

IN THE CLAIMS

The current status of the claims is as follows:

1 1. (Original) For use in an integrated circuit of the type comprising at least two power
2 supply domains in which each power supply domain comprises at least one module powered by the
3 same voltage level, an apparatus for blocking an output signal in a first power supply domain from
4 being sent to a second power supply domain when said second power supply domain is in a low
5 power mode.

1 2. (Original) The apparatus as claimed in Claim 1 wherein said apparatus comprises:
2 a power sense cell within said integrated circuit, said power sense cell capable of determining
3 whether said second power supply domain is in a low power mode, and
4 a logic circuit capable of blocking said output signal in said first power supply domain from
5 being sent to said second power supply domain when said power sense cell determines that said
6 second power supply domain is in a low power mode.

1 3. (Original) The apparatus as claimed in Claim 2 wherein said logic circuit comprises
2 an AND gate having as a first input said output signal of said first power supply domain, and having
3 as a second input a signal from said power sense cell.

1 4. (Original) The apparatus as claimed in Claim 2 wherein said power sense cell is
2 located within said first power supply domain.

1 5. (Original) The apparatus as claimed in Claim 2 wherein said power sense cell
2 comprises a Schmitt trigger circuit.

1 6. (Original) The apparatus as claimed in Claim 2 further comprising an apparatus for
2 synchronizing blocked clock signals to prevent clock signals from being shortened by a signal from
3 said power sense cell.

- 1 7. (Original) The apparatus as claimed in Claim 6 wherein said apparatus comprises:
- 2 a first D flip flop circuit having as one input a signal from said power sense cell, and having
- 3 as a second input a clock signal;
- 4 a second D flip flop circuit having as one input an output signal from said first D flip flop
- 5 circuit, and having as a second input said clock signal; and
- 6 an AND gate having as one input an output signal from said second D flip flop circuit, and
- 7 having as a second input said clock signal.

1 8. (Original) For use in an integrated circuit of the type comprising at least two power
2 supply domains in which each power supply domain comprises at least one module powered by the
3 same voltage level, an apparatus for blocking an output signal in a first power supply domain from
4 being received in a second power supply domain when said first power supply domain is in a low
5 power mode.

1 9. (Original) The apparatus as claimed in Claim 8 wherein said apparatus comprises:
2 a power sense cell within said integrated circuit, said power sense cell capable of determining
3 whether said first power supply domain is in a low power mode, and
4 a logic circuit capable of blocking said output signal from said first power supply domain
5 from being received in said second power supply domain when said power sense cell determines that
6 said first power supply domain is in a low power mode.

1 10. (Original) The apparatus as claimed in Claim 9 wherein said logic circuit comprises
2 an AND gate having as a first input said output signal from said first power supply domain, and
3 having as a second input a signal from said power sense cell.

1 11. (Original) The apparatus as claimed in Claim 9 wherein said power sense cell is
2 located within said second power supply domain.

1 12. (Original) The apparatus as claimed in Claim 9 wherein said power sense cell
2 comprises a Schmitt trigger circuit.

1 13. (Original) The apparatus as claimed in Claim 9 further comprising an apparatus for
2 synchronizing blocked clock signals to prevent clock signals from being shortened by a signal from
3 said power sense cell.

- 1 14. (Original) The apparatus as claimed in Claim 13 wherein said apparatus comprises:
- 2 a first D flip flop circuit having as one input a signal from said power sense cell, and having
- 3 as a second input a clock signal;
- 4 a second D flip flop circuit having as one input an output signal from said first D flip flop
- 5 circuit, and having as a second input said clock signal; and
- 6 an AND gate having as one input an output signal from said second D flip flop circuit, and
- 7 having as a second input said clock signal.

1 15. (Original) For use in an integrated circuit of the type comprising at least two power
2 supply domains in which each power supply domain comprises at least one module powered by the
3 same voltage level, a method for blocking an output signal in a first power supply domain from being
4 sent to a second power supply domain when said second power supply domain is in a low power
5 mode, said method comprising the steps of:

6 sensing with a power sense cell when said second power supply domain is in a low power
7 mode; and

8 blocking said output signal in said first power supply domain from being sent to said second
9 power supply domain when said power sense cell determines that said second power supply domain
10 is in a low power mode.

1 16. (Original) The method as claimed in Claim 15 wherein the step of blocking said
2 output signal in said first power supply domain from being sent to said second power supply domain
3 comprises the steps of:

4 sending said output signal in said first power supply domain to a first input of an AND gate;
5 and
6 sending a signal from said power sense cell to a second input of said AND gate.

1 17. (Original) The method as claimed in Claim 15 wherein said power sense cell is
2 located in within said first power supply domain.

1 18. (Original) The method as claimed in Claim 15 wherein said power sense cell
2 comprises a Schmitt trigger circuit.

1 19. (Original) The method as claimed in Claim 15 further comprising the step of:
2 synchronizing blocked clock signals to prevent clock signals from being shortened by a signal
3 from said power sense cell.

1 20. (Original) For use in an integrated circuit of the type comprising at least two power
2 supply domains in which each power supply domain comprises at least one module powered by the
3 same voltage level, a method for blocking an output signal in a first power supply domain from being
4 received in a second power supply domain when said first power supply domain is in a low power
5 mode, said method comprising the steps of:

6 sensing with a power sense cell when said first power supply domain is in a low power mode;
7 and

8 blocking said output signal in said first power supply domain from being received in said
9 second power supply domain when said power sense cell determines that said first power supply

1 domain is in a low power mode.

1 21. (Original) The method as claimed in Claim 20 wherein the step of blocking said
2 output signal in said first power supply domain from being received in said second power supply
3 domain comprises the steps of:

4 sending said output signal from said first power supply domain to a first input of an AND
5 gate; and
6 sending a signal from said power sense cell to a second input of said AND gate.

1 22. (Original) The method as claimed in Claim 20 wherein said power sense cell is
2 located in within said second power supply domain.

1 23. (Original) The method as claimed in Claim 20 wherein said power sense cell
2 comprises a Schmitt trigger circuit.

1 24. (Original) The method as claimed in Claim 20 further comprising the step of:
2 synchronizing blocked clock signals to prevent clock signals from being shortened by a signal
3 from said power sense cell.