Adopted Levels, Gammas

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 152,1 (2018)	30-Sep-2017

 $Q(\beta^{-}) = -5914.07 \ 4$; $S(n) = 11838.47 \ 28$; $S(p) = 10242.25 \ 20$; $Q(\alpha) = -7208.05 \ 20$ 2017Wa10

S(2n)=20625.92 20, S(2p)=18628.63 27 (2017Wa10).

Isotope shifts, charge radii measured: 2005B133, 2003Sa20, 2000Ga58, 1996K104, 1988Mo30, 1986Mu06.

Mass measurement: 2002He23 (Penning-trap method). Measurement of isotope abundance ratio: 1995Ya15.

Other measurements:

 40 Ca(40 Ca,X) E=50 MeV/nucleon: 2007Fa17: 3-phonon giant resonances. GANIL facility using SPEG spectrometer and INDRA 4 π array of CsI(Tl) detectors. Measured γ , protons and α particles from decay of giant resonances. Population of g.s., and levels near 2200 keV and 4000 keV from decay of GQR in 40 Ca to 38 Ar via two-proton decay.

Structure calculations (selected references): 2004Sv02 (high-spin levels), 2003Be53 (high-spin levels), 2003Se17 (RPA calculations), 1994Mi19 (levels, moments, etc.), 1970Sk01 (even-parity states).

Calculated M1 strength distributions with large-scale shell-model calculations in *sd* and *pf* shells: 2007Li56 (also 2007Li37). Comparison of experimental and theoretical g factors: 2007Be42.

³⁸Ar Levels

Cross Reference (XREF) Flags

Α	$^{38}\text{Cl }\beta^- \text{ decay } (37.230 \text{ min})$	M	$^{35}\text{Cl}(\alpha,\text{p}\gamma)$	Y	40 Ca(π^- ,pn γ)
В	38 K ε decay (7.651 min)	N	36 Ar(t,p)	Z	40 Ca(μ^- , ν pn γ)
C	38 K ε decay (924.4 ms)	0	36 Ar(α , ² He)	Other	·s:
D	$^{12}\text{C}(^{34}\text{S},^{8}\text{Be}\gamma)$	P	$^{37}Cl(p,\gamma)$:resonances	AA	40 Ca(n, 3 He)
E	$^{16}\mathrm{O}(^{28}\mathrm{Si},\alpha2\mathrm{p}\gamma)$	Q	37 Cl(3 He,d)	AB	40 Ca(P,3p γ)
F	24 Mg(16 O,2p γ)	R	37 Ar(n,n),(n, α):resonances	AC	40 Ca(14 C, 16 O)
G	24 Mg(24 Mg, $2\alpha 2$ p γ)	S	38 Ar(e,e')	AD	40 Ca(18 O, 20 Ne)
H	27 Al(14 N,n2p γ)	T	39 K(n,d)	AE	41 K(p, α)
I	27 Al(16 O, α p γ)	U	39 K(P,2p γ)	AF	⁴² Ca(d, ⁶ Li)
J	34 S(α,γ):resonances	٧	39 K(d, 3 He)	AG	42 Ca(3 He, 7 Be)
K	$^{34}\mathrm{S}(^{7}\mathrm{Li},\mathrm{t})$	W	$^{39}\mathrm{K}(\mathrm{t},\alpha)$		
L	$^{35}Cl(\alpha,p)$	X	40 Ar(p,t)		

._____

Isospin T=1 (triplet) states

```
^{38}Ca
                                         \Delta E(1)
                                                                                      \Delta E(2)
                                               130.0^{+} T=1
    0.0^{+}
                     0.0^{+}
2168,2+
                2213,2^{+}
                                +45
                                              2401,2^{+} T=1 +103,+58
                3084,0^{+}
3378,0<sup>+</sup>
                                -294
3810,3
                3703,3
                                -107
                3684,2<sup>+</sup>
3936.2<sup>+</sup>
                                -252
\Delta E(1) = E(^{38}Ca) - E(^{38}Ar)
\Delta E(2) = E(^{38}K) - E(^{38}Ar) - 130,
                                                   E(^{38}K)-E(^{38}Ca)-130
               Isospin T=2 (quintuplet) states $^{38}{\rm Ar}$
 <sup>38</sup>C1
    0,2^{-}
                      10631, (2^{-}), T=2
                      11302,5<sup>-</sup> & 11308,5<sup>-</sup> T=2
 671,5^{-}
                                                                  +1,+7
```

755,3 $^-$ 11351,3 $^-$ & 11355,3 $^-$ T=2 -34,-30 1309,4 $^-$ 11928,4 $^-$ T=2 -11 Δ E=E(38 Ar)-E(38 C1)-10630

1

⁴¹Ca(n,α) E=0.6-50 keV: 2007DeZR: measured cross section and Γ.

⁴¹Ca(n, α) E<80 keV: 2012Ve01: measured cross section.

E(level) [†]	$J^{\pi \ddagger}$	${\rm T_{1/2}}^{\#}$	XREF		Comments
0.0	0+	stable	ABCDEFGHIJKLMNOPQ	TUVWXYZ	XREF: Others: AA, AB, AC, AD, AE, AF, AG J ^π : no hyperfine structure observed in optical spectroscopy (1953Me73). <r<sup>2>^{1/2}=3.4028 fm <i>19</i> (2013An02 evaluation). Additional information 1.</r<sup>
2167.472 12	2+	0.458 ps <i>21</i>	AB DEFGHIJ LMNOPQ	TUVWXYZ	XREF: Others: AB, AC, AD, AE, AF, AG μ =+0.48 24 (2006Sp01) E(level): 2167.60 6 from (p,γ):resonances. J ^π : L(t,p)=L(p,t)=2 from 0 ⁺ ; 2167.4γ E2 to 0 ⁺ . T _{1/2} : weighted average of 0.492 ps 21 from (34 S, 8 Beγ), 0.444 ps 25 from (16 O,αpγ), 0.45 ps 2 from (α,pγ), and 0.37 ps 5 from (p,α). μ : transient magnetic field and DSA in 12 C(34 S, 8 Be) reaction (2006Sp01). See also 2014StZZ compilation.
3376.9 3	0+	22.8 ps <i>15</i>	A D H JKLMN PQ	V X Z	Additional information 2. XREF: Others: AC, AE, AF, AG E(level): 3377.36 23 from (p,γ):resonances. J ^π : L(t,p)=L(p,t)=0 from 0 ⁺ ; E0 transition to 0 ⁺ . T _{1/2} : from recoil-distance method in (α,pγ). Other: >0.35 ps in (p,γ):resonances. Additional information 3.
3810.18 ^b 3	3-	56 fs <i>14</i>	AB DEFGHIJ LMNOPQ	U WXYZ	XREF: Others: AB, AE, AF, AG XREF: W(3854?). E(level): 3810.09 11 from (p,γ):resonances. J^{π} : L(p,t)=3 and L(t,p)=3,4 from 0+; L(3 He,d)=1+3 from 3/2+; 1642.7γ ΔJ=1 E1(+M2) to 2+. $T_{1/2}$: weighted average of 52 fs 14 in (α,pγ) and 74 fs 28 in (p,γ). Additional information 4.
3936.5 [@] 4	2+	43 fs 5	AB DE H JKLMN PQ	VWXYZ	XREF: Others: AE, AF, AG μ =+2.2 22 (2006Sp01) XREF: W(3961). E(level): 3936.61 18 from (p,γ):resonances. J ^π : L(t,p)=L(p,t)=2 from 0+; L(³ He,d)=L(d, ³ He)=0 from 3/2+. T _{1/2} : weighted average of 47 fs 6 in (³⁴ S, ⁸ Beγ), 32 fs 13 in (α,pγ), 33 fs 10 in (p,γ) and 54 fs 15 in (α,γ):resonances. μ : transient magnetic field and DSA in ¹² C(³⁴ S, ⁸ Be) reaction (2006Sp01). See also 2014StZZ compilation.
4479.98 8	4-	0.97 ps +25-20	DEFGHIJ LMN PQ	YZ	Additional information 5. XREF: Others: AE E(level): 4479.92 <i>14</i> from (p,γ) :resonances. J^{π} : L(3 He,d)=3 from 3/2+; J=4 from $\gamma(\theta)$ in (p,γ) :resonances; 669.8 γ ΔJ =1 M1(+E2) to 3 ⁻ . $T_{1/2}$: weighted average of 0.93 ps 20 in (16 O, α p γ) and 1.3 fs +8–3 in $(\alpha,p\gamma)$. Other: >0.42 ps in (p,γ) :resonances. Additional information 6.
4565.5 ^{&} 5	2+	36 fs <i>3</i>	AB DE J LM PQ	VW Z	XREF: Others: AE E(level): 4565.5 2 from (p, γ):resonances. J^{π} : 1 ⁺ ,2 ⁺ from L(d, ³ He)=L(³ He,d)=0 from 3/2 ⁺ ; 1 ⁺ is ruled out by 755.3 γ to 3 ⁻ and RUL. $T_{1/2}$: weighted average of 35 fs 3 in (³⁴ S, ⁸ Be γ), 51

E(level) [†]	Jπ‡	T _{1/2} #	XREF	Comments
				fs 14 in $(\alpha,p\gamma)$ and 38 fs 11 in (p,γ) :resonances. Other: <62 fs in (α,γ) :resonances. Additional information 7.
4585.87 ^b 8	5-	132 ps 4	DEFGHI LMNOPQ	X Z XREF: Others: AE E(level): 4585.2 4 from (p, γ):resonances. J^{π} : L(p,t)=5 from 0 ⁺ ; L(3 He,d)=3 from 3/2 ⁺ ; 775.7 γ
				E2 to 3 ⁻ and 105.9 γ M1(+E2) to 4 ⁻ . T _{1/2} : weighted average of 136 ps 7 in (¹⁶ O,2p γ), 130 ps 4 in (¹⁴ N,n2p γ), 135 ps 4 in (¹⁶ O, α p γ), and 128 ps 6 in (α ,p γ). Other: >0.35 ps in (p, γ):resonances.
4709.3 <i>10</i>	0+	1.7 ps +21-7	J LMN P	Additional information 8. XYZ XREF: Others: AE VREE: Y(4770)
				XREF: X(4730). E(level): 4710.3 2 from (p,γ) :resonances. J^{π} : $L(t,p)=L(p,t)=0$ from 0^+ . $T_{1/2}$: from $(\alpha,p\gamma)$. Other: >0.42 ps in
4877.0 <i>3</i>	3-	34 fs 8	J LMN PQ	(p,γ):resonances. W XREF: Others: AE
1077.0 3	J	3 1 15 0	3 2 1 2	E(level): 4876.87 <i>14</i> from (p,γ) :resonances. J^{π} : 2709.4 γ E1+M2 γ to 2 ⁺ and 1066.8 γ M1(+E2)
				γ to 3 ⁻ ; L(t,p)=3,4 from 0 ⁺ ; L(³ He,d)=1+3 from 3/2 ⁺ ; J=3 from $\gamma(\theta)$ in (p, γ):resonances.
				$T_{1/2}$: weighted average of 53 fs 14 in $(\alpha,p\gamma)$ and 31 fs 6 in (p,γ) . Additional information 9.
5083.6 10	(2)-	39 fs <i>10</i>	J LMN PQ	XREF: Others: AE E(level): 5084.3 5 from (p,γ) :resonances.
				J ^{π} : 1 ⁻ ,2 ⁻ ,3 ⁻ from L(3 He,d)=1+3 from 3/2 ⁺ ; J=2 is proposed in $(\alpha,p\gamma)$ and (p,γ) :resonances. But 1 ⁻ and 3 ⁻ are not completely ruled out. T _{1/2} : weighted average of 57 fs 2 <i>I</i> in $(\alpha,p\gamma)$ and 35 fs 10 in (p,γ) .
5157.3 2	2+	23 fs 7	B J LMN PQ V	<pre>/WX Z XREF: Others: AE</pre>
				Additional information 10. J^{π} : $L(t,p)=L(p,t)=2$ from 0 ⁺ ; $L(d,^{3}He)=L(^{3}He,d)=0$ from 3/2 ⁺ .
				$T_{1/2}$: weighted average of 28 fs 13 in $(\alpha,p\gamma)$ and 22 fs 7 in (p,γ) :resonances.
5349.4 [@] 3	4+	0.14 ps 4	B E H KLMN P	W Z XREF: Others: AD, AE XREF: W(5376)AD(5400?).
				E(level): 5349.5 2 from (p,γ) :resonances. J^{π} : $J=4$ from $p\gamma(\theta)$ in $(\alpha,p\gamma)$; 3182.2 γ $\Delta J=2$ E2 to 2^+ ; 1539 γ to 3^- .
5512.2.4	2-	0.10 6	T TWN DO	$T_{1/2}$: weighted average of 0.14 ps 4 in $(\alpha,p\gamma)$ and 0.15 ps 5 in (p,γ) :resonances.
5513.3 4	3-	0.19 ps 6	J LMN PQ	XREF: Others: AD, AE XREF: AD(5400?). E(level): $5513.38\ 16\ \text{from } (p,\gamma)$:resonances.
				J^{π} : L(t,p)=3,4 from 0 ⁺ ; L(3 He,d)=1+3 from 3/2 ⁺ . $T_{1/2}$: weighted average of 0.19 ps 6 in $(\alpha,p\gamma)$ and
5552.21 18	1+,2+	11 fs 6	B J M PQ V	$0.19 \text{ ps } 7 \text{ in } (p,\gamma).$ W Z XREF: Others: AE
				Additional information 11.

E(level) [†]	J ^π ‡	${{\operatorname{T}}_{1/2}}^{\#}$	XREF	Comments
5594.6 6	2+	60 fs <i>18</i>	J N PQ	J ^{π} : L(³ He,d)=L(d, ³ He)=0 from 3/2 ⁺ . T _{1/2} : from (p, γ):resonances. Other: <31 fs in (α ,p γ). XREF: Others: AE, AG
				Additional information 12. J^{π} : L(t,p)=2 from 0 ⁺ ; 2217.6 γ and 5594.2 γ to 0 ⁺ . L(³ He,d)=1+3 from 3/2 ⁺ (suggesting 1 ⁻ ,2 ⁻ ,3 ⁻) is inconsistent.
5658.61 ^c 22	5-	29 fs 5	EF H LMNOPQ	XREF: Others: AE E(level): 5658.1 <i>5</i> from (p, γ):resonances. J ^{π} : 1072.8 γ Δ J=0 M1(+E2) to 5 ⁻ ; L(3 He,d)=3 from 3/2 ⁺ . T _{1/2} : weighted average of 64 fs 28 in (α ,p γ) and 28 fs 4 in (p, γ):resonances. Other: <0.7 ps in 27 Al(14 N,n2p γ). Additional information 13.
5733.9 5	1-	<4 fs	J N PQ W	XREF: Others: AE Additional information 14. J^{π} : 1,2+ from 5733 γ to 0+ and RUL; 2+ is ruled out by L(3 He,d)=1 or 1+3 from 3/2+. But L(t,p)=2 for 5740 group (suggesting 2+) is inconsistent.
5824.9 2	3-	0.24 ps +62-14	J L N PQ w	XREF: Others: AE, AG Additional information 15. J^{π} : L(t,p)=3,4 from 0+; L(3 He,d)=1+3 from ${}^{3}/{}^{2}$ +; 3657 γ to 2+ and 1345 γ to 4 ⁻ .
5857.5 2	(2)-	15.2 fs 35	L PQ w	XREF: Others: AE Additional information 16. J ^{π} : L(3 He,d)=3 from 3/2+ gives 1- to 5-; 981 γ to 3- and RUL require Δ J<2, since Δ J=2 would require an unreasonably large B(E2) or B(M2) value; 3690 γ to 2+ disfavors 4-; J=2 is favored by 5547 γ from the 10631,(2-) level with T=(2), possible IAS of 38 Cl g.s., J^{π} =2 But 3- is not completely ruled out.
5974.8 2	$(0^+ \text{ to } 3^-)$	>1.7 ps	P	XREF: Others: AE Additional information 17. J ^π : 818γ, 1409γ, 2038γ, 3807γ to 2 ⁺ , 5577.4γ from (1) ⁻ .
6041.8 3	(3 ⁻ ,4 ⁺)	58 fs <i>12</i>	LMn P w	XREF: Others: \overrightarrow{AG} Additional information 18. J^{π} : 1456 γ to 5 ⁻ , 2232 γ to 3 ⁻ , 5336.9 γ from (2 ⁺).
6053.2 4	(4 ⁺)	71 fs <i>14</i>	E LMn P w	XREF: Others: AE E(level): $6053.1 \ 3$ from (p,γ) :resonances. J^{π} : $(3,4^+)$ from 704γ to 4^+ , 1573γ to 4^- , 1488γ and 2116γ to 2^+ ; (4^+) is favored by band structure.
6209.4 6	4-	74 fs 23	1 n PQ	XREF: Others: AE E(level): 6210.0 10 from (p,γ) :resonances. J^{π} : 1729 $\gamma(\theta)$ in (p,γ) :resonances gives J=4; $L(^{3}\text{He,d})=3$ from $3/2^{+}$.
6213.8 <i>3</i>	(2+)	5.4 fs <i>31</i>	J 1 n P	XREF: Others: AE

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF		Comments
					Additional information 19. J^{π} : 6213 γ to 0 ⁺ , 5517.0 γ from (4 ⁺); primary 4959 γ and 5054 γ from 3 ⁻ in (p, γ):resonances.
6249.9 3	2+	>111 fs	lM P	X	XREF: Others: AE, AG XREF: AE(6259). Additional information 20. J ^π : 901γ to 4 ⁺ and 2873γ to 0 ⁺ ; primary 4952γ
6276.1 4	4+	81 fs <i>35</i>	1 N P	X	from 1 ⁻ in (p,γ):resonances. XREF: Others: AD, AE XREF: N(6287)X(6320)AD(6300)AE(6286). Additional information 21. J ^π : L(p,t)=4 from 0 ⁺ ; L(t,p)=3,4 from 3/2 ⁺ ; 2340γ and 4108γ to 2 ⁺ , 927γ to 4 ⁺ , 1796γ to 4 ⁻ .
6338.6 5	1-,2-,3-	<13 fs	L PQ		XREF: Others: AE XREF: AE(6347). Additional information 22.
6353.5 4	1-	3.6 fs <i>14</i>	PQ		J ^π : L(³ He,d)=1+3 from 3/2 ⁺ . XREF: Others: AE XREF: AE(6360). Additional information 23. J ^π : L(³ He,d)=1+3 from 3/2 ⁺ gives 1 ⁻ ,2 ⁻ ,3 ⁻ ; 6353γ to 0 ⁺ and RUL rules out 2 ⁻ and 3 ⁻ .
6408.32 10	6+	1.0 ps <i>3</i>	EFGH LMNOP		XREF: Others: AE XREF: AE(6420). J ^π : J=6 from $\gamma(\theta)$ in (16 O,2p γ) and (14 N,n2p γ); 1822 γ ΔJ=1 E1(+M2) to 5 ⁻ . T _{1/2} : from 24 Mg(16 O,2p γ). Other: <1.4 ps from
6476.6 19	$(0^+ \text{ to } 3^-)$	>0.17 ps	l n Pq		²⁷ Al(¹⁴ N,n2pγ). XREF: Others: AE Additional information 24. J ^π : 1911γ to 2 ⁺ ; primary 4725γ from 1 ⁻ in
6485.4 7	(1-,2,3-)	29 fs 22	J l n Pq		 (p,γ):resonances. XREF: Others: AE Additional information 25. J^π: 4318γ to 2⁺, 2675γ to 3⁻, 4829γ from 1⁻. L(³He,d)=1 for 6486 10 group gives (0,1,2,3)⁻ for any of the three levels near this energy.
6495.8 3	(2-,3-)	10 fs 4	Pq		XREF: Others: AE Additional information 26. J ^π : 2016γ to 4 ⁻ , 2559γ to 2 ⁺ , 5056.4γ from (1) ⁻ .
6520 6574.3 <i>5</i>	2 ⁺ 1 ⁻	<3.5 fs	N PQ	X	J ^π : L(p,t)=2 from 0 ⁺ . XREF: Others: AE XREF: AE(6590). Additional information 27. J ^π : L(³ He,d)=1 or 1+3 from 3/2 ⁺ ; 6574γ to 0 ⁺ and RUL. But L(t,p)=3,4 is inconsistent with 1 ⁻ .
6601.59 23	4-	12.5 fs <i>21</i>	J 1M PQ		XREF: Others: AE XREF: Q(6593)AE(6610). E(level): $6601.18 \ I9 \ \text{from } (p, \gamma)$:resonances.
6621.6 4	(1-,2,3-)	36 fs <i>12</i>	1 PQ		J ^π : 2122 γ ΔJ=0 M1(+E2) to 4 ⁻ ; L(³ He,d)=3. XREF: Others: AE XREF: Q(6611)AE(6630). Additional information 28 . J ^π : 2056 γ to 2 ⁺ , 2811 γ to 3 ⁻ , 4930.7 γ from (1) ⁻ .
6674.4 3	5-	13.7 fs <i>35</i>	EF 1Mn PQ		L(3 He,d)=(2) from $^3/2^+$ suggests π =+. XREF: Others: AE
				(C 4	1 6 11

E(level) [†]	J^{π} ‡	T _{1/2} #	XR	.EF	Comments
		,			XREF: ae(6680). E(level): 6673.5 6 from (p,γ) :resonances.
6681.6 5	(0,1,2)	53 fs <i>19</i>		n P	J^{π} : 2089γ ΔJ=0 to 5 ⁻ ; L(³ He,d)=3 from 3/2 ⁺ . XREF: Others: AE XREF: ae(6680).
6772.7 <i>5</i>	1-	<2.8 fs		PQ	Additional information 29. J^{π} : 948 γ to 1 ⁻ and RUL requires ΔJ <2. XREF: Others: AE
					Additional information 30. J^{π} : 6772 γ to 0 ⁺ gives (1,2 ⁺); L(³ He,d)=1 from 3/2 ⁺ and RUL rules out 1 ⁺ and 2 ⁺ .
6824.0 <i>15</i>	$(2^+,3^-)$	17 fs 6		n Pq	XREF: Others: AE Additional information 31. E(level): unresolved doublet at 6824 keV in
					(p, γ):resonances. J ^{π} : 4656 γ to 2 ⁺ , 3014 γ to 3 ⁻ , 4728.3 γ from (1) ⁻ , 4906.9 γ from (4 ⁺); L(³ He,d)=1 suggests (0 to 3) ⁻
6824.1 <i>15</i>	$(0^+ \text{ to } 4^+)$			n Pq	for 6824.0 and/or 6824.1. XREF: Others: AE Additional information 32.
					E(level): unresolved doublet at 6824 keV in (p,γ):resonances. J ^π : 2888γ to 2 ⁺ . L(t,p)=2 for a 6838 <i>15</i> group suggests 2 ⁺ for any of the levels from 6824 to 6852.
6846 2	(0 ⁻ to 4 ⁻)		М	n	XREF: Others: AE E(level): from $(\alpha, p\gamma)$.
6852 <i>1</i>	$(1,2^+)$		М	n P	J^{π} : 1762 γ to (2) ⁻ . XREF: Others: AE E(level): from $(\alpha, p\gamma)$.
6869.9 5	$(2^-,3,4^+)$		LM	P	J^{π} : 3475 γ to 0 ⁺ . XREF: Others: AE Additional information 33.
6903.8 9	2-,3-	6.2 fs <i>21</i>	M	PQ	J ^{π} : 4702 γ to 2 ⁺ , 1993 γ to 3 ⁻ , 5057.7 γ from 4 ⁻ . XREF: Others: AE Additional information 34.
6947.9 9	(2 ⁺)		М	N P	J ^{π} : L(³ He,d)=1+3 from 3/2 ⁺ ; 2967 γ to 2 ⁺ and 2424 γ to 4 ⁻ . Additional information 35.
7046.2	(2= 4+)		T 26		J^{π} : 3571 γ to 0 ⁺ ; L(t,p)=(2) from 0 ⁺ .
7046 2	(3 ⁻ ,4 ⁺)		LM	P	E(level): weighted average of 7047 2 from $(\alpha, p\gamma)$ and 7045 2 from (p, γ) :resonances. J ^{π} : 4878 γ to 2 ⁺ , 2566 γ to 4 ⁻ ; primary γ 4256 from
7060 15	0+		1	N	5^- in (p,γ) :resonances. XREF: $1(7070)$. E(level): from (t,p) .
7070.19 <i>24</i>	(6)-	51 fs <i>14</i>	EF 1M		J ^π : L(t,p)=0 from 0 ⁺ . J ^π : 2483.9 γ M1+E2 to 5 ⁻ and 437.8 γ from 7 ⁻ favors J ^π (7070)=6 ⁻ . Assignment of J ^π =5 ⁻ from $\gamma(\theta)$ and RUL in $(\alpha, p\gamma)$ is inconsistent with J ^π =6 ⁻ from $\gamma(DCO)$ in (²⁸ Si, α 2p γ). It should be noted that 2483.9 $\gamma(DCO)$ in (²⁸ Si, α 2p γ) are also marginally consistent with ΔJ=0 giving 5 ⁻ as in $(\alpha, p\gamma)$ and also with ΔJ=2 giving 7 ⁻ , the latter ruled out by 2590 γ to 4 ⁻ and RUL. In the opinion

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	2	XREF		Comments
7100.8 5	(1 ⁻ to 4 ⁺)	12 fs 5		lM P	v	of the evaluator, the spin of this level needs reinvestigation. Here the evaluator have adopted $J^{\pi}=(6)^-$, but $J^{\pi}=5^-$ can not be ruled out. $T_{1/2}$: from $(\alpha, p\gamma)$. XREF: $I(7070)v(7120)$. Additional information 36. I^{π} : $I(4933\gamma) = 2^+$, $I(4072\gamma) = 2^-$ from $I(4072\gamma) = 2^-$ gives
7128 <i>I</i>	(1 ⁻ to 4 ⁺)			M	v	$0^+, 1^+, 2^+, 3^+$ for 7100.8 and/or 7128. XREF: v(7120). E(level): from $(\alpha, p\gamma)$.
7181 2	(1,2+)			1M		J^{π} : 4960 γ to 2 ⁺ and 3318 γ to 3 ⁻ . XREF: I(7192). E(level): from (α,p γ).
7192.2 5	$(2^-,3,4)$			lM P		J^{π} : 7180 γ to 0 ⁺ . Additional information 37. J^{π} : 2315 γ to 3 ⁻ , 2712 γ to 4 ⁻ , 4319.2 γ from (2).
7233.8 17	$(1^- \text{ to } 4^+)$			M P		E(level): weighted average of 7235 2 from $(\alpha,p\gamma)$ and 7233.0 17 from (p,γ) :resonances.
7236 2	(2+)			MN P		J ^π : 5066 γ to 2 ⁺ , 4189.9 γ from (3 ⁻). XREF: N(7249). E(level): weighted average of 7234 2 from (α ,p γ) and 7238 2 from (p, γ):resonances. J ^π : 7235 γ to 0 ⁺ ; L(t,p)=2 from 0 ⁺ for a level at 7249.
7288.32 [@] 24	6+	27 fs <i>13</i>	E K	lM P		J ^π : 1939.4 γ ΔJ=2 E2 to 4 ⁺ ; 879.9 γ to 6 ⁺ and 2704 γ to 5 ⁻ . T _{1/2} : weighted average of 53 fs 20 in (α ,p γ) and 21
7289.6 8	(3-,4+)	>55 fs		lMN P		fs 10 in (p,γ) :resonances. XREF: N(7306). Additional information 38.
7334 2	(1 ⁻ to 4 ⁺)			Mn P		J ^{π} : L(t,p)=3,4 from 0 ⁺ for a level at 7306. E(level): weighted average of 7335 <i>I</i> from (α ,p γ), 7336 <i>I</i> 5 from (t,p), and 7329 2 from (p, γ):resonances.
7350 1	(3 ⁻ ,4 ⁺)			LMn P		J^{π} : 3524 γ to 3 ⁻ and 5166 γ to 2 ⁺ . XREF: n(7336). E(level): from $(\alpha, p\gamma)$.
7365 2 7370 2	(1+)			P M P S	5	J ^π : 1100γ to 2 ⁺ and 2764γ to 5 ⁻ . Additional information 39. XREF: S(7381). Additional information 40. J ^π : 7369γ to 0 ⁺ ; M1 excitation in (e,e') for a level
7376 <i>1</i> 7431.0 <i>3</i>	$(2^+,3,4^+)$ $(2^-,3,4^+)$	13 fs 8		M M P		at 7381. J^{π} : 1126 γ to 2 ⁺ and 2027 γ to 4 ⁺ . Additional information 41. J^{π} : 5263 γ to 2 ⁺ ; primary 3742 γ and 4375 γ from 3 ⁻ and weak 4497 γ from 4 ⁻ .
7452 2	$(1^- \text{ to } 4^+)$			LM P		E(level): weighted average of 7452 2 from $(\alpha,p\gamma)$ and 7451 2 from (p,γ) :resonances.
7485 <i>3</i>	(3-,4+)			MN		J^{π} : 2575 γ to 3 ⁻ and 5284 γ to 2 ⁺ . E(level): from $(\alpha, p\gamma)$. J^{π} : 1826 γ to 5 ⁻ ; L(t,p)=3,4 from 0 ⁺ .
7491.3 ^{&} 5	(6 ⁺)		E			J^{π} : 1833 γ to 5 ⁻ , 2142 γ to 4 ⁺ ; 2046 γ from 8 ⁽⁺⁾ ; band member.
7497 <i>1</i>	$(3,4,5^{-})$		J	M P		XREF: P(?).

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
				E(level): from $(\alpha, p\gamma)$. J^{π} : 3017 γ to 4 ⁻ , 3687 γ to 3 ⁻ and 1444 γ to (4 ⁺).
7508.12 ^b 22	7-	≥42 fs	EF H LM	J ^{π} : 2922.6γ ΔJ=2 E2 γ to 5 ⁻ ; 1100γ to 6 ⁺ .
7528 2	(3 ⁻ to 7 ⁻)		Mn	$T_{1/2}$: from $(\alpha, p\gamma)$; <1.4 ps in 27 Al(14 N,n2p γ). XREF: n(7544).
				E(level): from $(\alpha, p\gamma)$. J^{π} : 1869 γ and 2942 γ to 5 $^-$.
7539 2	(3,4,5)	43 fs 24	Mn P	E(level): weighted average of 7539 2 from $(\alpha, p\gamma)$, 7544 15 from (t,p), and 7538 2 from (p, γ):resonances. J^{π} : 1486 γ to (4 ⁺) and 3059 γ to 4 ⁻ .
7628? 8	$(1,2^+)$		J	J^{π} : 7628 γ to 0 ⁺ .
7648? 8	$(1,2^+)$		J	J^{π} : 7648 γ to 0 ⁺ .
7663 2	$(2^+ \text{ to } 6^+)$		M	E(level): from $(\alpha, p\gamma)$.
7667	(2- , 5-)			J^{π} : 2314 γ to 4 ⁺ .
7667 <i>1</i>	$(3^- \text{ to } 7^-)$		M	E(level): from $(\alpha, p\gamma)$.
7683 2	$(3^-,4^+)$	10 fs 6	LMN P	J^{π} : 2008 γ to 5 ⁻ . XREF: N(7700).
7003 2	(3 ,4)	10 13 0	Lin I	E(level): weighted average of 7684 2 from $(\alpha, p\gamma)$ and 7681 2 from (p,γ) :resonances. J^{π} : 3203 γ to 4 ⁻ and 5515 γ to 2 ⁺ ; L(t,p)=(3,4) from 0 ⁺ for a level at 7700.
7702 1	(1+)		M S	XREF: S(7721). J^{π} : 7701 γ to 0 ⁺ ; M1 excitation in (e,e').
7786 <i>1</i>	$(2^{-} \text{ to } 6^{-})$		M	J^{π} : 3306 γ to 4 ⁻ .
7828 2	$(1^- \text{ to } 5^-)$		M	J^{π} : 4018 γ to 3 ⁻ .
7857 2	$(1^-,2^+)$		1Mn	E(level): from $(\alpha, p\gamma)$. J^{π} : 4047 γ to 3 ⁻ and 7856 γ to 0 ⁺ .
7858.9 <i>5</i>	(6)		E 1Mn	J^{π} : 1184.5 γ $\Delta J=1$ d to 5 $^{-}$.
7893.4 <i>13</i>	$(1^+,2^+)$	<3.5 fs	1M P S	XREF: S(7877). Additional information 42.
7899 2	(3 ⁻ to 7 ⁻)		1M	J^{π} : 7893 γ to 0 ⁺ ; M1,E2 excitation in (e,e'). E(level): from $(\alpha, p\gamma)$.
				J^{π} : 1225 γ to 5 ⁻ .
7911 <i>I</i>	$(3^-,4^+)$		MN	XREF: N(7920).
				E(level): from $(\alpha, p\gamma)$. J^{π} : γ' s to 2^+ and 5^- ; $L(t,p)=(3,4)$ from 0^+ for a level at 7920.
7992 2	(1-,2,3-)	<4 fs	Ј М Р	E(level): from $(\alpha, p\gamma)$ and (p, γ) :resonances. J^{π} : 5824 γ to 2 ⁺ ; primary 2405 γ and 3210 γ from 1 ⁻ , 3358 γ from 3 ⁻ in (p, γ) :resonances.
8068 <i>I</i>	(3 ⁻ ,4 ⁺)		1MN	$T_{1/2}$: from (α, γ) :resonances (1981BuZY). XREF: N(8050). E(level): from $(\alpha, p\gamma)$. J^{π} : 4258 γ to 3 $^{-}$; L(t,p)=3,4 from 0 $^{+}$ for a group at
8077.20 22	7+	0.11 ps <i>3</i>	EF H 1M	8050. J^{π} : 1669.0 γ ΔJ =1 M1+E2 γ to 6 ⁺ ; 492.6 γ M1(+E2) from 8 ⁺ .
8106 2	$(0^+ \text{ to } 4^+)$		Mn	$T_{1/2}$: from $(\alpha, p\gamma)$. E(level): from $(\alpha, p\gamma)$.
8124 <i>1</i>	$(3^- \text{ to } 6^+)$		Mn	J^{π} : 5938 γ to 2 ⁺ . XREF: n(8111).
01211	(5 10 0)		1111	E(level): from $(\alpha, p\gamma)$.
				J^{π} : 2774 γ to 4 ⁺ and 3538 γ to 5 ⁻ .
8125.0 ^a 4	(6-)		E M	J^{π} : 1055 γ $\Delta J=(0)$ (M1+E2) to (6) ⁻ .

