```
In [1]: !pip install pandas
  !pip install seaborn
  !pip install numpy
  !pip install scipy
  !pip install matplotlib
```

```
code_gaurish_jupyter_notebook
Requirement already satisfied: pandas in c:\anaconda3\lib\site-packages
(2.0.3)
Requirement already satisfied: python-dateutil>=2.8.2 in c:\anaconda3\anaconda3\li
b\site-packages (from pandas) (2.8.2)
Requirement already satisfied: pytz>=2020.1 in c:\anaconda3\anaconda3\lib\site-pac
kages (from pandas) (2023.3.post1)
Requirement already satisfied: tzdata>=2022.1 in c:\anaconda3\lib\site-p
ackages (from pandas) (2023.3)
Requirement already satisfied: numpy>=1.21.0 in c:\anaconda3\anaconda3\lib\site-pa
ckages (from pandas) (1.24.3)
Requirement already satisfied: six>=1.5 in c:\anaconda3\anaconda3\lib\site-package
s (from python-dateutil>=2.8.2->pandas) (1.16.0)
Requirement already satisfied: seaborn in c:\anaconda3\lib\site-packages
(0.12.2)
Requirement already satisfied: numpy!=1.24.0,>=1.17 in c:\anaconda3\anaconda3\lib
\site-packages (from seaborn) (1.24.3)
Requirement already satisfied: pandas>=0.25 in c:\anaconda3\anaconda3\lib\site-pac
kages (from seaborn) (2.0.3)
Requirement already satisfied: matplotlib!=3.6.1,>=3.1 in c:\anaconda3\lanaconda3\l
ib\site-packages (from seaborn) (3.7.2)
Requirement already satisfied: contourpy>=1.0.1 in c:\anaconda3\anaconda3\lib\site
-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (1.0.5)
Requirement already satisfied: cycler>=0.10 in c:\anaconda3\anaconda3\lib\site-pac
kages (from matplotlib!=3.6.1,>=3.1->seaborn) (0.11.0)
Requirement already satisfied: fonttools>=4.22.0 in c:\anaconda3\lib\sit
e-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (4.25.0)
Requirement already satisfied: kiwisolver>=1.0.1 in c:\anaconda3\anaconda3\lib\sit
e-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (1.4.4)
Requirement already satisfied: packaging>=20.0 in c:\anaconda3\anaconda3\lib\site-
packages (from matplotlib!=3.6.1,>=3.1->seaborn) (23.1)
Requirement already satisfied: pillow>=6.2.0 in c:\anaconda3\anaconda3\lib\site-pa
ckages (from matplotlib!=3.6.1,>=3.1->seaborn) (9.4.0)
Requirement already satisfied: pyparsing<3.1,>=2.3.1 in c:\anaconda3\anaconda3\lib
\site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7 in c:\anaconda3\anaconda3\lib
\site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (2.8.2)
Requirement already satisfied: pytz>=2020.1 in c:\anaconda3\anaconda3\lib\site-pac
kages (from pandas>=0.25->seaborn) (2023.3.post1)
Requirement already satisfied: tzdata>=2022.1 in c:\anaconda3\anaconda3\lib\site-p
ackages (from pandas>=0.25->seaborn) (2023.3)
Requirement already satisfied: six>=1.5 in c:\anaconda3\anaconda3\lib\site-package
s (from python-dateutil>=2.7->matplotlib!=3.6.1,>=3.1->seaborn) (1.16.0)
Requirement already satisfied: numpy in c:\anaconda3\lib\site-packages
Requirement already satisfied: scipy in c:\anaconda3\anaconda3\lib\site-packages
(1.11.1)
Requirement already satisfied: numpy<1.28.0,>=1.21.6 in c:\anaconda3\anaconda3\lib
\site-packages (from scipy) (1.24.3)
Requirement already satisfied: matplotlib in c:\anaconda3\anaconda3\lib\site-packa
ges (3.7.2)
Requirement already satisfied: contourpy>=1.0.1 in c:\anaconda3\anaconda3\lib\site
-packages (from matplotlib) (1.0.5)
Requirement already satisfied: cycler>=0.10 in c:\anaconda3\anaconda3\lib\site-pac
kages (from matplotlib) (0.11.0)
Requirement already satisfied: fonttools>=4.22.0 in c:\anaconda3\lib\sit
e-packages (from matplotlib) (4.25.0)
Requirement already satisfied: kiwisolver>=1.0.1 in c:\anaconda3\anaconda3\lib\sit
e-packages (from matplotlib) (1.4.4)
Requirement already satisfied: numpy>=1.20 in c:\anaconda3\lib\site-pack
ages (from matplotlib) (1.24.3)
Requirement already satisfied: packaging>=20.0 in c:\anaconda3\anaconda3\lib\site-
packages (from matplotlib) (23.1)
Requirement already satisfied: pillow>=6.2.0 in c:\anaconda3\anaconda3\lib\site-pa
ckages (from matplotlib) (9.4.0)
```

Requirement already satisfied: pyparsing<3.1,>=2.3.1 in c:\anaconda3\anaconda3\lib \site-packages (from matplotlib) (3.0.9)

Requirement already satisfied: python-dateutil>=2.7 in c:\anaconda3\anaconda3\lib \site-packages (from matplotlib) (2.8.2)

Requirement already satisfied: six>=1.5 in c:\anaconda3\lib\site-package s (from python-dateutil>=2.7->matplotlib) (1.16.0)

```
import os
In [2]:
         import pandas as pd
         import numpy as np
         import seaborn as sns
         import matplotlib.pyplot as plt
         from matplotlib.patches import Patch
         from matplotlib import colormaps
         np.random.seed(41)
         #plt.switch_backend('TkAgg')
         from scipy.stats import spearmanr
         def calculate_dissimilarity(rating):
             dissimilarity = (9 - rating) / 8
             return dissimilarity
         adjacency_matrix = np.zeros((33, 33))
        materials = {}
         p = 0
         pcount = 0
        for filename in os.listdir('./data'):
             p = p+1
             filename = "A ("+ str(p)+").txt"
