

Matemáticas para Gráficas Computacionales

TC2008B Modelación de Sistemas Multiagentes con Gráficas Computacionales

Geometría

- Estudia las relaciones de espacio.
- Utiliza las definiciones matemáticas de puntos, líneas rectas, curvas, superficies y sólidos.
- Está relacionado con las coordenadas.

Topología

- Define las conexiones entre los elementos de la geometría.
- Desde este punto de vista un círculo y una elipse son iguales.
- Deformaciones continuas de escalamiento (sin cortes ni uniones).

Vector vs. Escalar

¿Alguien sabe la diferencia?

¿Ejemplos?

Vectores vs. Puntos

Teniendo dos puntos A y B:

El vector \bar{v} es $\bar{v} = B - A$

$$A = (1,2,0), B = (2,1,0)$$

 $\bar{v} = B - A = (2,1,0) - (1,2,0) = (1,-1,0)$
El mismo vector puede ser obtenido por:
 $A = (0,0,0), B = (1,-1,0)$
e infinitas combinaciones más.

$$\bar{v} = (v_x, v_y, v_z)$$

Vector

- Un vector está definido por su magnitud y dirección:
 - La velocidad de un perro.
 - La fuerza de lanzamiento de una bola.
- Pueden tener dos o más dimensiones:
 - Usualmente dos y tres dimensiones

Vectores canónicos

Vectores canónicos \hat{i} , \hat{j} , \hat{k} (magnitud = 1)

$$\hat{i} = (1,0,0)$$

$$\hat{j} = (0,1,0)$$

$$\widehat{k} = (0,0,1)$$

Vectores: forma canónica

Podemos escribir cualquier vector $\bar{v} = (v_x, v_y, v_z)$ como:

$$\bar{v} = v_{x} \hat{i} + v_{y} \hat{j} + v_{z} \hat{k}$$

$$\bar{v} = v_{x} (1,0,0) + v_{y} (0,1,0) + v_{z} (0,0,1)$$

$$\bar{v} = (v_{x}, 0,0) + (0, v_{y}, 0) + (0,0, v_{z})$$

$$\bar{v} = (v_{x}, v_{y}, v_{z})$$

Magnitud de un vector (tamaño) en 3 dimensiones:

$$|\bar{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}$$

Si dos puntos pueden formar un vector, entonces ¿qué otro nombre puede recibir esta operación?

Normalización de un vector (vector unitario):

$$\widehat{v} = \frac{\overline{v}}{|\overline{v}|} = \left(\frac{v_x}{|\overline{v}|}, \frac{v_y}{|\overline{v}|}, \frac{v_z}{|\overline{v}|}\right)$$

$$= \left(\frac{v_x}{\sqrt{v_x^2 + v_y^2 + v_z^2}}, \frac{v_y}{\sqrt{v_x^2 + v_y^2 + v_z^2}}, \frac{v_z}{\sqrt{v_x^2 + v_y^2 + v_z^2}}\right)$$

Cambia la longitud de cualquier vector a 1 sin modificar su dirección.

Suma y resta

Sean \bar{u} y \bar{v} vectores en 3D. Entonces:

$$\bar{u} = (u_x \hat{\imath} + u_y \hat{\jmath} + u_z \hat{k}), \quad \bar{v} = (v_x \hat{\imath} + v_y \hat{\jmath} + v_z \hat{k})$$

$$\bar{u} \pm \bar{v} = (u_x \pm v_x)\hat{i} + (u_y \pm v_y)\hat{j} + (u_z \pm v_z)\hat{k}$$

Multiplicación de un vector por un escalar:

Sea α un escalar y \bar{v} un vector en 3D. Entonces:

$$\alpha \bar{v} = \alpha v_x \hat{i} + \alpha v_y \hat{j} + \alpha v_z \hat{k}$$

$$\alpha \bar{v} = (\alpha v_x, \alpha v_y, \alpha v_z)$$

Multiplicación de un vector por un escalar: Sea α un escalar y \bar{v} un vector, entonces:

$$\alpha \bar{v} = \alpha v_x \hat{\mathbf{i}} + \alpha v_y \hat{\mathbf{j}} + \alpha v_z \hat{\mathbf{k}}$$

Producto Punto:

• Sean \bar{u} y \bar{v} vectores en 3D. Entonces:

$$P = \bar{u} \cdot \bar{v} = |\bar{u}||\bar{v}|\cos\theta$$
$$P = u_x v_x + u_y v_y + u_z v_z$$

• El resultado es un escalar

Producto Punto:

• Nos dice qué tanto, dos vectores tienen la misma dirección (entre [-1,1] cuando son unitarios).

