Tests Estadísticos para Comparar Recomendaciones

IIC 3633 - Sistemas Recomendadores

Denis Parra Profesor Asistente, DCC, PUC CHile

TOC

En esta clase

- 1. Significancia Estadistica de los Resultados
 - T-test -- Tails -- Comparación Múltiple: correcciones
 - Signed test
 - Wilcoxon
- 2. Tests a grupos
 - ANOVA
 - Kruskal–Wallis
- 3. ¿Cómo reproducir resultados de papers?
- 4. Demostraciones interactivas

Antes de empezar

- 1. Métricas de predicción vistas la clase anterior
 - RMSE, MSE, MAE
 - Precision, Recall, F-1
 - MRR
 - · AP, MAP
 - nDCG
 - [Pending] Se mencionó Kendall-Tau y Spearman Rank Correlation
- 2. Otras métricas [Pending]
 - Diversity (Ziegler)
 - Lathia's Diversity (over time)
 - MPR (for implicit feedback)

Rendimiento de una lista: Kendall-Tau

Se compara el resultado de ranking como lista, respecto a una lista que representa el "ground truth". En el contexto RecSys, se ha usado una modificación llamada AP correlation:

$$\tau_{a\rho} = \frac{2}{N-1} \cdot \left[\sum_{i \in I} \frac{C(i)}{index(i) - 1} \right] - 1$$

N es el numero de items rankeados en la lista, C(i) el numero de items reankeados bajo index(i) de forma correcta. Valores de APcorrelation van entre +1 to -1. Un problema que tiene es que asume un orden total, con un orden parcial de los elementos no es útil.

Diversity (Ziegler)

Esta métrica se calcula sobre una lista de recomendaciones. Se compara la similaridad entre los pares de elementos recomendados, obteniendo la **Intra-list Similarity**

$$ILS(P_{w_i}) = \frac{\sum_{b_k \in P_{w_i}} \sum_{b_k \in P_{w_i}, b_k \neq b_c} c_o(b_k, b_c)}{2}$$

Valores altos de ILS denotan menor diversidad en la lista. Basado en esta métrica, los autores proponen un algoritmo de diversificación. Los resultados de un estudio off-line y online muestran que la satisfacción del usuario va más allá de la precisión de la recomendación, incluyendo la diversidad percibida de las recomendaciones.

Ref: Ziegler, C. N., McNee, S. M., Konstan, J. A., & Lausen, G. (2005, May). Improving recommendation lists through topic diversification. In Proceedings of the 14th international conference on World Wide Web (pp. 22-32). ACM.

Diversidad (Lathia) en el tiempo

Lathia compara diversidad y novedad a lo largo del tiempo. La razón L2/L1 corresponde a la fracción de elementos de L2 que no están en la lista L1.

$$diversity(L1, L2, N) = \frac{|\frac{L2}{L1}|}{N}$$

Por otro lado, "novelty" compara la última lista recomendada L2 con respecto al conjunto de todos los ítems recomendados a la fecha A_t .

$$novelty(L2, N) = \frac{|\frac{L2}{A_t}|}{N}$$

Ref: Lathia, N., Hailes, S., Capra, L., & Amatriain, X. (2010, July). Temporal diversity in recommender systems. In Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval (pp. 210-217). ACM.

Mean Percentage Ranking (Implicit Feedback)

$$MPR = \frac{\sum_{ui} r_{ui}^{t} \cdot rank_{ui}}{\sum_{ui} r_{ui}^{t}}$$

Donde $\underline{r_{ui}}$ indica si el usuario u consumio el item i y $rank_{ui}$ denota el percentile-ranking de i dentro de una lista ordenada. De esta forma, $\overline{rank_{ui}} = 0\%$ significa que i está al tope de la lista.

Ref: Hu, Y., Koren, Y., & Volinsky, C. (2008, December). Collaborative filtering for implicit feedback datasets. In Data Mining, 2008. ICDM'08. Eighth IEEE International Conference on (pp. 263-272). IEEE.

Comparando Métricas de Performance entre Recomendadores

• Hipótesis nula (H0): No existe diferencia entre la media métrica de performance (RMSE, MAP, nDCG, etc.) del recomendador R_1 versus el recomendador R_2 .

$$H_0: metrica_{R_1} = metrica_{R_2}$$

• Hipótesis alternativa (H1): Si existe diferencia

$$H_1: metrica_{R_1} \neq metrica_{R_2}$$

- \cdot Opciones de Test para chequear si rechazamos o $fallamos\ en\ rechazar$ la hipótesis nula H_0
 - T-test (paired y not paired): test paramétrico, válido bajo ciertos supuestos
 - Signed y Wilcoxon: No paramétrico, no requiere los supuestos del T-test pero tiene menos poder (en el sentido estadistico)
- Debemos definir un nivel de significacia estadística lpha, por lo general se rechaza la hipotesis nula con p-value <0,05.

