Does Skill Abundance Still Matter?

The Evolution of Comparative Advantage in the 21st Century

Shin Kikuchi, MIT

January 14, 2025

- Skill Abundance: Central for comparative advantage (Heckscher-Ohlin)
 - Skill-abundant countries specialize in skill-intensive sectors
 - e.g. Electronics in the US v.s. Textiles in India

- Skill Abundance: Central for comparative advantage (Heckscher-Ohlin)
 - Skill-abundant countries specialize in skill-intensive sectors
 - e.g. Electronics in the US v.s. Textiles in India
- Important relationship in trade and growth/development
 - Keys for patterns of development (Ventura 1997)
 - Implications for globalization, technology, and inequality

- Skill Abundance: Central for comparative advantage (Heckscher-Ohlin)
 - Skill-abundant countries specialize in skill-intensive sectors
 - e.g. Electronics in the US v.s. Textiles in India
- Important relationship in trade and growth/development
 - Keys for patterns of development (Ventura 1997)
 - Implications for globalization, technology, and inequality
- Thousands of papers on HO, but almost all use data before 2000
 - After 2000, many drastic changes: China, offshoring, technology, etc.

- Skill Abundance: Central for comparative advantage (Heckscher-Ohlin)
 - Skill-abundant countries specialize in skill-intensive sectors
 - e.g. Electronics in the US v.s. Textiles in India
- Important relationship in trade and growth/development
 - Keys for patterns of development (Ventura 1997)
 - Implications for globalization, technology, and inequality
- Thousands of papers on HO, but almost all use data before 2000
 - After 2000, many drastic changes: China, offshoring, technology, etc.
- This paper: What about the 21st century?

G10's Revealed Comparative Advantage (RCA) in Skill Intensive Sectors:

G10's share of global exports in a sector divided by G10's share of total global exports

G10's Revealed Comparative Advantage (RCA) in Skill Intensive Sectors:

G10's share of global exports in a sector divided by G10's share of total global exports

G10's Revealed Comparative Advantage (RCA) in Skill Intensive Sectors:

G10's share of global exports in a sector divided by G10's share of total global exports

G10's Revealed Comparative Advantage (RCA) in Skill Intensive Sectors:

G10's share of global exports in a sector divided by G10's share of total global exports

G10's Revealed Comparative Advantage (RCA) in Skill Intensive Sectors:

G10's share of global exports in a sector divided by G10's share of total global exports

G10's Revealed Comparative Advantage (RCA) in Skill Intensive Sectors:

G10's share of global exports in a sector divided by G10's share of total global exports

G10's Revealed Comparative Advantage (RCA) in Skill Intensive Sectors:

G10's share of global exports in a sector divided by G10's share of total global exports

Note: Binned-scatter plots for 396 4-digit sectors. Data from UN Comtrade and NBER CES Manuf. DB

0.4

G10's Revealed Comparative Advantage (RCA) in Skill Intensive Sectors:

G10's share of global exports in a sector divided by G10's share of total global exports

Note: Binned-scatter plots for 396 4-digit sectors. Data from UN Comtrade and NBER CES Manuf. DB

0.4

G10's Revealed Comparative Advantage (RCA) in Skill Intensive Sectors:

G10's share of global exports in a sector divided by G10's share of total global exports

G10's Revealed Comparative Advantage (RCA) in Skill Intensive Sectors:

G10's share of global exports in a sector divided by G10's share of total global exports

This Paper

- Does skill abundance systematically matter for comparative advantage?
 - Yes and stable until 1990, No after 2000
- What can empirically and quantitatively explain the change in the pattern?
 - Automation, not offshoring
- What are the macro implications?
 - Manufacturing shifts to North; Inequality expands within & across countries

- Follow the literature's state-of-the-art specification
 - Based on a multi-sector Eaton-Kortum model (Chor 2010, Costinot et al 2012)

- Follow the literature's state-of-the-art specification
 - Based on a multi-sector Eaton-Kortum model (Chor 2010, Costinot et al 2012)
- Regress bilateral, 4-digit sectoral trade flows on the interaction
 - Sector's skill intensity × Exporter's skill abundance

- Follow the literature's state-of-the-art specification
 - Based on a multi-sector Eaton-Kortum model (Chor 2010, Costinot et al 2012)
- Regress bilateral, 4-digit sectoral trade flows on the interaction
 - Sector's skill intensity × Exporter's skill abundance
- Vanishing importance of skill abundance in comparative advantage

- Follow the literature's state-of-the-art specification
 - Based on a multi-sector Eaton-Kortum model (Chor 2010, Costinot et al 2012)
- Regress bilateral, 4-digit sectoral trade flows on the interaction
 - Sector's skill intensity × Exporter's skill abundance
- Vanishing importance of skill abundance in comparative advantage
- Heterogeneous declines across groups of countries & sectors
 - More declines among groups of countries & sectors with more automation
 - No such heterogeneity from offshoring

- Follow the literature's state-of-the-art specification
 - Based on a multi-sector Eaton-Kortum model (Chor 2010, Costinot et al 2012)
- Regress bilateral, 4-digit sectoral trade flows on the interaction
 - Sector's skill intensity × Exporter's skill abundance
- Vanishing importance of skill abundance in comparative advantage
- Heterogeneous declines across groups of countries & sectors
 - More declines among groups of countries & sectors with more automation
 - No such heterogeneity from offshoring
- Conditional on automation, HO-like predictions still survive

- Quantitative analysis: Eaton-Kortum model with automation & offshoring
 - Task framework: Acemoglu & Restrepo + Grossman & Rossi-Hansberg
 - Low-skill labor can be replaced by machines or foreign labor

- Quantitative analysis: Eaton-Kortum model with automation & offshoring
 - Task framework: Acemoglu & Restrepo + Grossman & Rossi-Hansberg
 - Low-skill labor can be replaced by machines or foreign labor
- Counterfactual exercises with/without automation/offshoring shocks

- Quantitative analysis: Eaton-Kortum model with automation & offshoring
 - Task framework: Acemoglu & Restrepo + Grossman & Rossi-Hansberg
 - Low-skill labor can be replaced by machines or foreign labor
- Counterfactual exercises with/without automation/offshoring shocks
- Automation, not offshoring, explains the empirical facts

- Quantitative analysis: Eaton-Kortum model with automation & offshoring
 - Task framework: Acemoglu & Restrepo + Grossman & Rossi-Hansberg
 - Low-skill labor can be replaced by machines or foreign labor
- Counterfactual exercises with/without automation/offshoring shocks
- Automation, not offshoring, explains the empirical facts
- Implications of automation
 - Shifts of manufacturing from South to North
 - Increases in skill premia in North and welfare everywhere

