

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

CR
160893
C.3

TECHNOLOGY INCORPORATED LIFE SCIENCES DIVISION

SPECIAL REPORT ON THE METABOLIC RATE MEASUREMENT SYSTEM

Prepared for the NASA Johnson Space Center
Environmental Physiology Laboratory

(NASA-CR-160893) METABOLIC RATE MEASUREMENT
SYSTEM (Technology, Inc., Houston, Tex.)
61 p HC A04/MF A01

N81-14614

CSCI. 06B

Unclassified
G3/54 11518

June 3, 1980

TECHNOLOGY INCORPORATED
Life Sciences Division
Houston, Texas

SPECIAL REPORT

Metabolic Rate Measurement System

Environmental Physiology Laboratory
National Aeronautics and Space Administration
Lyndon B. Johnson Space Center

Contract NAS 9-14880

Project 0175-80

Prepared by:

Kenneth Koester
Kenneth Koester
Technology Incorporated

W. G. Crosier
William Crosier
Technology Incorporated

Approval Sheet
for
The Metabolic Rate Measurement System

Approved by:

James M. Walligra
NASA Medical Research Branch

Edward C. Moseley
NASA Medical Sciences Division

Joseph T. Baker
Joseph T. Baker (Section Supervisor)
Technology Incorporated

T. Wayne Holt
Vice President &
General Manager, Life Sciences Division
Technology Incorporated

Philip C. Johnson, M.D.
Chief, Medical Research Branch
NASA Medical Sciences Division

Table of Contents

	<u>Page</u>
Cover Sheet -----	1
Approval Sheet -----	11
Table of Contents -----	iii
Introduction -----	iv
General Description -----	1
Hardware Description -----	3
LSI-11 Board Configuration -----	3
Hardware Block Diagram -----	4
Cable Diagram and Pin List -----	5
Valve Controller Schematics & Block Diagrams -----	7
Software Description -----	12
Operation -----	13
Appendix A: Physiological Equations -----	15
Appendix B: Program Flow Diagram -----	18
Appendix C: Program Listings -----	23
Appendix D: Terminal Printout -----	44
Appendix F: Calibration and Verification -----	50

INTRODUCTION

The Metabolic Rate Measurement System (MRMS) is an uncomplicated and accurate apparatus for measuring oxygen consumption and carbon dioxide production of a test subject. From this one can determine the subject's metabolic rate for a variety of conditions, such as resting or light exercise.

MRMS, like its predecessor (Metabolic Measurement - X75 Ident. No. 55005-0), utilizes an LSI/11-03 microcomputer to monitor and control the experimental apparatus. However, accuracy and efficiency have been improved by utilizing more refined equipment and techniques. Future plans include configuring the LSI/11 to communicate with a larger central computer. This will also be done with several other LSI/11 controlled experiments, such as the Skin Temperature System so that as much data as possible can be collected and stored in highly efficient manner.

GENERAL DESCRIPTION

To measure the oxygen consumed and the carbon dioxide produced for a test subject, a somewhat constant flow of ambient air is pulled through the face mask and mixed with the subject's expired air. A mass spectrometer is used to determine the concentrations of gases in both the inspired and expired air. These concentrations as well as temperature, pressure and flow rate are monitored by a Digital Equipment Corporation LSI-11 Microcomputer. The computer programs, which are written in Fortran and reside on a floppy diskette, automatically calibrate this equipment, control the sampling of the various parameters, calculate the minute volumes of the gases, and display the results on the teletype.

The LSI-11 measures the gas concentrations from the Mass Spectrometer, as well as the temperature and pressure measurements by means of an ADAC 1030 A/D converter. A parallel interface board provides the communication link from the flow meter output, and to the solenoid valve controls.

The ADAC 1030 accepts up to 16 analog input signals. Output is an integer in the range 0-2047. Channel selection as well as gain are programmable. The counts are converted to a value signifying a measurement (such as L/min , deg. cent. etc.) by means of the linear equation $\text{value} = \text{slope} * \text{counts} + \text{intercept}$. The slope and intercept values are determined by calibration techniques.

The temperature and pressure transducers are assumed constant devices, and so were calibrated once during hardware assembly.

The measurements from the Mass Spectrometer are calibrated during experimentation. Two calibration gases, of precisely known composition, are analyzed to provide slopes and intercepts.

The selection of gas (cal. gas 1, cal. gas 2, exhaled or ambient) picked up by the mass spectrometer probe is controlled by a set of solenoid valves. A digital control device converts the interface board signal to the 110 v. signal needed to actuate the proper valve.

To measure flow, a turbine-like transducer sends a signal to an amplifier/signal conditioner, which generates a square wave. This is sent to a frequency counter which then generates a BCD signal on the parallel interface as well as displaying the results on the LED display. The flow measurement system was also calibrated during hardware assembly. The flow is governed by a variac controlled exhaust fan.

A complete block diagram of hardware arrangement appears in the hardware description.

Board Configuration of the LSI-11 Microcomputer

<u>Slot Location</u>	<u>DEC Module No.</u>	<u>Device No.</u>	<u>Description</u>
1	M7264	KD11-F	Microprocessor with 4K RAM
2A	M8044	MSV11-D	32K words x 16 bit memory
2C	M7946	RXV11-A	Dual floppy disk drive controller
3A		DLV11	Serial line interface for teletype
3C & 4C	M7941	DRV11	Parallel line interface
4A	M9400YE	BCV1B	First backplane terminator & bus extender
5A	M9401YE		Bus continuity card
5C		MLSI-SMU	System monitoring unit
6			16 channel A/D & 2 channel D/A interface

	1	A	B	C	D
		CPU with 4K memory			
First Backplane	2	<u>32K memory</u>		<u>disk controller</u>	
	3	<u>serial interface</u>		<u>parallel interface</u>	
	4	<u>bus extender</u>		<u>parallel interface</u>	
	5	<u>bus connector</u>		<u>SMU</u>	
Second Backplane	6	<u>analog to digital converter</u>			
	7				
	8				

BLOCK DIAGRAM OF HARDWARE SHOWING
DATA CABLES

CABLE RUNNING LIST FOR ANALOG/DIGITAL INTERFACE

Cannon DD505 50 pin Ribbon
Cable Mounted Connector

Cannon DD50P Mating Connector
on PC Board

	FUNCTION	COLOR	PIN	PIN	FUNCTION
P16	CO ₂ signal	black	16	31	ADC0 in
	CO ₂ return	green	33	32	ADC0 return
	O ₂ signal	white	15	29	ADC1 in
	O ₂ return	yellow	32	30	ADC1 return
P18	Temp signal	gray	14	27	ADC2 in
	Temp return	orange	31	28	ADC2 return
P17	Press signal	violet	13	25	ADC3 in
	Press return	red	30	26	ADC3 return
					P15

CABLE RUNNING LIST FOR PARALLEL INTERFACE

	FUNCTION	PIN	PIN	FUNCTION	
P14	Cal gas #1 solenoid	1	2	C Out 00	
	Cal gas #2 solenoid	2	3	K Out 01	
	Exhaust air solenoid	3	4	NN Out 02	
	Ambient air solenoid	4	5	U Out 03	
			1	PP Ground	P13
P12	Meter BCD	1000	2	U In 12	
		2000	3	P In 13	
		80	4	CC In 07	
		40	5	EE In 06	
		20	6	HH In 05	
		10	7	KK In 09	
		8	8	BB In 03	
		4	9	H In 02	
		2	10	LL In 01	
		1	11	TT In 00	
	Busy Flag		12	K CSRO	P11
	Meter BCD	4000	A	N In 14	
		8000	B	M In 15	
		800	C	V In 11	
		400	D	W In 10	
		200	E	Y In C9	
		100	F	Z In 08	
	Signal Ground		M	JJ Ground	

START UP CIRCUIT FOR LSI-11 MICROCOMPUTER

SOLENOID CONTROL CIRCUITS

LOGIC BOARD
START UP CIRCUIT
PART OF SOLENOID
CONTROL CIRCUIT

ORIGINAL PAGE IS
OF POOR QUALITY

SOFTWARE DESCRIPTION

The software package is developed in and supported by RT-11 v3B operating system. The real-time test program is written in Fortran and operates in phases that are user controlled. Although this requires user intervention, it permits software design so as to minimize the number of subroutines and associated overhead.

