Deep Learning Lab 5: Regularization

DataLab, 2025

Department of Computer Science, National Tsing Hua University, Taiwan

Regularization

techniques that improve the **generalizability** of a trained model

- Scikit-learn
- Learning Theory
 - Error Curves and Model Complexity
 - Learning Curves and Sample Complexity
- Weight Decay
 - Ridge Regression
 - LASSO
- Validation
- Assignment

- Scikit-learn
- Learning Theory
 - Error Curves and Model Complexity
 - Learning Curves and Sample Complexity
- Weight Decay
 - Ridge Regression
 - LASSO
- Validation
- Assignment

Scikit-learn

- Scikit-learn is a free software machine learning library for the Python programming language
- It features various classification, regression and clustering algorithms
 - including SVM (support vector machines), Random Forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific libraries NumPy and SciPy
- pip install scikit-learn / conda install scikit-learn

- Scikit-learn
- Learning Theory
 - Error Curves and Model Complexity
 - Learning Curves and Sample Complexity
- Weight Decay
 - Ridge Regression
 - LASSO
- Validation
- Assignment

Learning Theory

- Learning theory provides a means to understand the generalizability of the model
- Model complexity plays a crucial role
 - Too simple: high bias and underfitting
 - Too complex: high variance and overfitting

Error Curves and Model Complexity

- It is relatively hard to observe the figures showed in the last slide, since normally we will never know the data distribution of ground truth (red line in the last slide)
- Instead, we can get those information by observing the training and testing error curve

Double Descent Curves in Modern Machine Learning**

Reconciling modern machine learning practice and the bias-variance trade-off (PNAS'19) Double-descent curves in neural networks: a new perspective using Gaussian processes (arXiv'21)

Error Curves and Model Complexity

 Although the error curve visualizes the impact of model complexity, the bias-variance tradeoff holds only when you have sufficient training examples

Learning Curves and Sample Complexity

 The bounding methods of learning theory tell us that a model is likely to overfit regardless of its complexity when the size of training set is small. The learning curves are a useful tool for understanding how much training examples are sufficient

- Scikit-learn
- Learning Theory
 - Error Curves and Model Complexity
 - Learning Curves and Sample Complexity
- Weight Decay
 - Ridge Regression
 - LASSO
- Validation
- Assignment

Weight Decay

- A common regularization approach. The idea is to add a term in the cost function against complexity
 - Ridge Regression (L_2)

$$\arg\min_{\mathbf{w},b} \|\mathbf{y} - (\mathbf{X}\mathbf{w} - b\mathbf{1})\|^2 + \alpha \|\mathbf{w}\|^2$$

• LASSO (L_1)

$$\arg\min_{\mathbf{w},b} \|\mathbf{y} - (\mathbf{X}\mathbf{w} - b\mathbf{1})\|^2 + \alpha \|\mathbf{w}\|_1$$

Ridge Regression

• A small value α drastically reduces the testing error. Nevertheless, it's not a good idea to increase α forever, since it will over-shrink the coefficients of w and result in underfitting

$$\arg\min_{\mathbf{w},b} \|\mathbf{y} - (\mathbf{X}\mathbf{w} - b\mathbf{1})\|^2 + \alpha \|\mathbf{w}\|^2$$

```
[Alpha = 0]
MSE train: 0.00, test: 19958.68

[Alpha = 1]
MSE train: 0.73, test: 23.05

[Alpha = 10]
MSE train: 1.66, test: 16.83

[Alpha = 100]
MSE train: 3.60, test: 15.16

[Alpha = 1000]
MSE train: 8.81, test: 19.22
```

LASSO

• An alternative weight decay approach that can lead to sparse w is the LASSO. Depending on the value of α , certain weights can become zero much faster than others

$$\arg\min_{w,b} \|\mathbf{y} - (\mathbf{X}\mathbf{w} - b\mathbf{1})\|^2 + \alpha \|\mathbf{w}\|_1$$

```
[Alpha = 0.0000]
MSE train: 0.55, test: 61.02

[Alpha = 0.0010]
MSE train: 0.64, test: 29.11

[Alpha = 0.0100]
MSE train: 1.52, test: 19.51

[Alpha = 0.1000]
MSE train: 4.34, test: 15.52

[Alpha = 1.0000]
MSE train: 14.33, test: 22.42

[Alpha = 10.0000]
MSE train: 55.79, test: 53.42
```

Ridge vs LASSO

• Why is LASSO sparse?

Ridge: [0.5, 0.5, 0.5, 0.5]

Initial weights: [1, 0.5, 1, 0.5]

LASSO: [0.5, 0, 0.5, 0]

Ridge vs LASSO

Why is LASSO sparse?

$$\arg\min_{\mathbf{w},b} \frac{1}{2N} \|\mathbf{y} - (\mathbf{X}\mathbf{w} - b\mathbf{1})\|^2 + \alpha \|\mathbf{w}\|_1$$

- The surface of the cost function is the sum of SSE (blue contours) and 1-norm (red contours)
- Optimal point locates on some axes

Ridge vs LASSO

• LASSO can also be treated as a supervised **feature selection** technique when choosing a suitable regularization strength α to make only part of coefficients become exactly zeros

- Scikit-learn
- Learning Theory
 - Error Curves and Model Complexity
 - Learning Curves and Sample Complexity
- Weight Decay
 - Ridge Regression
 - LASSO
- Validation
- Assignment

Validation

- Another useful regularization technique that helps us decide the proper value of hyperparameters
- The idea is to split your data into the training, validation, and testing sets and then select the best value based on validation performance

 NOTE: It is important that we should never peep testing data during training

Validation

```
[Degree = 1]
MSE train: 25.00, valid: 21.43, test: 32.09
[Degree = 2]
MSE train: 9.68, valid: 14.24, test: 20.24
[Degree = 3]
MSE train: 3.38, valid: 17.74, test: 18.63
[Degree = 4]
MSE train: 1.72, valid: 16.67, test: 30.98
[Degree = 5]
MSE train: 0.97, valid: 59.73, test: 57.02
[Degree = 6]
MSE train: 0.60, valid: 1444.08, test: 33189.41
```

- Scikit-learn
- Learning Theory
 - Error Curves and Model Complexity
 - Learning Curves and Sample Complexity
- Weight Decay
 - Ridge Regression
 - LASSO
- Validation
- Assignment

Assignment

• In this assignment, we would like to predict the success of shots made by basketball players in the NBA

58.5	43.2	39.0	EG.	54.7	55.3	41.2	40.5	48.0	54.5
55.3	40.7	39.1	40.8	60.7	62.3	41£3	83.1	E9.5	57.2
50.9	E9.	40.3	36.0	47.9	48.7	86.7	39.8	40.8	53.8
55.9	88.8	40.6	33.5	41.6	41.2	33 4	40.1	40.5	52.4
52.2	53.3	41.4	89.2	46.0	423	425	33 4	52.9	50.2
83. 7	50.4	50.6	46.8	40.6	39.3	42.6	51.6	47.7	88.8
85. 7	EQ. 3	47.8	51.1	55.0	51.7	49.2	47.1	25.2	26.9
10.0	32. 9	41.0	40.3	41.7	84.0	25.0	80.5	17.9	10.0
0.0	10.0	5.0	18.8	41.2	10.7	E010	294	10.7	9.1
E010	16.7	25. 7	7.7/	81.6	174	19.8	28.1	182	15.0

Assignment

- In this assignment, we would like to predict the success of shots made by basketball players in the NBA
 - **y_test** is hidden this time
 - Allow to use any linear model in scikit-learn to achieve the best accuracy
 - Select the best 3 features, and show the accuracy with only those
- Hint
 - Preprocess the data to help your training
 - Since you don't have y_test this time, you may need to split a validation set for checking your performance
 - It is possible to use a regression model as a classifier, for example RidgeClassifier

Assignment

- Submit to **eeclass** with your:
 - ipynb (Lab05_{student_id}.ipynb)
 - Prediction (Lab05_{student_id}_y_pred.csv)
- The notebook should contain
 - How you **evaluate** your model
 - All models you have tried and the results
 - Plot the error curve of your best model and tell if it is over-fit or not
 - The top-3 features you find and how you find it
 - A brief report of what you have done in this assignment
 - Please refer to the "Requirements" part in the notebook for more details
- Deadline: 2025-09-24 (Wed) 23:59