Bioinformatics CS300

Blast, Substitution Matrices and Protein Alignments (Chap 4 and 5 in textbook)

Fall 2019
Oliver BONHAM-CARTER

Pneumonia

- Pneumonia is an infection that inflames the air sacs in one or both lungs. The air sacs may fill with fluid or pus (purulent material), causing cough with phlegm or pus, fever, chills, and difficulty breathing. A variety of organisms, including bacteria, viruses and fungi, can cause pneumonia.
- A classic sign of bacterial pneumonia is a cough that produces thick, blood-tinged or yellowish-greenish sputum with pus.

Human Pathogen Inquiry: The *ermB* gene

 An erythromycin-resistance gene from Streptococcus agalactiae, a gram-positive bacterial species commonly associated with the udders of cows, causing mastitis (i.e., inflammation of breast tissue that sometimes involves an infection and may cause fever)

Pneumonia and ermB

- Drug resistant: Erythromycin is a macrolide antibiotic used to treat bacterial infections
- Resistance is due to the *ermB* gene which has been noted in the bacteria, *Streptococcus* pneumonia – a common cause of bacterial pneumonia.

Horizontal Gene Transfer?

- This type of pneumonia is not believed to have always been resistant to drugs.
- Could the resistance gene have come from another bacteria via HGT?
- How could we check what other bacterial organisms have a specific allele for the gene that effectively resists drugs?
- We will use Blast for this task.

BLAST

BLAST

BLAST

- Locate the Accession number, DQ355148.1, on http://www.pubmed.gov
- Streptococcus agalactiae strain KMP104 transposon Tn917 rRNA methylase (ermB) gene, complete cds

https://www.ncbi.nlm.nih.gov/nuccore/87042723/

GenBank -

Send to: -

Streptococcus agalactiae strain KMP104 transposon Tn917 rRNA methylase (ermB) gene, complete cds

GenBank: DQ355148.1

FASTA Graphics

Go to: 🔽

LOCUS DQ355148 738 bp DNA linear BCT 13-FEB-2006

DEFINITION Streptococcus agalactiae strain KMP104 transposon Tn917 rRNA

methylase (ermB) gene, complete cds.

ACCESSION DQ355148 VERSION DO355148.1

KEYWORDS

SOURCE Streptococcus agalactiae
ORGANISM Streptococcus agalactiae

Bacteria; Firmicutes; Bacilli; Lactobacillales; Streptococcaceae;

Streptococcus.

REFERENCE 1 (bases 1 to 738)

AUTHORS Puopolo, K.M., Klinzing, D.C., Lin, M.P., Yesucevitz, D.L. and

Cieslewicz, M.J.

TITLE A Composite Transposon Responsible for ErmB-Mediated Erythromycin

Resistance in Group B Streptococcus

JOURNAL Unpublished

REFERENCE 2 (bases 1 to 738)

AUTHORS Puopolo, K.M., Klinzing, D.C., Lin, M.P., Yesucevitz, D.L. and

Cieslewicz,M.J.

TITLE Direct Submission

JOURNAL Submitted (06-JAN-2006) Channing Laboratory, Brigham and Women's

Hospital, 181 Longwood Avenue, Boston, MA 02115, USA

Get the FASTA file: "send to"

"FASTA"

GenBank -

Streptococcus agalactiae strain KMP104 transposon Tn917 rRNA (ermB) gene, complete cds

GenBank: DQ355148.1

FASTA Graphics

Go to: ✓

LOCUS DQ355148 738 bp DNA linear BCT 13-FEB-2006

DEFINITION Streptococcus agalactiae strain KMP104 transposon Tn917 rRNA

methylase (ermB) gene, complete cds.

ACCESSION DQ355148 VERSION DQ355148.1

KEYWORDS

SOURCE Streptococcus agalactiae
ORGANISM Streptococcus agalactiae

Bacteria; Firmicutes; Bacilli; Lactobacillales; Streptococcaceae;

Streptococcus.

REFERENCE 1 (bases 1 to 738)

AUTHORS Puopolo, K.M., Klinzing, D.C., Lin, M.P., Yesucevitz, D.L. and

Cieslewicz, M.J.