The main phases of the real-time test program operate in the following manner.

Calibration: Open solenoid valve for a cal. gas and flow for 30 seconds to clear tubing. Average 100 readings each for O₂ and CO₂ concentrations. Repeat for other cal. gas. Calculate slopes and intercepts. Print results.

Test data: Set valve for ambient gas flow for 7 seconds to clear tubing. Then sample ambient data continuously for the next 8 seconds. Set valve for exhaled gas flow for 7 seconds to clear tubing. Then sample exhaled data continuously for the next 38 seconds. During the duty cycles (8 sec./ambient, 38 sec./exhaled), no other operations other than data gathering are performed. Averaging, computational calculations, and printing are done during the 7 sec. wait cycles. This 60 second cycle is repeated until user intervenes.

The resulting program provides good flexibility of initial conditions as well as high sampling rates and efficient use of CPU capability.

OPERATION

- 1) Insure cal gases are operational; verify proper hose connection (gas 1 with hose #1, etc.); bottle has sufficient operating pressure; pressure is adjusted properly (4-8 psi is sufficient).
- 2) Insure mask hoses are properly connected. Hose to tank and tank to flow meter/fan are color coded for proper connection. Capillary tube connects to Inlet connection.
- 3) Insure mass spectrometer is properly configured. Probe is connected to Mass Spectrometer connection. Proper inlet is selected and unit is "ON". Verify mode is % and output signal cables are connected to converter patch panel. (NOTE: A filter/amplifier box may be inserted between the mass spectrometer and the patch panel.)
- 4) Verify the patch panel connections are attached to the proper channel
 - Ch. 1: O₂ signal
 - 2: CO₂ signal
 - 4: Temp. signal
 - 5: Press. signal
- 5) Load floppy diskette into disk drive; Disk ENVIRE contains the RT-11 v3B operating system as well as program into ENVIRE .SAV and data file DATCON .VAL.
- 6) Turn on power to teletype, turn on power to CPU and other hardware.
- 7) The teletype should print "\$". To boot the system; clear the INTRPT light (depress the key once), type "DX" and carriage return. The

system will then boot up ready to accept commands.

- 8) Type "R ENVIRE" <CR>. Envire prints adequate instructions for operator actions required. Appendix D is a hard copy printout containing expanded comments about options etc.

APPENDIX A
PHYSIOLOGICAL EQUATIONS

Indices: i → cal gas 1 or 2
 j → 1=O₂, 2=CO₂

Given %_(i,j) = m(j) * ξ_(i,j) + b(j)
where % → cal gas percentage
ξ → mass spec output, read as counts from A/D

then m(j) = $\frac{\%_{(2,j)} - \%_{(1,j)}}{\xi_{(2,j)} - \xi_{(1,j)}}$

$$b(j) = \%_{(1,j)} - m(j) * \xi_{(1,j)}$$

Respiratory Quotient Rq = $\frac{\Delta CO}{\Delta O}$

CO₂ Production ΔCO = {STP * fl * [Q_e(2) - r₂* Q_e(3)]} averaged

O₂ Consumption ΔO = {STP * fl * [r₁ * Q_e(3) - Q_e(1)]} averaged

Temp/Press. Correction STP = [$(\frac{273.15}{273.5 + T}) * (\frac{P}{760})$] averaged

Gas Concentration p_k(j) = m(j) * ξ(k,j) + b(j)

where k denotes ambient or exhaled concentration

and p_k(nitrogen) = 100 - p_k(1) - p_k(2)

Ratio factor r_j = $\frac{p_{amb}(j)}{p_{amb}(N_2)}$ averaged

Flow fl measured in litres/minute

STP and r_j are calculated and then averaged during the ambient duty cycle as described in the Software Description section.

f_L and $\rho_e(j)$ are measured and a value for $\Delta CO'$ and $\Delta O'$ is calculated. Due to experimental restriction, it is necessary that the ambient measurements (STP and r_j) be considered constant, at least during the exhaled duty cycle. The values of $\Delta CO'$ and $\Delta O'$ are averaged (to get ΔCO and ΔO), as described in the Software Description section. Rq reflects a single value, for the minute of data sampled.

APPENDIX B
PROGRAM FLOW DIAGRAM

APPENDIX C
PROGRAM LISTINGS

FORTRAN IV V02.1-1 FRI 2R-MAR-80 01:05:09

C
0001 PROGRAM MRMS

C
C
C
0002 10 FORMAT (/,17X,
* 'MRMS',//,
* 5X,'REAL-TIME TEST PROGRAM TO SUPPORT THE',//,
* 5X,'METABOLIC RATE MEASUREMENT SYSTEM',//,
* 5X,'ENVIRONMENTAL PHYSIOLOGY LAB',//,
* 5X,'TECHNOLOGY INCORPORATED ',//)

C
C KEN KOESTER
C REVISION 1

C
C TYPE
0003 IMPLICIT LOGICAL (L)
0004 LOGICAL*IYS,INO,ISTP,IANS

C
C SIZE
0005 DIMENSION IDAT(3),INAM(15),IMOD(15)
0006 DIMENSION CALPCT(2,2),PCIAMB(3),PCTEXH(3)
0007 DIMENSION GASSLP(2),GSNTCP(2),GSGN(2)
0008 DIMENSION GASCNT(4,2),GASSUM(2)
0009 DIMENSION IVLVMD(5),IADCAC(5)

C
C COMMON
0010 COMMON/PLOTR/LDATHD,MIN,O2CON,CO2PD,
* RESQ,TEMP,PRES,EXCNTR,LAVG,FLOW,ISCL
0011 COMMON/TIME/SEC

C
0012 EXTERNAL TICK

C
C DATA
0013 DATA IYS/1HY/,INO/1HN/,ISTP/1HS/,IBL/"07/
0014 DATA IVLVMD/"01,"02,"04,"10,"14/
0015 DATA IADCSR/"176770/,IADBUF/"176772/,IDRVBF/"167772/
0016 DATA STPS/0./,O2SUM/0./,CO2SM/0./,CAMAX/0./
0017 DATA AMCNTR/0./,EXCNTR/0./,ONSUM/0./,CONSM/0./
0018 DATA SEC/0./,MIN/0/

C
C
C READ DATA CONSTANTS
0019 OPEN(UNIT=2,TYPE='OLD',NAME='DXD:DATCON.VAL')
0020 READ(2,60)((CALPCT(I,J),J=1,2),I=1,2),
* (GSGN(I),I=1,2),(IADCAC(M),M=1,4)

C
0021 ISCL=2

12 C
11 C START PROG CLOCK

10 0022 ISR=INTSET("104,4,0,TICK)
9 0023 CALL IPOKE("172542,10000)
8 0024 CALL IPOKE("172540,"113)

6

5

4

3

FORTRAN IV V42.1-1 FBI 28-MAR-90 01105109

C

C OPEN VALVES FOR VENTING
0025 CALL IPOSE(IIDRVBF,IVLVMD(5))

