О СУЩЕСТВОВАНИИ ФАКТОР-МНОЖЕСТВ ПО ВНЕШНИМ ОТНОШЕНИЯМ ЭКВИВАЛЕНТНОСТИ В IST М. Ф. Прохорова

Аннотация: В рамках аксиоматики IST нестандартного анализа исследуется возможность задания внешними формулами фактор-множеств вещественной прямой по внешним отношениям эквивалентности. Рассмотрен случай аддитивного выпуклого отношения эквивалентности, класс эквивалентности которого задается формулой с внешними кванторами всеобщности. Показано, что в этом случае внешняя функция, выбирающая из каждого класса эквивалентности по одному представителю, существует тогда и только тогда, когда это отношение с точностью до сдвига

Ключевые слова: нестандартный анализ, теория внутренних множеств, внешние формулы, внешние фактор-множества

и растяжения совпадает с отношением бесконечной близости.

1. Введение

В. Г. Кановей в [1] рассматривает ряд «внешних» аналогов теорем классической теории множеств, представляющих интерес для исследования в аксиоматике нестандартного анализа, предложенной Э. Нельсоном, — теории внутренних множеств IST [2]. В данной статье исследуется «внешний» аналог построения фактор-множеств по внешним отношениям эквивалентности, точнее, вопрос о существовании внешних функций, выбирающих из каждого класса эквивалентности по одному представителю, что является частным случаем «внешнего» аналога аксиомы выбора.

В статье используются следующие понятия, принятые в теории внутренних множеств [1]. Внешняя формула — формула IST, возможно, содержащая предикат стандартности и не являющаяся поэтому формулой ZFC. Внешнее множество — совокупность элементов, задаваемая внешней формулой. В общем случае такие совокупности не являются множествами (в смысле аксиоматики теории множеств), и при работе с ними необходимо соблюдать определенную осторожность, однако большинство приложений теории внутренних множеств основано на их использовании. В отличие от так называемых «наружных множеств» внешние множества при конструктивном подходе не зависят от выбора модели.

Элементы стандартных множеств называются ограниченными.

Е. И. Гордон в статье [3] определяет предикат «стандартный относительно t» (t-стандартный):

$$x \operatorname{st} t \Leftrightarrow \exists^{\operatorname{st}} \varphi : (F \operatorname{fin}(\varphi)) \& (t \in \operatorname{dom} \varphi) \& (x \in \varphi(t))$$

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 00-15-96042).

(здесь $F \operatorname{fin}(\varphi)$ означает, что φ — функция и все принимаемые ею значения — конечные множества). Там же определяются понятия t-бесконечно малого, t-бесконечно большого и t-конечного вещественных чисел. Назовем x t-околостандартным, если существует t-стандартное y, t-бесконечно близкое к x [4]. В [3] доказано, что для некоторого нестандартного натурального N не все точки отрезка I = [0,1] N-околостандартны. Автором в [4,5] показано, что вообще для произвольного нестандартного t неизмеримой сложности, где сложность t определяется формулой compl $t = \min\{\operatorname{card} T : \operatorname{st}(T) \& t \in T\}$, и произвольного стандартного топологического хаусдорфова пространства X, не являющегося разреженным компактом (в частности, для единичного отрезка I), не все точки X t-околостандартны.

Итак, t-стандартных точек в I «слишком мало» для того, чтобы образовать внешнее фактор-множество I/ρ_t , где ρ_t — внешнее отношение t-бесконечной близости, $\rho_t(x,y)=(x\stackrel{t}{\approx}y)$. Это означает, что среди t-стандартных вещественных чисел имеются «дыры» — отрезки t-стандартной (ненулевой) длины, внутри которых нет ни одной t-стандартной точки. Но, может быть, можно заполнить эти «дыры» точками какого-нибудь внешнего множества, либо вообще определить такое внешнее множество $M_t\subset I$, зависящее от параметра $t\in T$, чтобы все-таки получить фактор-множество по отношению t-бесконечной близости?

