

Clustering Introduction to Clustering

Prof. Dr. Jan Kirenz HdM Stuttgart

Discover unknown subgroups in data.

Unlabeled examples (observations)

Grouping unlabeled examples is called clustering.

Clustering is unsupervised learning

The goal is to discover interesting things about the observations:

- is there an informative way to visualize the data?
- Can we discover subgroups among the variables or among the observations?

Use cases for cluster analysis

Customer segmentation

 understanding different customer segments to devise marketing strategies

Recommender systems

 grouping together users with similar viewing patterns on Netflix, in order to recommend similar content

Anomaly detection

 fraud detection, detecting defective mechanical parts

To cluster your data, you'll follow these steps:

To cluster your data, you'll follow these steps:

First of all, you have to exclude all missing values and outliers

Then, we normalize data

If you only have a few values, you could use this simple rule:

$$x' = \frac{x}{\max(x)}$$

Normalizing data by **rescaling** (min-max normalization)

Typically, we use rescaling like this:

$$x' = \frac{x - \min(x)}{x'}$$

Rescalin results in a range [0, 1]

Data standardization with **z-score**

Another alternative (especially if data has a normal distribution):

$$x'=(x-\mu)/\sigma$$

where: $\mu = \text{mean}$

 $\sigma = \text{standard deviation}$

To cluster your data, you'll follow these steps:

How to create a similarity measure for a numeric feature?

• Feature X₁: shoe size

Shoe A

size: 8

Shoe B

size: 11

Picture source: Allbirds Prof. Dr. Jan Kirenz

Simple similarity measure

• Feature X₁: shoe size

Prof. Dr. Jan Kirenz

- Feature X₁: shoe size (numeric)
- Feature X₂: price (numeric)

size: 8 price: 120

size: 11 price: 150

Prof. Dr. Jan Kirenz

Similarity measure for two numeric features

Prof. Dr. Jan Kirenz

Create a manual similarity measure for two numeric features Since we don't have enough data,

we'll simply scale the data without normalizing

Action	Method
Scale the size.	Assume a maximum possible shoe size of 20. Divide 8 and 11 by the maximum size 20 to get 0.4 and 0.55.
Scale the price.	Divide 120 and 150 by the maximum price 150 to get 0.8 and 1.
Find the difference in size.	0.55 - 0.4 = 0.15
Find the difference in price.	1 - 0.8 = 0.2
Find the RMSE.	$\sqrt{rac{0.2^2+0.15^2}{2}}=0.17$

Action	Method
Scale the size.	Assume a maximum possible shoe size of 20. Divide 8 and 11 by the maximum size 20 to get 0.4 and 0.55.
Scale the price.	Divide 120 and 150 by the maximum price 150 to get 0.8 and 1.
Find the difference in size.	0.55-0.4=0.15
find the difference in price.	1-0.8=0.2
Find the RMSE.	$\sqrt{rac{0.2^2+0.15^2}{2}}=0.17$

Action	Method	
Scale the size.	Assume a maximum possible shoe size of 20. Divide 8 and 11 by the maximum size 20 to get 0.4 and 0.55.	
Scale the price.	Divide 120 and 150 by the maximum price 150 to get 0.8 and 1.	
Find the difference in size.	0.55-0.4=0.15	
Find the difference in price.	1 - 0.8 = 0.2	
Find the RMSE.	$\sqrt{rac{0.2^2+0.15^2}{2}}=0.17$	

Action	Method	
Scale the size.	Assume a maximum possible shoe size of 20. Divide 8 and 11 by the maximum size 20 to get 0.4 a 0.55.	
Scale the price.	Divide 120 and 150 by the maximum price 150 to get 0.8 and 1.	
Find the difference in size.	0.55 - 0.4 = 0.15	
Find the difference in price.	1-0.8=0.2	
Find the RMSE.	$\sqrt{rac{0.2^2+0.15^2}{2}}=0.17$	

Action	Method
Scale the size.	Assume a maximum possible shoe size of 20. Divide 8 and 11 by the maximum size 20 to get 0.4 and 0.55.
Scale the price.	Divide 120 and 150 by the maximum price 150 to get 0.8 and 1.
Find the difference in size.	0.55-0.4=0.15
Find the difference in price.	1-0.8=0.2
Find the RMSE.	$\sqrt{rac{0.2^2+0.15^2}{2}}=0.17$

Create a manual similarity measure for a

categorical feature

Feature X₃: color (categorical)

color: black color: blue

Picture source: Allbirds Prof. Dr. Jan Kirenz

Create a manual similarity measure for a

categorical feature

Feature X₃: color (categorical)

color: black

color: blue

What about **categorical** features with **multiple levels** (multivalent)

- Movie genres:
 - o comedy,
 - o action,
 - o drama,
 - o non-fiction,
 - biographical
- Can be "action" and "comedy" simultaneously, or just "action"

How to measure similarity?

