

# **LOGICA 1**

Stefania Bandini



# **LOGICA PROPOSIZIONALE**

#### A DEGLI STUDI MILANO BICOCCA

#### FONDAMENTI DELL'INFORMATICA

mane as a profit of the construct S電影的機能

## SINTASSI DELLA LOGICA PROPOSIZIONALE

Introduciamo in questo paragrafo la nozione di linguaggio proposizionale  $\mathcal{L}_{\Sigma}$  costruito su un alfabeto  $\Sigma$ . Iniziamo con la definizione di alfabeto.

#### Un alfabeto $\Sigma$ è costituito da

- I connettivi proposizionali  $\neg$  (unario)  $e \land , \lor, \rightarrow e \leftrightarrow$  (binari);
- Le costanti proposizionali ⊤, ⊥ (per denotare il vero e il falso);
- Un insieme non vuoto (finito o numerabile) di simboli proposizionali  $\mathcal{P} = \{A, B, \dots, P, Q, \dots\};$
- I simboli separatori '(' e ')'.

Nel seguito scriveremo  $\mathcal L$  quando  $\Sigma$  è chiaro dal contesto. Definiamo ora le formule di  $\mathcal L$ 

# A D O C C V

#### FONDAMENTI DELL'INFORMATICA

## SINTASSI DELLA LOGICA PROPOSIZIONALE

L'insieme PROP delle formule ben formate o formule del linguaggio proposizionale  $\mathcal{L}$  è l'insieme definito induttivamente come segue.

- 1. Le costanti e i simboli proposizionali sono formule;
- 2. Se  $A \ \dot{e} \ una \ formula \ (\neg A) \ \dot{e} \ una \ formula;$
- Se ∘ è un connettivo binario (cioè ∘ ∈ {∨, ∧, →, ↔}) e se A e B sono due formule, (A∘B) è una formula.

Le costanti e i simboli proposizionali sono anche detti *atomi*, le loro negazioni sono dette *atomi* negati. Gli atomi e gli atomi negati sono anche detti *letterali*. Gli atomi negati sono talvolta detti *letterali negativi*. Una formula del linguaggio proposizionale è anche detta proposizione o enunciato proposizionale.



## SINTASSI DELLA LOGICA PROPOSIZIONALE

Sia A una formula di PROP, l'insieme delle sottoformule di A è definito come segue.

- 1. Se A è una costante o un simbolo proposizionale allora A stessa è la sua sola sottoformula.
- 2. Se  $A \ \dot{e}$  una formula del tipo  $(\neg A')$  allora le sottoformule di A sono A stessa e le sottoformule di A';  $\neg \ \dot{e}$  detto connettivo principale  $e \ A'$  sottoformula immediata  $di \ A$ .
- Se A è una formula del tipo B ∘ C dove ∘ è un connettivo binario (cioè ∘ ∈ {∨, ∧, →, ↔}),
  e B e C due formule, le sottoformule di A sono A stessa e le sottoformule di B e C; ∘ è detto connettivo principale; B e C sottoformule immediate di A.

# DDDD B B C DDDD B B C DDDDD B C DDDDD B B C DDDD B C DDDD B B C DDD B C DDD B C DDDD B C DDD B C DD

#### FONDAMENTI DELL'INFORMATICA

### PRECEDENZA TRA CONNETTIVI

Le parentesi si possono eliminare con l'introduzione di un'opportuna precedenza tra i connettivi. Per le formule proposizionali si usa la seguente convenzione:

la massima precedenza a  $\neg$ , poi, nell'ordine, ai connettivi  $\land, \lor$ ,  $\rightarrow$  e infine a  $\leftrightarrow$ .

Questo significa che, in assenza di parentesi, una formula ben formata, va parentetizzata privilegiando Ie sottoformule i cui connettivi principali hanno precedenza più alta. A parità di precedenza, cioè se siamo in presenza di pin occorrenze dello stesso connettivo, si assume che esso associ a destra.

#### **Esempio**

La formula  $A \to B \to C$  viene parentetizzata come  $(A \to (B \to C))$ ; la formula  $\neg A \land \neg B \to C \land D \land E$  come  $(((\neg A) \land (\neg B)) \to (C \land (D \land E)))$ ; la formula  $\neg A \land (\neg B \to C) \land D \land E$  come  $((\neg A) \land ((\neg B) \to C) \land (D \land E))$ .



