

Aol-based Scheduling for Networked Control Systems

over Gilbert-Elliot Channels

Bachelor Thesis

Final Presentation

Henry He

henry.he@tum.de

M.Sc. Onur Ayan

onur.ayan@tum.de

Networked Control Systems:

Feedback control loops closed over a communication network

- How to schedule NCS efficiently?
- Solution: Application-aware scheduler for MAC

Agenda

- Preliminaries
 - Problem Statement
 - Gilbert-Elliot Channel Model
 - State of the Art
- Methodology
 - Simulation Setting
- Evaluation
 - Performance Metric
 - Results
 - Conclusion

Preliminaries

Problem Statement

- Centralized resource scheduling problem for a single wireless link shared by multiple heterogeneous NCS with time-varying channel conditions
- Remote estimation process between each sensor-controller pair

 Goal: Optimal control-aware scheduler which takes the Gilbert-Elliot Channel Model fully into account

Gilbert-Elliot (GE) Channel Model

- Simple model for burst errors typical in wireless networks
- Two state Markov Chain
 - Good & Bad states
 - State transition probabilities
- Statistical properties
 - Stationary state probabilities
 - Average error probability
 - Mean sojourn time

$$f = Pr[B|G]$$
 failure rate $r = Pr[G|B]$ recovery rate

$$\pi_G = \frac{r}{f+r} \qquad \qquad \pi_B = \frac{f}{f+r}$$

$$p_E = \pi_G p_G + \pi_B p_B$$

$$T_G = \frac{1}{f} \qquad \qquad T_B = \frac{1}{r}$$

State of the Art: Finite Horizon Scheduler (FHS) [2]

- Employ AoI [1] as intermediate metric for age-penalty functions
- Tree with every possible future outcome for the next H steps => finite horizon age-penalty minimization problem
- Complexity: $O(N^H)$
- Open Issue:
 - Assumes constant channel

Example tree structure of FHS for N=2 subsystems and finite horizon H=1

GE Channel-aware Finite Horizon Scheduler (GES)

• 2^N times more possible network states for one level due to GE channel transitions => Complexity: $O(2^{NH})$

Methodology

Objective and Approach

Objective

- How does FHS perform in a Gilbert-Elliot channel?
- How does the GES perform in comparison?
- Extra: Why does simulation result differ between Linux, Mac, Windows?

Approach

- Modeling of GE Channel in a simulation network
- Implementation / Extension of control and channel aware scheduler
- Simulation using NCS_framework_cpp
- Evaluating AoI, MSE, complexity vs. finite horizon H

Simulation Setting

N = 3 scalar sub-systems

$$A_{1,2,3} = \{1.0, 1.25, 1.5\}$$

- FHS: *H* = {1, ..., 10}
- GES: $H = \{1, ..., 4\}$
- Simulated for D = 20000 time slots and repeated R = 200 times

Channel model parameters		Scenario 1
Loss in Good	p_G	0.25
Loss in Bad	p_B	0.75
Failure rate	f	0.3
Recovery rate	r	0.3
Stationary probability Good	π_G	0.5
Stationary probability Bad	π_B	0.5
Average error probability	p_E	0.5
Mean sojourn time in Good	T_G	3.33
Mean sojourn time in Bad	T_B	3.33

Evaluation

Performance Metric

Mean Squared Error (MSE)

$$MSE_i = \frac{1}{D} \sum_{t=1}^{D} \boldsymbol{e}_i(t)^T \boldsymbol{e}_i(t), \qquad \overline{MSE} = \frac{1}{N} \sum_{i=1}^{N} MSE_i$$

Reflects estimation accuracy

Aol Performance

Age-of-Information (AoI)

$$\Delta_i = \frac{1}{D} \sum_{t=1}^{D} \Delta(t), \qquad \overline{\Delta} = \frac{1}{N} \sum_{i=1}^{N} \Delta_i$$

Reflects the scheduler decisions

- Low Aol indicates a more frequent update rate
- Average AoI differs for each subsystem
 - Scheduler grants more medium access to sub-systems expected to produce high costs
 - Falling trend for Δ_2 , Δ_3 as H increases
 - Rising trend for Δ₁

MSE Performance

- Significant reduction of \overline{MSE} from H=1 to H=2 afterwards performance gain diminishes
- FHS: No increase in MSE beyond
 H = 4
- GES does not outperform FHS although being aware of GE channel transitions

Aol Distribution

- Most up-to-date plant measurements are available to task-critical sub-systems
 - $A_3 = 1.5$ has highest 1 AoI count
 - Shift for higher Aol values

 Similar geometrical AoI distribution to the derived AoI pmf from [3]

Effect of OS on Simulation Results

- For the same setting MSE differ among OSs
 - MSE: Almost 50% deviation between Linux and Windows
- Deviating scheduler decisions can be caused by
 - Inconsistent Random Number Generators
 - Inconsistent Cost Maps from where the total cost is taken from
 - Inconsistent floating point operations

Numerical effects on Scheduler

- Realizations of normal and uniform distributions show consistent Random number generators
- Cost are obtained from the same cost maps

Summary of Thesis Results

Contribution

- Implemented channel state dependent scheduling algorithm
- Performance gain of FHS diminishes after a certain H
- GES does not lead to improved scheduler performance compared to FHS
- Being fully GE channel-aware is not scalable -> Trade-off between optimality and complexity must be found
- Root cause of varying OS performance is not found in the algorithm

Future Work

- FHS tree with GES transition probabilities
- Evaluating efficiency of finite horizon scheduling in real-life use-cases
- Further investigation on possible numerical errors of floating point operations among different OSs

References

- [1] Kaul, Sanjit, Roy Yates, and Marco Gruteser. "Real-time status: How often should one update?." 2012 Proceedings IEEE INFOCOM. IEEE, 2012.
- [2] Ayan, Onur, et al. "Aol-based Finite Horizon Scheduling for Heterogeneous Networked Control Systems." *arXiv preprint arXiv:2005.02037* (2020).
- [3] Ayan, Onur, et al. "Probability Analysis of Age of Information in Multi-hop Networks." *IEEE Networking Letters* 2.2 (2020): 76-80.

Appendix

Scenario 2

Longer burst errors

Channel model parameters		Scenario 2
Loss in Good	p_G	0.25
Loss in Bad	p_B	0.75
Failure rate	f	0.1
Recovery rate	r	0.1
Stationary probability Good	π_G	0.5
Stationary probability Bad	π_B	0.5
Average error probability	p_E	0.5
Mean sojourn time in Good	T_G	10
Mean sojourn time in Bad	T_B	10

Scenario 3

Real-life channel

Channel model parameters		Scenario 3
Loss in Good	p_G	0.0011
Loss in Bad	p_B	0.7734
Failure rate	f	0.0024
Recovery rate	r	0.0832
Stationary probability Good	π_G	0.972
Stationary probability Bad	π_B	0.028
Average error probability	p_E	0.0227
Mean sojourn time in Good	T_G	416.66
Mean sojourn time in Bad	T_B	12

