

Mạnh Dũng Hà → MH

Nhà của tôi > Các khoá học của tôi > 2223II_ELT2035_20 > General > Kiểm tra 20h25 ngày 12/05/2023

Tín hiệu và hệ thống (2223II_ELT2035_20) Kiểm

tra 20h25 ngày 12/05/2023

Bắt đầu vào lúc	Friday, 12 May 2023, 8:20 PM
Trạng thái	
	Friday, 12 May 2023, 9:07 PM
Thời gian thực hiện	
Điểm	29,00/30,00
Điểm	9,67 trên 10,00 (96,67 %)

Câu Hỏi 1 Đúng

Xác định k để hệ thống sau bất biến với thời gian: y(t) = x(t) + x(kt) - x(2t) + x(t-1)

 $igcup A. \; k$ khác

lacksquare B. k=2

 \bigcirc C. k=0

igcup D. k=1

Câu trả lời của bạn đúng

Câu trả lời đúng là:

k=2

Cho hệ thống LTI có hàm chuyển:

$$H(s) = \frac{1}{(s+2)(s-1)}$$

có vùng ROC nằm bên phải điểm 1. Phân loại tính nhân quả và ổn định của hệ thống?

- A. Hệ thống nhân quả và không ổn định
- B. Hệ thống không nhân quả và ổn định
- C. Hệ thống nhân quả và ổn định
- D. Hệ thống không nhân quả và không ổn định

Câu trả lời của bạn sai.

Câu trả lời đúng là:

Hệ thống nhân quả và không ổn định

Xác định đáp ứng biên độ và đáp ứng pha của hệ thống có đáp ứng tần số:

$$H(\omega) = e^{-j2\omega}$$

$$\bigcirc$$
 A. $|H(\omega)| = 1$; $\angle H(\omega) = -j2\omega$

• B.
$$|H(\omega)| = 1$$
; $\angle H(\omega) = -2\omega$

$$\bigcirc$$
 C. $|H(\omega)| = 0$; $\angle H(\omega) = -2$

$$\bigcirc$$
 D. $|H(\omega)| = 0$; $\angle H(\omega) = -2\omega$

Câu trả lời của bạn đúng

$$|H(\omega)| = 1$$
; $\angle H(\omega) = -2\omega$

Hệ thống TTBB nào sau đây ổn định?

$$\bigcirc$$
 A. $h(t) = \cos(\pi t)$

$$lacksquare$$
 B. $h(t)=(rac{1}{2})^tu(t)$

$$\bigcirc$$
 C. $h(t)=u(2-t)-u(t)$

O.
$$h(t)=e^{5t}u(t)$$

Câu trả lời của bạn đúng

Câu trả lời đúng là:

$$h(t) = (\frac{1}{2})^t u(t)$$

Câu Hỏi 5

Đúng

Tìm đáp ứng cưỡng bức của hệ thống cho bởi phương trình vi phân:

$$\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = x(t) + \frac{dx(t)}{dt}$$

biết lối vào của hệ thống là: $x(t) = \sin(2t) u(t)$

$$\bullet$$
 A. $-\frac{1}{4}\cos(2t) + \frac{1}{4}\sin(2t) + \frac{1}{4}e^{-2t}, t > 0$

$$igcup {\sf B.} \ \ rac{1}{4}{
m cos}(2t) + rac{1}{4}{
m sin}(2t) + rac{1}{4}e^{-2t}, t>0$$

$$igcup extsf{C.} \ rac{1}{4}e^{-2t}, t>0$$

$$\bigcirc$$
 D. $-rac{1}{4}\mathrm{cos}(2t)+rac{1}{4}\mathrm{sin}(2t), t>0$

Câu trả lời của bạn đúng

$$-rac{1}{4}\cos(2t)+rac{1}{4}\sin(2t)+rac{1}{4}e^{-2t}, t>0$$

Cho tín hiệu x(n) được biểu diễn trên hình:

Xác định chu kì của biểu diễn miền tần số X(k) của tín hiệu x(n).

