2.6

Continuïteit

FIGURE 2.49 Connecting plotted points by an unbroken curve from experimental data Q_1, Q_2, Q_3, \ldots for a falling object.

FIGURE 2.50 The function is continuous on [0, 4] except at x = 1, x = 2, and x = 4 (Example 1).

Definitie van continuïteit in een punt c

1) In een inwendig punt: Een functie f(x) is continu in een inwendig punt c van haar domein als:

$$\lim_{x \to c} f(x) = f(c)$$

2) In een eindpunt: Een functie f(x) is continu in een linkereindpunt a of in een rechtereindpunt b van haar domein als:

$$\lim_{x \to a+} f(x) = f(a)$$

$$\lim_{x \to b^{-}} f(x) = f(b)$$

NB: We zeggen dat f rechtscontinu is in a en linkscontinu in b

Continuïteitstest

Een functie f(x) is continu in c dan en slechts dan aan de volgende drie voorwaarden voldaan is:

- 1) f(c) bestaat (dwz c behoort tot het domein van f)
- 2) de limiet van f in c bestaat
- 3) deze limiet is gelijk aan de functiewaarde

Indien c een randpunt is of indien we spreken van rechts of linkscontinuïteit dan moeten we in het bovenstaande de desbetreffende éénzijdige limiet gebruiken

f is discontinu in c indien f niet continu is in c. We noemen c dan een discontinuïteitspunt

VB: Ga na waar de volgende functies continu zijn

FIGURE 2.52 A function that is continuous at every domain point (Example 2).

FIGURE 2.53 A function that is right-continuous, but not left-continuous, at the origin. It has a jump discontinuity there (Example 3).

FIGURE 2.54 The greatest integer function is continuous at every noninteger point. It is right-continuous, but not left-continuous, at every integer point (Example 4).

Soorten discontinuïteit in het punt x=0

FIGURE 2.55 The function in (a) is continuous at x = 0; the functions in (b) through (f) are not.

8

1. Een functie f is continu in een interval ← f is continu in elk punt van het interval

2. f is een continue functie indien f continu is in elk punt van haar domein

Vbn: constante functie: f(x) = c

identiteits functie: f(x) = x

de functie f(x) = 1/x

9

Rekenregels voor limieten → rekenregels voor continuiteit

THEOREM 9 Properties of Continuous Functions

If the functions f and g are continuous at x = c, then the following combinations are continuous at x = c.

- 1. Sums: f + g
- **2.** Differences: f g
- 3. Products: $f \cdot g$
- **4.** Constant multiples: $k \cdot f$, for any number k
- **5.** Quotients: f/g provided $g(c) \neq 0$
- 6. Powers: $f^{r/s}$, provided it is defined on an open interval containing c, where r and s are integers

Veeltermfuncties en rationele functies zijn continu

De absolute waarde functie : f(x) = |x| is continu

De samenstelling van continue functies

FIGURE 2.57 Composites of continuous functions are continuous.

f continu in c en g continu in f(c), dan is de samengestelde functie $g \circ f$ continu in c

Voorbeelden van continue functies:

$$y = \sqrt{x^2 - 2x - 5}$$
$$y = \left| \frac{x - 2}{x^2 - 2} \right|$$

FIGURE 2.58 The graph suggests that $y = |(x \sin x)/(x^2 + 2)|$ is continuous (Example 8d).

De continue uitbreiding van een functie

Indien f(c) niet bestaat maar $\lim_{x\to c} f(x) = L$ dan kunnen we een nieuwe functie F definiëren met $F(x) = \begin{cases} f(x) \ voor \ x \neq c \\ L \ voor \ x = c \end{cases}$

F is continu in c. We noemen F de continue uitbreiding van f in c.

FIGURE 2.59 The graph (a) of $f(x) = (\sin x)/x$ for $-\pi/2 \le x \le \pi/2$ does not include the point (0, 1) because the function is not defined at x = 0. (b) We can remove the discontinuity from the graph by defining the new function F(x) with F(0) = 1 and F(x) = f(x) everywhere else. Note that $F(0) = \lim_{x \to 0} f(x)$.

Vb: De rode functie is de continue uitbreiding van de blauwe

FIGURE 2.60 (a) The graph of f(x) and (b) the graph of its continuous extension F(x) (Example 9).

De tussenwaardestelling voor continue functies

Een functie y = f(x), die continu is op een gesloten interval [a,b]

neemt op dit interval elke waarde aan tussen f(a) en f(b)

De continuïteitseis in de vorige stelling is cruciaal!

FIGURE 2.61 The function

$$f(x) = \begin{cases} 2x - 2, & 1 \le x < 2 \\ 3, & 2 \le x \le 4 \end{cases}$$

does not take on all values between f(1) = 0 and f(4) = 3; it misses all the values between 2 and 3.

Toepassing: Het zoeken van nulpunten

FIGURE 2.62 Zooming in on a zero of the function $f(x) = x^3 - x - 1$. The zero is near x = 1.3247.