

ECE 602: LUMPED LINEAR SYSTEMS

Professor Jianghai Hu

Determining Local Stability from Linearized Dynamics

Hartman-Grobman Theorem

Theorem

Suppose $\dot{x}=f(x)$ with a smooth $f(\cdot)$ has an equilibrium point $x_{\rm e}$, and $Df(x_{\rm e})$ has no eigenvalue with real part equal to zero. Then, there exists a homeomorphism ϕ between a neighborhood $\mathcal{N}_{\rm e}$ of $x_{\rm e}$ and a neighborhood $\mathcal{N}_{\rm 0}$ of 0 in \mathbb{R}^n that maps solutions of $\dot{x}=f(x)$ inside $\mathcal{N}_{\rm e}$ to solutions of $\dot{x}=Df(x_{\rm e})x$ inside $\mathcal{N}_{\rm 0}$.

- Thus, $\dot{x} = f(x)$ is locally asymptotically stable at x_e if and only if the linearized system $\dot{z} = Df(x_e)z$ is stable.
- Examples: Eigenvalues of $Df(x_e)$ are: (i) $\{-1, -2 \pm j\}$; (ii) $\{1, -2 \pm j\}$; $\{\pm j, -2 \pm j\}$
- D. M. Grobman, "Homeomorphisms of systems of differential equations," Doklady Akademii Nauk SSSR. 128: 880–881, 1959.
- P. Hartman, "On local homeomorphisms of Euclidean spaces," Bol. Soc. Math. Mexicana. 5: 220–241, 1960

Example: Simple Pendulum

Dynamics: $\ddot{\theta} = -mg\ell \sin \theta - \eta \dot{\theta}$

ullet $\eta > 0$ is damping coefficient

State $x = \begin{bmatrix} \theta & \dot{\theta} \end{bmatrix}^T$ has dynamics

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = f(x) = \begin{bmatrix} x_2 \\ -mg\ell\sin x_1 - \eta x_2 \end{bmatrix}$$

Two equilibrium points $x_{e1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $x_{e2} = \begin{bmatrix} \pi \\ 0 \end{bmatrix}$, with linearized dynamics:

$$\frac{d}{dt}z(t) = \underbrace{\begin{bmatrix} 0 & 1 \\ -mg\ell & -\eta \end{bmatrix}}_{Df(x_{e_1})}z(t), \qquad \frac{d}{dt}z(t) = \underbrace{\begin{bmatrix} 0 & 1 \\ mg\ell & -\eta \end{bmatrix}}_{Df(x_{e_2})}z(t)$$

Example

Nonlinear system
$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -x_1 - x_1^3 - \alpha x_2 \end{cases}$$
 where $\alpha \neq 0$.

Inconclusive Cases

What if $Df(x_e)$ has eigenvalues on the $j\omega$ -axis?

1
$$\dot{x} = -x^3$$

2
$$\dot{x} = x^3$$

3 Simple pendulum at $x_e = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ without damping $(\eta = 0)$:

$$Df(x_{e}) = \begin{bmatrix} 0 & 1 \\ -mg\ell & 0 \end{bmatrix}$$

Example: Lotka-Volterra Model

Population model of two species:

- x_1, x_2 : populations of prey and predator
- Prey has unlimited food and predator total dependence on prey

$$\begin{cases} \frac{dx_1}{dt} &= 4x_1 - 2x_1x_2 \\ \frac{dx_2}{dt} &= -x_2 + x_1x_2 \end{cases} \text{ with equilibrium points } x_{e,1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ x_{e,2} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Linearization of Controlled Nonlinear Systems

A controlled nonlinear time-invariant system

$$\dot{x}(t) = f(x(t), u(t))$$

has an equilibrium point x_e if $f(x_e, 0) = 0$.

- $x(t) \equiv x_e$ is a solution under $u(t) \equiv 0$.
- If $x-x_{\rm e}$ and u are small, then $x-x_{\rm e}\approx z$ where z is the solution of

$$\dot{z} = \underbrace{\frac{\partial f}{\partial x} f(x_{e}, 0)}_{A} z + \underbrace{\frac{\partial f}{\partial u} f(x_{e}, 0)}_{B} u$$

Linearization around a Trajectory

Suppose the nonlinear time-varying system

$$\frac{d}{dt}x(t)=f(x,u,t), \quad x(0)=x_0, \qquad y(t)=g(x,u,t)$$

has (nominal) solutions $x^*(t)$ and $y^*(t)$ under nominal input $u^*(t)$

Suppose input is perturbed slightly: $u(t) = u^*(t) + \delta u(t)$. The resulting $x(t) = x^*(t) + \delta x(t)$ and $y(t) = y^*(t) + \delta y(t)$ satisfy approximately

$$\begin{cases} \frac{d}{dt}\delta x(t) = A(t)\delta x(t) + B(t)\delta u(t) \\ \delta y(t) = C(t)\delta x(t) + D(t)\delta u(t) \end{cases}$$

with

$$A(t) = \frac{\partial}{\partial x} f(x^*(t), u^*(t), t), \qquad B(t) = \frac{\partial}{\partial u} f(x^*(t), u^*(t), t)$$

$$C(t) = \frac{\partial}{\partial x} g(x^*(t), u^*(t), t) \qquad D(t) = \frac{\partial}{\partial u} g(x^*(t), u^*(t), t)$$