2023 Differential Geometry- TD //

/. Define a 2-form ω on \mathbb{R}^3 by

$$\omega = x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy.$$

- (a) Compute ω in spherical coordinates (ρ, φ, θ) defined by $(x, y, z) = (\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi)$.
- (b) Compute $d\omega$ in both Cartesian and spherical coordinates and verify that both expressions represent the same 3-form.
- (c) Compute the pullback $\iota_{\mathbb{S}^2}^*\omega$ to \mathbb{S}^2 , using coordinates (φ, θ) on the open subset where these coordinates are defined.
- (d) Show that $\iota_{\mathbb{S}^2}^* \omega$ is nowhere zero.

7. Formule d'Archimède

Soit ω la forme volume $xdy \wedge dz + ydz \wedge dx + zdx \wedge dy$ sur la sphère $S^2 \subset \mathbb{R}^3$.

a) Expliciter, à l'aide des coordonnées sphériques, une primitive de ω sur $S^2 \setminus \{S \cup N\}$ qui soit invariante par les rotations d'axe NS (on a désigné par N et S les pôles Nord et Sud).

Application : calculer l'aire du "segment de sphère"

$$\Sigma_{h,k} = \{(x, y, z) \in S^2, h \le z \le k\}.$$

- * b) Expliciter une primitive de ω sur $S^2 \setminus \{S\}$ invariante par les rotations autour de NS.
- **3.** (Nowhere-vanishing 1-form on the circle S^1)
 - (a) The vector field $X = -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}$ is tangent to the unit circle S^1 . Find a 1-form ω on S^1 such that $\omega(X) = 1$.
 - (b) Let $X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$ be the radial vector field and $\alpha = dx \wedge dy$ be the area 2-form on \mathbb{R}^2 . Compute the contraction $i_X(\alpha)$.
 - (c) Let $h: \mathbb{R} \to S^1 \subset \mathbb{R}^2$ be given by $h(t) = (x, y) = (\cos t, \sin t)$. Compute the pullback $h^*\omega$.
 - (d) If $g = (\cos t, \sin t) \in S^1 \subset \mathbb{R}^2$ and $\ell_g : S^1 \to S^1$ is the left multiplication, show that $\ell_g^* \omega = \omega$ for all $g \in S^1$.

\mathcal{L} \rightleftharpoons . A \mathcal{L}^{∞} nowhere-vanishing form on a smooth hypersurface

- (a) Let f(x,y) be a C^{∞} function on \mathbb{R}^2 and assume that 0 is a regular value of f. By the regular level set theorem, the zero set M of f(x,y) is a one-dimensional submanifold of \mathbb{R}^2 . Construct a C^{∞} nowhere-vanishing 1-form on M.
- (b) Let f(x,y,z) be a C^{∞} function on \mathbb{R}^3 and assume that 0 is a regular value of f. By the regular level set theorem, the zero set M of f(x,y,z) is a two-dimensional submanifold of \mathbb{R}^3 . Let f_x , f_y , f_z be the partial derivatives of f with respect to x, y, z, respectively. Show that the equalities

$$\frac{dx \wedge dy}{f_z} = \frac{dy \wedge dz}{f_x} = \frac{dz \wedge dx}{f_y}$$

hold on M whenever they make sense, and therefore the three 2-forms piece together to give a C^{∞} nowhere-vanishing 2-form on M.

(c) Generalize this problem to a regular level set of $f(x^1,...,x^{n+1})$ in \mathbb{R}^{n+1} .

5 22.5. Boundary orientation

Let M be an oriented manifold with boundary, ω an orientation form for M, and X a C^{∞} outward-pointing vector field along ∂M .

- (a) If τ is another orientation form on M, then $\tau = f\omega$ for a C^{∞} everywhere-positive function f on M. Show that $\iota_X \tau = f \iota_X \omega$ and therefore, $\iota_X \tau \sim \iota_X \omega$ on ∂M . (Here " \sim " is the equivalence relation defined in Subsection 21.4.)
- (b) Prove that if *Y* is another C^{∞} outward-pointing vector field along ∂M , then $\iota_X \omega \sim \iota_Y \omega$ on ∂M .

6 22.9. Boundary orientation on a sphere

Orient the unit sphere S^n in \mathbb{R}^{n+1} as the boundary of the closed unit ball. Show that an orientation form on S^n is

$$\omega = \sum_{i=1}^{n+1} (-1)^{i-1} x^i dx^1 \wedge \dots \wedge \widehat{dx^i} \wedge \dots \wedge dx^{n+1},$$

where the caret $\hat{}$ over dx^i indicates that dx^i is to be omitted. (*Hint*: An outward-pointing vector field on S^n is the radial vector field $X = \sum_i x^i \partial_i / \partial_i x^i$ as in Figure 22.7(b).)

(b) Radial vector field on a sphere.

22.19. Orientation on the upper hemisphere of a sphere Orient the unit sphere S^n in \mathbb{R}^{n+1} as the boundary of the closed unit ball. Let U be the upper hemisphere

$$U = \{ x \in S^n \mid x^{n+1} > 0 \}.$$

It is a coordinate chart on the sphere with coordinates x^1, \ldots, x^n .

- (a) Find an orientation form on U in terms of dx^1, \dots, dx^n .
- (b) Show that the projection map $\pi: U \to \mathbb{R}^n$,

$$\pi(x^1,\ldots,x^n,x^{n+1})=(x^1,\ldots,x^n),$$

is orientation-preserving if and only if n is even (Figure 22.8).

Fig. 22.8. Projection of the upper hemisphere to a disk.