Probability and Statistics Tutorial 6

Siyi Wang

Southern University of Science and Technology 11951002@mail.sustech.edu.cn

October 27, 2020

Outline

Review

2 Homework

Supplement Exercises

Review

- 1. Joint Distribution Function $F_{X,Y}(x,y)$
 - (Def) $F_{X,Y}(x,y) = P(X \le x, Y \le y)$.
 - (Property) $F_{X,Y}(+\infty, +\infty) = 1$, $F_{X,Y}(-\infty, -\infty) = 0$.
 - (Property) $F_{X,Y}(x,y)$ is nondecreasing in x and y.
 - (Property) $F_{X,Y}(x,y)$ is right continuous in x and y.
 - (Property) $0 \le P(x_1 < X \le x_2, y_1 < Y \le y_2) = F(x_2, y_2) F(x_1, y_2) F(x_2, y_1) + F(x_1, y_1).$
- 2. Marginal Distribution Function $F_X(x)$
 - $F_X(x) = P(X \le x) = P(X \le x, y < +\infty) = F_{X,Y}(x, +\infty).$
 - $F_X(x)$ itself is a distribution function.

Review

- 3. Joint Distribution of Discrete Random Variables
 - Joint PMF: $P(X = i, Y = j) = p_{ij}$.
 - $\sum_{i,j} p_{ij} = 1$ and $p_{ij} \ge 0$.
 - (General Case) Joint PMF $P(X_1 = i_1, X_2 = i_2, ..., X_n = i_n)$.
- 4. Joint Distribution of Continuous Random Variables
 - (Def) Joint PDF: $f_{X,Y}(x,y)$ such that $F_{X,Y}(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{X,Y}(x,y) dxdy$.
 - (Property) $f_{X,Y}(x,y) \ge 0$, $1 == \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dxdy$
 - (Property) $P((X, Y) \in A) = \iint_A f_{X,Y}(x, y) dx dy$.
 - (Property) $f_{X,Y}(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$

Review

- 5. Marginal Distribution of Random Variables
 - (Discrete Case) Marginal PMF: $P(X = i) = \sum_{j} P(X = i, Y = j)$.
 - (Continuous Case) Marginal PDF: $f_X(x) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dy = \frac{\partial F(x,+\infty)}{\partial x}$.
 - Marginal PDF (PMF) is itself a PDF (PMF).

3. 三个玩家进行 10 轮独立的游戏,每个人在每轮游戏中获胜的概率都是 $\frac{1}{3}$. 计算每个人赢得游戏次数的联合分布.

$$P(X_1 = i, X_2 = j, X_3 = k) = \frac{10!}{i!j!k!} (\frac{1}{3})^{10}$$
, for $i + j + k = 10$.

补充题1. 把一枚均匀硬币抛掷三次,设X为三次抛掷中正面出现的次数,而Y为正面出现次数与反面出现次数之差的绝对值,求(X,Y)的频率函数.

2. 设 X 的分布为 P(X = -1)= P(X=0)=P(X=1)=1/3. 令 Y=X², 求(X,Y)的联合频率函数及边缘频率函数。

3.设随机变量 Y 服从参数为 1 的指数分布, 随机变量

$$X_k = \begin{cases} 0, & \text{ if } Y \le k, \\ 1, & \text{ if } Y > k, \end{cases}$$
 $k = 1, 2$

求二维随机变量(X₁,X₂)的联合频率函数及边缘频率函数。

$$\mathbf{M}$$
 (X_1, X_2) 的联合分布列共有如下 4 种情况:

$$P(X_1 = 0, X_2 = 0) = P(Y \le 1, Y \le 2) = P(Y \le 1)$$

$$= 1 - e^{-1} = 0.632 12,$$

$$P(X_1 = 0, X_2 = 1) = P(Y \le 1, Y > 2) = 0,$$

$$P(X_1 = 1, X_2 = 0) = P(Y > 1, Y \le 2) = P(1 \le Y \le 2)$$

= $e^{-1} - e^{-2} = 0.23254$.

$$P(X_1 = 1, X_2 = 1) = P(Y > 1, Y > 2)$$

$$= P(Y > 2) = 1 - P(Y \le 2) = e^{-2} = 0.135 134.$$

$$P(X_1 = 0) = 1 - e^{-1}, P(X_1 = 1) = e^{-1}.$$

 $P(X_2 = 0) = 1 - e^{-2}, P(X_2 = 1) = e^{-2}.$

5. (蒲丰投针问题) 平面上画有一些平行线,它们之间的距离都是 D, 一根长为 L 的针随机地投在平面上,其中 $D\geqslant L$. 证明: 此针正好与一条直线相交的概率是 $2L/\pi D$. 解释为什么这个实验能够机械地估计 π 值.

