

学号 __21311274__ 姓名 __ 林宇浩___

【实验题目】单周期 CPU 设计(3)

【实验目的】用 FPGA 芯片实现单周期的 MIPS CPU。

【实验工具】

BASYS3 实验板, Vivado 软件

【注意事项】

- * 在忽略溢出的前提下, addi 与 addiu 等价, add 与 addu 等价。addiu 也会进行符号扩展。
- * slt 和 slti 都是有符号比较。可采用减法判定有符号数大小。
- * 数据存储器需要在时钟上升沿写入数据。
- * 可采用 for 语句对寄存器组进行初始化。

【实验要求】

设计单周期 CPU,可以正确运行课本中的冒泡排序程序。

【实验要求】

1、(sort. asm) 用 Mars 运行课本中的冒泡排序程序(sort8. asm), 要求排序以下 8 个 32 位数:

给出排序前和排序后的数据段(Data Segment) 截屏:

Address	Value (+0)	Value (+4)	Value (+8)	Value (+c)	Value (+10)	Value (+14)	Value (+18)	Value (+1c)
0x00002000	0x00000090	0x00000006	0x00000009	0x00000018	0x00000095	0x00000079	0x00000011	0x00000
0x00002020	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000
0x00002040	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000
0x00002060	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000
0x00002080	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000
0x000020a0	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000
0x000020e0	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000
0x000020e0	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000
0x00002100	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000
0x00002120	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000
0x00002140	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000
0x00002160	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000
	0.0000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000
0x00002180	0x00000000							
ata Segment	0.0000000	0 0000000	00002000 (.data)	✓ Hexadecimal Addre			0.00000001	
0.000001.0		0.0000000					Value (+18)	
ata Segment	0.0000000	0 0000000	00002000 (.data)	✓ Hexadecimal Addre	esses	I Values ASCII		Value (+1c)
ata Segment Address	Value (+0)	0 00000000	00002000 (.data) Value (+8)	✓ Hexadecimal Addre	Value (+10)	Values ASCII	Value (+18)	Value (+1c) 0x00000
ata Segment Address 0x00002000	Value (+0) 0x0000006	Value (+4) 0x0000009	00002000 (.data) Value (+8) 0x00000011	Value (+c) 0x00000018	Value (+10) 0x00000025	Value (+14) 0x00000079	Value (+18) 0x0000090	Value (+1c) 0x00000 0x00000
ata Segment Address 0x00002000 0x00002020	Value (+0) 0x0000006 0x0000000	Value (+4) 0x00000009 0x00000000	00002000 (.data) ▼ Value (+8) 0x00000011 0x00000000	Value (+c) 0x00000018 0x00000000	Value (+10) 0x0000025 0x0000000	Value (+14) 0x0000079 0x0000000	Value (+18) 0x0000090 0x0000000	Value (+1c) 0x00000 0x00000 0x00000
ata Segment Address 0x00002000 0x00002020 0x00002040	Value (+0) 0x0000000 0x00000000 0x00000000	Value (+4) 0x0000000 0x00000000 0x00000000	Value (+8) 0x0000001 0x0000000 0x00000000	Value (+c) 0x00000018 0x00000000 0x000000000	Value (+10) 0x00000025 0x00000000 0x000000000	Values ASCII Value (+14) 0x0000079 0x0000000 0x00000000	Value (+18) 0x0000090 0x0000000 0x00000000	Value (+1c) 0x00000 0x00000 0x00000 0x00000
ata Segment Address 0x0002000 0x0002020 0x00002040 0x00002060	Value (+0) 0x0000006 0x0000000 0x00000000	Value (+4) 0x0000000 0x00000000 0x00000000 0x000000	Value (+8) 0x0000000 0x0000000 0x0000000 0x0000000	Value (+c) 0x00000018 0x00000000 0x00000000 0x00000000	Value (+10) 0x0000025 0x0000000 0x0000000 0x00000000	Value (+14) 0x0000079 0x0000000 0x0000000 0x00000000	Value (+18) 0x0000090 0x0000000 0x0000000 0x0000000	Value (+1c) 0x000000 0x000000 0x000000 0x000000 0x000000
