

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №1 по курсу "Анализ алгоритмов"

Студент Сусликов Д.В.	
Группа ИУ7-55	
Оценка (баллы)	
Преподаватели Волкова Л.Л., Строганов Ю.В.	

Тема Расстояния Левенштейна и Дамерау-Левенштейна

Оглавление

Введение				
1	Ана	литическая часть	3	
2				
	2.1	Разработка алгоритмов	6	
	2.2	Сравнительный анализ памяти	10	
3	Tex	нологическая часть	11	
	3.1	Требования к программному обеспечению	11	
	3.2	Средства реализации		
	3.3	Реализация алгоритмов		
	3.4	Описание тестирования	17	
4	Экс	периментальная часть	18	
	4.1	Примеры работы	18	
	4.2	Результаты тестов	20	
		4.2.1 Результаты работы программы	20	
		4.2.2 Сравнительный анализ времени работы алгоритмов	20	
За	ключ	тение	22	
Лı	итера	Typa	23	

Введение

Редакионное расстояние или **расстояние Левенштейна** - это минимальное количество редакторских операций, которые необходимо для преобразования одной строки в другую.

Расстояние Левенштейна и его обобщения активно применяется:

- для автозамен ошибок в слове (например, в поисковых системах);
- в биоинформатике для сравнения генов, хромосом и белков;
- и в других областях.

Целью данной лабораторной работы:реализовать и сравнить по эффективности алгоритмы поиска расстояний Левенштейна и Дамерау-Левенштейна.

Задачи:

- 1. Дать математическое описание расстояний Левенштейна и Дамерау-Левенштейна;
- 2. Разработать алгоритмы поиска расстояний;
- 3. Реализовать алгоритмы поиска расстояний;
- 4. Провести эксперименты по замеру времени работы реализации алгоритмов;
- 5. Провести сравнительный анализ реализаций алгоритмов по затрачиваемому времени (и максимально затрачиваемой памяти);
- 6. Дать теоретическую оценку максимально затрачиваемых по памяти реализациям алгоритмов.

1 Аналитическая часть

Задачей алгоритма Левештейна является нахождение минимального количества редакционных операций (вставок, удалений, замен) нужных для приведения одной строки символов к другой.

При нахождении расстояния Дамерау—Левенштейна добавляется операция перестановки двух соседних символов.

Действия обозначаются так:

- D (delete) удалить;
- I (insert) вставить;
- R (replace) заменить;
- M (match) совпадение;
- X (exchange) перестановка (только в алгоритме Дамерау—Левенштейна).

Каждая операция, кроме перестановки, увеличивает релакционное расстояние на 1.

Пусть S_1 и S_2 — две строки (длиной i и j соответственно) над некоторым алфавитом, тогда расстояние Левенштейна можно подсчитать по следующей рекуррентной формуле:

$$D(i,j) = \begin{cases} 0, & i = 0, j = 0\\ i, & j = 0, i > 0\\ j, & i = 0, j > 0\\ min(D(S_1[1..i], S_2[1..j - 1]) + 1, & j > 0, i > 0\\ D(S_1[1..i - 1], S_2[1..j]) + 1, & j > 0, i > 0\\ D(S_1[1..i - 1], S_2[1..j - 1]) + m(S_1[i], S_2[j])) \end{cases}$$

$$(1.1)$$

где m(a,b) равно 0 при a=b, и 1 в противном случае; $min\{\,a,b,c\}$ возвращает наименьший из аргументов.

Расстояние Дамерау-Левенштейна вычисляется по следующей рекуррентной формуле:

$$D(i,j) = \begin{cases} 0, & i = 0, j = 0\\ i, & j = 0, i > 0\\ j, & i = 0, j > 0 \end{cases}$$

$$D(i,j) = \begin{cases} min(D(S_1[1..i], S_2[1..j - 1]) + 1, & j > 0, i > 0\\ D(S_1[1..i - 1], S_2[1..j]) + 1, & j > 0, i > 0\\ D(S_1[1..i - 1], S_2[1..j - 1]) + m(S_1[i], S_2[j]))\\ D(S_1[1..i - 2], S_2[1..j - 2]) + 1 \end{cases}$$

$$(1.2)$$

2 Конструкторская часть

Далее будут представлены схемы алгоритмов нахождения редакционного расстояния.

2.1 Разработка алгоритмов

Ниже на Рисунке 1 представлена схема матричного алгоритма нахождения расстояний Левенштейна.

