Advanced R Data Analysis Training Trainer: Dr. Ravi Tiwari IMPOTECH Website: www.tertiarycourses.com.sg
Email: enquiry@tertiaryinfotech.com Course Material available at: https://github.com/rkrtiwari/rAdvanced **Agenda** Module 1: R Data Analysis Packages - Data Analysis Components - Data Analysis Steps - R Data Analysis Packages Module 2: Obtaining Data - Reading Data from CSV file - Reading Data from JSON file - Reading Data from XML file - Reading Data from Web - Reading Data from APIs

Agenda Module 3: Data Preprocessing - Mutating Data - Merging Data - Reshaping Data - Missing Data Module 4: Data Visualization - Using ggplot Module 5: Advanced R Functions - lapply - sapply - split - tapply **Agenda** Module 6: Regression - Univariate and Multivariate Linear Model Regression - Polynomial Model Regression - Generalized Regression Models Module 7: Classification & Clustering - Classification - Clustering Module 8: Time Series - Creating Time Series - Forecasting Module 9: Shiny (Optional) Module 1 **Getting Started**

Data Analysis Components Computer Intelligent & Machine Learning Data Analysis Chapter Analysis Ch

Data Analysis Steps

- Data Collection
- · Data Processing
- · Data Cleaning
- Data Visualization
- Modeling (eg Regression, Clustering...)
- Data Product

R Data Analysis Packages

Data Manipulation

dplyr: Data manipulation tasksreshape2: Changing the data formatmice: Missing data Imputation

Data Analysis

glmnet: Regression

gam: Generalized Additive Model

rpart: Decision Tree

randomforest: Random Forest Analysis

R Data Analysis Packages **Data Visualization** ggplot2: Powerful visualization Interactive data visualization shiny: Missing data visualization VIM: **Install Packages** install.packages("dplyr") install.packages("rpart") install.packages("randomForest") install.packages("mice") install.packages("shiny") install.packages("mice") install.packages("ggplot2") Module 2 **Obtaining Data**

Read Data from CSV File data1 <- read.csv("data.csv", header = TRUE)	
Read Data from json data <- fromJSON("data.json")	
Read Data from Web url<-"http://archive.ics.uci.edu/ml/machine-lear ning-databases/wine/wine.data" read.csv(url, nrows=5, header = FALSE)	

Read Data from XML library(XML) data <- xmlTreeParse(data.xml)	
Challenge Read the housing data from the following webpage "https://archive.ics.uci.edu/ml/machine-lear ning-databases/housing/housing.data" and store it in a dataframe named house	
Time: 5 min	
Module 3 Data Pre-Processing	

Mutating Data

• Used to add a new column to a dataframe

mutate(mtcars, heavy = ifelse(wt > 3, "yes", "no"))

Merging Data

Joining two dataframes by one or more common key

OUTPUT

OBJECT ID#	Landuse Code	Join Table Landuse Code	Join Table Landuse Type
1	2	2	water
2	0	0	Unclassified
3	1	1	shrub

Merging Data: Inner Join

Returns all the rows where the join condition is met

merge(df1, df2, by = "CustomerId")

Merging Data: Left Join

Returns all the rows from the left table, unmatched values gets NULL

merge(df1, df2, by = "CustomerId", all.x = TRUE)

Merging Data: Right Join

Returns all the rows from the right table, unmatched values gets NULL

merge(df1, df2, by = "CustomerId", all.y = TRUE)

Merging Data: Outer Join

Returns all the rows, unmatched values gets NULL

merge(df1, df2, by = "CustomerId", all = TRUE)

	٦
Reshaping Data	
Data reshaping involves the rearrangement of the form of the data.	
of the form of the data	
<u> </u>	
13 a1 a2 a3 a2 a2 a2	
9 a2	
2 d 2 d	
	7
Reshaping Data (Melting)	
For Reshaping, the data needs to be in the	
form where we have only id variables and its corresponding value (melted data)	
aqm <- melt(airquality, id = c("Month", "Day"), measure.vars= c("Ozone", "Temp"))	
	_
Reshaping Data (Casting)	
Molten data can be casted into desired form	
dcast(aqm, Month + Day ~ variable)	

