MATH 525 Section 3.4: Extended Codes

October 22, 2020

Section 3.4 October 22, 2020 1 / 4

Let C be an (n, k, d)-linear code. We form a new code C^* by appending a 0 at the end of every codeword of C with even weight, and a 1 at the end of every codeword of C with odd weight. This extra digit is called an overall parity-check digit. C^* is called the the extended code of C.

Example

С	<i>C</i> *
000000	0000000
100101	100101 <mark>1</mark>
110011	110011 <mark>0</mark>
010110	010110 <mark>1</mark>
011001	0110011
111100	111100 <mark>0</mark>
101010	101010 <mark>1</mark>
001111	0011110

Note that in the new code C^* every word has even weight.

Section 3.4 October 22, 2020 2 / 4

If G is the generator matrix of C, then

$$G^* = [G|b]$$

is the generator matrix of C^* , where the column labeled b is appended so that every row of G^* has even weight. Alternatively, b = Gi where i is the $n \times 1$ column vector of all 1's.

Example

Let

$$G = \left[\begin{array}{cccccccc} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{array} \right].$$

Then

$$G^* = \left[egin{array}{cccccccc} 1 & 0 & 0 & 1 & 0 & 1 & 1 \ 0 & 1 & 0 & 1 & 1 & 0 & 1 \ 0 & 0 & 1 & 1 & 1 & 1 & 0 \end{array}
ight]$$

If H is a parity-check matrix of C, then

$$H^* = \left[\begin{array}{c|c} H & j \\ \hline \mathbf{0} & 1 \end{array} \right]$$

is a parity-check matrix for C^* . Indeed,

$$G^* \cdot H^* = [G|b] \cdot \begin{bmatrix} H \mid j \\ \hline \mathbf{0} \mid 1 \end{bmatrix} = [GH, Gj + b] = [\mathbf{0}, \mathbf{0}].$$

Remarks:

① Note that if $v \in C$ and v^* is the corresponding codeword in C^* , then:

$$\operatorname{wt}(v^*) = \left\{ \begin{array}{ll} \operatorname{wt}(v) & \text{if } \operatorname{wt}(v) \text{ is even;} \\ \operatorname{wt}(v) + 1 & \text{if } \operatorname{wt}(v) \text{ is odd.} \end{array} \right.$$

② If d(C) = odd, then $d(C^*) = d(C) + 1$; if d(C) = even, then $d(C^*) = d(C)$.