

UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO DO RIO DE JANEIRO

Curso de Graduação em Engenharia da Computação Álgebra Linear Numérica 2022.1

Tarefa 1 - SVD

Vitor Saraiva de Lima (201810051611)

Sumário

1	Introdução			i	
2	Desenvolvimento			i	
	2.1 SVD			ii	
	2.1.1	Matriz A_1		ii	
	2.1.2	Matriz A_2		iv	
	2.1.3	Matriz A_3	· • •	V	
3	Conclusão			viii	
A	CÓDIGO-FONTE DA TAREFA 1 EM SCILAB			ix	
Re	eferências			хi	

1 Introdução

Em álgebra linear o singular value decomposition (SVD) é a fatoração de uma matriz real ou complexa. Este relatório vem apresentar uma das características do singular value decomposition (SVD). Ao decorrer deste relatório define-se o que as matrizes U, S e V, realizam ao transformar o conjunto de pontos de um círculo unitário.

2 Desenvolvimento

Figura 1: Círculo Unitário

Primeiramente foi plotado o círculo unitário demonstrado na Fig.1 da seguinte forma:

$$x^2 + y^2 = r^2$$

Esta equação denota um círculo com centro (0,0) e raio r. Reescrevendo esta função para termos r=1 e em função de y temos:

$$y = \sqrt{1 - x^2}$$

Que denota o semi-círculo positivo do nosso círculo unitário e para completarmos ele também precisamos dos valores negativos, denotados por:

$$y = -\sqrt{1 - x^2}$$

E a demonstração da Fig.1 foi feita utilizando estas duas funções e após isso montada uma matriz com todos os pontos (x,y) dos dois semi-círculos do círculo unitário.

$$\mathbf{A_1} = \left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right)$$

Após isso foi selecionada a matriz A_1 acima e ela foi multiplicada pela matriz dos pontos do círculo (Pts) gerando uma matriz M_1

$$M_1 = Pts \cdot A_1$$

Figura 2: Círculo Unitário Transformado pela Matriz A₁ definida

Plotando das colunas referentes aos valores de x e y da matriz M_1 obtemos o gráfico com a demonstração da transformação do círculo unitário mostrado na Fig. 2.

2.1 SVD

Primeiramente vamos relembrar o que venha a ser o singular value decomposition (SVD). Seja a matriz $X_{m \times n}$, com $m \ge n$, existem matrizes ortogonais $U_{m \times m}$ e $V_{n \times n}$ e uma matriz $S_{m \times n}$ diagonal, tal que:

$$X = U \cdot S \cdot V^T$$

2.1.1 Matriz A_1

Agora aplicando SVD utilizando a função nativa de SciLab de SVD obtemos as matrizes U_1 , S_1 e V_1 abaixo utilizando como base a matriz A_1 definida anteriormente.

$$\mathbf{U_1} = \begin{pmatrix} -0.7071068 & -0.7071068 \\ -0.7071068 & 0.7071068 \end{pmatrix}$$

$$\mathbf{S_1} = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\mathbf{V_1} = \begin{pmatrix} -0.7071068 & 0.7071068 \\ -0.7071068 & -0.7071068 \end{pmatrix}$$

Figura 3: Círculo Unitário Transformado Pelas Matrizes U_1 e V_1 Baseadas em A_1

Após isso foi selecionada as matrizes U_1 e V_1 acima e elas foram multiplicadas pela matriz transposta dos pontos do círculo (Pts) gerando as matrizes de transformação do círculo unitário M_{U_1} e M_{V_1} . Dessas matrizes foram utilizados os conjuntos de pontos (x,y) para plotar os gráficos demonstrados na Fig.3.

$$M_{U_1} = U_1 \cdot Pts^T$$

$$M_{V_1} = V_1 \cdot Pts^T$$

Figura 4: Círculo Unitário Transformado pela Matriz S_1 Baseada em A_1

Com o mesmo SVD foi também denotado uma matriz diagonal M_{S_1} a qual também foi utilizada para a demonstração da transformação do círculo por ela, demonstrado na Fig.4.

$$M_{S_1} = S_1 \cdot Pts^T$$

Após a multiplicação por cada matriz, foi observado que as matrizes U_1 e V_1 são res-

ponsáveis pela rotação e a matriz S_1 pela "deformação" do círculo transformado.

2.1.2 Matriz A_2

Utilizando agora uma matriz A_2 gerada aleatoriamente denotada:

$$\mathbf{A_2} = \begin{pmatrix} -0.6834217 & 0.8145127 \\ -0.7209534 & 0.3240162 \end{pmatrix}$$

Repetindo os passos utilizados para a matriz A_1 obtemos:

Figura 5: Círculo Unitário Transformado pela Matriz A_2

E os valores das matrizes U_2 , V_2 e S_2 resultantes da aplicação do SVD:

$$\mathbf{U_2} = \begin{pmatrix} -0.8114708 & -0.584393 \\ -0.584393 & 0.8114708 \end{pmatrix}$$

$$\mathbf{S_2} = \begin{pmatrix} 1.2943705 & 0 \\ 0 & 0.2825976 \end{pmatrix}$$

$$\mathbf{V_2} = \begin{pmatrix} 0.7539548 & -0.6569263 \\ -0.6569263 & -0.7539548 \end{pmatrix}$$

Figura 6: Círculo Unitário Transformado Pelas Matrizes U_2 e V_2 Baseadas em A_2

Figura 7: Círculo Unitário Transformado pela Matriz S_2 Baseada em A_2

Utilizando como anteriormente os valores de (x,y) das matrizes U_2 , V_2 e S_2 obtivemos as demonstrações das figuras 6 e 7, Assim, novamente chegando a conclusão de que as matrizes U_2 e V_2 são responsáveis pela rotação do círculo e a matriz S_2 é responsável pela "deformação" do círculo.

