

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Power System Operation & Control Subject Code: 17643

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No	Q.N.		Scheme
1.	(A)	Attempt any THREE:	12
1.	(a)	State and explain different types of bases with reference to power	4M
	(a)	system.	4141
	Ans.	In load flow studies refer to power system, two out of four quantities are specified and remaining two are required to be obtained through load flow solutions. Depending upon which quantities have been specified, the buses are classified as follows. I. Load Bus: - At this bus power is injected or delivered to load. Hence real & reactive component of power is specified. At this bus voltage is allowed to vary within the permissible limit and phase angle '\delta' is not important from consumer's point of view. This is also called as PQ bus. Power injected from bus is considered positive. II. Generator bus: - At this bus power generated is injected into the system. Hence the magnitude of voltage corresponding to its	1M for each

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

	rating are specified from load flow solution and it is required to find	
	out Q & S. This is also called as PV bus.	
	III. Voltage Control bus: This bus generally considered as PV bus, but there is physical difference. Voltage control bus has voltage control capabilities and uses tap-changing transformer & static VAR compensators whereas generator bus has generator. Here P $_{\rm G}$ =0 & Q $_{\rm G}$ =0, hence P $_{\rm i}$ = -P $_{\rm D}$, Q $_{\rm i}$ = -Q $_{\rm D}$.V $_{\rm i}$ are known and $\delta_{\rm i}$ is unknown.	
	IV Slack Or Swing Or Reference Bus: - In power system power is	
	injected by generator bus and power is delivered or ejected at Load	
	bus. So whatever losses takes place in the system remains unknown, until the load flow solution is complete. Hence one of the generator	
	buses is made to take additional real and reactive power to supply	
	transmission losses. This bus is known as slack or swing bus. At this	
	bus the magnitude of bus voltage and phase angle are specified while P & Q are obtained through the load flow solution.	
(t		4M
	supply.	
Aı	1 0 11 0	
	i. In most of the industries, Induction motor is used as common drive, which runs at speed that is directly related with frequency.	Any 4
	(N= 120f/p) variation in frequency affects the quality of the	1M each
	product and rate of production.	
	ii. Induction motor used as common A.C. drives though has rigid construction but due to variation in supply frequency, life of	
	induction motor reduces by 500 Hrs. They are not sensitive for	
	small variation in the supply frequency. i.e. of the order of 50 ± 2	
	Hz.	
	iii. In railway stations, the electric chokes are driven by single-phase synchronous motor, the speed of the synchronous motor depends	
	on supply frequency directly. Hence it needs constant frequency	
	supply for all 24 Hrs. of the day. If frequency falls by 1 hr, then	
	clock falls back by 15 min. & it takes no. of hours to reduce the	
	error to zero.	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

242	,		
		require frequency constant or to a tolerance of \pm 0.25 per min. v. Electric gear systems used in industries requires the frequency 49.5 Hz to 50.5 Hz range.	
	(c)	Define the 'driving point admittance' and 'transfer admittance'.	4M
	Ans.	In power engineering, nodal admittance matrix or admittance matrix or Y Matrix or Y_{bus} is an $n \times n$ matrix describing a power system with n buses.Nodal equation for system is given by I bus = Y bus V bus Where , I bus = bus current vector and V bus = bus voltage vector Y bus - bus admittance matrix = $\begin{vmatrix} Y_{11}Y_{12} \\ Y_{21}Y_{22} \end{vmatrix}$	
		For a two bus system these nodal equations can be written as $I_1 = Y_{11} \ V_1 + Y_{12} \ V_2$ $I_2 = Y_2 \ V_1 + Y_{22} \ V_2$	
		Here, $Y_{11} = \frac{11}{V_1}$ when $V_2 = 0$	
		It is the self admittance of bus-1 as the ratio of curent at bus -1 (I_1) to	
		voltage at bus- $1(V_1)$, when bus-2 is short circuited with the grounds.	
		It is known as Driving point admittance.	
		$Y_{12} = \frac{11}{V2}$ when $V_1 = 0$	Driving
		It is the admittance impressed at bus -1 as the ratio of of curent at bus -1 (I_1) to voltage at bus-2 (V_2) when bus-1 is shorted with grounds. It isknown as Transfer admittance	point admittan ce 2M
		OR	
		Driving point admittance: All diagonal elements of Y_{bus} admittance matrix is called as short circuit self-admittance or driving point admittance. It is equal to sum of all line admittances and line charging admittance connected to the bus. For a three bus system, $Y_{11} = y_{11} + y_{12} + y_{13}$	
		Where y ₁₁ – line charging admittance	
		y ₁₂ – line admittance between bus1 & bus2	
		y ₁₃ - line admittance between bus2 & bus3	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

		Transfer admittance: All off diagonal elements of Y _{bus} admittance matrix is called as short circuit transfer admittance or mutual	T. C			
		admittance. It is equal to negative of line admittance connected between reference buses.	Transfer admittan ce 2M			
		$Y_{12} = -y_{12}$ and $Y_{12} = Y_{21}$				
	(d)	Explain with example 'large disturbances' and 'small	4M			
		disturbances' referred to power system stability.				
	Ans.	Large disturbances: The disturbance in power system which cannot				
		be represented by linear or algebraic equations	D (* 14			
		Example:	Definitio			
		Sudden rise/fall in power demand by large value. Fig. 1.	n 1M			
		• Failure of major equipment such as transformer, generator.	each			
		Switching off major transmission lines EHV line, HVDC				
		lines.	Example			
		Occurrence of fault, loss of synchronism	1M each			
		Small disturbances: The disturbance in power system which can be				
		represented by linear equations or algebraic equations for the purpose				
		of analysis.				
		Example:				
		Small rise/fall in power demand				
		Charging setting points of voltage control equipment				
		Charging the settings of excitation system				
		Changing settings of relays/ switch gears in protection				
		systems.				
1.	(B)	Attempt any ONE:	06			
	(a)	State data required for Load flow studies.	6M			
	Ans.	Following Data are required for load flow analysis:				
		1. System data : It includes: Single line diagram system of a	A C			
		power, number of buses-n, number of PV buses, number of	Any 6 1M each			
		loads, number of transmission lines, number of transformers,	1 w each			
		number of shunt elements, the slack bus number, voltage				
		magnitude of slack bus (angle is generally taken as 00),				
		tolerance limit, base MVA, and maximum permissible number				
		of iterations.				
		2. Generator data: No. of generating stations connected in the				
		systemready to generate the required amount of power and their				