E(level) [†]	J^{π}	T _{1/2} #	XREF		Comments
8181 2	$(3^-,4^+)$		MN		E(level): from $(\alpha, p\gamma)$.
8215 2	(3 ⁻ to 7 ⁻)		M		J ^{π} : 6013 γ to 2 ⁺ ; \dot{L} (t,p)=3,4 from 0 ⁺ for a 8185 group. E(level): from (α ,p γ). J ^{π} : 2556 γ to 5 ⁻ .
8233 2	(1-)		LMn	S	XREF: $S(8240)$. E(level): from $(\alpha, p\gamma)$.
8261 2	(3 ⁻ to 6 ⁻)		Mn		J^{π} : 8232 γ to 0 ⁺ ; E1 excitation in (e,e'). E(level): from $(\alpha, p\gamma)$. J^{π} : 3781 γ to 4 ⁻ and 2602 γ to 5 ⁻ .
8311 2	(1+)		M	S	E(level): from $(\alpha, p\gamma)$. J^{π} : 6143 γ to 2 ⁺ and 4501 γ to 3 ⁻ ; 1 ⁺ is suggested by M1 excitation in (e,e').
8353 <i>3</i>	$(1,2^+)$		1M		XREF: 1(8370). E(level): from $(\alpha, p\gamma)$. J^{π} : 8352 γ to 0^{+} .
8391 2	(2+)		1MN	S	XREF: $1(8370)$ N(8405)S(8409). E(level): from $(\alpha, p\gamma)$. J ^π : 8390 γ to 0 ⁺ ; E2 excitation in (e,e').
8417 2	(3 ⁻ to 7 ⁻)		Mn		XREF: n(8405). E(level): from $(\alpha, p\gamma)$. J^{π} : 2758 γ to 5 ⁻ .
8481 2	(3 ⁻ to 6 ⁻)		M		E(level): from $(\alpha, p\gamma)$. J^{π} : 3895 γ to 5 ⁻ and 4001 γ to 4 ⁻ .
8491.1 <i>4</i>	(6-)	EF	7 LM		J ^π : (5,7) is assigned in $(\alpha, p\gamma)$ based on an assignment of $J^{\pi}(7070)=5^{-}$ 1421 $\gamma(\theta)$ to 7070 level which is consistent with $\Delta J=0$ or 2 and 1421 $\gamma(DCO)$ in
					(28 Si,α2pγ) is consistent ΔJ=1, but for large D+Q admixture, it can also be consistent with ΔJ=0. The evaluator has adopted ΔJ=0 for 1421γ to 7070 level and assigned $J^{\pi}(8491)=(6^{-})$ based on $J^{\pi}(7070)=(6)^{-}$
8517 2	$(1,2^+)$		1Mn		not 5^- (see comment there). E(level): from $(\alpha, p\gamma)$. J^{π} : 8516 γ to 0^+ .
8520 <i>3</i>	(3 ⁻ to 6 ⁻)		1Mn		E(level): from $(\alpha,p\gamma)$. J^{π} : 4040 γ to 4 ⁻ and 3934 γ to 5 ⁻ .
8569.59 <i>19</i>	8+	<0.6 ps EF	F H M		J^{π} : 2161.0 γ ΔJ =2 E2 to 6 ⁺ , 1061.4 γ to 7 ⁻ . Additional information 43. $T_{1/2}$: from ²⁴ Mg(¹⁶ O,2p γ).
8595 2	(3 ⁻ to 7 ⁻)		M		E(level): from $(\alpha, p\gamma)$. J^{π} : 2936 γ and 4009 γ to 5 ⁻ .
8650 2	$(3^- \text{ to } 6^+)$		M		E(level): from $(\alpha, p\gamma)$. J^{π} : 2991 γ to 5 ⁻ and 2597 γ to (4 ⁺).
8668 4	2+		MN		XREF: N(8680). E(level): from $(\alpha, p\gamma)$. J^{π} : L(t,p)=2 from 0 ⁺ ; 3791 γ to 3 ⁻ .
8783 2	(3 ⁻ to 7 ⁻)		Mn		E(level): from $(\alpha, p\gamma)$. J^{π} : 3124 γ to 5 ⁻ .
8789 <i>3</i>	(4 ⁻ to 7 ⁻)		Mn		E(level): from $(\alpha, p\gamma)$. J^{π} : 2115 γ to 5 ⁻ and 1719 γ (6) ⁻ .
8800 2	(2 ⁻ to 6 ⁻)	<3.5 fs	lMn F		E(level): from $(\alpha, p\gamma)$. J^{π} : primary 3128 γ from 4 ⁻ .
8809 2	$(4^+ \text{ to } 8^+)$		1Mn		E(level): from $(\alpha, p\gamma)$. J^{π} : 2401 γ to 6 ⁺ .
8828 2	(3 ⁻ to 7 ⁻)		Mn		E(level): from $(\alpha, p\gamma)$. J^{π} : 4242 γ to 5 ⁻ .

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$		XREF		Comments
8875 4	(3 ⁻ to 6 ⁻)			M	X	E(level): from $(\alpha, p\gamma)$.
8944 2	(4 ⁺ to 7 ⁻)			Mn		J^{π} : 4395 γ to 4 ⁻ , 3216 γ and 4289 γ to 5 ⁻ . E(level): from $(\alpha, p\gamma)$.
8956 2	(4 ⁻ to 7 ⁻)			Mn		J^{π} : 3285 γ to 5 ⁻ and 2536 γ to 6 ⁺ . E(level): from $(\alpha, p\gamma)$.
0,30 2	(1 10 7)			1111		J^{π} : 4370 γ to 5 ⁻ and 1886 γ to (6) ⁻ .
8972.85 ^c 21	7-	<28 fs	EF H	LM		J^{π} : 4386.2 γ ΔJ =2 E2 to 5 ⁻ , 2564.4 γ E1+M2 to 6 ⁺ .
						$T_{1/2}$: <28 fs from DSAM for 4386y in 35 Cl(α ,py) (1976Gl10). Other: 4.2 ps <i>14</i> for 2564y in
						27 Al(16 O, α p γ) (1976Ko10) is discrepant, where the
						2564γ was placed from 10174 level. Reversed
						ordering (proposed by 1976G110) of the 1201-2564 cascade defined a level at 8973 instead of 7610.
8998 2	$(4^+,5,6^-)$			MN P		XREF: N(9029).
	. , , ,					E(level): from $(\alpha, p\gamma)$.
						J^{π} : 2590 γ to 6 ⁺ and primary 2930 γ from 4 ⁻ in (p, γ):resonances.
9072 2	$(4^-,5,6^+)$			Mn		XREF: n(9100).
	. , , ,					E(level): from $(\alpha, p\gamma)$.
9077 2	(1 ⁻ to 5 ⁻)			Mn		J^{π} : γ' s to (5) ⁻ , (6) ⁻ and (3 ⁻ ,4 ⁺). XREF: n(9100).
J011 2	(1 10 3)			1111		E(level): from $(\alpha, p\gamma)$.
0007.3	(2 7-)					J^{π} : 4200 γ to 3 $^{-}$.
9087 3	$(3^- \text{ to } 7^-)$			Mn		XREF: $n(9100)$. E(level): from $(\alpha, p\gamma)$.
						J^{π} : 3428 γ and 4501 γ to 5 ⁻ .
9100 2	$(1,2^+)$			Mn		E(level): from $(\alpha, p\gamma)$.
9158 2	$(0^+ \text{ to } 4^+)$			M		J^{π} : 9099 γ to 0 ⁺ . E(level): from $(\alpha, p\gamma)$.
						J^{π} : 6990 γ to 2 ⁺ .
9170 2	$(3^- \text{ to } 6^-)$			MN		E(level): from $(\alpha, p\gamma)$. J^{π} : 4690 γ to 4 ⁻ and 4584 γ to 5 ⁻ .
9199 <i>3</i>	(4 ⁻ to 8 ⁻)			M		E(level): from $(\alpha, p\gamma)$.
						J^{π} : 1074 γ to (6 ⁻).
9204 <i>4</i>	$(0^+ \text{ to } 4^+)$			M		E(level): from $(\alpha, p\gamma)$. J^{π} : 7036 γ to 2 ⁺ .
9260 4	$(0^+ \text{ to } 4^+)$			M		E(level): from $(\alpha,p\gamma)$.
9293 2	(2= to 7=)			Maa		J^{π} : 7092γ to 2^{+} .
9293 2	$(3^- \text{ to } 7^-)$			Mn		E(level): from $(\alpha, p\gamma)$. J^{π} : 4707 γ to 5 $^{-}$.
9300 4	$(0^+ \text{ to } 4^+)$			Mn		E(level): from $(\alpha,p\gamma)$.
9330 2	(4 ⁺ to 8 ⁺)			M		J^{π} : 7132 γ to 2 ⁺ . E(level): from $(\alpha, p\gamma)$.
	(1 10 0)					J^{π} : 2922 γ to 6 ⁺ .
9339.2 [@] 4	8+	73 fs <i>17</i>	E	KlM		J ^{π} : 2051.3 γ ΔJ=2 E2 to 6 ⁺ , 835.3 γ from 9 ⁻ ; band member.
						$T_{1/2}$: from $(\alpha,p\gamma)$.
9349.6 <i>11</i> 9374 <i>2</i>	(7 ⁻) (3 ⁻ to 7 ⁻)		E	lm Mn		J^{π} : γ' s to 5 ⁻ and 6 ⁺ . XREF: N(9401).
931 T 4	(3 10 /)			TIN		E(level): from $(\alpha, p\gamma)$.
0.421	(1+)				C	J^{π} : 4788 γ to 5 ⁻ .
9431	(1^+)				S	E(level): from (e,e'). J^{π} : M1 excitation in (e,e').
9437 2	(3 ⁻ to 7 ⁻)			MN		E(level): from $(\alpha,p\gamma)$.
						J^{π} : 3778 γ to 5 ⁻ .

E(level) [†]	J^{π} ‡	T _{1/2} #		XREF		Comments
9460 2	(3 ⁻ to 7 ⁻)			MN		XREF: N(9481). E(level): from $(\alpha, p\gamma)$. J^{π} : 4874 γ to 5 ⁻ .
9535 20	2+			N		J^{π} : L(t,p)=2 from 0 ⁺ .
9537.0 ^{&} 4	8(+)		E	LM		Additional information 44. J^{π} : 967.4 γ ΔJ =0 d to 8 ⁺ , 2248 γ and 3128 γ to 6 ⁺ ; band member.
9597 5	1-			J	S	XREF: S(9603). J^{π} : 9596 γ $\Delta J=1$ d to 0^{+} ; E1 excitation in (e,e').
9644 2	(5 ⁻ to 9 ⁻)			Mn		XREF: $n(9623)$. E(level): from $(\alpha,p\gamma)$. J^{π} : 2136 γ to 7^{-} .
9645	(1-)			n	S	XREF: n'(9623). J^{π} : E1 excitation in (e,e').
9647 2	(2 ⁻ to 6 ⁻)			Mn		XREF: n(9623). E(level): from $(\alpha, p\gamma)$.
9655 2	(3 ⁻ to 7 ⁻)			M		J^{π} : 3045 γ to 4 ⁻ . E(level): from $(\alpha, p\gamma)$. J^{π} : 3996 γ to 5 ⁻ .
9669 2	(3 ⁻ to 7 ⁻)			M		E(level): from $(\alpha, p\gamma)$. J^{π} : 4010 γ to 5 ⁻ .
9689 5	1-			J		J^{π} : 9688 γ D to 0 ⁺ and 5752 γ D(+Q) to 2 ⁺ ; π =natural for resonant states in (α, γ) :resonances.
9720 20	2+			N		J^{π} : L(t,p)=2 from 0 ⁺ .
9797 <i>5</i>	3-			J N		XREF: N(9770). J^{π} : spin from $\gamma(\theta)$ in (α, γ) :resonances, π =natural for resonant states.
9811 5	1-			J		J^{π} : spin from $\gamma(\theta)$ in (α,γ) :resonances, π =natural for resonant states.
9829 2	(4 ⁻ to 8 ⁻)			M		E(level): from $(\alpha, p\gamma)$. J^{π} : 2759 γ to $(6)^{-}$.
9894 5	2+			J N		XREF: N(9863). J^{π} : 9893 γ ΔJ =2 to 0 ⁺ , π =natural for resonant states in (α, γ) :resonances.
9917 5	1-	12 fs <i>10</i>		J		J^{π} : 9916 γ D to 0^+ , π =natural in (α, γ) :resonances. $T_{1/2}$: DSAM in (α, γ) (1981BuZY).
9923 <i>20</i> 9934.0 8	$(3^-,4^+)$ (9^+)		EF	N LM		J^{π} : L(t,p)=3,4 from 0 ⁺ . J^{π} : 1364 γ $\Delta J=1$ γ to 8 ⁺ .
9951 5	2+		Er	J		J^{π} : spin from $\gamma(\theta)$ in (α, γ) :resonances, π =natural for resonant states.
9996 5	1-			J N		XREF: N(10003). J^{π} : 9995 γ D to 0 ⁺ , π =natural for resonant states in
10024.9 ^a 5 10034 5	(8 ⁻) 1 ⁻		E	M J		(α, γ) :resonances. J^{π} : 1900 γ $\Delta J=2$ to (6 ⁻), 1948 γ to 7 ⁺ ; band member. J^{π} : 10034 γ D to 0 ⁺ , π =natural for resonant states in
10047 5	(1-)			J n	S	(α, γ) :resonances. XREF: S(10058).
10067 5	3-			J n		J ^π : E1 excitation in (e,e'); 5481 γ to 2 ⁺ . J ^π : spin from $\gamma(\theta)$ in (α,γ):resonances, π =natural for
10101 2	(3 ⁻ to 7 ⁻)			Mn		resonant states. E(level): from $(\alpha, p\gamma)$.
10112 2	(4 ⁺ to 8 ⁺)			Mn		J^{π} : 4452 γ and 5515 γ to 5 ⁻ . E(level): from $(\alpha, p\gamma)$.
10118	(1-)				S	J^{π} : 3703 γ to 6 ⁺ ; L(t,p)=3,4 for a 10100 20 group. J^{π} : E1 excitation in (e,e').

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	X	KREF		Comments
10120 2	(6,7,8)			M		E(level): from $(\alpha, p\gamma)$.
10135 2	(5 ⁻ to 9 ⁻)			M		J^{π} : 2612 γ to 7^- and 2043 γ to 7^+ . E(level): from $(\alpha, p\gamma)$.
10146 <i>10</i>	2+		J			J^{π} : 2627 γ to 7 ⁻ . J^{π} : 10146 γ ΔJ =2 to 0 ⁺ , π =natural for resonant
						states in (α, γ) :resonances.
10170 5	3-		J]	l N		XREF: N(10182). J ^{π} : spin from $\gamma(\theta)$ in (α, γ) :resonances, π =natural
10171 206 21	0-	• • •				for resonant states.
10174.29 ^c 21	9-	2.8 ps 5	EF HI]	lM		J ^{π} : 1201.32 γ ΔJ=2 E2 to 7 ⁻ , 1604.67 γ ΔJ=1 E1+M2 γ to 8 ⁺ .
						Additional information 45.
						$T_{1/2}$: weighted average of 4.6 ps 14 from
10181 2	(5 ⁻ to 9 ⁻)			M		(¹⁴ N,n2p γ) and 2.6 ps 4 from (¹⁶ O,2p γ). E(level): from (α ,p γ).
						J^{π} : 2673 γ to 7 ⁻ .
10182 20	$(3^-,4^+)$	10.6.10	_	N		J^{π} : L(t,p)=3,4 from 0 ⁺ .
10184 5	1-	19 fs <i>10</i>	J			J^{π} : 10183 γ D to 0 ⁺ , π =natural for resonant states in (α, γ) :resonances.
						$T_{1/2}$: DSAM in (α, γ) :resonances (1981BuZY).
$10.2 \times 10^3 I$	(2^{+})		K			J^{π} : L(³ He,t)=2 from 0 ⁺ .
10207	(1^+)				S	J^{π} : M1 excitation in (e,e').
10217 5	(0^+) to $4^+)$		J			J^{π} : 5651 γ to 2 ⁺ .
10245 2	$(5^- \text{ to } 8^-)$			M		E(level): from $(\alpha, p\gamma)$.
						J^{π} : 2737 γ to 7 ⁻ , 1754 γ to (6 ⁻).
10245 <i>10</i>	$(0^+ \text{ to } 4^+)$		J			J^{π} : 6308 γ and 8077 γ to 2 ⁺ .
10255 5	1-		J			J^{π} : 10254 γ D to 0 ⁺ , π =natural for resonant states
10074.2	(4+ , 0+)			34		in (α, γ) :resonances.
10274 2	$(4^+ \text{ to } 8^+)$			M		E(level): from $(\alpha, p\gamma)$. J^{π} : 2986 γ to 6 ⁺ .
10316 2	(3 ⁻ to 7 ⁻)			M		E(level): from $(\alpha, p\gamma)$.
	,					J^{π} : 5730 γ to 5 ⁻ .
10335 5	1-		J			J^{π} : 10333 γ D to 0 ⁺ , π =natural for resonant states
10382 5	$(1^- \text{ to } 4^+)$		J			in (α, γ) :resonances. J^{π} : 6571 γ to 3 ⁻ and 8214 γ to 2 ⁺ .
10382 3	1-	12 fs <i>11</i>	J	n		E(level): 10393 5 from (α, γ) :resonances.
10370 7	1	12 13 11	,			J^{π} : 10400 γ D to 0 ⁺ , π =natural for resonant states
						in (α, γ) :resonances.
						$T_{1/2}$: DSAM in (α, γ) (1981BuZY).
10431 5	1-	26 fs <i>12</i>	J	n		J^{π} : 10429 γ D to 0 ⁺ , π =natural for resonant states
						in (α, γ) :resonances. T _{1/2} : DSAM in (α, γ) (1981BuZY).
10443 2	$(4^+ \text{ to } 8^+)$			Mn		E(level): from $(\alpha, p\gamma)$.
10115 2	(1 100)					J^{π} : 3155 γ to 6 ⁺ .
10455 2	$(5^- \text{ to } 8^+)$		I	LM		E(level): from $(\alpha, p\gamma)$.
10404.5	1-		_			J^{π} : 2947 γ to 7 ⁻ and 4046 to 6 ⁺ .
10494 5	1-		J			J^{π} : spin=1 from $\gamma(\theta)$ in (α, γ) :resonances,
10495	(1^+)				S	π =natural for resonant states. J^{π} : M1 excitation in (e,e').
10507 5	$(1,2^+)$		J		5	J^{π} : 10505 γ to 0 ⁺ .
10516 5	(0^+)		j	N		XREF: N(10510).
						J^{π} : L(t,p)=(0) from 0 ⁺ .
10547 5	(0^+)		J	N		XREF: N(10550).
10557.2	(F= 4 0=)			M		J^{π} : L(t,p)=(0) from 0 ⁺ .
10557 2	(5 ⁻ to 9 ⁻)			M		J^{π} : 3049 γ to 7 ⁻ .

E(level) [†]	J ^π ‡	T _{1/2} #	XREF	Comments
10587 5	1-	18 fs <i>11</i>	J n	XREF: n(10595). J^{π} : 10585 γ D to 0 ⁺ , π =natural in (α, γ) :resonances.
10589 2	(4 ⁺ to 7 ⁻)		Mn	$T_{1/2}$: DSAM in (α, γ) :resonances (1981BuZY). XREF: n(10595). E(level): from $(\alpha, p\gamma)$.
10611 5	$(1^- \text{ to } 4^+)$		J n	J^{π} : 6003 γ to 5 ⁻ and 4180 γ 6 ⁺ . XREF: n(10595). J^{π} : 5453 γ to 2 ⁺ and 5097 γ to 3 ⁻ .
10631.3 20	(2-)		1 PQ	E(level): triplet. J^{π} : 4774 γ and 5547 γ to (2) ⁻ ; possible IAS of 38 Cl g.s., J^{π} =2 ⁻ in (3 He,d). Possible T=2.
10634 2 10657.9 5	$(6^+ \text{ to } 10^+)$	<300 eV	lM P	Fossible 1=2. J^{π} : 2064 γ to 8 ⁺ .
10666 5	$(1^-,2^+,3^-,4^+)$	300 61	J ,	J ^{π} : 6100 γ and 6730 γ to 2 ⁺ , 6855 γ to 3 ⁻ , π =natural in (α, γ) :resonances.
10673 10676 2	(2 ⁻) (4 ⁺ to 8 ⁺)		S Mn	J^{π} : M2 excitation in (e,e'). E(level): from $(\alpha, p\gamma)$. J^{π} : 4267 γ to 6 ⁺ .
10684 5	1-		J n	J^{π} : 10682 γ D to 0 ⁺ , π =natural in (α, γ) :resonances.
10726 <i>5</i> 10732.4 <i>6</i>	$(1^- \text{ to } 4^+)$	<300 eV	J P	J^{π} : 8557 γ to 2 ⁺ and 5212 γ to 3 ⁻ .
10768 5	2+	300 61	J .	J ^{π} : spin from $\gamma(\theta)$ and π =natural in (α, γ) :resonances.
10803 5	2+		JK	J^{π} : 10801 γ $\Delta J=2$ Q to 0 ⁺ , π =natural in (α, γ) :resonances; $L(^{7}Li, t)=2$ from 0 ⁺ .
10815.6 9 10816.2 9	(0 to 3 ⁻)		P P	J^{π} : 4043 γ and 4462 γ to 1 ⁻ . γ' s from this level are unresolved from those
10827.0 <i>6</i> 10850.1 <i>7</i>	(2) (2 ⁻ ,3 ⁻)		P P	associated with the 10815.6 level. J^{π} : 10825 γ to 0 ⁺ and 6347 γ to 4 ⁻ . J^{π} : 4276 γ and 5116 γ to 1 ⁻ , 4640 γ to 4 ⁻ .
10857 5	1-		J	J ^{π} : 10855 γ D to 0 ⁺ , π =natural in (α , γ):resonances.
10873.8 <i>5</i> 10890 <i>2</i>	(0 ⁺ to 3 ⁻) (5 ⁻ to 8 ⁻)		P M	J^{π} : 4520 γ to 1 ⁻ , 5279 γ and 5716 γ to 2 ⁺ . E(level): from $(\alpha, p\gamma)$.
10914.5 <i>5</i> 10933 <i>10</i>	(1 ⁻ ,2,3 ⁻) 1 ⁻	<0.2 keV	P J	J^{π} : 3382γ to 7 ⁻ and 2765γ (6 ⁻). J^{π} : 4561γ to 1 ⁻ , 5089γ and 5401γ to 3 ⁻ . J^{π} : 10931γ D to 0 ⁺ , π =natural in (α , γ):resonances.
10945.0 <i>5</i> 10947.4 <i>5</i>	$(1^-,2^+)$ $(2^-,3,4^+)$	<0.2 keV <0.2 keV	P P	J^{π} : 10943 γ to 0 ⁺ and 5431 γ to 3 ⁻ . J^{π} : 6381 γ to 2 ⁺ and 4738 γ to 4 ⁻ .
10947.5 ^b 7	(9-)		E LM	J ^{π} : 2378 γ ΔJ=1 d to 8 ⁺ , 773 γ to 9 ⁻ , 3439 γ to 7 ⁻ .
10962.3 <i>6</i> 10963.3 <i>6</i>	2 ⁽⁺⁾	<0.2 keV	P P	J ^{π} : spin from $\gamma(\theta)$ in (p, γ):resonances, 7586 γ to 0 ⁺ and 5614 γ to 4 ⁺ .
10967.5 <i>6</i> 10979.9 <i>6</i>	(2)	021.14	P P	E(level): probable doublet.
10988.2 7	(2)	<0.2 keV	P	J ^π : (2,3) from $\gamma(\theta)$ in (p, γ):resonances, 7611 γ to 0 ⁺ and 6508 γ to 4 ⁻ .
11000.2 <i>6</i> 11005.9 <i>6</i>	1		P P	J^{π} : 11011 γ D to 0 ⁺ , π =natural in
11013 7	1		J	\mathbf{J} . Figure \mathbf{D} to \mathbf{U} , π =natural in

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XRI	EF	Comments
					(α, γ) :resonances. This level could correspond to 11000.2, 11005.9 and 11014.6 levels in (p, γ) :resonances.
11014.6 <i>6</i>				P	
11023.2 6				P	
11032 6	1-		J		J^{π} : 11030 γ D to 0 ⁺ , π =natural in (α , γ):resonances. This level could correspond to 11023.2 in (p, γ):resonances.
11044.2 6		<0.2 keV		P	J^{π} : see comment for 11045.1 level.
11045.2 6	(3-)	<0.2 keV	J	P	J^{π} : 8877 γ D+Q to 2 ⁺ ; $\gamma(\theta)$ in (α, γ) :resonances gives 3 ⁻ for unresolved 11044.2 and 11045.2 levels.
11051.5 6		<0.2 keV		P	
11053.7 6	(2)	<0.2 keV		P	J^{π} : 11052 γ to 0 ⁺ , 5540 γ to 3 ⁻ , 4844 γ to 4 ⁻ .
11059.2 6	$(1,2^+)$	<0.2 keV		P	J^{π} : 11058 γ and 6349 γ to 0 ⁺ , 6493 γ and 8891 γ to 2 ⁺ .
11066.1 <i>6</i>	(2)	<0.2 keV		P	J^{π} : 6356 γ and 11064 γ to 0 ⁺ , 6586 γ to 4 ⁻ .
11067 <i>10</i>	1-		J		J^{π} : 11065 γ D to 0 ⁺ , π =natural in (α, γ) :resonances.
11068 2			М		E(level): from $(\alpha, p\gamma)$. 2943 γ to (6^-) suggests that this level is different from 11067, 1 ⁻ level.
11078 2			M		E(level): from $(\alpha, p\gamma)$.
11083.7 <i>6</i>				P	
11087 2	$(4^+ \text{ to } 8^+)$		М		E(level): from $(\alpha, p\gamma)$. J^{π} : 3798 γ to 6 ⁺ .
11095.4 <i>6</i>				P	
11096.9 <i>6</i>	(2+)	<0.2 keV		P	J^{π} : 7719 γ and 11095 γ to 0 ⁺ , 5747 γ to 4 ⁺ ; π =natural from ³⁷ Cl(p, α):res.
11099.1 <i>6</i>				P	
11106.9 <i>6</i>				P	
11107.1 <i>6</i>				P	
11109 2	(4 ⁻ to 8 ⁻)		M		E(level): from $(\alpha, p\gamma)$. J^{π} : 2984 γ to (6 ⁻).
11112.9 6		<0.2 keV		P	E(level): probable doublet. J^{π} : π =natural from 37 Cl(p, α):res.
11116.9 <i>6</i>	3-	<0.2 keV		P	J^{π} : from $(p,\alpha(\theta))$ in (p,γ) :resonances.
11122.9 6	3-		J	P	J ^{π} : 8954 γ ΔJ=1 d+Q to 2 ⁺ , 6642 γ to 4 ⁻ , π =natural in ³⁷ Cl(p, α):res.
11124.9 6		<0.2 keV		P	
11135.0 6		10.2 110 /		P	
11136.4 6				P	
11144.4 6		<0.2 keV		P	J^{π} : π =natural from ³⁷ Cl(p, α):res.
11146.0 6		<0.6 keV		P	J^{π} : π =natural from ${}^{37}Cl(p,\alpha)$:res.
11146.9 6	$(2,3^{-})$			P	J^{π} : 11145 γ to 0 ⁺ , 5797 γ to 4 ⁺ and 6666 γ to 4 ⁻ .
11157.6 7	(=,-)	<0.6 keV		P	J^{π} : π =natural from 37 Cl(p, α):res.
11161.0 6	$(2^-,3,4^+)$	<0.2 keV		P	J^{π} : 7224 γ to 2 ⁺ , 4559 γ and 4951 γ to 4 ⁻ .
11163 2	(6,7,8)	10,2 110	M		E(level): from $(\alpha, p\gamma)$. J^{π} : 3086 γ to 7^{+} and 3655 γ to 7^{-} .
11167.6 <i>6</i>	(3-)	<0.2 keV		P	J^{π} : from $\gamma(\theta)$ in (p,γ) :resonances; 11166 γ to 0^{+} , 4958 γ to 4^{-} .
11173.0 6	3-	<0.2 keV		P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances; 7795 γ to 0^+ , 4571 γ to 4^- and 5119 γ to (4^+) ;
11174 2	(5 ⁻ to 9 ⁻)		LM		E(level): from $(\alpha, p\gamma)$. J^{π} : 2201 γ to 7^{-} .
11175 10	1-		J		J^{π} : 22017 to 7. J^{π} : 11173 γ D to 0 ⁺ , π =natural in (α, γ) :resonances.
11173 10	1	<0.6 keV	J	P	J^{π} : π =natural from 37 Cl(p, α):res.
11184.8 6	$(2^+,3^-)$	<0.0 keV <0.2 keV		P	J^{π} : (2,3) from $\gamma(\theta)$ in (p, γ):resonances, π =natural
11107.0 0	(2,5)	₹0.2 RC ¥		*	υ . (2,5) ποιπ γ(0) π (p,γ).τεουιαίτου, π-πατιταί

E(level) [†]	Jπ‡	T _{1/2} #	XR	EF		Comments
						from $^{37}Cl(p,\alpha)$:res.
11188.6 <i>6</i>		<0.6 keV		P		J^{π} : π =natural from $^{37}Cl(p,\alpha)$:res.
11197.6 6	$(1^-,2,3^-)$	<0.2 keV		P		J^{π} : 4425 γ and 4844 γ to 1 ⁻ , 5684 γ to 3 ⁻ .
11199 2	$(8,9,10^+)$	10.2 Re v	M	•		E(level): from $(\alpha, p\gamma)$.
111)) 2	(0,2,10)		- 11			J^{π} : 2629 γ to 8 ⁺ .
11200.5 6				P		,
11201.9 6	1-	<0.2 keV		P		J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11204.3 7				P		J^{π} : π =natural from ${}^{37}Cl(p,\alpha)$:res.
11210.4 7	$(1^-,2,3^-)$	<0.2 keV		P		J^{π} : 4437 γ and 4636 γ to 1^{-} , 5385 γ and 5697 γ to 3^{-} .
11214.7 6	$(1^-,2^+)$	<0.2 keV		P		J^{π} : from $\alpha(\theta)$ in (p, γ):resonances; 6505 γ and 11213 γ to 0 ⁺ , 6057 γ and 6649 γ to 2 ⁺ .
11216.4 8				P		J^{π} : π =natural from 37 Cl(p, α):res.
11217.9 6		<0.2 keV		P		J^{π} : π =natural from ${}^{37}Cl(p,\alpha)$:res.
11217.9 6		<0.2 Ke v		P		$J : \mathcal{H}$ -natural from $Cl(p,\alpha)$.1es.
11227.3 4	(2^{+})	<0.2 keV		P		J^{π} : (1,2,3) from (p, $\gamma(\theta)$); 11226 γ to 0 ⁺ and
11227.3 4	(2)	<0.2 Ke v		r		5877γ to 4^+ .
11233.6 7	$(2^+,3^-)$	<0.2 keV		P		J^{π} : 11232 γ to 0 ⁺ and 5575 γ to 5 ⁻ ; π =natural from $^{37}Cl(p,\alpha)$:res.
11244.8 6	(3 ⁺)	<0.2 keV		P		J^{π} : 4995 γ to 2 ⁺ , 4968 γ to 4 ⁺ and 5035 γ to 4 ⁻ ,
11250 10	1-		_			$3875\gamma \text{ to } (1^+).$
11250 10	1-		J			J^{π} : 11248 γ D to 0 ⁺ ; π =natural in (α, γ) :resonances.
11259.8 6		<0.6 keV		P		J^{π} : π =natural from $^{37}Cl(p,\alpha)$:res.
11262.4 6				P		
11264.9 6	$(2^-,3^-)$	<0.2 keV		P		J^{π} : 4492 γ , 4690 γ and 4911 γ to 1 ⁻ , 6784 γ to 4 ⁻ .
11268.1 6	3-	<0.2 keV	J	P		J^{π} : 3 from $\gamma(\theta)$ and π =natural in (α, γ) :resonances.
11270.0 6	$(1^-,3^-)$	<0.6 keV		P		J^{π} : from $(p,\alpha(\theta))$ in (p,γ) :resonances.
11272.1 6	(3 ⁻)	<0.2 keV		P		J ^{π} : 5677 γ to 2 ⁺ , 5922 γ to 4 ⁺ and 5062 γ to 4 ⁻ , 3902 γ to (1 ⁺); π =natural from ³⁷ Cl(p, α):res.
11275.5 6	$(1^-,2^+)$			P	x	E(level): 11275.5 and 11275.7 are separate levels.
112,0.0 0	(1 ,2)			-		J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11275.7 6	$(1,2^+)$	<0.2 keV		P	x	J^{π} : 6566 γ and 11274 γ to 0 ⁺ , 5681 γ to 2 ⁺ .
11283.9 <i>6</i>				P	x	J^{π} : π =natural from $^{37}Cl(p,\alpha)$:res.
11285.4 6	$(2^+,3)$	<0.2 keV		P	x	J^{π} : 9117 γ to 2 ⁺ , 5428 γ to (2) ⁻ and 5936 γ to 4 ⁺ .
11287.2 <i>6</i>				P	x	
11289.4 6	(3^{-})	<0.2 keV		P	x	J^{π} : 4715 γ to 1 ⁻ , 6809 γ to 4 ⁻ and 5940 γ to 4 ⁺ .
11290 2	(7^+) to $11^+)$		1M		X	E(level): from $(\alpha, p\gamma)$.
						J^{π} : 1356 γ to (9 ⁺).
11291.5 6	$(1^-,2^+)$	<0.6 keV		P		J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11292.0 6				P		
11298.7 7	(10^+)		EF 1M			J ^{π} : 1959.5 γ ΔJ=2 Q to 8 $^+$, 1364 γ ΔJ=1 d+Q to (9 $^+$).
11302.4 5	5-	<0.2 keV		Pq		T=1+2
110020		1012 110 1		- 4		XREF: q(11300).
						J^{π} : from $\gamma(\theta, pol)$ in (p, γ) :resonances; 5643 γ
						M1+E2 to 5 ⁻ ; probable IAS of 671, 5 ⁻ in ³⁸ Cl
						from (³ He,d).
11306.3 6	$(1^-,2^+)$	<0.6 keV		P		J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11307.5 6	5-	<0.2 keV		Pq		T=1+2
				•		XREF: q(11300).
						J^{π} : from $\gamma(\theta, \text{pol})$ in (p, γ) :resonances; 5648 γ
						M1+E2 to 5 ⁻ ; probable IAS of 671, 5 ⁻ in ³⁸ Cl
						from (³ He,d).
11315 10	1-		J			J^{π} : 11313 γ D to 0^{+} , π =natural in (α, γ) :resonances.
	•					(w,)), 1000 miles

