1. (DF7.5.2) Let R be an integral domain and let D be a nonempty subset of R that is closed under multiplication. Prove that the ring of fractions $D^{-1}R$ is isomorphic to a subring of the quotient field of R (hence is also an integral domain).

Proof. Let R be an integral domain and let D be a nonempty subset of R that is closed under multiplication as given.

We check that the ring of fractions $D^{-1}R$ is a well defined ring, defining elements of this ring in the same way that the quotient field is defined, but with any D closed under multiplication.

If D contains $0 \in R$, then every element in $D^{-1}R$ is equal to the zero element, so that $D^{-1}R$ is the zero ring: For any fraction a/b and any nonzero $d \in D$, we have

$$\frac{a}{b} = \frac{0}{0} = \frac{0}{d},$$

since a0 = b0 = 0d = 0. Hence in this case we get the zero ring which is automatically a subring of the quotient field of R (also note that the zero ring is not an integral domain; perhaps the formulation of the problem was not meant to include this case). So suppose D does not contain zero (it also will not contain any zero divisors since R is an integral domain)

For fractions a/b = a'/b' and c/d = c'/d', we check that addition and multiplication is well defined. With ab' = a'b and cd' = c'd, we have

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

$$\frac{a'}{b'} + \frac{c'}{d'} = \frac{a'd' + b'c'}{b'd'}$$

$$\frac{a'}{b'} \cdot \frac{c'}{d'} = \frac{a'c'}{b'd'}$$

and we check that

$$adb'd' + bcb'd' = a'd'bd + b'c'bd$$
 and $acb'd' = a'c'bd$.

Observe that adb'd' + bcb'd' = a'dbd' + bc'b'd = a'd'bd + b'c'bd and that acb'd' = a'cbd' = a'c'bd as desired. Hence the operations of addition and multiplication are well defined.

Note the additive identity is 0/d for any $d \in D$ since a/b + 0/d = ad/bd = a/b, and the additive inverse of c/d is -c/d since $c/d + -c/d = (cd-cd)/d^2 = 0/d$. We check that $D^{-1}R$ is closed under addition and closed under multiplication, and that these operations are commutative (since R is a commutative ring):

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} = \frac{cb + da}{db} = \frac{c}{d} + \frac{a}{b}, \text{ and } \frac{a}{b}\frac{c}{d} = \frac{ac}{bd} \in D^{-1}R,$$

and since $bd = db \in D$ as D is closed under multiplication, it follows that $D^{-1}R$ is closed under its operations. The multiplicative identity of $D^{-1}R$ is d/d for any $d \in D$, since (a/b)(d/d) = ad/bd = a/b = da/db = (d/d)(a/b) (since adb = bda).

The multiplication and addition is associative because the multiplication in R is associative:

$$\left(\frac{a}{b} \cdot \frac{c}{d}\right) \cdot \frac{e}{f} = \frac{ac}{bd} \cdot \frac{e}{f} = \frac{ace}{bdf} = \frac{a}{b} \cdot \frac{ce}{df} = \frac{a}{b} \cdot \left(\frac{c}{d} \cdot \frac{e}{f}\right)$$

$$\left(\frac{a}{b} + \frac{c}{d}\right) + \frac{e}{f} = \frac{ad + bc}{bd} + \frac{e}{f} = \frac{adf + bcf + bde}{bdf} = \frac{a}{b} + \frac{cf + de}{df} = \frac{a}{b} + \left(\frac{c}{d} + \frac{e}{f}\right).$$

The multiplication also distributes:

$$\frac{a}{b}\left(\frac{c}{d} + \frac{e}{f}\right) = \frac{a}{b}\left(\frac{cf + de}{df}\right) = \frac{acf + ade}{bdf} = \frac{acfb + adeb}{b^2df} = \frac{ac}{bd} + \frac{ae}{bf}$$

$$\left(\frac{c}{d} + \frac{e}{f}\right)\frac{a}{b} = \left(\frac{cf + de}{df}\right)\frac{a}{b} = \frac{cfa + dea}{dfb} = \frac{cfab + deab}{dfb^2} = \frac{ca}{db} + \frac{ea}{fb}$$

It follows that $D^{-1}R$ is a commutative ring with identity.

