Colle 2 - Youn AIRIAUD

MPSI2 Année 2021-2022

28 septembre 2021

Question de cours . Justifier le principe de récurrence à l'aide de l'axiome : toute partie non vide de \mathbb{N} admet un minimum.

Exercice 1. 1. Démontrer que, pour tout entier n, on a

$$\sum_{n=0}^{n} \binom{n}{p} 2^p = 3^n.$$

2. Démontrer que, pour tout entier n, on a

$$\sum_{k=1}^{2n} \binom{2n}{k} (-1)^k 2^{k-1} = 0.$$

Exercice 2. Démontrer que tout entier $n \ge 2$ est un produit de nombres premiers.

Exercice 3. Soit $n \in \mathbb{N}$.

- 1. Pour quels entiers $p \in \{0,...,n-1\}$ a-t-on $\binom{n}{p} < \binom{n}{p+1}$?
- 2. Soit $p \in \{0,...,n\}$. Pour quelle(s) valeur(s) de $q \in \{0,...,n\}$ a-t-on $\binom{n}{p} = \binom{n}{q}$?

Exercice 4. Déterminer toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ telles que, pour tous $x, y \in \mathbb{R}$,

$$f(x) \times f(y) - f(x \times y) = x + y.$$

Exercice 5. Soient $(a_n)_{n\in\mathbb{N}}$ et $(B_n)_{n\in\mathbb{N}}$ deux suites de nombres complexes. On définit deux suites $(A_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ en posant, pour $n\in\mathbb{N}$,

$$A_n = \sum_{k=0}^n a_k \quad \text{ et } \quad b_n = B_{n+1} - B_n$$

1. Démontrer que

$$\sum_{k=0}^{n} a_k B_k = A_n B_n - \sum_{k=0}^{n-1} A_k b_k.$$

2. En déduire la valeur de

$$\sum_{k=0}^{n} 2^{k} k$$