OUTLINE Overview Preliminaries Binary morphology Erosion and dilation Opening and closing The Hit-or-Miss transformation Basic morphological algorithms Gray-scale morphology

HMT (HIT OR MISS TRANSFORMATION) • To find the location of certain object $X \otimes T$ • Template matching with : $T = (T_1, T_2)$ T_1 —foreground ; T_2 —background • The match of T in X contains all the points at which, simultaneously, T_1 found a match in X and T_2 found a match in X^C . Hit points of HMT are marked as 1 , miss points are marked as 0

MORPHOLOGICAL IMAGE PROCESSING Shrinking Shrink. Erase black pixels such that an object without holes erodes to a single pixel at or near its center of mass, and an object with holes erodes to a connected ring lying midway between each hole and its nearest outer boundary

MORPHOLOGICAL IMAGE PROCESSING

- Shrinking
 - Shrinking. Erase black pixels such that an object without holes erodes to a single pixel at or near its center of mass, and an object with holes erodes to a connected ring lying midway between each hole and its nearest outer boundary
 - Thinning. Erase black pixels such that an object without holes erodes to a
 minimally connected stroke located equidistant from its nearest outer
 boundaries, and an object with holes erodes to a minimally connected
 ring midway between each hole and its nearest outer boundary

OUTLINE • Overview • Preliminaries • Binary morphology • Erosion and dilation • Opening and closing • The Hit-or-Miss transformation • Basic morphological algorithms • Gray-scale morphology

MORPHOLOGICAL IMAGE PROCESSING

- There are two kinds of structuring elements in grayscale morphology: nonflat and flat
- They are used as probes to examine a given image for specific properties

Nonflat SE Flat SE Intensity profile Intensity profile

MORPHOLOGICAL IMAGE PROCESSING

• Image : A(x,y) , SE : B(x,y) , with domain of definition D_A and D_B respectively

• Erosion :
$$E = A\Theta B = \left\{z \mid B_z \subseteq A\right\} = \left\{\vec{z} \mid B + \vec{z} \subseteq A\right\}$$

$$E(z_1, z_2) = (A\Theta B)_z = \min_{z_1 + i, z_2 + j \in D_A, i, j \in D_B} [A(z_1 + i, z_2 + j) \cap B(i, j)]$$

• Generalized erosion :

$$E(z_1, z_2) = (A\Theta B)_z = \min_{z_1 + i, z_2 + j \in D_A, i, j \in D_B} [A(z_1 + i, z_2 + j) - B(i, j)]$$

MORPHOLOGICAL IMAGE PROCESSING

- Image : A(x,y) , SE : B(x,y) , with domain of definition D_A and D_B respectively
- Erosion : $E = A\Theta B = \{z \mid B_z \subseteq A\} = \{\vec{z} \mid B + \vec{z} \subseteq A\}$

$$E(z_1, z_2) = (A\Theta B)_z = \min_{z_1 + i, z_2 + j \in D_A, i, j \in D_B} [A(z_1 + i, z_2 + j) \cap B(i, j)]$$

• Dilation: $D = A \oplus B = \{z \mid B_z \cap A \neq \emptyset\} = \{\vec{z} \mid B + \vec{z} \cap A \neq \emptyset\}$

$$D(z_1, z_2) = (A \oplus B)_z = \max_{i, j \in D_R} [A(z_1 + i, z_2 + j) \cap B(i, j)]$$

· Generalized erosion:

$$E(z_1, z_2) = (A\Theta B)_z = \min_{z_1 + i, z_2 + j \in D_A, i, j \in D_B} [A(z_1 + i, z_2 + j) - B(i, j)]$$

Generalized dilation:

$$D(z_1, z_2) = (A \oplus B)_z = \max_{z_1 + i, z_2 + j \in D_A, i, j \in D_B} [A(z_1 + i, z_2 + j) + B(i, j)]$$

TOP HAT TRANSFORM

• f minus its opening:

$$THT(f) = f - (f \circ g)$$

g is a structuring element

THT is used for light objects on a dark background

BOTTOM HAT TRANSFORM

• The closing of *f* minus *f* :

$$BHT(f) = (f \bullet g) - f$$

g is a structuring element

• BHT is used for dark objects on a light background

