Manifolds

David Wiedemann

Table des matières

1	Rec	eap	3
2	2.1	nifolds Smooth maps	4 5
	2.2	Partitions of Unity	5
3	Tan	gent Space	7
4	Loc	al Properties of smooth maps and submanifolds	10
5	Mo : 5.1	rse-Sard Theorem Applications of Morse-Sard	12 13
6	Vec	tor Fields and dynamical systems	15
\mathbf{L}	ist	of Theorems	
	1	Definition (Basis)	4
	2	Definition (Chart)	4
	3	Definition (Manifold)	4
	3	Theorem (Paracompactness)	5
	4	Theorem (Partition of unity)	6
	5	Proposition	7
	6	Theorem	7
	4	Definition (Tangent Space)	8
	8	Lemma	8
	9	Theorem	9
	5	Definition (Tangent Map)	10
	6	Definition	10
	7	Definition (Submanifold)	11
	8	Definition	11
	12	Theorem	11

13	Corollary	11
9	Definition (Null set)	12
16	Theorem (Morse-Sard theorem)	12
17	Theorem (Whitney)	13
10	Definition (Smooth Vector field)	15
11	Definition (Integral Curve)	15
18	Theorem (Flow-Box Theorem)	15
19	Lemma (Gronwall's lemma)	16

Lecture 1: Introduction

Wed 12 Oct

1 Recap

Recall theorems about differentiable maps

— Implicit function theorem

For $U \subset \mathbb{R}^p, V \subset \mathbb{R}^q$, $f \in C^k(U \times V, \mathbb{R}^q)$, $1 \le k \le \infty$ and $(a, b) \in U \times V$ st.

$$D_2 f(a,b) = D(f(a,-))(b)$$

is invertible. Then there exists $a\in U_1\subset U, b\in V_1\subset V$ and $\phi\in C^k(U_1,V_1)$ such that

$$f(x, x') = y_0$$

iff $x' = \phi(x)$

— Inverse function theorem

If $U \subset \mathbb{R}^p$ is open and $f \in C^k(U, \mathbb{R}^q), 1 \leq k \leq \infty, a \in U$ such that

is invertible, then there are $a \in U_1 \subset U$ and $f(a) \in V_1 \subset \mathbb{R}^q$ open such that

$$f|_{U_1}:U_1\to V_1$$

is a diffeomorphism and

$$Df^{-1}|_{U}(x) = (Df(f^{-1}|_{U}(x)))^{-1}$$

for all $x \in U$ in particular f^{-1} is C^k

— Rank theorem

 $U\subset\mathbb{R}^p$ open and $f\in C^k(U,\mathbb{R}^q), 1\leq k\leq\infty,\ a\in U, b\coloneqq f(a), r=rank(Df(a))$ then there are diffeomorphisms

$$\psi: U_{\psi} \to V_{\psi} \text{ and } \phi: U_{\phi} \to V_{\psi}$$

with $U_{\psi}, V_{\psi} \subset \mathbb{R}^p$ and $U_{\phi}, V_{\phi} \subset \mathbb{R}^q$ such that

$$\phi \circ f \circ \psi(x_1, \dots, x_p) = (x_1, \dots, x_r, \tilde{f}(x_1, \dots, x_p))$$

If rk(D(f)) is contant around r, then we can obtain $\tilde{f} = 0$

2 Manifolds

Definition 1 (Basis)

A basis for a topology on X is a collection B of open sets such that every open set in X is the union of sets in B.

X is called second countable if it has a countable topological basis.

Definition 2 (Chart)

Let X be a topological space

- 1. A chart on X is a pair (U, ϕ) where $U \subset X$ open and $\phi : U \to \mathbb{R}^n$ for some n which is a homeomorphism onto an open subset.
- 2. An atlas is a collection of charts $A = \{(U_i, \phi_i) | i \in I\}$ such that $X = \bigcup_{i \in I} U_i$
- 3. A is called smooth (C^k , continuous, holomorphic, algebraic,...) if and only if for any

$$(U_i, \phi_i)_{i \in \{1,2\}} \in A$$

we have $\phi_1 \circ \phi_2^{-1}$ is smooth (C^k ,...) wherever it is defined.

