FASHION MNIST DATA USING CNN

1. Problem Statement

The goal of this project is to classify images of clothing items from the **Fashion MNIST dataset**. Unlike the original MNIST dataset of handwritten digits, Fashion MNIST provides a more challenging benchmark for image classification.

The problem is a **supervised multi-class classification task** with 10 output categories (T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot).

2. Dataset Overview

• Dataset: Fashion MNIST (Kaggle).

• Size: 70,000 grayscale images (28×28 pixels).

• Training: 60,000

• Testing: 10,000

• Classes: 10 categories of clothing items.

• **Format**: Each image is a 28×28 array of pixel values (0–255). Labels are integers from 0–9, each representing a category.

3. List of Libraries/Packages Used

• Python core: numpy, pandas

• Visualization: matplotlib, seaborn

• Machine Learning / Deep Learning: tensorflow, keras

• Utilities: os, warnings

4. Preprocessing Steps

• Preprocessing:

- Normalization: pixel values scaled from $[0, 255] \rightarrow [0, 1]$.
- Splitting: dataset divided into training and testing sets.
- Encoding: class labels transformed into categorical one-hot vectors.

5. Methodology

• Data Cleaning:

- Ensured dataset integrity (no missing values).
- Scaled features for stable neural network training.

• Feature Engineering:

• Images reshaped and normalized.

• Model Building:

- Built a Convolutional Neural Network (CNN) using Keras.
- Typical structure: convolutional layers (for feature extraction), pooling layers (for dimensionality reduction), fully connected layers (for classification).
- Used **Softmax** activation in the output layer for multi-class classification.
- We use **argmax** to map model probability outputs → discrete class labels, so we can evaluate accuracy and interpret predictions.

6. Evaluation Metrics

- **Accuracy**: Primary evaluation metric [accuracy, precision, recall, F1 score for classification report]
- Loss (Cross-Entropy): Monitored during training.
- Confusion Matrix: Used to evaluate per-class performance.

7. Results & Analysis

- Training vs Validation: Plotted loss and accuracy curves across epochs.
- Model Accuracy: Typically CNN models on Fashion MNIST achieves 91% test accuracy.

Visualization:

- Plots of training history (accuracy/loss).
- Sample test images with predicted labels.
- Misclassified examples highlighted to show where the model struggles (e.g., Shirt vs T-shirt)

Classification Report:

	precision	recall	f1-score	support
0	0.84	0.88	0.86	1000
1	0.98	0.99	0.99	1000
2	0.90	0.81	0.85	1000
3	0.92	0.93	0.93	1000
4	0.83	0.92	0.87	1000
5	0.99	0.96	0.98	1000
6	0.77	0.73	0.75	1000
7	0.94	0.97	0.96	1000
8	0.99	0.98	0.98	1000
9	0.96	0.96	0.96	1000
accuracy			0.91	10000
macro avg	0.91	0.91	0.91	10000
weighted avg	0.91	0.91	0.91	10000

The Fashion MNIST dataset was integrated and deployed via GitHub and Streamlit Community to build an interactive web application for real-time image classification

- 1. Github Link: https://github.com/vijithtechverse/Fashion_Mnist-
- 2. Streamlit App: https://8swunfqzjfc6v4jgjwyrpy.streamlit.app/

8. Conclusion

- CNN successfully classified Fashion MNIST images with high accuracy.
- Demonstrated the effectiveness of deep learning for image classification tasks.
- Key limitations: some confusion between visually similar classes.
- Future improvements:
 - Data augmentation for better generalization.
 - Experimenting with deeper CNNs, transfer learning, or attention mechanisms.