

FCC TEST REPORT

Under

FCC 15 Subpart E, Paragraph 15.407 Operation within the bands 5.15-5.25 GHz, 5.25-5.35 GHz, 5.47-5.725 GHz and 5.725-5.85 GHz (NII) Unlicensed National Information Infrastructure

Prepared For:

Grandstream Networks, Inc.

126 Brookline Ave, 3rd Floor Boston, MA 02215, USA

FCC ID: YZZGXV3370

EUT: IP Multimedia Phone

Model: GXV3370

May 11, 2018

Issue Date:

Original Report

Report Type:

Test Engineer: Jacky Huang

Review By: Apollo Liu / Manager

The test report consists 50 pages in total. It may be duplicated completely for legal use with the allowance of the applicant. It shall not be reproduced except in full, without the written approval of Ke Mei Ou Laboratory Corporation. The test result in the report only applied to the tested sample.

Table of Contents

1. General Information	
1. 1 Notes	4
1. 2 Testing Laboratory	
1. 3 Details of Applicant	
1. 4 Application Details	
1. 5 Details of Manufacturer	4
1. 6 Test Item	4
1. 7 Applicable Standards	6
2. Technical Test	
2. 1 Summary of Test Results	
2. 2 Antenna Requirement	
3. EUT Modifications	
4. Conducted Power Line Test	8
4. 1 Test Equipment	
4. 2 Test Procedure	8
4. 3 Test Setup	
4. 4 Configuration of the EUT	
4. 5 EUT Operating Condition	11
4. 6 Conducted Power Line Emission Limits	
4. 7 Conducted Power Line Test Result.	12
5. FCC Part 15.407 Requirements for 802.11a/n/ac Systems	14
5. 1 Test Equipment	14
5. 2 Test Procedure	14
5. 3 Test Setup	15
5. 4 Configuration of the EUT	15
5. 5 EUT Operating Condition	
5. 6 Limit	16
5. 7 Test Result	
6. Transmitter Spurious Radiated Emission & Band Edge Emissions	
6. 1 Test Equipment	
6. 2 Test Procedure	
6. 3 Test Setup	
6. 4 Configuration of the EUT	
6. 5 EUT Operating Condition	
6. 6 Limit	21
6. 7 Test Result	
7. RF Exposure Requirements	40
7. 1 Limit	
7. 2 MPE Calculation Method	
7. 3 Test Result	
8. Photos of Testing	
8. 1 EUT Test Photographs	
8. 2 EUT Detailed Photographs	
9. FCC ID Label	
10 Test Equipment	50

Report Revision History

Report #	Version	Description	Issued Date
KSZ2018031601J04	Rev.01	Initial issue of report	May 7, 2018
KSZ2018031601J04	Rev.02	Update the signature of cover page & section 1.2 & section 1.7	May 11, 2018

1. General Information

1. 1 Notes

The test results of this report relate exclusively to the test item specified in 1.6. The KMO Lab does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the KMO Lab.

1. 2 Testing Laboratory

Test Firm Name:	Ke Mei Ou Lab Co., Ltd.	
Test Firm Address:	2013-2016, 20th Floor, Business Center, Jiahui Xin Cheng, No 3027, Shen Nan	
Test FIFIII Address:	Road, Fu Tian, Shen Zhen, Guang Dong, P. R. China	
FCC Designation Number:	CN1532	
Test Firm Registration Number:	344480	
Internet:	www.kmolab.com	
Email:	kmo@kmolab.com	
ANSI-ASQ National Accreditation Board/ACLASS ISO/IEC 17025 Accredited Lab for telecommunication standards. The Registration Number is		
AT-1532. The testing quality system meets with ISO/IEC-17025 requirements, This approval results is accepted by MRA of ILAC.		

1. 3 Details of Applicant

Name: Grandstream Networks, Inc.

Address: 126 Brookline Ave, 3rd Floor Boston, MA 02215, USA

1. 4 Application Details

Date of Receipt of Application:

Date of Receipt of Test Item:

Date of Test:

March 16, 2018

March 16, 2018

March 16, 2018

March 23~May 7, 2018

1. 5 Details of Manufacturer

Name: Grandstream Networks, Inc.

Address: 126 Brookline Ave, 3rd Floor Boston, MA 02215, USA

1. 6 Test Item

	EUT Feature	
EUT Description:	IP Multimedia Phone	
Brand Name:	Grandstream	
Model Name:	GXV3370	
EUT RF Technology:		
HW Version:	v1.2A	
SW Version:	1.0.0.5	
EUT Stage:	Identical Prototype	
Note: The above EUT's information was more detailed description.	declared by manufacturer. Please refer to the specifications or user's manual for	

KMO FCC ID Report Page 4 of 50 Report #: KSZ2018031601J04

Additional Information

Standard Product Specification				
Tw/Dw Eveguency Denge	⊠5150~5250 MHz	⊠5250~5350 MHz		
Tx/Rx Frequency Range	⊠5470~5725 MHz	⊠5725~5850 MHz		
Communication Mode	☑IP Based (Load Based)	Frame Based		
TPC Function	☐With TPC	⊠Without TPC		
Weather Band	☐With 5600~5650MHz	⊠Without 5600~5650MHz		
Beamforming Function	☐With beamforming	⊠Without beamforming		
	Outdoor access point			
Operating Mode	Fixed point-to-point access points			
Operating wrote	Master	☐Slave with radar detection		
	Slave without radar detection			
	∑5150~:	5250 MHz		
	Ant.1: Internal PCB Antenna with gain	4 dBi		
		5350 MHz		
Antenna Type / Gain	Ant.1: Internal PCB Antenna with gain	4 dBi		
Antenna Type / Gam		5725 MHz		
	Ant.1: Internal PCB Antenna with gain	4 dBi		
		5850 MHz		
	Ant.1: Internal PCB Antenna with gain	4 dBi		
Type of Modulation	⊠802.11a/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)			
Type of Modulation	□802.11ac : OFDM (BPSK / QPSK / 160			
Antenna Function for	802.11 a/n SISO ⊠Ant. 1 □Ant. 2			
Transmitter	802.11 a/n/ac SISO			
Transmeter	802.11n/ac MIMO	☐ Ant. 1 ☐ Ant. 2		

Note:

- 1) 802.11a only support SISO mode, 802.11n/ac support SISO & MIMO mode.
- 2) For 802.11a SISO mode, only test one Antenna by referring to its higher conducted power.
- 3) For 802.11n/ac mode, only test MIMO mode because the MIMO power is higher than SISO power.
- 4) MIMO Ant. 1+2 is a calculated result from sum of the power MIMO Ant. 1 and MIMO Ant. 2
- For 802.11n HT20 & 802.11ac VHT20 mode, the whole testing has assessed only one by referring to their higher conducted power.
- 6) For 802.11n HT40 & 802.11ac VHT40 mode, the whole testing has assessed only one by referring to their higher conducted power.

Specification of Accessory				
⊠AC/DC Adapter #1 (US)	Brand Name	Sunlight	Model Name	H18US1200150A
AC/DC Adapter #1 (US)	Power Rating	I/P: AC 100-240V~50/60Hz, 0.8A; O/P:DC 12V /1.5A		
MAC/DC Adament #2 (US)	Brand Name	Frecom	Model Name	F18W8-120150SPAUY
⊠AC/DC Adapter #2 (US)	Power Rating	I/P: AC 100-240V~50/60Hz, 0.6A; O/P:DC 12V /1.5A		:DC 12V /1.5A

1. 7 Applicable Standards

Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

FCC Part 15 Subpart E

FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01

ANSI C63.10-2013

Note:

- 1) All test items were verified and recorded according to the standards and without any deviation during the test.
- 2) This EUT has also been tested and complied with the requirements of FCC 15 Part 15, Subpart B, recorded in a separate test report.

2. Technical Test

2. 1 Summary of Test Results

The EUT has been tested according to the following specifications:

FCC Rules	Test Type	Limit	Result	Notes
2.1049 & 15.403(i)	26dB & 99% Bandwidth	-	PASS	Complies.
15.407(a)	Maximum Conducted Output Power	FCC ≤ 24 dBm	PASS	Complies.
15.407(a)	Power Spectral Density	FCC ≤ 11 dBm	PASS	Complies.
15.407(b)	Unwanted Emissions	15.407(b) & 15.209(a)	PASS	Complies.
15.207	AC Conducted Emission	15.207(a)	PASS	Complies
15.407(g)	Frequency Stability	Within Operation Band	PASS	Complies
15.407(c)	Automatically Discontinue Transmission	Discontinue Transmission	PASS	Complies
15.203 & 15.407(a)	Antenna Requirement	N/A	PASS	Complies
1.1307(b)(1) & 2.1091	Maximum Permissible Exposure (MPE)	< 1mW/cm ²	PASS	Complies

2. 2 Antenna Requirement

Regulation

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Result

The EUT has one internal PCB antenna, which was permanently attached and the gain is 3 dBi, Therefore the EUT complies with Section 15.203 of the FCC rules.

Please refer to section 4.4 in this test report; antenna connector complied with the requirements

3. EUT Modifications

No modification by test lab.

4. Conducted Power Line Test

4. 1 Test Equipment

Please refer to Section 10 this report.

4. 2 Test Procedure

Test Method

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination.

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission., the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

4. 3 Test Setup

This test is applicable for radio equipment and/or ancillary equipment for fixed use powered by the AC mains. This test shall be performed on a representative configuration of the radio equipment, the associated ancillary equipment, or a representative configuration of the combination of radio and ancillary equipment. This test assesses the level of internally generated electrical noise present on the AC power input/output ports.

4. 4 Configuration of the EUT

WiFi Test Mode

Final test mode of conducted test items and radiated spurious emissions are considering the modulation and worse data rates as below table.

SISO Antenna			
Modulation Data Rate			
802.11a	6 Mbps		
802.11n HT20 MCS0			
802.11n HT40	MCS0		
MIMO Antenna			

Summary Tables of Test Mode		
AC Conducted	Mode 1: Bluetooth Link with Controller + WLAN Link(5G) + USB Cable (Adapter #1 mode)	
Emission	Mode 2: Bluetooth Link with Controller + WLAN Link(5G) + USB Cable (Adapter #2 mode)	

Note:

- 1) The worst case of conducted emission is mode 2; only the worst case was reported.
- 2) For Radiated case, The tests were performed with Adapter #1, Controller and USB Cable.
- 3) For 802.11n HT20 mode, the whole testing has assessed only one by referring to their higher conducted power.
- 4) For 802.11n HT40 mode, the whole testing has assessed only one by referring to their higher conducted power.

