COMPREHENSIVE ENERGY AUDIT REPORT

OF

LARSEN & TOUBRO LIMITED, AWARPUR CEMENT WORKS, MAHARASHTRA

Presented by

S R Govindaraj Manas K. Kundu R Vijaya Rengamani N Narendra Babu S Nandakumar

Tata Energy Research Institute
50/7, Palace Road Bangalore Gentre

H.O Darbari Seth Block, India Habitat Centre Lodi Road, New Delhi 110 003

JUNE 1997

LARSEN & TOUBRO LIMITED AWARPUR CEMENT WORKS, MAHARASHTRA

"Comprehensive Energy Audit Report"

Chapter No.	Contents	
	EXECUTIVE SUMMARY	
1.0	INTRODUCTION	1
2.0	ENERGY CONSUMPTION PROFILE	3
3.0	ELECTRICAL SYSTEMS	4
4.0	FANS AND BLOWERS	33
5.0	COMPRESSED AIR SYSTEM	54
6.0	ELECTRIC DRIVES	68
7.0	REFRIGERATION /AIRCONDITIONING & CANTEEN SYSTEMS	87
8.0	LIGHTING SYSTEM	95
9.0	ENERGY MANAGEMENT SYSTEM	105
10.0	CHECK LISTS FOR COMPRESSED AIR SYSTEMS	127
11.0	ACKNOWLEDGEMENT	134
	APPENDICES	

LIST OF APPENDICES

Appx No.	Description			
2.0	ENERGY CONSUMPTION PROFILE			
2/1	Monthwise Production Details - Phase -I & II			
2/2	Monthwise Energy Consumption - Phase- I & II			
2/3	Departmentwise Power Consumption (kWh/T of cement)			
3.0	ELECTRICAL SYSTEMS			
3/1	Details of Transformer Name Plate & Test Certificate			
3/2	Monthly Energy Consumption Data			
3/3	H T Capacitor and LT Capacitor Bank Details			
3/4	66 kV MSEB Incomer Load Parameters			
3/5a	Voltage Profile For a Typical Day			
3/5b	Variation in Load Current			
3/5c	Variation in Frequency			
3/5d	Variation in P F			
3/5e	Variation in Power Demand			
3/5f	Variation in kVA Demand			
3/6	System Parameters - Details of Calculation & Results of Computer Run			
3/7	6 6 kV - Bus - Voltage Adjustment at S/S-1 (Transformer No. 3 of MSS)			
3/8	Optimum Bus Voltage Co-ordination - Details of Calculations			
.3/9	Power Factor Management - Details of Calculations			
3/10	Energy Savings by Shifting Capacitor Banks to Load End Bus			
3/11	Block Diagram of Metering System			
3/12	Suppliers List of Hardware/Software Manufacturers			
3/13	Configuration of Sub-Stationwise Metering System			
4.0	FANS AND BLOWERS			
4/1	Design Parameters of Fans			
4/2	Methodology Adopted for Measurement of Parameters in Fan			
4/3	Measured Parameters For Process Fans & Cement Mill ESP Fans -Phase I			
4/4	Measured Parameters for Process Fans - Phase II			
4/5	Arresting False Air in Kiln ESP & Raw Mill Circuit - Phase I			
4/6	Arresting False Air in Kiln ESP & Raw Mill Circuit - Phase II			

:: 2 ::

Appx. No.	Description
4/7	Reduce Speed of Phase-II Coal Mill Vent Fan By 20%
4/8	Variable Speed Fluid Coupling For Phase-II Coal Mill Hot Gas Fan
4/9	Combined Operation of Dampers & Variable Speed Drives For Cooler Fans
4/10	Replacement of Cooler ESP Fans With Correct Size & High Efficiency Fans
4/11	Operation of Raw Meal Silo Top Bag Filter Fans
4/12	Reduce RPM of Phase-I Primary Air Fan by 10% & Replace Fresting Damper with Inlet Guide Vane Control
4/13	Qualitative Comparison of Fan Control Systems
4/14	Replacement of Phase-II Primary Air Fan with High Efficiency Fan & Inlet Guide Vane Control
4/15	Operate Cement Mill-II ESP Fan (Z2P07) Similar to Other Cement Mills ESP Fan
4/16	Replace Cement Mill -III ESP Fan (Z3P05) With High Efficiency Fan
4/17	Replace Silo-6 Top Fan (P2P69) in Packing House With High Efficiency Fan
4/18	Optimise Air Quantity Used For Conveying Coal To Kiln & Calciner
5.0	COMPRESSED AIR SYSTEM
5/1	Compressor Specifications
5/2	Compressors - Free Air Delivery (FAD) Test
5/3	Savings Achievable By Improving Compressor FAD
5/4	Specific Power Consumption Details of Compressors
5/5	Compressors - Efficiency Evaluation
5/6	Compressors - Operating Parameters
5/7	Compressor Loading Pattern
5/8	Compressed Air Distribution Details
5/9	Operating only Two LP Compressors & Reducing The Pressure Setting To 1 2 kg/cm ² (g) In The Packing Plant Area
5/10	Optimisation of Compressed Air Usage in Cement Mill Area
5/11	Operating Only Two High Pressure Compressors In Atox Mill Area
5/12	Using Blower Air Instead of Compressed Air For Coal Conveying to Storage Bin In Atox Mill Section
5/13	Replacing V -Belts of Compressor Motors with Flat Belts

TATA ENERGY RESEARCH INSTITUTE BANGALORE

:: 3 ::

Appx. No.	Description
6.0	ELECTRIC DRIVES
6/1	HT Motor Loading Parameters
6/2	L T Motor Loading Parameters - Phase - I
6/3	L T Motor Loading Parameters - Phase II
6/4	LT Motor Loading Parameter - Old LS Crusher & Coal Crusher
6/5	L T Motor Loading Parameters -Cement Mill/Pump House Phase I & II
6/6	LT Motor Loading Parameters - Packing Plant - Phase I & II
6/7	Energy Savings on Conversion to Star Mode of Operation
6/8	L T Motors Recommended for Auto Delta -Star Controllers
6/9	Replacement of Standard Motors by High Efficiency Motors and Optimum Sizing
6/10	Installation of Soft Starter For Variable Loaded Motors
6/10 a	Energy Savings By Use of Electronic Energy Savers
6/10 b	Techno-Economics of Energy Savings by Use of Electronic Energy Savers
7.0	REFRIGERATION/AIRCONDITIONING & CANTEEN SYSTEMS
7/1	Design Parameters of Refrigeration Machines & Chiller Pumps
7/2	Machine Side Observations on Refrigeration Machines
7/3	Calculation of Generation Tons of Refrigeration (GEN-TR)
7/4	Evaporator & Condenser Effectiveness
7/5	AHU - Tons of Refrigeration (AHU - TR)
7/6	Installation of Additional Solar Flat Plate Collectors
8.0	LIGHTING SYSTEM
8/1	Details of Lighting Fixtures
8/2	Analysis of Fluorescent Fixtures in Substations
8/3	Details of Area Lighting
8/4	A.C W Colony Street Light Details
8/5	Lighting Load Measurements
8/6	Lux Level Measurements
8/7	Energy Savings by Voltage Controller
8/8	Luminaires Inventory Consumption Details As On 1993-96
8/9	Energy Savings by Switching Off Through Timers
8/10	Energy Savings Through Switching Off During Day Time
8/11	Case Study For Installing Electronic Chokes For Fluorescent Tubes

TATA ENERGY RESEARCH INSTITUTE BANGALORE

:: 4 ::

Appx. No.	Description		
10.0	CHECK LISTS FOR COMPRESSED AIR SYSTEMS		
10/1	Free Air Delivery Capacity Test		
10/2	Compressed Air Leakage (No-Load) Test		
10/3	Instrumentation For Compressed Air Systems		
11.0	ACKNOWLEDGEMENT		
11/1	List of Suppliers & Retrofits		

EXECUTIVE SUMMARY

EXECUTIVE SUMMARY

1.0 INTRODUCTION

This report presents the findings of energy audit of M/s Larsen & Toubro Ltd , Awarpur Cement Works, Dist. Chandrapur, Maharashtra

Energy audit study was carried out during December 1996 with a team of consulting Engineers to identify energy saving opportunities in electrical energy consumption areas of plant

2.0 SUMMARY OF OBSERVATIONS

After the detailed energy audit, the preliminary observations and broad scope of energy saving potential was presented by the team to the plant management executives

An interim report for budgetary provisions to be made for investment oriented proposals was sent to the management immediately. The plant has consumed about Rs 90 crores worth of electricity during 1995-96 for production of about 2.47 million tonnes of cement. The average electricity consumption has been reported to be 117 kWh/t.

The detailed energy audit and recommendations given in the report has identified an energy saving potential of **5.56%** of Rs.90 crores of annual electricity costs. The equivalent annual cost savings works out to **Rs. 5.00 crores**.

The investments required for implementation of the proposals has been worked out to be about **Rs.1.50 crores**, based on the in-house data available and the budgetary prices quoted by manufacturers /suppliers

The overall areawise summary of energy savings potential is given below:

Area	Annual Energy Savings	Cost savings	Investment reqd.	Payback peпod
	Electr. L.kWh	Rs. lakhs/y	Rs.Lakh	Years
Electrical System	9.88	42.74	12 7	< 1 yr
Fans and Blowers	105.08	315.38	37.40	< 1 yr
Compressed Air System	30.67	92.01	40.41	< 1 yr
Electric Drives	8 64	28.38	34 38	1 21
Refrigeration and Airconditioning /Canteen	1.65 t of LPG	0.40	2 4	6 06
Lighting System	7 40	21.53	23.65	1 09
Total	161.67	500.44	150.44	

The implementation of proposals in the above areas are expected to reduce energy consumption by **6.5 kWh/tonne** of cement

The study and summary of results presented above indicates that, through a systematic and committed action plan, it is possible to programme and implement the energy conservation proposals

iii

3.0 ELECTRICAL SYSTEMS

A. Transformer Load Management

A review of utilisation of distribution transformer has yielded scope to divert two transformers of 1600 kVA capacity exclusively for lighting loads. The under-loaded 500 kVA transformer of mines office is also proposed to be diverted to lighting loads for optimum setting of distribution voltage. The above proposal is discussed in detail in Section 8.0

B. 6.6 kV Bus Voltage Co-ordination

The measurement and analysis of 6.6 kV bus voltage levels indicate that 6.6 kV bus should be operated at 1% lower levels by changing the settings of automatic relay of on-load tap-changers for all the four power transformers

The setting should be adjusted to give an output of 6 54 kV in 1st stage and after implementing proposal of changing the large fans to high efficiency type, decreasing the voltage level to 6 54 kV should be tried out. The details of exercise carried out on MSS transformer No.3 - S/S 1 are given in Appendix - 3/7 and this base has been taken for quantification of the total system.

Implementation of 1% reduction in 6 6 kV bus voltage level is expected to yield monthly demand savings of 881 kVA and minimise distribution losses by 9.68 lakh kWh. The lowest estimate indicate energy costs reduction by Rs 29 7 lakhs per annum without any investment.

iv

C. Power Factor Management

The average monthly power factor of the plant is 0.90 - 0.93. PF compensation is available on both 6.6 kV and 415 Volt bus, however the failure of capacitors are reported which is due to ageing. By optimum bus voltage co-ordination, it is possible to improve the peak load PF and hence the average P.F as detailed in Section 3.4. However plant management should periodically monitor the output and health of capacitor banks.

To improve the instantaneous /average PF to 0 94/0.96 and above, it is proposed to install additional 1950 kVAr of capacitors at various load centres. The implementation of above measure is expected to yield monthly demand savings of 690 kVA with an implementation cost of Rs.11 70 lakhs. Details are given in Section 3.6.

D. Distribution Losses

The electricity distribution losses are between 1.5 to 2.0%. The cable sizes used are optimal Multiple runs of cable are used in those places, wherever voltage drops are critical for the equipment and this is a good practice. It is recommended to switch capacitor banks along with the motor drives and compensate the inductive loads at load end section. Implementation of the above proposal is expected to yield energy savings of 20,526 kWh with an investment of Rs.1.00 lakh. Details are given in Section 3.7.

V

E. Energy Metering Systems

The energy metering and power supply monitoring systems are to be provided for proper energy accounting and load management. State of the art instrumentation and monitoring helps in rational use of electricity achieving two goals

- Reduction in specific energy consumption
- Energy cost reduction.

Hence it is recommended to install energy monitoring system which is expected to cost Rs 30 to 40 Lakhs for the entire plant. Plant should review the necessity and benefits of such an installation. Details are given in Section 3.8.

4.0 FANS AND BLOWERS

A. Arresting False Air Entry in Fans Circuit

False air entry has been observed in various fan circuits of the plant. This false air results in unnecessary loading of the fan and hence higher power consumption.

By arresting the leakages in the circuit, considerable amount of energy can be saved. The false air quantification along with expected energy savings and cost savings by arresting them are tabulated below for various fans systems in both phases of production.

SI No	Area / cırcuit	False Air Quantity Nm³/h	Annual Energy Savings lakh kWh	Annual Cost Savings Rs. lakhs
1	Phase-I/Kiln ESP	2,07,908	16.23	48.70
2	Phase-I/Raw Mill	71,927	16.94	50.84
3	Phase-II / Kiln ESP	1,35,776	8.55	25.66
4	Phase-II/Raw Mill	53,291	11.56	34.68

Refer Section 4.2- B for techno-economics

vi

B. Reducing Pressure Loss across fan dampers

The pressure loss across the dampers in fans listed below raises the total pressure across the fan and hence higher power consumption. This results in considerable loss of energy. The existing pressure losses across dampers along with the recommendations to reduce the losses and energy saving potential are tabulated below.

SI No	Area / Fan circuit	Existing pressure loss mmWg	Recommendations	Annual energy savings lakh kWh	Annual Cost Savings Rs lakhs
1	Phase - II Coal Mill Vent fan	520	Provide Gear box to reduce the fan rpm by 20% and open the damper fully	10 92	32 78
2	Phase - II Coal Mill Hot Gas fan	+ 116 before damper and - 110 after damper	Provide variable speed fluid coupling and open the dampers fully so that the positive pressure at fan outlet becomes negative	0 65	1 96
3	Phase -I Grate Cooler Fans and Phase - II Grate Cooler Fans	-	The inlet vane of cooler fan starting from 3rd compartment (i e W1K12 or W2K12) can be operated in combination with variable speed drives	8.87	26 61

Refer section 4.2 C for techno-economic details.

C. Replacement of Cooler ESP Fan in Phase - I with Correct Size and High Efficiency Fan

The cooler ESP fan in Phase - I was found to be 58% efficient. By replacing with high efficiency fan, considerable amount of energy savings can be achieved. (Refer Section 4 2 D). The implementation of above measure is expected to yield annual energy savings to the tune of 5.22 lakh kWh with an investment of Rs.8 lakhs, having a pay back period of less than one year.

vii

D. Replacement of Cooler ESP Fan in Phase - II with Correct Size and High Efficiency Fan

The cooler ESP fan in Phase - II was found to be 49% efficient. By replacing with high efficiency fan considerable amount of energy savings can be achieved (Refer Section 4.2 D). The implementation of the above measure is expected to yield annual energy savings to the tune of 6.17 lakh kWh with an investment of Rs.8 lakhs, having a payback period of less than 6 months

E. Operation of Raw Meal Silo Top Bag Filter Fans

The bag filter fans on raw meal silo top in both phases were found to be in operation even though mechanical conveying (bucket elevator) is used for conveying material to silo. These fans can be stopped now thereby considerable amount of energy savings (Refer Section 4.2.E) i.e 5.06 kWh/year can be achieved. The above proposal does not involve any implementation cost and the payback is immediate.

F. Reduce Speed of Phase - I Primary Air Fan by 10% and replace Existing Damper with Inlet Guide Vane Control

The butterfly type damper is used for flow control in Phase -I primary air fan. In order to reduce the pressure loss across damper of 167 mm Wg, it is recommended to reduce the rpm of fan by 10% and thereby open the damper fully. This will reduce pressure loss across damper resulting in 87,000 kWh of annual energy savings. (Refer Section 4.2.F). The investment required is marginal (Rs.40,000/-) and this is expected to payback in less than 2 months.

viii

G. Replacement of Phase - Il Primary Air Fan with High Efficiency Fan and Inlet Vane Control

This fan is found to be 48% efficient and also the inlet vane control used is not working satisfactorily. By replacing this fan with high efficiency fan and inlet vane control, 1 64 lakh kWh of annual energy savings can be achieved. (Refer Section 4.2.G) The investment of Rs.3.00 lakhs is expected to payback in less than 1 year.

H. Operate Cement Mill - II ESP Fan (Z2P07) Similar to Other Cement Mill ESP Fans and Also Use Correct Size Fan

In cement mill - II the ESP fan is placed at a far off distance than required resulting in higher pressure and hence higher power consumption. By placing it similar to other cement mill ESP fans, the pressure can be reduced. Also replacing this fan with correct size fan would result in total annual energy savings, of 2.90 lakh kWh of electricity. The investment of Rs 2 00 lakhs is expected to payback in a few months.

I. Replace Cement Mill - III ESP Fan (Z3P05) with High Efficiency Fan

This fan is found to be 51% efficient, by replacing this with high efficiency fan, annual energy savings of 87,000 kWh can be obtained with an investment of Rs.2.00 lakhs giving a payback period of 10 months (Refer Section 4 2.I).

ix

J. Replace Silo - 6 Top Fan (P2P69) in Packing House with High Efficiency Fan

This fan is found to be 41% efficient. By replacing this with high efficiency fan, annual energy savings of 71,000 kWh can be realised with an investment of Rs 2 00 lakhs and payback period of one year

K. Optimise Air Quantity Used for Conveying Coal to Kiln and Calciner

The air quantity used for conveying pulverised coal to Kiln and Calciner were found to be above the required amount in both phases. This quantity can be reduced by reducing the rpm of blower in stages. In order to maintain the velocity, the pipe size also has to be changed. Optimising the air quantity results in considerable amount of energy savings. (Refer Section 4.2 K) to the tune of 7.92 lakh kWh. The investment of Rs 4.00 lakhs is expected to payback in two months.

COMPRESSED AIR SYSTEM

A. Improving Compressor FAD

The Atox mill area compressors K2U07, K2U11, Kiln 1-area compressor W2X10, Kiln 2-area compressor H2X02 and Envirocare compressors W1X12, W1X13, W1X14, W2X11 operate with lower FADs. The FAD of compressors should atleast be 85%. By proper maintenance, the FAD of these compressors could be improved above 85%. Refer section 5.2.(i) for details. Detailed checklist for compressed air systems is enclosed in Chapter 10.0 for reference

X

The above measure is expected to yield annual energy savings to the tune of 4.46 lakh kWh. The investment of Rs.3 50 lakhs required for spares is expected to payback in less than half a year.

B. Operating Only Two Low Pressure Compressors And Reducing The Pressure Setting To 1.2 kg/cm² (g)

In packing house, 3 LP compressors are operated, supplying air at 2.2 kg/cm² (g) for silo and packer aeration. The FAD of these compressors are less than 85%. By improving the FAD to 85%, one compressor can be switched-off. Moreover, as the pressure required at the user point is only 1.0 kg/cm² (g), the delivery air pressure at the compressor can be set to 1.2 kg/cm² (g). Refer section 5.2.(vii) for details. The above measure is expected to yield annual energy savings to the tune of 5.68 lakh kWh with an investment of Rs 2.00 lakhs, paying back in less than half a year

C. Optimisation Of Compressed Air Usage In Cement Mill Area

Pipe conveyor is used for conveying cement from cement mill to silo for cement mill - I to III and whenever Special Grade Cement is manufactured in cement mill - IV, for which pneumatic conveying is used. All the compressors in this area are designed for pneumatic conveying. By optimising compressed air usage and replacing two high pressure compressors with one low pressure compressor and one lower capacity high pressure compressor, the specific power consumption can be reduced. Refer section 5.2.(viii) for details.

The above measure is expected to reduce total load of 183 kW giving annual energy saving of 14.49 lakhs kWh. The investment of Rs.29 00 lakhs is expected to payback in less than one year.

χi

D. Operating Only Two High Pressure Compressors in Atox Mill Area

By improving the FADs of Atox mill area compressors K2U20, K2U21, K2U23 to 85%, it is possible to switch-off one of the compressors as the air delivered from the other two would be sufficient to meet the demand. Refer section 5 2.(ix) for details. The 36 kW electrical load released is expected to yield annual energy savings of 2.83 lakh kWh. The investment required being Rs.2.00 lakhs, the implementation of the proposal is expected to payback in less than half a year.

E. Use of Blower Air Instead of Compressed Air For Coal Conveying To Storage Bin In Atox Mill Area

In Atox mill section, compressed air at 0.8 kg/cm² (g) is used for conveying pulverised coal to the storage bin. Blowers can be used for such low pressure applications to reduce the power consumption per unit FAD Refer section 52 (x) for details. Implementation of the above proposal is expected to yield energy savings of 77,220 kWh with a payback of less than one year on an investment of Rs.2.00 lakh.

F. Replacing V-Belts of Compressor Motors with Flat Belts

V-belts used for power transmission in compressors can be replaced with flat belts, as V-belts cause power loss of about 5-10% of the absorbed power. Refer section 5.2 (xi) for details. The annual energy savings to the tune of 2.44 lakh kWh can be realised with an investment of Rs.1.91 lakhs, paying back in less than half a year.

6.0 ELECTRIC DRIVES

A. General

- a It is suggested that for all important drives, suitable history cards be maintained for reference
- Necessary precaution during rewinding of motors should be taken(Details given during final presentation to the plant)
- c In feasible cases, motor terminal based reactive compensation shall help in avoiding distribution loss

B. Star Mode Operation of Under-loaded Motors

The motors with active loading less than 35 - 40% may be run in `STAR' mode. This will reduce the energy consumption and simultaneously improve the p.f. of operation because of reduced iron losses. The results of energy savings are tabulated in Appendix 6/7, giving an annual savings of 68,793 kWh without any investment.

A number of motors are loaded in the range of 35 - 40 % They are seldom operated above 50% loading as per process demands Adoption of Auto DELTA - STAR controllers (Operates in Star mode when the motor is under-loaded and changes over to Delta mode when motor load exceeds 40%) for these motors are expected to result in annual energy savings to the tune of 101658 kWh. The investment cost of Rs 2.72 lakhs is expected to be paid back within a year.

C. Optimum Sizing and Use of Energy Efficient Motors

It is observed that in Phase - I number of motors are grossly underloaded and also operating at low p.f. whereas for similar condition of loading in Phase - II, drives are operating at better level of p.f.

xiii

Implementation of optimum sizing and use of energy efficient motors has an annual energy savings potential of 6.63 lakh kWh. The investment of Rs 26 63 lakhs may be proposed in two phases giving a payback of 1.34 years

D. Energy Savings by Use of Electronic Energy Savers

The motors coupled to drives such as hammer mill, hydraulic pump, etc. are proposed to be connected with electronic energy saver. This will result in improved pf of operation, demand savings and improved operating efficiency (reduced motor heating).

The annual energy savings possible by implementing this measure is expected to be 30,486 kWh with 210 kVA maximum demand savings. The payback on Rs 5 03 lakhs of investment is expected to be less than 2 years

7.0 REFRIGERATION / AIRCONDITIONING & CANTEEN SYSTEMS

7.1 REFRIGERATION / AIRCONDITIONING

The review of energy efficiency in R & AC systems has brought about the following points that are to be closely examined/monitored

A. General

The removed nozzles from the cooling tower spray header and the remaining choked nozzles are to be replaced. This improves the effectiveness of the cooling tower and subsequently the efficiency of the water cooled utilities.

xiv

- II) AIR CURTAINS should be provided for the doors which are frequently opened and closed (eg ADM building front door, Central Control Room)
- III) Direct heat load should be minimised by providing few more sun light control sheets for ADM building
- IV) Treated water should be used as the chilled water make up to avoid scale formation in evaporator and chilled water lines to improve heat transfer.
- V) Measures should be taken to avoid losses due to openings in the conditioned rooms
- VI) It is necessary to have a dedicated cooling tower for Refrigeration units. This will improve the performance of the condenser and hence the refrigeration units. Actions have already been taken to provide a separate cooling tower for the refrigeration units.

7.2 CANTEEN SYSTEMS

A. The hot water supply from existing solar water heating system is insufficient. It is recommended to install additional solar flat plate collector water heating system of 2,000 lpd capacity, to generate more hot water. The above proposal is expected to yield annual cost savings of Rs 39,600/-. The investment of Rs 2.4 lakhs is paid back with in 6.06 years.

XV

8.0 LIGHTING SYSTEM

A. General

- i The luminaires should be periodically cleaned and maintained.

 Regular replacement of worn-out tubes or luminaires are necessary to get maximum lumens per watt consumed.
- ii. Switch 'ON' to match the occupancy level in office areas or stores etc.
- Organise for improvement of lux level in certain areas by way of adopting simple measures as suggested in detailed text.
- iv The plant maintenance should acquire a mechanical truck mounted telescopic platform for easy outdoor maintenance.
- v. Suitable highmast lighting with increased efficacy can be organised for better illumination in the areas at the locations indicated in the Plant layout drawing
- VI The plant should replace all Fluorescent fixtures in dusty areas by HPSV lamps
- vii In the colony areas, reduction in the height of street lamp-posts should be taken up
- viii In junction or in important places of activity, re-introduction of 250W HPSV lamp and trimming of tree branches shall help in increasing the light level
- Decodify incandescent lamps from Store inventory and install energy meter at important points e.g. Canteen, Guest House, Club etc.

B. Energy Efficient Lighting

- Operation of lighting loads at reduced voltage through exclusive lighting transformers deployed from existing resources shall yield in annual energy savings (Appendix 8/7) to the tune of 5.22 lakh kWh The investment for locating available 2x1000 KVA transformers, switchgears, cables etc. Is expected to cost Rs 15.0 lakhs, giving payback of one year
- ii Energy savings can be achieved through controlled switching by use of timers and by-passing circuit (Appendix 8/9) as stated below:

Annual savings to the tune of 1 20 lakh kWh is obtained with an implementation cost of Rs 2 25 lakhs paying back in less than one year

- iii By Simple "SWITCH OFF" method for lighting loads, the plant can prevent wastage of energy (Appendix 8/10) to an extent of 28,322 kWh per annum Cost of implementation being Rs 1 00 lakh, this proposal is expected to have simple payback period of 1 year
- iv Use of Electronic choke in controlled atmosphere and non dusty areas can yield savings of energy (Appendix 8/11) as below

The annual energy savings are expected to be 71,280 kWh, with a cost of implementation of Rs 5 40 lakhs, having a payback period of 2 5 years

xvii

9.0 ENERGY MANAGEMENT SYSTEM

The aspects of energy management structure and approach are highlighted in detail in this section.

10.0 ACKNOWLEDGEMENT

On behalf of M/s Tata Energy Research Institute, the team of Consulting engineers would like to thank the management of M/s L & T Cements (ACW) for their co-operation and help extended during energy audit.

MAIN REPORT

LARSEN & TOUBRO LIMITED AWARPUR CEMENT WORKS, MAHARASHTRA

COMPREHENSIVE ENERGY AUDIT REPORT

1.0 INTRODUCTION

This report presents the findings of energy audit of Larsen & Toubro Limited, Awarpur Cement Works, Maharashtra.

Larsen & Toubro Limited, Awarpur Cement Works, has two streams for production, Phase - I commissioned in 1983 and Phase - II in 1987. Both these phases were upgraded in 1994 Presently Phase - I produces 4000 TPD clinker while Phase -II produces 4800 TPD clinker, totalling to 2 5 Million Tonnes of cement per annum

Both phases have dry process kilns incorporating precalcination technology

The plant is planning to go in for a captive power plant (2 x 23 MW capacity) by 1998 and also acquire their own coal mine in case Govt. Policy changes The construction of first phase of CPP is in progress.

2

Energy audit was carried out by our team of consulting engineers during December 1996 in the following areas to identify energy saving opportunities.

- > Electrical Systems & Load Management
- > Fans and Blowers
- Compressed Air System
- ➤ Electric Drives
- Airconditioning & Canteen Systems
- Lighting System

During the study, every attempt was made to understand the operational features and working of the project in proper perspectives. For the purpose of analysis, various operations were observed, relevant data collected, measurements taken wherever necessary, using portable instruments. There was continuous interaction with the plant personnel, who gave full support to the study team

This report presents the analysis, findings and recommendations for achieving energy savings. The techno-economic details are worked out for each case study and simple payback calculations are computed.

2.0 ENERGY CONSUMPTION PROFILE

2.1 PRODUCTION PROFILE

L&T, ACW produces ordinary portland cement - OPC 53 grade and grey portland cement (GPC) Details of the actual production for the past three years are tabulated below and monthwise production details are shown in Appendix - 2/1

Year	Cement production (Tonnes)
1993-94	22,16,520
1994-95	23,81,618
1995-96	24,71,558

2.2 ENERGY PROFILE

Electricity, Coal, LDO are the major sources of energy used in the plant Electricity is used for total plant operation, utilities, lighting etc. Coal is used for kiln and calciner firing and LDO for firing of kiln.

The annual energy consumption for the past 3 years are given below

Year	Electricity	Coal Consumption	LDO Consumption
	Consumption		·
	(kWh)	(Tonnes)	(Litres)
1993 - 94	28,58,64,420	4,97,499	3,88,400
1994 - 95	30,48,22,991	5,24,940	2,54,189
1995 - 96	30,26,41,744	5,09,397	2,99,268

The specific power consumption in both phases of production is 117 kWh/ T of cement. Monthwise specific power consumption is given in Appendix -2/2 and department-wise specific power consumption from April 96 to Nov 96 is given in Appendix - 2/3.

4

3.0 ELECTRICAL SYSTEMS

3.1.1 FACILITY DESCRIPTION

A. General

L&T ACW's main source of Electricity supply is from Maharashtra State Electricity Board through a double circuit 66 kV transmission line 66 / 66 kV Main receiving station is located within the plant layout and houses four power transformers The details of main power transformers are given below

DETAILS OF POWER TRANSFORMERS - MAIN RECEIVING STATION

Details	Transformer No 1 & 2	Transformer No 3 & 4
Capacity MVA	16 / 20	20 / 25
Voltage Ratio kV	66 / 6.6 kV	66 / 6.6 kV
Make	Bharat Bijlee	Bharat Bijlee
Type of Cooling	ONAN / ONAF	ONAN / ONAF
Primary rated current (Amp)	175	218 7
Secondary rated current (Amp)	1674	2092
Vector group	Dyn11	Dyn11
Rated frequency -Hz	50	50
Mode of operation	Independent	Independent
	For phase I	For phase II

The main 66 / 6 6 kV power transformers distribute power to 10 main substations located closer to load centers. The HT loads mainly comprising of 6 6 kV induction motors of large / medium size (approx. 39 nos.) receive power through Power Control Centers housed in the respective substations.

The 6.6 kV / 433 volt distribution transformers (29 nos.) located at various sub-stations are of different ratings mainly catering to LT distribution through Power Control Centers and Motor Control Centers with necessary isolators, circuit breakers, protective relays, measuring instruments etc., The LT loads mainly comprise of large / medium / small induction motors, welding equipments and lighting

The rating details of distribution transformers at various substations are tabulated below.

DETAILS OF DISTRIBUTION TRANSFORMERS

PHASE - I

SI No	Phase - I (Sub-station)	Rating (kVA)	No of Transformers
1	HPC-1 Raw mill	1600	1
2	HPC-2 Coal mill	1600	3
3	HPC-2 Kiln feed	800	1*
4	HPC-2A Kıln feed	1600	3
5	HPC-3 Cement mill	1600	3
6	HPC-4 L S Crusher	750	1
7	Mines	1600	1
8	Township	750	4

* For DC motor thyristor converter

PHASE-II

SI No	Phase - II (Sub-station)	Rating (kVA)	No.of transformers
1	SS-1 Raw mill	1600	2
2	SS-2 Coal mill	1600	2
3	SS-2A Coal mill	1600	3
4	SS-2A Kıln feed	1000	1*
5	Kıln feed SS-2B	1600	1
ę	Cement Mill SS-3	1600	4

* For DC motor thyristor converter

Main Sub-Station

The main substation houses two transformers of 16/20 MVA and two transformers of 20/25 MVA with OLTC. The four 6.6 kV bus section are independently operated. Parallel operation of LT bus sections are not practised, to avoid any tripping due to fault. The two transformers of 16/20 MVA cater to phase - I loads and the transformers of 20/25 MVA cater to phase - II loads

Raw Mill Sub-Station

Phase - I (HPC-1) has one transformer of 1600 kVA for raw mill auxiliaries and stacker. The 6.6 kV feeders supply to two ball mill motors of 1800 kW

Phase - II (SS-1) has two transformers of 1600 kVA for raw mill auxiliaries and stacker reclaimer section. The 6.6 kV feeders supply one large motor of 4000 kW for ball mill. The LT supply loads feed LS conveyors and shale yard.

Kiln-Feed Sub-Station

Phase - I (HPC-2A) has two transformers of 1600 kVA and 6 6 kV supply for HT motors One transformer of 800 kVA supplies power to converter of 435 kW DC motor

Phase - II (SS-2B) has one transformer of 1600 kVA and 6.6 kV outgoings for HT motors One transformer of 1000 kVA supplies power to converter of 540 kW D.C motor

Coal Mill Sub-Station

Phase - I (HPC-3) has three transformers of 1600 kVA and 66 kV outgoings to supply HT motors.

Lime Stone Crusher Sub-Station

Phase - I (HPC-4) has one transformer of 1000 kVA and two outgoings for crusher HT motor drives The outgoing feeders supply 1 x 500 kVA transformer at mines office and 4 x 750 kVA transformers of township

Cement Mill Sub-Station (HPC - 3 & SS - 3)

Power supply to Cement mill Phase - I and its auxiliaries is fed from HPC - 3 sub-station comprising of 3 x 1600 kVA transformers. The 6 6 kV drives of cement mill Phase - I receive supply from HPC-3.

Power supply to Cement mill Phase - II and its auxiliaries is fed from SS - 3 sub-station comprising of 3 x 1600 kVA transformers.

Power supply to entire Packing plant equipments is catered by 1×1600 kVA transformer of HPC - 3 sub-station and by 1×1600 kVA transformer of SS - 3 sub-station respectively.

The sub-station - 3 feeders also supply power to coal yard and Coal crusher house

Mines Sub-Station

The Mines substation is located at about one KM from Main receiving station (MSS) with one transformer of 1600 kVA and two 6.6 kV motors for lime stone crushing

There are 2 phase lighting transformers giving lighting voltage of 250 volts for mine lighting. There is also one transformer of 500 kVA for mines office and workshop fed by HPC-4 S/S of phase - I

Township Sub-Station

There are four sub-stations in the township, each having 1x750 kVA transformers supplying various domestic loads of quarters, lagoon pump house, guest house, club, effluent plants and street lighting.

Name plate details of Power and distribution transformers are presented in Appendix - 3/1.

B. Electricity Consumption Data

The power requirements of the complex is about 50 MW. Average p.f. of the installation is above 0.90 lag. The maximum demand recorded is around 56 MVA. The average monthly energy requirements are of the order of 200-260 lakh kWh depending on production

The monthly consumption data are summarised from Appendix - 3/2 as below:

Year	Max. kVA demand recorded	Max energy consumption lakh kWh	Highest PF recorded	Lowest pf recorded
1995 - 96	56670	303.27	0 937	0 90
	(Dec'95)	(March'95)	(June'95)	(Jan'96)
1993 - 94	54062.5	286 68	0 943	0 907
	(May'93)	(Oct'93)	(Nov'94)	(May'94)

The daily average energy consumption for a typical day i e for 6th August '96 is given below

Total consumption	93,0120 kWh
Max demand	50,000 kVA
PF	0 925
Load factor	83 80 %

10

The 66 kV incomer load parameters as measured on a typical day (13 12 96 to 14 12 96) is given below

Details			
66 kV load	400 - 480 Amps		
MW load	40 - 48 MW		
MVA load	45 - 52 MVA		
AV PF	0 92 - 0 97		
Feeder Voltage	60 6 - 63 5 kV		
Frequency	48 - 50 9 Hz		

3.1.2 Power Capacitors

Power Capacitors have been provided on 66 kV bus at MSS and other substations / motor drives for improvement of power factor. The major electrical loads are induction motors used for fans and auxiliary drives. The load power factor is between 0 91-0 93. The 415 V LT capacitors at various sub-stations are at service in power control centres. In some plants, the compensation is provided at the load end. Details are given in Appendix - 3/3.

3.1.3 Distribution System

Multiple runs of 3 core and 3 5 core 400 ,300,240 & 185 Sq.mm U G Cables have been drawn for main feeders depending on the loads catered by each feeder. The sizes of cables used for sub feeders vary from 185 Sq.mm and below. The secondary side output power from main and distribution transformers are taken through Aluminium bus duct system to main bus of PCC panels.

3.1.4 Expansion Plans

There is no proposal for immediate expansion plan as it has been recently carried out in the year 1994. However, efforts are being put to achieve optimum production in Phase - II.

The plant is adding captive power generation capacity of 2 X 25 MW. The generation voltage will be at 6 6 kV and the power will be distributed to the present main receiving station by double bus arrangement

3.2 OBSERVATIONS, ANALYSIS AND FINDINGS

3.2.1 Measurements

For the purpose of study, measurements have been taken using various meters and measuring instruments. The portable power and demand Analyser has been used extensively to measure the electrical parameters at various points. Measurement was carried out at substations, LT Panels, transformer feeders, HT feeders and at feeders of major power consuming equipments. The Plant has very elaborate and systematic record / book keeping of all necessary data of distribution equipment. Necessary data has been collected from Registers / documents maintained.

3.2.2 System Parameters

The measurements of load parameter of incoming 66 kV system was carried out on 13 /14th December using CT and PT terminals of incomer panel

The general consumption pattern, Variation of Maximum Demand and the Power Factor has been shown in Appendix - 3/4, depicting 66 kV MSEB incomer load parameters.

The incoming voltage profile has been indicated in Appendix - 3/5a. for a typical working day The OLTCs of the main power transformers are in service, and voltage variation has been observed to be from 60 kV to 64 kV. Variation in load current, frequency, PF, MW / MVA load w.r.t. time is plotted respectively in the graphs represented in Appendix - 3/5 b - f.

Analysis of Load parameters over the day indicate that the overall load factor is 89 46% The corresponding loss load factor is assumed to be 0.85. Details of calculations are given in Appendix - 3/6

The monthly average Power Factor varies between 0.91 and 0.93.

3.2.3 Tariff Details

The details of electricity tariff are as under

As on 1st ,Dec'96

Avg kWh charges = Rs 2.92 per kWh

kVA (Max demand) charges = Rs 150/-

Sanctioned kVA (Max demand) = 59,000 KVA

Overall charges on energy = Rs 3 00/kWh**

** Taken from total bills paid and energy consumed from grid .

3.3 TRANSFORMER LOAD MANAGEMENT

3.3.1 General

All the four power transformers are operated on load without any standby. The load on all distribution transformers can be changed over by parallel operation during exigencies/breakdowns, without interruption. The operating p.f. of outgoing transformer feeders were observed to be above 0.92 lag, with capacitor banks in circuit.

The details of loading of all distribution transformers of Production Plants were taken for, typical working day. All plant substation including MSS are unmanned and continuous instantaneous power data of large loads of all substations is monitored at Electrical Computer section. Periodical maintenance of data logging in all substations must be initiated

A. Incoming Power Transformer 66 kV / 6.6 kV System

The secondary voltage of power transformer is maintained at 6 6 kV by adjustment of sensing circuit on on-load tap changer. The voltage bandwidth is set at 66 kV + 1%

The record of number of operations of each OLTC was not available, however this will be useful data which should be maintained by installing a counter. The above data indicates health of grid and helps in regular analysis of the optimum bandwidth for voltage conversion, to minimise losses.

The observed loading pattern of power transformers is satisfactory Load of 23-25 MVA of Phase - I is shared by 2 X 16/20 MVA transformers Load of 25-28 MVA of Phase - II is shared by 2 X 20/25 MVA transformers. The percentage loading of power transformers have been observed to be above the economic levels. The transformers are not operated in parallel. The operating p f of loads were observed to be above 0.92, thus minimising the I²R losses of the power transformers. There is scope for further improvement in load p f and this has been discussed in subsequent chapters.

B. Distribution Transformers (All of 1600 kVA Capacity)

The details of loading and observation remarks are highlighted in the following table for phase-I and phase-II respectively.

Phase - I Loading of distribution Transformers

Substation reference	Transformer	Trf ID	% load
	kVA Rating	Code No.	(approx.)
HPC -1 Raw mill	1 x 1600	T11	< 35
HPC - 2, Kıln motor	1 x 800	T24	50
HPC - 2A, Kiln feed	2 X 1600	T-A1	20
		T-A2	35
HPC - 2 Coal mill	3 X 1600	T21	30
		T22	50
		T23	25
HPC - 3 Cement mill	3 x 1600	T31	30
		T32	30
		T33	35
HPC - 4 L S Crusher	1 x 1000	T41	40
Mines Substation mines office	1 x 1600	-	< 30
	1 X 500	-	10 - 20
Township Substation	4 x 750	-	10 - 20

Phase - I

From the above tables, it is observed that the loading of transformers in kiln feed, coal mill and cement mill are below 30 - 40%

The Plant has adopted the advanced mechanical conveying system in place of pneumatic conveying systems which were in operation earlier, consuming more power. The Pneumatic conveying system is kept as emergency standby for any eventuality of breakdown of mechanical belt / bucket conveying system.

In mines office/workshop, the 500 kVA transformer installed for office/workshop is loaded very low and is proposed for decommissioning. Mines office/workshop loads could be supplied by utilising the LT cables laid from HPC - 4 substation. The released 500 kVA transformer is proposed to be installed in township substation and subsequently releasing 1 x 750 kVA transformer at township substation.

Phase - II Loading of distribution Transformers

Substation Reference	Transformer kVA Rating	Trf ID. Code No.	% load (approx)
SS -`1 Raw mill	2 x 1600	T11	30
		T12	20
SS - 2 Coal mill	1 x 1600	T22	40
SS - 2A Coal mill	2 x 1600	T2A-1	40 - 50
		T2A-2	60
	1 x 1000	T2A-3	60 - 70
SS - 2B Kıln feed	1 x 1600	T2B-1	40
SS - 3 Cement mill and Packing Plant	4 x 1600	T32	< 10
		T33	< 25
		T35	< 10
		T36	40

From the above tables, it is observed that the loading of transformers in kiln feed, coal mill and cement mill are between 40 - 60%

In Phase - II also mechanical conveying system has been adopted in place of pneumatic conveying systems which were in operation earlier consuming more power. The Pneumatic conveying system serves as emergency standby for any eventuality of breakdown of mechanical belt / bucket conveying system. In Phase - II loading of transformers is higher compared to Phase - I, due to production enhancement in Phase - II production.

Release of 1 x 1600 kVA transformer in SS - 3 Cement mill substation (which is found usually under-loaded) and 1 x 1600 kVA transformer already released at SS - 2B, can be utilised as lighting transformers exclusively. The 1 x 750 kVA transformer released from township substation can also be connected for lighting loads. The above transformers can also cater to plant welding loads in addition to plant lighting loads (Refer Chapter on Lighting)

3.4 Optimum Bus Voltage Co-ordination

A. 6.6 kV Bus Voltage Systems

From the recording of incoming voltage and load profiles the lowest voltage recorded is 59 76 kV and the highest recorded is 63.6 kV on a typical working day. The setting of the voltage regulation relay of the OLTC's of four power transformers are in auto mode with a time delay. Under normal voltage conditions, the setting would result in a secondary voltage of rated 6 6 kV and some times as high as 6 7 kV due to switched capacitor banks on 6 6 kV bus

Analysis of the graphs for a typical working day indicate that the present voltage levels on 6 6 kV bus is always higher than 6.6 kV.

Detailed measurement of power parameters were carried out on S/S-2 Phase- I for assessing the impact of optimising 6 6 kV bus voltage levels by .

- * Operating the OLTC's to raise /lower voltage levels
- * Connecting power analyser with on-line monitoring on 6 6 kV incomer at S/S-2 supplied by transformer No.3 (Phase II)
- * The load on the feeder was maintained constant for ½ hour

The results of observations (while operating OLTC on incoming transformers) taken on a printer/computer are placed in Appendix - 3/7.

For a 6 MW operating load, the following analysis is tabulated based on the operating load parameters at 6.6 kV as reference.

- → When the voltage is increased beyond 6.6 kV by 1%
- The reactive power drawn from grid has increased by 84 kVAr
- * The P F. of incomer has remained at 0.95
- * The kVA demand has shown marginal increase (439 kVA)
- → When the voltage is at 66 kV + 2%
- * In addition to above observations, the pf of load has dropped by 1% reactive load has increased by 123 kVAr.
- → When the voltage is reduced by 1% on 6 6 kV bus
- * The reactive power drawn has reduced by 125 kVAr
- The PF of incomer has improved by 1%
- The kVA demand has shown reduction by 115 kVA
- * The kW load has dropped by 18 kW in addition to above changes.
- → When the voltage is reduced by 2% on 6 6 kV bus
- The reactive power drawn has reduced by 371 kVAr
- The PF incomer has improved by 2%.
- * The kVA demand has reduced by 115 kVA as above

From the above, by maintaining optimum voltage levels on 6 6 kV bus in MSS on all the four transformers at 6 54 kV level, it is possible to obtain system benefits and energy/cost savings by

- Reduction in kVA M D
- Reduction in distribution losses (Mainly due to reduced magnetic losses in motors)
- Improvement in system PF and reduced demand for reactive power drawn from grid
- * Reduction in kVA loading of transformer and hence losses.

This aspect of optimising voltage levels on medium voltage bus has been widely practised by industries to obtain envisaged efficiency in electricity distribution practice

However, the plant management has indicated plans to install high efficiency fan systems for the plant with a budgetary proposal. In view of the above proposal, it is recommended that plant management should immediately lower the voltage by one step i e, 1%. After implementation of proposed high efficiency fan installations it is recommended that 2% reduction in 6.6 kV system voltage should be tried out. The following table gives quantification of the system benefits for the entire plant network (46 MW load) by reducing the voltage level by 1%. For details of calculations please refer to Appendix - 3/8

Monthly reduction in maximum demand = 881 kVA

Reduction in reactive power drawn ie, = 950 kVAr

from grid

Annual reduction in distribution losses = 9,68,430 kWh (due lowering of magnetic losses of motors and losses is 29 distribution

transformers)

This reduction in reactive power withdrawal helps to avoid incurring a capital expenditure to an extent of Rs.5.75 lakhs.

However the requirement of reactive power compensation for improving system peak load PF is dealt in Chapter 3.5;

B. L T Bus Voltage Levels on 415 V Bus

The off load tap settings on distribution transformers are observed to be maintained generally at tap No 3 or 2. The secondary voltage levels were measured to be in the range of 425 - 430 Volts to drive motors rated at 415 V and 3 phase lighting loads. This is on the higher side resulting in increased magnetic losses in drives and lowering operating pf of load.

The off load tap settings are to be rationalised depending on loading levels of transformers. This has to be viewed vis-a-vis the reactive compensation made available on L.T. PCC bus, which also raises the LT distribution voltage by a few volts (Upto 4-8 volts observed)

After implementing the recommendations given in section 3.6 A, to lower the 6.6 kV bus voltage down by 1%, it is suggested that plant management should consider optimising the LT 415 Volts distribution voltage levels

It is recommended that the LT distribution voltages should be in the order of 415 Volts or less at the far end of feeder for obtaining optimal operation of LT electric drives and lighting loads.

Power Factor Management

The monthly average power factor of the plant has varied between 0.9 to 0.93 during the last year. Plant has installed about 9,789 kVAr of capacitor banks on 6.6 kV bus and 4712 kVAr of capacitor banks on 415 Volts bus. The break-up of substation-wise installation of capacitor banks are given below

Phase - II - kVAr Capacity of Banks

Substation	6 6 kV System	415 V Bus
SS-1	3395	650
SS-2	1027	650
SS-2A	393	850
SS-2B	4524	1075
SS-3	450	1075
Mines	450	200

Phase - I - kVAr Capacity of Banks

Substation	6 6 kV System	415 V Bus
HPC-1	2172	286
HPC-2 & 2A	940	625
HPC-3	2616	-
HPC-4	482	150

Most of the 6 6 kV capacitor banks are switched with the motor and rated as per manufacturers recommendations. However due to ageing of capacitor banks and failure of capacitor banks, replacement of faulty units are being carried out. During measurements, the output of certain 6.6 kV bus connected capacitors were calculated, however these calculations did not tally with the rating of banks installed.

Reduction in output of capacitor banks has been observed inspite of maintaining 6.6 kV bus voltage level at 100% voltage. All the above observations indicate that

- There is deterioration of output due to ageing and leakages
- The faulty banks have not been replaced

A regular monitoring and history cards giving data on date of installation, failure record and analysis has to be maintained so that corrective actions may be initiated from time to time

As reported during discussions, the failure rate of capacitor banks has been observed to be on the increase. This is also evident from the fact that the monthly average p.f. of the plant is lowering from 0.93 to 0.91. This downward trend has to be arrested by installing additional HT 6.6 kV and LT 415 Volt capacitor banks at various load centres.

Analysis of average / peak load pf of plant and details of calculations are given in Appendix - 3/9

It is recommended to install 1950 kVAr of additional capacitor banks for the system to improve the peak load pf of plant to above 0.94 and average monthly pf of plant to 0.96 and above

The implementation of above measure should be considered in addition to the replacement of existing faulty capacitor banks in plant

Further study "harmonic analysis of distribution network" should be initiated by plant since large thyristor drives and electronic controllers are available which may contribute to distortion of power parameters and losses

Distribution Losses

3

The plant has made use of multiple runs of cables of various sizes for HT/LT systems all over the plant. The design of providing optimum no. of runs and cable sizes have been adopted to keep the voltage drop to the lowest minimum, and hence the distribution losses have been calculated to be minimum. Multiple cable runs have been provided even to the large motor drive loads. This is a very good practice.

However an effort has been made to compute the losses in motor feeders on 415 Volt systems using the elaborate data made available by plant and taking details of the measurements carried out (using a software).

The details are given in Appendix - 3/10 By installing the proposed capacitor banks at motor load feeders, (wherever feasible) it is possible to minimise distribution losses in the system. As an immediate measure, plant is advised to shift part of unswitched LT capacitor banks to motor feeders.

On-Line Automation in Energy Metering and Energy Management

A. General

7

State of-the-art instrumentation and monitoring helps in rational use of electricity, achieving two goals

- ⇒ Reduction of specific energy consumption
- ⇒ Energy cost reduction

The extensive use of electronic energy-metering / process data recording and analysis enables the plant to explore hidden energy saving potential.

Energy information and related saving measures are introduced as daily exercises backed up by a permanent energy management team. It has been recorded by industries that it is possible to conserve 1- 4% of annual electricity consumption. Additionally, equal percentage points of reduction in specific energy consumption can be projected as savings objective for the next year, by proposing action plans on process changes, efficient technologies and retrofits

Cement companies in Europe have been taking the expertise of management and consulting companies. The measures implemented by them are

Energy Control through Load Control (ECLC)

The operation of equipments must be constantly monitored and controlled. This could be initially programmed by having on-line data of number of equipments operating in the section. The on-line monitoring of operating equipment, (loading and energy consumption pattern) indicates when and where corrective actions are necessary.

These corrective actions include

- Automatic load switching
- Preparation of instructions for manual operation by control room operator

Many plants in India have installed on-line monitoring of energy consumption.

B. Energy Data Information and Advisory Reports (EIAR)

The analysis of energy data of various equipments gives a constant feedback on complete energy picture. The comparative estimates of trends gives rise to the following:

- Checks the impact of energy saving measures
- Pinpoints weak spots in energy usage
- Creates an easily accessible database for energy usage
- * Permits revision of production plans and schedules
- * Facilitates establishment of new instructions for operating schedule of equipment

C. Metering System for Electrical Parameters

The large power distribution network of plant should have the following systems for effective monitoring and implementation of energy management programme

- Supervisory control and data acquisition system for MSS 66/6 6 kV station
 - Microprocessor based panel mounted indicating and recording instrument for all HT and load feeder panels.
- * Portable power monitoring and recording instruments for HT and LT systems, for energy management exercises

(i) SCADA System for MSS and Other Substations

Supervisory control and data acquisition system for power receiving, Distribution & generation system should be installed for power network. The following aspects of power management could be effectively carried out.

- Management of power factor by optimal compensation of reactive loads
- Bus voltage co-ordination to exercise control on the voltage of operation.
- Helps on line monitoring of data and carries demand / energy management during power cuts.

The above suggestions for implementation would cost around Rs.40.00 lakhs (approx.) and management should consider the long range benefit gained by such efficient operation of power supply distribution network which would assist in:

- Improved and accurate energy accounting and control
- Automatic generation of reports, charts eliminating the need for additional man power deployed round the clock to manually note the parameters
- Quick realisation of variations in consumption pattern possible since hourly, daily reports can be prepared and composed
- * Eliminates the need for printing costly stationary and storing logbook data.

(ii) Microprocessor Based Indicating Meters

Installation of microprocessor based instrumentation at load feeders of respective substations, shall help in complete monitoring of all parameters including p f, kW, kVA, kVAr and cumulative energy consumption equipment wise. This will also eliminate the necessity of maintaining inventory of electromechanical meters and maintenance effort required. Higher levels of accuracy and precise reading in digital form can be had to the satisfaction of staff maintaining the systems

(iii) Portable Energy Management Systems

The plant management should procure one portable power monitoring and recording instrument. This instruments should be utilised on both HT and LT systems so that on line measurement of instantaneous parameters are possible on both single and three phases. Such instruments will cost Rs 50,000 for LT 415 V system and Rs 1 00 lakh for a high voltage system

However, installation of test terminal blocks on all important HT outgoing panels makes it easy to carry out such measurements

D. Restructuring of Energy Metering Systems

Initially, cost centres need to be identified. It may be that 80 - 100 energy meters may need to be installed in a large plant. With these energy meters, when connected to a computer with a package driven software, it is possible to down-load the energy parameter in given formats. In this way, many plants are proposing to create a database which can indicate "bad days" and "good days" of any monthly or yearly period.

In one of the European examples highlighted by Ms Holderank Systems in a cement plant, they have brought out the concept of defining normal days (normal η), good days (high η), zero days (no production but remarkably high consumption).

Here, the wasted energy for operating idle equipment needs a closer look. Many processes consume energy, remarkably, high enough even on zero production days. However, a quick review of plant equipment operating schedule and operating parameter will indicate the means for switching off idling equipment.

For all the above function two things are important

- ⇒ Computers providing useful information
- ⇒ People acting accordingly

The block diagram of microprocessor based systems are given in Appendix - 3/11.

The plant layout has been considered and after subsequent discussions with some of the suppliers of such microprocessor based energy metering/power monitoring system, a proposal has been drawn, for installation as given in the block diagram. For details of estimates and feasibility of supply of hardware/software, the manufacturers may be contacted whose addressees are given in Appendix - 3/12.

The above proposal is expected to cost anywhere between Rs 30 to 40 Lakhs however a budgetary provision for the same could be made in the two phases. Plant may review the indirect benefits and necessity of such systems (as outlined in 3.7 A, B and C) before taking up this project.

PROPOSAL:

The proposal covers the 50 MW electricity distribution network, as per the layout of the plant

- 1. HPC 3 of Cement Mill Substation of Phase I
- 2 Phase I, HPC 1 Raw Mill Substation
- 3. Phase I, HPC A Crushing Plant Substation
- 4 Phase I, HPC 2 Coal Mill Substation
- 5 Substation 3 and 3A Cement Mill feeding PCC 3, 3A & 5 of Phase II
- 6. Substation 1, Phase II, Raw Mill Substation
- 7 Phase II Substations 2 and 2A of Kiln and Coal Mill
- 8 Phase II, HPC 2A Kiln Feed

METERING STRUCTURE

The details of feeders and layout have been studied and also the aspects of distances have been accounted. The scheme gives the meter from a sub-station at one corner and stopped at a place nearer to the load centre, where the meters are to be read on a computer.

The proposal involves about 15 Nos of main meters and about 29 Nos of transmitters at various substations communicating with most of the MCCs and HT motor drives, since most of the data has been generated with the assistance of system house specialists of few manufacturing companies. It is mentioned that the management may get in touch with these companies for site specific requirements (Addresses given in Appendix - 3/12). The schematic details of substationwise metering referred are given in Appendix - 3/13 for reference

3.8 RECOMMENDATIONS

A. Transformer Load Management

The power and distribution transformers are optimally loaded. Since air compressor loads kept as standby, a review of utilisation of distribution transformer has yielded scope to divert two transformers of 1600 kVA capacity exclusively for lighting loads. The under-loaded 500 kVA transformer of mines office is also proposed to be connected to lighting loads for optimum setting of distribution voltage. The above proposal is discussed in detail in Section 8.0

B. 6.6 kV Bus Voltage Co-ordination

The measurement and analysis of 6 6 kV bus voltage levels indicates that 6 6 kV bus should be operated at 1% lower levels by changing the settings of automatic relay on on-load changers for all the four power transformers

The setting should be adjusted to given an output of 6.54 kV in 1st stage and after carrying out the proposal of changing the large fans to high efficiency type, decreasing the voltage level to 6.48 kV should be tried out. The details of exercise carried out on MSS transformer No 3 - S/S 1 are given in Appendix - 3/7 and this has been quantified for the total system.

Implementation of 1% reduction in 6.6 kV bus voltage level is expected to yield energy savings

Reduction in monthly maximum demand = 881 kVA(a)

on incomer

Reduction in reactive power demand from = 950 kVAr

grıd

Annual reduction in distribution losses = 9,68,430 kWh....(b)

Annual cost savings = Rs.29.7 Lakhs

(50% of (a) and 75 % of (b) taken)

C. Power Factor Management

The average monthly power factor of the plant is 0.90 - 0.93. PF compensation is available on both 6 6 kV and 415 Volt bus, however the failure of capacitors are reported which is due to ageing BY optimum bus voltage co-ordination, it is possible to improve the peak load PF and hence the average PF as detailed in Section 3.4 However plant management should periodically monitor the output and health of capacitor banks

To improve the instantaneous /average PF to 0 94/0 96 and above, it is proposed to install additional 1950 kVAr of capacitors at various load centres. The implementation of above measure is expected to yield annual energy savings as below.

Savings in maximum demand = 690 kVA

Annual savings in electricity bill = Rs 12.42 Lakhs

Cost of implementation = Rs 11 70 Lakhs

Simple payback period = Less than 1 year

Details are given in Section 36.

3.9. SUMMARY OF POTENTIAL SAVINGS

SI No	Recommendations	Annual Energy Savings		Investment requirement	Sımple Payback period
		kWh	Rs. in Lakhs	Rs in Lakhs	Year
1	6 6 kV Bus Voltage	8 81 kVA & 9,68,430 kWh	29 7	Nil	Immediate
	Co-ordination				
2	Power Factor Management	690 kVA Max Demand	12=42	117	Less than 1 yr
3	Distribution Losses	20,526	0 62	1 00	1 year
	Total	9,88,956	42.74	12.7	Less than a year

4.0 FANS AND BLOWERS

4.1 FACILITY DESCRIPTION

Large size and medium size fans are used mainly for process and venting applications like preheater, ESP, mill, cooler, etc., while small size fans are used for dedusting in silos, packers, DBC, etc. The fans used for different applications in L&T, ACW and their design parameters are :

PHASE - I

Fans	Equipment Code	Quantity (m3/min)	Total static pressure (mm Wc)	Motor rating (kW)
Calciner String	J1J01	6500	800	1800
smoke gas fan	14 100	4400	200	050
Kiln String smoke gas fan	J1JO3 	4100	800	950
Kiln ESP Fan	J1P44	12600	95	600
Raw Mill Fan	R1P05	3900	610	700
Cooler ESP Fan	W1P51	9700	175	425
Coal mill vent fan	K1P56	860	620	160
Primary Air Fan	W1V07	400	720	110
Cooler Fan - 1	W1K10	595	1000	225
Cooler Fan - 2	W1K11	950	1000	225
Cooler Fan - 3	W1K12	730	900	225
Cooler Fan - 4	W1K13	820	850	225
Cooler Fan - 5	W1K14	855	770	225
Cooler Fan - 6	W1K15	1020	650	225
Cooler Fan - 7	W1K16	2530	480	315
Cooler Fan - 8	W1K17	2530	405	325

PHASE - II

Fans	Equipment Code	Quantity (m3/min)	Total static pressure (mm W _≤)	Motor rating (kW)
Calciner String smoke gas fan	J2JO1	6950	815	1650
Kiln String smoke gas fan	J2JO3	4100	620	825
Kiln ESP Fan	J2P09	12300	140	500
Raw Mill Fan	R2PO5	4200	675	825
Cooler ESP Fan	W2P31	10700	180	600
Coal mill vent fan	K2T01	2875	1256	600
Primary Air Fan	W2V07	149	1300	90
Cooler Fan - 1	W2K10	620	750	132
Cooler Fan - 2	W2K11	870	700	225
Cooler Fan - 3	W2K12	940	650	225
Cooler Fan - 4	W2K13	845	560	225
Cooler Fan - 5	W2K14	845	560	132
Cooler Fan - 6	W2K15	830	480	132
Cooler Fan - 7	W2K16	2710	350	225
Cooler Fan - 8	W2K17	1660	250	132

The fans used are both induced (Preheater, ESPs mill), as well as forced type (cooler) The design parameters of these fans are given in Appendix - 4/1

Twin lobe compressors (Roots blowers) are used for conveying pulverised coal from F K Pump/C P Pump to kiln and calciner for firing. The roots blower details are

Equipment Code	Quantity (m³/h)	Delivery Pressure (mm Wg)	Motor Rating (kW)
W1U43	4650	6500	160
W1U45	4315	9000	150

4.2 OBSERVATIONS, ANALYSIS AND FINDINGS

A. Flow Measurement

The quantity of hot gas/ air handled by each fan was measured using S-type Pitot tube & U-tube Manometer by measuring static pressure, velocity pressure (dynamic pressure) and temperature at the suction side for process fans and cement mill ESP fans and on delivery side for Packer dedusting fans. For cooler fans, primary air fans and Roots Blowers the velocity of air inlet was measured using Anemometer and inlet area was measured. From this the flow was found out.

