LaPIS Diagnostic Test Workbook - Mathematics

Name : Thangaivelan S

Class : 7

Section : C

School : AKV Public School

Login ID : AKV182

Thangaivelan S's Performance Report

Score: 23/40 Percentage: 57.5%

Thangaivelan S's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sig
		Teacher's Fe	edback to Student		
	Class Teacher S	 Signature	Princi	pal Signature	

Mensuration

Topics to be Improved			
Area	Area of rectangle		

Hi, here in this video you will learn Area

Question: 1

Find which of the shaded portion in the given shape represent it's area.

......

.....

Answer:

Given figure is ______ in shape.

Area is the _____ (inside/ outside/ boundary) of a shape.

Question: 2

Find the area of a rectangular garden whose dimension is 25 ft in length and 20 ft in breadth.

Answer:

The garden is in _____ shape.

Length of garden is _____ and breadth of garden is _____.

Formula for area of the shape = _____.

The area of garden = $\underline{\qquad}$ x $\underline{\qquad}$ = $\underline{\qquad}$ cm^2

Question: 3

Shade the possible dimension of the door whose area is 500 m^2

$$50~m~\times~10~m$$

$$25 m \times 20 m$$

.....

$$30~m~\times~20~m$$

1	ns	2114	or.
А	ns	wŧ	27.

Door is _____ in shape. Area of the ____ shaped door is ____.

Dimensions	Length	Breadth	Area
$50 \text{m} \times 10 \text{m}$			
$25\text{m} \times 25\text{m}$			
$25\text{m} \times 20\text{m}$			
$30 \text{m} \times 20 \text{m}$			

Therefore, possible dimension of the door whose area is 500 m^2 is/are _____

Data handling

Topics to be Improved			
Range	Finding the range		
Arithmetic mean, mode and median	Mean, Median and Mode		
Chance of probability	Basis of probability		

Hi, here in this video you	will learn Rang	;e
----------------------------	-----------------	----

Question: 4

Range of the data = ______ - _____

Answer:

The difference between highest value and lowest value is _____.

Example: Find the range of 10, 5, 30, 23, 54, 39 and 16

 $Highest value = \underline{\hspace{1cm}}$, $Lowest value = \underline{\hspace{1cm}}$.

 $Range = \underline{\hspace{1cm}} - \underline{\hspace{1cm}} = \underline{\hspace{1cm}}.$

Question: 5

Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 14, 9

$$-20+51$$
 $\frac{-38-51}{2}$ $51+38$

$$\frac{-38-5}{2}$$

$$51 + 38$$

.....

......

.....

$$\frac{51+20}{2}$$

Answer:

Range = $_$

Arranging the data in ascending order, _____

In the given data,

 $Highest \ value = \underline{\hspace{1cm}}$, $Lowest \ value = \underline{\hspace{1cm}}$, $Range = \underline{\hspace{1cm}}$

Find the range of first 10 multiple of 5.

Answer:

First 10 multiple of 5 =

Therefore.

 $Highest \ value = \underline{\hspace{1cm}}$, $Lowest \ value = \underline{\hspace{1cm}}$, $Range = \underline{\hspace{1cm}}$

Hi, here in this video you will learn Mean, Median, Mode

Question: 7						
Find the mode o	of the following data: 5	, 15, 23,	5, 32, 44,	72, 55, 6, 3	, 5, 65, 45, 6	67, 24, 19 and 98.
Answer:						
Arranging the da	ata in ascending order: occurs most number of					
Question: 8						
Which shape con	ntains median of the gi	ven data	3, 5, 6, 2,	7, 9, 6, 4 a	and 1	
		5) (6	9	
Answer:						
Median is theascending or desearch Arrange the give	(first/cencending order.en data in ascending order the given data is	der :				
$\underline{\textit{Question: 9}}$						
	Marks scored	100	90	80	70	
	Number of students	4	5	2	1	
Mean =	, Median = an	nd Mode	=			
Answer:						
$Mean = \frac{1}{m}$	of all observation umber of obserivation					
Therefore, mean Arrange the data	observation = = in ascending order : _ , mode				tion =	
Hi, here in the	nis video you will le	earn Ba	asics of	probabi	lity	
$\underline{\textit{Question: } 10}$						
Identify the sure	events and impossible	events				