4. A chart (U, ϕ) is compatible with an atlas A if and only if

$$A \cup \{(u,\phi)\}$$

 $is\ smooth$

 An atlas A is maximal if it contains all charts compatible with A. For any atlas A (not necessarily maximal), denote A_{max} the maximal atlas containing it.

 $This\ maximal\ atlas\ is\ necessarily\ unique$

Definition 3 (Manifold)

A smooth manifold of dimension n is a second countable Hausdorrf space with a maximal smooth atlas of dimension n.

Why Hausdorff?

Consider \mathbb{R}/\sim , $x\sim y\iff |x|=|y|>1$, this space is locally homeomorphic to \mathbb{R} but the points x and y cannot be separated.

Why second countable?

Take a disjoint union of infinitely many manifolds.

For a connected example, take $\aleph_1 \times [0,1)$ with the order topology.

2.1 Smooth maps

A function $f: M \to N$ between smooth manifolds is called smooth if for each $p \in M$, there are charts $(U, \phi), (V, \psi)$ $p \in U \subset M, f(p) \in V \subset N$ such that

$$\psi \circ f \circ \phi^{-1}$$

is smooth.

f smooth implies $\tilde{\psi} \circ f \circ \tilde{\phi}^{-1}$ is smooth for any charts $(\tilde{U}, \tilde{\phi}), (\tilde{V}, \tilde{\psi})$ where this is defined.

Lecture 2: Smooth maps

Mon 17 Oct

Example (Projective Spaces)

Let $K = \mathbb{R}$ or \mathbb{C} , take $K\mathbb{P}^n = \{ \text{ all lines in } K^{n+1} \} = K^{n+1} \setminus 0 / \sim.$

Then $x \sim y \iff \exists \lambda x = \lambda y l$

We have $\mathbb{RP}^n = S^n/x \sim -x = S^n/\mathbb{Z}/2\mathbb{Z}$ Similarly, $\mathbb{CP}^n = S^{2n+1}/S^1$.

To give projective space a smooth structure, we introduce homogeneous coordinates.

We write $[x] = [x_0 : \ldots : x_n]$ for the equivalence class of x.

For $0 \le j \le n$ put

$$U_i = \{ [x] \in \mathbb{KP}^n / x_i \neq 0 \}$$

and $\phi_j: U_j \to K^n$ is a chart sending $[x] \to (\frac{x_0}{x_j}, \dots, \frac{x_n}{x_j})$

Remark

- 1. Composition of smooth maps are smooth.
- 2. If $M \xrightarrow{f} N$ is a diffeomorphism if it is a smooth map whose inverse is smooth.

2.2Partitions of Unity

Theorem 3 (Paracompactness)

Let M be a smooth manifold.

Let (U_{α}) be an open covering of M.

Then there exists a locally finite refinement $(V_{\beta})_{\beta \in B}$ that is

- 1. locally finite, ie. each point has an open neighbourhood which meets finitely many V_{β} .
- 2. $\forall \beta \exists \alpha V_{\beta} \subset U_{\alpha}$

More precisely, we can choose V_{β} such that there exist charts $\psi_{\beta}: V_{\beta} \to \{x \in \mathbb{R}^n | |x| < 3\}$ and such that M is covered by

$$M = \bigcup_{\beta \in B} \psi_{\beta}^{-1}(\{x \in \mathbb{R}^n | |x| < 1\})$$

Proof

From the definition, it is clear that any manifold is locally compact. Hence there exist compact sets

$$K_1 \subset K_2^o \subset K_2 \subset K_3^o \dots$$

sich that $M = \bigcup K_j$.

