

Data Sheet

VL162

USB Type-C Data Switch with CC Function for USB 3.1 Gen2 (10Gbps)

Jan 19th, 2021

USB Type-C Data Switch wih CC Function for USB 3.1 Gen2 (10Gbps)

Revision History

Rev	Draft Date	History	
0.90	12/31/2020	Preliminary Release	
0.91	1/19/2021	Update REXT value typo	TH

Contents

Product Feature	4 -
Block Diagram	5 -
Pinout	
Pin List	7 -
Pin Descriptions	8 -
Application Diagram	
Electrical Specification	11 -
Reflow Profile	12 -
Package Mechanical Specifications	
Package Top Side Marking	14 -
Ordering Information	14 -
Tape and Reel Information	15 -

List of Figures

Figure 1 - Block Diagram	 	 A		5 -
Figure 2 - Pin Diagram (QFN-28)	 XXX		Y	6 -
Figure 3 - Reflow	. \			
Figure 4 - Mechanical Specification	 	 		- 13 -
Figure 5 - Package Top Side Marking				
Figure 6 - Tape & Reel Information	MA.			- 15 -

Product Feature

VL162

USB Type-C Data Switch with CC Function for USB 3.1 Gen2 (10 Gbps)

- 4:2 10Gbps USB Type-C Data Switch
- Support up to 10Gbps
- 2 Differential Channel, 2:1 MUX/DeMUX
- Compatible with 10Gbps USB3.1 Gen2
- Low power consumption with 6mW active at device mode
- High DC common mode voltage supporting to 2.0V
- 28 pins QFN 3.5 x 4.5mm package
- ESD > 2.5kV, CDM > 500V
- Lead(Pb)-Free and RoHS compliant
- MUX / DEMUX
- Insertion loss: -1.4dB @ 5GHz typ.
 - -1.95dB @ 8GHz typ.
 - -2.25dB @ 10GHz typ.
- Return loss: -20dB @ 5GHz typ.
 - -20dB @ 8GHz typ.
 - -18dB @ 10GHz typ.
- Crosstalk Isolation: -50dB @ 5GHz typ.
 - -47dB @ 8GHz typ.
 - -45dB @ 10GHz typ.
- Off Isolation: -22dB @ 5GHz typ.
 - -19dB @ 8GHz typ.
 - -16dB @10GHz typ.

■ CC Functional

- Define Role: Device (UFP, default) or Host (DFP)
- Plug Orientation: Flipped or Not, and control Switch SEL
- (UFP) Current Capability Detect: 3.0A, 1.5A, or 0.9A
- (UFP) Rd
- (DFP) Rp (or Ip), Vconn SW if Ra
- (DFP) VBUS_EN to turn on Host VBUS SW

■ Vconn

- 5V, max Power is 1.5W, max current is 380mA
- Over current protection

Block Diagram

Figure 1 - Block Diagram

Pinout

Figure 2 - Pin Diagram (QFN-28)

Pin List

Pin	Pin Name	Pin	Pin Name
1	CC1	15	Current Setting out <0>
2	TX1_P	16	Attached_Status
3	TX1_N	17	RX_N
4	TX2_N	18	RX_P
5	TX2_P	19	GND
6	RX1_P	20	TXN
7	RX1_N	21	TXP
8	RX2_N	22	ORI_STATUS
9	RX2_P	23	Current Setting in <1>
10	REXT	24	Current Setting in <0>
11	Vconn_OC	25	CE
12	Vconn_UVLO	26	VCC5V
13	Vconn_Mode	27	Vconn_5V in
14	Current Setting out <1>	28	CC2

