BALANCES DE MATERIA PARTE 1

- 1. Definición de balance de materia
- 2. Planteamiento de problemas de balances de materia
- 3. Ejemplos resueltos de balance de materia
 - 3.1. Preparación de una disolución de una concentración determinada.
 - 3.2. Balance de materia a proceso de mezcla alcohol-azúcar.
- 4. Ejercicios propuestos de balance de materia en operaciones de separación (sin reacción química)
 - 4.1. Balance de materia en un espesador
 - 4.2. Balance de materia en una columna de destilación
 - 4.3. Balance de materia en planta de desalinización por ósmosis inversa
 - 4.4. Balance de materia en un concentrador de zumo de pomelo)
 - 4.5. Balance de materia en un evaporador (disolución salina)
 - 4.6. Balance de materia a un cristalizador
 - 4.7. Balance de materia a un secadero de pulpa

1. DEFINICIÓN DE BALANCE DE MATERIA

Balance de materia de un proceso industrial es una **contabilidad** exacta de todos los materiales que entran, salen, se acumulan o se agotan en un intervalo de operación dado.

Se pueden distinguir diferentes formas de realizar el balance de materia dependiendo del tipo de sistema.

Tipos de sistemas

Se llama sistema a cualquier porción arbitraria o completa de un proceso. Los sistemas se clasifican:

EN FUNCIÓN DEL TIPO DE OPERACIÓN	EN FUNCIÓN DE SI HAY O NO REACCIÓN QUÍMICA
Sistema <u>abierto</u> o continuo: es aquel en el que la materia se transfiere a través de la frontera del sistema; es decir, entra en el sistema, o sale de él, o ambas cosas. OJO: FLUJOS DE ENTRADA Y SALIDA	Sistema <u>sin</u> reacción química: Separadores, concentradores, mezcladores
Sistema <u>cerrado</u> o por lotes: es aquel en el que no hay transferencia de materia a través de la frontera del sistema. NO HAY ENTRADA Y SALIDA.	Sistema <u>con</u> reacción química: Reactores
EN FUNCIÓN DEL REGIMEN	EN FUNCIÓN DE LA DIRECCIÓN DE LAS CORRIENTES
Sistema <u>estacionario</u>	Sistemas <u>simples</u>
Sistema <u>no</u> estacionario	Sistemas <u>complejos</u> : Con recirculación y purga

2. PLANTEAMIENTO DE UN PROBLEMA DE BALANCE DE MATERIA

Expresión General del Balance: Acumulación = Entrada – Salida ± Transformación

2.1. BALANCE DE MATERIA EN UN SISTEMA CONTINUO SIN REACCIÓN QUÍMICA

Para cada componente que participa en la operación y para la cantidad total se puede establecer que:

Acumulación = Entrada - Salida

Si el sistema trabaja <u>en condiciones estacionarias</u>, el término de acumulación sería <u>igual a 0</u> y el balance quedaría de la forma:

Entrada = Salida

Número de ecuaciones independientes: N ecuaciones (N= nº de componentes)

El **balance** se puede hacer **en** masa de cada componente **o en** moles.

2.2. BALANCE DE MATERIA EN UNA OPERACIÓN CON REACCIÓN QUÍMICA

En este caso el balance se realiza para cada uno de los reactivos/productos y **en moles**

Para cada uno de los reactivos:

(Nº moles reactivo A) Salida = (Nº moles reactivo A) entrada - (Nº moles reactivo A) que reacciona

Para cada uno de los productos:

(Nº moles producto B) Salida = (Nº moles producto B) entrada + (Nº moles producto B) formados

2.3. PUNTOS DE MEZCLA Y PUNTOS DE DERIVACIÓN

2.3.1. Punto de derivación (o bifurcación)

A, **B** y **C** serían los flujos de corrientes que participan en el sistema. Pueden estar determinadas en M/tiempo o V/tiempo.

A, B y C tendrán la misma composición.

La suma de los flujos (totales y de cada componente presente) de **B** y **C** será el flujo de **A** .

2.3.2. Punto de mezcla

A, **B** y **C** serían los flujos de corrientes que participan en el sistema. Pueden estar determinadas en M/tiempo o V/tiempo.

A, B y C no tienen la misma composición.

La suma de los flujos (totales y de cada componente presente) de las corrientes $\bf A$ y $\bf B$ será el flujo de la corriente $\bf C$.