- igcup A. X(k) tuần hoàn với chu kỳ 2π
- lacksquare B. X(k) tuần hoàn với chu kì N=5
- $igcup {\sf C.} \ X(k)$ tuần hoàn với chu kỳ π
- igcup D. X(k) không tuần hoàn

Câu trả lời của bạn đúng

Câu trả lời đúng là:

X(k) tuần hoàn với chu kì N=5

Xác định đáp ứng xung của hệ thống LTI nhân quả có hàm truyền:

$$H(z) = \frac{1}{1 - \frac{1}{2}z^{-1}} + \frac{2}{1 - 2z^{-1}}$$

ROC: 1/2 < 1/2 < 2

A.
$$h(n) = \left(-\frac{1}{2}\right)^n u(n) + 2(-2)^n u(n)$$

B.
$$h(n) = \left(\frac{1}{2}\right)^n u(n) + 2(2)^n u(n)$$

C.
$$h(n) = \left(-\frac{1}{2}\right)^n u(n) + 2(2)^n u(n)$$

$$h(n) = \left(\frac{1}{2}\right)^n + 2(2)^n$$

Câu trả lời của bạn đúng

$$h(n) = \left(\frac{1}{2}\right)^n u(n) + 2(2)^n u(n)$$

Cho hệ thống LTI rời rạc gồm: (H1 mắc song song H2) mắc <u>nối tiế</u>p H3. Xác định hàm truyền của hệ thống biết:

(H1) biểu diễn bởi phương trình sai phân: y(n) - y(n-1) = x(n)

- (H2) biểu diễn bởi đáp ứng xung: $h_2(n) = \left(\frac{1}{2}\right)^n u(n)$
- (H3) biểu diễn bởi hàm truyền: $H_3(z) = z^{-1}$

^{O A.}
$$H(z) = \frac{2z-3/2}{(z-\frac{1}{2})(z+1)}$$

^{O B.}
$$H(z) = \frac{-3/2}{(z+\frac{1}{2})(z-1)}$$

© c.
$$H(z) = \frac{2z-3/2}{(z-\frac{1}{2})(z-1)}$$

$$H(z) = \frac{z - 3/2}{(z - \frac{1}{2})(z - 1)}$$

Câu trả lời của bạn đúng

$$H(z) = \frac{2z - 3/2}{(z - \frac{1}{2})(z - 1)}$$

Đáp ứng xung của hệ thống LTI là $h(n)=\{1,1,1\}$. Đáp ứng của hệ thống với tín hiệu đầu vào $x(n)=\{1,2,3\}$ là bao nhiêu?

- \bigcirc A. $\{1, 1, 1, 0, 0\}$
- \bigcirc B. $\{1, 3, 6, 3, 1\}$
- \bigcirc C. $\{1, 3, 6, 5, 3\}$
- O. $\{1, 2, 3, 2, 1\}$

Câu trả lời của bạn đúng

Câu trả lời đúng là:

 $\{1, 3, 6, 5, 3\}$

Câu Hỏi 10

Đúng

Xác định điểm cực và điểm không của hệ thống LTI cho bởi hàm truyền:

$$H(z) = \frac{z}{z - 1/2}$$

- A. Điểm không bằng 1/2, điểm cực bằng 1
- B. Điểm không bằng 0, điểm cực bằng 1/2
- C. Điểm không bằng 1/2, điểm cực bằng 0
- D. Điểm không bằng 1, điểm cực bằng 1/2

Câu trả lời của bạn đúng

Câu trả lời đúng là:

Điểm không bằng 0, điểm cực bằng 1/2

Tìm đáp ứng tự nhiên của hệ thống cho bởi phương trình vi phân:

$$\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = x(t) + \frac{dx(t)}{dt}$$

biết các điều kiện ban đầu:

$$y(0) = 0 \text{ và } \frac{dy(t)}{dt}\Big|_{t=0} = -1$$

O A.
$$e^{-3t} + 2e^{-2t}, t > 0$$

$$igcup B. \ e^{-3t} + 2e^{-2t}$$

C.
$$-e^{-t}+e^{-2t}, t>0$$

$$\bigcirc$$
 D. $-e^{-t} + e^{-2t}$

Câu trả lời của bạn đúng

$$-e^{-t}+e^{-2t}, t>0$$

Một hệ thống TTBB rời rạc có đáp ứng xung $h(n)=u(n\pm 3)$. Hệ thống là:

- A. Không nhân quả, ổn định
- B. Nhân quả, không ổn định
- C. Nhân quả, ổn định
- D. Không nhân quả, không ổn định

Câu trả lời của bạn đúng

Câu trả lời đúng là:

Không nhân quả, không ổn định

Câu Hỏi 13 Đúng

Cho hệ thống LTI nhân quả có các điểm cực tại 0,5 và 0,7. Phát biểu nào sau đây đúng?