Рисунок 1 - Схема матричного алгоритма Левенштейна

Далее на Рисунке 2 можно увидеть схему рекурсивного алгоритма нахождения расстояния Левенштейна.

Рисунок 2 - Схема рекурсивного алгоритма Левенштейна

Ниже на Рисунке 3 изображена схема рекурсивного алгоритма с использованием матрицы для нахождения расстояний Левенштейна.

Рисунок 3 - Схема рекурсивного алгоритма Левенштейна с использованием матрицы

Далее на Рисунке 4 показана схема матричного алгоритма нахождения расстояния Дамерау-Левенштейна.

Рисунок 4 - Схема матричного алгоритма Дамерау-Левенштейна

2.2 Сравнительный анализ памяти

В случае матричной реализации алгоритма, требуется хранить

- динамическую матрицу размером $C_1 * (len1 + 1) + (len1 + 1) * C_1 * (len2 + 1)$,
- значения двух счетчиков $2C_2$,
- значение вспомогательной переменной (штраф) C_2

и передавать параметры (C_2 * len).

В итоге, так будет высчитываться общий размер запрашиваемой памяти:

$$C_1 * (len1 + 1) + (len1 + 1) * C_1 * (len2 + 1) + 2C_2 + C_2 * len$$

В случае рекурсивной реализации при каждом вызове требуется хранить значение 4 вспомогательных переменных - $4C_2$ и передавать параметры (C_2 * len).

Причем, максимальная глубина рекурсивного вызова — максимальная длина двух строк.

Так как память рекурсивного алгоритма растет пропорционально сумме длин строк, а матричного – их произведения, то на строках большой длины рекурсивный алгоритм затрачивает меньше памяти по сравнению с матричным.

3 Технологическая часть

В данном разделе рассматривается выбранный язык программирования, среда разработки, требуемые инструменты для реализации и сама реализация.

3.1 Требования к программному обеспечению

- 1. Программа должна предусматривать ввод двух строк произвольной длины. Строки могут содержать произвольный набор символов.
- 2. Выбор применяемого алгоритма осуществляется пользователем из списка алгоритмов, предложенных в меню.
- 3. На выходе программа выводит матрицу (в случае выбора матричного алгоритма) и значение расстояния между введенными строками.
- 4. Также необходимо предусмотреть выполнение замеров процессорного времени для каждого из алгоритмов.

3.2 Средства реализации

В лабораторной работе быть использован язык C^{++} , так как был ранее изучен и использован во многих предыдущих работах.

Среда разработки - Qt.

Для замеров процессорного времени была использована функция clock().

3.3 Реализация алгоритмов

Листинг 1 - Функция нахождения расстояния матричного алгоритма Левенштейна

```
| long int levenshtein_distance(const char* str1, const char* str2)
2 {
   long int len1 = strlen(str1) + 1;
    long int len2 = strlen(str2) + 1;
   int ** matrix = create_matrix(len1, len2);
    matrix [0][0] = 0;
    for (long int i = 1; i < len1; i++)
      matrix[i][0] = i;
10
11
    for (long int j = 1; j < len2; j++)
12
      matrix[0][j] = j;
13
14
    for (long int i = 1; i < len1; i++)
15
16
      for (long int j = 1; j < len2; j++)
17
      {
        int sub_cost = 0;
19
        if (str1[i-1] != str2[j-1])
20
          sub\_cost = 1;
21
22
        matrix[i][j] = my_min(matrix[i - 1][j] + DELETION_COST,
        matrix[i][j-1] + INSERTION_COST,
24
        matrix[i - 1][j - 1] + sub\_cost);
      }
26
27
    int answer = matrix [len1 -1][len2 -1];
29
    print_matrix(matrix, len1, len2);
    free_matrix(&matrix, len1);
    return
            answer;
32
33 }
```

