Public Ledger for Sensitive Data

Riccardo Longo

April 26th 2021

DeCifris Athesis

Sensitive Data after GDPR

- Personal data often needs to be shared with various Service Providers
- Sensitive data must be carefully managed
- Modern privacy regulation (GDPR) gives some rights to the data owner:
 - control over data sharing
 - ability to revoke access (right to be forgotten)
- Compliance requires *privacy by design*:
 - need-to-know policy
 - principle of least priviledge

Decentralized Storage

- Data Management is not easy:
 - sharing and availability
 - backups
 - consistency
 - access management and confidentiality
- Decentralized storage (Cloud) offloads various issues
- Availability and Integrity are improved, but Confidentiality becomes harder

End-To-End Encryption

- Cloud providers facilitate data storage and sharing
- Data management is possible without access to actual contents
- Cloud provider only sees/stores/shares encrypted data
- Data owner manages sharing by giving decryption keys only to rightful recipients
- Keys are shared directly from data owners to service providers that need access to data, so the cloud provider never sees cleartext

Access Control and Key-Management

- To granularly control access each file should have its own unique key
- Data owners should have exclusive control over the keys
- Local key-management is hard (the more keys, the harder it gets):
 - Availability (bakcups, sharing with recipients)
 - Confidentiality
- Key Encapsulation Mechanisms (KEM) to the rescue:
 - only one key (Key-Encrypting Key or KAK) to manage locally
 - per-file keys stored encrypted on the cloud
- KEM paired with asymmetric cryptography allows practical sharing of encrypted data

Access Revocation

- Data owner should be able to revoke access
- Revocation = prevention of further access to shared data
- Local copy problem:
 - sharing recipient saves a local copy of data
 - revocation becomes useless because local access is always available and its prevention is not enforceable
 - large scale data duplication however is expensive
 - therefore revocation should aim at making further access as hard as maintaining a local copy
- Sharing is usually carried out through access keys
- Revocation invalids such keys e.g. through data re-encryption

Simple Model

Data Integrity

- Many application require trusted data:
 - certified origin
 - not modified / tampered with after creation
- Append-only systems (blockchains) help against tampering
- Data verifiability hindered by encryption
- Revocation and re-encryption apparently prevent public verifiability

Verifying Encrypted Data and Revocation

- The goal is to enable an independent verifier to check integrity
- In general the verifier should not be able to access sensitive data
- The verification must therefore be carried out on the ciphertext
- If we re-encrypt to revoke access to shared keys the integrity can no longer be checked by any independent verifier
- Idea: split the encryption

Split Encryption (1)

- The data D is encrypted with key K_1 obtaining the ciphertext
- The key K_1 is encrypted with the key K_2 obtaining the encapsulation E_1
- C and E_1 are stored on the cloud
- To share access to the data D the key K_2 is shared
- With K_2 it is possible to recover K_1 from E_1 , and then D from

Split Encryption (2)

- To revoke access re-encrypt K_1 with \tilde{K}_2 obtaining \tilde{E}_1 and substitute E_1 with on the cloud
- K_2 cannot decrypt \tilde{E}_1 , so it can no longer recover K_1 and therefore D
- C remains unchanged so an independent verifier can still check its integrity
- The revocation is effective if K₁ is as expensive as D to maintain locally, so it makes sense to retrieve it from the cloud
- K₂ can be a small key, but each file should have a distinct, random key, and the Data Owner must appropriately store, safeguard and manage them

One-Time-Pad

- D is a string of bits D_i , $1 \le i \le \ell$
- K_1 is a string of bits $K_{1,i}$, $1 \le i \le \ell$
- The ciphertext C is computed bit-by-bit as $C_i = D_i \oplus K_{1,i}$, for $1 \leq i \leq \ell$
- ullet If K_1 is random then we have a perfect cipher
- Note that D and K₁ have the same length, moreover whereas D may be compressible, K₁ is not, so it is not more convenient to store locally

Efficient Storage and Revocation (1)

