Data Prep - Summer Temperatures

Libraries

```
library(sf)
library(tidyverse)
library(spmodel)
library(data.table)
library(ggplot2)
library(StreamCatTools)
library(tigris)
library(prism)
```

Data Development

Stream Temperature (st) Observations

- These data represent raw daily mean values from USGS loggers/stations
- We applied QA/QC process to flag and remove records that can represent a variety of issues (see QA documentation in SI)
- This code does the following:
- 1. Reads raw flagged data; removes those that are flagged to be removed
- 2. Calculates mean monthly values for July and August for sites with >20 days of record for those months
- 3. Converts data to simple feature spatial object

Map observed values

Map temperature sites and color by number of observations (months with data)


```
ggsave(file = '../figures/number_summer_temperature_obs.png',
    width = 8,
    height = 5,
    units = 'in',
    dpi = 600)
```

Summary of model data table

```
# Number of monthly observations across all sites
nrow(st)
```

[1] 16157

```
# Number of records for July and August
table(st$month)
```

7 8 8051 8106

```
# Number of records for each year
```

```
table(st$year)
```

```
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 1177 1322 1322 1499 1739 1766 1661 1716 2041 1914
```

```
# Summary of data
summary(st)
```

```
SITECODE
                     year
                                   month
                                                wtmp mo
Length:16157
                 Min.
                       :1999
                               Min.
                                     :7.000 Min.
                                                   : 3.60
                               1st Qu.:7.000 1st Qu.:18.31
Class :character
                 1st Qu.:2002
Mode :character
                 Median :2004
                               Median :8.000 Median :22.26
                               Mean :7.502 Mean :21.72
                 Mean :2004
                 3rd Qu.:2006
                               3rd Qu.:8.000 3rd Qu.:25.63
                 Max. :2008
                               Max. :8.000 Max. :33.92
   count
                       geometry
     :20.00
              POINT
Min.
                          :16157
1st Qu.:31.00
             epsg:5070
Median :31.00
              +proj=aea ...:
Mean :30.24
3rd Qu.:31.00
Max.
     :31.00
```

USGS flow metrics

- Modeled monthly (July and August) flow estimates for each site (source: USGS).
- Data not easily accessible for new sites.
- We used table to filter stations with data issues that were identified by USGS.

NHDPlus flow metrics

Modeled monthly (July and August) flow estimates from NHDPlus

- Data available for calibration sites and USGS/EPA fish sites.
- Flow values are very correlated with USGS estimates of flow from above.
- USGS values included some very large values, but inspection of streams in Google Maps suggested that NHDPlus flow estimates of river size were more accurate.

```
nhd_dir <- 'C:/Users/RHill04/WorkFolder/GIS/NHDPlusV21/NHDPlusNationalData/NHDPlusV21_National_Sea
nhd_flow <-
    st_read(dsn = paste0(nhd_dir),
        layer = 'NHDFlowline_Network') %>%
```

Reading layer `NHDFlowline_Network' from data source

```
`C:\Users\RHill04\WorkFolder\GIS\NHDPlusV21\NHDPlusNationalData\NHDPlusV21_National_Seamless_Flat
tened_Lower48.gdb'
    using driver `OpenFileGDB'
Simple feature collection with 2691339 features and 137 fields
Geometry type: MULTILINESTRING
Dimension: XYZM
Bounding box: xmin: -124.7332 ymin: 24.63052 xmax: -66.94983 ymax: 49.37661
z_range: zmin: 0 zmax: 0
m_range: mmin: -2.35e-05 mmax: 100
Geodetic CRS: NAD83
```

StreamCat (sc) static metrics

Static watershed/local catchment metrics:

- Elevation (Cat)
- Calcium oxide content of underlying lithology (Ws)
- Base flow index (Ws)
- Water table depth (Ws)
- Watershed area (Ws)
- Runoff (ws)
- Clay soil content (Ws)
- Sand soil content (Ws)
- Topographic wetness index (Ws)
- National Anthropogenic Barriers dam density (screened dams of NID) (Ws)
- Hydrologic conductivity (HydrlCond) (Ws)

```
comids <- flow$COMID %>%
    na.omit() %>%
    unique()

#Pull in static watershed metrics
sc <-
    sc_get_data(metric = 'HydrlCond,Runoff,Clay,Sand,WtDep,WetIndex,NABD_Dens,NABD_NRMSTOR,BFI,PREC:
    aoi = 'catchment,watershed',
        comid = comids) %>%

dplyr::select(COMID, ELEVCAT, CAOWS, BFIWS, WTDEPWS,
        WSAREASQKM, RUNOFFWS, CLAYWS, SANDWS, WETINDEXWS,
        NABD_DENSCAT, NABD_DENSWS, NABD_NRMSTORWS,
        PRECIP8110WS, HYDRLCONDWS) %>%
```

StreamCat Year-Specific NLCD data

Riparian forest cover (catchment)

- 1. Extracts yrs. 2001-2008 NLCD from StreamCat for riparian (~100m buffer) watersheds.
- 2. Filters data to just CONIF, DECID, or MXFST types.
- 3. Pivots table to include year of NLCD and % riparian forest column.

Crop cover (watershed)

Same process as riparian forest cover, but for NLCD type CROP.

Urban cover (watershed)

Same process as riparian forest cover, but for NLCD type PCTURBLO, PCTURBMD, or PCTURBHI.

```
mutate(year = as.integer(
    str_replace_all(tmpcol, 'PCTURBLO|PCTURBMD|PCTURBHI|WS', ''))) %>%
group_by(COMID, year) %>%
summarise(PCTURBXXXXWS = sum(PCTURBXXXXWS))
```

Lake/Reservoir (open water) in watershed (watershed)

Same process as riparian forest cover, but for NLCD type PCTOW.

Variable added to interact with dam presence/absence to account for stations that occur below natural lakes or man made reservoirs.

