		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 111,1093 (2010)	3-Mar-2009

 $Q(\beta^-)=-5175\ 3;\ S(n)=11058.6\ 10;\ S(p)=8924.6\ 10;\ Q(\alpha)=-4578.1\ 8$ 2012Wa38 Note: Current evaluation has used the following Q record -5175 3 11058.9 108924.5 10-4578.1 8 2009AuZZ,2003Au03. Additional information 1.

⁶⁶Zn Levels

Configuration: configurations used in DWBA analysis of $(\alpha,^2\text{He})$, $(^{12}\text{C},^{10}\text{C})$, and $(^{12}\text{C},^{10}\text{Be})$ data.

Cross Reference (XREF) Flags

				Cro	oss Reference (Ar	(EF) Flags		
	A ${}^{66}\text{Cu }\beta^- \text{ decay}$ B ${}^{66}\text{Ga }\varepsilon \text{ decay}$ C ${}^{64}\text{Ni}(\alpha,2n\gamma), {}^{55}\text{Mn}({}^{14}\text{N},2pn)$ D ${}^{66}\text{Zn}(p,p')$ E ${}^{66}\text{Zn}(p,p'\gamma)$ F ${}^{66}\text{Zn}(p,p'\gamma)$ G ${}^{65}\text{Cu}(p,\gamma)$ H ${}^{66}\text{Zn}(n,n'\gamma)$ I ${}^{65}\text{Cu}(p,n), (p,n\gamma) \text{ IAR}$ J ${}^{63}\text{Cu}(\alpha,p), (\alpha,p\gamma)$			K L M N O P Q R S T	69 Ga(p,α) 65 Cu(d,n) 67 Zn(p,d) 68 Zn(p,t) 64 Zn(t,p) 65 Cu(3 He,d) 66 Zn(α,α') Inelastic scatter 66 Zn(e,e') 66 Zn(α,α'γ), (32		U V W X Y Z Othe AA AB AC	Coulomb excitation 67 Zn(d,t) 62 Ni(6 Li,d) 64 Ni(16 O, 14 C) 64 Ni(3 He,n) 65 Cu(α ,t) rs: 64 Zn(α , 2 He) 64 Ni(12 C, 10 Be), 64 Zn(12 C, 10 C) 63 Cu(6 He,p2n γ)
E(level) [†]	_Τ π‡	* T _{1/2} ‡		XRE	(F			Comments
0.0	$\frac{1}{0^{+}}$	stable	ABCDEFGHI			XREF: O	thers:	
0.0 1039.2279 <i>21</i>	0 ⁺ 2 ⁺		XREF ABCDEFGHIJKLMNOPQRSTUVWXYZ BCDEFGH JKLMNOPQRSTUVWX Z		XREF: Others: AA, AB, AC Configuration= $(v f_{5/2}0^+)$ XREF: Others: AA, AB, AC μ =+0.80 8 ; μ =+0.9 2 (2005St24); Q=+0.24 8 (2003Ko51) μ =+0.80 8 , transient field integral perturbed angular correlation (tf) (2002Ke02). μ =+1.06 10 , transient field integral perturbed angular correlation (tf) (2004An14). μ =+0.9 2 , perturbed angular correlation after ion implantation (IMPAC) (1979Fa06). Q: from Coulomb excitation (2003Ko51). Other: +0.24 9 (2020Ro06, from Coul. ex., preliminary value as stated by authors). Comment added March 30, 2021 by B. Singh. T _{1/2} : weighted average of 1.73 ps 7 DSAM (2006Le24), 1.68 ps 3 DSAM (2002Ke02), 1.61 ps 10 Coul ex. (2003Ko51), 1.74 ps 11 66 Zn(γ , γ) (1998Ba02,1981Ca10,1972Ka22,1972ArZD,1967Be39), 1.56 ps 10 Coul ex. (1973Fi15), 1.66 ps 10 66 Zn(α , γ) (1977Ne05). Other measurements: 1.3 ps 10 10 Coul ex. (1974Iv01), 1.5 ps 10 10 10 Coul ex. (1974Iv01), 1.5 ps 10 10 10 10 10 Coul ex. (1974Iv01), 1.5 ps 10 10 10 10 10 10 10 10			
1872.7653 24	2+	0.19 ^a ps 7	ABCDEFGH	JKLM	OPQRSTU VWX	Isotope si XREF: O $T_{1/2}$: oth	hift: < thers: ers: <	53En06). $r^2 > \frac{1}{2} = 3.9496 \ 13 \ (2004An14)$. AB , AC 1.4 ps from $(\alpha, \alpha' \gamma)$, and 0.83 ps $+35-21$ $2n\gamma$), 1.7 ps 5 (2003Ko51).

2372.353 4 0+ >0.21 ps AB DEFGH K1 OP $T_{1/2}$: from $(n,n'\gamma)$; other: <60 ps from 2451.01 5 4+@ 0.34 ps 5 CD FGH JK1M OPQR TUVW XREF: Others: AB, AC J^{π} : 4 from $\gamma(\theta)$ in 64 Ni $(\alpha,2n\gamma)$; π from 2^+ . $T_{1/2}$: weighted average of 0.19 ps 6 (α)	
2451.01 5 4+@ 0.34 ps 5 CD FGH JK1M OPQR TUVW XREF: Others: AB, AC $J^{\pi}: 4 \text{ from } \gamma(\theta) \text{ in } ^{64}\text{Ni}(\alpha,2\text{n}\gamma); \pi \text{ from } 2^{+}.$ $T_{1/2}: \text{ weighted average of } 0.19 \text{ ps } 6 (\alpha)$	
J ^{π} : 4 from $\gamma(\theta)$ in ⁶⁴ Ni(α ,2n γ); π from 2 ⁺ . T _{1/2} : weighted average of 0.19 ps 6 (α	E2 γ to
$T_{1/2}$: weighted average of 0.19 ps 6 (α	
14 Coul ex. (2006Le24), and 0.35 ps (2003Ko51). Others: 0.83 ps +42-28 from (α,2nγ), (α,pγ), 0.17 ps +5-3 from (n,n'γ), a	2 Coul. ex. 0.19 ps 6 from
from $(\alpha, \alpha' \gamma)$. μ =+2.6 δ , transient field integral pertur correlation (tf) (2004An14).	-
μ =+2.6 8, from γ -factor=+0.65 20 in 6	Coul. ex.
2703.6 4 (3) CD FGH K VW E(level): possible doublet indicated by	conflicting
parity measurements. J^{π} : $(1^-,3^-)$ from proton-capture yield in $(2^-,3^-)$ from L= (0) for a level at 270 (3^+) from Hauser-Feshbach analysis	04 in 67 Zn(d,t);
2762.8 6 (2) E J^{π} : from $\gamma(\theta)$ in 66 Zn (γ, γ') .	ш 2п(р,р).
2765.56 7 4 ⁺ >7 ps CD FGH JK mm U XREF: Others: AC	
J^{π} : 4 from $\gamma(\theta)$ in 64 Ni $(\alpha, 2n\gamma)$; π from	
$T_{1/2}$: by DSA from 64 Ni(α ,2n γ). Other DSA from 63 Cu(α ,p γ).	r: >2.1 ps by
2780.157 7 2 ⁺ 0.26 ps 7 B DEFGH K mnOp V $T_{1/2}$: weighted average of 0.25 ps 8 fro 0.28 ps 14 from $(n,n'\gamma)$.	om (γ, γ') and
2826.69 5 $3^{-@}$ 0.180 ps 7 BCD FGH JK OpQRSTU WX Z XREF: Others: AB, AC $T_{1/2}$: From Coul. ex. (2006LeZU).	
T _{1/2} : Others: 0.18 ps 4 from 66 Zn(α , α) 14 from 63 Cu(α ,p γ), and 0.17 ps 4 fr Other: 1.0 ps +6-3 from 64 Ni(α ,2n γ) μ =+2.1 9, transient field integral perture correlation (tf) (2004An14). μ =+2.1 9, from γ -factor=+0.7 3 in Co	from $(n, n'\gamma)$. The angular
2938.074 3 2 ⁺ 0.044 ps 16 B DEFGH JKLM OP V $T_{1/2}$: unweighted average of 0.06 ps 5 and 0.028 ps 3 from $(n,n'\gamma)$.	from $(\alpha, p\gamma)$
3030 (0^+) \mathbb{W} \mathbb{J}^{π} : from $\mathbb{L}(^6\mathrm{Li}, \mathrm{d}) = (0)$.	
3077.73 23 4 ⁺ 1.04 ps 7 CD FGH JK M OPQR TUV XREF: Others: AB, AC	
Configuration= $(\pi f_{5/2}4^+)$ $T_{1/2}$: Coul. ex. (2006Le24).	
$T_{1/2}$: 1.7 ps +10-3 in ⁶⁴ Ni(α ,2n γ), 0.5 (α ,p γ), 0.13 ps +56-10 in (α , α ' γ), a +5-3 in (n,n' γ).	6 ps +3-2 in and 0.09 ps
3105.040 4 0 ⁺ B DEFGH K O	
3212.582 8 2^+ 0.083 ps $+21-14$ B DEFGH K m 0 $T_{1/2}$: from DSAM in $(n,n'\gamma)$. 3226.2 11 DE K m R	
3228.885 3 1 0.12 ps 3 B D FGH K P V $T_{1/2}$: from DSAM in $(n,n'\gamma)$. J^{π} : from log $fi=6.14$ 4 in ε decay from 0^+ ; $\pi=+$ from M1,E2 to 2^+ .	0^+ and γ to
3241.2? 11 E	
3331.441 6 2+ 0.083 ps +21-14 B DEFGH KLm 0 R V $T_{1/2}$: from DSAM in $(n,n'\gamma)$.	
3380.944 4 1 20 fs 5 B DEFGH K p V $T_{1/2}$: other: 42 fs +21-14 from DSA in J^{π} : 1 from $\gamma(\theta)$ in 66 Zn(γ,γ'); π from L	

