Time series analysis of Mobile application user statistics

Jonathan Tonglet – R0827509

Advanced Time Series Analysis- D0M63B

Professor : Christophe Croux

Presentation of the dataset

- Dataset published on Kaggle in 2018 *
- User statistics for an unnamed mobile app
- Hourly data during a week (169 observations)
- Starts on the 22/12/2018 and ends on the 29/12/2018
- In this analysis, we focus on 2 time series
 - Number of new users per hour
 - Number of active users per hour
- Interesting business questions to study
 - Do new users arrive at specific time periods during the day/ during the week?
 - Does the number of active users at a time **t-1** have a impact on new users at time **t** (recommendations, app sharing, ...)?

^{*} Beer, W.(2018). *Mobile application users statistics* (Version 4). Retrieved from: https://www.kaggle.com/wolfgangb33r/usercount?select=app.csv 1

Univariate TS analysis – New users

A) Analysis of the TS

Comments

- Test results: the TS is not stationary and is not white noise (critical value = 0.05 *)
- Clear seasonal (daily) pattern
- No major differences between the 7 days of the week
- Month and seasonal plots confirm the seasonal pattern
- Peak in new users in the afternoon

→ Go into seasonal differences of lag 24

Hour

Univariate TS analysis – New users

B) Analysis of the TS in seasonal differences

Comments

- ADF test result: the TS in seasonal differences is stationary
- Ljung-Box test : the TS seems to be white noise

- Correlograms show that there still exists a seasonal effect at lag 24
- The TS is not purely white noise
- We will use SARIMA models
- Different possible models:
 - SARIMA(1,0,1)(1,0,1)
 - SARIMA(1,0,1)(1,0,0)
 - SARIMA(1,0,1)(0,0,1)

Univariate TS analysis – SARIMA models

Model 1 – Estimation & Validation SARIMA(1,0,1)(1,0,1)

```
arima(x = snew_users_ts, order = c(1, 0, 1), seasonal = c(1, 0, 1))

Coefficients:
    ar1    ma1    sar1    sma1    intercept
    0.9774   -0.8875   -0.1262   -0.8235    -0.0004
s.e.    0.0307    0.0526    0.1590    0.3198    0.3871

sigma^2 estimated as 10.38: log likelihood = -390.37, aic = 792.74
```

- Sar1 coefficient & intercept are not significant
- We move to more simple models
 - Model 2 : SARIMA(1,0,1)(0,0,1)
 - Model 3 : SARIMA(1,0,1)(1,0,0)

Model 2 – Estimation & Validation SARIMA(1,0,1)(0,0,1)

All coefficients are significant except the intercept

Analysis of the residuals


```
Box-Ljung test

data: res2
X-squared = 11.478, df = 15, p-value = 0.718
```

- From the graphs and the test, we conclude that the residuals are white noise
- The model is validated

Univariate TS analysis – SARIMA models

Model 3 – Estimation & Validation SARIMA(1,0,1)(1,0,0)

Models 2 & 3 Comparison

 All coefficients are significant except the intercept

AIC Model 2 791,5 Model 3 804,7

Analysis of the residuals

- Box-Ljung test

 data: res3
 X-squared = 8.2977, df = 15, p-value = 0.9113
- From the graphs and the test, we conclude that the residuals are white noise
- The model is validated

	BIC
Model 2	806,4
Model 3	819,6

- Model 2 is preferred because it has the lowest AIC & BIC values
- We will now make forecasts based on the two models

Univariate TS analysis – Forecasting

Forecasting for the next 24 hours (29/12/18 at 10 AM – 30/12/18 at 10 AM)

Comments

- Both forecasts are very similar
- MAE almost equal (expanding window approach)
- Prediction intervals are close to the forecasted values
- Predict a peak of new users in the 29th afternoon
- Predict a low number of new users during the night
- Globally respect the seasonal pattern of previous days

MAE
215
216

Diebold-Mariano test

Diebold-Mariano Test

data: error2.herror3.h

DM = -0.61028, Forecast horizon = 1, Loss function power = 1, p-value =
0.5436
alternative hypothesis: two.sided

We reject that the forecasting performances of model 2 and model 3 are significantly different

6

Multivariate TS Analysis – Active users

A) Introducing a new TS: number of active users

Blue: Number of new users

Orange: Number of active users

- ADF test

 data: active_users_ts

 ADF(3) = -3.8439, p-value = 0.003113

 alternative hypothesis: true delta is less than 0

 sample estimates:

 delta
 -0.1114991
- Box-Ljung test data: active_users_ts X-squared = 568.25, df = 15, p-value < 2.2e-16
- 0.5-0.0 0.0 24 1ag
- Test results: the TS is not stationary and is not white noise
- It has a seasonal pattern and a trend
- → We go in differences and in seasonal differences (lag = 24)

B) Number of active users in difference & seasonal differences


```
ADF test

data: dsactive_users_ts
ADF(0) = -16.956, p-value < 2.2e-16
alternative hypothesis: true delta is less than 0
sample estimates:
    delta
-1.391063

BOX-Ljung test

data: dsactive_users_ts
X-squared = 33.196, df = 15, p-value = 0.0044
```

- ADF test: the TS is now stationary
- Ljung-Box test : TS is not white noise
- → We can now create a multivariate model

Multivariate TS Analysis – ADLM (2)

- sY = number of new users in seasonal difference
- dsX = number of active users in difference and seasonal difference

```
lm(formula = sy.0 \sim dsx.1 + dsx.2 + sy.1 + sy.2)
Residuals:
     Min
               1Q
                  Median
-10.8365 -2.6627
                   0.2428
                            1.8854 11.7861
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.02066
                       0.32673
dsx.1
             0.16262
                       0.02701
dsx. 2
             0.03391
                       0.03011
                                 1.126 0.26204
             0.23773
                       0.08558
sy.1
                                  2.778 0.00623
sy. 2
             0.01694
                       0.08192
                                  0.207 0.83645
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.903 on 138 degrees of freedom
Multiple R-squared: 0.2432, Adjusted R-squared: 0.2213
F-statistic: 11.09 on 4 and 138 DF, p-value: 7.906e-08
```

Comments

- dsX1 and sY1 coefficients are significant
- The other coefficients are not significant
- R-squared: 24% of the variance is explained by the independent variables
- The variables are jointly significant (F-statistic)

Analysis of the residuals

- From the graphs and the test, we can conclude that the residuals are white noise
- The model is validated

Multivariate TS Analysis – ADLM (2)

Test for Granger causality

```
Analysis of Variance Table

Model 1: sy. 0 ~ dsx.1 + dsx.2 + sy.1 + sy.2

Model 2: sy.0 ~ sy.1 + sy.2

Res.Df RSs Df Sum of Sq F Pr(>F)

1 138 2102.2

2 140 2668.2 -2 -566 18.578 7.168e-08 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

- We strongly reject that there is no Granger causality
- The number of active users (in difference)
 provides incremental predictive power to predict
 the number of new users (in difference)

Conclusion

This analysis helped us to get more insights in the data of the mobile app.

We have discovered that:

- New users tend to arrive during the afternoon.
- The same pattern is repeated every day of the week with almost no differences.
- The time series is quite stable over time. Forecasted values have narrow prediction intervals.
- The number of new users at time **t-1** and the number of active users at time **t-1** can help us explain the number of new users at time **t**. However, we have to be careful with this assumption and can't conclude that there is a direct causality.
- Peak time for new users corresponds to peak time for active users. Interesting information for the social media/marketing strategy of the company.