PRISM Climate Data

Air temperature

```
25%
 ==========
                                                  30%
 |===========
                                                  35%
                                                  40%
   _____
 _____
                                                  45%
                                                   50%
                                                  55%
                                                  60%
  65%
                                                  70%
                                                 75%
                                                  80%
   ______
                                                 85%
 ______
                                                  90%
                                                  95%
    |-----| 100%
# Create stack of PRISM climate rasters to extract values
tmn <- pd_stack((prism_archive_subset("tmean", "monthly",</pre>
                         years = years,
                         mon = 7:8)))
# Extract tmean at sample points and massage data
tmn <- terra::extract(tmn,</pre>
              # Transform pts to CRS of PRISM on the fly
                st_transform(crs = st_crs(tmn))) %>%
 # Add site IDs to extracted values
 data.frame(SITECODE = pts$SITECODE, .) %>%
 # Remove front and back text from PRISM year/month in names
 rename_with( ~ stringr::str_replace_all(., 'PRISM_tmean_stable_4kmM3_|_bil', '')) %>%
```

|-----

20%

Precipitation

```
0%
                                      5%
                                     10%
=======
                                     15%
                                     20%
=========
                                     25%
                                     30%
______
                                     35%
|============
                                     40%
_____
                                     45%
______
                                     50%
                                      55%
_____
                                     60%
                                     65%
                                     70%
```

Combine data for modeling

- Code creates crosswalk that matches the closest temperature years and NLCD years.
- All geospatial metrics are then joined to location (COMID)/month/year combinations of observed water temperatures.

```
st <- st %>%
 left_join(nearest, join_by(year)) %>%
 left_join(tmn,
            join_by(SITECODE, year, month)) %>%
 left_join(ppt,
            join_by(SITECODE, year, month)) %>%
 left_join(flow, join_by(SITECODE)) %>%
 left_join(sc, join_by(COMID)) %>%
 left_join(riparian_forest,
            join_by(COMID == COMID,
                    nlcd_year == year)) %>%
 left_join(crop,
            join_by(COMID == COMID,
                    nlcd_year == year)) %>%
 left_join(urban,
            join_by(COMID == COMID,
                    nlcd_year == year)) %>%
 left_join(water,
            join_by(COMID == COMID,
                    nlcd_year == year)) %>%
 left_join(nhd_flow,
            join_by(COMID == COMID,
                    month == month)) %>%
 mutate(q_mn = ifelse(month == 7,
                       July.Q.mn,
                       August.Q.mn),
        q_md = ifelse(month == 7,
                       July.Q.md,
                       August.Q.md)) %>%
 dplyr::select(-July.Q.mn:-August.Q.md)
# Write output file for modeling
write_rds(st,
         file = '../data/summer_data.2024.08.08.rds',
          compress = "xz")
```

Canidate Models

Libraries

```
library(data.table)
library(MASS)
library(lmerTest)
library(car)
library(tidyverse)
library(sf)
```

Initial Model Selection

- A fully-expressed formula is defined with multiple potential interactions with air temperature and month.
- Two selection procedures are then used to identify two candidate models. These procedures include:
- Backward selection (ImerTest::step) with a random intercept (COMID) included.
- Backward/Forward selection without a random intercept (COMID) included.
- Candidate models are then saved.

```
st <- read_rds('.../data/summer_data.2024.08.08.rds') %>%
 dplyr::mutate(month = as.character(month),
                COMID = as.character(COMID)) %>%
 na.omit() %>%
 dplyr::ungroup() %>%
  st_drop_geometry() %>%
 dplyr::mutate(log10_dam = log10(NABD_NRMSTORWS + 1),
                large_dam = ifelse(log10_dam > 5, 1, 0) %>%
                  as.character(),
                no_dam = ifelse(log10_dam == 0, 1, 0) %>%
                  as.character())
ggplot(data = st,
       aes(x = tmeanPRISM,
          y = wtmp_mo)) +
  geom_hex(bins = 100) +
  scale_fill_gradient(low = "grey", high = "red") +
 theme_bw()
```



```
ggplot(data = st,
    aes(x = log10(PCTCROPXXXXWS+1),
        y = wtmp_mo)) +
    geom_hex(bins = 100) +
    scale_fill_gradient(low = "grey", high = "red") +
    theme_bw()
```



```
formula <-
         wtmp mo ~
         tmeanPRISM*month +
         \label{thm:log10}  tmeanPRISM*PCTOWXXXXWS*I(log10(NABD_NRMSTORWS+\textcolor{red}{1}))*large\_dam*month + \\ log10(NABD_NRMSTORWS+\textcolor{red}{1}))*large\_dam*month + \\ log10(NABD_NRMSTORWS+\textcolor{red}{1}))*large\_
         tmeanPRISM*ELEVCAT*month +
         tmeanPRISM*BFIWS*month +
         tmeanPRISM*I(log10(PCTCROPXXXXWS+1))*month +
         tmeanPRISM*WTDEPWS*month +
         tmeanPRISM*PCTFSTXXXXWSRP100*month +
         tmeanPRISM*PCTURBXXXXWS*month +
         tmeanPRISM*SANDWS*month +
         tmeanPRISM*WETINDEXWS*month +
         tmeanPRISM*I(log10(nhdflow+1))*month +
         tmeanPRISM*RUNOFFWS*month +
         tmeanPRISM*CAOWS*month +
         tmeanPRISM*BFIWS*month +
         tmeanPRISM*pptPRISM*month +
          (1 | COMID)
initial.lmer <- lmerTest::lmer(formula,</pre>
                                                                                                                                                            data = st)
reduced <- lmerTest::step(initial.lmer)</pre>
```

```
lmer_formula <-</pre>
  lmerTest::get_model(reduced) %>%
  formula() %>%
  update(. ~ .
         -(1 | COMID))
initial.lm <-</pre>
  lm(formula = update(formula, . ~ . - (1 | COMID)),
     data = st)
initial.stepaic <-</pre>
  MASS::stepAIC(initial.lm,
                 direction = "both",
                 trace = FALSE)
aic_formula <-</pre>
  formula(initial.stepaic) %>%
  update(. ~ .
         -(1 | COMID))
formula <-
  formula %>%
  update(. ~ .
         -(1 | COMID))
write_rds(lmer_formula, '../data/base_lmer_formula.rds')
write_rds(aic_formula, '.../data/base_formula_stepaic.rds')
write_rds(formula, '../data/fullset_formula.rds')
```

