

Lógica - Definição

Formalização de alguma linguagem

□ Sintaxe

Especificação precisa das expressões legais

□ Semântica

Significado das expressões

□ Dedução

Provê regras que preservam a semântica

Cálculo Proposicional - CP

- □ Cálculo Proposicional ≡ Lógica Proposicional
- Apenas enunciados declarativos são permitidos
- Excluídas sentenças exclamativas, imperativas e interrogativas

Termo

É usado para designar objetos

Exemplos:

- Paula
- □ Um filme de terror
- Triângulo retângulo

Proposição

É uma sentença declarativa que pode assumir os valores *verdade* (v) ou *falso* (f)

Exemplos:

- □ Todo homem é mortal
- Meu carro é um fusca
- □ Está chovendo

Proposição Atômica

Sentença que não contém conectivos (e, ou, se...então, ...)

- Todo homem é mortal
- Meu carro é um fusca
- Está chovendo

Proposição Composta

Sentença que contém um ou mais conectivos (e, ou, se...então, ...)

- Se Maria estuda então fará bons exames.
- □ Ele come e dorme
- □ Pedro danca ou canta

Proposição - Cuidado!

As expressões:

Está chovendo?

A viagem entre Ribeirão Preto e Guarujá

não são sentenças do CP pois não possuem um valor verdade verdadeiro (v) ou falso (f) associado

Conceitos Adicionais

- □ Proposição atômica = átomo
- □ Proposições atômicas são designadas por letras latinas minúsculas (p. g. r. ...)
- □ Literal é um átomo ou a negação de um átomo
- Conectivos ou Operadores: permitem a construção de proposições compostas

Conectivos

Conectivos ou Operadores:

□ e

(conjunção)

ou

(disjunção)

- □ não
- (negação)

- condicional
- (implicação)
- bicondicional

Conectivo: e (∧)

- □ A partir de duas proposições, obtém-se uma terceira denominada conjunção:
- Exemplo:
 - (p) Maria estuda o problema
 - (q) José vai pescar
 - Conjunção de (p) e (q): p ∧ q
 - ❖ Maria estuda o problema e José vai pescar

Conectivo: ou (v)

- A partir de duas proposições, obtém-se uma terceira denominada disjunção:
- Exemplo:
 - (p) Maria estuda o problema
 - (q) José vai pescar
 - Disjunção de (p) e (q): p v q
 - ❖Maria estuda o problema ou José vai pescar

Conectivo: não (¬)

- □ A partir de uma proposição, obtém-se uma segunda denominada *negação*:
- Assim, a negação nega o valor-verdade de uma proposição
- Exemplo:
 - (p) Maria estuda o problema
 - Negação de (p): ¬p
 - ◆não (Maria estuda o problema)

Conectivo: condicional (→)

- Conectivo condicional lido como se...então
- A partir de duas proposições, obtém-se uma terceira denominada condicional ou implicação
- □ Proposição à esquerda de → denomina-se premissa ou antecedente
- □ Proposição à direita de → denomina-se conclusão ou conseqüente
- Exemplo:
 - (p) Eu como muito
 - (q) Eu engordo
 - Condicional de (p) e (q): p → q
 - Se eu como muito então eu engordo

Conectivo: bicondicional (↔)

- Conectivo bicondicional é lido como se e somente se
- A partir de duas proposições, obtém-se uma terceira denominada bicondicional
- Exemplo:
 - (p) Um triângulo é retângulo
 - (q) Um triângulo tem um ângulo reto
 - Bicondicional de (p) e (q): p o q
 - Um triângulo é retângulo se e somente se tem um ângulo reto

Semântica dos Conectivos

р	q	p∧q	p∨q	¬р	p→q	p↔q
V	V	٧	V	f	V	٧
V	f	f	V	f	f	f
f	V	f	V	٧	V	f
f	f	f	f	V	V	٧

Simbolização

- Processo de substituição de frases em linguagem natural para letras proposicionais e conectivos lógicos
 - Ex: Se chove então Maria Angélica estuda o problema e se não faz frio Ana Laura está nadando
 - p: Maria Angélica estuda o problema

 - r: chove
 - s: faz frio
 - Encontrar conectivos:

(Se chove então Maria Angélica estuda o problema) e (se (não faz frio) então Ana Laura está nadando)

- Substituir frases e conectivos:
 - $(r \rightarrow p) \land (\neg s \rightarrow q)$

Fórmulas Bem Formadas (wff)

- Fórmulas construídas mediante a combinação válida de símbolos
- □ Fórmulas Bem Formadas = Well Formed Formula = wff
- □ Para representar wff são usadas *meta*variáveis proposicionais representadas pelas letras α, β, γ, etc
- Cada expressão envolvendo α, β, γ, etc é chamada de forma sentencial

Fórmulas Bem Formadas (wff)

- 1. um átomo é uma wff
- 2. se α e β são wff, então são também wff:

	wff	lê-se
	ൗ $lpha$ não $lpha$	
	$\alpha \wedge \beta$	α e β
	$\alpha \vee \beta$	α ου β
		se α então β
		α se e somente se β

3. As únicas wff são definidas por (1) e (2)

Prioridade dos Conectivos

Prioridade dos Conectivos

- Exemplos:
 - $^{\blacksquare} \alpha \rightarrow \beta \vee \gamma \qquad \qquad \text{significa } \alpha \rightarrow (\beta \vee \gamma)$
 - $\alpha \vee \beta \wedge \gamma$ significa $\alpha \vee (\beta \wedge \gamma)$
 - $^{\blacksquare}$ α → β ∧ $^{\lnot}$ γ ∨ δ significa α → ((β ∧ ($^{\lnot}$ γ)) ∨ δ)
- A precedência pode ser alterada pelo uso de parênteses