EUT Operation Test Setup

For WLAN function, the engineering test program was provided and enabled to make EUT continuous transmit/receive. For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

Support Unit				
Device Manufacturer Model # FCC ID/ Serial # DoC			Cable	
Notebook	ACER	ZQE	HLZ-AR5B97	1.5m unshielded power cord
-	-	-	-	-

KMO FCC ID Report Page 9 of 50 Report #: KSZ2018031601J04

	USA Carı	rier Frequency for 5GHz	z Band
Frequency Band	Modulation Type	Channel	Center Frequency(MHz)
		36	5180
	802.11 a	40	5200
5150 5250 NATI		48	5240
5150~5250 MHz		36	5180
Band 1	802.11 n20	40	5200
(U-NII-1)		48	5240
	902 11 - 40	38	5190
	802.11 n40	46	5230
Frequency Band	Modulation Type	Channel	Center Frequency(MHz)
		52	5260
	802.11 a	56	5280
5250 5250 NATE		64	5320
5250~5350 MHz		52	5260
Band 2	802.11 n20	56	5280
(U-NII-2A)		64	5320
	802.11 n40	54	5270
		62	5310
Frequency Band	Modulation Type	Channel	Center Frequency(MHz)
	802.11 a	100	5500
		120	5600
		140	5700
		144	5720
5470~5725 MHz		100	5500
Band 3	002.11.20	120	5600
(U-NII-2C)	802.11 n20	140	5700
, ,		144	5720
		102	5510
	802.11 n40	118	5590
		142	5710
Frequency Band	Modulation Type	Channel	Center Frequency(MHz)
-	V 1	149	5745
	802.11 a	157	5785
		165	5825
5725~5850 MHz		149	5745
Band 4	802.11 n20	157	5785
(U-NII-3)	-	165	5825
	002 11 40	151	5755
	802.11 n40	159	5795

4. 5 EUT Operating Condition

Operating condition is according to ANSI C63.10:2013.

A. Setup the EUT and simulators as shown on follow.

B. Enable RF signal and confirm EUT active.

- Modulate output capacity of EUT up to specification.

4. 6 Conducted Power Line Emission Limits

FCC Part 15 Paragraph 15.207 (dBuV)			
Frequency Range (MHz) QP/AV			
0.15 - 0.5	66-56/56-46		
0.5 - 5.0	56/46		
5.0 - 30	60/50		

Note: In the above table, the tighter limit applies at the band edges.

4. 7 Conducted Power Line Test Result

FCC15											
Frequency	ł.	el (dBuV)	Factor	Emission (dBuV)		Line/	Limit (dBuV)		Margin(dBuV)		
(MHz)	QP	AV	(dB)	QP	AV	Neutral	QP	AV	QP	AV	
0.202	42.49	30.37	10.30	52.79	40.67	Line	63.53	53.53	-10.74	-12.86	
0.266	41.08	29.65	10.30	51.38	39.95	Line	61.24	51.24	-9.86	-11.29	
0.442	40.01	29.02	10.40	50.41	39.42	Line	57.02	47.02	-6.61	-7.60	
0.462	42.53	32.07	10.40	52.93	42.47	Line	56.66	46.66	-3.73	-4.19	
1.390	35.76	22.15	10.50	46.26	32.65	Line	56.00	46.00	-9.74	-13.35	
1.810	33.74	19.72	10.40	44.14	30.12	Line	56.00	46.00	-11.86	-15.88	
	FCC15										

Note:

- 1.Uncertainty in conducted emission measured is <+/ -2dB.
- 2. The emission levels of other frequencies were very low against the limit.
- 3.All Reading Levels are Quasi-Peak and Average value.
 4.Emission = Meter Reading + Factor; Factor = Insertion Loss + Cable Loss.
- 5.Margin Value= Emission Level Limit Value.

FCC15											
Frequency	Read Level (dBuV) Factor		Emission (dBuV)		Line/	Limit (dBuV)		Margin(dBuV)			
(MHz)	QP	AV	(dB)	QP	AV	Neutral	QP	AV	QP	AV	
0.150	51.47	32.35	10.30	61.77	42.65	Neutral	66.00	56.00	-4.23	-13.35	
0.178	47.35	29.91	10.30	57.65	40.21	Neutral	64.58	54.58	-6.93	-14.37	
0.446	40.00	30.27	10.40	50.4	40.67	Neutral	56.95	46.95	-6.55	-6.28	
0.470	40.20	29.61	10.40	50.6	40.01	Neutral	56.51	46.51	-5.91	-6.50	
0.610	38.47	29.80	10.40	48.87	40.2	Neutral	56.00	46.00	-7.13	-5.80	
0.966	39.24	31.77	10.40	49.64	42.17	Neutral	56.00	46.00	-6.36	-3.83	
	FCC15										

Note:

- 1. Uncertainty in conducted emission measured is <+/ -2dB.
- 2. The emission levels of other frequencies were very low against the limit.
- 3.All Reading Levels are Quasi-Peak and Average value.
- 4.Emission = Meter Reading + Factor; Factor = Insertion Loss + Cable Loss.
- 5.Margin Value= Emission Level Limit Value.

5. FCC Part 15.407 Requirements for 802.11a/n/ac Systems

5. 1 Test Equipment Please refer to Section 10 this report.

5. 2 Test Procedure

26dB Bandwidth and	d 99% Occupied Bandwidth:							
Test Method:	Test was performed in accordance with KDB789033 D02 v02r01							
	a)The transmitter was radiated to the							
			on that is 26 dB down from the peak of the					
	emission Compare this with the RBW	y setting	g of the analyzer. Readjust RBW and repeat					
	measurement as needed until the RBW/EBW ratio is approximately 1%.							
	ng – 26dB Bandwidth:							
	simately 1% of the emission bandwidth.	c) Det	ector = Peak.					
b) Set the VBW > RE	BW.	d) Trace mode = max hold.						
Test Equipment Settin								
	lure shall be used for measuring (99%)	6. Use the 99% power bandwidth function of the						
power bandwidth:			ment (if available).					
	cy to the nominal EUT channel center		e instrument does not have a 99% power					
frequency.	on to 5 O time of the ODW		ridth function, the trace data points are recovered					
	es to 5.0 times the OBW.		rectly summed in power units. The recovered					
3. Set RBW = 1% to 3 4. Set VBW ≥ 3 RB			ude data points, beginning at the lowest frequency, aced in a running sum until 0.5% of the total is					
	not permitted. Where practical, a		d; that frequency is recorded as the lower					
sample detection and	single sweep mode shall be used.		ncy. The process is repeated until 99.5% of the					
	ction and max hold mode (until the trace		s reached; that frequency is recorded as the upper					
stabilizes) shall be use			ncy. The 99% occupied bandwidth is the difference					
,			en these two frequencies.					
Test Equipment Settin	ng – Minimum Emission Bandwidth for th	ne band	5.725–5.85 GHz					
	ecifies the minimum 6 dB emission		eep = auto couple.					
	500 kHz for the band 5.725-5.85 GHz.	f) Allow the trace to stabilize.						
	lure shall be used for measuring this	g) Measure the maximum width of the emission that is						
bandwidth:	_		ained by the frequencies associated with the two					
a) Set RBW = 100 kH			nost amplitude points (upper and lower frequencies)					
	width (VBW) ≥ 3 RBW.	that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.						
c) Detector = Peak.d) Trace mode = max	hold	measured in the fundamental emission.						
6dB Bandwidth	a nord.							
	According to section II. C(2) Minimum E	mission	Bandwidth for the band 5.725–5.85 GHz of					
	789033 D02 General UNII Test Procedure		Rules v02r01					
	a) Set $RBW = 100 \text{ kHz}$.		d) Trace mode = max hold.					
	b) Set the video bandwidth (VBW) \geq 3 R							
	c) Detector = Peak.		f) Allow the trace to stabilize.					
	ed Output Power Measurement:							
			ared using a spectrum analyzer/EMI receiver or an tional guidance for devices that use channel					
	aggregation.	ioi addi	tional guidance for devices that use channel					
Test Equipment Settin								
(i) Measure the duty of	cycle, x, of the transmitter output signal	(ix) Co	ompute power by integrating the spectrum across					
as described in II.B.	1		W (or, alternatively, the entire 99% occupied					
(ii) Set span to encom	npass the entire EBW (or, alternatively,	bandw	idth) of the signal using the instrument's band					
the entire 99% occupi	ied bandwidth) of the signal.		measurement function with band limits set equal to					
(iii) Set RBW = 1 MF			W (or occupied bandwidth) band edges. If the					
(iv) Set VBW $\geq 3 \text{ N}$		instrument does not have a band power function, sum the						
	in sweep $\geq 2 \times \text{span} / \text{RBW}$. (This		um levels (in power units) at 1 MHz intervals					
	n spacing is \leq RBW/2, so that		ing across the EBW (or, alternatively, the entire					
	re not lost between frequency bins.)		ccupied bandwidth) of the spectrum.					
	eep time $\geq 10 \times \text{(number of points)}$		d 10 log $(1/x)$, where x is the duty cycle, to the red power in order to compute the average power					
	on/off period of the transmitted signal).		the actual transmission times (because the					
(vii) Set detector = po			rement represents an average over both the on and					
(viii) Perform a single	e sweep.		es of the transmission). For example, add 10 log					
			(5) = 6 dB if the duty cycle is 25%.					

