23MAC260 Elliptic Curves: Week 2

Last updated February 8, 2024

1 Adding Points on Elliptic Curves

Last week we defined elliptic curves: they are curves of the form

$$C = \{[X, Y, Z] \in \mathbb{P}^2 \mid Y^2Z - G(X, Z) = 0\}$$

where G(X,Z) is homogeneous of degree 3 and its dehomogenisation $G_d(x)$ has 3 distinct roots.

This week we'll see how to **add together** points on an elliptic curve C.

We start with the following lemma.

Lemma 1.1 (Weak Bézout Theorem). Let $C \subset \mathbb{P}^2$ be a curve of the form

$$C = \{ [X, Y, Z] \in \mathbb{P}^2 \mid F(X, Y, Z) = 0 \}$$

where F is an irreducible cubic polynomial. Let L be any line in \mathbb{P}^2 . Then $C \cap L$ consists of 3 points, counted with multiplicity.

Here "counted with multiplicity" means that if C and L intersect tangentially at a point p, then p counts as two intersections; if L is the tangent line to C at an inflection point p, then p counts as 3 intersections.

Proof. A line in \mathbb{P}^2 is defined by a homogeneous linear equation

$$aX + bY + cZ = 0$$

where a, b, c are constants, not all 0. Suppose without loss of generality $c \neq 0$: then we can solve for Z to get

$$Z = \frac{aX + bY}{c}$$
.

Substituting this into F gives a homogeneous cubic $\widetilde{F}(X,Y)$ of degree 3. Intersection points in $C \cap L$ then correspond to zeroes of \widetilde{F} .

Dividing out the highest possible power of Y from \widetilde{F} , we can write it as

$$\widetilde{F}(X,Y) = Y^k G(X,Y) \\$$

where $k \in \{0, 1, 2, 3\}$ and the polynomial G(X, Y) has degee 3 - k and is not divisible by Y. Roots of G then correspond to roots of its dehomogenisation $G_d(x)$. Since we are working over \mathbb{C} , this polynomial has 3 - k roots counted with multiplicity, so \widetilde{F} has G roots counted with multiplicity.

Now let's see how to add points.

Notation: Let *C* denote an elliptic curve.

- (a) In Week 1 we saw that the point $[0, 1, 0] \in \mathbb{P}^2$ always lies on C. We denote this point by O.
- (b) Let P and Q be two points on C. Let \overline{PQ} denote:
 - the line joining P to Q, if $P \neq Q$;
 - the tangent line to C at P, if P = Q.

Then P * Q denotes the third point of intersection of \overline{PQ} with C.

Note that Lemma 1.1 guarantees that \overline{PQ} always intersects C in 3 points (counted with multiplcity).

Definition 1.2 (Elliptic Curve Addition). Let C be an elliptic curve. We define an operation \oplus called addition on C by

$$P \oplus Q = O \ast (P \ast Q)$$

Picture:

The key point (of this whole module!) is that the operation we just defined makes the elliptic curve C into an **abelian group**. Let's see what that means in more detail.

Theorem 1.3. The operation \oplus has the following properties:

1. \oplus is associative:

$$(P \oplus Q) \oplus R = P \oplus (Q \oplus R)$$

for all points P, Q, $R \in C$.

2. For all points $P \in C$ we have

$$O \oplus P = P \oplus O = P$$
.

In other words, O is the identity element for \oplus .

3. For all points $P \in C$ we have

$$(O*P) \oplus P = P \oplus (O*P) = O$$

In other words, O * P is the inverse of P.

4. For all points $P, Q \in C$ we have

$$P \oplus Q = Q \oplus P$$
.

Proof. 1. This is the hardest part to prove; we will delay the proof until the next lecture.

2. By definition $O \oplus P = O * (O * P)$. Suppose the line \overline{OP} intersects C in a third point Q, so that O * P = Q. Then $\{O, P, Q\}$ all lie on a line. So O * Q = P. Hence

$$O \oplus P = O * (O * P)$$
$$= O * Q$$
$$= P.$$

Using Statement 4, we also get $P \oplus O = P$.

3. We want to prove that

$$(O * P) \oplus P = O$$
.

Again, say that O * P = Q, so $\{O, P, Q\}$ lie on a line. Then

$$(O * P) \oplus P = Q \oplus P$$
$$= O * (Q * P)$$
 (†)

But Q * P = O, again because the 3 points lie on a line. So $(\dagger) = O * O$.

Now recall that O is an **inflection point** on C: that means that the tangent line to C at O intersects C with multiplicity 3 at O. Therefore O*O=O, and so

$$(O * P) \oplus P = O * O$$
$$= O.$$

Again using Statement 4 we get $P \oplus (O * P) = P$ also.

4. To prove that $P \oplus Q = Q \oplus P$, it is enough to prove that P * Q = Q * P. But the definition of P * Q only uses the line \overline{PQ} , which is unchanged if we swap P and Q.

2 Examples of point addition

Let's add some points on the curve C given by

$$Y^2Z = X^3 + Z^3$$

First note that this indeed an elliptic curve: here we have $G(X,Z)=X^3+Z^3$, so $G_d(x)=x^3+1$ which has 3 distinct roots in $\mathbb C$ (check!).

