Shortest-Path Algorithms II

Shortest Path with Negative Costs

Given a weighted directed graph (weights can be negative), a start node **s**, and end node **e**, find the cost of the shortest path from **s** to **e** (or report that it does not exist)

Using Dijkstra's Algorithm

Does Dijkstra's Algorithm work for this problem?

Using Dijkstra's Algorithm

Does Dijkstra's Algorithm work for this problem?

Breaks invariants

- start state
- goal states

Negative Costs

- start state
- goal states

Negative Costs

Is there anything we know?

Adjustment: Adding Constant

Proposed Idea: What if we add a fixed constant to each edge such that all negative edges become positive?

Adjustment: Adding Constant

Proposed Idea: What if we add a fixed constant to each edge such that all negative edges become positive?

Doesn't work because this penalizes paths with more edges

Edge Relaxation

```
for each edge e:
if(e.dest.cost > e.src.cost + e.cost)
  e.dest.cost = e.src.cost + e.cost;
```

Edge Relaxation

```
for each edge e:
 if(e.dest.cost > e.src.cost + e.cost)
   e.dest.cost = e.src.cost + e.cost;
```

Questions:

- 1. Will this process terminate?
- 2. How many iterations are needed?

Key Observations

If the shortest path to a node involves L edges, it will be found in L iterations.

Key Observations

If the shortest path to a node involves L edges, it will be found in L iterations.

The shortest path to any node is either:

- 1) <= |V|
- 2) infinite

- start state
- goal states

- start state
- goal states

Termination?

- start state
- goal states

Termination?

changes on the V+1st iteration => negative cycle

- start state
- goal states

What's the run time?

- start state
- goal states

Changes past iter $|V| \Rightarrow$ cycle

What's the run time? O(IVIIEI)

Bellman-Ford Pseudocode

```
for i from 1 to IVI - 1:
for edge (u, v) with weight w:
  if( dist(v) > dist(u) + w)
    dist(v) = dist(u) + w;
```

Time complexity O(IVIIEI)

Given a weighted, directed graph (negative weights possible). For each pairs of vertices (**v**, **w**), return length of shortest path from **v** to **w**.

Given a weighted, directed graph (negative weights possible). For each pairs of vertices (**v**, **w**), return length of shortest path from **v** to **w**.

Run Bellman-Ford for each v: O(IVI2IEI)

Vertex costs no longer useful; create distance matrix


```
for each vertex k:
for each vertex v:
for each vertex w:
  if( dist(v,w) > dist(v,k) + dist(k,w) )
    dist(v,w) = dist(v,k) + dist(k,w);
```

```
for each vertex k:
for each vertex v:
for each vertex w:
  if( dist(v,w) > dist(v,k) + dist(k,w) )
    dist(v,w) = dist(v,k) + dist(k,w);
```

Claim: if no negative cycles, will find all shortest paths

```
for each vertex k:
for each vertex v:
for each vertex w:
  if( dist(v,w) > dist(v,k) + dist(k,w) )
     dist(v,w) = dist(v,k) + dist(k,w);
```

How can we tell if there are negative cycles?

```
for each vertex k:
for each vertex v:
for each vertex w:
 if( dist(v,w) > dist(v,k) + dist(k,w) )
    dist(v,w) = dist(v,k) + dist(k,w);
```

How can we tell if there are negative cycles? Check for $dist(\mathbf{v},\mathbf{v}) < 0$

```
for each vertex k:
for each vertex v:
for each vertex w:
  if( dist(v,w) > dist(v,k) + dist(k,w) )
    dist(v,w) = dist(v,k) + dist(k,w);
```

Danger: watch for overflow is using **MAXINT** to denote missing edges

```
for each vertex k:
for each vertex v:
 for each vertex w:
  if( dist(v,w) > dist(v,k) + dist(k,w) )
    dist(v,w) = dist(v,k) + dist(k,w);
```

Time complexity O(IVI3)