期末考试试题(A卷)

(2020——2021 学年第一学期)

课程名称: 高等数学 A1

考试专业、年级: 通院、电院、自动化院、计算机院及网安院各专业与物理、信管及商务等专业等 考核方式: 闭卷 可使用计算器: 否

题号	_	=	111	四	五.	六	七	八	九	总分
得分										
评卷人										

注意事项: 1. 答题必须使用黑色字迹签字笔书写, 不许用铅笔答卷: 2. 解答应写出文字说明、证明

得分: 一、选择题(每小题2分,共6分):每小题只有一个正确选项,请将所选项 前面的字母填在题中的括号内.

1. 考察函数:

$$(1)e^{-x^2};$$
 $(2)e^{-x};$ $(3)e^{x^2};$ $(4)arctan x^2;$ $(5)arctan x,$

$$e^{x^2}$$
; **4** arcta

当x→∞时,上述五个函数中,极限存在的函数是 ()

$$(2)(4)$$
.

2. 下列函数在自变量的给定变化过程中不是无穷小的是()

A.
$$\frac{x}{\sqrt{x^4+1}} (x \to \infty)$$
; B. $1-2^{-x} (x \to 0)$; C. $e^{\frac{1}{x}} (x \to 0^+)$; D. $\frac{\sin x}{x} (x \to \infty)$.

3. 设函数
$$f(x) = \begin{cases} ae^{2x}, & x \ge 0, \\ \frac{1}{(1-2x)^{\frac{1}{x}}}, & x < 0 \end{cases}$$
 在 $x = 0$ 处连续,则 $a = ($).

A.
$$e^{-2}$$
; B. e; C. 1; D. e^{-1} .

D.
$$e^{-1}$$
.

得分: 二、填空题(每空2分,共10分)

1. 曲线
$$y = 1 - 2x^2$$
 上点 $(0, 1)$ 处的曲率为_____.

3. 设
$$y = f(\tan x)$$
, 其中 $y = f(u)$ 可微, 则 $dy =$ _______

4. 已知
$$y_1 = e^{-x}$$
 和 $y_2 = e^{2x}$ 是二阶常系数齐次线性微分方程的两个解,则该微分方程 是

5. 微分方程
$$y'' - 5y' + 6y = xe^x$$
 的一个特解可设为_______(不求待定常数).

得分: _____ 1. 计算
$$\lim_{n\to\infty} \left(\sqrt{n^2 + 3n + 1} - \sqrt{n^2 - 2n - 2} \right)$$
.

得分: _____ **2.** 已知
$$y = |x+1|^x (x \neq -1)$$
,计算 y' .

得分: _____ 3. 设
$$\begin{cases} x = t^3 + 3t + 1 \\ y = \arcsin(3t) \end{cases}$$
, 求 $\frac{dy}{dx}$.

得分: _____ 4. 求
$$\int \frac{\sin x}{\cos^{\frac{3}{2}}x} dx$$
.

得分: _____ 四、解答下列各题(每小题 5 分,共 20 分)

得分: _____ 1. 求 $\lim_{x\to 0} \frac{(x-\sin x)e^{\cos x}}{\sqrt{1+x^3}-1}$.

得分: _____ 五、解答下列各题(每小题6分,共18分)

得分: _____ 1. 已知 f(x)的一个原函数为 e^{x^2} ,求 $\int x f'(x) dx$.

得分: _____ **2.** 求 $\int_{-1}^{1} \frac{2x^2 + x \cos x}{1 + x^2} dx$.

得分: _____ 2. 设 $e^x + e^y = xy + e + 1$,求 $y''|_{x=0}$.

得分: ______ **3.** 判别反常积分 $\int_1^{+\infty} (x-1)e^{-x}dx$ 的收敛性,如果收敛,求出其值.

得分: _____ 4. 已知 $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0 \end{cases}$, 求 f'(x).

得分: ______ 3. 证明: $\int_0^1 x^m (1-x)^n dx = \int_0^1 x^n (1-x)^m dx$,由此计算 $\int_0^1 x (1-x)^7 dx$.

得分:	,轴所围成的平面图形为
得分:	$\int_{0}^{x} f(t) \sin t \mathrm{d}t = x + 1, $