Histoire et philosophie de l'information

Dorian Blanchard

Ebauche sommaire

4				-			٠		
	1	ln	tra	าต	11	c1	٦	O 1	n

2. Histoire

- 1. Préhistoire
 - 1. Abaques
 - 2. Bulle enveloppe

2. Antiquité

- 1. Prémices de l'Algèbre
- 2. Quipu
- 3. Boulier
- 4. Code de Hammurabi
- 5. Thalès
- 6. Encryption
- 7. Pythagore
- 8. Dialectique
- 9. Rhétorique
- 10. Sophistes et Sophismes
- 11. Socrate
- 12. Atomisme
- 13. Platon
- 14. Mathématiques
- 15. Aristote
- 16. Géométrie Euclidienne
- 17. Archimède
- 18. Calculateurs analogiques
- 19. Routes de la soie
- 20. Vitruve
- 21. Héron

- 22. Ménélaos
- 23. Ptolémée

3. Moyen Âge

- 1. Aryabhata
- 2. Algèbre et Algorithme
- 3. Hindu-Arabic numeral system
- 4. Al-Battani
- 5. Gerbert d'Aurillac
- 6. Hermann Contract
- 7. Al Zarqali
- 8. Abraham bar Hiyya Hanassi
- 9. Fibonacci
- 10. Typographie
- 11. Leon Battista Alberti
- 12. Luca Pacioli

4. Époque moderne

- 1. Nicolas Copernic
- 2. Giambattista della Porta
- 3. Wilhelm Schickard
- 4. Calculateurs
- 5. Bâtons de Napier
- 6. Règle coulissante à calculer
- 7. Pascaline
- 8. Binaire
- 9. Cartes perforées
- 10. Comète de Halley

5. Époque contemporaine

- 1. Almanach nautique
- 2. Dactylographie
- 3. Arithmomètre
- 4. Machine à différence et analytique
- 5. Maison d'échanges
- 6. Télégraphe
- 7. Arithmaurel
- 8. Programmation
- 9. Algèbre booléen
- 10. Remington
- 11. Diode
- 12. Téléphone
- 13. Edison

- 14. NCR15. Burroughs Corporation16. Comptomètre17. Calculatrices à crosses
 - 18. Oscilloscope
 - 19. Mécanographie
 - 20. Tube a vide
- 21. Séparation de l'État et de l'Église
- 22. Triode
- 23. Tube cathodique
- 6. Après la première guerre mondiale
 - 1. Tabulatrices
 - 2. Enigma
 - 3. Moore School
 - 4. Bande magnétique cassettes audio
 - 5. IBM 601
 - 6. Mémoire tambour
 - 7. RADAR
 - 8. Machine de Turing
 - 9. Z1 Zuse Konrad
 - 10. Atanasoff Berry Computer
 - 11. Hewlett Packard
- 7. Seconde guerre mondiale
 - 1. **Z**2
 - 2. **Z**2
 - 3. Colossus / Harvard Mark 1
 - 4. Architecture de von Neumann
- 8. Guerre froide et course à l'espace
 - 1. As we may think
 - 2. IBM 602 & 603
 - 3. Naissance de la Eckert-Mauchly Computer Corporation
 - 4. Trackball
 - 5. Transistor
 - 6. SSEM
 - 7. Manchester Mark I
 - 8. Théorie de l'information
 - 9. IBM 604
 - 10. IBM 407
 - 11. EDSAC & BINAC
 - 12. IBM CPC

13. Ferranti Mark I							
14. UNIVAC 1							
15. A-0 System							
16. LEO I							
17. IBM 701							
18. IBM 702							
19. Mémoire à tores magnétiques20. Z421. IBM 650							
						22. Z 5	
						23. TRADIC	
24. Spoutnik 1							
25. Premiers langages haut niveau - Structures de contrôle et de données							
1. plankalkul eniac ssem speedcoding Flow-Matic							
2. Fortran							
3. Lisp							
4. Cobol							
26. Circuit integré							
27. IBM 1401							
28. Théorie algorithmique de l'information							
29. Computationnalisme							
30. Spacewar!							
31. Programma 101							
32. Souris							
33. Dendral							
34. Eliza							
35. Apollo 1							
36. Intel et Moore							
37. Amstrad							
38. Microprocesseur							
39. Arpanet et Cyclades							
40. Apollo 11							
9. Popularisation et Mondialisation							
1. Atari Pong							
2. Altair 8800							
3. Homebrew computer club							
4. Minitel							
5. Chambre chinoise							

6. Mémoire flash et stockage optique

7. Pac Man

- 8. Osborne 1
- 9. Xerox Star
- 10. IBM PC 5150
- 11. World Wide Web
- 12. Deep Blue
- 10. Bilan passé
- 3. Pratiques actuelles
 - 1. Honda asimo
 - 2. Roomba
 - 3. Darpa Grand Challenge
 - 4. Imagenet
 - 5. Watson gagne Joepardy
 - 6. Premier drone commercial autonome
 - 7. Alphago
 - 8. Boston Dynamics
 - 9. Concepts
 - 10. Appareils
 - 1. Ordinateurs portables
 - 2. Mobiles
 - 3. Tablettes
 - 11. Réalité virtuelle
 - 12. MMO
 - 13. Industrie du logiciel
 - 1. Progiciel
 - 1. Jeux vidéos
 - 1. Educatif
 - 2. Concepts de programmation moderne
 - 1. Vecteurs
 - 2. Matrices
 - 3. Parallélisation
 - 4. Pointeurs mémoires
 - 5. Calculs distribués
 - 6. 2SIG
 - 1. Structure
 - 2. Style
 - 3. Interaction
 - 4. Gestion de la donnée
 - 7. Pop SMTP
 - 3. Habitudes de programmation
 - 1. Language naturel, formel, informatique, et construites

- 2. Syntaxe, vocabulaire et Grammaire
- 3. Pseudo Code parlé & Lojban
- 4. Ligne de commande
- 5. Commentaires et documentation
- 6. Interfaces logicielles avancées
- 7. Interopérabilité instantanée inter-appareils
- 8. Gestionnaires de version
- 9. Programation Orientée Objet
- 10. Cadriciels
- 11. API
- 12. Cloud
- 13. Tests et Vérification
- 14. CI / CD
- 15. Microservices
- 4. Philosophie personnelle
 - 1. Réalisation de projets WMD (WYSIWYG meta dogfood)
 - 1. Markdown

2.

- 2. Informatique et cuisine
- 3. Faits, Vérité et doute. (biais de confirmations, multifactoriel)
- 4. La magie c'est de défaire et savoir refaire
- 5. LA DONNEE (collecte, emplacement géographique, valeur)
- 6. Un programme est un contrat.
 - 1. Qu'il, soit moral ou non
- 7. Biais humain, machine, et réalité de la donnée (illusions de captation, interprétation, context)
- 8. Choix et Theorie des jeux
- 9. Sécurité, permissions, et contraintes.
- 10. Intelligence, Ambiguïtés et apprentissage : Nous sommes tous des IAs
- 11. Apprentissage par l'erreur, sans elle rien ne serais possible le succès ne s'obtient qu'en résolvant des micro problèmes
- 12. On fait avec ce qu'on a, alors obligé d'accumuler, ça donne des (cf Cadriciels)
- 4. Philosophie
 - 1. AR / Mixed Reality
 - 2. Blockchain
 - 3. Interfaces graphiques et Ux
 - 4. Bibliographie
 - 5. Solid Principles
 - 6. Code Golf
 - 7. Quine
- 5. Conclusion

6. Annexes

- 1. Webographie
- 2. Lexique
- 3. Table des illustrations
- 4. Page d'évaluation

Sommaire

- EditIDE Histoire et philosophie de l'information
 - Ebauche sommaire
 - Sommaire
 - Introduction
 - Remerciements
 - Histoire
 - Préhistoire
 - Abaques
 - Premières villes et sociétés
 - Bulle enveloppe
 - Antiquité
 - Prémices de l'Algèbre
 - Quipu
 - Boulier
 - Code de Hammurabi
 - Thalès
 - Encryption
 - Pythagore
 - Dialectique
 - Rhétorique
 - Sophistes et Sophismes
 - Socrate
 - Atomisme
 - Platon
 - Mathématiques
 - Aristote
 - Stoïcisme
 - Géométrie Euclidienne
 - Archimède
 - Calculateurs analogiques

- Routes de la soie
- Vitruve
- Héron
- Ménélaos
- Ptolémée
- Moyen Âge
 - Aryabhata
 - Algèbre et Algorithme
 - Système de numération indo-arabe
 - Al-Battani
 - Gerbert d'Aurillac
 - Hermann Contract
 - Al Zarqali
 - Abraham bar Hiyya Hanassi
 - Fibonacci
 - Typographie
 - Leon Battista Alberti
 - Luca Pacioli
- Époque moderne
 - Nicolas Copernic
 - Montaigne
 - Rabelais
 - Francis Bacon
 - Giambattista della Porta
 - Johannes Kepler
 - Thomas Hobbes
 - René Descartes
 - Galilée
 - Wilhelm Schickard
 - Calculateurs
 - Bâtons de Napier
 - Règle coulissante à calculer
 - John Locke
 - Isaac Newton
 - Pascaline
 - Baruch Spinoza
 - Binaire
 - Voltaire
 - Jean-Jacques Rousseau
 - Kant

- Cartes perforées
- Pédagogie moderne
- Théorie générale des systèmes
- Comète de Halley
- Époque contemporaine
 - Almanach nautique
 - Georg Wilhelm Friedrich Hegel
 - Friedrich Fröbel
 - Dactylographie
 - Arithmomètre
 - Machine à différence et analytique
 - Maison d'échanges
 - Télégraphe
 - Arithmaurel
 - Programmation
 - Algèbre booléen
 - John Dewey
 - Maria Montessori
 - Remington
 - Diode
 - Téléphone
 - Edison
 - Adolphe Ferrière
 - NCR
 - Burroughs Corporation
 - Comptomètre
 - Calculatrices à crosses
 - Oscilloscope
 - Mécanographie
 - Célestion Freinet
 - Tube a vide
 - Séparation de l'État et de l'Église
 - Triode
 - Tube cathodique
 - Claude Lévi-Strauss
- Après la première guerre mondiale
 - Tabulatrices
 - Enigma
 - Moore School
 - Bande magnétique cassettes audio

- IBM 601
- Mémoire tambour
- RADAR
- Machine de Turing
- Z1 Zuse Konrad
- Atanasoff Berry Computer
- Hewlett Packard
- Seconde guerre mondiale
 - **Z**2
 - **Z**3
 - Colossus / Harvard Mark 1
 - Architecture de von Neumann
- Guerre froide et course a l'espace
 - As we may think
 - IBM 602 & 603
 - Naissance de la Eckert-Mauchly Computer Corporation
 - Trackball
 - Norbert Wiener
 - Transistor
 - SSEM
 - Manchester Mark I
 - Théorie de l'information
 - IBM 604
 - IBM 407
 - EDSAC & BINAC
 - IBM CPC
 - Ferranti Mark I
 - UNIVAC 1
 - A-0 System
 - Leo I
 - IBM 701
 - IBM 702
 - Mémoire à tores magnétiques
 - **Z**4
 - IBM 650
 - TRADIC
 - Spoutnik 1
 - Premiers langages haut niveau Structures de contrôle et de données
 - Plankalkul
 - Speedcoding

- Flow-Matic
- Fortran
- Lisp
- Cobol
- Circuit intégré
- IBM 1401
- Théorie algorithmique de l'information
- Computionnalisme
- Spacewar!
- Luciano Floridi
- IBM System 360
- Programma 101
- Souris
- Dendral
- Eliza
- Apollo 1
- Intel et Moore
- Amstrad
- Microprocesseur
- Arpanet et Cyclades
- Apollo 11
- Popularisation et Mondialisation
 - Atari pong
 - Altair 8800
 - Homebrew computer club
 - Minitel
 - La chambre chinoise
 - Mémoire flash et stockage optique
 - Pac Man
 - Osborne 1
 - Xerox Star
 - IBM PC 5150
 - Macintoch 128K
 - World Wide Web
 - Deep Blue
- Bilan passé
- Pratiques actuelles
 - Honda asimo
 - Roomba
 - Darpa Grand Challenge

- Imagenet
- Watson gagne Joepardy
- Premier drone commercial autonome
- Alphago
- VSCode
- Boston Dynamics
- Essai
 - Sectes et philosophie d'entreprise
 - Division du travail
 - Anticipation
 - Contexte et vérité
 - Pédagogie active
 - Apprentissage
 - Méthodes d'aide à la structuration d'information
 - Décision
 - Analyse PESTEL
 - SWOT
 - Matrice multicritère
 - 5 Why
 - La matrice d'Eisenhower
 - Diagramme d'Ishikawa
 - Analyse des parties prenantes
 - Carte heuristique
 - Conception
 - Design thinking
 - Lean Startup
 - Gestion de projets
 - Roadmap
 - Project charter
 - GANTT
 - Business Model
 - Scrum
 - Développement
 - Extreme programming
 - TDD FDD MDD
 - Code review
 - Technique du canard en plastique
 - Travail Personnel
 - Developpement informatique
 - Moteur de jeu

- Développement personnel
 - Rigueur et retravail
 - Amélioration continue
 - Do it now
 - Aide
- STOP
- Justification
- Critique
- Metagame
- Prestation vs édition de logiciel
- Cadriciel et Open Source
- ChatGPT
- Opensource
- Logiciel libre
- Git
- EditIDE
 - Philosophie
 - One thing at a time
 - WYSIWYG
 - Accessibility
 - All in one
 - Documentation
 - Visualisation
 - Rêves lucides
- Annexes
 - Bibliographie
 - Webographie
 - Lexique
 - Table des illustrations
 - Page d'évaluation

Introduction

La transmission d'information s'est fiabilisée au fil des époques, avec l'usage d'outils physique ; notamment des tablettes, plaques permettant de dessiner, d'écrire, lire, compter ; et ce jusqu'à pouvoir automatiser son traitement et son stockage, à l'aide de l'informatique, dont l'histoire ne commence qu'à la fin du 19 ème siècle.

De nos jours, nous interagissons quotidiennement avec des ordinateurs, que ce soit à l'aide de la programmation, ou des interfaces hommes-machines qui en sont issues. Pourtant, la grande majorité des utilisateurs, et même des personnes travaillant dans le domaine des Technologies de l'Information et de la Communication, ne connaissent pas la plupart des événements majeurs de son histoire.

Moi même n'ayant pas cette connaissance lorsque j'ai entrepris la rédaction de ce mémoire, j'ai décidé de me documenter et de rédiger un format accessible, avec ce qui m'a semblé être nécessaire pour comprendre le sujet, et ainsi vous le partager à vous, lecteurs de cet ouvrage.

Pour la rédaction de ce dernier, j'ai acquis 4 livres :

- la 4e édition de "Computer, A History of the Information Machine" de Martin Campbell-Kelly, professeur émérite britannique, spécialisé dans l'histoire de l'informatique. Coécrite avec William F.Aspray, Jeffrey R. Yost, Honghong Tinn, et Gerardo Con Diaz.
- "The history of the computer: people, inventions, and technology that changed our world" de Rachel Ignotofsky
- "Histoire illustrée de l'informatique" d'Emmanuel Lazard et Pierre Mounier-Kuhn.
- "Transmettre" de Christophe André, Céline Alvarez, Catherine Gueguen, Matthieu Ricard, Frédéric Lenoir, Ilios Kotsou,
 Caroline Lesire

Les trois premiers livres ont chacun leurs avantages grâce à une approche différente d'un même sujet, sur lequel je m'attendais à trouver plus de bibliographie. Contrairement à ceux-ci, j'ai essayé d'avoir une démarche plus globale que l'informatique et l'ordinateur, qui sont des concepts très récent. Et ce en abordant le thème global qu'est l'information, tout en y ajoutant de la philosophie, ainsi que mon humble analyse subjective, parce que j'aime penser, et que l'apprentissage des mathématiques et de l'informatique ont changé ma manière de concevoir le monde dans lequel nous vivons. Se sont selon moi des philosophies à part entière, apportant des syntaxes et un vocabulaire, nécessitant un apprentissage constant de schémas de pensés dignes d'un logicien.

Dans ce mémoire, je vais donc revenir aux racines les plus ancestrales de la gestion de l'information, au vocabulaire et champ lexical qui y sont liés ou en découlent, ainsi qu'a leurs étymologies à travers leur Histoire, qui représente toute la première partie de ce livre. J'y présenterai beaucoup de philosophes, scientifiques et de penseurs variés. De l'Antiquité aux époques plus moderne, les idées qu'ils ont amenées ont permis des inventions et progrès technologiques avec un développement de plus en plus rapide. Pourtant, les inventions qui ont le plus impacté l'humanité, resteront toujours les plus anciennes, avec au sommet d'entre elles, l'écriture.

J'aborderai aussi un sujet qui m'est cher, la programmation. Elle n'est pas forcement liée à l'informatique, c'est l'art de planifier et mettre en œuvre des étapes à suivre pour obtenir un résultat. Cela dit, elle passe inévitablement par de la gestion de l'information, à l'aide d'écriture, lecture, chiffrement, déchiffrement, émission, et réception.

C'est pourquoi je m'intéresserai également à l'apprentissage, très présent dans les technologies comme l'intelligence artificielle, qui représente l'acquisition et l'assimilation d'une information ou d'un système ; ainsi qu'à la pédagogie, propre à l'humain, animal social émotionnel ; et au rapport maître / élève.

Je dresserai ensuite un bilan de l'état actuel de l'informatique, de son marché, ainsi qu'une étude de sa pratique moderne ; et ce afin d'en identifier les problèmes que l'on y rencontre en tant que développeur, pour finir par en dégager de possibles solutions.

Enfin, à l'aide de l'étude précédente, je dresserai ma projection subjective en tant qu'acteur et éditeur de logiciels, pour le futur de cette discipline, plus particulièrement la pratique que je souhaite en avoir en tant que créateur de services et contenu web.

Notes:

- L'Histoire ne se souvient que rarement de la première occurrence d'une invention, ce qu'il en reste est généralement sa démocratisation.
- Il est évident que tout les concepts scientifiques ne sont que des formulations écrites de théories issues de la raison, qui étaient déjà connues par certaines personnes de manière empirique.
- La majorité des mots sont poly-sémantiques, ils n'ont pas de signification unique.

- Les paroles s'envolent les écrits restent, c'est pourquoi la littérature est importante. Écrire permet de faire naître une information et potentiellement de la rendre éternelle.
- Le savoir est magie pour les idiots, et secret de polichinelle pour les érudits.

Remerciements

Je ne remercierai jamais assez mes parents et grand parents, qui ont eu la chance d'être propriétaires d'ordinateurs, et d'une connexion d'internet, avant ma naissance en 1999. Grâce à cela il ont eu la merveilleuse idée de me mettre devant un écran, avec des logiciels éducatifs qui m'ont permis de savoir lire à l'âge de 2 ans.

Merci à toutes les personnes et enseignants qui m'ont, lors de ma longue scolarité, transmis tout ce que je sais aujourd'hui.

Merci aux logiciels libres, à l'open source, à Wikipédia et tout leurs contributeurs.

Merci aux établissements d'enseignement et entreprises, dans lesquels j'ai travaillé et évoluer dans la bienveillance, grâce à des processus itératifs d'amélioration continue.

Merci à toutes et tous, car nos métiers et inventions ne sont que rarement le fruit d'un génie isolé, mais bien d'une collaboration et de l'amélioration d'idées antérieures.

Enfin, merci à toute personne qui lit actuellement ce texte.

Retour

Histoire

La première manière pour un être vivant de marquer l'histoire est universelle, c'est celle des fossiles et des dinosaures, celle d'avoir existé et laissé une trace, une information, stockée sur un support physique, sur notre Terre.

La deuxième est l'art de sculpter des outils, actuellement estimé 3 millions d'années avant notre ère.

La troisième est la peinture, dont les plus anciennes preuves sont rupestres, et âgées de 65 millénaires.