METHODOLOGY ADOPTED FOR MEASUREMENT OF PARAMETERS IN FAN

For example, let us consider Phase- I calciner string smoke gas fan.

Static pressure, Dynamic pressure (Velocity pressure) and temperature are measured at the sample point for each fan using Pitot tube, U-tube manometer and thermocouple

The measured parameters for Phase - I Calciner string smoke gas fan are :

Static pressure

Suction side = -852 mm Wg

Delivery side = + 10 mm Wg

Dynamic pressure = 25 01 mm Wg (rms value)

Temperature = $304 \, ^{\circ}\text{C}$ Duct diameter = $2.4 \, \text{m}$

The density of air or gas at fan inlet (sample point) can be known from N T P. values (1 4 kg/Nm³ or 1 29 kg/Nm³) by temperature and pressure correction.

Density of preheater gas = 1.4 kg/Nm^3 Density of air = 1.29 kg/Nm^3

Density of the gas at sample point can be known by the formula.

$$\rho_2 = \rho_1 \times \frac{T_1}{T_2} = P_2$$
 $T_2 = P_1$

ρ = Density in kg/m³
 P = Pressure in mm Wg
 T = Temperature in Kelvin

Suffix -1 = Represents parameters at NTP

 $\rho_1 = 1.4 \text{ kg/Nm}^3$

 $P_1 = 1 \text{ bar} = 10330 \text{ mm Wg}$

 $T_1 = 0 \,^{\circ}\text{C} = 273 \,^{\circ}\text{K}$

Suffix - 2 = Represents measured parameters at sample point

$$p_2 = 1.4 \times \frac{273}{(273 + 304)} \times \frac{(10064 - 852)}{10330}$$

(L&T, ACW is situated at 217 m from MSL and so atmospheric pressure is 740 mm Hg = 10064 mm Wg).

∴ Density at sample point, ρ_2 = 0.591 kg/m³

From Dynamic pressure & density at sample point, velocity can be 3. obtained from the formula

$$V = C \times \sqrt{\frac{2 \times g \times h}{\rho}}$$

Where, C = Pitot factor (0 86)

g = Acceleration due to gravity m/s²

h = Dynamic pressure, mm Wg

 ρ = Density at sample point (kg/m³)

= 24.78 m/s

4 By knowing the area, the quantity of flow (Q in m³/s) can be known by .

$$Q = A \times V$$

A = Area (m²) V = Velocity (m/s)

Q =
$$\frac{\Pi}{4}$$
 x (2 4) 2 x 24.78
= 112 1 m³/s
= 4,03,566 m³/h

The quantity of flow at NTP (Nm³/h) can be known by;

Since fans operate at different conditions, in order to compare them it is essential to know the flow in Nm³/h

The methodology adopted for fan measurements is given in Appendix - 4/2 in detail

The measurements were taken up individually for all fans and final measurement was taken on the same day for all process fans taking into consideration the condition of kiln and feed

	Kıln Feed	Raw Mill Feed
Phase - I	275 TPH	310 TPH
Phase - II	360 TPH	330 TPH

The false air in raw mill circuit is arrived from the difference in measured flow of kiln ESP fan (Nm³/h) when raw mill is in operation and when it is not in operation.

The difference in measured flow (Nm³/h) between smoke gas fans and kiln ESP fan indicate the false air in kiln ESP circuit including GCT.

Wherever dampers are used for flow control like cooler fans of both phases and phase - Il coal mill vent fan and hot gas fan, the static pressure was measured before and after damper to arrive at pressure loss across damper.

All these measurements like excess air in circuit, pressure loss across damper is finally quantified in terms of excess power consumption by the fan

The measured parameters for Phase - I and Phase - II are summarised and given in Appendix - 4/3 and 4/4 respectively.

B. Arresting False Air in Kiln ESP & Raw Mill Circuit

The false air entry into the circuit has been observed at many joints of fan ducts. The following observations and analyses of computations is highlighted

PHASE - I

Total flow of smoke gas fans $= 2.78,163 \text{ Nm}^3/\text{h}$ Flow of kiln ESP fan when raw mill is not in operation $= 4.86,071 \text{ Nm}^3/\text{h}$. Flow of kiln ESP fan when raw mill is in operation $= 5.57,998 \text{ Nm}^3/\text{h}$.

The measured flow indicates a difference of 2,07,908 Nm³/h (when raw mill is not in operation) and 2,79,835 Nm³/h (when raw mill is in operation) between smoke gas fans and kiln ESP fan. This excess air which is the false air in the circuit accounts for 16.94 lakh kWh per annum in raw mill circuit and 16 23 lakh kWh per annum in GCT, Kiln ESP circuit. The details are given in Appendix - 4/5

PHASE - II

Total flow of smoke gas fans = $2,83,720 \text{ Nm}^3/\text{h}$ Flow of kiln ESP fan when raw mill is not in operation = $3,66,205 \text{ Nm}^3/\text{h}$

Flow of kiln ESP fan when raw mill is in operation = $4,19,496 \text{ Nm}^3/\text{h}$.

The measured flow indicates a difference of 82,485 Nm³/h (when raw mill is not in operation) and 1,35,776 Nm³/h (when raw mill is in operation) between smoke gas fans and kiln ESP fan This excess air entry has to be arrested immediately so that the unnecessary load to the fan and hence power consumed by the fan can be reduced. This excess air which is the false air in the circuit accounts for 11 56 lakh kWh per annum in raw mill circuit and 8 55 lakh kWh per annum in GCT, Kiln ESP circuit. The details are given in Appendix - 4/6

C. Reducing Pressure Loss Across Damper in Fan Systems

By reducing the speed for Phase -II coal mill vent fan and hot gas fan or by combined operation of damper and speed reduction VSD for cooler fans, the pressure loss across damper can be minimised

1. Phase - Il Coal Mill Vent Fan

In Phase - II coal mill vent fan, the damper is operated at 56%. The static pressure before damper is - 822 mm Wg after damper it is - 1342 mm Wg and thereby a pressure loss of 520 mm Wg is observed across damper.

By reducing the present rpm of 992 to 794 ie., by 20% the damper can be opened to more than 90%. Hence reduction in pressure loss and power consumption can be achieved. This measure is expected to save energy to the extent of 10 92 lakh kWh per annum. The details are given in Appendix - 4/7.

2. Phase - Il Coal Mill Hot Gas Fan

In Phase -II coal mill hot gas fan, the damper is on the delivery side of the fan and is operated between 35-45%. While delivery (positive) pressure of + 116 mm Wg is observed before damper, suction (negative) pressure of - 110 mm Wg is observed after damper. (Refer Figure). This is due to the influence of coal mill vent fan

By varying the rpm using variable speed fluid coupling the damper can be opened fully and hence the vent fan influence extends till the delivery of hot gas fan. This results in reduced total static pressure and hence reduced power consumption by hot gas fan by 11 kW resulting in energy savings of 0 65 lakh kWh per annum. The details are given in Appendix - 4/8.

3. Phase - I and II Grate Cooler Fans

In Phase -I and II grate cooler fans, inspite of having variable speed drives the inlet guide vane controls (dampers) are also operated Considering the process conditions, the cooler fans except K10 and K11 can be operated at reduced speed as discussed with plant management and thereby increasing the damper opening i.e, by combined operation of damper and speed reduction. This will reduce the pressure loss across damper and hence power consumption by 112 kW in both Phases resulting in energy savings of 8 87 lakh kWh per annum. The details are given in Appendix - 4/9

D. Replacement of Cooler ESP Fans in Both Phases with CorrectSize & High Efficiency Fans

In Phase - I and Phase - II, both the cooler ESP fans were found to be oversized and also less efficient. Out of 134 mm Wg total static pressure in Phase - I, 95 mm Wg accounts for pressure loss across damper and out of 122 mm Wg total static pressure in Phase - II, 82 mm Wg accounts for pressure loss across damper. The present efficiencies of Phase - I and Phase - II fans are found to be 58% & 49% respectively. These fans can be replaced with correct size and high efficiency fans resulting in energy savings of 5 22 lakh kWh per annum for Phase - I and 6.17 lakh kWh per annum for Phase - II. The details are given in Appendix - 4/10.

E. Operation of Raw Meal Silo Top Bag Filter Fans

The bag filter fans on raw meal silo top in Phase - I and II were operated continuously in both phases even when bucket elevator is used for conveying material. These fans can be stopped when bucket elevator is in operation as there is a separate dedusting fan for bucket elevator. A suitable interlocking arrangement can be done to prevent simultaneous operation of bag filter fan and bucket elevator dedusting fan The energy loss due to the operation of this fan is 5.06 lakh kWh per annum. The details are given in Appendix - 4/11.

F. Reduce Speed of Phase - I Primary Air Fan by 10% and Replace Existing Damper with Inlet Guide Vane Control

In Phase - I primary air fan, presently butterfly type of damper is used for flow control and the damper opening is 56%. The pressure loss across damper is 167 mm Wg, the static pressure being - 5 mm Wg before damper and -172 mm Wg after damper. This pressure loss can be minimised by reducing the rpm of fan by 10% and opening the damper fully. Also, the present inlet damper is to be replaced with inlet guide vane control. These measures are expected to save energy to the extent of 0.87 lakh kWh per annum. The details are given in Appendix - 4/12. The qualitative comparison of various control systems are given in Appendix - 4/13.

G. Replacement of Phase - Il Primary Air Fan with High Efficiency Fan and Inlet Guide Vane Control

From the measured parameters of flow and pressure the theoretical power consumption for the fan is 22.3 kW while measured power is 58 kW. Assuming motor efficiency as 80%, the fan efficiency comes to only 48%

43

Also, the inlet guide vane has to be replaced with a new one as the performance of present inlet guide vane is not satisfactory. Replacing the present fan with high efficiency fan and inlet guide vane control is expected to save energy to the extent of 1.64 lakh kWh per annum. The details are given in Appendix - 4/14.

H. Operate Cement Mill - II ESP Fan (Z2PO7) Similar to Other Cement Mills ESP Fans and Also Use Correct Size Fan

In cement mill - II, the ESP fan (Z2PO7) is placed at a far off distance from the ESP resulting in a higher pressure (256 mm Wg) at the suction side compared to other similar fans (maximum of 174 mm Wg) and hence higher power consumption. By placing it like other cement mill ESP fans (near ESP itself), the pressure and hence power consumption will be reduced. Also the efficiency of the fan was found to be around 58%. Replacing it with correct size and high efficiency fan, the energy savings to the extent of 2.90 lakh kWh per annum can be achieved. The details are given in Appendix - 4/15

I. Replace Cement Mill - III ESP Fan (Z3 PO5) with High Efficiency Fan

From the measured parameters of flow and pressure the theoretical power consumption for the fan is 16 kW while the measured power is 35 1 kW. Assuming motor efficiency as 90% the fan efficiency comes to only 51%. By replacing it with high efficiency fan (η = 75%) energy savings to the extent of 0.87 lakh kWh per annum can be achieved. The details are given in Appendix - 4/16

J. Replace Silo - 6 Top Fan (P2P69) in Packing House with High Efficiency Fan

From the measured parameters of flow and pressure, the theoretical power consumption was found to be 4.33 kW, while that of measured power is 14 9 kW. Assuming motor efficiency as 70%, the fan efficiency is only 41%

By replacing this fan with high efficiency fan (η = 75%) energy savings to the extent of 0.71 lakh kWh per annum can be achieved. The details are given in Appendix - 4/17

K. Optimise Air Quantity Used for Conveying Coal to Kiln & Calciner

Twin lobe compressors (Roots blowers) are used for conveying pulverised coal from F K Pump/C P Pump to kiln and calciner. The measurements indicate that the quantity used is higher than the norm. In order to optimise the quantity of air used for conveying it is suggested to reduce the quantity of air by reducing the rpm of blower in stages. Also it should be ensured that the present velocity is maintained by changing the present pipe size. The energy savings to the extent of 7.92 lakh kWh can be achieved. The details are given in Appendix - 4/18.

4.3 RECOMMENDATIONS

A. Arresting False Air in Phase - I Kiln ESP Circuit

False air entry has been observed in Phase - I Kıln ESP circuit The difference of 2,07,908 Nm³/h between smoke gas fans and kiln ESP fan clearly indicates the amount of false air in the circuit. By arresting the leakages in the circuit, considerable amount of energy can be saved. (Refer Section 4 2 B).

TATA ENERGY RESEARCH INSTITUTE BANGALORE

46

Annual Energy Savings = 16 23 Lakh kWh

Annual Cost Savings = Rs 48 70 Lakhs

Investment required = Marginal
Simple Payback Period = Immediate

B. Arresting False Air in Phase - I Raw Mill Circuit

The false air entry of 71927 Nm³/h has been observed in Phase - I Raw mill circuit. By arresting the leakages in the circuit, considerable amount of energy can be saved (Refer Section 4.2 B)

Annual Energy Savings = 16 94 Lakh kWh

Annual Cost Savings = Rs 50 84 Lakhs

Investment required = Marginal Simple Payback Period = Immediate

C. Arresting False Air in Phase - Il Kiln ESP Circuit

False air entry has been observed in Phase - II Kiln ESP circuit. The difference of 1,35,776 Nm³/h between smoke gas fans and kiln ESP fan clearly indicates the amount of false air in the circuit. By arresting the leakages in the circuit, considerable amount of energy can be saved. (Refer Section 4.2 B)

Annual Energy Savings = 8 55 Lakh kWh Annual Cost Savings = Rs 25 66 Lakhs

Investment required = Marginal Simple Payback Period = Immediate

D. Arresting False Air in Phase - II Raw Mill Circuit

The false air entry of 53291 Nm³/h has been observed in Phase - II Raw mill circuit. By arresting the leakages in the circuit, considerable amount of energy can be saved (Refer Section 4 2.B).

Annual Energy Savings = 11 56 Lakh kWh

Annual Cost Savings = Rs 34.68 Lakhs

Investment required = Marginal

Simple Payback Period = Immediate

E. Reduce Pressure Loss Across Damper in Phase - Il Coal Mill Vent Fan

The pressure loss across damper is found to be 520 mm Wg By using gear box, the rpm can be reduced by 20% and thereby the damper can be opened fully Hence, pressure loss across damper can be eliminated and considerable amount of energy can be saved. (Refer Section 4.2 C, 1)

Annual Energy Savings = 10 92 Lakh kWh

Annual Cost Savings = Rs 32 78 Lakhs

Investment required = Rs 4 00 Lakhs

Simple Payback Period = 2 Months

TATA ENERGY RESEARCH INSTITUTE BANGALORE

48

F. Reduce Pressure Loss Across Damper in Phase - Il Coal Mill Hot Gas Fan

The static pressure before damper is + 116 mm Wg while after damper it is - 110 mm Wg By using variable speed fluid coupling, the damper can be opened fully and hence the positive pressure at fan outlet becomes negative ie, suction takes place at fan outlet due to the influence of vent fan (Refer Section 4 2 C,2)

Annual Energy Savings = 0 65 Lakh kWh

Annual Cost Savings = Rs 1 96 Lakhs

Investment required = Rs 4.00 Lakhs

Simple Payback Period = 2 04 years

G. Reduce Pressure Loss Across Damper in Phase - I and II Grate Cooler Fans

The inlet vane controls of cooler fan starting from 3rd compartment (i e, W1k12 or W2K12) can be operated in combination with variable speed drives. By reducing the speed, the inlet vane control can be opened fully (Refer Section 4.2 C,3)

Annual Energy Savings = 8 87 Lakh kWh
Annual Cost Savings = Rs 26 61 Lakhs

Investment required = Nil

Simple Payback Period = Immediate

H. Replacement of Cooler ESP Fan in Phase - I with Correct Size and High Efficiency Fan

The cooler ESP fan in Phase - I was found to be 58% efficient By replacing with high efficiency fan considerable amount of energy savings can be achieved (Refer Section 4 2 D).

Annual Energy Savings = 5 22 Lakh kWh

Annual Cost Savings = Rs 15 68 Lakhs

Investment required = Rs 8 00 Lakhs

Simple Rayback Period = 7 Months

I. Replacement of Cooler ESP Fan in Phase - II with Correct Size and High Efficiency Fan

The cooler ESP fan in Phase - II was found to be 49% efficient By replacing with high efficiency fan considerable amount of energy savings can be achieved (Refer Section 4 2 D)

Annual Energy Savings = 6.17 Lakh kWh

Annual Cost Savings = Rs 18 53 Lakhs

Investment required = Rs 8 00 Lakhs

Simple Payback Period = 6 Months

J. Operation of Raw Meal Silo Top Bag Filter Fans

The bag filter fans on raw meal silo top in both phases were found to be in operation even though mechanical conveying (bucket elevator) is used for conveying material to silo. These fans can be stopped now and thereby considerable amount of energy savings can be achieved. (Refer Section 4.2 E).

TATA ENERGY RESEARCH INSTITUTE BANGALORE

50

Annual Energy Savings = 5 06 Lakh kWh

Annual Cost Savings = Rs 15 18 Lakhs

Investment required = Nil

Simple Payback Period = Immediate

K. Reduce RPM of Phase - I Primary Air Fan by 10% and Replace Existing Damper with Inlet Guide Vane Control

The butterfly type damper is used for flow control in Phase -I primary air fan In order to reduce the pressure loss across damper of 167 mm Wg, it is recommended to reduce the rpm of fan by 10% and thereby open the damper fully. This will reduce pressure loss across damper resulting in considerable amount of energy savings. (Refer Section 4.2.F.)

Annual Energy Savings = 0 87 Lakh kWh

Annual Cost Savings = Rs 2 61 Lakhs

Investment required = Rs 0 4 Lakh

Simple Payback Period = 2 Months

L. Replacement of Phase - II Primary Air Fan with High Efficiency Fan and Inlet Vane Control

This fan is found to be 48% efficient and also the inlet vane control used is not working satisfactorily. By replacing this fan with high efficiency fan and inlet vane control, considerable amount of energy savings can be achieved (Refer Section 4 2 G)

Annual Energy Savings = 1 64 Lakh kWh

Annual Cost Savings = Rs 4.94 Lakhs

Investment required = Rs.3.00 Lakhs

Simple Payback Period = 8 Months

M. Operate Cement Mill - II ESP Fan (Z2P07) Similar to Other Cement Mill ESP Fans and Also Use Correct Size Fan

In cement mill - II the ESP fan is placed at a far off distance than required resulting in higher pressure and hence higher power consumption. By placing it similar to other cement mill ESP fans, the pressure can be reduced. Also replacing this fan with correct size fan results in considerable energy savings. (Refer Section 4.2.H)

Annual Ènergy Savings = 2 90 Lakh kWh

Annual Cost Savings = Rs.8 71 Lakhs

Investment required = Rs 2 00 Lakhs

Simple Payback Period = 3 Months

N. Replace Cement Mill - III ESP Fan (Z3P05) with High Efficiency Fan

This fan is found to be 51% efficient, by replacing this with high efficiency fan considerable amount of energy savings can be achieved (Refer Section 4.2.I)

Annual Energy Savings = 0 87 kWh

Annual Cost Savings = Rs 2 61 Lakhs
Investment required = Rs 2 00 Lakhs

Simple Payback Period = 10 Months

O. Replace Silo - 6 Top Fan (P2P69) in Packing House with High Efficiency Fan

This fan is found to be 41% efficient, by replacing this with high efficiency fan considerable amount of energy savings can be achieved. (Refer Section 4.2 J)

Annual Energy Savings = 0.71 kWh

Annual Cost Savings = Rs 2 13 Lakhs

Investment required = Rs 2.00 Lakhs

Simple Payback Period = 12 Months

P. Optimise Air Quantity Used for Conveying Coal to Kiln and Calciner

The air quantity used for conveying pulverised coal to Kiln and Calciner were found to be above the required amount in both phases. This quantity can be reduced by reducing the rpm of blower in stages. In order to maintain the velocity the pipe size also has to be changed. This reduction in quantity results in considerable amount of energy savings. (Refer Section 4 2.K).

Annual Energy Savings = 7 92 kWh

Annual Cost Savings = Rs.23.76 Lakhs

Investment required = Rs 4.00 Lakhs

Simple Payback Period = 2 Months

4.4 SUMMARY OF POTENTIAL SAVINGS

Recommendations	Annual Ene	rgy savings	Investment requirement	Simple Payback period
Ī	Lakh kWh	Rs in Lakhs	Rs.in Lakhs	
rresting False Air in Phase - I Kiln ESP ircuit	16 23	48.70	Marginal	Immediate
rresting False Air in Phase - I Raw Mill ircuit	16 94	50.84	Marginal	Immediate
rresting False Air in Phase - II Kıln SP Circuit	8 55	25 66	Marginal	Immediate
rresting False Air in Phase - Il Raw lill Circuit	11 56	34 68	Marginal	Immediate
leduce Pressure Loss Across Damper n Phase - II Coal Mill Vent Fan	10 92	32 78	4 00	2 Months
leduce Pressure Loss Across Damper Phase - Il Coal Mill Hot Gas Fan	0 65	1.96	4 00	2 04 Years
leduce Pressure Loss Across Damper Phase - I & II Grate cooler fans	8 87	26 61	Nil	Immediate
Replacement of Cooler ESP Fan in Phase - I with Correct Size and High Efficiency Fan	5 22	15 68	8.00	7 Months
Replacement of Cooler ESP Fan in Phase - II with Correct Size and High Efficiency Fan	6 17	18 53	8 00	6 Months
peration of Raw Meal Silo Top Bag ilter Fans	5.06	15.18	Nil	Immediate
Reduce RPM of Phase - I Primary Air an by 10% and Replace Existing Damper with Inlet Guide Vane Control	0 87	2 61	0 40	2 Months
Replacement of Phase - II Primary Air Fan with High Efficiency Fan and Inlet Buide Vane Control	1 64	4 94	3 00	8 Months
Operate Cement Mill - II ESP Fan Z2P07) Similar to Other Cement Mill ESP Fans and Also Use Correct Size an	2 90	8 71	2 00	3 Months
Replace Cement Mill - III ESP Fan Z3P05) with High Efficiency Fan	0 87		2 00	10 Months
Replace Silo - 6 Top Fan (P2P69) in Packing House with High Efficiency Fan	0 71		}	12 Months
Optimise Air Quantity Used for Conveying Coal to Kiln and Calciner	7 92	23.76	4 00	2 Months
TOTAL	105.08	315.38	37.40	

5.0 COMPRESSED AIR SYSTEMS

5.1 FACILITY DESCRIPTION

The plant has 8 numbers of compressor houses located at different buildings in both the phases in total. Totally there are fifty compressors in both the phases put together. The details of the compressors operated are given below.

SI No	Comp House	Type of Compr	No of Compr Used	Rated Capacity m³/min	Rated Pres kg/cm²g	Usage	Stand -by comp	Remarks
1	Packing House	Recipro -cating	3	27 6	30	Silo, Packer, Packer Hopper Aeration	1	
		Recipro -cating	1	13 84	10 5	Operating Valves & Filters	2	
2	Cement Mill - 1	Recipro -cating	-	-	-	-	4	Earlier used for Fluxo-Pump
	Cement Mill - 2	Recipro -cating	1	31 41	5 0	Water Spray for CM-1 & CM-2	3	Earlier used for Fluxo-Pump
3	Cement Mill - 3	Recipro -cating	1	30 64	60	Water Spray for CM-3 & Filters	5	Earlier used for Fluxo-Pump
	Cement Mill - 4	Recipro -cating	4	30 64	60	Water Spray for CM-4 & Fluxo-Pump	2	-
4	Ph-II Atox Mill	Recipro -cating	2	11 58	20	C P Pump	2	-
•		Recipro -cating	3	66	8 5	Filters & Pneumatic Gates	1	-
5	Ph-l Kiln - 1	Recipro -cating	2	13 81	10 5	Vital Equipments & Filters	1	-

SI No	Comp House	Type of Compr	No of Compr Used	Rated Capacity m³/min	Rated Pres kg/cm²g	Usage	Stand -by comp	Remarks
6	Ph-II Kiln - 2	Recipro -cating	1	13 81	10 5		_	-
;		Recipro -cating	1	10 20	10 0	Vital Equipments	-	-
1 1		Recipro -cating	1	4 44	8 5	& Filters	-	
		Recipro -cating	-	6 60	8 5		1	-
7	Ph-I Enviro Care	Screw	3	26 25	8 0	GCT, Kiln & Calciner Downcomer duct	1	-
8	Ph-II Enviro Care	Screw	2	26 25	8 0	GCT, Kiln & Calciner Downcomer duct	2	-

The plant was originally designed with pneumatic conveying of cement from cement mill to silo. But now the conveying system is converted to mechanical type. Hence most of the compressors in cement mill areas are kept as standby compressors. The plant has sufficient number of standby compressors. The specifications of all the compressors are given in Appendix - 5/1.

5.2 OBSERVATIONS, ANALYSIS AND FINDINGS

i. Free Air Delivery (FAD) Test

FAD test was conducted to assess the actual air delivery of all the compressors which were operating during the study period. The method of testing and FAD calculation details are given in Appendix - 5/2. The details of the compressors with FAD less than 85% are tabulated below.

SI. No.	Compressor	Design FAD m³/h	Actual FAD m³/h	% FAD delivered		
110.	Packing House		11) /11			
1	P2X10	27.6	18.22	66		
2	P2X11	27 6	22.70	82		
3	P2X12	27 6	20.95	76		
	Atox Mill Area					
4	K2U07	11 58	7.56	65.3		
5	K2U11	11.58	8 49	73.3		
6	K2X20	6.6	3 99	60.5		
7	K2X21	66	3 91	59.2		
8	K2X23	66	3.80	57 6		
	Kiln 1 - Area					
9	W2X10	13 81	9.54	59 6		
	Kiln 2 - Area					
10	√H2X02	13 81	8.23	60.0		
Phase 2 - Enviro Care						
11	W1X12	26.25	16 95	64.6		
12	W1X13&14	26 25+26.25	40 17	76.5		
	Phase 2 - Enviro Care					
13	W2X11	26 25	19 23	73 3		

FAD of a compressor should atleast be 85% of its rated capacity. When it falls below 85%, the reasons for deviation need to be examined and rectified. It is recommended that a maintenance check of the above compressors be carried out for valve leakage, choked intake filters, worn out piston rings and worn out cylinder liners. Appendix- 5/3 exhibits savings which may be expected from FAD improvement to 85% of the rated capacity. Regular maintenance must be carried out to maintain the FAD capacities specified by the manufacturers.

ii. Specific Power Consumption

The specific power consumption of an air compressor indicates it's power consumption for free air delivery of 100 m³/h and is the most convenient way to measure compressor's energy efficiency. The specific power consumption depends on type of compressor, capacity, operating pressures, amount of free air delivered. The specific power consumption of all the compressors are estimated and the details are given in Appendix-5/4. For a double-stage compressor, the specific power consumption should be in the range of 8.5 - 11.5 For a single-stage compressor, it should be in the range of 6.0 - 8.0 The compressors having higher specific power consumption are tabulated below:

SI. No.	Area	Compressor ID Code	Specific power consumption kW/(100 m³/h)
1	Atox Mill	K2X20	14 41
2	Atox Mill	K2X21	14 71
3	Atox Mill	K2X23	15 66
4	Kıln - 2	W2X01	11 78
5	Kıln - 2	H2X02	15 07
6	Ph-1 Envirocare	W1X13 & W1X14	15 32
7	Ph-2 Envirocare	W2X13	12 84

Measures to improve FAD would also reduce specific power consumption

iii. Compressor Efficiency

All the compressors were studied for their efficiencies (which includes transmission efficiency also). Various parameters such as delivery pressure, actual FAD, power consumption were monitored. The compressor efficiency calculations are given in Appendix - 5/5. The efficiency of a non-lubricated compressor is said to be satisfactory, if it is in the range of 60-70%.

58

The compressors having efficiencies less than 60% are tabulated below:

SI No	Area	Compressor ID Code	Compressor Efficiency,	%
1	Atox Mill	K2U07	· 34	
2	Atox Mill	K2U11	30	
3	Atox Mill	K2X20	51	
4	Atox Mill	K2X21	50	
5	Atox Mill	K2X23	46	

The improvement in FAD will also result in improved compressor efficiency

iv. Operating Parameters

Compressor operating pressures (loading & unloading), temperatures of air and water before inter-cooler and after-cooler, temperature of air and water after inter-cooler and after-cooler were monitored during the study. These parameters are tabulated in Appendix - 5/6. The purpose of the inter-cooler is to reduce the temperature of the compressed air, there-by it's volume and hence, reduce the work required to compress it in the next stage. Ideally the air should be cooled to it's I - stage intake temperature. Increase in air temperature after inter-cooler due to scale formation, etc., will increase the specific power consumption of the compressor. Every 4°C rise in air temperature would result in 1% higher power consumption in the subsequent stages.

The compressors having air temperature above 40°C after the inter-cooler are tabulated below

SI No	Area	Compressor ID Code	Temperature of air at outlet of Inter-cooler
1	Cement Mill - 4	Z4U07	38,50
2	Cement Mill - 4	Z4U08	41,55
3	Cement Mill - 4	Z4U11	45,38
4	Atox Mill	K2X21	42
5	Atox Mill	K2X23	44
6	Kıln - 1	W2X10	45

Hence de-scaling of inter-coolers has to be carried out for the above compressors which will reduce the air inlet temperature for the second stage and reduce the energy consumption.

The after-coolers are meant for reducing the storage volume required for the compressed air by reducing it's temperature. The compressors having air temperature above 40°C after the after-cooler are tabulated below

SI No	Area	Compressor ID Code	Temperature of air at outlet of After-cooler
1	Packing House	P2X10	47
2	Packing House	P2X11	56
3	Packing House	P2X12	45
4	Atox Mill	K2U07	45
5	Atox Mill	K2U11	43

De-scaling of after-coolers for the above compressors should be carried out to reduce the air storage volume requirement. Also it was observed that the compressors in cement mill-4 don't have after coolers

v. Loading Pattern of Compressors

The compressor loading and unloading time (cycle time) were noted to calculate the percentage loading duration of the compressors. The details are given in Appendix - 5/7 The percentage loading duration of W2X10 compressor, under normal operation, was observed to be 74%. But it was found to be 90 7%, when the compressed air was also used for body cleaning. This kind of compressed air wastages should not be allowed since, a 5 mm opening in compressed air line could result in a loss of about 1 5 m³/min at 6 kg/cm²(g) pressure. A separate blower could be provided for the body cleaning purpose. During the study W2X14 screw compressor was found to be running in unloaded condition continuously, although it was claimed that automatic switch-off has been arranged. The proper working of such automatic systems should be checked.

vi. Compressed Air Utilisation Pattern

The user list of compressed air along with their rated consumption and pressure for all the compressors are given in the Appendix-5/8. The actual pressure and quantity of compressed air required at the user point were compared with those at the generation point Replacement of compressor by blower for low pressure requirements was also studied. They are discussed in detail in the following sections.

vii. Operating Only Two Low Pressure Compressors And Reducing The Pressure Setting To 1.2 kg/cm² (g) in the Packing Plant Area

Normally in packing house, three low pressure compressors delivering air at 2.2 kg/cm² (g) are operated for silo and packer aeration, when 8 packers are operated. The FAD of the compressors were found to be less than 85%. By improving the FAD to 85% of the rated capacity and arresting all the body cleaning tapping points, it is possible to stop one of the compressors.

Moreover, the pressure at the user point was physically measured and found to be 1.0 kg/cm² (g). Hence, the delivery pressure at the generation point can be reset to 1.2 kg/cm² (g). The savings that can be achieved by implementing the above measures are worked out in Appendix - 5/9

viii. Optimisation Of Compressed Air Usage In Cement Mill Area

The cement mill was initially designed for pneumatic conveying of cement from cement mill to silos through fluxo pump. Presently, for three cement mills pipe conveyor is in operation for conveying cement to silos and for cement mill - IV, whenever Special Grade Cement is manufactured, pneumatic conveying is used

All the compressors used presently are designed for pneumatic conveying By optimising compressed air usage and replacing two high pressure compressors with one low pressure compressor and one lower capacity high pressure compressor, the specific power consumption can be brought down. Savings that can be achieved by this measure is given in Appendix-5/10

ix. Operating Only Two High Pressure Compressors in Atox Mill Area

Presently three high pressure compressors (K2X20, K2X21, K2X22) are operated in Atox Mill section to meet the compressed air requirements of filters and pneumatic gates. The FAD of the compressors are respectively, 60.5%, 59.2% and 57.6%. By improving the FAD to 85% and arresting all the body cleaning tapping points, it could be seen that two compressors are sufficient to meet the demand. Hence, one of the compressors can be switched-off. The details are given in the Appendix-5/11.

x. Use of Blower Air Instead of Compressed Air for Coal Conveying

At present compressed air at 0.8 kg/cm² (g) is used to convey the pulverised coal to storage bin through C.P.Pump. For low pressure applications (upto 1 kg/cm² (g)) like this, a blower can be used, which will have lower specific power consumption compared to compressors. The calculation details are given in Appendix-5/12

xi. Replacing V-Belts of Compressor Motors with Flat Belts

Presently, except few compressors, all are using V-belts for power transmission V-belts cause power loss of about 3% of the belt power rating and 1% of the absorbed power due to wedging-in & wedging-out action, windage and creep These V-belts can be replaced with synthetic flat belts, which could be designed for nil power loss and 99% transmission efficiency. The power savings by incorporating this measure would be in the range of 5-6% of the absorbed power. The detailed calculations are given in the Appendix-5/13.

xii. Performance of Instrumentation in Compressed Air System

The instrumentation for entire compressed air system was studied. The instruments necessary for compressed air systems are discussed in chapter-10. The observations regarding performance of Compressed air system in the entire plant is discussed (department wise) below:

SI. No.	Area	Compressor Code	Observations
	PACKING PLANT	P2X14, P2X15 & P2X16	Pressure gauges at Compressor are working satisfactorily, in both the stages and Air receiver temp. Gauges for Air & water (inlet & outlet) before & after inter cooler are not available.
		P2X10, P2X11 & P2X13	The pressure gauges at compressors are to be calibrated since the pressure readings are different from Air receiver. The pressure gauge in air receiver is working satisfactorily. Temp Gauges for air & water are not available.
2	CEMENT MILL	Z3U09	Pressure gauges at compressor & Air receiver working satisfactorily Temp Gauges not available
		Z4U07	Pressure gauges at compressor point not working satisfactorily, temp Gauges not available
		Z4U08	Pressure gauges at compressor point working satisfactorily Temp Gauges not available
		Z4U09	Pressure gauges at compressor point not working satisfactorily, temp Gauges not available
		Z4U11	Pressure gauges at compressor point working satisfactorily Temp Gauges not available
			In cement mill area for most of the compressors, the pressure gauge at I stage was not functioning
3	ATOX MILL AREA	K2U07, K2U11	Pressure gauges are found to be working properly
		K2X20, K2X21, K2X23	Pressure gauges are working properly
			Pressure gauge need to be calibrated temp Gauges not working. The receiver gauge also need to be calibrated, as the reading shown is different from compressor discharging.
4	KILN-I	W2X08, W2X10	Receiver pressure gauge need to be calibrated Temp Gauges are not working properly
5	KILN-II	W2X01, H2X02	Receiver pressure gauge is not working properly Temp Gauges are not working
		H2X01	Temp Gauges are not working properly
6	PHASE-II ENVIROCARE	W1X12, W1X 13, W1X 15	Pressure gauges are not working properly Ammeters are not working properly
7	PHASE-II ENVIROCARE	W2X11,13	Pressure gauges are not working properly Ammeter are not working properly

6.3 RECOMMENDATIONS

A. Improving Compressor FAD

The Atox mill area compressors K2U07, K2U11, Kiln 1-area compressor W2X10, Kiln 2-area compressor H2X02 and Envirocare compressors W1X12, W1X13, W1X14, W2X11 operate with lower FADs. The FAD of compressors should atleast be 85% By proper maintenance, the FAD of these compressors could be improved above 85% Refer section 5 2.(i) for details

Estimated savings:

Total power savings = 119 kW

Annual energy savings = 4 46 lakh kWh

Annual cost saving = Rs 13 38 lakhs

Investment required = Rs 3 50 lakhs

Simple payback period = 4 months

B. Operating Only Two Low Pressure Compressors And Reducing the Pressure Setting To 1.2 Kg/cm² (G) In The Packing Plant Area

In packing house, 3 LP compressors are operated, supplying air at 2.2 kg/cm² (g) for silo and packer aeration. The FAD of these compressors are less than 85%. By improving the FAD to 85%, one compressor can be switched-off. Moreover, as the pressure required at the user point is only 1.0 kg/cm² (g), the delivery air pressure at the compressor can be reset to 1.2 kg/cm² (g). Refer section 5.2 (vii) for details

Estimated savings :

Total power savings = 127.8 kW

Annual energy savings = 5 68 lakh kWh

Annual cost saving = Rs 17.03 lakhs

Investment required = Rs 2 00 lakhs

Simple payback period = 2 months

C. Optimisation of Compressed Air Usage In Cement Mill Area

Pipe conveyor is used for conveying cement from cement mill to silo for cement mill - I to III and whenever Special Grade Cement is manufactured in cement mill - IV, for which pneumatic conveying is used. All the compressors in this area are designed for pneumatic conveying. By optimising compressed air quantity and replacing two high pressure compressors with one low pressure compressor and one lower capacity high pressure compressor, the specific power consumption can be reduced. Refer section 5.2 (viii) for details

Estimated savings:

Total power savings = 183 kW

Annual energy savings = 14 49 lakh kWh

Annual cost saving = Rs 43 48 lakhs

Investment required = Rs 29.00 lakhs

Simple payback period = 8 months

D. Operating Only Two High Pressure Compressors in Atox Mill Area

By improving the FADs of Atox mill area compressors K2U20, K2U21, K2U23 to 85%, it is possible to switch-off one of the compressors as the air delivered from the other two would be sufficient to meet the demand. Refer section 5 2.(ix) for details

Estimated savings:

Power savings = 36 kW

Annual energy savings = 2 83 lakh kWh

Annual cost saving = Rs.8.48 lakhs

Investment required = Rs 2 00 lakhs

Simple payback period = 3 months

E. Use of Blower Air Instead of Compressed Air For Coal Conveying To Storage Bin In Atox Mill Area

In Atox mill section, compressed air at 0.8 kg/cm² (g) is used for conveying pulverised coal to the storage bin Blowers can be used for such low pressure applications as they have lower specific power consumption compared to air compressors Refer section 5.2.(x) for details

Estimated savings:

Net power savings = 13 kW

Annual energy savings = 77220 kWh

Annual cost saving = Rs 2.32 lakhs

Investment required = Rs.2 00 lakhs

Simple payback period = 11 months

F. Replacing V-Belts of Compressor Motors with Flat Belts

V-belts used for power transmission in compressors can be replaced with flat belts, as V-belts cause power loss of about 5-10% of the absorbed power. Refer section 5 2 (xi) for details

Estimated savings:

Total power savings = 32 kW

Annual energy savings = 2.44 lakh kWh

Annual cost saving = Rs 7 32 lakhs

Investment required = Rs 1 91 lakhs

Simple payback period = 3 months

SUMMARY OF POTENTIAL SAVINGS

SI. No.	Proposal	Annual S Pote lakh kWh		Cost of implementation,	Simple payback penod,
140.				Rs lakh	months
1	Improving Compressor FAD	4 46	13 38	3 50	4
2	Operating Only Two Low Pressure Compressors And Reducing The Pressure Setting To 1 2 kg/cm2 (g) In The Packing Plant Area	5 68	17 03	2 00	2
3	Optimisation Of Compressed Air Usage In Cement Mill Area	14 49	43 48	29 00	8
4	Operating Only Two High Pressure Compressors in Atox Mill Area	2 83	8 48	2 00	3
5	Use of Blower Air Instead Of Compressed Air For Coal Conveying To Storage Bin In Atox Mill Section	0 77	2 32	2 00	11
6	Replacing V-Belts of Compressor Motors with Flat Belts	2 44	7 32	1 91	3
	Total	30 67	92.01	40.41	6

TATA ENERGY RESEARCH INSTITUTE BANGALORE

68

ELECTRIC DRIVES

FACILITY DESCRIPTION

Electric drives contribute to the lions share of electricity consumption in L&T ACW They are used for various applications such as:

- > Fans
- Blowers
- Pumps
- Ball Mills
- Crushers
- Conveyor
- Material Handling Equipments
- Compressors

Electric drives in ACW comprise of both H.T. motors with operating voltage of 6.6 kV and L.T. motors with operating voltage at 415 volts. The plant has come up in 2 phases. Phase - I in 1983 and Phase - II in 1987 and subsequently both the phases have been upgraded in the year 1994. Majority of the L.T. motors presently used are squirrel cage induction motors in DOLL starting mode and for some of the major application, H.T. slip ring induction motors with L.R.S./G.R.S. have been used. Besides above D.C. motors for main kiln drive have been used for both the phases.

The connected motor loads are as given below:

Locations	Connected Motor Load in kW			
	6 6 kV	415 Volts		
Phase - I	14,030	8588.67		
Phase - II	12,780	8380.87		
Cement Mill	15,200	4767.81		
Packing Plant	-	2658.58		
Mines & Coal Crusher	3,960	2222 82		
Sub-Total	45,970	26618 75		
Total	72588.75			

The range of motor capacity spans over 0.37 kW to 225 kW for L.T motors and 200 kW to 5400 kW for H T. motors.

The study has been conducted by carrying out on-line measurements of power parameters for the drives rated above 11 kW and few sample measurements of lower rating motors. The application details have been studied and discussed jointly with plant management. Suitable recommendations for energy efficient measures have been proposed and discussed.

6.2 OBSERVATIONS, ANALYSIS AND FINDINGS

The instantaneous power parameters e.g. volts, amps, p.f. kVA and kW have been measured with the help of portable load analyser for H.T. motors and clip-on power meters for L.T. motors. In selected application areas, continuous monitoring over a period of time is carried out. These datas have been used for analysis and conclusion.

6.2.1 H.T. MOTORS

Motor Loading Parameters

The power parameters as measured are presented in Appendix - 6/1. It is observed that the HT motors are generally loaded 85% and above in Phase - I except for fans The operating p f is 0.80 - 0.95.

In Phase - II similar loading pattern exists with better average p f. of 0.87 and above

However, in Cement mills HT motors are loaded more than 93% with p.f. of 0.81 - 0.95

A. PHASE -1:

The raw mill main motor (3000 kW) R1MO3 is loaded between 83 to 94% with p f of 0 83 whereas R1M23 is loaded around 87.3 % Both these motors are with L R S starting method and normally operates at more than 90% load continuously throughout the day.

The Envirocare compressor is loaded between 71 5 to 94 5% with p f. less than 0.8. The compressors W1X11 to W1X14 which are in use for GCT water spray have been normally loaded upto 90 % or above.

The coal mill motor K1MO3 (950 kW) is loaded at 86 9% with p.f. of 0 98. However the Phase - I coal mill is not as efficient as ATOX mill in Phase - II

The raw mill fan R1PO5M1 (700 kW) is found to be loaded around 58% with p f of 0 92

Whereas the rotary separator (315 kW) motors is loaded optimally around 95.2% with p f. of 0.85.

The cooler fans W1K16M1 and W1K17M1 are with variable speed L.R S. feature and are loaded between 38 8% to 67 8% with p.f. > 0.9.

The cooler ESP fan W1P51 (425 kW) is loaded around 67.5% with p.f. of 0.86 The load being variable in nature, the plant has already used slip power recovery system for above fan

Similar measure is also adopted for kiln ESP fan J1P44 (600 kW) which is loaded around 85% with p f of 0 86.

The smoke gas fans J1J01 / J1JO3 (1650/950 kW) are loaded 89 9% and 99 9% respectively with p.f of operation around 0 90. Both these fans are with V S L R S feature and their speed depends on the kiln feed rate and corresponding damper opening

The energy efficiency study of fans is dealt in Chapter No 4

From the observed parameters as discussed above it is found that in Phase - I, most of the HT drives are loaded more than 80% and various energy saving measures along with measures for p.f improvement are already in existence

B. PHASE - II

The raw mill main motor R2MO3 (5400 kW) is loaded around 81 9% with p f around 0 90. Normally the requirement of speed variation is absent for this application. And LRS is used for starting purpose

The raw mill separator R2S01 (325 kW) is loaded around 62.5% with low p f of 0.56

The raw mill fan R2P05 (825 kW) which is connected with energy saving S.P.R.S. device is loaded only 48.6% with p.f. of operation only 0.67.

The coal mill motor K2M03 (680 kW) is loaded around 75% with p f. of 0.93 This mill is ATOX mill (i.e. vertical roller crusher) with better energy efficiency as compared to Phase - I.

The coal mill fan K2701 (600 kW) is loaded in varying degree (83.7% to 102 5%) with pf ranging between 0 87 - 0 88

The screw compressors W2X11 to W2X13 of 200 kW ratings are loaded between 62% to 97% with p f ranging between 0.78 - 0.90.

The cooler ESP fan W2P31 (600 kW) is loaded only by 33.7% with p f. of 0 77 However due to variable speed requirement, the plant is using S P R S towards energy savings.

The kiln ESP fan J2P09 is with variable speed grid resistance control start and loaded 84 %

The smoke gas fans J2J01 and J2J03 are loaded 92 7 % and 85 6 % respectively and with p f of operation varying between 0 87 to 0 90. These fans are fitted with V S L R S / V.S G R S.

Therefore in Phase - II for the HT drives, with variable torque / speed application, the plant management has already adopted suitable energy saving measures

C. MINES

Limestone from quarry is crushed at old crusher house and at new crusher house. The old crusher house is located close to Phase - II with primary and secondary crusher drives of 760 kW and 1000 kW respectively. The new crusher house located at L.S. mines has primary and secondary crusher drives of 1000 kW and 1200 kW respectively. The crusher loading was observed to be a continuous shock load. The 3¢ microprocessor based power analyser was used to monitor the operating load of crusher 6 6 kV HT motors. The details are given in Appendix - 6/1

The old crusher is used sparingly, mainly in the event of breakdown or maintenance of the new crusher. The new crusher at mines will be under operation for more than 7000 hours in a year.

The loading parameters of motors coupled to new crusher is around 80%. The instantaneous load variations are high. Due to non uniform nature of sizes and hardness of limestone from quarry, the crusher requires such deration for smooth functioning and withstanding short time peaks and temperature rise of motor windings. As such there is no potential for energy savings with the drives coupled to crushers.

D. CEMENT MILL

The cement mill 1 is driven by two motors Z1M03 and Z1M23 of 1800 kW each which are loaded between 93 2 - 94 8% with pf of 0 86 - 0 95

The cement mill 2 is driven similarly by two motors Z2M03 and Z2M23 loaded around 96 - 97% with p f varying between 0.86 - 0.95.

The cement mill 3 Z3MO3 (4000 kW) is loaded around 98% with p.f. of operation as 0 81.

All the above 3 cement mills are used for OPC - 53 grade cement and with LRS starting system. They are normally operating 24 hours a day and with constant nature of load.

The cement mill No 4 Z4M03 (4000 kW) is used for the special grade of cement presently and being loaded 95 4% with p f of 0 95

Because of their optimum loading and constant nature of torque/speed requirement, no scope arises for adopting measures towards energy conservation except for required reactive compensation which is partly in existence

6.2.2 L.T. MOTORS

The power parameters for various LT drives have been tabulated in sectionwise as below

а	Phase - I .	(Appendix - 6/2)
b	Phase - II	(Appendix - 6/3)
С	Old LS Crusher, New LS Crusher	
	& Coal Crusher	(Appendix - 6/4)
d	Cement mill and Pump House	. (Appendix - 6/5)
е	Packing plant	(Appendix - 6/6)

A. PHASE - I

L T drives are being used for varied application such as Hydraulic pump, material handling equipment, conveyors, dust filter fans, hammer mill, cooler fans, F K /C P. Pump blowers

The Pie graph below represents the percentage loading of LT motors in Phase -I. It is observed that around 54% of motors are found operating in the loading range of 20 - 40% Around 28% of motors are loaded in the range 40 - 60% Majority of L.T motors are being operated at a voltage level of 419 - 421 volts.

Number of motors operating at loading below 40%, even to the tune of 20% or below are observed with a low pf. varying from 0.22 - 0.59 Particularly the bucket elevator R1J01M1 (110 kW) is loaded around 17.2% and the hammer mill W1M01 (160 kW) is loaded around 11.4% with very low pf. 0.51 and 0.29 respectively

The screw conveyors J1U41M1 to J1U43M2 are loaded poorly below 15% with an average p f around 0 3

It is observed that the cooling fans W1K10 - W1K15 (225 kW) are operated with variable speed depending on the operating conditions, kill feed etc. This has contributed to substantial energy savings and comparatively improved p.f. in the range of 0.81 - 0.87.

The motors which are operating with very low loading and poor pf. if operated in 'STAR' mode shall contribute to better loading pattern with improved pf of operation. However, it is necessary to check the driven load requirement before shifting to 'STAR' mode. The use of Auto DELTA - STAR controller can facilitate such application.

The hammer mill motor is grossly overrated for its application demand. However, the plant management expressed that for avoiding trippings due to sharp peak overload, use of such higher capacity is being continued. The operation also got a continuous fluctuation and kick loads.

It is proposed that use of suitable electronic starter with energy savers shall help in maintaining smooth operation and higher p f. of operation. This will also facilitate less wear and tear in the mechanical parts

Some of the motors, which are operating at a loading of 40-60% are observed to have higher p f of operation between 0.61 - 0.85.

The Coal mill fan K1U43 and K1U45 (150 kW) are coupled to slip ring motors

The primary air fan W1V07 (110 kW) can be retrofitted with variable speed drives for better energy efficiency or can be replaced with high efficiency fan

Besides above, from the observed loading parameters it can be concluded that there lies a scope of optimum sizing of motors for number of applications

A few motors are observed to be loaded beyond 60% with p.f. of operation between 0.73 - 0.85.

It is observed that in Phase - I mostly standard motors are in use.

B. PHASE - II

In Phase - II, the number of motors operating under different load condition is presented in Pie graph as below:

From the Pie graph above it can be seen that around 36% of motors are found loaded in the range 20 - 40% About 38% of motors are found operating above 60% loading range

In Phase - II also similar condition persists for hammer mill W2M01 (190 kW) which is hardly loaded around 8.2% with poor p.f. of 0.45

The cooler fan W2K10 - W2K17 are presently operated on DOL mode. However recently variable speed drives have been installed for energy efficiency improvement. It is proposed to be commissioned within 1 or 2 months. Similarly the Dynamic separator K2P74 (90 kW) is observed to be loaded by 24 7% with p f. 0 92 due to its VSD feature.

In Phase - II, though number of motors are found to be operating between 40 - 60% loading, their operating p f is observed to be higher (0.59 - 0.82) as compared to Phase - I. This is due to use of high efficiency motors in Phase - II. It is also observed that the loading % is better in Phase - II comparatively. And a number of motors are existing with high starting torque feature particularly of NGEF make.

The fans and blowers are dealt mainly in Chapter - 40

The water pumps R2X50 and R2X52 (both 30 kW) are found to be loaded at 77% and 100% respectively with p.f of 0 78 - 0.85. In both the cases the outlet is throttled by 70-80%. It was discussed with plant personnel and understood that there is a proposal for use of high efficiency pump to bring down energy usage.

The manufacturing process being dry, the cooling water requirement is less. The pumps are mainly used to pump cooling water to the Gas conditioning tower, Compressor, Gear boxes, Cement mills etc.

C. COAL CRUSHER AND L.S. MINES

The Coal primary and secondary crushers are observed to be loaded very low. But due to its nature of load the sizing is not feasible.

The RBC's are found to be loaded between 45 to 49% with p.f. around 0.75 The primary and secondary chain reclaimer are loaded 31.5% and 28.5% respectively The dust filter fan A0P04 (75 kW) is operating at a load of 77.2% with p f. 0.71.

In limestone mines, the conveyor belts A3J04M1 - M3 (II 90 kW) are subjected to surge load and hence fitted with fluid coupling system. They are loaded 64% to 82% with p f of 0 70 - 0 77 Plant has also initiated measure to stop idle running of such conveyors

The dust filter fan is loaded around 55% with p.f. 0.75. It is a constant speed requirement

D. CEMENT MILL AND PUMP HOUSE

Number of motors operating under different loading patterns is represented in the Pie graph below

From the Pie graph it can be seen that around 39% of motors fall in the range of 20 - 40% loading About 41% of motors are found operating above 60% loading range

The compressors in cement mill Z1U11 and Z1U13 (160 kW) are optimally loaded around 95 35 to 100% with pf 0 89 - 0.90 under load condition and 22-25% with pf. 0 60 - 0 65 under no load condition. The time for loading / unloading is almost equal. Some of the compressors are found to be flat belt driven which helps in lesser friction loss.

The new ESP fan Z2P07 (110 kW) is loaded by 61% with pf 0.75 while being operated at 80% damper open condition.

The separator fan Z2S23 (200 kW) is with fixed speed GRS system and currently loaded upto 69% with p f 0 68.

The filter fans and dedusting filter fans are operating at less than 25% loading with poor p f

The bucket elevator system introduced for energy conservation are loaded around 34.8 to 46.4% with p.f. ranging from 0.64 - 0.80. The variable load and high starting torque demand necessitates extra capacity of the bucket elevator motors.

In Pump House, most of the pumps are rated for 30 kW except for pump No 5 which is 11 kW. The pumps are operating at loading range 74 to 92% with p f 0.72 to 0.84

The return pumps are loaded around 49% to 52% with p.f. of 0.70.

In Cement mill it is observed that number of under-loaded motors are contributing to low p f These can be taken up for STAR operation subject to compliance of starting torque requirement

E. PACKING PLANT

In packing plant major loads are compressors, which are dealt in detail in Chapter No 5

The compressor motors are loaded between 67 - 72% with p f. 0.7 to 0.84

The bucket elevators are loaded partly whereas the jet pulse filter fans are loaded close to 70% with pf 0.75 on an average

Around 56 % of Packing Plant Motors are observed to be operating under 20 - 40% loading range, as represented in the Pie graph below.

6.3 RECOMMENDATIONS

A. General

- Though the plant is having well structured information on drives, it is suggested that for all important drives, suitable history cards be maintained for future reference. This will also help the management to assess the suitability of each motor to its application and to take decisions regarding replacement / rewinding
- b The plant being under continuous operation, preventive routine check on crucial drives shall help in reducing down time.
- c Necessary precaution during rewinding of motors should be taken.
- d In feasible cases, motor terminal based reactive compensation shall help in avoiding distribution loss.

B. Star Mode Operation of Under-loaded Motors

The motors with active loading less than 35 - 40% may be run in 'STAR' mode. This will reduce the energy consumption and simultaneously improve the p.f. of operation because of reduced iron losses. However, it is necessary to comply with the starting torque requirement. A number of motors in various areas are identified to be operated in 'STAR' mode, and the results of calculated energy savings are tabulated in Appendix - 6/7

This will result in annual energy savings to the tune of 68793 kWh.

TATA ENERGY RESEARCH INSTITUTE BANGALORE

83

Annual energy savings = 68793 kWh

Cost of annual energy savings = Rs.2 63 Lakhs

Cost of implementation = Nil
Simple payback period = Nil

A number of motors are identified which are usually loaded in the range of 35 - 40 %. They are seldom operated above 50% loading as per process demands Adoption of Auto DELTA - STAR controllers (Operates in Star mode when the motor is under-loaded and changes over to Delta mode when motor load exceeds 40%) for these motors, yield energy savings as tabulated in Appendix - 6/8 This will result in annual energy savings to the tune of 101658 kWh.

Annual energy savings = 101658 kWh

Cost of annual energy savings = Rs.3 05 Lakhs

Cost of implementation = Rs 2 72 Lakhs

Simple payback period = 0.89 years

C. Optimum Sizing and Use of Energy Efficient Motors

From the foregoing study, it is observed that in Phase - I number of motors are grossly under-loaded and also operating at low p.f whereas for similar condition of loading in Phase - II, drives are operating at better level of p.f. This is directly the reflection of standard motors in use in Phase - I

Therefore optimum sizing and use of energy efficient motors shall assist in

- i Optimum use of energy and motor capacity.
- ii Improved operating efficiency.
- iii Reduced magnetic loss thereby resulting in cooler operation of motor.
- Improved p f of operation (i e reduced maximum demand / kVAr demand)

Number of application areas have been looked into detail for suitability of sizing and use of energy efficient motors. The workout and tabulation is given in Appendix - 6/9

The annual energy savings achievable by adopting this proposal are as follows.

Annual energy savings = 663420 kWh

Cost of annual energy savings = Rs 19.9 Lakhs

Cost of implementation = Rs 26 63 Lakhs

Simple payback period = 134 years

D. Energy Savings by Use of Electronic Energy Savers

The motors coupled to drives such as hammer mill, hydraulic pump, etc, are proposed to be connected with electronic energy saver. This will result in following benefits

* Improved P F of operation of motors at all varying load cycles (upto 0 90)

- Reduced starting surge by way of sampling the voltage waveform
- Energy savings due to reduction in magnetic losses.
- Minimise mechanical wear and tear of drive and driven parts.
- * Reduced heating of motor (improved operating efficiency)
- * Improved P.F (reduced kVAr demand on system).

The best option to minimise maximum demand drawal from SEB with electric drives operating at low P.F, is by use of electronic power factor control drive

A sample calculation of results are tabulated along with other results in Appendix - 6/10a & 6/10b The maximum demand reduction due to P F control drive or softstart has been taken at 50% of compute kVA savings

The annual energy savings possible by implementing this measure are as follows:

Annual energy saveres = 30486 kWh

(210 kVA of Max demand) *

Cost of annual energy savings = Rs 2 80 Lakhs *

Cost of implementation = Rs.5 03 Lakhs

Simple payback period = 18 years

* 50 % of kVA MD savings taken for techno-economic computation

SUMMARY OF POTENTIAL SAVINGS

SI No.	Recommendations	Annual Energy Savings		Investment requirement	Simple Payback period
		kWh	Rs. in Lakhs	Rs. in Lakhs	Year
1	Star mode of operation	68793	2 63	•	Nil
2	Auto -Delta -Star mode of operation	101658	3.05	2.72	0.89
3.	Energy Efficient motors	663420	19 90	26.63	1.31
4.	Electronic Energy Savers	30486	2.80	5.03	1.8
Total		864357	28.38	34.38	1.21

7.0 REFRIGERATION / AIR CONDITIONING & CANTEEN SYSTEMS

7.1 REFRIGERATION / AIR CONDITIONING SYSTEMS

7.1.1 FACILITY DESCRIPTION

The refrigeration system consists of 7 chilled water systems, 4 direct expansion systems and 3 slimline systems apart from window air conditioning systems Refrigeration systems with capacities exceeding 10 TR had been taken up for study. All the systems run with R-22 as refrigerant The capacity details and respective usage areas of the units studied have been tabulated below. The various design parameters of refrigeration machines and chilled water pumps are given in Appendix - 7/1

SI No	Location	Make & Type of units	No of Units	Rated TR	Usage Areas
1	CCR-Bldg	VOLTAS-Chilled Water System	3	40	* II Floor - CCR * II Floor - PLC * Ground Flr - PLC * Kiln Feed - PLC * Raw Mill - PLC * Coal Mill - PLC * SPRS Room
2	CCR-Bldg	VOLTAS-Chilled Water System	1	40	* I Floor - Office
3	ADM-Bldg	VOLTAS-Chilled Water System	1	40	* Ground Floor, - Personal
4	ADM-Bldg	VOLTAS-Chilled Water System	2	20	* GroundFloor, - Conference Hall * I - Floor, Purchase * I - Floor, Accounts

7.1.2 OBSERVATIONS, ANALYSIS AND FINDINGS

A. Loading Pattern of Compressor and Pump Motors

The loading pattern of motors of compressors, pumps, etc. have been discussed separately in Chapter-6

B. Machine Side Parameters of Various Refrigeration Units

Following parameters pertaining to the operation of refrigeration systems were measured

i. Compressor

Suction and discharge pressures and temperatures

ii. Chiller

* Chilled water inlet and outlet pressures and temperatures

iii. Condenser

* Cooling water Inlet and outlet pressures and temperatures.

