第一章 环、模

1.1 环的定义

定义 1.1.1

R 是一个集合,如果存在两个运算 $+: R \times R \to R$ 和 $\cdot: R \times R \to R$

分别称为加法和乘法,满足下列条件:

- ① (加法单位元存在)存在一个元素 $0_R \in R$,称为加法单位元,使得对于任意 $x \in R$,有 $x + 0_R = 0_R + x = x$ 。
- ② (加法交换律) $\forall x, y \in R, x + y = y + x$
- ③ (加法结合律) $\forall x, y, z \in R, (x + y) + z = x + (y + z)$
- ④ (加法逆存在) $\forall x \in R, \exists -x \in R,$ 称为加法逆,使得 $x + (-x) = 0_R$
- ⑤ (乘法结合律) $\forall x, y, z \in R, (x \cdot y) \cdot z = x \cdot (y \cdot z)$
- ⑥ (左分配律) $\forall x, y, z \in R, x \cdot (y+z) = x \cdot y + x \cdot z$

(右分配律) $\forall x, y, z \in R, (y+z) \cdot x = y \cdot x + z \cdot x$

那么我们称 $(R,+,\cdot)$ 是一个环, 简称为环 R。

定义 1.1.2: 交换环、幺环

如果环 R 满足: $\forall x, y \in R, x \cdot y = y \cdot x$, 那么我们称 R 是一个交换环;

如果环 R 满足: $\exists 1_R \in R, \forall x \in R, 1_R \cdot x = x \cdot 1_R = x$, 称为乘法单位元,