Training Loops

Epoch: A single pass through all of the examples *m* in the training dataset (a training loop consists of multiple epochs)

Iteration: A single forward and backward pass + weight updates of backpropagation algo (an epoch can consist of multiple iterations)

Stochastic vs Batch vs Mini-batch Gradient Descent

- Stochastic: A training dataset of m examples would take m iterations to complete a single epoch, and would involve m weight updates for w_{i,k}
- Batch: $\Delta w_{i,k}$ is the sum of error gradient for weight $w_{i,k}$ for all m in one epoch. A single iteration is performed in each epoch, therefore a single weight update per epoch.
- Mini-batch: Δw_{i,k} is the sum error gradient for weight w_{i,k} for one mini-batch (subset of m). A training dataset of m examples would take m / batch_size iterations to complete a single epoch, and involve m / batch_size weight w_{i,k} updates

Batch Gradient Descent

Mini-Batch Gradient Descent

Stochastic Gradient Descent

Batch Gradient

Descent

Stochastic Gradient Descent (SGD)

Mini-Batch Gradient Descent

- Update using all data
- Smooth cost function
- High computational cost

- Update using single observation
- High variation in cost function
- Low computational cost

- Update using subset of data
- Smoother cost function compared to SGD
- Balance between Batch / SGD

