CS273B lecture 5: autoencoder

James Zou

October 9, 2017

Deep supervised learning

Feedforward

 $\begin{array}{c}
x_1 \\
x_2 \\
x_3 \\
b
\end{array}$

Convnets

Sigmoid activations

Pytra bound | X)

Typically followed by one or more fully connected layers

Maxpooling layers take the max over sets of corn layer outputs

Later convi layers operate on outputs of previous convi layers

Convolutional layer

(same color = 1 shared weights)

Shared weights

RNN, LSTM

Learning a nonlinear mapping from inputs to outputs.

Predicting:
TF binding,
gene expression,
disease status from images,
risk from SNPs,
protein structure

. . .

Deep unsupervised learning

- Nonlinear dimensional reduction and patterns mining.
- In many settings, have more unlabeled examples than labeled.
- Learn useful representations from unlabeled data.
- Better representation may improve prediction accuracy.

Lecture outline

- Autoencoder.
- Denoising autoencoder.
- Application I: breast cancer gene expression
- Application 2: medical records.

Low dimensional structure

What is the latent dimensionality of each row of images?

$$\hat{X} = g(V \cdot h + b_d)$$

$$h = f(W \cdot X + b_e)$$

$$W, V = \arg\min_{W,V} \sum_{X} ||X - \hat{X}||^2$$

Train with backprop as before.

If encoding and decoding are linear then

$$W, V = \arg\min_{W,V} \sum_{x} ||X - VWX||^2$$

What does this remind you of?

If encoding and decoding are linear then

$$W, V = \arg\min_{W,V} \sum_{x} ||X - VWX||^2$$

Linear autoencoder is basically just PCA!

General f and g corresponds to nonlinear dimensional reduction.

What is wrong with this picture?

What is wrong with this picture?

h(X) can just copy X exactly!

Overcomplete. Need to impose sparsity on h.

Denoising autoencoder

Denoising autoencoder

Illustration of denoising autoencoder

Filters from denoising autoencoder

Basis learned by denoising autoencoder

Basis learned by weightdecay autoencoder

Deep autoencoder

Deep autoencoder example

original

DAE

PCA

Deep autoencoder example

Variational autoencoder preview

original reconstruction objective

Application: gene expression

$$egin{aligned} y &= sigmoid\left(Wx + b
ight) \ z &= sigmoid\left(W'y + b'
ight) \ L_H\left(x,z
ight) &= -\sum_{k=1}^d [x_k \log z_k + (1-x_k) \log \left(1-z_k
ight)] \end{aligned}$$

Sample I: gene₁ gene₂ ... gene₃₀₀₀

•

Sample n: gene₁ gene₂ ... gene₃₀₀₀

1992 breast cancer samples+ 144 normal samples

Application: gene expression

$$egin{aligned} y &= sigmoid\left(Wx+b
ight) \ z &= sigmoid\left(W'y+b'
ight) \ L_H\left(x,z
ight) &= -\sum_{k=1}^d [x_k \log z_k + (1-x_k) \log \left(1-z_k
ight)] \end{aligned}$$

Batch size: 10

Corruption level: 0.1

Learning rate: 0.01

How would you interpret the hidden layer?

Table 4. PID pathways enriched in Node5.

Pathway	FDR q-value	
FOXM1 transcription factor network	$< 1e^{-4}$	
Aurora B signaling	$4.93e^{-4}$	
Aurora A signaling	0.001	
PLK1 signaling	0.003	
Integrin-linked kinase signaling	0.068	
C-MYB transcription factor network	0.074	

0.50

0.75

1.00

Table 1. Performance of hidden nodes in classifying tumor from normal samples.

	METABRIC		TCGA
Node	Discovery	Test	Evaluation
64	0.970	0.968	0.996
99	0.957	0.959	0.998
38	0.879	0.887	0.911
43	0.873	0.873	0.750
69	0.871	0.872	0.906

Table 2. Performance of hidden nodes in classifying ER + from ER - samples.

	METABRIC		TCGA
Node	Discovery	Test	Evaluation
89	0.848	0.833	0.749
30	0.824	0.822	0.856
58	0.808	0.801	0.828
6	0.798	0.799	0.771
69	0.784	0.779	0.820

What are potential limitations?

- Comparison to baselines? PCA, regular autoencoder.
- Clustering and visualization?
- Imbalanced samples.
- Relations between neurons.

Application: medical records

Each patient = vector of 41k clinical descriptors

Stack of 3 denoising autoencoder 500 dim representation of each patient

Application: deep patient

700K patients up to 2013
500 dim representation of each patient

Random forest to predict future disease in 2014

Time Interval = 1 year (76,214 patients)				
		Classification Threshold = 0.6		
Patient Representation	AUC-ROC	Accuracy	F-Score	
RawFeat	0.659	0.805	0.084	
PCA	0.696	0.879	0.104	
GMM	0.632	0.891	0.072	
K-Means	0.672	0.887	0.093	
ICA	0.695	0.882	0.101	
DeepPatient	0.773*	0.929*	0.181*	

Application: deep patient

700K patients up to 2013
500 dim representation of each patient

Random forest to predict future disease in 2014

Time Interval = 1 year (76,214 patients)			
	Area under the ROC curve		
Disease	RawFeat	PCA	DeepPatient
Diabetes mellitus with complications	0.794	0.861	0.907
Cancer of rectum and anus	0.863	0.821	0.887
Cancer of liver and intrahepatic bile duct	0.830	0.867	0.886
Regional enteritis and ulcerative colitis	0.814	0.843	0.870
Congestive heart failure (non- hypertensive)	0.808	0.808	0.865
Attention-deficit and disruptive behavior disorders	0.730	0.797	0.863
Cancer of prostate	0.692	0.820	0.859
Schizophrenia	0.791	0.788	0.853
Multiple myeloma	0.783	0.739	0.849
Acute myocardial infarction	0.771	0.775	0.847