Versuch 353

Gedämpfte und erzwungene Schwingungen

Nico Schaffrath Mira Arndt nico.schaffrath@tu-dortmund.de mira.arndt@tu-dortmund.de

Durchführung: 10.12.2019 Abgabe: 17.12.2019

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Ziel	3
2	Theorie	3
3	Durchführung	3
4	Auswertung	3
5	Diskussion	5
6	Anhang	5
Lit	Literatur	

1 Ziel

2 Theorie

 $[\mathbf{sample}]$

3 Durchführung

4 Auswertung

Abbildung 1: Amplitudenmaximum der Kondensatorspannung eines RLC-Kreises in Abhängigkeit der Zeit.

Abbildung 2: Amplitudenmaximum der Kondensatorspannung eines RLC-Kreises in Abhängigkeit der Zeit.

Abbildung 3: Amplitudenmaximum der Kondensatorspannung eines RLC-Kreises in Abhängigkeit der Zeit.

5 Diskussion

6 Anhang

Literatur

- [1] TU Dortmund. Versuchsanleitung-Das Relaxationsverhalten eines RC-Kreises.
- [2] TU Dortmund. Versuchsanleitung-Gedämpfte und erzwungene Schwingungen.
- [3] John D. Hunter. "Matplotlib: A 2D Graphics Environment". Version 1.4.3. In: Computing in Science & Engineering 9.3 (2007), S. 90–95. URL: http://matplotlib.org/.
- [4] Eric Jones, Travis E. Oliphant, Pearu Peterson u. a. SciPy: Open source scientific tools for Python. Version 0.16.0. URL: http://www.scipy.org/.
- [5] Eric O. Lebigot. *Uncertainties: a Python package for calculations with uncertainties.* Version 2.4.6.1. URL: http://pythonhosted.org/uncertainties/.
- [6] Travis E. Oliphant. "NumPy: Python for Scientific Computing". Version 1.9.2. In: Computing in Science & Engineering 9.3 (2007), S. 10–20. URL: http://www.numpy.org/.