Learning Objectives

- After this segment, students will be able to
 - Describe Conceptual models of Spatial Networks
 - List & compare alternative Graph models

Data Models of Spatial Networks

Conceptual Model

- Information Model: Entity Relationship Diagrams
- Mathematical Model: Graphs

2. Logical Data Model

- Abstract Data types
- Custom Statements in SQL

3. Physical Data Model

- Storage-Structures
- Algorithms for common operations

Modeling Roadmaps

Many Concepts, e.g.

- Roads (or streets, avenues)
- Road-Intersections
- Road-Segments
- Turns

University of Minnesota

Driven to DiscoverSM

An Entity Relationship Diagram

Graph Models

- A Simple Mathematical Model
 - A graph G = (V,E)
 - V = a finite set of vertices
 - E = a set of edges model a binary relationship between vertices

Example

Spatial Computing

Research Group

A Graph Model of River Network

- Nodes = rivers
- Edges = A river falls into another river

Pros and Cons of Graph Models

Strength

- Well developed mathematics for reasoning
- Rich set of computational algorithms and data-structures
- Weakness
 - Models only one binary relationship

- A. Difficult to model multiple relationships, e.g., connect, turn
- B. Multiple graph models possible for a spatial network

Modeling Turns in Roadmaps

Approach 1: Model turns as a set of connects

- Approach 2: Use hyper-edges (and hyper-graphs)
- Approach 3: Annotate graph node with turn information

Alternative Graph Models for Roadmaps

Choice 1:

- Nodes = road-intersections
- Edge (A, B) = road-segment connects adjacent road-intersections A, B

Choice 2:

- Nodes = (directed) road-segments
- Edge (A,B) = turn from road-segment A to road-segment B

Choice 3:

- Nodes = roads
- Edge(A,B) = road A intersects_with road B

