(Please write your Enrolment No. immediatel	(1	Please	write your	Enro	lment l	No.	immediately	1)
---	----	--------	------------	------	---------	-----	-------------	----

Care	lment No.	
CHIO	mnent ivo.	

(5)

MID TERM EXAMINATION

B.TECH PROGRAMMES (UNDER THE AEGIS OF USICT)

Fourth Semester, May, 2023

Paper code: BS-202	Subject: Probability, Statistics and Linear programming

Time: 1½ Hrs. Max. Marks:30

Note: Attempt Q. No. 1 which is compulsory and any two more questions from remaining.

- Q1. (a) If one out of every 10 bulbs are defective. Find the mean and standard deviation for the distribution of defective bulbs in a total of 500 bulbs. (2.5)
 - (b) Find K so that f(x, y) = K(x + y), 0 < x < 1, and 0 < y < 1 is a joint probability density Function.
 - (c) Calculate the covariance of the following pairs of observations of the variables X and Y (2.5)

$$(1,6),(2,9),(3,6),(4,7),(5,8),(6,5),(7,12),(8,3),(9,17),(10,1).$$
 (2.5)

(d) If the probability of a bad reaction from a certain injection is 0.001. Find the chance that out of

- Q2. (a) In a toy factory, machines A, B, C manufactures respectively 25%, 35% and 40% of total. Of their outputs 5,4,2 percents are respectively defective. A toy is drawn at random from the total production. What is the probability that the toy is drawn is defective? Also, the probability that it was manufactured by machine A.
 - (b) X is a continuous random variable with probability density function given by

$$f(x) = \begin{cases} Kx & ; \ 0 \le x < 5 \\ K(10 - x); 5 \le x < 10 \\ 0 & ; otherwise \end{cases}$$

(i) Find the value of K, (ii) Mean of X (iii)
$$p(5 < X \le 12)$$
 (5)

Q3. (a) In a normal distribution ,7% of the items are under 35 and 89% are under 63. Find the mean and S.D. of the distribution? Given that

$$P(0 \le z \le 0.18) = 0.07, P(0 \le z \le 1.48) = 0.43, P(0 \le z \le 1.23) = 0.39.$$
 (5)

(b) The ages of Boys and Girls and are given in the following table. calculate the coefficient of correlation between Xand Y

X (ages of	23	27	28	29	30
Boys)					
Y (ages of Girls)	18	22	23	24	25

Q4. (a) Three fairs of coins are tossed. Let X denote the number of heads on the first two coins, Let Y denote the number of tails on the last two coins. Then

(ii) Find the conditional distribution of Y given that X=1

(b) An electronics company manufactures resistors that have a mean resistance of 100 ohms and a standard deviation of 10 ohms. The distribution of resistance is normal. Find the probability that a random sample of n=25 resistors will have an average of fewer than 95 ohms. Given that P(Z>2.5) = 0.4938

From Binomial Us Insultan. p= 10, 9=1-p= 1-1=9/10/n=m mean = n-b= 10x sm = 10 Standard deviotion = Inpg = Inpgx 1 x 9 = 315 = 6.70820 toom posson distribution. A=nb=D Plant = Standard contain = 50 = 7-07 (mean = variance) (b) (| Kinty) andy =1 [K (n2+ny) dy=) = | K[=+y]dy=1 K (= 7 + 8 = 1) = 1

K[++1]=) => K=1

(c)
$$\frac{x}{y} \frac{y}{(x-x)} \frac{y-y}{y-y} \frac{(x-y)(y-y)}{(x-y)(y-y)} = 0$$
 $\frac{1}{1} \frac{6}{6} \frac{-4y-5}{-4y-5} \frac{-1y}{16} \frac{6\cdot3}{-5\cdot6}$
 $\frac{1}{2} \frac{6}{9} \frac{-3\cdot5}{-3\cdot5} \frac{1\cdot6}{1\cdot6} \frac{-5\cdot6}{-5\cdot6}$
 $\frac{1}{3} \frac{6}{6} \frac{-1y-5}{-1y-6} \frac{-0y-5}{-0y-5} \frac{1}{0\cdot6} \frac{1}{0\cdot6}$
 $\frac{1}{3} \frac{6}{6} \frac{-1y-5}{-1y-6} \frac{-0y-5}{-0y-5} \frac{1}{0\cdot6} \frac{1}{0\cdot6}$
 $\frac{1}{3} \frac{1}{6} \frac{1}{12} \frac{1}{2x-5} \frac{1}{12} \frac{1}{$

