Nota técnica 5: Movilidad de Ingresos

Centro de Estudios Espinosa Yglesias

Agosto 2021

Resumen

Éste documento busca explicar la do-file que genera y exporta los cálculos de movilidad en el ingreso entre el 1T y el 4T del 2020. La do file está dividida en dos partes. La primera parte consiste en el cálculo de la estadística descriptiva de la movilidad en el ingreso: el número y porcentaje de personas que ascendieron, descendieron y mantuvieron su posición (ingreso) por trimestre, y el promedio de movilidad que estas personas tuvieron. La segunda parte calcula las matrices de transición.

Movilidad en el ingreso

Esta parte consiste en el cálculo de la estadística descriptiva de la movilidad en el ingreso: el número y porcentaje de personas que ascendieron, descendieron y mantuvieron su posición (ingreso) por trimestre, y el promedio de movilidad que estas personas tuvieron.

1. Descarga e importación de base INPC

Necesitamos una base de datos con INPC trimestral para poder deflactar el ingreso y compararlo de manera correcta. Creamos un directorio teporal y cambiamos el directorio de trabajo a éste:

```
gl root = "/Users/miusuario/midirectorio"
capture mkdir "$root/INPC"
cd "$root/INPC"
```

Descargamos e importamos base de datos INPC

```
copy "https://www.inegi.org.mx/contenidos/programas/inpc/2018/datosabiertos/
inpc_indicador_mensual_csv.zip" inpc_indicador_mensual_csv.zip
unzipfile inpc_indicador_mensual_csv.zip
import delimited "$root/INPC/conjunto_de_datos/conjunto_de_datos_inpc_mensual.csv",
encoding(ISO-8859-1)
```

Encontramos mes de INPC

```
rename fecha fechas
gen year = substr(fechas,3,2)
gen mes = substr(fechas,6,2)
destring year mes, replace
keep if concepto=="Andice nacional de precios al consumidor (mensual), Resumen,
SubAndices subyacente y complementarios, Precios al Consumidor (INPC)"
keep if year == 20 & mes == 3 | year == 20 & mes == 12
keep valor mes year
```

Generamos variables con las que se harán merge

```
gen byte trim = mes/3
egen int yeartrim = concat(year trim)
rename valor INPC_4t
```

Calculamos INPC con lag

```
destring yeartrim, replace
   gen int yeartrim_lag = yeartrim - 3
35
   save "inpc.dta", replace
37
   drop yeartrim_lag
38
   rename yeartrim yeartrim_lag
39
   rename INPC_4t INPC_1t
   save "lag.dta", replace
41
   use "inpc.dta", clear
43
44
   merge 1:1 yeartrim_lag using "lag.dta"
   drop _merge
45
   keep if yeartrim == 204
47
   order yeartrim INPC_1t INPC_4t
48
   rename mes month
49
   rename trim trimestre
50
   rename year año
   save, replace
```

2. Generación de variables importantes

Una vez obtenidos los INPC para los trimestres de interés, procedemos a deflactar nuestros ingresos para poder compararlos de forma correcta y calcular el Índice de Movilidad Individual.

Seleccionamos base de datos a utilizar

```
cd "$root"
use "ENOE_Base Global_Dinamica.dta", clear
```

Hacemos merge con base de datos INPC

```
capture drop _merge
sort yeartrim
merge m:1 yeartrim using "$root/INPC/inpc.dta"
keep if _merge==3
drop _merge month ano trimestre
```

Ahora deflactamos

```
gen double defl = INPC_4t/INPC_1t
replace ingocup2 = ingocup2/defl
```

Hacmos tranformación de ingresos

```
gen double ln_ingocup2 = .
replace ln_ingocup2 = log(ingocup2) if ingocup1!=0 & ingocup2!=0
gen double ln_ingocup1 = .
replace ln_ingocup1 = log(ingocup1) if ingocup1!=0 & ingocup2!=0
```

Generamos indicador de movilidad individual

```
gen double ImInd = .
replace ImInd = ln_ingocup2-ln_ingocup1 if ingocup1!=0 & ingocup2!=0
```

Eliminamos archivos y carpetas que no volveremos a utilizar

```
if c(os) == "MacOSX" {
    shell rm -r "$root/INPC/"
}
else {
    shell rd "$root/INPC/" /s /q
}
}
```

3. Calculamos estadísticos descriptivos

Finalmente clasificamos nuestra población por tiempo de movilidad social dentro del mercado laboral y obtenemos porcentajes.

