UNCLASSIFIED
AD NUMBER
AD466510
LIMITATION CHANGES
TO:
Approved for public release; distribution is unlimited.
FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors;

Administrative/Operational Use; 01 JAN 1965. Other requests shall be referred to Defense Advanced Research Projects Agency, 675 North Randolph Street, Arlington, VA 22203-2114.

AUTHORITY

ARPA ltr, 3 Jan 1965

NATIONAL BUREAU OF STANDARDS REPORT

8628

Preliminary Report
on the Thermodynamic Properties of
Selected Light-Element and
Some Related Compounds

(Supplement to NBS Reports 6297, 6484, 6645, 6928, 7093, 7192, 7437, 7587, 7796, 8033, 8186, and 8504)

1 January 1965

U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST
QUALITY AVAILABLE.

COPY FURNISHED CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

THE NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. Its responsibilities include development and maintenance of the national standards of measurement, and the provisions of means for making measurements consistent with those standards; determination of physical constants and properties of materials; development of methods for testing materials, mechanisms, and standards such tests as may be necessary, particularly for government agencies; cooperation in the establishment of standard practices for incorporation in codes and specifications; advisory service to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government in the development and acceptance of commercial and simplified trade practice recommendations; administration of programs in cooperation with United States business groups and standards organizations for the development of international standards of practice; and maintenance of a clearinghouse for the collection and dissemination of coientific, technical, and engineering information. The scope of the Bureau's activities is suggested in the following listing of its four Institutes and their organizational units.

Institute for Basic Standards. Electricity. Metrology. Heat. Radiation Physics. Mechanics. Applied Mathematics. Atomic Physics. Physical Chemistry. Laboratory Astrophysics.* Radio Standards Laboratory: Radio Standards Physics; Radio Standards Engineering.** Office of Standard Reference Data.

Institute for Materials Research. Analytical Chemistry. Polymers Metallurgy. Inorganic Materials. Reactor Radiations. Cryogenics.*** Office of Standard Reference Materials.

Central Radio Propagation Laboratory.** Ionosphere Research and Propagation. Troposphere and Space Telecommunications. Radio Systems. Upper Atmosphere and Space Physics.

Institute for Applied Technology. Tex iles and Apparel Technology Center. Building Research. Industrial Equipment. Information Technology. Performance Test Development. Instrumentation. Transport Systems. Office of Technical Services. Office of Weights and Measures. Office of Engineering Standards. Office of Industrial Services.

^{*} NBS Croup, Joint Institute for Laboratory Astrophysics at the University of Colorado. ** Located at Boulder, Colorado.

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT

NBS REPORT

8628

221-0495 1 January 1965	
221-0426A	
221-0426B 221-0426C Preliminary Report	
221-0426D	
on the Thermodynamic Properties of	
222-0423 223-0513 223-0442 Selected Light-Element and	
225-04-2	
310-0496 313-0430 Some Related Compounds	

(Supplement to NBS Reports 6297, 6484, 6645, 6928, 7093, 7192, 7437, 7587, 7795, 8033, 8186, and 8504)

Thirteenth Technical Summary Report on the Thermodynamic Properties of Light-Element Compounds

Reference: ARPA Order No. 20

IMPORTANT NOTICE

NATIONAL BUREAU OF STANDARDS REPORTS are usually preliminary or progress accounting documents intended for use within the Government. Before material in the reports is formally published it is subjected to additional evaluation and review. For this reason, the publication, reprinting, reproduction, or open-literature listing of this Report, either in whole or in part, is not authorized unless permission is obtained in writing from the Office of the Director, National Bureau of Standards, Washington, D.C. 20234. Such permission is not needed, however, by the Government agency for which the Report has been specifically prepared if that agency wishes to reproduce additional copies for its own use.

U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

ABSTRACT

This is the thirteenth semiannual report on the current experimental, theoretical, and evaluative program, at the National Bureau of Standards, on the thermodynamic properties of selected light-element and some related compounds of primary interest in high-temperature research. Included are new experimental results in several areas; and a number of tables of thermodynamic functions, heats of formation, ionization potentials, and electron affinities resulting from literature surveys and critical data evaluations.

New experimental work on the borohydrides of aluminum and beryllium is reported. The mean value found for the standard heat of formation of $AI(BH_{4})_{3}$ (298°K) is +2 kcal/mole for the gas and -5 kcal/mole for the liquid, with an estimated possible error as great as 17 kcal/mole. The infrared spectra of MgF₂ (in a krypton matrix), $AI(BH_4)_2$, and $Be(BH_1)_2$ were measured, and a new band system was discovered for F2. The bending fundamental of MgF2 appears to be 242 cm⁻¹, and continuing spectroscopic work is expected to provide additional molecular constants for the other substances. High-temperature mass-spectrometric data on the BeO-Al2Oz system were treated thermodynamically, and lead to heats of atomization for O2, A220, and the new molecule AMOBe (as well as the heat of vaporization of liquid BeO·A L_2 O₃). The values for O₂ and A L_2 O agree well with previously available values. Recent precise measurements of the relative enthalpy of graphite over the range 1200-2600°K are summarized. Liquid Al_2O_3 was vaporized in vacuum and the condensates subjected to varying programs of annealing. The progress from amorphous to the stable alpha crystalline form was followed in detail by X-ray and electron diffraction.

The report includes four appendices. The first is a formulaproperty index of the twelve preceding semiannual reports. The second comprises new tables of the standard thermodynamic properties of condensed phases of 17 substances, including 13 "mixed" oxides. The third appendix gives thermochemical values for additional compounds of several elements which have resulted from a current revision of NBS Circular 500 (Series I). The fourth appendix includes the table of ionization potentials and electron affinities of light-element atoms and molecules presented in the last report but now considerably revised and augmented by recent information.

Project Leader

Charles W. Beckett 19.4 160

Assistant Division Chief for Thermodynamics

Heat Division

TABLE OF CONTENTS

						•	. 1101	,,,,	<i>-</i>	JO11.									Page
	Abst:	ract	٠	•	•	•	•	•	•	٥	•	۰	9	•	•	•	•	•	ì
Chap.	1.	HEAT	OF	СНІ	ORI	NA"	IOI	1 O I	F AJ	LUM	INU	мв	ORO	HYD!	RID	E			
•			-		A.											-	•	•	1
		I,	Int	rodi	ict1	.on		•	•	۰	a	۰	•	•	۰	•	•	•	1
		•	Mate	eria	als			•	•	۰	•		•	٠	•	•	•		1
	I.	•	Pro		-	,#		•	•	•	•	•	•	•	•	•	•	•	2
		IV.	Res	ults	3			•	•	•		•	4	•	•	•	•	•	2 3
			Ref	erer	ces	3		•	•	•		•	•	•	•	۰	۰	•	4
				ľab.	Le l	•							ica: ime						5
			5	rab]	Le 2	2							s o			_	-	-	_
			,	[ah]	le 3		Ch.	Lor:	ina	tio	n E	xpo	rim lts	ent	s	•	•	•	6
						•							rim		s	•	•	•	7
Chap.	2.	INFF AND								I <u>N</u> U	M E	ORO	HYD:	RID	E				
							/ 1-	A	. 1	^	3.4	1 - 1 - 1	`						8
						•	(by	Ar	thu:	rG	e M	aki	,		•	9	•	•	0
			Int	rodi	ict1	on				۵		۵				۵			8
			Alw	ninı	zm E	orc	hvo	irio	ie		٠	٠	٠				_		8
			Ber:							•			۰	•			٠		9
			Ref	•							•		۰	•	•		•		1ó
					le 1		Alı Ber	mir yl	num Liur	Bo:	roh oro	ydr hyd	n Si ide ride	and	d ,		•	•	
							Giv	ren	in	War	ven	umb	ers	(cı	m-1)	•	•	11
Chap.	3。	TRAN	SIT	ION	3 IN	I V	APOI	R-D	EPO:	SIT	ED	ALU	MIN	<u>A</u>					
		(t	y J	. J.	, Di	amo	ond	and	A f	. L	. D	rag	00)		•	•	•	•	12
			Int	rodi	ict1	on					_			_	_				12
			Met						•	_	•				-		•	•	12
			Rost					•	-	-	•	•	۰		•	•		-	14
					le 1	_	Tre	ans:	1 1. 14	an .	Α 🕽 11	min	-	•	•	•	•	•	15
					le 2								ion	a_9	ຊກa.	o oin	~ =	•	-/
			•	r a v.									TOIL	ц	pa	الملدن	20		16
			The	Ф	n - 4	+4-	7 OT	. A4 \1.⊷	120	3 F.	اللهاء		9	•	•	9	•	•	17
			nne Refe				JII I	W	HTT11	ci.	•	•	•	•	•	0	0	•	
							Page 42 14	0	0 h d	•		Α	• ••••••••••••••••••••••••••••••••••••	•	φ Λ 8	0.	•	•	18
			1	. TR	. 1.								rph						30
			1	T 4 ~	2	_							and			コエレ	TAR	•	19
			1	Tg.	, 2,								ic a	and					
												dy Al	ა0ა 10	F1	lms				20

			ŗ	ľABLI	e of	CON	TE:	NTS	(C	ont	inu	ed)						Page
Chap.	4.	THE E	THALP	OF	GRAI	PHIT	E	FRO	M l	200	TO	26	000	K				
			(!	oy E.	D.	Wes	it i	and	\$.	Is	hih	ara)		•	•	0	21
		D:	xperime iscussi eferenc	Lon	L	•	•	•	•	o a •	•	•	•	•	•	•	•	21 21 22
Chap.	5.	HIGH !	EMPERA					PEC.	TRO:	SCO	PΥ							
			(by	D. H	E. Ma	ann)		•	•	•	•	9	•	•	•	•		24
		1. 2.		g: Ma esion							•	•	•	•	•	•	•	24 24
Chap.	6.		TEMPERA OF THE			_		_		ETR	IC							
			(by J.	Efi	imenl	(0)		•	•	•	•	•		•	۰	•	•	25
		E	ne Algo	ental		rste	m	•	•	•	•	•	•	•	•	•	•	25 25
		בע	iscussi Table			ss S						۰	•	•	•	•	•	25
			Table		Au Ent	cili hal	ary .py	r Ce Ch	ompi ang	uta es	tio: fro:	n D n			Dat •	a	•	26 26
			Table	3A.		e E hal							• ry	•	•	•	•	27 28
<u>APPEN</u>	DIX		MULA-I RST TWI								<u>s</u>							
			(by Hor	ward	W. I	lie	ge	. و۲	Jr.)			•	٥	•	•		30
			Intro List			logr	• apl	lie:	s ne	• ot	inc	lud	ed.	•	•	•	•	30
			in th	ıe ir	dex	- 0-	•	•	•	•		•	•	•	•	•	•	31 33

plestaggeneting

HINNING OF STREET

Name at a second

1

TABLE OF CONTENTS (Continued) Page APPENDIX II. THERMODYNAMIC FUNCTIONS OF SOME SELECTED SUBSTANCES IN THE SOLID AND LIQUID STATES (by George T. Furukawa and Martin L. Reilly) . 48 <u>Table</u> Formula Phases B-116 Na3ALF6 Solid(α, β) and Liquid 0-1500 49 Na₄Si^ B-117 Solid 0-300 51 B-118 Ba₀ Solid 0-2000 52 CaC₂ B-119 Solid(a, B) 0-1500 54 3CaO.AL203 B-120 Solid 0-1800 56 120a0•746203 B-121 Solid(α,β) 0-1800 58 CaO.AL203 B-122 Solid 0-1800 6û B-123 CaO • 2AL 203 Solid 0-1800 62 30a0•2510₂ B-124 Solid 0-300 64 20a0 •Si02 B-125 Solid (γ) 0-1120 65 20a0 •Si02 B-126 Solid($\beta,\alpha^{\dagger},\alpha$) 0-2000 67 B-127 CaO • Fe 203 Solid and Liquid 0-2000 69 2CaO*Fe203 B-128 Solid and Liquid 0-2000 71 B-129 CoO • Fe203 Solid 0-300 73 B-130 Fe0 • Co 203 Solid 0-300 74 NiO·Fe₂O₃ B-131 Solid 0-300 75 B-132 Solid(α, β, γ) 0-1600 76 K2CrO4 B-133

Solid

0-300

78

TABLE OF CONTENTS (Continued)

													Page
APPENDIX III.	SELECTED THERMO	CHEN	IIC.	AL Y	VAL	UES							
	(by Donald	\mathbb{D}_{\bullet}	Wa	gmai	n)	•	•	•	u	•	•	•	7 9
	Introduction		_					٥	۵			۵	79
	Table		•	•	•	•	•		•	•	•	•	80
	Compounds	of:											
	As .	•	٠	•		•	۵	•	•	٠	•	۰	80
	Sb .	•	•		•	•	•	•	•	4	•	•	81
	Bi .	٠	•	•	•		•		•	•	•	•	82
	C .	0	0	•	•	•	•	•	•	•	•	•	83
	Si .	•	•	•	•	•	٠	•	•	•	•	•	83
	Sn •		•	•	•		•	•	•	•	•	•	85
	Miscell				mpo	und	83 0	f					
	Ag, C,	Si,	Ρ,	Sn		•	•	•	•	•	•	•	87
APPENDIX IV.	LIST OF IONIZAT	TON	PO4	יואינדיני	ለፐጥ	Z.T	ΩR	स.म	ኒጣጥያ	UN			
ATTEMPTA IV										.011			
	AFFINITIES OF L	LGH.	<u> </u>	LEWL	PIVI	UU	MPU	OIAT	0				
	(by Charles W	. Be	eck	ett	an	d E	sth	er	C.	Cas	sid	y)	89
	Introduction Selected lis		•	•	• Fod	•	٠	•	•	•	•	•	89
	(or readily						tan	200					90
	References	1011	LZG	DTG.	<i>)</i> 5	uDS	. Call	Ces		•	٥	•	92
	Table 1.	Pre	e ⊃Tin	• min	e artr	T.4	a+	٥f	Ton	170	+10	n	71.
	14020 24	Pot	ten	tia.	ar, Is	nr nr	Ele	otr	ינטב		010	11	
				iti						men	t.		
				und		-	5			-			99
	Species					٠	•	•	•	•	•	•	,,
	- 100200	H			-6-	_				_	_		99
		0	:			•	•	•	•	•	•	•	99
		F	•	•	**	•	•	•	•	•	•	•	99
		CŁ	•	•	٠	,	•	•	•	•	•		100
		S			•	ē	•	٠	•	•	•		100
		N				•		•		•	•		101
		P	•							•	•	•	102
		C	•	-	•		-	•		•	•	•	102
		Si	•	•	•	•	•	•	-	•	•	•	106
		В	•	•	•	•	•	•		•	•	•	107
		AŁ			,	0	•	•	•	•	•	•	108
		Ве						•			•		109
		Mg		•				٠	٠				109
		Li		•				•	•	•		•	1 16
		Na		•	0	•	0				•	•	110
		\mathtt{Sr}	•	•		9	•		•	0		•	110
			•	•	u	•	•		•	•		•	110
	Table 2.	Ele	ect:	ron	Af	fin	ity	fc	r				
				ow 1									ררר

Chapter 1

HEA ' OF CHLORINATION OF ALUMINUM BOROHYDRIDE

by A. A. Gilliland and D. D. Wagman

I. Introduction

Aluminum borohydride is a colorless volatile liquid, spontaneously flammable in air, and violently reactive with moisture. It is reported to react with hydrocarbon stopcock lubricants, but is inert with respect to Kal-F grease, although it does apparently dissolve and diffuse slowly through the grease.

Initial attempts to obtain a suitable calorimetric reaction involved bomb reactions with N₂ under pressure, Cl₂(g) and with water vapor. In all cases a mixture of unidentified reaction products were obtained, including strong odors indicating the probable presence of boron hydrides. Attempts to bubble Al(BH4)3 vapor into dilute hydrochloric acid solutions also failed to produce well-defined products. The reaction that was finally selected was the vapor-phase chlorination using a flow calorimeter designed to maintain a steady flame at the burner tip. The general procedure is similar to that used for the oxygen flame combustion of hydrocarbons [1]. No spark ignition is required as the chlorination reaction proceeds spontaneously.

II. Materials

The sample of Al(BH4)3 was obtained from the Union Carbide and Carbon Corporation, South Charleston, W. Virginia. It was stored in a steel cylinder at -20°C except during transfer operations. Samples for measurement, approximately 0.4-0.5 g, were transferred by vapor distillation into small glass bulbs and stored in a freezer chest until used.

The only information we have with respect to the purity of the Al(BH₄)₃ comes from the analysis of the reaction products as described in the Section on Procedure and shown in Table 2. A small amount of a black solid powder was formed during each calorimetric run and was carried by the gas stream out of the reaction vessel into the collecting line and traps. An analysis of this sample indicated it to contain approximately 15% carbon, and significant amounts of Si, Al, and B. No crystalline structure was detected. Attempts to determine the amount of hydrogen in the sample by evolution as H₂ did not prove satisfactory. Because of the excess of Cl₂ used in the reaction, the amount of HCl formed could not be determined.

Initially the chlorine used was obtained from Matheson Corp. Subsequently a highly purified sample was obtained through the courtesy of Dr. G. Sinke of the Dow Chemical Company, Midland, Michigan. Their analysis indicated a purity of 99.9% for the liquid phase. We were unable to notice any difference resulting from the different chlorine samples.

III. Procedure

The small bulb containing the sample was placed in a special glass vessel containing a glass hammer, flushed with He, and weighed. On shaking, the small bulb was broken and the vessel was placed in the calorimeter gas flow line. The vessel is so constructed that He gas may be allowed to flow through it, carrying the A1(BH4)3 vapor into the reaction vessel, at the beginning of the reaction period. At the end of the reaction time the He may be diverted around the vessel without removing it from the line.

The reaction vessel consists of a large diameter Pyrex tube 30 mm 0.D., through one end of which enter two concentric tubes which form the burner tube. The mixture of borohydride and helium enters through the inner tube; the outer tube carries He gas used to prevent thermal cracking of the borohydride before it reaches the burner tip. A separate inlet tube in the side of the vessel is connected to the C12 supply cylinder.

The exit end is the vessel leads to a glass coil for thermal equilibration of the product gases with the calorimeter water. The gases then pass through two large traps cooled with liquid N2 to condense the BCl₂ and HCl produced in the reaction as well as the excess Cl₂. A small smount of AlCl₃ is occasionally found in the second trap (possibly carried over by the solid residue previously mentioned); some BCl₃ is also retained on the AlCl₃ in the reaction vessel.

When the calorimetric measurement is completed, the traps are connected to two bubblers in series, each containing about 300 ml of H20. Upon removal of the liquid N_2 , the condensed HC1, C12 and BC13 volatilize and bubble through the water, the excess C12 being vented to the outdoors.

After the traps are emptied, the bubblers are titrated for H_3BO_3 produced by the hydrolysis of the BCl3. The calorimeter vessel, exit tubes and the N2-traps are washed with water. The washings are combined and four aliquots taken. In two, A1(OH)3 is precipitated by adjusting to $pH \simeq 7$, filtered, and the H_3BO_3 remaining in the filtrate determined by titration using Mannitol. The total amount of BCl3 produced is obtained by combining the amount determined here with that found in the bubblers.

In the remaining aliquots, the Al is determined by precipitation as the 8-hydroxyquinolate.

The weight of Al(BH₄)3 reacted is obtained by weighing the large sample holder before and after the reaction. Because of the tendency of the borohydride vapor to diffuse through the grease, the final weighing usually had to be made rapidly, without waiting for the dissipation of static charge, etc.

IV. Results

Four electrical energy calibration experiments were performed, as indicated in Table 1. Helium gas flowed continually during the measurements, at the same rate as was used during the calorimetric runs.

The results of six calorimetric experiments are given in Tables 2 and 3. The results of several other experiments were discarded because of premature losses of sample, failures in the analytical train, etc. In Table 3, the values of q_{total} have been corrected for the energy supplied by the Cl_2 gas entering the system, the correction amounting to 5-9 joules for the various runs.

The values of ΔHf for A1(BH4)3 given in Table 3 are based on the following considerations. The weight of borohydride sample is used to calculate the total amount of HC1(g) produced, assuming 12 moles HC1 per mole of borohydride. While this stoichiometry is not correct, since a small amount of carbonaceous residue is produced, we assume that metal alkyl impurities are present in the sample and that the heat of chlorination is comparable to that of the A1(BH4)3. In view of the fact that the solid residue also contained A1 and B, the amounts of A1C13 and BC13 formed are computed from the individual analytical results for A1 and B respectively, as shown in Table 2. The heats of formation of the HC1, A1C13(c), and BC13 formed are listed in columns 4, 5, and 6 of Table 3, based on the molar values of ΔHf from NBS Circular 500 [2].

On the basis of these assumptions, the value of $\triangle Hf$ for A1(BH₄)₃(g) at 25°C = 8.7±2.8 kj/mole (2.1±0.7 kca1/mole)

It is difficult to assess the validity of the assumptions made for these calculations. However it is possible to make an estimate of their significance. If we were to assume that the sample were of high purity and reacted stoichiometrically, we can obtain from the weights of sample a value of $\triangle Hf^\circ = -14.7 \pm 1.6$ kcal/mole. On the other hand if we base our measure of the amount of reaction solely on the amount of boron recovered in the analyses, we obtain a value of $\triangle Hf^\circ = +15.9 \pm 1.6$ kcal.

On the basis of these calculations we believe that the value for \triangle Hf of A1(BH4)3(g) is bracketed between the values $^{+16}$ and $^{-15}$ kca1/mole but that the most reasonable estimate is about 2 hca1/mole.

The vapor pressure equation of Schlesinger et al. [3] leads to a heat of vaporization of 7.2 kcal/mole at a mean temperature of -10°C. Correcting with an estimated $\Delta C_p = -15$ cal/deg to 25°C yields $\Delta H_V = 6.7$ kcal/mole. This corresponds to a value of ΔH_f for Al(BH4)₃(liq) = -5 kcal/mole.

References

- 1. Prosen, Maron and Rossini, J. Research NBS 42, 269 (1949).
- NBS Circular 500, Selected Values of Chemical Thermodynamic Properties, Government Printing Office, Washington, D.C. (1952).
- 3. Schlesinger, Sanderson, and Burg, J. Am. Chem. Soc. 62, 3421 (1940).

Table 1
Results of Electrical Calibration Expts.

Expt. No.	△R _C ohms	.Ę. .j	j ⁵ 8hm.	
1	.108695	17,697.06	162,813.9	
2	.129058	21,011.14	162,803.8	
3	.129036	21,008.07	162,807.8	
4	.115310	18,772.90	162,803.7	
Mean		· · · · · · · · · · · · · · · · · · ·	162,807.3	
Standard de	viation of t	he mean	3. 8 ₅	

Table 2

Analytical Results on Chlorination Experiments

Expt. No.	Moles A1(BH4)3 weighed x 103	Moles A1 found x 10 ³	Moles B found as H ₃ BO ₃ x 10 ³	% A1	% В
1	5.076	4.944	14.456	97.39	94.94
2	5.955	5.839	17.347	98.06	97.94
3	5.328	5.153	15.394	96.71	96.30
4	6.735	6.520	19.382	96.82	95.93
5	5.594	5.379	16.025	96.16	95.53
6	7.761	7.531	22.213	(97.03)*	95.40

^{*}Based on the average of preceding 5 experiments.

Table 3

Calorimetric Results of Chlorination Experiments

Expt. No.	∆Rc, A	qtotal kj	^q HC1 kJ	^q A1C13 kj	⁴ BC13 kj	- Al (BH4)3 kj/mole
	0.092404	15,039	5.624	3,438	5.898	-15.6
2	. 109521	17.822	6.597	4.060	7.078	-14.6
3	.096803	15.753	5,903	3,583	6.281	+ 2.6
4	.122494	19.934	7,462	4.534	7.908	4.4
5	.101660	16.542	6.197	3.740	6.538	-12.0
9	.141094	22.962	8,599	5.237	6,063	- 8.1

Mean -8.7 kj(2.1 kcal/mole) Standard Deviation of mean 2.8 kj(0.7 kcal/mole)

Chapter 2

INFRARED SPECTRUM OF ALUMINUM BOROHYDRIDE AND BERYLLIUM BOROHYDRIDE

By Arthur G. Maki

Introduction

We have measured the infrared spectrum of aluminum borohydride (Al(BH₄)₂) and beryllium borohydride (Be(BH₄)₂). Ultimately we would hope to be able to improve the assignments for the fundamental vibrational frequencies of the aluminum compound and to make a corresponding set of assignments for the beryllium compound. The present report, however, will be concerned with general observations regarding the spectra which have thus far been obtained. More spectral data will soon be available and at that time more detailed consideration will be given to the assignments.

Aluminum Borohydride

Emery and Taylor 1 have measured the Raman spectrum of Al(BH $_4$) $_3$ while Price 2 has reported the infrared absorption spectrum. The infrared work of Price was done with a low resolution instrument and it was hoped that higher resolution work would yield information on the band contours. Such information would be very helpful in making assignments.

We have observed the gas phase spectrum of $Al(BH_4)$, in the region from 4000 to 325 cm⁻¹ with a resolution of about 0.8 cm⁻¹. In addition, the B-H stretching fundamental bands have been observed (from 2400 to 2600 cm⁻¹) on a high resolution instrument capable of resolving two lines 0.08 cm⁻¹ apart.

In an ideal situation, a resolution of 0.8 cm⁻¹ would be expected to give different band contours for vibrations of different symmetry species. A rough calculation of the geometry of the molecule indicates that parallel bands should have a strong central Q-branch and P- and R-branches separated by about 16 cm⁻¹. Perpendicular bands, however, would be expected to be broad and featureless with a width of about 25 cm⁻¹. Under higher resolution the perpendicular bands would be expected to have a series of lines 0.16 cm⁻¹ apart while the P- and R-branches of a parallel band would have a line spacing of 0.30 cm⁻¹.

The observed bands have no resolvable fine structure even under conditions such that lines 0.08 cm⁻¹ apart could be easily resolved. This means that the band contours are of no help in making the assignments for Al(BH₄)₃. The cause of this difficulty is apparently two-fold. First of all we know that there is at least one low frequency vibration and we can expect several others. As a consequence there will be a fairly large number of molecules in excited vibrational states thus giving rise to so-called hot bands which will overlap the fundamental bands. In addition, the normal isotopic ratio for boron is 18.8% B¹⁰ and 81.2% B¹¹.

Consequently our sample contains 53% Al(B¹¹H₄)₃, 37% AlB¹⁰H₄(B¹¹H₄)₂, 9% AlB¹¹H₄(B¹⁰H₄)₂, and 1% Al(B¹⁰H₄)₃. The molecules containing both B¹⁰ and B¹¹ will of course be asymmetric rotors and their vibration-rotation spectrum will be rather complex.

We have also measured the low temperature infrared spectrum of solid A1(BH₄)₃. Since the sample was at a temperature near -150°C, the possibility of difference transitions (transitions originating in an excited vibrational state) is eliminated. The fact that the solid and gas phase spectra are very similar indicates that none of the strong absorption bands can be attributed to such difference transitions. The spectrum of solid A1(BH₄)₃ has only been obtained from 4000 to 625 cm⁻¹. Future work is planned which will extend the spectrum to longer wavelengths.

Table 1 gives tentative wavenumber measurements for the absorption bands of aluminum borohydride. The Raman measurements of Emery and Taylor are also given.

Beryllium Borohydride

Initial attempts at obtaining the gas phase infrared spectrum have not been successful. The difficulty is caused by the reactivity of this compound. In addition to attacking the usual infrared window materials (NaCl or KBr) we find that it rapidly attacks small amounts of impurities adsorbed on the walls of our absorption cells. At present. Lowever, we feel that these difficulties can be overcome.

In spite of the fact that we were unable to obtain any helpful information from the band contours of the aluminum compound, we have hopes that the gas phase spectrum of the beryllium compound will be of aid in making the vibrational assignments. Since this molecule has fewer atoms and is lighter, it is expected to have fewer low-lying vibrations thus ameliorating the difficulty caused by hot bands. This gain could be off-set, however, if the torsional

frequency is lower. The presence of only two boron atoms per molecule also improves the difficulty caused by the mixture of isotopes. Finally, the smaller moment of inertia for the beryllium compound will cause the bands to be more spread out and the band contours should be better defined.

We have obtained the spectrum of solid Be(BH₄)₂ at about -150°C. The spectrum of Be(BH₄)₂ reported by Price et al³⁴ seems to be erroneous. Price later reported² that Be(BH₄)₂ reacts with the window material used in the infrared absorption cells. We have found that diborane is one product of this reaction. The spectrum reported by Price et al is evidently due to diborane and the solid product of the reaction between Be(BH₄)₂ and the window material. Since the reaction with the usual window materials is extremely rapid (the reaction goes to completion in times of the order of seconds or less), it is most unlikely that earlier workers could have observed the infrared spectrum of Be(BH₄)₂.

The spectrum for solid Be(BH₄) is also given in Table 1. As expected there are striking similarities between the spectra of diborane, beryllium borohydride, and aluminum borohydride. As an aid to the assignments, however, we should still like to have the gas phase spectrum of Be(BH₄). The band contours of this compound may be of immeasurable help in making the assignments. Work in this direction is continuing. Further work is also planned in order to extend the spectrum of solid Be(BH₄) to wavelengths greater than 15 μ .

References

- [1] A. R. Emery and R. C. Taylor, Spectrochimica Acta 16, 1455 (1960).
- [2] W. C. Price, J. Chem. Phys. <u>17</u>, 1044 (1949).
- [3] W. C. Trice, H. C. Longnet-Higgins, B. Rice, and T. F. Young, J. Chem. Phys. <u>17</u>, 217 (1949).

Table 1 Infrared and Raman Spectra of Aluminum Borohydride and Beryllium Borohydride Given in Wavenumbers (cm⁻¹)

	11(BH ₄) ₃		Be(BH ₄) ₂
Raman spectrum of liquid (see Ref. 1)	Y.Rgas	I.Rsolid at -150°C	I.R. absorption of solid at ca150°C
2549 2473 (polarized) 2226 (w) 2069 (polarized) 2010 1925 1884 (w) 1521 (w) 1495 (polarized) 1392 (w) 1149 1116 (polarized) 976 602	3922 (w) 2966 (w) 2932 (w) 2890 (w) 2800 (w) 2556 (s) 2491 (s) 2219.6 (w) 2070 (w) 2031 (s) 1930 (w) 1523 (b.oad) Overlapped 1420 (broad) 1112 (s) 984 (m) 764 (w) 607 (s)	2544 (s) 2474 (s) 2235 (m) 2065 (m) 2030 (s) 1920 (w) 1523 (s) 1455 (s) 1415 (s) 1104 (s) 970 (w) 774 (m)	2515 (m) 2455 (m) 2340 (s) 2110 (s) 1998 (w) 1553 (s) 1456 (s) 1325 (s) 1131 (m) 1010 (w) 905 (w) 735 (s)
510 (polarized) 318	-		

medium strong

CHAPTER 3

TRANSITIONS IN VAPOR-DEPOSITED ALUMINA

by J. J. Diamond and A. L. Dragoo

In the course of vaporization studies in vacuum on a liquid alumina drop at the end of a polycrystalline $Al_8\,O_3$ rod, a transparent film developed on the pyrex flask surrounding the sample. When the deposition time exceeded 40 minutes, the film often peeled loose from the surface and tended to curl up evidencing the presence of some strain. The film was subjected to analysis with an x-ray diffractometer and with electron diffraction, neither of which gave any pattern, indicating an "amorphous" film within the limits of detectability.

In addition, petrographic examination showed an isotropic film with a refractive index of 1.614. Its surface area was 0.6 square meters per gram, as determined by N_2 adsorption in B.E.T. equipment. Infrared absorption showed the water band at 2.9 μ and several absorption "fringes" because the film was of the same order of thickness as the wave length of the incident radiation. The film was generally transparent from 1 to 8 μ ; the transmission fell smoothly to 10.5 μ and the film was essentially opaque beyond that to 16 μ . The material lost about 4% in weight when ignited to 1200°C. The material is thus a slightly hygroscopic, slightly porous, amorphous, essentially unhydrated alumina.

Stumpf et. ai. [1] reported that an amorphous phase formed initially upon dehydration of hydrated aluminas, but their material showed a broad band at 4.5Å in contrast to ours which showed none. Amorphous films were reportedly formed on aluminum foils by oxidation in air and in oxygen and by anodization [2,3,4].

The manner of preparing the initial $Al_2\,O_3$ -form is known to determine the path by which the material transforms to α - $Al_2\,O_3$. Since our method of preparing amorphous alumina differed from previous techniques, an investigation was undertaken of the transition of our film to α - $Al_2\,O_3$.

<u>Method</u>

To form the film, the end of a polycrystalline ${\rm Al_2\,O_3}$ rod was melted in a vacuum of 1 x 10⁻⁶ torr using an A. D. Little arc image furnace, with the arc operated at 150 A. The specimen rod was held near the "cool" end in a spiral of platinum-rhodium wire and supported along the optical axis of the furnace in the middle of a 500-ml. pyrex round-bottomed flask. The specimens used were rods of Morganite alumina, 0.25 and 0.312 inches in diameter. The purity of the material as supplied was determined by emission spectroscopy to be about 99.7-99.9% ${\rm Al_2\,O_3}$, the major impurities being Si, Fe and Ga. The samples were further purified before use to 99.95-99.99% ${\rm Al_2\,O_3}$ by preferential vaporization of the volatile impurities from the molten tip in vacuum.

The flasks were rinsed several times with distilled water and dried in a drying oven at 125°C. Cleaning of the surface with dichromate or nitric acid solutions caused the film to bond too strongly to the flask. Flasks could not be reused after the crop of separated film had been removed because new layers bonded too firmly to the remaining uneven surface.

A sapphire disk, 0.75 inches in diameter, was cleaned in the same manner as the flasks and inserted in a flask during a series of runs to test the effect of the substrate on the formation of the film.

Samples of the film were pulverized in an alumina mortar, examined with x-ray diffractometer for crystallinity and subjected to the following heat treatment:

- Sample 1: 700° (16 hours), 800° (16 hours), 900° (16 hours), 1000° (16 hours), 1100° (16-1/2 hours), 1200° (17 hours) and 1300° (6 hours);
- Sample 2: 650° (16 hours), 750° (16 hours), 850° (16 hours), 950° (16 hours), 980° (16 hours) and 1200° (24 hours);
- Sample 3: at 700° for successive total annealing times of 1/2, 2-1/2, 10-1/2, 16 and 32 hours;
- Sample 4: 900° for successive total annealing times of 1/2, 2, 8, 16 and 32 hours;
- Sample 5: same as 4 except at 600°C.

The anneals were carried out in an electrically-heated, box-type furnace, and the temperature of the furnace was read from the controller with an uncertainty of ±10°C. X-ray diffraction patterns were obtained after each anneal. As a check on the temperature readings, an additional sample was annealed at 50° intervals beginning at 650° (furnace temperature) for durations of 24 hours, and the temperature was measured with a Pt/Pt-Rh thermocouple. A correction of -30°C was found to be required over the temperature range of 650° to 1050°C. This correction must be applied to the heat treatment temperatures given above.

A thin film was prepared for examination by electron microscopy and diffraction by depositing the film on a section of microscope slide placed inside the flask. Deposition was discontinued once peeling of the film began, and a fragment of the film was mounted in a heating stage of the electron microscope. The film was observed before heating and at 400°, 620°, 630° and 760°. A sample of film obtained from deposition on a sapphire disk was also analyzed without heating the film.

Resui

presentative d-spacings and line intensities are illustrated in Fig. 1 for x-ray diffraction analysis. The broad lines have been drawn to correspond with the diffuse peaks of the diffraction pattern. The diffuse lines common at temperatures below $970^{\circ}C$ can be ascribed to small crystal size or to crystal imperfection.

A very weak line appeared first at d=1.39Å after anneal of one-half hour at 570°C; lines next appeared at 1.98 and 2.08Å after annealing for a total of 8 hours at 570°C (Fig. la). All lines obtained at 570°C were very weak and often nearly indistinguishable from background. The certainty of a line was determined by its presence in more than one pattern.

Sample 3 (annealed at 670°C, corrected) corresponded to Fig. 1a for an annealing time of 2-1/2 hours, except for the absence of the line at 2.08Å. Sample 3 showed a pattern similar to Fig. 1b after 10-1/2 hours at 670° whereas sample 1 showed a less developed stage of this pattern after annealing for 16 hours at 670°. This suggests that the transition to the form of alumina giving the pattern 1b occurs between 660° and 680°C and that sample 3 was above sample 1 in this range of temperature.

The form represented by Fig. 1b was present up to 900° for 16 hours annealing time. Its d-spacings and intensities are compared in Table 1 with those of the delta and theta aluminas reported by Stumpf [5], the delta alumina reported by Rooksby [6] and the results of Jellinek and Fankuchen [7] for alumina gel annealed at 800°C for one hour. Although many of Stumpf's delta and theta lines are absent from our form, his strongest lines are present. Howe or, our transition alumina has a line at 2.39Å which is not present in either the delta or theta forms of Stumpf. The delta form reported by Rooksby shows little correspondence with our form. The d-spacings of Jellinek and Fankuchen correspond with ours for their strongest intensities although their relative intensities differ. Our transition alumina thus approximates most closely a mixture of the delta and theta aluminas reported by St. of.

