Examen de Probabilités du lundi 25 mars 2019

4 exercices indépendants (Durée : 2 heures)

Exercice I-

On tire un nombre entier naturel X au hasard, et on suppose que X suit une loi de Poisson de paramètre $\lambda > 0$. Si X est pair supérieur ou égal à 2, Paul gagne et reçoit X euros de Quentin. Si X est impair, Quentin gagne et reçoit X euros de Paul. Si X = 0, la partie est nulle. On note p la probabilité que Paul gagne et q la probabilité que Quentin gagne.

- 1. Montrer que $p + q + e^{-\lambda} = 1$.
- **2.** Montrer que $p = e^{-\lambda} \sum_{k=1}^{+\infty} \frac{\lambda^{2k}}{(2k)!}$ et écrire de même q sous forme de série. En déduire que $p q = e^{-2\lambda} e^{-\lambda}$.
- 3. Déduire des deux questions précédentes les valeurs de p et de q.
- **4.** Soit Q la variable aléatoire égale au gain algébrique de Quentin. Exprimer $\mathbb{E}(Q)$ sous forme de somme puis montrer que $\mathbb{E}(Q) = \lambda e^{-2\lambda}$. Le jeu avantage-t-il Quentin ou Paul?

Exercice II-

On considère deux suites indépendantes $(U_n)_{n\geq 1}$ et $(X_n)_{n\geq 1}$ de variables aléatoires indépendantes et équidistribuées. Les U_n sont absolument continues, de loi uniforme $\mathcal{U}([0,1])$ et les X_n sont discrètes, de loi binomiale $\mathcal{B}(n,p)$, où $p\in]0,1[$. On va s'intéresser au comportement asymptotique de la variable aléatoire

$$Y_n = n \times \min_{1 \le i \le X_n} U_i.$$

1. Montrer que, pour tout $y \in [0, n]$ et pour tout entier k tel que $0 \le k \le n$, on a

$$P([Y_n > y]/[X_n = k]) = \left(1 - \frac{y}{n}\right)^k.$$

2. Montrer alors que la densité conditionnelle de Y_n sachant $X_n = k$ est donnée par

$$f_{Y_n}^{[X_n=k]}(y) = \frac{k}{n} \left(1 - \frac{y}{n}\right)^{k-1} \mathbb{I}_{[0,n]}(y).$$

3. Montrer que l'espérance conditionnelle de Y_n sachant $[X_n=k]$ est donnée par

$$\mathbb{E}(Y_n/[X_n=k]) = \frac{n}{k+1}$$

et en déduire $\mathbb{E}(Y_n|X_n)$.

4. En utilisant le théorème de l'espérance totale, montrer que l'espérance de Y_n est donnée par

$$\mathbb{E}(Y_n) = \frac{n}{p(n+1)} \left[1 - (1-p)^{n+1} \right].$$

- **5.** Montrer que, pour tout $y \in [0, n]$, $P(Y_n \ge y) = \left(1 \frac{py}{n}\right)^n$.
- 6. Déduire de la question précédente que Y_n converge en loi vers une variable Y_∞ dont on déterminera la loi. [On trouvera une loi exponentielle.].

Exercice III-

1. Soit X une variable aléatoire de densité de probabilité f définie par :

$$f(x) = k(5x^4 + 1) \mathbb{I}_{[-1,1]}(x).$$

- a) Montrer que $k=\frac{1}{4}$, puis déterminer l'espérance et la variance de X. b) Déterminer la fonction de répartition F_X de X.
- c) Soit Z=|X|. Vérifier que $F_Z(z)=\frac{1}{2}(z^5+z)\,\mathbb{I}_{[0,1[}(z)+\mathbb{I}_{[1,+\infty[}(z).$ En déduire la densité de Z et déterminer son espérance.
- **2.** Soit (X,Y) un couple de variables aléatoires de densité de probabilité q définie par :

$$g(x,y) = \frac{5}{4}(x^4 + y^4) \mathbb{I}_{[-1,1]}(x) \mathbb{I}_{[0,1]}(y)$$

- a) Vérifier que la densité de X est définie par $f_X(x) = \frac{1}{4}(5x^4 + 1)\mathbb{I}_{[-1,1]}(x)$ et déterminer la densité de Y et son espérance.
 - b) Calculer cov(X,Y). Les variables X et Y sont-elles indépendantes?
- c) Écrire la densité conditionnelle de Y sachant X = x. Calculer alors $\mathbb{E}(Y|X = x)$ puis vérifier que $\mathbb{E}(Y|X) = \frac{5}{6} \left(\frac{3X^4 + 1}{5X^4 + 1} \right)$.
 - d) Retrouver $\mathbb{E}(Y)$ en utilisant l'espérance totale.

Exercice IV-

Un vol Toulouse - Paris est assuré par un Airbus de 150 places. La compagnie vend n billets, n > 150. S'il se présente plus de 150 passagers à l'embarquement, les 150 premiers arrivés prennent leur vol et les autres sont dédommagés financièrement.

- 1. On considère que les désistements des passagers sont mutuellement indépendants et que la probabilité de désistement de chacun d'eux est 10%. On note S_n le nombre aléatoire de passagers se présentant à l'embarquement pour ce vol. Vérifier que S_n suit une loi binomiale, déterminer sa moyenne et sa variance.
- 2. Donner la loi approximative suivie par S_n , grâce au Théorème Central Limite.
- 3. Quelle est la probabilité qu'il n'y ait personne à rembourser s'il y a eu n=160 réservations?
- **4.** Quelle est la valeur maximale de n pour laquelle $P(S_n \le 150) \ge 0.95$?