Classificação supervisionada de imagens de satélite para mapeamento de áreas cafeeiras: estudos das regiões de Três Pontas e São Sebastião do Paraíso - MG

Rennan de Freitas Bezerra Marujo ⁽¹⁾, Margarete Lordelo Volpato ⁽²⁾, Tatiana Grossi Chiquiloff Vieira ⁽³⁾, Helena Maria Ramos Alves ⁽⁴⁾, Mária Bruna Pereira Ribeiro ⁽⁵⁾

(1)Bolsista FAPEMIG/EPAMIG, rennanmarujo@gmail.com

(2) Pesquisadora, D. Sc., EPAMIG, Bolsista FAPEMIG, Lavras-MG, margarete@epamig.ufla.br

(3) Pesquisadora, M. Sc., EPAMIG, Bolsista FAPEMIG, Lavras-MG, tatiana@epamig.ufla.br

⁽⁴⁾Pesquisadora, D. Sc., EMBRAPA CAFÉ, Brasília, DF, helena@embrapa.br

(5) Bolsista CBP&D Café, Geógrafa, EPAMIG, Lavras-MG, mariabruna9@yahoo.com.br

INTRODUÇÃO

O Brasil é o maior produtor e exportador de café do mundo segundo dados do IBGE (Instituto Brasileiro de Geografia e Estatística), sendo estimado que o país deverá colher mais de cinquenta milhões de sacas de sessenta quilos do produto beneficiado (Árabica e Conilon) para a safra de 2012 (CONAB, 2012).

Segundo Moreira (2008) conhecer como a atividade cafeeira esta distribuída é importante para planejar e prever sua distribuição em escala municipal, estadual e federal vide seu valor socioeconômico para o Brasil. Mais de 50% desta produção encontra-se no estado de Minas Gerais, apesar disso a cafeicultura mineira ainda carece de informação complementar principalmente sobre sua distribuição espacial e o ambiente em que é cultivada.

Venturieri (1996) afirma que o processamento digital de imagem constitui de poderosas ferramentas, capazes de retificar, classificar e realçar imagens orbitais, sendo estas de grande aplicação na área de recursos naturais. Souza et al. (2009) afirmam que para o mapeamento de cultivos cafeeiros ferramentas de classificação automática raramente são utilizadas. Adami et al. (2007) explicam que isto ocorre, pois o comportamento espectral das lavouras de café é muito variado em consequência de espaçamento, sistema de manejo e cultivo, idade, dentre outros fatores assemelhando-se nas classificações à outros cultivos e mata nativa.

Coltri et al. (2011) afirmam que estudos com imagens de alta resolução como a *Ikonos*, *Quickbird* e Geoeye-1 têm obtido destaque quando aplicadas para ambientes cafeeiros quando comparadas com as tradicionais imagens *Landsat*, desta forma utilizar o satélite *RapidEye* aparenta ser uma boa opção para estudos de ambientes cafeeiros.

Este trabalho visa avaliar a classificação supervisionada pixel a pixel do algoritmo de máxima verossimilhança em dois ambientes cafeeiros distintos: Três Pontas e São Sebastião do Paraíso, em imagens de satélite de alta resolução como a RapidEye.

MATERIAL E MÉTODOS

Os dados multiespectrais foram adquiridos do sensor RE-4, acoplado aos satélites REIS (*RapidEye imaging system*) para a região de Três Pontas, São Sebastião do Paraíso e municípios vizinhos, com data de passagem 12 de Agosto de 2009. Essas imagens pertencem ao banco de dados geográficos do Governo do estado de Minas Gerais.

A primeira área de estudo esta compreendida na região de Três Pontas (21º20'S e 45º28'O ponto EPAMIG); a segunda área de estudo esta compreendida na região de São Sebastião do Paraíso (20º55'S e 46º55'O ponto EPAMIG). As características de cada área de estudo podem ser observadas na tabela 1.

Tabela 1. Caracterização das áreas de estudo

Área de Estudo	Três Pontas	São Sebastião do Paraíso
Área (km²)	510	520
Altitude	900	890
Precipitação média anual (mm)	1434	1470
Temperatura média (°C)	18,5	20,8
Relevo	Ondulado	Suave Ondulado
Solo	Latossolos	Latossolos e Nitossolos Vermelhos Férricos

Inicialmente foi realizada a interpretação visual das imagem e elaboração dos mapas de uso da terra, onde foram obtidas as classes: "café", "mata", "água", "outros" e "urbano". Em seguida foi realizada a amostragens das classes de uso da terra nas imagens e as classificações supervisionadas pixel a pixel através do algoritmo "máxima verossimilhança". Foi utilizado o software ENVI 4.7 para classificação pixel a pixel e validação das classificações, através dos índices globais, Kappa, acurácia do produtor e acurácia do consumidor, obtidos na matriz de confusão gerada mediante comparação do mapa classificado com o mapa interpretado visualmente.

RESULTADOS E DISCUSSÃO

Para os valores da classificação da área de estudo de Três Pontas, o índice Global e o índice Kappa obtiveram valores de 75,894% e 0,61964 respectivamente enquanto que a acurácia de produtor e consumidor para a classe café obteve valores de 77,52% e 54,69% respectivamente.

Para os valores da classificação da área de estudo de São Sebastião do Paraíso, o índice Global e o índice Kappa obtiveram valores de 82,3148% e 0,6195 respectivamente enquanto que a acurácia de produtor e consumidor para a classe café obteve valores de 72,91% e 50,71% respectivamente.

De acordo com a classificação de Landis & Koch (1977) para o índice Kappa, ambos resultados de classificação foram muito bons. Em uma análise geral a classificação em São Sebastião do Paraíso se sobressaiu nas acurácias, mas em uma análise puramente da classe cafeeira, a área de estudo de Três Pontas obtém uma acurácia maior, o que pode ser explicado pelo seu relevo ondulado com menor

sombreamento e plantios melhores definidos quando comparada a área de estudo de São Sebastião do Paraíso. Sombras e irregularidades no plantio favorecem a confusão da classe com a classe mata nativa, uma vez que a resposta espectral do café e da mata nativa são complexas e semelhantes como observado por Souza et al. (2009) e Adami et al. (2007).

CONCLUSÃO

O algoritmo supervisionado de classificação pixel a pixel "máxima verossimilhança" obteve-se uma classificação satisfatória, demonstrando que o método possui grande potencial para ser utilizado no mapeamento de áreas cafeeiras em condições ambientais semelhantes as encontradas neste estudo.

AGRADECIMENTOS

Os autores agradecem à Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), pelas bolsas e financiamento concedidos.

REFERÊNCIAS BIBLIOGRÁFICAS

ADAMI, M., MOREIRA, M. A., RUDORFF, B. F. T. Avaliação do tamanho da amostra de segmentos regulares para estimar a área plantada com café na região sul de Minas Gerais. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, XIII, 2007, Florianópolis. **Anais**... São José dos Campos: INPE, 2007. P. 15-20. Disponível em: http://www.dsr.inpe.br/laf/cafesat/artigos/AvaliacaoCafeSulMG.pdf. Acesso em: 11 nov. 2012.

COLTRI, P. P., CORDEIRO, R. L. F., SOUZA, T. T., ROMANI, L. A. S., ZULLO, J. J., TRAINA, C. J., TRAINA., A. J. M. Classificação de áreas de café em Minas Gerais por meio do novo algoritmo QMAS em imagem espectral Geoeye-1. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, XV, 2011, Curitiba. **Anais...** São José dos Campos: INPE, 2011. p. 539-546. Disponível em: http://www.dsr.inpe.br/sbsr2011/files/p0993.pdf>. Acesso em: 06 nov. 2012.

CONAB. Acompanhamento da safra brasileira: Café (terceira estimativa 2012).

LANDIS, J.R. & KOCH, G.G. **Research Support:** The measurement of observer agreement for categorical data. Biometrics. 1977. v.33, n.1, p. 159-174,.

MOREIRA, M. A. **Geotecnologias no mapeamento da cultura do café em escala municipal**. Uberlândia, 2008. 10p. Disponível em: http://www.scielo.br/scielo.php?pid=S1982-45132008000100007&script=sci_arttext. Acesso em: 12 jul. 2012.

SOUZA, V. C. O., VIEIRA, T. G. C., ALVES, H. M. R., VOLPATO, M. M. L. Análise e classificação textural de áreas de mata e café na região de Machado – MG. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, XIV, 2009, Natal. **Anais...** São José dos Campos: INPE, 2009. p. 25-30. Disponível em: http://www.alice.cnptia.embrapa.br/bitstream/doc/880111/1/Analiseeclassificacao.pdf Acesso em: 14 abril. 2012.

VENTURIERI, A. Segmentação de imagens e lógica nebulosa para treinamento de uma rede neural artificial na caracterização do usa da terra na região de Tucuruí (PA). 1996. Disseração (Mestrado em Sensoriamento Remoto) – Instituto Nacional de

Pesquisas Espaciais, São José dos Campos, 1996. Disponível em: http://urlib.net/sid.inpe.br/iris@1912/2005/07.20.10.59 Acesso em: 30 abril. 2012.

Classificação pixel a pixel da área de estudo

Figura 1 – Classificação pixel a pixel supervisionada através do algoritmo de máxima verossimilhança para a área de estudo de Três Pontas.

Figura 2 – Classificação pixel a pixel supervisionada através do algoritmo de máxima verossimilhança para a área de estudo de São Sebastião do Paraíso.