skyrius 4

Šilumos laidumo ir difuzijos lygtys

4.1 Difuzijos matematinis modelis

Dėl medžiagos (pavyzdžiui, druskos; 4.1 pav.) molekulių chaotinių judėsių kinta jos koncentracija (molekulių kiekis) kitoje medžiagoje (pavyzdžiui, vandenyje). Difuzuojančių medžiagų sąveikos procesas paprastai vyksta du-

4.1 pav: Difuzijos proceso modelis

jose ir skysčiuose ir vadinamas **difuzija**. Per laiko intervalą $\Delta t \ll 1$ per vamzdžio pjūvį (S-pjūvio plotas) praeina difuzuojančios medžiagos kiekis, kurio masė yra m. Šis kiekis priklauso nuo medžiagos (pavyzdžio atveju – druskos) koncentracijos C(t,x) ir nuo difuzijos koeficiento λ . Masė m išreiškiama Fiko (A.Fick) dėsniu:

$$m = -\lambda \frac{\partial C}{\partial x} S \Delta t. \tag{4.1}$$

Pastebėkime, kad iš (4.1) išplaukia

$$\Delta_x m = m(t, x + \Delta x) - m(t, x) = -\lambda \left(\frac{\partial C(t, x + \Delta x)}{\partial x} - \frac{\partial C(t, x)}{\partial x} \right) S \Delta t.$$

Kita vertus, per laiko intervalą $\Delta t \ll 1$ medžiagos (druskos) koncentacija indo dalyje tarp x ir $x + \Delta x$ pasikeis taip:

$$-\Delta_x m = (C(t + \Delta t, \tilde{x}) - C(t, \tilde{x})) \Delta V.$$

Čia ΔV – indo dalies tarp taškų x ir $x + \Delta x$ tūris, $\tilde{x} \in (x, x + \Delta x)$. Kai S–const, $\Delta V = S \Delta x$. Taigi gauname

$$\frac{C(t + \Delta t, \tilde{x}) - C(t, \tilde{x})}{\Delta t} S = \lambda S \frac{\partial}{\partial x} \left(\frac{C(t, x + \Delta x) - C(t, x)}{\Delta x} \right).$$

Perėję prie ribos, kai $\Delta t \to 0$ ir $\Delta x \to 0$, gauname difuzijos lygtį

$$\frac{\partial C}{\partial t} = a^2 \frac{\partial^2 C}{\partial x^2},\tag{4.2}$$

čia $a = \sqrt{\lambda}$.

4.2 Šilumos laidumas strype

4.2.1 Modeliavimo prielaidos

- strypas yra tiek plonas, kad kiekvieno skersinio pjūvio taškuose tempertūra laikoma vienoda;
- u(t,x) strypo skersmenyje, kurio koordinatė yra x temperatūra laiko momentu t;
- S(x) > 0 strypo skerspjūvio plotas;
- p(x) > 0 skerspjūvio perimetras;
- $\rho(x) > 0$ tankis;
- C(x) > 0 specifinė šiluma (šilumos kiekis strypo elemente $x, x + \Delta x$ lygus $C \rho S \Delta x u$);
- k(x) > 0 šilumos laidumo koeficientas;
- $\kappa(x) > 0$ spinduliavimo (aušimo) koeficientas;
- f(t,x) oro temperatūra strypo aplinkoje.

4.2.2 Diferencialinė lygtis

$$C(x) \rho(x) S(x) \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(k(x) S(x) \frac{\partial u}{\partial x} \right) - \kappa(x) p(x) \left(u - f(t, x) \right).$$

Kai visi modelio parametrai yra konstantos (vienalytė medžiaga ir vienodas skerspjūvis),

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} - b(u - f(t, x)),$$

$$a = \sqrt{\frac{k}{C\rho}}, \ b = \frac{\kappa p}{C\rho S}.$$

Jei strypas yra izoliuotas ($\kappa = 0$), gauname homogeninę lygtį

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}.$$

Šilumos sklidimas esant šilumos šaltiniui

Kai strypas yra izoliuotas ir veikia šilumos šaltinis, tai strypo temeratūrai galioja nehomogeninė lygtis

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + h(t, x). \tag{4.3}$$

4.2.3 Šilumos laidumas erdvėje

Tarkime, kad $\rho(x,y,z)$ – kūno tankis, C(x,y,z) – specifinė šiluma, k(x,y,x) – šilumos laidumo koeficientas. Kūno temperantūrai u(t,x,y,z) galioja šilumos laidumo lygtis

$$C\rho \frac{\partial u}{\partial t} = \operatorname{div}(k \operatorname{grad} u).$$
 (4.4)

Kai parametrai ρ , C, k yra konstantos (**homogeninis** kūnas) gauname lygtį

$$u_t = a^2 \Delta u$$
.

čia
$$a=\sqrt{\frac{k}{\rho C}},\,\Delta\equiv\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2}$$
 – Laplaso operatorius.

4.3 Koši uždavinio sprendimas

Begalinio strypo aušinimas

Spręsime uždavinį

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}, \ u(t, x)|_{t=0} = \varphi(x), \tag{4.5}$$

kai $-\infty < x < +\infty, t \ge 0.$

4.3.1 Kintamųjų atskyrimo metodas

Ieškosime netrivialių (nenulinių) (4.5) lygties spendinių tokiu pavidalu

$$u(t,x) = T(t) X(x).$$

Tada $u_t = T'(t)\,X(x),\ u_{xx} = T(t)\,X''(x)$ ir įrašę šiuos reiškinius į (4.5) lygtį, gauname

$$\frac{T'(t)}{T(t)} = a^2 \frac{X''(x)}{X(x)} = const.$$

Nagrinėsime atvejį const < 0 (priešingas atvejis neturi fizikinės prasmės) ir pažymėkime $const \cdot a^2 = -\lambda^2$. Tada

$$T(t) = C e^{-\lambda^2 a^2 t}, \ X(x) = A \cos \lambda x + B \sin \lambda x.$$

Taigi pastebėję, kad λ yra bet kuris neneigiamas realusis skaičius, gauname be galo daug lygties sprendinių

$$u(t,x) = e^{-\lambda^2 a^2 t} (A(\lambda) \cos \lambda x + B(\lambda) \sin \lambda x).$$

4.3.2 Furjė metodas

Tiesioginiu patikrinimu įrodome, kad integralas

$$u(t,x) = \int_{-\infty}^{+\infty} e^{-\lambda^2 a^2 t} \left(A(\lambda) \cos \lambda x + B(\lambda) \sin \lambda x \right) d\lambda \tag{4.6}$$

irgi yra (4.5) lygties sprendinys.

Iš pradinės sąlygos gauname:

$$u(0,x) = \int_{-\infty}^{+\infty} (A(\lambda)\cos \lambda x + B(\lambda)\sin \lambda x) \ d\lambda = \varphi(x).$$

Tarkime, kad funkciją $\varphi(c)$ galima išreikšti Furjė integralu. Tada

$$A(\lambda) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \varphi(\xi) \cos \lambda \xi \, d\xi,$$

$$B(\lambda) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \varphi(\xi) \sin \lambda \xi \, d\xi.$$

Iš čia, taikydami formulę $\cos \lambda x \cos \lambda \xi + \sin \lambda x \sin \lambda \xi = \cos \lambda (\xi - x)$, gauname

$$u(t,x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\lambda^2 a^2 t} \left(\cos \lambda x \int_{-\infty}^{+\infty} \varphi(\xi) \cos \lambda \xi \, d\xi + \sin \lambda x \int_{-\infty}^{+\infty} \varphi(\xi) \sin \lambda \xi \, d\xi \right) \, d\lambda =$$

$$\frac{1}{\pi} \int_{0}^{+\infty} \left(\int_{-\infty}^{+\infty} e^{-\lambda^2 a^2 t} \, \varphi(\xi) \cos \lambda (\xi - x) \, d\xi \right) \, d\lambda.$$

Pakeitę integravimo tvarką, gausime

$$u(t,x) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \varphi(\xi) I(\xi) d\xi,$$

čia

$$I(\xi) = \int_{0}^{+\infty} e^{-\lambda^2 a^2 t} \cos \lambda (\xi - x) d\lambda.$$

Raskime funkcijos $I(\xi)$ išvestinę

$$I'(\xi) = -\int_{0}^{+\infty} e^{-\lambda^2 a^2 t} \lambda \sin \lambda (\xi - x) d\lambda =$$

$$\frac{1}{2a^2 t} \int_{0}^{+\infty} \sin \lambda (\xi - x) de^{-\lambda^2 a^2 t}$$

Diferencijavimu dalimis gauname diferencialinę lygtį

$$I'(\xi) = -\frac{\xi - x}{2a^2t}I(\xi).$$

Iš čia ir iš funkcijos $I(\xi)$ reiškimo integralu, kai $\xi = x$:

$$\int\limits_{0}^{\infty} e^{-z^2} dz = \frac{\sqrt{\pi}}{2}$$

išplaukia, kad

$$I(\xi)|_{\xi=x} = \frac{1}{2a} \sqrt{\frac{\pi}{t}},$$

$$I(\xi) = \frac{1}{2a} \sqrt{\frac{\pi}{t}} e^{-\frac{(\xi-x)^2}{4a^2t}}.$$

Taigi galime užrašyti (4.5) uždavinio sprendinį

$$u(t,x) = \begin{cases} \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{+\infty} \varphi(\xi) e^{-\frac{(\xi-x)^2}{4a^2t}} d\xi, & t > 0\\ \varphi(x), & t = 0 \end{cases}$$
(4.7)

4.3.3 Fundamentinio sprendinio fizikinė prasmė

Tarkime, kad funkcija $\varphi(\xi)$ (4.7) formulėje yra tokia

$$\varphi(\xi) = \left\{ \begin{array}{ll} 0, & \text{kai } \xi < x_0 - \delta, \\ \varphi_0, \text{ kai } x_0 - \delta \leqslant \xi \leqslant x_0 + \delta, \\ 0, & \text{kai } \xi > x_0 + \delta, \end{array} \right.$$

čia δ – mažas teigiamas skaičius.

Paimkime,

$$\varphi_0 = \frac{Q_0}{2\delta S\rho C},$$

S – strypo skerspjūvio plotas,

 ρ – strypo medžiagos tankis,

C – specifinė šiluma,

 Q_0 – šilumos kiekis, sukoncentruotas strypo atkarpoje $[x_0-\delta,x_0+\delta].$ Įrašę φ_0 į (4.7) formulę, gausime

$$u(t,x) = \frac{Q_0}{S\rho C} \cdot \frac{1}{2a\sqrt{\pi t}} \cdot \frac{1}{2\delta} \int_{x_0 - \delta}^{x_0 + \delta} e^{-\frac{(\xi - x)^2}{4a^2t}} d\xi$$

ir kai $\delta \to 0$:

$$\frac{Q_0}{S\rho C} \cdot \frac{1}{2a\sqrt{\pi t}} e^{-\frac{(x_0 - x)^2}{4a^2t}}.$$

Paimkime šilumos kiekį Q_0 taip, kad jis galėtų pakelti vienetinio ilgio strypo atkarpos temperatūrą vienu laipsniu: $Q_0=1\cdot S\rho C\cdot 1$. Funkciją

$$v(t,x) = \frac{1}{2a\sqrt{\pi t}} e^{-\frac{(x_0 - x)^2}{4a^2t}}$$
(4.8)

vadiname **fundamentiniu sprendiniu**. Ši funkcija turi šaltinio prasmę, kai taške $x=x_0$ pradine akimirka patalpintas šilumos kiekis (toks, kad pakelti temperatūra taip, kaip buvo nurodyta), o kituose strypo taškuose jo temperatūra lygi nuliui.

Funkcijos v(t, x) grafikas esant skirtingoms t reikšmėms $t_1 < t_2 < t_3 < t_4$ parodytas 4.2 paveiksle.

4.2 pav: Funkcijos (4.8) grafikas esant skirtingoms t reikšmėms

4.1 pratimas. Raskite laiko momentą t_x , kai taške $x \neq x_0$ strypo temperatūra $v\left(t_x,x\right)$ yra maksimali ir raskite šią temperatūrą.

Temperatūros formulė plokštumoje ir erdvėje

$$u(t, x, y) = \frac{1}{4\pi a^2 t} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \varphi(\xi, \eta) e^{-\frac{(\xi - x)^2 + (\eta - y)^2}{4a^2 t}} d\xi d\eta.$$

$$u(t, x, y, z) = \frac{1}{(2a\sqrt{\pi t})^3} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \varphi(\xi, \eta, \zeta) e^{-\frac{(\xi - x)^2 + (\eta - y)^2 + (\zeta - z)^2}{4a^2t}} d\xi d\eta d\zeta.$$

4.3.4 Kraštinės sąlygos

Baigtinio strypo galuose x=0 ir x=l palaikoma kintanti temperatūra $\alpha(t)$ ir $\beta(t)$ – **pirmosios rūšies kraštinės sąlygos**:

$$u(t,x)|_{x=0} = \alpha(t), \ u(t,x)|_{x=l} = \beta(t).$$

Strypo galuose yra žinoma šilumos srovė (ji proporcinga temperatūros gradijentui) – antrosios rūšies kraštinės sąlygos:

$$\frac{\partial u(t,x)}{\partial x}\Big|_{x=0} = \gamma(t), \ \frac{\partial u(t,x)}{\partial x}\Big|_{x=l} = \delta(t).$$

Trečiosios rūšies kraštinės sąlygos – strypo galuose vyksta šiluminis spinduliavimas į aplinką:

$$\frac{\partial u(t,x)}{\partial x} - h_0(u(t,x) - f_0(t)) \bigg|_{x=0} = 0,$$

$$\frac{\partial u(t,x)}{\partial x} + h_l(u(t,x) - f_l(t)) \bigg|_{x=l} = 0.$$

4.3.5 Kraštinio uždavinio sprendimas Furjė metodu

Baigtinio izoliuoto strypo aušinimas

$$u_t = a^2 u_{xx}, \ 0 < x < l, \ t > 0,$$

 $u(0, x) = \varphi(x),$
 $u'_x(t, 0) = 0, \ u'_x(t, l) = 0.$

Taikome kintamųjų atskyrimo metodą (4.3.1, 30 p.):

$$\frac{T'(t)}{T(t)} = -a^2 \lambda^2, \qquad X''(x) + \lambda^2 X(x) = 0.$$

Iš čia gauname

$$T(t) = Ce^{-a^2\lambda^2 t}, \qquad X(x) = A\cos\lambda x + B\sin\lambda x.$$

Iš kraštinių sąlygų gauname, kad nenuliniai sprendiniai egzistuoja, kai

$$B = 0, \qquad \lambda = \frac{n\pi}{l}, \ n = 1, 2, \dots$$

Todėl (atskirai išnagrinėkite atvejį, kai $\lambda = 0$)

$$u(t,x) = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} A_n e^{-\frac{n^2 \pi^2 a^2 t}{l^2}} \cos \frac{n\pi x}{l}$$

Iš pradinės sąlygos turime

$$u(0,x) = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} A_n \cos \frac{n\pi x}{l} = \varphi(x).$$

Taigi apskaičiuojame Furjė eilutės koeficientus

$$A_n = \frac{2}{l} \int_0^l \varphi(\xi) \cos \frac{n\pi\xi}{l} d\xi, \ n = 0, 1, \dots$$

4.4 Maksimumo principas

Pažymėkime stačiakampio $G=\{0\leqslant t\leqslant T,\ 0\leqslant x\leqslant l\}$ kontūrą $\Gamma=\{t=0,\ x=0,\ x=l\}$ (4.3 pav.) Tarkime, kad $M_{\Gamma}=\max_{\Gamma}u(t,x)$ funkcijos u maksimumas kontūro Γ taškuose, $M_G=\max_G u(t,x)$ – jos maksimumas srities G taškuose. Kadangi $\Gamma\subset G$, galioja nelygybė $M_{\Gamma}\leqslant M_G$. Tačiau šilumos laidumo lygties sprendiniui galioja lygybė $M_{\Gamma}=M_G$.

