Ames, IA: A Window Into Pricing Tier 3 Cities Across USA

•••

January 1, 2022 By: Harry Dzeba

→ Overview

→ A private equity fund is looking for real-estate opportunities in America's smaller cities

→ Problem:

- → The Fund needs a data-driven house-pricing model to uncover undervalued assets
- → The Fund is also unfamiliar with the value-maximizing factors in such towns.

Project objectives:

Create pricing model

Linear Regression (in different versions) was used to distill more than 80 columns of data related to house characteristics into a model that accurately predicts house prices

Test the model

In addition to using the hold-out data, the model was entered into a Kaggle competition to make sure it's stacks well against the competitors

Use the model

Out of a few versions of the model, one was chosen to accurately gauge how much various house features affect the selling price.

Creating the model, part 1: Data Cleaning

Task

Initially, there were too many overlapping columns that would confuse the model

Cure:

- Drop unnecessary features
- Merge features to pack more info
- Transform features

Creating the models, part 2: Regression

- 3 basic regression models were created, OLS, Ridge and Lasso
- Generally speaking, the scores on all of them were high, with the r2 of around 0.9 (right)
- There was very little dispersion among the model in terms of the r2 score

Conclusion:

 Such high and consistent scores on testing data confirm that the transformed data fed into the models is of high quality

```
===== OLS ======
0.9036392752570962
0.8984750357094147
```

Testing the model with unseen data on Kaggle competition leaderboard (our top score highlighted in red)

- Our error of \$20,090 would've been in the top 15 of all the scores submitted

Model selection: 16 candidates

R2 in 0.89-0.90 for all model

20

0.900

0.901

24926

LinReg with optimal

feature selector to

cut down 9 features

Same as 7 + Ridge

- Test, train and cross-validate scores are consistent
- Model number 8 has the best Kaggle score with the fewest features, while number 16 has best

					suited for everyday				, IIII	no nam	
No	MODEL	FTRS	TEST R2	TEST RMSE	COMMENTS	No	MODEL	FTRS	TEST R2	TEST RMSE	COMMENTS
1	LinRea	28	0.894	26173	nghbhood, deck and bsmt insignificant.	9	Same as 7 + Lasso	20	0.900	24931	- alpha=0. no extra benefits from Las
	10 9				shouldn't be						- no special improvement with 27
2	Same as 1 + dummy nghood	29	0.895	26601	nhood dummies are significant now	10	LinReg with optimal feature selector to cut down 2 features	27	0.901		features optimized for highest r2 - unlike cutting 9 features - two, three or four features can be cut wit

No	MODEL	FTRS	TEST R2	TEST RMSE	COMMENTS	No	MODEL	FTRS	TEST R2	TEST RMSE	COMMENTS
1	LinReg	28	0.894	26173	nghbhood, deck and bsmt insignificant.	9	Same as 7 + Lasso	20	0.900	24931	- alpha=0. no extra benefits from La
	9				shouldn't be						- no special improvement with 27
2	Same as 1 + dummy nghood	29	0.895	26601	nhood dummies are significant now	10	LinReg with optimal feature selector to cut down 2 features	27	0.901		features optimized for highest r2 - unlike cutting 9 features - two, three or four features can be cut wi all the possible combinations teste

1	LinReg	28	0.894	26173	nghbhood, deck and bsmt insignificant.	9	Same as 7 + Lasso	20	0.900	24931 - alpha=0. no extra benefits from Las
	139				shouldn't be					- no special improvement with 27
2	Same as 1 + dummy nghood	29	0.895	26601	nhood dummies are significant now	10	LinReg with optimal feature selector to cut down 2 features	27	0.901	features optimized for highest r2 - unlike cutting 9 features - two, three or four features can be cut wit