Relativement aux dates précédentes, l'écriture ne vient que récemment, elle a été attestée en Mésopotamie il y a 5 millénaires. Pourtant, c'est elle qui nous permettra à nous, humains, d'écrire notre Histoire.

D'un point de vue Historique, notre génération laissera toujours une trace. Que ce soit sur un disque dur quelque part dans un grenier, dans un datacenter ou une web archive. Et même si tout disparaissait, il y aurait une preuve immuable et indestructible à échelle de la Terre. Les isotopes lourds que nous avons créés avec l'apparition des industries nucléaire seraient, même dans le cas d'un retour à l'âge de pierre causant un rude hiver civilisationnel, la preuve de l'existence de la nôtre.

Préhistoire

Avant même la naissance de l'écriture qui marque la fin de la préhistoire, les humains avait déjà besoin de compter et d'effectuer des calculs. Le premier réflexe à sûrement été de compter sur ses doigts, raison pour laquelle la base 10 est si présente dans l'histoire. Pour des nombres plus importants, il a fallu inventer d'autres stratagèmes et outils.

Abaques

Un abaque est un instrument facilitant le calcul. C'est un outil mnémonique utilisant la numération et permettant d'enregistrer un nombre pour se libérer de la mémoire.

Son étymologie est un mélange de grec et d'hébreu, elle explique bien sa représentation et son usage. La poussière (de l'hébreu abaq), et la tablette (du grec akos), servaient de support pour l'écrit. Même sans dépôt de poussière naturelle, on peut volontairement recouvrir une tablette, et ainsi réécrire à volonté avec du sable, ou toute autre poudres.

Le plus vieux système de quantification connu est le bâton de comptage, daté à -40000. C'est un système unaire, il permet de quantifier des unités, représentées par la répétition d'un symbole, généralement un trait, aussi appelé marque de dénombrement. Le plus ancien est l'Os de Lebombo.

L'ensemble d'Os d'Ishango est cependant plus connu. Il serait hypothétiquement une des premières preuves de connaissance humaine des mathématiques et de l'arithmétique. Sur un des os, on aperçoit les 4 nombres premiers entre 10 et 20, soit 11, 13, 17, et 19; un autre semble démontrer les additions et les multiplication, notamment la duplication, avec la juxtaposition des nombres 3 et 6 puis 4 et 8.

Cette méthode est restée, à l'époque, un berger pouvait s'assurer que l'intégralité de son troupeau était rentré en comparant deux comptages, à l'aide de cailloux par exemple, chacun représentant une bête.

De nos jours elle à été mécanisée pour approximer par groupes de dix les manifestants a l'aide de compteurs manuels.

J'ai également eu l'opportunité de visiter la grotte de Thaïs, où a été retrouvé un os de quelques centimètres aux multiples gravures. Daté en -12 500, il a été nommé Os coché.

En 1991, l'archéologue américain Alexander Marschack, démontra qu'il ne s'agit pas comme on le pensait alors, d'une représentation décorative, mais d'un système d'enregistrement du temps, possiblement un calendrier basé sur des observations astronomiques. Cette hypothèse est actuellement, en 2024, le sujet d'une étude européenne menée par un groupe de chercheur à l'université de Bordeaux.

L'homme préhistorique avait donc sûrement déjà des systèmes de comptage des unités et du temps, bien qu'il ne nous en reste que peu de traces, ne permettant donc pas d'affirmer cela avec certitude.

Premières villes et sociétés

Jusqu'alors, l'humain était un chasseur-cueilleur nomade, et contrairement à ce que l'on pourrait croire, il aurait rarement chercher des poux à ses congénères lorsqu'il les croise, ayant déjà bien assez de problèmes avec la nature.

La sédentarisation prends place en **-9000**, l'agriculture apparaît à la même période, au Proche et Moyen Orient actuel, dans le *croisant fertile*, avec par conséquent un besoin de stockage grandissant, auquel répondra la démocratisation de la vannerie, du tissage et surtout de la poterie, alors que la terre cuite était utilisée principalement pour des figurines décoratives.

Fleurirons alors villes et cités comme Urkesh, Ninive, ou Assur ; capitale Assyrienne, et Guzana capitale du royaume autagoniste Araméen, à partir de -7000. Suivis par Uruk et Lagash vers -5000, puis Ur vers -4000.

Les premières civilisation apparaîtrons plus tard comme celle de Sumer vers -3500, ou celle de la vallée de l'Indus, à qui on doit les égouts, vers -2600, bien que son développement ai commencé à l'apparition des premières villes et cités.

L'arrivé du stockage de biens a causé l'apparition des premiers conflits d'envergure. Avant cela, les humains avait une densité de population trop faible pour que cela n'arrive, le rapport gain / perte n'en valant que rarement le coût.

L'humanité à donc du, suite à la sédentarisation, trouver des moyen de réguler le jeu de la vie, et trouver des systèmes composés de règles, permettant de conserver l'ordre et éviter la discorde.

Bulle enveloppe

Il y a 6000 ans de cela, en Mésopotamie, vers l'an **-3900**, étaient utilisées des sphères d'argile appelées bulles enveloppe, ou bulle comptable. On y stockait en son sein des calculs, du latin "calculus", signifiant petit cailloux, et on y comptabilisait le contenu. La signature se faisait en déroulant un sceau-cylindre, orné de motifs représentant des dieux ou le pouvoir. Il servait à imprimer les motifs creusés dessus afin de pouvoir les imprimer sur de l'argile. Ce motif indiquait généralement le possesseur à la manière d'une signature. Certains étaient en matériaux plus ou moins précieux, et comportait parfois des écritures cunéiformes.

L'humain avait donc à ce moment inventer un système permettant de garantir le transport et l'échange de marchandise par un transporteur, tout en garantissant sa provenance et la quantité de marchandise. En effet, un destinataire pouvait ainsi faire confiance à un transporteur concernant la provenance, grâce à la signature, et la quantité, en comparant le nombre de marchandises au nombre d'unités présente dans la bulle après l'avoir cassé. Si elle l'était avant sa livraison, alors celle ci pouvait alors être invalidée.

Antiquité

Marquée par l'invention la plus importante de notre histoire, en -3250 dans la région de la Mésopotamie ; la naissance de l'écriture a permis une transmission d'informations complexes sur un support théoriquement permanent. Des lois, qu'elles soient juridiques, mathématiques, ou autres, ont alors pu être rédigées et transmises de manière plus fiable que par la transmission orale, pratiquée jusque là en plus du dessin.

Malgré cela, beaucoup de penseurs ont transmis leurs savoir exclusivement à l'oral, n'ayant donc jamais rien écrit de leur vivant. Bien que des gens l'aient fait pour eux, comment peut on être sûrs que les informations de leurs discours n'ont pas été déformés, par des siècles de copies et réécriture, de ragots et légendes. Pour autant, ce qu'il en reste est une facette de la réalité, c'est ce qui a persisté jusque là grâce à ce que les personnes ont jugés important de transmettre.

Cette période se finira en 450 par la chute de l'Empire Romain.

Prémices de l'Algèbre

Dès l'Antiquité, les égyptiens et les babyloniens avait déjà rédigés des textes comportant des problèmes, et des manières mathématiques pour les solutionner, tels que le Papyrus Rhind, qui explicite notamment des opérations comme la division, la multiplication.

L'algèbre babylonienne vers **-3000**, utilisait un système sexagésimal, potentiellement emprunté aux sumériens, de base 10 et 60. Encore utilisé de nos jours pour le temps, ou les angles, avec bien plus de distinctions d'opérations, que l'on peut aujourd'hui retrouver en programmation.

- Deux pour l'addition :
 - L'empilement qui donne un troisième nombre à partir de deux autres. a = b + c
 - L'ajout par fusion d'un autre nombre, à un premier. a += b qui équivaut à l'empilement a = a + b
- Idem pour la soustraction :
 - a = b c
 - a -= b qui équivaut à a = a b
 - avec en plus la notion de comparaison et d'équation
 - si après la soustraction a b il reste c , alors a > b car a = b + c

La division se pratiquait avec la multiplication par l'inverse, on a retrouvé de multiples tables d'inverse en Mésopotamie.

La racine carrée était obtenue grâce aux tables de carrés, pour celles manquante, on pratiquait une approximation par interpolation linéaire.

Cette discipline qu'est l'Algèbre est à ce moment de l'histoire avérée, mais pas encore nommée, du moins pas en tant que tel, il faudra attendre le moyen âge pour cela.

Quipu

Cet outil utilisé par les incas signifie "nœud", ou "compte" en quechua, il est en effet possible de faire un nœud simple avec plusieurs boucles, permettant ainsi d'enregistrer un chiffre, et donc des nombres, en base 10.

Le plus ancien connu à été retrouvé sur le site archéologique de Caral, au Pérou, il est daté vers l'an -2500 ; le climat chaud et sec a contribuer sa bonne conservation.

L'empire Inca ayant été constitué de plus de 12 millions d'individus, cet outil a été au cœur de son administration et a permis de recenser la population et gérer l'économie. Les experts du quipu se sont même rendus compte que plus d'un tiers comportaient des informations autres que des chiffres, aussi appelées informations qualitatives, en opposition aux informations quantitatives.

Cet outil à donc également servi à transmettre des messages, composé d'un vocabulaire créé à partir de différentes couleurs, types de fils, de nœuds, ainsi que leurs positions et orientations.

En mathématique il existe une branche très intéressante appelée une théorie des nœuds, elle fait partie de la sous branche de la topologie, c'est à dire l'étude de la déformation d'un objet sans arrachage ni recollage.

Boulier

Le boulier ayant été utilisé par de nombreux peuples séparés, il voit le jour possiblement vers l'an **-2000**, utilisant le système de numération décimale (10), ou en base alternée (5, 2) pour certains modèles. Il permet un calcul rapide, même récemment. Bien utilisé, il arrive en tête de compétitions contre des opérateurs électroniques.

Par la suite, romains, chinois, japonais, russes, mexicains, français, et autres peuples, l'utilisent, et l'enseignent.

Code de Hammurabi

Ce texte babylonien daté vers -1750, est à ce jour le texte de loi connu le plus complet de la Mésopotamie Antique. Il démontre l'existence de lois, notamment concernant les salaires, indiquant qu'il existait des corps de métiers bien définis ; mais aussi sur le droit de la famille, la propriété, le système judiciaire, et bien d'autres.

Ces lois décrivent des situation problématique auxquelles elles proposent des solution, ont dit qu'elle sont casuistique.

À l'époque où Hammurabi succède à son père, il possède un petit territoire comportant tout de même des grandes villes, mais il est entouré de puissants royaumes, qu'il finira par vaincre et annexer, pour finir par dominer la région et fonder le royaume babylonien tel qu'on le connaît en tant que puissance culte du Proche Orient. La politique rédigée à sa gloire à l'aide ce code à donc certainement eu un rôle dans le développement de la société babylonienne jusqu'à son apogée, lui donnant à l'époque l'image d'un roi guerrier de justice, manifestation d'un dieu soleil sur terre.

Thalès

Né vers l'an -620, Thalès fut un philosophe et mathématicien grec si important, que tous furent d'accord pour dire qu'il était l'un des plus grands sages de la Grèce antique. Il eu vécu et étudié en Égypte où il détermina la hauteur de pyramides, prédit des éclipses, et théorisa les crues du Nil. Il exporta la science de la géométrie en Grèce et on lui doit deux des plus vieux théorèmes géométrique qui portent son nom, encore étudiés aujourd'hui, bien que leurs démonstration n'ai été avérée que plus tard.

Il est aussi l'un des fondateurs de astronomie, il travailla sur des éphémérides grâce auxquelles il a conseillé à des marins de se guider à l'aide de la petite ourse. Les tables de navigations encore utilisées de nos jours trouvent donc leurs racines dans l'Antiquité, sûrement même avant Thalès.

Par ailleurs, il est le premier à avoir découvert qu'une année, qui à l'époque était pensée comme une révolution du soleil autour la Terre, ne prenait pas 365 jours mais 365 jours et un quart, d'où les années bissextiles. Il est également le premier à avoir pris connaissance de l'électricité, grâce à l'ambre qui attire un tissu, ou les propriété d'aimantation de l'oxyde de fer ; ce qui lui vaut d'ailleurs d'être considéré comme le premier physicien.

Enfin, il fonda l'école milésienne, qui inspirera les personnalités antiques qui suivent ce récit.

Encryption

Depuis longtemps, les humains ont eu besoin de communiquer des message à de longues distances, sans qu'ils ne se fassent intercepter, et encore moins décoder et lus, voire pire, compris.

Le plus ancien système d'encryption connu est la scytale spartiate vers -600. Utilisée pour transmettre des messages chiffrés par transposition sur un bande, généralement une ceinture en cuir portée pendant le transport, que l'on enroule autour d'un bâton pour l'écriture et la lecture. Le diamètre du bâton étant ainsi la clé d'encryption. Les lettres correspondait encore à leur propre valeur, et leur ordre dans le mot était conservé, malgré la présence de lettre entre chacune d'entre elles. Ces dernières étaient simplement mélangées, et l'enroulage permettait de les réaligner afin d'en permettre la lecture.

Quelques années avant Jésus Christ, Jules César encodait ses messages en utilisant un code éponyme. Cette encryption simple utilisait un décalage d'un certain nombre de lettres de l'alphabet. A vaut D, B vaut E, Z vaut C, etc...

On remarque que l'encryption était dès le début utilisée pour transmettre des messages sensibles, notamment liés à la guerre. Cet outil a d'ailleurs été considéré comme arme de guerre jusqu'à récemment, où la plupart des techniques de cryptographies issues du domaine militaire sont devenues publiques. Malgré cela, encore aujourd'hui, les gouvernements appellent à retirer l'anonymat sur internet ou à avoir des portes dérobées dans les chiffrements afin d'en permette la lecture par une autorité en cas de besoin.

Pythagore

Né vers l'an -580, Pythagore, fonda lui aussi un établissement d'enseignement, l'école Pythagoricienne, qui deviendra progressivement une confrérie, voire une sorte de secte, à la fois religieuse et scientifique, où les femmes et les étrangers auraient étaient admis, sous réserve de passer de multiples paliers.

On y étudiait notamment 4 matières : l'arithmétique, la musique, la géométrie, et l'astronomie.

Il aurait été le premier à dire que la Terre était ronde, à découvrir les lois harmoniques en musique, et même la première personnalité connue adepte du végétarisme, qu'il associait à une volonté de ne pas consommer la vie animale, que l'on doit ôter avec abomination, pour "qu'un corps s'engraisse d'un autre corps".

Le théorème de Pythagore, bien qu'il porte son nom, était déjà connu du temps de la Mésopotamie, plus d'un millénaire avant lui. Il l'a malgré tout sûrement popularisé et fait entré dans les communautés scientifique de l'époque, et de celles qui suivent. Euclide en fera la plus ancienne démonstration connue, trois siècles après.

Il est le premier à avoir, à travers sa philosophie et son enseignement, conçu le monde à l'aide des mathématiques, pour lui, toute chose est nombre. La quantification a en effet permis à l'humanité de comprendre et expliquer le monde qui l'entoure.

Dialectique

La Dialectique est étymologiquement l'art de parler en conservant et distinguant sa parole de celle de son interlocuteur. Elle repose sur un dialogue où les deux participants tentent de se convaincre mutuellement dans le but de se rapprocher de la vérité. La première personne connue à l'avoir mis en évidence est le philosophe présocratique Zénon d'Élée, né en -490.

C'est devenu une technique classique de raisonnement au Moyen Âge, qui se structure généralement en une thèse, une antithèse, et une synthèse, qui tends généralement vers un compromis, ou du moins un dépassement du manichéisme et de ses stéréotypes. C'est une structure philosophique basique, que l'on enseigne encore aujourd'hui.

J'apprécie personnellement la définition de Platon, qui résume bien la chose dans sa vision de l'usage du dialogue, il décrit la dialectique comme reposant sur la confrontation de plusieurs positions de manière à dépasser l'opinion, afin que chacun se rapproche un peu de la vérité.

Rhétorique

La rhétorique quand à elle, est l'art d'impacter les esprits par son discours, son but est l'efficacité, voire la persuasion. Intimement liée à l'éloquence, elle a d'abord été pratiquée à l'oral, mais elle l'est plus généralement en trouvant des mots et arguments mémorisables, ordonnés, et transmit à autrui.

Elle s'est ensuite détachée de la persuasion pour devenir pour plus globalement l'art de bien dire et de l'argumentation, ayant malgré tout pour objectif le vraisemblable plus que la vérité.

Sophistes et Sophismes

Né en -490, Protagoras est un philosophe pré-socratique considéré comme sophiste, qui ont été une opposition forte aux philosophes de la suite de ce récit. Les raisons les plus probables sont qu'il était une personnalité forte, célèbre et critiquée du fait qu'il était un enseignant itinérant, cherchant un salaire ainsi qu'un statut toujours plus élevé contre son enseignement, alors que monnayer son savoir était à l'époque interdit. Il serait également à l'origine de *l'éristique*, l'art de la discorde, de la dispute et plus globalement du débat ; variante proche de la rhétorique, qu'il a également enseigné.

Les sophistes ont par conséquent étés perçus comme des gens avides, prêts à tout pour monnayer leur savoir à des prix toujours plus fous, au détriment même de la vérité, usant de la rhétorique de manière perverse et fallacieuse, ce qui à donné naissance au mot et à la pratique qu'est le *sophisme*. Tout raisonnement, même si la finalité est véridique, peut être considéré comme tel dès lors qu'il n'est pas logique, valide, s'appuie sur un biais, ou use de stratagème visant à prouver la véridicité de ses dires, en jouant sur la crédibilité ou les émotions (ethos et pathos), plus que sur le discours en lui même (logos).

Pour beaucoup de personnalités de temps aussi éloignés, il est compliqué de démêler le vrai du faux, il aurait commencé sa vie comme modeste porteur de fardeau, bien qu'ayant potentiellement de la famille ou des proches aisés et dont il s'est visiblement rapproché au fil du temps.

Il est entre autre connu pour avoir été agnostique, disant des dieux, qu'il "ne savais ni s'ils sont ni s'ils ne sont pas", ce qui lui aurait potentiellement valu, comme beaucoup d'autres à cette période, une condamnation pour impiété.

Il a également déclaré que "l'homme est la mesure de toute chose", introduisant le principe fondamental du relativisme, soit le fait qu'une vérité énoncée n'est jamais objective, donc biaisée et conçue qu'au travers de la subjectivité et de la perception de celui qui l'affirme.

Socrate

Socrate est né vers -470, il est fils d'une sage-femme, et créateur de la maïeutique, l'art de faire accoucher les âmes. En questionnant un sujet, il pouvait lui faire prendre conscience d'une connaissance enfouie en lui. Il est également le père d'une méthode de réfutation nommée *elenchos*, consistant à challenger la thèse de son adversaire en la poussant à l'absurde, dans le but d'y révéler son côté irréel.

Marcheur parleur, il n'a jamais écrit, ses dires ont été relatés par ses disciples. Il a étudié la nature, puis sa pensée s'est concentrée sur l'homme, qui doit selon lui s'étudier lui même tel un anthropologue.

Cicéron dira que "Socrate le premier invita la philosophie à descendre du ciel, l'installa dans les villes, l'introduisit jusque dans les foyers, et lui imposa l'étude de la vie, des mœurs, des choses bonnes et mauvaises". En effet, après Pythagore qui n'enseignait pas la philosophie, c'est la plus ancienne des personnalité connues à avoir eu une influence si importante grâce à un enseignement public et gratuit de cette discipline.

Selon lui : "Les sages sont en fait des gens qui pensent l'être, ils s'imaginent des connaissances et ignorent ce qu'ils ne savent point", cela rejoint à la fois la maïeutique et son opposition avec les sophistes, dont son ancien maître Protagoras.

Il avait un sens exacerbé du bien et du mal, ainsi que de la justice. Il a défendu des généraux accusés de ne pas avoir récupéré des corps de leurs soldats mort, à cause d'une tempête, et ce seul contre l'opinion publique, en faveur de ce qui lui paraissait juste. Il était également contre la loi du talion, insistant sur le fait que l'on ne doit pas répondre à l'injustice par l'injustice, et au mal par le mal.

