05

EBRA INEAR

대로 개요

- ❖ 벡터와 관련된 전반적인 논제들을 학습함
- ❖ 벡터의 기본 개념을 정의하고 그 표현법에 대해 고찰함
- ❖ 평면상에서 벡터의 기하학적 표현과 더불어 벡터의 크기를 정의함
- ❖ 단위벡터와 단위좌표벡터에 대해서도 살펴봄
- ◆ 벡터 연산에서 벡터의 합과 차, 그리고 스칼라 곱의 계산법과 그것이 가지는 기하학적 의미를 고찰함
- ❖ 교환법칙, 결합법칙, 항등원의 존재 등 벡터의 성질들을 고찰함
- ❖ MATLAB에 의해 편리하게 벡터 연산을 하는 방법을 살펴봄

05

EBRA INEAR ALG

CONTENTS 5.1 벡터의 개념과 표현 5.1.1 벡터의 개념과 표기법 5.1.2 평면상의 벡터 5.1.3 벡터의 크기와 기하학적 표현 5.1.4 단위벡터와 단위좌표벡터 5.2 벡터의 연산 5.2.1 벡터의 합과 차 5.2.2 벡터의 스칼라 곱 5.2.3 벡터의 성질 5.2.4 벡터의 응용 5.3 MATLAB에 의한 연산

5.1 💍 벡터의 개념과 표현

- 압력, 속력(speed), 물체의 질량, 전자의 전하, 물의 비열, 저항기의 저항, 원의 지름, 삼각형의 면적, 육면체의 체적(부피) 등과 같은 물리적 양(quantity)은 주어진 양의 크기(magnitude)인 실수로 표시할 수 있다. 이때 실수 값을 스칼라(scalar)라고 한다.
- 단 하나의 수만으로는 나타낼 수 없는 또 다른 물리적 및 기하학적 양도 있는데, 속도(velocity), 힘(force) 그리고 가속도(acceleration) 등은 그들의 크기뿐만 아니라 방향까지도 포함한다. 이러한 것들을 벡터(vector)라고 한다.

⟨그림 5.1⟩ 힘의 방향을 나타내는 벡터들

5.1 씩터의 개념과 표현

- 화살표의 시작점인 P를 시점(initial point, tail)이라고 하고,
- 끝나는 점인 Q를 <mark>종점(terminal point, head)</mark>이라고 한다.
- 점 P에서 점 Q까지의 방향을 가진 선분 PQ를 유향선분(directed segment)이라고 한다.

〈그림 5-2〉 시점과 종점이 있는 벡터 PQ

5.1 씩터의 개념과 표현

- 두 벡터 PQ와 RS가 똑같은 크기와 방향을 가지면, 이 두 벡터가 어디에 위치해 있더라도 서로 동치(equivalent)라고 한다.
- 이와 같이 벡터의 시점과 종점의 위치에 관계없이 크기와 방향만을 생각할 때 이것을 기하벡터(geometric vector)라고 부르며 u = v로 나타낸다.

5.1 | 벡터의 개념과 표현

벡터는 좌표로도 나타낼 수 있는데,
 가령 3차원 공간에서 원점 (0, 0, 0)으로부터 좌표상의 위치 (x, y, z)
 까지 향하는 벡터를 위치벡터(position vector)라고 부른다.

〈그림 5.4〉 3차원상에서의 위치벡터

〈그림 5.5〉 오른손 좌표계와 오른손 법칙

5.1 벡터의 개념과 표현

행벡터와 열벡터

또한 이것을 n차원 공간인 R^n 까지 확장하면 벡터 u는

$$u = (x_1, x_2, \dots, x_n)$$
[행벡터(row vector) 표기 방식]

또는
$$u = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
로 표현된다. [열벡터(column vector) 표기 방식]

벡터의 개념과 표현

〈그림 5.6〉 평면상의 벡터 OP

정의 🗿 – 1

평면상의 벡터는 $\mathbf{u} = \begin{bmatrix} x \\ y \end{bmatrix}$ 와 같은 2×1 행렬이다. 벡터 \mathbf{u} 와 \mathbf{v} 중 어느 하나를 평행

이동하여 완전히 겹쳐질 때, 즉 두 벡터의 크기와 방향이 같을 때 두 벡터가 **같다** (equal)라고 하고 u = v로 나타낸다.

