Assignment-5

Trishan Mondal, Soumya Dasgupta, Aaratrick Basu

Problem 5.14

We will begin with the assumption, the underlying field k is infinite and algebraically closed (according to contexts). The property of lines passing through points is a projective property. So we can take a suitable projective transformation so that $P_1 = [0:0:1]$. Thus, any line passing through this looks like ax + by = 0 where $a, b \in k$. The set of lines passing through P_1 is

$$A = \{x + my : m \in k\} \cup \{y = 0\}$$

Since, the field is infinite, there is infinitely many elements in A. Given two points in \mathbb{P}^2 there is a unique line passing through P_1 and that point. Thus the set of lines

$$L = \{\ell \text{ pass through } P_1 \text{ and } P_i : 2 \leq i \leq n\} \subset A$$

is finite. So there are only finitely many line in the above set. But in A there are infinitely elements. So, there are infinitely many elements in $A \setminus L$.

Since P_1 is a simple point of F, there is a tangent T at P so that the tangent T don't contained in V(F) (or F). From the problem 5.12 we can say,

$$\sum I(P; F \cap T) = n$$

where $n = \deg F$. Thus, If we take P_2, \dots, P_m be the other intersection points (here $m \leq n$) of T and F, by the previous calculation we can say there exists infinitely many lines through P don't intersect F at P_i (i > 1). These lines are transversal to F.

Problem 5.18

Let us consider the general equation of conic in \mathbb{P}^2 , that is

$$Ax^2 + By^2 + Cz^2 + Exy + Fyz + Gzx = 0$$

Since the pont [0:0:1] and [0:1:0], [1:0:0] passes through the above conic we can say, A=B=C=0. Thus the equation of conic reduces to Exy+Fyz+Gzx=0. Also the points [1:1:1] and [1:2:3] passes through the curve. So we have the following linear equations,

$$E + F + G = 0$$

$$2E + 6F + 3G = 0$$

$$\implies \begin{pmatrix} 1 & 1 & 1 \\ 2 & 6 & 3 \end{pmatrix} \begin{pmatrix} E \\ F \\ G \end{pmatrix} = 0$$

Note that the rows of the above matrix are linearly independent. So the null space of it must have dimension 1. Note that $(3, -4, 1)^T$ is a solution to the above matrix equation. Since the dimension of null space is 1 we can say any other solution must be a scaler multiple of $(3, -4, 1)^T$. So the equation of conic passing through the five points is $\lambda(3xy-4yz+zx)=0$. This will represent a unique conic in \mathbb{P}^2 . By contruction the conic is unique!