Longtemps accusé d'avoir des croyances différentes et déviantes de la religion de l'époque, il fut condamné pour l'impiété et corruption de la jeunesse. Accusé à tord, il fit malgré tout preuve d'une arrogance qui causera sa perte, contre-plaidant à la peine de mort en disant qu'il devrait manger gratuitement jusqu'à la fin de ses jours. Cela n'a vraisemblablement pas plu au jury, qui le condamna à la ciguë, alors poison d'état, qu'il finira par boire, acceptant pleinement son jugement, bien qu'injuste.

La légende dit même qu'il aurait pu s'évader mais qu'il a préféré accepter l'injustice que de la commettre. Il aurait également été contre la démocratie, qui "n'accorde pas assez d'importance au savoir et à ceux qui la détiennent". En effet, la majorité bien qu'elle permet souvent de se rapprocher de la vérité, peut aussi avoir tord, notamment sur des sujets précis nécessitant la connaissances d'experts.

https://www.youtube.com/watch?v=yp_UUPR6gfg

https://www.youtube.com/watch?v=xqqzMjfFa10

Atomisme

À cette période né la pensée d'une unité indivisible avec le concept d'atome, élément microscopique que l'on pensait insécable, composant la matière.

Le philosophe présocratique Leucippe, élève de Zénon d'Élée et influencé par Pythagore, invente donc la philosophie atomiste vers -440, Démocrite puis Épicure et Lavoisier vont par la suite participer à l'évolution ce mouvement, dont la réalité ne serait formée que de plein, de vide et de mouvement.

Cette pensée émane à un moment où les mythes, fables et religions sont doucement mises en doute. Plusieurs philosophes dont Socrate, seront jugés pour impiété, cette période marqua donc la naissance d'un courant de pensé qui se lia rapidement avec l'apprentissage de la mort, et son rôle dans la vie de l'être réel, que l'on retrouvera dans le stoïcisme et l'épicurisme.

Cynisme

Né en -440 à Athènes, Antisthène fut sophiste avant de suivre l'enseignement de Socrate et finir par fonder l'école cynique vers -390. Les cyniques enseignaient la désinvolture et l'humilité, l'étymologie signifiant littéralement chien, ce mode de pensée revient en grande partie à se considérer comme un simple animal domestique vivant en société.

Diogène de Sinope, un des cyniques les plus connus, aurait même déclaré vouloir être "enterré comme un chien", montrant ainsi son désintérêt pour la sépulture ou les funérailles, et indirectement pour sa propre personne. A l'instar de Socrate, il se considérait citoyen du monde, à cet effet il forgea l'usage du mot *cosmopolite*.

Ce genre de comportements et mode de pensée inspirera beaucoup les stoïciens par la suite, notamment dans la rapport à la mort et aux événements marquants.

Pour eux la matière prévaut sur les idées, faisant d'eux des matérialistes anticonformistes en opposition avec les idéalistes de l'époque. Ils pratiquent notamment la contestation et l'ironie, dans le but de démontrer que les règles sociales et les interdits ne sont pas essentiels, pour eux, seul l'éthique naturelle et universelle qu'est la vertu importe.

Platon

Né vers -428, Platon faisait la distinction entre le monde intelligible et sensible, il est pour cela parfois considéré comme idéaliste. Ce mouvement est caractérisé par l'axiome que toute réalité est liée à une idée, ou états d'esprit des observateurs, sans lequel le monde n'existe pas de manière autonome, n'étant qu'une représentation que l'on en fait. Plaçant la pensée au dessus, et comme plus importante que le monde matériel, à l'inverse du matérialisme qui ne sera en réalité explicité que bien plus tard, au 18 ème siècle, prônant que l'esprit et la conscience ne sont le résultat d'interactions matérielles.

Cependant Platon déclare que les deux mondes forment une dualité ontologique "de ce qui est". Dans la théorie des formes et des idées qu'il formula, il soutient que l'esprit forme des abstractions intelligibles de ce que nous percevons du réel à travers notre sensibilité, des modèles, ou archétypes, permettant d'assimiler une information, et ainsi de la reconnaître, voire la comprendre. Les idées existent donc au delà de la pensée, elles sont immuables et universelles.

Il émettra pour cela l'analogie de la ligne qui définit une hiérarchie qui se veut épistémologique, c'est à dire un discours sur la science de la connaissance. Cette hiérarchie classe les pensées allant de l'intellect reconnaissant des formes ou modèles, à la pensée visualisant des hypothèses, puis quittant le monde des réalités intelligibles scientifique ; rejoints les opinions, composés des croyances et des conjectures, à l'origine de la théorie de la caverne et de ses ombres projetés, formant des images.

Il fonda l'Académie, à Athènes, basée sur l'école Pythagoricienne, qui forma nombre de philosophes jusqu'à l'an -86.

Vers l'an -407 il fut introduit à Socrate, avec qui il partages bien d'idées, notamment concernant la démocratie, déclarant qu'un dirigeant doit être philosophe, avoir conscience de ses actes et du monde qu'il entoure, du bien et du mal. Il fut d'ailleurs impliqué en politique avant de la fuir lorsque le gouvernement despotique des Trente tyrans commit nombre d'exécutions et actes injustes.

Simone Weil à dans son livre *La Source grecque* rapporté de lui qu'il affirmait et répétait ne rien avoir inventé, ne suivant qu'une tradition et s'inspirant des autres penseurs le précédent, notamment les Pythagoriciens.

Mathématiques

Étymologiquement, ce mot signifie en latin « qui aime apprendre », ou en grec, « qui provient d'une leçon », autrement dit : du savoir d'autrui.

Sa définition moderne, présente dans le Larousse, comme sur Wikipédia, vient corroborer cette étymologie, indiquant que c'est un ensemble de connaissances abstraites résultant de raisonnements logiques, appliqués à des objets tangibles, telles que les formes physiques, les structures qu'elles constituent, et leurs transformations possibles à l'aide des relations existantes entres ces objets.

Ces connaissances abstraites, ce sont les nombres, ainsi que les opérations, formules et théorèmes qui nous permettent de les utiliser.

Cette abstraction que sont les mathématiques, basée initialement sur des axiomes tangibles, règles que l'on admet comme vraies, s'est petit à petit détachée de toute contrainte physique, et à ainsi donner naissances à deux disciplines, les mathématiques appliquées, et les mathématiques pures.

400 ans avant J.-C., Platon à contribué à cette distinction dans la Grèce Antique, séparant la technique de calcul ; "appropriée pour l'homme d'affaire et de guerre", qui doit quantifier et gérer ses troupes, gains et pertes ; de la théorie des nombre "nécessaire au philosophe pour surplomber la mer des changements et s'emparer de ce qui est véritable".

Les mathématiques pures, tendent à la généralité, ou comme on le dirait en langage de mathématicien, vers la factorisation, c'est à dire la simplification d'un concept sous une forme plus courte, et facile à comprendre, et donc à transmettre et réutiliser. Notez que c'est également une notion très utilisée en programmation, la refactorisation. Elle fait parti des bonnes habitudes et de l'amélioration continue.

Sténographie

Ce processus de réécriture syntaxique, trouve ses plus vieilles traces connues a la même période, le langage SMS serait avéré par le bibliographe et doxographe, Diogène Laërce, les premières traces remonteraient ainsi à 405 avant J.-C., date à laquelle Xénophon, élève de Socrate, aurait usé de *sténographie* pour transcrire les discours de son maître, face au besoin d'écrire rapidement et idéalement à la vitesse de la parole. La sténographie, du grec ancien "écriture courte", est un procédé de tachygraphie signifiant "écriture rapide".

Les mathématiques appliquées, quand à elles, utilisent ces concepts sur des domaines très spécifiques, pour exemple, la géométrie, étymologiquement "science de la mesure du terrain", à été développée dans l'Égypte antique pendant les trois siècles avant J.-C., à partir du besoin de mesurer la superficie d'un champ, aussi appelée arpentage.

Aristote

Né en -384, il étudia 20 ans à l'Académie de Platon, et fonda par la suite le Lycée.

Aristote est à l'origine des syllogismes, étymologiquement ensemble de discours logiques. Ce sont des raisonnements logiques constitués d'au moins trois propositions, la dernière étant une conclusion déduite, précédée de prémisses qui doivent s'avérer vraies pour que la conclusion le soit également. L'exemple le plus connu étant "Tout les hommes sont mortels, or Socrate est un homme, donc Socrate est mortel".

La science de la biologie serait née d'Aristote et Théophraste, respectivement en charge de documenter la faune et la flore. Aristote s'intéressa donc logiquement à la nature, déclarant que tout être vivant possède une âme, bien que hiérarchisant ce propos à la manière de Platon et son analogie de la ligne; disant que les plantes n'ont qu'une âme végétative, que les animaux l'ont en plus d'une âme sensitive, et que l'homme à également une âme intellectuelle en plus des deux premières. Il à également défendu l'idée d'une terre sphérique, justifiée par la courbure des éclipses de lunes et la force centripète, bien qu'il pensait être dans un système géo-centré avec l'ensemble des astres tournant autour de la Terre.

Il était confiant en la sensation, qui permet la perception et la cognition du monde réel, qui ne nécessite selon lui pas un scepticisme constant. Il nuança son propos en disant que c'est une première ouverture vers le savoir, qu'il faut mélanger avec le savoir d'autrui, de gens sérieux, expert du domaine, et sans prendre ce qui est dit pour véridique, mais pour tester leur capacité à se rapprocher du réel et d'une vérité universelle.

Il émettra l'idée d'une vertu éthique qui sera reprise par les stoïques, équilibrée entre les deux excès, prônant la mesure, que Platon reprenait lui même de Socrate, et la prudence.

Il a également inventé le terme de *doxographie*, signifiant opinion écrite, et se considérait ainsi, au même titre que les autres philosophes, comme un doxographe, retranscrivant les opinions soutenues par d'autres ou le plus grand nombre en accord avec son système de pensée.

Il dira également que le philosophe doit faire preuve de métacognition, afin de se rendre compte des informations qu'il à sa disposition, et de qu'elles déductions en tirer, toujours dans l'idée d'accumuler du savoir et de s'élever tel un érudit vertueux.

Sa philosophie connaîtra malgré cela plusieurs siècles d'oubli jusqu'à ce qu'il fut redécouvert à la fin de l'Antiquité, imprégnant l'enseignement théologique chrétien du moyen âge nommée scolastique, étymologiquement école et loisir, indiquant qu'apprendre est un privilège des gens ayant du temps libre.

Stoïcisme

Zénon de Kition, posa les bases du stoïcisme en l'an -301, pour les stoïques, la mort est une *indifférence*, qui n'est ni un *mal*, ni un *bien*, ces trois choses formant le monde selon lui l'existence du monde réel. Il existe cependant des indifférences préférables, on préférera par exemple la maladie à la mort.

Nos désirs et nos craintes sont causés par nos représentations, lesquelles peuvent être changées, pour autant, le stoïcisme n'appelle pas à se persuader du contraire ni de s'auto-détourner-cognitivement (gasligher), mais à prendre en compte les choses telles qu'elle sont et s'en détacher, afin de se rapprocher de la vertu et s'éloigner des émotions, surtout celles négatives. Cela revient à une certaine apathie constante, du latin *apatheia* qui signifie absence de passions, et qui est généralement synonyme d'impassibilité et d'indifférence à l'émotion, d'où l'expression "rester stoïque". C'est le seul moyen selon eux d'être exempt de troubles et d'atteindre la tranquillité de l'âme, aussi appelée *ataraxie*.

Ce qui importe le plus pour les stoïciens est la vertu, qu'elle soit physique, éthique ou logique. Indissociable du bien, être vertueux ne reposerai selon eux que sur la tempérance et la prudence. Le sage doit avoir un recul sur les choses, être rationnel, ses activités ne doivent pas s'arrêter pour autant, elles doivent cependant être à l'origine de la raison et non de l'envie.

Concernant la théologie, pour les stoïciens Dieu est tout, mais pas dans le sens d'une divinité qui aurait un impact sur le monde. Sénèque dira même que "La nature ne peut pas plus exister sans Dieu, que Dieu sans la nature. L'un et l'autre sont une même chose", ce concept de "Dieu est tout" corresponds au *panthéisme*, et sera repris plus tard par d'autres philosophes comme Spinoza.

La philosophie stoïque sera également reprise par beaucoup de personnalités par la suite, comme Ciceron, Épictère ou Marc Aurèle, mais aussi par des œuvres de pop cultures plus récentes, dans Star Wars, les jedis sont stoiciens, Maitre Yoda prononçant des phrases telles que "exerce ta volonté à renoncer à tout ce que tu craint de perdre un jour".

https://www.youtube.com/watch?v=iE08wLRGPcQ

Géométrie Euclidienne

C'est vers -300 qu'Euclide rédige Éléments, un traité de mathématique sur la géométrie et l'arithmétique, qui à façonné ces discipline dans les pays orientaux. Cet ouvrage à été réédité de multiples fois et traduit par de nombreux savants, dont certains cités quelques paragraphes plus loin. On lui doit la méthode de calcul du PGCD qui est nommée algorithme d'Euclide, la division Euclidienne, et bien sur sa géométrie.

En définitive, cette discipline que sont les mathématiques est une philosophie en soit, c'est a dire un système d'idées permettant de conceptualiser et visualiser le monde tout en le quantifiant. Même étymologiquement on remarque une proximité entre les deux mots pour le savoir, par le partage de connaissance dont on profite lors d'une leçon d'autrui.

Archimède

Archimède de Syracuse est né en -287, il fut élève d'Euclide. On lui doit le fameux théorème de la poussée du même nom et l'explication du principe du levier, mais aussi la vis d'Archimède ou le palan qui permet de soulever des charges à l'aide d'un double système de poulies.

Considéré comme le plus grand mathématicien de l'Antiquité, il a apporté beaucoup à la géométrie pour laquelle il a étudié et rédigé des traité sur les cônes, spirales, cylindres, paraboles, et cercles ; mais aussi à la mécanique.

On lui doit également le fameux "Eureka !" signifiant "J'ai trouvé !" ou le "Donnez-moi un levier, un point fixe, et je soulèverai la Terre."

Ctésibios

Moins connu mais pas des moindres, Ctésibios est un ingénieur né en -284 à Alexandrie, où il aurait fondé l'école des mécanicien. Il s'intéressa dès son plus jeune âge à la mécanique et aux machines hydrauliques, à seulement seize ans, il inventa un monte-charge hydraulique. Fils de barbier, il utilisa la pneumatique pour réaliser un miroir ajustable à souhait, cette technologie est encore utilisée aujourd'hui dans les ressorts de rappels pour la fermeture des portes. Il a également perfectionné la clepsydre, en ajoutant un réservoir intermédiaire maintenu à un niveau constant permettant un flux qui l'est aussi, offrant une mesure du temps plus précise. S'ajoute à cela l'invention du premier orgue de l'histoire, à l'aide des pistons, soupapes et claviers dont il est aussi à l'origine, à une époque ou les moyens techniques sont pourtant limités.

l'horloge musicale, la canon à eau.

Philon de Byzance

Né en -280

Calculateurs analogiques

Le plus ancien calculateur analogique attesté est l'Anticythère en -150, c'est le plus vieux mécanisme à engrenage connu. Réalisé en bronze, il servait à prédire les éclipses solaires et lunaires. Il est constitué notamment d'un cadran de 233 positions correspondant au nombre de mois espaçant deux éclipses, soit un cycle nommé Saros ; d'un cadran métonique pour indiquer le mois et l'année ; et d'un cadran de 365 positions, correspondant au nombre de jours d'une année civile du calendrier Egyptien, décrit dans le Papyrus Rhind. Ainsi, en actionnant les engrenages à l'aide d'une potentielle manivelle non retrouvée sur l'Anticythère, on pouvait retrouver les différentes dates des éclipses.

Routes de la soie

À partir de -130 se développe l'une des voie de transport et d'échange de marchandises les plus importantes de l'histoire, elles seront cruciales jusqu'en 1450 et ont également permis des échanges culturels et scientifiques. Ce réseau passant par l'Europe, le Moyen-Orient, l'Asie et l'Afrique de l'est

Vitruve

Marcus Vitruvius Pollio est un architecte romain qui a œuvré pendant le 1er siècle avant J.-C.

Il nous a transmis beaucoup de choses liées à Archimède, il aurait rapporté l'anecdote où ce dernier détecte une supercherie dans la composition d'une couronne royale prétendument en or massif, en la comparant avec une masse d'or identique en immersion dans un volume d'eau, afin d'en comparer le rapport avec le volume. Il a également décrit comment construire une vis d'Archimède, qui était très utile pour drainer de l'eau.

Vitruve eu également décrit multitudes de machines utilisées de son temps pour la construction, telles que les palans, grues, et poulies qui on vues le jour grâce aux travaux d'Archimède, mais aussi des machines de guerres, comme la catapulte, la baliste, et bien d'autres comme les prémices d'une machine à vapeur.

Son travail sur les aqueducs a été décrit avec une grande précision, détaillant les siphons et la pression importante qui en résultait. Faisant de lui une référence pour les hauts placés de l'Empire Romain comme Frontin, un général qui fut chargé d'administrer les aqueducs de Rome.

Il a longtemps milité pour ne pas transporter l'eau à l'aide de tuyaux en plomb, prônant l'utilisation de la terre, après avoir remarqué que les ouvriers de fonderies de plomb étaient souvent malades.

Toujours en rapport avec la construction et l'eau, il décrira le chorobate, un niveau à eau utilisé pour s'assurer que les aqueducs aient la bonne inclinaison et véhiculent correctement l'eau, ainsi que l'agencement idéal de bains chaud à côté de bains tièdes, suivis par les bains froids, afin d'avoir une meilleure efficacité thermique, avec l'aide de ventilations manuelles. Il a également développé l'un des premiers odomètre permettant un comptage kilométrique, et des roues à aubes. Enfin il eu décrit des constructions marines telles que les brise-lame, les jetées et les quais.

D'un point de vue de l'information, Vitruve a réalisé un travail de recherche et de retransmission très efficace dans le domaine de la construction liée à l'eau. Son livre "De architectura" est le seul qui nous reste sur l'architecture de l'Antiquité classique. Malgré ses quelques innovations il a surtout posé les codes de l'architecture et de la construction, devant être solide, utile et belle.

Les six principes théoriques qui les régissent étant l'ordonnance, la disposition, l'harmonie, la symétrie, la convenance, et la distribution. En effet pour mener de telles réalisations architecturales à bien, il fallait naturellement que la création soit bien disposée dans son environnement, afin d'avoir une certaine harmonie et un design symétrique, autant par praticité que pour la beauté et imitation de la nature. Enfin, l'ordonnance, la convenance, et la distribution, sont nécessaires pour gérer les équipes travaillant sur un projet, afin que tout le monde y trouve son compte dans sa réalisation.

Héron

Originaire d'Alexandrie, il serait né et aurait vécu pendant le **premier siècle après J.-**C. On lui attribut la création de la première machine à vapeur, l'Éolipyle, qui servait uniquement à distraire ses utilisateurs, l'énergie dégagée étant négligée. Pour autant, Vitruve aurait déjà eu mentionné de telles machines à l'époque, et il s'est avéré par la suite qu'Héron était postérieur à ce dernier qui décéda en -20. Il a donc potentiellement abouti ou juste démocratiser cette machine, qu'il a perfectionné au point de pouvoir ouvrir les portes d'un temple, à la force de la vapeur, obtenue en chauffant de l'eau a l'aide du feu d'un autel. Il à également réalisé de multiples automates pour des pièces de théâtre.

Ménélaos

Né vers l'an 70, également dans la ville d'Alexandrie, Ménélaos était un mathématicien et astronome à qui on doit des notions de géométries, notamment concernant les sphères, comme la géodésique, qui représente une ligne droite sur une surface courbe, qui dans le cas d'une sphère représente un trait droit suivant la courbure de la sphère, jusqu'à retourner à son origine, formant une droite correspondant à un grand cercle. Cette ligne est très liée à la distance minimale entre deux points d'une surface, qui est toujours une ligne droite, correspondant à la géodésique.

