Indian Institute of Technology Jodhpur MAL1010, Dec'21 Tutorial Sheet 1

Real Numbers and Sequences

- 1. Mark the following statements as True/False and justify your answers.
 - (a) The set $\{2/m : m \in \mathbb{N}\}$ is bounded above.
 - (b) Union of intervals is also an interval.
 - (c) Nonempty intersection of intervals is also an interval.
 - (d) Nonempty intersection of open intervals is also an open interval.
 - (e) Nonempty intersection of closed intervals is also a closed interval.
 - (f) sup of S, where $S \subseteq \mathbb{R}$ is an interior point of S.
 - (g) Limit point of a set S is an interior point of S.
- 2. Consider $\mathcal{D} \subseteq \mathcal{R}$ and $f: \mathcal{D} \to \mathcal{R}$ defined by the following. Determine whether f is bounded above on \mathcal{D} . If yes, find an upper bound for f on \mathcal{D} . Also, determine whether f is bounded below on \mathcal{D} . If yes, find a lower bound for f on f. Also, determine whether f attains its upper bound or lower bound.
 - (i) $\mathcal{D} = (-1, 1)$ and $f(x) = x^2 1$, (ii) $\mathcal{D} = (-1, 1)$ and $f(x) = x^3 1$, (iii) $\mathcal{D} = (-1, 1]$ and $f(x) = x^2 2x 3$, (iv) $\mathcal{D} = \mathcal{R}$ and $f(x) = \frac{1}{1+x^2}$.
- 3. Prove that the absolute value function, $f: \mathcal{R} \to \mathcal{R}$ defined by f(x) = |x|, is not a rational function.
- 4. Prove that the following numbers are irrational:
 - $(i)\sqrt{3}, \quad (ii)\sqrt[3]{2} \quad (iii)\sqrt{2} + \sqrt{3}.$
- 5. Prove that the function $f:[0,\infty)\to\mathcal{R}$ defined by the following is an algebraic function: $(i)f(x)=\sqrt{x},\ (ii)f(x)=\sqrt{x}+\sqrt{2x},\ (iii)f(x)=\sqrt{x}+\sqrt[3]{x}.$

1

- 6. Using ϵn_0 definition prove the following.
 - $(i) \lim_{n \to \infty} \frac{10}{n} = 0$
 - (ii) $\lim_{n \to \infty} \frac{5}{3n+1} = 0$
 - (iii) $\lim_{n \to \infty} \left(\frac{n}{n+1} \frac{n+1}{n} \right) = 0$
- 7. Show that the following limits exist and find them.
 - (i) $\lim_{n \to \infty} \left(\frac{n}{n^2 + 1} + \frac{n}{n^2 + 2} + \dots + \frac{n}{n^2 + n} \right)$
 - (ii) $\lim_{n\to\infty} \frac{n!}{n^n}$
 - (iii) $\lim_{n\to\infty} \left(\frac{n^3 + 3n^2 + 1}{n^4 + 8n^2 + 2} \right)$

(iv)
$$\lim_{n\to\infty} n^{1/n}$$

(v)
$$\lim_{n\to\infty} \left(\frac{\cos \pi \sqrt{n}}{n^2}\right)$$

8. Use Sandwich theorem to find the limit, for the following sequences.

(i)
$$\{x_n\} = \frac{\sin n}{n}$$

(ii)
$$\{x_n\} = \frac{n^2}{n^3+n+1} + \frac{n^2}{n^3+n+2} + \dots + \frac{n^2}{n^3+2n}$$

(iii)
$$\{x_n\} = (a^n + b^n)^{1/n}$$
 where $0 < a < b$.

9. Determine whether the sequences are increasing or decreasing:

$$(i) \left\{ \frac{n}{n^2+1} \right\}_{n \ge 1}$$

(ii)
$$\left\{\frac{1-n}{n^2}\right\}_{n\geq 2}$$

10. Let $\{x_n\}$ be a sequence, such that $x_n > 0$ for all n and $\lim_{n \to \infty} \frac{x_n + 1}{x_n} = \lambda$. Then prove that

(i) if
$$\lambda < 1$$
 then $\lim_{n \to \infty} x_n = 0$

(ii) if
$$\lambda > 1$$
 then $\lim_{n \to \infty} x_n = \infty$

- 11. Every convergent sequence is bounded. Is converse of the statement true? Justify your answer.
- 12. Suppose $\{x_n\}$ is a bounded and increasing sequence. Then prove that the sup of the set $\{x_n : n \in \mathbb{N}\}$ is the limit of $\{x_n\}$.
- 13. Cauchy sequence: A sequence $\{x_n\}_{n\geq 1}$ is said to be cauchy if for any $\epsilon>0$, there exists $n_0\in\mathbb{N}$ such that $|a_n-a_m|<\epsilon\ \forall\ m,n\geq n_0$.

Prove that every convergent sequence is Cauchy. Conversely, every Cauchy sequence in IR is also convergent. (This is an equivalent way of stating the **Completeness property** of real numbers).

14. **Bolzano-Weierstrass theorem:** Every bounded sequence in $\mathbb R$ has a convergent subsequence.