

Timo Vogelsang

MANAGERIAL ACCOUNTING (WINTER 2023)

SESSION 3

E7-23

- University Pizza delivers to dorms and apartments.
- Annual fixed costs are \$54,000, the selling price is \$10 per pizza.
- Variable costs are \$6 per pizza (production and delivery).
- 1. Using unit contribution margin, what is B/E in units?
- 2. What is the contribution margin ratio?
- 3. Using contribution margin ratio, B/E in sales \$?
- 4. How many pizzas to sell to earn a net profit of \$60,000?

E7-23

1. Using unit contribution margin, what is B/E in units?

Break-even point (in units) =
$$\frac{\text{fixed expenses}}{\text{unit contribution margin}}$$
$$= \frac{\$54,000}{\$10 - \$6} = 13,500 \text{ pizzas}$$

2. What is the contribution margin ratio?

Contribution-margin ratio =
$$\frac{\text{unit contribution margin}}{\text{unit sales price}}$$

$$= \frac{\$10 - \$6}{\$10} = .4$$

E7-23

3. Using contribution margin ratio, B/E in sales \$?

Break-even point (in sales dollars)

$$= \frac{\$54,000}{.4} = \$135,000$$

E7-23

4. How many pizzas to sell to earn a net profit of \$60,000?

Let X denote the sales volume of pizzas required to earn a target net profit of \$60,000.

$$10X - 6X - 54,000 = 60,000$$

$$$4X = $114,000$$

$$X = 28,500 \text{ pizzas}$$

E7-30

- Brad's Bicycle Shop sells two types of speed bikes high quality & medium quality.
- 70% of the sales are medium quality bikes, fixed costs are \$148,500 per year.

Product Type	Sales Price	Invoice Cost	Sales Commission
High	1,000	550	50
Medium	600	270	30

- 1. Compute unit contribution margin for each product.
- 2. What is the sales mix?
- 3. Compute the weighted average contribution margin.
- 4. What is B/E point in units?
- 5. How many bikes of each kind must be sold to achieve target profit of \$99,000?

E7-30

1		Sales	Unit	Unit
1.	Bicycle Type	Price	Variable Cost	Contribution Margin
	High-quality	\$1,000	\$600 (\$550 + \$50)	\$400
	Medium-quality	600	300 (\$270 + \$30)	300

2. Sales mix:

High-quality bicycles	30%
Medium-quality bicycles	70%

3. Weighted-average unit contribution margin = $(\$400 \times 30\%) + (\$300 \times 70\%)$ = \$330

E7-30

4. Break - even point (in units) =
$$\frac{\text{fixed expenses}}{\text{weighted - average unit contribution margin}}$$
$$= \frac{\$148,500}{\$330} = 450 \text{ bicycles}$$

	Break-Even		Sales
Bicycle Type	Sales Volume	Sales Price	Revenue
High-quality bicycles	135 (450 × .30)	\$1,000	\$135,000
Medium-quality bicycles	$315 (450 \times .70)$	600	189,000
Total	, ,		\$324,000

5. Target net income:

Sales volume required to earn target net income of
$$$99,000 = \frac{$148,500 + $99,000}{$330}$$

= 750 bicycles

This means that the shop will need to sell the following volume of each type of bicycle to earn the target net income:

High-quality	$225 (750 \times .30)$
Medium-quality	$525 (750 \times .70)$

CASE 7-55

Current situation vs. new option:

Independent Sales Agents	Own Sales Personnel
 Currently receive a commission of 20% of sales Demand an increase to 25% 	 3 individuals required (annual salary of \$45,000 each) Plus commissions of 5% of sales 2 sales managers at fixed annual salaries of \$120,000 each

- Budgeted income statement reflects independent sales agents (20%)
- Assume COGS 100% variable
- All income statement fixed costs and the variable cost percentages would remain the same under each scenario