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Power System Operation & Control Subject Code: 17643

time duration should be available. Each generators rating, maximum& minimum limits of generation, their characteristics, and excitation control details are made available.

- 3. **Transmission line data** For every transmission line connected between buses I and k the data includes the starting bus number i, ending bus number *k*,
 - Line parameters .resistance of the line, reactance of the line and the half line charging admittance. Series impedance (z) in per unit, shunt admittance (Y) in per units,
 - Thermal limits of the line.
 - Length of the line.
 - Identification of each line and its '∏' equivalent circuit.
- **4. Transformer data:** Type of transformer such as distribution transformer / power transformer, auto-transformer, tap-changing transformer (on-line or ff-line). Also ratings, % impedance and tap setting points, tap setting on HV /LV /both sides are required. (Quite often it may be necessary to adjust voltages on one or both sides of the transformers to maintain the potential levels at the neighboring buses within specified limits. For achieving this, auto and double winding transformers with provision for tap changing on H. V. side or used so as to facilitate smoother control. For every transformer connected between buses *i* and *k* the data to be given includes: the starting bus number *i*, ending bus number *k*, resistance of the transformer, reactance of the transformer, and the off nominal turns-ratio.
- **5. Bus data:** Depending upon no. of buses in the system, bus data should be made available.

Type of bus	Bus	No of	For each Bus
	data	buses	
Generator bus	P, (V)		PGi, V_i , minimum and
			maximum reactive power
			limit (Qi,min, Qi,max).
Load bus	P, Q		active power demand PDi,
			and the reactive power
			demand QDi.
Slack bus	V, δ		Generator ratings which is
			assume to be connected to
			slack bus

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

	Voltage	P Q V	Voltage control equipment	
	control bus		used and its rating, max. &	
			min. limits	
	6. Some of lines	s may be	tuned with reactive compensating	
	equipment, for s	tabilizing t	the voltage level. Their ratings and	
	setting values sho	_		
	•		s to be carried out for a specific load	
		•	tive manner in which generation can be	
			uses by ensuring the desired voltage	
			olutions is possible for different sets of	
			refore necessary to define and objective	
	of load flow analy			
(b)	Define 'Steady st	ate stabilit	ty' 'Transient state stability' and	6M
	'Overall stability	of power	system.	
Ans.	1. Steady state st	ability is th	ne ability of the power system to regain	
	and maintain equi	librium cor	ndition (synchronous speed) after	
			isturbance such as small load variation	
			occurs, then the phenomenon is	
	_		<u> </u>	2M for
	known as steady state stability. OR			
	_			each
	Steady state stability is the stability the power system attains after			
	small disturbance. Suppose a small amount of load is disconnected.			
	Then there is a mismatch in the power system so power flow will			
	fluctuate, voltage in diff part will rise suddenly & for small duration			
	frequency mismatch will be there. But after a very short duration			
	again the power s	ystem will i	regain its steady state.	
	2. Transient stat	oility is the	ability of the power system to regain or	
	maintain equilibri	um conditi	ons after experiencing a large & sudden	
	disturbance.			
			OR	
	Transient stabili	ty correspo	onds to the stability attained after a large	
			where a fault occurs & suddenly a large	
			Then there is a large unbalance in the	
	*	• •	the system attains the stability.	
	system. Then also	Stadually	and by stern attains the stability.	
	3 Over all stab	ility. It is	the stability of a power system when	
		•	ing generator has been lost. The normal	
	•			
	operating conditi	on can be	reestablished without disconnection of	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Power System Operation & Control

Subject Code:

		major elements. Modern power system uses automatic control devices and therefore it is to be tested for its ability to remain in synchronism under steady state as well as transient conditions. Both prior to and after the disturbance. Such operating condition of system is called as Overall stability.	
2.	(a)	Attempt any FOUR: Derive the relation between real power and frequency in a single	16 4M
	Ans.	two bus power system. Consider a simple two bus system in which power is transmitted from bus-1 to bus-2 through a short transmission line.	
		Bus-1 Z Bus-2 Let $V_1 L\delta_1$ - the voltage at bus-1 $V_2 L\delta_2$ - the voltage at bus-2 Z - total series impedance of the trans. Line per phase $= R + j X$ Since $R < <<< X$, $Z = j X$	<i>1M</i>
		Let I – current through the line per phase $= \frac{V1L\delta 1 - v2L\delta 2}{z} = \frac{v1L\delta 1 - v2L\delta 2}{iX}$	
		$S_{12} - \text{complex power transferred from bus-1 to bus-2} = V_1 I_1^*$ $= \underbrace{V_1^2 - V_1 V_2 L(\delta_1 - \delta_2)}_{-j X} \times \underbrace{j X}_{j X} = \underbrace{j X V_1^2 - j X V_1 V_2 L(\delta_1 - \delta_2)}_{X^2}$ $= \underbrace{j V_1^2 - j V_1 V_2 L(\delta_1 - \delta_2)}_{X}$ $= \underbrace{j V_1^2 - j V_1 V_2 (\cos \delta - j \sin \delta)}_{X} \text{ where } \delta_1 - \delta_2 = \delta$ $= \underbrace{V_1 V_2 \sin \delta}_{X} + \underbrace{j (V_1^2 - V_1 V_2 \cos \delta)}_{X} = P_1 + \underbrace{j Q_1}_{X}$	<i>1M</i>

