

Structural Design Parameters for Germanium

Jon Salem, Richard Rogers and Eric Baker
NASA GRC

15th Department of Defense Electro-Magnetic
Windows Symposium
May 18th 2016

Germanium

- Good electromagnetic transmission in 2-15 μm range.
Used for specialty windows; solar cells; substrates.

- Space Act Agreement with an industrial partner to determine the transient reliability of a proprietary, thermally and mechanically loaded, Ge window, along with the input design properties.

Germanium

- Brittle transition metal.
- Relatively soft.
- Behaves like a soft, brittle ceramic.
- Stress corrosion cracking?
- What is the fracture toughness?

Objective

- Measure mechanical properties
- Perform transient reliability analysis.

Material

- Single crystal beams
- Polycrystalline disks (2" & 5"Φ):

- Coarse, variable grain structure – not ideal for testing.

Anisotropy

- Anisotropy factor A^* measures relative magnitude of elastic anisotropy exhibited by a crystal. $A^* = 0$ for isotropic materials, $A^* = 0$ to 1 for many single crystals.

- Running mechanical test on off-axis planes can be problematic if the anisotropy is large.
- Relatively low A^* - proceed.....

Young's Modulus

- impulse excitation -

- $E_{<111>} = 154.8 \pm 0.9 \text{ GPa}$
- $E_{<110>} = 138.3 \pm 0.2$
- $E_{<100>} = 103.1 \pm 0.6$
- $E_{poly} = 131, \nu_{poly} = 0.21$

Aggregate Constants		
Formula	E (GPa)	ν
Voigt	135	0.20
Hashin	133	0.21
Shtrikman	132	0.21
Reuss	129	0.21

<i>Ge</i>	McSkimin	Bogardus	McSkimin	Mason	Average	NASA	% Diff.
<i>Young's Modulus (GPa)</i>							
$E_{<100>} =$	104.4	102.0	102.2	103.7	103.1	103.1	0.0%
$E_{<110>} =$	138.7	136.7	137.0	138.0	137.6	138.3	0.5%
$E_{<111>} =$	155.8	154.2	154.5	155.1	154.9	154.8	-0.1%

- Well oriented germanium....

Procedure

- Fracture Toughness -

- Three standard test methods (C1421):

Precracked Beam

(SEPB)

Chevron Notch Beam

(CNB)

Surface Crack Flexure
(SCF)

- Different crack size and crack formation history.
- Different effort.
- Some methods don't work well on some materials.

Fracture Toughness

Method	{100}	{110}	{111}
SEPB	0.67 ± 0.04	0.68 ± 0.01	0.72 ± 0.02
CNB	0.67 ± 0.03	0.69 ± 0.02	0.75 ± 0.03
SCF	0.74 ± 0.02	0.74 ± 0.02	0.74 ± 0.02

- Essentially similar on all planes.
- $K_{Iscf\{jkl\}} = 0.74 \pm 0.02 \text{ MPa}\sqrt{\text{m}}$.
- $K_{Ipb\{100, 110\}} = 0.68 \pm 0.04 \text{ MPa}\sqrt{\text{m}}$.
- ~10% difference between SCF and SEPB. Plasticity?
- Practical value of $K_{I\{jkl\}} = 0.68 \pm 0.02 \text{ MPa}\sqrt{\text{m}}$.

SCF Fracture Surfaces

- {100} is conchodial and exhibits cathedral Wallner lines.
- The most planar surface occurs on the {110}.
- {111} is planar but tends to exhibit cleavage steps.
- Secondary orientation was not fixed.

Cathedral Orientation

- Peak of cathedral corresponds to the $<100>$ $\{100\}$.

CNB Fracture Surfaces

- Ambient lighting:

$\{100\}$	$\{110\}$	$\{111\}$
Smooth, Rounded - Conchoidal	Smooth, Flat - Cleavage	Stepped, Flat – Cleavage

CNB Fracture Surfaces

- Oblique lighting:

$\{100\}$

Smooth, dimples,
Rounded

Pores or
inclusions?

$\{110\}$

Fine Wallner lines
Flat

$\{111\}$

Stepped
Flat

$K_{I\{111\}}$ Data of Jaccodine

- Reported an energy equivalent value of $0.55 \text{ MPa}\sqrt{\text{m}}$.
- Used DCB w/ fracture mechanics solution that did not include L/t effects.
- Reanalysis gives $K_{I\{111\}} = 0.69 \pm 0.02 \text{ MPa}\sqrt{\text{m}}$ (4):

\therefore Engineering value
 $\sim 0.68 \pm 0.02 \text{ MPa}\sqrt{\text{m}}$
for low index planes

R.J. Jaccodine, "Surface Energy of Germanium and Silicon," *J. Electrochemical Soc.*, Vol. 110, No. 6, June, 1963, pp. 524-527.

