Two-way tables: Independence and association

Michael Friendly

Psych 6136

September 21, 2017

Two-way tables: Overview

Two-way contingency tables are a convenient and compact way to represent a data set cross-classified by two discrete variables, *A* and *B*.

Special cases:

- 2 × 2 tables: two binary factors (e.g., gender, admitted?, died?, ...)
- $2 \times 2 \times k$ tables: a collection of $2 \times 2s$, stratified by another variable
- $r \times c$ tables
- r × c tables, with ordered factors

Questions:

- Are A and B statistically independent? (vs. associated)
- If associated, what is the strength of association?
- Measures: 2×2 odds ratio; $r \times c$ Pearson χ^2 , LR G^2
- How to understand the pattern or nature of association?

2/61

Overview

amples

Overview

Examples

Two-way tables: Examples

 2×2 table: Admissions to graduate programs at U. C. Berkeley

Table: Admissions to Berkeley graduate programs

	Admitted	Rejected	Total	% Admit	Odds(Admit)
Males	1198	1493	2691	44.52	0.802
Females	557	1278	1835	30.35	0.437
Total	1755	2771	4526	38.78	0.633

Males were nearly twice as likely to be admitted.

- Association between gender and admission?
- If so, is this evidence for gender bias?
- How do characterise strength of association?
- How to test for significance?
- How to visualize?

2×2 tables: UCB data

In R, the data is contained in <code>UCBAdmissions</code>, a 2 \times 2 \times 6 table for 6 departments. Collapse over department:

```
data(UCBAdmissions)
UCB <- margin.table(UCBAdmissions, 2:1)
UCB

## Admit
## Gender Admitted Rejected
## Male 1198 1493
## Female 557 1278</pre>
```

Association between gender and admit can be measured by the odds ratio, the ratio of odds of admission for males vs. females. Details later.

- How to analyse these data?
- How to visualize & interpret the results?
- Does it matter that we collapsed over Department?

Overview Examples Overview

7/61

$r \times c$ tables: HEC data

In R, the data is contained in ${\tt HairEyeColor},$ a 4 \times 4 \times 2 table for males and females. Collapse over gender:

```
data(HairEyeColor)
HEC <- margin.table(HairEyeColor, 2:1)</pre>
```

Association between hair and eye color can be tested by the standard Pearson χ^2 test. Details later.

```
chisq.test(HEC)

##

## Pearson's Chi-squared test
##

## data: HEC
## X-squared = 138, df = 9, p-value <2e-16</pre>
```

Two-way tables: Examples

 $r \times c$ table: Hair color and eye color—Students in a large statistics class.

Table: Hair-color eye-color data

Eye					
Color	Black	Brown	Red	Blond	Total
Brown	68	119	26	7	220
Blue	20	84	17	94	215
Hazel	15	54	14	10	93
Green	5	29	14	16	64
Total	108	286	71	127	592

- Association between hair color and eye color?
- How do characterise strength of association?
- How to test for significance?
- How to visualize?
- How to interpret the pattern of association?

Two-way tables: Examples

 $r \times c$ table with ordered categories: Mental health and parents' SES

Table: Mental impairment and parents' SES

Examples

	Mental impairment						
SES	Well	Mild	Moderate	Impaired			
1	64	94	58	46			
2	57	94	54	40			
3	57	105	65	60			
4	72	141	77	94			
5	36	97	54	78			
6	21	71	54	71			

- Mental impairment is the response, SES is the predictor
- How do characterise strength of association?
- How to interpret the pattern of association?
- How to take ordinal nature of the variables into account?