Ángulo entre vectores (3D)

- 1. Obtener los vectores \overline{v} , \overline{w} .
- 2. Normalizar los vectores.
- 3. Obtener el producto punto.

4.
$$\hat{v} \cdot \hat{w} = |\hat{v}| |\hat{w}| \cos \theta = \cos \theta$$

5.
$$\theta = \cos^{-1}(\hat{v} \cdot \hat{w}) = \cos^{-1}(v_x w_x + v_y w_y + v_z w_z)$$

Producto Vectorial (Producto Cruz)

• Sean \bar{u} y \bar{v} dos vectores en 3D. Entonces:

$$\bar{u} \times \bar{v} = \begin{bmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \mathbf{u}_{x} & \mathbf{u}_{y} & \mathbf{u}_{z} \\ \mathbf{v}_{x} & \mathbf{v}_{y} & \mathbf{v}_{z} \end{bmatrix}$$

• El resultado es un vector.

$$\bar{u} \times \bar{v} = (\mathbf{u}_{\mathbf{y}} \mathbf{v}_{\mathbf{z}} - \mathbf{u}_{\mathbf{z}} \mathbf{v}_{\mathbf{y}}) \hat{\boldsymbol{\imath}} + (\mathbf{u}_{\mathbf{z}} \mathbf{v}_{\mathbf{x}} - \mathbf{u}_{\mathbf{x}} \mathbf{v}_{\mathbf{z}}) \hat{\boldsymbol{\jmath}} + (\mathbf{u}_{\mathbf{x}} \mathbf{v}_{\mathbf{y}} - \mathbf{u}_{\mathbf{y}} \mathbf{v}_{\mathbf{x}}) \hat{\boldsymbol{k}}$$

Ejemplo:

Sean los vectores $\bar{u}=(2,0,1)$ y $\bar{v}=(1,-1,3)$. Entonces:

$$\bar{u} \times \bar{v} = (\mathbf{u}_{\mathbf{y}} \mathbf{v}_{\mathbf{z}} - \mathbf{u}_{\mathbf{z}} \mathbf{v}_{\mathbf{y}}) \hat{\boldsymbol{\imath}} + (\mathbf{u}_{\mathbf{z}} \mathbf{v}_{\mathbf{x}} - \mathbf{u}_{\mathbf{x}} \mathbf{v}_{\mathbf{z}}) \hat{\boldsymbol{\jmath}} + (\mathbf{u}_{\mathbf{x}} \mathbf{v}_{\mathbf{y}} - \mathbf{u}_{\mathbf{y}} \mathbf{v}_{\mathbf{x}}) \hat{\boldsymbol{k}}$$

$$\bar{u} \times \bar{v} = (0 - (-1))\hat{i} + (1 - 6)\hat{j} + (-2 - 0)\hat{k} = (1)\hat{i} + (-5)\hat{j} + (-2)\hat{k}$$
$$= (1,0,0) + (0,-5,0) + (0,0,-2) = (1,-5,-2)$$

Aplicaciones: Ecuaciones Paramétricas

Aplicaciones: Movimiento con vectores

Los movimientos de los objetos se representan con vectores:

- El vector indica la velocidad del objeto:
 - La dirección del vector indica la dirección de movimiento.
 - La magnitud indica la rapidez.

$$P(t) = P_0 + t\bar{v}$$

Aplicaciones: Movimiento con vectores

Ejemplo. Un auto parte del origen en dirección \hat{i} , con rapidez de 2 m/s, calcule su posición después de cinco segundos:

$$P(t) = P_0 + t\bar{v}$$

$$\bar{v} = 2\hat{\imath} = 2(1,0,0) = (2,0,0)$$

$$P(5) = (0,0,0) + 5(2,0,0) = (\mathbf{10}, \mathbf{0}, \mathbf{0})$$

Aplicaciones: Movimiento con vectores

- A un cardumen le lleva moverse del punto (21, 32, 10) al punto (65, 10, 7) 34 segundos, ¿cuál será la velocidad con la que se mueve?
- 2. ¿Cuál será su rapidez?

