squeezing

January 24, 2025

Notes on Squeezing Parameter λ :

The paper which this solver is based on essentially uses 3 squeezing parameters (r, λ_{dB} , and λ)

When the squeezing parameter λ_{dB} is expressed in decibels (dB), it represents the squeezing level or the reduction in noise (uncertainty) for one quadrature of a quantum state relative to the standard quantum limit (SQL).

The squeezing parameter r (the real part of the complex squeezing parameter $z = re^{i\theta}$) quantifies the amount of squeezing and is related to the squeezing level in dB (λ) as:

$$\lambda = -10\log_{10}(e^{-2r}),$$

and

$$r = -\frac{1}{2}\ln(10^{\frac{-\lambda}{10}})$$

In-phase quadrature power gain

In-phase **power qain** or loss is given by:

$$G_X = e^{-2r}$$
.

The in-phase quadrature power gain G_X can be expressed directly in terms of λ_{dB} :

$$G_X = 10^{\lambda_{dB}/10}.$$

in this paper however, the actual λ used is one such that:

$$r = -\ln(\lambda)$$

and

$$G_X=\lambda^2$$

thus relating λ_{dB} and λ we get:

$$\lambda = \sqrt{10^{\frac{\lambda_{dB}}{10}}}$$