Nom:

Devoir de cours autocorrigé, révisions vacances

- 1) Logique.

a) La négation de $A \Rightarrow B$ est : (β)

b) Écrire la négation de $\forall M > 0$, $\exists a \in \mathbb{R} / \forall x \geq a, \ f(x) \geq M$:

c) Écrire avec des quantificateurs « la fonction f est majorée sur $\mathbb R$ » et sa négat

BMEB/ YXE B, B(n) EM | YMEB, BXEB/ RGI) > M

un (0 yr)

a)
$$\forall n \in \mathbb{N}^*, \sum_{k=1}^n k = \underbrace{n \left(m+1\right)}_{\mathbf{Z}}$$

- b) $\forall n \in \mathbb{N}^*$, $\sum_{k=1}^n k^2 = \underbrace{\text{(m+1)}(2n+1)}$
- c) Pour $n \in \mathbb{N}$ et $q \in \mathbb{C}$, $\sum_{k=0}^{n} q^k = \begin{bmatrix} 1 q \\ 1 q \end{bmatrix}$ Mi $q \not\equiv 1$
- e) Pour $k, n \in \mathbb{N}$, $\binom{n}{k} = \begin{bmatrix} n! \\ q! (n-q)! \end{bmatrix}$ At $0 \le 2 \le n$ f) Pour $a, b \in \mathbb{C}$ et $n \in \mathbb{N}$, $(a+b)^n = \begin{bmatrix} n! \\ q! (n-q)! \end{bmatrix}$ At $0 \le 2 \le n$ f) $n \in \mathbb{N}$ at $n \in \mathbb{N}$ and $n \in \mathbb{N}$ from $n \in \mathbb{N$

f) Pour $a, b \in \mathbb{C}$ et $n \in \mathbb{N}$, $(a + b)^n =$

 $\sum_{1 \leq i \leq j \leq n} u_{i,j}$ comme deux sommes consécutives, avec l'indice i en premier puis l'indice j puis avec \overline{l} 'indice j en premier puis l'indice i:

E E Minj

3) Généralités sur les fonctions. a) Pour $f: \mathbb{R} \to \mathbb{R}$, donner la définition de f est paire et de f est impaire. Quelle est l'interpré-

tation graphique de ces propriétés? In EA, R(-2) = - B (2) 1) Mynistine pla à

b) Quelle propriété de sin doit-on utiliser pour calculer $\lim_{x\to 0} \frac{\sin(x)}{x}$? Que vaut cette limite?

My dérivable en O c) Donner l'équation de la tangente à f en x_0 (on suppose f dérivable en x_0) :

T: y= B(20) (x-2Co)+B(20)

e) Réciproquement, si s(z) = az + b avec $a \neq 1$ et $a \neq 0$, comment trouve-t-on le centre de cette similitude directe, son angle et son rapport?

$$\delta(\omega) = \omega$$
 ω $\omega(1-\alpha) = b$ $\omega = \frac{dc}{1-\alpha}$

O= An (a) [Ro] k= 101

5) Applications. Soient $f: X \to Y$ et $g: Y \to Z$.

a) Donner la définition de f est injective.

$$\forall (x,y) \in X^{\epsilon}, \ \beta(x) = \beta(y) \Rightarrow x = y$$

b) Donner la définition de f est surjective

$$\forall y \in Y, \exists x \in X / y = \beta(x)$$

c) Si $g \circ f$ est bijective, quelle fonction est injective? Surjective?

d) Si f et g sont bijectives, justifier que $g \circ f$ est bijective et donner l'expression de $(g \circ f)^{-1}$.

a) Montrer que $\forall x > 0$, $\arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}$.