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	XREF	Comments
3427.406 <i>18</i> 3432.408 <i>4</i>	1,2 ⁻ 1 ⁻	30 fs +19-8	B GH p B DEFGH K R	J ^{π} : log ft =8.9 I from ε decay from 0 ⁺ ; γ to 2 ⁺ . J ^{π} : 0,1,2 ⁻ from log ft =7.03 4 in ε decay from 0 ⁺ ; J=0 ruled out by γ to 0 ⁺ , J^{π} =2 ⁻ ruled out by T _{1/2} ; π =(-) from L(p,p')=(1).
3507.249 <i>23</i> 3523.6 <i>8</i> 3531.692 <i>14</i>	2 ⁺ 0 ⁺		B DEFGH K m V CD FG K m o B DEFG K o	$J^{\pi} \colon L(p,p')=2.$
3576.370 22 3670.72 <i>5</i>	4 ⁺ 2 ⁺		B DEFGH K R B D GH K m OP	$J^{\pi} \colon L(p,p') = 4.$
3689.01 <i>16</i> 3709.4 <i>3</i> 3725.3 <i>5</i>	1 ⁺ ,2 ⁺ ,3 ⁺ (5)	$0.6^a \text{ ps } +6-2$	D G KLm V CD G JK D F K	J ^π : L(d,t)=L(d,n)=1. J ^π : from $\gamma(\theta)$ in ⁶⁴ Ni(α ,2n γ).
3731.6 <i>5</i> 3738.207 <i>21</i>	+	14 fs 2	G B DEFGH K O	Lower J^{π} member of a $J^{\pi}=(2^+)+(4^+)$ level doublet at 3737 10 reported in 64 Zn(t,p). J^{π} : $J^{\pi}=(2^+)$ from L(t,p)=(2) not adopted for this lower J^{π} member of 3737 10 doublet since J=1 from $\gamma(\theta)$ and reduced dipole γ rays in 66 Zn(γ,γ') reported for a 3739.1 level. $T_{1/2}$: from (γ,γ') with $\Gamma_{\gamma0}/\Gamma=0.75$ 3 from adopted gammas.
3738.24 <i>4</i>	(4 ⁺)		0	E(level): higher J^{π} member of a $J^{\pi}=(2^+)+(4^+)$ level doublet reported in ⁶⁴ Zn(t,p).
3747.03 19	5-	46 ps <i>3</i>	CD GH JK p	XREF: Others: AB, AC Configuration= $((\pi p_{3/2})(\pi g_{9/2}))5^-$ J ^{π} : 5 from $\gamma(\theta)$ in 64 Ni $(\alpha,2pn\gamma)$; π from E2 to 3^- . T _{1/2} : by recoil distance in 55 Mn(14 N,np γ). DSA measurements of 0.8 ps +11-4 from 63 Cu(α ,p γ) and 6 ps +14-3 from 64 Ni(α ,2n γ) do not take fully into account strong feeding from the 4252 (T _{1/2} =133 ps 11) and 4076 (T _{1/2} =29.8 ps 14) levels. Other: 0.21 ps +14-7 from (n,n' γ).
3753.01 4	4+		B D FGH K p	J^{π} : L(p,p')=4.
3770 <i>30</i> 3791.123 <i>3</i> 3806.4 <i>10</i>	(1 ⁻) 1 ⁺		QR W BDFGH Km V D Km	J^{π} : from L(⁶ Li,d)=(1). J^{π} : 1 ⁺ from log ft =5.00 4 from 0 ⁺ .
3825.0 <i>3</i> 3874 <i>5</i>	0_{+}		B DEF K D K	J^{π} : from $\gamma(\theta)$ in (γ, γ') .
3882.424 <i>10</i> 3898.3 <i>6</i>	(2) ⁺ 5 ⁻		B DE G K CD G K O q X	J^{π} : from $\gamma(\theta)$ in 66 Zn(γ,γ').
3924.71 20			D FGH K q	J^{π} : 6+ from L(p,p')=6; γ 's to 0+ and 2+ levels rule it out; level could be a doublet.
3946 2 3969 2 4005 10	(1 ⁻) (4 ⁺) 4 ⁺		D K pqR D K m Op D m	J^{π} : $L(p,p')=(1)$. J^{π} : $L(p,p')=4$.
4011.7 4019.2 <i>15</i> 4075.7 <i>3</i>	2 ⁺ (6 ⁻)	29.8 ps <i>14</i>	E M V DFG K M O C E J L	E(level): from 66 Zn(γ,γ'). XREF: Others: AC μ =0.9 2; Q=-0.081 13 (2005St24) μ : By recoil into gas and or vacuum (RIGV) (1983Ba69). Q: From electron scattering (Es); recalculated

E(level) [†]	J^{π}	T _{1/2} ‡	XREF	Comments
				value (1981Ko06). $T_{1/2}$: by recoil distance in $^{55}Mn(^{14}N,2pn\gamma)$. Other: >1.4 ps from $(\alpha,p\gamma)$. J^{π} : (6) from $\gamma(\theta)$, γ yields and decay systematics in
4081.0 <i>15</i> 4085.983 <i>4</i> 4108.5 <i>10</i>	1+		DFKM BDFGHKMV dF m R	64 Ni(α,2nγ); π from (M1) to 5 ⁻ . J ^π : log ft =5.99 4 from 0 ⁺ . π =+ from L(p,d)=1 for a level at 4100 30; π =- from
4119.0 5	(1-)		d G K Oq	L(p,p')=3 for a level at 4110 10, indicating a possible doublet.
4182.7 5	(6+)	0.15 ps 6	CD JK	XREF: Others: AC J ^{π} : (6) from $\gamma(\theta)$ and γ yields in ⁶⁴ Ni(α ,2n γ); π from (E2) to 4 ⁺ . L(p,p')=4 at 4189 7. T _{1/2} : unweighted mean of DSA measurements 0.08 ps +6-4 in ⁶³ Cu(α ,p γ) and 0.21 ps +10-3 in ⁶⁴ Ni(α ,2n γ).
4186 7	(3-)		K O	E(level): weighted average of 4184 10 in (t,p) and 4188 10 in (p, α).
4223 2	(1-)		D K	XREF: Others: AB
4251.9 3	(7-)	133 ps <i>10</i>	C J Op	J ^π : L(p,p')=(1). XREF: Others: AA μ =1.0 2 (2005St24,1989Ra17) Configuration=((ν F _{5/2})(ν G _{9/2}) ₇ -+(ν P _{1/2})(ν G _{9/2}) ₅ -) E(level): unresolved doublet in (α , He) at 4220 50; L=7 assigned to the main level at 4220 with a tentative L=5 assigned to the 4400 level visible at some backward angles. μ : From recoil into gas and/or vacuum (RIGV) (1981Ko06). J ^π : (7) from ν (θ) and ν yields in ⁶⁴ Ni(ν ,2n ν); ν from (E2) to 5 ⁻ . T _{1/2} : by recoil distance in ⁵⁵ Mn(¹⁴ N,2pn ν). Other: >0.55 ps in (ν ,p ν).
4258 2 4267 7 4295.339 4 4321.83 20 4332 7 4393.7 16 4424 6 4433 6 4439 7 4454 5 4461.409 5 4472 7 4497.6 5 4511& 5 4511& 5 4527 5 4538 7 4565 2	4 ⁺ 1 ⁺ 2 ⁺ 3 ⁻ 1 1 ⁻ 2 ⁺ 1 ⁺ 3 ⁻ 0 ⁺ (2 ⁺) 4 ⁺ 3 ⁻	4.2 fs +18-9 0.07 ps +4-2 7.0 fs 12 7 fs +12-3	D K p D K p D K p B DE K m D H K m D K O D K OPQ T DE H m D H m O D m D m B DE H m D m q D H p D Opq D Opq D pq D pq D pq	J ^{π} : L(p,p')=4. J ^{π} : 1 ⁺ from log ft =5.23 ft from 0 ⁺ in ft decay. J ^{π} : L(t,p)=2. T _{1/2} : from DSA in ft decay. J ^{π} : 1 from ft from ft in ft from 0 ⁺ in ft decay. J ^{π} : L(p,p')=2. J ^{π} : L(p,p')=3.
4567 <i>10</i> 4609? 2	5 ⁻ (1)	8.4 fs +33-18	D q Oq E p	J ^{π} : from $\gamma(\theta)$ in ⁶⁶ Zn(γ,γ').
	. /		•	***

