

Deep learning

Train-Dev-Test Set

If size of the dataset is 100 to 1000000 ==> 60/20/20If size of the dataset is 1000000 to INF ==> 98/1/1 or 99.5/0.25/0.25

Bias Variance Tradeoff

Fig. 1 Graphical illustration of bias and variance.

Overfitting and Underfitting

Bias Variance Tradeoff

Overfitting and Underfitting

Train Set: 1% 15% 15% 0.5%

Dev Set: 10% 16% 30% 1.%

High Variance High Bias High Variance Low Variance & & & Low Bias

Solve High Variance and High Bias

If your algorithm has a high bias:

- Try to make your NN bigger (size of hidden units, number of layers)
- Try a different model that is suitable for your data.
- Try to run it longer.
- Different (advanced) optimization algorithms.

If your algorithm has a high variance:

- More <u>data.</u>
- Try regularization.
- Try a different model that is suitable for your data.

Normalizing inputs

- speed up the training process
- optimization will be faster

Normalization are going on these steps:

- Get the mean of the training set: mean = (1/m) * sum(x(i))
- Subtract the mean from each input: X = X mean
 - This makes your inputs centered around 0.
- Get the variance of the training set:
 - variance = $(1/m) * sum(x(i)^2)$
- Normalize the variance. X /= variance
- training, dev, and testing sets (but using mean and variance of the train set)

Epochs

an epoch is a single pass through the full training set.

Hyperparameter

Machine algorithms' settings that must be determined external to the learning algorithm itself

Learning Rate

Loss function

Loss function

Optimizer

MNIST