To show that $D^{-1}R$ is isomorphic to a subring of the quotient field Q of R, we use the inclusion homomorphism $\iota \colon D^{-1}R \hookrightarrow Q$ which sends a/b to a/b, interpreting an element of D to also be an element of $R - \{0\}$ since we assumed in this case that D did not contain 0. This map is clearly injective, so by the first isomorphism theorem, $D^{-1}R$ is isomorphic to its image under ι , which is a subgroup of Q.

2. (DF7.6.3) Let R and S be rings with identities. Prove that every ideal of $R \times S$ is of the form $I \times J$ where I is an ideal of R and J is an ideal of S.

Proof. Let A be an ideal of $R \times S$, and let I be the set of elements $r \in R$ such that for each $r \in I$ there exists an element $s \in S$ such that $(r, s) \in A$. Similarly, let J be the set of elements $s \in S$ such that for each $s \in J$, there exists an element $r \in R$ such that $(r, s) \in A$. Essentially, I and J are the sets which contain the elements which appear in the first and second components of elements of A, respectively. We show that these are ideals of R and S each, and show that A is isomorphic to $I \times J$.

Note since A is an ideal it contains an additive identity, which from the definition of the addition on $R \times S$ it follows that the additive identity is $(0_R, 0_S)$, so that $0_R \in I$ and $0_S \in J$. Then let r, r' be elements of I. Then there exist $s, s' \in S$ such that $(r, s), (r', s') \in A$ and so since A is an ideal, we have for any $(a, b) \in R \times S$ (so $a \in R$ and $b \in S$) that

$$(r,s) - (r',s') = (r-r',s-s') \in A$$
, and $(r,s)(r',s') = (rr',ss') \in A$
 $(a,b)(r,s) = (ar,bs) \in A$, and $(r,s)(a,b) = (ra,sb) \in A$

so that I is closed under subtraction and multiplication and is a nonempty subset of R, and multiplication by elements of R on the right and left. It follows that I is an ideal of R. Similarly, let s, s' be elements of I, so that there exist $r, r' \in R$ such that $(r, s), (r', s') \in A$. Then for any $(a, b) \in R \times S$ we have

$$(r,s) - (r',s') = (r-r',s-s') \in A$$
, and $(r,s)(r',s') = (rr',ss') \in A$
 $(a,b)(r,s) = (ar,bs) \in A$, and $(r,s)(a,b) = (ra,sb) \in A$,

and it follows similarly that J is an ideal of S.

We show that $I \times J$ is an ideal of $R \times S$. It is clear that $I \times J$ is a subring of $R \times S$ since I, J are subrings of R, S respectively. Then for any $(r, s) \in R \times S$ and $(a, b) \in I \times J$ we have that $(r, s)(a, b) = (ra + sb) \in I \times J$

and $(a,b)(r,s)=(ar,bs)\in I\times J$ since I,J are ideals. Hence $I\times J$ is an ideal of $R\times S$. What remains is to show that $I\times J=S$.

An element of A is of the form (a,b), and automatically $a \in I$ and $b \in J$ since for $a \in R$, we have that b is an element of S such that $(a,b) \in A$, and similarly for $b \in S$, we have that a is an element of R such that $(a,b) \in A$. Hence $(a,b) \in I \times J$ so that $A \subseteq I \times J$. Then any element (r,s) of $I \times J$ can be decomposed into $(r,0_S) + (0_R,s)$, and since there are elements $s' \in S$ and $r' \in R$ such that $(r,s'), (r',s) \in A$. But since R,S have identities, we can write (r,s) as $(1_r,0_S)(r,s') + (0_R,1_S)(r',s)$, and this combination is in A since A is an ideal of $R \times S$. Hence $I \times J \subseteq A$, so that $A = I \times J$.

