
Group A

Assignment No: 10

Title of the Assignment: Download the Iris flower dataset or any other dataset into a DataFrame. (e.g.,https://archive.ics.uci.edu/ml/datasets/Iris). Scan the dataset and give the inference as:

- 1. List down the features and their types (e.g., numeric, nominal) available in the dataset.
- 2. Create a histogram for each feature in the dataset to illustrate the feature distributions.
- 3. Create a boxplot for each feature in the dataset.
- 4. Compare distributions and identify outliers.

Download the Iris flower dataset or any other dataset into a DataFrame. (e.g., https://archive.ics.uci.edu/ml/datasets/Iris (https://archive.ics.uci.edu/ml/datasets/Iris)).

In [1]:

```
import pandas as pd
import numpy as np
csv_url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
col_names = ['Sepal_Length','Sepal_Width','Petal_Length','Petal_Width','Species']
```

In [2]:

```
iris = pd.read_csv(csv_url, names = col_names)
```

Q1. How many features are there and what are their types?

In [3]:

```
column = len(list(iris))
column
```

Out[3]:

5

Clearly, dataset has 5 column indicating 5 features about the data

In [4]:

iris.info()

Matoshri College of Engineering & Research Centre, Nashik

Hence the dataset contains 4 numerical columns and 1 object column

```
In [6]
```

```
np.unique(iris["Species"])
```

```
Out[6]:
array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)
```

Q2. Compute and display summary statistics for each feature available in the dataset.

In [13]:

```
iris.describe()
```

Out[13]:

	Sepal_Length	Sepal_Width	Petal_Length	Petal_Width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

Q3. Data Visualization-Create a histogram for each feature in the dataset to illustrate the feature distributions Plot each histogram

Solution 1:

In [8]:

```
import seaborn as sns
import matplotlib
import matplotlib.pyplot as plt
%matplotlib inline
```

```
fig, axes = plt.subplots(2, 2, figsize = (16, 8))

axes[0,0].set_title("Distribution of First Column")
axes[0,0].hist(iris["Sepal_Length"]);

axes[0,1].set_title("Distribution of Second Column")
axes[0,1].hist(iris["Sepal_Width"]);

axes[1,0].set_title("Distribution of Third Column")
axes[1,0].hist(iris["Petal_Length"]);

axes[1,1].set_title("Distribution of Fourth Column")
axes[1,1].hist(iris["Petal_Width"]);
```

Matoshri College of Engineering & Research Centre, Nashik

OR
Solution 2:

```
import matplotlib.pyplot as plt
fig, axes = plt.subplots(2, 2, figsize = (16, 8))
sns.histplot (iris['SepalLengthCm'], ax = axes[0,0])
sns.histplot (iris['SepalWidthCm'], ax = axes[0,1])
sns.histplot (iris['PetalLengthCm'], ax = axes[1,0])
sns.histplot (iris['PetalWidthCm'], ax = axes[1,1])
                                                     30
 20
                                                     25
ting 15
                                                   20
Count
 10
                                                     10
                     6.0 6.5
SepalLengthCm
                                                                         3.0 3.5
SepalWidthCm
            5.0
                                                     40
 40
                                                     35
                                                     30
 30
                                                     25
                                                   1 25
20
                                                     15
                                                     10
 10
                                                     0.0
                     4
PetalLengthCm
                                                                         1.5
PetalWidthCm
```

Q4. Create a boxplot for each feature in the dataset. All of the boxplots should be combined into a single plot. Compare distributions and identify outliers.

In [12]:

```
import matplotlib.pyplot as plt

fig, axes = plt.subplots(2, 2, figsize = (16, 8))
sns.boxplot(y='PetalLengthCm', x='Species', data = iris,ax = axes[0,0])
sns.boxplot(y='PetalWidthCm', x='Species', data = iris,ax = axes[0,1])
sns.boxplot(y='SepalLengthCm', x='Species', data = iris,ax = axes[1,0])
sns.boxplot(y='SepalWidthCm', x='Species', data = iris,ax = axes[1,1])
```

Out[8]:
<AxesSubplot:xlabel='Species', ylabel=SepalWidthCm'>

If we observe closely for the box 2, interquartile distance is roughly around 0.75 hence the values lying beyond this range of (third quartile + interquartile distance) i.e. roughly around 4.05 will be considered as outliers.

Similarly outliers with other boxplots can be found.