Листинг 2 - Функция рекурсивного алгоритма нахождения расстояний Левенштейна

```
| long int levenshtein_recursion(const char* str1, long int len1, const
     char* str2 , long int len2 )
2 {
   if (len1 <= 0 | len2 <= 0)
      return abs((int)(len2 - len1));
   int sub\_cost = 0;
   if (str1[len1 - 1] != str2[len2 - 1])
     sub\_cost = 1;
   long int deletion = levenshtein_recursion(str1, len1 - 1, str2,
      len2) + DELETION_COST;
   long int insertion = levenshtein_recursion(str1, len1, str2, len2 -
        1) + INSERTION_COST;
   long int replacement = levenshtein_recursion(str1, len1 - 1, str2,
12
      len2 - 1) + sub\_cost;
13
   return my_min(deletion, insertion, replacement);
14
15 }
16
17 long int levenshtein_recursion(const char* str1, const char* str2)
18 {
   long int len1 = strlen(str1);
   long int len2 = strlen(str2);
20
21
   if (len1 <= 0 | len2 <= 0)
22
      return abs((int)(len2 - len1));
23
24
   int sub\_cost = 0;
25
    if (str1[len1 - 1] != str2[len2 - 1])
26
      sub\_cost = 1;
27
28
   long int deletion = levenshtein_recursion(str1, len1 - 1, str2,
29
      len2) + DELETION_COST;
   long int insertion = levenshtein_recursion(str1, len1, str2, len2 -
30
       1) + INSERTION_COST;
```

```
long int replacement = levenshtein_recursion(str1, len1 - 1, str2, len2 - 1) + sub_cost;  
return my_min(deletion, insertion, replacement);  
}
```

Листинг 3 - Функция рекурсивного алгоритма с использованием матрицы нахождения расстояний Левенштейна

```
illong int levenshtein_table_n_recursion(int** matrix, const char* str1
2 long int len1, const char* str2, long int len2)
3 {
    if (len1 <= 0 | len2 <= 0)
      return abs((int)(len2 - len1));
   if (matrix[len1][len2] == INFINIT)
      int sub\_cost = 0;
      if (str1[len1 - 1] != str2[len2 - 1])
10
        sub\_cost = 1;
11
12
      long int deletion = levenshtein_table_n_recursion(matrix, str1,
13
         len1 - 1, str2, len2) + DELETION_COST;
      long int insertion = levenshtein_table_n_recursion(matrix, str1,
         len1, str2, len2 -1) + INSERTION_COST;
      long int replacement = levenshtein_table_n_recursion(matrix, str1
15
         , len1 - 1, str2, len2 - 1) + sub\_cost;
16
      matrix[len1][len2] = my_min(deletion, insertion, replacement);
17
   }
18
19
    return matrix[len1][len2];
20
21 }
22
23 long int levenshtein_table_n_recursion(const char* str1, const char*
    str2)
24 {
    long int len1 = strlen(str1) + 1;
25
   long int len2 = strlen(str2) + 1;
26
```

```
27
    int ** matrix = (int **) create_matrix(len1, len2);
28
29
    fill_matrix_with_infinity(matrix, len1, len2);
30
31
    matrix [0][0] = 0;
32
    for (long int i = 1; i < len1; i++)
33
    matrix[i][0] = i;
34
35
    for (long int j = 1; j < len2; j++)
36
    matrix[0][j] = j;
37
38
    len1 --; len2 --;
39
40
    int sub\_cost = 0;
41
    if (str1[len1 - 1] != str2[len2 - 1])
    sub\_cost = 1;
43
44
    long int deletion = levenshtein_table_n_recursion(matrix, str1,
45
       len1 - 1, str2, len2) + DELETION_COST;
    long int insertion = levenshtein_table_n_recursion(matrix, str1,
       len1, str2, len2 -1) + INSERTION_COST;
    long int replacement = levenshtein_table_n_recursion(matrix, str1,
47
       len1 - 1, str2, len2 - 1) + sub\_cost;
48
    int answer = my_min(deletion, insertion, replacement);
49
50
    print_matrix(matrix, len1, len2);
51
52
    free_matrix(&matrix, len1);
53
    return
            answer:
54
55 }
```

Листинг 4 - Функция матричного алгоритма нахождения расстояний Дамерау-Левенштейна.

```
long int len2 = strlen(str2) + 1;
       int ** matrix = (int **) create_matrix(len1, len2);
       matrix [0][0] = 0;
       for (long int i = 1; i < len1; i++)
       matrix[i][0] = i;
10
11
       for (long int j = 1; j < len2; j++)
12
       matrix[0][j] = j;
13
14
       for (long int i = 1; i < len1; i++)
15
       {
16
          for (long int j = 1; j < len2; j++)
17
18
             int sub\_cost = 0;
19
             if (str1[i-1] != str2[j-1])
20
             sub\_cost = 1;
21
22
             matrix[i][j] = my_min(matrix[i - 1][j] + DELETION_COST,
23
             matrix[i][j-1] + INSERTION\_COST,
             matrix[i - 1][j - 1] + sub\_cost);
25
26
             if (i > 1 \&\& j > 1 \&\& str1[i - 1] = str2[j - 2]
            && str1[i - 2] = str2[j - 1])
28
29
               \mathsf{matrix} \, [\, \mathsf{i} \, ] [\, \mathsf{j} \, ] \, = \, \mathsf{std} \, :: \mathsf{min} \, (\, \mathsf{matrix} \, [\, \mathsf{i} \, ] [\, \mathsf{j} \, ] \, , \, \, \, \mathsf{matrix} \, [\, \mathsf{i} \, - \, 2] [\, \mathsf{j} \, - \, 2]
30
                   + sub_cost);
             }
31
32
       }
33
34
       int answer = matrix [len1 - 1][len2 - 1];
35
       print_matrix(matrix, len1, len2);
36
       free_matrix(&matrix, len1);
37
38
       return
                  answer;
39
```