Since A was an arbitrary ideal of $R \times S$, it follows that every ideal of $R \times S$ is of the form $I \times J$ where I is an ideal of R and J is an ideal of S.

3. (DF8.1.7) Find a generator for the ideal (85, 1 + 13i) in $\mathbb{Z}[i]$, i.e., a greatest common divisor for 85 and 1 + 13i, by the Euclidean Algorithm. Do the same for the ideal (47 - 13i, 53 + 56i).

Generators of these ideals are greatest common divisors of the two numbers which generate the ideal. To find a greatest common divisor, we use the Euclidean algorithm. In each division we will choose the quotient to be any closest (with respect to the standard \mathbb{C} Euclidean metric) element of $\mathbb{Z}[i]$ viewed as an element of \mathbb{C} to the quotient computed in $\mathbb{Q}[i]$ viewed as an element of \mathbb{C} . That is, given elements $a, b \in \mathbb{Z}[i]$, we compute the quotient q = a + bi in $\mathbb{Q}[i]$, and round a, b to the nearest integer to obtain a quotient q' in $\mathbb{Z}[i]$ (this is the algorithm suggested by the text). Starting with $N(85) = 85^2 > N(1 + 13i) = 1^2 + 13^2$ and $N(53 + 56i) = 53^2 + 56^2 > N(47 - 13i) = 47^2 + 13^2$, we have:

$$(85) = (1-7i)(1+13i) + \boxed{(-7-6i)}$$

$$\begin{cases} \frac{85}{1+13i} = \frac{1}{2} + \frac{-13}{2}i \approx 1-7i \\ (85) - (1-7i)(1+13i) = (-7-6i) \end{cases}$$

$$(1+13i) = (-1-i)(-7-6i) + (0)$$

$$\begin{cases} \frac{1+13i}{-7-6i} = -1-i \\ \text{no remainder} \end{cases}$$

and

$$(53+56i) = (1+1i)(47-13i) + (-7+22i)$$

$$\begin{cases} \frac{53+56i}{47-13i} = \frac{43}{58} + \frac{81}{58}i \approx 1+1i \\ (53+56i) - (1+1i)(47-13i) = (-7+22i) \end{cases}$$

$$(47-13i) = (-1-2i)(-7+22i) + \boxed{(-4-5i)}$$

$$\begin{cases} \frac{47-13i}{-7+22i} = \frac{-15}{13} + \frac{-23}{13}i \approx -1-2i \\ (47-13i) - (-1-2i)(-7+22i) = (-4-5i) \end{cases}$$

$$(-7+22i) = (-2-3i)(-4-5i) + (0)$$

$$\begin{cases} \frac{-7+22i}{-4-5i} = -2-3i \\ \text{no remainder.} \end{cases}$$

A greatest common factor can be multiplied by a unit to obtain another greatest common factor, so multiply the remainders -7-6i and -4-5i by -1 to find that (85, 1+13i) = (7+6i) and (47-13i, 53+56i) = (4+5i).

- 4. (DF8.1.8) Let $F = \mathbb{Q}[\sqrt{D}]$ be a quadratic field with associated quadratic integer ring \mathcal{O} and field norm N as in section 7.1.
 - (a) Suppose D is -1, -2, -3, -7, or -11. Prove that \mathcal{O} is a Euclidean Domain with respect to N. [Modify the proof for $\mathbb{Z}[i]$ (D = -1) in the text. For D = -3, -7, -11 prove that every element of F differs from an element in \mathcal{O} by an element whose norm is at most $(1 + |D|)^2/(16|D|)$, which is less than 1 for these values of D. Plotting the points of \mathcal{O} in \mathbb{C} may be helpful.]

Proof. Note the field norm on F is a norm when D < 0, so we omit taking the absolute value of the field norms henceforth.

