Ch. I

TORSEURS

I. Champ de vecteurs antisymétrique

- On appelle *champ de vecteurs*, \overrightarrow{M} toute application qui associe à chaque point A de l'espace un vecteur $\overrightarrow{\mathbf{M}}(\mathbf{A}) = \overrightarrow{\mathbf{M}}_{\mathbf{A}}$.
- On dit qu'un champ de vecteurs $\overrightarrow{\mathbf{M}}$ est équiprojectif si et seulement si :

$$\forall \ A \ et \ B$$
 \overrightarrow{AB} . $\overrightarrow{M}_B = \overrightarrow{AB}$. \overrightarrow{M}_A

L'équiprojectivité traduit le fait que les champs en deux points quelconques A et B ont même projection sur la droite (AB):

 $\overline{\mathbf{AH}} = \overline{\mathbf{BK}}$

• On dit qu'un champ de vecteurs $\overrightarrow{\mathbf{M}}$ est *antisymétrique* si :

$$\forall \ A \ et \ B \qquad \exists ! \ \overrightarrow{R} \qquad \overrightarrow{M}_B = \ \overrightarrow{M}_A + \overrightarrow{R} \ \wedge \ \overrightarrow{AB}$$

Ou encore s'il existe une matrice [F] antisymétrique $([F] = -[F]^T)$ tel que :

$$\forall \ A \ et \ B \qquad \overrightarrow{M}_B = \ \overrightarrow{M}_A + [F]. \ \overrightarrow{AB}$$

 $[\mathbf{F}]^{\mathbf{T}}$ est la matrice transposée de $[\mathbf{F}]$.

Théorème de Delassus: Tout champ de vecteurs antisymétrique est équiprojectif et réciproquement.

Antisymétrie ⇔ Equiprojectivité

II. **Torseurs**

On appelle torseur un ensemble constitué d'un champ de vecteurs antisymétrique $\vec{\mathbf{M}}$ et de son vecteur associé \vec{R} appelé **résultante** du torseur, vérifiant la relation de transport:

$$\forall \ A,B \qquad \overrightarrow{M}_B = \overrightarrow{M}_A + \overrightarrow{R} \wedge \overrightarrow{AB}$$

On note le torseur en un point A sous la forme :

$$[T(A)] = \begin{cases} \vec{R} \\ \vec{M}_A \end{cases}$$
 ou encore $[\vec{R}, \vec{M}_A]$

 $\vec{\mathbf{M}}_{A}$ est appelé **moment résultant** en A du torseur. Les vecteurs $\vec{\mathbf{R}}$ et $\vec{\mathbf{M}}_{A}$ s'appellent les éléments de réduction du torseur au point A. En termes des composantes des deux vecteurs dans une même base, on écrit:

$$[T(A)] = \begin{cases} R_1 & M_{1A} \\ R_2 & M_{2A} \\ R_3 & M_{3A} \end{cases}$$

III. Invariant scalaire d'un torseur

L'invariant scalaire d'un torseur [T], noté, $I_{[T]}$ est le produit scalaire de sa résultante $\overrightarrow{\mathbf{R}}$ et de son moment $\overrightarrow{\mathbf{M}}_A$ en un point A quelconque. Cette quantité est indépendante de ce point.

$$\forall \mathbf{A} \mathbf{e} \mathbf{t} \mathbf{B} \qquad \mathbf{I}_{\mathbf{I} \mathbf{T} \mathbf{1}} = \overrightarrow{\mathbf{R}} \cdot \overrightarrow{\mathbf{M}}_{\mathbf{A}} = \overrightarrow{\mathbf{R}} \cdot \overrightarrow{\mathbf{M}}_{\mathbf{B}}$$

IV. Algèbre élémentaire des torseurs

Soient deux torseurs : $[T_1(A)] = [\overrightarrow{R}_1, \overrightarrow{M}_{1A}]$ et $[T_2(A)] = [\overrightarrow{R}_2, \overrightarrow{M}_{2A}]$

Egalité:
$$[T_1] = [T_2] \Leftrightarrow (\forall A) (\vec{R}_1 = \vec{R}_2 \text{ et } \vec{M}_{1A} = \vec{M}_{2A})$$

<u>Addition</u>: $[T] = [T_1] + [T_2]$ est un torseur tel que :

$$[T(A)] = [T_1(A)] + [T_2(A)] \qquad \Leftrightarrow \qquad \overrightarrow{R} = \overrightarrow{R}_1 + \overrightarrow{R}_2 \quad \text{et} \quad \overrightarrow{M}_A = \overrightarrow{M}_{1A} + \overrightarrow{M}_{2A}$$

