表現論ゼミ 第2回

前田 陵汰

2023年10月23日

半単純 Lie 代数

以下、体 \mathbb{F} は代数閉体とし、標数は 0 とする (char $\mathbb{F}=0$). また、ベクトル空間は有限 次元とする.

4 Lie の定理と Cartan の判定条件

4.1 Lie の定理

定理 4.1

L を $\mathfrak{gl}(V)$ の可解な部分代数とする. $V \neq 0$ ならば, ある $v \in V$ があって, 任意の L の元に対して v は固有ベクトルとなる.

この定理から、以下の系が従う.

系 4.1A (Lie's Theorem)

L を $\mathfrak{gl}(V)$ の可解な部分代数とする. このとき, L は適当な V の基底に対して上三角行列となる a .

 $[^]a$ 本には "L stabilizes some flag in V." とありました. flag が分からん...

系 4.1B

L が可解であるとき, 以下を満たすイデアルの列が存在する.

$$0 = L_0 \subset L_1 \subset \dots \subset L_n = L, \quad \dim L_i = i \tag{1}$$

系 4.1.C

L が可解であるとき, $x \in [L,L] \Rightarrow \mathrm{ad}_{\mathbf{L}} x$ は冪零. 特に, [L,L] は冪零 Lie 代数となる.

4.2 Jordan-Chevalley 分解

一般に行列は Jordan 標準形で表すことができる. これは対角成分と, その上に 1 または 0 が並んだ行列 (これは冪零) への分解と見ることができる. これを一般化しよう.

定義 4.2

 $x \in \text{End } V$ が半単純であるとは, x の最小多項式 (minimal polynomial) が重解を持たないことをいう.

上の定義はわかりにくいが、実は

 $x \in \text{End } V$ が半単純 $\Leftrightarrow x$ は対角化可能

である.

また, x の固有ベクトルが V の基底をなすことを半単純の定義とする場合もあり [2], これも対角化可能であることと同値である.

命題 4.2

 $x \in \text{End } V \succeq \tau \delta$.

(a) 以下を満たす x_s, x_n がただ一つ存在する.

$$x=x_s+x_n$$
, x_s は半単純, x_n は冪零. (2)

- (b) 定数項をもたない一変数多項式 p(T),q(T) があって, $x_s=p(x),\ x_n=q(x)$. 特に, x と交換する End Vの元は x_s,x_n とも交換する.
- (c) $A \subset B \subset V$ が部分空間であって, x が B を A に写すならば, x_s, x_n もまた, B を A に写す.

この分解を Jordan-Chevalley 分解と呼ぶ. 有用性を見るために随伴表現を考える.

補題 4.2

x が半単純 \Rightarrow ad x も半単純

補題 3.2 では, x が冪零 \Rightarrow ad x も冪零となることを示した.

補題 4.2A

 $x \in \text{End } V$ が $x = x_s + x_n$ のように Jordan-Chevalley 分解されているとき, ad $x \in \text{End}(\text{End } V)$ の分解は以下で与えられる.

$$ad x = ad x_s + ad x_n (3)$$

補題 4.2B

 $\mathfrak U$ を $\mathbb F$ -代数とする. このとき, Der $\mathfrak U$ の任意の元は, Der $\mathfrak U$ 内に半単純成分と冪零成分を持つ.

4.3 Cartan の判定条件

補題 4.3

 $A \subset B$ を $\mathfrak{gl}(V)$ の部分空間とし、集合 M を $M = \{x \in \mathfrak{gl}(V) | [x,B] \subset A\}$ と する. このとき, $x \in M$ が $\forall y \in M$ に対して $\mathrm{Tr}(xy) = 0$ を満たすならば, x は 冪零である.

ここで有用な恒等式を述べておく.

 $x, y, z \in \text{End}(V)$ に対し、

$$Tr([x, y]z) = Tr(x[y, z])$$
(4)

定理 4.3 (Cartan's Criterion)

L を $\mathfrak{gl}(V)$ の部分代数とする. 任意の $x\in [L,L],\,y\in L$ に対して $\mathrm{Tr}(xy)=0$ であるならば, L は可解 Lie 代数である.

系 4.3

L を Lie 代数とする. 任意の $x \in [L,L], y \in L$ に対して $\mathrm{Tr}(\mathrm{ad}x\ \mathrm{ad}y) = 0$ であるならば, L は可解 Lie 代数である.

5 Killing 形式

5.1 半単純性の判定条件

定義 5.1A: Killing 形式

L を任意の Lie 代数とする. $x,y\in L$ に対し, Killing 形式 $\kappa(x,y)$ を次式で定義する.

$$\kappa(x, y) = \text{Tr}(\text{ad}x \text{ ad}y) \tag{5}$$

κ は対称な双線型写像であり、次式の意味で結合則を満たす.

$$\kappa([x,y],\ z) = \kappa(x,\ [y,z]) \tag{6}$$

補題 5.1

Iは Lのイデアルとする. κ が L 上の Killing 形式, κ_I が I 上の Killing 形式とすると, $\kappa_I=\kappa|_{I\times I}$

定義 5.1B: 非退化

L 上の対称な双線型写像 $\beta(x,y)$ の radical S が 0 (零集合) のとき, β は非退化であるという. ここで, $S=\{x\in L|\beta(x,y)=0 \text{ for } \forall y\in L\}^a$.

 aS は前回出てきた根基 (radical) と異なることに注意.

Killing 形式に対する S は, L のイデアルとなる (: 結合則).

 κ が非退化であるかは次のようにして判定できる.

L の基底 $\{x_1,\dots,x_n\}$ をとり、行列 $K_{ij}=\kappa(x_i,x_j)$ を定義する. このとき、

$$\kappa$$
が非退化 $\Leftrightarrow \det K \neq 0$ (7)

(8)

定理 5.1

L を Lie 代数とする. このとき

$$L$$
が半単純 \Leftrightarrow κ が非退化

5.2 単純イデアル

定理 5.2

L を半単純 Lie 代数とする.このとき,L の単純なイデアル L_1,\dots,L_t が存在して,L は L_i の直和で書ける.すなわち,

$$L = L_1 \oplus \dots \oplus L_t \tag{9}$$

また, L 上の単純なイデアルは L_i 以外に存在しない. さらに, L_i 上の Killing 形式は, L 上の Killing 形式を $L_i \times L_i$ 上に制限したものと一致する.

系 5.2

- L を半単純 Lie 代数とする.
 - (a) L = [L, L].
 - (b) L の任意のイデアル、および L を定義域とする任意の準同型写像の像も半単純 Lie 代数となる.
 - (c) L の任意のイデアルは, L の単純なイデアルの直和で書ける.

5.3 内部微分

定理 5.3

L が半単純 Lie 代数ならば, ad L = Der L. すなわち, 任意の微分は内部微分.

5.4 抽象 Jordan 分解

参考文献

- [1] 田川 裕之, Lie 環論入門, https://web.wakayama-u.ac.jp/~tagawa/lecture/liealgh.pdf
- [2] 対角化と固有値問題, https://w.atwiki.jp/nopu/pages/138.html