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	XREF		Comments		
4610 <i>5</i> 4622 <i>6</i>	4+		D II	p	J^{π} : $L(p,p')=4$.		
4635.3 11	(2)		D H DE	0p	XREF: Others: AA		
4638.24 <i>14</i>	1		В		J^{π} : (2) from $\gamma(\theta)$ in $^{66}Zn(\gamma,\gamma')$. XREF: Others: AA		
4645 <i>10</i> 4655 <i>7</i>	(3-,4+)		D D		J^{π} : log $ft=7.96$ 11 from 0^+ ; γ to 0^+ . XREF: Others: AA XREF: Others: AA J^{π} : L(p,p')=3+4; probable doublet.		
4675.6 5	1+		B 1		XREF: Others: AA J^{π} : log ft =8.35 I 5 from 0 ⁺ rules out 0 ⁺ to 0 ⁺ transition; γ to 2 ⁺ .		
4680 <i>50</i> 4683 <i>10</i>	(1)	7.1 fs +24–14	DE 1		XREF: Others: AA XREF: Others: AA J^{π} : (1) from $\gamma(\theta)$ in 66 Zn(γ,γ').		
4694 7	4+		D 1		XREF: Others: AA J^{π} : $L(p,p')=4$.		
4730 7	2+		D 1		$XREF: Others: AA$ $J^{\pi}: L(p,p')=2.$		
4745 10 4758 10 4780 7 4796 7 4806.199 5 4814.1 4	5 ⁻ (1 ⁻) 1 ⁺ (7 ⁻)	3.8 fs +13-8 0.6 ^a ps 4	D 1 D 1 D 5 D 6 D 7 D 7 D 7 D 7 D 7 D 7 D 7 D 7 D 7 D 7	q q q	J ^π : L(p,p')=5. J ^π : L(p,p')=(1). J ^π : 1 ⁺ from log ft =4.89 ft from 0 ⁺ in ft decay. XREF: Others: AB J ^π : (7) from ft (θ) and ft yields in ft 64Ni(ft 0,2n ft 1); ft 7 from (M1) to (6 ⁻).		
4832 <i>10</i> 4849.93 <i>3</i>	1+		D B D		J^{π} : log ft =6.62 6 from 0 ⁺ rules out a 0 ⁺ to 0 ⁺		
4866.056 16 4875 10 4885 10 4907 10 4918 10 4945 10	1+		B D D D D D	q q q	transition; γ to 2^+ . J^{π} : log ft =6.42 θ from 0^+ ; γ to 0^+ .		
4958.2 <i>4</i>	1+		B D 1		J^{π} : log ft =7.48 II from 0^+ rules out a 0^+ to 0^+ transition; γ to 2^+ .		
4984 10 5005.8 3 5025 10 5038 10	1+		D 1m B D 1m D 1m D		J^{π} : log ft =7.47 7 from 0 ⁺ ; γ to 0 ⁺ .		
5059 10 5073 10 5086 10 5097 10			D D D	q q q q			
5106 <i>10</i> 5111.9 <i>4</i>	(8-)		D CD	q q	J^{π} : from $\gamma(\theta)$ and γ decay systematics in $^{64}{\rm Ni}(\alpha,2n\gamma)$.		
5124 10 5143 10 5159 10 5169 10 5180 10 5198 10 5207.3 5	(8+)	>6 ps	D D D D D C	q q	XREF: Others: AA		

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$		XREF		Comments
5222 10 5234 10 5245 10 5263 10 5274 10 5285 10 5305 10 5322 10 5331 10 5352 10 5364 10 5375 10 5389 10 5403 10 5420 10 5446 10 5464.4 5	(9-)	1.9 ps 8	D D D D D D D D D D C C		q q q q q	Configuration=(ν g9/28 ⁺) configuration from (12 C, 10 Be), (12 C, 10 C) reaction where this level is seen strongly excited (1990Bo27). This level was seen weakly excited in the (α , 2 He) reaction (1990Fi07). J ^{π} : (8) from $\gamma(\theta)$, γ yields and decay systematics in 64 Ni(α ,2n γ); π from (E2) to (6) ⁺ . T _{1/2} : by DSA in 64 Ni(α ,2n γ). XREF: Others: AA XREF: Others: AA XREF: Others: AA XREF: Others: AA
5500 <i>45</i>					q	ps $+2I-14$ by DSA in ⁶⁴ Ni(α ,2n γ).
5650 30	3-		D		q	XREF: Others: AB E(level): from 66 Zn(p,p'). J^{π} : L(p,p')=3.
5740 <i>50</i> 6000 <i>50</i>			A	J	q	XREF: Others: AB
6292.6 6	(10+)	1.6 ps +7-3	С	J		J^{π} : (10) from $\gamma(\theta)$ in $^{64}Ni(\alpha,2n\gamma)$; π from (E2) to (8 ⁺).
6419.0 8 6850 <i>50</i>	(8+)		С			$T_{1/2}$: by DSA in 64 Ni(α ,2n γ). XREF: Others: AB Configuration=(π g _{9/2} 8 ⁺) J ^{π} : from DWBA analysis of (12 C, 10 Be), (12 C, 10 C)
7.17×10 ³ 18				J		data.
7367.4 <i>4</i> 7517.3 <i>10</i> 7550 <i>50</i>	1 (6 ⁺)	1.47 fs 16 1.5 ps +6-3	E C			J ^π : from $\gamma(\theta)$ in ⁶⁶ Zn(γ,γ'). T _{1/2} : by DSA in ⁶⁴ Ni(α ,2n γ). XREF: Others: AB Configuration=((π g _{9/2})(π d _{5/2}))6 ⁺ J ^π : from DWBA analysis of (¹² C, ¹⁰ Be), (¹² C, ¹⁰ C) data.
7693.3 <i>3</i> 11059.9 <i>10</i> 11395 <i>10</i> 11411 <i>10</i> 11457 <i>10</i>	1 2 ⁻ ,3 ⁻	2.2 fs 4	E	I I I		J^{π} : 1 from $\gamma(\theta)$ in $^{66}Zn(\gamma,\gamma')$. J^{π} : from $n(\theta)$ in $^{65}Cu(p,n)$ IAR.

E(level) [†]	$J^{\pi \#}$	XREF	Comments
11514 10		I	
11593 10		I	
11654 10		I	
11698 <i>10</i>		I	
11757 10		I	
11841 <i>10</i>	(2^{+})	I	J^{π} : from $n(\theta)$ and $\gamma(\theta)$ in 65 Cu(p,n),(p,n γ) IAR.
11916 <i>10</i>		I	*********
12194? 10		I	
12218 <i>10</i>		I	
12293 <i>10</i>		I	
12324 10		I	
12401 <i>10</i>		I	
12433? 10		I	
12552 <i>10</i>		I	
12602 <i>10</i>		I	
12651 <i>10</i>		I	
12688 <i>10</i>		I	
12714 <i>10</i>		I	

[†] Except as noted, levels with E<10000 are as follows: 1) from a least-squares fit to adopted Ey data; 2) energies with Δ E=2-10 are from 66 Zn(p,p'); 3) energies with Δ E>10 are from 66 Zn(α,α'). Levels with E>10000 are from 65 Cu(p,n),(p,n γ) IAR. ‡ Except as noted, $T_{1/2}$ is from measured widths in 66 Zn(γ,γ') and adopted γ branchings.

[#] From L-transfer in ⁶⁴Zn(t,p), except as noted.

[@] Consistent with angular distribution and analyzing-power data in (pol p,p') (1993Mo15). [&] Doublet reported in 64 Zn(t,p). E=4511 5 given for one level in 66 Zn(p,p').

^a By DSA from 63 Cu(α ,p γ).

