| Lehrstuhl für Steuerungs- und Regelungs-  | Einführung in die Roboterregelung (ERR) |
|-------------------------------------------|-----------------------------------------|
| technik / Lehrstuhl für Informationstech- |                                         |
| nische Regelung                           |                                         |
| Technische Universität München            | 8. Übung                                |

## Aufgabe 1:

Consider the tractor-trailer system shown in figure, often referred to as the *firetruck* in the robotics literature. The tractor is a rear-wheel-drive car-like vehicle, while the trailer is a rigid body with an axle carrying two *steering* wheels, and is connected to the midpoint of the tractor rear axle through a revolute joint. The fact that the trailer wheels can be steered increases the maneuverability of the vehicle, which can thus negotiate sharp turn in spite of its size.



- 1) Find a set of generalized coordinates for the robot, and show them on the drawing.
- 2) Write the kinematic constraints to which the robot is subject (two-wheel axles can be assimilated to a single wheel located at the midpoint of the axle).
- 3) Derive a kinematic model of the system.

## Aufgabe 2:

Consider the differential-drive robot shown below, where a passive sphere is used as a caster wheel.



Assume that we want to impose to the caster a velocity  $V_c$  directed as in figure. Compute the angular speeds  $\omega_R$  and  $\omega_L$  required to achieve this objective, using the following numerical data: L=0.3 m, d=0.4 m, r=0.15 m,  $\alpha=45^{\rm deg}$ ,  $\|V_c\|=0.1$  m/s.