

Outline

- 1. What is a 2-solvable Belyĭ map?
- 2. Motivation: Beckmann's Theorem
- 3. An algorithm to compute 2-solvable Belyi maps
 - (a) Computing permutation triples
 - (b) Computing equations
- 4. Examples
- 5. Application: Number fields obtained from 2-torsion points

Theorem (G.V. Belyĭ 1979)

A smooth projective curve X over $\mathbb C$ can be defined over $\overline{\mathbb Q}$ if and only if there exists a branched covering of compact connected Riemann surfaces $\phi: X \to \mathbb P^1$ unramified (unbranched) above $\mathbb P^1 \setminus \{0,1,\infty\}$.

Theorem (G.V. Belyĭ 1979)

A smooth projective curve X over $\mathbb C$ can be defined over $\overline{\mathbb Q}$ if and only if there exists a branched covering of compact connected Riemann surfaces $\phi: X \to \mathbb P^1$ unramified (unbranched) above $\mathbb P^1 \setminus \{0,1,\infty\}$.

Such a map is called a **Belyī map**.

Theorem (G.V. Belyĭ 1979)

A smooth projective curve X over $\mathbb C$ can be defined over $\overline{\mathbb Q}$ if and only if there exists a branched covering of compact connected Riemann surfaces $\phi: X \to \mathbb P^1$ unramified (unbranched) above $\mathbb P^1 \setminus \{0,1,\infty\}$.

Such a map is called a Belyĭ map.

Two Belyĭ maps $\phi: X \to \mathbb{P}^1$ and $\phi': X' \to \mathbb{P}^1$ are **isomorphic** if there is an isomorphism $\iota: X \to X'$ such that $\phi'\iota = \phi$.

A passport $\mathcal P$ consists of the data (g,G,λ) where $g\geq 0$ is an integer, $G\leq S_d$ is a transitive subgroup, and $\lambda=(\lambda_0,\lambda_1,\lambda_\infty)$ is a triple of partitions of d.

A passport \mathcal{P} consists of the data (g,G,λ) where $g\geq 0$ is an integer, $G\leq S_d$ is a transitive subgroup, and $\lambda=(\lambda_0,\lambda_1,\lambda_\infty)$ is a triple of partitions of d.

The passport of a Belyĭ map $\phi: X \to \mathbb{P}^1$ is $(g(X), \mathsf{Mon}(\phi), (\lambda_0, \lambda_1, \lambda_\infty))$ with g(X) the genus of X, $\mathsf{Mon}(\phi)$ the monodromy group of ϕ , and the partitions specified by ramification.

A passport \mathcal{P} consists of the data (g, G, λ) where $g \geq 0$ is an integer, $G \leq S_d$ is a transitive subgroup, and $\lambda = (\lambda_0, \lambda_1, \lambda_\infty)$ is a triple of partitions of d.

The passport of a Belyĭ map $\phi: X \to \mathbb{P}^1$ is $(g(X), \mathsf{Mon}(\phi), (\lambda_0, \lambda_1, \lambda_\infty))$ with g(X) the genus of X, $\mathsf{Mon}(\phi)$ the monodromy group of ϕ , and the partitions specified by ramification.

There is an action of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ on Belyĭ maps.

A passport \mathcal{P} consists of the data (g, G, λ) where $g \geq 0$ is an integer, $G \leq S_d$ is a transitive subgroup, and $\lambda = (\lambda_0, \lambda_1, \lambda_\infty)$ is a triple of partitions of d.

The passport of a Belyĭ map $\phi: X \to \mathbb{P}^1$ is $(g(X), \mathsf{Mon}(\phi), (\lambda_0, \lambda_1, \lambda_\infty))$ with g(X) the genus of X, $\mathsf{Mon}(\phi)$ the monodromy group of ϕ , and the partitions specified by ramification.

There is an action of $\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on Belyĭ maps. This action preserves passports.

A transitive permutation triple is a triple

$$\sigma=(\sigma_0,\sigma_1,\sigma_\infty)\in S_d^3$$
 with $\langle\sigma\rangle$ a transitive subgroup of S_d and $\sigma_\infty\sigma_1\sigma_0=1$.

A transitive permutation triple is a triple $\sigma = (\sigma_0, \sigma_1, \sigma_\infty) \in S_d^3$ with $\langle \sigma \rangle$ a transitive subgroup of S_d and $\sigma_\infty \sigma_1 \sigma_0 = 1$.

Two such triples σ and σ' are **simultaneously conjugate** if there exists $\tau \in \mathcal{S}_d$ with

$$\left(\tau^{-1}\sigma_0\tau,\tau^{-1}\sigma_1\tau,\tau^{-1}\sigma_\infty\tau\right)=\left(\sigma_0',\sigma_1',\sigma_\infty'\right).$$

A transitive permutation triple is a triple $\sigma = (\sigma_0, \sigma_1, \sigma_\infty) \in S_d^3$ with $\langle \sigma \rangle$ a transitive subgroup of S_d and $\sigma_\infty \sigma_1 \sigma_0 = 1$.

