Parellel Iterations

And a few additional {purrr} functions

Daniel Anderson Week 5, Class 1

Agenda

- Finish up slides from Wednesday
- Discuss map2_* and pmap_*
- Introduce walk, reduce and safely

Learning objectives

- Understand the differences between map, map2, and pmap
- Know when to apply walk instead of map, and why it may be useful
- Be able to collapse lists with reduce
- Diagnose errors with safely (and understand other situations where it may be helpful)

map2

A few Examples

Basic simulations - iterating over two vectors

Plots by month, changing the title

- Simulate data from a normal distribution
 - Vary n from 5 to 150 by increments of 5
 - \circ For each n, vary mu from -2 to 2 by increments of 0.25

- Simulate data from a normal distribution
 - Vary n from 5 to 150 by increments of 5
 - \circ For each n, vary mu from -2 to 2 by increments of 0.25

How do we get all combinations

- Simulate data from a normal distribution
 - Vary n from 5 to 150 by increments of 5
 - \circ For each n, vary mu from -2 to 2 by increments of 0.25

How do we get all combinations

expand.grid

Example expand.grid

Bonus: It turns it into a data frame!

4 1 b

5

7 1 c ## 8 2 c

9 3 c

Set conditions

Simulate!

```
sim1 <- map2(conditions$n, conditions$mu, ~rnorm(.x, .y, sd = 10))
str(sim1)</pre>
```

```
## List of 510
   $ : num [1:5] 1.47 4.21 -3.88 -1.42 -1.68
## $ : num [1:10] 7.75 -8.09 7.61 -1.84 -18.61 ...
   $ : num [1:15] -3.84 -2.19 9.58 -0.82 -4.13 ...
##
   $ : num [1:20] -7.421 3.697 -12.473 0.626 -5.097 ...
##
  $ : num [1:25] 12.75 -13.56 -3.93 -10.55 -10.48 ...
##
## $ : num [1:30] 12.63 -6.45 1.68 -2.72 -15.73 ...
   $ : num [1:35] 6.8 -35.46 4.9 5.21 -18.6 ...
##
   $ : num [1:40] -20.1641 -6.6494 3.8459 -0.0782 15.5604 ...
##
##
   $ : num [1:45] -0.139 -2.251 11.996 -15.19 -7.86 ...
## $ : num [1:50] 18.022 1.338 0.904 2.29 -5.007 ...
##
   $ : num [1:55] -8.61 -4.21 6.22 4.39 -9.99 ...
##
   $ : num [1:60] 9 -11.01 2.2 -5.56 -3.4 ...
   $ : num [1:65] -4.508 -2.29 -6.871 -0.758 -13.045 ...
##
   $ : num [1:70] 17.33 -9.2 -14.61 -12.83 6.87 ...
##
##
   $ : num [1:75] 8.72 -6.16 -4.67 2.92 -16 ...
   $ : num [1:80] -11.702 18.432 3.928 -13.13 0.929 ...
##
   $ : num [1:85] -13.439 -5.278 -0.867 -8.354 14.282 ...
##
   $ : num [1:90] 0.772 1.154 -19.369 8.707 1.572 ...
##
   $ : num [1:95] -3.095 0.157 -25.479 -3.716 13.151 ...
   $ : num [1:100] 2.3331 0.0165 -8.1208 -4.2457 5.284 ...
```

More powerful

40 -2 <dbl [40]>

45

50

... with 500 more rows

-2 <dbl [45]>

-2 <dbl [50]>

Add it as a list column!

sim2 <- conditions %>%

##

##

10

```
as_tibble() %>% # Not required, but definitely helpful
    mutate(sim = map2(n, mu, \sim rnorm(.x, .y, sd = 10)))
sim2
## # A tibble: 510 x 3
##
             mu sim
         n
   <dbl> <dbl> <list>
##
##
         5 -2 <dbl [5]>
  1
     10 -2 <dbl [10]>
##
##
  3
     15 -2 <dbl [15]>
     20 -2 <dbl [20]>
##
     25 -2 <dbl [25]>
##
     30
            -2 <dbl [30]>
##
      35
          -2 <dbl [35]>
##
```

