1. Цель работы.

Синтез и анализ схем дешифрации двоичных кодов.

2. Построение таблицы истинности дешифратора на 4 входа с прямыми выходами.

Таблица истинности дешифратора на 4 входа с прямыми выходами

0 0								140	лици	исти	иннос	ти о	гшиф	pumo	ри ні	<i>t</i> + 6 <i>x</i> 6	oou c	прям	ыми	выло	оами.
1 0	№	x3	x2	x1	x0	y15	y14	y13	y12	y11	y10	y9	y8	y7	у6	у5	y4	у3	y2	y1	y0
2 0 0 1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
3 0 0 1 1 0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
4 0 1 0	2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
5 0 1 0 1 0	3	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
6 0 1 1 0	4	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
7 0 1 1 1 0	5	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
8 1 0	6	0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
9 1 0 0 1 0	7	0	1	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
10 1 0 1 0	8	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
11 1 0 1 1 0	9	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
12 1 1 0 0 0 1 0	10	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
13 1 1 0 1 0	11	1	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
14 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	12	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	13	1	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	14	1	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

3. Логические выражения, полученные из таблицы истинности.

$$y0 = \overline{x3} \, \overline{x2} \, \overline{x1} \, \overline{x0}$$

$$y1 = \overline{x3} \, \overline{x2} \, \overline{x1} \, x0$$

$$y2 = \overline{x3} \, \overline{x2} \, x1 \, \overline{x0}$$

$$y3 = \overline{x3} \, \overline{x2} \, x1 \, x0$$

$$y4 = \overline{x3} \ x2 \ \overline{x1} \ \overline{x0}$$

$$y5 = \overline{x3} x2 \overline{x1} x0$$

$$y6 = \overline{x3} \ x2 \ x1 \ \overline{x0}$$

$$y7 = \overline{x3} \, \underline{x2} \, \underline{x1} \, \underline{x0}$$

$$y8 = x3 \,\overline{x2} \,\overline{x1} \,\overline{x0}$$

$$y9 = x3 \,\overline{x2} \,\overline{x1} \,x0$$

$$y10 = x3 \overline{x2} x1 \overline{x0}$$

$$y11 = x3 \overline{x2} \underline{x1} \underline{x0}$$

$$y12 = x3 \ x2 \ \overline{x1} \ \overline{x0}$$

$$y13 = x3 x2 \overline{x1} x0$$
$$y14 = x3 x2 x1 \overline{x0}$$

$$y_{14} = x_3 x_2 x_1 x_0$$

$$y15 = x3 x2 x1 x0$$

4. Схема полного дешифратора на 4 входа с прямыми выходами и его временная диаграмма.

Рисунок 1. Принципиальная схема дешифратора на 4 входа с прямыми выходами.

Рисунок 2. Временная диаграмма работы схемы.

По временной диаграмме видно, что схема дешифратора с прямыми выходами работает верно и в соответствии с таблицей истинности: схема преобразует входной двоичный код в унитарный выходной, это значит, что логический 1 в любой момент времени присутствует только на одном из выходов схемы.

5. Построение с помощью дешифратора на 4 входа произвольной булевой функции.

$$F = \overline{x3} x2 \overline{x1} \overline{x0} + \overline{x3} x2 \overline{x1} x0 + x3 \overline{x2} \overline{x1} \overline{x0} + x3 \overline{x2} x1 \overline{x0} + x3 x2 x1 x0 = = y4 + y5 + y8 + y10 + y15$$

TT ~	سر ب	~ 1	1
Таблица истинности	$nn\alpha uze\alpha \pi \mu \mu \alpha u \ \alpha v \pi e$	<i>ค</i> กบ ดงบนาบบ	от 4-х попомонных
1 aomiga acmanioema	npousononou oyne	оон функции	от т х переменных.

				ou pynkynn on
х3	x2	x1	x0	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Рисунок 3. Схема произвольной булевой функции с помощью дешифратора.

Рисунок 4. Временная диаграмма работы схемы.

По временной диаграмме видно, что схема работает в соответствии с таблицей истинности заданной функции (выход d(Res)).

6. Построение схемы неполного дешифратора на 10 выходов.

При дешифрации n-разрядного двоичного кода число выходов, при условии реализации всех комбинаций входного двоичного кода (полный дешифратор), определяется формулой $N=2^n$, где N - число выходов дешифратора. Если число выходных линий меньше, чем 2^n , то такой дешифратор называется неполным.

Рисунок 5. Схема неполного 4-разрядного дешифратора на 10 выходов.

Рисунок 6. Временная диаграмма работы схемы.

По временной диаграмме видно, что схема неполного дешифратора работает верно (логический 1 в любой момент времени присутствует только на одном из выходов схемы).

3 Вывод.

В результате выполнения работы:

- построена таблица истинности дешифратора на 4 входа и получены логические выражения;
- построена схема дешифратора на 4 входа с прямыми выходами;
- с помощью дешифратора на 4 входа реализована произвольная булева функция и по временной диаграмме проверена правильность работы схемы для заданной функции;
- синтезирован неполный дешифратор на 10 выходов и промоделирована его работа.