Tecnologia em Análise e Desenvolvimento de Sistemas - TADS

Redes de Computadores

Prof. Luciano Vargas Gonçalves

E-mail: luciano.goncalves@riogrande.ifrs.edu.br

Aula 6 – Camada de Rede / Internet

Modelos - Equivalência

- Modelos RM-OSI (Camada 3 Rede)
- Modelo TCP/IP (Camada 2 Internet)

Modelo O.S.I.

Protocolos camada de Rede

- IPv4
 - DHCP
 - ARP
 - RARP
 - ICMP
 - IPv6

DHCP (Dynamic Host Configuration Protocol):

- Protocolo de Configuração Dinâmica de Host.
- Função:
 - Permite que todos os micros (hosts) da rede recebam suas configurações de rede automaticamente a partir de um servidor central, sem que você precise ficar configurando os endereços manualmente em cada um destes.
 - Endereçamento Dinâmico (Automático)

- O protocolo DHCP trabalha da seguinte forma:
 - Inicialmente, a estação não sabe quem é, não possui um endereço IP e não sabe se quer, qual é o endereço do servidor DHCP da rede.

 Ela manda, então, um pacote de Broadcast endereçado ao IP "255.255.255.255", que é transmitido pelo Switch para todos os micros da rede.

Out Layers

Layer 7: DHCP Packet Server: 0.0.0.0, Client: 0.0.0.0

Layer6

Layer5

Layer 4: UDP Src Port: 68, Dst Port: 67

Layer 3: IP Header Src. IP: 0.0.0.0, Dest.

IP: 255.255.255.255

Layer 2: Ethernet II Header

00D0.5846.E782 >> FFFF.FFF.FFFF

Layer 1: Port(s):

- O protocolo DHCP trabalha da seguinte forma:
 - O servidor DHCP recebe este pacote e responde com um pacote endereçado ao endereço IP "0.0.0.0", que também é transmitido para todas as estações.
 - Apesar disso, apenas a estação que enviou a solicitação lerá o pacote, pois ele é endereçado ao endereço MAC da sua placa de rede (origem).
 - As outras estações descartam o pacote;

End: MAC solicitou IP

- Dentro do pacote enviado pelo servidor DHCP estão especificados:
 - Endereço IP para o host,
 - Máscara Rede utilizada na rede,
 - Gateway da rede,
 - Servidores DNS que serão usados pela estação.
 - Padrão para todos Host
 - Converte IP em Nomes e vice-versa
 - Nome: www.google.com.br IP: 74.125.224.184

- Servidor DHCP só atua dentro da rede ou Sub_rede.
- Router precisa ser configurado e suportar retransmissões para alcançar outras redes

- Outros protocolos da camada de rede
 - ARP (Busca o endereço MAC, a partir do IP)
 - RARP (Busca o endereço IP, a partir do MAC)

```
C:\>arp -a
Internet Address Physical Address Type
10.0.0.2 0090.2143.b1a5 dynamic
10.0.0.100 0004.9a9a.24c4 dynamic
10.0.0.101 00d0.bc54.09da dynamic

C:\>
```

Lista de Endereços ARP de um Host

- Outros protocolos da camada de rede
 - ICMP (Protocolo de mensagens Erros)

Ping é um pacote ICMP

IPv6 – Internet Protocol – Versão 6

- IANA https://www.iana.org/
 - Internet Assigned Numbers Authority
 - (Autoridade para Atribuição de endereços de Internet)
 - É a organização mundial que funciona como a máxima autoridade na atribuição dos "números" na Internet.
 - Fornece endereços para as Entidades Regionais (RIR)
 - Regionais de Internet (RIR) gerenciam e distribuem os IPs dentro de suas respectivas regiões geográficas;

RIR - Registros Regionais de Internet

Distribuição de Endereços IP

IPv4 - Esgotamento

- Estimou-se que no final de 2012, a IANA(Internet Assigned Numbers Authority), disponibilizaria o último lote de endereços IPv4;
- IPv4, esgotaram-se no início de 2011, quando a IANA distribuiu o último lote com os registros para países da América Latina (LACNIC). Segundo dados da Cisco.
- A estimativa do Comitê Gestor de Internet no Brasil era que os últimos endereços de IPv4 a versão de protocolo atual no país seriam distribuídos aos provedores em 2012.

Protocolo – IPv4 - Projeções

Free /8

Protocolo – IPv4 - Projeções

O estoque de endereços IPv4 para a região da América Latina e o Caribe esgotou-se na data de hoje (19/8/2020).