Сформулируем наши требования к $M_t \subset I$:

$$\forall x \in I \,\exists y \in M_t \, x \stackrel{t}{\approx} y, \quad \forall x_1, x_2 \in M_t \, (x_1 \stackrel{t}{\approx} x_2) \Rightarrow (x_1 = x_2). \tag{1}$$

2. О возможности глобального определения выбирающей функции (заданной при всех значениях параметра)

Теорема 1. Для стандартного бесконечного множества T не существует внешней формулы $\varphi(x,t)$ такой, что при всех значениях параметра $t \in T$ для внешнего множества $M_t = {}^E \{x \in I : \varphi(x,t)\}$ выполняются условия (1).

Здесь и всюду далее в тексте статьи слово «формула» означает «ext-ограниченная формула» [1], т. е. формула с областями изменения переменных во внешних кванторах, ограниченных стандартными множествами (такие внешние кванторы называются ограниченными). В конкретных приложениях IST, как правило, не используются внешние формулы, не являющиеся ext-ограниченными. Левый индекс E у фигурных скобок принято писать, чтобы подчеркнуть, что сформированная в результате совокупность элементов может не являться внутренним множеством.

Эта теорема является частным случаем более общего утверждения, которое и будет доказано ниже.

Пусть $\mathscr E$ — стандартное непустое множество функций, действующих из стандартного бесконечного множества T в множество строго положительных вещественных чисел $\mathbb R_+$, μ_t — сечение монады фильтра, порожденного семейством $\Gamma_{\varepsilon} = \{(t,x): t \in T, |x| < \varepsilon(t)\}, \ \varepsilon \in \mathscr E$, окрестностей подмножества $T \times \{0\}$ произведения $T \times \mathbb R$:

$$\mu_t = {}^{E} \{ x \in \mathbb{R} : \forall^{\text{st}} \varepsilon \in \mathscr{E} \mid x \mid < \varepsilon(t) \}. \tag{2}$$

Без ограничения общности можно считать, что & удовлетворяет следующим

условиям:

$$\forall \varepsilon_1, \varepsilon_2 \in \mathscr{E} \quad \min\{\varepsilon_1, \varepsilon_2\} \in \mathscr{E},$$

$$\forall \varepsilon_1 \in \mathscr{E} \ \forall \varepsilon_2 \in \mathbb{R}^T_+ \quad (\forall t \in T \ \varepsilon_2(t) \ge \varepsilon_1(t)) \Rightarrow (\varepsilon_2 \in \mathscr{E}).$$
(3)

(в противном случае можно расширить \mathscr{E} до множества, обладающего этим свойством, не изменяя μ_t).

Потребуем, кроме того, чтобы μ_t при любом t не покрывало I, т. е.

$$\forall t \in T \,\exists^{\text{st}} \varepsilon \in \mathscr{E} \quad \varepsilon(t) \le 1. \tag{4}$$

ПРИМЕР 1. $\mathscr E$ состоит только из констант, μ_t — множество бесконечно малых чисел.

ПРИМЕР 2. $\mathscr E$ содержит все функции, действующие из T в $\mathbb R_+$, μ_t — множество t-бесконечно малых чисел.

ПРИМЕР 3. \mathscr{E} порождено степенными функциями $\{t \to t^n\}_{n \in \mathbb{N}}, T = (0,1),$ μ_t здесь меньше, чем в первом примере, но больше, чем во втором.

В двух последних примерах $\mathscr E$ обладает еще одним свойством: существует стандартная функция $\lambda: T \to \mathbb R_+$ такая, что

$$\forall \varepsilon \in \mathscr{E} \ \lambda \cdot \varepsilon \in \mathscr{E}, \quad \exists t_0 \in T \ \lambda(t_0) \approx 0. \tag{5}$$

Теорема 2. Для стандартного бесконечного множества T и \mathscr{E} , удовлетворяющего условиям (3)–(5), не существует внешней формулы $\varphi(x,t)$ такой, что при всех значениях параметра $t \in T$ для внешнего множества $M_t = {}^E \{x \in I : \varphi(x,t)\}$ выполняются следующие условия:

$$\forall x \in I \ \exists y \in M_t \ (x - y) \in \mu_t, \quad \forall x_1, x_2 \in M_t \ ((x_1 - x_2) \in \mu_t) \Rightarrow (x_1 = x_2), \quad (6)$$

где μ_t определено формулой (2).

Доказательство. Без ограничения общности можно считать, что $\varepsilon \equiv 1$ содержится в $\mathscr E$ (в противном случае возьмем произвольное стандартное $\varepsilon_0 \in \mathscr E$ такое, что $\varepsilon_0(t_0) \leq 1$, и сузим T до стандартного множества $T' = \{t \in T : \varepsilon_0(t) \leq 1\}, t_0 \in T'$).

Предположим, что описанная в условии теоремы формула $\varphi(x,t)$ существует. Тогда она эквивалентна в IST некоторой $\Sigma_2^{\rm st}$ -формуле [1], т. е. формуле вида

$$\exists^{\text{st}} a \in \mathscr{A} \forall^{\text{st}} c \in \mathscr{C} \quad \psi(x, a, c, t),$$

где ψ — внутренняя формула, а множества $\mathscr A$ и $\mathscr C$ стандартны. Определим стандартное множество $\mathscr B=\mathscr P^{\mathrm{fin}}(\mathscr C)$ конечных подмножеств $\mathscr C$ и стандартное отображение $M:\mathscr A\times\mathscr B\times T\to\mathscr P(I)$:

$$M(a, b, t) = \{x \in I : \forall c \in b \quad \psi(x, a, c, t)\}.$$

Тогда

$$M_t = {}^{E} \{ x \in I : \exists^{st} a \in \mathscr{A} \forall^{st} b \in \mathscr{B} \quad x \in M(a, b, t) \}, \tag{7}$$

причем отображение М обладает свойством

$$\forall^{\text{fin}} B \in \mathcal{B} \, \exists b \in B \, \forall a \in \mathcal{A}, t \in T \quad M(a, b, t) = \bigcap \{ M(a, \beta, t) : \beta \in B \} \tag{8}$$

(в качестве такого b можно взять, например, $\cup B$).

Сформулируем свойства (6) в терминах отображения M:

$$\forall t \in T \, \forall x \in I \, \exists y \in I \, \exists^{\operatorname{st}} a \in \mathscr{A} \, \forall^{\operatorname{st}} b \in \mathscr{B} \, \forall^{\operatorname{st}} \varepsilon \in \mathscr{E} \quad y \in M(a,b,t) \, \& \, |x-y| < \varepsilon(t),$$

$$\forall t \in T \, \forall x_1, x_2 \in I \, \forall^{\operatorname{st}} a_1, a_2 \in \mathscr{A} \, \exists^{\operatorname{st}} b_1, b_2 \in \mathscr{B} \, \exists^{\operatorname{st}} \varepsilon \in \mathscr{E}$$

$$(x_1 \not\in M(a_1,b_1,t)) \vee (x_2 \not\in M(a_2,b_2,t)) \vee (x_1 = x_2) \vee (|x_1 - x_2| > \varepsilon(t)).$$

Применяя к этим внешним формулам алгоритм Нельсона [2], получаем эквивалентные им внутренние формулы:

$$\forall b \in \mathscr{B}^{\mathscr{A}}, \varepsilon \in \mathscr{E}^{\mathscr{A}} \exists^{\text{fin}} A \subseteq \mathscr{A} \, \forall x \in I, t \in T \, \exists a \in \mathscr{A} \, \exists y \in M(a, b(a), t) \, |x - y| < \varepsilon(a, t),$$

$$\forall a_1, a_2 \in \mathscr{A} \, \exists b_1, b_2 \in \mathscr{B} \, \exists \varepsilon \in \mathscr{E} \, \forall t \in T \forall x_1, x_2 \in I$$

$$(x_1 \notin M(a_1, b_1, t)) \vee (x_2 \notin M(a_2, b_2, t)) \vee (x_1 = x_2) \vee (|x_1 - x_2| > \varepsilon(t)).$$

