

Wearables Feature SetApplication Note

Application Note - Wearables Feature Set

Document revision 1.2

Document release date January 2021

Document number BST-MAS-AN032-02

Sales Part Number(s) BMA423, BMA425, BMA456

Notes Data and descriptions in this document are subject to

change without notice. Product photos and pictures are for illustration purposes only and may differ from the real product appearance. The technical details and legal disclaimer of the respective product data sheet apply.

Index of Contents

1. Wea	arables feature set	6
1.1	Global configuration	6
1.2	Step counter, step detector and activity recognition	9
	Step counter	9
	Step detector	9
	Activity classification	11
1.3	Wrist wear wakeup	12
1.4	Tap detector	13
1.5	Any-motion/no-motion detection	15
	Any-motion detection	15
	No-motion detection	16
2. Reg	rister description	18
2.1 Gei	neral remarks	18
2.2 Res	gister map	18
	Register (0x00) CHIP_ID	
	Register (0x02) ERR_REG	27
	Register (0x03) STATUS	28
	Register (0x0A) DATA_0	28
	Register (0x0B) DATA_1	29
	Register (0x0C) DATA_2	29
	Register (0x0D) DATA_3	29
	Register (0x0E) DATA_4	30
	Register (0x0F) DATA_5	30
	Register (0x10) DATA_6	30
	Register (0x11) DATA_7	31
	Register (0x12) DATA_8	31
	Register (0x13) DATA_9	31
	Register (0x14) DATA_10	32

Register (0x15) DATA_11	32
Register (0x16) DATA_12	32
Register (0x17) DATA_13	33
Register (0x18) SENSORTIME_0	33
Register (0x19) SENSORTIME_1	34
Register (0x1A) SENSORTIME_2	34
Register (0x1B) EVENT	35
Register (0x1C) INT_STATUS_0	35
Register (0x1D) INT_STATUS_1	36
Register (0x1E) STEP_COUNTER_0	36
Register (0x1F) STEP_COUNTER_1	37
Register (0x20) STEP_COUNTER_2	37
Register (0x21) STEP_COUNTER_3	38
Register (0x22) TEMPERATURE	38
Register (0x24) FIFO_LENGTH_0	39
Register (0x25) FIFO_LENGTH_1	39
Register (0x26) FIFO_DATA	40
Register (0x27) ACTIVITY_TYPE	40
Register (0x2A) INTERNAL_STATUS	41
Register (0x40) ACC_CONF	42
Register (0x41) ACC_RANGE	43
Register (0x44) AUX_CONF	44
Register (0x45) FIFO_DOWNS	45
Register (0x46) FIFO_WTM_0	45
Register (0x47) FIFO_WTM_1	46
Register (0x48) FIFO_CONFIG_0	46
Register (0x49) FIFO_CONFIG_1	47
Register (0x4B) AUX_DEV_ID	48
Register (0x4C) AUX_IF_CONF	48
Register (0x4D) AUX_RD_ADDR	49
Register (0x4E) AUX_WR_ADDR	49
Register (0x4F) AUX_WR_DATA	50

	Register (0x53) INT1_IO_CTRL	50
	Register (0x54) INT2_IO_CTRL	51
	Register (0x55) INT_LATCH	52
	Register (0x56) INT1_MAP	53
	Register (0x57) INT2_MAP	53
	Register (0x58) INT_MAP_DATA	54
	Register (0x59) INIT_CTRL	54
	Register (0x5E) FEATURES_IN	55
	Register (0x5F) INTERNAL_ERROR	59
	Register (0x6A) NVM_CONF	59
	Register (0x6B) IF_CONF	60
	Register (0x6D) ACC_SELF_TEST	60
	Register (0x70) NV_CONF	61
	Register (0x71) OFFSET_0	62
	Register (0x72) OFFSET_1	62
	Register (0x73) OFFSET_2	63
	Register (0x7C) PWR_CONF	63
	Register (0x7D) PWR_CTRL	64
	Register (0x7E) CMD	64
3 D	Document history and modification	65

List of tables

Table 1: Feature interrupt status registers	6
Table 2: Intended positive use-case scenarios of wrist wear wakeup feature	12

1. Wearables feature set

1.1 Global configuration

The Register <u>FEATURES_IN</u> provides description of configuration parameters of the feature interrupt engine. To reconfigure the features, user must perform a burst read of the full content of the Register <u>FEATURES_IN</u>, followed by a modification of the content, and finally a burst write of the modified content to the Register <u>FEATURES_IN</u>. The content of the successive bytes read or written in burst mode correspond to the single bytes 0x00 to 0x3F described in <u>FEATURES_IN</u>.

Prior to reconfiguration of the feature/s, successful initialization of sensor must be ensured (see the description below).

After power up sequence the accelerometer is in suspend mode, the device must initialized through the following procedures.

- Disable advanced power save mode: PWR CONF adv power save = 0b0
- Wait for 450 us. The register <u>SENSORTIME_0</u> increments every 39.25 μsec and may be used for accurate timing.
- Write INIT CTRL init ctrl = 0x00
 - Burst write initialization data to Register <u>FEATURES_IN</u>. The configuration file is included in driver. Optionally the configuration file can be written to the Register <u>FEATURES_IN</u> in several consecutive burst write access. Every burst write must contain an even number of bytes.
 - Optionally:
 Burst read configuration file from Register <u>FEATURES_IN</u> and check correctness.
 Check sensor API for details of timing & length.
- Enable sensor features write 0x01 into Register INIT_CTRL init_ctrl. This operation must not be performed more than once after POR or soft reset.
- Wait until Register <u>INTERNAL STATUS message</u> contains the value 0b1. This will occur in at most 140 – 150 msec.

Read the status of the feature(s) interrupt from the register listed below.

Table 1: Feature interrupt status registers

Feature	Output status
Single-tap	INT STATUS 0. single tap out
Step detector	INT_STATUS_0.step_counter_out
Activity recognition	INT_STATUS_0.activity_type_out
Wrist wear wakeup	INT_STATUS_0.wrist_wear_wakeup_out
Double-tap	INT_STATUS_0.double_tap_out
Any-motion	INT_STATUS_0.any_motion_out
No-motion	INT STATUS 0.no motion out
Error Interrupt	INT_STATUS_0.error_int_out

The interrupt status register also contains a bit for error interrupt, which indicates that the sensor has been stopped due to a fatal error. In such case, the sensor needs to be re-initialized to ensure correct functioning of the device.

For step detector and counter, in addition to an interrupt for each step detection, the number of steps that the user has taken since the start of feature engine is stored in the registers:

STEP COUNTER 0, STEP COUNTER 1, STEP COUNTER 2 and STEP COUNTER 3.

Accelerometer operation mode

When the accelerometer is configured to be in performance mode (<u>ACC_CONF.acc_perf_mode</u> is 0b1), consecutive samples are measured at maximum output data rate (ODR) with samples equispaced in time. The processing of feature engine is carried out correctly ensuring the functional performance. When the operational mode of accelerometer is set to Performance mode, the user ODR and bandwidth settings have no impact on the processing of feature engine.

When the configuration of the accelerometer is set to duty-cycling mode, i.e. performance mode is disabled (<u>ACC_CONF.acc_perf_mode</u> is 0b0), consecutive samples may not be measured at the maximum ODR and are not equi-spaced in time. For feature engine to work correctly, the user ODR and/or bandwidth settings must meet the following requirements:

- 1. The user ODR shall be \geq 50Hz when single-/double-tap is disabled.
- 2. The user ODR shall be \geq 200Hz when single-/double-tap is enabled.

In case of non-fulfillment of the user ODR requirement, the corresponding error flag is set in the register <u>INTERNAL STATUS</u>.

Axes remapping for interrupt features

The interrupt feature engine assumes that the sensor co-ordinate system is in alignment with the device co-ordinate system. The assumed default device co-ordinate system is as depicted in the figure below.

If the sensor placement in the user system is different from that depicted in the figure above, to ensure the correct functioning of the features in the interrupt engine, appropriate axes remapping needs to be applied. The axes remapping configuration register allows each sensing axis to be remapped to any other axis. Along with the remapping of the sensing axis, it also allows the inversion of the axis. An error interrupt is triggered when more than one axis is remapped to the same axis, e.g., x = x, y = x, z = z.

Note:

The axes remapping is applied only on the acceleration signal input to the sensor features. The DATA_0 to DATA_13 registers and FIFO are unmodified by the settings of axes remapping. If required, appropriate remapping should be applied at the driver level.

Configuration settings:

- 1. <u>FEATURES IN.general settings.axes remapping.map x axis</u> describes which axis shall be mapped to x axis.
- 2. <u>FEATURES_IN.general_settings.axes_remapping.map_x_axis_sign</u> describes whether the mapped axis shall be inverted or not to be inverted.
- 3. <u>FEATURES_IN.general_settings.axes_remapping.map_y_axis_</u> describes which axis shall be mapped to y axis.
- 4. <u>FEATURES_IN.general_settings.axes_remapping.map_y_axis_sign</u> describes whether the mapped axis shall be inverted or not to be inverted.
- 5. <u>FEATURES_IN.general_settings.axes_remapping.map_z_axis_</u> -describes which axis shall be mapped to z axis.
- 6. <u>FEATURES_IN.general_settings.axes_remapping.map_z_axis_sign</u> describes whether the mapped axis shall be inverted or not to be inverted.

1.2 Step counter, step detector and activity recognition

Step detector feature performs the detection of steps taken by the user while walking, running, stair walking, etc. using the tri-axial acceleration signal. Realization of the step detection functionality is in compliance with the requirements of Android 4.4 and above as described under https://source.android.com/devices/sensors/sensor-types.html#step_detector to report the step detect with low latency. Precise optimization of the parameters defining the functional behaviour of the step detector algorithm for the device position on the user body as "Wrist" assures the best step detection performance.

Step counter extends the functionality of the step detector by implementation of additional step validation approach and hence yielding the higher accuracy at the cost of slight increase in reporting delay. Step counter implementation complies with the requirements of Android 4.4 and higher stated under https://source.android.com/devices/sensors/sensor-types.html#step_counter. The approach of step validation rejects or accepts the detected step as legitimate step for counting by analyzing the regularity of occurrence and dynamicity of the scenario.

Step detection and counting features are facilitated to work in parallel with full independence. However, the feature interrupt engine reports the status of step detection and watermark interrupt of step counter on the multiplexed interrupt line. Hence, the functionalities of step detection and watermark interrupt for step counter are mutually exclusive.

Step counter

Step counter feature can be activated by setting the

<u>FEATURES_IN.step_counter.settings_26.en_counter.</u> The step counter reports the number of steps taken by the user since the first activation of the feature without any reset. The step counts is reported as 32-bit unsigned integer number stored in registers <u>STEP_COUNTER_0</u>, <u>STEP_COUNTER_1</u>, <u>STEP_COUNTER_2</u> and <u>STEP_COUNTER_3</u>. The sum of step detector events may differ from the step count value due to additional step validation by post-processing.

