NAVAL POSTGRADUATE SCHOOL MONTEREY CALIF COMPARISON OF FOUR SEQUENTIAL PROBABILITY RATIO TESTS. (U) MAR 78 S H WIE AD-A056 380 F/6 19/5 UNCLASSIFIED NL OF | AD A056380 END PATE FILMED 9 -78

LEVELI

NAVAL POSTGRADUATE SCHOOL Monterey, California

DDC

DCCCCUUCA

JUL 18 1978

DEVELOUS

THESIS

COMPARISON OF FOUR SEQUENTIAL

PROBABILITY RATIO TESTS

by

Sung Hwan/Wie

Mar 1978

Thesis Advisor:

Donald R. Barr

Approved for public release; distribution unlimited.

251 450

78 07 10 00€

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM							
T. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER						
4. TITLE (and Subtitle)	L	5. TYPE OF REPORT & PERIOD COVERED						
Comparison of Four Sequentia								
Ratio Tests	March 1978							
	6. PERFORMING ORG. REPORT NUMBER							
7. AUTHOR(e)		8. CONTRACT OR GRANT NUMBER(s)						
Sung Hwan Wie								
3. PERFORMING ORGANIZATION NAME AND ACCRESS		10. PROGRAM ELEMENT PROJECT TASK						
		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS						
Naval Postgraduate School Monterey, California 93940								
Monteley, California 93940								
11. CONTROLLING OFFICE NAME AND ADDRESS	7	12. REPORT DATE						
Naval Postgraduate School		March 1978						
Monterey, California 93940		13. NUMBER OF PAGES						
		52						
14. MONITORING AGENCY NAME & ADDRESS(II dilleren	t from Controlling Office)	15. SECURITY CLASS. (of this report)						
Naval Postgraduate School		Unclassified						
Monterey, California 93940		154. DECLASSIFICATION/DOWNGRADING						
		SCHEDULE						
16. DISTRIBUTION STATEMENT (of this Report)								
Approved for public release	o. distributio	n unlimited						
Approved for public release	e, distribution	on uniimited.						
17. DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, Il different fre	en Report)						
IS. SUPPLEMENTARY NOTES								
IS. SUPPLEMENTARY NOTES								
19. KEY WORDS (Continue on reverse side if necessary an	d identify by block number;							
20. ABSTRACT (Continue on reverse side if necessary and	d identify by block number)							
An investigation of exp								
variance of cample circ (VIX	Il) and robust	ness of four						
<pre>variance of sample size (V[N]) and robustness of four sequential tests applicable to testing bombing system</pre>								
accuracy is made using compu								
accuracy is made using compo	rer armuracio							
Operating characteristi	cs. E[N] . VI	Nl and error						
rates for these tests are pr								

Approved for public release; distribution unlimited.

COMPARISON OF FOUR SEQUENTIAL PROBABILITY RATIO TESTS

by

Sung Hwan Wie Lieutenant, Republic of Korea Navy B.S., Korean Naval Academy, 1974

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL March 1978

Author:	Dong Chillin MA
Approved by:	Sonald R Ban
	Thesis Advisor
	West Im ser Auche
	Michael Activities Second Reader
	Chairman, Department of Operations Research
	Wallrade
	Dean of Information and Policy Sciences

ABSTRACT

An investigation of expected sample size (E[N]), variance of sample size (V[N]) and robustness of four sequential tests applicable to testing bombing system accuracy is made using computer simulation.

Operating characteristics, E[N], V[N] and error rates for these tests are presented.

TABLE OF CONTENTS

I.	OBJE	CTIVE	6						
II.	DESCI	RIPTION OF THE TESTS	7						
	Α.	INTRODUCTION	7						
	В.	TEST CASE A; SEQUENTIAL RAYLEIGH TEST	10						
	C.	TEST CASE B; A SEQUENTIAL BINOMIAL TEST							
		WITH P. = 0.5	13						
	D.	TEST CASE C; A SEQUENTIAL BINOMIAL TEST							
		WITH NULL PARAMETER WHICH MINIMIZES E[n]							
		UNDER H _O	16						
	E.	TEST CASE D; A SEQUENTIAL BINOMIAL TEST WITH							
		NULL PARAMETER WHICH MINIMIZES MAXIMUM VALUE OF							
		E[n]	20						
III.	DETE	RMINATION OF SIMULATION FACTORS	23						
IV.	RESUI	TTS AND COMMENTS	33						
v.	CONGI	LUSION	48						
APPEN	NDIX		49						
LIST	IST OF REFERENCES								
INIT	TAT. DI	STRIBUTION LIST	52						

I. OBJECTIVE

In this thesis the Sequential Rayleigh Test and three sequential binomial tests, which are applicable to testing bombing system accuracy, are compared by computer simulation.

The objective of this thesis is to investigate expected sample size, variance of sample size, error rates of these tests, and to investigate their robustness.

II. DESCRIPTION OF THE TESTS

A. INTRODUCTION

There are two types of tests of a system (which is taken to be a bombing system in what follows). The sample size is determined as a direct result of the experiment in one case (and is therefore random), and the sample size is selected prior to commencing the test in the other case.

The former procedure is called a sequential test [1]. The test procedures being considered here are sequential, and are based on assumed circular normal distribution (that is, bivariate normal) with the same variance in each coordinate. In the coordinate system of the target plane it is assumed that:

X ~ Normal
$$(0, \sigma^2)$$

Y ~ Normal $(0, \sigma^2)$.

The origin of coordinate system is the target, and χ and Y are distances from the weapon impact to the target along the X and Y axes.

If it is further assumed that X and Y are independent, then $\frac{X}{\sigma}$ is normal with mean 0, variance 1. $\frac{Y}{\sigma}$ is normal with mean $\frac{Y}{\sigma}$ is normal with mean $\frac{Y}{\sigma}$, variance 1. Thus $\left(\frac{X}{\sigma}\right)^2 + \left(\frac{Y}{\sigma}\right)^2$ has Chisquare distribution with two degrees of freedom.