<u>Multiplication par un scalaire λ </u>: $[T] = \lambda [T_1]$ est un torseur tel que :

$$[T(A)] = \lambda [T_1(A)] \qquad \Leftrightarrow \qquad (\overrightarrow{R} = \lambda \overrightarrow{R}_1 \quad \text{ et } \qquad \overrightarrow{M}_A = \lambda \overrightarrow{M}_{1A})$$

Comoment:
$$[T_1(A)].[T_2(A)] = \overrightarrow{R}_1.\overrightarrow{M}_{2A} + \overrightarrow{R}_2.\overrightarrow{M}_{1A}$$

Le comoment est un invariant scalaire qui ne dépend pas du point A.

$$(\forall A \text{ et } B)$$
 $[T_1(A)].[T_2(A)] = [T_1(B)].[T_2(B)]$

Preuve:

$$\begin{split} [T_1(A)].[T_2(A)] &= \overrightarrow{R}_1.\overrightarrow{M}_{2A} + \overrightarrow{R}_2.\overrightarrow{M}_{1A} = \overrightarrow{R}_1.(\overrightarrow{M}_{2B} + \overrightarrow{R}_2 \wedge \overrightarrow{BA}) + \overrightarrow{R}_2.(\overrightarrow{M}_{1B} + \overrightarrow{R}_1 \wedge \overrightarrow{BA}) \\ &= \overrightarrow{R}_1.\overrightarrow{M}_{2B} + \overrightarrow{R}_2.\overrightarrow{M}_{1B} + \overrightarrow{R}_1.(\overrightarrow{R}_2 \wedge \overrightarrow{BA}) + \overrightarrow{R}_2.(\overrightarrow{R}_1 \wedge \overrightarrow{BA}) = \overrightarrow{R}_1.\overrightarrow{M}_{2B} + \overrightarrow{R}_2.\overrightarrow{M}_{1B} = [T_1(B)].[T_2(B)] \\ \text{Car}: \overrightarrow{R}_1.(\overrightarrow{R}_2 \wedge \overrightarrow{BA}) &= -\overrightarrow{R}_2.(\overrightarrow{R}_1 \wedge \overrightarrow{BA}) \end{split}$$

 $[T(A)] \cdot [T(A)] = 2 \overrightarrow{\mathbf{R}} \cdot \overrightarrow{\mathbf{M}}_{\mathbf{A}} = \mathbf{2} I_{[T]}$ **Automoment**:

V. Axe central d'un torseur

1. Point central

Le point central A d'un torseur est un point où le moment résultant \vec{M}_A est colinéaire à sa résultante \vec{R} :

$$\overrightarrow{M}_A \wedge \overrightarrow{R} = \overrightarrow{0},$$

Ou encore que : $\vec{M}_A = k \vec{R}$, où k est un scalaire.

2. Axe central

L'axe central (Δ) d'un torseur est la droite constituée par l'ensemble des points centraux :

$$\Delta = \{ A / \overrightarrow{M}_A \wedge \overrightarrow{R} = \overrightarrow{0} \}$$

L'axe central n'existe que si $\vec{\mathbf{R}} \neq \vec{\mathbf{0}}$.

Equation de l'axe central

Soit $[T(O)] = [\vec{R}, \vec{M}_0]$ un torseur dont les éléments de réduction en un point O sont donnés. Soit (Δ) l'axe central de [T] et soit $A \in \Delta$ alors :

$$\overrightarrow{\mathbf{M}}_{A} \wedge \overrightarrow{\mathbf{R}} = \overrightarrow{\mathbf{0}}$$

Ou encore:

$$(\overrightarrow{M}_{O} + \overrightarrow{R} \wedge \overrightarrow{OA}) \wedge \overrightarrow{R} = \overrightarrow{0}$$

Ce qui donne en développant :

$$\vec{\mathbf{M}}_{\mathrm{O}} \wedge \vec{\mathbf{R}} + \mathbf{R}^{2} \quad \overrightarrow{\mathbf{OA}} - (\vec{\mathbf{R}} \cdot \overrightarrow{\mathbf{OA}}) \quad \vec{\mathbf{R}} = \vec{\mathbf{0}}$$

Comme $\vec{\mathbf{R}} \neq \vec{\mathbf{0}}$, on obtient:

$$\overrightarrow{OA} = \left(\frac{\overrightarrow{R} \, . \, \overrightarrow{OA}}{R^2} \right) \, \overrightarrow{R} + \frac{\overrightarrow{R} \ \, \wedge \, \overrightarrow{M}_0}{R^2}$$

