Palettisation – Stabilité ★

C2-03

On montre que la fonction de transfert du réducteur est $R(p) = \frac{\alpha_r(p)}{\Omega_m(p)} = \frac{1}{Np}$, que $k_a = \frac{\pi}{180} k_r$ et que la FTBO est donnée par $T(p) = \frac{k_{BO}}{p(1 + \tau_m p)} (k_{BO} = \frac{k_c k_m k_r}{N})$.

On souhaite une marge de phase de 45°.

Question 1 Déterminer la valeur de K_{BO} permettant de satisfaire cette condition. On souhaite une marge de phase de 45°. On cherche donc ω_{φ} tel que $\varphi\left(\omega_{\varphi}\right) = -180 + 45 = -135^{\circ}$.

$$\varphi(\omega) = -90 - \arg(1 + \tau_m j\omega) = -90 - \arctan(\tau_m \omega).$$

On a donc
$$\varphi(\omega_{\varphi}) = -135 \Leftrightarrow -90 - \arctan(\tau_m \omega_{\varphi}) = -135 \Leftrightarrow -\arctan(\tau_m \omega_{\varphi}) = -45$$

 $\Leftrightarrow \arctan(\tau_m \omega_{\varphi}) = 45 \Rightarrow \tau_m \omega_{\varphi} = 1 \Rightarrow \omega_{\varphi} = \frac{1}{\tau_m} = \frac{1}{5 \times 10^{-3}} \Rightarrow \omega_{\varphi} = 200 \text{ rad s}^{-1}.$

Par suite, il faut que le gain soit nul en ω_{φ} .

On a donc
$$G_{dB}(\omega) = 20 \log k_{BO} - 20 \log \omega - 20 \log \sqrt{1 + \omega^2 \tau_m^2}$$
. En $\omega_{\varphi} = \frac{1}{\tau_m}$: $G_{dB}(\omega_{\varphi}) = 0 \Leftrightarrow 20 \log k_{BO} - 20 \log \frac{1}{\tau_m} - 20 \log \sqrt{1 + \frac{1}{\tau_m^2} \tau_m^2} = 0 \Leftrightarrow \log k_{BO} + \log \tau_m - \log \sqrt{2} = 0$
 $\Leftrightarrow \log \frac{k_{BO} \tau_m}{\sqrt{2}} = 0 \Leftrightarrow \frac{k_{BO} \tau_m}{\sqrt{2}} = 1 \Leftrightarrow k_{BO} = \frac{\sqrt{2}}{\tau_m}$.

(**A vérifier**) $k_{BO} = 282, 8.$

Question 2 En déduire la valeur du gain K_c du correcteur. $k_{BO} = \frac{k_c k_m k_r}{N}$; donc $k_c = \frac{N k_{BO}}{k_m k_r} = \frac{200 \times 282, 8}{4 \times 30} = 471.$

Question 3 Déterminer l'écart de position. Il y a une intégration dans la correcteur. La FTBO est de classe 1 est le système est précis en position.