- A direct implementation of the method introduced weighs down storage considerably:
 - both D and E_1 have to be stored, so every file takes up double the space
 - to implement time-constrained access and revoke everything periodically each E_1 has to be updated
- To increase efficiency E_1 may be shared between multiple files $D^{(j)}$
- Different keys $K_2^{(j)}$ derive from the same E_1 different keys $K_1^{(j)}$
- These derived keys $K_1^{(j)}$ can be safely used to encrypt $D^{(j)}$ into $C^{(j)}$

Efficient Storage and Revocation (2)

- ullet The cloud has to store the individual $C^{(j)}$ and a single E_1
- ullet Revocation is performed through a single update of E_1 into $ilde{E}_1$
- To share again access to $D^{(j)}$ compute a new $\tilde{K}_2^{(j)}$ that derives from \tilde{E}_1 the same $K_1^{(j)}$ as before
- To enable this computation and ease key management for the data Owner we add another level of encryption

Efficient Storage and Revocation (3)

- On the cloud are saved E_1 and $(C^{(j)}, E_2^{(j)})$ for each j
- The data owner has a single private key S that can derive $K_2^{(j)}$ from $E_2^{(j)}$ for each of their files
- All files are revoked in a single pass updating E_1 into \tilde{E}_1 and $E_2^{(j)}$ into $\tilde{E}_2^{(j)}$
- The update is performed in such a way that:
 - ullet after the update, using S you derive from $ilde{E}_2^{(j)}$ the keys $ilde{K}_2^{(j)}$
 - ullet using $ilde{K}_{2}^{(j)}$, you derive from $ilde{E}_1$ the first-level keys $K_1^{(j)}$
 - these $K_1^{(j)}$ are the same you could derive before the update from E_1 with $K_2^{(j)}$

The File Keeper

- The cloud is managed by the File Keeper F
- Its main job is to update E_1 and the $E_2^{(j)}$
- We include in $C^{(j)}$ some extra data that allows an independent verifier to check that E_1 and $E_2^{(j)}$ remain coherent even after the update
- F only sees encrypted data and has never access to decryption keys
- The threats that its misbehaviour may pose are DOS and revocation reversing
- Each misbehaviour is immediately detectable by any independent verifier, so there are multiple mitigation techniques

Updating Masking Shards Protocol: Actors

- ullet users U_ℓ publish encrypted data
- file keeper F maintains the public ledger
- service provider P requests access to users

Encryption flow

- F publishes the masking shards
- ullet U_ℓ combines a personal key with the shards to encrypt the files
- This key is encapsulated (encrypted) and stored on the updating ledger alongside the masking shards
- Encrypted data is stored in the append-only ledger, its integrity is guaranteed via chains of hash digests
- U_{ℓ} unlocks the encapsulated key, so P can combine it with the masking shards and decrypt the file
- The updating ledger is periodically updated (re-encrypted) by F, so unlocked keys no longer work

- E₁
- $K_1^{(j)}$
- $E_2^{(j)}$
- C
- $K_2^{(j)}$
- ullet $E
 ightarrow ilde{E}$

Working Diagram

Pairing And Bilinear Groups

- Let $\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T$ be groups of the same prime order p, and e a pairing
- A **Pairing** is a bilinear map $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ with the following properties:
 - Bilinearity: $\forall g \in \mathbb{G}_1, h \in \mathbb{G}_2, \forall a, b \in \mathbb{Z}_p, e(g^a, h^b) = e(g, h)^{ab}.$
 - **Non-degeneracy**: for g_1, g_2 generators of \mathbb{G}_1 and \mathbb{G}_2 respectively, $e(g_1, g_2) \neq 1_{\mathbb{G}_T}$.
- $\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T$ are **Bilinear Groups** if the conditions above hold and the group operations in $\mathbb{G}_1, \mathbb{G}_2$, and \mathbb{G}_T and e are efficiently computable
- Commonly implemented with the group of points of an elliptic curve over a finite field
- Tate and Weil pairings, in their non-degenerate version

Bilinear Decisional Diffie-Hellman Assumption

- Let $\alpha, \beta, \gamma, z \in \mathbb{Z}_p$ be chosen at random
- Let $\mathcal{B}(g_1, g_2, A = g_1^{\alpha}, B = g_2^{\beta}, C = g_2^{\gamma}, T) \rightarrow \{0, 1\}$ be an algorithm that distinguishes between

$$T=e(g_1,g_2)^{lphaeta\gamma}$$
 and $T=e(g_1,g_2)^z$

outputting respectively 1 and 0

ullet The advantage of ${\cal B}$ is:

$$egin{aligned} \mathsf{Adv}_{\mathcal{B}} = & \left| \mathsf{Pr}\left[\mathcal{B}(\mathsf{g}_1, \mathsf{g}_2, \mathsf{A}, \mathsf{B}, \mathsf{C}, \mathsf{e}(\mathsf{g}_1, \mathsf{g}_2)^{lphaeta\gamma}) = 1
ight] \\ & - \mathsf{Pr}\left[\mathcal{B}(\mathsf{g}_1, \mathsf{g}_2, \mathsf{A}, \mathsf{B}, \mathsf{C}, \mathsf{e}(\mathsf{g}_1, \mathsf{g}_2)^{\mathsf{z}}) = 1
ight] \end{aligned}$$

• The **BDDH** assumption states that no probabilistic polynomial-time algorithm $\mathcal B$ has a more than **negligible** advantage

Random Strings from the Target Group

• To construct the keys for the One-Time-Pad we need bitstrings derived from random elements of \mathbb{G}_T to be indistinguishable from strings uniformly distributed in $(\mathbb{F}_2)^{\delta}$

Definition (Uniform Mapping)

 $\phi: \mathbb{G}_T \to (\mathbb{F}_2)^\delta$ is a uniform mapping of \mathbb{G}_T of size δ if it is efficiently computable and no probabilistic polynomial-time algorithm $\mathcal{B}: (\mathbb{F}_2)^\delta \to \{0,1\}$ has more than negligible advantage:

$$extit{Adv}_{\mathcal{B}} = \left| \mathsf{Pr}\left[\mathcal{B}(\phi(g)) = 1
ight] - \mathsf{Pr}\left[\mathcal{B}(s) = 1
ight]
ight|$$

when g is chosen uniformly at random in $\mathbb{G}_{\mathcal{T}}$ and s is chosen uniformly at random in $(\mathbb{F}_2)^{\delta}$.

• In practice ϕ is a hash function

Setup

- In *Updating Masking Shards Protocol* participate a file keeper F, a set of users $\{U_\ell\}_{1 \le \ell \le N}$ and a service provider P
- Bilinear groups \mathbb{G}_1 , \mathbb{G}_2 of prime order p are chosen according to a security parameter κ , along with generators $g_1 \in \mathbb{G}_1$, $g_2 \in \mathbb{G}_2$.
- Let e be their pairing and \mathbb{G}_T be the target group (of the same order p), with uniform mapping ϕ of size δ
- Let |B| be the desired block length, then $I = |B|/\delta$ is the maximum number of shards in a block

File Keeper

- F chooses uniformly at random exponents $u_i \in \mathbb{Z}_p$ for $1 \leq i \leq I$
- F chooses a random time-key $s_0 \in \mathbb{Z}_p$ and publishes the initial masking shards:

$$\varepsilon_{i,0} = g_1^{u_i s_0} \qquad 1 \leq i \leq I.$$

- F securely saves the value s₀ but it can forget the exponents
 u_i
- F periodically updates the shards by choosing at time t_{j+1} a new random time-key $s_{j+1} \in \mathbb{Z}_p$ and computing for $1 \le i \le I$:

$$\varepsilon_{i,j+1} = \left(\varepsilon_{i,j}\right)^{\frac{s_{j+1}}{s_j}} = \left(g_1^{u_i s_j}\right)^{\frac{s_{j+1}}{s_j}} = g_1^{u_i s_{j+1}}.$$

