Ensemble Learning MAS DSE 220 Class Natasha Balac, Ph.D.

Overview

- Theory
- Methods
 - Resampling Methods
 - Bagging
 - Randomization
 - Boosting
 - Hybrid Methods
 - Stacking
- Implementations

Concepts

- Occam's Razor
 - "among the theories that are consistent with the data, select the simplest one"
- Epicurus' Principle
 - Principle of Multiple Explanations
 - "keep all theories that are consistent with the data"
- The Condorcet Jury Theorem
 - "Aggregation of information from groups can results in improved decisions vs. an individual "expert" decision"

Ensemble-based Systems in Decision Making

- For many tasks, we often seek second opinion before making a decision, sometimes many more
 - Consulting different doctors before a major surgery
 - Reading reviews before buying a product
 - Requesting references before hiring someone
- We consider decisions of multiple experts in our daily lives
- Why not follow the same strategy in automated decision making?
- Multiple classifier systems, committee of classifiers, mixture of experts, ensemble based systems

Ensemble-based Classifiers

- Ensemble based systems provide favorable results compared to single-expert systems for a broad range of applications & under a variety of scenarios
- How to
 - generate individual components of the ensemble systems (base classifiers), and
 - how to combine the outputs of individual classifiers?
- Popular ensemble based algorithms
 - Bagging, boosting, AdaBoost, stacked generalization, and hierarchical mixture of experts
- Commonly used combination rules
 - Algebraic combination of outputs, voting methods, behavior knowledge space
 & decision templates

Why Ensemble Based Systems?

Statistical reasons

- A set of classifiers with similar training performances may have different generalization performances
- Combining outputs of several classifiers reduces the risk of selecting a poorly performing classifier
- Large volumes of data
 - If the amount of data to be analyzed is too large, a single classifier may not be able to handle it; train different classifiers on different partitions of data
- Too little data
 - Ensemble systems can also be used when there is too little data; resampling techniques

Why Ensemble Based Systems?

Divide and Conquer

Figure 1. Complex decision boundary that cannot be learned by linear or circular classifiers.

Figure 2. Ensemble of classifiers spanning the decision space.

Why Ensemble Based Systems?

Data Fusion

- Given several sets of data from various sources, where the nature of features is different (heterogeneous features), training a single classifier may not be appropriate (e.g., MRI data, EEG recording, blood test,...)
- Applications in which data from different sources are combined are called data fusion applications
- Ensembles have successfully been used for fusion
- All ensemble systems must have two key components:
 - Generate component classifiers of the ensemble
 - Method for combining the classifier outputs

Brief History of Ensemble Systems

- Dasarathy and Sheela (1979) partitioned the feature space using two or more classifiers
- Schapire (1990) proved that a strong classifier can be generated by combining weak classifiers through boosting; predecessor of AdaBoost algorithm
- Two types of combination:
 - classifier selection
 - Each classifier is trained to become an expert in some local area of the feature space;
 one or more local experts can be nominated to make the decision
 - classifier fusion
 - All classifiers are trained over the entire feature space; fusion involves merging the individual (weaker) classifiers to obtain a single (stronger) expert of superior performance

Ensemble Learning Approach

- Basic idea
 - Create multiple models
 - Build different "experts" by diversification
 - Select models that maximizes some performance criterion on a test set
 - Combine models into a single decision
 - Trained ensemble, represents a single hypothesis
 - Result
 - Improve reliability
 - Improve predictive performance

Ensemble Shortcomings

- Models are only as good as their "experts"
 - Divergent ideas within a committee has the potential to strengthen an individual recommendation
 - ensembles tend to yield better results when there is a significant diversity among the models

Why Ensemble Pros and Cons

- Supervised Learning Technique
- Advantage
 - often improves predictive performance and reliability
- Disadvantage
 - Produces output that is very hard to analyze
 - Loss of Interpretability: which factors contribute to the improved decision
 - Learning systems or performance system (vs. explanation system)
 - Requires additional compute cycles

Key Criteria

- Diversify
 - Decentralization
 - Specialized, local knowledge (colloquial wisdom)
 - Diversity of Opinion
 - private information, "even if its just and eccentric interpretation of the known facts"
 - Independence
 - opinions aren't determined by the opinions of those around them
- Combine
 - Mechanisms for turning private judgments into collective decision

Key Criteria: How

Diversify

- Resampling: vary the data used to train a given algorithm
 - Bagging: "bootstrap aggregation"
 - Randomization: bagging + "variable resampling"
 - Boosting: resampling through adaptive weighting
- Hybrid learning: vary the algorithms trained on a given dataset
 - Stacking: "stacked generalization"