예를 들어, u, v가 다음과 같을 때

벡터의 개념과 표현

$$u = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}, \quad v = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$$

두 벡터가 각각의 성분이 같으면, 즉 $x_1 = x_2$ 와 $y_1 = y_2$ 이면 같다라고 한다.

따라서 두 벡터
$$\begin{bmatrix} a+b\\2 \end{bmatrix}$$
, $\begin{bmatrix} 4\\a-b \end{bmatrix}$ 가 같기 위한 조건은

$$a+b=4$$
$$a-b=2$$

이므로 a = 3, b = 1이다.

벡터의 개념과 표현

예제 6-1 다음에서 두 개의 벡터 u, v가 같을 때 각각의 변수 값을 구해 보자.

(1)
$$\mathbf{u} = \begin{bmatrix} a - b \\ 2 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 4 \\ a + b \end{bmatrix}$

(1)
$$\mathbf{u} = \begin{bmatrix} a - b \\ 2 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 4 \\ a + b \end{bmatrix}$ (2) $\mathbf{u} = \begin{bmatrix} x \\ 2y + 1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} y - 2 \\ 3 \end{bmatrix}$

- 증변의 벡터 값이 같도록 변수 값을 구한다.
- (1) a b = 4a + b = 2따라서 a = 3, b = -1이다.
- (2) x = y 22y + 1 = 3따라서 *x* = − 1, *y* = 1이다.

벡터의 개념과 표현

예제 6-2 다음의 벡터들을 나타내는 R^2 상에서의 유향선분들을 각각 그려 보자.

(1)
$$\mathbf{u} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$
 (2) $\mathbf{v} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ (3) $\mathbf{w} = \begin{bmatrix} -3 \\ -3 \end{bmatrix}$ (4) $\mathbf{z} = \begin{bmatrix} 0 \\ -3 \end{bmatrix}$

음 ○ 원점을 중심으로 하여 해당되는 좌표로 향하는 벡터를 그리면 〈그림 5.7〉 과 같다.

〈그림 5.7〉 벡터의 표현

〈그림 5.8〉 PQ = OP"

〈그림 5.9〉 3개의 같은 벡터들

벡터의 개념과 표현

예제 ⑤-3 종점이 (2, 1)인 벡터 3 4 의 시점을 결정하고 그려 보자.

晉○ 종점이 (2, 1)이므로 시점을 계산하기 위해서는 종점의 성분에서 벡터의 성분을 빼면 된다. 즉, (2-3, 1-4)이므로 시점은 〈그림 5.10〉과 같이 (-1, -3) 이 된다.

〈그림 5.10〉 종점과 주어진 벡터에 의한 벡터 표현

5.1 | 벡터의 개념과 표현

스칼라는 단순히 측정값인 크기를 나타내고, 벡터는 크기에다 방향까지 표현한 것입니다. 축구공을 찰 때 발에 똑같은 힘을 가하더라도 차는 부위와 방향에 따라 공이 날아가는 곳이 다르다는 것은 잘 알죠? 벡터(vector)는 '어디로 이동시킨다' 는 라틴어의 'vehere' 로부터 유래되었어요.

그런데 좌표상으로 보면 두 벡터가 분명히 다른데, 두 벡터가 같다라는 말은 이해가 잘 안 돼요.

벡터에서는 크기와 방향이 같은지를 중요하게 생각합니다. 크기와 방향이 같은 두 벡터는 평행이동시키면 사실상 같은 벡터가 되기 때문이지요.

벡터의 표기를 보면 행렬의 표기법과 비슷하군요.

그렇죠? 행털의 열벡터나 행벡터의 표기법과 같아요.

