

SRM Institute of Science and Technology College of Engineering and Technology

Department of Mathematics

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2022-2023(ODD)

Course Code &Title: 18MAB201T-Transforms and Boundary Value Problems

Year &Sem: II/III, Unit: IV

Tutorial 1 Part A

1	Define infinite complex Fourier transform of $f(x)$ and write its inversion formula.
2	Write down the corresponding Kernels in the above formulas.
3	State the Fourier integral theorem.
4.	If $F[f(x)] = F(s)$, $F[g(x)] = G(s)$ then show that $F[a. f(x) + b. g(x)] = a. F(s) + b. G(s)$
5.	If $F[f(x)] = F(s)$ then find the expressions for $F[f(x-a)]$, $F[f(a.x)]$, $F[e^{iax}f(x)]$ and $F[f(x)\cos(ax)]$ in terms of $F(s)$.

Part B

6.	Find the Fourier transform of
	$f(x) = \begin{cases} x, x \ge a \\ 0, x > a \end{cases}.$
7.	2 2 2
/.	Find the Fourier transform of $e^{-\frac{x^2}{2}}$ by finding the Fourier transform of $e^{-\frac{a^2x^2}{2}}$.
8.	Find the Fourier transform of
	$f(x) = \begin{cases} e^{i\kappa x}, & a < x < b \\ 0, & x < a, y > b \end{cases}$
	$\int (x)^{-1} (0, x < a, y > b)$
	And hence deduce the Fourier transform of
	(1, a < x < b)
	$f(x) = \begin{cases} 1, & a < x < b \\ 0, & x < a, y > b \end{cases}$
9.	Find the Fourier transform of
	$f(x) = \begin{cases} 1 - x^2, x < 1 \\ 0, x > 1 \end{cases}$
	And hence evaluate
	$^{\circ}$
	$\int_{0}^{\infty} \left(\frac{x \cos(x) - \sin(x)}{x^3} \right) \cos\left(\frac{x}{2}\right) dx.$
10.	Find the Fourier transform of
	x < a
	$f(x) = \begin{cases} 1, & x < a \\ 0, & x > a > 0 \end{cases}$
	And hence evaluate the values of
	$\int_0^\infty \frac{\sin(z)}{z} dz$, $\int_{-\infty}^\infty \frac{\sin(as)\cos(sx)}{s} ds$.