Variações de Notação

Item	Adotada	Outras
□e	p∧q	p&q p.q p,q
□ ou	p∨q	p q p+q p;q
□ não	$\neg p$	~p
condicional	p→q	p⇒q p⊃q q←p
bicondicional	p↔q	p⇔q

Semântica do CP

Consiste na interpretação de suas fórmulas, ou seja, atribuição dos valores-verdade (v ou f) às formulas atômicas, por exemplo:

$$(p \lor q) \rightarrow (p \land q)$$

- Como a fórmula possui 2 componentes atômicos ela admite 2º interpretações
- Para uma fórmula de n componentes temse 2ⁿ interpretações

Validade e Inconsistência

- Se uma fórmula β tem valor v numa interpretação I, então β é verdadeira na interpretação I
- □ Por exemplo, a fórmula (p ∧ q) é verdadeira na interpretação I1

р	q	p∧q
٧	٧	V
٧	f	f
f	٧	f
f	f	f
	V	v v v f f v

Validade e Inconsistência

- Se uma fórmula β é verdadeira segundo alguma interpretação, então β é satisfatível (ou consistente)
- □ Por exemplo, a fórmula (p ∧ q) é satisfatível pois é verdadeira em uma interpretação (I1)

	р	q	p∧q
I1	v	v	v
12	v	f	f
13	f	v	f
14	f	f	f

Validade e Inconsistência

- Uma fórmula β é
 válida (tautológica)
 quando for verdadeira
 em todas suas
 interpretações
- □ Por exemplo, a fórmula (p ∨ ¬p) é uma tautologia

	р	¬р	p ∨ ¬p
I1	V	f	v
12	f	٧	v

Validade e Inconsistência

- Se uma fórmula β tem valor f numa interpretação I, então β é falsa na interpretação I
- □ Por exemplo, a fórmula (p ∧ q) é falsa nas interpretações I2, I3 e I4

		р	q	p∧q
	l1	>	>	v
	12	٧	f	f
	13	f	٧	f
	14	f	f	f
_				

Validade e Inconsistência

- Uma fórmula β é
 insatisfatível (ou
 inconsistente ou
 contradição) quando
 for falsa segundo todas
 interpretações
 possíveis
- □ Por exemplo, a fórmula (p ∧ ¬p) é insatisfatível

	р	¬р	p ∧ ¬p
I1	v	f	f
12	f	٧	f

Validade e Inconsistência

- Uma fórmula β é
 inválida quando for
 falsa segundo alguma
 interpretação
- □ Por exemplo, a fórmula (p ∧ q) é inválida pois é falsa nas interpretações I2, I3 e

	р	q	p∧q
l1	v	v	V
12	v	f	f
13	f	v	f
14	f	f	f

Exercícios

- □ Provar usando tabela verdade que:
- 1. (p ^ ¬p) é inconsistente e portanto inválida.
- 2. (p ∨ ¬p) é válida e portanto consistente.
- 3. $(p \rightarrow \neg p)$ é inválida, ainda que consistente.

Consequência Lógica

- Sejam α , β_1 , β_2 , ..., β_n wff. Diz-se que α é conseqüência lógica de β_1 , β_2 , ..., β_n se, e somente se, para qualquer interpretação em que β_1 , β_2 , ..., β_n forem simultaneamente verdadeiras, α é também verdadeira.
- □ Se α é conseqüência lógica de β_1 , β_2 , ... β_n , diz-se que α segue-se logicamente de β_1 , β_2 , ... β_n .

Notação: β_1 , β_2 , ..., $\beta_n \models \alpha$

Consequência Lógica

- Teorema: α é conseqüência lógica de β₁, β₂, ..., β_n se e somente se:
 - $\beta_1 \land \beta_2 \land ... \land \beta_n \rightarrow \alpha$ é uma tautologia
- Teorema: α é conseqüência lógica de β₁, β₂, ..., β_n se e somente se:
 - $\beta_1 \land \beta_2 \land ... \land \beta_n \land \neg \alpha$ é uma contradição

Prova

- $f \alpha$ é conseqüência lógica de $eta_1,\,eta_2,\,...,\,eta_n$ se e somente se $eta_1\landeta_2\land...\landeta_n olpha$ é uma tautologia
- Condição Necessária
 - Seja α conseqüência lógica de β₁, β₂, ..., β_n e I uma interpretação qualquer
 - (1) Se β_1 , β_2 , ..., β_n forem verdade em I então α também será verdade em I (pois é conseqüência lógica dos β_i 's)
 - (2) Se um dos β's for falso em | β₁ ∧ β₂ ∧ ... ∧ β_n vtambém será falso em I. Independente do valor de α, β₁ ∧ β₂ ∧ ... ∧ β_n → α é verdade
 - De (1) e (2) tem-se que $\beta_1 \wedge \beta_2 \wedge ... \wedge \beta_n \rightarrow \alpha$ é verdade em qualquer situação (tautologia)
- Condição Suficiente
 - Do fato de $\beta_1 \land \beta_2 \land \dots \land \beta_n \to \alpha$ ser uma tautologia, tem-se que $\beta_1 \land \beta_2 \land \dots \land \beta_n \to \alpha$ é verdade em qualquer interpretação. Se $\beta_1 \land \beta_2 \land \dots \land \beta_n$ for verdade em \mathbb{I} , α também será verdade em \mathbb{I} . Portanto α é conseqüência lógica de $\beta_1,\beta_2,\dots,\beta_n$

Prova

- α é conseqüência lógica de β₁, β₂, ..., β₂ se e somente se β₁ ∧ β₂ ∧ ... ∧ β₂ ∧ ¬α é uma contradição
- Do teorema anterior, sabe que α é conseqüência lógica de β₁, β₂, ..., βո se e somente se β₁ ∧ β₂ ∧ ... ∧ βn → α é uma tautologia
- □ Equivalentemente α é conseqüência lógica de β_1 , β_2 , ..., β_n se e somente se $\neg(\beta_1 \land \beta_2 \land ... \land \beta_n \rightarrow \alpha)$ é contradição
 - $\neg (\beta_1 \land \beta_2 \land \dots \land \beta_n \rightarrow \alpha) \equiv$
 - $\neg (\neg (\beta_1 \land \beta_2 \land \dots \land \beta_n) \lor \alpha) =$
 - $\beta_1 \wedge \beta_2 \wedge ... \wedge \beta_n \wedge \neg \alpha$
- □ Assim, $\beta_1 \land \beta_2 \land ... \land \beta_n \land \neg \alpha$ é uma contradição

Equivalência Lógica

- Uma fórmula α é logicamente equivalente
 (≡) a uma fórmula β quando α for conseqüência lógica de β e β for conseqüência lógica de α
- □ Assim, α = β se e somente se α \leftrightarrow β é uma tautologia

Exemplo

□ Provar que $(p \rightarrow q)$ é equivalente a $(\neg p \lor q)$

р	q	p→q	¬p∨q	$(p\rightarrow q) \leftrightarrow (\neg p \lor q)$
٧	٧	V	V	V
٧	f	f	f	V
f	٧	V	V	V
f	f	V	V	V

□ Portanto, $(p \rightarrow q) \equiv (\neg p \lor q)$

Argumento

- □ Argumento é uma sequência α_1 , α_2 , ..., α_n (n ≥1) de proposições, onde:
 - α_i (1 ≤ i ≤ n-1) são chamadas **premissas** e
 - α_n denomina-se conclusão
- Notação:

 $\alpha_1, \alpha_2, ..., \alpha_{n-1} \vdash \alpha_n$.

Argumento Válido

□ Um argumento α_1 , α_2 , ..., $\alpha_{n-1} \vdash \alpha_n$ é **válido** se e somente se:

 $\alpha_1 \wedge \alpha_2 \wedge ... \wedge \alpha_{n-1} \rightarrow \alpha_n$ for uma tautologia

ou equivalentemente,

 $\alpha_1 \wedge \alpha_2 \wedge ... \wedge \alpha_{n\text{-}1} {\models} \ \alpha_n$

Argumento Válido

- □ Um argumento **válido** (α_1 , α_2 , ..., $\alpha_{n-1} \models \alpha_n$) pode ser lido como:
 - $\alpha_1, \alpha_2, ..., \alpha_{n-1}$ acarretam α_n ou
 - α_n decorre de α_1 , α_2 , ..., α_{n-1} ou
 - α_n é conseqüência lógica de α₁, α₂, ..., α_{n-1}
- Para n=1, o argumento é válido se e somente se α₁ for tautológica

Princípio da Substituição

- Subfórmulas: dada a fórmula α
 - \blacksquare α : $(p \rightarrow q) \leftrightarrow r$, então
 - p \rightarrow q, p, q, r, são as **subfórmulas** de α
- O princípio afirma que uma subfórmula de uma fórmula α, ou toda a fórmula α, pode ser substituída por uma fórmula equivalente e que a fórmula resultante é equivalente a α

38

41

Princípio da Substituição

□ Exemplo: pelo princípio da substituição, a fórmula

Propriedades

- Existem várias propriedades da negação, conjunção e disjunção
- □ Estas propriedades podem ser verificadas como equivalências lógicas
- □ Para demonstrar cada uma, basta utilizar as tabelas-verdade, constatando a tautologia

Propriedades

- Propriedades da Conjunção
 Propriedades da Disjunção
 - comutativa
 - $\alpha \wedge \beta \equiv \beta \wedge \alpha$
 - associativa $\alpha \wedge (\beta \wedge \Upsilon) \equiv (\alpha \wedge \beta) \wedge \Upsilon$
 - idempotente $\alpha \wedge \alpha \equiv \alpha$
 - propriedade de (v)erdade $\alpha \wedge \mathbf{V} \equiv \alpha$
 - propriedade de (f)also $\alpha \wedge f \equiv f$

- - comutativa
 - $\alpha \vee \beta \equiv \beta \vee \alpha$
 - associativa $\alpha \vee (\beta \vee \Upsilon) \equiv (\alpha \vee \beta) \vee \Upsilon$
 - idempotente

 $\alpha \vee \mathbf{V} \equiv \mathbf{V}$

- $\alpha \vee \alpha \equiv \alpha$ propriedade de (v)erdade
- propriedade de (f)also $\alpha \vee \mathbf{f} \equiv \alpha$

- **Propriedades**
- Distributiva
 - $\alpha \wedge (\beta \vee \Upsilon) \equiv (\alpha \wedge \beta) \vee (\alpha \wedge \Upsilon)$
 - $\alpha \vee (\beta \wedge \Upsilon) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \Upsilon)$
- Negação $\neg (\neg \alpha) \equiv \alpha$
- □ Absorção
 - $\alpha \vee (\alpha \wedge \beta) \equiv \alpha$
 - $\alpha \wedge (\alpha \vee \beta) \equiv \alpha$
- De Morgan
 - $\neg (\alpha \land \beta) \equiv \neg \alpha \lor \neg \beta$
 - $\ \ \, \neg(\alpha\vee\beta)\equiv\neg\alpha\wedge\neg\beta$
- Equivalência da Implicação
 - $\alpha \rightarrow \beta \equiv \neg \alpha \lor \beta$

