# 智能控制导论

| 题目: |  |  |  |
|-----|--|--|--|
|     |  |  |  |
|     |  |  |  |

| 学    | 期: |  |
|------|----|--|
| 课    | 号: |  |
| 课程   |    |  |
| 学    | 号: |  |
| 1.1L | 夕. |  |

此页内容: 删掉

从下面题目中任选一题,完成相关要求,撰写报告。格式请参考此格式,可不用此格式,但 是必须要规范。

题目:

### 1. 系统辨识。 模型/函数逼近类 (下列系统二选一)

### (1)小车倒立摆系统

$$\dot{x_1} = x_2$$

$$\dot{x_2} = f(x) + g(x)u$$

$$\dot{x_2} = \frac{g_0 \sin(x_1) - m l x_2^2 \cos x_1 \sin x_1 / (m_c + m)}{l(4/3 - m \cos^2 x_1 / (m_c + m))} + \frac{\cos x_1 / (m_c + m)}{l(4/3 - m \cos^2 x_1 / (m_c + m))}u$$

其中 
$$f(x) = \frac{g_0 \sin(x_1) - m \ln x_2^2 \cos x_1 \sin x_1 / (m_c + m)}{l(4/3 - m \cos^2 x_1 / (m_c + m))}, g(x) = \frac{\cos x_1 / (m_c + m)}{l(4/3 - m \cos^2 x_1 / (m_c + m))}$$
。  $x_1$ 和  $x_2$  为

分别为摆角和摆速, 重力加速度  $g_0 = 9.8m.s^2$ , 小车质量  $m_c = 1kg$ , 摆杆质量m = 0.1kg, 摆杆的长度为2l,且 l = 0.5m, 控制输入为u, 输出为  $y = x_1$ .

问题 1: 试用不同的智能算法拟合小车倒立摆系统(不少于两种), 拟合时输入请用 u=0.1\*sin (t)

问题 2: 试分析不同摆杆长度(I=0.1,0.5,1,10 m)和 小车质量(mc=0.1)对系统的输出的影响,

提示:参考课本 P89

#### (2) 球杆模型:

https://www.bilibili.com/video/BV1954y1G7pZ/?spm\_id\_from=333.337.search-card.all.click&vd\_source=8a39cc787aeea7159e93bd38cb18d935 此题可以参考



如图所示的球杆系统, 其数学模型如下

$$(\frac{J}{R^2} + m)\ddot{r} = -mg\sin\alpha - mr\dot{\alpha}^2$$

$$\alpha = \frac{d}{L}\theta$$

其中 J=9.99e-6kg.m^2 为小球转动惯量, m=0.11kg 为小球 质量, R=0.015m 为 小球 半径, d=0.03m 为 球中心偏移量, g=9.8m/m^2 为重力加速度, L=1m 为主壁长度, r 为小球到端点距离, α 为上杆旋转的角度, $\theta$  为伺服电机旋转的角度。球杆控制系统基本原理是通过驱动电机改变 $\theta$ 角度,使小球 稳定在杆中的指定位置。

问题 1: 试用不同的智能算法拟合球杆系统(不少于两种), 拟合时输入请用 u=0.1\*sin (t)

问题 2: 试分析不同摆杆长度 (L=0.1,0.5,1,10 m) 和 小球质量 (m=0.1) 对系统的输出的影响.

### 2. 控制类: (下列系统二选一)

系统输入为  $u=\theta$ , 输出为 y=r,

### (1) 倒立摆系统

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = f(x) + g(x)u$$

$$\dot{x}_2 = \frac{g_0 \sin(x_1) - m l x_2^2 \cos x_1 \sin x_1 / (m_c + m)}{l(4/3 - m \cos^2 x_1 / (m_c + m))} + \frac{\cos x_1 / (m_c + m)}{l(4/3 - m \cos^2 x_1 / (m_c + m))}u$$

其中  $f(x) = \frac{g_0 \sin(x_1) - m \ln x_2^2 \cos x_1 \sin x_1 / (m_c + m)}{l(4/3 - m \cos^2 x_1 / (m_c + m))}, g(x) = \frac{\cos x_1 / (m_c + m)}{l(4/3 - m \cos^2 x_1 / (m_c + m))}$ 。  $x_1$ 和  $x_2$  为

分别为摆角和摆速,重力加速度  $g_0 = 9.8m.s^2$ , 小车质量  $m_c = 1kg$ , 摆杆质量m = 0.1kg, 摆杆的长度为2l,且 l = 0.5m, 控制输入为u, 输出为  $y = x_1$ .

