# **CLOUD ENGINEERING**

A/B Testing

Ashish Pujari

#### Lecture Outline

- A/B Testing
- Testing Process
- Multi-armed Bandits

# A/B TESTING

Overview

## A/B Testing

- Practice of making randomized experiments for optimizing business decisions
- Helps us learn which variation is more effective and make improvements accordingly.
- E.g., between two versions of a web page or a ranking algorithm and which one attracts more visitors or generates more sales.



Source: Optimizely

### A/B Testing: Applications

- E-commerce
- Software Development
- Digital Advertising
- Content Publishing
- Mobile App Development
- Email Marketing
- Financial Services
- Recommender Systems



# Machine Learning A/B Testing

- Recommendation Systems
- Search Engine Ranking
- Fraud Detection
- Ad Targeting
- Email Campaign Optimization

#### Example: Recommender Systems

- Experiments
  - Recommendation Display
  - User Segmentation
  - Ranking Strategies
  - Parameter Optimization
- Benefits
  - Continuously improve the recommendation effectiveness
  - Deliver personalized, relevant, and engaging recommendations
  - Enhance user experience and drive desired user actions

#### **User Journey Metrics**





#### Control and Treatment Groups

- The control group (A) is the group that does not receive the treatment or change.
- The treatment group (B) is the group that receives the treatment or change.



#### Considerations

- Sample Size
  - Sufficient sample sizes are needed to obtain reliable results.
- Randomization
  - Ensures that each participant has an equal chance of being assigned to either group.
- Test Duration
  - Duration of the test should be long enough to capture variations in user behavior.
- Statistical Significance
  - · Helps determine if the observed differences are likely due to chance or if they are meaningful.

# A/B TESTING PROCESS

## Formulate Hypothesis

- Null Hypothesis
  - Assumes no effect or difference
  - E.g., Average revenue per day between the baseline and variant ranking algorithms are the same; any observed difference is due to randomness
- Alternative Hypothesis
  - Assumes an effect or difference
  - E.g., Average revenue per day between the baseline and variant ranking algorithms are different.

#### 2. Define Metrics

- Metric
  - Quantity used to measure the impact of your change
  - Should either be a KPI or directly related to a KPI
  - E.g., Conversion Rates, Mobile signups, Sales, Revenue, etc.

#### Guiding Principles

- Measurable
  - Can the behavior be tracked from the data collected
- Attributable
  - Can the behavior be assigned to the treatment
- Sensitive
  - Does the metric have low variability that can be measured reliably

# A/B Testing Process

- 1. Formulate Hypothesis
- 2. Define Metrics
- 3. Experiment Design
- 4. Collect Data
- 5. Analyze Results
- 6. Launch Decision

# Statistical Analysis

- Estimation and Inference
- Confidence Intervals
- p-values
- Multiple Comparisons

## Significance Level

- How likely it is that the difference between control and test version isn't due to error or random chance
- Typically set to 95%

|                         | Reject H0                      | Fail to Reject H0                      |
|-------------------------|--------------------------------|----------------------------------------|
| Reality:<br>H0 is True  | Type I error (probability = α) | Probability = I-α                      |
| Reality:<br>H0 is False | Power (I-β)                    | Type II error (probability = $\beta$ ) |

### Power Analysis

- Determines the sample size required to detect an effect of a given size with a given degree of confidence.
- Statistical power  $(1 \beta)$  is the inverse of the probability of making a Type II error  $(\beta)$
- Function of four factors:
  - Sample size
  - Minimum Effect of Interest (MEI, or Minimum Detectable Effect)
  - Significance level (α)
  - Desired power level (implied Type II error rate)



#### Lift

- Lift is the percent improvement of a target metric
- Easy to understand and explain but does not take randomness into account

$$lift = \frac{m_2 - m_1}{m_1}$$

- $m_1$  Average of the first (or control) group
- $m_2$  Average of the second (or test) group

#### **Effect Size**

- Effect size is the statistical strength of our result by controlling for randomness
- Cohen's d is one way to increase explanatory power through the use of standard deviation

$$Effect Size = \frac{m_2 - m_1}{s_{pooled}}$$

$$s_{pooled} = \sqrt{\frac{(n_1 - 1)(s_1)^2 + (n_2 - 1)(s_2)^2}{n_1 + n_2 - 2}}$$

- $n_1$  Size of the first (or control) group
- $n_2$  Size of the second (or test) group
- $s_1$  Sample standard deviation of the first (or control) group
- $s_2$  Sample standard deviation of the second (or test) group

| Cohen's d | Effect size |
|-----------|-------------|
| 0.01      | Very small  |
| 0.2       | Small       |
| 0.5       | Medium      |
| 0.8       | Large       |
| 1.2       | Very large  |
| 2.0       | Huge        |

# Minimum Detectable Effect (MDE)

- Minimum effect size that should be detected with a certain probability
- MDE is inversely related to sample size is necessary to calculate the minimum required sample size

$$MDE = (Z_{1-\alpha/2} + Z_{1-\beta}) \sqrt{\frac{2p(1-p)}{n}}$$

- Z(k) is a critical value to reject hypothesis with probability k
- $\alpha$  is the significance level
- $(1 \beta)$  is the power of the test
- n is the sample size per group
- p is the baseline proportion (or probability of success) in the control group