LAKE CHAMPLAIN SPORTING GOODS COMPANY Budgeted Income Statement For the Year Ended December 31, 20x4			
Sales		\$15,000,000	
Cost of goods sold		9,000,000	
Gross margin		\$ 6,000,000	
Selling and administrative expenses:			
Commissions	\$3,000,000		
All other expenses (fixed)	150,000	3,150,000	
Income before taxes		\$ 2,850,000	
Income tax (30%)		855,000	
Net Income		\$ 1,995,000	

- 1. Estimate B/E point in sales \$ based on IS for both scenarios:
 - independent sales agents, 20% commission
 - own sales personnel
- 2. Compute estimated \$ sales volume that yields the same net income if sales commission rises to 25%
- 3. Compute estimated \$ sales volume that would yield an identical net income under both scenarios (25% commission vs. own sales personnel)

- 1. Estimate B/E point in sales \$ based on IS for both scenarios:
 - a) independent sales agents, 20% commission
 - Break-even Point (in sales of \$) = Fixed Costs / Contribution Margin Ratio
 - Contribution Margin Ratio = (\$15,000,000 \$9,000,000 \$3,000,000) / \$15,000,000 = 0.20
 - Break-Even Point = \$150,000 / .20 = \$750,000

CASE 7-55 (CONT'D)

- 1. b) own sales personnel
 - 3 individuals required (annual salary of \$45,000 each) plus commissions of 5% of sales; 2 sales
 managers at fixed annual salaries of \$120,000 each
 - New fixed costs = previous FC+ salaries of own sales personnel

New fixed costs =
$$150,000+3*45,000+2*120,000 = $525,000$$

New CM ratio = (Sales-VC) / Sales=[15,000,000-9,750,000] / 15,000,000 = 35%

- 2. Compute estimated \$ sales volume that yields the same net income if sales commission rises to 25%
 - Sales Required for Target Profit = (FC+Target Profit) / CM Ratio
 - Target Profit: 2,850,000
 - New CM = Sales Revenue COGS New Commission (25% of Sales) = 15,000,000 9,000,000 3,750,000 =
 2,250,000
 - New CM Ratio = CM / Sales = 2,250,000 / 15,000,000 = 15%
 - Sales Required for Target Profit = (150,000 + 2,850,000) / 15% = \$20,000,000

CASE 7-55 (CONT'D)

3. Compute estimated \$ sales volume that would yield an identical net income under both scenarios

(25% commission vs. own sales personnel)

- 25% commission: CM ratio 0.15, FC 150,000
- Own agents: CM ratio 0.35, FC 525,000
- 0.15x 150,000 = 0.35x 525,000
- x = \$1,875,000

P7-46

- Saturn Game manufactures computer games. They sold 25,000 units at \$50 each last year. Total costs were \$1,050,000 of which \$300,000 were fixed.
- Saturn Game is considering changing one part from a \$5 item to a \$9 item to improve quality. This
 will require a new machine costing \$36,000 with a 6-year life. They use straight line (S/L) depreciation
 methods.
- 1. Which was the break-even (B/E) point in units last year?
- 2. How many units were required last year to earn \$280,000?
- 3. Which is the B/E point in current year with new item used in production but no sales price increase?
- 4. Same facts as #3 with target income of \$200,000 (last year)?
- 5. What would be the new selling price to maintain last year's CM ratio with new costs?

P7-46

1. Unit contribution margin = $\frac{\$1,250,000 - \$750,000}{25,000 \text{ units}}$ = \$20 per unit

Break - even point (in units) =
$$\frac{\text{fixed costs}}{\text{unit contribution margin}}$$
$$= \frac{\$300,000}{\$20} = 15,000 \text{ units}$$

Number of sales units required to earn target net profit $= \frac{\text{fixed costs} + \text{target net profit}}{\text{unit contribution margin}}$

$$=\frac{\$300,000+\$280,000}{\$20}=29,000 \text{ units}$$

P7-46

New break - even point (in units) = $\frac{\text{new fixed costs}}{\text{new unit contribution margin}}$ $= \frac{\$300,000 + (\$36,000/6)^*}{\$20, \$4^{\dagger}} = 19,125 \text{ units}$

*Annual straight-line depreciation on new machine †\$4.00 = \$9.00 - \$5.00 *increase* in the unit cost of the new part

4. Number of sales units required to earn target net profit, given manufacturing changes

*Last year's profit: (\$50)(25,000) - \$1,050,000 = \$200,000

P7-46

5.

