- ® BUNDESREPUBLIK
 DEUTSCHLAND
- Ø OffenlegungsschriftDE 43 00 060 A 1
- (6) Int. Cl.5; F 26 B 3/06

DEUTSCHES PATENTAMT

- ② Aktenzeichen:
- P 43 00 060.6

and the second of the second of

- 2) Anmeldetag: 3) Offenlegungstag:
- 5. 1.93
- 7. 7.94

JE 43 00 060 /

(7) Anmelder:

Fasti, Farrag & Stipsits Ges.m.b.H., Bregenz, Vorariberg, AT

(4) Vertreter:

Riebling, P., Dipl.-Ing. Dr.-Ing., Pat.-Anw., 88131

② Erfinder:

Farrag, El-Taher, Maschinenbauing., Höchst, AT

Rechercheantrag gem. § 43 Abs. 1 Satz 1 PatG ist gestellt

(B) Verfahren und Vorrichtung zum zweistufigen Trocknen von Trockengut

泛水水罐的 医电流

DE 43 00 060

1

Beschreibung

Beschrieben wird ein Verfahren und eine Vorrichtung zum zweistuligen Trocknen von Trockengut mit Hilfe eines Vorheizbehälters, in dem das Trockengut von erwärmter Luft durchströmt wird und von wo das Trokkengut in mehrere auf einem Karussell angeordnete Trocknungsbehälter abgegeben wird, in denen es auf den gewünschten Grad getrocknet wird. Anschließend wird es aus den Behältern abgegeben.

Gegenstand der Erfindung ist ein Verfahren und eine Vorrichtung nach dem Oberbegriff der Patentansprüche i bzw. 2

Zur Trocknung von pulverförmigen, granulat- oder faserförmigen Stoffen ist es bekannt, den Trocknungsvorgang in einem zweistufigen Verfahren durchzuführen. Die zu trocknende Charge wird zunächst in einen Vorheizbehälter eingefüllt, der trichterförmig ausgebüldet ist und der von beheizter. Luft durchströmt wird. In diesem Vorheizbehälter wird das zu trocknende Medium vorgeheizt und vorgetrocknet. Wenn eine bestimmte Temperatur erreicht wird, wird dieser Vorheizbehälter entleert und der Inhalt wird in einen Trocknungsbehälter eingefüllt. In dem Trocknungsbehälter erfolgt die endgültige Trocknung des Mediums auf den geforderten Trockoungsgrad, und es ist hierbei bekannt, die Trocknung unter Vakuum vorzunehmen. Dh. unter ständiger Umwälzung oder ohne Umwälzung des zu trocknenden Gutes wird der Trocknungsbehälter evakuiert, um so Reste von Feuchtigkeit zusammen mit der 30 evakuierten Luft aus dem Behälter berauszubefördern.

Wurde der endgültige Trocknungsgrad dieses bekannten zweistufigen Verfahrens erreicht, dann wird die gesamte getrocknete Charge über ein entsprechendes Auslaufventil am Trocknungsbehälter entleert.

Bei diesem bekannten zweistufigen Verfahren besteht der Nachteil, daß nur eine chargenweise Trocknung des Trocknungsmediums möglich ist.

Für die spätere Beschreibung wird im übrigen darauf hingewiesen, daß in der nachfolgenden Beschreibung 40 das zu trocknende Medium allgemein mit Granulat bezeichnet wird, wiewohl dies nicht einschränkend zu verstehen ist. Unter dem Begriff "Granulat" wird also in der folgenden Beschreibung jegliches zu trocknende Gut verstanden, und nur der Einfachheit halber wird dieser 45 Begriff "Gramulat" in der folgenden Beschreibung verwendet

Bei dem bekannten Verfahren besteht also der Nachteil, daß das zu trocknende Granulat nur chargenweise getrocknet werden kann, was verhindert, daß das Granulat kontinuierlich in einen nachgeschalteten Verarbeitungsprozeß eingespeist werden kann. Wird eine kontinuierliche Weiterverarbeitung gefordert, dann ist ein relativ aufwendiger Zwischenspeicher mit entsprechenden Fördereinrichtungen notwendig, aus dem das Gra- 55 nulat dann kontinuierlich gefördert wird.

Hierbei besteht aber der Nachteil, daß das in einem separaten Behälter zwischengelagerte Material wieder Peuchtigkeit aufnehmen kann, was insgesamt den Qualitätsgrad der Trocknung beeinträchtigt.

