

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1. (canceled).
2. (canceled).
3. (withdrawn): A method of producing a support salt for a cell, which comprises the steps of:
 - (i) a step of reacting a phosphazene derivative represented by the following formula (III) with a primary amine represented by the following formula (IV) to produce a phosphazene derivative represented by the following formula (V); and
 - (ii) a step of adding the phosphazene derivative of the formula (V) with a lithium alkoxide to produce a compound represented by the following equation (I):

(wherein A² is F or Cl)

(wherein R is a monovalent substituent)

(wherein A^3 is independently NHR or F , and at least one A^3 is NHR , and R is a monovalent substituent)

(wherein A^1 is independently $NRLi$ or F , and at least one A^1 is $NRLi$, and R is a monovalent substituent).

4. (withdrawn): A method of producing a support salt for a cell according to claim 3, wherein the primary amine of the formula (IV) is aniline.

5. (withdrawn): A method of producing a support salt for a cell, which comprises the steps of:

(i) a step of reacting a phosphazene derivative represented by the following formula (VI) with a primary amine represented by the following formula (IV) to produce a phosphazene derivative represented by the following formula (VII); and

(ii) a step of adding the phosphazene derivative of the formula (VII) with a lithium alkoxide to produce a compound represented by the following equation (II):

(wherein A^2 is F or Cl)

(wherein R is a monovalent substituent)

(wherein A^3 is independently NHR or F, and at least one A^3 is NHR, and R is a monovalent substituent)

(wherein A^1 is independently NRLi or F, and at least one A^1 is NRLi, and R is a monovalent substituent).

6. (withdrawn): A method of producing a support salt for a cell according to claim 5, wherein the primary amine of the formula (IV) is aniline.

7. (currently amended): A non-aqueous electrolyte cell comprising a positive electrode, a negative electrode and a non-aqueous electrolyte comprising an aprotic organic solvent and a support salt ~~as claimed in claim 1~~ comprising a compound represented by the following formula (I) or (II):

(in the formulae (I) and (II), A¹ is independently NR⁺ Li⁻ or F, and at least one A¹ is NR⁺ Li⁻, and R is a monovalent substituent).

8. (original): A non-aqueous electrolyte cell according to claim 7, wherein a phosphazene derivative or an isomer of a phosphazene derivative is added to the aprotic organic solvent.

9. (currently amended): A non-aqueous electrolyte cell according to claim 8, wherein the phosphazene derivative has a viscosity at 25°C of not more than 300 mPa·s (300 cP) and is represented by the following formula (VIII) or (IX):

(wherein R¹, R² and R³ are independently a monovalent substituent or a halogen element, and X¹ is a substituent containing at least one element selected from the group consisting of carbon, silicon, germanium, tin, nitrogen, phosphorus, arsenic, antimony, bismuth, oxygen, sulfur, selenium, tellurium and polonium, and Y¹, Y² and Y³ are independently a bivalent connecting group, a bivalent element or a single bond)

(wherein R⁴ is independently a monovalent substituent or a halogen element, and n is 3-15).

}

10. (original): A non-aqueous electrolyte cell according to claim 9, wherein the phosphazene derivative of the formula (IX) is represented by the following formula (X):

(wherein n is 3-13).

11. (currently amended): A non-aqueous electrolyte cell according to claim 9, wherein the phosphazene derivative of the formula (IX) is represented by the following formula (XI):

$(NPR^5_2)_n$ (XI)

(wherein R^5 is independently a monovalent substituent or fluorine, and at least one of all R^5 's is a fluorine containing monovalent substituent or fluorine, and n is 3-8, provided that all of R^5 's are not fluorine).

12. (currently amended): A non-aqueous electrolyte cell according to claim 8, wherein the phosphazene derivative is a solid at 25°C and is represented by the following formula (XII):

$(NPR^6_2)_n$ (XII)

(wherein R^6 is independently a monovalent substituent or a halogen element, and n is 3-6).

