Problem 1.1 - Uncertainty Analysis (Case B)

Get["UCAnalysis.m", Path → {NotebookDirectory[]}]

```
 \frac{\mathbf{c}_{\text{H2O}}\,\mathbf{m}_{\text{H2O}}\,\mathbf{T}_{\text{1,H2O}} + \mathbf{c}_{\text{Hg}}\,\mathbf{m}_{\text{Hg}}\,\mathbf{T}_{\text{1,Hg}}}{\mathbf{c}_{\text{H2O}}\,\mathbf{m}_{\text{H2O}} + \mathbf{c}_{\text{Hg}}\,\mathbf{m}_{\text{Hg}}} \mapsto \begin{pmatrix} \mathbf{c}_{\text{Hg}} & 0.14 \pm 0.005 & \text{Uniform}\mathcal{D} \\ \mathbf{c}_{\text{H2O}} & 4.19 \pm 0.005 & \text{Uniform}\mathcal{D} \\ \mathbf{m}_{\text{Hg}} & 0.200 \pm 0.0005 & \text{Uniform}\mathcal{D} \\ \mathbf{m}_{\text{H2O}} & 0.037 \pm 0.0005 & \text{Uniform}\mathcal{D} \\ \mathbf{T}_{\text{1,Hg}} & \left(273.15 + 80\right) \pm 0.5 & \text{Uniform}\mathcal{D} \\ \mathbf{T}_{\text{1,H2O}} & \left(273.15 + 15\right) \pm 0.5 & \text{Uniform}\mathcal{D} \end{pmatrix}
```

Evaluated Functional Relationship

QAnalysisEnvironment

$$y = \frac{x_1 x_3 x_5 + x_2 x_4 x_6}{x_1 x_3 + x_2 x_4}$$

Variable		Uncertainty Interval	Distribution	∂f/∂x _i
\mathbf{x}_1	C _{Hg}	$(1.40 \pm 0.05) \times 10^{-1}$	Uniform	6.01609×10^{1}
x ₂	CH20	$(4.190 \pm 0.005) \times 10^{\circ}$	Uniform	2.01015
x ₃	m _{Hg}	$(2.000 \pm 0.005) \times 10^{-1}$	Uniform	4.21127×10^{1}
X 4	m _{H2O}	$(3.70 \pm 0.05) \times 10^{-2}$	Uniform	2.27636×10^{2}
x 5	$\mathbf{T}_{1,\mathrm{Hg}}$	$(3.532 \pm 0.005) \times 10^{2}$	Uniform	1.5298×10^{-1}
x 6	T _{1,H20}	$(2.882 \pm 0.005) \times 10^{2}$	Uniform	8.4702×10^{-1}

У	298.093725072392	
Ymin Ymax	297.151546853375 299.043029011412	= y - 0.942178 = y + 0.949304
ε_{max} $y \pm \varepsilon_{\text{max}}$	0.945729701893652 (2.981 ± 0.001) × 10 ²	$= 0.317 \%$ $= 2.981(1) \times 10^{2}$
u _c y ± u _c	$0.310480091278691 (2.981 \pm 0.003) \times 10^{2}$	$= 0.104 \%$ $= 2.981(3) \times 10^{2}$

Absolute Maximum Uncertainty

$$\varepsilon_{\text{max}} = \sum_{i=1}^{n} |\partial_{x_i} f[x]| \varepsilon_i; f[x] \pm \varepsilon_{\text{max}} // \text{QUCE}$$

```
298.093725072392 ± 0.94573

\in [297.148; 299.0395]

\approx (2.981 \pm 0.001) \times 10^2 = 2.981(1) \times 10^2
```

Combined Standard Uncertainty

$$\mathbf{u_c} = \left(\sum_{i=1}^{n} \left(\partial_{\mathbf{x}_i} \ \mathbf{f}[\mathbf{x}]\right)^2 \mathbf{u}_i^2\right)^{1/2}; \quad \mathbf{f}[\mathbf{x}] \pm \mathbf{u}_c \ // \ \text{QUCA}$$

```
298.093725072392 ± 0.31048

\in [297.7832; 298.4042]

\simeq (2.981 \pm 0.003) \times 10^2 = 2.981(3) \times 10^2
```

Monte Carlo Simulation