Imports

```
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import seaborn as sns
```

Reading data

```
In [ ]: data_path = "../data/lab_2/car_crashes.xlsx"

In [ ]: df = pd.read_excel(data_path)
df
```

Out[]:		ID	Source	тмс	Severity	Start_Time	End_Time	Distance(mi)	Description	Street	Side	 1
	0	A-1	MapQuest	201.0	3	2016-02- 08 05:46:00	2016-02- 08 11:00:00	0.01	Right lane blocked due to accident on I-70 Eas	I-70 E	R	
	1	A-2	MapQuest	201.0	2	2016-02- 08 06:07:59	2016-02- 08 06:37:59	0.01	Accident on Brice Rd at Tussing Rd. Expect del	Brice Rd	L	
	2	A-3	MapQuest	201.0	2	2016-02- 08 06:49:27	2016-02- 08 07:19:27	0.01	Accident on OH-32 State Route 32 Westbound at	State Route 32	R	
	3	A-4	MapQuest	201.0	3	2016-02- 08 07:23:34	2016-02- 08 07:53:34	0.01	Accident on I-75 Southbound at Exits 52 52B US	I-75 S	R	
	4	A-5	MapQuest	201.0	2	2016-02- 08 07:39:07	2016-02- 08 08:09:07	0.01	Accident on McEwen Rd at OH-725 Miamisburg Cen	Miamisburg Centerville Rd	R	
	•••											
	4995	A- 4996	MapQuest	201.0	2	2016-08- 01 11:35:41	2016-08- 01 12:05:41	0.00	Accident on Cold Springs Rd at Middletown Rd.	Cold Springs Rd	R	
	4996	A- 4997	MapQuest	201.0	2	2016-08- 01 11:41:23	2016-08- 01 12:26:23	0.00	Accident on Travis Blvd at Holiday Ln.	Travis Blvd	R	
	4997	A- 4998	MapQuest	201.0	2	2016-08- 01 11:57:27	2016-08- 01 12:42:27	0.00	Accident on River Rd at Orchard Rd.	River Rd	L	
	4998	A- 4999	MapQuest	201.0	2	2016-08- 01 12:00:54	2016-08- 01 12:30:54	0.00	Accident on Marconi Ave at Bell St.	Bell St	R	

	ID	Source	TMC	Severity	Start_Time	End_Time	Distance(mi)	Description	Street	Side	•••	1
4999	A- 5000	MapQuest	201.0	2	2016-08- 01 11:59:44	2016-08- 01 12:29:44	0.00	Accident on Madison Ave Westbound at I-80.	I-80 W	R		

5000 rows × 37 columns

Data types:

Nominal:

ID, Source, Description, Street, City, State, Zipcode, Wind_Direction, Weather_Condition

Binary:

Side, Bump, Crossing, Give_Way, Junction, No_Exit, Railway, Roundabout, Station, Stop, Traffic_Calming, Traffic_Signal, Turning_Loop, Sunrise_Sunset, Civil_Twilight

Ordinal:

Severity

Discrete:

TMC

Continuous:

Start_Time, End_Time, Distance(mi), Weather_Timestamp, Temperature(F), Wind_Chill(F), Humidity(%), Pressure(in), Visibility(mi), Wind_Speed(mph), Precipitation(in)

Visibility

```
In [ ]:
         visibility = df.loc[:, "Visibility(mi)"].dropna()
         visibility.describe()
                  4958.000000
        count
Out[]:
                     9.465611
        mean
                     1.886629
        std
                     0.200000
        min
        25%
                    10.000000
        50%
                    10.000000
        75%
                    10.000000
                    40.000000
        max
        Name: Visibility(mi), dtype: float64
In [ ]:
         visibility.hist(log=True)
         <AxesSubplot:>
Out[ ]:
```



```
fig, axs = plt.subplots(1, 4)
fig.set_size_inches(20,4)
for i in range(4):
    axs[i].set_xlabel("Visibility")
    axs[i].set_ylabel("Count")
    axs[i].set_title(f"Visibility hist for crashes of severity = {i + 1}")
    df.loc[df.Severity == i + 1,"Visibility(mi)"].dropna().hist(ax=axs[i], log=True)
```


Temperature

```
mean 69.849900
std 18.308741
min 3.900000
25% 60.800000
50% 71.100000
75% 82.400000
```

max 106.000000

Name: Temperature(F), dtype: float64

Variation series

```
In [ ]:
          var_series = sorted(temperature)
          var_series[:15]
         [3.9,
Out[]:
          5.0,
          6.1,
          7.0,
          7.0,
          7.0,
          7.5,
          7.5,
          8.1,
          9.0,
          10.0,
          10.0,
          10.4,
          10.9,
          10.9]
```

Statistical series

```
In [ ]:
         stat_series = temperature.value_counts().sort_index()
         stat_series
        3.9
                  1
Out[ ]:
        5.0
                  1
        6.1
                  1
        7.0
                   3
        7.5
        102.6
                  1
        102.9
                 14
        103.6
                  1
        104.0
                  24
        106.0
        Name: Temperature(F), Length: 238, dtype: int64
```

Grouped statistical series

```
In [ ]: temperature.hist(bins=20)
```

Out[]: <AxesSubplot:>

Highest number of accidents

Road distance distributions in listed cities

/mnt/f/Code/linux-home/miniconda3/envs/vscode_py38/lib/python3.8/site-packages/seaborn/distribu tions.py:316: UserWarning: Dataset has 0 variance; skipping density estimate. Pass `warn_singul ar=False` to disable this warning.

warnings.warn(msg, UserWarning)

/mnt/f/Code/linux-home/miniconda3/envs/vscode_py38/lib/python3.8/site-packages/seaborn/distribu tions.py:316: UserWarning: Dataset has 0 variance; skipping density estimate. Pass `warn_singul ar=False` to disable this warning.

warnings.warn(msg, UserWarning)

/mnt/f/Code/linux-home/miniconda3/envs/vscode_py38/lib/python3.8/site-packages/seaborn/distribu tions.py:316: UserWarning: Dataset has 0 variance; skipping density estimate. Pass `warn_singul ar=False` to disable this warning.

warnings.warn(msg, UserWarning)

In []: