Question	Scheme	Marks
4(a)	$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = 5\mathbf{i} + 7\mathbf{j} + a\mathbf{i} + 16\mathbf{j} = (5+a)\mathbf{i} + 23\mathbf{j}$	M1A1
	$(5\sqrt{29})^2 = (5+a)^2 + 23^2 \Rightarrow 5+a = \pm\sqrt{196} \Rightarrow a = 9, -19$	M1A1
		[4]
(b)	$\overrightarrow{AB} = "9"\mathbf{i} + 16\mathbf{j} \Rightarrow \overrightarrow{AB} = \sqrt{"9"^2 + 16^2} = \sqrt{337}$	M1
	Unit vector: $\frac{1}{\sqrt{"337"}}("9"i+16j)$ oe.	A1 [2]
Total 6 marks		

Part	Mark	Notes
(a)	M1	For the correct vector statement for \overrightarrow{OB} $\overrightarrow{\rightarrow} \rightarrow \overrightarrow{\rightarrow} \rightarrow \rightarrow$ For example, accept $\overrightarrow{AB} = \overrightarrow{A0} + \overrightarrow{OB}$ This mark can be implied by a correct vector for \overrightarrow{OB}
	A1	For the correct vector in terms of <i>a</i> [simplified or unsimplified].
	M1	For using Pythagoras theorem with $(5\sqrt{29})$ and their vector for \overrightarrow{OB} and solving the equation to find two values of a
	A1	For the two correct values. $a = 9, -19$ seen in their working
(b)	M1	For finding $ AB $ by using a correct Pythagoras and writing down the \rightarrow unit vector where $AB = k\mathbf{i} + 16\mathbf{j}$ where k is a positive value. Award for $\frac{"9"\mathbf{i} + 16\mathbf{j}}{\sqrt{"9"^2 + 16^2}}$ $\sqrt{9^2 + 16^2}$ can be implied by sight of $\sqrt{337}$ If they have an incorrect value for a , full substitution using Pythagoras theorem must be seen for the award of this mark.
	A1	For the correct unit vector. Accept any correct equivalent unit vectors. For example; $\frac{\sqrt{"337"}}{"337"} ("9"\mathbf{i} + 16\mathbf{j}) \text{ or } \frac{"9"\mathbf{i}}{\sqrt{"337"}} + \frac{16\mathbf{j}}{\sqrt{"337"}}$ Accept decimal answers. Eg., $0.054("9"\mathbf{i} + 16\mathbf{j})$ for awrt 0.054 Or $0.49\mathbf{i} + 0.87\mathbf{j}$ or better. Allow $\pm \frac{1}{\sqrt{"337"}} ("9"\mathbf{i} + 16\mathbf{j})$

Useful Sketch