Summer Model Assessment

Libraries & Setup

- Documents function to conduct 10-fold cross validation of stream temperature data.
- Leave-one-out cross validation is not adequate because of repeated measurements at stations.
- This code withholds all sites with the same location ID (COMID) from the fold that contains the ID.
- Doing so, prevents repeated measurements at the same site from being included in both training and testing data.

```
library(sf)
library(tidyverse)
library(spmodel)
library(data.table)
library(ggplot2)
library(caret)
library(knitr)
library(parallel)
# Read in stream temperature data
st <-
  readr::read_rds('../data/summer_data.2024.08.08.rds') %>%
  dplyr::mutate(month = as.character(month),
                COMID = as.character(COMID)) %>%
  na.omit() %>%
  dplyr::ungroup() %>%
  dplyr::mutate(log10_dam = log10(NABD_NRMSTORWS + 1),
                large_dam = ifelse(log10_dam > 5, 1, 0) %>%
                  as.character(),
                no_dam = ifelse(log10_dam == 0, 1, 0) %>%
                  as.character())
# Create list of unique COMIDs in from stream temperature data
siteids <-
  st %>%
  dplyr::ungroup() %>%
  sf::st_drop_geometry() %>%
  dplyr::select(COMID) %>%
  dplyr::distinct() %>%
  dplyr::pull()
# Read in candidate models (formulas)
lmer_formula <- read_rds('.../data/base_lmer_formula.rds')</pre>
aic_formula <- read_rds('.../data/base_formula_stepaic.rds')</pre>
fullset_formula <- read_rds('.../data/fullset_formula.rds')</pre>
```

```
# Function to calculate RMSE from observed and predicted values
rmse <- function(observed, predicted){</pre>
  sqrt(sum((predicted - observed)^2) / length(observed))
}
# Function to calculate median (or other quantile) absolute error
quant_ae <- function(observed, predicted, quantile){</pre>
  quantile(abs(observed - predicted), probs = quantile)
}
# Create folds or assessment of models
set.seed(20240731)
folds <-caret::createFolds(siteids)</pre>
# Function to generate 10-fold cross validated assessments of candidate models
foldov <- function(x, siteids, st, formula, spcov, rando = \sim (1 \mid COMID)){
  library(dplyr); library(sf); library(spmodel)
 y <- siteids[x]</pre>
  # Generate training dataset from siteids
  train <-
    st %>%
    dplyr::filter(!(COMID %in% y))
  # Generate test datset from siteids
  test <-
    st %>%
    dplyr::filter(COMID %in% y)
  # Create spatial model
  model <- spmodel::splm(formula,</pre>
                          data = train,
                          spcov_type = spcov,
                          random = rando,
                          local = TRUE)
  # predict to test data
  tmp <- predict(model,</pre>
                 newdata = test,
                 local = TRUE)
  # Add predicted column to test data
  test <-
    test %>%
    dplyr::mutate(predicted = tmp) %>%
    sf::st_drop_geometry() %>%
    dplyr::select(COMID, month, year, wtmp_mo, predicted)
  return(test)
```

Model Assessment

Fullset model (no variable selection, non-spatial)

▼ Code

Fullset model (no variable selection, spatial)

```
formula <- fullset_formula

eval <-
parLapply(cl,</pre>
```

```
folds,
    foldcv,
    siteids = siteids,
    st = st,
    formula = formula,
        spcov = "exponential") %>%
bind_rows()

model_performance[[2]] <- performance(eval)</pre>
```

lmerTest::step() model (non-spatial)

▼ Code

lmerTest::step() model (spatial)

▼ Code

MASS::stepAIC() model (non-spatial)

MASS::stepAIC() model (spatial)

▼ Code

Random Forest Models

• Includes standard random forest and random forest + spatial model of residuals

```
formula <-
  wtmp_mo ~
  tmeanPRISM+
  month +
  NABD_NRMSTORWS +
  ELEVCAT +
  BFIWS +
  PCTCROPXXXXWS +
  WTDEPWS +
  PCTFSTXXXXWSRP100 +
  PCTURBXXXXWS +</pre>
```

```
SANDWS +
  WETINDEXWS +
  nhdflow +
  RUNOFFWS +
  CAOWS +
  BFIWS +
  pptPRISM
foldcv_rf <- function(x, siteids, st, formula){</pre>
  library(dplyr); library(sf); library(spmodel)
 y <- siteids[x]</pre>
 train <-
    st %>%
    dplyr::filter(!(COMID %in% y)) %>%
    dplyr::mutate(lon = sf::st_coordinates(.)[,1],
                   lat = sf::st_coordinates(.)[,2]) %>%
    sf::st_drop_geometry()
  test <-
    st %>%
    dplyr::filter(COMID %in% y) %>%
    dplyr::mutate(lon = sf::st_coordinates(.)[,1],
                   lat = sf::st_coordinates(.)[,2]) %>%
    sf::st_drop_geometry()
  model <- ranger::ranger(formula,</pre>
                           data=train)
 train$prediction <- model$predictions</pre>
  train$resids <- train$wtmp_mo - train$prediction</pre>
  train.splm <- splm(resids ~ 1,</pre>
                      data = train,
                      spcov_type = "exponential",
                      xcoord = lon,
                      ycoord = lat,
                      local = TRUE)
  test$predicted_rf <- predict(model, data = test)$prediction</pre>
  test$predicted_sprf <- test$predicted_rf + predict(train.splm,</pre>
                                                        newdata = test,
                                                        local = TRUE)
 test <-
    test %>%
    #sf::st_drop_geometry() %>%
    dplyr::select(COMID, month, year, wtmp_mo, predicted_rf, predicted_sprf)
  return(test)
}
eval_rf <-
```

```
parLapply(cl,
            folds,
            foldcv_rf,
            siteids = siteids,
            st = st,
            formula = formula) %>%
  bind_rows()
# Non-spatial
rmserf <- eval_rf %>%
  #group_by(month) %>%
  summarise(rmse = rmse(wtmp mo, predicted rf))
mdaerf <- eval_rf %>%
  #group_by(month) %>%
  summarise(mdae = quant_ae(wtmp_mo, predicted_rf, 0.5))
cor2rf <-
  cor(eval_rf$wtmp_mo, eval_rf$predicted_rf)^2
rfns <- data.frame(rmse = rmserf, mdae = mdaerf, cor2 = cor2rf)</pre>
# Spatial
rmserf <- eval_rf %>%
  #group by(month) %>%
  summarise(rmse = rmse(wtmp_mo, predicted_sprf))
mdaerf <- eval rf %>%
  #group_by(month) %>%
  summarise(mdae = quant_ae(wtmp_mo, predicted_sprf, 0.5))
cor2rf <-
  cor(eval_rf$wtmp_mo, eval_rf$predicted_sprf)^2
sprf <- data.frame(rmse = rmserf, mdae = mdaerf, cor2 = cor2rf)</pre>
```

