinnati (October 28, 1999) 45221-0030. * CE1 Boolchand, P.; Grothaus, J., Molecular Structure of Melt-Quenched GeSe2 and GeS2 glasses compared, Proc. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17th (1985) 833-36. * CF1 Bresser, W.; Boolchand, P.; Suranyi, P., Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496. * CG1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Neufville, J.P, Intrinsically broken chalcogen chemical order in stoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. * CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hennadez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392. * C11 Cahen, D.; Gilet, JM.; Schmitz, C.; Chemyak, L.; Garfsman, K.; Jakubowicz, A., Room-temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274. * CJ1 Chatterjee, R.; Asokan, S.; Titus, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As-Te-Se glasses, J. Phys. D. Appl. Phys. 27 (1994) 2624-2627. * CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. * CL1 Chen, G.; Cheng, J.; Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. * CN1 Chen	*	CA1							
 CB1 Boolchand, P.; Grothaus, J.; Bresser, W.J.; Suranyi, P., Structural origin of broken chemical order in a GeSe2 glass, Phys. Rev. B 25 (1982) 2975-2978. CC1 Boolchand, P.; Grothaus, J.; Phillips, J.C., Broken chemical order and phase separation in GexSe1-x glasses, Solid state comm. 45 (1983) 183-185. CD1 Boolchand, P.; Bresser, W.J., Compositional trends in glass transition temperature (Tg), network connectivity and nanoscale chemical phase separation in chalcogenides, Dept. of ECECS, Univ. Cincinnati (October 28, 1999) 45221-0030. CE1 Boolchand, P.; Grothaus, J. Molecular Structure of Melt-Quenched GeSe2 and GeS2 glasses compared, Proc. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17th (1985) 833-36. CF1 Bresser, W.; Boolchand, P.; Suranyi, P., Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496. CG1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Neufville, J.P, Intrinsically broken chalcogen chemical order in stoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hernandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392. C11 Cahen, D.; Gilet, JM.; Schmitz, C.; Chernyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274. CJ1 Chatterjee, R.; Asokan, S.; Titus, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As-Te-Se glasses, J. Phys. D; Appl. Phys. 27 (1994) 2624-2627. CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. CM1 Chen, G.; Cheng, J., Chen, W., Effect			chalcogeni	de allo					
order in a GeSe2 glass, Phys. Rev. B 25 (1982) 2975-2978. * CC1 Boolchand, P.; Grothaus, J.; Phillips, J.C., Broken chemical order and phase separation in GexSe1-x glasses, Solid state comm. 45 (1983) 183-185. * CD1 Boolchand, P., Bresser, W.J., Compositional trends in glass transition temperature (Tg), network connectivity and nanoscale chemical phase separation in chalcogenides, Dept. of ECECS, Univ. Cincinnati (October 28, 1999) 45221-0030. * CE1 Boolchand, P.; Grothaus, J., Molecular Structure of Melt-Quenched GeSe2 and GeS2 glasses compared, Proc. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17th (1985) 833-36. * CF1 Bresser, W.; Boolchand, P.; Suranyi, P., Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496. * CG1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Neufville, J.P., Intrinsically broken chalcogen chemical order in stoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. * CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hernandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392. * CI1 Cahen, D.; Gilet, JM.; Schmitz, C.; Chemyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274. * CJ1 Chatterjee, R.; Asokan, S.; Titus, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As-Te-Se glasses, J. Phys. D; Appl. Phys. 27 (1994) 2624-2627. * CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. * CL1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. * CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glasses, J. M. Ceram. Soc. 82 (1999) 2934-2936. * CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcoge	*	CB1			Grothaus, J.: Bresser, W	J.: Suranvi. P., Struct	tural origin of broken chemical		
 CC1 Boolchand, P.; Grothaus, J.; Phillips, J.C., Broken chemical order and phase separation in GexSe1-x glasses, Solid state comm. 45 (1983) 183-185. CD1 Boolchand, P., Bresser, W.J., Compositional trends in glass transition temperature (Tg), network connectivity and nanoscale chemical phase separation in chalcogenides, Dept. of ECECS, Univ. Cincinnati (October 28, 1999) 45221-0030. CE1 Boolchand, P.; Grothaus, J. Molecular Structure of Melt-Quenched GeSe2 and GeS2 glasses compared, Proc. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17th (1985) 833-36. CF1 Bresser, W.; Boolchand, P.; Suranyi, P., Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496. CG1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Neufville, J.P., Intrinsically broken chalcogen chemical order in stoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hermandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392. CI1 Cahen, D.; Gilet, JM.; Schmitz, C.; Chemyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 286 (1992) 271-274. CJ1 Chatterjee, R.; Asokan, S.; Titus, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As-Te-Se glasses, J. Phys. D. Appl. Phys. 27 (1994) 2624-2627. CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. CM1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2939-2938. <									
 CD1 Boolchand, P., Bresser, W.J., Compositional trends in glass transition temperature (Tg), network connectivity and nanoscale chemical phase separation in chalcogenides, Dept. of ECECS, Univ. Cincinnati (October 28, 1999) 45221-0030. CE1 Boolchand, P.; Grothaus, J., Molecular Structure of Melt-Quenched GeSe2 and GeS2 glasses compared, Proc. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17th (1985) 833-36. CF1 Bresser, W.; Boolchand, P.; Suranyi, P., Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496. CG1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Neufville, J.P., Intrinsically broken chalcogen chemical order in stoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hermandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392. CI1 Cahen, D.; Gilet, JM.; Schmitz, C.; Chernyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274. CJ1 Chatterjee, R.; Asokan, S.; Titus, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As-Te-Se glasses, J. Phys. D. Appl. Phys. 27 (1994) 2624-2627. CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. CO1 Croitoru, N.; Lazarescu, M.; Poposcu, C.; Telnic, M.; and Vesca	*	CC1							
network connectivity and nanoscale chemical phase separation in chalcogenides, Dept. of ECECS, Univ. Cincinnati (October 28, 1999) 45221-0030. * CE1 Boolchand, P.; Grothaus, J., Molecular Structure of Melt-Quenched GeSe2 and GeS2 glasses compared, Proc. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17th (1985) 833-36. * CF1 Bresser, W.; Boolchand, P.; Suranyi, P., Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496. * CG1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Neufville, J.P., Intrinsically broken chalcogen chemical order in stoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. * CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Neufville, J.P., Intrinsically broken chalcogen chemical order in stoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. * CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Neufville, J.P., Intrinsically broken chalcogen chemical order in stoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. * CH1 Ghen, D.; Gilet, JM.; Schmitz, C.; Chernyak, L.; Cartsman, K.; Jakubowicz, A., Room-temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274. * CJ1 Chatterjee, R.; Asokan, S.; Titus, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As-Te-Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627. * CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. * CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. * CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. * CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. * CO1 Croitoru, N.; Lazarescu, M.			GexSe1-x	glasse	es, Solid state comm. 45	(1983) 183-185.			