ata Segment Address 0x0002000 0x00002020 0x00002040 0x00002060 0x00002080	Value (+0) 0x0000000 0x00000000 0x00000000 0x000000	Value (+4) 0x0000000 0x00000000 0x00000000 0x000000	Value (+8) 0x0000000 0x0000000 0x0000000 0x0000000	Value (+c) 0x0000018 0x0000000 0x0000000 0x00000000 0x000000	Value (+10) 0x00000025 0x0000000 0x00000000 0x00000000 0x000000	Values ASCII Value (+14) 0x00000079 0x0000000 0x00000000 0x00000000 0x000000	Value (+18) 0x0000090 0x0000000 0x0000000 0x0000000 0x000000	Value (+1c) 0x00000 0x00000 0x00000 0x00000 0x00000 0x00000
Address 0x00002000 0x00002020 0x00002080 0x0000000000	Value (+0) 0x0000000 0x0000000 0x0000000 0x0000000	Value (+4) 0x0000009 0x00000000 0x00000000 0x00000000	Value (+8) 0x00000011 0x00000001 0x00000000 0x00000000	Value (+c) 0x0000018 0x00000018 0x0000000 0x00000000 0x00000000 0x000000	Value (+10) 0x00000025 0x00000000 0x00000000 0x00000000 0x000000	Value (+14) 0x00000019 0x00000000 0x00000000 0x00000000 0x000000	Value (+18) 0x00000090 0x00000000 0x00000000 0x00000000	Value (+1c) 0x00000 0x00000 0x00000 0x00000 0x00000 0x00000 0x00000 0x00000
Address 0x00002000	Value (+0) 0x00000000 0x00000000 0x00000000 0x000000	Value (+4) 0x0000000 0x00000000 0x0000000 0x000000	Value (+8) 0x0000000 0x00000000 0x00000000 0x000000	Value (+c) 0x00000018 0x00000000 0x00000000 0x00000000 0x000000	Value (+10) 0x00000025 0x00000000 0x00000000 0x00000000 0x000000	Value (+14) 0x00000079 0x00000000 0x00000000 0x00000000 0x000000	Value (+18) 0x00000000 0x00000000 0x00000000 0x000000	Value (+1c) 0x00000 0x00000 0x00000 0x00000 0x00000 0x00000 0x00000 0x00000 0x00000
Address 0x00002000 0x00002020 0x00002080 0x0000000000	Value (+0) 0x0000000 0x0000000 0x0000000 0x0000000	Value (+4) 0x0000009 0x00000000 0x00000000 0x00000000	Value (+8) 0x00000011 0x00000001 0x00000000 0x00000000	Value (+c) 0x0000018 0x00000018 0x0000000 0x00000000 0x00000000 0x000000	Value (+10) 0x00000025 0x00000000 0x00000000 0x00000000 0x000000	Value (+14) 0x00000019 0x00000000 0x00000000 0x00000000 0x000000	Value (+18) 0x00000090 0x00000000 0x00000000 0x00000000	Value (+1c) 0x00000 0x00000 0x00000 0x00000 0x00000 0x00000 0x00000 0x00000 0x00000
Address	0.00000000 0x00000000 0x00000000 0x0000000	Value (+4) 0x1 Value (+4) 0x00000000 0x00000000 0x00000000 0x000000	Value (+8)	Value (+c) 0x00000018 0x00000000 0x00000000 0x00000000 0x000000	Value (+10) 0x00000025 0x00000000 0x000000000 0x00000000 0x000000	Value (+14) 0x00000019 0x00000000 0x00000000 0x00000000 0x000000	Value (+18) 0x0000000 0x00000000 0x00000000 0x000000	0x000000 0x000000 0x000000 0x000000 0x000000
Address 0x0000200	Value (+0) 0x0000000 0x00000000 0x00000000 0x000000	Value (+4)	Value (+8) 0x00000011 0x00000001 0x00000000 0x00000000	Value (+c) 0x00000018 0x00000000 0x00000000 0x00000000 0x000000	Value (+10) 0x00000025 0x00000000 0x00000000 0x00000000 0x000000	Value (+14) 0x00000079 0x00000000 0x00000000 0x00000000 0x000000	Value (+18) 0x00000090 0x00000000 0x00000000 0x00000000	Value (+1c) 0x00000
Address	0.00000000 0x00000000 0x00000000 0x0000000	Value (+4) 0x1 Value (+4) 0x00000000 0x00000000 0x00000000 0x000000	Value (+8)	Value (+c) 0x00000018 0x00000000 0x00000000 0x00000000 0x000000	Value (+10) 0x00000025 0x00000000 0x000000000 0x00000000 0x000000	Value (+14) 0x00000019 0x00000000 0x00000000 0x00000000 0x000000	Value (+18) 0x0000000 0x00000000 0x00000000 0x000000	Value (+1c) 0x00000