Их можно упростить:

$$\forall b \in \mathscr{B}^{\mathscr{A}} \ \forall \varepsilon \in \mathscr{E}^{\mathscr{A}} \ \exists^{\text{fin}} A \subseteq \mathscr{A} \ \forall t \in T \quad I \subseteq \bigcup \{U_{\varepsilon(a,t)} M(a,b(a),t) : a \in A\}, \tag{9}$$

$$\forall a_1, a_2 \in \mathscr{A} \exists b \in \mathscr{B}, \varepsilon \in \mathscr{E} \forall t \in T \quad \bar{\rho}(M(a_1, b, t), M(a_2, b, t)) > \varepsilon(t). \tag{10}$$

Здесь $\bar{\rho}(M_1,M_2)=\inf\{|x_1-x_2|:x_i\in M_i,x_1\neq x_2\},\ U_{\varepsilon}M-\varepsilon$ -окрестность множества M, b в (10) находится по $B=\{b_1,b_2\}$ из свойства (8) $((M_1\cap M_2)\times (M_1\cap M_2)\subseteq M_1\times M_2,$ а $\bar{\rho}$ — монотонная функция). Фактически вместо (10) нам будет достаточно более слабого утверждения:

$$\forall a \in \mathscr{A} \exists b \in \mathscr{B}, \varepsilon \in \mathscr{E} \ \forall t \in T \quad \bar{\rho}(M(a, b, t)) > \varepsilon(t), \tag{11}$$

где $\bar{\rho}(M) = \bar{\rho}(M, M)$.

Докажем, что условия (9) и (11) несовместны. Из (11) находим

$$\exists \bar{b} \in \mathscr{B}^{\mathscr{A}} \exists \bar{\varepsilon} \in \mathscr{E}^{\mathscr{A}} \forall a \in \mathscr{A}, t \in T \quad \bar{\rho}(M(a, \bar{b}(a), t)) > \bar{\varepsilon}(a, t).$$

Положим $\varepsilon_a(t) = \lambda(t) \cdot \min(1, \bar{\varepsilon}_a(t))$, и определим из (9) конечное $A \subseteq \mathscr{A}$ по функциям \bar{b}_a , ε_a . Получим $I = \cup \{U_{\varepsilon_a(t)}m(a,t): a \in \mathscr{A}\}$, где $m(a,t) = M(a,\bar{b}_a,t)$. Но из (11) следует, что m(a,t) — конечное множество точек, находящихся друг от друга на расстоянии, не меньшем чем $\bar{\varepsilon}_a(t)$. Поэтому $\operatorname{card} m(a,t) \leq 1 + (\bar{\varepsilon}_a(t))^{-1}$ и

$$1 = \operatorname{mes} I \le \sum_{a \in A} 2\varepsilon_a(t)(1 + (\bar{\varepsilon}_a(t))^{-1}) \le 4\lambda(t) \cdot \operatorname{card} A.$$
 (12)

Так как $\lambda(t)$ при $t \in T$ принимает сколь угодно малые значения, то (12) не может быть выполнено при всех $t \in T$. Полученное противоречие показывает, что условия (9) и (11) несовместны.

3. Отношения близости и ауры

Всюду выше речь шла о построении множества M_t , удовлетворяющего определенным условиям при всех значениях параметра t. Было показано, что такого множества не существует. Но это не исключает возможности существования M_t при каком-то одном определенном значении t. Кроме того, хотелось бы рассматривать внешние отношения эквивалентности с нестандартным параметром «локально», не будучи стесненными рамками целого семейства этих

отношений при t, пробегающем стандартное множество. Ниже будут исследованы и классифицированы такие «локально заданные» внешние отношения эквивалентности на $\mathbb R$ и для части из них решен вопрос о существовании внешней выбирающей функции.

