MET CS662 - Assignment #8

1. Design a Turing Machine with no more than three states that accepts the language $L(a(a + b)^*)$. Assume that $\Sigma = \{a, b\}$. Is it possible to do this with a two-state machine?

1.	Three states
	S(q0, a) = (q1, a, R)
	S(q1, a) = S(q1, b) = (q1, a, R)
	$S(q_1, \square) = (q_2, \square, R)$
	F= {q2}
	Children and the of
	Two states
	S(q0, a) = (q2, a, R)
	F = £923
F	

2. What language is accepted by the *TM*, $M = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \{a, b, \square\}, \delta, q_0, \square, \{q_3\})$ with

$$\delta(q_0, a) = (q_1, a, R)$$
 $\delta(q_1, \square) = (q_3, \square, R)$
 $\delta(q_0, b) = (q_2, b, R)$ $\delta(q_2, b) = (q_2, b, R)$
 $\delta(q_1, b) = (q_1, b, R)$ $\delta(q_2, a) = (q_3, a, R)$

3. What happens in Example 9.10 (in the textbook where the TM copies strings of 1's, i.e. the TM that performs $q_0 \omega \vdash^* q_f \omega \omega$) if the string ω contains any symbol other than 1?

3.	Consider the following computation,
	goN + gfNW for any W∈ 215'
	· Substitute every 1 by 2
	· Search for the rightmost of and substitute
	it with 1.
	· Move to the right direction from the current
	non blank resion till the end and create
	1 there.
	· Repeat step 2 and 3 until there exists
	no more is.
	If replace 1 by other string then Turing machine
	holts.
	Honce, Turing machine halts whenever a symbol
	not in £1, \$13 is encountered.

4. Outline with enough details a TM that accepts the language $L = \{\omega\omega \mid \omega \in \{a,b\}^+\}$.

4. Find the midpoint and mark it. If there's a lone chavarden in the middle (i.e. the length of the input string isn't even), then reject immediately.

Add the # out the end of the string.

Find the end

Add the D at the end of the string

Match

After finding mid-point and found the beginning of the first av and the beginning of the 2nd rand, marking off they don't.