The step count value is reset to zero by enabling the FEATURES_IN.step_counter.settings_26.reset_counter flag. On resetting the step count value, the flag is automatically cleared and counting is restarted.

The watermark interrupt for step counter is useful when the host needs to receive an interrupt every time the user took a certain fixed number of steps. The step counter watermark interrupt is enabled by setting FEATURES IN.step counter.settings 26.watermark level to greater than 0. E.g., when FEATURES IN.step counter.settings 26.watermark level is set to 10 (holding an implicit factor of 20x), for every 200 steps are elapsed an interrupt will be raised on INT STATUS 0.step counter_out.

Step detector

Step Detector feature reports the detected step of the user while walking, running, etc., with low latency. If <u>FEATURES_IN.step_counter.settings_26.en_detector</u> is set, an interrupt is triggered on INT_STATUS_0.step_counter_out for every step detected.

The table below provides the default configuration values for a wearables optimized step detector and counter.

Parameter Name	Wrist Configuration
PARAM_1	301
PARAM_2	31700
PARAM_3	315
PARAM_4	31451
PARAM_5	4
PARAM_6	31551
PARAM_7	27853
PARAM_8	1219
PARAM_9	2437
PARAM_10	1219
PARAM_11	-6420
PARAM_12	17932
PARAM_13	1
PARAM_14	39
PARAM_15	25
PARAM_16	150
PARAM_17	160
PARAM_18	1
PARAM_19	12
PARAM_20	15600
PARAM_21	256
PARAM_22	1
PARAM_23	3
PARAM_24	1
PARAM_25	14

The feature is by default initialized with the configuration optimized for wrist to use. To modify the configuration, the steps provided below must be followed:

- 1. Disable step counter, step detector, and activity detection
- 2. Modify the 25 parameters of step counter
- 3. Enable step counter, step detector, and activity detection

After re-enabling the features, the new configuration parameters will be applied for step detection and counting.

Customized Step Counter Sensitivity Configuration (overwrites Step Counter Presets)

The step detector and counter performance can be optimized to any specific use-case scenarios by re-determining and manually re-configuring the parameters in the register map with the support of the corresponding field application engineer. The default parameters are set to wrist configuration during device initialization.

Configuration settings:

- FEATURES IN.step counter.settings 26.watermark_level A step-counter watermark interrupt is triggered every time the user takes 20 times watermark_level number of steps. The range is 20 to 20460 steps, with resolution of 20 steps. When set to 0, the step counter watermark functionality is disabled.
- 2. <u>FEATURES IN.step counter.settings 26.reset counter</u> Flag to reset the number of steps counted. The reset is applicable only if step counter feature is enabled at-least once and steps count is greater than zero.
- 3. FEATURES IN.step counter.settings 26.en counter enable the step counter feature.
- 4. <u>FEATURES_IN.step_counter.settings_26.en_detector</u> enable the step detector feature.
- 5. <u>FEATURES IN.step counter.settings 1.param 1</u> to <u>param 25</u> there are 25 parameters, which configure the use case (wrist or phone).

Activity classification

The feature can classify the locomotion state of the user. Still, walking and running are the locomotion states that the feature can distinguish. Every change of the activity is reported by an interrupt on INT_STATUS_0.activity_type_out. The actual activity/locomotion state is updated in the register ACTIVITY_TYPE.activity_type_out. The activity classification feature is enabled by setting FEATURES_IN.step counter.settings 26.en activity.

Configuration settings:

FEATURES_IN.step_counter.settings_26.en_activity - enables activity classification.

1.3 Wrist wear wakeup

Wrist wear wakeup feature is designed to detect any natural movement of the user arm to see the dial of watch when wearing a classical wristwatch. This feature is intended to be used as wakeup gesture (i.e. for triggering screen-on or screen-off) in wrist wearables devices.

The feature classifies if the arm is in either of the following two positions:

- Focus position: In this position, the user arm is in front of the body and the user is able to look at the watch dial comfortably.
- Non-focus position: In this position, the user is not able to look at the watch dial.

The positive use-case scenarios for the wrist wear wakeup gesture are described in the table below.

T			
Lable 7. Intended nocitive uce-cace	CCANARIAC At	t wrict waar w	akalin taatiira
Table 2: Intended positive use-case	SCEIIAIIUS UI	i wiisi waa w	ancub Icaluic.

Environment	Scenario	Device initial position	User movement
Outdoor/indoor/train/bus	Walking	Arm swinging/hand in pocket	Lifts and brings the arm in front of the body to be able to comfortably look at the watch dial
Outdoor/indoor	Walking/running/jogging	Arm swinging	Lifts and brings the arm in front of the body to be able to comfortably look at the watch dial
Outdoor/indoor/train/bus	Sitting/standing	Arm is down on side of the bodyhand in pocket Arm is in front of the body	Lifts and brings the arm in front of the body to be able to comfortably look at the watch dial Rolls the wrist to look at the watch dial
Indoor/train	Working with computer	Arm on table or arm rest	Rolls the wrist to look at the watch dial

Reliable functioning of wrist wear wakeup is dependent on the sensor placement in the user system. Implementation of the feature assumes that the sensor co-ordinate frame is in alignment with the end-device/system co-ordinate frame. The depiction of assumed default device/system co-ordinate frame and required relative placement of the sensor is shown in the figure in the "Axes remapping for interrupt features" section. Refer to the section on axes remapping to apply the correct remapping, if required.

Configuration settings

<u>FEATURES IN.wrist wear wakeup.settings.enable</u> – enables/disables the wrist wear wakeup feature.

1.4 Tap detector

Tap detector realizes the detection of the user interaction of tapping on the surface of the device. The detected taps on the device depending on spread over time are classified as single-tap or double-tap gesture events. Detection of tap is performed using acceleration signal input from one of the sensing axis of the sensor. The default axis used is set to z-axis. If the direction of the tap is different from z-axis, appropriate axes remapping needs to be applied. Refer to the section on axis remapping.

Single-tap and double-tap gesture detection are implemented as mutually exclusive events i.e. double-tap on the device does not report a single-tap event. Double-tap and single-tap events are mapped on to dedicated interrupt lines, as shown in Register (0x1C) INT_STATUS_0.

Timing diagram for single-tap:

When a single-tap gesture is performed, the single-tap event is reported with a delay of 300ms. The delay in reporting is the confirmation time to ensure that there is no tap in the vicinity. If a second tap is detected within 300ms from the first tap, the probable single-tap event is nullified and double-tap events are output. On reporting a gesture event by the feature, gesture detection is inherently suspended for 300ms.

Timing diagram for double-tap:

How to perform the gesture ideally:

- 1. Tap on the surface of the device using one finger, slightly harder than just touching.
- 2. Tap again immediately, if "Double-tap" gesture was intended.
- 3. Wait for 300ms before performing the next gesture.

Configuration settings- Double-tap

- 1. FEATURES IN.double-tap.settings.enable Enable detection of double-tap gesture.
- 2. <u>FEATURES IN.double-tap.settings.sensitivity</u> Configure detection sensitivity, the range goes from 0 (high sensitive) to 7 (low sensitive).

Configuration settings- Single-tap

- 1. <u>FEATURES_IN.single-tap.settings.enable</u> Enable single-tap.
- 2. <u>FEATURES_IN.single-tap.settings.sensitivity</u> Configure detection sensitivity. The range goes from 0 (high sensitive) to 7 (low sensitive).

1.5 Any-motion/no-motion detection

Any-motion detection

The any-motion detection uses the slope between two acceleration signal samples to detect changes in motion. The feature is enabled by setting at least one of the following flags:

<u>FEATURES IN.any motion.settings 2.x en, FEATURES IN.any motion.settings 2.y en</u> and <u>FEATURES IN.any motion.settings 2.z en, respectively for each axis.</u>

It generates an interrupt when the absolute value of the slope exceeds the configurable FEATURES_IN.any_motion.settings_1.threshold for consecutive FEATURES_IN.any_motion.settings_2.duration samples.

The slope is computed between the current acceleration sample and the reference sample. The reference sample is updated when the any-motion interrupt is triggered. The interrupt is reset as soon as the slope falls below the <u>FEATURES IN.any motion.setings 1.threshold</u>.

Modifications reserved | Data subject to change without notice

Configuration settings:

- 1. FEATURES_IN.any_motion.settings_1.threshold the slope threshold.
- 2. <u>FEATURES IN.any motion.settings 2.duration</u> the number of consecutive data points for which the threshold condition must be respected, for interrupt assertion.
- 3. <u>FEATURES_IN.any_motion.settings_2.x_en</u> indicates if this feature is enabled for x axis.
- 4. FEATURES IN.any motion.settings 2.y en indicates if this feature is enabled for y axis.
- 5. FEATURES_IN.any_motion.settings_2.z_en -indicates if this feature is enabled for z axis.

No-motion detection

The no-motion detection uses the slope between two consecutive acceleration signal samples to detect static state of the device. The interrupt is enabled by setting at least one of the following flags: <u>FEATURES IN.no motion.settings 2.x en</u>, <u>FEATURES IN.no motion.settings 2.y en</u> and <u>FEATURES IN.no motion.settings 2.z en</u>, respectively for each axis.

No-motion interrupt is triggered when the slope on all selected axis remains smaller than a configurable duration configured by <u>FEATURES_IN.no_motion.settings_1.threshold</u>. The signals and timings relevant to the no-motion interrupt functionality are depicted in the figure below.

Signal timings No-motion interrupt

Register <u>FEATURES IN.no motion.settings 2.duration</u> defines the number of consecutive slope data points of the selected axis which must exceed the threshold for an interrupt to be asserted.

Configuration settings:

- 1. FEATURES IN.no motion.settings 1.threshold the slope threshold.
- 2. <u>FEATURES_IN.no_motion.settings_2.duration</u> the number of consecutive data points for which the threshold condition must be respected, for interrupt assertion.
- 3. <u>FEATURES_IN.no_motion.settings_2.x_en</u> indicates if this feature is enabled for x axis.
- 4. <u>FEATURES_IN.no_motion.settings_2.y_en</u> indicates if this feature is enabled for y axis.
- 5. <u>FEATURES_IN.no_motion.settings_2.z_en</u> -indicates if this feature is enabled for z axis.

2. Register description

2.1 General remarks

Registers can be read and written in all power configurations with the exception of <u>FEATURES IN</u> and <u>FIFO_DATA</u> which need <u>PWR_CONF.adv_power_save</u> set to 0b0.