Unnest

```
conditions %>%
   as_tibble() %>% # Not required, but definitely helpful
   mutate(sim = map2(n, mu, ~rnorm(.x, .y, sd = 10))) %>%
   unnest()
```

```
## # A tibble: 39,525 x 3
##
                     sim
            mu
        n
##
  <dbl> <dbl> <dbl> <
##
  1
        5 -2 -6.799818
##
  2
        5 -2 -11.82891
##
  3
     5 -2 -1.997035
     5 -2 -5.874381
  4
##
##
  5
     5 -2 -7.569429
##
      10 -2 -16.78940
##
       10 -2 -14.90955
  7
       10 -2 -13.69314
##
  8
##
  9
       10 -2 -1.759368
## 10
       10
          -2 -9.681130
## # ... with 39,515 more rows
```

What if we wanted to vary the sd too?

What if we wanted to vary the sd too? pmap

Which we'll get to soon

Varying the title of a plot

The data

library(fivethirtyeight)
pulitzer

```
## # A tibble: 50 x 7
##
      newspaper circ2004 circ2013 pctchg_circ num_finals1990_2003
      <chr>
                   <dbl>
                            <dbl>
                                         <int>
                                                              <int>
##
                 2192098 1674306
##
    1 USA Today
                                           -24
                                                                  1
   2 Wall Str... 2101017
##
                          2378827
                                            13
                                                                 30
##
   3 New York...
                 1119027 1865318
                                            67
                                                                 55
##
   4 Los Ange...
                983727
                         653868
                                           -34
                                                                 44
   5 Washingt...
                760034
                           474767
                                           -38
                                                                 52
##
##
   6 New York...
                712671
                           516165
                                           -28
##
   7 New York... 642844
                           500521
                                           -22
                                                                  0
##
   8 Chicago ... 603315
                           414930
                                           -31
                                                                 23
   9 San Jose...
##
                558874
                           583998
                                             4
                                                                  4
  10 Newsday
              553117
                           377744
                                           -32
                                                                 12
## # ... with 40 more rows, and 2 more variables: num_finals2004_2014 <int>,
       num finals1990 2014 <int>
## #
```

Prep data

```
pulitzer <- pulitzer %>%
    select(newspaper, starts_with("num")) %>%
    gather(year_range, n, -newspaper) %>%
    mutate(year_range = str_replace_all(year_range, "num_finals", ""),
        year_range = str_replace_all(year_range, "_", "-")) %>%
    filter(year_range != "1990-2014")
pulitzer
```

```
## # A tibble: 100 x 3
##
     newspaper
                            year_range
     <chr>
                            <chr>
                                       <int>
##
  1 USA Today
##
                            1990-2003
                                           1
  2 Wall Street Journal 1990-2003
##
                                          30
## 3 New York Times
                                          55
                            1990-2003
   4 Los Angeles Times
                                          44
##
                            1990-2003
   5 Washington Post
                                          52
##
                            1990-2003
   6 New York Daily News
                                           4
##
                            1990-2003
  7 New York Post
                            1990-2003
                                           0
##
  8 Chicago Tribune
                                          23
##
                            1990-2003
   9 San Jose Mercury News 1990-2003
                                          4
## 10 Newsday
                            1990-2003
                                          12
## # ... with 90 more rows
```