$\gamma(^{66}Zn)$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ^a	α^{\dagger}	$I_{(\gamma+ce)}$	Comments
1039.2279	2+	1039.220 3	100.0 3	0.0	0+	E2 [@]		0.000269 4		$\alpha(K)$ =0.000241 4; $\alpha(L)$ =2.41×10 ⁻⁵ 4; $\alpha(M)$ =3.46×10 ⁻⁶ 5; $\alpha(N+)$ =1.384×10 ⁻⁷ 20 $\alpha(N)$ =1.384×10 ⁻⁷ 20 B(E2)(W.u.)=17.5 4
1872.7653	2+	833.5324 21	100.0 4	1039.2279	2+	M1+E2	-1.6 2	0.000434 9		B(E2)(W.u.)=17.5 4 $\alpha(K)=0.000389 \ 8; \ \alpha(L)=3.91\times10^{-5} \ 8;$ $\alpha(M)=5.60\times10^{-6} \ II; \ \alpha(N+)=2.24\times10^{-7} \ 5$ $\alpha(N)=2.24\times10^{-7} \ 5$ B(M1)(W.u.)=0.056 23; B(E2)(W.u.)=3.3×10 ² 13 Mult.: D+Q from $\gamma(\theta)$ in ⁶⁶ Cu β ⁻ decay; M1+E2 from RUL. δ : From $\gamma\gamma(\theta)$ in ⁶⁶ Ga ε DECAY (2002Ga20).
		1872.740 6	0.39 3	0.0	0+	[E2]		0.000328 5		Other value: -1.9 3, as given by 1974Kr16 from analysis of 1969Ha46 data. $\alpha(K)=7.04\times10^{-5}$ 10; $\alpha(L)=6.99\times10^{-6}$ 10; $\alpha(M)=1.001\times10^{-6}$ 14; $\alpha(N+)=0.000250$ 4 $\alpha(N)=4.05\times10^{-8}$ 6; $\alpha(IPF)=0.000250$ 4
2372.353	0+	499.590 <i>6</i>	0.41 10	1872.7653	2+	E2		0.00199 3		B(E2)(W.u.)=0.032 12 α (K)=0.001782 25; α (L)=0.000182 3; α (M)=2.61×10 ⁻⁵ 4; α (N+)=1.013×10 ⁻⁶ 15 α (N)=1.013×10 ⁻⁶ 15
		1333.112 5	100.0 4	1039.2279	2+	E2		0.000190 3		B(E2)(W.u.)<22 B(E2)(W.u.)<40 α (K)=0.0001383 20; α (L)=1.379×10 ⁻⁵ 20; α (M)=1.98×10 ⁻⁶ 3; α (N+)=3.61×10 ⁻⁵ 5
		2372.375 ^d		0.0	0+	E0			6.6×10 ⁻³ 13	$\alpha(N)=7.96\times10^{-8}$ 12; $\alpha(IPF)=3.61\times10^{-5}$ 5 Mult.: Q from $\gamma(\theta)$ in 66 Zn(p,p' γ); E2 from RUL. E $_{\gamma}$: from level energy difference; 2372.2 from (p,p' γ).
2451.01	4+	1411.75 ^b 5	100 f	1039.2279	2+	E2 [@]		0.000194 3		Mult.: from internal conversion data and absence of γ ray in $(p,p'\gamma)$. $I_{(\gamma+ce)}$: for 100 transitions of 1333 γ from $(p,p'\gamma)$. $\alpha(K)=0.0001227\ 18;\ \alpha(L)=1.222\times10^{-5}\ 18;$ $\alpha(M)=1.751\times10^{-6}\ 25$
2703.6	(3)	2450 ^d 2 830.7 ^c 8	2 ^f 100 ^g 11	0.0 1872.7653	0 ⁺ 2 ⁺					$\alpha(N)=7.06\times10^{-8}\ 10;\ \alpha(IPF)=5.69\times10^{-5}\ 8$ B(E2)(W.u.)=18 3 $\delta(M3/E2)=+0.04\ 4.$ E _y : not confirmed by any other ⁶⁶ Zn data.

γ (66Zn) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	Ι _γ #	\mathbb{E}_f	J_f^{π}	Mult.	δ^a	α^{\dagger}	Comments
2703.6	(3)	1664.4 ^b 4	7.1 <mark>8</mark> 10	1039.2279	2+	(D+Q)	8.5 15		Mult., δ : from $\gamma(\theta)$ in ⁶⁶ Zn(n,n' γ).
2762.8	(2)	2762	100	0.0	0^{+}				E_{γ} : reported only in 66 Zn(γ,γ').
2765.56	4+	314.6 ^b 1	36 <mark>b</mark> 2	2451.01	4+				, -
		892.7 ^b 1	100 ^b 3	1872.7653	2+	E2 [@]		0.000388 6	B(E2)(W.u.)<4.0 α (K)=0.000348 5; α (L)=3.50×10 ⁻⁵ 5; α (M)=5.01×10 ⁻⁶ 7; α (N+)=2.00×10 ⁻⁷ 3 α (N)=2.00×10 ⁻⁷ 3 δ (M3/E2)=-0.04 6.
		1726.4 ^b 2	87 ^b 3	1039.2279	2+	E2 [@]		0.000274 4	B(E2)(W.u.)<0.13 α (K)=8.21×10 ⁻⁵ 12; α (L)=8.16×10 ⁻⁶ 12; α (M)=1.169×10 ⁻⁶ 17; α (N+)=0.000183 3 α (N)=4.73×10 ⁻⁸ 7; α (IPF)=0.000183 3 δ (M3/E2)=+0.00 3.
2780.157	2+	328.8 ^b 5	11 ^b 3	2451.01	4+				
		907.394 19	17.7 12	1872.7653					
		1740.904 <i>16</i>	23.1 3	1039.2279	2'	M1+E2	0.33 28	0.000241 8	$\alpha(K)=7.74\times10^{-5}$ 13; $\alpha(L)=7.67\times10^{-6}$ 13; $\alpha(M)=1.100\times10^{-6}$ 19; $\alpha(N+)=0.000155$ 7 $\alpha(N)=4.47\times10^{-8}$ 8; $\alpha(IPF)=0.000155$ 7 B(M1)(W.u.)=0.0022 7; B(E2)(W.u.)=0.13 +20-13
		2780.095 16	100.0 24	0.0	0+	E2		0.000722 11	$\alpha(K)=3.51\times10^{-5}$ 5; $\alpha(L)=3.47\times10^{-6}$ 5; $\alpha(M)=4.98\times10^{-7}$ 7; $\alpha(N+)=0.000683$ 10 $\alpha(N)=2.02\times10^{-8}$ 3; $\alpha(IPF)=0.000683$ 10 B(E2)(W.u.)=0.54 15 Mult.: Q from $\gamma(\theta)$ in $^{66}Zn(n,n'\gamma)$; E2 from RUL.
2826.69	3-	953.93 9	11.3 <i>g</i> 13	1872.7653	2+				21(1),11 / (1) 11 21(1),11 / (1) 22 110 11 110 21
		1787.44 9	100 ^g 9	1039.2279	2+	(E1)&		0.000526 8	$\alpha(K)=4.21\times10^{-5}$ 6; $\alpha(L)=4.16\times10^{-6}$ 6; $\alpha(M)=5.95\times10^{-7}$ 9; $\alpha(N+)=0.000479$ 7 $\alpha(N)=2.41\times10^{-8}$ 4; $\alpha(IPF)=0.000479$ 7 B(E1)(W.u.)=0.00036 5 $\delta(M2/E1)=-0.04$ 5.
2938.074	2+	1065.305 9	0.60 12	1872.7653	2+				0(N12/L1)= 0.04 3.
		1898.823 8	100.0 8	1039.2279		(M1+E2)	0.03 1	0.000288 4	$\alpha(K)=6.58\times 10^{-5}\ 10;\ \alpha(L)=6.52\times 10^{-6}\ 10;\ \alpha(M)=9.35\times 10^{-7}\ 13;\ \alpha(N+)=0.000215\ 3$ $\alpha(N)=3.80\times 10^{-8}\ 6;\ \alpha(IPF)=0.000215\ 3$ $\alpha(M)=0.043\ 17;\ \beta(E2)(W.u.)=(0.017\ 14)$ Mult.: D+Q from $\gamma(\theta)$ in $^{66}Zn(n,n'\gamma);\ M1+E2$ from ΔJ^π . δ : from $\gamma(\theta)$ in $(n,n'\gamma)$; sign convention not specified.
		2941 ^h	71 24	0.0	0+				E <i>γ</i> ,I <i>γ</i> : reported only in 66 Zn(γ , γ').
3077.73	4+	312.0 ^c 8	10 ^c 3	2765.56	4+				E_{γ} : doublet. E_{γ} is from level energy difference in

γ (66Zn) (continued)

						<u>/</u>	(===, (00111			
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.	δ^a	$lpha^\dagger$	$I_{(\gamma+ce)}$	Comments
3077.73	4+	627.6 ^c 4	100 ^c 10	2451.01	4+	(M1+E2)&	-0.25 12	0.000688 23		⁶⁴ Ni(α,2nγ). Eγ=312.8 from level energy difference in ⁶⁵ Cu(p,γ). α(K)=0.000617 21; α(L)=6.19×10 ⁻⁵ 21; α(M)=8.9×10 ⁻⁶ 3; α(N+)=3.57×10 ⁻⁷ 12
		1204.2 ^c 5	33 ^c 6	1872.7653	2+	(E2)&		0.000201 3		$\alpha(N)=3.57\times10^{-7}$ 12 B(M1)(W.u.)=(0.056 9); B(E2)(W.u.)=(15 14) $\alpha(K)=0.0001723$ 25; $\alpha(L)=1.721\times10^{-5}$ 25; $\alpha(M)=2.47\times10^{-6}$ 4; $\alpha(N+)=9.43\times10^{-6}$ 1 $\alpha(N)=9.91\times10^{-8}$ 14; $\alpha(IPF)=9.33\times10^{-6}$ 15 B(E2)(W.u.)=3.1 7 $\delta(M3/E2)=-0.15$ 15.
3105.040	0+	1232.264 8 2065.778 7 3105.064	100 <i>4</i> 6.2 <i>3</i>	1872.7653 1039.2279 0.0		Е0			2.4×10 ⁻² 5	E_{γ} : from level energy difference; 3107.0 from $(p,p'\gamma)$.
3212.582	2+	2173.319 <i>15</i> 3212.499 <i>19</i>	100 <i>6</i>	1039.2279	2 ⁺					Mult: from internal conversion data and absence of γ ray in $(p,p'\gamma)$. $I_{(\gamma+ce)}$: for 100 transitions of 1234 γ from $(p,p'\gamma)$. E_{γ} : placed as depopulating the 3213 level in 65 Cu (p,γ) , 66 Zn $(p,p'\gamma)$, 66 Zn $(n,n'\gamma)$ and by 1971Ca14, 1994En02 in 66 Ga ε decay. Placed as depopulating a proposed level at 4047 by 1970Ph01 in ε decay, which level, however, is not observed by 1994En02.
3228.885	1+	290.8105 <i>11</i> 448.73 2	0.92 <i>3</i> 2.01 <i>7</i>	2938.074	2 ⁺ 2 ⁺	M1+E2	-0.02 3	0.001419 20		$\alpha(K)$ =0.001272 18; $\alpha(L)$ =0.0001283 19; $\alpha(M)$ =1.84×10 ⁻⁵ 3; $\alpha(N+)$ =7.39×10 ⁻⁷ $\alpha(N)$ =7.39×10 ⁻⁷ 11
		856.527 <i>10</i> 1356.104 <i>9</i> 2189.616 <i>6</i>	2.09 <i>12</i> 6.7 <i>7</i> 100.0 <i>5</i>	2372.353 1872.7653 1039.2279		M1+E2	0.12 2	0.000398 6		$\alpha(K)=5.12\times10^{-5} 8$; $\alpha(L)=5.07\times10^{-6} 7$;
		3228.800 6	28.3 2	0.0	0+	M1		0.000812 12		$\alpha(M)=7.26\times10^{-7}\ II;\ \alpha(N+)=0.000341\ 5$ $\alpha(N)=2.95\times10^{-8}\ 5;\ \alpha(IPF)=0.000341\ 5$ $B(M1)(W.u.)=0.012\ 3;\ B(E2)(W.u.)=0.060\ 25$ Mult.: from ce measurement in ε decay. $\alpha(K)=2.68\times10^{-5}\ 4;\ \alpha(L)=2.64\times10^{-6}\ 4;$ $\alpha(M)=3.79\times10^{-7}\ 6;\ \alpha(N+)=0.000782\ II$