1.
$$P(t) = P_0 + t\bar{v}$$

 $2. |\bar{v}|$

"EVERY SCHOOL HAS A CLASS CLOWN."

- ¿Por qué la ecuación explícita de la línea no es adecuada para Gráficas Computacionales?
- La ecuación de la recta en 2D es:

$$y = mx + b$$
, donde $m = \frac{\Delta y}{\Delta x}$

- No puede representar líneas verticales $(m \to \infty)$.
- No puede representar segmentos de línea.
- No puede representar líneas en 3D.

Ecuación paramétrica de la línea

- Definida por dos puntos A y B: $P(t) = (x(t), y(t), z(t)) = A + t(B A); -\infty < t < \infty$
- Existen casos especiales: P(0) = A, P(1) = B.
- Punto + t Vector = Punto

Ejemplo:

A = (1,2,3), B = (0,1,6)
P(t) = (x(t), y(t), z(t))
= (1,2,3) + t ((0,1,6) - (1,2,3))
= (1,2,3) + t (-1,-1,3)
= (1,2,3) + (-t,-t,3t)
= (1-t, 2-t, 3+3t)

$$P(0) = (1,2,3)$$

$$P(1) = (1-1, 2-1, 3+3) = (0,1,6)$$

 También puede ser utilizada como una función de blending:

$$x(t) = (1-t)X_1 + t X_2$$

 $y(t) = (1-t)Y_1 + t Y_2$
 $z(t) = (1-t)Z_1 + t Z_2$

- Es una función que sirve para hacer una transición lineal entre el valor 1 y el valor 2.
- Estos valores pueden ser colores, ángulos, posiciones, coordenadas de textura, etcétera.

Aplicaciones: Rayo reflejado

El plano está definido por un punto P y un vector normal \bar{n} .

Se busca el vector $\bar{v}_{reflejado}$ de \bar{v} .

Definamos los vectores $\bar{v}_{paralelo}$ y $\bar{v}_{perpendicular}$

- 1) $\bar{v}_{paralelo} = \bar{n}(\bar{n} \cdot \bar{v})$
- 2) $\bar{v}_{perpendicular} = \bar{v} \bar{v}_{paralelo}$
- 3) $\bar{v}_{reflejado} = \bar{v}_{paralelo} \bar{v}_{perpendicular}$

Aplicaciones: Distancia de un punto a un plano

- El plano se define por el punto P y el vector normal \bar{n} .
- Se requiere calcular la distancia al punto Q.
- 1) Expresar el vector $\bar{v} = Q P$.
- 2) Evaluar la proyección de \bar{v} sobre \bar{n} . $\bar{s} = \bar{n}(\bar{n} \cdot \bar{v})$
- 3) La magnitud de \bar{s} es la distancia entre el punto y el plano.

Aplicaciones: Distancia de un punto a la línea

• La línea se define por el punto B y el vector normal \overline{w} . Se requiere calcular la distancia de la línea al punto Q.

- 2) Descomponer \bar{v} en $\bar{v}_{paralelo}$ y $\bar{v}_{perpendicular}$
- 3) La magnitud de $ar{v}_{paralelo}$ es la distancia a la línea

Transformaciones

 Una transformación mapea puntos a otros puntos y vectores a otros vectores

Transformaciones (Observación)

- Las líneas se preservan
 - Las líneas siguen siendo líneas después de una transformación
 - No se curvan o deforman
- Sólo se necesita transformar los puntos extremos de los segmentos de línea
 - Tras la transformación se calculan los puntos entre los extremos, se dibuja la línea

Transformaciones

Existen tres tipos de transformaciones geométricas:

- Modelo
- Vista
- Proyección

Transformaciones

• VISTA

• MODELADO

• PROYECCIÓN

Transformaciones de Modelo

Las principales transformaciones de modelado son:

- Traslación
- Escala
- Rotación
- Sesgo (Shear)

Traslación

Cada punto es desplazado por el mismo vector.

Escala

Estirar o compactar un objeto en una dirección o en ambas direcciones.

Rotación

Cada punto rota alrededor de un punto pivote

• El pivote no tiene que estar en el centro del objeto.

Sesgo (Shear)

Traslación de uno de los lados de la caja que encierra al objeto.

