Welcome All Today we are working on worksheet 08 Heating and cooling > Reading Application 4.2 $f'(6) \approx \frac{f(9)-f(3)}{9-2} = \frac{2}{3}$

Cooling Coffee

A group of students want to develop a rate of change equation to describe the cooling rate for hot coffee in order that they can make predictions about other cups of cooling coffee. Their idea is to use a temperature probe to collect data on the temperature of the coffee as it changes over time and then to use this data to develop a rate of change equation.

The data they collected is shown in the table below. The temperature C (in degrees Fahrenheit) was

v			
recorded every 2	minutes over	a 14 minute	period.

=	C	
Time (min)	Temp. (°F)	$\frac{dC}{dt}$ (°F per min)
0	160.3	~19.95
2	120.4	-15.55
4	98.1	-89
6	84.8	~4.q
8	78.5	-2.6
10	74.4	-1.6
12	72.1	-0.725
14	71.5	~0.3

$$\frac{dC}{dt} \approx \frac{98.1 - 160.3}{4 - 0} = -15.55^{\circ 1}/mil$$

$$\frac{dC}{dt} = \frac{(2) - (6)}{2 - 0} = \frac{1204 - 160.3}{2}$$

1. Figure out a way to use this data to fill in the third column whose values approximate $\frac{dC}{dt}$, where C is the temperature of the coffee.

2. Do you expect $\frac{dC}{dt}$ to depend on just the temperature C, on just the time t, or both the temperature C and the time t?

3. Sketch below your best guess for the graph of $\frac{dC}{dt}$.

at t=0. Then 6 min
later cup 1 is 85° F
et t=6 while a Same
Second cup is placed
in the room and but
its initial temp is different
85° F. Which cup
cools at a Fester rate?

The cups ore
placed in the

? room cup - has

c intial temp of
look cup B

has initial temp
of 90°F. Which

cools of faster rato?

Newton's Law of Heating and Cooling

4.

(a) Input the data from your extended table in question 1 into the GeoGebra applet $\frac{\text{https://ggbm.at/uj2gbz3V}}{\text{sketch from question 3?}} \text{ to plot points for } \frac{dC}{dt} \text{ vs. } C. \text{ Does this plot confirm or reject your}$

(b) Toggle on the curve fitting tool and find an equation that fits your data.

$$\frac{dC}{dt} = -0.3C + 21 = -0.3(C - 70)$$

A=Tm

Newton's Law of Heating and Cooling states that the temperature T of an object at time t changes at a rate which is proportional the difference of its temperature and the temperature of its surrounding:

$$\frac{dT}{dt} = -k(T - A)$$
 Constants

where A is a constant that denotes the ambient temperature and k > 0 is a constant that depends on the object.

5. What happens as $\mathbf{t} \to \infty$ if the initial temperature $\mathbf{T_0} > \mathbf{A}$? If $\mathbf{T_0} < \mathbf{A}$?

$$\frac{dC}{dt} = -0.3 (C - 70) = 0 \quad C = 70$$

$$\frac{dC}{dt} = 0.3 (C - 70) = 0 \quad C = 70$$

$$\frac{dC}{dt} = 0$$

$$C = 70 \quad C = 70$$

$$C =$$

Practice: Applications to Economics

- 6. Let S(p) denote the number of units of a particular commodity supplied to the market at a price of p dollars per unit, and let D(p) denote the corresponding number of units demanded by the market at the same price.
 - In static circumstances, market equilibrium occurs at the price where demand equals supply.
 - However, certain economic models consider a more dynamic economy in which price, supply, and demand are assumed to vary with time.
 - One of these, the Evans price adjustment model, assumes that the rate of change of price with respect to time t is proportional to the shortage, which is the difference between the quantity demanded and the quantity supplied..
 - (a) Write a differential equation for the rate of the change of the price of the good with respect to time.

$$\frac{dp}{dt} = K(D-S) \quad \text{or} \quad \frac{dp}{dt} = K(S-D)$$

(b) If we assume that supply and demand are linear functions given by

$$S(p) = 2 + p$$
 and $D(p) = 8 - 2p$,

Find a general solution to the differential equation in part (a).

$$\frac{dp}{dt} = k(8-2p) - (2+p) = k(6-3p) = -3k(p-2)$$

$$\frac{1}{p-2}dp = -3kdt$$

$$\frac{1}{p-2}dp = -3kdt$$

$$\frac{1}{p-2} = -3kdt$$

$$\frac{1}{p-2} = -3kdt$$

$$\frac{1}{p-2} = -3kd + C$$

(c) If the price is \$5 at time t = 0 and \$3 at time t = 2, determine what happens to p in the long run.

(0,5) and (12,3) are two given points

$$5 = Ce^{0} + 2$$
 so $C = 3$ $P = 3e^{-3kt} + 2$
 $3 = 3e^{-3k(2)} + 2$ gives $k \approx 0.183$ so
 $P = 3e^{-3(0.183)t} + 2 = 3e^{-0.549t} + 2$

Practice: Applications to Forensic Science

- 7. A detective finds a murder victim at 9 am. The temperature of the body is measured at 90.3°F. One hour later, the temperature of the body is 89.0°F. The temperature of the room has been maintained at a constant 68°F.
 - (a) Assuming the temperature, T, of the body obeys Newton's Law of Cooling, write a differential equation for T. Your equation will include the constant k (for now).

$$\frac{dT}{dt} = -k (T-A) = -k (T-68)$$
ambient temp

(b) Solve the differential equation to estimate the time the murder occurred.