AHSANULLAH UNIVERSITY OF SCIENCE & TECHNOLOGY

Department: CSE Progream: BSc in CSE

Examination: Lab Final Semesterz: Fall 2019 Year: 2nd (1st sem.)

Course Numberz: CSE 2106 Course Name: DLD Lab

Student Name: S.M. TASNIMUL HASAN.

Student ID: 18.02.04.142

Date: 20-09-2020

Ans. to the Q. No. 1

(a) (i) NAND & (iv) NOR

the marks of fell adders in a smart

- (b) (iv) different.
- (c) (i) NAND gates
- (d) (iii) 8
- (e) (iv) s=1, R=1

Ans. to the Q.No. 2

Perutact : cos : tontage

Binarry Parallel Adderz:

Binary Parallel. Adders is a combinational.

circuit consists of various full adders in parallel structure so that when more than 1-bit numbers are to be added, then there can be full adders for every column for the addition.

The numbers of full adders in a binarry portable adders depends on the number of bits present in the numbers for the addition.

2. short (1) (4)

1 4 1 0 (4) (5)

Ans. to the Q. No. 3

Shift Registerz:

shift Registers is a group of flip flops used to storce multiple bits of data. The bits storced in such registers can be made to move within the registers and in/out of the registers by applying clock pulses.

- i) The registers which will start shift the bits to left one called "shift left registers".
- ii) The registers which will shift the bits to right one called "shift Right Registers."

 Shift registers are basically of 4 types. These are
 - 1. Serial input serial output
 - 2. Sercial input parallel output
 - 3. Parallel input social output
 - 1. Parzallel input parzallel output.

Ans. to the Q.No.4

$F(A,B,C,D) = \pm (1,2,5,8,10,13)$

Truth Table:

	Destrict		output			
Al .	Decimal.	A .	B	c	D 1	F
pisha	0	0	0	0	0	0
NAME OF TAXABLE PARTY.	1	0	0	0	1	1
	2	0	0	1	0	.1
	3	0	0	1	1	0
36	A	0	A	0 0 0	0 0 1	. 0
	5	0	1	0	1	1
	6	0	1	1	0	0
	7	0	1	la salado ara	1	0
	8	1	0	0	0	1
	9	1	. 0	0	Ap.	10 0
	10	1	0	المسطالي	0	1
	11	1	0	1	1	0
	12	1	1	9	0	0
	13	1	1	0	201002	1
	14	1	1	I	0	0
	15	1	1	1	1	0
			135.03	1000	Alleria .	

	Zo	I	T ₂	I3	T	I5	I_6	邛
Ā	0	1	2	3	4	5	6	7
A	8	9	(10)	h	12	(3)	14	15
	A	Ā	1	0	0	1	0	0

Cincuit Diagram:

