SECTION 3.6: NUMERICAL INTEGRATION

1. The Midpoint Rule:

2. Estimate $\int_0^2 e^{x^2} dx$ using M_4 , the Midpoint Rule with 4-subintervals. Round your estimate to 4 decimal places.

3. The Trapezoid Rule:

4. Estimate $\int_0^2 e^{x^2} dx$ using T_4 , the Trapezoid Rule with 4-subintervals. Round your estimate to 4 decimal places.

1

§3.6

5. Simpson's Rule:

6. Estimate $\int_0^2 e^{x^2} dx$ using M_4 , Simpson's Rule with 4-subintervals. Round your estimate to 4 decimal places.

7. WolframAlpha gives the following estimate: $\int_0^2 e^{x^2} dx = 16.45262776550$. Using WolframAlpha's estimation as the exact value of the integral, determine the *absolute* error for each of our three estimates.

2

§3.6