

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (4 year) Degree in Applied Sciences B.Sc. (Joint Major) Degree in Chemistry and Physics

Fourth Year - Semester II Examination - February / March 2019

PHY 4312 - STATISTICAL THERMODYNAMICS

Time: Two (3) hours

Answer all five questions

The use of a non-programmable electronic calculator is permitted.

].

a) Obtain the binomial probability distribution function, $W_N(n_1) = [N!/(n_1!n_2!)]p^{n_1}q^{n_2}$ using approximations in one dimensional random walk, where p and q are probabilities of stepping to the right and left respectively. n_1 is number of steps taken to the right and n_2 is number of steps to the left out of total N steps.

(20 marks)

- b) Prove that (symbols have their usual meanings);
 - i) the mean value of n_1 is given by $\overline{n_1} = Np_1$
 - ii) $\overline{n_1 + n_2} = N$
 - iii) the mean value of n_2 is given by $\overline{n_2} = Nq$ and
 - iv) the mean displacement is given by $\overline{m} = N(p q)$ and
 - v) mean dispersion is given by $\Delta n_1^2 = Npq$

(60 marks)

c) Assume that a person is taking steps randomly in a one-dimensional space. The probability of taking a step to the right is 0.75 and to the left is 0.25. Find the values of $\overline{n_1}$, $\overline{n_1 + n_2}$, \overline{m} and $\overline{\Delta n_1^2}$, if the total number of steps is 10.

(20 marks)

- 2. Prove that the binomial probability distribution can be simplified to gaussian distribution, $\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$, for large N values ($N\gg 1$), where μ and σ^2 are the most probable value and dispersion of x. (hint; Use the Taylor series expansion. For large n values $\frac{d}{dn}\ln(n!) = \ln(n)$). (60 marks)
 - a) Show that the mean value is equal to the most probable value for the gaussian distribution.

(20 marks)

b) A box contains 100 Ω resistors which are known to have a standard deviation of 2 Ω . What is the probability of selecting a resistor with a value of 95 Ω ?

(20 marks)

3.

a) A particle of mass m is free to move in one dimension. It's position and momentum coordinates are denoted by x and p respectively. Suppose, this particle is confined to a box so as to be located between x = 0 and x = L, and its energy is known to lie between E and E+dE. Draw the classical phase space of this particle, indicating the regions of this space which are accessible to the particle.

(25 marks)

- b) Write down the energy of the single particle system mentioned above as a function of *L*, *m* and number of accessible states (solutions of Schrödinger equation can be assumed)

 (25 marks)
- c) Prove that the number of states accessible to the system mentioned above is $\frac{L\sqrt{2m}}{2\pi\hbar\sqrt{E}}\delta E$ (symbols have their usual meaning).

(50 marks)

4.

a) Probability $W_N(n)$ that an event characterized a probability p occurs n times in N trails is given by the binomial distribution, $W_N(n) = [N!/(n!(N-n)!)]p^n(1-p)^{N-n}$. Consider a situation where n is very small compared to N (n << N). Using the result $\ln(1-p) \approx -p$ for very small p, show that $(1-p)^{N-n} \approx e^{-Np}$.

(20 marks)

b) Prove that $\frac{N!}{(N-n)!} \approx N^n$

(20 marks)

c) Obtain the poisons probability distribution function, $W_N(n) = \frac{\lambda^n}{n!} e^{-\lambda}$ where λ is the mean number of events.

(20 marks)

d) Prove that $W_N(n) = \frac{\lambda^n}{n!} e^{-\lambda}$ is normalized

(20 marks)

e) Prove that $\bar{n} = \overline{\Delta n_1^2} = \lambda$,

(20 marks)

5.

a) Show that $\beta(\widetilde{E}) = \text{Constant}$ for a purely thermal quasi static macroscopic interaction of two systems, where $\Omega(E)$ is number of accessible states to the system, \widetilde{E} is most probable energy of the system and $\beta(E) = \frac{\partial}{\partial E} \ln \Omega(E)$.

(50 marks)

- b) Prove that when the system is at the equilibrium,
 - i) the entropy change is given by $\frac{dE}{T}$,
 - ii) the entropy change in the combined system is maximum and
 - iii) the temperature difference between two systems is zero.

(30 marks)

- c) Assume that total number of accessible states to a system with N particles is proportional to the V^N and $E^{\frac{3N}{2}}$ (symbols have their usual meaning). Prove that;
 - i) mean pressure of the system is given by nKT and
 - ii) mean energy is given by $\frac{3}{2}NKT$.

(20 marks)

-END-