源程序:

- # bubble sort for eight numbers
- .data

nums: .word 0x90, 6, 9, 0x18, 0x95, 0x79, 0x11, 0x25

.space 200

sptop:

- .text
- .globl main

main:

la \$sp, 200

#la \$sp, sptop

仅在 Mars 运行时启用, dump 时注销

la \$a0,0

jal swap

实验报告

```
#la $a0, nums
                              # 仅在 Mars 运行时启用, dump 时注销
  li $a1,8
  jal sort
  la $s0,0
  #la $s0, nums
                             # 仅在 Mars 运行时启用, dump 时注销
  lw $s1,0($s0)
  lw $s1, 4($s0)
  lw $s1,8($s0)
  lw $s1, 12($s0)
  lw $s1, 16($s0)
  lw $s1, 20($s0)
  lw $s1, 24($s0)
  lw $s1, 28($s0)
loop:
   j loop
#v(数组) in $a0, k(个数) in $a1, i s0, j s1
sort:
   addi $sp, $sp, -20
                         # make room on stack for 5 registers
   sw $ra, 16($sp)
   sw $s3, 12($sp)
   sw $s2, 8($sp)
   sw $s1, 4($sp)
   sw $s0, 0($sp)
  move $s2, $a0
  move $s3, $a1
   move $s0, $zero
                             \# i = 0
forltst:
          $t0, $s0, $s3
                                  # t0 = 0 if s0 \ge s3 (i \ge n)
   slt
   beq $t0, $zero, exit1
                              # go to exit1 if s0 \ge s3 (i \ge n)
   addi $s1, $s0,-1
                                 # j = i - 1
for2tst:
           $t0, $s1, 0
                                    # $t0 = 1 \text{ if } $s1 < 0 \ (j < 0)
   bne $t0, $zero, exit2
                              \# go to exit2 if \$s1 < 0 (j < 0)
   sll $t1, $s1, 2
                                    # $t1 = j * 4
   add $t2, $s2, $t1
                                # $t2 = v + (j * 4)
        $t3, 0($t2)
                                   # $t3 = v[j]
   1w
        $t4, 4($t2)
                                   \# t4 = v[j + 1]
   1 w
                                   \# \$t0 = 0 \text{ if } \$t4 \geqslant \$t3
   slt $t0, $t4, $t3
                               # go to exit2 if $t4 \ge $t3
   beq $t0, $zero, exit2
   move $a0, $s2
                                # 1st param of swap is v (old $a0)
   move $a1, $s1
                                # 2nd param of swap is j
```

call swap procedure

afb00000 00049021

```
addi $s1, $s1, -1
                                # j -= 1
    j
         for2tst
                                     # jump to test of inner loop
exit2:
    addi $s0, $s0, 1
                                 # i += 1
    j
         for1tst
                                      # jump to test of outer loop
exit1:
    lw $ra, 16($sp)
    lw $s0, 0($sp)
    lw $s1, 4($sp)
    1w $s2, 8($sp)
    lw $s3, 12($sp)
    addi $sp, $sp, 20
    jr $ra
swap:
    s11 $t1, $a1, 2 # $t1 = k * 4
    add $t1, $a0, $t1 \# $t1 = v+(k*4)
                              # (address of v[k])
    lw $t0, 0($t1)
                      # $t0 (temp) = v[k]
    lw $t2, 4($t1)
                      \# t2 = v[k+1]
                      # v[k] = $t2 (v[k+1])
    sw $t2, 0($t1)
    sw $t0, 4($t1)
                      \# v[k+1] = $t0 \text{ (temp)}
    jr $ra
                      # return to calling routine
     用"单周期 CPU 设计(a).pdf"的方法 dump 机器代码(注意注释掉 Mars 使用的相关语句):
241d00c8
24040000
24050008
0c00000e
24100000
8e110000
8e110004
8e110008
8\mathrm{e}11000\mathrm{c}
8e110010
8e110014
8e110018
8e11001c
0800000d
23bdffec
afbf0010\\
afb3000c
afb20008
afb10004
```