 ECECS, Univ. Cincinnati (October 28, 1999) 45221-0030. CE1 Boolchand, P.; Grothaus, J. Molecular Structure of Melt-Quenched GeSe2 and GeS2 glasses compared, Proc. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17th (1985) 833-36. CF1 Bresser, W.; Boolchand, P.; Suranyi, P., Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496. CG1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Neufville, J.P, Intrinsically broken chalcogen chemical order in stoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hernandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392. CI1 Cahen, D.; Gilet, JM.; Schmitz, C.; Chernyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274. CJ1 Chatterjee, R.; Asokan, S.; Titus, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As-Te-Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627. CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. CN1 Croitoru, N.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. CN1 Daven, R.; Gill, R., Electrical properties of beta-Ag2Te a	*	CD1							
 * CE1 Boolchand, P.; Grothaus, J, Molecular Structure of Melt-Quenched GeSe2 and GeS2 glasses compared, Proc. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17th (1985) 833-36. * CF1 Bresser, W.; Boolchand, P.; Suranyi, P., Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496. * CG1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Neufville, J.P., Intrinsically broken chalcogen chemical order in stoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. * CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hernandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392. * CI1 Cahen, D.; Gilet, JM.; Schmitz, C.; Chernyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274. * CJ1 Chatterjee, R.; Asokan, S.; Titus, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As-Te-Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627. * CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. * CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. * CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. * CN1 Chen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. * CO1 Croitoru, N.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. * CO1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. * CR1 Dearnaley, G.; S							on in chalcogenides, Dept. of		
 compared, Proc. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17th (1985) 833-36. CF1 Bresser, W.; Boolchand, P.; Suranyi, P., Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496. CG1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Neufville, J.P, Intrinsically broken chalcogen chemical order in stoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hernandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392. CI1 Cahen, D.; Gilet, JM.; Schmitz, C.; Chernyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274. CJ1 Chatterjee, R.; Asokan, S.; Titus, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As-Te-Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627. CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. CO1 Croitoru, N.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. CC1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. CR1 Dearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films, Rep. Prog. Phys. 33 (1970) 1129-1191.		1	ECECS, U	niv. Ci	incinnati (October 28, 1	999) 45221-0030.			
 * CF1 Bresser, W.; Boolchand, P.; Suranyi, P., Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496. * CG1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Neufville, J.P, Intrinsically broken chalcogen chemical order in stoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. * CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hernandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392. * CI1 Cahen, D.; Gilet, JM.; Schmitz, C.; Chernyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274. * CJ1 Chatterjee, R.; Asokan, S.; Titus, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As-Te-Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627. * CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. * CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. * CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. * CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. * CO1 Croitoru, N.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. * CP1 Dalven, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. * CR1 Dearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films, Rep. Prog. Phys. 33 (1970) 1129-1191. * CS1 Deius	*	CE1	Boolchand compared.	, P.; G Proc.	Brothaus, J, Molecular S Int. Conf. Phys. Semico	tructure of Melt-Quend and. (Eds. Chadi and I	ched GeSe2 and GeS2 glasses Harrison) 17 th (1985) 833-36.		
 * CG1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Neufville, J.P, Intrinsically broken chalcogen chemical order in stoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. * CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hernandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392. * Cl1 Cahen, D.; Gilet, JM.; Schmitz, C.; Chernyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274. * CJ1 Chatterjee, R.; Asokan, S.; Titus, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As-Te-Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627. * CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. * CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. * CM1 Chen, G.; Cheng, J.; Chen, W.; Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. * CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. * CO1 Croitoru, N.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. * CP1 Dalven, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. * CR1 Deaven, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. * CR1 Deaven, R.; Susman, S.; Volin, K.J.; Montague, D.G.; Price, D.L., Structure of Vitreous Ag-Ge-Se, J. Non-Cryst. Solids 143 (1992) 162-180. * CT1 den Boer, W., Th	*	CF1							
 chemical order in stoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196. CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hernandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392. CI1 Cahen, D.; Gillet, JM.; Schmitz, C.; Chernyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CuInSe2 Crystals, Science 258 (1992) 271-274. CJ1 Chatterjee, R.; Asokan, S.; Titus, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As-Te-Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627. CK1 Chen, C.H.; Tai, K.L.; Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. CO1 Croitoru, N.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. CP1 Dalven, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. CR1 Deamaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films, Rep. Prog. Phys. 33 (1970) 1129-1191. CS1 Dejus, R.J.; Susman, S.; Volin, K.J.; Montague, D.G.; Price, D.L., Structure of Vitreous Ag-Ge-Se, J. Non-Cryst. Solids 143 (1992) 162-180. CT1 den Boer, W., Threshold switching in hydrogenated amorphous silicon, Appl. Phys. Lett. 40 (1982) 812-813. 			network gla	asses,	Phys. Rev. Lett. 56 (19	86) 2493-2496.			
 * CH1 Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hernandez, J.G., Molecular phase separation and cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392. * Cl1 Cahen, D.; Gilet, JM.; Schmitz, C.; Chernyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274. * CJ1 Chatterjee, R.; Asokan, S.; Titus, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As-Te-Se glasses, J. Phys. D; Appl. Phys. 27 (1994) 2624-2627. * CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. * CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. * CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. * CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. * CO1 Croitoru, N.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. * CP1 Dalven, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. * CR1 Deamaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films, Rep. Prog. Phys. 33 (1970) 1129-1191. * CS1 Dejus, R.J.; Susman, S.; Volin, K.J.; Montague, D.G.; Price, D.L., Structure of Vitreous Ag-Ge-Se, J. Non-Cryst. Solids 143 (1992) 162-180. * CT1 den Boer, W., Threshold switching in hydrogenated amorphous silicon, Appl. Phys. Lett. 40 (1982) 812-813. 	*	CG1	Bresser, W	/.J.; Bo	oolchand, P.; Suranyi, F	.; de Neufville, J.P, In	trinsically broken chalcogen		
cluster size in GeSe2 glass, Hyperfine Interactions 27 (1986) 389-392. * CI1 Cahen, D.; Gilet, JM.; Schmitz, C.; Chernyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CuInSe2 Crystals, Science 258 (1992) 271-274. * CJ1 Chatterjee, R.; Asokan, S.; Titus, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As-Te-Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627. * CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. * CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. * CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. * CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. * CO1 Croitoru, N.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. * CP1 Dalven, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. * CR1 Dearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films, Rep. Prog. Phys. 33 (1970) 1129-1191. * CS1 Deius, R.J.; Susman, S.; Volin, K.J.; Montague, D.G.; Price, D.L., Structure of Vitreous Ag-Ge-Se, J. Non-Cryst. Solids 143 (1992) 162-180. * CT1 den Boer, W., Threshold switching in hydrogenated amorphous silicon, Appl. Phys. Lett. 40 (1982) 812-813.	*	CU1							
 * CI1 Cahen, D.; Gilet, JM.; Schmitz, C.; Chernyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CulnSe2 Crystals, Science 258 (1992) 271-274. * CJ1 Chatterjee, R.; Asokan, S.; Titus, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As-Te-Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627. * CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. * CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. * CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. * CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. * CO1 Croitoru, N.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. * CP1 Dalven, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. * CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. * CR1 Deamaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films, Rep. Prog. Phys. 33 (1970) 1129-1191. * CS1 Deiyus, R.J.; Susman, S.; Volin, K.J.; Montague, D.G.; Price, D.L., Structure of Vitreous Ag-Ge-Se, J. Non-Cryst. Solids 143 (1992) 162-180. * CT1 den Boer, W., Threshold switching in hydrogenated amorphous silicon, Appl. Phys. Lett. 40 (1982) 812-813. 									
