NITK –Surathkal Department of Computer Science & Engineering Course Plan

CS253 – Design and Analysis of Algorithms

Name of the Course: Design and Analysis of Algorithms	Course No: CS253	No. of Credits (L-T-P): 3-1-0 (4)
Year & Semester, Section: 2020, IV Sem	Course Type: Program Core (PC)	Academic Session: Even

Prerequisites (if any): Design and Analysis of Algorithms

Name and Contact Details of Course Instructor: Vani M, (vani.nitk@gmail.com)

Evaluation Scheme: Surprise Test/Tutorials/Assignments - 40%, Mid Sem - 20%, End Sem - 40%.

Course Objectives

- 1. To provide an in-depth treatment of a broad range of algorithms and design techniques.
- 2. To teach how to measure the effectiveness (in terms of time and space complexities) of algorithms.
- 3. To teach students to formally prove the correctness of the algorithms they design and also to enhance the capability to come up with counter arguments in case a wrong algorithm.

Course (Learning) Outcomes (COs)

- CO1 Understand different deisgn techniques that are helpful in coming up algorithms for given problem.
- CO2 Should be able to design and employ appropriate data structures for solving computing problems
- CO3 Possess the ability to design efficient algorithms for solving computing problems
- CO4 Pocess the aility to identify and prove problems which do not seem to have efficient algorithms

Mapping of COs with POs:

(Strength of correlation: S-Strong, M-Medium, W-Weak)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	S	M	S	S	W	W	W	W	S	S	W
CO2	S	S	M	S	S	W	W	W	W	S	M	W
CO3	S	S	W	S	S	W	W	W	M	S	M	W
CO4	S	S	W	S	S	W	S	S	S	S	S	S

1. Teaching Learning Interaction

1. Teaching Learning Interaction						
Module – Title		Content				
M1	Introduction	The role of algorithms in computing, growth of functions, Solving recurrences	4-0-0			
M2	Analysis techniques, Sorting and order statistics	Randomized select, Selection in worst case linear time	4-0-0			
M3	Divide and conquer	Merge Sort, Strassen's Matrix multiplication,	6-0-0			
M4	Greedy Algorithms	Interval scheduling, knapsack, Independent set on trees, Minimum Spanning Trees Algorithms	6-0-0			
M5	Dynamic Programming	Weighted interval Scheduling, Edit Distance, Problems on DAGs	6-0-0			
M6	Graph Algorithms	Traversals, Shortest distance algorithms, Network Flows	6-0-0			
M7	NP- Completeness	Reducibility, Classes P, NP and NPC, Coping with NP-Completeness using approximation algorithms, exact exponential time algorithms	10-0-0			

2. List of Text Books & Reference Books, On-line Course Resources

- 1. T.H Cormen, C.E Leiserson, R.L. Rivest, C. Stein, Introduction To Algorithms, Third edition, PHI, 2009.
- 2. Horowitz and Sahni, Fundamentals of computer algorithms
- 3. Donald E. Knuth, Art of Computer Programming, Volume 1-3
- 4. Aho, Hopcroft and Ullman, Design and analysis of algorithms.
- 5. Jon Kleinberg, Eva tardos, Algorithms Design.
- 6. Sanjoy Dasgupta, C Papadimitriou, U. Vazirani, Algorithms

3. Assessment Pattern

(Use Bloom's Taxonomy to design rubrics for evaluating student performance)

Level No.	Knowledge Level	Evaluation Component	Assessment (%)
K1	Remember		10
K2	Understand		20
K3	Apply		20
K4	Analyse		25
K5	Evaluate		10
K6	Create		15