The density function of Chi-square with two degrees of freedom is [2].

$$f_{T}(t) = \frac{1}{2 \cdot \Gamma(1)} \cdot e^{-t/2}, t>0$$

$$= \frac{1}{2} e^{-t/2}$$

This is the exponential density function with parameter $\lambda = \, \frac{1}{2} \, \, . \quad \text{Here,} \quad$

$$\frac{\chi^2}{\sigma^2} + \frac{Y^2}{\sigma^2} = \frac{\chi^2 + Y^2}{\sigma^2}$$
, where $\chi^2 + Y^2$ is squared miss

distance of the impact from the target. Let this be another random variable $^{\rm Z}$. Then,

$$\frac{z}{\sigma^2} \sim \exp(\frac{1}{2})$$

The density function of Z is derived as follows:

$$F_{Z}(z) = P [Z \leq z]$$

$$= P \left[\frac{z}{\sigma^2} \le \frac{z}{\sigma^2} \right].$$

Let
$$\frac{z}{\sigma^2}$$
 be z' ;

then
$$F_Z(z) = F_Z \cdot (\frac{z}{\sigma^2})$$

Where Z´ is exponentially distributed with parameter $\lambda = \frac{1}{2}$.

Then

$$F_{Z} \cdot (\frac{z}{\sigma^2}) = 1 - \exp[-z/2 \cdot \sigma^2] = F_{Z}(z)$$
.

From the relation that $\frac{z}{\sigma^2}$ = Z' the density function

of Z is [5]

$$\frac{1}{2\sigma^2} \exp[-z/2 \cdot \sigma^2] = f_z(z)$$

which is the exponential density function with parameter $\lambda = \frac{1}{2\sigma^2}$.

Assume C is the median of Z (C represents CEP² which is defined to be the median of the squared Circular Error Probable [6]).

Then by definition:

$$F_{Z}(C) = \frac{1}{2}$$

$$1 - \exp[-C/2 \cdot \sigma^{2}] = \frac{1}{2}$$

$$-\frac{C}{2\sigma^{2}} = \ln(\frac{1}{2})$$

$$\sigma^{2} = \frac{C}{2 \ln 2}$$

Thus $Z \sim Exp \left(\frac{\ln 2}{C}\right)$

If a bombing system has been specified to have median radial miss distance γ_0 and if a system with radial miss distance γ_0 is unacceptable, this can be tested with $C_0 = \gamma_0^{-2}$ as the null hypothesized median and $C_1 = \gamma_1^{-2}$ as the alternative hypothesized median. Here, $\frac{\ln 2}{C_0}$, $\frac{\ln 2}{C_1}$ are the parameters under null and alternative exponential distributions, respectively.

In what follows C_0 will be treated as median under null hypothesis and C_1 as median under alternative, where these quantities relate to the squared radial miss distribution.

B. TEST CASE A: SEQUENTIAL RAYLEIGH TEST

If a system is to be tested with null hypothesis H_0 : CEP 2 = C_0 and alternative hypothesis H_1 : CEP 2 = C_1 with type I and type II error rate α and β , then a sequential test for H_0 against H_1 can be defined as follows. We shall call this the "Sequential Rayleigh Test" in what follows; it is an application of Wald's Sequential probability ratio test to the exponential situation described above.

ratio [3], is computed, where $f(z_i; C_j)$ is the exponential density function with parameter $\frac{l n 2}{C_j}$, j = 1, 2

If B< $\prod_{i=1}^{n} \frac{f(z_i, C_i)}{f(z_i, C_o)}$ <A, then another observation is made (this means the test enters the (n+1)st stage).

If the likelihood ratio does not fall in the interval (B,A), called the continuation region, the test terminates.

In termination, the conclusion is to:

Accept
$$H_0$$
 if $\lim_{i=1}^{n} \frac{f(z_i, C_i)}{f(z_i, C_0)} \leq B$;

Reject H₀ if
$$\prod_{i=1}^{n} \frac{f(z_i, C_i)}{\overline{f(z_i, C_o)}} \ge A$$
.

For a test with approximate level of significance α and power 1- β , one may define [1]

$$A = \frac{1-\beta}{\alpha}$$
 and $B = \frac{\beta}{1-\alpha}$.

Thus, an approximate bound for each stage can be obtained as follows:

The explicit form of the likelihood ratio is

$$\prod_{i=1}^{n} \frac{f(z_i, C_1)}{f(z_i, C_0)}$$

$$= \frac{(\ln 2/C_1) \cdot \exp[-z_1 \cdot \ln 2/C_1] \cdot - - \cdot \cdot (\ln 2/C_1) \cdot \exp[-z_n \cdot \ln 2/C_1]}{(\ln 2/C_0) \cdot \exp[-z_1 \cdot \ln 2/C_0] \cdot - - \cdot \cdot (\ln 2/C_0) \cdot \exp[-z_n \cdot \ln 2/C_0]}$$

$$= \frac{(\ln 2/C_1)^n \cdot (\sum_{i=1}^n z_i) \cdot \exp[-\ln 2/C_1]}{(\ln 2/C_0)^n \cdot (\sum_{i=1}^n z_i) \cdot \exp[-\ln 2/C_0]}$$

$$= \begin{pmatrix} c_o \\ \overline{c_1} \end{pmatrix}^n \cdot e^{-\begin{pmatrix} c_n \\ \Sigma \\ i=1 \end{pmatrix}} \cdot \begin{bmatrix} \ell_{n2} - \ell_{n2} \\ \overline{c_1} \end{bmatrix}$$