Power Spectral Density: Test Method: a) Set RBW $\geq 1/T$, where T is defined in II.B.l.a). b) Set VBW ≥ 3 RBW. c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10 log (500 kHz/RBW) to the measured result, whereas RBW (<500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement. d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10 log (1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement. e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle. Test Equipment Setting: a) Set RBW = 300 kHz. b) Set the video bandwidth (VBW) \geq 3 RBW. c) Detector = Peak. d) Trace mode = max hold. **Band edge measurements:** Test Method: According to section II.G.3(d) General Requirements for Unwanted Emissions Measurements of 789033 D02 General UNII Test Procedures New Rules v02r01 Unwanted band-edge emissions may be measured using either of the special band-edge measurement techniques (the marker-delta or integration methods) described in the following paragraphs. Note that the marker-delta method is primarily a radiated measurement technique that requires the 99% occupied bandwidth edge to be within 2 MHz of the authorized band edge, whereas the integration method can be used in either a radiated or conducted measurement without any special requirement with regards to the displacement of the unwanted emission(s) relative to the authorized bandwidth. Test Equipment Setting: a) Set RBW = 100 kHz. b) Set the video bandwidth (VBW) \geq 3 RBW. c) Detector = Peak. d) Trace mode = max hold**Frequency Stability Measurement:** Test Method: a) The transmitter output (antenna port) was connected to the spectrum analyzer. b)EUT have transmitted absence of modulation signal and fixed channelize. c)Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth. d)Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings. e)fc is declaring of channel frequency. Then the frequency error formula is (fc-f)/fc × 106 ppm and the limit is less than ± 20 ppm (IEEE 802.11 specification). f)The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value g)Extreme temperature is 0°C~40°C Test Equipment Setting:

d)VBW: 10 kHz 5. 3 Test Setup

c)RBW: 10 kHz

a)Attenuation: Auto

5. 4 Configuration of the EUT

b)Span Frequency: Entire absence of modulation emissions bandwidth

Same as section 4.4 of this report

5. 5 EUT Operating Condition

Same as section 4.5 of this report.

e)Sweep Time: Auto

5. 6 Limit

26dB Bandwidth and 99% Occupied Bandwidth:								
Limit:								
6 dB Bandwidth:								
Limit:	For digital modulation systems, the minin	num 6dB bandwidth shall be at least 500 kHz.						
Maximum Conduc	ted Output Power Measurement:							
⊠5.15~5.25 GHz								
Limit of Outdoor		Limit of Indoor access point:						
	ducted output power over the frequency	The maximum conducted output power over the						
	shall not exceed 1 W (30dBm) provided	frequency band of operation shall not exceed 1 W						
	enna gain does not exceed 6 dBi. If	(30dBm) provided the maximum antenna gain does not						
	as of directional gain greater than 6 dBi	exceed 6 dBi. If transmitting antennas of directional						
	aximum conducted output power and the	gain greater than 6 dBi are used, both the maximum						
	pectral density shall be reduced by the	conducted output power and the maximum power						
	ne directional gain of the antenna exceeds	spectral density shall be reduced by the amount in dB						
	n e.i.r.p. at any elevation angle above 30	that the directional gain of the antenna exceeds 6 dBi.						
	from the horizon must not exceed							
125 mW (21 dBm).								
	pint-to-point access points:	☐ Limit of Mobile and portable client devices:						
	ucted output power over the	The maximum conducted output power over the						
	peration shall not exceed 1 W	frequency band of operation shall not exceed 250 mW						
	nt-to-point U-NII devices may employ	(24dBm) provided the maximum antenna gain does not						
	ional gain up to 23 dBi without any	exceed 6 dBi. If transmitting antennas of directional						
	tion in the maximum conducted	gain greater than 6 dBi are used, both the maximum						
	kimum power spectral density. For	conducted output power and the maximum power						
	transmitters that employ a directional	spectral density shall be reduced by the amount in dB						
	than 23 dBi, a 1 dB reduction in	that the directional gain of the antenna exceeds 6 dBi.						
	d output power and maximum							
	ity is required for each 1 dB of							
antenna gain in exce		75 470 5 705 611						
rri : 1	∑5.25-5.35 GHz & ∑							
		ds of operation shall not exceed the lesser of 250 mW						
		bandwidth in megahertz. If transmitting antennas of						
		conducted output power and the maximum power spectral						
density snall be redu	iced by the amount in dB that the directiona							
TT1	■ 5.725~5.							
		d of operation shall not exceed 1 W (30dBm). If						
		used, both the maximum conducted output power and the						
maximum power spo	ectral density shall be reduced by the amount	nt in dB that the directional gain of the antenna exceeds 6						
dBl. However, fixed	point-to-point U-NII devices operating in the state of th	this band may employ transmitting antennas with						
	tter than 6 dBi without any corresponding re	eduction in transmitter conducted power.						
Power Spectral De	<u> </u>							
	⊠5.15~5.2							
	access point: 17 dBm/MHz	Limit of Indoor access point: 17 dBm/MHz						
Limit of Fixed po	pint-to-point access points: 17 dBm/MHz	☐ Limit of Mobile and portable client devices: 11						
_		dBm/MHz						
∑5.25-5.35 GHz		11 dBm/MHz						
∑5.470-5.725 GHz		11 dBm/MHz						
∑5.725~5.85 GHz 30 dBm/500kHz								
Frequency Stability								
Limit:		band of operation under all conditions of normal operation						
	as specified in the user's manual.							
		e shall be ± 20 ppm maximum for the 5 GHz band (IEEE						
	802.11n specification).							

5. 7 Test Result

A. 26dB Bandwidth and 99% Occupied Bandwidth

Refer to Appendix_NII_WiFi

B. 6 dB Bandwidth

Refer to Appendix_NII_WiFi

C. Peak Power

Refer to Appendix_NII_WiFi

D. Peak Power Spectral Density

Refer to Appendix_NII_WiFi

E. Frequency Stability

Item	Voltage(V)
VH	126.50
VN	110.00
VL	93.50

Item	Temperature(°C)
0	0
10	10
20	20
30	30
40	40

Refer to Appendix_NII_WiFi

6. Transmitter Spurious Radiated Emission & Band Edge Emissions **6. 1 Test Equipment**Please refer to Section 10 this report.

6. 2 Test Procedure

Spurious Radiated	Emission & Band Edge Emissions Measur	rement:						
Test Method:	a.)The EUT was tested according to ANSI	C63.10.						
		ntable which table size is 1m x 1.5 m, table high <u>0.8</u> m.						
	All set up is according to ANSI C63.10.							
	c)The frequency spectrum from 9 kHz to 40 GHz was investigated. All readings from 9 kHz to 150 kHz are quasi-peak values with a resolution bandwidth of 200 Hz. All readings from 150 kHz to 30 MHz are quasi-peak values with a resolution bandwidth of 9 KHz. All readings from 30 MHz to 1 GHz are quasi-peak values with a resolution bandwidth of 120 KHz. All readings are above 1 GHz, peak values with a resolution bandwidth of 1 MHz. Measurements were made at 3 meters. d)The emissions from the EUT were measured continuously at every azimuth by rotating the turntable. The Receiving antenna high is varied from 1 m to 4 m high to find the maximum emission for each frequency. Emissions below 30MHz were measured with a loop antenna while emission above 30MHz were measured using a broadband E-field antenna. e) Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations. All data was recorded in the peak detection mode. Quasi-peak readings was performed only when an emission was found to be marginal (within -4 dB of specification limit), and are distinguished with a "QP" in the data table. f) Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this							
		the max. emission, the relative positions of this se orthogonal axes according to the requirements in						
	Section 8 and 13 of ANSI C63.10.	o orangenar and according to the requirements in						
Radiated Emissions								
Test Equipment Sett	ing:							
a)Attenuation: Auto		e)RBW/VBW(Emission in non-restricted band)						
b)Start Frequency: 1		1MHz / 3MHz for peak						
c)Stop Frequency: 4								
	ssion in restricted band):							
1MHz / 3MHz for P 1MHz / 1/T for Ave	,							
Band Edge Emission	<u> </u>							
Test Equipment Sett								
a)Attenuation: Auto d)RBW/VBW(Emission in non-restricted ban								
b)Span Frequency: 1		1MHz / 3MHz for peak						
	ssion in restricted band):	r						
1MHz / 3MHz for P								
1MHz / 1/T for Ave	rage							

6. 3 Test Setup

6. 4 Configuration of the EUT

Same as section 4.4 of this report

6. 5 EUT Operating Condition

Same as section 4.5 of this report.

6. 6 Limit

Spurious Radiated Emission & Band Edge Emissions Measurement:								
]	Rule		Limit					
789033 D02 Gener	al UN	II Test Procedure	Field Strength @3m					
New R	ules v(01r03	PK / 74 (dBuV/m	AV / 54 (dBuV/m)				
Band		Rule	EIRP Limit	Equivalent Field Strength @3m				
5.150-5.250 GHz		15.407(b)(1)	PK / -27 (dBm/MHz)	PK / 68.2 (dBuV/m)				
5.250-5.350 GHz	15.407(b)(2)		PK / -27 (dBm/MHz)	PK / 68.2 (dBuV/m)				
5.470-5.725 GHz	15.407(b)(3)		PK / -27 (dBm/MHz)	PK / 68.2 (dBuV/m)				
5.725-5.850 GHz		15.407(b)(4)(i)	PK / -27 (dBm/MHz) ^{note1} PK / 10 (dBm/MHz) ^{note2} PK / 15.6 (dBm/MHz) ^{note3} PK / 27 (dBm/MHz) ^{note4}	PK / 68.2 (dBuV/m) ^{note1} PK / 105.2 (dBuV/m) ^{note2} PK / 110.8 (dBuV/m) ^{note3} PK / 122.2 (dBuV/m) ^{note4}				
		15.407(b)(4)(ii)	Emission limits in	section 15.247(d)				
note1: beyond 75 M	1Hz oı	more above of the	band edge.					
note2: below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above.								
note3: below the ba	nd edg	ge increasing linear	ly to a level of 15.6 dBm/MHz at 5 MHz	z above.				

note4: from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Note: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

uV/m, Where P is the eirp (Watts).

FCC CFR 47, Part 15, Subpart C, Para, 15.205(a) - Restricted Frequency Bands

MHz	MHz	MHz	GHz
0.090–0.110	16.42–16.423	399.9–410	4.5–5.15
10.495–0.505	16.69475-16.69525	608–614	5.35-5.46
2.1735–2.1905	16.80425-16.80475	960-1240	7.25–7.75
4.125–4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725–4.17775	37.5–38.25	1435–1626.5	9.0-9.2
4.20725-4.20775	73–74.6	1645.5-1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108-121.94	1718.8–1722.2	13.25-13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9–150.05	2310–2390	15.35–16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7–21.4
8.37625-8.38675	156.7-156.9	2690–2900	22.01–23.12
8.41425–8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29–12.293	167.72-173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358	36.43-36.5
12.57675–12.57725	322-335.4	3600-4400	(2)
13.36–13.41.			

