Trabajo Práctico No.5

Dinámica

2020

Modelo Dinámico

Para el mecanismo mostrado en la figura consistente en un eslabón móvil articulado por un eje de revolución situado según la dirección de \mathbf{z}_0 , hallar las ecuaciones del modelo dinámico inverso que vinculan el torque τ expresado sobre el eje \mathbf{z}_0 y posiciones generalizadas q y sus derivadas según se indica.

Identificación

Se han podido establecer solo los siguientes parámetros del modelo:

$$a = 0,2m$$

$$m = 2 \mathrm{Kg}$$

Son desconocidos el resto de ellos, y no se puede aplicar ninguna presunción para desestimar sus efectos. Por tal motivo se realizó un ensayo donde se aplicó al

mecanismo un determinado torque en el eje y se midieron las variables posición y sus derivadas a lo largo del tiempo.

La tabla relevada se entrega en archivo adjunto y contiene en una matriz los siguientes datos ordenados por columnas:

- tiempo de toma de la muestra en segundos,
- q expresado en rad
- \bullet \dot{q} expresado en rad/s
- \ddot{q} expresado en rad/s²
- ullet au expresado en Nm

Se pide obtener una estimación de los parámetros desconocidos $(\hat{\mathbf{p}}_{un})$ siguiendo los pasos del algoritmo que se detalla,

1. Factorizar el modelo dinámico inverso en los parámetros dinámicos:

$$\tau = \phi(q, \dot{q}, \ddot{q})\mathbf{p}$$

- 2. Separar el vector de parámetros en una parte conocida (\mathbf{p}_{kn}) y otra desconocida o a estimar (\mathbf{p}_{un})
- 3. Volver a expresar el modelo como

$$\tau - \phi_{\rm kn}(q,\dot{q},\ddot{q})\mathbf{p}_{\rm kn} = \phi_{\rm un}(q,\dot{q},\ddot{q})\mathbf{p}_{\rm un}$$

- 4. Conformar la matriz de observación Φ sobre la parte desconocida, apilando las mediciones que considere necesarias. Controlar cond (Φ)
- 5. Calcular la estimación como

$$\hat{\mathbf{p}}_{\mathrm{un}} = (\Phi^t \Phi)^{-1} \Phi^t \mathbf{\mathcal{T}}$$

o bien usando la función de Octave/Matlab pinv para hallar la pseudoinversa.

Simulación

Implementar un simulador dinámico escrito en Octave/Matlab utilizando el integrador provisto en la función ode45.

Partiendo del punto de equilibrio estable, evaluar la respuesta ante escalones de torque de amplitudes $\tau=0.1$ Nm, $\tau=2$ Nm y finalmente $\tau=3$ Nm en un rango de tiempo de 5s

Incluir luego un término disipativo de tipo $B\dot{q}$ donde el coeficiente $B=0.1{\rm Nm/(rad/s)}y$ volver a simular.

Acompañar el informe con los gráficos de las trayectorias de cada experiencia, extrayendo conclusiones.