The observations on machine side parameters of all the refrigeration units under operation are tabulated in Appendix - 7/2

The compressor suction and discharge pressures and temperatures were found to be within allowable limits except for ADM-M/c.1 which had low discharge pressure. The chiller/condenser side parameters are discussed in section D

It was observed that majority of pressure and temperature gauges were not working properly. By installing new gauges, periodic maintenance can be easily planned by the operating personnel.

C. Performance Evaluation

The determination of actual tonnage of refrigeration generated needs measurement of chilled water flow and temperature drop across the chiller. As the M/c 2 & M/c 3 have common chilled water lines, they were studied together Calculation details of actual TR generation of the machines studied are given in Appendix-7/3. The results are tabulated below

SI No	Particulars	Rated TR	No of Cylinders in Operation	Actual TR
1	CCR - M/c 1	40	3	35 6
2	CCR - M/c .2	40	3	
3	CCR - M/c 4	40	4	73 7
	ADM -M/c 1	40		26 5
4	ADIVI -IVI/C 1	1 40	4	20.5

The TR generation of CCR-M/c 1 and CCR-M/c 2 & 3 together were found to be satisfactory. However, the TR generation of ADM-M/c.1 was found to be as low as 66 3 %. Lower compression ratio of the ADM-M/c 1 compressor was one of the reasons for its lower TR generation.

D. Evaporator and Condenser Effectiveness

The observed temperature and pressure drops across evaporators and condensers are given in Appendix -7/4. The acceptable range of pressure drop is 0.5 - 0.8 kg/cm². However, the evaporator pressure drop in CCR-M/c.1 and condenser pressure drop in ADM-M/c.1 were found to be 1 kg/cm². This could lead to lower refrigerating effect in the evaporator.

It is advisable to have cleaning schedule of the evaporators and condensers based on pressure drop rather than the presently followed one based on time

E. Distribution System

The distribution network of chilled water in the CCR and ADM buildings were observed to be satisfactory. However, the cold insulation of supply and return lines of PLCs outside the CCR building need to be improved

F. User Load Assessment

Assessment of chilled water loads has been carried out for all the major user areas in both CCR-plant and ADM-plant systems. User-wise measured loads and measured air flows vis-a-vis design air flow of air handling units have been tabulated below Calculation details are given in Appendix - 7/5

SI	Location	Rated	Actual Air	% Aır	Rated Refrig.	Total Refrig.		
No		Air Flow	Flow	Flow	load of AHU	load of AHU		
		clin	clin		TR	TR		
	CCR Bldg - Plant							
1	I - Flr	22500	16225	72 1	33 0	30 35		
2	II - FIr, CCR	7500	7232	96 4	11 5	6 12*		
3	II - FIr, PLC	7500	7350	98 0	13 3	7 29*		
4	Ground Flr, PLC	22500	10860	48 3	12 5	5 29*		
	ADM Bldg - Plant							
5	Ground Flr, Personal	7500	5508	73 4	-	6 30		
6	Ground Fir, Conference Hall	7500	5352	71 4	-	7.07		
7	I - Flr, Purchase	7500	6354	84 7	-	7 06		
8	I - FIr, Accounts	7500	6438	85 8	-	6 30		

^{*} The lower AHU -TR can be due to the partially closed louvers in the distribution lines of usage areas

G. General Recommendations

- During the study it was observed that some of the nozzles had been removed from the cooling tower spray header, while some of the remaining nozzles got choked. This reduces the effectiveness of the cooling tower and subsequently the efficiency of the water cooled utilities.
- II) Use of AIR CURTAINS is proposed for the doors which are frequently opened and closed (eg. ADM building front door, Central Control Room)
- III) The direct sun light entering through ADM building rear side adds to the heat load of the refrigeration unit. Means of reducing this heat load like providing few more sun light control sheets should be done.
- IV) At present, ordinary drinking water is used for chilled water make up. This leads to the scale formation inside the evaporator and chilled water lines, reducing the heat transfer. Hence, treated water should be used for chilled water make up.
- V) Openings in the conditioned rooms (mainly in PLC room floors and not fully closed doors) leads to escape of conditioned air. Measures should be taken up to avoid such losses

Presently the cooling water coming out from CCR-plant room Refrigeration units is mixed with that from the other systems (Compressors cooling, Kiln bearing cooling, etc.) and cooled in common cooling towers. It is necessary to have a dedicated cooling tower for Refrigeration units. This will improve the performance of the condenser and hence the refrigeration units. Actions have already been taken to provide a separate cooling tower for the refrigeration units.

'.2 CANTEEN SYSTEMS

7.2.1 FACILITY DESCRIPTION

A Solar water heating system had been installed in canteen to produce hot water. This hot water is used in the following areas:

- i) Steam cookers
- ii) Washing & Cleaning purposes

The solar water heating system has 24 no of Flat Plate Collectors (2m x 1m collection area / plate) arranged in 3 modules. Each module has 8 no. of collectors connected in series The 3 modules are connected in parallel The water circulation is maintained by Thermosyphon principle

7.2.2 OBSERVATIONS

- During our study period the solar water heating system was not functioning
- It was claimed that the temperature of the hot water generated was 50 60°C during summer and 35 40°C during winter. Additional collectors can be installed to supply water at a higher temperature to the cookers, which will reduce its fuel requirement. Alternatively, more hot water could be generated at the above temperatures. The canteen building, has enough space in the terries to add another 18 20 collector plates of 2 m² collection area. Economic feasibility of the proposal is worked out in the Appendix 7/6

- III) A thin coating of cement dust firmly adhered to the collector's glass surface was observed on all the collectors. This acts as partially opaque layer for the incident solar radiation falling on the absorber plate of the collector, reducing its efficiency. Though arrangements had been made for the cleaning of the glass surfaces regularly, coating formed by cement dust with moisture was not been cleaned effectively. To avoid this problem methods like periodic acid cleaning of glasses could be resorted to
- IV) The glass cover of one of the collectors was missing and the above said cement dust coating was observed on the absorber plate too Though these systems are maintenance free regular attention has to be given
- V) Insulation provided on the hot water line had got damaged. As this will dissipate the heat gained in the collector, it should be properly insulated.

7.2.3 RECOMMENDATIONS

A. The hot water supply from existing solar water heating system is insufficient. It is recommended to install additional solar flat plate collector water heating system of 2,000 lpd capacity, to generate more hot water. The above proposal is expected to yield energy savings as enumerated below.

Annual fuel savings =1650 kg of LPG

Annual energy savings =180 lakh kcal

Annual cost savings = Rs.39600/
Investment cost = Rs 240000/
Simple payback period = 6.06 years

8.0 LIGHTING SYSTEM

L&T ACW can be broadly classified into following areas for the purpose of Lighting system study

- Phase 1
- → Phase II
- Cement Mill
- Packing Plant
- Street Light
- Colony
- Mines

This study covers measurement of lighting load, voltage condition, lux levels in factory area and identification of energy saving areas etc

Lighting load is contributing around 25% of total energy consumption. The adoption of energy efficient measures and effective housekeeping methods are discussed for optimum electricity consumption in the area of lighting

8.1 FACILITY DESCRIPTION

The plant makes extensive use of HPSV and fluorescent fixtures in different areas. Earlier most of the phase-I luminaires were fluorescent fixtures and had been gradually changed over to more energy efficient HPSV fittings. However phase-II luminaires were mainly HPSV (being relatively new). The structure of the cement plant helps in use of natural light in plenty.

The total connected lighting load could not be ascertained in absence of any structured data (which has undergone changes over the years). However, an effort has been put to physically quantify, the details of lighting fixtures (Refer Annexure - 8/1) presently being used in Phase-I & Mines The Phase-II luminaires are slightly (15-20%) higher compared to Phase -I An analysis of fluorescent fixtures in substation (in both Phase-I & Phase-II) have been carried out and presented in Appendix - 8/2

It is also tried to quantify various area lights (mainly focus and flood light types) in use at present in factory areas (Phase-I & Phase-II). The details are tabulated in Appendix - 8/3

The colony lighting load consists of street lighting, Club/Sports ground lighting, domestic lighting and apparatus. The ACW colony street light details are tabulated in Appendix - 8/4

In factory area the lighting load is mainly separated and fed through main lighting distribution boards. The incomer to MLDB are fed from PCC modules in various substations. There are no lighting transformers earmarked for this purpose leaving no scope of controlling the lighting circuit voltage at present.

8.2 OBSERVATION, ANALYSIS AND FINDINGS

A. General

FACTORY AREA

- The plant has used extensively 70W HPSV lamps.
- The atmosphere is quite dusty, thereby making it necessary to have a more frequent maintenance and inspection.

- iii. The ambient temperature in some areas e.g. preheaters, coal feed, kiln feed area is higher than normal.
- iv. There are number of conveyor ducts both underground and overground (e.g D.B.C, Coal conveyor, Pipe conveyor etc.) and Cable trench fitted with HPSV / fluorescent fixtures.
- v. In general during daytime, the natural light is sufficient in most of the sections, except for D.B.C area
- vi In most of the areas, local switch control is installed and timer control is used for switching the plant lighting
- vii. It is observed that at many places, luminaires are completely covered with dust, the translucent sheets have turned yellowish and opaque, the tubes are either glowing pink or dim (i e black ring formation at both end) and some lighting points are not working. This involves wastage of energy

This indicates that timely replacement /maintenance of luminaires is not being carried out due to constraints such as high bay maintenance etc

- viii In some of the areas inequal distribution of luminaires has taken place over the years (e.g. in Cement Mill, Packing Plant substation) which needs correction for balanced distribution
- During the period of our study, it is observed that all the substation building's lights and cable trench lights are left 'on' for day and night even when there was no work done or person present

- X. It is also observed that some of the flood lights, (e.g. coal yard, Phase-I Cement Mill, etc.) are left 'on' during day time inspite of no testing or maintenance being carried out. This can be avoided by effective control. While discussing with plant personnel, it is found that some of these lights have been connected to Emergency circuit of 24 hours during urgency of maintenance and needs to be altered or rectified in due course.
- xi In pipe conveyor conduit it is observed that one section of HPSV (70W) lamps are left 'on' during the day
- The plant management has already initiated practice of providing single tube in double fixture at selected locations and use of HPSV lamps for energy efficiency
- xiii In office location normally the lighting is not being controlled as per occupancy even after having local switches

COLONY AREA:

- In colony street lighting, the plant has initiated a major energy conservation move by replacing all 250W HPSV with 70W HPSV lamps. However, height of poles being unaltered the level of illumination have been low in between the poles and at road levels.
- The street light poles are currently not connected in alternate phases, thereby making it difficult to switch 'off' alternate poles between 12 pm to 5 am to achieve energy savings.
- In many places, the branch of trees are blocking the luminaires.

- iv. In some of the junctions, there is no specific dedicated light poles.
- v. In some places, HPMV fixtures are used for by-roads.
- vi. Street light fittings are mostly dust covered or gathering of insects inside the luminaires is causing blockage of light. Some of the acrylic covers require replacement
- Number of incandescent lamps are observed to be in use in colony areas for a sustained period of more than 4 hours
- viii There has been an introduction of voltage controller for colony lighting in 2 substations and no reactive compensation is done presently
- The lighting levels near S T plant and roads leading to the plant needs to be improved

B. Lighting Load Parameters

Power measurements have been carried out on various L.D B locations to assess the system lighting load. This is found to be as follows

Plant 514 33 kW

Colony . 770 16 kW (includes heaters & domestic equipments

load)

Mines . 37 40 kW

Total 1321 89 kW

The details of measurements are indicated in Appendix 8/5.

The voltage level is observed to be at higher level in plant between 237 volts - 249 Volts and the P.F is observed to be between 0.6 - 0.8 lag Whereas in colony, it is between 233 volts-243 volts with p.f. of 0.69 - 0.98. The high p f at some D B's are due to heater loading in the winter. The neutral current I_N is observed to be higher in many cases in plant, which requires a review of maintenance

C. Illumination Levels

The lux levels are measured at various locations of the plant and presented in Appendix -8/6 Generally the level of illumination conform to the guide line prescribed in IS 3646 However, in some areas the lighting level requires improvement by way of strengthening, re-distributing fixtures or adopting proper maintenance schedule

D. Energy Efficient Lighting

By use of reduced voltage (to the tune of 210-230 Volts) exclusively for lighting circuit, a saving of 10 -15% lighting energy consumption can be achieved

The reduced voltage of the above mentioned level does not impair the ability of discharge lamps to strike, though an insignificant reduction in lumen output takes place. The detailed study is presented in Appendix - 8/7

Besides, use of higher voltage tend to reduce the life of luminaires
An inventory of consumption pattern (as enumerated in Appendix 8/8) shows a trend of increased consumption over last two years,
supports this fact inspite of observing number of non-attended
points

- ii. By adopting controlled switching of tubelight in substations and cable trenches, an energy savings to the tune of 1,17,945 kWh per annum is possible (Refer Appendix 8/9).
- iii. The best method to conserve lighting energy is to 'turn off' when not required. A necessary motivational campaign programme can be suitably devised to prevent wastage as enumerated in Appendix 8/10
- iv. Though during our discussion with plant maintenance officials, it is gathered that experience related to use of electronic choke have not been satisfactory. Yet due to improved manufacturing process and standardisation adopted by manufacturers, reliable source of supply is currently available. Use of electronic choke can help in substantial energy saving to the tune of 71,280 kWh per annum (as shown in Appendix 8/11)

8.3 RECOMMENDATIONS

A. General

- i The luminaires should be periodically cleaned and maintained Regular replacement of worn out tubes or luminaires are necessary to get maximum lumens per watt consumed
- ii. Switch `ON ' to match the occupancy level in office areas or stores etc

- iii. Organise for improvement of lux level in certain areas by way of adopting simple measures such as:
 - Changing reflector/acrylic covers
 - Reduce height of luminaires
 - Reallocate available luminaires for equal distribution
 - Observe regular maintenance schedule

Some of the areas and remarks may please be referred as listed in Appendix - 8/6 for implementation

- iv. The plant maintenance should acquire a mechanical truck mounted telescopic platform for easy outdoor maintenance.
- v Presently lot of area lighting of approximate 30 kW is in use without giving effective illumination. Suitable highmast lighting with increased efficacy can be organised for better illumination in the areas at the locations indicated in the Plant layout drawing (Refer Fig. 1)

Lighting manufacturers may be consulted for appropriate design of highmast lighting structures. This will also enable management to have an effective control on switching and maintenance

The plant should replace all Fluorescent fixtures in dusty areas by HPSV lamps

- vii. In the colony areas, reduction in the height of street lamp-posts should be taken up.
- viii. In junction or in important places of activity, re-introduction of 250W HPSV lamp and trimming of tree branches shall help in increasing the light level.
- ix Decodify incandescent lamps from Store inventory and install energy meter at important points e.g. Canteen, Guest House, Club etc.

B. Energy Efficient Lighting

i Use of reduced voltage through exclusive lighting transformer deployed from current resources shall yield in following savings (Appendix - 8/7)

Annual Energy Savings = 522720 kWh

Cost of Annual Energy Savings = Rs 15 68 lakhs

Cost of Implementation = Rs 15 lakhs

Simple payback period = One year

ii Energy savings can be achieved through controlled switching by use of timers and by-passing circuit (Appendix - 8/9) as stated below

Annual Energy Savings = 1,17,945 kWh

Cost of Annual Energy Savings = Rs 3 54 lakhs

Cost of Implementation = Rs 2 25 lakhs

Simple payback period = 0 65 years

TATA ENERGY RESEARCH INSTITUTE BANGALORE

104

iii By Simple "SWITCH OFF" method the plant can prevent wastage of energy (Appendix - 8/10) as given below:

Annual Energy Savings = 28,322 kWh

Cost of Annual Energy Savings = Rs.0.85 lakhs

Cost of Implementation = Rs 1.00 lakh

Simple payback period = 1 year

Use of Electronic choke in controlled atmosphere and non dusty areas can yield savings of energy (Appendix - 8/11) as below:

Annual Energy Savings = 71,280 kWh

Cost of Annual Energy Savings = Rs.2.14 lakhs

Cost of Implementation = Rs 5 40 lakhs

Simple payback period = 25 years

8.4 SUMMARY OF POTENTIAL SAVINGS

SI No	Recommendations	t .	Energy rings	Investment required	Simple Payback period
		kWh	Rs in Lakhs	Rs in Lakhs	Year
1	Energy savings by voltage control	522720	15 00	15.00	10
2	Energy savings by switching off through timers	117945	3 54	2.25	0.65
3	Energy savings through switching off during day time	28322	0 85	1.0	1.0
4	Installiation of electronic chokes for fluorescent tubes	71280	2 14	5 40	2.5
	Total	740267	21.53	23.65	-

9.0 ENERGY MANAGEMENT SYSTEM

9.1 INTRODUCTION

The energy bill of the unit runs to about Rs.90 - 108 crores per year, which will continue to escalate with the unavoidable rise in cost of electricity and fuels, in the coming years

In order to control the excessive consumption of energy and bring optimum possible savings in energy consumption, it is essential that an effective energy management system is put in operation in the organisation

Energy Management requires a logical and comprehensive management approach. Energy savings become significant and long lasting when they are achieved as part of an overall plant energy management programme. A systematic and structural approach is essential to identify and realise the full potential savings.

The most essential requirement for a successful energy management programme is the top management commitment. An important part of top management commitment is to create an organisation for implementing the energy management programme. This is commonly at two levels, the Energy Manager and the Energy Committee. Evidence of top management commitment will be seen in the level of support given to the Manager and the Committee, in all respects

The basic requirements for the position and the job description of a typical Energy Manager are described at the end of this chapter.

TATA ENERGY RESEARCH INSTITUTE BANGALORE

106

MANAGEMENT APPROACH

Top Management Commitment

The most essential requirement for successful energy management programme is the commitment of top management. They must visibly demonstrate their commitment to the employees of the enterprises

The decision of the company to control energy costs must be clearly stated and understood by all within the company. Senior management should participate in energy related activities. The company Chief Executive should regularly call for information/reports on the progress, particularly at the beginning of the energy management programme.

PRELIMINARY ANALYSIS

In order to develop a energy management programme in the proper perspective, it is necessary that the scope, extent of detail and the management cost and time expended should have some relation to the potential benefits realisable by the programme. There is no point if the cost incurred is more than the value of energy saved.

The energy management programme should begin with the analysis like :-

- Consumption of different forms of energy
- Energy cost as a percent of total production cost
- Major energy consuming equipments and their diversity
- Potential savings and its comparison with current profits

- Estimate of costs of additional metering, that may be required cost of introducing EM
- Within the existing company organisation how best can energy consumption be monitored in different areas or departments

Such broad assessment would give a perspective of the management time and cost value in relation to potential returns

C. ENERGY COMMMITTEE

In manufacturing industry, close co-ordination with different functions will be essential. To achieve this co-ordination at larger manufacturing sites, an Energy Committee will be needed. This may, for example, include senior managers, the Accountant and the Chief Engineer. The Chairman should be the General Manager who has sufficient authority to ensure that all necessary resources are made available and any necessary action is taken.

The Energy Committee will be responsible for :

- developing the energy efficiency policy
- managing the monitoring system
- agreeing and reviewing standards and targets
- examining energy cost-saving schemes and ensuring projects are implemented
- other important matters concerning energy

TATA ENERGY RESEARCH INSTITUTE BANGALORE

108

Once a corporate decision has been made to initiate an energy management programme, a management structure within the company's organisational framework needs to be created, in view of the special role of energy as a common input across different divisions, departments and sections

The energy management structure will depend on the size of the enterprises, its functional organisation, and its manufacturing activities.

ENERGY MANAGER

Looking at the size of energy bills, it appears essential that a full-time energy manager is appointed to implement the energy management programme. The appointment of an Energy Manager would also demonstrate to the company employees, the management commitment and its seriousness in dealing with the problem

The Energy Manager should be appointed from within the plant, to ensure that he has good practical knowledge of all aspects of operations, both technical and administrative

RESPONSIBILITY FOR RESULTS

In general, most important structures in manufacturing industry will be based in three levels of authority with corresponding responsibilities for the efficiency of energy usage

Level 1: Senior Management: With responsibility for the efficiency with which energy is used in the organisation as a whole, in relation to other resources, and in the production of particular products.

Level 2: Middle Management: With similar responsibilities for the efficient use in relation to specific areas of the manufacturing process or divisions of the organisation

Level 3: Process Operators, Foremen and Supervisors: With responsibility for maintaining control over the efficiency of energy use in a particular item of plant or part of a process

At all three levels, those responsible for controlling and improving the efficiency of energy usage will need regular reports on energy use in relation to standards and targets.

Providing these reports, analysing the energy data, developing standards of performance, and deriving the information needed for setting targets will be task of an Energy Manager who is responsible to the Energy Committee. His duties may be also include responsibility for the installation and operation of metering systems and the training of staff responsible for the collection and analysis of energy data.

ENERGY MANAGEMENT PROCESS/STRATEGY

There are four distinct stages

- Defining energy accounting centres
- Measurement
- Analysis & Monitoring
- Targeting

ENERGY ACCOUNTING CENTRES (EAC)

The first step in installing an energy management programme is to identify along the energy flow paths of the plant, a series of 'Energy Accounting Centres' which will provide the requisite breakdown and frame-work necessary, both for monitoring energy performance and for achieving targets. An Energy Accountable Centre might consist of individual equipments such as section/dept or even a whole building

Each centre must relate to a nominated individual responsible for operational achievement in that area. Tying of resource consumption to that of operational achievement is a key factor in energy management programme, since it focuses attention of those with the authority to bring about improvements in performance

Those held accountable for energy performance should also be able to assess the performance and also have the pertinent information on which to base judgements, decisions and actions to bring about improvements

Each energy accountable centre (EAC) requires the facility of meters, to measure the energy consumed over a period and a means of measuring/assessing the production (or other specific variable) over the same period. As far as possible the EAC's identified should correspond with existing cost control centres on the site.

B. MEASUREMENT

Before any resource can be managed effectively, it must be quantified correctly in order to provide the information upon which to base management decisions. So, like all truly effective management systems, energy management depends on the collection of relevant data upon which to judge current performance and to plan for future improvements. The gathering of this information forms an essential part of the monitoring programme

C. ANALYSIS & MONITORING

After collection of energy consumption and cost data, the next stage is to use that information to analyse and evaluate performance

Analysis and evaluation involve, regular comparison of actual levels of energy consumption with the amount of energy expected to be used as defined by a set of internally based standards. Difference between actual consumption and these standards will reveal either improvements in energy efficiency or a fall-off in performance levels. In this way, the information produced by monitoring forms a basis for continuing performance evaluation and control

On the one hand, it will provide quantified evidence of exactly how successful have been the measures to improve performance. On the other, it will indicate if and where failures have occurred and trigger the necessary remedial action

Analysis should be a continuous process so that speedy action can be taken speedily if energy efficiency deteriorates. And to ensure effective performance evaluation and control, each line manager or plant operator must receive the energy throughput and other figures regularly - on a weekly/monthly basis - and promptly, so that departures from the standards can be quickly detected and corrected. In turn, line managers themselves must ensure that they respond rapidly to the information they receive. And here, well designed reporting forms, expressed in readily understood energy cost terms, will be very helpful.

Achieving greater energy efficiency depends on developing an energy management strategy that will maintain progressive reductions in energy consumption for the same or high levels of output. And the foundation of effective energy management is the introduction of a system of monitoring to equip the managements with the information and the motivation to attain greater levels of energy efficiency.

The essence of monitoring is that energy use is accurately measured, then compared with a set of standards derived from a knowledge of the organisation's own capability, and then possibly further checked by reference to external norms

113

By wielding the control and motivational aspects of energy management closely, monitoring provides a structured framework in which managers at all levels are able to optimise efficiency through the careful use of the energy resources for which they are responsible.

Just by the introduction of a monitoring system alone, many organisations have found that they can cut their energy consumption by up to ten percent

D. TARGETING

The first stage in the process of setting targets is to carry out an energy audit - a procedure which can with advantage be repeated every year

An energy audit will identify the possible range of energy efficiency improvement measures available and appropriate to the circumstances of an individual organisation. It will also provide an estimate of their costs and the likely return in investment

From the results of the audit, management can select a series of measures to form an action programme - starting with the most cost-effective and taking into account, for example, the availability of capital and effect of the measures on the organisations other activities

In the first instance, the action programme may simply involve changing working practices or adjusting machinery. It may then move on through low cost improvements, like plant and pipework insulation, to investment in higher cost measures, such as heat recovery equipment or more energy-efficient plant.

TATA ENERGY RESEARCH INSTITUTE BANGALORE

114

Targets are then set for the implementation of change and the achievement of the predicted energy cost savings. The choice of targets will take account of current standards and the timescale for implementing measures. And an organisation may wish to set a range of targets, taking account of the scope for improvement, the resources allowed by management to effect improvement and the need to match accountability to the energy - accountable centres

There are two principal methods of target setting. In the first place, the so called 'top down' approach, a broad based generalised technique which does not draw on a detailed analysis of the circumstances of the organisation but may be based on experience in the sector as a whole. In the second place, the 'bottom up' which is based on a close knowledge of the energy requirements of different parts of an organisation's activities. Both systems have their merits and which one is chosen depends on circumstances and cost-effectiveness

Experience has shown, however, the most organisations prefer the 'bottom up' approach since it is, by its very nature, more closely tailored to their business needs and hence more effective in providing motivation

Correctly set, targets have a strong motivational effect on the workforce. But it is important to avoid either impossible or too easy obtainable targets since these can provide counter productive

ĭ

115

9.4 IMPORTANCE OF HUMAN ELEMENT

In the implementation of E.M. Process getting the human element right is vital to the success, like any management system. So when introducing energy management into an organisation, it is essential to put people first of all, to establish a chain of managerial responsibility which reaches right up to senior management and which can motivate improvements in energy efficiency throughout the organisation.

Some Means of Getting Fuller Co-operation of Personnel are:-

A. Education

A well thought-out familiarisation programme should convince employees of the need for good standards of housekeeping and energy awareness. They should appreciate, that it is in their best interests that all unnecessary and excessive use of energy be eliminated

Energy cost savings add directly to profit They will help safeguard, the employees' future by improving the firms economic well-being and competitiveness Moreover, each rupee saved is equivalent to many rupees worth of extra production. It is important to emphasise that sacrifices are not being sought, nor are the staff being expected to work in less than satisfactory conditions.

Early encouraging results are unlikely to be sustained indefinitely People do tend to drift back into their former habits, but the right climate of opinion will be established for introducing more complex, and lasting measures in a gradual manner

TATA ENERGY RESEARCH INSTITUTE BANGALORE

116

B. Awareness and Information Sharing

In most plants, employees have little or no idea of the amount of energy being consumed within their plant, their section and even the equipment being operated by them. In such a situation, energy conservation obviously carries no meaning

Employees can be stimulated to support energy management by making them aware of the amount of energy they are using, the associated costs, the many ways to save energy, and the importance of energy conservation for the company's viability/profitability

The information can be provided in the form of comparisons of historical trends, goals for overall energy use, energy intensity, etc., in both physical and monetary terms, energy conservation checklists for each manufacturing operation outlining simple and routine housekeeping measures to save energy, audio-visual presentations, and other literature.

Information must be presented in a manner which facilitates comprehension If the information is too technical, too much theory, too sketchy, or too dull, it is likely to be ignored or not understood

Terms that employees can relate to in everyday life should be used For example, a sign saying "stop steam leaks" will not be as effective as a sign saying "A quarter inch diameter steam leak costs Rs.30,000 per month".

117

Training is also an important means of both informing and involving people at all levels in an energy management programme.

For operating personnel, training is required in practicalities of energy saving This could be integrated into the organisation's other training programmes.

Upper level management also need to be informed of the overall energy situation, energy costs in relation to other costs, the energy management programmes - its goal, achievements, technical, economic and behavioral aspects etc.

C. Motivation

Motivation is based on involvement and commitment and a sense of personal accountability can be generated only through total involvement of plant personnel at all stages.

Involvement must begin with the top management. As mentioned earlier, top management must be fully committed to the energy management programme and must visibly demonstrate their commitment and involvement in every manner possible and at every available opportunity. Top management must originate the programme, generate momentum and then maintain momentum

Adequate personnel and financial resources must be provided and responsibilities delegated to implement activities and projects to achieve the predetermined energy conservation goals. Progress should be monitored and goals reviewed and revised in the best interests of the company

118

Operators and maintenance staff should be involved actively, as they are ultimately responsible for execution of activities in the programme. Also, they are often in a better position to recommend areas for savings or improvements. The most effective way of involving them is by simply going out and talking to them regarding goals, achievements, problems and progress or lack of progress. This demonstrates to them that the energy conservation programme is real and also that their role is important in success or failure of the programme.

Supervisors and middle level management should be involved by assigning them responsibilities for implementing and monitoring activities and submitting performance reports to top management, and by getting them to interact and communicate with operators and maintenance stand on progress and problems. If possible, energy management activities should be made a part of each supervisor's performance or job standard.

D. Incentives and rewards

Another method of motivating people is through incentives and rewards. Monetary rewards could be given to employees for suggestions leading to substantial energy savings, for innovative ideas or solutions, and for outstanding efforts in implementation of energy conservation activities. Wide publicity of effective idea provide an added incentive in the form of public recognition. Other incentives could be designed to meet the needs and attitudes of plant personnel.

E. Publicity

Publicity and promotion are essential to create climate for the energy management programme. Some commonly used means for publicizing and promoting and energy conservation programmes are:-

- One article per month written in the company or plant paper or one good energy conservation idea that was implemented.
- 2. Articles from the company or plant paper used to obtain local newspaper interest and coverage
- 3 Posters and pamphlets on energy conservation.
- 4. Letterheads with different energy conservation messages and ideas printed
- Plant-wide, high-visibility vehicles or equipment are used to carry signs publicizing energy conservation
- 6. Energy conservation performance results for plant and department, posted, monthly by the plant energy manager
- Plant energy manager having face-to-face energy conservation discussions with plant personnel. The opportunity checklist can be used for discussion topics.
- Unit representatives and several unit personnel conduct quarterly on site reviews, a walkthrough of the unit looking for energy saving opportunities.

- 9 An agenda item in energy conservation included at staff meetings.
- Energy conservation material provided to first-line supervisors for employee discussion periods, quarterly.
- 11 Quarterly meetings held in the plant for all unit representatives.
- 12 An Energy Awareness Day is set aside in the plant twice a year.
- 13 A company energy logo developed and adopted.

9.5 KEY TASKS OF ENERGY MANAGEMENT

- (1) Energy Data Collection and Analysis
- maintain records of all energy consumption in the plant
- check the reading of all meters and submeters on a regular basis.
- specify additional meters required to provide additional monitoring capability
- develop indices for specific energy consumption relative to production and maintain these indices on a monthly basis for all major production areas.
- * set performance standards for efficient operation of machinery and facilities

(2) Energy Purchasing Supervision

- review all monthly utility and fuel bills; ensure billing is proper and
 that the optimum tariff is applied in each base.
- investigate and recommend fuel switching opportunities where a cost advantage to the company is possible.
- develop contingency plans to implement in the event of supply interruptions or shortages.
- work with individual departments to prepare annual energy cost
 budgets

(3) Energy Conservation Project Evaluation

- develop energy conservation ideals and projects, working with inhouse staff, equipment vendors and outside consultants
- * summarise and evaluate possible energy saving projects according to the company financial planning requirements; perform the necessary economic analyses to permit management evaluation of the projects
- obtain management commitment of funds to implement conservation projects
- * re-evaluate possible projects as the company operations change or grow, evaluate energy efficiency of new construction, building expansion or new equipment purchases.

(4) Energy Project Implementation

- * initiate equipment maintenance programmes for energy saving
- * supervise the implementation of conservation projects, including specification of equipment, requests for quotation, evaluation of offers, ordering of materials, construction/installation, operator training, start-up and final acceptance.

(5) Communications and Public Relations

- prepare monthly reports to management, summarizing monthly energy costs and consumptions as well as specific energy consumptions
- communicate with all production and support departments, so that
 all participate in the energy management programme
- develop an awareness programme within the company to encourage active participation by all employees in energy saving activities
- develop training programmes to upgrade knowledge and skills of all levels of employees in energy related matters.
- publicise the company commitment to energy conservation where appropriate, providing information for press releases and internal notices, presenting papers in professional conferences, and entering the company in energy award programmes.

9.6 CHECKLIST FOR TOP MANAGEMENT

- A. Inform line supervisors of :
 - 1. The economic reasons for the need to conserve energy.
 - 2. Their responsibility for implementing energy saving actions in the areas of their accountability.
- B. Establish a committee having the responsibility for formulating and conducting an energy conservation programme and consisting of :
 - 1. Representatives from each department in the plant
 - 2. A co-ordinator appointed by and reporting to management
- C. Provide the committee with guidelines as to what is expected of them:
 - 1 Plan and participate in energy saving surveys
 - this hard record tooping reporting and energy accounting
 - Research and develop ideas on ways to save energy.
 - 4 Communicate these ideas and suggestions.
 - 5 Suggest tough, but achievable, goals for energy saving
 - Develop ideas and plans for enlisting employee support and participation

TATA ENERGY RESEARCH INSTITUTE BANGALORE

124

- 7. Plan and conduct a continuing program of activities to stimulate interest in energy conservation efforts
- **D.** Set goals in energy saving:
 - 1 A preliminary goal at the start of the programme.
 - 2 Later, a revised goal based on savings potential estimated from results of surveys
- E. Employ external assistance in surveying the plant and making recommendations, if necessary
- F. Communicate periodically to employees regarding management's emphasis on energy conservation action and report on progress

DUTIES AND RESPONSIBILITES OF ENERGY MANAGER/CO-ORDINATOR

- To generate interest in energy conservation and sustain the interest with new ideas and activities
- * To maintain summaries of energy purchases, stocks and consumption, and to review and report on energy utilisation regularly.
- * To be the focal point for departmental records of energy use, and to ensure that the records and accounting systems are uniform and in consistent units.
- To co-ordinate the efforts of all energy users and to set challenging but realistic targets for improvements
- To give technical advice on energy-saving equipment and techniques, or to identify suitable sources of sound technical guidance on specialised subjects
- * To identify areas of plant activity which require detailed study and to give priority to such activities.
- * To maintain records of all-indepth studies and to review progress
- * To provide a basic handbook of good energy practice for the plant operating department
- * To give specialist advice to purchasing, planning, production and the other functions of all aspects of energy conservation, especially on the long term implications.

- * To ensure that, in making improvement in energy efficiency, health and safety are not adversely affected.
- * To liaise with committees and working groups within his own industry, and provided no confidential data are involved, to exchange ideas on cost cutting techniques and performance figures for similar processes
- * To maintain contacts with research organisations, equipment manufacturers and professional bodies to ensure that he is up-to-date on significant developments in the field of energy conservation.
- * To remain up-to-date on national energy matters and to advise senior company management on such topics, as well as co-operating with government departments in energy-related matters

10.0 CHECK LISTS FOR COMPRESSED AIR SYSTEMS

In order to keep compressed air system efficient, various checks and inspections are recommended. These are summarised in the form of check lists.

1. Free Air Delivery Test

Compressor free air delivery test (FAD) has to be done periodically to check the present operating capacity against its designed capacity. If actual FAD is within the acceptable limit (more than 85% of rated FAD), it will also result in higher compressor efficiency. The methodology to conduct FAD test is given in Appendix - 10/1. If the actual FAD is less than 85% of rated FAD, the following measures are recommended.

- a Clean air inlet filters regularly Choked filter will reduce FAD and it will reduce compressor efficiency by 2% for every 25 m bar pressure drop across the filter.
 - Install manometers across the filter and monitor the pressure drop as a guide to replacement of filter element Keep suction air velocity below 1400 m/min
- Keep compressor valves in good condition by removing and inspecting the valves once in six months. Thoroughly clean the valves and closely inspect them for wear and broken or defective parts. Worn out valves reduce FAD and it can reduce compressor efficiency by as much as 50%.

 Keep an hourly log of air temperature, water temperature and gauge pressure Use interstage pressure and temperatures to detect abnormal conditions.

A decrease in the interstage pressure and temperature means that the lower pressure cyclinder has reduced capacity. An increase in interstage pressure and temperature means that the next higher stage cylinder has reduced capacity. These conditions can be attributed to leaking valves and gaskets, worn out piston rings or broken parts

- d Check the compressor piston rings for wear once in six months. The standard recommendation is to replace piston rings when they have worn out to half their original thickness when rings wear past this point, ring end gaps become excessive and increased blow by past the rings will reduce the cylinder efficiency
- e Inspect valves passages and cylinder bores once in six months Remove any accumulation of foreign material.
- f Fouled intercoolers will reduce compressor efficiency and cause more water condensation in air receivers and distribution lines resulting increased corrosion. Periodic cleaning of intercoolers has to be ensured,

2. Leakage in Compressed Air System

Compressed air leakage of 40-50 percent is not uncommon. They can be brought down to less than 10 percent. It requires identification and removal of all leaks Most leaks occur at loose pipe fittings, shut off valves, worn-out filters, quick couplers and unused air tools. Carry out leakage (no-load) tests periodically to locate leakage points. The methodology to conduct leakage test is given in Appendix -10/2.

- a Operation of automatic electronic moisture drain trap timer has to be optimised depending on the season to minimise wastage of compressed air along with condensed water
- All pneumatic equipments be properly lubricated which will reduce friction, prevent wear of seals and other rubber parts thus preventing energy wastage due to excessive air consumption or leakage
- Misuse of compressed air such as body cleaning, agitation, general floor cleaning, personnel comfort and other similar applications have to be discouraged in order to save compressed air and energy
- d Check manual drain for proper drainage to prevent condensate build up and check safety valves to prevent excessive pressure and wear

- e If reservoirs fail to charge, check for air leakage in the by pass valves.
- f Conduct in-plant seminars on maintenance, stressing on reduction of air wastage and improvement of air equipment performance

3. Efficient Usage of Compressed Air

- a Install solenoid cut off valves in the air system so that air supply to a machine can be switched off when not in use
- b Pneumatic tools such as Drills, Grinders consume about 20 times more energy than motor driven tools. Hence it has to be efficiently used
- c Blow guns for cleaning off swarf or moisture have to be operated at the lowest satisfactory pressure rather than higher pressure. For example at 1.4 bar a blow gun uses one third of the air, which it would have used at 6.2 bar.
- d Keep nozzles in good condition An worn-out sandblast nozzle from 8 mm to 10 mm dia will use an additional 1.9 m³/min compressed air
- e Pneumatic equipments should not be operated above its recommended operating pressure as this not only wastes energy but also can lead to excessive wear & tear with further energy wastage
- f Consideration may be given to regenerative air driers, which use the heat of compression in their operation.

g The possibility of utilising hot compressed air for heat recovery to generate hot air or water for process application has to be economically analysed for large compressors.

4. Effective Utilisation of Compressors

- a Minimise low load compressor operation; if air demand is less than 50 percent of compressor capacity, consider change over to a smaller compressor.
- b If more than one compressor is feeding to a common header, compressors have to be operated in such a way that only one small compressor should handle the load variation where as other compressors will operate more or less at full load
- c Consideration should be given to two stage or multistage compressor as it consumes less power for the same air output than single stage compressor. Oversized compressors lead to power wastage.
- d If pressure requirements for a process are widely different (eg 3 bar to 7 bar), it is advisable to have two separate pressure systems. Reduce compressor delivery pressure wherever possible to save energy.
- e Provide extra air receivers at points of high periodic air demand which permit operation without extra compressor capacity

- f. Retrofit modern speed regulation controllers in big compressors, say over 100 kW, to eliminate the 'unloaded' running altogether.
- g Use delay timers to limit the number of compressor motor starts to reduce start up loads, maximum demand and to lengthen the life of the compressor.
- h Check lubricating oil consumption from performance records and manufacturers specifications. For three or four stage compressors, lube oil consumption of 0.11/1000 kWh is typical
- i Vibration of equipments should be monitored for identifying excessive vibration, which suggests misalignment, foundation settlement, out of balance rotors, worn bearings, bent shafting or damaged drive coupling
- Check availability of system (Note availability is the annual time during which the compressed air system is ready for operation divided by the total time hours in a year, expressed in percentage). From this, it is possible to determine whether the plant is operating at its rated utility factor and prescribe necessary operation schedule
- k Present energy prices justify liberal designs of pipe line size and layouts to reduce pressure drops. A smaller dedicated compressor can be installed at load point which is located far off from the central compressor house instead of supplying air through lengthy pipe line.

5. Instrumentation for Compressed Air system

- a Inspect instrumentation system frequently to ensure that operating oil pressure and temperature agree with manufacturer's specifications. The instrumentation required for compressed air system is given in Appendix 10/3.
- b Check air compressor logs regularly for abnormal readings, especially motor amps, cooling water flow and temperature, interstage/discharge pressures and temperatures and compressor load cycle

6. Power Consumption

- a Ensure air intake to compressor is not warm and humid by locating compressors in a well ventilated area or by drawing cold air from outside Every 4 ° C rise in air inlet temperature will increase power consumption by 1 percent
- b Periodically adjust tension in drive belts of compressor V-belts can be retrofitted with flat belts for efficient operation and for 10% reduction in the power consumption
- Pneumatic instrumentation can be replaced by electronic instrumentation. Pneumatic transport can be replaced by mechanical system as it consumes about 8 times more energy. Highest possibility of energy savings is expressed by reducing compressed air use.

134

11.0 ACKNOWLEDGEMENT

On behalf of M/s Tata Energy Research Institute, the study team would like to place on record grateful thanks to:

Mr C R V. Subramanyam - Vice President (Awarpur Cement Plant)
Mr K Y P Kulkarni - Dy General Manager, Mr. A. Bhowmik
Dy Gen Manager, Dy Gen Manager (Mines), Mr. N. Madhusudan Sr Manager, Mr Bhatacharjee - Manager (Electrical), Mr. Adhikari
Manager (Mechanical), Mr Pillay - Manager (Process), Mr. Pisolkar Manager (Admn), Mr. M V. Ramana - Dy Manager (Materials),
Mr Luptuke - Dy Manager and Mr Ravishankar - Dy. Manager for
extending necessary co-operation during energy audit.

We are also thankful to all other executives and staff of administration, production and maintenance departments for their support and cooperation extended during energy audit study

A list of suppliers and retrofits is attached as Appendix - 11/1 for the perusal of management

APPENDICES

TATA ENERGY RESEARCH INSTITUTE BANGALORE

APPENDIX - 2/1

MONTHWISE PRODUCTION DETAILS PHASE - I & II

Month & Year	1	Production onnes)
	Phase - I	Phase - II
April 1995	102073	119617
May	87666	140180
June	102064	95707
July	89600	96221
August	68419	126878
September	75738	107777
October	107997	67284
November	122934	82903
December	113489	124547
January 1996	95253	121476
February	62638	115908
March	79073	166117
April	73613	142542
May	75511	155508
June	71982	152096
July	74540	156098
August	65827	121606
September	58367	109648
October	65252	116862
November	114732	109345

TATA ENERGY RESEARCH INSTITUTE BANGALORE

APPENDIX - 2/2

MONTHWISE ENERGY CONSUMPTION PHASE - I & II

Month & Year	kWh/T of	Cement
	Phase - I	Phase - II
April 1995	118.3	111 5
May	121.9	113.4
June	118 6	114.4
July	119.6	140.0
August	120 2	127.2
September	124.1	124.3
October	135 3	124.2
November	121 8	121.6
December	119 3	124.8
January 1996	118 7	122 2
February	120 6	124.9
March	113 0	113.4
April	115 9	117.0
May	118 8	115.4
June	114.9	121.9
July	115 6	118.6
August	121.9	150.0
September	119 6	124.2
October	157 6	118.2
November	114 8	115.3

DEPARTMENTWISE POWER CONSUMPTION (KWh/T OF CEMENT)

PHASE - I

Department	Target			ACC	AC AC	Actual	1006		
	kWh/T of cement			X X	(kWh/1 of cement) 1990	ement)	088		
		Apr	May	Jun	Jul	Aug	Sep	Oct	Nov
Mines (L.S.Crusher-I) &	2.50	3.5	32	3.4	4 0	4.7	3.9	ن .0	3.8
	30 0	328	33.7	310	32.5	32.9	31.5	3 <u>₹.</u> 0	29.7
	7 70	5.7	58	5.9	6 1	6.7	63	9 /	0.9
	35.50	37 5	380	38 1	35 4	37.7	37.2	£69	36.4
	37 0/42 0	276	28.6	27.7	28.9	31.3	32.1	31.7	31.1
	37 0/42 0						1	32.5	30.8
	18	1.9	1.9	18	19	2.0	2.4	1.8	1.8
raching right - i	2.0	1.7	2.0	1.7	16	1.6	1.6	5.6	1.5
Factory Lighting	0.5	17	19	1.9	1.9	1.8	1.7	6.2	1.6
Workshop & Pump	090	4	1 9	1.6	1.7	1.8	1.7	5.2	1.4
			4		3	3	4-	157 G	1148
	119.5	115.9	118.8	114.9	115.6	121.9	113.0		

TATA ENERGY RESEARCH INSTITUTE BANGALORE

DEPARTMENTWISE POWER CONSUMPTION (KWh/T OF CEMENT)
PHASE - II

Department	Target			`	Ä	Actual			
-	kWh/T of cement			(K	Wh/T of c	(kWh/T of cement) 1996	1996		
		Apr	May	Jun.	luC	Aug	Sep	Oct	Nov
Mines (L.S Crusher-2) &	25	3.5	3.3	3.3	3.9	3.7	3.9	5.0	3.5
Raw Mill - 2	31 00	33 7	32.4	35.1	346	36.8	34.9	30.2	30.4
Coal Mill - 2	5 70	45	43	46	5.0	5.8	5.2	5.0	5.0
Kiln - 2	27 0	31.3	31.2	33.1	30.3	39.4	29.4	29.2	27.9
Cement Mill - 3	41 3/41 0	33.4	342	34.7	35.3	38.7	39.5	39.9	38 9
Cement Mill - 4	41 0/55 0	404	39.8	39.6	39.4	42.2	44.9	41.8	43.4
Packing Plant - 2	1.8	1.8	1.9	1.8	1.9	2.0	2.5	1.9	1.8
Factory Lighting	1.6	2.0	2.0	2.5	1.8	9.0	2.0	1.9	1.7
Colony Lighting	0.5	1.4	1.3	1.8	1.5	7.2	1.7	1.5	1.4
Workshop & Pump House-2	9.0	9.0	9.0	0.7	0.0	1.7	0.7	0.7	0.6
TOTAL	113.3	117.0	115.4	121.9	118.6	150.0	124.2	118.2	115.3
!									

DETAILS OF TRANSFORMER NAME PLATE & TEST CERTIFICATE

POWER TRANSFORMERS

		- # 110	PHASE	= #
DESCRIPTION	PHASE			
ON abot of Hat	TR-1	TR-2	TR-3	TR-4
	MON	SSM	MSS	MSS
Application/ Location	NAMO	ONAN	ONAN/	ONAN/
·	FANC	ONAF	ONAF	ONAF
lype ONAN	16	16	20	20
Kating inim vA - Caro	202	20	25	25
5	88	99	99	99
Voltage in KV - HV	000	69	6.9	6.9
1	175	175	218.7	218.7
Current in Amp nv	1674	1674	2092	2092
.	, , ,	700	%UE 6	9 42%
% Impedence in Ohms	8%	8,0		
Gillos Control Control	Dvn11	Dyn11	Dyn11	Dyn11
Vector Group			367	\ Yes
OLTC (Yes/ No)	Yes	Yes	2 2 1	17 50% to
	+7.5% to	+7 5% to	47.5% 10	10.8/6.74
Tan Setting	12.50%	12.50%	12.50%	12.50%
lap coming	, ,	11.5	•	•
No Load Loss Kvv				
Full Load Loss kW	65	65	•	•

Appendix - 3/1 contd..

DISTRIBUTION TRANSFORMERS - PHASE # 1

HPC-4	T-41	Lime Crushing		1	ONAN	750	9.9	0.433	65	1000	-	5%		L Luxo	က	15	,	=	400	9
	T-33	PCC-5	ď		ONAN	1600	99	0 433	140	2133 5	1	%9	;	Dyn11	က	2	!	4	450	0
HPC-3	T-32	PCC-3		┰	ONAN	1600	99	0 433	5	2133 5		%9		Dyn11	က	- 5		17	900	1
	731	2,70		4	ONAN	1600	99	0 433	140	2133 5	2007	%9		Dyn11	2	7		4	621	i I
HPC-2A	T-2A2	Ľ		Daar UIIV	ONAN	1600	99	0 433	140	2133 5	2 122 2	2%		Dyn11	က	2		17	540	
F	T-2A1	1		Kiin reed	ONAN	1600	8 8	0.433	140	2432 E	2133 3	2%		Dyn1	ო	2		- 17	400	
	T-24	IN HALL DON		MAIN WIWOS	ONAN	Co	200	0.433	02	4067	/001	4 75%		Dyn11	2	<u>ر</u> د		11	200	
HPC-2	1-23	200	PCC-2	COAL MILL	ONAN	0007	2001	000	257	140	2133 5	% 9		Dyn11	5	·		17	550	
	T-22	77-1		COAL MILL	NANC		000	000	0.433	140	2133 5	%9		Dyn11	ო	,	1	17	978	
	T 24	17-1	PCC-2	COAL MILL	NANO		0001	0.0	0.433	140	2133 5	%9	8	Dyn11	က	,	7	17	730	
4 700	-21-	-	RAW	MILL PCC	NONC		0091	90		丄	2133 5	709	S	Dyn11			7	17	999	
MOLEGICOCTA		TRF ID Code No		Application/ Location	ŀ	l ype		Voltage in KV - HV		Current in Amp - HV	- LV	2 mg/C	% Illiberation III of III	Vector Group	nuttes del peo 1#0		No Load Loss KW	Full Load Loss kW	Average Load in Amn	Average Load in Crip.

TATA ENERGY RESEARCH INSTITUTE BANGALORE

Appendix - 3/1 contd..

DISTRIBUTION TRANSFORMERS - PHASE # 11

																	- 0	ANG						,
	T36	46.000	TC-23	Compressor	ONAN		1600	00	0.433	140	2133.5		9%9		Dyn11	•		2		17		000	800	
2	T2K	257	PCC-3A	Compressor	ONAN		1600	6.6	0 433	140	2133.5		%9		Dyn11	,	\ \ \	7		17	,	150	150	
SS-3	1	- 3 -	PCC-3	Packing Pit	ONAN		1600	99	0 433	140	2133.5		%9		Dyn11		1			17		267	009	
		T 82	PC 5-3	Cem Mill s/s	ONAN		1600	99	0 433	140	2422 K	2122	%9		Dyn11	_	6	,	,	17		645	90	2006
90, 99	93-5D	T2B1	PCC-2B	Kiln feed s/s	NANC		1600	99	0.433	24	240	2133 3	%9		Dyn11		6		1	17		800		800
		T2A3	540 KW	Kiln Main Drive	7		1000	9 9	0 423	0.433	c /8	1333 4	%5	200	Dyn11		က		8 -	11.5		897.2	,	006
	SS-2A	T2A2	PCC-2A	Coal Mill s/s		ONAN	1600	9 8	000	0 433	140	2133 5	700	0.70	Dvn11		က		2	7,		1216 67		1250
		T2A1	VC 000	Coal Mill s/s		ONAN	1600	000	9.9	0 433	140	2133 5	3	%9			ო		2	ţ	}	908 33		950
	6-55	100	122	Coal Mill s/s		ONAN	Ċ,	1600	99	0 433	140	2133 5		%9		Dyn I	C.	,	2		115	764 11	- 	800
			111	PCC-1		ONAN		1600	99	0 433	140	2133 4		%9	;	LLuyO	ď		က		17	COO	200	750
	00	1-00	T12	Raw		ONAN		1600	99	0 433	140	10	1	2%		Dyn11	,	2	7		17		288 89	400
		DESCRIPTION	TRF ID Code No	-	Application/ Location	e do L	775	Rating in KVA	Voltage in kV - HV	·	250		ı	% Impedence in Ohms		Vector Group		Off Load Tap Setting	Wy see I bee I old	NO LOSO LOSO NA	Full Load Loss KW		Average Load in Amp	Peak Load in Amp

TATA ENERGY RESEARCH INSTITUTE BANGALORE

APPENDIX - 3/2

MONTHLY ENERGY CONSUMPTION DATA

Month	MD (kVA)	Total Units kWh	kW MD	Load Factor	Power Factor
Jan-93	48120	16908000	44040	0 532	0910
Feb-93	54000	25192800	48600	0 771	0.920
Mar-93	53280	26744400	49440	0 754	0 93
Apr-93	53375	26949170	48125	0 726	0 910
May-93	54062 5	26113129	49062	0 740	0 910
Jun-93	51875	22555000	47500	0 637	0.920
Jul-93	55250	22645000	50312	0 626	0 920
Aug-93	51000	24382500	46562	0 752	0 914
Sep-93	50000	22040000	45625	0 670	0 920
Oct-93	51000	27363750	46937	0 760	0 910
Nov-93	52375	22488750	47375	0 681	0 910
Dec-93	50625	26696250	45750	0 759	0.910
Jan-94	47187 5	24373750	42812	0 767	0.910
Feb-94	48250	16281250	44250	0.552	0.917
Mar-94	50750	25340000	46250	0 785	0.911
Apr-94	50000	28688750	45625	0 750	0 907
May-94	47000	21175000	42375	0.764	0 907
Jun-94	47188	25503750	43437	0 765	0.920
Jul-94	46315	16557500	42187	0 565	0 941
Aug-94	45000	25607845	41875	0 800	0.939
Sep-94	46250	21665000	43000	0 692	0.940
Oct-94	48750	26235000	44750	0 796	0.93
Nov-94	47812 5	22772500	44250	0 708	0 943
Dec-94	48163	25148750	44062.5	0 745	0 930
Jan-95	49688	24226250	45500	0 794	0 930
Feb-95	50375	22968750	46000	0 742	0 929
Mar-95	52187 5	30327500	48750	0 787	0 934
Apr-95	54375	26357500	50312.5	0 681	0.927
May-95	54688	24590000	49812 5	0 708	0 932
Jun-95	54063	25108750	49375	0 684	0 937
Jul-95	50000	20842500	45937	0 631	0 934
Aug-95	49063	26245000	45312 5	0 711	0 931
Sep-95	51000	23281250	46000	0.752	0.929
Oct-95	50000	19750000	46250	0 613	0.91
Nov-95	53438	29761950	49430 15	0 784	0 916
Dec-95	56670	27590810	52419 75	0 731	0.910
Jan-96	54700	27841380	50597 5	0 674	09
Feb-96	52060	21933230	48155 5	0 703	0 93
Mar-96	51870	28475360	47979 75	0 824	0 93
Apr-96	51980	29559010	47821 6	0 831	0 92
May-96	51420	26622420	47306 4	0.782	0 91
Jun-96	51320	27038300	47214 4	0 770	0.92
Jul-96	50440	28104060	46404 8	0 841	0.92
Aug-96	50000	20703830	46000	0.605	0 92
Sep-96	49920	24014510	45926.4	0 703	0 93
Oct-96	45270	20150160	41648 4	0 672	0 92
Nov-96	54210	26006720	49873 2	0 701	0.91

APPENDIX - 3/3

HT CAPACITOR DETAILS

SL	LOCATION	ID CODE	SYSTEM	CAPACITOR
No.		No.	VOLTAGE	BANK
			kV	kVAR
A	PHASE # I			
(i)	HPC - 1			
1	RAW MILL	R1M03	6.6	900
2	- do -	R1M23	6 6	900
3	- do -	R1S01	6.6	75
4	- do -	R1S04	6.6	75
5	, -do-	R1P05	6.6	222
			Sub total =	2172
(ii)	HPC 2 & 2A		<u>-</u>	
. 1	Kii-N-3339	J1J01	6 6	429
2	- do -	J1103	6.6	84
3	- do -	J1P44	6 .6	
4			<u> </u>	101
5	- do -	W1P51	6.6	
6	- do -	W1K16	6 6	1
7	- do -	W1K17	6.6	75
			Sub total	3410
(iii)	HPC - 3]	1	
1	CEMENT MILL	Z1M03	6.6	429
2	- do -	Z1M23	6 6	429
3	- do -	Z2M03	6 6	429
4		Z2M23	6.6	1
5	TRANSFORMER	T33	6 6	1
			Sub total:	2616
(iv)	HPC - 4			
1	HAMMER CRUSHER	A0M01	6.6	241
2	HAMMER CRUSHER	A0M02	6.6	
		Ī	Sub total	482
		1	Gr. tötäl	

TATA ENERGY RESEARCH INSTITUTE BANGALORE

Appendix - 3/3 contd.

HT CAPACITOR DETAILS

SL No.	LOCATION	ID CODE No.	SYSTEM VOLTAGE kV	CAPACITOR BANK kVAR
A PHASE # II				
(1)	SS - 1	T	T	
1	RAW MILL	R2M03	6.6	800
2	-do-	R2M23	6.6	800
3	-do-	R2S01	6.6	84
'4	-do-	R2S04	6.6	84
5	-do-	R2P05	6.6	
6	BUS	IBUS	6.6	
	· • ·		Sub total =	3395
(11)	SS - 2		1	
1	KILN FEED	J2J01	6.6	<u> </u>
2	-do-	J2J03	6.6	125
3	-do-	J1P09	6 6	158
4		ENV 1	6 6	60
5	-do-	ENV 2	6 6	60
6	-do-	ENV 3	6.6	
7	-do-	ENV 4	6.6	1
			Sub total:	1027
(ni)	1			
1	COAL MILL	K2M03	6.6	
2	-do-	K2T01	6 6	
3	-do-	W2P31	6 6	1 1
			Sub total	╡ 393
(IV)	SS - 3			
1		Z3M03	6 6	
2		Z4M03	6.6	
3	BUS	BUS	6.6	
			Sub tប៉ុក្សា	E 45721
	MINES			<u> </u>
	Primary Crusher	A3M01	6.0	
2	Secondary Crusher	A3M02	6.0	,
			Sub total	
			Gr. total	9789

TATA ENERGY RESEARCH INSTITUTE BANGALORE

Appendix - 3/3 contd.