To carry out computation, it is convenient to work in the affine plane. As we have seen, the part of C in the affine plane is defined by the dehomogenised equation

$$y^2 = x^3 + 1. {1}$$

This curve contains the two points

$$P = (2,3)$$
 and $Q = (-1,0)$.

Let's compute their sum $P \oplus Q$.

• The first step is to find the line \overline{PQ} . This has equation

$$y = mx + c \quad \text{where}$$

$$m = \frac{3 - 0}{2 - (-1)}$$

$$= 1$$

So the line is y=x+c. Plugging in for example the coordinates of P, we find 3=2+c, so c=1. So the equation of the line \overline{PQ} is

$$\overline{PQ}$$
: $y = x + 1$. (2)

The next step is to find P * Q: by definition it is the third point of intersection of the line PQ with the curve C. To find this, subsitute 2 into the curve equation 1: this gives

$$(x+1)^2 = x^3 + 1$$

 $\Leftrightarrow x^3 - x^2 - 2x = 0.$

We know 2 solutions of this equation already, coming from the points P and Q: namely, x=2 and x=-1. The third solution is x=0, and this is the x-coordinate of the point P*Q.

Substituting x=0 into 2 gives y=1, and so we have found

$$P * Q = (0, 1).$$

• The final step is to go from P * Q to $P \oplus Q$. To do this, we need to find the line joining P * Q to the point O = [0, 1, 0].

On Problem Sheet 1, you proved that every line in \mathbb{P}^2 that passes through O = [0, 1, 0] is given by an equation of the form aX + bZ = 0. Dehomogenising, this gives an equation

$$x = -\frac{b}{a}$$

which is the equation of a vertical line in the xy-plane. If this line passes through the point P*Q=(0,1), it must be the line x=0. Putting x=0 in our curve equation (1) we get

$$y^2 = 1$$

 $\Leftrightarrow y = \pm 1$.

The solution y = 1 gives us the point (0,1) = P * Q. So the point we want corresponds to the other solution:

$$P \oplus Q = O * (P * Q)$$
$$= (0, -1).$$

Remark: In this example we saw that P * Q and $P \oplus Q$ were related by changing the sign of the y-coordinate:

$$P * Q = (0, 1)$$

 $P \oplus Q = (0, -1)$.

This is not an accident: in general for a point S=(x,y) on an elliptic curve C, we have

$$O * S = (x, -y)$$

since the line through (x, y) and (x, -y) passes through O.

The graph below shows the curve C. You can fill the points P, Q, the line \overline{PQ} , and the points P * Q, $P \oplus Q$ and see that the picture agrees with our calculations.

Question: What is $P \oplus P$? To compute this, we need to find the **tangent** line to C at P. The slope of this line is given by the derivative

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{\mathrm{P}}$$

You will use this to find $P \oplus P$ on Problem Sheet 2.

3 Associativity of point addition (Non-examinable)

Now we come back to Part 1 of Theorem 1.3:

Theorem 3.1. For an elliptic curve C, the addition operation \oplus on C is associative: in other words

$$(P \oplus Q) \oplus R = P \oplus (Q \oplus R)$$

for all points P, Q, R in C.

The proof is based on the following:

Proposition 3.2. Let C be an irreducible cubic curve in \mathbb{P}^2 : in other words C = V(F) where F is an irreducible homogeneous polynomial of degree 3. Let C_1 be another cubic curve, and say

$$C \cap C_1 = \{p_1, \ldots, p_9\}.$$

Then for any other cubic curve C_2 passing through p_1, \ldots, p_8 , the curve C_2 must pass through p_9 also.

The proof of the Proposition is based on Bézout's theorem; it is a (non-examinable) question on Problem Sheet 2.

Sketch proof of Theorem 3.1. To prove the claim, it is enough to prove the identity

$$(P \oplus Q) * R = P * (Q \oplus R).$$

We define lines

$$\begin{split} L_1 &= \overline{PQ} \\ L_2 &= \overline{O(Q*R)} \\ L_3 &= \overline{(P \oplus Q)R} \\ M_1 &= \overline{O(P*Q)} \\ M_2 &= \overline{QR} \\ M_3 &= \overline{P(Q \oplus R)} \end{split}$$

The arrangement is shown in this picture:

Let $C_1 = L_1 \cup L_2 \cup L_3$. Then C_1 is a cubic curve, and

$$C \cap C_1 = \{P, Q, P * Q, O, Q * R, Q \oplus R, P \oplus Q, R, (P \oplus Q) * R\}.$$

Let $C_2 = M_1 \cup M_2 \cup M_3$. Then C_2 is a cubic curve, and

$$C \cap C_2 = \{O, P * Q, P \oplus Q, Q, R, Q * R, P, Q \oplus R, P * (Q \oplus R)\}.$$

(For these equalities, we are using the fact that C is irreducible, so by Bézout's theorem it intersects each of C_1 and C_2 in exactly 9 points.)

We will complete the proof in the "generic" case that all the points

O, P, Q, R,
$$P * Q$$
, $Q * R$, $P \oplus Q$, $Q \oplus R$

are distinct. The full proof must also consider special cases where at least two of the points are equal.

In this "generic" case, the two sets $C \cap C_1$ and $C \cap C_2$ share 8 points. Proposition 3.2 then implies that in fact the two sets must be equal. So we have

$$(P \oplus Q) * R = P * (Q \oplus R).$$