THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

Tutorial for Week 3

MATH1903: Integral Calculus and Modelling (Advanced)

Semester 2, 2012

Lecturers: Daniel Daners and James Parkinson

Topics covered

In lectures last week:

- \square The Fundamental Theorem of Calculus.
- □ Functions defined using integrals: the logarithm, the error function, the inverse tangent function, the Fresnel integrals, the sine integral, the logarithmic integral.
- ☐ Elementary antiderivatives (Liouville's Theorem).

Objectives

After completing this tutorial sheet you will be able to:

- ☐ Apply the Fundamental Theorem of Calculus in various settings.
- □ Quantitatively and qualitatively analyse functions defined by integrals.
- □ Decide if certain functions defined by integrals are elementary (challenging!).
- \square Use integration and differentiation to prove a beautiful theorem: π is irrational.

Preparation questions to do before class

- 1. Find the derivative of $f(x) = \int_1^{\sqrt{x}} \frac{s^2}{s^2 + 1} ds$
- **2.** Use integration by parts to calculate $\int_0^1 C(x) dx$, where $C(x) = \int_0^x \cos(t^2) dt$.

Questions to do in class

3. Find the derivative of the following functions.

(a)
$$f(x) = \int_{x}^{4} (2 + \sqrt{u})^{8} du$$
 (b) $f(x) = \int_{x}^{\cos x} e^{-t^{2}} dt$

4. Recall that the logarithmic integral Li(x) is defined by $\text{Li}(x) = \int_2^x \frac{dt}{\ln t}$. Suppose that $\alpha > 2$ satisfies $\text{Li}(\alpha) = 1$. Calculate

$$\int_{2}^{\alpha} \frac{\operatorname{Li}(x)}{x^{2}} \, dx.$$

5. Let f(x) be a continuous function on [a, b]. Apply the Mean Value Theorem to the function

$$F(x) = \int_{a}^{x} f(t) dt$$

to show that there exists $c \in (a, b)$ such that

$$\frac{1}{b-a}\int_a^b f(t) dt = f(c),$$
 and interpret this geometrically.

Questions for extra practice

- **6.** Let $f(x) = \int_0^x x \sin(t^2) dt$. Find f''(x).
- 7. Suppose that a function y = f(x) has the following graph:

Let F(x) be the function defined by $F(x) = \int_0^x f(t) dt$ for $0 \le x \le 8$. Sketch the graph of y = F(x), indicating points where F has a local maximum or minimum, and any points of inflection.

- 8. If $x \sin(\pi x) = \int_0^{x^2} f(t) dt$, find f(4).
- **9.** Suppose that f(t) is continuous on [a, b]. Recall the following:
 - The Extreme Value Theorem says that f(x) attains a global maximum M and a global minimum m on [a,b].
 - Then the *Intermediate Value Theorem* implies that if $m \leq A \leq M$ then there exists $c \in [a, b]$ such that f(c) = A.

Let p(t) be Riemann integrable on [a, b] with $p(t) \ge 0$ for all $t \in [a, b]$.

(a) Explain why

$$m \int_a^b p(t) dt \le \int_a^b f(t)p(t) dt \le M \int_a^b p(t) dt.$$

(b) Deduce that there is $c \in [a, b]$ such that

$$\int_a^b f(t)p(t) dt = f(c) \int_a^b p(t) dt.$$

This is called the *Mean Value Theorem for integrals*. It is a generalisation of Question 5. We will use it later in the course (§6.2 of the course notes).

2

Challenging questions

10. Suppose that f(x) and g(x) are rational functions. Recall that Liouville's Theorem says that

$$\int f(x)e^{g(x)}\,dx$$

is an elementary function if and only if there is a rational function r(x) such that f(x) = r'(x) + g'(x)r(x). Is

$$\int e^{1/x} \, dx$$

an elementary function?

The following questions use a nice mixture of differentiation and integration to show that π , π^2 , and e^r ($r \in \mathbb{Q} \setminus \{0\}$) are irrational. They are adapted from proofs in *Irrational Numbers*, by Ivan Niven (The Carus Mathematical Monographs, No. 11, 1956). The first proof of the irrationality of π (Johann Lambert, 1768) was considerably more complicated.

- 11. Let $n \ge 0$ be an integer, and let $f_n(x) = \frac{x^n(1-x)^n}{n!}$.
 - (a) Show that $f_n^{(j)}(0)$ and $f_n^{(j)}(1)$ are integers for all $j \in \mathbb{N}$. Hint: Binomial Theorem to see that $f_n^{(j)}(0)$ is integral. Then use $f_n(1-x) = f_n(x)$.
 - (b) Assume that $\pi^2 = \frac{a}{b}$ is rational, with $a, b \in \mathbb{N} \setminus \{0\}$. Let

$$F_n(x) = b^n \sum_{k=0}^n (-1)^k \pi^{2n-2k} f_n^{(2k)}(x) .$$

Use (a) to show that $F_n(0)$ and $F_n(1)$ are integers.

(c) Calculate $\frac{d}{dx} (F'_n(x) \sin \pi x - \pi F_n(x) \cos \pi x)$ and deduce that

$$I_n = \pi a^n \int_0^1 f_n(x) \sin \pi x \, dx$$
 is an integer for all n .

- (d) Obtain a contradiction by noticing that $0 < f_n(x) < \frac{1}{n!}$ for $x \in (0,1)$. Thus π^2 is irrational. Deduce that π is irrational too.
- 12. Let $f_n(x)$ be as in Question 11.
 - (a) Let $m \in \mathbb{N} \setminus \{0\}$ and define $G_n(x)$ (depending on n and m) by

$$G_n(x) = \sum_{k=0}^{2n} (-1)^k m^{2n-k} f_n^{(k)}(x) .$$

Show that $G_n(0)$ and $G_n(1)$ are integers. Calculate $\frac{d}{dx}\left(e^{mx}G_n(x)\right)$ and deduce that

$$m^{2n+1} \int_0^1 e^{mx} f_n(x) dx = e^m G_n(1) - G_n(0)$$
.

(b) Now assume that $e^m = \frac{p}{q}$ is rational. Obtain a contradiction.

3

(c) Deduce that e^r is irrational for all $r \in \mathbb{Q} \setminus \{0\}$.