0/04

8

ordered $r \times c$ tables: Mental data I

In R, the data is contained in Mental in vcdExtra, a frequency data frame.

```
data(Mental, package="vcdExtra")
str(Mental)
   'data.frame': 24 obs. of 3 variables:
            : Ord.factor w/ 6 levels "1"<"2"<"3"<"4"<..: 1 1 1 1
  $ mental: Ord.factor w/ 4 levels "Well"<"Mild"<..: 1 2 3 4</pre>
## $ Freq : int 64 94 58 46 57 94 54 40 57 105 ...
```

Convert to a contingency table using xtabs (), and test association:

```
mental.tab <- xtabs(Freq ~ ses + mental, data=Mental)</pre>
chisq.test(mental.tab)
   Pearson's Chi-squared test
## data: mental.tab
## X-squared = 46, df = 15, p-value = 5.3e-05
```

ordered $r \times c$ tables: Mental data II

For ordinal factors, more powerful tests are available with Cochran-Mantel-Haenszel tests:

```
CMHtest(mental.tab)
## Cochran-Mantel-Haenszel Statistics for ses by mental
                   AltHypothesis Chisq Df
## cor
             Nonzero correlation 37.2 1 1.09e-09
## rmeans Row mean scores differ 40.3 5 1.30e-07
## cmeans Col mean scores differ 40.7 3 7.70e-09
## general
             General association 46.0 15 5.40e-05
```

Details later, but χ^2/df gives a useful comparison.

```
cor rmeans
            cmeans general
      8.06
            13.56
```

9/61 10/61

2 by 2 tables 2 by 2 tables

11/61

2 by 2 tables: Notation

	Col		
Row	1	2	Total
1	n ₁₁	<i>n</i> ₁₂	<i>n</i> ₁₊
2	<i>n</i> ₂₁	n_{22}	n_{2+}
Total	n ₊₁	n ₊₂	n ₊₊

Gender	Admit	Reject	Tot
Male	1198	1493	2691
Female	557	1278	1835
Total	1755	2771	4526

- $N = \{n_{ii}\}$ are the observed frequencies.
- + subscript means sum over: row sums: n_{i+} ; col sums: n_{+i} ; total sample size: $n_{++} \equiv n$
- Similar notation for:
 - Cell joint population probabilities: π_{ii} ; also use $\pi_1 = \pi_{1+}$ and $\pi_2 = \pi_{2+}$
 - Population marginal probabilities: π_{i+} (rows), π_{+i} (cols)
 - Sample proportions: use p_{ii} = n_{ii}/n, etc.

Independence

Two categorical variables, *A* and *B* are statistically independent when:

• The conditional distributions of B given A are the same for all levels of A

$$\pi_{1j}=\pi_{2j}=\cdots=\pi_{rj}$$

Joint cell probabilities are the product of the marginal probabilities

$$\pi_{ij} = \pi_{i+}\pi_{+j}$$

12/61

For 2×2 tables, this gives rise to tests and measures based on

- Difference in row marginal probabilities: test H_0 : $\pi_1 = \pi_2$
- Odds ratio
- Standard χ^2 tests also apply for large n
- Fisher's exact test or simulation required in small samples.

2 by 2 tables 2 by 2 tables

Independence: Example I

In the Arthritis data, people are classified by Sex, Treatment and Improved. Are Treatment and Improved independent?

- ullet row proportions are the same for Treated and Placebo
- ullet ightarrow cell frequencies \sim row total imes column total

```
data(Arthritis, package="vcd")
arth.tab <- xtabs( ~ Treatment + Improved, data=Arthritis)</pre>
round(prop.table(arth.tab, 1), 3)
            Improved
## Treatment None Some Marked
    Placebo 0.674 0.163 0.163
## Treated 0.317 0.171 0.512
```

More people given the Placebo show No improvement; more people Treated show Marked improvement

Independence: Example II

Frequencies, if Treatment and Improved were independent:

```
row.totals <- margin.table(arth.tab, 1)
col.totals <- margin.table(arth.tab, 2)</pre>
round (outer (row.totals, col.totals) / sum(arth.tab), 1)
            Improved
## Treatment None Some Marked
     Placebo 21.5 7.2
    Treated 20.5 6.8 13.7
```

These are the expected frequencies, under independence.

```
chisq.test(arth.tab)
  Pearson's Chi-squared test
## data: arth.tab
\#\# X-squared = 13.1, df = 2, p-value = 0.0015
```

13/61 14/61

2 by 2 tables

2 by 2 tables

Sampling models: Poisson, Binomial, Multinomial

Some subtle distinctions arise concerning whether the row and/or column marginal totals of a contingency table are fixed by the sampling design or random.