- A. Vùng ROC chứa điểm 0,5 và 0,7
- B. Vùng ROC không chứa điểm 0,5 và 0,7
- C. Vùng ROC chứa điểm 0,5
- D. Vùng ROC chứa điểm 0,7

Câu trả lời của bạn đúng

Câu trả lời đúng là:

Vùng ROC không chứa điểm 0,5 và 0,7

Cho hệ thống LTI rời rạc biểu diễn bởi sơ đồ khối sau. Xác định hàm truyền của hệ thống.

$$^{\circ}$$
 A. $H(z) = \frac{1}{1 + T_1(z)T_2(z)}$

^O B.
$$H(z) = \frac{T_1(z)}{1 + T_2(z)}$$

$$H(z) = \frac{T_1(z)}{1 + T_1(z)T_2(z)}$$

$$H(z) = \frac{T_1(z)}{T_2(z)}$$

Câu trả lời của bạn đúng

$$H(z) = \frac{T_1(z)}{1 + T_1(z)T_2(z)}$$

Nối sao cho phù hợp:

(1) Hàm truyền	(a) H(s)
(2) Đáp ứng tần số	(b) h(t)
(3) Đáp ứng pha	(c) H(w)
(4) Đáp ứng biên độ	(d) ∠H(w)
(5) Đáp ứng xung	(e) H(w)

- B. (1)-(d); (2)-(a); (3)-(c); (4)-(e); (5)-(b)
- C. (1)-(b); (2)-(c); (3)-(d); (4)-(e); (5)-(a)
- D. (1)-(c); (2)-(a); (3)-(d); (4)-(e); (5)-(b)

Câu trả lời của bạn đúng

Câu trả lời đúng là:

(1)-(a); (2)-(c); (3)-(d); (4)-(e); (5)-(b)

Có mấy khả năng để hệ thống LTI sau là không nhân quả:

$$H(s) = \frac{1}{s^2 + 3s + 2}$$

- A. 3
- O B. 1
- C. 2
 ✓
- O D. 4

Câu trả lời của bạn đúng

Câu trả lời đúng là:

2

Xác định đáp ứng xung của hệ thống LTI nhân quả hàm truyền:

$$H(s) = \frac{7s - 17}{s^2 - 5s + 6}$$

$$h(t) = 4e^{-2t}u(t) + 3e^{3t}u(t)$$

$$h(t) = 4e^{-2t}u(t) + 3e^{-3t}u(t)$$

$$h(t) = 3e^{-2t}u(t) + 4e^{-3t}u(t)$$

$$h(t) = 3e^{2t}u(t) + 4e^{3t}u(t)$$

Câu trả lời của bạn đúng

$$h(t) = 3e^{2t}u(t) + 4e^{3t}u(t)$$

Viết lại biểu thức $h(n)*\delta(n-1)$.

- \bigcirc A. $\delta(n)$
- \bigcirc B. h(n)
- \bigcirc C. h(n-1)
- O. h(n+1)

Câu trả lời của bạn đúng

Câu trả lời đúng là:

$$h(n-1)$$

Câu Hỏi 19

Đúng

Phát biểu nào sau đây đúng:

- lacksquare A. Biến đổi Fourier của tín hiệu rời rạc, không tuần hoàn sẽ tuần hoàn với chu kỳ $2\pi \checkmark$
- igcup B. Biến đổi Fourier của tín hiệu rời rạc, không tuần hoàn sẽ tuần hoàn với chu kỳ π
- C. Tất cả các ý đều sai
- D. Biến đổi Fourier của tín hiệu rời rạc, không tuần hoàn sẽ không tuần hoàn

Câu trả lời của bạn đúng

Câu trả lời đúng là:

Biến đổi Fourier của tín hiệu rời rạc, không tuần hoàn sẽ tuần hoàn với chu kỳ 2π