 $K_{j+1} \setminus K_j^o$ is compact, hence for $p \in K_{j+1} \setminus K_j^o$, there exists (V_p, ϕ_p) with $\phi_p(V_p) = B(0,3), V_p \subset K_{j+2}^o \setminus K_{j-1}$ and $V_p \subset U_\alpha$. By compactness $\exists p_{j_1}, \ldots, p_{jr_j}$ such that

$$K_{j+1} \setminus K_j^o = \bigcup \phi_{jl}^{-1}(B(0,1))$$

The union of all these charts is a locally finite refinement with the desired properties. \Box

We can now define a map $f_1: \mathbb{R} \to \mathbb{R}$, $f_1(t) = e^{-\frac{1}{t}}$ if t > 0 and 0 if not. f_1 is $C^{\infty}(\mathbb{R})$.

Now, define $f_2(t) = \frac{f_1(t)}{f_1(t) + f_1(1-t)}$ and then $f_3(t) = f_2(2+t)f_2(2-t)$. We can now define $f_4: \mathbb{R}^n \to \mathbb{R}$ as $f_4(x) = f_3(|x|)$

Theorem 4 (Partition of unity)

Let M be a C^{∞} manifold and (U_{α}) an open covering. There exist $\phi_U \in C^{\infty}(M)$ such that

- 1. $0 \le \phi_n \le 1$
- 2. Supp ϕ_n is locally finite
- 3. $\forall n \exists \alpha \in A, \text{Supp } \phi_n \subset U_\alpha$
- 4. $\forall p \in M, \sum_{n=1}^{\infty} \phi_n(p) = 1$

Lecture 3: Partitions of Unity

Wed 19 Oct

Proposition 5

Let M be a smooth manifold, $A \subset M$ closed, $G \subset M$ open with $A \subset G$, then there exists a smooth function f on M, such that $\operatorname{Im} f \subset [0,1]$ and $f|_A \equiv 1$ and $f|_{G^C} \equiv 0$

Proof

 $(M \setminus A, G)$ is an open cover and (ϕ_0, ϕ_1) a partition of unity subordinate to this open cover, then $f = \phi_1$ does the job.

Theorem 6

Let M be a smooth manifold, (U_{α}) an open cover, then there exists $\phi_n \in C^{\infty}(M), n \in \mathbb{N}$ such that

1.
$$0 \le \phi_n \le 1$$

- 2. $\{\operatorname{Supp} \phi_n\}$ locally finite
- 3. $\forall n \operatorname{Supp} \phi_n \subset U_\alpha$

4.
$$\sum \phi_n = 1$$

Proof

By the partition of unity theorem, there are charts (V_n, ψ_n) of M with $\psi_n : V_n \to B(0,3)$.

We let $\tilde{\phi}_n(x) := f_4(\psi_n(x)), x \in V_n$ and 0 otherwise.

 $\forall x \in M \exists ns.t. \tilde{\phi}_n(x) > 0$, by local finiteness $\tilde{\phi}(x) = \sum \tilde{\phi}_n > 0$ and $\tilde{\phi}$ is non zero and we let $\phi_n = \frac{\tilde{\phi}_n}{\tilde{\phi}}$

As an addendum, we claim that if $A \subset \mathbb{N}$, then A can be chosen as index set for the partition, ie. $\phi_n = 0$ if $n \notin A$ and $\operatorname{Supp} \phi_n \subset U_n$ Let

$$J_k := \{ i \in \mathbb{N} | i \in A \setminus J_0 \cup \ldots \cup J_{k-1}, \operatorname{Supp} \phi_i \subset U_k \}$$

and we let

$$\chi_k = \sum_{i \in J_k} \phi_i$$

3 Tangent Space

If $M \subset \mathbb{R}^n$ is a submanifold, $M = \{x | F(x) = 0\}$, $F : \mathbb{R}^n \to \mathbb{R}$ a submersion, then $T_p M = \nabla F(p)^{\perp}$.

