C6 miercuri, 24 ianuarie 2024 18:02	
O rolatio hinară Pîntro două multimi A ci P o o	
O relație binară R între două mulțimi A și B e o mulțime de perechi: o submulțime a produsului	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
când x e în relație cu y	
A (1 2 2 4)	
$A = \{1, 2, 3, 4\},\ B = \{a, b, c\}$	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
$R = \{(1, a), (1, c), (2, c), (4, c)\}$	
În general, o relație <i>nu</i> e o noțiune simetrică: produsul	

$$R = \{(x, x^2 + 1) \mid x \in Z\}$$

0

Reprezentarea unei relații

- 3. Ca matrice booleană/binară, dacă A, B finite,
 - linii indexate după A, și coloanele după B

$$m_{xy} = 1 \operatorname{daca}(x, y) \in R$$
,

$$m_{xy} = 0 dacă(x, y) \notin R$$

În practică putem folosi acest tip de reprezentare dacă A și B nu sunt foarte mari

	a	b	С
1	1	0	1

Sau, folosind reprezentarea ca matrice, care are $ A \cdot B $ elemente. fiecare: ales independent în 2 feluri: 0 sau 1, deci $2 A \cdot B $ variante.		
O funcție parțială $f: A \rightarrow B$ e un caz particular de relație: - asociază câte un singur element din B (ca funcția)		
 dar nu neapărat fiecărui element din A (cum e obligată funcția) 		
Funcțiile parțiale sunt utile: — când domeniul <i>exact</i> al funcției <i>nu</i> e cunoscut		
(funcții care nu sunt neaparat calculabile în orice punct).		
 – când domeniul de definiție al funcției e foarte mare sau nelimitat, dar reprezentăm funcția explicit doar pentru valorile de interes 		
Exemplu: populația unei localități		
 posibil să nu știm populația pentru toate localitățile dacă argumentul e un șir, nu orice șir e nume de 		
localitate		

localitate
Următoarele proprietăți sunt definite pentru relații binare pe o (aceeași) mulțime $X: R \subseteq X \times X$
• $reflexivă$: pentru orice $x \in X$ avem $(x, x) \in R$
 ireflexivă: pentru orice x ∈ X avem (x, x) ∉ R
• simetrică: pentru orice x, y ∈ X , dacă (x, y) ∈ R atunci
şi (y, x) ∈ R • antisimetrică: pentru orice $x, y \in X$, dacă $(x, y) \in R$ și
$(y, x) \in R$, atunci $x = y$
 tranzitivă: pentru orice x, y, z ∈ X , dacă (x, y) ∈ R şi (y, z) ∈ R, atunci (x, z) ∈ R
O relație binară pe o mulțime X poate fi
reprezentată ca un <i>graf</i> cu X ca mulțime de noduri:
graf orientat: graf neorientat:

graf orientat: relație oarecare $R = \{(a,b), (a,c), (c,d), (d,a)\}$

graf *neorientat*: relație *simetrică* $R = \{(a, b), (a, c), (a, d), (b, c)\}$

18

Relații de echivalență

O relație e de echivalență dacă e reflexivă, simetrică și tranzitivă

Relația de egalitate e (evident) o relație de echivalență. Relația de congruență modulo un număr (mod n):

 $a = h \pmod{n}$ dacă $n \mid a - h \pmod{differenta}$

	Exemple: - relaţiile < şi > între numere - relaţia "descendent" între persoane	
	-20	
	Relații de ordine totală	
	O relație ≤ e o <i>ordine totală</i> dacă e reflexivă,	
•	antisimetrică (dacă $x \le y$ și $y \le x$ atunci $x = y$), tranzitivă, și în plus oricare două elemente sunt comparabile,	
a	idică pentru orice x , y avem $x \le y$ sau $y \le x$	

Exemple: re	elațiile ≤ și ≥ între nume	re (întregi, reale,		
		2	21	
Re	elații de ordine p	arțială		
- clasament p - Ştim ordine	ar adesea relații de ordine c e grupe, dar nu și între grup a sosirii mesajelor, dar nu și f(x) + g (x), f și g se apelea nu știm dacă se evaluează îr	e diferite ordinea trimiterii lor		
O relație e o	ordine parțială (non-strictă),	3,444,347,777, 354,441,744,744,744		
Exemple:	e divizibilitate între întregi			

Inversa unei relații

Inversa unei relații $R \subseteq A \times B$ e relația

$$R^{-1} \subseteq B \times A$$
,
cu $(y, x) \in R^{-1}$ dacă și numai dacă $(x, y) \in R$

$$R^{-1} = \{(y, x) \mid (x, y) \in R\}$$

27

Compunerea de relații

 Dicţionarele sunt folosite pentru a stoca datele în perechi cheie:valoare. 		
Dicționarele se scriu între două acolade {} și au ca elemente perechi de cheie:valoare separate prin virgulă		
dictionar = { "nume": "Alin", "an": 1,		
"facultate": "Automatica si Calculatoare" } print(dictionar)		
# {'nume': 'Alin', 'an': 1, 'facultate': 'Automatica si		
- Calculatoare'}		

