Zadanie grupowania, wykł. 10

Joanna Jędrzejowicz

Instytut Informatyki

Na czym polega grupowanie

Grupowanie (ang. clustering)- grupowanie rekordów w klasy podobnych obiektów.

Grupa (klaster) jest zbiorem rekordów, które są podobne do siebie nawzajem i niepodobne do rekordów z innych grup.

Grupowanie różni się od klasyfikacji tym, że w przypadku grupowania nie ma zmiennej celu i mamy do czynienia z uczeniem nienadzorowanym - należy znaleźć podobieństwa w danych zgodnie z ich cechami charakterystycznymi i pogrupować.

Przykłady

- w aplikacjach medycznych wyodrębnianie grup pacjentów z podobnymi symptomami,
- namierzanie grupy potencjalnych klientów o podobnych zachowaniach w sferze zakupów,
- podział zachowań finansowych na korzystne i niepewne,
- w biologii pomocne przy sporządzaniu taksonomii,
- redukcja wymiarów zbioru danych, gdy zbiór jest opisany przez dużą liczbę atrybutów,

Grupowanie jest często wykonywane jako krok wstępny do zgłębiania danych, z wynikowymi grupami użytymi jako dane wejściowe do innej techniki.

Proces grupowania

- wybór reprezentacji obiektów selekcja atrybutów i typów (kategoryczne-nominalne, liczbowe ciągłe, porządkowe itp),
- wybór miary podobieństwa/niepodobieństwa inaczej odległosci, obiektów,
- algorytm grupowania,
- wybór reprezentacji klastrów

Sposób przedstawienia danych do grupowania - macierz danych

Załóżmy, że danych jest n obiektów (rekordów) i każdy opisany jest przez p atrybutów. Na przykład n osób opisanych przez wiek, wzrost, waga itp.

$$\begin{bmatrix} x_{11} \cdots & x_{1f} \cdots & x_{1p} \\ \vdots & \vdots & \vdots \\ x_{i1} \cdots & x_{if} \cdots & x_{ip} \\ \vdots & \vdots & \vdots \\ x_{n1} \cdots & x_{nf} \cdots & x_{np} \end{bmatrix}$$

 x_{if} jest wartością atrybutu f dla rekordu i; dla p=2 łatwo zwizualizować na płaszczyźnie

Sposób przedstawienia danych do grupowania - macierz odległości

Wiele algorytmów grupowania operuje na macierzy odległości

$$\begin{bmatrix} 0 & & & & & \\ d(2,1) & 0 & & & & \\ d(3,1) & d(3,2) & 0 & & & \\ \vdots & \vdots & \vdots & & \vdots & & \\ d(n,1) & d(n,2) & \cdots & \cdots & 0 \end{bmatrix}$$

Przyjmujemy, że d(i,j) jest miarą różnicy między rekordem i oraz *j*; ponadto:

$$d(i,j) = d(j,i), d(i,i) = 0$$

Jeśli dane są reprezentowane przez macierz danych, zaś algorytm grupowania korzysta z macierzy odległości, to pierwszym krokiem algorytmu grupowania jest obliczenie macierzy odległosci.

Przypadek danych liczbowych

możliwe określenie odległości

$$d(i,j) = \sqrt{|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \cdots + |x_{ip} - x_{jp}|^2}$$

$$d(i,j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \cdots + |x_{ip} - x_{jp}|$$

$$d(i,j) = \sqrt{w_1|x_{i1} - x_{j1}|^2 + w_2|x_{i2} - x_{j2}|^2 + \cdots + |x_{ip} - x_{jp}|^2}$$

własności odległości

$$d(i,j) \ge 0, \ d(i,i) = 0, \ d(i,j) = d(j,i)$$

 $d(i,j) \le d(i,h) + d(h,j)$

Przypadek atrybutów binarnych

Tabela różnic: załóżmy, że porównujemy dwa wiersze z atrybutami binarnymi, q - oznacza liczbę atrybutów dla których w obu wierszach jest 1, t - w obu wierszach jest 0 itd. Liczba atrybutów jest p=q+s+r+t