One plot

Pulitzer Prize winners: Wall Street Journal

Nest data

```
pulitzer %>%
    group_by(newspaper) %>%
    nest()
## # A tibble: 50 x 2
                            data
##
     newspaper
     <chr>
                            st>
##
   1 USA Today
                           <tibble [2 × 2]>
##
##
  2 Wall Street Journal <tibble [2 × 2]>
   3 New York Times
                           <tibble [2 × 2]>
##
   4 Los Angeles Times
##
                           <tibble [2 × 2]>
                           <tibble [2 × 2]>
   5 Washington Post
##
   6 New York Daily News
                          <tibble [2 × 2]>
##
  7 New York Post
                            <tibble [2 × 2]>
##
                            <tibble [2 × 2]>
  8 Chicago Tribune
##
   9 San Jose Mercury News <tibble [2 × 2]>
## 10 Newsday
                            <tibble [2 × 2]>
## # ... with 40 more rows
```

Produce all plots

You try first!

Don't worry about the correct title yet, if you don't want

Produce all plots

You try first!

Don't worry about the correct title yet, if you don't want

Add title

```
p
```

Look at a couple plots

p\$plot[[2]]

p\$plot[[3]]

p\$plot[[4]]

iterating over n vectors pmap

pmap

- Simulate data from a normal distribution
 - Vary n from 5 to 150 by increments of 5
 - \circ For each n, vary mu from -2 to 2 by increments of 0.25
 - \circ For each σ from 1 to 3 by increments of 0.1

```
full_conditions <- expand.grid(n = seq(5, 150, 5),</pre>
                              mu = seq(-2, 2, 0.25),
                              sd = seq(1, 3, .1))
head(full_conditions)
## n mu sd
## 1 5 -2 1
## 2 10 -2 1
## 3 15 -2 1
## 4 20 -2 1
## 5 25 -2 1
## 6 30 -2 1
tail(full_conditions)
   n mu sd
##
## 10705 125 2 3
## 10706 130 2 3
## 10707 135 2 3
```

10708 140 2 3 ## 10709 145 2 3 ## 10710 150 2 3

Full Simulation

```
fsim <- pmap(list(number = full_conditions$n,</pre>
                   average = full conditions$mu,
                   stdev = full_conditions$sd),
             function(number, average, stdev) {
                  rnorm(n = number, mean = average, sd = stdev)
             })
str(fsim)
## List of 10710
   $ : num [1:5] -0.68509 -0.00408 -2.12953 -3.06301 -1.7573
## $ : num [1:10] -1.043 -2.461 -2.128 -0.523 -2 ...
  $ : num [1:15] -2.82 -1.555 -1.828 -0.666 -2.829 ...
## $ : num [1:20] -4.17 -1.3 -2.86 -1.99 -4.05 ...
## $ : num [1:25] -1.8358 0.0138 -2.1699 -3.817 -2.1927 ...
   $ : num [1:30] -1.739 -0.773 -2.072 -0.425 -1.092 ...
##
   $ : num [1:35] -2.42 -3.08 -2.65 -2.21 -1.99 ...
##
  $ : num [1:40] -1.551 -1.527 0.317 -0.25 -1.227 ...
##
   $ : num [1:45] -2.44 -1.29 -1.56 -2.49 -3.1 ...
   $ : num [1:50] -1.78 -2.26 -2.56 -3.54 -1.67 ...
##
   $ : num [1:55] -1.937 -1.24 -0.9 -0.597 -2.127 ...
##
##
   $ : num [1:60] -2.79 -2.3 -1.01 -2.44 -2.44 ...
  $ : num [1:65] -2.8 -1.74 -2.33 -1.52 -1.08 ...
##
   $ : num [1:70] -2.1 -3.04 -2.81 -2.45 -1.15 ...
   $ : num [1:75] -1.717 -2.612 0.117 -1.497 -2.025 ...
```