3.4 Описание тестирования

Тестирование осуществляется по принципу «черного ящика». Для проверки корректности программы необходимо предусмотреть наборы различных тестов, включающих в себя случаи одной и обеих пустых строк, случаи строки, состоящей из одного символа, случаи эквивалентных строк.

4 | Экспериментальная часть

В данном разделе будут рассмотрены примеры работы программы, произведено тестирование, выполнены эксперименты по замеру времени, а также сделан сравнительный анализ полученных данных.

4.1 Примеры работы

Ниже на Рисунке 5 представлен пример работы программы при выборе матричного алгоритма Левенштейна для строк "кит" и "скат".

```
Exit
   Input strings
 - Levenshtein with matrix
 - Levenshtein recursive
 - Levenshtein recursive with matrix
 - Damerau-Levenshtein with matrix
 - Timing tests
Your choice: 1
Input first str: кит
Input second str: скат
 - Exit
 - Input strings
 - Levenshtein with matrix
 - Levenshtein recursive
 - Levenshtein recursive with matrix
 - Damerau-Levenshtein with matrix
 - Timing tests
Your choice: 2
  1 2 3 4
  1 1 2 3
  2 2 2 3
Answer: 2
```

Рисунок 5 - Пример работы программы при выборе матричного алгоритма Левенштейна

Ниже на Рисунке 6 представлен пример работы программы при выборе рекурсивного алгоритма Левенштейна для строк "кит" и "скат".

```
1 - Input strings
2 - Levenshtein with matrix
3 - Levenshtein recursive
4 - Levenshtein recursive with matrix
5 - Damerau-Levenshtein with matrix
6 - Timing tests
Your choice: 1
Input first str: кит
Input second str: скат
0 - Exit
1 - Input strings
2 - Levenshtein with matrix
3 - Levenshtein recursive
4 - Levenshtein recursive with matrix
5 - Damerau-Levenshtein with matrix
6 - Timing tests
Your choice: 3
Answer: 2
```

Рисунок 6 - Пример работы программы при выборе рекурсивного алгоритма Левенштейна

4.2 Результаты тестов

4.2.1 Результаты работы программы

В Таблице 1 показаны результаты работы программы при различных строках. Через "/"показан результат алгоритма Дамерау-Левенштейна в случаях, когда он отличен от результата алгоритма Левенштейна.

Таблица 1 - Результаты работы программы

Первое слово	Второе слово	Результат
кит	скат	2
кит	КОТ	1
-	-	0
october	november	4
123	132	2 / 1
hotmm	hotmm	0

4.2.2 Сравнительный анализ времени работы алгоритмов

Проведем тестирование по замеру времени работы алгоритмов в зависимости от длины строк. Для этого подсчитаем время работы каждого алгоритма строках длиной 5, 10, 50, 100, 200 и 500 символов. Результаты проведенного эксперимента отображены на Рисунке 7.

Рисунок 7 - Графики зависимости времени работы алгоритмов от длины строк

По результатам, отображенным на Рисунке 7, можно сделать вывод, что рекурсивный алгоритм Левенштейна - самый медленный из представленных алгоритмов. Это связано с большим количеством повторных операций. Самым быстрым алгоритмом оказался матричный алгоритм Левенштейна. Матричный алгоритм Дамерау-Левенштейна работает чуть медленее ранее названного алгоритма изза операций сравнений, выполняющихся в цикле. Рекурсивный алгоритм Левенштейна с матрицей быстрее рекурсивного, но уступает по скорости выполнения матричным алгоритмам.

Заключение

В ходе лабораторной работы были разработаны и реализованы алгоритмы нахождения расстояний Левенштейна (матричный, рекурсивный, рекурсивный с использованием матрицы) и Дамерау-Левенштейна (матричный), а также проведен анализ затрачиваемых ресурсов каждого из метода. По результату анализу стало ясно, что матричные реализации алгоритмов быстрее, чем рекурсивные.

Литература