Fourier Transformation Signal and Image Processing 2014

J. Sporring

September 14, 2014

Monday, not to be handed-in

- 1. **Complex numbers**: The following questions are intended as a repetition of basic algebra of complex numbers. They need not an essay answer, but please write the steps used in order to reach the result.
 - (a) Using $i = \sqrt{-1}$, $a_1, a_2, b_1, b_2, d_1, d_2 \in \mathbb{R}$, and $a, b \in \mathbb{C}$, $a = (a_1 + ia_2), b = (b_1 + ib_2)$, reduce each of the following to the form $d = (d_1 + id_2)$:
 - i. d = a + b
 - ii. d = a b
 - iii. d = a * b
 - iv. $d = \frac{a}{b}$
 - (b) Given a vector $\vec{v} = [x, y]^T$, represent this vector as a single complex number, and use the complex conjugate and some elementary operations (addition, subtraction, multiplication, division) to show how to calculate the squared length of \vec{v} .
 - (c) Rewrite $d = \sqrt{-3}$ to the form $d = (d_1 + id_2)$.
 - (d) Using $i = \sqrt{-1}$, $a_r, a_\theta, b_r, b_\theta, d_r, d_\theta \in \mathbb{R}$, and $a, b \in \mathbb{C}$, $a = a_r e^{ia_\theta}$, $b = b_r e^{ib_\theta}$ (polar form), reduce each of the following to the form $d = d_r e^{id_\theta}$:
 - i. d = a * b
 - ii. $d = \frac{a}{b}$
 - (e) Write the complex conjugate of $a_r e^{ia_\theta}$ on polar form.
 - (f) Given a and b as complex numbers on polar form, use Euler's formula $e^{ix} = \cos(x) + i\sin(x)$, simplify the following to the form $d = (d_1 + id_2)$
 - i. d = a + b
 - ii. d = a b
 - (g) Given $a = (a_1 + ia_2)$, rewrite it to polar form $d = d_r e^{id_\theta}$.

Wednesday, to be handed-in

- 1. Fourier Transform Theory: The following investigate theoretical properties of Fourier series and transform. Remember to include crucial steps in derivations, and a short comment to each answer.
 - (a) What is the difference between a Fourier series and the Fourier Transform?
 - (b) Prove that the continuous Fourier transform of a real and even function is real and even.
 - (c) Derive the continuous Fourier transform of $\delta(x-d) + \delta(x+d)$ for some constant d.
 - (d) Consider the box function

$$b_a(x) = \begin{cases} 1/a & \text{if } |x| \le \frac{a}{2} \\ 0 & \text{otherwise} \end{cases} \tag{1}$$

show that

- i. $\int_{-\infty}^{\infty} b_a(x) \, dx = 1$
- ii. the continuous Fourier transform of b using (5.10) is $B(k) = \frac{1}{ak\pi} \sin \frac{ak}{2}$. Rewrite B(k) using the $\operatorname{sinc}(x) = \frac{\sin x}{x}$.
- iii. $\lim_{a\to 0} B(k) = \frac{1}{2\pi}$ (Hint: $\lim_{x\to 0} \frac{\sin x}{x} = 1$). Does this prove an entry in Table 5.2?
- iv. The filter b has compact support in space (only uses a small set of neighbouring pixels in x). Is the same true in the frequency domain, k? Explain your answer.
- 2. **Fourier Transform Practice**: Each of theses answers should include examples of the input and output, possibly crucial Matlab code snippets, and definitely a description of which problems were solved, how, and an evaluation of the results.
 - (a) Use Matlab to calculate the power spectrum of lena.tif. Apply the function fftshift and interpret the result representation of the image.
 - (b) Write two programs: 1 that implements convolution as a nested for loop of the spatial representation of the kernel and image, 2 that implements the same convolution using Fast Fourier Transformation. Compare the two both in terms of the result and the computation time for a number of kernel sizes and image sizes.
 - (c) Write a program that adds the function $a_0cos(v_0x + w_0y)$ to lena.tif, and evaluate and describe the power spectrum of the result. Design a filter, which removes any such planar waves given v_0 and w_0 .
 - (d) Write the function scale, which implements convolution with a isotropic Gaussian kernel, parametrized with the its standard deviation the scale. Apply it to lena.tif for a range of scales.
 - (e) Spatial derivatives may be written as the multiplication of a kernel in the Fourier Domain. Derive the exact relation and discuss its practicality.
 - (f) Implement a function which takes 2 derivative orders and a 2-dimensional image, and returns the derivative of the image using FFT.