Fórmulas Proposicionais Equivalentes

Nome da Regra	Regra
modus ponens	$\alpha, \alpha \rightarrow \beta \models \beta$
modus tollens	$\alpha \rightarrow \beta, \neg \beta \models \neg \alpha$
silogismo hipotético ou regra da cadeia	$\alpha \rightarrow \beta, \beta \rightarrow \gamma \models \alpha \rightarrow \gamma$
silogismo disjuntivo	$\alpha \vee \beta$, $\neg \alpha \models \beta$
dilema construtivo	$\alpha \rightarrow \beta, \gamma \rightarrow \delta, \alpha \lor \gamma \models \beta \lor \delta$
dilema destrutivo	$\alpha \rightarrow \beta, \gamma \rightarrow \delta, \neg \beta \lor \neg \gamma \models \neg \alpha \lor \neg \gamma$
simplificação	$\alpha \wedge \beta \models \alpha$
conjunção	$\alpha, \beta \models \alpha \wedge \beta$
adição	$\alpha \models \alpha \lor \beta$
contraposição	$\alpha \rightarrow \beta \models \neg \beta \rightarrow \neg \alpha$
exportação	$\alpha \rightarrow (\beta \rightarrow \gamma) \models (\alpha \land \beta) \rightarrow \gamma$
importação	$(\alpha \land \beta) \rightarrow \gamma \models \alpha \rightarrow (\beta \rightarrow \gamma)$

Fórmulas Proposicionais Equivalentes

□ Exemplo da forma de leitura *modus ponens*:

$$\alpha, \alpha \rightarrow \beta \models \beta$$

caso seja verdade seja verdade, $\alpha \rightarrow \beta$ obrigatoriamente será verdade β

Verificação de Validade de Argumentos

- □ Sejam $\alpha_1, \alpha_2, ..., \alpha_n$, β fórmulas do Cálculo Proposicional. Uma seqüência finita de proposições $C_1, C_2, ..., C_k$ é uma prova ou dedução de β , a partir das premissas $\alpha_1, \alpha_2, ..., \alpha_n$ se e somente se:
 - cada C_i é uma premissa α_i (1 <= j <= n), ou</p>
 - C_i provém das fórmulas precedentes, pelo uso de um argumento válido das regras de inferência, ou
 - C_i provém do uso do princípio de substituição numa fórmula anterior, ou
 - C_k é β
- ullet Diz-se então que eta é dedutível de $\alpha_1, \alpha_2, ..., \alpha_n$ ou que β é um teorema

Exemplo

Se as uvas caem, então a raposa as come

Se a raposa as come, então estão maduras

As uvas estão verdes ou caem.

A raposa come as uvas se e só se as uvas caem.

Exemplo

α₁: Se as uvas caem, então a raposa as come.

α₂: Se a raposa as come, então estão maduras.

α₃: As uvas estão verdes ou caem.

β: A raposa come as uvas se e só se as uvas caem.

Exemplo

 α_1 : Se <u>as uvas caem</u>, então a <u>raposa as come</u>.

 α_2 : Se a raposa as come, então estão maduras.

α₃: As uvas estão verdes ou caem.

 β : A raposa come as uvas se e só se as $\underline{\text{uvas caem}}$.

Proposições:

p: as uvas caem

q: a raposa come as uvas

r: as uvas estão maduras

(¬r: as uvas estão verdes)

Exemplo

α₁: Se as uvas caem, então a raposa as come.

α2: Se a raposa as come, então estão maduras.

α₃: As uvas estão verdes ou caem.

Logo,

β: A raposa come as uvas se e só se as uvas caem.

Conclusão Premissas α_1 : $p \rightarrow q$ β: | p ↔ q α_2 : $q \rightarrow r$ α₃: | ¬r ∨ p

Provar que: $\alpha_1, \alpha_2, \alpha_3 \models \beta$ $p \rightarrow q, q \rightarrow r, \neg r \lor p \models p \leftrightarrow q$ Exemplo

 α_1 : Se <u>as uvas caem</u>, então a <u>raposa as come</u>.

α₂: Se a raposa as come, então estão maduras.

α₃: As uvas estão verdes ou caem.

Logo,

Proposições:

p: as uvas caem

q: a raposa come as uvas

r: as uvas estão maduras

(¬r: as uvas estão verdes)

Proposições:

p: as uvas caem

q: a raposa come as uvas

r: as uvas estão maduras

(¬r: as uvas estão verdes)

β: A raposa come as uvas se e só se as uvas caem.

Premissas			Co	nclusão	l
α ₁ :	$p \rightarrow q$		β: p ↔ q		l
α ₂ :	$q \rightarrow r$	ľ			
α ₃ :	$\neg r \lor p$				
		_			,

Provar que:
$\alpha_1, \alpha_2, \alpha_3 \models \beta$
$p \rightarrow q, q \rightarrow r, \neg r \lor p \models p \leftrightarrow q$

Deduz-se que:						
C ₁ :	$r \rightarrow p$	(α ₃ : equivalência)				
C ₂ :	$q\top$	(α ₂ + C ₁ : regra da cadeia)				
C ₃ :	$(p\toq)\land(q\top)$	(α ₁ + C ₂ : conjunção)				
C ₄ (≡β):	$p \leftrightarrow q$	(C ₃ : equivalência)				

Cuidado!

