CMSC 351 Summer 2025 Homework 1

Due Monday 21 July 2025 by 11:59pm on Gradescope.

Directions:

- Homework must be done on printouts of these sheets and then scanned properly, or via Latex, or by downloading, writing on the PDF, and uploading. If you use Latex please do not change the Latex formatting.
- Do not use your own blank paper!
- The reason for this is that Gradescope will be following this template to locate the answers to the problems so if your answers are organized differently they will not be recognized.
- Tagging is automatic, you will not be able to manually tag.
- 1. This question is really review of sums from CMSC250 (or an equivalent course). We'll be doing a lot of sums so you really want to get these down! Answers should be simplified.

Sum	Result	
(a) $\sum_{i=5}^{105} 7$		[2 pts]
(b) $\sum_{i=5}^{105} i$		[3 pts]
(c) $\sum_{i=n}^{2n} i$ with $n \ge 0$		[4 pts]
(d) $\sum_{i=1}^{117} i^2$		[5 pts]
(e) $\sum_{i=0}^{7} \left[1 + 2^{3i}\right]$		[6 pts]

- 2. A currency has only three coins: 1¢, 4¢, and 6¢.
 - (a) For $1 \le n \le 15$, in the **Greedy** = column fill in the number of coins required using the greedy algorithm. In the **Dynamic Expression** = column fill an expression of the form $\min\{...\}$ and in the **DE** = column the final value which demonstrates the result of the dynamic algorithm. A few have been done for you for clarification.

n	Greedy =	Dynamic Expression =	DE =
0	0	N/A	0
1			
2			
3		$\min\{3\}$	3
4			
5		$\min\{2,2\}$	
6			
7			
8			
9			
10			
11		$\min\{3,3,3\}$	
12			
13			
14			
15			

(b) Is the Greedy algorithm optimal? If your answer is "yes" explain why, and if your answer [5 pts] is "no" then use specific examples to explain why not.

3. Here is a modified version of the pseudocode for the optimal solution to the Coin Changing problem:

```
A = empty list which can grow as needed
A[0] = 0
C = list of coin denominations
for x = 1 to n inclusive:
   howmanycoins = infinity
   for each coin in C with coin <= n:
        if x - coin >= 0:
        howmanycoins = min(howmanycoins,1+A[x-coin])
        end if
   end for
   A[x] = howmanycoins
end for
```

Suppose we know that the code before the outermost for loop takes time c_1 , the body of the innermost for loop takes time c_2 , and nothing else takes any time at all.

For each of the following, write down a simplified expression for the total time taken by the algorithm and then write down a one of our nice functions g(n) so $T(n) = \Theta(g(n))$.

(a) The country issues k different coins where at least one is a 1¢ coin. [4 pts]

T(n) = which is Θ of

(b) The country issues infinitely many coins with denominations 1¢, 3¢, 5¢, 7¢, ... [4 pts]

T(n) = which is Θ of

(c) The country issues infinitely many coins with denominations 1¢, 10¢, 100¢, 1000¢, ... [4 pts]

T(n) = which is Θ of

(d) Explain why the with coin <= n part of the code is necessary for (b) and (c) but not [4 pts] for (a).

4. Prove the following using the definition of Ω . All work should be clear and explained with [15 pts] sentences.

$$n^3 - n^2 + n - 100 = \Omega(n^3)$$

5. Consider the statement:

$$n^2 + 100n = \mathcal{O}(n^2)$$

(a) This can be proved using C = 2. What would the smallest possible corresponding n_0 be? [8 pts]

Smallest
$$n_0$$
 for $C=2$ is

(b) This can be proved using $n_0 = 20$. What would the smallest possible corresponding C be? [12 pts]

Smallest
$$C$$
 for $n_0 = 20$ is

Scratch Work; Not graded:

6. Prove using the definition of \mathcal{O} that:

[20 pts]

$$3^n \neq \mathcal{O}(2^n)$$

Note: this is not difficult but does require that you properly negate the definition and then prove that this negation is true.

7. It is a common mistake that if $f(n) \neq \Omega(g(n))$ then $f(n) = \mathcal{O}(g(n))$ and if $f(n) \neq \mathcal{O}(g(n))$ [9 pts] then $f(n) = \Omega(g(n))$ but these are false.

Draw an example specifically for g(n)=1. In other words draw a function f(n) such that $f(n) \neq \Omega(1)$ and $f(n) \neq \mathcal{O}(1)$.

Note that your function needs to be inclusive enough to clearly communicate its behavior.