Пусть $\rho(x,y)$ — внешняя формула (возможно, зависящая от нестандартного параметра t), описывающая внешнее отношение эквивалентности на стандартном множестве X, т. е.

$$\forall x, y, z \in X \ \rho(x, x) \ \& \ [\rho(x, y) \Rightarrow \rho(y, x)] \ \& \ [\rho(x, y) \ \& \ \rho(y, z) \Rightarrow \rho(x, z)].$$

Существует ли (для фиксированного значения параметра) внешняя формула $\varphi(x)$ (зависящая от того же параметра, что и ρ), выбирающая из каждого класса эквивалентности X/ρ по одному элементу? Именно, φ должна удовлетворять условиям

$$\forall x \in X \exists y \in X \ \varphi(y) \ \& \ \rho(x,y),$$

$$\forall x_1, x_2 \in X \ [\varphi(x_1) \ \& \ \varphi(x_2) \ \& \ \rho(x_1, x_2)] \Rightarrow (x_1 = x_2).$$
 (13)

Мы исследуем этот вопрос для определенного класса отношений эквивалентности на \mathbb{R} .

Назовем внешнее отношение эквивалентности ρ (возможно, зависящее от нестандартного параметра) близостью, если (при данном значении параметра) ρ обладает свойствами аддитивности:

$$\forall x_1, x_2, y_1, y_2 \in \mathbb{R} \quad [\rho(x_1, y_1) \& \rho(x_2, y_2)] \Rightarrow \rho(x_1 + x_2, y_1 + y_2),$$

выпуклости:

$$\forall x, y, z \in \mathbb{R} \quad [\rho(x, z) \& x \le y \le z] \Rightarrow [\rho(x, y) \& \rho(y, z)],$$

невырожденности:

$$\forall x \in \mathbb{R} \left[\exists y \in \mathbb{R} \quad (y \neq x) \& \rho(x, y) \right] \& \left[\exists z \in \mathbb{R} \neg \rho(x, z) \right].$$

В силу аддитивности $\rho(x,y) \Leftrightarrow \rho(x-y,0)$. Рассмотрим внешнее множество $\mu = {}^E \{x \in \mathbb{R} : \rho(x,0)\}$. Оно полностью описывает ρ и обладает следующими свойствами:

$$\mu + \mu = -\mu = \mu, \quad (x \in \mu, |y| \le x) \Rightarrow y \in \mu, \quad \mu \notin \{\emptyset, \{0\}, \mathbb{R}\}. \tag{14}$$

Обратно, каждому множеству μ , обладающему этими свойствами, соответствует отношение близости ρ .

В [6,7] множества, удовлетворяющие условиям (14) (т. е. нетривиальные выпуклые внешние подгруппы \mathbb{R} по сложению), названы *аурами*. Там же исследованы их свойства и определены некоторые операции над ними. Перечислим здесь те определения и свойства аур из [6,7], которые понадобятся для формулировки и доказательства теоремы о существовании выбирающей функции.

Предложение 1. Любую ауру можно задать формулой c единственным внешним квантором.

Ауры можно классифицировать по типам задающих их внешних формул: будем называть ауру Σ - или Π -aypoù, если она задается $\Sigma_1^{\rm st}$ - или $\Pi_1^{\rm st}$ -формулой соответственно (т. е. в зависимости от того, является ли внешний квантор в задающей ауру формуле квантором существования или всеобщности). Тип задающей ауру внешней формулы определяется однозначно, т. е. никакая аура не может быть Σ - и Π -аурой одновременно.

Заметим, что П-аура является обобщением понятия π -монады супербесконечно малых вещественных чисел [8], а Σ -аура — обобщением понятия галактики.