TITLE A Composite Transposon Responsible for ErmB-Mediated Erythromycin

Resistance in Group B Streptococcus

JOURNAL Unpublished

REFERENCE 2 (bases 1 to 738)

AUTHORS Puopolo, K.M., Klinzing, D.C., Lin, M.P., Yesucevitz, D.L. and

Cieslewicz, M.J.

TITLE Direct Submission

JOURNAL Submitted (06-JAN-2006) Channing Laboratory, Brigham and Women's

Hospital, 181 Longwood Avenue, Boston, MA 02115, USA

Send to: -

Recent activity

PubMed (Weighte

Taxonomy

https://blast.ncbi.nlm.nih.gov/Blast.cgi

BLAST results will be displayed in a new format by default You can always switch back to the Traditional Results page.

collection (nr/nt)

Choose Search Set

Database

Human genomic + transcript Mouse genomic + transcript Others (1)

Nucleotide collection (nr/nt)

Results

Descriptions Graphic Summary Alignments Taxonomy 100 🗸 **Download** Y Manage Columns Y Show Sequences producing significant alignments select all 100 sequences selected Distance tree of results GenBank **Graphics** Query Е Max Total Per. Description Accession Score Score Cover value Ident **~** Staphylococcus aureus strain VGC1 chromosome, complete genome 1363 1363 100% 0.0 100.00% CP039448.1 100% 100.00% Enterococcus durans strain VREdu plasmid pSULI, complete sequence 1363 1363 0.0 CP043327.1 **~** 100.00% CP042597.1 1363 100% Enterococcus durans strain VREdu chromosome 1363 0.0 Enterococcus faecalis EnGen0107 strain B594 plasmid p2, complete sequence 1363 1363 100% 0.0 100.00% CP041740.1 ***** Enterococcus faecalis strain 4928STDY7071263 genome assembly, chromosome: 1 1363 1363 100% 0.0 100.00% LR607346.1 **~** Enterococcus faecium strain N56454 plasmid unnamed, complete sequence 1363 1363 100% 0.0 100.00% CP040905.1 V 1363 100% 100.00% 1363 0.0 CP034168.1 Enterococcus avium strain 352 plasmid unnamed, complete sequence **~** Listeria monocytogenes hypothetical protein, IS1216 transposase, 3-aminoglycoside o-phosp 1363 1363 100% 0.0 100.00% MK490828.1 1363 100% 100.00% LR536659.1 Enterococcus faecium isolate E8407 genome assembly, plasmid: 2 1363 0.0 **V** Enterococcus faecium SMVRE20 plasmid pSMVRE20S DNA, complete genome 1363 1363 100% 0.0 100.00% AP019410.1 Enterococcus faecium strain 37BA plasmid pEf37BA, complete sequence 1363 1363 100% 0.0 100.00% MG957432.1 Enterococcus faecium strain FSIS1608820 plasmid pFSIS1608820, complete sequence 1363 2668 100% 0.0 100.00% CP028728.1 Streptococcus pneumoniae isolate GPS HK 21-sc-2296565 genome assembly, chromosome 1363 1363 100% 0.0 100.00% LR216058.1 Synthetic construct clone pEP1237, complete sequence 1363 1363 100% 0.0 100.00% MH626525.1

Scores

Max Score

- The score of the best matching segment for local alignment, not global

Total Score

 The total scores of all matching segments found (same as max score if there is only one matching segment)

Query Coverage

- The percentage of the query sequence that aligned to some part of the match.

E-Value

 A statistical measure evaluating how likely it is that a match this good could occur by chance. Lower e-scores indicate that both sequences are truly similar and are not similar by chance alone. Identical sequences have e-scores of zero.

Max Indent

- The percentage of nucleotides that are identical between the query and the target sequences within the matching regions.