Transformaciones y Matrices

• Cualquier transformación lineal puede representarse por una *matriz*:

$$\mathbf{M} = \begin{bmatrix} \mathbf{M}_{11} & \mathbf{M}_{12} & \cdots & \mathbf{M}_{1n} \\ \mathbf{M}_{21} & \mathbf{M}_{22} & \cdots & \mathbf{M}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{M}_{m1} & \mathbf{M}_{m2} & \cdots & \mathbf{M}_{mn} \end{bmatrix}$$

• Por convención, el elemento de la matriz \mathbf{M}_{rc} se localiza en la fila r y columna c.

Transformaciones y Matrices

 También por convención los vectores y puntos son representados como matrices de una sola columna:

$$\mathbf{v} = \begin{bmatrix} \mathbf{v}_x \\ \mathbf{v}_y \\ \mathbf{v}_z \\ 0 \end{bmatrix} \qquad \mathbf{P} = \begin{bmatrix} P_x \\ P_y \\ P_z \\ 1 \end{bmatrix}$$

• A esto se le conoce como coordenadas homogéneas para representar vectores y puntos en 3D.

Transformaciones y Matrices

multiplicación Matriz-Vector aplica una transformación lineal a un vector y da como resultado un nuevo vector.

$$\mathbf{M} \bullet \mathbf{v} = \begin{bmatrix} \mathbf{M}_{11} & \mathbf{M}_{12} & \mathbf{M}_{13} \\ \mathbf{M}_{21} & \mathbf{M}_{22} & \mathbf{M}_{23} \\ \mathbf{M}_{31} & \mathbf{M}_{32} & \mathbf{M}_{33} \end{bmatrix} \begin{bmatrix} \mathbf{v}_x \\ \mathbf{v}_y \\ \mathbf{v}_z \end{bmatrix} = \begin{bmatrix} \mathbf{V}_x' \\ \mathbf{V}_y' \\ \mathbf{V}_z' \end{bmatrix}$$

- Recordatorio:

ecordatorio:
• ¿Cómo se multiplican matrices?
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$

Ejemplo

$$Mv = \begin{bmatrix} 3 & 7 \\ 12 & 98 \end{bmatrix} \begin{bmatrix} 4 \\ 6 \end{bmatrix} = \begin{bmatrix} 3(4) + 7(6) \\ 12(4) + 98(6) \end{bmatrix} = \begin{bmatrix} 54 \\ 636 \end{bmatrix} = (54,636)$$

$$\begin{bmatrix} 2 & 4 & 2 \\ 8 & 2 & 1 \\ 4 & 2 & 8 \end{bmatrix} \begin{bmatrix} 4 \\ 10 \\ 2 \end{bmatrix} =$$

Traslación

- Mover un punto a una nueva localidad.
 - Existen 3 direcciones (x,y,z)
 de libertad en el desplazamiento
- El desplazamiento está determinado por el vector v:

$$P' = P + v$$

Traslación Homogénea

• Se expresa la traslación utilizando una matriz 4x4:

$$\mathbf{P'} = \begin{bmatrix} 1 & 0 & 0 & \mathbf{v_x} \\ 0 & 1 & 0 & \mathbf{v_y} \\ 0 & 0 & 1 & \mathbf{v_z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} P_x \\ P_y \\ P_z \\ 1 \end{bmatrix}$$

- Esta forma es mejor porque:
 - Todas las transformaciones pueden expresarse de esta manera.

Escala

Expandir o contraer con respecto a uno, dos o tres ejes.

$$P' = P * S$$

Escala Homogénea

Rotación

Se tienen 3 ejes y se puede rotar alrededor de cualquiera de ellos:

$$\mathbf{R}_{\mathbf{z}}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotación Homogénea

La matriz de **rotación** alrededor del **eje Z**

$$\mathbf{R}_{\mathbf{x}}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotación Homogénea

La matriz de **rotación** alrededor del **eje X**:

$$\mathbf{R}_{y}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotación Homogénea

La matriz de **rotación** alrededor del **eje Y**

Rotar alrededor de un punto pivote

- Hasta el momento, estas transformaciones consideran que el objeto está en el origen.
- ¿Qué habría que hacer para rotar un objeto alrededor de un punto pivote o fijo, diferente del origen?