Wird das Material aufgrund von Materialflußstörungen aus dem Zwischenbehälter nicht rechtzeitig abtransportiert, dann leidet die Trocknungsgüte, und es kann erforderlich sein, die gesamte Charge noch einmal in den Beginn des zweistufigen Verfahrens einzuspeisen, 65 um nochmals in aufwendiger Weise eine Trocknung herbeizuführen.

Im übrigen besteht bei dem genannten, zweistufigen

Verfahren der Nachteil, daß ein relativ hoher Maschinenaufwand erforderlich ist, weil zwei separate Behälter in Fließrichtung hintereinandergeschaltet werden müssen, was in der Regel hohe Raumhöhen erfordert, weil der Vortrocknungsbehälter in Fallrichtung über dem Trocknungsbehälter, der evakuiert wird, angeordnet

sein muß

Will man diese beiden Behälter nebeneinanderliegend anordnen, dann entsteht ein zusätzlicher Maschinenaufwand durch die Anordnung separater Fördermittel zwischen den beiden Behältern.

Der Erfindung liegt deshalb die Aufgabe zugrunde, ein Verfahren und eine nach dem Verfahren arbeitende Vorrichtung der eingangs genannten Art so weiterzubilden, daß in einem kontinuierlichen Trocknungsvorgung das Trocknungsgut getrocknet werden kann, wobei eine betriebssichere und einfache Trocknung mit hohem Trocknungswirkungsgrad erreicht werden kann.

Zur Lösung der gestellten Aufgabe ist die Erfindung durch die technische Lehre des Anspruchs 1 bzw. 2 gekennzeichnet

Wesentliches Merkmal der Erfindung ist, daß die eigentliche Trocknung in einem sogenannten Trocknungskarussells stattfindet, d. h. das zo trocknende Gut (Granulat) wird chargenweise hintereinanderfolgend in jeweils ein Trockenrohr eingefüllt, wobei das Trock-nungskarussell aus einer Anzahl von gleichmäßig am Umfang verteilt angeordneten Trocknungsrohren besteht. Diese Trocknungsrohre sind hintereinanderfolgend an jeweils eine zugeordnete oder an mehrere zugeordnete Trocknungseinrichtungen angeschlossen.

Auf diese Weise wird es ermöglicht, daß am Eingang des Trocknungskarussells das ggf. vorgetrocknete Granulat in ein erstes Trocknungsrohr eingefüllt und dort einer ersten Trockmungsstufe unterzogen wird. Es wird dann schrittweise im Takt zu weiteren nachgeschalteten Trocknungseinrichtungen gedreht, so daß die in einem Trocknungsrohr angeordnete Charge schrittweise getrocknet wird, bis sie zum Ausgang des Trocknungskarussells gelangt und dort einem Verarbeitungsprozeß zugeführt wird.

Wichtig hierbei ist, daß die Taktzeit des Trocknungskarussells so gewählt wird, daß praktisch eine kontinuierliche Entleerung nacheinanderfolgend zum Ausgang gelangender Chargen in den nachgeschalteten Verarbeitungsprozeß erfolgen kann.

Damit besteht der wesentliche Vorteil, daß ein kontinuierliches Trocknungsveriahren vorgeschlagen wird, welches die Trocknung einzelner, ggf. kleinerer Chargen vorsieht, die im Taktabstand (Taktzeit) von einem Trocknungskarussell einem nachgeschalteten Verarbeitungsprozeß zugeführt werden.

Damit ergibt sich der Vorteil, daß auf relativ engem Raum ein hoher Trocknungswirkungsgrad erzielt werden kann und daß die Notwendigkeit der Anordnung eines Zwischenlagerbehälters - wie im Stand der Technik bekannt - entfällt. Kommt das Trocknungskarussell aufgrund irgendweicher Störungen zum Stillstand. dann ist dafür gesorgt, daß die in den Trocknungerohren eingesperrten Chargen keine Feuchtigkeit aufnehmen können, weil das gesamte Trocknungskarussell entsprechend beheizt bzw. abgedichtet ist, so daß das schädliche Eindringen von Umgebungsfeuchte in das Trocknungskarussell bzw. in die Trocknungsbehälter auf jeden Fall vermieden wird.