This is equated to A and the logarithm is taken to obtain rejection bound R_n for the n-th stage;

$$\ell_{n}\left(\frac{1-\beta}{\alpha}\right) = n \cdot \ell_{n}\left(\frac{C_{o}}{C_{1}}\right) - \begin{pmatrix} n \\ \Sigma \\ i=1 \end{pmatrix} \cdot \begin{bmatrix} \ell_{n} 2 \\ C_{1} \end{bmatrix} \cdot \begin{bmatrix} \ell_{n} 2 \\ C_{0} \end{bmatrix}$$

The test rejects Ho if

$$\frac{\sum_{i=1}^{n} z_{i}}{\sum_{i=1}^{n} \left(\frac{1-\beta}{\alpha}\right) + n \cdot \ln \left(\frac{C_{o}}{C_{1}}\right)} = R_{n}$$

$$\frac{\left(\ln 2\right) \cdot \left(\frac{1}{C_{1}} - \frac{1}{C_{o}}\right)}{\left(\ln 2\right) \cdot \left(\frac{1}{C_{1}} - \frac{1}{C_{o}}\right)}$$

where $\sum_{i=1}^{n} z_i$ is sum of squared radial miss distances.

The same procedure can be applied to B:

$$\ell n \quad \left(\frac{\beta}{1-\alpha}\right) = n\ell n \left(\frac{C_0}{C_1}\right) \quad -\left(\frac{n}{\Sigma} z_i\right) \left(\frac{\ell n2}{C_1} - \frac{\ell n2}{C_0}\right)$$

The test accepts Ho if

$$\sum_{i=1}^{n} z_{i} \leq \frac{-\ln\left(\frac{\beta}{1-\alpha}\right) + n \cdot \ln\left(\frac{C_{o}}{C_{1}}\right)}{(\ln n^{2}) \cdot \left(\frac{1}{C_{1}} - \frac{1}{C_{o}}\right)} = A_{n}$$

Here, it is assumed $C_1 > C_0$, which is, we envision, true in the bombing system test.

C. CASE B: SEQUENTIAL BINOMIAL TEST WITH $P_0 = \frac{1}{2}$

In the study of bombing system the target is defined to be a point on the impact plane and impact of a bomb within (over) some distance \sqrt{r} from the target is defined to be a hit (miss).

A null hypothesis that CEP 2 = C_0 is to be tested against an alternative hypothesis that CEP 2 = C_1 , with Type I and Type II error rates α and β , where C_0 < C_1 .

Also this system can be tested with CEP $^2 \leq C_0$ as null hypothesis and CEP $^2 \geq C_1$ as alternative hypothesis without altering the test procedure.

Let P_O be defined as the probability of hit under the null hypothesis, and P_1 to be the hit probability under the alternative hypothesis. Then under H_O , $CEP^2 \leq C_O$, which says the true median of squared radial miss distance is less than or equal to C_O , implies the probability of hit is greater than or equal to 0.5.

Similarly, CEP $^2 \ge C_1$ implies the probability of hit is less than or equal to 0.5 under the alternative hypothesis. So the new hypotheses are defined as H_0 ; $P_0 \ge 0.5$ and H_1 : $P_1 \le 0.5$. From this hit or miss criterion r, a value of squared radial miss distance may be obtained which gives P_0 value of 0.5; i.e., if

$$-\frac{\ln 2}{C_{O}}$$
 . r
 $F_{z}(r) = 1-e$ = 0.5

then
$$ln(0.5) = (ln2) \cdot (-\frac{r}{C_0})$$
, so $r = C_0$.

The alternate hit probability P_1 is found as follows:

$$P_1 = P_r [hit | CEP^2 = C_1]$$

=
$$P_r$$
 [observed squared radial miss distance $\leq r$ | $CEP^2 = C_1$]
= $1 - e^{\frac{\ln 2}{C_1}}$. r

$$-\frac{\ln 2}{C_1} \cdot C_0 - \frac{C_0}{C_1}$$

Let the random variable Z; be defined as:

$$z_i = \begin{cases} 0 & \text{if miss (squared miss distance > r)} \\ 1 & \text{if hit (squared miss distance } \le r) \end{cases}$$

Then the likelihood ratio becomes

For a sequential probability ratio test for the binomial situation, the experiment is continued as long as this value remains between B and A.

An approximate acceptance boundary is found by substituting $\frac{\beta}{1-\alpha} \text{ for B [1].}$

Then
$$\ln \left(\frac{\beta}{1-\alpha}\right) \ge \left(\begin{array}{cc} n & z \\ \sum & z_i \\ i=1 & \end{array}\right) \cdot \ln \left(\frac{P_1}{1-P_1}\right) + n \cdot \ln(2(1-P_1))$$
.

Substituting $(1-2^{-C}o^{/C}1)$ for P₁ gives

$$\ln \left(\frac{\beta}{1-\alpha} \right) \ge \begin{pmatrix} n \\ \sum_{i=1}^{n} z_i \end{pmatrix} \quad \ln \left(\frac{1-2^{-C_0/C_1}}{2^{-C_0/C_1}} \right) + n. \ln 2^{1-C_0/C_1}$$

Solving for $\sum_{i=1}^{n} z_i$, which is a convenient test statistic:

$$\sum_{i=1}^{n} z_{i} \ge \frac{\ln \frac{\beta}{1-\alpha} - n \cdot (1 - C_{0}/C_{1}) \cdot \ln 2}{\ln (2^{C_{0}/C_{1}} - 1)} = A_{n}$$

(The inequality changes because $C_0 < C_1$ implies $2^{C_0/C_1} - 1 \le 0$.) Where $\sum_{i=1}^{n} z_i$ is the number of bombs which hit the target, out i=1 of the total fire, n. And substituting $\frac{1-\beta}{\alpha}$ for A, an approximate rejection boundary is found to be.

$$\frac{n}{\sum_{i=1}^{C} z_{i}} \leq \frac{\ln \left(\frac{1-\beta}{\alpha}\right) - n \cdot \left(1 - \frac{C_{0}}{C_{1}}\right) \cdot \ln 2}{\ln \left(2^{C_{0}/C_{1}} - 1\right)} = R_{n}$$

The test now operates as follows:

in stage n,

Accept
$$H_0$$
 if $\sum_{i=1}^{n} z_i \ge A_n$;

Reject
$$H_0$$
 if $\sum_{i=1}^{n} z_i \leq R_n$;

Continue to stage n+1 otherwise.