Rotar alrededor de un punto pivote

Descomponer la operación en:

- 1. Trasladar el objeto al origen
- 2. Rotarlo $\mathbf{M} = \mathbf{T} (\mathbf{R} (\mathbf{T}^{-1} P))$
- 3. Regresarlo a la posición original

Nota: aquí, **T**⁻¹ no representa la inversa de la matriz de translación, sino la matriz de translación que lleva el centro del objeto al origen. Por tanto **T** representa la matriz que traslada al objeto desde el centro hasta su posición original.

Rotar alrededor de un punto pivote

Ejemplo

Rotar una imagen 30 grados alrededor de su centro.

1. Trasladar el objeto al origen

Dónde es el centro de una imagen de tamaño (w, h)?

Traslada (-w/2, -h/2)

$$\begin{bmatrix} 1 & 0 & -w/2 \\ 0 & 1 & -h/2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x-w/2 \\ y-h/2 \\ 1 \end{bmatrix}$$

2. Rotarlo. ¿Alrededor de qué eje?

$$\begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \\ 1 \end{bmatrix}$$

3. Regresarlo al lugar original

Traslada (w/2, h/2)

$$\begin{bmatrix} 1 & 0 & w/2 \\ 0 & 1 & h/2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x+w/2 \\ y+h/2 \\ 1 \end{bmatrix}$$

Ejemplo

Suponiendo una imagen 100 por 100, en una posición P

$$\begin{split} M &= (M_2(R_{30}(M_1P))) \\ &= \begin{bmatrix} 1 & 0 & w/2 \\ 0 & 1 & h/2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(30^\circ) & -\sin(30^\circ) & 0 \\ \sin(30^\circ) & \cos(30^\circ) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -w/2 \\ 0 & 1 & -h/2 \\ 0 & 0 & 1 \end{bmatrix} P \\ &= \begin{bmatrix} 1 & 0 & 50 \\ 0 & 1 & 50 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0.866 & -0.5 & 0 \\ 0.5 & 0.866 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -50 \\ 0 & 1 & -50 \\ 0 & 0 & 1 \end{bmatrix} P \\ &= \begin{bmatrix} 1 & 0 & 50 \\ 0 & 1 & 50 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0.866 & -0.5 & -18.3 \\ 0.5 & 0.866 & -68.3 \\ 0 & 0 & 1 \end{bmatrix} P = \begin{bmatrix} 0.866 & -0.5 & 31.7 \\ 0.5 & 0.866 & -18.3 \\ 0 & 0 & 1 \end{bmatrix} P \end{split}$$

Ejercicios

Matemáticas para Gráficas Computacionales

Ejercicio

Encuentra el ángulo (en grados) que existe entre los vectores:

$$\bar{u} = (1.077, 4.501, 7.523)$$

$$\bar{v} = (-6.530, -1.382, 2.369)$$

Observar: las computadoras no usan grados (Los grados son útiles para los humanos, pues tienen sentido visual). Recuerda siempre transformar los grados a **radianes** antes de usarlos en operaciones trigonométricas.

Ejercicio

Encuentra el producto cruz entre los vectores:

$$\bar{u} = (1.077, 4.501, 7.523)$$

$$\bar{v} = (-6.530, -1.382, 2.369)$$

Ejercicios

$$\begin{pmatrix} 7 & 2 & 2 \\ 6 & 1 & 1 \\ 0 & 6 & -2 \end{pmatrix} \begin{pmatrix} 6 & 7 & 6 \\ -2 & 3 & 2 \\ 5 & -1 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 7 & 3 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 4 & 7 \\ 3 & 5 \\ 7 & 1 \end{pmatrix} =$$

$$\begin{pmatrix} 0 & 7 & 3 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 4 & 7 \\ 3 & 5 \\ 7 & 1 \end{pmatrix} =$$

Ejercicio

Se tienen dos puntos

$$A = (1, 1, 0)$$

$$B = (2, 1, 0)$$

Rotar el punto B, 22° en el eje Y tomando A como el pivote de la rotación

Observar: las computadoras no usan grados (Los grados son útiles para los humanos, pues tienen sentido visual). Recuerda siempre transformar los grados a **radianes** antes de usarlos en operaciones trigonométricas.

Ejercicio

Teniendo un cubo de lado 2.5, con centro en C=(7, -2.2, 3.01)

- Localiza sus vértices (8 puntos)
- Encuentra la posición final de cada vértice al rotar el cubo respecto al pivote P=(-0.23, 4.1, 0.81).
- Usa el eje Z para rotar