Proving the Gauss Lemma in Lean

Aditya Agarwal

Australian National University

March 1, 2019

Outline

Lean

Dependent Type Theory

mathlib

Gauss Lemma

Proof in Lean

What is Lean?

- Lean is an Automated/Interactive theorem prover.
- Other examples include HOL and Coq.
- You encode proofs in a formal language and Lean checks it's correctness
- Lean can also infer some of the details of the proof for you.

Proofs in Lean

There are two ways of writing proofs in Lean, Term mode and Tactic mode.

Term Mode

In term mode you explicitly write down every step of the proof.

Example:

Tactics Mode

Tactics mode allows you to use "tactics", which direct Lean on how it should work towards the next step.

Example:

```
lemma not_const_imp_non_zero : ¬is_const p \rightarrow p \neq (0 : polynomial \alpha) mt begin intro hp, show is_const p, by {rw [hp, is_const], simp} end
```

Dependent Type Theory

Lean is built on Dependent Type Theory, an alternative foundation of mathematics. Specifically, it implements the Calculus of Inductive Constructions.

Dependent Type Theory

- Each object has a type.
- ► E.g.
 - \triangleright $n: \mathbb{N}$
 - **▶** *p* ⇔ *p* : *Prop*
- ► This type may depend on a parameter such as
 - ightharpoonup list α
- ► The type of this object is fixed

Mathlib

Mathlib is the mathematical components library for Lean.

- ▶ It contains the very beginnings of Algebra, Analysis, Topology, and Category Theory.
- On the Algebra side, it contains basic definitions about Groups, Rings, Modules etc.
- And properties about Integral Domains, Euclidean Domains, Unique Factorisation Domains etc.
- Galois Theory is missing entirely.

Mathlib

Generally, mathlib implements theories in the most abstract setting possible.

For example, polynomial is defined as

```
def polynomial (\alpha : Type*) [comm_semiring \alpha] := N \rightarrow_0 \alpha
```

- This is motivated by the desire for code reuse.
- ► E.g. We know that any ordered finite set has a maximum. This property can be used wherever ordered finsets come up. like to argue that there is a coefficient of maximum degree.
- ► Alternative implementations like lists of coefficients would require a separate proof about the fact.
- Similarly, it provides a uniform API between components of the library.
- ► However, this does have the disadvantage that definitions can become non-intuitive.

Gauss Lemma

Theorem

Let α be a Unique Factorisation Domain.

Let p be a polynomial with coefficients in α . Then p factors in α if and only if it factors in $Frac(\alpha)$.

Gauss Lemma

Definition

Let p be a polynomial. We say p is primitive if the only constants in α which divide p are units.

Lemma (Gauss' Primitive Polynomial Lemma)

Let p, q be primitive polynomials. Then pq is a primitive polynomial.

Gauss Primitive polynomial Lemma

Proof.

Assume for a contradiction that pq is not primitive. Then we have some $c \in \alpha$ such that c is not a unit and $c \mid p$.

 α is a UFD, so c has some irreducible factor that divides pq. So WLOG, we may assume c is irreducible, and hence prime.

- $\therefore \alpha/(c)$ is a domain.
- $\therefore \alpha/(c)[x]$ is a domain.

 $c \mid pq$ so pq vanishes in $\alpha/(c)[x]$.

As $\alpha/(c)[x]$ Integral Domain, p vanishes or q vanishes.

- $\therefore c \mid p \text{ or } c \mid q.$
- \therefore Either p or q is not primitive.

Contradiction.

Gauss Lemma (\Longrightarrow)

Proof.

Let p be an irreducible in α . Any irreducible term must be primitive, so we know p is primitive.

Suppose for a contradiction that p is not irreducible in $Frac(\alpha)$.

Then p = ab, for some $a, b \in Frac(\alpha)[x]$.

We may multiply a and b by some $c_1, c_2\alpha$ so that c_1a, c_2b have α coefficients. $c_1c_2p=c_1ac_2b$. We can factor c_1a to some $c_1'a'$ and c_2b to $c_2'b'$, so that a' and b' are primitive.

Proof.

(contd.)

Hence $p = \frac{c_1' c_2'}{c_1 c_2} a' b'$.

If $\frac{c_1'c_2'}{c_1c_2}$ in α , then we have produced a factorisation for p. A contradiction.

If $\frac{c_1'c_2'}{c_1c_2}$ is not a unit in α , then the denominator in reduced form of $\frac{c_1'c_2'}{c_1c_2}$ must divide each coefficient of a'b', because $p=\frac{c_1'c_2'}{c_1c_2}a'b'$ has α coefficients.

Hence a'b' is not primitive. Contradiction.

Proof in Lean