Außerdem bedarf es keiner aufwendigen Förderapparate und Rohrleitungen zwischen verschiedenen Behiltern wie beim Stand der Technik, weil bei dem erfin-

DE 43 00 060 A1

3

dungsgemäßen Verfahren die Charge in dem Trocknungsrohr verbleibt und von einer Trocknungsstation zur anderen geführt wird und schließlich dann am Ende des Trocknungsvorgangs in den Verarbeitungsprozeß eingespeist wird. Es wird also nicht die Charge selbst befördert, sondern das Trocknungsrohr, welches von einer Trocknungsstation zur anderen befördert wird.

Selbstverständlich ist der Begriff "Trocknungskarussell" nicht einschränkend zu verstehen. Es wird zwar bevorzugt, wenn das Trocknungskarussell als Rundzylinder ausgebildet ist, der eine Drohachse hat, die entweder in vertikaler Richtung zeigt oder die in horizontaler Richtung ausgerichtet ist oder auch eine Zwischenstellung einnimmt. Es wird also eine stehende oder liegende Trocknungstrommel für das Trocknungskarussell bevorzugt.

In einer anderen Ausführungsform der Erfindung ist es vorgeschen, das Trocknungskarussell mit den gleichmäßig am Umfang verteilt angeordneten Trockenrohren linear in einer Richtung auszurichten, d. h. es wird 20 ein Trocknungsapparat geschaffen, bei dem die Trokkenrohre in einer Richtung hintereinanderliegend stehend oder liegend angeordnet sind und die dann taktweise den verschiedenen, darüber angeordneten Trocknungsstationen zugeführt werden.

Statt einer zirkularen Anordnung des Trocknungskarussells wird also auch eine lineare Anordnung beansprucht.

Die vorliegende Erfindung ist im übrigen nicht auf die Art und Ausbildung der verschiedenen Trocknungsmethoden beschränkt. Es können sämtliche bekannten Trocknungsmethoden verwendet werden. Es wird hierbei bevorzugt, wenn vor dem Einspeisen des zu trocknenden Granulats in das Trocknungskarussell entweder eine Vorheizung des zu trocknenden Granulats stattfinas det oder sogar eine Vortrocknung.

In der nachfolgenden Beschreibung wird lediglich eine Vorheizung des Granulats beschrieben, wie wohl dies nicht einschränkend zu verstehen ist. Es wird genauso beansprucht, das Granulat nicht nur vorzuheizen, sondern ggf. auch vorzutrocknen.

Sofern nur eine Vorheizung des Granulats gewünscht wird, wird es hierbei bevorzugt, wenn die Vorheizung im Umluftbetrieb mit geheizter Luft erfolgt, wohei in einem Vorheiztrichter das zu trocknende Granulat von unten nach oben mit Heißluft durchströmt wird und gleichzeitig von einer Förderschnecke aus diesem Behälter transportiert wird, um dieses vorgeheizte Material in die erste Stufe des Trocknungskarussells einzuspeisen.

Dem Trocknungskarussell sind eine Reihe von hintereinandergeschalteten Trocknungsstationen zugeordnet.

Es wird hierbei bevorzugt, eine oder mehrere der genannten Trocknungsstationen als Evakuierungstrockner auszubilden, d.h. dem jeweils angeschiossenen st. Trocknungsrohr ist eine Vakuumpumpe zugeordnet, welche das angeschlossene Trocknungsrohr evakuiert und hierbei Luft mit einer gewissen Restfeuchte aus dem Trockenrohr entfernt.

Hierbei kann es vorgeschen sein, daß mehrere Vakuumpumpen hintereinandergeschaltet den taktweise gedrehten Trockenrohren zuzuordnen, so daß unter dem Einfluß einer ersten Vakuumpumpe zunächst eine Vortrocknung stattfindet, und unter dem Einfluß nachgeschalteter Vakuumpumpen dann eine Nachtrocknung 65 oder eine endgültige Trocknung stattfindet.

Statt der Verwendung von Vakuumpumpen und entsprechend ausgebildeten Evakuierungstrocknern können auch andere Trockenmethoden verwendet werden, wie z. B. die Trocknung mit Trocknerluft, die auf extrem niedrige Taupunktwerte getrocknet wird und die dann im Gegenstrom oder im Gleichstrom in das zu trock-5 nende Material eingeblasen wird.

Die genannte Trocknung mit Trocknerluft und mit den genannten Vakuumpumpen kann auch untereinander kombiniert werden.