Ptolémée

Claude Ptolémée, est un astronome, astrologue, mathématicien, et géographe grec né vers l'an 100, tout comme Aristote, il pensait que nous étions dans un système géocentrique, ou les planètes et le soleil tournerait autour de la Terre. Malgré cela, il eu rédiger des tables mathématiques très utilisés à l'époque car elle permettait de calculer avec une précision la position des astres et les éclipses de manière suffisante.

Retour

Moyen Âge

Bien que le début de cette période soit marquée par un déclin avec la chute de l'Empire romain en 450, il se passera bien des choses dans le domaine des mathématiques, de la cryptographie et de l'imprimerie.

D'un point de vue social et économique, l'humanité a connue une forte croissance démographique à cette période, avec un doublement de la population passant de 35 à 80 millions d'individus entre l'an 1000 et 1350, malgré la grande famine de 1316 et la peste noire de 1347. Ce développement a été en grande partie du à un climat plus favorable et à l'agrandissement des surfaces cultivés, qui a été accompagné par le développement des techniques agricoles comme la rotation des cultures ou l'apparition de la charrue.

Des moutons à laine longue seront de plus en plus élevés et l'introduction en Europe du rouet inventé en Chine lors du premier siècle, et des boutons existants depuis l'apparition des premières villes permettront la réalisation de textiles de meilleure qualité.

Les moulins à vents et à eau ont proliférer pendant cette période, permettant une automatisation et la réduction de l'utilisation de force manuelle au profit des forces hydrauliques, thermiques, éoliennes et animales.

Les techniques navales vont également se développer avec les coques bordées en clin à la manière des tuiles d'un toit, puis à franc bord ou les planches sont jointes, formant une courbe plus droite ; mais aussi avec la popularisation des voiles latines triangulaires et des gouvernails d'étambot articulés.

La réalisation de cathédrales et de châteaux va accélérer le développement des techniques de construction, des armures, et des armes, notamment de siège.

Les hauts fourneaux permettant une meilleure production et qualité de fer apparaîtra en Suède, un peu avant la poudre à canon et les armes à feu qui arriveront vers la fin du 13 ème siècle.

Le passage à l'époque moderne se fera en 1492, année de la découverte occidentale des Amériques par Christophe Colomb.

Aryabhata

Premier mathématicien et célèbre astronome indien né en 476. Contrairement à Aristote, Ptolémée, et aux autres philosophes de l'époque précédente, pensants être dans un système géocentrique où la terre serait immobile ; Aryabhata quand à lui, affirma la rotation de la Terre.

Dans son traité de mathématiques Aryabhatiya, il explicite des algorithmes permettant de trouver la racine carrée et cubique, découvert par Héron auparavant. Il serait aussi le premier à avoir utilisé la demi-corde, ancêtre du sinus, pour le calcul d'angles dans un triangle, calculs grâces auxquelles il format une table de calcul trigonométriques précise de 0 à 90 degré.

Algèbre et Algorithme

L'algèbre est l'ensemble de règles qui permet d'écrire des formules et équations mathématiques afin de structurer un problème en un système calculable.

Un algorithme est une suite finie et claire de tâches à réaliser pour résoudre un problème.

Le le plus ancien connu est la recette de cuisine. Les premières recettes « publiées » datent de l'époque babylonienne : trois tablettes, conservées à l'université Yale et datant d'environ 1 600 ans avant J.-C. ; elles comportent de manière plus ou moins précise une série de recettes. Les mathématiques de l'époque ont également détaillé des procédures permettant de résoudre des problèmes étapes par étapes.

Il a fallu cependant attendre le IX siècle, vers l'an **800**, pour que Al-Khwarizmi définisse l'algèbre, qui signifie réparer une fracture, et sert par définition à la résolution d'un problème ; Le livre qu'il a écrit, "Abrégé du calcul par la restauration et la comparaison" avait pour vocation d'apporter des solutions à l'héritage, l'arpentage, et les échanges commerciaux.

Il a également démocratiser le concept d'équation, égalité entre deux expressions mathématiques, ainsi que sa manière de les rédiger en langage mathématiques, permettant la traduction d'un problème en une formule courte, avec la solution représentée en tant que variable inconnue.

La résolution de l'équation passe par une suite d'opération, résultant idéalement en un ensemble ou système d'équations de la forme variable_inconnue = [résultat_numéraire].

Le mot Algorithme est né d'une longue déformation du nom "Al-Khwarizmi" par les traducteurs latin en "Algoritmi" au 12e siècle. Ensuite, avec l'influence grecque "arithmos", signifiant "nombre", on aurait obtenu "algorithmus".

Suivre les règles de l'Algèbre sera alors la pratique de l'algoriste qui algorisme.

Banū Mūsā brothers

Système de numération indo-arabe

Les chiffres tels qu'on les connaît aujourd'hui proviennent du monde Arabe oriental, qui à partir de la fin du 7 ème siècle, entreprends un mécénat scientifique s'intéressant principalement aux sciences indiennes. Des bibliothèques se forment alors, et beaucoup de textes anciens sont alors traduits. Parmi eux, des tables de calculs, astronomiques, et même celles d'Aryabhata. Al-Khwarizmi aurait à cette occasion réécrit un système de symbole représentant les 10 chiffres, ressemblant fortement à ceux utilisés de nos jours.

Al-Battani

Né vers **850** et mort en 930, c'était un astronome et mathématicien Arabe souvent considéré comme le Ptolémée des Arabes. Il a en effet repris ses travaux qu'il a complété pour constituer des tables de calculs pour le Soleil et la Lune, et ce en usant de la trigonométrie à l'instar d'Aryabhata, dont il est peu probable qu'il ai connu les travaux.

Ses tables ont longtemps été utilisées et ont influencé l'astronomie européenne, y compris les travaux de Kepler, Copernic et Galilée.

Il a découvert le mouvement de l'apogée du Soleil, recenser plus de 500 étoiles, calculer les équinoxes et l'inclinaison de l'axe terrestre. Il a également démontré que la distance entre le Soleil et la Terre varie lors d'une révolution, et affiner les calculs de Thalès en montrant qu'une année est constituée de 365 jours, 5 heures, 48 minutes, et 24 secondes.

Gerbert d'Aurillac

Aussi connu sous le nom de Sylvestre II, né en **950** et mort en 1003. Il aurait demandé à l'astronome Lupitus de Barcelone, un traité sur un calculateur analogique permettant de mesurer la hauteur des étoiles nommé astrolabe. On ne sait pas si elle lui est parvenue mais il a introduit des concepts de la science arabe en Occident.

Lors d'un séjour de 3 ans en Catalogne, il aurait en effet consulté des manuscrits traduits de l'arabe, dans lesquels il aurait pu avoir pris connaissances des chiffres indo-arabes, ainsi que l'écriture décimale positionnelle. Il a inventé un abaque, fonctionnant de la même manière que l'on poserai une addition sur papier, dont une version pourrait avoir été réalisé avec cette notation des chiffres.

Hermann Contract

Né en 1013 et mort en 1054, il aboutit les travaux de Gerbert sur l'Astrolabe et en conçoit un. Malgré une paraplégie spastique familiale, handicap de naissance affectant sa parole et sa lecture tout en l'empêchant de marcher, il a permis, à l'instar de Vitruve, la transmission de beaucoup d'informations concernant autant la musique, que l'histoire, les mathématiques, l'astronomie et la poésie.

Al Zarqali

Apprenti forgeron né à Tolède en 1027 et mort en 1087 à Cordoue, il finit par graver des astrolabes et s'intéresser à l'astrologie. Il effectue alors des observations du ciel de Tolède et réalise des tables sur le mouvement des planètes nommées Tables Tolédanes, la précision de ses tables permettait la prédiction d'éclipses. Il aurait également repris les travaux de Ptolémée et Al Khawarizmi et corriger leurs résultats en montrant que la largeur de Méditerranée est de 42 degrés au lieu de 62.

200 ans après sa mort, Alphonse X de Castille ordonnera la traduction de toutes ses œuvres littéraires et commandita la réalisation de tables alphonsines permettant le calcul de la position des astres tels que le Soleil, la Lune et les planètes. Ces travaux seront également repris par Copernic.

Abraham bar Hiyya Hanassi

Probablement né en **1070**, il vécu jusqu'au début du 12 ème siècle où il s'éteindra vers l'an 1140. Rabbin, mathématicien, astronome et philosophe, il est parfois considéré comme le véritable pionnier des sciences mathématiques en Europe. Il a traduit l'*Algèbre* d'Al Khawarizmi en latin, avec l'aide de Platon de Tivoli, dans une œuvre nommée *Liber embadorum*, qui servira à Fibonacci.

Fibonacci

Ayant vécu de 1170 à 1250, Leonardo Fibonacci est le "chaînon manquant", qui aurait importé la notation indo-arabe aux mathématiques occidentales à une période où les chiffres romains prédominent. Il a en effet été éduqué à Béjaïa en actuelle Algérie, et aurait ramené entre autre cette fameuse notation à Pise, où son père était marchant et notaire public des douanes.

Il est également réputé pour sa fameuse suite, bien que connue des Indiens depuis le 6e siècle, et liée au nombre d'or, proportion qui n'a pas été évoquée par Fibonacci et que l'on retrouve dans beaucoup de choses y compris des structures produites par la nature.

Typographie

Le mot typographie se compose de « type » qui signifie « empreinte », et de « graphie » qui signifie « écriture ».

La typographie est l'art d'assembler des caractères mobiles afin de créer des mots, des phrases, et de les imprimer. Cette technique a été détaillée vers 1440 par Gutenberg, qui n'a pas inventé l'imprimerie en soit mais l'a popularisée avec l'ensemble des techniques mécaniques qui y sont liées.

En effet, les caractères mobiles existait déjà car inventés en 1040 par un inventeur chinois nommé Bi Sheng ; et la xylographie permettait déjà bien avant cela, l'impression à l'aide de gravures sur bois, malgré son usure après plusieurs utilisations.

L'imprimerie à permis l'automatisation d'une transmission écrire qui était alors manuelle, baissant les coûts et améliorant la vitesse de production et de diffusion des informations. La lecture qui était alors un privilège réservé aux plus riches devient alors accessible, la transmission orale ne prévaut plus et chacun peut avoir un libre examen des œuvres littéraires.

Leon Battista Alberti

Il est considéré par certains comme le père de la cryptographie occidentale, il a en effet étudier et inventer un système de chiffrement par substitution, le cadran chiffrant, et rédigé un texte prouvant que l'analyse de fréquence des lettres dans les textes en permet le déchiffrement. Il finira donc logiquement par inventer le sur-chiffrement codique, l'innovation cryptographique la plus significative depuis la période de César. Cette méthode consiste à utiliser plusieurs alphabets désordonnés en alternant entre eux lors du chiffrement.

Il était également architecte, ayant planifier des constructions à Florence et surtout le précurseur de l'imagerie numérique.

Il aurait également imaginé le premier anémomètre permettant d'évaluer précisément la force du vent.

Il finira par décéder en 1472 à Rome

Luca Pacioli

A la fin du 15 ème siècle, il reprends le concept de nombre d'or dans un livre illustré par Leonard de Vinci, "De divina proportione" participant au mythe qui lui est lié. Pacioli est d'ailleurs le fondateur de la comptabilité par partie double que l'on utilise aujourd'hui dans en entreprises. Il a également traduits Éléments d'Euclide en Latin, et publier un résumé d'arithmétique, de proportion et de géométrie à Venise en 1492.

Retour

Époque moderne

Le début en étant marqué par la découverte occidentale d'un nouveau continent en 1492, cette période sera notamment celle du développement des empires coloniaux et des grandes découvertes maritimes, permis par les développement technologiques du moyen âge, notamment concernant la navigation, la cartographie, l'imprimerie et les techniques agricoles. L'import de la pomme de terre américaine permettra d'atténuer le problème des famines.

Dans cette période s'amorce un changement social, avec le très lent déclin des monarchies, du clergé et de la noblesse, au profit de la bourgeoisie qui développa le commerce, notamment dans les villes et leurs abords, causant une urbanisation progressive. L'Église perd de son pouvoir et ses biens entrent progressivement dans le domaine public grâce à la sécularisation.

Les États-Unis finiront par déclarer leur indépendance en 1776.

L'époque contemporaine la suivra en 1792 à partir de la révolution française.

Nicolas Copernic

Aristarque de Samos fut vers -280 le premier à envisager que la Terre tourne autour du soleil mais c'est Copernic qui vers 1513 proposa un modèle héliocentrique, amélioré par la suite par Kepler, et confirmé à posteriori par Galilée qui réalisa les observations et rédigea les premiers principes mécaniques permettant de justifier ce système.

Il est à l'origine du mouvement philosophique des Lumières, dont feront parti la plupart les philosophes lui succédant comme Descartes, Spinoza, Locke, Newton, etc...

Ce mouvement a donné lieu au siècle des Lumières, qui a vu émerger beaucoup d'innovations technologiques, avec un détachement de la croyance et des superstitions au profit de la raison.

Montaigne

Né le 28 février **1533**, cet épicurien sceptique eu écrit multitudes d'essais qui inspireront bien des philosophes après lui, il commença cependant par écrire deux essais stoïques pour prouver "que le goût des biens et des maux dépend de l'opinion que nous en avons" et "que philosopher c'est apprendre à mourir" mais s'en écarta rapidement, indiquant qu'il "est certain qu'à la plupart des savants, la préparation à la mort, a donné plus de tourment que la mort ne fait de souffrance".

Il en garda pour autant la vertu, se dirigeant dans le scepticisme avec la plus grande prudence et tempérance, ne prononçant un jugement qu'une fois qu'il a bien analyser la situation, et indiquant se méfier des gens qui prétendent détenir la vérité. Ce décrivant lui même comme n'étant pas un sage, ni même ayant grande estime de lui, son humilité en fera quelqu'un de très apprécié et accessible auquel on s'identifie plus facilement qu'a un "grand sage".

Il dira également que la philosophie est la science qui nous apprends à vivre, confrontant la pensée à l'essentiel des expériences que l'on rencontre de notre vivant et à soi même. Au fil du temps sa recherche du bonheur le reprochera de l'épicurisme, qui finira par lui faire compléter ses propos en déclarant que philosopher c'est apprendre à vivre le plus heureusement possible, et qu'il "passe le temps quand il est mauvais et désagréable ; quand il est bon, je ne veux pas le passer, je le goûte à nouveau, je m'y arrête. Il faut passer le mauvais en courant et s'arrêter au bon", preuve d'un hédonisme raisonné.

Rabelais

Né le 9 avril **1553**, il consacra la première partie de sa vie à la religion, avant de finir par commettre le crime d'abandonner son habit de moine, devenant apostat et entament des études qui le feront devenir médecin, après quoi il devint écrivain.

Bon vivant et humble chrétien connu pour ses banquets est également passionné par le gigantisme, on lui doit Pantaguel, Gargantua, ou encore Panurge et ses moutons. Naturellement épicurien, mais aussi influencé par le stoïcisme, le scepticisme et le cynisme, il partage avec Montaigne le fait d'être un écrivain érudit polyglotte proche du peuple, mêlant le sérieux au comique, bien qu'a l'inverse de Montaigne, lui écrira plutôt des romans.

C'est une énième personnalité à être censuré, et à s'attirer des condamnation pour sacrilèges comme ne pas croire en l'immortalité de l'âme ou d'amoindrir la crainte de Dieu. Pour autant, le succès de ses premières œuvres lui feront réaliser un almanach se riant des superstitions. Les géants présents dans ses œuvres sont également une caricatures de la royauté, de l'Église et de son enseignement scolastique, qu'il combattra en usant de raillerie paillarde et de culture populaire, usant de situations très imagées et exacerbées.

Francis Bacon

Né le 22 janvier **1561**, il proposera une théorie empiriste de la connaissance et des règles de la méthode expérimentale, faisant de lui l'un des pionniers de la pensée scientifique moderne, et lui valant d'être considéré comme le fondateur du mouvement l'empiriste.

"L'empirisme considère que la connaissance se fonde sur l'accumulation d'observations et de faits mesurables, dont on peut extraire des lois générales par un raisonnement inductif, allant par conséquent du concret à l'abstrait."

Giambattista della Porta

Fasciné par l'ésotérisme derrière les miracles et mystères de la nature, il œuvra à les opposer au divinatoire, et à convertir des croyances en savoirs scientifique. Comme beaucoup de philosophes et esprits polymathes, sa pensée est dirigée par les principes préscientifiques de la *théorie des analogies et de la correspondance*. Il eu étudié l'optique et le magnétisme, les lentilles et l'attraction du fer sur un aimant, ainsi que la propriété de nombreux métaux.

Cryptographe, il rédigea en 1563 un ouvrage détaillé résumant les connaissances de cryptanalyses connues à l'époque, traitant du chiffrement et déchiffrement de messages, avec quelques ajouts de sa part, comme le système littéral à double clef qui sera longtemps utilisé, et dont il est potentiellement l'inventeur. Il a également aidé à aboutir les travaux d'Alberti pour en faire un système complet.

Il s'intéressa également à la psychologie et notamment la mémoire, domaine qu'il étudia jusqu'à concevoir des astuces mnémoniques utilisées par les acteurs de théâtre pour mémoriser leurs textes.

Johannes Kepler

Né en 1571

Thomas Hobbes

Né le 5 avril 1588, il a rédigé *Léviathan* qu'il publiera en 1651. Cette œuvre matérialiste et rationaliste se veut critique des États, de la souveraineté et des religions, bien qu'elle soit ironiquement une référence biblique. Hobbes a suivi des raisonnements déductifs inspirés des mathématiques, plus précisément de la géométrie, pour établir une théorie scientifique et anthropologique de la morale et des organisations autoritaires. Pour lui l'humain est naturellement mauvais et violent, il n'inhiberai ce comportement qu'en faveur d'une autorité dont il craindrait la sentence. Le Léviathan représente cette autorité indiscutable, terrifiante, métaphore des dictatures qui régneront après la destitution de Charles I en 1646.

Fermement opposé à la religion et à la scolastique philosophie religieuse enseignée au moyen age dans les universités, il serait le premier le premier à préconiser qu'une "société athée ou a-religieuse constitue la solution au problème social ou politique".

Comme beaucoup de matérialistes, il adhérera à la philosophie nominaliste indiquant que les idées et concepts sont des constructions de l'esprit, niant la théorie des formes des philosophes antique. Il conçoit également la raison comme un système de traitement de l'information, comparant la pensée à un calcul. Cela revient à penser que les idées et mots ne sont que des étiquettes liés des réalités subjectives, qui ne représentent en aucun cas une réalité absolue. Cette subjectivité indique également un certain empirisme, toute connaissance provient initialement des sensations.

Hobbes déclarera en autre que "l'esprit humain ne conçoit rien qui n'ait d'abord été, en totalité ou en partie, engendré par les organes des sens", ou que "L'usage général de la parole est de transformer notre discours mental en discours verbal, et l'enchaînement de nos pensées en un enchaînement de mots" formant un pont entre l'esprit et son expression dans le contexte social. Il compare ainsi l'homme à une machine, disant que tout n'est que signaux perçus et réponses créées par un dispositif physiologique nerveux. Assimilant également le Léviathan à un être doté de souveraineté et donc d'une âme, bien qu'il soit un concept abstrait immatériel composé d'individus réels le représentant.

Ces positions lui vaudront des accusations d'athéismes, ainsi qu'une querelle avec René Descartes, qui contrairement Hobbes, considérait que seuls les humains ont une âme, que les animaux serait dénues de conscience et de pensée, et ce malgré le fait que Descartes ai émit l'idée d'une substance spirituelle ou immatérielle, qui n'est pas partagée par le matérialiste rigide et cynique qu'est Hobbes.

