Community-level cohesion without cooperation

- Model
- Properties and behavior
- Community-level fitness
- Other cool stuff (role of ϵ and metaphor)

 $\frac{dn}{dt}$ \propto n $\frac{Harvest}{How\ efficient\ you\ are\ at\ processing\ resources}$

Consider a community in a habitat where a single resource exists in N substrates... $i \in \{1...N\}$ $\overrightarrow{\sigma} = \{1,1,0,1\}$ Each species is defined by the pathway it carries Total content of Presence of Absence of substrate 'i' substrate C substrate A $n_{\overrightarrow{\sigma}}$ Maintenance cost dt $\tau_0 \chi_{\overrightarrow{\sigma}}$ Number of individuals of Biomas Number of species $\overrightarrow{\sigma}$ Resource conversion individuals capable of 'surplus' factor

*Note that T_i varies with t

utilizing substrate 'i'

In one time step...

Maintenance costs

The more pathways you carry, the less efficient you are at processing resources

Neither specialists, nor generalists are systematically favored in competition

Properties Behavior

- N = 10 substrates (1023 species)
- $\epsilon = 10^{-3}$
- What determines the species that survive?

environment

Individual performance measure of species $\overrightarrow{\sigma}$ $f_{\overrightarrow{\sigma}} \equiv \chi$

 $f_{\overrightarrow{\sigma}} \equiv \chi_0 \frac{|\overrightarrow{\sigma}|}{\chi_{\overrightarrow{\sigma}}} - 1 \approx - \varepsilon \xi_{\overrightarrow{\sigma}}$ How well does a species do if its alone in a typical

Randomly set

High ϵ regime

 $f_{\overrightarrow{\sigma}}$ is correlated with the success of a species in a community, but not very well

The success of a species is (context) dependent

 $H_i \equiv \frac{R_i}{T_i}$

Demand of resource 'i'

Lyapunov function F: a quantity that is increasing on any trajectory of the system.

Relevance of $f_{\overrightarrow{\sigma}}$ decreases

Community-level Fitness

What is E?

A simple case:

$$max(F) \to min\left(\sum_{i} \log H_{i}\right) \to min(R_{i}/T_{i}) \to$$

$$H_{i} \equiv \frac{R_{i}}{T_{i}}$$

The winning community is the one that is most efficient at depleting all substrates simultaneously

 $F \equiv Community-level Fitness$

Can F predict the outcome of community coalescence?

What I would like to do in less than 2 months

Effective cohesion of coalescing communities is a general result, not limited to a modeling framework

- Find $f_{\overrightarrow{\sigma}}$ (easy?)
- Find a numeric equivalent of F: Something that measures how well resources are simultaneously consumed.
- Compare to find that F is a better predictor than $f_{\overrightarrow{\sigma}}$.
- Members of a co-evolved community with a history of coalescence tend to have more persistence upon interaction with a 'naive' community that has never been exposed to such events.

Other cool stuff ϵ & metaphor

Other interesting stuff

Model for adaptive evolution of a single organism striving to better adjust its response \overrightarrow{T} to the environment \overrightarrow{R}

