## **Electromagnetism**

Professor D. Evans d.evans@bham.ac.uk

# Lecture 2 Field Lines and Continuous Charges Week 1

### ast Lesture

Coulomb's Law

$$\underline{\boldsymbol{E}} = \frac{Q}{4\pi\varepsilon_0 r^2} \hat{\boldsymbol{r}}$$

• Force between two charges 
$$\underline{\boldsymbol{F}} = \frac{q_1 q_2}{4\pi \varepsilon_0 r^2} \hat{\boldsymbol{r}}_{12}$$

E-field from multiple charges

$$\underline{E} = \sum_{i} \frac{q_i}{4\pi\varepsilon_0 r_i^2} \hat{r}_i$$

### Lecture 2 Content

- Visualisation of E-fields
  - Electric field lines
- Continuous Charge Distributions
  - Using Coulomb's Law and integration
- Some examples: E-field from .....
  - Line of continuous charge
  - Uniform charged thin ring
  - Uniform charged circular plane
  - Infinite plane
  - Inside charged hollow sphere

# Visualisation of E-fields

# Use field lines of force

These are lines drawn in space so that the tangent to them at any point gives the direction of  $\underline{E}$  at that point.



# The E field near to a point charge







# •The density of the field lines is proportional to the strength of $\underline{E}$



The absolute number of lines is not important. You cannot obtain the field strength by counting the number of lines. Adding lines must follow rules.

### •Field lines only start on positive charge, they can only end on negative charge

Example:  $\underline{E}$  field lines around an electric dipole



The tangent at any point gives the direction of  $\underline{E}$  at that point.

Field lines originate from distant positive charges

# Field lines terminate at distant negative charges





# Continuous Charge Distributions

- What do we do if the object is not a point particle?
- Break the distribution into small (infinitesimal) pieces
- Treat each piece as a point charge and add up the separate <u>E</u>-fields (as a vector of course!)
- This can get messy typically results in a 3D integral, evaluated numerically by computer

### Charge Distributions

Charge can be distributed along a *line*, over a *surface*, or through a *volume*.

- Use  $\lambda$  to represent charge/length over the element dl  $q = \int \lambda \, dl$
- Use  $\sigma$  to represent the charge/unit area over a surface area element dA  $q = \int \sigma \ dA$
- Use  $\rho$  to represent the charge/unit volume in a volume element dV  $q = \int \rho \ dV$

# Example 2.1: E-field from line of charge

 Consider the <u>E</u>-field at a point along a line perpendicular to the mid point of line of

uniform charge.



Take an element of charge  $\delta Q = \lambda \delta y$  along line at y. Use symmetry and consider element of charge at -y Use Coulomb's Law and integrate.

# Example 2.2 - Calculate the *E*-field on the axis of a thin ring of charge Q.

• Represent the charge distribution as a series of small elements  $\delta s$  each with a charge  $\delta Q$  (+ charge)



## Example 2.2 - use symmetry

 Use symmetry. Consider two ring elements which are diagonal to each other.



# Extannelle 2-2

### Do example on the visualizer