PH 107: Quantum Physics and Applications

Particle in a finite box potential

Lecture 14: 01-02-2022

Sunita Srivastava
Department of Physics
Sunita.srivastava@iitb.ac.in

Recap (Infinite box potential)

- Particle in infinite square well has quantized energy. Free particle has continuum energy.
- Quantization is characterization of bound states.
- Zero point energy for confined particle unlike classical system.
- Eigen functions are eigen solutions to momentum operator.
- Probability density of mixed/superposed states (of different energy) oscillates with time.
- Measurement: Concept of collapse of wave function.

Particle in a one-dimensional finite potential box

$$V(x) = 0$$
 for $0 < x < L$
= V_o for $x < 0$ or $x > L$

We have two choices here. Either we assume $E < V_0$ or $E > V_0$. Let's start with $E < V_0$

(bound states)
$$-\frac{\hbar^2}{2m} \frac{d^2 \phi_1(x)}{dx^2} + V_0 \phi_1(x) = E \phi_1(x)$$

$$\frac{d^2 \phi_1(x)}{dx^2} + \frac{2m(E - V_0)}{\hbar^2} \phi_1(x) = 0$$

$$\frac{d^2 \phi_2(x)}{dx^2} + \frac{2mE}{\hbar^2} \phi_2(x) = 0$$

$$\frac{d^2\phi_3(x)}{dx^2} + \frac{2m(E - V_0)}{\hbar^2}\phi_3(x) = 0$$

Particle in a one-dimensional finite potential box

For Region I

$$\frac{d^2\phi_1(x)}{dx^2} + \frac{2m(E - V_0)}{\hbar^2}\phi_1(x) = 0$$

 $\frac{2m}{\hbar^2}(E - V_0) = \lambda^2$ If we define,

$$\frac{d^{2}\phi_{1}(x)}{dx^{2}} + \frac{2m(E - V_{0})}{\hbar^{2}}\phi_{1}(x) = 0$$

$$v = V_{0}$$

$$V = V_{0}$$

$$V = V_{0}$$

$$V = 0$$

$$x = 0$$

$$x = 0$$

Then we can write (like before), $\varphi_1(x) = M \sin \lambda x + N \cos \lambda x$ $\varphi_1(x) = M \sin \lambda x + N \cos \lambda x$

$$= M \frac{e^{i\lambda x} - e^{-i\lambda x}}{2i} + N \frac{e^{i\lambda x} + e^{-i\lambda x}}{2}$$

$$= \frac{N - iM}{2} e^{i\lambda x} + \frac{N + iM}{2} e^{-i\lambda x}$$

$$\varphi_1(x) = Ae^{i\lambda x} + Be^{-i\lambda x}$$

Instead let us define $\frac{2m}{\hbar^2}(V_0 - E) = \alpha^2$

Here the LHS is a positive quantity. This implies $\lambda = \pm i\alpha$

In terms of α , $\varphi_1(x) = Ae^{i\lambda x} + Be^{-i\lambda x}$ becomes

$$\varphi_1(x) = Ae^{\alpha x} + Be^{-\alpha x}$$

$$\frac{d^2\phi_2(x)}{dx^2} + \frac{2mE}{\hbar^2}\phi_2(x) = 0$$

$$\phi_2(x) = C \sin kx + D \cos kx$$
, where $k^2 = \frac{2mE}{\hbar^2}$

$$\frac{d^2\phi_3(x)}{dx^2} + \frac{2m(E - V_0)}{\hbar^2}\phi_3(x) = 0$$

$$\varphi_3(x) = Ge^{\alpha x} + He^{-\alpha x}$$

Now, we recall that the wave function needs to be finite, i.e. $\phi(x) \to 0$ as $x \to \infty$

So, for region I, B = 0 (since x < 0), i.e., $\varphi_1(x) = Ae^{\alpha x}$

For region III, G = 0 (since x > 0), i.e. $\varphi_3(x) = He^{-\alpha x}$

Finally, for region II, we need to satisfy the boundary conditions:

$$\varphi_1(0) = \varphi_2(0); \varphi_2(L) = \varphi_3(L);$$

$$\varphi_1'(0) = \varphi_2'(0); \varphi_2'(L) = \varphi_3'(L);$$

At
$$x = 0$$
, $\varphi_1(0) = \varphi_2(0)$ $\triangle Ae^0 = C \sin(0) + D \cos(0)$

$$\longrightarrow$$
 $A = D$

At
$$x = 0$$
, $\varphi'_1(0) = \varphi'_1(0)$ \longrightarrow $A\alpha e^0 = Ck\cos(0) - Dk\sin(0)$

$$\longrightarrow$$
 $A\alpha = Ck$

We know

$$\phi_2(x) = C\sin(kx) + D\cos(kx)$$
$$\phi_3(x) = He^{-\alpha x}$$

At x= L,
$$\varphi_2(L) = \varphi_3(L)$$
 \subset $C \sin kL + D \cos kL = He^{-\alpha L}$

At
$$x = L$$
, $\varphi_2'(L) = \varphi_2'(L)$ \longrightarrow $Ck \cos(kL) - Dk \sin(kL) = -\alpha He^{-\alpha L}$

We get, (1)
$$A = D$$

$$(2) A\alpha = Ck$$

(3)
$$C \sin kL + D \cos kL = He^{-\alpha L}$$

(4)
$$Ck \cos(kL) - Dk \sin(kL) = -\alpha He^{-\alpha L}$$

Four Equations & Four Unknowns (actually five including Energy)

Express all constants in terms of *A*.

$$D = A$$

$$C = \frac{\alpha}{k}A$$

$$\frac{\alpha}{k}A\sin kL + A\cos kL = He^{-\alpha L}$$

$$\frac{\alpha}{k}Ak\cos(kL) - Ak\sin(kL) = -\alpha He^{-\alpha L}$$

Divide last eqn by second last.

$$\frac{\alpha \cos(kL) - k \sin(kL)}{\alpha \sin(kL) + k \cos(kL)} = -\frac{\alpha}{k}$$

$$\frac{\alpha \cos(kL) - k \sin(kL)}{\alpha \sin(kL) + k \cos(kL)} = -\frac{\alpha}{k} = -f(k) = f(E)$$

Similarly, LHS is also another function of \emph{k} or equivalently \emph{E} , say $g(\emph{k})$

If we plot g(k) and f(k) versus k in the same graph, then the points of intersection satisfy the equation g(k) = f(k).

