Tercer Ejercicio

Universidad Simon Bolivar, Topología 1 (010-2020)

Jhonny Lanzuisi, 15 10759

1 Enunciado

Sea X un conjunto ordenado parcialmente. Sean $U_L(x)=\{y\mid y\prec x\}$ y $U_R(x)=\{y\mid x\prec y\}.$ Demuestre que:

- 1 Las familias $\{U_L(x)\}$, $\{U_R(x)\}$ son bases de dos topologías \mathcal{T}_L y \mathcal{T}_R , respectivamente, sobre X.
- 2~Gesta en \mathcal{T}_L si, y solo si, se cumple que

$$x \in G \implies U_L(x) \subset G$$
.

- 3 En \mathcal{T}_L las intersecciones arbitrarias de conjuntos abiertos dan conjuntos abiertos.
- 4 La topología discreta es la única mas fina que \mathcal{T}_L y \mathcal{T}_R .
- 5 Las topologías \mathcal{T}_L y \mathcal{T}_R no son comparables.

2 Solución

PARTE 1. Primero veamos que las familias $\{U_L(x)\}$, $\{U_R(x)\}$ cubren el conjunto X. Esto no es muy complicado puesto que, para todo $x \in X$, los conjuntos $U_L(x)$ y $U_R(x)$ contienen a x (debido a la reflexividad de \prec) de donde se sigue que X puede escribirse como la unión de los $U_L(x)$ o como unión de los $U_R(x)$.

Tomemos ahora un elemento y_1 en $U_L(x_1)\cap U_L(x_2)$, donde x_1,x_2 son elementos de X. Entonces

$$y_1 \in U_L(y_1),$$

por la misma razón que antes, y

$$U_L(y_1) \subset U_L(x_1) \cap U_L(x_2)$$

puesto que si tomamos un $y \in U_L(y_1)$ entonces $y \prec y_1$, pero como $y_1 \prec x_1$ y $y_1 \prec x_2$, se tiene que $y \prec x_1$ y $y \prec x_2$ por transitividad. Hemos descubierto que para todo elemento en la intersección de dos U_L podemos conseguir otro conjunto U_L tal que contiene a dicho elemento y esta contenido en la intersección, es decir, que la familia $\{U_L(x)\}$ forma una base para una topología sobre X por el teorema 3.1. Esta topología es \mathcal{T}_L .

Un argumento análogo al anterior nos da como resultado que la familia $\{U_R(x)\}$ también es base de una topología sobre X, y esta topología es \mathcal{T}_R .

Índice general

Enunciado 1

Solución 1

Resultados Utilizados 3

Resumen

Universidad Simon Bolivar, Topología 1, Tercera tarea. Espacios topológicos, bases, comparación de topologías y ordenes parciales. PARTE 2. Supongamos que G pertenece a \mathcal{T}_L , entonces G se escribe como una unión arbitraria de elementos básicos, es decir,

(1)
$$G = \bigcup_{\alpha} U_L(x_{\alpha}).$$

Si tomamos un $x \in G$ se sigue que x debe pertenecer a alguno de los $U_L(x_\alpha)$. Como x pertenece a este elemento básico se tiene que $x \prec x_\alpha$ pero entonces, por definición de los U_L ,

$$U_L(x) \subset U_L(x_\alpha)$$

y por la igualdad en 1,

$$U_L(x) \subset U_L(x_\alpha) \subset G$$

de donde se tiene, claramente, que $U_L(x) \subset G$.

Supongamos ahora que para cada $x \in G$ se cumple que

$$x \in G \implies U_L(x) \subset G$$
.

Pero como $U_L(x)$ es un elemento de la base de \mathcal{T}_L , la implicación anterior da de forma inmediata, por el teorema 3.2, que $G \in \mathcal{T}_L$.

PARTE 3. Sea $\mathcal{A}=\{A_\alpha\mid \alpha\in\mathcal{A}\}$ una familia de conjuntos abiertos de \mathcal{T}_L , y consideremos la intersección

$$\bigcap \mathcal{A}$$
.