Two such triples σ and σ' are **simultaneously conjugate** if there exists $\tau \in \mathcal{S}_d$ with

$$\left(\tau^{-1}\sigma_0\tau,\tau^{-1}\sigma_1\tau,\tau^{-1}\sigma_\infty\tau\right)=\left(\sigma_0',\sigma_1',\sigma_\infty'\right).$$

The passport of a permutation triple σ is $(g(\sigma), \langle \sigma \rangle, \lambda(\sigma))$

A transitive permutation triple is a triple $\sigma = (\sigma_0, \sigma_1, \sigma_\infty) \in S_d^3$ with $\langle \sigma \rangle$ a transitive subgroup of S_d and $\sigma_\infty \sigma_1 \sigma_0 = 1$.

Two such triples σ and σ' are **simultaneously conjugate** if there exists $\tau \in \mathcal{S}_d$ with

$$\left(\tau^{-1}\sigma_0\tau,\tau^{-1}\sigma_1\tau,\tau^{-1}\sigma_\infty\tau\right)=\left(\sigma_0',\sigma_1',\sigma_\infty'\right).$$

The passport of a permutation triple σ is $(g(\sigma), \langle \sigma \rangle, \lambda(\sigma))$ where

$$g(\sigma) = 1 - d + (e(\sigma_0) - e(\sigma_1) - e(\sigma_\infty))/2$$

A transitive permutation triple is a triple $\sigma = (\sigma_0, \sigma_1, \sigma_\infty) \in S_d^3$ with $\langle \sigma \rangle$ a transitive subgroup of S_d and $\sigma_\infty \sigma_1 \sigma_0 = 1$.

Two such triples σ and σ' are **simultaneously conjugate** if there exists $\tau \in S_d$ with

$$\left(\tau^{-1}\sigma_0\tau,\tau^{-1}\sigma_1\tau,\tau^{-1}\sigma_\infty\tau\right)=\left(\sigma_0',\sigma_1',\sigma_\infty'\right).$$

The passport of a permutation triple σ is $(g(\sigma), \langle \sigma \rangle, \lambda(\sigma))$ where

$$g(\sigma) = 1 - d + (e(\sigma_0) - e(\sigma_1) - e(\sigma_\infty))/2$$

with

$$e(\tau) = d - \# \text{cycles of } \tau$$
,

A transitive permutation triple is a triple $\sigma = (\sigma_0, \sigma_1, \sigma_\infty) \in S_d^3$ with $\langle \sigma \rangle$ a transitive subgroup of S_d and $\sigma_\infty \sigma_1 \sigma_0 = 1$.

Two such triples σ and σ' are **simultaneously conjugate** if there exists $\tau \in \mathcal{S}_d$ with

$$\left(\tau^{-1}\sigma_0\tau,\tau^{-1}\sigma_1\tau,\tau^{-1}\sigma_\infty\tau\right)=\left(\sigma_0',\sigma_1',\sigma_\infty'\right).$$

The passport of a permutation triple σ is $(g(\sigma), \langle \sigma \rangle, \lambda(\sigma))$ where

$$g(\sigma) = 1 - d + (e(\sigma_0) - e(\sigma_1) - e(\sigma_\infty))/2$$

with

$$e(\tau) = d - \# \text{cycles of } \tau$$
,

and $\lambda(\sigma)$ is specified by cycle structures.

A transitive permutation triple is a triple $\sigma = (\sigma_0, \sigma_1, \sigma_\infty) \in S_d^3$ with $\langle \sigma \rangle$ a transitive subgroup of S_d and $\sigma_\infty \sigma_1 \sigma_0 = 1$.

Two such triples σ and σ' are **simultaneously conjugate** if there exists $\tau \in \mathcal{S}_d$ with

$$(\tau^{-1}\sigma_0\tau, \tau^{-1}\sigma_1\tau, \tau^{-1}\sigma_\infty\tau) = (\sigma'_0, \sigma'_1, \sigma'_\infty).$$

The passport of a permutation triple σ is $(g(\sigma), \langle \sigma \rangle, \lambda(\sigma))$ where

$$g(\sigma) = 1 - d + (e(\sigma_0) - e(\sigma_1) - e(\sigma_\infty))/2$$

with

$$e(\tau) = d - \# \text{cycles of } \tau$$
.

and $\lambda(\sigma)$ is specified by cycle structures.

The **size** of a passport \mathcal{P} is the number of simultaneous conjugacy classes of transitive permutation triples with passport \mathcal{P} . 9 / 31

A group-theoretic description of Belyĭ maps

A group-theoretic description of Belyi maps

Lemma

The set of transitive permutation triples of degree d up to simultaneous conjugation is in bijection with the set of Belyĭ maps of degree d up to isomorphism.

