Beispiel 39

14. Juni 2017

Aufstellen Standardform

Achtung, bei (4) Umkehrung für Standardform!

Blockmatrix (E | A)

$$x_{1} + y_{1} = 11$$
 (1)
$$2x_{1} + 3x_{2} + y_{2} = 6$$
 (2)
$$x_{1} - 2x_{2} + y_{3} = 2$$
 (3)
$$-x_{1} + x_{2} + y_{4} = 5$$
 (4)
$$x_{1} - 3x_{2} + y_{5} = 1$$
 (5)
$$x_{2} + y_{6} = 8$$
 (6)
$$2x_{1} - x_{2} + y_{7} = 15$$
 (7)
$$x_{1}, x_{2}, y_{1...7} \ge 0$$
 (8)
$$-3x_{1} - x_{2} \to MIN$$
 (9)

Tablau

1.)

			i	1
	x_1	x_2	b	q
y_1	1	0	11	$\frac{1}{11}$
y_2	2	3	6	3
<i>y</i> ₃	1	-2	2	2
y_4	-1	1	5	-5
y_5	1	-3	1	1
y_6	0		8	/
y_7	2	-1	15	$\frac{15}{2}$
	3	1	0	

Rot: Höchster Koeffizient

Zielfunktion

Blau: Spalte mit wo der q

berechnet wird, weil

größter Koef.

Grün: Zeile mit kleinstem

q > 0

Also größter Zielfunktionskoeff. > o wählen, für Spalte das q (in dem Fall 1 bei $[y_5;x_1]$, 1 durch b für jede Zeile) ausrechnen, das kleinste q>0 wählen, y_5 also tauschen wir mit e_5 (siehe Blockmatrix)

			1	
	x_1	x_2	b	e_5
y_1	0	3	10	-1
y_2	0	3	4	-2
<i>y</i> ₃	0	1	1	-1
y_4	0	2	4	-1
y_5	1	-3	1	1
y_6	0	1	8	0
<i>y</i> ₇	0	5	13	-2
	0	10	-5	-3

Tausch durchziehen dadurch das man e_5 dazu anschreibt und so lange umformt bis x_1 jetzt (der alte) e_5 ist.

Rot: jetzt alter Einheitsvek-

tor e_5

Grün: jetzt neuer e_5

Damit ist der Spaß getauscht

3.)

Anschreiben

	<i>y</i> ₅	x_2	b
y_1	-1	3	10
y_2	-2	3	4
<i>y</i> ₃	-1	1	1
y_4	-1	2	4
x_1	1	-3	1
y_6	0	1	8
y_7	2	5	13
	-3	10	-5

Rot: getauscht

Damit ist der Spaß getauscht, jetzt gehts wieder zu **Schritt 1** mit dem Tablau und das ganze wieder durch, so lange bis unten kein positiver Zielfunktionskoeff steht. (Nächster ist 10, grün markiert)

Abschluss

Am ende habe wir das Tablau

	y_7	y_1	b
y_4	0	-1	2
<i>y</i> 5	0	-1	14
x_2	0	0	8
<i>y</i> ₃	0	-1	7
x_1	0	1	11
y_6	1	-2	1
y_2	0	-2	8
	0	-3	-41

Vozeichen umdrehen bei Zielfunktionskoeff und rein in die Zielfunktion $3x_1-x_2{\to}3*11+1*8=41$