LT CAPACITOR BANK DETAILS

SL	LOCATION	ID CODE	SYSTEM	CAPACITOR
		No.	VOLTAGE	BANK
No.			V	kVAR
A	PHASE # 1			
1	PCC - 1		433	286.8
2	PCC - 2A		433	275
	HPC - 4		433	150
	PCC-2		433	350
		1	Sub total =	1061.8
В	PHASE # 2			
1	SS - 1	T21	433	325
2	- do -	T22	433	325
3	SS - 2	T22	433	
4	- do -	BUS ***	433	
5	SS 2 A	T12A	433	425
6	- do -	T22A	433	425
7	SS - 2B	T12B	433	425
8	SS - 3	T32	433	325
9	- do -	T33	433	325
10		T35	433	
11	- do -	T36	433	
			Sub total	3650
			Gr.total =	4711.8

TATA ENERGY RESEARCH INSTITUTE

																			• • •	TA		NER			IGA		CH RF	114	STI	
kW Peak	0	0	0	0	39000	39240	39240	39480	39720	39960	40320	40680	40680	41040	41160	41160	41160	11180	20114	100	41160	41160	41160	41160	41160	41160		41160	41160	
kVA Peak	0	0	0	0	42720	43320	43320	43560	43680	43800	44160	44280	44280	44520	44640	44640	AABAD	2010	44040	44640	44640	44640	44640	44640	44640	44640	44640	44640	44640	
kVARh	2772	4248	5928	7032	8412	10044	11124	12480	14268	15276	16260	17748	18768	19788	21600	22644	22742	71 /07	22008	26688	27780	29892	30900	31908	33444	34452	35460	37032	37860	
KWh	6852	10308	14256	16932	20292	24312	26952	30252	34740	37524	40332	44520	47304	50028	54720	2777	02075	7686	64476	67092	69684	74772	77388	79920	83832	86412	88088	03360	95916	
KW(R) KW(Y) KW(B)	0 12720	12840	13200	13560	1				1		13800					1_			13440	13080	12840	12960			_					
) kw(Y	0 12480	0 12720				_ L					1	14400							0 13320	0 12840	0 12600	0 12720		1				12360	12600	15000
	92 13080	91 13200	1`										_						92 13800	92 13560	92 13080	3 13320	1	1	Ľ				93 13000	
KVAR Pf	10	0	10	10	2						0	10				2		15720 0.93	16920 0 9	16680 0 9	0	10	15		1_		L	مارد	ع\د	12000 0.5
KVA KV	10	1				1		42000 10,	-									41760 15	43920 16	42960 16	41760 16						- I`		40230 12	40550 12
K K	10							39400 42	-	_ ['							38640 41	38640 41	40560 43	39480 42		3 2					•			38520 40
(R)	39(2	30%	800		1 5	40,	477	407		120	3 5	2 6	470	\$ E	38	394	392	394	414	406	30%	3 6	200	202	200	386	336	382	374	3/8
WIN	-1-	5	} 	3 3	4 6	2 2	4 5	412 402	3];	420 410	3 5	7	4 :	4	3	402 394	404 396	404 394	428 418		S	3 6	3 6	3 8	20	8	8	8	37	392 382
////B/	35.3		2 6	जीत	212	o l	ماد	٦,	4 0	33 0 4			o l	∞	∞	35.7 4			35 2 4		16					စ	ऽ	35 5	छ	35.5
18	346	5 6	2 2	2 3		2 3	8 S	₹ 2	ا د			ડ્રી	-	33	5 35 1	3 34 9	1 34	34	9 34	٠.	┷-	—↓	┷			2 34.5	2 34 ::	2 34.7	32	3 34.9
10//13	्रात	3 6	S 6	S S	3 3	3	8	9 3	<u>जा</u>	ဂျင်	ဂ္ဂါင်	સ	35	35	35	8 35	35.	35	7	, ? 	5 6	ਤੇ = ਫ	ક્ષી	_	48.8 35.3	49 0 35.2	48.8 35.	48.9 35.	4 35.	9 35
L	AIMIP'S IN				_ !	_!	_ 1	ļ	1	!	1_	. !	440 50	1	404 49	396 48.	396 48	398 48	!_	1	Ţ	- [Ī	- (392 48	396 49	402 48	386 48	380 49	384 49.
_ <u> </u>	_ 0			909		9 09	9 09					• •	612	612	612	612		808	808	2 2 2	8 8			61.2	61.2	612	61.2	9.09	612	61.2
<u> </u>	e	07 1.1			11 35	11.40	11 46	11 50	11 55	12.02	12.06	12:10	12.17	12.21	12.25	17.22	17.6	12.40	12 12	1 2 27		55	13 32	13 06	13 10	13 17	13.21	13 25		13 36

אחלבו יחוץ - אוחו ומלא

ak	8		මු	<u>6</u>	160 1	160	90	99	띯	ဓ္ဓ	င္တု	9	ol Ol	္ပု	<u>.</u>	8	8	41160	41160	8	41160	41160	41160	41160	41160	41160	41160	41160	41160	41160	8	3
kW P	4	411	411	411	411	411	411	41	41160	41160	41160	41	41160	41160	41160	41160	41160	411	411	41160	41	4	4	41.				41,	411	411	41160	41160
kVA Peak	44640	44640	44640	44640	44640	44640	44640	44640	44640	44640	44640	44640	44640	44640	44640	44640	44640	44640	44640	44640	44640	44640	44640	44640	44640			44640	44640	44640	44640	44640
kVARh	38638	40152	41022	41964	43,'64	446:48	45576	46920	47688	48288	49440	50124	50808	52104	52872	53664	55212	55968	56712	57780	58476	59208	60456	61140	61740		63384	63972	65124	65736	66360	67308
kWh	98484	102972	105552	108132	113160	115728	118332	122256	124752	126972	130788	132948	135096	138960	141180	143364	147828	150120	152448	155952	158232	160620		167040	169080	T	174708	176760	180720	182700		187728
kW(B)	12600	12840	12960	12720	12600	12840	12960	13080	11184	11196	10728	10824	10788	11124	10932	10920	11448	11412	11652	11592	11664	11616	11712	10416	10056	10200	10188	10068	9912	9852	9888	10080
kwΩ	12360	12600	12600	12480	12360	12600	12720	12840	10884	10836	10500	10524	10488	10872	10656	10740	11232	11208	11412	11460	11436	11364	11508	10320	9948	10116	10020	0066	9226	9684	9208	9924
kW(R)	12960	13200	13080	13080	12840	13200	13320		11340	11292			10932		11208	11280	11784	11772	11940	11976	11856	11904	11928	10776	10392	10524	10428	10332	10236	10128	10200	10344
Ď	0 95	0 95	0 94	0.94	0.94	0.95	0 95	0.95	0 97	96.0	0.95	0 95	0 95	0.95	0.94	0 94	0.95	0.95	96.0	96.0	96 0	96 0	0.96	0.96	96 0	0.96	96 0	96.0	96.0	96.0	0.96	0.95
KVAR	12000	13200	13680	13680	13680	13320	13440			9408	10248	10164	10320	11124	11832	12120	11400	11256	10848		10776	10620	10584	9192	8844	9012	8736	8772	8988	9240	9276	9226
k/A	39840	40800	40920	40680	40200	40920	41280	41280	34560	34680	33840	33840	33840	35160	34920	35160	36360	36240	36600	36600	36600	36480	36720	32880	31680	32160	31920	31560	31500	31080	31200	31800
κ	38040	38640	38640	38280	37920	38760	35000	39240	33360	33360	32280	32280	32280	33360	32760	33000	34440	34440			34920	34920	35160	31560	30360	30840	30600	30360	29880	29640	29760	30360
(8)			_	-	-	-	-		-	324	316	320	320	332	328	328	330	334	338	338	338	330	340	300	288	297	297	290	288	288	290	296
3	+	38	38		38	38	38	38	32	320	316	318	318		328	330					338		340	304	i.	i	i	Ī				
(R)			+	-		_						324		1	338	340							348	312	300	304	302					
kV/B	35.5	35.7	35.9			356			36 0	36 0	356	356	35.5	35 4	35 5	35 5		36 0	36.2	36.1	36.2	36 1	36 2	36.2	36.3		36 1	36 1	36.0	35.8	35 8	35.8
KV(R) KV(Y) KV(R)	34 7										34 9	34.8	34 7	34 7	34 7	348								356	356			35.4			35.1	35.0
(A)//A	_	3 %	35						35 7	35.7	353	353	35.2		35.2	35.2				35.8	35.9	35.8	35 8	35.9					35.6		35.5	35.3
£	50.2			49.0			707		49.7	49.3		48 4				48.0	48.8				49.2	49.3									483	48.3
AMPS	278	384	384	282	282	386	288	300	324	324	320	320	322	334	332	332	340	338	35	342	340	340	342	304	d	208	20%	202	200	202	294	300
13/12/96	אין ריר		- 1		• 1	- 1		012	- 1	1	1							1						100	1 0	3.00	- ~	, a	2 2			61.2
Date	12 40	13.47	12 51	12 54	3.5	7 9		0 4.4.7	14 - 7	14.25	14 32	14.36	14.40	14 47	14 51	14 55	45 03	15 02	200	15.10	45.04	15.25	15:32	15 25	45.0	15.4	15 53	15.0	20.00	10.02	18:40	16:17

Appendix - 3/4 Contd..

kW Peak	41160	41160	41160	41160	41160	41160	41150	41150	41.50	41150	41-50	41160	41:60	41.50	41150	41150	41150	41150	41150	41520	42480	43550	41230	08277	44280	44280	44280	44280	44280	44280	44280	44880	
kVA Peak k	44640	44640	44640	44640	44640	44640	44640	44640	44640	44640	44640	44640	44640	44640	44640	44640	44640	44640	44640	45000	45960	46920	47640	47640	47640	47640	47640	47640	47640	47640	47640	48000	
KVARh k	67968	68640	69816	70488	71196	72600	L		76560	77556	78492	79824	80844	81912	83772	84852	86040	88236	J.,		93072	54236	95388	97176	98364	99552	101628	102840	104052	106272	107556	108816	
kWh	-	191712				1				٠.	219000	222576	225108	227700	_							_			267552	27/1456							
kW(B)	9852	10020	10692	10752	10997		_ 1		12960	1	. 1	12840	. 1	1_							_	14880				_					-		
kWW	9648	1_	1	- -			12480				1	_1			4-			_1_			-}	- }				-	E						
K/W/B)						1																_'_			_								
ă	7								عاد	عاد)		2		_	_1_		وإد	وإذ				_,	А.,									
2//4					_1_			14040	- 7			-1-						7	10120	↓	_!_						1.						
7	24.200			- 1						41040						516	sta	st a			74/100								4/400			_	
14.4	KW C					_					33300		070000			3000	38/6					0 4400	_				· 1.		_				_
		1.									- 1 -		392 300				1	1	1	_1	1		-1-	_								482 4/0	
	2 3		_	_	-				_	402	402	1_		δ 0 1	404	406	408	468	458	462	460	458	466	458	200	4 2 3 3	9	460	462	464	488	492	484
	<u> </u>	35	35	98	98	ဗ္ဗ	35	35	35	35	35		3	_	35	35		35	8	_		_	_1	3 35 0		_	4	하 하		42	<u>-'</u>	3	.6 35.3
	Ş				35			9 34 5		8	34		8			0 34 (34	34	5 34	6 34	6 34	34	34	34	7 34	34	34	34	8 34	34		3	34.9 34
	쒸	0 35	ಣ	4 35	4	0 35	2	1 34	9 34	9	<u></u>	6	6	က	34	3 35	7	2 34	1 34	7 9 34	6	4	 	긺	6	히	48.0 34.7	7.9 34.7	6	48 1 34	9	8	48.9 34
		294 48	302 48	314 49	316 49	326 49	388 48	392 48	394 47	396 48			_	400 48	398 48	400 48	402 48	462 48	452 48	456 47	454 47	454 48		450 48	450 47	450 47	450 4	452 47	454 47	458 4	480 4		486 4
3/12/96	AMPS	2	2	8	4	8	2	9	9	9	2	2	9	9.09	9	9 09	9 09	59 9	8 65	59 9	59 9	0 09	9 09	0.09	0 09	0 09	0.09	0.09	60.0	0 09	9.09	9.09	9 09
-	e kV	21 61	25 61	32 61	36 62	10 61	47 61	51 60	55 60	05 60	06 61	10 61	17 60	21 60	25 60		_		L						1		1	1	١	١			
Date	Time	16.2	162	163	163	16.40	164	165	16 5	170	170	17.1	17 17	172	17.2	17.32	17.36	17 40	17.47	17.51	17.55	18:02	18 06	18	18 .	18 21	18	18	18 36	18 4:)	18 47	18 51	18 55

Appendix - 3/4 Contd..

1, 1, 1, 1, 1, 1, 1, 1,																													AA	IGA	LQ	RE		,,
13/17/206 14/		kW Peak	45480	46200	46560	46800	46800	46800	46800	46800	46800	46800	46800	46800	46800	46800	46800	46800	46800	46800	47040	47040	47040	47520	47520	47760	47760	47760	47760	47760	47760	47760	47760	47760
13/12/96 14/16 1	00.00	_	48600	49200	49560	49800	49800	49800	49800	49800	49800	45800	45800	49800	49800	45800	49800	49800	49800	49800	49800	49800	49800	50040	50040	50040	50040	50040	50040	50040	50040	50040	50040	50040
13/1/296 14 14 14 14 14 14 14 1	•		111300	112596	113892	115800	117108	118404	120708	122016	123312	125544	126840	128148	130656	131904	133116	134976	136224	137448	139584	140796	141984	144048	145230	146352	148:544	149808	150960	152700	153852	154992	156948	158064
1311/12/19/16/16/16/16/16/16/16/16/16/16/16/16/16/		kWh	299148	302244	305316	309936	313044	316116		324492	327588	333000	336060	339096	345168	348240	351348	356076	359256	362412	367920	371100	374292	379860	383064	386244	392484	395604	398748	403356	406284	409212	414468	417432
131/12/96 140 46 46 47 47 48 47 48 47 48 47 48 47 48 47 48 47 48 47 48 48		kW(B)	15480	15120	15360	15480	15360	15240	15120	15240	15480	15360	15120	15240	15600	15120	15720		15840	15840	15720	16080	15840	15840	15960	15960	15600	15600						14760
Secondary Color Fig. Factor Factor		kW(Y)	15240	15000	15000	15120	15000	14880	14760	14880	15120	14880	14880	14880	15360	14880	15600	15360	15600	15600	15480	15600	15600	15600	15720	15600	15360	15480	15600	14520	_	_	14640	14400
FVL, AMPS		kW(R)	15720	15600	15600	15720			15480	15720	15840	15480	15480	15480	15960	15480	16200	15960	16080	16080	15840	16080	16080	16080	16200	16080	15720	15960	16200	15120	15000	15120		14760
13/12/96 KVLL AMPS Hz KV(R) KV(N) KV(N) I(N) I(R) I(N) RVA KVA 2 60 6 480 48 6 34 8 34 4 35 2 486 476 476 46440 50160 6 59 8 478 48 1 34 6 34 2 34,9 488 476 472 45720 49560 0 60 0 480 48 1 34 6 34 2 34,9 488 476 476 46200 5040 0 60 0 480 48 3 34 7 34 3 35 1 488 476 476 46200 5040 0 60 0 476 48 1 34 3 35 2 486 472 472 45720 4950 0 60 0 476 48 1 34 3 35 1 488 472 472 4580 4950 0 476 48 1 34 3 34 3 35 1 488 472 472 4580 4960 0 60 0 476 48 1 35 1			0	0	0	0			0	0		0	0	0	0	0.93	0.93	6 0	0.93	0 93	6.03		0 94	0 94	0 94	94	94		0.94	0.93	0.93	0.94	0 94	0.94
13/12/96 KVL, AMPS Hz KV(K)		kVAR				_						19080	19560	19440	19200	17880	18480	18720	18360	18480	18240	18000	17640	17400	17160	17040	17520	17400	17400	17040	17280	16920	16320	16680
13/12/96 148		κVA	50160	49560	49920	50040	49920	49680	49440	49800			49560	49560	50760	48840	51000	50520	50880	51000	50400	51120	50880	50640	50880	50520	49800	50160	50880	47400	47160	_	_	
13/12/96 E KV_L AMPS HZ KV(R) KV(Y) KV(R) I (R) <		κN	L I	45720	45960		45960	45720	45360	45840	46440	45720	45480	45600	46920	45480	47520	46920	47520	47520	47040	47880.	47640	47640.	47880			47040	47760	44280			!!	43920
E KV_LL AMPS HZ KV(R) KV(V) KV(R) I(R)		<u>B</u>	476	472	476	476	474	472	472	472	474	472	472	472	476	458	476	474	480	478	474										,			
E KVL AMPS Hz KV(R) KV(N) KV(B) I(R) 2 60 6 480 48 6 34 8 34 4 35 2 486 6 59 8 478 48 1 34 6 34 3 35 0 486 6 59 8 478 48 1 34 3 34 3 35 0 486 7 60 0 480 48 4 34 8 34 4 35.1 488 486 5 60 0 476 48 1 34 8 34 4 35.1 488 486 5 60 0 476 48 1 34 8 34 4 35.1 488 486 6 60 0 476 48 1 34 3 34 4 35.1 488 482 482 36 3 482 36 4 35.2 488 482 482 482 482 482 482 482 482 482 482 482 482 482 482 482 482 482 482 482		3	478	476	476	476	474	472	468	472	474	470	472	_			_	-																
13/12/96 KV(R) K		(R)	486	488	486	488		484			_	_	_																					
13/12/96 KV L AMPS Hz KV(R) KV(Y) KV(Y) KV KV(R)		kV(B)	2			_		_	_								356	35 6 4	9	-	_	8	9	8				6	8	9	5	9	8	3564
E KV, L AMPS Hz 6 60 6 480 48 6 6 59 8 478 48 1 6 60 0 480 48 3 7 60 0 476 48 1 8 60 0 474 47 9 8 60 0 474 48 3 9 60 0 474 48 3 9 60 0 474 48 3 9 60 0 474 48 3 9 60 0 474 48 3 9 60 0 474 48 3 9 60 0 474 48 3 10 61 2 46 4 48 5 10 61 2 48 3 49 5 10 61 2 48 3 49 5 11 48 4 49 6 12 48 4 49 6 13 46 6 49 4 14 48 5 60 6 12 47 8		$k\Lambda(\mathcal{X})$	34 4												34 7									35.0	35 0	34 9			35 1					34 8
13/12/96 e KV L AMPS HZ 2 60 6 480 48 68 6 59 8 478 48 13 1 60 0 480 48 48 3 1 60 0 474 47 48 3 2 60 0 474 48 2 3 60 0 474 48 3 60 0 474 48 3 60 6 60 0 474 48 3 60 6 60 0 474 48 3 60 6 60 0 47 48 3 48 5 60 6 61 2 46 48 48 5 48 5 60 6 61 2 48 48 5 49 5 60 6 61 2 48 48 5 49 5 60 6 61 2 48 48 5 60 6 60 6 40 6 61 2 48 5 60 6 60 6 60 6 60 6 61 2 48 5 60 6 60 6 60 6 60 6 60 6 60 6 61 2 48 5 60 6 60 6 60 6 60 6 60 6 60 6 60 6		kV(R)	348							349	35.0	348	34 7	348	350	353	35 2	35 2	35.2	35 3	35 3	35 4	35.3	35 5	35 3	35.3				35 2				35 2
13/12/96 E KV L AMPS 6 59 8 478 6 60 0 480 7 60 0 478 5 60 0 474 5 60 0 474 6 60 6 482 6 60 6 482 6 61 2 482 6 12 482 6 12 482 6 12 482 6 12 482 6 12 482 6 12 482 6 12 482 6 12 482 6 12 482 6 12 482 6 12 482 6 12 482 6 12 482 6 12 482 6 12 482 6 12 486 6 12 486 6 12 486 6 12 486 6 12 486 6 12 486 6 12 486 6 12 486 6 12 486 6 12 486 6 12 486 6 12 486 6 12 486 6 12 486 6 12 486 6 12 486 6 12 486			486	48 1		48.4	48.3		47 9	48 1	48 6	483	480			48 9	49 0	48.E		ᅵ	যে	2	6	-	က	7	4	9	9	2	4	7	8	9
13/12/99 6 59 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		AMPS	480	478	480	480	478	476	474	476	480		-	ļ	. !	. !										l								444
	3/12/96		9 09			0 09	9.09	0 09	0 09	9 09	9'09														1									612
	ľ	Tıme	19 02	19 06	19·10	19 17	19 21	19 25	19·32	9 36	9.40	9 47	9 51	9 55	0 02	90 0	0.10	0.17	0.21	0.25	0:32	3.36	0.40	747) 51	55	.02	90	10	:17	:21	25	.32	:36
	٦,	i	1	ı	. 1	- 1	. 1	۱.	1. 1	`-1	-1	-1	-1	-	7	αl	7	7	Ñ	[آن	2	7	7	7	<u>지</u>	<u> </u>	7	7	Ź	Ŕ	Ŕ	λ	Ż	Š

BANGALORE

											-																	NGA	ro
kW Peak	47760	47760	47760	47760	47760	47760	47760	47760	47760	47750	47750	47750	47760	47760	47750	47760	47750	47760	47760	47760	47760	47760	47760	47760	47760	47780	47760	47760	
kVA Peak	50040	50040	50040	50040	50040	50040	50040	50040	50040	50040	50040	50040	50040	50040	50040	50040	50040	50040	50040	50280	50280	50280	50280	50280	20280	20200	50280	50280	
KVARh	159180	161148	162240	163320	165408	166476	167556		170316	171420	173412	1	1_	178080	179328	180588	183048	184296	1855	18725	1884	1808		200			0.040	_	
kWh	420348	425484	428436			440400	443376	447852	450804								482832			4031004					00000	20010	510085		
KW/R)	14640	į	ţ		<u>l</u> _						-			_1_		1000	15000				13240		ı	_ 1.	2044	14/60		2000	12000
W/W/	14280	1					4	-		•							1					14320				L		14/60	
יטייעטיין	10				04 15740						~-													L			1		15300
2	KVAK TI			7				16560 0 9	이		2		واد	١.	وإذ			9	!	0	0	9	- [ļ	. !	17640 0.93		_	17520 0.93
-		1	4	-1	٦.			47,700 10				-}-						_	_			_	_1	_	46320 16				48240 17
-				-		1_	_										1	_				-		43200 46	43200 46	44520 47			42000 48
-		_	_	_		L												466 4	468 4	470 4		-	430 4	420 4	420 4	436 4	444 4		442 4
-					_						_		_				468		470	472	442	_	430	424	422	440	444	442	442
L	1			_	_											480	480	480	482	484	450	444	440	436	436	448	452	454	452
	κ (Β)	35	35		36 1		36 1	36.2	36.0	36.0	36.0	358	358	358	359	36 0	36 1	36 3	36.3	36 4	36 5	36 7	36.7	36.5	36.5	36 5	1_	36.6	
	<u>\$</u>	34 8		352					35 3		35 2		350	350	352	353	35 4	356	356	356	358	36 0	36 0	35.9	35 9	358	35.9	35.9	35.8
	kV(R) kV(Y) kV(B)	35 2		356	35 7		35 7		356		356	35 5	35 4	35 4	35 5	356	358	36.0	36 0	36 0	362	363	36 4	36.2	36.2	36.2		36.3	36.2
	7 H		48 6	490	493	49.2	490			48 7	486	483	48 4	48 5	48 7	488	49 1	493	49 4	493	49 6	49 4	493	48 8	489	49.0	49.6	49.6	49.1
3	AMPS	442	442	446	448	446	444	444	440	440	440	442	454	464	470	474	472	472	474	474	446	436	434	426	476	442	446		444
13/12/96	kV _{L-L}	612	612	618	618	618	618	62 4	618	618	618	61 2	612	612	618	618		1	62	62	62		1	83	63	3 6	63	63	
Date	Time	21 40	21 47	21 51	21 55	22 02	22 06	22.10	22.17	22 21	22.25	22 32	22 36	22:40	22.47	22.51	22 55	23.02	23.06	23 10	23.17	23.21	23.25	23.32	22.22	23.40	23.47	23:51	23:55

Appendix - 3/4 Contd..

Appendix - 3/4 Contd..

																											GAI	101	15		
kW Peak	47760	47760	47760	47760	47760	47760	47760			47760																				4//60	110//4
kVA Pea	5028	50280	50280	50280	50280	50280	50280	50280	50280																						20280
kVARh	200496	201684	202872	204648	205836	20705	9	4:3276	9	25	7 7	306	3184	٠٠;	۱٠,	١,	1	22.	_		2.285.7		٠.	<u> </u>	<u> </u>	-		<u>.</u>	<u> </u>	7,0012	.41764
kWh	528000	530916	533796	533140	541104	544044		_		-		-	7	7/6	[2]	532	535 - 76	588 : 38	533892	596964) 600012	0 605340	0 608328	61129	0 617112	620076			630468	14640 633396	14760 638604
kW(B)	14640	14520	14280	14640	14640	14760	14520	14640	-			`				15360	15000	15000	15240	15120	15000	14880	14760	_1	14760	14640		14520			
kW(Y)	14400	14160	14040	14280	14400	14400	14280	14280	14400	14160	14160	14400	14760		150	15.0	14 0.1	4 ŏ	14 30	15000	14880	14640	14640	14520	14520	14640		14520	14520	14520	14520
kW(R)	15000	14520	14640	14880	15000	15000	14880	14880	15240	14640	14640	15000	15240	15360	15600	15720	15360	15480	15600	15720	15480	15940	15240	15120	15120	15240	15120	15000	15120	15120	15120
Þf	0.93	0 92	0 92	0.93	0 93	0.93	0 93		0 93		이	o]		0 94	0 94	0 94	0 94	0 94	0 94	0 94	0 94	0 34	0 94	0.95	0 95	0.95	0 95	0 95	0.95	0.95	0.95
KVAR	17520	17880	17880	17640	17520	17760	17640	17760	17760	17760	18000	17400	17160	17040	16920	17040	16800	16560	16440	16320	16320	15840	15600	15360	14760	14880	15000	15000	15000	14760	14880
kVA	47520	46680	46560	47160	47400	47520	47040	47280	47760			47400	48000	48120	48960	49320	48000	48240	48600	48600	48240	47520	47280	46920	46680	46920	46800	46560	46800	46560	46680
₹	44040	43200	43080	43680	44040	44040	43560	43920	44280		43080	44040	44760	45000	45960	46320	45000	45360	45720	45840	45480	44760	44520	44280	44280	44520	44280	44040	44280	44160	44280
Y) (B)	34 434	30 432	32 432	32 434	38 436	36 438	34 432	36 438	38 450	32 432	2 428	36 432	40 436	38 436	48 446	52 448	40 436	42 438	42 442	44 440	2 438	2 428	30 426	8 424	24 422	8 422	28 418	24 418	3 422	2 420	26 422
三	4	438 43	442 43	4	446 43	4	444 43	448 43	450 43	442 43	442 432	446 43	448 44	450 43	458 44	462 45	450 44	454 44	454 44	4	454 442	442 432	442 43	440 428	436 42	438 428	434 42	432 42		434 422	434 42
kV(R)[kV(Y)[kV(B)] I(R)	36.5 4				.34		36 2 4	36.2 4	36.1 4	36 1 4	36 2 4	36 4 4	36.7 4	36.7 4	36 6 4	36 6 4	36.6 4	36 5 4	9	1		w	36 8 4	36 7 4	36 8 4:	36 8 4:	36 9 4:	36 8 4	6	36.8 4:	36.8 4
V(Y)	35.8			356	356	35 6	35 5	35 5	35 4	35 4 3	356	35.7	35.9	35.9	35.9	35.9	35.9	35.8	6	6	8	+	+	36 1	36 1	36 1	36.2	36.2	N	_	
V(R)	36.2	ł	8	6	35 9	6	6	35 8	35.8	358	35 9	36 0	36 3	36 3	36 2	36.2	36 3	36.2	8	4	7	4	4	36.4	36.5	4	36.5	36.5	2	15	Ш
7	100	483						48.4	48.4	48.2	483	48 8	49 1	493	49 4	49.6	┢	8		6	6	2	2	49 7	50 0	-	49.8	100	6	<u></u>	8
AMPS	438	434	434	438	440	440	438	440	444	436	434	438	440	442		454		_				_	1_	_	426		1_			1_	
KV.	624							1	618	618	62 4	62.4	63 0	63 0			63.0								63 0		63 6				
Time	200	200	2 0	0 17	200	0.25	0 32	0 36	0.40	0 47	0 51	0 55	1 02	1 06	1.10	1 17		1 25		136	1.40	1.47	151	1 55	2.02	2 06	2 10	 	+- 		

Appendix - 3/4 Contd..

Carrollo	Г	U		പ	0	O	0	0	0	0	o		<u></u>		_					=1	=	- ı	_ 1					_ !	3AN	IGA	LO:	RE		
MANTER HANCH MAYTH MAY		kW Peal	47760	47760	47760	47760	47760	47760	47760	47880	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	,8000
MATCH 2006 MATCH 2007 MATCH 2007 MATCH 2007 MATCH 2007 MATCH 2006 MATCH 2007 MAT		kVA Peak	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280
Maintail	- 1	_						_			_							262728	263652	265464		267300	C3986Z	••		272136	2,3048	273972	275868	276936	278004	280082	281160	282216_
March Marc		kWh		644640			656580	662844			673992	677160	680376	685308	688104	690876	695592	698352	701136	706608	709368	712176	716376	719172	721968	726864	729636	732420	737796	740844	743904	749892	752940	755964
14/12/96 14/12/96		kW(B)	15000	15480	15960	15840	15840		15960		15840		15720	13920	14040	13440	13560	13800	13680	13920	_	13800	13800	13800	13800	13920	13680		-	15120				
14/12/96 KVLL AMPPS HZ KV(R) KV(K)				_			_	_	_				15480			13320	·	13680	13560	13680	13800	13680	13800	13680	13680	13800	13560	13680	15360	15000	15000	14880		
14/12/96 KVK KVKP) KVKP KKVP KVKP		kW(R)	1									_		,		L		<u> </u>	l		I							14280	15960	15600	15600	15480	15480	15360
14/12/96 14/12/96 1 kV L. AMPS HZ kV(R) kV(Y) kV(B) l(R) l(R) l(R) kVY kV(A) kV(A) kV(B) l(R) kVY kV(A) kV(A) kV(B) l(B) kVY kVA kVA 63.0 440 50.0 36.4 35.9 36.7 45.4 45.0 45.60 494.0 63.0 454.4 49.9 36.2 35.9 36.5 476.4 45.4 450.4 46.0 494.0 63.0 468.50 36.0 36.2 35.9 36.5 476.4 46.4 478.0 50.80 63.0 468.6 49.7 36.2 35.9 36.5 476.4 46.2 47760 50780 63.0 468.6 49.7 36.2 35.9 36.7 47.2 46.4 47760 50780 63.0 466.4 49.7 36.2 35.9 36.7 47.2 46.4 46.7 47.0 50780 63.0 466.4 49.8 36.3 35.9 36.7 47.4 46.4 46.7 47.0 47.0		Ρ		0 94			0								0 95			0.95		0.95	0 C:	i ,	0 83										0 34	
14/12/96 1 kV ₁ L AMPS Hz kV(R) kV(R) l(R) l(R) RVA kVA 6 3 0 440 50 0 36 4 35 9 36 7 448 438 436 45500 48000 6 3 0 454 49 9 36 3 35 9 36 446 458 456 4500 48400 6 3 0 468 50 0 36 2 35 9 36 476 468 462 47760 50760 6 3 0 468 50 0 36 2 35 9 36 476 468 462 47760 50760 6 3 0 468 40 7 36 3 36 3 36 476 468 462 47760 50760 6 3 0 468 40 8 30 3 5 3 36 3 37 472 464 460 47760 50760 6 3 0 468 40 8 36 3 35 9 36 472 464 460 47760 50760 6 3 0 468 40 8 36 3 35 9 36 472 464 460 47760 50760 6 3 0 468 40 8 36 3 36 3 36 472 464 460 47760 50760 6 3 0 468 40 8 36 3 36 3 36 3 36 472 464 460 47760		kVAR	15840		L			17400			17280	17040	16920	13800	13680	13680	13560	13680	13920	13800	13800	13800	13440	13680	1 20	•	1.00	1::20	>	15840	15960	16080	15840	15720
14/12/96 KVL AMPS Hz kV(R) kV(Y) kV(B) l(R) l(R) l(R) R 36 H 38 H 36		K\A	48000	49440			50760	50760	50760	50880	50640	50520	50280	44040	44160	42720	42720	43680	43560	43800	44160	44040	43920	43920	43920	44040	43560	44040	49680	48360	48600	48240		47760
14/12/96 14/12/96 KVL AMPS Hz KV(R) KV(R) I(R) I(R) <t< td=""><td></td><td>κ</td><td>_</td><td></td><td></td><td></td><td>47640</td><td>47760</td><td>47760</td><td>47760</td><td>47520</td><td>47640</td><td>47400</td><td>41760</td><td>42000</td><td>40560</td><td>40560</td><td>41520</td><td>41280</td><td>41640</td><td>41880</td><td>41760</td><td>41880</td><td>41760</td><td>41760</td><td>41880</td><td>41400</td><td>41760</td><td>46800</td><td>45720</td><td>45960</td><td>45480</td><td>45360</td><td>45120</td></t<>		κ	_				47640	47760	47760	47760	47520	47640	47400	41760	42000	40560	40560	41520	41280	41640	41880	41760	41880	41760	41760	41880	41400	41760	46800	45720	45960	45480	45360	45120
14/12/96 14/12/96 KVL AMPS Hz kV(R) kV(K) kV(R) l(R) 630 440 50 0 36 4 35 9 36 7 448 630 454 49 9 36 3 35 9 36 460 630 468 50 0 36 2 35 9 36 5 476 63 0 468 50 0 36 2 35 9 36 5 476 63 0 468 50 0 36 2 35 9 36 5 476 63 0 468 50 0 36 2 35 9 36 5 476 63 0 468 49 7 36 3 35 9 36 7 474 63 0 468 49 7 36 3 36 5 476 63 0 468 49 8 36 2 35 9 36 5 476 63 0 468 49 8 36 2 35 9 36 5 476 63 0 468 49 8 36 2 35 9 36 5 476 63 0 466 49 8 36 2 35 9 </td <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>396</td> <td>394</td> <td>394</td> <td>396</td> <td>398</td> <td></td> <td>396</td> <td>450</td> <td>438</td> <td>442</td> <td>436</td> <td>436</td> <td>432</td>		_	_							1												396	394	394	396	398		396	450	438	442	436	436	432
14/12/96 14/12/96 15 63 0 440 50 0 36 4 35 9 36 7 1 6 30 0 468 50 0 36 2 35 9 36 5 7 1 6 30 0 468 50 0 36 2 35 9 36 5 6 6 3 0 6 3 0 6 2 35 9 36 7 1 6 3 0 0 468 50 0 36 2 35 9 36 5 1 6 2 3 0 0 468 50 0 36 2 35 9 36 7 1 6 3 0 0 468 50 0 36 2 35 9 36 7 1 6 3 0 0 468 49 7 36 3 35 9 36 7 1 6 3 0 0 468 49 8 36 2 35 9 36 7 1 6 3 0 0 468 49 8 36 2 35 9 36 7 1 6 3 0 0 468 49 9 36 2 35 9 36 5 1 36 8 1 6 2 3 0 0 468 49 9 36 2 35 9 36 7 1 6 3 0 0 468 49 9 36 2 35 9 36 7 1 6 3 0 0 404 50 5 36 4 36 1 36 8 1 6 3 0 0 402 50 0 402 50 0 36 5 36 1 36 8 1 6 3 0 0 402 50 0 402 50 0 36 5 36 1 36 8 1 6 3 0 0 402 50 0 40		_			-				_						<u> </u>	_		_		4	<u> </u>	14	4	4	4	4	3	4	4	4	4	4	4	4
14/12/96 kVLL AMPS HZ kV(R) kV(Y) kV(V) k			7 448	-				 	-							1 .												1				450	-	446
14/12/96 kVLL AMPS HZ kV(R) 630 440 500 364 630 454 499 363 630 464 500 362 630 468 500 362 630 468 500 362 630 468 500 362 630 468 498 362 630 468 498 362 630 468 498 362 630 468 498 362 630 468 498 362 630 468 498 362 630 468 498 362 630 464 501 365 630 404 504 505 365 630 404 505 365 630 402 506 365 630 402 506 365 630 402 507 365 630 402		kV(E	L_	36	36	36	36				36.	36 (36	36	398	36.8	36.8	368	36.8	36.8	368	398	36.9	36.8	368	36 8	36.9	36.8	36.5	36.6	36.6	36 7	36.7	36.7
14/12/96 kVLL AMPS HZ 63 0 454 49 9 63 0 454 49 9 63 0 468 50 0 62 4 468 50 0 62 0 468 50 0 63 0 468 49 8 63 0 468 49 8 63 0 468 49 8 63 0 468 49 8 63 0 466 49 8 63 0 466 49 8 63 0 466 49 8 63 0 464 50 1 63 0 404 50 3 63 0 404 50 3 63 0 404 50 3 63 0 402 50 3 63 0 402 50 4 63 0 402 50 3 63 0 402 50 3 63 0 402 50 3 63 0 402 50 3 63 0 402 50 3 63 0 402 50 3 63 0 402 50 3 63 0 402 50 3 63 0 402 50 3 63 0 444 49 8 63 0 446		<u> </u>															36 1	36 1							36 1	-36 1		36.2					36 0	
14/12/96 kVLL AMPS Hz 63 0 4440 50 63 0 454 49 63 0 454 49 63 0 454 49 63 0 468 50 62 4 468 50 63 0 468 49 63 0 468 49 63 0 468 49 63 0 466 49 63 0 466 49 63 0 466 49 63 0 466 49 63 0 404 50 63 0 404 50 63 0 404 50 63 0 402 50 63 0 402 50 63 0 402 50 63 0 402 50 63 0 402 50 63 0 402 50 63 0 402 50 63 0 444 49 63 0 444 49 63 0 442 49 63 0 442 49 63 0 442 49 63 0 442 49 63 0		kV(R)				36.2													36.4				36.6	36.5	36 5	36.5	36.5			36.3	36.3		36.3	36.3
14/12/96 14/12/96 15 63 0 440 63 0 468 63 0 468 63 0 468 63 0 468 63 0 468 63 0 468 63 0 468 63 0 404 63 0 402 63 0 442 63 0 442		Hz											50 1		50 5	503					50 5	50.4	50 6	50 5	50 4	503		50.0	49.7	8.64	49.7			49.4
		AMPS	440	454	468	468	468	466	468	468	466	466	464	<u></u>	<u> </u>		_	<u> </u>	L_	<u></u>	I _		l _	1	i	L :	i _	l	1	<u>. </u>	L.	i _	١.	
	14/12/96	KV L L	63 0	63 0	63 0		63.0	63 0			63 0	63.0	62.4	63 0	63.0	63.0	63.0	63 0	63.0	63 0	63.0	63.0	63 6	63 0	63.0	63 0	63.6	63.0	63.0	63.0	63.0	63.0	63.0	63.0
	- 1	Time	2 36	2 40		251	2.55	3.05	3 06	3.10	3 17	3 21	3 25	3.32	3.36	3 40	3 47	3.51	3 55	4 02	4.06	4 10	4.17	4:21	4.25	4 32	4:36	4:40	4.47	4.51	4.55	5:02	5 06	5:10

Appendix - 3/4 Contd..

kW Peak	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	Ĭ.																		48000
X	50230	8	8	8	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	20280	20,380	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280
kVA Pe	50;	502	502	502	20	20	20	50,	20	20	23	20	8	2	ଧ	8	ည	8	8	2	20	3	3	ဒ္ဓ	ଧ	3	3	3	20	20	3 2	징
	8	4	ᇷ	4	징	൭	잉	324	312	20	¥	48	384	힗	28	228	428	322	88	828	072	352	288	839	684	힗	156	- 1 5 8 7 8	372	236	348	284
kVARh	12	 [2]	ان	21	~	~	25.	291924	292812						299028			_		_	306072	1					315156	1	_			322284
kWh	760500	763536	766560	771840	774708	777432	782112	784728	787380	792636	795372	798108	802236	804960	807672	812388	815028	817668	822324	825048	827772	833568	836592	839592	844260	847320	850284	855144	857940	860736	865212	867504
<u> </u>		-		77 0						_	_									-						-		1			_	
KW(B)	15120	15000	15000	14880	13560	13320	13080	13080	12960	13560	13680	13680	13560			_	_		13680	13560	13560			15000	15360	15000	13800					11436
kW(Y)	15000	14880	14880	14640	13320	13200	12840	12960	12840	13200	13440	13560	13320	13320	13320	12960	12960	12960	13320	13320	13320	14880		14880	15120	14760	13560	13680	13800	13680	11244	11172
kW(R)	+	15480	15480	15120	13920	13680	13440	13440	13440	13800	14040	14040	13800	13920	13800	13440	13440	13440	13800	13920	13920	15600	15360	15360	15720	15360	14160	14280	14280	14280	11712	11652
Pf	0 95	0 95	0 94	0.94	0.95	0 95	0 95	0 95	0.95	0 95	980	0.6 5	0.53	0 (- ;	96 0	0.95	0.95	0 94	0.93	0 94	0.93	0 93	0.92	0 92	0 93	0 92	0 92	0 92	0.92	0.93	0.93	0.93
KVAR	15840	15720	15840	15600	12960	12960	13080	12840	13080	12840	12480	12000	12120	12120	12600	13320	13560	13800	16080	15120	15840	18360	18840	18600	18480	18720	17760	17640	17400	17160	14040	13920
K K	10	┼—		47280 1	42840 1	42240 1	41520 1	41520 1	41400 1	42600 1			42480 1	42600 1	42480 1	41760 1	41880 1	42000 1	43800 1	43560 1	43800 1	49200 1	48960 1	48840 1	49680 1	48840 1	45120 1	45240 1	45600 1	45120 1		36960 1
-	-		45360 48000	1			•	_			41040 42960	41280 42960				1	ı					1					1		_			
k	4	- 1	1	44640	40800	40200	39480	39480	39240	40560			40680	40800	40560	39600	39600	39600	40680	40800	40800	45600	45240	45120	46200	45000	41520	41640	42120	41760	34440	34320
(8)			436	430	388	384	378	378	376	386	386	390	384	384	386	382	390	390	408	406	408	462	462	460	464	462	424	424	428	424	348	348
3	-+-	4	440	434	390	386	380	380	380	386	330			388			388	390	408		408	462	462	464	468	462	4	428	430		1. 1	348
(a)			448	442		396	390	390	388	396	400			398			396		418			476		472	478	472	436	438	438			
K///R	36 7	38	366	36 6	368	36.7	36 5	366	36.5	368	368	36 8	368	368	36.7	36 2	36 1	35.9	359		358	35 5	35 4	35 4	356	35 3	35.4	35 5	35 5		35.8	356
2	36.0	36.0	359		36 1	36.0	358	35 9	35.9	36 1	36 2	36 1	36 1	36 1	359	356		35 2	35 1	35 0	350	348		34 7	349	346	34 7	34 7	34 7	34 7	35.0	34 8
ישוואוואויאויאויאויא	36.3	36 3		36 2	1				36 2	36.5	36 5	36 5	36 4	36.4	36 3	35 9		35 5		35 5	35 4	35 2		35 0		35 0	35 1	35 0	35 1	35 0	35 4	35 2
2	٦						48 6	48 6	48 6	49 1	49 6	6	49 5	4	-	5	8	-	4	7	6	4	6	ا ه	9	6	6		6	3	6	6.74
VANDO			٠.	1_	1_		1		1	L	.1	1.	1	390	1	1	<u> </u>	_					1_	466 4			1	1_	↓	↓_	ــــ	L
4/12/96	1 L L L		63.0							63.0		63 0									612				612					909		61.2
-		5 21	5.25	5 32	5.36				5.55	6.02	90 9	6.10	6.17	6.21	6 25	6 32	6 36	6.40					7 06				7.25	7:32	7.36	7:40	7 47	7.51

TATA ENERGY RESEARCH INSTITUTE

Appendix - 3/4 Contd..

																					T	ATA	A E	NE				EARCH ALORE
kW Peak	480001	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000			-	-LONE
kVA Peak	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	50280	20200	30200	
kVARh k		324960	_	326676			329628	-	332016	332736	333972	334644	335340	336684		-			340236		922488 342084	342708			Ţ		343400	
kWh	180	874368	1_				3 887352		893700		3 899124	901068	3 903048							920700	3 922488	3 924312			1		933852	
kW(B)	_	<u>!</u> _	11760	1	11628 11856	11544 11760	3 11628		. I	1	1_	1	.l_	1_		1_	1	1	}	١.	_	. 1	<u> </u>	Ш	١		7,608	
2////		!							٠.	ļ_	<u>Ļ</u> .	ļ_	1		1_	.	ļ.	1	1	0165	ļ	ļ		Į	SDS	783	740	
(0)/V\3			_1_												7				\perp	9384		L_			_1	_1	7884	
50	1					9		2		4) 0			4	وأذ	-	- 1		이		-1-		1_	_1	이	0	0.97	
14/4/	AVAR 12560		1,	1	13000										-	1	\perp	4	_					_		0 6432	5544	
3	KVA	_1_		. 1		37000		37000							1_		_						_	_1		25080	23520	
						1	1_		34000				1	_1_			1	. 1	1					26040	24840	24240	22920	
-			-+	at:			-		200			-		-+	=	ᆏ	103	100	4	ন	ᆏ	<u></u>	4	2 252	18 238	230	loo	
-			_			1					_							_	282 27				272 25	262 25	248 23			
L-	<u>a</u>	5	∞	क	<u> </u>	7	∞	اق	10	7	9 1	7	9	9	<u>ن</u>	9	∞	35 8 2	3562	356	6	8	35.9	36 0	36 0 2	0	0	1
	ত্রা									320						34 9	35 2	35 2	349	35 0	34 9	35 1	352	353	ļ	35	35	
	kV(R)	35		356	_	35	32	35	35	35	35	35.	35	- 1		353	35 5	35.5	35.3	35.3	352	35 5	35.6	35.7	┺	7 35 8	35	
	HZ	48	48 5	48 7	486	48	486	483	84	47	84	48	483	48	48.0	482	3 48 7	3 48.7	3 48 6	1_	4 47 9	8 48 6	5 49.1	1_	49		48	
9	AMPS		348	352	358	356	352	352			296	296	294	296	294	294	298	268	278	_	274	268		254				1
14/12/96	kV ∟₁	612	612	618	618	612	612	612	9 09	612	612	612	612	612	612	612	612	618	1	9	612	612	618	9	9	5 6	0 6	5
Date	Time	7 55	8 02	8 06	8 10	8 17	8 21	8.25	8 32	8 36	8.40	8 47	8 51	8.55	9 02	906	9.10	9.17	9.21	9 25	9 32	936	9.40	0 47	20	0.0	9.33	20.01

TATA ENERGY RESEARCH INSTITUTE

BANGALORE

01 Voltage Profile For a Typical Day Þ١ - 69 incoming volltage (kV)

current (A)

Variation in Frequency

Variation in Power Demand Þ١ Power (KW)

Variation in kVA Demand

TATA ENERGY RESEARCH INSTITUTE BANGALORE

APPENDIX - 3/6

SYSTEM PARAMETERS DETAILS OF CALCULATIONS AND RESULTS OF COMPUTER RUN

2. Loss load factor $= \frac{\sum l^2 x}{l^2_{max} \times 8760}$

Where

 $E I^2 x$ = $I_1^2 + I_2^2 + \dots I^2 8760$

t = Load current

 I_{max} = Peak load current

3. Input

Annual energy consumption (Nov 95-96) = 337.7 million kWh (66 kV plant consumption)

Overall plant peak load = 56 67 MVA

Average PF = 0.92

Load curves = Typical working day

4. Results of computer run = 89 06%

Annual load factor

(considering 21 days shutdown)

Annual loss load factor = 0.85

5. Cost of electricity purchased

Demand charges = Rs.150 per kVA per month

Energy charges (average) = Rs.3.00 per kWh

6.6 kV - BUS - VOLTAGE ADJUSTMENT AT S/S - 1 (TRANSFORMER - NO - 3 OF MSS)

Amps Cos¢ +10 +001 -13 +0.02 			sqO	Observations				Remark	Remarks on Variations from Normal Position	iations fi	rom No	rmal P	osition
6.42 527 0 96 6298 6029 1824 -3% +10 +0 01 6.48 504 0 97 6163 5971 1522 -2% -13 +0 01 6.54 504 0 96 6278 5971 1768 -1% -13 +0 01 6.6 517 0 95 6317 5990 1893 - - - 6.66 514 0 95 6317 6009 1997 +1% -3 - 6.72 510 0 95 6317 5990 1997 +2% -7 - 6.72 510 0 95 6317 5990 1997 +2% -7 - 6.72 510 0 95 6317 5990 1997 +2% -7 - 6.78 507 6.78 5990 2016 +3% -7 -	Tab	Ş	Amps	Cos	KVA	ΚW	kVAr	%	Amps	Cos	K V V	<u></u>	κVΑΓ
6.42 527 0 96 6298 6029 1824 -3% +10 +0 01 6.48 504 0 97 6163 5971 1522 -2% -13 V -14 V	Position		•					Volt					
6.48 504 0 97 6163 5971 1522 -2% -132 V -140 01 6.66 514 0 95 6317 5990 1997 +1% -3 - 6.72 510 0 95 6317 5990 1997 +2% -7 - 6.72 510 0 95 6317 5990 1997 +2% -7 - 6.78 507 0.94 6317 5990 2016 +3% -10 -7 -	-3	6.42	527	96 0	6298	6029	1824	-3%	+10	+0 01	+20	+49	69 9
6.48 504 0 97 6163 5971 1522 -2% -13								-198 V				,	27.4
6.54 504 0 96 6278 5971 1768 -1% -13 +0 01 6.6 517 0 95 6317 5990 1893 6.66 514 0 95 6317 6009 1997 +1% -3 - 6.72 510 0 95 6317 5990 1997 +2% -7 - 6.78 507 0.94 6317 5990 2016 +3% -10 -0.01	5	6.48	504	0 97	6163	5971	1522	-5%	-13	+0.02	-115	2 - 18	-3/1
6.54 504 0 96 6278 5971 1768 -1% -13 +0 01 6.6 517 0 95 6317 5990 1893 - - - 6.66 514 0 95 6317 6009 1997 +1% -3 - 6.72 510 0 95 6317 5990 1997 +2% -7 - 6.72 510 0 95 6317 5990 1997 +2% -7 - 6.78 507 0.94 6317 5990 2016 +3% -10 -0.01	1	: :						-132 V					
6.6 517 0.95 6317 5990 1893 -	-	6.54	504	96 0	6278	5971	1768	-1%	-13	+0 01	-115	-18	-125
6.6 517 0.95 6317 5990 1893 - - - - 6.66 514 0.95 6317 6009 1997 +1% -3 - 6.72 510 0.95 6317 5990 1997 +2% -7 - 6.78 507 0.94 6317 5990 2016 +3% -10 -0.01	•	· !						7 99-					
6.66 514 0.95 6317 6009 1997 +1% -3 - 6.72 510 0.95 6317 5990 1997 +2% -7 - 6.78 507 0.94 6317 5990 2016 +3% -10 -0.01	Norm	9.9	517	0 95	6317	2990	1893	1	1		1	1	ı
6.66 514 0 95 6317 6009 1997 +1% -3 - 6.72 510 0 95 6317 5990 1997 +2% -7 - 6.78 507 0.94 6317 5990 2016 +3% -10 -0.01	Posn											19	3
6.72 510 0 95 6317 5990 1997 +2% -7 - 6.78 507 0.94 6317 5990 2016 +3% -10 -0.01	+1	6 66	514	0.95	6317	6009	1997	+1%	ကု	1	+39	 ည	1 84
6.72 510 0.95 6317 5990 1997 +2% -7 - 6.78 507 0.94 6317 5990 2016 +3% -10 -0.01	•) ;						7 99+					
6.78 507 0.94 6317 5990 2016 +3% -10 -0.01	1	6 72	510	0.95	6317	5990	1997	+2%	-7	1	+39	,	1 84
6.78 507 0.94 6317 5990 2016 +3% -10 -0.01		i)					+132 V					
	6	8 78	507	0.94	6317	5990		+3%	-10	-0.01	+39	,	+123
> 061+	r F) ;	5					+198 V					

Normal tap position was kept at tap no.9

APPENDIX - 3/8

OPTIMUM BUS VOLTAGE CO-ORDINATION DETAILS OF CALCULATIONS

1. $PPF = K \times APF$

Where PPF = Peak load power factor

APF = Average Power Factor

K = Ratio of load factor of apparent power to the load factor of active power.

C KVAR 1(EI/E2)2

Where

C_{KVAR} ' =Output of capacitors in kVAr

 E_1 = Applied voltage across the capacitor

E₂ = Rated voltage of the capacitor

3. Distribution Losses

= $3 \times 1^2 P \times R \times LLF \times UF$ Watt hours

Where IP = Peak load current in Amps

R = Resistance in Ohms

LLF = Loss Load Factor

UF = Utilisation factor

Input: Load curves, demand profile, voltage profile, PF profile 5 minute data for a typical production day -13th &14th December 1996

PROPOSAL

To operate the OLTCs of 15/20 and 20/25 MVA power transformers so as to maintain a voltage of 6.5 kV on the 6.6 kV bus

TATA ENERGY RESEARCH INSTITUTE BANGALORE

Appendix - 3/8 contd...

Reduction in Maximum demand

Lowest bus voltage on 66 kV = 60 kV

Total rated output of HT capacitor = 7.962 MVAr

Total output of LT capacitors = 4 712 MVAr

Peak load power factor as measured = 0.91

Total capacitor output under existing conditions

= 12 674 MVAr

Capacitor output under proposed = 12.33 MVAr

conditions

Reduction in energy losses in equipments

Estimated savings in power losses in = 18 kW

HT & LT equipments due to marginal

reduction in voltage

Monthly savings in kVA M.D = 881 kVA

Annual savings in energy losses = $18 \times 24 \times 344 \times 0.85$

= 9,68,430 kWh

Expected reduction in reactive power = 950 kVAr

drawn

Capital expenditure avoided due to available = Rs 5.70 Lakhs

reactive compensation

Annual cost of savings in maximum = $Rs.440 \times 150 \times 12$

demand @ 50% of demand realised = Rs 7.92 Lakhs

Total annual cost of energy savings = Rs.29 7 Lakhs (In addition to Rs 5 70 Lakhs capital savings)

Cost of implementation = Nil

APPENDIX - 3/9

POWER FACTOR MANAGEMENT DETAILS OF CALCULATIONS

1. Existing Operating Conditions

Peak load Power Factor = 0.92 (on 13.12.96 - 18.47 hrs)

Maximum demand (Dec'95) = 50.16 MVA @ 60.6 kV

Average Power Factor = 0.9378

Additional reactive compensation = 2 90 MVAr required to improve the power factor

(peak load) to 0 94

2. Proposed Operating Conditions

After implementation of recommendation under Bus voltage co-ordination. (Appendix - 3/8).

Peak load power factor (expected) = 0.93

Average power factor = 0.95

Expected reduction in reactive power = 950 kVAr (App.3/8)

Additional reactive compensation = 1.95 MVAr

required to improve the peak load P F to 0 94

Resulting average power factor = 0 96 and above

MD reduction due to bus voltage = 440 kVA (App.3/8) co-ordination

TATA ENERGY RESEARCH INSTITUTE BANGALORE

Appendix - 3/9 contd..

System MD reduction with PF improvement = 690 kVA

Costs saved due to kVA MD reduction = Rs.12.42 Lakhs

Cost of investment @ Rs.600/- kVAr = Rs.11.70 Lakhs

Payback period = Less than 1 year

APPENDIX - 3/10

ENERGY SAVINGS BY SHIFTING CAPACITOR BANKS TO LOAD END BUS

SI No.	Feeder Details	Measured Load (kW)	Max. Demand	Present PF	% Redn. in current	Capacitor connected kVAr	Savings in Distr los₃ kWh	Improved P.F.
1.	R1J13	76 5	95 1	0 78	13 6	25	1330	0 903 -
2	H1P14	35 7	51 5	0 69	18 5	15	837	0.847
3	W1X08	87	103 5	0 82	-	20	956	0 906
4.	W1J03	45 6	64 2	0 61	24	25	686	0.8
5	U2J06	48	54	0 68	22	25	1401	0 873
6	W1V07	55 8	78	0 67	20	25	920	0 835
7	W1V43	73 8	90	0 8	11	20	741	09
8	W1K10	63 5	90 6	0 65	21	30	406	0 821
9	R2J13	82 5	106 8	0 73	14	25	4470	0.845
10.	W2J03	97.5	115 8	0.83	8 5	20	4759	0 906
11.	W2U04	46 2	64 2	0 70	19	20	660	0 862
12	W2V07	58 1	72	0 77	14	20	1068	0.9
13	K2S03	122 4	170 1	0 74	11	30	587	0 833
14	X2P07	67 2	88 8	0 75	16	25	1705	0 891
			Total			325	20,526	

BLOCK DIAGRAM OF METERING SYSTEM

APPENDIX - 3/12

SUPPLIERS LIST OF HARDWARE / SOFTWARE MANUFACTURERS

1 Sun Electronic Technology Ltd. Rep. of Quad Logic System Inc. 177/2 C Bilekahalli Bannerghatta Road Bangalore -560 076

PH (80) 665048

Power Measurement India Pvt. Ltd ,
 12-G, Gopala Tower, 25, Rajedra Place,
 New Delhi - 110 008

PH 5724196 FAX: 91-11-5766441/6881738

3 Energy Systems Pvt Ltd, 47 & 47/1, II Floor, 6th Cross, (Opp KSS Education Board) Malleswaram, Bangalore - 560 003

> PH (80) 3312569 FAX (80) 3362085, 8460667

4 Alacrity Electronics Ltd, 85, 6th Main Road, Malleswaram, Bangalore - 560 003

> PH (80) 3345523 FAX (80) 3344593

APPENDIX 3/13

CONFIGURATION OF SUB-STATIONWISE METERING SYSTEM

1 -

PHASE 2 S/S3 & 3A CEMENT MILL VS PCC 3,3 A & 5

Appendix - 3/13 contd..

- 2 -

PHASE 1: HPC 3: Cement mill S'S

Appendix - 3/13 contd..

PHASE - 1: HPC 1: Raw mill S/S

From HPC 3

- 3 -

PHASE II S/S I RAW MILL S/S

Appendix - 3/13 contd.. D MANIT - 4 -\$ \$24 & 2 KII N & COAL MILL A \$ RS 485 R. 185 KSARS R5 485 RSads from S/S I MAIN METER. MAIN METER TRANS TRANS Main incomer MEIER 2 METER MCC 2A4 485 540 KW DC motor (Praside of tr.fr.) 225 KW fan meter 190 KW hammer crusher 1600 KVA tr.fi Promary 1600 KV4 tr.fr Primary 225 KW cooler fan moter 225 KW cooler fon meter lacomos 680 KW coal mall motor 225 KW cooles fan mona CON EW for mome MCC 2A I 000 KW cooles motes MCC 2A 2 1600 RVA to fr Primary & MCC 2A3 RS 485 RS485 TO HPC 4 TRANS-IRANS TRANS METER METER METER

PHASE 1 HPC 4 Crushing plant s/s

MCC 2 J

MCC 2.2

DBC (MCC)

PHASE 1: HPC -2. Coal mill S/S

DESIGN PARAMETERS OF FANS

PHASE - I PROCESS FANS

Motor rating (kW)	1800	950	009	200	425	160	110	225	225	225	225	225	225	315	325
Temperature (^O C)	370	350	120	90	270	90	09	90	90	20	20	90	90	90	50
Total static pressure (mm Wg)	800	800	95	610	175	620	720	1000	1000	006	850	770	650	480	405
Quantity (m³/min)	0059	4100	12600	3900	9700	860	400	295	950	730	820	855	1020	2530	2530
Equipment Code	11101	11103	J1P44	R1P05	W1P51	K1P56	W1VO7	W1K10	W1K11	W1K12	W1K13	W1K14	W1K15	W1K16	W1K17
Fan	Calciner String	Kiln String smoke	Kiin ESP Fan	Raw Mill Fan	Cooler ESP Fan	Coal mill vent fan	Primary Air Fan	Cooler Fan - 1	Cooler Fan - 2	Cooler Fan - 3	Cooler Fan - 4	Cooler Fan - 5	Cooler Fan - 6	Cooler Fan - 7	Cooler Fan - 8

PHASE - II PROCESS FANS

Motor rating (kW)	1650	825	200	825	909	900	06	132	225	225	225	132	132	225	132
Temperature (² C)	330	330	215	06	280	74	25	30	25	7 8	25	25	25	25	25
Total static pressure (mm Wg)	815	620	140	675	180	1256	1300	750	700	920	560	260	480	350	250
Quantity (m³/min)	6950	4100	12300	4200	10700	2875	149	620	870	940	845	845	830	2710	1660
Equipment Code	12101	12103	J2P09	R2PO5	W2P31	K2T01	W2VO7	W2K10	W2K11	W2K12	W2K13	W2K14	W2K15	W2K16	W2K17
Fan	Calciner String	Kiln String smoke	gas lan Kiin ESP Fan	Raw Mill Fan	Cooler ESP Fan	Coal mill vent fan	Primary Air Fan	Cooler Fan - 1	Cooler Fan - 2	Cooler Fan - 3	Cooler Fan - 4	Cooler Fan - 5	Cooler Fan - 6	Cooler Fan - 7	Cooler Fan - 8

TATA ENERGY RESEARCH INSTITUTE
BANGALORE

TATA ENERGY RESEARCH INSTITUTE .BANGALORE

Appendix - 4/1 contd..

PACKING PLANT

Capacity = 232 m³/min

Total static pressure = 270 mm Wg

Temperature = 100 °C Motor rating = 22 kW

Twin Lobe Compressors (Roots Blowers)

Equipment Code	Quantity (m³/h)	Delivery Pressure (mm Wg)	Motor Rating (kW)
W1U43	4650	6500	160
W1U45	4315	9000	150

APPENDIX - 4/2

METHODOLOGY ADOPTED FOR MEASUREMENT OF PARAMETERS IN FAN

In case of forced draft fans like cooler fans, primary air fan where the inlet or suction side is not ducted and roots blowers, the quantity can be determined by the formula

 $Q = A \times V$

Where $Q = Flow in m^3/s$

A = Inlet area in m² V \ = Air velocity in m/s

The velocity of air at inlet point can be measured using Anemometer and by measuring the inlet area, the quantity can be found out

For induced draft fans or for fans where the inlet is ducted, the methodology adopted for measuring parameters are :

- Static pressure, Dynamic pressure (Velocity pressure) and temperature are measured at the sample points for each fan
- The density of air or gas at fan inlet (sample point) can be known from N T P values (1 4 kg/Nm³ or 1 29 kg/Nm³) by temperature and pressure correction

Density of preheater gas = 1.4 kg/Nm^3 Density of air = 1.29 kg/Nm^3

Appendix - 4/2 contd...