- Original variable cost was 60% of selling price
 - (Price = \$50, VC = \$750,000/25,000 units = \$30 \rightarrow 30/50 = 60%)
- In order to maintain the CM ratio, new variable cost must also be 60% of selling price
 - New variable cost is \$34.00 (\$4 increase)
 - > Price to maintain CM ratio: \$34.00 /60% = \$56.67

P7-46

5. alternative approach

 Let P denote the price required to cover increased direct-material cost and maintain the same contribution-margin ratio

$$\frac{P - \$30 - \$4}{P} = .40$$
 $P - \$34 = .40P$
 $.60P = \$34$
 $P = \$56.67 \text{ (rounded)}$

E8-23

 Sea Star Company manufactures diving masks with a variable cost of \$12.50. The masks sell for \$17.00. Budgeted fixed manufacturing overhead for the most recent year was \$396,000. Actual production was equal to planned production.

- Under each of the following conditions, state
 - 1. whether operating income is higher under variable or absorption costing and
 - 2. the amount of the difference in reporting operating income under the two methods.
- Treat each condition as an independent case.

E8-23

1. Production 110,000 units Sales 107,000 units

2. Production 88,000 units Sales 93,000 units

3. Production 80,100 units Sales 80,100 units

E8-23

1. Inventory increases by 3,000 units \rightarrow operating income higher under absorption costing.

```
Fixed overhead rate per unit = $396,000 / 110,000 = $3.60
Difference in reported OI = $3.60 \times 3,000 = $10,800
```

- Inventory decreases by 5,000 units → operating income higher under variable costing.
 Fixed overhead rate per unit = \$396,000 / 88,000 = \$4.50
 Difference in reported OI = \$4.50 x 5,000 = \$22,500
- 3. Inventory remains unchanged, so there is no difference in reported operating income

P8-38

1. Great Outdoze, Inc. manufactures high-quality sleeping bags, which sell for \$130 each. We have the following information:

Direct Material (per sleeping bag)	\$ 40
Direct Labor (per sleeping bag)	\$ 22
Variable MOH (per sleeping bag)	\$ 16
Budgeted fixed MOH	\$ 400,000
Production (actual & budgeted)	25,000
Sales	22,000
Variable S&A (per sleeping bag)	\$ 2
Fixed S&A	\$ 60,000

P8-38

- 1. Compute product costs per sleeping bag under
 - a) Absorption costing
 - b) Variable costing
- 2. Prepare operating income statements for the year using
 - a) Absorption costing
 - b) Variable costing
- 3. Reconcile the operating income reported under the two methods using the shortcut method.

P8-38

1. Compute product costs per sleeping bag under

	(a) Absorption Costing	Variable Costing
Direct material	\$40	\$40
Direct labor	22	22
Manufacturing overhead		
Variable Fixed (\$400,000 ÷ 25,000)	16 <u>16</u>	<u>16</u>
Total absorption cost per unit	<u>\$94</u>	
Total variable cost per unit		<u>\$78</u>

121

(h)

P8-38

2. Prepare operating income statements for the year

a. Great Outdoze, Inc.	
OPERATING INCOME STATEMENT FOR THE YEAR ENDED DECEMB	ER 31, 20 x4
ABSORPTION COSTING	
Sales revenue (at \$130 per unit)	\$2,860,000
Less: Cost of goods sold (at	
absorption cost of \$94 per unit)	2,068,000
Gross margin	\$ 792,000
Less: Selling and administrative expenses:	
Variable (at \$2 per unit)	44,000
Fixed	60,000
Operating income	\$ 688,000