Annealing of the film for 16 hours at 920° or for 32 hours at 870° resulted in the appearance of lines of α -alumina. Disappearance of the transition form was very nearly completed by 1070°. The patterns obtained at 950° and above began to show sharp lines indicating that the grain size was increasing.

Studies of the film were carried out along its edge with the electron microscope where the film was expected to be thinner. Fig. 2a shows the edge of the film (white area) which was deposited on the sapphire disk. Grain sizes in Fig. 2a are estimated to be on the order of 2200Å (28,000 magnification). Heating the film from the glass slide to 630°C produces the appearance of feathering along the edge due to areas of higher transmission having a breadth of ~11000Å (11,000 X).

Table 1
Transition Aluminas

This E:		Delta	Stump	[[5] The		Rooksby	[6]	Jelline Fankuch	en [7]
						1		800°,	
<u>d</u>	I	<u>a</u>	I	<u>d</u>	Ī	<u>d</u>	Ī	<u>d</u>	I
_]	_					7.97	8		
	ļ					6.58	10		
			- 1	5.2	3		20		
		5.02	3		,	5.07	20	4.53	8
4.54	2	4.55	3 2	4.5	6	4.05	20	4.00	
		4.07	-			4.05	20	3.90	4
			. 1	3.53	2	3.56	7		
						3.40	10	3.38	4
						3.28	15		
						3.21	10		
						3.03	10	2.82	8
2.839	4	2.87	4	2.85	8	2.783	30	2.02	ľ
		0.70	8	2.72	8	2.737	30		
2.732	4	2.73 2.58	3	2.72	3	2.593	70		
2.444	3	2.43	6	2.43	8	2.457	70		İ .
2.393	2	2.75			}			2.38	24
2.312	2			2.31	6	2.311	40		
2.278	3	2.28	4			2.277	30	2.27	12
				2.24	1	0.156	25		}
		,				2.156	25	2.09	4
				2.01	8			2.07	
1.974	6	1.99	8	2.01	"	1.989	70	1.98	62
1.9/4	0	1.95	3			1.950	65		
	!	1.91	2	1.91	4				
		1.80	2	1.80		1.793	7	1.81	1
]			ł	1.73		1.701	4	1.70	4
]		l	1.61	2	1.616	10	1.60	4
			,	1.54	6	1.602 1.543	15 10	1.53	12
		1.54	3	1.54	, ,	1.507	20	1.55	
1.52	1	1.51 1.49	4	1.49	4	1.507	-		
		1.45	3	1.45		1.462	8		
		1.75		1.43		1			
		1.40	6	1.40		1.407	60	1.40	100
1.394	10	1.39	10	1.39		1.392	100	1	
				1.34		ł	1	l	1
	l	1.29	2	1.29		1 250	/.		
	l	1.26	1	1.26		1.250 1.238	9		
				1.23	-	1.180	4		
		1		1.14	2	1.134	10		ĺ
1		I	l	1	, -		1	i	1

Heating to a higher temperature caused a fragment of the film to break off and larger crystalline areas to appear.

The film deposited on the glass slide showed no diffraction pattern before heating, faint rings at 620° to 630°C (2c) and sharp rings at 760°C (2d) after the larger crystalline areas had appeared. The film obtained from deposition on the sapphire disk showed one faint ring nearly masked by a diffuse halo (2e). The d-spacings are given in Table 2.

Al ₂ O ₃ or 620°-630°C	n Glass 760°C	$ ext{Al}_2 ext{O}_3$ on sapphire no heating
2.166 α 1.966 δ or θ	2.554 α 2.379 α 2.166 α 1.966 δ or θ 1.374 α	
1.147 (?) α	1.190 α	1.25 δ or θ

A designation has been placed opposite of each d-spacing to indicate the form of alumina to which it most closely corresponds.

In contrast to the x-ray analysis of the film deposited on glass, the electron diffraction showed a transition of the amorphous film to α -alumina without going through an intermediate form. On the one hand this could arise from different crystallization along the edge as opposed to the bulk of the film. On the other hand, although the film was only exposed to the intense electron beam used for diffraction during short intervals, some beam crystallization may have resulted in the heated film. An effective temperature for the electrons can be estimated to lie between 150° and 400°C, depending on the rate at which the film loses heat to its surroundings. Consequently, the additional heating produced by the beam may have been easily sufficient to cause the transition to α -alumina.

The film which separated from the sapphire disk did not grow epitaxially on the sapphire as evidenced by the small grain size. Although the crystallinity of the substrate appears to have induced some crystallization of the film, the single faint ring of a transition form suggests that the impinging vapor species, primarily Al and O [8], cool too rapidly to form the ordered α -alumina structure and possibly transfer enough energy to the atoms near the surface of the substrate to disrupt them.

The Transition Alumina

Ervin [9] suggested that the strongest line which occurs at 1.39Å in many of the transition aluminas arises because the oxygen atoms are in cubic close-packing and corresponds to the (440) line of the spinel unit cell. He also proposed that the strong line which occurs at 1.985-2.03Å corres onds to the (400) line of the spinel pattern. Our transition alumina had a strong line at 1.974Å, but this may be a combination of the 1.95 and 1.99Å lines of δ-alumina. Ervin explained, on the one hand, the formation of α -alumina directly from the monohydrate, diaspore, on the basis that both contain oxygen atoms in hexagonal closepacking. On the other hand, the monohydrate, boehmite, forms y-alumina because of a similar cubic close-packing among the oxygen atoms. The aluminum ions are assumed to be randomly distributed among octahedral and tetrahedral interstices in the metastable, transition forms. The transition aluminas result from an increased ordering of the aluminum ions. At a sufficiently high temperature the cubic close-packed oxide lattice shifts to the hexagonal close-packed lattice of corundum.

Plummer [10] carried Ervin's theory a step further in his study of the formation of metastable alumina by rapid cooling of droplets of molten alumina. Rapid quenching of particles of γ - or α -alumina, less than 15µ diameter, melted in an oxy-hydrogen flame, gave almost entirely a mixture of δ - and θ -aluminas. Slow cooling of molten alumina, however, produced α -alumina. A mechan sm thus was required which gave the transition alumina in preference to the thermodynamically more stable α -alumina. He suggested that tetrahedral (T) and octahedral (O) groups of oxygen atoms tend to exist longer in the liquid due to their symmetry and mass and are held together by the more mobile aluminum atoms. At high temperatures, the T-groups are in the majority. If the melt cools rapidly, the aluminum atoms in T-holes will direct new aluminum atoms to positions above 0-holes. These in turn will cause the next group of oxygen atoms to take the O-sites creating ϵ spinel structure. If cooling proceeds slowly, the aluminum atoms have time to rearrange and oxygen groups are directed to sites above T-holes resulting in hexagonal close-packing.

The formation of the transition aluminas, which are metastable with respect to α -alumina, from the amorphous film possibly follows a mechanism similar to that outlined by Plummer. The oxygen atoms first group into T-groups with most of the aluminum ions in T-holes. These groups of oxygen are bound together by aluminum ions in 0-holes which causes the cubic close-packing of the oxygen atoms. Since the oxygen atoms are not very mobile only small grains are formed at first resulting in the diffuse diffraction patterns of the transition forms. At 870°C or above transformation to α -alumina takes place in the manner proposed by Ervin. Above 900°C, the x-ray diffraction lines become sharper because the oxygen atoms have greater mobility resulting in detectable grain growth.

References

- [1] H. C. Stumpf, A. S. Russell, J. W. Newsome and C. M. Tucker, Ind. Eng. Chem. 42, 1398-1403 (1950).
- [2] G. D. Preston and L. L. Bircumshaw, Phil. Mag. 22, 654-65 (1936).
- [3] V. G. Hass, Optik 1, 134-43 (1946).
- [4] M. S. Hunter and P. Fowle, J. Electrochem. Soc. 103, 482-5 (1956).
- [5] J. W. Newsome, H. W. Heiser, A. S. Russell and H. C. Stumpf, Aluminum Company of America, Alcoa Research Laboratories, Tech. Paper No. 10 (revised, 1960), p. 12.
- [6] H. P. Rooksby, J. Appl. Chem. 8, 44-49 (1958).
- [7] M. H. Jellinek and I. Fankuchen, Ind. Eng. Chem. 41, 2259-65 (1949).
- [8] J. Drowart, G. DeMaria, R. P. Burns and M. G. Inghram, J. Chem. Phys. 32, 1366 (1960).
- [9] G. Ervin, Jr., Acta Cryst. <u>5</u>, 103-8 (1952).
- [10] M. Plummer, J. Appl. Chem. 8, 35-44 (1958).

Figure 1. Transitions of Amorphous $A1_{>}\, O_3$ Films, d-spacings and Intensities

Figure 2. Electron Microscopic and Diffraction Study of Vapor-deposited ${\rm Al_2\,O_3}$ Films

a. Edge of Film, No Heating, (28,000 %)

b. Feathering of Edge, 630°C, (11,000 X)

c. Film from Deposition on Glass, 620° to 630°C

d. Film from Deposition on Glass, 760°C

e. Film from Deposition on Sapphire, No Heating

Chapter 4

THE ENTHALPY OF GRAPHITE FROM 1200 to 2600°K

by E. D. West and S. Ishihara

Experimental

Under a related NBS project, measurements have been made of the increase in the enthalpy of graphite between the temperature of a calorimeter near room temperature and a furnace operating at temperatures from 1200 to 2600°K.

The specimen was a solid cylinder machined from a larger piece of grade CCH graphite (National Carbon Company) density 1.6 g/cm³. According to the supplier, this grade is purified by the same treatment used for spectroscopic grades. After machining, it was heated in our furnace at temperatures up to 2700°K for several hours before measurements were begun. Spectrographic analysis showed less than 0.002% impurities.

The enthalpy data fit the equation

$$H_{T}-H_{298.15} = 28.9004T-1.045 \times 1)^{-4}T^{2}-16126.2 \log_{10}T/313.15-8907.3$$

where H is in absolute Joules per gram atomic weight (12.01115) and T is in degrees Kelvin. The estimated standard error for an enthalpy value calculated from the equation does not exceed 0.14%. Systematic errors in measuring the furnace temperature are estimated to be not more than 0.3% due to the pyrometer calibration and not more than 0.4% due to the difference between the observed temperature and the average temperature of the capsule.

Enthalpy differences calculated from the equation agree with those reported by Evans [1] in Table 2-39 in a previous report (NBS No. 6645); differences range from a maximum of 1% below Table 2-39 at 1200°K to 0.7% above at 2500°K.

This work is to be presented along with a description of the method at the Third Symposium on Thermophysical Properties at Purdue University in March 1965.

Discussion

In the case of carbon, two questions must be considered in a presentation of the thermodynamic properties of the standard state: (1) are the data sufficiently accurate in themselves? (2) Do they refer to a standard crystalline form of carbon?

Enthalpy differences calculated from our equation lie consistently about 0.7% below the smooth data of McDonald [1] for spectroscopic grade SPK graphite (density 1.9). They agree with recent reviews of older data, maximum deviations being 1% below Dergazarian [3] et al. at 1200°K and 0.7% above Evans [1] at 2500°K. The heat capacity derived from our enthalpy equation are well within the scatter of the observations and the estimated accuracy of Rasor and McClelland [4] in the range 1500-2600°K. Since the older experimental work includes measurements on natural graphite, this consensus supports reasonable confidence that the enthalpy and heat capacity are known to a few percent from room temperature to 2600°K.

Regarding the second question, there is experimental evidence to indicate differences in the heat capacity of different graphites. DeSorbo [5] reports enthalpies at 298.15°K for Ceylon natural graphite and an Acheson graphite which differ by 88 J/gfw, almost twice the tolerance on the heat of formation of CO2 set by Rossini and Jessup [6] in their paper recommending graphite as the standard state for carbon. The corresponding difference in heat capacity might be expected to extend at least to somewhat higher temperatures. There are obvious systematic trends amounting to several percent in the high temperature data for the four samples of Rasor and McClelland, but they state that these differences are not significant. The specific heat for pyrolytic graphite is reported to be from 10 to 50% above that of "ordinary" graphite in the temperature range 300 to 1300°K [7]. The difference in H_T-H_{208} between our measurements and those of McDonald on Al₂03 near 1200 K is about 0.3%. Taking this to represent the systematic difference between the two methods, we have 0.5% difference between smoothed values at 1200°K to ascribe to random errors of measurement or to a difference in the samples. Considering our standard error of 0.14% and a slightly larger value for McDonald's data, the 0.5% difference is too large to claim no significant difference in samples, but too small to be reasonably sure of a significant difference.

References

- 1. W. H. Evans, Table 2-39, NBS Report 6645, 1 January 1960.
- 2. R. A. McDonald, private communication. Smoothed data are given by H. Prophet and D. R. Stull, J. Chem. Eng. Data 8, 78 (1963).
- 3. T. E. Dergazarian, N. J. Dumont, L. A. du Plessis, W. E. Hatton, S. Levine, F. L. Oetting, H. Propher, G. C. Sinke, D. R. Stull, and C. J. Thompson, JANAF Interim Thermochemical Tables, The Dow Chemical Co., Midland, Michigan (March 31, 1961).

References (Cont.)

- 4. N. S. Rasor and J. D. McClelland, J. Phys. Chem. Solids <u>15</u>, 17 (1960); Wright Air Development Command Technical Report 56-400 (1956).
- W. De Sorbo and W. W. Tyler, J. Chem. Phys. <u>21</u>, 1660 (1953);
 W. De Sorbo, J. Am. Chem. Soc. <u>77</u>, 4713 (1955).
- 6. F. D. Rossini and R. S. Jessup, J. Res. Natl. Bur. Stds. 21, 491 (1938).
- 7. High Temperature Materials, Inc., Revised Data Sheet for Pyrolytic Graphite, February 12, 1962.

Chapter 5

HIGH TEMPERATURE MATRIX SPECTROSCOPY

by D. E. Mann

1. MgF2: Magnesium Fluoride: The infrared spectrum of MgF2 isolated in a dilute solid krypton matrix at 20°K is presently being investigated in the apparatus described briefly below. Preliminary results in the region below 300 cm⁻¹ have revealed a moderately intense band at 242 cm^{-1*}, as well as a few weak features at lower frequencies. The matrix was warmed from 20°K to 60°K and the 242 cm⁻¹ band was found to decrease in intensity suggesting that it is monomeric rather than polymeric in origin. (Diffusion at the higher matrix temperatures would be expected to lead to increased band intensity if a di- or polymeric species was responsible for its occurrence.) Further experiments now in progress may provide corroboration of the assignment of the 242 cm⁻¹ band to the v₂ bending fundamental of MgF2.

The apparatus now in use comprises (a) a variable-temperature cryostat which employs a Cryo-Tip liquefier unit; (b) an electron-bombardment furnace, and a Perkin-Elmer 301 far-infrared spectrometer.

2. Emission Spectrum of F_2^{\dagger} : In the course of a recent investigation of the orange emission bands of F_2 (with Dr. T. L. Porter) a new band system was discovered which has now been assigned to the heretofore unrecorded species F_2^{\dagger} . This is of special interest for the present program because F_2^{\dagger} is isoelectronic with the molecule F_0 . Twelve bands in the region 5300-4300 A have now been analyzed and have led to the conclusion that a portion of $A^2\pi - X^2\pi$ system of F_2^{\dagger} has been observed. It is expected that molecular constants for both states as well as estimates of their dissociation energies can be reported in the near future.

In agreement with Linevsky's results.

Chapter 6

HIGH TEMPERATURE, MASS SPECTROMETRIC STUDY OF THE COMPOUND, Al, O, BeO

by J. Efimenko

I. The Al, O, -BeO System

A mass spectrometric study of this system is being made by observing the vapor species in equilibrium with selected, well characterized initial compositions as given in the ω^{\dagger} id-liquid phase diagram (Lang, Fillmore and Maxwell, J. Res. NBS 48, 301 (1952)).

Experimental

The ${\rm Al_2\,0_3}$ BeO compound was synthesized from alumina, having a carbon content below 0.0034, and beryllia by fusion in an arc image hot spot by A. Dragoo at NBS. During the preparation the fused material did not come into contact with any metallic container. The solid was crushed in a diamond mortar and ground in an alumina mortar. A sample of the material was placed in a tungsten cup and inserted into a tungsten effusion cell. Temperature-intensity data were collected for the species: Be⁺, O⁺, Al⁺, O₂⁺, AlOBe⁺, Al₂O⁺ and (BeO)₂ + in the temperature range 2180°-2570°K.

Discussion

The reactions selected for consideration are the following:

- (1) Al(g) + Be(g) + O(g) = AlOBe(g)
- (2) $2Al(g) + G(g) \Rightarrow Al_2 O(g)$
- (3) $Al_2 O(g) + Be(g) \Rightarrow AlOBe(g) + Al(g)$
- (4) $1/2 O_{p}(g)$ $\Rightarrow O(g)$
- (5) $Al_2 O_3 \cdot BeO(1) \Rightarrow 2Al(g) + Be(g) + 4O(g)$

Table 1 contains the partial pressures in atmospheres of the species considered. $\dot{}$

Table 1

Mass Spectrometric Temperature-Partial Pressure Data

	Atmospheres						
r °K	P _{Be}	P _O	P _{A1}	P _{A10Be}	PAl ₂ 0	b ^{OS}	
	x10 ^{−7}	x10-7	x10⁻º	x10 ⁻¹⁰	x10 ⁻¹⁰	x10⁻ ⁸	
2152	0.225	0.360	0.840	0.0152	0.207		
2211	0.513	0.914	2.09	∴162	0.593		
2290	1.27	2.15	6.26	ს. 700	2.27		
2179	0.275	0.394	0.98u	0.0523	2.15		
2226	0.480	0.800	1.37	0.151	0.54		
2279	0.931	1.61	0.435	0.468	1.35		
2337	1.88	3.43	10.10	1.280	3.95		
2205	0.397	0.554	1 . %	0.0952	0.0426		
2290	1.12	1.96	50	0.592	1.94		
2290	1.11	1.88	5.30	0.592	1.88		
2343	2.14	3.90	11.60	1.57	4.73		
2417	4.77	9.00	29.70	4.27	12.60	1.05	
2470	8.20	16.70	53.50	8.26	24.80	1.84	
2518	1.17	29.20	95.00	17.00	49.60	3.57	
2567	17.80	42.40	135.00	19.30	50.80	4.35	

These partial pressures were computed from the relation, $p = \frac{\Gamma^+ T}{S\sigma v}$, where S is the instrument sensitivity for each specie; σ , relative ionization cross-section; γ , the multiplier efficiency for each specie; Γ^+ , the ion intensity. The instrument sensitivity for silver, the calibrating material, was converted to specie sensitivity by the relation:

$$S_x = S_{Ag} \cdot \frac{\sigma_x}{\sigma_{Ag}} \cdot \frac{T_{Ag}}{T_x} \cdot \frac{\gamma_x}{\gamma_{Ag}}$$

Table 2 lists auxiliary computation data.

fable 2
Auxiliary Computation Data

	Sensitivity Values				
Specie	^σ (1)	Υ(2)	T *K		
Ag	34.8	2000	1275		
Be	6.3	2800			
O	3.3	4200			
A1	15.4	2500			
O ₂	6.6	5000			
AlOBe	25.0	5000			
Al _e O	34.1	5000			

- Note: (1) J. W. Otvos and D. P. Stevenson, J. Am. Chem. Soc. <u>78</u>, 546-551 (1956)
 - (2) Average values obtained experimentally by the author
 - (3) Silver sensitivity SAg = 5.0×10^{-7} amp/mm Hg

Free Energy Functions

Ee Table A-4, NBS Report 6928, July, 1960

Table A-8, NBS Report 6928, July, 1960

Al Table A-13, NBS Report 6928, July 1960

O Table A-83, NBS Report 7437, January, 1962

Al O Table A-57, NBS Report 8186, January, 1964

Al OBe Table A-90, NBS Report 8504, July, 1964

With the aid of free energy functions and equilibrium constants for the reaction (1)-(4), the enthalpies change at absolute zero were computed and listed in Table 3.

Table 3
Enthalpy Changes from Free Energy Functions

Reaction	(1)	(2)	(3)	(4)
т *к	-△H° kcal/mol	-△H° kcal/mol	+∆H₀° kcal/mol	+△H° kcal/mol
2152	223.14	260.65	37.51	
2211	228.11	248.05	19.94	
2290	230.51	249.36	18.85	
2179	229.30	260.39	31.09	
2226	232.26	253.79	17.10	
2279	231.71	250.51	18.80	
2337	231.64	263.22	31.58	
2205	229.25	250.38	21.63	
2290	231.15	250.34	19.19	
2290	231:16	250.69	19.53	
2343	231.32	251.00	19.68	
2417	235.92	250.16	14.24	59.29
2470	235.96	251.00	15.04	59.92
2518	247.72*	250.01	2.29*	60.23
2567	235.91	250.38	14.47	57.67
	<231.24>	<253.10⊳	<21.30>	<59.28>

Note (1) <> , the arithmetic mean value

Experimental data permitted graphical derivation of the ΔH values also and a summary is presented in Table 3A.

^{(2) *} enthalpy not included in mean value.

Table 3A Enthalpies Changes-Summary

Method	van't Hoff	Equation	Free Energy Functions
Reactive	ΔH [•] <2350> kca17mo1	ΔΗ° kcal/mol	ΔΗ. kcal/mol
(1) (2)	-228.0	-221.8	-231.2 ± 3.3
(3)	-275.0 + 24.8	-269.5 + 25.5	$-253.1 \pm 4.6 + 21.3 \pm 6.2$
(4) (5)	+826.0		+ 59.3 ± 1.0

Note: (a) The error shown is the mean square deviation

Reactions (2) and (4) permit a check on the reliability of the data since both reactions have been already studied. The enthalpy for dissociation of O_2 (g) is 58.983 kcal/mol (NBS Report 8504, p. 165, July, 1964)) and the value from this stady is $\triangle H_0^{\bullet} = 59.28$. The enthalpy change for reaction (2), $\triangle H_0^{\bullet} = -253.1$ kcal/mol, is within experimental error of other reported values, -254 ± 7 kcal/mol (R. F. Porter, P. Schissel and M. G. Inghram, J. Chem. Phys. 23, 399 (1955)) and -243.4 ± 7 (J. Drowart, G. De Maria, R. P. Burns and M. G. Inghram, J. Chem. Phys. 32, 1372 (1960)). These comparisons indicate that the present data may be somewhat high.

For reaction (5) the enthalpy change could be obtained only by use of the van't Hoff relation since free energy functions are lacking for $Al_2 O_3$. BeO liquid in the experimental range of temperatures.

Various sources of errors must be considered in the experimental data. At the conclusion of some runs, it was observed that the initial orifice area was decreased by a deposit of crystals about the perimeter. Under the microscope they had a metallic appearance and very likely were tungsten. The effect occurred in spite of the fact that the orifice half of the cells appeared approximately 50° hotter than the bottom half of the effusion cell. The magnitude of error this effect caused is uncertain but assumed to be small or negligible since the sampling area of the beam was less than the orifice image area. Experimentally the beam intensity was noticed not to decrease until the orifice closed to a very small size.

An analysis of systematic errors will not be made at the present time since one assumes that they remain constant throughout an experiment. Evidence is being accumulated on the effect of temperature, ion-intensity, multiplier efficiency and instrument sensitivity. For the enthalpy changes for reactions (1), (2), (3) and (4) ar

computed the Mean-Square Deviations,
$$\sigma$$
.

$$\sigma = \left(\frac{\sum d^2}{n}\right)^{1/2}, \text{ where } d = Xn-X \text{ and } X \text{ is the}$$

arithmetic mean.

Preliminary measurements were made on the $3Al_2O_3$ *BeO compound in the temperature range 1800° - 2100° C (uncorrected). The mass spectrometric peaks detected correspond to the following ions: Be⁺, O⁺, Al⁺, AlO⁺, Al₂O⁺ plus alkali and alkaline earth impurities. An arc image sample of the 3:1 mol ratio compound has been prepared and will be examined at high temperatures.

APPENDIX I

FORMULA-PROPERTY INDEX FOR THE FIRST TWELVE PRELIMINARY REPORTS

by Howard W. Flieger, Jr.

An index has been prepared for the first twelve Preliminary Reports to assist the reader in searching for the properties of materials in his interest. The present (13th) report is excluded in this index.

For the purpose of this index the NBS report numbers are referred to as the following Volume numbers:

NBS	VOLUME
REPORT	NU MB ER
6297	1
6484	2
6645	3
6928	4
709 3	5
7192	6
7437	7
7587	8
7796	9
8033	10
8186	11
8504	12

The arrangement of the chemical formulae in the index is alphabetical. The placement of the chemical symbols within a given formula is also alphabetical. Chemical isomers are not distinguished. In general four printing spaces are allocated to a chemical symbol and its numerical occurrence in a fromula. For example, lithium aluminum fluoride, Li₃AlF₆, will be found in the index as AL F 6LI 3. The components of chemical systems are separated by a series of hyphens. Thus Al₂O₃-TiO₂ appears as AL 2O 3---O 2TI. In future versions of the index the spacing may be condensed and the numbers may appear as subscripts.

The property and/or study reference consists of two parts; a letter followed by a number. The letter indicates the property or study and the number indicates the source or treatment of the information. The interpretation of the letters and numbers is found in the Key below.

The location of the references in the reports appaears as the Volume number above followed by the page number in parentheses. An exception to this rule occurs for Volumes 2, 3 and 4 where the pages in the appendices have not been numbered. For reference to be found in these appendices the Table number appears within the parentheses.

The extensive bibliographies found in several of the Preliminary Reports have not been included in the index. These bibliographies are listed below.

TITLE	VOLUME	PAGES
A Brief Review of the Heat Relationships Among the Crystalline Oxides and Oxyhydrates of Aluminum.	1	74 - 85
References to Recent Values for Heats of Formation.	5	169-173
The Heats of Formation of Inorganic Fluorine CompoundsA Survey.	6	92-175
Recent Additions to the Literature on the Chemistry of the Light Elements.	7	39-60
Thermochemical Data for Some Simple Hydrides and Inorganic Oxidizers.	7	79 -89
Recent Additions to the Literature Related to the Heats of Formation of Compounds of Selected Elements.	8	76-89
New Literature Relating to Heats of Formation of the Light Elements and Their Compounds.	9	40-81
Substance-Property Index for 1962.	9	82-156
A Bibliography Relating to Heats of Formation, Enthalpy Changes Resulting from Phase Changes, and the Heat Capacities of Aluminum and Beryllium Fluorides, Oxyfluorides, Chlorides,		
and Oxychlorides, and of Lithium Fluoride.	10	22-35
New Literature Relating to Heats of Formation of Fluorine Compounds of Selected Elements.	11	122-142
Preliminary List of Ionization Potentials or Electron Affinities of Light Element Compounds.	12	185-202

KEY to property or study:

Property or Study Letter

Interpretation

- A Heats of reaction, dissociation and formation.
- B Thermodynamic functions of solids, liquids and solutions.
- C Thermodynamic functions of gases.
- D Vapor pressure and vaporization equilibria, decomposition and dissociation studies, and heats of vaporization and sublimation.
- E Data of state and related physical properties.
- F Phase diagrams.
- G Absorption and emission spectroscopy including molecular constants.
- H Kinetic studies.
- J Chemical preparation and/or purification studies.
- K Electrical discharge (exploding wire) studies.
- L Calorimetry techniques.
- M Mass spectroscopy studies.

Source and Treatment Number

Source and/or treatment of information

- 1 NBS reported.
- 2 Literature (non-NBS) reported.
- 3 NBS critical evaluation, review and analysis of data.
- 4 Non-NBS critical evaluation, review and analysis of data.
- 5 Tables at a standard state.
- 6 Ideal Gas tables.
- 7 Theoretical or empirical estimate.
- 8 Apparatus description.
- Tables of thermodynamic properties with temperature or pressure argument and other tables.

FORMULA-PROPERTY INDEX FOR THE FARST TWELVE PRELIMANARY REPORTS

FORMULA	PROPERTY OR STUDY	VOLUME AND PAGE	FORMULA	PROPERTY OR STUDY	VOLUME AND PAGE
FORMULA AG AG AG CL AG AG CL AG AG AC AL AL AL AL AL AL AL AL AL	OR STUDY C.	AND PAGE 12(184) 12(184) 12(184) 12(184) 12(184) 12(184) 12(184) 12(184) 12(184) 12(184) 12(184) 12(184) 12(184) 12(186) 12(190) 22(2-1) 4(R 1) 22(1-13) 4(A13) 12(48) 12(48) 12(48) 12(48) 12(185) 6(187) 6(187) 6(188) 12(186) 12(185) 6(187) 12(186) 12(185) 12(186) 12(185) 12(186) 12(18	CL N 0 2 CL N 0 2 CL N 0 5 CL N 0 5 CL N 0 6 CL N 0 7 CL N 0 6 CL N 0 7 CL N 0 7 CL N 0 6 CL N 0 7 CL	OR STUDY STUDY C 5 2 2 3 9 9 9 1 2 2 5 6 6 6 2 9 5 2 5 5 5 5 5 1 8 9 1 9 2 2 5 7 5 5 6 6 6 2 9 5 2 5 2 2 5 5 9 9 5 2 2 5 5 9 9 5 2 2 5 5 9 9 5 2 2 5 5 9 9 5 2 2 5 5 9 9 5 2 2 5 5 9 9 5 2 2 5 5 9 9 2 2 5 5 9 9 2 2 5 5 9 9 2 2 5 5 9 9 5 2 5 2	AND PAGE 12(178) 7(94) 12(178) 7(94) 12(178) 7(90) 9(21) 11(90) 9(31) 11(90) 9(31) 11(167) 10(19) 4(28) 7(95) 7(94) 12(167) 12(168) 22(104) 4(C 2) 12(167) 12(177) 12(178) 12(20) 12(178) 12(27) 12(178) 12(20) 12(178) 12(27) 12(178) 12(20) 12(178) 12(27) 12(178) 12(20) 12(177) 12(20) 12(178) 12(20) 12(178) 12(27) 12(178) 12(20) 12(20)
AL CL 3	B3	1 (26)	CL 2H RMG O 4		

```
4(B 6)
2(1-64)
4(A68)
1( 44)
2( 51)
4( 36)
2( 89)
2(103)
4(C 2)
1( 65)
2( 88)
2(102)
3( 65)
4(C 2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1( 16)
2( 28)
1( 17)
2( 20)
2(2-19)
4(819)
1( 72)
2(105)
4(C 2)
2(1-46)
4(A50)
1( 43)
2( 51)
2( 26)
1( 15)
2( 26)
1( 17)
2( 2-15)
4(A55)
1( 43)
2( 51)
2( 173)
12(174)
12(174)
12(174)
12(174)
12(174)
12(174)
12(174)
12(174)
12(174)
12(174)
12(174)
12(174)
12(174)
12(174)
12(174)
12(174)
12(174)
12(174)
12(174)
12(174)
12(174)
12(174)
12(174)
12(174)
12(174)
12(174)
12(174)
12(174)
12(174)
12(174)
12(174)
12(174)
12(174)
12(174)
12(174)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      \mathbf{c}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   000000
                                                                                                         666666
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
                                                                                                                                                                                                                                                                      120
120
120
                                                                                                                                                                                                                                                                                                                                                                                                  666
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1(123)
2(1-29
4(A31)
8(114)
9(12)
12(57)
1(64)
12(64)
12(65)
2(50)
4(47)
9(14)
1(9)
2(1-57
4(A61)
1(66)
2(102)
1(44)
2(51)
1(56)
2(102)
1(44)
2(51)
1(59)
1(44)
2(51)
1(59)
1(44)
2(102)
1(44)
2(102)
1(44)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1(102)
1
                                                                                                                                                                          00000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          $
25
25
55
55
7
7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               12(173)
12(174)
12(174)
12(174)
12(92)
12(96)
7(94)
12(171)
1(61)
2(99)
2(105)
4(C2)
7:94)
12(178)
12(182)
12(182)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      P
P
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    5(252)
12(182)
12(182)
12(182)
12(182)
12(182)
12(198)
12(198)
12(192)
12(165)
8(125)
8(125)
8(125)
8(125)
12(165)
                                                                                                                                                                                        K
2FF
2K
20
                                                                                                                                                                                                                                                                                                                                                                                                                    K
L+
L)
L1
NA
3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               20
0
20
3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             447
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               5(155)
5(165)
5(220)
5(221)
1(59)
11(74)
11(68)
11(71)
11(162)
9(20)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    2N
2N
2N
0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     F
F
F
H
H
```

AL F	6NA 3		89	91 311	D 0		C.5	12(165)
AL H			A2	1(59)	D 2		C 5	12(165)
AL H			A2	2(86)	D 20		95 C5	12(165)
AL H AL H			A2 A5	2(102) 4(C 2)	D 20 E -		C6	12(165) 7 (109)
AL H			A7	2(41)	Ę –		A2	1(58)
AL H			C6	4 (A30)	F F		A2	
AL H			G2	4(43)	F		A 5	4(C 1)
AL H			G9	4(47)	F		C 5	
AL H	_		J2	1(99)	Ę	•	C6	
AL H	0		C6 C6	2(1-55) 4(A59)	₽ F +		C6 C5	
AL H	0		G2	1(44)	F + F +		C6	
AL H	ŏ		G2	1(44)	-		85	
AL H	Ō		G9	2(51)	F -		Ć 5	
AL H	0		G9	21 511	F =		C6	
AL H	0 2		C5	2(1-56)	F CS		G 9	
AL H	0 2		C6	4(A60)	F H F H		A2 B5	
AL H	3		A2 A2	1(59) 1(65)	FH		C 5	
AL H	3		A2	2(87)	FН		C6	
AL H	3		A2	2(102)	FH		CG	
AL H	3		A5	4(C 2)	FΗ		61	
AL H	3		85	1(9)	F H		(.2	
AL H	3ME 61	4 4	A9 G2	3(59)	F H F H 4N		69 B2	
AL H AL H	0 2 0 2		G9	1 (44) 2U 8D	F H 4N		B3	
AL H	3ME 6	V 4	Ď9	3(57)	F H 4N		85	
AL H	3ME 61		D9	3(59)	F H 4N		89	
AL H	30 3		A2	1(59)	F H 4N		89	
AL H	30 3		A2	1(65)	F H 6N	0	B 2	
AL H	30 3		A2	2(88)	F H 6N	0	B3	
AL H	30 3		A2 A5	2(102)	F H 6N	0	B 5	
AL H	30 3 4LI		A2	4(⊂ 2) 7(92)	F H 6N F H 6N	Ö Ö	Bo	
AL H	4LI		B2	1 (21)	FK	~	B 7	
AL H	4L1		B5	1(22)	FK		82	
AL I	3		87	6 (54)	FK		83	
AL K	0 4		B2	12(97)	FK		89	
AL K	0 63		82 82	12(97) 12(97)	F K F LI		G 9 A 2	
AL K		S13 S13	B2	12(98)	F LI F LI		AZ	
ALLI		01 5	F2	5(189)	FLI		AZ	
AL LI			82	1(21)	F LI F LI		A 2	
AL LI	0 2		82	2(30)	F LI		A 2	
AL LI			85	1 (22)	F LI		A	
AL LI			85 89	2(20)	F LI		A5 81	
AL LI			B9	2(2-27) 4(B27)	F LI		B	
ALMG			F2	5(190)	F		B	
AL N			A 2	21 901	FLI		82	
AL N			A2	2(103)	F LI		8:	
AL N			A2	3(2)	F LI		8	
AL N			A2 A2	3(65) 4(35)	F LI		8°	
AL N			A2	4(36)	F		B.	
AL N			A3	41 361	F LI		8	
AL N			A5	4(C 2)	FLI		C	
AL N			B2	3(14)	F LI		C	
AL N			83 85	3(14) 3(16)	F LI		C E	
AL N			B5	3(21)	F LI		D:	
AL N			89	3(22)	FLI		Ď	
AL N			89	3(2-31)	F LI		G	
AL N			89	4(B31)	F LI		G ^c	
AL N			D9	3 (38)	F LI	2116	G'	
AL N	A C 2		J2	4(26) 9(31)	F LIF	2MG 2MG	F:	
AL N			A2	1(59)	F L1F	47R	F	
AL O			A2	1 (62)	F LiF	42R	F	
AL O			A2	21 83)	F MG		Д	2 1(60)
AL 0			A2	2(102)	F MG		A	
AL O			A5	4(C 2)	F MG		A	
AL C			C6	1(127)	F MG		A A	
AL O			C6 C6	2(1-28) 4(A29)	F MG F MG		C	
AL 0			G2	1 (42)	F MG		Č	
AL O			G2	4(45)	F MG		Ç	6 4(A26)
AL O			69	2 (50)	F MG		G	
AL0			D2	1(50)	F MG		G	9 2(50)

- henring

```
218122225262922222275726923232311112999949921212222237222223722222355663222225599
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            2( 61) 8( 55) 8( 55) 8( 55) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12( 18) 12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 12(178)
12(180)
12(180)
11( 89)
11( 89)
11( 189)
12(166)
12(166)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
12(161)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 55522399959225756662952222529156123995222225662922235559966332956125555722
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2
                                                                                                                                                                                                                                                                                                                                                                                                                                             BE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  4
4
851
75!
4
4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              44444444444
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     2
25
3
```

```
1(71)
2(98)
2(105)
4(C2)
9(28)
9(28)
9(218)
12(180)
12(182)
1(61)
1(72)
2(98)
12(178)
6(243)
2(36)
6(33)
2(36)
6(33)
12(178)
12(171)
12(182)
12(171)
12(182)
12(171)
12(182)
12(171)
12(182)
12(171)
12(182)
12(171)
12(182)
12(171)
12(182)
12(171)
12(182)
12(171)
12(182)
12(171)
12(182)
12(171)
12(182)
12(171)
12(182)
12(171)
12(182)
12(171)
12(182)
12(171)
12(182)
12(171)
12(182)
12(171)
12(182)
12(171)
12(182)
12(171)
12(182)
12(171)
12(182)
12(171)
12(182)
12(171)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1 ( 88)
1 ( 90)
1 ( 91)
1 ( 26)
1 ( 26)
1 ( 27)
1 ( 64)
2 ( 102)
1 ( 28)
2 ( 102)
1 ( 28)
2 ( 20)
1 ( 28)
1 ( 28)
1 ( 28)
1 ( 28)
1 ( 28)
1 ( 28)
1 ( 28)
1 ( 28)
1 ( 28)
1 ( 28)
1 ( 28)
1 ( 28)
1 ( 28)
1 ( 28)
1 ( 28)
1 ( 28)
1 ( 38)
1 ( 56)
1 ( 58)
1 ( 58)
1 ( 58)
1 ( 68)
1 ( 68)
1 ( 68)
1 ( 68)
1 ( 68)
1 ( 68)
1 ( 68)
1 ( 68)
1 ( 68)
1 ( 68)
1 ( 68)
1 ( 68)
1 ( 68)
1 ( 68)
1 ( 68)
1 ( 68)
1 ( 68)
1 ( 88)
1 ( 88)
1 ( 88)
1 ( 88)
1 ( 88)
1 ( 88)
1 ( 88)
1 ( 88)
1 ( 88)
1 ( 88)
1 ( 88)
1 ( 88)
1 ( 88)
1 ( 88)
1 ( 88)
1 ( 88)
1 ( 88)
1 ( 88)
1 ( 88)
1 ( 88)
1 ( 88)
1 ( 88)
1 ( 88)
1 ( 88)
1 ( 88)
1 ( 88)
1 ( 88)
1 ( 88)
1 ( 88)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            3LII
3LII
3LII
33NN 33NN 33N 33N 33N 34LII
44LII
44NN 44NN 44N 55I P 56SEE
71 CO 0 20 CH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     444466666666666666644444444444
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      P
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (182)
(173)
(174)
(175)
(175)
(171)
(93)
(95)
(96)
(97)
(97)
(96)
(97)
(98)
(98)
(98)
(101)
(99)
(101)
(101)
(101)
(101)
(101)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            3
4
45!
2
                                                                                                                                                                                                                                                                                                                                                                                                                                                               2 T I
                                                                                                                                                                                                                                                                                                                    12(144)
12(165)
10( 63)
12(170)
12(170)
12(170)
12(170)
12(184)
1( 61)
1( 61)
1( 22)
2( 41)
1( 61)
1( 70)
1( 142)
1( 61)
1( 70)
1( 20)
1( 20)
1( 20)
1( 20)
1( 20)
1( 20)
1( 20)
1( 20)
1( 20)
1( 20)
1( 20)
1( 20)
1( 20)
1( 20)
1( 20)
1( 20)
1( 20)
1( 20)
1( 20)
1( 20)
1( 20)
1( 20)
1( 20)
1( 20)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      BE
D
F
F
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            2 L I
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 00000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        5(160)
1(91)
1(92)
5(155)
5(206)
                                                                                                                                                                                                                                                                                                                                                                                                                                               ---BE
---BE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              000
                                                                                                                                                                                                                                                                                                                               3----BI
3----BI
BFO-MGO
```

```
AL 203-BEO-MGO
AL 203-BEO-O2TI
AL 203-BEO-O2TR
AL 203-BEO-O2ZR
AL 20 3---MG O
AL 20 3---MG O
AL 203-MGO-C12TI
AL 03-MGO-C12TI
AL 03-MGO-C12TI
AL 20 3---O 2TI
AL 20 5SI
AL 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   5(207)
5(156)
5(207)
5(156)
5(207)
5(156)
5(207)
5(156)
5(207)
5(156)
5(207)
5(156)
5(207)
5(156)
5(207)
5(156)
5(207)
5(156)
5(157)
5(201)
5(160)
6( 83)
7( 65)
8( 99)
8( 102)
8(166)
8(167)
8(168)
7( 67)
8(101)
8(102)
8(102)
8(106)
8(102)
8(101)
8(102)
8(101)
8(102)
8(101)
8(102)
8(103)
8(104)
8(105)
8(106)
11( 15)
11( 15)
11( 15)
11( 15)
11( 15)
11( 15)
11( 15)
11( 11)
11( 15)
11( 11)
11( 15)
11( 11)
11( 11)
11( 12)
11( 13)
11( 14)
11( 13)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 14)
11( 15)
11( 16)
11( 17)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
11( 18)
1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1( 22)
2( 20)
2(2-23)
4(823)
1( 97)
1( 60)
2( 94)
2(104)
4(C 2)
2( 41)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(176)
12(180)
12(180)
12(180)
12(180)
12(180)
12(172)
12(174)
12(180)
12(172)
12(174)
12(180)
12(172)
12(174)
12(180)
12(172)
12(174)
12(180)
12(172)
12(174)
12(180)
12(175)
11(156)
11(157)
11(156)
11(157)
11(156)
11(157)
11(156)
11(157)
11(157)
11(157)
11(158)
12(165)
12(165)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
11(157)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         2
2+
2-
3P
3P --
3S -
3SE-
4P --
4SE-
7P 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         C6
B5
B5
C6
B9
                            AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 3
AL 4C 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 AR
                                                         AR+
AS
B
                                                                                                                                                                                                                                                                                                                                                                      Н
                            8 B B B
```

8 n 4L1 8 H 411	A2	71 921	Н 3Р	C5 12(180)
В Н 411 В Н 4L1	D2 B3	11(89) 11(89)	H 3P +	C5 12(180) A2 7(93)
B H 4LI B H 4NA	89	11(164)	H 4CL 0 8P	B5 12(182)
B H 4NA B H 4NA	A2 82	7(92) 9(21)	H 4CL P H 4T N	NG 10/1001
B H 4NA	B2	11(90)	H 41 P	85 12(179) 35 12(182)
B H 4NA B H 4NA	83 89	11(90) 9(31)	H 4N 0 +	B5 12(177)
B H 4NA	89	11(169)	H 4N TE H 4N 2	B5 12(180) A2 7(91)
B 1 3 B 1 3	A5	5(41)	H 4N 2	B5 12(176)
B 1 3	C6 69	5(125) 5(-47)	H 4N 2 H 4N 2O 2	C5 12(176) B5 12(177)
B N	A2	7(90)	H 4N 20 3	A2 7(94)
P N B N	A5 A5	5(41) 5(150)	H 4N 2O 3 H 4N 2O 3	P2 91 271
B N	B2	3(13)	H 4N 20 3 H 4N 20 3	85 12(177) 89 9(-32)
B N B N	83 85	3(13) 3(16)	H 4N 20 4	B5 12(177)
B N	89	5(129)	H 4N 4	85 12(176) 85 12(176)
B N B N	C6	2(1-44)	H 40 6TE	85 12(175)
8 N	C6 C6	4(A47) 5(131)	H 40 7P 2 H 4P 2	B5 12(182) A2 7(91)
B N	E 2	5(150)	H 4P 2	B5 12(180)
B N B NA O 2	G9 B3	5(43) 10(40)	H 4P 2 H 45I	C5 12(180)
B NA O 2	89	9(31)	H 5N 0	A2 7(91) B2 9(27)
B NA O 2 B O	89 A5	10(73) 5(39)	H 5N 0	B3 10(40)
3 0	Ĉé	2(1-38)	H 5N 0 H 5N 0	85 12(177) 89 9(32)
B 0 B 0	C6 C6	4(A41) 5(57)	H 5N O	89 10(78)
8 0	69	5 (43)	H 5N O 35 H 5N O 45	B5 12(179) B5 12(179)
B O 2NA	B2	91 221	H 5N O 55	B5 12(179)
B S B S	A5 C6	5(41) 2(1-43)	H 5N S H 5N SE	B5 12(179) B5 12(180)
8 S	C6	4 (A46)	H 5N 2+	B5 12(176)
B 5 B 5	C6 G9	5(127) 5(43)	H 5N 30 2 H 50 6TE	B5 12(178)
B TI	A 5	5(150)	H 50 6TE H 6N 0 4P	B5 12(175) E5 12(183)
B TI 2	E2 A 5	5(150) 5(150)	H 6N 20	B5 12(177)
B ZR	A5	5(150)	H 6N 20 H 60 6TE	C5 12(177) B5 12(175)
B	F2	5(150)	H 651 2	A2 7(91)
BZR B 2	F2 A5	5(195) 5(39)	H 7N 0 6 H 7N 0 6	B2 9(23) B3 10(40)
B 2	C6	2(1-37)	H 7N 0 6	B9 9(32)
8 2 B 2	C6 C6	4 (A40) 5 (-55)	H 7N 0 6	B9 10(93)
B 2	G 9	5(43)	H 8N 20 H 8N 20	82 9(26) 83 10(40)
B 2CL 4 B 2CL 4	A5 C6	5(40) 5(101)	H 8N 20	89 9(32)
B 2CL 4	G 9	5(46)	H 8N 20 H 8N 20 35	89 10(77) 85 17(170)
B 2H 6 B 2H 6	A? A5	7(91) 5(39)	H 8N 20 4S	65 12(179)
B 2H 6	C6	#! 601	H 8N 20 6S H 8N 20 8S 2	85 12(179) 85 (2(179)
B 2H 6 B 2MG	10	5(45)	H 9N 20 4P	B5 12(183)
B 2MG	62 83	9(16) 10(40)	H 10N 20 45 H 10N 40 45	P5 12(179) 85 12(180)
B 2MG	89	9(31)	H 12N 30 4P	R5 12(183)
B 2MG B 20 2	89 A 5	10(64) 5(39)	H 12N 40 55 H 18N 30 5P	B5 12(180)
B 20 2	C6	5 (59)	H 18N 30 5P HE	B5 12(183) C6 2(1-2)
B 20 2 B 20 3	69 A2	5(45) 7(90)	HE	C5 4(A 2)
B 20 3	A 5	5(39)	HE+ H5	C6 6/20 7) B1 9/291
B 20 3 B 20 3	89 C6	5(62)	HG	52 91 291
B 25 3	C6	5(61) 5(63)	14G HG+	89 91 321 C6 612611
8 20 3	69	51 451	HG O	B2 91 301
B 20 3CA 0 B 20 3K 2)	A 2 A 2	6(79) 6(78)	HG O	89 9(32)
B 20 3t1 20	A 2	6(77)	HG O	89 10(84) C5 12(169)
B 20 3LI 20 B 20 3LI 20	F 2 F 2	5(15) 5(213)	1 +	C5 12(169)
B 20 3MG 0	F۶	5(157)	+	C6 6(255) 85 12(170)
B 20 3MG 0 B 20 3NA 20	F2	5(214)	1	(5) 12(170)
B 20 30 PB	A2 A2	6(77) 6(80)	I K I €	82 7(71) 69 10(19)
B 211	A5	5(150)	1 K 0 3	B2 9(26)

```
10( 40)
10f 76)
6( 54)
10( 19)
10( 19)
12(170)
12(170)
12(170)
12(170)
12(170)
12(170)
12(170)
12(170)
12(170)
12(170)
12(182)
7( 69)
7( 61)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 95)
7( 96)
7( 96)
7( 97)
7( 96)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7( 97)
7
2TI R 3C3 3C3 3C5 3C A 3C5 3C 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       5(150)
5(150)
5(150)
5(150)
5(140)
5(140)
5(140)
5(140)
5(140)
5(140)
5(140)
5(140)
5(140)
5(140)
5(150)
5(150)
7(191)
9(16)
10(160)
10(160)
10(160)
10(160)
10(160)
10(160)
10(160)
10(160)
10(160)
10(160)
10(160)
10(160)
10(160)
10(160)
10(160)
10(160)
10(160)
10(160)
10(160)
10(160)
10(160)
10(160)
10(160)
10(160)
10(160)
10(160)
10(160)
10(160)
10(160)
10(160)
10(160)
10(160)
10(160)
10(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
11(160)
1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      $\\
8\\
8\\
97995559955725652566912922222222222222235555999662622222222225575666292
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        K
K
L
I
N
A
O
O
O
R
B
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               30
30
30
30
30
30
2N
30
30
6N
6N
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     333333366653
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                3 4 4 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              2 2 2 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      7
7
7
7
0 12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                20
20
20
8K
9
9
9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              2
3
551
951
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0 13
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           11
12N
2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0 12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            AL
CCCCCL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               20
2
2
2
2
2
```

BE CL	A2	1 (68)	LI 20	A2	21 97)
RF CL	A2	21 921	LI 20	A 2	2(104)
BE CL	AZ	2(10%)	LI 20	A 2	3 (65)
RF CL BE CL	A5	4(C ?)	LI 20	F 2	7(95)
BE CL BE CL	C6 C6	1(112) 2(1+24)	LI 20	A 5	4(C 2)
BE CL	C6	4(A24)	LI 20 LI 20	B2 B2	1(19)
BE CL	G2	11 42)	LI 20	B3	1(27)
BE CL	ü9	2(50)	LI 20	B5	2(20)
BE CL F	€6	2(1-49)	LI 20	B9	2(2-22)
BF CL F	C6	4 (A53 .	LI 20	B9	4(B22)
RE CL F	G2	1 (43)	LI 20	C 6	11(148)
BE CL F	G9	2(51)	L I 20	E2	5(160)
BF CL 2 BF CL 2	A1 A2	4(28) 1(60)	LI 20 LI 20	G1	11(118)
BF CL 2	A2	1(68)	LI 20 2	J2 A2	1(97) 2(97)
BE CL 2	A2	21 92)	LI 20 2	Ã2	2(104)
BE CL 2	A2	2 (93)	L1 20 2	A2	7(95)
BE CL 2	A2	2(103)	LI 20 2	A 5	41C 21
9E CL 2	A2	4(35)	LI 20 2	C 6	11(150)
BE CL 2	A2	4(37)	LI 20 2	G1	11(118)
BE CL 2	A2	4(37)	LI 20 35I	A 2	6(83)
RE CL 2	6.5 A.3	71 901	11 20 351	/ 3	4 P31
BE CL 2 BE CL 2	A3	4(37)	LI 20 3T1	B2	71 661
BE CL 2	A5	4(C 2)	LI 20 311 LI 20 311	B2 B3	8(93) 8(93)
BF CL 2	85	11 12)	LI 20 3TI	B 5	8(102)
BE CL 2	C6	2(1-48)	LI 20 3TI	B 9	8(144)
BE CL 2	C6	4(A52)	LI 20 5SI 2	B2	7(64)
BF CL 2	G2	1 (43)	LI 20 751 3	B2	7(64)
BE CL 2	G9	2(51)	LI 3N	A 2	1(61)
BE F 2	A 2	12 (22)	LI 3N	A2	2(100)
BE F	A2	1(60)	LI 3N	A2	2(105)
BE F	A2 A2	1(68) 2(92)	LI 3N LI 3N	A2 A3	3(5) 3(5)
BE F	A2	2(103)	LI 3N	A 5	4(C 2)
BE F	A5	41(2)	L1 3N	B2	3(13)
BE F	C6	1(111)	LI 3N	85	3(16)
BE F	C6	2(1-23)	LI 3N	B5	3(21)
BE F	C6	4 (A23)	LI 3N	B9	31 221
SE F	D3	8(114)	LI 3N	B 9	3(2-28)
BE F	G2	1 (42)	LI 3N	B 9	4(B28)
BE F BF F	G2	4(45)	LI 3N	D9	3 (47)
BE F	G3 G9	8(109) 2(50)	LI 3N MG	J2	4(24)
BF F	69	4(47)	MG	A2 A2	1(58) 2(101)
BEFO	51	8 (55)	MG	A5	4(C 1)
BF=-FO	M1	81 551	MG	B2	1(14)
BEF0	M1	10(55)	MG	82	21 25)
BEF0	M8	8 (56)	MG	B3	1(26)
BE F 2	A2	1 (60)	MG	B5	1(17)
BE F 2 BE F 2	A2	1(68) 2(92)	MG	B5	2 (20)
BE F 2 BE F 2	A2 A2	2(103)	MG	89	2(2- 9)
BE F 2	A2	3(65)	MG MG	B9 C6	4(B 9) 2(1-12)
BE F 2	A2	4(35)	MG	C6	4(A12)
BE F 2	A2	10(43)	MG	D2	1(48)
BE F 2	A3	10(43)	MG+	C6	6(227)
BF F 2	A3	12(120)	MG C 2	A2	3(5)
BF F 2	A 5	4(C 2)	MG O	A 2	1(60)
BE F 2 BE F 2	83	11(113)	MG O	A2	1(69)
BE F 2 BE F 2	85 87	1 (12) 7 (96)	MG O	A2	2(94)
8F F 2	89	7(117)	MG O	A2 A2	2(103)
BE F 2	B9	11(158)	MG O	A5	4(36) 4(C 2)
BE F 2	C6	2(1-47)	MG O	B1	2(25)
BE F 2	C.6	4(A51)	MU O	B2	1(14)
BE F 2	C6	12(138)	MG O	B2	21 251
BE F 2	D2	4(35)	MG O	B3	1(26)
BE F 2	D3	11(113)	MG O	85	1(17)
BE F 2	G2 67	1(43)	MG O	B5	21 201
BEF 2 BFF 2	G7	12(85) 2(51)	MG O	B9	2(2-10)
BE F 2	G9 J8	11(84)	MG O	Bα B9	2(2-11)
BE F 2	78	12(73)	MG O	89 89	4(B10) 4(B]1)
BE F 2	M1	8 (55)	MG O	C.F.	1(121)
BF F 2	MĪ	10(55)	MG O	C6	2(1-25)
BE F 2	M 9	10(57)	MG O	C6	4(A25)
BE F 2BE 0	A 1	11(109)	MG O	D 1	12(83)
BE F 2BE 0	A 1	11(110)	I MG O	E 2	5(160)

## F 2	M1 10(-66) M1 11(109) M9 11(1109) M9 11(1109) M9 11(1101) F2 5(163) F2 5(274) F2 5(274) F2 5(274) F2 11(-75) H9 11(-75) H9 11(-63) A2 1(-60) A2 2(-91) A2 2(103) A5 4(C-2) A7 2(-41) A2 7(-92) B5 1(-12) J2 11(100) J8 3(-55) A2 1(-67) A2 2(-91) A2 2(103) A5 4(C-2) B5 1(-12) J2 1(-67) A2 2(-91) A2 2(103) A5 4(C-2) B5 1(-12) J2 1(-67) A2 2(-91) A2 2(103) A5 4(C-2) B5 1(-12) J2 1(-67) A2 2(-91) A3 1(-91) B5 1(-12) B6 2(-91) B7 2(-91) B8 4(-91) B9 3(-94) B9 3	MG O MG O MG O	G2
--------	--	----------------	----

RF 2C RE 2CL 4 RE 2CL 4 BE 2F 20 BE 2F 20 BE 2F 20 BF 2F 20 BF 2F 20	J2 A2 A2 A2 A3 A3 A5 A9 C6 G7	4(20) 1(60) 1(69) 2(93) 2(103) 4(37) 4(37) 4(C 2) 12(120) 12(121) 11(146) 11(119) 1(54)	MG 3N 2 MO+ N N N N N N N N N N N N N N N N N N N	J2 C6 A2 A5 C5 C6 C6 C5 B2	4(25) 6(253) 2(101) 7(90) 4(C1) 12(175) 2(1-7) 4(A7) 12(175) 6(217) 9(23) 9(31)
BF 20 45I BF 20 45I BE 20 45I BE 20 45I BE 20 45I BE 20 45I BE 3N 2 BE 3N 2	A2 A3 B2 B3 B5 B9 A2 A2 A3 A5 B1 B2	6(83) 6(83) 7(64) 8(101) 8(101) 8(102) 8(169) 2(93) 2(103) 3(4) 4(C2) 8(44) 3(13)	N NA 3 N O N O N O + N O + N O 2 N O 2+ N O 2- N O 3- N P N TI N TI	85 87 A2 C5 C5 A2 C5 B5 B5 C5 A2 A5	3(16) 3(10) 7(94) 12(175) 12(175) 12(175) 12(175) 12(175) 12(175) 12(183) 3(6) 3(0) 4(C 2)
BE 3N 2 BF 3N 2 BE 3N 2 BE 3N 2 BE 3N 2 BF 3N 3 BF 40 4 BF 50 5	82 85 89 89 89 89 89 09 J2 D2	8(50) 3(16) 3(21) 3(22) 3(2-29) 4(829) 8(48) 8(134) 3(43) 4(25) 1(54) 1(54)	N TI N TI N TI N TI N TI N TI N TI N ZR N ZR N ZR N Z N Z	82 85 85 89 89 89 89 89 82 45 C6	3(14) 3(14) 3(14) 3(16) 3(21) 3(22) 3(2-32) 4(832) 3(50) 5(179) 5(250) 2(101) 4(C1) 12(175)
BE 60 6 BR+ BR+ BR- BR- BR CL BR CL BR CS BR F 3 BR F 5 BR F 5	D2 C55 C66 B5 CA2 B5 C69 B5 B5 B5	1(54) 12(168) 12(168) 6(247) 12(168) 12(168) 7(94) 12(169) 12(169) 12(167) 12(167) 12(167)	N 2 N 20 N 20 3 N 20 3 N 20 4 N 20 4 N 20 4 N 20 5 N 20 5 N 20 5 N 27 N 3+ N 3-	C 6 C 5 C 5 B 5 B 5 C 5 C 5 C 6 C 5 C 5 C 5 C 5	3(1-66) 4(A48) 12(175) 7(94) 12(175) 7(94) 12(175) 12(175) 12(175) 12(175) 12(175) 12(175) 12(175)
BR H BR H O 3 BR H O 3 BR H 40 BR H 4P BR H 5N 2 BR 1 BR K BR K BR K BR K	B5 C5 B5 B5 B5 B5 C5 B2 B2 B3 G9	12(169) 12(169) 12(169) 12(169) 12(179) 12(179) 12(171) 12(171) 12(171) 17, 71; 11(91) 11(91) 10(19)	N 451 3 N 451 3 N 451 3 N 451 3 N 5P 3 NA NA NA NA NA	B2 B2 B3 B5 B5 C6 C6 C6	3(14) 12(101) 3(14) 3(14) 3(16) 12(183) 9(16) 9(31) 2(1-11) 4(A11) 12(148) 7(95) 9(18)
BR K O 3 BR LI BR LI BR LI BR NA BR O 2 BR O 3 - BR RB BR Z BR Z	82 83 89 87 69 65 69 85 69 85	9(26) 10(40) 9(32) 10(75) 6(54) 10(19) 12(179) 10(19) 12(169) 12(169) 12(169) 12(169) 12(168) 11(175)	NA O 2 NA O 2 NA O 2 NA O 3 NA 20 NA 20 NA 20 NA 20 NA 20 NA 20 I NA 20 I NA 20 2 NA 20 35I NA 20 35I	83 89 A2 A2 B1 R2 B9 A2 B3 B9 A2 A3	10(40) 9(31) 10(67) 7(95) 7(95) 9(18) 9(31) 9(31) 9(18) 7(95) 10(40) 9(31) 10(66) 6(83) 6(83)

```
17(168)
12(168)
6( 54)
6( 53)
6( 53)
12(168)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
12(182)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                9( 23)
9( 31)
9( 31)
9( 31)
9( 31)
9( 31)
9( 31)
9( 31)
6( 83)
9( 31)
6( 83)
9( 31)
6( 83)
9( 31)
6( 83)
9( 31)
16( 83)
9( 31)
16( 83)
16( 83)
17( 94)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 165)
12( 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             351
351
351
351
551
551
551
751
751
751
751
751
451
451
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2
2+
2MG
2PB
2PB
3-
30
3P
3P
3P
4TE
5-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  2222233322
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             P
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      2(168)
2(101)
4(C 1)
12(183)
3(2-39)
4(R39)
12(183)
2(1-6)
4(A 6)
6(215)
12(183)
7( 91)
12(183)
7( 91)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(183)
12(190)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
3(12)
                                                                                                                                                                                                                            2
                                                                                                                                                                                                                                                                                                                                                                                                                                               2N
20
5N
6N
                                                                                                                                                                                                                                                                                                                                                                                                       2
2
2
3-
```

C 271 2	B9	3(2-33)	0 2T10 2ZR	F2	6.71501
C 3CR 7	82	12(92)	0 2T10 2ZR	F2	5(158)
C 3MG 2	A2	2(96)	0 2W		5(216)
C 3MG 2	A2	2(104)	0 2W	82	6(51)
C 3MG 2	A5	4(0.2)	0 2W	B2	8(92)
C 3MG 2	B2	3(12)	0 2W	B3	8(92)
C 3MG 2	85	3(16)		85	8(102)
C 3MG 2	85	3(21)	0 2W 0 2ZP	89	8(139)
C 3MG 2	89			B2	5(179)
C 3MG 2	B9	3(22)	0 2ZR	89	5(248)
C 3MG 2	89	3(2-36)	O 2ZR	ES	5(160)
C 3MG 2		4(836)	0 3	A2	7(94)
C 4H 12N 4	J2	4(21)	0 3	C 5	12(165)
C 6CR23	A2	7(91)	0 3P -	85	12(180)
CA	82	12(93)	0 3PB S1	B2	8(99)
CA CL 2	82	12(87)	0 3PB 51	83	8(99)
-	82	12(88)	0 3PB 51	85	8(102)
	82	12(88)	0 3PB SI	89	8(164)
CA FE 20 4	B2	12(89)	C 34R 5	82	6(52)
CA H	C6	12(154)	0 3F3 2	₿2	8(98)
CA O	82	12(88)	0 3PB 2	B3	8(98)
CA 0 351	A2	6(83)	C 351B 2	85	8(102)
CA 0 351	A3	6(83)	0 3PR 2	89	8(162)
CA 0 351	82	12(90)	0 3s	85	12(172)
CA O 3TI	A2	6(83)	0 35	Ċ5	12(172)
CA 0 3T1	A 3	6(83)	0 35	85	12(172)
CA 2FE 20 5	82	12(90)	0 35 2	85	12(172)
CA 20 451	A2	6 (83)	0 35E	85	12(174)
CA 20 451	A3	6(83)	0 3SE	85	12(174)
CA 20 451	82	12(90)	0 3TE	85	12(175)
CA 30 5SI	A2	6(83)	0 371 2	B2	5(176)
CA 30 5SI	A 3	6(83)	0 371 2	89	
CA 30 581	82	12(91)	0 34	82	5(233) 8(92)
CA 30 7SI 2	82	121 911	0 3W		
CF H 2	A2	7(93)	0 3W	83	8(92)
CL	A2	1 (58)	0 3W	85	8(102)
CL	A2	2(101)	0 4P -3	89	8(141)
CL	Ã2	7(90)		85	12(180)
CL	A5	4(C 1)		82	8(99)
CL	Ĉŝ	12(167)		83	81 991
čĹ	Ç6		0 4PB 251	8.5	8(102)
ČĹ		2(1-17)	0 4PB 2S1	B9	8(165)
ČĽ+	C6	4(A17)	O 4PB 3	B2	6(52)
CL+	C5	12(167)	0 4PB 3	82	8(98)
CL-	C6	6(237)	O 4PB 3	83	61 521
CL-	R5	12(167)	0 4PB 3	83	8(98)
CL-	C 5	12(167)	O 4PB 3	85	8(102)
	C6	12(130)	O 4P8 3	89	8(163)
CL C5	G9	10(19)	0 45	8.5	12(172)
CL F	C5	12(168)	0 4SF	85	12(174)
CL F	C6	1(133)	0 451 ZR	82	7(67)
CL F	C6	2(1-36)	0 511 0	82	5(177)
CL F	C6	4(A39)	0 511 3	89	5(235)
CL F	62	1(42)	O 6P 4	85	12(180)
CL F	69	2 (50)	0 7P 2-4	₽5	12(180)
CL F LI 2	A?	1(61)	0 85 2	B5	12(172)
CL F LI 2	A2	1(73)	0 10P 4	85	12(180)
CL F LI 2	A2	2(99)	P	85	12(180)
CL F LI 2	A?	2(105)	P	C6	2(1-15)
CL F LI 2	A5	4(C 2)	P	C6	4(A15)
CL F MG	€6	2(1-52)	P +	C6	6(233)
CL F MG	Č6	4 (A56)	P 2	85	12(180)
CL F MG	Ġ2	1(43)	P 2S 3	85	12(182)
CL F MG	69	2(51)	P 4	85	12(180)
CL F 0 3	C5	12(168)	PB	81	8(96)
CL F 3	85	12(168)	PB	82	6(51)
CL F 4H	C5	12(168)	PB	B2	8(96)
CL F 55	C5	12(174)	PB	B3	6(51)
CL H	A2	7(90)	PB	B3	
CL H	Ĉŝ	12(167)	PB	B5	8(96)
CL H	Č6	2(1-34)	PB		8(102)
CL H	€6	4 (A37)	P8+	89	8(156)
CL H MG O	B2	1(16)	5	C6	6(259)
CL H MG O	85	1(17)		85	12(171)
CL H MG O	85	2(120)	5	C5	12(171)
CL H O	85		S	42	2(1-16)
CF H O S	R5	12(168)	5	C 6	4(A16)
CL H O 3		12(168)	S +	C 5	12(171)
CL H O 4	85	12(168)	5 +	C6	6(235)
	A2	7(94)	S -	C 5	12(171)
CL H O 4	85	12(168)	5	85	12(171)
CL H 2Lf O	R2	1(21)	5 2	C5	12(171)
CF H SFI U	85	11 221	5 3	C5	12(1711

```
2( 20)
12(178)
12(178)
3( 53)
4( 28)
7( 94)
12(179)
12(178)
12(179)
12(171)
12(171)
12(171)
12(171)
12(171)
12(171)
12(171)
12(171)
12(171)
12(171)
12(171)
12(171)
12(171)
12(171)
12(171)
12(171)
12(171)
12(171)
12(173)
10( 19)
12(184)
13( 53)
4( 28)
7( 95)
7( 10)
7( 3)
9( 26)
10( 74)
12(184)
11( 72)
12(184)
11( 72)
12(184)
11( 20)
12(184)
11( 20)
12( 30)
13( 63)
15(176)
11( 27)
11( 20)
12( 30)
13( 63)
15(176)
11( 27)
12( 20)
12( 20)
12( 20)
12( 30)
13( 63)
15(176)
11( 27)
12( 20)
12( 20)
12( 30)
13( 63)
13( 63)
15(176)
11( 27)
12( 20)
12( 30)
13( 63)
15(176)
11( 27)
12( 20)
12( 30)
13( 63)
15(176)
11( 27)
12( 20)
12( 30)
13( 63)
13( 63)
15(176)
11( 27)
12( 27)
12( 27)
12( 27)
12( 28)
13( 109)
13( 109)
14( 28)
17( 95)
14( 28)
17( 95)
14( 28)
17( 95)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
12( 109)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        85551125525292552223992395112399522222251111122222225555999666211299992211222222566662292
\mathbf{c}
                                                                                                                                                                             0
                                                                                                                                                                                                                                                                                                                                          2LI
4N
4N
4N
4N
4N
5N
5N
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0 0 0 0 2 20 20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              4444 44
                                                                                                                                                                                                                                                                                                                                                                                                                             00000000000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 33334444444444
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         L1
L1
4
4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F 0 0 0
```

C5 12(171)
C5 12(171)
C5 12(171)
C5 12(171)
C5 12(171)
C5 12(171)
B5 12(174)
B6 12(174)
B7 16 68
B8 12(198)
B8 12(198)
B8 12(198)
B9 12(174)
B9 3(121)
B9 3(174)
B9 3(

TI-B TI-ZR W W W W W + ZR ZR ZR ZR ZR

APPENDIX II

THERMODYNAMIC FUNCTIONS OF SOME SELECTED SUBSTANCES IN THE SOLID AND LIQUID STATES

George T. Furukawa and Martin L. Reilly

The low-temperature heat-capacity and the high-temperature relative-enthalpy data on some selected substances that should be of interest to the light-element thermodynamics program were analyzed. Sources of literature data that were compiled for the analysis have been given for most of the substances in a previous report of this series [1]. The low-temperature heat-capacity data were examined and selected for general consistency and joined smoothly with the values of heat capacity at the high temperatures calculated from the enthalpy equations reported by the original investigators or given by Kelley [2]. Where the lower temperature limit of the data was fairly high (e.g. about 50 K), the equation selected by the original investigator was used for extrapolation to 0 K and joined smoothly with the experimental data. The thermodynamic functions were calculated from the smoothed tabular values of heat capacity by numerical integration using the 4-point Lagrangian integration coefficient method [3] in conjunction with the usual thermodynamic relations. Sources of data actually used in obtaining the thermodynamic functions are given along with each of the tables.

The 1961 atomic weights based on C-12 [4] and the energy relation: 4.1840 joules = 1 defined calorie, were used in calculating t^{inc} gram modal thermodynamic functions given in the tables.

References

- [1] "Preliminary Report on the Thermodynamic Properties of Selected Light-Element and Some Related Compounds", National Bureau of Standards, Washington, D. C., 20234. NBS Report 8504, 1 July 1964, p 86.
- [2] K. K. Kelley, "Contributions to the Data on Theoretical Metallurgy. XIII. High-Temperature Heat-Content, Heat-Capacity, and Entropy Data for the Elements and Inorganic Compounds", U. S. Bureau of Mines Bulletin 584, 1960.
- [3] "Tables of Lagrangian Interpolation Coefficients" Columbia University Press, New York, 1944.
- [4] "IUPAC Revises Atomic Weight Values", Chem. Eng. News 39, 42 (1961).

TABLE 8-116

THERMODYNAMIC FUNCTIONS FOR CRYDLITE (NA3AL F6) SOLID AND LIQUID PHASES

GRAM MOLE	CULAR WT.=		RAMS = 273.15 +	T DEG C	CAL=4	•1840 ABS J
Ť	-(GT-HC)/T	$\{H_{T}^{0}-H_{0}^{C}\}/T$	(5T-40)	(H1-H0)	c _p	-(G1-HC)
OEG K	OEG MOLE	OEG MOLE	OEG MOLE	CAL MOLE	DEG MOLE	SAL_ MOLE
		SOL	O PHASE (A	LPHA1		
0.00	0.000	0.000	0.000	0.000	0.000	0.000
5.00 10.00	0.002 0.013	0.005 0.039	0.006 0.052	0.024	0.019	0.008
15.00	0.043	0.129	0.052	1.931	0.155 0.502	0 • 130 0 • 652
20.00	0.101	0.290	0.391	5.810	1.088	2.018
25.00	0.190	0.527	0.717	13 - 170	1.893	4.743
30.00 35.00	0.312 0.469	0.837 1.222	1.149	25.109	2.920	9.361
40.00	0.661	1.680	1.691 2.341	42.771 67.211	4.179 5.621	16 • 4 16 26 • 45 4
45.00	0.889	2.203	3.092	99.156	7.171	39.999
50.00	1.150	2.780	3.931	139.01	8.777	57.522
55.00	1.444	3.399	4.843	186.95	10.403	79.428
60•00 65•00	1.768 2.118	4.051 4.727	5:818 5:845	243.04 307.26	12.032 13.654	106.06 137.70
70.00	2.494	5.422	7.916	379.54	15.253	174.58
75.00	2.892	6.130	9.022	459.72	16,811	216.92
80.00	3.311	6.844	10.155	547.56	18.314	264.85
85.00 90.00	3.747 4.200	7.562 8.279	11.309 12.478	642.77 745.10	19.762	318.50
95.00	4.666	8.993	13.660	854.38	21.166 22.538	377.96 443.30
100.00	5.146	9.704	14.850	970.43	23.879	514.58
105.00	5.636	10.411	16.047	1093.1	25.187	591.82
110.00 115.00	6.137	11.111	17.248	1222.2	26.456	675.05
120.00	6.646 7.163	11.805 12.492	18.451 19.655	1357.6 1499.0	27.684 28.870	764.30 859.56
125.00	7.687	13.170	20.857	1646.2	30.016	960.84
130.00	8,216	13.839	22.056	1799.1	31.126	1068.1
135.00 140.00	8.751	14.499	23.251	1957.4	32.199	1181.4
145.00	9.290 9.833	15.150 15.791	24.440 25.624	2121.0 2289.7	33.236 34.232	1300.6 1425.8
150.00	10.379	16.422	26.801	2463.3	35.187	1556.9
155.00	10.928	17.042	27.970	2641.5	36.100	1693.8
160.00	11.478	17.651	29.130	2824.2	36.971	1836.5
165.00 170.00	12.031 12.584	18.250 18.836	30.280 31.421	3011.2 3202.2	37.803 38.600	1985•1 2139•3
175.00	13.139	19.412	32.551	3397.1	39.365	2299.3
180.00	13,693	19,977	33.670	3595.8	40.101	2464.8
185.00	14.248	20.530	34.778	3798.1	40.809	2635.9
190.00 195.00	14.803 15.357	21.073 21.695	35.876 36.962	4003.8 4213.0	41.492 42.149	2812.6 2994.7
200.00	15.911	22,126	38.037	4425.3	42.783	3182.2
205.00	16.464	22.638	39.101	4640.7	43.393	3375.0
210.00	17.015	23.139	40.154	4859.2	43.980	3573.2
215.00 220.00	17.565 18.114	23.630 24.112	41.196 42.226	5080.5 5304.6	44.545 45.090	3776.6 3985.1
225.00	18.661	24.584	43.245	5531.4	45.615	4198.8
230.00	19,207	25.047	44.253	5760.7	46.122	4417.5
235.00	19.750	25.500	45.251	5992.6	46.612	4641.3
240.00 245.00	20.292 20.831	25.945 26.381	46.237	6226.8	47.086 47.545	4870.0
250.00	21.369	26.809	47.212 48.178	6463•4 6702•2	47,988	5103.7 5342.1
255.00	21.904	27.228	49.132	5943.3	48.417	5585.4
260.00	22.436	27.640	50.076	7186.4	48.832	5833.4
265.00 270.00	22.967 23.495	28.044	51.010	7431.5	49.231	6086.2
273.15	23.826	28.440 28.685	51.934 52.511	7678.7 7835.3	49.615 49.850	6343.5 6508.0
275.00	24.020	28.828	52.848	7927.7	49.984	6605.5
280.00	24.543	29.209	53.752	8178.5	50.338	6872.0
285.00	25.063	29.583	54.646	8431.0	50.676	7143.0
290•00 295•00	25.581 26.096	29.949 30.308	55.530 56.404	8685.2 8941.0	50.999	7418.4 7698.3
298.15	-6.419	30.308 30.531	56.404 56.950	9102.9	51.308 51.495	7876.8
300.00	26.608	30.661	57.269	9198.3	51.603	798?•5

-49-

TABLE B-116 (CONT.)

THERMODYNAMIC FUNCTIONS FOR CRYOLITE (NA₃AL F₆) SOLID AND LIQUID PHASES

GRAM MOLE	CULAR WT.=	209.9413	RAMS		CAL≈4	.1840 ABS
		T DEG K	= 273.15 +	T DEG C		
1	$-(\mathfrak{Q}_0^1\text{+H}_0^0)\setminus I$	$\{H_0^1\!-\!H_\zeta^0\!\mid\! 1\setminus L$	(5 _T -5 <mark>C</mark>)	(H ⁰ ~H ^C)	c ₀	- (G1 - HC
DFG K	DEG MOLE	DEG MUET	CAL	CAL MOLE	DEG MOLE	CAL MOLE
		SOL 1	O PHASE CA	LPFA1		
300.00	26,608	30.661	57.269	9198.3	51.603	7982.5
310.00	27,625	31.345	58.970	9717.1	52.154	8563.7
320.00	28,630	32.004	60.634	10241.	52.662	9161.7
330.70	29.625	32,637	62.262	10770.	53.135	9776.2
340.00	30•608	33.247	63.855	11304.	53.581	10407.
350.55	31.581	33.834	55-414	11842.	34,300	11053.
360.00	32.542	34.400	66.942	12384.	54,423	11715.
370.00	33,492	34.946	68.438	12930.	54.826	12392.
373.15	33.789	35.115	402.86	13103.	54.952	12608.
380.00	34.431	35.475	69.905	13480.	55.223	13084.
390.00	35.359	35.986	71.345	14035.	55.612	13790•
400.00	36.276	36.482	72.758	14593.	55.995	14511.
425.00	38,524	37.657	76.161	16004.	56.930	16373.
450.00	40.707	38.753	79.461	17439.	57.833	18318.
475.00	42.831	39.781	82.611	18896.	58.711	20345
500.00	44.896	40.749	85.644	20374.	59.568	22448.
550.00	48.865	42.535	91.400	23395.	61.233	26876.
600.00	52.637 56.231	44.161	96.798 101.89	26497.	62.853 64.440	31582.
650.00 700.00	59.667	45.660 47.058	106.72	29679. 32940.	66.004	36550. 41767.
	62,959	48.372	111.33	36279.	67.550	47219.
750.00 800.00	66.121	49.619	115.74	39695.	69.084	52897.
845.00	68.865	50.692	119.56	42835.	70.454	58191.
		sou	.10 PHASE (BETAI		
845.00	68.865	53.248	122.11	44995.	65.552	58191.
850.00	69.179	53.321	122.50	45323.	65.631	58803.
900.00	72.247	54.027	126.27	48624.	66.424	65023.
950.00	75.107	54.700	129.89	51965.	67.217	71427.
1000.00	78.009	55.346	133.35	55346.	68.610	78009.
1050.00	80.724	55.968	136.69	58766.	68.803	84761.
1100.00	83.342	56,569	139.91	62226.	69.596	91676.
1150.00	85.869	57.153	143.02	65726.	70.389	98750•
1200.00	88.314	57.721	146.03	69265.	71.182	105977.
1250.00	90.681 92.978	58,275 58,817	148.96 151.79	72844. 76462.	71.775 72.768	113352. 120871.
1300.00	72 4 7 7 0	20.017			124100	1200110
			LIQUID PHA	15E		
1300.00	92.978	80.079	173.06	104102.	93.400	120871.
1350.00	96.009	80.572	176.58	108772.	93+400	129612.
1400.00	98.948	81.030	179.98	113442.	93.400	138527.
1450.00	101.80	81.457	183.26	118112.	93+400	147608.
1500.00	104.57	81.855	186.42	122782.	93.400	156851.

 $H_0^{\mathbb{C}}$ and $S_0^{\mathbb{C}}$ apply to the reference state of the solid at zero deg κ

King, E. G., low Temperature Heat Capacities and Entropies at 298.15°K. of Cryolite, Anhydrous Alusinum Fluoride and Sodium Fluoride J. Am. Chem. Soc. 79, 2056-2057 (1957)

Kelley, K. K.,
Contributions to the Data on Theoretical Metallurgy.
XIII. High-Temperature Heat-Content, Heat-Capacity,
and Entropy Data for the Elements and Inorganic Compounds
U. S. Bur. Mines, Bull. 584, 232 pages (1960)

TABLE 8-117

THERMODYNAMIC FUNCTIONS FOR SODIUM ORTHOSILICATE (NA_4SI 0_4) SOLID PHASE

GRAM MOL	ECULAR ₩T•=	* WT. = 184.0428 GRAMS CAL=4.		.1840 ABS J		
T	$-(e_0^1-H_0^0)$	$H_0^1-H_0^0$	(s _T -s ₀)	(HT-HC)	C ₀	$-(e_0^1-H_C^0)$
OEG K	OEG MOLE	OEG MOLE	OEG MOLE	<u>CAL</u> MOLE	OEG MOLE	CAL MÖLE
0.00	0.000	0.00	0.000	0•000	0.000	0 • 000
5.00	0.000	0.001	0.002	0•006	0.005	0 • 002
10.00 15.00	0.003 0.011	0.034	0.015 0.045	0.503	0.134	0.033 0.167
20.00	0.027	0.080	0.107	1.502	0.326	0.530
25.00	0.052	0.161	0.213	4.024	0.677	1.308
30.00	0.092	0.293	0.385	8.785	1.276	2.772
35.00	0.152	0.494	0.646	17.299	2.178	5.309
40.00	0.235		1.011	31.052	3.364	9.407
45.00	0.347	1.140	1.486	51.282	4.754	15.607
50.00	0.489	1.576	2.064	78.775	6.258	24.442
55.00	0.662	2.073	2.734	113.99	7.835	36.401
60.00	0.865	2.619	3.484	157.16	9.433	51.917
65.00	1.098	3.204	4.302	208.26	11.002	71.357
70.00	1.357	3.816	5.173	267,11	12,527	95.024
75.00	1.642	4.446	6.088	333,44	13,997	123.16
80.00	1.949	5.087	7•036	406.97	15.401	155.96
85.00	2.277	5.733	8•010	487.33	16.732	193.57
90.00	2.623	6.380	9•003	574.18	17.998	236.09
95.00	2.985	7•023	10.009	667.22	19.209	283.62
100.00	3.362	7•662	11.024	766.20	20.377	336.20
105.00	4.151	8.295	12.046	870.93	21.510	393.87
110.00		8.920	13.072	981.23	22.607	456.66
115.00		9.539	14.100	1096.9	23.667	524.59
120.00	4.981	10.149 10.749	15.129 16.156	1217.8 1343.7	24.683 25.652	597.66 675.88
130.00		11.341	17.181	1474.3	26.573	759.22
135.00		11.921	18.200	1609.3	27.446	847.67
140.00		12.490	19.213	1748.7	28.276	941.21
145.00	7.171	13.049 13.595	20.219	1892.0 2039.3	29.069 29.830	1039.8
155.00	8.534	14.131	22.208	2190.3	30.564	1252.0
160.J0		14.656	23.190	2344.9	31.277	1365.5
165.00		15.170	24.163	2503.0	31.969	1483.8
170.90		15.674	25.127	2664.6	32.641	1607.1
175.00		16.168	26.083	2829.4	33.292	1735.1
180.00	10.377	16.652	27.030	2997•4	33.920	1867.9
185.00	10.840	17.127	27.967	3168•6	34.522	2005.4
190.00	11.766	17.593	28.896	3342.6	35.100	2147.5
195.00		18.049	29.814	3519.5	35.653	2294.3
200.00		18.496	30.724	3699.1	36.183	2445.7
205.00	12.690	18.933	31.624	3881.3	36.693	2601.5
210.00	13.152	19.362	32.514	4066.0	37.187	2761.9
215.00	14,072	19.782	33.394	4253.2	37.665	2926.7
220.00		20.194	34.266	4442.6	38.131	3095.8
225.00		20.598	35.128	4634.4	38.586	3269.3
230.90	14.987	20.993	35.981	4828.5	39.030	3447.1
235.00	15.443	21.382	36.825	5024.7	39.463	3629.1
240.00 245.00 250.00	16.350	21.763 22.137 22.504	37.660 38.487 39.305	5223.1 5423.6	39.885 40.295 40.692	3815.3 4005.7 4200.2
255.00 260.00	17.250	22.865 23.218	40.114 40.916	5626.0 5830.5 6036.8	41.076 41.445	4398.7 4601.3
265.00	18.587	23.566	41.708	6244.9	41.801	4807.9
270.00		23.906	42.493	6454.8	42.141	5018.4
273.15		24.118	42.983	6587.8	42.349	5153.0
275.00 280.00	19.028 19.468	24.241 24.569	42.983 43.269 44.037	6587.8 6666.3 6879.4	42.468 42.780	5153.0 5232.8 5451.0
285.00	19.906	24.891	44.797	7094•1	43.078	5673.1
290.00	20.341	25.207	45.549	7310•2	43.362	5899.0
295.00	21.047	25.517	46.292	7527•7	43.633	6128.6
298.15		25.712	46.759	7665•4	43.796	6275.2
300.00		25.822	47.028	7746•5	43.890	6361.9

 $\mathbf{H}_0^{\mathsf{C}}$ and $\mathbf{s}_0^{\mathsf{C}}$ apply to the reference state of the solio at zero deg K

Kelley, K. K.,
The Specific Heats at Low Temperatures of Crystalline Ortho-, Meta-, andDi- silicates of Sodiur.
J. Am. Chem. Soc. 61, 471-473 (1939)

14. 14. 14. 1 · ·

TABLE 8-118

THERMODYNAMIC FUNCTIONS FOR BARIUM DX1DE (8A O) SOLID PHASE

GRAM MOL	FCULAR WT.=	153.3394 (T DEG K	GRAMS = 273.15 +	T OEG C	CAL=4	•1840 A85 J
Ţ	$-\iota G_0^1 {-} H_C^0) \vee \iota$	$(H_0^{1}-H_0^{0})/I$	$(s_T - s_0^c)$	(HT-HO)	cp0	-(GT-HC)
DEG K	DEG MOLE	OEG MOLE	DEG MOLE	SÅL_ MOLE	OEG MOLE	MOLE MOLE
0.00 5.00	0.000	n+000 0+003	0.000	0.000 0.014	0.000 0.011	0.000 0.005
10.00	0.007	0.022	0.030	0.225	0.090	0.075
15.00	0.025	0.075	0.101	1.132	0.299	0.378
20.00	0.059	0.175	0.234	3.492	0.671	1.186
25.00 30.00 35.00	0.113 0.188 0.282 0.393	0.322 0.509 0.722 0.950	0.435 0.697 1.004 1.344	8.054 15.272 25.269 38.017	1.169 1.721 2.277	2.832 5.642 9.879
40.00 45.00 50.00 55.00	0.519 0.657 0.804	1.187 1.429 1.673	1.706 2.086 2.477	53.433 71.443 91.989	2.819 3.344 3.858 4.358	15.738 23.355 32.830 44.231
60.00	0.960	1.917	2.877	114.99	4.841	57.612
65.00	1.123	2.159	3.283	140.36	5.299	73.009
70.00	1.292	2.399	3.691	167.93	5.726	90.443
75.00	1.466	2.634	4.100	197.55	6.113	109.92
80.00	1.643	2.863	4.506	229.00	6.464	131.43
85.00	1.82?	3.084	4.907	262.13	6.784	154.97
90.00	2.005	3.298	5.303	296.81	7.083	180.50
95.00	2.389	3.505	5.694	332.93	7.365	207.99
100.00	2.374	3.704	6.079	370.43	7.633	237.43
105.00	2.560	3.898	6.457	409.24	7.888	268.77
110.00	2.745	4.084	6.830	449.29	8.128	301.99
115.00	2.931	4.265	7.196	490.49	8.352	337.06
120.00	3.116	4.440	7.556	532.78	8.559	373.94
125.00	3.301	4.608	7.903	576.06	8.750	412.61
130.00	3.485	4.771	8.256	620.25	8.925	453.02
135.00	3.668	4.928	8.596	665.29	9.088	495.15
140.00	3.850	5.079	8.929	711.11	9.239	538.97
145.00	4.031	5.225	9.256	757.66	9.380	584.44
150.00	4.210	5.366	9.576	804.89	9.511	631.52
155.00	4.388	5.502	9.890	852.75	9.634	680.19
160.00	4.565	5.633	10.198	901.22	9.749	730.41
165.00	4.740	5.759	10.499	950.23	9.857	782.15
170.00	4.914	5.881	10.795	999.77	9.957	835.39
175.00	5.086	5.999	11.085	1049.8	10.052	890.09
180.00	5.257	6.113	11.370	1100.3	10.141	946.23
185.00	5.426	6.223	11.649	1151.2	10.225	1003.8
190.00	5.593	6.329	11.922	1202.5	10.306	1062.7
195.00	5.759	6.432	12.191	1254.2	10.382	1123.0
200.00	5.923	6.532	12.455	1306.3	10.455	1184.6
205.00	6.086	6.628	12.714	1358.8	10.524	1247.5
210.00	6.246	6.722	12.968	1411.6	10.590	1311.7
215.00	6.406	6.812	13.218	1464.7	10.654	1377.2
220.00	6.563	6.900	13.464	1518.1	10.714	1443.9
225.00	6.719	6.986	13.705	1571.8	10.772	1511.8
230.00	6.874	7.069	13.943	1625.8	10.828	1581.0
235.60	7.027	7.149	14.176	1680.1	10.881	1651.3
240.00	7.178	7.228	14.406	1734.6	10.932	1722.7
245.00	7.328	7.304	14.632	1789.4	10.981	1795.3
250.00 255.00 260.00 265.00	7.476 7.623 7.768 7.912	7.378 7.450 7.520 7.588	14.854 15.073 15.288 15.500	1844.4 1899.7 1955.2 2010.9	11.028 11.074 11.118	1869.0 1943.8 2019.7
270.00 273.15 275.00	8.055 8.144	7.655 7.696 7.720	15.709 15.839 15.915	2066.8 2102.1 2122.9	11.161 11.202 11.228 11.242	2096.7 2174.7 2224.4 2253.8
280.00 285.00 290.00	8.335 8.474	7.783 7.845 7.905	16.118 16.318 16.515	2179.2 2235.7 2292.4	11.282 11.319 11.356	2333.9 2415.0 2497.1
295.00 298.15 300.00	8.746 8.831	7.964 8.000 3.021	16.710 16.831 16.902	2349.3 2385.2 2406.3	11.392 11.415 11.427	2580.1 2633.0 2664.2

TABLE B-118 (CONT.)

THERMODYNAMIC F $\mathcal{M}^{\prime\prime}$ TIONS FOR BARTHM OXIDE (BA O) SOLIO PHASE

GRAM MOLE	CULAR WT.=	153.3394 G	RAMS = 273.15 +	T OFG C	CAL = 4 •	1840 ABS
T	$-(G_T^0-H_0^C)/T$	$(H_0^{\perp}-H_0^{\perp}) \setminus I$	(c1-c0)	(HT-HO)	c _P	-101-H0
DFG K	OEG MOLE	OEG MOLE	DEG MOLE	<u>CAL</u> MOLE	ŌĒĠ MŌĒĒ	CAL MOLÉ
300.00	8.881	8.021	16.902	2406•3	11.427	2664.2
310.00	9.145	8.132	17.277	2520•9	11.495	2835.1
320.00	9.405	9.238	17.643	2636.2	11.560	3009•/
1 0.00	9.660	8.340	18.000	2752.1	11.621	3187•9
341 00	9.711	8.437	18.348	2868.6	11.580	3369•7
35 7	19.157	8.531	18,687	2985.7	11.737	3554.8
360.00	19.398	8.620	19,019	3103.4	11.792	3743.4
170.00	10.636	8.707	19,343	3221.6	11.845	3935.2
373.15	10.710	8.733	19.443	3258.9	11.861	3996.3
380.00	10.869	8.790	19.659	3340.3	11.895	4130.2
390.00	11.098	8.870	19.969	3459.5	11.944	4328.3
400.00	11.324	8.948	20.272	3579.1	11.991	4529.6
425.00	11.872	9.130	21.002	3880.3	12.101	5045.6
450.00	12.399	9.298	21.697	4184.1	12.201	5579•4
475.00	12.905	9.453	22.359	4490.3	12.293	6130•1
500.00	13.394	9.597	22.992	4798.7	12.378	6697•0
550.00	14.321	9.857	24.179	5421.6	12.533	7876.7
600.00	15.189	10.086	25.275	6051.8	12.574	9113.4
650.00	16.005	10.290	26.295	6688.7	12.804	10403.
700.00	16.774	10.474	27.248	7332.0	12.926	11742.
750.00	17.502	30.642	28.144	7981.3	13.044	13127.
800.00	18.194	10.795	28.990	8636.3	13.157	14555.
850.00	18.853	10.938	29.791	9296.9	13.266	16025.
90G.00	19.482	11.070	30.552	9962.9	13.373	17534.
950.00	20.084	11.194	31.278	10634.	13.479	19080.
1000.00	20.661	11.311	31.972	11311.	13.582	20661 •
1050.00	21.216	11.421	32.637	11992.	13.684	22276 •
1100.00	21.749	11.526	33.276	12679.	13.785	23924.
1150.00	22.264	11.627	33.891	13371.	13.886	25603.
1200.00	22.761	11.723	34.484	14068.	13.985	27313.
1250.00	23.241	11.816	35.057	14769.	14.084	29052.
1300.00	23.706	11.905	35.611	15476.	14.182	39818.
1350.00	24.157	11.991	30.148	16188.	14.280	32612.
1400.00	24.595	12.074	36.669	16904.	14.377	34433.
1450.00	25.020	12.155	37.175	17625.	14.474	36279.
1500.00	25.434	12.234	37.668	18351.	14.571	38150.
1550.00	25.836	12.311	38.147	19082.	14.667	40046.
1600.00	26.228	12.386	38.614	19818.	14.764	41965.
1650.00	26.610	12.460	39.070	20558.	14.860	43907.
1700.00	26.983	12.532	39.515	21304 •	14.955	45872.
1750.00	27.343	12.602	39.950	22054 •	15.051	47858.
1800.00	27.704	12.672	40.375	22809 •	15.147	49866.
1850.00	28.052	12.740	40.791	23569.	15.242	51896.
1900.00	28.392	12.807	41.199	24333.	15.338	53945.
1950.00	28.726	12.873	41.599	25102.	15.433	56015.
2000.00	29.053	12.938	41.991	25876.	15.528	58105

 $\mathsf{H}_0^{\mathsf{C}}$ and $\mathsf{s}_0^{\mathsf{C}}$ apply to the reference state of the solio at zero deg κ

Anderson, C. T., The Heat Capacities at Low Temperatures of the Oxides of Strontium and Barium J. Am. Chem. Soc. <u>57</u>, 429-431 (1935)

healoy, n. K., Contributions to the Data on Theoretical Metallurgy. XIII. High-Temperature Heat-Content, Heat-Capacity, and Entropy Data for the Elements and Inorganic Compounds U. S. Bur. Mines, Bull. 584, 232 pages (1960)

TABLE 8-119

THERMODYNAMIC FUNCTIONS FOR CALCIUM CANGIDE (CA C_2) SOLID PHASES

GRAM MOLEC	ULAR WT.=	64.1023 GP	AMS = 273.15 +		CAL=4.1	840 ABS J
				T DEG C	c _p	-(60-HC)
Ŧ -		$(H_{T}^{0}-H_{0}^{C})/T$				
DFG K	DEG MOLE	DEG MOLE	OEG MOLE	MOLE	DEG MOLE	MOLE
		SOLI	D PHASE (A	LPHA)		
0.00	0.000	0.000	0.000	0.000	0.000	0.000
5.00	0.000	0.001	0.001	0.004	0.003	0.001
10.00	0.002	0.006	0.008 0.027	0.056	0.023	0.019
15.00	0.007	0.020 0.049	0•027 0•065	0.973	0.195	0.318
20.00	0.016	0.095	0.126	2.377	0.379	0.784
30,00	0.054	0.163	0.218	4.899	0.643	1.632
35.00	0.086	0.255	0.342	8.939	0.984	3.016
40.00	0.128	0.371	0.499	14.844	1.386	5.103
45.00	0.179	0.508	0.687	22.865	1.827	8.055
50.00	0.240	0.663	0.903	33.138	2.295	12.019 17.125
55.00	0.311	0.831	1.143	45.728 60.722	3.247	23.482
60.00	0.391	1.012	1.403 1.684	78.241	3.764	31.191
65.00	0.480	1.204 1.405	1.982	98.373	4.289	40.347
70.00 75.00	0.680	1.615	2.295	121.13	4.811	51.034
80.00	0.792	1.831	2.622	146.46	5.323	63.324
85.00	0.909	2.051	2.960	174.34	5.825	77.276
90.00	1.033	2.274	3.307	204.69	6.313	92.940
95.00	1.162	2.499	3.661	237.44	6.786	110.36
100,00	1.296	2.725	4.021	27 ? 452 304 • 84	7.242 7.683	129.56 150.57
105.00	1.434	2.951 3.176	4.752	345.32	8.108	173.41
110.00	1.576	3.399	5.122	390.89	8.517	198.10
115.00	1.872	3.621	5.493	434.47	8.910	224.63
125.00	2.024	3.840	5.864	479.96	9.284	253.02
130.00	2.179	4.056	6.235	527,27	9.635	283.27
135.00	2,336	4.269	6.605	576,27	9.963	315.37
140.00	2.495	4.478	6.973	626,87	10.270	349.32 385.09
145.00	2.656	4.682	7.338	678.94	10.558 10.829	422.69
150.00	2,818	4.883	7.701	732.42 787.22	11.088	462.10
155.00	2.981 3.146	5.079 5.270	8.050 8.416	843.28	11.335	503.29
160.00 165.00	3.311	5.458	8.768	900.95	11.571	546.25
170.00	3,476	5.641	9.117	958.97	11.798	590.97
175.00	3.642	5.820	9 * 462	1018.5	12.012	637.42
180.00	3.809	5.995	9.804	1079.1	12.216	685.58
185.00	3.975	6.166	10.141	1140.6	12.407 12.586	735.45 786.99
190.00	+.142	6.332	10.474 10.803	1203•1 1266•5	12.754	840.18
195.00	4.309 4.475	6,653	11.128	1330.6	12.912	895.01
200.00	4,641	6.808	11.449	1395.6	13.060	951.46
210.00	4.807	6.958	11.765	1451.2	13.201	1009.5
215.00	4.973	7.105	12.078	1527.6	13.534	1069.1
220.00	5,138	7.248	12.386	1594.6	13.461	1130.3
225.00	5.302	7.387	12.689	1662.2 1730.4	13.563 13.700	1193.0 1257.2
230.00	5.466 5.629	7.523 7.656	12.989 13.285	1799.2	13.813	1322.8
235.00			13.577	1868.5	13.923	1390.0
240.00 245.00			13.865	1938.4	14.029	1458.6
250.00			14.150	2008.8	14.133	1528.6
255.00			14.431	2079.7	14.233	1600.1
260.00		8.274	14.708	2151.1	14.331	1672.9
265.00	6.593	8.389	14.982	2223.0	14.426	1747.2
270.00	6.751	8.501	15.252	2295.4	14.518 14.575	1822.8 1871.1
273.15		8.571 8.612	15.421	2341.2 2368.2	14.608	1899.7
275.00			15.520 15.784	2441.5	14.696	1978.0
280.00 285.00	7.219	8.825	16.044	2515.2	14.781	2057.5
290.00	7,374	8.929	16.302	2589.3	14.864	2138.4
295.00	7.527	9.030	16.557	2663.8	14.944	2220.5
298.15	7.6"3	9.093		2710.9	14.994	2272.9
300.00	7.680	9.129	16.809	2738.7	15.023	2304.0

TABLE 8-119 (CONT.)

THERMODYNAMIC FUNCTIONS FOR CALCIUM CARBIDE (CA ε_2) SULIO PHASES

GRAM MOL	ECULAR WT.=		AMS = 273.15 +	T OFG C	CAL=4	1840 ABS J
T	-(GT-H01/T	(HTO-HC)/T	s _T -s ^C ₀)	(H ⁰ −H ⁰)	c _p	-(GT-HC)
DEG K	OEG MOLE	OEG MOLE	OEG MOLE	CAL MOLE	CAL OEG MOLE	CAL MOLE
		50L I	O PHASE (AL	LPHA)		
300.00	7.680	9.129	16.809	2738.7	15.023	2304.0
310.00	7,982	9.322	17.304	2889.1	15.173	247415
320.00	9.281	9.507	17.788	3042.2	15.317	2650 · C
330.00		9.685	18.261	3196.0	15.453	2830.3
340.00	•	9.856	18 725	3351.2	15.582	3015.2
350.00		10.022	19.178	3507+6	15.706	3204.7
360.00		10.181	19.622	3665.3	15.824	3398.7
370.00		10.335	20.057	3824+1	15.936	3597.1
373.15 380.00		10.383 10.484	20.193	3874.3	15.971	3660.5
390.00		10.628	20.484 20.902	3984.0 4144.9	16.043 16.145	3799•8 4006•8
400.00		10.767	21.312	4306.9	16.241	4217.8
425.00		11.096	22.303	4715.7 -	45.461	4763.1
450.00		11.399	23.250	5129.7	16.656	5332.6
475.00		11.681	24.155	5548.3	16.832	5925.3
500.00		11.942	25.022	5971.2	16.992	6540.1
550.00		12.415	26.656	6828.1	17,278	7632.5
600.00		12.831	28.170	7698.4	17.529	9703.6
650.00		13.201	29.582	8590.6	17.756	10948.
700.00		13.534	30.906	9473.7	17.966	12160.
720.30	17.755	13.658	31.413	9833.8	18.045	12784.
		SOL	TO PHASE I	BETA)		
720.00	17.755	15,505	33.260	11164.	16.840	12783.
750.00	18.389	15.560	33.949	11670.	16.900	13792.
800,00		15.647	35.043	12517.	17.000	15517.
850.00		15.729	36.076	13370•	17+100	17295.
900.00		15.808	37.057	14227.	17.200	19124.
950.00		15.884	37.989	15090.	17.300	21000.
1000.00		15.957	38.879	15957.	17.400	22922•
1050.00		16.029	39.731	16830.	17.500	24887.
1100.00 1150.00		16.098 16.165	40.547	17707.	17.600 .	26894.
1200.00		16.231	41•332 42•087	18590• 19477•	17.700 17.800	28941. 31027.
1250.00		16.296	42.816	20370	17.900	33150
1300.00		16.360	43.520	21267	18.000	35308
1350.00		16.422	44.201	22170	18.100	37501
1400.00		16.484	44.861	23077•	18.200	39728
1450.00		16.545	45.501	23990	18.300	41987
1500.00		16.605	46.123	24907.	18.400	44278

 $H_0^{\boldsymbol{C}}$ and $s_0^{\boldsymbol{C}}$ apply to the reference state of the solio at zero deg κ

Kelley, K. K., Specific Heat of Calcium Carbide at Low Temperatures Ind. Eng. Chem. 33, No. 10, 1314-1315 (1941)

Kelley, K. K.,
Contributions to the Data on Theoretical Mctallurgy.
XIII. High-Temperature Heat-Content, Heat-Capacity,
and Entropy Data for the Elements and Inolganic Compounds
U. S. Bur. Mines, Bull. 564, 232 pages (1960)

-55-

TABLE 8-120

THEPMODYNAMIC FUNCTIONS FOR TRICALCIUM ALUMINATE (3CA 0 .AL $_2$ 0 $_3$) . SOLID PHASE

GRAM MOL	CULAR WT.=	270.1994 R T OEG K	RAM5 = 273.15 +	T DEG C	CAL = 4	.1840 AB5 J
T	-(GT-HO)/T	(H ⁰ -H ⁰)/T	(5 ₇ -5 <mark>0</mark> 1	(HT-HO)	C _P	-(G1-HC)
DEG K	DEG MOLE	DEG MOLE	OFG MOLE	ÇAL MOLE	OEG MOLE	<u>ÇAL</u> MOLÊ
0.00 5.00 10.00 15.00 20.00 30.00 35.00 40.00	0.000 0.001 0.009 0.029 0.068 0.130 0.215 U.324 0.456	0.000 0.003 0.026 0.087 0.200 0.368 0.584 0.843 1.146	0.000 0.004 0.035 0.116 0.268 0.497 0.799 1.167 1.602 2.104	0.000 0.116 0.259 1.302 3.998 9.191 17.506 29.497 45.827	0.000 0.013 0.104 0.343 0.765 1.332 2.010 2.803 3.747 4.825	0.000 0.005 0.086 0.436 1.354 3.246 6.458 11.45 18.239 27.475
50.00 55.00 60.00 65.00 70.00 80.00 85.00 90.00	0.788 0.988 1.209 1.452 1.714 1.996 2.295 2.610 2.941 3.286 3.644	1.886 2.319 2.787 3.286 3.810 4.356 4.919 5.496 6.083 6.680 7.282	2.673 3.306 3.596 4.738 5.525 6.352 7.214 8.106 9.024 9.965 10.926	94.279 127.53 167.29 26.73 326.71 393.52 467.14 547.51 634.75 728.20	6.021 7.289 8.600 9.946 11.311 12.680 14.045 15.401 16.744 18.071	39.391 54.315 72.549 94.364 120.00 149.68 183.58 221.87 264.68 312.15 364.27
105.00 110.00 110.00 120.00 125.00 130.00 140.00 145.00	4.014 4.395 4.786 5.187 5.596 6.013 6.437 6.868 7.305	7.889 8.499 9.111 9.772 10.334 10.942 11.547 12.147	11.903 12.894 13.897 14.910 15.930 16.955 17.984 19.015 20.047	828.35 934.93 1047.8 1166.8 1291.8 1422.5 1558.8 1700.6 1847.6	20.677 21.948 23.192 24.407 25.570 26.714 27.816 28.886	421.43 483.42 550.39 622.40 409.50 781.71 869.06 961.56
150.00 155.00 160.00 165.00 170.00 175.00 180.00 190.00	7.747 8.194 8.645 9.099 9.557 10.018 10.482 10.948	13.332 13.916 14.493 15.063 15.627 16.183 16.732 17.273 17.807	21.079 22.109 23.137 24.163 25.184 26.202 27.214 28.221 29.222	1999.8 2156.9 2318.9 2485.5 2656.6 2832.1 3011.8 3195.6 3383.3	30.933 31.912 32.860 33.779 34.666 35.524 36.352 37.153 37.928	1,62.0 1270.0 1283.1 1501.4 1624.7 1753.2 1886.7 2025.3 2168.9
195.00 200.00 205.00 210.00 215.00 225.00 235.00 235.00	11.885 12.356 12.827 13.300 13.773 14.247 14.720 15.194 15.668 16.142	18.332 18.850 19.360 19.863 20.357 20.845 21.325 21.797 22.263 22.721	30.217 31.206 32.187 33.162 34.130 35.091 36.045 36.992 37.931 38.862	3574.8 3770.0 3968.8 4171.1 4376.8 4585.8 4798.0 5013.3 5231.7 5453.0	38.679 39.407 40.115 40.803 41.472 42.123 42.755 43.371 43.968 44.549	2317.6 2471.1 2629.6 2793.0 2961.2 3134.3 3312.1 3494.7 3682.0 3874.0
245.00 250.00 255.00 260.00 270.00 273.15 275.00 280.00 285.00	16.615 17.087 17.559 18.031 18.501 18.971 19.266 19.439 19.906 20.373	23.172 23.616 24.054 24.484 24.908 25.326 25.585 25.737 26.141 26.539	39.787 40.704 41.613 42.515 43.409 44.296 44.851 45.176 46.047 46.912 47.769	5677.2 5904.1 6133.7 6366.0 6600.7 6838.0 6988.6 7077.6 7319.5 7563.7 7810.0	45.112 45.039 46.189 46.703 47.202 47.686 47.984 48.156 48.612 49.056 49.487	4070.6 4271.9 4477.6 4688.0 4902.8 5122.1 5262.5 5345.7 5573.8 5806.2 6042.9
295.00 298.15 300.00	21.301 21.593	27.317 27.557 27.697	48.618 49.150 49.460	8058.5 8216.1 8309.1	49.905 50.165 50.314	6283.9 6437.9 6529.1

TABLE B-1/0 (CONT.)

THERMODYNAM1C FUNCTIONS FOR TRICALCIUM ALUMINATE (3CA 0 ${}_{\circ}$ AL $_{2}$ O $_{3}$) SOL1D PHASE

DEG K DEG MOLE DEG MOLE DEG MOLE DEG MOLE DEG MOLE 300.00 21.764 27.697 49.460 8309.1 50.314 6 310.00 22.604 28.439 51.123 8816.2 51.100 7 320.00 23.598 29.159 52.757 9330.9 51.848 7	CAL MGLE
300.00 21.764 27.697 49.460 8309.1 50.314 6 310.00 22.604 28.439 51.123 8816.2 51.100 7 320.00 23.598 29.159 52.757 9330.9 51.848 7	CAL_ MCLE
310.00 22.604 28.439 51.123 8816.2 51.100 7 320.00 23.598 29.159 52.757 9330.9 51.848 7	
320,00 23,598 29,159 52,757 9330,9 51,848 7	529•1
	032.0
330.00 24.506 29.858 54.364 9853.0 52.559 8	7551+4
340.00 25.408 30.535 55.943 10382. 53.235 8	3087.1
	3638.6 205.8
	788.5
	386.
	578.
380.00 28.944 33.053 51.998 12560. 55.580 10	999.
390.00 29.810 33.637 63.448 13119. 56.076 11	1626.
	2268.
	3933.
	5683
	7514.
	9423.
	3463. 7779.
	2352.
	7165.
	2204.
800.00 59.319 47.738 107.06 38191. 64.068 47	7455.
	5 a û ê •
	8547.
	4369.
	0362.
	5519•
	2834. 9300.
	5910.
	2660.
1300.00 84.265 54.737 139.00 71150. 67.523 109	9544.
	6559.
	3598•
	0960.
	8339.
	5833. 3638
	3438. 1151.
	8969.
	6889.
1800.00 102.73 58.661 161.39 105591. 70.153 184	

 $^{^{\}text{C}}$ and s_{0}^{C} apply to the reference state of the solid at zero deg K

King, E. G., Heat Capacities at Low Temperatures and Entropies at 298.16 K. of Crystalline Calcium and Magnesium Aluminates J. Phys. Chem. <u>59</u>, 218-219 (1955)

Bonnickson, K. R.,
High Temperature Heat Contents of Aluminates of Calcium and Magnesium
J. Phys. Chem. 59, 220-221 (1955)
-57-

TABLE 8-121

THERMODYNAMIC FUNCTIONS FOR CALCIUM ALUMINATE (12CA O ${\bf .7AL_2O_3}$) SOLID PHASES

GRAM MOLE	ECULAR WT.=	1386.6812 T OEG K	GRAMS = 273.15 +	T DEG C	CAL=4	•1840 ABS J
Ţ	$-(G_1^0-H_0^0)/T$	(HT-HC)/T	$(s_1 - s_0^0)$	(H _T -H ₀)	¢ ₽	-(G1-H0)
OEG K	DEG MOLE	DEG MOLE	DEG MOLE	SALE	DEG MOLE	SAL MOLE
		SOL	ID PHASE (A	LPHA)		
0.00 5.00 15.00 25.00 35.00 45.00 45.00 60.00 55.00 85.00 85.00 95.00 85.00 95.00 105.00 105.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00	0.005 0.005 0.005 0.005 0.005 0.1323 1.0227 3.883 5.983 1.522.983 1				0.0000 0.061 0.489 1.631 3.683 6.682 10.002 14.146 10.863 24.207 30.105 7.112 64.124 71.117 78.059 84.914 91.661 123.75 111.31 117.61 123.75 1	0.000 0.027 0.407 2.060 6.465 15.478 17.041 54.982 89.027 134.86 194.14 268.32 744.82 914.68 121.8 122.8 122.8 122.7 2760.3 3122.7 2760.3 3123.4 485.0 596.32 744.82 914.69 110.4 2422.7 2760.3 3123.4 3512.3 3927.1 4355.0 5965.0 7562.9 8836.7 9512.4 10214.1 10214.1 10214.1 10214.1
215.00 220.00 225.00 230.00 235.00 240.00	71.963 74.371 76.781 79.191 81.601	103.45 105.96 108.43 110.86 113.26 115.63	173.01 177.92 182.80 187.64 192.45 197.23	22242 23311 24396 25498 26617 27750	211.99 215.42 218.76 222.03 225.21 228.32	14954. 15832. 16734. 17660. 18610. 19584.
245.00 250.00 255.00 260.00 270.00 273.15 275.00 280.00	84.009 86.415 88.819 91.220 93.617 96.010 97.516 98.399 100.78	1.7.26 120.26 122.52 124.75 126.95 129.12 130.48 131.26 133.37	201.97 206.67 211.54 215.97 220.57 225.13 227.99 229.66 234.16	28900 • 20064 • 31243 • 32436 • 33643 • 35639 • 36098 • 37345 •	231.35 234.31 237.20 240.03 242.79 245.49 247.16 248.12 250.70	20582. 21604. 22649. 23717. 24803. 25923. 26636. 27060. 28219.
285.00 290.00 295.00 298.15 300.00	103.16 105.54 107.90 109.39 110.27	135.45 137.51 139.52 140.79 141.52	238.62 243.04 247.43 250.18 251.79	38604. 39877. 41161. 41976. 42457.	253.21 255.69 258.03 259.49 260.34	29401. 30605. 31832. 32615. 33080.

TABLE B-121 (CONT.)

TH RMODYNAMIC FUNCTIONS FOR CALCIUM ALUMINATE (12CA 0 ${ ildot}^7{\rm AL}_2{ ildot}^0{ ildot}^1$ SOLID PHASES

GRAM MCLE	CULAR WT.=		GRAMS = 273.15 +	T DEG C	CAL # 4	•1840 AB5 J
T	-(61-H01/T	(HT-HU)2T	(5 ₇ -5 <mark>0</mark>)	(H ⁷ -H ⁰)	c _P	-167-H01
DEG K	DEG MOLE	DEG MÖLE	DEG MOLE	MOLE	DEG MOLE	CAL MÖLE
		SOL	ID PHASE (A)	LPHA)		
300.00	110.27	141.52	251.79	42457.	260.34	33080.
310.00	114.97	145.43	260.40	45082	264.75	35641.
320.00	119.65	149.22	268.87	47751.	268.89	38287.
330.00	124.30	152.91	277.20	50459.	272.75	41018.
340.00	128.91	156.49	285.40	53205.	276.35	43831.
350.00	133.50	159.96	293.46	55986.	279.71	46725.
360.00	138.05	163.33	301.38	58798.	282.84	49700.
370.00	142.57	166.60.	309.17	61642.	285.77	52752.
373.15	143.99	167.61	311.6r	62543.	286.65	53730.
380.00	147.06	169.77	316.83	64513.	288.52	55883.
390.00	151.51	172.85	324.36	67411.	791.11	59089.
400.00	155.92	175.84	331.76	70335.	293.56	62369.
425.00	166.80	182.93	349.73	77745.	299.14	70889.
450.00	177.44	.89.53	366.97	85257	304.10	79850.
475.00	187.86	195.68	383.53	92946.	308.56	89232.
500.00	198.04	201.42	399.46	100711.	312.60	99021. 119757.
550.00	217.74	211.86	429.60	116524.	319.72 325.91	141947
600.00 650.00	236.58 254.61	221.11 223.39	457.69 484.00	132668.	331.44	165496
700.00	271.89	236.86	508.75	155806.	336.53	190321
750.00	288.46	243.67	532.13	182750	341.25	216348.
800.00	304.39	249.91	554.30	199925.	345.72	243514
850.00	319.72	255.67	575.39	217318	349.98	271760.
900.00	334.48	261.02	595.51	234920.	354+08	301036.
950.00	348.73	266.03	614.76	252724.	358.06	331297.
1000.00	362.50	270.72	633.22	270725.	361.93	362499.
1050.00	375.82	275.16	650.97	288916.	365.72	394607.
1100.00	388.71	279.36	668.07	307295.	369.44	427586.
1150.00	401.22	283.36	684.58	325859.	373.10	461404.
1200.00	413.35	287.17	700.53	344605.	376.72	496034.
1250.00	425.16	290.82	715.9A	363530.	380.30	531449.
1300.00	436.63	294.23	730.97	382634.	383.54	557625
1310.00	438.89	295.02	733.91	386476.	384.54	574949.
		SO	LID PHASE (BETA)		
1310.00	438.89	295.02	733.91	386476.	357.48	574949.
1350.00	447.79	296.93	744.72	400854.	361.41	604522•
1400.00	458.64	299.32	757.96	419347.	366.34	64209 -
1450.00	469.18	301.72	770.90	437487.	371.26	680313.
1500.00	479.45	304.12	783.57	456173.	376.18	719176.
1550.00	489.46	306.52	795.98	475105.	381.10	758665.
1600.00	499.23	308.93	808.16	494283.	386.02	798770•
1650.00	508.77	311.34	820.11	513708.	390.95	839477.
1700.00	518.10	313.75	831.86	533378	395.87	880777·
1750.00	527.23	316.17	843.40	553294	400 • 79	922660.
1800.00	536.17	318.59	854.76	573457.	405.71	965115.

 $H_{\tilde{G}}^{\tilde{G}}$ and $S_{\tilde{G}}^{\tilde{G}}$ apply to the reference state of the solid at zero deg K

King, E. O., Heat Caracities at Low Temperatures and Entropies at 295.16 K. of Crystalline Calcium and Magnesium Aluminates J. Phys. Chem. <u>59</u>, 218-219 (1955)

Bounickson, K. R., High Temperature Heat Contents of Aluminates of Calcium and Magnesima \mathcal{Z} . Phys. Chem. 59, 220-221 (1955)

TABLE B-122

THERMODYNAMIC FUNCTIONS FOR MONOCALCIUM ALUMINATE (CA $\mathfrak{t} \mapsto \mathsf{AL_2^0}_3$) SOLIO PHASE

GRAM MOLECULAR WT.=		158.0406 GRAM5 T OEG K = 273.1% + T OEG C		CAL=4.1840 ABS J		
T	-(G1-HC)/T			(HT-HC)	C p	-(G1-HC)
DEG K	DEG MOLE	OFG MOLE	DEG MOLE	SAL_ MOLE	DEG MÖLE	<u>ÇAL</u> MOLE
0.00 5.00 10.00	0.000 0.001 0.004	0.000 0.002 0.012	0.000 0.002 0.017 0.056	0.000 0.008 0.124 0.626	0.000 0.006 0.050 0.167	0.000 0.003 0.041 0.209
15.00 20.00 25.00 30.00 35.00 40.00	0.014 0.033 0.064 0.108 0.168 0.242	0.042 0.098 0.188 0.311 0.467 0.651	0.038 0.131 0.251 0.420 0.634 0.893	1.964 4.690 9.336 16.334 26.056	0.387 0.721 1.151 1.660 2.240	0.559 1.595 3.253 5.869 9.670
45.00 50.00 55.00 60.00 65.00	0.330 0.433 0.550 0.679	0.863 1.098 1.354 1.626 1.913	1.193 1.532 1.904 2.306 2.733	38.832 54.919 74.475 97.588 124.33	2,879 3,561 4,264 4,983 5,713	14.869 21.667 30.243 40.756 53.343
70.00 75.00 80.00 85.00 90.00	0.973 1.136 1.308 1.489	2.210 2.516 2.829 3.145 3.467	3.183 3.652 4.137 4.636 5.146	154.71 188.72 226.31 267.44	6.441 7.161 7.873 8.577 9.272	68.127 85.209 104.68 126.60
95.00 100.00 105.00 110.00	1.875 2.077 2.286 2.500	3.791 4.116 4.442 4.768 5.093	5.665 6.193 6.728 7.268 7.813	360.14 411.60 466.38 524.45 585.75	9.955 10.626 11.287 11.938 12.580	178.08 207.72 240.02 275.01 312.71
120.00 125.00 130.00 135.00 140.00	2,943 3,171 3,402 3,637 3,875	5.743 6.066 6.387 6.706	8.361 8.913 9.468 10.024 10.581	650.24 717.84 788.52 862.18 938.77	13.211 13.830 14.436 15.028 15.607	353.14 396.33 442.28 491.01 542.52
145.00 150.00 155.00 160.00	4.359 4.605 4.853 5.102	7.022 7.337 7.648 7.958 8.264	11.138 11.696 12.253 12.810 13.366	1018.2 1100.5 1185.5 1273.2 1363.6	16.174 16.730 17.274 17.808 18.330	596.81 653.90 713.77 776.43 841.87
170.00 175.00 180.00 185.00	5.606 5.860 6.115 6.372	8.568 8.868 9.166 9.461 9.752	13.921 14.475 15.026 15.576 16.124	1456.5 1552.0 1649.0 1750.2 1853.0	18.841 19.341 19.829 20.307 20.775 21.232	910.09 981.08 1054.8 1131.3 1210.6 1292.6
195.00 200.00 205.00 210.00 215.00 220.00	6.886 7.145 7.404 7.663	10.041 10.326 10.509 10.888 11.164 11.437	16.669 17.213 17.754 18.292 18.827 19.360	1958.0 2065.3 2174.8 2286.5 2400.3 2516.2	21.681 22.121 22.553 22.975 23.389	1377.3 1464.7 1554.8 1647.6 1743.1
225.00 230.00 235.00 240.00 245.00	8.183 8.443 8.704 7.964	11.707 11.974 12.239 12.500 12.758	19.891 20.418 20.942 21.464 21.982	2634.2 2754.1 2876.1 2999.9 3125.6	23.795 24.191 24.579 24.958 25.329	1841.2 1942.0 2045.4 2151.4 2260.0
250.00 255.00 260.00 265.00 270.00	9.445 0.744 0.10.00F 0.10.265	13.013 13.265 13.514 13.760 14.004	22.498 23.010 23.519 24.025 24.528	3253.2 3382.5 3513.7 3646.5 5781.1	25.693 26.049 26.398 26.742 27.079	2371.2 2485.0 2601.3 2720.2 2841.6
273.15 275.00 280.00 285.00 290.00	5 10.688 0 10.783 0 11.042 0 11.301 0 11,559	14.156 14.245 14.483 14.718 14.951	24.844 25.028 25.525 26.019 26.510	3866.7 3917.3 4055.2 4194.7 4335.7	27.289 27.411 27.737 28.058 28.373	2919.3 2965.5 3091.8 3220.7 3352.0
295.00 298.1 300.0	0 11.816 5 11.978	15.181 15.325 15.408	25.997 27.303 27.482	4478.4 4569.0 4622.5	28.681 28.872 28.983	3485.8 3571.3 3622.0

TARLE B-122 (CONT.)

THERMODYNAMIC FUNCTIONS FOR MONOCALCIUM ALUMINATE (CA O ${}^{\bullet}\text{AL}_2\text{O}_3$) SOLIO PHASE

GRAM MOLECULAR WT.= 158.0406 GRAMS T DEG K = 273.15 + T DEG C				CAL=4.1940 ABS J		
Ţ	-(6T-H01/T	0 C	(ST=S0)	(HT-HO)	Cp	-(GT-HO)
OEG K	CAL	OEG MOLE	CAL OEG MOLE	CAL_ MOLE	CAL OEG MOLE	CAL_ MOLE
	DFG MOLE	OEG MOEE	OLG MOLL	17022		
300.00	12.073	15.408	27.482	4622.5	28.983	3622.0
310.00	12,586	15.856	28.442	4915.3	29.566	3901.6
320.00	13.096	16.293	29.389	5213.8	30.119	4190.8
330.00	13.604	16.720	30.324	5517.6	30.638	4489.4
340.00	14.109	17.137	31.246	5826.4	31.124	4797.2
350.00	14.612	17.543	J2.155	6139.9	31.576	5114.2
360.00	15.112	17.938	33.050	6457.8	31.997	5440.3
370.00	15,609	18.324	33.932	6779.8	32.388	5775.2
373.15	15.764	18.443	34.207	6882.0	32.505	5882.5
380.00	16.102	18,699	34.801	7105.5	32.752	6118.9
390.00	16.593	19.063	35.656	7434.7	33.092	6471.2
	17.080	19.418	36.498	7767.3	33,410	6831.9
400.00	18.283	20.263	38.546	8611.7	34.127	7770.2
425.00	19.463	21.051	40.514	9472.8	34.751	8758.6
450.C0	20.622	21.787	42.408	10349.	35.303	9795 • 2
475.00	21.757	22.475	44.232	11237.	35.796	10878.
500.00	23.959	23.726	47.685	13049.	36.647	13177.
550.00		24.833	50.905	14900	37.365	15643.
600.00	26.072	25.822	53.921	16784.	37.990	18264 •
650.00	28.099	26.711	56.757	18698.	38.547	21032.
700.00	30.046	27.517	59.434	20638.	39.055	23937.
750.00	31.917	28.253	61.970	22603.	39.524	26973 •
800.00	33.716	28,929	64.379	24590	39.964	30132.
850.00	35.450	29.554	66.675	26599	40.381	33409.
900.00	37.171	30.135	68.869	28628	40.780	36798.
950.00	38.735	30.676	70.971	30576.	41.164	40294 •
1000.00		31.185	72.988	32744.	41.536	43894 •
1050.00		31.663	74.929	34830 •	41.898	47592 .
1100.00		32.116	76.799	36934.	42.252	51385.
1150.00		32.546	78 605	39055•	42.599	55271.
1200.00		32.955	80.351	41193.	42.940	59245.
1250.00		33.345	82.041	43349	43.277	63305 •
1300.00		33.719	83.681	45521	43.609	67448.
1350.00		34.078	85.273	47710	43.938	71672.
1400.00		34.424	86.820	49915.	44.263	75974.
1450.00			88.326	52136	14.586	80353.
1500.00		34.758	89.794	54374	44.907	84806
1550.00		35.080	91.224	56627.	45.225	89332.
1600.00		35.392		58896	45.542	93928.
1650.00		35.695	92.621	61181	45.857	98594
1700.00		35.989	93.985		46.170	103326.
1750.00		36 • 275	95.319	63482 • 65798 •	46.482	108125
1800.00	60.069	36.554	96.624	02140	40 6 402	1001234

 ${\sf H}_0^{\sf C}$ and ${\sf S}_0^{\sf C}$ apply to the reference state of the solio at zero deg k

King, E. G., Heat Capacities at Low Temperatures and Entropies at 298,16 K. of Crystalline Calcium and Magnesium Aluminates J. Phys. Chem. 59, 218-219 (1955)

Bonnickson, K. R., High Temperature Heat Contents of Aluminates of Calcium and Magnesium J. Phys. Chem. <u>59</u>, 220-221 (1955)

TABLE B-123

THERMODYNAMIC FUNCTIONS FOR CALCIUM DIALUMINATE (CA D ${\circ}2AL_2O_3$) SOLID PHASE

GRAM MOLE	CULAR WI.=		260.0018 GRAMS T DEG K = 273.15 + T DEG C			CAL=4.1840 ABS J	
T	−ια <mark>↑−</mark> Η <mark></mark> Ω1/Τ	$\{H_0^{\dagger}-H_0^{C}\}$ /T	(ST-SC)	(H _T -H ₀)	c ⁰	-(G0-HC)	
DEG K	DEG MOLE	DEG MOLE	DEG MOLE	CAL MÔLE	DEG MOLE	CAL MÔLE	
0.00 5.00 10.00 15.00 20.00 35.00 35.00 40.00 50.00 50.00 60.00 75.00	0.000 0.001 0.007 0.027 0.052 0.100 0.166 0.252 0.356 0.478 0.617 0.773 0.946 1.135 1.241 1.563	0.000 0.002 0.020 0.020 0.153 0.286 0.459 0.666 1.173 1.474 1.807 2.174 2.571 2.994 3.437	0.000 0.003 0.026 0.088 0.205 0.385 0.625 0.916 1.651 2.091 2.580 3.119 3.706 4.335 5.000	0.000 0.012 0.195 0.990 3.067 7.146 13.772 23.313 36.164 52.785 73.685 73.685 99.398 130.42 167.09	0.000 0.010 0.078 0.262 0.594 1.056 1.605 2.225 2.931 3.734 4.643 5.663 6.762 7.912 9.071	0.000 0.005 0.065 0.331 1.0038 2.489 4.993 8.831 14.259 21.518 30.852 42.509 56.738 73.782 93.866	
80.00 85.00 96.00 95.00 100.00 115.00 120.00 125.00 130.00 135.00	1.799 2.049 2.313 2.589 2.876 3.173 3.481 3.797 4.122 4.455 4.795 5.141	3.898 4.371 4.856 5.350 5.850 6.356 6.866 7.378 7.893 8.409 8.925 9.441 9.956	5.696 6.421 7.169 7.938 8.726 9.529 10.346 11.176 12.015 12.864 13.720 14.583	311.80 371.57 437.06 508.23 585.01 667.36 755.21 848.51 947.18 1051.1 1160.3 1274.6	11.378 12.527 13.668 14.793 15.915 17.022 18.117 19.199 20.266 21.315 22.347 23.361	143.92 174.20 208.16 245.92 287.58 333.21 382.89 436.69 494.67 556.86 623.32 694.08	
145.00 150.00 155.00 160.00 165.00 170.00 175.00 185.00 185.00	5.852 6.216 6.584 6.957 7.334 7.715 8.099 8.486 8.876	10.470 10.981 11.491 11.997 12.501 13.002 13.500 13.993 14.484 14.970	15.450 16.322 17.197 18.075 18.954 19.835 20.717 21.598 22.479 23.360 24.239	1393.9 1518.1 1647.2 1781.0 1919.6 2062.7 2210.3 2362.4 2518.8 2679.5 2844.3	24.356 25.334 26.295 27.240 28.168 29.080 29.975 30.852 31.710 32.551 33.375	769.16 848.58 932.38 1020.6 1113.1 1210.1 1311.5 1417.3 1527.5 1642.1 1761.1	
195.00 200.00 205.00 215.00 215.00 225.00 230.00 235.00 240.00	9.664 10.061 10.460 10.861 11.264 11.668 12.073 12.479 12.886 13.294	15.452 15.930 16.404 16.874 17.339 17.800 18.256 18.707 19.154 19.597	25.116 25.992 26.665 27.735 28.603 29.467 30.328 31.186 32.040 32.891	3013-2 3186-1 3362-9 3543-5 3727-9 3915-9 4107-5 4302-7 4501-2 4703-2	34.181 34.970 35.743 36.501 37.242 37.968 38.679 39.375 40.058	1884.5 2012.2 2144.4 2280.9 2421.7 2566.9 2716.4 2870.2 3028.2 3190.6	
245,00 250,00 260,00 265,00 273,15 275,00 285,00 290,00 290,00 290,00	13.703 14.112 14.521 14.931 15.341 15.752 16.010 16.162 16.572 16.983 17.393 17.893 18.061 18.213	20.035 20.468 20.897 21.322 21.743 22.160 22.421 22.5983 23.388 23.790 24.189 24.439 24.585	33.737 34.580 35.419 36.254 37.085 37.412 38.735 39.555 40.371 41.184 41.993 42.500 42.798	4908.5 5117.1 5328.9 5543.8 5762.0 5983.2 6124.2 6207.6 6435.1 6665.6 6899.2 7135.9 7286.5 7375.4	41.387 42.036 42.678 43.313 43.942 44.566 44.958 45.187 45.803 46.415 47.021 47.622 47.996 48.214	3357.1 3527.9 3702.9 3882.1 4065.5 4252.9 4252.9 4444.6 4640.3 4840.1 5044.0 5251.9 5385.0 5463.9	

TABLE B-123 (CONT.)

THERMODYNAMIC FUNCTIONS FOR CALCIUM DIALUMINATE (CA 0 .2AL203) SOLIO PHASE

GRAM MOL	FCULAR WT.=			CAL=4.1840 ABS J		
_	_0 _C		= 273.15 ·	0 0	0	0 5
Т	~(GT-HO)/T	(HT-HO)/T	(ST-S0)	(HT-40)	Cp	~(GT-HO)
OFG K	OEG MOLE	CAL	CAL	SAL	CAL	CAL_
	DEG MOLE	OEG MOLE	OEG MOLE	MOLE	DEG MOLE	MOLE
300.00	18,213	24.585	42.798	7375.4	48.214	5463.9
310.00	19.032	25.366	44.398	7863.4	49.371	5899.9
320.00	19.849	26.133	45.983	8362.7	50.480	6351.8
330.00	20.665	26.887	47.553	8672.8	51.533	6819.5
340.00	21.479	27.627	49.106	9393.1	52.523	7302.8
350.00	22.290	28.352	50.642	9923.0	53.446	7801.6
360.00	23.099	29.061	52.160	10462.	54.305	8315.6
370.00	23.905	29.754	53.658	11009.	55.100	8844.7
373.15	24.158	29.969	54.127	11183.	55.339	9014.5
380.00	24.707	30.431	55.138	11564.	55.838	9388.7
390.00	25.506	31.091	56.597	12126.	56.521	9947.4
400.00	26.301	31.735	58.036	12694.	57.157	10521.
425.00	48.272	33.273	61.545	14141.	58.567	12010.
450.00	30.215	34.712	64.927	15621.	59.767	13597.
475.00	32.128	36.059	68.187	17128.	60.805	15261.
500.00	34.010	37.319	71.330	18660.	61.710	17005.
550.00 600.00	37.677	39.608	77.285	21784.	63.220	20722.
650.00	41,212	41.628	82.839	24977.	64.434	24727.
700.00	44.616 47.893	43.422	88.038	23224.	65.439	29000.
750.00	51.050	45.026	92.919	31518.	66.294	3 35 25 .
800.00	54.091	46.469	97.519	34852.	67.036	38287.
850.00	57.024	47.775 48.965	101.87	38220.	67.693	43273.
900.00	59.854	50.053	105.99 109.91	41620.	68 • 284	48470.
950.00	62.587	51.054	113.64	45048.	68 • 825	53869.
1000.00	65.230	51.980	117.21	48502.	69.324	59458
1050.00	67.787	52.838	120.63	51980. 55480.	69.790	65230.
1100.00	70.264	53.638	123.90	59002	70.230	71176.
1150.00	72.665	54.387	127.05	62545.	70.647 71.046	77290
1200.00	74.994	55.089	130.08	66107.	71.430	83564.
1250.00	77.257	55.750	133.01	69687.	71.801	89993. 96571.
1300.00	79.456	56.374	135.83	73286.	72.161	103292
1350.00	81,594	56,965	138.56	76903.	72.511	110152.
1400.00	83.676	57.527	141.20	80537.	72.854	117147.
1450.00	85.705	58.061	143.77	84188.	73.189	124272
1500.00	87.682	58.571	146.25	87856.	73.519	131522.
1550.00	89.610	59.058	148.67	91540.	73.843	138896.
1600.00	91.493	59.525	15 -02	95240.	74.163	146388.
1650.00	93.331	59.973	153.30	98956.	74.478	153996.
1700.00	95.128	60.405	155.53	102688.	74.790	161718.
1750.00	96.885	60.820	157.71	106435.	75.099	169549.
1800.00	98.604	61.221	159.82	110198.	75.405	177487.

 $^{\rm C}$ $^{\rm C}_{\rm 0}$ and $^{\rm S}_{\rm 0}$ apply to the reference state of the solid at zero deg k

King, E. 0., Heat Capacities at Low Temperatures and Entropies at 298.16 K. of Crystalline Calcium and Magnesium 'luminates J. Phys. Chem. 59, 218-219 (1955)

Bonnickson, K. R., High Temperature Heat Contents of Aluminates of Calcium and Magnesium J. Phys. Chem. <u>59</u>, 220-221 (1955)

TABLE B-124

THERMODYNAMIC FUNCTIONS FOR TRICALCIUM DISILICATE (3CA 0 +2SI $^{0}2$) SOLIO PHASE

•		30C10 FHP34.					
GRAM MOL	FCULAR WT.=	288•4078 C	SHAMS ≈ 273.15 +	T DEG C	CAL = 4	1840 ABS J	
T	$-16_{T}^{0}-H_{0}^{C})/T$	$(H_1^0-H_0^C)/T$	(5 ₇ -5 <mark>0</mark>)	(HT-H0)	c₽	- (GT-HC)	
OEG K	OEG MOLE	OEG MOLE	OEG MOLE	MOLE	ŌĒĠ MŌLĒ	CAL_ MOLE	
0.00	000.0 120.0	0.000 0.003	0.000 0.004	0.000	0.000	0.000	
10.00 15.00	0.007	0.077 0.072	0.028	0.013 0.213 1.075	0.011 0.085 0.284	0.004 0.071 0.359	
20.00 25.00 30.00	0.056 0.108 0.181	∩.163 0.311 0.506	0.419 0.687	3.327 7.775 15.180	0.644 1.160 1.827	1.128 2.703 5.439	
35.00	0.277	0.752	1.029	26.328	2.661	9.699	
40.00	0.397	1.052	1.449	42.099	3.676	15.862	
45.00	0.709	1.408	1.948	63.354	4.849	24•322	
50.00		1.816	2.525	90.776	6.135	35•475	
55.00		2.269	3.173	124.81	7.488	49•690	
60.00	1,122	2.762	3.884	165.75	8.897	67.307	
65.00		3.290	4.654	213.86	10.353	88.629	
70.00	1.912	3.847	5•475	269.32	11.830	113.93	
75.00		4.429	6•341	332.14	13.298	143.45	
80.00		5.028	7•246	402.26	14.745	177.41	
85.00	2.881	5.642	8.183	479.56	16.175	215.96	
90.00		6.266	9.147	563.98	17.589	259.28	
95.00		6.899	10.136	655.42	18.982	307.48	
100.00 105.00 110.00	3.607 3.990	7.537 8.179 8.821	11.144 12.169	753•75 858•77	20.342	360.67 418.95	
115.00 120.00	4.791 5.208	9:461 10:099	13.206 14.253 15.206	970.27 1068.0 1211.8	22.432 24.162 25.336	482.38 551.37 624.91	
125.00	6.066	10.732	16.369	1341.5	26.520	704.09	
130.00		11.361	17.427	1477.0	27.656	788.57	
135.00		11.986	18.492	1618.0	28.764	878.37	
140.00 145.00 150.00	6.954 7.407	12.604 13.217 13.822	19.558 20.623 21.687	1764.6 1916.4 2073.3	29.840 30.883 31.889	973.49 1073.9 1179.7	
155.00	8.328	14.421	22.749	2235.2	32.658	1290.8	
160.00	8.795	15.012	23.807	2401.9	33.791	1407.2	
165.00	9.740	15.594	24.860	2573.1	34.690	1528 • 5	
170.00		16.169	29.909	2748.7	35.557	1655 • 8	
175.00		16.735	26.952	2928.6	36.397	1787 • 9	
180.00	11.177	17.292	27.989	3112.6	37.212	1925.3	
185.00		17.842	29.019	3300.7	38.004	2067.8	
190.00		18.382	30.043	3492.6	38.774	2215.5	
195.00	12.145	18.915	31.060	3688.4	39.524	2368.2	
200.00		19.439	32.070	3887.8	40.254	2526.1	
205.00	13.604	19.956	33.072	4090.9	40.963	2688.9	
210.00		20.464	34.068	4297.4	41.653	2656.8	
215.00		20.965	35.056	4507.4	42.324	3029.6	
220.00	15.066	21.458	36•036	4720•7	42•975	3207•3	
225.00		21.943	37•009	4937•1	43•609	3389•9	
230.00		22.421	37•974	5156•7	44•227	3577•4	
235.00 240.00 245.00	16.041 16.528	22.891 23.354	38.932 39.882	5379.4 5605.0	44.828 45.414	3769.7 3966.7	
250.00 255.00	17.700 17.985	23.810 24.259 24.701	40.824 41.759 42.686	5833.5 6064.8 6298.9	45.985 46.543 47.086	4168.5 4374.9 4586.0	
260.00	18.951	25.137	43.605	6535.6	47.617	4801.8	
265.00		25.566	44.517	6775.0	48.135	5022.1	
270.00		25.989	45.422	7017.0	48.639	5246.9	
273.15	19.914	26.252	45.988	7170.7	48.950	5390.9	
275.00		26.405	46.319	7261.4	49.130	5476.3	
280.00		26.815	47.208	7508.2	49.609	5710.1	
285.00	20.871	27•219	48.091	7757.5	50.074	5948•4	
290.00	21.348	27•617	48.965	8009.0	50.528	6191•0	
295.00	22.123	28.009	49 • 8 3 3	8262.7	50.969	6438.0	
298.15		28.256	5 0 • 3 7 9	8423.7	51.240	6595.8	
300.00		28.395	5 0 • 6 9 3	8518.6	51.398	6689.3	

 $^{\text{\tiny L}}^{\text{\tiny C}}_0$ and $s^{\text{\tiny C}}_0$ apply to the reference state of the solio At zero deg K

King, E. G., Low Temperature Heat Capacities and Entropies at 298.15 K. of Some Crystalline Silicates Containing Calcium J. Am. Chem. Soc. 79, 5437-5438 (1957)

TARLE 8-125

THERMODYNAMIC FUNCTIONS FOR CALCIUM ORTHOSILICATE (2CA 0 .SI 02) SOLID PHASE (GAMMA)

GRAM MOLECULAR WI.= 172.2436 GRAMS I DEG K = 273.15 + I DEG C					CAL = 4	1840 ABS J
Ť	- (GT-HC) /T	(H _T -H _C)/T	(5 ₁ -5 <mark>0</mark>)	(H0-H0)	c p	-(G_0+H_0)
DFG K	DEGTMORE	DEG MOLE	DEG MOTE	MOLE	DEG MOLE	CAL MOLE
		SOL	ID PHASE IG	AMMA)		
0.00	0.000	0.000	0.000	0.000	0.000	0.000
5.00	0.000	0.001	0.002	0.006	0.005	0.002
10.00	0.003	0.009	0.013	0.694	0.038	0.031
15.00	0.075	0.032 0.075	0.042 0.100	0.477 1.502	0.127 0.298	0.159 0.502
20.00 25.00	0.025 0.049	0.145	0.194	3.619	0.564	1.221
30.00	0.084	0.243	0.327	7.300	0.922	2.505
35.00	0.130	0.371	0.501	12.983	1.365	4.558
40.00	0.190	0.527	0.717	21.091	1.893	7.586
45.00	0.262	0.712	0.974	32.053	2.506	11.797
50.00 55.00	0.348 0.447	0.926 1.166	1.274 1.614	46.285 64.156	3 • 199 3 • 958	17.400 24.602
60.00	0.560	1.432	1.992	85.946	4.764	33.602
65.00	0.686	1.721	2.407	111.84	5.597	44.585
70.00	0.825	2.028	2.852	141.94	6.444	57.720
75.00	0.975	2.350	3.326	176.29	7.294	73.155
80.00	1.138	2.686	3.824	214.88	8.141	91.019
85.00 90.00	1.311 1.494	3.032 3.386	4.343 4.880	257.69	8.983 9.819	111.43
95.00	1.687	3.746	-5.433	304.70 355.86	10.644	134•47 160•25
100.00	1.888	4.111	5.999	411.11	11.455	188.82
105.00	2.098	4.480	6.577	470.37	12.246	220 • 26
110.00	2.315	4.850	7.155	533.54	13.016	254.61
115.00	2.538	5.222	7.760	600.50	13.765	291.92
120.00 125.00	2.769 3.004	5.593 5.963	8 • 362 8 • 968	671.15 745.40	14.493 15.201	332.23 375.55
130.00	3.245	6.232	9.577	823.13	15.891	421.91
135.00	3.491	6.698	10.190	904.28	16.564	471.32
140.00	3.741	7.062	10.F04	988.74	17,210	523.81
145.00	3.996	7.424	11.419	1076.4	17.854	579.37
150.00	4.253 4.514	7.782 8.136	12.035	1167.3	18.470	638.00
155.00 160.00	4.778	8.487	12.650 13.265	1261.1 1357.9	19.065 19.638	699.72 764.50
165.00	5.045	8.833	13.878	1457.4	20.190	832.36
170.00	5.313	9.175	14.488	1559.7	20.723	903.28
175.00	5.584	9.512	15.096	1664.6	21.238	977.24
180.00	5.857	9.845	15.702	1772 • 1	21.736	1054.2
185.00	6.131 6.407	10.173	16.304 16.903	1882.0 1994.3	22.220	1134.3
190.00 195.00	5.407 5.683	10.496 10.815	17.498	2108.9	22.690 23.147	1217.3 1303.3
200.00	6.961	11.129	18.090	2225.7	23.591	1392.2
205.00	7.240	11.438	18.678	2344.8	24.024	1484.2
210.00	7,519	11.743	19.262	2465.9	24.445	1579.0
215.00 220.00	7.799 P.079	12.043	19.842	2589.2	24.854	1676.8
225.00	8.360	12.338 12.630	20.418 20.989	2714.5 2841.7	25.252 25.639	1777•4 1880•9
230.00	8.640	12.917	21.557	2970.8	26.016	1987.3
235.00	8.921	13.199	22.121	3101.8	26.383	2096.5
240.00	9.202	13.478	25.680	3236	26.740	2208.5
245.00	9.483	13.752	23.235	3369.2	27.090	2323.3
250.00 255.00	0.763 10.044	14.022 14.288	23.786 24.332	3505.5 3643.5	27.431 27.763	2440.9 2561.1
260.00	10.324	14.551	24.874	3783.1	28.088	2684.2
265.00	10,603	14.809	25.412	3924.4	28.405	2809.9
270,00	10.883	15.064	25.946	4067.2	28.713	2938.5
273.15	11.058	15.222	26.280	4157.9	28.902	3020.5
275.00		15.315	26.476	4211.5	29.012	3069.3
280.00 285.00		15.562 15.805	27.522	4357.3 4504.5	29.302 29.532	3203.0 3339.3
290.00		16.045	28.039	4653.1	29.852	3478.2
295.00		16.281	28.552	4803.0	30.111	3619.7
298.15	12.444	16.428	28.872	4898.1	30.270	3710.2
300.00	12.546	16.514	29.060	4954.2	30.361	3763.8

TABLE 8-125 (CONT.)

THERMODYNAMIC FUNCTIONS FOR CALCIUM ORTHOSILICATE (2CA O .51 σ_2) SOLID PHASE (GAMMA)

GRAM MOLECULAR WT.= 172.2436 GRAMS T DEG K = 273.15 + T DEG C					CAL=4.1840 ABS	
Ť	-(G1-HC)/T	(HT-HC)/T	(s _T -s ₀ ;	(HT-HC)	¢0	- (GT-HC)
DEG K	OEG MOLE	OEG MOLE	DEG MOLE	CAL MOLE	CAL DEG MOLE	CAL MÖLE
		5 0L1	D PHASE (G	AMMA)		
300.00	12.546	16.514	29.060	4954.2	30.361	3763.8
310.00	13.095	16.968	30.063	5260.2	30.832	4059.4
320.00	13,641	17.408	31.649	5570•7	31.265	4365.0
330.00	14.183	17.834	32.017	5885.4	31.667	4680.3
340.00	14.721	18.247	32.968	6203.9	32.040	5005.2
350.0		18.646	33.902	6526.1	32.389	5339.6
360.0	15.787	19.032	34.819	6851.7	32.719	5683.2
370.0	0 16.313	19.407	35 • 720	7180.4	33.031	£035.9
373.1	5 16,478	19.522	36.000	7284.6	33.127	6148.9
380.0	16,836	19.769	36.605	7512.2	33.329	6397.6
390.0	17.354	20.120	37.474	7847.0	33.614	6768.0
400.0	17,868	20.461	38.329	8184.5	33.888	7147.0
425.0	19.133	21.270	40.403	9039.R	34.526	8131.3
450.0	0 20.370	22.023	42.393	9910.4	35.112	9166.4
475.0	0 21.580	22.726	44.306	10795.	35.655	10250.
500.0	0 22.762	23.386	46.148	11693.	36.163	11381.
550.0	0 25.049	24.591	49.639	13525.	37.101	13777.
600.0	0 27.236	25.669	52.905	15402.	37.962	16341.
650.0	0 29.329	26.646	55.976	17320 •	38.769	19064.
700.0	0 31.337	27.540	58.877	19278.	39.536	21936.
750.0	0 33.266	28.364	61.630	21273.	40.274	24949.
800.0	0 35.121	29.131	64.252	23305 •	40.989	28097.
850.0	0 36.909	29.840	66.758	25372.	41.687	31373.
900.0		30.526	69.160	27473.	42.371	34771.
950.0		31.167	71.469	29609	43.046	38287.
1000.0		31.778	73.694	31778.	43.714	41916
1050.0		32.362	75.843	33980	44.376	45655
1100.0		32.923	77.023	36215.	45.030	49500=
1120.0		33.141	78.737	37118.	45.289	51068.

 $\mathbf{H_0^C}$ and $\mathbf{S_0^C}$ apply to the reference state of the solio at zero deg K

King, E. G., Low Temperature Heat Capacities and Entropies at 296.15 K. of Some Crystalline Silicates Containing Calcium J. Am. Chem. Soc. 79, 5437-5438 (1957)

Kelley, K. K., Contributions to the Data on Theoretical Metallurgy. XIII. High-Temperature Heat-Content, Heat-Capacity, and Entropy Data for the Elements and Inorganic Compounds U. S. Bur. Mines, Bull. 554, 232 pages (1960)

TABLE 8-126

THERMODYNAMIC FUNCTIONS FOR CALCIUM ORTHOSILICATE (2CA O .SI $^{\rm O}_{\rm Z}$) SOLID PHASES

GRAM MOLECULAR WT.= 172.2436 GRAMS T DEG K = 273.15 + T DEG C				CAL=4.1840 ABS J		
Ť	- (GT-HC) /T	$\{H_{T}^{0}-H_{0}^{C}\}/T$	(5 _T -50)	(HT-HC)	c _p	-{GT-HC}
DEG K	CAL DEG MOLE	CAL TEG MÜLE	DEG MOLE	<u>CAL</u> MOLE	ÖEG MÖLE	CAL MOLE
		SOL	.1D PHASE (B	ETA)		
0.00	0.000	0.000	0.000	0.000	0.000	0.000
5.00 10.00	0.100 0.004	0.001 0.012	0.002 0.015	0.007 0.115	0•006 0•046	0 • 002 0 • 038
15.00	0.014	0.039	0.052	0.584	0.155	0 • 195
20.00	0.031	0.092	0,122	1.833	0.362	0.614
25.00	0.060	0.176	0.235	4+388	0.679	1 • 489
30.00	0.101	0.293	0.394	3.777	1.092 1.598	3.042
35.00 40.00	0.157 0.228	0.442 0.623	0.599 0.850	15.464 24.908	2.195	5 • 50 6 9 • 110
45.00	0.313	0.835	1.148	37.562	2.800	14.087
50.00	0.413	1.077	1.490	53,839	3.643	20.663
55.00	0.528	1.347	1.876	74.105	4.474	29.060
60.00	0.658	1.645	2.303	98.677	5.363	39.489
65.00	0.802	1.956	2.768 3.268	127.79 161.56	6.287 7.218	52.152 67.230
70.00 75.00	0.960 1.132	2 • 308 2 • 666	3.798	199.95	8.139	94.884
80.00	1.316	3.036	4.352	242.92	9.045	105.25
85.00	1.511	3.416	4.927	290.37	9.934	128.44
90.00	1.717	3.803	5.520	342.23	10.804	154.55
95.00	1.933	4.193 4.587	6.127	398.37 458.71	11.652 12.477	183.66 215.84
100.00 105.00	2.158 2.392	4.992	6.745 7.374	523.11	13.281	251.13
110.00	2.633	5.377	8.010	591.48	14.064	289.59
115.00	2.880	5.771	8.652	663.71	14.323	331.24
120.00	3.134	6.164	9.298	739.67	15.557	376.11
125.00	3.394 3.656	6.554 6.941	9.948 10.599	819.24 902.29	16.266 16.948	424.22 475.59
130.00 135.00	3.928	7.324	11.251	988.68	17.605	530 • 22
140.00	4.201	7.702	11.903	1078.3	18.237	588 • 10
145.00	4.478	8.076	12.553	1171.0	18.846	649.24
150.00	4.758	8.445	13.202	1266.7	19.435	713.63
155.00 160.00	5.040 5.326	8.809 9.167	13.849 14.493	1365•3 1466•7	20.005 20.556	781.26 852.12
165.00	5.613	9.520	15.134	1570.9	21.088	926.19
170.00	5.903	9.868	15.771	1677.6	21.603	1003.4
175.00	6.194	10.211	16.404	1786.9	22.099	1083.9
180.00	6.486	10.548	17.034	1898.6	22.579	1167.5
185.00 190.00	6.780 7.074	10.879 11.205	17.659 18.279	2012.6 2129.0	23.042 23.490	1254•2 1344•1
195.00	7.369	11.526	18.895	2247.5	23.924	1437.0
200.00	7.665	11.841	19.506	2368.2	24.345	1533.0
205.00	7.961	. 12.151	20.112	2490.9	24.755	1632.0
210.00	8.258	12.456 12.756	20.713 21.310	2615.7 2742.4	25.153 25.542	1734.1 1839.2
215.00 220.00	8.554 8.851	13.050	21.901	2071 1	25.920	1947.2
225.00	9.147	13.341	22.488	3001.6	26.290	2058.2
230.00	9.444	13.626	23.070	3134.0	26.650	2172.1
235.00	9.740	13.907	23.647	3268.1	27.002	2288.9
240.00 245.00	10.036 10.331	14.183 14.455	24.219 24.786	3404.0 3541.5	27 •344 27 •67 8	2408+5 2531+0
250.00		14.723	25.349	3680.7	28.003	2656.4
255.00		14.987	25.906	3821.6	28 • 320	2784.5
260.00	11.213	15.246	26.459	3963.9	28.630	2915.4
265.00		15.501	27.007	4107.8	28 • 932	3049 • 1
270.00 273.15		15.753 15.909	27.551 27.891	4253.3 4345.6	29•228 29•411	31 85.5 3272.8
275.00		16.000	28.090	4400 - 1	29.517	3324.6
280.00	12.380	16.244	28.624	4548.4	29.801	3466.4
285.00	12.670	16.485	29.154	4698.1	30.078	3610.8
290.00		16.721	29.680	4849.2	30.350	3757.9
295.00 298.15		16.955 17.100	30.201 30.527	5001.6 5098.3	30.617 30.78?	3907.6 4003.3
300.00		17.184	30.718	5155+3	30.878	4059.9

TABLE 8-126 (CONT.)

THERMODYNAMIC FUNCTIONS FOR CALCIUM ORTHOSILICATE (2CA 0 •SI $\rm O_2$) SOLID PHASES

GRAM MOL	ECULAR WT.=		GRAMS = 273.15 +	T OFG C	CAL ≥ 4	•1840 ABS J
т	-(01-H0111		1 = 1 = 5 <mark>0</mark>)		c _p 0	-100-HC1
DFG K	DEGTMOCE	DEG MOLE	DEG MOLE	CAL MOLE	CAL DEG MOLE	CAL Mole
		50	LID PHASE (B	ETA		
300.00	13.533	17.184	30.718	5155.3	30.878	4059.9
310.00	14.104	17,634	31.738	5466.7	31.383	4372.2
320.00	14.671	18.072	32.742	5782.9	31.865	4694.6
330.00 340.00	15.233 15.792	18.497 18.910	33.730	6103 • 9	32.322	5027.0
350.00	16.346	19.311	34.701 35.657	6429.3 6758.9	32.753 33.158	5369.2 5721.0
360.00	16.825	17.701	36.596	7092.4	33.540	6082.3
370.00	17.440	20.080	37.520	7429.6	33.89P	6452.9
373.15	17.611	20.197	37.808	7536.5	34.006	6571.5
380.00 390.00	17.981 18.516	20.448	38.429	7770.2	34.235	6832.6
400.00	19.048	20.806 21.153	39.322 40.201	8114.: 8461.2	34.553 34.854	7221.4 7619.0
425.00	20.355	21.980	42.335	9341.4	35.544	8650.9
450.00	21.633	22.751	44.384	10238.	36.161	9735.0
475.00	22.883	23,472	46.355	13149.	36.721	10869.
500° 10	24.104	24.147	48.251	12074.	37.235	12052.
550.00 600.00	26.465 28.721	25.380 26.479	51.844 55.200	13959.	38.157	14556.
650.00	30.880	27.469	58.350	15887. 17855.	38.974 39.718	17233. 20072.
700.00		28.369	61.319	19858	40.409	23065
750.00	34.935	29.194	64.179	21895.	41.060	26201.
800.00	36.844	29.955	66.799	23964.	41.682	29475.
850.00	38.681	30.663	69.344	26063.	42.283	32874.
900.00 950.00	40.453 42.163	31.324 31.947	71.777 74.110	28192. 30349.	42.863 43.429	36408. 40055.
970.00	42.831	32.186	75.017	31220.	43.652	41546
		50L1D	PHASE (ALPHA	PRIMEI		
970.00	42.831	32.639	75.471	31660.	42.849	41546.
1000.00	43.830	32.951	76.781	32951.	43.180	43830.
1050.00	45.450 47.017	33.451 33.931	78.901	35123	43.731	47723.
1150.00	48.536	34,393	80.948 82.929	37324. 39552.	44.282 44.833	51719. 55816.
1200.00	50.009	34.839	84.848	41807.	45.384	60011.
1250,00	51.440	35,272	86.712	44090 .	45.935	64300.
1300.00	52.832	35.693	88.524	46400.	46.486	68681.
1350.00	54.187 55.507	36.103	90.289	48739.	47.037	73152.
1450.00	56.795	36.503 36.895	92.010 93.689	51104. 53497.	47.588 48.139	77710. 82352.
1500.00	58.052	37.27	95.331	55918	48.690	87078.
1550.00	59.280	37.656	96.936	58366.	49.241	91885.
1600.00	60.482	38.026	98.508	60842.	49.792	96771.
1650.00	61.658	38.391	100.05	63346.	50.343	101735.
1700.00 1710.00	62.809 63.036	38.751 38.822	101.56 101.86	65876. 66386.	50.894	106775. 107792.
1110000	05,050				51.004	10/1924
			ID PHASE (AL	rna)		
1710.00 1750.00	63.036	40.805	103.84	69776.	49.000	107792.
1800.00	63.982 65.140	40.992 41.214	104.97 106.35	71736	49.000	111969.
1850.00	66.272	41.425	107.70	74186 • 76636 •	49.000 49.000	117252. 122604.
1900.00	67.380	41.624	100.00	79086	49.000	128021.
1950.00	68.463	41.813	115+58	81536.	49.000	133503.
2000.00	69.524	41.993	111.52	83986.	49.000	139048.

 $\mathbf{H}_{0}^{\mathbf{C}}$ and $\mathbf{s}_{0}^{\mathbf{C}}$ apply to the reference state of the solid at zero deg κ

Todd, S. S., Low-temperature Heat Capacities and Entropies at 298,16 K. of Crystalline Calcium Orthosilicate, Zinc Orthosilicate and Tricalcium Silicate J. Am. Chem. Soc. 73, 3277-3278 (1951)

Kelley, E. K., Contributions to the Data on Theoretical Metallurgy. XII. High-Temperature Heat-Content, Heat-Capacity, and Entropy Data for the Elements and Inorganic Compounds U. S. Bur. Mines, Bull. 584, 232 pages (1960)

TABLE 8-127

THERMODYNAMIC FUNCTIONS FOR CALCIUM FERRITE (CA O ${}_{\circ}\text{FE}_{2}\text{O}_{3}$) SOLIO AND LIQUID PHASES

GRAM MOLE	CULAR WT.=	215.7716 C	RAMS = 273.15 + T	OFG C	CAL=4.	1840 APS J
Ť	-160-H01/T	$(H_{T}^{0}-H_{0}^{C})/T$	$(s_{\uparrow} - s_{0}^{\mathbf{c}})$	$(H_0^{\perp}-H_C^{0})$	c <mark>p</mark>	-(GT-HC)
OFC K	OEG MOLE	DEG MOLE	OEG MOLE	MOLE	DEG MOLE	SAL MOLE
			SOLIO PHASE			
0.00 5.00	0.000	0.000 0.001	0-000 0-001	0.000	0.000	0.000
10.00	0.003	0.008	0.010	0.075	0.030	0.025
15.00	0.008	0.025	0.034	0.381	0.102	0 • 127
20.00 25.00	0.020 0.039	0.060 0.116	0.080 0.156	1.202	0.239 0.459	0.401 0.977
30.00	0.067	0.198	0.265	5.941	0.767	2.014
35.00	0.105	0.307	0.412	10.740	1.168	3.691
40.00 45.00	0.155 0.217	0.445 0.613	0.600 0.830	17.786 27.574	1 ± 567 2 • 265	6 • 204 9 • 750
50.00	0.291	0.812	1.104	40.605	2.964	14.574
55.00	0.379	1.043	1.423	57.382	3.763	20.871
60.00 65.00	0.481 0.597	1.307 1.601	1.788 2.198	78.398 104.06	4.656 5.615	28.879 38.826
70.00	9.728	1.923	2.650	134.60	6.607	50.930
75.00	0.872	2.269	3.141	170.16	7.620	65.393
80.00	1.030 1.201	2.635 3.021	3.665 4.222	210.84 256.75	9.656 9.712	82.394 102.10
85.00 90.00	1.385	3.422	4.807	307.98	10.780	124.66
95.00	1.581	3.837	5.419	364.55	11.850	150.21
100.00	1.789	4.265	6.054 6.710	426.48 493.75	12.920 13.986	178.88 210.79
105.00 110.00	2.007 2.236	4.702 5.148	7.385	566.33	15.043	246.01
115.00	2,475	5.601	8.077	644.16	16.086	284.66
120.00	2.723	6.060	8.783	727.16	17.112	326.81 372.51
125.00 130.00	2.980 3.245	6.522 6.988	9.502 10.233	815.25 908.40	18.125 19.135	421.85
135.00	3.517	7.456	10.974	1006.6	20.152	474.86
140.00	3.797	7.928	11.725	1109.9	21.180	531.60
145.00 150.00	4.084 4.377	8.403 8.880	12.487 13.257	1218.4 1332.1	22.213	592.13 656.48
155.00	4.676	9.360	14.035	1450.8	24.239	724.71
160.00	4,980	9.840	14.820	1574 * 4	25 • 194	796.85
165.00 170.00	5.290 5.606	10.319 10.795	15.609 16.401	1702.6 1835.2	26.092 26.926	872.92 952.94
175.00	5.925	11.267	17.192	1971.8	27.696	1036.9
180.00	6.249	11.734	17.983	2112.0	28.407	1124.9
185.00	6.577 6.908	12.193 12.645	18.770 19.554	2255.7 2402.6	29.067 29.682	1216.7 1312.6
190.00 195.00		13.090	20.332	2552.5	30.260	1412.3
00.00	7.579	13.526	21.105	2705.2	30.805	1515.9
205.00	7.919 8.260	13.954 14.373	21.872 22.633	2860.5 3018.3	31.318 31.802	1623.3 1734.6
210.00 215.00		14.784	23.387	3178.5	32.255	1849.6
220.00	8.947	15.186	24.133	3340.8	32.680	1968.4
225.00 230.00		15.579 15.963	24.872 25.603	3505•2 3671∗5	33.076 33.444	2091•0 2 21 7•1
235.00		16.339	26.326	3839.6	33.786	2347.0
240.00	10.335	16.706	27.041	4007.4	34.105	2480 • 4
245.00		17.064	27.747	4180.6 4353.3	34.402 34.680	2617•4 2757•₹
250.00 255.00		17.413 17.755	28.445 29:134	4527.4	34.741	2901
260.00	11,728	18.087	29.815	4702.7	35.188	3049.2
265.00	12.075	18,412	30.488 31.152	4879.3 5056.9	35.421 35.643	3199.9 3354.0
270.00 273.15		18.729 18.925	31.152	5169.4	35.777	3452.8
275.00	12,769	19.039	31.808	5235.7	35.854	3511.4
280.00	13,115	19.341	32.456	5415•4 5596•2	36.055 36.246	3672•1 3836•0
285.50 290.00		19.636 19.924	33.095 33.727	5777.9	36.429	4003.0
295.00	14.147	20.205	34.352	5960.5	36.604	4173.2
298.15	14.362	20.379	34.741	6076.0	36.711	4282.1
300.00	14.488	20.480	34.968	6143.9	36.771	4346.5

TABLE 8-127 (CONT.)

THERMODYNAMIC FUNCTIONS FOR CALCIUM FERRITE (CA O $_{\bullet}\text{FE}_{2}\text{G}_{3}\text{)}$ SOLID AND LIQUID PHASES

GRAM MOLI	ECULAR WT.=		RAMS = 270.15 +	CAL=4.1840 ABS .		
Ť	$-(G_0^T-H_0^T)$ /T	$(H_0^1-H_C^0)$ / T	(ST-c0)	(H ₀ -H ₀)	Cp O	-(G1-HC
DEG K	OEG MOLE	OFG MOLE	DEG MOLE	CAL MOLE	DEG MOLE	CAL_ MOLE
			SOLIO PHAS	ŧ		
300.00	14.488	20.480	34.968	6143.9	36.771	4346.5
310.00	15.169	21.010	36.179	6513.2	37.084	4702.3
320.00	15.844	21.517	37.361	6885.5	37.370	5070.0
330.00	16.513	22.002	38 • 515	7260 - 5	37.632	5449.4
340.00 350.00	17.177 17.835	22.465 22.909	39.642 40.743	7638.1	37.875	5840.2
360.00	18.486	23.333	41.820	8018.0 8400.1	38 • 100 38 • 311	6242.2
370.00	19,131	23.741	42.872	8784.2	30.508	6655.0 7078.5
373.15	19,333	23.866	43.199	8905.6	38.568	7214.1
3-0.00	19,769	24.132	43.901	9170.2	38.694	7512.4
300.00	20.401	24.508	44.909	9558.0	38.870	7956.5
400.00	21.026	24.869	45.895	9947.5	39.036	8410.5
425.00	22.560	25.714	48.273	10928.	39.417	9587.8
450.00	24.052	26.485	50.536	11918.	39.755	10823.
475.00	25.503	27.191	52.694	12916.	40.059	12114.
500.00	26.914	27.841	54.756	13921.	40.336	13457.
550.00 600.00	29.623 32.191	29.000 30.004	58.624 62.195	15950	40+828	16293.
650.00	34.628	30.885	65.513	18003 • 20075 •	41.259 41.648	19315. 22508.
700.00	36.946	31.667	68.61	22167•	42.005	25862.
750.00	39,155	32,367	71,522	24275.	42.339	29366
800.00	41.265	33.001	74.265	26400.	42.656	33012.
850.00	43.283	33.577	76.860	28541.	42.959	36790.
900.00	45.217	34.107	79.324	30696.	43.252	40695.
950.00	47.074	34.596	81.670	32866.	43.536	44721.
1000.00	48.861	35.050	83.910	35050.	43.814	48861.
1050.00	50.581	35.474	86.055	37247•	44.086	53110.
1100.00	52.241 53.843	35.871 36.246	88.112 90.085	39458.	44.354	57465.
1200.00	55.394	36.600	91.99	41682. 43920.	44.617 44.878	61920.
1250.00	56.895	36.936	93.891	46170•	45.136	66472. 71118.
1300.00	58.349	37.256	95.656	48433.	45.391	75854
1350.00	59.761	37.562	97.3 4	50709.	45.645	80678.
1400.00	61.133	37.856	98.938	52998.	45.897	85586.
1450.00	62.466	38.137	100.50	55299.	46.148	90576.
1500.00	63.764	30 / 00	~UZ.17	57613.	46.397	95645.
1510.00	64.019	38.462	102.48	58077.	46.447	96669.
			LIOUIO PHA	SE		
1510.00	64.019	55.594	119.61	83947.	54.900	96669.
1550.00	65,472	55.576	121.05	86143.	54.900	101482.
1600.00	67.236	55.555	122.79	88888.	54.900	107578.
1650.00	68.946	55.535	124.4R	91633.	54,900	113760.
1700.00	70,603	55.516	126.12	94378.	54.900	120025.
1750.00	72.212	55.499	127.71	97123.	54.900	126371.
1800.00	73.775	55.482	129.26	99868	54.900	132796.
1850.00	75.295	55.466 55.466	130.76	102613.	54.900	139296
1900.00 1950.00	76.774 78.215	55.452 55.437	132.23	105358.	54.900	145871.
2000.00	79.618	55.424	133.65	108103	54.900	152518.
2000.00	140010	770424	135.04	110848.	54.900	159236 •

 ${f r}_0^{\rm C}$ and ${f s}_0^{\rm C}$ apply to the reference state of the solio at zero deg ${f k}$

Kirg, E. G., Heat Capacities at Low Temperatures and Entropies at 298.16°K. of Calcium and Magnesium Ferrites J. Am. Chem. Soc. 76, 5849-5850 (1954)

Kelley, K. K., Contributions to the Data on Theoretical Metallurgy. XIII. High-Temperature Heat-Content, Heat-Caracity, and Entropy Data for the Elements and Inorganic Compounds U. S. Bur. Mines, Bull. 584, 232 pages (1960)

TABLE 8-128

THERMODYNAMIC FUNCTIONS FOR DICALCIUM FERRITE (2CA O ${}_{\bullet}$ FE ${}_{2}^{O}$ ${}_{3}^{O}$. Solid and Liquio Phases

GRAM MOL	ECULAR WT.=	271.8510 C	RAMS = 273.15 + T	OEG C	(AL ≈4•	1840 ABS J
Ŧ	5_1^0 - H_0^0)/T	$\{H_0^0 - H_0^0\} / T$	(s ₁ -s ₀)	(H ⁰ -H ⁰)	c ₀	-(01-HC)
DEG K	DEG MOLE	DFG MOLE	OEG MOLE	ÇAL MÖ∐E	CAL ÖEG MÕLE	GAL MÕLE
			SOLIO PHASE			
0.00	0.000	0.000	0.000	0.000	0.000	0.000
5.00	0.001	0.003	0.004	0.014	0.011	0.004 0.072
10.00	0.007 0.024	0.022	1•029 0•097	0+218 1+095	0.087 0.289	0.366
15.00 20.00	0.057	0.169	0.226	3.381	0.652	1.148
25.00	0.110	0.315	0.425	7.867	1.164	2.746
30.00	0.184	0+508	0.691	15.227	1.798	5.508
35.00		0.744	1.023	26.054 40.956	2,553	9.767 15.850
40.00 45.00		1 • 0 2 4 1 • 3 4 4	1.420 1.878	60.462	3.426 4.390	24+072
50.00		1.699	2.394	84.961	5.422	34.730
55.00	0.875	2.088	2.962	114.81	6.533	48.098
60.00	1.074	2.507	3.581	150 • 44	7.728	64 • 435
65.00	1.292	2.957	4.249	192.19	8.978	83.991 107.00
70.00 75.00		3.432 3.929	4.961 5.711	240•24 294•64	10.245 11.514	133.66
80.00	2.052	4.442	6.494	355.38	12.782	164.16
85.00	2.337	4.970	7.307	422.45	14.045	198.65
90.00	2.636	5.509	8.145	495 + 80	15.293	237.27
95.00		6.056	9.005 9.884	575.35 661.02	16.524 17.739	280 • 14 327 • 36
100.00 105.00		6.610 7.169	10.778	752.72	18.937	379.01
110.00		7.731	11.687	850.36	20.115	435.16
115.00	4.312	8.294	12.606	953.83	21.271	495.89
120.00		8,858	13.535	1063.0	22.398	561.24
125.00		9,422 9,984	14.472	1177.8 1297.9	23.496 24.563	631.26 705.97
130.00 135.00		10.543	15.415 16.361	1423.3	25.600	785.41
140.00		11.099	17.310	1553.9	26.608	869.59
145.00	6,610	11,651	18.261	1689.4	27.589	958.52
150.00	7.015	12.198	19.213	1829.7 1974.7	28.541 29.466	1052•2 1150•6
155.00 160.00		12.740 13.277	20.164 21.113	2124.3	30.361	1253.8
165.00		13.808	22.061	2278.3	31.226	1361.8
170.00	8.673	14.332	23.006	2436.5	32.060	1474.4
175.00		14.851	23.947	2598.8	32.863	1591.8 1713.9
180.00 185.00		15.362 15.866	24.883 25.815	2765•1 2935•2	33.637 34.382	1840.6
190.00		16.363	26.742	3108.9	35.099	1972.0
195.00		16.852	27.662	3286.1	35.791	2108.1
200.00	11.243	17.334	28 • 577	3466.7	36.459	2248•7
205.00 210.00		17.808 18.275	29.485 30.387	3650.7 3837.7	37.104 37.727	2393.8 2543.5
215.00	12.547	18.734	31.282	4027.9	38.329	2697.7
220.01	12.983	19.186	32.170	4221.0	38.911	2856.3
225.0	13,419	19.631	33.050	4417.0	39.473	3019.4
230.00 235.00		20.068 20.498	33.924 34.790	4615.7 4817.1	40.017 40.544	3186.8 3358.6
240.0		20.921	35.649	5021.1	41.054	3534.7
245.0	15,164	21.337	36.501	5227.6	41.549	3715.1
250.0	0 15.599	21.746	37.345	5436.6	42.031	3899.7
255 • (10		22.149	38 • 1 82	5647.9	42.500	4088 • 5 4281 • 5
260•⊕ 265•⊕		22.544 22.934	39.012 39.834	5861.6 6077.5	42.960 43.409	4478.6
270.00	0 17.333	23.317	40.650	6295.6	43.851	4679.8
273.1	5 17,605	23.556	41.160	6434.2	44.125	4808.7
275.0	0 17,764	23.694	41,458	6516.0	44.284 44.710	4885.1 5094.4
280.0 285.0		24.066 24.432	42.260 43.055	6738.5 6963.1	45.129	5307.7
290.0		24.792	43.844	7189.8	45.540	5524.9
295-0	0 19.478	25.147	44.626	7418.5	45.943	5746 • 1
298,1	5 19.747	25,368	45.115	7563.6	46.193	5887.5 5971.2
300*0	0 10,904	25.497	45.401	7649.2	46.338	541105

TABLE B-128 (CONT.)

THERMOOYNAMIC FUNCTIONS FOR DICALCIUM FERRITE (2CA O ${}_{\bullet}$ FE ${}_{2}$ O ${}_{3}$) SOLID AND LIQUID PHASES

```
GRAM MOLECULAR WT.= 271.8510 GRAMS
T DEG K = 273.15 + T DEG C
                                                                                                                                                                        CA1 =4.1840 ABS J
                            -(G_{T}^{0}-H_{0}^{C})/T (H_{T}^{0}-H_{0}^{C})/T (S_{T}-S_{0}^{C}) (H_{T}^{0}-H_{C}^{C})
                                                                                                                                                                                                    -(G1-HC)
                              OF MOLE DEG MOLE OF MOLE OF MOLE
      DEG I
                                                                                            SOLIT PHASE
                                   19.904
20.751
21.593
22.429
23.259
24.083
24.901
25.712
25.966
26.516
27.314
28.105
      300.00
310.00
320.00
                                                                                                                               7649.2
8116.+
8591.0
9072.6
9560.6
10055.
10554.
11059.
11219.
                                                                   25.497
26.182
26.847
27.493
28.120
                                                                                                45.401

45.933

48.440

49.922

51.379

52.811

54.218

55.601

56.031

56.959

58.293

59.603

62.815
                                                                                                                                                                    46.338
47.099
47.818
48.490
49.114
                                                                                                                                                                                                  5971.2
6432.9
6909.8
7401.6
7908.1
8420.1
89613.2
      330.00
340.00
350.00
                                                                   28.728
29.317
29.889
                                                                                                                                                                    49.689
50.218
50.704
     360.00
370.00
373.15
380.00
                                                                                                                                                                                                9513.4
9689.2
10076.
10652.
                                                                  29.889
30.065
30.443
30.979
31.498
32.726
33.860
34.908
                                                                                                                                                                    50.849
51.151
51.562
51.942
                                                                                                                               11568.
12082.
12599.
      390.00
                                                                                                                                                                                                11242.
12772.
14380.
                                    30.052
31.955
33.814
                                                                                                                              13909
13237
16581
17940
20689
      425.00
                                                                                                                                                                    52.776
53.474
54.065
     475.00
500.00
550.00
                                                                                                68.722
71.509
76.750
                                                                                                                                                                                                16062.
                                   35.630
39.133
42.472
45.657
                                                                  35.879
37.617
39.124
                                                                                                                                                                  54.065
54.570
55.997
56.4755
57.163
57.623
57.623
57.798
57.996
                                                                                                                                                                                                17815.
21523.
     550.00
600.00
700.00
750.00
900.00
                                                                                             81.596
86.098
90.298
94.231
97.928
101.42
                                                                                                                              20689.
23474.
26287.
29120.
31971.
34836.
37712.
                                                                 40.441
41.600
42.628
43.544
44.367
45.108
                                                                                                                                                                                                25483.
                                                                                                                                                                                               29677.
34088.
38702.
                                   48.077
51.603
                                  54.384
57.049
59.606
62.063
64.427
66.704
68.901
71.021
                                                                                                                                                                                              43507.
48492.
53645.
   900.00
950.00
1000.00
                                                                                             104.71
107.84
110.82
113.65
                                                                                                                              40597.
43491.
46391.
                                                                                                                                                                                              58960
                                                               46.391
46.950
47.463
47.935
48.371
48.774
49.149
49.824
50.129
50.415
50.683
50.936
51.399
51.612
                                                                                                                                                                  57.946
58.073
58.181
58.275
58.358
58.429
58.473
                                                                                                                                                                                              64427.
  1050.00
                                                                                                                              49298.
 1100.00
                                                                                            116.36
118.96
121.44
                                                                                                                              52209.
55125.
                                                                                                                                                                                              75791.
                                                                                                                                                                                             81674.
87684.
93816.
                                  73.070
75.053
76.973
78.835
80.641
82.395
  1200.00
                                                                                                                              58045.
 1250.00
1300.00
1350.00
                                                                                                                              60968.
63894.
66823.
                                                                                             123.83
                                                                                            123.83
126.12
128.33
130.47
132.52
134.51
136.44
                                                                                                                                                                                          100066.
                                                                                                                                                                  58,549
58,599
58,644
58,721
58,754
58,784
58,811
 1400.00
                                                                                                                              69754.
                                                                                                                                                                                          112897.
 1500.00
1550.00
1600.00
1650.00
                                  84.099
85.756
87.370
88.941
90.472
91.965
                                                                                                                                                                                          126148.
132922.
139791.
                                                                                                                              75622.
                                                                                                                            78559.
81498.
84438.
87379.
90321.
                                                                                            138.31
140.11
141.87
143.58
                                                                                                                                                                                         146752.
153802.
 1700.00
                                                                                                                                                                  58.836
58.859
 1750.00
                                                                                                                                                                                         160938
                                                                                         LIQUID PHASE
1750.00
1800.00
1850.00
                                                               72.246
72.301
72.352
72.401
72.447
                                   91.965
                                                                                                                          126431.
130141.
133851.
137561.
                                                                                            164.21
                                                                                                                                                                 74.200
74.200
74.200
                                                                                                                                                                                         160938.
                                 94.001
95.982
97.913
99.794
                                                                                            166.30
168.33
                                                                                                                                                                                         169201 • 17756? •
1900.00
1950.00
2000.00
                                                                                            170.31
172.24
174.12
                                                                                                                                                                 74.200
74.200
74.200
                                                                                                                                                                                         186034.
194528.
203257.
                                                                                                                           141271.
                              101.63
```

 ${\sf H}_0^{\sf C}$ and ${\sf s}_0^{\sf C}$ apply to the reference state of the solio at zero deg k

King, E. G., Heat Capacities at Low Temperatures and Entropies at 290.16 K. of Calcium and Magnesium Ferrites J. Am. Chem. Soc. 76, 5849-5850 (1954)

Kelley, K. K., Contributions to the Data on Theoretical Metallurgy, XTII. High-Temperature Heat-Content, Heat-Caracity, and Entropy Data for the Elements and Inorganic Compounds U. S. Bur. Mines, Bull. 584, 232 pages (1965)

TAPLE 8-129

THERMODYNAMIC FUNCTIONS FOR COBALT FERRITE (CO 0 ${}_{\bullet}$ FE ${}_{2}$ O ${}_{3}$) SOL10 PHASE

GRAM MOLECULAR WT.=		234.6248 GRAMS T DEG K = 273.15 + T				•1840 ABS J
т	-(G1-HC1/T	(HT-HC)/T	(5 _T -8 <mark>C</mark>)	(HT-HC)	C _P O	-(G0-HC)
DEG K	DEG MOLE	OSG MOLS	DEG MOLE	CAL MÕLE	DEG MOLE	. CAL MOLE
0.00	0.000	0.000	0.000	0.000	0.000	0.000
5.00	0.000	0.001	0.002	0.006	0.005	200•0
10.00	0.003	0.010	0.013	0.098	0.039	0.033
15.00	0.011	0.033	0.044	0.496	0.132	0.166
20.00	0.026	0.078	0.104	1.557 3.740	0.308	0.522
25.00 30.00	0.051 0.086	0.150 0.251	0.200	7.522	0.581 0.945	1 • 266 2 • 592
35.00	0.134	0.381	0.515	13.327	1.390	4.706
40.00	0.195	0.539	0.734	21.553	1.914	7.812
45.00	0.269	0.724	0.993	32,592	2.515	12.115
50.00	0.356	0.937	1.293	45.825	3.191	17.814
55.00 60.00	0.457	1.175 1.438	1.631 2.008	64.611 86.271	3.935 4.739	25.108 34.190
65.00	0.696	1.724	2.420	112.08	5.590	45.245
70.00	0.835	2.032	2.867	142.23	5.590 6.473	58.449
75.00	0.986	2.358	3.344	176.82	7.367	73.964
80.00	1.149 1.323	2.699	3.848 4.376	215.90 259.45	8.263	73.964 91.932 112.48
85.00 90.00	1.508	3.052 3.416	4.925	307.48	9.158 10.055	135.72
95.00	1.703	3.790	5.492	360.01	10.957	135.72 161.76 190.68
100.00		4.171	6.077	417.06	11.863	190.68
105.00	2.120	4.558	6.678	478.64	12.769	222.56 257.48
110.00 115.00	2.341 2.570	4.952 5.351	7.293 7.920	544.74 615.33	13.671 1 564	295.51
120.00	2.806	5.753	8.559	690.36		336.70
120.00 125.00	3.049	6.158	9.207	690.36 769.78	15.447 16.319	381.11
130.00	3.298	6.566	9.864	853.53	17.180	428.79 479.77
135.00	3.554 3.815	6.975 7.384	10.528 11.199	941.56 1033.8	10.028 18.863	534.08
145.00		7.794	11.875	1130.2	19.680	591.77
150.00	4.352	8 • 204	12.556	1230.6	20.477	652.84
155.00	4.628	8.612	13.240	1334.9	21.253	717.33
160.00		9.019 9.424	13.927 4.615	1443.1 ^554.9	22.007 22.740	785.25 856.60
170.00	5.479	9.026	5.305	1670.4	23.454	931.40
175.00	1,759	0.225	15.995	1789.4	24.149	1009,7
180.00	6.063 6.359	10.622	16.685	1911.9	24.828 25.491	1091.4 1176.5
185.00		11.015 11.404	17.374 18.062	2037.7	26.139	1265.1
195.00	5.960	11.790 12.172	18.750	2299.1	26.771 27.389	1357.1
200.00	7.263	12.172	19.435	2434.5	27.389	1452.6
205.00 210.00	7.568	12.551	20.119 20.800	2572.9 2714.3	27.990 28.575	1551.5 1653.8
215.00	8.184	12.925 13.296	21.480	2858.6	29.142	1759.5
220.00	8.493	13.662	22.156	3005.7	29.693	1868.6
225.00		14.025	22.829	3155.5	30.227	1981.0
230.00	9.117	14.382 14.736	23.499 24.166	3308.0 3462.9	30.744 31.244	2096.8 2216.0
240.00	9.744	15.085	24.829	3620.4	31.729	2:38.5
245.00	10.058	15.429	25.488	3780.2	32.198	2464.3
250.00	10.373	15.769	26.143	3942.3	32.654	2 93 .4
255.00 260.00	10.689	16.105 16.436	26.794 27.441	4106.7 4273.3	33.098 33.530	2725.7 2861.3
255.00	11.321	16.762	28.083	4442.0	33.951	3000.1
270,00	11.637	17.084	28.722	4612.8	34.364	3142.1
273.15	11.837	17.285	29.122	4721.4	34.619	3233.2
275.00 280.00		17.402 17.716	29.356 29.986	4785.6 4960.5	34.767 35.163	3287.3 3435.7
285.00		18.025	30.612	5137.2	35.550	3587.2
290.00	12.903	18.331	31.234	5315.9	35.929	3741.8
295.00	13,219	18.632	31.851	5496.5	36.300	3899.5
298.1		18.823	32.241	5611.2	36.529	4000.4
300.00	13.534	18.930	32.464	5678.9	36.663	4060.3

 $H_0^{\mbox{\scriptsize C}}$ and $s_0^{\mbox{\scriptsize C}}$ apply to the reference state of the solid at zero deg κ

King, E. G., Heat Capacities at Low Temperatures and Entropies of Five Spinel Minerals J. Phys. Chem. 45, 410-412 (1956)

