PROBABILITY REVIEW

Algorithms Analysis

github.com/erngv

1. Suppose you have a fair 6-sided die with the numbers 1 through 6 on the sides and a fair 5-sided die with the numbers 1 through 5 on the sides. What is the probability that a roll of the six-sided die will produce a value larger than the roll of the five-sided die?

Rolling a fair six-sided die and then a fair five-sided die can only produce the following outcomes on the form (x, y):

(1,1)	(2,1)	(3,1)	(4,1)	(5,1)	(6,1)
(1,2)	(2,2)	(3,2)	(4,2)	(5,2)	(6,2)
(1,3)	(2,3)	(3,3)	(4,3)	(5,3)	(6,3)
(1,4)	(2,4)	(3,4)	(4,4)	(5,4)	(6,4)
(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	(6,5)

where x represents the outcome of the fair six-sided die and y represents the outcome of the fair five-sided die. There is a total of 5×6 possible cases; however, only in 15 of those cases x > y. Therefore, the probability that a roll of the six-sided die will produce a value larger than the roll of the five-sided die (let us say event E) is:

$$P(E) = \frac{\text{number of outcomes}}{\text{total number of outcomes in sample space}} = \frac{15}{30} = \frac{1}{2} = \textbf{0.5}$$

2. What is the expected number of rolls until a fair five-sided die rolls a 3? Justify your answer briefly.

In this problem, we are dealing with a **geometric random variable**, since we are counting the number of experiments (in this case the number of rolls) necessary to obtain the first success (in this case the value 3). Therefore,

$$P(X = n) = (1 - p)^{n-1}p$$

p is the probability of getting a 3 when rolling a fair five-sided die, so $p = \frac{1}{5}$

Since E(X) = M'(0), let us apply the moment generating function,

$$M(t) = E\left(e^{tX}\right) = \sum_{k=1}^{\infty} e^{tk} P(X = k)$$

$$M(t) \ = \sum_{k=1}^{\infty} e^{tk} (1-p)^{k-1} p = p e^t \sum_{k=1}^{\infty} e^{t(k-1)} (1-p)^{k-1} = p e^t \sum_{m=1}^{\infty} \left[(1-p) e^t \right]^m$$

$$M(t) = \frac{pe^t}{1 - (1 - p)e^t}$$

$$M'(t) \ = \frac{pe^t \left[1 - (1-p)e^t \right] - pe^t (1-p)e^t}{\left[1 - (1-p)e^t \right]^2} = \frac{pe^t}{\left[1 - (1-p)e^t \right]^2}$$

$$E(X) = M'(0) = \frac{p}{p^2} = \frac{1}{p} = \frac{1}{\frac{1}{5}} = 5$$

Therefore, the expected number of rolls is **5**.