

Convolution

Prof Yiannis Andreopoulos University College London

Formal definition
Convolution with delta functions
Graphical interpretation
Convolution theorem
Convolution in practice
Summary

Convolution:

formal definition

- The convolution integral defines a binary operator, indicating how two functions x(t) and y(t) combine to form the new function z(t)
- The convolution operator indicated by * is commutative

$$z(t) = x(t) * y(t)$$

$$= \int_{-\infty}^{\infty} x(u)y(t-u)du$$

$$= \int_{-\infty}^{\infty} y(u)x(t-u)du$$

$$= y(t) * x(t)$$

Convolution with a delta function

■ Convolving a function x(t) located at the origin with a delta function located at $t=\tau$ causes the function to be re-located to $t=\tau$ to produce $x(t-\tau)$

Convolution with a delta function a graphically perspective

- Area of delta function, weighted by function value, gives value of convolution $t=t_1$
- Considering all values of t, the function x(t) is relocated to the point $t=\tau$

Graphical convolution more generally

- x(t) of duration T_1 convolves with y(t) of duration T_2 to produce the new functions z(t) of duration T_1+T_2
- This is sometimes referred to informally as the smearing property of convolution

UCL

*UCL

LUCL

LUCL

LUCL

Now slide the function forward from -

$$\infty$$
 to $+\infty$

*UCL

$$t < 0$$
 $x(t) * y(t) = 0$

Now slide the function forward from -

$$\infty$$
 to $+\infty$

 $0 < t < T_2$ partially overlapping

Now slide the function forward from

$$-\infty$$
 to $+\infty$

UCL

 $T_2 < t < T_1$ Fully overlapping Area constant Now slide the function forward from - ∞ to + ∞

 $T_1 < t < T_1 + T_2$ partially overlapping

Now slide the function forward from - ∞ to + ∞

UCL

Now slide the function forward from -
$$\infty$$
 to + ∞

Convolution theorem

A 5 step process

- Replace arguments of the function with a dummy variable
- Reverse one of the functions about the zero, x-axis
- Introduce a variable time shift, *t*,
- Form the product of the function for every possible value of *t*
- Calculate the area under the function for every value of *t*

Convolution theorem

$$y(t) = x(t) * h(t) \Leftrightarrow Y(f) = X(f).H(f)$$

$$z(t) = x(t).h(t) \Leftrightarrow Z(f) = X(f) *H(f)$$

Informally:

- Convolution in the time domain corresponds to multiplication in the frequency domain
- Multiplication in the time domain corresponds to convolution in the frequency domain

Convolution

Find the convolution of the signals

$$x_1(t) = e^{-\alpha t} u(t)$$

$$x_2(t) = e^{-\beta t} u(t) \qquad \alpha > \beta > 0$$

for
$$\alpha = 4$$
 and $\beta = 2$

Convolution - Answer

$$x(t) = x_1 * x_2 = \int_{-\infty}^{\infty} e^{-\alpha \lambda} u(\lambda) e^{-\beta(t-\lambda)} u(t-\lambda)$$
But
$$u(\lambda)u(t-\lambda) = \begin{cases} 0 & \lambda < 0 \\ 1 & 0 < \lambda < t \\ 0 & \lambda > t \end{cases}$$
Thus
$$x(t) = \begin{cases} 0 & \lambda < 0 \\ 1 & 0 < \lambda < t \\ 0 & \lambda > t \end{cases}$$

$$x(t) = \begin{cases} 0 & \lambda < 0 \\ 1 & 0 < \lambda < t \\ 0 & \lambda > t \end{cases}$$

$$x(t) = \begin{cases} 0 & \lambda < 0 \\ 1 & 0 < \lambda < t \\ 0 & \lambda > t \end{cases}$$

$$x(t) = \begin{cases} 0 & \lambda < 0 \\ 1 & 0 < \lambda < t \\ 0 & \lambda > t \end{cases}$$

$$x(t) = \begin{cases} 0 & \lambda < 0 \\ 1 & 0 < \lambda < t \\ 0 & \lambda > t \end{cases}$$

$$x(t) = \begin{cases} 0 & \lambda < 0 \\ 0 & \lambda > t \end{cases}$$

$$x(t) = \begin{cases} 0 & \lambda < 0 \\ 0 & \lambda > t \end{cases}$$

$$x(t) = \begin{cases} 0 & \lambda < 0 \\ 0 & \lambda > t \end{cases}$$

$$x(t) = \begin{cases} 0 & \lambda < 0 \\ 0 & \lambda > t \end{cases}$$

Practice the calculations!

$$\int_{0}^{t} e^{-bt} e^{-(a-b)s} ds = e^{-bt} \int_{0}^{t} \frac{e^{-(a-b)s}}{e^{-(a-b)s}} ds = e^{-bt} \int_{0}^{t} \frac{e^{-(a-b)s}}{e^{-(a-b)s}} ds = e^{-bt} \left(\frac{e^{-(a-b)s}}{e^{-(a-b)s}} - \frac{e^{-(a-b)s}}{e^{-(a-b)s}} \right) = e^{-bt} \left(\frac{e^{-bt}}{e^{-at}} - \frac{e^{-(a-b)s}}{e^{-(a-b)s}} \right) = e^{-bt} \left(\frac{e^{-bt}}{e^{-at}} - \frac{e^{-(a-b)s}}{e^{-(a-b)s}} \right)$$

Convolution - Answer

Convolution - Answer

Convolution with impulses

the frequency domain

- ■We have seen that convolving x(t) with $d(t-\tau)$ relocates x(t) to $t=\tau$, as $x(t-\tau)$
- This applies equally in the frequency domain: X(f)*d(f-F)=X(f-F)
- As an example, consider a signal y(t) multiplied by a cosine wave x(t)

Now
$$x(t) = cos(2\pi F t)$$
 with $X(f) = 1/2[\delta(f-F) + \delta(f+F)]$

and y(t).x(t) becomes 1/2[Y(f-F)+Y(f+F)]

Function replication

- A periodic signal may be realised as convolution of a finite duration pulse with a rep-delta function
- The same operation may be effected to obtain replication of a spectrum in the frequency domain

Replicated function - Fourier transform

use replicated function with convolution in time to sample the function in frequency

$$rep_T\{x(t)\} = x(t) * rep_T\{\delta(t)\} \Leftrightarrow X(f) \cdot \frac{1}{T} rep_{\frac{1}{T}}\{\delta(f)\}$$

Summary

- Convolution binary operator * combines two functions to produce a third function
- Convolution in the time domain corresponds to multiplication in the frequency domain and *vice -versa*
- Convolution with a rep-delta function realises a periodic signal