

# Ein Komponenten-Framework zur bildbasierten Steuerung von Robotern

Der Memoryspielende Nao

Marius Politze
Bachelorvortrag am 11.01.2011

Stand: 10.01.2011

Version 1.0

### **Inhalt**



- Motivation
  - Anwendungsbeispiele
  - Problemstellung
- Grundlagen
  - Bildverarbeitung
  - Robotersteuerung
- Framework
  - Entwurf
  - Implementierung
- **▶** Fazit und Ausblick

### Anwendungsbeispiele: Benutzersoftware



#### Picasa

- Photoverwaltungssoftware
- Gesichtserkennung und Zuordnung zu Personen

### Recognize

- Erkennung von Personen
- Zuordnung zu deren Accounts, zum Beispiel in Sozialen Netzwerken

#### ARf

- Augmented Reality
- Umsetzung von realen Objekten in einer virtuellen Umgebung







### **Anwendungsbeispiele: Industrie**



- Plant Phenotyping
  - LemnaTec
  - ▶ FZJ
- Erkennung von Wachstum
- Dreidimensionale Modellierung
- ▶ Auf die Bedürfnisse der einzelnen Pflanzen abgestimmtes Düngen und Bewässern







### Anwendungsbeispiele: Robocup



- Fußballspielende Roboter
- Programme werden ein Jahr nach der Veranstaltung veröffentlicht
- ► Es entsteht eine Weltweite Forschungsgemeinschaft für Robotik und Bildverarbeitung



### **Problemstellung: Messeeinsatz**



- Werbung für das duale Studium in ganz Deutschland
- Ein Blickfang bzw.Alleinstellungsmerkmal ist nötig
- Der Nao Roboter zieht Aufmerksamkeit auf sich
- ▶ Eine Anwendung, die für den Messebesucher anschaulich demonstriert werden kann muss her!
- ▶ → Der Nao soll Memory spielen



### Problemstellung: Anwendung für den Nao



- Wie demonstriert man den Messebesuchern den Zusammenhang zur Softwareentwicklung?
  - Visualisierung von Zwischenschritten
  - Darstellung der Ergebnisse auf einem Computer
  - ▶ Leicht verständliches Programm (GUI)
- Wie entwickelt man eigentlich so eine Anwendung?
  - Wie wird eine Bildverarbeitende Anwendung getestet?
  - Viele verschiedene Systeme müssen zusammengeführt werden.





### Problemstellung: Anforderungen



- Klare Schnittstellen müssen definiert werden
  - Wie läuft Bildverarbeitung ab?
  - Wie wird ein Roboter gesteuert?
  - ▶ Gibt es ein einheitliches Schema?
- Weiterentwicklungsmöglichkeiten
  - Weiterentwicklung nötig
  - Irgendwann hat es jeder gesehen
- Unterstützung des SWE Prozesses
  - Debugging erleichtern
  - Softwaretests erleichtern
  - ▶ Lösen der Abhängigkeiten von bestimmter Hardware

### Grundlagen der Bildverarbeitung



- Für Bildverarbeitung kann ein genereller Ablauf gefunden werden
  - ▶ Bildverarbeitung lässt sich in einzelne Verarbeitungsschritte Aufteilen
  - Zwischen den Verarbeitungsschritten k\u00f6nnen Schnittstellen identifiziert werden
- Es muss dann geklärt werden, welche Schnittstellen sich für die Software nutzen lassen
  - Welche Ausprägungen haben die einzelnen Zwischenergebnisse?



### Grundlagen der Bildverarbeitung: Bildeingabe



- Es gibt verschiedene Quellen von denen Bilder kommen können
  - Unterschiede in Geometrie, Verzerrung und Qualit\u00e4t der Bilder
  - Unterschiede in der Speicherung der Bilder
- Bilder können auch aus Bild- oder Videodateien kommen
  - Praktisch für die Softwareentwicklung: Zu Bilddateien sind die Ergebnisse bekannt
  - ▶ Fehlerquellen können ausgeschlossen werden
- **▶** Gemeinsamkeit: Kontinuierlicher Bilddatenstrom
  - ▶ Es werden einzelne Bilder nacheinander Übertragen
  - ▶ Eingaben müssen kontinuierlich verarbeitet werden







### Grundlagen der Bildverarbeitung: Speicherung von Bilddaten



### Grundlagen der Bildverarbeitung: Vorverarbeitung



### Grundlagen der Bildverarbeitung: Bildanalyse



### Grundlagen der Robotersteuerung



- Interaktion mit den Objekten auf dem Bild
- Problem: Wie kommt der Roboter zu den Objekten?
- ▶ Konvertierung der Bildkoordinaten in Roboterkoordinaten nötig.
- ▶ Eine an den Versuchsaufbau angepasste Konvertierungsmöglichkeit

#### Framework: Entwurf



Grundprinzip: Pipes und Filter



### Framework: Implementierung



### Robotersteuerung: Nao



- Gliedmaßen des Roboters lassen sich über Gelenke bewegen
- ▶ Jedes Gelenk hat bestimmte Winkel, in denen es bewegt werden kann
- ► Eine Implementierung wird von Aldebaran angeboten:
  - Umrechnung von Raumkoordinaten zu Winkeln der Gelenke.
  - ▶ Ein Problem bleibt: Die Raumkoordinaten müssen immernoch in Bildkoordinaten umgerechnet werden.





#### The Nao Robot



"NAO is the *most used humanoid* robot for academic purposes worldwide. Aldebaran Robotics has chosen to make NAO's technology available to any higher education program.

Fully interactive, fun and permanently evolving, NAO is a *standard* platform for teaching students of all levels."







### **Fazit und Ausblick**





## Fragen?



## Ich bedanke mich für Ihre Aufmerksamkeit!