Solution

m: 针的中点

Li: 房加最近的线

h: m到L的磁海

Q: 与L,距离最近购端点和料的(L前) 所失助≤90°附系

h~ Uniform (D, D)

2~ Uniform (0, 1)

P(相致)=P(上sind≥h)

$$=\frac{1}{\frac{D}{A}\cdot\frac{T}{A}}\int_{0}^{\frac{T}{A}}\int_{0}^{\frac{L}{A}sid}dhdd$$

$$= \frac{2L}{D\pi} \int_{0}^{\frac{\pi}{2}} \sin_{x} d\hat{a} = \frac{2L}{\pi D}.$$

N=# of experiments $N_1=\#$ of success N then N large, $\frac{M}{N}\approx P(\pm i M)=\frac{2L}{ND}$. Then, $\pi\approx\frac{2LN}{DN}$.

6. 从椭圆内部随机地选择一个点, 椭圆方程为:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

计算该点坐标 x 和 y 的边际密度.

7. 计算相应于如下 cdf 的联合密度和边际密度

$$F(x,y) = (1 - e^{-\alpha x})(1 - e^{-\beta y}), \quad x \ge 0, \quad y \ge 0, \quad \alpha > 0, \quad \beta > 0$$

$$\begin{split} f_{X,Y}(x,y) &= \frac{\partial^2 F(x,y)}{\partial x \partial y} = \alpha \beta e^{-(\alpha x + \beta y)} \mathbf{1}_{x \geq 0, y \geq 0}. \\ f_X(x) &= \frac{\partial F(x,+\infty)}{\partial x} = \alpha e^{-(\alpha x)} \mathbf{1}_{x \geq 0}. \\ f_Y(y) &= \frac{\partial F(+\infty,y)}{\partial y} = \beta e^{-(\beta x)} \mathbf{1}_{y \geq 0}. \end{split}$$

8. 若 X 和 Y 具有联合密度

$$f(x,y) = \frac{6}{7}(x+y)^2, \quad 0 \leqslant x \leqslant 1, \quad 0 \leqslant y \leqslant 1$$

- a. 利用合适区域上的积分,计算 (i) P(X>Y), (ii) $P(X+Y\leqslant 1)$, (iii) $P\left(X\leqslant \frac{1}{2}\right)$.
- b. 计算 x 和 y 的边际密度.
- c. 计算这两个变量的条件密度.

a.
$$P(X > Y) = \int_0^1 \int_y^1 \frac{6}{7}(x+y)^2 dx dy = \frac{1}{2}$$
.
 $P(X + Y \le 1) = \int_0^1 \int_0^{1-y} \frac{6}{7}(x+y)^2 dx dy = \frac{3}{14}$
 $P(X \le \frac{1}{2}) = \int_0^1 \int_0^{\frac{1}{2}} \frac{6}{7}(x+y)^2 dx dy = \frac{2}{7}$
b. For $0 \le x \le 1$, $f_X(x) = \int_0^1 \frac{6}{7}(x+y)^2 dy = \frac{6}{7}x^2 + \frac{6}{7}x + \frac{2}{7}$; otherwise, $f_X(x) = 0$.
For $0 \le y \le 1$, $f_Y(y) = \int_0^1 \frac{6}{7}(x+y)^2 dx = \frac{6}{7}(x+y)^2 dy = \frac{6}{7}y^2 + \frac{6}{7}y + \frac{2}{7}$; otherwise, $f_Y(y) = 0$.
c. For $0 \le x \le 1$, $0 \le y \le 1$, $f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = \frac{3(x+y)^2}{3y^2+3y+1}$.
 $f_{Y|X}(y|x) = \frac{f(x,y)}{f_Y(y)} = \frac{3(x+y)^2}{3y^2+3x+1}$.

1. 设二维连续随机变量(X,Y)的联合分布函数 为

$$F(x,y) = \begin{cases} k(1-e^{-x})(1-e^{-y}), & x > 0, y > 0, \\ 0, & \text{其他}, \end{cases}$$

求边缘密度函数及 P(1<X<3, 1<Y<2)。

Since
$$F(+\infty, +\infty) = 1$$
, then $k = 1$.
 $f_X(x) = \frac{\partial F(x, +\infty)}{\partial x} = e^{-x} 1_{x>0}$.
 $f_Y(y) = \frac{\partial F(+\infty, y)}{\partial y} = e^{-y} 1_{y>0}$.
 $P(1 < X < 3, 1 < Y < 2) = \int_1^3 \int_1^2 e^{-(x+y)} dy dx = (e^{-1} - e^{-3})(e^{-1} - e^{-2})$.

2. 设二维连续随机变量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} x + y, & 0 < x,y < 1, \\ 0, & \text{i.e.} \end{cases}$$

- (1) 求边缘密度函数: (2)求 P(X>Y):

(3)求 P(X < 0.5)

(1)
$$f_X(x) = (x + \frac{1}{2})1_{0 < x < 1}$$
. $f_Y(y) = (y + \frac{1}{2})1_{0 < y < 1}$.

