Interpolation. Splines.

Interpolation with higher order polynomials is prone to the Runge phenomenon.

Piecewise linear interpolation

Piecewise parabolic interpolation

Piecewise parabolic interpolation

Piecewise polynomials. Splines.

Condider a set of *breakpoints* on the interval $x \in [a, b]$

$$a = x_0 \leqslant x_1 \leqslant \dots \leqslant x_{m-1} \leqslant x_m = b,$$

A spline function, S(x), is a piecewise polynomial on [a,b].

- ightharpoonup S(x) has degree n if the max degree of all polynomial pieces is n.
- ▶ $S(x) \in C^p$ if S(x) and its p derivatives, S'(x), S''(x), \cdots , $S^{(p)}(x)$ are continuous on $x \in [a, b]$.

Cubic splines

Hermite form of a cubic polynomial

Piecewise cubic polynomials

Given

$$a = x_0 < x_1 < \dots < x_{m-1} < x_m = b,$$

A cubic polynomial, $p_{3,k}(x)$, on each interval $[x_{k-1}, x_k]$, for $k = 1, \dots, m$

A single interval: a linear function

Construct
$$p_1(x)$$
 with $p_1(x_a) = y_a$ and $p_1(x_b) = y_b$

$$p_1(x) = y_b \, \frac{x - x_a}{h} + y_a \, \frac{x_b - x}{h}$$
 where $h = x_b - x_a$.

A single interval: a cubic function

Construct $p_3(x)$ with

$$p_3(x_a) = y_a p'_3(x_a) = s_a$$

$$p_3(x_b) = y_b p'_3(x_b) = s_b$$

A single interval: a cubic function

Construct $p_3(x)$ with

$$p_3(x_a) = y_a p'_3(x_a) = s_a$$

$$p_3(x_b) = y_b p'_3(x_b) = s_b$$

$$p_3(x) = p_1(x) + \frac{(x - x_a)}{h} \frac{(x_b - x)}{h} [A(x - x_a) + B(x_b - x)]$$

And find A and B given s_a and s_b .

A single interval: a cubic function

$$x = x_a$$
: $s_a = p'_3(x_a) = m + B$
 $x = x_b$: $s_b = p'_3(x_b) = m - A$

with

$$m = \frac{y_b - y_a}{h}.$$

So that we have an explicit form of a (unique) cubic parabola on $[x_a, x_b]$ with given tangents (s_a, s_b) and values (y_a, y_b) at the edges:

$$p_3(x) = p_1(x) + \frac{(x - x_a)}{b} \frac{(x_b - x)}{b} [(m - s_b)(x - x_a) + (s_a - m)(x_b - x)]$$

Cubic splines

Given

$$a = x_0 < x_1 < \dots < x_{m-1} < x_m = b$$

use $p_{3,k}(x)$ on each interval $[x_{k-1},x_k]$, for $k=1,\cdots,m$

$$p_3(x) = p_1(x) + \frac{(x - x_a)}{h} \frac{(x_b - x)}{h} [(m - s_b)(x - x_a) + (s_a - m)(x_b - x)]$$

continuity: by construction

$$p_3(x) = p_1(x) + \dots$$

$$p_3(x) = p_1(x) + \dots$$

first derivative: use consistent tangents at internal breakpoints

$$\Rightarrow S(x) \in C^1 \text{ on } x \in [a, b]$$

continuity: by construction

$$p_3(x) = p_1(x) + \dots$$

first derivative : use consistent tangents at internal breakpoints $\Rightarrow S(x) \in C^1 \text{ on } x \in [a,b]$

second derivative : select internal tangents,
$$s_k$$
, so that

$$p_{3,k-1}''(x_k) = p_{3,k}''(x_k)$$

for $k=1,\cdots,m-1$.

NB: m-1 conditions for m+1 tangents. Need two more *boundary conditions*.

Work out second derivatives on intervals

On a single interval $[x_a, x_b]$:

$$p_3''(x) = -2\frac{s_b - m}{h^2} [(x_b - x) - 2(x - x_a)]$$
$$-2\frac{s_a - m}{h^2} [2(x_b - x) - (x - x_a)]$$

Thus

$$p_3''(x_a) = -2\frac{s_b - m}{h} - 4\frac{s_a - m}{h}$$
$$p_3''(x_b) = 4\frac{s_b - m}{h} + 2\frac{s_a - m}{h}$$

Match second derivatives at breakpoints

For
$$p_{3,k}(x)$$
, $x\in [x_{k-1},x_k]$, for $k=1,\cdots,m$ define
$$h_k=x_k-x_{k-1}$$

$$m_k=\frac{y_k-y_{k-1}}{h_k}$$

$$p_{3,k}''(x_k) = p_{3,k+1}''(x_k)$$

$$4\frac{s_k - m_k}{h_k} + 2\frac{s_{k-1} - m_k}{h_k} = -2\frac{s_{k+1} - m_{k+1}}{h_{k+1}} - 4\frac{s_k - m_{k+1}}{h_{k+1}}$$