1. New Facts on the sources of comparative advantage:

Ricardian: MacDougall (1951), Stern (1962), Balassa (1963), Golub & Hsieh (2000), Nunn (2007), Levchenko (2007), Manova (2008), Costinot (2009), Costinot et al (2012)

- Ricardian: MacDougall (1951), Stern (1962), Balassa (1963), Golub & Hsieh (2000), Nunn (2007), Levchenko (2007), Manova (2008), Costinot (2009), Costinot et al (2012)
- HO: Leamer (1980, 1984), Bowen et al (1987), Trefler (1993, 1995), Harrigan (1997), Davis &
 Weinstein (2001), Schott (2001), Romalis (2004), Morrow (2010), Chor (2010)

- Ricardian: MacDougall (1951), Stern (1962), Balassa (1963), Golub & Hsieh (2000), Nunn (2007), Levchenko (2007), Manova (2008), Costinot (2009), Costinot et al (2012)
- HO: Leamer (1980, 1984), Bowen et al (1987), Trefler (1993, 1995), Harrigan (1997), Davis &
 Weinstein (2001), Schott (2001), Romalis (2004), Morrow (2010), Chor (2010)
- Mean Reversion: Levchenko & Zhang (2016), Hanson, Lind, Muendler (2018)

- Ricardian: MacDougall (1951), Stern (1962), Balassa (1963), Golub & Hsieh (2000), Nunn (2007), Levchenko (2007), Manova (2008), Costinot (2009), Costinot et al (2012)
- HO: Leamer (1980, 1984), Bowen et al (1987), Trefler (1993, 1995), Harrigan (1997), Davis &
 Weinstein (2001), Schott (2001), Romalis (2004), Morrow (2010), Chor (2010)
- Mean Reversion: Levchenko & Zhang (2016), Hanson, Lind, Muendler (2018)
- \rightarrow Skill abundance matter in 1980s; Not anymore post-2000.

- 1. New Facts on the sources of comparative advantage:
- 2. Consequences of technology and globalization on inequality:
 - Technology: Katz & Murphy (1992), Berman et al (1994), Acemoglu (2002), Autor et al (2003),
 Acemoglu & Autor (2011), Autor & Dorn (2013), Acemoglu & Restrepo (2018,2022)
 - Offshoring: Feenstra & Hanson (1997, 1999, 2001), Grossman Rossi-Hansberg (2008, 2012), Hummels et al (2014), Boehm et al (2020)
 - Interaction of Tech and Trade: Xu (2001), Acemoglu (2002), Thoenig & Verdier (2003),
 Burstein et al (2013), Parro (2013), Burstein & Vogel (2017), Morrow & Trefler (2022)
 - Automation and Trade: Freud et al (2022), Artuc et al (2023), Fontagné et al (2024)
 - ightarrow Automation \Rightarrow Comparative Advantage and Inequality

FACTS: SKILL ABUNDANCE NO LONGER MATTERS

Multi-sector Eaton-Kortum Model (Chor (2010), Costinot et al (2012))

Exporter *i*, Importer *j*, Sector *s*: In Export_{*i,j,s*} =
$$-\underbrace{\theta}_{\text{Trade Elas.}}\underbrace{\ln c_{i,s}}_{\text{Unit Cost}} + \underbrace{\tilde{\eta}_{i,j} + \tilde{\eta}_{j,s}}_{\text{FEs}}$$

Multi-sector Eaton-Kortum Model (Chor (2010), Costinot et al (2012))

Exporter *i*, Importer *j*, Sector *s*: In Export_{*i,j,s*} =
$$-\underbrace{\theta}_{\text{Trade Elas.}}\underbrace{\ln c_{i,s}}_{\text{Unit Cost}} + \underbrace{\tilde{\eta}_{i,j} + \tilde{\eta}_{j,s}}_{\text{FEs}}$$

• Unit cost (α_s^H : Skill Intensity = share of skilled labor payroll in value-added)

$$c_{i,s} = (w_i^H)^{\alpha_s^H} (w_i^L)^{1-\alpha_s^H} \rightarrow \ln c_{i,s} = \alpha_s^H \times \underbrace{\ln(w_i^H/w_i^L)}_{\text{Relative Wage}} + \ln w_i^L$$

Multi-sector Eaton-Kortum Model (Chor (2010), Costinot et al (2012))

Exporter *i*, Importer *j*, Sector *s*: In Export_{*i,j,s*} =
$$-\underbrace{\theta}_{\text{Trade Elas.}}\underbrace{\ln c_{i,s}}_{\text{Unit Cost}} + \underbrace{\tilde{\eta}_{i,j} + \tilde{\eta}_{j,s}}_{\text{FEs}}$$

• Unit cost (α_s^H : Skill Intensity = share of skilled labor payroll in value-added)

$$c_{i,s} = (w_i^H)^{\alpha_s^H} (w_i^L)^{1-\alpha_s^H} \rightarrow \ln c_{i,s} = \alpha_s^H \times \underbrace{\ln(w_i^H/w_i^L)}_{\text{Relative Wage}} + \ln w_i^L$$

• If (log) relative wage is log-linear in Skill Abundance_i, $ln(H_i/L_i)$,

$$ln Exports_{i,j,s} = \beta \left[Skill Intensity_s \times Skill Abundance_i \right] + \eta_{i,j} + \eta_{j,s}$$

• Multi-sector Eaton-Kortum Model (Chor (2010), Costinot et al (2012))

Exporter *i*, Importer *j*, Sector *s*: In Export_{*i,j,s*} =
$$-\underbrace{\theta}_{\text{Trade Elas.}}\underbrace{\ln c_{i,s}}_{\text{Unit Cost}} + \underbrace{\tilde{\eta}_{i,j} + \tilde{\eta}_{j,s}}_{\text{FEs}}$$

• Unit cost (α_s^H : Skill Intensity = share of skilled labor payroll in value-added)

$$c_{i,s} = (w_i^H)^{\alpha_s^H} (w_i^L)^{1-\alpha_s^H} \rightarrow \ln c_{i,s} = \alpha_s^H \times \underbrace{\ln(w_i^H/w_i^L)}_{\text{Relative Wage}} + \ln w_i^L$$

• If (log) relative wage is log-linear in Skill Abundance_i, $ln(H_i/L_i)$,

$$ln \ Exports_{i,j,s} = \beta \ \left[Skill \ Intensity_s \times Skill \ Abundance_i \right] + \eta_{i,j} + \eta_{j,s}$$

ln Exports_{i,j,s} =
$$\beta$$
 [Skill Intensity_s × Skill Abundance_i] + $\eta_{i,j}$ + $\eta_{j,s}$,

Do skill-abundant countries export more skill-intensive goods?

$$\label{eq:skill} \mbox{In Exports}_{i,j,s} = \beta \left[\mbox{Skill Intensity}_{\mbox{\scriptsize S}} \times \mbox{Skill Abundance}_i \right] + \eta_{i,j} + \eta_{j,s},$$

• Exports $_{i,j,s}$: Bilateral trade flow i to j in s, from UN Comtrade

ln Exports_{i,j,s} =
$$\beta$$
 [Skill Intensity_s × Skill Abundance_i] + $\eta_{i,j}$ + $\eta_{j,s}$,

- Exports $_{i,j,s}$: Bilateral trade flow i to j in s, from UN Comtrade
- Skill Intensity_s: $\alpha_{s,t}^H$ Share of skilled labor pay. in value-added, from NBER-CES

ln Exports_{i,j,s} =
$$\beta$$
 [Skill Intensity_s × Skill Abundance_i] + $\eta_{i,j}$ + $\eta_{j,s}$,

- Exports $_{i,j,s}$: Bilateral trade flow i to j in s, from UN Comtrade
- Skill Intensity_s: $\alpha_{s,t}^H$ Share of skilled labor pay. in value-added, from NBER-CES
- Skill Abundance_i: $ln(H_{i,t}/L_{i,t})$ College to Non-College ratio in i, from Barro-Lee

ln Exports_{i,j,s} =
$$\beta$$
 [Skill Intensity_s × Skill Abundance_i] + $\eta_{i,j}$ + $\eta_{j,s}$,

- Exports $_{i,j,s}$: Bilateral trade flow i to j in s, from UN Comtrade
- Skill Intensity_s: $\alpha_{s,t}^H$ Share of skilled labor pay. in value-added, from NBER-CES
- Skill Abundance_i: $ln(H_{i,t}/L_{i,t})$ College to Non-College ratio in i, from Barro-Lee
- $\eta_{i,j}$: Exporter-Importer FEs: control distances, productivity level diffs,...

Do skill-abundant countries export more skill-intensive goods?

$$\label{eq:skill} \mbox{In Exports}_{i,j,s} = \beta \left[\mbox{Skill Intensity}_{\mbox{\scriptsize S}} \times \mbox{Skill Abundance}_i \right] + \eta_{i,j} + \eta_{j,s},$$

- Exports $_{i,j,s}$: Bilateral trade flow i to j in s, from UN Comtrade
- Skill Intensity_s: $\alpha_{s,t}^H$ Share of skilled labor pay. in value-added, from NBER-CES
- Skill Abundance_i: $ln(H_{i,t}/L_{i,t})$ College to Non-College ratio in i, from Barro-Lee
- $\eta_{i,j}$: Exporter-Importer FEs: control distances, productivity level diffs,...
- $\eta_{j,s}$: Importer-Sector FEs: control tariffs, expenditure shares,...

Expect $\beta > 0$: Skill-abundant countries export skill-intensive goods more

Do skill-abundant countries export more skill-intensive goods?

$$\label{eq:skill} \mbox{In Exports}_{i,j,s,\mathbf{t}} = \beta_{\mathbf{t}} \left[\mbox{Skill Intensity}_{s,\mathbf{t}} \times \mbox{Skill Abundance}_{i,\mathbf{t}} \right] + \eta_{i,j,\mathbf{t}} + \eta_{j,s,\mathbf{t}},$$

- Exports_{i,j,s,t}: Bilateral trade flow i to j in s, from UN Comtrade
- Skill Intensity_{s,t}: $\alpha_{s,t}^H$ Share of skilled labor pay. in value-added, from NBER-CES
- Skill Abundance_{i,t}: $ln(H_{i,t}/L_{i,t})$ College to Non-College ratio in i, from Barro-Lee
- $\eta_{i,j,t}$: Exporter-Importer FEs: control distances, productivity level diffs,...
- $\eta_{j,s,t}$: Importer-Sector FEs: control tariffs, expenditure shares,...

Expect $\beta_t > 0$: Skill-abundant countries export skill-intensive goods more

Skill Abundance \Rightarrow CA in Skill-Intensive Sectors?

ln Exports_{i,j,s,t} = β_t [Skill Intensity_{s,t} × Skill Abundance_{i,t}] + $\eta_{i,j,t}$ + $\eta_{i,s,t}$,

Skill Abundance ⇒ CA in Skill-Intensive Sectors before 2000

ln Exports_{i,j,s,t} = β_t [Skill Intensity_{s,t} × Skill Abundance_{i,t}] + $\eta_{i,j,t}$ + $\eta_{i,s,t}$,

Skill Abundance ⇒ CA in Skill-Intensive Sectors before 2000

 $ln \, Exports_{i,j,s,t} = \beta_t \left[Skill \, Intensity_{s,t} \times Skill \, Abundance_{i,t} \right] + \eta_{i,j,t} + \eta_{j,s,t},$

 $ln \, Exports_{i,j,s,t} = \beta_t \, [Skill \, Intensity_{s,t} \times Skill \, Abundance_{i,t}] + \eta_{i,j,t} + \eta_{j,s,t},$

Change in Patterns of CA Comes from Exports

 $\label{eq:skill} \mbox{In Exports}_{i,j,s,t} = \beta_t \left[\mbox{Skill Intensity}_{s,\mathbf{1980}} \times \mbox{Skill Abundance}_{i,\mathbf{1980}} \right] + \eta_{i,j,t} + \eta_{j,s,t},$

11/38

NOT Driven by Attenuating Skill Measurement

ln Exports_{i,j,s,t} = β_t [Skill Intensity_{s,2015} × Skill Abundance_{i,2015}] + $\eta_{i,j,t}$ + $\eta_{j,s,t}$,

Robustness Checks

- Other sources of comparative advantage? Capital Institution
- Driven by small countries? Weighted
- Some exporter-sector unobserved het., or IRS? Pool years and i-s FEs
- Different skill measures? → High School → Predicted by Demographics
- Total exports, instead of bilateral exports (Romalis 2004, Nunn 2007,...) → go
- Different measures of sectoral factor intensity (Chor 2010)
 - In (H_S/L_S), instead of α_S^H (≡ Skilled Payroll Share to Value-Added) → go
- Including service sectors (WIOD, later in this presentation)

POTENTIAL HYPOTHESES: AUTOMATION AND OFFSHORING

Potential Hypotheses: Automation and Offshoring

• What can make domestic skill abundance less relevant for CA after the 1990s?

