

FIG. 1A
(Prior Art)

WHITE DISPLAY
(VOLTAGE NOT APPLIED)

FIG. 1B
(Prior Art)

HALF TONE DISPLAY
(VOLTAGE V_1)

FIG. 1C
(Prior Art)

BLACK DISPLAY
(VOLTAGE V_2)

004760 " FILE 22990

FIG. 2A
(Prior Art)

FIG. 2B
(Prior Art)

FIG. 2C
(Prior Art)

© 2014 TECO © 2014 TECO

FIG. 3A
(Prior Art)

FIG. 3B
(Prior Art)

FIG. 3C
(Prior Art)

FIG. 4A
(Prior Art)

FIG. 4B
(Prior Art)

FIG. 4C
(Prior Art)

FIG. 5 (Prior Art)

FIG. 6 (Prior Art)

FIG. 7 (Prior Art)

FIG. 8 (Prior Art)

FIG. 9A (Prior Art)

FIG. 9B (Prior Art)

- ① A tilt angle of a liquid crystal molecule is changed in response to a voltage.

- ② A capacitance is changed by the tone.

- ③ A capacitance is also changed by light irradiation.

FIG. 10A (Prior Art)

FIG. 10B (Prior Art)

09562236 - 091400

FIG. 11
(Prior Art)

FIG. 12
(Prior Art)

FIG. 13
(Prior Art)

FIG. 14A (Prior Art)

FIG. 14B

FIG. 15

FIG. 16

FIG. 17

FIG. 18

09662236 - 093400

FIG. 19

FIG. 20A

FIG. 20B

FIG. 21

09652235 · 0961400

FIG. 22

FIG. 23

FIG. 24

FIG. 25

FIG. 26A

FIG. 26B

FIG. 27

FIG. 28

09662236 - 0931400

FIG. 29

FIG. 30

FIG. 31A

FIG. 31B 40f

FIG. 32A

FIG. 32B

FIG. 33

FIG. 34

FIG. 35

FIG. 36

PRINTED IN U.S.A. 1966 60

FIG. 37

FIG. 38

FIG. 39A

FIG. 39B

FIG. 40

FIG. 41A

FIG. 41B

FIG. 42

09632235 - 091400

FIG. 43

09662236 - 097400

FIG. 44

FIG. 45A

FIG. 45B

FIG. 46

FIG. 47

FIG. 48

FIG. 49

ALIGNMENT OF LIQUID CRYSTAL MOLECULES
(NO POSITIONAL DISPLACEMENT)

FIG. 50

ALIGNMENT OF LIQUID CRYSTAL MOLECULES (POSITIONAL DISPLACEMENT)

FIG. 51

FIG. 52

FIG. 53

FIG. 54

09622335 - 097400

FIG. 55

The equipotential lines are pushed out outwardly from the liquid crystal layers.

FIG. 56

FIG. 57

0969236-094400

FIG. 58A

FIG. 58B

FIG. 59

Digitized by Google