Clustering

Presented by Morgan Gautherot

Classification vs clustering

Supervised learning - Classification - Labeled data (x, y)

Learn to go from x to y

Unsupervised learning - Clustering - Unlabeled data (x)

Learning hidden structures

Average basket

Clustering algorithms

- Hierarchical clustering
- K-means

Gaussian Mixture

DB-SCAN

Validating a clustering model

Shape

Stability

Consistency

 T_k small

$$T_k$$
high

$$n_k = |C_k|$$

$$\mu_k = \frac{1}{n_k} \sum_{x_i \in C_k} x_i$$

$$T_k = \frac{1}{n_k} \sum_{x \in C_k} d(x, \mu_k)$$

$$T = \frac{1}{K} \sum_{k=1}^{K} T_k$$

T high

Cluster separation

$$S_{kl} = d(\mu_k, \mu_l)$$

$$S = \frac{2}{K(K-1)} \sum_{k=1}^{K} \sum_{l=k+1}^{K} S_{kl}$$

S high

S small

Davies-Bouldin index

$$D_k = \max_{l:l \neq k} \frac{T_k + T_l}{S_{kl}}$$

1

$$DB = \frac{1}{K} \sum_{k=1}^{K} D_k$$

 $n_k = |C_k|$ C_k

Silhouette score

 $s\epsilon[-1,1]$

$$a = \frac{1}{n_k} \sum_{i \in C_k} d(x_p, x_i)$$

Silhouette score

Silhouette score

K = 2

K = 2 Instable

$$K = 3$$

$$K = 3$$

K = 2 Instable

K = 3 Stable

A vs B

A vs B

Rand index =
$$\frac{\text{no.in the same class}}{\text{no.total of observations}} = \frac{12}{14}$$

• Use business knowledge to check the cluster's relevance.

Profil

Cluster 1 Over 50, buys little but large amounts

Cluster 2 Under 20, buys a lot but small amounts

Cluster 3 Under 30, buys a lot and in large amounts

Determining the number of classes

Distortion or Sum of Square Error (SSE)

$$SSE = \sum_{i} \sum_{i} D(c_{i}, x_{i})^{2}$$

With:

- *c_i*: The cluster center (centroid).
- x_i : the ith observation in the cluster with centroid c_j
- $D(c_j, x_i)$: The distance between the cluster center and the point x_i

Determining the number of classes

K = 3

SSE small

Elbow method

Number of clusters