Предложение 2. Любая аура c ограниченным параметром t может быть записана в виде

$${}^{E}\{x \in \mathbb{R} : \forall^{\text{st}} \varepsilon \in \mathscr{E} \quad |x| < \varepsilon(t)\}$$

$$\tag{15}$$

или

$${}^{E}\{x \in \mathbb{R} : \exists^{\operatorname{st}} \varepsilon \in \mathscr{E} \mid |x| < \varepsilon(t)\}$$

$$\tag{16}$$

(в зависимости от ее типа), где $\mathscr E$ — некоторое стандартное множество функций из T в $\mathbb R_+$, удовлетворяющее условиям (3), T — стандартное множество, содержащее t.

Семейство аур обладает структурой полугруппы по умножению с единицей — аурой конечных чисел (будем далее обозначать ее через e). Две ауры μ и ν называются nodoбными, если существует такое вещественное $\lambda>0$, что $\mu=\lambda\nu$. Очевидно, что подобными могут быть только ауры одного и того же типа. Назовем $npouseo\partial hoù$ μ ауру $\mu'={}^E\{c\in\mathbb{R}:c\mu\subseteq\mu\}$.

Предложение 3. *Ауры одного типа подобны тогда и только тогда, когда их производные совпадают.*

Примеры аур.

- 1. Множества бесконечно малых и t-бесконечно малых вещественных чисел являются Π -аурами (обозначим ауру бесконечно малых чисел через μ_0).
- 2. Множества конечных и t-конечных вещественных чисел являются Σ -аурами.
- 3. Множество ${}^E\{x\in\mathbb{R}:\forall^{\mathrm{st}}n\in\mathbb{N}\ |x|< t^n\},\ 0< t<1,\ t$ не бесконечно близко к единице, является П-аурой.
- 4. Множество $^E\{x\in\mathbb{R}:\forall^{\mathrm{st}}\varepsilon>0\quad|x|<\exp(\varepsilon t)\},\ t>0$ бесконечно велико, также является П-аурой.

4. О возможности локального определения выбирающей функции (при некотором значении параметра)

Теорема 3. Пусть ρ — отношение близости (возможно, зависящее от фиксированного нестандартного ограниченного параметра t), его аура μ является Π -аурой. Внешняя формула φ , выделяющая по одному элементу из каждого класса эквивалентности \mathbb{R}/ρ , существует тогда и только тогда, когда μ подобна ауре бесконечно малых $\mu_0 = {}^E \{x \in \mathbb{R} : x \approx 0\}$.

Заметим, что если не существует внешней выбирающей формулы для \mathbb{R}/ρ , то не существует внешней выбирающей формулы и для $[0,N]/\rho$, для произвольной положительной константы N, не принадлежащей μ .

Доказательство. Не ограничивая общности можно считать, что φ имеет единственный нестандартный параметр t (если φ имеет нестандартный параметр p, то как φ , так и μ можно считать зависящими от единственного параметра — пары $\langle p,t \rangle$).

1. Если μ подобна μ_0 , $\mu = \lambda \mu_0$, то в качестве искомой формулы φ можно взять формулу

$$\exists^{\text{st}} a \in [0, 1) \exists n \in \mathbb{N} \quad x = \lambda(n + a).$$

Так, при $\lambda=1$ из каждого класса эквивалентности выбирается представитель, дробная часть которого стандартна.

2. Пусть μ не подобна μ_0 . Можно считать без ограничения общности, что $1 \not\in \mu$ (в противном случае заменим μ подобной ей аурой).