User

• Each user U_{ℓ} chooses two private exponents $\mu_{\ell}, v_{\ell} \in \mathbb{Z}_p$ and publishes the public key:

$$q_\ell = \mathsf{g}_2^{\mu_\ell}$$

- U_{ℓ} wants to encrypt a file $m_b^{(\ell)}$ at a time t_j , to publish it in the b-th block of the ledger
- U_{ℓ} divides the file $m_b^{(\ell)}$ in I_b pieces $m_{b,i}$, for $1 \leq i \leq I_b$, of equal length δ , where $I_b\delta$ is the length of $m_b^{(\ell)}$
- U_{ℓ} requests an encryption token $k_{\ell,i}$
- ullet F takes the public key q_ℓ of the user and computes:

$$k_{\ell,j}=q_{\ell}^{rac{1}{s_j}}=g_2^{rac{\mu_\ell}{s_j}}.$$

Encryption

• U_{ℓ} chooses a random exponent $k_b \in \mathbb{Z}_p$ to calculate the encrypted shards:

$$c_{b,i} = m_{b,i} \oplus \phi \left(e(\varepsilon_{i,j}, (k_{\ell,j})^{k_b}) \right) \qquad 1 \leq i \leq I_b$$

$$= m_{b,i} \oplus \phi \left(e\left(g_1^{u_i s_j}, g_2^{\frac{k_b \mu_\ell}{s_j}}\right) \right)$$

$$= m_{b,i} \oplus \phi \left(e(g_1, g_2)^{u_i k_b \mu_\ell} \right)$$

• U_{ℓ} calculates the encapsulated key:

$$\mathcal{K}_{\ell,j,b} = \left(k_{\ell,j}\right)^{\frac{v_{\ell}k_b}{\mu_{\ell}}} = \left(g_2^{\frac{\mu_{\ell}}{s_j}}\right)^{\frac{v_{\ell}k_b}{\mu_{\ell}}} = g_2^{\frac{v_{\ell}k_b}{s_j}}$$

• U_{ℓ} can forget the exponent k_b once this key has been computed

Control Shard

- Let $\bar{\imath} \equiv b \mod I$.
- F computes the control shard as:

$$c_b^* = \phi\left(e(\varepsilon_{\bar{\imath},j}, K_{\ell,j,b})\right) = \phi\left(e\left(g_1^{u_{\bar{\imath}}s_j}, g_2^{\frac{k_b v_\ell}{s_j}}\right)\right) = \phi\left(e(g_1, g_2)^{u_{\bar{\imath}}k_b v_\ell}\right)$$

- U_{ℓ} sends to F:
 - the digest $H\left(m_b^{(\ell)}\right)$
 - the ciphertext $c_h^{(\ell)}$
 - the control shard c_h^*
 - the encapsulated key $K_{\ell,i,b}$
- F inserts $c_b^{(\ell)}$, $H\left(m_b^{(\ell)}\right)$, c_b^* , in the append-only public chain
- F inserts $K_{\ell,i,b}$ in the updating ledger

Key Update

 F has to periodically update not only the masking shards but also the encapsulated keys:

$$K_{\ell,j+1,b} = \left(K_{\ell,j,b}\right)^{\frac{s_j}{s_{j+1}}}$$

$$= \left(g_2^{\frac{\nu_\ell k_b}{s_j}}\right)^{\frac{s_j}{s_{j+1}}}$$

$$= g_2^{\frac{\nu_\ell k_b}{s_{j+1}}}$$

- ullet $s_{j+1} \in \mathbb{Z}_p$ is the same time-key used to update the shards
- \bullet s_i could be forgotten once the update has been completed

Key Unlocking

- Let P be a service provider that needs access to the file $m_b^{(\ell)}$, and therefore asks for permission to the file owner U_ℓ
- ullet To grant access U_ℓ computes an unlocked key valid for the current time t_i
- U_{ℓ} retrieves from the updating ledger the encapsulated key $K_{\ell,j,b}$ and calculates:

$$\begin{aligned} \overline{K}_{\ell,j,b} &= \left(K_{\ell,j,b}\right)^{\frac{\mu_{\ell}}{\nu_{\ell}}} \\ &= \left(g_2^{\frac{\nu_{\ell}k_b}{s_j}}\right)^{\frac{\mu_{\ell}}{\nu_{\ell}}} \\ &= g_2^{\frac{\mu_{\ell}k_b}{s_j}} \end{aligned}$$