Reshaping Data (aggregation)	
When id variables do not identify unique	
observation, then an aggregation function is required	
dcast(aqm, Month ~ variable, mean)	
	٦
Reshaping Challenge	
Find the mean value of mpg for each type of gears (3, 4, and 5) in mtcars dataset	
	_
Missing Data: Types	
The variable missingness is unrelated to	
the variable (Missing Completely At Random (MCAR))	
The variable missingness is related to the	
variable itself (Missing Not At Random (MNAR))	
The variable missingness is related to	
some other variable (Missing at Random)	

Missing Data: Visualization aggr(miss_mtcars, numbers=TRUE)

Missing Data: Treatment

- Complete Case Analysis
- Replace the missing data with non-missing data (imputation)
 - Mean Substitution
 - Regression
 - o Stochastic Regression
 - Multiple Imputation

Complete case analysis

m1 <- lm(mpg ~ am + wt + qsec, data = miss_mtcars, na.action = na.omit)

Drawbacks:

- We lose statistical power as sample size is smaller
- With more variables, we are liable to lose more rows

Mean Substitution	
mean_sub\$qsec[is.na(mean_sub\$qsec)] <-	
mean(mean_sub\$qsec, na.rm = TRUE)	
Drawback: • It produces biased estimate of variance	
it produces biased estimate or variance	
	7
Regression Imputation	
Other column values are used to predict the value of the missing data in a given	
column	
Drawback:	
It produces biased estimate of variance and covariance between different columns	
]
Stochastic Regression Imputation	
It adds a random (stochastic) value to the prediction of regression imputation	-
Drawback:	
 Since, it produces only one imputed data set, it does not capture the full extent of 	
uncertainty	

Multiple Imputation We generate multiple versions of the imputed data imp <- mice(miss_mtcars, m=3) imp\$imp	
Module 4 Data Visualization	

Plotting Fundamental

Mapping of Data Properties to Visual Properties

Data Property: Numerical or Categorical **Visual Property:** x and y position, color, shape, size, height of bars, etc.

ggplot Fundamental

Aes: Visual properties of geometry, such as x and y position, line color, point shapes, etc.

ggplot(mtcars) + aes(x=wt, y = mpg) ggplot(mtcars) + aes(x=wt, y = mpg, col = factor(am))

ggplot Fundamental

Geom: Geometric objects drawn to represent data. Such as bars, lines, and points

ggplot(mtcars) + aes(x=wt, y = mpg) + geom_point()

Geom_point

gplot(mtcars) + aes(x=wt, y=mpg) +
geom_point(size=3, color = "blue")

aes color based on grouping

ggplot(mtcars) + aes(x=wt, y=mpg, color =
factor(cyl)) + geom_point(size=3)

ggplot Fundamental

Scales: controls the mapping from the values in the data space to values in the aesthetics scale.

ggplot(mtcars) + aes(x=wt, y = mpg) +
 geom_point() +
 scale_x_continuous(limits=c(1,6))

ggplot Fundamental

Guides: Aids the viewers in mapping visual properties back to data space. Such as tick marks, labels, legend

guides Example

ggplot(mtcars) + aes(x=wt, y = mpg, col =
factor(am), shape = factor(cyl)) +
geom_point(size = 3) + guides(col =
guide_legend('am'),
shape=guide_legend('cyl'))

ggplot Fundamental

Facets: Plots subsets of data in separate panel

Facet Example

ggplot(mtcars) + aes(x=wt, y=mpg) +
geom_point() + facet_wrap(~ cyl)