TABLE 8-130 THERMODYNAMIC FUNCTIONS FOR IRON COBALTITE (FE $$^{\rm CO}_{\rm 2}{\rm O}_{\rm 3}$)$ SOLIO PHASE

GRAM MOLFCULAR WT. = 237.7110 GRAMS CAL=4.1840 ABS J T 0EG K = 273.15 + T 0EG C $-(S_{T}^{0}-H_{0}^{C})/T$ $(H_{T}^{0}-H_{0}^{C})/T$ $(S_{T}-S_{0}^{C})$ $(H_{T}^{0}-H_{0}^{C})$ -(GT-HC) CAL CAL CAL DEG MOLE DEG MOLE CAL CAL MÕLE ÕEG MÕLE CAL MOLE 0.000 0.002 0.035 0.177 0.558 1.355 2.771 0.000 0.007 0.105 0.530 1.668 4.001 0.000 0.005 0.042 0.000 0.000 0.00 5.00 10.00 15.00 20.00 25.00 30.00 33.00 40.00 50.00 50.00 60.00 70.00 0.000 0.003 0.012 0.028 0.054 0.010 0.035 0.083 0.160 0.267 0.401 0.560 0.740 0.941 1.160 1.658 0.012 0.047 0.111 0.214 0.359 0.544 0.766 1.023 1.312 1.632 1.983 2.363 2.771 3.207 3.666 4.146 0.141 0.330 0.619 0.993 1.429 1.919 2.459 3.048 3.687 4.382 5.131 5.916 4.001 8.002 14.033 22.382 33.307 47.053 63.870 84.022 107.79 135.39 0.092 5.013 8.274 12.734 18.559 0.145 0.207 0.283 0.371 0.471 0.582 0.704 0.837 0.981 1.134 1.297 25.908 34.933 45.784 58.607 70.00 75.00 80.00 85.00 90.00 95.00 2.226 2.532 2.849 3.175 3.510 3.353 166.97 202.55 242.15 6.716 7.519 8.321 73.543 90.715 110.24 4.146 4.644 5.160 5.691 6.236 6.795 242.15 285.77 333.46 385.25 441.18 501.25 1.650 1.838 2.035 2.238 2.449 2.666 2.889 3.118 3.591 3.835 9.130 132.20 9.947 10.771 11.599 12.428 13.255 14.079 14.899 15.715 183.83 213.64 246.21 4.202 105.00 110.00 501-25 565-46 633-79 706-24 782-78 863-38 948-00 1036-6 1129-1 1225-4 1325-4 1429-0 1536-2 6.795 7.366 7.947 8.539 9.139 9.747 10.363 10.984 11.611 4.917 5.282 5.650 281.61 319.89 361.10 115.00 120.00 130.00 135.00 140.00 6.021 6.395 6.771 7.149 7.527 7.906 8.284 8.661 9.410 9.782 10.151 405.29 405.29 452.50 502.77 556.14 612.63 672.26 735.06 801.04 870.22 942.60 1018.2 16.525 17.324 18.111 145.00 4.084 4.337 4.594 4.855 5.119 5.386 5.657 18.832 19.635 20.369 21.084 21.780 150.00 155.00 150.00 12.243 12.878 13.516 14.156 165.00

14.797 15.439

16.081

16.723 17.365 18.006

18.646 19.283 19.919 20.553 21.184

21.812

22.437 23.059 23.677

24.292 24.903 25.510 26.114

26.114 26.713 27.089 27.308 27.900 28.487 29.070 29.649 30.011

30.224

10.151 10.518 10.882 11.243 11.600 11.954 12.305 12.652 12.994

13.333

13.333 13.668 13.999 14.325 14.647 14.965 15.278

15.893 16.083 16.194 16.491 16.783

17.072 17.357 17.534

17.637

6.205 6.483 6.763 7.045 7.614 7.901 8.190 8.479 9.060 9.352 9.645 9.645 9.052

10,526 10,820 11,006 11,114 11,409 11,703 11,998 12,292 12,477

12.586

22.460 23.123 23.769

23.769 24.400 25.013 25.610 26.190 26.752 27.296 27.823 28.333

28.826

29.303 29.765 30.212

30.646 31.066 31.474 31.871

32.256 32.494 32.632 32.997 33.352

33.699 34.036 34.244 34.364

1097.0

1444.3

1637.1 1738.3 1842.6 1950.1

2060.8 2174.5 2291.3

2411.3 2534.3 2660.3 2789.4

2921.4 3006.2 3056.5 3194.5 3335.5

3479.4 3626.2 3720.1 100

1646.8 1760.8 1878.0 1998.5 2122.0 2248.6 2378.1 2510.4 2645.6 2783.4 2923.8 3066.7 3212.0 3359.7 2509.6

3661.8 3816.1 3972.4 4130.8

4291.1 4393.1 4453.3 4617.4 4783.3

495(•9 5120 • 7 5227 • 8

5291.2

175.00 180.00

185.00

190.00 195.00 200.00

205.00 210.00 215.00 220.00 225.00 230.00

235.00 240.00 245.00

250.00 255.00 260.00 265.00

270.00 273.15 275.00

280.00 285.00 290.00 295.00 298.15

300.00

 ${\sf H}^{\pmb{C}}_0$ and ${\sf S}^{\pmb{C}}_0$ apply to the reffrence state of the solio at zero deg K

King, E. G., Heat Capacities at Low Temperatures and Entropies of Five Spinel Minerals J. Phys. Chem. 60, 410-412 (1956)

. ,

TABLE 8-131

THERMOOYNAMIC FUNCTIONS FOR NICKEL FERRITE (NI 0 -FE 203) SOLIO PHASE

GRAM MOL	ECULAR WT.=	234.4016 G T DEG K	RAMS = 273.15 +	T DEG C	CAL=4	1840 ABS J
Ť	-(GT-HC)/T	(HT-HC)/T	(s _T -s ₀)	(H1-HC)	C ₀	-(G0+HC)
OEG K	CAL DEG MOLE	DEG MOLE	CAL DEG MOLE	CAL MÕĈE	DEG MÔCE	CAL MÖLE
0.00	0.000	0.000	0.000	0.000	0+000	0.000
5.00 10.00	0.000	0.001 0.008	0.001 0.011	0.005	0.004	0.002 0.028
15.00	0.010	0.029	0.038	0.431	0.115	0.143
20.00	0.023	0.068	0.091	1.365	0.272	0.454
25.00	0.044	0.132	0.176	3.305	0.518	1.408
30.00 35.00	0.076	0.223	0.299 0.459	6.690 11.901	0.848	2 • 281 4 • 160
40.00		0.482	0.655	19.270	1.711	6.930
45.00	0,239	0.647	0.886	29.110	2.236	10.769
50.00		0.835	1.152	29.110 41.738	2.826	15.849
55.00	0.406	1.045	1.451	57.475	3.480	22.343
60.00 65.00		1.278 1.532	1.785 2.151	76.656 99.602	4.202	30 • 418 40 • 245
70.00		1.808	2.551	126.56	5.805	51.98.
75.00	0.877	2.102	2.980	157.68	6.641	65+802
80.00	1.023	2.412	3.435	192.98	7.480	81.828
85.00	1.179	2.735	3.914	232.47	8.320 9.167	100.19
90.00 95.00		3.069 3.412	4.413 4.932	276.19 324.16	10.022	1°1.00 144.35
100.00		3.764	5.468	376.42	10.882	170.35
105.00		4.124	6.019	432.98	11.742	199.06
110.00	2.096	4.489	6.585	493.83	12.597	230.56
115.00		4.860	7.164	558.94	13.445	264.93
120.00 125.00	2.519	5.236 5.614	7.754 8.354	628.27 701.79	14.286 15.120	302 • 22 342 • 49
130.00	2.968	5,996	8.963	779.46	15.946	385.78
135.00	3.201	6.380	9.581	861.23	16.762	432.14
140.00		6.765	10.205	947.06	17.566	481.60
145.00		7.151	10.835	1036.9	18.355	534.19
150.00 155.00	3.933 4.186	7.537 7.923	11.470 12.110	1130.6 1228.1	19.127 19.879	589.96 648.90
160.00	4,444	8.308	12.753	1329.3	20,612	**711.06
165.00	4.706	8.692	13.398	1434.2	21.326	716.43
170.00	4.971	9.074	14.045	1542.6	22.020	845.04
175.00 180.00		9.454 9.831	14.693 15.342	1654.4 1769.5	22.697 23.356	916.88 991.97
185.00	5.785	10.205	15.990	1887.9	5 995	1070.3
190.00	6.062	10.576	16.639	∴ ≎.5		1151.9
195.00	6.342	10.944	17.286 17.933	,1	2115	1236.7
200.00 205.00		11.309 11.673	18.578	. 20	104000	1324.7
210.00		12.028	19.221	2545.9	.409 26 . 973	15 1.5
215.00	7.480	12.382	19.862	2662.1	27.522	1666.2
220.00	7.769	12.732	20.501	2801.1	28.056	1709.1
225.00		13.078	21.137 21.771	2942.6	28.575	1813.2
230.00 235.00		13.421 13.759	22.401	3086.8 3233.4	29.079 29.570	1920.5 2030.9
240.00	8.935	14.094	23.029	3382.5	30.048	2144.5
245.00	9.229	14.424	23.029 23.653	3533.9	30.513	2261.2
250.00		14.750	24.274	3687.6	30.966	2381.0
255.00 260.00	9.819 10.115	15.073 15.391	24.892 25.506	3843.5 4001.6	31.407 31.838	2503.9 2629.9
265.00	10.411	15.705	26.116	4161.9	32.258	2759.0
270.00	10.708	16.015	26.723 27.104	4324.2	32,668	2891.1
273.15	10.895	16.209	27.104	4427.5	32.921	2975.9
275.00 280.00	11.301	16.322 16.624	27.326 27.926	4488.5	33.068	3026.2 3164.4
285.00		16.923	28.521	4654.9	33.460 33.842	3305.5
290.00	11.895	17.218	29.113	4493.3	34.215	3449.6
295.00	12,192	17.509	29.113 29.701	5165.2	34.580	3596.6
298.15		17.691	30.070	52745	34.805	3690.7
300.00	12.489	17.797	30.285	5339.0	34.935	3746.6

 ${\sf H}^{\sf C}_0$ and ${\sf S}^{\sf C}_0$ apply to the reference state of the solid at zero deg K

King, E. G., heat Capacities at Low Temperatures and Entropies of Five Spinel Minerals
J. Phys. Chem. 60, 410-412 (1956)

TABLE B-132

THERMOOYNAMIC FUNCTIONS FOR FERRIC OXIOE (FE $_{2}^{\mathrm{O}}{}_{3}$) SOLID PHASES

				•		•
GRAM MOLE	CULAR WT.=	159.6922 0 T OEG K	RAMS = 273.15 +	T DEG C	CAL=4	•1840 ABS J
Ť	$-(G_{1}^{0}-H_{0}^{0})/T$	$(H_0^1 - H_C^0) / 1$	(5 ₇ -5 <mark>0</mark>)	(H _T -H ₀)	c <mark>0</mark>	-(GT-HC)
DEG K	DEG MOLE	CAL DEG-MOCE	CAL DEG MOCE	CAL MOEE	CAL DEG-MOLE	CAL MOCE
		SOL	IO PHASE (AL	PHA)		
0.00	0.000	0.000	0.000	0.000	0.000	0.000
5.00	0.000	0.000	0.000	0.001	0.001	0.000
10.00	0.001	0.002	0.003	0.022	0.012	0.006
15.00	0.003 0.007	0.010	0.013 0.031	0.157 0.471	0.043	0.042
20.00 25.00	0.015	0.024 0.047	0.062	1.168	0.199	0 • 149 0 • 374
30.00	0.027	0.086	0.113	2.585	0.380	0.800
35.00	0.044	0.145	0.189	5.073	0.628	1.544
40.00	0.068	0.225	0.293	8.995	0.952	2.737
45.00	0.101	0.326	0.427	14.692	1.335	4.526
50.00	0.141	0.449	0.590	22.428	1.767	7.055
55∙00 60∙00	0.190 0.248	0.589 0.748	0.780 0.996	32.422 44.871	2 • 238 2 • 748	10.468 14.896
65.00	0.315	0.922	1.237	59.961	3.293	20.470
70.00	0.390	1.112	1.502	77.851	3.867	27.309
75.00	0.474	1.316	1.789	98,666	4.461	35.529
80.00	0.565	1.531	2.096	122.48	5.068	45.235
85.00	0.665	1.757	2.422	149.36	5.683	56.524
90.00 95.00	0.772 0.886	1.992 2.235	2.764 3.122	179.32 212.36	6.301 6.916	69.484 84.193
100.00	1.007	2.485	3.492	248.47	7.530	100.72
105.00	1.135	2.740	3.874	287.66	8.144	119.13
110.00	1.268	2.999	4.267	329.92	8.760	139.43
115.00	1.407	3.263	4.670	375.26	9.374	161.82
120.00	1.552 1.701	3.530	5.082	423.65	9.984	186.20
125.00 130.00	1.856	3.801 4.073	5.502 5.929	475.08 529.50	10.586 11.179	212.65 241.23
135.00	2.014	4.347	6.362	586.86	11.763	271.95
140.00	2.178	4.622	6.800	647.11	12.337	304.85
145.00	2.345	4.898	7,243	710.21	12.901	339.96
150.00	2.515	5.174	7.689	776.11	13.456	377.28
155.00 160.00	2.689 2.867	5.450 5.725	8.139 8.592	844.75 916.07	13.999 14.529	416.85 458.68
165.00	3.047	6.000	9.047	990.02	15.045	502.78
170.00	3.230	6.274	9.504	1066.5	15.546	549.15
175.00	3.415	6.545	9.962	1145.5	16.034	597.82
180.00	3.604	6.816	10.420	1226.8	16.509	648.77
185.00 190.00		7.084 7.350	10.879 11.337	1310.5 1396.5	16.972 17.424	702•02 757•56
195.00	4.181	7.614	11.796	1484.7	17.866	815.39
200.00	4.378	7.876	12.253	1575.2	18.296	875.51
205.00	4.575	8.135	12.710	1567.7	18,716	937.92
210.00	4.774	8.392	13.166	1762.3	19.125 19.523	1002.6
215.00		8.646	13.621	1858.9	19.523	1069.6
220.00 225.00	5.176 5.379	8.898 9.147	14.074 14.526	1957.5 2058.0	19.911 20.290	1138.8 1210.3
230.00		9.393	14.976	2160.4	20.658	1284.1
235.00	5.788	9.637	15.424	2264.6	21.018	1360.1
240.00	5.993	9.877	15.870	2370.6	21.369	1438.3
245.00	6.199	10.115	16.314	2478.3	21.710	1518.8
250.00	6.406 6.613	10.351 10.583	16.756	2587.6	22.042	1601.5
255.00 260.00		10.813	17.196 17.633	2698.7 2811.3	22.366 22.680	1686.3 1773.4
265.00	7.029	11.039	.8.068	2925.5	22.985	1862.7
270.00	7.237	11,263	18.501	3041.1	23.282	1954.1
273.15		11.403	13.772	3114.8	23.465	2012.8
275.00 280.00		11.485	16,931	3158.3	23.571	2047.7
285.00		11.703 11.918	19.358 19.782	3276.8 3396.8	23.852 24.126	2143.4 2241.2
290.00		12.131	20.204	3518.1	24.393	2341.2
295.00	8.282	12.341	20.624	3640.7	24.653	2443.3
298.15	8.414	12.472	20.886	3718.6	24.815	2508.7
300.00	8.491	12.549	21.040	3764.6	24.908	2547.4

TABLE B-132 (CONT.)

THERMODYNAMIC FUNCTIONS FOR FERRIC 0X10E (FE $_2$ 0 $_3$) SOL10 PHASES

GRAM MOLECULA	R WT.= 159.6922	GRAMS		CAL=4.	1840 AB5 .
	T DEG !	K = 273.15	+ T DFG C		
1 - 10	-HC)/T (HC-HC)/	(s _T -s ₀)	(HT-HC)	c _p	-101-HC
DEG K SEE	AL CAL MOLE DEG MOLE	OEG MOLE	CAL MOLE	CAL OEG MOLE	CAL MOLE
060	MOLE DEG MOLE	OEG MOLE	MULE	OEG MOLE	MOLE
	50	LIO PHASE (ALPHA)		
300.00	8.491 12.549	21.040	3764.6	24.908	2547.4
	8.910 12.955	21.865	4016.1	25.398	2762.0
320.00	9.327 13.351	22.679	4272.5	25.863	2984.7
330,00	9.744 13.737	23.481	4533.3	26.301	3215.5
	0.160 14.113	24.273	4798.4	26.710	3454.3
	0.574 14.478	25.052	5067.4	27.093	3700.9
	0.987 14.834	25.821	5340.2	27.450	3955.3
	1.398 15.179	26.517	5616.4	27.787	4217.3
	1.527 15.286	26.813	5704.1	27.890	4301.4
	1.807 15.515	27.323	5895.8	28.108	4486.8
	2.215 15.842	28 057	6178.5	28.416	4763.7
	2.620 16.160	28.780	6464.1	28.714	5047.9
	3.623 16.920		7191.0	29.429	5789.6
	4.610 17.634	32.244	7935.3	30.106	6574.5
	5.582 18.307	33.889	8696.0	30.751	7401.3
	6,537 18,945	35.482	9472.6	31.370	8268.6
	8.399 20.129		11071.	32.546	10120
	0.198 21.210		12726.	33.664	12119.
	1.935 22.210		14436.	34.740	14258.
	3.616 23.142		16200.	35.785	16531.
	5.243 24.019		18015.	36.808	18932.
	6.820 24.850		19880.	37.815	21456.
	8,350 25,642		21796.	38.809	24098.
	9.837 26.401		23/61.	39.792	26854.
950.00 3	11.284 27.131	58.416	25775.	40.766	29720•
	5	OLIO PHASE	(BETA)		
950.00 3	1.284 27.300	58.584	25935.	36.000	29720.
1000.00 3	2.696 27.735	60.431	27735.	36.000	32696.
1050.00 3	4.059 28.129	62.187	29535 •	36.000	35762.
	so	LIO PHASE (GAMMA)		
1050.00 3	4.059 28.129	62.187	29535.	33.558	35762.
	5.373 28.377		31215.	33.646	38911.
	6.640 28.608		32900.	33.734	42136.
	7.862 28.824		34588.	33.822	45434.
	9.043 29.025		36282.	33.910	48803
	0.185 29.215		37979	33.998	52240
	1.291 29.394		39682	34.086	55743.
	2.363 29.563		41388.	34.174	59308
	3.403 29.723		43099	34.262	62935.
	4.413 29.876		44814.	34.350	66620.
	5.395 30.022		46534	34.438	70363.
	6.351 30.161		48258.	34.526	74161.
1000100 4	5,551 50,101	100512	40230	348320	. 41011

 H_0^C and S_0^C apply to the reference state of the solio at zero deg κ

Gronvold, F., and Westrum, Jr., E. F., Alpha-Ferric Oxide: Low Temperature Heat Capacity and Thermodynamic Functions J. Am. Chem. Soc. 81, 1780-1783 (1959)

Kelley, K. K.,
Contributions to the Data on Theoretical Metallurgy.
XIII. High-Temperature Heat-Content, Heat-Capacity,
and Entropy Data for the Elements and Inorganic Compounds
U. S. Bur. Mines, Bull. <u>584</u>, 232 pages (1960)

TABLE B-133

THERMODYNAMIC FUNCTIONS FOR POTASSIUM CHROMATE (K2CR 04)
SOLID PHASE
GRAM MOLFCULAR WT.= 194.1976 GRAMS CAL=4.184 CAL=4.1840 ABS J T DEG K = 273.15 + T DEG C -(GT-HC) 0.000 0.063 0.992 4.666 12.894 26.853 47.620 76.098 112.73 157.41 209.81 269.50 335.89 408.25 485.88 568.30 0.000 0.050 0.389 1.143 2.184 3.437 4.899 6.507 8.142 9.721 11.224 12.632 13.901 15.019 16.018 16.938 17.802 0.00 0.000 0.000 0.000 0.000 0.004 0.004 0.033 0.109 0.242 0.430 0.670 0.958 1.290 0.000 0.017 0.133 0.420 0.886 1.504 5.00 10.00 15.00 20.00 0.013 0.0199 0.311 0.645 1.074 1.587 2.174 2.818 3.498 4.196 4.900 5.598 6.281 7.577 8.190 8.779 9.347 9.894 0.021 0.334 1.637 4.835 10.753 20.103 33.530 51.594 74.735 103.27 137.41 177.28 222.94 274.37 331.52 25.00 1.504 2.257 3.132 4.108 5.159 6.262 7.398 8.553 9.711 10.861 11.998 13.119 30.00 35.00 40.00 45-00 1.6661 2.065 2.949 3.9420 4.929 5.4430 5.961 6.481 7.002 7.523 8.043 8.561 9.590 10.101 10.6608 11.111 11.611 11.2107 50.00 60.00 65.00 70.00 75.00 80,00 13.119 14.223 15.308 16.375 17.423 16.452 19.462 20.454 17.802 18.614 19.377 20.092 20.766 21.407 22.022 22.614 85.00 90.00 95.00 746.23 841.23 939.92 462.68 536.52 615.74 10.421 10.929 11.419 11.893 1042.1 1147.5 1256.1 1367.7 700.24 789.94 884.73 984.53 100.00 105.00 105.00 115.00 20.454 21.429 22.385 23.327 24.252 25.160 26.052 26.929 27.792 28.639 29.473 31.100 115.00 120.00 125.00 130.00 135.00 140.00 150.00 155.00 1367.7 1482.2 1599.5 1719.4 1841.9 1966.8 2094.0 2223.3 2354.8 22.614 23.183 23.728 24.747 24.740 25.209 25.657 26.086 12.352 12.796 13.227 13.644 14.049 14.441 15.552 15.902 16.574 16.574 16.574 17.519 17.820 18.113 18.400 18.681 18.956 19.225 1089.2 1198.8 1313.1 1313.1 1432.0 1555.6 1683.6 1816.1 1952.9 26.500 26.898 27.285 27.660 160.00 165.00 170.00 13.087 13.571 14.051 2488.3 2623.8 2761.1 2094.0 2239.2 2388.7 14.051 14.527 14.998 15.465 15.928 16.842 17.293 17.740 18.183 18.067 2761.1 2900.4 3041.4 3184.2 3328.7 3474.9 3622.7 3772.1 3923.0 4075.5 4279.5 28.026 28.382 28.730 29.069 29.400 29.723 175.00 180.00 185.00 31.100 31.895 32.677 2542.2 2699.6 2861.1 32.677 33.448 34.207 34.956 35.693 36.421 37.139 37.646 190.00 195.00 200.00 205.00 3026.4 3195.5 3368.5 30.038 3545.1 30.038 30.345 30.643 30.933 31.215 31.489 31.755 210.00 215.00 220.00 4096.7 4229.5 4384.8 4541.6 4699.7 4859.8 5181.8 5345.1 55675.2 55842.0 220.00 225.00 230.00 235.00 240.00 245.00 250.00 255.00 19.057 19.488 19.915 20.339 20.759 21.175 21.588 21.997 19.225 19.488 19.746 19.999 20.246 20.489 20.727 20.961 21.191 37.646 38.545 39.234 39.914 40.585 41.248 41.502 42.549 43.188 4287.7 4482 • 2 4680 • 0

 ${\sf H}^{\sf C}_0$ and ${\sf S}^{\sf C}_0$ apply 10 the reference state of the solio at zero deg K

43.188 43.819 44.443 44.832 45.060 45.670 46.274 46.872 47.463 47.833 48.049

265.00 270.00 273.15 275.00

280.00 285.00 290.00

295.00 298.15 300.00

22.403 22.805 23.057 23.204

23.204 23.600 23.992 24.382 24.768 25.010 25.151

21.416 21.638 21.775 21.856

22.070 22.282

22.490 22.695 22.823 22.898

32.016

32.272 32.523 32.771 33.017

33.262 33.506 33.660 33.751

33.751 33.996 34.242 34.488 34.736 34.892

34.984

5948 • 0

5948.0 6010.3 6179.7 6350.3 6522.1 6695.1 6804.8 6869.4

4881.3

5293.8 5504.9 5717.2

6298.0

6381.2

7070.7

7306.6 7456.7 7545.4

Popov, M. M., and Kolesov, V. P., The Determination of the True Specific Heat of Solid Materials at Low Temperatures J. Gen. Chem. (USSR) 26, 2665-2672 (1956)

SELECTED THERMOCHEMICAL VALUES

Donald D. Wagman

In the preceding semiannual report (NBS Report 8504 dated 1 July 1964) a selection of values from the data prepared by the Chemical Thermodynamic Properties Group for the revision of NBS Circular 500, Selected Values of Chemical Thermodynamic Properties, was presented. Since that report, data on an additional number of compounds have been critically evaluated and values selected. In order to make these values available to research groups prior to completion we have presented the results on compounds of possible interest to this program in the accompanying table.

These new data will form a self-consistent set of thermodynamic tables; extreme caution should be used if they are combined with values from other sources.

"Selected Thermochemical Values"

Substance	State	∆H£ 8	∆H f°	∆Gf°	S°	Cp°
		0°K		29	98.15°K	
			kca	1/mole	cal/c	leg mole
As	c,α		0	0	8.4	5.89
	β,amorp		1.0			
	γ, cubic		3.5			
,	g	72.04	72.3	62.4	41.61	4.76
As ⁺	g	298.38	300.12			
As ₂	8	53.30	53.1	41.1	57.2	8.36
As4	8		34.4	22.1	75,	
OBA	ક	16.83	16.72		ļ	
$As0_2$ std state, $m = 1$	aq		-102.54	-83.66	9.9	
$As0_4$ std state, $m = 1$	aq		-212.27	155.00	-38.9	
As ₂ 0 ₅	С		-221.05	187.0	25.2	27.85
As ₄ 0 ₆	c,octah		-314.04	275.46	51.2	45.72
	c,monocl		-313.0	275.82	56.	
	8		-289.0	262.4	91.	
AsH ₃	g	17.70	15.88	16.47	53.22	9.10
HAsO ₂ std state, unionized, m = 1	æq		-109.1	-96.25	30.1	
HAsO4 std state unionized, m = 1	aq		-216.62	170.82	0.4	
H ₂ AsO ₃ std state, unionized, m = 1	aq		-170.84	140.35	26.4	
H ₂ AsO ₄ std state unionized, m = 1	aq		-217.39	180.04	28.	
H3AsO4	С	,	-216.6			
AsF3	1		-228.55	-217.29	43.31	30.25
	g	-218.68	-220.04	-216.46	69.07	15.68
AsCl ₂	g	16.	16.			
AsCl3	1		-72.9	-61.37	49.6	
	g	-61.42	-61.80	-58.77	78.17	18.10
AsBr ₃	c		-47.2			
	g		-31.	-28.	86.94	18.92

Substance	State	∆Hf°	∆H f °	∆Gf°	S*	C.°
		O°K		29	8.15°K	
			kca	1/mole	cal/de	eg mole
AsI3	c	-13.91	-13.9	-14.2	50.92	25.28
As2S3	С		-40.4	-40.3	39.1	27.8
AsN	g	47.	46.9	40.1	53.9	7.27
NH4T2AsO4	С		-253.3	-199.1	41.12	36.13
in 660 H ₂ O	aq		-249.1			
(NH4) 2HAs O4	c		-282.4			
in 660 H ₂ O	aq		-279.8			
(NH ₄) ₃ AsO ₄	С		-307.4			
Sb std state	c, III	0	0	0	10.92	6.03
	g	62.63	62.7	53.1	43.06	4.97
Sb ⁺	g	261.91	263.46			
Sb ₂	g	56.76	53.3	44.7	60.90	8.70
Sb ₄	g	50.2	49.0	33.8	84.	
Sb0	8	48.	47.7			
$Sb0^+$ std state, $m = 1$	aq		= =	-42.33	,	
SbO2" std state, m = 1	рв			-81.32		
Sb204	c		-216.9	-190.2	30.4	27.39
sb ₂ 0 ₅	c		-232.3	-198.2	29.9	28.11
Sb40 ₆	c, cubic		-344.3	-303.1	52.8	
	c, orthor	•	-338.7	-299.5	58.8	48.46
Sb6 ⁰ 13	c		670.6			
SbH ₃	g	36.62	34.68	35.31	55.61	9.81
Sb(OH) ₃	С			-163.8		
SbF	g	-11.	-11,29			
SbF ₃	С		-218.8			
in 200 H ₂ O	aq		-217.7			
H ₃ SbF ₆	aq		-448.4			
SbC1	g	-6.	-6.22			
SbC1 ₂	g	-18.	-18.5			
SbC13	c		-91.34	-77.37	44.0	25.8
	g	-74.57	-75.0	-72.0	80.71	18.33

Substance	State	∆H£8	AHf°	∆Gf°	S.	C _D *
		0°K			.15°K	
			ke	al/mole	cal/d	eg mole
SbC1 ₅	1		-105.2	-83.7	72.	
	8	-93.70	-94.25	-79.91	96.04	28.95
SbOC1	c		-89.4			
	8	-25.	-25.5			
SbBr3	c		-62.0	-57.2	49.5	
	8		-46.5	-53.5	89.09	19.17
in CS ₂	1		-58.4			
SbI3	С		-24.0			
	рв		-23.6			
Sb2S3 black	С		-41.8	-41.5	43.5	28.65
crange	amorp		-35.2			
Sb ₂ Te ₃	C		-13.5	-13.2	56.	
SbN	8	64.	63.66		Ì	
B1	c	O	0	0	13.56	6.10
	8	49.56	49.5	40.2	44.669	4.96
Bi ⁺	8	217.6	219.1			
Bi ₂	8		52.5			
Bi203	c		-137.16	-118.0	36.2	27.13
B1 (OH) 3	С		-170.0			
Bif	8					
BiCl	С		-31.2	-25.9	22.6	
BiC1 ⁺⁺ std state, m = 1		_		-14.64		
$BiCl_2^+$ std state, m = 1	ps			-49.1		
BiC13	С		-90.6	-75.3	42.3	25.
	8	-63.32	-63.5	-61,2	85.74	19.04
in HC1 • 26H2O	a q		-101.7			
B10C1	c		-87.7	-77.0	28.8	
B1(OH) ₂ C1	c			-128.71		
B.(Br ₃	c					26.
BiBr++ std state, m =				-8.1		
Bibr2 ⁺ std state, m =	1 aq		_	-35.9		

Substance	State	∆Hf8 O°K	∆H f ^o	∆Gf°	s°	C.°
		0°K		298	3.15°K	
			kcal	/mole	ca1/de	g mole
BiBr ₃ std state unionized, m = 1	aq			-63.3	APPRIATE AND APPRI	
BiI	8					
B11 ₃	c			-41.9		
Bis	g		43.	29.	68.	
Bi ₂ S ₃	С		-34.2	-33.6	47.9	29.2
B12(\$04)3	c		-608.1			
BiSe	g		42.0			
Bi ₂ Se ₃	С		-2.2			
BiTe	g		42.8			
Bi ₂ Te ₃	С	II	-18.5	-18.4	62.36	28.8
CH ₄	8	-15.970	-17.88	-12.13	44.492	8.4
HCOO std state, m = 1	aq		-101.71	-83.87	22.	
HCO3 state, m = 1	aq		-165.39	-140.26	21.8	
нсоон	1		-101.51	-86.38	30.82	23.67
	g		-90.48			
in 1 H ₂ 0	aq		-101.699			
2 H ₂ O	aq	ļ	-101.715			
3 H ₂ O	aq	1	-101.697		7	
5 H ₂ O	aq		-101.667			
10 H ₂ O	aq		-101.642			
50 H ₂ O	aq		-101.654			
100 H ₂ 0	aq		-101.666			
1000 н ₂ 0	aq		-101.681			
СН3ОН	1		-57.04	-39.76	30.3	19.5
	8		-48.06	İ		
Si	c	0	0.	0.	4.50	4.78
	g	107.86	108.9	98.3	40.12	5.31
5 1 ⁺	g	295.83	298.35			
Si ₂	3	141.32	142.	128.	54.92	8.22

A THE CONTRACT OF THE PROPERTY

discontinue libraries

Substance	State	AHf 3	∆Hf°	∆Gf°	S°	C _D *
		0 °K		2	98.15°K	
			kcal	L/mole	cal/de	g mole
Si ₃	g	146.4	147.		ļ	12.9
SiO	g	-24.08	-23.8	-30.2	50,55	7.15
SiO ₂ α , quartz	c		-217.72	-204.75	10.65	10.62
cristobalite	С		-217.37	-204.46	10.20	10.55
trydimite	c		-217.27	-204.42	10.4	10.66
glass	amorp		-215.94	-203.33	11.2	10.6
	g		-77.			
SiH	8	86.	86.28			
SiH ₄	g	10.30	8.2	13,6	48.88	10.24
Si ₂ H ₆	g	23.04	19.2	30.4	65.14	19,3
Si ₃ H ₈	1		22.1			
	g		28.9			
H ₂ SiO ₃	c		-284.1	-261.1	32.	
145104	с		-354.0	-318.6	46.	
SiF	g	1.	1.7	-5.8	53.94	7.80
SiF ₂	g	-1.47.75	-148.	-150.	60.38	10.49
sif ₄	g	-384.66	-385.98	-375.88	67.49	17.60
std state, m = 1	aq		ļ	-384.2		
SiF6 std state, m = 1	aq		-571.0	-525.7	29.2	
SiHF ₃	g				64.96	14.47
SiH3F	g				56.95	11.33
H ₂ SiF ₆	aq		-570.			
SiC1	g	45.				
SiCl ₄	1		-164.2	-148.16	57.3	34.73
	g	-156.51	-157.03	-147.47	79.02	21.57
SiH3C1	g			İ	59.88	12,20
SiHCl3	1		-128.9	-115.34	54.4	
	g	-121,40	-122.6	-115.2	74.99	18.12
SiBr4	1		-109.3	-106.1	66.4	
	g		-99.3	-103.2	90.29	23.21
SiH ₃ Br	g				62.69	12.63
		1	l	1	1	

Substance	State	∆Hf3	∆Hf°	∆Gf°	S° 3.15°K	€ _p °
	-	0 K	298		•15°K	
			kcal	/mole	cal/de	g mole
SiHBr3	1		-85.0	-80.4	59.3	
	g		-75.9	-78.5	83.28	19.30
SiI ₄	c	1	-45.3			
Sis	g	26.6	26.88	14.56	53.43	7.71
SiS ₂	c		-49.5			
SiSe ₂	С		- 7.			
Sin	g	116.	116.68	109.41	51.78	7.21
(NH ₄) ₂ SiF ₆ hexagonal	c		-640.94	-565.38	66.98	54.52
c ubic	c		-640.67	-565.40	67.99	59.25
i n 555 H ₂ 0	рв		-633.60			
1500 н ₂ 0	aq		-633.20			
SiC β, cubic	c	-15.36	-15.6	-15.0	3.97	6.42
α , hexagonal	c		-15.0	-14.4	3.94	6.38
	g	175.6	177.			
Si(CH ₃) ₄	1		-63.	-24.	66.27	48.78
	g		-57.15	-23.93	85.78	34.39
Si(C2H5)4	1		-68.			
s1н(осн ₃) ₃	1		-199.		i	
S1(0CH ₃) ₄	1		-302.			
S1(0C ₂ H ₅) ₄	1		-334.			
Sif4.N(CH3)3	c	į	-419.4			
Sici(CH3)3	1	İ	-91.5	-58.93	66.5	
	8		-84.32	-58.23	88.2	
Sn white	c		0	0	12.32	6.45
gray	c		-0.50	0.03	10.55	6.16
	g	72.18	72.2	63.9	40.243	5.08
Sn ⁺	g	241.54	243.04			
Sn^{++} in aq HCl, $m = 1$	æα		-2.1	-6.5	-4.	
Sn^{++++} in aq HC1, $m=1$	рв		7.3	0.6	-28.	
SnO	e		-68.3	-61.4	13.5	10.59
Sr02	С		-138.8	-124.2	12.5	12,57

Substance	State	∆H £ Å	∆Hf°	∆Gf°	S*	C _p °
		0°K		29	8.15°K	
			kcal	/mole	cal/d	eg mole
SnH ₄	g	41.78	38.9	45.0	54.39	11.70
Sn(OH) ppt	С		-134.1	-117.5	37.	
Sn(OH)4 ppt	С		-265.3			
SnC1 ₂	С		- 77.7			
in aq HC1	aq		-78.8			
SnC12*2H2O	c		-220.2			
SnC1 ₄	1		-122.2	-105.2	61.8	39.5
	g	-112.16	.112.7	-103.3	87.4	23.5
in aq HC1	aq		-152.5	-124.9	26.	
SnC16	aq		-231.9			
Sn(OH)C1 std state, m=1	aq		-108.4	-93.7	30.	
SnBr ₂	c		-58.2			
in aq HBr, $m = 1$	aq		-58.8	-57.8	45.	
SnBr ₄	С		-90.2	-83.7	63.2	
	g		-75.2	-79.2	98.43	24.7
Sn(OH)Br std state,m=1	рв		-97.4	-86.7	35.	
SnI ₂	c		-34.3			
in aq HC1	aq		-28.5			
SnI ₄	c					20.3
	g	1			106.6	25.2
SnS	С		24.	-23.5	18.4	11.7
	g		28.5			
SnS ₂	c				20.9	16.70
Sn(SO ₄) ₂	c		~389.4			
	aq		-354.2			
SnSe	С		-21.7			
	g	1	30.8			
SnTe	c		-14.6			
	g		38.4			
(NH ₄) ₂ SmC1 ₆	c		-295.6		ļ	
	aq		-293.9			

HHHHHHHH

WHISTONIAN TO THE PERSON OF TH

None particular

Company of the second

41 MAI 41 MAI 10.

86

Substance	State	∆H£%	∆Hf°	∆Gf °	S°	C _p °
		0°K	-	298.		
	-		kcal	/mole	cal/de	g mole
(NH ₄) ₂ SnBr ₆	c				120.2	63.97
SnH ₂ (CH ₃) ₂	1		14.5			
-	g		21.			
SnH(CH ₃) ₃	1		-2.1			
	g		5.			
Sn(CH ₃) ₄	1		-12.5			
	g	<u> </u>	-4.5			
Sn(C ₂ H ₅) ₄	1		-22.9			
	g		-10.9			
Sn ₂ (CH ₃) ₆	g		-21.6			
Sn(CH ₃) ₂ C1 ₂	С		-80.4			
Sn(CH ₃) ₃ Br	1		-45.2			
Sn(CH3)3I	1		-32.4			
in CC1 ₄			-31.2			
AgBr	c		-23.99	-23.16	25.6	
AgI	С		-14.78	-15.82	27.6	13.58
Na ₂ CO ₃	c		-270.9		32.5	26.4
std state, m = 1	aq		-276.62			
in 15 H ₂ 0			-278.80			
20 H ₂ O			-278.66			
50 H ₂ 0			-277.83			
100 H ₂ O			-277.28			
1000 H ₂ O			-276.53			
Na2CO3 · H2O	c		-342.4			
Na2co3.10H50	С		-976.5			
NaCHO ₂	c		-159.13		24.80	19.7
in 400 H ₂ O	aq		-158.97			
NaCHO2 • 2H2O			-300.7			
Na ₂ SiF ₆	С		-695.4	- 656 . 7	44.7	
in 630 H ₂ 0	aq		-685.1			

Hilliage i

Substance	State	O•K	∆Hf°	∆Gf°	S°	C _p °
		0°K		298.	15°K	
			kca	1/mole	cal/c	eg mole
кн ₂ Р0 ₄	c		-366.0		32.23	
κ ₂ co ₃	c		-274.3		37.4	27.6
in 50 H ₂ O			-281.65	1		
100 н ₂ 0			-281.5 6			
1000 н ₂ 0			-281.17			
2000 н ₂ 0			-281.0			
ĸ ₂ co ₃ • ₺н ₂ o	c		-310.7			
ксно ₂	С		-162.3			
	aq		-161.8			
K ₂ SnC1 ₆	c		-355.6			
	aq		-352.5			
					ĺ	
					İ	
	ļ					
						ı
		ł	1			

Pattern of the state of the sta

ATHUMBING.

