Question	Scheme	Marks
2(a)	$(1+Ax)^n = 1+n(Ax)+\frac{n(n-1)(Ax)^2}{2}+$	B1
	$\Rightarrow nA = -\frac{1}{3} \qquad \frac{n(n-1)A^2}{2} = \frac{5}{36}$	M1
	$\Rightarrow A = -\frac{1}{3n}$	
	$\Rightarrow \frac{n(n-1)\left(-\frac{1}{3n}\right)^2}{2} = \frac{5}{36} \Rightarrow n = -\frac{2}{3} \Rightarrow A = \frac{1}{2}$ ALT 1	M1dM1A1A1 [6]
	$\Rightarrow nA = -\frac{1}{3} \qquad \frac{n(n-1)A^2}{2} = \frac{5}{36}$	[M1
	$\Rightarrow n = -\frac{1}{3A}$ 1 (1)	
	$\Rightarrow \frac{-\frac{1}{3A}\left(-\frac{1}{3A}-1\right)(A)^2}{2} = \frac{5}{36} \Rightarrow A = \frac{1}{2} \Rightarrow n = -\frac{2}{3}$	M1dM1A1A1]
	ALT 2 $\Rightarrow nA = -\frac{1}{3} \Rightarrow \left[(nA)^2 = \frac{1}{9} \right]$	
	$\frac{n(n-1)A^2}{2!} = \frac{5}{36} \Longrightarrow \left[\frac{(nA)^2 - A(An)}{2!} = \frac{5}{36}\right]$	[M1
	$\Rightarrow \frac{\frac{1}{9} - A\left(-\frac{1}{3}\right)}{2} = \frac{5}{36} \Rightarrow A = \frac{1}{2} \Rightarrow n = -\frac{2}{3}$	M1dM1A1A1]
(b)	Coefficient of $x^3 \Rightarrow \frac{\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)\left(-\frac{8}{3}\right)\left(\frac{1}{2}\right)^3}{2!} = -\frac{5}{8!}$	
	Coefficient of $x^3 \Rightarrow \frac{(3)(3)(2)}{3!} = -\frac{3}{81}$	M1A1 [2]
		Total 8 marks

Part	Mark	Notes
(a)	B1	For the correct expansion of $(1+Ax)^n$
		This can be implied by correct work in the term in x and x^2
	M1	Equates their second term to $-\frac{1}{3}$ and their third term to $\frac{5}{36}$
		Allow presence of x and x^2 , provided it is on BOTH sides.
		eg Allow $nAx = -\frac{1}{3}x$ and $\left[\frac{n(n-1)A^2}{2}\right]x^2 = \frac{5}{36}x^2$
	M1	Substitutes A into n to form an equation in n
	dM1	For solving their equation in <i>n</i>
		If they make errors in simplification to this step e.g.,
		$\left(-\frac{1}{3n}\right)^2 \Rightarrow \left(\frac{1}{9n}\right) \text{ or } \left(-\frac{1}{3n}\right)^2 \Rightarrow -\left(\frac{1}{9n^2}\right) \text{ then this is M0}$
		Their equation must be either a quadratic or linear if they cancel an <i>n</i> This is dependent on the previous M mark only.
	A1	For the correct value of <i>n</i> or <i>A</i> $n = -\frac{2}{3}$, $A = \frac{1}{2}$
		isw $n = 0$ seen. This is equivalent to cancelling n 's
	A1	For the correct value of n and A
	ALT 1	First two marks same as main method
	M1	Substitutes n in terms of A into an equation in A
		$\frac{-\frac{1}{3A}(-\frac{1}{3A}-1)(A)^2}{2} = \frac{5}{36}$
		2 30
		Do not allow a substitution of $n = -\frac{1}{3}$ for this mark
	dM1	For solving their equation in A to find a value for A
		Their equation must be either a quadratic or linear if they cancel an A
	A1	This is dependent on the previous M mark only.
		For the correct value of <i>n</i> or <i>A</i> $n = -\frac{2}{3}$, $A = \frac{1}{2}$
	A1	For the correct value of <i>n</i> and <i>A</i>
	ALT 2	First two marks same as main method
	M1	Substitutes nA into $\frac{(nA)^2 - A(An)}{2!} = \frac{5}{36}$
	dM1	Solves their equation to find a value for A provided no errors introduced.
	A1	This is dependent on the previous M mark only. For the correct value of n or A $n = -\frac{2}{3}$, $A = \frac{1}{2}$
	A1	For the correct value of n and A

(b)	M1	Uses the correct form for the fourth term of a binomial expansion with their A and their n . You may see this in terms of A and n in part (a)
		Accept as a minimum, the correct power of $\left(\frac{1}{2}\right)^3$ with the correct
		denominator i.e. 3! Allow the presence of x^3 for this mark.
	A1	For the correct value of $-\frac{5}{81}$
		If you see the correct value following the correct values of A and n with no working, award M1A1