EDCO3A ESTRUTURAS DE DADOS 1

Aula 08 - Grafos

Prof. Rafael G. Mantovani

Licença

Este trabalho está licenciado com uma Licença CC BY-NC-ND 4.0:

Atribuição-NãoComercial-SemDerivações 4.0 Internacional (CC BY-NC-ND 4.0)

maiores informações:

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.pt_BR

Roteiro

- 1 Introdução
- **2** Grafos
- 3 Definições
- 4 Representações
- 5 Referências

Roteiro

- 1 Introdução
- 2 Grafos
- 3 Definições
- 4 Representações
- 5 Referências

Introdução

Introdução

Problema: atravessar as sete pontes durante uma caminhada contínua, sem passar duas vezes por qualquer uma delas

* Solução ?

- Caminhos: linhas (arestas E)
- Lugares: pontos (vértices V)

- Euler: mostrou que não existe solução que satisfaça tais restrições.
 - Teoria dos grafos
- Existe solução apenas se:
 - houvessem dois vértices com número ímpar de arestas;
 - demais vértices com número par de arestas;

Contextualização

- Diversos problemas podem usar **Grafos** para encontrar uma solução:
 - Análise de circuitos elétricos;
 - Identificação de caminhos mais curtos, rotas, etc;
 - Modelagem de redes pluviais, esgoto, etc;
 - Identificação de compostos químicos;
 - Análise sintática;
 - etc.

Análise sintática

Contextualização

- Diversos problemas podem usar Grafos para encontrar uma solução:
 - Análise de circuitos elétricos;
 - Identificação de caminhos mais curtos, rotas, etc;
 - Modelagem de redes pluviais, esgoto, etc;
 - Identificação de compostos químicos;
 - Análise léxica;

Pode-se dizer que, de todas as estruturas matemáticas, os grafos são as que se encontram em mais amplo uso.

Roteiro

- 1 Introdução
- 2 Grafos
- 3 Definições
- 4 Representações
- 5 Referências

Grafo

- □ Um grafo G = (V, E) é definido por:
 - um conjunto de vértices (nós), V
 - um conjunto de arestas (arcos), E
 - cada aresta é especificada por um par de vértices. Ex: (v1, v2)

- A análise de complexidade dos algoritmos de grafos é feita com base:
 - tamanho dos conjuntos de vértices | V | e arestas | E |
 - O(V+E) = O(|V|+|E|)

Grafos não dirigidos

- Um grafo não dirigido (ou não orientado) é um grafo cujas arestas não são dirigidas:
 - \Box (A, B) = (B, A)
 - \Box Ex: G = (V, E)
 - $V = \{A, B, C, D\}$
 - $E = \{(A,B), (A,C), (B,D), (C,D), (A,D)\}$

Grafos não dirigidos

- Um grafo não dirigido (ou não orientado) é um grafo cujas arestas não são dirigidas:
 - \Box (A, B) = (B, A)
 - \Box Ex: G = (V, E)
 - $V = \{A, B, C, D\}$
 - $E = \{(A,B), (A,C), (B,D), (C,D), (A,D)\}$

Grafos dirigidos

- Se as arestas do grafo são dirigidas, as arestas são representadas por pares ordenados de vértices, e o grafo é dito dirigido (dígrafo)
 - □ Aresta: <A, B>, A é o vértice de origem, B é o vértice de destino
 - <A, B> != <B, A>
 - $Ex: G=(V,E), V=\{A, B, C, D\}, E=\{<A,B>, <A,C>, <B,D>, <C,D>, <D,D>\}$

Grafos dirigidos

- Se as arestas do grafo são dirigidas, as arestas são representadas por pares ordenados de vértices, e o grafo é dito dirigido (dígrafo)
 - Aresta: <A, B>, A é o vértice de origem, B é o vértice de destino
 - <A, B>!= <B, A>
 - $Ex: G=(V,E), V=\{A, B, C, D\}, E=\{<A,B>, <A,C>, <B,D>, <C,D>, <D,D>\}$

Grafos rotulados e ponderados

- Um grafo é dito ser rotulado em vértices (ou arestas) quando cada vértice (aresta) estiver associado a um rótulo
- Em um grafo ponderado, cada aresta possui um peso associado

Grafos rotulados e ponderados

- Um grafo é dito ser rotulado em vértices (ou arestas) quando cada vértice (aresta) estiver associado a um rótulo
- Em um grafo ponderado, cada aresta possui um peso associado

Grafos rotulados e ponderados

- Um grafo é dito ser rotulado em vértices (ou arestas) quando cada vértice (aresta) estiver associado a um rótulo
- Em um grafo ponderado, cada aresta possui um peso associado

Roteiro

- 1 Introdução
- 2 Grafos
- 3 Definições
- 4 Representações
- 5 Referências

Subgrafo

- Um subgrafo G'=(V', E') de um grafo G=(V, E), se:
 - \Box V' \subseteq V e E' \subseteq E
 - Ex: G1 e G2 são subgrupos de G

Ordem

 Ordem: a ordem de um grafo G=(V, E) é dada pelo número de vértices, isto é, |V|

G1 ordem = 4

$$G2$$
 ordem = 3

Adjacência

Adjacência:

- dois vértices A e B são adjacentes se existe uma aresta (A,B) no conjunto E
- A é "antecessor" de B, se há uma aresta (A,B), que sai de A e chega em B
 - B é "sucessor" de A

Grau de vértice

- Grau(vértice): é o número de arestas que incidem nele
 - grau de entrada: número de arestas que saem de V
 - grau de saída: número de arestas que chegam de C

Grau de vértice

- Grau(vértice): é o número de arestas que incidem nele
 - grau de entrada: número de arestas que saem de V
 - grau de saída: número de arestas que chegam de C

Laço

- Laço: é uma aresta ligando um vértice a ele próprio
 - (A, A)

- Um grafo é conexo se existe uma sequência de arestas adjacentes que ligam todos os pares de vértices do grafo.
 - Caso contrário, o grafo é dito desconexo

Grafo conexo

Grafo desconexo

- Uma componente conexa de um grafo desconexo é um subgrafo conexo do grafo
- Uma ponte é uma aresta que, se retirada, torna desconexo um grafo conexo

Grafo conexo

Grafo desconexo

- Uma componente conexa de um grafo desconexo é um subgrafo conexo do grafo
- Uma ponte é uma aresta que, se retirada, torna desconexo um grafo conexo

Grafo conexo

Grafo desconexo

- Uma componente conexa de um grafo desconexo é um subgrafo conexo do grafo
- Uma ponte é uma aresta que, se retirada, torna desconexo um grafo conexo

Grafo conexo

Grafo desconexo

Conectividade

- Uma componente conexa de um grafo desconexo é um subgrafo conexo do grafo
- Uma ponte é uma aresta que, se retirada, torna desconexo um grafo conexo

Grafo conexo

Grafo desconexo

Caminhos

 Um caminho é uma sequência de vértices ligados por arestas do grafo

Ciclo

 Um ciclo é uma sequência de vértices ligados por arestas do grafo

Ciclo: {A, B, D, A}

Grafos completos

 Um grafo é completo se possui uma aresta para cada par de vértices

Grafos completos

 Um grafo é completo se possui uma aresta para cada par de vértices

Grafos completos

K6, K7?

Grafos bipartido

 Um grafo é dito ser bipartido quando o conjunto de vértices pode ser particionado em dois conjuntos V1 e V2, tais que toda aresta do grafo liga um vértice de V1 a um vértice de V2

Grafos bipartido

 Um grafo é dito ser bipartido quando o conjunto de vértices pode ser particionado em dois conjuntos V1 e V2, tais que toda aresta do grafo liga um vértice de V1 a um vértice de V2

Roteiro

- 1 Introdução
- 2 Grafos
- 3 Definições
- 4 Representações
- 5 Referências

Representações de grafos

- Lista de adjacência
- Matriz de adjacência

Representações de grafos

- Matriz de Adjacência
 - forma mais simples
- Propriedades:
 - representa grafo sem ambiguidade
 - é simétrica para grafo não direcionado
 - Armazenamento: O(n²)

Representações de grafos

- Lista de Adjacência
 - forma encadeada
- Propriedades:
 - conjunto de listas para cada vértice
 - vetor de listas lineares

Exemplo 01

Qual a lista e matriz de adjacência do grafo abaixo?

Exemplo 02

Qual a lista e matriz de adjacência do grafo abaixo?

Algoritmos de grafos

- Percursos
 - Busca em largura (Breath-First Search BFS)
 - Busca em profundidade (Depth-First Search DFS)
- Ordenação Topológica (Topological sort)
- Caminhos mínimos (Shortest paths)
 - Dijkstra
- Árvore geradora mínima (Minimum Spanning Trees MST)
 - Prim
 - Kruskal
- Fluxo máximo (Maximum flow)

Exercício 03

entrada.txt

Linha 1: | [M|L]

Linha 2: | [V]

Linha 3: (X,Y)(Y, Z)(Z,K) ... (A,B)

Tipo de representação

Número de vértices

Arestas

Objetivo:

Parsear entrada e criar um grafo

Exercício 03

Exemplo:

```
entrada.txt

M
4
(1,2)(1,3)(1,4)(2,1)(2,3)(4,3)
```

TAD Grafo

- 1. Criar um grafo vazio
- 2. Inserir uma aresta no grafo
- 3. Verifica se existe determinada aresta no grafo
- 4. Obter a lista de vértices adjacentes a determinado vértice
- 5. Retirar uma aresta do grafo
- 6. Imprimir um grafo
- 7. Obter o número de vértice do grafo
- 8. Obter a aresta de menor peso de um grafo

TAD Grafo

- 1. Criar um grafo vazio
- 2. Inserir uma aresta no grafo
- 3. Verifica se existe determinada aresta no grafo
- 4. Obter a lista de vértices adjacentes a determinado vértice
- 5. Retirar uma aresta do grafo
- 6. Imprimir um grafo
- 7. Obter o número de vértice do grafo
- 8. Obter a aresta de menor peso de um grafo

Roteiro

- 1 Introdução
- 2 Grafos
- 3 Definições
- 4 Representações
- 5 Referências

Referências sugeridas

[Cormen et al, 2018]

[Tenenbaum et al, 1995]

Referências sugeridas

[Ziviani, 2010]

[Drozdek, 2017]

Perguntas?

Prof. Rafael G. Mantovani

rafaelmantovani@utfpr.edu.br