Санкт-Петербургский Политехнический Университет Высшая школа прикладной математики и вычислительной физики, ФизМех 01.03.02 Прикладная математика и информатика

Лабораторная Работа №1 тема "Кодирование информации" вариант "Алгоритм Фано" дисциплина "Дискретная математика"

Выполнил студент гр. 5030102/20201

Буслама Анис

Содержание

1	Пос	ставленная задача	3				
	1.1	Постановка задачи:	3				
	1.2	Используемый язык программирования:	3				
	1.3	Ограничения	3				
2	Алі	горитм \mathbf{A}^*	3				
	2.1	Псевдокод алгоритма А* для сетки с ограничениями	3				
3	Прі	имер работы алгоритма ${f A}^*$	6				
	3.1	Ход работы алгоритма	6				
4	Ана	ализ сложности алгоритма \mathbf{A}^*	8				
	4.1	Временная сложность	8				
	4.2	Пространственная сложность	8				
	4.3	Доказательство временной сложности	8				
	4.4	Заключение	9				
5	Cpa	Сравнение работы алгоритма А* на различных входных данных					
	5.1	Графы, на которых алгоритм работает лучше всего	10				
	5.2	Графы, на которых алгоритм работает хуже всего	10				
	5.3	Графы, на которых алгоритм не работает	11				
	5.4	Выводы	11				
6	Обоснование выбора способа представления графа						
	6.1	Простота визуализации графа	12				
	6.2	Эффективность реализации	12				
	6.3	Универсальность представления	12				
	6.4	Обоснование выбора формата данных	12				
	6.5	Вывод	13				
7	Вы	вод	13				

1 Поставленная задача

1.1 Постановка задачи:

На вход программе подаётся невзвешенный граф — представление координатной сетки с целыми координатами, начальная вершина и конечная. Рёбра в графе могут соединять только те вершины, которые соответствуют соседним ячейкам клетки. Переход от одной ячейки к другой можно осуществлять по четырём направлениям. Ребро между двумя вершинами в переданном в программу графе существует тогда и только тогда, когда разрешается совершать переход из одной ячейки в другую. Иными словами, должна быть возможность выставлять "стены" между соседними ячейками координатной сетки.

1.2 Используемый язык программирования:

C++ 20 вместе со стандартными библиотеками: STD, STL (Vector, Queue)

