First Year RPG Discussion

Xinyi Lin

Supervisor: Joshua Ho

2021/03/31 (updated: 2021-04-07)

Background

Background

- Applications
 - o cell development
 - tumor development
 - o diseases' mechanism
- Challenges
 - o cell clustering
 - dynamic changes on different cell types
 - trajectory analysis
 - o data integration

Background

- Tissues are cellular heterogeneity
- Composition difference exists
- Interested in changes of proportions in dynamic process

Current Project: DCATS

- R package designed for differential composition analysis on single cell data
- Basic assumptions
 - misclassification error exists
 - cell counts follow binomial distribution
- Input
 - cell counts matrices of samples coming from different conditions
 - a confusion matrix describing the misclassification error(user-input or calculated by DCATS)

Current Projects: DCATS

• Simulation results

- Real world data analysis
 - Give consistent conclusions as original papers: *Kang, Hyun Min, et al, 2018* and *Haber, Adam L., et al, 2017*

Current Projects: other side projects(will be updated)

- Giant Cell Tumor of Bones(GCTB)
 - verify a somatic alterations(*H3F3A*, Gly34Val) on GCTB samples we have
 - trajectory analysis

Trajectory of myeloid cells

Current Projects: other side projects(will be updated)

- Mouse's Kidneys
 - give a possible clustering result
 - identify some cell types based on the clustering result

Future Plan: current projects

- DCATS: get it published
- Side projects
 - be familiar with computational tools related to scRNA-seq
 - finish related bioinformatics analysis
 - find out some new problems during collaboration
 - learn more biological knowledge

Future Plan: exchange program

• Time: late 2022 or early 2023

• Duration: 3-6 months

• University: Peking University

• Goals: Collaborate with people there on some scRNA-seq related projects

Future Plan: Other possible projects

- Comparing single cell information coming from mouse and human being
- Analyzing time series single cell information
- Statistical modeling for different types of single cell data

Thanks!