- Sejam dois números a e b tais que a = b
 - Considere a seguinte prova
 - Por quê foi possível chegar a esse resultado?

i)	а	=	b	
ii)	aa	=	ba	multiplicar por a
iii)	$a^2 - b^2$	=	ba - b ²	subtrair b2
iv)	(a + b)(a - b)	=	b(a - b)	fatorar
v)	[(a + b)(a - b)] / (a - b)	=	[b(a - b)] / (a - b)	dividir por (a - b)
vi)	a + b	=	ь	
vii)	a + a	=	а	substituir b por a (a = b)
viii)	2 <i>a</i>	=	а	dividir por a
ix)	2	=	1	

Formas Normais

- Há várias maneiras de escrever uma mesma fórmula
 - Ex: $(p \rightarrow q) \land m \equiv (\neg p \lor q) \land m$
- A Forma Normal é usada para uniformizar a notação
 - Forma Normal Disjuntiva (FND)
 - Forma Normal Conjuntiva (FNC)
- □ Um enunciado do Cálculo Proposicional sempre pode ser escrito na FN

EG

Forma Normal Disjuntiva

- Uma fórmula proposicional α está na FND quando
 - α é uma disjunção $\beta_1 \vee \beta_2 \vee ... \vee \beta_n$, (n \geq 1)
 - cada β_i (1 ≤ i ≤ n) é uma conjunção de literais, ou um literal, ou seja:
 - $\stackrel{\bullet}{\bullet} \beta_i \text{ \'e da forma } p_1 \wedge \neg p_2 \wedge ... \wedge p_m \text{, } (m \geq 1)$

Forma Normal Disjuntiva

- A fórmula α está na FND se e somente se:
 - contém como conectivos apenas ∨, ∧, ¬
 - ¬ só opera sobre proposições atômicas (não tem alcance sobre ∨, ∧)
 - não aparecem negações sucessivas (¬¬)
 - ∧ não tem alcance sobre ∨, ou seja, não existe expressão do tipo: p ∧ (q ∨ r)

_

Forma Normal Disjuntiva

- □ Forma geral
 - $(p_1 \land \neg p_2 \land ... \land p_k) \lor (q_1 \land q_2 ... \land \neg q_l) \lor (r_1 \land r_2 \land r_3 \land ... \land r_s) \lor ...$
- Exemplo
 - α : ¬p \vee q \rightarrow r
 - FND(α): (p ∧ ¬q) ∨ r
- Obtenção da FND: por tabela verdade ou por equivalência

Forma Normal Conjuntiva

- Uma fórmula proposicional α está na FNC quando:
 - α é uma *conjunção* $\beta_1 \wedge \beta_2 \wedge ... \wedge \beta_n$, $(n \ge 1)$
 - ■cada $β_i$ (1 ≤ i ≤ n) é uma *disjunção* de literais, ou um literal, ou seja:
 - $\boldsymbol{\diamond} \boldsymbol{\beta}_i$ é da forma $\boldsymbol{p}_1 \vee \neg \boldsymbol{p}_2 \vee \dots \boldsymbol{p}_m$, $(m \geq 1)$

Forma Normal Conjuntiva

- A fórmula α está na FNC se e somente se:
 - contém como conectivos apenas ∨, ∧, ¬
 - ¬ só opera sobre proposições atômicas (não tem alcance sobre ∨ e ∧)
 - não aparecem negações sucessivas (¬¬)
 - v não tem alcance sobre A, ou seja, não existe expressão do tipo: p v (q A r)

Forma Normal Conjuntiva

- Forma geral
 - $(p_1 \lor \neg p_2 \lor ... \lor p_k) \land (q_1 \lor q_2 ... \lor \neg q_i) \land (r_1 \lor r_2 \lor r_3 \lor ... \lor r_s) \land ...$
- Exemplo
 - α : $\neg p \lor q \rightarrow r$
 - FNC(α): ($\neg p \lor \neg q \lor r$) \land ($p \lor \neg q \lor r$) \land ($p \lor q \lor r$)
- É fácil mostrar que uma FNC é tautológica se e somente se cada elemento da conjunção é tautológico
- Obtenção da FNC: por tabela verdade ou por equivalência

Obtenção da FNC por Tabela Verdade

□ Exemplo: $\neg p \lor q \rightarrow r$

	р	q	r	¬р	−p∨q	(¬p∨q)→r	
11	٧	٧	٧	f	V	V	
12	٧	٧	f	f	V	f	⇐
13	٧	f	٧	f	f	V	
14	٧	f	f	f	f	V	
15	f	٧	٧	٧	V	V	
16	f	٧	f	٧	V	f	⇐
17	f	f	٧	٧	V	V	
18	f	f	f	٧	V	f	(=
_					l		1

Obtenção da FNC por Tabela Verdade

□ Exemplo: $\neg p \lor q \rightarrow r$

	р	q	r	⊸р	−p∨q	(¬p∨q)→r
12	٧	٧	f	f	V	f
16	f	٧	f	٧	v	f
18	f	f	f	٧	v	f

 $(p \lor q \lor r)$ $(p \lor q \lor r)$ $(p \lor q \lor r)$

- □ Para cada interpretação falsa da Tabela Verdade:
 - Átomo que assume valor v é alterado pela sua negação
 - Átomo que assume valor f é deixado intacto
 - Literais de uma mesma interpretação são conectados por v
 - As interpretações são conectadas por ∧
- No exemplo
 - FNC($\neg p \lor q \to r$): ($\neg p \lor \neg q \lor r$) \land ($p \lor \neg q \lor r$) \land ($p \lor q \lor r$)

Obtenção da FNC por Equivalência

1. Repetidamente, usar as equivalências, para eliminar os conectivos lógicos ↔ e → :

$$\begin{array}{ll} \alpha \leftrightarrow \beta & \equiv & (\neg \alpha \lor \beta) \land (\neg \beta \lor \alpha) \\ \alpha \to \beta & \equiv & \neg \alpha \lor \beta \end{array}$$

2. Repetidamente, eliminar as negações, utilizando:

$$\begin{array}{lll}
\neg(\neg \alpha) & \equiv & \alpha \\
\neg(\alpha \lor \beta) & \equiv & (\neg \alpha \land \neg \beta) \\
\neg(\alpha \land \beta) & \equiv & (\neg \alpha \lor \neg \beta)
\end{array}$$