C

C TYPE HEADER & INSTRUCTIONS

0026 TYPE 10

0027 TYPE 12

0028 ACCEPT 13,IANS

0029 IF(IANS.EQ.IN0) GO TO 92

C

C GET PHASE & BRANCH

0031 90 CONTINUE

0032 TYPE 14

0033 92 ACCEPT 15,IPHS

0034 IF(IPHS.GT.0) GO TO 94

0036 ACCEPT 15,IPHS

0037 94 GO TO (-100,200,300,400,500) IPHS

C

C

C-----PHASE 1 DATA CONSTANTS

0038 100 CONTINUE

C

0039 TYPE 50

C

C CHECK GAS GAINS

0040 DO 110 I=1,2

0041 TYPE 52,I,GSGN(I)

0042 ACCEPT 13,IANS

0043 IF(IANS.NE.IYS) GO TO 110

0045 TYPE 54

0046 ACCEPT 53,VALUE

0047 GSGN(I)=VALUE

0048 110 CONTINUE

C

C CHECK PROGRAMMABLE GAINS

0049 DO 120 M=1,4

0050 TYPE 56,M,IADCGC(M)

0051 ACCEPT 13,IANS

0052 IF(IANS.NE.IYS) GO TO 120

0054 TYPE 54

0055 ACCEPT 57,INT

0056 IADCGC(M)=INT

0057 120 CONTINUE

C

C CHECK CAL-GAS Z'S

0058 DO 130 I=1,2

0059 DO 130 J=1,2

0060 TYPE 58,I,J,CALPCT(I,J)

0061 ACCEPT 13,IANS

12 0062 IF(IANS.NE.IYS) GO TO 130

11 0064 TYPE 54

10 0065 ACCEPT 59,VALUE

9 0066 CALPCT(I,J)=VALUE

8 0067 130 CONTINUE

7

6

5

4

3

FORTRAN IV V02.1-1 FRI 28-MAR-80 01:05:09

C
C SET SCALE VALUE
0068 TYPE 62
0069 ACCEPT 13,IANS
0070 IF (IANS.EQ.IY9) GO TO 140
0072 ISCL=1
0073 TYPE 63
0074 140 CONTINUE
C
C END OF PHASE 1--GET NEW PHASE
0075 TYPE 22,IPHS
0076 GO TO 92
C
C
C-----PHASE 2 HEADER INFORMATION
0077 200 CONTINUE
0078 TYPE 16
0079 ACCEPT 17,(IDAT(M),M=1,3)
0080 TYPE 18
0081 ACCEPT 19,(INAM(M),M=1,15)
0082 TYPE 20
0083 ACCEPT 19,(IMOD(M),M=1,15)
C
C END OF PHASE 2--GET NEW PHASE
0084 TYPE 22,IPHS
0085 GO TO 92
C
C
C-----PHASE 3 CALIBRATION
0086 300 CONTINUE
C
0087 TYPE 24
C
0088 DO 315 K=1,2
C
C OPEN VALVE(K)--WAIT 30 SECONDS
0089 CALL IPOKE(IORVBF,IVLVMD(K))
0090 T=SEC
0091 303 DT=SEC-T
0092 IF (DT.LT.30.0) GO TO 303
C
C ANALYZE EACH TYPE FOR 100 SAMPLES
0094 DO 315 J=1,2
0095 GASSUM(J)=0.0
C
0096 DO 305 M=1,100
0097 CALL IPOKE(IADCSP,IADCGC(J))
0098 INT=IPEEK(IADBUF)
0099 GASSUM(J)=GASSUM(J)+FLOAT(INT)/GSGN(J)
12 0100 305 CONTINUE
11 C
10 0101 GASCNT(K,J)=GASSUM(J)/100.
9 0102 315 CONTINUE
8 C
7
6
5
4
3

FORTRAN IV V02.1-1 FRI 28-MAR-80 01:05:09

C GET SLOPES & INTERCEPTS
0103 DO 320 J=1,2
0104 GASSLP(J)=(GALPCT(2,J)-GALPCT(1,J))
* /(GASCNT(2,J)-GASCNT(1,J))
0105 GSNTCP(J)=GALPCT(1,J)-(GASSLP(J)*GASCNT(1,J))
0106 320 CONTINUE
C
0107 TYPE 261
0108 TYPE 26,(GASCNT(I,1),I=1,2),GASSLP(1),GSNTCP(1)
0109 TYPE 262
0110 TYPE 26,(GASCNT(I,2),I=1,2),GASSLP(2),GSNTCP(2)
C
C END OF PHASE 3 - GET NEW PHASE
0111 CALL IPOKE(IDRVBF,IVLVMD(5))
0112 TYPE 22,IPMS
0113 GO TO 92
C
C
C-----PHASE 4 TEST DATA
0114 400 CONTINUE
C
0115 TYPE 30
0116 ACCEPT I3,IANS
C
0117 TYPE 32,(INAM(J),J=1,15),(IDAT(J),J=1,3),(IMOD(J),J=1,15)
0118 LDATHD=.TRUE.
0119 LEXH=.FALSE.
0120 LAVG=.FALSE.
0121 MIN=0
0122 T=SEC
C
0123 402 IF(IANS.EQ.ISTP) GO TO 495
C
C START TIMER
0125 405 DT=SEC-T
C CHECK FOR USER REQUEST
0126 IANS=ITTINR(DMY)
0127 IF(IANS.EQ.ISTP) GO TO 402
C SET VALVE CONFIGURATION
0129 IV#4
0130 IF(DT.GT.15.) IV#3
0132 CALL IPOKE(IDRVBF,IVLVMD(IV))
C CHECK TIME PHASE
0133 407 CONTINUE
0134 IF(DT.GT.7.) GO TO 415
C DT<7: MAKE CALC'S &
C PRINT RESULTS? THEN IDLE...
0136 IF(.NOT.LEXH) GO TO 405
C
0138 LEXH=.FALSE.
C
0139 O2CON=O2SUM/EXCNTR
0140 CO2PD=CO2SM/EXCNTR
0141 RESQ=CO2PD/O2CON
6
5
4

FORTRAN IV V02.1-1 FRI 28-MAR-80 01:05:09

C

0142 02SUM=0.
0143 CO2SM=0.

C

0144 CALL PLOT
D TYPE 80,((PCTAMB(J),PCTEXH(J)),J=1,3),ONR,CNR,STP,FLOW
D 80 FORMAT(X,10F9.3)
0145 EXCNTR=0.
0146 LOADMD=.FALSE..

C

0147 GO TO 405

C

C DT>7, CHECK NEXT PHASE

0148 415 CONTINUE
0149 IF(DT.GT.15.) GO TO 422
C DT<15: COLLECT AMBIENT DATA
LAMB=.TRUE..
0151 AMCNTR=AMCNTR+1.

C

GAS FRACTIONS

0153 DO 417 J=1,2
0154 CALL IPOSE(IADCSR,IADCGC(J))
0155 INT=IPEEK(IADBUF)
0156 GASCNT(3,J)=FLOAT(INT)/GSGN(J)
0157 PCTAMB(J)=(GASSLP(J)*GASCNT(3,J))+GSNTCP(J)
0158 417 CONTINUE
0159 PCTAMB(3)=100.0-PCTAMB(2)-PCTAMB(1)
0160 IF(CAMAX.LT.PCTAMB(2)) CAMAX=PCTAMB(2)

C

RATIO FACTORS

0162 ONSUM=ONSUM+(PCTAMB(1)/PCTAMB(3))
0163 CONSM=CONSM+(PCTAMB(2)/PCTAMB(3))
0164 PCTSM=PCTSM+PCTAMB(2)

C

TEMP

0165 CALL IPOSE(IADCSR,IADCGC(3))
0166 INT=IPEEK(IADBUD)
0167 TEMP=((-.1885*FLOAT(INT))-5.1)/10.

C

PRESS

0168 CALL IPOSE(IADCSR,IADCGC(4))
0169 INT=IPEEK(IADBUD)
0170 PRES=((4.8851*FLOAT(INT))+.007)/10.

C

STPP=(273.15/(273.15+TEMP))*PRES/760.

0172 STPS=STPS+STPP

C

GO TO 405

C

C DT>15, CHECK NEXT PHASE

0174 422 CONTINUE

0175 IF(DT.GT.22.) GO TO 460

C

C DT<22: AVG AMBIENT DATA:

12 C ZERO INTEGRATORS; THEN IDLE...

11 0177 IF(.NOT..LAMB) GO TO 405

10 C

9 0178 LAMB=.FALSE..

