

## Effet Ramsauer-Townsend



Pré-Ing 2

Groupe: MI1-F

- Enzo FULGORI
- Rayane MEHANNI
- Hugo NKUNDIYEZE

Enseignante : Mme. Dupont

Matière: Physique Moderne

## **Sommaire**

| 1. Effet Ramsauer-Townsend          | 3  |
|-------------------------------------|----|
| 2. Configuration expérimentale      | 4  |
| 3. Pourquoi une analyse quantique ? |    |
| 4. Etude analytique                 | 6  |
| 4.1 Le puits de potentiel           |    |
| 4.2 Les régions de l'espace         |    |
| 4.3 Les états stationnaires         |    |
| 4.4 Expressions de T et R           |    |
| 4.5 Analyse de T et R               |    |
| 4.6 Paquet d'ondes                  |    |
| 5. Etude numérique                  |    |
| 6. Annexes                          |    |
| 7. Bibliographie                    | 15 |
|                                     |    |

#### **Effet Ramsauer-Townsend**

- Carl Ramsauer (1879-1955)
- John Townsend (1868-1957)
- Diffusion des électrons de faible énergie par les atomes d'un gaz noble
- Faible/Absence coefficient de réflexion
- Effet expliqué à l'aide de la mécanique quantique









John Sealy Townsend

## Configuration expérimentale

- Emission d'un électron en chauffant un métal à une température suffisamment élevée
- Chambre remplie d'un gaz noble
- Capteur pour mesurer la quantité d'électrons transmis et réfléchis
- L'expérience a eu lieu après la Première Guerre mondiale







## Pourquoi une analyse quantique?

- Importance de la force électrostatique en déviant les ondes de leurs trajectoires initiales
- La masse des particules est très faible
- La taille des particules est sur une très petite échelle
- La réflexion de la particule projetée dans un gaz noble est quasiment nulle pour certaines énergies précises



## Etude analytique



#### Le puits de potentiel

- Modèle à une dimension d'espace
- Puits de potentiel de profondeur finie  $V_0$  (  $V_0 > 0$  )
- Expression du potentiel en fonction de la position :

$$V(x) = \begin{cases} -V_0 & (V_0 > 0), & \text{si } a < x < a + \epsilon, \\ 0, & \text{si } x < a \text{ ou } x > a + \epsilon. \end{cases}$$



Schéma du puits de potentiel fini

## Les régions de l'espace

- Distinction de 3 régions de l'espace :
- **Région I** (x < a): La région dans laquelle se trouve la particule avant de franchir le puits de potentiel. Le potentiel dans cette région est nul
- **Région II**  $(a < x < a + \varepsilon)$ : La région du puits de potentiel. Le potentiel dans cette région vaut  $V_0$   $(V_0 > 0)$
- **Région III**  $(x > a + \varepsilon)$ : La région dans laquelle se trouve la particule après avoir franchi le puits de potentiel. Le potentiel dans cette région est nul



Schéma du puits de potentiel fini

#### Les états stationnaires

#### Equations de Schrödinger

Dépendante du temps

$$i\hbar \frac{\partial \Psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x) \Psi(x,t).$$

Solutions dans les 3 régions de l'espace

(I) 
$$\phi_I(x) = A e^{ikx} + B e^{-ikx},$$

(II) 
$$\phi_{II}(x) = C e^{iqx} + D e^{-iqx},$$

(III) 
$$\phi_{III}(x) = F e^{ikx}$$
,

#### Indépendante du temps

$$-\frac{\hbar^2}{2m} \frac{d^2 \phi(x)}{dx^2} + V(x) \phi(x) = E \phi(x).$$

#### Avec:

$$k = \sqrt{\frac{2mE}{\hbar^2}}$$

$$q = \sqrt{\frac{2m(E + V_0)}{\hbar^2}}$$

#### Expressions de T et R

Conditions de continuité de la fonction d'onde et de sa dérivée :

$$\begin{cases} \phi_1(a^-) = \phi_2(a^+) \\ \phi_2(a + \epsilon^-) = \phi_3(a + \epsilon^+) \\ \phi_1'(a^-) = \phi_2'(a^+) \\ \phi_2'(a + \epsilon^-) = \phi_3'(a + \epsilon^+) \end{cases}$$

$$\iff \begin{cases} Au + Bu^{-1} = Cv + Dv^{-1} \\ Cvv' + Dv^{-1}v'^{-1} = Fuu' \\ Au - Bu^{-1} = \frac{q}{k}(Cv - Dv^{-1}) \\ Cvv' - Dv^{-1}v'^{-1} = \frac{k}{q}Fuu' \end{cases}$$

• Avec : 
$$\begin{cases} u=e^{ika}\\ u'=e^{ik\epsilon}\\ v=e^{iqa}\\ v'=e^{iq\epsilon} \end{cases}$$