(i) The sun rises in the west.
(ii) Water is colourless.
(iii) Clock rotates in clock wise direction.
(iv) Ball is square in shape.
Answer:
Events that always occur are called (sure/ impossible) events. Events that cannot occur are called (sure/ impossible) events. Here, The sun rises in the west is event. Water is colourless is event. Clock rotates in clock wise direction is event. Ball is square in shape is event.
Question: 11
Probability of sure events is (greater / smaller) than probability of impossible events.
Answer:
Probability of sure event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Probability of impossible event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Therefore, Probability of sure event $\underline{\hspace{1cm}}$ Probability of impossible event.
Question: 12
Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the probability of getting a pen from his box.
Answer:
Things Raju have Does Raju have pen in his box, (Yes/ No). Then probability of getting pen from his box is (0/1)

Geometry

Topics to be Improved			
Types of triangle Basics of types of triangle (sides)			
Faces vertex and edges	Idenfication of faces, edges and vertices		
Related angles	Basic of angles		
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle		
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles		
Right angle triangle and pythagoras property	Basics of Pythagoras property		

Hi, here in this video you will learn **Types of triangle**

Question:	13
4	

Polygon with three sides is called as _____.

Answer:

A polygon is a simple _____ (open / closed) curve made up of only line segments.

Polygon with three sides is called ______.

Draw a diagram of polygon with three sides :

Question: 14

Identify the types of triangles.

Answer:

......

Triangle has sides.
• Triangle with all sides are equal is called triangle.
• Triangle with two sides of equal length is called triangle.
• Triangle with three sides of different length is called triangle.
Question: 15 A park is in the shape of an isosceles triangle. If side length of the park is 30ft and 60ft. then the
possible length of third side of park can be
Answer:
The shape of the park is The shapes has sides and this shape has sides of equal length. Given: length of sides of park is The possible length of third side is
Hi, here in this video you will learn Basics of 3D model Question: 16
A point at which two or more lines segments meet is called(Vertex/ edges/ faces).
Answer:
has two end point (line/line segment/ray). A is a point where two or more line segments meet(Vertex/ edges/ faces). Mark the vertices in the diagram,
Question: 17
Mark and find the number of vertices, edges and faces in a cube.

Answer:	A	ns	11)	er	:
---------	---	----	-----	----	---

Mark the vertex, edges and faces in a cube.

	of vertex, edges and faces in a cube. vertices, edges and faces.
$\underline{Question \colon 18}$	
How many vertices	adges and faces does diese have?

How many vertices, edges and faces does dices have?

Answer: The shape of dic	e is			
-		edges and	faces.	
Hi, here in th	nis video you	will learn Relat	ed Angles	
Question: 19				

- (i) When two rays of an angle are perpendicular, then the angle formed between them is a $\underline{\hspace{1cm}}$ angle .
- (ii) When two rays of an angle are in opposite sides, then the angle formed between them is a _____ angle .

Answer:

A _____ (line segment /ray) begins from one point and travels endlessly in a direction.

- (i) The angle formed between two perpendicular rays is ____° and it is called _____ angle.
- (ii) If two rays starting at same point moves in opposite direction, they form a ______ (straight / perpendicular) line. The measure of the angle formed is _____ and it is called _____ angles.

Question: 20

Find the angle of $\angle DBE$

Answer:

BA and BC are _____ (parallel / perpendicular) rays. The angle formed between this rays is ____, $\angle ABC$ = ____.

$$\angle ABC = \angle ABE + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= 30^{\circ} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$
Therefore, $\angle DBE = \underline{\hspace{1cm}}$

Find the complementary angles in the given diagram.

Answer:

Two angles are said be complementary if sum of their angles is equal to ______.

 $\angle AOB =$ ______, and its complement angle is _____.

 $\angle BOC =$ _____, and its complement angle is _____.

 $\angle COD = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.

 $\angle DOE = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.

Therefore, in the given figure the complementary angles are $\angle AOB$, _____ and $\angle BOC$, _____

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 22

Find the greatest distance to reach C from A in the given diagram.

......

......

Answer:

The sides of the given triangle are _____.

The possible way to reach point C from point A are _____ and AB then to

 $Side AC = \underline{\hspace{1cm}}$

Side AB + BC = _____ + ____ = ____

Therefore, the greatest distance to reach C from A in the given diagram is _____

Question: 23

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

Answer:

There are ______ sides in a triangle.

The sum of the two sides of a triangle is _____ than the other side of the triangle.

The difference of the two sides of a triangle is ______ than the other side of the triangle. Example: In triangle XYZ,

Question: 24

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

Answer:

- 1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____ (less/ greater) than sum of other two sides. Here, sum of the two sides = _____ + ___ = ____ Therefore, the length of the third side is less than _____
- 2. The difference of the two sides of a triangle is ______ than the third side of the triangle.

 Therefore, the third side should be ______ (less/ greater) than sum of other two sides.