Decryption

 With the unlocked key, P can decrypt the encrypted shards by computing:

$$\begin{split} m'_{b,i} &= c_{b,i} \oplus \phi \left(e \left(\varepsilon_{i,j}, \overline{K}_{\ell,j,b} \right) \right) & 1 \leq i \leq I_b \\ &= m_{b,i} \oplus \phi \left(e(g_1, g_2)^{u_i k_b \mu_\ell} \right) \oplus \phi \left(e \left(g_1^{u_i s_j}, g_2^{\frac{\mu_\ell k_b}{s_j}} \right) \right) \\ &= m_{b,i} \oplus \phi \left(e(g_1, g_2)^{u_i k_b \mu_\ell} \right) \oplus \phi \left(e(g_1, g_2)^{u_i \mu_\ell k_b} \right) \\ &= m_{b,i} \end{split}$$

• Afterwards, P can compare the hash digest of the decrypted message $H(m'_{b,1} \parallel \ldots \parallel m'_{b,l_b})$ with the digest included in the append-only chain

Updating Ledger

It contains:

- the current time t_i
- the masked shards and their index:

$$(\varepsilon_{i,j},i)_{1\leq i\leq I}$$

• the encapsulated keys and the index of the data block where the corresponding encrypted pieces are stored:

$$(k_{\ell,j,b},b)_{b\geq 1}$$

All these elements are kept constantly updated

Append-Only Ledger

Each data block B_b contains:

 the ciphertext, the digests of the original cleartext, and the control shard:

$$D_b = \left(c_b^{(\ell)}, H\left(m_b^{(\ell)}\right), c_b^*\right);$$

- the hash of the previous data block $H(B_{b-1})$.
- a cryptographic warranty of immutability of the block involving the digest

$$d_b = H(H(B_{b-1}), D_b)$$

Control Shards

- the index of the control shard covers the whole range $1 \le i \le I$
- these pieces are needed to check the integrity of the updating ledger
- In fact let $\bar{\imath} = b \mod I$, then for every time t_i it should hold:

$$c_b^* = \phi\left(e(\varepsilon_{\bar{\imath},j}, K_{\ell,j,b})\right)$$

$$= \phi\left(e\left(g_1^{u_{\bar{\imath}}s_j}, g_2^{\frac{k_b v_{\ell}}{s_j}}\right)\right)$$

$$= \phi\left(e(g_1, g_2)^{u_{\bar{\imath}}k_b v_{\ell}}\right)$$

 Any observer could check the coherence of the updating ledger (and consequently the behaviour of F)

Immutability of the block

- Immutability can exploit a pre-existing blockchain, embedding d_b in its blocks
- There are different approaches to achieve stand-alone immutability of the static block:
 - \triangleright the signature of the user (owner of the data) on d_b
 - \triangleright a proof of work involving d_b
 - \triangleright a signature made by a third party (or a group or multi-party signature) on d_b
- All have pros and cons to their adoption, the optimal choice is probably a combination of the three

Lightweight Chain

- Exclude the actual encrypted data from the blocks, retaining only their digests
- bulk of data could be stored in distributed databases
- hashes are kept on the ledger to guarantee the integrity
- blocks are much smaller, so the chain can be widely replicated
- more actors could perform controls
- more difficult to forge

Shrunk Block

The shrunk block contains:

• the hash digest of the encrypted file, and the digest of the cleartext, and the control shard:

$$D_b' = \left(H\left(c_b^{(\ell)}\right), H\left(m_b^{(\ell)}\right), c_b^* \right)$$

- the hash of the previous block $H(B_{b-1})$
- a cryptographic warranty on

$$d_b' = H(H(B_{b-1}), D_b')$$

Security Model

The goals of the protocol is to achieve the following security properties:

- **End-to-end encryption**: the File Keeper *F* must not be able to read the plaintext message at any time.
- **One-time access**: a Service Provider *P* should be able to read a plaintext message at the time *t if and only if* authorized by the file owner with an unlocked key for the time *t*.

Updating Masking Shards Protocol Security

Theorem (Security against Outsiders and Service Providers)

If an adversary can break the scheme, then a simulator can be constructed to play the BDDH game with non-negligible advantage.

Theorem (Security Against the File Keeper)

If an adversary can break the scheme, then a simulator can be constructed to play with non-negligible advantage:

- the BDDH game if F is honest but curious
- the IDDH game in \mathbb{G}_2 if F is malicious
- the DDH game in \mathbb{G}_2 if F is malicious but we add a ZKP to the protocol (after the encryption token generation)

Any question?

riccardolongomath@gmail.com

Thank You