주성분 분석 (Principal Component Analysis)

주성분 분석 강의 자료 개요

- 주성분 분석 개요
- 주성분 분석 수리적 배경
- 주성분 분석 알고리즘
- 주성분 분석 예제

다변량 데이터

변수 관측치	X,	•••	X _i	•••	X _p
N,	x_{II}	• • •	x _{Ii}	• • •	x_{Ip}
• • •	• • •	•••	•••	•••	• • •
N_i	x_{il}	• • •	X _{ii}	• • •	X _{ip}
•••	• • •	• • •	•••	• • •	• • •
N _n	X _{nl}	• • •	X _{ni}	• • •	X _{nþ}

- 관측치: 샘플 (제품, 고객, 환자,…)
- 변수: 각 관측치의 특성치
- 다변량 데이터: 변수가 2개 이상 존재하는 데이터

변수선택/추출을 통한 차원 축소

- 변수선택: 분석 목적에 부합하는 소수의 예측변수만을 선택
 - 장점: 선택한 변수 해석 용이
 - 단점: 변수간 상관관계 고려 어려움
- 변수추출: 예측변수의 변환(결합)을 통해 새로운 변수 추출
 - 장점: 변수간 상관관계 고려, 일반적으로 변수의 개수를 많이 줄일 수 있음
 - 단점: 추출된 변수의 해석이 어려움

변수선택/추출을 통한 차원 축소

- Supervised feature selection: Information gain, Stepwise regression, LASSO, Genetic algorithm, many more...
- Supervised feature extraction: Partial least squares (PLS)
- Unsupervised feature selection: PCA loading
- Unsupervised feature extraction: Principal component analysis (PCA), Wavelets transforms, Autoencoder

PCA...

- Supervised feature selection: Information gain, Stepwise regression, LASSO, Genetic algorithm, many more...
- Supervised feature extraction: Partial least squares (PLS)
- Unsupervised feature selection: PCA loading
- Unsupervised feature extraction: Principal component analysis (PCA), Wavelets transforms, Autoencoder

Principal Components Analysis Correct

Principle Components Analysis

- 고차원 데이터를 효과적으로 분석하기 위한 대표적 분석 기법
- 차원축소, 시각화, 군집화, 압축

- PCA는 n 개의 관측치와 p 개의 변수로 구성된 데이터를
 상관관계가 없는 k 개의 변수로 구성된 데이터 (n 개의 관측치)로 요약하는 방식으로, 이 때 요약된 변수는 <u>기존 변수의 선형조합</u>으로 생성됨
- 원래 데이터의 분산을 최대한 보존하는 새로운 축을 찿고, 그 축에 데이터를 사영 (Projection) 시키는 기법
- 주요 목적
 - 데이터 차원 축소 (n by p → n by k, where k << p)
 - 데이터 시각화 및 해석
- 일반적으로 PCA는 전체 분석 과정 충 초기에 사용

		Xı	X ₂	•••	X	p-I	X_p	
	ı							
	2							
	•••							
	N-I							
	N							
	Zı	Z ₂				Zı	Z_2	Z_3
I					I			
2					2			
•••					•••			
N-I					N-I			
N					Ν			

 $Z_1,Z_2,$ 그리고 Z_3 는 기존 변수인 $X_1,X_2,...,X_p$ 의 선형 조합으로 새롭게 생성된 변수

Reduce data from 3D to 2D or ID

Z is a linear combination (선형결합) of the original p variables in X

$$Z_{1} = \alpha_{11}X_{1} + \alpha_{12}X_{2} + \dots + \alpha_{1p}X_{p}$$

$$Z_{2} = \alpha_{21}X_{1} + \alpha_{22}X_{2} + \dots + \alpha_{2p}X_{p}$$

$$\vdots \qquad \vdots$$

$$Z_{p} = \alpha_{p1}X_{1} + \alpha_{p2}X_{2} + \dots + \alpha_{pp}X_{p}$$

- $X_1, X_2, ..., X_p$: 원래 변수 (original variable)
- $\mathbf{a}_i = [a_{i1}, a_{i2}, \dots, a_{ip}]$: i번째 기저(basis) 또는 계수 (Loading)
- $Z_1, Z_2, ..., Z_p$: 각 기저로 사영된 변환 후 변수 (주성분, Score)