 $^{^{1}\}mathrm{UntilFebruary}\overline{1,1999,}$ this restricted band shall be 0.490–0.510MHz. $^{2}\mathrm{Above}$ 38.6

FCC 47 CFR, Part 15.209(a) - Field Strength Limits within Restricted Frequency Bands

Frequency(MHz)	Field strength (microvolts/meter)	Measure- mentdis- tance
		(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100**	3
88–216	150**	3
216–960	200**	3
Above960	500	3

6. 7 Test Result

Restricted Frequency Bands Data: Band 1_5150~5250MHz

				1 U								
				802	11a _CH 36							
Frequency (MHz)	Read Lev PK	vel (dBuV) AV	Factor (dB)		(dBuV/m) AV	Horiz./ Vert.	Limit (d	lBuV/m) AV	Margi PK	in(dB) AV		
5011.200	37.36	27.44	12.90	50.26	40.34	Horiz./	74.0	54.0	-23.74	-13.66		
5149.260	38.45	28.73	12.90	51.35	41.63	Vert.	74.0	54.0	-22.65	-12.37		
802.11a_CH 40												
Frequency	1	vel (dBuV)	Factor		(dBuV/m)	Horiz./		lBuV/m)	Margin(dB)			
(MHz)	PK 29.12	AV 27.26	(dB)	PK 51.02	AV 40.26	Vert.	PK 74.0	AV 54.0	PK	AV		
5006.130	38.13	27.36	12.90	51.03	40.26	Horiz./	74.0	54.0	-22.97	-13.74		
5104.200	38.48	28.51	12.90	51.38	41.41	Vert.	74.0	54.0	-22.62	-12.59		
					11a _CH 48	3						
Frequency (MHz)	Read Lev PK	vel (dBuV) AV	Factor (dB)			Horiz./ Vert.	Limit (dBuV/m) PK AV		Margi PK	in(dB) AV		
5048.660	37.51	27.45	12.90	50.41	40.35	Horiz./	74.0	54.0	-23.59	-13.65		
5014.620	38.06	27.77	12.90	50.96	40.67	Vert.	74.0	54.0	-23.04	-13.33		
5432.240	36.70	27.33	12.90	49.60	40.23	Horiz./	74.0	54.0	-24.40	-13.77		
5452.100	37.34	28.44	12.90	50.24	41.34	Vert.	74.0	54.0	-23.76	-12.66		
				802 11 ₁	нт э л сн	136						
Frequency	Read Lev	vel (dBuV)	Factor	802.11n HT20_CH Emission (dBuV/m)		Horiz./	Limit (dBuV/m)		Margin(dB)			
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV		

802.11n HT20_CH 36												
Frequency	Read Level (dBuV) Factor		Emission (dBuV/m)		Horiz./	Limit (dBuV/m)		Margin(dB)				
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV		
5057.620	36.78	27.35	12.90	49.68	40.25	Horiz./	74.0	54.0	-24.32	-13.75		
5114.960	37.59	28.34	12.90	50.49	41.24	Vert.	74.0	54.0	-23.51	-12.76		
	802.11n HT20_CH 40											
Frequency	Read Lev	el (dBuV)	Factor	Emission	(dBuV/m)	Horiz./	Limit (d	BuV/m)	Margin(dB)			
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV		
5062.130	37.23	28.06	12.90	50.13	40.96	Horiz./	74.0	54.0	-23.87	-13.04		
5081.460	37.72	28.53	12.90	50.62	41.43	Vert.	74.0	54.0	-23.38	-12.57		
5406.300	36.79	27.72	12.90	49.69	40.62	Horiz./	74.0	54.0	-24.31	-13.38		
5442.540	36.97	27.88	12.90	49.87	40.78	Vert.	74.0	54.0	-24.13	-13.22		
				802.11r	н НТ20_ СН	I 48						
Frequency	Read Lev	el (dBuV)	Factor	Emission	(dBuV/m)	Horiz./	riz./ Limit (dBuV/m)		Marg	in(dB)		
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV		
5026.800	37.68	28.66	12.90	50.58	41.56	Horiz./	74.0	54.0	-23.42	-12.44		
5056.310	37.80	28.82	12.90	50.70	41.72	Vert.	74.0	54.0	-23.30	-12.28		
5443.620	37.42	27.83	12.90	50.32	40.73	Horiz./	74.0	54.0	-23.68	-13.27		
5442.540	37.74	27.91	12.90	50.64	40.81	Vert.	74.0	54.0	-23.36	-13.19		

				802.111	n HT40_CH	1 38				
Frequency		el (dBuV)	Factor	ŀ	(dBuV/m)	Horiz./	`	BuV/m)	U	in(dB)
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV
5146.800	39.73	29.26	12.90	52.63	42.16	Horiz./	74.0	54.0	-21.37	-11.84
5413.600	40.75	29.72	12.90	53.65	42.62	Vert.	74.0	54.0	-20.35	-11.38
5432.500	35.72	28.13	12.90	48.62	41.03	Horiz./	74.0	54.0	-25.38	-12.97
5443.270	37.74	28.18	12.90	50.64	41.08	Vert.	74.0	54.0	-23.36	-12.92
				802.111	n HT40_CH	I 4 6				
Frequency	Read Lev	el (dBuV)	Factor	Emission	(dBuV/m)	Horiz./	Limit (d	BuV/m)	Marg	in(dB)
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	\mathbf{AV}
5148.320	37.31	29.17	12.90	50.21	42.07	Horiz./	74.0	54.0	-23.79	-11.93
5432.800	36.96	28.15	12.90	49.86	41.05	Vert.	74.0	54.0	-24.14	-12.95
5455.280	37.44	28.13	12.90	50.34	41.03	Horiz./	74.0	54.0	-23.66	-12.97
5450.300	36.97	27.43	12.90	49.87	40.33	Vert.	74.0	54.0	-24.13	-13.67

Restricted Frequency Bands Data: Band 2_5250~5350MHz

				802.	11a CH 52	2				
Frequency (MHz)	Read Lev PK	el (dBuV) AV	Factor (dB)	Emission PK	(dBuV/m) AV	Horiz./ Vert.	Limit (d PK	IBuV/m) AV	Marg PK	in(dB) AV
5118.960	36.42	28.38	12.90	49.32	41.28	Horiz./	74.0	54.0	-24.68	-12.72
5411.270	38.02	28.44	12.90	50.92	41.34	Vert.	74.0	54.0	-23.08	-12.66
5420.640	38.12	28.62	12.90	51.02	41.52	Horiz./	74.0	54.0	-22.98	-12.48
5452.230	38.48	28.87	12.90	51.38	41.77	Vert.	74.0	54.0	-22.62	-12.23
				802.	.11a_CH 56					
Frequency (MHz)	Read Lev PK	el (dBuV) AV	Factor (dB)	Emission PK	(dBuV/m) AV	Horiz./ Vert.	Limit (d PK	IBuV/m) AV	Margi PK	in(dB) AV
5026.100	36.61	27.97	12.90	49.51	40.87	Horiz./	74.0	54.0	-24.49	-13.13
5097.000	36.93	28.34	12.90	49.83	41.24	Vert.	74.0	54.0	-24.17	-12.76
5457.100	36.41	27.32	12.90	49.31	40.22	Horiz./	74.0	54.0	-24.69	-13.78
5378.200	37.72	27.79	12.90	50.62	40.69	Vert.	74.0	54.0	-23.38	-13.31
				802.	11a _CH 64	ļ				
Frequency (MHz)	Read Lev PK	el (dBuV) AV	Factor (dB)	Emission PK	(dBuV/m) AV	Horiz./ Vert.	Limit (d PK	lBuV/m) AV	Margi PK	in(dB) AV
5353.100	38.20	27.39	12.90	51.10	40.29	Horiz./	74.0	54.0	-22.90	-13.71
5350.600	39.23	29.45	12.90	52.13	42.35	Vert.	74.0	54.0	-21.87	-11.65

				802.11r	нТ20_СН	I 52				
Frequency	Read Lev	el (dBuV)	Factor		(dBuV/m)	Horiz./	Limit (d	lBuV/m)	Marg	in(dB)
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV
5055.230	37.40	28.31	12.90	50.30	41.21	Horiz./	74.0	54.0	-23.70	-12.79
5001.260	37.79	28.93	12.90	50.69	41.83	Vert.	74.0	54.0	-23.31	-12.17
5384.100	36.78	27.36	12.90	49.68	40.26	Horiz./	74.0	54.0	-24.32	-13.74
5354.610	37.33	27.41	12.90	50.23	40.31	Vert.	74.0	54.0	-23.77	-13.69
				802.11r	нТ20_СН	I 5 6				
Frequency	Read Lev	el (dBuV)	Factor	Emission	(dBuV/m)	Horiz./	Limit (d	lBuV/m)	Marg	in(dB)
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV
5017.600	37.21	28.38	12.90	50.11	41.28	Horiz./	74.0	54.0	-23.89	-12.72
5075.700	37.42	28.74	12.90	50.32	41.64	Vert.	74.0	54.0	-23.68	-12.36
5457.300	37.07	28.02	12.90	49.97	40.92	Horiz./	74.0	54.0	-24.03	-13.08
5350.020	37.36	28.15	12.90	50.26	41.05	Vert.	74.0	54.0	-23.74	-12.95
				802.11r	нТ20_СН	I 64				
Frequency	Read Lev	el (dBuV)	Factor	Emission	(dBuV/m)	Horiz./	Limit (d	lBuV/m)	Marg	in(dB)
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV
5355.100	39.44	29.79	12.90	52.34	42.69	Horiz./	74.0	54.0	-21.66	-11.31
5356.200	39.95	29.91	12.90	52.85	42.81	Vert.	74.0	54.0	-21.15	-11.19

				802.11r	нТ40_СН	1 54				
Frequency (MHz)	Read Lev PK	el (dBuV) AV	Factor (dB)	Emission PK	(dBuV/m) AV	Horiz./ Vert.	Limit (d PK	BuV/m) AV	Margi PK	in(dB) AV
5062.800	36.92	28.43	12.90	49.82	41.33	Horiz./	74.0	54.0	-24.18	-12.67
5082.100	37.27	28.62	12.90	50.17	41.52	Vert.	74.0	54.0	-23.83	-12.48
5449.200	36.21	28.66	12.90	49.11	41.56	Horiz./	74.0	54.0	-24.89	-12.44
5351.300	38.12	29.41	12.90	51.02	42.31	Vert.	74.0	54.0	-22.98	-11.69
				802.11r	н НТ40_С Н	I 62				
Frequency	Read Lev	el (dBuV)	Factor	Emission	(dBuV/m)	Horiz./	Limit (d	BuV/m)	Marg	in(dB)
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV
5077.200	37.33	28.18	12.90	50.23	41.08	Horiz./	74.0	54.0	-23.77	-12.92
5125.300	38.21	28.52	12.90	51.11	41.42	Vert.	74.0	54.0	-22.89	-12.58
5350.260	38.16	28.87	12.90	51.06	41.77	Horiz./	74.0	54.0	-22.94	-12.23
5354.610	42.33	33.35	12.90	55.23	46.25	Vert.	74.0	54.0	-18.77	-7.75