René Descartes

Né en 1596, il s'opposa lui aussi à la scolastique, il est le fondateur de la géométrie analytique et du mécanisme, qui donnera lieu à des automates comme ceux de Vaucansson, à la causalité et au fonctionnalisme, indiquant que de mêmes causes auront les mêmes conséquences. Comme dit précédemment, il exposa la dualité entre l'âme est le corps, qu'il considérait comme propre à l'humain, réduisant les autres animaux à une bête machine guidée par ses instincts et incapable de pensée ou de conscience.

Digne héritier du scepticisme, ses réflexions étaient guidées par un doute méthodique qui lui est propre et que l'on dira cartésien. Tout ce qui parait évident doit être remis en question, en mettant de côté son jugement selon le concept sceptique nommé épochè. Il insistera également sur l'importance de ne pas faire confiance aux sensations, qui peuvent nous tromper comme par exemple, dans le cas des illusions d'optiques. Tentant de chercher une vérité dont il ne puisse douter, il fini par trouver sa phrase culte : "cogito ergo sum", signifiant : "je pense donc je suis".

À l'inverse de Thomas Hobbes, Descartes semblait croire en l'existence de Dieu, existence qu'il prouvera en disant que tout effet à une cause réelle, et que l'infini ne peut être causé par quelque-chose d'imparfait, et donc qu'un Dieu parfait doit exister. C'est une affirmation à nuancer par le fait qu'il semble avoir eu la plus grande prudence pour éviter la censure, notamment lorsqu'il à accepté le système cosmologique héliocentrique de Copernic, de la même manière que Galilée qui fut pour cela condamné.

Galilée

Né en 1600,

Il rencontrera Hobbes lors d'un séjour de ce dernier à Florence.

Wilhelm Schickard

Il inventa au début du 17 ème siècle, une horloge à calculer avec l'aide des travaux de Napier à qui il dédia un éphéméride. Malheureusement, lors de sa conception un incendie vint détruire ses avancés, et une reproduction fonctionnelle montra qu'il manquait certains moyens technique pour finaliser son œuvre et la rendre opérationnelle.

Calculateurs

Le terme "computer" à été écrit pour la première fois par le poète Richard Brathwaite dans le livre The Yong Mans Gleanings en 1613, sauf que le terme ne faisait pas référence à une machine car à l'époque, les ordinateurs étaient des gens, qui calculaient et rédigeai des tables de calcul (logarithmiques, trigonométriques, etc...), et ce à fin de pouvoir avoir la réponse à un calcul de manière directe (avec une complexité en O^1).

Bâtons de Napier

En 1617 nommé Bâtons de Napier. Il facilite le calcul des produits, quotients, puissances et racines. John Napier est un mathématicien écossais qui à notamment donner son nom au logarithme népérien.

Cet outil permet à l'aide d'un tableau ayant pour lignes les chiffres de 1 à 9, et pour colonnes les chiffres du nombre sur lequel on désire faire une opération, la valeur des différentes lignes de cette colonnes étant inscrites le résultat de l'opération pour chaque ligne donc chiffre de la base 10.

Règle coulissante à calculer

Pour clôturer la présentation d'abaques, en 1621 William Oughtred, à qui on doit la notation de π et "x" pour la multiplication, se base sur les travaux de Napier et invente une règle coulissante destinée à calculer des multiplications, divisions et également des exponentielles, racines, puissances et calculs trigonométriques, laissant l'addition et la soustraction à de plus simples abaques.

Aujourd'hui obsolètes, elles ont pendant longtemps été, à la manière des tables de calcul était une solution suffisamment précise, abordable et facile à créer.

John Locke

Né le 29 août 1632

Isaac Newton

Né en 1642

Pascaline

En 1650, Blaise Pascal invente ce qui est considéré aujourd'hui comme la première machine à calculer. Dans la volonté de soulager le travail de son père, nommé premier président à la Cour des aides de Normandie à Rouen, cette machine a permis de réaliser additions, soustractions, et multiplication, ainsi que divisions, par répétitions.

C'était la seule machine à calculer fonctionnelle au 18è siècle, elle marque le début d'une période de développement de machines à calculer de plus en plus sophistiquées, qui seront présentées dans la suite de cet ouvrage.

Blaise Pascal, né en 1623 à Clermont-Ferrand, était ce que l'on appelle un esprit *polymathe*, c'est à dire qu'il connaissait un grand nombre de sujets; certes variés, mais notamment dans le champ des arts et des sciences, comme Leonard De Vinci qui eu conçu lui aussi plusieurs machines, pour le théâtre mais aussi hydrauliques, volantes, textiles, et de guerre. Ce genre de personnalités historiques sont considérés comme esprits universels.

Essentiellement mathématicien, il publie un traité de géométrie projective à 16 ans et invente la première machine à calculer à 19

C'est la première fois que l'on remarque un impact de l'automatisation notable sur l'emploi et la société, associée à une technophobie, bien que de nombreuses peurs ai eu étées justifiées par la création de machines de guerres par le passé.

hexagrammes mystique de Pascal

Baruch Spinoza

Très inspiré par le Stoïcisme, selon lui il n'existe dans la nature qu'une seule substance et que c'est Dieu.

1632 -> 1677

Binaire

Le binaire est pratiqué depuis l'an -750, mais le concept et ses opérations tel qu'on les utilise aujourd'hui, n'ont étés formalisées qu'en **1690** par Leibniz Wilhelm Gottfried. Grand polymathe allemand, il a popularisé ce système en démontrant sa facilité d'écriture et d'usage, notamment pour la division qui était à ce moment compliquée à automatiser, et il a projeté son utilisation future en émettant l'idée que des machines plus élaborées puissent en tirer pleinement profit. Ces travaux ont permis à d'autres chercheurs de déchiffrer les codes binaires utilisés par les hexagrammes en -750.

Leibniz était rationaliste, par définition il était opposé à l'empirisme, cette philosophie, qui est également celle de René Descartes et Baruch Spinoza

Voltaire

Né le 21 novembre 1694

Jean-Jacques Rousseau

Né en 1712 Rousseau était orphelin et errant, persécuté par l'Église et la république de Genève. Il était également autodidacte, et appris à l'aide de lectures de Descartes, Lockes, Malebranche, Leibniz, et bien d'autres. Sa pensée philosophique repose, à l'inverse de Hobbes, sur l'idée que l'Homme est naturellement bon et que la société et les règles qui en émanent viennent nous corrompre, renonçant à notre liberté naturelle au profit de la liberté civile.

Malgré cela il affirme que le peuple est souverain, et qu'il doit converger vers l'intérêt commun, qu'il appela *volonté générale*. Il traitera également des rapports de forces et de la place de l'autorité, déclarant que la "force ne fait pas droit, et qu'on n'est obligés d'obéir qu'aux puissances légitimes".

En effet, depuis la sédentarisation, l'Homme apprends de plus de pairs différents et doit collaborer afin de trouver des solutions communes, généralement en mettant ses sentiments de côté et en trouvant des "jeux" qui conviennent à la majorité.

"le travail ne rend pas l'homme heureux mais fait sa dignité"

En devenant adulte, l'enfant "devient son propre maître", à l'inverse, un individu peut aliéner sa liberté et se rendre esclave d'un tiers, même de nos jours, une personne décidant de se salarié dans un travail dit alimentaire pour survivre se "vends" en échange de sa subsistance. Pour autant, c'est lui qui par son travail, assure les revenus du patron, et indirectement des autres salariés. Cette démarche n'est donc néfaste que si malgré la fin qui justifie les moyens, l'individu ne s'engage à rien envers son supérieur. Un contrat sans échange équivalent entraînant la perte de sens et sa propre nullité par l'injustice.

Rapport étroit Famille et Gouvernement, domination du faible par les plus forts.

Inversion de cette tendance, salut scout le fort protège le faible.

Levi Strauss déclarera qu'il est le fondateur de l'anthropologie, étude de l'être humain et de ses groupes sous tous leurs aspects qu'ils soient physiques ou culturels.

Kant

Né en 1724, il est le fondateur du criticisme et de l'idéalisme transcendantal. Il a été une grande influence pour la philosophie moderne et la pensée critique. Grand adepte de la connaissance pratique et esthétique, il axa sa philosophie sur la capacité à savoir et quoi faire ou espéré en fonction de cette dernière. Il invite donc à être raisonnable, tout en faisant preuve de rigueur et ainsi n'accepter que la connaissance que l'on peut démontrer et résistante à la critique.

Il a également affirmé que la connaissance trouve son origine dans le sujet humain et non pas dans l'objet étudié. C'est à dire que la construction de la réalité ne sera jamais pleinement représentative de l'objet étudié, mais un long apprentissage itératif de l'humain afin de s'en rapprocher assez pour le connaître.

Il traitera également beaucoup la question du dogme, indiquant que l'athéisme est une croyance au même titre que les autres, et qu'il faut malgré tout savoir limiter son savoir pour laisser une place à la croyance, sans laquelle, on ne peut concevoir le monde et emettre des hypothèses.

Cartes perforées

Ce sont des morceau de papiers rigide dont la présence ou absence de trou corresponds à une information binaire.

La plus ancienne utilisation des cartes perforée est avérée dès 1502 avec la première orgue de Barbarie, ancêtre de la boite à musique.

A partir du 16e siècle, que des automates sont réalisés avec.

En 1725, le lyonnais Basile Bouchon, met au point le premier système de programmation d'un métier à tisser à l'aide d'un ruban perforé. En 1728, son assistant nommé Jean-Baptiste Falcon, à l'idée de remplacer le ruban par une série de cartes perforées reliées entre elles.

Jacques de Vaucanson, célèbre Grenoblois inventeur d'automates musicaux et à objectif de divertir, réutilise ce concept en remplaçant ruban et cartes perforées par un cylindre métallique à pointes.

Enfin Joseph Marie Jacquard à mis en œuvre les procédés déjà existants pour réaliser un métier à tisser éponyme en **1801**, date à partir de laquelle il passe une bonne dizaine d'année à démocratiser et perfectionner la machine programmable.

Programmer avec des cartes perforees demandais déjà une rigeur importante car l'ordre des cartes etait tres importantes et qu'un simple coup de vent ou inadvertance pouvait mettre des jours de travail a la poubelle.

Pédagogie moderne

Né en 1746, Johann Heinrich Pestalozzi, est un pionnier de la pédagogie moderne, pédagogue éducateur et penseur suisse, tout comme Rousseau dont il a été inspiré, il dédia sa vie à l'éducation des enfants pauvres et fonda des orphelinats.

Philosophie de l'éducation et axiologie, qu'elle est la valeur de l'éducation et de l'enseignement aujourd'hui? On sait désormais que l'apprentissage se fait mieux par la récompense que la punition. Il est plus productif d'encourager un bon comportement que de réprimander un mauvais, bien que cela est parfois nécessaire, il faut toujours mieux orienter sa pédagogie de manière positive.

Théorie générale des systèmes

Aussi appelée Systémique, la première personnalité connue à parler de ce domaine d'étude des ensembles complexe d'interactions entre des sous groupes est Sébastien Le Prestre dans *Système*, plus connu sous le nom de Vauban, dont il était le marquis. Cela a ensuite été décrit par Étienne Bonnot de Condillac qui définit les prémices de l'approche systémique dans son *Traité des Systèmes* en **1749**, repris par la suite par Pareto qui l'appliqua à l'économie politique.

Comète de Halley

En 1757, trois français, Alexis Clairaut, Jérôme Lalande, et Nicole Lepaute aboutissent le travail d'un polymathe Anglais, Edmond Halley, qui expliqua dans un livre que ce que l'on croyait être des comètes distinctes n'en sont en réalité qu'une seule avec une périodicité de 76 ans pour effectuer une révolution autour du soleil.

Ce travail conjoint à permis l'abandon de la théorie des tourbillons de Descartes au profit de la mécanique Newtonienne.

Époque contemporaine

C'est la période actuelle, le début est défini par la révolution industrielle qui a commencée en 1760 au Royaume-Unis, le besoin de calcul, de gestion et d'automatisation est alors grandissant. La France aboli la monarchie en 1792, les États deviennent pour la plupart des républiques, l'ancien régime et les empires coloniaux prennent fin, l'esclavage est aboli, et les deux guerres mondiales prendront lieu par la suite. Dans le monde anglo-saxon, cette période ne commence qu'en 1945 à la fin de la seconde guerre mondiale.

Almanach nautique

Depuis 1766, cette bible du marin est éditée chaque année, c'est le premier projet de table permanent.

Avant d'être automatisée, elle était calculée par deux personnes différentes et validée par un dernier qui comparait les résultats.

Lorsque deux des auteurs principaux, les astronomes Malachy Hitchins et Nevil Maskelyne meurent respectivement en 1809 et 1811, l'ouvrage sombre pendant 20 ans, croulant sous les erreurs.

Georg Wilhelm Friedrich Hegel

Né en 1770, dialectique du maître et de l'esclave. Travailler pour un maître fait acquérir de plus en plus de compétences à l'esclave, et le maître à force de se faire servir perd de ses compétence, l'esclave à alors l'opportunité de devenir maître à son tour voire effectuer une inversion de contrôle. Le travail serait donc un facteur d'émancipation et de libération, et un vrai maître doit continuer d'apprendre et ne pas se reposer sur ses sous-fifres, en plus de faire preuve d'une reconnaissance sincère nécessaire à la sanité de leur relation.

Friedrich Fröbel

Né le 21 avril 1782

Dactylographie

Son étymologie grecque signifie écrire avec les doigts, (1800)

Arithmomètre

C'est la première machine à addition commercialisée, elle fût développée par Thomas de Colmar en **1820**. Cependant elle n'a jamais été produite en grande quantité car elle était réalisé à la main à raison d'un ou deux exemplaires par mois. De plus, le procédé de calcul était très lent, la plupart des utilisateur ni voyait pas de gain de temps lors de petit calculs, rendant son utilisation quasiment exclusive aux assurances et ingénieurs, qui utilisent des calculs mettant en œuvre des grand nombres supérieur au million.

Malgré son bas coût de 150\$, la demande pour ce produit resta donc faible.

Machine à différence et analytique

La première personne à avoir automatiser l'édition de tables de calcul est Charles Babbage, qui a initialement travaillé avec des calculateurs humains, "computers" en anglais. La conception de telles tables étaient fastidieuses à superviser et encore plus à calculer et réaliser. Il a œuvré à développer une machine basée sur les méthodes de calcul de l'époque, réalisées par des gens qui étaient coiffeurs, ayant perdu leur travail suite à la révolution française, période après laquelle la coiffure étant vue comme symbole de l'aristocratie, à été délaissé.

Ils effectuaient essentiellement des additions et des soustraction, sous la supervision de mathématiciens qui leurs prépareraient les formules d'après la méthode des différences finies. D'où le nom de la machine qu'il a inventé en 1834, la machine a différences. Ayant l'expérience du milieu, il voulait réaliser un système fiable, résilient a l'erreur. Cette dernière pouvait provenir du calcul, mais arrivant le plus souvent lors de l'impression, il à donc fait en sorte, dès la phase de design, que sa machine prépare directement le texte en résultant pour l'impression.

C'est une approche très intéressante réduisant les intermédiaires et automatisant toute la chaine de création, que je reprendrais plus tard. On remarque déjà que la machine est un outil qui peut nous guider et réduire nos erreurs, ce qui à l'époque était crucial, notamment en mer ou une erreur de calcul ou d'impression sur l'almanach du navigateur pouvait mener a la perte de tout un navire et de son équipage.

De 1820 à 1830 il à visiter beaucoup d'usines en Europe dans le but de trouver des idée pour sa machine à différences, il n'en trouva pas beaucoup mais cela lui a permis de devenir un économiste des machines industrielles à son époque.

A peine eu t'il conçu la machine à différence, qu'il eu oublier la finalité de base : réaliser des tables de calcul, et embrassa l'idée d'une machine capable de calculer tout ce qu'un humain pourrait lui demander, la Machine Analytique.

De son vivant, seul le concept existait, elle ne vu le jour que grâce à son fils, qui après une tentative infructueuse en 1888, revint à la charge et réalisa en 1906 une machine fonctionnelle qu'il eu présenté devant l'académie royale anglaise d'astronomie, après quoi il en fit don au musée des sciences de Londres en 1910.

Maison d'échanges

L'informatique et la gestion bancaire est une vieille histoire d'amour. Babbage fut intéressé par ce domaine, il eu le privilège de pouvoir en visiter une et d'en relater ce qu'il s'y passe. Avant que l'ordinateur n'apparaisse, des gens œuvraient à réaliser cette tâche, chaque banque avait son messager qui rapportait les différents chèques et espèces, vers les autres banques, valant pour échange.

Télégraphe

Au 18è siècle, apparaissent les télégraphes permettant émettre et de recevoir des messages sur de longues distances à l'aide de codes pour une transmission rapide et fiable. Notamment le morse.

Au 19e siècle, 3 télégraphistes sur 4 étaient des femmes.

Code morse international

- 1. Un tiret est égal à trois points.
- 2. L'espacement entre deux éléments d'une même lettre est égal à un point.
- 3. L'espacement entre deux lettres est égal à trois points.
- 4. L'espacement entre deux mots est égal à sept points.

Arithmaurel

Créée en 1842 par Timoleon Maurel, avec Arithmomètre et le cylindre de Leibneiz pour inspiration, cette machine à calculer permettait en renseignant simplement les valeurs (opérandes) et les opérateurs. C'est une grande avancée en termes d'expérience utilisateur, cependant sa conception à grande échelle n'as pas été possible à cause des limitations techniques de l'époques. La division quand à elle reste fastidieuse et demande à l'utilisateur d'effectuer un ensemble de soustraction avec beaucoup d'attention.

Programmation

Un programme est une prévision écrite, c'est l'ordre du jour, c'est ce qui permet de répondre a la question quoi faire quand ?

Le tout premier programme informatique à été imaginé par Ada Lovelace en **1842**, à 27 ans. 10 ans auparavant, elle rencontre Charles Babbage, avec qui elle travailla, notamment sur la machine analytique, pour laquelle elle conçu ce dit programme.

Algèbre booléen

En **1847** George Boole, invente un algèbre binaire éponyme. Basé sur vrai et faux, 1 et 0, il formule et démocratise les tables de vérités des différantes portes et fonctions logiques.

John Dewey

Né le 20 octobre 1859

Maria Montessori

Née le 31 août 1870

Remington

Henry Mill en 1714 breveta la machine à écrire.

1829, William Austin Burt créé The Typographer

En 1857, Samuel Ward Francis crée une machine à écrire

Crée en 1816, Remington Arms ou E.Remington and Sons, qui comme son nom l'indique fabriquait initialement des armes à feu, puis du matériel agricole et des machines à coudre, créa en **1874** la "type-writter" Remington

La Remington de 1874 nous à apporter les claviers QWERTYUIOP, et la suite alphabétique présente sur beaucoup de claviers, FGHJKL.

Diode

Le principe du semiconducteur à été découvert par Karl Ferdinand Braun en 1874 qui s'est rendu compte que l'on pouvait faire passer un courant électrique dans une direction donnée, à l'aide d'un fin fil de métal et d'un crystal de galène. Cette découverte sera réutilisée plus tard dans les tubes à vides, permettant d'avoir des bascules allumée / éteinte avec un signal directionnel.

Téléphone

En 1876 Alexander Graham Bell, réalise le premier appel téléphonique.

Edison

En 1879 il récupère le brevet pour la lampe à filament, qu'il n'a pas inventé mais démocratisée et améliorée, devenant le pionnier dans les lampes électriques. Il était donc essentiellement un homme d'affaire, il est considéré comme l'inventeur le plus prolifique, on lui doit également la naissance des premiers bureaux de recherches industriels, ainsi que les films vidéos.

Adolphe Ferrière

Né le 30 août 1879

NCR

La Nationnal Cash Register à été créée en 1884

Burroughs Corporation

Créée en 1886, devint Unisys après sa fusion en 1986 avec Sperry Univac, anciennement Remington.

