

RONNI APARECIDO FERNANDES DE OLIVEIRA

FORUM AVALIATIVO [AVA1]:

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

RONNI APARECIDO FERNANDES DE OLIVEIRA

FORUM AVALIATIVO [AVA1]:

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

Forum avaliativo da disciplina Arquitetura e Organização de Computadores apresentada ao Curso de Análise e Desenvolvimento de Sistemas do Centro Universitário Filadélfia - UniFil.

Caro(a) aluno(a), em nossos estudos, discutimos sobre a aritmética digital e falamos especificamente sobre adição e subtração.

Nesse fórum, quero pedir a você que pesquise como o computador trabalha com a multiplicação e divisão digital. Apresente a teoria e exemplos de cálculo dessas operações.

Multiplicação no Sistema Binário

Antes de adentrarmos na multiplicação e na divisão dentro da ULA, é necessário entendermos como é feito a multiplicação e a divisão de números binários, matematicamente falando.

A multiplicação, segue os mesmos moldes da já conhecida multiplicação de números decimais, ou seja, multiplicador versus multiplicando. Entretanto, considerando que só existem 02 números possíveis (0 e 1) o resultado das multiplicações serão conforme abaixo:

 $0 \times 0 = 0$ $0 \times 1 = 0$ $1 \times 0 = 0$ $1 \times 1 = 1$

Isso significa dizer que, se o valor do multiplicador for 0, o resultado será 0. Se o valor do multiplicador for 1, o resultado será o valor do multiplicando.

Quando temos mais de um bit no multiplicador, à cada multiplicação realizada (considerando o bit do multiplicador, da direita para a esquerda), o valor do produto desta multiplicação é expresso em linhas separadas, deslocado uma casa à esquerda a medida em que se avança na multiplicação, assim como na matemática convencional hexadecimal. Por fim, os produtos das multiplicações são somados.

Por isso, também é comum dizer que a multiplicação binária pode ser feita através da técnica de deslocamento e soma.

Vamos aos exemplos:

 $1010_2 \times 10_2 \Rightarrow 10_{10} \times 2_{10} \Rightarrow 20_{10}$

Agora vamos a outro exemplo:

$$101100_2 \times 1101_2 \Rightarrow 44_{10} \times 13_{10} \Rightarrow 572_{10}$$

Convertendo o resultado para decimal:

$$2^9$$
 2^8 2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0 => 2^9 + 2^5 + 2^4 + 2^3 + 2^2
1 0 0 0 1 1 1 1 0 0 512 32 16 8 4

Os exemplos apresentados aqui estão considerando apenas números positivos. Ainda é aplicado o princípio da potência do sinal, atribuindo o valor de 0 (se o número for positivo) ou 1 (se o número for negativo) ao primeiro elemento do número binário. E ainda é aplicado o complemento 2 para os números negativos.

Do ponto de vista do processamento do computador, vamos considerar o exemplo a seguir em que a ULA realiza o seguinte processo para calcular 2 x 3.

Assim, o cálculo em binário de 2x3 seria de 0010 x 0011:

Convertendo o resultado para decimal:

$$2^{7}$$
 2^{6} 2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0} => 2^{2} + 2^{1} => $\mathbf{6}_{10}$

De forma simplista, o algoritmo do computador iria realizar os seguintes passos para o cálculo:

Abaixo transcrevemos como estes dados seriam registrados na ULA:

Iteração	Passo	Multiplicador	Multiplicando	Produto	
0	Valores iniciais	0011	0000 0010	0000 0000	
1	a: 1 => Prod = Prod + Mcand	0011	0000 0010	0000 0010	
	b: Muda para esquerda o Multiplicando	0011	0000 0100	0000 0010	
	c: Muda para direita o Multiplicador	0001	0000 0100	0000 0010	
2	a1: 1 => Prod = Prod + Mcand	0001	0000 0100	0000 0110	
	b: Muda para esquerda o Multiplicando	0001	0000 1000	0000 0110	
	c: Muda para direita o Multiplicador	0000	0000 1000	0000 0110	
3	a: 0 => Sem operação	0000	0000 1000	0000 0110	
	b: Muda para esquerda o Multiplicando	0000	0001 0000	0000 0110	
	c: Muda para direita o Multiplicador	0000	0001 0000	0000 0110	
4	a: 0 => Sem operação	0000	0001 0000	0000 0110	
	b: Muda para esquerda o Multiplicando	0000	0010 0000	0000 0110	
	c: Muda para direita o Multiplicador	0000	0010 0000	0000 0110	

Divisão no sistema binário

Considerando o modelo matemático hexadecimal, na divisão de números binários, o princípio da divisão segue o mesmo esquema.

Consideremos dividir 80 por 4, em que dividendo (80) é maior que o divisor (4).

Primeiro comparamos estas grandezas entre dividendo e o divisor.

Neste caso, podemos fracionar o dividendo, da esquerda para a direita, e iniciarmos o cálculo quando tivermos o dividendo maior ou igual o divisor em pelo menos 1 vez (quociente).

Subtrai-se o divisor do dividendo e obtém-se o resto.

Baixa-se o próximo número, formando o próximo dividendo.

Quando o dividendo não é divisível pelo divisor, e ainda restam números a serem divididos no dividendo, o zero é apropriado ao quociente e o próximo número é baixado ao resto.

Se não houver mais números a dividir e o resto for zero, o cálculo está encerrado.

Vamos exemplificar o mesmo cálculo no esquema binário (80 / 40):

$$80/40 = 20 = 1010000_2/101000_2$$

Transformar 80 em binário:

80/2 = 40 Resto 0

40 / 2 = 20 Resto 0

20 / 2 = 10 Resto 0

10/2 = 5 Resto 0

5/2 = 2 Resto 1

2/2 = 1 Resto 0

1/2 = 0 Resto 1

1010000

Transformar 40 em binário:

40 / 2 = 20 Resto 0

20 / 2 = 10 Resto 0

10/2 = 5 Resto 0

5/2 = 2 Resto 1

2/2 = 1 Resto 0

1/2 = 0 Resto 1

101000

Fazer a divisão de 1010000 / 101000:

Faremos como na matemática convencional:

	1	0	1	0	0'	0'	0'	1	0	1	0	0	_
-	1	0	1	0	0			1	0				-
	0	0	0	0	0	0'	Abaixa o próximo número (0)						
	-	0	0	0	0	0	Não dá para dividir, insere 0 no quociente						
	0	0	0	0	0	0	0	Não	dá pai	ra divi	dir, rest	to 0	

Vamos fazer mais um cálculo:

110012 / 102

Em resumo, na divisão binária:

- 1. Verifica-se quantas vezes o divisor cabe no dividendo por tentativa
- 2. Busca o maior valor do quociente cuja sua multiplicação com o divisor não seja maior que o dividendo
- 3. Subtrai-se o produto do quociente versos o divisor, do dividendo
- 4. O resto da divisão deve ser um valor igual, no máximo, ao divisor menos 1

Referências:

- **3.2 Arquitetura de Computadores Multiplicação e Divisão de Inteiros** Disponível em: https://www.youtube.com/watch?v=v4YQBWMStnc Acesso em: 26 mar. 2022
- **34.** Arquitetura de Computadores: Unidade Lógico-Aritmética de 1 bit Disponível em: https://www.youtube.com/watch?v=5dE2tfL3orA Acesso em: 26 mar. 2022.

Arquitetura e Organização de Computadores Aula: Conversão de Bases e Aritimética Computacional Disponível em: https://www.cin.ufpe.br/~lfsc/cursos/arquiteturadecomputadores/unidade%201/aula%202%20-%20conversao%20de%20bases%20e%20aritmetica%20computacional.pdf Acesso em: 26 mar. 2022.