Amendments to the Claims

The listing of claims will replace all prior versions, and listings of claims in the application:

Listing of claims:

Claim 1. (Currently amended) A compound of Formula I:

in which

n is selected from 0, 1, 2 and 3;

Z is selected from C and S(O); each

Y is independently selected from -CR₄= and -N=;

wherein R_4 is selected from hydrogen, cyano, hydroxyl, C_{1-6} alkyl, C_{1-6} alkoxy, halo-substituted- C_{1-6} alkyl and halo-substituted- C_{1-6} alkoxy;

- R₁ is selected from halo, cyano, hydroxyl, C₁₋₆alkyl, C₁₋₆alkoxy, halo-substituted-C₁.

 ₆alkyl, halo-substituted-C₁₋₆alkoxy and -C(O)OR₄; wherein R₄ is as-described above

 <u>selected from hydrogen, cyano, hydroxyl, C₁₋₆alkyl, C₁₋₆alkoxy, halo-substituted-C₁₋₆alkyl and halo-substituted-C₁₋₆alkoxy;</u>
- R2 is selected from C₆₋₁₀aryl, C₈₋₄₀heteroaryl; and C₃₋₁₂cycloalkyl and C₃.

 *heterocycloalkyl; wherein any aryl, heteroaryl; or cycloalkyl or heterocycloalkyl of
 R2 is optionally substituted with 1 to 5 radicals independently selected from halo,
 hydroxy, cyano, nitro, C₁₋₆alkyl, C₁₋₆alkoxy, halo-substituted-C₁₋₆alkyl, halosubstituted-C₁₋₆alkoxy, -C(O)NR₅R₅, -OR₅, -OC(O)R₅, -NR₅R₆, -C(O)R₅ and NR₅C(O)R₅;

wherein:

R₅ and R₆ are independently selected from hydrogen, C₁₋₆alkyl, C₁.

6alkoxy, halo-substituted-C₁₋₆alkyl, halo-substituted-C₁₋₆alkoxy, C₆₋₁₀aryl-C₀₋₄alkyl, G₃₋₈heteroaryl-C₀₋₄alkyl; and C₃₋₁₂cycloalkyl-C₀₋₄alkyl
and G₃₋₈heteroeyeloalkyl-C₀₋₄alkyl; or R₅ and R₆ together with the
nitrogen-atom to which R₅ and R₆ are attached form C₅₋₄₀heteroaryl-or
G₂₋₈heteroeyeloalkyl; wherein any aryl, heteroaryl; or cycloalkyl or
heteroeyeloalkyl of R₅ or the combination of R₅-and-R₆ is optionally
substituted with 1 to 4 radicals independently selected from halo,
hydroxy, cyano, nitro, C₁₋₆alkyl, C₁₋₆alkoxy, halo-substituted-C₁₋₆alkyl
and halo-substituted-C₁₋₆alkoxy;

R₃ is selected from C₆₋₁₀aryl, C₈₋₁₀heteroaryl, and C₃₋₁₂cycloalkyl and C₃₋₁

sheteroeyeloalkyl; wherein any aryl, heteroaryl, or cycloalkyl or heteroeyeloalkyl of

R₃ is substituted with 1 to 5 radicals independently selected from halo, C₁₋₆alkoxy,
halo-substituted-C₁₋₆alkyl, halo-substituted-C₁₋₆alkoxy, -OXR₇, -OXC(O)NR₇R₈,
OXC(O)NR₇XC(O)OR₈, -OXC(O)NR₇XOR₈, -OXC(O)NR₇XNR₇R₈,
OXC(O)NR₇XS(O)₀₋₂R₈, -OXC(O)NR₇XNR₇C(O)R₈,
OXC(O)NR₇XC(O)XC(O)OR₈, -OXC(O)NR₇R₉, -OXC(O)OR₇, -OXOR₇, -OXR₉,
XR₉, -OXC(O)R₉, -OXS(O)₀₋₂R₉ and -OXC(O)NR₇CR₇[C(O)R₈]₂;

wherein:

X is a selected from a bond and C₁₋₆alkylene wherein any methylene of X can optionally be replaced with a divalent radical selected from C(O), NR₇, S(O)₂ and O;

 R_7 and R_8 are independently selected from hydrogen, cyano, C_{1-6} alkyl, halo-substituted- C_{1-6} alkyl, C_{2-6} alkenyl and C_{3-12} cycloalkyl- C_{0-4} alkyl; R_9 is selected from C_{6-10} aryl- C_{0-4} alkyl, C_{5-16} heteroaryl- C_{0-4} alkyl, and C_{3-12} cycloalkyl- C_{0-4} alkyl and C_{3-8} heteroaryl- C_{0-4} alkyl; wherein any alkyl of R_9 can have a hydrogen replaced with $-C(O)OR_{10}$; and any aryl, heteroaryl, or cycloalkyl or heteroeyeloalkyl of R_9 is optionally substituted with 1 to 4 radicals independently selected from halo, C_{1-6} alkyl, C_{3-12} cycloalkyl, halo-substituted- C_{1-6} alkyl, C_{1-6} alkoxy.

halo-substituted- $C_{1\text{-}6}$ alkoxy, -XC(O)OR₁₀, -XC(O)R₁₀, -XC(O)NR₁₀, -XS(O)₀₋₂NR₁₀R₁₀ and -XS(O)₀₋₂R₁₀; wherein:

R₁₀ is independently selected from hydrogen and C₁₋₆alkyl;

and the pharmaceutically acceptable salts, hydrates, solvates and isomers thereof.

