

Relational Model and Relational Algebra

Prof. Suja Jayachandran

Assistant Professor
Computer Engineering Department
Vidyalankar Institute of Technology

- Relational Model was proposed by E.F. Codd to model data in the form of relations or tables.
- Relational Model represents how data is stored in Relational Databases. A relational database stores data in the form of relations (tables).

ER Model	Relational Model
ER model is the high level or conceptual model.	It is the representational or implementation model.
It is used by people who don't know how database is implemented.	It is used by programmers.
It represents collection of entities and describes relationship between them.	It represent data in the form of tables and describes relationship between them.
It consists of components like Entity, Entity Type, Entity Set.	It consists of components like domain, attributes, tuples.
It is easy to understand the relationship between entities.	It is less easy to derive the relationship between different tables.

Mapping the ER and EER Model to the Relational Model

Sr.No.	Description	ER Model	Relational Model
1	Entity Set Employee with emp_id as primary key and emp_name simple attribute	emp_id emp_name Employee	Employee (Table/Relation Name) emp_id emp_name
2	Entity Set Employee with emp_id attribute as primary key and emp_name as composite attribute	emp_id First_name emp_name Middle name Employee Last_name Prepared by Prof.Suja Jayachandran	Employee (Table/Relation Name) emp_id First_ Middle_ Last_ name name

Sr.No.	Description	ER Model	Relational Model
5	One to one cardinality relationship A(A1,A2) B(B1,B2)	A2 B1 B2 A1 R B	Relations/Tables: A(<u>A1</u> ,A2) and B(<u>B1</u> ,B2,A1) OR A(<u>A1</u> ,A2,B1) and B(<u>B1</u> ,B2)
	One to Many A(<u>A1</u> ,A2) B(<u>B1</u> ,B2)	A2 B1 B2 A1 / R hn B	Relations/Tables: A(<u>A1</u> ,A2) and B(<u>B1</u> ,B2,A1)
	Many to One A(<u>A1</u> ,A2) B(<u>B1</u> ,B2)	A2 B1 B2 A1 / B	Relations/Tables: A(<u>A1</u> ,A2,B1) and B(<u>B1</u> ,B2)
	Many to Many A(<u>A1</u> ,A2) B(<u>B1</u> ,B2)	A1 A1 B1 B2 A1 A1 R Prepared by Prof.Suja Jayachandran	Relations/Tables: A(<u>A1</u> ,A2) B (<u>B1</u> ,B2) R(A1,B1)

Sr.No.	Description	ER/EER Model	Relational Model
6	To represent Weak Entity	Loan no. Pay_no	Relations/Tables
	Set	Loan_ Payment	Loan(<u>Loan_no.</u> ,amount)
		Loan pay Payment	Payment(Pay_no.,Pay_ amount,Loan_no.)
		amount Pay_amount	
7	To represent Generalization	<u>RegNo</u> name	Relations/Tables
	/Specialization	Student	Student(<u>RegNo</u> ., name)
		ISA (points)	PosGrad(RegNo.,
		Supervisor PosGrad UnderGrad	supervisor)
			UnderGrad(RegNo.,points)

Sr.No.	Description	ER Model	Relational Model
8	To represent Aggregation	e id Works for Department e name D name Manages Project P id	Relations/Tables Employee(e id,e_name) Department(D id,D_name) Works_for(e_id,D_id,since) Project(P id) Manages(e_id,D_id,P_id,m_since)
9	Total PArticipation	A1	A(<u>A1</u> ,A2),B(<u>B1</u> ,B2) _F (A1,A2,B1,B2)

Sr.No.	Description	ER Model	Relational Model
9	Partial PArticipation	A2 B1 B2 A1 R B B	A(<u>A1</u> ,A2),B(<u>B1</u> ,B2,A1)
9	Partial Participation by Weak entity	A1 R M B	A(<u>A1</u> ,A2) B(<u>B1</u> ,B2,A1)