- 주성분 분석
 - 주성분분석을 통해 새로운 축(변수) 결정
 - 주성분분석을 통해 새로운 기저에 사영된 데이터의 분산이 어느 정도인지 계산 가능

хI

❖ 주성분 분석

아래 2차원 데이터를 좌측과 우측 두 개의 축에 사영시킬 경우 우측 기저 (basis)가
 좌측 기저에 비해 손실되는 정보의 양(분산의 크기)이 적으므로 상대적으로 선호되는
 기저라고 할 수 있음

Principal Component Analysis

Find the new axis that maximizes the variance of data

Minimum Variance Analysis

Find the new axis that minimizes the variance of data

변수 관측치	X,	•••	X _i	•••	X _p
N ₁	x_{II}	• • •	x _{Ii}	• • •	x_{lp}
•••	• • •	•••	• • •	• • •	• • •
N _i	X _{il}	• • •	X _{ii}	• • •	X _{ip}
•••	• • •	• • •	• • •	• • •	•••
N _n	X _{nl}	• • •	X _{ni}	• • •	X _{nþ}

$$\bar{X} = \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \\ \dots \\ \bar{x}_p \end{bmatrix} \quad C_n = \begin{bmatrix} s_{11} & \dots & s_{1p} \\ \vdots & \ddots & \vdots \\ s_{p1} & \dots & s_{pp} \end{bmatrix} R = \begin{bmatrix} 1 & r_{12} & \dots & r_{1p} \\ r_{21} & 1 & \dots & r_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ r_{p1} & r_{p2} & \dots & 1 \end{bmatrix}$$

- 공분산(Covariance)의 성질
 - X를 p개의 변수와 n개의 개체로 구성된 n by p 행렬로 정의할 때 X의 공분산 행렬은 다음과 같음

$$Cov(X) = \frac{1}{n}(X - \bar{X})(X - \bar{X})^T$$

■ 공분산 행렬의 대각 성분은 각 변수의 분산과 같으며, 비대각행렬은 대응하는 두 변수의 공분산과 같음 (변수 개수: p)

$$C_{x} = Var[x] = \begin{bmatrix} Var[x_{1}] & Cov[x_{1}, x_{2}] & \dots & Cov[x_{1}, x_{p}] \\ Cov[x_{2}, x_{1}] & Var[x_{2}] & \dots & Cov[x_{1}, x_{p}] \\ \vdots & \vdots & \ddots & \vdots \\ Cov[x_{p}, x_{1}] & Cov[x_{p}, x_{2}] & \dots & Var[x_{p}] \end{bmatrix}$$

$$= \begin{bmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1p} \\ \sigma_{21} & \sigma_{22} & \dots & \sigma_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{p1} & \sigma_{p2} & \dots & \sigma_{pp} \end{bmatrix} = \begin{bmatrix} \sigma_{1}^{2} & \sigma_{12} & \dots & \sigma_{1p} \\ \sigma_{21} & \sigma_{2}^{2} & \dots & \sigma_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{p1} & \sigma_{p2} & \dots & \sigma_{p}^{2} \end{bmatrix}$$

■ 데이터의 총분산은 공분산행렬의 대각성분들의 합으로 표현됨

$$tr[Cov(X)] = Cov(X)_{11} + Cov(X)_{22} + Cov(X)_{33} + ... + Cov(X)_{pp}$$

• 사영 (Projection)

• 한 벡터 \vec{b} 를 다른 벡터 \vec{a} 에 사영시킨다는 것은 벡터 \vec{b} 로부터 벡터 \vec{a} 에 수직인 점까지의 길이를 가지며 벡터 \vec{a} 와 같은 방향을 갖는 벡터를 찾는다는 것을 의미

$$\begin{split} \left(\vec{b} - p\vec{a}\right)^T \vec{a} &= 0 \ \Rightarrow \ \vec{b}^T \vec{a} - p\vec{a}^T \vec{a} = 0 \ \Rightarrow \ p = \frac{\vec{b}^T \vec{a}}{\vec{a}^T \vec{a}} \\ \vec{x} &= p\vec{a} = \frac{\vec{b}^T \vec{a}}{\vec{a}^T \vec{a}} \vec{a} \end{split}$$
 If \vec{a} is unit vector
$$p = \vec{b}^T \vec{a} \ \Rightarrow \vec{x} = p\vec{a} = (\vec{b}^T \vec{a})\vec{a} \end{split}$$

