In class work 7

Row:

"If money can fix it, it's not a problem."

Tom (or Ray) Magliozzi

5 1. Find the work done moving a 42 kg mass from x = -2 to x = 5 if the position dependent force is $F(x) = \begin{cases} x & x < 1 \\ 1 - x & x \ge 1 \end{cases}$, where the units of force are Newtons and the units of distance are meters.

5 2. Find the *numerical value* of $\int_3^8 \frac{1}{8-3x} dx$.

 $\boxed{5}$ 3. Find a general solution to the DE $-y\frac{dy}{dx} = x$.

4. Find a formula for each derivative:

$$\boxed{5} \qquad \text{(a) } \frac{\mathrm{d}}{\mathrm{d}x} \left(x \mathrm{e}^{1/x^2} \right)$$

$$\boxed{5}$$
 (b) $\frac{d}{dx} \left(\frac{\exp(x) - \exp(-x)}{2} \right)$

$$\boxed{5} \qquad \text{(c) } \frac{\mathrm{d}}{\mathrm{d}x}(x\mathrm{e}^x)$$

(d)
$$\frac{d}{dx} \ln \left(\frac{1+x}{1-x} \right)$$

5. Find the numerical value of $\int_1^2 x e^x + e^x dx$. **Hint:** Look at your answer to part 'c' of the previous question.

- 6. Let *Q* be the portion of the *xy* plane described by $0 \le x \le 1$ and $0 \le y \le 1 |x|$.
- $\boxed{5}$ (a) Draw a nicely *labeled* picture of the set Q.

(b) Using *disks* (that is strips *perpendicular* to the axis of rotation), find the *volume* of the solid generated by rotating *Q* about the *x* axis. Express the result as a *definite integral*, but **do not** find the numerical value of the definite integral.

- (c) Using *shells* (that is, strips *parallel* to the axis of rotation), find the *volume* of the solid generated by rotating Q about the x axis. Express the result as a *definite integral*, but **do not** find the numerical value of the definite integral.
 (d) Using a strip that is parallel to the y axis, find area of Q.
- $\boxed{5}$ (e) Using a strip that is parallel to the y axis, find the y coordinate of the centroid of Q.

 $\boxed{5}$ (f) Using a strip that is parallel to the y axis, find the x coordinate of the centroid of Q.

 $\boxed{5}$ 7. Express the arclength of the portion of the ellipse $x^2 + 8y^2 = 1$ with $y \le 0$ and endpoints (x = -1, y = 0) and (x = 1, y = 0). Do not attempt to find the numerical value of the definite integral.