

Index

- Introduction
- Dataset and Preprocessing
- Models
 - CNN
 - RNN
 - Attention Mechanism
- Results
- Application

Introduction

GOAL:

Design a model for the Keyword Spotting task

HOW:

Exploring an attention-based CNN/RNN architecture

Dataset And Preprocessing

- Dataset:
 - Google Keyword Spotting Dataset V2
 (http://download.tensorflow.org/data/speech_commands_v0.02.tar.gz)
 - 35 classes
 - Length of the recordings: 1sec
 - Sampling rate: 16000Hz

Dataset And Preprocessing

- Preprocessing and feature vectors:
 - Zero padding
 - 80 band mel scale
 - 1024 Discrete Fourier Transform points
 - Window length: 0.02s
 - Hop size: 0.01s

Model

CNN

RNN

- We try different configurations of Bi-RNN:
 - GRU/LSTM
 - One or two Bidirectional RNN
 - Different number of units (32, 48, 64)
 - Passing or not the state between them

Attention Mechanism

 Attention mechanism is used to train the network to understand which part of the signal is more important for the generation of the output.

Attention Mechanism

Model	Test Accuracy
CNNRNNAttState	92.55
CNNRNNAttDouglas	92.62
CNNRNNStatefulAttDouglas	92.54
PCNNRNNStatefulAttDouglas	88.26
MultiAttention	93.11
MultiAttentionDouglas	92.50
MultiAttentionDiff	94.10
Douglas (paper)	93.90
Douglas (by us)	92.71

Predicted label

CONTUSION THAT IN THE ADDRESS OF THE

Predicted label

Application

- Our application predicts words spoken by a user in a real time context.
- We re-train our best model in a dataset with noisy samples.

Application

Application

- To classify the words said by the user:
 - The prediction in a sequence of 3 windows must be the same
 - A threshold is applied to the score of the prediction (80%).