D. CASE C: A SEQUENTIAL BINOMIAL TEST WITH NULL PARAMETER WHICH MINIMIZES E[N] UNDER H_0 .

This case also has null hypothesis $CEP^2 \le C_0$ and alternative $CEP^2 \ge C_1$. Let $P_0(r)$ be the probability of hitting a target of radius \sqrt{r} , and let $P_1(r)$ denote that probability under H_1 . In mathematical form:

$$P_{0}(r) = P_{0}(z \le r | CEP^{2} = C_{0}) = 1-e$$

$$-\frac{\ln 2}{C_{0}} \cdot r$$

$$-\frac{\ln 2}{C_{1}} \cdot r$$

$$P_{1}(r) = P_{r}(z \le r | CEP^{2} = C_{1}) = 1-e$$

Thus: $P_1(r) = 1 - [1 - P_0(r)]^{C_0/C_1}$

It is desired to determine r so as to minimize expected sample size n, required to test H_0 vs H_1 with Type I, II error rates α,β respectively, using the Binomial Sequential Probability Ratio test.

The average sample size function is

$$E (N) \approx \frac{(1-L(P_{0})) \cdot \ln A + L(P) \cdot \ln B}{P_{0} \ln \left(\frac{P_{1}(r)}{P_{0}(r)}\right) + (1-P) \cdot \ln \left(\frac{1-P_{1}(r)}{1-P_{0}(r)}\right)}, [1], [4]$$

where P is the true probability of hit and $L(P)=P_r[accept\ H_0|P]$. If $P_0(r)$ is chosen to be the underlying hit probability, then $L(P_0(r))=1-\alpha.$

By substituting $L(P_0(r))=1-\alpha$,

$$A = \frac{1-\beta}{\alpha}$$
, $P_1(r) = 1 - (1-P_0(r)) \cdot C_0/C_1$, $B = \frac{\beta}{1-\alpha}$

in E[N] function, the expression above becomes

$$E(N) = \frac{\alpha \ln \left(\frac{1-\beta}{\alpha}\right) + (1-\alpha) \ln \left(\frac{\beta}{1-\alpha}\right)}{P_0(r)! \left[\ln \left(\frac{1-(1-P_0(r))^{C_0/C_1}}{P_0(r)}\right)\right] + (1-P_0(r)) \ln \left[(1-P_0(r))^{-1+C_0/C_1}\right]}$$

If a value of $P_0(r)$ which minimizes E(N) is obtained, r is also obtained from $P_0(r)$. The numerator is a negative constant as long as $\beta<0.5$ and $\alpha<0.5$ and the denominator is a negative variable depending on r.

Therefore, in order to minimize E(N) it is necessary only to maximize the absolute value of the denominator.

Let
$$\frac{C_0}{C_1} = \frac{1}{k}$$

Then for various values of K, $P_{O}(r)$ may be found.

Figure II-Ishows a plot of $P_{O}(r)$ vs k resulting from this minimization. As k approaches infinity $P_{O}(r)$ approaches 1.0; as k decreases to zero $P_{O}(r)$ decreases to around 0.63. Specifically, for k=2

$$P_{O}(r) = 0.8416, P_{1}(r) = 0.6020.$$

From this r is found to be

$$- C_0 \cdot \frac{\ln(0.1584)}{\ln 2} = 2.65836.C_0$$

Let Z be a random variable such that

$$z_i = \begin{cases} 0 & \text{if squared miss distance } r \\ i & \text{if squared miss distance } \leq r \end{cases}$$

where r = 2.65836.

Then the hypotheses in this Binomial test becomes:

$$H_0: P_0 = 0.8416, H_1: P_1 = 0.602.$$

If $P_0 = 0.8416$, $P_1 = 0.602$ are substituted in the likelihood ratio (similar to Case B above), acceptance and rejection bounds at stage n are:

Accept Ho if

$$\sum_{i=1}^{n} Z_{i} \ge -1.2564 \cdot \ell^{n} \left(\frac{\beta}{1-\alpha} \right) + n.0.7333 = A_{n}$$

FIGURE II-1

Reject Ho if

$$\sum_{i=1}^{n} z_{i} \le -1.2564. \ln \left(\frac{1-\beta}{\alpha}\right) + n.0.7333 = R_{n}$$

Continue otherwise.

E. CASE D: A Sequential Binomial test with null parameter which minimizes maximum value of E(N)

In the binomial situation described above, the hypotheses about the parameter are

$$H_0: P = P_0$$

$$H_1: P = P_1.$$

The maximum average value of E(N) occurs very nearly at

$$P' = \frac{\ell n \left(\frac{1-P_{O}(r)}{1-P_{1}(r)} \right)}{\ell n \left(\frac{P_{1}(r)}{P_{O}(r)} \right) - \ell n \left(\frac{1-P_{1}(r)}{1-P_{O}(r)} \right)}$$
[4]

from which

$$E(N) \approx \frac{\ln A. \ln B}{\ln \left(\frac{P_{1}(r)}{P_{0}(r)}\right) - \ln \left(\frac{1-P_{1}(r)}{1-P_{0}(r)}\right)}$$

$$= \frac{\ln A. \ln B}{\ln \left[\frac{1-(1-P_{0}(r))^{C_{0}/C_{1}}}{P_{0}(r)}\right] \cdot \ln \left[\frac{(1-P_{0}(r))^{C_{0}/C_{1}}}{1-P_{0}(r)}\right]}$$

$$(P_1(r) = 1 - [1-P_0(r)]^{C_0/C_1}$$
, See Case B)

The numerator is a negative constant for given α and β .