- Poisson: each n_{ii} is regarded as an independent Poisson variate; nothing fixed
- Binomial: each row (or col) is regarded as an independent binomial distribution, with one fixed margin (group total), other random (response)
- Multinomial: only the total sample size, n_{++} , is fixed; frequencies n_{ii} are classified by A and B
- These make a difference in how hypothesis tests are derived, justified and explained.
- Happily, for most inferential methods, the same results arise under Poisson, binomial and multinomial sampling

Q: What is an appropriate sampling model for the UCB admissions data? For the Hair-Eye color data? For the Mental impairment data?

Odds and odds ratios

For a binary response where $\pi = Pr(success)$, the **odds** of a success is

$$\mathsf{odds} = \frac{\pi}{\mathsf{1} - \pi} \ .$$

- Odds vary multiplicatively around 1 ("even odds", $\pi = \frac{1}{2}$)
- Taking logs, the log(odds), or *logit* varies symmetrically around 0,

$$\operatorname{logit}(\pi) \equiv \operatorname{log}(\operatorname{odds}) = \operatorname{log}\left(\frac{\pi}{1-\pi}\right) \ .$$

Odds ratio

```
p \leftarrow c(.1, .25, .50, .75, .9)
odds \leftarrow p / (1-p)
logodds <- log(odds)</pre>
(odds.df <- data.frame(p, odds, logodds))</pre>
         p odds logodds
## 1 0.10 0.111
                     -2.2
## 2 0.25 0.333
                     -1.1
## 3 0.50 1.000
                      0.0
## 4 0.75 3.000
                      1.1
## 5 0.90 9.000
                       2.2
```

2 by 2 tables Odds ratio 2 by 2 tables Odds ratio

Log odds

Log odds:

- Symmetric around $\pi = \frac{1}{2}$: $logit(\pi) = -logit(1 \pi)$
- Fairly linear in the middle, $0.2 \le \pi \le 0.8$
- The logit transformation of probability provides the basis for logistic regression

Odds ratio

For two groups, with probabilities of success π_1 , π_2 , the *odds ratio*, θ , is the ratio of the odds for the two groups:

odds ratio
$$\equiv \theta = \frac{\text{odds}_1}{\text{odds}_2} = \frac{\pi_1/(1-\pi_1)}{\pi_2/(1-\pi_2)} = \frac{\pi_{11}/\pi_{12}}{\pi_{21}/\pi_{22}} = \frac{\pi_{11}\pi_{22}}{\pi_{12}\pi_{21}}$$

- $\theta = 1 \implies \pi_1 = \pi_2 \implies$ independence, no association
- Same value when we interchange rows and columns (transpose)
- Sample value, $\widehat{\theta}$ obtained using n_{ij} .

More convenient to characterize association by *log odds ratio*, $\psi = \log(\theta)$ which is symmetric about 0:

$$\log \text{ odds ratio} \equiv \psi = \log(\theta) = \log\left[\frac{\pi_1/(1-\pi_1)}{\pi_2/(1-\pi_2)}\right] = \log \operatorname{id}(\pi_1) - \operatorname{logit}(\pi_2) \ .$$

Odds ratio

18/61

17/61

Odds ratio: Inference and hypothesis tests

Odds ratio

Symmetry of the distribution of the log odds ratio $\psi = \log(\theta)$ makes it more convenient to carry out tests independence as tests of $H_0: \psi = \log(\theta) = 0$ rather than $H_0: \theta = 1$

2 by 2 tables

• $z = \log(\widehat{\theta})/SE(\log(\theta)) \sim N(0,1)$

oddsratio () in vcd uses $log(\theta)$ by default

```
oddsratio(UCB)
## log odds ratios for Gender and Admit
##
## [1] 0.61035
summary(oddsratio(UCB))
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|
## Male:Female/Admitted:Rejected 0.6104 0.0639 9.55 <2e
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>
```

