

3. Reinforcement Learning

COMP 7404 Computational Intelligence and Machine Learning

Dirk Schnieders

COMP 7404

2

Reinforcement Learning - Idea

- Basic idea:
 - Receive feedback in the form of rewards
 - Agent's utility is defined by the reward function
 - Must (learn to) act so as to maximize expected rewards
 - All learning is based on observed samples of outcomes!

Crawler in Assignment 3

Reinforcement Learning

- It's just the same ...
 - Still assume a Markov decision process (MDP):
 - \blacksquare A set of states $s \in S$
 - A set of actions (per state) A
 - \blacksquare A model T(s,a,s')
 - \blacksquare A reward function R(s,a,s')
 - Still looking for a policy $\pi(s)$
- New
 - Don't know T or R
 - I.e., we don't know what the actions do
 - Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

Offline

Online

Model-Based Learning

Model-Based Learning

- Model-Based Idea:
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct
 - Step 1: Learn empirical MDP model
 - Count outcomes s' for each s, a
 - \blacksquare Normalize to give an estimate of $T^{(s, a, s')}$
 - Discover each $R^{\hat{}}(s, a, s')$ when we experience (s, a, s')
 - Step 2: Solve the learned MDP
 - For example, use policy iteration, as before

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} \hat{T}(s, \pi_i(s), s') [\hat{R}(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s')]$$

Example: Model-Based Learning

Given: π A

B

C

D

E $\gamma = 1.0$

Episode 1: Episode 2: B, east, C, -1 B, east, C, -1 C, east, D, -1 C, east, D, -1 D, exit, , +10

T^(s, a, s'): $T^{(B)}$, east, C) = 1.00 $T^{(C)}$, east, D) = 0.75 $T^{(C)}$, east, A) = 0.25 ...

Episode 3: Episode 4: B, east, C, -1 E, north, C, -1 C, east, D, -1 C, east, A, -1 D, exit, , +10 A, exit, , -10

 $R^{(B)}$ east, $C^{(C)}$ = -1 $R^{(C)}$ east, $D^{(C)}$ = -1 $R^{(C)}$ east, $A^{(C)}$ = -1

 $R^{(s, a, s')}$:

Quiz - Model-Based Learning

Episode 3:

B, east, C, -1

E, exit, , 10

C, south, E, -1

Given: π A

B

C

D

E $\gamma = 1.0$

Episode 1: Episode 2: A, south, C, -1 B, east, C, -1 C, south, E, -1 C, south, D, -1 E, exit, , 10 D, exit, , -10

Episode 4: A, south, C, -1 C, south, E, -1 E, exit, , 10 T^(s, a, s'): T^(A, south, C) = ? T^(B, east, C) = ? T^(C, south, E) = ? T^(C, south, D) = ?

Example: Expected Age

• Goal: Compute expected age of comp7404 students

Known P(a)
$$E[A] = \sum_a P(a) \cdot a = 0.35 \times 20 + \dots$$

Unknown P(a): Model based
$$\hat{P}(a) = \dfrac{ ext{num}(a)}{N}$$
 $E[A] pprox \sum_a \hat{P}(a) \cdot a$

Unknown P(a): Model free $E[A] pprox rac{1}{N} \sum_i a_i$

Quiz - Model-Based Learning

- Consider an MDP with 3 states, A, B and C; and 2 actions CW and CCW
- We are given samples of what an agent experiences
- In this problem, we will first estimate the model
 - o i.e., the transition function and the reward function
- Consider the samples (shown on the next slide) that the agent encountered

Quiz (continued) - Model-Based Learning

S	a	s'	r
A	CW	C	-9.0
A	CW	C	-9.0
A	CW	В	0.0
A	CW	В	0.0
A	CW	В	0.0
A	CCW	В	0.0
A	CCW	В	0.0
A	CCW	В	0.0
A	CCW	С	-3.0
A	CCW	В	0.0

S	a	s'	r
В	CW	A	2.0
В	CW	A	2.0
В	CW	A	2.0
В	CW	A	2.0
В	CW	A	2.0
В	CCW	A	-6.0
В	CCW	A	-6.0
В	CCW	C	5.0
В	CCW	С	5.0
В	CCW	С	5.0

S	a	s'	r
С	CW	A	3.0
С	CW	A	3.0
С	CW	A	3.0
С	CW	A	3.0
С	CW	В	-4.0
С	CCW	A	0.0
С	CCW	A	0.0
С	CCW	A	0.0
С	CCW	A	0.0
С	CCW	A	0.0