Comptomètre

Inventé aux États-Unis par Dorr E. Felt en **1887**, le comptomètre reprend l'idée du clavier à touche de l'arithmomètre. Le principe de l'addition reste aussi simple que celui de la Pascaline. Par contre, la soustraction est différente et procède par addition du complément à 9 qui est inscrit en minuscule sur chaque touche du clavier.

Calculatrices à crosses

En 1889, le mécanisme des calculatrices à crosse est breveté par le Français Louis Troncet, sous le nom d'Arithmographe

Oscilloscope

En 1893, André Blondel, ingénieur français polytechnique invente l'oscillographe bifilaire, une machine électromécanique permettant d'étudier des courants alternatifs à l'aide de graphiques, et maintenant plus largement toute évolution d'un signal électronique dans le temps.

Il inventera de nombreux autres dispositifs de mesures électriques comme un hystérésimètre et un wattmètre, il est également à l'origine avec l'aide de deux autres ingénieurs du barrage de Génissiat. Par la suite, l'outil se perfectionnera avec l'ajout d'un écran cathodique, puis sa numérisation par LeCroy, Phillips et Tektronix

Mécanographie

Hermann Hollerith est l'inventeur de la mécanographie, c'est un ingénieur américain qui a été recruté en tant que statisticien au Bureau de recensement des États Unis.

Dans la fin du 18è siècle, en 1790, le premier recensement estimait la population des États-Unis à 3.9 millions d'individus. En 1840, 28 greffiers ont travailler à la réalisation d'une estimation de 17.1 millions. Enfin, le recensement de 1880 avec 1495 greffiers qui devait scrupuleusement pointer avec une couleur d'encre particulière pour chaque statistique effectuée.

Avec la méthode automatisée par cartes perforées d'Hermann Hollerith en **1890**, la création d'un tableau statistique à été accélérée de 10 fois par rapport à ses concurrents, remplaçant bon nombre de greffiers.

Il a construit une machine à statistiques à cartes perforées qui exploite des cartes 12x6cm regroupant les 210 cases nécessaires pour recevoir toutes les informations nécessaires. Son invention à permis d'effectuer le recensement, auparavant manuel en seulement six ans. Par la suite il a améliorer le fonctionnement de cette machine en utilisant un métier à tisser Jacquard, pour mécaniser la lecture des fiches de recensement et améliorer son efficacité sur une idée de l'un de ses collègues.

Enfin, il finit par quitter l'administration et fonde la Tabulating Machine Company en 1896 qui fusionnera en 1911 avec 3 autres entreprise pour fonder la Computing-Tabulating-Recording Company (CTR), qui deviendra plus tard l'International Business Machines Corporation, IBM.

Célestion Freinet

Né le 15 octobre 1896

Tube a vide

En 1904 John Ambrose Fleming, se base sur des travaux de Thomas Edison de 1883 et de Frederick Guthrie en 1873, mais c'est lui qui à appliqué cette technologie pour remplacer les détecteurs magnétique des radio et permettre d'amplifier leurs signaux.

Séparation de l'État et de l'Église

En 9 décembre **1905**, l'abrogation du régime concordataire de 1802 met fin à l'affrontement violent qui a opposé deux conceptions de la place des Églises dans la société française pendant environ vingt-cinq ans.

Triode

Lee De Forest invente l'Audion en **1906** avec l'ajout d'une électrode intermédiaire permettant de convertir une variation de courant en variation de tension et de puissance, permettant ainsi l'amplification d'un signal. William Eccles renommera cette invention triode en 1919.

Tout deux ont contribuer pour beaucoup dans le développement des circuits électroniques et de la transmission sans fil avec la naissance de la radio.

Tube cathodique

Boris Rosing est un scientifique russe d'origines néerlandaises ayant inventer les tubes cathodiques en **1907**, avec l'aide des travaux de Ferdinand Braun. Il à par la suite déposer des brevets et démontrer le principe de fonctionnement en détail à l'aide de schémas expliquant l'hystérésis magnétique.

Ces tubes ont longtemps fait partis de nos écrans de télévisions qui affichaient une image à l'aide d'une cellule photoélectrique, dont le faisceau était dévié augmentant ou diminuant le nombre d'électrons qui passait et faisant ainsi varier la luminosité du faisceau avant qu'il atteigne l'écran projetant une image en noir et blanc.

Ces travaux ont par la suite étés démocratisés par un de ses élèves et assistant de travail nommé Vladimir Zvorykine, qui à inventer l'iconoscope permettant de capter les images qui seront retransmises sur ces écrans et qui devint rapidement pionnier de la télévision aux États-Unis et en Allemagne, bien que rapidement concurrencé par Philo Farnsworth qui fut le premier à réaliser une chaîne de télévision avec émission-réception.

Claude Lévi-Strauss

Né en 1908

Retour

Après la première guerre mondiale

Tabulatrices

1920

Enigma

1923

Alan turing decoda avec la Turingery

Moore School

1923

Bande magnétique cassettes audio
1930
IBM 601
1931
Mémoire tambour
En 1932, l'ingénieur Gustav Tauschek, invente une nouvelle méthode de mémoire vive magnétique, le concept sera réutilisé dans le Manchester Mark I, l'ENIAC, l'IBM 650 et 701, l'UNIVAC 1103 (version scientifique)
RADAR
1934
Machine de Turing
1936
Z1 Zuse Konrad
1936
Atomosoff Dowey Computor
Atanasoff Berry Computer
1937, première utilisation des tubes à vides
Hewlett Packard
01/01/1939
Retour

Seconde guerre mondiale

Z 2
1940
Z 3
1941
Colossus / Harvard Mark 1
IBM ASCC (Automatic Sequence Controlled Calculator, Relay Switches qui pouvaient casser 1944
https://www.youtube.com/watch?v=MOUg25dJM4c
Architecture de von Neumann
Beaucoup d'ordinateurs ont été réalisés en 1945 dont l'EDVAC l'ENIAC, le SSEC, et le Z4. Von Neumann lors de ses travaux sur l'EDVAC, à décrit cette architecture qui sera réutilisée par Turing, Mauchly et Eckert pour l'ENIAC, ainsi que sur tout les ordinateurs à partir de cette date.
Cette architecture à permis à permis au stockage de posséder les instructions du programme et la donnée à traiter sur le même support, permettant également aux instructions du programme d'être également traités comme de la donnée, et donc de pouvoir être lu et réécrite.

Même si il a été pensé par 2 hommes, l'ENIAC à été programmé par 6 femmes, qui ont du documenter, coder et brancher des millions de cables

Elisabeth Findler Jake, nom de domaines, whois nom de domaine (page jaunes) Alors que la silicon vallait est encore loin.

Retour

Guerre froide et course a l'espace

La seconde guerre mondiale prends fin et c'est officiellement l'époque contemporaine pour les anglo-saxons. C'est l'avènement du nucléaire, de l'ère de l'informatique, mais aussi de la décolonisation et de la guerre froide. Les besoins de calculs sont plus importants que jamais, aéronefs, nucléaire militaire, civil, et gestion de l'énergie sont au cœur des réflexions et stratégies des pays du monde.

L'arrivé du calcul et de la simulation informatique offrent un meilleur contrôle, ainsi qu'une prise de décision plus efficace, permettant de gérer de grandes structures, qu'elles soient civiles, militaires, ferroviaires, aériennes, ou autre.

De grands projets à forte complexité en découlent, elle amènent à un besoin de communication multimédia mondiale, pour que les gens puissent s'organiser et faire coopérer des spécialistes de tout les domaines concernés. Internet viendra résoudre ce problème à partir de 1970, amenant à la période de mondialisation intense que l'on vit encore actuellement en 2023.

As we may think

Vannevar Bush électrotechnique du MIT, analyseur différentiel, Comparator, Rapid Selector, 1940, projet manhattan 1945 memex, www, hypertexte

IBM 602 & 603

IBM 602 & 603 1946

Naissance de la Eckert-Mauchly Computer Corporation

1946

La mort de leur investisseur principal lors d'un trajet en avion les poussera à revendre leur entreprise à Remington par la suite.

Remington Racheté par Sperry Corporation qui deviendra Unisys après fusion avec Burroughs

Trackball

1946

Norbert Wiener

En 1947 par le mathématicien Norbert Wiener décrit la cybernétique, l'étude des mécanismes d'information des systèmes complexes et leur analogies entre les organismes vivants et les machines. Ils mettent en avant la rétroaction, et la téléologie très présente dans ce domaine. La cybernétique trouve son origine étymologique du grec kubernêtikê qui signifie gouverner dans le sens de diriger un navire.

L'une des premières machines pourvues de rétroaction est le régulateur à boules de James Watt en 1788 qui permettait de réguler la vitesse de rotation d'une vachine à vapeur.

https://fr.wikipedia.org/wiki/Auto-organisation

Le mouvement cybernétique ralliera de nombreux mathématicien dont John Von Neumann.

Transistor

1947

SSEM

Le tube de Williams-Kilburn, développé en 1946 ou 1947 par Frederic Calland Williams et Tom Kilburn, utilise les tubes cathodiques de Boris Rosing pour enregistrer des données binaires. La Small-Scale Experimental Machine, premier ordinateur à architecture de von Neumann les utilisait pour sa mémoire vive. Le test de cette nouvelle technologie sur le SSEM, aussi appelé Manchester Baby étant concluant en **1948**, la production d'un autre ordinateur à été lancé.

Manchester Mark I

En 1948 les travaux commencent pour voir le jour en 1949, décrit comme un cerveau électronique par la presse, des neuroscientifiques s'y intéressent rapidement, à une période ou naît la cybernétique.

Théorie de l'information

1948 Claude Shannon

Warren Weaver, né le 17 juillet 1894 est principalement connu comme un des pionniers de la traduction automatique, il a également assister Shannon dans le développement de la théorie de l'information

IBM 604

1948

IBM 407

1949 imprimante 150 lignes par minutes

EDSAC & BINAC

En 1949, le Electronic Delay Storage Automatic Calculator, et le Binary Automatic Computer.

IBM CPC

Rival de l'EDSAC et du BINAC, il fait son apparition la même année en 1949, fait à partir du IBM 604 et du IBM 402

Premier compilateur (A-0 System Grace Hopper 1951)

Ferranti Mark I

Le Ferranti Mark 1, aussi connu comme le Manchester Electronic Computer, est le premier ordinateur électronique généraliste commercialisé du monde et le second au monde après l'ordinateur électromécanique Z4. Il a été créé en 1951. Alan Turing l'a utilisé pour modéliser des processus de morphogenèse, devenant pionnier de la bio-informatique. On l'a aussi employer pour jouer de la musique ou aux échecs. Il ne sera vendu qu'a raison de 7 exemplaires avant d'être succédé par le Ferranti Mercury

UNIVAC 1

Sorti en 1951 par Remington Rand, MAGNETIC TAPE STORAGE start and stop tape rapidement avec des servomoteurs, plastic -> déforme ----> métal résistant, travail pour écrire et lire dessus

A-0 System

Grace Hopper, docteur en mathématiques, officier de la marine, et informaticienne américaine; a créé en 1951 le Arithmetic Language, qui est le premier compilateur. Il aura plusieurs version jusqu'à arriver au B-0 Flow-matic qui est à l'origine du COBOL. Comme tout les compilateurs, il prends un code et le converti en code machine exécutable, ce que le A-0 réalisait en établissant des liens entre les programmes et sous-programmes ainsi que leurs paramètres.

Leo I

Descendant de l'EDSAC créé par Maurice Wilkes, le Lyons Electronic Office est créé en 1951. Il est le premier ordinateur utilisé pour des opérations commerciales.

J'ai pu lire que le LEO I était le premier ordinateur à avoir un système d'exploitation, mais il n'est avéré que pour le LEO III en 1961 pour en avoir un et ainsi pouvoir ouvrir plusieurs programmes en même temps à l'aide du multitasking. Il est cependant possible que le LEO I avait un système d'exploitation lui permettant de faciliter l'accès aux ressources, voire faire du traitement par lots. Cet ordinateur pouvait calculer et imprimer 40 fiches de paie en une heure, soit un peu moins d'une par minute.

La première occurrence que j'ai trouvée dans une archive du MIT de Douglas T. Ross, est la suivante, qui a sûrement été utilisée pour l'UNIVAC 1103 réalisé en 1953.

Another innovation triggered by my needs was the creation of the Director Tape utility program [WWJQ54p7] -- the first real Operating System command language system (to use present-day terms) to eliminate the computer operator function for my elaborate, multi-tape runs.

IBM 701

Aussi connu sous le nom de Defense Calculator l'IBM 701 est sorti en **1952**, rival du UNIVAC qui a fait grandement peur à IBM qui craignait de perdre une bonne partie du marché civil, bien que cela ne fut pas le cas comme décrit précédement. Il possédait une mémoire tambour.

IBM 702

Construit en réponse à l'UNIVAC 1, c'est le premier ordinateur muni de dérouleur de bandes magnétiques, il était moins puissant que le 701 ou le ERA 1103 mais avait contrairement à eux, les civils pour cible commerciale. Contrairement à l'UNIVAC, sa mémoire n'était pas constituée de ligne à retard analogiques, mais elle était électrostatique en utilisant des tubes de William, deux fois plus rapide et plus fiable. De plus, contrairement au monolithe qu'était l'UNIVAC, son design étant modulaire et composé de boites reliées entre elles, l'ordinateur pouvait être transporté dans la majorité des ascenseurs.

Après son annonce en septembre 1953, IBM arrive à réaliser 50 commandes en 10 mois.

Mémoire à tores magnétiques

La même année, en 1953, est développer la mémoire à tores magnétique qui a révolutionné pendant une vingtaine d'année la mémoire vive. Constitué d'anneaux de ferrite polarisés, correspondant à un bit de 0 ou 1 en fonction du sens du champ magnétique, tous traversés par des fils conducteurs.

Se basant sur l'hystérésis, faire passer un courant dans un fil permettait de lire, ou d'écrire si le courant est assez élevé, la valeur des tores.

Cette technologie à poussé IBM a rééditer ses modèles 701 et 702 avec ce type de mémoire, en plus de la création de nouveau modèles l'utilisant comme le 650, 704 et 705 EDPM.

Z4

en 1953

IBM 650

Créé en 1954 c'est le modèle le plus populaire des années 50, et pour cause, il coûtait seulement un quart du prix d'un 701, et a été vendu à de nombreuses universités, créant toute une génération de programmeur. Faisant de lui le premier ordinateur produit en masse dans le monde et la première machine d'IBM à réaliser un profit significatif.

TRADIC

Créé aux États-Unis en 1955, le TRAnsistor DIgital Computer a été premier ordinateur à transistors.

Spoutnik 1 1957 Premiers langages haut niveau - Structures de contrôle et de données Plankalkul Premier langage de haut niveau, réalisé par Konrad Zuse, réalisé entre 1942 et 1946, il ne sera révélé qu'en 1948 et implémenté qu'en 1975. Le premier compilateur supportant ce langage ne sera abouti qu'en 2000. **Speedcoding** Révélé en 1953, cela a été le premier langage de programmation de haut niveau créé pour un ordinateur IBM, il a été développé par John Backus et lui a fortement inspiré le Fortran. Ce langage a permis la prise en charge des nombres à virgule flottante sur les ordinateurs IBM 701 Flow-Matic Développé pour l'UNIVAC I par Grace Hopper entre 1955 et 1959, il est à l'origine du COBOL **Fortran** 1957 John Backus Lisp 1958 John Mc Carthy

Cobol

Circuit intégré

1959

1958

IBM 1401

Fabriqué entre 1959 et 1965, il a été l'ordinateur à transistor le plus vendu, notamment grâce à la politique marketing d'IBM qui a adopter une vision globale, dans l'objectif de prendre en compte le maximum d'utilisateurs et donc clients potentiels, politique qui avait déjà fait ses preuves avec le modèle 650. IBM à ainsi créer plus qu'un ordinateur, un système complet, avec une imprimante pouvant imprimer 600 lignes par minutes, principale raison d'achat ayant fait son succès. En plus de cela, étant muni de transistors bien plus fiables que les tubes à vide, il a rendu obsolète les ordinateurs en étant munis en même temps que les machines électromécaniques qui était encore utilisées par soucis monétaires.

Par la même occasion, IBM invente le Report Program Generator (RPG), un langage de programmation haut niveau facile à comprendre, permettant aux comptables et techniciens de tabulatrices de se "reconvertir", en utilisant des concepts qu'ils connaissent et utilisaient déjà sur les panneaux de contrôles, où ils branchaient des câbles pour implémenter les entrées, calculs, et sorties. Ils pouvaient ainsi programmer sans apprendre toutes les arcanes de l'assembleur, du COBOL, ou encore du FORTRAN. Malgré cela, beaucoup de client préféraient demander les logiciels directement à IBM, qui avait un monopole si important qu'ils pouvaient se permettre de les livrer "gratuitement" avec les machines qu'ils louaient.

Théorie algorithmique de l'information

1960

Computionnalisme

1961

Spacewar!

1962

Luciano Floridi

Né à Rome le 16 novembre **1964**, ce philosophe est l'un des plus important théoriciens de la Philosophie de l'information et de l'éthique de l'informatique. Il a fonder et dirige plusieurs groupes de recherche dans ces domaines.

IBM System 360

Alors que Control Data Corporation (CDC) s'attaque au marché scientifique, fournissant des ordinateurs avec un meilleur rapport performance / prix, les plaçant 3 ème derrière UNIVAC et le leader IBM; que General Electric annonce 3 ordinateurs bas, moyen et haut de gamme; que la Radio Corporation of America (RCA) et Honeywell décident de réaliser un ordinateur compatible avec le 1401 et d'autres machines IBM; cette dernière se rends compte que ses concurrents ont déceler une opportunité et qu'ils doivent réagir à cette menace mettant en danger leur domination sur la marché.

IBM lance alors une gamme d'ordinateurs compatibles entre eux, ayant la même architecture, et capable d'exécuter les mêmes logiciels ; ce qui n'était à ce moment pas le cas, posant problème autant à ses clients qu'à IBM même, ces machines alors très spécialisées n'offrait pas une grande interopérabilité ou possibilité de changements de logiciel comme de matériel et périphériques, voire chaîne de production, nécessitant des experts de la machine en question.

Contrairement aux machine à cartes perforées, les ordinateurs n'avait donc à ce moment pas de normes et standards, nécessitant parfois de recoder un même programme sur X machines différentes, un processus très onéreux.

IBM décide alors de concevoir le System/360 en 1962, il n'a pas été économe pour autant, 5 billion de dollars, c'est plus que le budget du projet Manhattan. Cela a provoqué des différent monumentaux dans leurs équipes, ils ont été obligés d'isoler celle en charge du 360.

Niveau marketing ils aurait pu tout anoncer d'un coup mais ont décider d'anoncer machine par machine permettant une adoption progressive comme cela avait été le cas pour le passage des machines electromécaniques aux ordinateurs dans les années 50.

Alors qu'Honeywell lance en 1963 le modèle 200 compatible IBM 1401, qu'IBM décida de rendre progressivement obsolète, et lance en 1964 la communication du System/360 dans 63 villes des États Unis et 14 pays étrangers, 6 ordinateurs et 44 périphériques.

S'en suit plus de 5 billions de chiffre d'affaire, 30 ans de croissance, "l'ordinateur a été fait par IBM et a fait IBM".

Cet ordinateur avait pourtant bien des défauts, il ne supportait pas le temps partagé, permettant d'être utilisé par plusieurs utilisateurs en même temps.

Programma 101

1965

Souris

1965

Dendral

Ce programme créé en **1965** par deux informaticiens, 1 médecin et 1 chimiste, permet d'identifier des structures moléculaires en se basant sur les connaissances d'expert et des techniques d'analyses telles que la spectrométrie de masse. C'est le premier programme considéré comme "système expert".

Il a par la suite été utilisé comme outil d'aide à la décision. Pour des molécules complexes, le nombre de possibilité étant plus grand, il permet d'obtenir rapidement les différentes combinaisons réalisable selon les règles de la chimie et la masse moléculaire donnée.

