- 1. An object whose mass is 1 kgm stretches a spring 1.111111111 meters. The object is connected to a damper with damping constant $\gamma = 10$ and an external force equal to $3\cos 3t$ is also applied. The object is pushed up .1 meters above its equilibrium postion and then set into motion with a downward velocity of .3 meters/sec. Then determine the displacement y(t) at any time $t \geq 0$.
- **ANS.** With damping and external force, the IVP that we must solve is

$$y'' + 10y' + 9y = 3\cos 3t$$
 $y(0) = -.1$ $y'(0) = .3$

The characteristic polynomial is $r^2 + 10r + 9$. So the general solution to the associated homogeneous equation is $y_h = c_1 e^{-t} + c_2 e^{-9t}$. We now seek a solution y_p to the given equation by complexifying it:

$$y'' + 10y' + 9y = 3e^{3it}$$

We expect that a solution will be of the form $y_c = Ae^{3it}$. We plug this in to the above to obtain

$$(-9A + 30iA + 9A)e^{3it} = 3e^{3it}$$

Therefore A = 3/30i = -i/10. We now take the real part of

$$\frac{-i}{10}(\cos 3t + i\sin 3t)$$

to obtain a particular solution of the original equation:

$$y_p = \frac{1}{10}\sin 3t = .1\sin 3t$$

So the general solution is $y_h + y_p$ and the only thing that remains is to determine the c_1 and c_2 :

$$y = c_1 e^{-t} + c_2 e^{-9t} + .1 \sin 3t$$
 $y' = -c_1 e^{-t} - 9c_2 e^{-9t} + .3 \cos 3t$

Plugging t = 0 into these equation gives:

$$c_1 + c_2 = -.1 \qquad -c_1 - 9c_2 + .3 = .3$$

which gives $c_2 = 1/80$ and $c_1 = -9/80$.

- 2. What is the transient part of the solution to Problem 1 and what is the steady state part of the solution to Problem 1?
- ANS. The transient solution is $(1/80)(-9e^{-t}+e^{-9t})$ and the steady state solution is $y_p=.1\sin 3t$.
- 3. If the damping device is not removed from the system in Problem 1 then explain why the external force of $\cos \omega t$ will not produce resonance for any value of ω .
- **ANS.** Because when there is damping then the real part of the roots of the characteristic polynomial cannot be zero but the real part of $i\omega$ is zero.
- 4. If damping is removed from the system in Problem 1 then determine which value of ω in the external force of $\cos \omega t$ will produce resonance.
- **ANS.** Resonance occurs when the natural frequency coincides with the frequency of the external force. In Problem 3 the natural frequency is 3 when the damping device is removed.

©2009 by Moses Glasner