1.3 Ограничения

Граф должен быть связанным

2 Алгоритм А*

2.1 Псевдокод алгоритма А* для сетки с ограничениями

```
// Bxog: grid - двумерный массив доступных клеток (true/false),
         start - начальная клетка (x, y),
//
//
         goal - конечная клетка (x, y),
//
         directions - массив допустимых направлений движения,
//
         walls - множество пар заблокированных переходов.
// Выход: путь от start до goal, либо пустой массив, если путь невозможен.
Function a_star(grid, start, goal, directions, walls)
    open_set := PriorityQueue() // очередь с приоритетом (по f = g + h)
   g_score := Map()
                                 // стоимость пути от start до текущей клетки
                                 // оценка стоимости пути через текущую клетку
   f_score := Map()
   came_from := Map()
                                 // хранит путь
    closed_set := Set()
                                 // обработанные клетки
   open_set.push((start, 0.0, heuristic(start, goal))) // начальная клетка
   g_score[start] := 0.0
   f_score[start] := heuristic(start, goal)
   While not open_set.empty() do
        current := open_set.pop() // клетка с наименьшим f
        current_pos := current.position
        If current_pos = goal then
            return reconstruct_path(came_from, goal)
        End if
        closed_set.insert(current_pos)
```

```
For each dir in directions do
            neighbor := current_pos + dir
            If not is_valid(neighbor, grid) or
               neighbor in closed_set or
               not can_move(current_pos, neighbor, walls) then
                continue
            End if
            tentative_g := g_score[current_pos] + 1.0 // стоимость соседней клетки
            If neighbor not in g_score or tentative_g < g_score[neighbor] then
                came_from[neighbor] := current_pos
                g_score[neighbor] := tentative_g
                f_score[neighbor] := tentative_g + heuristic(neighbor, goal)
                open_set.push((neighbor, g_score[neighbor], heuristic(neighbor, goal)))
            End if
        End for
    End while
    return [] // путь не найден
End function
Фун. 1. Реализация алгоритма А* для поиска пути в сетке
// Вход: from - текущая клетка (x, y),
        to - соседняя клетка (x, y),
//
//
         walls - множество запрещенных переходов (пар клеток).
// Выход: true, если переход возможен; false, если заблокирован.
Function can_move(from, to, walls)
    Return (from, to) not in walls and (to, from) not in walls
End function
Фун. 2. Проверка возможности перехода между клетками
// Bxog: pos - клетка (x, y), grid - двумерный массив доступных клеток.
// Выход: true, если клетка существует и доступна; иначе false.
Function is_valid(pos, grid)
    (x, y) := pos
    Return x \ge 0 and y \ge 0 and x < size(grid) and y < size(grid[0]) and grid[x][y]
End function
Фун. 3. Проверка валидности клетки
// Вход: came_from - карта путей (Map), current - конечная клетка (x, y).
// Выход: массив клеток, представляющий найденный путь.
Function reconstruct_path(came_from, current)
    path := []
    While current in came_from do
        path.insert(0, current)
        current := came_from[current]
```

```
End while
    Return path
End function
Фун. 4. Восстановление пути из карты путей
// Bxoд: current - клетка (x1, y1), goal - клетка (x2, y2).
// Выход: эвристическое расстояние между клетками.
Function heuristic(current, goal)
    (x1, y1) := current
    (x2, y2) := goal
    Return sqrt((x2 - x1)^2 + (y2 - y1)^2) // Евклидово расстояние
End function
Фун. 5. Вычисление эвристического расстояния
// Вход: файл input.txt с параметрами: размеры сетки, начальная и конечная клетки,
         описанием стен (запрещенных переходов).
//
// Выход: двумерный массив grid, начальная и конечная клетка, список направлений,
         множество стен.
Function parse_input(filename)
    file := open(filename, "r")
    rows, cols := read_ints(file.readline())
    start := read_coords(file.readline())
    goal := read_coords(file.readline())
    grid := [[true for _ in range(cols)] for _ in range(rows)]
    walls := Set()
    directions := [(0, 1), (1, 0), (0, -1), (-1, 0), // четыре направления
                   (1, 1), (1, -1), (-1, 1), (-1, -1)] // диагонали
    For each line in file.readlines() do
        (x1, y1, x2, y2) := read_ints(line)
        walls.add(((x1, y1), (x2, y2)))
    End for
    return grid, start, goal, directions, walls
End function
```

Фун. 6. Разбор входных данных из файла

3 Пример работы алгоритма А*

Для демонстрации работы алгоритма A^* возьмём следующую задачу. Имеется сетка 5×5 , где некоторые клетки заблокированы. Начальная клетка находится в точке (0,0), конечная клетка — (4,4).

Допустим, заблокированные клетки (стены) определены следующими парами координат:

- $\bullet \ (1,0) \leftrightarrow (1,1)$
- $(2,1) \leftrightarrow (3,1)$
- $(3,3) \leftrightarrow (4,3)$

Сетка будет выглядеть так (где # — заблокированные клетки):

S			
#	#		
	#		
	#	#	
		#	G

Здесь S обозначает начальную клетку, а G — конечную.

3.1 Ход работы алгоритма

1. **Инициализация**: Алгоритм начинает с клетки (0,0). Вычисляется эвристическое расстояние h (евклидово расстояние) до конечной клетки (4,4):

$$h(0,0) = \sqrt{(4-0)^2 + (4-0)^2} = \sqrt{32} \approx 5.66$$

Стоимость пути g(0,0) равна 0, а f(0,0)=g+h=5.66. Клетка (0,0) добавляется в очередь.

- 2. **Выбор клетки**: Из очереди выбирается клетка с минимальным значением f. Текущая клетка (0,0). Алгоритм проверяет соседей: (0,1) и (1,0) (диагональные движения в данном примере не используются).
- 3. **Обновление соседей**:
 - Для клетки (0, 1):

$$g(0,1) = g(0,0) + 1 = 1$$
, $h(0,1) = \sqrt{(4-0)^2 + (4-1)^2} \approx 5.39$, $f(0,1) = 6.39$

• Для клетки (1,0) (блокирована): пропускается.

Клетка (0,1) добавляется в очередь.

- 4. **Движение к следующей клетке**: Алгоритм переходит в клетку (0,1) и повторяет процесс. Обрабатываются соседи (0,2) и (1,1) (но (1,1) заблокирована).
- 5. Алгоритм продолжает строить путь, пока не дойдёт до клетки (4, 4):

$$(0,0) \to (0,1) \to (0,2) \to (1,2) \to (2,2) \to (3,2) \to (4,2) \to (4,3) \to (4,4)$$

6. **Восстановление пути**: Алгоритм строит путь, используя карту саме_from. Результат:

Путь:
$$(0,0) \to (0,1) \to (0,2) \to (1,2) \to (2,2) \to (3,2) \to (4,2) \to (4,3) \to (4,4)$$

Визуализация пути в сетке:

S	*	*		
#	#	*		
	#	*		
	#	*	#	
		*	*	G

Общий путь содержит 9 шагов, включая начальную и конечную клетку.