Ebenso ist eine Trocknung mit inerten Gasen möglich, wobei z.B. Sückstoff oder Kohlendioryd-Gas in das Trockenrohr eingeblasen wird und dieses Gas dann die verbleibende Feuchtigkeit des zu trocknenden Materials aufnimmt.

In einer Weiterbildung der Erfindung ist vorgesehen, daß das Trocknungskarussell selbst beheizt ausgebildet ist, wobei entweder der Außenumfang des Trocknungskarussells beheizt ist oder die einzelnen Trockenrohre, die Bestandteil des Trocknungskarussells sind, individuell beheizt werden.

Werden Vakuumpumpen zur Evakuierung des Trokkenrohre verwendet, dann wird es bevorzugt, wenn die Beheizung der Trockenrohre durch Mikrowellen-Beaufschlagung erfolgt, weil in evakuiertem Zustand eine Konvektionsheizung nur schlecht wirksam ist und daher eine Mikrowellenbeheizung bevorzugt wird.

Der Erfindungsgegenstand der vorliegenden Erfindung ergibt sich nicht nur aus dem Gegenstand der einzelnen Patentansprüche, sondern auch aus der Kombination der einzelnen Patentansprüche untereinander. Alle in den Unterlagen, einschließlich der Zusammenfassung, offenbarten Angaben und Merkmale, insbesondere die in den Zeichnungen dargestellte räumliche Ausbildung, werden als erfindungswesentlich beansprucht, soweit sie einzeln oder in Kombination gegenüber Stand der Technik neu sind.

Im folgenden wird die Erfindung anhand von lediglich einen Ausführungsweg darstellenden Zeichnungen näher erläutert. Hierbei gehen aus den Zeichnungen und ihrer Beschreibung weitere erfindungswesentliche Merkmale und Vorteile der Erfindung bervor.

Es zeigen:

Fig. 1 schematisiert eine Vorrichtung nach der Erfindung, wobei Teile des Trockenkarussells in einer Ebene abgewickelt sind,

Fig. 2 ein schematisierter Mittenschnitt durch das Trockenkarussell.

Das zu trocknende Granulat wird in Pfeilrichtung 15 in ein Fördergerät 1 eingespeist, das das Material in Pfeilrichtung 16 in einen Vorheiztrichter 2 befördert. Das zu trocknende Material staut sich dann in dem Vorheiztrichter 2 als Granulat 20 an.

Über ein am Vorheiztrichter 2 angeslanschtes Gebläse 3 wird Luft in Pseilrichtung 35 aus dem Vorheiztrichter 2 angesaugt, über das Gebläse 3 verdichtet und siber ein Heizungsrohr 4 in den Vorheiztrichter 2 eingeblasen. Das Heizungsrohr 4 ist bevorzugt mittels einer Heizspirale 5 elektrisch beheizt und die Luft, die in Pseilrichtung 23 an der bodennahen Seite des Heizungsrohres 4 ausströmt, wird umgelenkt und strömt in Pseilrichtung 35 nach oben durch das zu heizende Granulat Dieses Granulat kann auf eine Temperatur von z. B. 180°C erwärmt werden.

In dem Vorheiztrichter 2 ist im übrigen eine Förderschnecke 6 angeordnet, welche vom Bodenbereich des Vorheiztrichters 2 her das getrocknete Material aufnimmt und durch das Heizungsrohr 4 nach oben in Pfeilrichtung 24 fördert, wo es über einen Kanal 17 in Pfeilrichtung 25 in das erste Trockenrohr 21a eines Trock-

DE 43 00 060

nungskarussells 34 eingespeist wird.

Es ist hi rbei vorteilhaft, die Förderschnecke 6 kontinulerlich anzutreiben (und nicht intermittierend), und um dies zu ermöglichen, ist vorgesehen, daß an dem ersten Trockenrohr 21 des Trocknungskarussells 34 eine Art von Überlauf vorgesehen ist. Wird das Trockenrohr 21a überfüllt, dann steigt das überschüssige Material über die Offnung 31 nach oben und wird über eine Umgehungsleitung 8 in Pfeilrichtung 18 wiederum in den Vorheiztrichter 2 zurückbefördert.

Damit besteht der Vorteil, daß ein intermittierender Antrieb für die Förderschnecke mit entsprechenden Steuermitteln entfallen kann und hierbei ein relativ geringer Maschinenaufwand vorhanden ist, der im übrigen wartungsarm und störungsunanfällig arbeitet.