Alternative spec

```
fsim <- pmap(list(full_conditions$n,</pre>
                  full_conditions$mu,
                  full conditions$sd),
            \simrnorm(n = ..1, mean = ..2, sd = ..3))
str(fsim)
## List of 10710
## $ : num [1:5] -1.732 -4.046 -0.882 -1.318 0.102
  $ : num [1:10] -2.59 -2.39 -1.57 -1.56 -3.3 ...
##
## $ : num [1:15] -0.849 -1.381 -1.831 -1.879 -1.121 ...
##
  $ : num [1:20] -2.345 -0.497 -0.884 -1.316 -3.192 ...
## $ : num [1:25] -0.3437 -1.6887 -2.7514 0.0419 -1.5099 ...
## $ : num [1:30] -2.043 -0.678 -0.745 -1.69 -1.088 ...
## $ : num [1:35] -2.65 -1.48 -1.65 -2.84 -2.23 ...
##
   $ : num [1:40] -2.85 -2.425 -1.35 -0.432 -3.335 ...
   $ : num [1:45] -2.91 -3.59 -2.7 -1.84 -1.56 ...
##
  $ : num [1:50] -2.557 -2.953 -0.053 -1.976 -1.742 ...
##
   $ : num [1:55] -2.66 -1.94 -0.917 -2.746 -1.57 ...
   $ : num [1:60] -1.05 -2.824 -2.057 -0.907 -2.253 ...
##
   $ : num [1:65] -2.7 -2.18 -1.11 -1.32 -1.28 ...
##
##
   $ : num [1:70] -3.48 -3.93 -1.51 -2.56 -1.46 ...
   $ : num [1:75] -1.277 0.255 -1.15 -2.819 -1.231 ...
##
   $ : num [1:80] -2.243 -2.165 -0.542 -2.482 -1.958 ...
   $ : num [1:85] -1.601 -0.107 -0.9 -0.619 -2.8 ...
```

25 / 40

Simpler

Maybe a little too clever

A data frame is a list so...

```
## List of 10710
  $ : num [1:5] -2.67 -1.71 -3.72 -1.05 -2.57
  $ : num [1:10] -1.88 -1.52 -1.98 -1.13 -1.28 ...
## $ : num [1:15] -2.022 -2.413 -0.846 -2.005 -0.864 ...
## $ : num [1:20] -2.945 -3.135 -2.305 -2.507 -0.111 ...
## $ : num [1:25] -2.114 -1.132 -3.318 -0.686 -2.381 ...
## $ : num [1:30] -2.08 -3.18 -1.35 -1.13 -4.8 ...
   $ : num [1:35] -2.13 -1.2 -2.34 -1.93 -2.08 ...
##
   $ : num [1:40] -1.3611 -3.8349 -2.3402 -1.12 -0.0739 ...
##
   $ : num [1:45] -1.547 -0.761 -2.548 -2.908 -0.806 ...
##
  $ : num [1:50] -2.01 -1.32 -1.51 -1.96 -1.19 ...
   $ : num [1:55] -3.077 -2.245 -2.603 -0.235 -1.557 ...
##
## $ : num [1:60] -2.68 -1.55 -3.45 -2.22 -2.24 ...
## $ : num [1:65] -3.09 -3.21 -3.11 -2.58 -1.64 ...
```

List column version

```
full_conditions %>%
    as_tibble() %>%
   mutate(sim = pmap(list(n, mu, sd), \sim rnorm(..1, ..2, ..3)))
## # A tibble: 10,710 x 4
                 sd sim
##
            mu
     <dbl> <dbl> <dbl> <ti><
##
        5 -2
                  1 <dbl [5]>
##
  1
##
  2
     10 -2
                  1 <dbl [10]>
  3 15 -2 1 <dbl [15]>
##
  4 20 -2 1 <dbl [20]>
##
    25 -2
                  1 <dbl [25]>
  5
##
     30 -2
##
                  1 <dbl [30]>
                  1 <dbl [35]>
      35 –2
##
  7
##
      40 -2
                  1 <dbl [40]>
  8
      45 -2
                  1 <dbl [45]>
##
          -2
                  1 <dbl [50]>
## 10
       50
## # ... with 10,700 more rows
```

