Sorting, Binary Trees, Priority Queues and Graphs

Instructions

Sorting

- 1. Implement the SelectionSort algorithm and present best and worst cases complexity analysis.
- 2. Implement the InsertionSort algorithm and present best and worst cases complexity analysis.
- 3. Implement the QuickSort algorithm and present best and worst cases complexity analysis.

Binary Trees

5. Implement the missing methods in the code available at https://github.com/rcpsilva/PCC104_DesignAndAnalysisOfAlgorithms/blob/main/2025-1/Problem%20sets/Latex%20Source/5_Sorting_BinaryTrees_Heaps_Graphs/binary_search_tree.py. Present the complexity analysis for each method.

Heaps

Graphs

- 9. Implement the DFS and the BFS algorithms for a graph represented as adjacency list. Present the space and time complexity analysis in terms of the graph depth, h, and the branching factor (average number of children per node), b.
- 10. Implement the DFS, the BFS and the A* algorithms to find a path in a maze. The maze is represented as a $m \times n$ matrix, where each cell may contain:
 - 0: free space;
 - 1: wall;
 - s: starting position;
 - g: goal (maze exit).