Odds ratio: Inference and hypothesis tests

2 by 2 tables

Or, in terms of odds ratios directly:

Males 1.84 times as likely to be admitted, with 95% CI of 1.62 $\leq \theta \leq$ 2.09. **chisq.test** () just tests association:

```
chisq.test(UCB)

##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: UCB
## X-squared = 91.6, df = 1, p-value <2e-16</pre>
```

2 by 2 tables Small n 2 by 2 tables Small n

Small sample size

- Pearson χ^2 and LR G^2 tests are valid only when most expected frequencies ≥ 5
- Otherwise, use Fisher's exact test or simulated *p*-values

Example

Is there a relation between high cholesterol in diet and heart disease?

Small sample size

The standard Pearson χ^2 is not significant:

```
chisq.test(fat)

##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: fat
## X-squared = 3.19, df = 1, p-value = 0.074
```

We get a warning message:

In chisq.test(fat) : Chi-squared approximation may be incorrect

22/61

21/61

2 by 2 tables

Small n

2 by 2 tables Sm

Small sample size

Using Monte Carlo simulation to calculate the *p*-value:

```
chisq.test(fat, simulate=TRUE)

##
## Pearson's Chi-squared test with simulated p-value (based on
## 2000 replicates)
##
## data: fat
## X-squared = 4.96, df = NA, p-value = 0.036
```

This method repeatedly samples cell frequencies from tables with the same margins, and calculates a χ^2 for each.

The χ^2 test is now significant

Small sample size

Fisher's exact test: calculates probability for all 2×2 tables as or more extreme than the data.

```
fisher.test(fat)

##
## Fisher's Exact Test for Count Data
##
## data: fat
## p-value = 0.039
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.86774 105.56694
## sample estimates:
## odds ratio
## 7.4019
```

The p-value is similar to the result using simulation.

23/61 24/61

2 by 2 tables Fourfold plots 2 by 2 tables Fourfold plots

Visualizing: Fourfold plots

fourfold(UCB, std="ind.max") # maximum frequency

Friendly (1994a):

Fourfold plots

2 by 2 tables

- Fourfold display: area \sim frequency, n_{ii}
- Color: blue (+), red(−)
- This version: Unstandardized
- Odds ratio: ratio of products of

blue / red cells

fourfold(UCB)

#standardize both margins

Better version:

- Standardize to equal row, col margins
- Preserves the odds ratio
- Confidence bands: significance of odds ratio

26/61

• If don't overlap $\implies \theta \neq 1$

25/61

27/61

Stratified tables

Cholesterol data

fourfold(fat)

Stratified $2 \times 2 \times k$ tables

The UC Berkeley data was collected for 6 graduate departments:

2 by 2 tables

ftable(addmargins(UCBAdmissions, 3))

Dept	A B	С	D	E	F	Sum
-						
51	2 353	120	138	53	22	1198
9 (39 17	202	131	94	24	557
31	3 207	205	279	138	351	1493
e 1	.9 8	391	244	299	317	1278
	51 51 8 31	512 353 e 89 17 313 207	512 353 120 89 17 202 313 207 205	512 353 120 138 89 17 202 131 313 207 205 279	512 353 120 138 53 89 17 202 131 94 313 207 205 279 138	512 353 120 138 53 22 89 17 202 131 94 24 313 207 205 279 138 351

Questions:

- Does the overall association between gender and admission apply in each department?
- Do men and women apply equally to all departments?
- Do departments differ in their rates of admission?