벡터의 개념과 표현

정의 6-2 R^2 상의 평면에서 벡터 u=(a,b)의 크기(magnitude), 길이(length) 또는 노름 (norm)은 $\|u\|$ 로 나타내며, 피타고라스의 정리에 따라

$$\| \mathbf{u} \| = \sqrt{a^2 + b^2}$$

이 된다. 임의의 벡터 u에 대해 명백히 $||u|| \ge 0$ 이고, u가 영벡터일 때 ||u|| = 0이다.

예를 들어, u = (1, -2)이면 $||u|| = \sqrt{1^2 + (-2)^2} = \sqrt{5}$ 이다.

 $\langle -1 | 5.11 \rangle$ 벡터 u = (a, b)의 크기와 방향

벡터의 개념과 표현 5.1

정의 ⑤-3 다음과 같이 모든 성분이 0인 벡터를 <mark>영벡터(zero vector)</mark>라고 하고 0으로 나타

$$\begin{bmatrix} 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

즉, 0(영벡터)는 시점과 종점이 일치하는 특수한 벡터로 크기가 0이다. 따라서 어떤 벡터 u에 대해

$$u + 0 = u$$
$$u + (-1)u = 0$$

가 성립한다. 이 경우 (-1)u는 -u로 나타내고 u와 반대 방향인 벡터를 의미 한다.

 $\langle - 2 | 5.12 \rangle$ R^2 상의 벡터 v의 표현

〈그림 5.13〉 벡터 v의 크기

5.1 벡터의 개념과 표현

 $\langle - 2 | 5.14 \rangle$ R^3 상의 벡터의 표현 $\langle - 2 | 5.15 \rangle$ R^3 상의 벡터의 표현과 크기

 $\langle -$ 그림 5.16 \rangle R^n 상에서의 벡터 v의 표현

Chapter 5. 백터 18 LINEAR ALGEBRA

벡터의 개념과 표현

5.1

정의 🚯 - 4

 R^n 상에서 크기가 1인 벡터를 단위벡터(Unit vector)라고 하며 e로 나타낸다. 그러므로 v와 방향이 같은 단위벡터는 $(1/\|v\|)v$ 가 된다. 즉, 임의의 벡터를 그 벡터의 크기로 나는 벡터는 항상 단위벡터가 되는 성질을 가지고 있다. 〈그림 5.17〉은 단위벡터를 나타낸다.

19

벡터의 개념과 표현

예제 6 −4 다음에 주어진 벡터와 방향이 같은 단위벡터를 구해 보자.

(1)
$$\mathbf{u} = (2, -3)$$

(2)
$$\mathbf{v} = (2, 1, -3)$$

 $\|u\| = \sqrt{2^2 + (-3)^2} = \sqrt{13}$ 이므로 단위벡터 $e = \left(\frac{1}{\sqrt{13}}\right)(2, -3)$ 이다.

(2) v = (2, 1, -3) 일 때. $\|v\| = \sqrt{2^2 + 1^2 + (-3)^2} = \sqrt{14}$ 이므로 단위벡터 $e = \left(\frac{1}{\sqrt{14}}\right)(2, 1, -3)$ 이다.

5.1 벡터의 개념과 표현

벡터의 개념과 표현

5.1

 $\langle -2 | 5.18 \rangle$ R^2 상에서의 단위벡터 $\langle -2 | 5.19 \rangle$ R^3 상에서의 단위벡터

Chapter 5. 백터 LINEAR ALGEBRA 22

벡터의 개념과 표현

예제 🚯 - 5

벡터 v = (3, 4) = 3i + 4j에 대하여 v 방향의 단위벡터를 구해 보자.

$$||v|| = \sqrt{3^2 + 4^2} = 5$$
이므로 v 방향의 단위벡터 u 는

$$u = \frac{1}{5}(3i + 4j) = \frac{3}{5}i + \frac{4}{5}j$$

이다. 그 이유는 단위벡터 u는 원래의 벡터 v와 같은 방향이면서

23

$$\|u\| = \sqrt{\left(\frac{3}{5}\right)^2 + \left(\frac{4}{5}\right)^2} = 1$$
이기 때문이다.

