Задача № 1

Вакуумная система (рис. 1) состоит из вакуумной камеры 1, насоса 2 и трубопровода, размеры участков которого указаны в Табл. 1

Оценить пропускную способность, U, трубопровода, приняв режим течения газа молекулярным в данной вакуумной системе. Выбрать вакуумный насос и оценить его коэффициент использования.

Определить время откачки камеры 1 при условиях:

- a) $V_1 = 10$ дм³,
- б) начальное давление в камере составляет 10⁻² мм рт. ст.,
- в) конечное давление в камере выбрать из задачи 2.

Определить предельный вакуум, $p_{\rm np}$, выбранного вакуумного насоса по его паспортным данным.

Индекс і	1	2	3	4	5	6
L_i , MM	100	1000	40	7	60	-
d_i , MM	30	30	6	3	6	10

ORIGIN := 1

$$\mathbf{d} := \begin{pmatrix} 0.03 \\ 0.003 \\ 0.006 \\ 0.003 \\ 0.006 \\ 0.01 \end{pmatrix} \quad \mathbf{M} \quad \mathbf{L} := \begin{pmatrix} 0.1 \\ 1 \\ 0.04 \\ 0.007 \\ 0.06 \end{pmatrix} \quad \mathbf{M}$$

Для проводимости, U, сужения (воздух, T=293 K, молекулярный режим течения) используем:

$$U = \frac{91d^2}{1 - \frac{d^2}{D^2}}$$
 - (формула (18.11), стр. 367),

где d – выходной диаметр (меньший),

D – входной диаметр (больший) .

Для круглых трубопроводов ($T_{возд}$ =293 K, молекулярный режим) используем:

$$U = 121 \frac{d^3}{l}$$
 - (формула 18.27 на странице 371),

где d – диаметр трубопровода, l – его длина.

1. Трубопровод

$$J_1 := \frac{121 \cdot (d_1)^3}{L_1} = 0.033 \qquad \frac{M^3}{C}$$

2. Через нижнюю часть вентиля

$$U_1 := \frac{121 \cdot (d_1)^3}{L_1} = 0.033 \qquad \frac{M^3}{c} \qquad U_5 := 121 \cdot \frac{(d_3)^3}{L_3} = 6.534 \times 10^{-4} \qquad \frac{M^3}{c}$$

6. Трубопровод

$$U_2 := 91 \cdot \frac{\left(d_6\right)^2}{1 - \frac{\left(d_6\right)^2}{\left(d_1\right)^2}} = 0.01 \qquad \frac{\text{м}^3}{\text{c}} \qquad U_6 := 121 \cdot \frac{\left(d_4\right)^3}{L_4} = 4.667 \times 10^{-4} \qquad \frac{\text{м}^3}{\text{c}}$$
 7. Сужение

$$U_3 := 91 \cdot \frac{\left(d_6\right)^2}{1 - \frac{\left(d_6\right)^2}{\left(d_2\right)^2}} = 0.01 \qquad \frac{M^3}{c}$$

7. Сужение
$$U_7 := 91 \cdot \frac{\left(d_4\right)^2}{\left(d_5\right)^2} = 1.092 \times 10^{-3} \quad \frac{M}{c}$$

$$U_3 := 91 \cdot \frac{\left(d_6\right)^2}{\left(d_2\right)^2} = 0.01 \quad \frac{M}{c}$$

$$U_8 := 121 \cdot \frac{\left(d_5\right)^3}{L_5} = 4.356 \times 10^{-4} \quad \frac{M}{c}$$

$$U_8 := 121 \cdot \frac{(d_5)^3}{L_5} = 4.356 \times 10^{-4} \quad \frac{M^3}{c}$$

9. Сужение (D принимается как бесконечно большое значение)

U₉ :=
$$91 \cdot (d_5)^2 = 3.276 \times 10^{-3}$$
 $\frac{\text{M}^3}{6}$

4. Трубопровод

$$U_4 := 121 \cdot \frac{(d_2)^3}{L_2} = 3.267 \times 10^{-3} \quad \frac{M^3}{c}$$

 $W_{sum} := \sum_{n=1}^{9} \frac{1}{U_n} = 7.722 \times 10^3$ Суммарное сопротивление коммуникации:

Суммарная проводимость коммуникации:
$$U_{sum} := \frac{1}{W_{sum}} = 1.295 \times 10^{-4}$$
 $\frac{M^3}{c}$

Расчет времени откачки

$V_1 := 0.01 \text{ m}^3$	объем
р ₁ ∧ := 1.3 Па	Начальное давление 10^(-2) мм рт. ст.
$p_{1} \wedge A := 1.3 \cdot 10^{-4} \Pi a$	Конечное давление в камере $10^{-}(-6)$ мм рт. ст.
$p_0 := 1.3 \cdot 10^{-5}$	Предельное остаточное давление насоса типа H-0.025-2. (Л2, стр.300 табл. П5)

Объем трубопровода составляет около $8\ 10^{-4}\ {\rm m}^3$, что много меньше V_1 , поэтому этим объемом можно пренебречь. Газовыделение с поверхности не учитываем. При молекулярном режиме течения процесс откачки считаем изотермическим, тогда:

$$pV = const.$$
 $pdV = -Vdp$
 $dV = -\frac{V}{p}dp$
 $S_{3\phi} = \frac{dV}{dt} = -\frac{V}{p}\frac{dp}{dt}$ (стр39, формула 2.1, Л1)

 $S_{\circ\phi_{-}}$ - эффективная быстрота откачки.

Если $S_{,\phi} = const.$, то

$$t = \frac{V_1}{S_{s\phi}} \ln \frac{p_1^{\ \ \ \ \ \ }}{p_1^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }}.$$

Используем индентификаторы Mathcad для вычисления t

$$t = \frac{\left(V_1\right) \cdot \ln\left(\frac{p_1}{p_1}\right)}{S_{\theta}}$$

3. Проверим вариант насоса, который должен обеспечивать предельнь в камере 1 на уровне $P\kappa = 10^{-4} \ \Pi a$,

в виде паромасляного насоса типа Н-0.025-2. (Л2, стр.300 табл. П5)

$$10^{-4}....10\Pi a$$

$$0.01\frac{m^3}{c}$$

$$1 \cdot 10^{-5} \Pi a$$

$$\frac{1}{S_{\vartheta\phi}} - \frac{1}{S_{H}} = \frac{1}{U}$$

$$S_{\scriptscriptstyle H} >> U$$
 $\frac{1}{S_{\scriptscriptstyle H}} << \frac{1}{U}$

Быстрота откачки Sн в рабочем диапазоне
$$0.01 \frac{M^3}{c}$$

Предельное остаточное давление
$$1.10^{-5} \Pi a$$

Основное уравнение вакуумной техники используем для оценки Ѕэф:

 $10^{-4}....10\Pi a$.

$$\frac{1}{S_{9\phi}} - \frac{1}{S_{H}} = \frac{1}{U}$$

Выбранный насос имеет наименьшую быстроту действия из подходящих. В этом случае $S_{_{\!\mathit{H}}} \rightarrowtail U$, то есть SH=0.01 > U = 0.0001312 и $\frac{1}{S_{_{\!\mathit{H}}}} << \frac{1}{U}$.

Основное уравнение вакуумной

техники можно записать для этого случая в виде:

$$S_{ef} := U_{sum}$$
 $S_{ef} = 1.295 \times 10^{-4}$

Точная оценка Ѕэф имеет вид

$$S_{n} := 0.01 \quad \frac{M^{3}}{c} \quad U_{sum} = 1.295 \times 10^{-4} \quad \frac{M^{3}}{c}$$

$$\frac{1}{S_{n}} = 100 \qquad \frac{1}{U_{sum}} = 7.722 \times 10^{3}$$

$$S_{eft} := \frac{1}{\left(\frac{1}{U_{sum}}\right) + \frac{1}{S_{n}}} = 1.278 \times 10^{-4}$$

Коэффициент использования насоса K_U:

$$K_U := \frac{s_{ef}}{s_n}$$
 $K_U = 0.013$ $V_1 = 0.01$

$$t := \frac{V_1 \cdot \ln \left(\frac{p_1 \land}{p_1 \land \land}\right)}{S_{ef}}$$

$$t = 711.2 \text{ c}$$

Определим величину вакумма р2 на входе в паромасляный насос

$$\begin{split} \text{p2} &= \text{p1} \cdot \frac{s_{ef}}{s_n} \\ \text{p}_{1 \land \land} &= 1.3 \times 10^{-4} \quad \Pi \text{a} \\ \text{p}_{in} &\coloneqq \text{p}_{1 \land \land} \cdot \text{K}_U = 1.684 \times 10^{-6} \quad \Pi \text{a} \end{split}$$