 Here, difference of the two sides = _____ ___ = _____

 Therefore, the length of the third side is greater than ______

Therefore, length of the third side is greater than ______ but less than _____.

Hi, here in this video you will learn Criteria of congruence

Question: 25

Circle the groups that contain congruent images.

Answer:

Two geometrical shapes are said to be congruent if they are _____ (identical/non-identical) in shapes and size.

Example: Square and Rectangle are (congruent/not congruent).
<u>Question: 26</u>
If the three sides of the triangle are equal to the corresponding sides of the other triangle, then two triangles are congruent under $___$ (SSS/ASA/SAS) criteria .
$\underline{Answer:}$
Two triangle are (congruent/not congruent) if they are identical in shapes and size. Criteria for congruence of triangles are SSS, and
1. In SSS Congruence criteria $(2/3/5)$ sides of the triangle are (equal/not equal) to the three corresponding sides of the other triangle.
2. In SAS Congruence criteria - $(2/3/5)$ sides and (one/two) angle between them are equal to the corresponding sides and the included angle of the other triangle.
3. In ASA Congruence criteria (2/ 3/ 5) angles and (one/two) side between them are equal to the corresponding angles and the included side of the other triangle.

SSS	sides and angles are equal
SAS	sides and angles are equal
ASA	sides and angles are equal

Question: 27

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

Answer:

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ____ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

Hi, here in this video you will learn Pythagoras property

Question: 28

In a right angled triangle, square of the $\underline{\hspace{1cm}}$ = sum of the squares of the legs.

Answer:

Pythagoras theorem is only applicable for ______ triangle.

Longest side of the triangle is _____ (hypotenuse/ legs) and other two sides are called _____ (hypotenuse/ legs).

Pythagoras theorem states that _____ .

Question: 29

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.

Answer:

Pythagoras theorem states that square of the _____ = sum of the squares of its

 $Given: Base = \underline{\hspace{1cm}}, Altitude = \underline{\hspace{1cm}},$

Base and altitude are _____ (hypotenuse/ legs) of the triangle.

By Pythagoras theorem, $(____)^2 = (___)^2 + (___)^2$ $= __ + ___$

Therefore, hypotenuse of the triangle is _____.

Question: 30

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

 $Given: breadth = \underline{\hspace{1cm}}, length of diagonal = \underline{\hspace{1cm}}$

Therefore, diagonal of the rectangle is _____

Number system

	Topics to be Improved
Fractions	Division of fraction
Positive and negative rational numbers	Identification of positive rational numbers
Operations on rational numbers	Division of rational numbers
Exponents	Solving exponents

Hi, here in this video you will learn Division on fractions

Question: 31

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

......

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is ____ , 2 is ____ and 7 is ____.

To convert mixed fraction into improper fraction, $\frac{(\text{Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}})$

$$5 \frac{2}{7} = \frac{(--- \times ---) + ---- }{7} = \frac{\square}{\square}$$

Question: 32

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by $___$ (same / reciprocal) of the divisor. Here, dividend = $__$ and divisor = $__$.

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \boxed{\square} = \boxed{\square}$$

Question: 33

......

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by ____

$$\frac{12}{40} \div \underline{\hspace{1cm}} = \frac{12}{40} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

Then the answer is __

Hi, here in this video you will learn Positive and Negative rational numbers

Question: 34

Segregate positive and negative rational number.

......

Answer:

- If both the numerator and the denominator of a rational number are _ (positive/negative), then it is positive rational number.
- If either the numerator and the denominator of a rational number are negative, then it is _____ (positive/negative) rational number.

In the given circle, positive rational numbers are _____ and negative rational numbers are

Question: 35

$\frac{-3}{-4}$ is a	(positive /negative / nei	ther positive nor negative) rational	number.
Answer:			
-3 is a	number, -4 is a	number.	
Division of $\frac{-3}{-4} = \square$	and this	rational number.	
(Positive / I	Negative / Neither positive	ve nor negative rational number)	
Question: 36			
	ive rational number and a tive/ Negative/ neither p	a negative rational number isositive nor negative)	
Answer:			
Examples for negative			and this is
Hi, here in this vid	leo you will learn Ope	eration on rational num-	
Question: 37			
Fill in the boxes to ma	ke the given expression co	orrect.	
	$\frac{1}{5} \div \frac{14}{15}$	$=\frac{1}{\square}\times \square$	
Answer:			
When any fraction is d (same/reciprocal) of the		multiply the dividend by the	
Here, dividend =	and divisor =	-	
	$\frac{1}{5} \div \frac{14}{15} = $		
Question: 38			
Solve: $\frac{18}{7} \div 0.6$			
Answer:			
*	vided by a fraction, we m	aultiply the dividend by the = and divisor =	_