Combine

- Static: integration procedure is fixed, such as vote
 - retain the majority or mean/median of the individual predictions
- Dynamic: base predictions are combined using an adaptive procedure, or meta-learning

Creating Ensemble Models

- Given
 - Training data set [D]
 - · Labeled for supervised learning
 - Collection of inductive learning algorithms
- Create Diverse Models:
 - Vary Data
 - Vary Model Parameters
 - Vary Methods
- Combine Models
 - Dynamic or static procedures
- Goal
 - Reduce Variance
 - Reduce Bias

Creating An Ensemble

- Two questions:
 - How will the individual classifiers be generated?
 - How will they differ from each other?
- Answer determines the diversity of classifiers & fusion performance
- Seek to improve ensemble diversity by some heuristic methods

Bias-Variance Decomposition

 Bias: the difference between the expected (or average) prediction of the model and the actual value

 Variance: the variability of a model prediction for any given data point

Total Expected Error = Bias + Variance

Overview

- Theory
- Methods
 - Resampling Methods
 - Bagging
 - Randomization
 - Boosting
 - Hybrid Methods
 - Stacking
- Implementations

Bagging

- Bagging, short for Bootstrap Aggregating, is one of the earliest ensemble based algorithms
- It is also one of the most intuitive and simplest to implement, with a surprisingly good performance

Bagging

- Create bootstrapped replicas of the training data
- Large number of (~200) training subsets are randomly drawn with replacement - from the entire training data
- Each resampled training set is used to train a different classifier of the same type
- Individual classifiers are combined by taking a majority vote of their decisions
- Bagging is appealing for small training set; relatively large portion of the samples is included in each subset

Bagging: Method

- Bootstrap Aggregation Theory
 - Simplest way of combing predictions
 - Combine multiple Independent models, of same type, using vote with equal weight
- Strategy
 - Diversify data sets via bootstrapping
 - Create multiple models build from each data set
 - Combining decisions of models
 - Using static "voting" (classification) or averaging/mean(regression)

Bootstrapping Review

- Method for estimating the generalization error of a learning method
- Resampling
 - Instances are randomly sampled with replacement to create new sample set to be applied to classifier to create model

Bagging Algorithm

- Sample several training sets (D1, D2, D3)
 - size n from Data set D
 - using bootstrapping
- Build a classifier for each training set (M)
- Combine predictions (P)

Sampling with Replacement

Random & overlapping training sets to train three classifiers;
 they are combined to obtain a more accurate classification

Bagging Pseudocode

Algorithm: Bagging

input:

Training data S with correct labels $\omega_i \in \Omega = \{\omega_1, \dots, \omega_C\}$ representing C classes

Weak learning algorithm WeakLearn,

Integer T specifying number of iterations.

Percent (of fraction) F to create bootstrapped training data

Do
$$t = 1, \dots, T$$

- 1. Take a bootstrapped replica S_t by randomly drawing percent of S.
- 2. Call **WeakLearn** with S_t and receive the hypothesis (classifier) h_t .
- 3. Add h_t to the ensemble, E.

End

Test: Simple Majority Voting - Given unlabled instance x

- 1. Evaluate the ensemble on x.
- 2. Let $v_{t,j} = \begin{cases} 1, & \text{if } h_t \text{ picks class } \omega_j \\ 0, & \text{otherwise} \end{cases}$ be the vote given to class by classifier.
- 3. Obtain total vote received by each class $V_j = \sum_{t=1}^{T} v_{t,j}$, $j = 1, \dots, C$
- 4. Choose the class that receives the highest total vote as the final classification.

Variations of Bagging

- Random Forests
 - Generally constructed from decision trees
 - A random forest is created from individual decision trees, whose training parameters vary randomly
 - Such parameters can be bootstrapped replicas of the training data, as in bagging
 - But they can also be different feature subsets as in random subspace methods

Bagging Summary

- Uses Bootstrap resampling
 - Highly overlapping training sets
- Bagging reduces error due to variance
 - Reducing the overall expected error
 - Usually more classifiers/models the better
- Good with noisy data
 - Avoids over fitting
- Good with unstable learners
- Results are usually better then individual classifier

Randomization

- Randomization
 - Modifies learning algorithm
 - Can be applied to stable learners
- Randomization Implementations
 - Rotation Forests
 - Ensembles using rotated random subspaces
 - Random forests
 - Bag ensembles of random trees
 - Random Committee
 - Ensembles using different random number seeds
 - Random Subspace
 - Ensembles using rotated random subspaces