3. Repetidamente, aplicar a lei distributiva:

$$\begin{array}{lll} \alpha \vee (\beta \wedge \gamma) & \equiv & (\alpha \vee \beta) \wedge (\alpha \vee \gamma) \\ (\alpha \wedge \beta) \vee \gamma & \equiv & (\alpha \vee \gamma) \wedge (\beta \vee \gamma) \end{array}$$

Exercício

- □Obter a FNC das fórmulas:
 - ■a) $(p \land q) \rightarrow (\neg p \land r)$
 - •b) $(p \land q) \rightarrow (p \land r)$
- □i) Usando equivalência
- □ii) Usando tabela verdade

Solução (Equivalência)

- - ¬(p ∧ q) ∨ (¬p ∧ r)
 - (¬p ∨ ¬q) ∨ (¬p ∧ r)
 - (¬p ∨ ¬q ∨ ¬p) ∧ (¬p ∨ ¬q ∨ r)
 - **■** (¬p ∨ ¬q) ∧ (¬p ∨ ¬q ∨ r)
 - FNC((p \wedge q) \rightarrow (¬p \wedge r)): (¬p \vee ¬q) \wedge (¬p \vee ¬q \vee r)
- \square $(p \land q) \rightarrow (p \land r)$
 - $\neg (p \land q) \lor (p \land r)$
 - (¬p ∨ ¬q) ∨ (p ∧ r)
 - $\blacksquare (\neg p \lor \neg q \lor p) \land (\neg p \lor \neg q \lor r)$
 - (¬p ∨ ¬q ∨ r)
 - FNC((p \wedge q) \rightarrow (p \wedge r)): (¬p \vee ¬q \vee r)

Solução (Tabela Verdade)

р	q	r	¬p	p∧q	p∧r	¬p∧r	(p∧q)→(¬p∧r)	$(p \land q) \rightarrow (p \land r)$
٧	٧	٧	f	٧	٧	f	f	V
٧	٧	f	f	v	f	f	f	f
٧	f	٧	f	f	٧	f	v	V
٧	f	f	f	f	f	f	v	V
f	٧	٧	٧	f	f	٧	v	V
f	٧	f	٧	f	f	f	v	V
f	f	٧	٧	f	f	٧	V	V
f	f	f	٧	f	f	f	V	V

- $\ \, \square \ \, \mathsf{FNC}((\mathsf{p} \wedge \mathsf{q}) \to (\neg \mathsf{p} \wedge \mathsf{r})) : (\neg \mathsf{p} \vee \neg \mathsf{q} \vee \neg \mathsf{r}) \wedge (\neg \mathsf{p} \vee \neg \mathsf{q} \vee \mathsf{r}) \\$

Notação Clausal

Cláusula: disjunção de literais:

$$F_i = L_1 \vee L_2 \vee ... \vee L_r$$

□ Fórmula na FNC: escrita como conjunção de cláusulas:

$$F_1 \wedge F_2 \wedge ... \wedge F_n$$

 $\hfill \square$ A FNC é uma coleção de cláusulas, porque a conjunção \land tem propriedade associativa. Por isso, pode-se escrever uma fórmula α na forma:

$$\{F_1, F_2, \dots F_n\} \equiv F_1 \wedge F_2 \wedge \dots \wedge F_n$$

A disjunção também tem a propriedade associativa, e por isso, também podemos escrever uma cláusula F, na forma:

$$F_i = \{L_1, L_2, ..., L_n\} \equiv L_1 \vee L_2 \vee ... \vee L_n$$

Notação Clausal

- Exemplo
 - FNC((($p \lor q) \land (\neg p \lor r)$) \rightarrow s): $\div((s \lor \neg q \lor p) \land (s \lor \neg p \lor \neg r) \land (s \lor \neg q \lor \neg r)$)
- Pode-se escrever:
 - FNC((($(p \lor q) \land (\neg p \lor r)) \rightarrow s$): $F_1 \land F_2 \land F_3$
- onde
 - \blacksquare F_1 : ($S \lor \neg q \lor p$), F_2 : ($S \lor \neg p \lor \neg r$), F_3 : ($S \lor \neg q \lor \neg r$)
 - que pode ser representado por F = {F₁, F₂, F₃}, onde a conjunção está implícita

Notação Clausal

- □ É uma convenção escrever uma fórmula após a outra, lembrando que estão conectadas por ∧
 - F₁: (s ∨ ¬q ∨ p)
 - F₂: (s ∨ ¬p ∨ ¬r)
 - F₃: (s ∨ ¬q ∨ ¬r)
- Colocando os literais positivos antes dos negativos
 - F₁: (s ∨ p ∨ ¬q)
 - F₂: (s ∨ ¬p ∨ ¬r)
 - F₃: (s ∨ ¬q ∨ ¬r)

Notação de Kowalsky

A separação de literais positivos e negativos prepara a cláusula para a notação definida por Kowalsky:

FNC	FNC Kowalsky	CP
$F_1: s \lor p \lor \neg q$	F_1 : s, p \leftarrow q	$F_1: q \rightarrow s \vee p$
F ₂ : s ∨ ¬p ∨ ¬r	F_2 : $s \leftarrow p, r$	$F_2: p \wedge r \rightarrow s$
F_3 : $s \lor \neg q \lor \neg r$	F_3 : $s \leftarrow q$, r	F_3 : $q \land r \rightarrow s$

