

数据结构与算法概述

算法复杂度分析

算法复杂度分析

- ・引入
- 时间复杂度分析
- 空间复杂度分析

- 什么是一个"好"算法
 - 正确性
 - 更高的运行效率 (时间复杂度)
 - 更低的资源占用(空间复杂度)

如何测量算法的时间/空间复杂度?

算法性能比较方法

编程后测试运行时间

编程前分析可能的运行时间

- 为什么事后测量法不可行?
 - 计算机性能差异
 - 编程语言性能差异
 - 编译器及解释器优化
 - 无法事后再统计(导弹制导算法、核弹拦截算法)

• 为什么事后测量法不可行?

- 计算机性能差异

- 为什么事后测量法不可行?
 - 计算机性能差异
 - 编程语言性能差异

Programming Language	
•	Python
9	С
©	C++
<u>*</u>	Java
3	C#
JS	JavaScript
VB	Visual Basic
SQL	sQL
ASM	Assembly language
php	PHP

- 为什么事后测量法不可行?
 - 计算机性能差异
 - 编程语言性能差异
 - 编译器及解释器优化

- 为什么事后测量法不可行?
 - 计算机性能差异
 - 编程语言性能差异
 - 编译器及解释器优化

- 无法事后再统计(导弹制导算法、核弹拦截算法)

• 为什么事后测量法不可行?

- 编程语言性能差异

- 编译器及解释器优化

- 无法事后再统计(导弹制导算法、核弹拦截算法)

• 为什么事后测量法不可行?

- 编程语言性能差异

- 编译器及解释器优化

排除外界因素干扰

- 无法事后再统计

事先估计算法复杂度

预估算法复杂度与问题规模n的关系

算法复杂度分析

• 算法复杂度: 算法解决问题规模n所需的计算机资源的量

- 时间复杂度: 算法解决问题规模n所需的时间资源的量

- 空间复杂度: 算法解决问题规模n所需的空间资源的量

算法复杂度数学描述

• 算法复杂度C: 算法解决问题规模n所需的计算机资源的量

-C=F(N, I, A)

- N: 问题规模

- I: 输入

- A: 算法

- 通常算法A是确定的,可省略

算法复杂度数学描述简化

• 算法复杂度C: 算法解决问题规模n所需的计算机资源的量

-C=F(N, I)

- N: 问题规模

- I: 输入

算法复杂度分析

• 时间复杂度: 算法解决问题规模n所需的时间资源的量

-T=T(N, I)

- N: 问题规模

- I: 输入

算法复杂度分析

· 空间复杂度: 算法解决问题规模n所需的空间资源的量

-S=S(N, I)

- N: 问题规模

- I: 输入

- I: 通过划分等价类来去掉,后面详细介绍

简化复杂度函数

核心思想:排除外在干扰,让算法运行在一台抽象的计算机上

- ◆该计算机支持k种元运算,分别记为O₁, O₂, ...O_k
- ◆该计算机每次执行各类元运算的时间分别为t₁, t₂, ... t_k
- ◆统计目标算法A中用到元运算O_i的次数,记为e_i

则
$$T = t_1 e_1 + t_2 e_2 + ... + t_k e_k$$

简化复杂度函数1

核心思想:排除外在干扰,让算法运行在一台抽象的计算机上

- ◆该计算机支持k种元运算,分别记为O₁, O₂, ...O_k
- ◆该计算机每次执行各类元运算的时间分别为t₁, t₂, ... t_k
- ◆统计目标算法A中用到元运算Oi的次数,记为ei

e_i=e_i(N, I) 因此

$$T(N,I) = \sum_{i=1}^{k} t_i e_i(N,I)$$

简化复杂度函数2

计算步: 算法中的语句执行次数

核心思想: 统计抽象计算机中各类语句的执行次数

- ◆算法花费的时间与算法中语句的执行次数成正比
- ◆算法的计算步是问题规模n的一个函数T(n)
- ◆问题规模越大,算法的计算步越多,算法的耗时越大,复杂度也越高

算法的时间复杂度计算

```
□void work_hard(int n) { // n: 问题规模 | int main()
         int day = 1;  // day: 天数
        while (day \le n) {
             printf("第%d天坚持学习\n", day); }
             day++;
        printf("第%d天我出师了\n", day);
10
```

```
work_hard(140);
```

语句步:

④: 1次 ⑤: 141次 ⑥及⑦: 140次 ⑨: 1次

T(140) = 1 + 141 + 2*140 + 1 T(n) = 3n + 3

思考: 能不能进一步优化?

复杂度渐进分析法

忽略低阶项

$$T_1(n) = 3n + 3$$

 $T_2(n) = 5n^2 + 10n + 233$
 $T_3(n) = 9n^3 + 2n^2 + 10n + 66666$

当 n = 1000时, 当 n = 1000时, 去掉低阶项 继续去掉系数

 $T_1(n) = 3003$ $T_1(n) \approx 3000$ $T_1(n) \approx 1000$

 $T_2(n) = 501,0233$ $T_2(n) \approx 500,0000$ $T_2(n) \approx 100,0000$

 $T_3(n) = 90,0207,6666$ $T_3(n) \approx 90,0000,0000$ $T_3(n) \approx 10,0000,0000$

渐近分析理论基础

当
$$n$$
→ ∞时, $T(n)$ → ∞

此时若存在F(n),使得
$$\lim_{n\to\infty} \frac{T(n)-F(n)}{T(n)} = 0$$

则 F(n) 为 T(n) 的渐进性态

渐进性态F(n)就是T(n)中增长最快的部分

直观上, F(n) 为 T(n) 中忽略低阶项后留下的主项

继续简化

• 时间复杂度: 算法解决问题规模n所需的时间资源的量

-T=T(N, I)

- N: 问题规模

- I: 输入

思考:能不能把I简化掉?

继续简化

- 思路: 划分等价类
 - 最好输入
 - 最坏输入
 - 平均输入

T(N, I)

$$T(N,I) = \sum_{i=1}^{k} t_i e_i(N,I)$$

I: 最坏, 最好, 平均

$$\widetilde{T}(N)$$
 F(N, I)

渐近符号引入

- 思路: 划分等价类
 - 最好输入
 - 最坏输入
 - 平均输入

T(N, I)

$$T(N,I) = \sum_{i=1}^{k} t_i e_i(N,I)$$

I: 最坏, 最好, 平均

$$\widetilde{T}(N)$$
 F(N, I)

渐近符号引入

忽略低阶项,忽略高阶项系数

$$T_1(n) = 3n + 3$$

 $T_2(n) = 5n^2 + 10n + 233$
 $T_3(n) = 9n^3 + 2n^2 + 10n + 66666$

当 n = 1000时, 当 n = 1000时, 去掉低阶项 继续去掉系数

 $T_1(n) = 3003$ $T_1(n) \approx 3000$ $T_1(n) \approx 1000$

 $T_2(n) = 501,0233$ $T_2(n) \approx 500,0000$ $T_2(n) \approx 100,0000$

 $T_3(n) = 90,0207,6666 \quad T_3(n) \approx 90,0000,0000 \quad T_3(n) \approx 10,0000,0000$

渐近符号引入

忽略低阶项,忽略高阶项系数

$$T_1(n) = 3n + 3$$

 $T_2(n) = 5n^2 + 10n + 233$
 $T_3(n) = 9n^3 + 2n^2 + 10n + 66666$

 $T_3(n) = 90,0207,6666$ $T_3(n) \approx 10,0000,0000$ $T_3(n) = \Theta(n^3)$

平均情况渐近分析

当
$$n$$
→ ∞时, $T(n)$ → ∞

此时若存在
$$F(n)$$
,使得 $\lim_{n\to\infty} \frac{T(n)}{F(n)} = c \ (c>0)$

则
$$T(n) = \Theta(F(n))$$

Θ表示 F(n) 和 T(n) 同阶

直观上, F(n) 为 T(n) 中忽略低阶项后留下的主项

平均情况渐近分析

存在正常数 c_1 、 c_2 ,使得对所有的 $n ≥ n_0$,

 $0 \le c_1 F(n) \le T(n) \le c_2 F(n) 恒成立,$

则记 $T(n) = \Theta(F(n))$

直观上, T(n)能被 "夹入" c1F(n) 与 c₂F(n) 之间

Θ: 渐进紧确界

平均情况渐近分析

存在正常数 c_1 、 c_2 ,使得对所有的 $n ≥ n_0$,

 $0 \le c_1 F(n) \le T(n) \le c_2 F(n)$ 恒成立,

则记 $T(n) = \Theta(F(n))$

直观上, T(n)能被 "夹入" c1F(n) 与 c₂F(n) 之间

Θ: 渐进紧确界

$$T(n) = \Theta(F(n))$$

$$T(n) = F(n)$$

最坏情况渐近分析

存在正常数 c 和 n_0 ,使得对所有的 $n \ge n_0$,

 $0 \leq T(n) \leq cF(n)$ 恒成立,

则记 T(n) = O(F(n))