2.1.3 Matriz A_3

Utilizando novamente uma matriz aleatória A_3 :

$$\mathbf{A_3} = \left(\begin{array}{cc} -0.2343923 & 1.4027612 \\ -0.1821937 & 2.0320067 \end{array} \right)$$

Seguimos os mesmos passos utilizados anteriormente para chegar aos valores de U_3 , V_3 e S_2 abaixo, juntamente com a Fig.8 do círculo transformado por A_3 :

Figura 8: Círculo Unitário Transformado pela Matriz A₃

$$\mathbf{U_3} = \begin{pmatrix} 0.5714818 & 0.8206147 \\ 0.8206147 & -0.5714818 \end{pmatrix}$$

$$\mathbf{S_3} = \begin{pmatrix} 2.4853648 & 0 \\ 0 & 0.0888049 \end{pmatrix}$$

$$\mathbf{V_3} = \left(\begin{array}{ccc} -0.1140524 & -0.9934747 \\ 0.9934747 & -0.1140524 \end{array} \right)$$

Transformando novamente a matriz dos pontos (Pts) por U_3 , V_3 e S_3 obtemos as figuras 9 e 10 abaixo:

Figura 9: Círculo Unitário Transformado Pelas Matrizes U_3 e V_3 Baseadas em A_3

Figura 10: Círculo Unitário Transformado pela Matriz S_3 Baseada em A_3

Chegando uma terceira vez a mesma conclusão das duas outras vezes.

3 Conclusão

Foi possível perceber que o SVD é muito mais valioso do que uma simples fatoração de matrizes, pois com a simples plotação dos gráficos, foi visto o potencial que cada matriz resultante da fatoração, permite realizar. A utilização da figura geométrica do círculo unitário, demonstrou que as matrizes U e V tem o potencial de rotacionar o círculo e a matriz S de "esticá-lo", "deforma-lo e/ou "transforma-lo", e essa simples visualização permitiu compreender um pouco mais da potencialidade que o SVD tem a oferecer, não só para rotacionar e esticar uma figura, mais sim, a capacidade de que com as matrizes resultantes e utilizando um pouco mais de álgebra linear, consegue-se, por exemplo, encontrar o núcleo, a imagem e o posto da matriz fatorada e até mesmo fazer o mesmo que foi feito com o círculo só que utilizando imagens ou figuras mais complexas.

A CÓDIGO-FONTE DA TAREFA 1 EM SCILAB

```
clear
clc
n = 100
//A = rand(2,2, 'normal')
// Matriz Definida
A = [1,2;2,1]
// Primeira Matriz Aleat ria
//A = [-0.6834217, 0.8145127; -0.7209534, 0.3240162]
// Segunda Matriz Aleat ria
//A = [-0.2343923, 1.4027612; -0.1821937, 2.0320067]
function y = semicirculopositivo(x)
    y = sqrt(1-x**2)
endfunction
function y = semicirculonegativo(x)
    y = -sqrt(1-x**2)
endfunction
x = linspace (-1,1,n);
xinv = linspace (1, -1, n);
Pts = zeros(n*2,2);
for i=1:n
    Pts(i,1) = x(i);
    Pts(i+n,1) = xinv(i);
    Pts(i,2) = semicirculopositivo(x(i));
    Pts(i+n,2) = semicirculonegativo(xinv(i));
end
              X \setminus t \setminus t Y \setminus n");
mprintf("
for i = 1: n * 2
    mprintf('\%8.4g \setminus t \%8.4g \setminus n', Pts(i,1), Pts(i,2))
end
```

```
disp ("A",A)
M = Pts*A
plot(x, semicirculopositivo(x), 'k');
plot(x, semicirculonegativo(x), 'r');
//legend(['Semi-Circulo Unitario Positivo'; 'Semi-Circulo Unitario
// Positivo '],4);
plot (M(:,1),M(:,2),'--')
legend (['Semi-Circulo Unitario Positivo'; 'Semi-Circulo Unitario
Positivo'; 'Circulo Unitario transformado pela Matriz A'],4);
[u, s, v] = svd(A);
MU = u * Pts';
MS= s*Pts';
MV = v * Pts';
disp("U",u);
disp("S",s);
disp("V", v);
// plot(MU(1,:), MU(2,:), '--c');
//legend(['Semi-Circulo Unitario Positivo'; 'Semi-Circulo Unitario
// Positivo '; 'Circulo Unitario transformado pela Matriz U'],4);
// plot(MS(1,:), MS(2,:), '--g');
//legend(['Semi-Circulo Unitario Positivo'; 'Semi-Circulo Unitario
// Positivo '; 'Circulo Unitario transformado pela Matriz S'],4);
// plot(MV(1,:), MV(2,:), '--m');
//legend(['Semi-Circulo Unitario Positivo'; 'Semi-Circulo Unitario
// Positivo '; 'Circulo Unitario transformado pela Matriz V'],4);
```

REFERÊNCIAS

Referências

- [1] https://help.scilab.org/docs/5.3.1/pt_br/linspace.html.
- [2] https://help.scilab.org/docs/5.4.1/pt_br/svd.html.
- $[3] \ https://help.scilab.org/docs/5.5.0/pt_br/rand.html.$