- 고유값 및 고유벡터
 - 어떤 행렬 \mathbf{A} 에 대해 상수 λ 와 벡터 \mathbf{x} 가 다음 식을 만족할 때, λ 와 \mathbf{x} 를 각각 행렬 \mathbf{A} 의 고유값(eigenvalue) 및 고유벡터(eigenvector)라고 함

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x} \quad \rightarrow \quad (\mathbf{A} - \lambda\mathbf{I})\mathbf{x} = 0$$

■ 벡터에 행렬을 곱한다는 것은 해당 벡터를 선형변환(linear transformation)한다는 의미 → 고유벡터는 이 변환에 의해 방향이 변하지 않는 벡터를 의미

Recall PCA 개요

Principal Component Analysis

Find the new axis that maximizes the variance of data

Find the new axis that minimizes the variance of data

PCA 알고리즘 – 주성분 추출

- Assume that we have the centered data (i.e., $\bar{X}_i = 0$, i = 1, ..., p)
- Let **X** be an p-dimensional random vector with the covariance matrix Σ
- Let α be an p-dimensional vector of length one (i.e., $\alpha^T \alpha = 1$)
- Let $\mathbf{Z} = \alpha^{\mathsf{T}} \mathbf{X}$ be the projection of \mathbf{X} onto the direction α

The main purpose in PCA is

to find α that produces the largest variance of **Z**

Max Var(
$$\mathbf{Z}$$
) = Var($\alpha^T \mathbf{X}$) = α^T Var(\mathbf{X}) $\alpha = \alpha^T \Sigma \alpha$
s.t. $||\alpha|| = \alpha^T \alpha = 1$

PCA 알고리즘 – 주성분 추출

$$\mathsf{Max}\ \alpha^\mathsf{T}\ \Sigma\alpha = \alpha^\mathsf{T}\ \mathsf{E}\Lambda\mathsf{E}^\mathsf{T}\ \alpha$$

s.t.
$$||\alpha|| = 1$$

Max
$$\beta^T \Lambda \beta$$
 where $\beta = E^T \alpha$

s.t.
$$||\beta|| = 1$$

$$\begin{array}{ccc} Max & \lambda_1\beta_1^2 + \lambda_2\beta_2^2 + \dots + \lambda_m\beta_m^2 \\ s. t & \beta_1^2 + \beta_2^2 + \dots + \beta_m^2 = 1 \\ & \lambda_1 > \lambda_2 > \dots > \lambda_m \end{array}$$

eigenvalues and eigenvector of Σ

$$[E \land V] = svd(\Sigma)$$

$$\lambda_1 \ge \cdots \ge \lambda_m \ge 0$$

$$e_1, \dots, e_m$$

$$\Lambda = diag(\lambda_1, \dots, \lambda_m)$$

Thus, the optimal value is λ_1 and $\alpha=e_1$

	X_{l}	X_2	X_3
	0.2	5.6	3.56
v –	0.45	5.89	2.4
X =	0.33	6.37	1.95
	0.54	7.9	1.32
	0.77	7.87	0.98

	Xı	X ₂	X ₃	
	-1.1930	-1.0300	1.5012	
\	-0.0370	-0.7647	0.3540	
X =	-0.5919	-0.3257	-0.0910	
	0.3792	1.0739	-0.7140	
	1.4427	1.0464	-1.0502	

(normalize X to $E(X_i)=0$, $Var(X_i)=1$)

Question) Corr
$$(X_1, X_2) =$$
Corr $(X_3, X_3) =$

❖ 데이터 정규화

■ 모든 변수의 평균을 0으로 맞춤

x _I	2.5	0.5	2.2	1.9	3.1	2.3	2	I	1.5	1.1
X ₂	2.4	0.7	2.9	2.2	3	2.7	1.6	1.1	1.6	0.9
$\mathbf{x}_{\mathbf{l}}$	0.69	-1.31	0.39	0.09	1.29	0.49	0.19	-0.81	-0.3 I	-0.71
$\mathbf{x_2}$	0.49	-1.21	0.99	0.29	1.09	0.79	-0.31	-0.81	-0.31	-1.01