(2)
$$P(X > Y) = \int_0^1 \int_y^1 (x + y) dx dy = \frac{1}{2}$$
.

(3)
$$P(X < 0.5) = \int_0^{0.5} (x + \frac{1}{2}) dx = \frac{3}{8}$$
.

Exercise 1

15. 从(0,1) 中随机地取两个数,求其积不小于 3/16,且其和不大于 1 的概率.

Solution

解 设取出的两个数分别为 X 和 Y,则(X,Y) 的联合密度函数为

$$p(x,y) = \begin{cases} 1, & 0 < x < 1, 0 < y < 1, \\ 0, & \text{ 其他.} \end{cases}$$

因为 p(x,y) 的非零区域与 $\{xy \ge 3/16, x + y \le 1\}$ 的交集为图 3.6 阴影部分.

所以

$$P\{XY \ge 3/16, X + Y \le 1\} = \int_{1/4}^{3/4} \int_{\frac{1}{164}}^{3-x} dy dx = \int_{1/4}^{3/4} \left(1 - x - \frac{3}{16x}\right) dx$$
$$= \left(x - \frac{1}{2}x^2 - \frac{3}{16}\ln x\right)_{1/4}^{3/4} = \frac{1}{4} - \frac{3}{16}\ln 3 = 0.044 \ 0.$$

Exercise 2

4. 设随机变量 X_i , i=1,2 的分布列如下, 且满足 $P(X_1X_2=0)=1$, 试 求 $P(X_1=X_2)$.

X,	- 1	0	1
P	0. 25	0.5	0, 25

Solution

解	$记(X_1,$	X_2)	的联合约	予布列为
---	----------	---------	------	------

X ₁ X ₂	- 1	0	1
- 1	P11	P12	P ₁₃
0	P21	P ₂₂	P ₂₃
1	P ₃₁	p ₃₂	P ₃₃

由
$$P(X_1X_2=0)=1$$
 知: $p_{12}+p_{21}+p_{22}+p_{23}+p_{32}=1$,所以 $p_{11}=p_{13}=p_{31}=p_{33}=$

0. 即

X, X2	- 1	0	1
- 1	0	P ₁₂	0
0	P ₂₁	P ₂₂	P ₂₃
1	0	p ₃₂	0

又因为

$$0.25 = P(X_1 = -1)$$

$$= P(X_1 = -1, X_2 = -1) + P(X_1 = -1, X_2 = 0) + P(X_1 = -1, X_2 = 1)$$

$$= p_{11} + p_{12} + p_{13} = p_{12},$$

Solution

同理由 $P(X_1 = 1) = P(X_2 = -1) = P(X_2 = 1) = 0.25$ 可知 $p_{32} = p_{21} = p_{23} = 0.25$,即

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	A ANDREW CONTRACTOR OF THE PARTY OF THE PART		
X ₁	- 1	0	1
- 1	0	0. 25	0
0	0. 25	p ₂₂	0. 25
1	0	0.25	0

又由分布列的正则性得 P22 = 0,因此

$$P(X_1 = X_2) = p_{11} + p_{22} + p_{33} = 0.$$

#### Exercise 3

7. 设二维随机变量(X,Y) 的联合密度函数为

$$p(x,y) = \begin{cases} 4xy, & 0 < x < 1, 0 < y < 1, \\ 0, & \text{ i.e.} \end{cases}$$

试求

- (1) P(0 < X < 0.5, 0.25 < Y < 1);
- (2) P(X=Y);
- (3) P(X < Y);
- (4) (X,Y) 的联合分布函数.

#### Solution

(4) (X,Y) 的联合分布函数 F(x,y) 要分如下 5 个区域表示:

$$F(x,y) = \begin{cases} \int_{-\infty}^{x} \int_{-\infty}^{y} 0 \, dx \, dy \\ 4 \int_{0}^{x} \int_{0}^{y} t_{1} t_{2} \, dt_{2} \, dt_{1} \\ 4 \int_{0}^{x} \int_{0}^{1} t_{1} t_{2} \, dt_{2} \, dt_{1} \\ 4 \int_{0}^{1} \int_{0}^{y} t_{1} t_{2} \, dt_{2} \, dt_{1} \\ 4 \int_{0}^{1} \int_{0}^{y} t_{1} t_{2} \, dt_{2} \, dt_{1} \\ 4 \int_{0}^{1} \int_{0}^{1} t_{1} t_{2} \, dt_{2} \, dt_{1} \end{cases} = \begin{cases} 0, & x < 0, \text{ iff } y < 0, \\ x^{2} y^{2}, & 0 \leq x < 1, 0 \leq y < 1, \\ x^{2}, & 0 \leq x < 1, 1 \leq y, \\ y^{2}, & 1 \leq x, 0 \leq y < 1, \\ 4 \int_{0}^{1} \int_{0}^{1} t_{1} t_{2} \, dt_{2} \, dt_{1} \\ 1, & x \geq 1, y \geq 1. \end{cases}$$

# Thank you!