2.2 Register map

	read/write		rea	read only write only reserved						
Register	Register	Default								ID:
Address	Name	Value	7	6	5	4	3	2	1	0
0x7E	CMD	0x00		<u> </u>		cr	nd			
0x7D	PWR_CT RL	0x00			reserved			acc_en	reserved	aux_en
0x7C	PWR_C ONF	0x03			res	erved			fifo_self_ wakeup	adv_pow er_save
0x7B	-	1				rese	rved			
	-	ı				rese	rved			
0x74	-	-				rese	rved			
0x73	<u>OFFSET</u> <u>2</u>	0x00				off_a	cc_z			
0x72	<u>OFFSET</u> <u>1</u>	0x00				off_a	cc_y			
0x71	<u>OFFSET</u> <u>0</u>	0x00		off_acc_x						
0x70	NV CON <u>F</u>	0x00		reserved acc_off_ i2c_wdt_ en en					i2c_wdt_ sel	spi_en
0x6F	-	-				rese	rved			
0x6E	-	-				rese	rved			
0x6D	ACC_SE LF_TES T	0x00		rese	erved		acc_self_ test_amp	acc_self_ test_sign	reserved	acc_self_ test_en
0x6C	-	ı				rese	rved			
0x6B	IF_CON <u>F</u>	0x00		reserved		if_mode		reserved		spi3
0x6A	NVM_C ONF	0x00			res	erved			nvm_pro g_en	reserved
0x69	-	ı				rese	rved			
	-	-				rese	rved			
0x60	-	-				rese	rved			
0x5F	INTERN AL ERR OR	0x00		reserved int_err_2					int_err_1	reserved
0x5E	FEATUR ES IN	0x00		features_in						
0x5D	-	-				rese	rved			
	-	-				rese	rved			

0x5A	-	-		reserved							
0x59	INIT_CT RL	0x90		init_ctrl							
0x58	INT_MA P_DATA	0x00	reserved	reserved int2_drdy int2_fwm int2_ffull res				int1_drdy	int1_fwm	int1_ffull	
0x57	INT2_MA P	0x00	error_int _out	no_motio n_out	any_moti on_out	double_t	wrist_we ar_wake up_out	activity_t ype_out	step_cou nter_out	single_ta p_out	
0x56	INT1_MA P	0x00	error_int _out	error_int				activity_t ype_out	_counter _out	single_ta p_out	
0x55	INT_LAT CH	0x00				reserved				int_latch	
0x54	INT2_IO _CTRL	0x00		reserved		input_en	output_e n	od	lvl	edge_ctrl	
0x53	INT1_IO _CTRL	0x00		reserved		input_en	output_e n	od	lvl	edge_ctrl	
0x52	-	-				rese	rved				
	-	-				rese	rved				
0x50	-	=				rese	rved				
0x4F	AUX_W R_DATA	0x02		write_data							
0x4E	AUX W R ADDR	0x4C		write_addr							
0x4D	AUX_RD _ADDR	0x42				read_	_addr				
0x4C	AUX IF CONF	0x83	aux_man ual_en			reserved			aux_rc	I_burst	
0x4B	AUX_DE V_ID	0x20			i2	c_device_ad	dr			reserved	
0x4A	-	-				rese	rved				
0x49	FIFO C ONFIG 1	0x10	reserved	fifo_acc_ en	fifo_aux_ en	fifo_head er_en	fifo_tag_i nt1_en	fifo_tag_i nt2_en	rese	rved	
0x48	FIFO_C ONFIG 0	0x02			rese	rved			fifo_time _en	fifo_stop _on_full	
0x47	FIFO_W TM_1	0x02		reserved			fifo_v	water_mark_	12_8		
0x46	FIFO_W TM_0	0x00				fifo_water_	_mark_7_0				
0x45	FIFO_D OWNS	0x80	acc_fifo_ filt_data	acc tito downs reserved							
0x44	AUX CO NF	0x46	aux_offset aux_odr								
0x43	-	-				rese	rved				
0x42	-	-		reserved							
0x41	ACC_RA NGE	0×01			rese	rved			acc_i	ange	

0x40	ACC_CO NF	0xA8	acc_perf _mode	acc bwp acc odr					_odr		
0x3F	-	-	_	reserved							
	-	-		reserved							
0x2B	-	-				rese	rved				
0x2A	INTERN AL STAT US	0x00	odr_high _error	map_err message							
0x29	-	-				rese	rved				
0x28	-	-				rese	rved				
0x27	ACTIVIT Y TYPE	0x00			rese	rved			activity_	type_out	
0x26	FIFO_DA TA	0x00				fifo_	data				
0x25	FIFO LE NGTH 1	0x00	rese	rved			fifo_byte_co	ounter_13_8			
0x24	FIFO_LE NGTH_0	0x00				fifo_byte_c	ounter_7_0				
0x23	-	-				rese	rved				
0x22	TEMPER ATURE	0x00				tempe	erature				
0x21	STEP_C OUNTER	0x00		step_counter_out_3							
0x20	STEP_C OUNTER _2	0x00		step_counter_out_2							
0x1F	STEP_C OUNTER _1	0x00				step_cour	nter_out_1				
0x1E	STEP_C OUNTER _0	0x00				step_cour	nter_out_0				
0x1D	INT_STA TUS_1	0x00	acc_drdy _int	reserved	aux_drdy _int		reserved		fwm_int	ffull_int	
0x1C	INT_STA TUS_0	0x00	error_int _out	no_motio n_out	any_moti on_out	double_t ap_out	wrist_we ar_wake up_out	activity_t ype_out	step_cou nter_out	single_ta p_out	
0x1B	<u>EVENT</u>	0x01				reserved				por_dete cted	
0x1A	SENSOR TIME_2	0x00				sensor_tir	me_23_16				
0x19	SENSOR TIME_1	0x00				sensor_ti	me_15_8				
0x18	SENSOR TIME 0	0x00		sensor_time_7_0							
0x17	DATA_13	0x00				acc_z	_11_4				
0x16	DATA_12	0x00		acc_z	z_3_0			rese	rved		
0x15	<u>DATA_11</u>	0x00				acc_y	_11_4				
0x14	<u>DATA_10</u>	0x00		acc_y	/_3_0			rese	rved		

0x13	DATA_9	0x00		acc_x_11_4						
0x12	DATA_8	0x00		acc_x_3_0 rese					rved	
0x11	DATA_7	0x00				aux_r	_11_4			
0x10	DATA_6	0x00		aux_	r_3_0			rese	rved	
0x0F	DATA_5	0x00				aux_z	_11_4			
0x0E	DATA_4	0x00		aux_:	z_3_0			rese	rved	
0x0D	DATA_3	0x00				aux_y	_11_4			
0x0C	DATA_2	0x00		aux_y	y_3_0			rese	rved	
0x0B	DATA_1	0x00				aux_x	_11_4			
0x0A	DATA_0	0x00		aux_x	x_3_0			rese	rved	
0x09	-	-				rese	rved			
•••	-	-				rese	rved			
0x04	-	-				rese	rved			
0x03	STATUS	0x10	drdy_acc	reserved	drdy_aux	cmd_rdy	reserved	aux_man _op	rese	rved
0x02	ERR_RE G	0x00	aux_err	fifo_err	reserved				fatal_err	
0x01	-	-		reserved						
0x00	CHIP_ID	0x13	chip_id							

FEATURES_IN

Register Address	Register Name	Default Value	7	6	5	4	3	2	1	0
0x5E: 0x45	general settings. axes re mapping[1]	0x00				reserved				map_z_a xis_sign
0x5E: 0x44	general settings. axes_re mapping[0]	0x88	map_	z_axis	map_y_a xis_sign	map_\	y_axis	map_x_a xis_sign	map_	x_axis
0x5E: 0x43	general settings.c onfig_id[1]	0x00		identification						
0x5E: 0x42	general settings.c onfig_id[0]	0x00		identification						
0x5E: 0x41	wrist_we ar_wake up.settin gs[1]	0x00		reserved						
0x5E: 0x40	wrist we ar wake	0x00				reserved				enable

	1								
	up.settin								
	gs[0] double_t								
0x5E:	ap.settin	0x00	reserved						
0x3F	gs[1]								
0.55	double_t			1					
0x5E: 0x3E	ap.settin	0x06	rese	erved			sensitivity		enable
UXSE	gs[0]								
0x5E:	single_ta								
0x3D	p.setting	0x00			rese	rved			
	<u>s[1]</u>								
0x5E:	single_ta p.setting	0x06	rese	erved			sensitivity		enable
0x3C	<u>s[0]</u>	0.00	1636	a veu			Serisitivity		Chable
	step_cou								
0x5E:	nter.setti	0.00		en_activit	en_count	en_detec	reset_co		
0x3B	ngs_26[1	0x00	reserved	у	er	tor	unter	waterma	ark_level
	1								
	step_cou								
0x5E:	nter.setti	0x00			waterma	ark_level			
0x3A	ngs 26[0		_						
	<u>I</u> step_cou								
0x5E:	nter.setti								
0x39	ngs_25[1	0x00	param_25						
	1								
	step_cou								
0x5E:	nter.setti	0x0E			narai	m_25			
0x38	ngs_25[0	OXOL			para	20			
	1								
0	step_cou								
0x5E: 0x37	nter.setti ngs 24[1	0x00			para	m_24			
0.37	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
	step_cou								
0x5E:	nter.setti	0.01				04			
0x36	ngs_24[0	0x01			para	m_24			
	1								
	step_cou								
0x5E:	nter.setti	0x00			para	m_23			
0x35	ngs 23[1								
	step_cou								
0x5E:	nter.setti								
0x34	ngs_23[0	0x03			para	m_23			
	1								
	step_cou								
0x5E:	nter.setti	0x00			nara	m_22			
0x33	ngs_22[1	0.00			para	22			
	1								

0x5E: 0x32	step_cou nter.setti ngs_22[0	0x01	param_22
0x5E: 0x31	step_cou nter.setti ngs_21[1	0x01	param_21
0x5E: 0x30	step_cou nter.setti ngs_21[0	0x00	param_21
0x5E: 0x2F	step_cou nter.setti ngs_20[1	0x3C	param_20
0x5E: 0x2E	step_cou nter.setti ngs_20[0	0xF0	param_20
0x5E: 0x2D	step_cou nter.setti ngs_19[1	0x00	param_19
0x5E: 0x2C	step_cou nter.setti ngs_19[0	0x0C	param_19
0x5E: 0x2B	step_cou nter.setti ngs_18[1	0x00	param_18
0x5E: 0x2A	step_cou nter.setti ngs_18[0	0x01	param_18
0x5E: 0x29	step_cou nter.setti ngs_17[1	0x00	param_17
0x5E: 0x28	step_cou nter.setti ngs_17[0	0xA0	param_17
0x5E: 0x27	step_cou nter.setti ngs_16[1	0x00	param_16
0x5E: 0x26	step cou nter.setti	0x96	param_16

	1		
	ngs 16[0		
0x5E: 0x25	step cou nter.setti ngs 15[1	0x00	param_15
0x5E: 0x24	step cou nter.setti ngs 15[0	0x19	param_15
0x5E: 0x23	step cou nter.setti ngs 14[1	0x00	param_14
0x5E: 0x22	step_cou nter.setti ngs_14[0	0x27	param_14
0x5E: 0x21	step cou nter.setti ngs 13[1	0x00	param_13
0x5E: 0x20	step cou nter.setti ngs 13[0	0x01	param_13
0x5E: 0x1F	step cou nter.setti ngs 12[1	0x46	param_12
0x5E: 0x1E	step_cou nter.setti ngs_12[0	0x0C	param_12
0x5E: 0x1D	step_cou nter.setti ngs_11[1	0xE6	param_11
0x5E: 0x1C	step cou nter.setti ngs 11[0	0xEC	param_11
0x5E: 0x1B	step_cou nter.setti ngs_10[1	0x04	param_10
0x5E: 0x1A	step_cou nter.setti ngs_10[0	0xC3	param_10