问题 1: 请设计不同的类型控制器

问题 2: 试分析不同摆杆长度 (I=0.1,0.5,1,10 m) 和 小车质量 (mc=0.1) 对系统的输出的影响, 提示: P89,

### (2) 球杆系统

https://www.bilibili.com/video/BV1954y1G7pZ/?spm\_id\_from=333.337.search-card.all.click&vd source=8a39cc787aeea7159e93bd38cb18d935 此题可以参考



如图所示的球杆系统,

其数学模型如下

$$(\frac{J}{R^2} + m)\ddot{r} = -mg\sin\alpha - mr\dot{\alpha}^2$$

$$\alpha = \frac{d}{L}\theta$$

其中  $J=9.99e-6kg.m^2$  为小球转动惯量, m=0.11kg 为小球 质量, R=0.015m 为 小球 半径, d=0.03m 为 球中心偏移量,  $g=9.8m/m^2$  为重力加速度, L=1m 为主壁长度, r 为小球到端点距离,  $\alpha$  为上杆旋转的角度, 为伺服电机旋转的角度。球杆控制系统基本 原理是通过驱动电机改变 $\theta$ 角度,使小球 稳定在杆中的指定位置。 系统输入为  $u=\theta$ , 输出为 y=r,

问题 1: 试用不同的控制器(不少于两种), 拟合时输入请用 u=0.1\*cos (t)

问题 2: 试分析不同摆杆长度(L=0.1,0.5,1,10 m)和 小球质量(m=0.1,0.5,1kg)对系统的输出的影响。

### 3. 分类/模式识别 (可选择不同类型分类问题)

以手写阿拉伯数字进行进行识别 https://zhuanlan.zhihu.com/p/136264062 可参考 BP 或者其它神经网络。

#### 样本可参考群数据

要求: 1) 至少利用一种神经网络算法进行识别;

2) 请给出基本的基本原理和详细的过程。 以手写汉字为例,进行识别,或者图片 汉字 识别,(数字和字母去掉)

### 4. 预测类

例如某地温度、风速等预测。

此题,可选作,结合神经网络等算法,可以是风速预测,也可以是温度(比如宁波当天最高温度)

要求: 1)不少于一种方法,基于神经网络的方法请给出基本原理和详细的过程;

2) 比较不同的方法,

数据来源可参考: <a href="http://www.weather.com.cn/live/">https://www.windy.com/?29.880,121.551,5,i:pressure</a>



### 5. 优化类 (TSP) 问题 P167

假设你先住在宁波,想安排一次自驾游,游览国内一些城市,请制定自驾线路。 要求: 1)每一个城市,除宁波外,只能访问一次;

- 2) 所行驶的总里程最短(油耗最少);
- 3) 请给出基本优化的基本原理和详细的过程。

参考: Hopfield 网络 P167 遗传算法 , P244

城市和城市之间距离如下:

http://search.huochepiao.com/juli/?chufa=%C4%FE%B2%A8&daoda=%CE%E4%BA%BA&Submit =%C0%EF%B3%CC%B2%E9%D1%AF

表 1 城市与城市之间自驾距离

| km | 宁波 | 上海 | 南京 | 杭州 | 北京 | 苏州 | 成都 | 武汉 | 新疆 | 西安 |
|----|----|----|----|----|----|----|----|----|----|----|
|----|----|----|----|----|----|----|----|----|----|----|

| 宁波 | 333 | 605 | 149 | 1651 | 407  | 2245 | 983  | 4059 | 1620 |
|----|-----|-----|-----|------|------|------|------|------|------|
| 上海 |     | 301 | 202 | 1328 | 84   | 2159 | 811  | 3978 | 1509 |
| 南京 |     |     | 488 | 1162 | 217  | 1858 | 516  | 3607 | 1208 |
| 杭州 |     |     |     | 1591 | 271  | 2842 | 807  | 3887 | 1558 |
| 北京 |     |     |     |      | 1379 | 2001 | 1200 | 3517 | 1159 |
| 苏州 |     |     |     |      |      | 2075 | 743  | 3823 | 1425 |
| 成都 |     |     |     |      |      |      | 1289 | 2971 | 842  |
| 武汉 |     |     |     |      |      |      |      | 3280 | 1025 |
| 新疆 |     |     |     |      |      |      |      |      | 2551 |
| 西安 |     |     |     |      |      |      |      |      |      |