Supuestos del T-test

- Variable Bivariada independiente (grupos A, B)
- Variable dependiente continua (MAP, precision, recall, etc.)
- Cada observación de la variable es independiente de las otras observaciones:
 - El MAP de un usuario es independiente del MAP de otro usuario
 - En el t-test pareado, requerimos sólo las diferencias de pares ($A_i B_i$) que sean independientes
- La variable dependiente tiene una distribución normal, con la misma varianza σ^2 en cada grupo (como si la distribución del grupo A y del grupo B fueran la misma, pero una desplazada respecto de la otra, sin cambiar de forma)

** REF: http://www.csic.cornell.edu/Elrod/t-test/t-test-assumptions.html

Ejemplo 1: T-Test

```
# Datasets de prueba
# lista de MAP para recomendador 1, con 30 usuarios, media de 0.2 y desv. st. de 0.1
recl_map <- rnorm(30, mean = 0.2, sd = 0.1)

# lista de MAP para recomendador 1, con 30 usuarios, media de 0.2 y desv. st. de 0.1
rec2_map <- rnorm(30, mean = 0.4, sd = 0.15)

summary(recl_map)

## Min. lst Qu. Median Mean 3rd Qu. Max.
## 0.04154 0.13350 0.19230 0.19930 0.26460 0.43020

## Min. lst Qu. Median Mean 3rd Qu. Max.
## 0.1644 0.3395 0.4010 0.4137 0.5246 0.7084
```

Gráfico de las distribuciones

```
# Graficos
plot(density(rec1_map), col=2, main="Density of MAP in two recommenders",
    xlab="MAP", ylab="Probability",
    xlim=c(-1, 1), ylim=c(0, 6))
lines(density(rec2_map), col=3)
```

Density of MAP in two recommenders

T-test de Muestras Independientes

• Revisamos si el p-value es menor de 0.05 (nuestro lpha~level)

```
# Independent samples T-test
t.test(rec1_map,rec2_map,paired = TRUE)
```

```
##
## Paired t-test
##
data: rec1_map and rec2_map
## t = -8.2521, df = 29, p-value = 4.251e-09
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.2675232 -0.1612540
## sample estimates:
## mean of the differences
## mean of the differences
```

T-test de Múltiples Pares

• En este caso es importante hacer alguna corrección, ya que al momento de

```
# multiple pair-wise t-test
t.test(rec1_map,rec2_map,paired=TRUE )
```

```
##
Paired t-test
##
data: rec1_map and rec2_map
## t = -8.2521, df = 29, p-value = 4.251e-09
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.2675232 -0.1612540
## sample estimates:
## mean of the differences
## mean of the differences
## -0.2143886
```

T-test

• xkcd: Significant

T-test de Múltiples Pares

• En este caso es importante hacer alguna corrección, ya que al momento de

```
rec3_map <- rnorm(30, mean = 0.45, sd = 0.1)
library(reshape2)
df1 <- melt(cbind(rec1_map,rec2_map,rec3_map))
df1$Var2 <- factor(df1$Var2)
# Paired samples T-test
pairwise.t.test(df1$Var2,p.adj="bonf")</pre>
```

```
##
## Pairwise comparisons using t tests with pooled SD
##
# data: dfl$value and dfl$Var2
##
## rec1_map rec2_map
## rec2_map 5.6e-12 -
## rec3_map 3.2e-15 0.35
##
## P value adjustment method: bonferroni
```

Tests alternativos no-paramétricos

Cuando no se cumplen los supuestos (normalidad) y no se puede hacer alguna corrección o relajo de ellos, debemos usar alternativas (que usualmente tienen menos poder estadístico)

- Wilcoxon rank sum test (no es el mismo que signed rank test)
- Wilcoxon Signed Rank Test: Para datos pareados

Wilcoxon Rank Sum Test

- También llamado Mann-Whitney U, Wilcoxin-Mann-Whitney test, o Wilcoxin rank sum test.
- \cdot Consiste en calcular la métrica U basada en rankear las observaciones luego de mezclar ambas muestras.

```
wilcox.test(rec1_map,rec2_map)
```

```
##
## Wilcoxon rank sum test
##
## data: recl_map and rec2_map
## W = 74, p-value = 8.315e-10
## alternative hypothesis: true location shift is not equal to 0
```

Wilcoxon Signed-Rank test

- Se basa en calcular diferencias entre pares
- La estadística de test corresponde al número de diferencias positivos o negativas
- $\cdot \,\,\, H_0$: la mediana de las diferencias entre pares es igual a zero

```
wilcox.test(rec1_map,rec2_map, paired=TRUE)
```

```
##
## Wilcoxon signed rank test
##
## data: rec1_map and rec2_map
## V = 9, p-value = 6.147e-08
## alternative hypothesis: true location shift is not equal to 0
```

ANOVA

- Técnica de análisis estadístico que permite identificar si en un grupo (n_grupos > 2) hay diferencias significativas.
- ANOVA no indica quién produce las diferencias, para eso necesitamos comparaciones post-hoc (multiple t-tests, por ejemplo)
- Hay distintas versiones de ANOVA según el diseño del experimento (whithin o between subjects) y según las combinaciones de grupos a comparar (1-way, 2-way, etc.)
- Kruskal–Wallis es la alternativa no-paramétrica de ANOVA

Referencias

- Ziegler, C. N., McNee, S. M., Konstan, J. A., & Lausen, G. (2005, May). Improving recommendation lists through topic diversification. In Proceedings of the 14th international conference on World Wide Web (pp. 22-32). ACM.
- Lathia, N., Hailes, S., Capra, L., & Amatriain, X. (2010, July). Temporal diversity in recommender systems. In Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval (pp. 210-217). ACM.
- Hu, Y., Koren, Y., & Volinsky, C. (2008, December). Collaborative filtering for implicit feedback datasets. In Data Mining, 2008. ICDM'08. Eighth IEEE International Conference on (pp. 263-272). IEEE.