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Power System Operation & Control

Subject Code:

	So now, $P_1 = \frac{V_1 V_2 \sin \delta}{X}$ $Q_1 = \frac{(V_1^2 - V_1 V_2 \cos \delta)}{X}$ 2	
	Similarly, we can also calculate complex power S_{21} that flows from bus-2 to bus-1. We have,	
	$S_{21} = V_2 I_2^* = V_2 L\delta_2 \left(\underline{V_2 L - \delta_2 - V_1 L - \delta_1} \right)$ $j X$	<i>1M</i>
	$= \frac{V_1 V_2 \sin \delta}{X} + \frac{j (V_1 V_2 \cos \delta - V_2^2)}{X} = P_2 + j Q_2$	
	Therefore, $P_2 = \frac{V_1 V_2 \sin \delta}{X}$ 4	
	From equations 1 & 3, we get	
	$P_1 = P_2 = \underbrace{V_1 V_2 \sin \delta}_{X}$ Therefore, net power flow through the line is $P = \underbrace{V_1 V_2 \sin \delta}_{X}$	
	For given system X is constant. If voltages at both ends of the line are maintained constant i.e. $V_1\&V_2$ remains same.	<i>1M</i>
	Then, $P \propto Sine\delta$	
	This shows that variation in real power flow results in variation of supply frequency. P is maximum when $\sin \delta = 1$ $P = P_{max}$ when $\delta = 90^{0}$	
	But to operate the power system under stability condition the value δ is maintained between 35° to 45°.	
(b)	State the types of reactive power compensating equipments used	4M
Ans.	for 'loads' and 'transmission lines'. Load compensation: Since most loads are inductive and consume	
Alis.	lagging reactive power, the compensation required is usually supplied	
	by leading reactive power. Shunt compensation of reactive power can	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Power System Operation & Control

Subject Code:

17643

be employed either at load level, substation level, or at transmission level.

SVC can be used to compensate the reactive power to the loads, like furnaces, roller mills. The load power factor is measured from voltage and current signals, compared with a reference signal. Error signal controls the firing angle of TCR or switching of TSC to generate the required reactive power.

2M for each

Unbalanced loads are created in traction loads, electric arc furnaces. The SVC regulator consists of separate reactive power measurement control and firing pulse generation circuits for each phase to enable individual phase control. The firing angle for each phase will be different depending on its load conditions thus effecting unbalanced control.

Line compensation: Excess amount of reactive power generated in the network causes rise in voltage level, sometimes beyond control. To reduce this rise of voltage level, reactive compensating equipment's are to be connected which absorbs the reactive power from the line. This process is called line compensation.

A device that is connected in parallel with a transmission line is called a shunt compensator, while a device that is connected in series with the transmission line is called a series compensator. We shall assume that the shunt compensator is always connected at the midpoint of transmission system, while the series compensator can be connected at any point in the line. It can be **capacitive** (leading) or **inductive** (lagging) reactive power, although in most cases compensation is capacitive.

OR

Reactive power compensating equipment for loads:

- 1. Shunt capacitors near the loud terminals
- 2. Series capacitors to feed the leading VAR to loud so that p.f. can be improve.
- 3. Series reactors to feed the lagging VARs to loud such as induction furnace, welding transformation.
- 4. Staic VAR system
- 5. Synchronous phase modifier It is a synchronous motor under no. load runs in parallel with load.
- 6. SVR with TCR/TSC used in industries like furnaces, roller mills.