            data = pd.read_csv("./data/"+filename)
             if(data.shape[0] == 528):
                 duplicated_pairs = data.iloc[:, [1, 2]].duplicated()
                 if any(duplicated_pairs):
                     continue
                 else:
                     pcount += 1
                     for index, row in data.iterrows():
                         material1, material2, rating = row[1], row[2], row[0]
                         material1 = material1.replace(" ","")
                         material2 = material2.replace(" ","")
                         # Calculate dissimilarity
                         dissimilarity = calculate_dissimilarity(rating)
                         key = tuple(sorted([material1.strip(), material2.strip()]))
                         if (key not in materials.keys()):
                             materials[key] = []
                         if (key in materials.keys()):
                             materials[key].append(dissimilarity)
        materials2 = {}
        for key in materials.keys():
             if (key not in materials2.keys()):
                 materials2[key] = []
            materials2[key] = materials[key]
             for i in range(0,len(key)):
                 materials[key][i] = abs( materials[key][i])
            materials[key] = np.mean(np.array(materials[key]))
```

```
In []:
In [3]: materials_index = {}
for key in materials.keys():
    mat1 = key[0]
```

```
mat2 = key[1]
            if(mat1 not in materials_index.keys()):
                materials_index[mat1]="0"
            if(mat2 not in materials_index.keys()):
                materials_index[mat2]="0"
In [4]:
        for key in materials_index.keys():
            materials_index[key] = i
            i = i+1
In [5]: for key in materials.keys():
            index1 = materials_index[key[0]]
            index2 = materials_index[key[1]]
            adjacency_matrix[index1,index2] = materials[key]
            adjacency_matrix[index2,index1] = materials[key]
In [ ]:
In [6]:
        participant_data = {}
        for i in range(0,pcount):
            current_part = []
            for j in range(0,len(materials2.keys())):
                 current_part.append(materials2[list(materials2.keys())[j]][i])
            if i not in participant_data.keys():
                participant_data[i] = []
            participant_data[i] = current_part
        num_participants = len(participant_data)
        # Calculate Spearman correlations for each participant across the surface pairs
         spearman_corr = np.zeros((num_participants, num_participants))
        for i, (pid1, data1) in enumerate(participant_data.items()):
            for j, (pid2, data2) in enumerate(participant_data.items()):
                 spearman_corr[i, j] = spearmanr(data1, data2).correlation
        # Plot heatmap for Spearman correlations between participants
        plt.figure(figsize=(10, 8))
        sns.heatmap(spearman_corr, cmap='YlGnBu_r', fmt='.2f')
        plt.title('Spearman Correlation Heatmap between Participants')
        plt.xlabel('Participants')
        plt.ylabel('Participants')
        plt.show()
```



```
In [7]: mat_keys = {}
q = 0
for key in materials_index.keys():
    mat_keys[q] = key
    q = q+1
```

```
In [ ]:
        def calculate_stress_with_disparity(X, disparities):
In [8]:
            n = len(X)
            stress = 0.0
            sum_squared_distances = 0.0
            sum_squared_disparities = 0.0
            for i in range(n):
                for j in range(i + 1, n):
                    d_hat = np.linalg.norm(X[i] - X[j]) # Euclidean distance in reduced sr
                    distance_ij = d_hat
                    sum_squared_distances += distance_ij ** 2
                    sum_squared_disparities += disparities[i, j] ** 2
                    stress += (distance_ij - disparities[i, j]) ** 2
            stress = np.sqrt(stress / sum_squared_distances)
            return stress
        def transform_to_disparity(dissimilarities):
```

return np.square(dissimilarities)

```
def nmds_with_disparity(dissimilarities, dimensions_range):
            n = len(dissimilarities)
            stress_values = []
            optimal_dimension = None
            optimal_stress = float('inf')
            optimal X = None
            disparities = transform_to_disparity(dissimilarities) # Convert dissimilaritie
            for dim in dimensions_range:
                X = np.random.rand(n, dim)
                # Gradient descent to minimize stress with disparities
                learning rate = 0.01
                num_iterations = 50
                for _ in range(num_iterations):
                    gradient = np.zeros((n, dim))
                    for i in range(n):
                         for j in range(i + 1, n):
                             d_hat = np.linalg.norm(X[i] - X[j])
                             delta_d = d_hat - disparities[i, j]
                             if d hat != 0:
                                 gradient[i] += 2 * delta_d * (X[i] - X[j]) / d_hat
