# Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego



#### Wydział Cybernetyki, kierunek informatyka - inżynieria systemów

Realizacja zadania laboratoryjnego w ramach przedmiotu:

## Systemy Baz Danych

Temat laboratorium:

# Grafowe Bazy Danych

Opracował: Radosław Relidzyński, Grupa: WCY23IX3S4

## Spis treści

| Wstęp teoretyczny                       | 3  |
|-----------------------------------------|----|
| Środowisko                              |    |
| Opis środowiska                         | 3  |
| Instrukcja do przygotowania bazy danych |    |
| Wykaz tabel                             | 4  |
| Schemat bazy danych                     | 5  |
| Węzły                                   | 6  |
| Relacje                                 | 8  |
| Ograniczenia                            | 10 |
| Indeksy                                 | 10 |
| Zapytania                               | 11 |
| Podsumowania                            | 10 |

#### Wstęp teoretyczny

**Baza danych** – "uporządkowany zbiór danych określających wybrany fragment rzeczywistości lub problemu, które są przechowywane trwale w pamięci komputerowej do której może mieć dostęp wielu użytkowników w dowolnej chwili czasu."

**System zarządzania bazami danych** – "zorganizowany zbiór narzędzi (programów komputerowych i bibliotek), które umożliwiają wykonanie podstawowych operacji na danych (CRUD) zawartych w jednej lub więcej bazach danych."

System baz danych – jego definicja wyraża się wzorem:

$$SBD = \langle \{U, SO, DB, SZBD, P\}, R \rangle$$

Gdzie:

U – zbiór urządzeń

SO – system operacyjny

BD – baza danych (schemat, stan, ścieżki dostępu)

SZBD – system zarządzania bazą danych

P – polecenia użytkownika

 $R-relacje\ między\ obiektami\ SBD\ a\ otoczeniem$ 

[źródło: materiały z wykładu "Temporalne bazy danych" dr inż. Jarosława Koszeli]

**Grafowa baza danych** – "Bazy danych grafów to bazy danych NoSQL, które mogą przechowywać, mapować i odpytywać relacje między danymi. Elementy w bazie danych grafów mogą łączyć się ze sobą w każdy możliwy sposób."

[źródło: https://appmaster.io/pl/blog/baza-danych-grafow-neo4j]

### Środowisko

#### Opis środowiska

W ramach projektu rolę systemu zarządzania bazą danych będzie pełnić narzędzie Neo4j. Wykorzystane zostanie środowisko Neo4j Workspace.

**Neo4j** – "system zarządzania bazą danych grafowych (GDBMS) opracowany przez Neo4j, Inc. Elementy danych przechowywane przez Neo4j to węzły, krawędzie łączące je oraz atrybuty węzłów i krawędzi."

[tłumaczone, źródło: <a href="https://neo4j.com/developer/neo4j-browser/">https://neo4j.com/developer/neo4j-browser/</a>]

Neo4j Browser – "narzędzie skierowane do deweloperów, które pozwala na wykonywanie zapytań Cypher i wizualizowanie wyników. Jest to domyślny interfejs deweloperski zarówno dla edycji Enterprise, jak i Community Neo4j. Jest dostępny od razu we wszystkich ofertach baz danych grafowych Neo4j, w tym Neo4j Server (edycje Community i Enterprise), Neo4j AuraDB (baza danych Neo4j jako usługa) oraz Neo4j Desktop (wszystkie wersje systemów operacyjnych).

[tłumaczone, źródło: https://neo4j.com/docs/browser-manual/current/]

Na dzień projektu aktualna wersja Neo4j to 5.20.0 z 23 maja 2024 r.

#### Instrukcja do przygotowania bazy danych

Wywołanie instrukcji w aplikacji przeglądarkowej odbywa się poprzez skopiowanie zawartość skryptów jako jedno duże zapytanie do konsoli w zakładce "Query".