8 C

7

6

5

4

FORTRAN IV V02.1-1 FRI 28-MAR-80 01:05:09

0180 STP=STPS/AMCNTR
0181 ONRAT=ONSUM/AMCNTR
0182 CONRT=CONSM/AMCNTR
0183 PCTCAV=PCTSM/AMCNTR
0184 IF((GAMAX-PCTCAV).GT.2) LAVGE,TRUE.
0185 IF(LAVG) TYPE 13,1BL
D ONR=ONRAT
D CNR=CONRT
C
0188 AMCNTR=0.
0189 STPS=0.
0190 ONSUM=0.
0191 CONSM=0.
0192 PCTSM=0.0
0193 GAMAX=0.0
C
0194 GO TO 405
C
C DT>22, CHECK LAST PHASE
0195 460 CONTINUE
0196 IF(DT.LT.00.) GO TO 462
0197 T=T+60.
0198 MIN=MIN+1
0199 GO TO 405
C
C DT<60.: COLLECT EXHALED DATA
0200 462 LEXME,TRUE.
0201 EXCNTR=EXCVTR+1.
C GAS FRACTIONS
0202 DO 467 J=1,2
0203 CALL IPOKE(IADCSP,IADCCC(J))
0204 INT=IPEEK(IADBUF)
0205 GASCNT(4,J)=FLOAT(INT)/GSGN(J)
0206 PCTEXH(J)=(GASSLP(J)*GASCNT(4,J))+GSNTCP(J)
0207 467 CONTINUE
0208 PCTEXH(3)=100.0-PCTEXH(1)-PCTEXH(2)
C FLOW
0209 CALL IPOKE("167770,1")
0210 IVAL=IREEK("167774")
0211 CALL IPOKE("167770,0")
0212 FLOW=CON3CD(IVAL,1)*1.52
C
0213 02SUM=029UM+(STP*FLOW*((CONRAT+PCTEXH(3))-PCTEXH(1))*01)
0214 CO2SM=CO2SM+(STP*FLON*(PCTEXH(2)-(CONRT+PCTEXH(3)))*01)
C
0215 GO TO 405
C
C
0216 405 CONTINUE
0217 CALL IPOKE(IDRVBF,IVLVMD(5))
0218 TYPE 22,IPHS
0219 ACCEPT 15,IPHS
0220 IPHS=IPHS
0221 GO TO 92

7

6

5

4

3

FORTRAN IV V02.1-1 FRI 28-MAR-80 01:05:09

C
C
C-----PHASE 5 TERMINATION
0223 500 CONTINUE
C
C* STOP CLOCK
0224 CALL IPOKE("172540,"000)
C*
0225 TYPE 40
0226 CALL IPOKE(IDRVBF,"00)
C
C
0227 STOP 'BYE'
C
C
0228 12 FORMAT (X,'TO GET INSTRUCTION, ',
* 'TYPE Y & RETURN',/X,
* 'TO PROCEED, TYPE N & RETURN ',S)
C
0229 13 FORMAT (A1)
C
0230 14 FORMAT (X,/,X,'TEST LOAD M-R-M-S HAS 5 PHASES',
* '/.5X,'1 DATA CONSTANTS--ALLOWS USER',
* '/,' MODIFICATION OF SELECTED DATA CONSTANTS',
* '/,' (GAS GAINS,CAL=GAS X"S. ETC.",
* '/,' OTHERWISE PROGRAM USES DEFAULT VALUES.',
* '/.5X,'2 INITIALIZATION--ENTER HEADER INFORMATION',
* '/.5X,'3 CALIBRATE--DETERMINE SLOPES & INTERCEPTS',
* '/,' FOR DATA CURVES BY SAMPLING 2 CAL. GASES',
* '/.5X,'4 TEST-DATA--SAMPLES TEST-DATA CONTINUOUSLY',
* '/,' UNTIL USER TERMINATES',
* '/.5X,'5 TERMINATE--RETURNS CONTROL TO MONITOR',
* '/.3X,'VERIFY CAL GASES ARE OPEN',
* '/.3X,'AND MASS SPEC IS FUNCTIONAL',
* '/.10X,'ENTER # & RETURN ',S)
C
0231 15 FORMAT (I1)
C
0232 16 FORMAT (X,/,10X,'PHASE 2 INITIALIZATION',/。
* 2X,'DATE : (MM/DD/YY) ',S)
C
0233 17 FORMAT (I2,X,I2,X,I2)
C
0234 18 FORMAT (2X,'SUBJECT NAME : ',S)
C
0235 19 FORMAT (1542)
C
0236 20 FORMAT (2X,'TEST NO. ',S)
C
12 0237 22 FORMAT (X,/.5X,'END OF PHASE ',I3,/。
11 * ' ENTER NEW PHASE # ',S)
10 C
9 0238 24 FORMAT(X,/,10X,'PHASE 3 CALIBRATION')
8 C
7
6
5
4

FORTRAN IV V02.1-1 FRI 28-MAR-80 01:05:09

0239 26 FORMAT(4X,'CT8=1',4X,'CT8=2',8X,'SLOPE',
* 7X,'INTCPT',/,2(3X,F8.2),2X,2(3X,F9.3))
0240 261 FORMAT(/,42X,'OXYGEN')
0241 262 FORMAT(/,18X,'CARBON DIOXIDE')

C
0242 30 FORMAT(X,/,10X,'PHASE 4 TEST-DATA',
* 1,5X,'TO INITIATE.',
* 1,5X,'ADVANCE PAGE AS DESIRED.',
* 1,5X,'THEN RETURN.',
* 1,5X,'TERMINATE AT ANY TIME.',
* 1,5X,'BY ENTERING S & RETURN.',\$)

C
0243 32 FORMAT(X,'NAME: ',15A2,15X,'DATE: ',
* 2(I2,'/'),I2,15X,'TEST MODE: ',15A2)

C
0244 40 FORMAT(X,/,10X,'END OF REAL-TIME TEST',
* 1,5X,'CONTROL RETURNS TO SYS. MONITOR...'.
* 1,5X,'BE SURE TO CLOSE CAL GASES',
* 1,5X,'AND RETURN MASS SPEC TO STANDBY')

C
0245 50 FORMAT(X,/,10X,'PHASE 1 DATA CONSTANTS',
* 1,5X,'TO LEAVE VALUE UNCHANGED, ENTER',
* 1,5X,'N & RETURN. TO CHANGE ENTER Y',
* 1,5X,'S RETURN, GET "NEW VALUE" PROMPT.',
* 1,5X,'ENTER NEW VALUE & RETURN'./)

C
0246 52 FORMAT(5X,'GSGNC(',I1,')=',F4.1,\$)

C
0247 54 FORMAT(3X,'NEW VALUE =\$.S)

C
0248 53 FORMAT(F4.1)

C
0249 56 FORMAT(5X,'IADCGC(',I1,')= ",.05.\$)

C
0250 57 FORMAT(0\$)

C
0251 58 FORMAT(5X,'CALPC('I1.'',I1.')= ',F6.2,\$)

C
0252 59 FORMAT(F6.2)

C
0253 60 FORMAT('F6.2,2F4.1,405')

C
0254 62 FORMAT(5X,'SET SCALE = 0..5 ? \$.S)

C
0255 63 FORMAT(5X,'SCALE SET = 0..5. ! ')

C
0256 END
C

12

11

10

9

8

7

6

5

4

3

FORTRAN IV STORAGE MAP FOR PROGRAM UNIT M9MS

LOCAL VARIABLES. PSECT SDATA, SIZE = 000636 (207. WORDS)

NAME	TYPE	OFFSET	NAME	TYPE	OFFSET	NAME	TYPE	OFFSET
AMCNTR	R*4	000332	CAMAX	R*4	000326	CONRT	R*4	000546
CONSM	R*4	000342	CO2SM	R*4	000322	DMY	R*4	000514
DT	R*4	000504	I	I*2	000456	IADBUF	I*2	000306
IADCSDR	I*2	000304	JANS	L*1	000454	IRL	I*2	000302
IDRVBF	I*2	000310	INO	L*1	000277	INT	I*2	000474
IPMS	I*2	000466	ISB	I*2	000464	ISTR	L*1	000300
IV	I*2	000520	IVAL	I*2	000556	IYS	L*1	000276
J	I*2	000460	K	I*2	000476	LAMB	L*4	000522
LEXH	L*4	000510	M	I*2	000462	ONRAT	R*4	000542
ONSUM	R*4	000334	O2SUM	R*4	000316	PCTCAV	R*4	000552
PCTSM	R*4	000526	STP	R*4	000536	STPP	R*4	000532
STRS	R*4	000312	T	R*4	000500	VALUE	R*4	000470