Damit besteht der weitere Vorteil, daß das Material in dem Vorheiztrichter 2 immer im Umlaufverfahren gefördert und getrocknet wird, was mit dem Vorteil einer guten Durchmischung des Materials im Vorheiztrichter gekoppelt ist.

Wird amorphes Material als Granulat 20 getrocknet, dann führt dieser Umlaufbetrieb zu einer gewissen Kristallisation des Materials bei einer entsprechenden Helzungstemperatur, so daß dieser Vorheiztrichter 2 noch als Kristallisator betrieben werden kann.

Das erste Trockenrohr 21a des Trocknungskarussells 34 befindet sich in Position 7 (vergl. auch Fig. 2).

Nach der Befüllung dieses Trockenrohres 21a wird das Trocknungskarussell 34 in Pfeilrichtung 26 weiter gedreht, so daß das nächste Trockenrohr 211 die Posi- so tion 7 einnimmt.

Die Konstruktion des Trocknungskarussells 34 ist wie folgt:

Es ist ein zylinderförmiger Körper vorhanden, der obere und untere Flansche 28, 29 aufweist, die fest und 35 unbeweglich angeordnet sind. Diese Flansche sind also maschinenfest miteinander verbunden und der obere Flansch 28 weist mindestens die Öffnung 31 auf, sowie weitere Öffnungen 32 und 33, deren Funktion später noch beschrieben wird.

Der untere, maschinenfeste Flansch 29 weist mindestens eine Öffnung 14 auf, durch welche das endgültig getrocknete Material in Pfeilrichtung 19 einem nachgeschalteten Verarbeitungsprozeß zugeführt wird.

Jeweils unter den beiden maschinenfesten Flanschen 45 10 Vakuumpumpe 28, 29 sind Drehflansche 30 angeordnet, die drehfest mit den drehbar angeordneten Trockenrohren 21a-211 verbunden sind

Diese Drehflansche 30 sind abgedichtet gegenüber den ortsfesten Flansch 28, 29 ausgebildet.

Die Fig. 1 zeigt nun schematisiert einige Trocknungsstationen des Trocknungskarussells 34. Gelangt nämlich das Trockenrohr 21a an die Stelle des Trocknungsrohres 21 b, dann ist erkennbar, daß über die Öffnung 32 in Pfeilrichtung 27 die in dem Trockenrohr 21b enthaltene 55 noch teilweise leuchte Luft evakuiert wird von einer angestanschten Vakuumpumpe 10. Dieses Trockenrohr nimmt hierbei die Position 9 im Trocknungskarussell 34 ein. Beim taktweisen Weiterdrehen des Trocknungskarussells 34 im evakuierten Zustand in die Positionen 11, 50 25 Pfeilrichtung die in der Form von hintereinandergeschalteten Trokkenrohren 21c bis 21k jeweils gemeinsam an eine zugeordnete zweite Vakuumpumpe 12 angeflanscht sind. Die Position 11 wird also vielfach am Umfang des Kreises eingenommen, wie in Fig. 2 dargestellt ist.

Das heißt, beim ständigen Weiterdrehen des Trocknungskarussells gelangt das jeweilige, aktuelle Trockenrohr immer stets in den Einfluß der Vakuumpumpe 12

"一个艺术,如此,第二分的"。

und wird nacheinander stufenweise evakuiert.

Am Schluß des Trocknungsprozesses (beim Trockenrohr 21k) erfolgt ein Weiterdrehen in Position 13, wo die Auslaufstation des Trocknungskarussells 34 angeordnet

In dieser Position 13 trifft das Trockenrohr 211 auf eine untere Öffnung 14, wo das Material in Pfeilrichtung 19 ausläuft und einem nachgeschalteten Verarbeitungsprozeß zugeführt wird.

Es wird also nochmals darauf hingewiesen, daß bei den Positionen 11 jeweils in dem oberen Flansch 28 Offnungen 33 vorgeschen sind, durch welche Luft in Pfeilrichtung 27 evakuiert wird.

Die vorliegende Erfindung ist nicht auf die Anord-15 nung von einer oder mehreren Vaknumpumpen 10,12 am Ümfang des Trocknungskarussells 34 beschränkt. Es kann vorgesehen sein, daß jedem Trockenrohr jeweils eine Vakuumpumpe zugeordnet wird oder daß nur eine einzige Vakuumpumpe allen Trocknungsrohren zugeordnet wird.

