

DP0601 GNSS RTK (F9P)

Delivers centimeter level accuracy within seconds based on U-blox ZED-F9P L1/L2 GNSS module

Datasheet - In Production

Features

- 5V 100mA power supply
- LEDs status : Timepulse/Power/RTK
- Timepulse & External Interrupt
- USB/I²C/SPI/UART digital interfaces
- Gold plated SMA connector
- ESD protection diodes

Applications

- Drones
- RTK Base
- Ground vehicles
- Precise navigation
- Automation of moving machinery

Description

The DP0601 GNSS RTK F9P is an affordable compact and high precision L1/L2 GNSS RTK device.

Based on the last generation of GNSS U-blox ZED-F9P modules, the DP0601 offers reliable and fast convergence time to provide centimeter accuracy within seconds.

The device allows concurrent reception of GPS / GLONASS / BeiDou & Galileo signals to improve signal availability.

The JST-GH connectors make them perfect to be connected to a Pixhawk3Pro or any other autopilot.

The DP0601 GNSS RTK is guaranteed to operate over a temperature range of -20° C to $+70^{\circ}$ C.

Table 1. Device summary

Order ref code	Temperature range [°C]	Product size [mm]
0891B08A	-20 to +70	50.0 x 50.0 x 8.0

Contents

1. Block diagram and pin description	3
1.1 Block diagram	3
1.2 LEDs description	3
1.3 Pin description	4
2. Specifications	5
3. Absolute maximum ratings	7
4. Applications	8
4.1 Standalone Base/Rover configuration	8
4.2 NTRIP (Network Transport of RTCM via Internet Protocol) local configuration	8
4.3 NTRIP cellular configuration	9
4.4 Moving Base/Rover for distance & heading evaluation	9
5. Communication interfaces	10
5.1 UART Interface	10
5.2 SPI interface	11
5.3 Slave I2C interface	12
5.4 USB interface	12
6. Mechanical drawings	13
7. Revision history	14
8. Appendix	14

1. Block diagram and pin description

1.1 Block diagram

Figure 1. DP0601 block diagram & connectivity

1.2 LEDs description

Table 2. DP0601 LED sequence status

LED name	Color	Light sequence	Comment
Timepulse	Green		Blinking LED when RTK fix is available
Power	Blue		Solid blue LED when powered ON
RTK Status	Green		3D fix mode / No RTK fix
			RTK fix but no FIXED RTK fix
			FIXED RTK fix

1.3 Pin description

Table 2. Pinout configuration

Pin	Name	Туре	Function
A1	5V SPI	Р	5V input to select SPI instead of UART1
A2	SPI CLK	1	SPI clock input
A3	SPI MOSI	1/0	SPI Master Output Slave Input
A4	SPI MISO	1/0	SPI Master Input Slave Output
A5	SPI CS	I	SPI chip select input
A6	GND	Р	Ground reference
B1	5V IN	Р	5V input
B2	UART1 RX / SPI MOSI	1/0	UART1 receive <u>OR</u> SPI MOSI
В3	UART1 TX / SPI MISO	1/0	UART1 transmit <u>OR</u> SPI MISO
B4	I2C SCL / SPI SCLK	1	I2C clock <u>OR</u> SPI clock
B5	I2C SDA / SPI CS	1/0	I2C data <u>OR</u> SPI chip select
В6	GND	Р	Ground reference
C1	5V IN	Р	5V input
C2	UART2 RTCM3 TX	1/0	UART2 transmit
C3	UART2 RTCM3 RX	1/0	UART2 receive
C4	EXTINT	0	External interrupt
C 5	TIMEPULSE	0	External interrupt based on Timepulse
C6	GND	Р	Ground reference

P: Power / I: Input / O: Output

2. Specifications

@Vdd = 5V, T = 25°C unless otherwise noted

Table 3. DP0601 mechanical and electrical specifications

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vusb	USB supply voltage		4.5	5.0	5.5	٧
Vdd	Internal supply voltage			3.3		٧
Vdd_IO	Supply voltage for I/O			3.3		٧
ldd	Current consumption	w/o active antenna		50		mA
		w/ TW7972 antenna		130		mA
Vil	IO pin low level input voltage		0		0.8	٧
Vih	IO pin high level input voltage		2		Vdd+ 0.3	٧
Vol	IO pin low level output voltage	Iol = 2mA			0.4	٧
Voh	IO pin high level output voltage	loh = 2mA	Vdd- 0.4			٧
W	Weight	w/o active antenna		18		g
Тор	Operating temperature		-20		+70	°C