$\gamma(^{66}Zn)$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ} #	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.	δ^a	$lpha^\dagger$	Comments
2221 447	2+	551 204 22	72.7	2790 157 24				$\alpha(K)=2.68\times10^{-5}$ 4; $\alpha(L)=2.64\times10^{-6}$ 4; $\alpha(M)=3.79\times10^{-7}$ 6; $\alpha(N+)=0.000782$ 11 $\alpha(N)=1.544\times10^{-8}$ 22; $\alpha(IPF)=0.000782$ 11 B(M1)(W.u.)=0.0011 3
3331.44	1 2+	551.284 22	7.2 7	2780.157 2 ⁺		0.01.0	0.0001741.25	$\alpha(K)=0.0001070\ 15;\ \alpha(L)=1.062\times10^{-5}\ 15;\ \alpha(M)=1.523\times10^{-6}$
		1458.662 <i>12</i>	100.0 23	1872.7653 2 ⁺	(M1+E2)	-0.01 9	0.0001741 25	22
								$\alpha(N)=6.18\times10^{-8} \ 9; \ \alpha(IPF)=5.49\times10^{-5} \ 8$ B(M1)(W.u.)=(0.058 +10-15)
		2292.171 <i>13</i>	17.6 12	1039.2279 2+				
		3331.351 <i>14</i>	23 3	$0.0 0^{+}$				
3380.944	1 1 -	442.873 <i>14</i>	1.06 8	2938.074 2+				
		600.788 <i>21</i>	0.92 6	2780.157 2+				
		1008.588 12	4.0 5	$2372.353 0^+$				
		1508.158 7	37.8 2	1872.7653 2+				
		2341.673 <i>11</i>	0.22 5	1039.2279 2+				
		3380.850 <i>6</i>	100.0 6	$0.0 0^{+}$				
3427.406	$1,2^{-}$	1554.62 <i>3</i>	100	1872.7653 2+				
3432.408	3 1-	494.336 <i>1</i>	32.0 <i>3</i>	2938.074 2+				
		1060.051 <i>1</i>	15.4 <i>4</i>	$2372.353 0^+$				
		1559.627 <i>1</i>	7.6 6	1872.7653 2+				
		2393.129 7	82 3	1039.2279 2+	E1		0.000924 13	$\alpha(K)=2.73\times10^{-5} 4$; $\alpha(L)=2.70\times10^{-6} 4$; $\alpha(M)=3.86\times10^{-7} 6$; $\alpha(N+)=0.000894 13$
								α (N)=1.569×10 ⁻⁸ 22; α (IPF)=0.000894 13 B(E1)(W.u.)=0.00035 +10-23
		3432.309 7	100.0 <i>13</i>	$0.0 0^{+}$				
3507.249	9 2 ⁺	680.56 10	18 5	2826.69 3				
		1634.46 7	42 7	1872.7653 2+				
		2467.97 <i>7</i>	100 9	1039.2279 2+				
3523.6		758.0 ^c 8	100	2765.56 4+				
3531.692		2492.42 3	100	1039.2279 2+				
3576.370) 4 ⁺	749.68 <i>10</i>	25 8	2826.69 3				
		796.21 5	53 12	2780.157 2+				
		1703.59 5	100 4	1872.7653 2+				
1		2537.09 5	93 20	1039.2279 2+				
3670.72	2+	441.822	100 9	3228.885 1+				E_{γ} : from level energy difference; 440.5 <i>I</i> from $(n,n'\gamma)$. I_{γ} : from $(n,n'\gamma)$.
1		1219.1 <mark>b</mark> 2	39 <mark>b</mark> 7	2451.01 4+				
1		1797.94 9	18 5	1872.7653 2 ⁺				
1		2631.44 9	28 11	1039.2279 2+				
		2031.117	20 11	1007.2217 2				

γ (66Zn) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E_f	J_f^{π}	Mult.	δ^a	α^{\dagger}	Comments
3689.01	1+,2+,3+	1815.4 ^h 5	100	1872.7653	2+				E_{γ} : reported only in 65 Cu(p, γ).
3709.4	(5)	943.8 ^c 3	100 ^c	2765.56	4+	$(D+Q)^{\&}$	-1.5 + 2 - 1		
3725.3	. ,	293.0 ^d 5	11 <i>f</i>	3432.408	1-				
		962 ^d 1	100^{f}	2765.56	4+				
3731.6		966.0 ^e 5	100 ^g	2765.56	4 ⁺				E_{γ} : reported only in 65 Cu(p, γ).
3738.207	+	800.13 5	7 4	2938.074	2 ⁺				Ly. reported only in Cu(p,y).
		2698.92 5	27 5	1039.2279					
		3738.10 5	100 6	0.0	0_{+}				
3747.03	5-	669.5 ^c 3	21 ^c 2	3077.73	4+	(E1)&		0.000294 5	$\alpha(K)$ =0.000264 4; $\alpha(L)$ =2.63×10 ⁻⁵ 4; $\alpha(M)$ =3.77×10 ⁻⁶ 6; $\alpha(N+)$ =1.511×10 ⁻⁷ 22 $\alpha(N)$ =1.511×10 ⁻⁷ 22 B(E1)(W.u.)=4.9×10 ⁻⁶ 7 $\delta(M2/E1)$ =-0.04 6.
		919.9 ^c 3	4.9 ^c 5	2826.69	3-	E2 [@]		0.000360 5	$\alpha(K)$ =0.000323 5; $\alpha(L)$ =3.24×10 ⁻⁵ 5; $\alpha(M)$ =4.65×10 ⁻⁶ 7; $\alpha(N+)$ =1.85×10 ⁻⁷ 3 $\alpha(N)$ =1.85×10 ⁻⁷ 3 B(E2)(W.u.)=0.045 7 $\delta(M3/E2)$ =-0.00 6.
		981.5 ^c 5	<6 ^c	2765.56	4+				
		1295.6 ^c 4	100 ^c 10	2451.01	4+	(E1+M2)&	-0.04 2	0.000193 3	$\alpha(K)=7.15\times10^{-5}$ 11; $\alpha(L)=7.09\times10^{-6}$ 11; $\alpha(M)=1.015\times10^{-6}$ 16; $\alpha(N+)=0.0001134$ $\alpha(N)=4.10\times10^{-8}$ 7; $\alpha(IPF)=0.0001134$ 17 B(E1)(W.u.)=(3.2×10 ⁻⁶ 5); B(M2)(W.u.)=(0.014+15-14)
3753.01	4+	2713.73 5	100	1039.2279	2+				(13 17)
3791.123	1+	283.87 3	0.016 4	3507.249	2+				
		410.178 12	0.289 12	3380.944	1-				
		459.683 <i>14</i>	0.387 17	3331.441	2+				
		562.241 10	0.029 3	3228.885	1+				
		578.540 19	0.26 4	3212.582	2 ⁺ 0 ⁺				
		686.080 <i>6</i> 853.038 <i>8</i>	1.11 <i>4</i> 0.334 <i>9</i>	3105.040 2938.074	2+	M1+E2	0.37 18	0.000357 11	$\alpha(K)=0.000321 \ 10; \ \alpha(L)=3.20\times10^{-5} \ 11;$
					2	WII+E2	0.57 16	0.000337 11	$\alpha(K)$ =0.000521 10; $\alpha(L)$ =3.20×10 × 11; $\alpha(M)$ =4.59×10 ⁻⁶ 15; $\alpha(N+)$ =1.85×10 ⁻⁷ 6 $\alpha(N)$ =1.85×10 ⁻⁷ 6
		1010.957 <i>19</i>	0.119 7	2780.157	2+				
		1418.754 <i>5</i>	2.703 13	2372.353	0+				
		1918.329 5	8.76 <i>4</i>	1872.7653	2+	M1+E2	-0.07 3	0.000295 5	$\alpha(K)=6.47\times10^{-5} 9$; $\alpha(L)=6.40\times10^{-6} 9$; $\alpha(M)=9.18\times10^{-7} 13$; $\alpha(N+)=0.000223 4$ $\alpha(N)=3.73\times10^{-8} 6$; $\alpha(IPF)=0.000223 4$