Stratified analysis tests association between a main factor and a response within the levels of control variable(s)

2 by 2 tables Stratified tables Stratified tables Stratified tables

Stratified $2 \times 2 \times k$ tables

Odds ratios by department:

```
summary(oddsratio(UCBAdmissions))
```

```
z test of coefficients:
    Estimate Std. Error z value Pr(>|z|)
## A
      -1.052
                  0.263
                          -4.00
                                 6.2e-05
      -0.220
                  0.438
                          -0.50
                                    0.62
  С
       0.125
                  0.144
                           0.87
                                    0.39
                  0.150
                          -0.55
                                    0.59
      -0.082
       0.200
                  0.200
                          1.00
                                    0.32
      -0.189
                  0.305
                          -0.62
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

- Odds ratio only significant, $log(\theta) \neq 0$ for department A
- For department A, men are only exp(-1.05) = .35 times as likely to be admitted as women
- The overall analysis ignoring department is misleading: falsely assumes no associations of admission with department and gender with department.

Stratified tables

Stratified $2 \times 2 \times k$ tables

Fourfold plots by department (intense shading where significant):

fourfold(UCBAdmissions)

30/61

29/61

2 by 2 tables Stratified tables

Stratified $2 \times 2 \times k$ tables

Or plot odds ratios directly:

```
plot(oddsratio(UCBAdmissions), cex=1.5, xlab="Department")
```

2 by 2 tables

log odds ratios for Admit and Gender by Dept

Stratified tables: Homogeneity of odds ratios

Related questions:

31/61

- Are the k odds ratios all equal, $\theta_1 = \theta_2, \dots, \theta_k$? (Woolf's test: woolf_test())
- (This is equivalent to the hypothesis of no three-way association)
- If homogeneous, is the common odds ratio different from 1?
 (Mantel-Haenszel test: mantelhaen.test())

```
woolf_test(UCBAdmissions)

##

## Woolf-test on Homogeneity of Odds Ratios (no 3-Way assoc.)
##

## data: UCBAdmissions
## X-squared = 17.9, df = 5, p-value = 0.0031
```

Odds ratios differ across departments, so no sense in testing their common value.

Exegesis: What happened at UC Berkeley?

Why do the results *collapsed over* department disagree with the results *by* department?

Simpson's paradox

- Aggregate data are misleading because they falsely assume men and women apply equally in each field.
- But:
 - Large differences in admission rates across departments.
 - Men and women apply to these departments differentially.
 - Women applied in large numbers to departments with low admission rates.
- Other graphical methods can show these effects.
- (This ignores possibility of *structural bias* against women: differential funding of fields to which women are more likely to apply.)

Mosaic matrix shows all pairwise associations:

33/61 34/61

r by c tables

$r \times c$ tables: Overall analysis

- Overall tests of association: assocstats(): Pearson chi-square and LR G²
- Strength of association: ϕ coefficient, contingency coefficient (C), Cramer's V (0 \leq V \leq 1)

$$\phi^2 = \frac{\chi^2}{n}$$
, $C = \sqrt{\frac{\chi^2}{n + \chi^2}}$, $V = \sqrt{\frac{\chi^2/n}{\min(r - 1, c - 1)}}$

- For a 2 × 2 table, $V = \phi$.
- (If the data table was collapsed from a 3+ way table, the two-way analysis may be misleading)

$r \times c$ tables: Overall analysis and residuals

• The Pearson X^2 and LR G^2 statistics have the following forms:

r by c tables

$$X^{2} = \sum_{ij} \frac{(n_{ij} - \widehat{m}_{ij})^{2}}{\widehat{m}_{ij}} \qquad G^{2} = \sum_{ij} n_{ij} \log \left(\frac{n_{ij}}{\widehat{m}_{ij}}\right)$$

- Expected (fitted) frequencies under independence: $\hat{m}_{ij} = n_{i+} n_{+j} / n_{++}$
- Each of these is a sum-of-squares of corresponding residuals
- Degrees of freedom: df = (r-1)(c-1) # independent residuals Can get residuals from loglm() in MASS:

35/61 36/0

Extract residuals:

```
res.P <- residuals(mod, type="pearson")
res.LR <- residuals(mod, type="deviance")  # default
res.P