Table 4. DP0601 general performance

Parameter	Specifications	Value
Receiver type	Multi-band GNSS high precision	
Accuracy of Timepulse	RMS 99%	30 ns 60 ns
Frequency of Timepulse		0.25 Hz to 10 MHz
Operational limits	Dynamics Altitude Velocity	< 4g 50,000 m 500 m/s
Velocity accuracy		0.05 m/s

Table 5. DP0601 performance in different GNSS mode

GNSS	Parameter	GPS+GLO+GAL +BDS	GPS+GLO	GPS+BDS	GPS
Acquisition	Cold start Hot start Aided start	24 s 2 s 2 s	26 s 2 s 2 s	28 s 2 s 2 s	29 s 2 s 2 s
Update rate	RTK PVT RAW	8 Hz 10 Hz 20 Hz	15 Hz 25 Hz 25 Hz	15 Hz 25 Hz 25 Hz	20 Hz 25 Hz 25 Hz
Convergence time	RTK	< 10 s	< 10 s	< 10 s	< 30 s
Horizontal pos. accuracy	PVT RTK	1.5 m CEP 0.01 m + 1ppm CEP	1.5 m CEP 0.01 m + 1ppm CEP	1.5 m CEP 0.01 m + 1ppm CEP	1.5 m CEP 0.01 m + 1ppm CEP
Vertical pos. accuracy	RTK	0.01 m + 1ppm CEP	0.01 m + 1ppm CEP	0.01 m + 1ppm CEP	0.01 m + 1ppm CEP
Sensitivity	Tracking & Nav. Reacquisition Cold start Hot start	-167 dBm -160 dBm -148 dBm -157 dBm			

Table 6. DP0601 moving-base performance in different GNSS mode

GNSS	Parameter	GPS+GLO+GAL +BDS	GPS+GLO	GPS+BDS	GPS
Update rate		5 Hz	8 Hz	8 Hz	10 Hz
Heading accuracy		0.4 deg	0.4 deg	0.4 deg	0.4 deg

3. Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 7. DP0601 absolute maximum ratings

Symbol	Parameter	meter Maximum value	
Vusb	USB supply voltage	-0.3 to +6	٧
Vdd	Internal supply voltage	-0.5 to +3.6	٧
Vdd_IO	I/O pins supply voltage	-0.5 to Vdd+0.5	٧
Icc_RF	RF output current	100	mA
Prfin	Input power at RF_IN	10	dBm
ТОР	Operating temperature	-40 to +80	°C
TSTG	Storage temperature	-40 to +80	°C

This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part.

4. Applications

4.1 Standalone Base/Rover configuration

Figure 2. DP0601 connected to a Drotek telemetry kit + a L1/L2 Tallysman antenna

Drotek radio telemetry kit: https://store.drotek.com/radio-telemetry-kit-433-915-mhz
Tallysman TW7972 antenna: https://store.drotek.com/tw7972-triple-band-gnss-antenna

4.2 NTRIP (Network Transport of RTCM via Internet Protocol) local configuration

Figure 3. Two DP0601 connected to each other using NTRIP + local router

www.drotek.com

4.3 NTRIP cellular configuration

Figure 4. DP0601 linked to a on-field PC running u-center and connected to a 4G/LTE cellphone to receive RTCM data from distant servers

Tallysman TW7972 antenna: https://store.drotek.com/tw7972-triple-band-gnss-antenna

4.4 Moving Base/Rover for distance & heading evaluation

L1/L2 antenna

Standard moving baseline for precise heading and relative position

WART1

UART1

UART1

WOVING ROVER

Moving Base

Figure 5. Two DP0601 used in a moving base configuration

U-blox ANN-MB antenna: https://store.drotek.com/u-blox-ann-mb-multi-band-antenna

5. Communication interfaces

There are several communications interfaces including UART, SPI, I2C11 and USB. All the inputs have internal pull-up resistors in normal operation and can be left open if not used. All the PIOs are supplied by VCC, therefore all the voltage levels of the PIO pins are related to Vdd supply voltage.