Density of air or gas at that particular point can be known by the formula:

$$\rho_2 = \rho_1 \frac{T_1}{T_2} \times \frac{P_2}{P_1}$$

Density, kg/m³Pressure, mm Wg = Temperature, K

Suffix -1 = Represents parameters at NTP

$$\rho_1$$
 = 1.4 kg/Nm³

= 1 bar = 10330 mm WgP₁

$$T_1 = 0$$
 °C = 273 K

= Represents measured parameters at sample point Suffix - 2

From Dynamic pressure & density at sample point velocity can be 3. obtained from the formula

$$V = C \times \sqrt{\frac{2 \times g \times h}{\rho}}$$

Where, C = Pitot factor (0 86)

g = ACC due to gravity m/s²

h = Dynamic pressure, mm Wg

= Density at sample point (kg/m³)

By knowing the area of sample point (Duct diameter), the quantity of 4. flow (Q in m³/s) can be known by:

Q =
$$A \times V$$

A = Area (m²)
V = Velocity (r

= Velocity (m/s)

TATA ENERGY RESEARCH INSTITUTE BANGALORE

Appendix - 4/2 contd..

5. Theoretical power can be calculated from the formula,

$$kW = \frac{Q \times TP \times g}{3600 \times 1000}$$

 $Q = Flow in m^3/h$

TP = Total static pressure (mm Wg)
g = Acceleration due to gravity (m/s²)

Q & TP are measured parameters

 η = Efficiency

7 Fan efficiency is the ratio of Air Horse Power (theoretical power) to shaft power

MEASURED PARAMETERS FOR PROCESS FANS & CEMENT MILL ESP FANS

PHASE - I

Kiln Feed = 275 TPH Raw mill feed = 310 TPH

	Units	Smoke Gas Fans	s Fans	Kiln E	Kıln ESP Fan	Raw Mill Fan	Cooler ESP Fan	Coal Mill Vent Fan	Cement Mill - 1 ESP Fan	Coment Mill - II ESP Fan
		(10L1L)	(11,103)	(J1P44)	(J1P44)	(R1P05)	(W1P51)	(K1P56)	(Z1P05)	(Z2P07)
		Calciner	Kiln	Raw Mill in	Raw Mill not in					
		String	String	operation	Operation	1 064	0 6025	0 9655	0 892	0 894
Density	kg/m,	0 591	0.5//	7766.0	0.9133		000	57	406	101
Temperature	ာ့	304	318	114	130	26	067	5	3	
Static Pressure	mmWg			. 5	118	- 576	- 114	- 718	- 144	- 256
Suction side		- 852	- 652	4 4	+ 40	+ 116	+ 20	+ 20	+ 10	+ 40
Delivery side		2 +	2		27.50	00.04	R 27	24 95	15 76	26.58
Dynamic (Velocity)	mm Wg	25 01	26 11	34 /86	76 /7	500	3	3		
Pressure, rms value				12.6	23 6	2 13	3.5	1 03	0.8	0.8
Duct Diameter	E	24	19	3.55	3.33	71.7	3,	40.256	16.04	77.0%
Voloah	w/e	24 78	25 63	23.02	20 91	11 /3	ון 14	000 81	500	1107
Velocity	3,5	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 64 560	8 20 413	7 45 100	1,49,082	4,08,526	28,090	28,975	37,580
Quantity	3/2	4,03,369	107 800	5.57.998	4.86.071	1,13,302	1,90,808	43,479	20,035	26,048
	U/ EIN	202,07,	900,10,1	S	age of the second	100	62	100	\$	100
Speed	%	05	R	8	00,	QP	45	100	\$	100
Damper opening	%	100	3	200	247	281	149	117	12 16	30.32
Theoretical power	××	948	614	322			200	166.2	16.44	67.20
Measured power	κw	1483	949	511		411	/07	333		

MEASURED PARAMETERS FOR COOLER FANS AND PRIMARY AIR FAN

PHASE - I

Density = 1.15135 kg/m³ Temperature = 25 °C

					Damner	Speed	Theoretical	Measured
Fans	Equipment	Quantity	Delivery Pressure	l otal static pressure (mm Wq)	Opening %	%	power (kW)	Power (KW)
	Code	(11/11)		1	30	100	48.0	64 5
Cooler Fan - l	W1K10	16,350	442	8/01	67	3	2	
				000	30	C	40.2	549
Cooler Fan . II	W1K11	22,161	416	999	OC	8		
כססופו ו מוו					70	7	36 A	48.0
III Look	W1K12	19.866	446	672	2	2	1 00	
Coolei raii - III					9	77	28 F	49.8
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	W1K13	20.560	442	889	32	`	000	2
Cooler rail - IV					1	700	56.3	74.4
// 400 -1-0	1A/1K1A	28 002	414	738	c7	3	0.00	
Cooler rail - v						00,	6 4 3	68.7
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	W/1K15	24 395	390	772	31	3	010	3
Coolei raii - vi	21114				ř	5	156.4	214.0
IIV and relace	W1K16	1.22.109	274	470	2	3	130.1	
Cooler rail - vii	ALIVIO				, c	400	101 0	135.0
(1)/ 201 10	W/1K17	1 01 791	312	364	8	3	2.5	
Cooler ran - viii	AVIIVI				5	400	33.9	55.8
Drimon, Air Ean	W1V07	15,192	630	802	oc C	3	4.00	
Tillialy Cil. all								

MEASURED PARAMETERS FOR PACKING HOUSE DEDUSTING FANS

PHASE - I

Packer - IV	Fan	(P1P42)	1 078	0.0	2	187	+ 12	42 74		0.45	23.05	4274E	CI /CI	11440	100	80	7.36	12.3
Packer - III		(P1P32)	l		2	- 195	+ 10	404		0.45	23.29	13333	0000	11100	100	08	7.45	12.4
Packer - II	Fan	(P1P22)	1 079	40		- 162	+ 10	38	•	0.45	22 42	12837	1000	10/3/	100	50	6.02	9.44
Packer - I	Fan	(P1P12)	1.073	40		- 199	+ 10	48		0.45	25.20	14428		- COUNT	10 0	36	8.22	10.62
Silo - III Top	Fan	(P1P82)	1.048	20		- 142	+ 10	8		0 45	10.5	6020		4300	100	100	2 33	44
Silo - Top	F=n	(P1~72)	1 05	92		- 112	+10	13.2		0 45	13 51	7/33	P009	16.00	100	100	2 57	1.0
Units	•		kg/m³	၁့	mm Wg			mm Wg		Ε	s/w	m³/h	Nm ₃ /h		%	%	kW	kW
Measured	Parameters		Density	Temperature	Static Pressure	Suction side	Delivery side	Dynamic (Velocity)	Pressure, rms value	Duct Diameter	Velocity	Quantity		-	Speed	Damper opening	Theoretical power	Measured power

MEASURED PARAMETERS FOR PROCESS FANS

PHASE - II

Kiln Feed = 360 TPH Raw mill feed = 330 TPH

(J2P09) (J2P09) Raw Mill in Raw Mill Not in Operation	S. S	(12,101)
Raw Mil Opera	+	
Opera		Z. Z.
		String
0 9404 0 9288	0 635	0 63
118	270	100
	21.2	1
128	(1)	i
	- 740	- 1
	2	•
31 73 24 48	13 97	13.9
8x28Sq 28x2	2 12 2 8	7
22 13 19 56	17 87	17.
6,24,515 5,51,988	2.27.073	10
4,19,496 3,66,205	1.02.994	2.9
93	g	
100	3 6	1
201	201	-[
707	464	4
420	707	7

MEASURED PARAMETERS FOR COOLER FANS AND PRIMARY AIR FAN

PHASE - II

Density = 1.15135 kg/m³ Temperature = 25 °C

Speed Theoretical Measured	power Power		100 25.7 38.0	100 64.8 96.0	100 617 87.9	100 544 75.6	100 53.6 79.5	100 80.6 114.9	100 106.7 152.1	100 56.7 84.0	
Damper	Opening	(%)	25	28	26	33	02	40	88	100	
Total static	pressure	(mm Wg)	850	732	708	670	588	438	408	338	
Delivery Pressure	•	(mm Wg)	610	929	582	580	552	388	354	190	+
Quantity	`	(m ³ /h)	11098	32486	31983	29814	33491	67580	96037	61560	+
Equipment	Code		W2K10	W2K11	W2K12	W2K13	W2K14	W2K15	W2K16	W2K17	
Fans	!	•	Cooler Fan - I	Cooler Fan - II	Cooler Fan - III	Cooler Fan - IV	Cooler Fan - V	Cooler Fan - VI	Cooler Fan - VII	Cooler Fan - VIII	

MEASURED PARAMETERS FOR CEMENT MILL ESP FANS & PACKING HOUSE DEDUSTING FANS

PHASE - II

Packer - IX Fan	(P2P52)	1 073	2 3	41		- 199	+ 6	98		0.49	24 02	70 17	14,814	12,305	90		3	8 28	15.6	
Packer -VII Fan	(P2P32)	4 072	7/01	41		- 195	+10	36		0 49		21 82	14,814	12,305	001		90	8.28	13.8	
Packer -VI	Fan (P2P22)	4 067	/00 -	4		- 241	+	29 6		049	2	19 78	13,428	11,107	60,	3	<u>\$</u>	9 18	15.2	
Packer - V	(P2P12)		1 070	14		- 212	+	404	2	9	0 4 9	23 12	15.693	13.017	::0'5:	201	90	7.87		0 00
Silo - VI Top	ran (P2P69)		86 0	71		- 202	+ 10	807	<u> </u>	1	0.46	12 53	7 405	70	460°C	100	100	7 33	30.5	9.4.8
Silo - V Top	Fan (P2P67)	/:: i: .\	1 016	3.5	3	000	+ 10	2 6	 D)		0.46	11.34	1007.0	20,00	5,342	9	5	2	CC C	10 9
Cement Mill - IV	ESP Fan	(54, 65)	9688 0	90,	8	727	- 1/4	2	18 58		0.8	17.41	-+ /-	31,502	21,724	100	200	001	15 80	22 50
Cement Mill - III	ESP Fan	(cn4c7)	0 895		104		- 170	101+	20 14		0.8	1000	18 0/	32,699	22,687	100		100	16 04	35.10
Units			1,0,0m3	Kg/III	ပံ	mmWg			mm Wg		E		m/s	m³/h	Nm³/h	à	%	%	κw	₩.
Money Parameters	Wiedsuige : alange			Density	Temperature	Static Pressure	Suction side	Delivery side	Dynamic (Velocity)	Pressure, rms value		Duct Diameter	Velocity	Quantity	•		Speed	Damper opening	Theoretical nower	Measured power

ARRESTING FALSE AIR IN KILN ESP AND RAW MILL CIRCUIT PHASE - I

KILN ESP CIRCUIT

1.	The total flow of smoke gas fans	= 1,70,363 + 1,07,800
		= 2,78,163 Nm ³ /h ··· ············ (<u>Å</u>)
		(Nm³/h is based on 0 °C and 1 bar)
2.	Flow of kiln ESP Fan when Raw mill is not in operation	= 4,86,071 Nm ³ /h ······ [_B
3.	Flow of kiln ESP Fan when Raw	= 5,57,998 Nm ³ /h··· ·· ············
	mill is in operation	
4.	Total excess air handled by kiln	= C-A
	ESP fan	= 2,79,835 Nm³/h
		2,79,835 x 1.4
		0.9522
	(Density of gas at N T P. (Density of gas at sample point	= 1.4 kg/Nm^3) = 0.9522 kg/m^3)
		$= 4,11,436 \text{ m}^3/\text{h}$
-		QxTPxg
5.	Corresponding power loss	$=$ 3600 x 1000 x η_{fan} x η_{motor}

Where Q = Flow in m³/h (4,11,436) TP = Total static pressure in mm Wg (144) g = Acceleration due to gravity in m/s² (9.81)

Appendix - 4/5 contd...

$$= \frac{411436 \times 144 \times 9.81}{3600 \times 1000 \times \eta_{fan} \times \eta_{motor}}$$

(Assuming efficiency of motor as 90%, the calculated efficiency of fan from the measured values comes to 70%).

 $= 256 \, kW/h$

6 Assuming 80% of this leakage can = 256 x 0.8 be arrested, power savings will be

 $= 205 \, \text{kW} / \text{h}$

7. Annual energy loss = $205 \times 24 \times 330$

(@ 24 hours/day & 330 days/yr)

= 16,23,600 kWh/year

By arresting the false air entry into the circuit the annual cost savings that can be obtained by kiln ESP fan

= 1623600 x 3 (@ Rs.3.00/kWh)

= Rs.48,70,800

Annual cost savings = Rs.48.70 lakhs

Investment required = Marginal

Simple payback period = Immediate

Appendix - 4/5 contd.

RAW MILL CIRCUIT

Excess air through Raw Mill Circuit = C - B

 $= 71927 \text{ Nm}^3/\text{h}$

Corresponding power loss = 267 kW / h

Assuming 80% of this leakage can be = 267 x 0 8

arrested, power savings will be

 $= 214 \, kW/h$

Annual power loss = $214 \times 24 \times 330$

(@ 24 hours /day and 330 days/yr)

= 16,94,880 kWh

By arresting the false air entry into the Raw mill circuit,

Annual cost savings by Raw mill fan = 16,94,880 x 3

(@ Rs 3.00/kWh)

= Rs 50,84,640

= Rs 50 84 Lakhs

Investment = Marginal

Simple payback period = Immediate

ARRESTING FALSE AIR IN KILN ESP AND RAW MILL CIRCUIT PHASE - II

KILN ESP CIRCUIT

1 The total flow of smoke gas fans = 1.80,726 + 1,02,994

= $2.83,720 \text{ Nm}^3/\text{h}$...A

(Nm³/h is based on 0 °C and 1 bar)

2. Flow of kiln ESP Fan when Raw = $3,66,205 \text{ Nm}^3/\text{h}$ B

mill is not in operation

4 Total excess air handled by kiln = C - A

ESP fan

 $= 1,35,776 \text{ Nm}^3/\text{h}$

5 Corresponding power loss = 135 kW / h

6 Assuming 80% of this leakage can = 135 x 0 8 be arrested, power savings will be

 $= 108 \, \text{kW/h}$

7 Annual power loss = $108 \times 24 \times 330$

(@ 24 hrs/day + 330 days/annum) = 8,55,360 kWh/year

Appendix - 4/6 contd..

By arresting the false air entry into the circuit the annual cost savings that can be obtained by kiln ESP fan

= 8,55,360 x 3 (@ Rs.3 00/kWh)

= Rs.25,66,080

Annual cost savings = Rs.25 66 Lakhs

Investment required = Marginal

Simple payback period = Immediate

Appendix - 4/6 contd...

RAW MILL CIRCUIT

Excess air through Raw Mill Circuit = C - B

 $= 53291 \text{ Nm}^3/\text{h}$

Corresponding power loss = 183 kW / h

Assuming 80% of this leakage can be = 183×0.8

arrested, power savings will be

 $= 146 \, kW/h$

Annual power loss = $146 \times 24 \times 330$

(@ 24 hours /day and 330 days/yr)

= 11,56,320 kWh

By arresting the false air entry into the Raw mill circuit,

Annual cost savings by Raw mill fan = $11,56,320 \times 3$

(@ Rs.3/kWh)

= Rs.34,68,960

Annual cost savings = Rs.34 68 Lakhs

Investment = Marginal

Simple payback period = Immediate

REDUCE SPEED OF PHASE - II COAL MILL VENT FAN BY 20%

Present rpm of phase - Il coal mill vent fan = 992 rpm

Static pressure before damper = - 822 mm Wg

Static pressure after damper = - 1342 mm Wg

Pressure loss across damper = 520 mm Wg

Measured parameters for this fan are

 $Q = 1,08,632 \text{ m}^3/\text{h}$, Temperature = 52 °C

So, power loss due to pressure loss = 204 kW

across damper

Assuming 90% of this loss can be recovered = 204×09

by reducing rpm

= 184 kW

Annual energy loss = $184 \times 18 \times 330$

(@ 18 hours/day, 330 days/year)

= 10,92,960 kWh

In order to reduce the pressure loss across damper, it is recommended to reduce the present rpm of 992 to 794 i.e, by 20% using gear box and operate the damper at more than 90% and thereby save energy to the extent of 10,92,960 kWh annually.

Annual cost savings = $10,92,960 \times 3$

= Rs 32,78,880

= Rs 32.78 Lakhs

Investment required = Rs 4 00 Lakhs

Simple payback period = 2 Months

VARIABLE SPEED FLUID COUPLING FOR PHASE - II COAL MILL HOT GAS FAN

Static pressure at suction side

= - 128 mm Wg

Damper is provided on the delivery side of the fan and its opening ranges from 35% to 45%

Static pressure before damper

 $= + 116 \, \text{mm Wg}$

Static pressure after damper

= - 110 mm Wg

The pressure before damper is delivery pressure while after damper it is suction pressure. This infers the influence of coal mill vent fan after damper.

By operating damper from 80% instead of present 35%, by varying the rpm of the fan using variable speed fluid coupling, the influence of coal mill vent fan can further be extended ie, almost till the delivery of the hot gas fan. This reduces the total static pressure of the fan as the delivery of hot gas fan is suction pressure and hence result in lesser power consumption.

Power loss = 44 kW

Appendix - 4/8 contd.

By using variable speed fluid coupling only 25% of this power loss can be saved, considering the losses in variable speed fluid coupling when operated at low speed.

Annual energy savings = $11 \times 18 \times 330$

(@ 18 hours/day, 330 days)

= 65,340 kWh

Annual cost savings = Rs 1,96,020/-

= Rs 1 96 Lakhs

Investment required = Rs 4 00 Lakhs

Simple payback period = 2 04 years

COMBINED OPERATION OF DAMPERS AND VARIABLE SPEED DRIVES FOR COOLER FANS

For Phase - I all cooler fans are provided with variable speed drives while for Phase - II cooler fans I - V are provided with variable speed drive but not yet commissioned

For fans starting from W1K12, the variable speed drives and dampers can be operated in combination so that pressure loss across damper and hence power consumption is reduced. Considering process conditions, W1K10 and V/1K11 are operated with damper.

Fans	Quantity	Damper opening	Pressure loss across damper	Power Loss
	(m ³ /h)	(%)	(mm Wg)	(kW / h)
PHASE - I				
W1K12	19,866	31	156	9
W1K13	20,560	32	178	10
W1K14	28,002	25	266	22
W1K15	24,395	31	312	24
W1K16	1,22,109	70	132	48
W1K17	1,01,791	65	30	9
		TOTAL		122
PHASE - II				
W2K12	31,983	26	112	11
W2K13	29,814	33	80	7
		TOTAL		18

Total power loss

= 140 kW

Appendix - 4/9 contd.

By combined operation of variable speed drive and damper, assuming 80% of this loss can be eliminated,

Power savings = 140×0.8

= 112 kW

Annual energy savings $= 112 \times 24 \times 330$

= 8,87,040 kWh

Annual cost savings = Rs 26,61,120

= Rs.26.61 Lakhs

Investment required = Nil

Simple payback period = Immediate

REPLACEMENT OF COOLER ESP FANS WITH CORRECT SIZE AND HIGH EFFICIENCY FANS

The cooler ESP fan measured parameters are

Data -	Phase - I	Phase - II
Flow quantity	4,08,526 m ³ /h	2,67,366 m³/h
Total static pressure	134 mm Wg	122 mm Wg
Static pressure before damper	- 18 mm Wg	- 18 mm Wg
Static pressure after damper	- 113 mm Wg	- 100 mm Wg
Temperature	290 °C	286 °C

PHASE - I

The fan is presently being operated at 62% speed and 45% damper opening. In order to reduce the pressure loss across damper (95 mm Wg), it is generally recommended to reduce the speed and open damper further. But here further reduction in speed is not possible as the suction developed by the fan is presently less (18 mm Wg before damper). This low suction pressure may be due to the higher size of duct (3.2 m diameter).

The total static pressure of 134 mm Wg is mainly due to higher pressure loss across damper. For the above parameters, the theoretical power is 149 kW, while the measured power is 287 kW

Assuming motor efficiency as 90%, the fan efficiency comes to only 58%. This low efficiency is mainly due to operating fan at lower speed and with damper.

Appendix - 4/10 contd.

Using correct size and high efficiency fans, fan efficiency at the rate of 75% can be achieved with ease

So, power savings using high efficiency fans = 66 kW

Annual energy savings $= 66 \times 24 \times 330$

(@ 24 hours/day and 330 days/year) = 5,22,720 kWh

Annual cost savings = $5,22,720 \times 3$

(@ Rs 3/kWh) = Rs 15,68,160/-

= Rs 15.68 Lakhs

Investment required = Rs.8.00 Lakhs

Simple payback period = 7 Months

Appendix - 4/10 contd.

PHASE - II

For this fan it was observed that the suction pressure before damper is 18 mm Wg, while after damper is 100 mm Wg. This low suction pressure before damper may be due to higher size of duct (3 15 m diameter) So here also it is not possible to reduce the rpm further and thereby avoid pressure loss across damper. This total static pressure of 100 mm Wg is mainly due to high pressure loss across damper.

For the above mentioned parameters the theoretical power is 89 kW while the measured power is 210 kW. Assuming a motor efficiency of 90%, the fan efficiency comes to only 47%. This low efficiency is mainly due to operating fan at lower speed and with damper.

When coal mill is not in operation, the measured parameters are

Flow quantity = 3,61,503 m³/h
Total static pressure = 126 mm Wg
Temperature = 247 °C

Here the theoretical power is 124 kW, while the measured power is 230 kW Assuming motor efficiency as 90%, the fan efficiency comes to only 60%. Since higher capacity fan is used (10,700 m³/min) here the more the quantity handled by the fan, the higher is the efficiency of fan.

By using correct size and high efficiency fans, fan efficiency of 75% can be achieved with ease.

So, power savings = 78 kW

Appendix - 4/10 contd..

Annual energy savings
(@ 24 hours/day, 330 days/year)

 $= 78 \times 24 \times 330$

= 6,17,760 kWh

Annual cost savings

(@ Rs 3/kWh)

= Rs 18,53,280

= Rs 18 53 Lakhs

Investment

= Rs 8 00 Lakhs

Simple payback period

= 6 Months

OPERATION OF RAW MEAL SILO TOP BAG FILTER FANS

PHASE - I:

The power consumed by Phase-I silo top bag filter fan is 35 7 kW and Phase-II silo top bag filter is 28 2 kW / h

Since mechanical handling is in operation presently, these fans are not required to be operated as there are separate dedusting fans for mechanical handling equipments (Bucket elevators)

Assuming in a year, the bucket elevators are operated for 300 days, these two fans can be stopped for the same period

The power savings that can be achieved = 35.7 + 28.2

 $= 63.9 \, kW$

Annual energy savings = 63.9 x 24 x 330

(@ 24 hours/day/300 days/year)

= 5,06,088 kWh

Annual cost savings = $5,06,088 \times 3$

(@ Rs 3/kWh)

= Rs.15,18,264

= Rs.15 18 Lakhs

Investment required = Nil

Simple payback period = Immediate

REDUCE SPEED OF PHASE - I PRIMARY AIR FAN BY 10% AND REPLACE EXISTING DAMPER WITH INLET GUIDE VANE CONTROL

Measured parameters for the fan are

Quantity $= 15,192 \text{ m}^3/\text{h}$

Static pressure at suction side

Before damper = -5 mm Wg After damper = -172 mm Wg

Pressure loss across damper = 167 mm Wg

Static pressure at delivery side = + 630 mm Wg

Total static pressure = 630 - (-172)= 802 mm Wg

Required total static pressure by = 802 - 167

eliminating damper loss

= 635 mm Wg

As per fan law, pressure is proportional to square of speed

| e.,
$$P_1 = (\frac{N_1}{---})^2$$

| $P_2 = (\frac{N_1}{N_2})^2$

Appendix - 4/12 contd..

Present speed = 100%

Present total static pressure = 802 mm Wg

..
$$N_2 = 89$$

∴ Required speed = 89%

.. Reduce rpm of P A fan by 10%

Power savings by reducing rpm and = 11 kW

using inlet guide vane control

Annual energy savings = $11 \times 24 \times 330$

(@ 24 hrs/day, 330 days/year) = 87,120 kWh

Annual cost savings = 87,120 x 3

(@ Rs 3/kWh)

= Rs.2,61,360

= Rs.2.61 Lakhs

Investment required = Rs.40,000/-

Simple payback period = 2 Months

QUALITATIVE COMPARISON OF FAN CONTROL SYSTEMS

- 1. Speed control
- 2. Inlet guide vane control
- 3 Throttle damper

REPLACEMENT OF PHASE - II PRIMARY AIR FAN WITH HIGH EFFICIENCY FAN AND INLET GUIDE VANE CONTROL

	Meas	sured Parameters
	Quantity (m³/h)	Total Static Pressure (mm Wg)
Phase - II	. 6220	1314

The theoretical power for above mentioned parameters is

6220 x 1314 x 9 81 = -----3600 x 1000

 $= 223 \, kW$

Measured power

= 58 kW

Assuming motor η as 80%, the fan efficiency comes to 48%

Replacing this fan with high efficiency fan (η = 75%) and inlet guide vane control, the estimated power savings is 20 8 kW as the new fan is expected to consume only 37 2 kW.

Annual energy savings = 20 8 x 24 x 330

(@ 24 hours/day, 330 days/year)

= 1,64,736 kWh

Annual cost savings = Rs.1,64,736 x 3

(@ Rs.3 /kWh)

= Rs.4,94,208 Lakhs

= Rs 4.94 Lakhs

Investment required = Rs 3 00 Lakhs

Simple payback period = 8 Months

OPERATE CEMENT MILL - II ESP FAN (Z2P07) SIMILAR TO OTHER CEMENT MILLS ESP FAN

Cement Mill No.	Quantity (m³/h)	Total static pressure (mm Wg)	Power Consumption (kW)
ESP Fan - 1	28,975	154	16 4
ESP Fan - 2	37,586	296	67 2
ESP Fan - 3	32,699	180	35 1
ESP Fan - 4	31,502	184	22 5

The above measured parameters clearly indicate the high static pressure developed by cement mill - II ESP fan (Z2P07). By operating the fan similar to other fans, i.e, near ESP itself the total static pressure will come down resulting in less power consumption.

Expected power consumption for same flow = 40 kW and 190 mm Wg total static pressure

Also by going in for correct size and high efficiency (η = 75%) fan, the expected power consumption is 30 5 kW

So, by operating correct size and high efficient fan at the place similar to other cement mill ESP fans, the expected power consumption is 30 5 kW

Hence power savings = 67.2 - 30.5

 $= 36.7 \, kW$

Annual energy savings = $36.7 \times 24 \times 330$

(@ 24 hours/day, 330 days/year)

= 2,90,664 kWh

Appendix - 4/15 contd

Annual cost savings = $2,90,664 \times 3$ (@ Rs 3/kWh)

= Rs.8,71,992

= Rs 8 71 Lakhs

Investment required = Rs.2 00 Lakhs

Simple payback period = 3 Months

REPLACE CEMENT MILL - III ESP FAN (Z3P05) WITH HIGH EFFICIENCY FAN

The measured parameters for this fan are

Quantity = $32,699 \text{ m}^3/\text{h}$

Total static pressure = 180 mm Wg

Temperature = 104 °C

The theoretical power required for this parameter is 16 kW. Assuming motor efficiency as 90%, the fan efficiency comes to 51% as the measured power is 35.1 kW.

By replacing the fan with high efficiency fan (η = 75%),

The power savings = 11 kW

Annual energy savings = $11 \times 24 \times 330$

(24 hours/day, 330 days/year)

= 87,120 kWh

Annual cost savings = Rs 2,61,360

(@ Rs 3/kWh)

= Rs 2.61 Lakhs

Investment required = Rs 2.00 Lakhs

Simple payback period = 10 Months

APPENDIX - 4/17

REPLACE SILO- 6 TOP FAN (P2P69) IN PACKING HOUSE WITH HIGH EFFICIENCY FAN

The measured parameters for this fan are

Quantity = $7495 \text{ m}^3/\text{h}$

Total static pressure = 222 mm Wg

Temperature = 71 °C

The theoretical power required for this parameter is 4 33 kW while the measured power is 14 9 kW. So, fan efficiency = 41% (Assuming motor efficiency as 70%)

By replacing this fan with high efficiency fan (η = 75%),

The power savings = 9 kW

Annual energy savings = $9 \times 24 \times 330$

(24 hours/day, 330 days/year)

= 71,280 kWh

Annual cost savings = Rs.71,280 X 3

(@ Rs 3/kWh)

= Rs 2,13,840 Lakhs

= Rs 2 13 Lakhs

Investment required = Rs.2.00 Lakhs

Simple payback period = · 12 Months

OPTIMISE AIR QUANTITY USED FOR CONVEYING COAL TO KILN AND CALCINER

The pulverised coal is conveyed to kiln and calciner by roots blower air through F K. Pump/C P Pump

	Equipment	Measured quantity of air	Quantity of Conveyed pe	
			Actual	Norm
Phase - I	Kiln firing roots blower (W1U45)	2520 m ³ /h = 2 90 T	13 = 4 48 T 2.9	14 T
	Calciner firing roots blower (W1U43)	3268 m ³ /h = 3.76 T	22 = 5 85 T 3 76	ļ
Phase - II	Kiln firing roots blower (W2U04)	2053 m ³ /h = 2 36 T	13 = 5 51 T 2 36	
	Calciner firing roots blower (W2U09)	4345 m ³ /h = 4 73 T	22 = 4 65 T 4 73	

REDUCE RPM OF ALL BLOWERS BY 40% IN STAGES OF 10%

ENSURE PRESENT VELOCITY IS MAINTAINED BY CHANGING PIPE SIZE

Total power savings = 100 kW

Annual energy savings = $100 \times 24 \times 330$

(@ 24 hours/day, 330 days/year) = 7,92,000 kWh

Annual cost savings = $7,92,000 \times 3$

(@ Rs 3.00/kWh) = Rs 23,76,000

= Rs 23 76 Lakhs

Investment required = Rs 4 00 Lakhs

Simple payback period = 2 Months

COMPRESSOR SPECIFICATIONS

တ	SI ID Code	Type*	No of	Design	Rated	Motor	Transmission	No of	Motor	Annual	Remarks
ટ			stages	pressure,	FAD,	rating	type	belts	Speed	operating	_
				kg/cm²(g)	m³/mın	κw			rpm	Hours	
	Packing House	House									
7	P2X10	Reciprocating	1	3.0	276	132	Belt	1 (flat)	1480	>5000	Operating
2	P2X11	Reciprocating	1	3.0	276	132	Belt	5	1480	>5000	Operating
3	P2X12	Reciprocating	Į	3.0	276	132	Belt	2	1480	>5000	Operating
4	P2X13	Reciprocating	l	3.0	276	132	Belt ,	5	1480	<5000	Stand by
5	P2X14	Reciprocating	7	85	99	45	Belt	4	1480	<5000	Stand by
9	P2X15	Reciprocating	7	8.5	99	45	Belt	4	1480	<5000	Stand by
7	P2X16	Reciprocating	7	10.5	13 84	110	Belt	9	1480	>5000	Operating
	Cement N	Cement Mill - 1 Area									
ω	Z1U11	Reciprocating	2	5.0	31 41	160	Belt	17	2170	<5000	Stand by
တ	Z1U12	Reciprocating	2	5.0	31 41	160	Belt	11	2170	<5000	Stand by
9	Z1U13	Reciprocating	2	5.0	31 41	160	Belt	=	2170	<5000	Stand by
7	Z1U15	Reciprocating	2	20	31 41	160	Belt	7	2170	<5000	Stand by
	Cement	Cement Mill - 2 Area									-
12	Z2U11	Reciprocating	2	5.0	3141	160	Belt	1	1480	<5000	Stand by
13	Z2U12	Reciprocating	2	5.0	3141	160	Belt	7	1480	<5000	Stand by
4	Z2U13	Reciprocating	2	50	31.41	160	Belt	11	1480	<5000	Stand by
15	Z2U15	Reciprocating	7	50	3141	160	Belt	11	1480	>5000	Operating

Appendix - 5/1 contd.

Remarks			Stand by	Stand by	Stand by	Operating	Stand by	Stand by		Stand by	Operating	Operating	Operating	Starid by	Operating		Operating	Operating	Stand by	Stand by	Operating	Operating	Operating	Stand by
Annual	operating Hours		<5000	<5000	<5000	>5000 (<5000	<5000		<5000	> 2000	> 2000	> 2000	<5000	>2000		>5000	>5000	<5000	<5000	>2000	>5000	>5000	<5000
Motor	Speed, rpm		1489	1489	1489	1489	1489	1489		1489	1489	1489	1489	1489	1489		1472	1472	1472	1472	1472	1472	1472	1472
No of	belts		1 (flat)	11	11	11	11	11		11	11	11	1(flat)	1 (flat)	1 (flat)		4	4	4	4	4	4	4	4
Transmission	type		Belt	Belt	Belt	Belt	Belt	Belt		Belt	Belt	Belt	Belt	Belt	Belt		Belt							
Motor	ratıng, kW		160	160	160	160	160	160		160	160	160	160	160	160		45	45	45	45	45	45	45	45
Rated	FAD, m³/mın		30 64	30 64	30 64	30.64	30 64	30 64		30 64	30 64	30 64	30 64	30 64	30 64		11 58	11 58	11 58	11 58	99	99	99	99
Design	pressure, kg/cm²(g)		0 9	09	6.0	0 9	0 9	6.0		0 9	09	09	0 9	0 9	0 9		2	2	2	2	8.5	8.5	8.5	8.5
No of	stages		2	2	7	2	2	2		2	2	2	2	2	2		-	-	1	-	2	2	2	2
Type*		Cement Mill - 3 Area	Reciprocating	Reciprocating	Reciprocating	Reciprocating	Reciprocating	Reciprocating	Cement Mill - 4 Area	Reciprocating	Reciprocating	Reciprocating	Reciprocating	Reciprocating	Reciprocating	Area	Reciprocating							
ID Code		Cement M	23U06	Z3U07	23008	53008	Z3U10	Z3U11	Cement M	Z4U06	Z4U07	Z4U08	Z4U09	Z4U10	Z4U11	Atox Mill Area	K2U06	K2U07	K2U10	K2U11	K2X20	K2X21	K2X23	K2X24
ıs	2 2		16	17	18	19	20	21		22	23	24	25	26	27		28	29	30	31	32	33	34	35

Appendix - 5/1 contd

S	ID Code	Type*	No of	Design	Rated	Motor	Transmission	No of	Motor	Annual	Remarks
9 N			stages	pressure,	FAD,	rating	type	belts	Speed,	operating	
				kg/cm²(g)	m³/mın	ΚW			rpm	Hours	
	Kiln 1 - Area	rea									
36	W2X08	Reciprocating	2	105	13 81	132	Belt	3	1460	>5000	Operating
37	W2X09	Reciprocating	2	10.5	13 81	132	Belt	3	1460	<5000	Stand by
38	W2X10	Reciprocating	2	105	13 81	132	Belt	4	1460	>5000	Operating
	Kiln 2 - Area	rea									
39	W2X01	Reciprocating	2	10	10.2	75	Belt	4	1475	>5000	Operating
40	H2X01	Reciprocating	2	8 5	4 44	37	Belt	4	1475	>5000	Operating
41	H2X02	Reciprocating	2	10 5	1381	132	Belt	4	1480	>5000	Operating
42	H2X03	Reciprocating	2	8 5	99	37	Belt	4	1475	<5000	Stand by
	Phase 1 -	Phase 1 - Enviro Care	:								
43	W1X11	Screw	-	8	26 25	200	Direct	ΥZ		>5000	Operating
44	W1X12	Screw		æ	26 25	200	Direct	A Z	,	>5000	Operating
45	W1X13	Screw	1	8	26 25	200	Direct	۷ Z	,	>5000	Operating
46	W1X14	Screw	Ψ-	8	26 25	200	Direct	A Z	١	<5000	Stand by
	Phase 2	Phase 2 - Enviro Care									
47	W2X11	Screw	-	8	26 25	200	Direct	ΥZ	1	>5000	Operating
48	W2X12	Screw	τ-	8	26 25	200	Direct	ΑN	•	<5000	Stand by
49	W2X13	Screw	Ψ-	8	26 25	200	Direct	Υ	•	>5000	Operating
20	W2X14	Screw	τ-	8	26 25	200	Direct	ΑN	1	<5000	Stand by

All reciprocating compressors are KG Khosla make N A Not Applicable

COMPRESSORS - FREE AIR DELIVERY (FAD) TEST

A. PUMP- UP METHOD

The actual average Free Air Delivery (FAD) capacity of an air compressor can be found by isolating the compressor and receiver from the circuit and observing the time taken for pumping-up the receiver from a lower (ambient) pressure P_{s} and temperature T_{1} to a higher (cut off) pressure P_{d} and temperature T_{2} By knowing the receiver volume and inter connecting pipeline volume from compressor to receiver, the free air delivery can be calculated with the following relation

FAD (m³/min) =
$$P_d T_1 V$$

---- $x ---- x$
 $P_s T_2 t$

where, P_d = Delivery or Cut-off pressure, kg/cm² (a)

P_s = Suction pressure, kg/cm² (a)

T₁ = Air intake temperature, ° K

T₂ = Air delivery temperature, K

V =Volume of the receiver + Volume of the inter-connecting pipeline from compressor to receiver , m³

t = Time taken to fill the receiver, min.

RESULTS OF FAD TEST BY PUMP-UP METHOD:

FAD test by pump-up method was conducted for Packing house compressor P2X16 as it was possible to disconnect the compressor receiver from the distribution network. The results are summarised below:

Appendix - 5/2 contd...

SI No	Particulars	Unit	Packing House compressor
1	ID Code		P2X16
2	Rated Capacity	(m³/mın)	13.84
3	Air Delivery Pressure	kg/cm² (a)	70
4	Air Suction Pressure	kg/cm² (a)	10
5	Air Delivery Temperature	°C	34
6	Air Suction temperature	°C	31
7	Receiver Volume (including pipe line volume)	m ³	1 01
8	Time taken to fill the receiver	sec	32
9	Actual Ave FAD	(m³/mın)	13 61
10	% FAD	%	98 3

B. SUCTION VELOCITY METHOD

Using an ANEMOMETER, the average air velocity at the compressor suction side during compressor loading duration is measured. If required, the suction hood may be removed and the suction duct can be extended using a card board extension of same diameter to facilitate taking measurements. The free air delivery can be calculated with the following relation:

FAD (m^3/min) = (Suction air velocity in m/sec) x 60 x (Inlet duct cross section area in m^2)

Appendix - 5/2 contd.

RESULTS OF FAD TEST BY SUCTION VELOCITY METHOD:

As there is no separate receiver for each compressor and also since the process is continuous, Suction Velocity Method was adopted to arrive at the actual FAD delivered

		,				
SI	ID Code	Rated FAD,	Suction c/s	Suction air	Actual	Percentage
No.		m³/min´	area,	velocity,	FAD,	FAD
			m ²	m/s	m³/min	
	Packing House	9		***	·	
1	P2X10	27 6	0 1849	1 642	18 22	66
2	P2X11	27 6	0 1849	2.046	22 70	82
3	P2X12	27 6	0 1849	1 888	20 95	76
	Cement Mill - 2					
4	Z2U15	31 41	0 1849	3 088	34 26	109
	Cement Mill - 3	Area				
5	Z3U09	30.64	0 1849	2 862	31 80	104
	Cement Mill - 4	Area				
6	Z4U07	30 64	0.1849	2 440	27 12	89
7	Z4U08	30 64	0 1849	2 950	32 72	107
8	Z4U09	30 64	0 1849	2.460	27 25	89
9	Z4U11	30 64	0 1849	2 870	31 80	104
	Atox Mill Area					
10	K2U07	11 58	12 73X10 ⁻³	99	7 56	65 3
11	K2U11	11 58	12 73X10 ⁻³	11 13	8.49	73 3
12	K2X20	66	6.36X10 ⁻³	10 45	3 99	60 5
13	K2X21	66	6.36X10 ⁻³	10 24	3 91	59 2
14	K2X23	66	6.36X10 ⁻³	9 94	3 80	57 6
	Kiln 1 - Area					
15	W2X08	13 81	0 1849	1 183	13 12	95 0
16	W2X10	13 81	0 1849	0 86	9 54	59 6
	Kiln 2 - Area					
17	W2X01	10 2	0 1849	0 860	9.55	93 6
18	H2X02	13 81	0 5616	0 244	8 23	60 0
	Phase 1 - Envir	o Care				
19	W1X12	26 25	1.00	0 283	16 95	64 6
20	W1X13&14	26 25+26 25	1.00	0 667	40 17	76 5
	Phase 2 - Envir	o Care				
21	W2X11	26 25	1 00	0 321	19 23	73 3
22	W2X13	26 25	1.00	0.396	23.76	90 5

SAVINGS ACHIEVABLE BY IMPROVING COMPRESSOR FAD

liners, etc., are the reasons for lower FAD By proper maintenance practices, the FAD could be improved to 85% The details of FAD improvement for 7 number of compressors have been given below Details for the remaining compressors The FAD of the compressors should atleast be 85% of their rated FAD The FAD of totally 14 number of compressors (Phase - I & Phase -II together) are less than 85% Choked air filters, valve leakages, worn out piston rings and cylinder are discussed in Appendix-5/8 and Appendix-5/9

Ū	2		7,40						1			
<u>5</u> :			rAD, m/m	ulu	Actual	Sp Powe	Sp Power Cons ,kW/(100 m ³ /h)	$(100 \text{ m}^3/\text{h})$	Annual		Savings	
ž	Code	Rated	Existing	Improved	Power	Existing	Existing Improved	Reduction	Operating	Power	Annial	Leman
					Drawn,		•		Hoursh		Toolar T	1000
					K				; ; ; ;		lakh kWh	Re lakhe
	Atox Mill Area	Area										CINDI CVI
-	K2U07	11 58	7 56	9 84	27.6	6.08	4.67	1 41	3000	0 0	30.0	0.10
2	K2U11	11 58	8 49	9 84	35.4	6 95	5 90	800	0000	0 0	67.0	0 /3
	Kiln 1 - Area	rea					800	0.80	3000	20	0.17	0.51
က	W2X10	13 81	9 54	11 74	543	67 6	7 74	4 70	0003	10.6		
	Kiln 2 - Area	rea				2		0/-	2000	17.0	0.03	1 88
4	H2X02	13 81	8 23	11 74	74.4	15 07	10.56	4 50	4000	24.7	4.0.4	
	Phase 1 - Enviro Care	Enviro C	are				22.2	200 1	0001	21.	171	381
2	\subseteq	525	40 17	44 63	369 2	15.32	13 79	1 53	6000	44.0	37.0	107
	W1X14] 	!	2	3	2000) - -	7 40	/ 3/
	Phase 2 - Enviro Care	Enviro C	are									
9	W2X11	26 25	19 23	22 31	124 0	10 75	9 26	1 48	4000	10.0	0 80	2.30
	Total								202	200	000	2.03
										0 0 0	00.0	1/01

Appendix - 5/3 contd.

Total power savings = 119 0 kW

Total annual energy savings = 5 58 lakh kWh

Assuming 80% of the above savings can be realised

Total annual energy savings = 4 46 lakh kWh

Total annual cost Savings = 4.46×3.00

(@ Rs.3 00/kWh)

= Rs.13 38 lakhs

Investment required = Rs 3 50 lakhs

Simple Payback Period = <u>Investment Required</u>

Annual Cost Savings

= 4 months

APPENDIX - 5/4

SPECIFIC POWER CONSUMPTION DETAILS OF COMPRESSORS

SI No	ID Code	Rated FAD,		al FAD	Rated Power,	Actual Power,	Specific Power Consumption,	Air Delivery Pressure,
		m³/min	m³/min	m³/h	kW	kW	kW/(100 m ³ /hr)	kg/cm ² (g)
	Packing	House		·				
1	P2X10	27 6	18 22	1093 2	132	72.3	6 61	22
2	P2X11	27 6	22 7	1362 0	132	88.5	6 5	2.2
3	P2X12	27 6	20 95	1257 0	132	92.4	7 35	2.2
4	P2X16	13 84	13 61	816 6	110	83.7	10 25	6.0
	Cement N	/lill - 2 Are	a					
5	Z2U15	31 41	34 26	2055 6	160	-	-	4 0
	Cement N	/lill - 3 Area	a					
6	Z3U09	30 64	31 8	1908 0	160	-	-	4 0
	Cement N	fill - 4 Area	3					
7	Z4U07	30 64	27 12	1627 2	160	133 5	8 20	7 0
8	Z4U08	30 64	32 72	1963 2	160	158.4	8 07	6 5
9	Z4U09	30 64	27 25	1635 0	160	133 5	8 17	7 0
10	Z4U11	30 64	31 80	1908.0	160	158.0	8.28	70
	Atox Mill	Area						
11	K2U07	11 58	7 56	453 6	45	27.6	6.08	0.8
12	K2U11	11 58	8 49	509.4	45	35 4	6 95	0 8
13	K2X20	6 6	3.99	239.4	45	34.5	14.41	6.2
14	K2X21	6 6	3 91	234 6	45	34 5	14.71	6.2
15	K2X23	6 6	3 80	228.0	45	35.7	15.66	6.1
	Kiln 1 - Ar	ea						
16	W2X08	13 81	13 12	787 2	132	87 0	11.05	6.0
17	W2X10	13.81	9 54	572 4	132	54 3	9 49	6.0
	Kiln 2 - Ar	ea						
18	W2X01	10 2	9.55	573.0	75	67.5	11.78	5.8
19	H2X02	13 81	8 23	493 8	132	74.4	15.07	6.6

Appendix - 5/4 contd

SI No	ID Code	Rated FAD,	Actua	I FAD	Rated Power,	Actual Power,	Specific Power Consumption,	Air Delivery Pressure,
140		m³/mın	m³/min	m³/h	kW	kW	kW/(100 m ³ /hr)	kg/cm²(g)
	Phase 1 -	Enviro C	are			1		
20	W1X12	26 25	16 95	1017 0	200	-		69
21	W1X13 &14	26 25+ 26 25	40 17	2410 2	200 + 200	369 2	15 32	6 9
	Phase 2	Enviro C	are					
22	W2X11	26.25	19 23	1153 8	200	124 0	10 75	7 0
23	W2X13	26 25	23 76	1425.6	200	183 0	12 84	70

APPENDIX - 5/5

COMPRESSORS - EFFICIENCY EVALUATION

The efficiency evaluation of all the compressors have been carried out after arriving at the theoretical power requirement s and the results are tabulated below

Theoretical power requirement for s - stage polytropic compression can be calculated from the formula

$$P = \frac{s \ k}{-----} \left[\frac{P_d \ (k-1)/s \ k}{----} \right]$$

$$(k-1) \ 6120 \ P_s$$

where, P = Theoretical power requirement in kW

 P_s = suction pressure in kg/m² (a)

 P_d = discharge pressure in kg/m² (a)

V = actual FAD in m³/min

s = number of stages

k = Polytropic index of compression for air = 1.4

The compressor efficiency is calculated as given below .

* Efficiency of motor is taken as 85%, if the motor loading is more than 60% and 78%, if the motor loading is less than 60%.

Appendix - 5/5 contd

	T		A -11	Dalvisor	Curtina	No of	Theoretical	A adv. al	T = -
SI	ID Code	Rated	Actual	Delivery	Suction Pressure.	Stages	Power.	Actual	Compressor
No		Power,	FAD, m³/min	Pressure, kg/cm²(a)	kg/cm ² (a)	Stayes	kW	Power, kW	Efficiency,
		kW	j m/mn	Kg/CIII (a)	kg/cm (a)	<u> </u>	I VVV	L	<u></u> %
ļ	Packing H						14.00		
1	P2X10	132	18 22	3 2	10	1	41 08	72 3	67
2	P2X11	132	22 70	3 2	10	1	51 17	88 5	68
3	P2X12	132	20 95	3 2	10	1	47 23	92 4	60
4	P2X16	110	13 61	70	10	2	53 85	83 7	76
L	Cement M	ill - 2 Area				,	· · · · · · · · · · · · · · · · · · ·		
5	Z2U15	160	34 26	5 0	10	2	95 71	-	-
	Cement Mi	ill - 3 Area							
6	Z3U09	160	31 80	5 0	1 0	2	94 05	-	•
	Cement Mi	II - 4 Area							
7	Z4U07	160	27 12	8 0	1 0	2	100 00	133 5	83
8	Z4U08	160	32 72	7 5	10	2	119 79	158.4	84
9	Z4U09	160	27 25	8 0	10	2	99 72	133 5	83
10	Z4U11	160	31 80	8 0	10	2	116 64	158 0	82
	Atox Mill A	rea							
11	K2U07	45	7 56	1 8	10	1	7 91	27 6	34
12	K2U11	45	8 49	1 8	1 0	1	8 88	35 4	30
13	K2X20	45	3 99	7 2	1.0	2	14 87	34 5	51
14	K2X21	45	3.91	7 2	1.0	2	14 57	34 5	50
15	K2X23	45	3 80	7 1	10	2	14 05	35 7	46
	Kıln 1 - Are	a							
16	W2X08	132	13 12	70	10	2	48 09	87 0	65
17	W2X10	132	9 54	70	10	2	34 97	54 3	76
	Kiln 2 - Are	a							1
18	W2X01	75	9 55	68	1 0	2	34 41	67 5	60
19	H2X02	132	8 23	76	10	2	31 64	74.4	61
	Phase 1 - E	nviro Car	e					·	l.
20	W1X12	200	16 95	79	1 0	1 1	78 03	-	-
21	W1X13&1	200+20	40.17	79	1 0	1	184 92	369 2	60
	4	0							
	Phase 2 - E	nviro Care	9			····			
22	W2X11	200	19 23	80	1 0	1 1	89 24	124 0	85
23	W2X13	200	23 76	8.0	1 0	1	110 26	183 0	71

COMPRESSORS - OPERATING PARAMETERS

lot motor	Cullet water temperature °C	S II Stade	-		•		000	30	30	07		•		•	.	.	.		· -	. 6	28	200
	te C	Stane	650	20	200	200	3 00	25	ac	27	77	/7	77	27	280	200	3	28	2 00	07	87	200
Inlet water	temperature °C			26	27	26	28	27	96	24	36	0.7	26	36	28	28	0.7	26	28	27.0	36	28
Temperature	after cooler,	II Stage				ı	39		-				-							36	36	33
Temp	after	Stage		47	56	45	38		34 40		30.32	70,00	38 50	41.55	40.37	45 38		45	43	3 5	42	44
Temperature	before cooler, °C	II Stage				-	107		58		70		78	62	73	09				88	88	82
Tempe	before	l Stage		125, 97	107, 110	119, 114	109		52.60		50.64		76, 77	60, 70	94, 72	82, 71		06	85	84	69	86
Pressure Settings,	//cm²(g)	Unloading		22	2.2	22	0 9		4		4		7.0	6.5	7.0	7.0		0.8	0 8	5.7	5.7	6.1
Pressure	kg/c	Loading		2.2	2.2	2.2	5.0		4		4	-	7.0	6.5	7.0	7.0		0 8	0.8	57	57	5.9
Aır	Delivery Pressure, kg/cm²(g)		esno	2.2	22	2.2	0 9	ill - 2 Area	4	ill - 3 Area	4	ill - 4 Area	7.0	6.5	7.0	7.0	Irea	0.8	0 8	62	62	6.1
ID Code			Packing House	P2X10*	P2X11*	P2X12*	P2X16	Cement Mill - 2 Area	Z2U15	Cement Mill	#600EZ	Cement Mill	Z4U07#	Z4U08#	Z4U09#	Z4U11#	Atox Mill Area	K2U07*	K2U11*	K2X20	K2X21	K2X23
S	No No			-	2	က	4		2		9		7	8	6	9		11	12	13	14	15

Single stage compressor After-cooler is not provided

Appendix - 5/6 contd..

			<u>e</u>										-				
Outlet water	Temperature,	ان	II Stage		28	28		28	28	29		'	•	_		-	-
Outle	Tempe		l Stage		29	28		28	28	28		,	,	-		•	-
Inlet water	temperature,	ပ္စ			26	27		26	26	26		•	•	•		•	-
Temperature after	cooler,	O	II Stage		32	32		28	27	29	,	1	1	•		1	•
Tempera	0 0 0) ₀	l Stage		39	45		31	29	32		•	-	1		-	å
ire before	er,	3	II Stage		85	78		80	65	101		1	1	-		ı	1
Temperature before	cooler,	၁	l Stage		115	90		74	99	74		1	1	•		ı	1
Settings,		kg/cm ² (g)	Unloading		0 9	0 9		58	5.8	6.5		69	69	69		7.0	2 0
Pressure Setti		kg/c	Loading		5.7	56		5.4	5.4	9		6.5	6.5	9		6.5	6.5
Air Delivery	Pressure,	kg/cm ² (g)		ea	0.9	0 9	ea	5.8	5.8	99	Phase 1 - Enviro Care	69	69	69	Phase 2 - Enviro Care	7.0	7.0
ID Code				Kiln 1 - Area	W2X08	W2X10	Kiln 2 - Area	W2X01	H2X01	H2X02	Phase 1 -	W1X12*	W1X13*	W1X14*	Phase 2 -	W2X11*	W2X13*
SI	ž				16	17		18	19	20		21	22	23		24	25

Single stage compressor

APPENDIX - 5/7

COMPRESSOR LOADING PATTERN

SI.	ID.Code	Cycle	time	% Loading
No.		Loading	Unloading	
		duration,	duration,	
		seconds	seconds	
	Packing H	ouse		
1	P2X10	Loaded to 10	0%	1
2	P2X11	Loaded to 10	0%	
3	P2X12	Loaded to 10	0%	
4	P2X16	47.8	35.25	58.0
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	Cement M	ill - 2 Area		
5	Z2U15	Loaded to 10	0%	
	Cement M	ill - 3 Area		
6	Z3U09	Loaded to 10	0%	
	Cement M	ill - 4 Area		
7	Z4U07	Loaded to 1	00%	
8	Z4U08	Loaded to 1	00%	
9	Z4U09	Loaded to 1	00%	
10	Z4U11	Loaded to 1	00%	
	Atox Mill	Area		
11	K2U07	Loaded to 1	00%	
12	K2U11	Loaded to 1	100%	
13	K2X20	Loaded to 1	00%	
14	K2X21	40 0	16.3	71.0
15	K2X23	198	4.0	83.2
	Kiln 1 - Aı	ea		
16	W2X08	143 3	43 7	76.6
17	W2X10	140 3	49 3	74.0
	Kiln 2 - A	rea		
18	W2X01	312	48	86.7
19	H2X01	Loaded to 1	00%	
20	H2X02	35 3	25.8	57.8

Appendix - 5/7 contd.