-

Emmense Community Communit

ቋቋ

APPENDIX IV

LIST OF IONIZATION POTENTIALS OR ELECTRON AFFINITIES OF LIGHT ELEMENT COMPOUNDS

(A Revision of Appendix IV, NBS Report 8504, dated July 1, 1964)

Charles W. Beckett and Esther C. Cassidy

Ionization potential and electron affinity data for substances formed from elements of the first and second rows of the periodic table were given in Appendix IV of the above NBS Report 8504. In Table 1 of the present list, we have revised some of the values in the light of information received subsequent to the printing of the last report. We have also added ionization potentials or electron affinities of a number of substances which were not included in the former list. We are indebted to Dr. W. C. Price [45] for many of these corrections and additional values, to Dr. L. M. Branscomb [49] for pre-publication information on the electron affinity of OH, and to Drs. J. L. Margrave and T. C. Ehlert [56] for prepublication information on AlF2. Other values included here were taken from the recent report entitled "A Survey of Ionization Potentials of Combustion Products" by O'Bryan and Brown [44], from a Russian volume by Vedeneev et al [50], and from a number of recent publications as indicated by references [44] through [64] of the following list of references. In some cases the bibliography has been annotated with the formula of the substances and the ionization potentials or electron affinities.

In addition to the above, recent theoretical estimates of the electron affirities for negative ions of elements in the third row of the periodic table are given in Table 2. The values presented were taken from a paper by E. Clementi [65].

As stated earlier, the data given in these tables were assembled to provide a listing of values which are useful in determining what substances are likely to be important in high-temperature research. The substances listed in this preliminary survey were limited to those expected to be present in high-temperature ionized gases containing metals in addition to stable gases. The substances expected in flames were of special interest in view of their pertinence to current practical problems in the missile and space field, as indicated by Jones et al [66] in their review of the 1962 American Rocket Society Conference on ions in flames and rocket exhausts. For more detailed and comprehensive discussion of ionization in flames and high-temperature combustion

systems, the reader is referred to the AIAA Progress Series entitled Ionization in High-Temperature Gases edited by Shuler and Fenn [67], to a recent paper by Miller and Calcote on "Negative-Ion Formation in Hydrocarbon Flames" [68], and to the works of Knewstubb, Sugden and Green [69, 70, 71] on ion observations in flames and electrical discharges. Branscomb [72], Nicolet [73, 74], and Whitten and Foppoff [75] have reviewed the closely related ionization phenomena in the upper atmosphere. These phenomena also occur in combustion and exhaust processes (see Calcote [76], Sugden [77], Van Tiggellen [78], and Smith and Gatz [79]), in electrically conducting gases

(see Berry [80] and Franklin [81]), and in other applications including magnetohydrodynamic devices for power generation (see Brogan

[82] and Moore [83]).

A selected list of ionized (or readily ionizable) substances is given below. This summary includes some of the heavier elements having low ionization potentials. Small amounts of these elements in a mixture are likely to have large effects on electron density at 2000 to 4000°K. Icho observed in flames and the upper atmosphere also are listed for the convenience of the reader.

A. Elements Likely to Ionize Appreciably at 3000°K:

Cs, Rb, K, Na, Li	(3.9 to 5.4 e.v.)
Ba, Sr, Ca	(5.2 to 6.1 e.v.)
Pr, Nd, Ce, Sm, La, Eu	(5.4 to 5.7 e.v.)
In, Ga, Al, U, Tl	(5.8 to 6.1 e.v.)
V, Cr, Ti	(6.7 to 6.8 e.v.)
Zr, Hf, Th	(6.8 to 7.0 e.v.)

- B. Selected Listing of Observed Negative Ions:
 H, C, O, F, S, Cl, Br, I, C, C, C, NO, NO, CN, OH, CH, NH, NH,
- D. Some Ions Observed in Upper Atmosphere (at about 100 km Altitude)

 O, O, O, NO, NO, NO, NO, NO, NO, NO, O, O, O, O, O, O, H, OH

Many of the values listed in the tables probably have errors that are considerably larger than the crude estimates given in the third column. Some of these difficulties can be resolved by a more comprehensive review of the existing data. A new program on the collection and evaluation of ionization process data has been initiated at the National Bureau of Standards by Dr. Henry Rosenstock. This program will provide more comprehensive reviews of ionization potentials, electron affinities and related data.

From this preliminary survey and other surveys of ionization potential data, it appears that reliable values are available for many of the stable molecules likely to occur in combustion mixtures. Furthermore, since the ionization potentials of these stable molecules are in general greater than 10 electron volts, even errors as large as one electron volt would not significantly affect the electron and ion concentrations in equilibrium thermodynamic mixtures at combustion temperatures. More serious problems occur in the data on less stable species, such as the free radicals which may have much lower ionization potentials. There is a need for continuing search for information on substances with low ionization potentials. This will require the extension of the tables into the lower part of the periodic table. Negative ions obviously are of great importance in combustion systems as well as in many other applications involving ionized gases, yet the number of species for which we have reliable data is extremely small. Clearly much more work is needed in this area.

References

- [1] Kiser, R. W., <u>Tables of Ionization Potentials</u>, No. TID-6142, June 20, 1960, and <u>Additions and Corrections to Tables of</u> <u>Ionization Potentials</u>, No. TID-6142, July 20, 1962.
- [2] Sitterly, C. M., Spectroscopy Section, Atomic Physics Division, National Bureau of Standards, private communications, July 1, 2, 1964.
- [3] Moore, C. E. (C. M. Sitterly), Atomic Energy Levels, NBS Circular 467, Vol. I, 1949; Vol. II, 1952; and Vol. III, 1958.
- [4] Wilkinson, P. G., Astrophys. J. 138, 778 (1963).
- [5] Price, W. C., <u>Handbuch der Physik</u>, edited by S. Flügge, Vol. XXVII, Spektroskopie I, published by Springer-Verlag, Berlin, 1964, p. 453-454.
- [6] Foner S. N. and R. L. Hudson, J. Chem. Phys. 35, 2676 (1962); 36, 2081 (1962).
- [7] Verhaegen, G., F. E. Stafford, and J. Drowart, J. Chem. Phys. 40, 1622 (1964).
- [8] Berkowitz, J. and W. A. Chupka, J. Chem. Phys. 40, 287 (1964).
- [9] Berkowitz, J. and J. R. Marquart, J. Chem. Phys. 39, 275 (1963).
- [10] Nakayama, T. and K. Watanabe, J. Chem. Phys. 40, 558 (1964).
- [11] Dibeler, V. H. and R. M. Reese, J. Chem. Phys. 40, 2034 (1964).
- [12] Schoen, R. I., J. Chem. Phys. 40, 1830 (1964).
- [13] Yang, J. H. and D. C. Conway, J. Chem. Phys. 40, 1729 (1964).
- [14] Varney, R. N., J. Chem. Phys. 31, 1314 (1959); 33, 1709 (1960).
- [15] Christoffersen, R. E., S. Hagstrum, and F. Prosser, J. Chem. Phys., <u>40</u>, 263 (1964).
- [16] Conroy, H., J. Chem. Phys. 40, 603 (1964).
- [17] Karplus, M., R. N. Porter, and R. D. Sharma, J. Chem. Phys. 40, 2033 (1964).

- [18] Porter, R. N. and M. Karplus, J. Chem. Phys. 40, 1098 (1964).
- [19] Berry, R. S., C. W. Reimann, and G. N. Spokes, J. Chem. Phys. 37, 2278 (1962).
- [20] Berry, R. S. and C. W. Reimann, J. Chem. Phys. 38, 1540 (1963).
- [21] Branscomb, L. M. and S. J. Smith, J. Chem. Phys. <u>25</u>, 598 (1956).
- [22] Branscomb, L. M., D. S. Burch, S. J. Smith, and S. Geltman, Phys. Rev. <u>111</u>, 504 (1958).
- [23] Seman, M. and L. M. Branscomb, Phys. Rev. <u>125</u>, 1602 (1962).
- [24] Chantry, P. J. and G. J. Schulz, Phys. Rev. Letters <u>12</u>, 449, (1964).
- [25] Edlén, B., J. Chem. Phys. 33, 98 (1960).
- [26] Edlén, B., Handbuch der Physik, edited by S. Flügge, Vol. XXVII, Spektroskopie I, published by Springer-Verlag, Berlin, 1964, p. 199-201.
- [27] Clementi, E., A. D. McLean, D. L. Raimondi, and M. Yoshimine, Phys. Rev. <u>133</u>, Al274 (1964).
- [28] Clementi, E. and A. D. McLean, Phys. Rev. 133, A419 (1964).
- [29] Scherr, C. W. and R. E. Knight, Rev. Mod. Phys. 35, 436 (1963).
- [30] Knight, R. E. and C. W. Scherr, Phys. Rev. <u>128</u>, 2675 (1962).
- [31] Knight, R. E. and C. W. Scherr, Rev. Mod. Phys. 35, 431 (1963).
- [32] Pekeris, C. L., Phys. Rev. <u>112</u>, 1649 (1958); <u>115</u>, 1216 (1959); <u>126</u>, 143 (1962); <u>126</u>, 1470 (1962).
- [33] Kinoshita, T., Phys. Rev. <u>105</u>, 1490 (1957); <u>115</u>, 366 (1959).
- [34] Cubicciotti, D., J. Chem. Phys. 31, 1646 (1959); Errata Notes: J. Chem. Phys. 33, 1579 (1960) and J. Chem. Phys. 34, 2189 (1961).
- [35] Honig, R. E., J. Chem. Phys. 22, 126 (1954).
- [36] Chupka, W. A. and M. G. Inghram, J. Phys. Chem. <u>59</u>, 100 (1955).

- [37] Melton, C. E. and P. S. Rudolph, J. Chem. Phys. 31, 1485 (1959).
- [38] Kistiakowsky, G. B. and J. V. Michael, J. Chem. Phys. 40, 1447
 (L) (1964).
- [39] Glass, G. P. and G. B. Kistiakowsky, J. Chem. Phys. <u>40</u>, 1448 (L) (1964).
- [40] Strickler, S. J. and K. S. Pitzer, "Energy Calculations for Polyatomic Carbon Molecules," to be published as a chapter in a volume, "Molecular Orbitals in Chemistry," B. Pullman and Per-Olov Lowdin, editors, Academic Press, Inc., New York.
- [41] Drowart, J., R. P. Burns, G. De Maria, and M. G. Inghram, J. Chem. Phys. 31, 1131 (1959).
- [42] Pitzer, K. S. and E. Clementi, J. Am. Chem. Soc. 81. 4477 (1959).
- [43] Bishop, D. M., J. Chem. Phys. 40, 432 (1964).
- [44] O'Bryan, L. K. and B. Prown, Proceedings of Second Meeting of Working Group on Thermochemistry (June 3-4, 1964), CPIA Publication No. 54 (U), Vol. I, p. 1-12, August 1964, (Chemical Propulsion Information Agency, Silver Spring, Maryland). Ionization potential data as follows: Be₂Cl₄ = 12.8, BO = 12.8, BOF = 13.4, and (BOF)₃ = 14.2 ev.*
- [45] Price, W. C., Physics Department, Kings College, Strand, Iondon WC2, private communication, Sept. 26, 1964. Ionization potential data as follows: OH = 1.8, NO₂ = 1.6, NO₂ = 10.97 ± 0.03, PH = 10.5, CF = 8.91, CF₂ = 11.7, CCl ~9.5, SiF₃ = 10.6, SiCl < 7.0, SiCl₂ = 10.0, SiCl₃ ≈ 10.0, BH = 9.73 ± 0.01, BF = 11.2, AlH = 8.4, AlF₃ = 14.4, AlCl ~ 9, AlCl₂ ~ 8, AlCl₃ ~ 12, BeF = 9.1, BeCl ~ 9, BeCl₂ ~ 11, MgH = 6.83, and MgCl ~ 7 ev.
- [46] Price, W. C., T. R. Passmore, and D. M. Rossler, Dis. Far. Soc. 35, 201 (1963). Ionization potential data as follows: OH₃ = 6.2 ± 0.4, OF = 12.2 ± 0.5, OF₃ = 14.3 ± 0.5, NH₄ = 4.9 ± 0.2, NF₄ = 8.8 ± 0.4, BeH₂ = 11.9 ± 0.5 and LiF = 11.1 ± 0.5 ev.
- [47] Price, W. C. and T. R. Passmore, Dis. Far. Soc. 35, 232 (1964). Ionization potential data as follows: $PH_3 = 9.98 \pm 0.05$, $PF_3 = 9.71 \pm 0.05$, and $PCl_3 = 9.91 \pm 0.05$ ev.

^{*} All values are given in electron volts.

- [b8] Price, W. C., J. Chem. Phys. 37, 1853 (1962). Ionization potential data as follows: MgF₂ = 13.5 ± 0.4 ev.
- [49] Branscomb, L. M., Joint Institute for Laboratory Astrophysics, Boulder, Colorado, private communication, July 27, 1964, Electron affirity data as follows: OH = 1.8 ± 0.1 ev.
- [50] Vodensev, V. I., L. V. Gurvich, V. N. Kondrat'ev, V. A. Medvedev, and E. L. Frankevich, The Dissociation Energy of Chemical Bonds. Ionization Potentials and Electron Affinity, Akademia Nauk SSSR, Moskov, 1962, pp. 164-214. Ionization potential data as follows:

 03 = 6.89, 03 > 11.7, H20 = 0.9, H02 = 3.04, Cl0 = 2.91,

 Cl02 = 3.43, Cl02 = 11.1, Cl03 = 3.96, Cl04 = 5.82, Cl03F = 13.6 ± 0.2,

 S0 ≥ 1.1, CS2 = 10.1, NO > 0, N3H = 10.3 ± 0.2, CH = 1.65,

 CH3 = 1.08, C2H3 = 9.45 ± 0.05, C2H5 = 8.80 ± 0.05, C2H = 11.3 ± 0.4,

 C02 ~3.8, CH3Cl = 11.3 ± 0.1, SiCl2 > 2.6, and SiC ~ 4 ev.
- [51] Al-Joboury, M. I. and D. W. Turner, J. Chem. Soc. 41, 4434 (1964). Ionization potential data as follows: $NO_2 = 10.97 \pm 0.03$ ev.
- [52] Harrison, A. G., Mass Spectrometry of Organic Ions, ed. F. W. McIafferty, Academic Press, New York and Iondon, 1963, p. 240. Ionization potential data as follows: $N_2H_3=7.88\pm0.2$, $CHF_2=9.45$, $CHCl_2=9.54\pm0.1$, $CH_2F=9.37$, $CH_2Cl=9.70\pm0.09$, and $CH_3=9.85\pm0.2$ ev.
- [53] Farmer, J. B., I. H. S. Henderson, F. P. Lossing, and D. G. H. Marsden, J. Chem. Phys. $\underline{24}$, 348 (1956). Ionization potential data as follows: $CF_3 = 10.10 \pm 0.05$ and $CCl_3 = 8.78 \pm 0.05$ ev.
- [54] Ehlert, T. C. and J. L. Margrave, J. Chem. Phys. $\frac{41}{0}$, 1066 (1964). Ionization potential data as follows: $SiF_2 = 11.0 \pm 0.05$ ev.
- [55] Ehlert, T. C. and J. L. Margrave, J. Chem. Phys. $\frac{41}{\pm}$, 2250 (1964). Ionization potential data as follows: MgF = 7.8 \pm 0.3, SrF = 5.2 \pm 0.3 and BaF = 4.9 \pm 0.3 ev.
- [56] Ehlert, T. C. and J. L. Margrave, Report, Dept. of Chemistry, Rice University, Houston, Texas, 1964. Ionization potential data as follows: AlF₂ = 9 ± 1 ev.
- [57] Chupka, W. A., J. Berkowitz, and C. F. Giese, J. Chem. Phys. 30, 827 (1959). Ionization potential data as follows: BeO = 10.4 \pm 0.5, (BeO)₄ = 11.0 \pm 0.5, (BeO)₅ = 11.0 \pm 1.0, and (BeO)₆ = 11.0 \pm 1.0 ev.

- [58] Theard, L. P. and D. L. Hildenbrand, J. Chem. Phys. 41, 3416 (1964). Ionization potential data as follows: Be20 = 10.5 ± 0.5, (Be0)₂ = 11.1 ± 0.4, (Be0)₃ = 10.7 ± 0.4, and Be₃0₂ = 12.5 ± 1.0 ev.
- [59] Hildenbrind, D. L., L. P. Theard, and F. Ju, Philos Research Laboratory Report, Jan. 1, 1965. Ionization potential data as follows: BeF = 9.1 \pm 0.5 and BeF $_2$ = 14.7 \pm 0.4 ev.
- [60] Berkowitz, J. and J. R. Marquart, J. Chem. Phys. 37, 1853 (1962). Ionization potential data as follows: MgCl₂ = 11.1 ± 0.2 ev.
- [61] Browne, J. C., J. Chem. Phys. 41, 3495 (1964). Ionization potential data as follows: LiH = 7.8% to 7.91 ev.
- [62] Phelps, A. V. and J. L. Pack, Phys. Rev. $\underline{6}$, 111 (1961). Electron affinity $0_2 = ...46$ ev.
- [63] Curran, R. K., Phys. Rev. 125, 910 (1962). Flectron affinity $NO_2 > 3.8$ ev.
- [64] Farragher, A. L., F. M. Page, and R. C. Wheeler, Dis. Far. Soc. 37 (1964). Electron affinity $NO_2 = 4.0$ ev.
- [65] Clementi, E., Phys. Rev. <u>135</u>, A980 (1964). Electron affinity data for elements of the iron series.
- [66] Jones, W. H., M. Griffel, and A. R. Hochstim, Astronautics and Aerospace Engineering, Oct., 1963, p. 86.
- [67] Shuler, K. E., ed., and J. B. Fenn, assoc. ed., <u>Ionization in High-Temperature Gases</u>, Vol. 12 of <u>Progress in Astronautics and Aeronautics</u>, Academic Press, New York and London (1963).
- [68] Miller, W. J. and H. F. Calcute, J. Chem. Phys. 41, 4001 (1964).
- [69] Knewstubb, P. F. and T. M. Sugden, Nature 196, 1312 (1962).
- [70] Knewstubb, P. F., Mass Spectrometry of Organic Ions, ed. F. W. McLafferty, Academic Press, New York and London, 1963, p. 255.
- [71] Green, J. A. and T. M. Sugden, <u>Proceedings of the Ninth Symposium on Combustion</u>, Cornell University, Ithaca, N. Y., 1962, Academic Press, New York and London (1963), p. 607.
- [72] Branscomb, L. M., Ann. Geophys. 20, 88 (1964).
- [73] Nicolet, M., J. Geophys. Res. 70, 679 (1965).

- [74] Nicolet, M., ibid., p. 691.
- [75] Whitten, R. C. and I. G. Poppoff, J. Atmos. Sciences <u>21</u>, 117 (1964).
- [76] Calcote, H. F., "Nonequilibrium Ionization in Flames," <u>Ionization in High-Temperature Gases</u>, ed. K. E. Shuler and J. B. Fenn, Academic Press, New York and London (1963), y 107.
- [77] Sugden, T. M., "A Survey of Flame Ionization Work at the University of Cambridge," <u>ibid</u>., p. 145.
- [78] Van Higgelen, A., "Ionization Phenomena in Flames," ibid., p. 165.
- [79] Smith, F. T. and C. R. Gatz, "Chemistry of Ionization in Rocket Exhausts," <u>ibid.</u>, p. 301.
- [80] Berry, R. S., "Thermodynamics and Elementary Processes of Gaseous Ions," ibid., p. 3.
- [81] Franklin, J. L., M. S. B. Munson, and F. H. Field, "Chemi-Ionization and Ion-Molecule Reactions in Gases," <u>ibid.</u>, p. 67.
- [82] Brogan, F. R., "Electrical Properties of Seeded Combustion Gases," ibid., p. 319.
- [83] Moore, G. E., "Experimental Soudies of Some Electrical Properties of Seeded Flame Gases," <u>ibid.</u>, p. 347.
- [84] Steiner, B., ii. L. Seman, and L. M. Branscomb, J. Chem. Phys. <u>37</u>, 1200 (1962).
- [85] Burke, P. G. and K. Smith, Nev. Mod. Phys. 34, 458 (1962).
- [86] Berry, R. S., C. W. Reimann, and G. N. Spokes, J. Chem. Phys. 35, 2237 (1961).
- [87] Conway, D., J. Chem. Phys. 36, 2549 (1962).
- [38] Cooper, J. W. and J. B. Martin, Phys. Rev. 126, 1482 (1962).
- [89] Geltman, S. and M. Krauss, Bull. Am. Phys. Soc. 5, 339 (1960).
- [90] John, T. L., Month. Not. Roy. Astron. Soc. <u>121</u>, 41 (1960).
- [91] John, T. L., Astrophys. J. 131, 743 (1960).
- [92] Smith, S. J. and D. S. Burch, Phys. Rev. 116, 1125 (1959).

- [93] Natanson, G. L., Zh. Tekh. Fiz. 29, 1373 (1959). (In Russian).
- [94] Bates, D. R., ed., Atomic and Molecular Processes, Academic Press, New York (1962).
- [95] Scherr, C. M., J. N. Silverman and F. A. Matsen, Phys. Rev. <u>127</u>, 830 (1962).
- [96] Melton, C. E., "Negative Ion Mass Spectra," Mass Spectrometry of Organic Ions, ed. F. W. McLafferty, Academic Press. New York, 1963, p. 163.
- [97] Burtt, B. P. and J. Henis, J. Chem. Phys. 41, 1510 (1964).
- [98] De Jaegere, S., J. Deckers and A. Van Tiggelen, "Identity of the Most Abundant Ions in Some Flames," Proceedings Eighth Symposium on Combustion, Pasadena, Calif., 1960, Academic Press, New York (1962), p. 155.
- [99] Calcote, H. F. and J. L. Reuter, J. Chem. Phys. 38, 310 (1963).
- [100] Calcote, H. F., "Ion and Electron Profiles in Flames,"

 Proceedings Ninth Symposium on Combustion, Cornell, Ithaca, N. Y.,

 1962, Academic Press, New York (1963), p. 622.
- [101] Curran, R. K., "Negative Ion Formation in Various Gases at Pressures up to 0.5 mm Hg," Mass Spectrometry Conference, ASTM Committee E-14, New Orleans, Ia., June 1962, pp. 324-332.
- [102] Field, F. H. and J. L. Franklin, Electron Impact Phenomena, Academic Press, New York (1957).
- [103] Bernecker, R. R. and F. A. Long, J. Phys. Chem. <u>65</u>, 1565 (1961).
- [104] Hand, C. W. and G. B. Kistiakowsky, J. Chem. Phys. <u>37</u>, 1239 (1962).
- [105] Glass, G. P., G. B. Kistiakowsky, J. V. Michael, and H. Niki, J. Chem. Phys. $\underline{42}$, 608 (1965). Ions observed in the acetylene-oxygen in shock waves: $C_{.9}H_{3}^{+}$, $H_{3}O^{+}$, CH_{3}^{+} , $C_{2}H_{3}^{+}$, $C_{4}H_{3}^{+}$, $C_{5}H_{3}^{+}$, $C_{6}H_{3}^{+}$, $CH_{3}O^{+}$, $H_{5}O_{2}^{+}$, $H_{5}O$

TABLE 1. PRELIMINARY LIST OF IONIZATION POTENTIALS OR ELECTRON AFFINITIES OF LIGHT ELEMENT COMPOUNDS

Formula	I.P.(or E.A.) e.v.	Est. Error		
н¯	0.754	0.001		
Н	13.598			
H_{\odot}	15.426			
н ₃	9.0	1.0		
0	1.465	0.005		
0	13.618			
o <u>-</u>	0.46	0.1		
02	12.075	0.01		
03	2.89	0.2		
03	>11.7	1.0		
04	11.65	0.1	$0_{14}^{+} = 0_{2} + 0_{2}^{+}$	0.42 e.v.
OH_	1.8	0.1		
ОН	13.36	0.2		
н ⁵ о_	0.9	0.4		
н ⁵ 0	12.61	0.02		
HO_2	3.04	0.5		
HO ₂	11.53	0.02		
H ₂ O ₂	10.92	0.05		
OH ₃	6.2	0.4		
F ⁻	3.448	0.005		
F	17.422			
F ₂	15.7	0.2		

Formula	I.P.(or E.A.) e.v.	Est. Error
HF	15.77	0.2
OF	13.	0.5
o F 2	13.7	0.2
of ₃	14.3	0.5
CT_	3.613	0.005
Cl	12.97	0.05
C1 ₂	11.48	0.05
HCl	12.74	0.01
CLF ₃	13.0	0.4
C10 ⁻	2.91	0.4
СТО	≤ 10.4	0.2
C10 ₂	3.43	0.4
C10 ₂	11.1	0.4
C10 ₃	3.96	0.4
C10 ₃	11.7	0.4
C1014	5.82	0.4
C10 ₃ F	13.6	. 0.2
ຣັ	2.07	0,07
S	10.360	
\mathbf{s}_2	8.3	1.
s ₈	8.9	1.
SII	2.6	0.5

Formula	I.P.(or E.A.) e.v.	Est. Error		
нѕ	11.1	0.2		
H ₂ S	10.47	0.1		
so ¯	≥ 1.1	0.1		
SO	12.1	0.3		
so ₂	12.34	0.2		
SF ₆	16.15	0.5		
cs ₂	10.1	0.1		
_				
N¯	0.04	0.04		
N	14.53	0.05		
N ⁺	29.59	0.05		
N ₂	15.580	0.005		
N ₃	3.13	0.3		
$N_{\underline{l_1}}$	15.07	0.1	$N_{4}^{+} = N_{2} + N_{2}^{+}$	0.5 e.v.
NH	13.10	0.1		
NH ²	1.22	0.5		
NH ₂	11.6	0.4		
NH ₃	10.154	0.05		
NH ₁₄	4.9	0.2		
N_2H_3	7.88	0.2		
N ₃ H	10.3	0.2		
NO-	0			
NO	9.267	0.01		
NO ⁺	30. 6	0.3		

Formula	I.P.(or E.A.)	Est. Error e.v.
No ₂	4.0	0.5
NO_2	10.97	0.03
N_2 0	12.94	0.05
NF	12.2	0.3
NF ₂	11.6	0.5
NF ₃	13.0	0.3
$\mathtt{NF}_{rac{1}{4}}$	8.8	0.4
N_2F_4	12.0	0.3
NHF ₂	12.0	0.3
Ρ̈́	0.77	0.2
P	10.486	
P 2	0.3	0.3
P_2	11.8	0.5
$P_{\dot{l}_{\downarrow}}$	9.0	0.5
PH ₃	9.98	0.05
PU13	12.2	0.2
PH	10.5	0.5
PF ₃	9.71	0.05
PC13	9.91	0.05
C ⁻	1.25	0.03
c_5	3.1	1.
c ₃	1.8	1.
C_4	4.0	1.

Formula	I.P.(or E.A.) e.v.	Est. Error e.v.
С	11.26	0.05
c ₂	12.0	0.4
c ₃	12.6	0.4
C ₁₄	12.6	0.4
c ₅	12.5	0.4
CH	1.65	0.4
CH	10.64	0.01
CH ₂	10.396	0.01
CH_3	1.08	0.4
CH ₃	9.84	0.01
CH ₁₄	13.0	0.1
с ₂ н	11.3	0.4
C2H2	11.406	0.01
C2H3	9.45	0.05
C2H4	10.51	0.01
с ₂ н ₅	8.80	0.05
c ₂ H ₆	11.65	0.1
c6 _H 6	9.247	0.05
(c ₆ H ₅) ₂	8.3	0.1
Pyrene	7-55	0.1
Corone	ne 7.6	0.1
CH-3	1.1	0.2
.c ₆ H ₆	0.54	0.2
(c ₆ H ₅) ₂	0.41	0.2

Formula	I.P.(or E.A.) e.v.	Est. Error e.v.
с ₁₀ н ₈	0.65	0.2
CO	14.01	0.01
co_2	3.8	0.4
co ₂	13.79	0.02
CHO	9.85	0.1
CH ₂ O	10.88	0.04
сн ₂ 0 ₂	11.33	0.04
CH ₄ O	10.85	0.04
CHF ₂	9.45	0.4
CHC1 ⁵	9.54	0.1
$\mathtt{CH}_2\mathbf{F}$	9.37	0.3
CH ₂ Cl	9.70	0.09
CH ₃	9.85	0.2
CH_Cl	11.3	0.1
CF	8.91	0.2
CF ₂	11.7	0.5
CF ₃	10.10	0.05
\mathtt{CF}_{1_4}	17.81	0.04
$^{\mathrm{C}}_{\mathrm{2}}^{\mathrm{F}}_{\mathrm{4}}$	10.12	0.2
$^{\mathrm{C}}6^{\mathrm{F}}6$	10.0	0.2
CCl_2F_2	11.7	0.5
CCl	9.5	0.5
CCl	11.0	0.5

Formula	I.P.(or E.A.) e.v.	Est. Error	
CC1 ₃	8.78	0.05	
cc1 ¹	11.47	0.1	
cocr ⁵	11.78	0.04	
CS	11.8	0.3	
cs_2	10.07	0.02	
COS	11.3	0.07	
cn ⁻	3.21	0.3	
CN	14.2	0.3	
HCN	13.73	0.1	
CNCl	12.49	0.1	
CH ₃ N ₃	9.5	0.2	methyl azide
CH_ON	10.84	0.1	formamide
CH ₃ ON	8.2	0.3	methylnitrosyl
ch ₃ o ₂ n	11.03	0.04	
CH ₅ N	8.97	0.04	methyl amine
c^{5} N	12.8	0.3	
c ₃ n	• 14.3	0.3	
$c_{\underline{1}}$ N	12.3	0.3	
c ₅ n	12.0	0.3	
c ₆ n	12.2	0.3	
c ₃ en	11.6	0.3	cynoacatylene
СН _ь S	9.44	0.1	

Formula	I.P.(or E.A.) e.v.	Est. Error
Si -	1.4	0.2
Si	8.151	
Si ₂	7.3	0.3
SiH	8.5	0.5
$\mathtt{SiH}_{l_{\!$	12.2	0.3
SiO	10.51	0.1
sio ₂	11.7	0.5
si ₂ 0 ₂	10.	1.0
Sif	7.26	0.1
$\operatorname{\mathtt{SiF}}_2$	11.0	0.5
SiF ₃	10.6	0.5
\mathbf{SiF}_{eta}	15.4	0.4
si_2F_4		
Sicl	< 7.0	1.0
sicl ₂	→ 2.6	0.5
sicl ₂	10.0	0.14
sicl ₃	10.0	0.4
$\operatorname{\mathtt{SiCl}}_{l_{\!\scriptscriptstyle +}}$	12.0	0.4
Sic	4.0	1.0
SiC	9.0	0.3
sic	10.2	0.3
si ₂ c	9.1	0.3

Formula	I.P. (or E.A.) e.v.	Est. Error
В-	0.3	0.1
В	8.298	
B ₂	12.4	0.3
BH	9.73	0.01
BH ₂	8.12	0.3
BH ₃	11.3	0.4
во	12.8	1.0
B ₂ 0 ₂	13.3	0.4
B ₂ 0 ₃	13.2	0.4
HBO ₂	12.6	0.4
BF	11.2	0.5
BF_2	9.4	0.4
BF ₃	15.6	0.4
BF3	2.17	0.4
BCl	10.44	0.4
BC1 ₂	7.20	0.5
BCl ₃	11.5	0.5
BOF	13.4	0.5
(BOF) ₃	14.2	0.5
BN		
в ₂ н	10.62	0.5
в ₂ н ₆	12,0	0.3
BOCl		

Formula	I.P.(or E.A.) e.v.	Est. Error
BC	10.5	0.3
BC ₂	10.7	0.3
B ₂ C	10.7	0.3
BSi	7.8	0.3
BCSi	9.9	0.3
Al	0.52	0.05
Al	5.98€	
Alh	8.4	0.5
AlO	9.5	0.5
Al ₂ 0	7. 7	0.4
Al ₂ 0 ₂	9.9	0.4
Alo ₂ H		
ALOF		
Alf	9.5	0.5
AlF ₂	9.0	1.0
Alf ₃	11.4	0.5
AlCl	9.0	1.0
AlCl ₂	8.0	1.0
AlCl ₃	12.0	0.8
AlBrz	12.2	0:8

Formula	I.P.(or F.A.) e.v.	Est. Error e.v.	
Be ⁻	(≤0.1)	0.1	Estimate
Ве	* 9.322		
ВеН	8.6	0.4	
BeH ₂	11.9	0.5	
BeUH			
Be0	10.4	0.5	
Ве ₂ 0	10.5	0.5	
Be ₃ 0 ₂	12.5	1.0	
(BeO) ₂	11.1	0.4	
(BeO) ₃	10.7	0.4	
(BeO) ₄	11.0	0.5	
(BeO) ₅	11.0	1.0	
(BeO) ₆	11.0	1.0	
BeF	9.1	0.5	
$\mathtt{BeF}_{\mathcal{D}}$	14.7	0.4	
BeCl	9.0	1.0	
BeCl ₂	11.0	1.0	
Be ₂ Cl ₄	12.8	0.5	
М.	(≤0.1)	0.1	Estimate
Mg	7.646		
MgH	6.83	0.08	
MgO	8.6	0.5	
MgF	7.8	0.3	

Formula	I.F.(or E.A.) e.v.	Est. Error e.v.
MgF ₂	13.5	0.4
MgCl	7.0	1.0
MgCl ₂	11.1	0.2
	_	
Li ¯	0.7	0.2
Li	5.392	
Li ₂	4.96	0.2
Lih	7.85	0.2
LiO	9.0	0.4
Ii 20	6.8	0.4
LiI	8.55	0.4
LiF	11.1	0.5
Nu.	0.6	0.2
Na	5.139	
Na ₂	4.87	0.2
NaH	6.5	1.
NaO	7.6	1.
NaOH	9.0	1.
NaI	8.8	0.4
Nr.N ₃	11.7	0.4
SrF	5.2	0.3
D-17	1. 0	0.7

THE ELECTRON AFFINITIES FOR NEGATIVE IONS OF THE SERIES FROM POTASSIUM TO COPPER

The electron affinities for negative ions of the elements of the iron series, as taken from recent work [a] by Clementi, are given in Table 2. The affinities stated were estimated from the correlation energy of the corresponding neutral atoms and from calculations of the relativistic and the Hartree-Fock energies. The uncertainty in the data are estimated by the author to be from 0.1 to 0.35 e.v.

TABLE 2. ELECTRON AFFINITY FOR III ROW ELEMENTS

Formula	E. A. e. v.	Est. Error e. v.
к ⁻ (² s)	0.902	± 0.05
s c ⁻ (³ F)	O [p]	
Ti. [—] (¹ F)	0.391	± 0.2
v ⁻ (⁵ d)	0.937	± 0.25
cr ⁻ (⁶ s)	0.980	± 0.35
Ma ⁻ (⁵ D)	O [p]	
Fe ⁻ (^l F)	0.582	± 0.20
[™] (³ F)	0.936	± 0.15
N1 ⁻ (² D)	1.276	± 0.20
cu (¹s)	(1.801	± 0.10 }
	1-799	± 0.08 \int

[[]a] E. Clementi, Phys. Rev. <u>135</u>, A980 (1964).

[[]b] Clementi reported negative values, -0.142 ± 0.1 and -1.073 ± 0.20 respectively, for the affinities of $Sc^{-3}F$ and $Mn^{-5}D$. The value zero was assigned in this table since the negative values are probably incorrect.