SDS 385: Exercises 1 - Preliminaries

August 23, 2016

 $Professor\ James\ Scott$

Spencer Woody

Problem 1

(A)

$$\hat{\beta} = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \sum_{i=1}^N \frac{w_i}{2} \left(y_i - x_i^T \beta \right)^2 \tag{1}$$

$$= \underset{\beta \in \mathbb{R}^p}{\arg \min} \frac{1}{2} (Y - X\beta)^T W (Y - X\beta)$$
 (2)

$$\frac{1}{2}(Y - X\beta)^T W(Y - X\beta) = \frac{1}{2}(Y^T - \beta^T X^T)W(Y - X\beta)$$
(3)

$$=\frac{1}{2}(Y^TW - \beta^T X^T W)(Y - X\beta) \tag{4}$$

$$= \frac{1}{2} (Y^T W Y - \beta^T X^T W Y - Y^T W X \beta + \beta^T X^T W X \beta)$$
 (5)

$$= \frac{1}{2} (Y^T W Y - 2(X\beta)^T W Y + \beta^T X^T W X \beta)$$
 (6)

$$= \frac{1}{2}Y^T W Y - (X\beta)^T W Y + \frac{1}{2}\beta^T X^T W X \beta, \tag{7}$$

because

$$\beta^T X^T W Y = (X\beta)^T W Y, \tag{8}$$

and

$$Y^T W X \beta = (Y^T W X \beta)^T : Y^T W X \beta \in \mathbb{R}^1$$
(9)

$$(Y^T W X \beta)^T = (W X \beta)^T Y = (X \beta)^T W^T Y = (X \beta)^T W Y.$$

$$(10)$$

We want to minimize the objective function from Eqn. (7), so we take the gradient with respect to β and set it equal to zero. For each of the three terms, their are respective gradients with respect to β are

(i)

$$\frac{\partial}{\partial \beta} \frac{1}{2} Y^T W Y = 0 \tag{11}$$

(ii)

$$\frac{\partial}{\partial \beta} - (X\beta)^T W Y = -X^T W Y \tag{12}$$

(iii)

$$\frac{\partial}{\partial \beta} \frac{1}{2} \beta^T X^T W X \beta = \frac{1}{2} \beta^T (X^T W X + (X^T W X)^T)$$
 (13)

$$= X^T W X \beta. \tag{14}$$

Summing these terms and equaling them to zero yields

$$X^T W X \beta - X^T W Y = 0 : . (15)$$

$$(X^T W X)\hat{\beta} = X^T W Y \tag{16}$$

(B) The brute force method of solving Eqn. (16) is the inversion method, i.e.

$$\hat{\beta} = (X^T W X)^{-1} X^T W y. \tag{17}$$

However, this method is computationally expensive. Therefore I propose an alternative methods to solving this matrix equation using the Cholesky decomposition. Cholesky Decomposition Let

$$C = X^T W X, \quad D = X^T W y \tag{18}$$

so

$$C\hat{\beta} = D. \tag{19}$$

We decompose matrix C into a product of a lower-triangular matrix and an upper-triangular matrix, such that $U = L^T$ so

$$C = LU = LL^T : (20)$$

$$LL^T\hat{\beta} = D. (21)$$

Furthermore we define matrix $A = L^T \hat{\beta}$. Thus we are left with two matrix equations to solve.

$$LA = D (22)$$

$$L^T \hat{\beta} = A \tag{23}$$

This method will be much less computationally intensive than the inversion method because of the fact that the two left-matrices L and $U = L^T$ are triangular. We still must invert L and L^T but this is simpler than taking an inverse of a more complicated matrix X^TWX . This is similar to an LU decomposition, with the exception that we necessarily have two triangular matrices that are transposes of one another. Therefore, this method gains a computational advantage over LU decomposition from symmetric exploitation.

(C) Code for implementing this method is shown in the appendix to this paper.