Similarly as in Case C by maximizing the absolute value of the denominator, the maximum value of E[N] is minimized (or at least nearly so).

Figure II-2shows the relation between $P_{O}(r)$ and $k=\frac{C_{1}}{C_{O}}$. Specifically for k=2

$$P_{O}(r) = 0.89867$$
, $P_{1}(r) = 0.68167$ with $r = -\frac{\ln(1-0.89867)}{\ln 2} =$

3.30286 is obtained.

Hence the hypotheses for this case are $\rm H_{\odot}$: P=0.89867, $\rm H_{1}$: P=0.68167, and "hit" is defined by squared radial miss distance less than or equal to 3.30286.

Let Z be a random variable such that

$$z_i = \begin{cases} 0 & \text{if squared miss distance} > 3.30286 \\ 1 & \text{if squared miss distance} \leq 3.30286. \end{cases}$$

Proceeding similarly as in Case B, the decision at stage n is Reject $\mathbf{H}_{\mathbf{O}}$ if

$$\sum_{i=1}^{n} z_i \leq -1.42167 \cdot \ln(\frac{1-\beta}{\alpha}) + n. \quad 0.80552 = R_n$$

Accept H if

$$\sum_{i=1}^{n} z_{i} \ge -1.42167 \cdot \ln \left(\frac{\beta}{1-\alpha}\right) + n \cdot 0.80552 = A_{n}$$

Continue to state n+l otherwise.

FIGURE II-2

III. DETERMINATION OF SIMULATION FACTORS

For convenience the hypotheses

$$H_0: CEP^2 = 1$$

 $H_1: CEP^2 = 2$ were selected.

This means k = 2 in Case C and D.

Type I and Type II error rates were selected to be 0.05. But actual simulation gives Type I error rates .0258, .0468, .0396, .0292 and Type II error rates .0396, .0402, .0420, .0400 for Case A, B, C, and D, respectively. This point is explained in Chapter 3.3 of [1]. Approximate error rates of 0.05, 0.05 (Type I, II) were obtained by adjusting the bounds A and B, which is possible by changing α , β in $A = \frac{1-\beta}{\alpha}$, $B = \frac{\beta}{1-\alpha}$. The adjustment factors used here are:

CASE A
$$\alpha = 2.0 \times 0.05$$
 $\beta = 1.2 \times 0.05$

CASE B
$$\alpha = 1.2 \times 0.05$$
 $\beta = 1.2 \times 0.05$

CASE C
$$\alpha = 1.5 \times 0.05$$
 $\beta = 1.15 \times 0.05$

CASE D
$$\alpha = 1.5 \times 0.05$$
 $\beta = 1.1 \times 0.05$

How many replications are enough? Assuming N₁, N₂ have Binomial distribution with probability of success 0.05, a sample size n is found such that $P_r(|\hat{P_1}-\hat{P_2}|\ll)=1-\alpha$, where α is the significance level, $\hat{P_i}$, i=1,2 is the estimation of P_i . The above equation implies

$$P_r(-c < \hat{P_1} - \hat{P_2} < c) = 1-\alpha$$

 $P_r(-c < \frac{N_1}{n} - \frac{N_2}{n} < c) = 1-\alpha$

$$P (-nc < N - N nc) = 1 - \alpha$$

By the Normal approximation , $(N_1 - N_2)$ Normal with mean o and Variance 2np(1-p).

Thus

$$P_r$$
 [$-\frac{nc}{\sqrt{2np(1-p)}}$ < $\frac{N_1 - N_2}{\sqrt{2np(1-p)}}$ < $\frac{nc}{\sqrt{2np(1-p)}}$] = $1-\alpha$

gives
$$\frac{nc}{\sqrt{2np(1-p)}} = z_{1-\frac{\alpha}{2}}$$

The following table shows n for various values of α and c.

α Z ₁ -3 <u>1</u>	0.2	0.1	0.05	0.025	0.02
1-3	1.285	1.645	1.96	2.24	2.33
0.2	3.9	6.4	9.1	11.9	12.8
0.1	15.7	25.7	36.1	47.6	51.5
0.05	62.7	102.8	145.9	190.7	206.3
0.025	250.9	411.3	583.9	762.7	825.2
0.01	1568.7	2570.7	3649.5	4766.7	5157.5
0.001	156866.4	257072.3	361237.5	476672.0	515745.5

Assuming c = 0.01 and α = 0.02, an approximate value of 5000 is obtained through the table. By this number of replications, obtaining a difference in estimated error rates greater than 0.01 is significant at level 0.02. Exponential random samples were generated by the Monte Carlo method. For an exponential variate T to have median m, it is necessary to use the scale parameter $\lambda = \frac{\ln 2}{m}$

so
$$F_{T}(t) = 1-e^{-\frac{\ln 2}{m}} \cdot t$$

But $U = F_T(T)$ is uniformly distributed on (0,1) [8].

Thus $2^{-\frac{T}{m}} = 1 - F(T) = 1 - U$ is also uniformly distributed. Finally $\frac{T}{m}$. $\ln 2 = -\ln U$, or

$$T = -m \cdot \frac{\ln U}{\ln 2}$$
.

By changing the median of the population sampled, the operating characteristic function, expected sample size at termination, and its variance can be estimated for each test, and those can be compared.

The medians to be generated are those which result in a 0.1 difference of operating characteristic function values in Case C, which is based on minimizing the maximum E(N), those which yield Type I, II error rates, three points which yield approximate maximum E(N) value (for Cases B, C, D), and five more points in both tails.

By changing the skewness of the sample distribution, comparison of the robustness of the four tests of hypotheses about the medians under null and alternative hypothesis was performed.

