

MODERN SCIENCE ACADEMY

03. "<u>DYNAMICS</u>"

Sr.	Statements	Α	В	С	D
1	Newton's first law of motion is valid only in the absence of:	force	net force	friction	momentum
2	Inertia depends upon:	force	net force	mass	velocity
3	A boy jumps out of a moving bus. There is a danger for him to fall:	towards the moving bus	away from the bus	in the direction of motion	opposite to direction of motion
4	A string is stretched by two equal and opposite forces 10 N each. The tension in the string is:	zero	5 N	10 N	20 N
5	The mass of a body:	decrease when accelerated	increases when accelerated	decreases at high velocity	none of these
6	Two bodies of masses m_1 and m_2 attached to the ends of an inextensible string passes over a frictionless pulley such that both move vertically. The acceleration of the bodies is:	$\frac{m_1 \times m_2}{m_2 \times m_1} g$	$\frac{m_1 - m_2}{m_2 + m_1}g$	$\frac{m_1 + m_2}{m_1 - m_2}g$	$\frac{2m_1m_2}{m_1+m_2}g$
7	Which of the following is the unit of momentum?	Nm	kgms ⁻²	Ns	Ns ⁻¹
8	When horse pulls a cart, the action is on the:	cart	Earth	horse	Earth & cart
9	Which of the following material lowers friction when pushed between metal plates?	water	fine marble powder	air	oil
10	Momentum p =	$\frac{\mathbf{m}}{\mathbf{v}}$	$\frac{\mathbf{v}}{\mathbf{m}}$	m v	mv ²
11	S.I. unit of momentum is:	kgm ⁻¹ s ⁻¹	kg ⁻¹ m ⁻¹ s	kgms	kgms ⁻¹
12	A book of mass 5kg is placed on the table, what is the magnitude of force acting on the body?	50 N	5 N	25 N	10 N
13	The weight of a body is quantity:	scalar	vector	base	none
14	The weight of body is 147 N. Its mass will be:	1.47 kg	14.7 kg	147 kg	1.51 kg
15	1 newton is equal to:	1 kgms ⁻²	1 gms ⁻¹	2 gms ⁻¹	1 kgms ⁻¹
16	Law of inertia is:	first law of motion	second law of motion	third law of motion	gravitational law
17	2 nd law of motion is:	F=ma	$\mathbf{F} = \frac{\mathbf{m}}{\mathbf{a}}$	$\mathbf{F} = \frac{\mathbf{a}}{\mathbf{m}}$	F =m ² a ²
18	The force that opposes motion of moving objects:	centrifugal	friction	inertia	weight
19	The molecules of a gas enclosed in a glass vessel at constant temperature is an example of:	force system	inertial system	isolated system	non-isolated system
20	Change in momentum of a body is equal to:	force	force × time	velocity	acceleration
21	Rate of change in momentum of a body is equal to:	force	velocity	acceleration	displacement
22	Rate of change in momentum of free falling body =	force	velocity	acceleration	weight
23	Friction coefficient=	F _s R	$\frac{R}{F_s}$	F _s + R	$\frac{F_s}{R}$
24	The formula of centripetal acceleration is:	$a_c = \frac{v}{r}$	$a_c = \frac{v^2}{r}$	$a_{c} = \frac{v^{2}}{r^{2}}$	$a_c = \frac{r}{v^2}$
25	The formula of centripetal force is:	$F_c = \frac{mv}{r}$	$F_c = \frac{mv^2}{r}$	$F_{c} = \frac{mv^{2}}{r^{2}}$	$F_{c} = \frac{mr}{v^{2}}$
26	A force acts on a body for 2 seconds and it produces 50 kgm/s change in its momentum. The force acting on the body is:	100 N	50 N	25 N	2 N
27	If the velocity of the body doubles, then Fc will be:	half	three times	double	four times
28	Centripetal force is directly proportional to:	m ²	V ²	r	V
29	A force of 5N is applied to a body weighing 10 N. What is its acceleration in m/s ² ?	0.5	2	5	50

Contact Number: 0321-1156826 Manan Nasir (PIEAS)