Temperature, electric field induced creation of stable devices in CuInSe2 Crystals, Science 258 (1992) 271-274. * CJ1 Chatterjee, R.; Asokan, S.; Titus, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As-Te-Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627. * CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. * CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. * CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. * CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. * CO1 Croitoru, N.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. * CP1 Dalven, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. * CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. * CR1 Dejnus, R.J.; Susman, S.; Volin, K.J.; Montague, D.G.; Price, D.L., Structure of Vitreous Ag-Ge-Se, J. Non-Cryst. Solids 143 (1992) 162-180. * CT1 den Boer, W., Threshold switching in hydrogenated amorphous silicon, Appl. Phys. Lett. 40 (1982) 812-813.	*	CI1							
 Z58 (1992) 271-274. CJ1 Chatterjee, R.; Asokan, S.; Titus, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As-Te-Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627. CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. CO1 Croitoru, N.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. CP1 Dalven, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. CR1 Deamaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films, Rep. Prog. Phys. 33 (1970) 1129-1191. CS1 Dejus, R.J.; Susman, S.; Volin, K.J.; Montague, D.G.; Price, D.L., Structure of Vitreous Ag-Ge-Se, J. Non-Cryst. Solids 143 (1992) 162-180. CT1 den Boer, W., Threshold switching in hydrogenated amorphous silicon, Appl. Phys. Lett. 40 (1982) 812-813. 									
 * CJ1 Chatterjee, R.; Asokan, S.; Titus, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As-Te-Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627. * CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. * CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. * CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. * CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. * CO1 Croitoru, N.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. * CP1 Dalven, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. * CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. * CR1 Deamaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films, Rep. Prog. Phys. 33 (1970) 1129-1191. * CS1 Dejus, R.J.; Susman, S.; Volin, K.J.; Montague, D.G.; Price, D.L., Structure of Vitreous Ag-Ge-Se, J. Non-Cryst. Solids 143 (1992) 162-180. * CT1 den Boer, W., Threshold switching in hydrogenated amorphous silicon, Appl. Phys. Lett. 40 (1982) 812-813. 									
 * CK1 Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy GexSe1-x films, Appl. Phys. Lett. 37 (1980) 1075-1077. * CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. * CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. * CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. * CO1 Croitoru, N.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. * CP1 Dalven, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. * CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. * CR1 Deamaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films, Rep. Prog. Phys. 33 (1970) 1129-1191. * CS1 Dejus, R.J.; Susman, S.; Volin, K.J.; Montague, D.G.; Price, D.L., Structure of Vitreous Ag-Ge-Se, J. Non-Cryst. Solids 143 (1992) 162-180. * CT1 den Boer, W., Threshold switching in hydrogenated amorphous silicon, Appl. Phys. Lett. 40 (1982) 812-813. 	*	CJ1	Chatterjee	R.; A	sokan, S.; Titus, S.S.K.	Current-controlled ne	egative-resistance behavior and		
 Appl. Phys. Lett. 37 (1980) 1075-1077. * CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. * CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. * CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. * CO1 Croitoru, N.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. * CP1 Dalven, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. * CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. * CR1 Deamaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films, Rep. Prog. Phys. 33 (1970) 1129-1191. * CS1 Dejus, R.J.; Susman, S.; Volin, K.J.; Montague, D.G.; Price, D.L., Structure of Vitreous Ag-Ge-Se, J. Non-Cryst. Solids 143 (1992) 162-180. * CT1 den Boer, W., Threshold switching in hydrogenated amorphous silicon, Appl. Phys. Lett. 40 (1982) 812-813. 			memory sv	vitchin	g in bulk As-Te-Se glas	ses, J. Phys. D: Appl.	Phys. 27 (1994) 2624-2627.		
 * CL1 Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. * CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. * CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. * CO1 Croitoru, N.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. * CP1 Dalven, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. * CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. * CR1 Dearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films, Rep. Prog. Phys. 33 (1970) 1129-1191. * CS1 Dejus, R.J.; Susman, S.; Volin, K.J.; Montague, D.G.; Price, D.L., Structure of Vitreous Ag-Ge-Se, J. Non-Cryst. Solids 143 (1992) 162-180. * CT1 den Boer, W., Threshold switching in hydrogenated amorphous silicon, Appl. Phys. Lett. 40 (1982) 812-813. 	*	CK1				duced by Ag photodo	ping in glassy GexSe1-x films,		
chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936. * CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. * CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. * CO1 Croitoru, N.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. * CP1 Dalven, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. * CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. * CR1 Dearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films, Rep. Prog. Phys. 33 (1970) 1129-1191. * CS1 Dejus, R.J.; Susman, S.; Volin, K.J.; Montague, D.G.; Price, D.L., Structure of Vitreous Ag-Ge-Se, J. Non-Cryst. Solids 143 (1992) 162-180. * CT1 den Boer, W., Threshold switching in hydrogenated amorphous silicon, Appl. Phys. Lett. 40 (1982) 812-813.			Appl. Phys	. Lett.	37 (1980) 1075-1077.				
 CM1 Chen, G.; Cheng, J.; Chen, W., Effect of Si3N4 on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253. CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. CO1 Croitoru, N.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. CP1 Dalven, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. CR1 Dearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films, Rep. Prog. Phys. 33 (1970) 1129-1191. CS1 Dejus, R.J.; Susman, S.; Volin, K.J.; Montague, D.G.; Price, D.L., Structure of Vitreous Ag-Ge-Se, J. Non-Cryst. Solids 143 (1992) 162-180. CT1 den Boer, W., Threshold switching in hydrogenated amorphous silicon, Appl. Phys. Lett. 40 (1982) 812-813. 	*	CL1							
J. Non-Cryst. Solids 220 (1997) 249-253. * CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. * CO1 Croitoru, N.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. * CP1 Dalven, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. * CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. * CR1 Dearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films, Rep. Prog. Phys. 33 (1970) 1129-1191. * CS1 Dejus, R.J.; Susman, S.; Volin, K.J.; Montague, D.G.; Price, D.L., Structure of Vitreous Ag-Ge-Se, J. Non-Cryst. Solids 143 (1992) 162-180. * CT1 den Boer, W., Threshold switching in hydrogenated amorphous silicon, Appl. Phys. Lett. 40 (1982) 812-813.		ļ	chalcogeni	de gla	isses, J. Am. Ceram. So	oc. 82 (1999) 2934-293	36.		