Link: http://www.ipv6.nic.br/post/fim-do-ipv4/

https://www.potaroo.net/tools/ipv4/

IPv6

Capacidade de utilização IPv6

- Grupo ROAD (ROuting and Addressing)
 - Criado em 1992 pela IETF(gestor internet).
 - •Objetivo de Prolongar a vida útil do IPv4
 - •Definiu:
 - •CIDR (RFC 4632)
 - •Fim do uso de classes = blocos de tamanho apropriado.
 - •Endereço de rede = prefixo/comprimento.
 - •Agregação das rotas = reduz o tamanho da tabela de rotas.
 - DHCP
 - Alocações dinâmicas de endereços.

NAT (Network Address Translation)

- Permite conectar toda uma rede de computadores usando apenas um endereço válido na Internet, porém com várias restrições.
- Tradução de endereço é realizada, convertendo endereços IP privados em endereços IP públicos globalmente únicos.
- IP_Privados (Não usados na Internet)
 - 10.0.0.0 a 10.255.255.255 /8 (16.777.216 hosts)
 - 172.16.0.0 a 172.31.255.255 /16 (1.048.576 hosts)
 - 192.168.0.0 a 192.168.255.255 /24 (65.536 hosts)

• NAT (Tradução de endereço é realizada, convertendo endereços IP privados em endereços IP públicos globalmente únicos.

Extinção do protocolo IPv4

Soluções paliativas: Queda de apenas 14%

IPV4 - LACNIC

Grupo IPng (IP Next Generation)

- IETF cria em 1992 o grupo IPng
 - Principais questões:
 - Escalabilidade;
 - Segurança;
 - Configuração e administração de rede;
 - Suporte a QoS;
 - Mobilidade;
 - Políticas de roteamento;
 - Transição.
 - O grupo IPng mais tarde deu origem ao IPv6

- **1998** Definido pela RFC 2460
 - 128 bits para endereçamento.
 - Cabeçalho base simplificado.
 - Cabeçalhos de extensão.
 - Identificação de fluxo de dados (QoS).
 - Mecanismos de IPSec incorporados ao protocolo.
 - Realiza a fragmentação e remontagem dos pacotes apenas na origem e no destino.
 - Não requer o uso de NAT, permitindo conexões fim-a-fim.
 - Mecanismos que facilitam a configuração de redes.

- Maior capacidade para endereçamento:
 - IPv6 o espaço para endereçamento aumentou de 32 bits para 128 bits, permitindo: níveis mais específicos de agregação de endereços;
 - Identificar uma quantidade muito maior de dispositivos na rede; e implementar mecanismos de autoconfiguração.
 - A escalabilidade do roteamento multicast também foi melhorada através da adição do campo "escopo" no endereço multicast. E um novo tipo de endereço, o anycast, foi definido;

Implantação está sendo tardia – Dados de 2010

- Dificuldades de Implantação
 - O receio de grandes mudanças na forma de gerenciá-las,
 - Na existência de gastos devido a necessidade de troca de equipamentos como roteadores e Switch;
 - Gastos com o aprendizado e treinamento para a área técnica.

Cabeçalho IPv4

O cabeçalho IPv4 é composto por 12 campos fixos, podendo conter ou não opções, fazendo com que seu tamanho possa variar entre 20 e 60 Bytes.;

Versão (Version)	Tamanho do Cabeçalho (IHL)	Tipo de Serviço (ToS)	Tamanho Total (<i>Total Length</i>)				
I dentificação (Identification)			Flags	Deslocamento do Fragmento (Fragment Offset)			
Tempo de Vida (TTL)		Protocolo (<i>Protocol</i>)	Soma de verificação do Cabeçalho (<i>Checksum</i>)				
Endereço de Origem (Source Address)							
Endereço de Destino (Destination Address)							
Opções + Complemento (Options + Padding)							

Cabeçalho IPv6

Com apenas oito campos e com tamanho fixo de 40 Bytes, além de mais flexível e eficiente, prevendo sua extensão por meio de cabeçalhos adicionais;

Versão (Version)	Classe de Tráfego Identificador de Fluxo						
(Version) (Traffic Class)		(Flow Label)					
Tamanho dos Dados (Payload Length)			Próximo Cabeçalho (Next Header)	Limite de Encaminhamento (Hop Limit)			
Endereço de Origem (<i>Source Address</i>)							
Endereço de Destino (<i>Destination Address</i>)							

•Endereçamento de IPv4 e IPv6

IPv4:

Os 32 bits dos endereços IPv4 são divididos em quatro grupos de 8 bits cada, separados por ".", escritos com dígitos decimais. Por exemplo: 192.168.0.10.