4 Анализ сложности алгоритма А*

Алгоритм А* представляет собой разновидность поиска по графу, сложность которого зависит от количества узлов, их связей и используемой эвристики. Разберём временную и пространственную сложность алгоритма.

4.1 Временная сложность

Пусть b — фактор ветвления графа (среднее количество соседей для каждого узла), а d — глубина пути от начальной точки до конечной. В худшем случае A^* исследует почти все возможные узлы, что приводит к следующей оценке временной сложности:

$$O(b^d)$$
.

где:

- ullet b^d соответствует числу узлов, которые могут быть рассмотрены до нахождения решения;
- использование эвристики помогает сузить область поиска, но в худшем случае алгоритм всё равно может исследовать почти все узлы.

При оптимальной эвристике (адекватно приближающей расстояние до цели) сложность может быть уменьшена до:

$$O(|E| + |V| \log |V|),$$

где |E| — количество рёбер в графе, а |V| — количество узлов. Это обусловлено использованием очереди с приоритетом (например, кучи).

4.2 Пространственная сложность

Пространственная сложность алгоритма A^* определяется количеством узлов, которые хранятся в памяти. Алгоритм сохраняет:

- все узлы, которые находятся в очереди с приоритетом (Open List);
- все узлы, которые уже были посещены (Closed List).

Следовательно, пространственная сложность алгоритма также равна:

$$O(b^d)$$
,

поскольку в памяти может храниться до b^d узлов одновременно.

4.3 Доказательство временной сложности

Для доказательства временной сложности $O(b^d)$ рассмотрим процесс работы алгоритма:

- 1. Алгоритм начинает с начальной вершины и расширяет все её соседние узлы (всего b узлов).
- 2. На следующем уровне рассматриваются все узлы, доступные из уже посещённых. Их количество b^2 .
- 3. На k-м уровне число узлов, которые могут быть рассмотрены, составляет b^k .

4. На глубине d суммарное количество исследованных узлов оценивается как:

$$\sum_{k=0}^{d} b^k = \frac{b^{d+1} - 1}{b - 1},$$

что в асимптотическом анализе упрощается до $O(b^d)$.

Если эвристика идеальна (точно соответствует реальной стоимости пути до цели), A^* рассматривает только узлы на оптимальном пути, и сложность уменьшается до O(d), но это идеализированный случай, который редко встречается на практике.

4.4 Заключение

Таким образом, временная и пространственная сложность алгоритма A^* в общем случае равна $O(b^d)$. Однако, с использованием эффективной эвристики, сложность может быть уменьшена до $O(|E| + |V| \log |V|)$, что делает A^* практичным для широкого класса задач.

5 Сравнение работы алгоритма **A*** на различных входных данных

Алгоритм A* демонстрирует разную эффективность в зависимости от структуры входного графа, используемой эвристики и особенностей задачи. Рассмотрим несколько типов графов и поведение алгоритма в каждом из случаев.

5.1 Графы, на которых алгоритм работает лучше всего

Алгоритм А* показывает наилучшую производительность на графах, где:

- **Эвристика точна**: эвристическая функция h(n) точно оценивает минимальную стоимость пути от узла n до цели. Например, на двумерной сетке с евклидовой или манхэттенской метрикой (в зависимости от разрешённых направлений движения).
- **Граф имеет мало рёбер**: если фактор ветвления графа (b) низкий, алгоритм быстро находит путь, обходя минимальное количество узлов.
- **Структура графа проста**: если в графе нет циклов и минимальное расстояние до цели совпадает с числом переходов, А* находит путь с минимальным количеством операций.

Пример. Для двумерной сетки 5×5 без стен:

Алгоритм A^* с манхэттенской эвристикой проходит оптимальный путь за 5+5=10 шагов, практически не отклоняясь от целевого маршрута.

