Disciplina:

Programação Computacional

Prof. Fernando Rodrigues e-m@il: fernandorodrigues@sobral.ufc.br

Aula 04: Sistemas de numeração:

- Sistema de numeração binário (Base 2)
- Sistema de numeração hexadecimal (Base 16)
- Sistema de numeração octal (Base 8)
- Conversões de base
- Números binários fracionários (Conversão p/ base 10)
- Operações aritméticas básicas no sistema binário:
- Adição
- Subtração
- Multiplicação
- Divisão
- Representação de Números Binários com Sinal:
- Sistema Sinal-Magnitude (ou Representação Direta);
- Sistema de Representação Binário em Complemento de 2 (dois).

Disciplina: Programação Computacional

Prof. Fernando Rodrigues e-m@il: fernandorodrigues@sobral.ufc.br

Aula 04_A: Sistemas de numeração:

- Sistema de numeração binário (Base 2)
- Sistema de numeração hexadecimal (Base 16)
- Sistema de numeração octal (Base 8)
- Conversões de base
- Números binários fracionários (Conversão p/ base 10)

Sistemas de Numeração

Introdução

- No sistema decimal existem 10 símbolos numéricos (algarismos), a saber: 0 1 2 3 4 5 6 7 8 9.
- Usamos a notação posicional para descrever grandezas.
- Por exemplo, o número 1.327 pode ser decomposto da seguinte forma: 1*10³+3*10²+2*10¹+1*10⁰

Potências de 10	10 ³	10 ²	101	100
Valor da casa	1000	100	10	1

Decimal: 1 3 2 7

Decimal: 1000 + 300 + 20 + 7 = 1327

Sistema Binário

- A codificação binária (ou de "base 2") é formada apenas por dois símbolos diferentes: 0 e 1.
- O valor de cada algarismo binário ("dígito") varia de modo análogo ao sistema decimal, com a "única" diferença de que na **base 2** só existem dois algarismos.

Decimal	Binário	Decimal	Binário
0	0	9	1001
1	1	10	1010
2	10	•••	
3	11	99	1100011
4	100	100	1100100
5	101	101	1100101

Sistema Binário

- No sistema binário, só há 2 símbolos numéricos (algarismos): 0's e 1's.
- É importante destacar a notação posicional dos bits:
 - ► MSB: Most Significant Bit (ou bit mais à esquerda)
 - LSB: Least Significant Bit (ou bit mais à direita)

Potências de 2	2 ³	2 ²	21	20
Valor da casa	8	4	2	1

Conversão Binário-Decimal

Regras:

- Multiplicar todos os dígitos binários pelo valor decimal da potência de 2 correspondente ao peso de cada dígito.
- Somar os resultados obtidos.

Conversão Binário-Decimal

►
$$110101_2$$
=
 $1*2^5+1*2^4+0*2^3+1*2^2+0*2^1+1*2^0$ =
 $32+16+0+4+0+1$ =
 53_{10}

►
$$1011101_2$$
=
 $1*26+0*25+1*24+1*23+1*22+0*21+1*20=$
 $64+0+16+8+4+0+1=$
 93_{10}

Conversão Decimal-Binário

- A conversão de números decimais para números binários é feita dividindo-se o número decimal por 2 até que o resultado seja zero.
- O número binário correspondente é obtido agrupando-se os "restos" das divisões no sentido da última divisão para a primeira.

Conversão Decimal-Binário

Conversão Decimal-Binário

Sistema Hexadecimal

- O Sistema hexadecimal, tal como o nome indica, é formado por 16 símbolos ("algarismos") diferentes.
- Estes símbolos são os conhecidos dígitos **0,1,2,3,4,5,6,7,8,9** do sistema decimal e as letras **A,B,C,D,E,F.**
- Estas letras, em correspondência com o sistema decimal, equivalem aos valores 10, 11, 12, 13, 14, 15, respectivamente.

Sistema Hexadecimal

Decimal	Binário	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	А
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

Conversão Hexadecimal-Decimal

Para converter um número hexadecimal em um número decimal, basta aplicar a fórmula genérica já conhecida :

$$N_{10}=S_y*16^{n-1}+S_{y-1}*16^{n-2}...S_1*16^{1}+S_0*16^{0}$$

Exemplo 1: $X_{10} = 2A_{16}$

Solução: 2 * 161 + A*160

A = 10

Solução: 2 * 16¹ + 10*16⁰ = 32+10=42

Portanto: $(2A)_{16} = 42_{10}$

Exemplo 2: Y₁₀=B1₁₆

Solução: B * 161 + 1*160

B=11

Solução: 11 * 16¹ + 1*16⁰ = 176+1=177

Portanto: $(B1)_{16} = 177_{10}$

Conversão Decimal-Hexadecimal

O processo é idêntico à conversão Decimal -Binário, dividindo-se o número decimal pela base 16 até que o resultado seja zero.

Conversão Binário-Hexadecimal

A conversão Binário - Hexadecimal é feita transformando-se grupos de quarto dígitos binários, no sentido da direita para a esquerda, diretamente em números hexadecimais.

$$X_{16} = (10100110)_2$$

$$X_{16} = (110011)_2$$

Conversão Hexadecimal-binário

A conversão de números Hexadecimais em Binários é feita transformando os símbolos Hexadecimais diretamente em números binários de 4 dígitos.

