| Name :     | <br> | <br> | <br> |      |
|------------|------|------|------|------|
|            |      |      |      |      |
|            |      |      |      |      |
| Date Due : | <br> | <br> | <br> | <br> |

80% A
70% B
60% C
50% D
40% E
Below U

## 1.4 Assessed Homework Periodicity

%

36

| 1. | (a) | (i)   | Complete the electronic configuration of aluminium.  1s <sup>2</sup>                                                           |              |
|----|-----|-------|--------------------------------------------------------------------------------------------------------------------------------|--------------|
|    |     | (ii)  | State the block in the Periodic Table to which aluminium belongs.                                                              |              |
|    | (b) | Desc  | cribe the bonding in metals.                                                                                                   | (2)          |
|    |     |       |                                                                                                                                | (2)          |
|    | (c) | Expl: | ain why the melting point of magnesium is higher than that of sodium.                                                          | (2)          |
|    |     |       |                                                                                                                                |              |
|    | (d) | Expla | ain how metals conduct electricity.                                                                                            | (3)          |
|    |     |       |                                                                                                                                | (2)          |
| 2. |     |       | (Total 9 mass of the first ionisation energies of neon, sodium and magnesium are 2080, 36 kJ mol <sup>-1</sup> , respectively. | (2)<br>arks) |
|    | (a) | Expla | ain the meaning of the term first ionisation of an atom.                                                                       |              |
|    |     |       |                                                                                                                                | (2)          |
|    | (b) |       | e an equation to illustrate the process occurring when the <b>second</b> ionisation gy of magnesium is measured.               |              |
|    |     |       |                                                                                                                                | (2)          |

(c) Explain why the value of the first ionisation energy of magnesium is higher than that of sodium.

(2)

(d) Explain why the value of the first ionisation energy of neon is higher than that of sodium.

**3.** The diagram below shows the values of the first ionisation energies of some of the elements in Period 3.



(a) On the above diagram, use crosses to mark the approximate positions of the values of the first ionisation energies for the elements Na, P and S. Complete the diagram by joining the crosses.

(3)

(2)

(Total 8 marks)

|                    | Explain the gelelements Na-A             | <b>₹</b> 1.          |                             |           |           |           |           |          |                     |     |
|--------------------|------------------------------------------|----------------------|-----------------------------|-----------|-----------|-----------|-----------|----------|---------------------|-----|
|                    |                                          |                      |                             |           |           |           |           |          |                     |     |
|                    |                                          |                      |                             |           |           |           |           |          |                     |     |
|                    |                                          |                      |                             |           |           |           |           |          |                     |     |
|                    |                                          |                      |                             |           |           |           |           |          |                     |     |
|                    | In terms of the the position of          |                      |                             |           | lved, ex  | plain the | e positio | n of alu | minium and          | d   |
|                    | Explanation fo                           | r alumir             | nium                        |           |           |           |           |          |                     |     |
|                    |                                          |                      |                             |           |           |           |           |          |                     |     |
|                    |                                          |                      |                             |           |           |           |           |          |                     |     |
|                    | Explanation fo                           | r sulphu             | ır                          |           |           |           |           |          |                     | •   |
|                    |                                          |                      |                             |           |           |           |           |          |                     |     |
|                    |                                          |                      |                             |           |           |           |           |          |                     |     |
|                    |                                          |                      |                             |           |           |           |           |          |                     |     |
|                    |                                          |                      |                             |           |           |           |           |          | (Total 10           |     |
|                    |                                          |                      |                             |           |           |           |           |          |                     |     |
| The                | e table below                            | contain              |                             |           |           |           |           |          | (Total 10           | maı |
|                    | e table below<br>orine.                  | contain              |                             |           |           |           |           |          | (Total 10           | maı |
| chlo               | orine.<br>ement                          | contain              | s electr                    |           | rity valu | es for    | the Per   |          | (Total 10           | mar |
| chlo               | orine.                                   |                      | s electr                    | onegativ  | ity valu  | es for    | the Per   | riod 3 ( | (Total 10 elements, | maı |
| Ele<br>Ele         | ement<br>ectronegativity                 | Na<br>0.9            | s electr                    | AI<br>1.5 | rity valu | es for    | the Per   | riod 3 ( | elements,  Ar       | maı |
| chlo               | orine.<br>ement                          | Na<br>0.9            | s electr                    | AI<br>1.5 | rity valu | es for    | the Per   | riod 3 ( | elements,  Ar       | mar |
| Ele<br>Ele         | ement<br>ectronegativity                 | Na<br>0.9            | s electr                    | AI<br>1.5 | rity valu | es for    | the Per   | riod 3 ( | elements,  Ar       | mar |
| Ele<br>Ele         | ement<br>ectronegativity                 | Na<br>0.9            | s electr                    | AI<br>1.5 | rity valu | es for    | the Per   | riod 3 ( | elements,  Ar       | maı |
| Ele<br>Ele         | ement<br>ectronegativity                 | Na<br>0.9            | s electr                    | AI<br>1.5 | rity valu | es for    | the Per   | riod 3 ( | elements,  Ar       | maı |
| Ele<br>Ele         | ement<br>ectronegativity                 | Na<br>0.9<br>erm ele | s electr  Mg  1.2  ectroneg | Al 1.5    | Si<br>1.8 | P 2.1     | s 2.5     | riod 3 ( | elements,  Ar       | maı |
| chlo<br>Ele<br>Ele | ement<br>ectronegativity<br>Define the t | Na<br>0.9<br>erm ele | s electr  Mg  1.2  ectroneg | Al 1.5    | Si<br>1.8 | P 2.1     | s 2.5     | riod 3 ( | elements,  Ar       | maı |
| chlo<br>Ele<br>Ele | ement<br>ectronegativity<br>Define the t | Na<br>0.9<br>erm ele | s electr  Mg  1.2  ectroneg | Al 1.5    | Si<br>1.8 | P 2.1     | s 2.5     | riod 3 ( | elements,  Ar       | mar |

4.

|     |                                                                       | (Total 9 marks) |
|-----|-----------------------------------------------------------------------|-----------------|
|     |                                                                       | (3)             |
|     |                                                                       |                 |
|     | Explanation                                                           |                 |
|     | Trend                                                                 |                 |
| (d) | State and explain the trend in electronegativity down group II        | (2)             |
|     | Electronegativity of lithium                                          |                 |
|     | Electronegativity of chlorine                                         |                 |
| (c) | Predict values for the electronegativities of chlorine and of lithiun | ٦.              |