Boosting: Method

- Theory
 - Construct Strong Classifier by weighting voting of the weak classifiers
 - Strong learners are very difficult to construct
 - Constructing weaker learners is relatively easy
- Strategy
 - Construct Weak Classifier
 - Diversify using sequential adaptive resampling by weighting
 - "Boost" Weak Classifier to a strong learner
 - Combine Weak Classifiers
 - Integrate using weighted voting

Boosting

- Boost the performance of a weak learner to the level of a strong one
- Boosting creates an ensemble of classifiers by resampling the data
- Classifiers are combined by majority voting
 - resampling is strategically geared to provide the most informative training data for each consecutive classifier
- Boosting creates three weak classifiers:
 - First classifier C1 is trained with a random subset of the available training data
 - Training set for second classifier C2 is chosen as the most informative subset, given C1; half of the training data for C2 is correctly classified by C1, other half is misclassified by C1
 - Third classifier C3 is trained on instances on which both C1 & C2 disagree

Boosting

- Create classifier using training dataset
- Score each data point, indicating incorrect decisions or errors
- Retrain, focusing on incorrect decisions
- Repeat
- Final Prediction is weighted average of all the models

Boosting

- Construct Weak Classifiers
 - Using different data distributions
 - Start with uniform weight
 - Iterate through method
 - Increase weights of the examples which are not correctly learned
 - Decrease weights of example which are correctly learned by the weak learner
 - Focus on difficult example what are not correctly classified in previous step

AdaBoost

- AdaBoost (1997) is a more general version of the boosting algorithm;
 AdaBoost.M1 can handle multiclass problems
- AdaBoost generates a set of hypotheses (classifiers), and combines them through weighted majority voting of the classes predicted by the individual hypotheses
- Hypotheses are generated by training a weak classifier; samples are drawn from an iteratively updated distribution of the training set
- This distribution update ensures that instances misclassified by the previous classifier are more likely to be included in the training data of the next classifier
- Consecutive classifiers are trained on increasingly hard-to-classify samples

AdaBoost

- A weight distribution Dt(i) on training instances xi , i=1,...,N
 from which training data subsets St are chosen for each consecutive classifier (hypothesis) ht
- A normalized error is then obtained as βt , such that for

$$0 < \varepsilon t < 1/2$$
, they have $0 < \beta t < 1$

- Distribution update rule:
 - The distribution weights of those instances that are correctly classified by the current hypothesis are reduced by a factor of βt , whereas the weights of the misclassified instances are unchanged.
 - AdaBoost focuses on increasingly difficult instances
- AdaBoost raises the weights of instanced misclassified by ht, and lowers the weights of correctly classified instances
- AdaBoost is ready for classifying unlabeled test instances. Unlike bagging or boosting, AdaBoost uses the weighted majority voting
- 1/ βt is therefore a measure of performance, of the tth hypothesis and can be used to weight the classifiers

AdaBoost.M1

Algorithm AdaBoost.M1

Input:

Sequence of N examples $S = [(x_i, y_i)], i = 1, \dots, N$ with labels $y_i \in \Omega, \Omega = \{\omega_1, \dots, \omega_C\}$;

Weak learning algorithm WeakLearn;

Integer T specifying number of iterations.

Initialize
$$D_1(i) = \frac{1}{N}, i = 1, \dots, N$$

Do for $t = 1, 2, \dots T$:

- 1. Select a training data subset S_t , draw from the distribution D_t .
- 2. Train **WeakLearn** with S_t , receive hypothesis h_t .
- 3. Calculate the error of

$$h_i: \varepsilon_t = \sum_{i:h_t(x_i)\neq y_i} D_t(i)$$

If $\varepsilon_t > 1/2$, abort.

4. Set
$$\beta_t = \varepsilon_t / (1 - \varepsilon_t)$$
.

5. Update distribution

$$D_{t}: D_{t+1}(i) = \frac{D_{t}(i)}{Z_{t}} \times \begin{cases} \beta_{t} & \text{, if } h_{t}(x_{i}) = y_{i} \\ 1 & \text{, otherwise} \end{cases}$$

where $Z_t = \sum_i D_t(i)$ is a normalization constant chosen so that D_{t+1} becomes a proper distribution function.

Test - Weight Majority Voting : Given an unlabeled instance *x*.