Let $v \in T_pM$ and choose $\gamma: (-\epsilon, \epsilon) \to M$ such that $\gamma(0) = p, \gamma'(0) = v$.

Given $C^{\infty}M \ni f \mapsto vf$.

This map is a derivation at p.

Definition 4 (Tangent Space)

Let M be a smooth manifold, $p \in M$.

A derivation at p is a linear map $X_p : C^{\infty}(M) \to \mathbb{R}$ with $X_p(fg) = f(p)X_pg + g(p)X_pf$.

Then T_pM is the set of all derivations at p and it is a subspace of $C^{\infty}(M)^*$

Remark

1. If $\phi \in C^{\infty}(M)$ constant in a neighborhood of p, then $X_p \phi = 0$ for each $X_p \in T_p M$.

To prove this, suppose wlog $\phi = 1$ in a neighborhood of p.

There exists ξ a smooth function on M, constant in a neighborhood of p and 0 outside of the neighborhood.

Thus $\chi \phi = \chi$.

Applying the chain rule gives

$$X_p \chi = \phi(p) X_p \chi + \chi(p) X_p \phi$$

and thus $X_p \phi = 0$

2. If $p \neq q$, then $T_pM \cap T_qM = \{0\}$.

To prove this, suppose $p \neq q$. Choose $\phi \in C^{\infty}(M)$ with $\phi \equiv 1$ in a neighborhood of p and $\equiv 0$ in a neighborhood of q. Thus $X\phi = 0$.

Let $f \in C^{\infty}M$ such that $f(1-\phi) \equiv 0$ in a neighborhood of p and thus

$$X(f) = \phi(q)X_q f + f(q)X_q f$$

- 3. Given $X \in T_pM$, U a neighborhood of p, then $X \in T_pU$ by extending $f \in C^{\infty}(U)$ to a function on M.
- 4. If (U, ϕ) is a chart at p with coordinate functions x_1, \ldots, x_n then we define

$$\frac{\partial}{\partial x_i} f|_p := \frac{\partial}{\partial r_i} f \circ \phi^{-1}|_{\phi(p)} = D(f \circ \phi^{-1})(\phi(p))[e_i]$$

We want to show that T_pM has dimension n

Lemma 8

Let M be a smooth manifold and $p \in M$. Let (U, ϕ) be a chart centered at p (ie. $\phi(p) = 0$), coordinate functions x_1, \ldots, x_n .

Then for $f \in C^{\infty}(U)$, there exists $f_1, \ldots, f_n \in C^{\infty}(U)$ such that

$$f = \sum_{i=1}^{n} f_j x_j + f(p)$$

Proof

Without loss of generality $U = (-\epsilon, \epsilon)^n$.

$$f(x) = \left[\sum_{j=1}^{n} f(x_1, \dots, x_j, 0, \dots, 0) - f(x_1, \dots, x_{j-1}, 0, \dots, 0) \right] + f(0)$$

$$= f(0) + \left[\sum_{j=1}^{n} \int_{0}^{1} (\partial_j f)(x_1, \dots, x_{j-1}, tx_j) dt x_j \right]$$

Theorem 9

For M a smooth manifold, let (U, ϕ) be a chart centered at p taking values in \mathbb{R}^n , then the dimension of the tangent space is n.

Lecture 4: Tangent Space

Mon 24 Oct

We prove that the dimension of the tangent space is the dimension of the manifold.

Proof

Without loss of generality, suppose ϕ is a chart centered at p. Let $X \in T_pM$, $f \in C^{\infty}(U)$, writing $f = f(p) + \sum f_j x_j$, we get

$$Xf = \sum_{j} x_{j}(p)Xf_{j} + f_{j}(p)Xx_{j}$$
$$= \sum_{j} f_{j}(p)Xx_{j}$$
$$= \sum_{j} Xx_{j} \frac{\partial}{\partial x_{j}}|_{p}f$$

Thus X is a linear combination of $\frac{\partial}{\partial x_j}$. Since $\frac{\partial}{\partial x_i}x_i = \delta_{ij}$, these must be linearly independent.