Unnest

```
full_conditions %>%
    as_tibble() %>%
    mutate(sim = pmap(list(n, mu, sd), ~rnorm(..1, ..2, ..3))) %>%
    unnest()
```

```
## # A tibble: 830,025 x 4
##
                 sd
                         sim
            mu
        n
  <dbl> <dbl> <dbl>
                   <dbl>
##
##
  1
        5 -2
                 1 -1.152654
##
  2
        5 -2 1 -2.468304
##
  3
     5 -2 1 -0.5156141
     5 -2 1 -1.163307
  4
##
     5 -2 1 -2.303434
##
  5
      10 -2 1 -0.3618123
##
##
            -2
                 1 -3.325788
       10
  7
       10 -2
                 1 - 0.7039727
##
  8
         -2
                 1 -1.897031
##
  9
       10
## 10
       10
            -2
                  1 1.001286
## # ... with 830,015 more rows
```

Plot

Add a caption stating the total number of pulizter prize winners across years

Add column for total

pulitzer <- pulitzer %>%

group_by(newspaper) %>%

```
mutate(tot = sum(n))
pulitzer
## # A tibble: 100 x 4
## # Groups: newspaper [50]
##
     newspaper
                           year_range
                                              tot
                                          n
##
     <chr>
                           <chr>
                                 <int> <int>
##
   1 USA Today
                           1990-2003
                                          1
                                                2
   2 Wall Street Journal 1990-2003
                                               50
##
                                         30
                                            117
   3 New York Times
                           1990-2003
                                         55
##
  4 Los Angeles Times
                           1990-2003
                                         44
                                             85
##
   5 Washington Post
                                         52
                                              100
##
                         1990-2003
   6 New York Daily News
##
                           1990-2003
                                          4
                                                6
  7 New York Post
                           1990-2003
##
                                          0
                                                0
  8 Chicago Tribune
                           1990-2003
                                               38
##
                                         23
   9 San Jose Mercury News 1990-2003
                                                6
  10 Newsday
                                         12
                           1990-2003
                                               18
## # ... with 90 more rows
```

Easiest way (imo)

Create a column to represent exactly the label you want.

```
#install.packages("english")
library(english)
pulitzer <- pulitzer %>%
    mutate(label =
    glue("{str_to_title(as.english(tot))} Total Pulitzer Awards"))
pulitzer
```

```
## # A tibble: 100 x 5
## # Groups: newspaper [50]
                                             tot label
##
     newspaper
                         year_range
                                         n
      <chr>
                         <chr>
                                     <int> <int> <chr>
##
                                               2 Two Total Pulitzer Awards
    1 USA Today
##
                         1990-2003
                                         1
   2 Wall Street Journ... 1990-2003
                                              50 Fifty Total Pulitzer Awards
                                        30
##
   3 New York Times
                                             117 One Hundred Seventeen Total P...
##
                         1990-2003
   4 Los Angeles Times 1990-2003
                                              85 Eighty Five Total Pulitzer Aw...
                                        44
                                             100 One Hundred Total Pulitzer Aw...
##
    5 Washington Post
                         1990-2003
                                        52
                                               6 Six Total Pulitzer Awards
   6 New York Daily Ne... 1990-2003
                                         4
   7 New York Post
                                               O Zero Total Pulitzer Awards
##
                         1990-2003
                                         0
   8 Chicago Tribune
                                              38 Thirty Eight Total Pulitzer A...
##
                         1990-2003
                                        23
##
   9 San Jose Mercury ... 1990-2003
                                         4
                                               6 Six Total Pulitzer Awards
## 10 Newsday
                         1990-2003
                                              18 Eighteen Total Pulitzer Awards 40
                                        12
```