                                 gradient[j] += 2 * delta_d * (X[j] - X[i]) / d_hat
                    # Update coordinates using gradient descent
                    X -= learning_rate * gradient
                stress = calculate_stress_with_disparity(X, disparities)
                stress_values.append(stress)
            return stress_values
        stress_val = nmds_with_disparity(adjacency_matrix,range(1,11))
        plt.plot(range(1,11),stress_val)
In [9]:
        plt.xlabel('Dimensions')
        plt.ylabel('Stress Values')
```

```
Out[9]: Text(0, 0.5, 'Stress Values')
```



```
import matplotlib.pyplot as plt
         diff = np.diff(np.array(stress_val))
         curvature = np.diff(diff)
         elbow_index = np.argmax(curvature) + 1
         optim_stress_dim = elbow_index + 1
         optimum_stress = stress_val[optim_stress_dim-1]
         print("Optimum Stress: "+str(optimum_stress))
         print("Optimum Dimension: "+str(optim_stress_dim))
         Optimum Stress: 0.3548785836775515
         Optimum Dimension: 2
In [ ]:
         def get_optimal_X(dissimilarities, optimal_dimension):
In [11]:
             n = len(dissimilarities)
             disparities = transform_to_disparity(dissimilarities) # Convert dissimilaritie
             X = np.random.rand(n, optimal_dimension) # Random initialization for the giver
             # Gradient descent to minimize stress with disparities for the given dimension
             learning_rate = 0.01
             num iterations = 50
             for _ in range(num_iterations):
                 gradient = np.zeros((n, optimal_dimension))
                 for i in range(n):
                     for j in range(i + 1, n):
                          d_hat = np.linalg.norm(X[i] - X[j])
                          delta_d = d_hat - disparities[i, j]
                          if d hat != 0:
                              gradient[i] += 2 * delta_d * (X[i] - X[j]) / d_hat
                              gradient[j] += 2 * delta_d * (X[j] - X[i]) / d_hat
```

Update coordinates using gradient descent

import numpy as np

In [10]:

```
X -= learning_rate * gradient
return X

optimal_X = get_optimal_X(adjacency_matrix, optim_stress_dim)
```

```
In [12]: from matplotlib.patches import Patch
         distances = np.linalg.norm(optimal_X[:, None] - optimal_X, axis=2)
         distances_Y = distances
         distance_matrix = distances_Y
         proximity_threshold = 0.075 # Set your desired proximity threshold
         # Function to perform clustering based on proximity threshold
         def cluster_points(distances, threshold):
             clusters = []
             n = len(distances)
             for i in range(n):
                 assigned_to_clusters = []
                 for cluster_index, cluster in enumerate(clusters):
                      for point in cluster:
                          if distances[i][point] < threshold:</pre>
                              assigned_to_clusters.append(cluster_index)
                              break
                 if not assigned to clusters:
                      new_cluster = [i]
                      clusters.append(new_cluster)
                 else:
                      # Merge clusters if the point belongs to multiple clusters
                      merged_cluster = [i]
                      for index in assigned_to_clusters:
                          merged_cluster += clusters[index]
                          clusters[index] = []
                      merged_cluster = list(set(merged_cluster))
                      clusters = [c for c in clusters if c]
                      clusters.append(merged_cluster)
             return [cluster for cluster in clusters if cluster]
         clusters = cluster points(distance matrix, proximity threshold)
         colors = plt.cm.tab20(np.linspace(0, 1, len(clusters)))
         plt.figure(figsize=(8, 6))
         for k in range(len(clusters)):
             this cluster = clusters[k]
             for points in this cluster:
                  plt.scatter(optimal_X[points][0],optimal_X[points][1], color=colors[k])
          legend_elements = []
          legend_labels = []
         for i in range(len(optimal_X)):
             legend elements.append(0)
             legend labels.append(0)
```

```
for k in range(len(clusters)):
    this_cluster = clusters[k]
    for points in this_cluster:
        material_name = list(materials_index.keys())[points]
        legend_labels[points] = material_name
        legend_elements[points] = Patch(color=colors[k])
for k in range(len(clusters)):
    this_cluster = clusters[k]
    for indexi in range(len(this_cluster)):
            for indexij in range(indexi,len(this_cluster)):
                i = this_cluster[indexi]
                j = this cluster[indexij]
                Xis = optimal_X[i]
                Xjs = optimal_X[j]
                points_X = [Xis[0],Xjs[0]]
                points_Y = [Xis[1], Xjs[1]]
                plt.plot(points_X, points_Y, color=colors[k], alpha=0.5)
