Model-Parallel Deep Learning Efficient DL, Episode III '22

Yandex Research

Training large DL models Model-Parallel Deep Learning Efficient DL, Episode III '22

Yandex Research

Recap: large models

Image Classification ImageNet

Machine Translation average over WMT

Source: https://arxiv.org/abs/1811.06965

Recap: Ring allreduce

Bonus quest: you can only send data between adjacent gpus

Ring topology

Image: graphcore ipu server

Answer & more: tinyurl.com/ring-allreduce-blog

Recap: All-Reduce SGD

arxiv.org/abs/1706.02677

Idea: get rid of the host, each gpu runs its own computation Q: why will weights be equal after such step?

Recap: Decentralized SGD

Gossip (communication): https://tinyurl.com/boyd-gossip-2006 Gossip outperforms All-Reduce: https://tinyurl.com/can-dsgd-outperform

Q: What if a model is larger than GPU? easy mode: cannot fit batch size 1 expert mode: not even parameters!

aka rematerialization

Paper (DL): arxiv.org/pdf/1604.06174.pdf

Normal backprop

Paper (DL): arxiv.org/pdf/1604.06174.pdf

Full rematerialization

Paper (DL): arxiv.org/pdf/1604.06174.pdf

Single checkpoint

checkpoint

Paper (DL): arxiv.org/pdf/1604.06174.pdf

Single checkpoint

Paper (DL): arxiv.org/pdf/1604.06174.pdf

Offloading

ZeRO-offload https://arxiv.org/abs/2101.06840 Layer-to-layer: https://arxiv.org/abs/2002.05645

Offloading

ZeRO-offload https://arxiv.org/abs/2101.06840 Layer-to-layer: https://arxiv.org/abs/2002.05645

easy mode: cannot fit batch size 1 expert mode: not even parameters!

Model-parallel training

Model-parallel training

Pipelining

GPipe: arxiv.org/abs/1811.06965 – good starting point, *not* the 1st paper

Idea: split data into micro-batches and form a pipeline (right)

model size: O(n)

Gradients

throughput: O(n) – with caveats

Pipelining

GPipe: arxiv.org/abs/1811.06965 – good starting point, *not* the 1st paper

Idea: split data into micro-batches and form a pipeline (right)

throughput: O(n) – with caveats

Gradients

Pipeline-parallel training

PipeDream: arxiv.org/abs/1806.03377

Idea: apply gradients with every microbatch for maximum throughput

Also neat:

- Automatically partition layers to GPUs via dynamic programming
- Store k past weight versions to reduce gradient staleness
- Aims at high latency

Tensor-parallel training

Q: find AllReduce op here

Q: find AllReduce op here

</Model-parallel>

- + model larger than GPU
- + faster for small
- * typical size: 2-8 gpus
- model partitioning is tricky tensor parallelism is easier, but requires ultra low latency
- latency is critical, go buy nvlink except for PipeDream
- often combined with gradient checkpointing

Tutorials:

- Simple pipelining in PyTorch tinyurl.com/pytorch-pipelining
- Distributed model-parallel with torch RPC https://tinyurl.com/torch-rpc
- Tensor parallelism *mesh tensorflow arxiv.org/abs/1811.02084* (more libs in the next section)

</Model-parallel>

- + model larger than GPU
- + faster for small
- * typical size: 2-8 gpus
- model partitioning is tricky tensor parallelism is easier, but requires ultra low latency
- latency is critical, go buy nvlink except for PipeDream
- often combined with gradient checkpointing

Tutorials:

- Simple pipelining in PyTorch tinyurl.com/pytorch-pipelining
- Distributed model-parallel with torch RPC https://tinyurl.com/torch-rpc
- Tensor parallelism *mesh tensorflow arxiv.org/abs/1811.02084*

Q: what if you have 1024 GPUs, but the model fits on 8?

</Model-parallel>

- + model larger than GPU
- + faster for small
- * typical size: 2-8 gpus
- model partitioning is tricky tensor parallelism is easier, but requires ultra low latency
- latency is critical, go buy nvlink except for PipeDream
- often combined with gradient checkpointing

Tutorials:

- Simple pipelining in PyTorch tinyurl.com/pytorch-pipelining
- Distributed model-parallel with torch RPC https://tinyurl.com/torch-rpc
- Tensor parallelism *mesh tensorflow arxiv.org/abs/1811.02084*

Large-scale training: combine model- and data-parallel

Case study: DeepSpeed

Source: microsoft

L2L: https://arxiv.org/abs/2002.05645

EPS with L2L execution

- Initialize all layers on CPU
- Move k layers at a time to GPU
- Remove layers after computation
- Fetch k+1-st layer while k-th runs
- Still 20-50% overhead

L2L: https://arxiv.org/abs/2002.05645

Метнор	UBATCH SIZE	DEVICE BATCH SIZE	#Layer	#PARAMETERS	MEMORY (GB)
BASELINE	2 2	2	24	300 MILLION	9.23
BASELINE		2	48	600 MILLION	OOM
L2L-STASH ON GPU	64	64	24	300 MILLION	5.22
L2L-STASH ON GPU	64	64	48	600 MILLION	6.76
L2L-STASH ON GPU	64	64	96	1.2 BILLION	9.83
L2L-STASH ON CPU	64	64	24	300 MILLION	3.69
L2L-STASH ON CPU	64	64	96	1.2 BILLION	3.69
L2L-STASH ON CPU	64	64	384	4.8 BILLION	3.69

- Offload in parallel with computation
- Use gradient checkpointing
- Delayed parameter update

- Offload in parallel with computation
- Use gradient checkpointing
- Delayed parameter update

Figure 6: Delayed parameter update during the training process.

- Offload in parallel with computation
- Use gradient checkpointing
- Delayed parameter update

DeepSpeed / ZeRO

ZeRO: https://arxiv.org/pdf/1910.02054v3.pdf

- Combines sharded DPP and offload
- ... and some tensor parallelism
- ... and a ton of hacks

</ZeRO>

Multi-GPU strategies:

- * Pipeline model-parallel allocate layers on different GPUs
- * Sharded data-parallel split optimizer state and/or parameters

Single GPU strategies:

- * Small model gradient checkpointing & virtual batch
- * Large model optimizer state sharding (keep parameters on GPU)

Implementations:

- DeepSpeed— sharded DP, offload, tensor parallelism, active development
 - Offload https://www.deepspeed.ai/news/2021/03/07/zero3-offload.html
- Fairscale most of DeepSpeed features with friendrier API
 - One great implementation https://github.com/NVIDIA/Megatron-LM

Expert Parallelism

Sparsely gated MoE: https://arxiv.org/pdf/1701.06538.pdf

MoE Variant: Switch Transformer

Switch: https://arxiv.org/pdf/2101.03961.pdf

Terminology

- Experts: Split across devices, each having their own unique parameters. Perform standard feedforward computation.
- Expert Capacity: Batch size of each expert. Calculated as
- (tokens_per_batch / num_experts) * capacity_factor
- Capacity Factor: Used when calculating expert capacity. Expert capacity allows more buffer to help mitigate token overflow during routing.

Across Device Communication

MoE Variant: Switch Transformer

Switch: https://arxiv.org/pdf/2101.03961.pdf

MLM pre-training objective [BERT-like]

MoE Variant: Switch Transformer

Switch: https://arxiv.org/pdf/2101.03961.pdf

Pre-training vs downstream quality

Hivemind