P8-38

2. Prepare operating income statements for the year

B. GREAT OUTDOZE, INC.		
OPERATING INCOME STATEMENT FOR THE YEAR ENDED DECEMBER 31, 20x4		
Variable Costing		
Sales revenue (at \$130 per unit)	\$2,860,000	
Less: Variable expenses:		
Variable manufacturing costs (\$78 per unit)	1,716,000	
Variable selling & administrative costs (\$2 per		
unit)	44,000	
Contribution margin	\$1,100,000	
Less: Fixed expenses:		
Fixed manufacturing overhead	400,000	
Fixed selling and administrative costs	60,000	
Operating income	\$ 640,000	

P8-38

3. Reconcile the operating income reported under the two methods using the shortcut method.

Change in		predetermined		absorption-costing income
inventory	×	fixed overhead	=	minus
(in units)		rate		variable-costing income
3,000 unit increase	×	\$16	=	\$48,000

SESSION 4

P14-58

- Oceana Co. sells 3 products, manufactured in 4 departments.
- Machine and labor skills are specialized, hence cannot be switched from one department to another.
- Inventory remains constant, price and cost data as follows:

	Product		
	M50	T79	B81
Unit costs:			
Direct material	\$ 28	\$ 52	\$ 68
Direct labor:			
Department 1	48	24	48
Department 2	84	56	56
Department 3	\$ 96	_	\$ 64
Department 4	36	\$ 72	36
Variable overhead	108	80	100
Fixed overhead	60	40	128
Variable selling expenses	12	8	16
Unit selling price	784	492	668

P14-58

EXPECTED SALES DEMAND

Product	Monthly Unit Sales
M50	500
T79	400
B81	1,000

EXPECTED CAPACITY

	Department			
Monthly Capacity Availability	1	2	3	4
Normal machine capacity in machine hours	3,500	3,500	3,000	3,500
Capacity of machines being repaired in machine hours	(500)	(400)	(300)	(200)
Available machine capacity in machine hours	3,000	3,100	2,700	3,300
Available labor in direct-labor hours	3,700	4,500	2,750	2,600

P14-58

Requirements per product:

Labor and Machine Specifications per Unit of Product					
Product	Labor and Machine Time				
M50	Direct-labor hours	2	3	3	1
	Machine hours	1	1	2	2
T79	Direct-labor hours	1	2	_	2
	Machine hours	1	1	_	2
B81	Direct-labor hours	2	2	2	1
	Machine hours	2	2	1	1
	Machine hours	2	2	1	

- 1. Calculate monthly requirement for MH and DLH to determine bottleneck
- 2. Determine the monthly production schedule that maximizes profit
- 3. Identify alternatives management might consider to meet the entire demand

P14-58

- Determine bottleneck
 - Machine hour

	Department			
Product	1	2	3	4
M50	500	500	1,000	1,000
T79	400	400	_	800
B81	<u>2,000</u>	<u>2,000</u>	<u>1,000</u>	<u>1,000</u>
Total required	2,900	2,900	2,000	2,800
Total available	<u>3,000</u>	<u>3,100</u>	<u>2,700</u>	<u>3,300</u>
Excess (deficiency)	100	200	<u>700</u>	500

P14-58

- Determine bottleneck
 - DL hour

	Department			
Product	1	2	3	4
M50	1,000	1,500	1,500	500
T79	400	800	_	800
B81	<u>2,000</u>	<u>2,000</u>	<u>2,000</u>	<u>1,000</u>
Total required	3,400	4,300	3,500	2,300
Total available	<u>3,700</u>	<u>4,500</u>	<u>2,750</u>	<u>2,600</u>
Excess (deficiency)	<u>300</u>	200	<u>(750</u>)	300

➤ The scarce resource is direct-labor hours (DLH) in Department 3

P14-58

2. Production schedule

 Oceana should first produce the product that maximizes contribution margin per unit of the scarce resource (DLH in Dep 3). M50 and B81 require DLH in Department 3.