## Hair
## Eye Black Brown Red Blond
## Brown 4.398 1.233 -0.075 -5.851
## Blue -3.069 -1.949 -1.730 7.050
## Hazel -0.477 1.353 0.852 -2.228
## Green -1.954 -0.345 2.283 0.613
```

Demonstrate SSQ property:

Visualizing association: Sieve diagrams

Visual metaphor: $count \sim area$

- When row/col variables are independent, $n_{ij} \approx \hat{m}_{ij} \sim n_{i+} n_{+j}$
- \Rightarrow each cell can be represented as a rectangle, with area = height \times width \sim frequency, n_{ij} (under independence)

r by c tables Sieve diagrams

- This display shows expected frequencies, assuming independence, as # boxes within each cell
- The boxes are all of the same size (equal density)
- Real sieve diagrams use # boxes
 observed frequencies, n_{ij}

38/61

by c tables

Sieve diagrams

39/61

Sieve diagrams

- Height, width \sim marginal frequencies, n_{i+} , n_{+i}
- \implies Area \sim expected frequency, $\hat{m}_{ii} \sim n_{i+} n_{+i}$
- Shading \sim observed frequency, n_{ij} , color: sign $(n_{ij} \hat{m}_{ij})$.
- Independence: Shown when density of shading is uniform.

Sieve diagrams

Effect ordering: Reorder rows/cols to make the pattern coherent

r by c tables

Sieve diagrams

c tables Sieve diagrams Ordered factors

Sieve diagrams

Vision classification data for 7477 women: visual acuity in left, right eyes

- The obvious association is apparent on the diagonal cells
- A more subtle pattern appears on the off-diagonal cells
- Analysis methods for square tables (later) allow testing hypotheses of symmetry, quasi-symmetry, etc.

Ordinal factors

The Pearson χ^2 and LR G^2 give tests of general association, with (r-1)(c-1) df.

More powerful CMH tests

- When either the row or column levels are ordered, more specific CMH (Cochran–Mantel–Haentzel) tests which take order into account have greater power to detect ordered relations.
- This is similar to testing for linear trends in ANOVA
- Essentially, these assign scores to the categories, and test for differences in row / column means, or non-zero correlation.

CMH tests

41/61 42/61

Ordered factors

CMH tests

Ordered factors

CMH tests for ordinal variables

Three types of CMH tests:

Non-zero correlation

- Use when both row and column variables are ordinal.
- CMH $\chi^2 = (N-1)r^2$, assigning scores (1, 2, 3, ...)
- most powerful for *linear* association

Row/Col Mean Scores Differ

- Use when only *one* variable is ordinal
- Analogous to the Kruskal-Wallis non-parametric test (ANOVA on rank scores)

General Association

- Use when both row and column variables are nominal.
- Similar to overall Pearson χ^2 and Likelihood Ratio G^2 .

Sample CMH Profiles

Only general association:

	b1	b2	b3	b4	b5	Total	Mean
a1	0 5	15 20	25 5	15 20	++ 0 5 20	55	
	•				25	165	

Output:

43/61

Cochran-	Mantel-Haenszel Statistics	(Based	on Table	Scores)
Statistic	Alternative Hypothesis	DF	Value	Prob
1 2	Nonzero Correlation Row Mean Scores Differ	1 2	0.000	1.000
3	General Association	8	91.797	0.000

Ordered factors CMH tests Ordered factors CMH tests

Sample CMH Profiles

Linear Association:

	b1		b2 k				Total	Mean
_	-+							
al		2	5	8	8	8	31	3.48
a2		2	8	8	8	5	31	3.19
a3		5	8	8	8	2	31	2.81
a4	1	8	8	8	5	2	31	2.52
	-+	+-			+	+		
Total		17	29	32	29	17	124	

Output:

Cochran-N	Mantel-Haenszel Statistics	(Based	on Table	Scores)
Statistic	Alternative Hypothesis	DF	Value	Prob
1	Nonzero Correlation	1	10.639	0.001
2	Row Mean Scores Differ	3	10.676	0.014
3	General Association	12	13.400	0.341

Sample CMH Profiles

Visualizing Association: Sieve diagrams

45/61 46/61

Ordered factors CMH tests Observer agreement