Results

Descriptions	Graphic Sur	nmary	Α	lignments	Ta	axonomy				
♠ hover to see the t	itle 🗼 click to sh	ow alignmen	nts	Alignment Sc	ores	< 40	40 - 50	50 - 80	80 - 200	>=
100 sequences sele	cted 😯									
		Distrib	utio	on of the to	p 111	l Blast H	its on 100) subject	sequences	
		1 1	I 100	I 200] 300	Query 400	I 500	I 600	I 700	

Results

Streptococcus suis strain SC216 ICESsuSC216 sequence

Sequence ID: MK359991.1 Length: 54396 Number of Matches: 2

	Range 1	ange 1: 15998 to 16451 GenBank Graphics									
	Score			Expect	Identities		Gaps	Strand			
	839 bits	s(454)	0.0	454/454(10	0%)	0/454(0%)	Plus/Plus			
	Query	1	1	AACAGGTAACG	TGAAT	TAGACAGTCA	TCTATTCAAC	TTATCGTCAGAAA <i>I</i>			
An Id	entica	J	00	TAACO	TCTATTGAAT	TAGACAGTCA	TCTATTCAAC	TTATCGTCAGAAAA			
seque anot	ence ir her's		58					CAGTTTCAATTCCC1 CAGTTTCAATTCCC1			
gen	ome			AACAGAGGTAT	AAAATTGTTG	GGAATATTCC	TTACCATTTA	AGCACACAAATTATI			
	Sbjct	161	18	AACAGAGGTAT	AAAATTGTTG	GGAATATTCC	TTACCATTTA	AGCACACAAATTATI			
	Query	181		AAGTGGTTTT	GAAAGCCGTG	CGTCTGACAT	CTATCTGATT	GTTGAAGAAGGATT(
	Sbjct	161	78	AAGTGGTTTT	GAAAGCCGTG	CGTCTGACAT	CTATCTGATT	GTTGAAGAAGGATT(
	Query	241		AGCGTACCTTC	GATATTCACC	GAACACTAGG	GTTGCTCTTG	CACACTCAAGTCTCC			
	Sbjct	162	38	AGCGTACCTTC	GATATTCACC	GAACACTAGG	GTTGCTCTTG	CACACTCAAGTCTC			
	Query	301		AGCAATTGCTT	AAGCTGCCAG	CGGAATGCTT	TCATCCTAAA	CCAAAAGTAAACAG1			
	Sbjct	162	98	AGCAATTGCT	AAGCTGCCAG	CGGAATGCTT	TCATCCTAAA	CCAAAAGTAAACAGI			

Back to HGT?

- Typically, researchers allow for a 95% similarity between genes found between *unrelated* organisms.
- Here, we may conclude that HGT is a good hypothesis but more research must be done to determine whether there was a chance for two organisms to be close enough to each other to share genetic material.

- Investigate a gene of resistance: ermA
- Questions:
 - What does this gene do? (hint: see Genbank record)
 - About how many other organisms appear to have traces of the same gene sequence?
 - What is the closest match? Which organism? What e-score?

GitHub Activity Repository:

https://classroom.github.com/a/DuBJW7yi

Due at 12:15 on 17 Oct. 2019

Make a directory: act1

Workfile: act1/blastWork.md

The central dogma of molecular biology

polar

More About Silent Mutations

 Redundant codons mean ~1/3 of DNA mutations often do not alter protein sequence

https://en.wikipedia.org/wiki/Silent_mutation

Silent Mutations

- Are these mutations really so subtle?
- Are there dangers involved?
 - While the protein may be fine, the RNA has still has dangerous folding issues
- Nature: Silent Mutations Speak Up: Overlooked genetic changes could impact on disease
 - http://www.nature.com/news/2006 /061221/full/news061218-12.html

Third letter

Second letter

	U	С	Α	G	
U	UUU } Phe UUA } Leu UUG }	UCU UCC Ser UCA UCG	UAU Tyr UAC Stop UAG Stop	UGU Cys UGC Stop UGG Trp	U C A G
С	CUU CUC CUA CUG	CCU CCC Pro	CAU His CAC Gln CAG	CGU CGC CGA CGG	U C A G
Α	AUU AUC Blle AUA AUG Met	ACU ACC ACA ACG	AAU ASn AAA AAA Lys	AGU Ser AGA Arg	U C A G
G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp GAC Asp GAA Glu	GGU GGC GGA GGG	U C A G