Potential Hypotheses: Automation and Offshoring

- What can make domestic skill abundance less relevant for CA after the 1990s?
- Two massive technical progress, replacing low-skill labor
 - Automation: Replace low-skill labor with machines
 - Offshoring: Replace low-skill labor with foreign inputs

Potential Hypotheses: Automation and Offshoring

- What can make domestic skill abundance less relevant for CA after the 1990s?
- Two massive technical progress, replacing low-skill labor
 - Automation: Replace low-skill labor with machines
 - Offshoring: Replace low-skill labor with foreign inputs
- This section: Explore heterogeneous effects across countries and sectors
 - Descriptive analysis for heterogeneous effects (for now)
 - Causal analysis using the model (later)

Specification for Heterogeneous Effects: Automation

$$\text{In Exports}_{i,j,s,t} = \underbrace{\beta_t^0 \left(1 + \beta_t^A H A_{i,s} \right)}_{=\beta_t} \cdot \left[\text{Skill Intensity}_{s,t} \times \text{Skill Abundance}_{i,t} \right] + \eta_{i,j,t} + \eta_{j,s,t},$$

- $HA_{i,s}$: High-automation dummy (below/above the median robot adoption)
 - Robot adoption: Robot stock per workers from IFR & WIOD

Specification for Heterogeneous Effects: Automation

$$\ln \text{Exports}_{i,j,s,t} = \underbrace{\beta_t^0 \left(1 + \beta_t^A H A_{i,s} \right)}_{=\beta_t} \cdot \left[\text{Skill Intensity}_{s,t} \times \text{Skill Abundance}_{i,t} \right] + \eta_{i,j,t} + \eta_{j,s,t},$$

- $HA_{i,s}$: High-automation dummy (below/above the median robot adoption)
 - Robot adoption: Robot stock per workers from IFR & WIOD
- Expect β_t^A to decrease if there is a relationship btw change & automation

Skill Abundance Still Matters Absent Automation

Plot $\widehat{\beta}_t^0$

Skill Abundance Still Matters Absent Automation

Plot $\widehat{\beta}_t^0$ and $\widehat{\beta}_t^0 + \widehat{\beta}_t^A$

Specification for Heterogeneous Effects: Offshoring

$$\ln \mathsf{Exports}_{i,j,s,t} = \underbrace{\beta_t^0 \left(1 + \beta_t^O H O_{i,s} \right)}_{=\beta_t} \cdot \left[\mathsf{Skill Intensity}_{s,t} \times \mathsf{Skill Abundance}_{i,t} \right] + \eta_{i,j,t} + \eta_{j,s,t},$$

- HO_{i,s}: High-offshoring dummy (below/above the median offshoring)
 - Offshoring share: (Intermediate imports) / (Total intermediates) from WIOD
- Expect β_t^O to decrease if there is a relationship btw change & offshoring

Skill Abundance does not Matter Even Absent Offshoring

Plot $\widehat{\beta}_t^0$

Skill Abundance does not Matter Even Absent Offshoring

Plot $\widehat{\beta}_t^0$ and $\widehat{\beta}_t^0$ + $\widehat{\beta}_t^0$

Same Results from Continuous Measures

$$\text{ln Exports}_{i,j,s,t} = \beta_t^0 \left(1 + \beta_t^A \mathsf{Auto}_{i,s} + \beta_t^O \mathsf{Ofs}_{i,s} \right) \cdot \left[\mathsf{Skill Int.}_{s,t} \times \mathsf{Skill Abd.}_{i,t} \right] + \eta_{i,j,t} + \eta_{j,s,t}$$

	1995	2010	1995	2010
Skill Intensity x Abundance	1.26	-0.33		
	(0.23)	(0.28)		
x Automation (log robot stock)				

x Offshoring Share (×100)

Same Results from Continuous Measures

 $\text{ln Exports}_{i,j,s,t} = \beta_t^0 \left(1 + \beta_t^A \text{Auto}_{i,s} + \beta_t^O \text{Ofs}_{i,s} \right) \cdot \left[\text{Skill Int.}_{s,t} \times \text{Skill Abd.}_{i,t} \right] + \eta_{i,j,t} + \eta_{j,s,t}$

	1995	2010	1995	2010
Skill Intensity x Abundance	1.26	-0.33	3.00	3.49
	(0.23)	(0.28)	(0.41)	(0.57)
x Automation (log robot stock)			-0.19	-0.35
			(0.05)	(0.06)
x Offshoring Share (×100)			0.04	0.05
			(0.05)	(0.07)

Note: Automation measure: 12.2 for German cars, 2.3 for Indian textiles

Skill Abundance Still Matters Absent Automation

Fitted values for groups with automation of 10th, 50th, and 90th percentiles

Offshoring Seems Unrelated to Change in Pattern

Fitted values for groups with offshoring of 10th, 50th, and 90th percentiles

Controlling China Shock does not Change Results

	1995	2010	1995	2010
Skill Intensity x Abundance	1.26	-0.33		
	(0.23)	(0.28)		
v Automation (log robot stock)				

x Automation (log robot stock)

x Offshoring Share (×100)

x China's RCA

Controlling China Shock does not Change Results

	1995	2010	1995	2010
Skill Intensity x Abundance	1.26	-0.33	2.43	3.51
	(0.23)	(0.28)	(0.45)	(0.46)
x Automation (log robot stock)			-0.15	-0.31
			(0.05)	(0.05)
x Offshoring Share (×100)			0.03	0.11
			(0.05)	(0.06)
x China's RCA			0.20	0.34
			(0.12)	(0.13)

Takeaway: China shocks strengthen the Heckscher-Ohlin force

Summary of Empirical Facts

- Skill abundance becomes less important in comparative advantage over time
 - Less important with higher automation
 - Offshoring has surprisingly no relationship

MODEL: TRADE WITH AUTOMATION AND OFFSHORING

Overview

• Multi-sector Eaton-Kortum model with input-output linkages

Overview

- Multi-sector Eaton-Kortum model with input-output linkages
 - New: Task framework for automation and offshoring

Overview

- Multi-sector Eaton-Kortum model with input-output linkages
 - New: Task framework for automation and offshoring
- Primary factors:
 - Labor: $H_{i,s}$ (high-skilled), $L_{i,s}$ (low-skilled)

