Как работать с приложением?

Перед Вами приложение для исследования динамики элементов ядерного реактора. Чтобы построить графики динамики топлива и теплоносителя, следуйте следующим правилам:

1. Введите функцию мощности

Введите функцию прир W(t) = W0 + at + bt^2 +		Введите функцию приращения мощности W(t) = W0 + at + bt^2 +ct^3:						
W(t) =	t^2 + t^3	W(t) = 10	+ 10	t +	0	t^2 +	0] t^3

2. Выберите топливо в списке «Топливо». После этого действия появятся справочные значения характеристик выбранного топлива. Вы можете только изменить объём топлива.

	Выберите топливо и введите остальные параметры:				Выберите топливо и введите остальные параметры			
Топливо:		~		Топливо:	Оксид урана	~		
Теплоем	икость топлива Ст:		Дж/кг*град	Теплоег	мкость топлива Ст: 318		Дж/кг*град	
Плот	гность топлива pT:		кг/м3	Пло	тность топлива pT: 109	60	кг/м3	
(Объём топлива Vт:		м3)	Объём топлива Vт: 7,02	26	м3	

3. Выберите теплоноситель в списке «Теплоноситель». После этого действия появятся справочные значения характеристик выбранного теплоносителя. Вы можете только изменить объём теплоносителя.

Выберите теплоноситель и введите объём теплоносителя:		Выберите теплоноситель и введите объём теплоносителя:			
Теплоноситель :	~		Теплоноситель : Вода	~	
Теплоемкость топлива С:		Дж/кг*град	Теплоемкость топлива С	5670	Дж/кг*град
Плотность топлива р:		кг/м3	Плотность топлива р	: 620	кг/м3
Объём топлива V:		м3	Объём топлива V	18	м3

4. Когда вы выбрали и топливо, и теплоноситель, то поля «Коэффициент теплопередачи», «Поверхность теплопередачи», «Среднее время прохождения теплоносителя» заполняются справочными значениями. Вы можете их отредактировать.

Коэффициент теплопередачи а:	м2/град	Коэффициент теплопередачи а:	1240	м2/град
Поверхность теплопередачи FT:	м2	Поверхность теплопередачи FT:	4850	м2
Среднее время прохождения теплоносителя t0:	c —	Среднее время прохождения те	плоносителя t0:),68 c

5. Начните моделирование, нажав на кнопку «Начать моделирование». После этого действия появятся графики динамики температур топлива и теплоносителя.

- 1) Вы можете увеличивать или уменьшать график. Для этого наведите курсор мышки на область график и передвиньте колёсико мышки.
- 2) Если Вам нужно построить график отклонения функции мощности от номинальной, нажмите на кнопку «График функции мощности». В отдельном окне будет построен график введённой функции.
- 3) Для вызова теоретической справки нажмите на кнопку «Справка».
- 4) Для прохождения тестирования нажмите на кнопку «Тесты».
- 5) Практически в каждом окне приложения Вы увидите кнопку «Помощь», при нажатии на которую Вы увидите документ. Он поможет Вам ответить на вопрос «Как работать с данным окном?»