直观上,T(n)的阶不高于F(n)

大O: 渐进上界, 上限, 值越低越精确

算法规模足够大时的上界

$$T(n) = O(F(n))$$

 $T(n) \le F(n)$

最好情况渐近分析

存在正常数 c 和 n_0 ,使得对所有的 $n \ge n_0$,

 $0 \leq cF(n) \leq T(n)$ 恒成立,

则记 $T(n) = \Omega(F(n))$

直观上,T(n)的阶不低于F(n)

大O: 渐进下界, 下限, 值越高越精确

$$T(n) = \Omega(F(n))$$

$$T(n) \ge F(n)$$

渐近分析的符号

在下面的讨论中,对所有n, $f(n) \ge 0$, $g(n) \ge 0$.

(1) 渐近上界记号 0

 $O(g(n)) = \{ f(n) \mid$ 存在正常数c和 n_0 使得对所有 $n \ge n_0$ 有: $0 \le f(n) \le cg(n) \}$

(2) 渐近下界记号 Ω

 $\Omega(g(n)) = \{ f(n) \mid$ 存在正常数c和 n_0 使得对所有 $n \ge n_0$ 有: $0 \le cg(n) \le f(n) \}$

(3) 紧渐近界记号Θ

 $\Theta(g(n)) = \{f(n) \mid$ 存在正常数 c_1, c_2 和 n_0 使得对所有 $n ≥ n_0$ 有: $c_1g(n) ≤ f(n) ≤ c_2g(n) \}$

如果 f(n)是集合 O(g(n))中的一个成员, 我们说f(n) 属于 O(g(n))

更多渐近分析的符号

在下面的讨论中,对所有n, $f(n) \ge 0$, $g(n) \ge 0$.

(4) 非紧上界记号 0

 $o(g(n)) = \{ f(n) \mid \text{对于任何正常数} c > 0,$ 存在正数和 $n_0 > 0$ 使得对所有 $n \ge n_0$ 有: $0 \le f(n) < cg(n) \}$ 等价于 $f(n) / g(n) \to 0$, as $n \to \infty$.

(5) 非紧下界记号 ω

 ω $(g(n)) = \{f(n) \mid \text{对于任何正常数} c > 0,$ 存在正数和 $n_0 > 0$ 使得对所有 $n \geq n_0$ 有: $0 \leq cg(n) < f(n) \}$ 等价于 $f(n) \mid g(n) \to \infty$, as $n \to \infty$.

渐近分析中符号小结

$$f(n) = O(g(n)) \rightarrow f \leq g;$$

$$f(n) = \Omega(g(n)) \rightarrow f \geq g;$$

$$f(n) = \Theta(g(n)) \rightarrow f = g;$$

$$f(n) = o(g(n)) \rightarrow f < g;$$

$$f(n) = \omega(g(n)) \rightarrow f > g.$$

课堂讨论

● 根据渐近分析方法,如下结论是否正确?

```
例如: f(n) = 32n^2 + 17n + 32

f(n) = \Theta(n)? f(n) = \Theta(n^3)? 错误!

f(n) = \Theta(n^2)

f(n) 属于 O(n^2), O(n^3), \Omega(n^2), \Omega(n), \Theta(n).

f(n) 不属于 O(n), \Omega(n^3), \Theta(n^2), or \Theta(n^3).
```


渐近分析的符号运算

- ◆加法规则: O(f(n))+O(g(n)) = O(f(n)+g(n)) = O(max{f(n),g(n)})
- ◆多项相加,只保留最高阶的项,且系数置为1

$$T_1(n) = 9n^3$$

$$T_2(n) = 2n^2$$

$$T_3(n) = 10n$$

$$T_4(n) = 66666$$

$$T(n) = 9n^3 + 2n^2 + 10n + 66666 = O(n^3)$$

证明规则 $O(f(n)) + O(g(n)) = O(\max\{f(n), g(n)\})$

对任意 $f_1(n) \in O(f(n))$, 存在正常数 c_1 和自然数 n_1 , 使得对所有 $n \ge n_1$, 有 $f_1(n) \le c_1 f(n)$ 对任意 $g_1(n) \in O(g(n))$, 存在正常数 c_2 和自然数 n_2 , 使得对所有 $n \ge n_2$, 有 $g_1(n) \le c_2 g(n)$