Restricted Frequency Bands Data: Band 3_5470~5725MHz

				802.1	.1a_CH 10	0				
Frequency (MHz)	Read Lev PK	el (dBuV) AV	Factor (dB)	Emission PK	(dBuV/m) AV	Horiz./ Vert.	Limit (d PK	BuV/m) AV	Margi PK	in(dB) AV
5446.800	36.75	28.13	12.90	49.65	41.03	Horiz./	74.0	54.0	-24.35	-12.97
5462.110	39.26	29.49	12.90	52.16	42.39	Vert.	74.0	54.0	-21.84	-11.61
				802.1	11a_CH 110	5				
Frequency	ncy Read Level (dBuV) Factor Emission (dBuV/m) Horiz./ Limit (dBuV/m) Margin(dB)								in(dB)	
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV
5468.050	36.41	27.36	12.90	49.31	40.26	Horiz./	74.0	54.0	-24.69	-13.74
5465.130	36.99	27.72	12.90	49.89	40.62	Vert.	74.0	54.0	-24.11	-13.38
5763.590	36.17	28.15	13.10	49.27	41.25	Horiz./	74.0	54.0	-24.73	-12.75
5760.380	36.73	28.54	13.10	49.83	41.64	Vert.	74.0	54.0	-24.17	-12.36
				802.1	.1a_CH 14	0				
Frequency	Read Lev	el (dBuV)	Factor	Emission	(dBuV/m)	Horiz./	Limit (d	BuV/m)	Margi	in(dB)
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV
5750.160	37.19	28.02	13.10	50.29	41.12	Horiz./	74.0	54.0	-23.71	-12.88
5725.300	39.86	28.76	13.10	52.96	41.86	Vert.	74.0	54.0	-21.04	-12.14

				802.11n	HT20_CH	100				
Frequency	i e	el (dBuV)	Factor	Emission	,	Horiz./		lBuV/m)	U	in(dB)
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV
5468.200	37.35	28.52	12.90	50.25	41.42	Horiz./	74.0	54.0	-23.75	-12.58
5466.100	40.74	29.69	12.90	53.64	42.59	Vert.	74.0	54.0	-20.36	-11.41
				802.11n	HT20_CH	116				
Frequency	Read Lev	el (dBuV)	Factor	Emission	(dBuV/m)	Horiz./	Limit (d	lBuV/m)	Marg	in(dB)
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV
5425.650	35.72	27.23	12.90	48.62	40.13	Horiz./	74.0	54.0	-25.38	-13.87
5466.200	36.82	28.15	12.90	49.72	41.05	Vert.	74.0	54.0	-24.28	-12.95
5760.200	37.21	28.12	13.10	50.31	41.22	Horiz./	74.0	54.0	-23.69	-12.78
5733.200	37.54	28.65	13.10	50.64	41.75	Vert.	74.0	54.0	-23.36	-12.25
				802.11n	HT20_CH	140				
Frequency	Read Lev	el (dBuV)	Factor	Emission	(dBuV/m)	Horiz./	Limit (d	lBuV/m)	Marg	in(dB)
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV
5725.600	39.52	28.23	13.10	52.62	41.33	Horiz./	74.0	54.0	-21.38	-12.67
5725.500	43.44	29.09	13.10	56.54	42.19	Vert.	74.0	54.0	-17.46	-11.81

				802.11n	HT40_CH	102				
Frequency (MHz)	Read Lev PK	el (dBuV) AV	Factor (dB)	Emission PK	(dBuV/m) AV	Horiz./ Vert.	Limit (d PK	BuV/m) AV	Margi PK	in(dB) AV
5468.300	39.23	29.81	12.90	52.13	42.71	Horiz./	74.0	54.0	-21.87	-11.29
5460.200	41.72	29.86	12.90	54.62	42.76	Vert.	74.0	54.0	-19.38	-11.24
5735.100	35.54	27.18	13.10	48.64	40.28	Horiz./	74.0	54.0	-25.36	-13.72
5735.200	37.21	28.05	13.10	50.31	41.15	Vert.	74.0	54.0	-23.69	-12.85
				802.11n	HT40_CH	110				
Frequency (MHz)	Read Lev PK	el (dBuV) AV	Factor (dB)	Emission PK	(dBuV/m) AV	Horiz./ Vert.	Limit (d PK	BuV/m) AV	Margi PK	in(dB) AV
5444.800	38.12	28.43	12.90	51.02	41.33	Horiz./	74.0	54.0	-22.98	-12.67
5406.180	37.46	27.67	12.90	50.36	40.57	Vert.	74.0	54.0	-23.64	-13.43
5743.200	35.11	27.31	13.10	48.21	40.41	Horiz./	74.0	54.0	-25.79	-13.59
5747.300	36.94	27.86	13.10	50.04	40.96	Vert.	74.0	54.0	-23.96	-13.04
				802.11n	HT40_CH	134				
Frequency (MHz)	Read Lev PK	el (dBuV) AV	Factor (dB)	Emission PK	(dBuV/m) AV	Horiz./ Vert.	Limit (d PK	BuV/m) AV	Margi PK	in(dB) AV
5413.100	35.46	28.22	12.90	48.36	41.12	Horiz./	74.0	54.0	-25.64	-12.88
5455.100	36.62	29.65	12.90	49.52	42.55	Vert.	74.0	54.0	-24.48	-11.45
5725.300	38.28	28.43	13.10	51.38	41.53	Horiz./	74.0	54.0	-22.62	-12.47
5726.300	41.46	29.27	13.10	54.56	42.37	Vert.	74.0	54.0	-19.44	-11.63

Restricted Frequency Bands Data: Band 4_5725~5850MHz

802.11a_CH 149 Engage Pool Local (JP-V) Engage (JP-V/m) Horiz (JP-V/m) Maurin (JP)										
Frequency (MHz)	Read Lev PK	el (dBuV) AV	Factor (dB)		(dBuV/m) AV	Horiz./ Vert.	Limit (d PK	BuV/m) AV	Margi PK	in(dB) AV
5648.300	38.05	-	13.10	51.15	-	Horiz./	68.20	-	-17.05	-
5649.700	38.29	-	13.10	51.39	-	Vert.	68.20	-	-16.81	-
5718.690	37.31	-	13.10	50.41	-	Horiz./	110.43	-	-60.02	-
5719.100	40.65	-	13.10	53.75	-	Vert.	110.55	-	-56.80	-
				802.1	11a_CH 15'	7				
Frequency (MHz)	Read Lev PK	el (dBuV) AV	Factor (dB)	Emission PK	(dBuV/m) AV	Horiz./ Vert.	Limit (d PK	BuV/m) AV	Margi PK	in(dB) AV
5647.300	38.05	-	13.10	51.15	-	Horiz./	68.20	-	-17.05	-
5665.000	38.29	-	13.10	51.39	-	Vert.	79.33	-	-27.94	-
5863.400	37.31	-	13.10	50.41	-	Horiz./	108.45	-	-58.04	-
5940.600	38.10	-	13.10	51.20	-	Vert.	68.20	-	-17.00	-
				802.1	1a_CH 16	5				
Frequency	Read Lev	el (dBuV)	Factor	Emission	(dBuV/m)	Horiz./	Limit (d	BuV/m)	Margi	in(dB)
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV
5851.300	37.21	-	13.10	50.31	-	Horiz./	119.24	-	-68.93	-
5852.600	40.17	ı	13.10	53.27	ı	Vert.	116.27	1	-63.00	1
5890.210	37.43	1	13.10	50.53	-	Horiz./	93.91	1	-43.38	1
5878.100	38.54	-	13.10	51.64	-	Vert.	102.90	-	-51.26	-

				802.11n	HT20_CH	149				
Frequency (MHz)	Read Lev PK	el (dBuV) AV	Factor (dB)	Emission PK	(dBuV/m) AV	Horiz./ Vert.	Limit (d PK	BuV/m) AV	Margi PK	in(dB) AV
5613.000	36.46	-	13.10	49.56	-	Horiz./	68.20	-	-18.64	-
5665.400	37.02	-	13.10	50.12	-	Vert.	79.63	-	-29.51	-
5645.600	37.12	-	13.10	50.22	-	Horiz./	68.20	-	-17.98	-
5724.600	46.41	-	13.10	59.51	-	Vert.	121.29	-	-61.78	-
				802.11n	HT20_CH	157				
Frequency		el (dBuV)	Factor	P.	(dBuV/m)	Horiz./		BuV/m)	_	in(dB)
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV
5638.200	36.18	-	13.10	49.28	-	Horiz./	68.20	-	-18.92	-
5618.400	37.62	-	13.10	50.72	-	Vert.	68.20	-	-17.48	-
5943.600	36.47	-	13.10	49.57	-	Horiz./	68.20	-	-18.63	-
5931.500	36.70	-	13.10	49.80	-	Vert.	68.20	-	-18.40	-
				802.11n	HT20_CH	165				
Frequency	Read Lev	el (dBuV)	Factor	Emission	(dBuV/m)	Horiz./	Limit (d	BuV/m)	Margi	in(dB)
(MHz)	PK	\mathbf{AV}	(dB)	PK	\mathbf{AV}	Vert.	PK	\mathbf{AV}	PK	AV
5851.400	39.58	-	13.10	52.68	-	Horiz./	119.01	-	-66.33	-
5850.200	41.80	-	13.10	54.90	-	Vert.	121.74	-	-66.84	-
5926.300	37.11	-	13.10	50.21	-	Horiz./	68.20	-	-17.99	-
5931.500	39.50	-	13.10	52.60	-	Vert.	68.20	-	-15.60	-

				802.11n	HT40_CH	151				
Frequency (MHz)	Read Lev PK	rel (dBuV) AV	Factor (dB)	Emission PK	(dBuV/m) AV	Horiz./ Vert.	Limit (d PK	lBuV/m) AV	Margi PK	in(dB) AV
5625.700	36.79	-	13.10	49.89	-	Horiz./	68.20	-	-18.31	-
5719.800	50.47	-	13.10	63.57	-	Vert.	110.74	-	-47.17	-
5933.800	37.17	-	13.10	50.27	-	Horiz./	68.20	-	-17.93	-
5938.600	39.55	-	13.10	52.65	-	Vert.	68.20	-	-15.55	-
				802.11n	HT40_CH	159				
Frequency	Read Lev	rel (dBuV)	Factor	Emission	(dBuV/m)	Horiz./	Limit (d	lBuV/m)	Margi	in(dB)
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV
5617.400	37.37	-	13.10	50.47	-	Horiz./	68.20	-	-17.73	-
5618.900	37.32	-	13.10	50.42	-	Vert.	68.20	-	-17.78	-
5937.800	36.46	-	13.10	49.56	-	Horiz./	68.20	-	-18.64	-
5939.700	38.53	-	13.10	51.63	-	Vert.	68.20	-	-16.57	-

Note:

- (1) All Reading Levels below 1GHz are Quasi-Peak, above are peak and average value.
- (2) Emission Level = Reading Level + Probe Factor + Cable Loss Preamp Gain.
- (3) Span shall wide enough to fully capture thee mission being measured;

Set RBW = 1 MHz, VBW= 3MHz for f > 1 GHz for peak measurement.