Combined model assessments

The models have almost identical performances, but the model selected with MASS::stepAIC() achieves this performance with far fewer parameters. We, therefore, selected this model as our final model.

```
model_performance <-
  model_performance %>%
  bind_rows(rfns, sprf)

model <- c(
  'fullset non-spatial',</pre>
```

```
'fullset spatial',
'lmerTest non-spatial',
'lmerTest spatial',
'stepAIC non-spatial',
'stepAIC spatial',
'random forest non-spatial',
'random forest spatial')

model_performance <-
tibble(model=model, model_performance) %>%
arrange(rmse)
kable(model_performance)
```

model	rmse	mdae	cor2
random forest non-spatial	2.371226	1.123107	0.8047128
random forest spatial	2.371255	1.122805	0.8047063
fullset spatial	2.500423	1.223853	0.7809956
ImerTest spatial	2.502277	1.223105	0.7806449
stepAIC spatial	2.522697	1.229727	0.7770130
ImerTest non-spatial	2.834327	1.450812	0.7185669
stepAIC non-spatial	2.837282	1.452145	0.7179759
fullset non-spatial	2.842531	1.455480	0.7169222

Final model

```
final.mdae <- eval_final %>%
  summarise(mdae = quant_ae(wtmp_mo, predicted, 0.5)) %>%
  pull(mdae)
final.cor2 <- cor(eval_final$wtmp_mo, eval_final$predicted)^2</pre>
final.cor2 <- c(</pre>
  final.cor2,
  eval_final %>%
    summarise(wtmp_mo = mean(wtmp_mo),
              predicted = mean(predicted),
              .by = c(COMID, year)) %>%
    summarise(cor2 = cor(wtmp_mo, predicted)) %>%
    pull(cor2),
  eval_final %>%
    summarise(wtmp_mo = mean(wtmp_mo),
              predicted = mean(predicted),
              .by = c(COMID)) %>%
    summarise(cor2 = cor(wtmp_mo, predicted)) %>%
    pull(cor2)
)
final.rmse <- c(</pre>
  final.rmse,
  eval_final %>%
    summarise(wtmp_mo = mean(wtmp_mo),
              predicted = mean(predicted),
              .by = c(COMID, year)) %>%
    summarise(rmse = rmse(wtmp_mo, predicted)) %>%
    pull(rmse),
  eval_final %>%
    summarise(wtmp_mo = mean(wtmp_mo),
              predicted = mean(predicted),
              .by = c(COMID)) %>%
    summarise(rmse = rmse(wtmp_mo, predicted)) %>%
    pull(rmse)
)
final.mdae <- c(</pre>
  final.mdae,
  eval_final %>%
    summarise(wtmp_mo = mean(wtmp_mo),
              predicted = mean(predicted),
              .by = c(COMID, year)) %>%
    summarise(mdae = quant_ae(wtmp_mo, predicted, 0.5)) %>%
    pull(mdae),
```

```
eval_final %>%
    summarise(wtmp_mo = mean(wtmp_mo),
              predicted = mean(predicted),
              .by = c(COMID)) %>%
    summarise(mdae = quant_ae(wtmp_mo, predicted, 0.5)) %>%
    pull(mdae)
)
n <- c(
  nrow(eval_final),
 eval_final %>%
    summarise(wtmp_mo = mean(wtmp_mo),
              predicted = mean(predicted),
              .by = c(COMID, year)) %>%
    nrow(),
 eval_final %>%
    summarise(wtmp_mo = mean(wtmp_mo),
              predicted = mean(predicted),
              .by = c(COMID)) %>%
    nrow()
)
period <- c(
  'YEAR-MONTH-COMID',
  'YEAR-COMID',
  'COMID'
)
definition <- c(
  'Prediction of July or August temperatures within years at a COMID',
  'Predictions of temperature within years (July/Aug averaged) at a COMID',
  'Predictions of temperature at a COMID (July/Aug/years averaged)'
)
model_performance2 <- tibble(period, definition, n, final.rmse, final.mdae, final.cor2)</pre>
final_splm <- spmodel::splm(formula,</pre>
                             data = st,
                             spcov_type = "exponential",
                             random = \sim (1 | COMID),
                             local = list(size = 50,
                                          method = "kmeans",
                                          parallel = TRUE,
                                          ncores = 30,
                                          var_adjust = "none"))
summary(final_splm)
```

```
Call:
spmodel::splm(formula = formula, data = st, spcov_type = "exponential",
    random = ~(1 | COMID), local = list(size = 50, method = "kmeans",
        parallel = TRUE, ncores = 30, var_adjust = "none"))
Residuals:
                    Median
     Min
               10
                                 3Q
                                          Max
-17.3834 -1.3085
                    0.2102 1.5555 11.1393
Coefficients (fixed):
                                                                  Estimate
(Intercept)
                                                                 8.115e+00
tmeanPRISM
                                                                 7.330e-01
month8
                                                                -1.694e+00
PCTOWXXXXWS
                                                                 2.110e-01
I(log10(NABD_NRMSTORWS + 1))
                                                                 4.057e-01
large dam1
                                                                -3.247e+01
ELEVCAT
                                                                -5.751e-04
                                                                -1.058e-01
BFIWS
I(log10(PCTCROPXXXXWS + 1))
                                                                 2.960e-01
WTDEPWS
                                                                 2.965e-02
PCTFSTXXXXWSRP100
                                                                -1.647e-02
PCTURBXXXXWS
                                                                -1.733e-02
SANDWS
                                                                 4.096e-03
WETINDEXWS
                                                                 2.158e-03
I(log10(nhdflow + 1))
                                                                 3.877e-01
RUNOFFWS
                                                                -2.744e-03
CAOWS
                                                                -3.094e-02
                                                                -1.630e-03
pptPRISM
tmeanPRISM:month8
                                                                 4.551e-02
tmeanPRISM:PCTOWXXXXWS
                                                                -2.974e-03
tmeanPRISM:I(log10(NABD_NRMSTORWS + 1))
                                                                -5.810e-03
PCTOWXXXXWS:I(log10(NABD_NRMSTORWS + 1))
                                                                 8.676e-03
tmeanPRISM:large_dam1
                                                                 2.739e+00
                                                                 3.555e+00
PCTOWXXXXWS:large_dam1
I(log10(NABD_NRMSTORWS + 1)):large_dam1
                                                                 6.693e+00
month8:large_dam1
                                                                 8.218e-02
tmeanPRISM:ELEVCAT
                                                                -7.916e-05
month8:ELEVCAT
                                                                 4.194e-04
tmeanPRISM:BFIWS
                                                                 2.103e-03
tmeanPRISM:I(log10(PCTCROPXXXXWS + 1))
                                                                -2.668e-02
month8:I(log10(PCTCROPXXXXWS + 1))
                                                                 1.165e-01
tmeanPRISM:WTDEPWS
                                                                -1.365e-03
                                                                -2.033e-03
month8:WTDEPWS
```