0x5E: 0x19	step_cou nter.setti ngs_9[1]	0x09	param_9
0x5E: 0x18	step cou nter.setti ngs 9[0]	0x85	param_9
0x5E: 0x17	step_cou nter.setti ngs_8[1]	0x04	param_8
0x5E: 0x16	step_cou nter.setti ngs_8[0]	0xC3	param_8
0x5E: 0x15	step cou nter.setti ngs 7[1]	0x6C	param_7
0x5E: 0x14	step cou nter.setti ngs 7[0]	0xCD	param_7
0x5E: 0x13	step cou nter.setti ngs 6[1]	0x7B	param_6
0x5E: 0x12	step cou nter.setti ngs 6[0]	0x3F	param_6
0x5E: 0x11	step_cou nter.setti ngs_5[1]	0x00	param_5
0x5E: 0x10	step cou nter.setti ngs 5[0]	0x04	param_5
0x5E: 0x0F	step_cou nter.setti ngs_4[1]	0×7A	param_4
0x5E: 0x0E	step cou nter.setti ngs 4[0]	0xDB	param_4
0x5E: 0x0D	step_cou nter.setti ngs_3[1]	0x01	param_3
0x5E: 0x0C	step cou nter.setti ngs 3[0]	0x3B	param_3
0x5E: 0x0B	step_cou nter.setti ngs_2[1]	0x7B	param_2
0x5E: 0x0A	step_cou nter.setti ngs_2[0]	0xD4	param_2

0x5E: 0x09	step_cou nter.setti ngs_1[1]	0x01				param_1	
0x5E: 0x08	step_cou nter.setti ngs_1[0]	0x2D				param_1	
0x5E: 0x07	no motio n.setting s_2[1]	0x00	z_en	z_en y_en x_en duration			
0x5E: 0x06	no motio n.setting s_2[0]	0x05				duration	
0x5E: 0x05	no motio n.setting s_1[1]	0x00	reserved threshold			threshold	
0x5E: 0x04	no motio n.setting s 1[0]	0xAA				threshold	
0x5E: 0x03	any moti on.settin gs 2[1]	0x00	z_en	y_en	x_en		duration
0x5E: 0x02	any moti on.settin gs 2[0]	0x05				duration	
0x5E: 0x01	any moti on.settin gs 1[1]	0x00	reserved threshold				
0x5E: 0x00	any moti on.settin gs 1[0]	0xAA				threshold	

Register (0x00) CHIP_ID

DESCRIPTION: Chip identification code RESET: See the datasheet of your product

DEFINITION (Go to register map):

Name	Register (0x0	Register (0x00) CHIP_ID					
Bit	7	6	5		4		
Read/Write	R	R	R	}	R		
Reset Value							
Content		chip_id					
Bit	3	2	1		0		
Read/Write	R	R	R	}	R		
Reset Value							
Content		chip_id					

chip_id: Chip identification code of your product (please see the datasheet)

Register (0x02) ERR_REG

DESCRIPTION: Reports sensor error conditions

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x02) ERR_REG						
Bit	7	6	5	4			
Read/Write	R	R	n/a	R			
Reset Value	0	0	0	0			
Content	aux_err	fifo_err	reserved	error_code			
Bit	3	2	1	0			
Read/Write	R	R	R	R			
Reset Value	0	0	0	0			
Content	error	_code	cmd_err	fatal_err			

fatal_err: Fatal Error, chip is not in operational state (Boot-, power-system). This flag will be

reset only by power-on reset or soft reset.

cmd_err: Command execution failed. error_code: Error codes for persistent errors

error_code		
0x00	no_error	no error is reported
0x01	acc_err	error in Register ACC_CONF

fifo_err: Error in FIFO detected: Input data was discarded in stream mode. This flag will be

reset when read.

aux_err: Error in I2C-Master detected. This flag will be reset when read.

Register (0x03) STATUS

DESCRIPTION: Sensor status flags

RESET: 0x10

DEFINITION (Go to register map):

Name	Register (0x03) STATUS						
Bit	7	6	5	4			
Read/Write	R	n/a	R	R			
Reset Value	0	0	0	1			
Content	drdy_acc	reserved	drdy_aux	cmd_rdy			
Bit	3	2	1	0			
Read/Write	n/a	R	n/a	n/a			
Reset Value	0	0	0	0			
Content	reserved	aux_man_op	reserved				

aux_man_op: '1' ('0') indicate a (no) manual auxiliary interface operation is ongoing.

cmd_rdy: CMD decoder status. `0' -> Command in progress `1' -> Command decoder is ready

to accept a new command.

drdy_aux: Data ready for auxiliary sensor. It is reset when one auxiliary DATA register is read out. drdy_acc: Data ready for accelerometer. It is reset when one accelerometer DATA register is

read out.

Register (0x0A) DATA_0

DESCRIPTION: AUX_X(LSB)

RESET: 0x00

Name	Register (0	Register (0x0A) DATA_0						
Bit	7	6	5	4				
Read/Write	R	R	R	R				
Reset Value	0	0	0	0				
Content			aux_x_3_0					
Bit	3	2	1	0				
Read/Write	n/a	n/a	n/a	n/a				
Reset Value	0	0	0	0				
Content		reserved						

Register (0x0B) DATA_1

DESCRIPTION: AUX_X(MSB)

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x0B) DATA_1						
Bit	7	6	5	4			
Read/Write	R	R	R	R			
Reset Value	0	0	0	0			
Content	aux_x_11_4						
Bit	3	2	1	0			
Read/Write	R	R	R	R			
Reset Value	0	0	0	0			
Content	aux_x_11_4						

Register (0x0C) DATA_2

DESCRIPTION: AUX_Y(LSB)

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x0C) DATA_2				
Bit	7	6	5	4	
Read/Write	R	R	R	R	
Reset Value	0	0	0	0	
Content		aux_y_3_0			
Bit	3	2	1	0	
Read/Write	n/a	n/a	n/a	n/a	
Reset Value	0	0	0	0	
Content		reserved			

Register (0x0D) DATA_3

DESCRIPTION: AUX_Y(MSB)

RESET: 0x00

Name	Register (0	Register (0x0D) DATA_3			
Bit	7	6	5	4	
Read/Write	R	R	R	R	
Reset Value	0	0	0	0	
Content		aux_y_11_4			
Bit	3	2	1	0	
Read/Write	R	R	R	R	
Reset Value	0	0	0	0	
Content		aux_y_11_4			

Register (0x0E) DATA_4

DESCRIPTION: AUX_Z(LSB)

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0	Register (0x0E) DATA_4			
Bit	7	6	5	4	
Read/Write	R	R	R	R	
Reset Value	0	0	0	0	
Content			aux_z_3_0		
Bit	3	2	1	0	
Read/Write	n/a	n/a	n/a	n/a	
Reset Value	0	0	0	0	
Content		reserved			

Register (0x0F) DATA_5

DESCRIPTION: AUX_Z(MSB)

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x0F) DATA_5			
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	0	0	0	0
Content	aux_z_11_4			
Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	0	0	0	0
Content	aux_z_11_4			

Register (0x10) DATA_6

DESCRIPTION: AUX_R(LSB)

RESET: 0x00

Name	Register (0x10) DATA_6				
Bit	7	6	5	4	
Read/Write	R	R	R	R	
Reset Value	0	0	0	0	
Content		aux_r_3_0			
Bit	3	2	1	0	
Read/Write	n/a	n/a	n/a	n/a	
Reset Value	0	0	0	0	
Content		rese	erved		

Register (0x11) DATA_7

DESCRIPTION: AUX_R(MSB)

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x11) DATA_7			
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	0	0	0	0
Content	aux_r_11_4			
Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	0	0	0	0
Content	aux_r_11_4			

Register (0x12) DATA_8

DESCRIPTION: ACC_X(LSB)

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x12) DATA_8			
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	0	0	0	0
Content	acc_x_3_0			
Bit	3	2	1	0
Read/Write	n/a	n/a	n/a	n/a
Reset Value	0	0	0	0
Content		rese	rved	

Register (0x13) DATA_9

DESCRIPTION: ACC_X(MSB)

RESET: 0x00

Name	Register (0	Register (0x13) DATA_9			
Bit	7	6	5	4	
Read/Write	R	R	R	R	
Reset Value	0	0	0	0	
Content			acc_x_11_4		
Bit	3	2	1	0	
Read/Write	R	R	R	R	
Reset Value	0	0	0	0	
Content		acc_x_11_4			

Register (0x14) DATA_10

DESCRIPTION: ACC_Y(LSB)

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x14) DATA_10			
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	0	0	0	0
Content	acc_y_3_0			
Bit	3	2	1	0
Read/Write	n/a	n/a	n/a	n/a
Reset Value	0	0	0	0
Content		rese	erved	

Register (0x15) DATA_11

DESCRIPTION: ACC_Y(MSB)

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x15) DATA_11			
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	0	0	0	0
Content	acc_y_11_4			
Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	0	0	0	0
Content	acc_y_11_4			

Register (0x16) DATA_12

DESCRIPTION: ACC_Z(LSB)

RESET: 0x00

Name	Register (0x16) DATA_12			
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	0	0	0	0
Content		acc_z	z_3_0	
Bit	3	2	1	0
Read/Write	n/a	n/a	n/a	n/a
Reset Value	0	0	0	0
Content		rese	erved	

Register (0x17) DATA_13

DESCRIPTION: ACC_Z(MSB)

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x17) DA	Register (0x17) DATA_13			
Bit	7	6	5	4	
Read/Write	R	R	R	R	
Reset Value	0	0	0	0	
Content		acc_z_11_4			
Bit	3	2	1	0	
Read/Write	R	R	R	R	
Reset Value	0	0	0	0	
Content		acc_z	_11_4		

Register (0x18) SENSORTIME_0

DESCRIPTION: Sensor time <7:0>

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x18) SENSORTIME_0						
Bit	7	6	5	4			
Read/Write	R	R	R	R			
Reset Value	0	0 0 0					
Content	sensor_time_7_0						
Bit	3	2	1	0			
Read/Write	R	R	R	R			
Reset Value	0	0	0	0			
Content	sensor_time_7_0						

sensor_time_7_0: Sensor time <7:0> in units of 39.0625 us.

Register (0x19) SENSORTIME_1

DESCRIPTION: Sensor time <15:8>

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x19) SENSORTIME_1						
Bit	7	6	5	4			
Read/Write	R	R	R	R			
Reset Value	0	0 0 0					
Content	sensor_time_15_8						
Bit	3	2	1	0			
Read/Write	R	R	R	R			
Reset Value	0	0	0	0			
Content	sensor_time_15_8						

sensor_time_15_8: Sensor time <15:8> in units of 10 ms.

