Math101

16. oktober 2018

Benjamin Støttrup benjamin@math.aau.dk

> Institut for matematiske fag Aalborg universitet Danmark

Agenda

Differentialregning

Regneregler for kendte funktioner

Generelle regneregler

- ▶ Differentialregning omhandler bestemmelse af hældninger af funktioner.
- ▶ Vi definerer en funktions hældning vha. sekanter.

- ▶ Differentialregning omhandler bestemmelse af hældninger af funktioner.
- ► Vi definerer en funktions hældning vha. sekanter.

- ▶ Differentialregning omhandler bestemmelse af hældninger af funktioner.
- ► Vi definerer en funktions hældning vha. sekanter.

- Differentialregning omhandler bestemmelse af hældninger af funktioner.
- ► Vi definerer en funktions hældning vha. sekanter.

- ▶ Differentialregning omhandler bestemmelse af hældninger af funktioner.
- ► Vi definerer en funktions hældning vha. sekanter.

- ▶ Differentialregning omhandler bestemmelse af hældninger af funktioner.
- ► Vi definerer en funktions hældning vha. sekanter.

- ▶ Differentialregning omhandler bestemmelse af hældninger af funktioner.
- ► Vi definerer en funktions hældning vha. sekanter.

ightharpoonup En funktion f er differentiabel i x_0 hvis grænsen

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

eksisterer.

- ▶ Bemærk at f'(x) betegner hældningen af f i x.
- ▶ Vi anvender ofte notationen

$$f'(x) = \frac{d}{dx}f(x) = \frac{df}{dx}(x)$$

ightharpoonup En funktion f er differentiabel i x_0 hvis grænsen

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

eksisterer.

- ▶ Bemærk at f'(x) betegner hældningen af f i x.
- ▶ Vi anvender ofte notationen

$$f'(x) = \frac{d}{dx}f(x) = \frac{df}{dx}(x)$$

ightharpoonup En funktion f er differentiabel i x_0 hvis grænsen

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

eksisterer.

- ▶ Bemærk at f'(x) betegner hældningen af f i x.
- ▶ Vi anvender ofte notationen

$$f'(x) = \frac{d}{dx}f(x) = \frac{df}{dx}(x).$$

► Vi har følgende regneregler:

f(x)	f'(x)	f(x)	f'(x)
С	0	a ^x	a ^x In a
X	1	ln X	$\frac{1}{x}$
x ⁿ	nx^{n-1}	cos X	— sin <i>X</i>
e ^x	e^{x}	sin X	cos X
e ^{cx}	ce ^{cx}	tan <i>X</i>	$1 + \tan^2(x)$

$$f(x) = \sqrt{x},$$
 $g(x) = \frac{1}{x},$ $h(x) = \ln(x^3)$

► Vi har følgende regneregler:

f(x)	f'(x)	f(x)	f'(x)
С	0	a ^x	a ^x In a
X	1	ln X	$\frac{1}{X}$
x ⁿ	nx^{n-1}	cos X	— sin <i>X</i>
e^{x}	e ^x	sin X	cos X
e ^{cx}	ce ^{cx}	tan <i>X</i>	$1 + \tan^2(x)$

$$f(x) = \sqrt{x},$$
 $g(x) = \frac{1}{x},$ $h(x) = \ln(x^3)$

► Vi har følgende regneregler:

f(x)	f'(x)	f(x)	f'(x)
С	0	a ^x	a ^x In a
X	1	ln X	$\frac{1}{x}$
x ⁿ	nx^{n-1}	COS	<i>X</i> − sin <i>X</i>
e^{x}	e^{x}	sin 2	COS X
e ^{cx}	ce ^{cx}	tan	$x = 1 + \tan^2(x)$

$$f(x) = \sqrt{x},$$
 $g(x) = \frac{1}{x},$ $h(x) = \ln(x^3)$

► Vi har følgende regneregler:

f(x)	f'(x)
С	0
X	1
x ⁿ	nx^{n-1}
e^{x}	e^{x}
e ^{cx}	ce ^{cx}

$$f(x) = \sqrt{x},$$
 $g(x) = \frac{1}{x},$ $h(x) = \ln(x^3)$

► Vi har følgende regneregler:

f(x)	f'(x)	
С	0	
X	1	
x ⁿ	nx ⁿ⁻¹	
e ^x	e ^x	
e ^{cx}	cecx	

$$f(x) \qquad f'(x)$$

$$a^{x} \qquad a^{x} \ln a$$

$$\ln x \qquad \frac{1}{x}$$

$$\cos x \qquad -\sin x$$

$$\sin x \qquad \cos x$$

$$\tan x \qquad 1 + \tan^{2}(x)$$

$$f(x) = \sqrt{x},$$
 $g(x) = \frac{1}{x},$ $h(x) = \ln(x^3)$

► Vi har følgende regneregler:

f(x)	f'(x)
С	0
X	1
x ⁿ	nx ⁿ⁻¹
e ^x	e^{x}
e^{cx}	ce ^{cx}

$$f(x) \qquad f'(x)$$

$$a^{x} \qquad a^{x} \ln a$$

$$\ln x \qquad \frac{1}{x}$$

$$\cos x \qquad -\sin x$$

$$\sin x \qquad \cos x$$

$$f(x) = \sqrt{x},$$
 $g(x) = \frac{1}{x},$ $h(x) = \ln(x^3)$

► Vi har følgende regneregler:

f(x)	f'(x)
С	0
X	1
x ⁿ	nx ⁿ⁻¹
e ^x	e^{x}
e ^{cx}	cecx

$$f(x) \qquad f'(x)$$

$$a^{x} \qquad a^{x} \ln a$$

$$\ln x \qquad \frac{1}{x}$$

$$\cos x \qquad -\sin x$$

$$f(x) = \sqrt{x},$$
 $g(x) = \frac{1}{x},$ $h(x) = \ln(x^3)$

► Vi har følgende regneregler:

f(x)	f'(x)
С	0
X	1
x ⁿ	nx ⁿ⁻¹
e ^x	e^{x}
e ^{cx}	ce ^{cx}

$$f(x) \qquad f'(x)$$

$$a^{x} \qquad a^{x} \ln a$$

$$\ln x \qquad \frac{1}{x}$$

$$\cos x \qquad -\sin x$$

$$\sin x \qquad \cos x$$

$$f(x) = \sqrt{x},$$
 $g(x) = \frac{1}{x},$ $h(x) = \ln(x^3)$

► Vi har følgende regneregler:

f(x)	f'(x)
С	0
X	1
x ⁿ	nx ⁿ⁻¹
e ^x	e^{x}
e ^{cx}	ce ^{cx}

$$\frac{f(x)}{a^{x}} \qquad \frac{f'(x)}{a^{x} \ln a}$$

$$\frac{\ln x}{\cos x} \qquad \frac{1}{x}$$

$$\frac{1}{x}$$

$$\frac{1}{x}$$

$$\frac{1}{x}$$

$$\frac{1}{x}$$

$$\frac{1}{x}$$

$$f(x) = \sqrt{x},$$
 $g(x) = \frac{1}{x},$ $h(x) = \ln(x^3)$

► Vi har følgende regneregler:

f(x)	f'(x)
С	0
Χ	1
x ⁿ	nx ⁿ⁻¹
e ^x	e ^x
e ^{cx}	ce ^{cx}

$$f(x) \qquad f'(x)$$

$$a^{x} \qquad a^{x} \ln a$$

$$\ln x \qquad \frac{1}{x}$$

$$\cos x \qquad -\sin x$$

$$\sin x \qquad \cos x$$

$$f(x) = \sqrt{x},$$
 $g(x) = \frac{1}{x},$ $h(x) = \ln(x^3)$

► Vi har følgende regneregler:

f/(v)

f(v/)

<i>T(X)</i>	I'(X)
С	0
Χ	1
x ⁿ	nx ⁿ⁻¹
e ^x	e ^x
e ^{cx}	ce ^{cx}
	Dicc

$$f(x) f'(x)$$

$$a^{x} a^{x} \ln a$$

$$\ln x \frac{1}{x}$$

$$\cos x -\sin x$$

$$\sin x \cos x$$

$$\tan x 1 + \tan^{2}(x)$$

$$f(x) = \sqrt{x},$$
 $g(x) = \frac{1}{x},$ $h(x) = \ln(x^3)$

► Vi har følgende regneregler:

f(x)	f'(x)
С	0
Χ	1
x ⁿ	nx ⁿ⁻¹
e ^x	e ^x
ecx	ce ^{cx}

$$\frac{f(x)}{a^{x}} \qquad \frac{f'(x)}{a^{x} \ln a}$$

$$\frac{\ln x}{\cos x} \qquad \frac{1}{x}$$

$$\frac{\sin x}{\cos x} \qquad \frac{\cos x}{\tan x}$$

$$f(x) = \sqrt{x},$$
 $g(x) = \frac{1}{x},$ $h(x) = \ln(x^3)$

► Vi har følgende regneregler:

f(x)	f'(x)	
С	0	
X	1	
x ⁿ	nx ⁿ⁻¹	
e ^x	e ^x	
e ^{cx}	cecx	

$$\frac{f(x)}{a^{x}} \qquad \frac{f'(x)}{a^{x} \ln a}$$

$$\frac{\ln x}{\cos x} \qquad \frac{\frac{1}{x}}{\sin x}$$

$$\frac{\sin x}{\cos x} \qquad \frac{\cos x}{\tan x}$$

$$f(x)=\sqrt{x},$$

$$g(x)=\frac{1}{x}$$

$$h(x) = \ln(x^3).$$

► Vi har følgende regneregler:

f(x)	f'(x)	()	f(x)	f'(x)
С	0		a ^x	a ^x In a
X	1	(ln)	$\frac{1}{x}$
X ⁿ	nx ⁿ⁻¹	X	cos	— sin <i>X</i>
e ^x	e ^x	Χ	sin	cos X
ecx	cecx	X	tan	$1 + \tan^2(x)$

$$f(x) = \sqrt{x},$$
 $g(x) = \frac{1}{x},$ $h(x) = \ln(x^3).$

► Vi har følgende generelle regneregler

$$(cf)'(x) = cf'(x)$$

$$f \pm g)'(x) = f'(x) \pm g'(x).$$

$$f(x) = 2x + 1 - \frac{1}{x},$$
 $g(x) = 3x^{-2} - 2e^{-x} + \cos(x)$

► Vi har følgende generelle regneregler

$$(cf)'(x) = cf'(x)$$

 $(f \pm g)'(x) = f'(x) \pm g'(x).$

$$f(x) = 2x + 1 - \frac{1}{x},$$
 $g(x) = 3x^{-2} - 2e^{-x} + \cos(x)$

► Vi har følgende generelle regneregler

$$(cf)'(x) = cf'(x)$$
$$(f \pm g)'(x) = f'(x) \pm g'(x).$$

$$f(x) = 2x + 1 - \frac{1}{x},$$
 $g(x) = 3x^{-2} - 2e^{-x} + \cos(x)$

► Vi har følgende generelle regneregler

$$(cf)'(x) = cf'(x)$$
$$(f \pm g)'(x) = f'(x) \pm g'(x).$$

$$f(x) = 2x + 1 - \frac{1}{x},$$
 $g(x) = 3x^{-2} - 2e^{-x} + \cos(x)$

Opgaveregning!