COMMON BLOCK /PLOTR/, SIZE = 000050 (20. WORDS)

NAME	TYPE	OFFSET	NAME	TYPE	OFFSET	NAME	TYPE	OFFSET
LOADHD	L*4	000000	MIN	I*2	000004	O2CON	R*4	000006
CO2PD	R*4	000012	REQ	R*4	000016	TEMP	R*4	000022
PRES	R*4	000024	EXCNTR	R*4	000032	LAVG	L*4	000036
FLOW	R*4	000042	ISCL	I*2	000046			

COMMON BLOCK /TIME/, SIZE = 000004 (2. WORDS)

NAME	TYPE	OFFSET	NAME	TYPE	OFFSET	NAME	TYPE	OFFSET
SEC	R*4	000000						

LOCAL AND COMMON ARRAYS:

NAME	TYPE	SECTION	OFFSET	SIZE	DIMENSIONS
CALPCT	R*4	VEC	SDATA	000102	000020 (8.) (2,2)
GASCNT	R*4	VEC	SDATA	000202	000040 (16.) (4,2)
GASSLP	R*4		SDATA	000152	000010 (4.) (2)
GASSUM	R*4		SDATA	000242	000010 (4.) (2)
GSGN	R*4		SDATA	000172	000010 (4.) (2)
GSNTCP	R*4		SDATA	000162	000010 (4.) (2)
IADCDC	I*2		SDATA	000264	000012 (5.) (5)
IDAT	I*2		SDATA	000000	000006 (3.) (3)
IMOD	I*2		SDATA	000044	000036 (15.) (15)
INAM	I*2		SDATA	000006	000036 (15.) (15)
IVLVMD	I*2		SDATA	000252	000012 (5.) (5)
PCTAMB	R*4		SDATA	000122	000014 (6.) (3)
PCTEXH	R*4		SDATA	000136	000014 (6.) (3)

SUBROUTINES, FUNCTIONS, STATEMENT AND PROCESSOR-DEFINED FUNCTIONS:

12	NAME	TYPE	NAME	TYPE	NAME	TYPE	NAME	TYPE
11	CONBCD	R*4	FLOAT	R*4	INSET	I*2	IPEEK	I*2
10	ITТИNR	I*2	PLOT	R*4	TICK	R*4	IPOKE	I*2

9

8

7

6

5

4

3

FORTRAN IV V02.1-1 FRI 28-MAR-80 00:40:55

0001 SUBROUTINE TICK(ID)

C

0002 COMMON/TIME/SEC

C

0003 SEC=SEC+1.

C

0004 RETURN

0005 END

12

11

10

9

8

7

6

5

4

3

FORTRAN IV

STORAGE MAP FOR PROGRAM UNIT TICK

LOCAL VARIABLES, .PSECT SDATA, SIZE = 000002 (1. WORDS)

NAME	TYPE	OFFSET	NAME	TYPE	OFFSET	NAME	TYPE	OFFSET
ID	I+2	0	000000					

COMMON BLOCK /TIME/, SIZE = 000004 (2. WORDS)

NAME	TYPE	OFFSET	NAME	TYPE	OFFSET	NAME	TYPE	OFFSET
SEC	R+4	0	000000					

12
11
10
9
8
7
6
5
4
3

FORTRAN IV V02.1-1 MON 31-MAR-80 10:13:44

```
0001      SUBROUTINE PLOT
C
0002      LOGICAL LDATHD,LAVG
0003      LOGICAL *1 ISCAL,IPL,IMN,IN,IC,IST,IAL,IGO
C
0004      DIMENSION ISCAL(56),SCAL(3)
C
0005      COMMON/PL01P/LDATHD,IMN,O2CON,C02PD,
*             RES3,TEMP,PRESS,EXCNTR,LAVG,FLOW,ISCL
C
0006      DATA IPL/1H+/,IMN/1H-/,IBL/1H /
0007      DATA IO4/1M0/,IC4/1M1/,IST/1M2/
0008      DATA OXYPR/0.0/,CO2PR/0.0/,RSQPR/0.0/
0009      DATA SCAL/10.0,100.0/
C
C      PRINT COL. TITLES ONCE
0010      IF(.NOT.LDATHD) GO TO 8
0012      GO TO (10,100) ISCL
0013      10 TYPE 11
0014      GO TO 4
0015      100 TYPE 101
C      GO TO 4
0016      4 CONTINUE
0017      RWIA=0.0
C
C      SET SCALE L1-E BY BRUTE FORCE
0018      DO 5 I=1,56
0019      5 ISCAL(I)=IMN
0020      DO 6 I=1,51,10
0021      6 ISCAL(I)=IPL
C
0022      8 CONTINUE
0023      CDIS=(O2CON*SCAL(ISCL))+.5
0024      JC=IFIX(CDIS)+1
C
0025      CDIS=(C02PD*SCAL(ISCL))+.5
0026      JC=IFIX(CDIS)+1
C
0027      ISV1=ISCAL(J0)
0028      ISV2=ISCAL(JC)
0029      ISCAL(J0)=10
0030      ISCAL(JC)=IC
C
0031      IF(JC.EQ.J0) ISCAL(JJ)=IST
C
0033      IGD=IBL
0034      IF(LAVG) IGD=IST
0036      TYPE 20,MIN,TEMP,PRESS,FL04,O2CON,C02PD,RES3,
*             IGO,(ISCAL(J),J=1,56),EXCNTR
0037      ISCAL(J0)=ISV1
12 0038      ISCAL(JC)=ISV2
11
C
10 0039      IF(LAVG) GO TO 9
9 0041      RWIA=RW1*(1+1.0
8
7
6
5
4
```

FORTRAN IV

V02.1-1

MON 31-MAR-80 10:13:44

```
0042      OXYPR=0XYPR+02CON
0043      CO2PR=CO2PR+CO2PO
0044      RSQPR=RSPR+RESQ
C
0045      IF(RMIN.LT.15.0) RETURN
0047      OXYAVG=OXYPR/RMIN
0048      CO2AVG=CO2PR/RMIN
0049      RSQAVG=RSQPR/RMIN
C
0050      OXYPR=0.
0051      CO2PR=0.
0052      RSQPR=0.
0053      RMIN=0.
C
0054      TYPE 30,OXYAVG,CO2AVG,RSQAVG
C
0055      9 CONTINUE
0056      LAVG=.FALSE.
0057      RETURN
C
0058      11 FORMAT(1,1X,'MIN T(CG) P(HG) F(L/M) 02-CON',
*      ' CO2-PO RES-Q',5X,'0.',8X,'1.',8X,'2.',
*      ' AX,'3.',8X,'4.',8X,'5.',7X,'SMPLS')
C
0059      101 FORMAT(1,1X,'MIN T(CG) P(HG) F(L/M) 02-CON',
*      ' CO2-PO HES-Q',5X,'0.',8X,'1.',8X,'2'.
*      ' AX,'3.',8X,'4.',8X,'5.',7X,'SMPLS')
C
0060      20 FORMAT(2X,I2,3(1X,F5.1),X,3(2X,F6.3),4X,1A1,
*      ' 5AA1.3X,F5.0,4)
C
0061      30 EDIVAT(SY,'15-MIN. AVERAGES ',3(2Y,F6.3),1)
C
0062      END
```

12

11

10

9

8

7

6

5

4

3

FORTRAN IV

STORAGE MAP FOR PROGRAM UNIT PLOT

LOCAL VARIABLES, .PSECT \$DATA, SIZE = 000210 (68. WORDS)

NAME	TYPE	OFFSET	NAME	TYPE	OFFSET	NAME	TYPE	OFFSET
CDIS	R*4	000146	C02AVG	R*4	000166	C02PR	R*4	000112
I	I*2	000136	IBL	L*1	000102	IC	L*1	000104
IGD	L*1	000130	IMN	L*1	000101	IO	L*1	000103
IPL	L*1	000100	IST	L*1	000105	ISV1	I*2	000154
ISV2	I*2	000156	J	I*2	000160	JC	I*2	000152
JO	I*2	000144	ODIS	R*4	000140	OXYAVG	R*4	000162
OXYPR	R*4	000106	RMJN	R*4	000132	RSGAVG	R*4	000172
RSQPR	R*4	000116						