Register (0x1A) SENSORTIME_2

DESCRIPTION: Sensor time <23:16>

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x1A) SENSORTIME_2						
Bit	7	6	5	4			
Read/Write	R	R	R	R			
Reset Value	0	0 0 0					
Content	sensor_time_23_16						
Bit	3	2	1	0			
Read/Write	R	R	R	R			
Reset Value	0	0	0	0			
Content	sensor_time_23_16						

sensor_time_23_16: Sensor time <23:16> in units of 2.56 s.

Register (0x1B) EVENT

DESCRIPTION: Sensor status flags

RESET: 0x01

DEFINITION (Go to register map):

Name	Register (0x1B) EVENT						
Bit	7	6	5	4			
Read/Write	n/a	n/a	n/a	n/a			
Reset Value	0	0 0 0 0					
Content	reserved						
Bit	3	2	1	0			
Read/Write	n/a	n/a	n/a	R			
Reset Value	0	0	0	1			
Content	reserved			por_detected			

por_detected: '1' after device power up or soft reset. Clear-on-read

Register (0x1C) INT_STATUS_0

DESCRIPTION: Interrupt/Feature Status. Will be cleared on read.

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x1C) IN1	Register (0x1C) INT_STATUS_0			
Bit	7	6	5	4	
Read/Write	R	R	R	n/a	
Reset Value	0	0	0	0	
Content	error_int_out	no_motion_out	any_motion_out	double_tap_out	
Bit	3	2	1	0	
Read/Write	R	R	R	n/a	
Reset Value	0	0	0	0	
Content	wrist_wear_wakeu p_out	activity_type_out	step_counter_out	single_tap_out	

single_tap_out: Single-tap output

step_counter_out: Step-counter watermark or Step-detector output.
activity_type_out: Step counter activity output (Running, Walking, Still)

wrist_wear_wakeup_out: Wrist wear wakeup output

double_tap_out: Double-tap output

any_motion_out:

no_motion_out:

Any-motion detection output

No-motion detection output

Error_int_out:

Error interrupt output

Register (0x1D) INT_STATUS_1

DESCRIPTION: Interrupt Status. Will be cleared on read.

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x1D) INT_STATUS_1			
Bit	7	6	5	4
Read/Write	R	n/a	R	n/a
Reset Value	0	0	0	0
Content	acc_drdy_int	reserved	aux_drdy_int	reserved
Bit	3	2	1	0
Read/Write	n/a	n/a	R	R
Reset Value	0	0	0	0
Content	reserved		fwm_int	ffull_int

ffull_int: FIFO Full Interrupt

fwm_int: FIFO Watermark Interrupt

aux_drdy_int: Auxiliary sensor data ready interruptacc_drdy_int: Accelerometer data ready interrupt

Register (0x1E) STEP_COUNTER_0

DESCRIPTION: Step counting value byte-0

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x1E) STEP_COUNTER_0						
Bit	7	6	5	4			
Read/Write	R	R	R	R			
Reset Value	0	0 0 0					
Content	step_counter_out_0						
Bit	3	2	1	0			
Read/Write	R	R	R	R			
Reset Value	0	0	0	0			
Content	step_counter_out_0						

step_counter_out_0: Step counting value byte-0 (least significant byte), unit is step.

Register (0x1F) STEP_COUNTER_1

DESCRIPTION: Step counting value byte-1

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x1F) STEP_COUNTER_1						
Bit	7	7 6 5 4					
Read/Write	R	R R R					
Reset Value	0	0	0	0			
Content	step_counter_out_1						
Bit	3	2	1	0			
Read/Write	R	R R R					
Reset Value	0 0 0						
Content	step_counter_out_1						

step_counter_out_1: Step counting value byte-1

Register (0x20) STEP_COUNTER_2

DESCRIPTION: Step counting value byte-2

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x20) STEP_COUNTER_2				
Bit	7	6	5	4	
Read/Write	R	R	R	R	
Reset Value	0	0	0	0	
Content	step_counter_out_2				
Bit	3	2	1	0	
Read/Write	R	R R R			
Reset Value	0 0 0				
Content	step_counter_out_2				

step_counter_out_2: Step counting value byte-2

Register (0x21) STEP_COUNTER_3

DESCRIPTION: Step counting value byte-3

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x21) STEP_COUNTER_3				
Bit	7	6	5	4	
Read/Write	R	R	R	R	
Reset Value	0	0	0	0	
Content	step_counter_out_3				
Bit	3	2	1	0	
Read/Write	R	R R R			
Reset Value	0	0	0	0	
Content	step_counter_out_3				

step_counter_out_3: Step counting value byte-3 (most significant byte)

Register (0x22) TEMPERATURE

DESCRIPTION: Contains the temperature value of the sensor

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x22) TEMPERATURE						
Bit	7	7 6 5 4					
Read/Write	R	R R R					
Reset Value	0 0 0						
Content	temperature						
Bit	3	3 2 1 0					
Read/Write	R	R R R					
Reset Value	0 0 0						
Content	temperature						

temperature: Temperature value in two's complement representation in unit of 1 Kelvin: 0x00 corresponds to 23 degrees Celsius.

Register (0x24) FIFO_LENGTH_0

DESCRIPTION: FIFO byte count register (LSB)

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x24) FIFO_LENGTH_0				
Bit	7	6	5	4	
Read/Write	R	R	R	R	
Reset Value	0	0	0	0	
Content	fifo_byte_counter_7_0				
Bit	3	2	1	0	
Read/Write	R	R R R			
Reset Value	0 0 0				
Content	fifo_byte_counter_7_0				

fifo_byte_counter_7_0: Current fill level of FIFO buffer (unit: byte).

Register (0x25) FIFO_LENGTH_1

DESCRIPTION: FIFO byte count register (MSB)

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x25) FIFO_LENGTH_1			
Bit	7	6	5	4
Read/Write	n/a	n/a	R	R
Reset Value	0	0	0	0
Content	reserved		fifo_byte_counter_13_8	
Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	0 0 0			
Content	fifo_byte_counter_13_8			

fifo_byte_counter_13_8:

FIFO byte counter bits 13...8.

Register (0x26) FIFO_DATA

DESCRIPTION: FIFO data output register

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x26) FIFO_DATA				
Bit	7	6	5	4	
Read/Write	R	R	R	R	
Reset Value	0	0	0	0	
Content	fifo_data				
Bit	3	2	1	0	
Read/Write	R	R R R			
Reset Value	0	0	0	0	
Content	fifo_data				

fifo_data: FIFO read data, for burst read.

Register (0x27) ACTIVITY_TYPE

DESCRIPTION: Step counter activity output (Running, Walking, Still)

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x27) ACTIVITY_TYPE				
Bit	7	6	5	4	
Read/Write	n/a	n/a	n/a	n/a	
Reset Value	0	0	0	0	
Content	reserved				
Bit	3	2	1	0	
Read/Write	n/a	n/a n/a R R			
Reset Value	0	0	0	0	
Content	rese	rved	activity_	type_out	

activity_type_out: Step counter activity output (Running, Walking, Still)

activity_type_out		
0x00	still	user not moving
0x01	walking	user walking
0x02	running	user running
0x03	unknown	unknown state

Register (0x2A) INTERNAL_STATUS

DESCRIPTION: Error bits and message indicating internal status

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x2A) IN	Register (0x2A) INTERNAL_STATUS			
Bit	7	6	5	4	
Read/Write	R	R	R	R	
Reset Value	0	0	0	0	
Content	odr_high_error	odr_50hz_error	axes_remap_error	message	
Bit	3	2	1	0	
Read/Write	R	R	R	R	
Reset Value	0	0	0	0	
Content		message			

message: Internal Status Message

message		
0x00	not_init	ASIC is not initialized
0x01	init_ok	ASIC initialized
0x02	init_err	Initialization error
0x03	drv_err	Invalid driver
0x04	sns_stop	Sensor stopped

axes_remap_error: Axes remapped wrongly because a source axis is not assigned to more than

one target axis.

odr_50hz_error: The minimum bandwidth conditions are not respected for the features which

require 50 Hz data.

odr_high_error: The minimum bandwidth conditions are not respected for the single/double-tap

detection.

Register (0x40) ACC_CONF

DESCRIPTION: Set the output data rate, the bandwidth, and the performance mode of the acceleration sensor

RESET: 0xA8

DEFINITION (Go to register map):

Name	Register (0x40) ACC_CONF			
Bit	7	6	5	4
Read/Write	RW	RW	RW	RW
Reset Value	1	0	1	0
Content	acc_perf_mode	acc_bwp		
Bit	3	2	1	0
Read/Write	RW	RW	RW	RW
Reset Value	1	0	0	0
Content	acc_odr			

acc_odr: ODR in Hz. The output data rate is independent of the power mode setting for the sensor, but not all settings are supported in all power modes.

acc_odr		
0x00	reserved	Reserved
0x01	odr_0p78	25/32
0x02	odr_1p5	25/16
0x03	odr_3p1	25/8
0x04	odr_6p25	25/4
0x05	odr_12p5	25/2
0x06	odr_25	25
0x07	odr_50	50
0x08	odr_100	100
0x09	odr_200	200
0x0a	odr_400	400
0x0b	odr_800	800
0x0c	odr_1k6	1600
0x0d	odr_3k2	Reserved
0x0e	odr_6k4	Reserved
0x0f	odr_12k8	Reserved

acc_bwp: Bandwidth parameter, determines filter configuration (acc_perf_mode=1) and averaging for undersampling mode (acc_perf_mode=0)

acc_bwp		
0x00	osr4_avg1	acc_perf_mode = 1 -> OSR4 mode; acc_perf_mode = 0 -> no averaging
0x01	osr2_avg2	<pre>acc_perf_mode = 1 -> OSR2 mode; acc_perf_mode = 0 -> average 2 samples</pre>
0x02	norm_avg4	acc_perf_mode = 1 -> normal mode; acc_perf_mode = 0 -> average 4 samples
0x03	cic_avg8	<pre>acc_perf_mode = 1 -> Reserved; acc_perf_mode = 0 -> average 8 samples</pre>

0x04	res_avg16	<pre>acc_perf_mode = 1 -> Reserved; acc_perf_mode = 0 -> average 16 samples</pre>
0x05	res_avg32	<pre>acc_perf_mode = 1 -> Reserved; acc_perf_mode = 0 -> average 32 samples</pre>
0x06	res_avg64	<pre>acc_perf_mode = 1 -> Reserved; acc_perf_mode = 0 -> average 64 samples</pre>
0x07	res_avg128	<pre>acc_perf_mode = 1 -> Reserved; acc_perf_mode = 0 -> average 128 samples</pre>

acc_perf_mode: Select accelerometer filter performance mode

acc_perf_mode		
0x00	cic_avg	averaging mode.
0x01	cont	continuous filter function.