1: [comedy, action]

2: [action, drama]

B

Intersection & union

Intersection

Union

Jaccard distance

[comedy, action]

[action, drama]

Union:

[comedy, action, drama]

Intersection: action

Jaccard distance

Intersection

action

Union

[comedy, action, drama]

 $A \cap B$

A U B

Create a manual similarity measure for a categorical feature

- A: ["comedy","action"] and B: ["comedy","action"] = 1
- A: ["comedy", "action"] and B: ["action"] = ½
- A: ["comedy", "action"] and B: ["action", "drama"] = $\frac{1}{3}$
- A: ["comedy","action"] and B: ["non-fiction","biographical"] = 0

- **Jaccard similarity**. Calculate similarity using the ratio of common values
- **Jaccard distance**. Calculate distance using (1- Jaccard similarity)

Popular distance metrics for numerical features

Let's start with a simple coordinate system (CS)

We include one observation "A"

And another observation "B"

How can we measure the **distance** between A and B?

Imagine there are streets on the CS

This would be the shortest distance

$$d(A,B) = \sqrt{\sum_{i=1}^n (A_i - B_i)^2}$$

- $x_A = 70$
- $x_B = 330$
- y_A = 40
- y_B = 228

Euclidean distance (L₂ distance)

$$d(A,B) = \sqrt{\sum_{i=1}^n (A_i - B_i)^2}$$

- $x_A = 70$
- x_B = 330
- y_A = 40
- y_B = 228

$$egin{align} d(A,B) &= \sqrt{(x_A-x_B)^2+(y_A-y_B)^2} \ d(A,B) &= \sqrt{(70-330)^2+(40-228)^2} \ d(A,B) &= \sqrt{(-260)^2+(-188)^2} \ d(A,B) &= \sqrt{(76600+35344)} \ d(A,B) &= \sqrt{(112225)} \ d(A,B) &= 335 \ \end{pmatrix}$$

Squared Euclidean distance (L₂)

$$d^2(A,B) = \sum_{i=1}^n (A_i - B_i)^2$$

- $x_A = 70$
- $x_B = 330$
- y_A = 40
- y_B = 228

$$d^2(A,B) = (x_A - x_B)^2 + (y_A - y_B)^2$$
 $d^2(A,B) = (70 - 330)^2 + (40 - 228)^2$
 $d^2(A,B) = 112225$

L₁ distance (Manhattan distance)

$$d(A,B) = \sum_i |A_i - B_i|$$

- $x_A = 70$
- x_B = 330
- y_A = 40
- y_B = 228

$$d(A,B) = |x_A - x_B| + |y_A - y_B|$$
 $d(A,B) = |70 - 330| + |40 - 228|$
 $d(A,B) = |-260| + |-188|$
 $d(A,B) = 260 + 188$
 $d(A,B) = 448$

To cluster your data, you'll follow these steps:

Centroid-based Clustering

- Centroid-based algorithms are efficient
- But sensitive to initial conditions and outliers.
- k-means is the most widely-used centroid-based clustering algorithm.

Hierarchical Clustering

- Hierarchical clustering creates a tree of clusters.
- One advantage is that any number of clusters can be chosen by cutting the tree at the right level.

Density-based Clustering

- Density-based clustering connects areas of high example **density** into clusters
- Advantage:
 - they do not assign outliers to clusters.
- Disadvantage:
 - have difficulty with data of varying densities and high dimensions.

To cluster your data, you'll follow these steps:

Because clustering is unsupervised, **no** "**truth**" is available to verify results

- It mainly depends on the subjective interpretability
- We have some kind of quality measures for some algorithms (e.g. silhouette for k-Means)