Soit $B \in \Delta$ tel que $\overrightarrow{OB} \cdot \overrightarrow{R} = 0$ alors :

$$\overrightarrow{OB} = \frac{\overrightarrow{R} \wedge \overrightarrow{M}_0}{R^2}$$

Le point B est la projection orthogonale de O sur l'axe central (Δ). Donc :

 $\overrightarrow{OA} = \alpha \overrightarrow{R} + \overrightarrow{OB}$

 α scalaire Par conséquent, l'axe central est la droite, $\Delta(B, \vec{R})$ qui passe par le point B et de vecteur directeur \vec{R} .

Moment central

Le moment central $\vec{\mathbf{M}}_{A}$ d'un torseur est le moment résultant en un point A de son axe central $(A \in (\Delta))$.

Le moment central a la même direction que l'axe central du torseur.

Remarque

Le moment d'un torseur est constant le long de :

- l'axe central : \forall A et B \in (Δ) : $\overrightarrow{\mathbf{M}}_{B} = \overrightarrow{\mathbf{M}}_{A}$
- toute parallèle à l'axe central.

 $\underline{\textit{Preuve}}$: Soit A et B \in (Δ) alors \overrightarrow{R} // (AB) donc $\overrightarrow{R} \wedge \overrightarrow{AB} = \overrightarrow{0}$ Par conséquent : $\overrightarrow{M}_B = \overrightarrow{M}_A + \overrightarrow{R} \wedge \overrightarrow{AB} = \overrightarrow{M}_A$

VI. Torseurs à invariant scalaire nul : Glisseurs et Couples

Soit $[T(A)] = [\vec{R}, \vec{M}A]$ un torseur. L'invariant scalaire du torseur : $I_{[T]} = \vec{R} \cdot \vec{M}_A = 0$ est nul, dans les cas suivants :

- 1. Torseur nul
- 2. Glisseur
- 3. Couple

1. Torseur nul [0]:
$$(\forall A)$$
 $\vec{R} = \vec{0}$ et $\vec{M}_A = \vec{0}$

2. Glisseur:
$$I_{[T]} = 0$$
 et $\vec{R} \neq \vec{0}$

Le moment central d'un glisseur est nul : $\forall C \in \Delta$ $\overrightarrow{M}_C = \overrightarrow{0}$

$$\underline{En\ effet}$$
: $\overrightarrow{M}_C \perp \overrightarrow{R}$ (car $I_{[T]} = 0$) et $\overrightarrow{M}_C /\!/ \overrightarrow{R}$ (car $C \in (\Delta)$) Donc: $\overrightarrow{M}_C = \overrightarrow{0}$

Un glisseur est un torseur pour lequel il existe au moins un point central dont le moment est nul.

Axe central: Il faut distinguer deux cas:

$$\underline{\mathbf{1}^{\mathrm{er}} \operatorname{Cas}} : \overrightarrow{\mathbf{M}}_{\mathbf{A}} = \overrightarrow{\mathbf{0}}.$$

$$\text{Donc}: \ \overrightarrow{\boldsymbol{M}}_{\boldsymbol{A}} \wedge \ \overrightarrow{\boldsymbol{R}} \ = \overrightarrow{\boldsymbol{0}} \qquad \text{d'où} \quad \boldsymbol{A} \in \Delta \quad (\text{l'axe central passe par le point } \boldsymbol{A})$$

L'axe central du glisseur est la droite $\Delta(A, \vec{R})$ passant par le point central A et de vecteur directeur \vec{R} .

$$2^{\text{eme}} \text{ Cas}: \overrightarrow{M}_A \neq \overrightarrow{0}.$$

L'axe du glisseur est la droite $\Delta(B, \vec{R})$ passant par le point B et de vecteur directeur \vec{R} tel que :

$$\overrightarrow{AB} = \frac{\overrightarrow{R} \wedge \overrightarrow{M}_A}{R^2}$$

3. Couple:
$$\mathbf{I}_{[T]} = \mathbf{0}, \quad \vec{\mathbf{R}} = \vec{\mathbf{0}}$$
 et $\vec{\mathbf{M}}_{A} \neq \vec{\mathbf{0}}$

Un couple est un champ uniforme: $\overrightarrow{M}_B = \overrightarrow{M}_A$.

Par construction, un couple ne possède pas d'axe central.