47/61

Example: Mental health data

- In R, these tests are provided by CMHtest () in the vcdExtra package
- For the mental health data, both factors are ordinal
- All tests are significant
- The nonzero correlation test, with 1 df, has the smallest p-value, largest χ^2/df

mental.tab <- xtabs(Freq ~ ses + mental, data=Mental)
CMHtest(mental.tab)

Cochran-Mantel-Haenszel Statistics for ses by mental
##

AltHypothesis Chisq Df Prob
cor Nonzero correlation 37.2 1 1.09e-09
rmeans Row mean scores differ 40.3 5 1.30e-07
cmeans Col mean scores differ 40.7 3 7.70e-09
general General association 46.0 15 5.40e-05</pre>

Observer Agreement

- Inter-observer agreement often used as to assess reliability of a subjective classification or assessment procedure
 - → square table, Rater 1 x Rater 2
 - Levels: diagnostic categories (normal, mildly impaired, severely impaired)
- Agreement vs. Association: Ratings can be strongly associated without strong agreement
- Marginal homogeneity: Different frequencies of category use by raters affects measures of agreement
- Measures of Agreement:
 - Intraclass correlation: ANOVA framework— multiple raters!
 - Cohen's κ : compares the observed agreement, $P_o = \sum p_{ii}$, to agreement expected by chance if the two observer's ratings were independent, $P_c = \sum p_{i+} p_{+i}$.

$$\kappa = \frac{P_o - P_c}{1 - P_c}$$

Observer agreement Cohen's kappa Observer agreement Cohen's kappa

Cohen's κ

Properties of Cohen's κ :

- perfect agreement: $\kappa = 1$
- minimum κ may be < 0; lower bound depends on marginal totals
- Unweighted κ : counts only diagonal cells (same category assigned by both observers).
- Weighted κ : allows partial credit for near agreement. (Makes sense only when the categories are *ordered*.)

Weights:

- Cicchetti-Alison (inverse integer spacing)
- Fleiss-Cohen (inverse square spacing)

	Integer	Weights		Fle	iss-Cohe	en Weigh	ts	
1	2/3	1/3	0	1	8/9	5/9	0	
2/3	1	2/3	1/3	8/9	1	8/9	5/9	
1/3	2/3	1	2/3	5/9	8/9	1	8/9	
0	1/3	2/3	1	0	5/9	8/9	1	

Cohen's κ : Example

The table below summarizes responses of 91 married couples to a questionnaire item,

Sex is fun for me and my partner (a) Never or occasionally, (b) fairly often, (c) very often, (d) almost always.

Husband's Rating	Never fun	Wife's Fairly often	Rating - Very Often	Almost always	SUM	
Never fun Fairly often Very often Almost always	7 2 1 2	7 8 5 8	2 3 4 9	3 7 9 14	19 20 19 33	
SUM	12	28	18	33	91	

49/61 50/61

Observer agreement Cohen's kappa Observer agreement Cohen's kappa

Cohen's κ : Example

The Kappa () function in vcd calculates unweighted and weighted κ , using equal-spacing weights by default.

Unweighted κ is not significant, but both weighted versions are. You can obtain confidence intervals with the **confint ()** method

Observer agreement: Multiple strata

When the individuals rated fall into multiple groups, one can test for:

- Agreement within each group
- Overall agreement (controlling for group)
- Homogeneity: Equal agreement across groups

Example: Diagnostic Classification of MS patients

Patients in Winnipeg and New Orleans were each classified by a neurologist in each city

NO rater:	Winnipeg patients				New Orleans patients			
	Cert	Prob	Pos	Doubt	Cert	Prob	Pos	Doubt
Winnipeg rater: Certain MS Probable Possible Doubtful MS	38 33 10 3	5 11 14 7	0 3 5 3	1 0 6 10	5 3 2 1	3 11 13 2	0 4 3 4	0 0 4 14

51/61 52/6

Observer agreement: Multiple strata

Here, simply assess agreement between the two raters in each stratum separately

The irr package (inter-rater reliability) provides ICC and other measures, and handles the case of k > 2 raters.