벡터의 개념과 표현 5.1

- R²상에는 다른 벡터들을 편리하게 나타낼 수 있는 두 개의 특별한 벡터인 단위좌표벡터(Unit coordinate vector)가 있다.
- 두 벡터 *i*와 *j*를 벡터공간 *R*²의 기저벡터(basis vector)라고 한다.

 $\langle -2 | 5.20 \rangle$ R^2 상에서의 단위좌표벡터 $\langle -2 | 5.21 \rangle$ R^3 상에서의 단위좌표벡터

Chapter 5. 백터 LINEAR ALGEBRA 24

5.1 벡터의 개념과 표현

단위벡터, 단위좌표벡터, 기저벡터

- 단위벡터는 크기가 1인 벡터를 말한다.
- 단위좌표벡터는 좌표상의 단위벡터임을 강조한 것이다.
- 기저벡터인 i, j, k 등도 단위벡터 중의 하나인데, x, y, z상의 축의 역할을 담당한다.

벡터의 개념과 표현

원점으로부터 u = (1, 2, 5) 방향의 단위좌표벡터를 구해 보자.

음의 임의의 벡터를 그 벡터의 크기로 나누면 단위좌표벡터가 되는데,

 $\|u\| = \sqrt{1^2 + 2^2 + 5^2} = \sqrt{30}$ 이다. 따라서 u 방향의 단위좌표벡터는 다음과 같다.

$$\frac{\mathbf{u}}{\|\mathbf{u}\|} = \frac{1}{\sqrt{30}}(1, 2, 5) \quad \mathbb{\Xi} \stackrel{\leftarrow}{=} \left(\frac{1}{\sqrt{30}}, \frac{2}{\sqrt{30}}, \frac{5}{\sqrt{30}}\right) \quad \blacksquare$$

벡터의 개념과 표현

예제 🚯 - 7

시점이 $P_1(-5, -3)$ 인 벡터 $\overrightarrow{P_1P_2} = 4i + 5j$ 의 종점 P_2 를 구해 보자.

물이 시점이 (-5, -3)이고 벡터의 길이가 4i + 5j이므로 종점 P_2 의 좌표는 (-5 + 4, -3 + 5) = (-1, 2)이다. 이것을 좌표평면상의 벡터로 나타내면 $\langle \text{그림 } 5.22 \rangle$ 와 같다.

〈그림 5.22〉 시점과 벡터

▋ 벡터의 개념과 표현

5.1

벡터는 신경망에서의 입력과 연결강도 등의 변수들을 표현하는데 매우 유용하게 활용된다. 또 8장에서 다루는 벡터의 내적과 외적의 바탕이 된다.

벡터의 연산

정의 $oldsymbol{6}$ -5 R^n 상에서 $v=(v_1,v_2,\cdots,v_n)$ 와 $w=(w_1,w_2,\cdots,w_n)$ 가 주어졌을 때, 벡터의 합 (sum)은 대응하는 각 성분들끼리 서로 더한 것으로 다음과 같다.

$$\mathbf{v} + \mathbf{w} = (v_1 + w_1, v_2 + w_2, \dots, v_n + w_n)$$

 $\langle - 23 \rangle$ R^n 상에서의 벡터 v + w의 표현

〈그림 5.24〉 벡터의 합

29

Chapter 5. 백터 LINEAR ALGEBRA

벡터의 연산

정의 6-6 u와 v가 R^2 상에서의 두 개의 벡터라고 할 때

$$u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \quad v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

두 벡터 u와 v의 합은 다음과 같다.

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix}$$

 $\langle -2 | 5.25 \rangle$ R^2 상의 벡터 v+w의 표현

벡터의 연산

MATLAB

예제 ❺-8 두 벡터 u와 v가 다음과 같이 주어졌을 때 두 벡터의 합을 구해 보자.

$$(1) \ \mathbf{u} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 3 \\ -4 \end{bmatrix}$$

(1)
$$\mathbf{u} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 3 \\ -4 \end{bmatrix}$ (2) $\mathbf{u} = \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 3 \\ -4 \\ 2 \end{bmatrix}$

(1) 대응하는 성분들의 합을 구하면

$$u+v=\begin{bmatrix} 2+3 \\ 3+(-4) \end{bmatrix} = \begin{bmatrix} 5 \\ -1 \end{bmatrix}$$
이다. 이것은 〈그림 5.26 〉과 같이 나타낼 수 있다.