 CN1 Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891. CO1 Croitoru, N.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. CP1 Dalven, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. CR1 Dearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films, Rep. Prog. Phys. 33 (1970) 1129-1191. CS1 Dejus, R.J.; Susman, S.; Volin, K.J.; Montague, D.G.; Price, D.L., Structure of Vitreous Ag-Ge-Se, J. Non-Cryst. Solids 143 (1992) 162-180. CT1 den Boer, W., Threshold switching in hydrogenated amorphous silicon, Appl. Phys. Lett. 40 (1982) 812-813. 	*	CM1					urability of chalcogenide glass,		
device, J. Non-Cryst. Solids 8-10 (1972) 885-891. * CO1 Croitoru, N.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. * CP1 Dalven, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. * CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. * CR1 Dearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films, Rep. Prog. Phys. 33 (1970) 1129-1191. * CS1 Dejus, R.J.; Susman, S.; Volin, K.J.; Montague, D.G.; Price, D.L., Structure of Vitreous Ag-Ge-Se, J. Non-Cryst. Solids 143 (1992) 162-180. * CT1 den Boer, W., Threshold switching in hydrogenated amorphous silicon, Appl. Phys. Lett. 40 (1982) 812-813.	*	CN1	Cohen, M.I	H.; Ne	ale, R.G.; Paskin, A., A	model for an amorph	ous semiconductor memory		
 conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786. CP1 Dalven, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. CR1 Deamaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films, Rep. Prog. Phys. 33 (1970) 1129-1191. CS1 Dejus, R.J.; Susman, S.; Volin, K.J.; Montague, D.G.; Price, D.L., Structure of Vitreous Ag-Ge-Se, J. Non-Cryst. Solids 143 (1992) 162-180. CT1 den Boer, W., Threshold switching in hydrogenated amorphous silicon, Appl. Phys. Lett. 40 (1982) 812-813. 			device, J. I	Non-C	ryst. Solids 8-10 (1972)	885-891.			
 CP1 Dalven, R.; Gill, R., Electrical properties of beta-Ag2Te and beta-Ag2Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756. CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. CR1 Dearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films, Rep. Prog. Phys. 33 (1970) 1129-1191. CS1 Dejus, R.J.; Susman, S.; Volin, K.J.; Montague, D.G.; Price, D.L., Structure of Vitreous Ag-Ge-Se, J. Non-Cryst. Solids 143 (1992) 162-180. CT1 den Boer, W., Threshold switching in hydrogenated amorphous silicon, Appl. Phys. Lett. 40 (1982) 812-813. 	*	CO1	Croitoru, N	.: Laz	arescu, M.; Popescu, C	: Telnic, M.; and Veso	can, L., Ohmic and non-ohmic		
Appl. Phys. 38 (1967) 753-756. * CQ1 Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155. * CR1 Dearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films, Rep. Prog. Phys. 33 (1970) 1129-1191. * CS1 Dejus, R.J.; Susman, S.; Volin, K.J.; Montague, D.G.; Price, D.L., Structure of Vitreous Ag-Ge-Se, J. Non-Cryst. Solids 143 (1992) 162-180. * CT1 den Boer, W., Threshold switching in hydrogenated amorphous silicon, Appl. Phys. Lett. 40 (1982) 812-813.	*	CD4	Dalvas	· (C:III	D Electrical properties	of bota-Ag2To and ba	13-Ag2Se from 4.2 to 300K		
 CR1 Dearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films, Rep. Prog. Phys. 33 (1970) 1129-1191. CS1 Dejus, R.J.; Susman, S.; Volin, K.J.; Montague, D.G.; Price, D.L., Structure of Vitreous Ag-Ge-Se, J. Non-Cryst. Solids 143 (1992) 162-180. CT1 den Boer, W., Threshold switching in hydrogenated amorphous silicon, Appl. Phys. Lett. 40 (1982) 812-813. 		CPT	Appl. Phys	. 38 (1	1967) 753-756.				
films, Rep. Prog. Phys. 33 (1970) 1129-1191. * CS1 Dejus, R.J.; Susman, S.; Volin, K.J.; Montague, D.G.; Price, D.L., Structure of Vitreous Ag-Ge-Se, J. Non-Cryst. Solids 143 (1992) 162-180. * CT1 den Boer, W., Threshold switching in hydrogenated amorphous silicon, Appl. Phys. Lett. 40 (1982) 812-813.	*								
 CS1 Dejus, R.J.; Susman, S.; Volin, K.J.; Montague, D.G.; Price, D.L., Structure of Vitreous Ag-Ge-Se, J. Non-Cryst. Solids 143 (1992) 162-180. CT1 den Boer, W., Threshold switching in hydrogenated amorphous silicon, Appl. Phys. Lett. 40 (1982) 812-813. 	*	CR1					nomena in amorphous oxide		
Se, J. Non-Cryst. Solids 143 (1992) 162-180. * CT1 den Boer, W., Threshold switching in hydrogenated amorphous silicon, Appl. Phys. Lett. 40 (1982) 812-813.			films, Rep.	Prog.	Phys. 33 (1970) 1129-	1191			
* CT1 den Boer, W., Threshold switching in hydrogenated amorphous silicon, Appl. Phys. Lett. 40 (1982) 812-813.	*	CS1	Dejus, R.J.	.; Susi	man, S.; Volin, K.J.; Mo	ntague, D.G.; Price, D	L., Structure of Vitreous Ag-Ge-		
(1982) 812-813.		J	Se, J. Non	-Cryst	. Solids 143 (1992) 162	-180.	11 - A - 1 DI - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	*	CT1			nreshold switching in hy	drogenated amorphou	is silicon, Appl. Phys. Lett. 40		
	+	CU1			Panckow, A.N.; Klabuno	le, F., The hydrogena	ted amorphous		

Su	bstitute for form 1449B/F	PTO		Complete if Known		
				Application Number	10/618,824	
11	NFORMATIC	ON DIS	CLOSURE	Filing Date	July 14, 2003	
5	STATEMENT	BY AF	PPLICANT	First Named Inventor	Terry L. Gilton	
				Group Art Unit	N/A	
	(use as many	sheets as ne	ecessary)	Examiner Name	Not Yet Assigned	
Sheet	7	of	12	Attorney Docket Number	M4065.1006/P1006-B	

		silicon/nanodisperse metal (SIMAL) system-Films of unique electronic properties, J. Non-Cryst. Solids 198-200 (1996) 829-832.
