Оглавление

Задания 2017 года. 3адачи 0 класса	2 2
Задания 2018 года.	10
Задачи О класса.	10

Задания 2017 года

Задачи 0 класса.

Задача 1. Примечательный учебный день

- **А.** К высоте m метров дерево подходит, имея (m-1)! ветвей. Соответственно, ответ на задачу 11! веток.
- **В.** Очевидно, что больше 13 рассадок не бывает: мальчик обязан сидеть с одной из девочек. 13 же рассадок реализовать просто: нужно взять какую-то рассадку, и каждый день сдвигать девочек относительно мальчиков «по кругу».
- **С.** Давайте решим задачу в общем случае: есть класс из 4k + 2 человек придумать 4k + 1 способов рассадить их за парты так, чтобы одна пара не появлялась в двух разных рассадках (больше нельзя по очевидной причине каждый человек может сидеть не более чем с 4k + 1 другими).

Будем изображать i-ую рассадку, ставя число i в клетки таблицы $(4k+2)\times(4k+2)$, из которой выкинута центральная диагональ. Наша задача тогда — расставить числа от 1 до 4k+1 в клетки таблицы, так чтобы (а) каждое число было написано ровно 2k раз (б) встречалось в каждом столбце и каждой строке ровно по одному разу (в) его вхождения в таблицу были бы симметричны относительно центральной диагонали. Построим расстановку.

В первую строку таблицы впишем числа от 1 до 4k+1 справа налево, а в первый столбец — снизу вверх. Заполняя i-ую строку, 1 < i < 4k-1, поступим так: зарезервируем самую правую клетку строки, не будем её трогать; в остальные клетки впишем числа от 1 до 4k+1, сдвинув их на одну клетку влево относительно предыдущей строки. После этого в самую правую клетку запишем число, которое должно было стоять на центральной диагонали. Последнюю строку получим отражением относительно центральной диагонали уже сформированного последнего столбца.

Приведём пример такой таблицы для k=2 (в задаче было k=6):

	9	8	7	6	5	4	3	2	1
9		7	6	5	4	3	2	1	8
8	7		5	4	3	2	1	9	6
7	6	5		3	2	1	9	8	4
6	5	4	3		1	9	8	7	2
5	4	3	2	1		8	7	6	9
4	3	2	1	9	8		6	5	7
3	2	1	9	8	7	6		4	5
2	1	9	8	7	6	5	4		3
1	8	6	4	2	9	7	5	3	

Несложно убедиться в том, что она обладает нужными нам свойствами.

Задача 2. Пока не пришёл лифтёр

Витя и Петя живут в бесконечном вверх и вниз доме и очень любят кататься на лифте. Как-то раз неведомые хулиганы сломали кнопки во всех лифтах так, что те могли двигаться только на n этажей вверх или вниз и на m этажей вверх или вниз.

2 | Вёрстка: Хе⊮ТЕХ.

- **А.** Если первый общий этаж для мальчиков 123-ий, то HOK(n,m)=123 (так как первый общий этаж как раз и имеет номер, соответствующий наименьшему общему кратному). $123=3\cdot 41$, поэтому n и m могут быть равным 1, 123 или 3, 41.
- **В.** Без ограничения общности можно считать, что Витя находится на нулевом этаже, а Петя на первом. Тогда Витин лифт перемещается только по этажам, номера которых делятся на k+1. Если k=0, Петя остаётся на месте, и Витя, конечно, может к нему приехать.
 - Если же k > 0, то Витя не может приехать на первый этаж (1 не делится на k + 1), поэтому если Петя просто будет оставаться на месте, он не встретится с Витей.
- **С.** Заметим, что номер текущего этажа, на котором находится Витя, равен сумме со слагаемыми вида $\pm m$ и $\pm n$. Любая такая сумма делится на НОД (n,m), а единственный делитель единицы это она сама. Поэтому НОД (n,m)=1.

Задача 3. Игра

- **А.** Это игра—шутка: значение суммы не зависит от расстановки в ней скобок сумма в любом случае будет равна 2017, то есть нечётна. Отсюда победит первый игрок.
- **В.** У первого игрока есть выигрышная стратегия. Первым ходом он должен переложить 3 камня из первой кучки во вторую. Затем он должен реагировать на ходы второго игрока следующим образом:

Если второй перекладывает x камней из первой кучки во вторую, то первый должен переложить 5-x камней также из первой кучки во вторую.

Если же второй перекладывает камни из второй кучки в первую, то первый должен вернуть эти камни обратно во вторую кучку.

Заметим, что после хода первого игрока количество камней во второй кучке всегда имеет остаток 3 от деления на 5, а после хода второго игрока количество камней во второй кучке никогда не имеет такого остатка. Это значит, что второй игрок не может переложить все камни во вторую кучку, вынудив первого сделать ход, при котором ему придётся выкидывать камни из мешка.

То есть, (а) первый всегда может сделать ход, соответствующей придуманной нами стратегии, (б) выкидыванием камней из мешка занимается исключительно второй игрок. Он и проиграет.

С. Начнём со случая n=13. Если первый игрок взял k камней, то второй может взять 13-k и победить. Если n не превосходит 14 и не равно 13, то все камни может взять за один ход первый игрок.

Для n > 15 рассмотрим два случая:

n делится на 13. Заметим, что после любого хода первого игрока оставшееся количество камней не будет делиться на 13. Зато второй в случае любого хода первого сможет сделать так, что после его хода количество камней, оставшихся в кучке, будет вновь делиться на 13. Для этого на взятие k камней, $1 \le k \le 12$, нужно ответить взятием 13-k камней, на взятие 14 камней — 12 камнями, а на взятие 15 камней — 11 камнями. Ноль делится на 13 — кучка может остаться пустой только после хода второго игрока.

п не делится на 13. Тогда выигрышная стратегия есть у первого игрока. Своим первым ходом он берёт от 1 до 12 камней так, чтобы осталось количество, кратное 13— а затем играет так, как играл бы второй игрок в предыдущем пункте.

Ответ: если п делится на 13, выигрывает второй игрок; иначе выигрывает первый.

Задача 4. Переводчики с немецкого

- **А.** Разложим на простые множители числа 116 и 217: $116 = 2^2 \cdot 29$, $217 = 7 \cdot 31$. Эти числа взаимно просты, то есть, у них единственный общий множитель единица. Поэтому переводчику надо перевести 116 брошюр и 217 заметок.
- **В.** Заметим, что если текстов каждой тематики было бы по одному и каждому переводчику надо было бы перевести ровно один текст, то у начальника не возникло бы проблем. Тогда давайте сведём задачу распределения 3n текстов, по n на тему, к задаче распределения 3(n-1) текстов, по n-1 на тему.

Среди трёх переводчиков найдётся тот, кто указал наименьшее число различных тематик текстов в своём списке желаний. Выделим ему один текст одной из его желаемых тематик. Среди оставшихся двух переводчиков есть тот, у кого тематик поменьше. Он точно хочет себе хотя бы один текст тематики, отличной от той, которую мы уже дали первому переводчику. Выделим ему текст этой тематики.

Остался третий переводчик. Если он хотел себе текст третьей тематики, которая ещё никому не выдана, всё хорошо. Если вдруг он «заказывал» только два различных вида текстов, и это те самые виды, которые уже «отданы» первому и второму переводчикам, то у кого-то из них (предположим, у второго) в списке желаний есть третья тематика. Дадим ему эту самую третью тему, а третьему переводчику — то, что раньше было у второго.

Таким образом мы успешно раздали три текста — раздавая по три текста разных тематик, дойдём до ситуации, когда текстов осталось по одному.

С. Текст длины 1 бьётся одним способом, текст длины 2- двумя способами. Теперь рассмотрим последнее слово в тексте из n слов — оно может быть либо самостоятельным, либо частью сочетания. В первом случае нам останется побить на слова и сочетания текст длины n-1, во втором — текст длины n-2.

Таким образом, ответ на задачу для n равен сумме ответов для n-1 и n-2. Этому условию и полученным нами начальным данным удовлетворяет последовательность чисел Фибоначчи. Поэтому ответ — \mathcal{F}_n .

Задача 5. Все числа состоят из цифр

А. Запишем условие из задачи: $\overline{xy}=3\cdot \overline{yx}$. Это значит то же, что

$$10x + y = 30y + 3x$$
; $7x = 29y$.

И правая, и левая части равенства должны делить на 29. Это значит, что x делится на 29 — единственная цифра, кратная, 29, это ноль. Разумеется, при x=0 решений у данной задачи нет — значит, нет и вообще.

В. Последовательно будем интерпретировать условие задачи. То, что искомое число не делится на 10, значит, что $Z \neq 0$. То, что число YZ меньше 40, значит, что Y равен 0, 1, 2 или 3. Единственное двузначное число, являющееся квадратом и оканчивающееся на цифры 0–3 — это 81. Таким образом, X=8, Y=1.

Наконец, для цифры Z остаётся два возможных варианта, чтобы число XYZ делилось на 9-0 и 9. Так как мы с самого начала поняли, что $Z\neq 0$, получается Z=9.

Ответ: искомое число -819.

С. Попробуем посчитать сумму цифр числа n- по признаку делимости на 9, её остаток будет таким же, как у самого числа n. 19 разрядов из 61 занимают двойки -

4 | Вёрстка: Хе⊮Т_ЕХ.