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

	For transmission lines:			
	1. Shunt capacitors: In receivi	ng end substations, distribution		
	substations and in switching sub	stations. Connected either to the		
	tertiary winding of power transform	ners or to the bus bars.		
	2. Shunt reactors- Used to compensate ferrenti effect, effect of			
	capacitance parameter of HV & EHV transmission line.			
	3. Series reactors			
	4. Static VAR system – in EHV, H	V tr. Lines		
	5. Synchronous modifiers			
	6. Static synchronous compensator	(STATCOM)		
(c)	State SLFE for simple two bus sy		4M	
Ans.	For a two bus power system, Load f	-		
	$V_1 \angle \delta_1$ be the voltage at bus 1, $V_2 \angle$	-		
	\mathbf{Y}_{11} – self admittance of bus-1 \mathbf{Y}_{22}			
	$\mathbf{Y}_{12} = \mathbf{Y}_{21}$ mutual admittance betw		1M for	
	Then real power at bus -1	con ous recous 2	each	
	$P_1 = PG_1 - PD_1 = V_{12} Y_{11} Cos \alpha_{11} +$	$Y_{12} V_2 V_1 Cos (\delta_2 - \delta_1 + a_{12})$	equation	
			1	
	Reactive power at bus -1			
	$Q_1 = QG_1 - QD_1 = -[V_{12} Y_{11} Sin \alpha_{11} + Y_{12} V_2 V_1 Sin (\delta_2 - \delta_1 + \alpha_{12})]$			
		11 · 2 12 · 2 · 1 · · · · (· · 2 · · · · · · · · · · · ·		
	Real power at bus -2			
	$\mathbf{P_2} = \mathbf{PG_2} - \mathbf{PD_2} = \mathbf{Y_{21}} \mathbf{V_2} \mathbf{V_1} \mathbf{Cos} ($	$\delta_1 - \delta_2 + \alpha_{21} + V_{22} V_{22} Cos\alpha_{22}$		
		01 02 : 321) : 122 222 233322		
	Reactive power at bus -2			
	$Q_2 = QG_2 - QD_2 = -[Y_{21} V_2 V_1 Sin (\delta_1 - \delta_2 + \alpha_{21}) + V_{22} Y_{22} Sin \alpha_{22}]$			
	$Q_2 = QG_2 QD_2 = \left[\begin{array}{ccc} 1_{21} & \mathbf{v}_2 & \mathbf{v}_1 & \mathbf{sin} & \mathbf{v}_2 & \mathbf{v}_{21} & \mathbf{v}_{22} & 1_{22} & \mathbf{sin} & \mathbf{w}_{221} \\ \end{array} \right]$			
	0	R		
	For a simple two bus system Load			
	as	The word of the second		
	SLFE equation:			
	S1 *= V1 2 Y11 Loe11 +Y12 V2	$S_2 *= V_2 _2 Y_{22} Loe_{22} + Y_{21} V_2 V_1$		
	$V_1L(\delta_2-\delta_1)$	$(\delta_1 - \delta_2)$		
	$= P_1 - j Q_1$	$= P_2 - j Q_2$		
	P ₁ = V ₁ 2 Y ₁₁ Cos 0e ₁₁ +Y ₁₂ V ₂ V ₁	P ₂ = V ₂ 2 Y ₂₁ Cos 0e ₂₂ +Y ₂₁ V ₂ V ₁		
	$Cos (\delta_2 - \delta_1) Q_1 = (V_1 2 Y_{11} Sin 0e_{11})$	Cos $(\delta_1 - \delta_2)$ Q ₂ = $(V_2 \ 2 \ Y_{22} \ Sin \ oe_{11})$		
	$+Y_{12} V_2 V_1 Sin (\delta_2 - \delta_1)$	$+Y_{12} V_2 V_1 Sin (\delta_1 - \delta_2)$		
	- (- (
l			l .	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

(d)	State the information that can be obtained from Load flow	4M
Ans.	studies. The information that can be obtained from the load flow studies	
Alls.	are:	
	(1) We can predetermine real power (MW), reactive power	
	(MVAR), voltage and power angle \delta at any point in the network.	
	(2) Real power flow in the system provides information about real	
	power flow balance and its effect in the on the system network.	Any 4
	(3) Reactive power flow at various parts in the system provides	1M each
	information about setting points of reactive compensating	
	equipments.	
	(4) We can obtain information about voltages at various buses in	
	the system and so determine the variation in bus voltages at	
	specific buses and operation of voltage control equipments. That means, it also gives information for choice of appropriate	
	rating and tap-setting of the power transformer in the system	
	for maintaining voltage profile at specific buses.	
	(5) We can obtain operational currents of all tr. lines and obtain the	
	comparison with their thermal limits.	
	(6) We can obtain impact of any change in generation (increase or	
	decrease) on the system performance or stability condition.	
	(7) We can also study influence of any modification or extension	
	of the existing grid circuits on the system loading.	
	(8) We can study the influence of any change in conductor size and	
	system voltage level on power flow for adopting energy	
	conservation technique.	
	(9) Load flow studies provide no. of solutions and so we can obtain	
	economic power generation and optimal l load distribution among generating units connected in the system.	
	(10) Well in advance we can plan for generation of power to meet	
	the power demand throughout 24 hours of the day.	
(e)	State and explain base load equation and Line-flow equations.	4M
Ans.	Bus Loading equation: The complex power in terms of real &	
	reactive power at any k th bus can be written as	
	$S_k = V_K I_k^* = P_k + jQ_k$	
		217.2
		2M for
		each

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Power System Operation & Control

Subject Code:

17643

$$\text{And so current} \quad I_K = \frac{P_K - \ j \ Q_K}{V_{K^*}}$$

Bus current I_K is positive if flows into the system.

If the shunt elements i.e. line charging element is neglected then system model can be represented as shown in above figure, Now bus current is equal to current injected into the bus by bus power source.

$$I_{kk} = I_k$$

If the shunt elements i.e. line charging element is considered, then system model can be represented as shown in below,

Now bus current is equal to current injected into the bus by bus power source minus the current through shunt element.

$$\begin{split} I_{kk} &= I_{k-}I_{kg} \\ &= \frac{P_K - j Q_K}{V_{K^*}} - V_k Y_{kk} \end{split}$$

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Power System Operation & Control

Subject Code:

17643

Where Y_{kk} total shunt admittance

Transmission Line Flow equation:

The above two equations are called as Line flow equations, The algebraic sum of power expressed by above equations gives power loss in the line between bus k and bus-j.

Assume that current is flowing throl tr. Line from bus k to bus j.

$$I_{kj} = \frac{(v_k - v_j)}{Y} Y^1 + V_k Y/2$$

Where Y¹- line admittance

Y - line changing admittance

Now power flow from bus k to bus j is

Similarly power flow from bus j to bus k is

$$P_{jk} - jQ_{jk} = V_j^*I_{jk} = V_j^*(V_j - V_k)y^1 + V_j^*V_j^{y/2}$$

f) Ans.

State the adverse effect of instability on power system.