벡터의 연산

<a>⟨그림 5.26⟩ 두 벡터의 합

(2) 대응하는 성분들의 합을 구하면 다음과 같다.

$$u + v = \begin{bmatrix} 2+3 \\ 3+(-4) \\ (-1)+2 \end{bmatrix} = \begin{bmatrix} 5 \\ -1 \\ 1 \end{bmatrix}$$

32

벡터의 연산 5.2

정의 **⑤**-7 R^n 상에서 $v = (v_1, v_2, \dots, v_n)$ 와 $w = (w_1, w_2, \dots, w_n)$ 가 주어졌을 때, 벡터의 차 (difference) 또는 뺄셈(subtraction)은 다음과 같다.

$$\mathbf{v} - \mathbf{w} = (v_1 - w_1, v_2 - w_2, \dots, v_n - w_n)$$

〈그림 5.27〉 벡터의 차

 $\langle - 2 | 5.28 \rangle$ R^2 상의 벡터 v - w의 표현

33

벡터의 연산

MATLAB

34

예제 **⑤** −9 두 벡터 u와 v가 다음과 같이 주어졌을 때 두 벡터의 차를 구해 보자.

$$(1) \ \mathbf{u} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 3 \\ -4 \end{bmatrix}$$

(1)
$$\mathbf{u} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 3 \\ -4 \end{bmatrix}$ (2) $\mathbf{u} = \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 3 \\ -4 \\ 2 \end{bmatrix}$

(1) 대응하는 성분들의 차를 구하면

$$u-v=\begin{bmatrix} 2-3 \\ 3-(-4) \end{bmatrix} = \begin{bmatrix} -1 \\ 7 \end{bmatrix}$$
이다. 이것은 〈그림 5.29 〉와 같이 나타낼 수 있다.

벡터의 연산

(2) 대응하는 성분들의 차를 구하면 다음과 같다.

$$\mathbf{u} - \mathbf{v} = \begin{bmatrix} 2 - 3 \\ 3 - (-4) \\ (-1) - 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 7 \\ -3 \end{bmatrix}$$

35

<그림 5.29〉 두 벡터의 차

벡터의 연산

정의 😈 - 8 |

벡터 u와 스칼라 α 의 곱 αu 를 벡터의 Δ 칼라 Δ (scalar product)이라고 한다.

즉,
$$u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
가 평면상의 벡터이고 α 가 스칼라일 때 u 의 α 값에 대한 스칼라 곱

은
$$\begin{bmatrix} \alpha u_1 \\ \alpha u_2 \end{bmatrix}$$
가 된다. 만일 $\alpha > 0$ 이면 u 와 같은 방향을 가지고, $\alpha < 0$ 이면 u 와 반대 방

향을 가지는데 αu 의 크기는 $|\alpha| \cdot \|u\|$ 이다. 특히 $\alpha = 0$ 이거나 u = 0이면 $\alpha u = 0$ 이 고, (-1)u = -u이다. \langle 그림 $5.30\rangle$ 은 α 의 값에 따른 벡터 v의 방향과 크기를 나 타낸다.