1. Obtain total vote received by each class

$$V_j = \sum_{t:h_t(x)=\omega_j} \log \frac{1}{\beta_t}, j=1,\dots,C.$$

2. Choose the class that receives the highest total vote as the final classification.

AdaBoost.M1

 AdaBoost algorithm is sequential; classifier (CK-1) is created before classifier CK

Boosting

AdaBoost Performance

• In most practical cases, the ensemble error decreases very rapidly in the first few iterations, and approaches zero or stabilizes as new classifiers are added

MART Multiple Additive Regression Trees

- MART is a Boosting algorithm for regression
- Input: a learning sample {(xi,yi): i=1,...,N}
- Initialize
 - $\hat{y}_0(x) = 1/N \text{ åi yi ; ri=yi, i=1,...,N}$
- For t=1 to T:
 - For i=1 to N, compute the residuals
 - ri ← ri -ŷt-1(xi)
 - Build a regression tree from the learning sample {(xi,ri): i=1,...,N}
- Return the model $\hat{y}(x) = \hat{y}0(x) + \hat{y}1(x) + ... + \hat{y}T(x)$

Boosting Methods

- Many types of boosting algorithms
- Boosting decision/regression trees improves their accuracy often dramatically
- For Boosting to work, the models need not to be perfect on the learning sample
- With trees, there are two possible strategies:
 - Use pruned trees (pre-pruned or post-pruned by cross-validation)
 - Limit the number of tree tests (and split first the most impure nodes)
- ⇒ bias/variance tradeoff with respect to the tree size

Boosting: Summary

- Sensitive to noise
 - when base learners misclassify noisy examples, weights increase, causes over fitting to noise
- The power of boosting comes from adaptive resampling
- Like bagging, boosting reduces variance
- Reduces bias focusing on learning "hard cases"
- Results usually better then individual classifier or bagging

Stacking Stacked Generalization

- Theory
 - Train on multiple models of different type
 - Combines multiple different learning algorithm models using a meta learner
- Strategy
 - Uses Meta learners to identify "reliable" classifiers

Stacking Pseudocode

- Train level-0, or base, models as usual
 - Train multiple learners (Level -0 /base learners)
 - Each uses subsample of D
- Train 'combiner' on validation segment D (Level-1 Model)
 - Level-1 data built from predictions of level-0 models on remainder of set
 - Level-1 Generalizers are models trained on level-1 data

Stacking

Stacked Generalization

- An ensemble of classifiers is first created, whose outputs are used as inputs to a second level meta-classifier to learn the mapping between the ensemble outputs and the actual correct classes
- C1, ...,CT are trained using training parameters θ 1 through θ T to output hypotheses h1 through hT
- The outputs of these classifiers and the corresponding true classes are then used as input/output training pairs for the second level classifier, CT+1

Stacking Summary

- Stacking is a meta-learner
- Difficult to analyze theoretically
- Use probabilities as base learners if possible
 - it's better to use those as input to meta learner
- Choosing Level -1 Learners
 - In principle, any learning scheme
 - David Wolpert: "relatively global, smooth" model
 - Base learners do most of the work
 - Reduces risk of over fitting

Weka Implementations

- Bagging: Bagging
 - MetaCost
- Randomization
 - Random Committee
 - Random Forest
- Boosting
 - AdaBoostM1
 - MultiBoostAB
- Stacking: Stacking
 - StackingC

R Implementations

- Bagging:
 - Ipred
 - Adabag: Adaboost and Bagging
- Randomization
 - randomForest: Random Forest
 - Party: RF with faster tree growing
- Boosting
 - Ada: (AdaBoost + Friedmans mods)
 - Qbm: (Stochastic Gradient boosting)
 - Mboost: (Boosting applied to glm, gam)
- Stacking: Stacking
 - StackingC

Python Implementations

Sklearn.ensemble Methods

ensemble.AdaBoostClassifier([])	An AdaBoost classifier
ensemble.AdaBoostRegressor([base_estimator,])	An AdaBoost regressor
ensemble.BaggingClassifier([base_estimator,])	A Bagging classifier
ensemble.BaggingRegressor([base_estimator,])	A Bagging regressor
ensemble. Extra Trees Classifier ([])	An extra-trees classifier
<pre>ensemble.ExtraTreesRegressor([n_estimators,])</pre>	An extra-trees regressor
ensemble.GradientBoostingClassifier([loss,])	Gradient Boosting for classification
ensemble.GradientBoostingRegressor([loss,])	Gradient Boosting for regression
ensemble.RandomForestClassifier([])	A random forest classifier
ensemble.RandomTreesEmbedding([])	An ensemble of totally random trees
ensemble.RandomForestRegressor([])	A random forest regressor

Summary

- Ensemble Learning
 - Ensemble systems are useful in practice
 - Techniques to combine models to improve predictive performance
 - The error of an ensemble is less than the error of an individual model if:
 - Models are diverse and independent
 - Models performance is slightly better then random (err < 0.5)
- No single ensemble generation algorithm or combination rule is universally better than others
- Effectiveness on real world data depends on the classifier diversity and characteristics of the data