Аналогично тому, как это было сделано в доказательстве теоремы 2, приведем φ к $\Sigma_2^{\rm st}$ -виду:

$$\varphi(x,t) \Leftrightarrow (\exists^{\text{st}} a \in \mathscr{A} \forall^{\text{st}} b \in \mathscr{B} \quad x \in M(a,b,t))$$

(отображение M удовлетворяет свойству (8)), а μ запишем в виде (15):

$$\mu = {}^{E} \{ x \in \mathbb{R} : \forall^{\text{st}} \varepsilon \in \mathscr{E} \mid |x| < \varepsilon(t) \}.$$

Если μ не подобна μ_0 и φ удовлетворяет условиям теоремы, то для заданного t выполняются следующие три утверждения, последнее из которых уже встречалось в доказательстве теоремы 2:

$$\begin{split} \exists^{\mathrm{st}} \lambda \in \mathscr{E}^{\mathscr{E}} \forall^{\mathrm{st}} \varphi \in \mathscr{E}, n \in \mathbb{N} \ f(t) > n \lambda_f(t), \\ \exists^{\mathrm{st}} A \in (\mathscr{P}^{\mathrm{fin}}(\mathscr{A}))^{\mathscr{B}^{\mathscr{A}} \times \mathscr{E}^{\mathscr{A}}} \forall^{\mathrm{st}} b \in \mathscr{B}^{\mathscr{A}}, \varepsilon \in \mathscr{E}^{\mathscr{A}} \ \mathbb{R} = \cup \{U_{\varepsilon_a(t)} M(a, b_a, t) : a \in A(b, \varepsilon)\}, \\ \exists^{\mathrm{st}} \delta \in \mathscr{E}^{\mathscr{A}}, d \in \mathscr{B}^{\mathscr{A}} \forall^{\mathrm{st}} c \in \mathscr{A} \quad \bar{\rho}(M(c, d_c, t)) > \delta_c(t). \end{split}$$

Следовательно, существует $t \in T$, для которого выполнены все три условия. Запишем последнее требование в виде эквивалентной внутренней формулы:

$$\exists A \in (\mathscr{P}^{\operatorname{fin}}(\mathscr{A}))^{\mathscr{B}^{\mathscr{A}} \times \mathscr{E}^{\mathscr{A}}}, \delta \in \mathscr{E}^{\mathscr{A}}, d \in \mathscr{B}^{\mathscr{A}}, \lambda \in \mathscr{E}^{\mathscr{E}} \forall^{\operatorname{fin}} B \subset \mathscr{B}^{\mathscr{A}}, E \subset \mathscr{E}^{\mathscr{A}},$$

$$C \subset \mathscr{A}, F \subset \mathscr{E}, M \subset \mathbb{N} \exists t \in T, \forall b \in B, \varepsilon \in E,$$

$$c \in C, f \in F, n \in M \quad t \in T^{1}(f, n) \cap T^{2}(b, \varepsilon) \cap T^{3}(c), \quad (17)$$

где
$$T^1(f,n)=\{t\in T: f(t)>n\lambda_f(t)\},\, T^2(b,\varepsilon)=\{t\in T:\mathbb{R}=\cup\{U_{\varepsilon_a(t)}M(a,b_a,t):a\in A(b,\varepsilon)\}\},\, T^3(c)=\{t\in T: \overline{\rho}(M(c,d_c,t))>\delta_c(t)\}.$$

Зафиксируем те значения A, δ , d, λ , при которых выполняется (17), и пусть ε_1 — произвольная функция из $\mathscr E$ такая, что $\varepsilon(t) \leq 1$ (такая функция существует в силу условия $1 \not\in \mu$), $\mu_a = \min(\varepsilon_1, \delta_a) \in \mathscr E^\mathscr A$ (минимум берется при каждом значении a), $\bar{\varepsilon}_a = \lambda(\mu_a) \in \mathscr E^\mathscr A$, $\overline{A} = A(d, \bar{\varepsilon}) \in \mathscr P^{\mathrm{fin}}(\mathscr A)$, $\bar{n} = 1 + 4 \operatorname{card} \overline{A}$. Существует t, принадлежащее одновременно трем множествам

$$\bigcap_{a\in\overline{A}} T^1(\delta_a, \bar{n}), \quad T^2(d, \bar{\varepsilon}), \quad \bigcap_{a\in\overline{A}} T^3(a).$$

