Predykcja aktywności fizycznej z wykorzystaniem uczenia maszynowego

Cel eksperymentu

Celem projektu jest opracowanie modelu predykcyjnego, który będzie w stanie dokładnie prognozować dzienną liczbę kroków użytkownika. Kluczowym aspektem jest identyfikacja najbardziej efektywnej metody opartej na analizie szeregów czasowych.

Wybór optymalnego rozwiązania zostanie dokonany na podstawie dokładności i niezawodności prognoz, które zostaną zweryfikowane za pomocą wskaźników jakości, takich jak RMSE, MAE oraz R2.

Dane projektowe

Do analizy wykorzystano dane dotyczące dziennej liczby kroków, pozyskane z aplikacji Health, zbierającej informacje o aktywności fizycznej z urządzeń IoT. Dane pochodzą z okresu od 9 grudnia 2017 roku do 31 grudnia 2024 roku. W celu wzbogacenia analizy, dane te zostały połączone z historycznymi informacjami meteorologicznymi, pobranymi z API weather.visualcrossing.com.

Zgromadzony zbiór danych zawiera daty pomiarów, poziom aktywności fizycznej, warunki pogodowe oraz dodatkowe zmienne kalendarzowe.

	date	value	month	year	day_of_week	is_wknd	temp	humidity	precipcover	windspeed	cloudcover	visibility	solarradiation
0	2017-12-09	617.0	12	2017	6	1	0.7	81.8	0.00	14.5	71.9	12.3	28.6
1	2017-12-10	1325.0	12	2017	7	1	0.9	78.0	0.00	20.3	77.7	14.1	25.4
2	2017-12-11	2559.0	12	2017	1	0	3.5	77.2	8.33	21.1	81.6	17.0	16.9
3	2017-12-12	7467.0	12	2017	2	0	7.3	69.6	0.00	26.5	78.7	17.7	21.1
4	2017-12-13	4866.0	12	2017	3	0	1.5	73.0	0.00	20.4	59.3	15.4	24.4

Wstępna ocena i przygotowanie danych

Dane dotyczące aktywności fizycznej charakteryzowały się losowymi brakami, silną asymetrią oraz obecnością wartości odstających. Zastosowanie interpolacji pozwoliło na uzyskanie spójnego zbioru danych z ograniczoną liczbą ekstremalnych wartości.

Z kolei dane meteorologiczne cechowały się niskim rozproszeniem. Jednak w przypadku promieniowania słonecznego i opadów zaobserwowano silną asymetrię oraz liczne wartości odstające.

Analiza nie wykazała istotnego wpływu pogody na liczbę kroków. Zmienne pogodowe i inne cechy niezwiązane bezpośrednio z historią aktywności zostały odrzucone.

Wstępna ocena i przygotowanie danych

Dane ujawniły wyraźne tygodniowe wzorce sezonowe.

Kluczowe okazały się cechy oparte na wcześniejszych wartościach liczby kroków. Wykorzystano opóźnienia, różnice w czasie oraz średnie kroczące, które wygładziły krótkoterminowe wahania i ułatwiły identyfikację długoterminowych trendów.

Zbiory danych podzielono chronologicznie na trzy części: treningowy (2017–2022), walidacyjny (2023) oraz testowy (2024).

Modelowanie

Do prognozowania dziennej liczby kroków wykorzystano modele Prophet oraz SARIMA.

Skuteczność oceniono za pomocą miar błędu: RMSE, MAE i R², a eksperymenty przeprowadzono na zbiorze walidacyjnym. Oba modele osiągnęły porównywalne wyniki, jednak Prophet wykazał nieznacznie niższe wartości RMSE i MAE, a także krótszy czas trenowania.

	Model	RMSE	MAE	R²	Training Time (s)
0	SARIMA	1139.015000	831.631901	0.880097	9.336507
1	Prophet	1145.250441	847.222418	0.878781	0.203931

Ewaluacja

W trakcie walidacji krzyżowej SARIMA uzyskała lepsze wyniki, co sugeruje jej większą stabilność.

	Model	RMSE	MAE	R ²
0	SARIMA	1077.888518	837.473097	0.863140
1	Prophet	1085.709269	858.383655	0.859287

Na danych testowych model SARIMA dobrze odwzorowuje ogólny trend, jednak spadek wartości R² sugeruje nieznacznie gorszą skuteczność modelu w porównaniu do wyników uzyskanych na zbiorze treningowym.

	Dataset	RMSE	MAE	R²
0	Validation	1125.87	818.77	0.88
1	Test	1169.35	861.16	0.84

Wnioski

Analiza wpływu pogody, w tym zmiennych takich jak temperatura, wilgotność, opady i prędkość wiatru, nie wykazała istotnego wpływu na liczbę kroków użytkowników. Okazuje się, że aktywność fizyczna jest bardziej zależna od indywidualnych nawyków i rutyn, niż od warunków atmosferycznych.

Modele szeregów czasowych, oparte na wcześniejszych wartościach aktywności, wykazały dużą skuteczność w przewidywaniu liczby kroków. Wykorzystanie lagowych wartości oraz różnic w czasie pozwoliło uchwycić sezonowe wzorce w aktywności.

Model SARIMA okazał się bardziej precyzyjny w prognozowaniu liczby kroków, szczególnie w odniesieniu do wychwytywania sezonowych fluktuacji oraz zmienności aktywności. Wykazał się większą stabilnością i skutecznością w porównaniu do modelu Prophet.