если отбросить эти 19 разрядов, двоек и четвёрок будет поровну. Пусть четвёрки в числе занимают t разрядов. Тогда сумма цифр числа n равна

$$19 \cdot 2 + 4 \cdot t + 2 \cdot t + 3 \cdot (61 - 19 - 2t) =$$

$$= 38 + 6t + 3 \cdot 42 - 6t = 38 + 42 = 80.$$

Остаток при делении 80 на 9 равен 8 — значит, и число n сравнимо с 8 по модулю 9.

Задача 6. Участники «Математики НОН-СТОП»

А. Парты в одном из кабинетов, где проходит олимпиада, стоят в три колонки по шесть парт в каждой. За 20 минут до олимпиады в кабинете сидело 8 школьников. Докажите, что из кабинета пока что можно утащить две свободные парты, стоящие друг за другом. А если бы школьников было 9?

Побьём парты на пары стоящих друг за другом, по три пары в ряду. Получится девять пар, а школьников пока всего восемь. Значит, одна пара парт полностью свободна, и её можно утащить.

Если же школьников 9, то посадим по школьнику за 1, 3 и 5 парты каждого ряда — и ничего нельзя будет унести.

- **В.** Пусть участников всего *N*. Если среди участников есть один, не знакомый ни с кем, то не может быть участника, знакомого со всеми. Если же есть участник, который со всеми знаком, то каждый знаком хоть с кем-то.
 - Таким образом, либо все участники знакомы с 0-(N-2) людьми каждый, либо все они знакомы с 1-N-1 людьми каждый. В любом случае на N участников получается (N-1) вариантов, поэтому найдутся двое с одинаковым числом знакомых.
- **С.** Возьмём шесть участников, нам хватит. Будем соединять красной линией знакомых, а синей линией незнакомых. Все участники окажутся попарно соединены.

Из каждого участника выходит по пять линий, значит как минимум три из них имеют один цвет. Пусть из данного участника выходит три красных линии — посмотрим на людей, в которых они приходят. Если между ними есть хоть одна красная линия, получается красный треугольник с участником, выбранным нами изначально. Если же между ними все линии синие, то это даёт нам синий треугольник, то есть они попарно незнакомы. Что и требовалось.

Задача 7. Простые, но такие сложные

- **А.** Хотя бы одно из чисел p, p+2, p+4 должно делиться на 3- это можно понять, рассмотрев всевозможные остатки при делении p на 3. Единственное простое число, делящееся на 3, это, собственно, 3.
 - p+4 не может быть равно трём, потому что тогда p=-1 не простое. p+2 не может быть равно трём, потому что тогда p=1 не простое. Остаётся единственные ответ p=3, p+2=5, p+4=7. Все эти числа простые.
- **В.** Пусть $n=p_1\cdot p_2$. Тогда $n+100=(p_1+1)(p_2+1)=n+p_1+p_2+1$. Таким образом, мы ищем простые числа p_1 и p_2 , такие что $p_1+p_2=99$. Сумма двух чисел нечётна— значит, одно из них обязательно должно быть чётным. Отсюда единственный ответ $-p_1=2, p_2=97$.
- **С.** Рассмотрим выключатель под номером k. Какие электрики переключат его? Очевидно, что те, номера которых являются делителями числа k. Изначально все выключатели выключенными, поэтому включенными в конце останутся те, номера

которых имеют нечётное чило делителей. Известный факт заключается в том, что этому условию удовлетворяют только квадраты натуральных чисел.

Таким образом, включенными останутся выключатели с номерами–полными квадратами.

Задача 8. О числах маленьких и больших

А. Без ограничения общности будем считать, что $b \ge a \ge 2$. Тогда

$$a+b \stackrel{(1)}{\leq} 2 \cdot \max(a,b) \stackrel{(2)}{\leq} \min(a,b) \cdot \max(a,b) = a \cdot b.$$

Теперь, если оба числа a, b строго больше двух, то неравенство (2) становится строгим, а если только одно — то неравенство (1) становится строгим. Что и требовалось.

В. (а): Пусть a — первая цифра числа X.

Чтобы найти число X, которое при удалении первой цифры станет в 57 раз меньше, нужно придумать такую цифру a, что $a\cdot 10^{\cdots}=56\cdot (X-a\cdot 10^{\cdots})$. Для этого, в частности, число $a00\ldots 0$ должно делиться на 56. Число 70000 отлично подойдёт. Получаем ответ:

$$1250 \cdot 57 = 71250.$$

- (б): Чтобы найти ответ в этом пункте, нужно подобрать такую цифру a, что $a00\dots0$ делится на 57. Пусть такая есть: $57\mid a\cdot 10^k$. 10 взаимно просто с 57, поэтому тогда $57\mid a\cdot 10^{k-1}$. Продолжая уменьшать степень десятки, пользуясь этим соображением, получим $57\mid a$. Но ненулевая цифра не может делится на 57 получаем противоречие.
- **С.** Отдельно рассмотрим случай n=4: $4=2\cdot 2=2+2$. Если же составное n строго больше четырёх, что его можно представить в виде $a\cdot b, a\geq 2, b>2$.