При этом значении t

$$\forall a \in \overline{A} \quad \overline{\rho}(M(a, d_a, t)) > \delta_a(t) \ge \mu_a(t),$$

$$\forall a \in \overline{A} \quad \overline{\varepsilon}_a(t) < \mu_a(t)/\overline{n},$$

$$I \subseteq \bigcup_{a \in \overline{A}} U_{\overline{\varepsilon}_a(t)}M(a, d_a, t).$$

Но тогда

$$1 = \operatorname{mes} I \le \sum_{a \in \overline{A}} 2\bar{\varepsilon}_a(t) \left(1 + \mu_a^{-1}(t)\right) \le \sum_{a \in \overline{A}} 4\bar{\varepsilon}_a(t) / \mu_a(t) \le 4 \operatorname{card} \overline{A} / \bar{n} < 1.$$

Полученное противоречие показывает, что если для какого-то значения t μ не подобна μ_0 , то при этом значении параметра не существует искомой функции $\varphi(x,t)$, что и требовалось доказать.

Замечание. Нетрудно убедиться, что эта теорема является обобщением теоремы 2. Для значения параметра t_0 , удовлетворяющего условию (4), множество $\mu = \{x \in \mathbb{R} : \forall^{\text{st}} \varepsilon \in \mathscr{E} \mid |x| < \varepsilon(t_0)\}$ является аурой, так как в силу (4)

 $\lambda(T_0)^{-1}\mu \leq \mu$, а $\lambda(t_0)^{-1}$ бесконечно велико. По той же причине $\lambda(t_0)^{-1}$ содержится в μ' и не содержится в $\mu'_0 = e$, т. е. по предложению 3 μ не подобна μ_0 . Следовательно, по теореме 3 не существует внешней выбирающей функции для отношения близости, соответствующего ауре μ , и, значит, не существует глобальной внешней выбирающей функции на всем множестве T. Тем не менее мы не стали опускать доказательство теоремы 2, так как оно намного более прозрачно, чем доказательство последней теоремы.

ЛИТЕРАТУРА

- Кановей В. Г. Неразрешимые гипотезы в теории внутренних множеств Эдварда Нельсона // Успехи мат. наук. 1991. Т. 46, № 6. С. 3–50.
- Nelson E. Internal set theory: a new approach to nonstandard analysis // Bull. Amer. Math. Soc. 1977. V. 83, N 6. P. 1165–1198.
- 3. *Гордон Е. И.* Относительно стандартные элементы в теории внутренних множеств Е. Нельсона // Сиб. мат. журн. 1989. Т. 30, № 1. С. 89–95.
- 4. Прохорова М. Ф. Внешняя равномощность конечных множеств в нестандартном анализе // Проблемы теоретической и прикладной математики. Информационные материалы. Екатеринбург: Уро РАН, 1993. С. 91.
- Прохорова М. Ф. Об относительной околостандартности в IST // Сиб. мат. журн. 1998.
 Т. 39, № 3. С. 600–603.
- Прохорова М. Ф. О внешнем аналоге аксиомы выбора в нестандартном анализе // Проблемы теоретической и прикладной математики. Информационные материалы. Екатеринбург: Уро РАН, 1997. С. 17–19.
- Прохорова М. Ф. О внешнем аналоге аксиомы выбора в IST. Екатеринбург, 1999. 23 с. Деп. в ВИНИТИ 29.10.99, № 3246-В99.
- Benninghofen B., Richter M. M. A general theory of superinfinitesimals // Fund. Math. 1987.
 V. 128, N 3. P. 199–215.

Cтатья поступила 5 мая 2000 г.

Прохорова Марина Файвушевна Институт математики и механики УрО РАН, ул. С. Ковалевской, 16, Екатеринбург 620219 pmf@imm.uran.ru