COMMON BLOCK /PLOTIR/. SIZE = 000050 (20. WORDS)

NAME	TYPE	OFFSET	NAME	TYPE	OFFSET	NAME	TYPE	OFFSET
LDATHD	L*4	000000	MIN	I*2	000004	O2CO	R*4	000006
C02PD	R*4	000012	RESQ	R*4	000016	TEMP	R*4	000022
PRESS	R*4	000026	EXCNTR	R*4	000032	LAVG	L*4	000036
FLOW	R*4	000042	ISCL	I*2	000046			

LOCAL AND COMMON ARRAYS:

NAME	TYPE	SECTION	OFFSET	SIZE	DIMENSIONS
ISCAL	L*1	\$DATA	000000	000070	(28.) (56)
SCAL	R*4	\$DATA	000070	000010	(4.) (2)

SUBROUTINES, FUNCTIONS, STATEMENT AND PROCESSOR-DEFINED FUNCTIONS:

NAME	TYPE								
IFIX	I*2								

12

11

10

9

8

7

6

5

4

3

FORTRAN IV

V02.1-1 FRI 28-MAR-80 00:39:53

```
0001      FUNCTION CONBCD(IVAL,NDD)
C
0002      IBCD=IVAL
0003      IONE=(IBCD,AND,"0000017")
0004      I1=IONE
C
0005      IRCD=IBCD/16
0006      ITEN=(IRCD,AND,"0000017")
0007      I10=ITEN*10
C
0008      IBCD=IBCD/16
0009      IHUN=(IBCD,AND,"0000017")
0010      I100=-IHUN*100
C
0011      IBCD=IBCD/16
0012      ITOU=(IBCD,AND,"0000017")
0013      I1000=ITOU*1000
C
0014      ITOT=(I1000+I100+I10+I1)
0015      DEC=10.**NDD
C
0016      CONBCD=FLOAT(ITOT)/DEC
C
0017      RETURN
0018      END
```

12
11
10
9
8
7
6
5
4
3

FORTRAN IV

STORAGE MAP FOR PROGRAM UNIT CONBED

LOCAL VARIABLES, .PSECT \$DATA, SIZE = 000040 (16. KBPD\$)

NAME	TYPE	OFFSET	NAME	TYPE	OFFSET	NAME	TYPE	OFFSET	
CONBCD	R*4	0000004	EQV	DEC	R*4	0000034	IBCD	I*2	0000010
IHUN	I*2	0000022	IONE	I*2	0000012	ITEN	I*2	0000016	
ITOT	I*2	0000032	ITOU	I*2	0000020	IVAL	I*2	0000000	
I1	I*2	0000014	I10	I*2	0000020	I100	I*2	0000024	
I1000	I*2	0000030	NOD	I*2	0000002				

SUBROUTINES, FUNCTIONS, STATEMENT AND PROCESSOR-DEFINED FUNCTIONS:

NAME TYPE NAME TYPE NAME TYPE NAME TYPE NAME TYPE

12
11
10
9
8
7
6
5
4
3

RT-11 LINK V05.740 LOAD MAP MON 31-MAR-80 10:15:30
 ENVIHE.SAV TITLE: MHS IDENT: FORV02

SECTION	ADDR	SIZE	GLOBAL VALUE	GLOBAL VALUE	GLOBAL VALUE
. ABS.	000000	001000	(RW,I,GRL,ABS,0VH)		
			SRF2A1 000000	.VIR 000000	SUSRSH 000001
			SNLCHN 000006	SHRDWR 000006	SSYSVS 000011
			SWASIZ 000152	SLRECL 000210	STRACE 004737
OTSSI	001000	021744	(RW,I,LCL,REL,CON)		
			SSOTSI 001000	ADFSIM 001000	ADFSPM 001006
			ADFSMM 001012	ADFSMM 001022	SUF\$IM 001042
			SUF\$SM 001050	SUF\$PM 001100	SUF\$MM 001104
			SCVTFB 001134	SCVTFI 001134	SCVTCB 001150
			SCVTCI 001150	SCVTDB 001150	SCVTDI 001150
			CICS 001162	CIDS 001162	CLCS 001162
			CLDS 001162	SDI 001162	CIFS 001172
			CLFS 001172	SRI 001172	CILS 001300
			CLIS 001304	SCVTIF 001306	SCVTIC 001322
			SCVTID 001322	CCIS 001334	CDIS 001334
			SIC 001334	SID 001334	CFIS 001350
			STR 001350	RCIS 001434	GCOS 002450
			FCOS 002456	ECOS 002462	DCOS 002470
			DIFSPPS 003412	DIFSMS 003416	DIFSS 003430
			SDIVF 003436	DIFSSS 003450	SDVR 003450
			DIISPS 003454	DIISMS 003462	DIISIS 003466
			DIISSS 003470	SDVI 003470	MUISPS 003512
			MUISMS 003520	MUISIS 003524	MUISSS 003526
			SMLI 003526	SOTI 003574	SSOTI 003576
			SSSET 005456	SXF1 005752	XFIS 005764
			SPARI 005764	IORS 006242	ANDS 006246
			EQVS 006254	XORS 006256	OCIS 006272
			ICIS 006300	SECI 006314	OCOS 006474
			ICO ^c 006502	SCHKER 006700	SIDEKI 006724
			SEOL 006752	EOLS 006754	MOFSIS 007070
			MOFSOS 007076	MOFSSM 007104	MOFSSP 007114
			ADISSS 007120	ADISSA 007124	ADISMM 007130
			ADISIS 007134	ADITIA 007140	ADISIM 007144
			ADISMS 007150	ADISMA 007154	ADISM 007160
			IFRS 007164	SIFR 007170	SSIFR 007174
			IFRS\$ 007226	IFNS 007250	SIFW 007254
			SSIFR 007260	IFNS\$ 007316	MOISSS 007366
			MOISSS 007366	MOIS\$M 007372	MOISSA 007376
			MOISIS 007402	MOISIS 007402	RELS 007402
			MOISIM 007406	MOISIA 007412	MOISWS 007416
			MOISMM 007422	MOISMA 007426	MOISOS 007432
			MOISOM 007436	MOISOA 007442	MOISIS 007446
			MOISIN ^m 007454	MOISIA 007462	MOISIP 007470
			MOISSP 007472	MOISPP 007500	MOISMP 007504
			MOISPS 007514	MOISPM 007522	MOISPA 007530
			MOISOP 007536	MOISIP 007544	ISNS 007554
12			SISNTR 007560	LSNS 007574	SLSNTR 007600
11			SOSTMI 007734	SOSTM 007740	RETSL 011056
10			RET\$F 011062	RETSI 011070	RETS 011072
9			SSTPS 011126	STPS 011134	SSTP 011134
8			FOOS 011140	SEXIT 011160	SOTIS 011304
7			SSOTIS 011306	TVLS 011426	STVL 011426
6			TVFS 011434	STVF 011434	TVDS 011442
5			STVD 011442	TVOS 011450	STVQ 011450
4			TVPS 011456	STVP 011456	TVIS 011464
3			STV1 011464	MUF\$PS 011620	MUFSMS 011624
			VUFSIS 011636	\$MULF 011644	VUFSSS 011656