$\gamma(^{66}\mathrm{Zn})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.	δ^a	α^{\dagger}	Comments
3791.123	1+	2751.835 5	100.0 5	1039.2279	2+	(M1+E2)	-0.12 2	0.000626 9	$\alpha(K)=3.48\times10^{-5} 5$; $\alpha(L)=3.43\times10^{-6} 5$; $\alpha(M)=4.92\times10^{-7} 7$; $\alpha(N+)=0.000588 9$ $\alpha(N)=2.00\times10^{-8} 3$; $\alpha(IPF)=0.000588 9$
		3791.004 8	2.941 <i>24</i>	0.0	0+	M1		0.001017 15	$\alpha(K)=2.08\times10^{-5}$ 3; $\alpha(L)=2.05\times10^{-6}$ 3; $\alpha(M)=2.95\times10^{-7}$ 5; $\alpha(M+)=0.000994$ 14 $\alpha(N)=1.200\times10^{-8}$ 17; $\alpha(IPF)=0.000994$ 14
3825.0	0^{+}	2785.7 3	100	1039.2279	2+				u(11)=1.200×10 17, u(111)=0.000774 14
3882.424	(2)+	1507 ^h 2009.628 <i>16</i> 2843.130 <i>16</i>	100 <i>21</i> 54 <i>11</i>	2372.353 1872.7653 1039.2279					E γ ,I γ : reported only in 66 Zn(γ , γ').
3898.3	5-	1071.3 ^c 7	100 ^c	2826.69	3-	(E2(+M3))&	-0.04 20	0.00025 4	$\alpha(K)$ =0.00023 4; $\alpha(L)$ =2.3×10 ⁻⁵ 4; $\alpha(M)$ =3.2×10 ⁻⁶ 6 $\alpha(N+)$ =1.30×10 ⁻⁷ 21 $\alpha(N)$ =1.30×10 ⁻⁷ 21
3924.71		1555 ^d 1	100 ^f	2372.353	0+				E _{γ} : possible doublet. E γ =1553.0 in ⁶⁵ Cu(p, γ). I _{γ} : I γ (1555)/I γ (2888)<0.6 from ⁶⁵ Cu(p, γ).
		2885.3 ^b 2	33	1039.2279	2+				I_{γ} : relative branching from 66 Zn(p,p' γ).
4019.2	2+	1239.0 ^d 15	100 <i>f</i>	2780.157	2+				
4075.7	(6-)	328.6 ^c 2	100 ^c	3747.03	5-	(M1+E2) [@]	+0.10 2	0.00299 5	$\alpha(K)$ =0.00268 5; $\alpha(L)$ =0.000272 5; $\alpha(M)$ =3.91×10 ⁻⁵ 7; $\alpha(N+)$ =1.559×10 ⁻⁶ 25 $\alpha(N)$ =1.559×10 ⁻⁶ 25 B(M1)(W.u.)=(0.0206 10); B(E2)(W.u.)=(3.1 13)
4085.983	1+	347.77 5 554.28 3 653.568 14 658.57 3 705.031 15 857.093 9 873.392 21 980.934 13	0.14 5 0.35 4 0.10 4 0.59 6 0.30 4 1.2 4 1.34 9 3.80 15	3738.207 3531.692 3432.408 3427.406 3380.944 3228.885 3212.582 3105.040	+ 0+ 1- 1,2- 1- 1+ 2+ 0+				
		1147.896 <i>10</i>	6.15 21	2938.074	2+	M1+E2	-0.18 5	0.000192 3	$\alpha(K)$ =0.0001708 25; $\alpha(L)$ =1.700×10 ⁻⁵ 25; $\alpha(M)$ =2.44×10 ⁻⁶ 4; $\alpha(N+)$ =2.28×10 ⁻⁶ 4 $\alpha(N)$ =9.87×10 ⁻⁸ 14; $\alpha(IPF)$ =2.18×10 ⁻⁶ 4
		1305.807 <i>21</i>	0.31 4	2780.157	2+				
		1713.602 12	1.92 9		0+	M1 . F2	0.22.5	0.000410	(K) 5.03.10-5.7 (I) 4.00.10-6.7
		2213.181 9	10.3 4	1872.7653	2+	M1+E2	-0.23 5	0.000410 6	$\alpha(K)=5.03\times10^{-5} \ 7; \ \alpha(L)=4.98\times10^{-6} \ 7;$ $\alpha(M)=7.14\times10^{-7} \ 10; \ \alpha(N+)=0.000354 \ 6$ $\alpha(N)=2.90\times10^{-8} \ 4; \ \alpha(IPF)=0.000354 \ 6$
		3046.684 9	4.47 18	1039.2279	2+	M1+E2	-0.8 2	0.000778 16	$\alpha(K)=2.97\times10^{-5}$ 5; $\alpha(L)=2.94\times10^{-6}$ 5;

$\gamma(^{66}\text{Zn})$ (continued)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.	δ^a	α^{\dagger}	Comments
Aligno 1	4085.983	1+	4085.853 9	100.0 6	0.0	0+	M1		0.001117 16	$\alpha(N)=1.712\times10^{-8} \ 25; \ \alpha(IPF)=0.000745 \ 16$ $\alpha(K)=1.86\times10^{-5} \ 3; \ \alpha(L)=1.83\times10^{-6} \ 3;$
4182.7 (6*) 1732.9° 5 100° 2451.01 4* (E2)® 0.000276 4 $\alpha(K)=8.15\times10^{-5} L2: \alpha(L)=8.10\times10^{-6} 12: \alpha(M)=1.161\times10^{-6} 12: \alpha(M)=0.001086 3 a(N)=4.09\times10^{-8} 7: \alpha(M)=1.00186 3 B(E2)(W.u)=15 5 6 6(M3/E2)<5.3 \times 10^{-6} 10: \alpha(M)=0.001086 3 B(E2)(W.u)=15 5 6 6(M3/E2)<5.3 \times 10^{-6} 10: \alpha(M)=0.00186 3 B(E2)(W.u)=16 3 B(E2)(W.u)=16 5 6 6(M3/E2)<5.3 \times 10^{-6} 10: \alpha(M)=0.0013 4: \alpha(M)=0.00193 4: \alpha(M)=0.00138 3: \alpha(L)=0.00138 4: \alpha(M)=0.00193 4: \alpha(M)=0.00193 4: \alpha(M)=0.00193 3: \alpha(K)=0.00193 2: \alpha(L)=0.00176 25: \alpha(M)=0.00176 25: \alpha(M$	4110.0	(1-)	2070 78 5	1000	1020 2270	2+				$\alpha(N)=1.070\times10^{-8}$ 15; $\alpha(IPF)=0.001096$ 16
4251.9 (7") 175.9° 3 87° 9 4075.7 (6") (M1+E2)® +0.09 2 0.0144 4 $\alpha(K)=0.0128 \ 3; \ \alpha(L)=0.00133 \ 4; \ \alpha(M)=0.00190 \ \alpha(N+)=7.48\times10^{-6} \ 17 \ B(M1)(W.u.)=(0.0139 \ 2I); \ B(E2)(W.u.)=(6 \ 3)$ 504.7° 3 100° 10 3747.03 5" (E2)® 0.00193 3 $\alpha(K)=0.001726 \ 25; \ \alpha(M)=2.52\times10^{-5} \ 1; \ \alpha(M)=0.52\times10^{-7} \ 14 \ B(E2)(W.u.)=4.4 \ 7 \ \delta(M3/E2)=-0.00 \ 2.$ 4295.339 1* 412.916 16 0.088 13 3882.424 (2)* $M1+E2$ 0.0011 3 $\alpha(K)=0.00103 \ 25; \ \alpha(L)=0.000103 \ 3; \ \alpha(M)=1.5\times10 \ \alpha(N+)=5.9\times10^{-7} \ 14 \ \alpha(N)=5.9\times10^{-7} \ 14 \ \alpha(N)$		\ /					(E2) [@]		0.000276 4	$\alpha(K)=8.15\times10^{-5}$ 12; $\alpha(L)=8.10\times10^{-6}$ 12; $\alpha(M)=1.161\times10^{-6}$ 17; $\alpha(N+)=0.000186$ 3 $\alpha(N)=4.69\times10^{-8}$ 7; $\alpha(IPF)=0.000186$ 3 $\alpha(M)=4.69\times10^{-8}$ 7; $\alpha(IPF)=0.000186$ 3 $\alpha(M)=6.000186$ 6 $\alpha(M)=6.000186$ 7; $\alpha(M)=6.000186$ 7; $\alpha(M)=6.000186$ 7; $\alpha(M)=6.000186$ 8 $\alpha(M)=6.000186$ 9; $\alpha(M)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4251.9	(7-)	175.9 ^c 3	87 ^c 9	4075.7	(6-)	(M1+E2) [@]	+0.09 2	0.0144 4	$\alpha(K)$ =0.0128 3; $\alpha(L)$ =0.00133 4; $\alpha(M)$ =0.000190 5; $\alpha(N+)$ =7.48×10 ⁻⁶ 17 $\alpha(N)$ =7.48×10 ⁻⁶ 17
557.13 5 0.161 17 3738.207 $\stackrel{+}{}$ M1+E2 0.0011 3 $\alpha(K)$ =0.00103 25; $\alpha(L)$ =0.00010 3; $\alpha(M)$ =1.5×10 $\alpha(N+)$ =5.9×10 ⁻⁷ 14 $\alpha(N)$ =6.1×10 ⁻⁷ 14 $\alpha(N)$ =6.1×10 ⁻⁷ 14 $\alpha(N)$ =6.1×10 ⁻⁷ 14 $\alpha(N)$ =6	4205 220	1+					(E2) [@]		0.00193 3	$\alpha(K)$ =0.001726 25; $\alpha(L)$ =0.0001766 25; $\alpha(M)$ =2.52×10 ⁻⁵ 4; $\alpha(N+)$ =9.82×10 ⁻⁷ 14 $\alpha(N)$ =9.82×10 ⁻⁷ 14 B(E2)(W.u.)=4.4 7
718.97 5	4295.339	1'					M1+E2		0.0011 3	
$\alpha(M)=1.753\times10^{-6} 25$ $\alpha(N)=7.11\times10^{-8} 10; \ \alpha(IPF)=3.18\times10^{-5} 5$ $\alpha(M)=0.054 + 20 - 29; \ \beta(E2)(W.u.)=1.5 + 10$			763.64 <i>3</i> 862.926 <i>13</i> 867.93 <i>3</i> 914.388 <i>14</i> 963.892 <i>15</i> 1066.450 <i>12</i> 1082.75 <i>2</i>	0.233 20 0.398 20 0.114 14 0.71 4 0.38 3 0.062 12 0.348 20	3531.692 3432.408 3427.406 3380.944 3331.441 3228.885 3212.582	0 ⁺ 1 ⁻ 1,2 ⁻ 1 ⁻ 2 ⁺ 1 ⁺ 2 ⁺				
						2+	M1+E2	-0.18 5	0.0001689 24	$\alpha(M)=1.753\times10^{-6} \ 25$ $\alpha(N)=7.11\times10^{-8} \ 10; \ \alpha(IPF)=3.18\times10^{-5} \ 5$
			1515.162 20	0.162 15	2780.157	2+				D(W11)(W.u.)=0.034 +20-29, D(E2)(W.u.)=1.3 +10-12

