Planche nº 17. Dénombrements. Probabilités

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Exercice nº 1 (***)

Soit E un ensemble à n éléments $(n \in \mathbb{N}^*)$. Combien y a-t-il de couples (X,Y) de parties de E tels que $X \cap Y$ soit un singleton?

Exercice nº 2 (***)

Soit $A_1A_2...A_n$ un polygone convexe à n sommets $(n \ge 4)$. Combien ce polygone a-t-il de diagonales? (Une diagonale est un segment joignant deux sommets non consécutifs).

Exercice nº 3 (*)

Soit E un ensemble à $\mathfrak n$ éléments $(\mathfrak n \in \mathbb N^*)$. Combien existe-t-il de lois de composition interne sur E?

Exercice nº 4 (*** I) (le problème du scrutin)

Au cours d'une élection, deux candidats A et B s'affrontent. Le candidat A l'emporte sur le candidat B par $\mathfrak a$ voix contre b $(\mathfrak a > \mathfrak b)$. On veut calculer la probabilité qu'au cours du dépouillement le candidat A ait été constamment en tête.

- 1) Dans le plan rapporté à un repère orthonormé, on considère les points (α, β) et $(\alpha + m, \beta + n)$ où $(\alpha, \beta, m, n) \in \mathbb{N}^4$. On va de (α, β) à $(\alpha + m, \beta + n)$ par déplacements successifs de une unité vers la droite ou une unité vers le haut à chaque étape. On appelle chemin de (α, β) et $(\alpha + m, \beta + n)$ un tel trajet. Combien y a-t-il de chemins de (α, β) et $(\alpha + m, \beta + n)$?
- 2) a) Montrer qu'un chemin de (0,1) à (a,b), a au moins un point commun avec la droite Δ d'équation y=x.
 - b) Montrer qu'il y a autant de chemins de (0,0) à (a,b), passant par (1,0) et rencontrant la droite Δ d'équation y=x en au moins un point distinct de (0,0) que de chemins de (0,0) à (a,b) passant par (0,1).
 - c) En déduire le nombre de chemins de (0,0) à (a,b) situés en dessous de Δ et ne rencontrant Δ qu'en (0,0).
- 3) Déterminer la probabilité qu'au cours du dépouillement le candidat A ait été constamment en tête.

Exercice no 5 (*** I)

Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'événements d'un espace probabilisé $(\Omega,\mathscr{A},\mathbb{P})$ telle que la série de terme général $\mathbb{P}(A_n)$ converge.

Montrer que l'événement $\bigcap_{n=0}^{+\infty} \left(\bigcup_{p=n}^{+\infty} A_p\right)$ est négligeable

Exercice nº 6 (***)

On tire un entier naturel non nul au hasard. On suppose que pour tout $n \in \mathbb{N}^*$, la probabilité d'obtenir n est $\frac{1}{2^n}$.

- 1) Vérifier que l'on définit une probabilité sur l'espace probabilisable $(\mathbb{N}^*, \mathscr{P}(\mathbb{N}^*))$.
- 2) On se donne $n \in \mathbb{N}^*$ et on note E_n l'événement « l'entier tiré est un multiple de n ».
 - a) Calculer $\mathbb{P}(E_n)$ pour tout entier naturel non nul n.
 - b) Déterminer tous les couples (a, b) d'entiers non nuls tels que les événements E_a et E_b soient indépendants.

Exercice no 7 (**)

Une particule se déplace sur un triangle ABC. A l'instant initial, la particule est en A puis, à un instant $n \in \mathbb{N}$,

- \bullet si la particule est en A ou en B, elle va sur l'un des deux autres sommets à l'instant n+1, de manière équiprobable,
- ullet si la particule est en C, elle reste en C à l'instant n+1.

 $\mathrm{Pour}\ n\in\mathbb{N},\ \mathrm{on\ note}\ A_n\ (\mathrm{resp.}\ B_n,\ C_n)\ l'événement\ «\ \mathrm{la\ particule\ est\ en\ }A\ (\mathrm{resp.\ en\ }B,\ \mathrm{en\ }C)\ \grave{\mathrm{a}\ l'instant}\ n\ ».\ \mathrm{Pour\ tout}$

$$n\in\mathbb{N},\,\mathrm{on}\,\,\mathrm{pose}\,\,\alpha_n=\mathbb{P}\,(A_n),\,b_n=\mathbb{P}\,(B_n)\,\,\mathrm{et}\,\,c_n=\mathbb{P}\,(C_n)\,\,\mathrm{puis}\,\,X_n=\left(\begin{array}{c}\alpha_n\\b_n\\c_n\end{array}\right).$$

- 1) Pour tout $n \in \mathbb{N}$, exprimer X_{n+1} en fonction de X_n .
- 2) En déduire les expressions de a_n , b_n et c_n en fonction de n.

3) Quelle est la limite de a_n , b_n et c_n quand n tend vers $+\infty$? Interprétez le résultat.

Exercice nº 8 (***)

Pour tout réel s>1, on pose $\zeta(s)=\sum_{n=1}^{+\infty}\frac{1}{n^s}.$ On note $\mathcal P$ l'ensemble des nombres premiers.

s>1 étant fixé, on pose $P(\{n\})=\frac{1}{\zeta(s)n^s}$ pour tout $n\in\mathbb{N}^*,$. On définit ainsi une probabilité sur l'espace probabilisable $(\mathbb{N}^*,\mathscr{P}(\mathbb{N}^*)).$

Pour tout $k \in \mathbb{N}^*$, on note $E_k = k\mathbb{N}^* = \{kq, \ q \in \mathbb{N}^*\}.$

- 1) Pour $p \in \mathcal{P}$, calculer E_p .
- 2) Montrer que les événements $E_{\mathfrak{p}}, \mathfrak{p} \in \mathcal{P}$, sont mutuellement indépendants.
- 3) En déduire que pour tout réel s>1, $\zeta(s)=\prod_{\mathfrak{p}\in\mathcal{P}}\frac{1}{1-\frac{1}{\mathfrak{p}^s}}$ (le produit infini étant égal à $\lim_{n\to+\infty}\prod_{k=1}^n\frac{1}{1-\frac{1}{\mathfrak{p}^s_k}}$ où $(\mathfrak{p}_n)_{n\in\mathbb{N}^*}$ est la suite des nombres premiers). Indication : exprimer l'événement $\{1\}$ en fonction des $E_{\mathfrak{p}},\,\mathfrak{p}\in\mathcal{P}.$

4) Montrer que la série de terme général $\frac{1}{p_n}$, $n \in \mathbb{N}^*$, diverge.

Exercice nº 9 (***)

Une pièce de monnaie est truquée de sorte que la probabilité d'obtenir Pile au cours d'un lancer est $p \in]0,1[$. On lance plusieurs fois cette pièce. Les lancers sont supposés indépendants.

Pour $n \in \mathbb{N}^*$, on note E_n l'événement : « on obtient deux Piles consécutifs pour la première fois lors des (n-1)-ème et n-ème lancers ». On note \mathfrak{p}_n la probabilité de l'événement E_n (par convention $\mathfrak{p}_1=0$).

- 1) Déterminer p_2 et p_3 .
- 2) a) Exprimer p_{n+2} en fonctions de p_{n+1} et p_n (on ne cherchera pas à exprimer p_n en fonction de n).
 - b) Montrer que $p_n \xrightarrow[n \to +\infty]{} 0$.
 - c) Calculer $\sum_{n=1}^{+\infty} p_n$. Interprétez le résultat.
- 3) En moyenne, combien faut-il de lancers pour obtenir deux piles consécutifs?