A Zoo of Bijections

A Zoo of Bijections

A Zoo of Bijections

All up to the appropriate version of equivalence in each category.

Example 2T1-2,1,2-g0

Example 2T1-2,1,2-g0

2-solvable (Galois) Belyĭ maps

2-solvable (Galois) Belyĭ maps

Theorem (Beckmann-Kazez 1989)

Let $\phi: X \to \mathbb{P}^1$ be a Belyĭ map with monodromy group G.

Theorem (Beckmann-Kazez 1989)

Let $\phi: X \to \mathbb{P}^1$ be a Belyĭ map with monodromy group G. Suppose p does not divide #G.

Theorem (Beckmann-Kazez 1989)

Let $\phi: X \to \mathbb{P}^1$ be a Belyĭ map with monodromy group G. Suppose p does not divide #G. Then there exists a number field M such that p is unramified in M and

Beckmann's Theorem

Theorem (Beckmann-Kazez 1989)

Let $\phi: X \to \mathbb{P}^1$ be a Belyĭ map with monodromy group G. Suppose p does not divide #G. Then there exists a number field M such that p is unramified in M and ϕ is defined over M with good reduction at all primes $\mathfrak p$ of M above p.

Beckmann's Theorem

Theorem (Beckmann-Kazez 1989)

Let $\phi: X \to \mathbb{P}^1$ be a Belyĭ map with monodromy group G. Suppose p does not divide #G. Then there exists a number field M such that p is unramified in M and ϕ is defined over M with good reduction at all primes $\mathfrak p$ of M above p.

Upshot:

Beckmann's Theorem

Theorem (Beckmann-Kazez 1989)

Let $\phi: X \to \mathbb{P}^1$ be a Belyĭ map with monodromy group G. Suppose p does not divide #G. Then there exists a number field M such that p is unramified in M and ϕ is defined over M with good reduction at all primes $\mathfrak p$ of M above p.

Upshot: Every 2-solvable Belyĭ curve has a model with good reduction away from p = 2.

Let $\phi:X\to\mathbb{P}^1$ be a Belyĭ map of degree $d=2^\ell$ corresponding to $\sigma\in\mathcal{S}^3_d$.

Let $\phi: X \to \mathbb{P}^1$ be a Belyı map of degree $d=2^\ell$ corresponding to $\sigma \in \mathcal{S}^3_d$. We want to find $\widetilde{\phi}: \widetilde{X} \to \mathbb{P}^1$ corresponding to $\widetilde{\sigma} \in \mathcal{S}^3_{2d}$ such that

Let $\phi:X\to\mathbb{P}^1$ be a Belyı map of degree $d=2^\ell$ corresponding to $\sigma\in\mathcal{S}^3_d$. We want to find $\widetilde{\phi}:\widetilde{X}\to\mathbb{P}^1$ corresponding to $\widetilde{\sigma}\in\mathcal{S}^3_{2d}$ such that

Let $\phi: X \to \mathbb{P}^1$ be a Belyı map of degree $d=2^\ell$ corresponding to $\sigma \in \mathcal{S}^3_d$. We want to find $\widetilde{\phi}: \widetilde{X} \to \mathbb{P}^1$ corresponding to $\widetilde{\sigma} \in \mathcal{S}^3_{2d}$ such that

Such a $\widetilde{\sigma}$ sits in the following exact sequence of groups:

Let $\phi: X \to \mathbb{P}^1$ be a Belyĭ map of degree $d=2^\ell$ corresponding to $\sigma \in \mathcal{S}^3_d$. We want to find $\widetilde{\phi}: \widetilde{X} \to \mathbb{P}^1$ corresponding to $\widetilde{\sigma} \in \mathcal{S}^3_{2d}$ such that

Such a $\widetilde{\sigma}$ sits in the following exact sequence of groups:

$$1 \longrightarrow \mathbb{Z}/2\mathbb{Z} \xrightarrow{\iota} \langle \widetilde{\sigma} \rangle \xrightarrow{\pi} \langle \sigma \rangle \longrightarrow 1.$$

Theorem

Given all 2-solvable permutation triples of degree 2^ℓ , there is an effective algorithm to compute all 2-solvable permutation triples of degree $2^{\ell+1}$.

Theorem

Given all 2-solvable permutation triples of degree 2^{ℓ} , there is an effective algorithm to compute all 2-solvable permutation triples of degree $2^{\ell+1}$.

Moreover, these computations have been explicitly carried out up to degree 128.

Theorem

Given all 2-solvable permutation triples of degree 2^{ℓ} , there is an effective algorithm to compute all 2-solvable permutation triples of degree $2^{\ell+1}$.

Moreover, these computations have been explicitly carried out up to degree 128.