Example

- 1. \mathbb{R}^n , the vectors $\frac{\partial}{\partial x_i}|_p$ form a basis of $T_p\mathbb{R}^n$.
- 2. Polar Coordinatesin \mathbb{R}^3 . Let $\phi: [0,\infty) \times (0,2\pi) \times (0,\pi) \to U \subset \mathbb{R}^3$ Mapping $(r,\varphi,\theta) \mapsto (x\cos\varphi\sin\theta, r\sin\varphi\sin\theta, r\cos\theta)$. Now $\frac{\partial}{\partial r}|_p f = \frac{\partial}{\partial r} (f\circ\phi)(r,\varphi,\theta) = \dots$
- 3. If x_1, \ldots, x_n and y_1, \ldots, y_n are two coordinate systems named ϕ and ψ .

$$\frac{\partial}{\partial x_i}|_p f = \frac{\partial}{\partial x_i}|_p (f \circ \psi^{-1} \circ \psi)(p)$$
$$= \partial_i (f \circ \psi^{-1} \circ \psi \circ \phi^{-1})(\phi(p))$$

$$= \sum_{j=1}^{m} \partial_{j} (f \circ \psi^{-1}) (\psi(p)) \frac{\partial \psi_{j} \circ \phi^{-1}}{\partial x_{i}} (\phi(p))$$
$$= \sum_{j=1}^{m} \frac{\partial y_{j}}{\partial x_{i}} \frac{\partial}{\partial y_{j}} |_{p} f$$

Definition 5 (Tangent Map)

Let $f: M \to N$ be a smooth map.

For $p \in M$, we define $T_p f : T_p M \to T_{f(p)} M$.

For $\phi \in C^{\infty}N$, then

$$T_p f(X)\phi = X(\phi \circ f)$$

It is clear that this map is linear.

Remark

- 1. Convince yourself that in charts, this is nothing but the derivative (Jacobi matrix)
- 2. If $M \xrightarrow{g} N \xrightarrow{f} Z$, then $T_p(f \circ g) = T_{g(p)}(f) \circ T_p(g)$
- 3. If (U, ϕ) is a chart, then the tangent map $T_p \phi : T_p M \to T_{\phi(p)} \mathbb{R}^m$ If ψ is a second chart around p, then $T_p \psi = T_p(\psi \circ \phi^{-1} \circ \phi) = D_{\phi(p)}(\psi \circ \phi^{-1}) \circ T_p \phi$

Physicists approach to the tangent space

A tangent vector is a family $(\xi^{\phi}), \xi^{\phi} \in \mathbb{R}^n$ where ϕ runs through all charts such that $\xi^{\psi} = D_{\phi(p)}(\psi \circ \phi^{-1})(\xi^{\phi})$.

4 Local Properties of smooth maps and submanifolds

We assume all manifolds have constant dimension.

Definition 6

Let M and N of respective dimension m and n.

Let $f: M \to N$ be a smooth map, then

- $p \in M$ is called critical for f if the rank of $T_p f$ is less that $n = \dim N$
- $q \in N$ is a regular value of f if $\forall p \in f^{-1}(q)$, $rankT_pf = n$ Notice that if $q \notin f(M)$, then q is regular.
- f is a submersion if $\forall p \in M$, $rankT_p f = n$.
- f is called an immersion if $\forall p \in M$, $rankT_pf = M$.

— f is called a subimmersion if $p \mapsto rankT_pM$ is constant.

Lecture 5: differentials

Wed 26 Oct

Definition 7 (Submanifold)

Let M^m be a smooth manifold, N a subset.

N is called a submanifold if for each chart (U, ϕ) of N, $\phi(N \cap U) \subset \mathbb{R}^m$ is a submanifold.