The Eigenvalue-Eigenvector pairs on the correlation matrix, Σ

$$[E \land V] = svd(\Sigma)$$

$$\lambda_1 = 0.0786,$$
 $e_1^T = [0.2590 \quad 0.5502 \quad 0.7938]$ $\lambda_2 = 0.1618,$ $e_2^T = [0.7798 \quad -0.6041 \quad 0.1643]$ $\lambda_3 = 2.7596,$ $e_3^T = [0.5699 \quad 0.5765 \quad -0.5855]$

$$\lambda_{1} = 0.0786, e_{1}^{T} = \begin{bmatrix} 0.2590 & 0.5502 & 0.7938 \end{bmatrix} \\ \lambda_{2} = 0.1618, e_{2}^{T} = \begin{bmatrix} 0.7798 & -0.6041 & 0.1643 \end{bmatrix} \\ \lambda_{3} = 2.7596, e_{3}^{T} = \begin{bmatrix} 0.5699 & 0.5765 & -0.5855 \end{bmatrix}$$
, $\mathbf{X} = \begin{bmatrix} -1.1930 \\ -0.0370 \\ -0.5919 \\ \hline 0.3792 \\ \hline 1.4427 \end{bmatrix}$

(normalize X to $E(X_i)=0$, $Var(X_i)=1$

$$\lambda_3 > \lambda_2 > \lambda_1$$

$$PC_{1} = e_{1}^{T}X = 0.5699 \cdot X_{1} + 0.5765 \cdot X_{2} - 0.5855 \cdot X_{3} = 0.5699 \cdot \begin{bmatrix} -1.1930 \\ -0.0370 \\ -0.5919 \\ 0.3792 \\ 1.4427 \end{bmatrix} + 0.5765 \cdot \begin{bmatrix} -1.0300 \\ -0.7647 \\ -0.3257 \\ 1.0739 \\ 1.0464 \end{bmatrix} - 0.5855 \cdot \begin{bmatrix} 1.5012 \\ 0.3540 \\ -0.0910 \\ -0.7140 \\ -1.0502 \end{bmatrix} = \begin{bmatrix} -2.1527 \\ -0.6692 \\ -0.4718 \\ 1.2533 \\ 2.0404 \end{bmatrix}$$

$$PC_{2} = e_{2}^{T} X = \begin{bmatrix} -0.0615 \\ 0.4912 \\ -0.2798 \\ -0.4703 \\ 0.3204 \end{bmatrix} \qquad PC_{3} = e_{3}^{T} X = \begin{bmatrix} 0.3160 \\ -0.1493 \\ -0.4047 \\ 0.1223 \\ 0.1157 \end{bmatrix} \qquad \therefore PC = \begin{bmatrix} -2.1527 & -0.0615 & 0.3160 \\ -0.6692 & 0.4912 & -0.1493 \\ -0.4718 & -0.2798 & -0.4047 \\ 1.2533 & -0.4703 & 0.1223 \\ 2.0404 & 0.3204 & 0.1157 \end{bmatrix}$$

$$Cov(PC) = \begin{bmatrix} 2.7596 & 0 & 0 \\ 0 & 0.1618 & 0 \\ 0 & 0 & 0.0786 \end{bmatrix}$$

<u>주성분(PC)들은 서로 독립!</u>

The eigenvalues of λ_1 , λ_2 , λ_3 are the variances of each principal component.

Based on the correlation matrix

Var (PCI) = 2.7596 =
$$\lambda_3$$
 (Largest eigenvalue)

Var (PC2) =
$$0.1618 = \lambda_2$$

$$Var (PC3) = 0.0786 = \lambda_1$$

Proportion of total population variance due to
$$=\frac{\lambda_3}{\lambda_1+\lambda_2+\lambda_3}=\frac{2.7596}{0.0786+0.1618+2.7596}=0.920$$
 the Ist principal component

PCA - 예제 (몇 개의 주성분?)