The main tool used here is Derek Holt's algorithm (1980s) to compute the second cohomology group of a finite group.

Theorem

Given all 2-solvable permutation triples of degree 2^{ℓ} , there is an effective algorithm to compute all 2-solvable permutation triples of degree $2^{\ell+1}$.

Moreover, these computations have been explicitly carried out up to degree 128.

The main tool used here is Derek Holt's algorithm (1980s) to compute the second cohomology group of a finite group.

This allows us to efficiently compute all equivalence classes of extensions for a given permutation triple.

Theorem

Given all 2-solvable permutation triples of degree 2^{ℓ} , there is an effective algorithm to compute all 2-solvable permutation triples of degree $2^{\ell+1}$.

Moreover, these computations have been explicitly carried out up to degree 128.

The main tool used here is Derek Holt's algorithm (1980s) to compute the second cohomology group of a finite group.

This allows us to efficiently compute all equivalence classes of extensions for a given permutation triple.

For each extension, we get 8 possible $\tilde{\sigma}$.

Theorem

Given all 2-solvable permutation triples of degree 2^{ℓ} , there is an effective algorithm to compute all 2-solvable permutation triples of degree $2^{\ell+1}$.

Moreover, these computations have been explicitly carried out up to degree 128.

The main tool used here is Derek Holt's algorithm (1980s) to compute the second cohomology group of a finite group.

This allows us to efficiently compute all equivalence classes of extensions for a given permutation triple.

For each extension, we get 8 possible $\tilde{\sigma}$. We then check the necessary conditions and do some bookkeeping.

Passport counts

degree	2	4	8	16	32	64	128
# genus 0 passports	3	4	6	6	6	6	6
# genus 1 passports		3	3	3	3	3	3
# genus 2 passports			4	6	0	0	0
# genus 3 passports			3	8	12	0	0
# genus 4 passports				6	6	0	0
# genus 5 passports				6	8	12	0
# genus 6 passports				3	0	0	0
# genus 7 passports				3	18	12	0
# genus 8 passports					6	6	0
# genus 9 passports					15	18	24
# genus 11 passports					7	12	0
# genus 12 passports					3	0	0
# genus 13 passports					6	30	12
# genus 14 passports					3	0	0
# genus 15 passports					3	18	12
# genus 16 passports						6	6

Passport counts

degree	2	4	8	16	32	64	128
# genus 17 passports						39	25
# genus 19 passports						18	0
# genus 21 passports						30	48
# genus 23 passports						9	12
# genus 24 passports						3	0
# genus 25 passports						24	78
# genus 27 passports						6	0
# genus 28 passports						3	0
# genus 29 passports						6	30
# genus 30 passports						3	0
# genus 31 passports						3	18
# genus 32 passports							6
# genus 33 passports							117
# genus 37 passports							114
# genus 39 passports							18
# genus 41 passports							93

Passport counts

degree	2	4	8	16	32	64	128
# genus 45 passports							48
# genus 47 passports							9
# genus 48 passports							3
# genus 49 passports							72
# genus 53 passports							26
# genus 55 passports							6
# genus 56 passports							3
# genus 57 passports							24
# genus 59 passports							6
# genus 60 passports							3
# genus 61 passports							6
# genus 62 passports							3
# genus 63 passports							3
total passports	3	7	16	41	96	267	834

Let $\phi:X\to\mathbb{P}^1$ be a Belyı map of degree $d=2^\ell$ corresponding to $\sigma\in\mathcal{S}^3_d$.

Let $\phi: X \to \mathbb{P}^1$ be a Belyĭ map of degree $d = 2^{\ell}$ corresponding to $\sigma \in S^3_d$. Given a permutation triple $\widetilde{\sigma}$ with

$$1 \longrightarrow \mathbb{Z}/2\mathbb{Z} \xrightarrow{\iota} \langle \widetilde{\sigma} \rangle \xrightarrow{\pi} \langle \sigma \rangle \longrightarrow 1 ,$$

Let $\phi:X\to\mathbb{P}^1$ be a Belyĭ map of degree $d=2^\ell$ corresponding to $\sigma\in\mathcal{S}^3_d$. Given a permutation triple $\widetilde{\sigma}$ with

$$1 \longrightarrow \mathbb{Z}/2\mathbb{Z} \stackrel{\iota}{\longrightarrow} \langle \widetilde{\sigma} \rangle \stackrel{\pi}{\longrightarrow} \langle \sigma \rangle \longrightarrow 1 ,$$

let us now consider the problem of finding the Belyı map corresponding to $\widetilde{\sigma}.$

Let $\phi:X\to\mathbb{P}^1$ be a Belyĭ map of degree $d=2^\ell$ corresponding to $\sigma\in\mathcal{S}^3_d$. Given a permutation triple $\widetilde{\sigma}$ with

$$1 \longrightarrow \mathbb{Z}/2\mathbb{Z} \stackrel{\iota}{\longrightarrow} \langle \widetilde{\sigma} \rangle \stackrel{\pi}{\longrightarrow} \langle \sigma \rangle \longrightarrow 1 ,$$

let us now consider the problem of finding the Belyĭ map corresponding to $\widetilde{\sigma}$. Let $X \subseteq \mathbb{A}^n_K$ with defining equations $\{g_i\}_{i=1}^s \subset K[x_1,\ldots,x_n]$.