4.1 teorema. Tarkime, kad funkcija u(t,x) – lygties $u_t = a^2 u_{xx}$ – spendinys yra tolydi srityje G. Tada egzistuoja toks kontūro Γ taškas (t_0, x_0) , kad

$$u(t_0, x_0) = M_G = \max_G u(t, x).$$

Irodymas. Tarkime, kad $(t_1, x_1) \in G \setminus \Gamma$ yra vidinis srities G taškas ir $u(t_1, x_1) = M_{\Gamma} + \varepsilon$, $\varepsilon > 0$. Sudarome pagalbinę funkciją (ji nėra šilumos laidumo lygties sprendinys)

$$U(t,x) = u(t,x) + \frac{\varepsilon}{2t_1}(t_1 - t).$$

4.3 pav: Maksimumo principas

Jei padaryta prielaida yra teisinga, funkcijos U maksimumas srities G taškuose lygus $M_{\Gamma}+\varepsilon$, o kontūro Γ taškuose

$$U(t,x)|_{\Gamma} \leqslant M_{\Gamma} + \frac{\varepsilon}{2t_1}t_1 = M_{\Gamma} + \frac{\varepsilon}{2}.$$

Taigi funkcija U(t,x) įgyja maksimalią reikšmę kažkuriame vidiniame (atskirai reikia nagrinėti atvejį $t_2 = T$) srities taške (t_2, x_2) . Maksimumo taške turi būti $U_{xx}(t_2, x_2) \leqslant 0$ ir iš funkcijos U apibrėžimo išplaukia, kad $u_{xx}(t_2, x_2) \leqslant 0$. Kita vertus, ekstremumo taške gausime įvertį $u_t(t_2, x_2) \geqslant \frac{\varepsilon}{2t_2}$ (lygybė galima tik, kai $t_2 = T$). Tada funkcija u(t,x) nėra lygties $u_t = a^2 u_{xx}$ sprendinys, o tai prieštarauja teoremos sąlygai.

4.5 Uždavinys apie žemės temperatūrą

Spręsime uždavinį, kai žinoma vidutinė ilgametė temperatūra žemės paviršiuje

$$f(t) = \operatorname{Re} \sum_{n=-\infty}^{+\infty} f_n e^{\frac{2\pi nt}{T}},$$

čia T – metų ilgis (pavyzdžiui, T=365).

Žymėsime x=0 – žemės paviršius, $x=-\infty$ – didelis gylis. Sprendinio ieškosime Furjė eilutės pavidalu

$$u(t,x) = \sum_{n=-\infty}^{+\infty} f_n u_n(x) e^{\frac{2\pi nt}{T}}.$$

Funkcija u(t,x) yra šilumos laidumo lygties sprendinys. Todėl

$$\frac{2\pi in}{T}u_n = a^2 u''.$$

Bendrasis lygties sprendinys

$$u_n(x) = A_n e^{(1\pm i)q_n x} + B_n e^{-(1\pm i)q_n x}, \ q_n = \sqrt{\frac{|n|\pi}{a^2 T}}$$

bus aprėžtas tik, kai $A_n = 0$.

Iš pradinių sąlygų gauname, kad $u_n(0)=1$. Pastebėkime, kad $f_n=f_{-n}=|f_n|\,e^{-i\gamma_n}$. Todėl

$$u(t,x) = f_0 + 2\sum_{n=1}^{\infty} |f_n| e^{-q_n x} \cos\left(2\pi n \frac{t}{T} + \gamma_n - q_n x\right).$$

Furjė eilutės koeficientas f_0 turi ilgametės vidutinės temperatūros prasmę. Pavyzdžiui, šiaurės kraštuose $f_0<0$ ir tai reiškia amžinąjį įšalą.