Задачи оценивания значимости выравнивания при помощи скрытых марковских моделей

Власенко Даниил Владимирович Научный руководитель: к.ф.-м.н. Коробейников А.И.

> Санкт-Петербургский государственный университет Кафедра "Статистического моделирования"

> > Санкт-Петербург Декабрь 2021

Выравнивание последовательностей

Определение

Выравнивание последовательностей — размещение двух или более последовательностей друг под другом таким образом, чтобы было легче увидеть их схожие участки.

Определение

Значимость выравнивания— действительное число s, отражающее сходство последовательностей.

Ложноположительная вероятность

- достаточно ли высокая значимость, чтобы считать последовательность не шумом, или шум мог добиться такой значимости.
- достаточно ли низкая значимость, чтобы считать последовательность шумом, или не шум мог получить такую значимость.

Определение

Ложноположительная вероятность значимости s— это вероятность того, что шум получит значимость равную или выше s.

Определение

Пусть X_n и Y_n дискретные стохастические процессы, $n \geq 1$. Пара (X_n, Y_n) называется скрытой марковской моделью, если

- X_n марковский процесс, поведение которого напрямую не наблюдается ("скрытый");
- $P(Y_n = y_n | X_1 = x_1, \dots, X_n = x_n) = P(Y_n | X_n = x_n)$ для любого $n \ge 1$, где x_1, \dots, x_n значения, принимаемые процессом X_n (состояния модели), y_n значение, принимаемое процессом Y_n (наблюдаемый символ модели).

Определение

Вероятность последовательности D может интерпретироваться и считаться по-разному — алгоритмом Витерби или Форвард алгоритмом.

$$s_{\max}(D) = \max_{\pi \in \pi_D} (s(\pi)), \tag{1}$$

$$s_{\mathsf{fw}}(D) = \sum_{\pi \in \pi_D} s(\pi). \tag{2}$$

$$Z(D,T) = \sum_{\pi \in \pi_D} s(\pi)^{\frac{1}{T}}.$$
 (3)

Мы предполагаем наличие простой фоновой модели B для последовательностей длины L такой, что все L символьных позиций независимы и одинаково распределены в соответствии с некоторым распределением Pr(d|B), где d отражает возможный наблюдаемый символ:

$$Pr(D|B) = \prod_{i=1}^{L} Pr(d_i|B), \tag{4}$$

где d_i — это i-ый наблюдаемый символ последовательности D.

Постановка математической задачи

Определение

Ложноположительная вероятность значимости s₀ для строк длины L:

$$fpr(s_0) = \sum_{D \in D_L} Pr(D|B)\Theta(s(D) \ge s_0), \tag{5}$$

где Pr(D|B) — условная вероятность последовательности D, описываемая фоновой моделью, s(D) — вероятность последовательности D, считаемая профильной CMM, и

$$\Theta(s(D) \geq s_0) = egin{cases} 1, & s(D) \geq s_0 \ 0, & s(D) < s_0 \end{cases}.$$

Алгоритм

Вычисление $fpr(s_0)$ через формулу 5 обычно неосуществимо, значение $fpr(s_0)$ может быть оценено через выборку по значимости.

Пусть P(D|T) — это условная вероятность строки D относительно некоторой модели строк длины L параметризованной значением T. Тогда можно переписать $fpr(s_0)$:

$$fpr(s_0) = \sum_{D \in D_L} Pr(D|T)f(D, s_0), \tag{6}$$

где

$$f(D, s_0) = \frac{Pr(D|B)\Theta(s(D) \ge s_0)}{Pr(D|T)}.$$
 (7)

Алгоритм

Определим модель, используемую для выборки по важности параметризованную \mathcal{T} :

$$Pr(D|T) = \frac{P(D|B)Z(D,T)}{Z(T)},$$
(8)

где

$$Z(T) = \sum_{D \in D_L} Pr(D|B)Z(D,T). \tag{9}$$

Подставив определение Pr(D,T) в уравнение 7 получим

$$f(D, s_0) = \frac{Z(T)\Theta(s(D) \ge s_0)}{Z(D, T)}.$$
 (10)

Результаты

Вычислим оценку $\widehat{fpr}(s_0)$ для строк длины L=100, состоящих из 5 символов, и доверительные интервалы уровня $\gamma=0.99$:

<i>s</i> ₀	Т	$\widehat{fpr}(s_0)$	$[c_1(\gamma);c_2(\gamma)]$
10^{-85}	7	0.000000183	[0.0; 0.00066349]
10^{-90}	7	0.003175	[0.001884; 0.004779]
10^{-100}	7	0.615709	[0.597540 0.622677]