IPv6:

A representação dos endereços IPv6, divide o endereço em oito grupos de 16 bits, separando-os por ":", escritos com dígitos hexadecimais (0-F).

Por exemplo:

2001:0DB8:AD1F:25E2:CADE:CAFE:F0CA:84C1

6.69 "

Dividido em 8 partes com 16bits (2 Bytes)

Devido a sua extensão há regras de abreviação: É permitido omitir os zeros a esquerda de cada bloco de 16 bits, exemplo:

2001:0DB8:0000:0000:130F:0000:0000:140B

2001:DB8:0:0:130F:0:0:140B

Devido a sua extensão há regras de abreviação:

É possível substituir uma sequência longa de zeros por "::". Por exemplo,

2001:0DB8:0;0:130F:0000:0000:140B

2001:DB8::130F:0:0:140B ou 2001:DB8:0:0:130F::140B

Abreviação do grupo de zeros só pode ser realizada uma única vez.

2001:DB8::130F::140B

Não é permitido

Endereço IPv6

Núcleo de Informação e Coordenação do Ponto BR

ceptro**br** IPu6**b**r

Endereçamento

A representação dos endereços IPv6, divide o endereço em oito grupos de 16 bits, separando-os por ":", escritos com dígitos hexadecimais.

2001:0DB8:AD1F:25E2:CADE:CAFE:F0CA:84C1

2 Bytes

Na representação de um endereço IPv6 é permitido:

- Utilizar caracteres maiúsculos ou minúsculos;
- · Omitir os zeros à esquerda; e
- . Representar os zeros contínuos por "::".

Exemplo:

2001:0DB8:0000:0000:130F:0000:0000:140B

2001:db8:0:0:130f::140b

Formato inválido: 2001:db8::130f::140b (gera ambiguidade)

egi**b**r

Notação CIDR - IPv4

Em endereços IPv6 ela continua sendo escrita do mesmo modo que no IPv4, utilizando a notação CIDR.

IP:170.100.0.0 MR: 255.255.0.0 Classe B

Notação CIDR: 170.100.0.0/16

Contagem de bits, idem a função da mascará de sub_rede

Notação CIDR IPv6:

Esta notação é representada da forma "endereço-IPv6/tamanho do prefixo", onde "tamanho do prefixo" é um valor decimal que especifica a quantidade de bits contíguos à esquerda do endereço que compreendem o prefixo de REDE.

```
IP = 2001:db8:3003:0000:0000:0000:0000:0012/64
64 bits para endereço de REDE (Padrão)
```

```
End. REDE = 2001:db8:3003:0
Host = 12
```

IPv6:

Importante

O IPv6, diferentemente do IPv4, reserva metade dos bits para endereçamento local. Assim, são possíveis 18.446.744.073.709.551.616 (2⁶⁴) redes IPv6 na Internet. Cada uma com a mesma quantidade de dispositivos.

IPv6 Endereços especiais

Endereço *Loopback*: representado pelo endereço *unicast* 0:0:0:0:0:0:0:1 ou ::1 (equivalente ao endereço IPv4 *loopback* 127.0.0.1).

Unicast

- Endereços especiais
 - Localhost ::1/128 (0:0:0:0:0:0:0:1)
 - Não especificado ::/128 (0:0:0:0:0:0:0:0)
 - IPv4-mapeado ::FFFF:wxyz

• Uma mesma interface, que utiliza o protocolo IPv6, pode utilizar mais de um endereço, diferentemente do IPv4.

Para o endereçamento das interfaces existem então 3 tipos de endereços:

Unicast; (1 para 1 ou Ponto a Ponto)

Anycast; (1 para N - Usado em Hosts – define Grupos)

Multicast. (1 para N)

Outra característica marcante do IPv6 é que não existem mais os endereços *broadcast*: ele é tratado como um caso particular de Multicast.

IPv6 três tipos de endereços definidos:

Multicast – também identifica um conjunto de interfaces, entretanto, um pacote enviado a um endereço multicast é entregue a todas as interfaces associadas a esse endereço. Um endereço multicast é utilizado em comunicações de um-para-muitos.