Strength Testing

- Constant Stress Rate Tests (5 MPa/s)
- Biaxial Flexure ring-on-ring (ROR)
- ~400 grit as-ground surfaces in distilled, deionized water
- ~Polished surface in lab air

ASTM C1499

Fracture Strength & Weibull Statistics

- Polished $m = 6$; ground $m = 9$; spurious damage $m = 4$.
- Scale effect evident: 168 vs 215 MPa.
- Strength of 235 MPa is predicted vs 215 MPa (10%).

Biaxial Fracture Patterns (polished)

- Repetitive pattern that makes fractography difficult:

Fracture Path - ground disk -

- Crack initiated at a grinding scratch.
- Transited to a low index planes.
- Deflected at a grain boundary.

Fracture Path in a Polished ROR Disk

- Crack initiated from a semi-elliptical crack emanating from a scratch.
- Turned onto the {111} plane:

- Opportunity to estimate the fracture toughness!
- $K_{I\{hkl\}} = 0.73 \text{ MPa}\sqrt{\text{m}}$.
- Why did the crack turn?

Preferred Fracture Plane

- The fracture toughness on low index planes is similar, so why is the {111} the preferred propagation plane?
- The {111} is the stiffest direction, and stiff directions exhibit high stresses under displacement controlled situations (NiAl):

- Stress concentration where the load ring intersects the stiff direction! Anisotropy changes the stress distribution.

Pressurized Plate

- Applying pressure avoids contacts:

- For a pressurized plate, the stress concentrations at stiff directions are not exhibited. Better test!

Pressurized Plate (POR)

- Measured strength is ~20% greater than expected from the ROR data because the stress concentration has been removed. ROR is conservative.

Fracture Toughness

– semi-elliptical cracks on high index planes –

- For polished specimens, $K_I = 0.77 \pm 0.04 \text{ MPa}\sqrt{\text{m}}$ (0.73-0.83).
- For grinding cracks, $K_I = 0.87 \pm 0.04 \text{ MPa}\sqrt{\text{m}}$ (0.80 – 0.90).
- Higher due to random orientation and transition to {111}.
- Caveat: local stress not precisely known.....

Slow Crack Growth

- Experimental Approach -

- Constant Stress Rate Testing “dynamic fatigue”
 - ASTM C1368
- Strength based approach with advantages & disadvantages:
 - rapid test; simple geometry
 - samples the inherent, small flaws
 - statistical scatter (many specimens needed)
 - averaging of fatigue regions

Experimental Procedure

- Constant Stress Rate Tests
(5 to 5×10^{-4} MPa/s)
- Biaxial Flexure (Ring-on-ring)
- Distilled, deionized water
- ~400 grit as-ground surfaces
- ~10 tests per stress rate
- ~40 tests

Slow Crack Growth Analysis

- Crack growth function:

$$v = \frac{da}{dt} = AK_I^n = A * \left[\frac{K_I}{K_{IC}} \right]^n$$

- Constant stress rate testing:

$$\sigma_f = [B(n+1)\sigma_i^{n-2}\dot{\sigma}]^{1/(n+1)} \quad B = \frac{2K_{Ic}^{2-n}}{AY^2(n-2)} = \frac{2K_{Ic}^2}{A^*Y^2(n-2)}$$

- Parameter extraction via regression:

Constant Stress Rate Curve

- Still some scatter.
- Medians clarify the trend.
- Slope is negative to zero $\therefore n > 100$, no measurable SCG.

Summary and Conclusions

- Ge exhibits similar fracture toughness of $K_I = 0.68 \pm 0.02 \text{ MPa}\sqrt{\text{m}}$ on low index planes. Lower than Si!
- Randomly oriented cracks exhibit higher apparent toughness, but turn and propagate on the stiff {111} directions due to higher stresses (?).....FEA.
- Natural cleavage plane appears to be the {110}.
- Weibull modulus varies from $m = 4$ (spurious) to $m = 9$ (ground).
- Strength varies from $S_f = 40 \text{ MPa}$ (ground) to 160 MPa (polished).
- Ge exhibits a Weibull scale effect, but does not exhibit measurable SCG.

Summary and Conclusions

- Aggregate, polycrystalline Young's modulus and Poisson's ratio are $E_{poly} = 131$ GPa, $\nu_{poly} = 0.21$.
- ROR loading results in stress concentrations at the stiff directions of single crystals.
- From a stress state point-of-view, a lower strength measurement is expected.....
- However, from an effective area perspective, a high strength should be measured.
- Pressure loading (POR) is a better test method for single crystals, because it avoids stress concentrations, but it is more effort.....

Potential Future Work

- Cyclic fatigue testing
- Finite element analysis of ROR specimens
- Testing of more pressure-on-ring specimens
- Further SCF testing
- SCG testing in other environments

Acknowledgements

- Thanks to Terry McCue for SEM fractography.
- Thanks to the ISS Program and Penni Dalton for funding & reviews.