1.057e-04

7.831e-03

7.488e-04

3.895e-03

-5.731e-04

tmeanPRISM:PCTFSTXXXXWSRP100

month8:PCTFSTXXXXWSRP100

tmeanPRISM:PCTURBXXXXWS

month8:PCTURBXXXXWS

tmeanPRISM:SANDWS

tmeanPRISM:WETINDEXWS	1.798e-05
tmeanPRISM: I(log10(nhdflow + 1))	4.645e-03
month8:I(log10(nhdflow + 1))	1.046e-01
month8:RUNOFFWS	4.201e-04
tmeanPRISM: CAOWS	4.971e-04
month8: CAOWS	4.765e-02
tmeanPRISM:pptPRISM	-1.800e-05
tmeanPRISM:PCTOWXXXXWS:I(log10(NABD_NRMSTORWS + 1))	-1.629e-03
tmeanPRISM: PCTOWXXXXWS:large_dam1	-9.771e-02
tmeanPRISM:I(log10(NABD_NRMSTORWS + 1)):large_dam1	-5.634e-01
PCTOWXXXXWS:I(log10(NABD_NRMSTORWS + 1)):large_dam1 tmeanPRISM:month8:CAOWS	-7.365e-01 -1.864e-03
<pre>tmeanPRISM:PCTOWXXXXWS:I(log10(NABD_NRMSTORWS + 1)):large_dam1</pre>	Std. Error
(Intercept)	3.274e+00
tmeanPRISM	1.304e-01
month8	2.395e-01
PCTOWXXXXWS	1.179e-01
I(log10(NABD_NRMSTORWS + 1))	1.181e-01
large_dam1	1.085e+01
ELEVCAT	3.674e-04
BFIWS	1.449e-02
I(log10(PCTCROPXXXXWS + 1))	4.549e-01
WTDEPWS	6.770e-03
PCTFSTXXXXWSRP100	1.054e-02
PCTURBXXXXWS	1.410e-02
SANDWS	1.590e-02
WETINDEXWS	3.203e-03
I(log10(nhdflow + 1))	2.179e-01
RUNOFFWS	2.662e-04
CAOWS	2.950e-02
pptPRISM	1.416e-03
tmeanPRISM:month8	8.545e-03
tmeanPRISM:PCTOWXXXXWS	4.700e-03
<pre>tmeanPRISM:I(log10(NABD_NRMSTORWS + 1))</pre>	4.890e-03
PCTOWXXXXWS:I(log10(NABD_NRMSTORWS + 1))	4.154e-02
tmeanPRISM:large_dam1	4.591e-01
PCTOWXXXXWS:large_dam1	2.353e+00
I(log10(NABD_NRMSTORWS + 1)):large_dam1	2.015e+00
month8:large_dam1	4.588e-02
tmeanPRISM:ELEVCAT	1.580e-05
month8:ELEVCAT	4.696e-05
tmeanPRISM:BFIWS	5.696e-04
<pre>tmeanPRISM:I(log10(PCTCROPXXXXWS + 1))</pre>	1.791e-02
<pre>month8:I(log10(PCTCROPXXXXWS + 1))</pre>	4.062e-02
tmeanPRISM:WTDEPWS	2.655e-04
month8:WTDEPWS	5.212e-04
tmeanPRISM:PCTFSTXXXXWSRP100	4.324e-04
month8:PCTFSTXXXXWSRP100	1.086e-03
tmeanPRISM:PCTURBXXXXWS	5.557e-04
month8:PCTURBXXXXWS	1.280e-03

```
tmeanPRISM:SANDWS
                                                                 6.313e-04
tmeanPRISM:WETINDEXWS
                                                                 1.256e-04
tmeanPRISM:I(log10(nhdflow + 1))
                                                                 8.742e-03
month8:I(log10(nhdflow + 1))
                                                                 1.971e-02
month8:RUNOFFWS
                                                                 6.289e-05
tmeanPRISM:CAOWS
                                                                 1.162e-03
month8:CAOWS
                                                                 1.892e-02
tmeanPRISM:pptPRISM
                                                                 5.663e-05
tmeanPRISM:PCTOWXXXXWS:I(log10(NABD_NRMSTORWS + 1))
                                                                 1.674e-03
tmeanPRISM:PCTOWXXXXWS:large_dam1
                                                                 1.003e-01
tmeanPRISM:I(log10(NABD_NRMSTORWS + 1)):large_dam1
                                                                 8.514e-02
PCTOWXXXXWS:I(log10(NABD NRMSTORWS + 1)):large dam1
                                                                 4.204e-01
tmeanPRISM:month8:CAOWS
                                                                 7.667e-04
tmeanPRISM:PCTOWXXXXWS:I(log10(NABD_NRMSTORWS + 1)):large_dam1 1.790e-02
                                                                 z value Pr(>|z|)
                                                                  2.478 0.013201
(Intercept)
tmeanPRISM
                                                                  5.622 1.89e-08
month8
                                                                  -7.074 1.51e-12
PCTOWXXXXWS
                                                                  1.790 0.073532
I(log10(NABD_NRMSTORWS + 1))
                                                                  3.435 0.000592
large_dam1
                                                                 -2.992 0.002774
ELEVCAT
                                                                  -1.566 0.117421
                                                                 -7.299 2.89e-13
BFIWS
I(log10(PCTCROPXXXXWS + 1))
                                                                  0.651 0.515206
WTDEPWS
                                                                  4.380 1.19e-05
PCTFSTXXXXWSRP100
                                                                  -1.563 0.118034
PCTURBXXXXWS
                                                                  -1.229 0.219000
SANDWS
                                                                  0.258 0.796771
WETINDEXWS
                                                                  0.674 0.500405
I(log10(nhdflow + 1))
                                                                  1.779 0.075216
RUNOFFWS
                                                                 -10.308 < 2e-16
CAOWS
                                                                  -1.049 0.294273
pptPRISM
