REPORT - LAB 01 - SEARCH STRATEGIES

Prepared by: 19127216 - Đặng Hoàn Mỹ Instructors: Dr. Nguyen Ngọc Thao, Ph.D

I. Run algorithms in 3 different graphs

1. Breadth-first search (BFS)

Graph	Input file input.txt	Output file output.txt
	11 10 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 3 0 2 0 5 0 0 0 0 0 3 0 0 0 0 7 4 0 0 0 3 0 0 0 0 0 11 0 0 0 0 2 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 9 0 8 0 0 0 5 7 0 3 9 0 0 0 1 3 0 0 4 11 0 0 0 0 7 0 0 0 0 0 0 0 8 0 7 0 2 0 0 0 0 0 0 0 3 0 0 7 0 10 4 7 2 3 1 0 5 1 6 1	10 6 9 1 2 4 5 8 7 3 10 6 2 7 3 0
7 3 3 0	5 040 02400 00130 00005 00002 00000 107540	012

2. Tree-search depth-first search (DFS)

Graph	Input file input.txt	Output file output.txt
	11 10 0 1 0 0 0 3 0 0 0 0 0 0 0 0 0 0 3 0 2 0 5 0 0 0 0 0 3 0 0 0 0 7 4 0 0 0 3 0 0 0 0 0 0 11 0 0 0 0 2 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 9 0 8 0 0 0 5 7 0 3 9 0 0 0 1 3 0 0 4 11 0 0 0 0 7 0 0 0 0 0 0 0 8 0 7 0 2 0 0 0 0 0 0 0 1 0 2 0 7 0 0 0 0 0 0 3 0 0 7 0 10 4 7 2 3 1 0 5 1 6 1	10 6 1 2 7 3 0 10 6 1 2 7 3 0

3. Uniform-cost search (UCS)

Graph	Input file input.txt	Output file output.txt
	11 10 0 2 0 0 0 3 0 0 0 0 0 0 0 0 0 0 3 0 2 0 5 0 0 0 0 0 3 0 0 0 0 7 4 0 0 0 3 0 0 0 0 0 0 11 0 0 0 0 2 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 9 0 8 0 0 0 5 7 0 3 9 0 0 0 1 3 0 0 4 11 0 0 0 0 7 0 0 0 0 0 0 0 8 0 7 0 2 0 0 0 0 0 0 0 1 0 2 0 7	106948125 730 10698730

4. Iterative deepening search (IDS)

Graph	Input file	Output file
	input.txt	output.txt

5. Greedy best-first search (GBFS)

Graph	Input file input.txt	Output file output.txt
	11 10 0 4 0 0 0 3 0 0 0 0 0 0 0 0 0 3 0 2 0 5 0 0 0 0 0 3 0 0 0 0 7 4 0 0 0 3 0 0 0 0 0 11 0 0 0 0 2 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 9 0 8 0 0 0 5 7 0 3 9 0 0 0 1 3 0 0 4 11 0 0 0 0 7 0 0 0 0 0 0 0 8 0 7 0 2 0 0 0 0 0 0 0 1 0 2 0 7 0 0 0 0 0 0 3 0 0 7 0 10 4 7 2 3 1 0 5 1 6 1	10 6 5 8 4 1 7 3 9 2 10 6 5 8 7 3 0
7 3 3 0	5 044 02400 00130 00005 00002 00000 107540	02024

6. Graph-search A* (AStar)

Graph	Input file input.txt	Output file output.txt
	11 10 0 5 0 0 0 3 0 0 0 0 0 0 0 0 0 0 3 0 2 0 5 0 0 0 0 0 3 0 0 0 0 7 4 0 0 0 3 0 0 0 0 0 0 11 0 0 0 0 2 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 9 0 8 0 0 0 5 7 0 3 9 0 0 0 1 3 0 0 4 11 0 0 0 0 7 0 0 0 0 0 0 0 8 0 7 0 2 0 0 0 0 0 0 0 1 0 2 0 7 0 0 0 0 0 0 3 0 0 7 0 10 4 7 2 3 1 0 5 1 6 1	106498152 730 10698730

7. First-choice Hill-climbing (HC)

10 2 1 1 1 10 0 6 No path. 11 10 0 6 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0	Graph	Input file input.txt	Output file output.txt
0 0 4 11 0 0 0 0 7 0 0 0 0 0 0 0 8 0 7 0 2 0		1006 00030000000 00302050000 03000074000 300000011000 02000030000 00000090800 05703900013 004110000700	

	0 0 0 0 0 0 3 0 0 7 0 10 4 7 2 3 1 0 5 1 6 1	
7	5 046 02400 00130 00005 00002 00000 107540	0 2 4 0 2 4
	8 03 00003000 00570200 20000000 00000000 073000110 00000070 571100000 00032000 104521030	0 4 No path.

II. General statements

- In most algorithms, more than half of the nodes in the graph are reached, except the Hill-Climbing algorithm because the finding for the next node done at random.
- The First Choice Hill-Climbing algorithm that I choose to implement, is about randomizing a vertex that has a better state, so the number of nodes depends on the number that had been randomized, it seems that search the least nodes - better than others. But it is easy to fall into the case of not finding the path.
- With algorithmic goals such as the shortest path with the lowest cost or minimum heuristic value as UCS, GBFS and A*, nodes must ensure that are all traversed to find a path that satisfies that goal; so these two algorithms are at the top of the chart (>= 6).
- IDS algorithm with the requirement of traversing the vertices of the graph by depth, the higher level the goal is at, the more nodes are approved; so it is clearly at the top 3 of the average number of nodes expanded.
- BFS is more suitable for searching vertices that are closer to the given source although
 DFS is more suitable when there are solutions away from the source. Therefore, in my
 given test-case graphs which have the far-away goal and also the close goal, it seems
 similar in the average of the number of nodes expanded.

III. References

- How to Implement Breadth-First Search. (2019). Scrapbook.
 https://stephanosterburg.gitbook.io/scrapbook/coding/python/how-to-implement-b readth-first-search-in-python
- Depth First Search Find path, Python 3 rextester. (2018). Rextester.Com. https://rextester.com/discussion/CIW47460/Depth-First-Search-Find-path
- K. (2019, December 25). *kartiikthakur/ArtificialIntelligence_Searches*. GitHub. https://github.com/kartiikthakur/ArtificialIntelligence-Searches
- GeeksforGeeks. (2016, December 22). Iterative Deepening Search(IDS) or Iterative Deepening Depth First Search(IDDFS).
 https://www.geeksforgeeks.org/iterative-deepening-searchids-iterative-deepening-depth-first-searchiddfs/
- Iterative deepening depth-first search. (2021, January 20). In Wikipedia.
 https://en.wikipedia.org/wiki/Iterative_deepening_depth-first_search
- Nguyen Ngoc Thao. (2021, May 20). Shared to students Google Drive [Slides].
 Google Drive.
 https://drive.google.com/drive/folders/1eZ4DXow6q07xW6sr1pochlQzpUjmwhC2
- RayshineRen, R. (2021, March 2). RayshineRen/Classcial-Search. GitHub. https://github.com/RayshineRen/Classcial-Search/tree/1450bcd96eb25600833f4
 https://github.com/rayshineRen/Classcial-Search/tree/1450bcd96eb2560083f4
 https://github.com/rayshineRen/Classcial-Search/tree/1450bcd96eb2560083f4
 <a href="https://github.com/rayshineRen/Classcial-Search/tree/14