1 General Problems

Configuration and Specification (Sets)

Equivalence Configuration Problem

Input:
$$C = \{\alpha_1, \dots, \alpha_n\}$$

Query: Whether $\exists K \subseteq C : K \equiv \beta$

Let

$$IMP(C, \beta) := \{ \alpha \mid \alpha \in C \text{ and } \beta \models \alpha \}$$

Then

$$\exists K \subseteq C(K \equiv \beta) \iff \text{IMP}(C, \beta) \models \beta$$

So, equivalence problem is in $P^{\mathbf{NP}[\log n]}$ which is the class of problems solvable in polynomial time with $O(\log n)$ queries to an NP oracle.

Next we show hardness. The problem SAT_{odd}^n is complete for $P^{\mathbf{NP}[\log n]}$. Where SAT_{odd}^n is the problem of determining whether the number of satisfiable formulas among n given CNF formulas.

We shall construct a reduction from SAT_{odd}^n to the equivalence configuration problem.

Suppose F_1, \dots, F_n are 3CNF formulas such that they have pairwisely distinct vaiables. We assume F_i is not tautolodical, otherwise we consider $F_i \wedge p_i$.

It is easy to see that φ is satisfiable iff the number of satisfiable formulas among F_1, \dots, F_n is odd.

Please note that there is transformation T such that a 3CNF formula F is satisfiable iff T(F) is minimal unsatisfiable.

Now we have $T(F_1), \dots, T(F_n)$, and suppose they have m_1, \dots, m_n clauses, repectively.

By the definition of transformation T, in each $T(F_i)$ we have a clause $c_i = (y_{i,1} \vee \cdots \vee y_{i,m_i})$, where $y_{i,j}$ are introduced new variables by T.

Now we can see F_i is satisfiable iff $T(F_i) - \{c_i\}$ is satisfiable and equivalent to $\neg c_i \land F_i$ are equivalent.

Let
$$T'(F_i) := (T(F_i) - \{c_i\}) \vee_{cl} c_i$$

Let $C := \{T'(F_1), \dots, T'(F_n), c_1, \dots, c_n\}.$

Let
$$\beta := (c_1 \vee F_1) \wedge \cdots \wedge (c_n \vee F_n) \wedge (\neg c_1 \otimes \cdots \otimes \neg c_n)$$

Suppose there are odd number of sat frmulas. For simplicility, we assume F_1, \dots, F_{2k+1} are sat, while others are unsat.

Let
$$K = \{T'(F_i), \cdots, T'(F_n)\},\$$

Retricted Equivalence Configuration(R-equivalence)

Input: $C = \{\alpha_1, \dots, \alpha_n\}, \beta$, and a set V of variables Query: Whether $\exists K \subseteq C : K \equiv^V \beta$

the problem of determining whether $F \equiv_V G$ is in Π_2^P (for the complementary problem: we guess a clause γ over V, check that $G \models \gamma$ but $F \not\models \gamma$.

Thus, R-equivalence configuration is Σ_3^P (guess a $K \subseteq C$, theck that it is satisfiable and $K \equiv_V \beta$.)

Next we show the hardness.

Consider $\Phi := \exists \vec{x} \forall \vec{y} \exists \vec{z} \varphi$ where φ is a CNF formula. We assume w.l.o.g. that φ contains clauses non-tautological calss over \vec{z} (otherwise, we pick new variable z' and consider $\exists \vec{x} \forall \vec{y} \exists \vec{z} \exists z' (\varphi \land z')$

 φ be written as $(c'_1 \vee c''_1) \wedge (c'_n \vee c''_n)$ in which c'_i is clause over \vec{x} .

Pick a new variable w_1, \dots, w_n, w . Let

Let

$$\psi := \left(\bigwedge_{i=1}^{n} (c_i' \to w_i) \right) \wedge \left(\bigwedge_{i=1}^{n} (\neg c_i' \wedge \neg c_i'' \to \neg w_i) \right)$$

Let

$$C_0 := \{ \psi \land (c_1'' \to w_1), \cdots, \psi \land (c_n'' \to w_n) \}$$
$$C_1 = \{ c_1', \neg c_1', \cdots, c_n', \neg c_n' \}$$

$$C_2 = \{x_1, \neg x_1 \cdots, x_n, \neg x_n\}$$

$$C_3 = \{(w_1 \wedge \cdots \wedge w_n \rightarrow w), (w \rightarrow (c'_1 \vee c''_1) \wedge \cdots \wedge (c'_n \vee c''_n))\}$$

Now let

$$C:=C_0\cup C_1\cup C_2\cup C_3\cup \{w\}$$

Let β be

$$w_1 \wedge \cdots \wedge w_n \wedge w$$

Let
$$V := \vec{y} \cup \{w_1, \dots, w_n, \} \cup \{w\}$$

Claim: Suppose $K \subseteq C$ satisfiable, $c_i \notin K$ and $K \not\models c_i$, then $K \cup \{ \neg c_i, \psi \land (c_i'' \to w_i) \}$ is still satisfiable.

(Lemma: $F \models_V G$ iff for for any truth assignment t on V, if it can be extended to a satisfying truth assignment for F, it can be extended to an satisfying truth assignment for G.)