Challanga	
Challenge 1. Plot Day vs Ozone data for airquality	
dataset	
2. Use different colors for different months	
3. Use different panels for different months	
Module 5	
Advanced Functions	
lannlı	
lapplyReturns the result of applying the specified	
function to each element of the list	
lapply(mtcars, mean)	

sapplySame as lapply, but the results are	
returned as vector (s stands for simplify)	
sapply(mtcars, mean)	
	7
Challenge	
Find the mean of all the measurements in	
the iris dataset	
	1
tapply	
Returns the result of applying the specified function to specified groups in the data	
tapply(mtcars\$mpg, mtcars\$cyl, mean)	

aggregate	
Generalized form of tapply that can taken in	
multiple variables to be acted upon	
aggregate(mtcars\$mpg, by = list(mtcars\$cyl), mean)	
split	
Divides the data into specified groups	
split(mtcars\$mpg, mtcars\$cyl)	-
]
Challenge	
Find the mean of Petal.Length for each species in iris data set	
Find the mean of all four lengths for each species in the iris data set	

Module 6 Regression

Linear Regression Definition

Involves finding a straight line that best describes the data

Linear Regression Example • Actual Value model 15.91 • Actual Value with model

Linear Regression - Univariate m <- Im(mpg ~ wt, data = mtcars) prediction <- predict(m, data.frame(wt = 3))	
Linear Regression - Multivariate m <- Im(mpg ~ wt + qsec, data = mtcars) prediction <- predict(m, data.frame(wt = 3, qsec = 20))	
Challenge Build a linear model to predict the median value of the home	

Polynomial Regression m <- Im(mpg ~ poly(wt,2), data = mtcars) predict(m, data.frame(wt = 3))	
Generalized Additive Model gam1 <- gam(mpg ~ s(wt,2) + disp, data = mtcars) predict(gam1, newdata = list(wt = 3, disp = 120))	
Forward variable selection m <- regsubsets(mpg ~ ., data = mtcars, method = "forward") ms <- summary(m) which.max(ms\$adjr2)	

Lasso Regularization

cv.out <- cv.glmnet(x,y, alpha=1, nfolds = 5)
bestlam <- cv.out\$lambda.min
lasso.pred <- predict(cv.out ,s=bestlam
,newx=x1)</pre>

Challenge

- 1. Build a linear model to predict the median value of the home
- 2. Use lasso method to create the best model that has 3 predictor variable

Time: 10 mins

Module 7	
Wodule 1	
Classification &	
Clustering	
	1
Stans in building a classifier	
Steps in building a classifier	
Step 1: Data partition into train and test data	
Step 2: Model training on train data	
Step 2. Moder training on train data	
Step 3: Model performance evaluation on test	
data	
	1
Decision Tree Classifier	
1. m <- rpart(Species ~ ., data = train)	
 pred <- predict(m, test, type = "class") table(pred, testSpecies) 	
3. table(pred, testopecies)	

Random Forest Classifier	
1. m <- randomForest(Species ~ ., data=train)	
 pred <- predict(m, test) table(pred, testSpecies) 	
Challenge	
Build a random forest model to predict the	
median value of the home 2. What are the three most important variable	
variable	
Clustering	
Olusianny	

Γ

Hierarchical Clustering M <- dist(mylris) hc <- hclust(M) clusters <- cutree(hc, k = 3)	
k-means Clustering kmeans(mylris, centers = 3, nstart = 10)	
Module 8 Time Series	

Creating Time Series apts <- ts(AirPassengers, frequency=12)	
Decomposing Time Series f <- decompose(apts) plot(f)	
Forecasting Time Series	
fit <- arima(AirPassengers, order=c(0,1,1),	

Module 9 Shiny	
Shiny illustration runApp("shinyApp/")	
Shiny Component:	
Shiny Component: ui.R (user interface) ui <- fluidPage()	

Shiny Component: server.R	-
server <- function(input, output) {}	
	-
Challenge	
Create a shiny app that prints out the	
square of the input value	
	-
Time: 5 min	
1 mile. 6 mili	
Thank	
OU	
Alfred Ang 96983731	