Let $\phi:X\to\mathbb{P}^1$ be a Belyĭ map of degree $d=2^\ell$ corresponding to $\sigma\in\mathcal{S}^3_d$. Given a permutation triple $\widetilde{\sigma}$ with

$$1 \longrightarrow \mathbb{Z}/2\mathbb{Z} \stackrel{\iota}{\longrightarrow} \langle \widetilde{\sigma} \rangle \stackrel{\pi}{\longrightarrow} \langle \sigma \rangle \longrightarrow 1 ,$$

let us now consider the problem of finding the Belyĭ map corresponding to $\widetilde{\sigma}$. Let $X \subseteq \mathbb{A}^n_K$ with defining equations $\{g_i\}_{i=1}^s \subset K[x_1,\ldots,x_n]$. Our goal is to find $f \in K(X)^\times$ such that

Let $\phi: X \to \mathbb{P}^1$ be a Belyĭ map of degree $d = 2^{\ell}$ corresponding to $\sigma \in S_d^3$. Given a permutation triple $\widetilde{\sigma}$ with

$$1 \longrightarrow \mathbb{Z}/2\mathbb{Z} \stackrel{\iota}{\longrightarrow} \langle \widetilde{\sigma} \rangle \stackrel{\pi}{\longrightarrow} \langle \sigma \rangle \longrightarrow 1 ,$$

let us now consider the problem of finding the Belyĭ map corresponding to $\widetilde{\sigma}$. Let $X \subseteq \mathbb{A}^n_K$ with defining equations $\{g_i\}_{i=1}^s \subset K[x_1,\ldots,x_n]$. Our goal is to find $f \in K(X)^\times$ such that

Let $\phi: X \to \mathbb{P}^1$ be a Belyĭ map of degree $d = 2^{\ell}$ corresponding to $\sigma \in S_d^3$. Given a permutation triple $\widetilde{\sigma}$ with

$$1 \longrightarrow \mathbb{Z}/2\mathbb{Z} \xrightarrow{\iota} \langle \widetilde{\sigma} \rangle \xrightarrow{\pi} \langle \sigma \rangle \longrightarrow 1 ,$$

let us now consider the problem of finding the Belyĭ map corresponding to $\widetilde{\sigma}$. Let $X \subseteq \mathbb{A}^n_K$ with defining equations $\{g_i\}_{i=1}^s \subset K[x_1,\ldots,x_n]$. Our goal is to find $f \in K(X)^\times$ such that

with ψ (and hence $\widetilde{\phi}$) satisfying the ramification conditions imposed by $\widetilde{\sigma}$.

The procedure to find $f \in K(X)$ is as follows:

The procedure to find $f \in K(X)$ is as follows:

1. Let $\{Q_i\}$ be the points on X that we want to be ramification values of ψ .

The procedure to find $f \in K(X)$ is as follows:

1. Let $\{Q_i\}$ be the points on X that we want to be ramification values of ψ . These are determined by $\widetilde{\sigma}$.

The procedure to find $f \in K(X)$ is as follows:

- 1. Let $\{Q_i\}$ be the points on X that we want to be ramification values of ψ . These are determined by $\tilde{\sigma}$.
- 2. Build a degree 0 divisor $D = \sum_{P} n_{P}P$ with $n_{Q_{i}}$ odd for every i.

The procedure to find $f \in K(X)$ is as follows:

- 1. Let $\{Q_i\}$ be the points on X that we want to be ramification values of ψ . These are determined by $\tilde{\sigma}$.
- 2. Build a degree 0 divisor $D = \sum_{P} n_{P} P$ with $n_{Q_{i}}$ odd for every i.
- 3. Try to find f in the (computable) Riemann-Roch space L(D).

The procedure to find $f \in K(X)$ is as follows:

- 1. Let $\{Q_i\}$ be the points on X that we want to be ramification values of ψ . These are determined by $\tilde{\sigma}$.
- 2. Build a degree 0 divisor $D = \sum_{P} n_{P} P$ with $n_{Q_{i}}$ odd for every i.
- 3. Try to find f in the (computable) Riemann-Roch space L(D).