Предельное остаточное давление (по паспорту Pпp = 10^-5 Па) на выходе в насос является большим, чем расчетное давление на входе в насос 1.684×10^{-6}

Типы вакуумных насосов

		Вакуум	
No	низкий	высокий	сверхвысокий
1	Пластинчато – роторные	Пароструйные диффузионные	Магниторазрядные
2	Пластинчато – статорные	Турбомолекулярные	Криоконденсационные

		Вакуум	
№ студента	низкий	высокий	сверхвысокий
в журнале			
18	2	2	1

Задача № 2.

Сконструировать вакуумную систему для создания условий в рабочей камере с давлением:

2)
$$P = 10^{-6}$$
 мм рт. ст. (Вариант 2).

Выбрать насосы в соответствии с Табл. 2 и Табл. 3, а также описать работу:

- а) насоса низкого вакуума,
- б) насоса высокого вакуума,
- в) насоса сверхвысокого вакуума.

Описать работу основных блоков, которые выбраны для указанной вакуумной системы и представляют собой: датчики вакуума, вентили, ловушки и другие (см. пример, приведенный в [2], стр. 212, рис. 9.23).

Привести характеристики трех выбранных насосов.

Обосновать выбор манометров (позиции 3, 5, 9, 10, 11, 14 и 15, рис. 9.23). Привести электрические схемы для термопарного и ионизационного вакууметров.

Типы вакуумных насосов:

Низкий - Пластинчато-статорные Высокий - Турбомолекулярные Сверхвысокий — Магниторазрядные

1 — насос для получения низкого вакуума; 2, 6, 13, 16, 19 — клапаны; 3, 5, 9, 10, 11, 14, 15 — манометры; 4 — насос для получения сверхвысокого вакуума; 7 — вакуумный блок прогреваемый до 400°С; 8 — откачиваемый объект; 12 — газоанализатор; 17 — ловушка; 18 — насос для получения высокого вакуума

Вакуумная система для получения сверхвысокого вакуума содержит прогреваемый вакуумный блок 7. Прогрев до 400 градусов Цельсия уменьшает газовыделения всех элементов вакуумной системы, непосредственно подключаемых к насосу для получения сверхвысокого вакуума 4 (Магниторазрядные). Камера снабжена манометрами 9, 10, 11, обеспечивающими измерение давления от атмосферного до сверхвысокого вакуума. Манометр 5 контролирует работоспособность насоса 4, манометр 3 отслеживает величину давления в насосе низкого вакуума. Высоковакуумная часть системы собирается на двух насосах: 18 для получения высокого вакуума (турбомолекулярные) и 1 для получения низкого вакуума (пластинчато — статорные). Клапан 16 служит для подключения

течеискателя к вакуумной системе, а манометры 14 и 15 - для измерения давления в области среднего и высокого вакуума. Клапан 2 позволяет выровнять давления на входном и выходном патрубках насосов с рабочей жидкостью во время их остановки. Клапан 6 отключает вакуумную камеру от насоса после достижения в ней рабочего давления. Ловушка 17 служит для улавливания паров или газов с целью предотвращения или уменьшения их проникновения из одной части вакуумной системы в другую. Камера снабжена несколькими манометрами 2, 3, 4, обеспечивающими измерение давления от атмосферного до сверхвысокого вакуума. Манометр 10 контролирует работоспособность насоса 12. Манометр 19 контролирует работоспособность насоса 18. Манометры 7 и 20 служат для измерения давления в области среднего и высокого вакуума, а манометр 16 для низкого вакуума. Таким образом, в качестве манометров можно выбрать: 3,7,16,10 теплоэлектрические, 19,20,2 электронный сверхвысоковакуумные ионизационный, 4 ионизационный с горячим катодом. Теплоэлектрические: принцип действия основан на зависимости теплопередачи через разреженный газ от давления. Передача осуществляется от тонкой металлической нити к баллону, находящемуся при комнатной температуре. Металлическая нить нагревается в вакууме путем пропускания эл. тока. Электронные ионизационные: принцип действия основан на прямой пропорциональности между давлением и ионным током, образовавшимся в результате ионизации термоэлектронами.

