Logika dla informatyków

Sprawdzian nr 3, 12 stycznia 2012

Rozwiązania wszystkich zadań powinny zmieścić się w odpowiednich prostokątach lub na odwrocie tej kartki.

Zadanie 1 (4 punkty). Wpisz słowo "TAK" w te kratki poniższej tabelki, które odpowiadają parom zbiorów równolicznych. Wpisz "NIE" w kratki odpowiadające parom zbiorów nierównolicznych.

	$\mathbb{N} imes \mathbb{R}$	$\mathcal{P}(\mathbb{N} \times \{0,1\})$	$\{0,1,2\}^{\mathbb{N}}$	$\mathbb{Q}\setminus\mathbb{N}$
N				
\mathbb{R}				

Zadanie 2 (4 punkty). W prostokąt poniżej wpisz formułę mówiącą, że relacja R nie jest relacją równoważności. W formule nie może występować symbol negacji bezpośrednio przed nawiasem.

Zadanie 3 (4 punkty). Jeśli istnieją takie zbiory $A_1, \ldots, A_6 \subseteq \mathbb{N}$, że diagram ich relacji zawierania (tj. diagram Hassego dla porządku $\langle \{A_1, \ldots, A_6\}, \subseteq \rangle \rangle$ ma postać

to w prostokat poniżej wpisz przykład takich zbiorów. W przeciwnym przypadku wpisz słowo "NIE".

Zadanie 4 (4 punkty). Rozważmy funkcję $f: \mathbb{N} \times \{0,1\} \to \mathbb{N}$ zadaną wzorem f(n,m) = 2n + m. Udowodnij, że f jest różnowartościowa.

Zadanie 5 (4 punkty). Rozważmy dwie symetryczne relacje $R \subseteq A \times A$ oraz $S \subseteq A \times A$. Udowodnij, że $R \cup S$ jest relacją symetryczną.

Wersja:	\mathbf{D}
	_

Numer indeksu:

Logika dla informatyków

Sprawdzian nr 3, 12 stycznia 2012

Rozwiązania wszystkich zadań powinny zmieścić się w odpowiednich prostokątach lub na odwrocie tej kartki.

Zadanie 1 (4 punkty). Jeśli istnieją takie liczby $n_1, \ldots, n_6 \in \mathbb{N}$, że diagram ich relacji podzielności (tj. diagram Hassego dla porządku $\langle \{n_1, \ldots, n_6\}, | \rangle$) ma postać

to w prostokąt poniżej wpisz przykład takich liczb. W przeciwnym przypadku wpisz słowo "NIE".

Γ		
_		

Zadanie 2 (4 punkty). Rozważmy funkcję $f: \mathbb{N} \times \{0,1\} \to \mathbb{N}$ zadaną wzorem f(n,m) = 2n + m. Udowodnij, że f jest funkcją "na".

Zadanie 3 (4 punkty). W prostokąt poniżej wpisz formulę mówiącą, że relacja *R nie jest* relacją porządku. W formule nie może występować symbol negacji bezpośrednio przed nawiasem.

Zadanie 4 (4 punkty). Wpisz słowo "TAK" w te kratki poniższej tabelki, które odpowiadają parom zbiorów równolicznych. Wpisz "NIE" w kratki odpowiadające parom zbiorów nierównolicznych.

	$\mathbb{N} \times \mathbb{Q}$	$\mathbb{Q}^{\mathbb{N}}$	$\mathcal{P}(\mathbb{N})$	$\mathbb{R}\setminus\mathbb{N}$
N				
\mathbb{R}				

Zadanie 5 (4 punkty). Rozważmy dwie symetryczne relacje $R \subseteq A \times A$ oraz $S \subseteq A \times A$. Udowodnij, że $R \setminus S$ jest relacją symetryczną.