- 선택 방식 I: 고유값 감소율이 유의 미하게 낮아지는 Elbow Point에 해당 하는 주성분 수를 선택
- 선택 방식 2: 일정 수준 이상의 분산 비를 보존하는 최소의 주성분을 선 택 (보통 70% 이상)

PCA Score Plot - 예제

3D PCA score plot

3D plot from original data

PCA Loading Plot - 예제

PCA Loading: 실제 변수가 주성분 결정에 얼마나 많은 영향을 미쳤는지

PCA 알고리즘 - 요약

- **Step I.**데이터 정규화 (mean centering)
- Step 2. 기존 변수의 covariance (correlation) matrix 계산
- **Step 3.** Covariance (correlation) matrix로부터 eigenvalue 및 이에 해당되는 eigenvector를 계산
- Step 4. Eigenvalue 및 해당되는 eigenvectors 를 순서대로 나열

$$\lambda(1) > \lambda(2) > \lambda(3) > \lambda(4) > \lambda(5)$$

- e(1) > e(2) > e(3) > e(4) > e(5), e(i), i=1,...,5 is a vector
- Step 5. 정렬된 eigenvector를 토대로 기존 변수를 변환

$$PCI = e(I)X = e_{11} \cdot X_1 + e_{12} \cdot X_2 + ... + e_{15} \cdot X_5$$

$$PC2 = e(2)X = e_{21} \cdot X_1 + e_{22} \cdot X_2 + ... + e_{25} \cdot X_5$$

$$PC5 = e(5)X = e_{51} \cdot X_1 + e_{52} \cdot X_2 + ... + e_{55} \cdot X_5$$

PCA 한계

• 주성분 분석의 특징

공분산 행렬의 고유벡터를 사용하므로 단일 가우시안(unimodal) 분포로 추정할 수
 있는 데이터에 대해 서로 독립적인 축을 찾는데 사용할 수 있음

한계점 I

- 데이터의 분포가 가우시안이 아니거나 다중 가우시안 (multimodal) 자료들에 대해서는 적용하기가 어려움
- 대안: 커널 PCA, LLE (Locally Linear Embedding)

PCA 한계

한계점 2

- 분류/예측 문제에 대해서 데이터의 범주 정보를 고려하지 않기 때문에 범주간 구분이
 잘 되도록 변환을 해주는 것은 아님
 - 주성분분석은 단순히 변환된 축이 최대 분산방향과 정렬되도록 좌표회전을 수행함
 - 대안: Partial Least Square (PLS)

PCA – 실제 예제

PCA – 실제 예제

- IRIS 데이터에 대한 주성분분석
 - IRIS 데이터: I50개의 IRIS에 대해 4개 입력변수, I개 출력변수 (3 클래스)

https://archive.ics.uci.edu/ml/datasets/iris

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	1
4.9	3	1.4	0.2	1
4.7	3.2	1.3	0.2	1
4.6	3.1	1.5	0.2	1
5	3.6	1.4	0.2	1
5.4	3.9	1.7	0.4	1
•••	•••	•••	•••	•••

PCA – Matrix Plot

• 입력변수들이 대체로 강한 양의 상관관계를 보이고 있음

PCA - Scree Plot

• I-2개의 주성분 (PC)로 충분

PCA – 2D Score Plot

- PCA의 핵심 그래프
- 같은 품종의 IRIS 가 같은 그룹에 포함

PCA – Loading Plot

• 주요 입력변수 파악

PCR은 PCA를 통해 생성한 k 개의 변수를 가지는 데이터를 다중회귀
 모델에 적용하는 방법

 PCA를 통해 생성한 데이터는 공분산이 존재하지 않으므로, 다중공선 성에 따른 선형회귀모델의 문제점을 방지할 수 있음

다중회귀모델

다중회귀모델 회귀계수

 $Y = X\beta + \varepsilon Y = Zq + e$

X : 기존 데이터

주성분 회귀모델

주성분 회귀모델 회귀계수

Z: 주성분 데이터 (PCA score)

Step I.데이터 정규화 (mean centering)

Step 2. Covariance (correlation) matrix 및 eigenvalue, eigenvector를 계산하여 PCA 수행

ZI =
$$e(I)$$
X = e_{II} · X_1 + e_{I2} · X_2 +...+ e_{I5} · X_5
Z2 = $e(2)$ **X** = e_{2I} · X_1 + e_{22} · X_2 +...+ e_{25} · X_5
...

Z_k = $e(k)$ **X** = e_{kI} · X_1 + e_{k2} · X_2 +...+ e_{k5} · X_k

Step 3. 추출된 데이터를 사용하여 회귀분석 진행

$$\hat{q} = (Z^T Z)^{-1} Z^T Y$$
 $\hat{Y} = Z \hat{q} = E_k^T X \hat{q}$

주성분 분석 강의 자료 개요

- 주성분 분석 개요
- 주성분 분석 수리적 배경
- 주성분 분석 알고리즘
- 주성분 분석 예제

EOD