There are (at least) two remarks to make about this process:

The procedure to find $f \in K(X)$ is as follows:

- 1. Let $\{Q_i\}$ be the points on X that we want to be ramification values of ψ . These are determined by $\widetilde{\sigma}$.
- 2. Build a degree 0 divisor $D = \sum_{P} n_{P} P$ with $n_{Q_{i}}$ odd for every i.
- 3. Try to find f in the (computable) Riemann-Roch space L(D).

There are (at least) two remarks to make about this process:

Extending the base field K may be necessary to determine D.

The procedure to find $f \in K(X)$ is as follows:

- 1. Let $\{Q_i\}$ be the points on X that we want to be ramification values of ψ . These are determined by $\widetilde{\sigma}$.
- 2. Build a degree 0 divisor $D = \sum_{P} n_{P} P$ with $n_{Q_{i}}$ odd for every i.
- 3. Try to find f in the (computable) Riemann-Roch space L(D).

There are (at least) two remarks to make about this process:

- Extending the base field K may be necessary to determine D.
- Class group obstruction.

4T1-4,2,4-g1

$4T1-4, \overline{2,4-g1}$

$$\widetilde{\sigma} = ((1432), (13)(24), (1432)), \quad \sigma = ((12), (1)(2), (12))$$

4T1-4,2,4-g1

$$\widetilde{\sigma} = ((1432), (13)(24), (1432)), \quad \sigma = ((12), (1)(2), (12))$$

$$(0,0) \quad (1,1) \quad (1,-1) \quad \infty \quad X_2 : x_2^2 = x_1$$

4T1-4,2,4-g1

$$\widetilde{\sigma} = ((1432), (13)(24), (1432)), \quad \sigma = ((12), (1)(2), (12))$$

Passport: 8T1-8,4,8-g3, size 2

Belyĭ curve: $X : y^2 + (x^4 + 1)y = -2x^4$ Belyĭ map: $(y+1)^2$

Passport: 8T1-8,4,8-g3, size 2

Belyĭ curve: $X: y^2 + (x^4 + 1)y = -2x^4$

Belyĭ map: $(y+1)^2$

Passport: 16T1-16,8,16-g7, size 4 Belyĭ curve: $X: y^2 + (x^8 + 1)y = -2x^8$

Belyĭ map: $(y+1)^2$

 $128S1-128,32,128-g62 \rightarrow 64S1-64,16,64-g30 \rightarrow 32S1-32,8,32-g14 \rightarrow 16T1-16,4,16-g6 \rightarrow 8T1-8,2,8-g2 \rightarrow 4T1-4,1,4-g0 \rightarrow 2T1-2,1,2-g0$

 $128S1-128,32,128-g62 \rightarrow 64S1-64,16,64-g30 \rightarrow 32S1-32,8,32-g14 \rightarrow 16T1-16,4,16-g6 \rightarrow 8T1-8,2,8-g2 \rightarrow 4T1-4,1,4-g0 \rightarrow 2T1-2,1,2-g0$

$$X \subset \mathbb{A}^6 : x_1^5 - x_1 - x_2^2$$

$$x_1 - x_1^3 + x_2 x_4^4$$

$$x_1^3 x_3 - x_1 x_3 - x_2 x_4^2$$

$$x_1^2 x_4^2 - x_2 x_3 + x_4^2$$

$$x_2 x_3 - x_1^2 - 1$$

$$x_3 x_4^2 - 1$$

$$x_5^2 - x_4$$

$$x_6^2 - x_5$$

$$\phi : x_3^4 x_2^2 - 2x_3^2 x_2 + 1$$


```
128S69-8,16,16-g49: size 4
64S7-4,8,8-g17
32S10-4,8,4-g7
16T12-4,8,2-g2
8T4-2,4,2-g0
4T2-2,2,2-g0
2T1-2,2,1-g0
```


https://math.dartmouth.edu/~mjmusty/32.html

https://math.dartmouth.edu/~mjmusty/32.html

Is every 2-solvable Belyĭ map defined over an abelian extension of \mathbb{Q} ?

https://math.dartmouth.edu/~mjmusty/32.html

- ▶ Is every 2-solvable Belyĭ map defined over an abelian extension of Q?
- What can we say in the hyperelliptic case?

https://math.dartmouth.edu/~mjmusty/32.html

- Is every 2-solvable Belyĭ map defined over an abelian extension of \mathbb{Q} ?
- What can we say in the hyperelliptic case?
- ▶ What infinite families of 2-groups appear as monodromy groups of Belyĭ maps?

Acknowledgements

Thanks to the following for helpful discussions:

- ► Sam Schiavone
- Jeroen Sijsling
- John Voight

Acknowledgements

Thanks to the following for helpful discussions:

- ► Sam Schiavone
- Jeroen Sijsling
- John Voight

Thanks for listening!

Acknowledgements

Thanks to the following for helpful discussions:

- ► Sam Schiavone
- Jeroen Sijsling
- John Voight

Thanks for listening! (unless there is extra time...)