Opera com grupos de Hosts Endereço inicia com o primeira parte igual "FF"

Endereço	Escopo	Descrição
FF01::1 FF01::2	Interface Interface	Todas as interfaces (all-nodes) Todos os roteadores (all-routers)
FF02::1 FF02::2 FF02::5 FF02::6 FF02::9 FF02::D FF02::1:2 FF02::1:FFXX:XXXX	Enlace Enlace Enlace Enlace Enlace Enlace Enlace Enlace	Todos os nós (all-nodes) Todos os roteadores (all-routers) Roteadores OSFP Roteadores OSPF designados Roteadores RIP Roteadores PIM Agentes DHCP Solicited-node
FF05::2 FF05::1:3 FF05::1:4	Site Site Site	Todos os roteadores (<i>all-routers</i>) Servidores DHCP em um site Agentes DHCP em um site
FF0X::101	Variado	NTP (Network Time Protocol)

C:\>ping FF02::01

Pinging FF02::01 with 32 bytes of data:

Reply from FE80::2D0:58FF:FE46:E782: bytes=32 time=8ms TTL=128
Reply from FE80::204:9AFF:FE9A:24C4: bytes=32 time=9ms TTL=128
Reply from FE80::290:21FF:FE43:B1A5: bytes=32 time=10ms TTL=128
Reply from FE80::2D0:58FF:FE46:E782: bytes=32 time=4ms TTL=128
Reply from FE80::204:9AFF:FE9A:24C4: bytes=32 time=5ms TTL=128
Reply from FE80::290:21FF:FE43:B1A5: bytes=32 time=6ms TTL=128
Reply from FE80::2D0:58FF:FE46:E782: bytes=32 time=4ms TTL=128
Reply from FE80::204:9AFF:FE9A:24C4: bytes=32 time=5ms TTL=128
Reply from FE80::290:21FF:FE43:B1A5: bytes=32 time=6ms TTL=128
Reply from FE80::290:21FF:FE43:B1A5: bytes=32 time=6ms TTL=128

Packets: Sent = 3, Received = 9, Lost = 0 (0% loss),

Minimum = 4ms, Maximum = 10ms, Average = 6ms

Approximate round trip times in milli-seconds:

Command Prompt

Ping statistics for FF02::1:

Multicast para FF02::1

Endereços de Multicast

- Rede IPv6
 - Rede F0CA::0/64

Endereços IPv4-mapeado:

Representado por 0:0:0:0:0:0:FFFF:wxyz ou ::FFFF:wxyz, é usado para mapear um endereço IPv4 em um endereço IPv6 de 128-bit, onde wxyz representa os 32 bits do endereço IPv4, utilizando dígitos decimais. É aplicado em técnicas de transição para que nós IPv6 e IPv4 se comuniquem.

Ex. ::FFFF:192.168.100.1.

IPv6 URLs (Uniform Resource Locators),

Com relação a representação dos endereços IPv6 em URLs estes agora passam a ser representados entre colchetes. Deste modo, não haverá ambiguidades caso seja necessário indicar o número de uma porta juntamente com a URL. Observe os exemplos a seguir:

http://[2001:12ff:0:4::22]/index.html

http://[2001:12ff:0:4::22]:8080

IPv6 - Vantagens

- O IPv6 apresenta mecanismos de autoconfiguração que visam liberar o usuário da tarefa de configuração.
 - Exemplo: ao comprar um computador o usuário possa simplesmente conectá-lo a uma rede e acessá-la, sem necessidade de lidar com a configuração de interfaces, protocolos, endereços, etc.
- Outro objetivo: permitir a mobilidade, ou seja, a utilização de um mesmo computador em vários locais e em redes distintas.
 - Exemplo: um executivo poderia estar utilizando seu computador portátil conectado por cabos à rede local da empresa. Ao desconectar os cabos, o computador deveria utilizar a rede de infravermelho disponível, ainda dentro da empresa, e ao sair do alcance desta, utilizar a rede wireless disponível na cidade.

IPv6 - Vantagens

- O IPv6 implementa segurança a nível da camada de rede. Isto elimina a necessidade de implementação de mecanismos de segurança nas camadas superiores, em particular na camada aplicação.
- Entre esses novos mecanismos, destaca-se o IPsec (IP security).
- O IPsec é independente do algoritmo utilizado para criptografia, permitindo uma maior flexibilidade e segurança, visto que pode-se periodicamente evoluir para um método criptográfico mais seguro.
- O IPsec é capaz de garantir os seguintes requisitos de segurança de sistema:
 - Autenticidade, Privacidade; Integridade;

Vídeos

 IPv4 para IPv6 https://www.youtube.com/watch?v=_JbLr_C-HLk

Dúvidas??

