Relatório Projeto TL

Lucas Ribeiro Caetano, 2020132564

Engenharia Informática, Curso de Redes e Administração de Sistemas

Topologia

Endereçamento

Unidade	Endereço de Rede	Máscara
Engenharia	194.65.160.0	/24
Contabilidade	194.65.161.0	/24
Agrária	194.65.162.0	/24
Saúde	194.65.163.0	/24
Ensino	194.65.164.0	/24
Serviços Centrais	194.65.165.0	/24
Serviços de Ação Social	194.65.166.0	/24

Protocolos de Encaminhamento

Em toda a topologia foi utilizado o protocolo RIP. Foi utilizado o protocolo OSPF para MPLS AToM. Sendo feita a devida conversão entre ambos.

VLANS

Apenas existem VLANs na Engenharia.

VLAN	Rede	Máscara de Sub- rede	CIDR	IP Inicial	IP Final	Broadcast
1	192.165.160.0	255.255.255.252	/30	192.165.160.1	192.165.160.2	192.165.160.3
11	192.165.160.4	255.255.255.252	/30	192.165.160.5	192.165.160.6	192.165.160.7
2	192.165.160.8	255.255.255.252	/30	192.165.160.9	192.165.160.10	192.165.160.11
3	192.165.160.12	255.255.255.252	/30	192.165.160.13	192.165.160.14	192.165.160.15
31	192.165.160.16	255.255.255.252	/30	192.165.160.17	192.165.160.18	192.165.160.19
4	192.165.160.20	255.255.255.252	/30	192.165.160.21	192.165.160.22	192.165.160.23
41	192.165.160.24	255.255.255.252	/30	192.165.160.25	192.165.160.26	192.165.160.27
5	192.165.160.28	255.255.255.252	/30	192.165.160.29	192.165.160.30	192.165.160.31
51	192.165.160.32	255.255.255.252	/30	192.165.160.33	192.165.160.34	192.165.160.35
6	192.165.160.40	255.255.255.248	/29	192.165.160.41	192.165.160.46	192.165.160.47

Decisões de Implementação

Na Engenharia optei por ter 3 root bridges, uma para cada conjunto de vlans para providenciar melhor balanceamento de carga. Apenas ter 1 root bridge para todas as vlans seria bastante para apenas 1 switch.

Tendo isto em conta realizei root guard apenas nas portas dos switches de layer 3 viradas para os switches de layer 2 uma vez que todos os switches de layer 3 são root bridges de algumas vlans.

Foi feito loop guard no loop central de switches layer 3 por considerar o sítio onde faz mais sentido.

Todas as subredes estão devidamente identificadas na topologia em si sendo de relativamente fácil identificação.

Relativamente ao PPP Pap não consegui meter o PAP a funcionar diretamente de uma filial para outra então coloquei aqui dois routers como intermediários com o PAP funcional apenas para mostrar que consegui aplicar o conceito. Estes dois routers não têm conexão com a rede exterior. Mesmo assim, considerei que seria melhor mostrar que consegui aplicar os conceitos.

A engenharia está organizada de forma relativamente linear. Temos 3 routers "OUT" que servem para dirigir o tráfego para outras filiais. Dois routers centrais RE-1 e RE-2 que servem para fazer o roteamento para o ISP. Os switches de layer 3 fazem roteamento com o RIP.

Relativamente à autenticação RIP, apenas foi feita nos routers da Engenharia uma vez que não é possível nos switches.

Foi feito o RSTP apenas na engenharia.

Port Security, BPDU filter/guard, root guard e loop guard foram feitos nas regiões assinaladas na imagem acima.

SSH foi feito apenas nos routers e nos switches de layer 3 da Engenharia.

Multilink PPPoFR foi feito com PPP chap.

PPP Pap foi feito isoladamente entre a Agrária e a Saúde.

Foi utilizado VTP nas vlans da engenharia. Sendo que o Switch de layer 3 que está conectado à PVLAN tem o modo transparente. O SWE3-1 é o servidor vtp.

A secção da PVLAN tem bastante informação:

Problemas

MPLS AToM

Não funcional, no entanto, toda a configuração foi feita.

Conectividade

A rede consegue toda pingar o router RE-1, que por si consegue pingar a internet. No entanto a rede não consegue pingar o exterior. Foi configurado na mesma a largura de banda desejada e a saída primária/secundária. Sendo que, mais uma vez, a saída secundária apenas pinga o router RE-ISP, não consegue chegar ao exterior. Tirando isto a rede pinga inteiramente entre terminais.

Equipamentos

Switches Layer 2 e 3: i86bi linux 12-adventerprisek9-ms.SSA.high_iron_20190423

Routers: i86bi-linux-l3-adventerprisek9-15.4.1T.bin

<u>Débito</u>

Tipo de Interface	Largura de Banda
Ethernet	10/100 Mbps
Serial	1.544 Mbps (T1)

Tipo de Conexão	Débito (Mbps)
Primária	300
Secundária	20

Conceitos aplicados de outras disciplinas

- NAT
- DHCP
- ACL

Teste Simples de Conectividade entre toda a topologia

Pode substituir o número 1 por qualquer um dos outros ips.

```
ping 194.65.160.1
ping 194.65.161.1
ping 194.65.162.1
ping 194.65.163.1
ping 194.65.164.1
ping 194.65.165.1
ping 194.65.166.1
```

```
IPs dos terminais em todas as filiais
-----
.1
. 5
. 9
.13
.17
.21
IPs Engenharia
-----
.1
.5
. 9
.13
.17
.21
. 25
.29
.33
```

PVLAN

Primary .41

Community .42

Isolated .43