First letter

Alphabetical Interests

- With a larger protein "alphabet" (20 amino acids), it is much less likely to get matches by chance.
- Matches are likely to be statistically significance
- Amino acid changes are not equally harmful to protein structure
 - Chemical complexes being replaced by similar chemical complex.
 - Ex: Arginine (Arg) and Lysine (Lys)

Amino Acid Substitutions

Amino Acid Components

- Similarity of amino acids means
 - Similar physicochemical properties (Physics + chemistry)
 - Polar vs nonpolar
 - Hydrophobic vs hydrophilic
 - Positive electric charge vs negative electric charge
 - Basic vs Acidic
- Amino Acid Table: http://www.bio.davidson.edu/courses/genomics/jmol/aatable.html
- Roles in Protein Structures
- http://www.proteinstructures.com/Structure/Structure/amino-acids.html

Amino Acids Determine Protein's Shape and Function

The hierarchy of protein structure. Public domain image from The National Genome Research Institute

Scoring Amino Acid Substitutions

 Could we quantify sequence by physicochemical properties? (yes!)

Table 5.1 Hydrophobicity values for the 20 amino acids. A more positive value represents a more hydrophobic amino acid.

Amino Acid	Hydrophobicity	Amino Acid	Hydrophobicity	Amino Acid	Hydrophobicity
D	-3.5	Υ	-1.3	1	4.5
K	-3.9	N	-3.5	С	2.5
Н	-3.2	L	3.8	А	1.8
T	-0.7	E	-3.5	S	-0.8
V	4.2	R	-4.5	G	-0.4
F	2.8	W	-0.9	Р	-1.6
М	1.9	Q	-3.5		

Scoring Amino Acid Substitutions

Better to study evolution of real proteins from <u>closely</u> related organisms

Minimizes likelihood that an observed difference represents a series of more than one individual mutations

Species A – Ala

Species B – Ile

No intermediate mutations?

Ala --> Ile : 1 mutation

Ala --> Pro --> Ser --> lle : 3 mutations

A few intermediate mutations?

A Model of Evolutionary Change in Proteins, Dayhoff et al., 1978

Global Pairwise Alignment

Observed frequency of each possible amino acid substitution:

$$10 \log_{10} \left(M_{ij} / f_j \right)$$

- M_{ij} the probability of a mutation replacing amino i with j
- f_j the frequency of amino acid j in a large set of sequences

A Model of Evolutionary Change in Proteins, Dayhoff et al., 1978

Global Pairwise Alignment

Observed frequency of each possible amino acid substitution:

$$10 \log_{10} \left(M_{ij} / f_j \right)$$

Odds ratio

- = 1 substitution of j for i is no more likely than the chance of finding j randomly
- > 1 substitution is evolutionarily conserved
- < 1 substitution is selected against

A Model of Evolutionary Change in Proteins, Dayhoff et al., 1978

Global Pairwise Alignment

Observed frequency of each possible amino acid substitution:

 $10 \log_{10} \left(M_{ij} / f_j \right)$

log-odds ratio – easier for scoring

Greater positive for likely (conservative) substitutions

Greater negative for unlikely (non-conservative) substitutions

Multiplied by 10 and rounded to nearest integer

The PAM Matrix

65			Α	R	N	D	С	Q	Е	G	Н	1	L	K	М	F	Р	S	Т	W	Υ	١
	Ala	Α	2																			
	Arg	R	-1	5																		
	Asn	N	0	0	3																	
,	Asp	D	0	-1	2	5																
	Cys	С	-1	-1	-1	-3	11			ļ.						0 //						
	Gln	Q	-1	2	0	1	-3	5														
	Glu	Е	-1	0	1	4	-4	2	5													
	Gly	G	1	0	0	1	-1	-1	0	5												
	His	Н	-2	2	1	0	0	2	0	-2	6											
	lle	1	0	-3	-2	-3	-2	-3	-3	-3	-3	4										
	Leu	L	-1	-3	-3	-4	-3	-2	-4	-4	-2	2	5									
	Lys	K	-1	4	1	0	-3	2	1	-1	1	-3	-3	5								
	Met	М	-1	-2	-2	-3	-2	-2	3	3	-2	3	3	-2	6							
	Phe	F	-3	-4	-3	-5	0	-4	- 5	-5	0	0	2	-5	0	8						
	Pro	Р	1	-1	-1	-2	-2	0	-2	-1	0	-2	0	-2	-2	-3	6					
	Ser	S	1	-1	1	0	1	-1	-1	1	-1	-1	-2	-1	-1	-2	1	2				
	Thr	Т	2	-1	1	-1	-1	-1	-1	-1	-1	1	-1	-1	0	-2	1	1	2			
	Trp	W	-4	0	-5	- 5	1	-3	– 5	-2	-3	-4	-2	-3	-3	-1	-4	-3	-4	15		
	Tyr	Υ	-3	-2	-1	-2	2	-2	-4	-4	4	-2	-1	-3	-2	5	-3	-1	-3	0	9	
	Val	٧	1	-3	-2	-2	-2	-3	-2	-2	-3	4	2	-3	2	0	-1	-1	0	-3	-3	

PAM matrices

- Point Accepted Mutation
- Family of matrices PAM 1, PAM 80, PAM 120, PAM 250
- The number in the name of a PAM matrix (i.e., the 'n' in PAM n) represents the evolutionary distance between the sequences on which the matrix is based

BLOSUM 80

PAM 1

PAM 120

PAM 250

Less divergent

More divergent

PAM vs BLOSUM

- General Use
 - PAM 120
 - BLOSUM 62*
- Closely Related Species
 - PAM 60
 - BLOSUM 80
- Distantly Related Species
 - PAM 250
 - BLOSUM 45

PAM	BLOSUM
PAM100	BLOSUM90
PAM120	BLOSUM80
PAM160	BLOSUM60
PAM200	BLOSUM52
PAM250	BLOSUM45

*BLOSUM 62 – used by BLAST – computed by choosing blocks of local alignments more than 62% identical

Blast Subst Matrices

- Scoring for possible residue pair alignment
- Different substitution matrices are for detecting similarities according to degrees of divergence.
- BLOSUM-62 matrix good for detecting most weak protein similarities
- Provisional table of recommended substitution matrices and gap costs for various query lengths is

Query Length	Substitution Matrix	Gap Costs
<35	PAM-30	(9,1)
35-50	PAM-70	(10,1)
50-85	BLOSUM-80	(10,1)
85	BLOSUM-62	(10,1)

BLOSUM matrix Heinkoff and Heinkoff, 1992

BLOcks SUbstition Matrix - Blocks of local alignments

$$S_{ij} = \left(\frac{1}{\lambda}\right) \log \left(\frac{p_{ij}}{q_i * q_j}\right)$$

- p_{ii} probability j replacing i
- q_i and q_j probabilities of finding the amino acids i and j in any protein sequence
- λ scaling factor, set such that the matrix contains easily computable integer values.
- BLOSUM # # = minimum % similarity of sequences compared

- Create N x M matrix
- Place each sequence along one axis
- Place score 0 at the up-left corner
- Fill in 1st row & column with gap penalty multiples
- Fill in the matrix with max value of 3 possible moves:
 - Vertical move: Score + gap penalty
 - Horizontal move: Score + gap penalty
 - Diagonal move: Score + match/mismatch score
- The optimal alignment score is in the lower-right corner
- To reconstruct the optimal alignment, trace back where the max at each step came from, stop when hit the origin.

Needleman-Wunsch Algorithm: Protein Alignment – Chap 5

- Create N x M matrix
- Place each sequence along one axis
- Place score 0 at the up-left corner
- Fill in 1st row & column with gap penalty multiples
- Fill in the matrix with max value of 3 possible moves:
 - Vertical move: Score + gap penalty
 - Horizontal move: Score + gap penalty
 - Diagonal move: Score + match/mismatch score from sub. matrix
- The optimal alignment score is in the lower-right corner
- To reconstruct the optimal alignment, trace back where the max at each step came from, stop when hit the origin.

Blast-Off!!

- Let's blast some protein sequences
- https://blast.ncbi.nlm.nih.gov/Blast.cgi#dtr_Query_98931