學 实验报告

2、(仿真) 实现执行 file3. asm 并仿真,仿真执行包含最后读取数据区数据的 8 条语句的 PC 的低 8 位和 WriteData 的低 8 位。

参考:

你的仿真图:

3、(仿真) 实现执行冒泡排序并仿真,仿真执行包含最后读取数据区数据的 8 条语句的 PC 的低 8 位和 WriteData 的低 8 位。

参考:排序3个数

参考:排序8个数

仿真图:

4、(写板) 实现写板,每次按 BtnL 键在数码管上输出数据存储器中的内容,输出的第一个数字是序号,后三个数字是内容,循环输出。一开始没有排序,在按下按 BtnC 键后,才开始排序,然后按 BtnL 键可以看到排序结果。

拍排序视频(sort8.mp4)放在打包文件中,一定要尽量短,上传文件限制80M。

完成后拍照 8 个数据排序前的结果,拼在一张图上(最好不要超过 300KB):

 $[1] \qquad \qquad [2] \qquad \qquad [3]$

[5] [6] [7]

拍照8个数据排序后的结果,拼在一张图上(最好不要超过300KB):

[1] [2] [3]

[5] [6] [7]

5、模块源码(名字可变,也可增减):

[PC]

module PC(clk,pc,readAddress,mux5,ins,jal,ra,start);

input clk, jal, start;

input [31:0] mux5, ins, ra;

output reg [31:0] pc;

output reg [31:0] readAddress;

reg ok;

initial begin

ok = 0;

```
pc = 4;
        readAddress=0;
   end
   always@(posedge start)
        ok = 1;
   always@(posedge clk) begin
        if(ok==0) begin
            pc = 4;
            readAddress=0;
        end
        else if(ins[31:26]==0&&ins[5:0]==6'b001000) begin//jr
            readAddress=ra;
            pc=ra;
            pc=pc+4;
        end
        else begin
            readAddress = mux5;
            pc = mux5;
            pc = pc+4;
        end
   end;
\verb"endmodule"
```

```
module InsMem(input wire [31:0] pc, output reg[31:0] ins);
   reg[31:0] mem[255:0];
    initial begin
        mem[0] = 32' h241d00c8;
        mem[1] = 32'h24040000;
        mem[2] = 32'h24050008;//
        mem[3] = 32'h0c00000e;
        mem[4] = 32' h24100000;
        mem[5] = 32'h8e110000;
        mem[6] = 32'h8e110004;
        mem[7] = 32'h8e110008;
        mem[8] = 32'h8e11000c;
        mem[9] = 32'h8e110010;
        mem[10] = 32'h8e110014;
        mem[11] = 32'h8e110018;
        mem[12] = 32'h8e11001c;
        mem[13] = 32'h0800000d;
        mem[14] = 32'h23bdffec;
        mem[15] = 32' hafbf0010;
        mem[16] = 32' hafb3000c;
        mem[17] = 32' hafb20008;
        mem[18] = 32' hafb10004;
        mem[19] = 32' hafb00000;
        mem[20] = 32'h00049021;
        mem[21] = 32'h00059821;
```

mem[22] = 32'h20100000;//

mem[23] = 32'h0213402a;

mem[24] = 32'h11000010;

mem[25] = 32'h2211fffff;

mem[26] = 32'h2a280000;

mem[27] = 32'h1500000b;

mem[28] = 32'h00114880;

mem[29] = 32'h02495020;

mem[30] = 32'h8d4b0000;

mem[31] = 32'h8d4c0004;

mem[32] = 32'h018b402a;

mem[33] = 32'h11000005;

mem[34] = 32'h00122021;

mem[35] = 32'h00112821;

mem[36] = 32'h0c000030;

mem[37] = 32'h2231fffff;

mem[38] = 32'h0800001a;

mem[39] = 32'h22100001;

mem[40] = 32'h08000017;

mem[41] = 32'h8fbf0010;