We shall show Φ is true if and only if there is satisfiable $K\subseteq C$ s.t. $K\equiv_V \beta$

Implication Problem

Input: $C = \{\alpha_1, \dots, \alpha_n\}, \beta$

Query: Whether $\exists K \subseteq C : K \models \beta$

Clearly in Σ_2^P . We shall the hardness

Consider $\Phi = \exists x_1, \dots, x_n \forall y_1, \dots, y_m \varphi$ where φ is a DNF formula. Pick a new varibale z.

Let
$$C := \{ \varphi \to z, x_1, \neg x_1, \cdots, x_n, \neg x_n \}, \beta := z$$

Clearly, Φ is true if and only if $\exists K \subseteq C$ such that $K \models \beta$.

Note: In all problems K is demanded satisfiable.

$$\alpha \equiv_V \beta \iff \forall \gamma \text{ over } V, (\alpha \models \gamma \Leftrightarrow \beta \models \gamma)$$

$$\alpha \models_{V} \beta \Longleftrightarrow \forall \gamma \text{ over } V, (\beta \models \gamma \Longrightarrow \alpha \models \gamma)$$

Euivalence Problem is in $P^{NP[\log n]}$

R-Equivalence Problem same as above

Implication Σ_2^P ?

2 Resticted to DHORN

C: set of DHORN, β : DHORN

Equivalence problem is in PTIME

Idea: Let

Implication problem is trivial

The existence of K is equivalent to $C \models \beta$

The V-equivalence problem

we guess it seems Σ_2^P -complete. See Hans's book page 251

3 Restricted to HORN

Equivalence Problem: same as the DHORN case (PTIME).

iff $\mathrm{IMP}(C,\beta)$ is satisfiable and $\mathrm{IMP}(C,\beta) \models \beta$

V-Equivalence Problem: Σ_2^P -complete

$$\Phi := \exists y_1, \cdots, y_k \forall x_1, \cdots, x_m (c_1 \lor \cdots \lor c_n)$$

Where c_i is a conjunction of literals.

for each variable z, introduce a new variable $\pi(\neg z)$. Let $\pi(z) = z$.

introduce U.

for a clause $c = L_1 \wedge \cdots \wedge L_s$, we write $\pi(c) := \pi(L_1) \wedge \cdots \wedge \pi(L_s)$

$$C := \begin{cases} \pi(c_i) \to U \mid i = 1, \dots, n \} \cup \\ \{\neg \pi(\neg x_j) \lor \neg x_j \mid j = 1, \dots, m \} \cup \\ \{\neg \pi(\neg y_i) \lor \neg y_i \mid i = 1, \dots, k \} \cup \\ \{y_i, \pi(\neg y_i) \mid i = 1, \dots, k \} \end{cases}$$

$$\beta := U \vee \left(\bigvee_{j=1}^{k} (\neg \pi(\neg x_j) \wedge \neg x_j) \right)$$

(Remark: using Tsting algorithm)

Let

$$V := \{U\} \cup \{x_1, \cdots, x_m\}$$

 $(\exists K \subseteq C \text{ such that } K \equiv_V \beta) \text{ if and only if } \Phi \text{ is true.}$

Implication Problem NP-complete Given a 3CNF F

$$\bigwedge_{i=1}^{m} (L_{i,1} \vee L_{i,2} \vee L_{i,3}) \text{ over } x_1, \cdots, x_n$$

For each $i = 1, \dots, m$, pick a new variable z_i . For each $j = 1, \dots, n$ we pick a new variable $\pi(\neg x_j)$. For convenience, we also write x_j as $\pi(x_j)$.

Define C

$$C := \bigcup_{i=1}^{m} \{ \pi(L_{i,1}) \to z_i, \pi(L_{i,2}) \to z_i, \pi(L_{i,3}) \to z_i \} \cup \bigcup_{j=1}^{n} \{ \to x_j, \to \pi(\neg x_j) \cup \{ z_1 \wedge \cdots \wedge z_m \to z \}$$

Define

$$\beta := z \wedge \bigwedge (\neg \pi(\neg x_j) \vee \neg x_j)$$

Impliation problem iff F is satisfiable

Specification Problem

Given a partial configuration K, demand β , a set of variables V, W Looking for σ over W such that

- 1. $K \wedge \sigma(W) \equiv \beta$
- 2. $K \wedge \sigma(W) \equiv_V \beta$
- 3. $K \wedge \sigma(W) \models \beta$

Query Learning

black box α

equivalence query. Guess a β ask whether $\alpha \equiv \beta$. If the answer is no, output a truth assignment satisfying α and $\neg \beta$ or satisfying $\neg \alpha$ and β .

membership query guess a truth assignment v answer $v(\alpha) = 0$ or 1.

4 Configuration with constraints

 $C = \{\alpha_1, \dots, \alpha_n\}, \beta, D \text{ is set of formulas over } A_1, \dots, A_n \text{ which are propositional atoms. Whether there is } K \subseteq C \text{ such that}$

- \bullet K is satisfiable,
- $K \equiv \beta$, and
- the truth assignment v_K satisfies D, where $v_K(A_i) = \begin{cases} 1 & \text{if } \alpha_i \in K \\ 0 & \text{if } \alpha_i \notin K \end{cases}$