Lec 4/4

Tuesday, April 4, 2017 09:10

Vector Derivatives

Notation
$$\nabla = (\lambda_1, \lambda_2, \ldots, \lambda_n)$$

if
$$f: \mathcal{U} \longrightarrow \mathbb{R}$$
 then $\nabla f = (\partial_1 f, \partial_2 f, ..., \partial_n f) = \operatorname{grad} f$
if $\vec{F}: \mathcal{U} \stackrel{\mathbb{R}^n}{\longrightarrow} \mathbb{R}^n$ then $\nabla \cdot \vec{F} = \partial_1 F_1 + \partial_2 F_2 + ... + \partial_n F_n = \operatorname{div} \vec{F}$
if $\vec{F}: \mathcal{U}^{\mathbb{R}^n} \longrightarrow \mathbb{R}^n$ then $\nabla \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \partial_1 & \partial_2 & \partial_3 \\ F_1 & F_2 & F_3 \end{vmatrix} = (\partial_1 F_3 - \partial_3 F_2, \partial_3 F_1 - \partial_1 F_3, \partial_1 F_2 - \partial_2 F_1)$

Os follow from mixed portiols.

$$(div \circ grad)f = \partial_1^2 f + \partial_2^2 f + \cdots + \partial_n^2 f = \nabla^2 f = L_{nplacian}.$$

If $\nabla^2 f = 0$ then f is a harmonic function.

9:
$$C \rightarrow C$$
 differentiable in complex sense (analytic)

 R^2 R^2
 $(x,y) \mapsto (u,v)$

9(x,y)=(u(x,y),v(x,y)) then 4, V hermonic.

Surface Integrals

$$\iint_{\mathbb{R}} \vec{R} \cdot \vec{n} \, dA \qquad \text{S described by } \vec{G} : \mathbb{R}^2 \longrightarrow \mathbb{R}^3 \quad \text{of class } C'.$$

More generally S= S, US, US, which intersect in measure zero

So $\iint_{S} \vec{F} \cdot \vec{n} \, dA = \sum_{j=1}^{K} \iint_{S_{j}} \vec{F} \cdot \vec{n} \, dA$

Definition We say two topological spaces (X, T_i) , (Y, T_i) are homeomorphic if there is a H onto function $f: X \to Y$ s.t. f and f^{-1} are continuous everywhere.

Definition A topological space (X, T) is called a surface w/o boundary if for each $X \in X$ threis a neighborhood U of $X \in X$ and a homeomorphism $U \supseteq B(r, \vec{o}) \subseteq \mathbb{R}^2$.

A surface with a boundary is a Topological space (X,T) s.t. for any point $X_0 \in X$ the is an open $U \ni X_0 : S$. either $(X,T) \subseteq \mathbb{R}^2$

or @ UZ {(X,y): X2+y2cr, y30} _

(points of type (2) are "intrinsic boundary points")

Classification of surfaces

(*) Any compact, connected, orientable surface we boundary
is homeomorphic to one of the following:

Parametrized by &, &

Analog of jordan curve meanin

If I a subset of R3, is a surface of type (*)

Num R3 X consists of two disjoint open components:

- 1) a bounded component (Msi'de)
- @ an unbounded component (outside)

Divergence Theorem

If 6) is a region in R3 which is inside

a compact connected orientable surface w/o boundary So and outside surfaces Si,..., Sk, And F: U > R2

Then $\sum_{j=0}^{K} \iint_{S_j} \vec{F} \cdot \vec{n}_j dA = \iiint_{V} \vec{F} dV$

note no points out of So and niso Points inside Six,

