#### Лекція 23

# Бінарні дерева пошуку

Дерева пошуку являють собою структури даних, що підтримують операції пошуку елемента, мінімального і максимального значення, попередника й наступника, вставку і видалення.

Основні операції в бінарному дереві пошуку виконуються за час, пропорційний його висоті. Для повного бінарного дерева з n вузлами ці операції виконуються за час  $\Theta(\lg n)$  у найгіршому випадку. Математичне сподівання висоти побудованого випадковим образом бінарного дерева равно  $O(\lg n)$ , так що всі основні операції над динамічною множиною в такім дереві виконуються в середньому за час  $\Theta(\lg n)$ .

На практиці не завжди можна гарантувати випадковість побудови бінарного дерева пошуку, однак існують версії дерев, у яких гарантується гарний час роботи в найгіршому випадку, а саме — червоно-чорні дерева, висота яких  $O(\lg n)$ .

### Структура бінарного дерева

Бінарне дерево може бути представлене за допомогою зв'язаної структури даних, у якій кожен вузол  $\epsilon$  об'єктом. На додаток до полів ключа key і супутніх даних, кожен вузол містить поля left, right і p, що вказують на лівий і правий дочірні вузли і на батьківський вузол відповідно. Якщо дочірній чи батьківський вузол відсутні, відповідне поле містить значення NULL. Єдиний вузол, вказівник p якого дорівнює NULL, — це кореневий вузол дерева. Ключі в бінарному дереві пошуку зберігаються таким чином, щоб у будь-який момент задовольняти наступній *властивості* бінарного дерева пошуку.

Якщо x — вузол бінарного дерева пошуку, а вузол y знаходиться в лівому піддереві вузла x, то  $key[y] \le key[x]$ . Якщо вузол y знаходиться в правому піддереві вузла x, то  $key[x] \le key[y]$ .



Рис. 23.1. Бінарні дерева пошуку

Так, на рис. 23.1a ключ кореня дорівнює 5, ключі 2, 3 і 5, що не перевищують значення ключа в корені, знаходяться в його левом піддереві, а ключі 7 і 23, що не менше, ніж ключ 5, — у його правом піддереві. Та ж властивість, як легко переконатися, виконується для кожного іншого вузла дерева. На рис. 23.16 показане дерево з тими ж вузлами, що має ту ж властивість, однак менш ефективне в роботі, оскільки його висота дорівнює 4, на відміну від дерева на рис. 23.1.a, висота якого дорівнює 2.

Властивість бінарного дерева пошуку дозволяє нам вивести всі ключі, що знаходяться в дереві, у відсортованому порядку за допомогою простого рекурсивного алгоритму, називаного *симетричним обходом дерева* (inorder tree walk). Цей алгоритм одержав дану назву в зв'язку з тим, що ключ у корені піддерева виводиться між значеннями ключів лівого піддерева і правого піддерева. Існують й інші способи обходу, а саме — *обхід у прямому порядку* (preorder tree walk), при якому спочатку виводиться корінь, а потом — значення лівого і правого піддерева, і *обхід у зворотному порядку* (postorder tree walk), коли першими виводяться значення лівого і правого піддерева, а уже потім — кореня. Симетричний обхід дерева T реалізується процедурою Inorder\_Tree\_Walk(root[T]):

```
Inorder_Tree_Walk(x)
1   if x≠ NULL
2   then Inorder_Tree_Walk(left[x])
```

```
3 print key[x]
4 Inorder_Tree_Walk(right[x])
```

Симетричний обхід дерев, показаних на рис. 23.1, дає в обох випадках той самий порядок ключів, а саме 2, 3, 5, 5, 7, 23. Коректність описаного алгоритму випливає безпосередньо з властивості бінарного дерева пошуку.

Для обходу дерева потрібен час  $\Theta(n)$ , оскільки після початкового виклику процедура викликається рівно два рази для кожного вузла дерева: один раз для його лівого дочірнього вузла, і один раз — для правого.

Теорема 23.1. Якщо х — корінь піддерева, у якому є n вузлів, то процедура Inorder\_Tree\_Walk(x) виконується за час  $\Theta(n)$ .

## Пошук

Для пошуку вузла з заданим ключем у бінарному дереві пошуку використовується наступна процедура Tree\_Search, що одержує як параметри вказівник на корінь бінарного дерева і ключ k, а повертає вказівник на вузол з цим ключем (якщо такий існує; інакше повертається значення NULL):

```
Tree_Search(x, k)
1   if x = NULL or k = key[x]
2     then return x
3   if k < key[x]
4     then return Tree_Search(left[x], k)
5     else return Tree Search(right[x], k)</pre>
```

Процедура пошуку починається з кореня дерева і проходить униз по дереву. Для кожного вузла x на шляху вниз його ключ key[x] порівнюється з переданим як параметр ключем k. Якщо два ключі однакові, пошук завершується. Якщо k менше key[x], пошук продовжується в левом піддереві k; якщо більше — то пошук переходить у праве піддерево. Так, на рис. 23.2 для пошуку ключа 13 ми повинні пройти наступний шлях від кореня:  $15 \rightarrow 6 \rightarrow 7 \rightarrow 13$ . Вузли, що ми відвідуємо при рекурсивному пошуку, утворять спадний шлях від кореня дерева, так що час роботи процедури Tree\_Search складає O(h), де h — висота дерева.