Xác định đáp ứng tần số của hệ thống LTI có lối vào và lối ra tương ứng là:

$$x(t) = e^{-3t}u(t) \text{ và } y(t) = e^{-3(t-\frac{\pi}{2})}u(t-2) \chi(x-1)$$

$$\chi(\omega) = \frac{1}{3-j\omega} \qquad \chi(\omega) = \frac{1}{3-j\omega}$$

- $^{\circ}$ B. $H(\omega) = e^{-j\omega}$
- $^{\circ}$ $H(\omega) = e^{-j2\omega}$
- $^{\circ}$ D. $H(\omega)=e^{-j3\omega}$

Câu trả lời của bạn đúng

$$H(\omega) = e^{-j2\omega}$$

Cho tín hiệu

$$x(t) = \sin 200\pi t + 3\cos^2(350\pi t)$$

Nhận định nào sau đây đúng?

- A. Phổ của tín hiệu x(t) gồm các thành phần: tần số 100Hz và 175Hz với biên độ tương ứng bằng 1,
 và 3/2
- B. Phổ của tín hiệu x(t) gồm các thành phần: DC, tần số 100Hz và 175Hz với biên độ tương ứng bằng 1, 1 và 3
- C. Phổ của tín hiệu x(t) gồm các thành phần: tần số 100Hz và 175Hz với biên độ tương ứng bằng 1,
 và 3
- D. Phổ của tín hiệu x(t) gồm các thành phần: DC, tần số 100Hz và 350Hz với biên độ tương ứng ✓
 bằng 3/2, 1, và 3/2

Câu trả lời của bạn đúng

Câu trả lời đúng là:

Phổ của tín hiệu x(t) gồm các thành phần: DC, tần số 100Hz và 350Hz với biên độ tương ứng bằng 3/2, 1, và 3/2

Xác định phương trình vi phân của hệ thống LTI cho bởi đáp ứng tần số:

$$H(\omega) = \frac{1-j\omega}{-\omega^2-4} \qquad \underbrace{J^2}_{\text{th}^2} \text{ Total } \underbrace{+}_{\text{th}^2} \text{ Total } \underbrace{+}_{\text{th}^2}$$

A.
$$\frac{d^{2}}{dt^{2}}y(t) - 4y(t) = \frac{d}{dt}x(t) + x(t)$$

$$-\omega^{2} y - 4 y = \frac{d}{dt}x(t) + x(t)$$
B.
$$\frac{d^{2}}{dt^{2}}y(t) + 4y(t) = \frac{d}{dt}x(t) + x(t)$$

$$\int_{B}^{O} \frac{d^2}{dt^2} y(t) + 4y(t) = \frac{d}{dt} x(t) + x(t)$$

Oc.
$$\frac{d^2}{dt^2}y(t) + 4y(t) = -x(t)$$

D.
$$\frac{d^2}{dt^2}y(t) = \frac{d}{dt}x(t) + x(t)$$

Câu trả lời của bạn đúng

$$\frac{d^2}{dt^2}y(t) - 4y(t) = \frac{d}{dt}x(t) + x(t)$$

Tín hiệu nào sau đây không có khai triển chuỗi Fourier?

$$\bigcirc$$
 A. $x(t) = 2\cos(1.5t) + \sin(3.5t)$

$$\bigcirc$$
 B. $x(t)=\cos(t)+0,5$

$$\bigcirc$$
 C. $x(t) = 2\cos(\pi t) + 7\cos(t)$

$$\bigcirc$$
 D. $x(t) = 2\cos(t) + 3\cos(3t)$

Câu trả lời của bạn đúng

$$x(t) = 2\cos(\pi t) + 7\cos(t)$$

Xác định biến đổi Z và vùng hội tụ của tín hiệu:

$$x(n) = -u(-n-1) + \left(\frac{1}{2}\right)^n \underline{u(n)}$$

$$\frac{1}{2} \angle \frac{1}{2} \angle 1$$

• A.
$$X(z) = \frac{z(2z-3/2)}{(z-\frac{1}{2})(z-1)}$$
 Vùng ROC: $\frac{1}{2} < |z| < 1$

