Semi-Supervised Classification with Graph Convolutional Networks

Thomas N. Kipf, Max Welling

ВШЭ ФКН ПМИ Юрлов Павел

21 ноября 2019

План

- 🕕 Задача
- 2 Архитектура модели
 - Свёртки на графах
- Semi-supervised learning
- 4 Эксперименты
 - Классификация вершин
 - Представления вершин
 - Влияние глубины сети на качество
- Ограничения
- 6 Выводы

Задача

Semi-supervised на графах

- Задача классификации вершин графа, где доступны метки лишь малого подмножества вершин
- Классификация с частичным привлечением учителя
- Примеры: граф цитирования, социальные сети

Semi-supervised на графах: возможный подход

• Сеть принимает на вход только представления вершин, без структуры графа.

Модификация функции потерь для учёта неразмеченных вершин, например, с использованием лапласиана графа:

$$\mathcal{L} = \mathcal{L}_0 + \lambda \mathcal{L}_{reg},$$

где

$$\mathcal{L}_{reg} = \sum_{i,j} A_{i,j} ||f(X_i) - f(X_j)||^2 = f(X)^T \Delta f(X), \ \Delta = D - A$$

• Авторы статьи поступают иначе, кодируя структуру графа сетью f(X,A)

Архитектура модели

Обозначения

Γρаф $\mathcal{G}(\mathcal{V}, \mathcal{E})$

- Вход: $X \in \mathbb{R}^{N \times D}$ (N вершин, D входных признаков) $A \in \mathbb{S}^N_+$ матрица смежности
- Выход: $Z \in \mathbb{R}^{N \times F}$ (F выходных признаков)
- ullet Слой сети: $H^{(l+1)} = f(H^{(l)}, A)$ $H^{(0)} = X, \ H^{(L)} = Z \ (L$ число слоёв)

Слой сети: простое объяснение

- Прямой проход по слою: $H^{(l+1)} = \sigma(A \ H^{(l)} \ W^{(l)})$
- Добавим петли: $\widetilde{A} = A + I_N$
- Нормализуем матрицу смежности:

$$\widetilde{D}_{ii} = \sum_{j} \widetilde{A}_{ij}$$
 $\widetilde{A} = \widetilde{D}^{-1} \widetilde{A}$ Но лучше так: $\widetilde{A} = \widetilde{D}^{-1/2} \widetilde{A} \widetilde{D}^{-1/2}$

• Получаем:

$$H^{(l+1)} = \sigma(\widetilde{D}^{-1/2} \ \widetilde{A} \ \widetilde{D}^{-1/2} \ H^{(l)} \ W^{(l)}) \tag{*}$$

Спектральная свёртка на графе

$$g_{\theta} \star x = U g_{\theta} U^T x \tag{1}$$

- $x \in \mathbb{R}^N$ одноканальный сигнал
- $g_{\theta} = diag(\theta)$ с параметром $\theta \in \mathbb{R}^N$ из преобразования Фурье
- U матрица собств. векторов нормализованного лапласиана графа $L = I_N D^{-\frac{1}{2}}AD^{-\frac{1}{2}} = U\Lambda U^T$
- Проблема: умножение на U и собственное разложение вычислительно сложны

Приближение многочленами Чебышёва

$$\left[g_{\theta'}(\Lambda) \approx \sum_{k=0}^{K} \theta'_k T_k(\widetilde{\Lambda})\right]$$

$$g_{\theta'} \star x \approx \sum_{k=0}^{K} \theta'_k T_k(\widetilde{L}) x \tag{2}$$

- Масштабирование: $\widetilde{\Lambda} = \frac{2}{\lambda_{max}} \Lambda I_N, \ \widetilde{L} = \frac{2}{\lambda_{max}} L I_N$
- Многочлены Чебышёва:

$$T_0(x) = 1, \ T_1(x) = x$$
 $T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x)$
(Легко запомнить: $T_k(\cos \alpha) = \cos(k\alpha)$)

• К-локализация

Ограничение многочленов до первого порядка

$$K = 1: \quad g_{\theta'} \star x \approx \theta'_0 x + \theta'_1 \left(\frac{2}{\lambda_{max}} L - I_N\right) x \tag{3}$$

- Мы получили линейную функцию от L
- Из K-локализации получили зависимость лишь от непосредственных соседей, но это ограничение преодолевается добавлением слоёв
- Кроме того, мы не обязаны использовать именно многочлены Чебышёва (см. слайд 21)

Дальнейшие приближения

• Изменение масштаба; параметры одинаковы для всего сигнала x

$$\lambda_{max} \approx 2: \quad g_{\theta'} \star x \approx \theta'_0 x + \theta'_1 (L - I_N) x = \theta'_0 x + \theta'_1 D^{-\frac{1}{2}} A D^{-\frac{1}{2}} x$$
 (4)

• Ещё уменьшим число параметров

$$\theta'_0 = \theta, \theta'_1 = -\theta: \quad g_\theta \star x \approx \theta(I_N + D^{-\frac{1}{2}}AD^{-\frac{1}{2}})x$$
 (5)

• Ренормализация $\widetilde{A} = A + I_N$, $\widetilde{D}_{ii} = \sum_j \widetilde{A}_{ij}$:

$$g_{\theta} \star x \approx \theta \widetilde{D}^{-\frac{1}{2}} \widetilde{A} \widetilde{D}^{-\frac{1}{2}} x$$
 (6)

Итоговый слой

Обобщим:

$$Z = \sigma(\widetilde{D}^{-\frac{1}{2}}\widetilde{A}\widetilde{D}^{-\frac{1}{2}}X\Theta), \tag{7}$$

где $X \in \mathbb{R}^{N \times C}$ — вход слоя с C каналами, $\Theta \in \mathbb{R}^{C \times F}$ — параметры фильтров, $Z \in \mathbb{R}^{N \times F}$ — выход слоя с F каналами, $\sigma(\cdot)$ — нелинейность.

Вычислительная сложность $\mathcal{O}(|\mathcal{E}|CF)$ из-за эффективной реализации умножения на разреженную матрицу \widetilde{A}

Semi-supervised learning

Semi-supervised learning

Semi-supervised learning

- lacktriangled Модель использует и матрицу представлений вершин X, и матрицу смежности A, которые перемножаются при прямом распространении, причём параметры фильтров одинаковы для всех вершин
- Поэтому вершины с общими или похожими соседями (которые скорее всего из одного класса) получают близкие представления в дальнейших слоях
- Функция потерь кросс-энтропия только на вершинах с известными метками

Визуализация

Figure 1: Left: Schematic depiction of multi-layer Graph Convolutional Network (GCN) for semi-supervised learning with C input channels and F feature maps in the output layer. The graph structure (edges shown as black lines) is shared over layers, labels are denoted by Y_i . Right: t-SNE (Maaten & Hinton, 2008) visualization of hidden layer activations of a two-layer GCN trained on the Cora dataset (Sen et al., 2008) using 5% of labels. Colors denote document class.

Эксперименты

Архитектура сети и её обучение

① 2-слойная сеть Предварительно вычисляем $\widehat{A} = \widetilde{D}^{-\frac{1}{2}} \widetilde{A} \widetilde{D}^{-\frac{1}{2}}$ Прямой проход $(W^{(0)} \in \mathbb{R}^{C \times H}, W^{(0)} \in \mathbb{R}^{H \times F})$:

$$Z = f(X, A) = \operatorname{softmax}(\widehat{A} \operatorname{ReLU}(\widehat{A} X W^{(0)}) W^{(1)})$$

- ② Функция потерь: $\mathcal{L} = -\sum_{l \in \mathcal{Y}_L} \sum_{f=1}^F Y_{lf} \ln Z_{lf}$
- Градиентный спуск, на каждой итерации батч составляет весь датасет
- 4 Стохастичность при обучении из-за использования dropout
- **5** Память $\mathcal{O}(|\mathcal{E}|)$ благодаря разреженному хранению матрицы смежности

Датасеты

- Citation networks: 20 примеров с метками на каждый класс
- NELL: 1 пример с меткой на каждый класс

Dataset	Type	Nodes	Edges	Classes	Features	Label rate
Citeseer	Citation network	3,327	4,732	6	3,703	0.036
Cora	Citation network	2,708	5,429	7	1,433	0.052
Pubmed	Citation network	19,717	44,338	3	500	0.003
NELL	Knowledge graph	65,755	266,144	210	5,414	0.001

Сравнение с бейзлайнами

Table 2: Summary of results in terms of classification accuracy (in percent).