All points k_n , for which $f(k_n) = g(k_n)$, gives the allowed values of k, or equivalently the allowed values of E, i.e., E_n .

$$\frac{\alpha \cos(kL) - k \sin(kL)}{\alpha \sin(kL) + k \cos(kL)} = -\frac{\alpha}{k} = f(E)$$

$$\implies \frac{\left(\frac{\alpha}{k}\right) - \tan(kL)}{\left(\frac{\alpha}{L}\right)\tan(kL) + 1} = -\frac{\alpha}{k}$$

$$\Longrightarrow \left(\frac{\alpha}{k}\right) - \tan(kL) = -\left(\frac{\alpha}{k}\right)^2 \tan(kL) - \left(\frac{\alpha}{k}\right)$$

$$\implies \tan(kL) = \frac{2\left(\frac{\alpha}{k}\right)}{\left[1 - \left(\frac{\alpha}{k}\right)^2\right]}$$

$$\implies \tan(kL) = \frac{2\tan\left(\frac{kL}{2}\right)}{1 - \tan^2\left(\frac{kL}{2}\right)} = \frac{2\left(\frac{\alpha}{k}\right)}{\left[1 - \left(\frac{\alpha}{k}\right)^2\right]}$$

Energy Eigen Values

$$\tan(kL) = \frac{2\tan\left(\frac{kL}{2}\right)}{1-\tan^2\left(\frac{kL}{2}\right)} = \frac{2\left(\frac{\alpha}{k}\right)}{\left[1-\left(\frac{\alpha}{k}\right)^2\right]}$$

$$\implies \tan\left(\frac{kL}{2}\right) = \frac{\alpha}{k}$$

Also, we know

$$\tan(2\theta) = \frac{2\cot(\theta)}{\cot^2(\theta) - 1} = \frac{2\cot(-\theta)}{1 - \cot^2(-\theta)}$$

$$\cot\left(-\frac{kL}{2}\right) = -\cot\left(\frac{kL}{2}\right) = \frac{\alpha}{k}$$

Energy Eigen Values

Using
$$\frac{2m}{\hbar^2}(V_0 - E) = \alpha^2$$
; $\frac{2mE}{\hbar^2} = k^2$ and $k_0 = \sqrt{\frac{2mV_0}{\hbar^2}}$
$$\frac{\alpha}{k} = \sqrt{\frac{V_0 - E}{E}} = \sqrt{\frac{V_0}{E} - 1} = \sqrt{\left(\frac{k_0}{k}\right)^2 - 1} = \sqrt{\left(\frac{k_0L/2}{kL/2}\right)^2 - 1}$$

$$tan\left(\frac{kL}{2}\right) = \sqrt{\left(\frac{k_o L/2}{kL/2}\right)^2 - 1}$$
and $-cot\left(\frac{kL}{2}\right) = \sqrt{\left(\frac{k_o L/2}{kL/2}\right)^2 - 1}$

Graphical intersection of LHS and RHS is the estimate of the allowed energy states.

 $k_0 = \sqrt{2mV_0/\hbar^2}$ As V_o increases, it admits more and more bound states

Energy Eigen Values

$$tan\left(\frac{kL}{2}\right) = \sqrt{\left(\frac{k_o L/2}{kL/2}\right)^2 - 1} \quad and \quad -cot\left(\frac{kL}{2}\right) = \sqrt{\left(\frac{k_o L/2}{kL/2}\right)^2 - 1}$$

- LHS is a trigonometric function and RHS consists of a circle of radius R.
- Solutions are given by points where circle intersects the trigonometric function.
- Solution form a discrete set.
- The number of solutions depends of R and hence on V_o .

- At least one bound state will be present no matter howsoever small $\boldsymbol{V_o}$.
- The deeper and broader the well, the larger the value of R, and hence the greater the number of bound states.

Wave functions

$$\phi_2(x) = C \sin kx + D \cos kx$$

- There is a non zero probability of finding the particle in Region I and III
- The probability decays exponentially but

it is non-zero.

Classically, this is forbidden.

Penetration of the wave function in the classically forbidden region has immense practical consequences (NSOM, near field scanning optical microscopy).

Wave functions

The exponential "tails" of the wave function

$$\phi_n(x) = A e^{\alpha_n x} \quad \forall \ x < 0$$

Penetration length $\delta_n = \frac{1}{\alpha_n}$

Penetration length is proportional to Planck's constant

$$\phi_n(\delta_n) = \frac{\phi_n(0)}{e}$$

Effective dimension of the potential well $\,L+2\delta_n\,$

Approximate Energy
$$\,E_n pprox rac{n^2 \pi^2 \hbar^2}{2 m (L + 2 \delta_n)^2}$$

Energy states of finite well is smaller than infinite well.

Comparison of finite and infinite potential wells

Wave functions extend into classically forbidden region

Wave functions are zero at the wall