	obiekt j				
		1	0	suma	
	1	q	r	q+r	
obiekt i	0	S	t	s+t	
	suma	q+s	r+t	р	

Atrybuty symetryczne i niesymetryczne

Atrybuty symetryczne - wartości równomiernie rozłożone. Jeśli atrybuty są symetryczne, to przyjmuje się pierwszy wzór, dla niesymetrycznych - drugi (wzór Jacarda)

$$d(i,j) = \frac{r+s}{q+r+s+t}, \ d(i,j) = \frac{r+s}{q+r+s}$$

Przykład

imie	plec	gorączka	kaszel	test1	test2	test3	test4
Jacek	М	Т	N	Р	N	N	N
Maria	K	Т	N	Р	N	Р	N
Jan	М	Т	Т	N	N	N	N

- płeć jest atrybutem symetrycznym,
- pozostałe atrybuty są binarne niesymetryczne,
- wartości T.P ustalamy na 1, wartość N- na 0,

Korzystamy ze wzoru Jacarda, pomijając atrybut symetryczny:

$$d(Jacek, Maria) = \frac{0+1}{2+0+1} = 0.33, \ d(Jacek, Jan) = \frac{1+1}{1+1+1} = 0.67$$

$$d(Jan, Maria) = \frac{1+2}{1+1+2} = 0.75$$

Wartości dla Jana i Marii są najbardziej oddalone - największa różność

Przypadek atrybutów nominalnych

Atrybuty nominalne są uogólnieniem binarnych, np. przyjmijmy, że atrybut kolor przyjmuje wartości czerwony, żółty, zielony, różowy, niebieski

Można przyjąć - metoda 1

$$d(i,j)=\frac{p-m}{p}$$

gdzie p jest liczbą atrybutów, m oznacza liczbę atrybutów dla których w wierszach i, j są te same wartości.

Metoda 2: utworzyć nową zmienną binarną dla każdej możliwej wartości atrybutu.

Atrybuty różnych typów, inny sposób

metryka z formułę ważoną

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

- $\delta_{ii}^{(f)} = 0$ jeśli x_{if} lub x_{jf} jest brakujące, albo $x_{if} = x_{jf} = 0$; w przeciwnym razie $\delta_{ii}^{(f)} = 1$
- jeśli f jest binarny lub nominalny

$$d_{ij}^{(f)} = \left\{ egin{array}{ll} 0 & ext{jesli } x_{if} = x_{jf} \\ 1 & ext{inaczej} \end{array}
ight.$$

• jeśli f jest numeryczny używamy zestandaryzowanych wartości.

Standaryzacja danych

- dlaczego standaryzuje się dane liczbowe: przykład x = (0.1, 20), y = (0.9, 720) odległość euklidesowa $\sqrt{(0.9-0.1)^2+(720-20)^2}=700$ zdominowana przez wartość drugiego atrybutu; po zestandaryzowaniu do przedzialu (0,1) wartości drugego atrybutu zostana sprowadzone do, odpowiednio 0.02 i 0.72 oraz odległość wyniesie 1.063.
- standaryzacja do przedziału [0, 1])

$$rg(x_{if}) = \frac{x_{if} - min(f)}{max(f) - min(f)}$$

Standaryzacja danych, cd

 standaryzacja wykorzystująca odchylenie standardowe; dla atrybutu f: średnia wartość

$$m_f = \frac{x_{1f} + x_{2f} + \dots + x_{nf}}{n}$$

średnie odchylenie

$$s_f^2 = \frac{1}{n-1}(|x_{1f} - m_f|^2 + |x_{2f} - m_f|^2 + \dots + |x_{nf} - m_f|^2)$$
 atrybut standaryzowany (z-score)

$$z_{if} = \frac{x_{if} - m_f}{s_f}$$

Podstawowe metody grupowania

- grupowanie przez podział
 - dokonuje się pewną liczbę podziałów i ocenia przy pomocy wybranego kryterium np. minimalizując sumę kwadratów błędów
 - przykłady: metoda k-średnich, k-medoids
- metody hierarchiczne: tworzona jest struktura poprzez rekurencyjne dzielenie lub łaczenie istniejacych grup
- metody oparte o gęstość