$\gamma(^{66}\text{Zn})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.	δ^a	$lpha^\dagger$	Comments
4295.339	1+	2422.525 7	49.37 24	1872.7653	2+	M1+E2	0.01 3	0.000491 7	$\alpha(K)=4.30\times10^{-5}$ 6; $\alpha(L)=4.25\times10^{-6}$ 6; $\alpha(M)=6.10\times10^{-7}$ 9; $\alpha(N+)=0.000443$ 7 $\alpha(N)=2.48\times10^{-8}$ 4; $\alpha(IPF)=0.000443$ 7 $\alpha(M)=0.112 + 24 - 48$; $\alpha(M)=0.003 + 19 - 3$
		3256.021 9	2.47 10	1039.2279	2+	M1+E2	1.5 2	0.000889 14	$\alpha(\text{K})=2.70\times10^{-5} \ 4; \ \alpha(\text{L})=2.66\times10^{-6} \ 4; \ \alpha(\text{M})=3.81\times10^{-7} \ 6; \ \alpha(\text{N}+)=0.000859 \ 14$ $\alpha(\text{N})=1.552\times10^{-8} \ 22; \ \alpha(\text{IPF})=0.000859 \ 14$ $\alpha(\text{M})=0.00071 \ +21-34; \ \beta(\text{E2})(\text{W.u.})=0.24 \ +6-11$
		4295.187 <i>10</i>	100.0 8	0.0	0^{+}				D(W1)(W.d.)=0.00071 121 37, D(D2)(W.d.)=0.24 10 11
4321.83		3282.5^{b} 2	100.0 0	1039.2279					
4393.7	3-	1565.2 20	≈100 ≈100		3-				E_{γ} : reported only in 66 Zn($\alpha, \alpha' \gamma$).
4373.7	3	1303.2 20	~100	2020.09	3				I_{γ} : reported only in $= 2\pi(\alpha, \alpha, \gamma)$. I_{γ} : from 66 Zn $(\alpha, \alpha'\gamma)$.
		3357.0 25	≈100	1039.2279	2+				E_{γ} : reported only in $^{66}\mathrm{Zn}(\alpha,\alpha'\gamma)$.
		5551.0 25	~100	1037.2219	_				I_{γ} : from ⁶⁶ Zn($\alpha, \alpha' \gamma$).
4424	1	4424 6	100	0.0	0+				E_{γ} : from 66 Zn(n,n' γ). E_{γ} =4426 in 66 Zn(γ , γ ').
. 12 1	1	1.210	100	0.0					I_{γ} : from ⁶⁶ Zn(n,n' γ).
4433	1-	4433 ^h 6	100	0.0	0+				Ey, Iy: reported only in 66 Zn(n,n' γ).
4461.409	1+	375.398 <i>17</i>	0.25 7		1 ⁺				Ly, 1y. Teported only in Zin(ii, ii y).
1101.109	1	670.251 <i>14</i>	0.48 8		1+				
		708.36 5	1.01 9	3753.01	4+				
		723.17 5	0.40 6		+				
		885.00 <i>5</i>	0.22 6		4+				
		929.68 <i>3</i>	0.53 7	3531.692	0_{+}				
		954.12 7	0.52 8	3507.249	2+				
		1129.923 <i>18</i>	1.59 9		2+				
		1232.480 <i>15</i>	6.5 22		1+				
		1248.779 22	0.12 4		2+				
		1356.320 <i>15</i>	14.3 22		0+				
		1523.279 15	0.64 6		2+				
		2088.985 13	1.3 3		0+	M1 . E2	0.25.27	0.000560.36	(IX) 2.9610=5 ((IX) 2.9110=6 ((AIX) 5.4710=7.0
		2588.553 <i>13</i>	3.07 18	1872.7653	2'	M1+E2	0.35 27	0.000568 16	$\alpha(K)=3.86\times10^{-5} 6$; $\alpha(L)=3.81\times10^{-6} 6$; $\alpha(M)=5.47\times10^{-7} 9$; $\alpha(N+)=0.000525 16$
									$\alpha(N)=2.22\times10^{-8}$ 4; $\alpha(IPF)=0.000525$ 16 B(M1)(W.u.)=0.0022 +10-22; B(E2)(W.u.)=0.06 +10-6
		3422.040 8	100.0 7	1039.2279	2+	M1+E2	-0.06 2	0.000885 13	$\alpha(K) = 2.44 \times 10^{-5} \ 4; \ \alpha(L) = 2.41 \times 10^{-6} \ 4; \ \alpha(M) = 3.46 \times 10^{-7} \ 5;$
		3444.U4U 8	100.0 /	1039.2279	2	W11+E2	-0.00 2	0.000883 13	$\alpha(N+)=0.000858 12$
									$\alpha(N)=1.408\times10^{-8}\ 20$; $\alpha(IPF)=0.000858\ 12$ B(M1)(W.u.)=0.034 +15-34; B(E2)(W.u.)=0.017 +14-17
		4461.202 9	97.7 <i>13</i>	0.0	0^{+}				(),()
		3458.3 ^b 5							