B.
$$X(z) = \frac{(z-1)(z-\frac{1}{2})}{z(2z-3/2)}$$
 Vùng ROC: $\frac{1}{2} < |z| < 1$

^O C.
$$X(z) = \frac{2z-3/2}{(z-\frac{1}{2})(z-1)}$$
 Vùng ROC: $|z| < 1$

O.
$$X(z) = \frac{z(z-1)}{(z-\frac{1}{2})(2z-3/2)}$$
 Vùng ROC: $|z| < 3/2$

Câu trả lời của bạn đúng

$$X(z) = \frac{z(2z-3/2)}{(z-\frac{1}{2})(z-1)}$$
 Vùng ROC: ½ < |z| < 1

Xác định đáp ứng xung của hệ thống TTBB ổn định hàm truyền:

$$H(s) = \frac{7s - 17}{s^2 - 5s + 6}$$

$$h(t) = -3e^{2t}u(-t) + 4e^{3t}u(t)$$

^O B.
$$h(t) = 4e^{-2t}u(t) + 3e^{3t}u(t)$$

$$h(t) = 3e^{2t}u(t) + 4e^{3t}u(t)$$

D. Không tìm được giá trị

Câu trả lời của bạn đúng

$$h(t) = 3e^{2t}u(t) + 4e^{3t}u(t)$$

Xác định biến đổi Laplace và vùng hội tụ của tín hiệu:

$$x(t) = e^{-0.5t}u(t)$$

• A.
$$X(s) = \frac{1}{s+0.5}$$
 Vùng ROC: Re{s}<0.5

• B.
$$X(s) = \frac{1}{s+0.5}$$
 Vùng ROC: Re{s}>-0.5

• C.
$$X(s) = \frac{1}{2s}$$
 Vùng ROC: Re{s}<-0,5

• D.
$$X(s) = e^{-s/2}$$
 Vùng ROC: Re{s}>0,5

Câu trả lời của bạn đúng

$$X(s) = \frac{1}{s+0.5}$$
 Vùng ROC: Re{s}>-0,5

Cho tín hiệu

$$x(t) = \sin 200\pi t + 3\cos^2(350\pi t)$$

Xác định tần số lấy mẫu Nyquist để không có hiệu tượng chồng phổ.

- A. 400Hz
- B. 700Hz
 ✓
- C. 350Hz
- D. 200Hz

Câu trả lời của bạn đúng

Câu trả lời đúng là:

700Hz

Xác định đáp ứng xung của hệ thống TTBB có hàm truyền:

$$H(s) \neq \frac{s}{s^2+4}$$

với vùng ROC ở bên phải điểm không.

$$h(t) = -e^{-2t}u(-t)$$

$$h(t) = e^{-2t}u(t)$$

$$h(t) = \sin(2t)u(t)$$

$$b. h(t) = \cos(2t)u(t)$$

Câu trả lời của bạn đúng

$$h(t) = \cos(2t)u(t)$$

Cho tín hiệu x(n) được biểu diễn trên hình:

Xác định tần số góc cơ sở của x(n).

- \bigcirc A. π
- \bigcirc B. 2π
- \bigcirc C. $2\pi/5$
- D. 2π/6√

Câu trả lời của bạn đúng

Câu trả lời đúng là:

 $2\pi/6$

Tìm đáp ứng tự nhiên của hệ thống cho bởi phương trình sai phân $y(n)+rac{1}{4}y(n-2)=x(n)+rac{2x(n-2)}{2}$ biết các điều kiện ban đầu y(0)=2 và y(1)=0

$$igcap A. \ (rac{1}{2}e^{jrac{\pi}{2}})^n+(rac{1}{2}e^{-jrac{\pi}{2}})^n, n\geq 0$$

O B.
$$(\frac{1}{2})^n + (-\frac{1}{2})^n, n \ge 1$$

$$\bigcirc$$
 C. $(rac{1}{2})^n + (-rac{1}{2})^n, n \geq 0$

$$igcup {
m D.} \ (rac{1}{2}e^{jrac{\pi}{2}})^n+(rac{1}{2}e^{-jrac{\pi}{2}})^n, n\geq 1$$

Câu trả lời của bạn đúng

Câu trả lời đúng là:

$$(rac{1}{2}e^{jrac{\pi}{2}})^n+(rac{1}{2}e^{-jrac{\pi}{2}})^n, n\geq 0$$

◄ Slide học tập

Chuyển tới...

Bài tập Tuần 1_1 ▶