Equivalently, for each $p \in N$ there is a chart (U, ϕ) of M centered at p such that $\phi(U \cap N) = \phi(U) \cap \mathbb{R}^n \times \{0\}.$

Clearly, submanifolds are smooth manifolds.

Suppose $N^n\subset M^m$ is a submanifold, then the inclusion map $i:N^n\to M^m$ is an immersion.

Definition 8

 $f \in C^{\infty}(N, M)$ is called an embedding if

- f is an injective immersion
- $f: N \to f(N)$ is a homeomorphism when f(N) has the relative topology.

The range of an embedding is a submanifold.

Theorem 12

Let M^m, N^n be C^{∞} manifolds and $f: M \to N$ be a subimmersion (smooth map with constant rank), then

- 1. For $q \in N$, the inverse image $f^{-1}(q)$ is a submanifold of dimension m-k
- 2. For $p \in M$, q = f(p), there exist neighborhoods U of p and V of q such that $S = f(U) \cap V$ of dimension k.

Corollary 13

If $f: M^m \to N^n$ is a smooth map, then for each regular value $q: f^{-1}(q)$ is a submanifold of dimension m-n.

Proof

There is an open neighborhood $U \subset M$ of $f^{-1}(q)$ on which the rank is constant.

Now, we can apply the theorem.

To prove the embedding theorem, we use the rank theorem to get charts ϕ, ψ such that $\phi \circ f \circ \psi^{-1}(x_1, \dots, x_p) = (x_1, \dots, x_r, 0).$

For this map, the two claims are trivial (linear algebra statements).

The statements are clearly invariant under diffeomorphisms.

Morse-Sard Theorem 5

Definition 9 (Null set)

A subset $A \subset M$ is a null set if for any chart (U, ϕ) of M, $\phi(U \cap A)$ is a Lebesgue null set in \mathbb{R}^m .

Remark

This is well defined because

- 1. A can be covered by countably many charts
- 2. Diffeomorphisms of open subsets of \mathbb{R}^n map null sets to null sets.

Remark

- 1. $\forall p \in M \{p\} \text{ is a null set, if } \dim M > 0$
- 2. countable unions of null sets are null sets
- 3. If A is a null set, then A° is empty, equivalently, $M \setminus A$ is dense.

Theorem 16 (Morse-Sard theorem)

If M^m, N^n are smooth manifolds, $n \ge 1$.

Let $f: M^m \to N^n$ be smooth and $C_f = \{ p \in M | rankT_p f < M \}$.

Then $f(C_f)$ is a null set in N.

Proof

Whom $M = \mathbb{R}^m, N = \mathbb{R}^n$.

By induction, if m = 0, then range(f) is at most countable, thus a null set. Assume $m \geq 1$ and that the claim was proved for all dimensions less than

Now, let $C_l = \{x \in M | \forall |\alpha| \le l \partial^{\alpha} f(x) = 0\} \subset C_f$.

Now we show that $f(C_f \setminus C_1)$ is a null set, $f(C_{l+1} \setminus C_l)$ is a null set and $f(C_l)$ is a null set for l large enough.

$C_f \setminus C_1$ is a null set

Fix $\xi \in C_f \setminus C_1$. Thus, $\exists i, j \ \frac{\partial f_i}{\partial x_j}(\xi) \neq 0 \ wlog, \ i = j = 1$ Let $h(x) = (f_1(x), x_2, \dots, x_m), m \geq 2 \ and \ f_1(x) \ if \ m = 1$.

