Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on 2.5 D Residual Squeeze and Excitation Deep Learning Model

Abdul Qayyum

ImViA laboratory, University of Bourgogne Franche-Comté, Dijon, France Abdul.Qayyum@u-Bourgogne.fr

Alain Lalande

ImViA laboratory, University of Bourgogne Franche-Comté, Dijon, France Medical imaging department, University Hospital of Dijon, Dijon, France

Thomas Decourselle

CASIS company Quetigny-France

Thibaut Pommier

Medical imaging department, University Hospital of Dijon, Dijon, France

Alexandre Cochet

ImViA laboratory, University of Bourgogne Franche-Comté, Dijon, France Medical imaging department, University Hospital of Dijon, Dijon, France

Fabrice Meriaudeau

ImViA laboratory, University of Bourgogne Franche-Comt, Dijon, France

Introduction & Overview Myocardium and Myocardial Infarction

knowledge of the myocardial borders

Myocardium and myocardial infarction

Total (348 Cases)

Validation (64 cases)

Data Acquisition & Processing

QIR(Quantified Imaging Resource) developed by CASIS (CArdiac Simulation and Imaging Software) company

LGE MRI (Left ventricle image Sequences)

Training (256 cases)

- QIR software used for manual contouring of the myocardial borders (endocardium and epicardium)
- Moreover, intra-observer and inter-observer annotations were provided for the 28 test cases.

Residual network with special layers and excitation block and ensemble the outputs of model

Experimental Results and conclusion

Segmentation map for proposed and existing deep learning models for base, middle, and apex slices for single patient

Performance evaluation for proposed deep learning model. r represented correlation coefficient and BA is the bland altman

Algorithms		DSC (%)	HD (mm)	r	BA Bias (cm2)
Intra-observer variation	Base	86.66	3.01	0.976	0.10(0.50)
	Middle	85.24	2.94	0.961	-0.025(0.33)
	Apex	77.51	2.98	0.941	0.30(1.38)
	Overall	83.22	3.26	0.957	0.11 (0.85)
Inter-observer variation	Base	82.54	4.03	0.957	0.34(0.92)
	Middle	81.22	3.87	0.955	0.18(0.73)
	Apex	74.12	3.87	0.924	0.53(1.95)
	Overall	79.25	4.12	0.945	0.33 (1.31)
Our Method	Base	86.55	3.13	0.969	-0.16(0.57)
	Middle	84.77	3.65	0.955	0.30(0.87)
	Apex	76.85	3.69	0.930	0.31(1.56)
	Overall	82.01	3.67	0.959	0.19 (1.07)

Conclusion

- We have proposed a novel, fully automated ensemble model with 2.5 D strategy for myocardium border segmentation from LGE-MRI images.
- The proposed ensemble method shows excellent results as compared to existing state-of-the art deep learning models and lies with the intraand inter- observer variabilities.