Lecture 9: Naive Bayes, SVM, Kernels

Instructor: Saravanan Thirumuruganathan

Outline

- Probability basics
- Probabilistic Interpretation of Classification
- Bayesian Classifiers, Naive Bayes
- SVM and Kernels

Probability Basics

Sample Space

- Sample Space: A space of events that we assign probabilities to
- Events can be binary, multi-valued, or continuous
- Events are mutually exclusive
- Examples:
 - $\bullet \ \ \mathsf{Coin} \ \mathsf{flip} \colon \left\{\mathsf{head}, \ \mathsf{tail}\right\}$
 - Die roll: {1,2,3,4,5,6}
 - English words: a dictionary
 - Temperature: \mathbb{R}_+ (Kelvin)

Random Variable

- A variable, X, whose domain is the sample space, and whose value is somewhat uncertain
- Examples:
 - X = coin flip outcome
 - X = first word in tomorrow's headline news
 - \bullet X =tomorrow's temperature

Probability for Discrete Events

- Probability P(X = a) is the fraction of times x takes value a
- Often we write it as P(a)
- Examples:
 - Fair Coin: P(head)=P(tail)=0.5
 - Slightly Biased Coin: P(head)=0.51, P(tail)=0.49
 - Two Face's Coin: P(head)=1, P(tail)=0
 - Fair Dice: P(getting 1 in a die roll) = 1/6

Probability for Discrete Events

P(A="head or tail in a fair coin")

$$0.5 + 0.5 = 1$$

P(A="even number in a fair dice roll")

$$1/6 + 1/6 + 1/6 = 0.5$$

• P(A="two dice rolls sum to 2 in a fair dice")

$$1/6 * 1/6 = 1/36$$

Axioms of Probability

- $P(A) \in [0,1]$
- P(true)=1, P(false)=0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$

Sample space

Simple Corollaries

- P(A') = 1 P(A)
- If A can take k different values a_1, \ldots, a_k ,

$$P(A = a_1) + \ldots + P(A = a_k) = 1$$

- Law of Total Probability:
 - $P(A) = P(A \cap B) + P(A \cap B')$
 - $P(A) = \sum_{i=1}^{k} P(A \cap B = b_i)$ if B takes k values b_1, \ldots, b_k

Law of Total Probability¹

Definition: A partition of the sample space Ω is a collection of disjoint events $B_1, B_2, \dots B_k$ whose union is Ω . Such a partition divides any set A into disjoint pieces:

¹http://people.reed.edu/~jones/Courses/P02.pdf

Probability Table

Weather

Sunny	Cloudy	Rainy
200/365	100/365	65/365

- P(Weather = sunny) = P(sunny) = 200/365
- P(Weather) = {200/365, 100/365, 65/365}

Joint Probability Table

weather

		Sunny	Cloudy	Rainy
temp	hot	150/365	40/365	5/365
	cold	50/365	60/365	60/365

- P(temp=hot, weather=rainy) = P(hot, rainy) = 5/365
- The full joint probability table between N variables, each taking k values, has k^N entries (that's a lot!)

Marginal Probability Table

Sum over other variables

weather

temp		Sunny	Cloudy	Rainy
	hot	150/365	40/365	5/365
	cold	50/365	60/365	60/365
	Σ	200/365	100/365	65/365

P(Weather)={200/365, 100/365, 65/365}

 The name comes from the old days when the sums are written on the margin of a page

Marginal Probability Table

Sum over other variables

weather

		Sunny	Cloudy	Rainy	Σ
temp	hot	150/365	40/365	5/365	195/365
	cold	50/365	60/365	60/365	170/365

• This is nothing but $P(B) = \sum_{i=1...k} P(B \land A=a_i)$, if A can take k values

• P(A = a|B = b) = fraction of times when random variable A took a value of a, within the region where random variable B = b

The definition $\mathbb{P}(A \mid B) = \mathbb{P}(A \cap B)/\mathbb{P}(B)$ restricts the sample space to B, and rescales to give $\mathbb{P}(B|B) = 1$:

- Consider a roll of a fair dice
- A: it rolled 1. P(A) = 1/6
- B: it rolled an odd number. P(B) = 3/6 = 0.5
- Suppose, I knew that B happened. What is the probability that A happened?

- Consider a roll of a fair dice
- A: it rolled 1. P(A) = 1/6
- B: it rolled an odd number. P(B) = 3/6 = 0.5
- Suppose, I knew that B happened. What is the probability that A happened?

•

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{1/6}{1/2} = \frac{1}{3}$$

- Conditional Probability: $P(A|B) = \frac{P(A \cap B)}{P(B)}$
- Multiplication Rule: $P(A \cap B) = P(A|B)P(B)$
- Chain Rule:

•
$$P(A_1, A_2) = P(A_1)P(A_2|A_1)$$

•

$$P(A_1, A_2, A_3) = P(A_3|A_1, A_2)P(A_1, A_2)$$

= $P(A_3|A_1, A_2)P(A_2|A_1)P(A_1)$

0

$$P(A_1, A_2, A_3) = P(A_1|A_2, A_3)P(A_2, A_3)$$

= $P(A_1|A_2, A_3)P(A_2|A_3)P(A_3)$

•
$$P\left(\bigcap_{i=1}^k A_i\right) = \prod_{i=1}^k P\left(A_i | \bigcap_{j=1}^{i-1} A_j\right)$$

Bayes Theorem

- $P(A|B) = \frac{P(A \cap B)}{P(B)}$
- $P(B|A) = \frac{P(A \cap B)}{P(A)}$
- Proof of Bayes Theorem:

$$P(A \cap B) = P(A|B)P(B)$$
$$= P(B|A)P(A)$$
$$P(A|B)P(B) = P(B|A)P(A)$$
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Independence

- Two events A, B are independent, if (all 3 definitions are equivalent)
 - $P(A \cap B) = P(A)P(B)$
 - $\bullet P(A|B) = P(A)$
 - P(B|A) = P(B)

Independence Misused

A famous statistician would never travel by airplane, because he had studied air travel and estimated that the probability of there being a bomb on any given flight was one in a million, and he was not prepared to accept these odds.

One day, a colleague met him at a conference far from home. "How did you get here, by train?"

"No, I flew"

"What about the possibility of a bomb?"

"Well, I began thinking that if the odds of one bomb are 1:million, then the odds of two bombs are (1/1,000,000) x (1/1,000,000). This is a very, very small probability, which I can accept. So now I bring my own bomb along!"

An innocent old math joke

Independence

- Independence between random variables is typically obtained via domain knowledge
- Suppose A and B be two independent random variables that can take k different values a_1 , Idots, a_k and b_1, \ldots, b_k
- The joint probability table typically has k^2 parameters
- If random variables are independent, then only 2k-2 parameters
 - k = 2, 4 vs 2
 - k = 10, 100 vs 18
 - k = 100, 10,000 vs 198
- This is something great for data mining!

Conditional Independence

- Random variables can be dependent, but conditionally independent
- Your house has an alarm
 - Neighbor John will call when he hears the alarm
 - Neighbor Mary will call when she hears the alarm
 - Assume John and Mary dont talk to each other
- JohnCall independent of MaryCall?

Conditional Independence

- Random variables can be dependent, but conditionally independent
- Your house has an alarm
 - Neighbor John will call when he hears the alarm
 - Neighbor Mary will call when she hears the alarm
 - Assume John and Mary dont talk to each other
- JohnCall independent of MaryCall?
 - No If John called, likely the alarm went off, which increases the probability of Mary calling
 - $P(MaryCall|JohnCall) \neq P(MaryCall)$

Conditional Independence

- If we know the status of the alarm, JohnCall won't affect Mary at all
- P(MaryCall|Alarm, JohnCall) = P(MaryCall|Alarm)
- We say JohnCall and MaryCall are conditionally independent, given Alarm
- In general A, B are conditionally independent given C
 - P(A|B,C) = P(A|C) or
 - P(B|A, C) = P(B|C) or
 - P(A, B|C) = P(A|C) * P(B|C)

Probabilistic Interpretation of Classification

Probabilistic Classifiers

- Type of classifiers that, given an input, produces a probability distribution over a set of classes
 - Probability that this email is spam is X and not spam is Y
 - \bullet Probability that this person has tumour is X and no tumour is Y
 - Probability that this digit is 0 is X, 1 is Y, ...
- Most state of the art classifiers are probabilistic
- Even k-NN and Decision trees have probabilistic interpretations

Prior Probability

- P(A): Prior or unconditional probability of A
- Your belief in A in the absence of additional information
- Uninformative priors
 - Principle of indifference: Assign equal probabilities to all possibilities
 - Coin toss, P(head)=P(tail)=1/2
- Often you get from domain knowledge or from data
- P(email is spam) = 0.8

Conditional Probability as Belief Update

- P(A): Prior belief in A
- P(A|B): Belief after obtaining information B
- P(A|B,C): Belief after obtaining information B and C

- Suppose you work as security guard in Airport
- Your job: look at people in security line and choose some for additional screening
- You want to pick passengers with high "risk"
- A: Passenger is high risk
- ullet By experience, you know only 0.1% of passengers are high risk (Prior probability)

²http:

- Consider a random person:
 - The probability that this person is high risk is A is 0.1%
 - Suppose you notice that the person is male

³http:

- Consider a random person:
 - The probability that this person is high risk is A is 0.1%
 - Suppose you notice that the person is male
 - There are more male criminals than female ones
 - The passenger is nervous

³http:

- Consider a random person:
 - The probability that this person is high risk is A is 0.1%
 - Suppose you notice that the person is male
 - There are more male criminals than female ones
 - The passenger is nervous
 - Most criminals are nervous but most normal passengers are not
 - The passenger is a kid

³http:

- Consider a random person:
 - The probability that this person is high risk is A is 0.1%
 - Suppose you notice that the person is male
 - There are more male criminals than female ones
 - The passenger is nervous
 - Most criminals are nervous but most normal passengers are not
 - The passenger is a kid

³http:

Conditional Probability as Belief Update

Then we observe candies drawn from some bag: •••••

What kind of bag is it? What flavour will the next candy be?

- $X, A = \langle A_1, A_2, \dots, A_d \rangle$: Input feature vector
- Y, C: Class value to predict
- P(C|A) vs P(A|C)

Conditional Probability

- $X, A = \langle A_1, A_2, \dots, A_d \rangle$: Input feature vector
- Y, C: Class value to predict
- P(C|A) vs P(A|C)
- Key terms
 - P(A), P(C): Prior probability
 - P(A|C): Class conditional probability or likelihood (from training data)
 - P(C|A): Posterior probability

Likelihood vs Posterior

- P(A|C): Likelihood, P(C|A): Posterior
- Examples:
 - P(Viagra|Spam) and P(Spam|Viagra):

Likelihood vs Posterior

- P(A|C): Likelihood, P(C|A): Posterior
- Examples:
 - P(Viagra|Spam) and P(Spam|Viagra): Likelihood, Posterior
 - P(High temperature|Flu) and P(Flu|High Temperature):

Likelihood vs Posterior

- P(A|C): Likelihood, P(C|A): Posterior
- Examples:
 - P(Viagra|Spam) and P(Spam|Viagra): Likelihood, Posterior
 - P(High temperature|Flu) and P(Flu|High Temperature):
 Likelihood, Posterior
 - P(Fever, Headache, Cough|Flu) and P(Flu|Fever, Headache, Cough)
 - P(Viagra, Nigeria, Lottery|Spam) and P(Spam|Viagra, Nigeria, Lottery)

Bayes' Theorem

- Training data gives us likelihood and prior
- Prediction requires Posterior
- Bayes rule allows us to do statistical inference
- $P(C|A) = \frac{P(A|C)P(C)}{P(A)}$
- $P(C|A) \propto P(A|C)P(C)$

Bayes Decision Rule

- "When you hear hoofbeats, think of horses not zebras"
- When predicting, assign the class with highest posterior probability
- To categorize email:
 - Compute P(spam|email) and P(not spam|email)
 - If P(spam|email) > P(not spam|email), decide email as spam. Else as not-spam

Bayesian Classifiers

Bayes Classifier

- A probabilistic framework for solving classification problems
- Conditional Probability:

$$P(C \mid A) = \frac{P(A,C)}{P(A)}$$

$$P(A \mid C) = \frac{P(A,C)}{P(C)}$$

Bayes theorem:

$$P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}$$

Example of Bayes Theorem

Given:

- A doctor knows that meningitis causes stiff neck 50% of the time
- Prior probability of any patient having meningitis is 1/50,000
- Prior probability of any patient having stiff neck is 1/20
- If a patient has stiff neck, what's the probability he/she has meningitis?

$$P(M \mid S) = \frac{P(S \mid M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

Bayesian Classifiers

 Consider each attribute and class label as random variables

- Given a record with attributes (A₁, A₂,...,A_n)
 - Goal is to predict class C
 - Specifically, we want to find the value of C that maximizes P(C| A₁, A₂,...,A_n)
- Can we estimate P(C| A₁, A₂,...,A_n) directly from data?

Bayesian Classifiers

- Approach:
 - compute the posterior probability P(C | A₁, A₂, ..., A_n) for all values of C using the Bayes theorem

$$P(C \mid A_1 A_2 \dots A_n) = \frac{P(A_1 A_2 \dots A_n \mid C) P(C)}{P(A_1 A_2 \dots A_n)}$$

- Choose value of C that maximizes $P(C \mid A_1, A_2, ..., A_n)$
- Equivalent to choosing value of C that maximizes
 P(A₁, A₂, ..., A_n|C) P(C)
- How to estimate P(A₁, A₂, ..., A_n | C)?

Naive Bayes Classifier

 Assume independence among attributes A_i when class is given:

-
$$P(A_1, A_2, ..., A_n | C) = P(A_1 | C_j) P(A_2 | C_j)... P(A_n | C_j)$$

- Can estimate P(A_i| C_j) for all A_i and C_j.
- New point is classified to C_j if P(C_j) Π P(A_i| C_j) is maximal.

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

• Class:
$$P(C) = N_c/N$$

For discrete attributes:

$$P(A_i \mid C_k) = |A_{ik}| / N_{c_k}$$

- where |A_{ik}| is number of instances having attribute A_i and belongs to class C
- Examples:

How to Estimate Probabilities from Data?

- For continuous attributes:
 - Discretize the range into bins
 - one ordinal attribute per bin
 - violates independence assumption
 - Two-way split: (A < v) or (A > v)
 - choose only one of the two splits as new attribute
 - Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - ◆ Once probability distribution is known, can use it to estimate the conditional probability P(A_i|c)

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normal distribution:

$$P(A_{i} \mid c_{j}) = \frac{1}{\sqrt{2\pi\sigma_{ij}^{2}}} e^{\frac{(A_{i} - \mu_{i})^{2}}{2\sigma_{ij}^{2}}}$$

- One for each (A_i,c_i) pair
- For (Income, Class=No):
 - If Class=No
 - sample mean = 110
 - sample variance = 2975

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi}(54.54)} e^{\frac{(120-110)^2}{2(2975)}} = 0.0072$$

Example of Naive Bayes Classifier

Given a Test Record:

$$X = (Refund = No, Married, Income = 120K)$$

naive Bayes Classifier:

P(Refund=Yes|No) = 3/7 P(Refund=No|No) = 4/7 P(Refund=Yes|Yes) = 0 P(Refund=No|Yes) = 1 P(Marital Status=Single|No) = 2/7 P(Marital Status=Divorced|No)=1/7 P(Marital Status=Married|No) = 4/7 P(Marital Status=Single|Yes) = 2/7 P(Marital Status=Single|Yes) = 1/7 P(Marital Status=Divorced|Yes) = 1/7 P(Marital Status=Divorced|Yes) = 0

For taxable income:

If class=No: sample mean=110 sample variance=2975

If class=Yes: sample mean=90

sample variance=25

P(X|Class=No) = P(Refund=No|Class=No)
 × P(Married| Class=No)
 × P(Income=120K| Class=No)
 = 4/7 × 4/7 × 0.0072 = 0.0024

P(X|Class=Yes) = P(Refund=No| Class=Yes)
 × P(Married| Class=Yes)
 × P(Income=120K| Class=Yes)
 = 1 × 0 × 1.2 × 10-9 = 0

Since P(X|No)P(No) > P(X|Yes)P(Yes) Therefore P(No|X) > P(Yes|X) => Class = No

Naive Bayes Classifier

- If one of the conditional probability is zero, then the entire expression becomes zero
- Probability estimation:

Original:
$$P(A_i \mid C) = \frac{N_{ic}}{N_c}$$

Laplace: $P(A_i \mid C) = \frac{N_{ic} + 1}{N_c + c}$
m - estimate: $P(A_i \mid C) = \frac{N_{ic} + mp}{N_c + m}$

c: number of classesp: prior probability

m: parameter

Example of Naive Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

A:	attributes	

M: mammals

N: non-mammals

$$P(A|M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$
$$P(A|N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A|M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A|N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$$

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

P(A|M)P(M) > P(A|N)P(N)

=> Mammals

Naive Bayes Classifier Summary

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Independence assumption may not hold for some attributes
 - Use other techniques such as Bayesian Belief Networks (BBN)

Support Vector Machines

Summary

Major Concepts:

- Probabilistic interpretation of Classification
- Bayesian Classifiers
- Naive Bayes Classifier
- Support Vector Machines (SVM)
- Kernels

Slide Material References

- Slides from ISLR book
- Slides from Jerry Zhu
- See also the footnotes