令 c_3 =max{ c_1 , c_2 }, n_3 =max{ n_1 , n_2 }, h(n)= max{f(n), g(n)}
对所有的 $n \ge n_3$, 有 $f_1(n) + g_1(n) \le c_1 f(n) + c_2 g(n)$ $\le c_3 f(n) + c_3 g(n) = c_3 (f(n) + g(n))$ $\le c_3 2 \max\{f(n), g(n)\}$

 $= 2c_3h(n) = O(\max\{f(n),g(n)\})$

渐近分析的符号运算

- ◆ 乘法规则: O(f(n))*O(g(n)) = O(f(n)*g(n))
- ◆多项相乘,都保留

$$T_1(n) = n^2$$

$$T_2(n) = \log n$$

$$T_3(n) = n^2 \log n$$

 $T(n) = 9n^2 + 4nlogn, O如何保留?$

渐近分析的符号运算

$$\bullet$$
 O(cf(n)) = O(f(n));

$$\bullet$$
 g(n)= O(f(n)) \Rightarrow O(f(n))+O(g(n)) = O(f(n)) \circ

渐近分析的常见关系

 $O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(2^N) < O(n!) < O(n^n)$

 $O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(2^N) < O(n!) < O(n^n)$

多项式. $a_0 + a_1 n + ... + a_d n^d = \Theta(n^d)$ 其中 $a_d > 0$.

对数. O(log an) = O(log bn) 其中 a, b > 0为常数.

底不重要

对数. 对任意 x > 0, log n = O(n^x).

指数. 对任意 r > 1 和 d > 0, n^d = O(rⁿ).

指数比多项式更高阶

渐近分析的符号运算

$$O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n) < O(n!) < O(n^n)$$

$T(n) = 9n^2 + 4nlogn, O如何保留?$

$$\lim_{n\to\infty} \frac{n^2}{nlogn} = \lim_{n\to\infty} \frac{n}{logn} = \lim_{n\to\infty} \frac{1}{\frac{1}{nln2}} = +\infty$$
 洛必达法则 或 泰勒展开

课堂讨论

● 根据渐近分析方法,如下结论是否正确?

例如:
$$f(n) = 32n^2 + 17n + 32$$

$$f(n) = \Theta(n)$$
? $f(n) = \Theta(n^3)$? 错误!

$$f(n) = \Theta(n^2)$$
 正确!

$$f(n)$$
 属于 $\Omega(n^2)$, $\Omega(nlogn)$, $\Omega(n)$, $\Omega(1)$ 下界

例子

对下列函数按渐进关系O从小到大排列:

$$f_1(n) = 10^n$$
 $f_2(n) = n^{1/3}$ $f_3(n) = n^n$ $f_4(n) = \log_2 n$ $f_5(n) = 2^{\sqrt{\log_2 n}}$

$O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n) < O(n!) < O(n^n)$

$$f_4(n) = \log_2 n$$

$$f_2(n) = n^{1/3}$$

$$f_1(n) = 10^n$$

$$f_3(n) = n^n$$

$$f_5(n) = 2^{\sqrt{\log_2 n}}$$

$f_5(n) = 2^{\sqrt{\log_2 n}}$ 头重脚轻取对数!

例子

对下列函数按渐进关系O从小到大排列:

$$f_1(n) = 10^n$$
 $f_2(n) = n^{1/3}$ $f_3(n) = n^n$ $f_4(n) = \log_2 n$ $f_5(n) = 2^{\sqrt{\log_2 n}}$

$$\log f_4(n) = \log_2 z$$
 $\log f_5(n) = z^{1/2}$ $\log f_2(n) = \frac{1}{3}z$ $z = \log_2 n$

例子

对下列函数按渐进关系O从小到大排列:

$$f_1(n) = 10^n$$
 $f_2(n) = n^{1/3}$ $f_3(n) = n^n$ $f_4(n) = \log_2 n$ $f_5(n) = 2^{\sqrt{\log_2 n}}$

$O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n) < O(n!) < O(n^n)$

$$f_4(n) = \log_2 n$$
 $f_5(n) = 2^{\sqrt{\log_2 n}}$ $f_2(n) = n^{1/3}$ $f_1(n) = 10^n$ $f_3(n) = n^n$

算法的时间复杂度计算

还需要逐行分析吗?