Method	Citeseer	Cora	Pubmed	NELL
ManiReg [3]	60.1	59.5	70.7	21.8
SemiEmb [28]	59.6	59.0	71.1	26.7
LP [32]	45.3	68.0	63.0	26.5
DeepWalk [22]	43.2	67.2	65.3	58.1
ICA [18]	69.1	75.1	73.9	23.1
Planetoid* [29]	64.7 (26s)	75.7 (13s)	77.2 (25s)	61.9 (185s)
GCN (this paper)	70.3 (7s)	81.5 (4s)	79.0 (38s)	66.0 (48s)
GCN (rand. splits)	67.9 ± 0.5	80.1 ± 0.5	78.9 ± 0.7	58.4 ± 1.7

Сравнение разных методов

Description	Propagation model	Citeseer	Cora	Pubmed
Chebyshev filter (Eq. 5) $K = 3$	$\nabla^K = \pi_{\tilde{i}}(\tilde{i}) VO$	69.8	79.5	74.4
Chebyshev litter (Eq. 3) $K = 2$	$\sum_{k=0}^{K} T_k(\tilde{L}) X \Theta_k$	69.6	81.2	73.8
1 st -order model (Eq. 6)	$X\Theta_0 + D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta_1$	68.3	80.0	77.5
Single parameter (Eq. 7)	$(I_N + D^{-\frac{1}{2}}AD^{-\frac{1}{2}})X\Theta$	69.3	79.2	77.4
Renormalization trick (Eq. 8)	$\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}X\Theta$	70.3	81.5	79.0
1st-order term only	$D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta$	68.7	80.5	77.8
Multi-layer perceptron	$X\Theta$	46.5	55.1	71.4

Время обучения (с учителем, на случайном графе)

Figure 2: Wall-clock time per epoch for random graphs. (*) indicates out-of-memory error.

Представления вершин 1

- Граф (karate club network): $|\mathcal{V}|=34, |\mathcal{E}|=154,$ модулярная кластеризация на 4 класса
- 3-слойная сеть с tanh активацией, 2 выходных канала, 1 размеченный пример на класс

Представления вершин 2

Влияние глубины при обучении с учителем

$$H^{(l+1)} = \sigma(\widetilde{D}^{-\frac{1}{2}} \ \widetilde{A} \ \widetilde{D}^{-\frac{1}{2}} \ H^{(l)} \ W^{(l)}) \ (+H^{(l)}, \text{if residual})$$

Ограничения

Ограничения модели и их возможное преодоление

- 💶 Из-за обучения на всём датасете на каждой итерации требования по памяти растут линейно от размера датасета, точнее числа рёбер. Но использование мини-батчей должно учитывать зависимость от соседей k-го порядка, в т. ч. не из мини-батча, на k-ом слое
- Направленные рёбра и признаки рёбер не учитываются
- Из-за произведённых приближений подразумевается локальность (зависимость от соседей до k-го порядка в k-слойной сети) и одинаковая важность петель и остальных рёбер. Последнее можно исправить, введя параметр λ : $A = A + \lambda I_N$

Выводы

Выводы

- Вычислительно эффективный конволюционный слой, полученный приближением первого порядка спектральной свёртки на графе
- Модель способна учитывать как характеристики вершин, так и структуру графа
- Это позволяет ей довольно успешно справляться с классификацией вершин графа с частичным привлечением учителя

Вопросы

- Запишите формулу (*) свёрточного слоя модели, поясните обозначения.
- Учитывает ли модель явным образом примеры без меток в функции потерь? Как модель учитывает их при обучении?
- Какова сложность модели по памяти при обучении? Почему её нельзя понизить без модификации модели?

Источники

- https://arxiv.org/abs/1609.02907
- https://tkipf.github.io/graph-convolutional-networks/