Otimização de Modelos de Conversão de Ofertas

Análise e Modelagem Preditiva utilizando Regressão Logística e XGBoost – Case Ifood

Contexto e Objetivo

- As empresas fazem uso de cupons enviados por meio de vários canais de marketing para aumentar o engajamento dos clientes.
- Esse projeto visa desenvolver modelos preditivos para otimizar campanhas promocionais e melhorar a taxa de conversão.

Estratégia

Utilização de regressão logística e XGBoost para prever a probabilidade de aceitação.

Feature Engineering

Processamento e transformação de variáveis.

Treinamento

Ajuste de hiperparâmetros.

Predição

Geração de previsões e probabilidade de aceitação.

Feature Engineering

Processamento e transformação de variáveis.

Treinamento

Ajuste de hiperparâmetros.

Predição

Geração de previsões e probabilidade de aceitação.

Dados e tratamentos: Etapas a partir das informações

sobre ofertas, transações e perfis de clientes

Avaliação das bases: offers.csv, transaction.csv, profile.csv

Junção das bases utilizando chaves de relacionamento

Remoção de dados inconsistentes

Padronização de valores numéricos

Codificação de variáveis categóricas

Preenchimento de valores ausentes

Dataset definitivo: valores normalizados e dados

balanceados para melhorar o aprendizado do modelo

Feature Engineering

Processamento e transformação de variáveis.

Treinamento

Ajuste de hiperparâmetros.

Predição

Geração de previsões e probabilidade de aceitação.

Modelos e Treinamento: Métodos de treino para

construção do modelo preditivo

Modelos utilizados:

Regressão logística, XGBoost, Sistema de Recomendação

Pipeline de Treinamentos:

Engenharia de features com **feat_transformer**

Balanceamento com **SMORTE**

Otimização de hiperparâmetros com **hyperopt**

Treinamento: ajuste dos hiperparâmetros usando a base de

validação

Treinamento final na base de treino

Feature Engineering

Processamento e transformação de variáveis.

Treinamento

Ajuste de hiperparâmetros.

Predição

Geração de previsões e probabilidade de aceitação.

Resultados e Próximos Passos

Modelo Treinado

Otimização de hiperparâmetros utilizando **Hyperopt** para Regressão Logística e XGBoost. Implementação de validação cruzada para garantir a robustez do modelo.

Desempenho

Melhor desempenho com Regressão

Logística, apresentando maior recall e
em comparação com o XGBoost. Além de
métricas mais equilibradas por classe,
melhor acurácia e melhor custo
computacional.

Regressão Logística

	precision	recall	f1-score	support
0	0.64	0.69	0.66	9341
1	0.70	0.65	0.67	10390
accuracy			0.67	19731
macro avg	0.67	0.67	0.67	19731
weighted avg	0.67	0.67	0.67	19731

XGBoost

	precision	recall	f1-score	support
(0.58	0.93	0.72	9341
1	0.86	0.41	0.55	10390
accuracy	/		0.65	19731
macro ava	g 0.72	0.67	0.63	19731
weighted av	g 0.73	0.65	0.63	19731

Próximos Passos

- Implementação do modelo em um pipeline automatizado para prever a aceitação de ofertas em tempo real;
- Análise de custo-benefício para determinar o impacto financeiro da implementação do modelo;
- Refinar features e buscar melhores resultados no desempenho do modelo;
- Testar outros algoritmos.