MATEMÁTICA DISCRETA Estructuras Algebraicas

Prof. Sergio Salinas

Facultad de Ingeniería Universidad Nacional de Cuyo

Segundo semestre 2024

Contenido

Anillos y Campos

Anillos y Campos

Anillos

Definición

Sea R (Ring) un conjunto no vacío con dos operaciones binarias cerradas, denotadas con + $y \cdot$, que pueden ser diferentes de la suma y producto usuales. Entonces $< R, \oplus, \odot >$ es un anillo si para todos $a, b, c \in R$ se satisface que:

- 1) $< R, \oplus >$ es un grupo aditivo Abeliano :
 - 1. Ley asociativa de la suma: $a \oplus (b \oplus c) = (a \oplus b) \oplus c$
 - 2. Existencia de la identidad en la suma: $a \oplus e = e \oplus a = a$
 - 3. Existencia de inversos para la suma: $a \oplus b = b \oplus a = e$
 - 4. Ley conmutativa de la suma: $a \oplus b = b \oplus a$
- 2) $< R, \odot >$ con el producto debe cumplir:
 - 1. Ley asociativa del producto: $a \odot (b \odot c) = (a \odot b) \odot c$
- 3) Leyes distributivas del producto sobre la suma:
 - 1. $a \odot (b \oplus c) = a \odot b \oplus a \odot c$
 - 2. $(b \oplus c) \odot a = b \odot a \oplus c \odot a$

Campos

Definición

Sea F (Field) un conjunto no vacío con dos operaciones binarias cerradas, denotadas con \oplus y \odot , que pueden ser diferentes de la suma y producto usuales. Entonces $< F, \oplus, \odot >$ es un campo si para todos $a, b, c \in F$ se satisfacen las siguientes condiciones:

- 1. < F, ⊕ > con la suma ⊕ es un grupo aditivo Abeliano.
- $2.\ < F \{0\}, \odot >$ con el producto \odot es un grupo multiplicativo Abeliano.
- 3. La multiplicación es distributiva respecto a la adición:

1)
$$a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c)$$

2)
$$(b \oplus c) \odot a = (b \odot a) \oplus (c \odot a)$$

Anillos

Definición

Sea $< R, \oplus, \odot >$ un anillo, entonces

- Si un elemento u ∈ R es tal que u ≠ e y au = ua = a para toda a ∈ R, decimos que u es el elemento unidad, o identidad del producto de R. Entonces se dice que R es un anillo con unidad.
- 2. Si ab = ba para todos los $a, b \in R$ entonces R es un anillo conmutativo.
- 3. El anillo R **no** tiene divisores propios de cero si para cualesquiera $a, b \in R$ se cumple que $ab = e \Rightarrow a = e$ o b = e.

Anillos

Definición

Un divisor propio de cero en un anillo es un elemento a distinto de cero tal que existe un elemento b también distinto de cero en el anillo que satisface:

$$a \odot b = e$$

Esto significa que a y b son elementos que anulan el producto, llevando el resultado a cero. En un anillo con divisores de cero, puede haber múltiples divisores propios de cero.

Ejemplo:

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

$$A \odot B = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 \cdot 0 + 0 \cdot 1 & 1 \cdot 0 + 0 \cdot 0 \\ 1 \cdot 0 + 0 \cdot 1 & 1 \cdot 0 + 0 \cdot 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Ejemplos de Anillo

Ejemplos básicos:

- En las operaciones binarias de la suma y producto usuales, Z,Q,R y C son anillos.
- El conjunto de matrices 2 × 2 con elementos enteros es un anillo.
- Demostrar que el conjunto $\mathbb Z$ con las operaciones binarias \oplus y \odot es un anillo, donde:
 - $x \oplus y = x + y 1$
 - $\bullet \ \ x \odot y = x + y xy$

Ejemplos de Anillo

Demostrar que el conjunto $\mathbb Z$ con las operaciones binarias \oplus y \odot es un anillo, donde: $x \oplus y = x + y - 1$ y $x \odot y = x + y - xy$

- 1. Ley conmutativa de la suma: $x \oplus y = x + y 1 = y + x 1 = y \oplus x$
- 2. Ley asociativa de la suma: $x \oplus (y \oplus z) = x \oplus (y+z-1) = x+y+z-1-1$ $y (x \oplus y) \oplus z = (x+y-1) \oplus z = x+y-1+z-1$
- 3. Existencia de la identidad en la suma: $a \oplus e = e \oplus a = a$ entonces a + e 1 = a donde e = 1
- 4. Existencia de inversos para la suma: a + b = b + a = e donde b = 2 a
- 5. Ley associative del producto: $a \odot (b \odot c) = (a \odot b) \odot c$ entonces $x \odot (y \odot z) = x \odot (x + z xz) = x + (x + z xz) + x(x + z xz)$ y $(x \odot y) \odot z = (x + y xy) \odot z = (x + y xy) + z (x + y xy)z$

Ejemplos de Anillo

Leyes distributivas del producto sobre la suma:

1.
$$a \cdot (b+c) = a \cdot b + a \cdot c$$
 entonces $x \odot (y \oplus z) = x \odot (y+z-1) = x + (y+z-1) - x(y+z-1) = x + y + z - 1 - xy - xz + x$

2.
$$(b \oplus c) \odot a = b \odot a \oplus c \odot a$$
 entonces $(x \odot y) \oplus (x \odot z) = (x + y - xy) \oplus (x + z - xz) = (x + y - xy) + (x + z - xz) - 1 = x + y + z - 1 - xy - xz + x$

Ejercicios de Anillo

- 1. Demostrar que $\langle Z_4, +_4, \cdot_4 \rangle$ es un anillo.
- 2. Demostrar que el conjunto S de todos los pares ordenados (a,b) de números reales es un anillo conmutativo con divisores cero bajo las operaciones binarias \oplus y \odot definidas por:

1)
$$(a, b) \oplus (c, d) = (a + c, b + d)$$

2)
$$(a, b) \odot (c, d) = (ac, bd)$$

- 3. Demuestrar que $\langle \mathbb{Q}, \oplus, \odot \rangle$ es un anillo, donde:
 - 1) $a \oplus b = a + b + 7$
 - 2) $a \odot b = a + b + \frac{ab}{7}$

Ejercicios de Campo

- 1. Demostrar que $\langle \mathbb{R}, +, \cdot \rangle$ es un campo.
- 2. Demostrar que el conjunto S de pares ordenados (a, b) de números reales y las siguientes operaciones binarias es un campo.

1)
$$(a,b) \oplus (c,d) = (a+c,b+d)$$

2)
$$(a, b) \odot (c, d) = (ac - bd, bc + ad)$$

Fin