Si tomamos un $x \in \cap \mathcal{A}$ entonces x pertenece a todos los A_{α} . Como estos conjuntos A_{α} son abiertos se sigue, por la parte anterior, que $U_L(x)$ esta contenido en todos los A_{α} . Pero esto es lo mismo que decir que

$$U_L(x) \subset \bigcap \mathcal{A},$$

y, nuevamente por la parte anterior, se tiene que $\cap \mathcal{A}$ es un conjunto abierto.

PARTE 4. Sea \mathcal{T} una topología sobre X tal que

(2)
$$\mathcal{T}_L \subset \mathcal{T}$$
 y $\mathcal{T}_R \subset \mathcal{T}$.

Sabemos que al menos una tal \mathcal{T} existe: la topología discreta, a la que llamaremos \mathcal{D} , por lo que tiene sentido preguntarse si existe otra topología con esta propiedad.

Veamos. Dado cualquier $x \in X$, la topología \mathcal{T} debe cumplir (por 2)

$$U_L(x) \in \mathcal{T}$$
 y $U_R(x) \in \mathcal{T}$.

Pero como \mathcal{T} es una topología la intersección $U_L(x) \cap U_R(x) = \{x\}$ debe pertenecer también a \mathcal{T} . Entonces todos los conjuntos de la forma $\{x\}$ $(x \in X)$ pertenecen a \mathcal{T} , es decir, $\mathcal{D} \subset \mathcal{T}$.

Pero como \mathcal{D} siempre es la topología mas fina, se tiene también $\mathcal{T} \subset \mathcal{D}$, por lo que $\mathcal{D} = \mathcal{T}$.

Es decir, $\mathcal D$ es la única topología más fina que $\mathcal T_L$ y $\mathcal T_R.$

Tercer Ejercicio

3

PARTE 5. Notemos primero que se puede establecer un criterio análogo al de la parte 2 para caracterizar los conjuntos abiertos de \mathcal{T}_R , y la demostración de este hecho es muy parecida a la de la parte 2.

Tomemos dos elementos x_1, x_2 de X tales que $x_1 \prec x_2$. Entonces el cojunto $U_L(x_1)$, que es abierto en \mathcal{T}_L , no contiene a ningun elemento y que suceda a x_1 (por ejemplo, no contiene a x_2) por lo que $U_R(x_1) \not\subset U_L(x_1)$ y por lo tanto $U_L(x_1)$ no es abierto en \mathcal{T}_R . Un ejemplo análogo nos dará un conjunto abierto en \mathcal{T}_R que no es abierto en \mathcal{T}_L . Entonces se tiene que $\mathcal{T}_L \not\subset \mathcal{T}_R$ y $\mathcal{T}_R \not\subset \mathcal{T}_L$.

3 Resultados Utilizados

Teorema 3.1. Sea $\mathcal{B} = \{U_{\alpha} \mid \alpha \in \mathcal{M}\}$ una familia de subconjuntos de X que cubre a X y satisface la siguiente condición:

• Para cada $\alpha, \beta \in \mathcal{M} \times \mathcal{M}$ y cada $x \in U_{\alpha} \cap U_{\beta}$, existe un U_{γ} tal que $x \in U_{\gamma} \subset U_{\alpha} \cap U_{\beta}$.

Entonces el conjunto $\mathcal{T}(\mathcal{B})$ que consiste de X, \emptyset y todas las uniones de miembros de \mathcal{B} es una topología sobre X, es decir, \mathcal{B} es la base de alguna topología sobre X.

Teorema 3.2. Sea $\mathcal{B} \subset \mathcal{T}$ una base para la topología \mathcal{T} . Entonces un conjunto A es abierto (es decir, pertenece a \mathcal{T}) si, y solo si, para cada $x \in A$ existe un $U \in \mathcal{B}$ tal que $x \in U \subset A$.