This is based on the assumption that the underlying distribution is WEIBULL with shape parameter α and scale parameter $\lambda\,.$

If $T \sim WEIBULL\{\alpha, \lambda\}$,

the distribution function of T is

$$F_{T}(T) = 1 - e^{(\lambda T)^{\alpha}}$$

Let m be the median. Then

$$P_r[T \ge m] = P_r[T \le m];$$

$$1 - e^{-(\lambda m)^{\alpha}} = 0.5$$

$$\ell n(0.5) = - (\lambda \cdot m)^{\alpha}.$$

Solving for λ ,

$$\lambda = \frac{1}{m} [\ln 2]^{1/\alpha}$$

Now 1-e
$$-(\lambda T)^{\alpha}$$
 $U(0,1)$, so

$$ln(1-U) = - (\lambda T)^{\alpha}$$
,

$$T = \frac{1}{\lambda} [\ln(U)]^{\frac{1}{\alpha}}$$
, where $U \sim U$ (0,1).

Substituting
$$\lambda = \frac{1}{m} (xn2)^{1/\alpha}$$

$$T = m \cdot (\frac{n \mu}{n 2})^{\frac{1}{\alpha}} \text{WEIBULL}\{\alpha, \frac{1}{m} (\ln 2)^{1/\alpha}\}.$$

Following histograms in Figure III-1 show the effect of changing α in WEIBULL. As α decreases the distribution is widely spread and it is said that the distribution has heavy tail (Figure III-1, B). In the opposite case; i.e. α increases, it has light tail (Figure III-1, A).

Figure III-2 is observed keeping α fixed at 1 and median is 0.5, 1.0, 2.0 in WEIBULL.

This is exponential distribution with median 0.5, 1.0, 2.0.

0.5923}

0.7,

III-1B, {WEIBULL

FIGURE

29

FIGURE III-2A, WEIBULL[1,1.3863]

WEIBULL { 1, 0.3466

III-2C,

FIGURE

32

IV. RESULTS AND COMMENTS

Simulation of the four tests were performed 5,000 times (5,000 replications). In each replication $H_0: CEP^2=1$; $H_1: CEP^2=2$; and Type I, II error rates are 0.05.

The following tables IV-1,2,3 show the mean number of terminations, their variances, and number of acceptances of $H_{\rm O}$ in 5,000 replications.

Table IV-Ishows the effects of changing median values, where the shape parameter of the WEIBULL variate was fixed at 1.0 (the exponential variate with changing median). Table IV-2 and 3 shows the effects of changing shape parameter, the median being fixed at 1.0 in table IV-2and at 2.0 in table IV-3.

For ease of comparison these were graphed. Each figure contains four curves and each curve represents the case A, B, C or D.

In testing the difference of E[N], null hypothesis would be $E[N_1] = E[N_2]$, where N₁, N₂ are random variables representing the number of termination by test cases which one wishes to test the difference of the E[N].

By the central limit theorem [2] the difference in E[N] greater than $\frac{1.96 \text{ x}}{\text{n}}$ is significant at level 0.05. % is estimated standard deviation of N. But it is different between the test cases being considered.

The larger one might be selected so that we may not reject $\mathbf{H}_{\mathbf{O}}$ erroneously.

THIS CASE IS CBSERVED CHANGING MEDIAN AND SHAPE PARAMETER IS FIXED AT 1.

ACCEPT																				
*	5000	1664	4936.	4144	4538.	4030-	3503.	3027.	2575.	2506.	2448.	2026.	1524.	.556	503.	226.	42.	23.	÷	'n
CASE C	4.756	14.061	45.647	131.629	214.950	345.588	438.855	484.615	467.113	453. 739	456.406	456.467	447.553	351.952	226.686	157.854	56.675	41.058	17.663	14.994
E(N)	11.874	13.151	16.064	20.176	22.914	26.317	27.707	28.615	28.248	27.808	27.746	27.320	25.638	22.891	18.667	15.529	10.482	9.135	7.055	6.647
# ACCEPT	.5654	4538.	4541.	4752.	4489.	3957.	3474.	2587.	2545.	2399.	2381.	1945.	1485.	.995	470.	234.	70.	32.	٠. •	:
CASE C	6.230	15.537	58.313	142.636	235.429	344.258	418.085	504.042	507.703	473.886	516.770	487.229	440.333	349.643	215.550	153.003	54.149	35.096	20.598	15.668
E (N)	10.294	11.630	15.145	15.603	22.603	25.780	27.081	28.445	26.027	27.763	28.192	27.178	25.548	22.501	15.117	15.578	11.052	5.810	7.192	7.282
# ACCEPT	.0005	.1367.	4553.	4771.	4484.	3838	3404.	2917.	2466.	2433.	2365.	1538.	1423.	•506	475.	236.	70.	(u)	7.	÷
CASE B	17.428	47.889	156.983	408.237	620.852	967.536	1232.651	1328.232	1360.952	47.216 1362.530	1558.806	1275.995	1163.529	508-235	603.266	428.890	150.938	124.732	62.552	53.751
E(N)	10.382	13.605	19.569	28.178	33.264	39.552	43.717	45.522	46.051	47.216	46.157	45.525	43.445	39.535	34.765	30.126	21.725	20.003	16.338	15.635
# ACCEPT	5000.	.9664	.0564	4745.	4487.	3944.	3426.	2898.	2530.	2418.	2284.	1571.	1423.	951.	501.	257.	58	37.	•	ď.
CASE A	2.530	7.245	23.490	63.682	94.306	174.842	189.203	201.792	220.036	214.427	208.286	195.246	186.430	133.647	\$6.718	63.624	26.128	17.595	9.233	7.617
E N	7.035	8.350	10.646	13.728	15.470	17.643	16.444	16.805	18.892	18.395	18.159	17.468	16.244	14.138	11.882	9.432	6.453	5.476	4.128	3.643
MECIAN	0.54	19.0	0.84	1.00	1.08	1.19	1.27	1.33	1.39	1.40	1.40	1.47	1.55	1.65	1.82	2.00	2.45	2.67	3.25	3.45

TABLE IV-1

THIS CASE IS OBSERVED CHANGING SHAPE PARAMETER AND MEDIAN IS FIXED AT 1.