Let X be a 2-solvable Belyı curve of degree d and genus g defined over K.

Let X be a 2-solvable Belyĭ curve of degree d and genus g defined over K. We would like to compute the 2-torsion field of the jacobian J of X.

Let X be a 2-solvable Belyĭ curve of degree d and genus g defined over K. We would like to compute the 2-torsion field of the jacobian J of X. The field K(J[2])/K will be ramified only at 2.

Let X be a 2-solvable Belyĭ curve of degree d and genus g defined over K. We would like to compute the 2-torsion field of the jacobian J of X. The field K(J[2])/K will be ramified only at 2. To start, we musty compute a period matrix for J.

Let X be a 2-solvable Belyĭ curve of degree d and genus g defined over K. We would like to compute the 2-torsion field of the jacobian J of X. The field K(J[2])/K will be ramified only at 2. To start, we musty compute a period matrix for J. We can embed X in \mathbb{P}^2 with a singular model.

Let X be a 2-solvable Belyĭ curve of degree d and genus g defined over K. We would like to compute the 2-torsion field of the jacobian J of X. The field K(J[2])/K will be ramified only at 2. To start, we musty compute a period matrix for J. We can embed X in \mathbb{P}^2 with a singular model. Now consider an affine patch f(x,y)=0.

Let X be a 2-solvable Belyĭ curve of degree d and genus g defined over K. We would like to compute the 2-torsion field of the jacobian J of X. The field K(J[2])/K will be ramified only at 2. To start, we musty compute a period matrix for J. We can embed X in \mathbb{P}^2 with a singular model. Now consider an affine patch f(x,y)=0. The space of holomorphic 1-forms on X is a subspace of

$$\left\{ \frac{x^{j}y^{j} dx}{\partial_{y}f(x,y)} : 0 \leq i, j \text{ and } i+j \leq d-3 \right\}$$

Let X be a 2-solvable Belyĭ curve of degree d and genus g defined over K. We would like to compute the 2-torsion field of the jacobian J of X. The field K(J[2])/K will be ramified only at 2. To start, we musty compute a period matrix for J. We can embed X in \mathbb{P}^2 with a singular model. Now consider an affine patch f(x,y)=0. The space of holomorphic 1-forms on X is a subspace of

$$\left\{ \frac{x^i y^j dx}{\partial_y f(x, y)} : 0 \le i, j \text{ and } i + j \le d - 3 \right\}$$

In some cases the exact space is given by (i,j) where (i+1,j+1) is an interior point of the Newton polygon of f(x,y).

Let X be a 2-solvable Belyĭ curve of degree d and genus g defined over K. We would like to compute the 2-torsion field of the jacobian J of X. The field K(J[2])/K will be ramified only at 2. To start, we musty compute a period matrix for J. We can embed X in \mathbb{P}^2 with a singular model. Now consider an affine patch f(x,y)=0. The space of holomorphic 1-forms on X is a subspace of

$$\left\{ \frac{x^{i}y^{j}}{\partial_{y}f(x,y)} : 0 \le i, j \text{ and } i+j \le d-3 \right\}$$

In some cases the exact space is given by (i, j) where (i + 1, j + 1) is an interior point of the Newton polygon of f(x, y). (Baker 1893).

Let X be a 2-solvable Belyĭ curve of degree d and genus g defined over K. We would like to compute the 2-torsion field of the jacobian J of X. The field K(J[2])/K will be ramified only at 2. To start, we musty compute a period matrix for J. We can embed X in \mathbb{P}^2 with a singular model. Now consider an affine patch f(x,y)=0. The space of holomorphic 1-forms on X is a subspace of

$$\left\{ \frac{x^{i}y^{j}}{\partial_{y}f(x,y)} : 0 \le i, j \text{ and } i+j \le d-3 \right\}$$

In some cases the exact space is given by (i,j) where (i+1,j+1) is an interior point of the Newton polygon of f(x,y). (Baker 1893). In general one must compute the adjoint ideal.

Let X be a 2-solvable Belyĭ curve of degree d and genus g defined over K. We would like to compute the 2-torsion field of the jacobian J of X. The field K(J[2])/K will be ramified only at 2. To start, we musty compute a period matrix for J. We can embed X in \mathbb{P}^2 with a singular model. Now consider an affine patch f(x,y)=0. The space of holomorphic 1-forms on X is a subspace of

$$\left\{ \frac{x^i y^j dx}{\partial_y f(x, y)} : 0 \le i, j \text{ and } i + j \le d - 3 \right\}$$

In some cases the exact space is given by (i,j) where (i+1,j+1) is an interior point of the Newton polygon of f(x,y). (Baker 1893). In general one must compute the adjoint ideal. The next piece we need is a basis in homology.