- 1. Tworzenie zawartości bazy danych, dostępne 2 opcje
  - a. Uruchomienie wszystkiego na raz skrypt "script.cypher"
  - b. Uruchomienie elementowo:
    - i. Stworzenie węzłów skrypt "nodes.cypher"
    - ii. Stworzenie indeksów skrypt "indexes.cypher"
    - iii. Stworzenie ograniczeń skrypt "constrains.cypher"
    - iv. Stworzenie relacji skrypt "relations.cypher"
- 2. Wywoływanie zapytań, uruchamiane osobno zapytań ze skryptu "queries.cypher", każde zapytanie oddzielone i oznaczone jest numerem z opisem.
- (Po zakończeniu działania) usunięcie całej stworzonej zawartości skrypt "delete.cypher"

## Wykaz etykiet

Baza danych stworzona w ramach projektu pełni zadanie zbierania i zarządzania informacjami dotyczącymi wybranych lotnisk Europy oraz lotów między nimi. W ramach tego powołane są następujące etykiety:

- Samolot informacje o samolocie
- Miejsce informacje o miejscu siedzącym w samolocie
- Model informacje o istniejących w bazie modelach samolotów
- Pracownik Informacje o pracownikach
- Lotnisko informacje o lotniskach

- Lot informacje o locie na podstawie samolotu i lotnisk
- Klient informacje o kliencie
- Zniżki informacje o zniżkach klientów
- Bilet informacje o bilecie na podstawie lotu, miejsca w samolocie oraz klienta

#### Wykaz relacji

Węzły w bazie danych połączone są relacjami pokazujące zależności między nimi oraz miejscami uzupełniające informacje o nich. W tym celu stworzone są następujące relacje:

- MA\_LICENCJE czy pracownik ma uprawnienia do pełnienia roli w ramach danego samolotu
- ROLA\_W\_LOCIE –jacy pracownicy biorą udział w locie oraz jaką rolę będą pełnić
- MA\_ZNIZKE jaki rodzaj zniżki (jeśli ma) posiada dany klient
- REALIZUJE samolot realizujący dany lot
- LOTNISKO\_STARTOWE lotnisko startowe dla lotu
- LOTNISKO KONCOWE lotnisko końcowe dla lotu
- MA MIEJSCE przyporządkowanie miejsca do samolotu
- NA\_LOT lot, na który jest bilet
- NA MIEJSCE miejsce, na które jest bilet
- MA\_BILET do kogo należy bilet

#### Schemat bazy danych

Wywołany przy pomocy polecenia "CALL db.schema.visualization".



Węzły

Zbiór węzłów (etykieta) na przykładzie Klientów



Podgląd atrybutów danego węzła



# Relacje

Zbiór relacji na przykładzie relacji Samolot -> Miejsce o nazwie "MA\_MIEJSCE"



Pogląd relacji na przykładzie relacji ROLA\_W\_LOCIE, która poza łączeniem pracownika z lotem mówi również jaką rolę pełni



#### Ograniczenia

#### Zastosowane ograniczenia, pokazane przy pomocy polecenia "SHOW CONSTRAINTS"

| id    | name            | type            | entityType | labelsOrTypes | properties         | ownedIndex | propertyType |
|-------|-----------------|-----------------|------------|---------------|--------------------|------------|--------------|
| 1 30  | "constraint_100 | "NODE_PROPERTY_ | "NODE"     | ["Samolot"]   | ["NrSamolotu"]     | null       | null         |
| 2 59  | "constraint_108 | "NODE_PROPERTY_ | "NODE"     | ["Bilet"]     | ["Cena"]           | null       | "FLOAT"      |
| з 35  | "constraint_19c | "NODE_PROPERTY_ | "NODE"     | ["Znizka"]    | ["RodzajZnizki"]   | null       | null         |
| 4 40  | "constraint_1e/ | "NODE_PROPERTY_ | "NODE"     | ["Znizka"]    | ["ProcentUmazany"] | null       | null         |
| 5 26  | "constraint_212 | "NODE_PROPERTY_ | "NODE"     | ["Klient"]    | ["Nazwisko"]       | null       | "STRING"     |
| 6 49  | "constraint_26c | "NODE_PROPERTY_ | "NODE"     | ["Klient"]    | ["DataUrodzenia"]  | null       | null         |
| 7 13  | "constraint_2a3 | "NODE_PROPERTY_ | "NODE"     | ["Miejsce"]   | ["NrSamolotu"]     | null       | null         |
| 8 24  | "constraint_2e3 | "NODE_PROPERTY_ | "NODE"     | ["Pracownik"] | ["Imie"]           | null       | null         |
| 9 43  | "constraint_357 | "NODE_PROPERTY_ | "NODE"     | ["Bilet"]     | ["KodBiletu"]      | null       | null         |
| 10 7  | "constraint_425 | "NODE_PROPERTY_ | "NODE"     | ["Samolot"]   | ["RokProdukcji"]   | null       | "INTEGER"    |
| п 36  | "constraint_436 | "NODE_PROPERTY_ | "NODE"     | ["Miejsce"]   | ["Klasa"]          | null       | "STRING"     |
| 12 15 | "constraint_465 | "NODE_PROPERTY_ | "NODE"     | ["Lot"]       | ["DataLotu"]       | null       | null         |
| 13 14 | "constraint_486 | "NODE_PROPERTY_ | "NODE"     | ["Miejsce"]   | ["NrMiejsca"]      | null       | null         |
| 14 31 | "constraint_52f | "NODE_PROPERTY_ | "NODE"     | ["Lotnisko"]  | ["KrajPolozenia"]  | null       | null         |

