Ficha 4

Cálculo Diferencial.

Derivadas parciais e diferenciabilidade de primeira ordem

- 1. Calcule, utilizando a definição, a derivada direccional de f no ponto ${\bf a}$ segundo o vetor ${\bf v}$ se
 - (a) f(x,y) = 2x y, $\mathbf{a} = (-1,2)$, $\mathbf{v} = (1,1)$;
 - (b) f(x,y) = 2x y, $\mathbf{a} = (-1,2)$, $\mathbf{v} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$;
 - (c) $f(x,y) = x^2y$, $\mathbf{a} = (-1,2)$, $\mathbf{v} = (\frac{4}{5}, -\frac{3}{5})$;
 - (d) $f(x, y, z) = xy + 2x^2 + z$, $\mathbf{a} = (1, -1, 1)$, $\mathbf{v} = (1, 2, 3)$;
 - (e) $f(x, y, z) = x^2 + 2y^2 + 3z^2$, $\mathbf{a} = (1, 1, 0)$, $\mathbf{v} = (\frac{2}{3}, -\frac{1}{3}, \frac{2}{3})$.
- 2. Seja $f: \mathbb{R}^n \to \mathbb{R}$ a função definida por $f(\mathbf{x}) = \langle \mathbf{a}, \mathbf{x} \rangle$, onde $\mathbf{a} \in \mathbb{R}^n$ é um vetor dado. Calcule $f'(\mathbf{x}; \mathbf{v})$ para $\mathbf{x} \in \mathbf{v} \neq \mathbf{0}$ arbitrários.
- 3. Considere $f: \mathbb{R}^n \to \mathbb{R}$ definida por $f(\mathbf{x}) = \|\mathbf{x}\|^2$.
 - (a) Calcule $f'(\mathbf{x}; \mathbf{v})$ para $\mathbf{x} \in \mathbf{v} \neq \mathbf{0}$ arbitrários.
 - (b) Usando o resultado de alínea (a) no caso n=2 determine todos os vetores (u,v) para os quais f'((2,3);(u,v))=6.
 - (c) Usando o resultado de alínea (a) no caso n=3 determine todos os vectores (u,v,w) para os quais f'((1,2,3);(u,v,w))=0.
- 4. Seja $f : \mathbb{R}^n \to \mathbb{R}$ a forma quadrática $f(\mathbf{x}) = \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle$ onde \mathbf{A} é uma $n \times n$ -mastriz simétrica. Calcule a derivada $f'(\mathbf{x}; \mathbf{v})$ para qualquer que sejam $\mathbf{x} \in \mathbb{R}^n$ e $\mathbf{v} \neq 0$.
- 5. Calcule as derivadas parciais de função

$$f(x,y) = \begin{cases} \frac{x}{\sqrt{x^2 + y^2}} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

no ponto (0,0), caso existam.

6. Considere a função $f:\mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} \frac{4}{x^2 + y^2} & \text{se } x^2 + y^2 > 4\\ e^{y-2} & \text{se } x^2 + y^2 \le 4. \end{cases}$$

Pela definição calcule as derivadas $\frac{\partial f}{\partial x}(0,2)$, $\frac{\partial f}{\partial y}(0,2)$ e $\frac{\partial f}{\partial x}(0,0)$.

- 7. Considere a função $f(x,y) = x^2 2xy$.
 - (a) Calcule, usando a definição, as derivadas $\frac{\partial f}{\partial x}(1,0)$, $\frac{\partial f}{\partial y}(1,0)$.
 - (b) Verifique os resultados de alínea (a) usando as regras de derivação.
- 8. Determine as derivadas parciais das funções seguintes nos pontos onde existem
 - (a) $f(x,y) = xy^2 + xe^y$; (b) $f(x,y) = x^2 + y^2 \sin(xy)$;
 - (c) $f(x,y) = e^{x^2+y^2}$; (d) $f(x,y,z) = \ln(x^2+y^2+z^2+1)$;
 - (e) $f(x,y) = \operatorname{arctg}(2x)$; (f) $f(x,y) = x^3y^2 2x^2y \cos y$;
 - (g) f(x, y, z) = xyz; (h) $f(x, y, z) = x\sqrt{y} + \sqrt[3]{z};$
 - (i) $f(x,y) = \frac{x-y}{x+y}$; (j) $f(x,y,z) = \begin{cases} e^{x^2+y^2+z^2} & \text{se } (x,y,z) \neq (0,0,0) \\ 0 & \text{se } (x,y,z) = (0,0,0) \end{cases}$.
- 9. Mostre que a função

$$f\left(x,y\right) = \sqrt{|xy|}$$

admete as derivadas parciais $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ em (0,0) mas não é diferenciável nesse ponto.

- 10. Verifique se as seguintes funções são diferenciáveis na origem:
 - (a) $f(x,y) = \sqrt{x^2 + y^2}$;

(b)
$$f(x,y) = \begin{cases} \frac{2y^3}{x^2+y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0); \end{cases}$$

(c)
$$f(x,y) = \begin{cases} \frac{x^3y^2}{x^4+y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0); \end{cases}$$

(d)
$$f(x,y) = \begin{cases} \frac{x^3+y^3}{x^2+y^2} & \text{se } (x,y) \neq (0,0); \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$$

- 11. Averigue diferenciabilidade da função $f(x,y) = e^{xy} + xye^{xy}$ e calcule o seu diferencial no ponto (1,0).
- 12. Verifique se a função $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \begin{cases} \frac{y^4 + 2x^3 - 2xy^2}{x^2 + y^2} & \text{se } (x,y) \neq (0,0); \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

é diferenciável na origem ou não. No caso afirmativo determine o seu diferencial df(0,0).

13. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} \frac{xy}{x^2+y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

- (a) Calcule, caso existam, as derivadas de f no ponto (0,0) segundo os vectores $(\alpha,0),(0,\beta)$ e (α,β) , com $\alpha,\beta\in\mathbb{R}\setminus\{0\}$.
- (b) Com base na alínea anterior determine $\frac{\partial f}{\partial x}(0,0)$ e $\frac{\partial f}{\partial y}(0,0)$.
- (c) Mostre que a função não é diferenciável na origem.
- 14. Verifique se as funções seguintes são diferenciáveis em \mathbb{R}^2 e determine os seus diferenciais:
 - (a) $f(x,y) = 3xy^2 + 4x^2y + 2xy$;
 - (b) $f(x,y) = \sin(xy^2)$.
- 15. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$ definida por f(x,y) = y|x|. Mostre que f é contínua no ponto (0,1), mas não é diferenciável nesse ponto.
- 16. Determine o gradiente das funções definidas em alíneas (a)-(e) em baixo e com uso dele calcule as derivadas direccionais no ponto a segundo o vector $\mathbf{v} \neq \mathbf{0}$:

(a)
$$f(x, y, z) = x^2 + 2y^2 + 3z^2$$
, $\mathbf{a} = (1, 1, 0)$, $\mathbf{v} = (\frac{2}{3}, -\frac{1}{3}, \frac{2}{3})$;

(b)
$$f(x,y) = \frac{xy^2}{x+y}$$
 se $x + y \neq 0$, $\mathbf{a} = (1,-2)$, $\mathbf{v} = \left(-\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}\right)$;

(c)
$$f(x, y, z) = \left(\frac{x}{y}\right)^z$$
, $\mathbf{a} = (1, 1, 1)$, $\mathbf{v} = \left(\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}\right)$;

(d)
$$f(x,y) = x^3y^2$$
, $\mathbf{a} = (-1,2)$, $\mathbf{v} = (\frac{4}{5}, -\frac{3}{5})$;

(e)
$$f(x,y) = e^x \cos y$$
, $\mathbf{a} = (0, \frac{\pi}{4})$, $\mathbf{v} = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$.

17. Determine o gradiente da função dada por

(a)
$$g(x, y, z) = \sqrt{25 - x^2 - y^2 - z^2}$$
;

(b)
$$h(x,y) = \frac{xy}{x-2y}$$
.

18. Use a regra da cadeia para calcular a derivada da função composta $t\mapsto f\left(x\left(t\right),y\left(t\right)\right)$ se

(a)
$$f(x,y) = x^2 + y^2$$
, $x(t) = t$, $y(t) = t^2$;

- (b) $f(x,y) = \operatorname{tg}(x^2 + y), x(t) = 2t, y(t) = t^2;$
- (c) $f(x,y) = x \cos y, x(t) = \sin t, y(t) = t.$
- 19. Determine, usando a regra da cadeia, as derivadas parciais da função
 - (a) $f(x,y) = xy \ln(x+y);$
 - (b) $f(x,y) = (x^2 + y^2) \frac{1 \sqrt{x^2 + y^2}}{1 + \sqrt{x^2 y^2}};$
 - (c) $f(x,y) = \ln(\cos^2 x \cos^2 y + \sin^2 x \sin^2 y);$
 - (d) $f(x,y,z) = \left(\frac{x-y}{x+y}\right)^3 \sqrt{\frac{x+z}{x-z}}$.
- 20. Escreva as equações do *plano tangente* e da *reta normal* à superfície dada no ponto indicado. Faça desenho.
 - (a) $z = \frac{x^2}{2} y^2$ no ponto (2, -1, 1);
 - (b) f(x,y) = xy no ponto (1,1,1);
 - (c) $z = x^2 + y^2$ no ponto (1, -2, 5);
 - (d) $\frac{x^2}{16} + \frac{y^2}{9} \frac{z^2}{8} = 0$ no ponto (4, 3, 4).