Assignment 10 Group D

Exercise 1

$$\begin{array}{ccc}
\Lambda. & A \rightarrow & (3) \\
B \rightarrow & (2) \\
C \rightarrow & (4)
\end{array}$$

2.	Set R;	Pi	Qm(ei)	Qg(p:)	Qe(Pi)	notes
	R_4	$\left(\frac{1}{5},\frac{4}{5}\right)$	0,2	$\frac{8}{25} = 0,32$	0,72	} Symmetry
	R_2	$\left(\frac{4}{5},\frac{1}{5}\right)$	0,2	0,32	6,72	J
	R_3	$\left(\frac{1}{2},\frac{1}{2}\right)$	0,5	0,5	1	maximum
	Ry	(1,0)	0	0	0	minimum

Exercise 2

1. Temperature: nominal /sinary

guests : metric

food : nominal

-> 2-class output

2 a)
$$P = (P_{\text{mit}}, P_{\text{flop}}) = (\frac{4}{7}, \frac{3}{7})$$

 $Q(R) = 1 - \max(R) = \frac{3}{7}$

$$\tilde{u}$$
) $P_{R1} = \frac{4}{7}$
 $P_{R2} = \frac{3}{7}$

$$\begin{array}{ccc} \ddot{u} & \rho_1 = \left(\frac{1}{2}, \frac{1}{2}\right) & \rightarrow & Q_{\rm m}(R_1) = \frac{1}{2} \\ \rho_2 = \left(\frac{1}{3}, \frac{2}{3}\right) & \rightarrow & Q_{\rm m}(R_2) = \frac{1}{3} \end{array}$$

(i)
$$\Delta Q(R,R_1,R_2) = Q(R) - (P_{R_1}Q(R_1) + P_{R_2}Q(R_2))$$

= $\frac{3}{7} - (\frac{4}{7} \cdot \frac{1}{2} + \frac{3}{7} \cdot \frac{1}{3}) = 0$

C) i)
$$p_1 = \frac{1}{4}(20+8+30+28) = 21.5$$

 $p_2 = \frac{1}{3}(10+2+5) = 5.67$
 $G = \frac{p_1 + p_2}{2} = 13.58$
 $R_1 = \{x_1, x_3, x_4, x_6\}$ " < 0 "
 $R_2 = \{x_2, x_5, x_4\}$ " < 0 "

ii)
$$PR_1 = \frac{4}{7}$$

$$PR_2 = \frac{3}{7}$$

$$P_1 = \left(\frac{3}{4}, \frac{1}{4}\right) \implies Q_M(R_1) = 0.25$$

$$P_2 = \left(0, 1\right) \implies Q_M(R_2) = 0$$

d)
$$R_1 = \{ x_1, x_6, x_7 \}$$
 "Nothing" $R_2 = \{ x_2, x_3 \}$ "Vegetables"

$$R_3 = \{x_4, x_5\}$$

$$P_{R1} = \frac{3}{7}$$

$$e_1 = \left(\frac{2}{3}, \frac{1}{3}\right)$$
 \rightarrow $Q_m(R_1) = \frac{1}{3}$

$$P_2 = \left(\frac{1}{2}, \frac{1}{2}\right) \rightarrow Q_m(R_2) = \frac{1}{2}$$

$$\Delta Q(R,R_1,R_2,R_3) = Q(R) - \left(P_{R_1}Q(R_1) + P_{R_2}Q(R_2) + P_{R_3}Q(R_3)\right)$$

$$= \frac{3}{7} - \left(\frac{3}{7} \cdot \frac{1}{3} + \frac{2}{7} \cdot \frac{1}{2} + \frac{2}{7} \cdot 0\right) = \frac{1}{7}$$

e) use feature "number of guests" with $\theta = 13,58$ since it yields the highest impurity gain DQ

5.

4.