Bangdiwala's Observer Agreement Chart

The observer agreement chart Bangdiwala (1987) provides

- a simple graphic representation of the strength of agreement, and
- a measure of strength of agreement with an intuitive interpretation.

Construction:

- $n \times n$ square, n=total sample size
- Black squares, each of size $n_{ii} \times n_{ii} \rightarrow$ observed agreement
- Positioned within larger rectangles, each of size $n_{i+} \times n_{+i} \to \text{maximum}$ possible agreement
- \bullet \Rightarrow visual impression of the strength of agreement is B:

$$B = \frac{\text{area of dark squares}}{\text{area of rectangles}} = \frac{\sum_{i}^{k} n_{ii}^{2}}{\sum_{i}^{k} n_{i+} n_{+i}}$$

ullet \Rightarrow Perfect agreement: B = 1, all rectangles are completely filled.

53/61

Observer agreemen

Agreement Cha

Husbands and wives: B = 0.146, $B^w = 0.498$

agreementplot(SexualFun, main="Unweighted", weights=1)
agreementplot(SexualFun, main="Weighted")

Weighted Agreement Chart: Partial agreement

Partial agreement: include weighted contribution from off-diagonal cells, b steps from the main diagonal, using weights $1 > w_1 > w_2 > \cdots$.

$$n_{i-b,i}$$
 w_2 w_1 $n_{i,i-b}$ \cdots $n_{i,i}$ \cdots $n_{i,i+b}$ w_2 w_1 w_2 w_1 w_2 w_1 w_2 w_2 w_1 w_2 w_2 w_1 w_2 w_2 w_2 w_3 w_4 w_2 w_4 w_5 w_5 w_6 w_6 w_6 w_7 w_8 w_8

- Add shaded rectangles, size \sim sum of frequencies, A_{bi} , within b steps of main diagonal
- ⇒ weighted measure of agreement,

$$B^{w} = \frac{\text{weighted sum of agreement}}{\text{area of rectangles}} = 1 - \frac{\sum_{i}^{k} [n_{i+} n_{+i} - n_{ii}^{2} - \sum_{b=1}^{q} w_{b} A_{bi}]}{\sum_{i}^{k} n_{i+} n_{+i}}$$

55/61

56/6

57/61

59/61

Marginal homogeneity and Observer bias

- Different raters may consistently use higher or lower response categories
- Test– marginal homogeneity: $H_0: n_{i+} = n_{+i}$
- Shows as departures of the squares from the diagonal line

Winnipeg neurologist tends to use more severe categories

Looking ahead

Loglinear models

Loglinear models generalize the Pearson χ^2 and LR G^2 tests of association to 3-way and larger tables.

- Allows a range of models from mutual independence ([A][B][C]) to the saturated model ([ABC])
- Intermediate models address questions of conditional independence, controlling for some factors
- Can test associations in 2-way, 3-way terms analogously to tests of interactions in ANOVA

Example: UC Berkeley data

- Mutual independence: [Admit] [Gender] [Dept]
- Joint independence: [Admit] [Gender*Dept]
- Conditional independence: [Admit*Dept] [Admit*Gender]: A specific test for absence of gender bias, controlling for department

Looking ahead

58/61

Looking ahead

Looking ahead

Mosaic displays

Mosaic plots provide visualizations of associations in 2+ way tables.

- Tiles: ~ frequency
- Fit loglinear model
- Shading: ~ residuals

 $G_{(24)}^2 = 166.30$

[Hair Eye] [Sex]
$$G_{(15)}^2 = 19.86$$

Looking ahead

Correspondence analysis

- Account for max. % of χ^2 in few (2-3) dimensions
- Find scores for row and column categories
- Plot of row and column scores shows associations

References I

- Bangdiwala, S. I. Using SAS software graphical procedures for the observer agreement chart. *Proceedings of the SAS User's Group International Conference*, 12:1083–1088, 1987.
- Friendly, M. A fourfold display for 2 by 2 by K tables. Technical Report 217, York University, Psychology Dept, 1994a.
- Friendly, M. Mosaic displays for multi-way contingency tables. *Journal of the American Statistical Association*, 89:190–200, 1994b.