#### 3. Experiment Design

- Experimental Unit
  - Smallest unit you are measuring the change over
  - E.g., Individual users make a convenient experimental unit
- Target Population
  - E.g., Visitors who have searched for products
- Sample Size
  - Use sample size calculator
- Experiment Duration
  - Long enough to derive meaningful results
  - E.g., 1-2 weeks



# Online vs. Offline Testing

| Online Testing                                            | Offline Testing                                                             |
|-----------------------------------------------------------|-----------------------------------------------------------------------------|
| Real-time data collection                                 | Uses historical data                                                        |
| Dynamic environment                                       | Simulated environment                                                       |
| Captures actual user behavior                             | Controlled variables                                                        |
| Immediate feedback                                        | No impact on real users                                                     |
| Realistic conditions                                      | Cost-effective                                                              |
| Accurate, relevant results                                | Preliminary insights                                                        |
| Risk of negative impact on users                          | Less realistic                                                              |
| Resource-intensive                                        | Historical bias                                                             |
| Ethical considerations                                    | Limited scope                                                               |
| Used for website design, app features, pricing strategies | Used for model validation, algorithm comparison, initial hypothesis testing |

#### 4. Collect Data

- Set up data pipelines
- Set up instrumentation
- Run Experiment
- Avoid peeking p-values
- Test Validation

### A/B Statistical Tests

- Test if there is a statistically significant difference between two groups in terms of a specific metric.
- Depends on the nature of the data, assumptions, and requirements of the A/B test.
- Tests
  - Chi-squared test
  - Student's t-test
  - Welch's t-test
  - Mann-Whitney U (Wilcoxon rank-sum) test
  - Bootstrap test
  - Bayesian methods

# A/A Test

- Helps validate the experimental setup
- By comparing two identical groups, it helps identify and address any biases, errors, or inconsistencies in the testing framework
- Expected Outcome:
  - p-value should be greater than the significance level, indicating no significant difference between the two groups.
- Unexpected Outcome:
  - p-value less than the significance level would indicate a significant difference between the identical groups, suggesting potential issues with the randomization process, data collection, or other aspects of the experimental setup.

#### Frequentist vs Bayesian Approach

#### Frequentist

Control Treatment Hypothesis

Experiment

Calculate Test Statistic and P-value

Accept/Reject Null Hypothesis

#### **Bayesian**

Control
Treatment
Define Priors

Experiment

Calculate posterior distributions for control and treatment

X% Confident that the lift is Y%

# A/B Testing Process

#### Correct A/B testing



#### Incorrect A/B testing



#### **Test Validation**

- Instrumentation Effects
  - Testing tool
  - Bugs
- External Factors
  - Seasonality
  - Holidays
  - Competition
  - Adverse Events

- Selection Bias
  - A/A Testing
- Sample Ratio Mismatch
  - Chi Squared Goodness of Fit
- Novelty Effect
  - User segmentation old vs new

#### **Ethical Considerations**

- Informed Consent
- Data Privacy
- Fairness and Bias
- Monitoring and Stopping Rules

### 5. Analyze Results

Sample Dashboard



#### 6. Launch Decision

- Metric Tradeoffs
  - Primary vs Secondary metrics
- Cost of launching
  - Implement Winning Variation

#### Summary

- Requires a very good understanding of the business problem
- A/B testing is a way to test your own assumptions
- A/B tests heavily depend on sample size which should be decided in advance
- A/B tests are difficult to design and execute
- Could take weeks to show results
- Statistical significance does not indicate that variation is better than control or the magnitude of the result

# **MULTI ARMED BANDITS**

#### **Other Situations**

- Dynamic Environments
  - E.g, Personalized recommendations where user preferences evolve over time
- Sequential Decision Making
  - E.g, A multi-step user journey, such as onboarding processes,
- Complex Reward Structures
  - E.g, Retention strategies where the goal is to maximize long-term user engagement
- Exploration vs. Exploitation
  - E.g, Strategies where exploring new ad placements might uncover higher-performing options
- Contextual and Personalized Policies
  - E.g, Personalized marketing campaigns where the best action varies between user segments.

#### Reinforcement Learning

- An agent in a current state  $(S_t)$  takes an action  $(A_t)$  to which the environment reacts and responds, returning a new state  $(S_{t+1})$  and reward  $(R_{t+1})$  to the agent.
- Given the updated state and reward, the agent chooses the next action, and the loop repeats until an environment is solved or terminated.



Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto

#### **Multi-Armed Bandits**

- Allows for adaptive (dynamic) allocation of traffic based on the performance of each arm in real-time.
- Benefits
  - Allows for more effective decision-making and optimization of experiments.
  - Reduces potential loss of performance by quickly identifying and exploiting better-performing variations while continuing to explore other possibilities.



Slot machines are called bandits

### **Exploration vs Exploitation**







Business Strategy - Exploration vs Exploitation

Epsilon ( $\epsilon$ ): The agent takes random actions for probability  $\epsilon$  and greedy action for probability (1- $\epsilon$ )

#### Multi-Armed Bandits: Process

- 1. Set up variations (arms)
- 2. Start with exploration
- 3. Track performance
- 4. Exploit high-performing arms
- 5. Continue exploration and exploitation
- 6. Adapt allocation over time
- 7. Convergence to optimal arm

### Multi-Armed Bandits Strategies

- Epsilon Greedy
- Upper Confidence Bound (UCB1)
- Bayesian Bandits
  - UCB Tuned Bandit
  - Thompson Sampling
- Softmax Exploration
- Gradient Bandits



Microservices-based implementation of an A/B test between two Amazon Personalize campaigns