Резюме

 $\lim x_k = a \ , \ \text{если для всякого} \quad \epsilon > 0 \quad \text{существует} \quad k_\epsilon \in \mathbf{N} \quad \text{такое, что при всех} \quad k > k_\epsilon$ справедливо $|x_k - a| < \epsilon$.

Если $\lim x_k = a$, а ρ — некоторое число, $\rho > a$ ($\rho < a$), то существует $k_\rho \in \mathbb{N}$ такое, что при всех $k > k_\rho$ справедливо $\rho > x_k$ ($\rho < x_k$).

Пусть $\lim x_k = a$ и $\lim y_k = b$. Если при всех $k \in \mathbb{N}$ $x_k \le y_k$, то и $a \le b$.

Пусть при всех $k \in \mathbb{N}$ $x_k \le y_k \le z_k$. Если $\lim x_k = \lim z_k = a$, то $\{y_k\}$ сходится, причем $\lim y_k = a$.

Пусть $\lim x_k = a$, $\lim y_k = b$. Тогда $\lim (x_k + y_k) = a + b$; $\lim (x_k y_k) = ab$. Если $y_k \neq 0$ и $b \neq 0$, то $\lim \frac{x_k}{y_k} = \frac{a}{b}$.

Последовательность $\{\alpha_{\scriptscriptstyle k}\}$ называют бесконечно малой, если $\alpha_{\scriptscriptstyle k} \to 0$.

Последовательность $\{\alpha_k\}$ называют бесконечно большой, если $\alpha_k \to +\infty$, $-\infty$ или ∞ .

Пусть
$$\alpha_k \neq 0$$
, а $\beta_k = \frac{1}{\alpha_k}$. Если $\alpha_k \to 0$, то $\beta_k \to \infty$; если $\alpha_k \to \infty$, то $\beta_k \to 0$.

Если монотонная последовательность ограничена, она сходится.

$$\lim_{k \to \infty} \left(1 + \frac{1}{k}\right)^k = e, \ e = 2,718281828459045...$$

Контрольные вопросы к главе 1

- 1. Что называют абсолютной величиной вещественного числа x? Перечислите свойства абсолютной величины.
- 2. Пусть x и y вещественные числа, точки на числовой оси. Каково геометрическое истолкование числа |x-y|?
- 3. Найти множество X вещественных чисел x, удовлетворяющих неравенствам 0 < |x-2| < 3.

- 4. Опишите этапы доказательства истинности утверждения A(n) методом математической индукции. Используя этот метод, докажите, что при всяком натуральном n справедливо равенство: $1+2+\ldots+n=\frac{1}{2}n(n+1)$.
- 5. Запишите формулу «бином Ньютона». Найдите коэффициент при x^3 многочлена $\left(\frac{1}{4} + \frac{3}{4}x\right)^4$.
- 6. Сформулируйте определение предела последовательности чисел. Опираясь на него, покажите, что число 0 является пределом последовательности $\left\{q^k\right\}_{k=1}^{\infty}$, где |q|<1.
- 7. Перечислите основные теоремы о сходящихся последовательностях (пункт 2.3).
 - 8. Пусть $\{x_k\}$ последовательность, a число, $\alpha_k = x_k a$.
 - *) Если $x_k \to a$, что можно утверждать о поведении $\{\alpha_k\}$?
 - **) Если $\alpha_k \to 0$, что можно утверждать о поведении $\{x_k\}$?
- 9. Сформулируйте теорему о сумме, произведении и частном сходящихся последовательностей.
- 10. Пусть $\{x_k\}$ бесконечно большая последовательность. Что можно утверждать о последовательности $\{y_k\}$, где $y_k = \frac{1}{x_k}$?
- 11. Пусть $x_k \to 0$, причем $x_k \neq 0$. Что можно утверждать о последовательности $\{y_k\}$, где $y_k = \frac{1}{x_k}$?
 - 12. Найти $\lim x_k$, если он существует:

a)
$$x_k = \frac{2k+1}{k}$$
; 6) $x_k = \sin \frac{\pi k}{2}$; B) $x_k = \frac{\sin k}{k}$; Γ) $x_k = \frac{n^2}{n+1}$.

- 13. Какие последовательности называют монотонными? строго монотонными? Приведите примеры.
 - 14. Пусть последовательность $\{x_k\}$
 - а) монотонно не убывает и ограничена снизу;

- б) монотонно не убывает и ограничена сверху;
- в) монотонно не возрастает и ограничена снизу;
- б) монотонно не возрастает и ограничена сверху.

В каких из этих четырех случаев можно гарантировать, что последовательность сходится?

Ответы на контрольные вопросы к главе 1

- 2. |x-y| есть расстояние между точками x и y.
- 3. $(-1; 2) \cup (2; 5)$.
- 5. $\frac{27}{64}$.
- 12. a) 2; б) не существует; в) 0; г) $+\infty$.
- 14. б) и в).