## SEMANTICA DELLA LOGICA PROPOSIZIONALE

Il sistema di valutazione  $S = \langle \mathcal{B}, \mathcal{T}, \mathcal{O}p \rangle$  della logica proposizionale è definito da

- 1.  $\mathcal{B} = \{0, 1\};$
- 2.  $T = \{1\};$
- 3.  $\mathcal{O}p = \{\mathcal{O}p_{\neg}, \mathcal{O}p_{\wedge}, \mathcal{O}p_{\vee}, \mathcal{O}p_{\rightarrow}, \mathcal{O}p_{\leftrightarrow}\}$  uno per ognuno dei connettivi del linguaggio  $\{\neg, \wedge, \vee, \rightarrow, \leftrightarrow\}$ , con  $\mathcal{O}p_{\neg}: \mathcal{B} \mapsto \mathcal{B} \in \mathcal{O}p_{\circ}: \mathcal{B} \times \mathcal{B} \mapsto \mathcal{B}, \circ \in \{\wedge, \vee, \rightarrow, \leftrightarrow\}$ .

## SEMANTICA DELLA LOGICA PROPOSIZIONALE

La funzione  $\mathcal{O}p_{\neg}$  della logica proposizionale è definita come segue:  $\mathcal{O}p_{\neg}(1) = 0$  e  $\mathcal{O}p_{\neg}(0) = 1$ . Questo è di solito espresso in maniera concisa come:  $\neg(0) = 1$  e  $\neg(1) = 0$ , cioè la funzione di valutazione associata a un connettivo viene indicata col simbolo stesso del connettivo e viene definita in forma tabellare mediante la tavola o tabella dei valori di verità per il connettivo

| 1 | 0 |
|---|---|
| 0 | 1 |



# TABELLA DEI VALORI DI VERITA'





## SEMANTICA DELLA LOGICA PROPOSIZIONALE

## Congiunzione

Il connettivo di congiunzione  $\wedge$  viene definito in modo che  $A \wedge B$  è vero sse sia A che B (i due congiunti) sono veri, quindi  $\mathcal{O}p_{\wedge} = min$ .

|     | Λ. |
|-----|----|
| 1 1 | 1  |
| 1 0 | 0  |
| 0 1 | 0  |
| 0 0 | 0  |



## SEMANTICA DELLA LOGICA PROPOSIZIONALE

# Disgiunzione

Il connettivo di disgiunzione  $\vee$  viene definito in modo che  $A \vee B$  è vero sse A oppure B (uno dei due disgiunti) sono veri, quindi  $\mathcal{O}p_{\vee} = max$ .

|     | ٧ |
|-----|---|
| 1 1 | 1 |
| 1 0 | 1 |
| 0 1 | 1 |
| 0 0 | 0 |



## SEMANTICA DELLA LOGICA PROPOSIZIONALE

# *Implicazione*

La definizione della semantica del connettivo di *implicazione*  $A \to B$  (detta *implicazione* materiale, in cui A è detto premessa e B conseguenza) è in un certo senso meno intuitiva. Innanzi tutto si noti che, con la definizione data, si ha che  $A \to A$  è sempre vero, qualunque sia il valore di verità di A; questo corrisponde alla nostra intuizione. Possiamo quindi accettare il fatto che affinché  $A \to B$  sia vero basta che B sia vero, indipendentemente dal valore di verità di A. Questo di fatto ci dice che, se B è vero e  $B \to B$  è vero, possiamo "rafforzare" la premessa sostituendo a B un qualunque A e l'implicazione resta vera.

Ovviamente, se la premessa è vera e la conseguenza è falsa, l'implicazione e falsa. Si noti che con questa definizione è difficile immaginare un nesso di causa-effetto tra premessa e conseguenza. Infatti in un opportuno linguaggio proposizionale avremmo anche che "Se il Presidente della Repubblica si chiama Filippo, allora oggi ho vinto alla Lotteria di Capodanno" è un'implicazione vera, anche se sia la premessa che la conseguenza sono false (a oggi) ed è difficile immaginare un nesso di causa-effetto tra le due.

|     | · → · |
|-----|-------|
| 1 1 | 1     |
| 1 0 | 0     |
| 0 1 | 1     |
| 0 0 | 1     |



## SEMANTICA DELLA LOGICA PROPOSIZIONALE

# **Doppia Implicazione**

La definizione della semantica del connettivo di doppia implicazione è del tutto intuitiva: il valore di verità di  $A \leftrightarrow B$  è vero se i valori di verità di  $A \in B$  coincidono.

|     | $\rightarrow \longleftrightarrow 1$ |
|-----|-------------------------------------|
| 1 1 | 1                                   |
| 1 0 | 0                                   |
| 0 1 | 0                                   |
| 0 0 | 1                                   |



**LOGICA** 

**END**