Register (0x41) ACC_RANGE

DESCRIPTION: Selection of Accelerometer g-range

RESET: 0x01

DEFINITION (Go to register map):

Name	Register (0	Register (0x41) ACC_RANGE			
Bit	7	6	5	4	
Read/Write	n/a	n/a	n/a	n/a	
Reset Value	0	0	0	0	
Content		reserved			
Bit	3	2	1	0	
Read/Write	n/a	n/a	RW	RW	
Reset Value	0	0	0	1	
Content		reserved acc_range			

acc_range: Accelerometer g-range

acc_range		
0x00	range_2g	+/-2g
0x01	range_4g	+/-4g
0x02	range_8g	+/-8g
0x03	range 16g	+/-16g

Register (0x44) AUX_CONF

DESCRIPTION: Set the output data rate of the Auxiliary interface

RESET: 0x46

DEFINITION (Go to register map):

Name	Register (0x44) AUX_CONF			
Bit	7	6	5	4
Read/Write	RW	RW	RW	RW
Reset Value	0	1	0	0
Content		aux_offset		
Bit	3	2	1	0
Read/Write	RW	RW	RW	RW
Reset Value	0	1	1	0
Content	aux_odr			

aux_odr: Select the poll rate for the sensor attached to the Auxiliary interface.

aux_odr		
0x00	reserved	Reserved
0x01	odr_0p78	25/32
0x02	odr_1p5	25/16
0x03	odr_3p1	25/8
0x04	odr_6p25	25/4
0x05	odr_12p5	25/2
0x06	odr_25	25
0x07	odr_50	50
0x08	odr_100	100
0x09	odr_200	200
0x0a	odr_400	400
0x0b	odr_800	800
0x0c	odr_1k6	Reserved
0x0d	odr_3k2	Reserved
0x0e	odr_6k4	Reserved
0x0f	odr_12k8	Reserved

aux_offset: Trigger-readout offset in units of 2.5 ms. If set to zero, the offset is maximum, i.e. after readout a trigger is issued immediately.

Register (0x45) FIFO_DOWNS

DESCRIPTION: Configure Accelerometer downsampling rates for FIFO

RESET: 0x80

DEFINITION (Go to register map):

Name	Register (0x45) FIFO_DOWNS			
Bit	7	6	5	4
Read/Write	RW	RW	RW	RW
Reset Value	1	0	0	0
Content	acc_fifo_filt_data	acc_fifo_downs		
Bit	3	2	1	0
Read/Write	n/a	n/a	n/a	n/a
Reset Value	0	0	0	0
Content	reserved			

acc_fifo_downs: Downsampling for accelerometer data (by 2**acc_fifo_downs)

acc_fifo_filt_data: Select filtered or unfiltered Accelerometer data for FIFO

acc_fifo_filt_data		
0x00	unfiltered	Unfiltered data
0x01	filtered	Filtered data

Register (0x46) FIFO_WTM_0

DESCRIPTION: FIFO Watermark level LSB, unit is byte.

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x46) FIF	Register (0x46) FIFO_WTM_0			
Bit	7	6	5	4	
Read/Write	RW	RW	RW	RW	
Reset Value	0	0	0	0	
Content		fifo_water_mark_7_0			
Bit	3	2	1	0	
Read/Write	RW	RW	RW	RW	
Reset Value	0	0	0	0	
Content		fifo_water_mark_7_0			

Register (0x47) FIFO_WTM_1

DESCRIPTION: FIFO Watermark level MSB

RESET: 0x02

DEFINITION (Go to register map):

Name	Register (0x47) FIFO_WTM_1			
Bit	7	6	5	4
Read/Write	n/a	n/a	n/a	RW
Reset Value	0	0	0	0
Content		reserved		
Bit	3	2	1	0
Read/Write	RW	RW	RW	RW
Reset Value	0	0	1	0
Content		fifo_water_mark_12_8		

Register (0x48) FIFO_CONFIG_0

DESCRIPTION: FIFO frame content configuration

RESET: 0x02

DEFINITION (Go to register map):

Name	Register (0x48) FIFO_CONFIG_0			
Bit	7	6	5	4
Read/Write	n/a	n/a	n/a	n/a
Reset Value	0	0	0	0
Content	reserved			
Bit	3	2	1	0
Read/Write	n/a	n/a	RW	RW
Reset Value	0	0	1	0
Content	reserved		fifo_time_en	fifo_stop_on_full

fifo_stop_on_full: Stop writing samples into FIFO when FIFO is full

fifo_stop_on_full		
0x00	disable	do not stop writing to FIFO when full
0x01	enable	Stop writing into FIFO when full.

fifo_time_en: Return sensortime frame after the last valid data frame

fifo_time_en		
0x00	disable	do not return sensortime frame
0x01	enable	return sensortime frame

Register (0x49) FIFO_CONFIG_1

DESCRIPTION: FIFO frame content configuration

RESET: 0x10

DEFINITION (Go to register map):

Name	Register (0x49) FIF	Register (0x49) FIFO_CONFIG_1		
Bit	7	6	5	4
Read/Write	n/a	RW	RW	RW
Reset Value	0	0	0	1
Content	reserved	fifo_acc_en	fifo_aux_en	fifo_header_en
Bit	3	2	1	0
Read/Write	RW	RW	n/a	n/a
Reset Value	0	0	0	0
Content	fifo_tag_int1_en	fifo_tag_int2_en	rese	erved

fifo_tag_int2_en: FIFO interrupt 2 tag enable

fifo_tag_int2_en		
0x00	disable	Disable tag
0x01	enable	Enable tag

fifo_tag_int1_en: FIFO interrupt 1 tag enable

fifo_tag_int1_en		
0x00	disable	Disable tag
0x01	enable	Enable tag

fifo_header_en: FIFO frame header enable

fifo_header_en		
0x00	disable	No header is stored (output data rate of all enabled sensors need to be identical)
0x01	enable	header is stored

fifo_aux_en: Store Auxiliary data in FIFO (all 3 axes)

fifo_aux_en		
0x00	disable	No Auxiliary data is stored
0x01	enable	Auxiliary data is stored

fifo_acc_en: Store Accelerometer data in FIFO (all 3 axes)

fifo_acc_en		
0x00	disable	No Accelerometer data is stored
0x01	enable	Accelerometer data is stored

Register (0x4B) AUX_DEV_ID

DESCRIPTION: Auxiliary interface slave device address

RESET: 0x20

DEFINITION (Go to register map):

Name	Register (0x4B) AUX_DEV_ID			
Bit	7	6	5	4
Read/Write	RW	RW	RW	RW
Reset Value	0	0	1	0
Content		i2c_device_addr		
Bit	3	2	1	0
Read/Write	RW	RW	RW	n/a
Reset Value	0	0	0	0
Content	i2c_device_addr reserved			

i2c_device_addr:

I2C device address of Auxiliary slave

Register (0x4C) AUX_IF_CONF

DESCRIPTION: Auxiliary interface configuration

RESET: 0x83

DEFINITION (Go to register map):

Name	Register (0x4C) AUX_IF_CONF			
Bit	7	6	5	4
Read/Write	RW	n/a	n/a	n/a
Reset Value	1	0	0	0
Content	aux_manual_en		reserved	
Bit	3	2	1	0
Read/Write	n/a	n/a	RW	RW
Reset Value	0	0	1	1
Content	reserved		aux_rd_burst	

aux_rd_burst: Burst data length (1, 2, 6 and 8 bytes)

aux_rd_burst		
0x00	BL1	Burst length 1
0x01	BL2	Burst length 2
0x02	BL6	Burst length 6
0x03	BL8	Burst length 8

aux_manual_en: Enable auxiliary interface manual mode

aux_manual_en		
0x00	disable	Data mode
0x01	enable	Setup mode

Register (0x4D) AUX_RD_ADDR

DESCRIPTION: Auxiliary interface read register address

RESET: 0x42

DEFINITION (Go to register map):

Name	Register (0x4D) AUX_RD_ADDR			
Bit	7	6	5	4
Read/Write	RW	RW	RW	RW
Reset Value	0	1	0	0
Content	read_addr			
Bit	3	2	1	0
Read/Write	RW	RW	RW	RW
Reset Value	0	0	1	0
Content	read_addr			

read_addr: Address to read

Register (0x4E) AUX_WR_ADDR

DESCRIPTION: Auxiliary interface write register address

RESET: 0x4C

DEFINITION (Go to register map):

Name	Register (0x4E) AUX_WR_ADDR			
Bit	7	6	5	4
Read/Write	RW	RW	RW	RW
Reset Value	0	1	0	0
Content		write_addr		
Bit	3	2	1	0
Read/Write	RW	RW	RW	RW
Reset Value	1	1	0	0
Content	write_addr			

write_addr: Address to write

Register (0x4F) AUX_WR_DATA

DESCRIPTION: Auxiliary interface write data

RESET: 0x02

DEFINITION (Go to register map):

Name	Register (0x4F) AUX_WR_DATA			
Bit	7	6	5	4
Read/Write	RW	RW	RW	RW
Reset Value	0	0	0	0
Content		write_data		
Bit	3	2	1	0
Read/Write	RW	RW	RW	RW
Reset Value	0	0	1	0
Content	write_data			

write_data: Data to write

Register (0x53) INT1_IO_CTRL

DESCRIPTION: Configure the electrical behavior of interrupt pins

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x53) INT1_IO_CTRL			
Bit	7	6	5	4
Read/Write	n/a	n/a	n/a	RW
Reset Value	0	0	0	0
Content		reserved		
Bit	3	2	1	0
Read/Write	RW	RW	RW	RW
Reset Value	0	0	0	0
Content	output_en	od	lvl	edge_ctrl

edge_ctrl: Configure trigger condition of INT1 pin (input)

edge_ctrl		
0x00	level_tr	Level
0x01	edge_tr	Edge

lvl: Configure output level of INT1 pin

lvl		
0x00	active_low	active low
0x01	active_high	active high

od: Configure output behavior of INT1 pin to open drain.

od		
0x00	push_pull	push-pull
0x01	open_drain	open drain

output_en: Output enable for INT1 pin

output_en		
0x00	off	Output disabled
0x01	on	Output enabled

input_en: Input enable for INT1 pin

input_en		
0x00	off	Input disabled
0x01	on	Input enabled

Register (0x54) INT2_IO_CTRL

DESCRIPTION: Configure the electrical behavior of the interrupt pins

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x54) INT2_IO_CTRL			
Bit	7	6	5	4
Read/Write	n/a	n/a	n/a	RW
Reset Value	0	0	0	0
Content		reserved		
Bit	3	2	1	0
Read/Write	RW	RW	RW	RW
Reset Value	0	0	0	0
Content	output_en	od	lvl	edge_ctrl

edge_ctrl: Configure trigger condition of INT2 pin (input)

edge_ctrl		
0x00	level_tr	Level
0x01	edge_tr	Edge

Ivl: Configure output level of INT2 pin

lvl		
0x00	active_low	active low
0x01	active_high	active high

od: Configure output behavior of INT2 pin to open drain

od		
0x00	push_pull	push-pull
0x01	open_drain	open drain

output_en: Output enable for INT2 pin

output_en		
0x00	off	Output disabled
0x01	on	Output enabled

input_en: Input enable for INT2 pin

input_en		
0x00	off	Input disabled
0x01	on	Input enabled

Register (0x55) INT_LATCH

DESCRIPTION: Configure interrupt latch modes

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x5	Register (0x55) INT_LATCH			
Bit	7	6	5	4	
Read/Write	n/a	n/a	n/a	n/a	
Reset Value	0	0	0	0	
Content		reserved			
Bit	3	2	1	0	
Read/Write	n/a	n/a	n/a	RW	
Reset Value	0	0	0	0	
Content		reserved			

int_latch: Latched/non-latched interrupt modes

int_latch		
0x00	none	non latched
0x01	permanent	latched

Register (0x56) INT1_MAP

DESCRIPTION: Map interrupt/feature sources to INT1

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x56) INT1_MAP				
Bit	7	6	5	4	
Read/Write	RW	RW	RW	n/a	
Reset Value	0	0	0	0	
Content	error_int_out	no_motion_out	any_motion_out	double_tap_out	
Bit	3	2	1	0	
Read/Write	RW	RW	RW	n/a	
Reset Value	0	0	0	0	
Content	wrist_wear_wakeu p_out	activity_type_out	step_counter_out	single_tap_out	

single_tap_out: Single-tap output

step_counter_out: Step counter watermark or step detector output activity_type_out: Step counter activity output (Running, Walking, Still)

wrist_wear_wakeup_out: Wrist wear wakeup output

double_tap_out: Double-tap output

any_motion_out:

no_motion_out:

Any-motion detection output

No-motion detection output

Error_int_out:

Error interrupt output

Register (0x57) INT2_MAP

DESCRIPTION: Map interrupt/feature sources to INT2

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x57) INT	Register (0x57) INT2_MAP				
Bit	7	6	5	4		
Read/Write	RW	RW	RW	n/a		
Reset Value	0	0	0	0		
Content	error_int_out	no_motion_out	any_motion_out	double_tap_out		
Bit	3	2	1	0		
Read/Write	RW	RW	RW	n/a		
Reset Value	0	0	0	0		
Content	wrist_wear_wakeu p_out	activity_type_out	step_counter_out	single_tap_out		

single_tap_out: Single-tap output

step_counter_out: Step counter watermark or step detector output.
activity_type_out: Step counter activity output (Running, Walking, Still)

wrist_wear_wakeup_out: Wrist wear wakeup output

double_tap_out: Double-tap output

any_motion_out: Any-motion detection output

no_motion_out: No-motion detection output error_int_out: Error interrupt output

Register (0x58) INT_MAP_DATA

DESCRIPTION: Map interrupt sources to hardware interrupts

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x58) INT	Register (0x58) INT_MAP_DATA				
Bit	7	6	5	4		
Read/Write	n/a	RW	RW	RW		
Reset Value	0	0	0	0		
Content	reserved	int2_drdy	int2_fwm	int2_ffull		
Bit	3	2	1	0		
Read/Write	n/a	RW	RW	RW		
Reset Value	0	0	0	0		
Content	reserved	int1_drdy	int1_fwm	int1_ffull		

int1_ffull: FIFO Full interrupt mapped to INT1

int1_fwm: FIFO Watermark interrupt mapped to INT1 int1_drdy: Data Ready interrupt mapped to INT1 int2_ffull: FIFO Full interrupt mapped to INT2

int2_fwm: FIFO Watermark interrupt mapped to INT2 int2_drdy: Data Ready interrupt mapped to INT2

Register (0x59) INIT_CTRL

DESCRIPTION: Start initialization

RESET: 0x90

DEFINITION (Go to register map):

Name	Register (0x	59) INIT_CTRL			
Bit	7	6	5	4	
Read/Write	RW	RW	RW	RW	
Reset Value	1	0	0	1	
Content		init_ctrl			
Bit	3	2	1	0	
Read/Write	RW	RW	RW	RW	
Reset Value	0	0	0	0	
Content		init_ctrl			

init_ctrl: Commands to start initialization

init_ctrl		
0x00	Load configuration file	Enable the mode for accept configuration file
0x01	Start initialization	Enable sensor features after loading configuration file

Note: The commands should not be used more than once after POR or soft-reset, and the initialization procedures described in chapter 1 should be strictly followed.

Register (0x5E) FEATURES_IN

DESCRIPTION: Feature configuration read/write port

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x5E) FEATURES_IN				
Bit	7	6	5	4	
Read/Write	RW	RW	RW	RW	
Reset Value	0	0	0	0	
Content		features_in			
Bit	3	2	1	0	
Read/Write	RW	RW	RW	RW	
Reset Value	0	0	0	0	
Content	features_in				

features_in: Feature configuration read/write data. Note that the parameters described here is 16-bit, while the address is 8-bit.

Address	Bit	Name	Description	Reset	Access
any_motion					
0x5E: 0x00		settings_1	Any-motion detection general configuration flags - part 1	0x00AA	
	100	threshold	Slope threshold value for Any-motion detection in 5.11g format. Range is 0 to 1g. Default value is 0xAA = 83mg = 0xAA * (1/2^11)mg.	0xAA	RW
0x5E: 0x02		settings_2	Any-motion detection general configuration flags - part 2	0x0005	
	120	duration	Defines the number of consecutive data points for which the threshold condition must be respected, for interrupt assertion. It is expressed in in 50 Hz samples (20 ms). Range is 0 to 163sec. Default value is 5=100ms.	0x5	RW
	13	x_en	Enables the feature on a per-axis basis	0x0	RW
	14	y_en	Enables the feature on a per-axis basis	0x0	RW
	15	z_en	Enables the feature on a per-axis basis	0x0	RW
no_motion					
0x5E: 0x04		settings_1	No-motion detection general configuration flags - part 1	0x00AA	
	100	threshold	Slope threshold value for No-motion detection in 5.11g format. Range is 0 to	0xAA	RW

			1. 5.6 5. 1. 1. 1. 1. 1. 1.		
			1g. Default value is 0xAA = 83mg =		
2 55 2 22		0	0xAA * (1/2^11)mg.	0.0005	
0x5E: 0x06		settings_2	No-motion detection general	0x0005	
	10 0	d order	configuration flags - part 2	٥٦	DW
	120	duration	Defines the number of consecutive data	0x5	RW
			points for which the threshold condition		
			must be respected, for interrupt assertion.		
			It is expressed in in 50 Hz samples (20		
			ms). Range is 0 to 163sec. Default		
			value is 5=100ms.		
	13	x_en	Enables the feature on a per-axis basis	0x0	RW
	14	y_en	Enables the feature on a per-axis basis	0x0	RW
	15	z en	Enables the feature on a per-axis basis	0x0	RW
step_counter		1		1 0.10	1
0x5E: 0x08		settings_1	Step Counter setting	0x012D	
ONOL: ONOC	150	param_1	Step Counter param 1	0x12D	RW
0x5E: 0x0A	130	settings_2	Step Counter setting	0x12D 0x7BD4	1
OXOL. OXOA	150	param_2	Step Counter param 2	0x7BD4	RW
0x5E: 0x0C	100	settings_3	Step Counter setting	0x013B	1144
OAJL. OAGC	150	param_3	Step Counter setting Step Counter param 3	0x013B	RW
0x5E: 0x0E	130	settings_4	Step Counter params Step Counter setting	0x13B 0x7ADB	1100
OXSE: OXOE	150			0x7ADB	RW
0vEE 0v10	150	param_4	Step Counter param 4		I KVV
0x5E: 0x10	15 0	settings_5	Step Counter setting	0x0004	DW
0.55.0.10	150	param_5	Step Counter param 5	0x4	RW
0x5E: 0x12	45.0	settings_6	Step Counter setting	0x7B3F	D)4/
0.55.0.44	150	param_6	Step Counter param 6	0x7B3F	RW
0x5E: 0x14		settings_7	Step Counter setting	0x6CCD	
	150	param_7	Step Counter param 7	0x6CCD	RW
0x5E: 0x16		settings_8	Step Counter setting	0x04C3	
	150	param_8	Step Counter param 8	0x4C3	RW
0x5E: 0x18		settings_9	Step Counter setting	0x0985	
	150	param_9	Step Counter param 9	0x985	RW
0x5E: 0x1A		settings_10	Step Counter setting	0x04C3	
	150	param_10	Step Counter param 10	0x4C3	RW
0x5E: 0x1C		settings_11	Step Counter setting	0xE6EC	
	150	param_11	Step Counter param 11	0xE6EC	RW
0x5E: 0x1E		settings_12	Step Counter setting	0x460C	
	150	param_12	Step Counter param 12	0x460C	RW
0x5E: 0x20		settings_13	Step Counter setting	0x0001	
	150	param_13	Step Counter param 13	0x1	RW
0x5E: 0x22		settings_14	Step Counter setting	0x0027	
	150	param_14	Step Counter param 14	0x27	RW
0x5E: 0x24		settings_15	Step Counter setting	0x0019	
	150	param_15	Step Counter param 15	0x19	RW
0x5E: 0x26		settings_16	Step Counter setting	0x0096	
	150	param_16	Step Counter param 16	0x96	RW
0x5E: 0x28		settings_17	Step Counter setting	0x00A0	
		<u> </u>	<u> </u>		

	150	param_17	Step Counter param 17	0xA0	RW
0x5E: 0x2A		settings_18	Step Counter setting	0x0001	
	150	param_18	Step Counter param 18	0x1	RW
0x5E: 0x2C		settings_19	Step Counter setting	0x000C	
	150	param_19	Step Counter param 19	0xC	RW
0x5E: 0x2E		settings_20	Step Counter setting	0x3CF0	
	150	param_20	Step Counter param 20	0x3CF0	RW
0x5E: 0x30		settings_21	Step Counter setting	0x0100	
	150	param_21	Step Counter param 21	0x100	RW
0x5E: 0x32		settings_22	Step Counter setting 0x0001		
	150	param_22	Step Counter param 22	0x1	RW
0x5E: 0x34		settings_23	Step Counter setting	0x0003	
	150	param_23	Step Counter param 23	0x3	RW
0x5E: 0x36		settings_24	Step Counter setting	0x0001	
	150	param_24	Step Counter param 24	0x1	RW
0x5E: 0x38		settings_25	Step Counter setting	0x000E	
	150	param_25	Step Counter param 25	0xE	RW
0x5E: 0x3A		settings_26	Step Counter and Step Detector Settings	0x0000	
	90	watermark_level	Watermark level; the Step-counter will trigger output every time this number of	0x0	RW
			steps are counted. Holds implicitly a		
			20x factor, so the range is 0 to 20460,		
			with resolution of 20 steps. If 0, the		
			output is disabled.		
	10	reset_counter	Flag to reset the counted steps. This is	0x0	RW
			only interpreted if the step counter is		
			enabled.		
	11	en_detector	Enables the Step Detector.	0x0	RW
	12	en_counter	Enables the Step Counter.	0x0	RW
	13	en_activity	Enables the activity detection (Running, Walking, or Still)	0x0	RW
single_tap					
0x5E: 0x3C		settings	Single-tap general configuration flags	0x0006	
	0	enable	Enables the feature	0x0	RW
	31	sensitivity	Configures single-tap sensitivity, the	0x3	RW
	0	Scrioidivity	range goes from 0 (high sensitive) to 7	O/O	'''
			(low sensitive).		
Double_tap	_				
0x5E: 0x3E		settings	Double-tap general configuration flags	0x0006	
	0	enable	Enables the feature	0x0	RW
	31	sensitivity	Configures single-tap sensitivity, the	0x3	RW
			range goes from 0 (high sensitive) to 7		
			(low sensitive).		
wrist_wear_v	wakeup				
0x5E: 0x40		settings	Wrist wear wakeup configuration flags	0x0000	
	0	enable	Enables the feature	0x0	RW

