Visszatekintés

- Számítógépek, számábrázolás, kódolás, felépítés, fájlrendszerek
- Alapvető parancsok, folyamatok előtérben, háttérben
- I/O átirányítás, szűrők, reguláris kifejezések
- Változó, parancs behelyettesítés, aritmetikai, logikai kifejezések
- Script vezérlési szerkezetek, Sed, AWK
- Hálózatok jellemzői
- Powershell

Modified:2022. 11. 26. Page:2

Mi jön ma?

- Kódolás Titkosítás
- Szimmetrikus Aszimmetrikus titkosítás
- Terminál kapcsolódás
 - Windows Terminál SSH
 - PUTTY SSH
- RSA Egyszerűen

Modified: 2022. 11. 26. Page: 3

Kódolás - Titkosítás

- Fontos: A számítógép (jelenleg) csak számokat tárol a memóriában!
- Ahhoz, hogy szöveget kapjunk, kódtáblára van szükség. PL.
 ASCII
 - 41h(65) -> A, 4Ch(76) -> L, 4Dh(77) -> M, 41h(65) -> A
- Amíg általános kódtáblákat használunk, egyszerű szöveges ábrázolásról van szó.
- Ha módosított, speciális kódtábláról, akkor titkosításról beszélünk.

Alap ASCII kódtábla

ASCII Code Chart

لـ ا	0	1	2	3	4	5	6	7	8	9	_ A	ı Bı	С	D	E	∟F_j
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	S0	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2		-:	=	#	\$	%	&	-	()	*	+	,	ı	•	/
3	9	1	2	з	4	5	6	7	8	9		;	٧	II	۸	?
4	9	Α	В	С	D	Ε	F	G	Н	Ι	ח	K	L	М	N	0
5	Р	Q	R	S	T	U	V	W	Х	Υ	Z	[\]	^	_
6	3	а	b	С	d	е	f	g	h	i	j	k	ι	m	n	0
7	р	q	r	s	t	u	ν	W	х	у	z	{		}	~	DEL

- Módosítható ez "saját használatra"?
 - Miért ne?- Ekkor nem kódolás Titkosítás

Szimmetrikus – Aszimmetrikus titkosítás

- Hogyan hozhatunk létre speciális kódtáblákat?- Sokféle módszer ismert
- Legegyszerűbb változat: módosított karakter tábla
- Kicsit rafináltabb, pl. megadott könyv alapján, a küldött számsorozat megadja a könyv karaktereit, ami lesz a valódi üzenet.

• Ma általánosan elterjedt, egy kulcs alapján valamilyen matematikai

módszert használva

- Legegyszerűbb: XOR
- Mind szimmetrikus –egy kulcs
- Aszimmetrikus 2 kulcs.

Terminál kapcsolat – Mit használ?

- Windows Terminal
 - Users\.ssh\known_hosts tárolja az ismert host kulcsokat
 - PUTTY: Registry: HKCU\Software\SimonTatham\PuTTY
 - Módosítás
 - Regedit vagy
 - PS

Registry HKCU kulcs

Mitől vagyunk biztonságban?

RSA algoritmus

avagy: a mindennapok során sem csak az összeadást használjuk a matematika órán tanultakból

(lásd: boltban, pénztárnál)

Oszthatóság

Mi a közös bennük?

4; 7; 10; 13; 16; 19; 22

3-mal osztva 1 a maradék

14; 5; 17; 8; 11; 20; 23

3-mal osztva 2 a maradék

3; 66; 9; 12; 135; 18; 6

3-mal osztva 0 a maradék

Oszthatóság definíciója:

maradékosztályok

$$a,b \in N$$
 $a|b \Leftrightarrow \exists x \in N \ni a \cdot x = b$

a,b természetes számok esetén azt mondjuk, hogy az a osztója a b-nek
(vagy b osztható a-val), ha található olyan x természetes szám, hogy a·x=b

ш

Maradékosztályok

Vizsgáljuk meg a maradékosztályokat!

$$8 - 5 = 3$$

$$11 - 8 = 3$$

$$17 - 8 = 9$$

$$12 - 6 = 6$$

6 - 3 = 3

$$18 - 6 = 12$$

$$7 - 4 = 3$$

$$10 - 4 = 6$$

$$19 - 7 = 12$$

Tehát például:

$$19 \equiv 7 \mod 3$$

Vagyis ugyan abban a maradékosztályban vannak mod 3

Def.: Ha az m ($\neq 0$) egész osztja az a-b különbséget, akkor azt mondjuk, hogy az a szám kongruens b-vel modulo m (\rightarrow ugyan abban a maradékosztályban vannak mod m)