Produce one plot

Produce all plots

Nest first

```
pulitzer %>%
     group_by(newspaper, label) %>%
    nest()
## # A tibble: 50 x 3
                            label
                                                                  data
##
     newspaper
                            <chr>
##
      <chr>
                                                                   st>
                            Two Total Pulitzer Awards
                                                                   <tibble [2 × ...
##
    1 USA Today
   2 Wall Street Journal
                                                                   <tibble [2 × ...
##
                           Fifty Total Pulitzer Awards
   3 New York Times
                            One Hundred Seventeen Total Pulitze... <tibble [2 × ...
##
   4 Los Angeles Times
                            Eighty Five Total Pulitzer Awards
                                                                   <tibble [2 × ...
##
    5 Washington Post
                            One Hundred Total Pulitzer Awards
                                                                   <tibble [2 × ...
   6 New York Daily News
                            Six Total Pulitzer Awards
                                                                   <tibble [2 × ...
   7 New York Post
##
                            Zero Total Pulitzer Awards
                                                                  <tibble [2 × ...
   8 Chicago Tribune
                            Thirty Eight Total Pulitzer Awards
                                                                  <tibble [2 × ...
   9 San Jose Mercury Ne... Six Total Pulitzer Awards
                                                                  <tibble [2 × ...
   10 Newsday
                            Eighteen Total Pulitzer Awards
                                                                  <tibble [2 × ...
## # ... with 40 more rows
```

Produce plots

Look at a couple plots

final_plots\$plots[[1]]

final_plots\$plots[[2]]

final_plots\$plots[[3]]

final_plots\$plots[[4]]

Save all plots

We'll have to iterate across at least two things: (a) file path/names, and (b) the plots themselves

walk

Why walk for saving instead of map?

Walk is an alternative to map that you use when you want to call a function for its side effects, rather than for its return value. You typically do this because you want to render output to the screen or save files to disk - the important thing is the action, not the return value.

-r4ds

Example Create a directory

fs::dir_create(here::here("plots", "pulitzers"))

Example

Create a directory

```
fs::dir_create(here::here("plots", "pulitzers"))
```

Create file paths

```
files <- str_replace_all(tolower(final_plots$newspaper), " ", "-")
paths <- here::here("plots", "pulitzers", glue("{files}.png"))
paths</pre>
```

```
[1] "/Users/Daniel/Teaching/data_sci_specialization/c3-fun_program_r/plots/pul
##
    [2] "/Users/Daniel/Teaching/data_sci_specialization/c3-fun_program_r/plots/pul
##
    [3] "/Users/Daniel/Teaching/data_sci_specialization/c3-fun_program_r/plots/pul
##
    [4] "/Users/Daniel/Teaching/data_sci_specialization/c3-fun_program_r/plots/pul
##
       "/Users/Daniel/Teaching/data_sci_specialization/c3-fun_program_r/plots/pul
##
       "/Users/Daniel/Teaching/data_sci_specialization/c3-fun_program_r/plots/pul
##
##
       "/Users/Daniel/Teaching/data_sci_specialization/c3-fun_program_r/plots/pul
    [8] "/Users/Daniel/Teaching/data_sci_specialization/c3-fun_program_r/plots/pul
##
##
    [9] "/Users/Daniel/Teaching/data_sci_specialization/c3-fun_program_r/plots/pul
       "/Users/Daniel/Teaching/data_sci_specialization/c3-fun_program_r/plots/pul
   [11] "/Users/Daniel/Teaching/data_sci_specialization/c3-fun_program_r/plots/pul
##
   [12] "/Users/Daniel/Teaching/data_sci_specialization/c3-fun_program_r/plows/pul
```

Save plots

```
walk2(paths, final_plots$plots, ggsave,
    width = 9.5,
    height = 6.5,
    dpi = 500)
```

Wrap-up

- Lots more to {purrr} we weren't able to get to
 - May be interested in safely, reduce, modify, and pull and pluck
- Function programming can *really* help your efficiency, and even if it slows you down initially, I'd recommend striving toward it, because it will ultimately be a huge help.

Questions?