

香港中文大學

The Chinese University of Hong Kong

CENG2400 Embedded System Design

Lecture 01: Introduction

Ming-Chang YANG

Thanks to Prof. Q. Xu and Drs. K. H. Wong, Philip Leong, Y.S. Moon, O. Mencer, N. Dulay, P. Cheung for some of the slides used in this course!

Outline

Preface: Control a System

- Basics of Embedded System
 - Embedded System (ES): Concepts and Examples
 - Typical ES Software Operations
 - Typical ES Attributes

- Target Platform: Tiva™ LaunchPad
 - ARM® Cortex™-M4F-based microcontrollers

Outline

Preface: Control a System

- Basics of Embedded System
 - Embedded System (ES): Concepts and Examples
 - Typical ES Software Operations
 - Typical ES Attributes

- Target Platform: Tiva™ LaunchPad
 - ARM® Cortex™-M4F-based microcontrollers

An Electric Hot Plate

- This is an electric hot plate that is used to cook food.
 - The control knob on the front is for turning on/off the hot plate and setting the temperature (to low/med/high).

How Does It Work?

- The temperature control system is based on:
 - A thermostatic switch, which bends as it grows hotter to connect or disconnect the heating element from the power.
 - A control knob, which adjusts the distance between the switch contacts to set the temperatures.

Class Exercise 1.1

- The below figure shows the temperature over time, which is measured using a thermocouple, a type of electric thermometer.
- How good is its temperature control? Point out all possible issues you have observed.

Embedded Computer for Better Control

- Embedded computers use microcontrollers to simplify the system's monitoring/control at low cost.
 - The microcontroller reads the desired and actual temperatures and decides on how to control the system.
 - The outputs from microcontroller are low voltage/current (incapable of powering the heating element): a driver and a power supply (not shown) are needed.

Outline

Preface: Control a System

Basics of Embedded System

- Embedded System (ES): Concepts and Examples
- Typical ES Software Operations
- Typical ES Attributes

- Target Platform: Tiva™ LaunchPad
 - ARM® Cortex™-M4F-based microcontrollers

Major Components of a Computer

General Purpose vs. Embedded Computers

Versatility

VS.

Specialization

Powerful Hardware (e.g., Central Processing Unit (CPU))

VS.

Limited Resources

(e.g., Microprocessor)

Upgradability

VS.

Integration

μP -> MCU -> Embedded System (ES)

Microprocessor (µP)

As a compact form of CPU implemented on an IC.

Microcontroller (MCU)

- Has the microprocessor;
- Integrated with other components including memory, digital/analog IOs, and other peripherals.

Embedded System (ES)

- Typically implemented using MCUs;
- Often integrated into a larger mechanical or electrical system.

An Example: Smartband from Xiao Mi

Teardown the Mi Band

The Main Board of Mi Band

 Printed Circuit Board (PCB): A board which holds electronic components and conductive traces for interconnection.

Typical ES Software Operations

Closed-loop control

 Control an output variable based on one or more input measurements.

Sequencing

Control an output through a sequence of steps.

Signal conditioning

 Average together multiple sensor readings or filter out noise from motors or other devices for better accuracy.

Communication and networking

Interact with subsystems or other systems.

Typical ES Attributes

Interfacing with I/Os

 Sense the environment and control devices in response with specialized peripheral hardware circuits.

Concurrency

 Manage multiple activities concurrently by sharing the microprocessor or processing in hardware independently;

Responsiveness

 There are two aspects to making a system responsive: raw processing speed and task scheduling.

Reliability, Fault Handling, and Diagnostics

Work correctly and reliably with quick and easy repair.

Constraints

Cost, energy, weight, size, working temperatures, etc.

CENG2400 Lec01: Introduction 2024-25 T1

Concurrency with Software & Hardware?

- ESs rely on both MCU hardware peripherals and software to get everything done on time!
 - Hardware peripherals add dedicated concurrent processing;
 - Peripherals use interrupts to notify CPU of events.

Outline

Preface: Control a System

- Basics of Embedded System
 - Embedded System (ES): Concepts and Examples
 - Typical ES Software Operations
 - Typical ES Attributes

- Target Platform: Tiva™ LaunchPad
 - ARM® Cortex™-M4F-based microcontrollers

ARM Cortex-M Family

'8/16-bit' Traditional application space

'16/32-bit' Traditional application space

Target Applications

iBeacons (Blue Cat, Blue Sense, Estimote...)

Well Cow sensor

Netatmo June UV sensor

August Smart Lock

Cortex-M3

Misfit Shine

Pebble Watch

Qualcomm TOQ

FitBit Flex

Cortex-M4

Withings Pulse

Whistle Dog Activity Monitor

Thalmic Lab MYO

GoPro Hero3+

TivaTM C Series LaunchPad (EK-TM4C123GXL)

Tiva™ LaunchPad: Block Diagram

Microcontroller (MCU)

 Has a 32-bit ARM Cortex-M4based microcontroller (TM4C123GH6PM).

USB Connectivity

 Functions as a USB device without hardware modifications.

Motion Control

- Includes the pulse-width modulation (PWM) technology.
- User Switches/LED
- Headers/BoosterPacks
 - Interfaces with other peripherals/devices esily.
- Power Management
- In-Circuit Debug Interface 23

MCU: TM4C123GH6PM

Microprocessor: ARM Cortex-M4F

Code Composer Studio™ IDE

 Attend our labs to learn from scratch!

CCS Edit - Code Composer Studio

Project Explorer 33

■ Includes

readme.bd

b tm4c123gh6pm_startup_ccs.c

tm4c123gh6pm.cmd

Licensed

a lab2

File Edit View Navigate Project Run

⇒ C:/Tl/ccsv5/tools/compiler/arm 5.1.1/include

Tiva TM4C123GH6PM.ccxml (Active/Default)

Project Explorer

Pane

```
1 #include <stdint.h>
             2 #include <stdbool.h>
            3 #include "inc/hw_memmap.h"
                                                                              C/C++
            4 #include "inc/hw types.h"
            5 #include "driverlib/sysctl.h"
                                                                       Programming
            6 #include "driverlib/gpio.h"
            8 uint8 t magic number=0;
           10 int main(void)
           11 {
           12
                  SysCtlClockSet(SYSCTL SYSDIV 5|SYSCTL USE PLL|SYSCTL XTAL 16MHZ|SYSCTL OSC MAIN);
           13
                  SysCtlPeripheralEnable(SYSCTL PERIPH GPIOF);
                  GPIOPinTypeGPIOOutput(GPIO PORTF BASE, GPIO PIN 1 GPIO PIN 2 GPIO PIN 3);
                  while(1)
Scripts Window
                      GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, magic_number);
                      SysCtlDelay(2000000);
                      GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0x00);
            22
                      // SysCtlDelay(2000000);
           23
                      if(magic number==16) {magic number=0;} else {magic number+=2;}
           24
           25 }
                                                                               OME
            Console 23
                                 居 国 · P · P D
                                                 Problems 23 | Advice
            No consoles to display at this time.
                                                 0 items
                                                  Description
                     Console
                                                           Problem
                        Pane
                                                              Pane
```

Past Project: Motion-Controlled Laser Turret

Summary

Preface: Control a System

- Basics of Embedded System
 - Embedded System (ES): Concepts and Examples
 - Typical ES Software Operations
 - Typical ES Attributes

- Target Platform: Tiva™ LaunchPad
 - ARM® Cortex™-M4F-based microcontrollers