Let $g = f \circ h^{-1} : V \to V'$, we find $g(t, x) = (t, \tilde{g}(t, x))$. Whog $V' = I \times W$, (t, x) is critical for $g \iff x$ is critical for $\tilde{g}(t, \cdot)$. $g(t, x) = f(h^{-1}(t, x))$ is a critical value for f. Now, $\lambda^n(f(C_f \cap V)) = \lambda^n(\{g(t, x) | (t, x), x \text{ critical for } \tilde{g}(t, \cdot) \})$. $=\lambda^n\big(\big\{(t,y)\in I\times\mathbb{R}^{n-1}|t\in I\ \ and\ y=\tilde{g}(t,x)\ \ critical\ value\ of\ f\circ\tilde{g}\big\}\big)$ $= \int_{I} \lambda^{n-1} (\{ y \in \mathbb{R}^{n-1} | y \text{ critical value of } \tilde{g}(t, \cdot) \})$

By induction hypothesis, the integrand is 0.

We now show that $\forall l \geq 1, f(C_l \setminus C_{l+1})$ is a null set, the proof is similar so we omit it.

Let W be a cube of side length d in \mathbb{R}^m .

Let $x \in C_k \cap W, y \in W$.

Taylor formula implies that $|f(y) - f(x)| \le L|x - y|^{k+1}$.

Subdivide W into r^m cubes W_j of side length $\frac{d}{r}$.

If
$$x \in C_k \cap W_j$$
, $y \in W_j$, $|x - y| \le \sqrt{m} \frac{d}{r}$.
Then $|f(x) - f(y)| \le L(\frac{\sqrt{m}d}{r})^{k+1}$.

Thus $f(C_k \cap W_j)$ lies in a cube of side length $2L(\frac{\sqrt{md}}{r})^{k+1}$.

$$\lambda^{n}(f(C_{k} \cap W)) \leq r^{m} \lambda^{n}(f(C_{k} \cap W_{j,max}))$$

$$\leq r^{m} \left\{ 2L(\frac{\sqrt{md}}{r})^{k+1} \right\}^{n}$$

$$= r^{m-n(k+1)} \cdot c$$

This goes to 0 if $k \geq \frac{m}{n}$.

Applications of Morse-Sard

1. If dim $M < \dim N$, then every point is critical and thus the image of f is a null set, thus, there are no smooth space filling curves.

2. Embedding

Theorem 17 (Whitney)

If M^m is a smooth manifold, then there is an embedding f: $M^m \to \mathbb{R}^{2m}$

We prove this for M compact and 2m+1 instead of 2m.

Proof

Strategy:

(a) There is an embedding into some \mathbb{R}^N for some $N \in \mathbb{N}$, so now we suppose $M \subset \mathbb{R}^n$.

(b) If $N \geq 2m + 1$, we find a w such that the projection onto the hyperplane $\langle \omega \rangle^{\perp}$ is an embedding. We will exploit that if M is compact, every injective immersion is an embedding.

We first prove that injective immersions of compact spaces are embeddings, this is just a topology fact.

Now, we construct the embedding.

Choose charts $(U_j, \phi_j)_{j \in \mathbb{N}}$ with $range(\phi_j) = B(0,3)$ and such that $M = \bigcup_{j=1}^{\infty} \phi_j^{-1}(B(0,1)).$

These form an open cover so, by compactness, M $\textstyle\bigcup_{j=1}^r \phi_j^{-1}(B(0,1)).$

Pick $g \in C^{\infty}(\mathbb{R}^m)$ such that

$$g(x) = \begin{cases} 1|x| \le \frac{4}{3} \\ 0, |x| \ge \frac{5}{3} \end{cases}$$

Now, let

$$f_j(p) = \begin{cases} g(\phi_j(p))\phi_j(p), p \in \phi_j \\ 0 \text{ otherwise} \end{cases}$$

This is a smooth and furthermore

$$f_j|_{\phi^{-1}(B(0,1))} = \phi_j|_{\phi_j^{-1}(B(0,1))}$$

so f_j is an immersion.

Now, let $F = (f_1, \ldots, f_r, g \circ \phi_1, \ldots, g \circ \phi_r) : M \to \mathbb{R}^{(m+1)r}$, this is an injective immersion, hence an embedding.