general_setti	ings T	· · · ·		· ·			T
0x5E: 0x42		config_id	Describe	es configurat	tion identification	0x0000	
	150	identification	Describe	es configurat	tion identification	0x0	R
			code				
0x5E: 0x44		axes_remapping	Describe	s axes rema	apping	0x0088	
	10	map_x_axis	Map the	x axis to de	sired axis.	0x0	RW
			Value	Name	Description		
			0x00	x axis	Map to x-axis		
			0x01	y axis	Map to y-axis		
			0x02	z axis	Map to z-axis		
			0x03	reserved	Reserved		
	2	map_x_axis_sign	Map the	x axis sign t	to the desired one.	0x0	RW
			Value	Name	Description		
			0x00	non-	Clear this bit to		
				inverted	Keep the		
					original direction		
					of x axis		
			0x01	inverted	Set this bit to		
					invert the x axis		
	43	map_y_axis	-	y axis to de		0x1	RW
			Value	Name	Description		
			0x00	x axis	Map to x-axis		
			0x01	y axis	Map to y-axis		
			0x02	z axis	Map to z-axis		
	_		0x03	reserved	Reserved		D)44
	5	map_y_axis_sign		_	to the desired one	0x0	RW
			Value 0x00	Name	Description Clear this bit to		
			UXUU	non-			
				inverted	Keep the original direction		
					of y axis		
			0x01	inverted	Set this bit to		
			0,01	inverted	invert the y axis		
	76	map_z_axis	Man the	z axis to de		0x2	RW
	10		Value	Name	Description	UNZ.	
			0x00	x axis	Map to x-axis		
			0x01	y axis	Map to y-axis		
			0x02	z axis	Map to z-axis		
			0x03	reserved	reserved		
	8	map_z_axis_sign			to the desired one	0x0	RW
			Value	Name	Description		
			0x00	non-	Clear this bit to		
				inverted	Keep the		
					original direction		
1					of z axis		
			0x01	inverted	Set this bit to		
					invert the z axis		

Register (0x5F) INTERNAL_ERROR

DESCRIPTION: Internal error flags

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x5F) INTERNAL_ERROR			
Bit	7	6	5	4
Read/Write	n/a	n/a	n/a	n/a
Reset Value	0	0	0	0
Content	reserved			
Bit	3	2	1	0
Read/Write	n/a	R	R	n/a
Reset Value	0	0	0	0
Content	reserved	int_err_2	int_err_1	reserved

int_err_1: Internal error flag - long processing time, processing halted

int_err_2: Internal error flag - fatal error, processing halted

Register (0x6A) NVM_CONF

DESCRIPTION: NVM controller mode (Prog/Erase or Read only)

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x6A	Register (0x6A) NVM_CONF		
Bit	7	6	5	4
Read/Write	n/a	n/a	n/a	n/a
Reset Value	0	0	0	0
Content		reserved		
Bit	3	2	1	0
Read/Write	n/a	n/a	RW	n/a
Reset Value	0	0	0	0
Content		reserved	nvm_prog_e	n reserved

nvm_prog_en: Enable NVM programming

nvm_prog_en		
0x00	disable	disable
0x01	enable	enable

Register (0x6B) IF_CONF

DESCRIPTION: Serial interface settings

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0	Register (0x6B) IF_CONF			
Bit	7	6	5	4	
Read/Write	n/a	n/a	n/a	RW	
Reset Value	0	0	0	0	
Content		reserved			
Bit	3	2	1	0	
Read/Write	n/a	n/a	n/a	RW	
Reset Value	0	0	0	0	
Content		reserve	ed	spi3	

spi3: Configure SPI Interface Mode for primary interface

spi3		
0x00	spi4	SPI 4-wire mode
0x01	spi3	SPI 3-wire mode

if_mode: Auxiliary interface configuration

if_mode		
0x00	p_auto_s_off	Auxiliary interface:off
0x01	p_auto_s_mag	Auxilary interface:Magnetometer

Register (0x6D) ACC_SELF_TEST

DESCRIPTION: Settings for the sensor self-test configuration and trigger

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x6D) AC	Register (0x6D) ACC_SELF_TEST			
Bit	7	6	5	4	
Read/Write	n/a	n/a	n/a	n/a	
Reset Value	0	0	0	0	
Content		reserved			
Bit	3	2	1	0	
Read/Write	RW	RW	n/a	RW	
Reset Value	0	0	0	0	
Content	acc_self_test_amp	acc_self_test_sign	reserved	acc_self_test_en	

acc_self_test_en: Enable accelerometer self-test

acc_self_test_en		
0x00	disabled	disabled
0x01	enabled	enabled

acc_self_test_sign: Select sign of self-test excitation as

acc_self_test_sign		
0x00	negative	negative
0x01	positive	positive

acc_self_test_amp: Select amplitude of the self-test deflection:

acc_self_test_amp		
0x00	low	low
0x01	high	high

Register (0x70) NV_CONF

DESCRIPTION: NVM backed configuration bits (check datasheet for details)

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x70) NV_CONF			
Bit	7	6	5	4
Read/Write	n/a	n/a	n/a	n/a
Reset Value	0	0	0	0
Content		reserved		
Bit	3	2	1	0
Read/Write	RW	RW	RW	RW
Reset Value	0	0	0	0
Content	acc_off_en	i2c_wdt_en	i2c_wdt_sel	spi_en

spi_en: Disable the I2C and enable SPI for the primary interface, when it is in autoconfig mode (refer to the datasheet for details)

spi_en		
0x00	disabled	I2C enabled
0x01	enabled	I2C disabled

i2c_wdt_sel: Select timer period for I2C Watchdog

i2c_wdt_sel		
0x00	wdt_short	I2C watchdog timeout after 1.25 ms
0x01	wdt_long	I2C watchdog timeout after 40 ms

i2c_wdt_en: I2C Watchdog at the SDA pin in I2C interface mode

i2c_wdt_en		
0x00	Disable	Disable I2C watchdog
0x01	Enable	Enable I2C watchdog

acc_off_en: Add the offset defined in the off_acc_x/y/z OFFSET register to filtered and unfiltered Accelerometer data

acc_off_en		
0x00	disabled	Disabled
0x01	enabled	Enabled

Register (0x71) OFFSET_0

DESCRIPTION: Offset compensation for Accelerometer X-axis (NVM backed)

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x71) OFFSET_0			
Bit	7	6	5	4
Read/Write	RW	RW	RW	RW
Reset Value	0	0	0	0
Content	off_acc_x			
Bit	3	2	1	0
Read/Write	RW	RW	RW	RW
Reset Value	0	0	0	0
Content	off_acc_x			

off_acc_x: Accelerometer offset compensation (X-axis)

Register (0x72) OFFSET_1

DESCRIPTION: Offset compensation for Accelerometer Y-axis (NVM backed)

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0)	Register (0x72) OFFSET_1		
Bit	7	6	5	4
Read/Write	RW	RW	RW	RW
Reset Value	0	0	0	0
Content		off_acc_y		
Bit	3	2	1	0
Read/Write	RW	RW	RW	RW
Reset Value	0	0	0	0
Content		off_acc_y		

off_acc_y: Accelerometer offset compensation (Y-axis)

Register (0x73) OFFSET_2

DESCRIPTION: Offset compensation for Accelerometer Z-axis (NVM backed)

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x73) OFFSET_2			
Bit	7	6	5	4
Read/Write	RW	RW	RW	RW
Reset Value	0	0	0	0
Content		off_acc_z		
Bit	3	2	1	0
Read/Write	RW	RW	RW	RW
Reset Value	0	0	0	0
Content	off_acc_z			

off_acc_z: Accelerometer offset compensation (Z-axis)

Register (0x7C) PWR_CONF

DESCRIPTION: Power mode configuration register

RESET: 0x03

DEFINITION (Go to register map):

Name	Register (0x7C) PWR_CONF			
Bit	7	6	5	4
Read/Write	n/a	n/a	n/a	n/a
Reset Value	0	0	0	0
Content		reserved		
Bit	3	2	1	0
Read/Write	n/a	n/a	RW	RW
Reset Value	0	0	1	1
Content	reserved		fifo_self_wakeup	adv_power_save

adv_power_save		
0x00	aps_off	Advanced power save disabled (fast clk always enabled).
0x01	aps_on	Advanced power mode enabled (slow clk is active when no
		measurement is ongoing.)

fifo_self_wakeup		
0x00	fsw_off	FIFO read disabled in advanced power saving mode.
0x01	fsw_on	FIFO read enabled after interrupt in advanced power saving mode.

Register (0x7D) PWR_CTRL

DESCRIPTION: Sensor enable register

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x7D) PWR_CTRL			
Bit	7	6	5	4
Read/Write	n/a	n/a	n/a	n/a
Reset Value	0	0	0	0
Content	reserved			
Bit	3	2	1	0
Read/Write	n/a	RW	n/a	RW
Reset Value	0	0	0	0
Content	reserved	acc_en	reserved	aux_en

aux_en		
0x00	mag_off	Disables the auxiliary sensor.
0x01	mag_on	Enables the auxiliary sensor.

acc_en		
0x00	acc_off	Disables the Accelerometer.
0x01	acc_on	Enables the Accelerometer.

Register (0x7E) CMD

DESCRIPTION: Command Register

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x7E) CMD			
Bit	7	6	5	4
Read/Write	RW	RW	RW	RW
Reset Value	0	0	0	0
Content	cmd			
Bit	3	2	1	0
Read/Write	RW	RW	RW	RW
Reset Value	0	0	0	0
Content	cmd			

cmd: Available commands (Note: Register will always read as 0x00):

cmd		
0xa0	nvm_prog	Writes the NVM backed registers into NVM
0xb0	fifo_flush	Clears all data in the FIFO, does not change FIFO_CONFIG and
		FIFO_DOWNS registers
0xb6	softreset	Triggers a reset, all user configuration settings are overwritten with their default
		state.

3. Document history and modification

Rev. No	Chapter	Description of modification/changes	Date
1.0		Document creation	August 2019
1.1	3	Disclaimer update	November 2020
1.2	Page 1 1 1.1 3 All	Notes adjusted General Interrupt pin configuration removed Initialization procedures added Disclaimer removed Links updated	January 2021

Bosch Sensortec GmbH

Gerhard-Kindler-Straße 9 72770 Reutlingen / Germany

contact@bosch-sensortec.com www.bosch-sensortec.com

Modifications reserved Specifications subject to change without notice Document number: BST-MAS-AN032-02 Revision_1.2_202101