Exercise: Determine all available couplings (J_{HH} , J_{HPb} , J_{CPb}), and measure the chemical shift difference between the CH₃ and CH₂ protons (the CH₃ and CH₂ protons of the A₃B₂ system are too close together to resolve in the central peak).

Answer

Lead has one spin 1/2 isotope, ²⁰⁷Pb, which is 21.1% abundant (so satellites are easily seen). The central peak is a singlet due to the superposition of the CH₃ and CH₂ signals, providing almost no structural information. The satellites are readily identified, and allow analysis of the coupling and shifts.

Problem R-21M C₈H₂₀Pb 300 MHz ¹H NMR spectrum in CDCl₃ Source: Aldrich Spectra Collection/Reich

Although the central peaks for the CH_2 and CH_3 protons are almost superimposed so that neither the chemical shift nor the coupling between them can be measured, the satellites are well separated. Thus the chemical shift difference between CH_2 and CH_3 protons is the difference between the centers of the two sets of satellites, about 0.1 Hz. Of course, such a small effect could also be an isotope shift.

It is interesting to note that the NMR spectrum pf Et₄Pb at 300 MHz shown here looks identical to the one at 40 MHz (Narasimhan, Rogers) this is because the chemical shift between the protons is almost 0, and all of the line separations are governed by coupling constants which are field independent.

The ¹³C NMR spectrum:

