САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Дисциплина: Архитектура ЭВМ

Отчет

по домашней работе № 1

Построение логических схем и минимизация логических функций

Выполнил: Левицкий Иван Михайлович

Номер ИСУ: 334916

студ. гр. М3135

Санкт-Петербург

2021

Цель работы: моделирование простейших логических схем и минимизация логических функций методом карт Карно.

Инструментарий и требования к работе: работа выполняется в logisim.

Теоретическая часть

Минимизация булевой функции - уменьшение кол-ва операций в формуле, ее представляющей (в частности в данной работе нас будет интересовать только минимизация ДНФ и КНФ).

Карта Карно - несколько переиначенная в визуальном плане таблица истинности булевой функции, а именно: представленная в двухмерном виде таблица истинности, в которой порядок наборов значений переменных записан не в обычном виде (лексикографическом), а в коде Грея (зеркальном коде). То есть карта Карно представляет собой двумерную таблицу $2^m \times 2^n$, где каждой строке соответствует некоторый код, кодирующий какой-то набор значений первых m переменных, и при этом все наборы значений первых m переменных закодированы и закодированы именно в порядке кода Грея (и аналогично для столбцов), а в клетке стоит значение данной булевой функции (от m+n переменных) от набора значений этих переменных, полученного конкатенацией кода строки и столбца на пересечении клетки.

Минимизация булевой функции методом карт Карно - графический способ минимизации булевых функций, представляющий собой операции "попарного неполное склеивания" и "элементарного поглощения".

Попарное неполное склеивание (или просто склеивание/склейка) - замена двух полных конъюнктов (или дизъюнктов), отличающихся инверсией ровно одной переменной, на выражение, получающееся выносом за скобки их общей части. Пример: $X_1X_2 \neg X_3 \lor X_1X_2X_3 = X_1X_2(\neg X_3 \lor X_3)$.

Элементарное поглощение - откидывание множителя (или элемента дизъюнкции), в котором происходит дизъюнкция (или конъюнкция) переменной и ее инверсии (мы можем их откинуть, так как они константы, не влияющие на результат). Пример: $\neg X_3 \lor X_3 = 1$ (не влияет на конъюнкцию), $\neg X_3 X_3 = 0$ (не влияет на дизъюнкцию).

Таким образом, очевидно, что после последовательного применения "склеивания" и "поглощения" мы сокращаем запись на один дизьюнкт/конъюнкт в ДНФ/КНФ и еще сокращаем его длину на 1: $X_1X_2\neg X_3 \lor X_1X_2X_3 = X_1X_2$. А карта Карно в данном варианте минимизации помогает нам найти термы, которые содержат одинаковые переменные и отличаются только в инверсии одной из них, и разбить их на пары (или группы пар, где склейка пройдет в несколько этапов). Упрощения поиска таких элементов с помощью карт Карно происходит потому, что они попросту являются "соседними" относительно осей нашей карты (оси - мнимые линии разделяющие каждые четыре столбца или строки таблицы).

По итогу, полный алгоритм минимизации ДНФ/КНФ (= построения МДНФ/МКНФ) с помощью карт Карно следующий:

1) Построить карту Карно.

- 2) Выделить в ней все клетки с 1 (или 0, если строим МКНФ) и разбить их на пары "соседних" (если какие-то не бьются оставить так).
- 3) Произвести склеивание + элементарное поглощение соседних термов.
- 4) Записать все полученные термы и произвести между ними дизъюнкцию (или конъюнкцию), получив тем самым МДНФ/МКНФ.