Из пункта A мы знаем, что тогда $a+b < a \cdot b = n$. Тогда можно взять n-a-b единиц, и получить

$$a+b+1+\ldots+1=a\cdot b\cdot 1\cdot \ldots \cdot 1=n.$$

Задача 9. Гонки улиток

- **А.** Улитки доползут до верха одновременно каждая за три дня.
- **В.** Покрасим клетки листа в белый и чёрный, как на шахматной доске. Чёрных и белых клеток будет разное количество (всё-таки площадь листа нечётна), и при этом улитка переползает с белой клетки на чёрную, а с чёрной на белую. Поэтому улиткам, стартовавшим в клетках цвета, которого больше, не хватит клеток цвета, которого меньше.
- **С.** Пусть более быстрая улитка верхняя. Тогда план её действий таков: спуститься вертикально вниз в точку, где сидела другая улитка, а затем догнать её по её же пути.

Пусть более быстрая улитка — нижняя. План её действий — пополэти перпендикулярно от стены. Кратчайший путь от начального положения верхней улитки до точки, где находится нижняя улитка, всегда будет длиннее расстояния, пройденного нижней улиткой — поэтому более медленная верхняя не сможет её догнать.

6 ∣ Вёрстка: Хе⊮Т_ЕХ.

Задача 10. Загадывание чисел

А. Пусть оказалось, что a+b делится на b, где a и b — числа, загаданные мальчиками. Тогда

$$a + b = k \cdot b$$
,

и, соответственно

$$a = (k-1) \cdot b$$
.

Таким образом, a делится на b-и наибольший общий делитель этих двух чисел равен b.

В. Ответ на первый вопрос — да, конечно: 3 и 20 — взаимно простые числа, а их остатки от деления на 17 совпадают и, разумеется, не взаимно просты.

Чтобы показать, что числа a и b из второго вопроса пункта обязаны быть взаимно простыми, рассмотрим число

$$\max(a, b) + 1$$
.

Остатки при делении чисел a и b на него равны им самим и по условию взаимно просты — значит, a и b взаимно просты.

С. Наша задача — решить уравненение

$$(x+3)(x+4)(x+5)(x+6) = 288.$$

Рассмотрим произведения пары крайних множителей и пары средних множителей:

$$(x^2 + 9x + 18)(x^2 + 9x + 20) = 288.$$

Иными, словами,

$$Y(Y+2)=288.$$

Разложим число 288 на множители: $288 = 2^5 \cdot 3^2$. Получается, есть ровно два способа представить 288 в виде произведения двух чисел, различающихся на 2: $16 \cdot 18$ и $(-18) \cdot (-16)$.

В каждом из этих двух случаев, чтобы найти x, нужно либо решить квадратное уравнение, либо, например, представить -18 в виде произведения двух чисел, различающихся на 3 — одно из них и будет x+3. Ни то, ни другое не представляет труда.

Задача 11. Возводим в степень

- **А.** Подойдёт, например, 423 (делится на 9), 424 (делится на 4), 425 (делится на 25).
- **В.** Укажите наименьшее натуральное число такое, что его половина квадрат натурального числа, его треть куб натурального числа, а его пятая часть пятая степень натурального числа.

Будем искать это число в виде $2^m 3^n 5^k$: по условию, эти множители должны в него входить, а лишнего нам не надо. Ясно следующее:

m делится на 3 и на 5, но нечётно; n делится на 2 и на 5, но имеет остаток 1 по модулю 3; k делится на 2 и на 3, но имеет остаток 1 по модулю 5.

Найдём наименьшие подходящие m, n и k — это 15, 10 и 6. Ответ: $2^{15} \cdot 3^{10} \cdot 5^6$.

С. Пусть нам надо придумать цепочку длины n. Возьмём n произвольных простых чисел $p_1 \dots p_n$ — их квадраты являются попарно взаимно простыми.

В силу Китайской теоремы об остатках найдётся достаточно большое число N, сравнимое с i по модулю p_i^2 , $1 \le i \le n$. Искомой цепочкой будет $N-n \dots N-1$.

Задача 12. Средства передвижения

А. Очевидно, что грузовик проедет на данном наборе шин наибольшее расстояние, если все шины износятся одновременно: в противном случае на какх-то шинах останется неиспользованный ресурс, который мог бы превратиться в преодолённое расстояние.