For D = -1, -2 ($D \not\equiv 1 \mod 4$): Let $A = a + b\sqrt{D}$ and $B = c + d\sqrt{D}$ be any two elements of $\mathbb{Z}[\sqrt{D}]$ with $B \neq 0$. Then in $\mathbb{Q}[\sqrt{D}]$, the quotient A/B is given by $r + s\sqrt{D}$ for some rational numbers r, s; in particular $r = (ac - bdD)/(c^2 - d^2D)$ and $s = (bc - ad)/(c^2 - d^2D)$. Then round r to the nearest integer p and round s to the nearest integer q so that |r - p|, |s - q| are at most 1/2.

We take the quotient A/B in $\mathbb{Z}[\sqrt{D}]$ to be $p + q\sqrt{D}$. The remainder we choose is given by $A - (p + q\sqrt{D})B = \theta B$ (and θB is computed in $\mathbb{Q}[\sqrt{D}]$), where $\theta = (r - p) + (s - q)\sqrt{D}$. This ensures that the remainder θB is also an element of $\mathbb{Z}[\sqrt{D}]$, and since D is equal to -1 or -2, it follows that

$$N(\theta B) = N(\theta)N(B) = [(r-p)^2 - (s-q)^2 D]N(B) \le [1/4 + 2/4]N(B) = (3/4)N(B).$$

Hence there is a division algorithm for $\mathbb{Z}[\sqrt{D}]$, meaning it is a Euclidean Domain.

For D=-3,-7,-11 $(D\equiv 1 \mod 4)$: Let $A=a+b[(1+\sqrt{D})/2]$ and $B=c+d[(1+\sqrt{D})/2]$ be any two elements of $\mathbb{Z}[(1+\sqrt{D})/2]$ with $B\neq 0$. Then in $\mathbb{Q}[\sqrt{D}]$, the quotient A/B is given by $r+s\sqrt{D}$ for some rational numbers r,s; in particular $r=[(a+b/2)(c+d/2)-(b/2)(d/2)D]/[(c+d/2)^2-(d/2)^2D]$ and $s=[(b/2)(c+d/2)-(a+b/2)(d/2)]/[(c+d/2)^2-(d/2)^2D]$. We first rewrite $r+s\sqrt{D}$ into its "cartesian" form (we are changing coordinates in \mathbb{C}). There exist rational numbers n,m such that $r+s\sqrt{D}=(n+m/2)+(m/2)\sqrt{D}$; that is, m=2s and n=r-s.

We round in a particular order: First round m=2s to the nearest integer q, so that $|2s-q| \leq 1/2$. Then round the rational number r-q/2 to the nearest integer p so that $|r-p-q/2| \leq 1/2$. The motivation for this rounding comes from finding the closest element of $\mathbb{Z}[(1+\sqrt{D})/2]$ to any element u of $\mathbb{Q}[\sqrt{D}]$ by geometric means. Embedding $\mathbb{Z}[(1+\sqrt{D})/2]$ in \mathbb{C} yields a lattice of points arranged in a manner such that \mathbb{C} is tiled by parallelograms whose vertices are elements of $\mathbb{Z}[(1+\sqrt{D})/2]$. The parallelograms give a change of basis for \mathbb{C} which is essentially given by basis vectors parallel to the sides of the parallelograms tiling \mathbb{C} . Slide u "vertically" along a line parallel to the slanted edge of the parallelograms until it hits the closest horizontal side edge of the parallelogram u was found in. This represents the first rounding to obtain q. Then slide the point horizontally to the closest element

of $\mathbb{Z}[(1+\sqrt{D})/2]$ lying on the same line as it; this corresponds to the rounding used to obtain p. Graphically this might look like:

Then take the quotient to be $p+q[(1+\sqrt{D})/2]$, and the remainder to be $A-(p+q[(1+\sqrt{D})/2])B=\theta B$ (note that it follows that this remainder is in $\mathbb{Z}[(1+\sqrt{D})/2])$, where $\theta=(r-p-q/2)+(s-q/2)\sqrt{D}$. Then we have

$$N(\theta B) = N(\theta)N(B) = [(r - p - q/2)^2 - (s - q/2)^2D]N(B)$$

$$= [(r - p - q/2)^2 - (2s - q)^2D/4]N(B)$$

$$\leq [1/4 - D/16]N(B)$$

$$= [(4 - D)/16]N(B)$$

$$\leq (15/16)N(B) < N(B),$$

and the final inequalities follow since D takes on the values -3, -7, -11. Thus we have chosen an appropriate quotient and remainder such that $\mathbb{Z}[(1+\sqrt{D})/2]$ has a division algorithm; that is, it is a Euclidean Domain.