可以选择类似优化问题,但是必须有实际应用背景。数据必须指定上述城市。或者,制定宁波地区,在宁波市自由选取10个地方,以宁波大学为起点,终点回到宁波大学。

### 6. **自拟类**,

自己选定与本课程相关的(参数估计,控制,预测,优化,神经网络,遗传智能算法)等的问题。思路:从提出问题,解决问题的步骤去想,可以参考最新研究论文(近1年发布的论文从2022年9月开始到今天的外文期刊论文),复现其研究成果。

-----

### 注意事项:

- 1、严禁抄袭(包括同学之间的"参考"),如有发现,直接记零分,没有补考。
- 2、提交报告的时候,请准备 3 分钟的 PPT, 对自己所做的内容进行陈述。PPT 正文内容限制在 5 张 PPT.
- 3、报告内容总页数 6~8 页之间,字数在 3000~4000 之间。
- 4、论文需要准备电子版和纸质版,电子版请上传到学习通网站上,查重复制比超过 25%,直接零分。

# 基于遗传算法的 TSP 问题优化求解(题

# 目)

摘要: 本文针对 XX 问题, 提出了 XX 的方法 (第一部分: 总结一句话)。该方法首先怎么处理, 然后操作, 最好怎么做 (第二部分, 介绍大致步骤)。通过 XX 系统验证该算法具有 XX 特点, 简述该算法特点 (第三部分)。添加摘要

# 1 问题陈述

### 1.1 正文格式

中文用 宋体,小四,英文 用 Times New Roman, 小四 文章中出现符号,请用斜体 times new roman 出现三级标题 用如下形式

### 1.1.1 三级标题

### 1.2 图片格式

图片格式: 必须有标题和编号, 标题在图的下方, 如图 1 所示;



图 1. X14 的实际值和估计值

其中, 图 1. 加粗 五号 宋体

### 1.3 表格格式

表格格式: 必须有标题和编号, 标题在图的下方, 如图 1 所示; **表 1** 城市与城市之间自驾距离

| km | 宁波 | 上海  | 南京  | 杭州  | 北京   | 苏州   | 成都   | 武汉   | 新疆   | 西安   |
|----|----|-----|-----|-----|------|------|------|------|------|------|
| 宁波 |    | 333 | 605 | 149 | 1651 | 407  | 2245 | 983  | 4059 | 1620 |
| 上海 |    |     | 301 | 202 | 1328 | 84   | 2159 | 811  | 3978 | 1509 |
| 南京 |    |     |     | 488 | 1162 | 217  | 1858 | 516  | 3607 | 1208 |
| 杭州 |    |     |     |     | 1591 | 271  | 2842 | 807  | 3887 | 1558 |
| 北京 |    |     |     |     |      | 1379 | 2001 | 1200 | 3517 | 1159 |
| 苏州 |    |     |     |     |      |      | 2075 | 743  | 3823 | 1425 |
| 成都 |    |     |     |     |      |      |      | 1289 | 2971 | 842  |
| 武汉 |    |     |     |     |      |      |      |      | 3280 | 1025 |
| 新疆 |    |     |     |     |      |      |      |      |      | 2551 |
| 西安 |    |     |     |     |      |      |      |      |      |      |

其中, 表 1. 加粗 五号 宋体

宋体, 小四, 英文 用 Times New Roman

### 2 原理叙述

3 解决思路

# 4 仿真/实践结果

### 5 总结

总结分两个部分,第一部分写解决此问题过程中的总结 第二部分 写此课程总结

### 参考文献

(如果有参考文献, 请参考 GB/T7714 标准 撰写)

- [1] Lin S , Kernighan B W . An Effective Heuristic Algorithm for the TSP[J]. Operations Research, 1973, 21(2):498--516.
- [2] 于莹莹, 陈燕, 李桃迎. 改进的遗传算法求解旅行商问题[J]. 控制与决策, 2014, 000(008):1483-1488.
- [3] 孙增圻, 邓志东, 张再兴. 智能控制理论与技术[M]. 清华大学出版社, 2011.

| 以  | 下部分可以作为 | 自选题或者是控制类题 | <b>题的模板</b> |              |     |
|----|---------|------------|-------------|--------------|-----|
| 1. | (此部分: 分 |            |             | (或者识别基本原理图或者 | 筝 预 |
| 2  | 建立系统模型  | (或者        |             |              |     |

3 设计辨识系统模型方法,结合前面学习的结果,(利用,模糊,神经网络等逼近非线性

系统

4 控制器设计

5 仿真输出