Estadística I Grado en Matemáticas, UAM, 2018-2019

Hoja 2. Normal multidimensional y distribuciones asociadas

NORMALES MULTIDIMENSIONALES

1. El vector $\mathbb{X} = (X_1, \dots, X_n)^{\mathsf{T}}$ sigue una normal *n*-dimensional con vector de medias **m** y matriz de varianzas/covarianzas V.

Consideramos el vector $\mathbb{Z} = (Z_1, \dots, Z_n)^{\mathsf{T}}$ dado por

$$Z_j = \sum_{i=1}^j X_i$$
 para cada $j = 1, \dots, n$.

- a) Justifica por qué $\mathbb Z$ sigue una normal multidimensional.
- b) Calcula su vector de medias y su matriz de varianzas/covarianzas
- en el caso en el que $\mathbb{X} \sim \mathcal{N}(\mathbf{0}, I)$;
- en el caso en el que $\mathbb{X} \sim \mathcal{N}(\mathbf{0}, V)$, donde V es la matriz cuyas entradas son

$$v_{i,j} = 0$$
 si $i \neq j$, y $v_{i,i} = i$ para $i = 1, \dots, n$.

2. El vector $\mathbb{X} = (X_1, X_2, X_3)^{\mathsf{T}}$ sigue una normal tridimensional, con parámetros:

vector de medias: $\mathbf{m} = (1, 1, 0)$, matriz de varianzas/covarianzas: $V = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix}$.

Consideramos el vector $\mathbb{Z} = (Z_1, Z_2, Z_3)^{\mathsf{T}}$ dado por

$$\begin{cases} Z_1 = X_1 + X_2 \\ Z_2 = X_1 + X_2 + X_3 \\ Z_3 = 2X_1 + X_2 \end{cases}$$

Calcula las medias de Z_1 , Z_2 y Z_3 , la varianza de Z_3 , y la covarianza entre Z_1 y Z_2 .

3. Sean Y, Z_1, Z_2, \ldots, Z_n variables normales estándar independientes. Sea $\rho \in (0, 1)$. Definimos el vector aleatorio $\mathbb{X} = (X_1, \ldots, X_n)^\mathsf{T}$ mediante

$$X_j = \sqrt{\rho} Y + \sqrt{1 - \rho} Z_j$$
 para cada $j = 1, \dots, n$.

Dando por sentado que el vector $\mathbb X$ sigue una normal multidimensional, halla su vector de medias y su matriz de varianzas/covarianzas.

- 4. Sea $Z \sim \chi_n^2$.
 - a) Comprueba que, para n > 4,

$$\mathbf{E}(1/Z^2) = \frac{1}{(n-2)(n-4)}.$$

- b) Calcula el coeficiente de asimetría de Z en términos de n. (Sugerencia: si X es normal estándar, $\mathbf{E}(X^2)=1$, $\mathbf{E}(X^4)=3$ y $\mathbf{E}(X^6)=15$).
- **5.** Comprueba que si $Z \sim F_{n,m}$ entonces

$$\mathbf{V}(Z) = \frac{2(m+n-2)m^2}{n(m-4)(m-2)^2} \,.$$

EJERCICIO ADICIONAL

6. Para cada $n \geq 1$, la función de densidad de una variable t de Student con n grados de libertad viene dada por

$$f_{t_n}(t) = D_n \left(\frac{1}{1 + t^2/n}\right)^{(n+1)/2}, \text{ donde } D_n = \frac{1}{\sqrt{n\pi}} \frac{\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2})}.$$

Comprueba que, para cada $t \in \mathbb{R}$,

$$\lim_{n \to \infty} f_{t_n}(t) = \phi(x) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2}.$$

Sugerencia: usa la fórmula de Stirling

$$n! \sim n^n e^{-n} \sqrt{2\pi n}$$
 cuando $n \to \infty$

para deducir que

$$\binom{2n}{n} \sim \frac{4^n}{\sqrt{\pi n}}$$
 cuando $n \to \infty$,

y de ahí que

$$\frac{\Gamma((n+1)/2)}{\Gamma(n/2)} \sim \sqrt{\frac{n}{2}} \quad \text{cuando } n \to \infty.$$