SI.	ID Code	Сус	le time	%
No.		Loading,	Unloading,	Loading
		seconds	seconds	
	Phase 1 -	Enviro Care		
21	W1X12	22 0	8 0	73 3
22	W1X13	16 5	70	70 2
23	W1X14	17.3	67	72 1
	Phase 2 - I	Enviro Care		
24	W2X11	L	oaded to 100%	
25	W2X13	L	oaded to 100%	

APPENDIX - 5/8

COMPRESSED AIR DISTRIBUTION DETAILS

Compressor ID Code	Application Area	Compresso Cap	r Designed acity		t Designed rement	Remarks
		Volume (m³/min)	Pressure (kg'cm²)	Volume (m³/mın)	Pressure (kg/cm²)	
PACKING PLAN	NT AREA					
P2X10,	Silo Aeration	27 6	3			
P2X11,	Packer Aeration	27 6	3	54 00	٠.	@ 6 m³/min/ Packer for 9 packers
P2X12	Packer top hopper aeration	27 6	3			C a marining a content
	TOTAL	82 8	-	54.00	-	
P2X16	Opening valve	13 84	105	9 00		@ 1 m³/min/Packer for 9 packers and
	Feed valve & filters	7			7	@ 1 m³/min/filter
	Dust filters (4 Nos)		Į	2 00	1 '	
	TPS M/C Filters (2 Nos)	7	1	0 25	1	
	TOTAL	13 84		11 25		-
		CEM	ENT MILL - 2			- L
Z2U15	Water spray for CM 1 & CM-2	31 41	5	12 80	2	T.
	TOTAL	31 41	-	12 80	T	
		CEM	ENT MILL - 3	AREA		
Z3U09	Water Spray for CM-3	30 64	6	3 80	2	T.
	Dust filters	7			 	
•	U2P55	7	-	015	7	
	U2P56	-	Į.	015	7	-
	U2P58	-		0 15	7	1.
	U2P59	┥		0 15	7	
	U2P61		ļ	0 15	7	
	Z3P31	\dashv	1	0 46	7	
	Z4P21			0 46	7	
	U1P41	-	1	0 93	7	-
	U1P61	-		015	7	
	C1P21	-		0 15	 7	<u> </u>
		{				•
	C1P31			015	7	•
	TOTAL	30 64	<u> </u>	6 85	<u> </u>	1-
Z4U07,	T.W.		IENI MILL -4			T
	Water spray for CM-4	30 64	6	4 20	2	<u> </u>
Z4U08,	Fluxo pump	30 64	6	119 40	-	
Z4U09,	-	30 64	6	 	-	
Z4U10	-	30 64	6	 	<u> </u>	<u> • </u>
	TOTAL	122 56		123.60		<u> </u>

Appendix - 5/8 contd

Compressor Eqpt No	Application =rea	Designe	d Capacity	Cesignea i		Remarks
счрино		Volume (m³/min)	Pressure (kg/cm²)	Volume (m³/min)	Pressure (kg/cm²)	
		AND ADDRESS OF THE PARTY OF THE	OX MILL ARE			1
K2U07,	C P Pump	11 58	2	24 00	15	1.
K2U11		11 58	2	1	1	
	TOTAL	23.16		24.00		
K2X20,	Filters	66	85	- 24.00		-
k2X21,	K2P01	66	85	3 20	7	
K2X23	K2P06	66	85	3 20	7	
	K2P19			0 15	7	
	K2013	1 ,		0 20	7	-
	K2P77	1	İ	0 15	7	
	K2P61	1		0 20	7	1
	Pneumatic gates (10 Nos)	1		1 00	7	† :
	TOTAL	19 80		8 10		} -
			KILN - I AREA		-	-
W2X08	Silo Extraction Flaps (7 Nos)	13 81	105	030	7	1
	Cooler dust valves	1 1991	100	1 50	 7	-
	Pneumatic gates (18 Nos)	1	1	2 25	/7	
	Double flaps (2 Nos)	1		030		0 125 Nm³/min/gate
i	Kiln inlet seal (5 Nos)			0.03	7	0 005 Nm³ Min/seal
	Gas Analysers		İ	0.80	7	0 005 Nm Min/seal
}	Cooler water spray (6 Nos)		}	0 60	/ 7	04.1/=3/
ł	DBC Dampers		}	0 20		0 1 Nm³/min /unit
ŀ	Hoisting Damper			012	7	
ł	Shock Blasters		}	1 00	7 7	-
t	Temp Scanner		}	0 50	7	-
ŀ	T C Camera		H			-
ŀ	RM-1 Girth Gear Lubrication		ŀ	0 50 1 50	7	•
F	Connection to Air Seal at Calciner	j	ŀ			-
1	FK pump		į	1 00	42	•
ŀ	Miscellaneous		ŀ	1 00		
	TOTAL	13.81		11.60		_
W2X10	Filters	13.81	105	11.00		
	L/S Crusher (AOPO1)	1001	103	0 45	7	•
r	RM Area		<u> </u>	- 0 45		-
T	H1P01	1	+	0 28	7	
r	H1P11	l	-	0 50	7	-
	H1P11	1	<u> </u>	0 45	7	
	H1P21	(<u>}-</u>	0 15	7	
	R1P41		-	0 40	7	•
	R1P51		-	0 16		-
_	Kıln Feed area		}-		7	•
	W1P11		-	0 80	7	•
	W1P01		<u> </u>	0 28		•
	Beit bucket elevator area		1		7	•
	W1P21		 -	0 47	7	-
	DBC Area	1	 -			
<u> </u>	U1P11		-			•
-	U1P21	1	<u> </u> -	0 42	7	·
-	Coal Mill area		<u> </u> _	0 80	7	•

Appendix - 5/8 contd..

ompressor Egpt No	Application	Designed	d Capacity	Designed F	Requirement	Remarks
-46,		Volume (m³/min)	Pressure (kg/cm²)	Volume (m³′min)	Pressure (kg'cm²)	
			N - I AREA COI	<u>~:</u>		
	K1P51	T		2 62	1 -	
	K1P61		ł	0 28		
	K1P41		i	0 15		
	Miscellaneous		1			
	TOTAL	13.81		9.21	-	-
			KILN - II AREA	1		
H2X02	Silo extraction flaps (7 Nos)	13 81	105	0 30	7	-
	Cooler dust valves		i	3 50	7	•
	Pneumatic Gates (14 Nos)	_	}	1 75	7	0 125 Nm³/min/gate
	Double flaps (2 Nos)			0 30	7	-
	Kiln girth gear lubrication			0 30	7	
	Kıln ınlet seal (5 Nos)	_		0 03	7	0 005 Nm ³ /min/seal
	Gas Analysers		į	0 80	7	_
	Cooler Water spray (6 Nos)			0 60	7	-
	DBC Dampers		1	0 20	7	0 1 Nm³/min /unit
	Hoisting Damper]	0 12	7	-
	T V Camera		}	0 50	7	•
	Temp Scanner		Ì	0 50	7	•
	Shock Blasters		1	1 00	7	-
	Miscellaneous			1 00	7	-
	TOTAL	13.81		10.90	-	•
W2X01,	Filters	11 67	8		-	
H2X01	L/SCrusher	4 44	8.5	0 60	7	-
	RM Area				<u> </u>	•
	J2P21			0 15	7	•
	R2P31			0 15	7	
	R2P91		Ì	0 15	7	-
	R2P11		l	0 46	7	-
	R2P17/71		ł	0 15	7	•
	R2P51			0 15	7	-
	R2P41)	0 47	7	-
	R2P21		1	0 15	7	-
	R2P08			0 30	7	-
	R2F02		1	0 15	7	-
	H2P01		1	0 87	7	-
	H2P11		1	0 20	7	-
	R2P61		1	0 15	7	-
	Kıln Feed Area	_]	1			-
	W1P24]	1	0 15	7	-
	W2P01		I	0 28	7	-

Appendix - 5/8 contd

Compressor Egpt No/	Application	Designe	d Capacity	Designed	Requirement	Remarks
		Volume (m³/min)	Pressure (kg/cm²)	Volume (m³/min)	Pressure (kg/cm²)	7
		KIL	N - II AREA co	ntd .		
	Bucket elevator area					
1	W2P81			0 40	7	T -
1	DBC Area				-	1 -
	U2P57			0 15	7	-
	U2P51		1	0 15	7	
	U2P52]	}	0 15	7	
	W2P21			0 85	7	-
	ATOX Mill area	_	1		-	-
	K2P19]	i	0 15	-	-
	Miscellaneous]		1 00	-	•
	TOTAL	16 11	•	6 22	-	
		MPRESSORS	FOR PHASE -	I ENVIRO CA	RE SYSTEM	
W1X12,	GCT	26 25	80	60 07		-
W1X13,	Kıln down comer	26 25	80	5 47		•
W1X14	Calciner down comer	26 25	80	8 62		-
	TOTAL	78.75	-	74 16		-
		MPRESSORS	FOR PHASE	ENVIRO CAR	RE SYSTEM	
W2X11,	GCT	26 25	80	59 72		Only two compressors are
W2X12,	Kıln down commer	26 25	80	5 80	-	-operated
W2X13,	Calciner down commer	26 25	8 0	10 30	-	
	TOTAL	78 75	-	75 82	-	

APPENDIX - 5/8

COMPRESSED AIR DISTRIBUTION DETAILS

Compressor ID Code	Application Area	Compresso Cap			t Designed rement	Remarks
		Volume (m³/min)	Pressure (kg/cm²)	Volume (m³/mɪn)	Pressure (kg/cm²)	
PACKING PLAN	NT AREA					
P2X10,	Silo Aeration	27 6	3			
P2X11,	Packer Aeration	27 6	3	54 00	-	@ 6 m³/min/ Packer for 9 packers
P2X12	Packer top hopper aeration	27 6	3	'		
	TOTAL	82.8	-	54 00	-	•
P2X16	Opening valve	13 84	105	9 00		@ 1 m³/min/Packer for 9 packers and
	Feed valve & filters	7		1	7	@ 1 m³/min/filter
	Dust filters (4 Nos)	7		2 00	1	
	TPS M/C Filters (2 Nos)	7]	0 25	•	
	TOTAL '	13 84		11.25]	
		CEM	ENT MILL - 2	AREA		
Z2U15	Water spray for CM 1 & CM-2	31 41	5	12 80	2	-
	TOTAL			12.80		•
		CEM	ENT MILL - 3	AREA		
Z3U09	Water Spray for CM-3	30 64	6	3 80	2	I -
	Dust filters		1			
	U2P55	-		0 15	7	-
	U2P56	-		0 15	7	-
	U2P58			015	7	
	U2P59	┥		015	7	•
	U2P61	-		0.15	7	•
	Z3P31	-	ì	0.46	† 	•
	Z4P21	-	ļ	0 46	7	1.
	U1P41			0 93	+ 7	1.
	U1P61	-	1	0 15	7	1-
	C1P21		İ	0 15	7	•
	C1P31		1	0 15	 	
	TOTAL	30 64	 	6.85	-	1.
	I I I I I I I I I I I I I I I I I I I		IENT MILL - 4			Li.
Z4U07,	Water spray for CM-4	30 64	6	4 20	2	Τ-
Z4U08,		30 64	6	119 40		-
Z4008, Z4U09,	Fluxo pump	30 64	1 6	1 10 70	 	1.
Z4009, Z4U10	<u> </u>	30 64	6	 	+	-
24010	TOTAL	122.56	 	123 60	 	
	IUIAL	122.50		120 00	حسيت سيديك	

Appendix - 5/8 contd

Compressor Eqpt No	Application Area	Designe	d Capacity	Designed F	Requirement	Remarks
Edht 140		Volume (m³/min)	Pressure (kg/cm²)	Volume (m³/mɪn)	Pressure (kg/cm²)	
		AT	OX MILL AREA	- 5		
K2U07,	C P Pump	11 58	2	24 00	15	-
K2U11	() · · · · · · · · · ·	11 58	2			
102011	TOTAL	23 16	-	24 00	-	-
K2X20,	Filters	6.6	8.5	-	-	-
k2X21,	K2P01	66	8.5	3 20	7	-
K2X21,	K2P06	66	8.5	3 20	7	-
K2X23				015	7	
	K2P19]	0 20	7	-
	K2013		1	0 15	7	-
	K2P77			0 20	7	-
	K2P61		1	1 00	7	1.
	Preumatic gates (10 Nos.)	40.00				
	TOTAL	19.80	- 1	8.10	<u> </u>	<u> </u>
	γ		KILN - I AREA			Т
W2X08	Silo Extraction Flaps (7 Nos)	13 81	105	0 30	7	-
	Cooler dust valves		1 1	1 50		0.405.11
	Pneumatic gates (18 Nos)		1 1	2 25	7	0 125 Nm ³ /min/gate
	Double flaps (2 Nos)		1 1	0 30	7	1-
	Kiln inlet seal (5 Nos)			0 03	7	0 005 Nm ³ /Min/seal
l	Gas Analysers			080	7	-
į	Cooler water spray (6 Nos)		1	0 60	7	0 1 Nm³/min /unit
	DBC Dampers			0 20	7	
1	Hoisting Damper		[0 12	7	-
Ì	Shock Blasters			1 00	7	-
İ	Temp Scanner			0 50	7	-
Ì	T C Camera		l T	0 50	7	-
ŀ	RM-1 Girth Gear Lubrication		Ì	1 50	-	-
	Connection to Air Seal at Calciner			1 00	42	
	FK pump		l i			j
}	Miscellaneous		1	1 00	•	-
	TOTAL	13.81	-	11.60	<u> </u>	
W2X10	Filters	13 81	10.5			
VV2X10	L/S Crusher (AOPO1)	1001	'''	0 45	7	-
	RM Area		 			
ŀ	H1P01	1	[0 28	 7	
}			-	0.50	 7	
}	H1P11	!		0 45	' 7	
1	H1P11				7	•
1	H1P21			0 15		ļ
1	R1P41			0 40	7	
4	R1P51			016	7	-
1	Kiln Feed area					-
L	W1P11			0 80	7	-
	W1P01			0 28	7	-
[Belt bucket elevator area					-
ſ	W1P21			0 47	7	-
Ţ	DBC Area			-	-	-
ſ	U1P11			0 42	7	-
ì	U1P21			0.80	7	-
i i	Coal Mill area		}			

APPENDIX - 5/9

OPERATING ONLY TWO LP COMPRESSORS AND REDUCING THE PRESSURE SETTING TO 1.2 kg/cm² (g) IN THE PACKING PLANT AREA

Presently three compressors, delivering air at 2.2 kg/cm² (g), are operated when 8 packers are in operation. The compressors were also found to be on-load continuously

The compressed air usage areas are packer aeration, silo aeration and packer hopper aeration. The pressure at the user point was checked physically and found to be 1.0 kg/cm² (g), while at the compressor point delivery pressure was 2.2 kg/cm² (g). Also, enormous amount of compressed air is wasted for body cleaning. All these tappings have to be closed immediately and if required, a separate blower or a small size compressor (less pressure) can be provided for body cleaning.

Hence, by closing all these tappings it is sufficient if two compressors are operated even when 8 packers are run, which is the normal condition

The actual FAD of compressors come to

SI	ID Code	Actual FAD (m³/mɪn)	% of Rated FAD
No			
1	P2X10	18 22	66
2	P2X11	22 70	82
3	P2X12	20 95	76

By improving the FAD to 85%, two compressors are more than sufficient for this operation

Appendix - 5/9 contd..

Present power consumption of 3 compressors = 72.3 +88.5+ 92.4 (2 are operated for 15 h/day & 1 for 10 h/day)

= 253.2 kW

1) Power savings by stopping one compressor = 72.3 kW

Annual energy savings = $72.3 \times 10 \times 365$

(@ 10 h/day & 365 day/yr)

= 2,63,895 kWh

Annual cost savings (@ Rs.3.00 / kWh)

= Rs.7,91,685 (say 7 91 lakhs)

Power savings achieved by operating two compressors (P2X11 & P2X12) at 85% FAD (23.5 m³/min each) & at 1.2 kg/cm² (g) pressure:

Power requirement for the compressors (P2X11 & P2X12) can be calculated from the formula

$$P = \frac{s \cdot k \quad P_s \ V}{(k-1) \quad 6120} \quad P_d \quad (k-1)/s \ k} - 1$$

where, P = Theoretical power requirement in kW

 $P_s = suction pressure in kg/m^2 (a)$

P_d = discharge pressure in kg/m² (a)

V = actual FAD in m³/min

s = number of stages

k = Polytropic index of compression for air = 1.4

Appendix - 5/9 contd..

Appendix - 5/9 contd..

Power savings = [(88 5+92.4)- 125.4]

 $= 55.5 \, kW$

Annual energy savings = $55.5 \times 15 \times 365$

(@ 15 h/day & 365 day/yr) = 3,03,863 kWh

'Annual cost savings = Rs 9,11,589

(@ Rs.3 00 / kWh)

= (say 9.12 lakhs)

Total cost savings (1 +2) = 7.91 + 9.12

= 17 03 lakhs

Cost of investment = 2.00 lakhs

(for improving FAD for 4 compressors)

Simple payback period = 2 months

APPENDIX - 5/10

OPTIMISATION OF COMPRESSED AIR USAGE IN CEMENT MILL AREA

In cement mill area the entire usage of compressed air can be optimised since pipe conveyor is used now for cement conveying for 3 mills and fluxo pump for 1 mill (whenever Special Grade Cement is manufactured).

For mill water spray where pressure of 2 kg/cm²(g) is only required as against the present usage of 4 kg/cm²(g), a single stage LP compressor similar to LP compressor in packing house (P2X10 to P2X13) can be used The designed parameters for recommended compressor is 27 6 m³/min at 3 kg/cm²(g), 132 kW motor rating while the requirement is 20 8 m³/min at 2 kg/cm²(g) pressure

For filters, where high pressure is required low capacity two stage HP compressor like P2X14, P2X15 in Packing House can be used. The design parameters for recommended compressor is 6 6 m³/min at 8.5 kg/cm²(g), 45 kW motor rating while the requirement is 3 05 m³/min at 7 kg/cm²(g) pressure

So, In cement mill 1 to 3 areas, the compressors which are operating presently (Z2U15 & Z3P09) can be replaced with 1 LP and low capacity HP compressors

It is also suggested to close all tapping points in receivers or other areas where compressed air is used for body cleaning.

Appendix - 5/10 contd..

In cement mill area, the re-allotment of compressor is suggested as mentioned below.

Phase	Compressors in Operation Presently	Application	Suggestions
	Z2U15	For cement mill 1&2 water spray and filters	To use one low pressure compressor (capacity similar to Packing House compressor P2X10-X13) for water spray for all 4 cement mills
11	Z3U09	For cement mill 3 water spray and filters	To use 1 HP compressor (capacity similar to Packing House compressor P2X14-X15) for filters of all 4 cement mills
II	Z4U07, Z4U08, Z4U09, Z4U11	For cement mill 4 water spray, for conveying special grade cement to silo through fluxo pump	To operate fluxo pump for CM IV, only when Special Grade Cement is manufactured

Power consumption by the compressors which are in operation in cement mill area

Z2U15	= 133.0
Z3U09	= 130.0
Z4U07	= 133.5
Z4U08	= 158 4
Z4U09	= 133.5
Z4U11	= 158.0

(For Z2U15 and Z3U09, measure power readings are not available and hence the power has been calculated based on FAD and pressure measurement with compressor efficiency as 80% and motor efficiency as 90%).

Cement Mill - IV compressors are to be operated only when SGC is manufactured and so present condition can be continued.

Appendix - 5/10 contd...

Power consumption of Z2U15 & Z3U09

= 263 kW

Expected power consumption from 1 LP compressor for water spray (all 4 cement mill) and 1 HP compressor for filters (all 4 cement mills).

= 51 + 29

= 80 kW

(Power readings taken from similar compressors operating in Packing House).

: Power savings that can be achieved by replacing = 263 - 80

compressors for water spray and filters

= 183 kW/h

Annual energy savings = 183 x 24 x 330

(@ 24 hours/day, 330 days/year)

= 14,49,360kWh

Annual cost savings = Rs 43,48,080

= Rs 43.48 Lakhs

Investment required = Rs.29.0 Lakhs

(For 2 LP & 2 HP compressors - including spare)

Simple payback period = 8 Months

APPENDIX - 5/11

OPERATING ONLY TWO HIGH PRESSURE COMPRESSORS IN ATOX MILL AREA

Presently three high pressure compressors are operated in the Atox mill section to meet the compressed air requirements of filters and pneumatic gates. The compressed air generation and utilisation details are given below:

Compressor ID Code	Rated FAD m³/min	Actual FAD m³/min	% FAD	Utilisation Area	Designed Compressed air requirement, m³/min
K2X20	6.6	3.99	60.5	1) Filters	
K2X21	6.6	3.91	59.2	K2P01	3 20
K2X22	66	3.80	57 6	K2P06	3 20
				K2P19	0.15
				K2P13	0 20
				K2P77	0 15
				K2P61	0 20
				2) Pneumatic	1 00
				gates (10 no)	
· Total	19 8	8.70			8 10

Compressed air requirement

 $= 8.10 \text{ m}^3/\text{min}$

By improving the FAD of the above compressors to 85% and closing the body cleaning tappings, it is possible to meet the demand with two compressors itself. If required separate blower can be provided for body cleaning purpose

Compressor FAD after improvement

 $= 0.85 \times 6.6$

(85% of its rated FAD)

 $= 5.61 \text{ m}^3/\text{min}$

Compressed air generation with 2 compressors

 $= 2 \times 5.61$

 $= 11.22 \text{ m}^3/\text{min}$

Appendix - 5/11 contd..

By switching-off one of the compressors, say K2X23, 35 7 kW can be saved.

Annual operating days = 330

Annual operating hours = 330×24

= 7920

Annual energy savings = 7920×357

= 282744 kWh

(say 2.83 lakh kWh)

Annual cost savings = 282700×3.00

(@ Rs.3 00/kWh)

= Rs 848100/-

(say Rs. 8.48 lakhs)

Investment required (for 4 compressors) = Rs.2.00 lakh

Simple payback period = 3 months

APPENDIX - 5/12

USING BLOWER AIR INSTEAD OF COMPRESSED AIR FOR COAL CONVEYING TO STORAGE BIN IN ATOX MILL SECTION

At present reciprocating air compressor is used to supply the air required at C.P Pump for coal conveying to the storage bin. It was learnt that the required air pressure for conveying is around 0.8 kg/cm². For a low pressure application like this blowers can be used to serve the purpose, as they have lower specific power consumption compared to air compressors

PRESENT SYSTEM:

Air flow rate required = $965 \text{ m}^3/\text{h}$

No of compressors supplying air = 2 (K2U07 & K2U11)

Power consumption by compressors

K2U07 = 27.6 kW

K2U11 = 35.4 kW

Total power consumption = 63 0 kW

PROPOSED SYSTEM:

Installing a Blower to supply coal conveying air

Capacity of blower required = $965 \text{ m}^3/\text{h}$

Blower air pressure = 1 kg/cm^2

Blower power consumption = 50 kW

Appendix - 5/12 contd..

SAVINGS:

Power savings = 13 kW

Annual energy savings = $13 \times 18 \times 330$

(@ 18 h/day & 330 days/y)

= 77220 kWh

Annual Cost savings = Rs.231660 /-

@ Rs.3 00 / kWh (say 2.3 lakhs)

Investment required for Blower = Rs.1,18,800 /-

Investment required for Motor = Rs.75,000 /-

(75 HP, 1440 rpm)

Total investment required = Rs 1,93,800/-

(say 2 lakhs)

Simple payback period = 11 months

APPENDIX - 5/13

REPLACING V- BELTS OF COMPRESSOR MOTORS WITH FLAT BELTS

In most of the compressors, V-belts are used for power transmission from motor to compressor. But the wedging in and out action of the V-belts results in power loss and induces creep in the belt. The power loss due to slip and creep are 3% of belt power rating and 1% of compressor absorbed power respectively. This can be avoided by replacing the V-belts with flat belts

The details of recommended belt replacements are tabulated below

SI	Area	ID Code	Motor	Power	Power	Annual	Annual	Belt	Pulley	Total
No			Absorbed	Rating	Loss	Working	Energy	cost	cost	cost
			Power	of Belt		Hours	Savings			
			kW	kW	kW		lakh kWh	Rs lakhs	Rs lakhs	Rs lakhs
1	Kıln-1	W2X08	87	126	4 60	8000	0 37	0 24	0 04	0 29
		W2X10	54	168	5 52	8000	0 44	0 18	0 04	0 22
		W2X09	74	180	6 08	8000	0 49	0 23	0 04	0 27
2	Kıln-2	W2X01	67	93	3 43	8000	0 27	0 23	0 04	0 27
		H2X01	24	93	3 00	8000	0 24	0 14	0 03	0 18
3.	Atox Mill	K2U06	28	93	3 04	8000	0 24	0 14	0 03	0 17
		K2U07	28	93	3 04	6000	0 18	0 14	0 04	0 17
		K2U11	36	93	3 12	6000	0 19	0 17	0 04	0 21
		K2X20	35	93	3 11	8000	0 25	0 14	0 04	0 18
		K2X21	35	93	3 11	8000	0 25	0 15	0.04	0 19
		K2X23	36	93	3 12	8000	0 25	0 17	0 04	0 21
		Tot	tal *		32 05		2 44			1 91

figures excluding stand-by compressors (W2X09 & K2U07)

Appendix - 5/13 contd..

Savings:

Total power savings = 32.05 kW

Annual energy savings = 2.44 lakh kWh

(@Rs 300/kWh)

Annual cost savings = Rs.7.32 lakhs

Cost of investment = Rs.1 91 lakhs

Pay back period = 3 months

APPENDIX - 6/1

H.T. MOTOR LOADING PARAMETERS

PHASE # 1

Sht 1 of 3

SL.	APPLICATION /				MOT				%
No.	CONNECTED	RATED	ME	ASUR	ED PO	OWER P.	ARAME [*]	TERS	LOAD-
	EQPT.	kW	Volts	Amp	Pf.				ING
			V	A	Cos	kVA	kW	kVAr	
1	Raw mill fan (R1P05M1)	700			0 75			138.0	55 1
	-do-	700	6600						58.7
2	Rotary separator	315							95 2
	-do-	315	6540		0 86				99 0
3	Raw mill main motor (R1M03)	3000	6600				2505 0		83 5
	-do-	3000	6600	256 0	0.83		2808 0		93 6
4	Raw mill main motor (R1M23)	3000	6600		0 85				14 6
	-do-	3000	6600	46 0	0 98		447 0		14 9
5	Envirocare Compressor	200	6600		0.76		189 0	125 0	94 5
	-do-	200	6600		0 78	184.0			71.5
	Cooler ESP Fan (W1P51)	425	6600	28 9	0 86	335 0	287 0	171.0	67.5
	Cooler Fan (W1K16M1)	315	6720	20 3	0 91	234 0	213 6	95 0	67 8
8	Cooler Fan (W1K17M1)	325	6720	10 9	0 94	126 0	126.0	9.5	38 8
	-do-	325	6720	11 8	0 99	136 8	135 0	18 5	41 5
	Coal mill motor (K1MO3)	950	6720	73 0	0.98	843 0	825 6	95 0	86 9
10	ESP Fan (J1P44)	600	6600	52 2	0 86	596 0	511 0	595 0	85 2
11	Smoke Gas Fan (J1J01)	1650	6540	150 8	0 89	1711 0	1483 0	1711 0	89 9
	Smoke Gas Fan (J1J03)	950	6600	92 8	0 90	1059 0	949 0	1059 0	99 9
13	Compressor (W1X11)	200	6720	18 7	0 87	220 0	191 4	108 5	95 7
14	Compressor (W1X12)	200	6720	-	-	-	-	-	-
15	Compressor (W1X13)	200	6720	18 5	0 86	214 7	184 7	109 8	92 4
16	Compressor (W1X14)	200	6720	17 8	0 89	207 3	184 5	94 6	92 3

Appendix - 6/1 contd

H.T. MOTOR LOADING PARAMETERS

PHASE # 11

Sht 2 of 3

SL.	APPLICATION /				MOTO	OR			%
No.	CONNECTED	RATED	ME	ASUR	D PC	WER PA	RAMET	ERS	LOAD-
	EQPT	kW	Volts	Amp	Pf				ING
			V	Α	Cosø	kVA	kW	kVAr	
1	Raw mill separator (R2S01)	325	6720	26 4	0 66	296.2	203.0	177 1	62.5
2	Raw mill fan (R2P05)	825	6660	51.8	0 67	609 0	400.8	344 5	48.6
3	Raw mill main motor (R2M03)	5400	6720	423.6	0 90	4485 0	4420.0	2842.2	81.9
4	Screw Compressor (W2X11)	200	6700	12.5	0 78	158.0	124 0	62 0	62.0
5	Screw Compressor (W2X12)	200	6700	13.4	0 89	217.0	194.0	97.0	97.0
6	Screw Compressor (W2X13)	200	6700	12.9	0.90	203.0	183.0	91 5	91.5
7	Coal mill fan (K2T01)	600	6720	49 7	0 87	643 0	502.2	333.1	83.7
	- do -	600	6720	55.4	0 88	645.3	569.7	371.7	95.0
	- do -	600	6720	59 7	0 88	694.8	614.7	400.6	102.5
8	Coal mill motor (K2M03)	680	6660	47 2	0.93	546 2	507.0	313 9	
9	Cooler ESP fan (W2P31)	600	6660	23 0	0.77	264 2	202.3	152.9	
10	Smoke gas fan (J2J01)	1650	6720	149 4	0 88	1738.6	1530.0	825 8	
11	Smoke gas fan (J2J03)	825	6720	67 5	0 90	786.1	707.0	341 8	
12	Kıln ESP fan (J2P09)	500	6720	41 5	0 87	483.4	420 0	238 3	84.0

H.T. MOTOR LOADING PARAMETERS CEMENT MILL # | & ||

SL.	APPLICATION /		MOTOR							
No.	CONNECTED	RATED	ME	ASURE	D PO	WER PA	RAMET	ERS	LOAD-	
	EQPT	kW	Volts	Amp	Pf				ING	
			V	Α	Cosø	kVA	kW	kVAr		
1	Cement Mill # 1 (Z1M03)	1800	6720	168.0	0.86	1960.0	1677.0	1015.0	-	
	Cement Mill # 1 (Z1M23)	1800	6720	153.6	0.95	1793.0	1706.0	552.0		
	Cement Mill # 2 (Z2M03)	1800	6720	173.6	0.86	2016.0	1740 0	1017.6	96.7	
<u> </u>	- do -	1800	6720	174 4	0.86	2023.2	1749.6	1017.6		
1	Cement Mill # 2 (Z2M23)	1800	6720	159.2	0.95	1843.2	1747 2	585.6		
H	- do -	1800	6660	158.4	0.95	1831.2	1737 6	580.8	96.5	
5	Cement Mill #3 (Z3M03)	4000	6720	420.0	0.81	4872.0	3918.0	2892 0	98.0	
⊢∸	- do -	4000	6660	424.0	0.81	4890.0	3948 0	2892.0	98.7	
6	Cement Mill # 4 (Z4M03)	4000		348 0	: :	4026.0	3816.0	1290.0	95.4	
۳	- do -	4000				4014.0	3810.0	1278.0	95.3	

Appendix - 6/1 contd

H.T. MOTOR LOADING PARAMETERS L.S. CRUSHER (New & old)

Sht 3 of 3

SL.	APPLICATION /	MOTOR									
No	CONNECTED	RATED	ME	ASUR			ARAME	TERS	% LOAD-		
	EQPT	kW	Volts	Amp	Pf		T		ING		
			V	Α	Coso	kVA	kW	kVAr	""		
1	Mines Crusher I/C 6 6 kV feeder	-	6540	56 1	0 78			398 4	-		
	-do-	-	6540	62 1	0 82	705 6	580 8				
	-do-	-	6600	46 9	0 73	537 6	389 8	369 6	1		
	-do-	-	6600	53 3	0 80	609 6	484 8	367 7	-		
	-do-	-	6600	68 6	0 86	782 4	667 2	406 6	-		
2	Primary Crusher (New)	1000	6660	21 6	0 49	247 5	121 5	216 0	12 15		
	-do-	1000	6600	22 1	0 54	253 5	135 9	214 5	13 59		
	-do-	1000	6600	22 8	0 54	261 0	141 8	219 0	14 18		
	-do-	1000	6600	22 8	0 52	261 0	134 4	223 5	13 44		
	-do-	1000	6660	22 4	0 48	258 0	122 7	226 5			
3	Secondary Crusher (New)	1200	6660	36 6	0 82	423 0	347 4	241 2	28 95		
	-do	1200	6600	41 4	0 83	475 2	394 2	268 2	32.85		
	-do-	1200	6720	19 1	0 31	221 4	67 7	210 6	5 64		
	-do-	1200	6780	24 5	80 0	286 2	24 3	284 4	2 03		
	-do-	1200	6720	24 1	0 10	280 8	28 1	279 0	2 34		
4	Secondary Crusher LS (Old)	1000	6720	32.0	0 85	372 0	315 0	199 5	31 50		
	-do-	1000	6720	16 5	0 48	190 5	91 1	168 0	9 11		
	-do-	1000	6720	14 9	0 18	172 5	31 8	169 5	3 18		
	-do-	1000	6720	37 3	0 83	433 5	358 5	243 0	35 85		
\vdash	-do -	1000	6720	25 8	0 75	300 0	225 0	198 0	22 50		
	-do-	1000	6720	16 0	0 25	186 0	45 9	180 0	4 59		
	-do-	1000	6660	19 0	0 55	220 5	120 0	184 5	12 00		
	-do-	1000	6660	25 8	0 74	298 5	220 5	199 5	22 05		
-	-do-	1000	6660	170	0 64	196 5	66 0	184 5	6 60		
	-do-	1000	6660	38 3	0 83	438 0	366 0	241 5	36 60		
	-do-	1000	6660	38 3	0 83	442 5	366 0	247 5	36 60		
<u>ا</u>	-do-	1000	6660	36 8	0 82	424 5	349 5	241 5	34 95		
는 의	Primary Crusher L S (Old)	760	6660	31 5	0 80	361.5	289 5	217 5	38 09		
⊢	-do-	760	6600	38 0	0 83	436 5	361.5	244 5	47 57		
├	-do-	760	6660	43 5	0 84	501 0	423 0	270 0	55 66		
 - 	-do- -do-		6660	33.0	0 81	379 5	307 5	222 0	40.46		
┝╶╏			6780	16 4	0 35	192 0	66 3	180 0	8.72		
├	-do-	<u>1</u>	6780	39 5	0 83	465 0	384 0	259 5	50 53		
-	-do-		6840	21 6		255 0	1785 0	183 0	234 87		
L	-uo-	760	6780	27 5	0 76	322 5	243 0	211 5	31 97		

APPENDIX - 6/2

L.T MOTOR LOADING PARAMETERS

PHASE # I

Sht 1 of 2

SL No	APPLICATION / CONNECTED	MOTOR						.	
,10	EQPT	RATED MEASURED POWER PARAMETER				TERC	- % - 1000		
		kW	A	Coso	VL	kVA	kW	LOADING	
1	Harrow Hyd Pump (A1L04M6) uL	37 0	29 2	0 46	410	20 8	10 3	777	
<u> </u>	Harrow Hyd Pump (A1L04M6) L	37 0	48 1	0 73	410	33 8	25 5	27 7	
2	Jib Belt Motor (A1L02M1)	45 0	41 0	0 27	412	28 3	60	69 0 13 3	
3	Belt bucket elevator (R1J13M1)	110 0	130 0	0.78	416	95 1	76 5	69 5	
4	Rubber belt conveyor (R1A04M1)	30 0	23 9	0 68	414	16 5	12 3	41 0	
5	Rubber belt convevor (R1A05M1)	55 0	41 7	0 68	417	30 3	21 0	38 2	
6	Rubber belt conveyor (R1A03M1)	30 0	32 5	0 65	416	23 4	15 0	50 1	
7	Filter fan for silo top (H1P14M1)	55 0	71 9	0 69	414	51 5	35 7	64 9	
8	Bucket elevator (R1J01M1)	1100	53 5	0 51	414	37 7	19 0	17.2	
9	Dust filter fan (R1P14M1)	30 0	22 4	0 56	390	15 6	72	24 0	
10	Dust filter fan (H1P04M1)	15 0	20 2	0 50	419	14 5	72	48 0	
11	Dust filter fan (R1P44M1)	18 5	18 9	0 75	419	13 8	10 8	58 4	
12	Dust filter fan (W1P04M1)	22 0	13 4	0 38	423	9.8	3 5	16 1	
13	Filter compressor (W1X1CM1)	132 0	67 9	0 50	423	50.4	24 6	18 6	
14	Envirocare Pump (J1K58M1)	22 0	21 7	0 75	421	15 8	12 2	55 2	
15	Air slide Blower(W1B08)	5.5	2 5	0 55	421	22	1 3	23 5	
16	Screw conveyor (W1B03M1)	22 0	20 3	0 34	423	14 9	4 5	20 5	
17	Filter fan (W1P14M1)	30 0	28 6	0 86	421	21 1	18 3	61 0	
18	AHU for ESP	7.5	7 3	0 67	421	5 7	3 9	52 0	
19	Kiln compressor (W1X08M1)	132 0	141 0	0 82	421	103 5	87 0	65 9	
20	Kiln compressor std-by(W1X09M1)	132 0			Standby fo	or W1X08	<i>/</i> 11		
21	Belt bucket elevator (W1A12M1)	75 0	107 0 0 83 421 76 8 63 3 1						
22	Filter fan (W1P32M1)	30 0	33 3	0 69	419	24 7	17 2	57 3	
23	Screw conveyor (W1J01M1)	45 0	46 1	0 32	419	33 8	11 2	24 9	
24	Bucket elevator (W1J03M1)	90 0	85 0	0 61	419	64 2	45 6	50 7	
	- do -	90 0	105 0	0 74	419	73 8	50 7	56 3	
25	Bucket elevator std-by(W1J04M1)	90 0	Standby for WIJ03M1						
26	Blower for new bin (W1A65M1)	30 0	22 8	0 58	421	16 8	99	33 0	
27	Blower for new bin (W1A75M1)	30 0	Standby for W1A65M1						
28	Envirocare Pump (J1K17M1)	55 0	64 2	0 87	421	47 3	41 8	75 9	
29	Blower for old bin(H1H09M1)	22 0	17 9	0 69	421	13 8	9 9	45 0	
30	Screw conveyor (W1A03M1)	22 0	12 3	0 38	423	8.8	29	13 1	
31	Screw conveyor (J1U43M1)	30 0	16 5	0 27	424	11 9	3 0	10 0	
32	Screw conveyor (J1U41M1)	30 0	17 4	0 48	421	12 6	5 9	19 5	
33	Screw conveyor (J1U42M1)	22 0	14 4	0 34	419	10 5	30	13 6	
34	ESP drag chain (J1P53M1)	7 5	92	0 60	421	6 ତି	4 2	56 0	
35	DBC Blower	30 0	26 8	0 45	421	19 3	8 9	29 5	
36	DBC (U2J03)	45 0	49.3	0 70	419	38 7	28 8	63 9	

Appendix - 6/2 contd

L.T. MOTOR LOADING PARAMETERS

PHASE # 1

Sht 2 of 2

SL	APPLICATION /		%						
No	CONNECTED	DATED							
1	EQPT	RATED	A	Cos	POWER V _L	kVA	kW	LOADING	
37	DBC (U2J05)	55 0	49 2	0 40	419	34 5	13.5	24 5	
38	DBC (U2J04)	45 0	30 6	0 39	421	22 3	72	16 1	
39	DBC (U2J06)	55 0	67 0	0 68	421	54 0	48 0	87 3	
- 33	- do -	55 0	105 0	0.85	421	75 0	60 0	109 1	
40	RBC (L1U12)	18.5	19 9	0.59	417	7.8	4 9	26 4	
41	AHU Coal Mill Room	150	18 0	0.70	416	12 9	111	74 0	
42	DBC Vent fan 1	30 0	20 0	0.59	419	14 7	96	32 0	
43	DBC Vent fan 2	30 0	34 0	0 40	428	26 1	96	32 0	
44	RBC (L1U13)	150	18.6	0 70	426	26 1	10.5	70 0	
45	FK Pump (K1U41)	37 0	26 9	0 39	423	198	60	16 2	
46	CP Pump (K1U44)	30 0	18 6	0 22	426	13 8	27	8 9	
47	Primary air fan (W1V07)	1100	106 7	0 67	419	78 0	55 8	50 7	
48	Drag chain (W1K08)	30 0	18 5	0.90	417	11 1	71	23 8	
49	Fan for air seal (W1K30)	45 0	58 9	0 50	421	41 7	22 2	49 3	
50	Hammer Mill (W1M01)	150 0	104 0	0 29	423	77 7	171	11 4	
51	Coal Mill separator fan(K1P56)	200 0	320 0	0 75	430	208 5	166 2	83 1	
52	Filter Compressor (W1X10) uL	132 0	65 0	0 58	419	47 4	25 5	19 3	
	Filter Compressor (W1X10) L	132 0	134 0	0 85	419	98.7	54 3	41 1	
53	Filter fan (K1P63)	150	14 2	0 63	428	10.3	66	44 0	
54	FK Pump Blower (W1U43)	160 0	123.0	080	428	90 0	73 8	46 1	
55	FK Pump Blower (W1U42)	160 0		Standby for W1U43					
56	CP Pump Blower (W1U46)	150 0	96 0	0 84	428	67 8	56 7	37 8	
57	CP Pump Blower (W1U45)	150 0	Standby for W1U46						
58	Dust filter fan (U1P14M1)	45 0	55 0	0 56	421	40 2	24 6	54 7	
59	ESP drag chain (J1P54M1)	11 0	92	0 60	423	6 7	42	37 9	
60	ESP drag chain (J1P55M1)	11 0	8 7	0 51	419	6.6	4 1	37 6	
	ESP drag chain (J1P52M1)	11 0	8 4	0 59	423	6 4	3 9	35 5	
62	Cooler fan (W1K10)	225 0	124 0	0 65	421	90 6	63 5	28 2	
	Cooler fan (W1K11)	225 0	154 0	0 81	424	83 7	54 9	24 4	
	Cooler fan (W1K12)	225 0	139 0	0 87	423	70 8	48 0	21 3	
	Cooler fan (W1K13)	225 0	142.0	0 87	435	75 9	49 8	22 1	
	Cooler fan (W1K14)	225 0	161 0		421	116 4	74 4	33 1	
67	Cooler fan (W1K15)	225 0	143.7	***	421	105.9	68 7	30 5	

APPENDIX - 6/3

L.T MOTOR LOADING PARAMETERS

PHASE # 11

SL	APPLICATION /	MOTOR						
No	CONNECTED	0.4750						%
	EQPT	RATED			POWER	PARAME	TERS	LOADING
	(1004M7)	kW	Α	Cosø	V _L	kVA	kW	
1	Harrow Hyd Pump (A204M7)	37 0	41 4	0 55	414	28 8	15 9	430
2	Rubber belt conveyor (R2L06M1)	55 0	17 4	0 73	435	131	98	177
3	Rubber beit conveyor (R2A04M1)	30 0	22 2	0 76	438	16 7	12 9	430
4	Rubber belt conveyor (R2A05M1)	55 0	43 5	0 60	436	32 7	19 9	36 2
5	Rubber belt conveyor (R2A02M1)	30 0	196	0 51	436	14 5	66	22 0
6	Rubber belt convevor (R2A06M1)	30 0	13 8	0.83	438	104	9 2	30 7
7	Sluicing belt convevor(R2A07M1)	75	10 2	0 63	436	79	4 6	61 6
8	Bucket elevator (R2J02M1)	1100	67 8	0 44	436	51 5	18 6	16 9
9	Bucket elevator (R2J01M1)	110 0			Standby f	or R2J02N	<i>M</i> 1	
10	Compressor (H2X03)	37 0	44 8	0 70	431	33 3	24 2	65 4
11	Compressor (H2X02) uL	132 0	57 0	0 37	431	423	13 8	10 5
	Compressor (H2X02) L	132 0	122 0	0 82	431	90 9	74 4	56 4
12	Bucket elevator (R2J13M1)	110 0	143 0	0 73	433	106 8	82 5	75 0
13	Dedusting fan (H2P12)	93	90	0 44	431	76	3 5	37 1
14	Screw conveyor (R2U11)	55 0	35 6	0 45	428	26 4	99	18 0
15	(R2U14)	5 5	7 2	0 61	428	57	36	65 5
16	(R2U13)	5 5	8 4	0 78	433	64	49	88 4
17	Silo aeration blower(H2H02)	15 0	16 1	0 69	430	11 8	7 5	50 0
18	Air compressor (W2X01) uL	75 0	41 8	0 68	431	31 4	18 9	25 2
	- do - L	75 0	102 0	0 88	431	78 0	67 5	90 0
19	Silo aeration blower(H2H03)	15 0	13 5	0 66	430	99	66	44 0
20	Silo aeration blower(H2H04)	15 0	14 1	0 70	430	10 4	69	46 0
21	Screw conveyor (W2A05M1)	22 0	12 5	0 48	431	9 5	3 9	177
22	Rotary aeration blower (W2U02)	30 0	232 8	0 82	424	176	14 3	47 5
23	Rotary aeration blower (W2U01)	30 0	Standby for W2U02					
	Fan jet pulse filter(W2P02)	18 5	19 3	0 59	428	144	8 7	47 0
25	Screw conveyor(W2B05M1)	30 0	18 6	0 56	424	141	7 5	25 0
26	Belt bucket elevator(W2J03)	1100	158 0	0 83	426	115 8	97 5	88 6
27	air slide blower(W2J01)	5 5	6 3	0 64	424	47	27	49 1
28	Drag chain conveyor(J2P12)	7 5	8 4	0 45	424	60	22	29 2
	Air jetpulse filter(R2P92)	11 0	11 3	0 67	431	8.4	5 9	53 7
	Drag chain conveyor(J2P14)	7 5	8 4	0 60	421	6.5	21	27 6
	Pneumatic screw pump(W2U01)	45 0	30 0	0 63	424	22 0	13 5	30 0
	Pneumatic screw pump(W2U03)	37 0	28 4	0 37	424	21 1	68	18 5
	Rotary blower (W2U09)	132 0	159 0	0 84	424	118 5	102.3	77 5
	Rotary blower (W2U04)	1100	87 8	0 70	424	64 2	46 2	42 0
	Primary air fan(W2V07)	90 0	99 3	0 77	421	72.0	58 1	64 5
	Drag chian conveyor(W2K50)	75	69	0.53	431	52	32	42.4

Appendix - 6/3 contd

LT MOTOR LOADING PARAMETERS

PHASE # 11

[6]	ADDI ICATIONI (7		M	OTOR			
SL	APPLICATION /			100	0.0.0			
No	CONNECTED	RATED	ME	SUBED	POWER	PARAME	TEDS	%
1	EQPT	kW	A	Cosb	T VL	kVA	kW	LOADING
127	D	7.5	49	0.81	428	63	5 1	60.0
37	Pump water injector(W2K54)	45 0	56 9	0.80	421	43 2	35 4	68 0
	Compressor (K2U10)	45 0	56 4	0.80	435	39 2	34 5	78 7
	Compressor (K2X21)	45 0	53 6	0.82	435	40 2		76 7
	Compressor (K2X20)				435	33 0	34 5	76 7
	CP Pump compressor(K2U06)	45 0	43 0	0.74	438	91	27 6	613
	atox mill Hyd system(K2M07)	7.5	11 6	0 32		20 1	4 4	58 4
	Filter fan (K2P81)	37 0	27 8	0 45	433	 	61	16 4
	Dyn separator(K2P74)	90 0	35 0	0 92	433	27 8	22 2	24 7
	DBC fan(W2P26)	37 0	38 5	0.66	424	28 3	19 4	52 5
	W2K30	45 0	51 7	0.86	426	38 2	31 9	70 9
47	Cooler fan (W2K10)	132 0	75 6	0.62	421	56 7	38 0	28 8
	Cooler fan (W2K11)	225 0	166 0	0.76	424	120 6	96 0	42 7
	Cooler fan (W2K12)	225 0	160 0	0 74	414	115 8	87 9	39 1
	Cooler fan (W2K13)	225 0	119 8	0 81	424	87 3	75 6	33 6
51	Cooler fan (W2K14)	132 0	130 0	0 79	430	96 3	79 5	60 2
	Cooler fan (W2K15)	132 0	181 0	0.86	421	132 0	114 9	87 0
53	Cooler fan (W2K16)	225 0	231 0	0.83	430	177 0	152 1	67.6
	Cooler fan (W2K17)	132 0	134 0	0 84	419	97.2	84 0	63 6
55	Hammer mill(W2M01)	190 0	86 9	0 45	428	64 5	15 6	82
56	K2S03	225 0	222 0	0 74	426	170 1	122 4	54 4
57	Jet pulse filter fan (H2P02)	45 0	47 1	0 76	433	35 4	28 2	62 7
58	Filter fan (J2P24)	110	11 2	0 60	431	8 4	5 5	50 2
59	Air lift blower (H2H08)	132 0	77 3	0 66	431	57 6	41 4	31 4
60	air lift blower (H2H09)	132 0	93 4	0 63	433	67 2	43 5	33 0
61	H2H03	37 0	42 7	0 66	424	31 2	22 8	61 6
62	H2X02	132 0	127 0	0 73	426	95 7	78 3	59 3
63	GRS blower (J2J01A)	5 5	8 8	0.80	419	67	56	102 0
64	GRS blower (J2J01B)	5 5	90	0 77	419	66	5 1	92 7
65	GCT water pump(J2K18)	55 0	76 7	0 88	424	55 2	49 2	89 5
66	Filter fan (W2P82)	37 0	36 8	0 66	426	27 3	18 0	48 6
67	Env pump(W2K57)	22 0	24 3	080	423	17 8	15 1	68 5
68	SOVR pump No 2	15 0	20 5	0 79	424	15 0	12 6	84 0
69	Water pump 1(R2X50)	30 0	45 1	0 78	416	28 8	23 1	77 0
70	Water pump 1(R2X52)	30 0	48 5	0 85	416	34 7	30 1	100 2
71	CT pump Ph 1 (R2X61)	5.5	56	0 17	423	42	15	27 3
72	Pump 2 for Raw Til (R2X65,	7 5	11 7	0 86	419	86	7 1	94 8
73	Pump 1 for gas analyser(W2W46)	11 0	18 2	0 72	419	13 5	99	90 0

Appendix - 6/3 contd..

L.T. MOTOR LOADING PARAMETERS

PHASE # 11

Sht 3 of 3

SL	APPLICATION / -			MC	TOR			
No	CONNECTED	1						%
1	EQPT	RATED	MEAS	URED I	POWER	PARAM	ETERS	LOADING
		kW	А	Coso	VL	kVA	kW	
74	K2A04	125	11 4	0 29	436	8.6	1.7	13 9
75	K2A03	150	120	0.39	436	9.3	3.3	22 0
76	compressor(K2U07)	45 0	56 6	0 60	438	42.3	28.2	62 7
77	Compressor(K2U11)	45 0	59 9	0 78	452	47 3	39.0	86 7
78	DBC (U2J03)	450	39 5	0 60	421	28.8	17.7	39.3
79	Pneumatic conveyor(K2U05)	75 0	46 0	0.60	424	30.9	18 6	24 8
80	Filter fan(K2P63)	150	10.9	0.82	426	8.0	66	44 0
81	Compressor (K2X24) L	45.0	58 0	0.82	431	43 8	35 7	79 3
	-do- uL	45 0	20 0	0 34	431	0.0	6.9	153
82	Screw conveyor(W2P18)	110	72	0.96	423	5 3	48	43 6
83	DBC fan for dust filter(W2P26)	37 0	38 5	0 62	433	28 9	18.3	49 5
84	Compressor(H2X03)	37 0	45 3	0 68	435	33 7	24.3	65 7
85	Jet pulse fan filter(R2P14)	30 0	28 5	0 40	433	21 4	73	24 2

APPENDIX - 6/4

L.T. MOTOR LOADING PARAMETERS

OLD L.S. CRUSHER & COAL CRUSHER

SL No	i			M	OTOR			
1,40	EQPT	RATED	MEAS	URFD	POWER	PARAN	ETERC	%
	2011	kW	A	Coso	VL	kVA	kW	LOADING
-	Old L.S. Crusher		<u> </u>	1 0004		1 10070	1 200	1
1	RBC 1 B	1100	1190	0 79	423	76 8	68 4	1 620
2	Dust filter fan (A0P04)	75 0	104 0	0 71	431	77 7	57 9	62 2 77 2
3	Hydraulic Main pump (A0M03)	75 0	15 1	0 32	431	113	28	37
4	RBC 401 B	110.0	107 0	0 53	421	72.6	49 5	45 0
5	RBC 404	75 0	63 9	0 74	421	61.2	36 6	48 8
7	RBC 401 A	150	109 0	0.76	421	71 4	82.5	550 0
	New L.S. Crusher (Mines)	 	L	<u> </u>		L	02.0	3300
1	Conveyor belt (A3J04M1)	90 0	65 0	0 27	445	53 1	144	16 0
	- do -	90 0	98 0	0 74	428	75.0	57 9	64 3
2	Conveyor belt (A3J04M2)	90 0	82 0	0 28	445	63 6	171	190
	- do -	90 0	109 0	0 70	433	80 7	600	66 7
3	Conveyor - B (A3J04M3)	90 0	65 2	0 36	445	53 4	174	193
	- do -	90 0	119 0	0 77	428	89 4	73 5	81 7
4	Scraper chain (A3J02)	3 7	4 3	0 29	431	3 1	12	32 4
5	Cooling fan for DC Motor (A3J01M1)	7 5	6 4	0 84	435	4 9	4.5	60 0
6	Cooling fan for DC Motor (A3J01M2)	7 5	6 2	0 88	435	4 5	4.5	60 0
7	dust filter fan (A3P04)	132	123	0 75	431	90 6	72 6	55 0
8	Compressor uL	30	23 4	0 22	435	17 1	3.6	12 0
	- do - L	30	33 4	0 68	435	24 9	168	56 0
9	Blower (A3M01X1)	7.5	9 7	0 63	445	7 6	5 4	72 0
10	Conveyor - A (A3)0311)	30	26 7	0 57	435	20 1	11 4	38 0
11	Apron feeder (for 90kW DC Motor)	90	116	0 69	435	84 3	38 4	42.7
	- do -	90	127	0 73	435	94 2	46 8	52 0
	Screw conveyor (A3P05)	5.5	48	0 15	433	3 7	12	21 8
13	Water Pump for Comp (A3W01)	5 5	5 8	0 77	438	4 4	3 9	70 9
	Coal Crusher							
	RBC (L1L01)	75 0	60 2	0 55	428	44 2	25 7	34 2
	Primary chain reclaimer(chain 1)	37 0	31 2	0 52	419	20 7	11 7	31 6
	Secondary chain reclaimer(ch-2)	18 5	14 3	0 50	419	10 1	5 3	28.5
	RBC L1U06	11 0	97	0 56	431	71	4 9	44 2
	RBC L1U07	11 0	70	0 56	431	5 1	3 0	27 0
	Coal sec. crusher (G2M13)	132 0	31 0	0 55	426	21 8	126	9 5
	Coal Pri crusher 1 (G2M03)	75 0	24 0	0 72	426	17 1	11 1	14 8
_	Pri crusher 2 (G2M23)	75 0	21 4	0 77	426	153	12 9	17 2
	RBC (G2J04)	37 0	22 9	0 84	426	180	16 0	43.2
	Apron feeder (G2J01)	30 0	21 5	0 56	426	156	5 7	19 0
	RBC (G2J05)	30 0	21 0	0 44	428	173	78	26 0
12	RBC (G2J03)	5 5	73	0 52	426	56	27	49.1

APPENDIX - 6/5

L.T. MOTOR LOADING PARAMETERS

CEMENT MILL / PUMP HOUSE PHASE # 1 & 11

Sht 1 of 2

SL	APPLICATION /			MC	OTOR			
Ио	CONNECTED	0.4750	1150	011050	DOMED	DADAME		%
	EQPT	RATED		SURED	POWER	PARAME		LOADING
		kW	A	Cosp	V _L	kVA	kW	05.0
1	Compressor (Z1U11) L	160 0	231 9	0 90	415	168 9	152 4	95 3
	-do- uL	160 0	79 0	0.65	418	57.6	40 2	25 1
2	Compressor (Z1U13) L	160 0	228 6	0.89	434	177 0	160 8	100 5 22 7
	-do- uL	160 0	72 7	0 60	438	61 5	36 3 8 4	45 4
3	Elevator (Z1U01M1)	18 5	16 7	0.56		12.6		55 1
	-do-	18 5	18 2	0 71	419	16 5 7 2	10 2	
4	Screw conveyor (Z1M11)	15 0	99	0 34	419		26	17.2
5	Fan for ESP (Z1P05)	30 0	31 7	0.66	417	22 8	16 4	54 8
6	Filter fan (Z1P11)	30 0	27 2	0.83	414	196	92	30.8
7	Screw conveyor (C1M12)	90 0	52 8	0 30	419	38.4	11 4	12 7
8	H E Motor(Z1M03)	5 5	60	0 53	419	3 2	30	54 0 20 7
9	ESP Screw conveyor (Z1P12)	5 5	46	0 30			17 0	37 8
10	Compressor (Z2M13)	45 0	11 5	0 69	414	24 7		92.5
11	Pump No 2	30 0	46 3	0.84	409	32 7	27.8	83.5
12	Pump No 6	30 0	42 3	0 82	407	29 7	25 1	84 5
13	Pump No 5	11 0	16 4	0 77	4027	117	9 3 21 2	70 8
14	Pump No 8	30 0	39 0	0 72	414	27 9	22 2	74.0
15	Pump No 9	30 0	38 2	0.81	407	27 0	157	52 4
16	Return Pump No 2	30 0	30 9	0 69	410	21 9	:	78 0
17	Return Pump No 3	30 0	36 6	0 90	409	26 1	23 4	490
18	Return Pump No 1	30 0	28 1	0 70	4048	19.8	1	65 5
19	cooling blower(Z2M23)	5.5	7 4	0 53	433	56	36	59 7
20	Bucket elevator(Z2U01)	18 5	16 6	0 70	433	13 6	110	61 1
21	New ESP Fan (Z2P07)	1100	118 0	0 75	430	88 8	67 2 3 6	65 5
22	H E Motor(Z2M03M2)	5.5	77	0 55	431	58	!	109
23	ESP Screw conveyor (Z2P12)	5 5	42	0 30	430	31	06 27	180
24	Screw conveyor(Z2M11)	15 0	11 5	0 32	431	87	:	69 0
25	Fan motor (Z2S23)	200 0	276 0	0 61	423	201 0	138 0	92 4
26	ESP fan MT 71S(Z3P05)	37 0	56 2	0 75	430	41 7	34 2	18 0
27	Screw conveyor(Z3M11)	150	6 0	0 31	433	69	27 96	43 6
28	Bucket elevator(Z3U01)	22 0	17 3	0 66	431	102	ì	
	-do-	22 0	19 7	0 72	431	147	102	46 4 12 5
29	ESP Screw conveyor (Z3P12)	5.5	3 3	0 30	426	25	07	77 0
30	Motor cooling(Z3X73)	30	5 1	0 39	426	37	23	34 8
31	Bucket elevator(Z4J01)	75 0	40 0	0 64	424	35 4 38 1	26 1 27 0	36 0
	-do-	75 0	54 0	0 80	424 424	158	38	12.5
32	Screw conveyor(Z4M11)	30 0	213	0 30 0 44	424	13 1	63	21 1
33	Dedusting filter fan (Z4P23)	30 0	17 9	1 0 44	1 727	1 131	, 55	1 -1

Appendix - 6/5 contd

L.T. MOTOR LOADING PARAMETERS

CEMENT MILL / PUMP HOUSE PHASE # 1 & 11

Sht 2 of 2

SL	APPLICATION /			MC	TOR			%
No	CONNECTED EQPT.	RATED	MEAS		POWER	PARAME		LOADING
1	22	kW	Α	Cosф	\ \rac{1}{2}	kVA	kW	
<u> </u>		55	39	0 30	424	29	10	185
_ 34	Z4P12	37 0	39 3	0 69	424	29 3	22 5	60 8
_35	ESP fan (Z4P05)	5.5	77 3	0 20	423	53	1 5	26 7
36	Z4C02	30	4 9	0 42	423	36	2 5	82 0
_37	Z4X74	18.5	14 4	0 48	424	114	93	50 3
_ 38	L1U11	18.5	16.6	0 63	424	129	102	55 1
	-do-	160 0	224 6	0 88	433	169 2	1518	94 9
39	Compressor (Z3U06) L	160 0	_	i -	-	-	-	-
L	40	160.0	222 4	0 89	430	160 8	144 0	90 0
_ 40	Compressor (Z3U08)	160.0	64 2	0 64	430	476	33 6	210
L	-do- uL	1600	227 0	0 91	433	162 6	151 2	94 5
- 41	Compressor (Z3U11) L -do- uL	160 0	73 4	0 73	433	53 6	402	25 1

APPENDIX - 6/6

L.T. MOTOR LOADING PARAMETERS

PACKING PLANT - PHASE # 1 & 11

Sht 1 of 2

SL	APPLICATION /	1		MC	TOR			T
No	CONNECTED							%
	EQPT	RATED	MEAS	URED	POWER	PARAM	ETERS	LOADING
		kW	A	Cosó	Vı	kVA	kW	
	MCC - 5.1	-i -				·	J	1
1	Bucket elevator (P2J31) - P7	22 0	19 0	0 57	416	13.5	78	35 3
	-do-	22 0	23 0	0 79	416	16.5	13.1	59 5
2	Jet Pulse filter fan(P2P23) - P7	22 0	23 6	0 76	416	171	138	62.7
3	Compressor (P2X11)	132 0	145 0	0 84	419	103 8	88.5	67 0
4	Extraction screw conveyor(P2J03)	22 0	18 0	0 66	421	13 5	94	42.8
5	Extraction screw conveyor(P2J02)	11 0	76	0.44	416	5 7	3.0	27 3
6	Jet Pulse filter fan(P2P23) - P6	22 0	26 0	0 79	417	18.6	153	69 5
7	Compressor (P2X12)	132 0	172.0	0.89	414	105.6	92.4	70 0
8	Compressor (P2X14)	45 0	48 7	0 76	421	35.4	28 2	62 7
9	Bucket elevator(P2J21) - P6	22 0	11 2	0 44	417	7.8	2.7	12 1
	MCC - 5.2							
10	Compressor (P2X13)	132 0	143 6	0 89	419	100 2	95 4	72.3
11	Extraction screw conveyor(P2J05)	11 0	62	0 24	423	4.6	12	10 9
12	Compressor (P2X15)	45.0	178	0 79	416		16 2	36 0
13	Bucket elevator(P2J61) - P10	22 0	170	0 53	419	13 5	9.6	43 6
	-do-	22 0	21 0	0 61	419	147	10.5	47 7
14	Bucket elevator(P2J51) - P9	22 0	100	0.28	424	8 7	15	6 8
15	Bucket elevator(P2J41) - P8	22 0	15 5	0.55	416	11 1	66	29 9
	-do-	22 0	17 2	0.72	416	126	9 3	42 3
16	Jet Pulse filter fan (P2P43) - P8	22 0	25 1	0.80	423	18.3	15 3	69 5
17	Jet Pulse filter fan(P2P53) - P9	22 0	29 5	0.74	416	21.3	15 6	70 9
18	Rotary control screen (P2S51)	3.7	2.1	0.30	424	3 1	0.5	13 0
19	Jet Pulse filter fan(P2P63) - P10	22 0	23 2	0.76	423	17.0	13.7	62.0
	Extraction screw conveyor(P2J06)	11 0	71	0 40	421	5.3	2.5	22.6
21	Extraction screw conveyor(P2J04)	22 0	13 5	0 45	423	9.9	5.7	25.9
	MCC - 5.3							
22	Main RBC (P2U62) - P10	11 0	4.5	0 30	417	3.4	14	12.3
23	Bottom RBC (P2U56) - TLS No 9	11 0	4 5	0.30	421	3.1	12	10 9
24	Top RBC (P2U55) - TLS No 9	150	10.4	0.28	423	7.6	2.8	18 8
25	Rly sideBottom RBC (P2U44) No 6	18 5	70	0 60	421	7 6	42	22.7
26	Rly sideBottom RBC (P2U54) No 5	18 5	98	0.66	416	7 2	4 5	24 3
	-do-	18 5	108	0 70	416	7.6	5 2	27 9
27	Rly side Top RBC (P2U43) No 6	15 0	10.3	0.27	423	7.5	2.4	16.0
28	Rly side Top RBC (P2U53) No.5	15 0	10.5	0.27	419	7 9	2.7	17 8
	-do-	150	11.8	0.37	419	8.7	3.0	19.8

Appendix - 6/6 contd

L.T. MOTOR LOADING PARAMETERS

PACKING PLANT - PHASE # 1 & 11

P

Sht 2 of 2

SL	APPLICATION /			МС	OTOR			
No	CONNECTED		·					%
	EQPT	RATED	MEAS	URED	POWER	PARAM	ETERS	LOADING
L		kW	Α	Caso	V _L	kVA	kW	1
	MCC - 5.4							
29	Compressor (P2X16) L	. 1100	150 0	0 71	423	111 6	83 7	76 1
	uL	1100	87 6	0 37	424	64 8	23 1	210
30	Silo No 5 (P2P67)	22 0	21 0	0 66	424	16.2	109	496
31	Silo No 6 (P2P69)	22 0	26 0	0 80	424	197	14 9	67.5
32	Compressor (P2X10)	132 0	122 0	080	426	90 C	723	54 8
33	TPS Vacuum cleaner		117 2	0.83	424	85 5	70 5	
	Ph -1 MCC - 5.1							***************************************
34	Silo no 3 (Dust filter fan PH 1)	30 0	17 6	0 42	431	12 9	4 4	146
35	Dust filter fan P3	22 0	20 8	080	421	15 1	124	56 2
36	Dust filter fan P4	22 0	20 7	0 82	419	14 9	123	56 0
37	Silo no.1 (Silo top filter fan PH 1)	15 0	14 8	0.40	430	11 0	40	26 8
38	Bucket elevator (P1J11) P1	22 0	22 1	0 37	423	12 9	23	10 5
	-do-	22 0	26 0	0 48	423	7.5	3 6	16 4
39	Bucket elevator P 2	22 0	15 7	0 18	421	12.5	22	98
40	Extraction Screw conveyor (P 2)	22 0	19 3	0 48	417	14 0	79	35 7
41	Extraction Screw conveyor (P 3)	22 0	21 0	0 52	419	15 9	10 1	45 7
	Extraction Screw conveyor (P3)	22 0	16.0	0 60	419	11 1	72	32.7
43	Bucket elevator P4	22 0	11 2	0 22	416	8 0	1 5	70
	Dust filter fan P1	22 0	21 7	0 75	419	15 7	12.2	55 6
	Dust filter fan P2	22 0	25 3	0 75	417	18 2	14 7	66 8
	Ph -1 MCC - 5.2						· · · · · · · · · · · · · · · · · · ·	
	Low speed Pipe conveyor (C2P01)	90.0	60 3	0 59	433	45 3	28 8	32 0
	Low speed Pipe conveyor (C1P01)	90 0	47 5	0 60	433	35 4	23 4	26 0
	Bin aeration blower	15 0	9 1	0 57	431	68	4 3	28 8
49	Bin aeration blower Ph 2 (C2U01)	15 0	80	0 64	430	70	4 3	28 8

