Classification, metrics & classical ML

- precision, recall, F1 score
- Roc-curve
- micro/macro
- sensitivity, specificity

КЛАССИФИКАЦИЯ

двухклассовая (binary)

многоклассовая (multiclass)

с пересекающимися классами (multi-label)

Our classes

• Task - whether a student likes coffee (1 - likes, 0 - does not like)

Our classes

Task - whether a student likes coffee (1 - likes, 0 - does not like)

```
y_predicted = [0.5, 0.7, 0.2, 0.1, 0.8, 0.9, 0.23, 0.34, 0.56, 0.76]
y_true = [1, 0, 1, 1, 1, 0, 0, 1, 1, 0]
```

Threshold

Значение, которое делит наши вероятности на классы.

```
y_predicted = [0.5, 0.7, 0.2, 0.1, 0.8, 0.9, 0.23, 0.34, 0.56, 0.76]
```

- Если трешхолдер равен >= 0.5 какие будут значения? [1, 1, 0, 0, 1, 1, 0, 0, 1, 1] 6 любят кофе
- Если трешхолдер равен = 0.3
 [1, 1, 0, 0, 1, 1, 0, 1, 1] 7 любят кофе

Accuracy

Сколько всего верных примеров?

$$\mbox{Accuracy} = \frac{\mbox{Number of Correct Predictions}}{\mbox{Total Number of Predictions}} \times 100\,\%$$

Пусть у нас всего 100 студентов. 10 не пьют кофе, 90 пьют кофе. Классификатор определил из 10 тех, кто не пьет кофе **5 верно.** Из 90 тех, кто пьет - **80 верно**. Какое будет качество?

Accuracy

Сколько всего верных примеров?

$$\mbox{Accuracy} = \frac{\mbox{Number of Correct Predictions}}{\mbox{Total Number of Predictions}} \times 100\,\%$$

Пусть у нас всего 100 студентов. 10 не пьют кофе, 90 пьют кофе. Классификатор определил из 10 тех, кто не пьет кофе **5 верно.** Из 90 тех, кто пьет - **80 верно**. Какое будет качество?

Accuracy =
$$\frac{80+5}{90+10} \times 100\% = 85\%$$

Accuracy Проблема!

$$\mbox{Accuracy} = \frac{\mbox{Number of Correct Predictions}}{\mbox{Total Number of Predictions}} \times 100\,\%$$

Пусть у нас всего 100 студентов. 10 не пьют кофе, 90 пьют кофе. Если классификатор просто будет предсказывать всех студентов, как пьющих кофе? Какое будет качество?

Accuracy Проблема!

$$\mbox{Accuracy} = \frac{\mbox{Number of Correct Predictions}}{\mbox{Total Number of Predictions}} \times 100\,\%$$

Пусть у нас всего 100 студентов. 10 не пьют кофе, 90 пьют кофе. Если классификатор просто будет предсказывать **всех студентов**, Accuracy = $\frac{90+0}{90+10} \times 100\% = 90\%$ как пьющих кофе? Какое будет качество?

		positive	negative
предска зания	positive	True Positive (TP)	False Positive (FP)
	negative	False Negative (FN)	True Negative (TP)

- На самом деле ПЬЕТ кофе. Предсказали, что ПЬЕТ
- На самом деле ПЬЕТ кофе. Предсказали, что НЕ ПЬЕТ

 На самом деле НЕ пьет кофе. Предсказали, что ПЕ На самом деле НЕ пьет кофе. Предсказали, что НЕ 		positive	negative
предска	positive	True Positive (TP)	False Positive (FP)
зания	negative	False Negative (FN)	True Negative (TP)

- На самом деле ПЬЕТ кофе. Предсказали, что ПЬЕТ True Positive
- На самом деле ПЬЕТ кофе. Предсказали, что НЕ ПЬЕТ

 На самом деле НЕ пьет кофе. Предсказали, что П На самом деле НЕ пьет кофе. Предсказали, что Н 		positive	negative
предска	positive	True Positive (TP)	False Positive (FP)
зания	negative	False Negative (FN)	True Negative (TP)

- На самом деле ПЬЕТ кофе. Предсказали, что ПЬЕТ True Positive
- На самом деле ПЬЕТ кофе. Предсказали, что НЕ ПЬЕТ False Negative

 На самом деле НЕ пьет кофе. Предсказали, что ПЕ На самом деле НЕ пьет кофе. Предсказали, что НЕ 		positive	negative
предска	positive	True Positive (TP)	False Positive (FP)
зания	negative	False Negative (FN)	True Negative (TP)

- На самом деле ПЬЕТ кофе. Предсказали, что ПЬЕТ True Positive
- На самом деле ПЬЕТ кофе. Предсказали, что НЕ ПЬЕТ False Negative