	EPT	*										
CASE C	# ACCEPT	492.	1161.	2274.	3488.	4341.	4744.	4858	4977.	4992.	.6664	5000.
	V(N)	227.114	382.756	485.572	474.136	268.340	131.635	70.285	34.312	16.557	10.211	5.687
	E(N)	18.571	24.335	27.450	28.004	24.362	20.176	17.214	15.006	13.421	12.621	11.950
	# ACCEPT	1057.	1828.	2866.	3794.	4420.	4752.	4651.	.6554	4982.	.8654	.8654
CASE C	(4)	374.262	442.582	525.863	390.584	250.668	142.636	61.464	47.538	26.650	17.057	10.840
	E(N)	23.350	27.007	28.510	26.742	555.22	15.803	16.602	14.586	13.094	11.892	11.043
	# ACCEPT	4742.	4738.	4715.	4722.	4726.	.177.	4766.	4731.	+1711.	4746.	4712.
CASE B	(N) >	395.861	418.116	358.115	381.577	400.513	408.287	435.550	396.977	421.004	412.444	391.072
	E(N)	27.915	27.818	27.631	27.516	28.033	28.178	28.351	28.020	28.154	28.234	27.924
	# ACCEPT	1001.	1569.	2389.	3405.	4277.	4145.	.848.	4982.	.0005	.0003	-0009
CASE A	(N) A	23.478 1001.	·6951 055.9h	73.146	\$5.577 3405.	90.572	63.682 4745.	40.668 4948.	24.907 4982.	15.637 5000.	11.415	8.504 5000.
	E(N)	6.139	8.654	11.147	13.616	14.419	13.728	12.755	11.679	13.507	10.420	10.056
MECIAN		0.50	09.0	0.70	0.80	05.0	1.00	1.10	1.20	1.30	1.40	1.50

TABLE IV-2

THIS CASE IS GBSERVED CHANGING SHAPE PARAMETER AND MEDIAN IS FIXED AT 2.

***					0			0 9:40			2000	
AECIAN	E (N)	V (N)	# ACCEPT	E(N)	V(N)	# ACCEPT	E(N)	V(N)	# ACCEPT	E(N)	V(N)	# ACCEPT
0.50	3.573	10.354	206.	46.124	46.124 1307.159 2256.	2256.	12.237	17.664	86.	161.6	44.278	30.
09.0	4.650	15.043	193.	44.425	44.425 1221.383 1603.	1003.	13,193	93.457	. 46	10.442	55.562	41.
0.10	5.585	21.765	230.	41.048	41.048 \$52.357 1056.	1656.	13,433	659.15	132.	11.550	71.667	. 99
0.60	6.741	32.653	225.	37.358	37.358 766.110	665.	14.326	110.328	150.	12.367	£8.56C	103.
06.0	8.083	45.040	220.	33.644	558.666	376.	15,105	130.466	181.	13.781	108.805	178.
1.00	5.432	63.624	257.	30.126	428.890	236.	15.578	153.003	234.	15.529	157.854	226.
1.10	11.371	83.627	321.	26.460	297.943	171.	17.154	176.051	267.	17.012	188.225	355.
1.20	13.104	13.104 112.659	302.	24.219	24.219 210.740	101.	17.999	17.595 169.367	348.	19.005	225.654	504.
1.30	15.630	15.630 159.630	304.	21.774	21.774 161.597	58.	15.049	222.104	.104	23.867	20.867 285.435	731.
1.40	16.170	16.170 222.495	.352.	20.151	20.151 122.917	26.	20.203	256.703	620.	23.113	23.113 357.848	1035.
1.50	21.008	21.008 290.551	394.	18.723	18.723 100.249	22.	21.274	21.274 282.634	691.	25,514	25.514 415.375 1367.	1367.

TABLE IV-3

REFERENCE FOR THE FIGURES IV-1 - IV-9

FIGURE IV-1, 4, 7; Expected Sample Sizes

FIGURE IV-2, 5, 8; Variances of the Sample Sizes

FIGURE IV-3, 6, 9; Operating Characteristic Curves

FIGURE IV-1

FIGURE IV-2

FIGURE IV-4

FIGURE IV-5

FIGURE IV-7

FIGURE IV-8

FIGURE IV-9

The interpretation of the figures is as follows:

- a. Variances or standard deviations are approximately proportional to expected sample sizes.
- b. Test Case A contains the minimum expected sample size and Test Case B includes the maximum expected sample size in almost all instances.
- c. Case C and Case D yield similar results when median is changing and shape parameter is fixed at 1.0.
- d. Test Case B is invariant about the change of skewness when the underlying median is 1.0 (See Figures IV-4,5,6).
- e. Case B also gives the lowest error rates if the bomb impact has a heavy tail distribution under the alternative hypothesized median, and has light tail distribution under null hypothesized median (Figure IV-6.9).
- f. Case C gives the lowest error rate when the true median is2.0 and bomb impacts are clustered around the median.

NOTES:

- a. The adjusting factors of the error rates table were developed iteratively and there is no guarantee that these adjusting factors are the best ones.
- b. There could be further investigation of effects under error rates other than 0.05, or of changing null and alternative hypothesized median values.
- c. The Fortran program for this simulation is attached as an Appendix.

V. CONCLUSION

If it is certain that the bomb impact is Rayleigh distributed, then Sequential Rayleigh Test is appropriate to test the system.

In case one has doubt about the bomb impact distribution, the Sequential Binomial Test gives better tests than the Sequential Rayleigh Test.

Further, if there is some reason to believe that the median is likely to be 1 (so the test is likely to accept H_O), Case B (Null parameter P_O =0.5) is better than any of the other three tests.

