Name:		

AB Calculus 4.1 Implicit Differentiation

Explicit form: $y = 3x^2 - 5$

(y on one side, x's on the other)

Implicit form:

$$x^2 - 2y^3 - 4y = 2$$

(x's +y's all over, can't solve for

y! Don't try!)

Implicit Differentiation Process

- 1. Differentiate BOTH sides of equation with respect to x
- 2. Collect all terms involving $\frac{dy}{dx}$ on left side of equation, move all other terms to right side.
- 3. Factor out $\frac{dy}{dx}$ on left side
- 4. Solve for $\frac{dy}{dx}$ by dividing by other factor on left

Example Find
$$\frac{dy}{dx}$$
 for $x^3 - 3x^2y + 2xy^2 = 12$
 $x^3 - 3x^2y + 2xy^2 = 12$
 $\frac{d}{dx} \left[x^3 - 3x^2y + 2xy^2 \right] = \frac{d}{dx} (12)$
 $3x^2 - 3 \left(x^2 \frac{dy}{dx} + y(2x) \right) + 2 \left(x \cdot 2y \frac{dy}{dx} + y^2(1) \right) = 0$
 $3x^2 - 3x^2 \frac{dy}{dx} - 6xy + 4xy \frac{dy}{dx} + 2y^2 = 0$
 $4xy \frac{dy}{dx} - 3x^2 \frac{dy}{dx} = 6xy - 3x^2 - 2y^2$
 $\frac{dy}{dx} (4xy - 3x^2) = 6xy - 3x^2 - 2y^2$

$$\frac{dy}{dx} = \frac{6xy - 3x^2 - 2y^2}{4xy - 3x^2}$$

It doesn't have to be pretty (it just has to be right!)

Pitfalls with Implicit Differentiation

Differentiating "with respect to x"

$$\frac{d}{dx} \left[x^3 \right] = 3x^2$$

b)
$$\nabla \nabla \nabla$$
 variables disagree \rightarrow chain rule $Variables\ Disagree$

c)
$$\frac{d}{dx}[x+3y] = 1+3\frac{dy}{dx}$$
 chain rule $\frac{d}{dx}(3y) = 3 \cdot \frac{dy}{dx}$

d)
$$\frac{d}{dx}[xy] = x \cdot \frac{d}{dx}[y] + y \cdot \frac{d}{dx}[x]$$

$$= x \frac{dy}{dx} + y$$
Product Rule w/chain rule (for y)

You might find it easier to use y' instead of $\frac{dy}{dx}$ after you get the hang of it.

Implicit Differentiation Example 2nd Derivative

Find y" for $x^2 + y^2 = 16$

1. First find y'

$$2x + 2yy' = 0$$

$$2yy' = -2$$

$$y' = \frac{2x}{2y}$$

$$y' = -\frac{x}{y}$$

$$4 \leq Simplify before moving onto y''$$

2. Take second derivative, remember chain rule:

$$y' = \frac{-x}{y}$$
$$y'' = -\left[\frac{y - xy'}{y^2}\right]$$

3. Sub in y'

$$y'' = -\left[\frac{y - x(-\frac{x}{y})}{y^2}\right]$$

$$= -\left[\frac{y + \frac{x^2}{y}}{y^2}\right]$$

$$= -\left[\frac{y + \frac{x^2}{y}}{y^2}\right]\left(\frac{y}{y}\right) = -\frac{y^2 + x^2}{y^3}$$

$$WOW! \quad x^2 + y^2 = 16$$

$$y'' = -\frac{x^2 + y^2}{y^3} = \boxed{\frac{16}{y^3} = y''}$$

Name:	
Date:	
Period:	

AB CALCULUS 4.1 Implicit Differentiation

1.
$$x^2 + y^2 = 25$$

$$2. \quad x^2y + 3xy^3 - x = 3$$

$$3. \quad \sin(x^2 y^2) = x$$

II. Find slope of tangent line and the equation of the tangent line at the given point

$$4. \quad x^2 y - 5xy^2 + 6 = 0$$

$$5. \quad \sin(xy) = y$$

$$(\frac{\pi}{2},1)$$

6.
$$x^3y + y^3x = 10$$

III. Find
$$\frac{d^2y}{dx^2}$$

7.
$$x^2 + y^2 = 100$$

$$8. \quad 3x^2 - 4y^2 = 7$$

9.
$$x^3 + y^3 = 1$$

Name:	
Date:	
Period:	

ANSWERS TO IMPLICIT DIFFERENTIATION WORKSHEET

I. 1.
$$y'=-\frac{x}{y}$$

2.
$$y' = \frac{1 - 2xy - 3y^3}{x^2 + 9xy^2}$$

3.
$$y' = \frac{1 - 2xy^2 \cos(x^2 y^2)}{2x^2 y \cos(x^2 y^2)}$$

II. 4.
$$y' = \frac{5y^2 - 2xy}{x^2 - 10xy}$$

$$\left. \frac{dy}{dx} \right|_{(3.1)} = \frac{1}{21}$$

$$y - 1 = \frac{1}{21} (x - 3)$$

5.
$$y' = \frac{y \cos(xy)}{1 - x \cos(xy)}$$

$$\frac{dy}{dx} = 0$$

therefore
$$y = 1$$

6.
$$y' = -\frac{3x^2y + y^3}{x^3 + 3xy^2}$$
$$\frac{dy}{dx}\Big|_{(1,2)} = -\frac{14}{13}$$
$$y - 2 = -\frac{14}{13}(x - 1)$$

$$y'' = \frac{-100}{v^3}$$

$$\left(y' = -\frac{x}{y}\right)$$

$$y'' = -\frac{21}{16y^3}$$

$$\left(y' = \frac{3x}{4y}\right)$$

$$y" = -\frac{2x}{y^5}$$

$$\left(y' = -\frac{x^2}{y^2}\right)$$