γ (66Zn) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ^a	α^{\dagger}	Comments
4609?	(1)	4609 ^h	100	0.0	0+				E_{γ},I_{γ} : reported only in 66 Zn(γ,γ').
4622		4622 6	100	0.0	0_{+}				E γ ,I γ : reported only in 66 Zn(n,n' γ).
4635.3	(2)	2762 ^h	100	1872.7653	2+				E γ , I γ : reported only in 66 Zn(γ , γ').
4638.24	1	1106.53 24	77 24	3531.692	0^{+}				Σ_{f} , Γ_{f} , reported only in Σ_{f} Γ_{f}
.050.2	•	1409.35 24	$1.0 \times 10^2 \ 5$	3228.885	1+				
		2265.84 24	$9 \times 10^{1} 4$	2372.353	0+				
4675.6	1+	2802.8 5	100	1872.7653					
4683	(1)	4685 ^h	100	0.0	0+				Eγ,Iγ: reported only in 66 Zn(γ,γ').
4806.199	(1) 1 ⁺	1015.081 18	0.66 16	3791.123	1 ⁺				Ey, ry. Teported only in $\sum n(y,y)$.
4000.199	1	1135.47 9	0.25 5	3670.72	2+				
		1274.50 3	0.23 3	3531.692	0^{+}				
		1298.95 7	0.205 24	3507.249	2 ⁺				
		1425.25 2	0.32 3	3380.944	$\overline{1}^-$				
		1577.308 20	0.21 4	3228.885	1+				
		1868.105 20	1.5 3	2938.074	2+				
		2026.016 25	0.14 4	2780.157	2+				
		2433.807 18	0.40 4	2372.353	0_{+}				
		2933.358 9	11.45 16	1872.7653	2+	M1+E2	1.6 2	0.000762 12	$\alpha(K)=3.19\times10^{-5} 5$; $\alpha(L)=3.15\times10^{-6} 5$; $\alpha(M)=4.52\times10^{-7} 7$; $\alpha(N+)=0.000727 12$ $\alpha(N)=1.84\times10^{-8} 3$; $\alpha(IPF)=0.000727 12$ B(M1)(W.u.)=0.0060 +17-24; B(E2)(W.u.)=2.9 +7-10
		3766.850 9	8.0 3	1039.2279	2+	M1+E2	0.11 4	0.001009 15	$\alpha(K)=2.11\times10^{-5} \ 3; \ \alpha(L)=2.08\times10^{-6} \ 3;$ $\alpha(M)=2.98\times10^{-7} \ 5; \ \alpha(N+)=0.000986 \ 14$ $\alpha(N)=1.212\times10^{-8} \ 17; \ \alpha(IPF)=0.000986 \ 14$ $\alpha(M)=0.0069 \ 15-24; \ B(E2)(W.u.)=0.010 \ 8$
		4806.007 9	100.0 6	0.0	0+				E_{γ} : γ -ray, in 66 Ga decay, often used for the efficiency calibration of germanium detectors.
4814.1	(7-)	738.4 ^c 3	100 ^c 9	4075.7	(6-)	(M1+E2) [@]	+0.11 2	0.000472 7	$\alpha(K)=0.000423$ 6; $\alpha(L)=4.24\times10^{-5}$ 6; $\alpha(M)=6.08\times10^{-6}$ 9; $\alpha(N+)=2.45\times10^{-7}$ 4 $\alpha(N)=2.45\times10^{-7}$ 4 B(M1)(W.u.)=(0.06 5); B(E2)(W.u.)=(2.2 18)
		915.5 <mark>°</mark> 8	45 ^c 9	3898.3	5-				()() ()
4849.93	1+	1468.97 <i>5</i>	6.0 17		1-				
		2977.08 4	100 10	1872.7653					
		3810.59 <i>5</i>	40 4	1039.2279					
4866.056	1+	1195.32 9	2.9 11	3670.72	2+				
		1433.63 <i>4</i>	5.9 12	3432.408	1-				
		1534.60 <i>4</i>	19 5	3331.441	2+				
		1927.96 4	7.2 24	2938.074	2+				

$\gamma(^{66}\text{Zn})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ \ \sharp}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.	δ^a	α^{\dagger}	Comments
4866.056	1+	2085.86 4	7 5	2780.157					
		2993.21 <i>3</i> 4865.87 <i>4</i>	100 <i>10</i> 8.8 <i>7</i>	1872.7653 0.0	2 ⁺ 0 ⁺				
4958.2	1+	3085.4 4	100	1872.7653	2+				
5005.8	1+	5005.6 <i>3</i>	100	0.0	0_{+}	0-			
5111.9	(8-)	860.8 ^c 8	11 ^c 3	4251.9	(7-)	(M1+E2)&	+0.21 15	0.000344 8	$\alpha(K)$ =0.000308 7; $\alpha(L)$ =3.08×10 ⁻⁵ 8; $\alpha(M)$ =4.42×10 ⁻⁶ 11; $\alpha(N+)$ =1.78×10 ⁻⁷ 4 $\alpha(N)$ =1.78×10 ⁻⁷ 4
		1036.0° 3	100 [€] 3	4075.7	(6-)				
5207.3	(8+)	954.2 ^c 5	82 ^c 16	4251.9	(7-)	(E1) ^{&}		0.0001395 20	B(E1)(W.u.)<3.6×10 ⁻⁵ α (K)=0.0001252 <i>I8</i> ; α (L)=1.244×10 ⁻⁵ <i>I8</i> ; α (M)=1.78×10 ⁻⁶ <i>3</i> α (N)=7.18×10 ⁻⁸ <i>10</i> δ (M2/E1)=-0.00 <i>8</i> . E _{γ} : doublet reported in ⁶⁴ Ni(α ,2n γ).
		1025.8 ^c 5	100 ^c 11	4182.7	(6 ⁺)	(E2) [@]		0.000277 4	$\alpha(K)$ =0.000248 4; $\alpha(L)$ =2.49×10 ⁻⁵ 4; $\alpha(M)$ =3.56×10 ⁻⁶ 5; $\alpha(N+)$ =1.427×10 ⁻⁷ 20 $\alpha(N)$ =1.427×10 ⁻⁷ 20 B(E2)(W.u.)<2.9 $\delta(M3/E2)$ =-0.04 6.
5464.4	(9-)	1212.5 ^c 4	100 ^c	4251.9	(7-)	(E2) [@]		0.000200 3	$\alpha(K)$ =0.0001697 24; $\alpha(L)$ =1.695×10 ⁻⁵ 24; $\alpha(M)$ =2.43×10 ⁻⁶ 4; $\alpha(N+)$ =1.073×10 ⁻⁵ $\alpha(N)$ =9.76×10 ⁻⁸ 14; $\alpha(IPF)$ =1.063×10 ⁻⁵ 17 B(E2)(W.u.)=7 3 $\delta(M3/E2)$ =-0.04 4.
6292.6	(10^{+})	828 ^{ch} 1	<22 ^c	5464.4	(9-)	6			_
		1085.3 ^c 4	100 ^c 9	5207.3	(8+)	(E2) [@]		0.000243 4	$\alpha(K)$ =0.000218 3; $\alpha(L)$ =2.18×10 ⁻⁵ 3; $\alpha(M)$ =3.12×10 ⁻⁶ 5; $\alpha(N+)$ =1.252×10 ⁻⁷ 18 $\alpha(N)$ =1.252×10 ⁻⁷ 18 B(E2)(W.u.)=13 +4-7 $\delta(M3/E2)$ =+0.04 6.
6419.0 7367.4	1	1307.1 ^c 7 2732	100 ^c 1.9 <i>12</i>	5111.9 4635.3	(8^{-})				
/30/.4	1	3071 ^h	2.1 12		(2) 1 ⁺				
		3071 3293^{h}	≈0.5	4075.7	(6 ⁻)				
		3356 ^h	0.4 2	4011.7	()				
		3485	2.1 7	3882.424	$(2)^{+}$				
		3544	1.6 5	3825.0	0_{+}				

γ ⁽⁶⁶Zn) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Comments
7367.4	1	3793 ^h 3835	≈0.5 1.6 7	3576.370 3531.692	4 ⁺ 0 ⁺	E_{γ} : rounded-off value from level energy difference; 3840 from (γ, γ') .
		4141 4262	1.0 6	3226.2 3105.040	0+	
		4428	8.1 <i>20</i> 2.1 <i>6</i>	2938.074	2 ⁺	
		4587	3.8 12	2780.157	2+	E_{γ} : rounded off value from level energy difference; 4591 from (γ, γ') .
		4995 ^h 5495	≤0.4 14.3 7	2372.353 1872.7653	0 ⁺ 2 ⁺	
		6326	≈0.3	1039.2279	2+	
7517.3		7368 1224.7 ^c 7	100 100 ^c	0.0 6292.6	0^+ (10^+)	
7693.3	1	4187	8 2	3507.249	2+	
		4263	25 3	3432.408	1-	
		4361 4452	13 2 7 2	3331.441 3241.2?	2+	
		4480	21 2	3212.582	2+	
		4587 4755	8 <i>1</i> 24 2	3105.040 2938.074	0 ⁺ 2 ⁺	
		4930	<2	2762.8	(2)	I_{γ} : relative branching also reported as 8 in $^{66}Zn(\gamma,\gamma')$.
		5321 5819	<3 <2	2372.353 1872.7653	0 ⁺	
		6654	42 1	1039.2279	2+	
		7693	100 <i>I</i>	0.0	0_{+}	

[†] Additional information 2.

[‡] From ⁶⁶Ga ε decay, except as noted. Energies of γ 's depopulating levels above 7 MeV are from ⁶⁶Zn(γ , γ ').

[#] Relative-photon branching from each level from 66 Ga ε decay, except as noted. Branchings for γ 's depopulating levels above 7 MeV are from 66 Zn(γ,γ').

[@] From $\gamma(\theta)$ in ⁶⁴Ni(α ,2n γ) and RUL.

[&]amp; From $\gamma(\theta)$ in ⁶⁴Ni(α ,2n γ) and ΔJ^{π} .

^a From $\gamma(\theta)$ in ⁶⁴Ni(α ,2n γ), except as noted.

^b From 66 Zn(n,n' γ).

^c From ⁶⁴Ni(α ,2n γ).

^d From 66 Zn(p,p' γ).

^e From level energy differences in 65 Cu(p, γ). Uncertainty not given, but has been chosen by the evaluators to be 0.5 keV (an approximate upper limit).

^f From ⁶⁶Zn(p,p' γ). Uncertainties not given in the source data but are estimated as $\approx 2-20\%$.

^g From 65 Cu(p, γ).

^h Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

____ γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