3. EJEMPLOS RESUELTOS DE BALANCE DE MATERIA

3.1. PROCESO DE PREPARACIÓN DE UNA DISOLUCIÓN DE ÁCIDO SULFÚRICO A PARTIR DE DOS DISOLUCIONES DE DIFERENTE CONCENTRACIÓN

Calcula las corrientes F y P

SOLUCIÓN:

Proceso **discontinuo**. Es un problema con dos incógnitas F y P. Para resolverlo buscamos dos ecuaciones independientes: balance de materia global y balance al ácido sulfúrico.

La solución del sistema nos da: F= 1910 kg, P = 2110 kg.

3.2. PROCESO DE MEZCLA ALCOHOL-AZÚCAR

Una corriente de 1000 kg/h que contiene 10% de alcohol, 20% de azúcar y el resto de agua, se mezcla con 2000 kg/h de una corriente con 25% de alcohol, 50% de azúcar y el resto agua. ¿Cuál será la composición de la mezcla resultante?

Nota: Representar mediante un diagrama de flujo las corrientes de entrada y salida al mezclador

SOLUCIÓN

Proceso continuo.

- Balance global: L1+L2=L3→L3=3000kg/h
- Balance parcial (alcohol): $1000 \cdot 0.1 + 2000 \cdot 0.25 = 3000 \cdot x_{alcohol} \rightarrow x_{alcohol} = 0.2$
- Balance parcial (azúcar): 1000·0.2+2000·0.5=3000·x_{azúcar} → x_{azúcar}=0.4

4. EJERCICIOS PROPUESTOS DE BALANCE DE MATERIA EN OPERACIONES DE SEPARACIÓN EN CONTINUO (SIN REACCIÓN QUÍMICA)

4.1. BALANCE DE MATERIA EN UN ESPESADOR

Calcular los kg de agua que salen de un espesador, al que entran por cada hora 100 kg de lodos húmedos, obteniéndose 70 kg de lodos deshidratados.

Solución: 30 kg

4. 2. BALANCE DE MATERIA EN UN DESTILADOR

Obtener la masa y composición de las corrientes P y B sabiendo que la relación entre la corriente de alimentación (F) y destilado (P) es de 10.

Solución: 100 y 900 kg/h, 95.6% de agua y 4.4% de etanol

4.3. BALANCE DE MATERIA EN UNA PLANTA DE DESALINIZACIÓN POR ÓSMOSIS INVERSA

Supóngase que en una planta de desalinización de ósmosis inversa se tratan 4000 kg/h de una

disolución salina con un 4 % en peso de sal, y que las condiciones de operación son tales que se obtienen 1200 kg/h de agua desalinizada con un 0.3 % en peso de sales. Calcular: a) El caudal de salmuera de rechazo; b) La salinidad de la salmuera de rechazo.

Solución: 2800kg/h y 5,6%

4.4. BALANCE DE MATERIA EN UN CONCENTRADOR DE ZUMO DE FRUTAS

Se ha diseñado un evaporador para una alimentación de 11500 kg/día de zumo de pomelo de forma que evapore 3000 kg/día de agua y se obtenga una disolución concentrada al 50%. ¿Con qué concentración inicial se deberá alimentar el zumo y qué cantidad de disolución concentrada al 50% se obtiene?

Solución:

Solución: 8500 Kg/día y z = 36.95 %

4.5. BALANCE DE MATERIA A UN EVAPORADOR (DISOLUCIÓN SALINA)

Sea el evaporador de la figura, donde se concentran 10000 kg/h de una disolución salina diluida de 5% en peso hasta una concentración del 30% en peso. Calcular el caudal másico de agua evaporada.

Solución: Y = 8333 kg/h

4.6. BALANCE DE MATERIA APLICADO A UN CRISTALIZADOR

Sea el cristalizador de la figura, al que se alimentan 5600 kg/h de una disolución salina caliente con una concentración de 50% en peso de sal. Al enfriar cristaliza la sal, separándose una disolución fría saturada con 20% en peso de sal y cristales húmedos con 5% en peso de agua. Calcular los caudales másicos de disolución saturada y de cristales húmedos que salen del cristalizador.

4.7. BALANCE DE MATERIA A UN SECADERO DE PULPA

Se encontró que una pulpa húmeda de papel contenía 71% de agua. Después de secarla se encontró que se había eliminado el 60% del agua original. Calcular:

- a) La cantidad de pulpa seca.
- b) La masa de agua eliminada por kg de pulpa húmeda.