Due to instability of power system following effects can be observed:

- 1) As the Pd>>Pg, frequency of system varies over a wider range/beyond the limits. Hence protective scheme of generators, transformersmay trip them.
- 2) Due to fluctuation of V, F, P, Q performance of grid network reduces and power transmission capacity reduces and so consumers receive poor quality of supply.
- 3) If the system parameters are not controlled, than one by one generator will trip off and it leads major failure sometimes leads to collapsing of whole system.
- 4) As consumer receives poor quality supply the performance of their

4M

Any 4

points

1M for

each

Page 13 / 30

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

		machines reduces, production rate decreases, quality of product	
		reduces and overall there is financial loss.	
3.		Attempt any FOUR:	16
	(a)	Why do consumers demand electrical supply at constant voltage?	4M
	Ans.	The consumers demand rated supply to all equipment to his premises. Due to variation in the supply voltage the current drawn by the	
		equipment varies.	
		1. When supply voltage decreases beyond the limit the current drawn	114 C
		by equipment increases & efficiency decreases. As a result	1M for
		performance of the equipment also reduces its life.	each
		2. The induction motor which is commonly used as industrial drive develops the torque which depends on supply voltage $:T \propto V^2$.	
		Hence large variation in supply voltage leads to more variation in torque developed .So far small variation in supply voltage the performance of motor gets affected and as a result the quality of product & the process gets affected.	
		3. In the lighting system the luminous output of lamp sources depends on supply voltage. Light flux of a lamp depends on voltage, with the voltage fluctuation light flux varies strongly As supply voltage decreases the luminous output of lamp decreases with more fluctuation in supply voltage reduces life of lamp also reduces.	
		4. Nowadays the more sophisticated equipments are used e.g computers which are very much sensitive towards supply parameters. Fluctuation in supply voltages damages these instruments permanently.	
	(b)	State the advantages of reactive power compensation in power	4M
	• /	system operation.	
	Ans.	Advantages of reactive power compensation in power system	
		operation:	
		1. Maintains flat voltage profile	
		2. Better voltage regulation	
		3. Reduction in losses	Any 4
		4. Improvement of P.F	1M each
		5. Reduction in KVA demand charges	
		6. Decrease in KVA loading of generators	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

(c)	State the significance of study of load flow analysis.	4M
Ans.	Significance of study of load flow analysis:	
	Load flow studies gives magnitude & phase angle of the voltage at	
	each bus, Real and reactive power flow through tr. Lines, current flow through tr. Lines.	
	Hence load flow Studies are essential for	
	 For designing the power system. 	Any 4
	 For operation of the system. 	1M each
	 For future expansion of the system to meet increase in the 	
	demand.	
	• For inter connecting the two systems to meet the load demand.	
	• For analyzing both normal and abnormal (means outage of tr.	
	Lines or transformer or gen. units) operating conditions.	
	• For analyzing the initial conditions of the system when the	
	transient behavior of the system is to be studied.	
	Transmission lines can carry only certain amount of current and	
	we must make sure that we do not operate these links too close to	
	their stability or thermal limits so LFA helps to know the amount	
	 current flowing through various lines in the network. LFA also helps in maintaining the stability of the system by 	
	giving the information about real, reactive power flow in the	
	system.	
(d)	Write Y_{bus} matrix for 3-bus system and list out its characteristics.	4M
Ans.		
	$\begin{bmatrix} Y_{11} & Y_{12} & Y_{13} \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}$	
	The admittance matrix is $Y_{bus} = \begin{bmatrix} Y_{11} & Y_{12} & Y_{13} \\ Y_{21} & Y_{22} & Y_{23} \\ Y_{31} & Y_{32} & Y_{33} \end{bmatrix}$	<i>1M</i>
	$[Y_{31} Y_{32} Y_{33}]$	
	Where	
	Y11 = 411 + 412 + 413 4	
	Y22 = 421 + 422 + 423 &	
	733= 431+ 432 + 433.	
	Mso,	
	Y12 = Y21 = -912= -921 \$	
	713 = 731 = -413 = -434 4	
	723 = 732 = -923 = -932.	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

	Characteristics of Y _{bus} matrix:	
	1) Y _{bus} is a symmetrical matrix "n x n" matrix.	
	2) All diagonal elements Y _{ii} represent "self admittances" of bus "I".	
	3) All off diagonal elements Y _{ij} represents mutual admittance	
	between bus "I" bus "j".	
	4) With reference to mutual admittance	
	$Y_{ij} = Y_{ji}$ i.e. $Y_{12} = Y_{21}$, $Y_{13} = Y_{31}$ Hence it is a symmetrical	
	matrix.	
	5) Any element in the matrix "zero" indicates that there is not to line	
	between those buses.	
	$Y_{21} = Y_{12} = 0$ no tr. line between bus I bus II or outage	Any 3
	of tr. line $Y_{ik} = Y_{ki} = 0$ if i k between but I bus II i k are not	characte
	connected.	ristics
	6) $Y_{bus} = (Z_{bus})$ where Z_{bus} bus impedance matrix.	1M each
	7) All elements are complex numbers.	
	8) Self admittances are defined as $Y_{11} = Y_{11} + Y_{12} + Y_{13}$	
	Where Y_{11} – line changing admittance Y_{12} , Y_{13} – line admittances	
	Y_{11} = sum of line changing admittance and total line admittances	
	connected to a bus.	
	9) Mutual admittances are defined as	
	$Y_{12} = -Y_{12} = -Y_{21} = Y_{21} Y_{13} = -Y_{13} = Y_{31} i.e.$ mutual	
	admittance is negative of line admittance between two buses.	
	10) All mutual admittances are negative complex numbers.	
(e)	Draw neat & labelled power angle diagram of a power system.	4M
	(i) Considering losses in the line.	
	(ii) Neglecting losses in the line.	
Ans.		
		İ

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Power System Operation & Control

Subject Code:

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

		network. Large disturbance means	
		 occurrence of major faults such as L-L, L-L-G, faults 	Any 4
		sudden increase in large amount of power demand	1M each
		 faults following isolation of circuits / system Failure of major components of power system (Generators, 	
		transformer, transmission lines, circuit breakers etc).	
		 Switching off or ON of major transmission and distribution lines 	
		 Transients and harmonics 	
4.	(A)	Attempt any THREE:	12
	(a)	Explain steady state stability condition with the help of power	4M
	A	angle diagram for power system.	
	Ans.	A	
		POWER PO POTENTIAL POWER	
		POWER PO	Diagram
			2M
		S, So S, 90° 180°	
		Si So S2 90° LOAD ANGLE (8)	
		Suppose that generator is operating at steady state with load angle	
		δ_0 and power flow P_0 . Now $P_g = P_d$ where $P_g = p_d$ generator. And	
		Pd= power demanded. Assume loss less system. Suppose an arbitrary	E1
		change in load takes place that reduce the load angle to δ_1 and power	Explana tion 2M
		P ₁ . Now the generator output is greater than load power that is at generating station generator input is greater than its output power so	tion 2M
		speed of generator accelerate and load angle also increases. Hence the	
		system will oscillate around the load angle δ_0 and the oscillations	
		would be damped and load angle would return to its original value δ_0 .	
		A similar situation takes place if load angle increases to $\delta 2$. Now the	
		generator output power is greater than input power. So generator	
		retards, the load angle decreases and finally returns to its original	
		value δ_0 . Thus, if the system is operating at the load angle δ_0 is	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

	subjected to small arbitrary disturbing forces, then regardless the	
	direction of the force, the system returns to its original position.	
(b)	Draw neat & labeled diagram of Automatic voltage control	4M
	system.	
Ans.	Automatic Voltage Control/Automatic Voltage regulator (AVR):	
	•	
	Amplifier	
	Amplified $\int \Delta V_{DC}$	Diagram
	ΔV_{DC} Exciter Rectifier	<i>3M</i>
	V-sensor	Labeled
	↑ V _{AC}	Labetea 1M
	T G ,,,	1 IVI
	V — V	
	The automatic voltage, regulator (AVR) loop controls the magnitude	
	of the terminal voltage V. The latter voltage is continuously sensed,	
	rectified and smoothed. This D.C. signal, the resulting 'error	
	voltage', after amplification and signal shaping serves as the input to	
	the exciter which finally delivers the voltage V _f to the generator field	
	winding.	
(c)	List the methods of voltage control using transformers.	4M
Ans.	Following are the methods of voltage control in power system by	
	using transformers	Each
	1. By tap changing transformers:	method
	- Off load tap changing	<i>1M</i>
	- On load tap changing	
	2. By regulating transformers	
	3. By Booster transformers	
	4. By auto transformer5. By transformer with 1:1 ratio	
(d)	List out the functions of National Load dispatch center.	4M
Ans.	Functions of National Load Dispatch Centre:	41/1
AIIS.	Tunctions of National Load Dispatch Centre.	
	1. Supervision over the RLDCs.	
	2. Scheduling and dispatch of electricity over inter-regional links in	
LL	Out of the state o	I

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

		accordance with Grid standards specified by the Authority and Grid Code specified by the Central Commission in coordination with RLDCs. 3. Coordination with RLDCs for achieving maximum economy and efficiency in operation of National Grid. 4. Monitoring of operations and grid security of the National Grid. 5. Supervision and control over the inter regional links as may be required for ensuring stability of the power system under its control. 6. Co-ordination with Regional Power Committees for regional outage schedule in the national perspective to ensure optimum utilization of power resources. 7. Coordination with RLDCs for the energy accounting of interregional exchange of power. 8. Coordination for restoration of synchronous operation of National Grid with RLDCs. 9. Co-ordination for trans-national exchange of Powers. 10. Providing operational feed-back for National Grid planning to the Authority and the Central Transmission Utility. 11. Levy and collection of such fee and charges from the Generating Companies or the licensees involved in the power system as may be specified by the Central Commission. 12. Dissemination of information relating to operations of transmission system in accordance with directions or regulations issued by the Central Commission and the Central Government from time to time.	Any 4 1M each
4.	(B) (a) Ans.	Attempt any ONE: Explain the method of voltage control by reactive power injection. Reactive power injection method for voltage control:	06 6M
		To keep the receiving end voltage at a specified value, a fixed amount of VARS must be drawn from the line. QG = QD bus voltage is maintained at specific value. As VAR demand QD varies, a local VAR generator must be used as shown in fig. The VAR balance equation at the receiving end is now.	Concept 3M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Power System Operation & Control

Subject Code:

	Following are to different points: Generation system Transmission system Distribution system	Excitation control Series reactors Shunt reactors	Production of reactive power involves increasing the magnetic field to raise the generator's terminal voltage. To increase the magnetic field, increase the current in the field winding. Absorption of reactive power is limited by the magnetic-flux pattern in the stator, which results in excessive heating of the statorend iron, the core-end heating limit. Capacitors and inductors in HV and EHV trans. Line Static VAR system Capacitor's bank Synchronous condenser Static VAR system	Each equipme nt 1M
(b) Ans.	Social factors a Electricity consumers, ind	affect load fore nsumers i.e. lustrial consum	ners are part of society. Hence their	6M Fach
, ,	Social factors a Electricity consumers, ind activities, even	affect load fore nsumers i.e. lustrial consum ts affect the p	casting of power system: residential consumer, commercial	6M Each 1M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