Будем рассматривать *износ* шины — число, линейно растущее с пройденным расстоянием, и обращающееся в единицу, когда шина достигает своего предела.

Один километр для передней шины увеличивает её износ на $\frac{1}{15000}$, для задней шины — на $\frac{1}{25000}$. Пусть до замены грузовик проехал S_1 километров, а после — S_2 . Тогда условие о том, что две пары шин износились одновременно, превратится в

$$\begin{cases} \frac{1}{25000}S_1 + \frac{1}{15000}S_2 = 1; \\ \frac{1}{15000}S_1 + \frac{1}{25000}S_2 = 1. \end{cases}$$

Эти равенства можно преобразовать в

$$\begin{cases} 3S_1 + 5S_2 = 75000; \\ 5S_1 + 3S_2 = 75000. \end{cases}$$

Получаем $S_1 = S_2 = 9375$, и грузовик сможет проехать 18750 километров.

- **В.** Если Андрей побежит вперёд, ему придётся преодолеть на треть длины моста большее расстояние, чем если он побежит назад. Соответственно, бежать ему придётся больше на время, требуемое для преодоления трети моста. Из условия задачи, за это время троллейбус должен преодолеть весь мост со скоростью 45 км/ч. Значит, скорость бега Андрея 15 км/ч.
- **С.** Паша выписал в ряд номера шести трамваев, проехавших мимо него. Известно, что каждый номер, начиная с третьего, равен сумме двух предыдущих, а сумма всех выписанных номеров равна 8032. Установите номер пятого трамвая.

Пусть номер первого трамвая — A, а второго — B. Тогда можно выписать номера остальных трамваев:

$$A + B$$
, $A + 2B$, $2A + 3B$, $3A + 5B$.

Сложив эти номера, получаем 8A + 12B = 8032. Нам нужно найти номер пятого трамвая, равный 2A + 3B — но это ровно четверть от суммы всех номеров!

Отсюда ответ —
$$\frac{8032}{4} = 2008$$
.

Задача 13. Взвешивания

- **А.** Пусть картофель весит P граммов, а кот K граммов. Пусть погрешность составляет M граммов.
 - Тогда P+M=1000, K+M=4400, P+K+M=5000. Отсюда P=600 (вычтем из третьего равенства второе), K=4000 (вычтем из третьего первое), M=400.
- **В.** Поделим 729 монет на три равных кучки. Положим две из них на весы если одна из них окажется легче другой, то в ней находится фальшивая монета. Если они равны по весу, то фальшивая монета находится в оставшейся трети.
 - Таким образом, за один ход мы умеем уменьшать количество «подозреваемых» монет втрое. $729 = 3^6$, поэтому через шесть ходов останется одна монета, которая может быть фальшивой она и окажется фальшивой.
- **С.** Выложим на весы одну монету из первого мешка, две монеты из второго мешка, . . . 15 монет из 15-го мешка. Если бы все монеты были настоящими, их суммарная масса была бы равна $20 \cdot (1 + \ldots + 15)$ граммов. По факту мы получим бо́льшую массу она будет отличаться от приведённой нами ранее на $5 \cdot (N^{\circ})$ мешка с фальшивыми монетами) граммов. Так мы и выясним, где фальшивки.

Задания 2018 года

Задачи 0 класса.

Задача 1. Ужасный гадкий аккуратный подсчёт

А. Квадратов $1 \times 1 - 4 \cdot 5 = 20$ штук. Квадратов размером $2 \times 2 - 3 \cdot 4 = 12$ штук. Квадратов 3×3 и $4 \times 4 - 6$ и 2 соответственно. Таким образом, всего квадратов

$$20 + 12 + 6 + 2 = 40$$
.

Количество прямоугольников можно посчитать более «продвинутым» образом: заметим, что прямоугольников размером $a \times b$ можно найти ровно $(4-a+1) \cdot (5-b+1)$ штук. Число a меняется от 0 до 4 — отсюда 4-a+1 меняется в тех же пределах. То же самое с 5-b+1 — оно меняется от 0 до 5.

Отсюда можно заключить, что сумма чисел вида $(4-a+1)\cdot (5-b+1)$ при всевозможных a и b будет равна сумме всех чисел вида $a\cdot b$. Как посчитать сумму всех чисел вида $a\cdot b$? Заметим, что при раскрытии скобок в произведении

$$(1+2+3+4+5) \cdot (1+2+3+4)$$

получится сумма из всех слагаемых, которые нам нужны. Отсюда прямоугольников можно найти $15 \cdot 10 = 150$ штук.