#### Podział ograniczeń z przykładami:

- Wymóg bycia wypełnionym
  - CREATE CONSTRAINT FOR (n:Klient) REQUIRE (n.Imie) IS NOT NULL;
  - CREATE CONSTRAINT FOR (n:Klient) REQUIRE (n.Nazwisko) IS NOT NULL;
  - CREATE CONSTRAINT FOR (n:Klient) REQUIRE (n.DataUrodzenia) IS NOT NULL;
- Wymóg bycia danym typem danej
  - CREATE CONSTRAINT FOR (n:Bilet) REQUIRE (n.KodBiletu) IS TYPED STRING;
  - CREATE CONSTRAINT FOR (n:Cena) REQUIRE (n.KodBiletu) IS TYPED FLOAT;
  - CREATE CONSTRAINT FOR (p:Pracownik) REQUIRE (p.DataUrodzenia) IS TYPED DATE;

#### Indeksy

Możliwe do przejrzenia przy pomocy polecenia "SHOW INDEXES".

|    | id ≡ <sub>↑</sub> | name            | state    | populatio | type     | entityTypε | labelsOrTypes | properties       | indexProvider          | owningC | lastRead                    | readCount |
|----|-------------------|-----------------|----------|-----------|----------|------------|---------------|------------------|------------------------|---------|-----------------------------|-----------|
| 1  | 0                 | "index_343aff4€ | "ONLINE" | 100.0     | "LOOKUP" | "NODE"     | null          | null             | "token-<br>lookup-1.0" | null    | 2024-06-<br>05T16:07:27.638 | 2         |
| 2  | 1                 | "index_f7700477 | "ONLINE" | 100.0     | "LOOKUP" | "RELATIONS | null          | null             | "token-<br>lookup-1.0" | null    | 2024-06-<br>05T16:07:53.808 | 2         |
| 3  | 2                 | "index_3db33867 | "ONLINE" | 100.0     | "RANGE"  | "NODE"     | ["Klient"]    | ["NrKlienta"]    | "range-1.0"            | null    | 2024-06-<br>05T15:39:39.946 | 30        |
| 4  | 3                 | "index_35553391 | "ONLINE" | 100.0     | "RANGE"  | "NODE"     | ["Lotnisko"]  | ["Nazwa"]        | "range-1.0"            | null    | 2024-06-<br>05T15:39:24.923 | 14        |
| 5  | 4                 | "index_2b9ae720 | "ONLINE" | 100.0     | "RANGE"  | "NODE"     | ["Pracownik"] | ["NrPracownika"] | "range-1.0"            | null    | 2024-06-<br>05T15:39:32.929 | 30        |
| 6  | 9                 | "index_884b013c | "ONLINE" | 100.0     | "RANGE"  | "NODE"     | ["Lot"]       | ["NrLotu"]       | "range-1.0"            | null    | 2024-06-<br>05T15:39:39.947 | 67        |
| 7  | 17                | "index_8b28ef8f | "ONLINE" | 100.0     | "RANGE"  | "NODE"     | ["Znizka"]    | ["RodzajZnizki"] | "range-1.0"            | null    | null                        | 0         |
| 8  | 18                | "index_4451d072 | "ONLINE" | 100.0     | "RANGE"  | "NODE"     | ["Model"]     | ["Nazwa"]        | "range-1.0"            | null    | null                        | 0         |
| 9  | 22                | "index_d8bd57a@ | "ONLINE" | 100.0     | "RANGE"  | "NODE"     | ["Samolot"]   | ["NrSamolotu"]   | "range-1.0"            | null    | 2024-06-<br>05T15:39:33.226 | 57        |
| 10 | 47                | "index_b92336e7 | "ONLINE" | 100.0     | "RANGE"  | "NODE"     | ["Bilet"]     | ["KodBiletu"]    | "range-1.0"            | null    | 2024-06-<br>05T15:39:39.947 | 30        |
|    |                   |                 |          |           |          |            |               |                  |                        |         |                             |           |

Lista pokazuje wszystkie istniejące ograniczenia co do unikalności, w tym również utworzone indeksy.