Relational Algebra

- Relational algebra is a procedural query language, which takes instances of relations as input and yields instances of relations as output. It uses operators to perform queries.
- Unary Relational Operations
- \triangleright SELECT (symbol: σ)
- \triangleright PROJECT (symbol: π)
- > RENAME (symbol: ρ)
- Relational Algebra Operations From Set Theory
- ➤ UNION (symbol: U)
- \triangleright INTERSECTION (symbol: \cap),
- ➤ DIFFERENCE (symbol: -)
- ➤ CARTESIAN PRODUCT (symbol: x)
- Binary Relational Operations
- ➤ JOIN(symbol: ⋈)
- ➤ DIVISION(symbol: ÷)

	Unary Relational Operations					
1	 SELECT (symbol: σ) Selection operator only selects the required tuples according to the selection condition. Selection operator always selects the entire tuple. It can not select a section or part of a tuple Allows duplicate It is commutative 	Select tuples from a relation "Books" where subject is "database" and price is "450" set of subject = "database" \(\Lambda\) price = "450" (Books)				
2	 PROJECT (symbol: π) Projection operator automatically removes all the duplicates while projecting the output relation. So, cardinality of the original relation and output relation may or may not be same. It is not commutative 	Student Table	ID	Name	Subject	Age
			100	Ajay	DBMS	18
			200	Raj	DWM	20
		πName, Age(Student)		Name	Age	
				Ajay	18	
				Raj	20	
3	RENAME (symbol: ρ) Rename operator is used to give another name to a relation	To create a relation STUDENT_NAMES with ID and Name from STUDENT, it can be done using rename operator as: ρ(STUDENT_NAMES, ∏(ID, Name)(STUDENT)) y Prof.Suja Jayachandran				

Relational Algebra Operations From Set Theory

1 UNION (symbol: U)

Let R and S be two relations.

Then-

- R U S is the set of all tuples belonging to either R or S or both.
- In R U S, duplicates are automatically removed.
- It is both commutative and associative

R

ID	Name	Subject
100	Ajay	SPCC
300	Raj	SE

(

ID	Name	Subject
100	Ajay	SPCC
200	Vijay	DWM

RUS

ID	Name	Subject
100	Ajay	SPCC
300	Raj	SE
200	Vijay	DWM

2 | INTERSECTION(symbol:∩)

Let R and S be two relations.

Then-

- R ∩ S is the set of all tuples belonging to both R and S.
- In R ∩ S, duplicates are automatically removed.
- It is both commutative and associative

R

ID	Name	Subject
100	Ajay	SPCC
300	Raj	SE

S

ID	Name	Subject
100	Ajay	SPCC
200	Vijay	DWM

R∩S

ID	Name	Subject
100	Ajay	SPCC

Prepared by Prof.Suia Javachandran

Relational Algebra Operations From Set Theory

DIFFERENCE (symbol: -) 4

Let R and S be two relations.

Then-

- R S is the set of all tuples belonging to R and not to S.
- In R S, duplicates are automatically removed.
- Difference operation is associative but not commutative.

ID	Name	Subject
100	Ajay	SPCC
300	Raj	SE
200	Vijay	DWM

Subject ID Name DWM 200 Vijay

R-S

ID	Name	Subject
100	Ajay	SPCC
300	Raj	SE

CARTESIAN PRODUCT (symbol: X)

The **Cartesian Product** is also an operator which works on two sets. It is sometimes called the CROSS PRODUCT or CROSS JOIN. It combines the tuples of one relation with all the tuples of the other relation. **RXS**