new legend = []
new_legend_labels = []
for k in range(len(clusters)):
    this_cluster = clusters[k]
    for points in this_cluster:
        new_legend.append(legend_elements[points])
        new_legend_labels.append(legend_labels[points])
final matrix = np.zeros((len(optimal X),len(optimal X)),dtype="int")
for i in range(0,len(optimal_X)):
    for j in range(0, len(optimal_X)):
        if distances[i][j] < proximity_threshold:</pre>
            final_matrix[i][j] = 1
plt.legend(handles=new_legend,labels=new_legend_labels, loc='center left', bbox_to_
plt.xlabel('Dimension 1')
plt.ylabel('Dimension 2')
plt.title('NMDS Representation of Materials with Proximity based groups')
plt.grid(True)
plt.show()
```



```
In []:
```

```
In [13]:
         num_rows = len(adjacency_matrix)
         num_cols = len(adjacency_matrix[0])
         existing_array = adjacency_matrix
         index row = np.arange(existing array.shape[1], dtype="int").reshape(1, -1)
         index_column = np.arange(existing_array.shape[0], dtype="int").reshape(-1, 1)
         index_row_column = np.vstack((np.hstack((np.array([[-1]]), index_row)),
                                        np.hstack((index_column, existing_array))))
          adjacency matrix with indices = index row column
          num_rows = len(adjacency_matrix_with_indices)
         num_cols = len(adjacency_matrix_with_indices[0])
          float_array = adjacency_matrix_with_indices
         format_func = lambda x: f'{x:.0f}' if x.is_integer() else f'{x:.2f}'
         formatted_array = np.array([[format_func(x) for x in row] for row in float_array])
         adjacency_matrix_with_indices = formatted_array
         fig, axs = plt.subplots(1, 2, figsize=(11, 10), gridspec_kw={'width_ratios': [7, 4]
         main_table = axs[0].table(cellText=adjacency_matrix_with_indices, loc='center', cel
         axs[0].axis('off') # Hide axis for the main table
         axs[0].set_title('Dissimilarity Matrix')
         legend = []
```

```
for i in range(0, len(materials_index.keys())):
    row = [str(i), list(materials_index.keys())[i]]
    legend.append(row)
sidebar_table = axs[1].table(cellText=legend, loc='center', cellLoc='center', edges
axs[1].axis('off')
axs[1].set_title('Materials')
for cell in main_table.get_celld().values():
    cell.set_fontsize(14)
for cell in sidebar_table.get_celld().values():
    cell.set_fontsize(16)
for row in range(0, num_rows):
    main_table[(row, 0)].set_facecolor('lightgray') # Row colors
for col in range(0, num_cols):
    main_table[(0, col)].set_facecolor('lightgray') # Index colors
main_table[(0,0)].set_facecolor("gray")
plt.subplots_adjust(wspace=0.1)
plt.subplots_adjust(left=0.05, right=0.95, bottom=0.1, top=0.9, wspace=0.4)
plt.tight_layout()
# Show the plot
plt.show()
```

Dissimilarity Matrix

Materials

-2	0	1	2	3	4	5	6	7	8	9	10	11	12	15	14	15	25	IJ	15	19 2	21	22	23	24	25	25	zı	25	29	30	п	TZ]
0	0	0.39	0.57	0.45	0.57	0.45	0.53	0.49	0.34	0.46	0.16	0.57	0.71	0.62	036	0.62	051	0.70	170	131 0:	5 070	0.64	0.42	0.40	935	9.36	0.49	0.59	0.36	0.54	0.54	061	0 G4ProfiledWoodPlate
1	0.39	0	069	0.41	0.00	0.45	0.39	0.46	0.29	0.55	0.41	0.46	0.50	065	0.46	035	054	069	154	149 0.5	0 066	0.64	061	0.45	0.72	0.39	0.62	061	0.44	0.45	0.54	0.41	1 G4Teak
2	-	0.69	0	0.49	053			0.57	0.69	-	0.62				0.49		0.45	-	-	149 04	-	0.23	-	040		-	0.28	0.79	0.38	0.65	0.46	0.39	2 G8RoughPaper
3	0.45	041	0.49	0	0.44	ш	0.61	0.44	0.56	-	0.69	⊢	ш	0.34	\vdash	_	\rightarrow	-	-	134 03	-	₩	┺	⊢	0.31	0.45	041	068	0.53	0.50	₩	-	3 G9RedFleeze
4	-	_	0.53	0.44	0				0.57	-		\vdash	0.31	-	0.60	_	\rightarrow	-	-	154 04	_	0.54	┺	┺	-	0.55	0.36	-	0.49	_	₩	-	4 G3Copper
3	0.45	0.45	0.55	0.55	0.44	ш	0.64	0.44	0.46	0.69	0.55	0.40	0.62	-	\vdash	_	\rightarrow	-	-	147 0.	-	₩	₩	₩	0.51	060	0.42	064	0.39	034	₩	-	5 G4Bamboo
0	0.53	0.19	0.59	061	0.76	0.64	0	0.24	0.51	0.51	0.45	0.60	0.62	0.60	\vdash	_	\rightarrow	-	-	145 04	-	₩	₩	┺	0.66	0.49	0.76	957	0.60	051	₩	-	6 G2StoneTileVersion1
7	\rightarrow	0.46	-	0.44	ш	\vdash	0.24	0	0.41	-	0.40	0.68	ш	0.69	0.28	_	\rightarrow	-	154	-	-	₩	0.53	₩	9.75	044	0.75	040	0.47	034	₩	0.46	7 G2StoneTileVersion2
	0.34	0.29	0.69	0.56	057	ш	0.51	0.41	0	0.59	0.19	⊢	071	0.61	\vdash	-	\rightarrow	-	-	147 0.	+	₩	₩	₩	0.79	0.16	0.72		051	0.60	1	1	8 G4CompressedWoodVersion1
9	0.46	0.55	0.57	0.55	0.76	\vdash	0.51	0.39	0.59	0.59	0.54	0.79	0.80	066	\vdash	_	\rightarrow	-	-	147 0.	-	₩	₩	₩	0.72	0.21	0.53	0.57	0.44	0.62	₩	-	9 G2Brick
10	0.16	0.41	0.62	0.69	ш	ш	0.45	0.40	0.39	0.54	0	0.62	ш	ш	0.35	_	\rightarrow	0.64	-	-	-	₩	₩	₩	-	⊢	0.68	0.60	⊢	0.39	₩	\vdash	10 G4CherryTree
11	0.36	0.46	0.49	0.44	031	\vdash	0.60	040	0.61	0.79	0.62	0	0.62	-	0.47	-	\rightarrow	0.50	\rightarrow	166 0	-	-	₩	₩	0.50	060	0.34	-	0.36	0.65	-	-	11 G3StainlessSteel
12	0.71	0.50	0.34	0.34	0.31	ш	0.62	0.70	0.71	0.80	0.16	0.62	0	0.24	\rightarrow	_	0.41	-	-	147 0.	-	₩	₩	₩	0.42	0.59	0.29	0.74	0.57	0.72	₩	\vdash	12 G6Towel
13	\rightarrow	0.50		0.34	ш	ш	0.60	$\overline{}$	0.61	\vdash	-	⊢	Ľ	0.24	0.64		\rightarrow	0.30	_	_	-	0.18	┺	┺	_	0.59	0.33	₩	\vdash	0.69	₩	0.50	13 G9RedVelvet