MODERN SCIENCE ACADEMY

30	If a steel cube has acceleration of 10 m/s ² . Another same steel cube is plugged into it. What is acceleration of this combination?	10 m/s ²	5 m/s ²	1 m/s²	zero
31	Taking of rocket can be explained byof motion?	1 st law	2 nd law	3 rd law	4 th law
32	As the rocket moves upwards during its motion, its acceleration goes on:	decreasing	increasing	remains same	none of these
33	Net force on the body falling in air with uniform velocity is equal to:	weight of the body	air resistance on the body	difference between A & B	zero
34	A small sports car collides head-on with a massive truck. Which vehicle experiences greater impact force?	The car	The truck	They experiences same force	depends on speed of vehicle
35	A body is moving on a straight line and you apply a force perpendicular to its motion:	body speeds up	body slows down	body moves in a circle	body moves in direction of force
36	When a hanging carpet is beaten by stick. Dust flies off the carpet. It is mainly due to:	action force on the carpet	reaction force by the carpet	inertia of dust	none of these
37	A bucket having some water is removed in vertical circle. Water does not spill out, even the bucket is upside down, due to:	weight of the water	centrifugal force on water	inertia of water	action and reaction balance
38	The force which moves the car is:	force exerted by engine	force of friction between road and tyre	weight of the car	water split on the road
39	Ball A collide with ball B which is at rest, after collision which of the following condition is not possible?	both balls move in same direction	both balls move in opposite direction	ball A comes to rest and ball B starts moving	both balls come to rest
40	An object at earth taken to moon should have:	less mass/ same weight	same mass/ more weight	same mass/ less weight	less mass/ same weight
41	The unit of coefficient of friction is:	N	kg	μ	no unit
42	The centripetal acceleration for an object of mass 1kg moving with 6 m/s in a circle of radius 3 m is:	18 m/s ²	12 m/s ²	10 m/s ²	2 m/s ²
43	An empty suitcase is placed in the middle of a high speed travelling bus on its floor. When the bus stops suddenly, the suitcase slide:	backwards	forwards	jumps up	remains in place
45	Action-Reaction pair does not balance each other, because they:	act on same body	act on different bodies	act on third body	produces friction

"Important Short Questions"

- 1) Briefly explain terms "kinematics" and "dynamics".
- 2) Define: inertia, momentum, force, force of friction, centripetal force.
- 3) Differentiate between: mass and weight, action and reaction, sliding friction and rolling friction.
- 4) As the card flick away, the coin falls into the glass. Why?
- 5) Why is it dangerous to travel on the roof of the bus?
- 6) Why a balloon filled with air move forward, when its air is released?
- 7) Why does hose pipe tend to move backward when the fireman directs a powerful stream of water towards fire?
- 8) Deduce Newton's first law of motion from Newton's second law of motion?
- 9) Why does a passenger move outward when a bus takes a turn?
- 10) What will be tension in a rope that is pulled from its ends by two opposite forces 100 N each?
- 11) What is Atwood machine? Write its purpose.
- 12) Action and reaction are always equal and opposite. Then how does a body moves?
- 13) A horse pulls the cart. If the action and reaction are equal and opposite then how does the cart move?
- 14) What is law of conservation of momentum? Write its mathematical form.

Contact Number: 0321-1156826 Manan Nasir (PIEAS)

MODERN SCIENCE ACADEMY

- 15) When a gun in fired, it recoils. Why?
- 16) What is friction? Define coefficient of friction.
- 17) Describe three situations in which force of friction is needed. (Advantages of friction)
- 18) Why is it dangerous to drive on wet roads?
- 19) Why tyres of vehicles are wrapped with chains during snow in hilly areas?
- 20) Write three disadvantages of friction.
- 21) How does oiling the moving parts of a machine lowers friction?
- 22) Describe ways to reduce friction?
- 23) How does friction help you walk? Is it kinetic friction or static friction?
- 24) The parking brake on a car causes the air wheels to lockup. What would be the likely consequence of applying the parking brake in a car that is in rapid motion?
- 25) Why is the surface of a conveyor belt made rough?
- 26) Why does a boatman tie his boat to a pillar before allowing the passengers to step on the river bank?
- 27) In uniform circular motion, is the velocity constant? Is the acceleration constant? Explain.
- 28) You tie a brick to the end of the rope and whirl the brick around you in a horizontal circle. Describe the path of the brick after you suddenly let go of the rope.
- 29) Why rolling friction is less than sliding friction?
- 30) What would happen if all friction suddenly appears?
- 31) Why the spinner of a washing machine is made to spin at a very high speed?
- 32) Differentiate between centripetal force and centrifugal force.
- 33) Centripetal force acting the car moving at a round about is 200 N. If velocity of the car is doubled then what will be centripetal force acting on the car?
- 34) Why the posted speed for a turn is lower than the speed limit on most highways?

"Important Long Questions"

- 1) State and explain Newton's first law of motion. Why it is called law of inertia?
- 2) State and explain Newton's second law of motion. Derive its formula. Define one newton.
- 3) What is Atwood machine? Derive expressions for its acceleration and tension.
- 4) What is an isolated system? Explain law of conservation of momentum.
- 5) Define momentum. How can you relate a force with the change of momentum of a body?
- 6) What do you mean by centripetal force? Derive its equation. Also explain centrifugal force and banking of roads.

Numericals: All examples and exercise problems of National Book Foundation and Punjab Textbook Board

Contact Number: 0321-1156826 Manan Nasir (PIEAS)