5.2 Графы, на которых алгоритм работает хуже всего

Наибольшие сложности возникают в следующих случаях:

- **Эвристика недооценивает путь**: если h(n) сильно меньше реальной стоимости пути, A^* сводится к обычному алгоритму Дейкстры. Это увеличивает число узлов, которые необходимо обработать.
- **Граф имеет высокую степень ветвления (b)**: большое количество соседних узлов для каждого узла увеличивает размер очереди с приоритетом и время обработки.
- **Плотные препятствия**: если граф содержит множество блокированных клеток, А* вынужден обходить их, часто исследуя лишние пути.

Пример. Для сетки 5×5 с множеством препятствий:

S	#	#	#	#
	#	#	#	
		#	#	
			#	G

А* придётся исследовать множество обходных путей, прежде чем найти путь к цели. Эвристика в таких случаях теряет эффективность.

5.3 Графы, на которых алгоритм не работает

Алгоритм А* может не найти путь, если:

- **Граф несвязен**: если начальный и конечный узлы находятся в разных компонентах графа, алгоритм завершится без нахождения пути.
- **Эвристика неадекватна**: если h(n) переоценивает путь (h(n) > реальный путь), алгоритм может пропустить оптимальное решение.

Пример. В несвязной сетке:

S		#	#	#
#	#	#	#	#
#	#	#	#	\overline{G}

Алгоритм не сможет найти путь, так как целевая клетка G полностью отделена от начальной клетки S.

5.4 Выводы

Алгоритм А* работает эффективно на графах с:

- правильной структурой и допустимой эвристикой;
- небольшой степенью ветвления и низкой плотностью препятствий.

Алгоритм менее эффективен на графах с высокой степенью ветвления, плотными препятствиями или при использовании эвристики, которая недооценивает или переоценивает стоимость пути. На несвязных графах алгоритм не работает вовсе.

6 Обоснование выбора способа представления графа

Для реализации алгоритма A* в программе граф был представлен в виде двумерной координатной сетки. Такой способ представления был выбран по следующим причинам:

6.1 Простота визуализации графа

Граф, представленный в виде координатной сетки, интуитивно понятен:

- Узлы соответствуют клеткам сетки с целыми координатами (x, y).
- Рёбра графа определяются соседними клетками, что позволяет легко представить граф в двумерной плоскости.
- Структура такого графа хорошо соответствует практическим задачам, таким как навигация в сетке (например, карты, робототехника).

6.2 Эффективность реализации

Координатная сетка позволяет эффективно управлять данными:

- Для хранения рёбер используется информация о соседях каждой клетки (например, вверх, вниз, влево, вправо или по диагоналям). Это уменьшает количество лишних связей.
- Стены между узлами представлены булевыми значениями или списками запрещённых переходов. Это упрощает проверку доступности соседних клеток.
- Поиск соседей узла и проверка их доступности выполняются за O(1) для каждой клетки, так как достаточно проверить фиксированное количество направлений.

6.3 Универсальность представления

Представление графа в виде сетки является универсальным и подходит для большинства задач, связанных с A^* :

- Оно легко масштабируется на более сложные задачи: можно увеличить размер сетки или изменить правила переходов.
- Разрешение движения по 4 или 8 направлениям (на выбор) можно легко реализовать за счёт изменения набора допустимых соседей.
- Это представление подходит как для задач на плоскости, так и для обобщений на трёхмерные пространства.

6.4 Обоснование выбора формата данных

Для хранения графа использовались:

- Двумерный массив для представления клеток сетки. Каждый элемент массива содержит информацию о доступности данной клетки.
- Списки для хранения координат начального и конечного узлов.
- Структуры данных, такие как очереди с приоритетом, для реализации механизма поиска.

Такой подход позволил достичь оптимального баланса между простотой реализации и эффективностью выполнения алгоритма.

6.5 Вывод

Выбор представления графа в виде двумерной сетки обусловлен следующими факторами:

- Простота и наглядность;
- Эффективность работы с соседними узлами;
- Лёгкость в реализации различных правил переходов;
- Универсальность и масштабируемость.

Это делает такое представление наиболее подходящим для задач, решаемых алгоритмом А*.

7 Вывод

Алгоритм A^* является мощным методом поиска кратчайшего пути в графе, который комбинирует преимущества жадного подхода и алгоритма Дейкстры. Он эффективно использует эвристическую функцию для направления поиска, что позволяет значительно сократить количество обрабатываемых узлов. Однако производительность алгоритма зависит от качества эвристики: при недооценке он становится медленнее, а при переоценке может не найти оптимальный путь. Сложность алгоритма составляет $O(b^d)$ в худшем случае, где b — фактор ветвления, а d — глубина решения, что делает его менее подходящим для графов с высокой ветвистостью или некачественными эвристиками.