AMLR 011650 *CLOSE 011662 RERRTR 012326

SERWS	012433	FFCHNL	016126	SFIG	016762
\$SFID	015765	SGETFI	020116	SINITI	020154
SSOPCL	020266	SS\$ERR	020400	SS\$DIS	020422
SPUTRE	020520	IRRS	021026	SIRR	021032
IRRS	021056	SIRR	021062	SGETIN	021436
SSETIN	021454	DEFS	021562	SDEF	021566
SPUTBL	021656	SGETBL	022066	SEOFIL	022252
SEOF2	022266	SAVRGS	022306	THRDS	022464
SWAIT	022466	SVRINT	022530	SDUMPL	022532
SAVR4\$	022660				
OTSSP	022744	000050	(RW,D,GBL,REL,OVR)		
SYSSI	023014	000350	(RW,I,LCL,REL,CON)		
		INTSET	023014	IPEEK	023216 IPOKE 023226
		ITTINR	023236	SCMPLT	023246
USERSI	023364	000000	(RW,I,LCL,REL,CON)		
SCUDE	023364	013420	(RW,I,LCL,REL,CON)		
		SSOTSC	023364	TICK	034506 PLOT 034532
		CONBCD	036434		
OTSSO	037004	001040	(RW,I,LCL,REL,CON)		
		SSOTSO	037004	SOPEN	037004
SYSSO	040044	000366	(RW,I,LCL,REL,CON)		
SDATAP	040432	004224	(RW,D,LCL,REL,CON)		
OTSSD	044656	000052	(RW,D,LCL,RFL,CON)		
OTSSS	044730	000002	(RW,D,LCL,REL,CON)		
		SAOTS	044730		
SYSSS	044732	000066	(RW,D,LCL,REL,CON)		
		SSYSLB	045014	SLOCK	045016 SCRASH 045017
SDATA	045020	001110	(RW,D,LCL,REL,CON)		
JUSERSD	046130	000000	(RW,D,LCL,REL,CON)		
.SSSF.	046130	000000	(RW,D,GHL,REL,OVR)		
PLOTR	046130	000050	(RW,D,GHL,REL,OVR)		
TIME	046200	000004	(RW,D,GHL,REL,OVR)		
	046204	000210	(RW,I,LCL,REL,CON)		
		SGETRE	046204	STTYIN	046260

TRANSFER ADDRESS = 023364, HIGH LIMIT = 046414 = 9862. WORDS

12
11
10
9
8
7
6
5
4
3

T-11 LINK V05.04A Load Map Mon 31-Mar-80 10:15:30
 ENVIRE.SAV Title: MRMS Ident: FORV02

Section	Addr	Size	Global	Value	Global	Value	Global	Value
. ABS.	000000	001000	(RW,I,GBL,ABS,OVR)					
			\$RF2A1	000000	.VIR	000000	\$USR\$W	000001
			\$NLCHN	000006	\$HRDWR	000006	\$SYS\$U	000011
			\$WASIZ	000152	\$LRECL	000210	\$TRACE	004737
OTS\$I	001000	021744	(RW,I,LCL,REL,CON)					
			\$SOTSI	001000	ADFSIM	001000	ADFS\$PM	001006
			ADFS\$MM	001012	ADFS\$M	001022	SUF\$IM	001042
			SUF\$SM	001050	SUF\$PM	001100	SUF\$MM	001104
			\$CVTFB	001134	\$CVTFI	001134	\$CVTCB	001150
			\$CVTCI	001150	\$CVTDB	001150	\$CVTDI	001150
			CIC\$	001162	CID\$	001162	CLC\$	001162
			CLD\$	001162	\$DI	001162	CIF\$	001172
			CLF\$	001172	\$RI	001172	CIL\$	001300
			CLIS	001304	\$CVTIF	001306	\$CVTIC	001322
			\$CVTID	001322	CCI\$	001334	CDI\$	001334
			\$IC	001334	\$ID	001334	CFI\$	001350
			\$IR	001350	RCI\$	001434	GC0\$	002450
			FC0\$	002456	EC0\$	002462	DC0\$	002470
			DIF\$PS	003412	DIF\$MS	003416	DIF\$IS	003430
			\$DIVF	003436	DIF\$SS	003450	\$DVR	003450
			DII\$PS	003454	DII\$MS	003462	DII\$IS	003466
			DII\$SS	003470	\$IVI	003470	MUI\$PS	003512
			MUI\$MS	003520	MUI\$IS	003524	MUI\$SS	003526
			\$MLI	003526	\$OTI	003574	\$\$OTI	003576
			\$\$SET	005456	\$XFI	005752	XFI\$	005764
			\$PWRI	005764	IOR\$	006242	AND\$	006246
			EQV\$	006254	XOR\$	006256	OCI\$	006272
			ICIS	006300	\$ECI	006314	OC0\$	006474
			IC0\$	006502	\$CHKER	006700	\$IOEXI	006724
			\$EOL	006752	EOL\$	006754	MOF\$IS	007070
			MOF\$OS	007076	MOF\$SM	007104	MOF\$SP	007114
			ADI\$SS	007120	ADI\$SA	007124	ADI\$SM	007130
			ADI\$IS	007134	ADI\$IA	007140	ADI\$IM	007144
			ADI\$MS	007150	ADI\$MA	007154	ADI\$MM	007160
			IFR\$	007164	\$IFR	007170	\$\$IFR	007174
			IFR\$S	007226	IFWS	007250	\$IFW	007254
			\$\$IFW	007260	IFW\$	007316	MOI\$SS	007366
			MOL\$SS	007366	MOI\$SM	007372	MOI\$SA	007376
			MOI\$IS	007402	MOL\$IS	007402	RELS	007402
			MOI\$IM	007406	MOI\$IA	007412	MOI\$MS	007416
			MOI\$MM	007422	MOI\$MA	007426	MOI\$OS	007432
			MOI\$OM	007436	MOI\$OA	007442	MOI\$IS	007446
			MOI\$1M	007454	MOI\$1A	007462	MOI\$IP	007470
			MOI\$SF	007472	MOI\$FF	007500	MOI\$MP	007504
			MOI\$PS	007514	MOI\$FM	007522	MOI\$PA	007530
			MOI\$OF	007536	MOI\$1F	007544	ISN\$	007554
			\$ISNTR	007560	LSNS	007574	\$LSNTR	007600
			\$OSTMI	007734	\$OSTM	007740	RET\$L	011056
			RET\$F	011062	RET\$I	011070	RET\$	011072
			\$STPS	011126	STPS	011134	\$\$STP	011134
			FO0\$	011140	\$EXIT	011160	\$\$OTIS	011304
			\$\$OTIS	011306	TVL\$	011426	\$\$TVL	011426
			TVF\$	011434	\$TVF	011434	TVDS	011442
			STVD	011442	TVQ\$	011450	STVQ	011450
			TVF\$	011456	\$TVP	011456	TVIS	011464
			STVI	011464	MUF\$PS	011620	MUF\$MS	011624
			MUF\$IS	011636	\$MULF	011644	MUF\$SS	011656
			\$MLR	011656	\$CLOSE	011662	\$\$ERRTB	012326
			\$\$ERRS	012433	\$FCHNL	016126	\$\$FIO	016762

			00010	00011	00012	00013	00014	
			\$0PCL	020266	\$\$ERR	020400	\$\$DIS	020422
			\$PUTRE	020520	IRR\$	021026	\$IRR	021032
			IRW\$	021056	\$IRW	021062	\$GETIN	021436
			\$SETIN	021454	DEF\$	021562	\$DEF	021566
			\$PUTRL	021656	\$GETRL	022066	\$EOFIL	022252
			\$EOF2	022266	SAVRG\$	022306	THRDS	022464
			\$WAIT	022466	\$VRINT	022530	\$DUMPL	022532
			SAVR4\$	022660				
OTS\$P	022744	000050		(RW,D,GBL,REL,OVR)				
SYS\$I	023014	000350		(RW,I,LCL,REL,CON)				
			INTSET	023014	IPEEK	023216	IPOKE	023226
			ITTINR	023236	\$CMPLT	023246		
USER\$I	023364	000000		(RW,I,LCL,REL,CON)				
\$CODE	023364	013420		(RW,I,LCL,REL,CON)				
			\$\$OTSC	023364	TICK	034506	PLOT	034532
			CONBCD	036434				
OTS\$O	037004	001040		(RW,I,LCL,REL,CON)				
			\$\$OTSO	037004	\$OPEN	037004		
SYS\$O	040044	000366		(RW,I,LCL,REL,CON)				
\$DATAP	040432	004224		(RW,D,LCL,REL,CON)				
OTS\$D	044656	000052		(RW,D,LCL,REL,CON)				
OTS\$S	044730	000002		(RW,D,LCL,REL,CON)				
			\$AOTS	044730				
SYSS\$	044732	000066		(RW,D,LCL,REL,CON)				
			\$\$SYSLB	045014	\$LOCK	045016	\$CRASH	045017
\$DATA	045020	001110		(RW,D,LCL,REL,CON)				
USER\$D	046130	000000		(RW,D,LCL,REL,CON)				
.\$\$\$\$.	046130	000000		(RW,D,GBL,REL,OVR)				
PLTR	046130	000050		(RW,D,GBL,REL,OVR)				
TIME	046200	000004		(RW,D,GBL,REL,OVR)				
	046204	000210		(RW,I,LCL,REL,CON)				
			\$GETRE	046204	\$TTYIN	046260		

Transfer address = 023364, High limit = 046414 = 9862. words

APPENDIX D
TERMINAL PRINTOUT

SDX
RT-118J (S)003B-00
-SET TT:SCOPE
-SET USR MODEMAP
-ASS DX1 IX
-RUN DXB:ENVIRE.BAU

M R M S

REAL-TIME TEST PROGRAM TO SUPPORT THE

METABOLIC-RATE-MEASUREMENT-SYSTEM.