Для получения низкого вакуума выберем пластинчато-статорный насос

			Марка на	acoca	
Наименование характеристики	BH-494	BH-461M	PBH-20	BH-2	BH-1
	пластинчато-роторный	пласти	нчато-стат	орный	золотник
Число ступеней	2	2	2	2	2
Скорость откачки в л/сек:					
при давлении 760 мм рт. ст.	0,21	0,83	3,3	7,0	18,3
то же 1 мм рт. ст.	0,21	0,7	2,4	5,9	14,5
то же 0,01 мм рт. ст.	0,05	0,2	0,5	5,0	11,5
Предельный вакуум в мм рт. ст.	1×10 ⁻³	1x10 ⁻³	1x10 ⁻³	3x10 ⁻³	3x10 ⁻³
Число оборотов ротора в минуту	360	540	400	525	500
Количество масла ВМ-1 в л.	1,5	2,3	0,5	2,0	3,8
Расход масла в см3/ч	-	-	200	-	-
Охлаждение	Воздушное	Воздушное	Воздушное	Воздушное	Воздушное
Расход воды в л/ч	-	-	Same year		-
Габаритные размеры в мм:					
длина	420	670	525	685	925
ширина	235	294	330	555	620
высота	325	415	445	475	600
Вес в кг	36	75	110	180	320
Мощность электродвигателя кВт	0,6	0,6	0,8	1,7	2,8
Число оборотов в минуту	1400	1400	1400	1400	1400
Напряжение	220/380	220/380	220/380	220/380	220/380

Рис. 4.13. Пластинчатостаторный насос

Пластинчато-статорный насос (рис. 4.13) состоит из следующих основных элементов: корпуса 1, эксцентричного ротора 2, выпускного патрубка 3, пластины 5, пружины 4, входного патрубка 6. Рабочее пространство насоса образуется между эксцентрично установленным ротором и корпусом насоса. При вращении по часовой стрелке за первый оборот ротора газ всасывается из откачиваемого объекта, а за второй происходит сжатие и выхлоп газа. Пластина под воздействием пружины герметично разделяет области всасывания и сжатия откачиваемого газа.

Для получения высокого вакуума используем турбомолекулярный насос:

Рис. 4.29. Схемы турбомолекулярных насосов: a - c горизонтальным валом, $\delta - c$ вертикальным валом

Схемы насосов с горизонтальным и вертикальным расположением вала ротора показаны на рис. 4.29, а, б. В корпусе 2 установлены неподвижные статорные колеса 4,

между которыми вращаются колеса 3, закрепленные на роторе 1. Роторные колеса выполняются в виде дисков с прорезями. В статорных колесах имеются зеркально расположенные прорези такой же формы. Для удобства монтажа статорные колеса разрезаются по диаметру.

При горизонтальном положении ротора движение газа в насосе после входа во всасывающий патрубок разветвляется на два потока, которые соединяются в выхлопном патрубке.

В связи с малыми коэффициентами компрессии каждой ступени в турбомолекулярном насосе можно увеличить рабочие зазоры. При диаметре рабочих колес 200 мм осевой (между колесами) и радиальный (между корпусом и роторным колесом или ротором и статорным колесом) зазоры могут составлять 1 ... 1,2 мм, что позволяет значительно повысить надежность их работы. Увеличение зазоров, снижая коэффициент компрессии насоса, слабо влияет на его быстроту действия.

Быстрота откачки турбомолекулярных насосов слабо зависи рода газа. Предельное давление насосов $10^{-7} \dots 10^{-8}$ Па. С увели нием молекулярной массы коэффициент компрессии растет за с уменьшения перетечек через зазоры и увеличения отношения лиг ной скорости ротора к тепловой скорости молекул v_p/v_{ap} . Наибс шее выпускное давление таких насосов для воздуха $1 \dots 10$ Па.

К достоинствам турбомолекулярного насоса относятся: высо удельная быстрота действия ~2 л/с на 1 см² площади входного чения; достаточно широкий диапазон рабочих давлений 10-10 Па; быстрый запуск насоса в течение 5 ... 10 мин; практиче безмасляный спектр остаточных газов при напуске сухого азота время запуска и остановки насоса.