- 1) Energy consumption pattern: All 24hr,s of day load on system varies as consumer has freedom to use electricity whenever they required without any prior information. Hence daily load curves differ with the day. Also energy consumption pattern of various and type of consumer differs. To satisfy all consumers power generation must be varied with time. So during forecasting of load these factors must be considered.
- 2) Holidays/week ends and week days: During power consumption pattern is nearly same but on weekends / Sundays power consumption pattern changes. Therefore their impact on load forecasting cannot be neglected. Public holidays also have considerable impact on load forecasting. Long weekend's creates more fluctuation in load demand.
- 3) School /college vacations: Vacation period changes the daily routine of children and their stay at consumes power for their activities such as watching TV, playing video games, net surfing, watching films, etc. So in residential sector more power consumes by lighting and air-conditioning systems.
- 4) Festivals and National days: During festivals like Diwali, Dashera, Christmas, Onam etc. more lightings are used for decoration purpose. This increases power consumption of residential as well as commercial sector. Hence they have to be considered for load forecasting. National days like Independence day, republic day, Maharashtra day etc. all government building are decorated with lights and more cultural programs were arranged. As power consumption is of considerable amount, their impact on load has to be considered in load forecasting.
- 5) Emergency conditions and Major accidents: If sudden large variation power demands, failure of system components, faults (line-to-line, line-to-ground) in system, causes more imbalances in power demand and supply. It will put the system in transient stability condition. Also if major accidents takes place like sunami, wind storm, earth quack, snow storm, flood etc. may affects the infrastructure of power system. And so there may be major power failure. In such situations load forecasting becomes failure.

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

5. (a) Ans.	6) Special events: Labour strike in Industry, political events, VIP visits also creates large variation in power demand. These events cannot be neglected Attempt any FOUR: Draw a neat & labelled schematic diagram of 'Automatic Load Frequency Control' system. Regulated Steam Primary Loop Steam valve controller Secondary Loop Integrated freq.error signal Integral controller Amplified signal	16 4M Diagram 3M Labeling 1M
(b)	State the functions of the following in Turbine: speed governing system- Hydraulic amplifier-speed governor.	4M
Ans.	 i. Fly ball speed governor: it senses the required change in speed by speed changer. When speed is to be increased, fly ball moves outwards and linkage mechanism moves downwards. The reverse happens when speed decreases. ii. Hydraulic amplifier: It comprises a pilot valve and main piston 	Speed governo r 2M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

	arrangement. Low power level pilot valve movement is converted into high power level piston valve movement. It is necessary to open or close the steam valve against high pressure steam.	Hydraul ic amplifie r 2M
(c)	State the need of load forecasting in power system operation.	4M
Ans.	 Need of load forecasting in power system operation: Electricity is the most preferred form of energy & electrification is an ongoing process. Demand for electricity tends to grow more rapidly for economic development Increasing demand of electricity is due to several factors such as population growth, growth of per capital income migration to urban areas and increase in energy using products. Understanding electricity demand, planning and control is critical for all countries. Power system planning involves forecast of future load of both demand and energy. Forecasting isuseful to determine capacity of generation transmission and distribution and decide generation facilities required. Load forecasting is useful for establishing policy for procurement of capital equipment and fuel. Forecasting is gaining importance due to increasing scarcity of electrical energy along with more powerful computing equipment and software. 	Any 4 points IM each
(d)	State and explain the different planning tools used for power	4M
Ans.	 system operation. Types of Planning tools: Simulation Tools: Load flow models, sc models transient stability models, production costing, adequacy calculations. Optimization tools: Optimum power, least cost expansion planning, generating expansion planning The scenario techniques: Sequence of events recording, possible outcomes, decisions, assumptions, computerize and automatic system. 	Any 2 2M each
(e)	Draw Input-Output curve of a generating unit and explain its	4M
Ans.	nature.	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Power System Operation & Control

Subject Code:

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Power System Operation & Control

Subject Code:

		$\frac{dF_1}{dP} = \frac{dF}{dP}$	-			1M
			$50 = 0.4P_2 + 40$ on system is share		ng units.	1M
		HenceP ₁	$+ P_2 = 1200MW$	(2)		
			equation 1 & 2, 60 = 0.4 (1200 - F)	$(P_1) + 40$		
		$0.3 P_1 + 5$	$50 = 480 - 0.4P_1 + 0.4P_1$	- 40		1M
		$\therefore P_1 = 6'$	71.43 MW			1M
		-1		671 12 — 52 1	0 57 MW	
6.		Attempt an	•			16
	(a)	Determine following d		ce matrix for the	e power system with	4M
			Bus Z _{line} in pu	Charging admittance in I	ou	
			1-2 0.2+j 0.85	j 0.02		
			2-3 0.3 + j 0.88	j 0.03		
			1-3 0.25 + j 1.15	j 0.04		
	Ans.		rging admittance is Y_{jj} or Y_{jk} or $Y_{jk}/2$.		cified so students can n assuming Y_{jj})	
		Bus	$\mathbf{Z}_{ ext{line}}$ in pu	\mathbf{Y}_{line} in pu	Charging	
		1 - 2	0.2 + j0.85	0.26 – j1.115	Admittance in pu j 0.02	
		$\frac{1-2}{2-3}$	0.2 + j0.83 0.3 + j0.88	0.20 - j1.113 0.347 - j1.02	j 0.02	
		1-3	0.25 + j1.15	0.18 - j0.83	J0.04	
			$Y_{11} = y$	$y_{11} + y_{12} + y_{13}$		1/ 3/4 6
			= (j0.02) + (0.2 -	- j1.115) + (0.18 -	- j0.83)	½ M for paramet er and ½
			= 0.44 - j 1.925			M for Y _{bus}

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Power System Operation & Control

Subject Code:

	$Y_{22} = y_{21} + y_{22} + y_{23}$		
	= (0.26 - j1.115) + j0.03 + (0.347 - j1.02)		
	=0.607-j2.105		
	$Y_{33} = y_{31} + y_{32} + y_{33}$		
	$= (0.18 - j0.83) + (0.347 - j \ 1.02) + j0.04$		
	$= 0.527 - j1.81$ $Y_{12} = Y_{21} - y_{12} = -y_{21}$		
	= -(0.26 - j1.115)		
	$Y_{13} = Y_{31} - y_{13} = -y_{31}$		
	= -(0.18 - j0.83)		
	$Y_{23} = Y_{32} - y_{23} = -y_{32}$		
	= -(0.347 - j1.02)		
	Required Y_{bus} is $ \begin{vmatrix} Y_{11} & Y_{12} & Y_{13} \\ Y_{21} & Y_{22} & Y_{23} \\ Y_{31} & Y_{32} & Y_{33} \end{vmatrix} $		
	$= \begin{vmatrix} (0.44 - j1.925) & (-0.26 + j1.115) & (-0.18 + j0.83) \\ (-0.26 + j1.115) & (0.607 - j2.105) & (-0.347 + j1.02) \\ (-0.18 + j0.83) & (-0.347 + j1.02) & (0.527 - j1.81) \end{vmatrix}$		
(b)	Give the advantages Y _{bus} representation in Load flow studies.	4M	
Ans.	Advantages Y _{bus} representation in Load flow studies: i. Data preparation for LFs is simple		
	ii. Its formation and modification is easy.	1M for	
	iii. Y _{bus} is a sparse matrix. (i.e. most of its elements are zero). ∴ The computer memory requirements are less. For a large power	each point	
	system more than 90% of its off diagonal elements are zero.	•	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

	iv. This is due to the fact that in power system network each bus is		
	connected to not more than 3 buses in general & y_{pq} exists only if transmission line links bus p and q.		
(c)	Write swing equation and define its parameters.		
Ans.	$rac{md^2\delta}{dt^2} = P_a = P_m - P_e$ $wherem = angular momentum,$	Equatio n 1M	
	$P_m = mechanical power input,$	Meanin	
	$P_e = electrical power output,$	g of	
	$P_a = accelerating power,$	each	
	$\delta = angular displacement of rotor$	term 3M	
(d)	Explain single area load frequency control concept.	4M	
Ans.	load-frequency control using single area case:		
	G_1 P_{G_1} P_{G_2}	Diagram IM Explana tion 3M	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

(e)	State the importance of ALFC and AGC in operation of power	4M
	system.	
Ans.	Importance of ALFC & AGC	
	i. The main objective of power system operation is to provide	
	continuous reliable supply to the consumers.	
	ii. The stability of a system depends on the balance between power	
	generation and power demand.	
	iii. The imbalance of real power reflected as variation of frequency	
	which is control by ALFC.	Any 4
	iv. The imbalance of reactive power flow reflected as variation in	1M each
	voltage profile is control by automatic voltage control system.	
	v. ALFC and AGC have a feedback loop system installed at the	
	generating station. Hence the take care off small variations in	
	power demand without allowing the frequency or voltage to cross the limit.	
	vi. The response time of this system is between 20 seconds to 1	
	minute	
(f)	State the factors that govern the load shedding pattern in a power	4M
(1)	system.	4141
Ans.	Factors that governs load shedding:	
1115	• Variations of frequency with respect to time in the event of	
	deficit and subsequent load shedding.	
	 Environmental impact on power system operations 	
	• Impact of public holiday s, festivals, social programs on power	
	demand	Any 4
	To adapt energy conservation techniques	1M each
	• For optimal utilization of energy resources	
	 To enhance use of renewable energy sources 	
	 For economical utilization of UPS, and Inverter system. 	
	 Nature of loads to be disconnected as well as their dependence 	
	on frequency and voltage	
	 Behavior of system voltage before and after load shedding 	
	 Topographical distribution of energy reserves, load centers 	
	OR	
	Factors that governs the load shedding pattern in power system	
	1) Imbalance between power demand & power generation	
	2) Sudden rise or fall in demand/ load	
	3) Major faults like 3 phase faults, L-L fault. turns into instability	
	condition.	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

MODEL ANSWER

SUMMER – 2018 EXAMINATION

Subject: Power System Operation & Control Subject Code: 17643

- 4) Sharing of power so to increase run time of critical loads.
- 5) To reduce wastage of energy & max demand
- 6) To adopt energy conservation objectives

OR

The factors governing load shedding duration:

- The imbalance between power demand and power generation due insufficient resources. To reduce effect of imbalance intentionally supply to some load are cut off.
- The sudden rise or fall in power demand leads to wide gap between demand and supply, and that results into instability in the system. To reduce effect of instability load shedding is carried out.
- Due to major faults like three phase short circuit fault, line to ground fault, failure of switch gears or major equipments instability condition occurs in the system. To reduce effect of instability load shedding is carried out.
- To reduce wastage of energy and to adopt energy conservation techniques supply to selective loads (mostly lighting loads) are shut off.
- To reduce the maximum demand of any industry or commercial complex local load shedding is carried out to reduce the peak demand and also to reduce energy bills.
- Refer to individual load; lighting control strategy is adopted for selectively reducing the output of light fixtures on a temporary basis so that it will reduce peak demand charges.
- Load shedding is carried out to selectively shut off a set of output receptacles so that the capacity of the UPS battery can be extended.
- To share power, the UPS switches off selected devices to increase run time of critical loads.
- The onset of summer every year brings with it the woes of load shedding. It has hit the manufacturing sector and many times forcing them to shut down operations resulting in losses worth several crore.
- Excessive drop in voltage profile in certain part of network then load shedding is carried out for compensation.