Coefficient de transmission:

$$T = \left| \frac{F}{A} \right|^2 = \left( 1 + \frac{1}{4} \frac{(k^2 - q^2)^2}{k^2 q^2} \sin^2(q\epsilon) \right)^{-1}$$

Et en remplaçant k et q par leurs expressions on trouve:

$$T = \left(1 + \frac{1}{4} \frac{V_0^2}{E(E + V_0)} \sin^2(q\epsilon)\right)^{-1}$$

Coefficient de réflexion :

$$R = \left| \frac{B}{A} \right|^2 = 1 - T$$

#### Analyse de T et R

• Dans le cas où  $T \approx 1 \Rightarrow R \approx 0$ :

$$T = 1 \iff \sin^2(q\epsilon) = 0 \iff q\epsilon = n\pi$$

$$\iff \frac{\sqrt{2m(E + V_0)}}{\hbar^2} = \frac{n\pi}{\epsilon}$$

$$\iff 2m(E + V_0) = \frac{n^2\pi^2\hbar^4}{\epsilon^2}$$

$$\iff E_n = \frac{n^2\pi^2\hbar^4}{2m\epsilon^2} - V_0$$

• Quantification de  $E_n$ :

$$E_n = \frac{n^2 \pi^2 \hbar^4}{2m\epsilon^2} - V_0$$

• Quantification de  $e_n$ :

$$e_n = \frac{E_n}{V_0} = \frac{n^2 \pi^2 \hbar^4}{2m \epsilon^2 V_0} - 1$$

• à certaines énergies  $E_n$  on peut observer un pic du coefficient de transmission d'une particule tel que  $T \approx 1$  et  $R \approx 0$ . Ce phénomène est appelé résonance



Courbe illustrant le coefficient de transmission T en fonction du rapport : e = E/V0

#### Paquet d'ondes

- Propagation d'un paquet d'ondes gaussien qui est une superposition d'ondes de différentes impulsions k centrée autour d'une énergie  $E_0$
- Le coefficient de transmission du paquet d'ondes devient une moyenne pondérée des transmissions de chaque onde
- Même en centrant le paquet d'ondes autour d'une énergie  $E_0$  résonante, T < 1
- Un spectre plus large entraîne une diminution des pics de transmission





## Etude numérique

- Le code en python fourni permet de visualiser la densité de probabilité de présence d'un paquet d'ondes en fonction de la position
- Coefficient de transmission *T* légèrement différent entre l'étude numérique et analytique
- Le coefficient de transmission du paquet d'ondes est une moyenne pondérée de toutes les transmissions
- Plus la largeur du puits et le potentiel  $V_0$  augmentent, plus T augmente



• Un potentiel plus réaliste est le potentiel gaussien dont l'expression est :

$$V(x) = -V_0 \cdot e^{-\frac{(x-x_0)^2}{2\sigma^2}}$$

• Avec  $x_0$  la position du centre du puits de potentiel et  $\sigma$  la largeur du puits. 13

#### **Annexes**

- Lien du répertoire GitHub contenant le code python de l'étude numérique : <u>Lien</u>
- Détails des calculs et démonstrations des expressions  $(T, R, E_n, e_n ...)$ :



Document Adobe
Acrobat

Rapport du projet numérique :



Document Adobe
Acrobat



Juin 2025

#### Effet Ramsauer-Townsend



#### Rapport Projet Numérique :

Matière : Physique moderne

Nom du professeur : Madame Emilie Dupont

Sujet : Effet Ramsauer-Townsend Filière : Pré-Ing 2 \ groupe MI01

#### Réalisé par le Groupe MI01-1F :

- Enzo Fulgori
- Rayane Mehanni
- Hugo Nkundiyeze

Établissement: CY Tech, avenue du Parc, 95000, Cergy.

Année universitaire: 2024/2025

#### **Bibliographie**

- B. Zwiebach, (2016, Avril 26). Quantum Physics I, Lecture Note 17
   <a href="https://ocw.mit.edu/courses/8-04-quantum-physics-i-spring-2016/79c490b96f77e1374c42d7119a940091\_MIT8\_04S16\_LecNotes17.pdf">https://ocw.mit.edu/courses/8-04-quantum-physics-i-spring-2016/79c490b96f77e1374c42d7119a940091\_MIT8\_04S16\_LecNotes17.pdf</a>
- PhysicsOpenLab, (2016, Août 16). Ramsauer-Townsend Effect
   https://physicsopenlab.org/2016/08/16/ramsauer-townsend-effect/
- Mohamed El Hafidi, (2024, Mars 17). Effet Tunnel et Ramsauer: Comparaison <a href="https://youtu.be/5H-SI65k0x0?si=XuRFf1RhFeeaBtzg">https://youtu.be/5H-SI65k0x0?si=XuRFf1RhFeeaBtzg</a>

# Merci pour votre attention