	Xapa	ктеристики т	урбомолекуля	рных насосов		
	1			Типы насосов		
Основные характеристики	TMH 100	TMH-200	TMH-500	TMH-1000	TMH-5000	тмн
Диапазон рабочих давлений, Па	5·10 ⁻⁷	5·10 ⁻⁷	1·10 ⁻⁶	5·10 ⁻⁷ 1·10 ⁻²	5·10-7 1·10-2	5·10- 1·1
Быстрота откачки воздуха в рабочем диапазоне давлений, м ³ /с	0,10	0,25	0,50	1,00	_6,30	11
Предельное остаточное да- вление, Па	10-7	10-7	8 · 10 - 7	10-7	10-7	10
Наибольшее выпускное да- вление, Па	10°	10°	10°	10°	10°	10
Частота вращения ротора, c^{-1}	300	300	300	400	100	10
Мощность электродвигателя, кВт	0,3	0,3	0,8	0,25	2,0	7,
Источник питания электро- двигателя	НВР-3 СПЧ	НВР-3 СПЧ	НВ3 СПЧФ			
Расход охлаждающей воды, дм ³ /с	0,01	0,01	0,03		0,06	_
Дияметр впускного патруб- ка, мм	125	160	260	_	500	_
Диаметр выпускного патруб- ка, мм	32	50	50		100	_
Габаритные размеры (длинахширинахвысота), мм	 -	675 310 385	<u>-</u>	=	=	<u> </u>
Масса насоса, кг	110	205	210	190	1500	35

Недостатком насоса является наличие высокоскоростного ротора со смазываемыми быстро изнашивающимися подшипниками или сложными системами подвеса.

для получения сверхвысокого вакума используем Магниторазрядный насос

- 1 корпус
- 2 анод
- 3 катоды
- 4 магнит

Магниторазрядные насосы обладают заметной избирательностью в процессе откачки. Быстрота действия этих насосов при откачке водорода в три раза выше, а кислорода в два раза ниже, чем азота.

Быстрота действия при откачке инертных газов в диодных насосах составляет для гелия 10%, неона — 4%, аргона, криптона и ксенона — 1... 2% от быстроты действия при откачке азота. В конструкциях насоса триодного типа и в насосах с ребристыми катодами быстрота действия при откачке аргона повышается до 25 и 10% от быстроты откачки азота.

Рис. 5.15. Магниторазрядный насос

При длительной откачке аргона в насосе может возникнуть аргонная нестабильность, сопровождающаяся периодическими колебаниями давления.

Магнитная система насосов по соображениям экономичности и надежности выполняется на постоянных магнитах из феррита бария (2БА, 3БА), сплава железа с кобальтом ЮНДК35Г5 и сплава кобальта с самарием. Максимальная температура обезгаживания этих магнитов 150, 500, 150°C.

Предельное давление магниторазрядных насосов 10-8 ... 10-10 Па.

Характеристики магниторазрядных насосов

			Т	Типы васосов		
Основные характеристики	НМД-0,0063	НМД-0,02 5	НМД-0,063	НМД-0,1	НМД-0,25	НМД-0,6
Диапазон рабочих давлений, Па	4·10 ⁻⁷ 2·10 ⁻¹	4·10 ⁻⁷ . 2·10 ⁻¹				
Быстрота откачки, м ³ /с	0,006	0,022	0,06	0,11	0,25	0,65
Предельное остаточное давление, Па	7.10-8	7.10-8	7.10-8	7 · 10 - 8	7.10-8	7.10-8
Наибольшее давление запуска, Па	1.100	1.100	1.100	1 - 10°	1.100	1.10°
Диаметр входного патруба, мм	25	100	100	100	160	250
Габариты насоса (длина× ×ширина×высота), мм	85 80 160	157 84 220	320 106 320	320 180 320	320 327 340	500 350 580
Масса насоса, кГ	2,9	8,4	21	32	53	190
Тип блока питания	БП-0,0063	БП-0,025	БП-0,063	БП-0,1	БП-0,25	БП-0,63
Габариты блока питания (длина \times ширина \times высота), мм	480 300 220	480 300 220	480 320 300	480 320 300	480 320 300	480 320 300
Масса блока питания, кг	21	20	37	35	47	47

Обосновать выбор манометров:

Для контролирования процесса создания вакуума необходимо применение манометров - приборов для измерения давления. Манометр, измеряющий давление ниже атмосферного еще называют вакуумметр. По принципу действия разделяют следующие типы вакуумметров: жидкостные (1 - 10^5 Па), компрессионные (10^-3 - 10^3 Па), деформационные (1 - 10^5 Па), тепловые сопротивления (10^-1 - 10^5 Па), тепловые термопарные (10^-1 - 10^3 Па), электронные ионизационные (10^-8 - 10^-2 Па), магнитные электроразрядные (10^-10 - 10^2 Па). Вакуумметры косвенного действия способны измерять давления от 10^-11 Па до атмосферного. К ним относятся тепловые и ионизационные приборы. Камера снабжена несколькими манометрами 9, 10, 11, обеспечивающими измерение давления от атмосферного до сверхвысокого вакуума. Манометр 5 контролирует работоспособность насоса 4. Манометры 14 и 15 служат для измерения давления в области среднего и высокого вакуума, а манометр 3 — для низкого вакуума. Таким образом, в качестве манометров можно выбрать: 3 — жидкостный, 5, 9,

10, 11, 14 – электронный ионизационный, 15 – компрессионный.

- манометр 3 - низкий вакуум. Можно использовать жидкостный манометр с рабочим диапазоном 10-10^5 Па.

 манометр 5 - сверхвысокий вакуум. Подойдёт электроионизационный вакууметр. Его рабочий диапазон - 10^-8-10^2 Па.

 манометр 9 - сверхвысокий выкуум. Магнитный электроразрядный преобразователь. Измеряет давление в диапазоне 10^7-1 Па.

- манометр 10 сверхвысокий вакуум. Используется тот же манометр, что и9
- манометр 11 сверхвысокий вакуум. Выбирается аналогично манометру №9.
- манометр 14 средний вакуум. Выбирается компрессионный вакууметр с рабочим диапазоном: 0.001-1000 Па.
- манометр 15 высокий вакуум. Тот же, что и манометр №5.

Термопарный вакууммертр

- 1 проволока-нагреватель 2 термопара 3 корпус

ионизационный вакуумметр

- 1 корпус
- 2 коллектор ионов
- 3 анодная сетка

Рис. 3.8. Конструктивные схемы электронных ионизационных преобразователей:

- а) с внешним коллектором (ПМИ-2; ПМИ-3-2);
- б) с внутренним коллектором (ИМ-12; ПМИ-12-8);

Рис. 61. Диапазон рабочих давлений вакуумметров

Рис. 11.27. Схема теплового манометра

$$p = \frac{I^2 \cdot R - (Q_n + Q_{np})}{K_T \cdot (T_n - T_6)}$$

I - ток через нить

R - сопротивление нити

Kt - коэф-т теплопроводности газа

Tn - температура проволоки

Тб - температура стенки корпуса

Qn - тепло, передаваемое излучением

Qпр - тепло, передаваемое вдоль

проволоки в ее холодные концы

- 1 катод
- 2 анодная сетка
- 3 цилл-й ионный коллектор

Рис. 11,26. Схема нонизационного манометра

 $p = \frac{I_{u}}{I_{e} \cdot K}$

Если электронный ток поддерживать постоянным, то величина ионного тока будет отднозначно зависеть от давления газа.

Іи -ионный ток

le - электронный ток

К - чувствительность вакуумметра

BH-4	BH-6
вый (плуі	нжерный)
1	1
59	155
40	117
15	0
5x10 ⁻³	1×10-2
500	360
16	55
40	70
Водяное	Водяное
200-300	700-1000
1635	1905
875	960
1420	1975
1050	2050
7,0	20
960	960
220/380	220/380

r or

иче-

тэр

ıей-

)ЛЬ-

кая

ce-

⁻⁶ ...

ски

l BO

10000	TMH 20000
0-2	1·10 ⁻⁶ 1·10 ⁻²
,0	18,0
-7	2-10-6
)°	10°
10	83,3
0	7,0
-	_
-	_
-	_
-	-
-	_
-	_
-	
00 ,	3910

3	нмд-1
	4·10 ⁻⁷ 2·10 ⁻¹
	1,20
	7 · 10 - 8
	1.100
	250
	554 500 580
	290
1	2×БП-0,63
	480 320 600
	2×47