(D)

Problem 2

(A) We have $y_i \sim \text{Binomial}(m_i, w_i)$, where

$$w_i = \frac{1}{1 + \exp(-x_i^T \beta)}, \quad 1 - w_i = \frac{\exp(-x_i^T \beta)}{1 + \exp(-x_i^T \beta)}, \tag{24}$$

so the negative log likelihood is

$$\ell(\beta) = -\log\left\{\prod_{i=1}^{N} p(y_i|\beta)\right\}$$
(25)

$$= -\log \left\{ \prod_{i=1}^{N} {m_i \choose y_i} (w_i)^{y_i} (1 - w_i)^{m_i - y_i} \right\}$$
 (26)

$$= -\left\{ \sum_{i=1}^{N} \left(\log \binom{m_i}{y_i} + y_i \log(w_i) + (m_i - y_i) \log(1 - w_i) \right) \right\}$$
 (27)

$$= -\left\{ \sum_{i=1}^{N} \left(\log {m_i \choose y_i} + y_i \log \left(\frac{1}{1 + \exp(-x_i^T \beta)} \right) + (m_i - y_i) \log \left(\frac{\exp(-x_i^T \beta)}{1 + \exp(-x_i^T \beta)} \right) \right) \right\}$$
(28)

$$= -\left\{ \sum_{i=1}^{N} \left(\log \binom{m_i}{y_i} - y_i \log(1 + \exp(-x_i^T \beta)) - (m_i - y_i) x_i^T \beta - m_i \log(1 + \exp(-x_i^T \beta)) + y_i \log(1 + \exp(-x_i^T \beta)) \right) \right\}$$
(20)

(29)

$$= -\left\{ \sum_{i=1}^{N} \left(\log \binom{m_i}{y_i} - (m_i - y_i) x_i^T \beta - m_i \log(1 + \exp(-x_i^T \beta)) \right) \right\}$$
 (30)

$$= \sum_{i=1}^{N} \left((m_i - y_i) x_i^T \beta + m_i \log(1 + \exp(-x_i^T \beta)) - \log \binom{m_i}{y_i} \right)$$
(31)

(32)

The gradient for this expression is,

$$\nabla \ell(\beta) = \sum_{i=1}^{N} \left((m_i - y_i) x_i - m_i \frac{\exp(-x_i^T \beta)}{1 + \exp(-x_i^T \beta)} x_i \right)$$
(33)

$$= \sum_{i=1}^{N} ((m_i - y_i)x_i - m_i(1 - w_i)x_i)$$
(34)

$$= \sum_{i=1}^{N} (m_i w_i - y_i) x_i \tag{35}$$

(B) Code for implementing the gradient descent method is shown in the appendix. Note that we normalize the values in the X matrix and add a column of 1's to make an intercept term. We start by having an initial arbitrary guess for β , which we define as β_0 . Then we use an iterative process to converge upon the true value of β based on the calculated gradient of the log likelihood at $\hat{\beta}_t$ and an arbitrary step size, α as follows

$$\hat{\beta}_{t+1} = \hat{\beta}_t - \alpha \times \nabla \ell(\hat{\beta}_t) \tag{36}$$

We use an intial guess of $\beta_0 = 0$, a step size of $\alpha = 0.025$, and 50,000 iterations and reach convergence in optimizing the log likelihood, as shown in the trace plot below. Our final estimations of β are reported below along with estimations from R's native glm function. The two sets of estimates are in close agreement with one another.

	Grad descent	R: glm
\hat{eta}_1	0.48553	0.48702
\hat{eta}_2	-7.14618	-7.22185
\hat{eta}_3	1.65481	1.65476
\hat{eta}_4	-1.80713	-1.73763
\hat{eta}_5	13.99290	14.00485
\hat{eta}_6	1.07426	1.07495
\hat{eta}_7	-0.07319	-0.07723
\hat{eta}_8	0.67573	0.67512
\hat{eta}_9	2.59383	2.59287
\hat{eta}_{10}	0.44615	0.44626
\hat{eta}_{11}	-0.48276	-0.48248

Table 1: Comparison of results from gradient descent and glm

(C) We need to calculate the Hessian matrix of the log likelihood function, $\nabla^2(\ell(\beta))$. The Hessian will be a $P \times P$ matrix, with the element in row i and column j being¹

$$\frac{\partial^2}{\partial \beta_i \partial \beta_j} \ell(\beta) = \frac{\partial}{\partial \beta_i} \left(\frac{\partial}{\partial \beta_j} \ell(\beta) \right) \tag{37}$$

$$= \frac{\partial}{\partial \beta_i} \left(\frac{\partial}{\partial \beta_j} \sum_{k=1}^{N} (\dots) \right)$$
 (38)

$$= \frac{\partial}{\partial \beta_i} \left(\sum_{k=1}^N (m_k w_k - y_k) x_{kj} \right) \tag{39}$$

$$= \sum_{k=1}^{N} x_{ki} x_{kj} m_k w_k (1 - w_k)$$
(40)

Note:

$$\frac{\partial}{\partial \beta_i} w_k = x_{ki} \frac{\exp(-x_k^T \beta)}{(1 + \exp(-x_k^T \beta))^2} \tag{41}$$

$$=x_{ki}w_k(1-w_k) \tag{42}$$

This matrix is equivalent to X^TWX where $W = \operatorname{diag}(m_1w_1(1-w_1), \dots, m_Nw_N(1-w_N))$

(D) Now we use Newton's to estimate β . This is also an iterative process, though now we need far fewer iterations to achieve convergence because we are taking the curvature of our objective function $(\ell(\beta))$ into account. In fact, we only use 10 iterations and achieve estimates $\hat{\beta}$ which are *exactly* in line with estimates from glm.