5.1 UART Interface

There are two UART interfaces: UART1 and UART2. UART1 and UART2 operate up to and including a speed of 921600 baud. No hardware flow control on UART1 and UART2 is supported. UART1 is enabled by default if there is no 5V input voltage on pin A1 (5V SPI).

Table 8. DP0601 serial UART timing specifications

Symbol	Parameter	Min.	Max.	Unit
Vil	LOW-LEVEL input voltage	0	0.2xVdd	>
Vih	HIGH-LEVEL input voltage	0.7xVdd	Vdd+0.3	٧
tECH	HIGH period of external data input	0	0.4	μs
tECL	LOW period of external data input	ТВА	ТВА	μs
Ru	Baudrate	9600	921600	bps
tCR	Rise time of data		5	ns
tCF	Fall time of data		5	ns

5.2 SPI interface

The DP0601 has an SPI slave interface that can be selected by supplying a 5V voltage on pin A1 (5V SPI). The SPI slave interface is shared with UART1. The SPI pins available are: SPI_MISO (TXD), SPI_MOSI (RXD), SPI_CS_N, SPI_CLK. The SPI interface is designed to allow communication to a host CPU. The interface can be operated in slave mode only. Note that SPI is not available in the default configuration because its pins are shared with the UART and I2C interfaces. The maximum transfer rate using SPI is 125 kB/s and the maximum SPI clock frequency is 5.5 MHz.

This section provides SPI timing values for the ZED-F9P slave operation. The following tables present timing values under different capacitive loading conditions. Default SPI configuration is CPOL = 0 and CPHA = 0.

Table 9. DP0601 SPI timing specifications

Timing value @ 20pF load		Max [ns]
"A" - MISO data valid time (CS)	19	52
"B" - MISO data valid time (SCK) weak driver mode	25	51
"C" - MISO data hold time	117	137
"D" - MISO rise/fall time, weak driver mode	6	16
"E" - MISO data disable lag time	20	32

5.3 Slave I2C interface

An I2C compliant interface is available for communication with an external host CPU. The interface can be operated in slave mode only. It is fully compatible with Fast-Mode of the I2C industry standard. Since the maximum SCL clock frequency is 400 kHz, the maximum bit rate is 400 kbit/s. The interface stretches the clock when slowed down while serving interrupts, therefore the real bit rates may be slightly lower.

Note: The I2C interface is only available with the UART default mode. If the SPI interface is selected by supplying a 5V onto the A1 pin (5V SPI), the I2C is not available.

Table 10. DP0601 I2C timing specifications

Symbol	Parameter	Min	Max	Unit
Vil	LOW-LEVEL input voltage	Vss-0.3	0.3xVdd	٧
Vih	HIGH-LEVEL input voltage	0.7xVdd	Vdd+0.3	٧
Vol	LOW-LEVEL output voltage		0.4	٧
Voh	HIGH-LEVEL output voltage	Vdd-0.4		٧
Fscl	SCL clock frequency	0	400	KHz

5.4 USB interface

A USB interface, which is compatible to USB version 2.0 FS (Full Speed, 12 Mbit/s), can be used for communication as an alternative to the UART.

October 2019

DrotekDoc_0891B08A

Rev1

12

6. Mechanical drawings

Figure 6. DP0601 v1.2.1 mechanical drawings

7. Revision history

Table 9. Document revision history

Date	Revision	Changes
22-Oct-2019	1.0	DrotekDoc_0891B08A / Initial release

8. Appendix

U-blox ZED-F9P datasheet:

https://www.u-blox.com/sites/default/files/ZED-F9P DataSheet %28UBX-17051259%29.pdf

U-blox ZED-F9P integration manual:

https://www.u-blox.com/sites/default/files/ZED-F9P_IntegrationManual_%28UBX-18010802%29.pdf

U-blox ZED-F9P interface description:

https://www.u-blox.com/sites/default/files/u-blox ZED-F9P InterfaceDescription %28UBX-180108 54%29.pdf

IMPORTANT NOTICE - PLEASE READ CAREFULLY

Drotek reserves the right to make changes, corrections, enhancements, modifications, and improvements to Drotek products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on Drotek products before placing orders. Drotek products are sold pursuant to Drotek's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of Drotek products and Drotek assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by Drotek herein.

Resale of Drotek products with provisions different from the information set forth herein shall void any warranty granted by Drotek for such product.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

2019 Drotek - All rights reserved

October 2019

DrotekDoc_0891B08A

Rev1

15