one or more circular non-metallic, flat, thermally conductive disks positioned between said laminations for conducting heat generated by an electrical current flowing within the motor through said conductive disks;

an electrically conductive material wound in a plurality of layers within the laminations so as to form an electric field that drives an armature when an electrical current is applied;

thermally conductive strips interleaved between preselected layers of the electrically conductive material, said thermally conductive strip extending outside of the area covered by the electrically conductive material; and

means for conducting heat at the end of the non-metallic thermally conductive disk and the thermally conductive strips thereby cooling the motor.

Claim 21. (amended) A method for cooling an electrical device having layers of electrically conductive material wound on to a laminated core having a heat generating component comprising the steps of:

placing one or more non-metallic, flat, thermally conductive strips in contact with the heat generating component across its entire length, said thermally conductive strip extending outside of the area covered by the electrically conductive material and core and in physical contact with the electrically conductive material, thereby receiving heat from the electrically conductive material, and

removing heat from a first end and a second end of each of the thermally conductive strips.