Agenda:

- 1. Dataset description
- 2. Analysis objective
- 3. Plan for analysis
- 4. EDA
- 5. Models used for training and testing
- 6. Summary and Results

1. Dataset description

Data was collected from Polish Amazon-like site - olx.pl

Data was collected using web crawler, contains only ads regarding rent of flats or rooms in a City Kraków in Poland. It consists of 5349 entries and 15 variables:

```
RangeIndex: 5349 entries, 0 to 5348
Data columns (total 15 columns):
                                      Non-Null Count Dtype
# Column
                                      5349 non-null object
0 promoted
1 web_page
                                      5349 non-null object
2 market_type
                                      5349 non-null object
3 total_price
                                      5349 non-null float64
                                      5349 non-null
    floor
                                                    object
5 if_furnished
                                      5349 non-null object
6
   building type
                                      5349 non-null
                                                    object
7 total_sqm
                                      5349 non-null float64
8 no_of_rooms
                                      5349 non-null
                                                    int32
                                      5349 non-null object
9 district
10 accommodation
                                      5349 non-null object
11 is_street_mentioned
                                     5349 non-null object
12 is_distance_mentioned
                                                    object
                                     5349 non-null
13 is_type_of_communication_mentioned 5349 non-null
                                                    object
14 is_shop_mentioned
                                      5349 non-null
                                                    object
dtypes: float64(2), int32(1), object(12)
memory usage: 606.1+ KB
```

promoted - Whether ad is promoted by a submitter (promoted ads have better positioning)

web_page - specifies web page on which ad was submitted

market_type - determines whether flat/room is being owned by company or a private person total_price - total price for renting for month (expressed in PLN, which is EUR/PLN~4,5)

floor - floor on which flat/room is located

if_funrnished - determines whether flat/room is furnished

building_type - type of building in which flat/room is located

total_sqm - total sqm of flat/room

no_of_rooms - number of rooms in a flat

district - district in Kraków in which flat/room is located

accommodation - categorical variable : room or flat

is_street_mentioned - categorical variable : yes - if precise address is mentioned in ad description
is_distance_mentioned - categorical variable : yes - if distance to bus/tram stops/shops/restaurants
are mentioned in ad description

 $\label{lem:communication_mentioned} \textbf{-} \textbf{categorical variable: yes-if nearest bus/tram/train stops} \\ \textbf{are mentioned in ad description}$

is_shop_mentioned - categorical variable : yes – if nearest shop/shops are mentioned in ad description

2. Analysis objective

Objective of this analysis is to find best model (supervised machine learning or Neural Network) which will best predict price for monthly rent

3. Plan for analysis

Analysis was performed in five steps

- 1. Data was cleaned
- 2. Two supervised machine learning models (XGBoost, Random Forest) were trained and evaluated using Randomized Grid Search CV
- 3. Three Unsupervised learning models (K-Means, Mean Shift, DBSCAN) were used for clustering to later improve fit of SL and NN models
- 4. Using Randomized Grid Search CV optimal Sequential Neural Network model was built , data used for training and testing this model was already clustered
- 5. Results were summarized

4. EDA

Relationship between price and total_sqm with respect to different districts:

Counts of ads from different districs and their average prices

		district	accommodation	total_price
data_krk.district.va	Zwierzyniec	whole flat	3420.45	
_	StareMiasto	whole flat	2548.08	
✓ 0.4s		Grzegórzki	whole flat	2524.53
C+Wi+-	cca	Bronowice	whole flat	2326.08
StareMiasto	662	Dębniki	whole flat	2320.36
Krowodrza	562	Podgórze Other	whole flat whole flat	2277.66 2219.82
PrądnikCzerwony	469	Krowodrza	whole flat	2206.00
		PrądnikBiały	whole flat	2185.68
Grzegórzki	462	PrądnikCzerwony	whole flat	2081.07
Podgórze	462	Mistrzejowice	whole flat	2063.14
	400	Łagiewniki-BorekFałęcki	whole flat	2058.56
Dębniki	428	Czyżyny	whole flat whole flat	2048.85 2014.20
PrądnikBiały	393	PodgórzeDuchackie NowaHuta	whole flat	2014.20
	296	Bieńczyce	whole flat	1970.70
PodgórzeDuchackie	290	Bieżanów-Prokocim	whole flat	1949.77
Bronowice	280	PodgórzeDuchackie	room	1546.67
Bieżanów-Prokocim	265	Bieżanów-Prokocim	room	1540.00
		Łagiewniki-BorekFałęcki	room	1490.00
Łagiewniki-BorekFałęcki	251	Bronowice	room	1435.12
Czyżyny	183	PrądnikBiały Krowodrza	room	1361.50 1337.60
		StareMiasto	room	1285.33
Bieńczyce	160	Bieńczyce	room	1275.00
Mistrzejowice	137	Podgórze	room	1270.20
_	107	Dębniki	room	1224.58
NowaHuta	127	PrądnikCzerwony	room	1145.07
Zwierzyniec	102	Grzegórzki	room	1064.00
Other	72	Czyżyny Other	room	1000.00 900.00
Other	12	NowaHuta	room	884.00
Name: district, dtype: :	int64	Zwierzyniec	room	400.00