Newton's Method:

$$\hat{\beta}_{t+1} = \hat{\beta}_t - (\nabla^2 \ell(\hat{\beta}_t))^{-1} \nabla \ell(\hat{\beta}_t)$$
(43)

	N.'s method	R: glm
\hat{eta}_1	0.48702	0.48702
\hat{eta}_2	-7.22185	-7.22185
\hat{eta}_3	1.65476	1.65476
\hat{eta}_4	-1.73763	-1.73763
\hat{eta}_5	14.00485	14.00485
\hat{eta}_6	1.07495	1.07495
\hat{eta}_7	-0.07723	-0.07723
\hat{eta}_8	0.67512	0.67512
\hat{eta}_9	2.59287	2.59287
\hat{eta}_{10}	0.44626	0.44626
\hat{eta}_{11}	-0.48248	-0.48248

Table 2: Comparison of results from Newton's method and glm

(E) Gradient descent: many iterations; Newton's method: must invert a matrix

¹Notice the reindexing shown below for summations.

```
######## Created by Spencer Woody on 24 Aug 2016 ########
   library(Matrix)
  library(microbenchmark)
  ### No. 1 pt C
  # Set N, P, X, W, and y
  N <- 2000
  P <- 500
  X <- matrix(rnorm(N * P), nrow = N)</pre>
  y <- matrix(rnorm(N), nrow = N)
  W <- diag(rep(1, N))
  # Inversion method
  Inv.method <- function(X.Inv, W.Inv, y.Inv) {</pre>
      XtWX <- (t(X.Inv)*diag(W.Inv)) %*% X.Inv</pre>
      XtWY <- (t(X.Inv)*diag(W.Inv)) %*% y.Inv</pre>
      bhat.Inv <- solve(XtWX) %*% XtWY</pre>
      return(bhat.Inv)
  }
  Cho.decomp <- function(X.Cho, W.Cho, y.Cho) {
      D.Cho <- (t(X.Cho)*diag(W.Cho)) %*% y.Cho
      C.Cho <- (t(X.Cho)*diag(W.Cho)) %*% X.Cho</pre>
      U.Cho <- chol(C.Cho)
      L.Cho <- t(U.Cho)
      u <- forwardsolve(L.Cho, D.Cho)
      bhat.Cho <- backsolve(U.Cho, u)</pre>
      return (bhat.Cho)
40
  microbenchmark (
      Inv.method(X, W, y),
      Cho.decomp(X, W, y),
      times=5)
45
  ### No. 1 pt D
  N <- 2000
  P <- 500
  X <- matrix(rnorm(N * P), nrow = N)</pre>
  mask \leftarrow matrix(rbinom(N * P, 1, 0.05), nrow = N)
```

```
X \leftarrow mask * X
   Inv.methodSPARSE <- function(X.Inv, W.Inv, y.Inv) {</pre>
       X <- Matrix(X, sparse = TRUE)</pre>
       XtWX <- (t(X.Inv)*diag(W.Inv)) %*% X.Inv</pre>
       XtWY <- (t(X.Inv)*diag(W.Inv)) %*% y.Inv</pre>
       bhat.Inv = Matrix::solve(XtWX, XtWY, sparse = TRUE)
       return(bhat.Inv)
   }
   Inv.methodSPARSE2 <- function(X.Inv, W.Inv, y.Inv) {</pre>
       XtWX <- (t(X.Inv)*diag(W.Inv)) %*% X.Inv</pre>
       XtWY <- (t(X.Inv)*diag(W.Inv)) %*% y.Inv</pre>
       bhat.Inv = solve(XtWX, XtWY)
       return (bhat. Inv)
   }
70
   microbenchmark (
       Inv.methodSPARSE(X, W, y),
       Inv.methodSPARSE2(X, W, y),
       Cho.decomp(X, W, y),
       times=5)
75
   microbenchmark (
       solve(XtWX, XtWY),
       Matrix::solve(XtWX, XtWY, sparse = TRUE),
80
       solve(XtWX) %*% XtWY,
       times = 5
   )
   # END
```

```
######## Created by Spencer Woody on 24 Aug 2016 ########
   wdbc <- read.csv("wdbc.csv", header = FALSE)</pre>
  X <- as.matrix(wdbc[, 3:12])</pre>
  X <- scale(X)</pre>
  X <- cbind(rep(1, nrow(X)), X)</pre>
  y <- wdbc[, 2]
  y <- y == "M"
  beta <- as.matrix(rep(0, ncol(X)))</pre>
  mi <- 1
15
   comp.wi <- function (X, beta) {</pre>
      wi <-1 / (1 + exp(-X %*% beta))
      return(wi)
  }
20
  loglik <- function(beta, y, X, mi) {</pre>
      loglik <- apply((mi - y) * (X \%*% beta)+ mi*log(1 + exp(-X \%*% beta)), 2, sum)
      return(loglik)
  }
25
  grad.loglik <- function(beta, y, X, mi){</pre>
    grad <- array(NA, dim = length(beta))</pre>
    wi <- comp.wi(X, beta)</pre>
     grad <- apply(X*as.numeric(mi * wi - y), 2, sum)</pre>
    return(grad)
  }
  stepfactor <- 0.025
  n.steps <- 50000
  log.lik <- NULL
  for (step in 1:n.steps) {
      log.lik[step] <- loglik(beta, y, X, mi)</pre>
      beta <- beta - stepfactor * grad.loglik(beta, y, X, mi)</pre>
  }
40
  png("beta_trace1.png")
  plot(log.lik,
       main = "Trace Plot for log likelihood(beta)",
       xlab = "Step",
45
       ylab = "log likelihood(beta)")
  dev.off()
  mymodel \leftarrow glm(y \sim X[, c(-1)], family = "binomial")
  summary(mymodel)
  print(beta)
```

```
# Newton's method
  beta.N <- as.matrix(rep(0, ncol(X)))</pre>
  n.steps <- 10
  log.lik2 <- NULL</pre>
  for (step in 1:n.steps) {
      log.lik2[step] <- loglik(beta, y, X, mi)</pre>
      w.i <- as.numeric(comp.wi(X, beta.N))</pre>
      W <- diag(w.i*(1-w.i))
      Hessian <- t(X) %*% W %*% X
      beta.N <- beta.N - solve(Hessian) %*% grad.loglik(beta.N, y, X, mi)
  }
  round(as.matrix(coef(mymodel)) - beta.N, 8)
  # RESULTS
  # FROM glm
  # Coefficients:
                Estimate Std. Error z value Pr(>|z|)
  # (Intercept)
                 0.48702 0.56432 0.863 0.3881
  # X[, c(-1)]V3 -7.22185 13.09494 -0.551
                                             0.5813
  # X[, c(-1)]V4 1.65476 0.27758 5.961 2.5e-09 ***
  # X[, c(-1)]V5 -1.73763 12.27499 -0.142 0.8874
  # X[, c(-1)]V6 14.00485
                           5.89090 2.377
                                            0.0174 *
                                            0.0168 *
  # X[, c(-1)]V7 1.07495 0.44942 2.392
  # X[, c(-1)]V8 - 0.07723 1.07434 - 0.072 0.9427
  # X[, c(-1)]V9 0.67512 0.64733 1.043
                                            0.2970
  # X[, c(-1)]V10 2.59287
                          1.10701 2.342 0.0192 *
  | # X[, c(-1)]V11  0.44626  0.29143  1.531  0.1257
  # FROM GRADIENT DESCENT
  # > print(beta)
                [,1]
  # [1,] 0.48553491
  \# [2,1 -7.14617798
     [3,] 1.65480926
  # [4,] -1.80712669
95
  # [5,] 13.99289624
  # [6,] 1.07426088
    [7,] -0.07318783
  # [8,] 0.67573353
  # [9,] 2.59382838
  # [10,] 0.44615349
  # [11,] -0.48275720
  # FROM NEWTON'S METHOD
  # > round(beta.N, 5)
  #
          [,1]
```

```
# 0.48702

# V3 -7.22185

# V4 1.65476

# V5 -1.73763

# V6 14.00485

# V7 1.07495

# V8 -0.07723

# V9 0.67512

115 # V10 2.59287

# V11 0.44626

# V12 -0.48248
```