Conjunction and Disjunction

- Operators in Proposional Logic
 - Negation ¬
 - Conjunction ∧
 - Disjunction v
 - Implication ⇒
 - Equivalence ←⇒

Truth Tables

- Each operator is defined by a truth table
 - It lists the possible values for operands on the left and the value of the proposition on the right
 - We have seen the truth table for negation already:

p	$\neg p$
T	F
F	T

Negation (\neg)

- Negation acts roughly like "not" in English
 - \neg (True) \iff False
 - ¬(False) \iff True

p	$\neg p$
T	F
F	T

Using truth tables

p	$\neg p$	$\neg \neg p$
T	F	T
F	T	F

Conjunction (\(\lambda \)

- Conjunction works roughly like "and" in English
 - It only returns true when **both** of its operands are **true**
 - false otherwise

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

Disjunction (v)

- Disjunction works roughly like "or" in English
 - It returns true when either of its operands are true
 - false otherwise

p	q	$p \vee q$
T	T	T
T	F	T
F	T	T
F	F	F

An example

 $\neg(p \land q) \land (p \lor q)$

Using truth tables

p	q	$p \wedge q$	$\neg (p \land q)$	$p \lor q$	$\neg (p \land q) \land (p \lor q)$
T	T	T	F	T	F
T	F	F	T	T	T
F	T	F	T	T	T
F	F	F	T	F	F

Summary

- Truth tables
 - define logical operators
 - struture our reasoning
- Negation (not) ¬
- Conjunction (and) ∧
- Disjunction (or) v