Algorytm k-średnich

- ustal wartośc k (liczbę grup),
- losowo ustal k początkowych środków grup (centroidy),
- odla każdego rekordu danych znajdź najbliższy centroid (nowy środek grupy)- w ten sposób wszystkie rekordy zostana przydzielone do k grup (klastrów)
- odla każdej z grup znajdź centroid i uaktualnij położenie środka grupy jako nową wartość centroidu
- opowtarzaj kroki 3-5 dopóki są zmiany (lub nie jest spełnione kryterium końca)

kryterium błędu:

$$E = \sum_{i=1}^k \sum_{p \in C_i} |p - m_i|^2$$

mi jest centroidem klastra Ci

przykladGrupowanie.xls

а	b	С	d	е	f	g	h
(1,3)	(3,3)	(4,3)	(5,3)	(1,2)	(4,2)	(1,1)	(2,1)

Przykład, cd

Załóżmy, że k=2, $m_1=(1,1)$, $m_2=(2,1)$

pkt	odl. od m_1	odl. od m_2	grupa
а	2.00	2.24	C_1
b	2.83	2.24	C_2
С	3.61	2.83	C_2
d	4.47	3.61	C_2 C_2
е	1.00	1.41	C_1
f	3.16	2.24	C_2
g	0.00	1.00	C_1
h	1.00	0.00	C_2

błąd
$$E = 2^2 + 2.24^2 + 2.83^2 + 3.61^2 + 1^2 + 2.24^2 + 0^2 + 0^2 = 36$$
, nowe centroidy $m_1 = (1, 2), m_2 = (3.6, 2.4)$

Przykład, cd

centroidy $m_1 = (1, 2), m_2 = (3.6, 2.4)$

pkt	odl. od m_1	odl. od m_2	grupa
а	1.00	2.67	C_1
b	2.24	0.85	C_2
С	3.16	0,72	C_2
d	4.12	1.52	C_2
е	0.00	2.63	C_1
f	3.00	0.57	C_2
g	1.00	2.95	C_1
h	1.41	2.13	C_1

błąd E = 7.88, nowe centroidy $m_1 = (1.25, 1.75)$, $m_2 = (4, 2.75)$

Przykład, cd

centroidy $m_1 = (1.25, 1.75), m_2 = (4, 2.75)$

pkt	odl. od m_1	odl. od m_2	grupa
а	1.27	3.01	C_1
b	2.15	1.03	C_2
С	3.02	0.25	C_2
d	3.95	1.03	C_2
е	0.35	3.09	C_1
f	2.75	0.75	C_2
g	0.79	3.47	C_1
h	1.06	2.66	C_1

błąd E = 6.25, nowe centroidy $m_1 = (1.25, 1.75)$, $m_2 = (4, 2.75)$ czyli koniec algorytmu

Przykład,cd

centroidy $m_1 = (1.25, 1.75), m_2 = (4, 2.75)$

а	b	С	d	е	f	g	h
(1,3)	(3,3)	(4,3)	(5,3)	1,2)	(4,2)	(1,1)	(2,1)

Miary zmienności BCV, WCV

- Zmienność między grupami (between cluster variation BCV),
- Zmienność wewnątrz grupy (within cluster variation WCV),

jeżeli przyjąć, że BCV to odległość między centroidami, WCV suma odległości elementów od odpowiednich centroidów, to w przykładzie iloraz BCV przez WCV zmienia się nast.:

$$\frac{BCV}{WCV} = \frac{1}{36} = 0.028, \ \frac{BCV}{WCV} = 0.33, \ \frac{BCV}{WCV} = 0.47$$

Komentarz na temat metody k-średnich

- względnie efektywna złożoność O(tkn), gdzie n jest liczbą rekordów, k - liczbą klastrów, t- liczbą iteracji,
- często obliczenia kończą się w lokalnyn optimum,
- końcowy podział obiektów pomiędzy klastrami silnie zależy od początkowego podziału
- konieczność podania wartości k,
- źle radzi sobie z wyjątkami i danymi zaszumionymi,
- można stosować tylko do danych dla których określona jest metryka i srednia.

