CPEN 400Q Lecture 11 Quantum phase estimation; order finding

Monday 13 February 2023

Announcements

- Quiz 5 today
- (Technical) assignment 2 available soon
- Project group and paper selection due Friday (use Piazza to find teammates)

Last time

We implemented the quantum Fourier transform using a *polynomial* number of gates:

Image credit: Xanadu Quantum Codebook node F.3

Last time

We started learning about the quantum phase estimation subroutine which estimates the eigenvalues of unitary matrices.

Last time

We saw the phase kickback trick.

Learning outcomes

- Outline the steps of the quantum phase estimation (QPE) subroutine
- Use the QFT to implement QPE
- Use QPE to implement the order finding algorithm

Quantum phase estimation

Use phase kickback

What is happening in the exponent?

Check second-last qubit (ignore the others)

Again check the exponent...

Can show in the same way for the last qubit (ignore others)

After step 2, we have the state

$$\frac{1}{\sqrt{2}}(|0\rangle + e^{2\pi i 0.\theta_{k_t}}|1\rangle) \cdots \frac{1}{\sqrt{2}}(|0\rangle + e^{2\pi i 0.\theta_{k_2} \cdots \theta_{k_t}}|1\rangle) \frac{1}{\sqrt{2}}(|0\rangle + e^{2\pi i 0.\theta_{k_1} \cdots \theta_{k_t}}|1\rangle)|k\rangle$$

Should look familiar!

Measure to learn the bits of θ_k .

Let's implement it.

Reminder: where are we going?

Suppose we have a function

over the integers modulo N.

If there exists $r \in \mathbb{Z}$ s.t.

f(x) is periodic with period r.

Suppose

The *order* of *a* is the smallest *m* such that

Note that this is also the period:

More formally, define

Define a unitary operation that performs

If m is the order of a, and we apply $U_{N,a}$ m times,

So m is also the order of $U_{N,a}$! We can find it efficiently using a quantum computer.

Let U be an operator and $|\phi\rangle$ any state. How do we find the minimum r such that

QPE does the trick if we set things up in a clever way:

Consider the state

If we apply U to this:

Now consider the state

If we apply U to this:

This generalizes to $|\Psi_s\rangle$

It has eigenvalue

Idea: if we can create *any* one of these $|\Psi_s\rangle$, we could run QPE and get an estimate for s/r, and then recover r.

Problem: to construct any $|\Psi_s\rangle$, we would need to know r in advance!

Solution: construct the uniform superposition of all of them.

But what does this equal?

The superposition of all $|\Psi_s\rangle$ is just our original state $|\phi\rangle$!

$$|\psi\rangle = \frac{1}{\sqrt{r}} \left(\frac{1}{\sqrt{r}} + \frac{1}{\sqrt{r}} \left(\frac{1}{\sqrt{r}} + \frac{1}{\sqrt{r}} \left(\frac{1}{\sqrt{r}} + \frac{1}{\sqrt{r}} \left(\frac{1}{\sqrt{r}} + \frac{1}{\sqrt{r}} \left(\frac{1}{\sqrt{r}} \right) + \frac{1}{\sqrt{r}} \left(\frac{1}{\sqrt{r}} + \frac{1}{\sqrt{r}} \left(\frac{1}{\sqrt{r}} \right) + \frac{1}{\sqrt{r}} \left(\frac{1}{\sqrt{r}} + \frac{1}{\sqrt{r}} \left(\frac{1}{\sqrt{r}} \right) + \frac{1}{\sqrt{r}} \left(\frac{$$

If we run QPE, the output will be s/r for one of these states.

Shor's algorithm

Next time

Content:

- RSA
- Shor's algorithm

Action items:

1. Start working on prototype implementation for project

Recommended reading:

- Codebook modules F, P, and S
- Nielsen & Chuang 5.3, Appendix A.5