Eliza C'est une intelligence artificielle conversationnelle créée 1966 dans le but de simuler un psychothérapeute, notamment en tournant des affirmations de l'utilisateur en questions. Apollo 1

En 1967 la lune parait de nouveau inaccessible aux américains, sous Kennedy.

Intel et Moore

1968

Amstrad

1968

Microprocesseur

En 1969, le microprocesseur est inventé par Federico Faggin, et Marcian Hoff, un ingénieur et physicien d'Intel,

Arpanet et Cyclades

1969 et 1972 (Louis Pouzin)

Apollo 11

Le programme Apollo Guidance Computer réalisé en 1969 par Margaret Hamilton a été numérisé et rendu disponible sur Github. Écrit en Assembly

SSH > Arpanet

CSS ZenGarden

JScript > Javascript

CSS a permi de diversifier l'apparence des sites webs, les frameworks et themes (Foundation / bootstrap) ont re généraliser et harmoniser l'affichage des sites, réduisant la créativité au profit de l'accessibilitée

Popularisation et Mondialisation

Jusqu'alors, l'informatique était essentiellement réservé aux domaines privés comme le militaire, le spatial et l'administration des États. À partir des années 70, l'informatique va commencer à arriver dans le quotidien des particulier les plus aisés et finir par être dans une grande majorité des foyers. Internet commence à se développer petit à petit.

Atari pong

1972

Altair 8800

1975

Homebrew computer club

1976 homebrew exhibits

Cerveau Chinois

C'est une expérience de pensée considérant que si chaque membre d'une immense nation comme la Chine, était invité à simuler l'action d'un neurone, constitué d'axones et de dendrites, en utilisant des émetteurs bidirectionnels, et ce afin de reconstituer un cerveau, alors un tel système pourrait-il avoir un esprit ou une conscience ?

L'affirmative repose sur une pensée fonctionnaliste, l'idée est que ce qui réalise la même fonction est capable de réaliser les mêmes résultats, et dans notre cas, l'obtention d'états mentaux et de conscience.

Cette idée de cerveau artificiel géant imaginée en 1961 et reprise en 1974 par Lawrence Davis et **1978** par Ned Block qui quant à lui déclarera qu'un tel cerveau n'aurait pas d'esprit, sera reprises mainte fois, comme par exemple lorsque l'on a affirmé que Google avait plus de connexion que le cerveau humain et que les gens craignent alors qu'internet qui en ai encore plus puisse développer une conscience.

Leibniz avait déjà dans son livre *Monadologie*, imaginé un homme mécanique dont on pourrait visiter le corps comme on visite un moulin.

Par ailleurs cela pose la question du bateau de Thésée, si l'on était capable de remplacer des neurones par des neurones artificielles, jusqu'à substituer totalement au neurones "naturels", l'individu serait il le même ?

Minitel

Présenté en 1978 mais sorti en 1980, le Minitel est un ordinateur connecté à un réseau et donc appelé Terminal. Il utilisait le réseau Transpac pour faire tourner le sien, "Télétel" auquel il se connectait à l'aide d'un modem. Il possédait une mémoire de 8,25 ko, et un processeur Intel 8052

La chambre chinoise

Cette expérience de pensée à été imaginée par un philosophe américain nommé John Searle vers 1980. Alors qu'il lit un livre sur l'intelligence artificielle et la manière dont la machine interprète et créer du texte, il se demanda alors si un programme informatique pouvait recréer un esprit numérique.

Il énonce alors une situation ou un humain n'ayant aucune connaissance du chinois est enfermé dans une pièce, avec une table de questions et réponse à des phrases chinoises. Un examinateur extérieur parlant réellement chinois (sinophone) lui pose alors des questions, le programme humain se repose alors sur la syntaxe des phrases, retrouvant la réponse correspondante et l'appliquant, produisant des réponses. Du point de vue de l'examinateur sinophone les réponses qu'il obtient correspondent bien à celles d'un de ses semblables. Pour autant, elle sont produites par quelqu'un qui ne parle pas un mot de chinois, et ne comprends sûrement pas le sens des phrases qu'il reçoit ou émet.

Il démontra qu'une intelligence artificielle ne peut actuellement que simuler un esprit ou une pensée, et qu'elle est dans l'incapacité de recréer une réelle conscience ou intentionnalité. Cela démontre aussi que le test de Turing est insuffisant pour déterminer si ses caractéristiques sont présentes chez une IA, en effet, dans son expérience, les réponses du programme humain ne sont pas différentes de celle d'un sinophone, puisqu'elles proviennent de tables de correspondances, et que l'examinateur ne peut malgré tout pas faire la différence avec un natif car cela se base sur de l'écrit. Pour autant, bien qu'il finisse par maîtriser la manipulation des symboles pour reconnaître des schémas et former des réponses cohérentes, il ne connaîtra et comprendra toujours pas un traître mot ou signification derrière les symboles qu'il utilise.

Cela à permis de redéfinir plus précisément l'intentionnalité, à la fois comme la capacité de l'esprit, émanent du cerveau, de rendre l'organisme conscient de son environnement grâce à sa perception subjective, et en dérivé de lui permettre d'être un locuteur qui doit en plus de ce qui est dit avant, formuler dans son esprit, la phrase qu'il va prononcer. Autrement dit, c'est parce l'humain est conscient qu'il peut penser et parler intentionnellement. Un locuteur humain a conscience de ce que signifient ses dires à travers la sémantique qu'il accorde aux mots qu'il utilise, et au fond de son discours.

Mémoire flash et stockage optique

Optical Storage Disc 1980

Pac Man

1980

Cerveau dans une cuve

C'est une reformulation moderne du malin génie de Descartes, imaginée par Hilary Putnam en 1926, cette expérience de pensée invite à s'imaginer que notre cerveau pourrait être placé dans une cuve, et qu'il recevrait des stimulis envoyés par une machine, chargée de nous simuler le monde extérieur. La problématique étant alors de savoir si ce cerveau à raison de croire de qu'il perçoit.

La thèse serait ainsi de dire que comme les signaux envoyés aux cerveaux ne correspondent à rien de tangible dans notre monde, alors il est dans l'illusion.

L'antithèse, revient à justifier que le stimuli étant identique, il est tout à fait légitime du point de vue du cerveau, de dire qu'il le reconnaît bien.

Osborne 1

1981

Xerox Star

1981 premier ordinateur commercial avec une interface utilisateur graphique

IBM PC 5150

1981

Macintoch 128K

Sorti en 1984, avec des icônes en skeuomorphisme

World Wide Web

(1990 Tim Berners Lee) web semantique Rose Dieng Kuntz

Deep Blue

beats Gary Kasparov in 1997

Bilan passé

Bien que les prémices de l'informatique viennent de l'Époque moderne, au 17 ème siècle, période avec un besoin grandissant de calcul; elle naquit après la révolution industrielle au 19 ème siècle lors de l'Époque contemporaine, et ne commence à réellement émerger qu'après la seconde guerre mondiale qui marque le début d'une nouvelle ère de progrès technologiques, accompagnée d'une forte augmentation de la démographie mondiale causée par le baby boom.

Alphago

2015

Pratiques actuelles

 $https://fr.wikipedia.org/wiki/Th\%C3\%A9 or ie_g\%C3\%A9 n\%C3\%A9 rale_des_syst\%C3\%A8 mes the substitution of the substitution of$ Honda asimo 2000 Roomba 2002 **Darpa Grand Challenge** 2005 **Imagenet** 2009 Watson gagne Joepardy 2011 Premier drone commercial autonome DJI 2013

VSCode

Suite à Atom publié par GitHub le 26 février 2014, bien avant son rachat en 2018 par Microsoft, qui l'a refait en mieux, en sortant le 29 avril 2015 l'IDE le plus utilisé à ce jour Visual Studio Code.

Boston Dynamics

Essai

En arrivant en DUT informatique en 2016, je n'avais programmé qu'en BASIC sur une calculatrice Texas Instrument, je ne m'attendais pas à autant de complexité lors de mon apprentissage du C ou de Bash. Je ne comprenais souvent les concepts qu'après les contrôles lors de la correction, me rendant compte de mes erreur et reajustant ma version de ce qui etait bon en fonction.

J'ai rapidement découvert les compilateurs, qui indiquent les erreurs tant bien que mal, qui ont parfois eux même des erreurs ou manque de precision, et necessitant de comprendre pleinement son fonctionnement et son propre code pour arriver a trouver et corriger le probleme. Cela peut etre decourageant pour beaucoup, et cest d'ailleurs certainement une des raisons pour lesquelles une bonne partie abandonnent en première annee.

La mode n'est que passagère, il n'y a que les habitudes de vies et s'en tenir à un plan structuré et cohérent qui reste dans l'histoire.

Actuellement, malgré les bonnes pratiques prônées, peu sont mises en application et beaucoup de fois je me retrouve a effectuer des copier coller avec une légère modification, alors que ma philosophie est que chaque copier coller devrait etre une fonction réutilisable avec pour paramètre les variables amenées a changer ou être configurable.

À l'heure où j'écris ça, le monde est plongé dans la mode des Intelligences Artificielles, technologie qui se base sur quelque chose de très général (réseaux de neurones et systèmes pondérés), pour accumuler des informations très spécifiques, afin de pouvoir répondre à des questions les concernant.

L'intelligence est selon moi la capacité d'utiliser ses connaissances et sa compréhension pour proposer une solution à un problème.

ChatGPT n'est pas capable de raisonnement mais il fourni une solution mathématique probabiliste à un énoncé textuel. Il connais les mots qui le compose, sait qu'il y a tant de probabilité qu'ils y soient liés et les assemble de manière à proposer une réponse elle même textuelle.

Quand j'écris ma pensée, définie par son intention est claire, j'ai du mal a comprendre les philosophes antiques qui auraient dit ne pas vouloir transmettre leurs pensés à l'écrit car elle ne peut alors plus se défendre elle même. Bien que rappelons le a cet époque l'imprimerie n''existe pas encore, rendant la tâche plus complexe et rebutante.

Touches modifier sur clavier, sélection multiple, effets, validation, suppression

Pourquoi la programmation est-elle aussi peu démocratisée ?

Soyons franc, pas tout le monde n'a besoin de savoir coder. La meilleur qualité d'un codeur n'est d'ailleurs pas savoir coder, c'est sa capacité à proposer une solution logique à un problème de donnée.

Je vais donc répondre à cette question avec quelques informations statistiques.

En 2013, 1 personne sur 623 était développeur professionnel, soit 0,16 % de la population mondiale. Et 1 personne sur 387 savait alors coder, soit 0.26%. En novembre 2022, la population a dépassé les 8 milliards d'habitants, celle des développeurs représente alors 27.7 millions, soit 0.35%.

La même année, 40 % des recruteurs prévoyaient d'embaucher 50 développeurs ou plus. L'étude liée à cette information note également que le pourcentage de ceux qui recrutent de 201 à 500 personnes a doublé par rapport à 2021. Le problème le plus notable est dans le web où il y'a 60 postes disponible pour 38 développeur en demande d'emploi.

- 70 % des développeurs plébiscitent le travail à distance complet ou partiel.
- 57 % des recruteurs se déclarent prêts à se passer du CV du processus de recrutement.
- Le pourcentage de recruteurs qui recrutent des développeurs sans bagage académique a presque doublé (de 23% en 2021 à 39% en 2022).
- 42 % des recruteurs souhaitent utiliser des solutions d'évaluation basées sur les compétences pour améliorer la diversité.
- L'expérience candidat est la première priorité dans laquelle les recruteurs prévoient d'investir pour 2022.

Il y'a donc des opportunités immenses pour les autodidactes et les écoles en informatique. Mais la discipline requiert des études avancés, et qui ne sont pas ou trop peu enseigné lors de l'instruction obligatoire au lycée.

C'est également une discipline en constant changement, qui requiert beaucoup de connaissances et de pratique. Les développeurs expérimentés sont logiquement très recherché. Pour les mêmes raison, c'est dur d'être dévoué à se domaine, nombre de personnes le quitteront pour quelque chose qui leur convient mieux. Cependant c'est une science et technologie qui est désormais omniprésente dans nos vies et apprentissages. Je suis donc d'avis qu'une généralisation de l'introduction à la programmation en cours de technologie au collège, permettrait aux élèves de savoir si ce domaine les intéresse, d'avoir la possibilité de choisir de prendre cette discipline au lycée, ou juste de pouvoir apprendre par lui même tout en continuant dans une autre voie.

Il y'a un manque d'experts, de personnes compétentes et qualifiées, les années que nous vivons sont saturées d'informations, et l'accumulation de mauvaises nouvelles déprime les uns, là où les tsunamis de désinformation et canulars font rire et haïr les autres. La vérité finissant presque par ironiquement nous consoler.

Et un réel décalage entre offre et demande, nous observons des signaux forts comme ceux autour de la blockchain, technologie ayant un réel intérêt et pouvant jouer un rôle important, notamment dans les systèmes administrant nos sociétés mondialement interconnectées, mais qui présentent cependant un effet Duning Kruger assez important ces derniers temps.

Pourquoi un outil censé résoudre un problème en cause parfois des bloquants

?

[...]

A la manière de Platon, je n'ai rien inventé, les idées sont immuables et universelles, elle appartiennent à personne.

Tout est temps, c'est l'écoulement des choses, l'itération des actions qui s'écrivent et se succèdent.

Sectes et philosophie d'entreprise

De nos jours j'ai souvent entendu parler de philosophie d'entreprise. L'entreprise étant une entité morale, elle se compose d'un groupe de personnes physiques réunies pour accomplir quelque chose en commun. Ce groupe peut aussi réunir des personnes physiques et des personnes morales. Cela corresponds à une secte qui est un terme mal vu mais qui, comme beaucoup de mots, est poly-sémantique, il possède plusieurs définitions et connotations, il y a autant de ressentis différents accordées aux mots que d'expérience vivantes. D'un point de vue étymologique, il provient du latin "secta", signifiant "voie que l'on suit, parti, cause, doctrine". Or quand on travaille en groupe avec d'autres personnes, on suit tous, ensemble, une même voie, pendant une période définie de travail, qu'un salarié vends a son employeur.

En réalité, une secte, comme tout groupe d'humain agissants ensemble pour une même cause, est comme internet, la rue ou tout autre environnement dans lequel nous évoluons, c'est une indifférence, ce n'est ni bien, ni mal, cela ne dépends de ce que l'on en fait et à qu'elles fins. Nous devons tous un jour faire face au fait que nous sommes influencés et conditionnés par notre environnement et notre histoire, nos habitudes, et les groupes d'humains dans lesquels nous avons évolués. Le réel problèmes sont les dérives, notamment le fait de vénérer une autorité austère qu'on ne peut discuter, mais aussi tout les heurts qui nous sont propres. Pour le reste, la vie bats son plein et continue de parcourir le temps en faisant ce qu'elle a à faire, vivre.

Je veut créer des indiférences

Communication

Politesse

Respect

Bienveillance

Veiller a bien faire et bien communiquer, bien travailler, bien apprendre et retransmettre, a être tout les jour un peu meilleur que la veille.

Division du travail

Maisons d'échanges, Babbage était fasciné par la division mentale du travail qui s'y opérait, comme De Prony s'étant inspiré d'Adam Smith

https://fr.wikipedia.org/wiki/Division du travail

Anticipation

example avec la compiltion rust qui empeche les top 10 des erreurs

Contexte et vérité

Absolue / relatif

Il est futile de vouloir avoir raison, la mauvaise foi est l'ennemie de l'amélioration personnelle. Seule la vérité compte, quand je débat avec quelqu'un ce n'est pas dans le but de faire briller mon savoir ou répandre ma version de la vérité, mais la challenger pour l'améliorer voire l'invalider à l'aide des antithèses d'autrui. Il n'y a rien à gagner à avoir raison, on instruit, on apprends et on avance ensemble.

Pédagogie active

Cette méthode de pédagogie, qui trouve ses fondements dans "l'Émile ou De l'éducation" de Rousseau, est relativement récente, donc fait l'œuvre de nombreuses études.

Elle permet à l'élève d'être acteur de son apprentissage, il choisit ce qu'il désire apprendre, quand, et comment ; bien que cela passe souvent par le jeu dirigé puis libre. La motivation de l'étudiant devient intrinsèque au fur et à mesure qu'on lui donne de la liberté, ce qui favorise l'autonomie, la retenue, la prise de décision, et la gestion des conflits. L'adulte ou le mentor devient médiateur entre l'élève et le savoir, un guide d'apprentissage.

Le jeu développe les compétences sociales et cognitives de l'apprenti, qui n'est plus passif face à un cours qui lui est dispensé par une autorité qui sanctionne et récompense, mais découvre et s'approprie la connaissance par lui même.

Bien que le jeu libre est bien d'avantages, le jeu dirigé permet de structurer l'apprentissage par un mentor favorisant l'acquisition de compétences, que le pédagogue transmet à ses disciples.

Ce cadre réside dans l'analyse des difficultés et problèmes de l'étudiant, par la recherche des notions manquantes pour y palier, et l'élaboration d'un plan classique permettant d'y arriver, composé de cours, d'exercices, et enfin d'un contrôle.

La pratique à toujours été présente dans nos enseignements, elle est nécessaire à la validation de la théorie, le réel changement réside dans l'apprentissage de cette théorie ainsi que dans la manière d'aborder la pratique et l'évaluation de ses compétences, qui reste encore difficile compte tenu du manque de graduation hiérarchisé par niveaux, de prérequis pour l'admission, ou de programme non reconnu par le système éducatif national.

Cette méthode présentant malgré tout de nombreux avantages, on remarque également qu'elle peut potentiellement accroître les inégalités en termes d'apprentissage, notamment du à la difficulté d'accès à ce genre d'enseignement et aux ressources payantes comme les logiciels éducatifs, ou même de l'idée et la culture qui y est liée, propre aux pays riches bien que marginale en son sein. Et je ne peut que confirmer cela, ayant été le seul de ma classe de petite section à savoir lire et ce grâce au ludiciel "Reader Rabbit, Learn to read with phonics", qui m'a fait sauter deux classes.

On retrouve cette notion d'apprentissage actif "Learning by doing" dans les languages de programation comme avec les Rustlings ou Rust by example.

Un vrai maître est un éternel étudiant.

On remarque récemment le développement de l'apprentissage et les écoles adoptant la pédagogie Montesorri.

Scratch

FlexboxFroggy

CodingGame

Logo

Apprentissage

L'apprentissage commence généralement avec de la mémorisation, s'ensuit une compréhension qui permet la résolutions de problèmes et enfin s'y ajoute la créativité que l'on débloque lorsque l'on à le savoir et le savoir faire. La mémorisation étant le terreau du savoir, il est important de comprendre que scientifiquement, on sait aujourd'hui que les humains ont, tout comme les machines, une mémoire de travail et une mémoire à long terme. On peut comparer ses deux mémoires à la RAM et aux stockages de masse. Le cerveau possède même un mécanisme d'encodage de l'information vers la mémoire à long terme et de récupération vers la mémoire de travail, les informations les plus importantes possèdent plus d'amorces, permettant de les retrouver et s'en souvenir plus facilement, et avec bien sur certaines informations dont le signal se perd, dans l'oubli, nécessaire à trier et jeter ou archiver ce qui l'est moins, dans le cas de la mémoire à long terme, cela se produit en perdant des amorces au fur et a mesure du temps.

A l'aide de schémas mentaux, nous associons un ensemble de concepts ou d'idées liées, permettant de formuler facilement des phrases compréhensibles et retransmissibles. L'humain à la chance d'être multimodal et d'avoir plusieurs "périphériques" biologiques. Une fois qu'il a capté une information grâce à un d'entre eux, il doit la revoir ou se la répéter à intervalles réguliers et assez courts afin de le mémoriser. D'après ce que l'on a vu précédemment cela fait sens, la répétition de la perception de cette information par l'esprit va lui permettre de créer plus d'amorces et constituer des schémas mentaux. La reformulation sous forme de questions que l'on peut se poser pour tester ses connaissance permet un apprentissage plus rapide, reformuler dans le but de réexpliquer permet également de diversifier son apprentissage

Planning poker, reu tech, mais pas d'analyse commune -> reqwork extrm prog

Méthodes d'aide à la structuration d'information

Le management moderne à eu besoin de pouvoir former et guider efficacement ses employés et pour cela il à fallu trouver des outils et moyens mnemotechniques pour facilement analyser les

Décision

Prendre une décision est parfois très compliqué, on n'arrive pas toujours à mesurer les tenants et aboutissants de nos choix, c'est pourquoi il est important de prendre du recul, de poser sur la table les différentes possibilités, et acteurs de la situation afin de mettre le plus de chance de son côté, dans l'objectif d'atteindre le résultat attendu.