A	1
В	2
D	3
F	4
E	5

A	1
C	2
D	3
E	4

A	1	A	1
A	1	C	2
A	1	D	3
A	1	E	4
В	2	A	1
В	2	C	2
В	2	D	3
В	2	Ε	4
D	W	A	1
D	3	C	2
D	3	D	3
D	3	E	4

RCROSSS

F	- 4	A	1
'n	4	C	2
F	4	D E	3
F	- 4	E	4
E	5	A	1
E	5	C	2
E	5	D	3
E	5	E	4

	Binary Relational Operations										
1	JOIN(symbol: ⋈) - Join operation is essentially a cartesian product followed by a selection criterion.										
1.1	1.1 INNER JOIN: In an inner join, only those tuples that satisfy the matching criteria are included, while the rest are excluded.						e the rest are				
1.1.1				Salary	,	В	II	D	Name	Salary	
	The general case of JOIN operation is called a Theta join. It is denoted by symbol $\boldsymbol{\theta}$		1	Ajay	2000			3	3	Ram	4000
	Example-A ⋈ _θ B		2	Vijay	3000			4	ļ	Rames	h 2000
		A ⋈ A.Salary > B.salary (B)			ID 2		+	ame ijay	Salary 3000		
1.1.2	EQUI join:	A ID Name Salary		ary B		ID		Name	Salary		
	When a theta join uses only equivalence condition, it becomes a equi join.		1	Ajay	2000			3		Ram	4000
	, , ,	2 Vijay 3000 A M A.Salary = B.salary (B)		Vijay	3000			4		Ramesh	2000
				A M (P) ID		•		Nar	me	Salary	
				lary (D)	1		1 /		У	2000	
	Prepared b	ed by Prof.Suja Jayachandran 4 Ramesh 2000			2000						

1.1.3	NATURAL JOIN (⋈)
	Natural join can only be performed if
	there is a common attribute (column)
	between the relations. The name and
	type of the attribute must be same.

Number	Square
2	4
3	9

В	Number	Cube
	2	8
	3	27

A⋈B

Number	Square	Cube
2	4	8
3	9	27

1.2	Outer Join: In an outer join, along with tuple tuples that do not match the criteria.	5 LII	at Sati	SIY LI	ie ilia	terning	CITO	eria, we	ais	so include	501116	e Or all
1.2.1	Left Outer Join(A ⋈ B):In the left outer join, operation allows keeping all tuple in the left relation. However, if there is no matching tuple is found in right relation, then the attributes of right relation in the join result are filled with null values.	Α	A Number Square 2 4 3 9 4 16		Square		В	Number		Cul	Cube	
					4	4			2	2 8		
					9				3		27	
								5		125		
			⋈B	Nur	mber		Square 4 9			Cube		
				2						8		1
				3						1		
					4			16			Null	
1.2.2	Right Outer Join: (A M B)- It allows keeping all tuple in the right relation. However, if there is no matching tuple is found in the left relation, then the attributes of the left relation in the join result are filled with null values.	Α	Num	her	Square 4		В		Number		Cube	
			2				\dashv	-		2		8
			3		9		\dashv			3		27
			4		16		\dashv			5		125
			⋈ B	Nun	nber	Cube		Square				
				2		8		4				
				3		27		9				
	Prepa	red b	y Prof.Suj	ja J g yac	handran	125		Null				

1.2.3 | Full Outer Join: (A ⋈B)

In a full outer join, all tuples from both relations are included in the result, irrespective of the matching condition.

Α	Number	Square
	2	4
	3	9
	4	16

Number	Cube
2	8
3	27
5	125

A ⋈B

Number	Square	Cube		
2	4	8		
3	9	27		
4	16	Null		
5	Null	125		

В

2 DIVISION(symbol: ÷)

Division operator A÷B can be applied if and only if:

Attributes of B is proper subset of Attributes of A.

The relation returned by division operator will have attributes = (All attributes of A – All Attributes of B)

Which employees work on **all** the critical projects? Works(enum,pnum) Critical(pnum)

Works

TTOTAS	
enum	pnum
E35	P10
E45	P15
E35	P12
E52	P15
E52	P17
E45	P10
E35	P15
D C C	

Critical

pnum	
P15	
P10	

Works + Critical

TTOINS .	
enum	
E45	
E35	

(Works ÷ Critical) × Critical

enum	pnum
E45	P15
E45	P10
E35	P15
E35	P10

Prepared by Prof.Suja Jayachandran