Now, we have $M \subset \mathbb{R}^N$ a submanifold, $w \in S^{n-1}$, $\pi_w(x) = x - \langle x, w \rangle w$ is linear.

When is $\pi_w|_{M^m}$ an injective immersion?

 $\pi_w(p) = \pi_w(q) \iff p - q || w.$

Now, we map $\phi: M \times M \setminus \{(p,p)| p \in M\} \to S^{N-1} \text{ mapping } (p,q) \mapsto$ $\begin{array}{l} \frac{p-q}{|p-q|}.\\ Now\; p-q||W\iff \frac{q-p}{|q-p|}\in range(\phi).\\ As\; long\; as\; 2m< N-1\; Sard's\; theorem\; implies\; that\; range(\phi)\; is\; a\; null \end{array}$

 π_w is an immersion if $\forall p \in M \forall v \in T_p M \setminus \{0\} \pi_w(v) \neq 0$.

So now, we introduce $\sigma: TM \setminus \{0_p \in T_pM | p \in M\}, v \mapsto \frac{v}{|v|}$, where TM is the tangent bundle.

Now, π_w is an immersion iff $\forall p \in M \forall w \in T_pM \pm w \notin range\sigma$.

Thus, $\forall w \in S^{N+1} \setminus A, \pi_w : M \to \mathbb{R}^{N-1}$ is an embedding.

6 Vector Fields and dynamical systems

If (U,ϕ) is a chart of M, then $v \in T_pM$ may be written as $v = \sum_{j=1}^m v_j \frac{\partial}{\partial x_j}|_p$.

Definition 10 (Smooth Vector field)

A smooth vector field on M is a map $X: M \to TM = \coprod_{p \in M} T_pM$ such that

- 1. $\forall p, X(p) \in T_pM$
- 2. For each chart $(U, \phi), X|_U = \sum X_j^{\phi} \frac{\partial}{\partial x_j}$ with X_j^{ϕ} smooth.

Definition 11 (Integral Curve)

An integral curve to a vector field X is a smooth curve $c: I \to M$ such that

$$\dot{c}(t) = X(c(t))$$

Lecture 6: vector fields

Wed 02 Nov

Theorem 18 (Flow-Box Theorem)

If M^m is a smooth manifold and X a vector field.

Then for $p \in M$, there exists an open neighborhood $U \ni p$ and a smooth map

$$F: (-\epsilon, \epsilon) \times U \to M$$

such that

$$-F(0,x) = x$$

$$- \partial_t F(t,x) = X(F(t,x))$$

F is the local flow of the vector field.

Proof

Since the theorem is local, wlog, $M = V \subset \mathbb{R}^n$.

There is a smooth map $f: \overline{B(y_0,r)} \to \mathbb{R}^m$.

f is Lipschitz.

For $y \in B(y_0, r)$ let F(t, y) be the maximal solution of the IVP $\partial_t F(t, y) =$

f(F(t,y)), F(0,y) = y and a(y) < t < b(y).

Now, we recall

Lemma 19 (Gronwall's lemma)

If $[a,b] \subset \mathbb{R}, f,g:[a,b] \to \mathbb{R}_+$.

Assume

$$f(t) \le C + \int_a^t f(s)g(s)ds$$

Then

$$f(t) \le Ce^{\int_a^t g(s)ds}$$

To prove this, let

$$\tilde{f}(t) = C + \int_{a}^{t} f(s)g(s)ds \ge f(t)$$

and $h(t) = \tilde{f}(t)e^{-\int_a^t g(s)ds}$.

Then

$$h'(t) = (f(t) - \tilde{f}(t))g(t)e^{-\int_a^t g(s)ds} \le 0$$

Note that h is decreasing and as h(a) = 0, $h'(t) \le C$ for $t \ge a$. Thus $f(t) \le \tilde{f}(t) = h(t)e^{\int_a^t g(s)ds} \le Ce^{\int_a^t g(s)ds}$.