14	0.16	0.46	0.49	0.54	0.60	ш	0.44	0.28	0.40	0.53	0.35	⊢	0.76	0.64	\rightarrow	_	\rightarrow	-	-	140 0.	-	₩	₩	₩	0.70	0.49	0.59	0.53	0.34	0.45	-	-	14 G2StoneTileVersion3
15	0.62	0.16	0.53	0.42	ш	ш	0.69	0.59	0.40	0.53	0.55	0.25	0.55	0.47	0 89.0	0	\rightarrow	-	-	141 0	-	₩	₩	₩	0.76	0.71	0.64	0.53	0.51	0.45	₩	-	15 G3Brass
16	\rightarrow	0.54	0.45	0.45	ш	\vdash	0.57	0.59	0.70	\vdash	0.65	⊢	-	ш	0.51	-	\rightarrow	0.44	-	153 0	-	0.16	₩	₩	-	0.53	051	⊢	⊢	074	-	\vdash	16 G6Carpet
17	0.70	0.69	0.45	0.49	0.53	ш	0.64	0.64	0.54	0.70	0.64	0.50	0.10	0.10	\rightarrow	0.35	0.44	\rightarrow	-	133 0	-	₩	0.10	₩	0.16	0.55	034	0.76	0.53	0.60	-	\vdash	17 G9TextileVersion4
15	0.70	0.54	0.45	0.59	0.53	\vdash	0.57	0.54	0.54	0.71	0.57	0.10	0.10	0.10	\rightarrow	0.15	0.76	\rightarrow	-	164 0.	-	₩	0.47	₩	0.18	0.81	0.54	0.64	0.53	0.50	0.46	-	18 G3AluminumPlate
10		-	0.49	0.34	ш	\vdash	0.45	0.54	0.47	0.47	0.50	0.00	0.46	0.42	0.40	-	\rightarrow	_	164	0 0	-	1	0.49	₩	0.47	0.45	065	0.69	0.40	0.50	₩	-	19 G9TableClothVersion2
20	\rightarrow	0.50	0.60	0.54	Н	\vdash	0.42	0.54	0.16	0.35	0.10	0.71	0.59	0.70	\rightarrow	-	\rightarrow	\rightarrow	\rightarrow	153 0	0.31	₩	₩	₩	0.61	0.44	0.57	0.46	0.38	0.54	-	-	20 G4Larch
20	0.70	0.50	G22	0.20	0.59	\vdash	0.68	0.67	0.16	0.19	0.14	0.60	0.16	0.35	\vdash	-	\rightarrow	\rightarrow	-	139 0	-	0.25	₩	₩	051	0.39	0.40	0.54	0.58	0.74	₩	-	21 G9jeans
22		0.64	_	0.20		ш			\vdash	-		╙	0.16	ш	0.50	_	0.35	_	_	-	-	╄	0.33	⊢	⊢	0.56	0.35	₩	⊢	-	1	-	22 G8Paper
23	0.42	0.61	0.49	0.29	0.54	ш	0.65	0.53	0.56	0.53	0.50	0.19	0.53	-	\vdash	-	\rightarrow	-	-	140 0.	-	╄	0.33	0.68	0.46	0.56	0.35	⊢	0.36	0.91	₩	-	23 G8GlitterPaperVersion1
25	0.40	0.45	0.60	0.55	022	ш	0.34	0.44	0.50	0.53	0.50	0.16	ш	0.59	\vdash	_	\rightarrow	_	-	159 03	-	╄	0 68	⊢	0.68	╙	0.59	⊢	0.36	0.55	1	-	24 G2Marble
25		0.72	-	0.31	ш	Н	0.54	0.75	0.79	\vdash	0.57	0.50	Н	0.44	0.70	-	\rightarrow	0.38	-	\rightarrow	-	₩	₩	048	uea	0.78	0.46	0.68	051	035	1	-	25 G9GreenVelvet
	\rightarrow	0.39	0.51	0.45	Н	Н	0.49	0.44	0.76	0.21	040	0.50	0.59	0.64	\vdash	-	\rightarrow	\rightarrow	-	+	+	₩	0.16	040	0.78	4.78	-	0.51	0.46	0.55	1	\vdash	26 G2CrushedRock
25	0.16	0.59	0.47	0.45	0.55		0.49	0.44	0.36	-	040	⊢	Н	0.54	\vdash	-	\rightarrow	\rightarrow	-	145 0	-	-	-	-	0.78	0 0.62	0.62	0.79	0.46	0.68	0.46	-	27 G8PlayingCardPaper
	0.59	-	0.79	0.68	0.75		0.57	0.60	0.44	-	0.60	0.54	ш	ш	G23	-	\rightarrow	0.34	-	169 04	-	-	₩	₩	0.68	⊢	079	⊢	0.60	-	-	-	28 G1ProfiledAluminumPlate
25	0.36	0.61	0.79	0.53	0.49	ш	0.57	0.60	0.51	0.57	0.46	0.16	0.57	0.54	\vdash	-	\rightarrow	-	-	140 0	-	-	₩	₩	0.68	0.46	0.64	0 0.60	080	0.50	-	-	29 G4WoodenPaper
	\mathbf{H}	0.45		050	0.46			0.54	040	\vdash	0.19	0.65	Н	0.59	\vdash	0.47	0.74	\rightarrow	-	162 0	-	₩	0.55	-	0.35	048	064	050	036	u36	-	-	30 G4LaminatedWood
30	034	-	0.65	0.50	0.46		0.51	0.54	0.60	0.62	0.19	0.65	0.72		0.45	-		_	_	155 0	1	-	0.55	-	0.35	0.46	0.49	0.50	036	0 0 6 2	0.62	0.53	31 G8GlitterPaperVersion2
	\mathbf{H}	-		⊢	Н	Н	0.56	Н	-	\vdash	0.51	⊢	Н	Н	\vdash	-	\rightarrow	\rightarrow	-	123 04	-	₩	1	-	⊢			0.72	0.33	⊢	₩	u53	32 G9TextileVersion3
32	0.61	0.41	0.39	0.25	0.54	0.61	0.56	0.46	0.35	0.49	0.42	0.56	0.10	0.51	0.47	0.44	0.50	0.29	164	123 0.4	0.33	0.40	0.29	0.59	0.64	0.49	0.57	G72	0.41	0.60	0.53	l°.	

```
In [14]: distances_Y = distances
num_rows = len(distances_Y)
```

```
num_cols = len(distances_Y[0])
dist_trunc = np.round(distances_Y, 2)
num_rows = len(dist_trunc)
num_cols = len(dist_trunc[0])
existing_array = dist_trunc
index_row = np.arange(existing_array.shape[1], dtype="int").reshape(1, -1)
index_column = np.arange(existing_array.shape[0], dtype="int").reshape(-1, 1)
index row_column = np.vstack((np.hstack((np.array([[-1]]), index_row)),
                              np.hstack((index_column, existing_array))))
dist trunc = index row column
num rows = len(dist trunc)
num_cols = len(dist_trunc[0])
# Colors for the table cells (modify as needed)
cell_colors = [['lightgreen' if i == j else 'yellow' if dist_trunc[i][j] < proximit</pre>
                for j in range(num_cols)] for i in range(num_rows)]
float_array = dist_trunc
format_func = lambda x: f'{x:.0f}' if x.is_integer() else f'{x:.2f}'
formatted array = np.array([[format func(x) for x in row] for row in float array])
dist_trunc = formatted_array
fig, axs = plt.subplots(1, 2, figsize=(11, 10), gridspec_kw={'width_ratios': [7, 4]
main_table = axs[0].table(cellText=dist_trunc, loc='center', cellLoc='center', edge
                          cellColours=cell colors)
axs[0].axis('off') # Hide axis for the main table
axs[0].set_title('Distance Matrix')
legend = []
for i in range(0, len(materials_index.keys())):
    row = [str(i), list(materials_index.keys())[i]]
   legend.append(row)
sidebar table = axs[1].table(cellText=legend, loc='center', cellLoc='center', edges
axs[1].axis('off')
axs[1].set_title('Materials')
for cell in main table.get celld().values():
   cell.set_fontsize(14)
for cell in sidebar_table.get_celld().values():
    cell.set fontsize(16)
for row in range(0, num_rows):
    main_table[(row, 0)].set_facecolor('lightgray') # Row colors