If the median is not likely to be 1, test case A (Sequential Rayleigh Test) or test case C (which has null parameter that minimized E[N] under H_O) are the best tests.

APPENDIX

```
T4=0.
   N=0.
DCZN1=0
```

```
DCZN2=0
DCZN3=0.
DCZN4=0
20 CALL GGUB(ISEED,1,U)
X=FMED*(ALOG(U)/ALOG(.5))**(1./SHAPE)
                            N=N+1
                          IF(DCZN1.EQ.1.)GO TO 40

T1=T1+X

IF(T1.GT.BOUND(N,1,1).AND.T1.LT.BCUND(N,2,1)) GO TO 40

TEST(KOUNT,1,1)=N

DATA(1,1)=DATA(1,1)+N

IF(T1.LE.BOUND(N,1,1))GO TO 30

TEST(KOUNT,2,1)=-1.

GO TO 31

TEST(KOUNT,2,1)=1.

DCZN1=1

IF(DCZN1=1

IF(DCZN2.EQ.1.)GO TO 60

IF(X.LE.CO)T2=T2+1.

IF(T2.GT.BOUND(N,1,2).AND.T2.LT.BGUND(N,2,2))GO TO 60

TEST(KOUNT,1,2)=N

CATA(2,1)=DATA(2,1)+N

IF(T2.GE.BOUND(N,2,2))GO TO 50

TEST(KOUNT,2,2)=-1.

GO TO 51
                              IF (DCZN1.EQ.1.) GO TO 40
                          TEST(KOUNT, 2,2) = -1.

GO TO 51

TEST(KOUNT, 2,2) = 1.

CCZN2=1.

IF(DCZN3.EQ.1.)GO TO 80

IF(X.LE.R)T3=T3+1.

IF(T3.GT.BOUND(N,1,3).AND.T3.LT.BOUND(N,2,3))GO TO 80

TEST(KOUNT,1,3) = N

DATA(3,1) = DATA(3,1) + N

IF(T3.GE.BOUND(N,2,3))GO TO 7)

TEST(KOUNT,2,3) = -1.

GC TO 71

TEST(KOUNT,2,3) = 1.
         GC TO 71

73 TEST(KOUNT,2,3)=1.

80 IF(DCZN4.EQ.1) GO TO 90
    IF(X.LE.R2) T4=T4+1.
    IF(T4.GT.BOUND(N,1,4).AND.T4.LT.BCUND(N,2,4)) GO TO 20
    TEST(KOUNT,1,4)=N
    DATA(4,1)=DATA(4,1)+N
    IF(T4.GE.BOUND(N,2,4)) GO TO 78
    TEST(KOUNT,2,4)=-1.
    GO TO 79

78 TEST(KOUNT,2,4)=1.

90 DDD=DCZN1*DCZN2*DCZN3
    IF(DDD.NE.1.)GO TO 20
    KCUNT=KOUNT+1
    IF(KOUNT.LE.NCOUNT)GO TO 10
    DC 130 I=1,4
   IF(KOUNT.LE.NCOUNT)GO TO 10
DC 130 I=1,4

100 DATA(I,1)=DATA(I,1)/NCOUNT
CO 110 I=1,NCOUNT
DC 110 II=1,4

DATA(II,2)=(TEST(I,1,II)-DATA(II,1))**2./FLCAT(NCGUNT-
*1)+DATA(II,2)
IF(TEST(I,2,II).EC.1.) DATA(II,3)=DATA(II,3)+1.

110 CONTINUE
DC 120 J=1,4

120 DATA(J,4)=NCOUNT-DATA(J,3)
WRITE(6,130) ((DATA(I,J),J=1,4),I=1,3)

130 FORMAT(/,4X,' MEAN',F10.5,' VAR',F10.5,' NO ACCEPT'
*,F5.0,' NO REJECT',F5.0)
101 FORMAT(1JF1).5)
102 FORMAT(5X,' MEDIAN IS',F7.3,' SHAPE PARAMETER IS',
*F7.3)
GO TO 30)

1000 STOP
END
1000
```

LIST OF REFERENCES

- 1. Wald, Abraham, "Sequential Analysis", 1947. John Wiley and Sons, Inc.
- Barr, Donald and Zehna, Peter W., Probability, Brooks/Cole Co., 1971.
- 3. Breiman, Leo, Statistics, Houghton Mifflin Co., 1973.
- 4. Naval Postgraduate School Technical Report NPS55Bn74061, Two Sequential CEP Tests, by Donald R. Barr, 1974.
- 5. Larson, H. J., Introduction to Probability Theory and Statistical Inference, John Wiley & Sons, Inc., 2d Ed., 1974.
- 6. Harter, H.L., "Circular Error Probabilities," J. Amer. Statistical Assoc., v. 55, pp. 161-165, 1967.
- 7. Mood & Graybill, Introduction to the Theory of Statistics, McGraw Hill, 1963.
- 8. Fishman, George S., Concepts and Methods in Discrete Event Digital Simulation, John Wiley & Sons, Inc.

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Defense Documentation Center Cameron Station		2
	Alexandria, Virginia 22314		
2.	Library, Code 0142 Naval Postgraduate School Monterey, California 93940		2
3.	Department Chairman, Code 55 Department of Operations Research and Administrative Sciences Naval Postgraduate School		1
	Monterey, California 93940		
4.	Professor Donald R. Barr, Code 55 Bn Department of Operations Research and Administrative Sciences Naval Postgraduate School Monterey, California 93940		1
5.	Assoc. Professor Rex H. Shudde, Code 55 Su Department of Operations Research and Administrative Sciences Naval Postgraduate School Monterey, California 93940		1
6.	CAPT. Yu, Chi - Su ADCNO for Education & Training Division Head Quarters Republic of Korea Navy Seoul, Korea		2
7.	Wie, Sung Hwan Jun Nam, Chang-Heung Kun Bu-San Myun, Buchun Ri #207 Republic of Korea		2