Let X be a 2-solvable Belyĭ curve of degree d and genus g defined over K. We would like to compute the 2-torsion field of the jacobian J of X. The field K(J[2])/K will be ramified only at 2. To start, we musty compute a period matrix for J. We can embed X in \mathbb{P}^2 with a singular model. Now consider an affine patch f(x,y)=0. The space of holomorphic 1-forms on X is a subspace of

$$\left\{ \frac{x^i y^j \ dx}{\partial_y f(x, y)} : 0 \le i, j \quad \text{and} \quad i + j \le d - 3 \right\}$$

In some cases the exact space is given by (i,j) where (i+1,j+1) is an interior point of the Newton polygon of f(x,y). (Baker 1893). In general one must compute the adjoint ideal. The next piece we need is a basis in homology. Integrating yields a $g \times 2g$ period matrix Π

Let X be a 2-solvable Belyĭ curve of degree d and genus g defined over K. We would like to compute the 2-torsion field of the jacobian J of X. The field K(J[2])/K will be ramified only at 2. To start, we musty compute a period matrix for J. We can embed X in \mathbb{P}^2 with a singular model. Now consider an affine patch f(x,y)=0. The space of holomorphic 1-forms on X is a subspace of

$$\left\{ \frac{x^i y^j \ dx}{\partial_y f(x, y)} : 0 \le i, j \quad \text{and} \quad i + j \le d - 3 \right\}$$

In some cases the exact space is given by (i,j) where (i+1,j+1) is an interior point of the Newton polygon of f(x,y). (Baker 1893). In general one must compute the adjoint ideal. The next piece we need is a basis in homology. Integrating yields a $g \times 2g$ period matrix Π with Λ the \mathbb{Z} -span of the columns of Π .

Let X be a 2-solvable Belyĭ curve of degree d and genus g defined over K. We would like to compute the 2-torsion field of the jacobian J of X. The field K(J[2])/K will be ramified only at 2. To start, we musty compute a period matrix for J. We can embed X in \mathbb{P}^2 with a singular model. Now consider an affine patch f(x,y)=0. The space of holomorphic 1-forms on X is a subspace of

$$\left\{ \frac{x^i y^j \ dx}{\partial_y f(x,y)} : 0 \le i, j \quad \text{and} \quad i+j \le d-3 \right\}$$

In some cases the exact space is given by (i,j) where (i+1,j+1) is an interior point of the Newton polygon of f(x,y). (Baker 1893). In general one must compute the adjoint ideal. The next piece we need is a basis in homology. Integrating yields a $g \times 2g$ period matrix Π with Λ the \mathbb{Z} -span of the columns of Π . J is identified with \mathbb{C}^g/Λ .

The next piece is the Abel-Jacobi map

The next piece is the Abel-Jacobi map

$$\mathsf{AJ}: X \to \mathbb{C}^g/\mathsf{\Lambda}$$

$$P \mapsto \left(\int_{P_0}^P \omega_j\right)_{j=1,\dots,g}$$

The next piece is the Abel-Jacobi map

$$\mathsf{AJ}: X \to \mathbb{C}^g/\Lambda$$

$$P \mapsto \left(\int_{P_0}^P \omega_j\right)_{j=1,\dots,g}$$

Now for $t \in \frac{1}{2}\Lambda/\Lambda$,

The next piece is the Abel-Jacobi map

$$\mathsf{AJ}: X \to \mathbb{C}^g/\Lambda$$

$$P \mapsto \left(\int_{P_0}^P \omega_j\right)_{j=1,\dots,g}$$

Now for $t\in \frac{1}{2}\Lambda/\Lambda$, our task is to find $\{Q_1,\ldots,Q_g\}$ with $Q_j\in X(\overline{K})$ such that

The next piece is the Abel-Jacobi map

$$\mathsf{AJ}: X \to \mathbb{C}^g/\mathsf{\Lambda}$$

$$P \mapsto \left(\int_{P_0}^P \omega_j\right)_{j=1,\dots,g}$$

Now for $t\in \frac{1}{2}\Lambda/\Lambda$, our task is to find $\{Q_1,\ldots,Q_g\}$ with $Q_j\in X(\overline{K})$ such that

$$\sum_{j=1}^{g} \left(\int_{P_0}^{Q_j} \omega_i \right)_{i=1,\dots,g}$$

The next piece is the Abel-Jacobi map

$$\mathsf{AJ}: X \to \mathbb{C}^g/\Lambda$$

$$P \mapsto \left(\int_{P_0}^P \omega_j\right)_{j=1,\dots,g}$$

Now for $t \in \frac{1}{2}\Lambda/\Lambda$, our task is to find $\{Q_1, \ldots, Q_g\}$ with $Q_j \in X(\overline{K})$ such that

$$\sum_{j=1}^{g} \left(\int_{P_0}^{Q_j} \omega_i \right)_{i=1,\dots,g}$$

The coordinates of the Q_j generate the field K(J[2]).