*	CV1	El Bouchairi, B.; Bernede, J.C.; Burgaud, P., Properties of Ag2-xSe1+x/n-Si diodes, Thin Solid Films 110 (1983) 107-113.
*	CW1	El Gharras, Z.; Bourahla, A.; Vautier, C., Role of photoinduced defects in amorphous GexSe1-x photoconductivity, J. Non-Cryst. Solids 155 (1993) 171-179.
*	CX1	El Ghrandi, R.; Calas, J.; Galibert, G.; Averous, M., Silver photodissolution in amorphous chalcogenide thin films, Thin Solid Films 218 (1992)259-273.
*	CY1	El Ghrandi, R.; Calas, J.; Galibert, G., Ag dissolution kinetics in amorphous GeSe5.5 thin films from "in-situ" resistance measurements vs time, Phys. Stat. Sol. (a) 123 (1991) 451-460.
*	CZ1	El-kady, Y.L., The threshold switching in semiconducting glass Ge21Se17Te62, Indian J. Phys. 70A (1996) 507-516.
*	CA2	Elliott, S.R., A unified mechanism for metal photodissolution in amorphous chalcogenide materials, J. Non-Cryst. Solids 130 (1991) 85-97.
*	CB2	Elliott, S.R., Photodissolution of metals in chalcogenide glasses: A unified mechanism, J. Non-Cryst. Solids 137-138 (1991) 1031-1034.
*	CC2	Elsamanoudy, M.M.; Hegab, N.A.; Fadel, M., Conduction mechanism in the pre-switching state of thin films containing Te As Ge Si, Vacuum 46 (1995) 701-707.
*	CD2	El-Zahed, H.; El-Korashy, A., Influence of composition on the electrical and optical properties of Ge20BixSe80-x films, Thin Solid Films 376 (2000) 236-240.
*	CE2	Fadel, M., Switching phenomenon in evaporated Se-Ge-As thin films of amorphous chalcogenide glass, Vacuum 44 (1993) 851-855.
*	CF2	Fadel, M.; El-Shair, H.T., Electrical, thermal and optical properties of Se75Ge7Sb18, Vacuum 43 (1992) 253-257.
*	CG2	Feng, X.; Bresser, W.J.; Boolchand, P., Direct evidence for stiffness threshold in Chalcogenide glasses, Phys. Rev. Lett. 78 (1997) 4422-4425.
*	CH2	Feng, X.; Bresser, W.J.; Zhang, M.; Goodman, B.; Boolchand, P., Role of network connectivity on the elastic, plastic and thermal behavior of covalent glasses, J. Non-Cryst. Solids 222 (1997) 137-143.
*	CI2	Fischer-Colbrie, A.; Bienenstock, A.; Fuoss, P.H.; Marcus, M.A., Structure and bonding in photodiffused amorphous Ag-GeSe2 thin films, Phys. Rev. B 38 (1988) 12388-12403.
*	CJ2	Fleury, G.; Hamou, A.; Viger, C.; Vautier, C., Conductivity and crystallization of amorphous selenium, Phys. Stat. Sol. (a) 64 (1981) 311-316.
*	CK2	Fritzsche, H, Optical and electrical energy gaps in amorphous semiconductors, J. Non-Cryst. Solids 6 (1971) 49-71.
*	CL2	Fritzsche, H., Electronic phenomena in amorphous semiconductors, Annual Review of Materials Science 2 (1972) 697-744.
*	CM2	Gates, B.; Wu, Y.; Yin, Y.; Yang, P.; Xia, Y., Single-crystalline nanowires of Ag2Se can be synthesized by templating against nanowires of trigonal Se, J. Am. Chem. Soc. (2001) currently ASAP.
*	CN2	Gosain, D.P.; Nakamura, M.; Shimizu, T.; Suzuki, M.; Okano, S., Nonvolatile memory based on reversible phase transition phenomena in telluride glasses, Jap. J. Appl. Phys. 28 (1989) 1013-1018.
*	CO2	Guin, JP.; Rouxel, T.; Keryvin, V.; Sangleboeuf, JC.; Serre, I.; Lucas, J., Indentation creep of Ge-Se chalcogenide glasses below Tg: elastic recovery and non-Newtonian flow, J. Non-Cryst. Solids 298 (2002) 260-269.
*	CP2	Guin, JP.; Rouxel, T.; Sangleboeuf, JC; Melscoet, I.; Lucas, J., Hardness, toughness, and scratchability of germanium-selenium chalcogenide glasses, J. Am. Ceram. Soc. 85 (2002) 1545-52.
•	CQ2	Gupta, Y.P., On electrical switching and memory effects in amorphous chalcogenides, J. Non-Cryst. Sol. 3 (1970) 148-154.

Substit	Substitute for form 1449B/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT (use as many sheets as necessary)	Complete if Known			
			Application Number 10/618,824		
INF	ORMATI	ON DIS	SCLOSURE	Filing Date	July 14, 2003
ST	ATEMEN	T BY A	PPLICANT	First Named Inventor	Terry L. Gilton
				Group Art Unit	N/A
	STATEMENT BY APPLICAN (use as many sheets as necessary)			Examiner Name	Not Yet Assigned
Sheet	8	of	12	Attorney Docket Number	M4065.1006/P1006-B

Sheet		8	of	12	Attorney Docket Number	M4065.1006/P1006-B	
*	CR2			Stiegler, H., New exper		-controlled switching effect in 408-414.	
*	CS2	Haifz, M.M	.; Ibra	him, M.M.; Dongol, M.; I pperties of As-Se-Cu gla	Hammad, F.H., Effect	of composition on the structure	
*	CT2	Hajto, J.; R	ose, I		II, A.J.; Le Comber, P.	.G.; Owen, A.E., Quantization	
*	CU2		room	temperature quantised		measurements on metal/a- Non-Cryst. Solids 266-269	
*	CV2	Hajto, J.; N	cAule	y, B.; Snell, A.J.; Owen		n temperature quantized Non-Cryst. Solids 198-200	
*	CW2	ballistic ele 369.	ctron	effects in metal-amorph	ous silicon structures,	l., Analogue memory and Phil. Mag. B 63 (1991) 349-	
*	CX2	Japan. J. A	ppl. F	Phys. 13 (1974) 1163-11	64.	switching in amorphous Se film,	
*	CY2	chalcogeni	de sei	del, M.; Sedeek, K., Mer miconductors, Vacuum	45 (1994) 459-462.		