Generamos nuevas variables para cada tipo de movilidad

```
gen double ImIndExp = ImInd*factor
gen long TOTcmovAsc = .
gen long TOTcmovDes = .
gen long TOTcmovNul = .
gen byte hola = 1
```

Movilidad ascendente

```
qui sum ImInd if ImInd>0 & ImInd !=. [fw=factor]
replace TOTcmovAsc = r(sum_w)
label variable TOTcmovAsc "Número de personas total con índice mayor al de antes"
```

Movilidad descendente

```
qui sum ImInd if ImInd<0 & ImInd !=. [fw=factor]
replace TOTcmovDes = r(sum_w)
label variable TOTcmovDes "Número personas total con índice menor al de antes"
```

Movilidad nula

```
qui total hola if ImInd==. [fw=factor]
replace TOTcmovNul = e(N)
label variable TOTcmovDes "Número personas total con índice igual al de antes"
```

Totales de población

```
gen long TOTtotalobs = TOTcmovAsc + TOTcmovDes + TOTcmovNul
label variable TOTtotalobs "Total observaciones"
```

Porcentaje de la población que experimento movilidad ascendente

```
gen double TOTpctmovAsc = TOTcmovAsc/TOTtotalobs
label variable TOTpctmovAsc "Porcentaje de personas totales con índice mayor al de antes"
```

Porcentaje de la población que experimento movilidad descendente

```
gen double TOTpctmovDes = TOTcmovDes/TOTtotalobs
label variable TOTpctmovDes "Porcentaje de personas totales con índice menor al de antes"
```

Porcentaje de la población que experimento movilidad nula

```
gen double TOTpctmovNul = TOTcmovNul/TOTtotalobs
label variable TOTpctmovDes "Porcentaje de personas totales con índice igual al de antes"
```

Pasamos resultados a matriz

```
mat resultados=J(12,1,0)
34
   qui sum TOTcmovAsc
                                 [fw=factor]
   mat resultados[3,1] = r(mean)
   qui sum TOTpctmovAsc
                                 [fw=factor]
   mat resultados[4,1] = r(mean)
   qui sum ImInd if ImInd>0
                                 [fw=factor]
   mat resultados[5,1] = r(mean)
41
   qui sum TOTcmovNul
                                 [fw=factor]
42
   mat resultados[6,1] = r(mean)
43
                                 [fw=factor]
   qui sum TOTpctmovNul
   mat resultados[7,1] = r(mean)
45
   qui sum TOTcmovDes
                                 [fw=factor]
47
   mat resultados[8,1] = r(mean)
   qui sum TOTpctmovDes
                                 [fw=factor]
49
   mat resultados[9,1] = r(mean)
   qui sum ImInd if ImInd<0
                                 [fw=factor]
   mat resultados[10,1] = r(mean)
   quietly sum TOTtotalobs
                                 [fw=factor]
54
   mat resultados[11,1] = r(mean)
   mat resultados[12,1] = resultados[4,1]*resultados[5,1] + resultados[7,1]*resultados[8,1]
56
   destring year trim anio, replace
```

Exportamos a excel

```
putexcel set "$root/TallerDatos_Resultados.xlsx", sheet("4. Mov. INGRESO") modify
putexcel C3 = matrix(resultados)
putexcel C2 = ("2020-12-01")
```

```
putexcel C3 = ("2020")

putexcel C4 = ("4")

putexcel B2 = ("Fecha")

putexcel B3 = ("Año")

putexcel B4 = ("Trimestre")

putexcel B5 = ("Total, ascendieron")

putexcel B6 = ("Porcentaje, ascendieron")

putexcel B7 = ("Promedio ascenso para los que ascendieron")

putexcel B8 = ("Total, sin cambio")

putexcel B9 = ("Porcentaje, sin cambio")

putexcel B10 = ("Total, descendieron")

putexcel B11 = ("Porcentaje, descendieron")

putexcel B12 = ("Promedio descenso para los que descendieron")

putexcel B13 = ("Total")

putexcel B14 = ("Promedio general")
```