〈그림 5.30〉 스칼라 곱

 $\langle - 2 | 5.31 \rangle$ R^2 상의 벡터 v의 스칼라 곱 표현

36

벡터의 연산

예제 ⑤ -10
$$u = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$
, $\alpha = 2$, $\beta = -3$ 일 때 αu 와 βu 를 각각 구해 보자.

$$\exists \mathbf{Q} \quad \alpha \mathbf{u} = 2 \begin{bmatrix} 2 \\ -3 \end{bmatrix} = \begin{bmatrix} 2(2) \\ 2(-3) \end{bmatrix} = \begin{bmatrix} 4 \\ -6 \end{bmatrix} \circ] \mathbf{I}$$

$$\beta u = -3 \begin{bmatrix} 2 \\ -3 \end{bmatrix} = \begin{bmatrix} (-3)(2) \\ (-3)(-3) \end{bmatrix} = \begin{bmatrix} -6 \\ 9 \end{bmatrix}$$

이며, 이와 관련된 벡터는 〈그림 5.32〉와 같이 나타낸다. ■

37

벡터의 연산

예제 🚯 -11

MATLAB

38

다음과 같은 세 벡터가 주어졌을 때 벡터 연산의 결과를 각각 구해 보자.

$$\mathbf{u} = \begin{bmatrix} 5 \\ 3 \\ -4 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} -1 \\ 5 \\ 2 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix}$$

(1)
$$3u$$

(2)
$$5u - 2v$$

$$(3) - 2u + 4v - 3w$$

(1)
$$3u = 3 \begin{bmatrix} 5 \\ 3 \\ -4 \end{bmatrix} = \begin{bmatrix} 15 \\ 9 \\ -12 \end{bmatrix}$$

벡터의 연산

(2)
$$5\mathbf{u} - 2\mathbf{v} = 5 \begin{bmatrix} 5 \\ 3 \\ -4 \end{bmatrix} - 2 \begin{bmatrix} -1 \\ 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 25 \\ 15 \\ -20 \end{bmatrix} + \begin{bmatrix} 2 \\ -10 \\ -4 \end{bmatrix} = \begin{bmatrix} 27 \\ 5 \\ -24 \end{bmatrix}$$

$$(3) -2u + 4v - 3w = -2 \begin{bmatrix} 5 \\ 3 \\ -4 \end{bmatrix} + 4 \begin{bmatrix} -1 \\ 5 \\ 2 \end{bmatrix} - 3 \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix}$$
$$= \begin{bmatrix} -10 \\ -6 \\ 8 \end{bmatrix} + \begin{bmatrix} -4 \\ 20 \\ 8 \end{bmatrix} + \begin{bmatrix} -9 \\ 3 \\ 6 \end{bmatrix} = \begin{bmatrix} -23 \\ 17 \\ 22 \end{bmatrix}$$

벡터의 연산

정리 6-1 R^2 이나 R^3 상의 벡터 u, v, w와 영벡터 0에 대하여 벡터의 성질들을 요약하면 다 음과 같다.

(1)
$$u + v = v + u$$

(2)
$$u + (v + w) = (u + v) + w$$

(3)
$$u + 0 = u$$

(4)
$$u + (-u) = 0$$

(5)
$$\alpha(u+v) = \alpha u + \alpha v$$

(6)
$$(\alpha + \beta) u = \alpha u + \beta u$$

(7)
$$\alpha(\beta u) = (\alpha \beta) u$$

(8)
$$1u = u$$

(9)
$$0u = 0$$

(덧셈에 대한 교환법칙)

(덧셈에 대한 결합법칙)

(덧셈에 관한 항등원)

(덧셈에 관한 역원)

(α는 스칼라)

 $(\alpha 와 \beta 는 스칼라)$

 $(\alpha 와 \beta 는 스칼라)$

(곱셈에 대한 항등원)

(영벡터)

벡터의 연산

증 명) (1) **u**와 v가 **R**²상에서의 다음과 같은 벡터라고 하자.

$$\boldsymbol{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \quad \boldsymbol{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

그러면

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix}$$
이고, $\mathbf{v} + \mathbf{u} = \begin{bmatrix} v_1 + u_1 \\ v_2 + u_2 \end{bmatrix}$ 이다.

벡터 u와 v의 성분이 모두 실수이므로

 $u_1 + v_1 = v_1 + u_1$ 과 $u_2 + v_2 = v_2 + u_2$ 가 성립한다. 그러므로 \mathbb{R}^2 상에서

$$u+v=v+u$$

가 성립한다. 이것을 그림으로 나타내면 $\langle 그림 5.33 \rangle$ 과 같다. 이와 마찬가지로 \mathbb{R}^3 상에서도 덧셈에 대한 교환법칙이 성립한다. ■

또한 영벡터 0은 길이가 0이고 방향은 고려하지 않아도 되므로 어떤 벡터에서 도 u+0=0+u=u가 성립하고, u와 -u는 크기가 같고 방향이 반대이므로 u+(-u)=0도 성립한다. 나머지 성질들도 비교적 간단하게 입증될 수 있다.

〈그림 5.34〉 로봇의 위치를 나타내는 벡터

〈그림 5.35〉 교량 건설에 이용되는 벡터

예제 (5)-8

MATLAB

두 벡터 u와 v가 다음과 같이 주어졌을 때 두 벡터의 합을 구해 보자.

(1)
$$\mathbf{u} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 3 \\ -4 \end{bmatrix}$ (2) $\mathbf{u} = \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 3 \\ -4 \\ 2 \end{bmatrix}$

```
Command Window

File Edit Debug Desktop Window Help

>> u=[2; 3];

>> v=[3; -4];

>> u+v

ans =

5
-1

>>
```

(2)
$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} 2+3 \\ 3+(-4) \\ (-1)+2 \end{bmatrix} = \begin{bmatrix} 5 \\ -1 \\ 1 \end{bmatrix}$$

```
# Command Window

File Edit Debug Desktop Window Help

>> u=[2; 3; -1];

>> v=[3; -4; 2];

>> u+v

ans =

5
-1
1
1
```


예제 (5)-9

MATLAB

실습 👩 - 2

두 벡터 u와 v가 다음과 같이 주어졌을 때 두 벡터의 차를 구해 보자.

$$u = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad v = \begin{bmatrix} 3 \\ -4 \end{bmatrix}$$

$$|| \mathbf{a} - \mathbf{v} - \mathbf{v}|| = \begin{vmatrix} 2 - 3 \\ 3 - (-4) \end{vmatrix} = \begin{vmatrix} -1 \\ 7 \end{vmatrix}$$

MATLAB에 의한 연산

예제 ⑤-11

MATLAB

47

실습 😈 - 3

다음과 같은 세 벡터가 주어졌을 때 벡터 연산의 결과를 각각 구해 보자.

$$\mathbf{u} = \begin{bmatrix} 5 \\ 3 \\ -4 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} -1 \\ 5 \\ 2 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix}$$

(1) 3u

(2)
$$5u - 2v$$

```
      File Edit Debug Desktop Window Help

      >> u=[5; 3; -4];

      >> 3*u

      ans =

      15

      9

      -12
```

(2)
$$5u - 2v = 5\begin{bmatrix} 5\\3\\-4 \end{bmatrix} - 2\begin{bmatrix} -1\\5\\2 \end{bmatrix} = \begin{bmatrix} 25\\15\\-20 \end{bmatrix} + \begin{bmatrix} 2\\-10\\-4 \end{bmatrix} = \begin{bmatrix} 27\\5\\-24 \end{bmatrix}$$

```
      File Edit Debug Desktop Window Help

      >> u=[5; 3; -4];

      >> v=[-1; 5; 2];

      >> 5*u-2*v

      ans =

      27

      5

      -24
```

벡터의 생활속의 응용

- 벡터는 물리학에서 두 물체 사이의 이동이나 상호작용을 나타내는 척도로 매우 중요한 역할을 한다.
- 일이나 에너지 같은 물리량을 벡터로 나타내어 복잡한 연산을 간편하게 할 수 있다.
- 자연법칙을 수식으로 표현할 때는 물리량에 의해 가능한데, 이것을 벡터와 스칼라를 통해 나타낼 수 있다.
- 네트워크를 분석하거나 경로 탐색 등에 중요한 역할을 한다.
- 컴퓨터 그래픽에 응용될 수 있다.
- 신경망에서의 입력과 연결강도 등의 변수들을 벡터로 표현하고, 그들 사이의 연산에 응용된다.