 На самом деле НЕ пьет кофе. Предсказали, что ПЕ На самом деле НЕ пьет кофе. Предсказали, что НЕ 		positive	negative
предска	positive	True Positive (TP)	False Positive (FP)
зания	negative	False Negative (FN)	True Negative (TP)

- На самом деле ПЬЕТ кофе. Предсказали, что ПЬЕТ True Positive
- На самом деле ПЬЕТ кофе. Предсказали, что НЕ ПЬЕТ False Negative
- На самом деле НЕ пьет кофе. Предсказали, что ПЬЕТ False Positive
- На самом деле НЕ пьет кофе. Предсказали, что НЕ ПЬЕТ **True Negative**

		positive	negative
предска зания	positive	True Positive (TP)	False Positive (FP)
	negative	False Negative (FN)	True Negative (TP)

Матрица ошибок и accuracy

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

предска зания

	positive	negative
positive	True Positive (TP)	False Positive (FP)
negative	False Negative (FN)	True Negative (TR)

Precision

Как сильно мы можем доверять предсказанию о беременности?

Actual Values 1 TRUE POSITIVE FALSE POSITIVE

Producted Values

False Negative

True Negative

True Negative

You're not pregnant

You're not pregnant

TYPE 2 ERROR

Precision - не прихватить лишнее

Как сильно мы можем доверять предсказанию о беременности?

$$\frac{\text{TP}}{\text{Precision}} = \frac{\text{TP}}{\text{TP + FP}}$$

Recall

Из всех беременных, сколько мы действительно угадали?

Actual Values TRUE POSITIVE **FALSE POSITIVE** Predicted Values You're pregnant You're pregnant FALSE NEGATIVE TRUE NEGATIVE You're not pregnant You're not pregnant TYPE 2 ERROR

Recall - не пропустить нужное.

Из всех беременных, сколько мы действительно угадали?

$$Recall = \frac{TP}{TP + FN}$$

Examples

Пусть у нас всего 100 студентов. 10 не пьют кофе, 90 пьют кофе. Классификатор определил из 10 тех, кто не пьет кофе **5 верно.** Из 90 тех, кто пьет - **80 верно**. Какое будет качество?

		positive	negative
предска зания	positive	True Positive (TP)	False Positive (FP)
	negative	False Negative (FN)	True Negative (TP)

Examples

Пусть у нас всего 100 студентов. 10 не пьют кофе, 90 пьют кофе. Классификатор определил из 10 тех, кто не пьет кофе **5 верно**. Из 90 тех, кто пьет - **80 верно**. Какое будет качество?

предска

зания

Пить кофе - 1 не пить кофе - 0

Precision and Recall?

	positive	negative
positive	True Positive (TP) 80	False Positive (FP) 5
negative	False Negative (FN) 10	True Negative (TP) 5

F1-score

$$F1 \text{ Score} = \frac{2 \cdot (\text{Precision} \cdot \text{Recall})}{\text{Precision} + \text{Recall}}$$

F1 Score =
$$(\beta^2 + 1) * \frac{(Precision \cdot Recall)}{(\beta^2 \cdot Precision) + Recall}$$

Precision and Recall дают там некий trade off.

F1-score - это гармоническое среднее между ними.

Factor is chosen such that recall is considered factor times as important as precision is

Factor = 2, recall is more important than precision

Factor = 0.5 recall is less important than precision

SPECIFICITY and SENSITIVITY

Sensitivity =
$$\frac{TP}{TP + FN}$$

Specificity =
$$\frac{TN}{FP + TN}$$

настоящие классы

предска зания positive negative

positive True Positive (TP)

False Positive (FP)

False Negative (FN)

True Negative (TP)

Sensitivity = recall - как хорошо модель находит позитивный класс.

(Как хорошо находим больных)

Specificity = recall too, но относительно негативного класса.

(Как хорошо находим здоровых)

Macro and micro metrics

настоящие классы

предска зания

	class 1	class 2	class 3
class 1	True	False	False
	Positive	Positive	Positive
class 2	False	True	True
	Negative	Negative	Negative
class 3	False	True	True
	Negative	Negative	Negative

Micro metrics

Для каждого класса считаются значения в матрице ошибок. Эти значения усредняют и используются в формулах.

Micro F1 Score =
$$\frac{2 \cdot \text{Micro Precision} \cdot \text{Micro Recall}}{\text{Micro Precision} + \text{Micro Recall}}$$

Macro metrics

Для каждого класса считаются значения в матрице ошибок. Эти значения усредняют и используются в формулах.

Macro Precision =
$$\frac{1}{N} \sum_{i=1}^{N} \frac{\text{True Positives}_i}{\text{True Positives}_i + \text{False Positives}_i}$$

Macro Recall =
$$\frac{1}{N} \sum_{i=1}^{N} \frac{\text{True Positives}_i}{\text{True Positives}_i + \text{False Negatives}_i}$$

Macro F1 Score =
$$\frac{2}{N} \sum_{i=1}^{N} \frac{\text{Macro Precision}_i \cdot \text{Macro Recall}_i}{\text{Macro Precision}_i + \text{Macro Recall}_i}$$

Example

Для каждого класса считаются значения в матрице ошибок. Эти значения усредняют и используются в формулах.

Macro Precision =
$$\frac{1}{N} \sum_{i=1}^{N} \frac{\text{True Positives}_i}{\text{True Positives}_i + \text{False Positives}_i}$$

Macro Recall =
$$\frac{1}{N} \sum_{i=1}^{N} \frac{\text{True Positives}_i}{\text{True Positives}_i + \text{False Negatives}_i}$$

Macro F1 Score =
$$\frac{2}{N} \sum_{i=1}^{N} \frac{\text{Macro Precision}_i \cdot \text{Macro Recall}_i}{\text{Macro Precision}_i + \text{Macro Recall}_i}$$

Examples, Coffee

Precision for coffee = 20 / (20 + 5 + 3) = 5/7Recall for coffee = 20 / (20 + 2 + 1) = 20/23

TP-coffee = 20FN-coffee = 2 + 1 = 3FP-coffee = 5 + 3 = 8

Actual

		Coffee	Tea	Nothing
	Coffee	20 TP	5FP	3 FP
Predicted	Tea	2 FN	18 TN	4 TN
	Nothing	1 FN	3TN	22TN

Examples, Tea

Precision for tea = TP / TP + FP = 18 / (18 + 2 + 4) = 18/24Recall for tea = TP / TP + FN = 18 / (18 + 5 + 3) = 18/26

TP-tea = 18

FN-tea = 8

FP-tea = 6

Predicted

Actual

	Coffee	Tea	Nothing
Coffee	20 TN	5FN	3 TN
Tea	2 FP	18 TP	4 FP
Nothing	1 TN	3FN	22TN

Examples, Nothing

Actual

Tea

Nothing

Precision for nothing = $TP / (TP + FP + FP) = 22 / (22 + 3 + 1) = 22 / 26$
Recall for nothing = $TP / (TP + FN + FN) = 22 / (22 + 4 + 3) = 22 / 29$

TP-nothing = 22

FN-nothing = 4 + 3 = 7

FP-nothing = 1 + 3 = 4

Predicted

Coffee	20 TN	5TN	3 FN
Tea	2 TN	18 TN	4 FN
Nothing	1 FP	3FP	22TP

Coffee

Examples

```
Micro precision = TP / (TP + FP) = (20 + 18 + 22) / (20 + 18 + 22 + 8 + 6 + 4) = 0.769
Micro recall = TP / (TP + FN) = (20 + 18 + 22) / (20 + 18 + 22 + 3 + 8 + 7) = 0.769
```

Macro precision =
$$(5/7 + 18/24 + 22/26) / 3 =$$

Macro recall = $(20/23 + 18/26 + 22/29) / 3 =$

TP-coffee = 20FN-coffee = 2 + 1 = 3FP-coffee = 5 + 3 = 8

TP-tea = 18 FN-tea = 8 FP-tea = 6

TP-nothing = 22FN-nothing = 4 + 3 = 7FP-nothing = 1 + 3 = 4

Precision for coffee = 20 / (20 + 5 + 3) = 5/7Recall for coffee = 20 / (20 + 2 + 1) = 20/23

Precision for tea = TP / TP + FP = 18 / (18 + 2 + 4) = 18/24Recall for tea = TP / TP + FN = 18 / (18 + 5 + 3) = 18/26

Precision for nothing = TP / (TP + FP + FP) = 22 / (22 + 3 + 1) = 22 / 26Recall for nothing = TP / (TP + FN + FN) = 22 / (22 + 4 + 3) = 22 / 29

Again threshold

ROC-AUC

Receiver Operating Characteristic Area Under the Curve

True Positive Rate =
$$\frac{TP}{TP + FN}$$

False Positive Rate =
$$\frac{FP}{FP + TN}$$

предска зания

	positive	negative
positive	True Positive (TP)	False Positive (FP)
negative	False Negative (FN)	True Negative (TP)

ROC-AUC

Receiver Operating Characteristic Area Under the Curve

True Positive Rate =
$$\frac{TP}{TP + FN}$$

False Positive Rate =
$$\frac{\text{FP}}{\text{FP + TN}}$$