Практическая часть

2. Дана вектор-функция $\overline{x} = 1001100111100100$ Построим таблицу истинности по данной вектор-функции :

Таблица №1 — Таблица истинности $f(\bar{x})$

X_0	X_{1}	X_2	X_3	$f(\overline{x})$
1	2	3	4	5
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1

1	2	3	4	5
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

3. Запишем СДНФ по таблице 1:

$$(\neg X_0 \ \neg X_1 \ \neg X_2 \neg X_3) \ \lor \ (\neg X_0 \ \neg X_1 \ X_2 X_3) \ \lor \ (\neg X_0 \ X_1 \ \neg X_2 \neg X_3) \ \lor$$

$$(\neg X_0 \ X_1 \ X_2 X_3) \ \lor \ (X_0 \ \neg X_1 \ \neg X_2 \neg X_3) \ \lor \ (X_0 \ \neg X_1 \ \neg X_2 X_3) \ \lor$$

$$(X_0 \ \neg X_1 \ X_2 \neg X_3) \ \lor \ (X_0 \ X_1 \ \neg X_2 X_3) \ = \ f(X_0, X_1, X_2, X_3)$$

Запишем СКНФ по таблице 1:

$$(X_0 \lor X_1 \lor X_2 \lor \neg X_3)(X_0 \lor X_1 \lor \neg X_2 \lor X_3)(X_0 \lor \neg X_1 \lor X_2 \lor \neg X_3)$$

$$(X_0 \lor \neg X_1 \lor \neg X_2 \lor X_3)(\neg X_0 \lor X_1 \lor \neg X_2 \lor \neg X_3)(\neg X_0 \lor \neg X_1 \lor X_2 \lor X_3)$$

$$(\neg X_0 \lor \neg X_1 \lor \neg X_2 \lor X_3)(\neg X_0 \lor \neg X_1 \lor \neg X_2 \lor \neg X_3)$$

4. По записанной выше СКНФ составим логическую схему (см.рисунок 1). Для удобства будем делать это по следующему алгоритму: сначала получим всевозможные дизьюнкты X_0 , X_1 и их отрицаний (и аналогично для X_2 , X_3), затем из получившихся элементов получим все нужные нам дизьюнкты из СКНФ и с помощью бинарного дерева (для сокращения записи и уменьшения глубины) получим конъюнкцию этих дизьюнктов.

Рисунок №1 — логическая схема СКНФ

5. Составим МДНФ, для этого по таблице 1 построим карту Карно :

Таблица \mathcal{N} 2 — карта Карно для МДНФ

X_2X_3		00	01	11	10
$X_0 X_1$	00	1	0	1	0
	01	1	0	1	0
	11	0	1	0	0
	10	1	1	0	1

Разобьем смежные термы, дающие 1, на пары для склейки (в таблице 2 получившиеся пары выделены цветом, больших групп для склейки в этом примере не оказалось).

Произведем склейку с элементарным поглощением (в порядке синие, красные, желтые, зеленые):

Далее просто запишем дизъюнкцию для склеенных термов, получая МДНФ:

$$(\neg X_0 \neg X_2 \neg X_3) \lor (\neg X_0 X_2 X_3) \lor (X_0 \neg X_2 X_3) \lor (X_0 \neg X_1 \neg X_3) = f(X_0, X_1, X_2, X_3)$$

Аналогично построим МКНФ:

Таблица №3 — карта Карно для СКНФ

X_2X_3		00	01	11	10
$X_0 X_1$	00	1	0	1	0
	01	1	0	1	0
	11	0	1	0	0
	10	1	1	0	1

Опять разобьем смежные термы, теперь уже, дающие 0, на пары для склейки (в таблице 3 получившиеся пары выделены цветом, больших групп здесь тоже не оказалось).

Произведем склейку (в порядке синие, красные, желтые, зеленые):

Далее просто запишем конъюнкцию для склеенных термов, получая МКНФ:

$$(\neg X_0 \lor \neg X_2 \lor X_3)(\neg X_0 \lor X_2 \lor \neg X_3)(X_0 \lor X_1 \lor \neg X_3)(X_0 \lor X_2 \lor X_3)$$

6. По записанной выше МДНФ построим логическую схему. Для этого сначала получим первую конъюнкцию в каждом конъюнкте (первый столбик элементов "и", см. рисунок 2), затем получим полный конъюнкт (второй столбик элементов "и", см. рисунок 2), используя только что полученный элемент конъюнкции и оставшуюся переменную (в данном случае последняя везде X_3), а потом с помощью бинарного дерева (для сокращения записи и уменьшения глубины) получим дизьюнкцию наших конъюнктов.

Рисунок №2 — логическая схема МДНФ