④/⑨:顺序及分支语句(无循环)只影响常数项

⑥/⑦:循环中语句条数只影响系数,分析循环次数即可

若存在多层循环,只需关注最深层循环执行次数

例一 累加求和

```
float sum (float list[], int n)
{ /* add a list of numbers */
 float tempsum = 0;
  int i;
 for (i = 0; i < n; i++)
    tempsum += list[i];
  return tempsum;
```


例二 选择排序

```
void select sort(int& a[], int n)
{ // 将 a 中整数序列重新排列成自小至大有序的整数序列。
    for (i = 0; i < n-1; ++i)
    { j = i; // 选择第 i 个最小元素
     for (k = i+1; k < n; ++k)
        if (a[k] < a[j]) j = k;
     if (j!=i) a[j] \longleftrightarrow a[i]
} // select sort
                       O(n^2)
```


例三 冒泡排序

```
void BubSort_test(int a[], int n) {
   for (int i = 0; i < n; i++) {
      for (int j = 0; j + 1 < n - i; j++) {
        if (a[j] > a[j + 1]) {
            swap(&a[j], &a[j + 1]);
        }
    }
}
```


例四 卷王

```
void daydayup(int n) {
    int i = 1;
    while (i <= n) {
        printf("每天努力一倍, 当卷王");
        i = i * 2;
    }
}
```


例5. 求平面上n个点(x1, y1), ..., (xn, yn)中最近两个点之间的距离.

对每对点都尝试一下。

```
min \leftarrow (x_1 - x_2)^2 + (y_1 - y_2)^2

for i = 1 to n {

  for j = i+1 to n {

    d \leftarrow (x_i - x_j)^2 + (y_i - y_j)^2

    if (d < min)

      min \leftarrow d

}
```


例6. 计算平面上两点间的最短距离。看下面这段程序的时间复杂度

```
d[i*j]
for i = 1 to n {
   for j = i+1 to n {
       d[k] \leftarrow (x_i - x_j)^2 + (y_i - y_j)^2
a=d[1]
for i = 1 to i*j {
   if (d[i] < a)
       a \leftarrow d[i]
```

 $O(n^2)$

例七 查找

```
void FindTarget(int arr[], int n, int target)
 for (int i = 0; i < n; i++) {
                       最好、最坏、平均复杂度?
   if (arr[i] == target) {
     return i;
  return -1;
最好:第一个位置能找到,O(1)
最坏: 最后一个位置找到或找不到,
```


例七 查找

```
void FindTarget(int arr[], int n, int target)
{
    for (int i = 0; i < n; i++) {
        if (arr[i] == target) {
            return i;
        }
    }
    return -1;
```

平均:在n个位置找到的概率均等,求数学期望

$$(1+2+\cdots+n)\cdot\frac{1}{n} = \frac{(1+n)\cdot n}{2}\cdot\frac{1}{n} = \frac{n+1}{2}$$

 $\mathbf{O}(\mathbf{n})$

算法复杂度分析

- ・引入
- 时间复杂度分析
- 空间复杂度分析

算法的空间复杂度计算

算法所需的存储空间开销随数据规模增长的变化情况

程序会占用哪些内存?

代码段、数据段(全局数据段、栈区)、堆区

算法的空间复杂度计算

```
void func(int n) {
  int* arr = (int *)malloc(n * sizeof(int));
                                                     O(n)
void func(int n) {
  int* arr1 = (int *)malloc(n * sizeof(int));
                                                     O(n^2)
  int* arr2 = (int *)malloc(n * n * sizeof(int));
```


常见排序算法的复杂度

排序方法	最坏时间	平均时间	最好时间	空间	稳定性
选择排序	n ²	n ²	n ²	1	不稳定
冒泡排序	n ²	n ²	n	1	稳定
插入排序	n ²	n ²	n	1	稳定
堆排序	nlogn	nlogn	nlogn	1	不稳定
希尔排序	n ²	n ^{1.3}	n	1	不稳定
归并排序	nlogn	nlogn	nlogn	n	稳定
快速排序	n ²	nlogn	nlogn	logn	不稳定
桶排序	n ²	n+k	n	n+k	稳定
计数排序	n+k	n+k	n+k	n+k	稳定
基数排序	n*k	n*k	n*k	n+k	稳定