Overview

- Multi-sector Eaton-Kortum model with input-output linkages
 - New: Task framework for automation and offshoring
- Primary factors:
 - Labor: $H_{i,s}$ (high-skilled), $L_{i,s}$ (low-skilled)
- Additional production factors (produced using outputs: roundabout)
 - Automation Capital: A_{i,s}
 - Intermediate: $X_{i,s}$ (domestic), $O_{i,s}$ (foreign, offshored)
 - ⋆ including non-automation capital (buildings, land)

Demand: Standard Multi-Sector Eaton Kortum Model

- Country *i*, *j*, Sector *s*
- Preference across sectors: Cobb-Douglas with expenditure share of $\mu_{j,s}$

Demand: Standard Multi-Sector Eaton Kortum Model

- Country *i*, *j*, Sector s
- Preference across sectors: Cobb-Douglas with expenditure share of $\mu_{j,s}$
- Trade share (gravity equation) within sectors:

$$\pi_{i,j,s}^{F} = \frac{(c_{i,s} \cdot \tau_{i,j,s})^{-\theta}}{\sum_{l}^{\mathfrak{I}} (c_{l,s} \cdot \tau_{l,j,s})^{-\theta}}$$

- Unit cost: $c_{i,s}$ —endogenously determined from production processes (next)
- Trade cost: $\tau_{i,j,s}$
- Trade elasticity $\theta > 0$

• Extend Grossman & Rossi-Hansberg (2008), Acemoglu & Restrepo (2022)

- Extend Grossman & Rossi-Hansberg (2008), Acemoglu & Restrepo (2022)
- Gross Output ($z_{i,s}(\omega)$: Fréchet) for variety ω

$$Y_{i,s}(\omega) = z_{i,s}(\omega) \cdot (H_{i,s}(\omega))^{\alpha_s^H} \cdot (T_{i,s}(\omega))^{1-\alpha_s^H}.$$

- Extend Grossman & Rossi-Hansberg (2008), Acemoglu & Restrepo (2022)
- Gross Output $(z_{i,s}(\omega))$: Fréchet) for variety ω

$$Y_{i,s}(\omega) = z_{i,s}(\omega) \cdot (H_{i,s}(\omega))^{\alpha_s^H} \cdot (T_{i,s}(\omega))^{1-\alpha_s^H}.$$

- Extend Grossman & Rossi-Hansberg (2008), Acemoglu & Restrepo (2022)
- Gross Output (z_{i.s}: Average TFP)

$$Y_{i,s} = Z_{i,s} \cdot (H_{i,s})^{\alpha_s^H} \cdot (T_{i,s})^{1-\alpha_s^H}.$$

- Extend Grossman & Rossi-Hansberg (2008), Acemoglu & Restrepo (2022)
- Gross Output (z_{i.s}: Average TFP)

$$Y_{i,s} = z_{i,s} \cdot (H_{i,s})^{\alpha_s^H} \cdot (T_{i,s})^{1-\alpha_s^H}, \quad T_{i,s} = \exp\left(\int_0^1 \ln \underbrace{T_{i,s}(x)}_{\mathsf{Task}} dx\right).$$

- Extend Grossman & Rossi-Hansberg (2008), Acemoglu & Restrepo (2022)
- Gross Output (z_{i,s}: Average TFP)

$$Y_{i,s} = z_{i,s} \cdot (H_{i,s})^{\alpha_s^H} \cdot (T_{i,s})^{1-\alpha_s^H}, \quad T_{i,s} = \exp\left(\int_0^1 \ln \underbrace{T_{i,s}(x)}_{\mathsf{Task}} dx\right).$$

• Production function for each task ($\psi_{i,s}^f(x)$ task-specific tech)

$$T_{i,S}(x) = \underbrace{\psi_{i,S}^{A}(x)A_{i,S}(x)}_{\text{Automation Capital}} + \underbrace{\psi_{i,S}^{L}(x)L_{i,S}(x)}_{\text{Production Labor}} + \underbrace{\psi_{i,S}^{X}(x)X_{i,S}(x)}_{\text{Domestic Input}} + \underbrace{\psi_{i,S}^{O}(x)O_{i,S}(x)}_{\text{Foreign Input}}$$

Suppl 2/2: Task Allocation $\mathfrak{T}_{i,s}^f$, Task Share $\Gamma_{i,s}^f$

• Task production cost using factor $f: c_{i,s}^f(x) \equiv w_{i,s}^f/(\psi_{i,s}^f(x))$ for $f \in \{A, L, X, O\}$

Suppl 2/2: Task Allocation $\mathfrak{T}_{i,s}^f$, Task Share $\Gamma_{i,s}^f$

- Task production cost using factor $f: c_{i,s}^f(x) \equiv w_{i,s}^f/(\psi_{i,s}^f(x))$ for $f \in \{A, L, X, O\}$
- Cost minimization ⇒ Task Allocation and Task Share

$$\mathcal{T}_{i,s}^f = \left\{ x : f = \operatorname{argmin}_{f'} c_{i,s}^{f'}(x) \right\}, \quad \to \Gamma_{i,s}^f : \text{ measure of } \mathcal{T}_{i,s}^f, \quad \text{for} \quad f \in \{A, L, X, O\}$$

• Suppose no intermediate and constant labor productivity $\psi^{L}(x) = 1$.

- Suppose no intermediate and constant labor productivity $\psi^{L}(x) = 1$.
- Cost minimization (task allocation) \Rightarrow Automation share $\Gamma_i^A = \Gamma^A$

- Suppose no intermediate and constant labor productivity $\psi^{L}(x) = 1$.
- Suppose wage increases to w^{L'}

• Suppose no intermediate and constant labor productivity $\psi^{L}(x) = 1$.