mem[42] = 32'h8fb00000;

mem[43] = 32'h8fb10004;

mem[44] = 32'h8fb20008;

mem[45] = 32'h8fb3000c;

mem[46] = 32'h23bd0014;

mem[47] = 32'h03e00008;

mem[48] = 32'h00054880;

```
mem[49] = 32'h00894820;
        mem[50] = 32'h8d280000;
        mem[51] = 32'h8d2a0004;
        mem[52] = 32' had2a0000;
        mem[53] = 32' had280004;
        mem[54] = 32'h03e00008;
//
          $readmemh("C:\Users\lin\Desktop\filmtext.txt", mem);
    end
   always@(pc)
    ins = mem[pc>>2]; //要用 always
\\end \\module
[CPU]
module CPU(clk, clk2, sm_wei, sm_duan, start, btnl);
    input clk;//用于cpu
    input clk2;//smg
    input start;//btnc
    input btnl;//btnl
    output wire [3:0] sm_wei;
    output wire [6:0] sm_duan;
      wire[15:0] q;
      assign q[15:8] = readAddress[7:0];
      assign q[7:0] = mux3[7:0];
```


wire regDst, jump, branch, memRead, memToReg, aluop, memWrite, aluSrc, regWrite, jal;

```
wire [31:0] pc, ra;
      wire [31:0] readAddress;
      wire [31:0] ins;
      wire [4:0] mux1;
      wire [31:0] readData1;
      wire [31:0] readData2;
      wire [3:0] aluOp, aluCtr;
      wire [31:0] data, aluResult, readData;
      wire [31:0] mux2, mux3, mux4, mux5;
      wire [27:0] jumpAdr;
      assign jumpAdr=ins[25:0]<<2;</pre>
      wire[31:0] shiftLeft;
      assign shiftLeft=data<<2;
      wire[15:0] smg:
      PC uPC(clk, pc, readAddress, mux5, ins, jal, ra, start);
      InsMem uInsMem(readAddress, ins);
      Control
uControl (ins[31:26], regDst, jump, branch, memRead, memToReg, aluOp, memWrite, aluSrc, regWrite, jal, i
ns);
      Mux #(5) Mux1(ins[20:16], ins[15:11], regDst, mux1);
      Registers
uRegisters(clk, regWrite, ins[25:21], ins[20:16], mux1, mux3, readData1, readData2, jal, pc, ra);
      SignExtend uSignExtend(ins[15:0], data);
      Mux #(32) Mux2(readData2, data, aluSrc, mux2);
      ALUcontrol uALUcontrol (alu0p, ins[5:0], aluCtr);
```



```
ALU uALU(aluCtr, readData1, mux2, aluResult, zero, ins[10:6]);
    DataMem uDataMem(clk, memWrite, memRead, aluResult, readData2, readData, btnl, smg);
    Mux #(32) Mux3(aluResult, readData, memToReg, mux3);
    Mux #(32) Mux4(pc, pc+shiftLeft, branch & zero, mux4);
    Mux #(32) Mux5(mux4, {pc[31:28], jumpAdr}, jump, mux5);
    display udisplay(clk2, smg, sm_wei, sm_duan);
endmodule
[CPU_sim]
module CPU_sim();
    reg clk, clk2, start, btnl;
    wire [3:0] sm_wei;
    wire [6:0] sm_duan;
     CPU uCPU(clk, clk2, sm_wei, sm_duan, start, btnl);
     initial begin
        c1k = 0;
        c1k2 = 0;
        start=0;
        btnl=0;
     end
     reg [3:0] count=0;
     always begin
```

```
#5;
        if(count<8) begin
            count = count + 1;
            btnl=~btnl;
            #5;
            btnl=~btnl;
        end
     end
     always #1500 count = 0;
     always #100 start = 1;
     always #2 clk = ~clk;
     always #1 clk2 = {^{\sim}}clk2;
  end module \\
[DataMem]
module DataMem(clk, memWrite, memRead, address, writeData, readData, btnl, smg);
    input clk, btnl;
    input memWrite, memRead;
    input [31:0] address;
    input [31:0] writeData;
    output [31:0] readData;
    output [15:0] smg;
    reg [31:0] mem[500:0];
```