- **В.** Всего раскрасок n! в «первом» секторе может стоять n цветов, в следующем n-1, и так далее. Из одной раскраски вращением круга можно получить ровно n раскрасок (включая её саму) поэтому ответ равен $\frac{n!}{n} = (n-1)!$.
- **С.** В верхней полосе может стоять один из шести имеющихся цветов. Во второй полосе любой из шести цветов, кроме уже стоящего в первой. В нижней полосе любой из цветов, кроме уже стоящего во второй. Таким образом, ответ $6 \cdot 5 \cdot 5 = 150$.

Задача 2. Ужасный гадкий аккуратный подсчёт

- **А.** Всего раскрасок n! в «первом» секторе может стоять n цветов, в следующем n-1, и так далее. Из одной раскраски вращением круга можно получить ровно n раскрасок (включая её саму) поэтому ответ равен $\frac{n!}{n}=(n-1)!$.
- **В.** В верхней полосе может стоять один из шести имеющихся цветов. Во второй полосе любой из шести цветов, кроме уже стоящего в первой. В нижней полосе любой из цветов, кроме уже стоящего во второй. Таким образом, ответ $6 \cdot 5 \cdot 5 = 150$.
- **С.** Эта задача чуть сложнее пункта А: нужно поделить 6! на число вращений куба. Сколько же их?

Возьмём «верхнюю» грань куба. При вращении она может оказаться на месте одной из шести граней (включая себя). Теперь посмотрим на одну из граней, соседних с ней. При вращении та может перейти в одну из четырёх граней, соседних с той, на месте которой оказалась верхняя. Заметим, что положение этих двух граней (для которого есть ровно 24 варианта) однозначно определяет положение всех остальных. Поэтому ответ на задачу — $\frac{6!}{24}=30$.

Вёрстка: ХеЫТ-Х.

Задача 3. Не модельная, а модальная!

Пусть есть событие X, которое может происходить или не происходить в зависимости от того, какой сегодня день. Например, событие X = «сегодня суббота» случается раз в семь дней, а событие «сегодня я смотрел на часы» — каждый день.

А. Фраза $\Box \nabla X$ означает дословно следующее: для каждого дня, начиная с сегодняшнего, в какой-то момент после него случится событие X. То есть, из какого дня вперёд ни посмотри — там, в будущем, обязательно хотя бы единожды случится событие X. На самом деле эта фраза эквивалентна следующей: «в бесконечное количество дней после сегодняшнего произойдёт событие X».

Очевидно, что $\Box \triangledown$ сегодня суббота — верно: после любого дня когда-то в будущем обязательно наступит суббота.

В. Докажем, что из первой фразы следует вторая. Действительно: первая утверждает, что $\nabla \Box X$ верно для любого дня, начиная с сегодняшнего — в том числе и для сегодняшнего.

Теперь докажем, что из второй фразы следует первая. Вторая фраза означает: начиная с какого-то дня в будущем (назовём его D) каждый день будет происходить событие X. Зная это, нам нужно доказать $\Box \nabla \Box X$: для каждого дня d указать такой день после него, начиная с которого X выполняется каждый день.

Так вот если d раньше D, то D подойдёт в качестве искомого дня. Если же D раньше d, то после самого d событие X выполняется каждый день — возьмём d в качестве искомого дня.

С. Легко убедиться, что $\Box X$, ∇X , $\Box \nabla X$ и $\nabla \Box X$ — попарно неэквивалентные фразы. Пусть X_1 — «сегодня не 1 января 2000 года», X_2 — «сегодня у Пети Иванова последний звонок в школе», X_3 — «сегодня День рождения Пети Иванова», X_4 — «Пете Иванову уже исполнилось 18 лет»; достаточно проверить, что все X_i делают верными разные наборы утверждений.

Теперь докажем, что любая фраза с более длинной приставкой из □ и ▽ эквивалентна одной из приведённых ранее. Понятно, что □□ и ▽ в любом месте приставки можно заменить на соответственно □ и ▽ без изменения смысла фразы. Значит, мы можем рассматривать только фразы, в приставке которых идёт не более одного квадратика / треугольничка подряд.

Согласно пункту В, $\Box \triangledown \Box$ можно заменить на $\triangledown \Box$ без изменения смысла фразы. Аналогично, $\triangledown \Box \triangledown$ можно заменить на $\Box \triangledown$. Поэтому любую приставку мы можем сократить до содержащей не более двух символов — а все такие мы уже перечислили.