Pin Descriptions

Pin Name	Pin #	I/O	Description
CC1	1	AI/O	0~5V analog input
TX1_P	2		Lieb life
TX1_N	3	High Speed I/O	USB differential pair
TX2_N	4	11:1-6 17/0	LIED I'm I'm I
TX2_P	5	High Speed I/O	USB differential pair
RX1_P	6	High Chood I/O	LICP differential pair
RX1_N	7	High Speed I/O	USB differential pair
RX2_N	8	High Chood I/O	LICP differential pair
RX2_P	9	High Speed I/O	USB differential pair
REXT	10		External resister 124k 1% connect to GND
Vconn_OC	11	DO	Vconn Over current, 3.3V = Over current
Vconn_UVLO	12	DO	Vconn Under voltage, 3.3V = under voltage
Vconn_Mode	13	DI	1)Vconn_Mode = GND: DFR supply Vconn when Rd attach 2) Vconn_Mode = Floating: Supply Vconn both in Rd & Ra attach
Current Setting out <1>	14	DO	(3.3V logic) 11; CC Support 3A
Current Setting out <0>	15	DO	10: CC Support 1.5A 01: UNDEFINED 00: CC Support Legacy Reasoning: Easily identify 3A vs 1.5A or Legacy/1.5A or Legacy using just 1 pin. If they need to differentiate between 1.5A and 3A, then use 2 pins
Attached_Status	16	DO	Indication for port attached, 3.3V = attached
RX_N	17	High Speed I/O	USB differential pair
RX_P	18	Tright Speed 1/O	OSB differential pair
GND	19	GND	Ground
TXN	20	High Speed I/O	LISP differential pair
TXP	21	High Speed I/O	USB differential pair
ORI_STATUS	22	DO	Orientation status $0 = TX1/RX1, 3.3V = TX2/RX2$
Current Setting in <1>	23	AI	(3.3V logic) Rp/Rd setting input 00: Ip = 80uA
Current Setting in <0>	24	AI	01: $Ip = 180uA$ 10: $Ip = 330uA$ 11: $Rd = 5.1k\Omega$ 00: $Rp = 36k\Omega$ 01: $Rp = 12k\Omega$ 10: $Rp = 4.7k\Omega$ 11: $Rd = 5.1k\Omega$
CE	25	DI	1)CE=5V: Chip Enable 2)CE=GND: Chip Disable
VCC5V	26	PWR	VCC5V for controller
VCONN_5V in	27	PWR	5V input for Vconn
CC2	28	AI/O	0~5V analog input

Application Diagram

Application for Cable + Device

Application for Host + Cable or Host only

Electrical Specification

Absolute Maximum Rating

Symbol	Parameter		Min	Max	Unit	Note
T _{STG}	Storage Temperature		-55	125	°C	-
VDD	Supply voltage		-0.3	6.0	V	
V _{ESD}	Electrostatic Discharge		2kV		V	Human Body Model
0	The survey large interest in the survey is surveying and according	4L PCB	36.7		°C/W	
$ heta_{ exttt{jc}}$	Thermal resistance between junction and case 2L PCB		28.1		3C/W	
Tj	Junction Temperature		0	125	°C	

Note: Stress above conditions may cause permanent damage to the device.

Functional operation of this device should be restricted to the conditions described.

Note: About thermal factors, Ta is the concerned ambient temperature, and

 $\theta_{ca} = \theta_{ja} - \theta_{jc}$ $T_{J} = \theta_{ja} * P_{D} + T_{a}$ $T_{c} = \theta_{ca} * P_{D} + T_{a}$

Operating Conditions

Symbol	Parameter	Min	Тур.	Max	Unit I	Note
VDD	Supply voltage	4.5	5.0	5.5	V	
TA	Ambient Temperature	-45		85	°C	

Static characteristics:

VDD = $5.0V \pm 10\%$; Temp = -40° C to $+85^{\circ}$ C; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур.	Max	Unit
		Operation mode		1.2		mA
IDD	Supply current	Shutdown mode		0.5		mA
VIH	High-level input voltage		2.7			V
VIL	Low-level input voltage				0.4	V
Vcom	Input Common mode voltage		0		2	V

Reflow Profile

Follow: IPC/JEDEC J-STD-020 D.1

Condition

Average ramp-up rate (217°C to peak): 1~2°C /sec max.

Preheat: 150~200°C, 60~120 seconds

Temperature maintained above 217°C: $60\sim150$ seconds Time (tp)* within 5°C of the specified classification temperature (Tc = $(260^{\circ}C)$), (the time above 255°C) ≥ 30 sec.

Peak temperature: 260+5/-0°C Ramp-down rate: 3°C /sec. max.

Time 25°C to peak temperature: 8 minutes max. Cycle interval: 5 minus

Figure 3 - Reflow

Package Mechanical Specifications

Figure 4 - Mechanical Specification

Package Top Side Marking

Figure 5 - Package Top Side Marking

Ordering Information

Please contact VIA Labs sales representative or distributor in your region for ordering part number details.

Tape and Reel Information

Figure 6 - Tape & Reel Information

VIA Labs, Inc.

www.via-labs.com 7F, 529-1, Zhongzheng Rd.,

Xindian District, New Taipei City 23148 Taiwan, R.O.C.

TEL: 886-2-2218-1838

Copyright © 2021 VIA Labs, Inc. All Rights Reserved.

No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Labs, Inc. The material in this document is for information only and is subject to change without notice. VIA Labs, Inc. reserves the right to make changes in the product design without reservation and without notice to its users.

All trademarks are the properties of their respective owners.

No license is granted, implied or otherwise, under any patent or patent rights of VIA Labs, Inc. VIA Labs, Inc. makes no warranties, implied or otherwise, in regard to this document and to the products information described in this document. The information provided by this document is believed to be accurate and reliable as of the publication date of this document. However, VIA Labs, Inc. assumes no responsibility for any errors in this document. Furthermore, VIA Labs, Inc. assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.