	Product		
	M50	T79	B81
Sales price	<u>\$784</u>	<u>\$492</u>	<u>\$668</u>
Variable costs			
Direct material	\$ 28	\$ 52	\$ 68
Direct labor	264	152	204
Variable overhead	108	80	100
Variable selling	12	8	<u>16</u>
Total variable costs	<u>\$412</u>	<u>\$292</u>	<u>\$388</u>
Contribution margin	<u>\$372</u>	<u>\$200</u>	<u>\$280</u>

P14-58

2. Production schedule

Contribution Margin per DLH in Department 3.

	Contribution	Department 3	CM
Product	Margin	DLH	per DLH
M50	\$372	3	\$124
B81	280	2	140

How many product can be produced

		Dep. 3 DLH	
	Units	Required	Balance (DLH)
Maximum DLH			
available in Dep 3			2,750
Product B81 first	1,000	2,000	750
Product M50 second	250	750	-0-

P14-58

2. Production schedule

	Contribution	Units	Contribution
Product	Margin per Unit	Produced	to Profit
M50	\$372	250	\$ 93,000
T79	200	400	80,000
B81	280	1,000	280,000
Total contrib	ution margin		<u>\$453,000</u>

P14-58

- 3. To supply the additional quantities of M50 that are required, Oceana should consider:
 - subcontracting the additional units.
 - operating on an overtime basis.
 - acquiring labor from outside the community.

P14-50

Handy Dandy Tools makes electronic tools. They have met all production requirements and still have capacity. Assume endless demand.

- Variable overhead is applied on the basis of direct labor hours
- Fixed overhead is applied on the basis of machine hours.
- If they have excess machine capacity and can add labor as needed how should they devote their excess capacity to maximize profits?

P14-50

	Basic	Deluxe	Pro
Selling price	\$116	\$130	\$160
Direct material	32	40	38
Labor at \$20/hour	20	30	40
Variable overhead	16	24	32
Fixed overhead	32	10	30

Facts we can see from above:

- Labor hours are 1 for basic, 1.5 for deluxe and 2 for pro models, respectively
- Variable overhead is 80% of labor costs
- It takes 3.2 times the machine hours to make a basic as it does a deluxe
- It takes 3 times the machine hours to make a pro as it does a deluxe (application of fixed overhead)

P14-50

When there is no limit on production capacity the Pro model should be manufactured since it has the *highest contribution margin per unit*.

	Basic	Deluxe	Pro
	Model	Model	Model
Selling price	<u>\$116</u>	<u>\$130</u>	<u>\$160</u>
Direct material	32	40	38
Direct labor	20	30	40
Variable overhead	<u>16</u>	<u>24</u>	<u>32</u>
Total variable cost	<u>\$ 68</u>	<u>\$ 94</u>	<u>\$110</u>
Contribution margin	<u>\$ 48</u>	<u>\$ 36</u>	<u>\$ 50</u>

P14-50

What should they do if labor time is a limiting factor?

When labor is in short supply the Basic model should be manufactured, since it has the *highest contribution margin per direct-labor hour*.

	Basic	Deluxe	Pro
	Model	Model	Model
Contribution margin per unit	\$48	\$36	\$50
Direct-labor hours required	1	1.5	2
Contribution margin per direct-labor hour	\$48	\$24	\$25

P14-50

- What if the limiting factor is machine hours?
- → We have to first find a common "denominator" to make the assessment.

	Basic	Deluxe	Pro
CM per unit from above	\$48	\$36	\$50
Relative machine hours	3.2	1.0	3.0
CM per machine hour	\$15	\$36	\$16.67

As Deluxe models generate highest CM per machine hour, produce that model.