Analyse PESTEL

PESTEL est un acronyme pour (Politique, Économique, Socioculturel, Technologique, Écologique, Légal)

SWOT

Strenght Weakness Opportunity Threat

Matrice multicritère

Avec des amis on l'utilise pour choisir dans quel airbnb on va partir, on y renseigne une note pour le prix, l'emplacement, la qualité du logement, et on obtient un score moyen permettant de déterminer ou on partira en vacances.

5 Why

Permet de retrouver la cause d'un problème

La matrice d'Eisenhower

Très proche des matrices de faisabilité et de priorisation, elle permet de déterminer de différencier les tâches importante, urgente, celles qui ne le sont pas, et quoi en faire.

Diagramme d'Ishikawa

Il permet de schématiser les différentes causes possible d'un événement ou effet. Inspiré des quatres causes d'Aristote, il est généralement construit en analysant les 5 M : Matière première constituante, Matériel utilisé, Méthode employée, Main-d'œuvre intervenant, et Milieu dans lequel l'événement apparaît.

Analyse des parties prenantes

Carte heuristique

Née de l'arbre de porphyre, un philosophe néoplatonicien du 3è siècle, et aussi appelée carte mentale ; elle représente visuellement le cheminement de la pensée et l'interconnections des idées afin d'en extraire les toutes les informations importantes.

Conception
Design thinking
Lean Startup
MVP
itération, stop de toute la chaine de production si problème pour éviter de contaminer le reste
Gestion de projets
Roadmap
Project charter
GANTT
Business Model
Scrum
Développement
Extreme programming
TDD FDD MDD
Code review

Technique du canard en plastique

Travail Personnel

Developpement informatique

Lorsque l'on travaille seul, on a parfois la tête dans le guidon,

Moteur de jeu

Base sur Monogame, héritier de Microsoft XNA, j'ai développer toute une API qui s'avère exister aujourd'hui, je ne sais pas si elle existait a époque.

Le théorème de Pythagore et la trigonométrie m'ont été très utile

Développement personnel

On invente rien en réalité, on découvre le monde, on essaye de comprendre ses règles et les utiliser chacun a notre manière avec notre perception, sensibilite et connaissances.

Rigueur et retravail

Démarche itérative avec demande de feed-back à chaque changement, besoin de ne pas renvoyer la balle mais de demander conseil sur le moment si possible pour encore plus d'agilité

Amélioration continue

Doute constant et remise en question en sont la clé.

Do it now

J'ai souvent entendu dire "ce n'est pas ce qui est demandé ni prioritaire, on fera ça plus tard", et bien évidement, la plupart du temps cela fini par n'être jamais fait. Dans les projets informatique c'est ainsi que la dette technique s'immisce, on a des fonctionnalités qui s'accumulent, des développements qui s'enchaînent, et on ne pallie aux problèmes qu'avec des corrections rapides, s'attaquant aux causes plutôt qu'aux conséquences.

Dès que l'on constate un problème, il faut avoir le réflexe de réaliser la tâche dans la foulée, ou de la planifier pour ne pas que l'information se perde.

Aide

Il n'y a jamais de mal à demander de l'aide, on vit dans un monde ou cela demande pourtant beaucoup d'effort, hors quand on est en difficulté, c'est l'aide qui devrait venir à nous, pas l'inverse.

Je me suis toujours efforcé de venir en aide ceux qui en avait vraiment besoin, pendant la période Covid j'ai héberger deux amis qui se sont retrouvés à la rue. C'était une période difficile mais je suis content d'avoir pu leur fournir un endroit neutre, avec le stricte nécessaire, du temps pour se reposer, et une oreille pour les écouter.

J'ai même parfois aider des gens qui m'avait fait des crasses à nettoyer les leurs, et je ne regrette pas, peut être que grâce à ça ils se sont rendu compte qu'ils ont agis injustement, et que la bonté transcende les mauvais actes ; et même si ce n'est pas le cas, j'ai agis, et agirais toujours selon ma morale et ce qui me semble bien.

Ce qui fait la force de l'humanité, c'est l'amitié et l'entraide, sans cela on n'aurais jamais réussi à aller aussi loin dans l'histoire. Seul on va plus vite, ensemble, on va plus loin.

STOP

Dans le monde du travail, comme personnel, il est important de prendre soin de soi avant tout, cependant, quelqu'un qui bloque sur un problème n'avance plus et peut retarder les autre également.

On entends souvent parler de Lean Startup comme livre de référence, et il y a une notion dedans qui est rarement reprise mais que je trouve très importante, lorsqu'il y a un problème dans une chaîne de production, il est mieux de tout arrêter pour éviter qu'il n'impacte le reste. Cela permet également de trouver une solution ensemble et que tout le monde ai connaissance du problème, et ce dans un but informatif et préventif.

Les confinements comme celui que l'on a eu lors de la période du Covid nous le confirme également. Il vaut parfois mieux tout mettre en pause pour éviter de foncer dans le mur et mieux repartir par la suite.

Justification

Lorsque je commet une erreur, j'en assume la responsabilité, mais je me justifie souvent. Cela permet d'identifier les causes du problème. Dans le livre Lean Startup il est mentionné une phrase qui m'a marquée. L'idée est que lorsqu'une erreur survient, il est de notre responsabilité d'avoir rendue la faute si facile à commettre. Autrement dit, lorsqu'une personne faillit à sa tâche, il ne faut pas remettre en question sa responsabilité ou sa compétence, mais se demander pourquoi l'environnement n'a pas permis la réussite de l'action et rendu la situation d'échec si probable qu'elle c'est produite.

Critique

Selon moi la critique constructive est positive pour le maître et l'apprenant des lors quelle s'effectue avec une communication positive tout en analysant les défauts et planifiant un programme pour les corriger.

Metagame

Intelligence économique, politique et théorie des jeux.

Choix et Theorie des jeux

https://ayowel.github.io/trust/

Prestation vs édition de logiciel

Le modèle économique d'une entreprise influence énormément les comportement de ses salariés.

Les prestataires vendent du temps, et ont donc naturellement tendance à avoir des deadline plus courtes et par conséquent plus de pression. Cela nécessite également une équipe commerciale solide capable de décrocher assez de projet pour faire travailler l'entreprise pendant les prochaines années. En contrepartie, on ne demande pas un logiciel ou site maintenable mais assez bien réalisé et fonctionnel pour être livré le plus rapidement possible afin d'en dégager une marge.

Les éditeurs logiciels quant a eux le louent généralement en tant que service ou le vendent en tant que bien, le nerf de la guerre réside alors dans la maintenabilité du logiciel auquel on doit ajouter des fonctionnalités au fil du temps. Plus le logiciel grossit, plus il est compliqué de maitriser les effets de bord et de comprendre l'intégralité du logiciel et de son historique.

Cadriciel et Open Source

Symfony, un outil logiciel facilitant la réalisation d'application webs, ne permet pas de surcharger l'attribut "name" d'un champ de formulaire, le retrait de requêtes expires ne marche pas... L'installation d'un de leurs plugin React m'a récemment causer defaut. J'ai eu, par la force des choses, à contacter la personne chargée de la documentation de Symphony. Un certain Ryan, qui est "Symfony docs lead, writer at SymfonyCasts". Ce fût une expérience riche ou j'ai découvert un environnement qui m'est familier, bien que je n'ai pas souvent réaliser de l'open source avant. Une pipeline qui sors des erreurs à des lignes qui n'existent pas sur ma version, et qui malgré ça permet d'assurer la qualité de la documentation rédigée en RST ou DOCtor-RST, à l'aide de tests de compilation.

ChatGPT

Oui, j'ai utilisé ChatGPT pour écrire cet ouvrage, mais aucun texte n'en est extrait. Pourquoi ? Je tenais à rédiger moi même, comme je vous l'aurais expliqué à l'oral. Le passage sur Richard Stallman à neanmoins vu le jour grâce au modèle de génération de texte qu'est ChatGPT. J'ai voulu retrouver qui à prononcer une phrase dans le reportage : "Révoltes et révolutions technologiques | La Californie! | ARTE"

Voici le dialogue qui en est à l'origine :

Default (GPT-3.5)

J'ai donc découvert que OpenAI n'aurais évidement pas été racheté par Microsoft s'il avait été sous licence GNU. Et que le homebrew club à été autant fier que déçu qu'IBM lance un ordinateur commercial, utilisant leur code.

Aujourd'hui des entreprises utilisent du code Open Source dans leur business, certains utilisent à tors des logiciels GPL sans savoir que cette licence est contaminante et peut faire que leur logiciel devrait légalement être libre de facto. D'autres licences permettent aux entreprises d'utiliser des librairies pour un usage commercial. Certains projets Open Sources comme Symfony ont donné naissances à multitudes de Business à commencer par le leur, SensioLabs, qui fournissent des conférences et formations payantes, et sponsorise certaines entreprises experts dans cette technologie.

Richard stallman annonce le projet GNU le 27 Septembre **1983**, en 1985 il fonde le FSF, la Free Software Foundation. Ou Free ne signifie par gratuit dans le sens de prix mais dans le sens de liberté. Le language C est alors grandement utilisé.

Il invente également en 1989 la licence GNU General Public Licence, plus connu sous le nom de GPL.

En 1987 Andrew S. Tanenbaum invente Minix un système d'exploitation UNIX avec une architecture 16 bit. Inspiré par Minix, Linus à donc créer **Linux en 1991**, avec un nouveau Kernel, lineage, sous licence GPL. Leur coopération donnera GNU/Linux qui est une suite embarquée d'éditeurs comme bash, emac, la GNU C Library et le compilateur GCC, et pleins d'autres

Opensource

Logiciel libre

Le free software

Git

Git est un logiciel de gestion de versions décentralisé sous licence GNU GPL. C'est un logiciel libre et gratuit, initié en 2005 par Linus Torvalds le créateur de Linux lors de la création de son noyau. Linus ne voulait pas réaliser ce projet seul et à rapidement compris que la qualité d'un logiciel viendrai des débats houleux entre ses collaborateurs et l'implémentation de la meilleure idée à la fin.

EditIDE

Imaginons que vous vouliez réaliser un site web et qu'il soit en ligne, en réalité il vous suffit d'une connexion internet de trois fichier et d'un logiciel de serveur, et enfin d'un nom de domaine pour y accéder sans avoir à mémoriser une adresse IP.

Cas d'étude

Pour un utilisateur avertit, la démarche peut ne prendre que quelques minutes, allez, petite démonstration :

Etape 1 : Réaliser un site web

Il suffit pour cela de trois fichiers. Cette étape est donc logiquement séparée en trois étapes, qui correspondent aux 3 parties d'un site web, le contenu structuré, l'habillage, et la réaction que doit avoir le site aux entrées utilisateur. Pour l'exemple on va faire un site très simple, un mot, centré au milieu de l'écran, qui change lorsque l'on clique dessus.

Etape 2: ouvrir les ports

Vous allez dans le panneau de configuration de votre box et vous ouvrez le port qui permettent d'emmétre un site web et d'écouter les requêtes des clients https avec le numéro 443 et http avec le numéro complémentaire 80.

Etape 3: mettre un serveur en service

Télécharger NGINX,

https://nginx.org/en/download.html

Comment est ce que je pense, imagine et souhaite aider a créer un avenir de la programmation ?

A travers ma philosophie, à l'aide de l'intelligence et la .

Peut on le faire et doit on le faire ?

On peut dire oui on peut dire non, mais pour moi

C'est mauvais de ne pas connaître si on peut connaître, c'est mauvais de ne pas savoir ce que l'on peut savoir, Ce veut dire qu'il faut préparer tout les engins toutes les techniques ou pratiques que la science permette.

C'est très difficile pour le chercheur qui fait la découverte, de savoir et de peser immédiatement, les possibilités ultérieures. On le remarque dans le jeu de la vie

Doit on avoir moins de fonctionnalité sur mobile ? Non, c'est l'interface qui doit changer et s'adapter à l'utilisateur.

Un ludiciel doit être vivant, animé, utilisé, collaboratif.

Les developpeurs sont les cordoniers les plus mals chaussés, on parle souvent d'expérience utilisateur, mais l'expérience développeur reste à désirer, voire archaïque. On est selon moi encore au moyen âge de l'informatique.

WYSYWYG, Xerox Bravo NO MORE CLI NO MORE BLOCNOTE plus besoin d'alt tab entre votre ide et le navigateur file drop upload on paths Comment reproduire le problème ? => Cypress test Complexité du problème à résoudre Gestion des erreurs et des bogues Gestion de la maintenance et des mises à jour Compatibilité et interopérabilité Performance et optimisation Sécurité Contraintes de temps et de budget Évolution rapide des technologies Collaboration et travail d'équipe : Dans de nombreux projets, plusieurs développeurs doivent collaborer et travailler ensemble sur le même code, ce qui peut entraîner des conflits de version, des problèmes d'intégration et de coordination. **Philosophie** https://fr.wikipedia.org/wiki/Philosophie_de_1%27information Philip Kindred Dick : "La réalité, c'est ce qui continue d'exister lorsque l'on cesse d'y croire" One thing at a time Where AM I? (Path) **WYSIWYG** Elementor Typora Python Notebook

Accessibility

All in one

Plus un projet a d'intermédiaires, plus il y'a de risques d'erreurs. Dès le fondement de l'informatique, Charles Babbage l'avait déjà compris et sa machine faisait à la fois le calcul et l'impression car beaucoup d'erreur arrivait lors de l'impression.

En informatique, beaucoup d'erreurs ont lié par manque d'information ou de clarté, le client exprime parfois mal son besoin, voire à un problème et ne sais pas ce dont il aurait besoin pour y palier. Les équipes faisant l'intermédiaire entre le client et l'équipe de production se retrouvent souvent entre deux eaux et doivent s'adapter et apprendre deux vocabulaires très différents.

Idéalement ce genre de personnes devrait avoir été ou du moins être capable de se mettre à la place des deux partis dont il fait l'intermédiaire afin de mieux les comprendre et pouvoir efficacement communiquer dans le but de trouver la meilleure solution.

Certains problèmes arrivent également lors de l'échange entre l'équipe design et l'équipe technique.

Il arrive que des design soient validés alors qu'ils ne sont tout bonnement pas réalisable en terme de code, généralement due à des limitations CSS, ou des problèmes dues à des cas qui n'ont pas étés pensés, comme le changement de sens de lecture et d'écriture dans certains langages comme l'arabe ou le mandarin.

Tout ses problèmes arrivent car rien n'est centralisé, à une heure ou la collaboration est mise en avant comme jamais.

Dans EditIDE, tout ce ferait sur le site lui même. Le design et l'intégration ne ferait désormais plus qu'un, les développeurs front ne seraient chargés que de dynamiser les design déjà intégrés avec les appels API du back qui seraient autogénérés.

Documentation

Les API étants une boite noire, il est essentiel de les documenter, pour ce faire, le meilleur outil actuellement est swagger, il permet de regrouper des ressources web (url) dans des groupes et d'indiquer quels sont les paramètres que l'on peut y passer, et la ou les réponse attendue possibles.

Dans EditIDE, je souhaite qu'il n'y ai pas besoin de renseigner ces informations, que l'on a en théorie déjà lors de la conception et que l'on doit répéter dans swagger, généralement en utilisant un format qui plus est légèrement différant. De plus les documentations étant rarement mises à jours, elles seraient ainsi automatiquement toujours représentatives de la réalité car fortement liées.

Le formulaire de création de fonction et son interface dédiées indiqueront les champs obligatoires ou recommandés non renseignés. Recommandations gérées par ESLint.

Visualisation

Les sucres syntaxiques devrait être des éléments d'interface graphique.

Quand j'arrive dans un fichier, je veux savoir directement le nom des variables et fonctions qui le constitue, je me fiche d'avoir le contenu le détail ou d'entre elles, ni même leurs paramètres ou leur type de retour, bien que je doit pouvoir rechercher en fonction de ses derniers. De la même manière, quand je travaille sur une fonction je ne désire voir que ce qui concerne cette fonction.

Rêves lucides

Conscience metacognition mémoire onirique

Annexes

Bibliographie

Transmette - Christophe André

Webographie

 $https://www.physique.usherbrooke.ca/~afaribau/essai/\#:\sim:text=Les\%20 tables\%20 de\%20 calcul\%20 furent, aux\%20 cailloux\%20 oselon\%20 leur\%20 position$

https://papyrus.bib.umontreal.ca/xmlui/bitstream/handle/1866/25874/Parent_Simon_2021_these.pdf?sequence=2&isAllowed=y

https://theses.hal.science/tel-00125472/document

http://serge.mehl.free.fr/

https://monoskop.org/images/b/b0/Floridi Luciano Philosophy and Computing An Introduction 1999.pdf

https://www.amazon.fr/Computer-History-Information-Machine-Technology-ebook/dp/B07CNDC344/ref=sr_1_1?__mk_fr_FR=%C3%85M%C3%85%C5%BD%C3%95%C3%91&crid=2MCJSC0Q0UNWO&keywords=Computer%3A+A+History+of+the+Information+Machine&qid=1683623797&sprefix=computer+a+history+of+the+information+machine%2Caps%2C74&sr=8-1&asin=0813345901&revisionId=&format=4&depth=2

 $https://www.physique.usherbrooke.ca/\sim a faribau/essai/\#:\sim: text=Les\%20 tables\%20 de\%20 calcul\%20 furent, aux\%20 cailloux\%20 oselon\%20 leur\%20 position$

https://www.enfant-encyclopedie.com/pdf/synthese/apprentissage-par-le-jeu

http://remacle.org/bloodwolf/erudits/Vitruve/livre1.htm

https://dl.acm.org/doi/10.1145/12178.12180

https://aosabook.org

http://waterbearlang.com

```
https://en.wikipedia.org/wiki/Timeline_of_computing
```

https://en.wikipedia.org/wiki/History_of_the_graphical_user_interface

https://fr.wikipedia.org/wiki/Histoire_de_la_cryptologie

https://fr.wikipedia.org/wiki/Analogies_et_correspondances

https://fr.wikipedia.org/wiki/Philosophie_de_1%27information

https://fr.wikipedia.org/wiki/%C3%89pist%C3%A9mologie

https://fr.wikipedia.org/wiki/Th%C3%A9orie_de_la_connaissance

https://www.youtube.com/watch?v=8KHuSw0W6OA

https://www.youtube.com/watch?v=FlfChYGv3Z4

https://www.youtube.com/watch?v=eMy4vSZ-J_I

https://www.youtube.com/watch?v=MQzpLLhN0fY

https://www.youtube.com/watch?v=YBnBAzrWeF0

https://www.youtube.com/watch?v=2dKG21u2aSo

https://www.youtube.com/watch?v=Yc945sNB0uA

https://www.youtube.com/watch?v=YyxGIbtMS9E

https://www.youtube.com/watch?v=9EjZVEGlk I

https://www.youtube.com/watch?v=6TRfy70DqD8

https://www.youtube.com/watch?v=h9H6WkUeuUY

https://www.youtube.com/watch?v=eIpoA7Ir9p8

https://www.youtube.com/watch?v=7XTHdcmjenI

https://www.youtube.com/watch?v=Ag1AKI1 2GM

https://www.amazon.fr/Building-Blocks-Teaching-Preschoolers-Special/dp/1557669678

Lexique

Table des illustrations

Page d'évaluation

1. https://www.codingame.com/work/fr/codingame-coderpad-tech-hiring-survey-2022/ ↔ ↔