Quiz (continued) - Model-Based Learning

- Estimating the transition function,
 T(s,a,s') and reward function
 R(s,a,s') for this MDP
- Fill in the missing values in the table for T(s,a,s') and R(s,a,s')

S	a	s'	T(s,a,s')	R(s,a,s')
A	CW	В		
A	CW	C		
A	CCW	В	0.8	0.0
A	CCW	C	0.2	-3.0
В	CW	A	1.0	2.0
В	CCW	A	0.4	-6.0
В	CCW	C	0.6	5.0
C	CW	A	0.8	3.0
C	CW	В	0.2	-4.0
C	CCW	A	1.0	0.0

Model-Free Learning

Passive Reinforcement Learning

Passive Reinforcement Learning

- Simplified task: policy evaluation
 - Input: a fixed policy $\pi(s)$
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - Goal: learn the state values
- In this case:
 - Learner is "along for the ride"
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - NOT offline planning! You actually take actions in the world

Direct Evaluation

- Goal: Compute values for each state under π
- Idea: Average together observed sample values
 - \circ Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples
- This is called direct evaluation

Example: Direct Evaluation

Given: π

A
B
C
D
E

 $\gamma = 1.0$

Episode 1: B, east, C, -1

C, east, D, -1

D, exit, , +10

Episode 2:

B, east, C, -1 C, east, D, -1

D, exit, , +10

Episode 3:

E, north, C, -1

C, east, D, -1

D, exit, , +10

Episode 4:

E, north, C, -1

C, east, A, -1 A, exit, , -10 Output: Values

Quiz - Direct Evaluation

 $\gamma = 1.0$

Episode 1: A, south, C, -1

C, south, E, -1

E, exit, , +10

Episode 3:

B, east, C, -1

C, south, E, -1

E, exit, , +10

Episode 2:

B, east, C, -1 C, south, D, -1

D, exit, , -10

Episode 4:

A, south, C, -1

C, south, E, -1 E, exit, , +10 Output: Values

Problems with Direct Evaluation

- Positives
 - Easy to understand
 - Knowledge of T and R not required
 - Eventually computes the correct values
- Negatives
 - State connections are not considered
 - Each state must be learned separately
 - Takes a long time to learn

B and E both go to C under this policy. However, their values are very different ...

Output: Values

Why Not Use Policy Evaluation?

- Can we use policy evaluation?
 - Each round, replace V with a one-step-look-ahead layer over V

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- This approach fully exploits the connections
 - Unfortunately, we need T and R to do it

Sample-Based Policy Evaluation?

We want to improve our estimate of V by computing these averages:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

Idea: Take samples of outcomes s' (by doing the action!) and average

Will this work?

$$sample_{1} = R(s, \pi(s), s'_{1}) + \gamma V_{k}^{\pi}(s'_{1})$$

$$sample_{2} = R(s, \pi(s), s'_{2}) + \gamma V_{k}^{\pi}(s'_{2})$$
...

 $sample_n = R(s, \pi(s), s'_n) + \gamma V_k^{\pi}(s'_n)$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_{i}$$

Almost, however we cannot rewind time to get sample after sample from state s

Temporal Difference Learning

- Big idea: learn from every experience!
 - Update V(s) each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often
- Temporal difference learning of values
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

Sample of V(s):
$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

Update to V(s): $V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + (\alpha)sample$

Same update: $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$

Temporal Difference Learning

- Exponential Moving Average
 - The running interpolation update makes recent samples more important
- Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate (alpha) can give converging averages

Demo

Another Example

States

Observed Transitions

$$\alpha = 0.5, \gamma = 1.0$$

$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$$

Quiz - Temporal Difference Learning

- Consider the grid world shown below
- The left panel shows the name of each state A through E. The middle panel shows the current estimate of the value function V^{π} for each state
- A transition is observed, that takes the agent from state B through taking action east into state C, and the agent receives a reward of -2.
- What are the value estimates after the TD learning update?