13. (original): A non-aqueous electrolyte cell according to claim 8, wherein the isomer of the phosphazene derivative is represented by the following formula (XIII) and is an isomer of a phosphazene derivative represented by the following formula (XIV):

(in the formulae (XIII) and (XIV), R^7 , R^8 and R^9 are independently a monovalent substituent or a halogen element, and X^2 is a substituent containing at least one element selected from the group consisting of carbon, silicon, germanium, tin, nitrogen, phosphorus, arsenic, antimony, bismuth, oxygen, sulfur, selenium, tellurium and polonium, and Y^7 and Y^8 are independently a bivalent connecting group, a bivalent element or a single bond).

14. (currently amended): A polymer cell comprising a positive electrode, a negative electrode, an electrolyte comprising a support salt ~~as claimed in claim 1~~ and a polymer, wherein the support salt comprises a compound represented by the following formula (I) or (II):

(in the formulae (I) and (II), A^1 is independently $\text{NR}^+ \text{Li}^-$ or F , and at least one A^1 is $\text{NR}^+ \text{Li}^-$, and R is a monovalent substituent).

15. (original): A polymer cell according to claim 14, wherein the polymer is at least one of polyethylene oxide, polyacrylate and polypropylene oxide.

16. (currently amended): A polymer cell according to claim 14, wherein the polymer has a weight average molecular weight of not less than 10,000.

17. (currently amended): A polymer cell according to claim 16, wherein the weight average molecular weight of the polymer is not less than 5,000,000.

18. (previously presented): A polymer cell according to claim 14, wherein an amount of the polymer to a total amount of the polymer and the support salt is 80-95% by mass.

19. (previously presented): A polymer cell according to claim 14, wherein the electrolyte further contains a phosphazene derivative and/or an isomer of a phosphazene derivative.

20. (previously presented): A polymer cell according to claim 19, wherein the phosphazene derivative has a viscosity at 25°C of not more than 300 mPa·s (300 cP) and is represented by the following formula (VIII) or (IX):

(wherein R¹, R² and R³ are independently a monovalent substituent or a halogen element, and X¹ is a substituent containing at least one element selected from the group consisting of carbon, silicon, germanium, tin, nitrogen, phosphorus, arsenic, antimony, bismuth, oxygen, sulfur, selenium, tellurium and polonium, and Y¹, Y² and Y³ are independently a bivalent connecting group, a bivalent element or a single bond)

(NPR⁴₂)_n (IX)

(wherein R⁴ is independently a monovalent substituent or a halogen element, and n is 3-15).

21. (original): A polymer cell according to claim 20, wherein the phosphazene derivative of the formula (IX) is represented by the following formula (X):

(NPF₂)_n (X)

(wherein n is 3-13).

22. (original): A polymer cell according to claim 20, wherein the phosphazene derivative of the formula (IX) is represented by the following formula (XI):

(NPR⁵₂)_n (XI)

(wherein R⁵ is independently a monovalent substituent or fluorine, and at least one of all R⁵'s is a fluorine containing monovalent substituent or fluorine, and n is 3-8, provided that all of R⁵'s are not fluorine).

23. (original): A polymer cell according to claim 19, wherein the phosphazene derivative is a solid at 25°C and is represented by the following formula (XII):

(wherein R⁶ is independently a monovalent substituent or a halogen element, and n is 3-6).

24. (original): A polymer cell according to claim 19, wherein the isomer of the phosphazene derivative is represented by the following formula (XIII) and is an isomer of a phosphazene derivative represented by the following formula (XIV):

(in the formulae (XIII) and (XIV), R⁷, R⁸ and R⁹ are independently a monovalent substituent or a halogen element, and X² is a substituent containing at least one element selected from the group consisting of carbon, silicon, germanium, tin, nitrogen, phosphorus, arsenic, antimony, bismuth, oxygen, sulfur, selenium, tellurium and polonium, and Y⁷ and Y⁸ are independently a bivalent connecting group, a bivalent element or a single bond).

25. (previously presented): A polymer cell according to claim 19, wherein a total content of the phosphazene derivative and the isomer of the phosphazene derivative in the electrolyte is at least 0.5% by mass.

26. (original): A polymer cell according to claim 25, wherein the total content of the phosphazene derivative and the isomer of the phosphazene derivative in the electrolyte is at least 2.5% by mass.

27. (new): A non-aqueous electrolyte cell according to claim 7, wherein R in the formula (I) or (II) is a phenyl group.