For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW $\geq 1/T$, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

- (4) The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.
- (5)Where an emission level is indicated by a –, levels had a margin greater than 20 dB when compared to the limit.

Harmonics Radiated Emission Data: Band 1_5150~5250MHz

				802.	11a CH 36	<u> </u>						
Frequency (MHz)	Read Lev PK	el (dBuV) AV	Factor (dB)	Emission PK	(dBuV/m) AV	Horiz./ Vert.	Limit (d	IBuV/m) AV	Margi PK	n(dB) AV		
10360.000	23.52	-	24.00	47.52	-	Horiz./	74.0	54.0	-26.48	-		
10360.000	18.15	-	31.10	49.25	-	Vert.	74.0	54.0	-24.75	-		
15540.000	24.23	-	24.00	48.23	-	Horiz./	74.0	54.0	-25.77	-		
15540.000	19.40	-	31.10	50.50	-	Vert.	74.0	54.0	-23.50	-		
				802.	11a _CH 40			•				
Frequency (MHz) Read Level (dBuV) Factor Emission (dBuV/m) Horiz./ Limit (dBuV/m) Margin(dB) PK AV Vert. PK AV PK AV												
10440.000	22.46	-	24.00	46.46	-	Horiz./	74.00	54.00	-27.54	-		
10440.000	18.27	-	31.10	49.37	-	Vert.	74.00	54.00	-24.63	-		
15660.000	24.51	-	24.00	48.51	-	Horiz./	74.00	54.00	-25.49	-		
15660.000	18.52	-	31.10	49.62	-	Vert.	74.00	54.00	-24.38	-		
				802.	11a _CH 48	3						
Frequency	i e	el (dBuV)	Factor	1	(dBuV/m)	Horiz./		lBuV/m)	Margi			
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV		
10480.000	23.23	-	24.00	47.23	-	Horiz./	74.00	54.00	-26.77	-		
10480.000	18.04	1	31.10	49.14	-	Vert.	74.00	54.00	-24.86	-		
15720.000	24.96	1	24.00	48.96	-	Horiz./	74.00	54.00	-25.04	-		
15720.000	18.70	-	31.10	49.80	-	Vert.	74.00	54.00	-24.20	-		
				202 11 ₂	н НТ20 СН	136						
Evenue	D 17	1 (10 10	T				T + +/ / /	TD X7/ \	Mayer	(110)		

				802.11r	н НТ20_ СН	I 36				
Frequency (MHz)	Read Lev PK	rel (dBuV) AV	Factor (dB)	Emission PK	(dBuV/m) AV	Horiz./ Vert.	Limit (d PK	BuV/m) AV	Margi PK	in(dB) AV
10360.000	24.42	-	24.00	48.42	-	Horiz./	74.00	54.00	-25.58	-
10360.000	17.68	-	31.10	48.78	-	Vert.	74.00	54.00	-25.22	-
15540.000	24.37	-	24.00	48.37	-	Horiz./	74.00	54.00	-25.63	-
15540.000	17.59	-	31.10	48.69	-	Vert.	74.00	54.00	-25.31	-
				802.11r	n HT20_CH	I 40				
Frequency		rel (dBuV)	Factor	•	(dBuV/m)	Horiz./	`	BuV/m)	_	in(dB)
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV
10400.000	24.65	-	24.00	48.65	-	Horiz./	74.00	54.00	-25.35	-
10400.000	17.86	-	31.10	48.96	-	Vert.	74.00	54.00	-25.04	-
15600.000	24.19	-	24.00	48.19	-	Horiz./	74.00	54.00	-25.81	-
15600.000	19.24	-	31.10	50.34	-	Vert.	74.00	54.00	-23.66	-
				802.11r	n HT20_CH	I 48				
Frequency (MHz)	Read Lev PK	rel (dBuV) AV	Factor (dB)	Emission PK	(dBuV/m) AV	Horiz./ Vert.	Limit (d PK	BuV/m) AV	Margi PK	in(dB) AV
10480.000	23.68	-	24.00	47.68	-	Horiz./	74.00	54.00	-26.32	-
10480.000	18.77	-	31.10	49.87	-	Vert.	74.00	54.00	-24.13	1
15720.000	23.73	-	24.00	47.73	-	Horiz./	74.00	54.00	-26.27	1
15720.000	19.04	-	31.10	50.14	-	Vert.	74.00	54.00	-23.86	-

	802.11n HT40_CH 38												
Frequency	Read Lev	rel (dBuV)	Factor	Emission (dBuV/m)		Horiz./ Limit (dBuV/m)			Margin(dB)				
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV			
10380.000	23.65	-	24.00	47.65	-	Horiz./	74.00	54.00	-26.35	1			
10380.000	17.83	-	31.10	48.93	-	Vert.	74.00	54.00	-25.07	ı			
15570.000	23.53	-	24.00	47.53	-	Horiz./	74.00	54.00	-26.47	ı			
15570.000	18.94	-	31.10	50.04	-	Vert.	74.00	54.00	-23.96	-			
				802.111	n HT40_CH	I 46							
Frequency	Read Lev	rel (dBuV)	Factor	Emission	(dBuV/m)	Horiz./	Limit (dBuV/m)		Margin(dB)				
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV			
10460.000	24.12	-	24.00	48.12	-	Horiz./	74.00	54.00	-25.88	-			
10460.000	18.28	-	31.10	49.38	-	Vert.	74.00	54.00	-24.62	-			
15690.000	24.27	-	24.00	48.27	-	Horiz./	74.00	54.00	-25.73	-			
15690.000	18.66	-	31.10	49.76	-	Vert.	74.00	54.00	-24.24	1			

		Harmo	onics Rad	iated Emiss	sion Data: l	Band 2_525	0~5350MH	z					
	000.11												
E	Doodle	1 (JDV)	Ender		11a _CH 52		T ::4 (4	IDX7/)	Mana	:(JD)			
Frequency (MHz)	PK	rel (dBuV) AV	Factor (dB)	PK	(dBuV/m) AV	Horiz./ Vert.	PK	BuV/m) AV	PK	in(dB) AV			
10520.000	24.37	-	24.00	48.37	-	Horiz./	74.00	54.00	-25.63	-			
10520.000	18.54	-	31.10	49.64	-	Vert.	74.00	54.00	-24.36	-			
15780.000	25.28	-	24.00	49.28	-	Horiz./	74.00	54.00	-24.72	-			
15780.000	18.56	-	31.10	49.66	-	Vert.	74.00	54.00	-24.34	-			
	•	•	<u> </u>	802.	.11a_CH 56	5			•				
Frequency Read Level (dBuV) F (MHz) PK AV				Emission PK	(dBuV/m) AV	Horiz./ Vert.	Limit (d	IBuV/m) AV	Marg PK	in(dB) AV			
10560.000	23.95	-	24.00	47.95	-	Horiz./	74.00	54.00	-26.05	-			
10560.000	17.16	-	31.10	48.26	-	Vert.	74.00	54.00	-25.74	-			
15840.000	24.67	-	24.00	48.67	-	Horiz./	74.00	54.00	-25.33	-			
15840.000	18.21	-	31.10	49.31	-	Vert.	74.00	54.00	-24.69	-			
802.11a _CH 64													
Frequency (MHz)	Read Lev PK	rel (dBuV) AV	Factor (dB)	Emission PK	(dBuV/m) AV	Horiz./ Vert.	Limit (d	BuV/m) AV	Marg PK	in(dB) AV			
10640.000	23.26	-	24.00	47.26	-	Horiz./	74.00	54.00	-26.74	-			
10640.000	16.11	-	31.10	47.21	-	Vert.	74.00	54.00	-26.79	-			
15960.000	24.32	-	24.00	48.32	-	Horiz./	74.00	54.00	-25.68	-			
15960.000	17.26	-	31.10	48.36	-	Vert.	74.00	54.00	-25.64	-			
				Q02 11 ₂	n HT20 CH	1 52							
Frequency	Read Lev	vel (dBuV)	Factor		(dBuV/m)	Horiz./	Limit (d	lBuV/m)	Marg	in(dB)			
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV			
10520.000	24.27	-	24.00	48.27	-	Horiz./	74.00	54.00	-25.73	-			
10520.000	17.54	-	31.10	48.64	-	Vert.	74.00	54.00	-25.36	-			
15780.000	25.31	-	24.00	49.31	-	Horiz./	74.00	54.00	-24.69	-			
15780.000	18.27	-	31.10	49.37	-	Vert.	74.00	54.00	-24.63	-			
					n HT20_CF								
Frequency (MHz)	Read Lev PK	rel (dBuV) AV	Factor (dB)	Emission PK	(dBuV/m) AV	Horiz./ Vert.	Limit (d PK	BuV/m) AV	Marg PK	in(dB) AV			
10560.000	23.49	-	24.00	47.49	-	Horiz./	74.00	54.00	-26.51	-			
10560.000	18.28	-	31.10	49.38	-	Vert.	74.00	54.00	-24.62	-			
15840.000	24.62	-	24.00	48.62	-	Horiz./	74.00	54.00	-25.38	-			
15840.000	17.86	-	31.10	48.96	-	Vert.	74.00	54.00	-25.04	_			

				802.111	n HT40_CH	I 54				
Frequency	Read Lev	rel (dBuV)	Factor	or Emission (dBuV/m)		Horiz./ Limit (dBuV/m)			Margin(dB)	
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV
10540.000	23.38	-	24.00	47.38	-	Horiz./	74.00	54.00	-26.62	-
10540.000	16.59	-	31.10	47.69	-	Vert.	74.00	54.00	-26.31	-
15810.000	25.31	-	24.00	49.31	-	Horiz./	74.00	54.00	-24.69	-
15810.000	18.55	-	31.10	49.65	-	Vert.	74.00	54.00	-24.35	-
				802.111	n HT40_CH	I 62				
Frequency	Read Lev	rel (dBuV)	Factor	Emission	(dBuV/m)	Horiz./	Limit (d	BuV/m)	Margi	in(dB)
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV
10620.000	23.58	-	24.00	47.58	-	Horiz./	74.00	54.00	-26.42	-
10620.000	17.69	-	31.10	48.79	-	Vert.	74.00	54.00	-25.21	-
15930.000	26.20	-	24.00	50.20	-	Horiz./	74.00	54.00	-23.80	-
15930.000	18.52	-	31.10	49.62	-	Vert.	74.00	54.00	-24.38	-

Note:

- (1) All Reading Levels below 1GHz are Quasi-Peak, above are peak and average value.
- (2) Emission Level = Reading Level + Probe Factor + Cable Loss Preamp Gain.
- (3) Span shall wide enough to fully capture thee mission being measured;

Set RBW = 1 MHz, VBW= 3MHz for f > 1 GHz for peak measurement.