- Suppose no intermediate and constant labor productivity $\psi^{L}(x) = 1$.
- Now, consider automation shock $\psi^A(x)$ from $\psi^{A'}(x)$

- Suppose no intermediate and constant labor productivity $\psi^{L}(x) = 1$.
- Automation share increases to $\Gamma^{A'}$

Suppl 2/2: Task Allocation $\mathfrak{T}_{i,s}^f$, Task Share $\Gamma_{i,s}^f$

- Task production cost using factor $f: c_{i,s}^f(x) \equiv w_{i,s}^f/(\psi_{i,s}^f(x))$ for $f \in \{A, L, X, O\}$
- Cost minimization \Rightarrow Task Allocation and Task Share $\mathfrak{T}^f_{i,s} = \left\{ x : f = \operatorname{argmin}_{f'} c^{f'}_{i,s}(x) \right\}, \quad \to \Gamma^f_{i,s} : \text{ measure of } \mathfrak{T}^f_{i,s}, \quad \text{for} \quad f \in \{A, L, X, O\}$
- Unit cost of production:

$$c_{i,s} = \Lambda_s \cdot (w_i^H)^{\alpha_s^H} \cdot \left[\left(\frac{w_{i,s}^A}{\Gamma_{i,s}^A} \right)^{\Gamma_{i,s}^A} \cdot \left(\frac{w_i^L}{\Gamma_{i,s}^L} \right)^{\Gamma_{i,s}^L} \cdot \left(\frac{w_{i,s}^X}{\Gamma_{i,s}^X} \right)^{\Gamma_{i,s}^X} \cdot \left(\frac{w_{i,s}^O}{\Gamma_{i,s}^O} \right)^{\Gamma_{i,s}^O} \right]^{1-\alpha_s^C}$$

Equilibrium Conditions Two Country

Given factor endowments $\{H_i, L_i\}$, an equilibrium is a set of wages $\{w_i^H, w_i^L\}$

- Consumers maximize utility by choosing from which countries to buy
 - \rightarrow trade share $\pi_{i,j,s}$, as a function of unit cost $\{c_{i,s}\}$
- Unit cost, $c_{i,s}$, as a function of $\{w_i^H, w_i^L\}$
 - $\{w_{i,s}^A, w_{i,s}^X, w_{i,s}^O\}$ are functions of $\{w_i^H, w_i^L\}$ with IO coef.
- Goods and Labor Markets Clear

QUANTIFICATION

- Two Exercises:
 - 1. Can changes in $\Gamma_{i,s,t}^A$ (automation) and $\Gamma_{i,s,t}^O$ (offshoring) explain $\widehat{\beta}_t$?
 - 2. Using the same model, what are the macro implications?

- Two Exercises:
 - 1. Can changes in $\Gamma_{i,s,t}^A$ (automation) and $\Gamma_{i,s,t}^O$ (offshoring) explain $\widehat{\beta}_t$?
 - 2. Using the same model, what are the macro implications?
- Countries and Sectors: 40 countries, 18 sectors (WIOD, 1995-2008)

- Two Exercises:
 - 1. Can changes in $\Gamma_{i,s,t}^A$ (automation) and $\Gamma_{i,s,t}^O$ (offshoring) explain $\widehat{\beta}_t$?
 - 2. Using the same model, what are the macro implications?
- Countries and Sectors: 40 countries, 18 sectors (WIOD, 1995-2008)
- Automation and Offshoring Shocks: Changes in productivity $\psi(x)$ to match:

- Two Exercises:
 - 1. Can changes in $\Gamma_{i,s,t}^A$ (automation) and $\Gamma_{i,s,t}^O$ (offshoring) explain $\widehat{\beta_t}$?
 - 2. Using the same model, what are the macro implications?
- Countries and Sectors: 40 countries, 18 sectors (WIOD, 1995-2008)
- **Automation and Offshoring Shocks:** Changes in productivity $\psi(x)$ to match:
 - $\Gamma_{i,s,t}^{A}$ (automation, constructed)

$$p_{i,s,t}^{A}A_{i,s,t} = \underbrace{p_{i,s,t0}^{K}K_{i,s,t0}}_{\text{Capital Income}} \cdot \underbrace{\frac{p_{US,s,t0}^{M}M_{US,s,t0}}{p_{US,s,t0}^{K}K_{US,s,t0}}}_{\text{Machine-Capital Ratio}} \cdot \underbrace{\frac{p_{i,s,t}^{R}R_{i,s,t}}{p_{i,s,t0}^{R}R_{i,s,t0}}}_{\text{Increases in Robots}}$$

- Two Exercises:
 - 1. Can changes in $\Gamma_{i.s.t}^{A}$ (automation) and $\Gamma_{i.s.t}^{O}$ (offshoring) explain $\widehat{\beta_t}$?
 - 2. Using the same model, what are the macro implications?
- Countries and Sectors: 40 countries, 18 sectors (WIOD, 1995-2008)
- **Automation and Offshoring Shocks:** Changes in productivity $\psi(x)$ to match:

 - $\Gamma^{\mathcal{A}}_{i,s,t}$ (automation, constructed) $\Gamma^{\mathcal{O}}_{i,s,t}$ (offshoring, just data), fixing $\Gamma^{\mathcal{X}}_{i,s,t}$ (domestic intermediate share)

- Two Exercises:
 - 1. Can changes in $\Gamma_{i.s.t}^{A}$ (automation) and $\Gamma_{i.s.t}^{O}$ (offshoring) explain $\widehat{\beta_t}$?
 - 2. Using the same model, what are the macro implications?
- Countries and Sectors: 40 countries, 18 sectors (WIOD, 1995-2008)
- **Automation and Offshoring Shocks:** Changes in productivity $\psi(x)$ to match:
 - $\Gamma_{i,s,t}^{A}$ (automation, constructed)
 - $\Gamma_{i,s,t}^{O}$ (offshoring, just data), fixing $\Gamma_{i,s,t}^{X}$ (domestic intermediate share) Adjust $\Gamma_{i,s,t}^{L}$ (low-skilled labor share) to make $\sum_{F=L,A,X,O} \Gamma_{i,s,t}^{F} = 1$

Data: More Automation in Skill-Abundant Countries

Calibration

Description	Parameter	Value & Source
Panel A: Time-Invariant Parameters (fixed in 1995)		
Trade Elas.	θ	4 (Standard)
Expenditure Share	$\mu_{i,s}$	Data (WIOT)
Factor Endowment	H_i, L_i	Data (WIOT)
Factor Share	$lpha_{i,s}^H$	Data (WIOT)
Input-Output Coef.	$\alpha_{i,r,s}^X, \alpha_{i,r,s}^A$	Data (WIOT) & Ding (2023)
Panel B: Time-Variant Shocks		
Automation Productivity	$\widehat{\frac{\widehat{\psi_{i,s}^{A}}}{\widehat{\tau_{i,s}^{X}}}}$	Match $\widehat{\Gamma_{i,s}^A}$
Offshoring Cost	$\overline{\tau_{i,s}^X}$	Match $\widehat{\Gamma_{i,s}^O}$

RESULTS: CHANGES IN COMPARATIVE ADVANTAGE

• Question: How much can $\Gamma_{i,s,t}^{A}$ and $\Gamma_{i,s,t}^{O}$ explain the path of $\widehat{\beta_t}$?