Задача 4. Фургончик

- **А.** Мы знаем, что $(p_1+1)(p_2+1)=p_1p_2+15$. Если раскрыть скобки, получается $p_1+p_2=14$. Единственные простые числа, подходящие под это условие, 11 и 3. Это и есть ответ.
- **В.** Для того, чтобы выяснить, какие ноги ещё не были переставлены, нам нужно отыскать все нечётные числа между 2 и 40, не делящиеся на 3. Это 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37. Проверить, что мы выписали все нужные числа, несложно достаточно посмотреть на их остатки при делении на 6: числа должны иметь вид 6k-1 или 6k+1 (остальные остатки от деления на 6 либо чётные, либо 3). Получилось 12 чисел это ответ на задачу.

С. Будем измерять расстояние, которое проехал Саша за день, не в километрах, а в метрах. Понятно, что расстояние между А и G равно сумме со знаками + или – расстояний между городами, которые указаны в задаче. Осталось только заметить, что все расстояния в метрах (12000, 18000, 10500, 19500, . . .) делятся на 3, а их предполагаемая сумма — 41000 — почему-то нет. Значит, в атласе дана неверная информация.

Задача 5. Необходимости и достаточности

- **А.** Скорость мышки равна $10 \cdot 35 = 350 \, \text{см/c}$, а скорость кошки $55 \cdot 9 = 495 \, \text{см/c}$. Несомненно, кошка быстрее.
- **В.** Сколько вылетов нужно сделать винтовому самолёту? Каждого Йожина надо осыпать трижды получается 300 осыпаний. Каждый вылет даёт два осыпания поэтому нужно 150.

А реактивному? Аналогичным образом получаем $100 \cdot 8 \div 5 = 160$ вылетов. Таким образом, винтовой самолёт на 10 вылетов эффективнее.

С. Обозначим через x_k массу еды, которая была в наличии у велосипедистов $neped\ k-$ ым обедом. Мы знаем, что $x_{31}=0$, и ищем x_1 . Давайте выразим x_k через x_k+1 . В соответствии с условием задачи,

$$x_k = \underbrace{0.1 \cdot x_k + 2}_{\text{съедят за } k - \text{ым обедом}} + x_{k+1}.$$

Откуда

$$x_k = \frac{20}{9} + \frac{10}{9}x_{k+1}$$
; $x_1 = \frac{20}{9} + \frac{10}{9} \cdot \frac{20}{9} + \left(\frac{10}{9}\right)^2 \cdot x_3 =$ $= \frac{20}{9} + \frac{10}{9} \cdot \frac{20}{9} + \ldots + \left(\frac{10}{9}\right)^{28} \cdot \frac{20}{9} =$ $= \frac{20}{9} \cdot \frac{\left(\frac{10}{9}\right)^{29} - 1}{\frac{10}{9} - 1} -$ это ответ на задачу.

Задача 6. Где-то я это уже видел

А. Первое число в дате (оно соответствует дню в месяце) меняется от 1 до 31, а второе (соответствует месяцу) — от 1 до 12. С другой сторооны, как мы знаем, часы пронумерованы от 0 до 23, а минуты — от 0 до 59.

Таким образом, днём в месяце и одновременно часом могут быть числа от 1 до 23, а месяцем и одновременно минутой — от 1 до 12. Кроме того, в каждом месяце точно есть хотя бы 23 дня.

Поэтому ответ — $23 \cdot 12 = 276$.

В. Давайте всегда использовать «развёрнутую» дату. Тогда любой месяц (от 1 до 12) может стоять на месте часа, а любой день (от 1 до 31) на месте минуты. Ответ — все дни в году.

С. Есть всего 12 букв русского алфавита, похожих на буквы английского алфавита (ГОСТ Р 50577-93):

Жирным мы отметили гласные — их всего 4; соответственно, согласных 8. Выбрать сочетание «гласная-согласная» можно $4\cdot 8\cdot 8$ способами, а «гласная-гласная-согласная» — $4\cdot 4\cdot 8$ способами. Вариантов для числа на номере всегда ровно 1000 — от 000 до 999.

Когда гласная одна, она может стоять на одном из трёх мест, поэтому ответ в таком случае будет равен

$$3 \cdot 4 \cdot 8 \cdot 8 \cdot 1000$$
.

Когда гласных две, согласная может стоять на одном из трёх мест. Поэтому ответ —

$$3 \cdot 4 \cdot 4 \cdot 8 \cdot 1000$$
.

Задача 7. Рукопожатия

А. Давайте «расклеим» восьмёрку, превратив её в обычный круглый хоровод — тогда существо, стоящее в центре восьмёрки, «продублируется». Если оно было крабом, то получится хоровод из 19 крабов и 17 пауков; в противном случае — 18 крабов и 18 пауков. Если в круговом хороводе крабов больше, чем пауков, то какие-то два краба неизбежно будут держаться за лапы, что запрещено.

Отсюда можно заключить, что в центре стоял паук. Придумать хоровод, соответствующий условию, с пауком в центре не представляет ни малейшего труда.