For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW $\geq 1/T$, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

- (4) The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.
- (5)Where an emission level is indicated by a –, levels had a margin greater than 20 dB when compared to the limit.

Harmonics Radiated Emission Data: Band 3_5470~5725MHz

802.11a_CH 100											
Frequency (MHz)	Read Lev PK	el (dBuV) AV	Factor (dB)	Emission PK	(dBuV/m) AV	Horiz./ Vert.	Limit (d PK	BuV/m) AV	Margi PK	in(dB) AV	
11000.000	24.42	-	24.10	48.52	-	Horiz./	74.00	54.00	-25.48	-	
11000.000	19.89	-	28.70	48.59	-	Vert.	74.00	54.00	-25.41	-	
16500.000	25.24	-	24.10	49.34	-	Horiz./	74.00	54.00	-24.66	-	
16500.000	20.94	-	28.70	49.64	-	Vert.	74.00	54.00	-24.36	-	
				802.1	11a_CH 110	5					
Frequency		el (dBuV)	Factor		(dBuV/m)	Horiz./	`	BuV/m)	Margi		
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV	
11160.000	23.42	-	24.10	47.52	-	Horiz./	74.00	54.00	-26.48	-	
11160.000	18.98	-	28.70	47.68	-	Vert.	74.00	54.00	-26.32	-	
16740.000	26.02	-	24.10	50.12	-	Horiz./	74.00	54.00	-23.88	•	
16740.000	20.68	-	28.70	49.38	-	Vert.	74.00	54.00	-24.62	-	
				802.1	1a_CH 14	0					
Frequency		el (dBuV)	Factor		(dBuV/m)	Horiz./		BuV/m)	Margi	in(dB)	
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV	
11400.000	21.47	-	24.10	45.57	-	Horiz./	74.00	54.00	-28.43	-	
11400.000	12.66	-	33.20	45.86	-	Vert.	74.00	54.00	-28.14	-	
17100.000	26.52	-	24.10	50.62	-	Horiz./	74.00	54.00	-23.38	1	
17100.000	16.95	-	33.20	50.15	-	Vert.	74.00	54.00	-23.85	-	
				802.1	1a_CH 14	4					
Frequency		el (dBuV)	Factor	Emission	` '	Horiz./	*	BuV/m)	Margi		
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV	
11440.000	25.16	-	24.10	49.26	-	Horiz./	74.0	54.0	-24.74	-	
11440.000	26.29	-	24.10	50.39	-	Vert.	74.0	54.0	-23.61	-	
17160.000	17.07	-	33.20	50.27	-	Horiz./	74.0	54.0	-23.73	-	
17160.000	17.49	-	33.20	50.69	-	Vert.	74.0	54.0	-23.31	-	

	802.11n HT20_CH 100												
Frequency	Read Lev	el (dBuV)	Factor	Factor Emission (dBuV/m)		Horiz./ Limit (dBu\		lBuV/m)	Margin(dB)				
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV			
11000.000	23.72	-	24.10	47.82	-	Horiz./	74.00	54.00	-26.18	-			
11000.000	18.98	-	28.70	47.68	-	Vert.	74.00	54.00	-26.32	-			
16500.000	25.32	-	24.10	49.42	-	Horiz./	74.00	54.00	-24.58	-			
16500.000	20.83	-	28.70	49.53	-	Vert.	74.00	54.00	-24.47	-			
				802.11n	HT20_CH	116							
Frequency	Read Lev	el (dBuV)	Factor	Emission	(dBuV/m)	Horiz./	Limit (d	lBuV/m)	Margi	in(dB)			
(MHz)	PK	\mathbf{AV}	(dB)	PK	\mathbf{AV}	Vert.	PK	\mathbf{AV}	PK	AV			
11160.000	22.62	-	24.10	46.72	-	Horiz./	74.00	54.00	-27.28	-			
11160.000	23.28	-	24.10	47.38	-	Vert.	74.00	54.00	-26.62	-			
16740.000	21.95	-	28.70	50.65	-	Horiz./	74.00	54.00	-23.35	-			
16740.000	21.73	-	28.70	50.43	-	Vert.	74.00	54.00	-23.57	-			

	802.11n HT20_CH 140												
Frequency	Read Lev	rel (dBuV)	Factor	Emission (dBuV/m)		Horiz./ Limit (dBuV/m)		Margin(dB)					
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV			
11400.000	22.42	-	24.10	46.52	-	Horiz./	74.00	54.00	-27.48	-			
11400.000	22.47	-	24.10	46.57	-	Vert.	74.00	54.00	-27.43	-			
17100.000	15.99	-	33.20	49.19	-	Horiz./	74.00	54.00	-24.81	-			
17100.000	17.47	-	33.20	50.67	-	Vert.	74.00	54.00	-23.33	-			
				802.11n	HT20_CH	144							
Frequency	Read Lev	rel (dBuV)	Factor	Emission	(dBuV/m)	Horiz./	Limit (d	BuV/m)	Margi	in(dB)			
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV			
11440.000	25.18	-	24.10	49.28	-	Horiz./	74.0	54.0	-24.72	-			
11440.000	25.76	-	24.10	49.86	-	Vert.	74.0	54.0	-24.14	-			
17160.000	17.21	-	33.20	50.41	-	Horiz./	74.0	54.0	-23.59	-			
17160.000	17.53	-	33.20	50.73	-	Vert.	74.0	54.0	-23.27	-			

	802.11n HT40_CH 102												
Frequency (MHz)	Read Lev PK	el (dBuV) AV	Factor (dB)	Emission PK	(dBuV/m) AV	Horiz./ Vert.	Limit (d PK	BuV/m) AV	Margi PK	in(dB) AV			
11020.000	23.26	-	24.10	47.36	-	Horiz./	74.00	54.00	-26.64	-			
11020.000	23.52	-	24.10	47.62	-	Vert.	74.00	54.00	-26.38	-			
16530.000	20.84	-	28.70	49.54	-	Horiz./	74.00	54.00	-24.46	-			
16530.000	21.15	-	28.70	49.85	-	Vert.	74.00	54.00	-24.15	-			
802.11n HT40_CH 110													
Frequency (MHz)	Read Lev PK	el (dBuV) AV	Factor (dB)	Emission PK	(dBuV/m) AV	Horiz./ Vert.	Limit (d PK	BuV/m) AV	Margi PK	in(dB) AV			
11100.000	23.43	-	24.10	47.53	-	Horiz./	74.00	54.00	-26.47	-			
11100.000	23.22	-	24.10	47.32	-	Vert.	74.00	54.00	-26.68	-			
16650.000	21.78	-	28.70	50.48	-	Horiz./	74.00	54.00	-23.52	-			
16650.000	20.91	-	28.70	49.61	-	Vert.	74.00	54.00	-24.39	-			
				802.11n	HT40_CH	134							
Frequency (MHz)	Read Lev PK	el (dBuV) AV	Factor (dB)	Emission PK	(dBuV/m) AV	Horiz./ Vert.	Limit (d PK	BuV/m) AV	Margi PK	in(dB) AV			
11340.000	22.41	-	24.10	46.51	-	Horiz./	74.00	54.00	-27.49	-			
11340.000	22.72	1	24.10	46.82	1	Vert.	74.00	54.00	-27.18	1			
17010.000	16.69	-	33.20	49.89	-	Horiz./	74.00	54.00	-24.11	1			
17010.000	17.77	-	33.20	50.97	-	Vert.	74.00	54.00	-23.03	-			

Harmonics Radiated Emission Data: Band 4_5725~5850MHz

				802.1	11a CH 14	9						
Frequency (MHz)	Read Lev PK	el (dBuV) AV	Factor (dB)		(dBuV/m) AV	Horiz./ Vert.				Margin(dB) PK AV		
11490.000	21.52	-	24.10	45.62	-	Horiz./	74.00	54.00	-28.38	- Z X V		
11490.000	21.57	-	24.10	45.67	-	Vert.	74.00	54.00	-28.33	-		
17235.000	16.93	-	33.20	50.13	-	Horiz./	74.00	54.00	-23.87	-		
17235.000	16.99	-	33.20	50.19	-	Vert.	74.00	54.00	-23.81	-		
802.11a_CH 157												
Frequency	uency Read Level (dBuV) Factor Emission (dBuV/m)				Horiz./	Limit (d	lBuV/m)	Margi	n(dB)			
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV		
11570.000	25.92	-	24.20	50.12	-	Horiz./	74.00	54.00	-23.88	-		
11570.000	26.04	-	24.20	50.24	-	Vert.	74.00	54.00	-23.76	-		
17355.000	16.65	-	33.20	49.85	-	Horiz./	74.00	54.00	-24.15	-		
17355.000	17.27	-	33.20	50.47	-	Vert.	74.00	54.00	-23.53	-		
				802.1	11a_CH 16	5						
Frequency	Read Lev	el (dBuV)	Factor	Emission (dBuV/m)		Horiz./ Limit (dBuV/m)		Margin(dl				
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV		
11650.000	26.11	-	24.20	50.31	-	Horiz./	74.00	54.00	-23.69	-		
11650.000	25.47	-	24.20	49.67	-	Vert.	74.00	54.00	-24.33	-		
17475.000	16.72	-	33.20	49.92	-	Horiz./	74.00	54.00	-24.08	-		
17475.000	17.14	-	33.20	50.34	-	Vert.	74.00	54.00	-23.66	-		
				902 11	итал си	140						
E	Dood I	-1 (JDV)	Engla		HT20_CH		T ::(()	IDX7/)	Many	(JD)		
Frequency	Read Lev	el (dBuV)	Factor			Horiz./	Limit (dBuV/m)		Margin(dB)			

