## **CLAIMS**

## What is claimed is:

| 1 | 1.         | A system comprising:                                                           |
|---|------------|--------------------------------------------------------------------------------|
| 2 |            | a memory, wherein the memory includes a plurality of logical                   |
| 3 |            | memory devices; and                                                            |
| 4 |            | a network switch coupled to the memory, wherein the switch is                  |
| 5 |            | adaptable to write a first portion of received packet data to a first of the   |
| 6 |            | plurality of logical memory devices and to write a second portion of the       |
| 7 |            | packet data to a second of the plurality of logical memory devices.            |
| R | 7          | <b>,</b>                                                                       |
| 1 | 2.         | The system of claim 1 wherein the network switch is further adaptable to       |
| 2 | \<br>write | a third portion of received packet data to a third of the plurality of logical |
| 3 | mem        | ory devices.                                                                   |
| 1 | 3.         | The system of claim 1 wherein the network switch comprises a memory            |
| 2 | contr      | oller.                                                                         |
| 1 | 4.         | The system of claim 3 wherein the memory controller comprises:                 |
| 2 |            | a first memory controller component coupled to the first logical               |
| 3 |            | memory device; and                                                             |
| 4 |            | a second memory controller component coupled to the second                     |
| 5 |            | logical memory device                                                          |

- 1 5. The system of claim 4 wherein the first memory controller component and
- 2 the second memory controller component access the corresponding logical
- 3 memory devices via a shared address line.
- 1 6. The system of claim 2 wherein the first, second and third logical memory
- devices comprise synchronous dynamic random access memories (SDRAMs).
- 7. The system of claim 2 wherein the first logical memory devices comprises
- 2 a synchronous static random access memories (SSRAMs) and the second and
- third logical memory devices comprise synchronous dynamic random access
- 4 memories (SDRAMs).
- 1 8. The system of claim 3 wherein the memory controller maintains a record
- of the last of the plurality of logical memory devices that was written to.
- 1 9. The system of claim 3 wherein the network switch further comprises:
- 2 a receiver coupled to the memory controller;
- a transmitter coupled to the memory controller;
- address resolution logic coupled to the memory controller; and
- 5 packet queuing control coupled to the memory controller, the
- 6 receiver, the transmitter and the address resolution logic.

- 1 10. The system of claim 3 wherein the network switch further comprises a
- 2 media access controller (MAC) coupled to the receiver, wherein the MAC
- receives packet data via a plurality of ports coupled to the receiver.
- 1 11. A network switch comprising:
- a first media access controller (MAC) coupled to a plurality of
- 3 ports;
- a receiver coupled to the first MAC; and
- a memory controller coupled to the receiver, wherein the memory
- 6 controller is adaptable to write a first portion of a first data packet
- 7 received from a first of the plurality of ports to a first logical memory
- 8 device and write a second portion of the first data packet received from
- 9 the first port to a second logical memory device.
  - 12. The system of claim 11 wherein the memory controller is further
- 2 adaptable to write a third portion of the first data packet received from the first
- 3 port to a third logical memory device.
- 1 13. The system of claim 11 wherein the memory controller is adaptable to
- write a first portion of a second data packet received from the first port to a third
- 3 logical memory device and write a second portion of the second data packet
- 4 received from the first port to a fourth logical memory device.



| 1                    | 19.     | A method comprising:                                                         |
|----------------------|---------|------------------------------------------------------------------------------|
| 2                    |         | receiving a first data packet at a network switch;                           |
| 3                    |         | writing a first portion of the first data packet to a first logical          |
| 4                    |         | memory device coupled to the network switch; and                             |
| 5                    |         | writing a second portion of the first data packet to a second logical        |
| 6                    |         | memory device coupled to the network switch.                                 |
| $\sum_{i}^{l} P_{i}$ | 20.     | The method of claim 19 further comprising writing a third portion of the     |
| 2                    | first d | ata packet to a third logical memory device coupled to the network switch    |
|                      |         |                                                                              |
| 1                    | 21.     | The method of claim 19 further comprising:                                   |
| 2                    |         | receiving a second data packet at a network switch;                          |
| 3                    |         | writing a first portion of the second data packet to the first logical       |
| 4                    |         | memory device; and                                                           |
| 5                    |         | writing a second portion of the second data packet to the second             |
| 6                    |         | logical memory device.                                                       |
| 1                    | 22.     | The method of claim 19 further comprising determining at the network         |
| 2                    | switch  | n the last logical memory device to which a portion of the first data packet |
| 3                    | was w   | vritten.                                                                     |
| 1                    | 23.     | The method of claim 22 further comprising:                                   |

| 2 |     | determining whether the size of a third portion of the first data            |
|---|-----|------------------------------------------------------------------------------|
| 3 |     | packet is less than a predetermined value; and                               |
| 4 |     | if so, writing the third portion of the second data packet to both           |
| 5 |     | banks of a third logical memory device.                                      |
|   |     |                                                                              |
| 1 | 24. | The method of claim 22 further comprising:                                   |
| 2 |     | determining whether the size of a third portion of the first data            |
| 3 |     | packet is less than a predetermined value; and                               |
| 4 |     | if not, writing a first sub-portion of the third portion of the first        |
| 5 |     | data packet to a first bank of a third logical memory device and writing a   |
| 6 |     | second sub-portion of the third portion of the first data packet to a second |
| 7 |     | bank of the third logical memory device.                                     |
|   |     |                                                                              |