Assume:
$$\gamma = 1$$
, $\alpha = 1/2$

$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$$

TD Value Learning

- Model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
- However, we cannot turn values into a new policy

$$\pi(s) = \arg\max_{a} Q(s, a)$$

$$Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right]$$

- Idea
 - Learn Q-values, not values
 - Makes action selection model-free

COMP 7404

Active Reinforcement Learning

Detour: Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - \circ Given V_k , calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- But Q-values are more useful, so compute them instead
 - Start with $Q_0(s,a) = 0$, which we know is right
 - \circ Given Q_k , calculate the depth k+1 q-values for all q-states:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Q-Learning

• Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

- Learn Q(s,a) values as you go
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: Q(s, a)
 - Consider your new sample estimate: $sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$
 - Incorporate the new estimate into a running average: $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha)[sample]$

Demo

Quiz - Q-Learning

- Consider an MDP with 3 states, A, B and C; and 2 actions CW and CCW
- In this quiz, instead of first estimating the transition and reward functions, we will directly estimate the Q function using Q-learning
- Assume, the discount factor is 0.5 and the step size for Q-learning is 0.5
- Let the current Q function, Q(s,a), be

	A	В	С
CW	-2	2	1
CCW	0.5	2	10

• The agent encounters the following samples

S	a	s'	r
A	CW	В	0.0
В	CW	A	2.0

• Process the samples given above and fill in the Q-values after both samples have been accounted for

	A	В	С
CW			
CCW			

Q-Learning Properties

- Amazing result
 - Q-learning converges to optimal policy -even if you're acting suboptimally!
 - This is called off-policy learning
- Limitations:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn't matter how you select actions

Exploration vs. Exploitation

- Exploration gives up a reward that you know about in order to learn more about the environment
- Exploitation exploits known rewards to maximize the reward

Examples: Exploration vs. Exploitation

- Restaurant selection
 - Exploitation: Go to your favourite restaurant
 - Exploration: Try a new restaurant
- Online banner advertisements
 - Exploitation: Show the most successful advert
 - Exploration: Show a different advert
- Oil Drilling
 - Exploitation: Drill at the best known location
 - Exploration: Drill at a new location
- Game Playing
 - Exploitation: Play the most you believe is best
 - o Exploration: Play an experimental move

How to Explore?

- Several schemes for forcing exploration
- Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ε , act randomly
 - With (large) probability 1- ε , act on current policy
 - Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - Solution
 - Lower ε over time
 - Exploration functions

Crawler in Assignment 3

Exploration Functions

- When to explore?
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stop exploring
- Exploration function
 - Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. f(u, n) = u + k/n

$$Q(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} Q(s',a')$$

$$Q(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} f(Q(s',a'), N(s',a'))$$

Note: this propagates the "bonus" (k) back to states that lead to unknown states as well!

Regret

- Even if you learn the optimal policy, you still make mistakes along the way!
- Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards
- Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal
- Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret

Approximate Q-Learning

Generalizing Across States

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning

Example: Pacman

Let's say we discover through experience that this state is bad In naive q-learning, we know nothing about this state

Or even this one!

Feature-Based Representations

Solution: describe a state using a vector of features (properties)

 \circ Features are functions from states to real numbers (often 0/1) that capture important

properties of the state

- Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - \blacksquare 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
- Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Linear Value / Q Functions

• Using a feature representation, we can write a Q-function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

- Advantage
- Our experience is summed up in a few powerful numbers
- Disadvantage
 - States may share features but actually be very different in value

Approximate Q-Learning

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

• Q-learning with linear Q-functions

```
transition = (s, a, r, s')

difference = \left[ r + \gamma \max_{a'} Q(s', a') \right] - Q(s, a)

Q(s, a) \leftarrow Q(s, a) + \alpha [difference] Exact Q's

w_i \leftarrow w_i + \alpha [difference] f_i(s, a) Approximate Q's
```

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on
 - disprefer all states with that state's features

Example: Q-Pacman

difference = -501

$$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$

$$f_{DOT}(s, \mathsf{NORTH}) = 0.5$$

$$f_{GST}(s, NORTH) = 1.0$$

$$r + \gamma \max_{s} Q(s', a') = -500 + 0$$

$$w_{DOT} \leftarrow 4.0 + \alpha [-501] 0.5$$

 $w_{GST} \leftarrow -1.0 + \alpha [-501] 1.0$

a = NORTH

r = -500

$$Q(s, a) = 3.0 f_{DOT}(s, a) - 3.0 f_{GST}(s, a)$$

- Consider an unknown MDP where there are three states [A, B, C] and two actions [1, 2]
- We are given the following samples generated from taking actions
- Assume $\gamma = 1$ and $\alpha = 0.5$ and the following two features
- $f_1(s, a) = 1$ and $f_2(s, a) = (-1)^a$

COMP 7404

• Starting from initial weights of 0, compute the updated weights after observing the following two samples

S	a	S	r	
A	2	В	4	
В	1	A	0	

- What are the weights after the first update?
- What are the weights after the second update?

Assignment 3

Many Faces of Reinforcement Learning

Recommended Further Readings

- An Introduction to Reinforcement Learning, Sutton & Barto
- Algorithms for Reinforcement Learning, Szepesvári