- Question: How much can $\Gamma_{i,s,t}^A$ and $\Gamma_{i,s,t}^O$ explain the path of $\widehat{\beta}_t$?
- 1. Calibrate the model to 1995 and shock the economy

- Question: How much can $\Gamma_{i,s,t}^A$ and $\Gamma_{i,s,t}^O$ explain the path of $\widehat{\beta_t}$?
- 1. Calibrate the model to 1995 and shock the economy
- 2. Construct counterfactual trade flow: $(X_{i,i,s,t})'$
 - Data (World Input-Output Database, incl. Service)
 - Case 1. Only Automation: Change $\Gamma_{i,s,t}^A$ Case 2. Only Offshoring: Change $\Gamma_{i,s,t}^O$

- Question: How much can $\Gamma_{i,s,t}^A$ and $\Gamma_{i,s,t}^O$ explain the path of $\widehat{\beta}_t$?
- 1. Calibrate the model to 1995 and shock the economy
- 2. Construct counterfactual trade flow: $(X_{i,j,s,t})'$
 - Data (World Input-Output Database, incl. Service)
 - Case 1. Only Automation: Change $\Gamma_{i,s,t}^{A}$
 - Case 2. Only Offshoring: Change $\Gamma_{i,s,t}^{O}$
- 3. Run the same regression as in data but for counterfactual economies

$$\ln(X_{i,j,s,t})' = \beta_t \left[\alpha_{s,t_0}^H \times \ln\left(\frac{H_{i,t_0}}{L_{i,t_0}}\right) \right] + \eta_{i,j,t} + \eta_{j,s,t} + \varepsilon_{i,j,s,t}.$$

$\widehat{\beta}_t$ Decreases Even Using WIOD

Automation, Not Offshoring, Causes the Decline

Why Automation?

- Sizes of automation are smaller than offshoring
- Why does automation, not offshoring, matter?

Why Automation?

- Sizes of automation are smaller than offshoring
- Why does automation, not offshoring, matter?
- One observation: Automation happens disproportionately in *L* scarce countries

Why Automation?

- · Sizes of automation are smaller than offshoring
- Why does automation, not offshoring, matter?
- One observation: Automation happens disproportionately in *L* scarce countries
- Experiment: Suppose all the countries increase automation equally...

Equal Automation Cannot Explain the Decline

RESULTS: MACRO IMPLICATIONS OF AUTOMATION AND OFFSHORING

Macro Implications of Automation and Offshoring

- Through the lens of the same model, what is the causal effect of automation and offshoring?
- Three macro variables
 - Output share of manufacturing (sectoral share within a country)
 - Skill premium (inequality within a country
 - Welfare (inequality across countries)

Manufacturing Shifts to High-Automation Countries

Skill Premia Increases Only in High-Automation Countries

Welfare Increases Everywhere

CONCLUSION

• Did a pattern of comparative advantage change in the 21st Century?

- Did a pattern of comparative advantage change in the 21st Century?
 - It did. Skill abundance no longer matters for comparative advantage

- Did a pattern of comparative advantage change in the 21st Century?
 - It did. Skill abundance no longer matters for comparative advantage
 - Automation causes the decline; Offshoring has small effects

- Did a pattern of comparative advantage change in the 21st Century?
 - It did. Skill abundance no longer matters for comparative advantage
 - Automation causes the decline; Offshoring has small effects
- Automation relocates manufacturing from South to North
 - Inequality within & across countries increases

- Did a pattern of comparative advantage change in the 21st Century?
 - It did. Skill abundance no longer matters for comparative advantage
 - Automation causes the decline; Offshoring has small effects
- Automation relocates manufacturing from South to North
 - Inequality within & across countries increases
- Work in progress:
 - Does a robot tax import China shocks and backfire in an open economy?
 - Does automation facilitate reshoring and reduce the costs of decoupling?
 - Will clean technology erode the comparative advantage of oil-rich countries?

APPENDIX

FACTS

Germany → back

Germany (Low-Automation) → back

India → back

Relative Skilled Wages Decreasing in Skill Endowment - back

Note: Data from GTAP, 2004

Unskilled Wages Increasing in Skill Endowment - back

Note: Data from GTAP, 2004

REGRESSION

Simplified Structural Interpretation

Gravity Equation + Unit Production Cost

$$X_{i,j,s} = \left((c_{i,s} \tau_{i,j} \tau_{j,s}) \right)^{1-\sigma} \cdot (P_{j,s})^{\sigma-1} X_{j,s}, \quad \ln X_{i,j,s} = (1-\sigma) \cdot \ln c_{i,s} + \mu_{i,j} + \mu_{j,s}$$

$$c_{i,s} = (w_i^H)^{\alpha_s^H} (w_i^L)^{1-\alpha_s^H}, \quad \ln c_{i,s} = \underbrace{\frac{d \ln(w^H/w^L)}{d \ln(H/L)}}_{\equiv \epsilon^W : \text{Rel. Wage Elas.} < 0} \cdot \alpha_s^H \cdot \ln \left(\frac{H_i}{L_i}\right) + \ln w_i^L$$

Regression

$$\ln X_{i,j,s} = (1 - \sigma)\epsilon^{W} \left[\alpha_{s}^{H} \times \ln \left(\frac{H_{i}}{L_{i}} \right) \right] + \mu_{i,j} + \mu_{j,s} + \ln w_{i}^{L}$$

▶ back

ROBUSTNESS

Controlling Capital Intensity - back

$$\ln X_{i,j,s,t} = \beta_t \left[\alpha_{s,t}^H \times \ln \left(\frac{H_{i,t}}{L_{i,t}} \right) \right] + \beta_t^K \left[\alpha_{s,t}^K \times \ln \left(\frac{K_{i,t}}{L_{i,t}} \right) \right] + \eta_{i,j,t} + \eta_{j,s,t}$$

Controlling Capital Intensity and Institutions - back

$$\ln X_{i,j,s,t} = \beta_t \left[\alpha_{s,t}^H \times \ln \left(\frac{H_{i,t}}{L_{i,t}} \right) \right] + \sum_{f \in \{K,l\}} \beta_t^F \left[\alpha_{s,t}^F \times \ln \left(\frac{F_{i,t}}{L_{i,t}} \right) \right] + \eta_{i,j,t} + \eta_{j,s,t}$$