<mark>Je</mark>lölés: **a≡b mod m**

Kongruencia tulajdonságai

- 1. $a \equiv b \mod m \implies b \equiv a \mod m \quad \text{és} \quad a b \equiv 0 \mod m$
- 2. $a \equiv b \mod m$ és $b \equiv c \mod m$ $\Rightarrow a \equiv c \mod m$
- 3. $a \equiv b \mod m$ és $c \equiv d \mod m$ $\Rightarrow a \cdot x + c \cdot y \equiv b \cdot x + d \cdot y \mod m$
- 4. $a \equiv b \mod m$ és $c \equiv d \mod m$ $\Rightarrow a \cdot c \equiv b \cdot d \mod m$
- 5. $a \equiv b \mod m$ és $d \mid m$ és $d > 0 \implies a \equiv b \mod d$
- 6. f egész együtthatós polinom és $a \equiv b \mod m \Rightarrow f(a) \equiv f(b) \mod m$
- 7. ha (a; m) = 1 akkor: $a \cdot x \equiv a \cdot y \mod m$ $\Leftrightarrow x \equiv y \mod m$ m-hez relatív prímmel szorozhatok, oszthatok

4.tul. $\Rightarrow a \equiv b \mod m$ és $a \equiv b \mod m$ $\Rightarrow a^2 \equiv b^2 \mod m$

$$\Rightarrow \dots \Rightarrow a^n \equiv b^n \mod m$$

Hatványozhatom a kongruenciát!

Később még szükség lehet rá ©

Állítás:

Ezek nem feltétlenül vannak ugyanabban a maradékosztályban

legyen
$$(a;m) = 1$$
 és $(x;m) = 1$ és $(y;m) = 1$
továbbá $x \not\equiv y \mod m \implies a \cdot x \not\equiv a \cdot y \mod m$

Bizonyítás:

$$x \not\equiv y \mod m$$
 jelenti: $m \nmid (x-y)$
ekkor: $m \nmid a \cdot (x-y) = a \cdot x - a \cdot y$, tehát

 $a \cdot x \not\equiv a \cdot y \bmod m$

Ha két szám nem kongruens egymással, akkor m-hez relatív prímmel szorozva őket, továbbra sem lesznek egymással kongruensek!

Maradékrendszerek

Nézzük a következő számokat: 3; 4; 5

Egy másik számhármas: 33; 16; 26

Ezek a számok teljes maradékrendszert alkotnak mod 3

Def: x_1 ; x_2 ; . . . x_m <u>teljes maradékrendszer</u> *mod m*, ha tetszőleges y egész számhoz pontosan egy olyan x_j található, amelyre $y \equiv x_j \mod m$

φ függvény

Euler-féle φ függvény: **φ(m)** az **m**-nél nem nagyobb, **m**-hez relatív prím pozitív egészek száma

Például: m = 24 hozzá relatív prímek: 1; 5; 7; 11; 13; 17; 19; 23

$$\varphi(24)=8$$

m = 7 hozzá relatív prímek: 1; 2; 3; 4; 5; 6

$$\varphi(7)=6$$

Mennyi $\varphi(11)$, $\varphi(13)$, $\varphi(23)$? (10, 12, 22)

Fontos! Ha p prím, akkor $\varphi(p) = p - 1$

redukált maradékrendszer mod 24

Redukált maradékrendszer: a teljes maradékrendszerből csak azokat az elemeket hagyjuk meg, amelyek *m*-hez relatív prímek

Egy kis feladat

Legyen
$$m = p_1 \cdot p_2$$
 $\varphi(m) = ?$

m= 15 = 3 · 5 hozzá relatív prímek: 1; 2; 4; 7; 8; 11; 13; 14
$$\varphi(15) = 8$$

$$\varphi(3) = 2$$
; $\varphi(5) = 4$ és $2 \cdot 4 = 8$ Véletlen?

