પ્રશ્ન 1(અ) [3 ગુણ]

નીચેના શબ્દને વ્યાખ્યાયિત કરો: (1) Accuracy (2) Resolution (3) Error

જવાબ:

શહ€	વ્યાખ્યા
Accuracy	માપન અને વાસ્તવિક મૂલ્ય વચ્ચેની નજીકતા
Resolution	નાનામાં નાના ફેરફાર કે જે એક ઉપકરણ દ્વારા માપી શકાય છે
Error	માપેલા મૂલ્ય અને વાસ્તવિક મૂલ્ય વચ્ચેનો તફાવત

મેમરી ટ્રીક: "ARE સચોટ: Accuracy વાસ્તવિકતા દર્શાવે છે, Error વિચલન બતાવે છે, Resolution વિગત દર્શાવે છે."

પ્રશ્ન 1(બ) [4 ગુણ]

અનબાઉન્ડેડ સ્ટ્રેઈન ગેજ ટ્રાન્સડ્યુસરનું બાંધકામ જરૂરી આકૃતિ સાથે વિગતવાર સમજાવો. તેની એપ્લિકેશનની યાદી બનાવો.

જવાબ:

અનબાઉન્ડેડ સ્ટ્રેઈન ગેજમાં પાતળા તારની ગ્રીડ પેટર્ન હોય છે જે એક બેકિંગ મટીરિયલ પર લગાવેલી હોય છે.

- **બાંધકામના ઘટકો**: પાતળા રેસિસ્ટન્સ તારને ઇન્સ્યુલેટિંગ બેઝ મટીરિયલ પર આગળ-પાછળ લૂપ્સમાં ગોઠવેલ હોય છે
- **કાર્યસિદ્ધાંત**: જ્યારે સ્ટ્રેઈન (તણાવ) લાગે ત્યારે પ્રતિરોધમાં ફેરફાર થાય છે
- **એપ્લિકેશન**: વજન માપન, પ્રેશર સેન્સર, ફોર્સ સેન્સર, સ્ટ્રક્ચરલ હેલ્થ મોનિટરિંગ

મેમરી ટ્રીક: "WIRE Flexes: તાર ગ્રીડ બાહ્ય તણાવથી પ્રતિરોધ બદલાવ દર્શાવે છે."

પ્રશ્ન 1(ક) [7 ગુણ]

સંતુલન સ્થિતિ માટે સર્કિટ ડાયાગ્રામ સાથે Schering બ્રિજનું કાર્ય સમજાવો. તેના ફાયદા, ગેરફાયદા અને એપ્લિકેશનોની યાદી બનાવો.

જવાબ:

Schering બ્રિજ એ AC બ્રિજ છે જે અજ્ઞાત કેપેસિટન્સ અને તેના ડિસિપેશન ફેક્ટરને માપવા માટે વપરાય છે.

સંતુલન શરત:

સમીકરણ	વર્ણન
Cx = C2(R2/R1)	કેપેસિટન્સ ગણતરી માટે
Dx = R2(C2/Cx)	ડિસિપેશન ફેક્ટર માટે

ફાયદા:

- ઉચ્ચ યોકસાઈ
- કેપેસિટન્સનું સીધું રીડિંગ
- વ્યાપક માપન શ્રેણી

ગેરફાયદા:

- સાવચેત શીલ્ડિંગની જરૂર પડે છે
- આવૃત્તિ આધારિત ભૂલો
- સંતુલન સાધવામાં જટિલ

એપ્લિકેશન:

- કેપેસિટર ટેસ્ટિંગ
- ઇન્સ્યુલેશન ટેસ્ટિંગ
- ડાઇલેક્ટ્રિક મટીરિયલ મૂલ્યાંકન

મેમરી ટ્રીક: "SCUBA ડાઇવ: Schering અજ્ઞાત કેપેસિટન્સને એડવાન્સ્ડ સર્કિટ ડિઝાઇન દ્વારા વિવિધ ઉપકરણોમાં ગણે છે."

પ્રશ્ન 1(ક OR) [7 ગુણ]

સંતુલન સ્થિતિ માટે સર્કિટ ડાયાગ્રામ સાથે Maxwell's બ્રિજનું કાર્ય સમજાવો. તેના ફાયદા, ગેરફાયદા અને એપ્લિકેશનોની યાદી બનાવો.

જવાબ:

Maxwell's બ્રિજ અજ્ઞાત ઇન્ડક્ટન્સને જાણીતા કેપેસિટન્સના સંદર્ભમાં માપવા માટે વપરાય છે.

સંતુલન શરત:

સમીકરણ	વર્ણન
$Lx = C4 \cdot R2 \cdot R3$	ઇન્ડક્ટન્સ ગણતરી માટે
$Rx = R1 \cdot (R3/R2)$	રેસિસ્ટન્સ ગણતરી માટે

ફાયદા:

- આવૃત્તિથી સ્વતંત્ર
- મધ્યમ Q કોઈલ્સ માટે ઉચ્ચ ચોકસાઈ
- સંતુલન સાધવામાં સરળ

ગેરફાયદા:

- ઓછા Q કોઈલ્સ માટે યોગ્ય નથી
- સ્ટાન્ડર્ડ કેપેસિટરની જરૂર પડે છે
- મર્યાદિત રેન્જ

એપ્લિકેશન:

- ઇન્ડક્ટર્સનું માપન
- ઓડિયો ફ્રિક્વન્સી માપન
- ટ્રાન્સફોર્મર ટેસ્ટિંગ

મેમરી ટ્રીક: "MAGIC બ્રિજ: Maxwell મહાન ઇન્ડક્ટર્સનું બ્રિજ તત્વોની તુલના દ્વારા વિશ્લેષણ કરે છે."

પ્રશ્ન 2(અ) [3 ગુણ]

જરૂરી ડાયાગ્રામ સાથે ઇલેક્ટ્રોનિક મલ્ટિમીટરની કામગીરી સમજાવો.

જવાબ:

ઇલેક્ટ્રોનિક મલ્ટિમીટર વિવિધ ઇલેક્ટ્રિકલ પેરામીટર્સને સમપ્રમાણિત DC વોલ્ટેજમાં રૂપાંતરિત કરે છે.

- **સર્કિટ ઘટકો**: ઇનપુટ સિલેક્ટર \rightarrow એટેન્યુએટર \rightarrow કન્વર્ટર \rightarrow એમ્પ્લિફાયર \rightarrow ADC \rightarrow ડિસ્પ્લે
- **માપન પ્રકારો**: DC વોલ્ટેજ, AC વોલ્ટેજ, કરંટ, રેસિસ્ટન્સ
- પાવર સ્ત્રોત: પોર્ટેબિલિટી અને સુરક્ષા માટે બેટરી પાવર

મેમરી ટ્રીક: "SACRED ઉપકરણ: સિગ્નલ એટેન્યુએટ, કન્વર્ટ અને રેક્ટિફાઈ થઈને ઇલેક્ટ્રોનિક ડિસ્પ્લે પર દર્શાવાય છે."

પ્રશ્ન 2(બ) [4 ગુણ]

એનાલોગ વોલ્ટમીટર અને ડિજિટલ વોલ્ટમીટર વચ્ચે તફાવત લખો.

જવાબ:

પેરામીટર	ડિજિટલ વોલ્ટમીટર	એનાલોગ વોલ્ટમીટર
ડિસ્પ્લે પ્રકાર	ન્યુમેરિક LCD/LED ડિસ્પ્લે	સ્કેલ પર ફરતો પોઈન્ટર
ચોકસાઈ	ઉચ્ચ (±0.1% સામાન્ય)	નિમ્ન (±2-5% સામાન્ય)
રીડિંગ ભૂલો	પેરેલેક્સ ભૂલ નથી	પેરેલેક્સ ભૂલ થઈ શકે
રિઝોલ્યૂશન	ઉચ્ચ (3-6 અંકો દર્શાવી શકે)	સ્કેલ ડિવિઝન દ્વારા મર્યાંદિત
ઇનપુટ ઇમ્પિડન્સ	ખૂબ ઉચ્ચ (>10ΜΩ)	ਜਿਮ੍ਜ (20-200kΩ/V)
પ્રતિક્રિયા સમય	ધીમો સેમ્પલિંગ રેટ	તાત્કાલિક પ્રતિસાદ

મેમરી ટ્રીક: "PARIOS: પેરેલેક્સ-ફ્રી, યોકસાઈ ઉચ્ચ, રિઝોલ્યૂશન ઉચ્ચ, ઇમ્પિડન્સ ઉચ્ચ, અવલોકન ડિજિટલ, સેમ્પલિંગ રેટ."

પ્રશ્ન 2(ક) [7 ગુણ]

એનર્જીમીટરના બાંધકામ ડાયાગ્રામનું વર્ણન લખો અને વિગતવાર સમજાવો.

જવાબ:

એનર્જી મીટર સમય સાથે કિલોવોટ-અવર્સ (kWh) માં વીજળી ઊર્જાની ખપતને માપે છે.

ઘટકો:

- **વોલ્ટેજ કોઈલ**: વોલ્ટેજના સમપ્રમાણમાં ફ્લક્સ ઉત્પન્ન કરે છે
- કરંટ કોઈલ: કરંટના સમપ્રમાણમાં ફ્લક્સ ઉત્પન્ન કરે છે
- એલ્યુમિનિયમ ડિસ્ક: એડી કરંટને કારણે ફરે છે
- કાઉન્ટિંગ મેકેનિઝમ: ડિસ્કના ફરવાની ગણતરી કરે છે
- **પર્મેનેન્ટ મેગ્નેટ**: ડિસ્કની ગતિ નિયંત્રિત કરવા બ્રેક તરીકે કાર્ય કરે છે
- એડજસ્ટમેન્ટ સિસ્ટમ: કેલિબ્રેશન અને ચોકસાઈ માટે

કાર્યસિદ્ધાંત: ડિસ્કની ફરવાની ગતિ પાવર વપરાશ (V×I×cosΦ) ના સમપ્રમાણમાં હોય છે

મેમરી ટ્રીક: "VADCR મીટર: વોલ્ટેજ અને કરંટ ફરવા દ્વારા કાઉન્ટરને ચલાવે છે."

પ્રશ્ન 2(અ OR) [3 ગુણ]

ક્લેમ્પ ઓન એમીટરનું કામ જરૂરી ડાયાગ્રામ સાથે સમજાવો.

જવાબ:

કલેમ્પ-ઓન એમીટર ઇલેક્ટ્રોમેગ્નેટિક ઇન્ડક્શનનો ઉપયોગ કરીને સર્કિટને તોડ્યા વિના કરંટ માપે છે.

• **બાંધકામ**: સેન્સિંગ કોઈલ સાથે સ્પ્લિટ ફેરાઈટ કોર

• **કાર્યસિદ્ધાંત**: કરંટ-વાહક તાર ચુંબકીય ક્ષેત્ર ઉત્પન્ન કરે છે → સેન્સિંગ કોઈલમાં વોલ્ટેજ પ્રેરિત કરે છે

• ફાયદા: નોન-કોન્ટેક્ટ માપન, ઝડપી, સુરક્ષિત

મેમરી ટ્રીક: "CICS: ક્લેમ્પિંગ દ્વારા કરંટ સિગ્નલ પ્રેરિત થાય છે."

પ્રશ્ન 2(બ OR) [4 ગુણ]

PMMC પ્રકાર મીટર અને મૂવિંગ આચર્ન પ્રકાર મીટર વચ્ચે તફાવત લખો.

જવાબ:

પેરામીટર	PMMC પ્રકાર મીટર	મૂવિંગ આયર્ન પ્રકાર મીટર
કાર્યસિદ્ધાંત	ચુંબકીય ક્ષેત્ર આંતરક્રિયા	ચુંબકીય આકર્ષણ/વિકર્ષણ
કરંટ પ્રકાર	માત્ર DC	AC અને DC બંને
સ્કેલ	સમાન	અસમાન (છેડે ગીચ)
ચોકસાઈ	ઉચ્ચ (±0.5% સામાન્ય)	નિમ્ન (±1-5% સામાન્ય)
કેમ્પિંગ	એડી કરંટ ડેમ્પિંગ	હવા ઘર્ષણ ડેમ્પિંગ
પાવર વપરાશ	ઓછો	વધારે
આવૃત્તિ ભૂલો	લાગુ પડતું નથી	આવૃત્તિ પરિવર્તનથી અસર પામે છે

મેમરી ટ્રીક: "PMMC એ DAUPHIN છે: ફક્ત DC, ચોકસાઈ ઉચ્ચ, સમાન સ્કેલ, પાવર કાર્યક્ષમ, ઉચ્ચ સંવેદનશીલતા, આવૃત્તિથી સ્વતંત્ર, ધ્રુવીચતા જરૂરી."

પ્રશ્ન 2(ક OR) [7 ગુણ]

જરૂરી ડાયાગ્રામ અને વેવફોર્મ સાથે ઇન્ટિગ્રેટિંગ ટાઇપ DVM નું બ્લોક ડાયાગ્રામ અને કામગીરી સમજાવો.

જવાબ:

ઇન્ટિગ્રેટિંગ ટાઇપ DVM ઉચ્ચ ચોકસાઈના માપન માટે ઇનપુટ વોલ્ટેજને ઇન્ટિગ્રેશન દ્વારા સમય સાથે રૂપાંતરિત કરે છે.

કાર્યસિદ્ધાંત:

- ઇનપુટ વોલ્ટેજને નિશ્ચિત સમય માટે ઇન્ટિગ્રેટ કરવામાં આવે છે
- ઇન્ટિગ્રેટર આઉટપુટ ઇનપુટના પ્રમાણમાં ઉપર તરફ જાય છે
- વિરુદ્ધ ધ્રુવીયતા સાથે રેફરન્સ વોલ્ટેજ ઇન્ટિગ્રેટરને ડિસ્ચાર્જ કરે છે
- ડિસ્ચાર્જ માટે લાગતો સમય ક્લોક પત્સ દ્વારા માપવામાં આવે છે
- કાઉન્ટ ઇનપુટ વોલ્ટેજના પ્રમાણમાં હોય છે

વેવફોર્મ:

કાયદા:

- ઉચ્ચ નોઈઝ રિજેક્શન
- સારી ચોકસાઈ
- ઉત્તમ રિઝોલ્યુશન
- કોમન-મોડ નોઈઝને નકારે છે

મેમરી ટ્રીક: "DIRT મીટર: ડાયરેક્ટ ઇન્ટિગ્રેશન વોલ્ટેજ માપવા માટે સમયને સંબંધિત કરે છે."

પ્રશ્ન 3(અ) [3 ગુણ]

CRO અને DSO વચ્ચે તફાવત લખો.

જવાબ:

પેરામીટર	CRO (એનાલોગ ઓસિલોસ્કોપ)	DSO (ડિજિટલ સ્ટોરેજ ઓસિલોસ્કોપ)
સિગ્નલ પ્રોસેસિંગ	સંપૂર્ણ એનાલોગ	ADC રૂપાંતર પછી ડિજિટલ
સ્ટોરેજ ક્ષમતા	વેવફોર્મ સંગ્રહ કરી શકતું નથી	અનેક વેવફોર્મ સંગ્રહ કરી શકે છે
બેન્ડવિડ્થ	સામાન્ય રીતે ઓછી	ઉચ્ચ (GHz સુધી)
ટ્રિગરિંગ	મૂળભૂત ટ્રિગર વિકલ્પો	અદ્યતન ટ્રિગર ક્ષમતાઓ
એનાલિસિસ ફીચર્સ	મર્યાદિત	વિસ્તૃત (FFT, માપન)
ડિસ્પ્લે પર્સિસ્ટન્સ	ફોસ્ફર પર્સિસ્ટન્સ	એડજસ્ટેબલ ડિજિટલ પર્સિસ્ટન્સ

મેમરી ટ્રીક: "PASSED: પ્રોસેસિંગ-એનાલોગ/ડિજિટલ, સ્ટોરેજ-નહીં/હા, સિગ્નલ-કાર્યો/પ્રોસેસ્ડ, સરળ-મૂળભૂત/અધતન, ડિસ્પ્લે-ફોસ્ફર/ ડિજિટલ."

પ્રશ્ન 3(બ) [4 ગુણ]

CRO સ્ક્રીન સમજાવો.

જવાબ:

CRO સ્ક્રીન ઇલેક્ટ્રિકલ સિગ્નલ્સને દર્શાવે છે અને તેમાં કેટલાક મહત્વપૂર્ણ ઘટકો હોય છે.

ઘટકો:

• **ફોસ્ફર કોટિંગ**: ઇલેક્ટ્રોન દ્વારા અથડાવા પર પ્રકાશ આપે છે

• ગ્રેટિક્યુલ: માપન સંદર્ભ માટે ગ્રિડ લાઈન્સ

• સ્કેલ: વોલ્ટેજ/સમય માટે કેલિબ્રેટેડ માર્કિંગ્સ

• સેન્ટર રેફરન્સ પોઈન્ટ: (0,0) કોઓર્ડિનેટ

• ઇન્ટેન્સિટી કંટ્રોલ: ડિસ્પ્લેની બ્રાઇટનેસ એડજસ્ટ કરે છે

મેમરી ટ્રીક: "PGSCR: ફોસ્ફર ઇલેક્ટ્રોન અથડાવાથી પ્રકાશે છે, પ્રતિનિધિત્વ બનાવે છે."

પ્રશ્ન 3(ક) [7 ગુણ]

CRO નો બ્લોક ડાયાગ્રામ, કામગીરી અને ફાયદા જરૂરી ડાયાગ્રામ સાથે સમજાવો.

જવાબ:

CRO (કેથોડ રે ઓસિલોસ્કોપ) ઇલેક્ટ્રિકલ સિગ્નલને વેવફોર્મ તરીકે વિઝ્યુઅલાઈઝ કરે છે.

કાર્યસિદ્ધાંત:

- ઇલેક્ટ્રોન ગન: ઇલેક્ટ્રોન બીમ ઉત્પન્ન કરે છે
- **વર્ટિકલ સિસ્ટમ**: ઇનપુટ સિગ્નલના પ્રમાણમાં Y-એક્સિસ ડિફ્લેક્શન નિયંત્રિત કરે છે
- હોરિઝોન્ટલ સિસ્ટમ: સ્થિર દરે સ્ક્રીન પર બીમને સ્વીપ કરે છે
- ટ્રિગર સર્કિટ: ઇનપુટ સિગ્નલ સાથે હોરિઝોન્ટલ સ્વીપ સિન્ક્રોનાઈઝ કરે છે
- CRT: ફોસ્ફર સ્ક્રીન પર ઇલેક્ટ્રોન બીમની ગતિ દર્શાવે છે

ફાયદા:

- રીઅલ-ટાઇમ સિગ્નલ ડિસ્પ્લે
- વિશાળ બેન્ડવિડ્થ
- ઉચ્ચ ઇનપુટ ઇમ્પિડન્સ
- બહુવિધ ટ્રિગરિંગ વિકલ્પો
- એકાધિક સિગ્નલ એનાલિસિસ

મેમરી ટ્રીક: "EARTH વ્યૂ: ઇલેક્ટ્રોન બીમ એમ્પ્લિફિકેશન સમય-આધારિત હોરિઝોન્ટલ વ્યૂને પ્રગટ કરે છે."

પ્રશ્ન 3(અ OR) [3 ગુણ]

(frequency) આવર્તન માપન અને ફેઝ એંગલ માપન માટે લિસાજસ પેટર્ન લાગુ કરો.

જવાબ:

લિસાજસ પેટર્ન ત્યારે બને છે જ્યારે બે સાઇન વેવ્સ CROના X અને Y ઇનપુટ પર લાગુ કરવામાં આવે છે.

પેટર્ન પ્રકાર	ઉદાહરણ	માપન સૂત્ર
આવૃત્તિ માપન		fx/fy = ny/nx
ફેઝ એંગલ માપન		sin(φ) = A/B

- આવૃત્તિ ગુણોત્તર: ઊભા ટેન્જન્ટ પોઈન્ટ્સ / આડા ટેન્જન્ટ પોઈન્ટ્સની ગણતરી
- ફેઝ માપન: sin(φ) = sin/sinmax જ્યાં sin એ ઝીરો ક્રોસિંગ પર પેટર્નની ઊંચાઈ છે
- **એપ્લિકેશન**: સિગ્નલ તુલના, આવૃત્તિ કેલિબ્રેશન

મેમરી ટ્રીક: "LIPS પેટર્ન: લિસાજસ ફેઝ અને સાઇન આવૃત્તિ દર્શાવે છે."

પ્રશ્ન 3(બ OR) [4 ગુણ]

CRO માં Graticules સમજાવો. તેના પ્રકારો પણ સમજાવો.

જવાબ:

ગ્રેટિક્યુલ્સ એ CRO સ્ક્રીન પર રેફરન્સ ગ્રિડ છે જે વેવફોર્મ પેરામીટર્સના માપનમાં મદદ કરે છે.

ગ્રેટિક્યુલ્સના પ્રકારો:

увіз	นณ์ฯ	એપ્લિકેશન
આંતરિક ગ્રેટિક્યુલ	CRTની અંદર ખોદાયેલ	પેરેલેક્સ ભૂલને દૂર કરે છે
બાહ્ય ગ્રેટિક્યુલ	અલગ પારદર્શક પ્લેટ	સરળતાથી બદલી શકાય છે
ઇલેક્ટ્રોનિક ગ્રેટિક્યુલ	ઇલેક્ટ્રોનિક રીતે ઉત્પન્ન થાય છે	ડિજિટલ ઓસિલોસ્કોપ્સ
સ્પેશિયલ પરપઝ	ચોક્કસ માપન માટે કસ્ટમ માર્કિંગ્સ	વિશિષ્ટ પરીક્ષણ

મેમરી ટ્રીક: "GRIT: ગ્રેટિક્યુલ્સ સમય-વોલ્ટેજ માપન માટે મહત્વપૂર્ણ રેન્ડરિંગ કરે છે."

પ્રશ્ન 3(ક OR) [7 ગુણ]

ડિજિટલ સ્ટોરેજ ઓસિલોસ્કોપ (DSO)નો બ્લોક ડાયાગ્રામ, કામગીરી અને ફાયદા જરૂરી ડાયાગ્રામ સાથે સમજાવો.

જવાલ:

ડિજિટલ સ્ટોરેજ ઓસિલોસ્કોપ (DSO) સિગ્નલને સ્ટોરેજ, પ્રોસેસિંગ અને ડિસ્પ્લે માટે ડિજિટાઇઝ કરે છે.

કાર્યસિદ્ધાંત:

- **એક્વિઝિશન**: ADC દ્વારા ઉચ્ચ દરે સિગ્નલ સેમ્પલ કરવામાં આવે છે
- **સ્ટોરેજ**: ડિજિટલ વેલ્યૂ મેમરીમાં સંગ્રહિત કરવામાં આવે છે
- પ્રોસેસિંગ: ડિજિટલ સિગ્નલ પ્રોસેસિંગ એનાલિસિસને વધારે છે
- ડિસ્પ્લે: પુનર્નિર્મિત સિગ્નલ સ્ક્રીન પર દર્શાવવામાં આવે છે
- ટિગરિંગ: અદ્યતન ડિજિટલ ટ્રિગરિંગ વિકલ્પો

ફાયદા:

- સિગ્નલ સંગ્રહ ક્ષમતા
- પ્રી-ટ્રિગર વ્યૂઇંગ
- વન-શોટ સિગ્નલ કેપ્ચર
- અદ્યતન માપન
- લાંબા કેપ્યર માટે ડીપ મેમરી
- ડિજિટલ ફિલ્ટરિંગ અને એનાલિસિસ

• નેટવર્ક કનેક્ટિવિટી

મેમરી ટ્રીક: "SAMPLE: સ્ટોરેજ અને મેમરી લાંબા સમયના ઇવેન્ટ્સને સાચવે છે."

પ્રશ્ન 4(અ) [3 ગુણ]

RTD અને થર્મિસ્ટરનો તફાવત લખો.

જવાબ:

પેરામીટર	RTD (રેસિસ્ટન્સ ટેમ્પરેથર ડિટેક્ટર)	થર્મિસ્ટર
મટીરિયલ	પ્લેટિનમ, નિકલ, કોપર	મેટલ ઓક્સાઇડ્સ, સેમિકન્ડક્ટર્સ
રેસિસ્ટન્સ-તાપમાન સંબંધ	રેખીય, પોઝિટિવ કોએફિશિયન્ટ	નોન-લિનિયર, સામાન્ય રીતે નેગેટિવ કોએફિશિયન્ટ
તાપમાન શ્રેણી	-200°C થી +850°C	-50°C થી +300°C
સંવેદનશીલતા	ઓછી (0.00385 Ω/Ω/°C સામાન્ય)	ઉચ્ચ (3-5% પ્રતિ °C સામાન્ય)
ચોકસાઈ	ઉચ્ચ	निम्न
પ્રતિક્રિયા સમય	દ્યીમો	ઝડપી

મેમરી ટ્રીક: "RTD એ PLAINS છે: પ્લેટિનમ, લિનિયર, યોક્કસ, ઔદ્યોગિક શ્રેણી, સાંકડી સંવેદનશીલતા, સ્થિર."

પ્રશ્ન 4(બ) [4 ગુણ]

ઓપ્ટિકલ એનકોડરનું તેના આઉટપુટ વેવફોર્મ સાથે સમજાવો.

જવાબ:

ઓપ્ટિકલ એનકોડર, પ્રકાશનું કોડેડ ડિસ્ક મારફતે અવરોધન થવાથી યાંત્રિક ગતિને ડિજિટલ પલ્સમાં રૂપાંતરિત કરે છે.

આઉટપુટ વેવફોર્મ:

- ઘટકો: પ્રકાશ સ્ત્રોત, કોડેડ ડિસ્ક, ફોટોડિટેક્ટર
- પ્રકારો: ઇન્ક્રિમેન્ટલ (પત્સ) અથવા એબ્સોલ્યુટ (યુનિક પોઝિશન કોડ)
- એપ્લિકેશન: પોઝિશન માપન, સ્પીડ ડિટેક્શન, મોશન કંટ્રોલ

મેમરી ટ્રીક: "DROPS: ડિસ્ક રોટેશન પલ્સ સિગ્નલ આઉટપુટ કરે છે."

પ્રશ્ન 4(ક) [7 ગુણ]

થર્મોકપલનું કાર્યકારી સિદ્ધાંત, પ્રકારો અને એપ્લિકેશન સાથે વર્ણન કરો.

જવાબ:

થર્મોકપલ એ તાપમાન સેન્સર છે જે સીબેક ઇફેક્ટ પર કાર્ય કરે છે અને તાપમાનના તફાવતના પ્રમાણમાં વોલ્ટેજ ઉત્પન્ન કરે છે.

કાર્યસિદ્ધાંત:

- બે અલગ-અલગ મેટલ એક છેડે (હોટ જેક્શન) જોડાયેલા હોય છે
- હોટ અને કોલ્ડ જંક્શન વચ્ચેના તાપમાનના તફાવતથી વોલ્ટેજ ઉત્પન્ન થાય છે
- વોલ્ટેજ તાપમાન તફાવતના પ્રમાણમાં હોય છે

થર્મોકપલના પ્રકારો:

SISK	મટીરિયલ	તાપમાન શ્રેણી	એપ્લિકેશન
ટાઇપ K	ક્રોમેલ-એલુમેલ	-200°C થી +1350°C	જનરલ પરપઝ, ઓક્સિડાઇઝિંગ એટમોસ્ફિયર
ટાઇપ J	આયર્ન-કોન્સ્ટન્ટન	-40°C થી +750°C	રિક્યુસિંગ એટમોસ્ફિયર, વેક્યુમ
टाยน E	ક્રોમેલ-કોન્સ્ટન્ટન	-200°C થી +900°C	ક્રાયોજેનિક, ઉચ્ચ આઉટપુટ
ટાઇપ T	કોપર-કોન્સ્ટન્ટન	-250°C થી +350°C	લો ટેમ્પરેચર, ફૂડ ઇન્ડસ્ટ્રી
ะเยน R/S	પ્લેટિનમ-રોડિયમ	0°C થી +1700°C	હાઇ ટેમ્પરેચર, લેબોરેટરી

એપ્લિકેશન: ઔદ્યોગિક ફર્નેસ, એન્જિન, કેમિકલ પ્રોસેસિંગ, ફૂડ પ્રોસેસિંગ, રિસર્ચ

મેમરી ટ્રીક: "SHOVE સિદ્ધાંત: સીબેક હોટ-કોલ્ડ આઉટપુટ વોલ્ટેજ તાપમાનની બરાબર."

પ્રશ્ન 4(અ OR) [3 ગુણ]

એક્ટીવ અને પેસિવ ટ્રાન્સક્યુસરનો તફાવત લખો.

જવાબ:

પેરામીટર	એક્ટીવ ટ્રાન્સક્યુસર	પેસિવ ટ્રાન્સક્યુસર
ઊર્જા રૂપાંતરણ	ભૌતિક જથ્થાને સીધા જ ઇલેક્ટ્રિકલ આઉટપુટમાં રૂપાંતરિત કરે છે	બાહ્ય ઊર્જા સ્ત્રોતની જરૂર પડે છે
આઉટપુટ સિગ્નલ	સેલ્ફ-જનરેટિંગ	બાહ્ય ઊર્જાને મોક્યુલેટ કરે છે
ઉદાહરણો	થર્મોકપલ, પિઝોઇલેક્ટ્રિક, ફોટોવોલ્ટેઇક	RTD, સ્ટ્રેઇન ગેજ, LVDT
સંવેદનશીલતા	સામાન્ય રીતે ઓછી	સામાન્ય રીતે ઉચ્ચ
સર્કિટ જટિલતા	સરળ	વધુ જટિલ
પાવર જરૂરિયાત	બાહ્ય પાવરની જરૂર નથી	બાહ્ય પાવર જરૂરી

મેમરી ટ્રીક: "SIMPLE તફાવત: સેલ્ફ-પાવર્ડ આગળ પડતા ઊર્જા ટ્રાન્સક્યુસરનો મુખ્ય સિદ્ધાંત છે."

પ્રશ્ન 4(બ OR) [4 ગુણ]

કેપેસિટીવ ટ્રાન્સડ્યુસરને જરૂરી ડાયાગ્રામ સાથે વિગતવાર સમજાવો. તેની એપ્લિકેશનની યાદી બનાવો.

જવાબ:

કેપેસિટીવ ટ્રાન્સક્યુસર ભૌતિક ડિસ્પ્લેસમેન્ટને કારણે કેપેસિટન્સમાં થતા ફેરફારના સિદ્ધાંત પર કાર્ય કરે છે.

કાર્યસિદ્ધાંત:

- કેપેસિટન્સ $C = \varepsilon_0 \varepsilon_r A/d$
- આમાં ફેરફાર થાય છે: ક્ષેત્રફળ (A), અંતર (d), અથવા ડાઇલેક્ટ્રિક સ્થિરાંક (દ,) માં ફેરફારથી
- ડિસ્પ્લેસમેન્ટ કેપેસિટન્સને બદલે છે
- બ્રિજ સર્કિટ અથવા ઓસિલેટર દ્વારા માપવામાં આવે છે

એપ્લિકેશન:

- પ્રેશર માપન
- લિક્વિડ લેવલ સેન્સિંગ
- હ્યુમિડિટી સેન્સર
- ડિસ્પ્લેસમેન્ટ માપન
- એક્સેલેરોમીટર

મેમરી ટ્રીક: "CADAP: કેપેસિટન્સ અંતર, ક્ષેત્રફળ, અથવા પર્મિટિવિટી સાથે બદલાય છે."

પ્રશ્ન 4(ક OR) [7 ગુણ]

LVDT ટ્રાન્સક્યુસર ઓપરેશન, બાંધકામને જરૂરી આકૃતિ સાથે વિગતવાર સમજાવો. એલવીડીટીના લાભ, ગેરલાભ અને એપ્લિકેશનની પણ ચાદી બનાવો.

જવાબ:

LVDT (લિનિયર વેરિએબલ ડિફરેન્શિયલ ટ્રાન્સફોર્મર) એ ઇલેક્ટ્રોમેકેનિકલ ટ્રાન્સક્યુસર છે જે લિનિયર ડિસ્પ્લેસમેન્ટને ઇલેક્ટ્રિકલ આઉટપુટમાં રૂપાંતરિત કરે છે.

બાંધકામ:

- મધ્યમાં પ્રાઇમરી કોઈલ
- સમમિત રીતે વીંટળાયેલી બે સેકન્ડરી કોઈલ
- હલનચલન કરી શકે તેવો ફેરોમેગ્નેટિક કોર
- સિગ્નલ કન્ડિશનિંગ સર્કિટરી

ઓપરેશન:

- AC એક્સાઇટેશન પ્રાઇમરી કોઈલને ઊર્જાવાન કરે છે
- કોરની સ્થિતિ સેકન્ડરીમાં મેગ્નેટિક કપલિંગ નક્કી કરે છે

- ડિસ્પ્લેસમેન્ટના પ્રમાણમાં ડિફરેન્શિયલ વોલ્ટેજ આઉટપુટ મળે છે
- ફ્રેઝ ડિસ્પ્લેસમેન્ટની દિશા દર્શાવે છે

લાલ:

- નોન-કોન્ટેક્ટ ઓપરેશન
- અનંત રિઝોલ્યૂશન
- ઉચ્ચ લિનિયરિટી
- મજબૂત બાંધકામ
- લાંબું ઓપરેશનલ જીવન
- ખરાબ પરિસ્થિતિમાં પણ ઇમ્યુનિટી

ગેરલાલ:

- AC એક્સાઇટેશનની જરૂર પડે છે
- અન્ય સેન્સર્સની તુલનામાં મોટું
- બાહ્ય યુંબકીય ક્ષેત્રોથી અસર પામે છે
- મર્યાદિત ડાયનેમિક પ્રતિસાદ

એપ્લિકેશન:

- પ્રિસિઝન માપન
- હાઇડ્રોલિક સિસ્ટમ
- એરક્રાફ્ટ કંટ્રોલ
- પાવર પ્લાન્ટ કંટ્રોલ
- ઓટોમેટેડ મેન્યુફેક્ચરિંગ

મેમરી ટ્રીક: "CDPOS સેન્સર: કોર ડિસ્પ્લેસમેન્ટ આઉટપુટ સિગ્નલ ઉત્પન્ન કરે છે."

પ્રશ્ન 5(અ) [3 ગુણ]

સેમિકન્ડક્ટર ટેમ્પરેચર સેન્સર LM35નો સિદ્ધાંત અને કાર્ય દર્શાવો.

જવાબ:

LM35 એક ઇન્ટિગ્રેટેડ સર્કિટ ટેમ્પરેચર સેન્સર છે જે સેલ્સિયસમાં તાપમાનના પ્રમાણમાં રેખીય વોલ્ટેજ આઉટપુટ આપે છે.

કાર્યસિદ્ધાંત:

- બિલ્ટ-ઇન તાપમાન-સેન્સિંગ એલિમેન્ટ સાથે ઇન્ટિગ્રેટેડ સર્કિટ
- લિનિયર આઉટપુટ વોલ્ટેજ: +10mV/°C
- સીધા સેલ્સિયસમાં કેલિબ્રેટેડ
- ઓપરેટિંગ રેન્જ: -55°C થી +150°C

સર્કિટ:

- ફક્ત પાવર સપ્લાય કનેક્શનની જરૂર
- આઉટપુટ વોલ્ટમીટર સાથે સીધું વાંચી શકાય
- બાહ્ય કેલિબ્રેશનની જરૂર નથી

મેમરી ટ્રીક: "TEN mV TRICK: તાપમાન વધારો મિલિવોલ્ટ્સમાં નોંધાય છે: દસ વધારો સેલ્સિયસ કેલ્વિન સૂચવે છે."

પ્રશ્ન 5(બ) [4 ગુણ]

હાર્મોનિક ડિસ્ટોરશન એનાલાઇઝરની કામગીરીનું વર્ણન જરૂરી આકૃતિ સાથે કરો.

જવાબ:

હાર્મોનિક ડિસ્ટોરશન એનાલાઇઝર સિગ્નલ ક્વોલિટી નક્કી કરવા માટે સિગ્નલમાં હાર્મોનિક કન્ટેન્ટનું માપન કરે છે.

કાર્યસિદ્ધાંત:

- નોચ ફિલ્ટર દ્વારા મૂળભૂત આવૃત્તિ ફિલ્ટર કરવામાં આવે છે
- બાકીના હાર્મોનિક્સ માપવામાં આવે છે
- THD = (હાર્મોનિક્સનો VRMS)/(મૂળભૂત આવૃત્તિનો VRMS)
- ટકાવારી અથવા dB માં વ્યક્ત કરવામાં આવે છે

ઓપરેશન સ્ટેપ્સ:

- 1. કુલ સિગ્નલ RMS માપો
- 2. મૂળભૂત આવૃત્તિ ફિલ્ટર કરો
- 3. બાકીના હાર્મોનિક્સ માપો
- 4. THD રેશિઓની ગણતરી કરો

મેમરી ટ્રીક: "FRONT એનાલિસિસ: ફિલ્ટર મૂળ નોટને સંપૂર્ણપણે દૂર કરે છે બાકીના સિગ્નલના એનાલિસિસ માટે."

પ્રશ્ન 5(ક) [7 ગુણ]

સ્પેક્ટ્રમ એનાલાયઝરનું કાર્ય જરૂરી ડાયાગ્રામ સાથે વિગતવાર વર્ણન કરો.

જવાબ:

સ્પેક્ટ્રમ એનાલાઇઝર સિગ્નલના સ્પેક્ટ્રલ રચનાને દર્શાવતા આવૃત્તિ સામે સિગ્નલ એમ્પ્લિટ્યુડને દર્શાવે છે.

કાર્યસિદ્ધાંત:

- **સુપરહેટેરોડાઇન સિદ્ધાંત**: ઇનપુટ સિગ્નલ લોકલ ઓસિલેટર સાથે મિક્સ કરવામાં આવે છે
- **સ્વીપ ટેકનિક**: LO આવૃત્તિ રસપ્રદ શ્રેણી પર સ્વીપ કરવામાં આવે છે
- **રિઝોલ્યૂશન બેન્ડવિડ્ય**: IF ફિલ્ટર બેન્ડવિડ્ય દ્વારા નિયંત્રિત
- **ડિટેક્શન**: IF સિગ્નલને એમ્પ્લિટ્યુડ માહિતીમાં રૂપાંતરિત કરે છે
- ડિસ્પ્લે: ફ્રિક્વન્સી ડોમેઇન રજૂઆત બતાવે છે

પ્રકારો:

- સ્વેપ્ટ-ટ્યુન્ડ સ્પેક્ટ્રમ એનાલાઇઝર
- FFT-આધારિત સ્પેક્ટ્રમ એનાલાઇઝર
- રીયલ-ટાઇમ સ્પેક્ટ્મ એનાલાઇઝર

એપ્લિકેશન:

- સિગ્નલ એનાલિસિસ
- EMI/EMC ટેસ્ટિંગ
- કોમ્યુનિકેશન સિસ્ટમ ટેસ્ટિંગ
- હાર્મોનિક એનાલિસિસ
- મોડ્યુલેશન એનાલિસિસ

મેમરી ટ્રીક: "SAFER વ્યૂ: સ્વીપ RF તપાસવા માટે આવૃત્તિઓનું એનાલિસિસ કરે છે."

પ્રશ્ન 5(અ OR) [3 ગુણ]

એનાલોગ ટ્રાન્સડ્યુસર અને ડીજીટલ ટ્રાન્સડ્યુસર સમજાવો. પ્રાથમિક ટ્રાન્સડ્યુસર અને સેકન્ડરી ટ્રાન્સડ્યુસર પણ સમજાવો.

જવાબ:

ટ્રાન્સડ્યુસર પ્રકાર	વર્ણન
એનાલોગ ટ્રાન્સક્યુસર	ઇનપુટ ભૌતિક જથ્થાના પ્રમાણમાં સતત આઉટપુટ સિગ્નલ ઉત્પન્ન કરે છે
ડિજિટલ ટ્રાન્સક્યુસર	ઇનપુટ જથ્થાનું પ્રતિનિધિત્વ કરતા ડિસ્ક્રીટ/બાઇનરી આઉટપુટ સિગ્નલ ઉત્પન્ન કરે છે
પ્રાથમિક ટ્રાન્સક્યુસર	ભૌતિક જથ્થાને સીધા જ ઇલેક્ટ્રિકલ સિગ્નલમાં રૂપાંતરિત કરે છે
સેકન્ડરી ટ્રાન્સક્યુસર	પ્રાથમિક ટ્રાન્સક્યુસરના આઉટપુટને બીજા સ્વરૂપમાં રૂપાંતરિત કરે છે

મેમરી ટ્રીક: "PADS: પ્રાથમિક અને ડિજિટલ/એનાલોગ સેકન્ડરી."

પ્રશ્ન 5(બ OR) [4 ગુણ]

ડીજીટલ આઈસી ટેસ્ટરનું કાર્ય જરૂરી ડાયાગ્રામ સાથે વિગતવાર સમજાવો.

જવાબ:

ડિજિટલ IC ટેસ્ટર ટેસ્ટ પેટર્ન લાગુ કરીને અને પ્રતિસાદનું વિશ્લેષણ કરીને ઇન્ટિગ્રેટેડ સર્કિટની કાર્યક્ષમતા ચકાસે છે.

કાર્યસિદ્ધાંત:

• IC ને ZIF (ઝીરો ઇન્સર્શન ફોર્સ) સોકેટમાં દાખલ કરવામાં આવે છે

- IC પ્રકાર માટે ટેસ્ટ પેરામીટર્સ પસંદ કરવામાં આવે છે
- પેટર્ન જનરેટર ચોક્કસ ઇનપુટ સિગ્નલ લાગુ કરે છે
- આઉટપુટની અપેક્ષિત પરિણામો સાથે તુલના કરવામાં આવે છે
- પાસ/ફેલ સૂચના પ્રદર્શિત થાય છે

ફીચર્સ:

- TTL, CMOS, મેમરી ICs ટેસ્ટ કરે છે
- અગ્રાત ICs ઓળખે છે
- ઓપન/શોર્ટ સર્કિટ શોધે છે
- ફંક્શન વેરિફિકેશન

મેમરી ટ્રીક: "TRIG ટેસ્ટ: ટેસ્ટ, પેટર્ન ચલાવો, ખામીઓ ઓળખો, રિપોર્ટ જનરેટ કરો."

પ્રશ્ન 5(ક OR) [7 ગુણ]

ફંક્શન જનરેટરનું કાર્ય જરૂરી ડાયાગ્રામ સાથે વિગતવાર સમજાવો.

જવાબ:

ફંક્શન જનરેટર ઇલેક્ટ્રોનિક સર્કિટના પરીક્ષણ માટે વિવિધ આવૃત્તિઓ પર વિવિધ વેવફોર્મ ઉત્પન્ન કરે છે.

કાર્યસિદ્ધાંત:

- ઓસિલેટર: મૂળભૂત વેવફોર્મ (સામાન્ય રીતે ત્રિકોણાકાર) ઉત્પન્ન કરે છે
- વેવફોર્મ શેપર: સાઇન, સ્ક્વેર, ત્રિકોણાકાર, રેમ્પમાં રૂપાંતરિત કરે છે
- ફ્રિક્વન્સી કંટ્રોલ: ઓસિલેશનનો દર સેટ કરે છે
- એમ્પ્લિટયુડ કંટ્રોલ: આઉટપુટ વોલ્ટેજ લેવલ એડજસ્ટ કરે છે
- DC ઓફસેટ: આઉટપુટ સિગ્નલમાં બાયસ ઉમેરે છે
- આઉટપુટ એમ્પ્લિફાયર: લો ઇમ્પિડન્સ આઉટપુટ પ્રદાન કરે છે

આઉટપુટ વેવફોર્મ:

એપ્લિકેશન:

- એમ્પ્લિફાયર ટેસ્ટિંગ
- ફિલ્ટર કેરેક્ટરાઇઝેશન
- સિગ્નલ એનાલિસિસ
- શૈક્ષણિક પ્રદર્શન
- કેલિબ્રેશન રેફરન્સ

મેમરી ટ્રીક: "SWATOR: સાઇન વેવ અને ત્રિકોણાકાર ઓસિલેટર સિગ્નલ્સ ઉત્પન્ન કરે છે."