Przykład - wpływ wyboru centroidów pocz., wer. 1

(A). Random selection of seeds (centroids)

Przykład - wpływ wyboru centroidów pocz., wer2.

(A). Random selection of k seeds (centroids)

Jak dla danych nominalnych, inaczej kategorycznych

Załózmy, że rekord jest opisany przez r wartości nominalnych. Klaster C_i jest reprezentowany przez

$$m_j = (m_{j1}, \cdots, m_{jr})$$

gdzie m_{ii} jest względną najczęściej występującą w C_i wartością atrybutu *i*-tego,

odległość jest określona tak jak dla wartości nominalnych

Algorytm k-średnich harmonicznych (K-Harmonic Means)

B. Zhang (2001) zaproponował użycie sredniej harmonicznej

$$HA({a_1,\ldots,a_k}) = \frac{k}{\sum_{i=1}^k \frac{1}{a_i}}$$

która zachowuje się podobnie jak funkcja minimum (tzn. jest mała jeżeli jedna z wartosci a; jest mała), której używa się w metodzie k-srednich gdzie minimalizujemy błąd:

$$E = \sum_{i=1}^k \sum_{p \in C_i} |p - m_i|^2$$

 m_i jest centroidem klastra C_i

Projekt - sprawdzic, że metoda z użyciem srednich harmonicznych nie jest czuła na początkowy wybór centroidów

Metoda k-medoids

Metoda k-medoids używa zamiast centroidów - elementów (rekordów). Medoid jest najbardziej centralnie położonym elementem w klastrze.

Algorytm:

- ustal wartośc k (liczbę grup),
- 2 losowo przypisz k rekordów (ze zbioru danych) jako medoidy Mi, i=1,...,k,
- dla każdego rekordu znajdź najbliższy medoid i przypisz rekord do klastra z tym medoidem,
- w każdym klastrze losowo wybierz element Or różny od medoidu,
- oblicz koszt S zamiany Mi z Or czyli rożnicę między błędem dla poprzedniego i aktualnego zbioru medoidów
- \odot jesli S < 0 to dokonaj zmiany medoidu
- o powtarzaj kroki 3-6 dopóki są zmiany (lub nie jest spełnione kryterium końca)

Rozmyta metoda k-średnich (Fuzzy C-means clustering)

- opiera się na rozmytej funkcji przynależności jeden element może należeć do kilku klastrów.
- metoda polega na minimalizacji funkcji

$$J_{m} = \sum_{i=1}^{N} \sum_{j=1}^{noCL} u_{ij}^{m} |x_{i} - cl_{j}|$$

gdzie m jest parametrem większym niż 1 (np. 2), N jest liczbą rekordów, noCl jest liczbą grup, cli jest centroidem grupy j, uii określa stopień przynależności *i*-tego wiersza x_i do grupy j.

 metoda sprowadza się do iteracyjnego procesu modyfikacji uji oraz *cli*.

Rozmyta metoda k-średnich cd

Modyfikacja *uij* oraz *clj*:

$$u_{ij} = \frac{1}{\sum_{k=1}^{noCl} \left(\frac{|x_i - cl_j|}{|x_i - cl_k|}\right)^{\frac{2}{m-1}}}$$
$$cl_j = \frac{\sum_{i=1}^{N} u_{ij}^m \cdot x_i}{\sum_{i=1}^{N} u_{ij}^m}$$

Rozmyta metoda k-średnich, cd

- algorytm rozpoczyna działanie od losowego wyboru wartości u_{ii} z przedziału (0,1)
- iteracje kontynuuje się aż do spełnienia

$$\max_{ij}|u_{ij}^{(k+1)}-u_{ij}^{(k)}|<\epsilon$$

- ϵ jest zadaną dokładnością
- algorytm służy do wyznaczenia centroidów,
- po wyznaczeniu centroidów okresla się dla każdego elementu x_i najbliższy centroid.