Cubic splines

A C^2 continuous spline interpolator with breakpoints

$$a = x_0 < x_1 < \dots < x_{m-1} < x_m = b,$$

is defined by a solution of an (almost) tridiagonal system of linear equations

$$s_k(\frac{2}{h_k} + \frac{2}{h_{k+1}}) + \frac{1}{h_k}s_{k-1} + \frac{1}{h_k}s_{k+1} = 3(\frac{m_k}{h_k} + \frac{m_{k+1}}{h_{k+1}}),$$

where $k = 1, \dots, m-1$.

Cubic splines

A C^2 continuous spline interpolator with breakpoints

$$a = x_0 < x_1 < \dots < x_{m-1} < x_m = b,$$

is defined by a solution of an (almost) tridiagonal system of linear equations

$$s_k(\frac{2}{h_k} + \frac{2}{h_{k+1}}) + \frac{1}{h_k}s_{k-1} + \frac{1}{h_k}s_{k+1} = 3(\frac{m_k}{h_k} + \frac{m_{k+1}}{h_{k+1}}),$$

where $k = 1, \dots, m-1$.

Need two more equations:

- ightharpoonup m+1 unknowns s_k for $k=0,\cdots,m$
- ▶ m-1 equations for $k=1,\cdots,m-1$

Cubic splines: boundary conditions

"Fundamental spline" Known f'(a) and f'(b) or f''(a) and f''(b).

"Natural spline" Set f''(a) = f''(b) = 0.

"Not-a-knot" Require continuous *third* derivative at second and second-to-last breakpoints.

Cubic spline interpolation: continuity

Approximation errors

Let $f(x) \in C^4$ on $x \in [a, b]$ and

$$M_4 = \max_{x \in [a,b]} |f^{(4)}(x)|;$$

Then, for an interpolating spline $S_3(x)$ with *not-a-knot* or *fundamental* boundary conditions,

$$\max_{x \in [a,b]} |f(x) - S_3(x)| \leqslant C M_4 h^4,$$

where C is some constant and $h = \max_k |x_k - x_{k-1}|$.

However, the *natural* spline has the approximation error $\propto h^2$.

Local piecewise interpolation

Piecewise polynomial interpolation

Given
$$a = x_0 < x_1 < \dots < x_{m-1} < x_m = b$$
,

A cubic interpolating polynomial in the Hermite form

$$p_3(x) = p_1(x) + \frac{(x - x_a)}{h} \frac{(x_b - x)}{h} [(m - s_b)(x - x_a) + (s_a - m)(x_b - x)]$$

Cubic spline interpolation

- $ightharpoonup C^2$ continuous on [a,b]
- Need two boundary conditions
- ightharpoonup Construction is O(N)

Cubic spline interpolation

- C^2 continuous on [a, b]
- Need two boundary conditions
- ightharpoonup Construction is O(N)
- Not guaranteed to be monotonic

May or may not need the \mathbb{C}^2 continuity.

Local interpolating schemes

Other, local, prescriptions for s_k are possible. For example,

$$s_k = \frac{y_{k+1} - y_{k-1}}{x_{k+1} - x_{k-1}}$$

Produces a *local* C^1 continuous interpolant.

Monotone interpolants

Outliers or sharp features in data: C^2 splines may overshoot.

Use a local scheme for s_k , with weighting and clipping.

Monotone interpolants

Outliers or sharp features in data: C^2 splines may overshoot.

Use a local scheme for s_k , with weighting and clipping.

Most popular schemes: Akima splines and PCHIP algorithm.

Monotone piecewise cubic interpolant: PCHIP

PCHIP algorithm

Let $h_k = x_{+1} - x_k$, and

$$m_k = (y_{k+1} - y_k)/h_k$$

- if $\operatorname{sign} m_{k-1} \neq \operatorname{sign} m_k$, then $s_k = 0$
- if $m_{k-1}=0$ or $m_k=0$, then $s_k=0$
- otherwise,

$$\frac{w_1 + w_2}{s_k} = \frac{w_1}{m_{k-1}} + \frac{w_2}{m_k}$$

where $w_1=2h_k+h_{k-1}$ and $w_2=h_k+2h_{k-1}$

Monotone piecewise cubic interpolant: PCHIP

Interpolation

- Lagrange interpolating polynomial
- Piecewise interpolators: splines
- Local piecewise interpolators

- Other forms of the interpolating polynomial: Newton, Krogh
- Spline curves
- Bezier curves
- B-splines, rational interpolation
- Smoothing splines
- Computer graphics, CAD, animation
- Image processing, computer vision