Strain-space model for Sars-CoV-2

Peter C. Jentsch, PhD ^{1,4} Finlay Maguire, PhD ^{3,5} Samira Mubareka, MD, FRCPC ^{1,2}

¹Sunnybrook Research Institute, Toronto, Canada

 2 University of Toronto, Toronto, Canada

³Dalhousie University, Halifax, Canada

 $^4{\rm Simon}$ Fraser University, Burnaby, Canada

⁵Shared Hospital Laboratory, Toronto, Canada

July 6, 2022

Modeling multiple infections is challenging

Begin with simple SIR model

Organize strains on a lattice

Strains mutate into adjacent strains

gog fig ppg	
gog_rig.pmg	
	gog_fig.png

Full strain lattice model in 1 dimension

Extending the strain lattice to 2 dimensions

[?]

Extending the strain lattice to 2 dimensions

[?]

Projecting to low dimensions while preserving distances

Projecting to low dimensions while preserving distances

Approximating genomic data in 2 dimesions

Approximating genomic data in 2 dimesions

15 / 1

Mapping SARS-CoV-2 in 2D

Mapping SARS-CoV-2 in 2D

B.1.351 (Beta)

L18F, D80A, D215G, Δ242-244, R248L K417N F484K N501Y D614G, A701V

B.1.621 (Mu)

T95I, insert143T, Y144S, Y145N, R346K, E484K, N501Y, D614G.

B 1 1 7+F484K

A69-70 A144 F484K N501V A570D D614G P681H T716L

B.1.526+E484K (lota) L5F, T951, D253G, E484K.

G142D, E154K, L452R, E484Q. D614G, P681R, Q1071H

467V A69-70 T95I G142D Δ143-145, N211I, Δ212, insert214FPF G339D S371L S373P S375F K417N, N440K G446S, S477N, T478K, F484A Q493R, G496S, Q498R, N501Y Y505H, T547K, D614G, H655Y N679K, P681H, N764K, D796Y N856K, Q954H, N969K, L981F

Mapping SARS-CoV-2 in 2D

Methods of adding more genomes: homoplasic sites

Homoplasic mutations map

Methods of adding more genomes: polyclonal antibody binding studies

Antibody Binding map

Evaluating the MDS approximation

(animation of kernel approximation)

Model parameters/variables

	Symbol	Description
_	N	Size of variant grid
	S_{ij}	Population susceptible to variant $(i, j) \in [0, N]^2$
	I_{ij}	Population infected by variant $(i, j) \in [0, N]^2$
	R_{ij}	Recovered/Immune to variant $(i, j) \in [0, N]^2$
	σ_{ijkl}	Probability that exposure to variant (i, j) causes
		immunity
		to variant (k, l)
	eta_{ij}	Transmission rate of variant (i, j)
	v(t)	vaccination rate at time t
	s(t)	stringency at t
	ξ	Recovery rate of all strains
	γ	Rate of immunity loss of all strains

Table of symbols for Model 2

Model Equations

$$\frac{S_{ij}}{dt} = -\sum_{kl} s(t)\beta_{kl}\sigma_{ijkl}S_{ij}I_{kl} + \gamma R_{ij} - V(t)S$$
 (1)

$$\frac{I_{ij}(t)}{dt} = s(t)\beta_{ij}S_{ij}I_{ij} - \xi I_{ij} + M\left(-4I_{ij} + I_{i-1,j} + I_{i+1,j} + I_{i,j-1} + I_{i,j+1}\right)$$
(2)

$$\frac{R_{ij}(t)}{dt} = \xi I_{ij} - \gamma R_{ij} + V(t)S \tag{3}$$

Boundary conditions: $I_{0,j} = 0, I_{j,0} = 0, I_{N,j} = 0, I_{j,N} = 0$ Initial conditions computed from genomic data in GISAID (gifs of model dynamics) $\,$

Further work

- Estimating a nonlocal diffusion kernel
- Better model fitting
- Predicting vaccine targets

Mutation homoplasy gene_freq.png 30 / 1