The Central Limit Theorem

Let Y_1, Y_2, \ldots, Y_n be independent and identically distributed random variables with $E[Y_i] = \mu$ and $Var[Y_i] = \sigma^2 < \infty$.

$$U_n = \frac{\sum_{i=1}^n Y_i - n\mu}{\sigma\sqrt{n}} = \frac{\bar{Y} - \mu}{\sigma/\sqrt{n}} \approx N(0, 1).$$

- ► No matter what the shape of the population distribution, sample means approaches a normal distribution as the sample size gets larger.
- Y 2 N UM, EZ

Example

Consider an i.i.d sample X_1, \ldots, X_n of size n. In each situation, construct a statistic such that the distribution of the statistic is standard normal.

n=100 and $X_i \sim unif(0,1)$ n=100 and $X_i \sim Exp(1)$ n=100 and $X_i \sim Bern(1/2)$ n=144 and $X_i \sim Gamma(1,2)$ n=144 and $X_i \sim \chi^2_{(4)}$

Estimation Theory

- Statistical inference aims at learning characteristics of the population from a sample; the population characteristics are parameters and sample characteristics are statistics.
- **Estimation** represents ways or a process of learning and determining the population parameter based on the model fitted to the data.
- ▶ If the parameter is denoted by θ , then the **estimator** is traditionally written as $\widehat{\theta}$ or $\widehat{\theta}(X)$.
- ► How can we establish some criteria of goodness to compare estimators? How can we pick up the best estimator?
- ▶ One intuitive rule: we would like the expected value of the distribution of the estimates to equal the parameter estimated.

Unbiased Estimator

Let $\hat{\theta}$ be an estimator for a parameter θ . Then $\hat{\theta}$ is an unbiased estimator if

$$\mathbb{E}[\hat{\theta}] = \theta.$$

- ▶ If $\mathbb{E}[\hat{\theta}] \neq \theta$., then $\hat{\theta}$ is an biased estimator.
- Bias

$$\mathbb{B}(\hat{\theta}) = \mathbb{E}[\hat{\theta}] - \theta.$$

- ▶ If $\hat{\theta}$ is unbiased, then $\mathbb{B}(\hat{\theta}) = \mathbb{E}[\hat{\theta}] \theta = 0$.
- ► How do we choose the best estimator among unbiased estimators? ⇒ MSE

Mean Square Error (MSE)

▶ MSE of a point estimator $\hat{\theta}$ is

$$MSE_{\theta}(\hat{\theta}) = \mathbb{E}[(\hat{\theta} - \theta)^2].$$

► The MSE can be expressed in terms of the variance and the bias of a estimator as:

$$MSE_{\theta}(\hat{\theta}) = \mathbb{V}[\hat{\theta}] + [\mathbb{B}(\hat{\theta})]^{2}.$$

That is, for an unbiased estimator $\mathbb{B}(\hat{ heta})=0$

$$MSE_{\theta}(\hat{\theta}) = V[\hat{\theta}].$$

Let X_1, \ldots, X_n be i.i.d. $\mathcal{N}(\mu, \sigma^2)$ random variables, where $-\infty < \mu < \infty$ and $0 < \sigma^2 < \infty$ are unknown.

- a) \bar{X} , X_1 and $\frac{X_1+X_2}{2}$ are unbiased estimators of μ .
- b) S^2 and $\frac{(X_1-X_2)^2}{2}$ are unbiased estimators of σ^2
- c) S_n^2 is a biased estimator of σ^2 . Note however that $n/(n-1)S_n^2$ is an unbiased estimator of σ^2 .