                                                                 -1.151 0.249771
                                                                  5.326 1.00e-07
tmeanPRISM:month8
tmeanPRISM:PCTOWXXXXWS
                                                                 -0.633 0.526821
                                                                 -1.188 0.234823
tmeanPRISM:I(log10(NABD NRMSTORWS + 1))
PCTOWXXXXWS:I(log10(NABD_NRMSTORWS + 1))
                                                                  0.209 0.834535
                                                                  5.965 2.44e-09
tmeanPRISM:large dam1
PCTOWXXXXWS:large_dam1
                                                                  1.511 0.130838
I(log10(NABD_NRMSTORWS + 1)):large_dam1
                                                                  3.322 0.000893
month8:large_dam1
                                                                  1.791 0.073277
                                                                  -5.010 5.44e-07
tmeanPRISM: ELEVCAT
month8:ELEVCAT
                                                                  8.932 < 2e-16
tmeanPRISM:BFIWS
                                                                  3.693 0.000222
tmeanPRISM:I(log10(PCTCROPXXXXWS + 1))
                                                                  -1.490 0.136266
month8:I(log10(PCTCROPXXXXWS + 1))
                                                                  2.869 0.004115
tmeanPRISM:WTDEPWS
                                                                  -5.140 2.75e-07
month8:WTDEPWS
                                                                  -3.902 9.56e-05
                                                                  0.245 0.806824
tmeanPRISM:PCTFSTXXXXWSRP100
month8:PCTFSTXXXXWSRP100
                                                                  7.211 5.56e-13
tmeanPRISM:PCTURBXXXXWS
                                                                  1.347 0.177877
```

```
tmeanPRISM:SANDWS
                                                                  -0.908 0.363981
tmeanPRISM:WETINDEXWS
                                                                   0.143 0.886187
tmeanPRISM:I(log10(nhdflow + 1))
                                                                   0.531 0.595139
month8:I(log10(nhdflow + 1))
                                                                   5.307 1.12e-07
month8:RUNOFFWS
                                                                   6.680 2.40e-11
                                                                   0.428 0.668851
tmeanPRISM:CAOWS
                                                                   2.519 0.011777
month8:CAOWS
tmeanPRISM:pptPRISM
                                                                  -0.318 0.750629
tmeanPRISM:PCTOWXXXXWS:I(log10(NABD_NRMSTORWS + 1))
                                                                  -0.973 0.330485
tmeanPRISM:PCTOWXXXXWS:large_dam1
                                                                  -0.974 0.329867
tmeanPRISM:I(log10(NABD NRMSTORWS + 1)):large dam1
                                                                  -6.617 3.67e-11
PCTOWXXXXWS:I(log10(NABD_NRMSTORWS + 1)):large_dam1
                                                                  -1.752 0.079778
tmeanPRISM:month8:CAOWS
                                                                  -2.431 0.015069
tmeanPRISM:PCTOWXXXXWS:I(log10(NABD NRMSTORWS + 1)):large dam1
                                                                   1.387 0.165589
(Intercept)
                                                                 ***
tmeanPRISM
                                                                 ***
month8
PCTOWXXXXWS
                                                                 ***
I(log10(NABD_NRMSTORWS + 1))
large_dam1
ELEVCAT
BFIWS
I(log10(PCTCROPXXXXWS + 1))
                                                                 ***
WTDEPWS
PCTFSTXXXXWSRP100
PCTURBXXXXWS
SANDWS
WETINDEXWS
I(log10(nhdflow + 1))
                                                                 ***
RUNOFFWS
CAOWS
pptPRISM
tmeanPRISM:month8
tmeanPRISM:PCTOWXXXXWS
tmeanPRISM:I(log10(NABD_NRMSTORWS + 1))
PCTOWXXXXWS:I(log10(NABD NRMSTORWS + 1))
                                                                 ***
tmeanPRISM:large_dam1
PCTOWXXXXWS:large_dam1
I(log10(NABD_NRMSTORWS + 1)):large_dam1
                                                                 ***
month8:large_dam1
tmeanPRISM: ELEVCAT
                                                                 ***
month8:ELEVCAT
                                                                 ***
tmeanPRISM:BFIWS
tmeanPRISM:I(log10(PCTCROPXXXXWS + 1))
month8:I(log10(PCTCROPXXXXWS + 1))
tmeanPRISM:WTDEPWS
month8:WTDEPWS
                                                                 ***
tmeanPRISM:PCTFSTXXXXWSRP100
month8:PCTFSTXXXXWSRP100
                                                                 ***
```