18			=	18	×	=	
7	•	\Box		7			

Question:	39
$\omega uesuum.$	JJ

Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\Box} = 2$

Answer:

$$\frac{8}{3} \div \frac{16}{\square} = 2$$

$$\frac{8}{3} \times \frac{\square}{16} = 2$$

Transposing 8/3 to RHS,

$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

$$\frac{\square}{16} = 2 \times \boxed{\square}$$

$$\frac{\square}{16} = \frac{\square}{\square}$$

Transposing 16 to other side, the result is _____

Hi, here in this video you will learn Exponents and power

Question: 40

Find the exponential form of 1000.

Answer:

(Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

Exponents is also called as _____ (Base / Power).

1000 can be written as = 10
$$\times$$
 ____ \times ____

10 is raised to the power of
$$\underline{} = (10)^{\underline{}}$$

 $\underline{Question: 41}$

Find the value of $(-2)^3$.

Answer:

(Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In this exponential form $(-2)^3$, base = ____, power = ____. $(-2)^3 = \underline{\qquad} \times \underline{\qquad} \times \underline{\qquad} = \underline{\qquad}$.

Question: 42

(i) Tenth power of 100 is ____ ($(10)^{100}$ or $(100)^{10}$).

(ii) k is raised to the power of 5 is ____ ($(k)^5$ or $(5)^k$).

Answer:

Exponential form = (Base)—

(i) Tenth power of 100: Base = ____, Power/Exponents = ____, exponential form = ____.

exponential form = ____.

Comparing Quantities

	Topics to be Improved	
Percentage	Basic of percentage	
Hi, here in this video yo	u will learn Basics of percentage	
Question: 43		
2% can be written as		
Answer:		
Percentages are numerators of	fractions with denominator $2\% = \frac{\square}{\square}$	
Question: 44		
Arun attended the LaPIS test Arun?	for 100 marks and got 75% marks. What is the ma	rk scored by
$\underline{Answer:}$		
Arun attended LaPIS test for	marks. He got marks.	ks.
75 % can be written in fractio	on form ———	
Then the mark scored by Aru	$n = Total mark \times 75\% = \underline{\qquad} \times \underline{\qquad}$	=
Question: 45		
There are 25 apples in a baske apples.	et in which 10 of them are rotten. Find the percenta	age of rotten
Answer:		
There are apples in a Number of rotten apples are _		

Fraction form of rotten apples i	in a basket	=	
Convert it into a percent=	x	% =	

Algebra

Topics to be Improved

Basics of simple equation

Formating of simple equation, Solving of simple equation

Hi, here in this video you will learn Solving an equation using application

Question: 46

Box B contains _____ times the number of chocolates in Box A

Answer:

Box A contains _____ chocolates.

Box B contains _____ chocolates.

No. of chocolates in Box $B = \underline{\hspace{1cm}} \times (No. of chocolates in Box A)$

Question: 47

Write the equation for the following statement.

Subtracting four times of m from 4 is n

Answer:

Four times of $m = \underline{\hspace{1cm}}$

.....

Subtracting four times of m from $4 = \underline{\hspace{1cm}}$

The equation is _____

$\underline{Question:\ 48}$

Compare the given two statements (<,>,=)

Sum of 2a and 9 | Add 9 to the product of a and 2

Answer:

Sum of 2a and $9 = \underline{\hspace{1cm}}$

Product of a and $2 = \underline{\hspace{1cm}}$

Add 9 to the product of a and 2 =

Therefore, sum of $2a$ and 9 Add 9 to the product of a and 2
Hi, here in this video you will learn Solving an equation
Question: 49
If $\mathfrak{D}=5$, then $\mathfrak{D}\mathfrak{D}+\mathfrak{D}=$
Answer:
The value of the given smiley \odot is Substituting the value in the expression = $5(__) + 5 = __ + __ = __$.
Question: 50
Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1 2) $7 \square + 3 = -4$
Answer:
The given equation is 7 +3 =-4 Substitute the values (-2, -1, 0, 1, 2) in the circle, $7 \times $ +3 = $7 \times $ is the number that can be placed in a box to make the equation correct.
Question: 51
Arrange the terms in the descending order when the value of x is 2. $2x 5x \times 1 x + 3 2x - 4 \frac{1}{2}x$
Answer: The given expression are The value of x is substituting value of x
$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} 2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$ $x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$
$5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$
Arranging in descending order:,,, Their respective algebraic terms are,,,