Ebenso können statt der Anordnung von Vakuumpumpen 10,12 andere Trocknungsverfahren verwendet werden.

Wichtig bei der Erfindung ist also, daß eine rasche 25 schnelle, kontinuierliche Trocknung von beliebigem Trocknungsgut stattfindet, welches Trocknungsgut quasi kontinuierlich einem nachgeschalteten Verarbeitungsprozeß zugeführt werden kann.

Es ist damit ein geringer Energieverbrauch verbunden, weil auf geringstem Raum geheizt und getrocknet wird. Ebenso ist der Maschinenaufwand denkbar gering im Vergleich zu großbauenden zweistufigen Verfahren.

Zeichnungs-Legende

- 1 Fördergerät
- 2 Vorheiztrichter
- 3 Gebläse
- 4 Heizungsrohre
- 5 Heizspirale
- 6 Förderschnecke
- 7 Position
- 8 Umgehungsleitung
- 9 Position
- 11 Position
- 12 Vakuumpumpe
- 13 Position
- 14 Offnung
- 50 15 Pfellrichtung
 - 16 Pfeilrichtung
 - 17 Kanal
 - 18 Pfeilrichtung
 - 19 Pfeilrichtung
 - 20 Granulat
 - 21 Trockenrohr 21a-h
 - 22 Pfeilrichtung
 - 23 Pfeilrichtung
 - 24 Pfeilrichtung

 - 26 Pfeilrichtung
 - 27 Pfeilrichtung
 - 28 Flansch
- 29 Flansch 30 Drehflausch
- 31 Öffnung
- 32 Öffnung
- 33 Öffnung

43 00 060 DE A1

医环境性 禁止或引起 人名西西德西德雷英斯姓氏 医多氏性性炎

7

34 Trocknungskarussell 35 Pfeilrichtung

Patentansprüche

1. Verfahren zum zweistufigen Trocknen von Trokkengut, bei dem das Trockengut in einen Vorheizbehälter eingefüllt wird, in dem es von erwärmter Luft durchströmt wird, von wo es in einen Trocknungsbehälter gefüllt wird, in dem das Gut auf den 10 gewinschten Grad getrocknet wird und aus dem es anschließend abgegeben wird, dadurch gekennzeichnet, daß das Trockengut aus dem Vorheizbehälter (2) nacheinander an mehrere der in einem Kreislauf geführten Trocknungsbehälter 15 (21a—21h) abgegeben wird.

2. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1, mit einem Vorheizbehälter (2), an den ein Trocknungsbehälter (21) angeschlossen ist, dadurch gekennzeichnet, daß mehrere der Trock- 20 nungsbehälter (21a-21h) vorgeschen sind, die in einem Kreislauf an der Übergabestelle (Pfeil 17) für das Trockengut vom Vorheizbehälter (2) zu den Trocknungsbehältern vorbelgeführt sind.

3. Vorrichtung nach Anspruch 2, dachurch gekenn- 25 zeichnet, daß die Trocknungsbehälter (21a-21h) in einem Karussell angeordnet sind.

4. Vorrichtung nach Auspruch 2 oder 3, dadurch gekennzeichnet, daß der Vorheizbehälter (2) sich unten trichterförmig verjüngt mit einer Förder-schnecke (6) an seinem Boden, die das Trocknungsgut durch ein Heizrohr (5) nach oben zu der Übergabestelle befördert.

5. Vorrichtung nach Anspruch 4, dadurch gekenn-zeichnet, daß in die Oberseite des Vorheizbehälters 35 (2) ein Fördergerät (1) für das Trockengut (20) einmundet sowie ein Gebläse (3), das auch an das Heizrohr (5) angeschlossen ist.

6. Vorrichtung nach einem der Ansprüche 2-5, dadurch gekennzeichnet, daß an die Oberseite der 40 rohrförmigen Trocknungsbehälter (21a-21h) we-nigstens eine Vakuumpumpe (10, 12) angeschlossen ist

Hierzu 2 Seite(n) Zeichnungen

55

50

GΩ

8

45

ZEICHNUNGEN SETTE 1

Nummer: Int. Cl.⁵:

Offenlegungstag:

DE 43 00 060 A F 26 B 3/08 7. Juli 1994

ZEICHNUNGEN SEITE 2

Nummer: Int. Cl.⁵:

Offenlagungstag:

DE 43 00 060 A1 F 26 B 3/08 7. Juli 1994