APPENDIX - 6/7

ENERGY SAVINGS ON CONVERSION TO STAR MODE OF OPERATION

CASE STUDY:

Application: Dust Filter Fan (R1P14M1)

Rated kW = 30 kW

Measured kW = 7.20 kW

% Loading = 24%

Efficiency old (Eff_{old}) = 70.16%

(Operating efficiency)

Operating loss = $\{1 - Eff_{old}\} \times Measured kW$

 $= 2.15 \, kW$

In star mode, 20% of these losses can be saved

Therefore saving in losses = 0 43 kW

Annual operating hours = 8000 hours

Annual energy savings = 3437 kWh

Cost of energy saving = Rs 10312/- @ Rs.3 00/kWh

Similar computation for various motors to be connected in star has been carried out. Appendix - 6/7A represents the techno-economics for various motors on conversion to star mode of operation

Appendix - 6/7 contd

GY SAVING IN L T DRIVES ON CONVERSION TO STAR MODE OF OPERATION FROM PRESENT D O L MODE

												_				1	1	1	ı	ı		i '	ı	1	i	I	١				1			1	Ţ	1	٦	٦
	COST	SAVINGS	Rs	0,000	10312	1587	7431	18569	10356	7226	10658	10112	9749	56415	143255		12291	5104	4111	10330	31837		1795	5013	15787	10701	25027	1000	1000	2648	10808	9733	9591	5233	5296	5296	65607	262794
	ANNOAL	s	kWH		3437	629	2477	6190	3632	2409	3553	3371	3250	18805	28947		4097	1701	1370	3443	10612		803	200	16/1	2020	7365		3300	3216	3603	3244	3230	1744	1765	1765	21869	68793
	OPERT. A	HOURS S			8000	8000	8000	8000	8000	8000	8000	8000	8000	8000	TOTAL =		8000	8000	8000	8000	- 1410	101AL - 1	0000	2008	8000	8000	TOTAL =		8000	8000	8000	8000	0008	8000	8000	8000	15	TOTAL =
	SAVINGS		- MA		0 43	0.08	0.31	0.77	0.45	030	0.44	0 42	0.41	2.35	四		0.51	200	0.47	0 43	9	SUB		0 07	0.21	0 64	SUB		0 41	0 40	0.45	140	080	200	0.22	0.22	270	GRAND TOTAL
0	OPERT S				2.15	030	1 55	200	301	1 51	133	2 22	50.00	11.75	27		2 56	2 30	00 1	980	215			0.37	1 04	318			2.06	201	200	67.7	2.03	707	1 09	1 10	1 10	
ON CONVERSION TO STAR MODE	-	ruck		בסאבוג	26 30	35.53	64/	22 88	64 71	35.29	25 88	35.29	55.29	35.29	1/64/		01.07	43.53	17 65	1471	35 29			6.47	17.65	35.29			25.70	20.50	25 88	25 88	25 88	25 88	17 65	17 65	17 65	
ON 10 51		FULL	LOAD	ברדוכ (וו) ו		0.85	0.85	0.85	0 85	0 85	0 85	0.85	0 85	0.85	0 85			0.85	0.85	0.85	0.85			0.85	200	200	3		100	0 82	0 85	0 85	0 85	0 85	0 85	0 85	0 85	
ONVERS		MEASURED	 ≷			7 20	1 30	4 50	11 20	06 6	2 90	8 90	009	2 70	56 70			6 10	3 30	1 70	7 30			000	000	2.70	21.10			4 40	12 20	1470	12 40	12 30	4 00	4 30	4 30	
DRIVES ON C	-	ż	DRIVE	κW		30 0	55	22 0	55.0	30 0	22 0	30 0	30 0	30.0	1500			37.0	150	125	30.0				55	150	300			300	22 0	220	220	226	150	150	150	
ENERGY SAVING IN L.T. DRI		APPLICATION/		EQUIPMENT	╁	1=	2 Air slide blower(W1B08)		A Screw conveyor (W1J01)	5 Blower for new bin (W1A65)	6 Screw conveyor (W1A03)	7 DRC Blower filter fan	o EV Dump (K11141)	0 FA Fullip (1510 57)	10 CP Pump Blower (W1U46)		DUACE # 11		1 Filler Ian (NZF 01)	2 Coal beit conveyor (N2003)	3 Screw conveyor (PCAC4)	4 Jet pulse filter fan (RZP 14)		C CEMENT MILL Ph # 1 & 11	1 ESP screw conveyor (Z2P12)	2 Screw conveyor (Z2M11)	3 Dedusting filter fan (Z4P23)		DACKING PLANT Ph # 1 & 11	7	1 Silo No Stiller fan 191		.	4 Dust filter fan - F3	5 Dust filter fan - P4	6 Silo No 1(top filter lall Fit 1)	7 Bin aeration blower	8 Bin aeration blower (C2001)
Ш	l	SF.	Š.		4												٦	-		1				L	L			L		L		_				لــــ		

L.T. MOTORS RECOMMENDED FOR AUTO DELTA STAR CONTROLLERS

ī	STOTE ACT LOCK	700000										
ام	AFFLICATION/	PRESENTIME	MEASURED FULL	FULL	FULL	OPERT.	OPERT. SAVINGS OPERT	OPERT	ANNUAL	1800	INSTA-	PAY
è S	CONNECTED	DRIVE	×	LOAD	LOAD	LOSSES	Z	HOURS	SAVINGS	SAVINGS	I ATION	BACK
	EQUIPMENT	κ		EFFIC.	EFFIC. POWER	IN KW	LOSSES				COST	PERIOD
				٦	-		×		KWH	20	0	
4	PHASE # I										2	
	¿. bber belt Conveyor (R1A05M1)	55	21	0.85	64 71	20 8	42	2000	20833	62499 7	21750 0	0.35
7	2 · · ag chain (W1K08)	30	7.1	0 85	35 29	7.1	14	5000	7050	211513	18750 0	0 89
\mathbb{C}	3 i oF 3 ag chain (J1P54M1)	11	4.2	0.85	12 94	42	0.8	2000	4167	12499 9	18750 0	25
4	4 1 3.P 1 ag chain (J1P55M1)	11	4 1	0.85	12 94	4 1	8 0	5000	4068	122028	18750 0	1 54
3	5 ESF drag chain (J1P52M1)	11	3.9	0.85	12 94	3.9	0.8	5000	3869	11608 4	18750 0	5 63
8	PHASE # 11									1 00011	000707	1 02
	1 Kilbber belt Conveyor (R2L06M1)	55	9 8	0 85	64 71	9.7	1 9	5000	0740	9000BC	217500	77.0
7	2 Rubber belt Conveyor (R2A05M1)	55	19.9	0.85	64 71	19.7	3.9	5000	19744	59230 7	21750 0	4/0
ن	·k.ıbber belt Conveyor (R2A02M1)	30	99	0.85	35 29	9 9	13	2000	8555	10666	107500	
4	4 S. rew Conveyor (W2A05M1)	22	3.0	0.86	25.00		- 0	2000	0000	0 00061	0 00/01	0 83
	Third and the state of the stat	777		200	00 C7	3.9	80	2000	3876	116289	187500	161
	Surriew Conveyor (WZBUSM1)	30	7.5	0 85	35 29	7.4	1.5	2000	7447	22339.8	18750.0	0 84
ا	6 : , ag chain Conveyor (J2P12)	7.5	22	0 85	8 82	22	0.4	2000	2184	65506	18750 0	2 86
	. irag chain Conveyor (J2P14)	7.5	21	0 85	8 82	2.1	0 4	2000	2084	6253 5	18750 0	3 00
ပ	CEMENT MILL # 1 & 11											3
	Serew Conveyor (Z4M11)	30	38	0 85	35 29	38	0.8	2000	3782	11347 5	18750 0	1.65
~	. edusting Filter Fan (Z4P23)	30	63	0 85	35 29	63	13	2000	6258	18774.5	187500	1 00
							TOTAL	4L =	101658	304974.2	271500.0	0.89

APPENDIX - 6/9

REPLACEMENT OF STANDARD MOTORS BY HIGH EFFICIENCY MOTOR AND OPTIMUM SIZING

Application: Bucket Elevator P2J41 (Packing Plant)

Rated kW = 22 kW

Measured kW = 9 8 kW

Full load efficiency (Rated), η = 0.85

Derived data

Full load power $= \frac{\text{Rated kW}}{\text{Rated } \eta_{\text{FL}}}$

= 25 88 kW

Demand factor (D F)

Measured kW

Full load power

 $= 0.36 \, kW$

Operating efficiency = 1 - $\frac{(1-\eta(k_1 + (DF)^2 \times k_2))}{DF}$

 η = efficiency of motor DF = demand factor $k_1 \& k_2$ are constants

Appendix - 6/9 contd..

$$= 1 - \frac{(1-0.85)(0.38+(0.36)^2 \times 0.62)}{0.36} \times 100$$

= 80.79 %

Operating losses = $(1-\eta)$ x measured power

 $= (1 - 0.8079) \times 9.3$

= 1.79 kW

It is proposed to replace this motor by a high efficiency motor having a rated capacity of 11 kW

Rated full load efficiency = 92%

Operating efficiency of the motor with

the present loading (using the = 91.54%

same formulae)

Operating losses = $(1 - 0.9154) \times 9.3$

= 0.79 kW

Reduction in losses = 1.79 - 0.79

 $= 1.00 \, kW$

Operating hours = 8000/annum

Annual energy savings = 7994 kWh

Appendix - 6/9 contd..

Annual cost savings = Rs.23983/- @ Rs.3.00/kWh

Cost of implementation = Rs.18,040/-

Simple payback period = 0.75 years

Similar calculation for sizing of motors through computation has been carried out. Appendix - 6/9 represents the techno-economics for replacement of ordinary motors by high efficiency motors and sizing

Appendix - 6/9 contd..

OPTIMUM SIZING AND USE OF ENERGY EFFICIENT MOTORS

Pack Pack	St.	APPLICATION/	PRESENT	MEASURED	FULL	PROPOSED	ANNUAL	ANNUAL	ANNOAL	INSTALATION	PAY
NW EFFICIENCY (II) EFFICIENCY (III) HOURS (MW) IN SAVINGS IN 300 123 0.65 220 8000 10857 32056 33066 150 150 0.65 220 8000 10685 32056 33066 150 150 0.65 220 8000 5011 15033 18640 150 456 0.68 110 8000 5011 15033 18640 150 456 0.68 110 8000 25483 76450 136512 150 800 456 0.68 110 8000 18269 136512 150 800 160 450 8000 16360 13610 18600 150 66 0.68 1100 8000 12362 15410 160 778 0.68 1100 8000 1716 8000 17114 1100 222 0.68 1100 8000		CONNECTED	DRIVE	kW	LOAD	HIGH	OPERATING	SAVINGS	COST	COST	BACK
10 11 11 11 11 11 11 11		EQUIPMENT	ΚW		EFFICIENCY	EFFICIENCY	HOURS	Z	SAVINGS	2	PERIOD
300 123 065 220 8000 10957 32872 33066 300 150 085 220 8000 10685 32055 33066 1) 900 450 085 110 8000 25483 76450 183612 1) 900 450 086 900 8000 22488 18040 1) 220 99 085 150 8000 3268 24608 22408 450 222 086 370 8000 1830 52408 1830 450 222 085 370 8000 1830 52408 17149 450 222 086 110 8000 1830 5282 17149 450 246 088 110 8000 18486 5340 5862 110 785 088 110 8000 11149 77149 11 550 357 088	_				(կ)	MOTOR (KW)		kWh	Rs	Rs.	IN YEARS
300 123 085 220 8000 10865 32055 33066 150 72 085 110 8000 5011 15033 18040 150 72 085 110 8000 25433 76450 138512 150 220 289 085 150 8000 8000 25433 76450 138512 150 220 289 085 150 8000 18330 54808 22451 150 66 085 110 8000 18330 54808 22451 150 66 085 110 8000 18330 54808 13040 150 67 285 088 110 8000 18380 22352 171149 1100 755 088 1100 8000 10589 171149 1100 800 085 370 8000 10589 171149 1100 800 085 300 8000 17186 53829 46860 1100 825 088 1100 8000 17186 53829 46860 1100 825 088 1100 8000 17186 53829 46860 1100 825 088 1100 8000 17186 53829 46860 1100 825 088 750 8000 17186 33066 1100 825 088 750 8000 17187 45850 1100 825 088 750 8000 17187 46860 1100 825 088 750 8000 17187 46860 1100 825 088 750 8000 17187 46860 1100 825 088 750 8000 17187 46860 1100 825 088 750 8000 17187 46860 1100 825 088 750 8000 17187 46860 1100 825 088 750 8000 17187 46860 1100 825 088 750 8000 17187 46860 1100 825 088 750 8000 17187 46860 1100 825 088 750 8000 17187 46860 1100 825 088 750 8000 17187 46860 1100 825 088 750 8000 17187 46860 1100 825 180 8000 8000 8000 8000 8000 8000 1100 825 180 8000 8000 8000 8000 1200 825 1809 8000 8000 8000 8000 1200 825 82622 82622 82622 1200 8262 82622 82622 82622 1200 8262 82622 82622 82622 82622 1200 8262 8262 82622 82622 82622 82622 1200 8262 8262 82622 82622 82622 82622 1200 8262 8262 82622 82622 82622 82622 1200 8262 8262 82622 82622 82622 82622 82622 1200 8262	اله	HASE # 1									
30 0 15 0 085 22 0 8000 1085 3205S 3306S 1) 0 45 0 085 11 0 8000 5011 15033 18040 1) 0 20 0 45 6 088 90 0 8000 25483 76450 138512 10 22 0 99 0 085 15 0 8000 1630 52481 138512 55 0 28 8 088 45 0 8000 1630 52481 12851 45 0 22 2 085 37 0 8000 1630 52450 58652 1 15 0 6 6 085 110 0 8000 17116 5600 52275 15897 171149 1 15 0 6 6 085 110 0 8000 17116 5620 171149 1 100 0 76 5 088 110 0 8000 17116 51347 72897 1 110 0 30 0 35 7 088 110 0 8000 17116 <td< td=""><td>꼰</td><td>(BC (R1A04M1)</td><td>30 0</td><td>123</td><td>0.85</td><td>027</td><td>8000</td><td>10957</td><td>32872</td><td>33066</td><td>101</td></td<>	꼰	(BC (R1A04M1)	30 0	123	0.85	027	8000	10957	32872	33066	101
150 72 0.85 110 8000 5011 15033 18040 1) 900 456 0.88 900 8000 25483 76450 138512 1 220 99 0.85 150 8000 18611 50432 72451 550 288 0.88 450 8000 18811 50432 72897 1 550 222 0.85 370 8000 1890 17149 1 160 6.6 0.88 1100 8000 52275 15825 17149 1 160 7.38 0.88 1100 8000 1716 8000 17149 8682 17149 1 1100 76.5 0.88 1100 8000 1716 51347 72897 17149 M1) 55.0 35.7 0.88 1100 8000 1716 51347 72897 MV2U03) 37.0 6.8 2.2	2	RC (R1A03M1)	30 0	150	0 85	22.0	8000	10685	32055	33066	a-
10 90.0 45.6 0.88 90.0 80.00 25.483 76450 138512 1350 135	믜	Just filter fan (H1P04M1)	150	7.2	0 85	110	8000	5011	15033	18040	- 28
1 220 99 085 150 8000 6269 24808 22451 550 288 088 450 8000 16811 50432 72897 450 222 065 370 8000 18300 54900 58622 150 66 085 110 8000 18300 54900 58622 1 150 66 085 110 8000 14683 18040 1 160 776 086 110 8000 1716 5647 58622 1 160 765 088 110 8000 1716 51347 71449 1 100 90 088 110 8000 1716 51347 71449 1 100 90 088 110 8000 1786 51347 71449 1 110 80 1089 110 8000 1786 31368 1	믝	Sucket elevator (W1J03M1)	006	456	0 88	90 0	8000	25483	76450	138512	181
55 0 28 8 0 88 45 0 6000 1881 50432 72897 45 0 22 2 0 85 37 0 8000 18300 54900 58652 15 0 6 6 0 85 110 8000 4968 14903 18040 1 160 73 6 0 88 110 0 8000 15275 15825 171149 1) 1 160 78 6 0 88 110 0 8000 17116 5865 1) 1 100 76 5 0 88 110 0 8000 17116 51347 72887 1) 1 100 76 5 0 88 110 0 8000 17116 51347 72887 1) 45 0 35 7 0 88 110 0 8000 17116 51347 72887 1) 45 0 35 0 0 85 30 0 1058 17149 17149 100 45 0 35 0 8000 1276 6322 13060 10	뭐	Slower for old bin (H1H09)	220	66	0 85	150	8000	8269	24808	22451	0.91
450 222 0 65 370 8000 18300 54900 58652 9) 150 6 6 0 85 110 8000 4968 14903 18040 1) 160 0 73 8 0 86 110 0 8000 52275 15825 171149 1) 45 0 24 6 0 86 110 0 8000 123090 171149 58652 1) 110 0 76 5 0 88 110 0 8000 1736 55487 58652 171149 M1) 55 0 35 7 0 88 110 0 8000 17116 51347 72897 M2001 30 0 9 2 0 86 110 0 8000 17876 53628 46860 M21003 37 0 6 8 30 0 8000 17876 53629 46860 M21003 37 0 6 8 30 0 8000 1085 3085 11048 M21003 37 0 6 8 30 0 800	븼	JBC (U2J03)	550	28 8	0 88	450	8000	16811	50432	72897	145
(150 6 6 0 88 11 0 8000 4968 14903 18040 (450 73 8 0 88 1100 8000 52275 156825 171149 (450 24 6 0 88 1100 8000 18496 55487 56652 (1) 1100 76 5 0 88 1100 8000 17116 51347 72897 (1) 55 0 35 7 0 88 1100 8000 17116 51347 72897 (1) 45 0 0 88 1100 8000 17116 51347 72897 (1) 45 0 0 88 1100 8000 17116 51347 72897 (1) 45 0 0 88 1100 8000 17876 53629 46860 (800 1 80 55 0 8000 17876 53629 46860 (105) 1 100 889 55 0 8000 17876 43670 11149 (105) 23	씐	an for air seal (W1K30)	450	22.2	0 85	37.0	0008	18300	54900	58652	107
() 1600 738 088 1100 8000 52275 156825 171149 (1) 450 246 085 370 8000 16496 55487 58652 (1) 1100 765 088 1100 8000 17116 51347 72897 (1) 550 357 088 1100 8000 17116 51347 72897 (1) 450 350 088 1100 8000 17116 51347 72897 (1) 450 357 088 1100 8000 17116 51347 72897 (N2U01) 450 35 220 8000 1786 31975 33066 (N2U01) 450 135 085 300 8000 17876 53629 46860 (N2U01) 450 186 550 8000 17075 6325 33629 (1) 1100 82 088 750 8000 <td>늧'</td> <td>-liter fan (K1P63)</td> <td>150</td> <td>99</td> <td>0 85</td> <td>110</td> <td>8000</td> <td>4968</td> <td>14903</td> <td>18040</td> <td>121</td>	늧'	-liter fan (K1P63)	150	99	0 85	110	8000	4968	14903	18040	121
1100 765 088 1100 8000 18496 55487 58652 11149 1100 765 088 1100 8000 17116 51347 72897 171149 17114	-	FK Pump Blower (W1U43)	160 0	738	0.88	1100	8000	52275	156825	171149	8
110 0 76 5 0 88 110 0 8000 41030 123090 171149 11 0 35 0 35 7 0 88 45 0 8000 17116 51347 72897 21 0 35 0 0 88 110 0 8000 45433 136299 171149 220 1 30 0 9 2 0 85 30 0 8000 17876 53629 46860 21013) 37 0 6 8 0 85 30 0 1378 33056 171149 55 0 110 0 800 1378 39833 46860 17149 6 0 110 0 800 1378 39833 46860 17149 1 10 0 82 5 0 800 21075 63225 93357 17149 1 10 0 82 5 0 800 23610 89431 119427 119427 3 0 0 58 1 0 85 30 0 8000 1585 47655 46860 1 5 0 2 0 80 300 <td>31</td> <td>Dust filter fan (U1P14M1)</td> <td>450</td> <td>246</td> <td>0.85</td> <td>37.0</td> <td>8000</td> <td>18496</td> <td>55487</td> <td>58652</td> <td>98</td>	31	Dust filter fan (U1P14M1)	450	246	0.85	37.0	8000	18496	55487	58652	98
PHASE #11 S5 0 35 7 0 88 45 0 8000 17116 51347 72897 PHASE #11 Bucket elevator (R2J0ZM1) 110 0 90 0 0 88 110 0 8000 45433 136299 171149 RBC (R2A06M1) 30 0 9 2 0 85 22 0 8000 17876 53629 46860 Pneumatic Screw pump(W2U01) 45 0 135 0 85 30 0 8000 17876 53629 46860 Pneumatic Screw pump(W2U01) 45 0 135 0 85 30 0 8000 13278 39833 46860 Pneumatic Screw pump(W2U01) 45 0 186 0 85 30 0 8000 13278 39833 46860 Pneumatic Screw pump(W2U05) 37 0 6 8 0 88 50 0 8000 21075 63225 33357 Bucket elevator (K2U05) 30 0 58 1 0 88 75 0 8000 15893 45860 Water Pump I (R2X50) 30 0 23 1 0 85 <t< td=""><td>=!</td><td>Bucket elevator (R1J13M1)</td><td>1100</td><td>765</td><td>0 88</td><td>1100</td><td>8000</td><td>41030</td><td>123090</td><td>171149</td><td>139</td></t<>	=!	Bucket elevator (R1J13M1)	1100	765	0 88	1100	8000	41030	123090	171149	139
PHASE # 11 Bucket elevator (R2J02M1) 1100 900 088 1100 8000 45433 136299 171149 RBC (R2A06M1) 300 92 085 22 0 8000 10658 31975 33068 Pneumatic Screw pump(W2U01) 45 0 135 0.85 30 0 8000 17876 53629 46860 Pneumatic Screw pump(W2U01) 45 0 135 0.85 30 0 800 17876 53629 46860 Pneumatic Screw pump(W2U01) 45 0 186 0.85 30 0 800 17149 3333 46860 Pneumatic Screw pump(W2U01) 45 0 18 0 88 55 0 8000 1775 63225 9333 46860 Pneumatic Screw pump(W2U01) 90 0 88 1 75 0 8000 2310 8000 1100 8000 1588 47655 46860 Water Pump I (R2X50) 30 0 23 1 0.85 30 0 8000 15188 45475 46860	= !	filter fan Silo Top (H1P14M1)	220	35.7	0.88	450	8000	17116	51347	72897	1 42
110 (30) 90 (45) 088 110 (65) 600 45433 136299 171149 1001) 45 (6) 92 (68) 22 (68) 8000 10658 31975 33066 73066 1003) 37 (6) 68 085 30 (68) 55 (60) 8000 21075 63255 93357 130670 171149		PHASE # 11									
30 0 92 085 22 0 8000 10658 31975 33066 7 (1001) 45 0 135 0 85 30 0 8000 17876 53629 46860 6 (1003) 37 0 6 8 0 85 30 0 8000 21075 63225 93357 7 (3) 75 0 110 0 8000 21075 63225 93357 1 (3) 75 0 8000 23070 171149 119427 119427 119427 1 (3) 23 1 0 85 30 0 8000 1585 47655 46860 1 (4) 15 0 30 0 8000 15168 45475 46860 1 (4) 15 0 26 0 85 11 0 8000 4775 14325 18040 1	_	Bucket elevator (R2J02M1)	1100	0 06	0.88	1100	8000	45433	136299	171149	128
U01) 45 0 135 085 30 0 8000 17876 53629 46860 1003) 37 0 6 8 085 30 0 8000 21075 63255 93357 3) 75 0 110 0 8000 21075 63225 93357 7 90 0 58 1 088 75 0 8000 23610 89431 11149 119427 30 0 23 1 085 30 0 8000 1585 47655 46860 30 0 23 1 085 30 0 8000 15158 45475 46860 450 0 26 085 110 8000 4775 14325 18040	~!	RBC (R2A06M1)	300	92	0.85	22.0	8000	10658	31975	33066	8
1003) 37 0 68 8 085 30 0 8000 1378 39833 46860 5) 75 0 186 088 55 0 8000 21075 63225 93357 9 0 82 5 088 110 0 8000 43557 130670 171149 9 0 58 1 088 75 0 8000 29810 89431 119427 30 0 23 1 085 30 0 8000 15185 47655 46860 30 0 30 1 085 30 0 8000 15158 45475 46860 15 0 26 085 11 0 8000 4775 14325 18040 15.0 27 085 11 0 8000 4778 14334 18040	e	Pneumatic Screw pump(W2U01)	450	135	0.85	30.0	8000	17876	53629	46860	0.87
5) 750 186 088 550 8000 21075 63225 93357 71149 1100 825 088 1100 8000 43557 130670 171149 771449 300 581 088 750 8000 29810 89431 118427 78860 300 231 085 300 8000 15188 45475 46860 150 26 085 110 8000 4775 14325 18040 15.0 27 085 110 8000 4778 14334 18040	4	Pneumatic Screw pump(W2U03)	37.0	68	0.85	30 0	8000	13278	39833	46860	1 18
110 0 82 5 0 88 110 0 8000 43557 130670 171149 771149 90 0 58 1 0 88 75 0 8000 29810 89431 119427 119440 <td>2</td> <td>Pneumatic conveyor (K2U05)</td> <td>750</td> <td>186</td> <td>0 88</td> <td>550</td> <td>8000</td> <td>21075</td> <td>63225</td> <td>93357</td> <td>- 84.</td>	2	Pneumatic conveyor (K2U05)	750	186	0 88	550	8000	21075	63225	93357	- 84.
90 0 58 1 0 88 75 0 8000 23810 89431 119427 30 0 23 1 0 85 30 0 8000 15885 47655 46860 30 0 30 1 0 85 30 0 8000 15158 45475 46860 15 0 2 6 0 85 11 0 8000 4775 14325 18040 15.0 2 7 0 85 11 0 8000 4778 14334 18040	9	Bucket elevator (R2J13M1)	1100	825	0 88	1100	8000	43557	130670	171149	131
30 0 23 1 0 85 30 0 8000 1585 47655 46860 30 0 30 1 0 85 30 0 8000 15158 45475 46860 15 0 2 6 0 85 11 0 8000 4775 14325 18040 15.0 2 7 0 85 11 0 8000 4778 14334 18040	7	Primary Air Fan (W2V07)	006	58 1	0 88	750	8000	29810	89431	119427	-38
30 0 30 1 0 85 30 0 8000 15158 45475 46860 46860 15 0 2 6 0 85 11 0 8000 4775 14325 18040 15.0 2 7 0 85 11 0 8000 4778 14334 18040	80	Water Pump 1 (R2X50)	30 0	23 1	0 85	30 0	8000	15885	47655	46860	0.98
150 26 0 85 110 8000 4775 14325 18040 15.0 27 0 85 110 8000 4778 14334 18040	0	Water Pump 1 (R2X52)	300	30 1	0 85	30 0	8000	15158	45475	46860	183
150 26 0.85 110 8000 4775 14325 18040 15.0 27 0.85 110 8000 4778 14334 18040	i	CEMENT MILL Ph#1&2									
15.0 27 0.85 11.0 8000 4778 14334 18040	-	Screw conveyor(Z1M11)	150	26	0.85	110	8000	4775	14325	18040	126
	7	Screw conveyor(Z3M11)	15.0	27	0.85	110	8000	4778	14334	18040	138

Appendix - 6/9 contd..

OPTIMUM SIZING AND USE OF ENERGY EFFICIENT MOTORS

8 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		OPTIMUM SIZ	1 SIZING AIN	ID USE OF I	ING AND USE OF ENERGY ETTICIENT MOTORS			,		Sht 2 of 2
kW LOAD HIGH OPERATING SAVINGS SAVINGS CAVINGS CAVING	1	RESENT	MEASURED	FULL	PROPOSED	ANNOAL	ANNUAL	COST	INSTALATION	PAY
131 0.85 22.0 8000 8012 24216 33 138 138 132 8000 8012 24903 32 32 32 32 32 32 32		DRIVE	κ	LOAD	HIGH	OPERATING	SAVINGS	SAVINGS	COST	BACK
131 0.65 22.0 8000 8072 24216 33 32 33 33 33 33 33 3		×		EFFICIENCY	EFFICIENCY	HOURS	Z	Z	≅	•
131 0 665 220 8000 8012 24216 33 138 0 865 220 8000 36365 108065 21 885 0 88 1320 6000 36365 108065 21 30 0 85 110 8000 8198 24566 11 28 2 0 85 110 8000 14485 43456 11 28 2 0 85 110 8000 14485 43456 11 28 2 0 85 110 8000 2624 7871 11 1 2 0 85 110 8000 2624 7871 1826 1 5 0 85 110 8000 7894 23469 1 1 5 0 85 110 8000 7824 7869 1 1 5 0 85 110 8000 7824 7869 1 1 5 0 85 110 8000 4781 14342 <				(ll)	MOTOR (KW)		KWh	Rs	Rs.	IN YEARS
131 0 85 220 8000 8072 24216 33 138 0 85 220 8000 801 24003 3 138 0 85 132 0 6000 36365 109086 21 30 0 85 110 8000 2779 8337 11 28 2 0 85 110 8000 1485 4566 1 28 2 0 85 110 8000 6074 18226 1 27 0 85 110 8000 7834 7871 1 12 0 85 110 8000 7823 7848 1 15 0 85 110 8000 7823 23489 1 105 0 85 110 8000 7823 1826 1 25 0 85 110 8000 7823 1486 14342 25 0 85 110 8000 7823 1486 14342 28 0 85 150 8000 3651 1685										
138 085 220 8000 8301 24903 33 885 088 1320 6000 36365 109085 21 30 085 110 8000 2779 8337 11 284 085 110 8000 2779 8337 11 282 085 110 8000 4485 43456 7 287 085 110 8000 2674 43456 7 12 085 110 8000 2624 7871 1 12 085 110 8000 2624 7871 1 12 085 110 8000 2624 7873 2489 1 165 085 110 8000 3723 2489 1 2486 2489 1 17 085 110 8000 3723 14842 2489 1 18 45 085 15	}	200	13.1	0.85	22.0	8000	8072	24216	33066	137
885 088 132 0 6000 36365 109095 21 30 085 110 8000 2779 8337 11 284 085 110 8000 8198 24595 11 282 085 450 6000 14485 43456 7 12 085 110 8000 2624 7871 1 12 085 110 8000 2624 7871 1 12 085 110 8000 7894 23883 1 12 085 110 8000 7894 23893 1 15 085 110 8000 7823 2469 1 25 085 110 8000 3653 1656 1650 14 085 150 8000 3653 1650 1650 15 085 110 8000 3653 1650 1650 16 <td></td> <td>220</td> <td>13.8</td> <td>0.85</td> <td>22 0</td> <td>8000</td> <td>8301</td> <td>24903</td> <td>33066</td> <td>133</td>		220	13.8	0.85	22 0	8000	8301	24903	33066	133
30 065 110 8000 2779 8337 11 28 2 085 110 8000 8196 24595 11 28 2 085 110 8000 14485 43456 7 27 085 110 8000 2624 7871 1 12 085 110 8000 7994 23983 1 15 085 110 8000 7994 23983 1 16 085 110 8000 7823 23469 1 105 085 110 8000 7722 8167 1 25 085 110 8000 3651 10958 1 14 085 150 8000 3651 16958 1 28 085 150 8000 3651 16620 1 28 085 150 8000 3651 16620 1 30		1320	88.5	0.88	132 0	0009	36365	109095	214687	1 97
94 0.65 110 6000 4196 24595 11 282 0.65 450 6000 14485 43456 7 282 0.65 450 6000 14485 43456 7 27 0.65 22.0 8000 2624 7871 1 12 0.65 11.0 8000 7994 23983 1 15 0.65 11.0 8000 7824 7811 1 105 0.85 11.0 8000 7823 23469 1 105 0.85 11.0 8000 7823 23469 1 105 0.85 11.0 8000 3651 10858 1 1 0.85 11.0 8000 3651 10858 1 1 0.85 11.0 8000 3651 16676 1 0.85 15.0 8000 3653 14310 1 0.85	l	110	0.8	0.85	110	8000	2779	8337	18040	2 16
282 085 450 6000 14485 43456 7 27 085 220 8000 6075 18226 3 12 085 110 8000 2624 7871 1 12 085 110 8000 7894 23833 1 15 085 110 8000 7823 26654 1 165 085 110 8000 7823 23469 1 105 085 110 8000 3722 8167 1 25 085 110 8000 3653 10958 1 1 2 085 110 8000 3651 1605 14342 28 085 150 8000 4781 14342 29 085 150 8000 4781 14342 29 085 150 8000 4781 14361 24 085 110 8000 <td>1</td> <td>300</td> <td>9.4</td> <td>0.85</td> <td>110</td> <td>8000</td> <td>8198</td> <td>24595</td> <td>18040</td> <td>0.73</td>	1	300	9.4	0.85	110	8000	8198	24595	18040	0.73
27 0 85 22 0 8000 6075 18226 3 12 0 85 11 0 8000 2624 7871 1 12 0 85 11 0 8000 7994 23983 1 15 0 85 11 0 8000 7894 23983 1 16 0 85 11 0 8000 7823 26654 1 17 0 85 11 0 8000 3722 8167 1 17 0 85 11 0 8000 3653 10958 1 17 0 85 11 0 8000 3651 10958 1 12 0 85 15 0 8000 3651 1650 8000 4781 14342 1 2 8 0 85 15 0 8000 4781 14342 14361 1 2 8 0 85 15 0 8000 4781 14361 1 4 5 0 85 110 8000		2 4	28.2	0.85	45.0	0009	14485	43456	72897	168
12 0.85 110 8000 2624 7871 1 93 0.85 110 8000 7994 23863 1 15 0.85 110 8000 7823 2654 1 105 0.85 110 8000 7823 23469 1 25 0.85 110 8000 2722 8167 1 25 0.85 110 8000 3653 1058 1 14 0.85 75 8000 3651 1058 1 12 0.85 110 8000 4781 14342 14342 12 0.85 150 8000 3651 16626 16676 10 42 0.85 150 8000 4781 14310 10 36 0.85 110 8000 4781 14310 10 36 0.85 110 8000 6240 14310 1		2 2	202	0.85	22.0	8000	6075	18226	33066	181
93 085 110 8000 7994 23983 1 15 085 110 8000 8885 26654 1 105 085 110 8000 7823 23469 1 25 085 110 8000 2722 8167 1 57 085 110 8000 3653 10958 1 12 085 75 8000 3651 10953 1 28 085 15 8000 3651 10958 1 42 085 15 8000 3540 1650 1650 1 45 085 110 8000 3540 1650 1650 1 45 085 110 8000 3540 16576 1650 1 45 085 110 8000 4781 14361 1 36 085 110 8000 2200 6648 <		2	12	0.85	110	8000	2624	7871	18040	229
15 0.85 110 8000 8885 26654 1 105 0.85 110 8000 7823 23469 1 25 0.85 110 8000 2722 8167 8167 57 0.85 110 8000 8750 2651 865 12 0.85 75 8000 3651 10958 10958 12 0.85 110 8000 4781 14342 14342 28 0.85 110 8000 4781 14342 14342 42 0.85 110 8000 4781 14342 14342 0 24 0.85 110 8000 4781 14342 0 85 110 8000 4787 14361 0 837 0.85 110 8000 6144 18433 0 837 0.85 150 8000 6144 18433 0			2-0	0.85	11.0	8000	7994	23983	18040	0.75
15 0.65 110 8000 7823 23469 105 0.85 110 8000 2722 8167 57 0.85 110 8000 8750 26251 14 0.85 75 8000 3653 10958 12 0.85 75 8000 3651 10958 42 0.85 110 8000 4781 14342 5 0.85 110 8000 4781 14342 6 45 0.85 110 8000 4781 14342 7 0.85 110 8000 4781 14342 837 0.85 110 8000 4787 14361 9 3.6 0.85 110 8000 6046 18137 10 2.2 0.85 150 8000 6144 18433 1 7.9 0.85 150 8000 6144 18433 1	ľ	077	0 1	28.0	7	0008	8885	26654	18040	890
105 0.85 11.0 500 722 8167 25 0.85 11.0 8000 2722 8167 57 0.85 11.0 8000 3653 10858 14 0.85 75 8000 3651 10958 12 0.85 11.0 8000 4781 14342 28 0.85 11.0 8000 4781 14342 45 0.85 11.0 8000 4781 14342 5 0.85 11.0 8000 4770 14340 0 8.3 11.0 8000 4770 14361 0 8.3 11.0 8000 4787 14361 0 8.3 11.0 8000 2200 66209 0 8.3 11.0 8000 6144 18433 0 8.3 10.8 10.8 18433 1837 0 1.0 1.0 8.0 1.0 <td>i</td> <td>220</td> <td>15</td> <td>0.83</td> <td>2</td> <td></td> <td>7823</td> <td>23469</td> <td>18040</td> <td>110</td>	i	220	15	0.83	2		7823	23469	18040	110
25 0 85 11 0 6000 512. 51. 57 0 85 11 0 8000 8750 26251 14 0 85 75 8000 3653 10858 12 0 85 75 8000 3651 10953 28 0 85 11 0 8000 4781 14342 42 0 85 15 0 8000 5540 16620 24 0 85 11 0 8000 4770 14310 24 0 85 11 0 8000 4787 14361 30 0 85 11 0 8000 22070 66209 3 0 85 110 0 8000 6144 18433 0 22 0 8000 6144 18433 0 22 0 8000 6046 18137 0 101 0 85 150 8000 7535 22606 0 10 85 150 8000 6014 <t< td=""><td>i</td><td>220</td><td>105</td><td>0 80</td><td></td><td></td><td>27.22</td><td>8167</td><td>18040</td><td>221</td></t<>	i	220	105	0 80			27.22	8167	18040	221
57 0 85 11 0 8000 3653 10958 14 0 85 7 5 8000 3651 10958 12 0 85 7 5 8000 4781 14342 2 8 0 85 11 0 8000 4781 14342 4 5 0 85 15 0 8000 5540 16676 0 85 11 0 8000 4770 14310 0 85 11 0 8000 4787 14361 0 85 11 0 8000 4787 14361 0 837 0 88 110 0 8000 66209 0 85 22 0 8000 6144 18433 0 85 22 0 8000 6144 18433 0 85 15 0 8000 6144 18433 0 85 15 0 8000 6144 18433 0 85 15 0 8000 7535 22606 0 101 10 85 15 0 8000 6046	j	110	25	0 82	011	0000	9750	26754	18040	690
14 085 75 8000 3651 10300 12 085 75 8000 3651 10303 28 085 110 8000 4781 14342 42 085 150 8000 5540 16620 24 085 110 8000 4770 14310 30 085 110 8000 4787 14361 0 837 088 1100 4000 22070 66209 0 22 085 150 8000 6144 18433 0 22 085 150 8000 6046 18137 0 79 085 150 8000 7535 22606 0 101 085 150 8000 6014 18042 1 15 8000 6014 18042 1890260		220	57	0 85	110	8000	250	10050	18612	1 70
12 085 75 8000 3651 10953 28 085 110 8000 4781 14342 42 085 150 8000 5540 16620 24 085 110 8000 4770 14310 30 085 110 8000 4787 14361 837 088 110 4000 22070 66209 36 085 220 8000 6144 18433 79 085 150 8000 6046 18137 79 085 150 8000 7535 22606 101 085 150 8000 6046 18137 1 15 8000 6046 18137 1 10 85 220 8000 7535 22606 1 15 8000 6014 18042 18042		110	14	0 85	7.5	2008	3000	OCEO!	3100	2
28 085 110 8000 4781 14342 42 085 150 8000 5540 16620 24 085 110 8000 4770 14310 30 085 110 8000 4770 14310 837 088 110 4000 22070 66209 36 085 220 8000 6144 18433 22 085 150 8000 6046 18137 79 085 150 8000 7535 22606 101 085 150 8000 7535 22606 101 085 150 8000 6014 18042 15 15 8000 7535 22606	l	110		0 85	7.5	8000	3651	10953	18612	0/1
42 085 150 8000 5540 16620 45 085 150 8000 5559 16676 24 085 110 8000 4770 14310 837 088 110 8000 4787 14361 36 085 110 8000 66209 66209 22 8000 6144 18433 18137 18137 79 085 150 8000 7535 22606 101 085 150 8000 7535 22606 101 085 150 8000 6014 18042 15 15 8000 6014 18042	İ	15.0	28	0 85	110	8000	4781	14342	18040	9
45 085 150 8000 5559 16676 24 085 110 8000 4770 14310 30 085 110 8000 4787 14361 837 088 1100 4000 22070 66209 36 085 220 8000 6144 18433 22 085 150 8000 6146 18137 79 085 150 8000 7535 22606 101 085 150 8000 6014 18042 15 15 8000 6014 18042	İ	18.5	42	0 85	150	8000	5540	16620	22451	1 35
24 085 110 8000 4770 14310 30 085 110 8000 4787 14361 837 088 1100 4000 22070 66209 36 085 220 8000 6144 18433 22 085 220 8000 6046 18137 79 085 150 8000 7535 22606 101 085 150 8000 6014 18042 15 085 220 8000 6014 18042	1	18.5	45	0 85	150	8000	5559	16676	22451	135
30 0 85 11 0 8000 4787 14361 83 7 0 88 110 0 4000 22070 66209 36 0 85 22 0 8000 6144 18433 22 0 85 22 0 8000 6046 18137 7 9 0 85 15 0 8000 7535 22606 10 1 0 85 15 0 8000 6014 18042 1 5 0 85 22 0 8000 6014 18042 1 5 0 85 22 0 8000 6014 18042		44.0	2.4	0.85	110	8000	4770	14310	18040	138
837 0.88 110 0 4000 22070 66209 36 0.85 22 0 8000 6144 18433 22 0.85 22 0 8000 6046 18137 79 0.85 15 0 8000 7535 22606 101 0.85 15 0 8000 6014 18042 15 0.85 22 0 8000 6014 18042 15 0.85 22 0 8000 6014 18042 15 0.85 22 0 8000 6014 18042	Ì	2 4	0.6	0.85	110	8000	4787	14361	18040	126
36 0.85 22.0 8000 6144 18433 22 0.85 22.0 8000 6046 18137 79 0.85 15.0 8000 7535 22606 101 0.85 15.0 8000 7535 22606 15 0.85 22.0 8000 6014 18042 15 0.85 22.0 8000 6014 18042	-		200	88 0	110.0	4000	22070	66209	171149	2 58
36 0 85 220 8000 6046 18137 22 0 85 22 0 8000 6046 18137 79 0 85 15 0 8000 7535 22606 10 1 0 85 15 0 8000 6014 18042 1 5 0 85 22 0 8000 6014 18042 1 5 0 85 7536 150260 150260	١	1100	83 /	000			6144	18433	33066	1 79
22 085 220 8000 6040 16137 79 085 150 8000 7535 22606 101 085 150 8000 6014 18042 15 085 220 8000 6014 18042 15 085 220 8000 6014 18042		220	36	0 85	0.22	0000	100	10137	33066	1 82
79 085 150 8000 8112 24337 101 085 150 8000 7535 22606 15 085 220 8000 6014 18042 Total = 663420 1990260		22 0	22	0 85	22.0	8000	6046	1013/	33454	600
101 0 85 15 0 8000 7535 22606 1 5 0 85 22 0 8000 6014 18042 Total = 663420 1990260	1	220	7.9	0 85	150	8000	8112	2433/	10,577	
15 0 85 22 0 8000 6014 18042 Total = 663420 1990260	1	22.0	101	0 85	150	8000	7535	22606	22451	4 83
Total = 663420	1	220	-	0 85	22 0	~ 1	6014	_	3	
							663420		0.007007	•]

APPENDIX - 6/10

INSTALLATION OF SOFT STARTER FOR VARIABLE LOADED MOTORS

Area: Scraper#1

Application: Harrow Hydraulic Pump (A1L04M6)

Rating = 37 kW

Soft starter senses the motor load and accordingly controls the magnitude of input voltage to motor terminal in order to improve efficiency and reduce the losses.

The observations recorded along with the calculations are given below:

No load operation cycle = 1650 hrs/annum

Measured power = 10.3 kW

Average PF = 0.46

Operating voltage = 410

 $\theta = \cos^{-1}(0.46)$

 $=62.61^{\circ}$

 $\bigvee_{\text{motor}} = (\sqrt{2} \bigvee_{\text{op}}) \sqrt{\sqrt[4]{2\pi} \left\{\theta - (\sin 2\theta/2)\right\}^{\pi}_{62}}$

= 362 V

% reduction in voltage = 12%

Appendix - 6/10 contd..

% reduction in losses = $[1 - (1 - 0.12)^2]$

= 21.83%

Operating losses = $0.2 \times 10.3 \text{ kW}$

(assuming 80% η for motor)

= 2.06 kW

Savings in losses in kW = 2.06×0.2183

= 0.45 kW

Annual energy savings = 0.45×1650 (@ 5hrs/day for

330 days/year)

= 742 kWh

Annual cost savings = Rs.2226/- @ 3.00/kWh

Load operation cycle = Rs.5610 hours/annum

Measured power = 25.5 kW

Power factor = 0.73

Operating voltage = 410 V

 $\theta = \cos^{-1}(0.73)$

 $=43.11^{0}$

 $V_{\text{motor}} = (\sqrt{2} V_{\text{op}}) \sqrt{\sqrt{1/2\pi} \left\{\theta - (\sin 2\theta/2)\right\}_{43}^{\pi}}$

= 393 V

% reduction in voltage = 4%

Appendix - 6/10 contd...

% reduction in losses $= [1 - (1 - 0.04)^2]$

= 8 12%

Operating losses = 0.2×25.5

(assuming 80% η for motor)

= 5.10 kW

Savings in losses in kW = 5.10×0.0812

= 0.41 kW

Annual energy savings = 0.41×5665 (@ 17hrs/day for

330 days/year)

= 2323 kWh

Annual cost savings = Rs.6969/- @ Rs.3.00/kWh

Total annual energy savings = 742 + 2323 kWh

= 3065 kWh

Total annual cost savings (X) = Rs.2226/- + Rs.6969/-

= Rs.9195/-

Cost of installation (A) = Rs.44980/-

Capacitor released = 15 kVAr

Cost of Capacitor bank released (B) = Rs. 4500/- (@ Rs.300/- per

kVAr)

Appendix - 6/10 contd..

Release of kVA demand

= 20 kVA

Considering 50% of kVA demand savings per annum,

Annual Cost of demand saving (Y)

= Rs.18000/- (@ Rs.150/- per

kVA)

Net Annual cost of energy savings (X + Y) = Rs.27195/-

Actual Cost of implementation (A - B) = Rs.40480/-

Simple Payback period

= 1.48 years

Similar calculation for installation of energy savers for various motors has been carried out and is represented in Appendix - 6/10a and 6/10b.

ENERGY SAVINGS BY USE OF ELECTRONIC ENERGY SAVERS

- T			1	ı	ı					_				-	,
SA	LOSSES	N K	0.45	0.41	2,0	57.0	0./0	0.54	0.26	0 44	0 45	2 3	20	151	1 25
<u> </u>	80% J	IN KW	2 06	5 10	2.78	27.7	3.12	3 18	0 88	0.64	780	50	1.04	16 /4	4 62
REDUC-	LOSSES	%	21.83	8 12	31.85	200	04 77	16 89	30.03	17.96	17 96	47.06	08.71	9 00	27 04
REDUC-	IN VOLT.	%	12	4	17	4.5	71	6	16	6	6		n u	C	15
OPER- MOTOR		VOLT	362	393	349	377		377	366	390	381	277		404	362
OPER-	Hrs/	DAY	5	17	24	2		22	20	24	24	24	2 0	20	65
SCR KW			103	25.5	114	156		15.9	4 4	32	4.2	5.2	83.7	3	23 1
SCR	ANGLE		63	43	73	63		57	71	58	58	58	45	2	89
Pf Cos 6			0 46	0.73	0 29	0.45	1	0 22	0 32	0 53	0 53	0.53	0 71	- 100	0 3/
VOLT			410	410	423	428		414	438	431	421	416	423		474
RATED kW		100	3/0	37.0	150.0	190 0	0.00	3/0	7.5	5 /	18 5	18 5	1100		0011
APPLICATION / CONNECTED	EQUIPMENT	Horrow Dad Direct (A41 04440)	rigitow right Fullip (ATLU4Mb) ul	- do -	2 Hammer mill (W1M01)	3 Hammer mill (W2M01)	A Harrow Hyd Dumm (An) 04817	I SALLOW LINE FULLIP (AZLU4IMI)	5 Atox mill Hyd. system	6 Drag chain conveyor (W2K50)	7 Rly side bottom RBC (P2U44)	8 Rly side bottom RBC (P2U54)	9 Compressor (P2X16)	1	- nn -
S. S.			1		7	က		1	^	9	7	∞	6		

NOTE . Techno-economics of energy savings is represented in Appendix - 6/10 b

603180

APPENDIX - 6/10b

TECHNO-ECONOMICS OF ENERGY SAVINGS BY USE OF ELECTRONIC ENERGY SAVERS

CAP. COST OF IMPLEMEN. NET SIII S													r		1		-		_
APPLICATION RATED Ft kW REDUC-ANNUAL INSTAL MONTHLY ANNUAL CAP. COST OF IMPLEMENT	SIMDIF	2		BACK	PERIOD	Z	YEARS	4.5	2	4		- 4			1 7	200		0	1.8
CONNECTED KM Cos MEA- TION SAVINGS ENERGY ATION SAVINGS DEMAND RELEASE CONNECTED KM Cos MEA- TION SAVINGS ENERGY ATION SAVINGS DEMAND RELEASE CONTENT MATCH MONTHLY ANNUAL MATCH MATCH MONTHLY ANNUAL MATCH MONTHLY ANNUAL MATCH M	NET	ANNIA	1000	200	SAVINGS	IN Rs	(X+X)	27.195	3	64053	2007	27808	7020	1932	z y	4073B	56724	280459	280459
CONNECTED KM Cos MEA- TION SAVINGS ENERGY ATION SAVINGS DEMAND RELEASE DEFICES	IMPLEMEN.	MOITAT-	Tool		Z	Rs	(A-B)	40480	2	100900	135000	40480	24080	24080	27.180	27180	2000	503180	603180
CONNECTED KW Cos MEA TION SAVINGS ENERGY ANNUAL INSTAL-I MONTHLY ANNUAL EQUIPMENT KW Cos MEA TION SAVINGS ENERGY ATION SAVINGS DEMAND	_		dy		Z	Rs	(B)	4500		0006	200	4500	8	8	180	1800	15000	47400	47400
CONNECTED KW Cos MEA TION SAVINGS ENERGY ANNUAL INSTAL-I MONTHLY ANNUAL EQUIPMENT KW Cos MEA TION SAVINGS ENERGY ATION SAVINGS DEMAND	CAP.	RELEASED	2	:	kVAr			15		30	8	15	2 6	,	عاد	9	5 6	3 2	158
CONNECTED KW Cos MEA -110N SAVINGS ENERGY SUR CONNECTED KW Cos MEA -110N SAVINGS ENERGY SUR IN IN SAVINGS EQUIPMENT SUR IN KWh IN KN IN KN IN KN IN KN IN KN IN KN IN KN IN KN IN I	_	DEMAND			Z	Rs	3	18000		46800	54000	16200	2700	2700	6300	6300	36000	189000	189000
CONNECTED KW Cos MEA -110N SAVINGS ENERGY SUR CONNECTED KW Cos MEA -110N SAVINGS ENERGY SUR IN IN SAVINGS EQUIPMENT SUR IN KWh IN KN IN KN IN KN IN KN IN KN IN KN IN KN IN KN IN KN IN KN IN KN IN I	MONTHLY	SAVINGS	2	1	ΚΛΑ			20		52	99	18	6	6	7	7	8	210	210
CONNECTED KW Cos MEA -TION SAVINGS	INSTAL-	-ATION	COST	•	<u>z</u>	Rs	€	44980		109900	144900	44980	24980	24980	28980	28980	97900	550580	550580
CONNECTED KW Cos MEA -TION	ANNUAL	ENERGY	SAVINGS	3	Ξ	Rs	χ	2226	6969	17253	16605	11698	5232	2731	3585	4438	12682	8040	91459
CONNECTED KALED PT	- ANNUAL		Z	LIAIL	KVVII			742	2323	5751	5535	3899	1744	910	1195	1479	4227	2680	30486
CONNECTED KALED PT	REDUC	-TION	Z	1	2	*		12	4	17	12	6	16	6	6	6	5	15	TAL =
CONNECTED KW	<u> </u>	MEA-	-SUR-	נו	Ļ			103	255	114	156	159	4 4	32	42	52	83.7	231	입
CONNECTED KW	Ğ	Cos φ						0 46	0 73	0 29	0.45	0.55	0 32	0.53	0 53	0 53	0 71	0.37	
	RATED							37.0	37.0	150 0	1900	37.0	7.5	7.5	185	185	1100	1100	
0 8			EQUIPMENT	-				Harrow Hyd Pump (A1L04M6) uL	- op -	Hammer mill (W1M01)	Hammer mill (W2M01)	Harrow Hyd Pump (A2L04M7)	Atox mill Hyd system	Drag chain conveyor (W2K50)	Rly side bottom RBC (P2U44)	Rly side bottom RBC (P2U54)	Compressor (P2X16) L		
	<u> </u>	ġ Z					ŀ	-		7	3	4	2	9	7	80	6		

DESIGN PARAMETERS OF REFRIGERATION MACHINES & CHILLER PUMPS

A. Refrigeration Machines

- 1				T			_						_			-		
	Annual	Operating	House	250	7920	2707		4400	3		2500			2300)		2000)))
	-	Pre ,kq/cm²(q)	Outlet		2.5) 4		25	4		2.5)		2.5	1		25	
	er Wate	Pre ko	inlet		3.0	>		30))		3.0)		30)		30	
	Condenser Water	Temp, °C	Outle		41	:		41	-		41	:		41			41	
		Tem	inlet		35	}		35	3		35	}		35	1		35	
		Pre ,kg/cm²(g)	Outlet		25)		2.5) 		2.5)		25			25	
	Water	Pre ,kg	Inlet		3.2	l)		3.2	!		3.2	1		32	!		32	
	Chilled Water	Temp , °C	Outlet		7.2	l		7.2	i -		7.2	l		72	!		7.2	
		Tem	ınlet		12.8			12.8)		12.8			128			128	
		Delivery	Pre, psi		250			250			250			250			250	
	Compressor	Suction	Pre, psi		09			09			09			09			09	
	3	Rated	Power, kW		45 each			37			45			45			45 each	
-	Kated	TR.			40x2			40			9			40			20X2	
	2	ō	Chits		7			-			-			-			7	
Mala	Make &	Type of	nnits	VOLTAS-	Chilled Water	System	VOLTAS-	Chilled Water	System	VOLTAS-	Chilled Water	System	VOLTAS-	Chilled Water	System	VOLTAS-	Chilled Water	System
	Location			CCR-Bldg			CCR-Bldg			CCR-Bldg			ADM-Bldg			ADM-Bldg		
ō	ō	 운		-			7			3			4			2		

Chiller Pumps

ळ 🖁	Usage Area	Make	No Installed	No Operated	Rated	Designe	Designed Range	Annual Operating
2					κW	Flow, lps	Head, m	hours
	CCR - PLANT ROOM					,		
 	1. M/C No 1	BEACON	2	1 00000	2 2 each	50-115	22 5 - 11.0	2500
				(1 Standby)				0001
7	M/C No. 2, 3 & 4	BEACON	7	-	7 5 each	∢ Z	۷ 2	026/
				(1 Standby)				
	ADM - PLANTROOM							
-	1. M/C No 1, 2 & 3	BEACON	3	2	2 2 each	27-75	33 2 - 13.7	2300
				(1 Standby)				

MACHINE SIDE OBSERVATIONS ON REFRIGERATION MACHINES

	System		Comp	Compressor		ర్	Chilled Wate	iter in Chiller	ller	Cool	ing Wate	Cooling Water in Condenser	enser	Chilled	Measured Power, kW	ower, kW	
2		Pre	Pressure psi	Tempe	Temperature ^o C		Pressure kg/cm²(g)	Temp	Temperature °C	Pres kg/cr	Pressure kg/cm²(g)	Tempe	Temperature °C	Water Pump Compressor	Compressor	Chilled Water	Remarks
		Inlet	Outlet	Inlet	Outlet	Inlet	Outlet	Inlet	Outlet	Inlet	Inlet Outlet	Inlet	Outlet	Head, m		Pump	
ت	CCR - PLANT ROOM	T ROOM															
-	M/C - 1	43	194	0	40	22	12	8 5	5	2.5	17	22	25 0	, 12	28 9	2 34	Compressor loaded to 75%
. 2	M/C - 2	48	186	2	39	32	27	17.0	12	22	17	23	26 5	23	30 9	6 50	Compressor loaded to 75%
3	M/C-3									Under	Under Maintenance	nce					
4	M/C - 4	53	506	4	42	3.2	2.7	17.0	12	22	1.7	23	26 5	•	213	•	Compressor loaded to 100%
	ADM - PLANT ROOM	IT ROOM	5														
ω [']	M/C - 1	51	168	е е	35	23	2.0	115	10	12	0.2	215	24 0	19	296	6 82	Compressor loaded to 100%
ယ	M/C-2									Under	Under Maintenance	nce					
1	M/C-3	_								Under	Under Maintenance	nce					

APPENDIX - 7/3

CALCULATION OF GENERATION TONS OF REFRIGERATION (GEN-TR) CCR BUILDING PLANTROOM

A. Machine No. 1

1.	Chilled water pump power input	= 2.34
ıi.	Pressure on the discharge side	= 2.2 kg/cm ²
ıii.	Pressure on the suction side	=1.0 kg/cm ²
IV.	Total pressure head on the pump	= 1.2 kg/cm ²
V	Efficiency of Pump-Motor Unit	= 43%
		PX η _(P-M) X 3600
VI.	Average chilled water flow (Q _f)	9.81 X H
		2 34 X 0.43 X 3600
		9 81 X 12
		= 30.77 m ³ /h
vii	Temperature drop across chiller	= 3.5°C
		Q _f x 1000 x ΔT
viii.	Tons of refrigeration	3024
		= 35.61 TR

Appendix - 7/3 contd..

ix.	Rated capacity	= 40 TR
x.	% TR generation (3 Cylin. in operation)	35.61 = x 100 40 = 89.0 %
В.	Machine No. 2 & 3	00.0 //
I.	Chilled water pump power input	= 6.5
11.	Pressure on the discharge side	= 3.3 kg/cm ²
iıi.	pressure on the suction side	=1.0 kg/cm ²
iv.	Total pressure head on the pump	$= 2.3 \text{ kg/cm}^2$
٧.	Efficiency of Pump-Motor Unit	= 43%
VI	Average chilled water flow (Q _f)	PX η _(P-M) X 3600
VI	Average chilled water flow (Q _f)	9.81 X H 6.5 x 0 43 x 3600
VI	Average chilled water flow (Q _f)	9.81 X H
VI	Average chilled water flow (Q _f)	9.81 X H 6.5 x 0 43 x 3600
VI	Average chilled water flow $(Q_{\mbox{\scriptsize f}})$ Temperature drop across chiller	9.81 X H 6.5 x 0 43 x 3600 =
		$9.81 \times H$ $= \frac{6.5 \times 0.43 \times 3600}{9.81 \times 23}$ $= 44.60 \text{ m}^3/\text{h}$

= 92.2 %

Appendix - 7/3 contd...

ix. Rated capacity
$$= 2 \times 40 = 80 \text{ TR}$$

Appendix - 7/3 contd...