Average sqm per district:

district	total_sqm
Zwierzyniec	63.88
Dębniki	47.05
StareMiasto	46.90
NowaHuta	45.92
Łagiewniki-BorekFałęcki	45.85
Other	45.13
Bronowice	44.90
PrądnikCzerwony	43.72
PrądnikBiały	43.41
Grzegórzki	43.36
Krowodrza	43.06
PodgórzeDuchackie	43.02
Mistrzejowice	41.56
Podgórze	41.46
Bieżanów-Prokocim	40.64
Bieńczyce	40.39
Czyżyny	39.14

Pairplot between numerical variables with respect to whether type of communication is mentioned in an AD:

5. Models Training

Section A:

SL models used:

- -XGBRegressor
- -Random Forest Regressor

Initial results after performing grid search and we can see XGBoost was clearly better:

	R2_train	MSE_train	R2_test	MSE_test
RandomForest	0.836326	0.1531	0.712496	0.36087
XGBRegressor	0.926784	0.068486	0.752124	0.311129

Features Importance:

Section B:

UL models used:

- -K-Means
- -Mean Shift
- -DBSCAN

1. K-Means

2. Mean Shift

3. DBSCAN

Section C:

Results SL with clustered data using XGBoost:

	No Unsupervised Learning	K-Means	Mean Shift	DBSCAN
R2_train	0.926784	0.925782	0.917275	0.926784
MSE_train	0.068486	0.069423	0.077381	0.068486
R2_test	0.752124	0.766278	0.750571	0.752124
MSE_test	0.311129	0.293364	0.313079	0.311129

To create Neural Network data clustered by K-Means model will be used

Section D:

After testing below parameters

```
NN_param_grid=('first_layer_init' : ['uniform', 'lecun_uniform', 'normal', 'zero', 'glorot_normal', 'glorot_uniform',
'he_normal', 'he_uniform'],

'hidden_layer_init' : ['uniform', 'lecun_uniform', 'normal', 'zero', 'glorot_normal', 'glorot_uniform',
'he_normal', 'he_uniform'],

'last_layer_init' : ['uniform', 'lecun_uniform', 'normal', 'zero', 'glorot_normal', 'glorot_uniform',
'he_normal', 'he_uniform'],

'first_layer_density' : [10, 20, 30, 50, 100],
'no_of_hidden_layers' : [1, 2, 3, 5, 10],
'hidden_layer_density' : [10, 20, 30, 50, 100],

'first_later_activation' : ['softmax', 'softplus', 'softsign', 'relu', 'tanh', 'sigmoid', 'hard_sigmoid',
'linear'],
'hidden_layer_activation' : ['softmax', 'softplus', 'softsign', 'relu', 'tanh', 'sigmoid', 'hard_sigmoid',
'linear'],
'last_layer_activation' : ['softmax', 'softplus', 'softsign', 'relu', 'tanh', 'sigmoid', 'hard_sigmoid', 'linear']

'optimizer' : ['SGD', 'RMSprop', 'Adagrad', 'Adadelta', 'Adam', 'Adamax', 'Nadam']

NN_results=train_test_model(model,X_km,Y_km,param_grid=NN_param_grid)
```

Optimal NN model parameters were selected:

Which resulted in below R2:

```
NN_results['Test_results']['R2']

v 0.5s

0.42671311599670647
```

6. Summary and Results

During this analysis, three types of machine learning techniques were used in order to find optimal model which will correctly predict rent values for flats or rooms in a given district in Kraków.

Interesting findings are:

- most important parameter is total area of flat and type of building in which flat is located
- web page on which a person is looking for flat or room is important

Best model to perform this task of valuation is XGBoost with parameters:

```
XGBRegressor(n_estimators = 500, max_depth = 6, eta = 0.08, booster = 'gbtree')
```

There is a chance to improve this model, by:

- better segmentation (to tune DBSCAN or Mean Shift clustering models)
- to add more hyperparameters to Neural Network grid search