month8:PCTURBXXXXWS

3.043 0.002341

```
tmeanPRISM:PCTURBXXXXWS
                                                                **
month8:PCTURBXXXXWS
tmeanPRISM:SANDWS
tmeanPRISM:WETINDEXWS
tmeanPRISM:I(log10(nhdflow + 1))
month8:I(log10(nhdflow + 1))
month8:RUNOFFWS
tmeanPRISM:CAOWS
month8:CAOWS
tmeanPRISM:pptPRISM
tmeanPRISM:PCTOWXXXXWS:I(log10(NABD_NRMSTORWS + 1))
tmeanPRISM:PCTOWXXXXWS:large_dam1
tmeanPRISM:I(log10(NABD_NRMSTORWS + 1)):large_dam1
                                                                ***
PCTOWXXXXWS:I(log10(NABD_NRMSTORWS + 1)):large_dam1
tmeanPRISM:month8:CAOWS
tmeanPRISM:PCTOWXXXXWS:I(log10(NABD_NRMSTORWS + 1)):large_dam1
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Pseudo R-squared: 0.4016
Coefficients (exponential spatial covariance):
                 ie
                        range
    3.216
              1.024 25068.002
Coefficients (random effects):
1 | COMID
    2.476
▼ Code
```

	<pre>write_rds(final_splm, '/data/splm_selected.2024.08.08.rds')</pre>
kable(model_performance2)	kable(model_performance2)

period	definition	n	final.rmse	final.mdae	final.cor2
YEAR- MONTH- COMID	Prediction of July or August temperatures within years at a COMID	15403	2.499545	1.227332	0.7811244
YEAR-COMID	Predictions of temperature within years (July/Aug averaged) at a COMID	7918	2.446388	1.191278	0.8861542
COMID	Predictions of temperature at a COMID (July/Aug/years averaged)	2036	2.115167	1.068819	0.9082763

Plot of observed vs. predicted

```
ggplot(data = eval_final,
    aes(x = predicted,
        y = wtmp_mo)) +
geom_hex(bins = 100) +
ggtitle("Final SPLM - YEAR-MONTH-COMID") +
xlim(3, 35) + ylim(3, 35) +
xlab('Predicted') + ylab('Observed') +
scale_fill_gradient(low = "grey", high = "darkblue") +
geom_abline(color='black') +
theme_bw()
```

Final SPLM - YEAR-MONTH-COMID

Final SPLM - COMID

Stream Temperature Model Application - NRSA/NAWQA

Libraries & Directories

```
library(StreamCatTools)
library(tidyverse)
library(data.table)
library(sf)
library(prism)
library(lubridate)
library(knitr)
library(spmodel)
library(readr)

# NHDPlus directory
nhd_dir <- 'C:/Users/RHill04/WorkFolder/GIS/NHDPlusV21/'</pre>
```

Prep data for Powell Center analysis

```
pts <- fread('../data/FishSiteCOMIDs.csv') %>%
  left_join(
  read_rds(paste0(nhd_dir, 'cat-pour-points.rds')) %>%
    rename(COMID = FEATUREID) %>%
    dplyr::select(-AreaSqKM, -SOURCEFC, -GRIDCODE) %>%
    na.omit()
) %>%
  st_as_sf(coords = c('LON_DD', 'LAT_DD'),
        crs = 4269)

comids <- pts %>%
  pull(COMID) %>%
  na.omit()
```

NHDPlus flow metrics

Modeled monthly (July and August) flow estimates for each site (source: USGS)

```
as.integer()) %>%
dplyr::select(-tmpcol)
```

Reading layer `NHDFlowline_Network' from data source

```
`C:\Users\RHill04\WorkFolder\GIS\NHDPlusV21\NHDPlusNationalData\NHDPlusV21_National_Seamless_Flat
tened_Lower48.gdb'
using driver `OpenFileGDB'
Simple feature collection with 2691339 features and 137 fields
Geometry type: MULTILINESTRING
Dimension: XYZM
Bounding box: xmin: -124.7332 ymin: 24.63052 xmax: -66.94983 ymax: 49.37661
z_range: zmin: 0 zmax: 0
m_range: mmin: -2.35e-05 mmax: 100
Geodetic CRS: NAD83
```

StreamCat (sc) static metrics

Static watershed/local catchment metrics:

- Elevation (Cat)
- Calcium oxide content of underlying lithology (Ws)
- Base flow index (Ws)
- Water table depth (Ws)
- Watershed area (Ws)
- Runoff (ws)
- Sand soil content (Ws)
- Topographic wetness index (Ws)
- National Anthropogenic Barriers dam normal storage (screened dams of NID) (Ws)

StreamCat Year-Specific NLCD data

Riparian forest cover (catchment)

```
riparian_forest <-
sc_nlcd(year = '2001, 2004, 2006, 2008, 2011, 2013, 2016, 2019',
```

Crop cover (watershed)

Urban cover (watershed)

Lake/Reservoir (open water) in watershed (watershed)