										- no special improvement with 27
2	Same as 1 + dummy nghood	29	0.895	26601	nhood dummies are significant now	10	LinReg with optimal feature selector to cut down 2 features	27	0.901	features optimized for highest r2 - unlike cutting 9 features - two, three or four features can be cut with all the possible combinations tested
	0									all the possible combinations tested
	Same as 2 +				hig improvement in the hoth hemt		1: B :0 :0 :1			

2	Same as 1 + dummy nghood	29	0.895	26601	nhood dummies are significant now	10	LinReg with optimal feature selector to cut down 2 features	27	0.901	features optimized for highest r2 - unlike cutting 9 features - two, three or four features can be cut with all the possible combinations tested
	Same as 2 +									all the possible combinations tested

2	Same as 1 + dummy nghood	29	0.895	26601	nhood dummies are significant now	10	feature selector to cut down 2 features	27	0.901	- unlike cutting 9 features - two, three or four features he cut with
	0									all the possible combinations tested
	Same as 2 +				hig improvement in rmse, both hsmt		LinDog with ontimal			

2	dummy nghood	23	0.033	20001	Tillood duffiffles are significant flow	 cut down 2 features	 	three or four features can be cut with all the possible combinations tested
	Cama aa 2 1							all the possible combinations tested
3	Same as 2 +	29	0.898	25154	big improvement in rmse. both bsmt	LinReg with optimal		

	Comp. co. 2. I									all the possible combinations tested
3	Same as 2 + undo deck/bsmt transformation	29	0.898	25154	big improvement in rmse. both bsmt and deck now significant	11	LinReg with optimal feature selector to cut down 3 features	26	0.901	- again no special improvement

12

LinReg with optimal

feature selector to

LoaRea with only

the dependent variable

log transformed

25

28

0.902

0.903

24959

24408

- the highest r2

year dummies more predictive - the model chosen for the project

- test scores better, kaggle worse

than our top few model

-reason for that is unknown, need more

data, cross-val r2 is 0.892 - in line

with other cross-val scores

- overall scores about in line with

other models, vet more interpretable

- rmse improvement not to be trusted

-Lasso reg. didn't do much either

- not strictly 'optimal' since not all

among 10m combinations were tested

- amazing result considering 9 features

were cut

- alpha=32. great result for so few

features

- a lot of processing power required as cross val predict employs multiple Same as 3 + 29 0.899 23357* cut down 4 features to try every 20-feature combo cross-val k=8 models at the same time -cross val does prove the model is solid Same as 12 + cross 25 0.892 - no special improvement validation (k=8) - alpha=51, not very high Same as 3 + Ridge 0.900 25119 Same as 11 + 4 - year dummies add 4 columns but don't - Ridge reg. didn't do much 14 30 0.902 25220 dummies for years improve scores - alpha=0.021, insignificant - Ridge regularization doesn't make Same as 3 + Lasso 29 0.897 25266 Same as 14 + Ridge 0.902 25195

Using the model beyond price prediction

- scoring 1 point higher on garage and overall quality scales increases property value by more than \$10,000.

Return on investment: which upgrade to choose?

- Before selling the house, the model can provide guidance as to which upgrade would be most profitable, after taking into account current cost estimates
- Central air and concrete foundation can increase average house's value by more than \$10,000

In conclusion . . .

Recommendation 1	The model shows that some features of the house such as garage and central air upgrades get unlock lots of value
Recommendation 2	While relatively high degree of accuracy is necessary, the focus of this project should be interpretability and usability of the model
Recommendation 3	Upgrades to central air, foundation, as well as garage and overall quality can yield high return
Recommendation 4	The model can integrate future data, or be deployed to other towns, then be used to guide future buying/upgrading decisions

Further work to be done

As we add more data, we'll encounter new challenges:

- 1. As prices fluctuate and more years worth of data are added, we must find a way to adjust for macro house price data without burdening the model with extra dummy variables for each year
- 2. Test how the model performs in other (similar) cites. If the coefficients obtained are noticeably different, decide if that is due to prevailing local conditions, or just due to statistical noise.