*	CZ2			ralevel hybrid resist productions resist productions (198 productions)		capability, SPIE Vol. 333	
*	CA3	Hilt, Disser Metalizatio	RTATIO	N: Materials characterize ate University, pp. Title	ation of Silver Chalcog		
*	СВЗ	Holmquist et	al., R	eaction and Diffusion in Sill 3-4, pp. 183-188 (March-Ar	ver-Arsenic Chalcogenid	le Glass Systems, 62 J. AMER.	
*	CC3	Hong, K.S.	; Spey	er, R.F., Switching beh lids 116 (1990) 191-200	avior in II-IV-V2 amor	phous semiconductor systems,	
*	CD3	Hosokawa,	S., A	tomic and electronic strustion, J. Optoelectronic	uctures of glassy Gext	Se1-x around the stiffness erials 3 (2001) 199-214.	
*	CE3	Hu, J.; Sne	II, A.J		Constant current form	ning in Cr/p+a-/Si:H/V thin film	
*	CF3	Hu, J.; Haji non-metal (1996) 37-	to, J.; transit 50.	Snell, A.J.; Owen, A.E.; ion in Cr-hydrogenated	Rose, M.J., Capacita amorphous Si-V thin-f	nce anomaly near the metal- film devices, Phil. Mag. B. 74	
*	CG3			.; Hajto, J.; Owen, A.E., ig. B 80 (2000) 29-43.	Current-induced insta	ability in Cr-p+a-Si:H-V thin film	
*	СНЗ			evelopment of silver sen SF6, 42 Appl. Phys. Le		elenide photoresist by reactive 4 (April 1983).	
*	CI3			M.; Kikuchi, M.; Tanaka, glasses As-Te-Ge, Solid			
*	CJ3	Ishikawa, F	R.; Kik	uchi, M., Photovoltaic st of Ge2S3, J. Non-Cryst	udy on the photo-enh	anced diffusion of Ag in	
*	СКЗ	lyetomi, H.	; Vash		cipient phase separat	ion in Ag/Ge/Se glasses:	
*	CL3	Jones, G.;	Collin	s, R.A., Switching prope 977) L15-L18.	rties of thin selenium	films under pulsed bias, Thin	
*	СМЗ	Joullie, A.N	1.; Ma			amorphous As2Se7 before	
*	CN3	Joullie, A.N Bull. 8 (197	1.; Ma	rucchi, J., Electrical pro	perties of the amorpho	ous alloy As2Se5, Mat. Res.	

PTO/SB/08B (10-01)
Approved for use through 10/31/2002.OMB 0651-0031
U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number. Complete if Known Substitute for form 1449B/PTO Application Number 10/618,824 INFORMATION DISCLOSURE July 14, 2003 Filing Date STATEMENT BY APPLICANT Terry L. Gilton First Named Inventor N/A Group Art Unit (use as many sheets as necessary) Examiner Name Not Yet Assigned of 12 M4065 1006/P1006-B

Sheet		9	of	12	Attorney Docket Number M4065.1006/P1006-B	
*	CO3	Solids 8-10	(1972)5	38-543.	vitching in amorphous semiconductors, J. Non-Cryst	
*	CP3	1231-1234	(1993).	·	surface deposition, 164-166 J. Non-Cryst. Solids, p	р.
*	CQ3	amorphous	Ag-Ge-S	and Ag-Ge-Se filn	., Optical, electrical, and structural properties of ns and comparison of photoinduced and thermally J. Appl. Phys. 79 (1996) 9096-9104.	
*	CR3				change in optical transmission spectra resulting from a. J. Appl. Phys. 26 (1987) 15-21.	Ag
*	CS3	(0<=x<=0.5	71) glass	es, Solid state Ioni	ra, Y.; Aniya, M., Ionic conductivity of Agx(GeSe3)1-> ics 123 (1999) 259-269.	
*	СТЗ			A.; Klabes, R.; Gro -Cryst. Solids 124	tzschel, R., Silver photodiffusion in amorphous (1990) 186-193.	
*	CU3		V., On th	e origin of p-type c	conductivity in amorphous chalcogenides, J. Non-Cry	st.
*	CV3	Kolobov, A. 137-138 (19	-		r in vitreous chalcogenide films, J. Non-Cryst. Solids	
*	CW3	Non-Cryst.	Solids 19	4 (1996) 256-259.		s, J.
*	CX3				legab, N.A.; Abdel-Aziz, M.M., Memory switching in iconductor films, Thin Solid Films 240 (1994) 143-14	ô.
*	CY3	Congress o	n Glass,	Volume 2, Extende	n films of selenium rich Ge-Se glasses, International ed Abstracts, July 2001, pgs. 8-9.	
*	CZ3	2000	•	•	Metallization Cell Technology Description, February 1	
*	CA4			xon Technologies Inc., April 6, 2000	Corp. and Arizona State University, Presentation to	
*	CB4				nable Resistance Changes In Metal-Doped ty Proceedings, Volume 99-13, 1999, pgs. 298-309.	
*	CC4	Superlattice	s and Mi	crostructures, Vol.	ices based on chalcogenide solid solutions, 27, No. 516, 2000, pgs. 485-488.	
*	CD4	Kozicki et a 63 (2002) p			tion in Ag-Ge-Se glasses, Microelectronic Engineeri	ng
*	CE4	devices: m 16-19.	emory an	d switching mecha	.; Panwar, O.S.; Dumar, A., Amorphous semiconduc anism, J. Instn Electronics & Telecom. Engrs 27 (198	
*	CF4	chalcogenic	de glasse	s, Indian Journal o	oach to study the memory and threshold switching of pure & appl. phys. 29 (1991) 303-304.	
*	CG4	with blockin (1975) K12	ig Al cont 9-K132.	acts influenced by	thermal electrical polarisation of amorphous GeSe fil Poole-Frenkel conduction, Phys. Stat. Sol. (a) 29	
*	CH4	Appl. Phys.	Lett. 46 ((1985) 543-545.	R., Photoinduced diffusion of Ag in GexSe1-x glass,	
*	CI4	Matsushita, system, Jar	T.; Yama b. J. Appl.	agami, T.; Okuda, I Phys. 11 (1972) 1	M., Polarized memory effect observed on Se-SnO2 1657-1662.	
*	CJ4	selenium th	in films, J	lpn. J. Appl. Phys.		
*	CK4				eversible and irreversible electrical switching in TeO ique IV 2 (1992) C2-185 - C2-188.	2-
*	CL4				als in amorphous chalcogenides and the effects o Phys. C.: Solid State Phys., pp. 4055-4075 (1987)f	

Sul	Substitute for form 1449B/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT (use as many sheets as necessary)	Complete if Known			
				Application Number 10/618,824 Filing Date July 14, 2003 First Named Inventor Terry L. Gilton Group Art Unit N/A Examiner Name Not Yet Assigned	10/618,824
١N	NFORMATION	1 DI	SCLOSURE	Filing Date	July 14, 2003
S	STATEMENT I	3Y /	APPLICANT	First Named Inventor	Terry L. Gilton
_				Group Art Unit	N/A
	STATEMENT BY APPLICANT (use as many sheets as necessary)			Examiner Name	Not Yet Assigned
Sheet	10	of	12	Attorney Docket Number	M4065.1006/P1006-B

Sheet		10	of	12	Attorney Docket Number	M4065.1006/P1006-B	
*	CM4	M/Se struc	tures (M=N	i,Bi), Mat. Chem.	And Phys. 28 (1991)		
*	CN4	and constr	aint theory,	J. Non-Cryst. Sol	ids 240 (1998) 1-21.	rming tendency in chalcogenides	
*	CO4				oration in Ge-Se glas Solids 299-302 (2002	ses used in programmable 2) 1023-1027.	
*	CP4	(1973) 423	3-432.		, ,)2Se, J. Phys. Soc. Japan 34	
*	CQ4					Japan 13 (1958) 317.	
*	CR4	(1959) 996	6-1002.			Se, Journal Phys. Soc. Japan 14	
*	CS4	(1968) 1-1	7.			ions, J. Non-Cryst. Solids 1	
*	CT4				M.; Suzuki, M., Nonvo on. J. Appl. Phys. 32 (latile memory based on phase 1993) 564-569.	
*	CU4	nonvolatile	memory ce			, A.; Suzuki, M., Submicron in chalcogenide glasses, Jpn. J.	
*	CV4					., Electrical and optical Phys. 15 (1976) 849-853.	
*	CW4					ng the effect of topology on Rev. B 54 (1996) 4413-4415.	
*	CX4	Neale, R.O	6.; Aseltine, sactions on	J.A., The applicate electron dev. Ed-2	tion of amorphous ma 20 (1973) 195-209.	terials to computer memories,	
*	CY4					nations in amorphous ions 2 (1971) 641-645.	
*	CZ4		, S.R., Reve 21 (1968) 1		witching phenomena	in disordered structures, Phys.	
*	CA5					E., New amorphous-silicon Proc. 129 (1982) 51-54	
*	CB5				Photo-induced structur ctors, Phil. Mag. B 52	ral and physico-chemical changes (1985) 347-362.	
*	CC5			er, P.G.; Hajto, J. nics 73 (1992) 89		J., Switching in amorphous	-
*	CD5					lution Lithography and Sub- p. 447-451 (M. Reed ed. 1989).	
*	CE5	Pearson, A	A.D.; Miller, 14 (1969)	C.E., Filamentary 280-282.	conduction in semico	onducting glass diodes, App.	
*	CF5	Pinto, R.; I	Ramanatha	n, K.V., Electric fie	eld induced memory s Phys. Lett. 19 (1971) 2	witching in thin films of the 221-223.	
*	CG5	Popescu,	C., The effe	ct of local non-uni	formities on thermal s	switching and high field behavior cs 18 (1975) 671-681.	
*	CH5	Popescu, phenomen	C.; Croitoru	, N., The contribut Cryst. Solids 8-10	tion of the lateral them (1972) 531-537.	mal instability to the switching	
*	CI5	Popov, A.I	.; Geller, I.K	H.; Shemetova, \	/.K., Memory and thre a) 44 (1977) K71-K73	eshold switching effects in	
*	CJ5	Prakash, S	S.; Asokan,		asily reversible mem	ory switching in Ge-As-Te	
*	CK5	Rahman, S	S.; Sivarama (1992) 219-	a Sastry, G., Elect	tronic switching in Ge	-Bi-Se-Te glasses, Mat. Sci. and	
*	CL5	Ramesh, k	K.; Asokan,	S.; Sangunni, K.S	.; Gopal, E.S.R., Elec	ctrical Switching in germanium	

Under the	Paperwor	k Reduction Act of 1995, no persons are required to res	pond to a collection of inform	ation unless it contains a valid OMB control number						
Subs	titute for fo	orm 1449B/PTO	Complete if Known							
			Application Number	10/618,824						
IN	FORI	MATION DISCLOSURE	Filing Date	July 14, 2003						
1		MENT BY APPLICANT	First Named Inventor	Terry L. Gilton						
			Group Art Unit	N/A						
1	(us	se as many sheets as necessary)	Examiner Name	Not Yet Assigned						
Sheet		11 of 12	Attorney Docket Number	M4065.1006/P1006-B						
		Italijusida alaasaa danad usith Cu and An	Anni Dhua A 60 (100	00) 424 425						
	CM5	telluride glasses doped with Cu and Ag, Rose,M.J.;Hajto,J.;Lecomber,P.G.;Gage								
	CIVIS	silicon analogue memory devices, J. Nor								
*	CN5	Rose,M.J.;Snell,A.J.;Lecomber,P.G.;Haj volatility in a -Si:H memory devices, Mat.	to,J.;Fitzgerald,A.G.;C . Res. Soc. Symp. Pro	Owen,A.E., Aspects of non- oc. V 258, 1992, 1075-1080.						
*	CO5	Schuocker, D.; Rieder, G., On the reliabi Non-Cryst. Solids 29 (1978) 397-407.	lity of amorphous cha	Icogenide switching devices, J.						
*	CP5	Sharma, A.K.; Singh, B., Electrical conduvacuum, Proc. Indian Natn. Sci. Acad. 46		s of evaporated selenium films in						
*	CQ5	Sharma, P., Structural, electrical and opti and applied phys. 35 (1997) 424-427.		er selenide films, Ind. J. Of pure						
*	CR5	Shimizu et al., The Photo-Erasable Memory S 46 B. CHEM SOC. JAPAN, No. 12, pp. 3662-336	55 (1973).							
; ~ *),	CS5	Snell, A.J.; Lecomber, P.G.; Hajto, J.; Ro	Rose, M.J.; Owen, A.E.; Osborne, I.L., Analogue nemory devices, J. Non-Cryst. Solids 137-138 (1991)							
*	CT5	Snell, A.J.; Hajto, J.;Rose, M.J.; Osborne, L.S.; Holmes, A.; Owen, A.E.; Gibson, R.A.G., Analogue memory effects in metal/a-Si:H/metal thin film structures, Mat. Res. Soc. Symp. Proc. V 297, 1993, 1017-1021. Steventon, A.G., Microfilaments in amorphous chalcogenide memory devices, J. Phys. D:								
*	CU5	Steventon, A.G., Microfilaments in amorphous chalcogenide memory devices, J. Phys. D: Appl. Phys. 8 (1975) L120-L122.								
*	CV5	teventon, A.G., The switching mechanisms in amorphous chalcogenide memory devices, J. on-Cryst. Solids 21 (1976) 319-329.								
*	CW5	Non-Cryst. Solids 21 (1976) 319-329. Stocker, H.J., Bulk and thin film switching and memory effects in semiconducting chalcogenide plasses, App. Phys. Lett. 15 (1969) 55-57.								