initial begin

```
mem[0] = 32'h00000011;
//
         mem[1] = 6;
//
         mem[2] = 9;
       mem[0] = 32'h00000090;
       mem[1] = 6;
       mem[2] = 9;
       mem[3] = 32'h00000018;
       mem[4] = 32'h00000095;
       mem[5] = 32'h00000079;
       mem[6] = 32'h00000011;
       mem[7] = 32'h00000025;
    end
    always@(posedge clk) begin
        if (memWrite) mem[address>>2]=writeData;
    end
    assign readData=mem[address>>2];
    reg [3:0] count;
    initial begin
       count = 0;
    end
    always@(posedge btnl) begin
       count = count+1;
        if(count>7)
            count = 0;
```

 $\quad \text{end} \quad$

```
assign smg={count, mem[count][11:0]};
endmodule
[ALU]
module ALU(aluCtr, A, B, aluResult, zero, shamt, ins);
        input [3:0] aluCtr;
        input [31:0] A, ins;
        input [31:0] B;
        input [4:0] shamt;
       output [31:0] aluResult;
       output zero;
       reg [32-1:0] aluResult;
       reg C, zero;
       always@(*)
       begin
           C=0;
           case(aluCtr)
               4'b0000:begin aluResult=A&B; end
                                                   //按位与
               4'b0001:begin aluResult=A|B; end
                                                   //按位或
               4'b1100:begin aluResult=A^B; end
                                                   //按位异或
               4'b0101:begin aluResult=B>>A; end //将B右移A位
               4'b0010:begin {C,aluResult}=A+B; zero = aluResult==0;end //加法
               4'b0110:begin {C, aluResult}=A-B; zero = aluResult==0;end //减法
               4'b1110:begin {C,aluResult}=A-B; zero = aluResult!=0; aluResult=zero; end
```

//bne

```
4'b0111:begin
                      if(A[31]==0\&\&B[31]==0) aluResult=A<B;
                      if(A[31]==1&&B[31]==0) aluResult=1;
                      if(A[31]==0&&B[31]==1) aluResult=0;
                      if(A[31]==1\&\&B[31]==1) aluResult=A<B;
                  end//A<B则F=1, 否则F=0 slt
                  4'b0011:begin aluResult=B<<shamt; end //将B左移A位
                  4'b1000:begin aluResult=0; end //j
              endcase;
          end
  endmodule
[Control]
module
Control (opCode, regDst, jump, branch, memRead, memToReg, aluop, memWrite, aluSrc, regWrite, jal, ins);
    input [5:0] opCode;
    input [31:0] ins;
    output reg regDst;
    output reg jump;
    output reg branch;
    output reg memRead;
    output reg memToReg;
    output reg[3:0] aluop;
    output reg memWrite;
    output reg aluSrc;
```

```
output reg regWrite;
    output reg jal;
    always@(opCode) begin
        case (opCode)
            6'b000010: begin //J
            regDst = 0; aluSrc = 0; memToReg = 0;
            regWrite = 0; memRead = 0; memWrite = 0; branch = 0; aluop = 4'b1000; jump = 1; jal=0;
            end
            6'b000011: begin //jal
            regDst = 0; aluSrc = 0; memToReg = 0;
            regWrite = 0; memRead = 0; memWrite = 0; branch = 0; aluop = 4'b0000; jump = 1; jal=1;
            end
            6'b000000: begin//R
                if(ins[5:0]==6'b001000) begin//jr
                    regDst = 0; aluSrc = 0; memToReg = 0;
                    regWrite = 0; memRead = 0; memWrite = 0; branch = 0; aluop = 4'b1000; jump
= 1; jal=0;
                end
                else begin
                    regDst = 1; aluSrc = 0; memToReg = 0;
                    regWrite = 1; memRead = 0; memWrite = 0; branch = 0; aluop = 4'b1111; jump
= 0; jal=0;
                end
            end
            6'b100011: begin//lw
            regDst = 0; aluSrc = 1; memToReg = 1;
```