В. Могло оказаться так, что ровно один человек в компании выиграл машину. Построим соответствующий пример. Возьмём «победителя» — у него есть пять друзей. У каждого из них есть ещё по четыре друга (кроме выигравшего машину), пусть все эти друзья различны. $1+5+4\cdot 5$ — у нас получилось 26 человек, от каждого из которых не более чем два рукопожатия до выигравшего машину человека.

Однако, для того чтобы довести пример до конца, нам надо установить дружеские связи между людьми, у которых их пока меньше 5— а именно, между теми, от кого до победителя лотереи два рукопожатия (их 20 человек). Каждому из них нужно «изобрести» ещё по 4 друга.

Поступим просто: поставим эти 20 человек по кругу в произвольном порядке и назначим друзьями каждого двух его правых соседей и двух его левых соседей. Задача решена.

С. Пусть внутренних рейсов в Авиаландии ровно M, а международных из неё — ровно N. Каждый внутренний рейс имеет в Авиаландии два «конца», а каждый международный — только один. Всего в города Авиаландии прибывает $5 \cdot 6 = 30$ рейсов. Получаем

$$2 \cdot M + N = 30.$$

Отсюда N должно быть чётным числом (так как $2 \cdot N$ — чётное).

Задача 8. Напрасно называют север крайним

- **А.** Это задача-шутка: принималось большинство ответов, хотя, например понятно, что туристическая группа на 10-градусном морозе отморозит себе половину ног, а на 20-градусном все.
- **В.** Все долготы Земного шара оказываются очень близко друг к другу около полюсов. Так что, возможно, Мюнхгаузен просто обошёл по кругу (скажем, километровому) Северный или Южный полюс.
- **С.** Пусть четыре города B, C, D и E расположены очень близко друг к другу попарно на расстоянии в один километр. А пятый город A очень далеко, в 100 километрах. Пусть больше нет никаких городов. Тогда A должен быть соединён дорогой с какими-то из четырёх оставшихся городов, но ни один из тех городов не должен быть соединён с A.

Задача 9. Прогрессивное сложение

- **A.** 95500 > 50095.
- **В.** Если ни одно из трёх чисел P, Q, R не является префиксом другого, то всё просто: надо отсортировать числа лексикографически и сложить в порядке «от большего к меньшему». Если одно из чисел префикс другого (например, P префикс Q), то всё не так однозначно: надо сравнить их общую первую цифру и первую цирфу Q, следующую за вхождением P в Q. Если второе больше, то надо ставить Q перед P, иначе P перед Q.

Если P — префикс Q, которое, в свю очередь, является префиксом R, или P и Q — различные префиксы R, действовать следует аналогично.

С. Нет, так не бывает:

$$P \oplus Q = P \cdot 10^n + Q > P + Q.$$

Задача 10. У магазина

А. Понятно, что Фёдор и Кирилл увеличивают все числа в одинаковое число раз. И "144", названное Фёдором, есть квадрат этого числа (так как он назвал то, во сколько раз увеличивает всё Кирилл, сам увеличив это число). Тогда оба продавца умножают всё на 12.

Соответственно, учебник стоит $43200 \div 144 = 300$ рублей — так как его цена прошла через уста, опять же, обоих продавцов.

- **В.** Делимость на 99 значит делимость на 9 и на 11. Восстановить стёртую цифру можно почти однозначно, посчитав сумму оставшихся цифр и найдя остаток от деления её на 9. Проблема может возникнуть, если сумма оставшихся на номере цифр делится на 9 тогда непонятно, 0 нам ставить на пустое место или 9.
 - Признак делимости на 11 говорит нам, что знакопеременная сумма цифр числа должна делиться на 11. Заметим, что при постановке цифр 9 и 0 на одно и то же место не может оказаться так, что оба результата будут делиться на 11. Поэтому получится однозначный ответ.
- **С.** То, как происходит торг между продавцом и покупателем, на самом деле, повторяет работу алгоритма Евклида. Алгоритм Евклида всегда завершается значит и торг завершится.

14 | Вёрстка: ХеЫТ_ЕХ.

При этом на каждом шаге торга хотя бы одна из названных цен уменьшается хотя бы на 1, поэтому в любой момент времени количество шагов торга оценивается сверху суммой цен, называемых покупателем и продавцом. Поэтому количество шагов всегда будет строго меньше суммы текущих чисел.

Пусть изначально названы цены a и b=a+t. Тогда на следующем шаге торга будут названы цены a и t. Тогда количество шагов торга строго меньше, чем

$$a+t + 1 \atop {
m OДИН \, MBT} = b+1 \leq 21.$$

Торг с 20 шагами легко придумать: пусть изначально были названы цены 1 и 20.