	802.11n HT20_CH 149											
Frequency	ł.	el (dBuV)	Factor	1	(dBuV/m)	Horiz./		BuV/m)		in(dB)		
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV		
11490.000	26.03	-	24.10	50.13	-	Horiz./	74.00	54.00	-23.87	-		
11490.000	25.75	-	24.10	49.85	-	Vert.	74.00	54.00	-24.15	-		
17235.000	17.44	-	33.20	50.64	-	Horiz./	74.00	54.00	-23.36	-		
17235.000	16.57	1	33.20	49.77	-	Vert.	74.00	54.00	-24.23	1		
802.11n HT20_CH 157												
Frequency	Frequency Read Level (dBuV) Fact			Emission	(dBuV/m)	Horiz./	Limit (d	BuV/m)	Margin(dB)			
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV		
11570.000	25.32	-	24.20	49.52		Horiz./	74.00	54.00	-24.48	-		
11570.000	26.63	-	24.20	50.83		Vert.	74.00	54.00	-23.17	-		
17355.000	17.05	-	33.20	50.25		Horiz./	74.00	54.00	-23.75	-		
17355.000	17.26	1	33.20	50.46		Vert.	74.00	54.00	-23.54	1		
				802.11n	HT20_CH	165						
Frequency	Read Lev	el (dBuV)	Factor	Emission	(dBuV/m)	Horiz./	Limit (d	BuV/m)	Margi	in(dB)		
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV		
11650.000	26.06	-	24.20	50.26	-	Horiz./	74.00	54.00	-23.74	-		
11650.000	25.38	ı	24.20	49.58	-	Vert.	74.00	54.00	-24.42	1		
17475.000	17.07	ı	33.20	50.27	-	Horiz./	74.00	54.00	-23.73	1		
17475.000	17.04	-	33.20	50.24	-	Vert.	74.00	54.00	-23.76	-		

	802.11n HT40_CH 151									
Frequency	Read Lev	el (dBuV)	Factor	Emission	(dBuV/m)	Horiz./	Limit (d	BuV/m)	Margi	in(dB)
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV
11510.000	25.93	-	24.20	50.13	-	Horiz./	74.00	54.00	-23.87	-
11510.000	26.15	-	24.20	50.35	-	Vert.	74.00	54.00	-23.65	-
17265.000	17.21	-	33.20	50.41	-	Horiz./	74.00	54.00	-23.59	-
17265.000	17.44	-	33.20	50.64	-	Vert.	74.00	54.00	-23.36	-
				802.11n	HT40_CH	159				
Frequency	Read Lev	el (dBuV)	Factor	Emission (dBuV/m) Hor		Horiz./	Limit (dBuV/m)		Margin(dB)	
(MHz)	PK	AV	(dB)	PK	AV	Vert.	PK	AV	PK	AV
11590.000	26.21	-	24.20	50.41	-	Horiz./	74.00	54.00	-23.59	-
11590.000	26.55	-	24.20	50.75	-	Vert.	74.00	54.00	-23.25	-
17385.000	17.18	-	33.20	50.38	-	Horiz./	74.00	54.00	-23.62	-
17385.000	17.66	-	33.20	50.86	-	Vert.	74.00	54.00	-23.14	-

Note:

- (1) All Reading Levels below 1GHz are Quasi-Peak, above are peak and average value.
- (2) Emission Level = Reading Level + Probe Factor + Cable Loss Preamp Gain.
- (3) Span shall wide enough to fully capture thee mission being measured;

Set RBW = 1 MHz, VBW= 3MHz for f > 1 GHz for peak measurement.

For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW $\geq 1/T$, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

- (4) The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.
- (5)Where an emission level is indicated by a –, levels had a margin greater than 20 dB when compared to the limit.

General Radiated Emission Data For Frequency below 30MHz

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Emission (dBuV/m)	Horiz./ Vert.	Limit (dBuV/m)	Margin (dB)
N/A						
N/A						
N/A						
N/A						
N/A						
N/A						

Note:

- (1) All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- (2) "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- (3) Emission Level = Reading Level + Probe Factor + Cable Loss.

For Frequency from 30MHz to 1GHz

Frequency	Read Level	Factor	Emission	Horiz./	Limit	Margin
(MHz)	(dBuV)	(dB)	(dBuV/m)	Vert.	(dBuV/m)	(dB)
56.040	16.99	10.66	27.65	Horiz./	40.0	-12.35
56.600	16.27	10.66	26.93	Horiz./	40.0	-13.07
58.720	19.43	10.66	30.09	Horiz./	40.0	-9.91
59.760	18.53	10.66	29.19	Horiz./	40.0	-10.81
214.120	4.59	18.19	22.78	Horiz./	43.5	-20.72
826.400	0.81	22.68	23.49	Horiz./	46.0	-22.51

Frequency	Read Level	Factor	Emission	Horiz./	Limit	Margin
(MHz)	(dBuV)	(dB)	(dBuV/m)	Vert.	(dBuV/m)	(dB)
30.000	18.80	12.06	30.86	Vert.	40.0	-9.14
51.120	19.69	10.66	30.35	Vert.	40.0	-9.65
56.000	20.99	10.66	31.65	Vert.	40.0	-8.35
58.720	23.63	10.66	34.29	Vert.	40.0	-5.71
60.240	25.93	8.81	34.74	Vert.	40.0	-5.26
60.900	22.29	8.81	31.10	Vert.	40.0	-8.90

Note:

- (1) All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
- (2) "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- (3) Emission Level = Reading Level + Probe Factor + Cable Loss.

7. RF Exposure Requirements

7. 1 Limit

According to FCC 15.247(e)(i) and FCC 1.1307(b)(1), 2.1091 Systems operating under provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commissions guidelines.

TABLE1—LIMITSFORMAXIMUMPERMISSIBLEEXPOSURE(MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)					
(A)Limits for Occupational/Controlled Exposure									
0.3–3.0	614	1.63	*100	6					
3.0–30	1842/f	4.89/f	*900/f ²	6					
30–300	61.4	0.163	1.0	(
300–1,500			f/300	6					
1,500–100,000			5	6					
(B)Limits for General Po	opulation/Ur	controlled F	Exposure						
		4.00	****	l					
0.3–1.34	614	1.63	*100	30					
1.34–30	824/f 27.5	2.19/f 0.073	*180/f ² 0.2	30					
30–300		0.073	f/1500	30					
300–1,500				30					
1,500–100,000			1.0						

f=frequency in MHz*=Plane-wave equivalent power density

7. 2 MPE Calculation Method

The MPE was calculated at a given distance to show compliance with the power density limit. The following formula was used to calculate the Power Density:

 $S = PG/4\pi R^2$

S=Power density (in appropriate units, e.g. mW/cm²)

P=Power input to the antenna

G=Power gain of the antenna relative to an isotropic radiator

R=Distance to the center of radiation of the antenna (e.g. cm)

7. 3 Test Result

Mode/Band	Maximum Antenna gain (dBi)	Maximum tune-up Conducted Power (dBm)	Evaluation Distance(cm)	Power Density (mW/cm²)	MPE Limit (mW/cm²)
5.15-5.25 GHz	4.0	15.22	20	0.0166	1.0
5.25-5.35 GHz	4.0	16.09	20	0.0203	1.0
5.47-5.725 GHz	4.0	16.14	20	0.0206	1.0
5.725-5.85 GHz	4.0	15.86	20	0.0193	1.0

Note: BT and 2.4GHz or 5GHz Wi-Fi can't transmit simultaneously.

8. Photos of Testing

8. 1 EUT Test Photographs

8. 2 EUT Detailed Photographs

KMO FCC ID Report

9. FCC ID Label

The following note shall be conspicuously placed in the user manual: "Operation is subject to the following two conditions: (1) this device may not cause interference, and(2) this device must accept any interference, including interferencethat may cause undesired operation of this device."

The Label must not be a stick-on paper label. The Label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

10. Test Equipment

Equipment/	Manufacturer	Model #	Serial No.	Due Date
Facilities				
Turntable	Innco systems GmbH	CT-0801	KMO-SZ114	NCR
Antenna Tower	Innco systems GmbH	MA-4640-XP-ET	KMO-SZ115	NCR
Controller	Innco systems GmbH	CO3000	KMO-SZ116	NCR
Pre-Amplifier	Agilent	87405C	KMO-SZ155	Dec.6, 2019
Pre-Amplifier	Com-Power	PAM-840	KMO-SZ156	Dec.6, 2019
Horn Antenna	SCHWARZBECK	BBHA 9170	KMO-SZ157	Dec.6, 2019
EMI Test Receiver	Rohde & Schwarz	ESR7	KMO-SZ002	Dec.6, 2018
Spectrum Analyzer	Rohde & Schwarz	FSP40	KMO-SZ003	Dec.14, 2019
Loop Antenna	Rohde & Schwarz	HFH2-Z2	KMO-SZ004	Feb.21, 2020
Trilog-Super Broadband Antenna	SCHWARZBECK	VULB9161	KMO-SZ005	August 27, 2018
Trilog-Super Broadband Antenna	SCHWARZBECK	VULB9161	KMO-SZ006	August 19, 2018
Broad-Band Horn Antenna	SCHWARZBECK	BBHA 9120D	KMO-SZ007	August 19, 2018
Broad-Band Horn Antenna	SCHWARZBECK	BBHA 9120D	KMO-SZ008	August 19, 2018
AMN	Rohde & Schwarz	ESH3-Z5	KMO-SZ009	Dec.25, 2019
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	KMO-SZ077	Dec.25, 2019
ISN	SCHWARZBECK	NTFM 8158 CAT3	KMO-SZ070	Dec.25, 2019
ISN	SCHWARZBECK	NTFM 8158 CAT5	KMO-SZ071	Dec.25, 2019
ISN	SCHWARZBECK	NTFM 8158 CAT6	KMO-SZ072	Dec.25, 2019
KMO Shielded Room	KMO	KMO-001	KMO-SZ036	NCR
Coaxial Cable with N-Connectors	SCHWARZBECK	AK9515H	KMO-SZ037	Sep.18, 2019
AC Power Source / Analyzer	Agilent	6813B	KMO-SZ166	July 14, 2019
AC Power Source / Analyzer	Tektronix	PA1000	KMO-SZ229	Dec.18, 2019
Power Meter	Rohde & Schwarz	OSP-B157	KMO-HK015	Dec.14, 2019
Regulatory Test System 30 MHz to 40 GHz	Rohde & Schwarz	TS8997	KMO-HK015	Dec.14, 2019
Digital Radio Communication Tester	Rohde & Schwarz	CMD60	KMO-SZ169	Dec.14, 2019
UNIVERSAL RADIO COMMUNICATION TESTER	Rohde & Schwarz	CMU200	KMO-SZ170	Dec.14, 2019
Program Control Telephone Exchanger	Excelltel	CDX8000-M	KMO-SZ221	NCR
3m Anechoic Chamber	KMO	KMO-3AC	KMO-3AC-1	Dec.23, 2019
Temperature Chamber	TABAI	PSL-4GTW	KMO-SZ230	Feb.10, 2019