Claim 2. (Currently amended) The compound of claim 1 of Formula Ia:

in which

n is selected from 1, 2 and 3;

Y is selected from -CH= and -N=:

 R_1 is selected from halo, $C_{1\text{-}6}$ alkyl, and $-C(O)OR_4$; wherein R_4 is selected from hydrogen and $C_{1\text{-}6}$ alkyl;

R₂ is selected from C₆₋₁₀aryl, C₅₋₁₀heteroaryl, and C₃₋₁₂cycloalkyl and C₃.
₈heteroeyeloalkyl; wherein any aryl, heteroaryl, or cycloalkyl or heteroeyeloalkyl of R₂ is optionally substituted with 1 to 4 radicals independently selected from halo, hydroxy, C₁₋₆alkyl, halo-substituted-C₁₋₆alkyl and -OC(O)R₅; wherein R₅ is selected from hydrogen and C₁₋₆alkyl; and

R₃ is selected from C₆₋₁₀aryl, C₈₋₁₀heteroaryl; and C₃₋₁₂cycloalkyl and C₃.

sheteroeyeloalkyl; wherein any aryl, heteroaryl; or cycloalkyl or heteroeyeloalkyl of
R₃ is substituted with 1 to 5 radicals independently selected from halo, hydroxyl, C₁₋₆alkoxy, halo-substituted-C₁₋₆alkyl, halo-substituted-C₁₋₆alkoxy, -OXR₇,

-OXC(O)NR₂R₈, -OXC(O)NR₃XC(O)OR₈, -OXC(O)NR₃XOR₈.

-OXC(O)NR7XNR7R8, -OXC(O)NR7XS(O)0.2R8, -OXC(O)NR7XNR7C(O)R8,

Molteni et al. Application Serial No.: 10/589,087

 $-OXC(O)NR_7XC(O)XC(O)OR_8, -OXC(O)NR_7R_9, -OXC(O)OR_7, -OXOR_7, -OXR_9, \\ -XR_9, -OXC(O)R_9 \text{ and } -OXC(O)NR_7CR_7[C(O)R_8]_2;$

wherein

X is a selected from a bond and C₁₋₆alkylene;

R₇ and R₈ are independently selected from hydrogen, cyano, C₁₋₆alkyl, halo-substituted-C₁₋₆alkyl, C₂₋₆alkyl, and C₂₋₁₀cycloalkyl-C₂₋₆alkyl

halo-substituted- C_{1-6} alkyl, C_{2-6} alkenyl and C_{3-12} cycloalkyl- C_{0-4} alkyl; R_9 is selected from C_{6-10} aryl- C_{0-4} alkyl, C_{8-16} heteroaryl- C_{0-4} alkyl, and C_{3-12} cycloalkyl- C_{0-4} alkyl and C_{3-8} heteroeyeloalkyl- C_{0-4} alkyl; wherein any alkyl of R_9 can have a hydrogen replaced with $-C(O)OR_{10}$; and any aryl, heteroaryl- r_0 cycloalkyl or heteroeyeloalkyl of R_9 is optionally substituted with 1 to 4 radicals independently selected from halo, C_{1-6} alkyl, C_{3-12} cycloalkyl, halo-substituted- C_{1-6} alkyl, C_{1-6} alkoxy, halo-substituted- C_{1-6} alkoxy, -XC(O)OR₁₀, -XC(O)R₁₀, - $CR_{10}(NR_{10}R_{10})$ =NOR₁₀, -XC(O)NR₁₀R₁₀, -XS(O) $_{0-2}NR_{10}R_{10}$ and -XS(O) $_{0-2}R_{10}$;

wherein

R₁₀ is independently selected from hydrogen and C₁₋₆alkyl.

Claim 3. (Currently amended) The compound of claim 2 in which

- R₁ is selected from fluoro, chloro, methyl and -C(O)OCH₃; and
- R₂ is selected from phenyl, cyclohexyl, cyclopentyl, pyrrolyl, pyrazolyl, and naphthyl, benze[1,3]dioxolyl, thienyl, furanyl-and-pyridinyl; wherein any aryl, heteroaryl or cycloalkyl of R₂ is optionally substituted with 1 to 4 radicals independently selected from fluoro, chloro, bromo, hydroxy, methyl, ethyl, propyl, t-butyl, amino, dimethyl-amino, methoxy, trifluoromethyl, trifluoromethoxy and -OC(O)CH₃.