Állítás:
$$\varphi(m) = (p_1 - 1) \cdot (p_2 - 1)$$

 $\varphi(m) = (p_1 - 1) \cdot (p_2 - 1) = p_1 \cdot p_2 - p_1 - p_2 + 1$

 $p_1 \cdot p_2$ db számból p_1 db p_2 többszörösét és p_2 db p_1 többszörösét vonjuk ki, de a $p_1 \cdot p_2$ -t így kétszer is kivontuk.

Euler tétele

Tétel: ha
$$(a;m)=1$$
, $akkor$ $a^{\varphi(m)}\equiv 1 \mod m$

Biz.:

 $r_1; r_2; \dots r_{\varphi(m)}$ redukált maradék rendszer mod m $a \cdot r_1; a \cdot r_2; \dots a \cdot r_{\varphi(m)}$ is redukált maradék rendszer mod m (ugyan annyi elem van itt is, ott is, ill. itt van szükség a tételre!) $r_j \equiv a \cdot r_k \mod m$ $r_1 \cdot r_2 \cdot \dots \cdot r_{\varphi(m)} \equiv a \cdot r_1 \cdot a \cdot r_2 \cdot \dots \cdot a \cdot r_{\varphi(m)} \mod m$ (4. tul.) $1 \equiv a^{\varphi(m)} \mod m$ (7. tul. alapján, mert $(r_i; m) = 1$)

$$m = 24$$
 \Rightarrow 1, 5, 7, 11, 13, 17, 19, 23
 $\varphi(24) = 8$ $(24;7) = 1$ \Rightarrow 7, 35, 49, 77, 91, 119, 133, 161

Fermat tétele

$$p \ prim \ és \ (a; p) = 1 \implies a^{p-1} \equiv 1 \mod p$$

$$\Rightarrow a^p \equiv a \mod p$$

Biz.: Az előző tétel következménye

Eszerint ha **a** < **p**, akkor ha **a**-t **p**-edik hatványra emeljük, majd a kapott értéket elosztjuk **p**-vel, az osztási maradékként éppen **a**-t kapjuk vissza.

Egyesítsük a tételeket!

$$m := p_{1} \cdot p_{2} \quad ekkor \quad \varphi(m) = (p_{1} - 1) \cdot (p_{2} - 1)$$

$$(a; m) = 1$$

$$a^{\varphi(m)} \equiv 1 \quad \Rightarrow \quad a^{(p_{1} - 1) \cdot (p_{2} - 1)} \equiv 1 \mod m$$

$$a^{\varphi(m) + 1} \equiv a \Rightarrow \quad a^{(p_{1} - 1) \cdot (p_{2} - 1) + 1} \equiv a \mod m$$

$$b \in Z \quad eset\acute{e}n :$$

$$(a^{\varphi(m)})^{b} \equiv 1^{b} = 1 \quad \Rightarrow \quad a^{b \cdot (p_{1} - 1) \cdot (p_{2} - 1)} \equiv 1 \mod m$$

$$a^{b \cdot \varphi(m) + 1} \equiv a \qquad \Rightarrow \quad a^{b \cdot (p_{1} - 1) \cdot (p_{2} - 1) + 1} \equiv a \mod m$$

$$4.tul. \quad \Rightarrow \quad a \equiv b \mod m \quad \Rightarrow \quad a^{n} \equiv b^{n} \mod m$$

Folytatás

$$m := p_1 \cdot p_2$$
 $ekkor$ $\varphi(m) = (p_1 - 1) \cdot (p_2 - 1)$
 $(a; m) = 1, b \in \mathbb{Z}$ $eset\acute{e}n$ $a^{b \cdot \varphi(m) + 1} \equiv a \mod m$
 $b \cdot \varphi(m) + 1 := \alpha \cdot \beta, \quad ahol \quad \alpha, \beta \in \mathbb{N}$
 $a^{\alpha \cdot \beta} = (a^{\alpha})^{\beta} \equiv a \mod m$

2. tulajdonság alapján a^α helyett bármilyen vele mod m kongruens számot is írhatok a számolás során

(α,m), (β,m) lesznek a kulcsok, a pedig a titkosítandó szám (relatív prím m-hez)!