for col in range(0, num_cols):
   main_table[(0, col)].set_facecolor('lightgray') # Index colors
main_table[(0,0)].set_facecolor("gray")
plt.subplots adjust(wspace=0.1)
plt.subplots_adjust(left=0.05, right=0.95, bottom=0.1, top=0.9, wspace=0.4)
plt.tight layout()
plt.show()
```

Distance Matrix Materials

4	0	1 2	3	4	5	6	7	ă	9 :	10 :	11 1	12 1	3 14	15	16	n	18	19	20 :	1 :	2 3	3 24	25	26	27	25	29	30	п	32	١ _	
0	0 0	04 03	5 024	0.35	0.28	0.18	0.15	0.09	024 0	12 0	37 Q.	38 G	39 G.1	2 0.32	0.28	0.35	0.44	0.14	0.18 0	22 0	35 Q	7 01	0.42	0.07	0.42	0.22	0.17	0.34	0.27	0.16	١_	0 G4ProfiledWoodPlate
1	004	0 0.3	6 0.26	0.37	0.27	0.14	011	007	0.20 Q	.08 Q	37 0	41 G	42 0.00	8 0.34	0.31	0.37	0.43	0.16	0.15 0	25 0	16 Q	17 0.2	2 0.43	0.10	0.43	0.23	0.16	0.31	0.27	0.15		1 G4Teak
\vdash	0.35 0	36 0	0.13	₩	₩	\vdash	-	_	-	-	12 0	-	15 0.36	+	-	-	\rightarrow	0.22	-	+	02 Q	-	-	0.40	-	936	0.23	-	Н	0.20		2 GBRoughPaper
\vdash	\rightarrow	26 G1	-	011	0.22	ш	-	-	\rightarrow	-	21 0	-	16 0.21	+	+	-	\rightarrow	-	0.26 0	-	13 0	-	-	-	0.18	0.44	0.17	0.34	ш	0.08		3 G9RedFleeze
\vdash	-	37 01	-		\vdash	ш	0.44	\rightarrow	-	-	23 0	-	05 0.31	-	0.13	007	\rightarrow	-	-	-	13 0	-	-	┺	0.10	0.53	0.27	0.42	ш	0.19	_	4 G3Copper
\vdash	\rightarrow	27 02	+		0.30	Н	-	\vdash	+	+	-	-	35 02	-	-	0.28	\rightarrow	\rightarrow	\rightarrow	+	20 0	-	+	₩	0.25	0.49	027	012	Н	021	-	5 G4Bamboo
\vdash	-	14 04	1	1	0.29		_	\rightarrow	0.08 0		42 0:		33 00	+	-	0.47	\rightarrow	-		4	44 0		1	-	1000	0.28	0.22	-		0.29	_	6 G2StoneTileVersion1
\vdash	\rightarrow	11 04	+	1	-	ŭ	-	\vdash	109 0	_	38 0	-	49 00	0.41	-	0.43	\rightarrow	0.24	_	1	19 0.	-	1	-	0.47	0.29	0.18	0.25	0.31	0.25	-	7 G2StoneTileVersion2
\vdash	-	07 04	+	₩	₩	0.04	٥	_	-	-	-	-	-	-	+	-	\rightarrow	-	-	+	+	-	-	₩	₩	₩	⊢	⊢	ш	_	-	8 G4CompressedWoodVersion1
\vdash		-	-	₩	0.33	\vdash	0.12		-	-	44 0	-	48 0.3	+	0.37	-	\rightarrow	0.23	\rightarrow	-	43 Q.	-	-	₩	0.50	0.17	⊢	0.35	\vdash	0.25	-	9 G2Brick
\vdash	-	-	+	₩	\vdash	0.08	0.09	0.20	_	-	40 0:	-	55 0.1	-	-	-	\rightarrow	-	-	+	-	-	-	₩	0.52	0.16	0.23	⊢	ш	0.32	-	10 G4CherryTree
\vdash	\rightarrow	08 0.3	1	1	-	0.07	0.03	\rightarrow	0.12		37 0	-	46 0.00	3 0.36	-	0.41	\rightarrow	0.21	\rightarrow	-	18 0.	-	1	-	0.46	0.27	0.17	0.26		0.23	-	11 G3StainlessSteel
\vdash	\rightarrow	37 0.1	1000	-		ш	\rightarrow		\rightarrow	37	-	25 G	27 0.34	+	+	0.20	\rightarrow	0.26	\rightarrow	+	10 0.	+	1	-	1	0.59	0.21	0.24		0.24	-	12 G6Towel
\vdash	-	41 01	-	-			_	-	-		25	0 0	02 0.4	_	0.14	0.06	\rightarrow		-	-	15 0.	-	1	1	0.12	0.57	0.31	0.45	0.20	0.23	-	13 G9RedVelvet
\vdash	\rightarrow	42 0.1	+	-	\vdash	ш	_	\vdash	-	-	27 0		0 0.4	-	-		\rightarrow	-	-	+	17 0.	-	-	₩	₩	₩	0.32	⊢	ш	0.24	-	14 G2StoneTileVersion3
\vdash	-	08 0.3	-	-	\vdash	ш	_	\rightarrow		_	-	_	44 0	0.36	-	0.38	\rightarrow	_	-	28 0.	-	-	-	┺	-	⊢	\vdash	-	ш	0.20	-	15 G3Brass
\vdash	-	34 03	-	-	-	ш	-	-	-	-	23 0	_	08 0.36	-	0.11	0.04	\rightarrow	-	-	+	13 0.	-	-	┺	0.14	0.51	0.25	0.40	ш	0.16	-	16 G6Carpet
16	-	31 02	1	-			0.40	\vdash	_	37 0.	32 G	14 0.	14 0.35	+	. 0	0.15	\rightarrow		0.36 0	09 0.	23 0.	-	0.28	0.28	0.25	0.43	0.27	0.46	0.22	0.16	-	17 G9TextileVersion4
\vdash	\rightarrow	37 0.0	1	-	-	\vdash	\rightarrow	\rightarrow	\rightarrow	-	20 0.	06 Q	07 0.31	-	0.15	0	_	-	\rightarrow	+	10 0.	-	-	₩	0.10	0.54	0.26	0.40		0.19	-	18 G3AluminumPlate
\vdash	-	43 02	-	₩	₩		-	\vdash		-	-	-	39 0.3	+	-	0.32		_	0.29 0	+	22 Q	-	1	1	0.27	0.65	0.27	0.19		0.34	-	19 G9TableClothVersion2
\vdash	\rightarrow	16 0.2	+	₩	₩	\vdash	\rightarrow	0.23	\rightarrow	-	26 G	-	26 0.19	-	0.17	-	\rightarrow	-	-	-	22 Q	-	-	₩	-	₩	⊢	-	0.14	0.02	-	20 G4Larch
\vdash	-	15 0.3	1 0.26	-	₩	ш	0.11	-	0.14 0.	11 0.	28 Q	-	42 0.00	+	-	-	0.29	0.19	0 0	-	10 0.	-	0.37	0.24	0.38	0.37	0.09	⊢	0.22	0.20	-	21 G9Jeans
\vdash	\rightarrow	25 0.1	_	0.13	\vdash	ш	0.33	-	-	-	-	-	17 0.21	-	-	0.14	0.36	_	0.27	_	18 0.	-	-	┺	0.22	0.41	0.18	0.37	0.14	0.07	-	22 G8Paper
22	-	36 00	2 0.13	₩	₩		-	\vdash	_	-	10 0.	-	17 0.35	+	-	-	\rightarrow	0.22	-	18	0 0	13 0.34	0.08	1	1	0.56	0.21		0.09	0.19	-	23 G8GlitterPaperVersion1
23	-	27 0.3	-	0.23	\vdash	0.32	_	\rightarrow	-	27 0.	-	-	28 0.2	-	-	-	\rightarrow	_	-	19 0.	-	0.33	_	┺	0.21	0.49	⊢	0.19	0.06	0.16	-	24 G2Marble
24	-	22 0.3	-	₩	₩	ш	-	\vdash	-	-	41 G	-	30 0.21	+	-	-	\rightarrow	0.17	-	+	14 Q.	-	0.41	┷	-	⊢	0.28	⊢	0.29	0.18	-	25 G9GreenVelvet
25	_	43 00	7 0.20	0.16	\vdash	0.51	0.47	\rightarrow	0.50 0.	45 G	12 0.	16 G	18 0.4	-	-	0.13	\rightarrow	-	0.37 0	24 0.	0.00	-	. 0	0.47	0.04	0.64	0.29	_	0.16	0.27	-	26 G2CrushedRock
26	0.07	10 0.4	0 0.27	0.37	0.34	0.22	0.20	0.11	0.29 0.	17 G	43 G	41 G	41 0.11	0.34	0.28	0.38	0.50	0.18	0.24 0	24 0.	19 G	0.10	0.47	0	0.46	0.17	0.23	0.40	0.32	0.20	-	27 G8PlayingCardPaper
w	0.42 0	43 0.0	7 0.18	0.12	0.28	0.52	0.47	0.50	0.52 0.	46 G	16 0.	12 0	14 0.4	3 0.14	0.25	0.10	0.27	0.28	0.38 0	22 0	09 O.	0.31	0.04	0.46	0	0.62	0.30	0.39	0.17	0.26	-	28 G1ProfiledAluminumPlate
25	0.22	23 0.5	6 0.44	0.53	0.49	0.28	0.29	0.17	0.36 0.	27 0.	59 G	57 G	57 0.25	9 0.51	0.43	0.54	0.65	0.34	0.37 0	41 O.	36 Q	0.21	0.64	0.17	0.62	0	0.39	0.53	0.48	0.37	-	29 G4WoodenPaper