Observar que todas as notações são equivalentes

71

Notação de Kowalsky

□ Há uma disjunção (∨) implícita à esquerda de ←, chamada de conclusão(ões)

$$F_1$$
: s, p \leftarrow q
 F_2 : s \leftarrow p, r
 F_3 : s \leftarrow q, r

□ Há uma conjunção (∧) implícita à direita de ←, chamada de premissa(s) ou condição(ões)

Notação de Kowalsky

- São equivalentes as seguintes notações:
- $(1) \quad B_1,\, B_2,\, ...,\, B_n \qquad \qquad \to A_1,\, A_2,\, ...,\, A_m$
- $\begin{array}{lll} \textbf{(2)} & A_1,\,A_2,\,...,\,A_m & & \leftarrow B_1,\,B_2,\,...,\,B_n \\ \textbf{(3)} & A_1 \vee A_2 \vee ... \vee A_m & \leftarrow B_1 \wedge B_2 \wedge ... \wedge B_n \\ \end{array}$
- $(4) \quad A_1 \vee A_2 \vee ... \vee A_m \vee \neg (B_1 \wedge B_2 \wedge ... \wedge B_n)$
- (5) $A_1 \lor A_2 \lor ... A_m \lor \neg B_1 \lor \neg B_2 \lor ... \lor \neg B_n$
- □ A cláusula (2) é uma cláusula genérica na notação de Kowalsky

Cláusulas de Horn

Dependendo do número de literais, tem-se:

- 1. Se m>1, as conclusões são indefinidas, ou seja, há várias conclusões
- 2. Se m≤1, tem-se as Cláusulas de Horn
 - m=1 e n > 0, (A ← B₁, B₂, ..., B_n) chamada <u>cláusula</u> definida, onde só existe uma solução
 - m=1 e n=0, (A ←) é a cláusula indefinida incondicional, ou fato. Neste caso, o símbolo ← é abandonado
 - m=0 e n>0, (\leftarrow B₁, B₂, ..., B_n) é a <u>negação pura</u> de B₁, B₂, ..., B_n
 - m=0 e n=0, (←) é a <u>cláusula vazia</u>, denotada por []

Cláusulas de Horn

- □ Kowalski mostrou que uma cláusula de Horn do tipo
 - \blacksquare A \leftarrow B₁, B₂, ..., B_n
 - pode ser executada numa linguagem de programação recursiva, onde A é a cabeça do procedimento e os Bi's o seu corpo
- $\square A \leftarrow B_1, B_2, ..., B_n$ pode ser lido como:
 - para resolver (executar) A, resolva (execute) B₁ e B₂ e ... e B_n

Cláusulas de Horn

- Em Prolog
- □ A ← B₁, B₂, ..., B_n é representado como
 - A :- B₁, B₂, ..., B_n.
 - :- é chamado neck
- □ Pode-se ler A :- B₁, B₂, ..., B_n. da seguinte forma
 - A é verdade se B₁ é verdade e B₂ é verdade e ... e B_n é verdade

Cláusulas de Horn

- As únicas cláusulas que podem ser representadas em Prolog são as Cláusulas de Horn
- □ Se um determinado conhecimento puder ser expresso mediante o cálculo proposicional, somente a parte formada por cláusulas de Horn poderá ser representada em Prolog
 - Ou seja, um sub-conjunto do cálculo proposicional

Exercício

- Mostre que as fórmulas seguintes são equivalentes:
- (i) $b_1, b_2, b_3, b_4 \rightarrow a_1, a_2, a_3$
- $\begin{array}{lll} \text{(ii)} & a_1,\,a_2,\,a_3 & \leftarrow b_1,\,b_2,\,b_3,\,b_4 \\ \text{(iii)} & a_1\vee a_2\vee a_3 & \leftarrow b_1\wedge b_2\wedge b_3\wedge b_4 \\ \end{array}$
- (iv) $a_1 \lor a_2 \lor a_3 \lor \neg (b_1 \land b_2 \land b_3 \land b_4)$
- (v) $a_1 \lor a_2 \lor a_3 \lor \neg b_1 \lor \neg b_2 \lor \neg b_3 \lor \neg b_4$

Prova por Resolução

- O método da Resolução utiliza uma fórmula na FNC para realizar inferências
- O método da Resolução é facilmente automatizado para ser realizado por um computador
- É um método de resolução geral, que emprega apenas uma regra de inferência
- □ Podem ser aplicadas a wwf que consistem de uma disjunção de literais: as cláusulas
- O processo de resolução é aplicado a um par de cláusulas e resulta em uma cláusula derivada

Prova por Resolução

- □ Pré-requisito: 2 cláusulas pais
 - um literal p em uma das cláusulas pai (P1)
 - um literal ¬p na outra cláusula pai (P2)
 - nova cláusula é chamada resolvente (R) contendo todos os literais de P1 e P2, exceto p
- □ P1: p ou mais-literais
- □ P2: ¬p ou ainda-mais-literais
- R: mais-literais ou ainda-mais-literais

Prova por Resolução

Regra de Resolução:

de $p \vee q$ е $r \vee \neg q$ deduz-se $p \vee r$

- □ Esta regra permite combinar duas fórmulas por meio da eliminação de átomos complementares
- No exemplo, eliminou-se os átomos q e ¬q

Prova por Resolução

□ Regra de Resolução:

de e

deduz-se

 $p \vee q$ cláusulas $r \vee \neg q$ $p \vee r$

pais

- □ Esta regra permite combinar duas fórmulas por meio da eliminação de átomos complementares
- No exemplo, eliminou-se os átomos q e ¬q

Prova por Resolução

□ Regra de Resolução:

de $p \vee g$ e r∨¬¤

deduz-se

 $p \vee r$

- □ Esta regra permite combinar duas fórmulas por meio da eliminação de átomos complementares
- No exemplo, eliminou-se os átomos q e ¬q

Exercício 1

- Qual a cláusula resolvente das seguintes cláusulas pais?
 - P1) (p ∨ s ∨ ¬q)
 - P2) (p ∨ q ∨ ¬r)

Solução Exercício 1

- Qual a cláusula resolvente das seguintes cláusulas pais?
 - P1) (p ∨ s ∨ ¬q)
 - P2) (p ∨ q ∨ ¬r)
 - R) (p ∨ s ∨ ¬r)

Exercício 2

- Qual a cláusula resolvente das seguintes cláusulas pais?
 - P1) (¬p ∨ s ∨ ¬q)
 - P2) (p ∨ q ∨ ¬r)

Solução Exercício 2

- Qual a cláusula resolvente das seguintes cláusulas pais?
 - P1) (¬p ∨ s ∨ ¬q)
 - P2) (p ∨ q ∨ ¬r)
 - \blacksquare R) (\neg p \vee s \vee p \vee \neg r) \equiv \lor

Procedimento da Resolução

- Usa-se redução ao absurdo, negando a conclusão:
- 1. Achar, para cada premissa e para cada conclusão negada (adotada como premissa), a FNC correspondente, da seguinte maneira:
 - Remover ↔ e →:

 - $\bullet \alpha \rightarrow \beta \equiv \neg \alpha \vee \beta$
 - Aplicar De Morgan:

 - $\ \, \neg(\alpha \lor \beta) \equiv \neg \alpha \land \neg \beta$
 - Usar distributiva

Procedimento da Resolução

- 2. Cada premissa é agora uma conjunção de uma ou mais cláusulas em uma linha diferente (cada uma delas é v, uma vez que a conjunção de todas é v)
- 3. Cada cláusula contém uma disjunção de um ou mais literais; estão na forma correta para se aplicar a resolução. Procurar então por duas cláusulas que contenham o mesmo átomo, com sinais opostos, por exemplo, uma cláusula com p e outra cláusula contendo ¬p, eliminando ambos

Procedimento da Resolução

4. Continuar este processo até que se tenha derivado p e ¬p. Ao se aplicar resolução nestas duas cláusulas, obtém-se a cláusula vazia, denotada por □, o que expressa a contradição, completando então o método de redução ao absurdo:

p, ¬p deduz-se falso

Pode-se também usar a resolução mediante a negação do teorema. Neste caso aplicam-se os mesmos passos anteriores

Exemplos do Uso de Resolução

- A seguir são mostrados dois exemplos usando prova por redução ao absurdo
 - Por meio da negação da tese
 - Por meio da negação do teorema

92

Negação da Tese

- □ Para provar que r ∨ s
 - é conseqüência lógica de p∨q, p→r, q→s
 - deve-se mostrar que
 ((p ∨ q) ∧ (p → r) ∧ (q → s)) → (r ∨ s)
 é uma tautologia (teorema)

Negação da Tese

- Converter premissas para FNC, escrevendo em linhas separadas:
 - (a) p∨q
 - (b) $\neg p \lor r$
 - (c) $\neg q \lor s$
- Negar a conclusão e convertê-la para FNC: ¬(r ∨ s) ≡ ¬r ∧ ¬s
 - (d) ¬'r
 - (e) ¬s

- Deduzir a cláusula vazia por resolução
 - (f) ¬p de (d) e (b)
 - (g) q de (f) e (a)
 - (h) $\neg q$ de (e) e (c) (i) \square de (g) e (h)
- □ a cláusula □ é gerada pela contradição de duas cláusulas na

forma: q∧¬q

Negação do Teorema

- □ Para provar a regra da cadeia:
 - $\blacksquare (\mathsf{p} \to \mathsf{q}) \land (\mathsf{q} \to \mathsf{r}) \to (\mathsf{p} \to \mathsf{r})$
- A negação do teorema é:
 - $\blacksquare \neg ((p \to q) \land (q \to r) \to (p \to r))$
- □ A FNC do teorema negado é:
 - **■** (¬p ∨ q) ∧ (¬q ∨ r) ∧ p ∧¬r

Negação do Teorema

□ O passo básico do método de resolução ocorre quando existem duas cláusulas tais que uma proposição p ocorre em uma delas e ¬p ocorre na outra

Resolução: Vantagens

- Não é necessário o uso de equivalências para rearranjar p ∨ q como q ∨ p
 - Tudo é colocado na FNC antes da aplicação do método
 - Para o método, a posição (na cláusula) do átomo a ser eliminado é indiferente
- Existe apenas uma regra de inferência para ser lembrada
- □ Fácil de ser mecanizado
- □ Linguagem Prolog está baseada no princípio da resolução aplicado a cláusulas de Horn
 - Usando Busca em Profundidade

Propriedades do CP

- Embora seja insuficiente para o formalismo do raciocínio lógico, o CP possui propriedades muito importantes:
 - O sistema é consistente:
 - O sistema é correto ou coerente:
 - Todo teorema é uma tautologia
 - Completude
 - * Toda tautologia é um teorema
 - Decidibilidade
 - Há um algoritmo que permite verificar se uma dada fórmula do sistema é ou não um teorema

Exercício

- Aplique resolução a cada situação seguinte e verifique o que pode ser inferido
- a) Sócrates é homem. Se Sócrates é homem então ele é mortal.
- b) $s \land (r \leftarrow s)$

Slides baseados em:

Monard, M.C., Nicoletti, M.C., Noguchi.R.H., O Cálculo Proposicional: Uma abordagem voltada à compreensão da linguagem Prolog, Notas Didáticas do ICMC-USP, 1992

(http://labic.icmc.usp.br/didatico/pdf/Cproposicional_pdf.zip)

Material elaborado por José Augusto Baranauskas Revisão 2007

100