CHAPITRE MI2 – DOCUMENTS Dynamique du point matériel

FIGURE 1 : Trajectoires d'un ballon de basket (à gauche) et d'un volant de badminton (à droite)

FIGURE 2 : Référentiel terrestre

FIGURE 3 : Référentiel géocentrique

FIGURE 4 : Référentiel héliocentrique

Exercice d'application 1

Déterminer l'expression de g en fonction de $R_T=6,38.10^6$ m, le rayon de la Terre et $M_T=5,98.10^{24}$ kg, la masse de la Terre. Calculer la valeur de g.

FIGURE 5 : Allongement (élongation) et force de rappel d'un ressort

FIGURE 6: Tir en cloche ou tir tendu

FIGURE 7 : Trajectoires du projectile pour différents coefficients de frottement h: $m=0,4~{\rm kg},~v_0=30~{\rm m.s^{-1}},~\alpha=60^{\circ},$

 $h = 0.01:0.2 \text{ N.s.m}^{-1}$

FIGURE 8 : Trajectoires pour différentes vitesses initiales avec $\alpha=45^\circ$ $v_0=0, 1v_{lim} \mbox{ (pointill\'es)}, \ v_0=v_{lim} \mbox{ (trait gris) et}$ $v_0=10v_{lim} \mbox{ (trait noir)}$

Exercice d'application 2

Le référentiel terrestre \mathcal{R}_g est supposé galiléen et le champ de pesanteur \overrightarrow{g} uniforme. Un skieur, assimilé à un point matériel M de masse m glisse sur la ligne de plus grande pente d'un plan incliné faisant un angle α avec l'horizontale, sans pousser sur les bâtons. Le skieur est soumis à une force de frottement solide telle que $|R_T| = f|R_N|$, R_T et R_N étant respectivement les composantes tangentielle et normale de la réaction \overrightarrow{R} de la piste.

Déterminer les expressions des composantes de la réaction \overline{R} de la piste en fonction de g, m et α .

Exercice d'application 3

On considère une masse ponctuelle M(m) suspendue verticalement à un ressort (raideur k, longueur à vide l_0) dans le champ de pesanteur g, en l'absence de frottement. On repère la cote z du point M par rapport à O, extrémité fixe du ressort dans le référentiel d'étude. À l'instant initial t=0, la masse est située à la position d'équilibre $z(0)=z_{\ell q}$ et elle possède une vitesse initiale non nulle $v(0)=v_0=v_0u_z$ avec $v_0>0$.

- 1. Déterminer la position $z_{\acute{e}q}$ du point à l'équilibre.
- 2. Établir et résoudre l'équation différentielle vérifiée par la cote z de M.

Exercice d'application 4

On considère une bille M de masse m attachée à un fil inextensible, de masse négligeable et de longueur OM = l. À l'instant initial, on lâche la bille sans vitesse d'une position faisant un angle θ_0 avec la verticale.

Déterminer l'équation du mouvement.

FIGURE 10 : Évolution temporelle de l'angle θ pour différentes conditions initiales

	Oscillateur électrique	Oscillateur mécanique
Description du système	Circuit LC en régime libre	M relié à un ressort de raideur k , de longueur à vide l_0
Réponses du système		
Grandeur oscillante vérifiant l'équation différentielle		
Dérivée de la grandeur représentant ses variations		
Caractéristique de l'oscillateur harmonique		
Pulsation propre		
Comportement		
Mise en oscillation		
Répugnance au changement		
Aspect énergétique		
Énergie magnétique / cinétique		
Énergie électrostatique / élastique		
Énergie totale		

FIGURE 9 : Oscillateur harmonique : analogie électromécanique