Alkalmazzuk az eddigieket!

$$m := 3 \cdot 5 = 15$$

$$(a;m) = 1$$
 és $a < m \Rightarrow a \in \{1; 2; 4; 7; 8; 11; 13; 14\}$

$$\varphi(m) = 8$$

$$\varphi(m) + 1 = 9 = 3 \cdot 3$$

Nem jó, ugyan az lenne a titkos és a nyilvános kulcs

$$2 \cdot \varphi(m) + 1 = 17$$

Nem jó, mert prím

$$3 \cdot \varphi(m) + 1 = 25 = 5 \cdot 5$$

Ez sem jó!

$$4 \cdot \varphi(m) + 1 = 33 = 3 \cdot 11$$
 Végre!

Titkosítsunk!

Legyen a nyilvános kulcs: (11;15)

Ekkor a titkos kulcs: (3;15)

Ne felejtsük el: $a \in \{1; 2; 4; 7; 8; 11; 13; 14\}$

Például a titkosítandó számsor: 2 4 8 7

Kódolás

A titkosítandó szám: 2 4 8 7

A nyilvános kulcs: (11;15)

$$2^{11} = 2048 = 136 \cdot 15 + 8$$

$$4^{11} = 4194304 = 279620 \cdot 15 + 4$$

$$8^{11} = 8589934592 = 572662306 \cdot 15 + 2$$

$$7^{11} = 1977326743 = 131821782 \cdot 15 + 13$$

Az eredmény: 8 4 2 13

Dekódolás:

A titkos üzenet: 8 4 2 13

A titkos kulcs: (3;15)

$$8^3 = 512 = 34 \cdot 15 + 2$$

$$4^3 = 64 = 4 \cdot 15 + 4$$

$$2^3 = 8 = 0.15 + 8$$

$$13^3 = 2197 = 146 \cdot 15 + 7$$

Tehát az eredeti üzenetet visszakaptuk: 2 4 8 7

Fejtsétek meg!

Kódtáblázat:

Privát kulcs: (7;187) (Ezzel dekódolunk!)

1	Α
2	Ε
3	É
4	G
5	K
6	R
7	S
8	Т
9	Z
10	?

RSA kódolt üzenet:

83; 162; 83; 46; 36; 162; 83; 83; 175

162; 64; 181; 46; 36; 46; 181; 64; 162; 83;

162; 180; 150; 162

Mi lehet a publikus kulcs?(Ezzel kódoltunk!)

- Kis segítség
 - (7,187)
 - (23,187)

$$187 = 17 \cdot 11$$

$$\varphi(187)+1=16\cdot10+1=161$$

$$161 = 7 \cdot 23$$

$$2 \cdot \varphi(187) + 1 = 2 \cdot 16 \cdot 10 + 1 = 321$$

$$321 = 3.107$$

$$3 \cdot \varphi(187) + 1 = 3 \cdot 16 \cdot 10 + 1 = 481$$

$$481 = 13 \cdot 37$$

$$4 \cdot \varphi(187) + 1 = 4 \cdot 16 \cdot 10 + 1 = 641$$

$$641 = prim$$

Feltörhető? – Kis számok esetén…igen

$$m=15$$
 $\alpha=11$ $\beta=?$ $15=3\cdot 5$ $\varphi(15)=2\cdot 4=8$ $b\cdot 8+1=11\cdot \beta$

Rövid próbálgatás után:

$$b=4$$
 $\beta=3$

$$m = 527$$
 $\alpha = 13$ $\beta = ?$

$$527 = 17 \cdot 31$$
 $\varphi(527) = 16 \cdot 30 = 480$ $b \cdot 480 + 1 = 13 \cdot \beta$

Rövid próbálgatás után: b=1 $\beta=37$

Feltörhető?

• M = P1 * P2 - P1,P2 1024, 2048 bites

$$m := p_1 \cdot p_2$$
 $ekkor$ $\varphi(m) = (p_1 - 1) \cdot (p_2 - 1)$
 $(a; m) = 1, b \in \mathbb{Z}$ $eset\'en$ $a^{b \cdot \varphi(m) + 1} \equiv a \mod m$
 $b \cdot \varphi(m) + 1 := \alpha \cdot \beta, \quad ahol \quad \alpha, \beta \in \mathbb{N}$
 $a^{\alpha \cdot \beta} = (a^{\alpha})^{\beta} \equiv a \mod m$

(α,m), (β,m) lesznek a kulcsok, a pedig a titkosítandó szám (relatív prím m-hez)!

• A módszer egyszerű, de a számolásigény óriási, évek.

Mit jelent az elnevezés? - RSA

INFORMATIKA

ш