29	0.17	16 0.2	3 0.17	0.27	0.11	0.22	0.18	0.23	0.23 0.	17 0.	21 0.	31 0.	32 0.1	3 0.25	0.27	0.26	0.27	0.12	0.09	15 0.	21 0.	0.21	0.29	0.23	0.30	0.39	0	0.20	0.13	0.12	-	30 G4LaminatedWood
30	0.34	31 03	3 0.34	0.42	0.12	0.27	0.25	0.35	0.22 0.	26 Q	24 0	45 G	47 0.2	4 0.40	0.46	0.40	0.19	0.31	0.16 0	37 0.	31 0.	0.4	0.16	0.40	0.39	0.53	0.20	0	0.26	0.31	-	31 G8GlitterPaperVersion2
31	0.27	27 0.1	0 0.09	0.17	0.14	0.35	0.31	0.34	0.35 0.	29 0.	12 0.	20 0.	22 0.26	6 0.15	0.22	0.14	0.23	0.14	0.22 0	14 0	09 0	0.21	0.16	0.32	0.17	0.48	0.13	0.26	0	0.12	-	32 G9TextileVersion3
32	0.16	18 0.2	0 000	0.19	0.21	0.29	0.25	0.25	0.32 0.	23 0.	24 0.	23 G	24 0.21	0 0.16	0.16	0.19	0.34	0.02	0.20	0.7	19 0.	16 0.11	0.27	0.20	0.26	0.37	0.12	0.31	0.12	0	-	SE CO PERMIC VELSIUMS

```
main_table = axs[0].table(cellText=final_matrix_with_indices, loc='center', cellLoc
                          cellColours=cell_colors)
axs[0].axis('off')
axs[0].set_title('Adjacency Matrix based on edges between points of same cluster')
legend = []
for i in range(0, len(materials_index.keys())):
    row = [str(i), list(materials_index.keys())[i]]
    legend.append(row)
sidebar_table = axs[1].table(cellText=legend, loc='center', cellLoc='center', edges
axs[1].axis('off')
axs[1].set_title('Materials')
for cell in main_table.get_celld().values():
    cell.set_fontsize(14)
for cell in sidebar_table.get_celld().values():
    cell.set_fontsize(16)
for row in range(1, num_rows + 1):
   main_table[(row, 0)].set_facecolor('lightgray') # Row colors
for col in range(1, num_cols + 1):
   main_table[(0, col)].set_facecolor('lightgray') # Index colors
main_table[(0,0)].set_facecolor('gray') # Index colors
plt.subplots_adjust(wspace=0.1)
plt.subplots_adjust(left=0.05, right=0.95, bottom=0.1, top=0.9, wspace=0.4)
plt.tight_layout()
plt.show()
```

-1	0	1	2	3	4	5	6	7 T	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	1	
0	1	1	0	0	0	0	0	, 	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0 G4ProfiledWoodPlate
1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1 G4Teak
2	0	0	1	\rightarrow	0	\rightarrow	\rightarrow	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	1	0	0	0	0	0	1	2 G8RoughPaper
3	0	0	0	\rightarrow	0	\rightarrow	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	3 G9RedFleeze
4	0	0	_	0	1	_	-	-	0	-	0	0	1	1	0	_	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	┨	4 G3Copper
5	0	0	\rightarrow	_	0	\rightarrow	\rightarrow	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	┨	5 G4Bamboo
6	0	0	-	-	0	0	1	_	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	┨	6 G2StoneTileVersion1
7	0	0	-	-	0	0	1	_	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	┨	7 G2StoneTileVersion2
8	0	\rightarrow	-	-	0	_	_	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	┨	8 G4CompressedWoodVersion1
9	0	0	\rightarrow	\rightarrow	0	-	\rightarrow	-	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	┨	9 G2Brick
10	0	0	-	_	0	0	-	_	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	10 G4CherryTree
11	0	0	-	\rightarrow	0	-	-	-	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	┨	11 G3StainlessSteel
12	0	0	-	0	1	-	-	-	0	0	0	0	1	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	12 G6Towel
13	_	\rightarrow	-	-	+	\rightarrow	\rightarrow	-	-	-	\rightarrow	-	1	1	_	1	_	1	-	-	\rightarrow	\rightarrow	_	_	-	0	\rightarrow	0	0	0	0	ш	0	1	13 G9RedVelvet
14	0	0	\rightarrow	0	-	0	-	_	0	0	0	0	1		1	0	0	0	0	0	0	0	0	0	0	_	0	0	-	_	-	0	0	1	14 G2StoneTileVersion3
15	_	\rightarrow	-	-	0	\rightarrow	-	_	-	_	1	-	0	0	_	0	\vdash		-	$\mathbf{\Box}$	\rightarrow	0	0	_	-	0	\rightarrow	-	0	0	0	ш	Ľ	1	15 G3Brass
16	0	0	_	0	0	-	-	-	0	0	0	0	_	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	16 G6Carpet
17	0	\rightarrow	-	0	<u>۰</u>	-	_	-	-	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ш	Ľ	1	17 G9TextileVersion4
	_	-	-	-	1	\rightarrow	-	-	0	-	-	_	_	1	0	1	0	1	0	-	-	0	0	0	_	0	-	_	0	0	0	0	0	1	18 G3AluminumPlate
18	0	0	-	-	0	-	-	-	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	19 G9TableClothVersion2
19	0	0	\rightarrow	\rightarrow	0	\rightarrow	\rightarrow	\rightarrow	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	-	20 G4Larch
20 21	0	0	-	_	0	-	-	-	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	21 G9Jeans
	0	0	0	_	0	0	\rightarrow	-	_	0	\rightarrow	0	-	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	_	0	ш	1	-	22 G8Paper
22	0	0	_	\rightarrow	0	\rightarrow	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	23 G8GlitterPaperVersion1
	0	0	-	-	0	-	\rightarrow	-	0	-	\rightarrow	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0		0	1	24 G2Marble
24 25	0	0	_	-	0	-	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	25 G9GreenVelvet
	0	0	_	-	0	-	\rightarrow	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1	26 G2CrushedRock
26	1	0	_	-	0	-	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	27 G8PlayingCardPaper
27	0	0	_	-	0	0	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1	28 G1ProfiledAluminumPlate
28	0	0	-	-	0	-	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	29 G4WoodenPaper