Claim 4. (Currently amended) The compound of claim 3 in which R_3 is selected from phenyl, benzo[1,3]dioxolyl, pyridinyl, 2,2-difluoro-benzo[1,3]dioxol-5-yl and benzooxazolyl; wherein any aryl or heteroaryl of R_3 is substituted with 1 to 5 radicals independently selected from fluoro, chloro, bromo, methoxy, hydroxyl, difluoromethoxy, -OCH₂C(O)NH₂, -OCH₂C(O)OCH₃, -OCH₂C(O)NHCH₃, -OCH₂C(O)N(CH₃)₂, -R₉, -OR₉, -OCH₂R₉, -OCH₂C(O)R₉,

Molteni et al. Application Serial No.: 10/589,087

- -OCH₂C(O)NHR₉, -OCH₂C(O)N(CH₃)R₉, -OCH₂C(O)NHCH₂R₉, -OCH₂CN, -OCH₂C₂H₃,
 -OCH₂C₂H₄, -O(CH₂)₂OH, -OCH₂C(O)NH(CH₂)₂C(O)OC₂H₅, -OCH₂C(O)NH(CH₂)₂CH₂F,
 -OCH₂C(O)NHCH₂C₄C₄C(O)NH(CH₂)₂C(O)OH,
 -OCH₂C(O)NHCH₂C₄C₄C₅C(O)NHC(D₂)₂C(O)OH₂C₄C(O)NHC(O)(CH₂)₂C(O)OCH₃,
 -OCH₂C(O)NH(CH₂)₂NHC(O)CH₃, -OCH₂C(O)NHCH₂C(O)C₂H₅,
 -OCH₂C(O)NH(CH₂)₂C(O)OC₄H₉, -OCH₂C(O)NHCH₂C(O)OC₂H₅,
 -OCH₂C(O)NHCH₂C(O)C₂H₃]₂, -S(O)₂CH₃, -OCH₂C(O)NHCH₂CF₃,
 -OCH₂C(O)NHCH₂C(O)(CH₂)₂C(O)OCH₃, -OCH₂C(O)NCH₃)CH₂C(O)OCH₃,
 -OCH₂C(O)NHCH₂C(O)C₂H₃, -OCH₂C(O)NH(CH₂)₂OCH(CH₃)₂, -OCH₂C(O)NH(CH₂)₂SCH₃,
 -OCH₂C(O)NHCH₂CH(CH₃)₂, -OCH₂C(O)NHCH(CH₃)C₂OH,
 -OCH₂C(O)NHCH₂CH(CH₃)₂, -OCH₂C(O)NHCH(CH₃)COH,
 -OCH₂C(O)NHCH₂CH(CH₃)₂ and -OCH₂C(O)NHCH(CH₃)₂;
 wherein
 - R₀ is phenyl, cyclopropyl-methyl, isoxazolyl, benzthiazolyl, furanyl, methyl, tetrahydro furanyl, pyridinyl, 4 oxo 4,5 dihydro thiazol 2 yl, pyrazolyl, isothiazolyl, 1,3,4 thiadiazolyl, thiazolyl, phenethyl, morpholino, morpholino propyl, isoxazolyl methyl, pyrimidinyl, tetrahydro pyranyl, 2-oxo 2,3 dihydro-pyrimidin 4 yl, piperazinyl, pyrrolyl, piperidinyl, pyrazinyl, imidazolyl, imidazolyl-propyl, benzo[1,3]dioxolyl, benzo[1,3]dioxolyl, benzo[1,3]dioxolyl, propyl, 2-oxo-pyrrolidin 1 yl and 2-oxo-pyrrolidin 1 yl-propyl; wherein any alkyl of R₀ can have a hydrogen replaced with C(O)OC₂H₅; wherein any aryl, heteroaryl-or heterocycloalkyl of R₀ is optionally substituted with 1 to 4 radicals independently selected from methyl, ethyl, cyclopropyl, methoxy, trifluoromethyl, -OC(O)CH₃, -COOH, -S(O)2NH₂, -CH(NH₂)=NOH, -C(O)OC₂H₅, -CH₂C(O)OH, -CH₂C(O)OC₂H₅, -CH₂C(O)OCH₃, -C(O)NH₂, -C(O)NHCH₃ and -C(O)CH₃.

Claim 5. (Original) A pharmaceutical composition comprising a therapeutically effective amount of a compound of Claim 1 in combination with a pharmaceutically acceptable excipient.

Claim 6. (Withdrawn) A method for treating a disease or disorder in an animal in which modulation of LXR activity can prevent, inhibit or ameliorate the pathology and/or symptomatology of the disease, which method comprises administering to the animal a therapeutically effective amount of a compound of Claim 1.

Claim 7. (Withdrawn) The method of claim 6 wherein the diseases or disorder are selected from cardiovascular disease, diabetes, neurodegenerative diseases and inflammation.

Claim 8. (Cancelled).

Claim 9. (Withdrawn) A method for treating a disease or disorder in an animal in which modulation of LXR activity can prevent, inhibit or ameliorate the pathology and/or symptomatology of the disease, which method comprises administering to the animal a therapeutically effective amount of a compound of Claim 1.

Claim 10. (Withdrawn) The method of claim 9 further comprising administering a therapeutically effective amount of a compound of Claim 1 in combination with another therapeutically relevant agent.

Claim 11. (New) The compound of claim1 selected from:

