

Open and Reproducible Fisheries Science

Arni Magnusson

R

TAF

SPC Pre-Assessment Workshop (PAW) Noumea, 31 March 2022

Model

el Output

Overview

Open scripts, data, software

Reproducible standardized sequential R scripts, version control

Why repeatability, institutional memory, reviewability, scientific method, interregional research, dissemination, collaboration, traceability, credibility

Tools *GitHub, TAF*

SPC tools, internal workflows, stock assessments, reviews, MSE

Open

Scripts GitHub

Data Static HTML

 $\mathsf{Git}\mathsf{Hub}$

Data warehouse

Web services

Software GitHub

Releases

Reproducible Analysis

Can be run on any computer

By different people
On different operating systems
In different software environments

Can be run later

Next week

Next year

5-10 years from now

Can be modified and rerun

- ► With different data
- With different data preparation
- With different model options

Why

- 1. Repeatability
- 2. Institutional memory
- 3. Reviewability
- 4. Scientific method
- 5. Interregional research

- 6. Dissemination
- 7. Collaboration
- 8. Traceability
- 9. Credibility

How to Make an Analysis Reproducible

R scripts Relative paths (data/catches.dat)

Can be run from command line: Rscript myscript.R Manageable size

General structure 1. Load packages

- 2. Read files
- 3. Do the work
- 4. Write files

Standardize further One script prepares data

Another script runs the core analysis

Third script gathers the results

Fourth script produces plots and formatted tables for report

- ⇒ Every script is self-contained, reading files from previous steps
- \Rightarrow Every analysis is structured the same, anyone can pick up and run

GitHub and TAF

What is GitHub

Free website where people can make things available for download:

Software stock assessment models, R packages

Analyses R scripts, aggregated data tables

Also a collaborative work environment:

Software development produce software, distribute

Expert groups do science, share tools

Examples https://github.com/PacificCommunity

https://github.com/arni-magnusson

What is GitHub

Version control

Backup of previous editions Can always go back in history See who changed what, when, and why

Access control

Public/private projects
Read/write access for each user

Social network

Follow projects and colleagues Send comments and suggestions Makes work cool and fun Browse and download files

Easy

Upload and edit files

Quite technical

Transparent Assessment Framework (TAF)

ICES TAF page: https://taf.ices.dk

SPC TAF demo: https://github.com/PacificCommunity/taf-demo

CRAN package: https://cran.r-project.org/package=TAF

Strictly speaking, the TAF package is not required to write your analysis in TAF format

More than anything, TAF is an

 \Rightarrow Agreed way to work

How to Make an Analysis Reproducible

R scripts Relative paths (data/catches.dat)

Can be run from command line: Rscript myscript.R Manageable size

General structure 1. Load packages

- 2. Read files
- 3. Do the work
- 4. Write files

Standardize further One script prepares data

Another script runs the core analysis

Third script gathers the results

Fourth script produces plots and formatted tables for report

- ⇒ Every script is self-contained, reading files from previous steps
- \Rightarrow Every analysis is structured the same, anyone can pick up and run

Transparent Assessment Framework (TAF)

R scripts Relative paths (data/catches.dat)

Can be run from command line: Rscript myscript.R Manageable size

General structure 1. Load packages

- 2. Read files
- 3. Do the work
- 4. Write files

Standardize further One script prepares data

Another script runs the core analysis Third script gathers the results

Fourth script produces plots and formatted tables for report

- \Rightarrow Every script is self-contained, reading files from previous steps
- ⇒ Every analysis is structured the same, anyone can pick up and run

Transparent Assessment Framework (TAF)

TAF applications

- ► Hundreds of ICES stock assessments
- ► ICES survey indices
- ► ICES catch at age
- ► ICES fisheries overviews
- ► FAO SOFIA (State of World Fisheries and Aquaculture) under development

TAF and icesTAF R packages

Version control

Data provenance: who, what, where

Transparency in Fisheries Management

Transparent = open and reproducible and as a result, reviewable and traceable

A growing question in all fisheries around the world:

 \Rightarrow Is the management of this stock based on open and reproducible science?

If not, which criteria are still missing?

SPC

Tools Multifan-CL, R packages, MFCL-Viewer (Java)

Internal workflows data preparation, stepwise development, diagnostic model run, model grid, plots

Stock assessments zip file containing full model grid

Reviews documents, analyses

MSE shiny apps

Yellowfin Tuna Review

https://github.com/PacificCommunity/ofp-sam-yft-review