ENVIRONMENTAL PHYSIOLOGY LAB,

TECHNOLOGY INCORPORATED

TO GET INSTRUCTION, TYPE Y & RETURN
TO PROCEED, TYPE N & RETURN Y

TEST LOAD M-R-M-3 HAS 5 PHASES

1 DATA CONSTANTS--ALLIMS USER
MODIFICATION OF SELECTED DATA CONSTANTS
(GAS GAINS, CAL-GAS T-S, ETC.).
OTHERWISE PROGRAM USES DEFAULT VALUES.

2 INITIALIZATION--ENTER HEADER INFORMATION

3 CALIBRATE--DETERMINE SLOPES & INTERCEPTS
FOR DATA CURVES BY SAMPLING 2 CAL. GASES

4 TEST-DATA--SAMPLES TEST-DATA CONTINUOUSLY
UNTIL USER TERMINATES

5 TERMINATE--RETURNS CONTROL TO MONITOR

VERIFY CAL GASES ARE OPEN
AND MASS SPEC IS FUNCTIONAL

ENTER N & RETURN 1

SE 1 DATA CONSTANTS
TO LEAVE VALUE UNCHANGED, ENTER
N & RETURN. TO CHANGE ENTER Y
& RETURN, GET "NEW VALUE" PROMPT.
ENTER NEW VALUE & RETURN

```
      GSGN(1)= 1.0N
      GSGN(2)= 1.0N
      IADCGC(1)= 431N
      IADCGC(2)= 1031N
      IADCGC(3)= 2001N
      IADCGC(4)= 2401N
      CALPCT(1,1)= 14.27N
      CALPCT(1,2)= 4.87N
      CALPCT(2,1)= 20.60N
      CALPCT(2,2)= 0.66Y
      NEW VALUE =.05
      SET SCALE = 0-.5 T N
      SCALE SET = 0-.5. I
```

END OF PHASE 1
ENTER NEW PHASE # 2

46

These parameters are read from a data file, DATCON.VAL

prior to any program execution. Phase 1 allows the user to alter
these values if necessary.

GSGN(j) → The gain factor to correct for any hardware gains

or A/D programmable gains.

IADCGC(k) → Octal code used to program the A/D converter.

Contains channel selection and gain information. Refer to ADAC

1030 User's Manual.
CALPCT(i,j) → cal gas concentrations.

PHASE 2 INITIALIZATION

DATE : (MM/DD/YY) 01/28/80
SUBJECT NAME : HEN KOESTER
TEST NO. TESTRODE

END OF PHASE 2
ENTER NEW PHASE # 3

PHASE 3 CALIBRATION

	CTS-1	CTS-2	OXYGEN SLOPE	INTCPT
291.43		415.17	0.051	-0.371
	CTS-1	CTS-2	CARBON DIOXIDE SLOPE	INTCPT
996.79		14.83	0.005	-0.023

END OF PHASE 3
ENTER NEW PHASE # 4

PHASE 4 TEST-DATA
TO INITIATE:
ADVANCE PAGE AS DESIRED,
THEN RETURN.
TERMINATE AT ANY TIME
BY ENTERING S & RETURN.

NAME: KEN ROESTER

DATE: 3/28/80

TEST MODE: TESTMODE

MIN T(CS) P(HD) F(L/H)	02-CDD	C02-P3	RE3-Q	0.	1.	2.	3.	4.	5.	SPWLS
1 26.1 766.0 116.7	1.045	0.886	0.771	-	-	-	-	-	-	3913.
2 26.1 763.1 120.2	1.073	0.886	0.824	+ C+0	-	-	-	-	-	3915.
3 26.2 768.9 116.1	0.437	0.597	0.938	-	-	-	-	-	-	3907.
4 25.7 765.5 110.5	0.302	0.302	0.997	-	-	-	-	-	-	3910.
5 26.2 765.5 119.0	0.435	0.488	1.121	+ 0C	-	-	-	-	-	3907.
6 26.4 771.4 112.2	0.358	0.503	0.901	+ 00	-	-	-	-	-	3907.
7 26.2 764.0 111.0	0.394	0.471	0.793	+ C0	-	-	-	-	-	3907.
8 26.4 770.4 110.7	0.448	0.428	0.916	+ 00	-	-	-	-	-	3904.
9 27.5 768.9 115.2	0.388	0.357	0.919	-	-	-	-	-	-	3907.
10 26.4 767.4 110.2	0.427	0.397	0.929	-	-	-	-	-	-	3905.
11 22.9 764.0 111.0	0.382	0.311	0.816	-	-	-	-	-	-	3911.
12 26.8 773.8 108.7	0.401	0.341	0.841	+ 00	-	-	-	-	-	3904.
13 26.9 761.1 112.0	0.482	0.447	0.928	+ 00	-	-	-	-	-	3906.
14 27.1 770.4 118.6	0.369	0.352	0.974	-	-	-	-	-	-	3908.
15 MINN. AVERAGES	0.359	0.491	0.911	-	-	-	-	-	-	
15 26.9 767.9 108.7	0.441	0.423	0.924	-	-	-	-	-	-	3907.
16 26.4 764.0 112.0	0.471	0.342	0.819	-	-	-	-	-	-	3908.
17 27.0 765.0 123.0	0.711	0.641	0.901	-	-	-	-	-	-	3913.
18 26.9 764.5 93.5	1.821	1.405	0.771	-	-	-	-	-	-	3915.
19 26.5 759.2 96.1	2.228	2.149	0.964	-	-	-	-	-	-	3914.
20 26.3 753.3 97.0	2.370	2.475	1.044	-	-	-	-	-	-	3920.
21 27.3 766.5 109.4	2.548	2.496	1.958	-	-	-	-	-	-	3916.
22 27.2 765.0 117.4	2.460	2.881	1.126	-	-	-	-	-	-	3918.

ENTER NEW PAGE 0 5

SIEP -- SIE
CONTINUOUS READING TEST
END OF READING TEST

APPENDIX F
CALIBRATION AND VERIFICATION

Verification and calibration was done utilizing an alcohol lamp in a vented chamber. The chamber was connected in place of the breathing mask.

Net alcohol weight loss	20.10 grams
Given that 1 gram of alcohol combines with 1.459 litres O ₂ ,	
Net O ₂ consumed	29.326 litres
Time Duration	63 minutes
Net rate of O ₂ consumption	$\Delta O = .4655$ litres/min.
Average experimental value obtained	$\Delta O = .4567$ litres/min.
	1.9% error

Given that R_q known = .6667

average R_q observed = .6502

2.4% error

START UP CIRCUIT FOR LSI-11 MICROCOMPUTER

SOLENOID CONTROL CIRCUITS

LOGIC BOARD
 START UP CIRCUIT
 PART OF SOLEN
 CONTROL CIRCUIT

ORIGINAL PAGE IS
 OF POOR QUALITY

FOLDOUT FRAME

LOGIC BOARD
SET UP CIRCUIT
PART OF SOLENOID
CONTROL CIRCUIT

FOLDOUT FRAME