Q-2.(9) Let E be event that the toy is defealing. and E, = produced by mothers A Ez = " P(E1)=,25 P(E2)=0.37, P(E3)=0.40 PLE/12)= 0.02. P(E/E,) = 0.05 PLE/ED) = 0-04 By Total probability 2 0-82 X 0-02+ 0-31X 0-04 + 0-4 DX 0.05

PLE) = P[E]-P[E/E]+PLE] + PLE) + PLE) + PLE) - PLE) = 0.0345 By Boys theorem: 0.72×0-02

P(E). P(E/E) 0-0345 P(E1/E) = P(F) = 10125 = 125 = 59 = 0.362

Questimilb) Here +(m) = { KN 105 m < 5 K110-n); 55 m < 10 ·) of (n) of n = 1 or 15 klan) ant 10 klip-on) ans 1 K | 2 /2 + K [1021- 22] 10 K [2] + K[(10-10)- (20-2)]=1 52K+ K[20-15)=1 5215 + K (22) = 1 or 50K=2 or $K=\frac{2}{50}=\frac{1}{15}$ (ii) man of the dishir bothon. = moteon dn = moten) dne j'extern dn = \ \ n. kndn+ \ \ k(10-n)-ndn $k\left(\frac{2x^{2}+5x^{2}}{6}\right)^{2} = k\left(\frac{x^{3}}{3}\right)^{2} + k\left(\frac{10x^{2}-x^{3}}{2}\right)^{2}$ $\frac{k.250}{20.4\times250} = \frac{2}{1000} + \frac{1000}{2} + \frac{1000}{2} - \frac{1000}{2} - \frac{1000}{2} - \frac{1000}{2}$ $= \frac{10000}{6} + \frac{10000}{6}$ = K(114) + K[(1000) - (500)) = K(13) + (500)

$$P(SCXC)^{2}$$

$$= \int_{S}^{10} f(n) dn + \int_{10}^{12} f(n) dn$$

$$= \int_{S}^{10} k(10n-n) dn + D$$

$$= \int_{S}^{10} k(10n-n^{2})^{10}$$

$$= k(10n$$

where the filter was the second of the second of

the public terms of terms o

enter south of the south

Ques: 319) Let Xn NIH, 02), then we have P[X<63]=0.89, P[X<35]=0-07 P[U<x<63] = 0.89-0.5 = 0.39 (P[35<x<4]=0-5-0-07 = 0-43 : P[O(X-4 < 63-4) = 0.39 and P=[0<x- P[35-4< x-4<0]=0.43 =) P[O(Z<63-4]=0-39, P[O(Z<4-35)=04; 63-4=1-23, 4-35=1-48 $\frac{28}{3} = 2.71 \Rightarrow 0 = \frac{28}{2.21} = 10.33$ U= 35+248×0 =35 +7-48×10-33 = 35+15-3

Q-3	(b)		22	0
× 1	Y ((X-X)	(75)	y2
23 27 28 29	18 22 23 24	\$14. 599. 644. 696. 750.	529- 729- 784- 841-	324, 484, 529, 576, 647,
30	25	1,30	1	

 $\sum xy = 3098 \sum n^{2} 3783, \quad \sum y = 2538$ $S(n,y) = \frac{\text{(ov(n,y)}}{\sigma_{n} \cdot \sigma_{y}}$

X - 1- must,

HHHH HH Q-4-19) Saupu spect HT HTT THH THT 丁丁力 TTTf TTH HHH HHT HTH THH HTT X D 2 6 2 2 D 2 0 THE X (9) fyl7)

$$\begin{aligned}
||||| & p[Y|X=1] = \frac{f(n,y)}{f_X(n)} = \frac{f(n,y)}{f_X(n)} = \frac{f(n,y)}{f_X(n)} = \frac{2-f(n,y)}{f_X(n)} \\
&= \frac{2X}{2} = \frac{1/2}{Y_2} = \frac{1/2}{Y_2} = \frac{1/2}{Y_2} \\
&= \frac{2X}{2} = \frac{1/2}{Y_2} = \frac{1/2}{Y_2} = \frac{1/2}{Y_2} \\
&= \frac{2}{X} = \frac{1/2}{Y_2} = \frac{1/2}{Y_2$$

Q4(b)
$$M = 100 \text{ ohm} \lambda$$
. (mean of population)

 $T = 10 \text{ ohm} \lambda$.

 $T = 25$
 $T = 95$ (somple mean)

$$Z_n = \frac{2\overline{\zeta} - \mathcal{M}}{\sqrt{5/5}} = \frac{95-100}{10/5} = \frac{-5}{10/5} = -2.5$$

$$P\{22+2.5)\} = (P272.5) (by the properties)$$

$$= .5 - P(0222.5) (P(0222.5))$$

$$= .5 - 0.4938$$

$$= .0062$$