end

```
regWrite = 1; memRead = 1; memWrite = 0; branch = 0; aluop = 4'b0000; jump = 0; jal=0;
end
6'b101011: begin//sw
regDst = 0; aluSrc = 1; memToReg = 0;
regWrite = 0; memRead = 0; memWrite = 1; branch = 0; aluop = 4'b0000; jump = 0; jal=0;
end
6'b000100: begin//beq
regDst = 0; aluSrc = 0; memToReg = 0;
regWrite = 0; memRead = 0; memWrite = 0; branch = 1; aluop = 4'b0001; jump = 0; jal=0;
end
6' b000101: begin//bne
regDst = 0; aluSrc = 0; memToReg = 0;
regWrite = 0; memRead = 0; memWrite = 0; branch = 1; aluop = 4'b0110; jump = 0; jal=0;
end
6' b001000: begin//addi
regDst = 0; aluSrc = 1; memToReg = 0;
regWrite = 1; memRead = 0; memWrite = 0; branch = 0; aluop = 4'b0000; jump = 0; jal=0;
end
6'b001001: begin//addiu(addi)
regDst = 0; aluSrc = 1; memToReg = 0;
regWrite = 1; memRead = 0; memWrite = 0; branch = 0; aluop = 4'b0000; jump = 0; jal=0;
end
6'b001100: begin//andi
regDst = 0; aluSrc = 1; memToReg = 0;
regWrite = 1; memRead = 0; memWrite = 0; branch = 0; aluop = 4'b0100; jump = 0; jal=0;
```


end

endmodule

[display]

module display(clk, data, sm_wei, sm_duan);

```
6'b001101: begin//ori
    regDst = 0; aluSrc = 1; memToReg = 0;
    regWrite = 1; memRead = 0; memWrite = 0; branch = 0; aluop = 4'b0010; jump = 0; jal=0;
    end
    6'b001110: begin//xori
    regDst = 0; aluSrc = 1; memToReg = 0;
    regWrite = 1; memRead = 0; memWrite = 0; branch = 0; aluop = 4'b1100; jump = 0; jal=0;
    end
    6'b001010: begin//slti
    regDst = 0; aluSrc = 1; memToReg = 0;
    regWrite = 1; memRead = 0; memWrite = 0; branch = 0; aluop = 4'b0011; jump = 0; jal=0;
    end
    6'b001111: begin//luui
    regDst = 0; aluSrc = 1; memToReg = 0;
    regWrite = 1; memRead = 0; memWrite = 0; branch = 0; aluop = 4' b1011; jump = 0; jal=0;
    end
    default: begin
    regDst = 0; aluSrc = 0; memToReg = 0;
    regWrite = 0; memRead = 0; memWrite = 0; branch = 0; aluop = 4'b0000; jump = 0; jal=0;
    end
endcase
```

```
input clk;
input [15:0] data;
output [3:0] sm_wei;
output [6:0] sm_duan;
//分频
integer clk_cnt;
reg\ clk_400Hz;
always @(posedge clk)
    if(clk_cnt==32'd1) begin
        clk_cnt <= 1'b0; clk_400Hz <= ^{\sim}clk_400Hz;
    end
    else clk_cnt <= clk_cnt + 1'b1;</pre>
//位控制
reg [3:0]wei_ctrl=4'b1110;
always @(posedge clk)
    wei_ctrl <= {wei_ctrl[2:0], wei_ctrl[3]}; //位控制
reg [3:0]duan_ctrl;
always @(wei_ctrl or data)
    case(wei_ctrl)
        4'b1110:duan_ctrl=data[3:0];
        4'b1101:duan_ctrl=data[7:4];
        4'b1011:duan_ctrl=data[11:8];
        4'b0111:duan_ctrl=data[15:12];
```


default:duan_ctrl=4'hf;

endcase

```
//解码模块
reg [6:0]duan;
always @(duan_ctrl)
    case(duan_ctrl)
        4'h0:duan=7'b100_0000;//0
        4'h1:duan=7'b111_1001;//1
        4' h2:duan=7' b010_0100;//2
        4'h3:duan=7'b011_0000;//3
        4' h4:duan=7' b001_1001;//4
        4' h5:duan=7' b001_0010;//5
        4'h6:duan=7'b000_0010;//6
        4' h7:duan=7' b111_1000;//7
        4'h8:duan=7'b000_0000;//8
        4' h9:duan=7' b001_0000;//9
        4' ha:duan=7' b000_1000;//a
        4' hb:duan=7' b000_0011;//b
        4' hc:duan=7' b100_0110;//c
        4' hd:duan=7' b010_0001;//d
        4'he:duan=7'b000_0111;//e
        4'hf:duan=7'b000_1110;//f
        // 4'hf:duan=7'b111_1111;//不显示
        default : duan = 7'b100_0000;//0
```