*	CX5	Stocker, H.J., Bulk and thin film switching and memory effects in semiconducting chalcogenide glasses, App. Phys. Lett. 15 (1969) 55-57. Fanaka, K., Ionic and mixed conductions in Ag photodoping process, Mod. Phys. Lett B 4 (1990) 1373-1377.								
*	CY5	Tanaka, K.; lizima, S.; Sugi, M.; Okada, phenomenon in chalcogenide amorphou 389.								
*	CZ5	Thornburg, D.D., Memory switching in a (1973) 3-15.	Type I amorphous ch	alcogenide, J. Elect. Mat. 2						
*	CA6	Thornburg, D.D., Memory switching in ar (1972) 113-120.	morphous arsenic trise	elenide, J. Non-Cryst. Solids 11						
*	СВ6	Thornburg, D.D.; White, R.M., Electric field in amorphous arsenic triselenide, Journal								
*	CC6	Tichy, L.; Ticha, H., Remark on the glass J. Non-Cryst. Solids 261 (2000) 277-281	s-forming ability in Ge	xSe1-x and AsxSe1-x systems,						
*	CD6	Titus, S.S.K.; Chatterjee, R.; Asokan, S., glasses, Phys. Rev. B 48 (1993) 14650-	Electrical switching a	and short-range order in As-Te						
•	CE6	Tranchant, S.; Peytavin, S.; Ribes, M.; Flank glasses Ag-Ge-Se: lonic conduction and relations in fast ion and mixed conductor symposium. 9-13 September 1985.	x,A.M.;Dexpert,H.;Lag exafs structural inves s Proceedings of the	stigation, Transport-structure 6th Riso International						
*	CF6	Tregouet, Y.; Bernede, J.C., Silver move effects, Thin Solid Films 57 (1979) 49-54		films: switching and memory						
*	CG6	Uemura, O.; Kameda, Y.; Kokai, S.; Sato Ge0.4Se0.6, J. Non-Cryst. Solids 117-1	ow, T., Thermally indu 18 (1990) 219-221.							
*	СН6	Uttecht, R.; Stevenson, H.; Sie, C.H.; Gr filament formation in As-Te-Ge glass, J.	iener, J.D.; Raghavan	n, K.S., Electric field induced 1970) 358-370.						
*	CIE	Viges C. Lefrancoia C. Floury C. And								

Viger, C.; Lefrancois, G.; Fleury, G., Anomalous behaviour of amorphous selenium films, J.

CI6

Su	Substitute for form 1449B/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT (use as many sheets as necessary) neet 12 of 12	Complete if Known			
"			Application Number	10/618,824	
11	VFORMATION	1 DI	SCLOSURE	Filing Date	July 14, 2003
5	STATEMENT I	3Y A	APPLICANT	First Named Inventor	Terry L. Gilton
				Group Art Unit	N/A
	(use as many sh	eets as	necessary)	Examiner Name	Not Yet Assigned
Sheet	12	of	12	Attorney Docket Number	M4065.1006/P1006-B

Sileet		12	01	12	Allomey Docket Number	TW14003.1000/F 1000-B			
<u> </u>	Т	Non-Cryst	Solids	33 (1976) 267-272.		<u>. </u>			
*	CJ6	Vodenicha M system,	rov, C.; Mat. C	Parvanov,S.; Petkov, hem. And Phys. 21 (19	989) 447-454.	currents in the thin-film M-GeSe-			
*	CK5	Metal/silici	de antif	use, IEEE electron de	v. Lett. 13 (1992)471-				
*	CL5	App. Phys.	Lett. 1	6 (1970) 72-73.		amorphous semiconductors,			
* :	СМ6	Ag As0.24 145 (1998)	S0.36A 2971-2	g0.40 Ag System prep 2974	pared by photodissolut	alent circuit modeling of the tion of Ag, J. Electrochem. Soc.			
*	CN6	multifracta	aggre	gates, Ph.D. Dissertati	on, ASU 1998	ctrochemical deposition of			
*	CO6	Tg, with av behavior in Solids 151	erage on the slope (1992)	coordination number, ope dTg/d <m> at the 149-154.</m>	<m>, in network glass rigidity percolation thr</m>	of glass transition temperature, es: evidence of a threshold reshold (<m>=2.4), J. Non-Cryst.</m>			
*	CP6	Vol. 410, A	April 200	01, pp. 1070-1073.		in Solid Electrolytes", Nature,			
*	CQ6	Doped Wit	h Ag", <u>I</u>	Physica Status Solidi,	Vol. (a), No. 16, (1980				
*	CR6	Doped With Ag", Physica Status Solidi, Vol. (a), No. 16, (1980) K187-K190 Y. Hirose et al., "Polarity-Dependent Memory Switching and Behavior of Ag Dendrite in Ag-Photodoped Amorphous As2-s3 Films", J. Appl. Phys., Vol 47, No. 6, June 1976, pp. 2767-2772 A.V. Kolobov et al., "Photodoping of Amorphous Chalcogenides by Metals", Advances in							
*	CS6		A.V. Kolobov et al., "Photodoping of Amorphous Chalcogenides by Metals", <u>Advances in Physics</u> , 1991, Vol. 40, No. 5, pp. 625-684 M. Mitkova et al., "Dual Chemical Role of Ag in an Additive in Chalcogenide Glasses", <u>Physical</u>						
*	СТ6			"Dual Chemical Role of ol. 83, No. 19, pp. 384		Chalcogenide Glasses", Physical			
*	CU6		nd/or R			chnique for Use with Wafers ol. 16, No. 6, Nov/Dec 1979, pp.			
*	CV6	K. L. Tai e	t al., "In	organic Resist System	ns for VLSI Microlithog	graphy", Bell Laboratories, pp. 9-			
*	CW6	K. L. Tai e		ubmicron Optical Litog Sci. Technol., Vol. 17,		anic Resist/Polymer Bilevel), pp. 1169-1176			
*	CX6	A. Yoshika Journal of	wa et a Applied	al., "Angstroms Resolu I Physics, Vol. 20, No.	tion in Se-Ge Inorgan 2, Feb. 1981, pp. L81	ic Photoresists", <u>Japanese</u> I-L83			
*	CY6	36, No. 1,	Jan. 19	80, pp. 107-109		hotoresist", <u>Appl. Phys. Lett</u> ., Vol.			
*	CZ6	31, No. 3,	Aug. 19	977, pp. 161 <u>-</u> 163		Contrast", Appl. Phys. Lett., Vol.			
*	DA1	A. Yoshika	wa et a	al., "A Novel Inorganic s. Lett., Vol. 29, No. 10		Ag Photodoping in Se-Ge Glass 377-679			
L		1					<u> </u>		

Examiner Date	
Signature Considered Considered	