6.16 review

神经网络基础

通过cs231n课程,目前已经对训练一个全连接层网络步原理以及步骤有了基本的了解,主要包括:

- 数据预处理
- 前向以及反向传播
- 正则化方法
- 梯度更新相关算法

学习材料

1. 学习课程的视频以及 note 目前已经完成 module1

Module 0: Preparation

Software Setup

Python / Numpy Tutorial (with Jupyter and Colab)

Module 1: Neural Networks

Image Classification: Data-driven Approach, k-Nearest Neighbor, train/val/test splits

L1/L2 distances, hyperparameter search, cross-validation

Linear classification: Support Vector Machine, Softmax

parameteric approach, bias trick, hinge loss, cross-entropy loss, L2 regularization, web demo

Optimization: Stochastic Gradient Descent

optimization landscapes, local search, learning rate, analytic/numerical gradient

Backpropagation, Intuitions

chain rule interpretation, real-valued circuits, patterns in gradient flow

Neural Networks Part 1: Setting up the Architecture

model of a biological neuron, activation functions, neural net architecture, representational power

Neural Networks Part 2: Setting up the Data and the Loss

 $preprocessing, weight\ initialization, batch\ normalization, regularization\ (L2/dropout), loss\ functions$

Neural Networks Part 3: Learning and Evaluation

gradient checks, sanity checks, babysitting the learning process, momentum (+nesterov), second-order methods, Adagrad/RMSprop, hyperparameter optimization, model ensembles

Putting it together: Minimal Neural Network Case Study

minimal 2D toy data example

2. 课程作业完成**assignment1** <u>being12345/cs231n: cs231n (github.com)</u> -- 使用 numpy 手写一个二层神经网络

图机器学习

看了相关图机器学习综述

学习图机器学习库 networkx, 并且代码实践

学习图机器学习特征工程: 节点工程, 边工程, 全图工程(人工)方法

相关材料

- 1. 综述(没有代码比较空泛)
- 2. networkx库代码视频学习

3. 相关理论学习至2

Date	Description	Optional Readings	Events	Deadlines
Tue 1/10	1. Introduction [slides]			
Thu 1/12	2. Feature Engineering for ML in Graphs [slides]	Efficient Graphlet Kernels for Large Graph Comparison Weisfeiler-lehman Graph Kernels	Colab 0, Colab 1 out	
Tue 1/17	3. Node Embeddings [slides]	DeepWalk: Online Learning of Social Representations node2vec: Scalable Feature Learning for Networks Network Embedding as Matrix Factorization		
Thu 1/19	4. Graph Neural Networks [slides]	Geometric Deep Learning: the Erlangen Programme of ML Semi-Supervised Classification with Graph Convolutional Networks	Homework 1 out	
Tue 1/24	5. A General Perspective on GNNs [slides]	Design Space of Graph Neural Networks Inductive Representation Learning on Large Graphs Graph Attention Networks		

计划

- 1. 继续相关理论学习阅读经典 paper
- 2. 实践 paper 中的代码熟悉图机器学习编程

线性代数

复习至vector space

学习材料

1. 学习 MIT 18.06 strang 课程 以及阅读相关教材至11

SES#	TOPICS	READINGS IN 4TH EDITION	READINGS IN 5TH EDITION
1	The geometry of linear equations	1.1-2.1	1.1-2.1
2	Elimination with matrices	2.2-2.3	2.2-2.3
3	Matrix operations and inverses	2.4-2.5	2.4-2.5
4	LU and LDU factorization	2.6	2.6
5	Transposes and permutations	2.7	2.7
6	Vector spaces and subspaces	3.1	3.1
7	The nullspace: Solving Ax = 0	3.2	3.2
8	Rectangular $PA = LU$ and $Ax = b$	3.3-3.4	3.3
9	Row reduced echelon form	3.3-3.4	3.3
10	Basis and dimension	3.5	3.4
11	The four fundamental subspaces	3.6	3.5

矩阵微积分

学习了梯度的求法对于经典函数例如 softmax sigmoid WX 做了推导

学习材料

1. <u>being12345/matrix_calculus: This is including most useful matrix calculus material (github.com)</u>