11316.7 6	(2-)				Comments
1101017 0	(3 ⁻)	<0.2 keV		P	J ^{π} : (1 ⁻ ,3 ⁻) from $\alpha(\theta)$ in (p, γ):resonances, 5658 γ and 6730 γ to 5 ⁻ .
11318.7 6	(2+)	<0.2 keV		P	J^{π} : 6609 γ and 11317 γ to 0 ⁺ , 5969 γ to 4 ⁺ and 6838 γ to 4 ⁻ .
11326.2 6		<0.2 keV		P	J^{π} : π =natural from $^{37}Cl(p,\alpha)$:res.
11327.3 6	$(1^-,2^+)$			P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11328.3 6	$(3^-,4^+)$	<0.2 keV		P	J^{π} : 9160 γ to 2 ⁺ and 5669 γ to 5 ⁻ ; π =natural from ³⁷ Cl(p, α):res.
11330.1 6				P	J^{π} : π =natural from ³⁷ Cl(p, α):res.
11330.5 6	$(1^- \text{ to } 4^+)$	<0.2 keV		P	J^{π} : 6173 γ and 9162 γ to 2^{+} , 6453 γ to 3 ⁻ .
11338.6 6	(2+)	<0.2 keV		P	J ^{π} : (2,3) from $\gamma(\theta)$ in (p, γ):resonances; 11337 γ to 0 ⁺ and 5513 γ to 3 ⁻ .
11348.9 6	$(2^-,3,4^+)$	<0.2 keV		P	J^{π} : 7412 γ and 9180 γ to 2 ⁺ , 6868 γ to 4 ⁻ .
11350.6 6	3-	<0.2 keV		Pq	T=1+2 J ^π : 9182 γ E1(+M2) to 2 ⁺ , 7540 γ and 6473 γ M1+E2 to 3 ⁻ , 5074 γ and 6001 γ to 4 ⁺ , 4749 γ and 5141 γ to 4 ⁻ ; π =natural from ³⁷ Cl(p, α):res; possible IAS of 755, 3 ⁻ in ³⁸ Cl from (³ He,d).
11354.6 6	3-	<0.2 keV	J	Pq	T=1+2
					E(level): possible doublet. J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances; possible IAS of 755, 3 ⁻ in ³⁸ Cl from (³ He,d).
11359.4 6				P	700, 0 m Of Hom (110,0).
11361.9 <i>6</i>		<0.2 keV		P	
11367.4 7	3-	<0.2 keV		P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11369.1 7				P	
11373.7 7	$(1^-,2,3^-)$	<0.2 keV		P	J^{π} : 4799 γ and 5639 γ to 1 ⁻ , 6496 γ and 7563 γ to 3 ⁻ .
11374 10	1-	0.2.1.17	J	_	J^{π} : 11372 γ D to 0 ⁺ , π =natural in (α, γ) :resonances.
11375.6 7	4 ⁺	<0.2 keV		P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11375.9 <i>7</i> 11379 2	$(4^+ \text{ to } 8^+)$		М	P	E(level): from $(\alpha, p\gamma)$.
11377 2	(+ 100)		11		J^{π} : 4970 γ to 6 ⁺ .
11379.1 7	(2+)	<0.2 keV		P	J^{π} : $(1^-, 2^+)$ from $\alpha(\theta)$ in (p, γ) :resonances; 8001γ to 0^+ , 5103γ and 5337γ to 4^+ , 6898γ to 4^- .
11383.1 7				P	
11383.4 7	$(1^-,2^+)$	<0.2 keV		P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11384.9 7	3-			Pq	J ^{π} : from $\alpha(\theta)$ in (p,γ) :resonances; possible IAS of 755, 3 ⁻ in ³⁸ Cl from (³ He,d). Possible T=2.
11389.9 7		<0.2 keV		P	
11393.0 8	3-	<0.2 keV		Pq	J ^{π} : from $\alpha(\theta)$ in (p, γ):resonances; possible IAS of 755, 3 ⁻ in ³⁸ Cl from (³ He,d).
11200 5 7	(2=)	40 2 IV	117	D	Possible T=2.
11399.5 7	(3 ⁻)	<0.2 keV	JK	P	XREF: K(11400). J^{π} : 9231 γ D+Q to 2 ⁺ ; $(\alpha, \gamma(\theta))$; L(⁷ Li,t)=3 from 0 ⁺ for a group at 11400.
11401.5 7	$(1^-,2^+)$	<0.2 keV		P	J^{π} : 6692 γ and 11400 γ to 0 ⁺ , 7591 γ to 3 ⁻ .
11409.3 7	(2)	<0.2 keV		P	J^{π} : 11408 γ to 0 ⁺ , 5200 γ to 4 ⁻ , 5133 γ and 6059 γ to 4 ⁺ .
11422.7 7				P	J^{π} : π =natural from $^{37}Cl(p,\alpha)$:res.
11423.9 7	(3 ⁻)	<0.2 keV		P	J^{π} : 4849 γ to 1 ⁻ and 6943 γ to 4 ⁻ ; π =natural from $^{37}Cl(p,\alpha)$:res.
11428 2	$(4^+ \text{ to } 8^+)$		М		E(level): from $(\alpha, p\gamma)$. J^{π} : 5019 γ to 6 ⁺ .

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	T _{1/2} #	XRI	EF	Comments
11428.9 7	(3,4+)	<0.2 keV		P	J^{π} : 6271 γ to 2 ⁺ , 6948 γ to 4 ⁻ and 5152 γ and 6079 γ to 4 ⁺ .
11431.9 7	1-	<0.2 keV	J	P	J^{π} : 11430 γ D to 0 ⁺ , π =natural in (α, γ) :resonances.
11435.9 7	$(2^+,3^-)$	<0.2 keV	M	P	J^{π} : 11434 γ and 6726 γ to 0 ⁺ , 6849 γ to 5 ⁻ .
11442.9 7	3-		J	P	J ^{π} : 9274 γ ΔJ=1 d(+Q) to 2 ⁺ ; 4841 γ and 6962 γ to 4 ⁻ ; π =natural from ³⁷ Cl(p, α):res.
11443.6 7	(2-,3)	<0.2 keV		P	J ^π : (1,2,3) from $\gamma(\theta)$ in (p, γ):resonances; 4842 γ to 4 ⁻ , 5390 γ to (4 ⁺), 5849 γ and 9275 γ to 2 ⁺ .
11452 2			M		E(level): from $(\alpha, p\gamma)$.
11452.7 7		<0.2 keV		P	J^{π} : π =natural from ³⁷ Cl(p, α):res.
11454.7 <i>7</i>				P	
11455.5 7				P	
11455.7 7				P	
11461.3 8	$(1^-,2^+)$	<0.2 keV		P	J^{π} : 8084 γ and 11459 γ to 0 ⁺ , 7650 γ to 3 ⁻ .
11463.3 7		<0.2 keV		P	27
11466.2 8	(1 - a -b)	<0.6 keV		P	J^{π} : π =natural from $^{37}Cl(p,\alpha)$:res.
11471.2 7	$(1^-,2^+)$	<0.2 keV		P	J^{π} : 6761 γ , 8093 γ and 11469 γ to 0 ⁺ , 7660 γ to 3 ⁻ .
11478.4 <i>7</i>		<0.2 keV		P	See comment for 11478.9 level.
11478.9 <i>7</i>	(3^{-})	<0.6 keV		P	J^{π} : $(1^{-},3^{-})$ from $\alpha(\theta)$ in (p,γ) :resonances; 5884 γ
					to 2^{+} and 5820γ to 5^{-} .
					γ transitions from either of the two levels: 11478.4 and/or 11478.9.
11482.4 7				P	
11483.4 7				P	
11484 2	(7 ⁻ to 11 ⁻)		М		E(level): from $(\alpha, p\gamma)$. J^{π} : 1310 γ to 9 ⁻ .
11487.2 7	$(1^-,3^-)$	<0.6 keV		P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11493.68	2+	<0.6 keV		P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11495 2	$(5^+ \text{ to } 9^+)$		М		E(level): from $(\alpha, p\gamma)$. J^{π} : 3418 γ to 7 ⁺ .
11501.3 7	(2+)	<0.2 keV		P	J^{π} : (1 ⁻ ,2 ⁺) from $\alpha(\theta)$ in (p, γ):resonances; 6791 γ , 8124 γ and 11499 γ to 0 ⁺ , 5292 γ to 4 ⁻ .
11508.2 7	$(1^-,2^+)$	<0.6 keV		P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11511.1 7	(1 ,2)	10.0 RC V		P	3 . 110111 tr(0) 111 (p,y).1esonances.
11511.7 7	(2)			P	J^{π} : 11510 γ to 0 ⁺ , 5302 γ and 7031 γ to 4 ⁻ , 5235 γ and 6162 γ to 4 ⁺ .
11514.5 7	1-	<0.2 keV		P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances; 11513 γ to
	1	(0.2 Re (0^+ , 6357 γ to 2^+ .
11518.6 7	(1- 2+ 2-)	0.21. 17		P	J^{π} : π =natural from ³⁷ Cl(p, α):res.
11519.7 4	$(1^-,2^+,3^-)$	<0.2 keV		P	J^{π} : 4747 γ to 1 ⁻ , 7709 γ to 3 ⁻ ; π =natural from ³⁷ Cl(p, α):res.
11525.8 7		<0.2 keV		P	
11527.6 7	$(1,2^+)$	<0.2 keV		P	J^{π} : 6818 γ , 8150 γ and 9359 γ to 0 ⁺ .
11530.2 7	$(1^-,2^+)$	<0.2 keV		P	J^{π} : 6820 γ , 8152 γ and 11528 γ to 0 ⁺ ; π =natural from ³⁷ Cl(p , α):res.
11531.9 7		<0.2 keV		P	J^{π} : π =natural from 37 Cl(p, α):res.
11534.2 7				P	J^{π} : π =natural from 37 Cl(p, α):res.
11538.3 7		0.33 keV 11		P	
11540.2 7	1-			P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11543 2	$(5^+ \text{ to } 9^+)$		M		E(level): from $(\alpha, p\gamma)$. J^{π} : 3466 γ to 7^+ .
11544.5 7				P	J^{π} : π =natural from $^{37}Cl(p,\alpha)$:res.

E(level) [†]	J^{π}	T _{1/2} #	XREF	Comments
11545.3 7	(1 ⁻ ,2)	1,2	P	J ^{π} : 11543 γ to 0 ⁺ and 6032 γ to 3 ⁻ ; π =natural from ³⁷ Cl(p, α):res.
11547 2	(7 ⁻ to 11 ⁻)		М	E(level): from $(\alpha, p\gamma)$.
11549.1 ^a 4	(10-)		E	J ^π : 1373 γ to 9 ⁻ . J ^π : 1524.4 γ ΔJ=2 Q to (8 ⁻); 1374.7 γ ΔJ=1
11552.6 7	(1)-	<0.2 keV	P	d+Q to 9 ⁻ . J^{π} : $(0^+, 1^-, 2^+)$ from $\alpha(\theta)$ in (p, γ) :resonances; 8175 γ and 11551 γ to 0 ⁺ , 5727 γ and 6675 γ to 3 ⁻ ; $L(p,p)=1$ in (p, γ) :resonances.
11558.1 <i>7</i> 11558.4 <i>7</i>	(1+)	<0.2 keV	P P S	J ^{π} : π =natural from ³⁷ Cl(p, α):res. XREF: S(11556). J ^{π} : M1 excitation in (e,e').
11561.9 <i>7</i> 11569.2 <i>7</i>	(1-,2,3-)	<0.2 keV <0.2 keV	P P	J^{π} : 4995 γ and 5835 γ to 1 ⁻ , 6055 γ and 7758 γ to 3 ⁻ .
11574.0 7 11578.1 8 11579.4 7	$(1^-,2^+)$ $(1^-,2^+)$	<0.2 keV	P P P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances. J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11581.2 <i>7</i> 11582.1 <i>7</i>	(1 ,2)		P P	• • • • • • • • • • • • • • • • • • • •
11592.9 <i>7</i> 11593.7 <i>7</i> 11595 <i>2</i>	(4 ⁺ to 8 ⁺)	<0.6 keV <0.2 keV	P P M	J ^{π} : π =natural from ³⁷ Cl(p, α):res. E(level): from (α ,p γ).
	(4 to 8) 4 ⁺	<0.2 keV	n P	J ^{π} : 5186 γ to 6 ⁺ . J ^{π} : from $\alpha(\theta)$ in (p, γ):resonances; 9429 γ to
11597.9 7	4	<0.2 Ke v	r	1: From $\alpha(\theta)$ in (p,y):resonances; 94297 to 2^+ and 5939 γ to 5^- ; π =natural from $^{37}\text{Cl}(p,\alpha)$:res.
11599.6 8	$(1,2^+)$	<0.2 keV	P	J^{π} : 11598 γ to 0 ⁺ , 5349 γ and 9431 γ to 2 ⁺ , 5742 γ to (2) ⁻ .
11605.8 <i>7</i> 11607.3 <i>8</i>	$(1,2^+)$	<0.2 keV	P P	J ^{π} : 11604 γ to 0 ⁺ . J ^{π} : π =Natural from ³⁷ Cl(p, α):res.
11608 2	$(5^+ \text{ to } 9^+)$		M	E(level): from $(\alpha, p\gamma)$. J^{π} : 3531 γ to 7 ⁺ .
11608.3 8 11609.1 7 11612.5 7	$(1^-,2^+)$		P P P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11613.2 <i>7</i> 11614.7 ^{<i>c</i>} <i>3</i>	11-	4.9 ps 21	P EF H LM	J ^{π} : π =Natural from ³⁷ Cl(p, α):res. J ^{π} : 1440.3 γ Δ J=2 E2 to 9 ⁻ ; band member. T _{1/2} : from ²⁷ Al(¹⁴ N,n2p γ).
11615.8 <i>7</i> 11618.1 <i>7</i>	1-	0.42 keV <i>16</i> <0.2 keV	P P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11620 2	(7 ⁺ to 11 ⁺)		M	E(level): from $(\alpha, p\gamma)$. J^{π} : 1686 γ to (9^+) .
11622.7 <i>7</i> 11623.5 <i>7</i>		<0.2 keV	P P	
11624.8 7 11630 2	$(1^-,2^+)$	<0.6 keV	Р М	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances. E(level): from $(\alpha,p\gamma)$.
11641.1 7 11643.3 7 11643.4 7 11645.3 7	(1-,2+)	<0.2 keV <0.6 keV	P P P P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11647.0 <i>7</i> 11650.9 <i>23</i>	(9-)	<0.2 keV	P E	J^{π} : 2301 $\gamma \Delta J$ =2 Q to (7 ⁻).
11651.4 <i>7</i> 11652.1 <i>7</i>	(3,4+)	<0.2 keV	P P	J ^π : π =natural from ³⁷ Cl(p,α):res. J ^π : 6057γ, 7086γ and 9483γ to 2 ⁺ , 5442γ

E(level) [†]	J ^π ‡	$T_{1/2}^{\#}$	XREF	Comments
				and 7171γ to 4^- , 6302γ to 4^+ .
11653.9 8			P	J^{π} : π =natural from $^{37}Cl(p,\alpha)$:res.
11656.6 7				J^{π} : π =natural from 37 Cl(p, α):res.
		0.01.17	P	
11660.0 7		<0.2 keV	P	J^{π} : π =natural from $^{37}Cl(p,\alpha)$:res.
11661.4 7			P	
11665.3 7			P	
11666.6 7		<0.2 keV	P	
11667.8 <i>7</i>		<0.2 keV	P	
11670.7 <i>7</i>			P	J^{π} : π =natural from ³⁷ Cl(p, α):res.
11672.3 8	(3)	<0.2 keV	P	J^{π} : (2,3) from $\gamma(\theta)$ in (p, γ):resonances; 5070 γ to 4^{-} and 5396 γ to 4^{+} .
11679.6 <i>7</i>			P	
11682.7 7	(4 ⁺)	<0.2 keV	P	J^{π} : $(4^+,5^-)$ from $\alpha(\theta)$ in (p,γ) :resonances; 5432 γ and 7117 γ to 2 ⁺ , 7096 γ to 5 ⁻ .
11685.5 7		<0.2 keV	P	
11686.0 7	2+	<0.2 keV	P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11686.9 7			P	(F,7)
11695.7 7		<0.2 keV	P	
		<0.6 keV		J^{π} : π =natural from ³⁷ Cl(p, α):res.
11701.8 7	(2- 4+)		P	
11703.5 7	$(3^-,4^+)$	<0.2 keV	P	J^{π} : 7137 γ and 7766 γ to 2^{+} , 7117 γ to 5^{-} .
11706.5 7		<0.2 keV	P	
11709.2 8			P	
11710.0 8			P	
11712.3 8	4 ⁺	<0.6 keV	P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11716	(1^+)		S	J^{π} : M1 excitation in (e,e').
11716.6 8	(2+)	<0.6 keV	P	J ^{π} : 11715 γ , 7007 γ and 8339 γ to 0 ⁺ , 5507 γ to 4 ⁻ ; π =natural from ³⁷ Cl(p, α):res.
11722.6 8			P	
11723.4 8	$(0 \text{ to } 3)^{-}$	<0.2 keV	P	J ^{π} : L(p,p)=1 from 3/2 ⁺ in (p, γ):resonances. (2J+1) Γ_p =0.9 keV 3.
11724.1 8			P	
11726.0 8			P	
11727.8 8	2+		P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11728.2 8	_		P	v v 110111 a(c) 111 (p, y) 1100011a110001
11731.2 8	(4 ⁺)	<0.6 keV	P	E(level): probable doublet from (p,γ) :resonances (1974Al05).
				J^{π} : $(4^+,5^-)$ from $\alpha(\theta)$ in (p,γ) :resonances; 6136 γ and 7165 γ to 2^+ , 6072 γ and 7145 γ to 5^- .
11736.5 8			P	J^{π} : π =natural from ³⁷ Cl(p, α):res.
11737.1 8			P	A V. V. A.
11738.9 8			P	
				J^{π} : π =natural from ³⁷ Cl(p, α):res.
11739.3 8			P	
11742.9 9	(1)=	0.71.77.6	P	J^{π} : π =natural from ³⁷ Cl(p, α):res.
11743.8 8	(1)	0.7 keV 6	P	J ^π : from $\alpha(\theta)$ in (p, γ):resonances; L(p,p)=1 from $3/2^+$.
11748.5 8		<0.2 keV	P	
11751.8 8			P	
11755.6 8	$(3^-,4^+)$	<0.2 keV	P	J ^π : 9587 γ and 7818 γ to 2 ⁺ , 7275 γ to 4 ⁻ ; π =natural from ³⁷ Cl(p, α):res.
11758.7 8	(1,3)		P	J ^{π} : π =natural from ³⁷ Cl(p, α):res; L(p,p)=1 from ^{3/2+} . (2J+1) Γ_p =0.36 keV 18.
11765.1 8			P	(=) p 0.00 me . 10.
11765.9 8			P	
11766.4 8			P	J^{π} : π =natural from ${}^{37}Cl(p,\alpha)$:res.
11/00.4 ð			r	σ . π -natural from $Cr(p,\alpha)$:res.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
11767.7 8		<0.2 keV	P	_
11769.9 8			P	J^{π} : π =natural from ³⁷ Cl(p, α):res.
11772.9 8			P	J^{π} : π =natural from ${}^{37}Cl(p,\alpha)$:res.
11775.0 8	4 ⁺	<0.2 keV	P	J ^π : from $\alpha(\theta)$ in (p, γ):resonances; 9606 γ to 2 ⁺ , 4486 γ to 6 ⁺ .
11780.7 8	(1,2,3) ⁻	<0.2 keV	P	J^{π} : 5427γ to 1 ⁻ , 5955γ and 6267γ to 3 ⁻ ; L(p,p)=1 from 3/2 ⁺ . (2J+1) Γ_p =0.6 keV 2.
11784.1 8	$(1^-,3^-)$	<0.2 keV	P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11784.2 8	, ,- ,	<0.2 keV	P	4,7,7
11788.1 8	2+		P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11790.5 8	(2 ⁺)	<0.2 keV	P	J^{π} : 11789 γ and 7081 γ to 0 ⁺ , 5581 γ to 4 ⁻ , and 5737 γ to (4 ⁺).
11791.08	1-	<0.6 keV	P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11794.5 8	$(1^-,2^+,3^-,4^+)$	<0.2 keV	P	J^{π} : 9626y to 2 ⁺ and 6281y to 3 ⁻ ; π =natural from 37 Cl(p, α):res.
11797.9 8	$(1^-,2,3,4^+)$	<0.2 keV	P	J^{π} : 6203 γ and 7232 γ to 2 ⁺ , 6284 γ and 7987 γ to 3 ⁻ .
11800.1 8	$(1,2^+)$	<0.2 keV	P	J^{π} : 11798 γ to 0 ⁺ .
11802.0 8	, ,	<0.2 keV	P	•
11805.9 8	3-	<0.2 keV	P	J ^π : from $\alpha(\theta)$ in (p, γ):resonances; 5556 γ to 2 ⁺ , 6722 γ to (2) ⁻ , 6456 γ to 4 ⁺ , 7325 γ to 4 ⁻ .
11810.5 8			P	J^{π} : π =natural from $^{37}Cl(p,\alpha)$:res.
11812.2 8	$(1,2^+)$	<0.2 keV	P	J^{π} : 11810 γ to 0 ⁺ .
11814.9 8	(1^{-})	<0.2 keV	P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11819.1 8			P	J^{π} : π =natural ³⁷ Cl(p, α):res.
11823.1 8	$(3^-,4^+)$	<0.2 keV	P	J^{π} : 5573 γ to 2 ⁺ , 6164 γ and 7237 γ to 5 ⁻ .
11828.7 8	, , ,		P	
11832.0 8	3-	<0.2 keV	P	J ^{π} : from $\alpha(\theta)$ in (p, γ):resonances; 7266 γ , 7895 γ and 9663 γ to 2 ⁺ , 7245 γ to 5 ⁻ .
11835.0 8			P	
11836.6 8			P	
11840.0 <i>3</i>	2+	0.302 keV	P R	E(level): weighted average of 11840.3 8 from (p,γ) :resonances and 11840.0 3 from $(n,n),(n,\alpha)$:resonances. J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances; also from 37 Ar $(n,n),(n,\alpha)$:resonances with L (n) =0 from
				$3/2^+$. Γ from 37 Ar(n,n),(n, α): resonances.
11841.0 3	2+	0.267 keV	P R	E(level): weighted average of 11841.3 8 from (p,γ) :resonances and 11841.0 3 from $(n,n),(n,\alpha)$:resonances. Γ and J from $(n,n),(n,\alpha)$:resonances.
11842.2 8			P	1 and 3 from $Ar(n,n),(n,\alpha)$ resonances.
11842.5 8			P	
11844.1 8			P	
11845.8 8			P	
11849.7 8		<0.2 keV		
11851.3 8		<0.2 Ke v	P	
			P	
11851.9 8 11855.7 8	(1 ⁺)		P P S	XREF: S(11855). J^{π} : M1 excitation in (e,e').
11859.4 <i>4</i>			R	
11861.2 8 11861.7 8	$(1^-,2^+)$		P P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	X	REF	Comments
11864.7 8	(1-,3-)	<0.2 keV		P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11865.5 8 11873.8 8	(3,4+)	<0.2 keV		P P	J ^{π} : 6716 γ and 9705 γ to 2 ⁺ , 5597 γ to 4 ⁺ , 7393 γ to 4 ⁻ .
11875.5 7	(0 0)=			R	E(level): from $(n,n),(n,\alpha)$:resonances.
11877.7 8	$(0 \text{ to } 3)^{-}$	0.19 keV <i>12</i>		P	J^{π} : L(p,p)=1 from 3/2 ⁺ .
11880.9 <i>8</i> 11882.3 <i>8</i>	$(1^-,3^-)$	<0.3 keV		P P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11887.8 8	(1,2,3)	0.50 keV 13		P	J^{π} : 9719 γ , 7950 γ , 6730 γ and 6293 γ to 2 ⁺ , 6804 γ to (2) ⁻ ; L(p,p)=1 from 3/2 ⁺ .
11890.2 <i>10</i> 11891.5 <i>8</i>				P P	J^{π} : π =natural from 37 Cl(p, α):res.
11894.7 8		<0.2 keV		P	J^{π} : π =natural from $^{37}Cl(p,\alpha)$:res.
11898.0 8		<0.3 keV		P	•
11901.6 <i>10</i>				P	J^{π} : π =natural from $^{37}Cl(p,\alpha)$:res.
11902.3 8		<0.2 keV		P	
11904.6 10	(2- 4.5-)			P	III 7020 1 0005 4 2- 6047 1
11905.7 8	(3-,4,5-)			P	J^{π} : 7028 γ and 8095 γ to 3 ⁻ , 6247 γ and 7319 γ to 5 ⁻ .
11915.4 [@] 7	(10^+)		E		J^{π} : 2576.2 γ $\Delta J=2$ Q to 8 ⁺ ; band member.
11916.3 8		1.70 1. 17. 14		P	J^{π} : π =natural from $^{37}Cl(p,\alpha)$:res.
11917.0 8 11918.4 8		1.73 keV <i>14</i>		P P	
11918.4 8				P P	
11928.0 9	4-	<0.3 keV		PQ	J^{π} : 5326 γ M1(+E2) and 5718 γ M1(+E2) to 4 ⁻ , 6414 γ D(+Q) to 3 ⁻ , 7341 γ D+Q to 5 ⁻ ; possible IAS of 1309, 4 ⁻ in ³⁸ Cl from (³ He,d).
11928.4 8	1-,2+	<0.2 keV		P	possible T=2. J^{π} : $(p,\alpha(\theta))$.
11928.4 8	1 ,2 4 ⁺	<0.2 keV		P	J^{π} : $(p,\alpha(\theta))$.
11940.2 8		0.51 keV 18		P	\mathbf{s} . $(\mathbf{p}, \mathbf{a}(\mathbf{o}))$.
11943.3 8				P	
11945.9 8		0.45 keV 16		P	
11949.0 8		<0.07 keV		P	
11957.4 8		<0.2 keV		P	TT 4 1 C 37 CIV
11966.3 <i>8</i> 11967.8 <i>8</i>		<0.2 keV		P P	J^{π} : π =natural from ³⁷ Cl(p, α):res.
11907.8 8				P	
11972.9 8	$(1^-,3^-)$	<0.6 keV		P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11977.8 8	, , ,	<0.2 keV		P	
11982.1 <i>19</i> 11995		<0.6 keV		P P	J^{π} : π =natural from $^{37}Cl(p,\alpha)$:res.
11997.5 <mark>b</mark> 12	(7 ⁻ to 11 ⁻)		E		J^{π} : 1050 γ to (9 ⁻).
11998.7 <i>19</i>		<0.6 keV		P	J^{π} : π =natural from ³⁷ Cl(p, α):res.
12000	(1^+)			S	J^{π} : M1 excitation in (e,e').
12003.6	(1= 0=)	<1.0 keV		P	TT C (0): ()
12005.9 19	$(1^-,3^-)$	1.0 keV 6		P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
12011.9 12013.9		<1.0 keV <1.0 keV		P P	
12013.9 12017.1 <i>19</i>		11.0 KC 1		P	J^{π} : π =natural from ³⁷ Cl(p, α):res.
12017.1 19	2+	1.2 keV 6		P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
12031.2		<1.0 keV		P	***
12038.6 19	1-			P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	X	REF	Comments
12042.0 19	$(1^-,2^+)$	1.5 keV 6		P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
12043.2	- 1	2.5 keV		P	
12053.5 19	2+	<0.6 keV		P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
12060.7		1.6 keV		P	177 4 1 C 37 CH
12063.4 19				P	J^{π} : π =natural from 37 Cl(p, α):res.
12067.4 19				P	J^{π} : π =natural from $^{37}Cl(p,\alpha)$:res. J^{π} : π =natural from $^{37}Cl(p,\alpha)$:res.
12071.0 <i>19</i> 12076.2				P P	J^{*} : π =natural from * C1(p, α):res.
12078.1				P	
12081.5 19				P	J^{π} : π =natural from ³⁷ Cl(p, α):res.
12085.5 19	1-	2.1 keV 6		P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
12094.3	-	2.11 1.0		P	(p,y)110011111001
12097.5 <i>19</i> 12106.4	2+	3.0 keV 6		P P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
12106.8 ^{&} 20	(10^+)		E		J^{π} : 3537 γ to 8 ⁺ ; band member.
12110.6 <i>19</i>		2.6 keV 6		P	J^{π} : π =natural from $^{37}Cl(p,\alpha)$:res.
12117.3 19	1-	1.1 keV 6		P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
12122.6 19	$(1^-,3^-)$			P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
12127.5 19	$(1^-,2^+)$	1.4 keV 6		P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
12131.8	44.5	2.3 keV		P	77 3.54
12134	(1^+)	221 17 6		S	J^{π} : M1 excitation in (e,e').
12136.1 19	1-	2.3 keV 6		P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances. J^{π} : π =natural from $^{37}Cl(p,\alpha)$:res.
12143.1 <i>19</i> 12146.2		1.1 keV 6		P P	J^{α} : π =natural from J^{α} CI(p, α):res.
12149.7				P	
12153.1 19				P	J^{π} : π =natural from ³⁷ Cl(p, α).
12159.179				P	\mathbf{J} . π -natural from $\operatorname{Cr}(\mathbf{p}, \alpha)$.
12175.7		3.8 keV		P	
12185.2				P	
12188.8				P	
12199.1				P	
$12.2 \times 10^3 I$	(3 ⁻)		K		J^{π} : L(⁷ He,t)=3 from 0 ⁺ .
12206.4				P	
12215.0		4.4 keV		P	
12233.2				P	
12239.5				P	
12250.5				P	
12298.2 12325				P P	
12323				P	
12343.8				P	
12350.5				P	
12357.3				P	
12364.1				P	
12368.9				P	
12369	(1^+)			S	J^{π} : M1 excitation in (e,e').
12373.4	(2- 4.5-)	2.7 keV		P	III (000 1951() 2- (505 1505
12394	(3-,4,5-)			P	J^{π} : 6880 γ and 7516 γ to 3 ⁻ , 6735 γ and 7807 γ to 5 ⁻ .
12405 12409.3	(3-,4,5-)			P P	J^{π} : 6891 γ and 6579 γ to 3 ⁻ , 7818 γ to 5 ⁻ .
12416				P	
12420.0				P	
12441.9		3.5 keV		P	
12454				P	

³⁸Ar Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$ $T_{1/2}^{\#}$	XREF	Comments
12459.7		P	
12468.2		P	
12473.9		P	
12484.0		P	
12489.0		P	
12494.9		P	
12498		P	
12503.7		P	
12509.1			
		P	
12518		P	
12528.6		P	
12540.0		P	
12544.7		P	
12553.3		P	
12561.6		P	
12565.5		P	
12572.2	3.3 keV	P	
12577.7	4.1 keV	P	
12588.3	1.8 keV	P	
12593.0	1.8 keV	P	
12598.0	1.8 keV	P	
12601.4		P	
12611.3	3.1 keV	P	
12620.7	3.3 keV	P	
12631.2	2.4 keV	P	
12637.8	2.1 keV	P	
12642.3	4.3 keV	P	
12656.2	2.4 keV	P	
12665.2	4.3 keV	P	
12669.6	4.3 keV 4.3 keV	P	
		P	
12672.8	4.3 keV		
12681.7	4.3 keV	P	
12699	(2-)	P	77 1 71:0 2 C
$12.7 \times 10^3 I$	(3-)	K	J^{π} : $L(^{7}Li,t)=3$ from 0^{+} .
12706		P	
12712		P	
12718	3.3 keV	P	
12727		P	
12741		P	
12746	5.6 keV	P	
12752		P	
12769	7.8 keV	P	
12787		P	
12798	19 keV	P	
12811		P	
12818		P	
12831		P	
12839	3.2 keV	P	
12847		P	
12862		P	
12877		P	
12894		P	
12900	12 keV	P	
12906	12 10 1	P	
12927		P	
12927		P	
12933		P	
147 4 U		Г	

Continued on next page (footnotes at end of table)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #		XR	EF			Comments
12948					P			
12958		12 keV			P			
12976					P			
12994					P			
12999		3.3 keV			P			
13013					P			
13022					P			
13034					P			
13044					P			
13070							X	
13116		39 keV			P			
13178		21 keV			P			
13320							X	
13680							X	
13683.7 ^a 6	(12^{-})		E					J^{π} : 2134.9 γ ΔJ =2 Q to (10 ⁻), 2068.5 ΔJ =1
10001	(4.45)							d+Q to 11 ⁻ .
13891	(1^+)					S		J^{π} : M1 excitation in (e,e').
13967	(1^+)					S		J^{π} : M1 excitation in (e,e').
14066	(1^+)		_			S		J^{π} : M1 excitation in (e,e').
14119.7 <i>18</i>	$(8^+, 9, 10, 11^+)$		E			c		J^{π} : 4185 γ to (9 ⁺) and 2821 γ to (10 ⁺).
14206	(1 ⁺)					S		J^{π} : M1 excitation in (e,e').
$14.3 \times 10^3 I$	(3-)			K				J^{π} : L(${}^{7}Li,t$)=3 from 0 ⁺ .
14391.2 ^{&} 10	(12^{+})		E					J^{π} : 2475.7 γ $\Delta J=2$ Q to (10 ⁺); band member.
14877.5 [@] 21	(12^{+})		E					J^{π} : 2962 γ to (10 ⁺); band member.
14924	(1^{-})					S		J^{π} : E1 excitation in (e,e').
$15.0 \times 10^3 I$	$(4^+,5^-)$			K				J^{π} : L(³ Li,t)=(4,5) from 0 ⁺ .
15393.9° 21	(13^{-})		E					J^{π} : 3779 $\gamma \Delta J=2 Q$ to (11) ⁻ .
17002.3 <mark>&</mark> <i>14</i>	(14^{+})		E					J^{π} : 2611 γ to (12 ⁺); possible band member.
17780.9 ^a 21			E					J^{π} : 4097 γ to (12 ⁻).
18070? [@] 4	(14^+)		E					J^{π} : possible 3192 γ to (12 ⁺); possible band member.
18784 <i>30</i>	0_{+}						X	T=3 $J^{\pi}: L(p,t)=0 \text{ from } 0^{+}.$
19770	(8 ⁺)			1				J^{π} : L=8 from $\alpha(\theta)$ in $^{34}S(\alpha,\alpha)$.
				J J				J^{π} : L=8 from $\alpha(\theta)$ in ${}^{34}S(\alpha,\alpha)$.
19913	(8+)		_	J				
21662? [@] 5	(16+)		E					J^{π} : possible 3592 γ to (14 ⁺); possible band member.

[†] From a least-squares fit to γ -ray energies when γ -ray energy uncertainties are assigned, and others are from (p,γ) :resonances, unless otherwise noted.

[‡] Additional information 46.

[#] Lifetimes and widths are from (p,γ) :resonances, unless otherwise noted. Some lifetime measurements are from $(\alpha,p\gamma)$ and a few from other γ -ray reactions.

[@] Band(A): 2⁺ band 1. [&] Band(B): 2⁺ band 2.

^a Band(C): Band based on (6⁻).

^b Seq.(D): γ sequence based on 3⁻.

^c Seq.(E): γ sequence based on 5⁻.

$\gamma(^{38}Ar)$

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{^{\ddagger}}$	E_f J	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	$I_{(\gamma+ce)}$	Comments
2167.472	2+	2167.405 12	100	0.0)+ I	E2			B(E2)(W.u.)=3.40 <i>16</i> E _γ : weighted average of 2167.400 <i>9</i> from ³⁸ Cl β^- decay (37.230 m), 2167.5 <i>3</i> from ³⁸ K ε decay (7.651 m), 2167.5 <i>5</i> from (²⁸ Si, α 2pγ), 2167.53 <i>5</i> from (¹⁴ N,n2pγ), 2167.61 <i>14</i> from (p,γ):resonances, and 2167 <i>I</i> from (π^- ,pnγ). Mult.: from $\gamma(\theta,\text{pol})$ in (p,γ):resonances, (¹⁴ N,n2pγ), and (¹⁶ O, α pγ).
3376.9	0+	1209.4 3	100	2167.472 2	2 ⁺ I	E2			B(E2)(W.u.)=1.26 8 E _y : weighted average of 1209.8 4 from (14 N,n2p γ), 1210 <i>I</i> from
		3376.7		0.0) ⁺ I	Е0		0.66 10	(α, γ) :resonances, and 1209.1 3 from (p, γ) :resonances. Mult., $I_{(\gamma+ce)}$: E0 decay by e^+e^- pair (1975So11) in $(\alpha, p\gamma)$. $q_K^2(E0/E2)=0.81$ 12, $X(E0/E2)=0.51$ 8, $\rho^2(E0)=0.018$ 3 (2005Ki02 evaluation).
3810.18	3-	1642.66 3	100.00 20	2167.472 2	2 ⁺ I	E1(+M2)	+0.016 13		B(E1)(W.u.)=0.0024 +8-5 E _γ : weighted average of 1642.68 2 from ³⁸ Cl $β$ ⁻ decay (37.230 m), 1642.7 4 from (²⁸ Si, $α$ 2pγ), 1642.4 3 from (¹⁶ O,2pγ), 1642.42 10 from (¹⁴ N,n2pγ), 1642.31 14 from (p,γ):resonances, and 1643 1 from ($π$ -,pnγ). I _γ : from ³⁸ Cl $β$ ⁻ decay. Mult.: from $γ(θ$,pol) in (¹⁶ O,2pγ), (p,γ):resonances and (¹⁴ N,n2pγ); Mult.=E1 with ΔJ=1 is also supported by $γ(θ$,pol) in (¹⁶ O, $α$ pγ), $γ$ (DCO) in (²⁸ Si, $α$ 2pγ) and $γγ(θ)$ in ³⁸ Cl $β$ ⁻ decay.
		3810.01 7	0.079 6	0.0)+ [[E3]			δ: from (16 O,2pγ). Other: +0.01 2 from (p,γ):resonances. B(E3)(W.u.)=17 +8-5 E _γ ,I _γ : from 38 Cl β ⁻ decay.
3936.5	2+	559.6 [@]	< 0.32	3376.9)+				
		1770 <i>I</i>	7.1 6	2167.472 2	2+				E _{γ} : weighted average of 1769 <i>I</i> from ($^{28}\text{Si},\alpha2\text{p}\gamma$) and 1771 <i>I</i> from (α,γ):resonances. I _{γ} : weighted average of 10 <i>5</i> from ($^{28}\text{Si},\alpha2\text{p}\gamma$), 11 <i>6</i> from ($\alpha,\text{p}\gamma$), and 7.0 <i>6</i> from (p,γ):resonances.
		3936.1 5	100.0 6	0.0 0)+ [[E2]			B(E2)(W.u.)=1.71 +24-19 E _{γ} : weighted average of 3935.6 5 from 38 K ε decay (7.651 m), 3938 2 from (28 Si, α 2p γ), 3936.1 7 from (14 N, 12 p γ), 3938 3 from (α , γ):resonances, 3936.1 5 from (p, γ):resonances, and 3937 I from (p, γ):resonances.
4479.98	4-	669.78 8	100	3810.18 3	3 ⁻ 1	M1(+E2)	+0.011 13		B(M1)(W.u.)=0.076 +20-16 E_{γ} : weighted average of 669.6 2 from (²⁸ Si, α 2p γ), 669.6 3 from

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}^{\ddagger}$	\mathbf{E}_f J	f^{π} Mult.#	$\delta^{\#}$	Comments
							($^{16}\text{O},2\text{p}\gamma$), 669.87 8 from ($^{14}\text{N},\text{n}2\text{p}\gamma$), 670 I from (α,γ):resonances, 669.58 $I4$ from (p,γ):resonances, and 671 I from ($\pi^-,\text{pn}\gamma$). Mult.: from $\gamma(\theta,\text{pol})$ in ($^{16}\text{O},2\text{p}\gamma$), ($^{14}\text{N},\text{n}2\text{p}\gamma$) and (p,γ):resonances, with ΔJ =1; D+Q from $\gamma(DCO)$ in ($^{28}\text{Si},\alpha2\text{p}\gamma$) and M1 from $\gamma(\theta,\text{pol})$ in ($^{16}\text{O},\alpha p\gamma$).
4565.5	2+	629.0	2.0 3	3936.5 2	+		δ : from (16 O,2p γ). Other: +0.01 2 from (p, γ):resonances.
4303.3	2	755.3	1.9 3	3810.18 3	- [E1]		B(E1)(W.u.)=0.00070 +20-17
		1188.6 [@] 2398.1 <i>5</i>	<0.8 100.0 4	3376.9 0 2167.472 2			E_{γ} : from (p,γ) :resonances.
		4565.2 [@]	<2	0.0 0			Ly. Hom (p,y).resonances.
4585.87	5-	105.894 12	100.0 11	4479.98 4		-0.02 3	B(M1)(W.u.)=0.124 6
							E _γ : weighted average of 105.9 <i>I</i> from (28 Si, α 2pγ), 105.894 <i>I2</i> from (16 O,2pγ), 105.92 <i>I0</i> from (14 N,n2pγ), and 105.5 <i>4</i> from (p,γ):resonances. Mult., δ : from $\gamma(\theta,\text{pol})$ in (p,γ):resonances.
		775.70 16	12.5 12	3810.18 3	- E2		B(E2)(W.u.)=0.223 20
							E _γ : weighted average of 775.5 3 from (28 Si, α 2pγ), 775.79 13 from (14 N,n2pγ), and 774.9 5 from (p,γ):resonances. I _γ : weighted average of 13.3 12 from (28 Si, α 2pγ), 16.0 20 from (14 N,n2pγ), and 11.0 10 from (p,γ):resonances. Mult.: from $\gamma(\theta,\text{pol})$ in (14 N,n2pγ) and (p,γ):resonances.
		2418.3	0.45 11	2167.472 2	+ [E3]		B(E3)(W.u.)=0.88 +28-25
4709.3	0_{+}	772.8 9	100	3936.5 2	+ [E2]		$B(E2)(W.u.)=1.6\times10^2 +11-9$
							E _{γ} : weighted average of 773.3 5 from (p, γ):resonances and 771 <i>I</i> from
4877.0	3-	940.5 [@]	<4	3936.5 2	+		$(\pi^-, pn\gamma)$.
.577.0	5	1066.8 <i>3</i>	100.0 8	3810.18 3		+0.03 7	B(M1)(W.u.)=0.27 + 10-6
							E_{γ} : from (p,γ) :resonances.
							Mult., δ : from $\gamma(\theta,\text{pol})$ in (p,γ) :resonances; D(+Q) from $\gamma(\theta)$ in $(\alpha,p\gamma)$ with δ =+0.16 +10-16 or 0.0 +3-1.
		1500.1 [@]	<2	3376.9 0			
		2709.4	91.2 8	2167.472 2	+ E1+M2	+0.10 7	B(E1)(W.u.)=0.00040 +15-10; B(M2)(W.u.)=2.5 +73-24 E_{γ} : from (p, γ):resonances.
							Mult., δ : from $\gamma(\theta, pol)$ in (p, γ) :resonances; D+Q from $\gamma(\theta)$ in $(\alpha, p\gamma)$ with δ =-0.30 +7-14 or -2.7 3.
		4876.7 [@]	<8	0.0			
	$(2)^{-}$	1273.4	7.3 5	3810.18 3	_		
5083.6	(-)	2916 <i>1</i>	100.0 5	2167.472 2	+ [E1]		B(E1)(W.u.)=0.00056 +22-13

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	J_f^{π}	Mult.#	Comments
5157.3	2+	677.3 [@]	<4	4479.98	4-		
	_	1220.8	42 6	3936.5	2+		
		1347.1	25 4			[E1]	B(E1)(W.u.)=0.0014 + 11-6
						[]	I_{γ} : other: 39 7 in $(\alpha,p\gamma)$.
		2989.7	100 4	2167.472	2+		<i>y</i>
		5156.9	25 8	0.0		[E2]	B(E2)(W.u.)=0.11 +11-6
5349.4	4+	784 <i>1</i>	2.5 13	4565.5		[E2]	B(E2)(W.u.)=27 +35-18
							E_{γ},I_{γ} : from (²⁸ Si, α 2p γ).
		869.4 [@]	<3	4479.98	4-		-y,-y, (,
		1413.1 <i>4</i>	50 3	3936.5		[E2]	B(E2)(W.u.)=28 + 16-9
		1413.1 4	30 3	3930.3	2		E_{γ} : from (²⁸ Si, α 2p γ).
							I_{γ} : weighted average of 48 4 from (28 Si, α 2p γ), 54 9 from (α ,p γ), and 50.3 26 from (p, γ):resonances.
		1539 <i>I</i>	12.7 <i>21</i>	3810.18	3-	[E1]	$B(E1)(W.u.)=9\times10^{-5} +7-4$
		1557 1	12.7 21	5010.10	5	[21]	E_{γ} : from (²⁸ Si, α 2p γ).
							I_{γ} : weighted average of 11.3 25 from (28 Si, α 2p γ) and 13.6 21 from (p, γ):resonances.
		3182.2 7	100 5	2167.472	2+	E2	B(E2)(W.u.)= $1.0 + 5 - 3$
		3102.2 /	100 3	2107.472	۷ .	L2	E_{γ} : weighted average of 3183 2 from (28 Si, α 2p γ) and 3182.1 7 from (14 N,n2p γ).
							Mult.: Q from $\gamma(DCO)$ in ($^{28}Si_{,}\alpha^2p\gamma$); M2 ruled out by RUL.
		5349.0 [@]	<5	0.0	0^{+}		
5513.3	3-	636.3	38.2 <i>13</i>	4877.0	3-		
		947.8	<4	4565.5	2+		
		1033.3 4	100 4	4479.98	4-		
		1576.8 [@]	6	3936.5	2+		
		1703.1	14.3 17	3810.18	3-		
		2136.3 [@]	<4	3376.9	0+		
						FF 12	$B(E1)(W.u.)=2.0\times10^{-5}+14-7$
		3345.7	54 4	2167.472		[E1]	$B(E1)(W.U.)=2.0\times10^{-5}+14-7$
		5512.9 [@]	<12	0.0	0+		
5552.21	$1^+, 2^+$	986.7	53 5	4565.5	2+		
		1615.7	100 8	3936.5	2+		
		1742.0 [@]	<8	3810.18	3-		
		3384.6	68 8	2167.472			
		5551.8	30 8	0.0	0_{+}		
5594.6	2+	1029.1	62 5	4565.5	2+		
		1114.6 [@]	<8	4479.98	4-		
		1658.1	100 8	3936.5	2+		
		1784.4 <mark>@</mark>	<18	3810.18	3-		
		2217.6	39 5	3376.9		[E2]	B(E2)(W.u.)=3.3 +26-13
		2217.0	575	5510.7	U	رحد	D(D2)(11.41) 5.5 120 15

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	Comments
5594.6	2+	5594.2	56 5	0.0	0+	[E2]		B(E2)(W.u.)=0.047 +34-17
5658.61	5-	1072.8 <i>3</i>	100.0 6	4585.87	5-	M1(+E2)	-0.10 9	B(M1)(W.u.)=0.54 + 12 - 14
								E_{γ} : weighted average of 1073.2 4 from (28 Si, α 2p γ), 1072.5 4 from
								$(^{16}\text{O},2\text{p}\gamma)$, 1072.7 3 from $(^{14}\text{N},\text{n}2\text{p}\gamma)$, and 1072.7 3 from
								(p,γ) :resonances. Mult., δ : from $\gamma(\theta,pol)$ in (p,γ) :resonances with $\Delta J=0$, also supported by
								$\gamma(DCO)$ in $({}^{28}Si,\alpha 2p\gamma)$.
		1178.6 <i>6</i>	9.4 <i>4</i>	4479.98	4-			E_{γ} : from (28 Si, α 2p γ).
		1170.00	7.7 7	7777.70	7			I_{γ} : from (p,γ) :resonances. Other: 9.7 14 from $(^{28}Si,\alpha 2p\gamma)$.
		1722.1 [@]	< 0.6	3936.5	2+			1y. 110111 (p,y).1105011411005. Other: 51,7 17 110111 (51,42py).
		1848.4	2.5 4	3810.18	3-	[E2]		B(E2)(W.u.)=2.6 +11-8
		3491.0 [@]	< 0.6	2167.472		. ,		
5733.9	1-	5733.4		0.0	0_{+}	[E1]		B(E1)(W.u.)>0.00079
5824.9	3-	741.3	25 <i>3</i>	5083.6	$(2)^{-}$			
		947.9	56 6	4877.0	3-			
		1344.9	59 6	4479.98	4 ⁻			
		2014.7 3657.2	100 <i>10</i> 72 <i>10</i>	3810.18 2167.472	3 ⁻	[E1]		$B(E1)(W.u.)=1.1\times10^{-5} +23-9$
		5824.4 [@]	<25	0.0	0 ⁺	[151]		$D(E1)(W.u.)=1.1\times10$ $\pm23=9$
5857.5	$(2)^{-}$	980.5	11.0 11	4877.0	3-			
5057.5	(2)	1292.0 [@]	<1.2	4565.5	2+			
		1920.9 [@]	<2.4	3936.5	2 ⁺			
		2047.3	100.0 21	3810.18	3-			
		2480.5 [@]	<4	3376.9	0+			
		3689.8	11.1 17	2167.472		[E1]		$B(E1)(W.u.)=6.9\times10^{-5} +39-24$
5974.8	$(0^+ \text{ to } 3^-)$	817.5	8.8 13	5157.3	2+	. ,		
		1409.3	30 <i>3</i>	4565.5	2+			
		1494.8 [@]	<3	4479.98	4-			
		2038.2	17.3 22	3936.5	2 ⁺			
		3807.1 5974.3 [@]	100 <i>5</i> <5	2167.472	0 ⁺			
(041.0	(2= 4+)	1164.8 [@]		0.0				
6041.8	$(3^-,4^+)$	1164.8° 1455.9	<5 18 <i>3</i>	4877.0 4585.87	3 ⁻ 5 ⁻			
		1433.9 1476.3	<5	4565.5	2+			
		1561.8	< 5 55 5	4303.3	4-			
		2231.5	100 5	3810.18	3-			
		3874.1 [@]	<10	2167.472				
		6041.3 [@]	<5	0.0	0^{+}			

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	Comments
6053.2	(4+)	703.9 <i>3</i> 1488 <i>1</i>	100 <i>6</i> 32 <i>4</i>	5349.4 4565.5	4 ⁺ 2 ⁺	[E2]		E _γ : from (28 Si, α 2pγ). B(E2)(W.u.)=25 +13-8
		1400 1	J2 T	4303.3	2	[12]		E_{γ} : from (28 Si, α 2p γ). I_{γ} : other: 18 5 from (28 Si, α 2p γ).
		1573.2 2116 <i>I</i>	13 <i>4</i> 41 <i>6</i>	4479.98 3936.5	4 ⁻ 2 ⁺	[E1] [E2]		B(E1)(W.u.)= $0.00015 + 11-7$ B(E2)(W.u.)= $5.5 + 27-17$
		2110 1	41 0	3930.3	2	[152]		E_{γ} : from (28 Si, α 2p γ). I_{γ} : other: 27 9 from (28 Si, α 2p γ).
6209.4	4-	1623.5	8.0 10	4585.87	5-			1_{γ} : other: 27 9 from (${}^{\circ}$ Si, α 2p γ).
0207.1	•	1729.4 6	100.0 10	4479.98	4-	M1+E2	-0.32 10	B(M1)(W.u.)=0.047 +24-15; B(E2)(W.u.)=6 +8-4 Mult., δ : D+Q from $\gamma(\theta)$ in (p, γ):resonances; M2 is ruled out by RUL.
		2272.8 [@]	<1	3936.5	2+			
		4041.7 [@]	<2	2167.472	2+			
		6208.9 [@]	<1	0.0	0_{+}			
6213.8	(2^{+})	1733.8 [@]	<4	4479.98	4-			
		2277.2	17 3	3936.5	2+			
		4046.1 6213.3	26 <i>3</i> 100 <i>4</i>	2167.472 0.0	0+			
6249.9	2+	900.5	16.9 26	5349.4	4+			
		1092.6	10.6 22	5157.3	2+			
		1684.4 2313.3 [@]	100 8 <10	4565.5 3936.5	2 ⁺			
		2313.3° 2439.6°	<10 <6	3936.5	2 ⁺ 3 ⁻			
		2872.9	20 6	3376.9	0 ⁺			
		4082.2	49 8	2167.472				
		6249.3 [@]	<6	0.0	0_{+}			
6276.1	4+	926.7	57 8	5349.4	4+	FF-43		DOTA 77
		1796.1 2339.5	16 <i>6</i> 31 <i>8</i>	4479.98 3936.5	4 ⁻ 2 ⁺	[E1] [E2]		B(E1)(W.u.)=9×10 ⁻⁵ +17-6 B(E2)(W.u.)=1.9 +28-10
		2465.8 [@]	<10	3810.18	3-	[12]		B(12)(W.d.)=1.7 120 10
		2899.1 [@]	<6	3376.9	0+			
		4108.4	100 6	2167.472		[E2]		B(E2)(W.u.)=0.36 +42-15
		6275.5 [@]	<8	0.0	0_{+}			
6338.6	1-,2-,3-	1461.6	86 12	4877.0	3 ⁻ 3 ⁻			
		2528.3 2961.6	100 <i>12</i> <17	3810.18 3376.9	3 0 ⁺			
		4170.9	100 12	2167.472		[E1]		B(E1)(W.u.)>0.00018
6353.5	1-	6352.9	100	0.0	0+	[E1]		B(E1)(W.u.)=0.00065 +41-18

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	Comments
6408.32	6+	749.9 <i>4</i>	0.55 18	5658.61	5-	[E1]		B(E1)(W.u.)=8×10 ⁻⁶ +7-4
		1058 <i>I</i>	3.3 4	5349.4	4+	[E2]		E_{γ} , I_{γ} : from (16 O,2p γ). B(E2)(W.u.)=1.8 +12-6
								E_{γ},I_{γ} : from ($^{16}O,2p\gamma$).
		1822.40 5	100 4	4585.87	5-	E1(+M2)	+0.007 10	B(E1)(W.u.)=0.00010 +4-2 E _γ : weighted average of 1823.3 4 from (²⁸ Si,α2pγ), 1822.39 16 from (¹⁶ O,2pγ), and 1822.39 3 from (¹⁴ N,n2pγ). I _γ : from (¹⁶ O,2pγ). Mult.,δ: from γ(θ,pol) and γ(DCO) in (¹⁶ O,2pγ) with ΔJ=1, also supported by γ(θ,pol) in (¹⁴ N,n2pγ) and γ(DCO) in (²⁸ Si,α2pγ).
6476.6	$(0^+ \text{ to } 3^-)$	1599.6 [@]	<3	4877.0	3-			
	. ,	1911.0	100 3	4565.5	2+			
		1996.6 [@]	<10	4479.98	4-			
		2540.0 [@]	21 3	3936.5	2+			
		2666.3 [@]	<11	3810.18	3-			
		3099.6 [@]	<15	3376.9	0^{+}			
		4308.9 [@]	43 3	2167.472	2+			
		6476.0 [@]	<13	0.0	0^{+}			
6485.4	$(1^-,2,3^-)$	2548.8 [@]	<7	3936.5	2+			
		2675.1	67 8	3810.18	3-			
		3108.4 [@]	<7	3376.9	0^{+}			
		4317.7	100 8	2167.472				
C 40 7 0	(2- 2-)	6484.8 [@]	<10	0.0	0+			I_{γ} : other: $I_{\gamma}(6485)/I_{\gamma}(4318)=100 \ 13/33 \ 13$ in (α, γ) :resonances.
6495.8	$(2^-,3^-)$	1618.8	43 7	4877.0	3-			
		1930.2 [@] 2015.8	<5 45 <i>5</i>	4565.5 4479.98	2 ⁺ 4 ⁻			
		2559.2	31 5	3936.5	2+			
		2685.5	100 10	3810.18	3-			
		3118.8 [@]	<5	3376.9	0^{+}			
		4328.1	19 5	2167.472				
		6495.2 [@]	<7	0.0	0_{+}			
6574.3	1-	2094.3 [@]	<2.5	4479.98	4-			
		2637.7 [@]	<4	3936.5	2+			
		2764.0 [@]	<6	3810.18	3-			
		3197.3 [@]	<4	3376.9	0_{+}			
		4406.6	27 4	2167.472	2+	[E1]		B(E1)(W.u.)>0.00032

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}^{ \ddagger}$	E_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	Comments
6574.3	1-	6573.7	100 4	0.0	0+	[E1]		B(E1)(W.u.)>0.00040
6601.59	4-	1724.5 2015.7	21.9 22 3.0 5	4877.0 4585.87	3 ⁻ 5 ⁻			
		2013.7 2121.55 2 <i>1</i>	100.0 24	4479.98	4-	M1(+E2)	-0.05 8	B(M1)(W.u.)=0.15 + 4-3
		2701.2	111	2010 10	2-			Mult., δ : $\Delta J=0$ from $\gamma(\theta)$ in (p,γ) :resonances and RUL.
6621.6	$(1^-,2,3^-)$	2791.3 2056.0	1.1 <i>4</i> 80 <i>5</i>	3810.18 4565.5	3 ⁻ 2 ⁺			
0021.0	(1 ,2,5)	2141.6 [@]	<10	4479.98	4 ⁻			
		2685.0	39 5	3936.5	2+			
		2811.3	39 <i>5</i>	3810.18	3-			
		4453.8	100 8	2167.472				
	~_	6621.0 [@]	<23	0.0	0+	3.61		P.411/4W . \ 0.14 . 7 . 4
6674.4	5-	2088.6 <i>3</i>	100 4	4585.87	5-	M1		B(M1)(W.u.)=0.14 +7-4 E _{γ} : weighted average of 2088.7 6 from (²⁸ Si, α 2p γ) and 2088.6 3 from
								E_{γ} : weighted average of 2088.7 6 from (-81,42py) and 2088.6 3 from (^{16}O ,2py).
								Mult.: D with $\Delta J=0$ from $\gamma(\theta)$ in (p,γ) :resonances and $\gamma(DCO)$ in
								$(^{28}\text{Si},\alpha 2\text{py})$; magnetic polarity from no level-parity change determined
								based on L-transfer data.
		2194.4	21 4	4479.98	4-			
		2737.8 [@]	<5	3936.5	2+			
((01.6	(0.1.0)	6673.8 [@]	<10	0.0	0+			
6681.6	(0,1,2) 1 ⁻	947.7 2292.6 [@]	100	5733.9	1-			
6772.7	1	2836.1	<10 41 7	4479.98 3936.5	4 ⁻ 2 ⁺	[E1]		B(E1)(W.u.)>0.0019
		3395.6 [@]	<8	3376.9	0+	[121]		D(E1)(W.u.)>0.001)
		4604.9 [@]	<10	2167.472				
		6772.1	100 7	0.0	0+	[E1]		B(E1)(W.u.)>0.00038
6824.0	$(2^+,3^-)$	2258.4 [@]	<9	4565.5	2+	. ,		
	, ,	2343.9 [@]	<3	4479.98	4-			
		3013.7	47 7	3810.18	3-			
		3446.9 [@]	<12	3376.9	0_{+}			
		4656.2	100 8	2167.472				
		6823.3 [@]	<7	0.0	0+			
6824.1	$(0^+ \text{ to } 4^+)$	2258.5 2887.5		4565.5 3936.5	2 ⁺ 2 ⁺			
		3013.8 [@]		3810.18	3-			
		4656.3 [@]		3810.18 2167.472				
6846	$(0^- \text{ to } 4^-)$	4656.3° 1762	100	5083.6	$(2)^{-}$			
5010	(0 10 1)	1702	100	5005.0	(2)			

$\gamma(^{38}\text{Ar})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}^{\sharp}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	Comments
6852	$(1,2^+)$	2286	33 10	4565.5	2+			
	(-,-)	3475	100 13	3376.9	0+			
		6851	33 10	0.0	0^{+}			
6869.9	$(2^-,3,4^+)$	X						I_{γ} : 30% γ branching is unobserved.
								Ádditional information 47.
		1992.8	67 <i>17</i>	4877.0	3-			
		2304.3 [@]	<13	4565.5	2+			
		2933.3 [@]	<13	3936.5	2+			
		3059.6	100 17	3810.18	3-			
		3492.8 [@]	<27	3376.9	0^{+}			
		4702.1	67 17	2167.472				
		6869.2 [@]	<30	0.0	0^{+}			
6903.8	2-,3-	2423.7	11 3	4479.98	4-			
,,,,,,,,,	- ,5	2967.2	23 3	3936.5	2+	[E1]		B(E1)(W.u.)=0.00063 +48-24
		4736.0	100 4	2167.472		[E1]		B(E1)(W.u.)=0.00068 +41-20
6947.9	(2^{+})	2070.8 [@]	<8	4877.0	3-	. ,		
,,,,,	(=)	2382.3 [@]	<14	4565.5	2+			
		3137.6 [@]	<9	3810.18	3-			
		3570.8	100 5	3376.9	0 ⁺			I_{γ} : other: 100 13 from $(\alpha, p\gamma)$.
		4780.1	54 5	2167.472				I_{γ} : other: 59 10 from (α, p_{γ}) .
		6947.2 [@]	<14	0.0	0+			1y. ouler. 39 10 from (a,p/).
7046	$(3^-,4^+)$	2566	56 15	4479.98	4 ⁻			
70 1 0	(5 ,4)	3236	100 9	3810.18	3-			
		4878	19 4	2167.472				
7070.19	(6)	2483.9 <i>4</i>	100 10	4585.87		M1+E2	+0.53 +3-9	B(M1)(W.u.)=0.020 +10-5; $B(E2)(W.u.)=3.1 +17-13$
	. ,							E_{ν} : weighted average of 2483.9 6 from (28 Si, α 2p $_{\nu}$) and 2483.9 4 from
								$(^{16}O,2p\gamma).$
								I_{γ} : from (²⁸ Si, α 2p γ).
								Mult.: D+Q from $\gamma(DCO)$ in $(^{28}Si,\alpha 2p\gamma)$ and $\gamma(\theta)$ in $(\alpha,p\gamma)$; M2 is ruled out by RUL.
								δ : from (α,pγ). Other: ≈+0.5 from (²⁸ Si,α2pγ).
		2590 <i>1</i>	11 2	4479.98	4-			E_{γ},I_{γ} : from (²⁸ Si, α 2p γ).
7100.8	$(1^- \text{ to } 4^+)$	X						I_{γ} : 30% γ branching is unobserved.
								Additional information 48.
		4933.0	100	2167.472				
7128	$(1^- \text{ to } 4^+)$	3318	100 10	3810.18	3-			
7 101	(1.0+)	4960	41 8	2167.472				
7181 7192.2	$(1,2^+)$ $(2^-,3,4)$	7180	100	0.0	0^{+}			
/ 14/ /	(2.54)	2315.1	27 <i>3</i>	4877.0	3-			

$E_i(level)$	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.#	Comments
7192.2	$(2^-,3,4)$	2626.6 [@]	<8	4565.5	2+		
		2712.1	100 7	4479.98	4-		
		3255.6 [@]	<5	3936.5	2+		
		3381.9	32 3	3810.18	3-		
		3815.1 [@]	<6	3376.9	0_{+}		
		5024.4 [@]	<6	2167.472	2+		
		7191.5 [@]	<6	0.0	0_{+}		
7233.8	$(1^- \text{ to } 4^+)$	5066.0	100	2167.472	2+		
7236	(2^{+})	X					 I_γ: 50% γ absolute branching is unobserved. Additional information 49.
		7235	100 10	0.0	0^{+}		Additional information 17.
7288.32	6+	879.9 <i>3</i>	11 4	6408.32	6 ⁺		E_{γ} : from (²⁸ Si, α 2p γ).
							I _{\gamma} : unweighted average of 15.4 13 from (28 Si, α 2p γ) and 7.0 10 from (α ,p γ).
		1236 <i>1</i>	5.1 13	6053.2	(4^{+})	[E2]	B(E2)(W.u.)=33 +53-18
							E_{γ},I_{γ} : from (²⁸ Si, α 2p γ).
		1939.4 7	100 4	5349.4	4+	E2	$B(E2)(W.u.)=7\times10^{1}+7-3$
							E_{γ} : from (28 Si, α 2p γ).
							I_{γ} : from $(\alpha, p\gamma)$. Other: 100 8 from $(^{28}Si, \alpha 2p\gamma)$.
						577.43	Mult.: Q from $\gamma(DCO)$ in $(^{28}Si_{,\alpha}2p\gamma)$ and $\gamma(\theta)$ in $(\alpha,p\gamma)$; M2 is ruled out by RUL.
		2704 <i>1</i>	31 3	4585.87	5	[E1]	B(E1)(W.u.)=0.00024 +29-10
							E_{γ} : from (²⁸ Si,α2pγ). I_{γ} : weighted average of 33.3 26 from (²⁸ Si,α2pγ) and 27 4 from (α,pγ).
7289.6	$(3^-,4^+)$	X					I_{γ} : weighted average of 53.5 20 from (~Si, α 2p γ) and 27 4 from (α ,p γ). I_{γ} : 37% γ absolute branching is unobserved.
1209.0	(3 ,+)	Λ					Additional information 50.
		3479.2	100 8	3810.18	3-		
7334	$(1^- \text{ to } 4^+)$	3524	100 17	3810.18	3-		I_{γ} : from (α, p_{γ}) only.
		5166	67 17	2167.472			I_{γ} : from $(\alpha, p\gamma)$ only.
7350	$(3^-,4^+)$	1100	46 10	6249.9	2+		$\vec{E}_{\gamma}, \vec{I}_{\gamma}$: from $(\alpha, p\gamma)$ only.
		2764	98 10	4585.87	5-		E_{γ}, I_{γ} : from $(\alpha, p\gamma)$ only.
7370	(1^+)	2870 x	100 10	4479.98	4-		E_{γ}, I_{γ} : from $(\alpha, p\gamma)$ only. I_{γ} : 50% γ absolute branching is unobserved.
1310	(1)	Λ					Additional information 51.
		7369	100 20	0.0	0^{+}		The state of the s
	$(2^+,3,4^+)$	1126	45 10	6249.9	2+		E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
7376		2027	100 2	5349.4	4+		E_{γ},I_{γ} : from $(\alpha,p\gamma)$.
7376							I_{γ} : 45% γ absolute branching is unobserved.
	$(2^-,3,4^+)$	X					Additional information 50
7376 7431.0	$(2^-,3,4^+)$		100.0	21/5 /55	2+		Additional information 52.
	$(2^-,3,4^+)$ $(1^- \text{ to } 4^+)$	5263.1 x	100 9	2167.472	2+		I_{γ} : 25% γ absolute branching is unobserved.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.#	Comments
7452	$(1^- \text{ to } 4^+)$	2575	36 9	4877.0	3-		
		5284	100 9	2167.472			
7485	$(3^-,4^+)$	1826	100	5658.61	5-		. 19
7491.3	(6^{+})	1438 <i>1</i>	100 8	6053.2	(4^{+})		E_{γ}, I_{γ} : from (${}^{28}Si, \alpha 2p\gamma$).
		1833 <i>I</i>	33 8	5658.61	5-		E_{γ}, I_{γ} : from (28 Si, $\alpha 2$ p γ).
		2142 <i>I</i>	46 8	5349.4	4+		E_{γ}, I_{γ} : from (²⁸ Si, α 2p γ).
7497	$(3,4,5^{-})$	X					I_{γ} : 20% γ absolute branching is unobserved in $(\alpha, p\gamma)$.
		1111	100 10	6052.2	(4 ± \		Additional information 54.
		1444	100 10	6053.2	(4^{+})		I_{γ} : from (α, p_{γ}) .
		3017 3687 <i>3</i>	58 <i>10</i> 22 <i>6</i>	4479.98	4 ⁻ 3 ⁻		I_{γ} : from (α, p_{γ}) .
		3087 3	22 0	3810.18	3		E_{γ} : from (α, γ) :resonances. I_{γ} : from $(\alpha, p\gamma)$.
7508.12	7-	437.8 2	8.8 11	7070.19	(6)-	(M1+E2)	E_{γ} . From $(\alpha, \beta\gamma)$. E_{γ} , I_{γ} : from $(^{28}\text{Si}, \alpha 2\beta\gamma)$ only.
7300.12	/	437.6 2	0.0 11	1010.19	(0)	(WIT+E2)	Mult.: D+Q with $\Delta J=1$ in ($^{28}\text{Si},\alpha 2\text{p}\gamma$) based on DCO=0.82 15, which however is
							also consistent with $\Delta J=2$ or $\Delta J=0$; $\Delta J<2$ is also favored by RUL. Note that in
							$(\alpha, p\gamma)$, $J^{\pi}=5^{-}$ is assigned to the daughter level at 7070 based on RUL and $\gamma(\theta)$.
							See comments for 7070 level.
		1100 <i>I</i>	2.2 11	6408.32	6+		$E_{\gamma}I_{\gamma}$: from (²⁸ Si, α 2p γ) only.
		1850 <i>I</i>	8 3	5658.61	5-	[E2]	B(E2)(W.u.)<7.9
		1000 1	0.0	2020.01		[22]	E_{γ} , I_{γ} : from (²⁸ Si, α 2p γ). Other: I_{γ} =3 2 in (α ,p γ), <4 in (¹⁶ O,2p γ).
		2922.6 6	100 6	4585.87	5-	E2	B(E2)(W.u.)<7.4
							E_{γ} : unweighted average of 2923 <i>I</i> from (28 Si, α 2p γ), 2923.2 <i>4</i> from (16 O,2p γ), and
							2921.5 3 from ($^{14}N,n2p\gamma$).
							I_{γ} : from (28 Si, α 2p γ).
							Mult.: from $\gamma(\theta,\text{pol})$ in ($^{16}\text{O},2\text{p}\gamma$), also supported by $\gamma(\text{DCO})$ in ($^{28}\text{Si},\alpha2\text{p}\gamma$) and
							$\gamma(\theta)$ in (14 N,n2py) and (α ,py).
7528	$(3^- \text{ to } 7^-)$	1869	5 3	5658.61	5-		E_{γ},I_{γ} : from $(\alpha,p\gamma)$.
7020	(5 66 /)	2942	100 3	4585.87	5-		E_{γ},I_{γ} : from $(\alpha,p\gamma)$.
7539	(3,4,5)	1486		6053.2	(4^{+})		
	. , , ,	3059		4479.98	4-		
7628?	$(1,2^+)$	7628 8		0.0	0_{+}		E_{γ} : from (α, γ) :resonances.
7648?	$(1,2^+)$	7648 8		0.0	0_{+}		•
7663	$(2^+ \text{ to } 6^+)$	2314	100	5349.4	4+		
7667	$(3^- \text{ to } 7^-)$	993	52 9	6674.4	5-		E_{γ},I_{γ} : from $(\alpha,p\gamma)$.
		2008	100 14	5658.61	5-		E_{γ}, I_{γ} : from (α, p_{γ}) .
7683	$(3^-,4^+)$	3203	100 11	4479.98	4-		I _{γ} : from $(\alpha, p\gamma)$. Other: 100 17 from (p, γ) :resonances.
		3873	49 11	3810.18	3-		I_{γ} : from $(\alpha, p\gamma)$. Other: <10 from (p, γ) :resonances.
		5515	65 <i>9</i> 100 <i>14</i>	2167.472 2167.472			I_{γ} : weighted average of 64 9 from (α, p_{γ}) and 67 17 from (p, γ) :resonances.
7700		552/1	100 14	7167777	., .		E_{γ},I_{γ} : from $(\alpha,p\gamma)$.
7702	(1^{+})	5534 7701	43 14	0.0	0+		E_{γ},I_{γ} : from $(\alpha,p\gamma)$. E_{γ},I_{γ} : from $(\alpha,p\gamma)$.

$E_i(level)$	\mathbf{J}_i^{π}	$E_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	E_f	J_f^π	Mult.#	$\delta^{\#}$	Comments
7786	(2 ⁻ to 6 ⁻)	1744	100 11	6041.8	$(3^-,4^+)$			E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
7020	(1= , 5=)	3306	85 11	4479.98	4 ⁻			E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
7828 7857	$(1^- \text{ to } 5^-)$ $(1^-,2^+)$	4018 4047	100 100 <i>25</i>	3810.18 3810.18	3 ⁻ 3 ⁻			E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
1631	(1 ,2)	5689	75 25	2167.472				$E_{\gamma}I_{\gamma}$: from $(\alpha, p\gamma)$. $E_{\gamma}I_{\gamma}$: from $(\alpha, p\gamma)$.
		7856	75 25 75 25	0.0	0+			$E_{\gamma}I_{\gamma}$. Holi $(\alpha, \beta\gamma)$. $E_{\gamma}I_{\gamma}$: from $(\alpha, \beta\gamma)$.
7858.9	(6)	1184.5 <i>4</i>	100	6674.4	5-	D		E_{γ}, I_{γ} . Holl (α, p_{γ}) . E_{γ} , Mult.: from $({}^{28}\text{Si}, \alpha 2p_{\gamma})$, Mult=D from γ (DCO).
7893.4	(6) $(1^+,2^+)$	7892.5	100	0.0	0 ⁺	D		E_{γ} , white. If the ('Si, α 2py), white D from γ (DCO).
7899	$(3^- \text{ to } 7^-)$	1225	100	6674.4	5-			
7911	$(3^-,4^+)$	2252	81.8	5658.61	5- 5-			E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
7911	(5,4)	2562	58 8	5349.4	4 ⁺			$E_{\gamma}I_{\gamma}$. Holi $(\alpha, \beta\gamma)$. $E_{\gamma}I_{\gamma}$: from $(\alpha, \beta\gamma)$.
		3325	42 8	4585.87	5-			$E_{\gamma}I_{\gamma}$: from $(\alpha, \beta\gamma)$. $E_{\gamma}I_{\gamma}$: from $(\alpha, \beta\gamma)$.
		3431	100 12	4479.98	4 ⁻			$E_{\gamma}I_{\gamma}$. Hom $(\alpha, \beta\gamma)$. $E_{\gamma}I_{\gamma}$: from $(\alpha, \beta\gamma)$.
		4101	85 12	3810.18	3-			$E_{\gamma}I_{\gamma}$: from $(\alpha, \beta\gamma)$. $E_{\gamma}I_{\gamma}$: from $(\alpha, \beta\gamma)$.
		5743	19 8	2167.472				$E_{\gamma}I_{\gamma}$: from $(\alpha, p\gamma)$. $E_{\gamma}I_{\gamma}$: from $(\alpha, p\gamma)$.
7992	$(1^-,2,3^-)$	5824	100	2167.472				E_{γ} : other: 5827 3 from (α, γ) :resonances.
8068	$(3^-,4^+)$	2026	100 20	6041.8	$(3^-,4^+)$			E _y , I_y : from (α, p_y) .
0000	(5 ,1)	4258	67 15	3810.18	3-			$E_{\gamma}I_{\gamma}$: from (α, p_{γ}) . $E_{\gamma}I_{\gamma}$: from (α, p_{γ}) .
8077.20	7+	789.3 6	7.5 15	7288.32	6 ⁺			E _{γ} , I _{γ} : from (α , $\beta\gamma$). E _{γ} , I _{γ} : from (28 Si, α 2p γ). Other: I γ =7 in (α ,p γ).
0077.20	,	1669.0 3	100 3	6408.32	6 ⁺	M1+E2	+0.72 +21-16	B(M1)(W.u.)=0.026 +16-10; $B(E2)(W.u.)=17 +15-8$
		1007.0 5	100 5	0100.32	O	WITTEL	10.72 121 10	E_{γ} : weighted average of 1669.4 4 from ($^{28}\text{Si},\alpha2\text{py}$), 1669.2 3
								from ($^{16}\text{O},2\text{py}$), and 1668.3 4 from ($^{14}\text{N},n2\text{py}$).
								I_{γ} : from (²⁸ Si, α 2p γ).
								Mult.: D+Q with $\Delta J=1$ from $\gamma(DCO)$ in $(^{28}Si,\alpha 2p\gamma)$ and $\gamma(\theta)$ in
								$(\alpha, p\gamma)$; M2 ruled out by RUL.
0106	(04 . 44)	5020	100	2165 452	2+			δ : from $\gamma(\theta)$ in $(\alpha, p\gamma)$.
8106	$(0^+ \text{ to } 4^+)$	5938	100	2167.472				
8124	$(3^- \text{ to } 6^+)$	1450	37 5	6674.4	5-			E_{γ},I_{γ} : from $(\alpha,p\gamma)$.
		2774	24 5	5349.4	4 ⁺			E_{γ}, I_{γ} : from (α, p_{γ}) only.
0.40.5.0		3538	100 6	4585.87	5-	24. 75		E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
8125.0	(6-)	1055 <i>1</i>	64 14	7070.19	$(6)^{-}$	(M1+E2)	+0.9 +7-2	$E_{\gamma}I_{\gamma}$: from (²⁸ Si, α 2p γ) considered for a doublet; also reported in
								$(\alpha, p\gamma)$.
								Mult., δ : D+Q from $\gamma(\theta)$ in $(\alpha, p\gamma)$. Other: Mult=D from $\gamma(DCO)$
								in (28 Si, $\alpha 2$ py), giving possible $\Delta J=0$.
		1451 <i>I</i>	29 7	6674.4	5-			E_{γ},I_{γ} : from (²⁸ Si, α 2p γ), not reported in (α ,p γ); a similar γ is
								placed from 8124 level in the latter.
		3538 2	100 14	4585.87	5-			E_{γ},I_{γ} : from (²⁸ Si, α 2p γ), not reported in (α ,p γ); a similar γ is
								placed from 8124 level in the latter.
8181	$(3^-,4^+)$	6013	100	2167.472				
8215	$(3^- \text{ to } 7^-)$	1541	35 7	6674.4	5-			E_{γ} : from (α, p_{γ}) .
		2556	100 8	5658.61	5-			E_{γ} : from (α, p_{γ}) .

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}^{ \ddagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	Comments
8233	(1-)	8232	100	0.0	0+			
8261	$(3^- \text{ to } 6^-)$	2602	89 <i>6</i>	5658.61	5-			E_{γ},I_{γ} : from $(\alpha,p\gamma)$.
		3675	100 6	4585.87	5-			E_{γ},I_{γ} : from $(\alpha,p\gamma)$.
		3781	33 4	4479.98	4-			E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
8311	(1^+)	4501	100 25	3810.18	3-			
	, ,	6143	89 25	2167.472	2+			
8353	$(1,2^+)$	3787	80 22	4565.5	2+			E_{γ},I_{γ} : from $(\alpha,p\gamma)$.
		6185	100 4	2167.472	2+			E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
		8352	42 20	0.0	0_{+}			E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
8391	(2^{+})	8390	100	0.0	0^{+}			
8417	$(3^{-} \text{ to } 7^{-})$	2758	100	5658.61	5-			
8481	$(3^- \text{ to } 6^-)$	3895	100 10	4585.87	5-			E_{γ},I_{γ} : from $(\alpha,p\gamma)$.
	· ·	4001	100 10	4479.98	4-			E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
8491.1	(6-)	1420.9 3	100	7070.19	(6)-	D+Q		E _{γ} : weighted average of 1421.0 4 from (28 Si, α 2p γ) and 1420.8 3 from (16 O,2p γ).
								Mult., δ : $\delta(Q/D) = +1.1 +5-4$ from $\gamma(\theta)$ data in $(\alpha, p\gamma)$ if 1420.9 γ is a $\Delta J = 0$ transition. $\gamma(\theta)$ data giving positive A_2 and negative A_4 is consistent with $\Delta J = 0$ or 2; $\gamma(DCO)$ in $(^{28}Si, \alpha 2p\gamma)$ is consistent $\Delta J = 1$, but for large D+Q admixture, it can also be consistent with $\Delta J = 0$.
8517	$(1,2^+)$	6349	100 19	2167.472	2+			$E_{\gamma}I_{\gamma}$: from $(\alpha, p\gamma)$.
	. , ,	8516	11 9	0.0	0^{+}			E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
8520	$(3^- \text{ to } 6^-)$	3934	61 6	4585.87	5-			E_{γ}, I_{γ} : from (α, p_{γ}) .
	· ·	4040	100 13	4479.98	4^{-}			E_{γ},I_{γ} : from $(\alpha,p\gamma)$.
8569.59	8+	492.55 25	13.1 9	8077.20	7+	M1(+E2)	>-0.09	E_{γ} : weighted average of 492.6 2 from (28 Si,α2pγ), 492.7 2 from (16 O,2pγ), and 492.25 25 from (14 N,n2pγ).
								I_{γ} : weighted average of 12.7 7 from (28 Si, α 2p γ), 21 4 from (16 O,2p γ), 14
								4 from (14 N,n2p γ), and 18 4 from (α ,p γ).
								Mult., δ : from $\gamma(\theta, \text{pol})$ in ($^{16}\text{O}, 2\text{p}\gamma$), also supported by $\gamma(\text{DCO})$ in ($^{28}\text{Si}, \alpha 2\text{p}\gamma$).
		1061.4 2	23.7 13	7508.12	7-	(E1)		E_{γ} : weighted average of 1061.4 3 from (28 Si, α 2p γ), 1061.5 2 from (16 O,2p γ), and 1061.2 3 from (14 N,n2p γ).
								 I_γ: weighted average of 24.3 7 from (²⁸Si,α2pγ), 21 6 from (¹⁶O,2pγ), 14 4 from (¹⁴N,n2pγ), and 18 3 from (α,pγ). Mult.: D from γ(DCO) in (²⁸Si,α2pγ) for a doublet structure; polarity from level scheme.
		1282 <i>I</i>	1.0 3	7288.32	6+			E_{γ},I_{γ} : from $(^{28}Si,\alpha^2p\gamma)$ only.
					6 ⁺	E2		
		2161.0 3	100 4	6408.32	0.	E2		E_{γ} : weighted average of 2162 <i>I</i> from (28 Si, α 2p γ), 2160.6 <i>2</i> from (16 O,2p γ), and 2161.30 <i>20</i> from (14 N,n2p γ).

γ (³⁸Ar) (continued)

E_i (level)	\mathtt{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}^{π}_f	Mult.#	$\delta^{\#}$	Comments
								E_{γ} : weighted average of 2162 <i>I</i> from (28 Si, α 2p γ), 2160.6 2 from
								$(^{16}O,2p\gamma)$, and 2161.30 20 from $(^{14}N,n2p\gamma)$.
								I_{γ} : from (^{14}N ,n2p γ).
								Mult.: from $\gamma(\theta, \text{pol})$ in ($^{16}\text{O}, 2\text{p}\gamma$), $\gamma(\text{DCO})$ in ($^{28}\text{Si}, \alpha 2\text{p}\gamma$) and $\gamma(\theta)$ in ($^{14}\text{N}, n2\text{p}\gamma$).
8595	$(3^- \text{ to } 7^-)$	2936	100 20	5658.61	5-			E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
		4009	100 20	4585.87	5-			E_{γ},I_{γ} : from $(\alpha,p\gamma)$.
8650	$(3^- \text{ to } 6^+)$	2597	25 6	6053.2	(4^{+})			E_{γ},I_{γ} : from $(\alpha,p\gamma)$.
		2991	100 11	5658.61	5-			E_{γ},I_{γ} : from $(\alpha,p\gamma)$.
8668	2+	3791	100 30	4877.0	3-			E_{γ},I_{γ} : from $(\alpha,p\gamma)$.
.=	(a)	6500	100 30	2167.472				E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
8783	$(3^- \text{ to } 7^-)$	3124	100	5658.61	5-			
8789	$(4^- \text{ to } 7^-)$	1719	100 15	7070.19	(6) ⁻			E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
8800	$(2^{-} \text{ to } 6^{-})$	2115 2758	54 <i>15</i> 100	6674.4 6041.8	5^{-} $(3^{-},4^{+})$			E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
8809	$(4^+ \text{ to } 8^+)$	2401	100	6408.32	(5 ,4) 6 ⁺			
8828	$(3^- \text{ to } 3^-)$	4242	100	4585.87	5-			
8875	$(3^- \text{ to } 6^-)$	3216	50 10	5658.61	5-			E_{γ},I_{γ} : from $(\alpha,p\gamma)$.
0070	(5 65 5)	4289	50 10	4585.87	5-			E_{γ},I_{γ} : from $(\alpha,p\gamma)$.
		4395	100 20	4479.98	4-			E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
8944	$(4^+ \text{ to } 7^-)$	2536	35 7	6408.32	6+			E_{γ},I_{γ} : from $(\alpha,p\gamma)$.
		3285	100 9	5658.61	5-			E_{γ},I_{γ} : from $(\alpha,p\gamma)$.
8956	$(4^- \text{ to } 7^-)$	1886	72 10	7070.19	$(6)^{-}$			E_{γ},I_{γ} : from $(\alpha,p\gamma)$.
		4370	100 10	4585.87	5-			E_{γ},I_{γ} : from $(\alpha,p\gamma)$.
8972.85	7-	847.8 <i>4</i>	3.3 8	8125.0	(6-)			E_{γ},I_{γ} : from (28 Si, α 2p γ) only.
		1903 <i>I</i>	3.3 8	7070.19	$(6)^{-}$			E_{γ},I_{γ} : from (28 Si, α 2p γ) only.
		2300 1	9.2 17	6674.4	5-	(E2)		E_{γ},I_{γ} : from (²⁸ Si, α 2p γ) only.
								Mult.: Q from $\gamma(DCO)$ in ($^{28}Si_{,}\alpha^{2}p\gamma$) for a doublet structure; polarity
								from level scheme.
		2564.4 <i>4</i>	100 8	6408.32	6+	E1+M2	-0.04 2	E_{γ} : weighted average of 2565 <i>I</i> from (28 Si, α 2p γ), 2564.5 <i>4</i> from (16 O,2p γ), and 2564.0 <i>5</i> from (14 N,n2p γ).
								I_{γ} : from (^{16}O ,2p γ) and (^{28}Si , α 2p γ).
								Mult., δ : from $\gamma(\theta, \text{pol})$ in ($^{16}\text{O}, 2\text{p}\gamma$), also supported by $\gamma(\text{DCO})$ in
								$(^{28}\text{Si},\alpha2\text{p}\gamma)$ and $\gamma(\theta)$ in $(^{14}\text{N},\text{n}2\text{p}\gamma)$.
		3313.4 7	20.3 13	5658.61	5-	(E2)		E_{γ} : weighted average of 3314 <i>I</i> from (28 Si, α 2p γ) and 3313.1 7 from (14 N,n2p γ).
								I _γ : weighted average of 20.8 8 from (28 Si, α 2pγ), 13 3 from (16 O,2pγ), 29 9 from (14 N,n2pγ), and 15 6 from (α ,pγ).
								Mult.: Q from $\gamma(DCO)$ in ($^{28}Si_{,}\alpha 2p\gamma$); polarity from level scheme.
		4386.2 <i>4</i>	36 <i>3</i>	4585.87	5-	E2		E_{γ} : weighted average of 4388 2 from (28 Si, α 2p γ), 4386.2 4 from
								, = -

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}^{\ \ \sharp}$	E_f	\mathbf{J}_f^{π}	Mult.#	Comments
							$(^{16}\text{O},2\text{p}\gamma)$, and 4386.1 5 from $(^{14}\text{N},\text{n}2\text{p}\gamma)$.
							I_{γ} : weighted average of 34.2 17 from (28 Si, α 2p γ), 51 8 from (16 O,2p γ), and 47 6
							from $(\alpha, p\gamma)$. Other: 93 18 from $(^{14}N, n2p\gamma)$.
							Mult.: from $\gamma(\theta, \text{pol})$ in ($^{16}\text{O}, 2\text{p}\gamma$) and $\gamma(\text{DCO})$ in ($^{28}\text{Si}, \alpha 2\text{p}\gamma$).
8998	$(4^+,5,6^-)$	2590		6408.32	6+		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
9072	$(4^-,5,6^+)$	1722	65 12	7350	$(3^-,4^+)$		E_{γ},I_{γ} : from $(\alpha,p\gamma)$.
	(,- ,- ,	2002	100 14	7070.19	(6)		E_{γ},I_{γ} : from $(\alpha,p\gamma)$.
		2398	67 12	6674.4	5-		E_{γ}, I_{γ} : from (α, p_{γ}) .
9077	$(1^- \text{ to } 5^-)$	4200	100	4877.0	3-		
9087	$(3^- \text{ to } 7^-)$	3428	100 <i>15</i>	5658.61	5-		E_{γ},I_{γ} : from $(\alpha,p\gamma)$.
		4501	37 5	4585.87	5-		E_{γ},I_{γ} : from $(\alpha,p\gamma)$.
9100	$(1,2^+)$	9099	100	0.0	0^{+}		
9158	$(0^+ \text{ to } 4^+)$	6990	100	2167.472			
9170	$(3^- \text{ to } 6^-)$	4584	100 12	4585.87	5-		E_{γ},I_{γ} : from $(\alpha,p\gamma)$.
		4690	100 12	4479.98	4-		E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
9199	$(4^- \text{ to } 8^-)$	1074	100	8125.0	(6-)		
9204	$(0^+ \text{ to } 4^+)$	7036	100	2167.472			
9260	$(0^+ \text{ to } 4^+)$	7092	100	2167.472			
9293	$(3^- \text{ to } 7^-)$	4707	100	4585.87	5-		
9300	$(0^+ \text{ to } 4^+)$	7132	100	2167.472			
9330	$(4^+ \text{ to } 8^+)$	2922	100	6408.32	6+	FF-01	D/E0/H/) 5 (22 20
9339.2	8+	1848 <i>I</i>	16.5 25	7491.3	(6^{+})	[E2]	B(E2)(W.u.)=5.6 +33-20
					-1		E_{γ},I_{γ} : from (²⁸ Si, α 2p γ).
		2051.3 6	100 8	7288.32	6+	E2	B(E2)(W.u.)=20 +8-5
							E_{γ},I_{γ} : from (²⁸ Si, α 2p γ).
							Mult.: Q from $\gamma(DCO)$ in ($^{28}Si,\alpha^2p\gamma$), M2 ruled out by RUL.
		2931 <i>1</i>	24.1 25	6408.32	6+	[E2]	B(E2)(W.u.)=0.8 +5-3
							E_{γ},I_{γ} : from $\binom{28}{2}Si,\alpha 2p\gamma$.
9349.6	(7^{-})	2941 2	80 20	6408.32	6+		E_{γ}, I_{γ} : from (${}^{28}Si, \alpha 2p\gamma$).
		3691 2	60 20	5658.61	5-		E_{γ}, I_{γ} : from (²⁸ Si, α 2p γ). Other: I_{γ} =222 38 in (α ,p γ).
		4764 <i>3</i>	100 20	4585.87	5-		E_{γ}, I_{γ} : from (²⁸ Si, α 2p γ). Other: I_{γ} =100 29 in (α ,p γ).
9374	$(3^- \text{ to } 7^-)$	4788	100	4585.87	5-		
9437	$(3^- \text{ to } 7^-)$	3778	100	5658.61	5-		
9460	$(3^- \text{ to } 7^-)$	4874	100	4585.87	5-		
9537.0	8(+)	967.4 <i>3</i>	79 <i>7</i>	8569.59	8+	D	E_{γ},I_{γ} : from (²⁸ Si, α 2p γ). Other: I_{γ} =118 20 in (α ,p γ).
							Mult.: $\Delta J=0$ from $\gamma(DCO)$ in ($^{28}Si_{,}\alpha^2p\gamma$).
		2046 <i>1</i>	57 14	7491.3	(6^+)		E_{γ},I_{γ} : from (²⁸ Si, α 2p γ).
		2248 <i>1</i>	57 22	7288.32	6+		E_{γ},I_{γ} : from (²⁸ Si, α 2p γ).
		3128 2	100 14	6408.32	6 ⁺		$E_{\gamma}I_{\gamma}$: from (²⁸ Si, α 2p γ). Other: I γ =100 26 in (α ,p γ).
	1-	9596	100	0.0	0+	E1	Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances, electric polarity from E1 excitation in (e,e').

γ (³⁸Ar) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}^{ \ddagger}$	E_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	Comments
9644	(5 ⁻ to 9 ⁻)	2136	100	7508.12	7-			
9647	$(2^- \text{ to } 6^-)$	3045	100	6601.59	4-			
9655	$(3^- \text{ to } 7^-)$	3996	100	5658.61	5-			
9669	$(3^- \text{ to } 7^-)$	4010	100	5658.61	5-			
9689	1-	X						I_{γ} : 20% γ absolute branching is unobserved in (α, γ) :resonances. Additional information 55.
		5752	26 5	3936.5	2+	(E1(+M2))	+0.07 +9-12	E_{γ} , I_{γ} : from (α, γ) :resonances.
		3132	20 3	3730.3	_	(E1(1112))	10.07 17 12	Mult., δ : D(+Q) from $\gamma(\theta)$ in (α, γ) :resonances, polarity from level-
								parity change determined based on the fact that only natural-parity
								resonant states can be populated.
		6312	63 11	3376.9	0^{+}			E _{γ} , I _{γ} : from (α, γ) :resonances.
		7521	18 5	2167.472				E_{γ} , I_{γ} : from (α, γ) : resonances. E_{γ} , I_{γ} : from (α, γ) : resonances.
		9688	100 13	0.0	0+	(E1)		E_{γ}, I_{γ} : from (α, γ) :resonances. E_{γ}, I_{γ} : from (α, γ) :resonances.
		2000	100 13	0.0	U	(L1)		Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances, electric polarity determined
								based on the fact that only natural-parity resonant states can be
								populated.
9797	3-	X						I_{γ} : 35% γ absolute branching is unobserved in (α, γ) :resonances.
2121	5	А						Additional information 56.
		5231	26 8	4565.5	2+			$E_{\gamma}I_{\gamma}$: from (α,γ) :resonances.
		5860	100 10	3936.5	2 ⁺	(E1)		$E_{\gamma}I_{\gamma}$: from (α,γ) :resonances.
						()		Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances.
		5986	18 8	3810.18	3-			E_{γ},I_{γ} : from (α,γ) :resonances.
		7629	23 8	2167.472	2+			E_{γ}, I_{γ} : from (α, γ) :resonances.
9811	1-	6434	9.1 <i>13</i>	3376.9	0^{+}			E_{γ},I_{γ} : from (α,γ) :resonances.
		7643	4.6 23	2167.472	2+			$E_{\gamma}I_{\gamma}$: from (α,γ) :resonances.
		9810	100 10	0.0	0^{+}	(E1)		E_{γ}, I_{γ} : from (α, γ) :resonances.
						,		Mult.: from $\gamma(\theta)$ in (α, γ) :resonances.
9829	$(4^{-} \text{ to } 8^{-})$	2759	100	7070.19	$(6)^{-}$			
9894	2+	X			(-)			I_{γ} : 12% γ absolute branching is unobserved in (α, γ) :resonances.
								Additional information 57.
		4160	40 8	5733.9	1-			E_{γ} , I_{γ} : from (α, γ) :resonances.
		4342	20 4	5552.21	$1^{+},2^{+}$			E_{γ},I_{γ} : from (α,γ) :resonances.
		5328	48 8	4565.5	2+	(M1+E2)	+0.18 13	E_{γ},I_{γ} : from (α,γ) :resonances.
						,		Mult., δ : D+Q from $\gamma(\theta)$ in (α, γ) :resonances.
		5957	28 4	3936.5	2+	(M1+E2)	+0.84 +27-21	E_{γ},I_{γ} : from (α,γ) :resonances.
						,		Mult., δ : D+Q from $\gamma(\theta)$ in (α,γ) :resonances.
		6083	72 8	3810.18	3-	(E1+M2)	-0.11 7	E_{γ},I_{γ} : from (α,γ) :resonances.
								Mult., δ : D+Q from $\gamma(\theta)$ in (α,γ) :resonances.
		7726	100 8	2167.472	2+	(M1+E2)	-0.27~6	E_{γ},I_{γ} : from (α,γ) :resonances.
								Mult., δ : D+Q from $\gamma(\theta)$ in (α,γ) :resonances.
		9893	44 8	0.0	0^{+}	(E2)		E_{γ},I_{γ} : from (α,γ) :resonances.
								Mult.: Q from $\gamma(\theta)$ in (α, γ) :resonances.

γ (³⁸Ar) (continued)

$E_i(level)$	\mathtt{J}_{i}^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	Comments
9917	1-	5351		4565.5	2+			
		5980		3936.5	2+			
		6106		3810.18	3-			
		7749		2167.472	2+			
		9916	100	0.0	0^{+}	(E1)		Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances.
9934.0	(9^+)	1364 <i>1</i>	100	8569.59	8+	D+Q		E_{γ} : from (28 Si, α 2p γ).
	· ,							Mult.: $\Delta J=1$ from $\gamma(DCO)$ in $(^{28}Si,\alpha^2p\gamma)$ for a doublet structure.
9951	2+	X						I_{γ} : 14% γ absolute branching is unobserved in (α, γ) :resonances.
								Additional information 58.
		6014	57 8	3936.5	2+	(M1+E2)	+1.4 +4-3	E_{γ},I_{γ} : from (α,γ) :resonances.
								Mult., δ : D+Q from $\gamma(\theta)$ in (α, γ) :resonances.
		6140	70 8	3810.18	3-	(E1(+M2))	+0.07 +9-12	E_{γ},I_{γ} : from (α,γ) :resonances.
								Mult., δ : D(+Q) from $\gamma(\theta)$ in (α, γ) :resonances.
		7783	100 8	2167.472	2+	(M1+E2)	+1.19 +30-8	E_{γ} , I_{γ} : from (α, γ) :resonances.
								Mult., δ : D+Q from $\gamma(\theta)$ in (α, γ) :resonances.
9996	1-	9995	100	0.0	0_{+}	(E1)		Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances.
10024.9	(8-)	1900 <i>I</i>	100 13	8125.0	(6^{-})	Q		E_{γ},I_{γ} : from (²⁸ Si, α 2p γ).
		1948 <i>I</i>	38 8	8077.20	7+			E_{γ},I_{γ} : from (²⁸ Si, α 2p γ).
		2517 <i>1</i>	46 8	7508.12	7-			E_{γ}, I_{γ} : from (²⁸ Si, α 2p γ).
		2956 2	54 8	7070.19	$(6)^{-}$			E_{γ}, I_{γ} : from (²⁸ Si, α 2p γ).
10034	1-	10033	100	0.0	0_{+}	(E1)		Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances.
10047	(1-)	X						I _{γ} : 47% γ absolute branching is unobserved in (α, γ) :resonances. Additional information 59.
		5481	100	4565.5	2+			E_{γ},I_{γ} : from (α,γ) :resonances.
		6110	54	3936.5	2+			E_{γ}, I_{γ} : from (α, γ) :resonances.
		7879	36	2167.472	2+			E'_{γ}, I'_{γ} : from (α, γ) :resonances.
10067	3-	X						I_{γ} : 45% γ absolute branching is unobserved in (α, γ) :resonances.
								Additional information 60.
		3853	42 5	6213.8	(2^{+})	D(+Q)	+0.05 8	$E_{\gamma}I_{\gamma}$: from (α,γ) :resonances.
		@						Mult.: from $\gamma(\theta)$ in (α, γ) :resonances.
		4983 [@]	<16	5083.6	$(2)^{-}$			E_{γ}, I_{γ} : from (α, γ) :resonances.
		5501	74 5	4565.5	2+	(E1+M2)	-0.09 4	E_{γ}, I_{γ} : from (α, γ) :resonances.
		5505	10.5	4.450.00	4-	241 - F2		Mult., δ : D+Q from $\gamma(\theta)$ in (α, γ) :resonances.
		5587	42 5	4479.98	4-	(M1+E2)		$E_{\gamma}I_{\gamma}$: from (α,γ) :resonances.
								Mult., δ : D+Q from $\gamma(\theta)$ in (α, γ) :resonances, δ =-0.27 +10-20 or -2.9 +9-8.
		6130	16 5	3936.5	2+	(E1+M2)		E_{γ}, I_{γ} : from (α, γ) :resonances.
		7899	100 10	2167.472	2+			Mult., δ : D+Q from $\gamma(\theta)$ in (α, γ) :resonances, δ =-0.02 4 or -2.9 +5-11. E _{γ} ,I _{γ} : from (α, γ) :resonances.
		/ 077	100 10	2107.472	7.			E_{γ}, I_{γ} . HOIII (α, γ) . Tesonances.
10101	$(3^- \text{ to } 7^-)$	4442	100 12	5658.61	5-			E_{γ},I_{γ} : from $(\alpha,p\gamma)$.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	Comments
10112	$(4^+ \text{ to } 8^+)$	3703	100	6408.32	6+			
10120	(6,7,8)	2043	100 5	8077.20	7+			E_{γ},I_{γ} : from $(\alpha,p\gamma)$.
		2612	28 5	7508.12	7-			E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
10135	$(5^- \text{ to } 9^-)$	2627	100	7508.12	7-			
10146	2+	X						I_{γ} : 27% γ absolute branching is unobserved in (α, γ) :resonances. Additional information 61.
		7978	100 6	2167.472	2+	(M1(+E2))	-0.05 4	E_{γ},I_{γ} : from (α,γ) :resonances. Mult., δ : D(+Q) from $\gamma(\theta)$ in (α,γ) :resonances.
		10145	7 3	0.0	0_{+}	(E2)		E_{γ} , I_{γ} : from (α, γ) :resonances. Mult.: Q from $\gamma(\theta)$ in (α, γ) :resonances.
10170	3-	X						I_{γ} : 27% γ absolute branching is unobserved in (α, γ) :resonances.
								Additional information 62.
		5604	19 <i>3</i>	4565.5	2+	(E1(+M2))	-0.04 + 8 - 5	E_{γ}, I_{γ} : from (α, γ) :resonances.
								Mult., δ : D(+Q) from $\gamma(\theta)$ in (α, γ) :resonances.
		5690	49 5	4479.98	4-	(M1+E2)		E_{γ}, I_{γ} : from (α, γ) :resonances.
								Mult., δ : D(+Q) from $\gamma(\theta)$ in (α, γ) :resonances, δ =-0.14 5 or -4.3 +6-8.
		6233	30 5	3936.5	2+	(E1)		$E_{\gamma}I_{\gamma}$: from (α, γ) :resonances. Mult., δ : D from $\gamma(\theta)$ in (α, γ) :resonances.
		8002	100 8	2167.472	2+	(E1(+M2))	+0.05 4	$E_{\gamma}I_{\gamma}$: from (α, γ) :resonances.
		8002	100 8	2107.472	_	(E1(±W12))	T0.03 4	$\text{Mult.},\delta$: D(+Q) from $\gamma(\theta)$ in (α,γ) :resonances.
10174 20	0-	925.2.4	27.11	0220.2	o+	D213		B(E1)(W.u.)= $7 \times 10^{-6} + 5 - 3$
10174.29	9-	835.3 4	3.7 11	9339.2	8+	[E1]		
		1201 22 20	00.6	0072 07	7-	F2		$E_{\gamma}I_{\gamma}$: from $({}^{28}Si_{,\alpha}2p\gamma)$ only.
		1201.32 20	88 6	8972.85	7-	E2		B(E2)(W.u.)=4.9 +15-10
								E _γ : weighted average of 1201.8 <i>3</i> from (28 Si,α2pγ), 1201.17 <i>21</i> from (16 O,2pγ), and 1201.24 <i>20</i> from (14 N,n2pγ). I _γ : weighted average of 74 <i>5</i> from (28 Si,α2pγ), 93 <i>4</i> from (16 O,2pγ), 92 <i>8</i> from (14 N,n2pγ), and 100 <i>10</i> from (α,pγ).
								Mult.: from $\gamma(\theta,\text{pol})$ in ($^{16}\text{O},2\text{p}\gamma$) and $\gamma(\text{DCO})$ in ($^{28}\text{Si},\alpha2\text{p}\gamma$).
		1604.67 <i>16</i>	100 4	8569.59	8+	E1+M2	-0.04 2	B(E1)(W.u.)= 2.7×10^{-5} +8-6; B(M2)(W.u.)= 0.08 +15-6
		1001.07 10	100 7	0307.37	O	D1 (1412	0.012	E _{γ} : weighted average of 1605.4 4 from (28 Si, α 2p γ), 1604.68 11 from (16 O,2p γ), and 1604.32 25 from (14 N,n2p γ).
								I_{γ} : from ($^{16}O,2p\gamma$).
								Mult., δ : from $\gamma(\theta,\text{pol})$ in ($^{16}\text{O},2\text{p}\gamma$), $\Delta J=1$ from $\gamma(\text{DCO})$ in ($^{28}\text{Si},\alpha2\text{p}\gamma$).
10181	(5 ⁻ to 9 ⁻)	2673	100	7508.12	7-			$(31, \alpha 2 p \gamma)$.
10181	(3 109)	8016	100	2167.472				$E \cdot 2027 \cdot 8 \text{ from } (\alpha \alpha) \text{ transpage}$
10104	1		100			(E1)		E _γ : 8027 8 from (α, γ) :resonances. B(E1)(W.u.)=3.0×10 ⁻⁵ +33-10
		10183	100	0.0	0_{+}	(E1)		
10217	(O+ 4 4+)							Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances.
10217	$(0^+ \text{ to } 4^+)$	X						I_{γ} : 35% γ absolute branching is unobserved in (α, γ) :resonances. Additional information 63.
								Additional information 63.

(0.1			\mathbf{E}_f		Mult.#	
$(0^+ \text{ to } 4^+)$	5651	100	4565.5	2+		I_{γ} : from (α, γ) :resonances.
	8049	89	2167.472	2+		I_{γ} : from (α, γ) :resonances.
$(5^{-} \text{ to } 8^{-})$	1754					I_{γ} : from (α, p_{γ}) .
, ,	2737	59 8		7- 1		I_{γ} : from (α, p_{γ}) .
$(0^+ \text{ to } 4^+)$	6308			2+		
,	8077					
1-	X					I_{γ} : 10% γ absolute branching is unobserved in (α, γ) :resonances.
						Additional information 64.
	6877	23 3	3376.9	0^{+}		I_{γ} : from (α, γ) :resonances.
						I_{γ} : from (α, γ) :resonances.
					(E1)	I_{γ} : from (α, γ) :resonances.
					,	Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances.
$(4^+ \text{ to } 8^+)$	2986	100	7288.32	6+		1 \ / \ \ \ \ / \ \ \ / \ / \ / \ / \ /
1-		100				I_{γ} : 23% γ absolute branching is unobserved.
_						Additional information 65.
	6398	13	3936.5	2+		I_{γ} : from (α, γ) :resonances.
						I_{γ} : from (α, γ) :resonances.
					(F1)	I_{γ} : from (α, γ) :resonances.
	10333	100	0.0	O	(L1)	Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances.
$(1^- \text{ to } 4^+)$	6571	25	3810 18	3-		I_{γ} : from (α, γ) :resonances.
(1 (0 1)						I_{γ} : from (α, γ) :resonances.
1-		100				E_{γ} : from (α, γ) :resonances.
1		6.4				E_{γ} : γ to 4 ⁻ is suspect from RUL (evaluator).
		0 /				by. I to I is suspect from ROD (cranamor).
		10.3			[E1]	$B(E1)(W.u.)=1.1\times10^{-5} +210-8$
	7017 0	10 5	3370.9	U	[121]	E_{γ},I_{γ} : from (α,γ) :resonances.
	0222 0	10.2	2167 472	2+	FE213	$B(E1)(W.u.)=7\times10^{-6}+130-5$
	8233 8	10 3	2107.472	Z *	[E1]	
	10400 0	100.20	0.0	Ω±	(E1)	E_{γ}, I_{γ} : from (α, γ) :resonances.
	10400 8	100 20	0.0	U.	(E1)	E_{γ}, I_{γ} : from (α, γ) :resonances.
						Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances.
1-						
	5273	1.1 6	5157.3	2+	[E1]	$B(E1)(W.u.)=1.6\times10^{-6} +43-12$
						I_{γ} : from (α, γ) :resonances.
	5865	2.2 11	4565.5	2+	[E1]	$B(E1)(W.u.)=2.3\times10^{-6}+58-17$
						I_{γ} : from (α, γ) :resonances.
	8263	5 3	2167.472	2+	[E1]	$B(E1)(W.u.)=1.9\times10^{-6} +49-15$
					[]	I_{γ} : from (α, γ) :resonances.
	10429	100.20	0.0	0^{+}	(E1)	B(E1)(W.u.)= $1.9 \times 10^{-5} + 18 - 7$
	10127	100 20	0.0	J	(11)	I_{γ} : from (α, γ) :resonances.
						γ . Holh (α, γ) . resonances. Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances.
	(5 ⁻ to 8 ⁻) (0 ⁺ to 4 ⁺) 1 ⁻ (4 ⁺ to 8 ⁺) (3 ⁻ to 7 ⁻) 1 ⁻ (1 ⁻ to 4 ⁺) 1 ⁻	(5 ⁻ to 8 ⁻) 1754 2737 (0 ⁺ to 4 ⁺) 6308 8077 1 ⁻ x 6877 8087 10254 (4 ⁺ to 8 ⁺) 2986 (3 ⁻ to 7 ⁻) 5730 1 ⁻ x 6398 6957 10333 (1 ⁻ to 4 ⁺) 6571 8214 1 ⁻ 2405 1 5918 6456 8 7017 8 8233 8 10400 8 1 ⁻ 2803 6 5273	(5 ⁻ to 8 ⁻) 1754 100 8 2737 59 8 (0 ⁺ to 4 ⁺) 6308 8077 1 ⁻ x 6877 23 3 8087 13.6 15 10254 100 6 (4 ⁺ to 8 ⁺) 2986 100 (3 ⁻ to 7 ⁻) 5730 100 1 ⁻ x 6398 13 6957 13 10333 100 (1 ⁻ to 4 ⁺) 6571 25 8214 100 1 ⁻ 2405 1 5918 6 4 6456 8 7017 8 10 3 8233 8 10 3 10400 8 100 20 1 ⁻ 2803 6 5273 1.1 6 5865 2.2 11 8263 5 3	(5 ⁻ to 8 ⁻) 1754 100 8 8491.1 2737 59 8 7508.12 (0 ⁺ to 4 ⁺) 6308 8077 2167.472 1 ⁻ x 6877 23 3 3376.9 8087 13.6 15 2167.472 10254 100 6 0.0 (4 ⁺ to 8 ⁺) 2986 100 7288.32 (3 ⁻ to 7 ⁻) 5730 100 4585.87 1 ⁻ x 6398 13 3936.5 6957 13 3376.9 10333 100 0.0 (1 ⁻ to 4 ⁺) 6571 25 3810.18 8214 100 2167.472 1 ⁻ 2405 1 7992 5918 6 4 4479.98 6456 8 3936.5 7017 8 10 3 3376.9 8233 8 10 3 2167.472 10400 8 100 20 0.0 1 ⁻ 2803 6 7628? 5273 1.1 6 5157.3 5865 2.2 11 4565.5	(5 ⁻ to 8 ⁻) 1754 100 8 8491.1 (6 ⁻) 2737 59 8 7508.12 7 ⁻ (0 ⁺ to 4 ⁺) 6308 3936.5 2 ⁺ 2167.472 2 ⁺ 1 ⁻ x 6877 23 3 3376.9 0 ⁺ 8087 13.6 15 2167.472 2 ⁺ 10254 100 6 0.0 0 ⁺ (4 ⁺ to 8 ⁺) 2986 100 7288.32 6 ⁺ (3 ⁻ to 7 ⁻) 5730 100 4585.87 5 ⁻ 1 ⁻ x 6398 13 3936.5 2 ⁺ 6957 13 3376.9 0 ⁺ 10333 100 0.0 0 ⁺ (1 ⁻ to 4 ⁺) 6571 25 3810.18 3 ⁻ 8214 100 2167.472 2 ⁺ 1 ⁻ 2405 1 7992 (1 ⁻ ,2,3 ⁻) 5918 6 4 4479.98 4 ⁻ 5918 6 4 4479.98 4 ⁻ 6456 8 3936.5 2 ⁺ 7017 8 10 3 3376.9 0 ⁺ 8233 8 10 3 2167.472 2 ⁺ 10400 8 100 20 0.0 0 ⁺ 1 ⁻ 2803 [©] 7628? (1,2 ⁺) 5273 1.1 6 5157.3 2 ⁺ 5865 2.2 11 4565.5 2 ⁺ 8263 5 3 2167.472 2 ⁺	(5 ⁻ to 8 ⁻) 1754 100 8 8491.1 (6 ⁻) 2737 59 8 7508.12 7 ⁻ (0 ⁺ to 4 ⁺) 6308 3936.5 2 ⁺ 1 ⁻ x 6877 23 3 3376.9 0 ⁺ 8087 13.6 15 2167.472 2 ⁺ 10254 100 6 0.0 0 ⁺ (E1) (4 ⁺ to 8 ⁺) 2986 100 7288.32 6 ⁺ (3 ⁻ to 7 ⁻) 5730 100 4585.87 5 ⁻ 1 ⁻ x 6398 13 3936.5 2 ⁺ 6957 13 3376.9 0 ⁺ 10333 100 0.0 0 ⁺ (E1) (1 ⁻ to 4 ⁺) 6571 25 3810.18 3 ⁻ 8214 100 2167.472 2 ⁺ 1 ⁻ 2405 1 7992 (1 ⁻ ,2,3 ⁻) 5918 6 4 4479.98 4 ⁻ 6456 8 3936.5 2 ⁺ 7017 8 10 3 3376.9 0 ⁺ [E1] 8233 8 10 3 2167.472 2 ⁺ 7017 8 10 3 3376.9 0 ⁺ [E1] 10400 8 100 20 0.0 0 ⁺ (E1) 1 ⁻ 2803 6 7628? (1,2 ⁺) 5273 1.1 6 5157.3 2 ⁺ [E1] 8263 5 3 2167.472 2 ⁺ [E1]

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	Comments
10443	$(4^+ \text{ to } 8^+)$	3155	100	7288.32	6+		
10455	$(5^- \text{ to } 8^+)$	1964	100 12	8491.1	(6^{-})		I_{γ} : from $(\alpha, p\gamma)$.
		2947	100 17	7508.12	7-		I_{γ} : from (α, p_{γ}) .
		4046	76 <i>14</i>	6408.32	6+		I_{γ} : from (α, p_{γ}) .
10494	1-	6557	25 6	3936.5	2+		I_{γ} : from (α, γ) :resonances.
		8326	54 11	2167.472			I_{γ} : from (α, γ) :resonances.
		10492	100 20	0.0	0_{+}		I_{γ} : from (α, γ) :resonances.
10507	$(1,2^+)$	8339	100 20	2167.472			I_{γ} : from (α, γ) :resonances.
		10505	45 9	0.0	0+		I_{γ} : from (α, γ) :resonances.
10516	(0^+)	5950	17 <i>4</i>	4565.5	2+		I_{γ} : from (α, γ) :resonances.
		6579	13 4	3936.5	2+		I_{γ} : from (α, γ) :resonances.
		6705	100 21	3810.18	3-		I_{γ} : from (α, γ) :resonances.
		8348	59 11	2167.472			I_{γ} : from (α, γ) :resonances.
10547	(0^+)	6610	100 21	3936.5	2+		I_{γ} : from (α, γ) :resonances.
		6736	86 19	3810.18	3-		I_{γ} : from (α, γ) :resonances.
10555	(5 0-)	8379	18 4	2167.472			I_{γ} : from (α, γ) :resonances.
10557	$(5^- \text{ to } 9^-)$	3049	100	7508.12	7-		
10587	1-	4992	1.1 6	5594.6	2+	[E1]	B(E1)(W.u.)= $2.6 \times 10^{-6} + 105 - 20$
				7 000 5	(2)		I_{γ} : from (α, γ) :resonances.
		5503		5083.6	$(2)^{-}$		\dot{E}_{γ} : 5506 3 in (α, γ) :resonances.
		5877 [@]	<1	4709.3	0_{+}		I_{γ} : from (α, γ) :resonances.
		6650	2.2 12	3936.5	2+	[E1]	$B(E1)(W.u.)=2.2\times10^{-6}+87-17$
							E_{γ} : 6664 8 in (α, γ) :resonances.
							I_{γ} : from (α, γ) :resonances.
		6776		3810.18	3-	[E2]	E_{γ} : 6783 8 in (α, γ) :resonances.
							I_{γ} : from (α, γ) :resonances.
		8419	10.2 23	2167.472	2+	[E1]	$B(E1)(W.u.)=5\times10^{-6}+14-3$
							E_{γ} : 8415 10 in (α, γ) :resonances.
							I_{γ} : from (α, γ) :resonances.
		10585	100 <i>21</i>	0.0	0_{+}	(E1)	$B(E1)(W.u.)=2.5\times10^{-5} +42-11$
							I_{γ} : from (α, γ) :resonances.
							Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances.
10589	$(4^+ \text{ to } 7^-)$	2464	26 6	8125.0	(6^{-})		I_{γ} : from (α, p_{γ}) .
		4180	100 <i>14</i>	6408.32	6+		I_{γ} : from $(\alpha, p\gamma)$.
		6003	74 <i>14</i>	4585.87	5-		I_{γ} : from (α, p_{γ}) .
10611	$(1^- \text{ to } 4^+)$	5097	7 4	5513.3	3-		I_{γ} : from (α, γ) :resonances.
		5453	4 3	5157.3	2+		I_{γ} : from (α, γ) :resonances.
		6674	23 5	3936.5	2+		I_{γ} : from (α, γ) :resonances.
		8443	100 20	2167.472			I_{γ} : from (α, γ) :resonances.
10631.3	(2^{-})	4773.5 5547.3		5857.5 5083.6	$(2)^{-}$ $(2)^{-}$		

γ (³⁸Ar) (continued)

E_i (level)	\mathtt{J}_{i}^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.#	Comments
10634	$(6^+ \text{ to } 10^+)$	2064		8569.59	8+		
10666	$(1^-,2^+,3^-,4^+)$	6100	16 <i>4</i>	4565.5	2+		I_{γ} : from (α, γ) :resonances.
		6729	35 8	3936.5	2+		I_{γ} : from (α, γ) :resonances.
		6855	45 10	3810.18	3-		I_{γ} : from (α, γ) :resonances.
		8498	100 20	2167.472			I_{γ} : from (α, γ) :resonances.
10676	$(4^+ \text{ to } 8^+)$	4267	100	6408.32	6+		
10684	1-	4950	10	5733.9	1-	(T-4)	I_{γ} : from (α, γ) :resonances.
		10682	100	0.0	0_{+}	(E1)	I_{γ} : from (α, γ) :resonances.
10726	(1- , 4+)	5170	10.4	5550.01	1+ 0+		Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances.
10726	$(1^- \text{ to } 4^+)$	5173 5212	19 <i>4</i> 19 <i>4</i>	5552.21	$1^+, 2^+$		I_{γ} : from (α, γ) :resonances.
		6915	19 <i>4</i> 51 <i>11</i>	5513.3 3810.18	3 ⁻ 3 ⁻		I_{γ} : from (α, γ) :resonances.
		8557	100 21	2167.472			I_{γ} : from (α, γ) :resonances. I_{γ} : from (α, γ) :resonances.
10768	2+	5610	13	5157.3	2 ⁺		I_{γ} : from (α, γ) :resonances. I_{γ} : from (α, γ) :resonances.
10700	2	5684	19 <i>4</i>	5083.6	$(2)^{-}$		I_{γ} : from (α, γ) :resonances.
		5891	8 4	4877.0	3-		I_{γ} : from (α, γ) :resonances.
		8599	100 <i>21</i>	2167.472			I_{γ} : from (α, γ) :resonances.
		10766	49 10	0.0	0+		I_{γ} : from (α, γ) :resonances.
10803	2+	5645	37 7	5157.3	2+		I_{γ} : from (α, γ) :resonances.
		6237	93 20	4565.5	2+		I_{γ} : from (α, γ) :resonances.
		6992	57 <i>13</i>	3810.18	3-		I_{γ} : from (α, γ) :resonances.
		8634	100 20	2167.472			I_{γ} : from (α, γ) :resonances.
		10801	47 10	0.0	0_{+}	(E2)	I_{γ} : from (α, γ) :resonances.
							Mult.: Q from $\gamma(\theta)$ in (α, γ) :resonances.
10815.6	$(0 \text{ to } 3^{-})$	X					I_{γ} : 27% γ absolute branching is unobserved in (p,γ) :resonances. Additional information 66.
		4042.7	9	6772.7	1-		
		4241.0	34	6574.3	1-		
		4461.8	100	6353.5	1-		
		5081.3	23	5733.9	1-		
		6249.5 [@]	<1.6	4565.5	2+		
		6878.4 [@]	<1.6	3936.5	2+		
		7004.7 [@]	<2.3	3810.18	3-		
		7437.9 [@]	<2.3	3376.9	0+		
		8647.1 [@]					
			<5	2167.472			
10027	(2)	10813.9 [@]	<2	0.0	0_{+}		T 40%
10827.0	(2)	X					I_{γ} : 40% γ absolute branching is unobserved in (p,γ) :resonances. Additional information 67.
		3591	28	7236	(2^{+})		
		4252.4	17	6574.3	1-		

$\gamma(^{38}\text{Ar})$ (continued)

						γ (36	⁵ Ar) (continued)
$E_i(level)$	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\sharp}	E_f	$\underline{J_f^\pi}$	Mult.#	Comments
10850.1	(2-,3-)	7472.4 [@]	<1.5	3376.9	0 ⁺		
		8681.6 10848.4 [@]	100 <0.7	2167.472 0.0	0+		
10857	1-	10855	100	0.0	0+	(E1)	Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances.
10873.8	$(0^+ \text{ to } 3^-)$	X				, ,	I_{γ} : 27% γ absolute branching is unobserved in (p,γ) :resonances. Additional information 69.
		3639.8	5.0	7233.8	$(1^- \text{ to } 4^+)$		
		4028	3.2	6852	$(1,2^+)$		
		4520.0 4534.9	2.4 3.9	6353.5 6338.6	1 ⁻ 1 ⁻ ,2 ⁻ ,3 ⁻		
		5278.8	5.2	5594.6	2+,2,3		
		5716.0	3.0	5157.3	2 ⁺		
		5789.7	6.3	5083.6	$(2)^{-}$		
		6307.7 [@]	<1.5	4565.5	2+		
		6393.2 [@]	<1.3	4479.98	4-		
		6936.6	6.3	3936.5	2+		
		7062.9 [@]	< 0.2	3810.18	3-		
		7496.1 [@]	< 0.2	3376.9	0+		
		8705.3	100	2167.472			
10000	(5- 4 0-)	10872.1 [@]	< 0.4	0.0	0+		
10890	$(5^- \text{ to } 8^-)$	2765 3382	59 <i>10</i> 100 <i>10</i>	8125.0 7508.12	(6 ⁻) 7 ⁻		
10914.5	$(1^-,2,3^-)$	3362 X	100 10	7500.12	,		I_{γ} : 10% γ absolute branching is unobserved in (p,γ) :resonances.
							Additional information 70.
		3680.5	26	7233.8	$(1^- \text{ to } 4^+)$		
		3813.5	22	7100.8	$(1^- \text{ to } 4^+)$		
		4010.5 4044.4	10 9	6903.8 6869.9	$2^{-},3^{-}$ $(2^{-},3,4^{+})$		
		4090.3	20	6824.0	$(2^+,3^+)$ $(2^+,3^-)$		
		4292.6	13	6621.6	$(1^-,2,3^-)$		
		4428.8	46	6485.4	$(1^-,2,3^-)$		
		4560.7	28	6353.5	1-		
		5056.6 5089.2	19 1.9	5857.5 5824.9	(2) ⁻ 3 ⁻		
		5319.5	1.9 44	5824.9 5594.6	3 2 ⁺		
		5400.8	38	5513.3	3-		
		5830.4	28	5083.6	$(2)^{-}$		
		6037.0	31	4877.0	3-		
		6348.4	34	4565.5	2 ⁺		
		6977.3	12	3936.5	2+		

							•	y(14) (continued)
	$E_i(level)$	\mathtt{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f	J_f^π	Mult.#	Comments
ı	10914.5	$(1^-,2,3^-)$	7103.6	81	3810.18			
	10933	1-	8745.9 8764	100 47	2167.472 2167.472			I_{γ} : from (α, γ) :resonances.
ı	10933	1	10931	100	0.0	0 ⁺	(E1)	I_{γ} : from (α, γ) :resonances. I_{γ} : from (α, γ) :resonances.
								Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances.
	10945.0	$(1^-,2^+)$	X					I_{γ} : 21% γ absolute branching is unobserved in (p,γ) :resonances. Additional information 71.
ı			3262	2.5	7683	$(3^-,4^+)$		
			4041.0	14.0	6903.8	$2^{-},3^{-}$		
			4370.4	6.0	6574.3	1-		
			4448.9	7.5	6495.8	$(2^-,3^-)$		
			4591.2 4606.1	11.1 22	6353.5 6338.6	1 ⁻ 1 ⁻ ,2 ⁻ ,3 ⁻		
			4694.8	8.5	6249.9	2+,2,3		
			5210.7	15.1	5733.9	1-		
			5350.0	13.1	5594.6	2+		
ı			5392.4	4.5	5552.21	$1^+, 2^+$		
			5431.3	8.5	5513.3	3-		
i			5787.2	13.6	5157.3	2+		
ı			6067.5	91	4877.0	3 ⁻		
ı			6378.9 7007.8	39 7.1	4565.5 3936.5	2 ⁺ 2 ⁺		
ı			7134.1	20	3810.18	3-		
ı			7567.3 [@]	<2	3376.9	0^{+}		
ı			8776.4	100	2167.472			
ı			10943.3	13.6	0.0	0_{+}		
	10947.4	$(2^-,3,4^+)$	X					I_{γ} : 23% γ absolute branching is unobserved in (p, γ):resonances. Additional information 72.
1			3264	5	7683	$(3^-,4^+)$		
ı			4077.3	7	6869.9	$(2^-,3,4^+)$		
ı			4123.2	5	6824.0	$(2^+,3^-)$		
ı			4737.7 5089.5	5	6209.4	4-		
ı			5433.7	5 21	5857.5 5513.3	(2) ⁻ 3 ⁻		
ı			5863.3	11	5083.6	(2)		
ı			6381.3	64	4565.5	2+		
1			6466.8	18	4479.98	4-		
1			7010.2 [@]	< 2.5	3936.5	2+		
			7136.5	32	3810.18	3-		
			7569.7 [@]	<1.4	3376.9	0^{+}		
			8778.8	100	2167.472	2+		

$\gamma(^{38}\text{Ar})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	$I_{\gamma}^{\ \ \sharp}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	Comments
10947.4	$(2^-,3,4^+)$	10945.7 [@]	<0.7	0.0	0+		
10947.5	(9-)	773 <i>1</i>	28 10	10174.29	9-		E_{γ},I_{γ} : from (²⁸ Si, α 2p γ).
	(-)	1598 2	10 4	9349.6	(7-)		E_{γ},I_{γ} : from (28 Si, α 2p γ).
		2378 <i>I</i>	100 7	8569.59	8+	D	$E_{\gamma},I_{\gamma},Mult.$: from $(^{28}Si,\alpha^2p\gamma)$.
		3439 2	10 4	7508.12	7-	D	$E_{\gamma}I_{\gamma}$: from (${}^{28}Si,\alpha2p\gamma$).
		3877.1 [@]	43 7	7070.19	, (6) ⁻		E_{γ},I_{γ} : γ from $(\alpha,p\gamma)$ only, treated as questionable by the evaluator since it involves
							mult=M3, which is unlikely. In addition a γ ray with the branching ratio reported in $(\alpha, p\gamma)$ should have been seen in $({}^{28}\text{Si}, \alpha 2p\gamma)$.
10963.3	2(+)	X					I_{γ} : 32% γ absolute branching is unobserved in (p,γ) :resonances.
10705.5	2	Α					Additional information 73.
		3069.8	4.7	7893.4	$(1^+,2^+)$		
		3280	5.3	7683	$(3^-,4^+)$		
		3532.1	11.3	7431.0	$(2^-,3,4^+)$		
		3593	7.2	7370	(1+)		
		3629	13.4	7334	$(1^- \text{ to } 4^+)$		
		3729.3	5.3	7233.8	$(1^- \text{ to } 4^+)$		
		4015.2	25	6947.9	(2^{+})		
		4059.3	26	6903.8	2-,3-		
		4139.1	100	6824.0	$(2^+,3^-)$		
		4190.4	1.9	6772.7	1-		
		4388.7	26	6574.3	1-		
		4609.5	73	6353.5	1-		
		4713.1	13.4	6249.9	2+		
		4749.2	6.6	6213.8	(2^+)		
		5105.4	10.7	5857.5	(2)-		
		5138.0	3.4	5824.9	3-		
		5229.0	13.4	5733.9	1-		
		5449.6	11.9	5513.3	3 ⁻		
		5613.5	1.9	5349.4	4 ⁺		
		5805.5	40	5157.3	2 ⁺		
		6085.8 6397.2	33 33	4877.0 4565.5	3 ⁻ 2 ⁺		
		7585.6		4303.3 3376.9	0 ⁺		
		8794.7	6.6 2.7	2167.472			
10988.2	(2)	0/94./ X	4.1	2107.472	<u> </u>		I_{γ} : 15% γ absolute branching is unobserved in (p,γ) :resonances.
10900.2	(4)	Λ					Additional information 74.
		4040.1	2.7	6947.9	(2^+)		
		4084.2	4.6	6903.8	2-,3-		
		4118.1	9.1	6869.9	$(2^{-},3,4^{+})$		
		4649.3	4.1	6338.6	1-,2-,3-		
		4778.5	1.1	6209.4	4-		

 $\gamma(^{38}\text{Ar})$ (continued)

 I_{γ} : from (α, γ) :resonances.

 I_{ν} : from (α, γ) :resonances.

 I_{γ} : from (α, γ) :resonances.

 I_{ν} : from (α, γ) :resonances.

 I_{γ} : from (α, γ) :resonances.

 I_{γ} : from (α, γ) :resonances.

Additional information 75.

Mult.: from $\gamma(\theta)$ in (α, γ) :resonances.

Mult., δ : from $\gamma(\theta)$ in (α, γ) :resonances.

Comments

Mult., δ : D+Q from $\gamma(\theta)$ in (α, γ) :resonances; polarity from level scheme.

Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances; polarity from level scheme.

 I_{γ} : 39% γ absolute branching is unobserved in (p,γ) :resonances.

 $\delta^{\#}$

Mult.#

D

(E1+M2)

(E1)

D+Q

-0.32

+0.07 3

 E_{γ}^{\dagger}

5130.3

5162.9

5435.6

5474.5

5830.4

5904.1

6110.7

6422.1

6507.6 7051.0

7177.3

7610.5

10986.5

5188

7635

8844

11011

7095[@]

8863

11030

6479.1

8876.6

X

3371

3720

3763.9

3819.7

4431.8

4714.8

4844.0

5011.5

5195.8

5458.7

5540.0

5895.9

6487.6

 (3^{-})

(2)

 E_i (level)

10988.2

11013

11032

11045.2

11053.7

(2)

 E_f

 $(2)^{-}$ 3-

 $1^+, 2^+$

3-

2+

 $(2)^{-}$

3-

2+

3-

 0^{+}

 0^{+}

3-

 0^{+}

0+

2+

 0_{+}

2+

 $(3^-,4^+)$

 $(3^-,4^+)$

 $(1^- \text{ to } 4^+)$

 $(1^- \text{ to } 4^+)$

 $(1^-,2,3^-)$

 $1^{-},2^{-},3^{-}$

 $(3^-,4^+)$

4-

 $(2)^{-}$

2+ 3-

2+

2+

5857.5

5824.9

5552.21

5513.3

5157.3

5083.6

4877.0

4565.5

4479.98

3936.5

3810.18

3376.9

5824.9

3376.9

3936.5

4565.5

7683

7334

7289.6

7233.8

6621.6

6338.6

6209.4

6041.8

5857.5

5594.6

5513.3

5157.3

4565.5

0.0

2167.472 2+

2167.472 2+

0.0

2167.472 2+

0.0

6.8

4.6

4.6

2.3

2.3

2.3

2.3

9.1

11.4

3.0

100

<15

23

29

100

<12

22

100

25

100

5.5

6.4

17

24

53

31

100

27

11.8

31

50

20

11.8

23 2.3

γ (³⁸Ar) (continued)

$E_i(level)$	\mathtt{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}
11053.7	(2)	6573.1 [@]	<8	4479.98	4-
		7116.5 [@]	<8	3936.5	2+
		7242.8	37	3810.18	3-
		7676.0 <mark>@</mark>	<5	3376.9	0^{+}
		8885.1	100	2167.472	2+
		11052.0	30	0.0	0_{+}
11059.2	$(1,2^+)$	X			
		4111.1	2.6	6947.9	(2^{+})
		4484.6	6.0	6574.3	1-
		5324.9	5.3	5733.9	1-
		5506.6	2.1	5552.21	$1^+, 2^+$
		5975.1	2.8	5083.6	(2)
		6349.3	3.8	4709.3	0+
		6493.1	4.7	4565.5	2+
		7122.0 [@]	<1.7	3936.5	2+
		7248.3 [@]	<1.3	3810.18	3-
		7681.5	2.8	3376.9	0+
		8890.6	26	2167.472	2+
	(2)	11057.5	100	0.0	0^{+}
11066.1	(2)	X			
		3696	11.1	7370	(1^+)
		3830	7.4	7236	(2^{+})
		3965.1	3.3	7100.8	$(1^- \text{ to } 4^+)$
		4118.0	2.6	6947.9	(2^{+})
		4241.8	41	6824.0	$(2^+,3^-)$
		4570.0	18.5	6495.8	$(2^-,3^-)$
		4580.4	7.4	6485.4	$(1^-,2,3^-)$ 2^+
		4815.9 4852.0	3.3 3.7	6249.9	_
		4852.0 5208.2	3.7 4.1	6213.8 5857.5	(2 ⁺) (2) ⁻
		5240.8	7.4	5824.9	3-
		5331.8	4.8	5733.9	1-
		5471.1	26	5594.6	2+
		5513.5	4.8	5552.21	1 ⁺ .2 ⁺
		5552.4	3.7	5513.3	3-
		6188.6	18.5	4877.0	3-
		6356.2	3.7	4709.3	0_{+}
		6500.0	11.1	4565.5	2+

I_{γ}: 17% γ absolute branching is unobserved in (p, γ):resonances. Additional information 76.

Comments

 $I_{\gamma}\!\!: 10\%~\gamma$ absolute branching is unobserved in (p,y):resonances. Additional information 77.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	J_f^π	Mult.#	$\delta^{\#}$	Comments
11066.1	(2)	6585.5	4.8	4479.98	4-			
		7128.9	52	3936.5	2 ⁺			
		7255.2	7.4	3810.18	3 ⁻			
		8897.5 11064.4	100 3.7	2167.472 0.0	0+			
11067	1-	6501	18	4565.5	2 ⁺			I_{γ} : from (α, γ) :resonances.
11007	1	7130 [@]	<18	3936.5	2 ⁺			,
		8898	61	2167.472		(E1(+M2))	0.0 2	I_{γ} : from (α, γ) :resonances. I_{γ} : from (α, γ) :resonances.
		0070	01	2107.472	2	(L1(+W12))	0.0 2	Mult., δ : D+Q from $\gamma(\theta)$ in (α, γ) :resonances.
		11065	100	0.0	0^{+}	(E1)		Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances.
11068		2943		8125.0	(6-)	()		
11078		1434	100	9644	$(5^- \text{ to } 9^-)$			
11087	$(4^+ \text{ to } 8^+)$	3798	100	7288.32	6+			
11096.9	(2+)	X						I_{γ} : 28% γ absolute branching is unobserved. Additional information 78.
		3203.4	4.7	7893.4	$(1^+,2^+)$			
		3763	18.7	7334	$(1^- \text{ to } 4^+)$			
		3807.1	6.0	7289.6	$(3^-,4^+)$			
		3995.9	5.3	7100.8	$(1^- \text{ to } 4^+)$			
		4192.9	4.0	6903.8	2-,3-			
		4226.7 4272.6	8.0 6.7	6869.9 6824.0	$(2^-,3,4^+)$			
		4522.3	32	6574.3	$(2^+,3^-)$ 1^-			
		4611.2	3.9	6485.4	$(1^-,2,3^-)$			
		4743.1	25	6353.5	1-			
		4758.0	33	6338.6	1-,2-,3-			
		4846.7	6.0	6249.9	2+			
		4882.8	13.3	6213.8	(2^{+})			
		5239.0	87	5857.5	$(2)^{-}$			
		5271.6	5.4	5824.9	3-			
		5362.6	15.4	5733.9	1-			
		5501.9	27	5594.6	2 ⁺			
		5544.3 5583.2	3.3 40	5552.21 5513.3	1 ⁺ ,2 ⁺ 3 ⁻			
		5365.2 5747.0	2.6	5349.4	3 4 ⁺			
		5939.1	40	5157.3	2 ⁺			
		6012.8	8.0	5083.6	(2)			
		6530.8	23	4565.5	2+			
		7159.7	20	3936.5	2+			
		7286.0	20	3810.18	3-			
		7719.2	5.3	3376.9	0_{+}			

							γ ⁽³⁶ Ar) (co	ntinued)
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\sharp}	E_f	$\mathbf{J}^{\boldsymbol{\pi}}_f$	Mult.#	$\delta^{\#}$	Comments
11096.9	(2+)	8928.3	100	2167.472	2+			
		11095.2	6.7	0.0	0_{+}			
11109	$(4^- \text{ to } 8^-)$	2984	100	8125.0	(6-)			
11122.9	3-	4637.2	13	6485.4	$(1^-,2,3^-)$			I_{γ} : from (α, γ) :resonances.
		6642.3	14	4479.98	4-			I_{γ} : from (α, γ) :resonances.
		8954.3	100	2167.472	2+	D+Q	+0.11 4	I_{γ} : from (α, γ) :resonances.
11146.9	(2,3-)	X						Mult., δ : D+Q from $\gamma(\theta)$ in (α, γ) :resonances. I _{γ} : 31% γ absolute branching is unobserved. Additional information 79.
		4661.2	10.4	6485.4	$(1^-,2,3^-)$			
		4793.1	6.9	6353.5	1-			
		4808.0	6.9	6338.6	1-,2-,3-			
		4896.7	10.4	6249.9	2+			
		4932.8	17	6213.8	(2^{+})			
		5321.6	6.9	5824.9	3 ⁻ 2 ⁺			
		5551.9 5594.2	13.8 3.5	5594.6 5552.21	1+,2+			
		5633.2	3.5	5513.3	3-,2			
		5797.0	3.5	5349.4	4+			
		6580.8	6.9	4565.5	2+			
		6666.3	6.9	4479.98	4-			
		7209.7	6.9	3936.5	2+			
		7336.0	10.4	3810.18	3-			
		8978.3 11145.1	100 24	2167.472 0.0	0 ⁺			
11161.0	$(2^-,3,4^+)$	11143.1 X	24	0.0	U			I_{γ} : 11% γ absolute branching is unobserved.
11101.0	(2 ,3,4)	Λ						Additional information 80.
		4559.1	7.8	6601.59	4-			reducing information 60.
		4675.3	15.0	6485.4	$(1^-,2,3^-)$			
		4684.1	9.4	6476.6	$(0^+ \text{ to } 3^-)$			
		4951.3	7.2	6209.4	4-			
		5335.7	9.4	5824.9	3-			
		5608.3	5.0	5552.21	1 ⁺ ,2 ⁺			
		5647.2 6076.9	5.9 28	5513.3 5083.6	3 ⁻ (2) ⁻			
		7223.8	100	3936.5	(2) 2 ⁺			
		7350.1	6.3	3810.18	3-			
		8992.4	81	2167.472				
11163	(6,7,8)	2672	58	8491.1	(6-)			I_{γ} : from $(\alpha, p\gamma)$.
		3039	100	8124	$(3^- \text{ to } 6^+)$			I_{γ} : from $(\alpha, p\gamma)$.
		3086	76	8077.20	7 ⁺			I_{γ} : from $(\alpha, p\gamma)$.
		3655	70	7508.12	/			

 $\gamma(^{38}\text{Ar})$ (continued)

Mult.#

(E1(+M2))

(E1)

 $\delta^{\#}$

0.00 3

 I_{γ} : from (α, γ) :resonances.

 I_{γ} : from (α, γ) :resonances.

 I_{γ} : from (α, γ) :resonances.

 I_{γ} : from (α, γ) :resonances.

Additional information 82.

Mult.: D(+Q) from $\gamma(\theta)$ in (α, γ) :resonances.

 I_{γ} : 18% γ absolute branching is unobserved.

Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances.

Comments

 E_{γ}^{\dagger}

6692.4

7235.8

7362.1

7795.2

9004.4

6017[@]

2201

7238

9006

11173

4236.6

4314.6

4562.9

4610.2

5632.1

5671.0

6027.0

6100.7

6307.2

7247.6

7373.9

9016.2

X

11183.0

3205

3963.6

4373.3

4424.6

4843.8

4858.7

4947.4

5339.7

5372.3

5463.3

5602.6

5683.8

6039.8

6113.5

6320.0

 $(5^- \text{ to } 9^-)$

 $(2^+,3^-)$

 $(1^-,2,3^-)$

1-

 E_i (level)

11173.0

11174

11175

11184.8

11197.6

54

 \mathbf{E}_f

4479.98

3810.18

8972.85

5157.3

3936.5

6947.9

6869.9

6621.6

6574.3

5552.21

5513.3

5157.3

5083.6

4877.0

3936.5

7992

7233.8

6824.0

6772.7

6353.5

6338.6

6249.9

5857.5

5824.9

5733.9

5594.6

5513.3

5157.3

5083.6

4877.0

3810.18

2167.472 2+

0.0

2167.472 2+

2167.472 2+

0.0

3936.5

3376.9

4-

2+

3-

 0^{+}

7-

2+

2+

 0^{+}

 (2^{+})

1-

3-

2+

 $(2)^{-}$

3-

2+

3-

 0^{+}

 $(1^-,2,3^-)$

 $(1^- \text{ to } 4^+)$

 $(2^+,3^-)$

 1^{-}

1- $1^{-},2^{-},3^{-}$

2+

 $(2)^{-}$

3-

1-

2+

3-

2+

 $(2)^{-}$

3-

 $1^{+},2^{+}$

 $(2^-,3,4^+)$

 $(1^-,2,3^-)$

4.2

8.3

8.3

1.3

100

100

<24

45

100

93

1.5

3.0

1.1

1.8

3.0

12.1

6.1

1.5

3.0

7.6

3.0

0.76

14.3

6.2

4.8

9.5

14.3

33

19

19

14.3

14.3

19

16

0.95

38

19

						γ ⁽³⁸ Ar) (continued)
E_i (level)	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathtt{J}_f^{π}	Comments
11210.4	(1-,2,3-)	7273.2 9041.8	3.7 100	3936.5 2167.472	2 ⁺	
11214.7	$(1^-,2^+)$	X	100	2107.472	2	I_{γ} : 16% γ absolute branching is unobserved. Additional information 84.
		6056.9	9.1	5157.3	2+	Additional information 84.
		6504.8	11.4	4709.3	0+	
		6648.6 7277.5	43 5.2	4565.5 3936.5	2 ⁺ 2 ⁺	
		9046.1	23	2167.472		
		11212.9	100	0.0	0+	
11227.3	(2^{+})	X				I_{γ} : 22% γ absolute branching is unobserved.
				=000		Additional information 85.
		3235 3775	7.0	7992 7452	$(1^-,2,3^-)$ $(1^- \text{ to } 4^+)$	
		3773 3796.1	4.0 3.0	7432 7431.0	$(1 \ 10 \ 4^{+})$ $(2^{-},3,4^{+})$	
		3937.5	7.0	7289.6	$(3^-,4^+)$	
		3993.3	10.0	7233.8	$(1^- \text{ to } 4^+)$	
		4279.1	4.5	6947.9	(2^{+})	
		4403.0	10.0	6824.0	$(2^+,3^-)$	
		4605.4 4731.2	25	6621.6 6495.8	$(1^-,2,3^-)$	
		4731.2 4741.6	10.0 3.0	6495.8 6485.4	$(2^-,3^-)$ $(1^-,2,3^-)$	
		4888.4	10.0	6338.6	1-,2-,3-	
		4977.0	3.0	6249.9	2+	
		5013.1	35	6213.8	(2^{+})	
		5369.4	10.0	5857.5	(2)	
		5402.0 5493.0	2.0 2.5	5824.9 5733.9	3 ⁻ 1 ⁻	
		5674.6	15.0	5552.21	1+,2+	
		5877.4	1.0	5349.4	4+	
		6069.5	20	5157.3	2+	
		6143.2	5.0	5083.6	$(2)^{-}$	
		6349.7	10.0	4877.0	3-	
		6661.2 7290.0	35 5.0	4565.5 3936.5	2 ⁺ 2 ⁺	
		7416.3	50	3810.18	3-	
		9058.7	100	2167.472		
		11225.5	5.0	0.0	0_{+}	
11233.6	$(2^+,3^-)$	X				I_{γ} : 28% γ absolute branching is unobserved. Additional information 86.
		4659.0	6.7	6574.3	1-	
		5258.4	11.1	5974.8	$(0^+ \text{ to } 3^-)$	

							γ (3°Ar) (continued)
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}^{π}_f	Mult.#	Comments
11233.6	(2+,3-)	5574.6 6075.8 6149.5 6667.5 9065.0	6.7 4.4 4.4 6.7 20	5658.61 5157.3 5083.6 4565.5 2167.472	5 ⁻ 2 ⁺ (2) ⁻ 2 ⁺ 2 ⁺		
11244.8	(3 ⁺)	11231.8 x	100	0.0	0+		I_{γ} : 19% γ absolute branching is unobserved. Additional information 87.
11250	1-	3875 4010.8 4143.8 4199 4420.5 4759.1 4905.9 4968.4 4994.5 5030.6 5035.0 5191.2 6367.2 6764.2 7307.5 7433.8 9076.2 7872 11248	40 8.0 33 60 60 30 16 30 30 65 90 30 60 80 20 60 100 <10	7370 7233.8 7100.8 7046 6824.0 6485.4 6338.6 6276.1 6249.9 6213.8 6209.4 6053.2 4877.0 4479.98 3936.5 3810.18 2167.472 3376.9 0.0	(1 ⁺) (1 ⁻ to 4 ⁺) (1 ⁻ to 4 ⁺) (3 ⁻ ,4 ⁺) (2 ⁺ ,3 ⁻) (1 ⁻ ,2,3 ⁻) 1 ⁻ ,2 ⁻ ,3 ⁻ 4 ⁺ (2 ⁺) 4 ⁻ (4 ⁺) 3 ⁻ 4 ⁻ 2 ⁺ 3 ⁻ 2 ⁺ 0 ⁺ 0 ⁺	(E1)	I _y : from (α, γ) :resonances. I _y : from (α, γ) :resonances. Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances.
11264.9	(2-,3-)	X					I_{γ} : 34% γ absolute branching is unobserved. Additional information 88.
		4316.7 4491.9 4690.3 4911.1 5014.6 5439.6 5530.6 5751.1 6387.3 6784.3 7453.9	18 100 41 65 11.8 11.8 53 24 41 5.9	6947.9 6772.7 6574.3 6353.5 6249.9 5824.9 5733.9 5513.3 4877.0 4479.98 3810.18	(2 ⁺) 1 ⁻ 1 ⁻ 1 ⁻ 2 ⁺ 3 ⁻ 1 ⁻ 3 ⁻ 3 ⁻ 3 ⁻ 4 ⁻ 3 ⁻		

E_i (level)	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	$\underline{}_f^{\pi}$	Mult.#	δ#	Comments
11275.7	$(1,2^+)$	5680.6	2.0	5594.6	2+			
		5723.0	2.0	5552.21	$1^+, 2^+$			
		6191.6	2.0	5083.6	$(2)^{-}$			
		6565.8	4.1	4709.3	0+			
		6709.6	4.1	4565.5	2+			
		7338.4	6.1	3936.5	2+			
		7897.9	12.2	3376.9	0+			
		9107.1	10.2	2167.472				
11005 4	(2± 2)	11273.9	100	0.0	0_{+}			T 05%
11285.4	$(2^+,3)$	X						I_{γ} : 35% γ absolute branching is unobserved.
		2015	2.6	7270	(1±)			Additional information 91.
		3915 4461.1	3.6 5.4	7370 6824.0	(1^+) $(2^+,3^-)$			
		5427.5	5.4 5.4	5857.5	$(2^{+},3^{-})$ $(2)^{-}$			
		5935.5	1.8	5349.4	(2) 4 ⁺			
		9116.8	100	2167.472				
11289.4	(3^{-})	X	100	2107.472	2			I_{γ} : 37% γ absolute branching is unobserved.
11207.1	(3)	A						Additional information 92.
		4385.3	3.6	6903.8	2-,3-			
		4465.1	10.7	6824.0	$(2^+,3^-)$			
		4714.8	10.7	6574.3	1-			
		5775.6	21	5513.3	3-			
		5939.5	3.6	5349.4	4 ⁺			
		6205.3	7.1	5083.6	$(2)^{-}$			
		6411.8	10.7	4877.0	3-			
		6808.8	10.7	4479.98	4-			
		7352.1	43	3936.5	2+			
		7478.4	3.6	3810.18	3-			
		9120.8	100	2167.472				
11290	$(7^+ \text{ to } 11^+)$	1356	100	9934.0	(9 ⁺)			28
11298.7	(10^{+})	1364 <i>I</i>	56 28	9934.0	(9 ⁺)	D+Q		$E_{\gamma}, I_{\gamma}, Mult.$: from (²⁸ Si, α 2p γ). Mult from γ (DCO).
		1959.5 7	100 6	9339.2	8+	Q		E_{γ} , I_{γ} , Mult.: from (28 Si, $\alpha 2$ p γ). Mult from γ (DCO).
11302.4	5-	4256	1.2	7046	$(3^-,4^+)$			
		4627.7	8.1	6674.4	5-			
		4700.5	5.9	6601.59	4-			
		4893.7	1.4	6408.32	6 ⁺			
		5092.6	4.9	6209.4	4 ⁻	M1 . E2	0.10 6	M 1, C C (0 1) ' ()
		5643.3	46	5658.61	5 ⁻	M1+E2	-0.19 6	Mult., δ : from $\gamma(\theta, pol)$ in (p, γ) :resonances.
		6715.9	100	4585.87	5-	M1(+E2)	-0.03 6	Mult., δ : from $\gamma(\theta, \text{pol})$ in (p, γ) :resonances.
		6736.3 [@]	< 0.2	4565.5	2+			
		6821.8	2.2	4479.98	4-			

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	Comments
11302.4	5-	7365.1 [@]	<0.2	3936.5	2+			
11002		7491.4 [@]	< 0.2	3810.18	3-			
		7924.6 [@]	<0.2	3376.9	0+			
		9133.7 [@]	<0.2	2167.472				
		11300.6 [@]	<0.2	0.0	0^{+}			
11307.5	5-	4632.8	7.4	6674.4	5-			
		4705.6	1.9	6601.59	4-			
		4898.8 [@]	0.7	6408.32	6+			
		5097.7	1.9	6209.4	4-			
		5648.4	74	5658.61	5-	M1+E2	-0.13 6	Mult., δ : from $\gamma(\theta, pol)$ in (p, γ) :resonances.
		6721.0 6826.9	100 0.6	4585.87 4479.98	5 ⁻ 4 ⁻	M1(+E2)	-0.03 6	Mult., δ : from $\gamma(\theta, \text{pol})$ in (p, γ) :resonances.
		9138.8	1.1	2167.472				
11315	1-	4829	28	6485.4	$(1^-,2,3^-)$			I_{γ} : from (α, γ) :resonances.
		7378	32	3936.5	2+			I_{γ} : from (α, γ) :resonances.
		7937	15	3376.9	0+	(E1 (3 (2))	0.2.2	I_{γ} : from (α, γ) :resonances.
		9146	38	2167.472	21	(E1(+M2))	$-0.2\ 2$	I_{γ} : from (α, γ) :resonances. Mult.: $D(+Q)$ from $\gamma(\theta)$ in (α, γ) :resonances.
		11313	100	0.0	0^{+}	(E1)		I_{γ} : from (α, γ) :resonances.
		11010	100	0.0		(21)		Mult.: D(+Q) from $\gamma(\theta)$ in (α, γ) :resonances.
11316.7	(3^{-})	X						I_{γ} : 26% γ absolute branching is unobserved.
		3864	36	7452	$(1^- \text{ to } 4^+)$			Additional information 93.
		3804 4026.9	30 27	7432 7289.6	$(3^-,4^+)$			
		4215.6	27	7100.8	$(1^- \text{ to } 4^+)$			
		4270	18	7046	$(3^-,4^+)$			
		4412.6	27	6903.8	2-,3-			
		4492.4	18	6824.0	$(2^+,3^-)$			
		4714.8 5066.4	36 36	6601.59 6249.9	4 ⁻ 2 ⁺			
		5106.9	45	6209.4	4-			
		5263.1	9.1	6053.2	(4^+)			
		5274.5	100	6041.8	$(3^-,4^+)$			
		5657.6	18	5658.61	5-			
		5721.6	36	5594.6	2 ⁺			
		5966.8 6158.9	45 64	5349.4 5157.3	4 ⁺ 2 ⁺			
		6439.1	36	4877.0	3-			
		04.39.1	.)()					
		6730.2	36	4585.87	5-			

$\gamma(^{38}\text{Ar})$ (continued)

$\Xi_i(level)$	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Comments
1316.7	(3-)	7379.4	18	3936.5	2+	
		9148.0	27	2167.472	2+	
1318.7	(2+)	X				I_{γ} : 26% γ absolute branching is unobserved. Additional information 94.
		3866	3.1	7452	$(1^- \text{ to } 4^+)$	
		4084.7	2.4	7233.8	$(1^- \text{ to } 4^+)$	
		4370.5	2.1	6947.9	(2^+)	
		4494.4	6.9	6824.0	$(2^+,3^-)$	
		4822.6	4.5	6495.8	$(2^-,3^-)$	
		4833.0 4979.7	10.3	6485.4 6338.6	$(1^-,2,3^-)$ $1^-,2^-,3^-$	
		5104.5	7.9 5.5	6213.8	1 ,2 ,3 (2 ⁺)	
		5460.8	13.1	5857.5	$(2)^{-}$	
		5493.4	3.8	5824.9	3-	
		5584.4	2.8	5733.9	1-	
		5723.6	28	5594.6	2+	
		5968.8	1.7	5349.4	4+	
		6160.9	10.0	5157.3	2+	
		6234.6	3.5	5083.6	$(2)^{-}$	
		6441.1	1.4	4877.0	3-	
		6608.8	24	4709.3	0+	
		6838.1	2.1	4479.98	4 ⁻	
		7381.4 7507.7	14 3.5	3936.5 3810.18	2 ⁺ 3 ⁻	
		9150.0	100	2167.472		
		11316.9	10.3	0.0	0 ⁺	
1328.3	$(3^-,4^+)$	X	10.5	0.0	o .	I_{γ} : 37% γ absolute branching is unobserved.
	(- , ,					Additional information 95.
		5118.5	9.4	6209.4	4-	
		5286.1	31	6041.8	$(3^-,4^+)$	
		5669.2	9.4	5658.61	5-	
		5978.4	6.2	5349.4	4+	
		6450.7	41	4877.0	3-	
		7517.3	100	3810.18	3 ⁻	
1330.5	$(1^- \text{ to } 4^+)$	9159.6	3.1	2167.472	2.	I_{γ} : 24% γ absolute branching is unobserved.
1330.3	(1 10 4)	X				Additional information 96.
		4460.3	9.7	6869.9	$(2^-,3,4^+)$	Additional information 70.
		6172.7	13	5157.3	2+	
		6246.3	9.7	5083.6	(2)	
		6452.9	58	4877.0	3-	
		6764.4	16	4565.5	2+	

$E_i(level)$	\mathtt{J}_{i}^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.#	δ#	Comments
11350.6	3-	7539.6	63	3810.18	3-	M1+E2	-0.20 10	Mult., δ : from $\gamma(\theta, \text{pol})$ in (p, γ) :resonances.
		7972.8 [@]	< 0.3	3376.9	0^{+}			
		9181.9	50	2167.472		E1(+M2)	+0.04 7	Mult., δ : from $\gamma(\theta, \text{pol})$ in (p, γ) :resonances.
		11348.8 [@]	< 0.3	0.0	0^{+}			
11354.6	3-	4752.7	3.9	6601.59	4-			
		4868.9	44	6485.4	$(1^-,2,3^-)$			
		5840.8	19	5513.3	3-			
		6477.0	23	4877.0	3-			
		6788.4	14	4565.5	2+			
		7543.6	18	3810.18	3-			
11267.4	2-	9185.9	100	2167.472	2+			T 4707 1 1 1 1 1 1 1 1 1
11367.4	3-	X						 I_γ: 47% γ absolute branching is unobserved. Additional information 97.
		4133.4	20	7233.8	$(1^- \text{ to } 4^+)$			
		4765.5	20	6601.59	4-			
		5509.5	20	5857.5	$(2)^{-}$			
		5542.1	13	5824.9	3-			
		5853.6	60	5513.3	3-			
		6489.8	67	4877.0	3-			
		7430.1	40	3936.5	2+			
		7556.4 9198.7	13 100	3810.18 2167.472	3 ⁻			
11373.7	$(1^-,2,3^-)$	9198.7 X	100	2107.472	2.			I_{γ} : 21% γ absolute branching is unobserved.
113/3./	(1 ,2,3)							Additional information 98.
		4003	10	7370	(1^+)			
		4469.6	15	6903.8	2-,3-			
		4549.4	50	6824.0	$(2^+,3^-)$			
		4799.1	15	6574.3	1-			
		4888.0	15 15	6485.4 6249.9	$(1^-,2,3^-)$ 2^+			
		5123.4 5159.5	10	6249.9	(2 ⁺)			
		5515.8	10	5857.5	$(2)^{-}$			
		5639.4	10	5733.9	1-			
		3037.1	10	5133.7				

$\gamma(^{38}\text{Ar})$ (continued)

۱								/(11) (601	
	$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^π	Mult.#	δ#	Comments
	11373.7	$(1^-,2,3^-)$	5778.6	15	5594.6	2+			
			6215.9	5	5157.3	2 ⁺			
			6289.5 6496.1	5 100	5083.6 4877.0	(2) ⁻ 3 ⁻			
			6807.5	5	4565.5	2 ⁺			
			7562.7	15	3810.18	3-			
			9205.0	100	2167.472				
	11374	1-	11372	100	0.0	0+	(E1)		Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances.
	11379	$(4^+ \text{ to } 8^+)$	4970	100	6408.32	6+			I 2107 1 1 1 1 1 1
	11379.1	(2+)	X						I_{γ} : 31% γ absolute branching is unobserved. Additional information 99.
			4145.1	30	7233.8	$(1^- \text{ to } 4^+)$			
			4893.4 5102.6	10 30	6485.4 6276.1	(1 ⁻ ,2,3 ⁻) 4 ⁺			
			5102.0	10	6249.9	2 ⁺			
			5164.9	100	6213.8	(2^{+})			
			5336.9	70	6041.8	$(3^-,4^+)$			
			5521.2	20	5857.5	$(2)^{-}$			
`			5553.8	60	5824.9	3-			
			5784.0 5826.4	20 40	5594.6 5552.21	2 ⁺ 1 ⁺ ,2 ⁺			
			5865.3	20	5513.3	3-,2			
			6029.2	10	5349.4	4+			
			6294.9	20	5083.6	(2)-			
			6812.9	40	4565.5	2+			
			6898.4 7441.8	90 60	4479.98 3936.5	4 ⁻ 2 ⁺			
			8001.3	10	3376.9	0 ⁺			
			9210.4	50	2167.472				
	11393.0	3-	X						I_{γ} : 37% γ absolute branching is unobserved. Additional information 100.
1			4103.2	2.7	7289.6	$(3^-,4^+)$			
			4791.1	5.4	6601.59	4-			
			5879.2	5.4	5513.3	3 ⁻			
			6235.2 6308.8	2.7 2.7	5157.3 5083.6	2 ⁺ (2) ⁻			
			6515.4	38	4877.0	3-			
1			6912.3	8.1	4479.98	4-			
			7582.0	5.4	3810.18	3-			
1			9224.3	100	2167.472				
	11399.5	(3^{-})	9230.8	100	2167.472		D+Q	+0.23 15	Mult., δ : from $\gamma(\theta)$ in (α, γ) :resonances.

$E_i(level)$	\mathtt{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f	${\rm J}_f^\pi$	Mult.#	Comments
11423.9	$\frac{i}{(3^{-})}$	5209.7	6.4	6213.8	$\frac{f}{(2^+)}$		
11423.9	(3)	5598.6	4.3	5824.9	3-		
		5828.8	2.1	5594.6	2 ⁺		
		5871.2	13	5552.21	1+,2+		
		5910.1	17	5513.3	3-		
		6266.0	2.1	5157.3	2+		
		6546.3	0.6	4877.0	3-		
		6857.7	1.5	4565.5	2+		
		6943.2	2.1	4479.98	4-		
		7486.6	8.5	3936.5	2+		
		7612.9	4.3	3810.18	3-		
		9255.2	100	2167.472			
11428	$(4^+ \text{ to } 8^+)$	5019	100	6408.32	6+		
11428.9	$(3,4^+)$	X					 I_γ: 23% γ absolute branching is unobserved. Additional information 104.
		3746	17	7683	$(3^-,4^+)$		
		4139.1	11	7289.6	$(3^-,4^+)$		
		4194.9	5.6	7233.8	$(1^- \text{ to } 4^+)$		
		4524.8	11	6903.8	2-,3-		
		4604.6	22	6824.0	$(2^+,3^-)$		
		5152.4	78	6276.1	4+		
		5375.3	39	6053.2	(4^{+})		
		5603.6	22	5824.9	3-		
		5876.2	5.6	5552.21	1+,2+		
		5915.1	5.6	5513.3	3-		
		6079.0	17	5349.4	4 ⁺		
		6271.0	5.6	5157.3	2+		
		6344.7 6551.3	5.6	5083.6	(2)		
		6862.7	5.6	4877.0 4565.5	3 ⁻ 2 ⁺		
		6948.2	22 5.6	4303.3 4479.98	4-		
		7491.6	3.0 17	3936.5	2 ⁺		
		7617.9	100	3810.18	3-		
111610	1-	9260.2	33	2167.472			
11431.9	1-	X					I_{γ} : 56% γ absolute branching is unobserved in (p, γ):resonances. Additional information 105.
		6554.3	52	4877.0	3-		I_{γ} : from (α, γ) :resonances only.
		6865.7	33	4565.5	2+		
		8054.1	11	3376.9	0+		
		9263.2	19	2167.472			
		11430.1	100	0.0	0_{+}	(E1)	Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances.

						<u>/(</u>	7H) (COILLI	incu)
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^π	Mult.#	$\delta^{\#}$	Comments
11435.9	$(2^+,3^-)$	X						I_{γ} : 22% γ absolute branching is unobserved.
		3542.3	3.6	7893.4	$(1^+,2^+)$			Additional information 106.
		3753	14	7683	$(3^-,4^+)$			
		3984	100	7452	$(1^- \text{ to } 4^+)$			
		4102	36	7334	$(1^- \text{ to } 4^+)$			
		4200	9.1	7236	(2^{+})			
		4487.7	20	6947.9	(2^{+})			
		4584	36	6852	$(1,2^+)$			
		4611.6 4662.9	3.6 18	6824.0	$(2^+,3^-)$ 1^-			
		4814.0	73	6772.7 6621.6	$(1^-,2,3^-)$			
		4861.3	18	6574.3	1- (1 ,2,3)			
		4939.8	33	6495.8	$(2^-,3^-)$			
		5082.0	6.4	6353.5	1-			
		5096.9	6.4	6338.6	1-,2-,3-			
		5159.4	10.0	6276.1	4+			
		5185.6	18	6249.9	2+			
		5221.7 5578.0	6.4 6.4	6213.8 5857.5	(2^+)			
		5610.6	5.5	5824.9	(2) ⁻ 3 ⁻			
		5701.5	18	5733.9	1-			
		5883.2	27	5552.21	1+,2+			
		5922.1	7.3	5513.3	3-			
		6351.7	18	5083.6	$(2)^{-}$			
		6558.2 <i>3</i>	6	4877.0	3-			
		6726.0	2.7	4709.3	0+			
		6849.4 6869.7	15 3.6	4585.87 4565.5	5 ⁻ 2 ⁺			
		0809.7 7498.6	3.0 18	4303.3 3936.5	2+ 2+			
		7624.9	82	3810.18	3-			
		9267.2	45	2167.472				
		11434.1	7.3	0.0	0^{+}			
11442.9	3-	4841.0	33	6601.59	4-			I_{γ} : from (α, γ) :resonances.
		6962.2	10	4479.98	4-	,	0.55	I_{γ} : from (α, γ) :resonances.
		9274.2	100	2167.472	2+	(E1(+M2))	+0.02 3	I_{γ} : from (α, γ) :resonances.
11443.6	$(2^-,3)$	X						Mult., δ : D(+Q) from $\gamma(\theta)$ in (α, γ) :resonances. I $_{\gamma}$: 21% γ absolute branching is unobserved. Additional information 107.
		4109	39	7334	$(1^- \text{ to } 4^+)$			Additional Information 107.
		4153.8	12	7289.6	$(3^-,4^+)$			
		4841.7	9.4	6601.59	4-			

Comments

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	
11443.6	$(2^{-},3)$	4957.9	10.0	6485.4	$(1^-,2,3^-)$	
		5229.4	7.8	6213.8	(2^{+})	
		5390.0	8.9	6053.2	(4^{+})	
		5401.4	14	6041.8	$(3^-,4^+)$	
		5848.5	28	5594.6	2+	
		6566.0	56	4877.0	3-	
		6877.4	61	4565.5	2 ⁺ 2 ⁺	
		7506.3	56	3936.5	2+	
		7632.6	39	3810.18	3-	
		9274.9	100	2167.472	2+	
11452		2253	100	9199	(4 ⁻ to 8 ⁻)	
11461.3	$(1^-,2^+)$	X				I ₂
		2565.5	60	5 000 4	(1+ 0+)	A
		3567.7	63	7893.4	$(1^+,2^+)$	
		4227.2	88	7233.8	$(1^- \text{ to } 4^+)$	
		4360.2	25	7100.8	$(1^- \text{ to } 4^+)$	
		4779.4	100	6681.6	(0,1,2)	
		5603.4	75 63	5857.5	(2)	
		5726.9	63	5733.9	1 ⁻ 2 ⁺	
		5866.2 5908.6	25 50	5594.6 5552.21	1 ⁺ ,2 ⁺	
		6303.4	100	5157.3	2+,2	
		6895.1	38	4565.5	2+	
		7650.3	38	3810.18	3-	
		8083.5	25	3376.9	0+	
		9292.6	25	2167.472	2 ⁺	
		11459.4	63	0.0	0 ⁺	
11471.2	$(1^-,2^+)$	3577.6	4.2	7893.4	$(1^+,2^+)$	
111,71.2	(1 ,2)	4646.9	2.8	6824.0	$(2^+,3^-)$	
		4849.3	2.8	6621.6	$(1^-,2,3^-)$	
		4896.6	5.6	6574.3	1-	
		5117.3	25	6353.5	1-	
		5132.2	2.5	6338.6	1-,2-,3-	
		5257.0	5.6	6213.8	(2^{+})	
		5613.3	11.1	5857.5	(2)	
		5876.1	3.9	5594.6	2+	
		6387.0	8.3	5083.6	$(2)^{-}$	
		6761.3	2.8	4709.3	0^{+}	
		6905.0	100	4565.5	2+	
		7533.9	5.6	3936.5	2+	
		7660.2	5.6	3810.18	3-	
		8093.4	17	3376.9	0^{+}	

 I_{γ} : 38% γ absolute branching is unobserved. Additional information 108.

$\gamma(^{38}\text{Ar})$ (continued)

						γ (3°Ar) (continued)
$E_i(level)$	\mathtt{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f	J_f^π	Comments
11471.2	$(1^-,2^+)$	9302.5	8.3	2167.472		
444=0.0	(2-)	11469.3	78	0.0	0^{+}	7 40%
11478.9	(3-)	X				I_{γ} : 48% γ absolute branching is unobserved. Additional information 109.
		4109	29	7370	(1^+)	
		4654.6	71	6824.0	$(2^+,3^-)$	
		4877.0 4982.7	57 14	6601.59 6495.8	4 ⁻	
		5202.4	14	6276.1	$(2^-,3^-)$ 4^+	
		5264.7	57	6213.8	(2^+)	
		5269.1	29	6209.4	4-	
		5425.3	29	6053.2	(4^+)	
		5436.7	86	6041.8	$(3^-,4^+)$	
		5621.0	14	5857.5	$(2)^{-}$	
		5653.5	14	5824.9	3-	
		5819.8	14	5658.61	5-	
		5883.8	100	5594.6	2+	
		5965.1	14	5513.3	3-	
		6321.0	71	5157.3	2+	
		6394.7	14	5083.6	$(2)^{-}$	
		6601.3	29	4877.0	3-	
		6912.7	14	4565.5	2+	
		7541.6	14	3936.5	2+	
11404	(7- , 11-)	9310.2	57	2167.472		
11484	$(7^- \text{ to } 11^-)$	1310	100	10174.29	9 ⁻ 7 ⁺	
11495 11501.3	$(5^+ \text{ to } 9^+)$ (2^+)	3418 4070.1	100	8077.20		
11301.3	(2)	4655	4.6 3.6	7431.0 6852	$(2^-,3,4^+)$ $(1,2^+)$	
		4677.0	9.1	6824.0	$(2^+,3^-)$	
		4819.4	27	6681.6	(0,1,2)	
		5291.5	0.9	6209.4	4-	
		5526.1	2.7	5974.8	$(0^+ \text{ to } 3^-)$	
		5766.9	2.7	5733.9	1-	
		6343.4	41	5157.3	2+	
		6417.1	27	5083.6	$(2)^{-}$	
		6791.3	59	4709.3	0_{+}	
		6935.1	100	4565.5	2+	
		7564.0	36	3936.5	2+	
		8123.5	41	3376.9	0+	
		11499.4	100	0.0	0_{+}	
11511.7	(2)	X				I_{γ} : 30% γ absolute branching is unobserved.
						Additional information 110.

$\gamma(^{38}\text{Ar})$ (continued)

						7(12) (commuted)
E_i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}^{π}_f	Comments
11511.7	(2)	4146	8	7365		
		4177	8	7334	$(1^- \text{ to } 4^+)$	
		4221.8	12	7289.6	$(3^-,4^+)$	
		4319.2	4	7192.2	$(2^-,3,4)$	
		5025.9	4	6485.4	$(1^-,2,3^-)$	
		5235.2 5301.9	4 4	6276.1 6209.4	4 ⁺ 4 ⁻	
		5458.1	4	6053.2	(4^+)	
		5469.5	8	6041.8	$(3^-,4^+)$	
		5653.7	16	5857.5	(2)	
		5997.9	8	5513.3	3-	
		6161.8	4	5349.4	4+	
		6353.8	32	5157.3	2+	
		6427.5 6945.5	20	5083.6 4565.5	(2) ⁻ 2 ⁺	
		7031.0	4 8	4303.3 4479.98	4-	
		7574.4	16	3936.5	2+	
		7700.7	8	3810.18	3-	
		9343.0	100	2167.472	2+	
		11509.8	8	0.0	0_{+}	
11514.5	1-	X				I_{γ} : 19% γ absolute branching is unobserved. Additional information 111.
		6356.6	3.3	5157.3	2+	
		6430.3	3.3	5083.6	(2)-	
		6948.3	4.9	4565.5	2 ⁺	
		9345.8 11512.6	21 100	2167.472 0.0	0 ⁺	
11519.7	$(1^-,2^+,3^-)$	X X	100	0.0	O	I_{γ} : 50% γ absolute branching is unobserved.
11317.7	(1 ,2 ,3)		25	6960.0	(2= 2.4±)	Additional information 112.
		4649.5 4746.7	25 25	6869.9 6772.7	$(2^-,3,4^+)$ 1^-	
		4897.8	42	6621.6	$(1^-,2,3^-)$	
		5023.5	17	6495.8	$(2^-,3^-)$	
		5305.5	100	6213.8	(2^{+})	
		6361.8	67	5157.3	2+	
		6435.5	25	5083.6	(2)-	
		6953.5	33	4565.5	2 ⁺ 2 ⁺	
		7582.4 7708.7	25 50	3936.5 3810.18	3-	
		9351.0	8.3	2167.472		
11527.6	$(1,2^+)$	X	3.5	210,2	_	I_{γ} : 66% γ absolute branching is unobserved. Additional information 113.

							· ·		
	E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.#	δ#	Comments
	11527.6	$(1,2^+)$	5313.4	18	6213.8	(2+)			
		. , ,	5552.4	36	5974.8	$(0^+ \text{ to } 3^-)$			
			6817.6	18	4709.3	0+			
			7590.3	91	3936.5	2+			
			8149.8	45	3376.9	0^{+}			
			9358.9	100	2167.472				
	11530.2	$(1^-,2^+)$	X						I_{γ} : 19% γ absolute branching is unobserved.
		, ,							Additional information 114.
			6820.2	10.3	4709.3	0^{+}			
			7592.9	8.6	3936.5	2+			
			8152.4	21	3376.9	0^{+}			
			11528.3	100	0.0	0^{+}			
	11540.2	1-	X						I_{γ} : 22% γ absolute branching is unobserved.
									Additional information 115.
			5186.3	5.1	6353.5	1-			
			7602.9	26	3936.5	2+			
			8162.4	5.1	3376.9	0^{+}			
			9371.5	64	2167.472	2+			
!			11538.3	100	0.0	0^{+}			
	11543	$(5^+ \text{ to } 9^+)$	3466	100	8077.20	7+			
	11545.3	$(1^-,2)$	X						I_{γ} : 42% γ absolute branching is unobserved. Additional information 116.
			5687.3	11	5857.5	(2)-			Additional information 110.
			5810.9	13	5733.9	1-			
			6031.5	7.9	5513.3	3-			
			9376.6	100	2167.472				
			11543.4	21	0.0	0+			
	11547	(7 ⁻ to 11 ⁻)	1373	100	10174.29	9-			
	11547	(10^{-})	1374.7 <i>4</i>	100 3	10174.29	9-	D+Q	+1.3 8	E_{γ},I_{γ} : from (²⁸ Si, α 2p γ).
	11349.1	(10)	13/4./ 4	100 3	10174.29	9	D+Q	+1.3 0	Mult., δ : from $\gamma(DCO)$ in (^{28}Si , $\alpha 2p\gamma$), $\Delta J=1$. Original value of δ :
			1524.4 <i>4</i>	41 3	10024.9	(8-)	Q		$+0.5 < \delta < +2.2$. E_{γ},I_{γ} , Mult.: from $(^{28}\text{Si},\alpha 2\text{p}\gamma)$.
			102,		-002	(~)	*		Mult.: from $\gamma(DCO)$ in ($^{28}Si_{,}\alpha 2p\gamma$), $\Delta J=2$.
	11552.6	(1)-	X						I_{γ} : 21% γ absolute branching is unobserved. Additional information 117.
			4728.3	10.0	6824.0	$(2^+,3^-)$			
			4779.6	2.5	6772.7	1-			
			4930.7	5.0	6621.6	$(1^-,2,3^-)$			
			5056.4	7.5	6495.8	$(2^{-},3^{-})$			
			5577.4	10.0	5974.8	$(0^+ \text{ to } 3^-)$			
			5694.6	2.5	5857.5	(2)			
						. /			
ı									

γ (³⁸Ar) (continued)

	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	Comments
	11599.6	$(1,2^+)$	7662.3	12	3936.5	2+		
			9430.9	100	2167.472	2+		
			11597.7	2.9	0.0	0^{+}		
	11605.8	$(1,2^+)$	X					I_{γ} : 39% γ absolute branching is unobserved.
			4022 0	1.6	6770.7	1-		Additional information 121.
			4832.8 5630.6	16 58	6772.7 5974.8	1 ⁻ (0 ⁺ to 3 ⁻)		
			6447.9	38 74	5157.3	(0 to 3) 2 ⁺		
			7039.6		4565.5	2+ 2+		
			9437.1	47	4303.3 2167.472			
			11603.9	100 26		0 ⁺		
1	11608	$(5^+ \text{ to } 9^+)$	3531	26 100	0.0 8077.20	7 ⁺		
	11608	(3. (6.9.)	1440.3 2	100	10174.29	9-	E2	B(E2)(W.u.)=2.5 + 19-7
	11014./	11	1440.3 2	100	10174.29	7	EZ	E_{γ} : weighted average of 1440.9 4 from (28 Si, α 2p γ), 1440.2 2 from (16 O,2p γ),
								and 1440.31 25 from (¹⁴ N,n2py).
								Mult.: from $\gamma(\theta, \text{pol})$ in ($^{16}\text{O}, 2\text{p}\gamma$), $\gamma(\text{DCO})$ in ($^{28}\text{Si}, \alpha 2\text{p}\gamma$), also supported by $\gamma(\theta)$ in ($^{14}\text{N}, n2\text{p}\gamma$).
	11620	$(7^+ \text{ to } 11^+)$	1686	100	9934.0	(9^+)		$\gamma(0)$ in $(-14,112p\gamma)$.
5	11630	(/ 10 11)	2431	100	9199	(4 ⁻ to 8 ⁻)		
	11650.9	(9-)	2301 2	100	9349.6	(7^{-})	Q	Mult.: from $\gamma(DCO)$ in $(^{28}Si,\alpha^2p\gamma)$ for a doublet structure.
	11652.1	$(3,4^+)$	X X	100	7547.0	(1)	V	I_{γ} : 40% γ absolute branching is unobserved. Additional information 122.
			4418.0	18	7233.8	$(1^- \text{ to } 4^+)$		Additional information 122.
			4551.0	9.1	7100.8	$(1 to 4^+)$		
			4781.9	36	6869.9	$(2^-,3,4^+)$		
			5155.9	18	6495.8	$(2^{-},3,4^{-})$ $(2^{-},3^{-})$		
			5313.1	27	6338.6	1-,2-,3-		
			5442.3	27	6209.4	1 ,2 ,3 4 ⁻		
			5794.1	27	5857.5	(2)		
1			6057.0	27	5594.6	2 ⁺		
			6138.3	9.1	5513.3	3-		
1			6302.1	9.1	5349.4	4 ⁺		
			6774.5	100	4877.0	3-		
1			7085.9	18	4565.5	2+		
1			7171.4	18	4479.98	4-		
1			7714.8	73	3936.5	2 ⁺		
1			7841.1	55	3810.18	3-		
			9483.4	73	2167.472			
1	11672.3	(3)	у 4 05. 4 Х	13	2107.772	_		I_{γ} : 11% γ absolute branching is unobserved.
1	110/2.3	(5)	Α					Additional information 123.
П			3989	5.3	7683	$(3^-,4^+)$		Taditolia information 125.

γ (³⁸Ar) (continued)

E (laval)	īπ	Б. †	т ‡	Е	īπ	Comments
$E_i(level)$	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^{π}	Comments
11672.3	(3)	4382.4	7.7	7289.6	$(3^-,4^+)$	
		4479.8 4571.2	5.3 5.3	7192.2 7100.8	$(2^-,3,4)$ $(1^- \text{ to } 4^+)$	
		4626 [@]	3.3			
		4848.0	18	7046 6824.0	$(3^-,4^+)$ $(2^+,3^-)$	
		5050.3	7.7	6621.6	$(1^-,2,3^-)$	
		5070.3	18	6601.59	4-	
		5176.1	29	6495.8	$(2^-,3^-)$	
		5186.5	8.8	6485.4	$(1^-,2,3^-)$	
		5333.3 5395.8	12 24	6338.6 6276.1	1 ⁻ ,2 ⁻ ,3 ⁻ 4 ⁺	
		5422.0	7.1	6249.9	2+	
		5458.1	47	6213.8	(2^{+})	
		5618.7	47	6053.2	(4^{+})	
		5630.1	11	6041.8	$(3^-,4^+)$	
		5814.3 5846.9	5.9 8.2	5857.5 5824.9	(2) ⁻ 3 ⁻	
		6158.5 [@]	6.5	5513.3	3 3-	
		6322.3 [@]	5.3	5349.4	3 4 ⁺	
		6514.4	3.3 8.8	5157.3	2 ⁺	
		6588.1	59	5083.6	$(2)^{-}$	
		6794.6	14	4877.0	3-	
		7106.1	7.7	4565.5	2+	
		7191.6 7735.0	18 18	4479.98 3936.5	4 ⁻ 2 ⁺	
		7755.0 7861.2	100	3810.18	3-	
		9503.6	18	2167.472		
11682.7	(4^{+})	X				I_{γ} : 28% γ absolute branching is unobserved.
		12011			- 1	Ádditional information 124.
		4394.1 5406.2	12 12	7288.32 6276.1	6 ⁺ 4 ⁺	
		5432.4	20	6249.9	2+	
		5629.1	8.0	6053.2	(4^+)	
		5640.5	8.0	6041.8	$(3^-,4^+)$	
		5857.3	44	5824.9	3-	
		6168.9 6332.7	8.0 100	5513.3 5349.4	3 ⁻ 4 ⁺	
		6805.0	12	4877.0	3-	
		7096.1	12	4585.87	5-	
		7116.5	8.0	4565.5	2+	
		7871.6	44	3810.18	3-	

$\gamma(^{38}\text{Ar})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Comments
1703.5	$\overline{(3^-,4^+)}$	Х				I _γ : 36% γ absolute branching is unobserved. Additional information 125.
		3711	20	7992	$(1^-,2,3^-)$	
		4020	30	7683	$(3^-,4^+)$	
		4164	10	7539	(3,4,5)	
		4469.4	30	7233.8	$(1^- \text{ to } 4^+)$	
		4602.4 4799.4	30 40	7100.8 6903.8	$(1^- \text{ to } 4^+)$ $2^-, 3^-$	
		4879.2	20	6824.0	$(2^+,3^-)$	
		5081.5	10	6621.6	$(1^-,2,3^-)$	
		5101.5	10	6601.59	4-	
		5217.7	10	6485.4	$(1^-,2,3^-)$	
		5427.0	10	6276.1	4+	
		5489.3 5649.8	10	6213.8	(2^{+})	
		5049.8 6189.7	80 10	6053.2 5513.3	(4 ⁺) 3 ⁻	
		6353.5	50	5349.4	4 ⁺	
		6825.8	80	4877.0	3-	
		7116.9	20	4585.87	5-	
		7137.3	20	4565.5	2+	
		7222.8	30	4479.98	4-	
		7766.1 7892.4	100 20	3936.5 3810.18	2 ⁺ 3 ⁻	
1716.6	(2^{+})	7692.4 X	20	3610.16	3	I_{γ} : 29% γ absolute branching is unobserved.
1710.0	(2)					Additional information 126.
		5094.6	6.9	6621.6	$(1^-,2,3^-)$	
		5230.8 5377.6	3.5 3.5	6485.4 6338.6	$(1^-,2,3^-)$	
		5502.4	3.3 14	6213.8	1 ⁻ ,2 ⁻ ,3 ⁻ (2 ⁺)	
		5506.8	3.5	6209.4	4-	
		5674.3	3.5	6041.8	$(3^-,4^+)$	
		5741.3	3.5	5974.8	$(0^+ \text{ to } 3^-)$	
		5982.2	10	5733.9	1-	
		6558.7 6838.9	21 28	5157.3 4877.0	2 ⁺ 3 ⁻	
		7006.6	3.5	4877.0 4709.3	3 0 ⁺	
		7779.2	21	3936.5	2+	
		7905.5	3.5	3810.18	3-	
		8338.7	6.9	3376.9	0^{+}	
		9547.8	14	2167.472		
		11714.7	100	0.0	0_{+}	

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	J_f^π	Comments
11800.1	(1,2+)	X				I_{γ} : 19% γ absolute branching is unobserved. Additional information 134.
		5942.1	14	5857.5	(2)	
		6065.7 6715.9	12 9.3	5733.9 5083.6	1 ⁻ (2) ⁻	
		7233.9	9.3	4565.5	2+	
		9631.3	44	2167.472	2+	
11805.9	3-	11798.1 x	100	0.0	0+	I_{γ} : 39% γ absolute branching is unobserved.
11003.9	3		4.0	7421.0	(2- 2 4+)	Additional information 135.
		4374.6 5555.6	4.8 13	7431.0 6249.9	$(2^-,3,4^+)$ 2^+	
		5752.2	3.9	6053.2	(4^{+})	
		6210.8	17	5594.6	2+	
		6455.9 6648.0	10 5.2	5349.4 5157.3	4 ⁺ 2 ⁺	
		6721.7	13	5083.6	(2)-	
		6928.2	13	4877.0	3-	
		7239.7 7325.2	100 8.7	4565.5 4479.98	2 ⁺ 4 ⁻	
		7868.5	30	3936.5	2 ⁺	
		7994.8	11	3810.18	3-	
11812.2	$(1,2^+)$	9637.1 x	35	2167.472	2 ⁺	I_{γ} : 38% γ absolute branching is unobserved.
11012.2	(1,2)		2.2	21 (7. 172	24	Additional information 136.
		9643.4 11810.2	3.3 100	2167.472 0.0	0 ⁺	
11823.1	$(3^-,4^+)$	X	100	0.0	O	I_{γ} : 72% γ absolute branching is unobserved.
			100	6601.70	4-	Additional information 137.
		5221.1 5546.6	100 17	6601.59 6276.1	4 ⁻ 4 ⁺	
		5572.8	42	6249.9	2 ⁺	
		5613.3	25	6209.4	4-	
		5997.7 6164.0	17 8.3	5824.9 5658.61	3- 5-	
		7236.5	8.3 25	4585.87	5 5-	
11832.0	3-	X				I_{γ} : 61% γ absolute branching is unobserved. Additional information 138.
		6954.3	36	4877.0	3-	
		7245.4	43	4585.87	5-	
		7265.8	29	4565.5	2+	

γ (³⁸Ar) (continued)

								
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	δ#	Comments
11832.0	3-	8020.9	21	3810.18				
		9663.2	100	2167.472	2+			
11873.8	$(3,4^+)$	X						I_{γ} : 39% γ absolute branching is unobserved.
		5507.2	12	(276.1	4+			Additional information 139.
		5597.3 5820.1	13 25	6276.1 6053.2	(4 ⁺)			
		6015.8	19	5857.5	(2)			
		6715.9	13	5157.3	2+			
		6789.5	44	5083.6	(2)			
		6996.1	69	4877.0	3-			
		7307.5	31	4565.5	2+			
		7393.0	56	4479.98	4-			
		7936.4	13	3936.5	2+			
11005.0	(1.0.0)-	9705.0	100	2167.472	2+			T 40%
11887.8	$(1,2,3)^-$	X						I_{γ} : 40% γ absolute branching is unobserved. Additional information 140.
		6292.6	8.3	5594.6	2+			
		6335.0	8.3	5552.21	$1^+, 2^+$			
		6729.9	17	5157.3	2+			
		6803.5	29	5083.6	(2)			
		7950.4	88	3936.5	2 ⁺			
11905.7	$(3^-,4,5^-)$	9719.0 x	100	2167.472	2.			I_{γ} : 67% γ absolute branching is unobserved.
11703.7	(5,7,5)	Λ						Additional information 141.
		5303.7	56	6601.59	4-			
		6246.5	89	5658.61	5-			
		7028.0	89	4877.0	3-			
		7319.1	100	4585.87	5-			
		8094.6	33	3810.18	3-			28
11915.4	(10^{+})	2378 1	18 5	9537.0	8(+)			E_{γ}, I_{γ} : from $\binom{28}{5}, \alpha 2p\gamma$.
		2576.2 8	100 5	9339.2	8+	Q		E_{γ}, I_{γ} : from (²⁸ Si, α 2p γ).
11020.0	4-	2020	156	0000	(4+ 5 (-)			Mult.: from $\gamma(DCO)$ in ($^{28}Si,\alpha 2p\gamma$).
11928.0	4-	2930 3128	1.5 <i>6</i> 4.9 <i>3</i>	8998 8800	$(4^+,5,6^-)$ $(2^- \text{ to } 6^-)$			
		4431	3.4 6	7497	$(3,4,5^{-})$			
		4496.7	0.6 3	7431.0	$(2^-,3,4^+)$			
		4578	1.5 6	7350	$(3^-,4^+)$			
		4638.1	1.5 6	7289.6	$(3^-,4^+)$			
		5023.8	2.8 6	6903.8	2-,3-			
		5057.7	1.5 9	6869.9	$(2^-,3,4^+)$			
		5326.0	100.0 18	6601.59	4-	M1(+E2)	+0.05 8	Mult., δ : from $\gamma(\theta,\text{pol})$ in (p,γ) :resonances.

γ (³⁸Ar) (continued)

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}^{\ddagger}$	\mathbb{E}_f	J_f^π	Mult.#	δ#	Comments
11928.0	4-	5651.4	3.4 9	6276.1	4+			
		5718.1	67.9 <i>15</i>	6209.4	4-	M1(+E2)	-0.02 8	Mult., δ : from $\gamma(\theta,\text{pol})$ in (p,γ) :resonances.
		5874.3	1.5 6	6053.2	(4^{+})			
		6102.6	1.8 9	5824.9	3-			
		6268.8	16.2 12	5658.61	5-			
		6414.1	30.9 21	5513.3	3-	(M1(+E2))	-0.03 9	Mult., δ : D(+Q) from $\gamma(\theta)$ in (p, γ):resonances.
		6578.0	2.5 9	5349.4	4 ⁺			
		7050.3	11.3 12	4877.0	3-	(M. 11 . TO)	0.20.10	M I C D O C (0)
		7341.4	20.2 12	4585.87	5 ⁻	(M1+E2)	-0.20 10	Mult., δ : D+Q from $\gamma(\theta)$ in (p, γ):resonances.
		7361.7	4.3 9	4565.5	2 ⁺	(M1(+E2))	0.10.70	Mult & D + O from + (0) in (n +) tracenoness
		7447.2 7990.6	21.1 <i>12</i> 0.6 <i>3</i>	4479.98 3936.5	4 ⁻ 2 ⁺	(M1(+E2))	-0.10 <i>10</i>	Mult., δ : D+Q from $\gamma(\theta)$ in (p,γ) :resonances.
		8116.9	5.8 <i>6</i>	3810.18	3-			
		8550.1 [@]						
			<2.1	3376.9	0+			
		9759.2	3.1 9	2167.472				
		11926.0 [@]	< 0.3	0.0	0+			20
11997.5	$(7^- \text{ to } 11^-)$	1050 1	100	10947.5	(9-)			E_{γ} : from (28 Si, α 2p γ).
12106.8	(10^+)	2570 [@] 2	25 8	9537.0	8(+)			E_{γ},I_{γ} : from (²⁸ Si, α 2p γ).
		3537 2	100 17	8569.59	8+			E_{γ}, I_{γ} : from (²⁸ Si, α 2p γ).
12394	$(3^-,4,5^-)$	X						I_{γ} : 48% γ absolute branching is unobserved.
								Additional information 142.
		6184	46	6209.4	4-			
		6352	4.2	6041.8	$(3^-,4^+)$			
		6735	4.2	5658.61	5-			
		6880	100	5513.3	3-			
		7516 7807	33 13	4877.0	3 ⁻ 5 ⁻			
		8583	4.2	4585.87 3810.18	3 3-			
12405	$(3^-,4,5^-)$	0303 X	4.4	3010.10	J			I_{γ} : 48% γ absolute branching is unobserved.
14703	(5,7,5)	Λ						Additional information 143.
		6195	75	6209.4	4-			Traditional Internation 1 15.
		6579	10	5824.9	3-			
		6891	100	5513.3	3-			
		7527	25	4877.0	3-			
		7818	20	4585.87	5-			
		7924	25	4479.98	4-			
		8594	5.0	3810.18	3-			••
13683.7	(12 ⁻)	2068.5 7	100 6	11614.7	11-	D+Q		$E_{\gamma}I_{\gamma}$: from (²⁸ Si,α2pγ). Mult.,δ: from γ(DCO) in (²⁸ Si,α2pγ), δ=-2.7 +6-8 or -0.30 +8-11.
		2134.9 6	97 13	11549.1	(10^{-})	Q		E_{γ},I_{γ} : from (²⁸ Si, α 2p γ).

$\gamma(^{38}\text{Ar})$ (continued)

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.#	Comments
14119.7	$(8^+,9,10,11^+)$	2821 2	100 29	11298.7 (10+)	E_{γ},I_{γ} : from (²⁸ Si, α 2p γ).
		4185 <i>3</i>	57 29	9934.0 (9+)		$E_{\gamma}I_{\gamma}$: from (²⁸ Si, α 2p γ).
14391.2	(12^{+})	2285 [@] 1	8 2	12106.8 (10 ⁺)	E_{γ},I_{γ} : from (²⁸ Si, α 2p γ).
		2475.7 8	100 8	11915.4 (10 ⁺) Q	E_{γ},I_{γ} : from (²⁸ Si, α 2p γ).
						Mult.: from $\gamma(DCO)$ in (28 Si, $\alpha 2$ p γ).
		3093 2	29 8	11298.7 (10 ⁺)	$E_{\gamma}I_{\gamma}$: from (²⁸ Si, α 2p γ).
14877.5	(12^{+})	2962 2	100	11915.4 (10 ⁺)	
15393.9	(13^{-})	3779 2	100	11614.7 11	Q	E_{γ},δ : from (28 Si, α 2p γ).
17002.3	(14^{+})	2611 <i>1</i>	100	14391.2 (12 ⁺)	E_{γ} : from (28 Si, α 2p γ).
17780.9		4097 2	100	13683.7 (12-)	E_{γ} : from (28 Si, α 2p γ).
18070?	(14^{+})	3192 [@] 3	100	14877.5 (12+)	E_{γ} : from (28 Si, α 2p γ).
21662?	(16^+)	3592 [@] 3	100	18070? (14 ⁺)	E_{γ} : from (²⁸ Si, α 2p γ).

 $^{^{\}dagger}$ Values with uncertainties are from (p,γ) :resonances and those without uncertainties are from level-energy differences (with the latter also reported in (p,γ) :resonances), unless otherwise noted.

[‡] From (p,γ) :resonances, unless otherwise noted.

[#] The assignments are from $\gamma(\theta)$, $\gamma\gamma(\theta)$ (DCO) and $\gamma(\text{lin pol})$ measurements. In addition, RUL for E2 and M2 transitions is used when level lifetimes are known. The measurements are primarily from the following reactions: $^{24}\text{Mg}(^{16}\text{O},2\text{p}\gamma)$, $^{27}\text{Al}(^{14}\text{N},\text{n2p}\gamma)$, $^{27}\text{Al}(^{16}\text{O},\alpha\text{p}\gamma)$, $^{16}\text{O}(^{28}\text{Si},\alpha\text{2p}\gamma)$ and $^{37}\text{Cl}(\text{p},\gamma)$:resonances.
© Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{38}_{18}\mathrm{Ar}_{20}$

Legend

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{38}_{18}Ar_{20}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

 $^{38}_{18}\mathrm{Ar}_{20}$

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{38}_{18}\mathrm{Ar}_{20}$

Level Scheme (continued)

Legend

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{38}_{18}\mathrm{Ar}_{20}$

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Legend

γ Decay (Uncertain)

0.0

stable

Level Scheme (continued)

Intensities: Relative photon branching from each level

90,3 (81) 3 236 (81) 3 601; 45 (42) 10 20, 1 (4 $\frac{(1^-,2,3^-)}{(2^+,3^-)}$ 11197.6 <0.2 keV 11184.8 <0.2 keV 11175 $\frac{1^-}{(5^- \text{ to } 9^-)}$ 11174 7-8972.85 <28 fs $(1^-,2,3^-)$ <u>7992</u> <4 fs $\begin{array}{c}
(1^-,2,3^-) \\
(1^- \text{ to } 4^+) \\
(2^+) \\
\hline
(2^-,3,4^+) \\
(2^+,3^-)
\end{array}$ 7233.8 6947.9 6869.9 6824.0 17 fs 6 1⁻ (1⁻,2,3⁻) 6772.7 <2.8 fs 6621.6 36 fs 12 6574.3 <3.5 fs 1-,2-,3-6353.5 3.6 fs 14 6338.6 <13 fs 2⁺ (2) 6249.9 > 111 fs15.2 fs 35 0.24 ps +62-14 5857.5 3-1-2+ 1+,2+ 5824.9 5733.9 <4 fs 5594.6 60 fs 18 * 5552.21 11 fs 6 $\frac{3^{-}}{2^{+}}$ $\frac{(2)^{-}}{3^{-}}$ $\frac{3^{-}}{2^{+}}$ 5513.3 0.19 ps 6 5157.3 23 fs 7 5083.6 39 fs 10 4877.0 34 fs 8 4565.5 36 fs 3 3936.5 43 fs 5 3810.18 56 fs 14 2167.472 0.458 ps 21

 $^{38}_{18} Ar_{20}$

 0^{+}

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{38}_{18}{\rm Ar}_{20}$

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

• γ Decay (Uncertain)