±DM BUILDING PLANTROOM

A. Machine No. 1

i.	Chilled water pump power input	= 6.1
ıi	Pressure on the discharge side	$= 2.3 \text{ kg/cm}^2$
ш.	Pressure on the suction side	=0.5 kg/cm ²
iv.	Total pressure head on the pump	= 1.8 kg/cm ²
v.	Efficiency of Pump-Motor Unit	= 43%
vi.	Average chilled water flow (Q _f)	$= \frac{P \times \eta_{(P-M) \times} 3600}{9.81 \times H}$
		6.1 x 0.43 x 3600
		9.81 X 18
		$= 53.48 \text{ m}^3/\text{h}$
VII.	Temperature drop across chiller	= 1.5°C
vııi.	Tons of refrigeration	$= \frac{Q_f \times 1000 \times \Delta T}{3024}$
		= 26.5 TR
ix.	Rated capacity	= 40 TR
x.	% TR generation	26.5 = x 100 40
		= 66.3 %

EVAPORATOR & CONDENSER EFFECTIVENESS

<u>-</u>					Evaporator	rator						Condenser	nser		
<u></u>	SI Particulars	- [Pressure, kg/cm²(g)	3/cm ² (g)	_	Temperature C	sture°C	Remarks	Pre	Pressure, ka/cm²(a)	Г		temperature	ature	Remarks
ر ک		Inlet	Outlet	Outlet Pre.drop Inlet Outle	Inlet	Outlet	et Temp drop		Inlet	Outlet	2	Inlot	Platfield	Inlet Quitet Town rice	
	CCR - PLANT ROOM	ROOF	5					7			200	12	Coulier	1 5111 1136	
-	M/C - 1	22 12		1.0	8 5	5	3.5	Pre drop	25	17	0.5	22	25	3.0	Acceptable
,															Pre.drop
7	M/C - 2	3 2	2.7	9 0	17	72	5 0	Acceptable Pre drop	22	17	0.5	23	26 5	3.5	Acceptable
,		1			Γ					1					doin.e.
ว	4 - 7	7 0	7.7	ဂ	2	12	20	Acceptable	22	1.7`	0.5	23	26 5	3.5	Acceptable
	MON DI MAN							doin or -							Pre.drop
			5												
4	M/C - 1	23	20	0 3	115	10	1.5	Acceptable 1.2	12	0.2	1.0	21.5	24	2.5	Pre.drop
						_		20.50			_				

AHU -TONS OF REFRIGERATION (AHU-TR)

MEASURED CONDITIONS

After Coc DBT ⁰ C 10 5 18 5 17 26 15 5 15 5 16.5	S	Location	AHU	Rated	Average Air	Area of	Actual	Air Tem	Air Temperature	Air Tem	Air Temperature
AHU - 11 22500 2 62 2 93 16225 22 3 145 105 AHU - 7 7500 1 35 2 48 7232 23 5 14 5 105 PLC AHU - 7 7500 1 40 2 48 7350 23 14 17 17 PLC AHU - 7 7500 0 83 6 18 10860 28 19 26 AHU - 7 7500 1 05 2 48 5268 21 5 14 17 AHU - 7 7500 1 05 2 48 5176 23 16.5 15 5 Hall AHU - 7 7500 1 21 2 48 6130* 22 5 16.3 17.5 hase AHU - 7 7500 1 21 2 48 6142 22 5 16.5	S N		Model	Air Flow	Velocity	Filter	Air Flow	Before	Filter	After Coo	oling Coils
AHU-71 22500 2 62 2 93 16225 22 14 5 10 5 AHU-7 7500 1 35 2 48 7232 23 5 15.5 18 5 PLC AHU-7 7500 0 83 6 18 10860 28 19 26 AHU-7 7500 1 105 2 48 5268 21 5 15 14 AHU-7 7500 1 105 2 48 5176 23 16.5 15 15 14 AHU-7 7500 1 22 48 6130* 22 5 16.3 17.5 14 Hase AHU-7 7500 1 2 48 6130* 22 5 16.3 17.5 16.5				cfm	s/ш	m²	cfm		WBT °C	DBT C	WBT OC
AHU - 11 22500 2 62 2 93 16225 22 14 5 105 AHU - 7 7500 1 35 2 48 7232 23 5 15.5 18 5 PLC AHU - 7 7500 1 40 2 48 7350 28 19 26 PLC AHU - 7 7500 1 05 2 48 5268 21 5 15 5 14 AHU - 7 7500 1 02 2.48 5176 23 16.5 15 5 I ase AHU - 7 7500 1 21 2.48 6130* 22 5 16.3 17.5 unts AHU - 7 7500 1 21 2.48 6142 22 5 16.5 16.5	CCR	Bldg - Plant	·								
AHU - 7 7500 135 248 7232 235 15.5 185 PLC AHU - 7 7500 140 248 7350 23 14 17 17 PLC AHU - 11 22500 083 618 10860 28 19 26 PLC AHU - 7 7500 105 2.48 5176 23 16.5 155 PARU - 7 7500 121 2.48 6130* 225 16.3 17.5 PARU - 7 7500 121 2.48 6130* 225 16.5 16.5 PARU - 7 7500 121 2.48 6142 225 15.5 16.5	-	1- Flr	AHU - 11	22500	2 62	2 93	16225	22	14.5	10.5	9.7
PLC AHU - 7 7500 140 248 7350 23 14 17 PLC AHU - 11 22500 0 83 6 18 10860 28 19 26 AHU - 7 7500 1 05 2 48 5268 21 5 15 5 14 AHU - 7 7500 1 02 2.48 5176 23 16.5 15 5 Jase AHU - 7 7500 1 21 2.48 6130* 22 5 16.3 17.5 unts AHU - 7 7500 1 22 2.48 6142 22 5 15.5 16.5	7	II - FIr, CCR	AHU - 7	7500	1 35	2 48	7232	23 5	15.5	18.5	13.5
PLC AHU - 11 22500 0 83 6 18 10860 28 19 26 AHU - 7 7500 1 05 2 48 5268 21 5 15 5 14 Hall nase AHU - 7 7500 1 21 2.48 6130* 22 5 16.3 17.5 unts AHU - 7 7500 1 22 2.48 6142 22 5 16.3 17.5	က	II - FIr, PLC	AHU - 7	7500	1 40	2 48	7350	23	14	17	11.5
AHU - 7 7500 1 05 2 48 5268 21 5 15 5 14 AHU - 7 7500 1 02 2.48 5176 23 16.5 15 5 15 1	4	Ground Flr, PLC	AHU - 11	22500	0 83	6 18	10860	28	19	26	18
Ground FIr, AHU - 7 7500 1 05 2 48 5268 21 5 15 5 14 Personal Ground FIr, AHU - 7 7500 1 02 2.48 5176 23 16.5 15 5 Conference Hall Conference Hall AHU - 7 7500 1 21 2.48 6130* 22 5 16.3 17.5 I - Fir, Purchase AHU - 7 7500 1 22 2.48 6142 22 5 15.5 16.5	ADM	Bldg - Plant									
Personal AHU - 7 7500 1 02 2.48 5176 23 16.5 15 5 Conference Hall AHU - 7 7500 1 21 2.48 6130* 22 5 16.3 17.5 I - Fir, Purchase AHU - 7 7500 1 22 2.48 6142 22 5 16.3 16.5	2	Ground Flr,	AHU - 7	0092	1 05	2 48	5268	215	15.5	14	12.5
Ground Fir, AHU - 7 7500 1 02 2.48 5176 23 16.5 155 Conference Hall Conference Hall AHU - 7 7500 1 21 2.48 6130* 22 5 16.3 17.5 I - Fir, Accounts AHU - 7 7500 1 22 2.48 6142 22 5 15.5 16.5		Personal									
Conference Hall AHU - 7 7500 1 21 2.48 6130* 22 5 16.3 17.5 I - Fir, Accounts AHU - 7 7500 1 22 2.48 6142 22 5 15.5 16.5	ဖ	Ground Flr,	AHU - 7	0092	1 02	2.48	5176	23	16.5	15.5	13
1-Flr, Purchase AHU - 7 7500 1 21 2.48 6130* 22 5 16.3 17.5 1 - Flr, Accounts AHU - 7 7500 1 22 2.48 6142 22 5 15.5 16.5		Conference Hall			;						
1- Flr, Accounts AHU - 7 7500 1 22 2.48 6142 22 5 15.5 16.5	7	I - Flr, Purchase	AHU - 7	0052	121	2.48	6130*	22 5	16.3	17.5	13
	8	I - FIr, Accounts	AHU - 7	7500	1 22	2.48	6142	22 5	15.5	16.5	13

Openings have been observed between filter mats.

2.0 USER LOAD ASSESSMENT

is o	Location	Actual Aır Flow	Specific volume of Air	Ave.Specific moisture in air	Ave Specific moisture in air	Sensible Heat load*	Latent Heat load** on	Total Refrig.
		m³/h		Derore rilter	before filter	on AHU	AHU	
CCR	CCR Bldg - Plant		DV/ III	kg/kg of dry air	kg/kg of dry air	TR	TR	TR
-	- El-	07500	0,00					
- c		08077	0.846	0 0074	0 0073	29 77	0.58	30 35
7	אטט 'זיד - וו	12053	0.852	0 0077	0.0075	5.61	0.64	30.00
က	II - Fir, PLC	12500	0 847	0.0063	0.0082	202	100	5.12
4	Ground Fir. PLC	18465	O REG	0070	20002	co /	0.26	7.29
ADM	ADM Bldg - Plant		200	00100	0.0085	3 38	1.90	5 29
2	Ground Fir	8058	0.046	10000				
	Personal		0 040	5800 O	0 0085	6 30	00 0	6.30
စ	Ground Flr.	8800	0.852	6000	0000			
	Conference Hall)	700.0	0.0032	0 0083	6.15	0 92	7.07
7	I - Flr, Purchase	10421	0.849	00000	0.0075			
α	I - Fir Accounts	40440	070	06000	6/00.0	4 8/	2 19	7.06
	in, Accounts	10443	0.048	0 0081	0 0079	5 86	0 44	6.30

(Air flow rate/Sp vol of air before filter) x D B T Diff across chiller x 0 24/3024

** (Air flow rate/Sp. vol of air before filter) x Sp moisture Difference across chiller x 540/3000

APPENDIX - 7/6

INSTALLATION OF ADDITIONAL SOLAR FLAT PLATE COLLECTORS

The canteen building has enough space to install atleast 16 more solar flat plate collectors. By connecting them in parallel with the existing system more hot water could be generated.

Max possible water outlet temperature (summer) = 95° C

Min.possible water outlet temperature (winter) = 45° C

Ave Water outlet temperature = 60° C

No of collectors required to supply 1000 lpd = 8

Amount of hot water generation possible = 2000 lpd

Water requirement of canteen = 40 m³/day

 $= 40,000 \, \text{lpd}$

Percentage of hot water utilisation = 40% of total water supplied

Hot water requirement of canteen = 16000 lpd

Heat gained by solar water heater = Mass flow rate x sp heat x temp rise of water of water

 $= 2000 \times 1 \times (60 - 30)$

= 60000 kcal/day

Appendix - 7/6 contd.

Assuming LPG (calorific value - 10800 kcal/kg) as the fuel used

= 5.5 kg/day

Annual days of operation = 300

Annual fuel savings = 1650 kg of LPG

Annual energy savings = 180 lakh kcal

Taking the LPG cost to be Rs.24 / kg,

Annual cost savings = 1650×24

= Rs 39600/-

Investment cost = Rs 2.4 lakhs

240000 = ------

39600

= 6 06 years

APPENDIX - 8/1

DETAILS OF LIGHTING FIXTURES

L & T ACW PHASE - I

SI No	Area/ Location	Fluorescent Fixture	Fluorescent Fixture	HPSV	HPSV	Focus Lamps	Remarks
		1 X 40W	2 X 40W	70W	250W	400W	
1	Coal Mill Area	12	93	139	41	* 3	*Incandescent lamp 500W
2	Raw Mill Area	-	98	53	32	2	-
3	Preheater Area	9	- 185	88	55	9	-
4	Kıln Area	4	6	4	-	* 1	*Incandescent lamp 500W
5	Cement Mill Area	16	165	29	35	3	-
6	Clinker and Gypsum yard + Miscellaneous	06	236	172	-	36	-
	Total	47	783	485	163	54 ,	

Note 1 In absence of any structured data, an effort has been made to collect above information for Phase - I (only mill areas), which is towards lower side

For Phase -II, similar number of fixture is considered for any calculation purpose

L&TACW MINES

SI No	Area/ Location	Fluoroscent Fixture	Fluorescent Fixture	HPSV	Flood	Light
		1 X 40W	2 X 40W	70 W	1 X 400W	2 X 400W
1	Quarry Mines	-	-	-	31	19
2	Street Light	-	-	71	-	-
3	Garage	-	-	25	5	-
4	Office/ S/S & other spaces	138	-	-	-	-
5	LSC II and Conveyor B	-	-	70	•	-
	Total	138	-	166	36	19

APPENDIX - 8/2

ANALYSIS OF FLUORESCENT FIXTURES IN SUBSTATIONS

SI No	Substation	Single T/L fixture	Double T/L fixture	Total no of tubes	Tubes not working	No of tubes glowing pink	Remark
1	MSS	-	38	76	4	•	Mainly 'OFF' during day
	PHASE - I				<u> </u>		
2	HPC-1	3	37	77	6	1	Mostly 'ON'
3	HPC-2	18	52	122	10	3	Mostly 'ON'
4	HPC-2A	11	50	111	7	6	Mostly 'ON'
5	PUMP HOUSE (MCC + PUMP ROOM)	-	14	28	2	1	Luminaires require cleaning
6	OLD MINES S/S	-	14	28	6	-	Occasionally kept 'ON'
7	HPC-3	2	31	64	2	1	Mostly 'ON'
8	HPC-4	6	10	26	3	-	Mostly 'ON'
	PHASE - II						
9	S S-1	12	42	96	20	2	Mostly 'ON'
10	S S-2 & 2A	60	10	80	6	2	Mostly 'ON'
11	S S -SB	35	48	131	11	1	Mostly 'ON'
12	S S ⁻ -3	44	29	102	18	2	Includes PCC-3A S/S
13	PACKING PLANT S/S	-	10	20	3	1	Tubes are at 6/7M height HPMV and HPSV also used
	TOTAL			961	98(10%)	20(2%)	

Power wastage per day → 33 kWh (with 0.8 diversity factor)

^{*} Average power wastage per annum → 10,890 kWh p a = Rs.32,670/- p.a

APPENDIX - 8/3

DETAILS OF AREA LIGHTING

PHASE - I Date : 23.12.96

SI No	Area	400W	250W	70W	300W
1	New Coal Mill Building CCR side	-	2	-	-
2	Coal Mill Esp. area	-	1	-	-
3	Coal Mill Hopper Top afea	2	-	-	-
4	J2J08 Clinker Conveyor	-	8	_	-
5	W2J05 Clinker Conveyor & W1J06 Clinker Conveyor	-	-	-	2
6	Ph-I Preheater area Light	3	-	-	-
7	PH-I Comp house area light K/F	-	-	-	1
8	Chimney area light	1	ı	-	-
9	Pump house area light	-	-	10	-
10	RIA04 & R2A04 T H area light	1	2	-	-
11	Iron Ore yard PH-I	-	1		-
12	PH -I L. S. Crusher H.P C4	-	2	-	-
13 ·	MSS Meter Room area top	-	2	-	-
14	M S Switch yard	-	9	-	-
15	M.S.S. Building top	-	3	-	-
16	D G.set building area light	-	5	-	-
17	PH-I Coal crusher building area light	-	4	-	1
18	T House Coal Crusher	-	-	-	1
19	Coal yard Tower light	-	5	-	-
20	Coal yard tower near Gypsum yard	-	5	-	-
	Sub-Total Wattage	2800	12250	700	1500

Total Wattage = 17250 W

Appendix - 8/3 contd..

PHASE - II

SI No	Area	400W	250W	70W	300W
1	PH-II Coal Mill area light	-	1	-	-
2	Coal Mill Esp area light	-	2	-	-
3	K/F comp. room top area light	-	2		
4	C F Silo area light	-	1	-	-
5	J2P09 Motor Shed	-	1	-	-
6	Raw Mill PH-II area light	4	-	-	-
7	R2A02 T H area light	-	2	-	-
8	Cement Mill comp H PH-II area light	2	-	-	-
9	Cement Mill 1 & 2 area light	-	1	-	
10	Cement Mill 3 & 4 area light	-	2	-	•
11	New Coal Crusher area light	-	3	-	
12	L1U11 Coal Belt & End side	1	-	-	-
13	T.House L1U11 & U12 RBC	-	2	-	-
14	Rly. yard near Rly office Tower Pole (1 & 2nd step)	-	10	-	-
15	Coal Crusher Near Tower Pole (1 & 2nd step)	-	10	-	-
16	PH-I Rly shed area light	-	9	-	-
17	PH-II Rly. shed area light	-	1	-	-
18	PH-II Rly. yard near Tower area light (1 & 2nd step)	-	10	-	-
19	Loco shed near Tower (1 & 2nd step)	-	10	-	-
20	PH-II P P Silo No.10 area light	03	-	-	-
21	PH-I luffing Belt area light	-	01	-	-
22	PH-II truck side Bottom Belt yard area light	-	8	-	-
23	Gypsum Hopper area light	•	01	-	-
	Sub-Total Wattage	4000	9520	-	-

Total Wattage = 13520 W

APPENDIX - 8/4

A.C.W COLONY STREET LIGHT DETAILS

SI. No	Area / Location	70W HPSV Road Light 12M ht	70W HPSV Road Light 10M ht	MV 125W Ground Light 8M ht.	Halogen Fittings 250W	Flood Light 400W
1	Main Gate to 'G' type Bus Stop	28	-	-	-	-
2	Main Gate to Nanda Fata gate	45	-	•	-	-
3	Colony Gate to A C W canteen (Nanda Fata)	37	-	-	-	-
4	'F' type to mines gate	28	-	-	-	-
5	Lagoon guest house to staff colony (near ADM)	27	-	-	-	-
6	'F' type & play ground	05	11	5	-	-
7	'E' type colony Ground & Road	-	3	21	-	-
8	Badminton Ground	-		-	6	-
9	'A' type colony club area	-	7	-	6	6
10	'A', 'B', & 'C' type colony	-	31	•	-	-
11	Muktangan Play Ground	-	-	8	-	-
12	'E' type road near mine side	-	07	•	-	-
13	Gomati Marg to Hospital	23	4	-	-	-
14	'G' type back side	-	-	11	-	•
15	Old 'G' type road light	-	24	-	-	-
16	'H' type ground light	-	-	15	-	-
17	'H' type to new 'G' type road	16	-	-	-	-
18	New 'G' type ground light 1 New 'G' type ground light 2	-	-	29 21	-	-
19	Street light new 'G' type	8	-	<u>-</u>	-	-
20	ADM Building area	-	-	4	-	-
21	Nursery Road	1	-	-	-	-
	Total	218	87	114	12	6
	Total Wattage	15260	6090	14250	3000	2400

Grand Total = 41000 W

APPENDIX - 8/5

LIGHTING LOAD MEASUREMENTS

PLANT : Phase # I & # II Date :20 / 12 / 96 Time : 20 00 Hrs

SI No	L.D.B.Details			Measured		Remarks		
			Volt	Amp	Cosø	kVA	kW	
1	MLDB -	R	243	230	0 75	63 00	44 30	Raw Mill
	HPC-1	Y	243	215	0 73	52 80	35 40	PCC-Ph-I
	Raw Mill	В	-243	153	0.72	43 40	25.00	I _N = 93 0A
2	MLDB -II	R	238	249	0 82	59 20	47 00	Includes the load
	HPC-2	Y	241	193	0 79	46 60	36 90	of CCR A/C plant
	(Shutter End)	В	241	169	0 77	40.10	33 50	(31 50 kW) I _N = 60 A
3	MLDB	R	246	54 80	0.63	13 50	7 10	I _N = 46.5 A
	SS-I	Υ	243	107 00	0 74	26 20	17.60	
		В	246	61 50	0 86	15 28	11.14	
4	MLDB	R	237	87 3	0 70	20.70	12.63	Energy Saver
•	HPC - 3	Y	216	32.5	0 69	7 03	4 22	3X25kVA connected
		В	217	70.5	0 70	15 35	8 79	$I_N = 40.6 A$
5	MLDB	R	236	108.10	0.67	26.80	15.94	Energy Saver
J	S.S - 3	Y	246	118.00	0.72	29 70	18.30	ın use
	(Cement Mill & CGPS)	В	249	91.00	0.74	22.60	14 75	I _N = 0
6	MLDB	R	220	19.30	0 83	4.38	3.20	
-	L/S crusher	Y	224	10 80	0.67	2.45	1.45	$I_{N} = 17.6 A$
	(Belts + Crusher)	В	224	25.30	0.74	5.70	3.50	

Appendix - 8/5 contd..

SI No	L.D B.Details	Ph		Measured				Remarks
			Volt	Amp	Cosø	kVA	kW	-
7	MLDB	R	239	37.00	0 68	8.80	5.70	<u> </u>
	HPC-2	Y	241	26.20	0.34	6 34	1 36	I _N = 14 1A
	(PCC-Module IF- 2F-3F)	В	241	40.30	0.69	9.68	6 20	
8	MLDB	R	248	199 00	0.75	50 00	33 00	
	Packing Plant	Υ	248	167 00	0 77	41 00	27 60	I _N = 79 7A
		В	249	129 50	0.81	32 80	22 10	
9	M.L.Feeder	R	245	61 80	0 73	15 00	9.00	
	(PCC 8/13 of P/P)	Υ	245	112.50	0.74	27 60	18.90	I _N = 53 4A
	for E/M workshop stores, street/Main gate Lighting	В	245	131.70	0.70	32.10	21 60	
10	MLDB S/S 2B	R	243	128 60	0 81	31.20	22 60	
	(Kıln Feed Area)	Y	241	141 00	0.64	33 80	21.20	I _N = 0
		В	244	108.30	0 60	26 70	15 65	
11	MLDB	R	-	-	-	-	-	Being fed from
	S/S 2 & 2 A	Y	-	-		-	-	kıln feed area
	Cooler + ESP area	В	-	-	-	-	-	(Sr No 10 above)
	Total							Excluding ACR load

Appendix - 8/5 contd.

PLANT : Colony

Date: 24 / 12 / 96

Time: 19.35 Hrs

SI.No	L.D.B.Details	Ph			Measur	ed		Remarks
			Volt	Amp	Cosø	kVA	kW	
1	ACW	R	233	15 70	0.91	3.71	3.35	I _N could not be
•	Canteen	Υ	233	35 00	0.96	8 56	8.40	measured for
	S/S-4	В	233	28 70	0.93	6.25	6.07	difficult access
2	Street	R	233	8 50	0.69	2.00	1 49	
	Light	Y	233	8.70	0.69	2.03	1.42	-
	S/S-4	В	233	9.00	0.69	2.08	1.49	
3	New E type	R	233	74 40	0 95	17.28	16.60	
3	Houses	Y	232	38 20	0 95	9.14	8.90	I _N = 20.5 A
	S/S - 4	В	233	52 50	0.94	12.15	11.53	
4	Lagoon Guest	R	232	44 30	0.98	8 80	8.73	I _N = 25.4 A S/S -4 Automatic
	House	Υ	232	25 90	0.93	6.10	5.40	Voltage Stabiliser (750 kVA) newly installed.
		В	232	39 50	0 96	9 20	8.80	
5	'F' type	R	241	594 00	0.93	142.20	138.30	
5	S/S	Y	241	468 00	0.92	111.60	105.30	I _N = 95.8 A
	0,0	В	242	498.00	0.92	122.70	117.00	
6	'C' type /`D' Type	R	228	248.70	0.93	56.70	54.00	I _N = 44.8 A
0	i	Y	229	185.40	0.91	43.68	40.20	Automatic
	Sub-station	В	229	181.80	0.90	41.28	37.98	Voltage Stabiliser
			225					(750 kVA) newly installed

Appendix - 8/5 contd..

SI.No	L.D.B.Details	Ph			Measu	red		Remarks
	Î. 		Volt	Amp	Cos	kVA	kW	_
7	Sub-Station No.3	R	241	51.50	0 88	12.36	10.89	
	(TU1) 'G' type	Y	238	57 60	0.98	13.70	13.50	I _N = 20 4 A
	Module Fp8	В	244	36.00	0.95	9 60	9 20	
8	Sub-Station No.3	R	239	82.50	0 94	21.10	20 00	
	(TU1) 'G' type	Y	239	122.60	0 96	31.00	28.50	I _N = 18 3 A
	Module Fp10	В	239	110.40	0.92	27.50	25.10	
9	Sub-Station No.3	R	238	38 20	0 90	9.20	8.50	
	(TU1) 'G' type	Y	238	38 20	0.90	9 20	8.50	I _N = 11 7 A
	Module Fp11	В	238	38 20	0 90	9 20	8.50	
10	Sub-Station No.3	R	238	43 80	0.87	8 16	7 10	
	(TU1) 'G' type	Y	238	43 20	0.87	8 10	7 00	I _N = 12 1 A
	Module above Fp-11	В	238	44 00	0.87	8 16	7 10	
11	Sub-Station No 3	R	240	16 40	0 84	3 88	3 06	
	(TU1) 'G' type	Y	240	17 40	0 86	4 20	3 60	I _N = 32A
	Module Fp13	В	240	18 20	0 91	4 40	3.90	·
12	Sub-Station No.3	R	243	47 40	0 86	11.74	10.35	
	(TU1) 'G' type	Y	243	47 40	0 86	11.71	10.10	I _N = 10 3 A
	Module Fp14	В	243	47 40	0 86	11.60	10.30	
		TOTA	۱L				770.16	

APPENDIX - 8/6

LUX LEVEL MEASUREMENTS

PHASE - I

SI No	Location details	Measured Lux Level	Remarks
1	Ph-I DBC Area	42/38/65	Maintenance required
2	Hammer Mill Area	45/60	-
3	Coal feed platform	26/32	Better Level required
4	Kıln Cooler fan W1K10	41/56	-
5	W1K16	45	HPSV fittings cleaning required
6	Kiln Compressor Room	15/27	-
7	Clinker Silo	23/32/27	Flood lights are dust covered
8	R1M01	42/34	-
9	Kiln Maın Drive	26/35	<u>-</u>
10	Preheating Area	27/32/24	<u>-</u>
11	Area of Parking between Kiln1 & CCR bldg.	10-15	High Mast lighting can be used

Appendix - 8/6 contd.

PLANT - SUB STATION PH - I

SI No	Location details	Measured Lux Level	Remarks
1	HPC. Ground floor between panel 1	82/61/70	-
2	HPC. Ground floor between panel 1	42/26	-
3	Ist floor between panel	103/84	-
4	Ist floor between panel	40/51	-
5	H P.C. 2A PLC Room	107	-
6	H.P C 2A lst Floor between panel 1	70/46/29	-
7	H P.C. 2A behind panel 1	48/36	-
8	HPC2A Ground Floor	60/52	-
9	HPC 2A lst Floor behind panel	101/92	-
10	HPC 2A lst Floor behind panel	37/24	-
11	HPC -1 Ground floor	56/69/23	-
12	HPC 1 lst floor	96/107/73	-
13	HPC PLC Cap. room	70/24	-
MISCI	ELLANEOUS		
14	Panel front	80/65/87	
15	Cap room/battery room	56/45	

Appendix - 8/6 contd.

PHASE - II

SI No	Location details	Measured Lux Level	Remarks
1	Elect /Mech Office	32/38	Entrance Lobby
2	Office	79/92/43/81/92	Mirror Reflector can increase lux level
3	Officers Cabin	99/147	-
4	E/M Computer Room	95/62	Mostly cleaning of cover required
5	Cıvıl Office	-	Closed
6	Civil Office Staircase	51	-
7	DBC Traction floor	59/65	Phase - II
8	DBC Staircase	80/110	-
9	DBC Tail End.	40	-
10	DBC Tunnel	35/64/78/136	Well glass fittings removed for HPSV - 70W lamps and fully covered by dust
11	Hammer Mill Motor	16	
12	Inlet W2K17 (K86)	48	HPSV focus totally dust (2 nos) covered Some are not working. Lowering height possible
13	W2K51 Drag chain Tail end	287/65	-
14	W2K03 (Folax Cooler) Front end	129/10	Dust accumulation
 15	W2K04 Front	40	-
- 16	Solenoid control panel	33/15/26	Tube Lights prevailing
17	Kıln Operator's Room	78	-
18	Staircase for Atox Mill	22	
19	Atox Coal Mill Platform	90-60-180	-
20	K2A01 Control Board	63	T/L & HPSV combination
21	Burner Platform (K2SO2)/ W2U07	72/32/21	

Appendix - 8/6 contd.

SI. No.	Location details	Measured Lux Level	Remarks
22	Burner Platform Window	50	One HPSV fitting not working
23	Coal Screw Platform	30/15	3 nos HPSV (focus) not working
24	K2M03	20/49/41	-
25	K2S03 Platform	26	-
26	K2T01 Platform	20	-
27	Fire Extinguisher Storage	31/52	Tubes require cleaning
28	Compressor Rooms	15/27/20/10	Few Compressors are running
29	S/S Transformer T22 Bay	37	Focus used
30	Front Road of - T2A1	24	250W HPSV can be equally distributed for 2X125W
31	S/S 2-2A	70-75	-
32	Cooler II - ESP room	-	Room Closed Tubes are 'ON'
33	W2P31 Platform	45/15/40	Fluorescent fitting require cleaning
34	General Shift Office (Elect) Ph-II	49	-
35	Pump House	46/12/22	Double T/L fitting (casing to be cleaned)
36	Pump House Area Outside	10	250W HPSV focus Dust accumulation Require cleaning
37	Envirocare Room	85/16	MCC portion T/L to be attended critical location not illuminated
38	Pumping Area (Ph-II) outside	17/4	-
39	Compressor (Screw) House	32/7/6	Not in operation 3/4 nos 250W/70W HPSV left on

Appendix - 8/6 contd..

SI No	Location details	Measured Lux Level	Remarks
40	S/S 2B Transformer T2B1 Yard	15/10	Illumination required to be strengthened
41	S/S 2B Entrance + L.R S	93/30	10 Single T/L in not working condition
42	Panelfront	100	-
43	Kiln ESP fan platform	16/22	-
44	Iron Ore & Shale Yard	15	Increase of Illumination required
45	Stacker (operator's room)	10/45	Cleaning of Tube Light required
46	R2M03(Capacitor + L R S) Platform	18/30/18	-
47	S/S1 Transformer yard	~	No Light. 1 Tube Light not working. Required to put light fixtures
48	Rest Room, Raw Mill	41	-
49	Ball Mill	60/33/18/17	HPSV at heights require maintenance
50	R2P05 Platform	20/34/5	Shadow persisting
51	J2J03 Platform	39/32/10	-
52	J2J01 Platform	30/20/16	HPSV (focus) not working
53	Preheater (gr flr)	10/30	-
54	Silo ((gr flr)	15-30	-
55	Aeration fir	66/63/20	-
56 '	Lift Entrance	-	Light fitting required
57	Silo Ist floor	75	-
	2nd floor	20/76	-
	3rd floor	15/40	-
	4th floor	16/140	_
	5th floor	6/20	-
-	6th floor	60	<u> </u>
58	Kiln Main Drive Platform	120	-

Appendix - 8/6 contd.

PLANT - SUB STATION PH - II

SI. No	Location details	Measured Lux Level	Remarks
1	S/S 2 & 2 A between panels (Ground floor)	71/63	Tubes are `ON' and few require replacement
2	Behind Panels (gr flr)	36/96	-
3	Between Panel (Ist flr)	40/42	~
4	Behind Panel (Ist flr)	45	-
5	Inverter Room (PLC)	46/160/50	Double fixtures kept `ON' during day also
6	S/S 2B Panel front (Gr flr)	100/77	-
7	S/S 2B, Behind Panel	47/40	-
8	S/S 2B Panel front (lst flr)/ Battery room	101/76/38	-
9	S/S 2B, Behind Panel (Ist flr.) / SPRS / capacitor room	150/50/40	-
10	S/S 1 Entrance	26	•
11	S/S1 / gr. flr Between Panels /Panel front	60/170	-
12	S/S1 gr flr Behind panel	40	-
13	S/S 1 First Floor Between Panels / Cap room / Battery Room	78/15/36	Cleaning of T/L & Fixtures required
14	Ist flr Behind panel	80	-

Appendix - 8/6 contd.

CCR Building

SI. No	Location details	Measured Lux Level	Remarks
1	CCR Entrance / Time M/c	15/25	Required better level of Illumination. Replacement of acrylic sheets required Day time 'off' can be arranged
2	CCR Ground floor Toilet	35	Another Toilet Lighting line to be checked as tubes not working
3	CCR ground floor Office corridor Under the Tubes Between the Tubes	88 22	- -
4	Granulometry Test Room Weigh M/c Crusher	42 80/81	- -
5	Mess	55	
6	Physical Lab - 1 Writing Table Working Table	78 60/95/102/64	- -
7	Physical Lab Writing Table Test Bed Crushing Chamber UTS m/c. compr.	82 56/68 15 68	-
8	Kiln 2 SCR Room [.] Front of 5 kVA system Data Logger SCR Rear	32 52/40	Replacement of pink tubes necessary
9	Kiln 1 SCR Room MCC /SCR Front SCR Rear	68/34/06	In rear portion strengthen illumination
10	AC Plant shift room	35	
11	AC plant A.C1 M/C. MCC (Front) Near Pr. gauge	70 59 32	<u>-</u>
12	CCR Office	111	

Appendix - 8/6 contd..

SI. No.	Location details	Measured Lux Level	Remarks
13	CCR Ph-1 Control Panel desk	26/31/36	Pink Tubes required to be replaced Tubes kept off to avoid reflection on screen
14	CCR Ph-1 Control Panel Printer	101	-
15	CCR Ph-2 Control Panel Desk Near Operator	21/12/26 80/112	Tubes kept 'off to avoid glare & reflection
16	CCR Entrance	90	-
17	PLC Room	220/170/220	-
18	QC X Lab	51/60	-
19	QC X Lab Computer/ Spectrometer	21/20/105	-
20	Chemical Lab near calone meter	186	During night or if no occupancy, Tubes can be put 'off'
21	Chemical Lab Work Desk	126/86	During night or if no occupancy, Tubes can be put 'off'
22	Chemical Lab New Oven	92	During night or if no occupancy, Tubes can be put 'off'
23	Chemical Lab near Carbolite	62/92	During night or if no occupancy, Tubes can be put 'off'
24	Process Control Dept.	200/179	-
25	Inst. Shift Room Working Table	124	-
26	Inst. Shift Room Shift Table	63	-
27	2nd Floor Hall near Staircase	20	-
28	Ist Floor Reception	92	-
29	KYP K's Cabın/PA's table/ Computer	138/92 42/75	During non occupancy, can be switched off except for corridor

Appendix - 8/6 contd..

SI No	Location Details	Measured Lux Level	Remarks
30	Pantry	75	-
31	Project Engg & Development Dept	65/68	Switch 'off during non occupancy Strengthen illumination by use of proper reflector & maintenance
32	Technical Services	55/49/31	do
33	Ist Floor Hall near Staircase	97	-
MAIN	GATE		
34	Distribution dept Main	65-80	Switch 'off when not occupied
35	Manager's Cabın	65/91/116	do
36	Computer Room & Despatch Section	105/88	do
37	Despatch (Security) Desk	69	do
38	Time Office	90/107	Instead of 2 x 500 W HPSV lamps, 4 x 70 W HPSV lamps at regular intervals can be arranged for proper entrance lighting
39	Security Office	119/205	-
40	Main Entrance Gate	23/24	HPSV focus used
PACH	(ING PLANT		
41	PH-I Packing Plant M/c 4	27/30	-
42	PH-1 Packing plant M/c.3	27/30	-
43	Shift room	68	-
44	Central Control room	23/27	Maintenance of luminaires required
45	Compressor Room	6/11/35	HPSV High Bay fittings require proper distribution & maintenance
46	MCC Room /Table/PCC front /Welding Panel/Behind Panel 5.1	102/34/10/70/3 6	HPMV & HPSV along with T/L are existing Reduction of height for tubes & proper distribution required
47	Main Corndor Packing Plant	07	-

Appendix - 8/6 contd

SI No	Location Details	Measured Lux Level	Remarks			
 	MISCELLANEOUS					
48	Garage Office/Trench/ Toolbox store area/Working area	113/480/23/2 1-22-23	Task Light in use			
49	Mechanical Tool Room Lathe 7/ drill m/c.9/ lathe 4/ grinding m/c	1800/601/557 -126/360	Task Light being used Switch 'off partly (2/3 rd) of main hall (18 X 250W HPSV) in night shift, when not occupied by adopting zig zag connection			
50	Mechanical Workshop planning room	116	-			
CEM	ENT MILL					
51	Cement Mill HPC-3 Shift Room / PCC/MCC(rear)PCC(rear) Ground floor MCC/MCC Front /Battery Room 1st flr.	89/55/27/148 37/22/49/80	Replace tube glowing pink. Tube require redistribution by shifting from rear wall			
52	Cement Mill 3 & 4 PCC front PCC rear	46/94 45/181	Replace pink tube			
53	Cement Mill MCC first floor/Battery room	40-80/17	-			
54	Z3 MO3 Plat form	40/51	-			
55	Z4M04 plant form	61/21	-			
56	Z2 U15 Compressor /Bay	101/40	-			
57	Z1MO1 & Z2 MO1/ Lubrication	15-20/90-95	Tube fitting require maintenance			
58	Ball mill cement ph1 & 2 shift room	54	-			
59	I L trunion bearing HP/LP pump room	75	-			
60	Cement PH1 & 2 Ball mill	66	- 1			
61	Compressor room. Cement Mill Ph-2& Battery room	20/10/24/35	Lower tube light			
62	" First floor	13/19/71	-			

APPENDIX - 8/7

ENERGY SAVINGS BY VOLTAGE CONTROLLER

Total lighting load (as measured) include = 1320 kW

colony domestic loads

Present voltage level observed = 233 Volts and above

If voltage level is reduced by 8 to 10% (i.e. 210 -220 Volts) then 10-15% energy savings can be achieved.

∴ Energy savings per annum = 132 x 12 x 330 days (taking 10% savings)

= 522720 units

Cost of energy savings per annum = Rs.15.68 lakh/year

To implement above proposal the plant is required to put separate lighting transformer in appropriate load centres.

However during system study following transformers (presently underloaded) are released for use as lighting transformer exclusively.

1 X 1600 kVA Transformer - Cement Mill (T32)

1 X 1500 kVA Transformer - HPC - 4

1 X 750 kVA Transformer - Township

1 X 500 kVA Transformer - Mines

The above transformers also can cater to 40 x 25 kVA welding sets during annual plant maintenance due to enough transformation capacity available.

Appendix - 8/7 contd..

Henceby redeploying:

⇒ 2 x1600 kVA & 1 x 750 kVA for plant lighting,
 1 x 500 kVA for Colony lighting

Investment A/C capital Equipment = Nil

For modification & Others = Rs.15.00 Lakhs

(e.g. cabling/panelling etc.)

Total Investment required = Rs.15 Lakhs

Simple payback period = 1 year

Added Benefit } ➤ Longer life of luminaires

} > Lesser replacement cost of material and man hour

APPENDIX - 8/8

LUMINAIRES INVENTORY CONSUMPTION DETAILS AS ON 1993-96

Description	Stock Qty	Consumption 1996-97 (Till Dec'96)	Consumption 1995-96	Consumption 1994-95	Consumption 1993-94
Choke for 70W-HPSV Lamp Fitting	0 00	0 00	0.00	1.00	95.00
HPMV Choke	0 00	0 00	0.00	0 00	0 00
Choke 250W HPSV Lamp	0,00	34 00	32.00	1.00	62.00
Tube Light 4' X 36W	-143 00	1794 00	1977 00	1842.00	2015.00
T L. Choke 40W	71 00	846 00	838 00	807.00	953.00
HPSV Lamp 70W with Built in Ignitor and Snap Starter	-10.00	871 00	764 00	682.00	626.00
HPMV Lamp 125 W	4 00	0 00	0 00	6 00	0.00
HPMV Lamp 250W with Ignitor	21 00	147 00	120.00	143 00	152 00

ENERGY SAVINGS BY SWITCHING OFF THROUGH TIMERS

- 1. Number of tubelights present in substation = 961 (as derived from Appendix 8/2).
- 2. Number of tubelights in cable trenches = 660 (Approximate cable trench (underground) length is 1260 M and distance between two tubes are 1.9 M)

Presently all Substation tubes are left on 24 hours a day and in cable trenches at least 60% tubes are left 'ON' throughout inspite of having local switches at many places / locations.

Annual energy consumption by above = $(845 + 396) \times 40 \text{ W}$ $\times 0.8 \times 24 \times 330$

= 3,14,519 kWh

PROPOSAL

75% of above tubes can be switched 'OFF' during the day through TIMER /BYPASS circuit.

Hence annual energy consumption by above = (314519/2) + (1/4)*(314519/2)

system

= 1,96,574 kWh

Therefore annual energy savings = 1,17,945 kWh

Cost of annual energy savings = Rs.3.54 Lakhs

Cost of implementation = Rs.2.25 Lakhs

(approximately 15 points @ Rs.15,000/-)

Simple payback period = 0.65 years

APPENDIX - 8/10

ENERGY SAVINGS THROUGH SWITCHING OFF DURING DAY TIME

1.	a. b.	No. of tubes in U1U03 clinker belt (top) No. of 70 W HPSV in U1U03 clinker belt (top)		52 4
2.	a. b.	No. of 70 W HPSV in Ph-7 New coal crusher No. of 250 W HPSV in Ph-7 New coal crusher		26 4
3.	No. of	70 W HPSV in DBC U2J08 (Topend)	=	20
4.	No. of	250 W HPSV in gypsum yard (Right side)	=	11
5.	No. of	70 W HPSV in Phase - I pipe conveyor	=	37
D		ing the study it was absorved that above fixtures	ora	left 'ON' eve

Presently during the study it was observed that above fixtures are left 'ON' even during day time when no one is testing/maintaining.

Annual energy wasted by above fixtures alone	= 11,920 W x 12 x 0.6 x 330
	= 28,322 kWh

This can be prevented by "SWITCHING OFF" during the day.

Annual energy savings	= 28,322 kWh
Cost of energy savings	= Rs.0.85 lakhs
Cost of investment (towards promotional material)	= Rs.1.00 lakhs
Simple payback period	= 1 year

APPENDIX - 8/11

CASE STUDY FOR INSTALLING ELECTRONIC CHOKES FOR FLUORESCENT TUBES

Energy consumed by a single tubelight fitting with ordinary choke	= 55 W
Energy consumed by the light fitting after replacement with electronic choke	= 45 W
Total No. of tubelights in airconditioned areas (Approximate)	= 1800
Annual energy savings	10 x 1800 x 12 x 330
Annual energy savings	1000
	= 71,280 kWh
Cost of savings per annum (@ Rs.3.per unit)	= Rs.2.14 Lakhs
Cost of one electronic choke	= Rs.300/-
Cost of implementation	= Rs.5.40 Lakhs

NOTE: This proposal can be taken as trial based option.

APPENDIX - 10/1

FREE AIR DELIVERY CAPACITY TEST

All compressors are designed to deliver a certain quantity of air per minute at a specified pressure. Normally compressor capacity is specified in terms of cubic feet or cubic metres per minute of free air at a specific delivery pressure. For example, 30 m³/min at 7 0 bar compressor sucks 30 m³/min of free air from atmosphere at ambient temperature and compresses to 7.0 bar delivery pressure. During compressor commissioning, FAD test is conducted and the system will be handed over to the customer. Due to poor maintenance or ageing of compressor, sometimes it may not deliver the specified quantity of air, even though it consumes same power. Hence FAD test should be conducted periodically to confirm whether compressor is working at its rated capacity or not.

1. FAD Test by Pump Up Method

It is calculated by measuring the time taken to fill air receiver upto its designed pressure. By knowing receiver volume, interconnecting pipe line volume and outlet air temperature, it is possible to estimate the existing FAD capacity

Steps are given below

- 1. Switch off compressor
- 2. Open receiver drain valve (Valve A)
- 3. Wait until the air pressure in the receiver becomes zero
- 4 Close receiver air delivery valve, safety valve and drain valve(Valves A,B & C)
- 5. Start compressor and load it, simultaneously start the stop watch
- 6. Switch off compressor or note down the time at which compressor starts unloading. Note the pressure also.
- 7. Measure outlet air temperature
- 8. Calculate volume of air receiver and inter connecting pipe lines

Appendix - 10/1 contd..

Appendix - 10/1 contd...

Substitute all values in the following formula -

FAD capacity in m³min =
$$\frac{P_d}{P_s} = \frac{T_s}{T_o} \times \frac{V}{T_o}$$

Where,

V = Volume of air receiver+interconnecting pipelines in m³

t = Time taken to fill receiver in minutes

P_d = Cut off or final air pressure in kg/cm²

T_o = Compressed air exit temp. in K

T_i = Inlet air temperature K

P_s = Atmospheric air pressure in kg/cm²

2. Suction Velocity Method

Using anemometer, measure the average air velocity at the compressor suction side during compressor loading period (if required, suction hood may be removed and suction duct can be extended using card board of same diameter to facilitate taking measurements)

Appendix - 10/1 contd.

FAD capacity in m³/min = A x B

Where A = Suction air velocity in m/min

B = Area of cross section of inlet duct in m²

APPENDIX - 10/2

COMPRESSED AIR LEAKAGE (NO-LOAD) TEST

Compressed air leaks obviously waste energy, and also reduce the effective capacity of compressor plant and may, in extreme cases, reduce significantly the performance of the end use equipment. Ideally speaking, compressed air system should not have any leaks at all but in practice it is rather difficult to have a zero leakage system. Depending upon the industry and type of air usage patterns upto 10% air leakage is allowed. In almost all industries using compressed air systems, one can hear a hissing sound from leaking pipe joints, valves, couplings, air regulators and other leak - prone areas. Leak check detectors can also be used to locate compressed air leakage points. Generally, the compressed air leakage is ignored as nobody quantifies the air wastage. No load test should be conducted periodically, when the plant is not in operation (lunch hours, during plant maintenance period, etc.) in order to quantify the air leakage and keep it to an acceptable minimum level. Procedure for leakage test is described below. Refer the figure below:

- Step 1 Switch off the compressor
- Step 2. Close air receiver outlet and drain valves (Valves A and B)
- Step 3. Open compressor discharge and air receiver discharge valves (Valves C & D)
- Step 4 Close all end use points (Valves 1 to 10)
- Step 5 Start compressor and allow the pressure to build up
- Step 6. Note time when it unloads
- Step 7 Note time when it loads
- Step 8 Repeat this exercise four or five times
- Step 9 Switch off compressor

Appendix - 10/2 contd..

Total **system leakage** can be calculated by substituting loading and unloading times in the equation given below

$$L = \frac{Q \times T}{(T + t)}$$
Where,

L = Ťotal system leakage in m³/min

 Q = Actual free air delivery capacity of compressor in m³/min

T = On load time in minutes

t = Off load time in minutes

Appendix - 10/2 conto

Power wasted due to leakage (kW)

Total system leakage x Sp Energy consumption

Annual energy wastage (Lakh kWh)

= Total system x Sp Energy x Annual operating leakage consumption hours

If leakage is more than the allowable limits, locate and arrest leakages immediately

APPENDIX - 10/3

INSTRUMENTATION FOR COMPRESSED AIR SYSTEMS

1. Vane Type Anemometer

This instrument is used for measuring velocity of inlet air to compressor and thereby calculating FAD by knowing the inlet area. The vane rotates when placed in an air stream, the speed of the rotation being related to the air velocity. Velocities in the range of 0.12 m/s to 30 m/s can be measured with an accuracy better than 3% of the instrument range in use except at very low velocities. A digital indicator is attached to the anemometer which displays the air velocity directly

The precaution to be taken here is to ensure that the inlet air velocity does not exceed the measuring range of the instrument. This instrument is also used to measure air flow in Fans, Root blowers, Air Handling Units (AHU), etc.

2. Pressure Gauge (Bourdon type - calibrated)

The operating pressure of compressors, on-off pressure settings and pressure drop in distribution lines can be measured using Bourdon type pressure gauges

3. Temperature Gauge

The operating temperature of air and water on inlet and outlet sides can be known. The temperature before / after inter-coolers and after-coolers can also be known.

Appendix - 10/3 contd..

4. Hygrometer

This is a portable electronic instrument with a digital indicator and a long probe to measure the dry bulb and wet bulb temperatures and percentage relative humidity of ambient air or compressor - inlet air. The water content in the air at compressor inlet can be estimated.

5. Digitial Temperature Indicator with sensors

This is a digital type meter provided with surface contact type thermocouple. This is used to measure the cooling water inlet and outlet temperature, inlet and outlet air temperature at different stages of compression, inter-coolers and after-coolers.

6. Leak Check Detector

This is a portable electronic instrument which can detect minute leakage of compressed air from leaking pipes, valves, traps, etc. It has an in-built amplifier and a display screen. The intensity of leakage is displayed on the LED screen. It is suitable for locating overground air leakages. It cannot quantify the air leakage.

7. Power Analyser

It is a versatile instrument to measure various electrical parameters such as kW, kVA, Power Factor, Volts, Current and Frequency. These parameters are used to evaluate the percentage loading on motors and then to infer the operating efficiency

8. Stop Watch

9. Measuring Tape

APPENDIX - 11/1

LIST OF SUPPLIERS AND RETROFITS

Eqpt./Retrofit	Manufacturer/Suppliers
Lighting	Beblec (India) Ltd 126, Sipcot complex Hosur 635 126, Tamilnadu
	Electronics India 238/A, 10th Main Road Nagendra Block, BSK II Stage Bangalore 560 050
Capacitors	Asian Electronics Ltd. D-11, Road No 28 Wagie Industrial Estate Thane - 400 604
	Marketed by
	Mysore Sales Intl Ltd Industrial Products Dvn MSIL House, 36, Cunningham Road Bangalore 560 052
	Meher Capacitors Pvt Ltd. 16(K), Attibele Industrial Area Neralur 562 107 Bangalore District.
	Marketed by
	Larsen & Toubro Limited P O Box 119, Pune 411 001

Appendix - 11/1 contd..

Eqpt./Retrofit	Manufacturer/Suppliers
	Prabhodan Capacitors Mfg.by Seva Engg Works Saswadi, Pune
,	Crompton Greaves Ltd. Dr E Moses Road Worli, Bombay 400 018
Energy Efficient Motors	Siemens Limited Jyothi Mahal II Floor St Marks Road, Bangalore 560 001
	Crompton Greaves Limited Machine I Division Dr E Moses Road Worli, Bombay 400 018
Variable Speed Drives	Asea Brown Boveri Ltd Sona Towers, 71, Miller Road Bangalore 560 052
	Kirloskar Electric Co. Ltd. Unit-IV, Belawadi Indl Area Mysore 510 005
	Siemens Limited Jyothi Mahal, III Floor -49 St Marks Road, Bangalore 560 001
	Allen Bradley Ltd. C-11, Site-4 Industrial Area, Shahibad Pin 201 010

Appendix - 11/1 contd.

Eqpt./Retrofit	Manufacturer/Suppliers
Soft Starters	Jeltron Instruments (I) (P) Ltd 6-3-248/F Road No.1 Banjara Hills Hyderabad 500 034
	Jayshree Electro Devices (P) Ltd 101, Prabhodhan Apartment 64/9, Erandewane, Pune 411 004
	Bharat Bijilee Ltd. Industrial Electronic Division 501-502, Swastik Chambers Chembur, Bombay 400 071
	Control Techniques (I) Ltd 117-B, Developed Plot Industrial Estate Perungudi, Madras 600 096
Timer Control Switch	Larsen & Toubro Limited Post Box No.119 Poona 411 001
Photo Sensitive Switch	Govt Tool Room Training Centre, Rajajinagar Bangalore 560 044
Flow Meter (Compressed Air)	ITT Barton I Floor, Indra Palace, H block, Cannaught Place New Delhi 110 001

Appendix - 11/1 contd..

Eqpt./Retrofit	Manufacturer/Suppliers
	Kent Meters Ltd. Agent : L & T Limited Gulas Bhavan 6, Bahadur Shah Zafar Marg New Delhi 110 002
	J N Marshall Pvt Ltd. Bombay-Pune Road Kasarvadı, Pune 411 054
	Eureka Industrial Equipment Pvt Ltd. 258, Kalina Udyog Bhavan Prabhadevi, Bombay 400 025
Power Analyser (To measure kVA, kW, PF, V & A)	Microtek Instruments 40-A, I Main Road I Floor, CIT Nagar Madras 600 035
Fans/ Blowers	S M India Limited 42-A, Harrington Road Madras
	Andrew Yule Co Ltd. Engg Division Yule House, Clive Road Calcutta 700 001
	Asea Brown Boveri Ltd. Sona Towers, 71 Millers Road Bangalore 560 052

Appendix - 11/1 contd.

Eqpt./Retrofit	Manufacturer/Suppliers
Inlet Vane Guide Control	Asea Brown Boveri Ltd. Sona Towers, 71 Millers Road Bangalore 560 052
Lux Meter	Cocin Prakrito Instrumentation 16, Rajendra Nagar P O Mohan Nagar Ghaziabad 201 007
Anemometer	Microtech Instruments 40-A, I Main Road CIT Nagar, Madras 600 035
O ₂ & CO ₂ Analysers	J N Marshall Systems & Services P B No 37, Bombay Pune Road Kasarvadi, Pune 411 005
	Taylor Instrument Co (I) Ltd 14, Mathura Road PO Amarnagar, Farıdabad
Star Delta Auto Controllers	Project & Supply A-605, Sunswept, Lokhandwala Complex Swami Samarth Nagar Four Bunglow, Andheri (W) Bombay 400 056
	Technovation Control & Power Systems 5, Savita Sangam Society Near Rajesh Apartment, Gotri Road Baroda 390 007
Compact Fluorescent Lamps	GE-Apar Lighting Maker Chambers 111, I Floor Nariman Point Bombay 400 021

Appendix - 11/1 contd..

Eqpt./Retrofit	Manufacturer/Suppliers
	Crompton Greaves Ltd. Lighting Division Dr E Moses Road Worli Bombay 400 018
Compressors	Kırloskar Pneumatıc Co Ltd , Industrial Estate Hadaspur, Pune Maharashtra
	Ingersol Rand (I) Ltd., Rhome-Poulence House S K Ahiri Marg PO Box 9138 Bombay 400 025
	Hindustan Compressors Ltd. 18-A, New Market Begum Bridge Meerut 250 001
	Elgi Compressors India House, Trichy Road Coimbatore 641 018
	Consolidated Pneumatic Tool Co Ltd. 301-302, L B Sastri Marg Mulund, Bombay 400 001
	K G Khosla Compressors Ltd. 1, Deshbandhu Gupta Road New Delhi 110 055

Appendix - 11/1 contd

Manufacturer/Suppliers Eqpt./Retrofit Mktd by: Trident Industries **Moisture Separators** Trident Electric Pvt Ltd 408, Sathy Road for Compressed Air # 133, I Floor, 11th cross Ganapathy (Automatic drain valve) Opp. Jeerige Bldg Combatore Malleswaram, Bangalore 3 Prasad Machine Works 8/85, Nehru Nagar PO Kalaputti Combatore 641 035 Siemag Hı-tech Filters Pvt Ltd #7, New Lata Apartments Jawahar Nagar, Goregaon (W) Bombay 400 062 Mercury Automatic Corpn. 8712, Arangung Near Palace Cinema Roshanera Road Delhi 110 007 Fluidomat Limited **Fluid Coupling** 7C-8J, Industrial Area A B Road, Dewas 455 001 (MP) Radix Sensor Pvt Ltd. **Digital Thermometer** B/34, 1st Ghanshyam Indl Estate and Temperature Indicators Off. Veera Desai Road, Andheri (West)

Bombay 400 058

Appendix - 11/1 contd..

Eqpt./Retrofit	Manufacturer/Suppliers
FRP Blades For Cooling Towers	Parag Enterprises Pvt. Ltd. 43, Tarani Colony AB Road, Dewas Madya Pradesh 455 001
Low Cost Photo Cell Timer	Govt Tool room Training Centre, Electronic Section, Rajajinagar Indl. Estate, Bangalore 560 044
Voltage Controllers	Beblec (India) Ltd. 126, Sipcot Complex Hosur 635 126,
	Electronics India 238/A, 10th Main Road Nagendra Block, BSK II Stage, Bangalore 560 050
Synthetic Flat Belts	NTB International Ltd. A-302, Road No.32 Wagle Industrial Estate Thane - 400 604
	Habasıt lakoka Ltd. Opp. Goldwins, Civil Aerodrome Post Coımbatore 641 014 Tamılnadu
Cogged Belts	Shail International 4-1, Shivsagar Apts SV Road Opp. Mulji Nagar Borivili (West), Bombay 400 092

Appendix - 11/1 contd.

Eqpt./Retrofit

Fabricators of Copper Intercell Busbars, Flexibles

Manufacturer/Suppliers

AVI Machine Spares
Off B/24 Vraj Villa Ist Floor
Amrutnagar, LBS Marg
Ghatkopar Indl Estate
Ghatkoar (W)
Bombay 400 086

Factory 1:

B-15/a Ghatkopar Indl Estate, LBS Marg, Ghatkopar (W) Bombay 400 086

Factory 2:

3, Hanuman Indl Estate Kastak Road, Wadala Bombay 400 031

Factory 3:

886/c, GIDC Indl Estate Makarpura Baroda 390 010

Mistry Prabudas Marji, Opp Mithal Industrial Estate, Andheri Kura Road Bombay 400 059 Ph 6341828 / 6343860

B M Moonot & Neutronics Mfg Co Regd.Office Station View Bldg Chembur, Bombay 400 071

Appendix - 11/1 contd..

Eqpt./Retrofit	Manufacturer/Suppliers
	Works:
•	12-1 Marol Maroshi Road Opp State Bank of India, Andheri (East) Bombay 400 059 Tel 583749
	National Wire and Metal Industries Works & Admn Office: 1/2, Sonawala Estate, Sonawala Road Goregaon East Bombay 400 063 Tel 695718, 692032, 693603 Grams "CONDUCTOR" Bombay 400 063
Pumps	Allweiler Tushaco (I) Ltd. 201, Wadala Udyog Bhavan Naigaum Cross Road, Mumbai 400031
	Kirloskar Brothers Ltd Udyog Bhavan, Tilak Road Pune - 411 002
Spray Guns (Blow Guns)	Pneutech Engineering Unit.17, Ashok Ind! Estate PB NO.7772, L B Shastri Marg Mulund, Mumbai 400 080
Pressure Recorders	J N Marshall Systems & Services P B No.37, Bombay Pune Road Kasarvadi, Pune 411 005

Appendix - 11/1 contd.

Eqpt./Retrofit	Manufacturer/Suppliers
Temperature Controller	Sonit Electronics 7, Shivsagar Society Krishnanagar, Near Super Steel Corpn Safed Pool, Pipe line, Mumbai 400 072
Gear Box	Shanthi Gears Limited 304-A, Trichy Road Singanallur, Coimbatore 641 005
Roots Blower	Kay International Pvt Ltd. 20th Mile, P O P.S.Rai Distt. Sonepat Haryana, India
	Economy Pneumatics Adarsh Ice & Cold Storage Compound Opp SNDT College B Z Patel Road, Off Marve Road Malad (W) Mumbai - 400 064
Digital Humidity & Temperature Indicator	Vaisala Sensor Systems P O Box 26, SF-00241 Helsinki, Finland Fax. 358 8949485
Sling Hygrometer	Lawerence & Mayo (P) Ltd. 4 - B, MG Road Bangalore 560 001

Appendix - 11/1 contd..

Eqpt./Retrofit	Manufacturer/Suppliers
Thermocouples	Toshniwal Bros Pvt. Ltd 37/4, Cunningham Road Cross Bangalore 560 052
Non Contact Temp. Indicator	Kane May Ltd. Swallowfield, Welwyn Garden City Hertfordshire AL6 1JP England Fax 0707 331202
Flexible Manometer (Water Column Differential pressure)	The British Rototherm Company Ltd Mragam, Port Talbot West Glamorgam SA 13 2 PW
Micro Mano Meter with Pitot Tube	AIR Instruments Resources Ltd. Monument Industrial Park Chalgrove, Oxford England OX9 7RW Ph (0865) 891190
Pressure Gauge	AR Enterprises N R Road Bangalore 560 001
Flue Gas Thermometer	Forebensons Engg. Ltd Plot No. A-19/2 & T - 4/2 IDA, Nacharam Hyderabad