Weighted by Country Export → back

Pool and control Origin-Sector FEs - back

$$\ln X_{i,j,s,t} = \beta_t \left[\alpha_{s,t}^H \times \ln \left(\frac{H_{i,t}}{L_{i,t}} \right) \right] + \eta_{i,s} + \eta_{i,j,t} + \eta_{j,s,t}$$

High-school Graduates as Skilled → back

$$\ln X_{i,j,s,t} = \beta_t \left[\alpha_{s,t}^H \times \ln \left(\frac{HS_{i,t}}{NHS_{i,t}} \right) \right] + \eta_{i,j,t} + \eta_{j,s,t}$$

Instrument Skill Endowment by Cohort IV → back

$$\ln X_{i,j,s,t} = \beta_t \left[\alpha_{s,t}^H \times \ln \left(\frac{H_{i,t}}{L_{i,t}} \right) \right] + \eta_{i,j,t} + \eta_{j,s,t}$$

Romalis (2004): Total Export → back

$$\ln X_{i,s,t} = \beta_t \left[\alpha_{s,t}^H \times \ln \left(\frac{H_{i,t}}{L_{i,t}} \right) \right] + \eta_{i,t} + \eta_{s,t}$$

Chor (2011): Num of Workers as Factor Intensity - back

$$\ln X_{i,j,s,t} = \beta_t \left[\ln \left(\frac{H_{s,t}}{L_{s,t}} \right) \times \ln \left(\frac{H_{i,t}}{L_{i,t}} \right) \right] + \eta_{i,j,t} + \eta_{j,s,t}$$

TWO COUNTRY ILLUSTRATION: AUTOMATION

Two Country Illustration: Automation

- North (40% are H) and South (25% are H)
- Actual factor intensity across 397 SIC sectors
- Set $\alpha_s^G = \alpha_s^M = 0$ (focus on value-added)
- Exogenous changes in factor intensity common across sectors & countries
 - Automation: Increase $\Gamma_{i,s}^{K}$ = 0.1 to 0.3
- Show export share of each sector in North against α_s^H Slope is β^H

North Specialize in Skill-Intensive Sectors

Automation Makes Skills Less Important

If Only North Automates, Sign Flips

Example: Within Low-Automation Sectors, Japan Specializes in Skill Intensive Industries

Example: Within High-Automation Sectors, Japan Specializes in Low-Skill Intensive Industries

TOY MODEL: TASK AND COMPARATIVE ADVANTAGE

Model

- Small open economy with two sectors (s = 1, 2)
- Demand

$$q_S = (c_S)^{1-\sigma} \cdot \overline{Q_S}$$

Production (micro-foundation = task framework)

$$Y_S = \zeta \cdot (H_S)^{\alpha_S} \left((L_S)^{\Gamma} (M_S)^{1-\Gamma} \right)^{1-\alpha_S}, \quad \alpha_1 = 1 - \alpha_2 = \alpha > 1/2$$

- M_s: machines or foreign factors supplied at a fixed price r
- Factor market clearing

$$\sum_{S=1,2} H_S = H, \quad \sum_{S=1,2} L_S = L$$

Equilibrium

• Wages $\{w^L, w^H\}$ that satisfy

$$w^L L = \Gamma(1-\alpha)(c_1)^{1-\sigma} + \Gamma\alpha(c_2)^{1-\sigma}, \quad w^H H = \alpha(c_1)^{1-\sigma} + (1-\alpha)(c_2)^{1-\sigma}$$

Unit cost

$$c_{S} = \left(w^{H}\right)^{\alpha_{S}} \left(\left(w^{L}\right)^{\Gamma}\left(r\right)^{1-\Gamma}\right)^{1-\alpha_{S}}$$

Comparative Advantage

- A change in factor endowment $\hat{H} = -\hat{L}$ (=compare two small countries)
- Up to 1st order, CA in H-intensive sector (s = 1)

$$\widehat{c_2} - \widehat{c_1} = \underbrace{-(2\alpha - 1)\widehat{\omega}}_{\text{Skill Premium}<0} \underbrace{-(1 - \Gamma)(2\alpha - 1)\widehat{w}^L}_{\text{Task Displacement}}$$

• Skill premium $(\widehat{\omega} \equiv \widehat{w^H} - \widehat{w^L})$ and wages

$$\widehat{\omega} = \underbrace{-2\widehat{H}}_{\text{Labor Supply}} + \underbrace{(2\alpha - 1)(\sigma - 1)(\widehat{c_2} - \widehat{c_1})}_{\text{GE Effect}}, \quad \widehat{w^L} = \frac{(\sigma - 1)(2\alpha - 1) - 1}{2 + (1 - \Gamma)(\sigma - 1)(2\alpha - 1)}\widehat{\omega}$$

Comparative Advantage if $\Gamma = 1$

Proposition 1: Rybczynski (1955)

An increase in skilled labor $\widehat{H} > 0$ strengthens comparative advantage in a skill-intensive sector.

$$\widehat{c_2} - \widehat{c_1} = \frac{2(2\alpha - 1)}{1 + (2\alpha - 1)^2(\sigma - 1)}\widehat{H}$$

Comparative Advantage if Γ < 1

Proposition 2: Acemoglu-Restrepo meets Rybczynski

An increase in skilled labor $\widehat{H} > 0$ strengthens comparative advantage in a skill-intensive sector. However, the elasticity is lower when labor share Γ is lower.

$$\widehat{c_2} - \widehat{c_1} = \frac{2(2\alpha - 1)}{\frac{1}{\eta(\Gamma)} + (2\alpha - 1)^2(\sigma - 1)}\widehat{H}$$
 (1)

where
$$\eta(\Gamma)=1-\frac{1-(\sigma-1)(2\alpha-1)}{\frac{2}{1-\Gamma}+(\sigma-1)(2\alpha-1)}\in (0,1)$$
 is increasing in Γ .

Automation, Globalization, and Inequality

- Automation → shifts MFG to High-Automation countries
- Demand for *H* increases in High-Automation countries
- Demand for L increases in Low-Automation countries
 - Move to Service sectors, which are more *L*-intensive

Automation, Globalization, and Inequality

- Automation → shifts MFG to High-Automation countries
- Demand for *H* increases in High-Automation countries
- Demand for *L* increases in Low-Automation countries
 - Move to Service sectors, which are more L-intensive
- Roles of Trade?
 - Now, set the trade elasticity θ = 1, instead of θ = 4
 - This kills sectoral reallocation via expenditure switch across countries

θ = 1: Lower Elas. Makes MFG Shifts Less

θ = 1: Skill Premia Increases Everywhere

θ = 1: Welfare Increases Everywhere, but Less