Variable added to interact with reservoir size to account for stations that occur below natural lakes or man made reservoirs.

```
pivot_longer(!COMID, names_to = 'tmpcol', values_to = 'PCTOWXXXXWS') %>%
mutate(year = as.integer(
    str_replace_all(tmpcol, 'PCTOW|WS', ''))) %>%
group_by(COMID, year) %>%
summarise(PCTOWXXXXWS = sum(PCTOWXXXXWS))
```

PRISM Climate Data

Air temperature

 ======	I	11%
 	I	13%
 =======	I	15%
 ========	I	16%
	I	18%
	I	19%
	I	21%
	I	23%
	I	24%
	I	26%
	I	27%
	I	29%
	I	31%

	I	32%
	I	34%
	I	35%
 	I	37%
	I	39%
	I	40%
	I	42%
	I	44%
 	I	45%
	I	47%
	I	48%
	1	50%
	I	52%

	I	53%
	I	55%
	I	56%
	I	58%
	I	60%
	I	61%
	I	63%
	I	65%
	I	66%
	I	68%
	I	69%
	I	71%
	I	73%

	I	74%
	I	76%
	I	77%
	I	79%
	I	81%
	1	82%
	I	84%
	I	85%
	I	87%
	I	89%
	1	90%
	I	92%
 	1	94%

```
95%
   ______
 tmn <- pd_stack((prism_archive_subset("tmean", "monthly",</pre>
                              years = years,
                              mon = 7:8)))
# Extract tmean at sample points and massage data
tmn <- terra::extract(tmn,</pre>
                 # Transform pts to CRS of PRISM on the fly
                 pts %>%
                   st_transform(crs = st_crs(tmn))) %>%
 # Add site IDs to extracted values
 data.frame(COMID = pts$COMID, .) %>%
 # Remove front and back text from PRISM year/month in names
 rename_with( ~ stringr::str_replace_all(., 'PRISM_tmean_stable_4kmM3_|_bil', '')) %>%
 # Pivot to long table and calle column tmeanPRISM
 pivot_longer(!COMID, names_to = 'year_month',
           values_to = 'tmeanPRISM') %>%
 # Create new column of year
 mutate(year = year(ym(year_month)),
       month = month(ym(year_month))) %>%
 dplyr::select(-year_month)
```

Precipitation

 	I	0%
 =	I	2%
 ==	I	3%
 ===	I	5%
 =====	I	6%
 =====	I	8%
 ======	I	10%
 ======	I	11%
 =======	I	13%
 =======	I	15%
 =======	I	16%
 =======	I	18%
 =======	I	19%

 =========	I	21%
 	I	23%
 ===========	1	24%
 	I	26%
 ====================================	I	27%
 ====================================	I	29%
 	I	31%
 ====================================	1	32%
 ====================================	I	34%
	I	35%
 	I	37%
 =======	I	39%
 	I	40%

	I	42%
	I	44%
	I	45%
	I	47%
	l	48%
	I	50%
	I	52%
	I	53%
	I	55%
	I	56%
	I	58%
	I	60%
	I	61%

 	I	63%
 ========	I	65%
 	I	66%
 	I	68%
 ====================================	I	69%
 ====================================	I	71%
 ====================================	I	73%
 	I	74%
 	I	76%
 	I	77%
 ===================================	I	79%
 	I	81%
 	I	82%

```
84%
                                   85%
-----
                                   87%
|-----
                                   89%
                                   90%
                                   92%
                                   94%
|-----
|-----
ppt <- pd_stack((prism_archive_subset("ppt","monthly",</pre>
                  years = years,
                  mon = 7:8)))
ppt <- terra::extract(ppt,</pre>
          pts %>%
           st_transform(crs = st_crs(ppt))) %>%
```

Combine data for modeling

```
nlcd years <-
 data.table(year = c(2001, 2004, 2006, 2008, 2011, 2013, 2016, 2019)) %>%
 mutate(merge = year) %>%
 setkeyv('merge')
st_years <-
 data.table(year = 1990:2020) %>%
 mutate(merge = year) %>%
  setkeyv('merge')
nearest <-
  nlcd_years[st_years, roll = 'nearest'] %>%
 dplyr::select(year, i.year) %>%
  rename(nlcd_year = year,
        year = i.year)
powell.data <- tmn %>%
 left_join(nearest, join_by(year)) %>%
 left_join(ppt,
            join_by(COMID, year, month)) %>%
 left_join(sc, join_by(COMID)) %>%
 left_join(riparian_forest,
            join_by(COMID == COMID,
                    nlcd_year == year)) %>%
 left_join(crop,
            join_by(COMID == COMID,
                    nlcd_year == year)) %>%
 left join(urban,
            join_by(COMID == COMID,
                    nlcd_year == year)) %>%
 left_join(nhd_flow,
            join_by(COMID == COMID,
                    month == month)) %>%
 left_join(water,
            join_by(COMID == COMID,
                    nlcd_year == year)) %>%
 left_join(pts,
            join_by(COMID == COMID)) %>%
 mutate(month = as.character(month),
```

```
COMID = as.character(COMID)) %>%
 st_as_sf(crs = 4269) %>%
 st_transform(crs = 5070)
# Grab values from nearest site for WTDEP NA value
ptna <- powell.data %>%
 filter(is.na(WTDEPWS)) %>%
 dplyr::select(COMID) %>%
 distinct()
dist matrix <- st distance(pts)</pre>
names(dist_matrix) <- pts$COMID</pre>
rownames(dist_matrix) <- pts$COMID</pre>
nearest <- dist_matrix[, grep(ptna$COMID, names(dist_matrix))]</pre>
nearest <- data.frame(nearest) %>%
 distinct() %>%
 arrange(nearest) %>%
 slice_head(n=6) %>%
 row.names()
powell.data$WTDEPWS[powell.data$COMID == ptna$COMID] <- mean(powell.data$WTDEPWS[powell.data$COMII</pre>
# Write output file for modeling
write_rds(powell.data,
          file = '../data/powell_data.2024.07.31.rds',
          compress = "xz")
```

Predict stream temperatures

```
pull(COMID) %>%
na.omit() %>% unique()
```

Write output file