29	0	0	-	-	0	\rightarrow	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	30 G4LaminatedWood
30	0	0	-	-	0	-	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	31 G8GlitterPaperVersion2
31	0	0	-	-	0	-	\rightarrow	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0		32 G9TextileVersion3
32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1		

```
In [16]: fig, axs = plt.subplots(1, 2, figsize=(11, 8),gridspec_kw={'width_ratios': [7, 4]})
         sns.heatmap(distances_Y, cmap='YlGnBu_r', fmt='.2f', ax=axs[0], square = True) # 5
         axs[0].set_title('Heatmap for Objects based on Distances')
         axs[0].set_xlabel('Objects')
         axs[0].set_ylabel('Objects')
          sidebar_table = axs[1].table(cellText=legend, loc='center', cellLoc='center', edges
          axs[1].axis('off')
         axs[1].set_title('Materials')
         for cell in main_table.get_celld().values():
             cell.set_fontsize(14) # Change font size for main table text
         for cell in sidebar_table.get_celld().values():
             cell.set_fontsize(16) #
          plt.subplots_adjust(wspace=0.05)
         plt.subplots_adjust(left=0.05, right=0.95, bottom=0.1, top=0.9, wspace=0.4)
         plt.tight_layout()
          plt.show()
```

Materials


```
In [17]: plt.figure(figsize=(10, 10))
    sns.heatmap(adjacency_matrix, cmap='YlGnBu_r', fmt='.2f', square = True)
    plt.title('Heatmap for Objects based on Dissimilarities')

plt.show()
```



```
In [18]: fig, axs = plt.subplots(1, 2, figsize=(12, 6), gridspec_kw={'width_ratios': [5, 5]}

# Plot the first heatmap on the left subplot (axs[0])
heatmap1 = sns.heatmap(distances_Y, cmap='YlGnBu_r', fmt='.2f', square=True, cbar=faxs[0].set_title('Heatmap based on Distances')

# Plot the second heatmap on the right subplot (axs[1])
heatmap2 = sns.heatmap(adjacency_matrix, cmap='YlGnBu_r', fmt='.2f', square=True, caxs[1].set_title('Heatmap based on Dissimilarities')

# Get the maximum height of the two subplots
max_height = max(axs[0].get_position().height, axs[1].get_position().height)

# Create a color bar based on the maximum height of subplots
cbar_ax = fig.add_axes([0.92, 0.1, 0.02, max_height]) # Position for color bar
fig.colorbar(heatmap2.collections[0], cax=cbar_ax) # Use the collections attribute

# Show the plot
plt.show()
```



```
In [19]: distance_Adj_matrix = np.round(distances_Y,2)
         distance dataframe = pd.DataFrame(distance Adj matrix)
         distance_dataframe.to_csv("./distance_adjacency_matrix.csv", header=False, index=Fa
         diss_dataframe = pd.DataFrame(adjacency_matrix)
         diss_dataframe.to_csv("./dissimilarity_adjacency_matrix.csv", header=False, index=F
         final_matrix_csv = pd.DataFrame(final_matrix)
         final_matrix_csv.to_csv("./final_adjacency_matrix_edges.csv", header=False, index=F
         mymaterials_with_OUT_INDEX = list(materials_index.keys())
         distance_dataframe = pd.read_csv("./distance_adjacency_matrix.csv", header=None)
         diss_dataframe = pd.read_csv("./dissimilarity_adjacency_matrix.csv", header=None)
         final_matrix_csv = pd.read_csv("./final_adjacency_matrix_edges.csv", header=None)
         distance_dataframe.columns = mymaterials_with_OUT_INDEX
         distance_dataframe.index = mymaterials_with_OUT_INDEX
         diss_dataframe.columns = mymaterials_with_OUT_INDEX
         diss dataframe.index = mymaterials with OUT INDEX
          final_matrix_csv.columns = mymaterials_with_OUT_INDEX
         final_matrix_csv.index = mymaterials_with_OUT_INDEX
         # Save modified DataFrames back to CSV files
         distance dataframe.to csv("./distance adjacency matrix.csv")
          diss_dataframe.to_csv("./dissimilarity_adjacency_matrix.csv")
         final_matrix_csv.to_csv("./final_adjacency_matrix_edges.csv")
```

```
disparity_matrix = transform_to_disparity(adjacency_matrix)
In [20]:
         flatten_dissimilarity = []
         flatten disparity = []
         flatten Y = []
         for j in range(0, adjacency_matrix.shape[0]):
              for i in range(0,j):
                 flatten_dissimilarity.append(adjacency_matrix[i][j])
                 flatten_disparity.append(disparity_matrix[i][j])
                 flatten_Y.append(distances_Y[i][j])
         pairs = []
         for i in range(0, len(flatten disparity)):
             pairs.append((flatten dissimilarity[i],flatten disparity[i]))
         plotx = []
         ploty = []
         sorted_pairs = sorted(pairs, key=lambda x: x[0])
```

```
for k in range(0,len(sorted_pairs)):
    plotx.append(sorted_pairs[k][0])
    ploty.append(sorted_pairs[k][1])
```

```
In [21]: plt.figure(figsize=(8, 6))
   plt.plot(plotx, ploty, color='red', label='Disparities', alpha=0.7)
   plt.title('Shepard Plot')
   plt.xlabel('Dissimalirities')
   plt.ylabel('Distances/Disparities')
   plt.grid(True)

# Adding the line plot representing the sorted pairs
   plt.scatter(flatten_dissimilarity,flatten_Y, color='blue', label='Distances')
   plt.legend()

plt.show()
```

