Задание 6

Алгоритмические стратегии. Перебор и методы его сокращения.

Разработка и программная реализация задач с применение метода сокращения числа переборов

Задание

Выбрать Номер варианта задания - номер по списку %20+1

- 1. Разработать алгоритм решения задачи с применением метода указанного в варианте и реализовать программу.
- 1) Оценить количество переборов при решении задачи стратегией «в лоб» грубой силы
 - 2) Привести анализ снижения числа переборов при применении метода.
- 2. Оформить отчет в соответствии с требованиями документирования разработки ПО: Постановка задачи, Описание алгоритмов и подхода к решению, Код, результаты тестирования.

№ вар.	Задача	Метод
1	Посчитать число последовательностей нулей	Динамическое
	и единиц длины п, в которых не встречаются	программирование
	две идущие подряд единицы.	
2	Дана последовательность целых чисел.	Динамическое
	Необходимо найти ее самую длинную строго	программирование
	возрастающую подпоследовательность.	
3	Дана строка из заглавных букв латинского	Динамическое
	алфавита. Необходимо найти длину	программирование
	наибольшего палиндрома, который можно	
	получить вычеркиванием некоторых букв из	
	данной строки.	
4	Имеется рюкзак с ограниченной	Динамическое
	вместимостью по массе; также имеется набор	программирование
	вещей с определенным весом и ценностью.	
	Необходимо подобрать такой набор вещей,	
	чтобы он помещался в рюкзаке и имел	
	максимальную ценность (стоимость).	т.
5	Дано прямоугольное поле размером n*m	Динамическое
	клеток. Можно совершать шаги длиной в одну	программирование
	клетку вправо или вниз. Посчитать, сколькими	
	способами можно попасть из левой верхней	
6	клетки в правую нижнюю.	П
6	Дано прямоугольное поле размером n*m	Динамическое
	клеток. Можно совершать шаги длиной в одну	программирование
	клетку вправо, вниз или по диагонали вправо-вниз. В	
	каждой клетке записано некоторое натуральное число. Необходимо попасть из	
	верхней левой клетки в правую нижнюю. Вес	
	маршрута вычисляется как сумма чисел со	
	всех посещенных клеток. Необходимо найти	
	маршрут с минимальным весом.	
	маршрут с минимальным вссом.	

7	Вычисление значения определенного	Динамическое
/	-	
	интеграла с применением численных методов.	программирование
	«Вычислить значение определенного	
	интеграла с заданной точностью	
	определенным методом трапеции. При	
	разработке алгоритма учесть реализацию	
	следующих подзадач в виде функций:	
	- вычисление значения подинтегральной	
	функции в заданной точке х;	
	- вычисление значения интеграла	
	установленным методом на заданном отрезке	
	интегрирования при п разбиениях;	
	- вычисление значения интеграла	
	установленным методом с заданной	
	точностью.	
8	Черепашке нужно попасть из пункта А в пункт	Динамическое
	В. Поле движения разбито на квадраты.	программирование
	Известно время движения вверх и вправо в	
	каждой клетке (улицы). На каждом углу она	
	может поворачивать только на север или	
	только на восток. Найти минимальное время,	
	за которое черепашка может попасть из А в В.	
9	Треугольник. Треугольник имеет вид	Динамическое
	представленный на рисунке. Напишите	программирование
	программу, которая вычисляет наибольшую	or or the second
	сумму чисел, расположенных на пути	
	начинающемся в верхней точке треугольника и	
	заканчивающегося на основании	
	треугольника.	
	Tpeyr sold mixed	
	/	
	3 8	
	8 1 0	
	2 7 4 4	
	2 / 7 7	
	4 5 2 6 5	
10	Из листа клетчатой бумаги вырезали фигуру	метода ветвей и
	ровно по границам клеточек. Разработать	границ
	программу определения площади вырезанной	,
	фигуры.	
11	Разработать программу расстановки на	метода ветвей и
	стандартной 64-клеточной шахматной доске 8	границ
	ферзей так, чтобы ни один из них не находился	· Parini
	под боем другого».	
12	Разработать программу поиска и вывода всех	метода ветвей и
14	газраоотать программу поиска и вывода всех гамильтоновых циклов в произвольном графе.	
12		границ
13	Пронумеровать позиции в матрице размером	метода ветвей и
	5*5 следующим образом: если номер і	границ
		1,1
	(1<=i<=25) соответствует позиции (x,y), вычисляемым по одному из следующих	7

	правил:	
	$(z,w)=(x\pm3,y)$	
	$(z,w)=(x,y\neq 3)$	
	$(z,w)=(x\pm 2,y\pm 2)$	
	1) Написать программу, которая	
	последовательно нумерует позиции матрицы	
	при заданных координатах позиции, в которой	
	поставлен номер 1 (т.е. в некоторой позиции	
	матрицы содержится номер 1).	
	2) Вычислить число всех возможных	
	расстановок номеров для всех начальных	
	позиций, расположенных под главной	
1.4	диагональю.	
14	Замок состоит из комнат. Сам замок имеет	метода ветвей и
	прямоугольную форму и разделен на М*N	границ
	клеток (M<=50; M>=50). каждая клетка может	
	иметь от 0 до 4 стен. Написать программу,	
	которая определяет	
	- количество комнат в замке.	
	- площадь наибольшей комнаты	
	- какую стену в замке следует удалить, чтобы	
	получить комнату наибольшей площади.	
	Пример плана замка	
	1 2 3 4 5 6 7	
	2	
	3	
	3	
	4	
15	Автозаправка. Вдоль кольцевой дороги	метода ветвей и
13		
	расположено М городов. В каждом городе есть	границ
	автозаправка. Известна стоимость Z[i]	
	заправки горючим в городе с номером i b	
	стоимость С[і] проезда по дороге,	
	соединяющей і-ый и (i+1)-й города и	
	стоимость проезда между первым и М-ым	
	городами. Города пронумерованы по часовой	
	стрелке. Определить для жителей каждого	
	города тот город в котором им выгодно	
	заправляться, и направление «по часовой	
	стрелке» или «против часовой стрелки»	
16	В массиве размером M*N, заполненном	метода ветвей и
	нулями и единицами найти квадратный блок,	границ
	состоящий из одних нулей.	,
17	Задача о коммивояжере	метода ветвей и
1,	онда ш о колиниволжере	границ
18	Монетная система некоторого государства	жадный алгоритм
10		жадный алгоритм
	состоит из монет достоинством	

	$a_1 = 1 < a_2 < < a_n$. Требуется выдать сумму наименьшим возможным количеством монет.	
19	Разработать процедуру оптимального способа расстановки скобок в произведении последовательности матриц, размеры которых равны (5,10,3,12,5,50,6), чтобы количество скалярных умножений стало минимальным (максимальным).	жадный алгоритм
20	Решить задачу о раскраске вершин графа Применить к задаче управлению светофорами на сложном перекрестке. (Источник постановки задачи - книга: А. Ахо, Д.Хопкрофт, Дж.Ульман Структуры данных и алгоритмы).	жадный алгоритм