어프렌티스 프로젝트 최종발표

데이터분석 및 활용방안

팀명: KIDS

팀원: 배인호, 박금나, 김다현

-0.18

이산화질소

일산화탄소

초미세먼지

0.06

아황산가스

미세먼지

프로젝트 분석내용

상관관계 분석

질병과 대기오염의 상관관계를 MinMaxScaler로 정규화하여 분석

지역별 및 시계열 분석

추가 분석 진행, 더 낮은 연관성 확인

랜덤포레스트 모델

비염에 대해 97% 정확도 달성

대기오염과 질병 분석결과

양의 상관관계

아황산가스, 미세먼지, 이산화 질소, 초미세먼지와 대부분 질 병 음의 상관관계

오존은 질병에 미치는 영향이 적음

추가 분석 필요

유전적 요인, 식습관 등 다양한 요인 고려 필요

추가 데이터 분석

목적

머신러닝을 통한 실제 데이터 활용 방법 모색 전력 시스템의 안전성과 효율성 향상

배전반 데이터

신뢰성 시험을 위해 이상치를 발생시킨 35000개 이상의 데이터

배전반 데이터 분석 목적

배전반 시스템 안전 상태를 진단하고 예측하기 위함

전력 소비 패턴 파악

배전반 데이터는 건물의 전력 소비 패턴을 정확히 분석

안전성 향상

실시간 모니터링을 통해 전기 시스템의 안전성 향상

	순번	도어열림	지진가속도센서값	활선상태	몬도	습도	전압1	전압2	전압3	전류1	전류2	전류3	역률	고조파불평형률1	고조파불평형률2	고조파불평형률3	최대전력
0	1	NaN	NaN	OFF	24.6	50.1	0	0	0	0	0	0	0	0	0	0	0
1	2	NaN	NaN	OFF	28.8	69.8	0	0	0	0	0	0	0	0	0	0	0
2	3	NaN	NaN	OFF	28.8	69.9	0	0	0	0	0	0	0	0	0	0	0
3	4	NaN	NaN	OFF	28.7	69.8	0	0	0	0	0	0	0	0	0	0	0
4	5	NaN	NaN	OFF	28.7	69.8	0	0	0	0	0	0	0	0	0	0	0
36890	39145	NaN	NaN	R,S,T	23.5	40.9	6	8	7	215	50	70	1	2	2	2	1152
36891	39146	NaN	NaN	R,S,T	23.6	40.8	6	8	7	215	50	70	1	2	2	2	1153
36892	39147	NaN	NaN	R,S,T	23.6	40.9	6	8	7	215	50	70	1	2	2	2	1152
36893	39148	NaN	NaN	R,S,T	23.5	40.8	6	8	7	215	50	70	1	2	2	2	1150
36894	39149	NaN	NaN	R,S,T	23.6	40.9	1	1	1	37	9	12	1	2	2	2	36
36895 rows × 17 columns																	

데이터 소개

데이터 형태

전처리된 엑셀 파일

주요 컬럼

순번, 도어열림, 지진가속도센서값, 활선상태, 온도, 습도 등

전기 관련 데이터

전압, 전류, 역률, 고조파불평형률, 최대전력 포함

데이터 전처리 및 모델링

Percentage Difference: 20468 -0.065532
15306 -0.074754
25226 -0.341728
31744 0.183107
14601 0.427194
...
23920 -0.022826
18770 -0.118544
18429 -0.320926
36555 0.032870
19501 0.093638
Name: 최대전력, Length: 3659, dtype: float64
Accuracy Percentage(예측값 정확도) 98.551516807871

1

2

모델 성능 향상

결과 분석

도어열림, 지진가속도센서값, 활선상 태에 대한 추가 전처리 적용

문자 데이터 전처리

두 번의 예측 및 평가 진행

모델의 정확도 및 성능 평가

상관관계 분석 결과

높은 양의 상관관계

전압, 전류, 역률 간 높은 상관관계 발견

역률 영향

역률이 낮으면 전력 손실 증가

고조파불평형률 영향

고조파불평형률이 높으면 전력 품질 저하

배전반 시스템 상태 진단

분석 결과 활용

실제값 vs 예측값

'25년 현장대응부처 재난안전 R&D 합동설명회

2024.11.28.(목) 13:30~16:00

2025년 재난안전 연구개발사 업 연계

기술 사업화

개발된 시스템의 상용화를 위한 정부 지원 프로그램 참여

산학협력

대학-기업 간 공동 연구를 통한 실용적 솔루션 개발

실증 사업

개발 시스템의 실제 환경 적용 및 성능 검증

안전관리 및 재난안전 시스템

실시간 경보

이상 징후 발생 시 즉각적인 알림 시스템

예측된 최대전력: 1479.07

알림: 도머가 열렸거나 센서가 감지되었습니다!

알림: 지진이 감지되었습니다! 강도: 150

알림: 활선 상태가 변경되었습니다! 활성 상태 수: 3

통합 대시보드

전력 시스템 전반의 상태를 한눈에 파악

구분	최대전력(kW)	역률 (PF)	전	압	전	결과		
			전압(kV)	THD(%)	전류(A)	THD(%)	르시	
		1.00	20.94	2.68	208.10	2.68		
1	7582.62		20.03	2.55	206.34	2.55	적합	
			20.52	2.68	210.21	2.68		

کی

예측 모델

AI 기반 고장 예측 및 예방 정비 일정 수립

향후 연구 방향

1

데이터 확장

다양한 환경의 배전반 데이터 수집 및 통합

2

AI 모델 고도화

딥러닝 기반 예측 모델의 정확도 향상

3

IoT 연계

스마트 센서와의 연동을 통한 데이터 수집 자동화

4

타 산업 확장

전력 외 다양한 산업 분야로의 기술 적용 확대