4 (a) Polarisation is a phenomenon associated with light waves but not with sound waves.

(i)	State the meaning of polarisation.	
		[1]
(ii)	State why light waves can be plane polarised but sound waves cannot.	
		[1]

(b) Two polarising filters A and B are positioned so that their planes are parallel to each other and perpendicular to a central axis line XY, as shown in Fig. 4.1.

Fig. 4.1

The transmission axis of filter A is vertical and the transmission axis of filter B is horizontal.

Unpolarised light of a single frequency is directed along the line XY from a source positioned at X. The light emerging from filter A is vertically plane polarised and has intensity I_0 .

		angle of rotation =° [3]
(c)	and	icrowave of intensity I_0 and amplitude A_0 meets another microwave of the same frequency of intensity $\frac{1}{4}I_0$ travelling in the opposite direction. Both microwaves are vertically plane arised and superpose where they meet.
	(i)	Explain, without calculation, why these two waves cannot form a stationary wave with zero amplitude at its nodes.
		[2]
	(ii)	Determine, in terms of A_0 , the maximum amplitude of the wave formed.
		maximum amplitude =
		[Total: 10]

Filter B is rotated from its starting position about the line XY, as shown in Fig. 4.1.

After rotation, the intensity of the light emerging from filter B is $\frac{1}{4}I_0$.

Calculate the angle of rotation of filter B from its starting position.