Рис. 23.2. Запити в бінарному дереві пошуку

Ту ж процедуру можна записати ітеративно, замінивши рекурсію циклом **while**. Iterative\_Tree\_Search (x, k)

```
1 while x \neq \text{NULL} and k \neq k \in y[x]

2 do if k < k \in y[x]

3 then x \leftarrow left[x]

4 else x \leftarrow right[x]

5 return x
```

## Пошук мінімуму і максимуму

Елемент із мінімальним значенням ключа легко знайти, переходячи по вказівниках *left* від кореневого вузла доти, поки не зустрінеться значення NULL. Так, на рис. 23.2, проходячи по вказівниках *left*, ми пройдемо шлях  $15 \rightarrow 6 \rightarrow 3 \rightarrow 2$  до мінімального ключа в дереві, що дорівнює 2. Ось как виглядає реалізація описаного алгоритму:

```
Tree_Minimum (x)
```

```
1 while left[x] ≠ NULL
2 do x ← left[x]
3 return x
```

Властивість бінарного дерева пошуку гарантує коректність процедури Tree\_Minimum. Якщо у вузла x немає лівого піддерева, то оскільки всі ключі в правом піддереві x не менше ключа key[x], мінімальний ключ піддерева з коренем у вузлі x знаходиться в цьому вузлі. Якщо ж у вузла є ліве поддерево, то, оскільки в правом піддереві не може бути вузла з ключем, меншим key[x], а всі ключі у вузлах лівого піддерева не перевищують key[x], вузол з мінімальним значенням ключа знаходиться в піддереві, коренем якого є вузол left[x].

Алгоритм пошуку максимального елемента дерева симетричний алгоритму пошуку мінімального елемента:

```
Tree_Maximum (x)

1 while right[x] \neq NULL

2 do x \leftarrow right[x]

3 return x
```

Обидві представлені процедури знаходять мінімальний (максимальний) елемент дерева за час O(h), де h — висота дерева, оскільки, як і в процедурі Tree\_Search, послідовність вузлів, що перевіряються, утворить спадний шлях від кореня дерева.

## Попередній і наступний елементи

Іноді, маючи вузол у бінарному дереві пошуку, потрібно визначити, який вузол слідує за ним у відсортованій послідовності, обумовленої порядком симетричного обходу бінарного дерева, і який вузол передує даному. Якщо всі ключі різні, наступним стосовно вузла x є вузол з найменшим ключем, що є більшим ніж key[x]. Структура бінарного дерева пошуку дозволяє нам знайти цей вузол навіть не виконуючи порівняння ключів. Приведена далі процедура повертає вузол, що слідує за вузлом x у бінарному дереві пошуку (якщо такий існує) і NULL, якщо x має найбільший ключ у бінарному дереві:

```
Tree_Successor(x)

1  if right[x] ≠ NULL

2    then return Tree_Minimum(right[x])

3  y ← p[x]

4  while y ≠ NULL and x = right[y]

5    do x ← y

6    y ← p[y]

7  return y
```

Код процедури Tree\_Successor розбивається на дві частини. Якщо праве піддерево вузла x непорожнє, то наступний за x елемент є крайнім лівим вузлом у правому піддереві, що виявляється в рядку 2 викликом процедури Tree\_Minimum(right[x]). Наприклад, на рис. 23.2 наступним за вузлом із ключем 15 є вузол із ключем 23.

3 іншого боку, якщо праве піддерево вузла x порожнє, і в x є наступний за ним елемент y, то y є найменшим предком x, чий лівий спадкоємець також є предком x. На рис. 23.2 наступним за вузлом із ключем 13 є вузол із ключем 15. Для того щоб знайти y, ми просто піднімаємося нагору по дереву доти, поки не зустрінемо вузол, що є лівим дочірнім вузлом свого батька. Ця дія виконується в рядках 3–7 алгоритми.

Час роботи алгоритму Tree\_Successor у дереві висотою h складає O(h), оскільки ми або рухаємося по шляху униз від вихідного вузла, або по шляху нагору. Процедура пошуку наступного вузла в дереві Tree\_Predecessor симетрична процедурі Tree\_Successor і також має час роботи O(h).

Якщо в дереві існують вузли з однаковими ключами, ми можемо просто визначити наступний і попередній вузли як такі, що повертаються процедурами Tree\_Successor і Tree\_Predecessor відповідно.

Теорема 23.2. Операції пошуку, визначення мінімального і максимального елемента, а також попереднього і наступного, у бінарному дереві пошуку висоти h можуть бути виконані за час O(h).

## Вставка і видалення

Операції вставки і видалення приводять до внесення змін у динамічну множину, що представлена бінарним деревом пошуку. Структура даних повинна бути змінена таким чином, щоб відбивати ці зміни, але при цьому зберегти властивості бінарних дерев пошуку.

