Algorithms and datastructures Exercises

Kristoffer Klokker 2022

Contents

6	Uge	9	
	6.1	Indica	te the following according to figure 1
		6.1.a	The attributes of each realtion
		6.1.b	The tuples of each realtion
		6.1.c	The components of one tuble of each realtion
		6.1.d	The relation schema of each realtion
		6.1.e	The database schema
		6.1.f	A suitable domain of each attribute
		6.1.g	Another equivalent way to present each relation
	6.2	In a ta	able with the following attributes which are valid example
			``````````````````````````````````````
	6.3	·	nany ways can relation be represented if it has:
		6.3.a	Four attributes and five tuples
		6.3.b	$n$ attributes and $m$ tuples $\dots \dots \dots \dots \dots$
	6.4	Write	a database schema of the following relations
		6.4.a	Write a schema for $Product$
		6.4.b	Write a schema for $PC$
		6.4.c	Write a schema for <i>Printer</i>
		6.4.d	Write an alternation for Printer and delete the at-
			tribute color
		6.4.e	Add an od attribute for PC, which defaults to none an
			otherwise can be cd or dvd
7	$\mathrm{U}\mathbf{g}\epsilon$		
	7.1		ng with linear notation
		7.1.a	PC models which have speed of at least 3.00?
		7.1.b	PC manufacturers which makes PC with a hdd with
			at leat 100GB
		7.1.c	Find model and price of all products made by manu-
			facturer $B$
		7.1.d	Find model numbers of all color laster printers
		7.1.e	Find manufactures that sell Laptops but not PC
		7.1.f	Find hd size which accour in two or more PC's
	7.2	In the	e following data, what is the result of $\pi_{speed}(PC)$ when
		treate	d as a bag and set

## 6 Uge

## 6.1 Indicate the following according to figure 1.

acctNo	type	balance	
12345	savings	12000	
23456	checking	1000	
34567	savings	25	

## The relation Accounts

$\underline{\hspace{0.1in} \mathit{firstName}}$	lastName	idNo	account
Robbie	Banks	901-222	12345
Lena	Hand	805-333	12345
Lena	Hand	805-333	23456

## The relation Customers

Figure 1: Two relations of a banking database

### 6.1.a The attributes of each realtion

Accounts: acctNo, type, balance

Customers: firstName, lastName, idNo, account

### 6.1.b The tuples of each realtion

• 12345, savings, 12000

• 23456, checking, 1000

• 34567, savings, 25

- Robbie, Banks, 901 222, 12345
- Lena, Hand, 805 − 333, 12345
- $\bullet$  Lena, Hand, 805 333, 23456

## 6.1.c The components of one tuble of each realtion

12000

Banks

### 6.1.d The relation schema of each realtion

Accounts(acctNo, type, balance)Customers(firstName, lastName, idNo, account)

#### 6.1.e The database schema

Accounts, Customers

### 6.1.f A suitable domain of each attribute

- acctNo INT
- type VARCHAR[20]
- balance INT
- firstName VARCHAR[20]
- lastName VARCHAR[20]
- *idNo CHAR*[7]
- ullet account INT

## 6.1.g Another equivalent way to present each relation.

The attributes could simply just be in a different order.

## 6.2 In a table with the following attributes which are valid example of keys

title, year, length, genre, studioName, producerC#

- title, year
- title, year, studioName
- title, length
- length, genre, studioName, year

## 6.3 How many ways can relation be represented if it has:

## 6.3.a Four attributes and five tuples

 $4! \cdot 5! = 2880$ 

### **6.3.b** n attributes and m tuples

 $n! \cdot m!$ 

## 6.4 Write a database schema of the following relations

The datasbase schema includes Product(make, model, type) PC(model, speed, ramhd, price) Laptop(model, speed, ram, hd, screen, price) Printer(model, color, type, price)

### 6.4.a Write a schema for Product

CREATE TABLE Product(VARCHAR[20] maker, INT model, INT type) The type is here an int where 0 is PC, 1 is laptop and 2 is printer. There is no foreign keys due to it being the lookup table for the other relations

### **6.4.b** Write a schema for *PC*

CREATE TABLE PC(INT model, FLOAT speed, INT ram, BOOLEAN hd, FLOAT prize, FOREIGN KEY(Products) REFERENCES Products(model)) Here the model is a reference to products, speed is gigahertz of CPU

### **6.4.c** Write a schema for *Printer*

CREATE TABLE Printer(INT model, BOOLEAN color, VARCHAR[20] type, FLOAT price, FOREIGN KEY(Products) REFERENCES Products(model))

## 6.4.d Write an alternation for Printer and delete the attribute color

ALTER TABKE Printer DROP color

## 6.4.e Add an *od* attribute for PC, which defaults to none an otherwise can be cd or dvd

ALTER TABLE PC ADD VARCHAR[20] od DEFAULT 'none'

## 7 Uge

## 7.1 Working with linear notation

The following exercises uses the following schema: Product(maker, model, type) PC(model, speed, ram, hd, price) Laptop(model, speed, ram, hd, screen, price) Printer(model, color, type, price)

### 7.1.a PC models which have speed of at least 3.00?

 $\pi_{model}(\sigma_{speed>3.00}(PC))$ 

## 7.1.b PC manufacturers which makes PC with a hdd with at leat $100\mathrm{GB}$

 $\pi_{maker}(Product \bowtie \sigma_{hd>=100}(PC))$ 

## 7.1.c Find model and price of all products made by manufacturer B

$$man := \sigma_{maker=B}(Product)$$

$$PCModelPrice := \pi_{model,price}(man \bowtie PC)$$

$$LaptopModelPrice := \pi_{model,price}(man \bowtie Laptop)$$

$$PrinterModelPrice := \pi_{model,price}(man \bowtie Printer)$$

$$modPrice := PCModelPrice \cup LaptopModelPrice \cup PrinterModelPrice$$

### 7.1.d Find model numbers of all color laster printers

 $\pi_{model}(Product \bowtie \sigma_{color=1ANDtype=laser}(Printer))$ 

## 7.1.e Find manufactures that sell Laptops but not PC

Due to algebra not including a method for group by I have answered in form of SQL queries.

SELECT (SELECT maker FROM LAPTOP NATURAL JOIN Product GROUP BY maker) - (SELECT maker FROM PC NATURAL JOIN Product GROUP BY maker)

### 7.1.f Find hd size which accour in two or more PC's

$$PC = \pi_{model,hd}(PC)$$

$$PC2(model2,hd) = \pi_{model,hd}(PC)$$

$$hd = \pi_{hd}(\sigma_{model!=model}(PC \bowtie PC2)$$

# 7.2 In the following data, what is the result of $\pi_{speed}(PC)$ when treated as a bag and set

model	speed	ram	hd	price
1001	2.66	1024	250	2114
1002	2.10	512	250	995
1003	1.42	512	80	478
1004	2.80	1024	250	649
1005	3.20	512	250	630
1006	3.20	1024	320	1049
1007	2.20	1024	200	510
1008	2.20	2048	250	770
1009	2.00	1024	250	650
1010	2.80	2048	300	770
1011	1.86	2048	160	959
1012	2.80	1024	160	649
1013	3.06	512	80	529

Set
speed
2.66
2.10
1.42
2.80
3.20
2.20
2.00
2.80
1.86
3.06