regFiles[i]<=0;</pre>

```
assign sm_wei = wei_ctrl;
    assign sm_duan = duan;
endmodule
[Mux]
module Mux #(parameter width = 8) (input[width-1:0] d0, d1, input s, output [width-1:0] y);
    assign y = s ? d1 : d0;
endmodule
[Registers]
module
Registers(clk, regWrite, readRegister1, readRegister2, writeRegister, writeData, readData1, readDat
a2, ja1, pc, ra);
    input clk, regWrite, jal;
    input [4:0] readRegister1;
    input [4:0] readRegister2;
    input [4:0] writeRegister;
    input [31:0] writeData, pc;
    output [31:0] readData1;
    output [31:0] readData2;
    output [31:0] ra;
    reg [31:0] regFiles[0:31];
    integer i;
    initial begin
        for (i=0; i<32; i=i+1)
```

end

endmodule

```
assign readData1 = regFiles[readRegister1];
    assign readData2 = regFiles[readRegister2];
    always @(posedge clk) begin
        if(jal==1)
            regFiles[31]=pc;
        else if(regWrite)
        regFiles[writeRegister] = writeData;
    end
    assign ra=regFiles[31];
end module \\
[SignExtend]
module SignExtend(in, data);
    input [15:0] in;
    output reg [31:0] data;
    always@(in) begin
        if(in[15]==0)
            data = \{16' h0000, in\};
        else
            data = {16'hffff, in};
        end
```


[ALUcontrol]

```
module ALUcontrol(aluOp, funct, aluCtr);
    input [3:0] aluOp;
    input [5:0] funct;
    output reg [3:0] aluCtr;
    always @(aluOp or funct)
        casex({aluOp, funct})
            10' b0000xxxxxx: aluCtr = 4' b0010; // lw, sw, addi, addiu(addi)
            10'b0001xxxxxx: aluCtr = 4'b0110; // beq
            10'b1111100000: aluCtr = 4'b0010; // add
            10'b1111111101: aluCtr = 4'b0010; // addu(add)
            10'b1111100010: aluCtr = 4'b0110; // sub
            10' b1111xx0100: aluCtr = 4' b0000; // and
            10'b1111100101: aluCtr = 4'b0001; // or
            10'b1111000000: aluCtr = 4'b0011; // sll
            10'b1111101010: aluCtr = 4'b0111; // slt
            10'b0010xxxxxx: aluCtr = 4'b0001; // ori
            10'b0011xxxxxx: aluCtr = 4'b0111; // slti
            10'b0110xxxxxx: aluCtr = 4'b1110; // bne
            10'b1000xxxxxx: aluCtr = 4'b1000; // j
            default:aluCtr = 4'b0010;
        endcase
```

endmodule

【完成情况】

```
是否完成以下步骤?(√完成 ×未完成)
1 [√] 2[√] 3[√] 4[√] 5[√]
```


写出实验过程中遇到的问题,解决方法和自己的思考;并简述实验体会(如果有的话)。

本次实验收获良多。在 PC 模块中了解了寄存器变量在最底层模块设置更为方便。在 Control 模块设置中纠正了以为 jr 是 J 型指令的误区。在 Registers 模块中知道了 jal 和 jr 的数据通路设计。在仿真中,学会了使用 add to wave window 功能将模块中的变量添加到仿真图像中。在生成二进制码时遇到了 Multiple Driver Nets 的报错,了解了不能在多个 always 块中对同一个变量进行赋值。

【交实验报告】

每位同学单独完成本实验内容并填写实验报告。

交作业地点: http://172.18.187.251/netdisk/default.aspx?vm=21org

FPGA 实验/06、单周期 CPU 设计(3)

截止日期: 2022 年 12 月 1 日 23:00 (周四) 上传文件: 学号_姓名_单周期 CPU 设计 3. doc

学号_姓名_单周期 CPU 设计 3. rar (包含源代码的工程和 MP4 文件)