#### Вставка

Для вставки нового значення v у бінарне дерево пошуку T ми скористаємося процедурою Tree\_Insert. Процедура одержує як параметр вузол z, у якого key[z] = v, left[z] = NIL і right[z] = NIL, після чого вона в такий спосіб змінює T і деякі поля z, щоz виявляється вставленим у відповідну позицію в дереві:

```
Tree_Insert(T, z)
```

<sup>1</sup>  $y \leftarrow \text{NULL}$ 

 $<sup>2 \</sup>quad x \leftarrow root[T]$ 

```
3 while x \neq \text{NULL}
4
        do y \leftarrow x
5
              if key[z] < key[x]
6
                   then x \leftarrow left[x]
7
                   else x \leftarrow right[x]
23 p[z] \leftarrow y
   if y = NULL
10
          then root[T] \leftarrow z // Дерево T — порожне
          else if key[z] < key[y]
11
12
               then left[y] \leftarrow z
13
               else right[y] \leftarrow z
```

На рис. 23.3 показана робота процедури Tree\_Insert. Подобно процедурам Tree\_Search і Iterative\_Tree\_Search, процедура Tree\_Insert починає роботу з кореневого вузла дерева і проходить по спадному шляху. Вказівник x відзначає прохідний шлях, а вказівник y указує на батьківський стосовно x вузол. Після ініціалізації цикл while у рядках 3–7 переміщає ці вказівники вниз по дереву ліворуч чи праворуч в залежності від результату порівняння ключів key[x] і key[z], доти пока x не стане рівним NULL. Це значення знаходиться саме в тій позиції, куди варто помістити елемент z. У рядках 23–13 виконується установка значень вказівників для вставки z.

Рис. 23.3. Вставка елемента з ключем 13 у бінарне дерево пошуку. Світлі вузли вказують шлях від кореня до позиції вставки; пунктиром зазначена зв'язок, що додається при вставці нового елемента

Так само, як і інші елементарні операції над бінарним деревом пошуку, процедура Tree\_Insert виконується за час O(h) у дереві висотою h.

#### Видалення

Процедура видалення даного вузла z з бінарного дерева пошуку одержує як аргумент вказівник на z. Процедура розглядає три можливі ситуації, показані на

рис. 23.4. Якщо у вузла z немає дочірніх вузлів (рис. 23.4a), то ми просто змінюємо його батьківський вузол p[z], заміняючи в ньому вказівник на z значенням NULL. Якщо у вузла z только один дочірній вузол (рис. 23.4a), то ми видаляємо вузол z, створюючи новий зв'язок між батьківським і дочірнім вузлом вузла z. І нарешті, якщо у вузла z два дочірніх вузли (рис. 23.4a), то ми знаходимо наступний за ним вузол y, у якого немає лівого дочірнього вузла, прибираємо його з позиції, де він знаходився раніше, шляхом створення нового зв'язку між його батьком і нащадком, і заміняємо їм вузол z.



Рис. 23.3. Видалення вузла z з бінарного дерева пошуку

Код процедури Tree\_Delete реалізує ці дії дещо не так, як вони описані:

```
Tree_Delete (T, Z)
     if left[z] = NULL or right[z] = NULL
 2
          then y \leftarrow z
 3
          else y \leftarrow \text{Tree\_Sussessor}(z)
     if left[y] \neq NULL
 5
          then x \leftarrow left[y]
          else x \leftarrow right[y]
 7
     if x \neq \text{NULL}
 23
            then p[x] \leftarrow p[y]
     if p[y] = NULL
 10
            then root[T] \leftarrow x
 11
            else if y = left[p[y]]
 12
                 then left[p[y]] \leftarrow x
 13
                 else right[p[y]] \leftarrow x
      if y \neq z
 14
 15
            then key[z] \leftarrow key[y]
 16
                  Копіювання супутніх даних у у г
 23
      return y
```

У рядках 1–3 алгоритм визначає вузол y, що вилучається, за допомогою "склейки" батька і нащадка. Цей вузол являє собою або вузол z (якщо у вузла z не більш одного дочірнього вузла), або вузол, що слідує за вузлом z (якщо в z два дочірніх вузли). Потім у рядках 4–6 вузлу x привласнюється вказівник на дочірній вузол вузла y або значення NULL, якщо в y немає дочірніх вузлів. Потім вузол y прибирається з дерева в рядках 7–13 шляхом зміни вказівників в p[y] й x. Це видалення ускладнюється необхідністю коректного відпрацьовування граничних умов (коли x равно NULL чи коли y — кореневий вузол). І нарешті, у рядках 14–16, якщо вилучений вузол y був наступним за z, ми заміняємо ключ z і його значення ключем і значенням вузла y. Вилучений вузол y повертається в рядку 23, для того щоб процедура, що викликається могла при необхідності звільнити чи використати займану їм пам'ять. Час роботи описаної процедури з деревом висотою h складає O(h).

Теорема 23.3. Операції вставки і видалення в бінарному дереві пошуку висоти h можуть бути виконані за час O(h).

#### Література

Томас X. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн. Алгоритмы: построение и анализ, 3-е издание. — М.: «Вильямс», 2013. — глава 12.