#### Zapytania

1. Wyświetl klientów, którzy mają kupiony bilet na lot samolotem z serii "Boeing".

```
MATCH (k:Klient)-[r1:MA_BILET]->(b:Bilet)-[r2:NA_LOT]->(1:Lot)<-[r3:REALIZUJE]-
(s:Samolot)
WHERE s.Model CONTAINS 'Boeing'
RETURN k, r1, b, r2, 1, r3, s
```

Proste zapytanie sprawdzające działanie połączeń dla większego zbioru relacji



2. Wyświetl pracowników, którzy pełnili więcej niż jedną rolę w różnych lotach.

```
MATCH (p:Pracownik)-[r1:ROLA_W_LOCIE]->(1:Lot)
WITH p, COUNT(DISTINCT 1) AS num_lots
WHERE num_lots > 1
RETURN p
```

Sprawdzanie działania funkcji agregującej dla bazy grafowej



#### 3. Wyświetl wszystkie samoloty na które bilet ma klient o numerze 1.

```
MATCH p = (k:Klient {NrKlienta: 1})-[*3]-(s:Samolot)

RETURN p

// Długie i błędne zapytanie, ponieważ szuka wszystkich ścieżek z samolotami, również

tymi, na które nie ma biletu

// MATCH p = (k:Klient {NrKlienta: 1})-[*]-(s:Samolot) RETURN p
```

Poszukiwanie na podstawie wiedzy o tym, że żeby znaleźć tylko samoloty dla biletów klienta to długość połączenia nie może przekraczać 3 (pomiędzy jest bilet, miejsce lub lot, a na końcu jest poszukiwany samolot).



Uruchomienie bez ograniczenia długościowego (widać, że poszukując dla różnych długości zaczyna szukać po innych klientach, docelowo wypisując bardzo dużą liczbę nieoczekiwanych wyników).



```
4. Wyświetl połączenia dla klientów, którzy mają bilet na ten sam lot.

MATCH p = (k1:Klient)-[:MA_BILET]->(b1:Bilet)-[:NA_LOT]->(1:Lot)<-[:NA_LOT]-
(b2:Bilet)<-[:MA_BILET]-(k2:Klient)

WHERE k1 <> k2
```

Wyświetla wszystkie poszukiwane połączenia dla danego klienta



# 5. Wyświetlenie dla każdego pracownika z jakimi innymi pracownikami biorą udział w locie.

```
WITH 2 AS minLength
MATCH (p1:Pracownik)-[:ROLA_W_LOCIE]->(1:Lot)<-[:ROLA_W_LOCIE]-(p2:Pracownik)
WHERE p1 <> p2
WITH p1, p2, shortestPath((p1)-[:ROLA_W_LOCIE*]-(p2)) AS path
WHERE length(path) = minLength
RETURN path
```

W przypadku gdy dany pracownik chciałby sprawdzić z jakimi innymi pracownikami będzie realizować dany lot, może skorzystać z podobnego zapytania. Zapytanie wykorzystuje funkcję "shortestPath", dzięki któremu wykluczane są wszystkie dłuższe ścieżki od oczekiwanej.



6. Przejrzenie połączeń między klientem o numerze 1 a pracownikami, długości węzłów od 4 do 6.

MATCH p = (start:Klient {NrKlienta: 1})-[\*2..4]-(end:Pracownik)
RETURN p

Dodatkowe przykładowe zapytanie dla górnego i dolnego ograniczenia długości ścieżki



#### Podsumowanie

W ramach realizacji zadania laboratoryjnego udało się stworzyć system zarządzania informacjami w zakresie lotnisk Europy.

Udało się skutecznie zastosować narzędzia Neo4j Workspace oraz Neo4j Browser do implementacji zapytań w języku Cypher i wizualizacji wyników. W projekcie wykorzystano zaawansowane funkcje takie jak indeksy, ograniczenia oraz różnorodne zapytania, które umożliwiają analizę danych oraz ich relacji w kontekście grafowym.

Zastosowane podejście umożliwia lepszą kontrolę i analizę danych w czasie rzeczywistym, co jest szczególnie istotne w kontekście dynamicznych i złożonych systemów

| informacyjnych. Przeglądanie danych jest bardzo łatwe dzięki wygodnemu interfejsowi |
|-------------------------------------------------------------------------------------|
| graficznemu wyświetlającym dane w postaci grafu.                                    |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |