In this model,

Low-frequency earthquakes detections

the intermittence and migrations of tremor activity in subduction faults

Clogging and un-clogging of the subduction plumbing system may generate tremor-like patterns

Click where [+] for more!
Go full screen for best results!

→ Background and motivation [+]

Variations of **fluid pressure** within subduction fault zones can **fuel fault-slip** events [1] and trigger the largest earthquakes [2].

In active subduction zones, fluid flow can be tracked through the activity of tremor and low-frequency earthquake (LFE) it seems to trigger.

Welcome to my display materials! We build a model to explore how fluid transport in a fault shapes its seismicity.

The online version is a bit slow, give it time before clicking on links, and refresh it if it crashes!

We solve for

Have a good read!

22/03/2005

Time of detection (dd/mm/yyyy)

26/03/200

emerges from cascades and interactions of un-clogging and clogging in permeable channels

Bursts and migrations of low-frequency earthquake activity in Guerrero, Mexico

Bursts and migrations of opening events in a permeable channel with valves [Click on the screen to start] . Un-clogging events 1.08 1.06 Time of detection (scaled)

We solve for fluid pressure diffusion in a 1D, dynamically permeable channel along-dip. Locally, several permeability valves open/close in response to the pressure gradient.

The strong, rapid pressure transient at opening can act as (or trigger) a seismic source.

2/ Un-clogging 3-4/ Discharge and clogging

Results [+]

As seismic sources interact through rapid fluid pressure transients, events occur in cascades. Activity is clustered and migrates in the channel. [+]

The input flux in the fault zone controls if activity occurs, and shapes its intermittence.

This simple conceptual model shows how variable and realistic patterns of seismicity can be driven by dynamic permeability in a constantly fed fluid transport system.

In this model,

Clogging and un-clogging of the subduction plumbing system may generate tremor-like patterns

the intermittence and migrations of tremor activity in subduction faults

emerges from cascades and interactions of un-clogging and clogging in permeable channels

Gaspard Farge, Claude Jaupart, Nikolaï Shapiro

Click where [+] for more! Go full screen for best results!

→ Background and motivation [+]

Variations of **fluid pressure** within subduction fault zones can **fuel fault-slip** events [1] and trigger the largest earthquakes [2].

In active subduction zones, fluid flow can be tracked through the activity of tremor and low-frequency earthquake (LFE) it seems to trigger.

We build a model to explore how fluid transport in a fault shapes its seismicity.

→ Model design +

We solve for fluid pressure diffusion in a 1D, dynamically permeable channel along-dip. Locally, several **permeability valves** open/close in response to the pressure gradient.

The strong, rapid pressure transient at opening can act as (or trigger) a seismic source.

1/ Loading 3-4/ Discharge and clogging 2/ Un-clogging

As seismic sources interact through rapid fluid pressure transients, events occur in cascades. Activity is **clustered** and **migrates** in the channel.

The input flux in the fault zone controls if activity occurs, and shapes its intermittence.

This simple conceptual model shows how variable and realistic patterns of seismicity can be driven by dynamic permeability in a constantly fed fluid transport system.