Thus for D = -1, -2, -3, -7, or -11, the associated quadratic integer ring \mathcal{O} of the quadratic field $F = \mathbb{Q}[\sqrt{D}]$ is a Euclidean Domain with respect to the field norm N.

(b) Suppose that D = -43, -67, or -163. Prove that \mathcal{O} is not a Euclidean Domain with respect to any norm. [Apply the same proof as for D = -19 in the text.]

Proof. Let $\omega = [(1+\sqrt{D})]/2$. Previously in the text it was determined that the only units of \mathcal{O} for D < -3 were ± 1 (since if the field norm of $a+b\omega$ was 1, then we sought to choose integers a,b satisfying $(2a+b)^2+|D|b^2=4$; it follows that b=0, so that $a=\pm 1$, so that the units are ± 1 .) Hence $\widetilde{\mathcal{O}}=\{0,\pm 1\}$. Suppose that u is a universal side divisor in \mathcal{O} . Observe that for any element $a+b\omega$, its field norm $a^2+ab+[(1-D)/4]b^2=(a+b/2)^2+(|D|/4)b^2\geq (1-D)/4$ whenever $b\neq 0$. So the smallest values for the field norm on \mathcal{O} are attained whenever b=0. They are, in cases:

$$D = -43$$
, so $(1 - D)/4 = 11$: Smallest norms are 1, 4, 9.

$$D = -67$$
, so $(1 - D)/4 = 17$: Smallest norms are 1, 4, 9, 16.

$$D = -163$$
, so $(1 - D)/4 = 41$: Smallest norms are 1, 4, 9, 16, 25, 36.

For the first case when D=-43, let x take on 2,3 (x need not take on 1 since 1 is a unit). It follows that u should divide one of 2 or 3, and that u should divide one of 3 or 4 (the value 3-1=2 will be handled in the first computation anyways). But observe that if 2=ab, then N(2)=4=N(a)N(b) so that the only non-unit divisors of 2 are $\{\pm 2\}$. Similarly, if 3=ab, since 3 is not a possible norm value, we have that N(3)=9=N(a)N(b). Hence the only non-unit divisors of 3 are $\{\pm 3\}$. Again in a similar fashion, observing that 2 and 8 are not possible values the norm takes on, the only non-unit factors of 4 are $\{\pm 2, \pm 4\}$. So u can only take on values in $\{\pm 2, \pm 3, \pm 4\}$. But observe that if $x=\omega=(1+\sqrt{-43})/2$, none of the possible values for u divide $\omega, \omega\pm 1$ since the quotient computed in the quadratic field would not contain integer coefficents anyways.

For the second case when D=-67, repeat the above argument for x=2,3, and additionally for x=4. So u has to either divide 4 or 5; if 5=ab then N(5)=25=N(a)N(b) yields that only ± 5 are the only non-unit divisors of 5. Still we find that any values in $\{\pm 2, \pm 3, \pm 4, \pm 5\}$ do not divide ω in this case.

For the last case when D=-163 an additional two more values of x must be considered: x=5,6 so that we must find non-unit factors of 6,7: if 6=ab then 36=N(a)N(b), and note that 2,3,12,18 are not norms so that the only additional values that u may take on is ± 6 . Similarly, 49 is a square of a prime so that the only additional values that u may take on is ± 7 . And once again with u may take on the values in u may take on u may take u may take on u may take on u may take u may take

In all cases, any of the restrictions to the values that any universal divisor could take on were all nullified by the incapability of dividing ω , so there are no universal side divisors in each case. Hence ω is not a Euclidean Domain.