

Schur decomposition, proof of

Canonical name SchurDecompositionProofOf

Date of creation 2013-03-22 14:04:01 Last modified on 2013-03-22 14:04:01

Owner mps (409) Last modified by mps (409)

Numerical id 6

Author mps (409) Entry type Proof Classification msc 15-00 The columns of the unitary matrix Q in Schur's decomposition theorem form an orthonormal basis of \mathbb{C}^n . The matrix A takes the upper-triangular form D+N on this basis. Conversely, if v_1, \ldots, v_n is an orthonormal basis for which A is of this form then the matrix Q with v_i as its i-th column satisfies the theorem.

To find such a basis we proceed by induction on n. For n=1 we can simply take Q=1. If n>1 then let $v\in\mathbb{C}^n$ be an eigenvector of A of unit length and let $V=v^{\perp}$ be its orthogonal complement. If π denotes the orthogonal projection onto the line spanned by v then $(1-\pi)A$ maps V into V.

By induction there is an orthonormal basis v_2, \ldots, v_n of V for which $(1-\pi)A$ takes the desired form on V. Now $A = \pi A + (1-\pi)A$ so $Av_i \equiv (1-\pi)Av_i \pmod{v}$ for $i \in \{2,\ldots,n\}$. Then v,v_2,\ldots,v_n can be used as a basis for the Schur decomposition on \mathbb{C}^n .