SCBOOLSEQ – scRNA-Seq data binarization and synthetic generation from Boolean dynamics

Gustavo Magaña López *1 , Laurence Calzone 2 , Andrei Zinovyev 2 , and Loïc Paulevé 1

¹ Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France

² Institut Curie, INSERM, U900, MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France

Overview scRNA-seq counts scBoolSeq is a Python package for linking scRNA-Seq data and Boolean gene activation states. Cell 2395 3.057174 4.433269 2.263485 2.307164 2.574745 3.080573 0.000000 .simulate() It uses a reference dataset to: 001010100 **Trajectory** - Binarize experimental data reconstruction (011000110) - Sample synthetic scRNA-Seq from 101010011 scBoolSeq simulations of Boolean networks. .binarize() binary scRNA-seq counts Synthetic scRNA-Seq can serve as a 100100111 **Boolean dynamics** ground-truth baseline for validating Pseudotime inference methods.

Binarization

Binarization is performed by comparing each count to the thresholds determined from the learned distributions on the reference dataset. It results in either a Boolean or undetermined value.

Minimal binarization example:

```
from scboolseq import scBoolSeq
reference = pd.read_csv("reference_scRNA_counts.csv")
scbool = scBoolSeq(data=reference)
scbool.fit() # compute binarization criteria
binarized = scbool.binarize(reference) # or other dataset
```

Sampling from the learned distributions with our algorithm reproduces the reference's profiles:

fied dataset (688 genes over 5347 cells) is less than a minute.

Synthetic scRNA-Seq Generation

The synthetic RNA-Seq data **from Boolean states** is generated by **biased sampling** from the estimated gene count distributions.

- Synthetic scRNA-Seq counts use biased sampling to reflect the underlying Boolean value.
- **Drop-outs are simulated** with probabilities that decay exponentially with the sampled expression value.

Minimal synthesis example:

```
from scboolseq import scBoolSeq
reference = pd.read_csv("reference_scRNA_counts.csv")
scbool = scBoolSeq(data=reference)
scbool.simulation_fit() # compute simulation criteria
syndata = scbool.simulate(boolean_trace)
```