	Valorile din perechea cheie: valoare pot fi orice tip de date și se pot repeta.
	Cheile din perechea cheie: valoare pot fi doar date care nu se pot modifica ulterior creeri lor (en.: immutable) și nu ne pot
	repeta.
	dictionar = {} dictionar2 = {1: "unu", 2: "doi"}
	dictionar3 = { "nume": "Ana",
	"copii": ["Andrei", "Maria"]
	Dicţionare în PYTHON
	Putem crea dicționare și cu ajutorul constructorului
	7

Putem crea dicţionare şi cu ajutorul constructorului dict() dictionar = dict() dictionar2 = dict({1: "unu", 2: "doi"}) dictionar3 = dict(((10, "zece"), (100, "o suta"))) # {} # {1: 'unu', 2: 'doi'}		
# {10: 'zece', 100: 'o suta'} Accesarea elementelor din dicționar		
Dacă la liste folosim indecși pentru a accesa elementele, la dicționare vom folosi cheile. Pentru a accesa un element folosim <i>paranteze drepte</i> [] sau metoda get().		

```
element folosim paranteze drepte [] sau metoda get().
dictionar ={
  "nume": "Alin", "an": 1,
  "facultate": "Automatica si Calculatoare"
print(dictionar["an"])
                                              # 1
print(dictionar.get("nume"))
                                              # Alin
  Accesarea elementelor din dictionar
Pentru a accesa elementele putem folosi metodele:
 keys(), values() și items() astfel:
dictionar ={"nume": "Alin", "an": 1, "facultate": "AC"}
 print(dictionar.keys())
```

```
dictional ={ nume : Alln , an : 1, lacultate : AC }
print(dictionar.keys())
print(dictionar.values())
print(dictionar.items())
# dict keys(['nume', 'an', 'facultate'])
# dict values(['Alin', 1, 'AC'])
# dict_items([('nume', 'Alin'), ('an', 1), ('facultate', 'AC')])
                                                         36
  Adăugarea de elemente în dicționar
Dicționarele pot fi modificate după ce au fost create:
putem adăuga elemente noi sau putem modifica valoarea
de la o anumită cheie existentă.
dictionar ={"nume": "Alin", "an": 1, "facultate": "AC"}
dictionar["nume"] = "Marius"
dictionar["varcta"] - 20
```

dictionar["nume"] = "Marius" dictionar["varsta"] = 20	
print(dictionar) # {'nume': 'Marius', 'an': 1, 'facultate': AC', 'varsta': 20}	
37	
Adăugarea de elemente în dicționar	
Putem adauga elemente noi sau modifica elemente existente folosind și metoda update()	
dictionar ={"nume": "Alin", "an": 1, "facultate": "AC"}	
dictionar.update({"nume":"Marian"}) dictionar.update({"nume de familie": "Popescu", "nota": 10})	
nrint/dictionar)	

print(dictionar) #{'nume': 'Marian familie': 'Popescu	n', 'an': 1, 'facultate': 'AC', 'nume de n', 'nota': 10}		
Stergeres	de elemente din dicționar	_	
pop() - șterge elem popitem()- șterge	mente din dicționar putem folosi metodele: nentul indicat ca parametru, un element aleator din dicționar te elementele din dicționar		
dictionar = {"nume	": "Alin", "varsta": 20, "an": 1, "facultate":		
dictionar.pop("fact	**************************************		
print(dictionar)			
	1)		
dictionar.popitem(print(dictionar) dictionar.clear()	# {'nume': 'Alin', 'varsta': 20}		

Verificarea existenței unui element

Pentru a verifica dacă o cheie există în dicționar vom folosi in. Nu putem căuta după valoare ci doar după cheie.

```
dublu = {1: 2, 2: 4, 3: 6, 4: 8, 5: 10}
```

```
x = 2
if(x in dublu):
    print("cheia cautata este in dictionar")
else:
    print("cheia cautata nu este in dictionar")
```

41

Verificarea existenței unui element		
Pentru a parcurge toate elementele din dicționar putem folosi for in		
dublu = {1: 2, 2: 4, 3: 6, 4: 8, 5: 10}		
for x in dublu:		
print(dublu[x])		
1/2 of the second		
Va afișa:		
4		
6		
8		
10		
Verificarea existenței unui element		

Asociază fiecărui x mulțimea elementelor lui B cu care x e în relație (posibil vidă): $f_R(1) = \{a, c\}, f_R(3) = \emptyset$

Dicționarul va fi atunci de la A la submulțimi de elemente din B

Relații cu ajutorul dicționarelor

45