Get divivable
$$(2\pi)$$
 of $(2\pi) = \frac{1}{1+\pi^2} - \frac{1}{\pi^2} \times \frac{1}{1+\frac{1}{2}}$ de fouliers

g(1)=2 T

the est un intervalle, fet continte un the i

b) Dérivées usuelles. Pour chacune des fonctions suivantes, donner son domaine de définition, de dérivabilité et sa dérivée.

f(x)	D_f	D'	f'(x)
$\frac{1}{x}$	Ŕ*	K*	- 1
x^n où $n \in \mathbb{N}$	R	B	n x1-1
x^{α} où $\alpha \in \mathbb{R}$	R*	R. [‡]	α
\sqrt{x}	R+	R*	1
$\operatorname{ch}(x)$	IR.	R	sh(x)
sh(x)	B	R	Un(n)
th(x)	R	R	1 = 1- H26)
$\ln(x)$	IR;	R*	1/2
$\sin(x)$	R	Ŋ	W
$\cos(x)$	ĸ	B	- sin
$\arcsin(x)$	T-1,13	7-1,10	1/1-22
$\arccos(x)$	C-1,1]	3-1,10	-1/51-23
$\tan(x)$	M\{\(\frac{\pi}{2} + \rangle \array\)	96 Z}	1 = 1+ Kan
$\arctan(x)$	iB	n	1/(1+2)

c) Tracer les graphes des fonctions suivantes en faisant apparaître également les valeurs aux bords/les limites :

ii)
$$f: x \mapsto \operatorname{ch}(x)$$
 et $g: x \mapsto \operatorname{sh}(x)$

$$g: x \mapsto \arctan(x)$$

$$h: x \mapsto \operatorname{th}(x)$$

- d) Théorème de la bijection. Soient a < b et $f : [a, b] \to \mathbb{R}$.
 - i) Que faut-il vérifier pour montrer que f est une bijection de [a, b] dans un intervalle I(que l'on précisera en fonction de la monotonie de f)?

stiet monotine et f bijelive dans TB(al, ling B(n) [])

ii) À quelle(s) condition(s) sur f la réciproque de f est-elle continue sur I? À quelle(s) condition(s) sur f la réciproque de f est-elle dérivable sur I?

Rdérivable et l'ue s'anule

7) Intégration.

a) Déterminer $\int_{-1}^{1} t^2 e^{3t} dt$ en utilisant une IPP (et en donner les hypothèses!).

On por

b) Déterminer $\int_{1}^{e} \frac{(\ln(t))^3}{t} dt$ en utilisant le changement de variable $x = \ln(t)$ (en donner les

hypothèses!).

dx = 1 dt

c) Primitives usuelles. Pour chacune des fonctions suivantes, donner l(es) intervalle(s) sur le(s)quel(s) elles sont continues et une primitive sur ce(s) intervalle(s).

		ϵr
f	I	$\int_{-\infty}^{\infty} f(t)dt$
$x \mapsto \frac{1}{x}$	By an IR+	ln (x1)
$x \mapsto x^{\alpha}$ où $\alpha \in \mathbb{R} \setminus \{-1\}$	R [*]	x x 1 /(x+1)
$x \mapsto e^{\lambda x}$ où $\lambda \in \mathbb{C}^*$	R	1 exx
sin	B	- Cos
cos	R	sin
$x \mapsto \frac{1}{\sqrt{1 - x^2}}$	3-1,15	oncoin
$x \mapsto \frac{1}{1+x^2}$	IB.	anetan
$x \mapsto \frac{u'(x)}{u(x)}$	I où u ne s'annule pas	ln (4(n) 1)
$x \mapsto u'(x)u(x)$	I	u(x)/2
$x \mapsto \ln(x)$	R.	>c h (n) ->c

d) Déterminer
$$\int_{0}^{x} \frac{t+1}{t^{2}+t+1} dt = \frac{1}{2} \left\{ \frac{2t+1}{t^{2}+t+1} dt + \frac{1}{2} \left\{ \frac{x}{x} \frac{1}{t^{2}+t+1} dt + \frac{1}{2} \left(\frac{x}{x} \frac{1}{t^{2}+t+1} dt + \frac{$$